

UM0339 User manual

SuperH[™] (SH) 32-bit RISC series SH-4, ST40 system architecture, volume 1: system

This manual describes the ST40 family system architecture. It is split into four volumes:

ST40 System Architecture - Volume 1 System - ADCS 7153464.

ST40 System Architecture - Volume 2 Bus Interfaces - ADCS 7181720.

ST40 System Architecture - Volume 3 Video Devices - ADCS 7225754.

ST40 System Architecture - Volume 4 I/O Devices - ADCS 7225754.

Contents

	Preface				
		Docur	nent identification and control	xxi	
		ST40	documentation suite	xxi	
			ST40 Micro Toolset User's Guide	xxi	
			OS21 User's Manual	xxii	
			OS21 for ST40 User Manual	xxii	
			32-Bit RISC Series, SH-4 CPU Core Architecture	xxii	
			32-Bit RISC Series, SH-4, ST40 System Architectu	ıre xxii	
		Conve	entions used in this guide	xxiii	
			General notation	xxiii	
			Hardware notation	xxiii	
			Software notation	xxiii	
1	Ove	erview	,	1	
	1.1	ST40	features	1	
	1.2	Block	diagram	2	
		1.2.1	CPU	3	
		1.2.2	FPU/MAC	3	
		1.2.3	MMU	4	
		1.2.4	Cache	4	
		1.2.5	Interrupt	5	
		1.2.6	DMA controller	5	

		1.2.7	Debugging and emulation	5
		1.2.8	Power management	6
		1.2.9	Timers	6
		1.2.10	Real-time clock	6
		1.2.11	Serial communication	6
		1.2.12	External memory support	6
2	Sys	tem oı	ganization	7
	2.1	The S	uperHyway	7
		2.1.1	SuperHyway architecture	7
		2.1.2	Packets	9
		2.1.3	Transactions	10
			Request Response A complete transaction	
		2.1.4	SuperHyway packet-router	13
	2.2	Physic	cal address map	13
3	Inte	errupt	controller (INTC)	15
	3.1	Overv	iew	15
		3.1.1	INTC features	15
		3.1.2	Block diagram	16
		3.1.3	Pin configuration	17
		3.1.4	Register configuration	17
	3.2	Interr	upt sources	19
		3.2.1	NMI interrupts	19
		3.2.2	IRL interrupts	20
		3.2.3	On-chip peripheral module interrupts	22
		3.2.4	Interrupt exception handling and priority	23
	3.3	INTC	registers	26
		3.3.1	Interrupt priority registers A to D (IPRA to IPRD)	26
		2 2 2	Interrupt control register (ICP)	97

-47/-

			Bit 15: NMI input level (NMIL) Bit 14: NMI interrupt mask (MAI) Bit 9: NMI block mode (NMIB) Bit 8: NMI edge select (NMIE) Bit 7: IRL pin mode Bits 13 to 10 and 6 to 0: reserved	
		3.3.3	Interrupt priority registers (INTPRI00, INTPRI04, INTPRI08)	30
		3.3.4	Interrupt request registers (INTREQ00, INTREQ04, INTREQ08)	32
		3.3.5	Interrupt mask registers (INTMSK00, INTMSK04, INTMSK08)	34
		3.3.6	Interrupt mask clear registers (INTMSKCLR00, INTMSKCLR04, INTMSKCLR08)	36
		3.3.7	INTC2 mode register (INTC2MODE)	38
	3.4	INTC	operation	40
		3.4.1	Interrupt sequence	40
		3.4.2	Multiple interrupts	42
4	~			
4	GPI	DMA c	controller (DMAC)	43
4	GPI 4.1	DMA c Featu	, ,	43
4		Featu	, ,	
4	4.1	Featu	res	43
4	4.1	Featu Addre	res ess map	43 45
4	4.1	Featu Addre 4.2.1 4.2.2	res ess map Channel 0: multiplexed DMA channel	43 45 47
4	4.1 4.2	Featu Addre 4.2.1 4.2.2 Peripl	res ess map Channel 0: multiplexed DMA channel Channels 1 to 4: linked list DMA channel	43 45 47 49
4	4.1 4.2 4.3	Featu Addre 4.2.1 4.2.2 Peripl	res ess map Channel 0: multiplexed DMA channel Channels 1 to 4: linked list DMA channel heral allocation	43 45 47 49 50
4	4.1 4.2 4.3	Featu Addre 4.2.1 4.2.2 Peripl DMA	res ess map Channel 0: multiplexed DMA channel Channels 1 to 4: linked list DMA channel heral allocation operation DMA transfer procedure Stall Error Disable	43 45 47 49 50 51

		Paced	
	4.4.4	DMA requests	54
	4.4.5	DMA data organization	55
		Single location/0D	
		Incrementing/1D	
		Rectangular array/2D	
	4.4.6	Endianness	57
	4.4.7	DMA channel arbitration	57
	4.4.8	Extension to basic DMA operations	57
		Single linked list	
		Multiplexed channels	
4.5	Interf	faces	60
4.6	Dogic	61	
4.0	O	ter descriptions	_
	4.6.1	Global registers	62
		DMA.VCR.STATUS	
		DMA.VCR.VERSION	
		DMA.ENABLE	
		DMA.DISABLE	
		DMA.STATUS	
		DMA.INTERRUPT	
		DMA.ERROR	
		DMA.DEFINED	
		DMA.HANDSHAKE	
	4.6.2	Channel specific registers	71
		DMA.CHAN[n].IDENTITY	
		DMA.CHAN[n].ENABLE	
		DMA.CHAN[n].DISABLE	
		DMA.CHAN[n].STATUS	
		DMA.CHAN[n].ACTION	
		DMA.CHAN[n].POINTER	
		DMA.CHAN[n].REQUEST	
		DMA.CHAN[n].SUBBASE	
		DMA.CHAN[n].SUBENABLE	
		DMA.CHAN[n].SUBDISABLE	
		DMA.CHAN[n].SUB_INTENB	
		DMA.CHAN[n].SUBINT_DIS	
		DMA.CHAN[n].SUBINT_STAT	
		DMA.CHAN[n].SUBINT_ACT	
	4.6.3	Memory mapped channel registers	93

DMA.CHAN[n].CONTROL
DMA.CHAN[n].COUNT
DMA.CHAN[n].SAR
DMA.CHAN[n].DAR
DMA.CHAN[n].NEXT_PTR
DMA.CHAN[n].SRC_LENGTH
DMA.CHAN[n].SRC_STRIDE
DMA.CHAN[n].DST_LENGTH
DMA.CHAN[n].DST_LENGTH

5	Par	allel i	nput/output (PIO)	107
	5.1 PIO ports 0 to 2		oorts 0 to 2	107
	5.2	Regis	ter descriptions	109
		5.2.1	Output registers	109
		5.2.2	Input registers	112
		5.2.3	Configuration registers	113
		5.2.4	PIO input compare and compare mask registers	116
		5.2.5	Pseudoregisters	118
6	Clo	ck and	d power management	121
	6.1	Overv	view	121
	6.2	Addre	ess map	122
		6.2.1	CPG bank	122
		6.2.2	CLKGEN bank	123
	6.3	Clock	functionality	125
		6.3.1	Internal organization	125
		6.3.2	PLL1 control	127
			Diagram	
			Introduction	
			Allowable transitions State definitions	
			Enabling and disabling PLL1	
			Changing PLL1 divide ratios (clk1 to 3)	
			Changing the PLL1 divide ratio for clock 14 Changing PLL1 lock frequency	

- 577

		PLL frequency calculation	
	6.3.3	Configuring PLL2	132
		Introduction	
		Procedure to enable and disable PLL2	
		Changing the frequency of PLL2	
	6.3.4	Register description	134
		Frequency control register 1 (CPG.FRQCR)	
		CLKGEN.PLL1CR1	
		CLKGEN.PLL1CR2	
		CLKGEN.PLL2CR	
		CLOCKGEN.CLK4CR	
		CLOCKGEN.CPGBYPASS	
		CLKGEN.PLL2_MUXCR	
		CLKGEN.CLK1CR	
		CLKGEN.CLK2CR	
		CLKGEN.CLK3CR	
	*** . 1	CLKGEN.CLK_SELCR	4 7 0
6.4	Watch	ndog timer	153
	6.4.1	Block diagram	153
	6.4.2	Register configuration	154
	6.4.3	Register descriptions	154
		Watchdog timer counter (CPG.WTCNT)	
		Watchdog timer control and status register	
		(CPG.WTCSR) Bit 7: timer enable (TME)	
		Bit 6: timer mode select (WT/NOT_IT)	
		Bit 5: reset select (RSTS)	
		Bit 4: watchdog timer overflow flag (WOVF)	
		Bit 3: interval timer overflow flag (IOVF)	
		Bits 2 to 0: clock select 2 to 0 (CKS2 to CKS0)	
		Writing to CPG.WTCNT and CPG.WTCSR	
	6.4.4	Using the WDT	159
		Standby clearing procedure	
		Frequency changing procedure	
		Using watchdog timer mode	
		Using interval timer mode	
6.5	Power	r management unit (PMU)	161
	6.5.1	Types of power-down modes	162
	6.5.2	Register configuration	164

	6.5.3	Pin configuration 1	65
	6.5.4	Register descriptions 1	65
		Standby control register (CPG.STBCR)	
		Bit 7: standby (STBY)	
		Bit 6: peripheral module pin high impedance contro (PHZ)	l
		Bit 5: peripheral module pin pull-up control (PPU)	
		Bit 4: unused	
		Bit 3: module stop 3 (MSTP3)	
		Bit 2: module stop 2 (MSTP2)	
		Bit 1: module stop 1 (MSTP1)	
		Bit 0: module stop 0 (MSTP0)	
		Peripheral module pin pull-up control	
		Standby control register 2 (CPG.STBCR2)	
		Bit 7: unused	
		Bit 6: status pin high-impedance control (STHZ)	
		Bits 5 to 2: reserved	
		Bit 1: module stop 6 (MSTP6)	
		Bit 0: module stop 5 (MSTP5)	
		Standby control request register	
		(CLOCKGEN.STBREQCR)	
		Standby control acknowledge register (CLOCKGEN.STBACKCR)	
6.6	Funct	ionality 17	71
	6.6.1	Sleep mode 1	71
	0.0.1	Transition to sleep mode	•
		Exit from sleep mode	
		Exit by interrupt	
		Exit by reset	
	6.6.2	·	72
		Transition to deep sleep mode	
		Exit from deep sleep mode	
	6.6.3	• •	72
		Transition to standby mode	
		Exit from standby mode	
		Exit by interrupt	
		Exit by reset	
	6.6.4	-	74
6.7	Modu	-	75
0.7	wwu	ic standby function	, 5

		6.7.1	Transition to module standby function (CPG modules)	175
		6.7.2	Transition to module standby function (CLOCKGEN modules)	176
		6.7.3	Exit from module standby function (CPG modules)	176
		6.7.4	Exit from module standby function (CLOCKGEN modules)	177
	6.8	STAT	US pin change timing	177
7	Rea	ıl-time	e clock (RTC)	179
	7.1	Overv	view	179
		7.1.1	Features	179
		7.1.2	Block diagram	181
		7.1.3	Pin configuration	182
		7.1.4	Register configuration	182
		7.1.5	Register initialization	184
	7.2	Regis	ter descriptions	185
		7.2.1	64 Hz counter (RTC.R64CNT)	185
		7.2.2	Second counter (RTC.RSECCNT)	186
		7.2.3	Minute counter (RTC.RMINCNT)	188
		7.2.4	Hour counter (RTC.RHRCNT)	190
		7.2.5	Day-of-week counter (RTC.RWKCNT)	192
		7.2.6	Day counter (RTC.RDAYCNT)	194
		7.2.7	Month counter (RTC.RMONCNT)	196
		7.2.8	Year counter (RTC.RYRCNT)	198
		7.2.9	Second alarm register (RTC.RSECAR)	200
		7.2.10	Minute alarm register (RTC.RMINAR)	202
		7.2.11	Hour alarm register (RTC.RHRAR)	204
		7.2.12	Day-of-week alarm register (RTC.RWKAR)	206
		7.2.13	Day alarm register (RTC.RDAYAR)	208
		7.2.14	Month alarm register (RTC.RMONAR)	210
		7.2.15	RTC control register 1 (RTC.RCR1)	212
		7 2 16	RTC control register 2 (RTC RCR2)	215

-47/

	7.3	Opera	ation	219
		7.3.1	Time setting procedures	219
		7.3.2	Time reading procedures	221
		7.3.3	Alarm function	222
	7.4	Interi	rupts	223
	7.5	Usage	e notes	223
		7.5.1	Register initialization	223
		7.5.2	Crystal oscillator circuit	224
8	Tin	ner un	it (TMU)	227
	8.1	Overv	<i>r</i> iew	227
		8.1.1	Features	227
		8.1.2	Block diagram	229
		8.1.3	Pin configuration	229
		8.1.4	Register configuration	230
	8.2	Regis	ter descriptions	232
		8.2.1	Timer output control register (TMU.TOCR)	232
		8.2.2	Timer start register (TMU.TSTR)	233
		8.2.3	Timer constant registers (TMU.TCOR)	234
		8.2.4	Timer counters (TMU.TCNT)	235
		8.2.5	Timer control registers (TMU.TCR)	236
		8.2.6	Input capture register (TMU.TCPR2)	243
	8.3	Opera	ntion	244
		8.3.1	Counter operation	244
			Example of count operation setting procedure Auto-reload count operation TCNT count timing	
		8.3.2	Input capture function	248
	8.4	Interi	rupts	249
	8.5		e notes	250
		8.5.1	Register writes	250
		8.5.2	TCNT register reads	250

		8.5.3 8.5.4	Resetting the RTC frequency divider External clock frequency	250 250
9	Ser		nmunication interface with FIFO	251
	9.1	Overv	riew	251
		9.1.1	Features	251
		9.1.2	Block diagram	253
		9.1.3	Pin configuration	254
		9.1.4	Register configuration	255
	9.2	Regis	ter descriptions	256
		9.2.1	Receive shift register (SCIF.SCRSR)	256
		9.2.2	Receive FIFO data register (SCIF.SCFRDR)	256
		9.2.3	Transmit shift register (SCIF.SCTSR)	257
		9.2.4	Transmit FIFO data register (SCIF.SCFTDR)	258
		9.2.5	Serial mode register (SCIF.SCSMR)	259
			Bits 15 to 7: reserved Bit 6: character length (CHR) Bit 5: parity enable (PE) Bit 4: parity mode (O/E) Bit 3: stop bit length (STOP) Bit 2: reserved Bits 1 and 0: clock select 1 and 0 (CKS1, CKS0)	
		9.2.6	Serial control register (SCIF.SCSCR)	264
			Bits 15 to 8 and 2: reserved Bit 7: transmit interrupt enable (TIE) Bit 6: receive interrupt enable (RIE) Bit 5: transmit enable (TE) Bit 4: receive enable (RE) Bit 3: receive error interrupt enable (REIE) Bit 2: reserved Clock enable (CKE0 and CKE1)	
		9.2.7	Serial status register (SCIF.SCFSR)	270
			Bits 15 to 12: number of parity errors (PER3 to Bits 11 to 8: number of framing errors (FER3 to Bit 7: receive error (FR)	

	Bit 6: transmit end (TEND)	
	Bit 5: transmit-FIFO-data-empty (TDFE)	
	Bit 4: break detect (BRK)	
	Bit 3: framing error (FER)	
	Bit 2: parity error (PER)	
	Bit 1: receive-FIFO-data-full (RDF)	
	Bit 0: receive data ready (DR)	
9.2.8	Bit rate register (SCIF.SCBRR)	282
9.2.9	FIFO control register (SCIF.SCFCR)	284
	Bits 15 to 11: reserved	
	Bits 10, 9 and 8: RTS output active trigger (RSTRG2, RSTRG1 and RSTRG0)	
	Bits 7 and 6: receive FIFO data number trigger (RTRG1, RTRG0)	
	Bits 5 and 4: transmit FIFO data number trigger (TTRG1, TTRG0)	
	Bit 3: modem control enable (MCE)	
	Bit 2: transmit FIFO data register reset (TFRST)	
	Bit 1: receive FIFO data register reset (RFRST)	
	Bit 0: loopback test (LOOP)	
9.2.10	FIFO data count register (SCIF.SCFDR)	291
9.2.11	Serial port register (SCIF.SCSPTR)	293
	Bits 15 to 8: reserved	
	Bit 7: serial port RTS port I/O (RTSIO)	
	Bit 6: serial port RTS port data (RTSDT)	
	Bit 5: serial port CTS port I/O (CTSIO)	
	Bit 4: serial port CTS port data (CTSDT)	
	Bit 3: serial port clock port data (SCKIO)	
	Bit 2: serial port clock port data (SCKDT)	
	Bit 1: serial port break I/O (SPB2IO)	
	Bit 0: serial port break data (SPB2DT)	
9.2.12	Line status register (SCIF.SCLSR)	301
	Bits 15 to 1: reserved	
	Bit 0: overrun error (ORER)	
Opera	tion	303
9.3.1	Overview	303
9.3.2	Serial operation	305
	Data transfer format	
	Clock	
	Data transfer operations	

9.3

			Serial data reception	
	9.4	SCIF	interrupt sources and the DMAC	315
	9.5	Usage	notes	316
		9.5.1	SCIF.SCFTDR writing and the TDFE flag	316
		9.5.2	SCIF.SCFRDR reading and the RDF flag	317
		9.5.3	Break detection and processing	317
		9.5.4	Sending a break signal	317
		9.5.5	Receive data sampling timing and receive margin	318
		9.5.6	SCK/MRESET	319
		9.5.7	When using the DMAC	319
		9.5.8	Serial ports	319
10	Usei	r brea	k controller (UBC)	321
	10.1	Overv	iew	321
		10.1.1	Features	321
		10.1.2	Block diagram	323
	10.2	Regist	er overview	324
	10.3	Regist	er descriptions	327
		10.3.1	Access to UBC control registers	327
		10.3.2	Break address register A (UBC.BARA)	328
			Bits 31 to 0: break address A31 to A0 (BAA31	to BAA0)
		10.3.3	Break ASID register A (UBC.BASRA)	329
			Bits 7 to 0: break ASID A7 to A0 (BASA7 to BA	ASA0)
		10.3.4	Break address mask register A (UBC.BAMRA)	329
			Bits 7 to 4: reserved Bit 2: break ASID mask A (BASMA): Bits 3, 1, and 0: break address mask A2 to A0 (BAMA2 to BAMA0):	
		10.3.5	Break bus cycle register A (UBC.BBRA)	331
			Bits 15 to 7: reserved Bits 5 and 4: instruction access/operand access (IDA1, IDA0): Bits 3 and 2: read/write select A (RWA1, RWA) Bits 6, 1, and 0: operand size select A (SZA2 to	0)

	10.3.6	Break address register B (UBC.BARB)	333
	10.3.7	Break ASID register B (UBC.BASRB)	333
	10.3.8	Break address mask register B (UBC.BAMRB)	333
	10.3.9	Break data register B (UBC.BDRB)	334
		Bits 31 to 0: break data B31 to B0 (BDB31 to BD	B0):
	10.3.10	Break data mask register B (UBC.BDMRB)	335
		Bits 31 to 0: break data mask B31 to B0 (BDMB31 to BDMB0)	
	10.3.11	Break bus cycle register B (UBC.BBRB)	336
	10.3.12	Break control register (UBC.BRCR)	337
		Bit 15: condition match flag A (CMFA) Bit 14: condition match flag B (CMFB) Bits 13 to 11: reserved Bit 10: instruction access break select A (PCBA)	
		Bits 9 and 8: reserved	
		Bit 7: data break enable B (DBEB)	
		Bit 6: PC break select B (PCBB)	
		Bits 5 and 4: reserved Bit 3: sequence condition select (SEQ)	
		Bits 2 and 1: reserved	
		Bit 0: user break debug enable (UBDE)	
10.4	Operat	tion	341
	10.4.1	Explanation of terms relating to accesses	341
	10.4.2	Explanation of terms relating to instruction intervals	341
		Example of sequence of instructions with no brane Example of sequence of instructions with a brane	nch
	10.4.3	User break operation sequence	342
	10.4.4	Instruction access cycle break	344
	10.4.5	Operand access cycle break	345
	10.4.6	Condition match flag setting	346
		Instruction access with post-execution condition, operand access Instruction access with pre-execution condition	or
	10.4.7	Program counter (PC) value saved	347
	10.4.8	Contiguous A and B settings for sequential condition	s 348
		Instruction access matches on both channel A an channel B	ıd
		Instruction access match on channel A, operand	access

₹77 -

			match on channel B	
			Operand access match on channel A, instructio match on channel B	n access
			Operand access matches on both channel A and	channel B
	10.5	Usage	notes	350
	10.6	User b	User break debug support function	
	10.7	Examples of use		353
		10.7.1	Instruction access cycle break condition settings	353
			Independent channel A channel B mode: user be interrupt generated	
			Channel A channel B sequential mode: user bro interrupt generated	eak
			Independent channel A channel B mode: user b interrupts not generated	reak
		10.7.2	Operand access cycle break condition settings	356
		10.7.3	User break controller stop function	358
		10.7.4	Transition to user break controller stopped state	358
		10.7.5	Cancelling the user break controller stopped state	359
		10.7.6	Examples of stopping and restarting the user break controller	359
11	User debug interface (UDI)			361
	11.1	Overv	iew	361
		11.1.1	Features	361
		11.1.2	Block diagram	361
		11.1.3	Pin configuration	363
		11.1.4	Register configuration	364
	11.2	Register descriptions		367
		11.2.1	Instruction register (SDIR)	367
			Bits 15 to 8: Test instruction bits (TI7 to TI0) Bits 7 to 0: reserved	
		11.2.2	Data register (SDDR)	370
			Bits 31 to 0: D	R Data
		11.2.3	Bypass register (SDBPR)	371

		11.2.4	Interrupt factor register (SDINT)	371
			Bits 15 to 1: reserved	
			Bit 0: interrupt request bit (INTREQ)	
		11.2.5	Boundary scan register (SDBSR)	372
	11.3	Opera	tion	372
		11.3.1	TAP control	372
		11.3.2	UDI reset	373
		11.3.3	UDI interrupt	374
		11.3.4	Bypass	374
		11.3.5	Boundary scan (EXTEST, SAMPLE/RELOAD)	374
	11.4	11.4 Usage notes		375
		11.4.1	SDIR command	375
		11.4.2	SDIR commands in sleep mode	375
		11.4.3	Emulator	375
		_		
12	Adv	anced	l user debugger (AUD)	377
	12.1	2.1 Overview		377
		12.1.1	Features	377
		12.1.2	Block diagram	378
	12.2	AUD i	nterface pins	379
	12.3	Regist	er summary	380
13	ASE	hard	ware break controller	381
	13.1	Overv	iew	381
		13.1.1	Features	381
		13.1.2	Differences between the user break controller an	d ASE
			hardware break controller	382
		13.1.3	Block diagram	383
	13.2 Regis		ter summary	

Appendices

A	ST40 system architectural conventions			389
	A.1	Introduction		389
		A.1.1	Memory blocks	389
		A.1.2	Control registers	390
			Register conventions	
			Field conventions	
			Control register layout	
		A.1.3	Version control registers	394
		A.1.4	P-ERROR flags	397
		A.1.5	M-ERROR flags	401
		A.1.6	Memory map conventions	401
		A.1.7	P-MODULE specification standards	402
В	Register address list		403	
	Ind	ex		417

Preface

This document is part of the SuperH Documentation Suite detailed below. Comments on this or other manuals in the SuperH Documentation Suite should be made by contacting your local STMicroelectronics Limited Sales Office or distributor.

Document identification and control

Each book carries a unique identifier in the form:

ADCS nnnnnnx

Where, nnnnnnn is the document number and x is the revision.

Whenever making comments on a document the complete identification ADCS nnnnnnx should be quoted.

ST40 documentation suite

The ST40 documentation suite comprises the following volumes:

ST40 Micro Toolset User's Guide

ADCS 7379953. This manual provides an introduction to the ST40 Micro Toolset and instructions for getting a simple OS21 application run on an STMicroelectronics' MediaRef platform. It also describes how to boot OS21 applications from ROM and how to port applications which use STMicroelectronics' STLite/OS20 operating systems to OS21.

OS21 User's Manual

ADCS 7358306. This manual describes the generic use of OS21 across supported platforms. It describes all the core features of OS21and their use and details the OS21 function definitions. It also explains how OS21 differs to STLite/OS20, the API targeted at ST20.

OS21 for ST40 User Manual

ADCS 7358673. This manual describes the use of OS21 on ST40 platforms. It describes how specific ST40 facilities are exploited by the OS21 API. It also describes the OS21 board support packages for ST40 platforms.

32-Bit RISC Series, SH-4 CPU Core Architecture

ADCS 7182230. This manual describes the architecture and instruction set of the SH4-1xx (previously known a ST40-C200) core as used by STMicroelectronics.

32-Bit RISC Series, SH-4, ST40 System Architecture

This manual describes the ST40 family system architecture. It is split into four volumes:

ST40 System Architecture - Volume 1 System - ADCS 7153464.

ST40 System Architecture - Volume 2 Bus Interfaces - ADCS 7171720.

ST40 System Architecture - Volume 3 Video Devices - ADCS 7225754.

ST40 System Architecture - Volume 4 I/O Devices - ADCS 7225754.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

- Sample code, keyboard input and file names,
- Variables and code variables.
- Equations and math,
- Screens, windows and dialog boxes,
- Instructions.

Hardware notation

The following conventions are used for hardware notation:

- REGISTER NAMES and FIELD NAMES.
- PIN NAMES and SIGNAL NAMES.

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

- 1 Terminal strings of the language, that is those not built up by rules of the language, are printed in teletype font. For example, void.
- 2 Nonterminal strings of the language, that is those built up by rules of the language, are printed in italic teletype font. For example, name.
- 3 If a nonterminal string of the language starts with a nonitalicized part, it is equivalent to the same nonterminal string without that nonitalicized part. For example, vspace-name.
- 4 Each phrase definition is built up using a double colon and an equals sign to separate the two sides.
- 5 Alternatives are separated by vertical bars ('|').
- 6 Optional sequences are enclosed in square brackets ('[' and ']').
- 7 Items which may be repeated appear in braces ('{' and '}').

Overview

1.1 ST40 features

The ST40 product family integrates a 32-bit RISC (reduced instruction set computer) microprocessor with a rich set of peripherals.

The processor implements the SH-4 instruction set and has object code upward-compatibility with earlier SH family of architectures. The CPU is coupled with an 8-kbyte I-cache, a 16-kbyte D-cache, an MMU and an FPU with support for floating point 3D-geometry acceleration.

The ST40 product family provides development support functions with a full range of debug features and an emulation mode (ASE). The ASE mode has a dedicated 1KB buffer for emulator firmware, supporting performance counters and branch trace.

The ST40 product family supports Microsoft's WinCE and other operating systems with little requirement for external logic.

1.2 Block diagram

Figure 1 illustrates the system architecture of a typical ST40 family device, in this case the ST40RA.

Figure 1: ST40RA system architecture

Block diagram 3

The features of the ST40 product family are summarized below.

1.2.1 CPU

The CPU has the following features:

- SH-4 32-bit RISC architecture,
- operating frequency of 160 MHz,
- 2 way superscalar architecture,
- high code density using fixed length 16-bit instruction,
- load-store architecture,
- delayed branch instructions,
- · on-chip multiplier,
- · five-stage pipeline.

1.2.2 **FPU/MAC**

The FPU/MAC is an on-chip floating-point coprocessor which has the following features:

- support for single-precision (32-bit) and double-precision (64-bit),
- · support forIEEE754-compliant data types and exceptions,
- 2 rounding modes:
 - round to nearest.
 - round to zero,
- handling of denormalized numbers:
 - truncation to zero.
 - interrupt generation for compliance with IEEE754,
- FMAC (multiply-and- accumulate), FDIV (divide) and FSQRT (square root) instructions,

- 3-D graphics instructions (single-precision):
 - 4-dimensional vector conversion and matrix operations (FTRV), 4 cycles (pitch), 7 cycles (latency),
 - 4-dimensional vector (FIPR) inner product, 1 cycle (pitch), 4 cycles (latency),
- Five-stage pipeline.

1.2.3 MMU

The MMU has the following features:

- 4 Gbytes of address space with 256 address space identifiers (8-bit ASIDs),
- · single virtual mode and multiple virtual memory mode,
- support for multiple page sizes:
 - 1 Kbyte,
 - 4 Kbytes,
 - 64 Kbytes,
 - 1 Mbyte,
- 4-entry fully-associative ITLB for instructions,
- 64-entry fully-associative UTLB for instructions and operands,
- support for software-controlled replacement and random-counter replacement algorithms.

1.2.4 Cache

The ST40 product family has the following cache features:

- 8 Kbytes, direct-mapped instruction cache organized as 256 32 byte lines,
- 16 Kbytes, direct-mapped operand cache:
 - organized as 512 32 byte lines,
 - RAM mode (8 kbytes of cache plus 8 Kbytes of RAM),
 - selectable write method copy-back or write-through,
- · single-stage copy-back buffer, single- stage write-through buffer,

Block diagram 5

- address-mapped cache contents,
- store queue of 32 bytes, 2 entries.

1.2.5 Interrupt

The ST40 product family has the following interrupts:

- 5 independent external interrupts (NMI, IRL3 to IRL0),
- IRL3 to IRL0 configured either as 4 independent interrupts or encoded to provide 15 external interrupt levels,
- on-chip peripheral module interrupts, where the priority level can be set for each module.

1.2.6 DMA controller

The 5-channel physical address DMA controller has the following features:

- 4 general-purpose channels which will perform memory-to-memory or memory-to-peripheral transfers,
- 1 buffered multiplexed channel,
- support for 2D block moves and linked lists.

1.2.7 Debugging and emulation

The ST40 product family has the following debug and emulation features:

- debugging by means of user break interrupts,
- · 2 break channels.
- address, data value, access type, and data size can all be set as break conditions,
- · supports sequential break function,
- uses Hitachi user debug interface (UDI):
 - 5-pin serial interface conformant to JTAG, IEEE Standard TAP and boundary scan architecture,
 - supports emulator connection,
 - provides host access to the 1KB ASERAM for emulator firmware (accessible only in ASE mode).

1.2.8 Power management

The ST40 product family uses the following power management features:

- software configurable PLL,
- dynamically programmable operating frequencies,
- power-down modes:
 - 2 sleep modes,
 - standby mode,
 - module standby function.

1.2.9 Timers

The 3-channel auto-reload 32-bit timer unit has:

- · input capture function,
- choice of 7 counter input clocks.

1.2.10 Real-time clock

The real-time clock has the following features:

- · on-chip clock and calendar functions,
- built-in 32 kHz crystal oscillator with maximum 1/256 second resolution (cycle interrupts).

1.2.11 Serial communication

The 2 full-duplex communication channels (SCIF1, SCIF2) have the following functions:

- · support for asynchronous mode,
- separate FIFOs (16 bytes) provided for transmitter and receiver.

1.2.12 External memory support

See the relevant product datasheet for details.

-**77-

System organization

2

2.1 The SuperHyway

The ST40 system is based around a highly reusable modular structure. Any ST40, implementation, such as the ST40RA chip, is built from a number of modules, in other words peripheral devices, which communicate with each other using 1 or more interconnects. This interconnect provides a memory-mapped packet routing mechanism between modules and is organized to maximize system performance whilst minimizing system cost. As the interface between the interconnect and the modules is highly standardized, the issues associated with integrating families of peripherals with the ST40 processing unit is simplified.

2.1.1 SuperHyway architecture

The SuperHyway architecture provides the 'glue' that binds together an ST40 processor with peripheral modules. A connection between the SuperHyway and an on-chip module is called a SuperHyway port. A port supports a bidirectional flow of packets between the SuperHyway and modules.

The distinction between the SuperHyway architecture and implementation is important. This section, defines the abstractions that are used to build implementations containing a packet-routed interconnect. The architecture includes an abstract view of the packets, the packet-router, the port, a peripheral module and the packet-router protocol. The implementation determines how the packet-router, the ports and the required modules are physically represented. It also defines how many modules are implemented and how these are connected to the SuperHyway packet-router.

Each ST40 device comprises a packet-router and at least 1 module. Each module is connected to the packet-router using at least 1 port. The packet-router provides complete connectivity between modules.

The architectural relationship between the packet-router, the port and the module is illustrated in *Figure 2*.

Figure 2: Packet-router, SuperHyway port and ST40RA module architecture

A simple implementation containing a packet-router, 2 single-ported modules and 1 double-ported module is illustrated in *Figure 3*.

Figure 3: A simple implementation

2.1.2 Packets

The packet is the unit of data transfer through the packet-router. Communication between modules is achieved by the exchange of packets between those modules.

A packet is composed of fields. Each field has a number of possible values to characterize that packet. Every packet contains an address field which is used to determine to which module the packet should be routed.

Each packet journey is associated with a source module and a destination module. The source sends a packet over a port into the packet-router. The packet-router arranges for the packet to be routed to a port connected to the destination. The destination then receives this packet over that port from the packet-router. It is possible for the source and destination to be the same.

A packet route from a source to a destination is illustrated in *Figure 4*. In packet routing diagrams, such as *Figure 4*, the vertical direction represents time with time flowing forward and down the page.

Figure 4: A packet route

2.1.3 Transactions

A transaction is an exchange of packets that allows a module to access the state of another module using the packet-router protocol. A transaction consists of the transfer of a request packet from an initiator module to a target module, followed by the transfer of a response packet from that target module back to the initiator module. The request packet initiates the transaction and its contents determine the access to be made. The response packet completes the transaction and its contents indicate the result of the access.

This style of communication is called split phase. The separation between the request packet and the response packet allows systems to be constructed which are tolerant of high latency modules. A requesting module can send multiple requests into the packet-router before any responses are received. This is known as request pipelining and allows the latencies of those transactions to be overlapped.

There is a causal relationship between a request packet and its corresponding response packet since the request packet must be received before the response packet can be sent. Additionally, there is a 1-to-1 correspondence between request packets and response packets.

When a response packet is received by the module that sent the corresponding request, the transaction is complete. It is guaranteed that the destination module has committed to the access associated with the response. This means that, apart from internal latency inside the target module, the access is completed as viewed through all ports to that module. Any subsequent requests to that target module will therefore act after that access. This guarantee means that time-ordering of accesses at a destination can be imposed by waiting for the corresponding response.

The SuperHyway 11

A response packet may also indicate whether the request was valid or not. Some implementations of the SuperHyway allow the transmission of special error responses when the target cannot process the request.

The following sections elaborate on the actions comprising a single transaction.

Request

A request packet is constructed by an initiator (also known as a requester) module when that module needs to make an access to a particular target module. This target module is specified as part of the packet's address field. The initiator is the source of the request packet and sends that packet into the packet-router. The packet-router arranges for that request packet to be routed from its source to its target. The target receives the request packet from the packet-router and services that access according to the information in the received request packet. The target is known as the responding module because it replies to the request packet using a response packet.

Response

A response packet is constructed by a target module in order to reply to a previous request. The identity of the initiator of that request packet is used to route the response packet. The target module is the source of the response packet and sends that packet into the packet-router. As always, the packet-router arranges for that response packet to be routed from its source to its destination. The destination (i.e. transaction initiator) receives the response packet from the packet-router and matches that response to the original request in order to complete the transaction.

A complete transaction

A packet routing diagram showing a complete transaction is given in *Figure 5*.

Figure 5: A transaction

2.1.4 SuperHyway packet-router

A variety of SuperHyway packet-router implementations are possible. Implementations include, but are not limited to, a bus, a crossbar and a packet routing network.

All packets passed into the packet-router contain a destination field which is used to route the packet. The packet-router contains a mapping from all possible destination field values to an appropriate port. The mechanism by which this mapping is established and the mapping itself are defined by the implementation.

The packet-router needs to interpret only a few fields of a packet. It must inspect the address field to route the packet. The bulk of the packet does not need to be interpreted by the routing mechanism and is used to convey information between the requesting module and the responding module. The protocol is thus easily extensible.

2.2 Physical address map

See the relevant product datasheet for this information.

Interrupt controller (INTC)

3.1 Overview

The interrupt control system ascertains the priority of interrupt sources and controls interrupt requests to the CPU. The INTC registers set the order of priority of each interrupt, allowing the user to handle interrupt requests according to the user controlled priorities.

3.1.1 INTC features

INTC has the features listed below.

- 15 levels of interrupt priority can be set.
 - By setting the 3 interrupt-priority registers, the priorities of on-chip peripheral module interrupts can be selected from 15 levels for different request sources.
- NMI noise canceler function is available.
 - NMI input level bit indicates NMI pin status. By reading this bit in the interrupt exception handler, the pin status can be checked, enabling it to be used as a noise canceler.
- · Masking of NMI requests by the SR.BL bit can be set.
 - It is possible to specify whether NMI requests are to be masked (SH-3 compatible operation) or accepted when the SR.BL bit is 1.

3.1.2 Block diagram

Figure 6 shows a block diagram of the INTC.

Figure 6: INTC block diagram

Overview 17

3.1.3 Pin configuration

Table 1 shows the INTC pin configuration.

Name	Abbreviation	I/O	Description
Nonmaskable interrupt input pin	NMI	Input	Input of nonmaskable interrupt request signal
Interrupt input pins	IRL3 TO IRL0	Input	Input of interrupt request signals (maskable by I3 to I0 in the status register (SR))

Table 1: INTC pins

3.1.4 Register configuration

The INTC has the registers listed in *Table 2*.

Register name	Description	Туре	Initial value ^A	Address offset	Size
INTC.ICR	Interrupt control, see Section 3.1.1: INTC features on page 15	RW	В	0x00	16
INTC.IPRA	Interrupt priority level A, see Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26	RW	0x0000	0x04	16
INTC.IPRB	Interrupt priority level B, see Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26	RW	0x0000	0x08	16
INTC.IPRC	Interrupt priority level C, see Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26	RW	0x0000	0x0C	16

Table 2: INTC and INTC2 registers

Register name	Description	Туре	Initial value ^A	Address offset	Size
INTC.IPRD	Interrupt priority level D, see Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26	RW	0xDA74	0x10	16
INTC2.INTPRI00	Interrupt priority level 00, see <i>Table 6 on page 30</i>	RW	0x00000000	0x00	32
INTC2.INTPRI04	Interrupt priority level 04, see <i>Table 7 on page 31</i>	RW	0x00000000	0x04	32
INTC2.INTPRI08	Interrupt priority level 08, see <i>Table 8 on page 31</i>	RW	0x00000000	0x08	32
INTC2.INTREQ00	Interrupt request level 00, see <i>Table 9 on page 32</i>	RO	0x00000000	0x20	32
INTC2.INTREQ04	Interrupt request level 04, see <i>Table 10 on page 33</i>	RO	0x00000000	0x24	32
INTC2.INTREQ08	Interrupt request level 08, see <i>Table 11 on page 33</i>	RO	0x00000000	0x28	32
INTC2.INTMSK00	Interrupt mask 00, see <i>Table 12 on page 34</i>	RW	0xFFFFFFF	0x40	32
INTC2.INTMSK04	Interrupt mask 04, see <i>Table 13 on page 35</i>	RW	0xFFFFFFF	0x44	32
INTC2.INTMSK08	Interrupt mask 08, see <i>Table 14 on page 35</i>	RW	0xFFFFFFF	0x48	32
INTC2.INTMSKCLR00	Interrupt mask clear 00, see <i>Table 15 on page 36</i>	WO	-	0x60	32
INTC2.INTMSKCLR04	Interrupt mask clear 04, see <i>Table 16 on page 37</i>	WO	-	0x64	32

Table 2: INTC and INTC2 registers

Interrupt sources 19

Register name	Description	Туре	Initial value ^A	Address offset	Size
INTC2.INTMSKCLR08	Interrupt mask clear 08, see <i>Table 17 on page 37</i>	WO	-	0x68	32
INTC2.INTC2MODE	INTC2 mode, see <i>Table 18 on page 39</i>	RW	0x00000000	0x80	32

Table 2: INTC and INTC2 registers

- A. Initialized by a power-on reset or manual reset
- B. 0x8000 when the NMI pin is high, 0x0000 when the NMI pin is low

Note: The unshaded registers control the behavior of interrupts arising from legacy SH peripherals and the shaded registers control the behavior of interrupts arising from peripherals integrated on the SuperHyway.

3.2 Interrupt sources

There are 3 types of interrupt sources:

- NMI,
- IRL.
- on-chip supporting modules.

Each interrupt has a priority level (16 to 0) with 16 being the highest and 1 the lowest. When level 0 is set, the interrupt is masked and interrupt requests are ignored.

3.2.1 NMI interrupts

The NMI interrupt has the highest priority level of 16. It is always accepted unless the BL bit in the status register (SR) in the CPU is set to 1.

In sleep or standby mode, the interrupt is accepted regardless of the BL setting.

A setting can also be made to have the NMI interrupt accepted even if the BL bit is set to 1.

77 -

In sleep or standby mode, the interrupt is accepted regardless of the BL setting.

Input from the NMI pin is edge-detected. The NMI edge select bit (NMIE) in the interrupt control register (ICR) is used to select either rising or falling edge. When the NMIE bit in the ICR is modified, the NMI interrupt is not detected for a maximum of 6 bus clock cycles after the modification.

NMI interrupt exception handling does not affect the interrupt mask level bits (I3 to I0) in SR.

3.2.2 IRL interrupts

IRL interrupts are input by level at pins IRL3 to IRL0. The priority level is the level indicated by pins IRL3 to IRL0. An IRL3 to IRL0 value of 15 (1111) indicates the highest-level interrupt request (interrupt priority level 15). A value of 0 (0000) indicates no interrupt request (interrupt priority level 0). *Figure 7* shows an examples of an IRL interrupt connection. *Table 3* and *Table 4* show IRL pins and interrupt levels.

Figure 7: Example of IRL interrupt connection

IRL3	IRL2	IRL1	IRL0	Interrupt priority level	Interrupt request
0	0	0	0	0	No interrupt request
0	0	0	1	1	Level 1 interrupt request
0	0	1	0	2	Level 2 interrupt request
0	0	1	1	3	Level 3 interrupt request
0	1	0	0	4	Level 4 interrupt request
0	1	0	1	5	Level 5 interrupt request
0	1	1	0	6	Level 6 interrupt request
0	1	1	1	7	Level 7 interrupt request
1	0	0	0	8	Level 8 interrupt request
1	0	0	1	9	Level 9 interrupt request
1	0	1	0	10	Level 10 interrupt request
1	0	1	1	11	Level 11 interrupt request
1	1	0	0	12	Level 12 interrupt request
1	1	0	1	13	Level 13 interrupt request
1	1	1	0	14	Level 14 interrupt request
1	1	1	1	15	Level 15 interrupt request

Table 3: IRL3 to IRL0 pins and interrupt levels

A noise-cancellation feature is built-in, and the IRL interrupt is not detected unless the levels sampled at every bus clock cycle remain unchanged for 3 consecutive cycles, so that no transient level on the IRL pin change is detected. In standby mode, as the bus clock is stopped, noise cancellation is performed using the 32.768 kHz clock for the RTC instead. Therefore when the RTC is not used, interruption by means of IRL interrupts cannot be performed in standby mode.

The priority level of the IRL interrupt must not be lowered unless the interrupt is accepted and the interrupt handling starts. However, the priority level can be changed to a higher one.

The interrupt mask bits (I3 to I0) in SR are not affected by IRL interrupt handling.

Setting the IRLM bit to 1 in the ICR register enables pins IRL0 to IRL3 to be used for 4 independent interrupt requests.

3.2.3 On-chip peripheral module interrupts

On-chip peripheral module interrupts are generated by the following core modules:

- timer unit (TMU),
- realtime clock (RTC),
- serial communication interfaces (SCIF1 and SCIF2),
- watchdog timer (WDT),
- UDI port.

Other modules integrated outside of the core also generate interrupts. These are detailed in the datasheet.

Not every interrupt source is assigned a different interrupt vector. Sources are reflected on the interrupt event register (INTEVT). It is easy to identify sources by using the values of INTEVT as branch offsets (in the exception handler routine).

The priority level (from 0 to 15) can be set for each module by writing to interrupt priority setting registers (IPRA to IPRD, INTPRIO0).

The interrupt mask bits (I3 to I0) in SR are not affected by the on-chip peripheral module interrupt handling.

On-chip peripheral module interrupt source flag and interrupt enable flag updating should only be carried out when the BL bit in SR is set to 1. To prevent acceptance of an erroneous interrupt from an interrupt source that should have been updated, first read the on-chip peripheral register containing the relevant flag, then clear the BL bit to 0. This will secure the necessary timing internally. When updating a number of flags, there is no problem if only the register containing the last flag updated is read.

If flag updating is performed while the BL bit is cleared to 0, the program may jump to the interrupt service routine when the INTEVT register value is 0. In this case, interrupt handling is initiated due to the timing relationship between the flag update and interrupt request recognition within the chip. Processing can be continued without any problem by executing an RTE instruction.

Interrupt sources 23

3.2.4 Interrupt exception handling and priority

Table 4 lists the codes for INTEVT, and the order of interrupt priority. Each interrupt source is assigned a unique code. The start address of the interrupt handler is common to each interrupt source. This is why, for instance, the value of INTEVT is used as offset at the start of the interrupt handler and branched to identify the interrupt source.

The order of priority of the on-chip peripheral module is set within the priority levels 0 to 15 by using the interrupt priority level set in registers A, B and C (IPRA to IPRC). The order of priority of the on-chip peripheral module is set to 0 by a reset.

When the priorities for multiple interrupt sources are set to the same level and such interrupts are generated at the same time, they are handled according to the default order listed in *Table 4*.

Updating of interrupt priority level setting registers A, B and C should only be performed when the BL bit in SR is set to 1. To prevent erroneous interrupt acknowledgment, first read 1 or other of the interrupt priority level setting registers, then clear the BL bit to 0. This will secure the necessary timing internally.

Inte	errupt source	INTEVT code	Interrupt priority (initial value)	IPR (bit numbers)	Priority within IPR setting unit	Default priority
NMI		0x1C0	16	-	-	High
IRL	IRL3 to IRL0 = F	0x200	15	-	-	↓
	IRL3 to IRL0 = E	0x220	14	-	-	
	IRL3 to IRL0 = D	0x240	13	-	-	
	IRL3 to IRL0 = C	0x260	12	-	-	
	IRL3 to IRL0 = B	0x280	11	-	-	
	IRL3 to IRL0 = A	0x2A0	10	-	-	
	IRL3 to IRL0 = 9	0x2C0	9	-	-	
	IRL3 to IRL0 = 8	0x2E0	8	-	-	
	IRL3 to IRL0 = 7	0x300	7	-	-	
	IRL3 to IRL0 = 6	0x320	6	-	-	Low

Table 4: ST40 core interrupt exception vectors and rankings

Inte	errupt source	INTEVT code	Interrupt priority (initial value)	IPR (bit numbers)	Priority within IPR setting unit	Default priority
IRL	IRL3 to IRL0 = 5	0x340	5	-	-	High
	IRL3 to IRL0 = 4	0x360	4	-	-] ↓
	IRL3 to IRL0 = 3	0x380	3	-	-	
	IRL3 to IRL0 = 2	0x3A0	2	-	-	
	IRL3 to IRL0 = 1	0x3C0	1	-	-	
	IRL0	0x240	15 to 0 (13)	IPRD [15:12]	-	
	IRL1	0x2A0	15 to 0 (10)	IPRD [11:8]	-	
	IRL2	0x300	15 to 0 (7)	IPRD [7:4]	-	
	IRL3	0x360	15 to 0 (4)	IPRD [3:0]	-	
UDI	UDI	0x600	15 to 0 (0)	IPRC [3:0]	-	
TMU0	TUNI0	0x400	15 to 0 (0)	IPRA [15:12]	-	
TMU1	TUNI1	0x420	0 to 15 (0)	IPRA [11:8]	-	
TMU2	TUNI2	0x440	0 to 15 (0)	IPRA [7:4]	High	
	TICPI2	0x460			Low	
RTC	ATI	0x480	0 to 15 (0)	IPRA [3:0]	High	
	PRI	0x4A0			↓	
	CUI	0x4C0			Low	
SCIF1	ERI	0x4E0	0 to 15 (0)	IPRB [7:4]	High	1
	RXI	0x500				
	BRI	0x520			\	
	TXI	0x540			Low	Low

Table 4: ST40 core interrupt exception vectors and rankings

Inte	rrupt source	INTEVT code	Interrupt priority (initial value)	IPR (bit numbers)	Priority within IPR setting unit	Default priority
SCIF2	ERI	0x700	0 to 15 (0)	IPRC [7:4]	High	High
	RXI	0x720				
	BRI	0x740			↓	↓
	TXI	0x760			Low	Low
WDT	ITI	0x560	0 to 15 (0)	IPRB [15:12]	_	

Other interrupts are device-specific and are listed in the datasheet.

Table 4: ST40 core interrupt exception vectors and rankings

Further information about these interrupts is available elsewhere in this manual.

- TUNI0-TUNI2: Underflow interrupts, see *Chapter 8: Timer unit (TMU) on page 227*.
- TICPI2:Input capture interrupt, see *Chapter 3: Interrupt controller (INTC) on page 15.*
- ATI:Alarm interrupt, see *Chapter 7: Real-time clock (RTC) on page 179*.
- PRI:Periodic interrupt, see *Chapter 7: Real-time clock (RTC) on page 179*.
- CUI:Carry-up interrupt, Chapter 7: Real-time clock (RTC) on page 179.
- ERI:Receive error interrupt, see *Chapter 9: Serial communication interface with FIFO (SCIF) on page 251*.
- RXI:Receive-data-full interrupt, see *Chapter 9: Serial communication interface* with FIFO (SCIF) on page 251.
- TXI:Transmit-data-empty interrupt, see *Chapter 9: Serial communication interface with FIFO (SCIF) on page 251.*
- TEI:Transmit-data-end interrupt, see *Chapter 9: Serial communication interface with FIFO (SCIF) on page 251*.
- BRI:Break interrupt, see *Chapter 9: Serial communication interface with FIFO* (SCIF) on page 251.
- ITI:Interval timer interrupt, see Chapter 7: Real-time clock (RTC) on page 179.

3.3 INTC registers

3.3.1 Interrupt priority registers A to D (IPRA to IPRD)

Interrupt priority registers A to D (IPRA to IPRD) are 16-bit read-write registers that set priority levels from 0 to 15 for on-chip peripheral module interrupts which are part of the core. For historical reasons, these 4 registers are used for the legacy SH peripherals common to Hitachi SH4 parts. Integrated ST peripherals use the INTPRI registers (described in *Section 3.3.3: Interrupt priority registers* (INTPRIO0, INTPRIO4, INTPRIO8) on page 30) for the same purpose.

The IPRA to IPRC registers are initialized to 0x0000 by a reset. IPRD is initialized to 0xDA74. They are not re-initialized in standby mode.

Table 5 lists the relationship between the interrupt sources and the IPRA to IPRD bits.

Register	Bits 15 to 12	Bits 11 to 8	Bits 7 to 4	Bits 3 to 0
IPRA	TMU0	TMU1	TMU2	RTC
IPRB	WDT	Reserved ^A	SCIF2	Reserved
IPRC	Reserved	Reserved	SCIF1	UDI
IPRD	IRL0	IRL1	IRL2	IRL3

Table 5: Relationship between the interrupt sources and the IPRA to IPRD bits

As listed in *Table 5*, 4 sets of on-chip peripheral modules are assigned to each register. 4-bit groups (bits 15 to 12, bits 11 to 8, bits 7 to 4, and bits 3 to 0) are set with values from 0x0 (0000) to 0xF (1111). Setting 0x0 means priority level 0 (masking is requested); 0xF is priority level 15 (the highest level).

A. For reserved bits always read 0. Only 0 should be written.

INTC registers 27

3.3.2 Interrupt control register (ICR)

The interrupt control register (ICR) is a 16-bit register that sets the input signal detection mode for external interrupt input pin NMI and indicates the input signal level at the NMI pin. This register is initialized by a power-on reset or manual reset. It is not initialized in standby mode.

Bit:	15	14	13	12	11	10	9	8
Bit name	NMIL	MAI	_	_	_	_	NMIB	NMIE
Initial value	0/1	0	0	0	0	0	0	0
Type	RO	RW	_	_	_	_	RW	RW
Bit	7	6	5	4	3	2	1	0
Bit name	IRLM	_	_	_	_	_	_	_
Initial value	0	0	0	0	0	0	0	0
Туре	RW	_			_			RW

Bit 15: NMI input level (NMIL)

Sets the level of the signal input at the NMI pin. This bit can be read to determine the NMI pin level. It cannot be modified.

Bit 15: NML	Description				
0	NMI input level is low.				
1	NMI input level is high.				

Bit 14: NMI interrupt mask (MAI)

Specifies whether or not all interrupts are to be masked while the NMI pin input level is low, irrespective of the CPU's SR.BL bit.

Bit 14: MAI	Description
0	Interrupts are enabled even while NMI pin is low (initial value).
1	Interrupts are disabled while NMI pin is low ^A .

A. NMI interrupts are accepted in normal operation and in sleep mode. In standby mode, all interrupts are masked, and standby is not cleared, while the NMI pin is low.

Bit 9: NMI block mode (NMIB)

Selects whether NMI requests are held pending or immediately detected when the SR.BL bit is 1.

Bit 9: NMIB	Description ^A
0	NMI interrupt requests are held pending when SR.BL = 1 (initial value).
1	NMI interrupt requests are detected when SR.BL = 1.

A. If an interrupt request is accepted while SR.BL = 1, the previous exception information will be lost, and so should be saved beforehand.
 This bit is cleared automatically when an NMI interrupt is accepted.

Bit 8: NMI edge select (NMIE)

Selects whether the falling or rising edge of the interrupt request signal to the NMI is detected.

Bit 8: NMIE	Description
0	An interrupt request is detected on the falling edge of NMI input (initial value).
1	An interrupt request is detected on the rising edge of NMI input.

INTC registers 29

Bit 7: IRL pin mode

Selects whether pins IRL3 to IRL0 are used for level-encoded interrupt requests or for 4 independent interrupt requests.

Bit 7: IRLM	Description
0	IRL pins are used for level-encoded interrupt requests (initial value).
1	IRL pins are used for 4 independent interrupt requests.

Bits 13 to 10 and 6 to 0: reserved

These bits are always read as 0, and should only be written with 0.

3.3.3 Interrupt priority registers (INTPRI00, INTPRI04, INTPRI08)

Each interrupt, from an ST integrated module, is a member of 1 priority group. All members of a priority group share the same interrupt level (from 0 through 15) when the interrupt level is asserted. That level is programmable for each group using 1 of the INTPRI trio of registers. There are 24 priority groups each using a 4-bit field to specify the programmable level. INTPRIO0 contains the levels for groups 0 through 7, INTPRIO4 contains the level for groups 8 through 15 and INTPRIO8 contains the levels for groups 16 through 23.

Each register is a 32-bit read-write register. It is not initialized in standby mode.

	INTC2.INTPRIO	0x00				
Field	Bits	Size	Volatil e	Synopsis	Туре	
Group[0:7]	[n * 4, (n * 4) + 3]	4	No	Interrupt priority level	RW	
	Operation		Specifies the priority level for interrupts belonging to priority group n as shown in the datasheet			
	Read		Returns current value			
	Write		0: Interrupts are masked (that is disabled) 1 to 15: Priority level (15 is highest)			
	Hard reset		0x0			

Table 6: INTC2.INTPRI00

	INTC2.INTPRIO	0x04				
Field	Bits	Size	Volatil e	Synopsis	Туре	
Group[8:15]	[(n - 8) * 4, ((n - 8) * 4) + 3]	4	No	Interrupt priority level	RW	
	Operation		Specifies the priority level for interrupts belonging to priority group[n] as shown in the datasheet			
	Read		Returns current value			
	Write		0: Interrupts are masked (that is disabled) 1 to 15: Priority level (15 is highest)			
	Hard reset		0x0			

Table 7: INTC2.INTPRI04

	INTC2.INTPRI08	0x08				
Field	Bits	Size	Volatil e	Synopsis	Туре	
Group[16:23]	[(n -16) * 4, ((n - 16) * 4) + 3]	4	No	Interrupt priority level	RW	
	Operation		Specifies the priority level for interrupts belonging to priority group[n] as shown in the datasheet			
	Read		Returns current value			
	Write		0: Interrupts are masked (that is disabled) 1 to 15: Priority level (15 is highest)			
	Hard reset		0x0			

Table 8: INTC2.INTPRI08

3.3.4 Interrupt request registers (INTREQ00, INTREQ04, INTREQ08)

The interrupt request registers are 32-bit registers that show which of the interrupts arising from ST integrated modules have been asserted. Regardless of the state of the INTPRI and INTMSK registers the INTREQ registers will indicate all asserted interrupts. The association between bits in the INTREQ registers and interrupts is given in the data sheet for each particular device.

The architecture supports up to 96 ST integrated interrupts. Unused bits are reserved. These bits always read as 0 and writes to them are ignored.

	INTC2.INTREQ00			0x20		
Field	Bits	Size	Volatile	Synopsis	Туре	
IR[0:31]	[0:31]	1	Yes	Interrupt request level	RO	
	Operation	on	bit[n], with as	e request level of the interrupt associate ssociations between bits and interrupts e datasheet for the device		
	Read		0: Interrupt n	not being asserted		
			1: Interrupt being asserted			
	Write		Invalid			
	Hard res	set	0			

Table 9: IINTC2.NTREQ00

	INTC2.IN	TREQ04		0x24		
Field	Bits	Size	Volatile	Synopsis	Туре	
IR[32:63]	[32:63]	1	Yes	Interrupt request level	RO	
	Operation	1	bit[n], with a	e request level of the interrupt associated with associations between bits and interrupts being the datasheet		
	Read		0: Interrupt	not being asserted		
			1: Interrupt I	being asserted		
	Write		Invalid			
	Hard rese	et	0			

Table 10: INTC2.INTREQ04

	INTC2.IN	TREQ08		0x28		
Field	Bits	Size	Volatile	Synopsis	Туре	
IR[64:95]	[64:95]	1	Yes	Interrupt request level	RO	
	Operation	า	bit[n], with a	e request level of the interrupt associated with associations between bits and interrupts being ne datasheet		
	Read		0: Interrupt	not being asserted		
			1: Interrupt I	being asserted		
	Write Invalid		Invalid			
	Hard rese	et	0			

Table 11: INTC2.INTREQ08

3.3.5 Interrupt mask registers (INTMSK00, INTMSK04, INTMSK08)

The interrupt mask registers are 3 32-bit registers that specify which of the interrupts arising from ST integrated modules are masked, that is prevented from being forwarded to the CPU. These registers are used as pairs with the corresponding INTMSKCLR register. The INTMSK registers provide the only means of reading and setting masks. The INTMSKCLR registers provide the only means of clearing masks.

The association between bits in the INTMSK registers and interrupts is given in the data sheet for each particular device.

The architecture supports up to 96 ST integrated interrupts. Unused bits are reserved. These bits always read as 0 and writes to them are ignored.

	INTC2.IN	TMSK00		0x40		
Field	Bits	Size	Volatile	Synopsis	Туре	
IM[0:31]	[0:31]	1	No	Interrupt mask	RW	
	Operation	masked, w		whether the interrupt associated with bit[n] is ith associations between bits and interrupts and in the datasheet		
	Read		Current valu	ue of mask returned		
	Write		0: Ignored 1: Interrupt	is masked		
	Hard res	set	1			

Table 12: INTC2.INTMSK00

	INTC2.INT	MSK04	0x44				
Field	Bits	Bits Size Volatile		Synopsis	Туре		
IM[32:63]	[32:63]	1	No	Interrupt mask	RW		
	Operation		Specifies whether the interrupt associated with bit[n] is masked, with associations between bits and interrupts being defined in the datasheet				
	Read		Current value of mask returned				
	Write		0: Ignored 1: Interrupt is masked				
	Hard rese	et	1	io madica			

Table 13: INTC2.INTMSK04

1	NTC2.INTI	MSK08	0x48			
Field	Bits	Size	Volatile	Synopsis	Туре	
IM[63:95]	[63:95]	1	No	Interrupt mask	RW	
	Operation		Specifies whether the interrupt associated with bit[n] is masked, with associations between bits and interrupts being defined in the datasheet			
	Read		Current value of mask returned			
	Write		0: Ignored			
			1: Interrupt masked			
	Hard rese	et	1			

Table 14: INTC2.INTMSK08

3.3.6 Interrupt mask clear registers (INTMSKCLR00, INTMSKCLR04, INTMSKCLR08)

The interrupt mask clear registers are 3 32-bit write-only registers which allow masked interrupts to be cleared, that is enabled to be forwarded to the CPU. These registers are used as pairs with the corresponding INTMSK register. The INTMSK registers provide the only means of reading and setting masks. The INTMSKCLR registers provide the only means of clearing masks.

The association between bits in the INTMSKCLR registers and interrupts is given in the data sheet for each particular device.

The architecture supports up to 96 ST integrated interrupts. Unused bits are reserved. These bits always read as 0 and writes to them are ignored.

INTC2.INTMSKCLR00				0x60			
Field	Bits	Size	Volatile	Synopsis	Туре		
IMC[0:31]	[0:31]	1	-	Interrupt mask clear	WO		
	bit[n] is cle			whether the interrupt mask associated with eared, with associations between bits and being defined in the datasheet			
	Read		Undefined	data returned			
	Write		0: Ignored				
	1: Unmask the interrupt. that is, clear the correspondit in the INTMSK00 register						
	Hard res	et	-				

Table 15: INTC2.INTMSKCLR00

INTC2.INTMSKCLR04				0x64					
Field	Bits	Size	Volatile	Synopsis T					
IMC[32:63]	[32:63]	1	-	Interrupt mask clear	WO				
	bit j-32 is o			whether the interrupt mask associated with cleared, with associations between bits and being defined in the datasheet					
	Read		Undefined	data returned					
	Write		0: Ignored						
	1: Unmask the interrupt. that is, clear the corresponding bit in the INTMSK04 register								
	Hard reset -								

Table 16: INTC2.INTMSKCLR04

INTC2.INTMSKCLR08				0x68					
Field	Bits	Size	Volatile	Synopsis Ty					
IMC[64:95]	[64:95]	1	-	WO					
	Operation	1	Specifies whether the interrupt mask associated with bit[n] is cleared, with associations between bits and interrupts being defined in the datasheet						
	Read		Undefined	data returned					
	Write		0: Ignored	ed					
				the interrupt that is, clear the ling bit in the INTMSK08 register					
	Hard reset -								

Table 17: INTC2.INTMSKCLR08

3.3.7 INTC2 mode register (INTC2MODE)

The INTC2MODE register is a 32-bit read-write register which is used to restrict the INTEVT code range of the interrupts arising from ST modules. These modules are listed in *Table 5: Relationship between the interrupt sources and the IPRA to IPRD bits on page 26*. The effect of this restriction is to map all interrupts arising from ST modules onto the same INTEVT codes used by the IRL interrupts as shown in *Table 12: INTC2.INTMSK00 on page 34*. For example the interrupt having code listed as 0xA00 in *Table 4: ST40 core interrupt exception vectors and rankings on page 23* will generate code 0x200 when INTC2MODE.FLAG = 1, and will generate code 0xA00 otherwise.

This register allows ST40 devices to circumvent problems with legacy software which do not handle INTEVT codes which have their top bit set¹. In such cases software interrupt service routines have the responsibility to disambiguate interrupts using codes in the IRL range by, among other things, inspecting the INTREQ registers.

^{1.} At the time of writing such legacy software include the WinCE 2.12 operating system.

	INTC2.I	NTC2MOD	E	0x80				
Field	Bits	Size	Volatile	Synopsis	Туре			
FLAG	0	1	No	INTC2MODE register	RW			
	Operation		Specifies whether the range of INTEVT codes passed to the CPU are modified with respect to the values in <i>Table 4: ST40 core interrupt exception vectors and rankings on page 23</i>					
	Read		Returns current data					
	Write		0: INTEVT code unmodified					
			_	of the INTEVT codes for ST modules re before being passed to the CPU	placed			
	Hard rese	t	0					
	[1:31]	31	-	Reserved	R			
	Operation		Reserved fie	ld				
	Read		Undefined					
	Write		0					
	Hard rese	t	Undefined					

Table 18: INTC2.INTC2MODE

3.4 INTC operation

3.4.1 Interrupt sequence

The sequence of interrupt operations is explained below. *Figure 8* is a flowchart of the operations.

- 1 The interrupt request sources send interrupt request signals to the interrupt controller.
- 2 The interrupt controller selects the highest priority interrupt from the interrupt requests sent, according to the priority levels set in interrupt priority registers A to C (IPRA to IPRC) and the INTPRI registers. Lower priority interrupts are held pending. If 2 of these interrupts have the same priority level or if multiple interrupts occur within a single module, the interrupt with the highest default priority or the highest priority within its IPR setting unit (as indicated in *Figure 8*) is selected.
- 3 The priority level of the interrupt selected by the interrupt controller is compared with the interrupt mask bits (I3 to I0) in SR of the CPU. If the request priority level is higher than the level in bits I3–I0, the interrupt controller accepts the interrupt and sends an interrupt request signal to the CPU.
- 4 The CPU receives an interrupt at a break in instructions.
- 5 The interrupt source code is set in INTEVT.
- 6 SR and program counter (PC) are saved to SSR and SPC, respectively.
- 7 The block bit (BL), mode bit (MD), and register bank bit (RB) in SR are set to 1.
- 8 The CPU jumps to the start address of the interrupt handler (the sum of the value set in the vector base register (VBR) and 0x00000600). The interrupt handler may branch with the INTEVT register value as it is offset in order to identify the interrupt source. This enables it to branch to the handling routine for the individual interrupt source.

Note: 1 The interrupt mask bits (I3 to I0) in SR are not changed by acceptance of an interrupt in the CPU.

The interrupt source flag should be cleared in the interrupt handler. To ensure that an interrupt request that should have been cleared is not inadvertently accepted again, read the interrupt source flag after it has been cleared, then wait for the interval shown in Table 19.6 (Time for priority decision and SR mask bit comparison) before clearing the BL bit or executing an RTE instruction.

INTC operation 41

Figure 8: Interrupt operation flowchart

3.4.2 Multiple interrupts

When handling multiple interrupts, an interrupt handler should include the procedure below.

- 1 Branch to a specific interrupt handler corresponding to a code set in INTEVT. The code in INTEVT can be used as a branch-offset for branching to the specific handler.
- 2 Clear the cause of the interrupt in each specific handler.
- 3 Save SSR and SPC to memory.
- 4 Clear the BL bit in SR, and set the accepted interrupt level in the interrupt mask bits in SR.
- 5 Handle the interrupt.
- 6 Set the BL bit in SR to 1.
- 7 Return the SSR and SPC from memory.
- 8 Execute the RTE instruction.

When this procedure is followed in order, an interrupt of higher priority than the 1 being handled can be accepted after clearing BL in step 4. *Figure 8* shows a sample interrupt operation flowchart.

GPDMA controller (DMAC)

This design includes a sophisticated on-chip five channel general purpose direct memory access controller (DMAC). The DMAC can be used in place of the CPU to perform low-impact high-performance data transfers between memory-mapped device modules and memory, and perform high performance memory-to-memory moves.

4.1 Features

The DMAC has the following features:

- 5 independent dual address DMA channels,
- transfer of information to and from aligned or unaligned data structures of up to 4 Gbytes in the following organizations:
 - single location (0D),
 - incrementing or decrementing linear arrays (1D),
 - incrementing or decrementing rectangular arrays (2D),
- transfer units of 1,2,4,8,16 or 32 bytes,
- triggered¹, paced² or auto-request timing models,
 - 1. A channel is triggered if an external request causes a complete DMA operation to start and complete after 1 or more data units are transferred.
 - 2. A channel is paced if an external request causes a single data unit to be transferred per request. The DMAC may require multiple requests to complete the operation.

- support for up to 32 request-generating peripherals¹,
- · support for 2 interrupt models,
 - a single interrupt per DMA channel which signals normal completion on each channel plus a shared error interrupt which signals abnormal completion,
 - a single interrupt per DMA channel which signals both normal and abnormal completion on each channel,
- transparent support for both little and big endian data organisations.²

Channel 0 additionally supports multiplexing of up to 32 simultaneously active subchannels on to a single physical channel. Each DMA subchannel is associated with a specific peripheral and defined by a copy of its register state which is stored in main memory.

Channels 1 to 4 additionally allow a series of independent DMA operations to be stored in memory as a linked list. This allows each DMA channel to sequence a set of DMA transfers and allow complex operations such as scatter-gather to be achieved without requiring CPU intervention.

^{1.} A request is a communication between a peripheral and a DMA channel, and is used to trigger or pace movement of data on that channel.

^{2.} The DMAC always uses the same data organisation as the CPU and can be considered as an endian-independent device by software. The endian model used is determined statically following reset.

Address map 45

4.2 Address map

The DMAC address map is organized into 2 regions. The first region is associated with global control and status information, the second with DMA channel-specific information. This second region is divided into a number of independent areas, each area containing control and status information specific to the physical DMA channel.

Register name	Description	Туре	Address offset	Size
DMA.VCR.STATUS	Version control register: module status, see <i>Table 22 on</i> page 62	RW	0x00	32
DMA.VCR.VERSION	Version control register: module version, see <i>Table 23 on</i> page 64	RO	0x08	32
DMA.ENABLE	Global enable, see <i>Table 24 on page 65</i>	RW	0x10	32
DMA.DISABLE	Global disable, see <i>Table 25 on page 66</i>	WO	0x18	32
DMA.STATUS	Global DMA status, see <i>Table 26 on page 67</i>	RO	0x20	32
DMA.INTERRUPT	Global interrupt status, see <i>Table 27 on page 68</i>	RO	0x28	32
DMA.ERROR	Global error status, see <i>Table 28 on page 69</i>	RO	0x30	32
DMA.DEFINED	Global DMA channel defined, see <i>Table 29 on page 70</i>	RO	0x38	32
DMA.HANDSHAKE	Global request handshake protocol, see <i>Table 30 on page 70</i>	RW	0x40	32
Reserved		•	0x40 to 0xF8	-
DMA.CHAN[0]	State associated with channel 0, see <i>Table 20 on page 47</i>	-	0x100 to 0x1F8	-

Table 19: DMAC registers

Register name	Description	Туре	Address offset	Size
DMA.CHAN[1]	State associated with channel 1, see <i>Table 21 on page 49</i>	-	0x200 to 0x2F8	-
DMA.CHAN[2]	State associated with channel 2, see <i>Table 21 on page 49</i>	-	0x300 to 0x3F8	-
DMA.CHAN[3]	State associated with channel 3, see <i>Table 21 on page 49</i>	-	0x400 to 0x4F8	-
DMA.CHAN[4]	State associated with channel 4, see <i>Table 21 on page 49</i>	-	0x500 to 0x4F8	-
Reserved			0x600 to 0xFF8	-

Table 19: DMAC registers

2 types of DMA channels are specified for the DMAC, channel 0 supports a number of multiplexed subchannels, whilst channels 1 to 4 support a single channel which is able to interpret linked lists.

This is achieved by mapping part of the control state for the DMA channel into structures stored in main memory. The tables below show the organisation of the registers for each DMA channel, and where appropriate the organisation of the state which is stored as a structure in main memory. In each case the location of the register is shown as an offset from a base address.

Registers in channels 0 to 4 are referred to in this document as DMA.CHAN[N].REGISTERNAME where [n] refers to the channel number and is an integer between 0 and 4.

A description of each register and its operation is included later in this document.

Address map 47

4.2.1 Channel 0: multiplexed DMA channel

Register name	Description		Туре	Address offset	Memory offset	Access size
IDENTITY	Local state	Channel identity, see Table 31 on page 71	RO	0x00	-	32
ENABLE		Enable a control bit associated with this channel, see <i>Table 32 on page 75</i>	RW	0x08	-	32
DISABLE		Disable a control bit associated with this channel, see <i>Table 33 on page 77</i>	WO	0x10	-	32
STATUS		Status of a control bit associated with this channel, see <i>Table 34 on page 80</i>	RW	0x18	-	32
ACTION		Cause action on a control bit associated with this channel, see <i>Table 35 on page 83</i>	WO	0x20	-	32
POINTER		Pointer to the current or last register memory image, see Table 36 on page 85	RO	0x28	-	32
SUBBASE		Base pointer to the table of register images in main memory, see <i>Table 38 on page 88</i>	RW	0x30	-	32
SUBENABLE		Subchannel enable, see Table 39 on page 89	RW	0x38	-	32
SUBDISABLE		Subchannel disable, see Table 40 on page 90	WO	0x40	-	32
SUBINT_ENB		Subchannel interrupt enable, see <i>Table 41 on page 90</i>	RW	0x48	-	32
SUBINT_DIS		Subchannel interrupt disable, see <i>Table 42 on page 91</i>	WO	0x50	-	32

Table 20: Channel 0 registers

Register name	Description		Туре	Address offset	Memory offset	Access size
SUBINT_STAT	Local state	Subchannel interrupt status, see <i>Table 43 on page 91</i>	RO	0x58	-	32
Reserved				0x70 to 0x78		
SUBINT_ACT		Subchannel interrupt action, see <i>Table 44 on page 92</i>	WO	0x60	-	32
CONTROL	Memory mapped	Channel control, <i>Table 45 on page 93</i>	RW	0x80	0x00	32
COUNT	state	Channel count, see <i>Table 46</i> on page 99	RW	0x88	0x04	32
SAR		Channel source address, see Table 47 on page 100	RW	0x90	0x08	32
DAR		Channel destination address, see <i>Table 48 on page 101</i>	RW	0x98	0x0c	32
Reserved			•	0x60 to 0xf8	-	-

Table 20: Channel 0 registers

Address map 49

4.2.2 Channels 1 to 4: linked list DMA channel

Register name		Description	Туре	Register offset	Memory offset	Size
IDENTITY	Local state	Channel identity, see Table 31 on page 71	RO	0x00	-	32
ENABLE		Enable or set a control bit associated with this channel, see <i>Table 32 on page 75</i>	RW	0x08	-	32
DISABLE		Disable or reset a control bit associated with this channel, see <i>Table 33 on page 77</i>	WO	0x10	-	32
STATUS		Status of a control bit associated with this channel, see <i>Table 34 on page 80</i>	RW	0x18	-	32
ACTION		Cause action on a control bit associated with this channel, see <i>Table 35 on page 83</i>	WO	0x20	-	32
POINTER		Pointer to the current or last register set, see <i>Table 36 on page 85</i>	RO	0x28	-	32
REQUEST		The number of the request associated with this channel, see <i>Table 37 on page 86</i>	RW	0x30	-	32
Reserved				0x38 to 0x78	-	-
CONTROL	Memory mapped	Channel control, see <i>Table 45</i> on page 93	RW	0x80	0x00	32
COUNT	state	Channel count, see <i>Table 46 on page 99</i>	RW	0x88	0x04	32
SAR		Channel source address, see Table 47 on page 100	RW	0x90	0x08	32

Table 21: Channels 1 to 4 registers

Register name	Description T			Register offset	Memory offset	Size
DAR	Memory mapped	Channel destination address, see <i>Table 48 on page 101</i>	RW	0x98	0x0c	32
NEXT_PTR	state	Pointer to the next register set, see <i>Table 49 on page 102</i>	RW	0xA0	0x10	32
SRC_LENGTH		2D source line length, see Table 50 on page 103	RW	0xA8	0x14	32
SRC_STRIDE		2D source line stride, see Table 51 on page 104	RW	0xB0	0x18	32
DST_LENGTH		2D destination line length, see Table 52 on page 105	RW	0xB8	0x1c	32
DST_STRIDE		2D destination line stride, see Table 53 on page 106	RW	0xC0	0x20	32
Reserved			•	0xC8 to 0xF8	-	-

Table 21: Channels 1 to 4 registers

4.3 Peripheral allocation

The DMAC supports up to 32 independent request sources. The peripheral to request number allocation is described in the relevant product datasheet.

The user may associate any request number with a specific DMA channel by programming the associated control state. This association is automatic for channel 0 and can be set by programming DMA.CHAN[N].REQUEST for channels 1 to 4.

DMA operation 51

4.4 DMA operation

4.4.1 DMA transfer procedure

All DMA channels use the same basic transfer model and are able to transfer units of data from a source data structure to a destination data structure via an internal de-coupling buffer. This is shown in *Figure 9*.

Figure 9: DMA operation

The DMA operation is begun when all registers associated with the channel are programmed, and all enables associated with that channel are set.

Depending on the timing model associated with the DMA channel, the transfer may self-start or wait for a peripheral to assert a request before commencing a transfer.

The transfer of data occurs from a source memory structure to a destination memory structure via an internal de-coupling buffer using a specified data unit size. As the source and destination unit sizes may differ the DMAC may be required to load multiple units from the source for every destination unit or vice-versa.

A transfer will continue until 1 of the following conditions occurs.

Stall

When a stall condition occurs the register DMA.CHAN[N].ENABLE.STALL is set. All transfers on this channel are suspended until the stall condition is cleared and software has reset the DMA.CHAN[N].CONTROL.STALL.

Error

An error may occur if the DMAC attempts an access which is unalignable with the specified transfer unit (address or unit size) with alignment checks enabled or the system indicates that a memory operation has failed. This will force the DMA channel to stop until the error is cleared and the DMA channel reprogrammed.

Disable

The channel may be disabled at any time by a write to DMA.DISABLE[N], DMA.CHAN[N].DISABLE. The channel will be stopped until re-enabled by a second write to DMA.ENABLE or DMA.CHAN[N].ENABLE.

Completion

Completion occurs when DMA.CHAN[N].COUNT reaches 0, and the last transfer has completed. On completion the DMAC may interrupt the CPU or trigger an update function refreshing the DMA register state from memory and starting a subsequent transfer.

If an interrupt occurs the CPU is required to intervene before the DMA may continue or a further DMA begin on the same channel.

DMA operation 53

4.4.2 DMA transfer units

The DMAC is able to transfer data between the source and destination using units of specific size. Supported unit sizes include 1, 2, 4, 8 16 or 32 bytes. This is defined as the SRC_UNIT and DST_UNIT fields of in the DMA.CHAN[N].CONTROL registers for linked list channels, and SRC_UNIT for channel 0.

All transfers are aligned and of a specific size, the DMAC will not generate part word accesses. If the transfer if not alignable to the selected transfer unit, the DMAC will either indicate an alignment error or use the largest alignable transfer unit equal to or smaller than the selected unit.

If the alignment error interrupt is enabled the channel will be stalled until the error condition is cleared. This is indicated by asserting the associated error and setting the bits with the DMA.VCR.STATUS and DMA.ERROR registers.

As channels 1 to 4 support differing unit sizes for the source and destination structures, the DMA channel will segment and assemble the appropriate number of smaller data units to allow the larger unit to be transferred. Channel 0 will use the same transfer unit for both the source and destination transfers.

4.4.3 DMA timing model

The DMAC is able support 3 timing modes. This is selected for each channel by asserting the appropriate value into the DMA.CHAN[N].CONTROL.TIMING register. These are described below.

Free-running

If a channel is free-running, the DMA will occur without requiring a request to begin or control the timing of the transfer. It will continue to operate without further intervention until disabled, complete or an abnormal condition occurs.

This is the model generally used for memory-to-memory moves.

Triggered

A channel is triggered, if a request is required to start the DMA operation. Following the triggering request the DMA continues as if it were free-running until disabled, complete or an abnormal condition occurs.

This is typically used to communicate between devices, or start a memory-tomemory transfer which needs to be dependent on an external request.

Paced

A channel is paced, if a single data unit is transferred per request. The request may be associated with either the source or destination memory location. The size of the data unit to be transferred is determined by the information associated with the source if the transfer is source-paced, and the destination if the transfer is destination-paced.

This is typically used by peripheral modules which require low data rate transfers such as UARTs.

4.4.4 DMA requests

The DMAC supports up to 32 physical request channels which may be used to trigger or pace any DMA channel. The association between the DMA channel and request is defined by the DMA.CHAN[N].REQUEST and DMA.CHAN[N].SUBCHAN_ENB registers and allows 1 request to be associated with 1 DMA channel or subchannel.

2 request protocols are supported:

- · DREQ,
- · DREQ/DRACK.

The first protocol uses the SuperHyway response to determine when a DMA unit (if paced) or complete DMA (if triggered) transfer has completed. This is assumed to be the cycle the final response packet received plus an offset period. The DMAC is able to begin sampling for the request pending the next transfer after this period.

The second protocol uses the DRACK signal to determine that the device has committed to a transfer, may re-sample the DREQ signal when the offset has passed following the acknowledgment.

Devices which support DRACK may choose to improve the efficiency of the DMA transfer to that device by reasserting req before the current data transfer to that device has completed allowing pipelining of multiple data units.

Each request associated with a peripheral is independent and may be mapped onto any DMA channel, and therefore more than 1 request may occur in a single cycle, or a single request may be mapped onto multiple DMA channels.

If a request is associated with multiple DMA channels, the request will be serviced by the lowest numbered channel, which means channel[n] has priority over channel[n+1]. If multiple requests are associated with a single DMA channel

DMA operation 55

(channel 0) then the lowest number request will be serviced first, that is request[n] has priority over request[n+1].

4.4.5 DMA data organization

The DMA is able to transfer data which is organized in a number of different ways. These include:

- single location (0D),
- incrementing or decrementing linear arrays (1D),
- incrementing or decrementing rectangular arrays (2D).

The data organization for the source and destination structures is defined by DMA.CHAN[N].CONTROL.SRC_TYPE, and DMA.CHAN[N].CONTROL.DST_TYPE respectively.

All data structures are specified with respect to an origin or initial byte address and the address of subsequent transfers is calculated from this origin using the information defined for that channel.

Single location/0D

If the data structure is fixed or single location, the same address is used throughout the transfer and no further information is needed.

Incrementing/1D

If the data structure is 1D, this address is incremented or decremented by the number of bytes in the data transfer unit until DMA.CHAN[N].COUNT bytes are transferred.

In an incrementing transfer from address ADDR of COUNT bytes, the following bytes at the following addresses will be transferred:

```
ADDR to ADDR + (COUNT - 1).
```

In a decremented transfer from address ADDR of COUNT bytes, the following bytes at the following addresses will be transferred:

```
ADDR to ADDR - (COUNT - 1).
```

Rectangular array/2D

If the data structure is 2D, 2 additional parameters are defined, LENGTH and STRIDE. The transfer may be considered as a series of line or 1D transfers each of length bytes, each line separated by STRIDE - LENGTH bytes of unused data.

In the case of an incrementing structure the address defines the bottom left corner (lowest address), and the DMA transfers a series of data units, first transferring a line containing LENGTH bytes, before incrementing the address by STRIDE bytes and continuing for the next line. This operation is repeated until the required number of bytes is transferred. For a decrementing structure, the address defines the top right corner (highest address), and all addresses are decremented.

The bytes transferred for an incrementing transfer as follows:

```
IF (COUNT - total number of bytes transfer) > LENGTH, transfer
the bytes at addresses:
ADDR to (ADDR + LENGTH - 1)
(ADDR + STRIDE) to (ADDR + STRIDE + LENGTH - 1)
(ADDR + (n - 1) * STRIDE) to (ADDR + (n - 1) * STRIDE + LENGTH -
1)
UNTIL (COUNT - total number of bytes transferred) <= LENGTH,
transfer the bytes at addresses:
(ADDR + n * STRIDE) to (ADDR + n * STRIDE + (COUNT - number of
bytes transferred))
The transfer is now completed.
The bytes transferred during a decrementing 2D transfer are:
IF (COUNT - total number of bytes transfer) > LENGTH, transfer
the bytes at addresses:
ADDR to (ADDR - (LENGTH - 1))
(ADDR - STRIDE) to (ADDR - STRIDE - (LENGTH - 1))
(ADDR - (n - 1) * STRIDE) to (ADDR - (n - 1) * STRIDE - (LENGTH -
1))
```

DMA operation 57

```
UNTIL (COUNT - total number of bytes transferred) <= LENGTH,
transfer the bytes at addresses:</pre>
```

(ADDR - n * STRIDE) to (ADDR + n * STRIDE - (COUNT - number of bytes transferred)

The transfer is now completed.

4.4.6 Endianness

The DMAC is able to operate in systems which use 1 of 2 possible data organizations, little or big endian. This is determined by sampling a control signal following reset, and which may be considered static during operation.

The DMA is responsible for ensuring that all data has the correct organisation and that the software model of the DMA is independent of this signal.

4.4.7 DMA channel arbitration

The DMA contains a number of independent channels which compete for a single memory port for access to the system, both for control and data information.

To ensure that no channel monopolizes access to the system and excludes all other channels, the DMA implements a least recently used (LRU) algorithm for access to this port.

If DMA channel[n] gains ownership of the memory port for a request packet in cycle m, then channel[n] will become the lowest priority channel in the subsequent cycle, guaranteeing preferential access to other channels in subsequent cycles.

Arbitration is per packet, and ensures in the worst case scenario that each DMA channel is guaranteed to pass 1 request packet in every 5 passed to the system.

4.4.8 Extension to basic DMA operations

The DMAC supports extension to the basic DMA operation using memory mapped register sets. Channel 0 uses this to support a table of independent subchannels from which a request selects a specific register set, whilst channels 1 to 4 support a linked list of DMA operations store in memory.

The organization of each structure is detailed below.

Single linked list

This considers the DMA channel as a series of register sets each corresponding to a single DMA operation, stored in memory.

Figure 10: Organization of tables in memory for a single linked list

Typically the CPU would set up a linked list structure in memory, set the associated pointer register within the DMAC, enable the DMAC and begin the transfer by a write to DMA.CHAN[N].ACTION.UPDATE. This bootstraps the list, loading the first entry and continuing until completion of all the DMAs in the list.

On completion of each DMA operation (as indicated by COUNT = 0) the channel may do one or more of the following operations:

• generate an interrupt indicating completion,

DMA operation 59

- · trigger a channel update,
- · terminate.

A channel update causes the information which defines the DMA channel to be updated from memory. The location of this structure in memory is given by a pointer which is itself updated, allowing a linked list to be maintained. Each channel may support 1 such linked list.

This may be used to extend the channel's operation to support features such as scatter gather sequences, or building DMA sequences with only the final completion requiring CPU intervention via an interrupt.

Multiplexed channels

These share a single physical DMA channel across up to 32 subchannels each with its own register sets. Each subchannel corresponds to a single DMA and has an associated request channel.

Figure 11: Organization of tables in memory for a multiplexed channel

A unit transfer occurs when the request associated with the subchannel is asserted, this causes the information defining that channel's operation to be loaded from memory.

Depending on the information in the new register set, 1 or more data units will be transferred before the copy of the register set stored in memory is updated and the DMA channel returns to a quiescent status.

On completion of all transfers on a specific subchannel, (as defined by no more data being available to be transferred) the DMAC marks the subchannel as inactive and may signal an interrupt. No further data is transferred on this subchannel. Completion is non-blocking and other subchannels associated with this DMA channel will continue to operate unchanged.

4.5 Interfaces

Figure 12: DMAC interfaces

The DMAC communicates with the system using a number of major interfaces:

- system services such as clock and reset,
- 32 event channels giving flow control information for pacing and triggering with allocation of these channels depending on the system implementation,

- 6 interrupts which comprise error plus 1 interrupt per DMA channel,
- SuperHyway target giving access to local registers,
- SuperHyway initiator giving access to memory,

and 2 sets of control signals:

- LITTLE_NOT_BIG if asserted means SuperHyway data organisation is little endian.
- DMA_STALL if asserted, and DMA channel[n] has stall enabled, then all new memory requests on channel[n] are disabled until DMA_STALL is de-asserted.

Each DMA channel may be considered as an independent element communicating using a number of shared interfaces.

4.6 Register descriptions

All registers are 32 bits and are placed on 64-bit boundaries. They may be accessed either as 64-bit quantities at the register address with the upper 4 bytes reserved, or as 32-bit quantities at the register with all 4 bytes defined.

Accesses to undefined registers or using unsupported access types (or part word accesses) will lead to an error being flagged in the DMA.VCR.STATUS register.

4.6.1 Global registers

DMA.VCR.STATUS

DMA.VCR. STATUS defines information available to the system, specifically debug, to determine how this module has interacted with the system, and, if any erroneous requests have occurred during operation of that module.

This information is generally used to allow debug software to determine which modules in the system have caused the system to fail, and supply a little information about how that failure occurred.

DMA.VCR.STATUS				0x0000				
Field	Bits	Size	Volatile Synopsis Type					
PERROR	[0:7]	8	Yes	SuperHyway/Shwy error	RW			
	Operation	n	Each bit of this register corresponds to an erroneous SuperHyway operation being detected.					
			The meaning of ea	ch bit is as follows:				
			0: Error response received					
			1: Error response returned					
			2: Access to an un	defined location accepted				
			3: Unsolicited resp	onse received				
			4: Reserved, write	0, read undefined				
			5: Unsupported op	eration accepted				
	Read		Returns current va	lue				
	Write		0: No action					
			1: Reset bit[n]					
	Hard rese	et	0					

Table 22: DMA.VCR.STATUS

	DMA.VCR.STATUS			0x0000				
Field	Bits	Size	Volatile	Volatile Synopsis Type				
MERROR	[8:15]	8	Yes	Module error	RW			
	Operation	n		Each bit of this register corresponds to an erroneous module operation being detected.				
			0: Alignment error					
			An alignment error will occur if a channel is mis-programming with an unalignable transfer on a channel which enforces alignment checks.					
			1 to 7: Reserved					
	Read		Returns current va	lue				
	Write		0: No action					
			1: Reset bit[n]					
	Hard res	et	0x00					
MOD_ID	[16:31]	16	No	Module identity	RO			
	Operation	n	Used to indicate th	e module type				
	Read		Returns module ID)				
	Write		Ignored					
	Hard Res	set	Reserved					

Table 22: DMA.VCR.STATUS

DMA.VCR.VERSION

DMA.VCR.VERSION defines the module type and revision number.

	DMA.VCR.V	ERSION	0x00	08			
Field	Bits	Size	Volatile	Synopsis	Туре		
MOD_VER	[0:15]	16	No	Module version	RO		
	Operation		Used to indicate the module type				
	Read Write		Returns module version				
			Ignored				
	Hard reset		0				
MOD_SIZ	[16:31]	16	No	Module size	RO		
E	Operation	Operation		Module size defined in blocks of 64 Kbytes			
	Read		Reads 0x0001				
	Write	Write		Ignored			
	Hard reset		0x0001				

Table 23: DMA.VCR.VERSION

DMA.ENABLE

 ${\sf DMA.ENABLE}$ defines a global mechanism for software to enable one or more channels rapidly. 1

DMA.ENABLE				0x0010					
Field	Bits	Size	Volatile	Volatile Synopsis Type					
CHANNEL	[0:4]	6	Yes	DMA enable	RW				
	Operation	on	Bit[n] is used to	enable channel[n]					
	Read		1: DMA channe	el[n] enabled					
			0: DMA channel[n] disabled				0: DMA channel[n] disabled		
	Write		1: Enable DMA channel[n]						
			0: No action						
	Hard re	set	0x00						
-	[6:31]	26	-	Reserved	-				
	Operation	on	Reserved						
	Read		Undefined						
	Write		0	0					
	Hard re	set	Undefined						

Table 24: DMA.ENABLE

^{1.} A channel is enabled only when both the channel and global enables are set

DMA.DISABLE

DMA.DISABLE may be used to disable 1 or more DMA channels using a single global register.

DMA.DISABLE				0x0018			
Field	Bits	Size	Volatile	Synopsis	Туре		
CHANNEL	[0:4]	6	-	DMA disable	WO		
	Operati	on	Bit[n] is used to	disable channel[n]			
	Read		Reserved				
	Write		0: No action				
			1: Disable DMA channel[n]				
	Hard re	set	0x00				
-	[6:31]	26	-	Reserved	-		
	Operati	on	Reserved				
	Read		Undefined				
	Write		0				
	Hard reset		Undefined				

Table 25: DMA.DISABLE

The disable register provides an override mechanism to stall or disable 1 or more channels simultaneously. This is typically used to disable all channels, fine level control is generally achieved via the local control state.

After this register is accessed, it may take a number of cycles for outstanding accesses to complete on each DMA channel and the user should check the DMA.STATUS register to determine when all outstanding accesses have completed.

DMA.STATUS

DMA.STATUS defines the status of the DMA channels.

DMA.STATUS				0x0020			
Field	Bits	Size	Volatile	Synopsis	Туре		
CHANNEL	[0:4]	6	Yes	DMA disable	RO		
	Operation	on	Bit[n] indicates	the status of channel[n]			
	Read		Channel[n] inactive, that is disabled, and all memory accesses associated with this channel completed				
			Channel[n] active, that is enabled, or memory accesses outstanding on this channel				
	Write		Ignored				
	Hard res	set	0x00				
-	[6:31]	26	-	Reserved	-		
	Operation	on	Reserved				
	Read		Undefined				
	Write		0				
	Hard res	set	Undefined				

Table 26: DMA.STATUS

The user should not assume the DMAC and associated volatile registers or memory images are stable until a read to this register or to the associated channel register indicates the DMAC is inactive.

DMA.INTERRUPT

DMA.INTERRUPT summarizes the interrupt status of all channels. It may be read to determine which channel caused an interrupt to be asserted.

DMA.INTERRUPT				0x0028			
Field	Bits	Size	Volatile	Synopsis	Туре		
CHANNEL	[0:4]	6	Yes	DMA interrupt status	RO		
	Operation		If bit[n] is set, an unserviced DMA interrupt occurred on channel[n]				
	Read			No outstanding interrupts on channel[n] Unserviced interrupt on channel[n]			
	Write		Ignored				
	Hard re	set	0x00				
-	[6:31]	26	-	Reserved	-		
	Operation	on	Reserved				
	Read		Undefined				
	Write		0				
	Hard re	set	Undefined				

Table 27: DMA.INTERRUPT

To clear or determine the cause of the interrupt on a specific channel, the associated channel register DMA.CHAN[N].STATUS and DMA.CHAN[N].CONTROL registers should be accessed.

DMA.ERROR

DMA.ERROR summarizes the error status of all channels. It may be read to determine which channel caused an error condition to occur.

DMA.ERROR				0x0030		
Field	Bits	Size	Volatile	Synopsis	Туре	
ERROR	[0:4]	6	Yes	DMA error status	RO	
	Operation	on	If bit[n] is set, an unserviced error interrupt occurred o channel[n]			
	Read		Returns current value			
	Write		Ignored			
	Hard res	set	0x00			
-	[6:31]	26	-	Reserved	-	
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard res	set	Undefined			

Table 28: DMA.ERROR

To clear or determine the cause of the interrupt on a specific channel, the associated channel register DMA.CHAN[N].STATUS and DMA.CHAN[N].CONTROL registers should be accessed.

DMA.DEFINED

DMA.DEFINED is a five channel implementation of the DMAC, future variants which implement different numbers or types of channel.

DMA.DEFINED				0x0038			
Field	Bits	Size	Volatile	Synopsis	Туре		
DEFINED	[0:31]	32	No	DMA channel defined	RO		
	Operation	on	If bit[n] set, channel[n] is implemented				
	Read		0x0000001F				
	Write Ignored		Ignored				
	Hard res	set	0x000001F				

Table 29: DMA.DEFINED

DMA.HANDSHAKE

DMA.HANDSHAKE defines the protocol for a request from a peripheral.

DMA.HANDSHAKE				0x0040		
Field	Bits Size		Volatile	Synopsis	Туре	
CHANNEL	[0:31]	32	No	DMA request handshake	RW	
	Operation	on	DRACK proto	MA request channel[n] impleol. et, it implements DREQ on		
	Read		Returns current value			
	Write		Updates current value			
	Hard res	set	0x00			

Table 30: DMA.HANDSHAKE

4.6.2 Channel-specific registers

DMA.CHAN[n].IDENTITY

DMA.CHAN[N].IDENTITY describes the type and facilities of a DMA channel.

DMA	A.CHAN[n]. (n = 0 to		((n + 1) * 0x100) + 0x00				
Field	Bits	Size	Volatile	Synopsis	Туре		
TYPE	[0:3]	4	No	Channel DMA type	RO		
	Operation		Identifies DMA	channel type. Valid values a	re:		
			0000: No channel				
			0001: Reserved				
			0010: Single linked list, list of basic DMAs				
			0011: Reserved				
			0100: Table of multiplexed single DMAs				
			0100 to 1111: Reserved				
	Read		Channel 0: 0x4				
			Channel[1:4] =	0x2			
	Write		Ignored				
	Hard reset		Channel 0: 0x4				
			Channel[1:4] =	0x2			

Table 31: DMA.CHAN[n].IDENTITY

DM.	A.CHAN[n]. (n = 0 to		((n + 1) * 0x100) +	0x00			
Field	Bits	Size	Volatile	Synopsis	Туре		
TIMING	[4:7]	4	No	Channel timing model	RO		
	Operation		Identifies suppo Valid values are	orted timings models on this e:	channel.		
			0000: Free running only				
			0001= Triggered (on hardware event, complete DMA)				
			0010: Paced (on hardware event, transfer single data unit and wait for next event)				
					0011: Both trigg	gering and pacing supported	on this
			0100 to1111 Re	eserved			
	Read		Channel[0:4] =	0x3			
	Write Ignored						
	Hard rese	t	Channel[0:4] =	0x3			

Table 31: DMA.CHAN[n].IDENTITY

DMA.CHAN[n].IDENTITY (n = 0 to 4)			((n + 1) * 0x100) + 0x00				
Field	Bits	Bits Size Volatile Synopsis			Туре		
UNIT	[8:15]	8	No	DMA data units	RO		
	Operation		Identifies the day	ata units supported by the ch	annel, valid		
			Bit 8 set: Suppo	ort for single byte units			
			Bit 9 set: Suppo	ort for 2 byte units			
			Bit 10 set: Supp	oort for 4 byte units			
			Bit 11 set: Supp	oort for 8 byte units			
			Bit 12 set: Supp	port for 16 byte units			
			Bit 13 set: Support for 32 byte units				
			Bit 14 to 15: Reserved				
	Read		Channel[0:4]: 0x3F				
	Write		Ignored				
	Hard rese	t	Channel[0:4]: 0	x3F			
DATA	[16:23]	8	No	Channel data structures	RO		
	Operation		Defines the dat	a structures supported by the	is channel.		
			Bit 16 set: Supp	port for fixed address (0D)			
			Bit 17 set: Support for 1D incrementing				
			Bit 18 set: Support for 1D decrementing				
			Bit 19 set: Support for 2D incrementing				
			Bit 20 set: Support for 2D decrementing				
			Bit 21 to 23: Reserved				
	Read		Channel[0:4]: 0x1F				
	Write		Ignored				
	Hard rese	t	Channel[0:4]: 0	x1F			

Table 31: DMA.CHAN[n].IDENTITY

DMA.CHAN[n].IDENTITY (n = 0 to 4)				((n + 1) * 0x100) +	0x00	
Field	Bits	Size	Volatile	Synopsis	Туре	
ALIGNMENT	[24:27]	4	No	Channel alignment model	RO	
	Operation		Defines the alig	nment model supported by t	his channel.	
			Bit 24 set: Una	ligned source units supported	d	
			Bit 25 set: Una	ligned destination units supp	orted	
			Bit 26 set: Sour	rce and destination units mus	st be equal	
			Bit 27 set: Source and destination units must have same alignment			
	Read		Channel 0: 0xC			
			Channel[1:4]: 0x3			
	Write		Ignored			
	Hard rese	t	Channel 0: 0xC			
			Channel[1:4]: 0	x3		
-	[28:31]	4	-	Reserved	RO	
	Operation		Reserved			
	Read		Undefined			
	Write		0			
	Hard rese	t	Undefined			

Table 31: DMA.CHAN[n].IDENTITY

This register is defined for all channels.

DMA.CHAN[n].ENABLE

 $\label{lem:decomposition} DMA. CHAN[n]. ENABLE \ controls \ the \ behavior \ of \ a \ channel.$

DM.	A.CHAN[(n = 0	-	((n + 1) * 0x100)	+ 0x08		
Field	Bits	Size	Volatile	Synopsis	Туре	
CHANNEL	[0]	1	Yes	Enable DMA channel	RW	
	Operation	on	Enables this D	MA channel		
	Read		If set, channel	is enabled		
	Write		0: No action			
			1: Enable			
	Hard re	set	0			
COMPLETE	[1]	1	Yes	Enable DMA complete	RW	
	Operation	on	Enables the channel complete interrupt			
	Read		If set, DMA complete interrupt enabled			
	Write		0: No action			
			1: Enable			
	Hard re	set	0			
BUS_ERROR	[2]	1	Yes	Enable bus errors	RW	
	Operation	on	Enables DMA bus error interrupts			
	Read		If set, DMA error interrupt enabled			
	Write		0: No action			
			1: Enable			
	Hard re	set	0			

Table 32: DMA.CHAN[n].ENABLE

DMA.CHAN[n].ENABLE (n = 0 to 4)				((n + 1) * 0x100) -	+ 0x08	
Field	Bits	Size	Volatile	Synopsis	Туре	
ALIGNMENT	[3]	1	Yes	Enable alignment errors	RW	
	Operation	on	Enables alignm	nent checks and associated	interrupt	
	Read		If set, DMA alig	nment error interrupts enab	led	
	Write		0: No action			
			1: Enable			
	Hard re	set	0			
STALL	[4]	1	Yes	Enable stall	RW	
	Operati	on	Enable stall on external signal			
	Read		If set, external stalls enabled			
	Write		0: No action			
			1: Enable			
	Hard re	set	0			
ERROR	[5]	1	No	error mode	RW	
	Operati	on	Selects interrupt error mode			
	Read		If set, errors flagged on both the channel interrupt and error interrupt signals			
			If not set, errors flagged on just the error interrupt			
	Write		0: No action			
			1: Enable error on channel interrupt			
	Hard re	set	0			

Table 32: DMA.CHAN[n].ENABLE

DM	A.CHAN[(n = 0	_	((n + 1) * 0x100) + 0x08		
Field	Bits	Size	Volatile	Synopsis	Туре
-	[6:31]	26	-	Channel DMA type	-
	Operati	on	Reserved		
	Read		Undefined		
	Write		0		
	Hard re	set	Undefined		

Table 32: DMA.CHAN[n].ENABLE

DMA.CHAN[n].DISABLE

 $\label{lem:decomposition} DMA.CHAN[n]. DISABLE\ disables\ control\ functionality\ for\ a\ channel.$

DMA.CHAN[n].DISABLE (n = 0 to 4)				((n + 1) * 0x100) + 0x10			
Field	Bits	Size	Volatile	Synopsis	Туре		
CHANNEL	[0]	1	-	Disable DMA channel	WO		
	Operation	on	Disables the DMA channel				
	Read		Reserved				
	Write		0: No action				
			1: Disable				
	Hard re	set	0				

Table 33: DMA.CHAN[n].DISABLE

DMA.CHAN[n].DISABLE (n = 0 to 4)			((n + 1) * 0x100) +	- 0x10			
Field	Bits	Size	Volatile	Synopsis	Туре		
COMPLETE	[1]	1	-	Disable DMA complete	WO		
	Operation	on	Disables interru	upts on DMA complete			
	Read		Reserved				
	Write		0: No action				
			1: Disable				
	Hard reset		0				
BUS_ERROR	[2]	1	-	Disable bus errors	WO		
	Operation	on	Disables interrupts on channel's bus errors				
	Read		Reserved				
	Write		0: No action				
			1: Disable				
	Hard res	set	0				
ALIGNMENT	[3]	1	-	Disable alignment errors	WO		
	Operation	on	Disables interru	upt on misaligned accesses	on the channel		
	Read		Reserved				
	Write		0: No action				
			1: Disable		_		
	Hard res	set	0				

Table 33: DMA.CHAN[n].DISABLE

DMA	A.CHAN[r (n = 0		((n + 1) * 0x100) +	· 0x10		
Field	Bits	Size	Volatile	Synopsis	Туре	
STALL	[4]	1	-	Disable stall	WO	
	Operation	on	Disables stall o	n signal		
	Read		Reserved			
	Write		0: No action			
			1: Disable			
	Hard reset		0			
ERROR	[5]	1	-	error mode	WO	
	Operation		Error mode			
	Read		Reserved	erved		
	Write		0: No action			
			1: Disable error on channel interrupt			
	Hard res	set	0			
-	[6:31]	26	-	Reserved	-	
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard res	set	Undefined			

Table 33: DMA.CHAN[n].DISABLE

DMA.CHAN[n].STATUS

DMA.CHAN[n].STATUS defines the status of the current channel.

DMA.CHAN[n].STATUS (n = 0 to 4)			((n + 1) * 0x100) +	0x18		
Field	Bits	Size	Volatile Synopsis Type			
CHANNEL	[0]	1	Yes	DMA channel status	RO	
	Operatio	n	Indicates the st	tatus of the DMA channel		
	Read		Channel[n] inactive, that is disabled and all memory accesses associated with this channel completed			
			Channel[n] active, that is enabled, or memory accesses outstanding on this channel			
			Ignored			
	Hard res	et	0			
COMPLETE	[1]	1	Yes	DMA complete status	RO	
	Operatio	n	Status of the D	MA operation on the channe	l	
	Read		0: DMA operation not completed			
			DMA operation completed and, if enabled, interrupt associated with DMA complete asserted			
			A DMA operation is completed when COUNT = 0 and all accesses have finished.			
	Write		Ignored			
	Hard res	et	0			

Table 34: DMA.CHAN[n].STATUS

DMA.CHAN[n].STATUS (n = 0 to 4)			S	((n + 1) * 0x100) +	0x18	
Field	Bits	Size	Volatile	Synopsis	Туре	
BUS_ERROR	[2]	1	Yes	Bus error status	RO	
	Operation	n	Indicates the st	atus of the bus errors on this	s channel	
	Read		0: No outstand	ing bus errors on the channe	el	
			Memory access from the channel returned an outstanding bus error to this device and, if enabled, interrupt associated with errors on channel is asserted.			
	Write		Ignored			
	Hard res	et	0			
ALIGNMENT	[3]	1	Yes	Alignment status	RO	
	Operation		Status of alignment errors on the channel			
	Read		0: No unaligned accesses occurred			
			1: Unit transfer size and address cannot be aligned and, if enabled, interrupt associated with errors on the channel is asserted			
	Write		Ignored			
	Hard res	et	0			
STALL	[4]	1	Yes	Stall status	RO	
	Operatio	n	Status of stall on the channel			
	Read		0: Channel not	stalled		
			1: Channel stal	led by external stall request		
	Write		Ignored			
	Hard res	et	0			

Table 34: DMA.CHAN[n].STATUS

DMA.CHAN[n].STATUS (n = 0 to 4)				((n + 1) * 0x100) + 0x18			
Field	Bits	Size	Volatile	Synopsis	Туре		
UPDATE	[6]	1	Yes	Update status	WO		
	Operatio	n	Status of link lis	st update request			
	Read		0: No request outstanding				
			1: Linked list update request outstanding				
	Write		Ignored				
	Hard res	et	0				
-	[5]	26	-	-	-		
	[7:31]						
	Operatio	n	Reserved				
	Read		Undefined				
	Write		0				
	Hard res	et	Undefined				

Table 34: DMA.CHAN[n].STATUS

DMA.CHAN[n].ACTION

DMA.CHAN[n].ACTION causes an action associated with a channel.

DMA.CHAN[n].ACTION (n = 0 to 4)				((n + 1) * 0x100) + 0x20		
Field	Bits	Size	Volatile	Synopsis	Туре	
CHANNEL	[0]	1	-	-	-	
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard re	set	Undefined			
COMPLETE	[1]	1	-	DMA complete status	WO	
	Operation		Change status of DMA complete on channel			
	Read		Undefined			
	Write		0: No action			
			Reset DMA complete status bit and associated interrupt			
	Hard re	set	0			
BUS_ERROR	[2]	1	-	Bus error status	WO	
	Operation	on	Change status of bus error on channel			
	Read		Undefined			
	Write		0: No action			
			Reset DMA bus error status bit and associated interrupt			
	Hard re	set	0			

Table 35: DMA.CHAN[n].ACTION

DMA.CHAN[n].ACTION (n = 0 to 4)				((n + 1) * 0x100) + 0x20			
Field	Bits Size		Volatile	Synopsis	Туре		
ALIGNMENT	[3]	1	-	Alignment error status	WO		
	Operation		Change status of alignment errors on channel				
	Read		Undefined				
	Write		0: No action				
			Reset DMA alignment status bit and associated interrupt				
	Hard re	set	0				
STALL	[4]	1	-	Stall status	WO		
	Operation		Change status of stall on channel				
	Read		Undefined				
	Write		0: No action				
			1: Clear stall condition on channel				
	Hard reset		0				
UPDATE	[6]	1	-	Update status	WO		
	Operation		Trigger linked list update				
	Read		Undefined				
	Write		0: No action				
			1: Update DMA channel register set from linked list				
	Hard reset		0				

Table 35: DMA.CHAN[n].ACTION

DM	A.CHAN[(n = 0		((n + 1) * 0x100) + 0x20		
Field	Bits Size Volatile			Synopsis	Туре
-	[5], [7:31]	26	-		-
	Operation		Reserved		
	Read		Undefined		
	Write Hard reset		0		
			Undefined		

Table 35: DMA.CHAN[n].ACTION

DMA.CHAN[n].POINTER

 $\label{eq:def:DMA.CHAN[n].POINTER} DMA. CHAN[n]. POINTER contains the value of the pointer used to fetch the current control information.$

DMA.CHAN[n].POINTER (n = 0 to 4)			?	((n + 1) * 0x100) + 0x28			
Field	Bits Size Vola		Volatile	Synopsis	Туре		
ADDRESS	[3:31]	29	Yes	Current channel pointer	RO		
	Operation Read		Indicates location of last register update				
			Returns current value				
	Write Ignored Hard reset 0						

Table 36: DMA.CHAN[n].POINTER

DMA.CHAN[n].POINTER (n = 0 to 4)			र	((n + 1) * 0x100) + 0x28		
Field	Bits	Size	Volatile	Synopsis	Туре	
-	[0:2]	3	-	Reserved	RO	
	Operation Read Write		Reserved			
			Undefined			
			0			
	Hard reset		Undefined	t		

Table 36: DMA.CHAN[n].POINTER

DMA.CHAN[n].REQUEST1

DMA.CHAN[N].REQUEST associates the DMA channel and request number..

DMA.CHAN[n].REQUEST (n= 1 to 4)				((n + 1) * 0x100) + 0x30			
Field	Bits Size		Volatile	Synopsis	Туре		
NUMBER	[0:5]	6	No	Request channel number	RW		
	Operation Read Write Hard reset		Indicates which request, if enabled, is associated with the channel				
			Returns current value				
			Update value				
			0				

Table 37: DMA.CHAN[n].REQUEST

^{1.} This is only defined for channels 1 to 4

DMA.CHAN[n].REQUEST (n= 1 to 4)			ST .	((n + 1) * 0x100) + 0x30			
Field	Bits	Size Volatile		Synopsis	Туре		
OFFSET	[8:15]	8	No	subchannel interrupt	RW		
	Operation Read Write		Minimum offset between acknowledgment of request, and subsequent sampling of same request				
			Returns current state				
			Updates current state				
	Hard reset		0				
-	[6:7]	2	-	Reserved	RO		
	[16:31]	16					
	Operation		Reserved				
	Read		Undefined				
	Write		0				
Hard reset		et	Undefined				

Table 37: DMA.CHAN[n].REQUEST

DMA.CHAN[n].SUBBASE¹

For channel 0, DMA.CHAN[N]. SUBBASE points to the base address of the channel table stored in memory.

DMA.CHAN[n].SUBBASE (n = 0)				((n + 1) * 0x100)	+ 0x30		
Field	Bits	Size	Volatile	Synopsis	Туре		
ADDRESS	[8:31]	24	No	Table base address	RW		
	Operation	n	Pointer to base	e address of subchannel tak	ole		
	Read		Returns current value				
	Write		Updates current value				
	Hard res	et	0				
-	[0:7]	8	-	Reserved			
	Operation	n	Reserved				
	Read		Undefined				
	Write		0				
	Hard res	et	Undefined				

Table 38: DMA.CHAN[n].SUBBASE

1.	Only	defined	for	channel	0
----	------	---------	-----	---------	---

DMA.CHAN[n].SUBENABLE¹

For channel 0 DMA.CHAN[N]. SUBENABLE defines which subchannel is enabled.

DMA.C	CHAN[n].S (n = 0	((n + 1) * 0x100) + 0x38					
Field	Bits	Size	Volatile	Synopsis	Туре		
SUBCHANNEL	[0:31]	32	Yes	Enable subchannel	RW		
	Operation	n	Enables DMA subchannel				
	Read		If set, current subchannel enabled				
	Write		0: No action				
			1: Enables subchannel[i]				
	Hard res	et	0				

Table 39: DMA.CHAN[n].SUBENABLE

If subchannel[i] is enabled and request[i] is asserted then the following actions occur:

- 1 The information is stored in memory for subchannel[i] to be loaded in the register state.
- $2\quad 1 \ or \ more \ transfer \ units \ are \ completed \ on \ subchannel [i].$
- 3 The information is stored in memory for subchannel[i] to be updated with new register state.

If channel 0 is enabled and subchannel[i] is not enabled then events on request[i] will be ignored.

		1 0 1	•		_
1.	Only	defined	for	channel	0

DMA.CHAN[n].SUBDISABLE

 $\label{lem:disables} DMA.CHAN[N]. SUBDISABLE \ disables \ a \ subchannel. \ If \ channel \ 0 \ is \ not \ enabled, \ all \ subchannels \ are \ also \ disabled.$

DMA	A.CHAN[n] (n	.SUBDIS/ = 0)	((n + 1) * 0x100) + 0x40				
Field	Bits	Size	Volatile	Synopsis	Туре		
CHANNEL	[0:31]	32	-	Disable subchannel	WO		
	Operatio	n	Disables interrupt associated with subchannel				
	Read		Reserved				
	Write		0: No action				
	1: Disable interrupt associated with				el		
	Hard res	et	0				

Table 40: DMA.CHAN[n].SUBDISABLE

DMA.CHAN[n].SUB_INTENB

 $\label{lem:decomposition} DMA.CHAN[N]. SUB_INTENB \ enables \ interrupts \ channels \ associated \ with \ a \ subchannel.$

DMA.CHAN[n].SUBINT_ENB (n = 0)				((n + 1) * 0x100) + 0x48			
Field	Bits Size Volatile			Synopsis	Туре		
CHANNEL	[0:31]	32	Yes	Enable subchannel	RW		
	Operatio	n	Enables interrupt associated with subchannel				
	Read		If set, current s	nt subchannel interrupt enabled			
	Write		0: No action				
			1: Enables subchannel[i] interrupt				
	Hard res	et	0				

Table 41: DMA.CHAN[n].SUB_INTENB

DMA.CHAN[n].SUBINT_DIS

DMA.CHAN[N].SUBINT_DIS disables interrupts associated with a subchannel.

DMA.CHAN[n].SUBINT_DIS (n = 0)			r_dis	((n + 1) * 0x100) + 0x50				
Field	Bits	Bits Size Volatile		Synopsis	Туре			
DISABLE	[0:31]	32	-	Subchannel interrupt	WO			
	Operatio	n	Disables interr	interrupt associated with subchannel				
	Read		Reserved					
	Write		0: No action					
			1: Disables interrupt associated with channel[n]					
	Hard res	et	0					

Table 42: DMA.CHAN[n].SUBINT_DIS

DMA.CHAN[n].SUBINT_STAT

 $\label{lem:define} DMA.CHAN[N]. SUBINT_STAT \ defines \ the \ status \ of \ interrupts \ associated \ with \ a \ subchannel.$

DMA.CHAN[n].SUBINT_STAT (n = 0)				((n + 1) * 0x100) + 0x58		
Field	Bits	Size	Volatile	Synopsis	Туре	
STATUS	[0:31]	32	Yes	Subchannel interrupt	RO	
	Operatio	n	Status of subc	hannel interrupts		
	Read		0: No unservic	ed interrupts on subchanne	l[i]	
			1: Unserviced	interrupt on subchannel[i]		
	Write		Ignored			
	Hard res	et	0			

Table 43: DMA.CHAN[n].SUBINT_STAT

DMA.CHAN[n].SUBINT_ACT

DMA.CHAN[N].SUBINT_ACT clears interrupt status associated with a subchannel.

DMA.CHAN[n].SUBINT_ACT (n = 0)			((n + 1) * 0x100) + 0x60				
Field	Bits	Size	Volatile	Synopsis	Туре		
CONTROL	[0:31]	32	-	Subchannel interrupt	WO		
	Operatio	n	Clear interrupt associated with subchannel				
	Read		Reserved				
	Write		0: No action				
			1: Clear interru	interrupt status associated with bit[i]			
	Hard res	et	0				

Table 44: DMA.CHAN[n].SUBINT_ACT

4.6.3 Memory-mapped channel registers

DMA.CHAN[n].CONTROL

DMA.CHAN[N].CONTROL defines the behavior of the DMA channel, including features such as transfer data units, transfer direction, the association between the DMA channel and device channels.

DMA.CHAN[n].CONTROL (n = 0 to 4)				((n + 1) * 0x100) + 0x80			
Field	Bits	Size	Volatile	Synopsis	Туре		
TIMING ^A	[0:1]	2	No	Channel timing model	RW		
	Operatio	n	00: Free runni	ng			
			01: Trigger, start free running DMA on request				
			10: Paced SRC, read single unit from source on request				
			11: Paced DEST, write single unit to destination on request				
	Read		Returns current state				
	Write		Updates current State				
	Hard res	et	0				

Table 45: DMA.CHAN[n].CONTROL

DMA.	CHAN[n].((n = 0 to		((n + 1) * 0x100)	+ 0x80			
Field	Bits	Size	Volatile Synopsis Type				
LIST_ENB	[7]	1	No	link list enable	RW		
	Operatio	n		er the DMA is part of a link or on normal DMA completion			
			0: Not part of,	or is the final element of, the	ne linked list		
			The DMAC asserts the channel complete interrupt if the associated interrupt is enabled.				
			1: An element within a list				
			The DMAC does not assert the channel complete and updates the memory mapped register from the linked list.				
	Read		Returns current state				
	Write		Updates current state				
	Hard res	et	Undefined				
SUB_OFFSET ^B	[8:15]	8	No	Subchannel offset	RW		
	Operatio	n	Minimum offset between acknowledgment of a request, and subsequent sampling of the same event				
	Read		Returns current state				
	Write		Updates curre	nt state			
	Hard res	et	0				

Table 45: DMA.CHAN[n].CONTROL

DMA.	CHAN[n].0 (n = 0 to		((n + 1) * 0x100)	+ 0x80				
Field	Bits	Size	Volatile Synopsis Type					
SRC_TYPE	[16:18]	3	No	Source data type	RW			
	Operatio	n	Defines the so	ource data structure:				
			000: Constant	source				
			001: Linear inc	crementing source				
			010: Linear de	crementing source				
			011: 2D incren	nenting source				
			100: 2D decre	menting source				
			101 to 111: Re	eserved				
	Read		Returns currer	nt state				
	Write		Updates current state					
	Hard res	et	0					
SRC_UNIT ^C	[19:21]	3	No	Source transfer unit	RW			
	Operatio	n	Defines the so	Defines the source transfer unit:				
			000: Byte					
			001: 2 bytes					
			010: 4 bytes					
			011: 8 bytes					
			100: 16 bytes					
			101: 32 bytes					
			110 to 111: Re	served				
	Read		Returns currer	nt state				
	Write		Updates curre	nt state				
	Hard res	et	0					

Table 45: DMA.CHAN[n].CONTROL

DMA.CHAN[n].CONTROL (n = 0 to 4)			((n + 1) * 0x100)	+ 0x80			
Field	Bits	Size	Volatile	Synopsis	Туре		
SRC_UPDATE	[22]	1	No	Disable source update	RW		
	Operation			er the addressing informati data structure is updated w ist			
			0: Source upd	ate enabled			
			1: Source upd	ate disabled			
	The information which may be updated include SRC_STRIDE, SRC_LENGTH and the 2D transfer.						
	Read		Returns current state				
	Write		Updates current state				
	Hard res	et	Undefined				
DST_TYPE	[24:26]	3	No	Destination data type	RW		
	Operatio	n	Defines the de	estination data structure			
			000: Constant	source			
			001: Linear inc	crementing source			
			010: Linear de	crementing source			
			011: 2D incren	nenting source			
			100: 2D decrementing source				
			101 to 111: Reserved				
	Read		Returns currer	nt state			
	Write		Updates curre	nt state			
	Hard res	et	0				

Table 45: DMA.CHAN[n].CONTROL

DMA.CHAN[n].CONTROL (n = 0 to 4)			OL	((n + 1) * 0x100)	+ 0x80		
Field	Bits	Size	Volatile	Synopsis	Туре		
DST_UNIT ^C	[27:29]	3	No	Destination transfer unit	RW		
	Operatio	n	Defines the de	estination transfer unit			
			000: byte				
			001: 2 bytes				
			010: 4 bytes				
			011: 8 bytes				
			100: 16 bytes				
			101: 32 bytes				
			110 to 111: Reserved				
	Read		Returns current state				
	Write		Updates current state				
	Hard res	et	0				
DST_UPDATE	[30]	1	No	Disable destination update	RW		
	Operatio	n		er the addressing informatition data structure is update a linked list			
			0: Destination	update enabled			
			The information which may be updated includes DAR DST_STRIDE, DST_LENGTH and the 2D transfer offset.				
			1: Destination update disabled				
	Read		Returns current state				
	Write		Updates curre	nt state			
	Hard res	et	Undefined				

Table 45: DMA.CHAN[n].CONTROL

DMA.CHAN[n].CONTROL (n = 0 to 4)			((n + 1) * 0x100) + 0x80		
Field	Bits	Size	Volatile	Synopsis	Туре
-	[2:6]	5	-	Reserved	
	[23]	1			
	[31]	1			
	Operatio	n	Reserved		
	Read		Undefined		
	Write		0		
	Hard res	et	Undefined		

Table 45: DMA.CHAN[n].CONTROL

- A. Channel 0: source and destination pacing are equivalent
- B. Channel 0: defined, channel 1 to 4 reserved
- C. Channel 0: source and destination units are the same, DST_UNIT must be equal to SRC_UNIT

DMA.CHAN[n].COUNT

 $\label{lem:defines} DMA.CHAN[N]. COUNT \ defines \ the \ number \ of \ bytes \ to \ be \ transferred \ before \ this \ DMA \ channel \ completes.$

DMA.CHAN[n].COUNT (n = 0 to 4)			NT	((n + 1) * 0x100) + 0x88		
Field	Bits	Size	Volatile	Synopsis	Туре	
BYTES	[0:31]	32	Yes	Transfer count	RW	
	Operatio	Operation Number of channel		umber of bytes remaining to be transferred on this nannel		
	Read		Returns currer	nt value		
	Write	Write Updat		nt value		
	Hard res	et	0			

Table 46: DMA.CHAN[n].COUNT

If alignment checks are available and enabled, then this must be an integer multiple of larger of the 2 data units as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel is disabled and no further transfers occur.

DMA.CHAN[n].SAR

DMA.CHAN[N].SAR defines the starting address of the data source.

DMA.CHAN[n].SAR (n = 0 to 4)			₹	((n + 1) * 0x100)	+ 0x90	
Field	Bits	Size	Volatile	Synopsis	Туре	
ADDRESS	[0:31]	32	Yes	Source address	RW	
	Operation		Indicates the address from which the next transfer unit is fetched			
				s incremented or decrement ceeds in accordance with the I.CONTROL.		
				register causes internal add h the source data transfer w		
	Read		Returns currer	nt value		
	Write	_	Updates curre	nt value		
	Hard res	et	0			

Table 47: DMA.CHAN[n].SAR

If alignment checks are available and enabled, then this must be an integer multiple of larger of the source data unit as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel will be disabled and no further transfers will occur.

If alignment checks are disabled, then the DMA channel will use the largest alignable data unit equal to or smaller than that defined in the DMA.CHAN[N].CONTROL register

DMA.CHAN[n].DAR

DMA.CHAN[N].DAR defines the starting address of the data destination

DMA.CHAN[n].DAR (n = 0 to 4)		((n + 1) * 0x100) + 0x98					
Field	Bits	Size	Volatile	Synopsis	Туре		
ADDRESS	[0:31]	32	Yes	Destination address	RW		
	Operation		Indicates the written	Indicates the address from which the next transfer unit is written			
				is incremented or decrei oceeds in accordance w N].CONTROL.			
				s register causes internal ith the destination data tr			
	Read		Returns curre	ent value			
	Write		Updates curr	ent value			
	Hard re	set	0				

Table 48: DMA.CHAN[n].DAR

If alignment checks are available and enabled, then this must be an integer multiple of destination data unit as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel will be disabled and no further transfers will occur.

If alignment checks are disabled, then the DMA channel will use the largest alignable data unit equal to or smaller than that defined in the DMA.CHAN[N].CONTROL register

DMA.CHAN[n].NEXT_PTR¹

 $\label{lem:define} DMA.CHAN[N]. NEXT_PTR \ defines \ the \ location \ of \ channel \ information \ used \ to \\ update \ the \ channel \ on \ completion \ of \ the \ current \ transfer \ if \ the \ appropriate \ control \ status \ is \ set.$

DMA.CHAN[n].NEXT_PTR (n = 1 to 4)			PTR	((n + 1) * 0x	100) + 0xA0		
Field	Bits	Size	Volatile	Volatile Synopsis Ty			
ADDRESS	[3:31]	29	Yes	Updates pointer value	RW		
	Operation	on	Pointer to ne	Pointer to next DMA operation in memory			
	Read		Returns curre	ent value			
	Write		Updates curr	ent value			
	Hard re	set	0				
-	[0:2]	3	-	Reserved	-		
	Operation	on	Reserved				
	Read		Undefined				
	Write		0				
	Hard re	set	Undefined				

Table 49: DMA.CHAN[n].NEXT_PTR

^{1.} This is only defined for channels which support linked lists.

DMA.CHAN[n].SRC_LENGTH¹

DMA.CHAN[N].SRC_LENGTH defines the length of a line for a 2D data structure.

DMA.CHAN[n].SRC_LENGTH (n = 1 to 4)			NGTH	((n + 1) * 0x100) + 0xA8			
Field	Bits	Size	Volatile	Volatile Synopsis Type			
COUNT	[0:15]	16	Yes	Transfer count	RW		
	Operation	า	Length of a line	e in a source 2D data type			
	Read		Returns current value				
	Write		Updates current value				
	Hard rese	et	0				
-	[16:31]	16	-	Reserved	-		
	Operation	า	Reserved				
	Read		Undefined				
	Write		0				
	Hard rese	et	Undefined				

Table 50: DMA.CHAN[n].SRC_LENGTH

If alignment checks are available and enabled, then this must be an integer multiple of the source unit as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel will be disabled and no further transfers will occur.

If alignment is not enabled, the DMAC module is responsible for selecting the largest datum size appropriate for the address and length values which is equal to or smaller than that defined in the DMA.CHAN[N].CONTROL register.

- 环

^{1.} This is only defined for channels which support 2D transfer structures

DMA.CHAN[n].SRC_STRIDE¹

DMA.CHAN[N].SRC_STRIDE defines the amount to increment the address between lines.

DMA.CHAN[n].SRC_STRIDE, (n = 1 to 4)		((n + 1) * 0x100) + 0xB0						
Field	Bits	Size	Volatile	Volatile Synopsis Type				
BYTES	[0:15]	16	Yes	Source stride	RW			
	Operatio	n	Stride between	Stride between lines in source 2D data structures				
	Read		Returns curre	ent value				
	Write		Updates curr	ent value				
	Hard res	et	0					
-	[16:31]	16	-	Reserved	-			
	Operatio	n	Reserved					
	Read		Undefined					
	Write		0					
	Hard res	et	Undefined					

Table 51: DMA.CHAN[n].SRC_STRIDE

If alignment checks are available and enabled, then this must be an integer multiple of source unit as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel will be disabled and no further transfers will occur.

If alignment is not enabled, the DMA module is responsible for selecting the largest datum size appropriate for the address and length values which is equal to or smaller than that defined in the DMA.CHAN[N].CONTROL register

^{1.} This is only defined for channels which support 2D transfer structures

DMA.CHAN[n].DST_LENGTH1

DMA.CHAN[N].DST_LENGTH defines the length of a line for a 2D data structure.

DMA.CHAN[n].DST_LENGTH (n = 1 to 4)			NGTH	((n + 1) * 0x100)	+ 0xB8		
Field	Bits	Size	Volatile	Volatile Synopsis Type			
COUNT	[0:15]	16	Yes	Transfer count	RW		
	Operation	า	Length of a line	e in a destination 2D data ty	pe		
	Read		Returns curren	nt value			
	Write		Updates curre	nt value			
	Hard rese	et	0				
-	[16:31]	16	-	Reserved	-		
	Operation	า	Reserved				
	Read		Undefined				
	Write		0				
	Hard rese	et	Undefined				

Table 52: DMA.CHAN[n].DST_LENGTH

If alignment checks are available and enabled, then this must be an integer multiple of the destination data unit as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel will be disabled and no further transfers will occur.

If alignment is not enabled, the DMAC module is responsible for selecting the largest datum size appropriate for the address and length values which is equal to or smaller than that defined in the DMA.CHAN[N].CONTROL register.

- 77

^{1.} This is only defined for channels which support 2D transfer structures

DMA.CHAN[n].DST_STRIDE1

DMA.CHAN[N].DST_STRIDE defines the amount to increment or decrement the address between lines.

DMA.CHAN[n].DST_STRIDE (n = 1 to 4)			RIDE	((n + 1) * 0x100) + 0xC0			
Field	Bits	Size	Volatile	Volatile Synopsis Type			
BYTES	[0:15]	16	Yes	Destination stride	RW		
	Operation	n	Stride betweer	Stride between lines in destination 2D structures			
	Read		Returns currer	nt value			
	Write		Updates current value				
	Hard res	et	0				
-	[16:31]	16	-	Reserved	-		
	Operation	n	Reserved				
	Read		Undefined				
	Write		0				
	Hard res	et	Undefined				

Table 53: DMA.CHAN[n].DST_STRIDE

If alignment checks are available and enabled, then this must be an integer multiple of the destination unit as defined in the DMA.CHAN[N].CONTROL register. If an alignment error occurs, this channel will be disabled and no further transfers will occur.

If alignment is not enabled, the DMAC module is responsible for selecting the largest datum size appropriate for the address and length values which is equal to or smaller than that defined in the DMA.CHAN[N].CONTROL register.

^{1.} This is only defined for channels which support 2D transfer structures

Parallel input/ output (PIO)

The ST40 has 24 bits of parallel input/output (PIO), configured in three 8-bit groups (ports). Each bit is programmable as an output, an input, a bidirectional pin, or as an alternate function output pin. The alternate function connects signals from device peripherals to the pins of the device through the PIO.

Each 8-bit group can also be compared against a register and an interrupt generated when the value is not equal.

Output drivers for the PIO pins, both in PIO mode and the alternate function mode, can be programmed to be push-pull, open drain, or weak pull-up. The weak pull-up configuration avoids the need for pull-up resistors on unused pins while still allowing them to be driven for test purposes.

Each of the 8-bit groups operates as described in the following section.

5.1 PIO ports 0 to 2

Each of the 8 bits of a PIO port has a corresponding bit in the PIO registers associated with each port. These registers hold:

- output data for the port (POUT),
- the input data read from the pin (PIN),
- PIO bit configuration registers (PC0, PC1 and PC2),
- the 2 input compare function registers (PCOMP and PMASK).

Table 54 summarizes the PIO registers.

Register name (n = 0 to 2)	Description	Туре	Address offset	Size	Reset value
PIO.POUT[N]	Output data, see Table 55 on page 109	RW	0x1B010000 + (0x10000 * n)	32	0
PIO.PIN[N]	Input data, see Table 58 on page 112	RO	0x1B010010 + (0x10000 * n)	32	0
PIO.PC0[N]	Configuration, see Table 59 on page 113	RW	0x1B010020 + (0x10000 * n)	32	0
PIO.PC1[N]	Configuration, see Table 60 on page 114	RW	0x1B010030 + (0x10000 * n)	32	0
PIO.PC2[N]	Configuration, see Table 61 on page 115	RW	0x1B010040 + (0x10000 * n)	32	0
PIO.PCOMP[N]	Compare data, see Table 63 on page 117	RW	0x1B010050 + (0x10000 * n)	32	0
PIO.PMASK[N]	Compare mask, see Table 64 on page 117	RW	0x1B010060 + (0x10000 * n)	32	0

Table 54: PIO registers

All of the registers, except the PIO.PIN registers, are each associated with 2 additional write-only pseudoregisters which enable bits to be set or cleared individually. These pseudoregisters are described in *Section 5.2.5: Pseudoregisters on page 118.* All registers should be accessed only as aligned 32-bit loads and stores. The result of any other type of access is undefined.

5.2 Register descriptions

5.2.1 Output registers

The 3 PIO.POUT registers are used to specify the data to be output from the port.

PIO.POUT[n] (n = 0 to 2)				0x1B010000 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
POUT	[0:7]	8	No	Output data for the port	RW	
	Operation	on	Specifies the or	utput of the port[n]		
	Read		Returns the cur	rent value		
	Write		0: De-assert pir	n[i] of port[n]		
			1: Assert pin[i]	of port[n]		
			If bit[i] is writter	n, pin[i] is affected.		
	Hard res	set	0x00			
	[8:31]	24	-	Reserved		
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard res	set	Undefined			

Table 55: PIO.POUT[n]

The 3 PIO.SET_POUT pseudoregisters are used to set individual bits in the PIO.POUT Registers.

PIO.SET_POUT[n] (n = 0 to 2)			n]	0x1B010004 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[0:7]	8	No	Sets output data for the port	WO	
	Operation	on	Sets the output	data for port[n]		
	Read Undefined					
	Write		0: Leave bit[i] unchanged 1: Set bit[i] in the POUT[N] register			
	Hard res	set	-			
	[8:31]	24	-	Reserved		
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard res	set	Undefined			

Table 56: PIO.SET_POUT[n]

The 3 PIO.CLEAR_POUT[N] pseudoregisters are used to clear individual bits in the $\mbox{\sc Pout}.$

PIO.CLEAR_POUT[n] (n = 0 to 2)			[n]	0x1B010008 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[0:7]	8	No	Clears output data for the port	WO	
	Operation	on	Clears the outp	ut data for port[n]		
	Read		Undefined			
	Write		1: Clear bit[i] in the corresponding PIO.POUT[N] register			
	0: Leave bit[i] u		0: Leave bit[i] u	unchanged		
	Hard res	set	-			
	[8:31]	24	-	Reserved		
	Operation	on	Reserved			
	Read Write		Undefined			
			0			
	Hard res	set	Undefined			

Table 57: PIO.CLEAR_POUT[n]

5.2.2 Input registers

The data read from any of these 3 registers will give the logic level present on an input pin of the associated port at the start of the read cycle to the register. The read data will be the last value written to the register regardless of the pin configuration selected

PIO.PIN[n] (n = 0 to 2)				0x1B010010 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
PIN	[0:7]	8	Yes	Input data from the port	RO	
	Operation	on	Indicates the lo	ogic level present on the input pins		
	Read		bit[i] = logic lev	el of pin[i] of port[n]		
	Write		Ignored			
	Hard re	set	0x00			
	[8:31]	24	-	Reserved		
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard re	set	Undefined			

Table 58: PIO.PIN[n]

5.2.3 Configuration registers

There are 3 configuration registers for each of the 3 ports (PIO.PC0, PIO.PC1 and PIO.PC2) which are used to configure each of the PIO port bits as an input, output, bidirectional, or alternate function pin (if any), with options for the output driver configuration.

PIO.PC0[n] (n = 0 to 2)				0x1B010020 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
PC0	[0:7]	8	No	Configuration register 0	RW	
	Operation	on	Specifies the co	onfiguration of the port[n]		
	Read		Returns the cu	rrent value		
	Write		See Table 62 o	on page 116		
	Hard re	set	0x00			
	[8:31]	24	-	Reserved		
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard re	set	Undefined			

Table 59: PIO.PC0[n]

PIO.PC1[n] (n = 0 to 2)				0x1B010030 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
PC1	[0:7]	8	No	Configuration register 1	RW	
	Operati	on	Specifies the co	onfiguration of the port[n]		
	Read		Returns the current value			
	Write	Write See Table 62		on page 116		
	Hard re	set	0x00			
	[8:31]	24	-	Reserved		
	Operati	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard re	eset	Undefined			

Table 60: PIO.PC1[n]

PIO.PC2[n] (n = 0 to 2)				0x1B010040 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
PC2	[0:7]	8	No	Configuration register 2	RW	
	Operati	on	Specifies the c	onfiguration of the port[n]		
	Read		Return the curr	rent value.		
	Write		See Table 62 o	on page 116		
	Hard re	set	0x00			
	[8:31]	24	-	Reserved		
	Operati	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard re	set	Undefined			

Table 61: PIO.PC2[n]

The selections made by the bits in registers PIO.PC0, PIO.PC1 and PIO.PC2 for each I/O bit in each port are given in *Table 62* below.

PIO bit configuration	PIO bit output	PC2	PC1	PC0
Bidirectional	Weak pull-up	0	0	0
Bidirectional	Open drain	0	0	1
Output	Push-pull	0	1	0
Bidirectional	Open drain	0	1	1
Input	Hi-Z	1	0	0
Input	Hi-Z	1	0	1
Alternate function output	Push-pull	1	1	0
Alternate function bidirectional	Open drain	1	1	1

Table 62: PIO port bits configuration

5.2.4 PIO input compare and compare mask registers

The input compare register (PCOMP) holds the value to which the input data from the PIO ports pins will be compared. If any of the input bits are different from the corresponding bits in the PCOMP register and the corresponding bit position in the PIO Compare mask register (PMASK) is set to 1, then the internal interrupt signal for the port will be set to 1.

The compare function is sensitive to changes in levels on the pins and so the change in state on the input pin must be greater in duration than the interrupt response time for the compare to be seen as a valid interrupt by an interrupt service routine.

Note: The compare function is operational in all configurations for a PIO bit including the alternate function modes.

PIO.PCOMP[n] (n = 0 to 2)				0x1B010050 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
PCOMP	[0:7]	8	Yes	Input data from the port	RO	
	Operation	on	Indicates the lo	gic level present on the inpu	ıt pins	
	Read		bit[i] = logic lev	el of pin[i] of port[n]		
	Write		Ignored			
	Hard re	set	0x00			
	[8:31]	24	-	Reserved		
	Operation	on	Reserved			
	Read		Undefined			
	Write		0			
	Hard re	set	Undefined			

Table 63: PIO.PCOMP[n]

PIO.PMASK[n] (n = 0 to 2)				0x1B010060 + (0x10000 * n)		
Field	Bits	Size	Volatile	Synopsis	Туре	
PMask	[0:7]	8	Yes	Input data from the port	RO	
	Operati	on	Indicates the logic level present on the input pins			
	Read		bit[i] = logic lev	el of pin[i] of port[n]		
	Write		Ignored			
	Hard re	set	0x00			

Table 64: PIO.PMASK[n]

PIO.PMASK[n] (n = 0 to 2)				0x1B010060 + (0x10000 * n)	
Field	Bits	Size	Volatile	Synopsis	Туре
	[8:31]	24	-	Reserved	
	Operati	on	Reserved		
	Read		Undefined		
	Write		0		
	Hard re	set	Undefined		

Table 64: PIO.PMASK[n]

5.2.5 Pseudoregisters

Except for the PIO. PIN[N] register, all the PIO registers are each associated with a pair of pseudoregisters, at separate addresses, which allow individual bits within the register to be set or cleared.

These pseudoregisters are all of size 32-bits and write-only.

The PIO.SET pseudoregister allows bits to be set individually. Writing a 1 in this register sets the corresponding bit in the associated register, a 0 leaves the bit unchanged. The PIO.SET **register is offset 4 bytes from its associated register.**

The PIO.CLEAR pseudoregister allows bits to be cleared individually. Writing a 1 in this register resets the corresponding bit in the associated register, a 0 leaves the bit unchanged. The PIO.CLEAR register's address is offset 8 bytes from its associated register's address. These registers may only be accessed with aligned 32-bit loads and stores. The result of other accesses is undefined.

Register name (n = 0 to 2)	Description	Address offset	Туре	Size
PIO.SET_POUT[N]	Set output data bits	0x1B010004 + (0x10000 * n)	WO	32
PIO.CLEAR_POUT[N]	Clear output data bits	0x1B010008 + (0x10000 * n)	WO	32
PIO.SET_PC0[N]	Set configuration bits	0x1B010024 + (0x10000 * n)	WO	32
PIO.CLEAR_PC0[N]	Clear configuration bits	0x1B010028 + (0x10000 * n)	WO	32
PIO.SET_PC1[N]	Set configuration bits	0x1B010034 + (0x10000 * n)	WO	32
PIO.CLEAR_PC1[N]	Clear configuration bits	0x1B010038 + (0x10000 * n)	WO	32
PIO.SET_PC2[N]	Set configuration bits	0x1B010044 + (0x10000 * n)	WO	32
PIO.CLEAR_PC2[N]	Clear configuration bits	0x1B010048 + (0x10000 * n)	WO	32
PIO.SET_PCOMP[N]	Set compare data bits	0x1B010054 + (0x10000 * n)	WO	32
PIO.CLEAR_PCOMP[N]	Clear compare data bits	0x1B010058 + (0x10000 * n)	WO	32
PIO.SET_PMASK[N]	Set compare mask bits	0x1B010064 + (0x10000 * n)	WO	32
PIO.CLEAR_PMASK[N]	Clear compare mask bits	0x1B010068 + (0x10000 * n)	WO	32

Table 65: PIO pseudoregisters

Clock and power management

6

6.1 Overview

Each ST40 system contains a clock controller macro which is used to control the clocking, power-down and watchdog timers in the system.

These are organized as below.

- One or more clock generators (CPG/CLOCKGEN) each of which supports up to ten clock domains derived from two independently controllable PLLs.
- A power management unit (PMU) used to control the power and clocking status for on-chip modules or systems which may be used to disable clocks to specific modules.
- A watchdog timer (WDT) which triggers specific functions following periods of inactivity such as frequency resynchonizations or soft reset conditions.

The first clock controller block, referred to as CLOCKGEN A, controls the PMU and WDT features in addition to its own clock domains. The clocks associated with this block are labelled A11 though A15, A2M and A21 through A25 respectively.

Further CLOCKGEN blocks, if present, are referred to as CLOCKGEN B,C,D and so on. Each block has control clock domains labelled from 11 through 25, as for CLOCKGEN A. The blocks may also be allocated some PMU functionality.

This chapter discusses the general organization and architecture common to all ST40 systems. However, specific details may vary on some platforms, and the information presented here may be superseded by the *product datasheet*.

Details of a specific system's clock and power management organization are available in the *product datasheet*.

6.2 Address map

The address map is divided into a number of regions, a single CPG region which is always associated with CLOCKGEN A, and one or more CLKGEN regions associated with each CLOCKGEN bank. These are labeled CLKGEN[n] where n refers to the bank number A. B. C and so on.

A single bank of four registers controls the CPG block with a separate register bank for each CLOCKGEN block. The base addresses for each register bank is shown in the datasheet.

Some instances of a CLOCKGEN block may not use the full functionality available, so some registers may be reserved and some functions restricted. See the *product datasheet* for details.

6.2.1 CPG bank

CPG bank registers are mapped in the ST40 CPU core area starting at the base address given in the system address map.

Name	Description	Туре	Address offset	Access size
CPG.FRQCR	Frequency control register, see Section 6.3.4.1	RW	0x00	16
CPG.STBCR	Standby control register, see Section 6.5.4.1	RW	0x04	8
CPG.WTCNT	Watchdog timer counter, see Section 6.4.3.1	RW	0x08	R:8, W:16
CPG.WTCSR	Watchdog timer status register, see Section 6.4.3.2	RW	0x0C	R:8, W:16
CPG.STBCR2	Standby control register 2, see Section 6.5.4.2	RW	0x10	8
CPG.FRQCR 2	Frequency control register 2 is not implemented on ST40 devices.	-	0xC0	16

Table 66: CPGL bank registers

Address map 123

These registers except for CPG.FRQCR2 are common to all ST40 and SH-4 variants produced by Hitachi and ST and control features with a direct impact on the CPU such as the CPU clock frequency, and system watchdog behavior.

6.2.2 CLKGEN bank

Each CLOCKGEN block has a dedicated register bank to control its function. If there is more than one CLOCKGEN block in an ST40 implementation then each block and registers functions independently.

Each register is offset from the base address of the CLOCKGEN bank given in the system address map.

Register name where n = [A:Z]	Description	Туре	Address offset bank [N]	Access size
CLKGEN[N].PLL1CR1	PLL1 control reg 1, see Section 6.3.4.2	Other	0x00	32
CLKGEN[N].PLL1CR2	PLL1 control reg2, see Section 6.3.4.3	RW	0x08	32
CLKGEN[N].PLL2CR	PLL2 control register, see Section 6.3.4.4	RW	0x10	32
CLKGEN[N].STBREQCR	Standby module req, see Section 6.5.4.1	RW	0x18	32
CLKGEN[N].STBREQCR_SET	Set Standby module req, see Section 6.5.4.3	RW	0x20	32
CLKGEN[N].STBREQCR_CLR	Clear Standby module req, see Section 6.5.4.3	RW	0x28	32
CLKGEN[N].STBACKCR	Standby module ack, see Section 6.5.4.4	RW	0x30	32
CLKGEN[N].CLK4CR	Clk4 control register selects the proper ratio for pll1_clk4, see Section 6.3.4.5	RW	0x38	32

Table 67: CLOCKGEN bank registers

Register name where n = [A:Z]	Description	Туре	Address offset bank [N]	Access size
CLKGEN[N].CPG_BYPASS	when 1 set by-pass of ratio hardware filtering inside CLOCKGEN, see Section 6.3.4.6	RW	0x40	32
CLKGEN[N].PLL2_MUXCR	Pll2_mux_clk control reg Selects the proper ratio for pll2_mux_clk, see Section 6.3.4.7	RW	0x48	32
CLKGEN[N].CLK1CR	Clk1 control register selects the proper ratio for pll1_clk1 when CPG_BYPASS is set to 1, see Section 6.3.4.8	RW	0x50	32
CLKGEN[N].CLK2CR	Clk2 control register selects the proper ratio for pll1_clk2 when CPG_BYPASS is set to 1, see Section 6.3.4.9	RW	0x58	32
CLKGEN[N].CLK3CR	Clk3 control register selects the proper ratio for pll1_clk3 when CPG_BYPASS is set to 1, see Section 6.3.4.10	RW	0x60	32
CLKGEN[N].CLK_SELCR	External mux clock selection Control reg. (Control to CLOCKCON) see Section 6.3.4.11	RW	0x68	32

Table 67: CLOCKGEN bank registers

6.3 Clock functionality

6.3.1 Internal organization

The internal organization of each clock controller is shown in *Figure 14*.

Figure 13: CLOCKGEN architecture

If two or more clock controllers are implemented, the area controlled by the CPG registers is only available on CLOCKGEN A. *Figure 14* shows how they are organized.

Figure 14: ST40 clock architecture

The correspondence between clock domains and peripherals is tabulated in the *product datasheet*.

6.3.2 PLL1 control

Diagram

Figure 15: Configuration and control of PLL1 using the PLL1CR1 and PLL1CR2 registers

Introduction

The frequency and behavior of clocks associated with PLL1 may be controlled using three methods:

- · by enabling or disabling PLL1 and bypassing the PLL function,
- by changing the frequency division ratio of each clock domain,
- · by changing the configuration of PLL1.

To ensure that a stable clock is delivered whilst a change is occurring, the PLL control logic should follow only those state transactions shown *Figure 16*. You should take care when changing PLL frequencies or relative clock ratios that:

- · the PLL is stable before re-enabling clocks,
- there is no communications traffic between semi-synchronous domains when changing relative clock ratios.

The PLL frequency is defined by the contents of the MDIV, NDIV and PDIV in the CLKGEN.PLL1CR1 register. For details of allowable values refer to the datasheet.

Allowable transitions

Figure 16: CLOCKGEN A PLL1 valid states

States labelled sh_xxx are available for CLOCKGEN A only,

States labeled st_xxx are available for all CLOCKGEN macros.

State definitions

Register fields	sh_run slow	sh_run fast	st_run slow	st_run fast	st_leaving slow	sh2st slow	sh2st fast	st2sh slow	st2sh fast
PLL1CR1. PLLOUTEN	_A	1	-	1	0	-	1	-	1
PLL1CR2. STBPLLEN	-	-	0	1	1	0	1	0	1
PLL1CR2. STBPLLENSEL	0	0	1	1	1	1	1	1	1
PLL1CR2. STFASTSEL	-	-	0	1	0	0	1	0	1
PLL1CR2. STBMODE	0	0	1	1	1	0	0	1	1
(CPGL)FRQCR. PLL1EN	0	1	-	-	-	0	1	0	1
CPG_BYPASS	0	0	-	-	0	0	0	0	0

Table 68: Allowed configurations for CLOCKGEN A and CPGL.FRQCR registers

A. - don't care

Enabling and disabling PLL1

Software may enable or disable the CLOCKGEN A PLL1 by changing the clock source from PLL1 to the external xosc clock directly. The internal clock is then preset to the xosc frequency/2.

This is achieved by placing the CLOCKGEN PLL in either the SH_RUN_SLOW or ST_RUN_SLOW state.

Changing PLL1 divide ratios (clk1 to 3)

The frequency of a CLOCKGEN output clock may be changed by updating its divide ratio.

For clocks 11 through 13, CLOCKGEN ensures a safe transition between the two frequencies, whilst for clock 14, the user is responsible for stopping the clock before modifying the ratios.

Whilst the transition is guaranteed for clocks 11 through 13, the user must ensure the target module functions correctly during this period. Some modules such as UARTs require stable frequencies during operation. Others are associated with more than one clock and are unable to function correctly if the ratio between those clocks changes whilst the module is active.

Restrictions may apply. As an example, in some ST40 systems, the CPU has direct dependencies on two clock domains, I-Clk and P-Clk. Changes in relative frequency between these clocks whilst the CPU is active may lead to undefined behavior. For the ST40 CPU, I-Clk must be an integer multiple of the P-Clk frequency. The maximum supported frequencies are in the *product datasheet*.

Two methods are supported for changing PLL1 divide ratios.

CPGL mode (allowed only for CLOCKGEN A clocks)

If CLKGEN.CPG_BYPASS is inactive (set to 0), CLOCKGEN A is in CPGL mode. The frequency of clocks 11 through 13 may be changed by reprogramming CPG.FRQCR. CPGL mode is the default for CLOCKGEN A clocks.

ST mode

If CLKGEN.CPG_BYPASS is active (set to 1), the CLOCKGEN macro is in ST mode. The frequency of clocks 11 through 13 may be changed by programming CLKGEN.CLK1CR, CLKGEN.CLK2CR and CLKGEN.CLK3CR respectively.

Changing the PLL1 divide ratio for clock 14

The frequency of clock 14 may be changed by updating the CLKGEN.CLK4CR register. The following procedure ensures safe operation.

- 1 Stop clock 14 by asserting (setting to 1) CLKGEN.CLK4CR.CLKSTOP.
- 2 Change the field ratio of CLKGEN.CLK4CR.
- 3 Restart clock 14 by de-asserting (setting to 0) CLKGEN.CLK4CR.CLKSTOP.

Changing PLL1 lock frequency

The ST40 CLOCKGEN macro includes a highly flexible PLL which may be programmed to output a range of frequencies. This is achieved by updating the MDIV, NDIV and PDIV fields of CLKGEN.PLL1CR1. However whilst the PLL is locking-on the new frequency, the clock outputted by the macro is unstable. Software should ensure there is no activity in parts of the system associated with the PLL. There are two methods of handling this. You can either put the system to

sleep, and use the watchdog to restart the system when the PLL clocks are stable, or bypass the PLL and use an external clock during the period of instability.

Examples of these procedures are described below.

SH procedure: CLOCKGENA only

1 Move CLOCKGEN to state sh_run_slow.

This action disables the PLL1 and sets the CLOCKGEN clock source to the external crystal (27 MHz).

Note: the maximum clock rate is half of the input clock rate (see Figure 14 and Figure 15).

2 Update PLL1 using the MDIV, NDIV and PDIV fields of CLKGEN.PLL1CR1.

Only values defined in the datasheet are valid, other values may lead to undefined behavior.

3 Program the WDT to provide the specified oscillation stabilization time before timing out.

The WDT should have the following settings:

CPG.WTCSR register: TME bit = 0, WDT stopped,

CPG.WTCSR register: CKS2 to CKS0 bits, WDT count clock division ratio,

CPG.WTCNT register: initial counter value,

CPG.WTCNT register: initial counter value.

4 Move CLOCKGEN to STATE sh_run_fast.

This puts the CPU in a suspend state until the WDT countdown completes, at which point the PLL is re-enabled and clocks 11 through 14 are restarted using the new PLL frequency.

ST procedure

1 Move CLOCKGEN to state st_run_slow.

This action disables PLL1 and selects the external crystal clock as the input to the system bypassing PLL1. The internal clock frequency is a divisor of half the external clock ratio as determined by the clock 11 through 14 divide ratios.

2 Update PLL1 using the MDIV, NDIV and PDIV fields of CLKGEN.PLL1CR1.

Only values defined in the datasheet are valid, other values may lead to undefined behavior.

3 Move CLOCKGEN to state st_leaving_slow.

PLL1 is enabled, but is still bypassed.

4 Wait for PLL1CR1.LOCK to reach 1.

This indicates the PLL has stabilized.

5 Move CLOCKGEN to state st_run_fast.

The clock source for clocks 11 through 14 to the PLL is changed rather than the external x-tal clock.

Note: no clocks are stopped using the ST procedure.

PLL frequency calculation

Details of the relationship between CLKGEN.PLL1CR1.[MDIV, NDIV, PDIV] and the PLL frequency are available in the *product datasheet*.

6.3.3 Configuring PLL2

Introduction

Figure 17: Configuration and control of PLL2 using the PLL2CR registers

There are two ways of changing the frequency of clocks associated with the PLL2 clock:

- enabling or disabling PLL2,
- · changing the configuration of PLL2.

The procedures are discussed below, for details on specific PLL settings refer to the datasheet for that device.

Procedure to enable and disable PLL2

CLOCKGEN PLL2 is disabled by writing 0 to CLKGEN.PLL2CR.PLLOUTEN and CLKGEN.PLL2CR.LOCKSELECT.

It is enabled by writing 1 to CLKGEN.PLL2CR.PLLOUTEN and CLKGEN.PLL2CR.LOCKSELECT.

In some systems it may be possible to bypass PLL2, see datasheet for details.

Changing the frequency of PLL2

The PLL2 derived clocks are generated by CLOCKGEN using PLL2 which is a programmable PLL.

PLL2 takes the input frequency from the external qx_xtalout27 clock, which runs at 27 MHz. It is possible to change the output frequency of this PLL by changing the value of its MDIV, NDIV and PDIV. This can be achieved programming the corresponding fields of the configuration register PLL2CR.

To change the PLL2 output frequency to a value different from at start up, use the following procedure.

- 1 Write 0 in the PLL2CR register fields PLLOUTEN and LOCKSELECT. This allows CLOCKGEN to stop the PLL2 clockout (PLL2 clock = 0).
- 2 Disable PLL2 by setting PLL2CR.PLLPOWERON to 0.
- 3 Change the division and multiply ratios of PLL2 by updating the values of the MDIV, NDIV and PDIV fields of the PLL2CR register, as defined by the datasheet.
- 4 Restart PLL2 by setting PLL2CR.PLLPOWERON to 1.
- 5 Set the LOCKSELECT field of PLL2CR to 1 to enable output of the PLL2 clock when the lock is achieved.

This is the recommended way to enable the output of the PLL clock. However alternatively you can poll CLKGEN.PLL2CR.LCK until active and then select the PLL2 clockout by setting CLKGEN.PLL2CR.PLLOUTEN to 1.

6.3.4 Register description

Frequency control register 1 (CPG.FRQCR)

The clock frequency division ratios are controlled by the FRQCR register in the CPG bank.

	CPG.FR	QCR		0x00	
Field	Bits	Size	Volatile	Synopsis	Туре
RATIO	[0:8]	9	No	Clock frequency division ratios	RW
	Operation	n	PLL circuit Refer to th	he frequency ratios with respect to the On 1 output frequency e <i>product datasheet</i> for details alid values may lead to undefined behavio	
	Read	Read		rrent value	
	Write		Updates co	urrent value	
	Hard rese	et	Set by MD	0,MD1 and MD2 pins	
			See produ	ct datasheet for details	
	9	1	No	Reserved	RW
	Operation	า			
	Read		Returns cu	rrent value	
	Write		Updates co	urrent value	
	Hard rese	et	1		

Table 69: CPG.FRQCR

	CPG.FR	QCR		0x00		
Field	Bits	Size	Volatile	Synopsis	Туре	
PLL1EN	10	1	No	PLL Circuit 1 enable	RW	
	Operation	า	Specifies v	vhether PLL 1 is used		
	Read		Returns cu	rrent value		
	Write		0: PLL 1 is	not used		
			1: PLL1 is	used		
	Hard rese	et	1			
	11	1	No	Reserved	RW	
	Operation	า				
	Read		Returns cu	rrent value		
	Write		Updates co	urrent value		
	Hard rese	et	1			
-	[12:15]	4	-	Reserved	Res	
	Operation	า	Reserved			
	Read		Returns 0			
	Write		Ignored			
	Hard rese	et	0			

Table 69: CPG.FRQCR

Valid FRQCR values and the associated ratios are defined for each product and listed in the *product datasheet*.

CLKGEN.PLL1CR1

This register defines the behavior of PLL 1.

	CKGEN.P			0x00			
Field	Bits	Size	Volatile	Synopsis	Туре		
MDIV	[0:7]	8	-	Pre-divider	Other		
	Operation	n	Parameter	for programming PLL1			
	Read		Returns cu	rrent value			
	Write		Updates co	urrent value			
			Note: this register has a write lock ^A				
	m		Only certain values, as defined in the product datasheet, may be written. All other values are reserved and give undefined behavior.				
	Hard reset		See datash	neet			
NDIV	[8:15]	8	-	Feedback divider	Other		
	Operation	n	Parameter	for programming PLL1			
	Read		Returns cu	rrent value			
	Write		Updates cu	urrent value			
			Note: this i	register has a write lock ^A			
			may be wr	tain values, as defined in the product datasheet, written. All other values are reserved and give od behavior.			
	Hard res	et	See the pr	he product datasheet			

Table 70: CLOCKGEN.PLL1CR1

CLOCKGEN.PLL1CR1 PLL1 control Register				0x00			
Field	Bits	Size	Volatile	Synopsis	Туре		
PDIV	[16:18]	3	-	Post divider	Other		
	Operation	n	Parameter	for programming PLL1			
	Read		Returns cu	rrent value			
	Write		Updates cu	urrent value			
			Note: this i	register has a write lock ^A			
			may be wr	Only certain values, as defined in the product datasheet, may be written. All other values are reserved and give undefined behavior.			
	Hard res	et	See datash	neet			
SETUP	[19:27]	9	-	Loop characteristics	Other		
	Operation	n	Parameter	for programming PLL1			
	Read		Returns current value				
	Write		Updates co	urrent value			
			Note: this i	register has a write lock ^A			
			-	in values, as defined in the product da itten. All other values are reserved and behavior.			
	Hard res	et	See datash	neet			
POWERON	28	1	-	PLL1 Power On	RO		
	Operation	n	Specifies to	he power setting of PLL1	•		
	Read		1: power o	n			
			0: power o	ff			
	Write		Ignored				
	Hard res	et	See the pr	oduct datasheet			

Table 70: CLOCKGEN.PLL1CR1

	CKGEN.P	_		0x00			
Field	Bits	Size	Volatile	Synopsis	Туре		
OUTENABLE	29	1	-	Enable output of PLL clock	Other		
	Operation	n	Allows s/w	control of PLL1 output clock			
	Read		Returns cu	rrent value			
	Write		-	urrent value			
			1: PLL1 ou	it Enabled			
			0: PLL1 ou	it not Enabled			
			Note: 1	Note: this register has a write lock			
	Hard res	et	1				
LOCK	30	1	Yes	PLL Circuit 1 Lock achieved	RO		
	Operation	n	Specifies whether PLL 1 output has achieved lock and the output is stable				
	Read		0: PLL 1 Lo	ock not achieved			
			1: PLL1 is	Locked			
	Write		Updates co	urrent value.			
			Note: 1	this register has a write lock ^A			
	Hard res	et	1				
-	31	1	-	Reserved	Res		
	Operation	n	Reserved				
	Read		Returns 0				
	Write		Ignored				
	Hard res	et	0				

Table 70: CLOCKGEN.PLL1CR1

A. CLOCKGEN.PLL1CR1 is writable if (PLL1CR2.STBPLLENSEL = 0 and FRQCR.PLL1EN = 0) or (PLL1CR2.STBPLLENSEL= 1 and PLL1CR2.STBPLLEN = 0)

CLKGEN.PLL1CR2

This register defines the behavior of PLL 1.

CLOCKGEN.PLL1CR2 PLL1 control Register			-	0x08				
Field	Bits Size Volatile			Synopsis	Туре			
STBPLLEN	0	1	-	PLL1 enable	RW			
	Operation	n	Figure 15	Alternative enable to the FRQCR.PLL1EN field See Figure 15 This field specifies whether PLL1 is enabled when				
			STBPLLENSEL is 1, otherwise it has no effect					
	Read		Returns current value					
	Write		1: enabled					
	0: not er clock			oled AND selected the external-clock a	as input			
	Hard rese	et	0					

Table 71: CLOCKGEN.PLL1CR2

CLOCKGEN.PLL1CR2 PLL1 control Register			="	80x0			
Field	Bits	Size	Volatile	Synopsis Type			
STBPLLENS	1	1	-	PLL1 enable selector.	RW		
EL	Operation	า	Selects if F STBPLLEN See <i>Figure</i>		r		
	Read		Returns cu	rrent value			
	Write		Updates cu	urrent value			
			0: FRQCR.PLL1EN specifies enabling ^A				
			1: STBPLL	EN specifies enabling			
	Hard reset		0				
STBFASTSE	2	1	-	Clock selector	RW		
	Operation	า		main clock is set to PLL1_CLOCK (fasock from the xtal.	st) or to		
			The switch	is synchronized			
				Note: Selection take place only if STBMODE field is set to 1 see Figure 15			
	Read		Returns cu	rrent value			
	Write		Updates cu	urrent value			
				clock equal to PLL1 clock (fast clock)			
			0: 2*main_	clock equal to external clock			
	Hard rese	et	0				

Table 71: CLOCKGEN.PLL1CR2

	CLOCKGEN.PLL1CR2 PLL1 control Register			0x08			
Field	Bits	Size	Volatile	Synopsis	Туре		
STBMODE	3	1	-	Clock selector	RW		
	Operation	-		main_clock is controlled by TBFASTSEL or FRQCR.PLL1EN see			
	Read		Returns current value				
	Write		Updates current value				
			1: control given to PLL1CR.STBFASTSET				
			0: control g	given to FRQCR.PLL1EN			
	Hard rese	et	0				
-	[4:31]	29	-	Reserved	Res		
	Operation	า	Reserved				
	Read	Read Return					
	Write		Ignored				
	Hard rese	et	0				

Table 71: CLOCKGEN.PLL1CR2

A. Write lock operation

CLKGEN.PLL2CR

This register defines the behavior of PLL 2.

CLOCKGEN.PLL2CR PLL2 control Register			-	0x10				
Field	Bits	Size	Volatile	Synopsis	Туре			
MDIV	[0:7]	8	-	Pre-divider RW				
	Operation	า	Parameter for programming PLL2					
	Read		Returns cu	rrent value				
	Write		Note: Only datasheet,	urrent value r certain values, as defined in the produ may be written. All other values are res ndefined behavior.				
	Hard reset		See produ	ct datasheet				
NDIV	[8:15]	8	-	Feedback divider	RW			
	Operation	า	Parameter	for programming PLL2				
	Read		Returns cu	rrent value				
	Write		Updates co	urrent value				
			Note: Only certain values, as defined in the product datasheet, may be written. All other values are reservand give undefined behavior.					
	Hard rese	et	See produ	ct datasheet				

Table 72: CLOCKGEN.PLL2CR

	OCKGEN.I			0x10					
Field	Bits	Size	Volatile	Synopsis	Туре				
PDIV	[16:18]	3	-	Post divider	RW				
	Operation	า	Parameter	Parameter for programming PLL2					
	Read		Returns cu	rrent value					
	Write	Write		Note: Only certain values, as defined in the pa		Note: Only certain values, as defined in the product datasheet, may be written. All other values are res			
	Hard rese	et	See produ	ct datasheet					
SETUP	[19:27]	9	-	Loop characteristics	Other				
	Operation	า	Parameter	for programming PLL2					
	Read		Returns cu	rrent value					
	Write	Note: Only certain values, as defined		certain values, as defined in the produ may be written. All other values are res					
	Hard rese	et	See produ	ct datasheet					
POWERON	28	1	-	PLL2 Power On	RO				
	Operation	า	Specifies to	he power setting of PLL2					
	Read		1: power o						
	Write		Ignored						
	Hard rese	et	See produ	ct datasheet					

Table 72: CLOCKGEN.PLL2CR

	OCKGEN.I		-	0x10			
Field	Bits	Size	Volatile	Synopsis Type			
PLLOUTEN	29	1	-	Enable output of PLL2 clock	RW		
	Operation	n	Allows s/w	control of PLL2 output clock			
	Read		Returns cu	rrent value			
	Write		Updates current value 1: PLL out Enabled 0: PLL out not Enabled				
	Hard res	et	See product datasheet				
LOCKSELE	30	1	Yes	Selects how the PLL2 is enabled RW			
СТ	Operation		Specifies whether PLL2 output should be enabled when lock is achieved or as indicated by PLLOUTEN field				
	Read		Returns cu	rrent value			
	Write			FEN setting governs PLL2 output			
			1: Lock set	ting governs PLL PCloutput			
	Hard res	et	See produ	ct datasheet			
LOCK	31	1	Yes	es PLL2 Lock achieved RO			
	Operation	n	Specifies whether PLL2 output has achieved lock and the output is stable				
	Read		0: PLL2 Lock not achieved 1: PLL2 is Locked				
	Write		Updates co	Updates current value			
	Hard res	et	See produ	ct datasheet			

Table 72: CLOCKGEN.PLL2CR

CLOCKGEN.CLK4CR

CLK4CR allows software to change the division ratio of this clock.

	OCKGEN.		-	0x38			
Field	Bits	Size	Volatile	Volatile Synopsis			
RATIO	[0:2]	3	-	Division ratio of PLL1CLK4 clock with respect of output of PLL1 div 2			
	Operation	n					
	Read		Returns cu	rrent value			
	Write		000: ratio 1	1:1			
			001: ratio 1				
			010: ratio 1:3				
			011: ratio 2:3				
			100: ratio 1:4				
			101: ratio 1				
			111: ratio 1				
	Hard rese	et	see datash	neet			
CLKSTOP	3	1	-	PLL1 enable selector.	RW		
	Operation	n	This bit allo	ows stopping of the PLL1CLK4 clock			
	Read		Returns current value				
	Write		Updates current value				
			A0: PLL1CLK4 clock active				
			1: PLL1CL	K4 clock stopped			
	Hard rese	et	0				

Table 73: CLOCKGEN.CLK4CR

CLOCKGEN.CLK4CR PLL1 Clock 4 control register		0x38			
Field	Bits	Size	Volatile	Synopsis	Туре
-	[4:31]	28	-	Reserved	Res
	Operation	n	Reserved		
	Read		Returns 0		
	Write		Ignored		
	Hard rese	et	0		

Table 73: CLOCKGEN.CLK4CR

To safely change the value of the division ratio of the PLL1CLK4 clock the following sequence should be followed:

- 1 Stop PLL1CLK4 clock by setting CLK4CR.CLKSTOP = 0
- 2 Write the new setting in CLK4CR.RATIO
- 3 Restart PLL1CLK4 clock by setting PLL1CLK4.CLKSTOP = 1

CLOCKGEN.CPGBYPASS

CLOC	KGEN.CP	GBYPA	SS				
Field	Bits	Size	Volatile	Volatile Synopsis Ty			
BYPASS	[0]	1	No	No master control source for clocks 11 - 13			
	Operation	1	0: PLL1 clocks 1, 2, 3 controlled by CPG.FRQCR 1= PLL1 clocks controlled as below CLKGEN.CLK1CR controls clock 11 CLKGEN.CLK2CR controls clock 12 CLKGEN.CLK3CR controls clock 13				
	Read		Returns current value				
	Write		Updated				
	Hard rese	et	See produc	ct datasheet			
-	[1:31]	28	— Reserved Res				
	Operation	า	Reserved				
	Read		Reserved				
	Write		0: ignored, other values undefined				
	Hard rese	et	0				

Table 74: CLOCKGEN.CPGBYPASS

CLKGEN.PLL2_MUXCR

CLOC	KGEN.PLL	_2_MUX	CR							
Field	Bits	Size	Volatile	Volatile Synopsis						
MUXCTRL	[1:0]	2	No	No Controls division ratio of clock 2M with respect to the output of PLL2						
	Operation	า	00: Ratio 1	:8						
			01: Ratio 1	:16						
			10: Ratio 1	:21						
			11: Ratio 1:1							
	Read		Returns cu	rrent value						
	Write		Updates cu	urrent value						
	Hard rese	et	See produc	ct datasheet						
-	[2:31]	28	_	Reserved	Res					
	Operation	Operation		Reserved				Reserved		
	Read		Reserved							
	Write		0: ignored, other values undefined							
	Hard rese	et	0							

Table 75: CLOCKGEN.PLL2_MUXCR

CLKGEN.CLK1CR

CL	OCKGEN.	CLK1CF	?				
Field	Bits	Size	Volatile		Synopsis	Туре	
RATIO	[2:0]	2	No	clock ratio co	ntrol when G_BYPASS active	RW	
	Operation	n	Controls th	e ratio of clock	with respect to PLL1 div	ision 2	
			0	00: 1:1	100: 1:4		
			0	01: 1:2	101: 1:6		
			0	10: 1:3	110: 1:8		
			0	11: 2:3	111: 1:8		
	Read		Returns cu	Returns current value			
	Write	Write		Updated			
	Hard res	Hard reset		See product datasheet			
CLKSTOP	[3]	1	No	Clock 11 ena	ble override	RO	
	Operation	n	1: clock 11	disabled			
			0: clock 11	enabled			
	Read		Returns cu	irrent value			
	Write		Updated				
	Hard res	et	See produ	ct datasheet			
-	[2:31]	28	-	Reserved		Res	
	Operation	n	Reserved			•	
	Read		Reserved				
	Write		0: ignored,	other values u	ndefined		
	Hard res	et	0				

Table 76: CLOCKGEN.CLK1CR

CLKGEN.CLK2CR

CLOCKGEN.CLK2CR						
Field	Bits	Size	Volatile	,	Synopsis	Туре
RATIO	[2:0]	2	No	No clock ratio control when CLKGEN.CPG_BYPASS active		RW
	Operation	า	Controls th	e ratio of clock	with respect to PLL1 divi	sion 2
			0	00: 1:1	100: 1:4	
			0	01: 1:2	101: 1:6	
			0	10: 1:3	110: 1:8	
			0	11: 2:3	111: 1:8	
	Read		Returns cu	Returns current value		
	Write		Updated			
	Hard rese	et	See produc	ct datasheet		
CLKSTOP	[3]	1	No	Clock 12 enal	ble override	RO
	Operation	า	1: clock 11	disabled		
			0: clock 11	enabled		
	Read		Returns cu	rrent value		
	Write		Updated			
	Hard rese	et	See produc	ct datasheet		
-	[2:31]	28	-	Reserved		Res
	Operation	า	Reserved			
	Read		Reserved			
	Write		0: ignored,	other values ur	ndefined	
	Hard rese	et	0			

Table 77: CLOCKGEN.CLK2CR

CLKGEN.CLK3CR

CLOCKGEN.CLK3CR						
Field	Bits	Size	Volatile	;	Synopsis	Туре
RATIO	[2:0]	2	No	No clock ratio control when CLKGEN.CPG_BYPASS active		RW
	Operation	า	Controls th	e ratio of clock	with respect to PLL1 divi	sion 2
			0	00: 1:1	100: 1:4	
			0	01: 1:2	101: 1:6	
			0	10: 1:3	110: 1:8	
			0	11: 2:3	111: 1:8	
	Read		Returns cu	rrent value		
	Write		Updated			
	Hard rese	et	See product datasheet			
CLKSTOP	[3]	1	No	Clock 13 enal	ble override	RO
	Operation	า	1: clock 11	disabled		
			0: clock 11	enabled		
	Read		Returns cu	rrent value		
	Write		Updated			
	Hard rese	et	See produc	ct datasheet		
-	[2:31]	28	-	Reserved		Res
	Operation	า	Reserved			
	Read		Reserved			
	Write		0: ignored,	other values un	ndefined	
	Hard rese	et	0			

Table 78: CLOCKGEN.CLK3CR

CLKGEN.CLK_SELCR

CLOCKGEN.CLK_SELCR				R					
Field	Bits	Size	Volatile	Synopsis	Туре				
EXTCLKSEL	[7:0]	8	No	Clock mux control	RW				
	Operation	า	See produc	ct datasheet	·				
	Read		Returns current value						
	Write		Updates cu	rrent value					
	Hard reset		see produc	et datasheet					
-	[2:31]	28	- Reserved Re						
	Operation	า	Reserved						
	Read		Reserved				Reserved		
	Write		0: ignored, other values undefined						
	Hard rese	et	0						

Table 79: CLOCKGEN.CLK_SELCR

Watchdog timer 153

6.4 Watchdog timer

6.4.1 Block diagram

Figure 18 shows a block diagram of the WDT.

Figure 18: Block diagram of WDT

6.4.2 Register configuration

The WDT has the two registers summarized in *Table 80*. These registers control clock selection and timer mode switching.

Name	Abbreviation	Туре	Initial value	Area 7 address	Access size
Watchdog timer counter	CPG.WTCNT	RW*	0x00	0x1FC00008	R: 8, W: 16*
Watchdog timer control/ status register	CPG.WTCSR	RW*	0x00	0x1FC0000C	R: 8, W: 16*

Table 80: WDT registers

Note: Use word-size access when writing. Perform the write with the upper byte set to 0x5A or 0xA5, respectively. Byte-size and longword-size writes cannot be used.

Use byte access when reading.

6.4.3 Register descriptions

Watchdog timer counter (CPG.WTCNT)

The watchdog timer counter (CPG.WTCNT is an 8-bit read/write counter that counts up on the selected clock. When CPG.WTCNT overflows, a reset is generated in watchdog timer mode, or an interrupt in interval timer mode. CPG.WTCNT is initialized to 0x00 only by a power-on reset via the NOT RESET pin.

To write to the CPG.WTCNT counter, use a word-size access with the upper byte set to 0x5A. To read CPG.WTCNT, use a byte-size access.

Watchdog timer 155

Watchdog timer control and status register (CPG.WTCSR)

The watchdog timer control and status register (CPG.WTCSR) is an 8-bit read/write register containing bits for selecting the count clock and timer mode, and overflow flags.

CPG.WTCSR is initialized to 0x00 only by a power-on reset via the NOT_RESET pin. It retains its value in an internal reset due to WDT overflow. When used to count the clock stabilization time when exiting standby mode, CPG.WTCSR retains its value after the counter overflows.

To write to the CPG.WTCSR register, use a word-size access with the upper byte set to 0xA5. To read CPG.WTCSR, use a byte-size access.

Bit 7: timer enable (TME)

Bit 7 specifies the starting and stopping of timer operation. Clear this bit to 0 when using the WDT in standby mode or to change a clock frequency.

Bit 7: TME	Description	
0	Up-count stopped, WTCNT value retained	(Initial value)
1	Up-count started	

Bit 6: timer mode select (WT/NOT_IT)

Bit 6 specifies whether the WDT is used as a watchdog timer or interval timer.

Note: the up-count may not be performed correctly if WT/NOT_IT is modified while the WDT is running.

Bit 6: WT/NOT_IT	Description	
0	Interval timer mode	(Initial value)
1	Watchdog timer mode	

Bit 5: reset select (RSTS)

Bit 5 specifies the kind of reset to be performed when CPG.WTCNT overflows in watchdog timer mode. This setting is ignored in interval timer mode.

Bit 5: RSTS	Description		
0	Power-on reset	(Initial value)	
1	Manual reset		

Bit 4: watchdog timer overflow flag (WOVF)

Bit 4 indicates that CPG.WTCNT has overflowed in watchdog timer mode. This flag is not set in interval timer mode.

Bit 4: WOVF	Description		
0	No overflow	(Initial value)	
1	CPG.WTCNT has overflowed in watchdog timer mode		

Watchdog timer 157

Bit 3: interval timer overflow flag (IOVF)

Bit 3 indicates that CPG.WTCNT has overflowed in interval timer mode. This flag is not set in watchdog timer mode.

Bit 3: IOVF	Description		
0	No overflow	(Initial value)	
1	CPG.WTCNT has overflowed in interval timer mode		

Bits 2 to 0: clock select 2 to 0 (CKS2 to CKS0)

These bits select the clock used for the CPG.WTCNT count from eight clocks obtained by dividing the frequency divider two input clock. The overflow periods shown in the following table are based on a 150 MHz X1 output from the main clock divider. The up-count may not be performed correctly if bits CKS2 to CKS0 are modified while the WDT is running. Always stop the WDT before modifying these bits.

Bit 2: CKS2	Bit 1: CKS1	Bit 0: CKS0	Description	
			Clock division ratio	Overflow period
0	0	0	1/32	55 µs
		1	1/64	109 μ s
	1	0	1/128	219 µs
		1	1/256	437 μs
1	0	0	1/512	874 μs
		1	1/1024	1.75 ms
	1	0	1/2048	3.5 ms
		1	1/4096	6.99 ms

Writing to CPG.WTCNT and CPG.WTCSR

The watchdog timer counter (CPG.WTCNT) and watchdog timer control and status register (CPG.WTCSR) differ from other registers in being more difficult to write to. These registers must be written to with a word transfer instruction. They cannot be written to with a byte or longword transfer instruction.

When writing to CPG.WTCNT, perform the transfer with the upper byte set to 0x5A and the lower byte containing the write data.

When writing to CPG.WTCSR, perform the transfer with the upper byte set to 0xA5 and the lower byte containing the write data.

This transfer procedure writes the lower byte data to CPG.WTCNT or CPG.WTCSR.

The write formats are shown in *Figure 19*.

Figure 19: Writing to WTCNT and WTCSR

Watchdog timer 159

6.4.4 Using the WDT

Standby clearing procedure

The WDT is used when clearing standby mode by means of an NMI or other interrupt. The procedure is shown below. As the WDT does not operate when standby mode is cleared with a reset, the NOT_RESET pin should be held low until the clock stabilizes.

- 1 Be sure to set the TME bit in the CPG.WTCSR register to 0 before making a transition to standby mode. If the TME bit is set to 1, an inadvertent reset or interval timer interrupt may be caused when the count overflows.
- 2 Select the count clock to be used with bits CKS2 to CKS0 in the CPG.WTCSR register, and set the initial value in the CPG.WTCNT counter. Make these settings so that the time until the count overflows is at least as long as the clock oscillation stabilization time.
- 3 Make a transition to standby mode, and stop the clock, by executing a SLEEP instruction.
- 4 The WDT starts counting on detection of an NMI signal transition edge or an interrupt.
- 5 When the WDT count overflows, the CPG starts clock supply and the processor resumes operation. The WOVF flag in the CPG.WTCSR register is not set at this time.
- 6 The counter stops at a value of 0x000x01. The value at which the counter stops depends on the clock ratio.

Frequency changing procedure

The WDT is used in a frequency change using the PLL. It is not used when the frequency is changed simply by making a frequency divider switch.

- 1 Be sure to set the TME bit in the CPG.WTCSR register to 0 before making a frequency change. If the TME bit is set to 1, an inadvertent reset or interval timer interrupt may be caused when the count overflows.
- 2 Select the count clock to be used with bits CKS2 to CKS0 in the CPG.WTCSR register, and set the initial value in the CPG.WTCNT counter. Make these settings so that the time until the count overflows is at least as long as the clock oscillation stabilization time.
- 3 When the frequency control register (CPG.FRQCR) is modified, the clock stops, and the standby state is entered temporarily. The WDT starts counting.

- 4 When the WDT count overflows, the CPG starts clock supply and the processor resumes operation. The WOVF flag in the CPG.WTCSR register is not set at this time.
- 5 The counter stops at a value of 0x00-0x01. The value at which the counter stops depends on the clock ratio.

Using watchdog timer mode

- 1 Set the WT/NOT_IT bit in the CPG.WTCSR register to 1, select the type of reset with the RSTS bit, and the count clock with bits CKS2-CKS0, and set the initial value in the CPG.WTCNT counter.
- 2 When the TME bit in the CPG.WTCSR register is set to 1, the count starts in watchdog timer mode.
- 3 During operation in watchdog timer mode, write 0x00 to the counter periodically so that it does not overflow.
- 4 When the counter overflows, the WDT sets the WOVF flag in the CPG.WTCSR register to 1, and generates a reset of the type specified by the RSTS bit. The counter then continues counting.

Using interval timer mode

When the WDT is operating in interval timer mode, an interval timer interrupt is generated each time the counter overflows. This enables interrupts to be generated at fixed intervals.

- 1 Set the WT/NOT_IT bit in the CPG.WTCSR register to 0. Select the count clock with bits CKS2 to CKS0, and set the initial value in the CPG.WTCNT counter.
- 2 When the TME bit in the CPG.WTCSR register is set to 1, the count starts in interval timer mode.
- 3 When the counter overflows, the WDT sets the IOVF flag in the CPG.WTCSR register to 1, and sends an interval timer interrupt request to INTC. The counter continues counting.

6.5 Power management unit (PMU)

The power management unit is responsible for controlling clock shutdown and startup for each of the on-chip modules. The power states are organized into a number of power down modes, each of which specify which modules are operating and which are halted. There are two sets of registers in the power management

Figure 20: Power management module function

unit. The CPG bank registers STBCR and STBCR2 control the power down modes and also the individual power-down state of legacy SH peripherals. The CLOCKGEN bank registers controls the power-down state of the ST40RA peripherals (PCI, DMAC, LMI and FMI).

6.5.1 Types of power-down modes

The following power-down modes and functions are provided:

- sleep mode,
- · deep sleep mode,
- · standby mode,
- module standby function (for individual power-down of on-chip peripheral modules).

Table 81 shows the conditions for entering these modes from the program execution state, the status of the CPU and peripheral modules in each mode, and the method of exiting each mode.

Power				Statu	ıs			
down mode	Entering conditions	CPG	CPU	On- chip memory	On-chip peripheral modules	Pins	External memory	Exiting method
Sleep	SLEEP instruction executed while STBY bit is 0 in STBCR	Operating	Halted (registers held)	Held	Operating	Held	Refresh- ing	Interrupt Reset
Deep sleep	DMAC module is put into standby Followed by the memory interface(s) being put into standby. Then the SLEEP instruction is executed while STBY bit is 0 in STBCR.	Operating	Halted (registers held)	Held	Operating (DMA halted)	Held	Self- refresh- ing	Interrupt Reset

Table 81: Status of CPU and peripheral modules in power-down modes

Dawer				Statu	ıs			
Power down mode	Entering conditions	CPG	CPU	On- chip memory	On-chip peripheral modules	Pins	External memory	Exiting method
	SLEEP instruction is executed while STBY bit is 0 in STBCR.							
Stand- by	SLEEP instruction executed while STBY bit is 1 in STBCR	Halted	Halted (registers held)	Held	Halted*	Held	All external memory Self-refreshing	Interrupt Reset
Module standby	Setting MSTP bit to 1 in STBCR or setting a bit in the STBREQCR.	Operating	Operating	Held	Specified modules halted*	Held	Refresh- ing	Clearing MSTP bit/ STBRE QCR bit to 0 Reset

Table 81: Status of CPU and peripheral modules in power-down modes

Note: The RTC operates when the START bit in RTC.RCR2 is 1 (see chapter about Real-time clock).

6.5.2 Register configuration

Table 82 and *Table 83* show the registers used for power-down mode control.

Description	Register name	Туре	Initial value	CPG offset	Access size
Standby control register	CPG.STBCR	RW	0x00	0x04	8
Standby control register 2	CPG.STBCR 2	RW	0x00	0x10	8

Table 82: CPG bank power down registers

Description	Register name	Туре	Initial value	CLOCKGE N offset	Acces s size
Standby module request	CLOCKGEN.STBREQCR	RW	0x00	0x18	32
Set Standby module req	CLOCKGEN.STBREQCR_SET	WO	-	0x20	32
Clear Standby module req	CLOCKGEN.STBREQCR_CLR	WO	-	0x28	32
Standby module acknowledge	CLOCKGEN.STBACKCR	RO	0x00	0x30	32

Table 83: CLOCKGEN bank power-down registers

6.5.3 Pin configuration

<i>Table 84</i> shows the	pins used for	power-down	mode control.
Tubic of bilons the	pillo abca loi	pomer domin	mode comeron

Pin Name	Abbreviation	I/O	Function
Processor status 1	STATUS1	Output	Indicate the processors operating
Processor status 0	STATUS0		status ^A
			HH: Reset
			HL: Sleep mode
			LH: Standby mode
			LL: Normal operation

Table 84: Power-down mode pins

A. H: high level L: low level

6.5.4 Register descriptions

Standby control register¹ (CPG.STBCR)

The standby control register (CPG.STBCR) is an 8-bit read/write register that specifies the power- down mode status. It is initialized to 0x00 by a power- on reset via the NOT_RESET pin or due to watchdog timer overflow.

Bit	7	6	5	4	3	2	1	0
	STBY	PHZ	PPU	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0
Initial value	0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW	RW

^{1.} Please Check the product datasheet to determine which STBCR bits are implemented for your device.

Bit 7: standby (STBY)

Bit 7 specifies a transition to standby mode.

Bit 7: STBY	Description	
0	Transition to sleep mode on execution of SLEEP instruction	(Initial value)
1	Transition to standby mode on execution of SLEEP instruction	

Bit 6: peripheral module pin high impedance control (PHZ)

Bit 6 controls the state of peripheral module related pins in standby mode. When the PHZ bit is set to 1, peripheral module related pins go to the high-impedance state in standby mode.

For the relevant pins, see, Section 6.5.3: Pin configuration on page 165.

Bit 6: PHZ	Description					
0	Peripheral module related pins are in normal state	(Initial value)				
1	Peripheral module related pins go to high-impedance state					

Bit 5: peripheral module pin pull-up control (PPU)

Bit 5 controls the state of peripheral module related pins. When the PPU bit is cleared to 0, the pull-up resistor is turned on for peripheral module related pins in the input or high-impedance state.

For the relevant pins, see *Section : Peripheral module pin pull-up control on page 168*.

Bit 5: PPU	Description					
0	Peripheral module related pin pull-up resistors are on	(Initial value)				
1	Peripheral module related pin pull-up resistors are off					

Bit 4: unused

This bit has no functional use.

Bit 3: module stop 3 (MSTP3)

Bit 3 specifies stopping of the clock supply to serial communication interface channel 2 (SCIF2) among the on-chip peripheral modules. The clock supply to the SCIF2 is stopped when the MSTP3 bit is set to 1.

Bit 3: MSTP3	Description	
0	SCIF2 operates	(Initial value)
1	SCIF2 clock supply is stopped	

Bit 2: module stop 2 (MSTP2)

Bit 2 specifies stopping of the clock supply to the timer unit (TMU) among the on-chip peripheral modules. The clock supply to the TMU is stopped when the MSTP2 bit is set to 1.

Bit 2: MSTP2	Description	
0	TMU operates	(Initial value)
1	TMU clock supply is stopped	

Bit 1: module stop 1 (MSTP1)

Bit 1 specifies stopping of the clock supply to the realtime clock (RTC) among the onchip peripheral modules. The clock supply to the RTC is stopped when the MSTP1 bit is set to 1. When the clock supply is stopped, RTC registers cannot be accessed but the counters continue to operate.

Bit 1: MSTP1	Description	
0	RTC operates	(Initial value)
1	RTC clock supply is stopped	

Bit 0: module stop 0 (MSTP0)

Bit 0 specifies stopping of the clock supply to serial communication interface channel 1 (SCIF1) among the on-chip peripheral modules. The clock supply to SCIF1 is stopped when the MSTP0 bit is set to 1.

Bit 0: MSTP0	Description		
0	SCIF1 operates	(Initial value)	
1	SCIF1 clock supply is stopped		

Peripheral module pin pull-up control

When bit 5 in the standby control register (CPG.STBCR) is set to 0, peripheral module related pins are pulled up when in the input or high-impedance state.

SCIF1 related pins	MD0/SCK	MD1/TXD2	MD2/RXD2
	MD7/TXD	MD8/RTS2	SCK2/NOT_MRESET
	RXD	CTS2	
DMA related pins	NOT_DREQ0	DACK0	DRAK0
	NOT_DREQ1	DACK1	DRAK1
TMU related pin	TCLK		

Table 85: Relevant pins

Standby control register 2 ¹(CPG.STBCR2)

Standby control register 2 (CPG.STBCR2) is an 8-bit read/write register that specifies additional standby behavior. It is initialized to 0x00 by a power-on reset via the NOT_RESET pin or due to watchdog timer overflow.

Bit	7	6	5	4	3	2	1	0
	-	STHZ	-	-	-	-	MSTP6	MSTP5
Initial value	0	0	0	0	0	0	0	0
RW	RW	RW	R	R	R	R	RW	RW

Bit 7: unused

Bit 6: status pin high-impedance control (STHZ)

This bit selects whether the STATUS0 and STATUS1 pins are set to high-impedance when in hardware standby mode.

Bit 6: STHZ	Description		
0	Sets STATUS0/1 Pins to high Impedance when in hardware standby mode	(Initial value)	
1	Drives STATUS0/1 Pins to LH when in hardware standby mode.		

Bits 5 to 2: reserved

Only zero should only be written to these bits; operation cannot be guaranteed if one is written. These bits are always read as zero.

- 77

Please check the datasheet to determine which bits are implemented for your device

Bit 1: module stop 6 (MSTP6)

Bit 1 specifies that the clock supply to the store queue (SQ) in the cache controller (CCN) is stopped. Setting the MSTP6 bit to 1 stops the clock supply to the SQ, and the SQ functions are therefore unavailable.

Bit 1: MSTP6	Description		
0	SQ operating	(Initial value)	
1	Clock supply to SQ is stopped		

Bit 0: module stop 5 (MSTP5)

Specifies that. of the internal modules, the clock supply to the user break controller (UBC) is stopped.

Bit 0: MSTP5	Description		
0	UBCoperating	(Initial value)	
1	Clock supply to UBC is stopped		

Standby control request register (CLOCKGEN.STBREQCR)

Standby control may be effected by the use of the STBREQCR (standby request) and STBACK (standby acknowledge) registers. These registers implement the power down protocol for ST modules. Each bit of these registers corresponds to an SuperHyway module. A module may be requested to be powered down by writing a 1 to the appropriate bit in the STBREQCR register. When that module has completed its power down sequence, and the clock to it has been stopped, the corresponding bit in the STBACKCR is set. This procedure allows precise software control of putting modules into standby.

To enable independent setting and clearing of the STBREQCR bits two auxiliary pseudo registers are provided. The STBREQCR_SET pseudo register allows STBREQCR bits to be set independently. Writing 1 in STBREQCR_SET sets the corresponding bit in STBREQCR, a 0 leaves the bit unchanged. The STBREQCR_CLR pseudo register allows bits to be cleared individually. Writing a 1 in STBREQCR_CLR resets the corresponding bit in STBREQCR, a 0 leaves the bit unchanged. See the *product datasheet* for details of these registers.

Functionality 171

Standby control acknowledge register (CLOCKGEN.STBACKCR)

See the datasheet for details of this register.

6.6 Functionality

6.6.1 Sleep mode

Transition to sleep mode

If a SLEEP instruction is executed when the STBY bit in CPG.STBCR is cleared to 0, the chip switches from the program execution state to sleep mode. After execution of the SLEEP instruction, the CPU halts but its register contents are retained. The on-chip peripheral modules continue to operate, and the clock continues to be output from the CLKOUT pin.

In sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the STATUS0 pin.

Exit from sleep mode

Sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a reset. In sleep mode, interrupts are accepted even if the BL bit in the SR register is 1. If necessary, SPC and SSR should be saved to the stack before executing the SLEEP instruction.

Exit by interrupt

When an NMI, IRL, or on-chip peripheral module interrupt is generated, sleep mode is exited and interrupt exception handling is executed. The code corresponding to the interrupt source is set in the INTEVT register.

Exit by reset

Sleep mode is exited by means of a power-on or manual reset via the NOT_RESET pin, or a power-on or manual reset executed when the watchdog timer overflows.

6.6.2 Deep sleep mode

Deep sleep mode is similar to sleep mode except that additionally DMAC and the memory interfaces are in a low power state.

Transition to deep sleep mode

To enter deep sleep mode first power down the DMAC then power down the memory interfaces. This is accomplished using the module standby procedure described in *Section 6.7.2*. Then if a SLEEP instruction is executed when the STBY bit in CPG.STBCR is cleared to 0 the chip switches from the program execution state to deep sleep mode. After execution of the SLEEP instruction, the CPU halts but its register contents are retained.

Except for the powered down modules, on-chip peripheral modules continue to operate, and the clock continues to be output from the CLKOUT pin.

In deep sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the STATUS0 pin.

Exit from deep sleep mode

As with sleep mode, deep sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module or a reset. Software can then power up the modules which were powered down when deep sleep was entered. See *Section 6.7.4* for the procedure for powering up these modules.

6.6.3 Standby mode

Transition to standby mode

If a SLEEP instruction is executed when the STBY bit in CPG.STBCR is set to 1, the chip switches from the program execution state to standby mode. In standby mode, the on-chip peripheral modules halt as well as the CPU. Clock output from the CLKOUT pin is also stopped.

The CPU and cache register contents are retained. Some on-chip peripheral module registers are initialized. The state of the peripheral module registers in standby mode is shown in *Table 86*.

Functionality 173

Module	Initialized registers	Registers that retain their content
Interrupt controller	-	All registers
User break controller	-	All registers
FMI/LMI	-	All registers
CPG/CLOCKGEN	-	All registers
Timer unit	TMU.TSTR register*	All registers except TMU.TSTR
Realtime clock	-	All registers
Direct memory access controller	-	All registers
Serial communication interface	-	All registers

Table 86: State of registers in standby mode

Note: * Not initialized when the real-time clock (RTC) is in use (see Chapter 8: Timer unit (TMU) on page 227).

Note: DMA transfer should be terminated before making a transition to standby mode. Transfer results are not guaranteed if standby mode is entered during transfer.

The procedure for a transition to standby mode is shown below.

- 1 Set the TME bit in the WDT timer control register (CPG.WTCSR) to 0, and stop the WDT. Set the initial value for the up-count in the WDT timer counter (CPG.WTCNT), and set the clock to be used for the up-count in bits CKS2 to CKS0 in the CPG.WTCSR register.
- 2 Set the STBY bit in the STBCR register to 1, then execute a SLEEP instruction.
- 3 When standby mode is entered and the chip's internal clock stops, a low-level signal is output at the STATUS1 pin, and a high-level signal at the STATUS0 pin.

Exit from standby mode

Standby mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module or a reset via the NOT_RESET pin.

Exit by interrupt

A hot start can be performed by means of the on-chip WDT. When an NMI, IRL¹, or on-chip peripheral module (except interval timer)² interrupt is detected, the WDT starts counting. After the count overflows, clocks are supplied to the entire chip, standby mode is exited, and the STATUS1 and STATUS0 pins both go low. Interrupt exception handling is then executed, and the code corresponding to the interrupt source is set in the INTEVT register. In standby mode, interrupts are accepted even if the BL bit in the SR register is 1, and so, if necessary, SPC and SSR should be saved to the stack before executing the SLEEP instruction.

The phase of the CLKOUT pin clock output may be unstable immediately after an interrupt is detected, until standby mode is exited.

Exit by reset

Standby mode is exited by means of a reset (power-on manual) via the NOT_RESET pin. The NOT_RESET pin should be held low until clock oscillation stabilizes. The internal clock continues to be output at the CLKOUT pin.

6.6.4 Clock pause function

In standby mode, it is possible to stop or change the frequency of the clock input from the EXTAL pin. This function is used as follows.

- 1 Enter standby mode following the transition procedure described above.
- When standby mode is entered and the chip's internal clock stops, a low-level signal is output at the STATUS1 pin, and a high-level signal at the STATUS0 pin.
- 3 The input clock is stopped, or its frequency changed, after the STATUS1 pin goes low and the STATUS0 pin high.
 - 1. Only when the RTC clock (32.768 kHz) is operating (see *Chapter 3: Interrupt controller (INTC) on page 15*), standby mode can be exited by means of IRL3–IRL0 (when the IRL3–IRL0 level is higher than the SR register I3–I0 mask level).
 - 2. Standby mode can be exited by means of an RTC interrupt.

- 4 When the frequency is changed, input an NMI or IRL interrupt after the change. When the clock is stopped, input an NMI or IRL interrupt after applying the clock.
- 5 After the time set in the WDT, clock supply begins inside the chip, the STATUS1 and STATUS0 pins both go low, and operation is resumed from interrupt exception handling.

6.7 Module standby function

6.7.1 Transition to module standby function (CPG modules)

Setting the MSTP4 to MSTP0 bits in the standby control register to 1 enables the clock supply to the corresponding on-chip peripheral modules to be halted. Use of this function allows power consumption in sleep mode to be further reduced.

In the module standby state, the on-chip peripheral module external pins retain their states prior to halting of the modules, and most registers retain their states prior to halting of the modules.

Bit		Description
MSTP3	0	SCIF2 operates
	1	Clock supplied to SCIF2 is stopped
MSTP2	0	TMU operates
	1	Clock supplied to TMU is stopped, and register is initialized*1
MSTP1	0	RTC operates
	1	Clock supplied to RTC is stopped*2
MSTP0	0	SCIF1 operates
	1	Clock supplied to SCIF1 is stopped

Note:

- 1. The register initialized is the same as in standby mode, but initialization is not performed if the RTC clock is not in use (see Chapter 8: Timer unit (TMU) on page 227.
- 2. The counter operates when the START bit in RCR2 is 1 (see Chapter 7: Real-time clock (RTC) on page 179.

6.7.2 Transition to module standby function (CLOCKGEN modules)

The modules controlled by the CLOCKGEN register bank use a different method for entering and exiting the power down state from those controlled by the CPG register bank. The CLOCKGEN controlled modules employ a software handshake mechanism which allows software to control the order in which the clock used by each module is started and stopped.

The FMI, LMI, DMAC and PCI modules can be stopped (that is powered down) by setting the appropriate bit of the CLOCKGEN.STBREQCR register. Sometime later the hardware will set the corresponding bit in the CLOCKGEN.STBACKCR to 1 indicating that the clock to the module has been stopped. The time delay between these events depends on the particular module being requested to stop and its state at the time of the request. Software should normally stop modules one by one, checking that a module has stopped before requesting that the next module is stopped taking care to avoid any potential deadlock condition.

6.7.3 Exit from module standby function (CPG modules)

The module standby function is exited by setting the MSTP4 to MSTP0 bits to 0, or by a power-on reset via the NOT_RESET pin or a power-on reset caused by watchdog timer overflow.

6.7.4 Exit from module standby function (CLOCKGEN modules)

The FMI, LMI, DMAC and PCI modules can be started (that is powered up) by writing a 0 into the appropriate field of the CLOCKGEN.STBREQCR. Sometime later the hardware will set the corresponding bit in the CLOCKGEN.STBACKCR to 0 indicating that the clock to the module has been re-started. The time delay between these events depends on the particular module being requested to start and its state at the time it was stopped. Software should normally start modules one by one, checking that a module has started before requesting the next module is started.

6.8 STATUS pin change timing

The STATUS1 and STATUS0 pin change timing is shown below.

The meaning of the STATUS pin settings is as follows:

Pin setting	Meaning	STATUS1 pin	STATUS0 pin
НН	Reset	High	High
HL	Sleep	High	Low
LH	Standby	Low	High
LL	Normal	Low	Low

Table 87: STATUS pin settings

The meaning of the clock units is as follows:

- Bcyc: Bus clock cycle,
- Pcyc: Peripheral clock cycle.

Real-time clock (RTC)

7.1 Overview

The system includes an on-chip real-time clock (RTC) and a 32.768 kHz crystal oscillator for use by the RTC.

7.1.1 Features

The RTC has the following features:

- clock and calendar functions (BCD display), counts:
 - seconds.
 - minutes,
 - hours,
 - day of the week,
 - days,
 - months.
 - years,
- 1 to 64 Hz timer (binary display),
 - the 64 Hz counter register indicates a state of 64 Hz to 1 Hz within the RTC frequency divider,
- start and stop functions,
- 30 second adjustment function,

- · alarm interrupts,
 - comparison with second, minute, hour, day-of-week, day, or month can be selected as the alarm interrupt condition,
- · periodic interrupts,
 - an interrupt period of 1/256 second, 1/64 second, 1/16 second, 1/4 second, 1/2 second, 1 second, or 2 seconds can be selected,
- · carry interrupt,
 - carry interrupt function indicating a second counter carry, or a 64 Hz counter carry when the 64 Hz counter is read,
- · automatic leap year adjustment.

Overview 181

7.1.2 Block diagram

Figure 21 shows a block diagram of the RTC.

Figure 21: Block diagram of RTC

182 Overview

7.1.3 Pin configuration

Table 88 shows the RTC pins.

Pin name	Abbreviatio n	I/O	Function
RTC oscillator crystal pin	EXTAL2	Input	Connects crystal to RTC oscillator
RTC oscillator crystal pin	XTAL2	Output	Connects crystal to RTC oscillator
Clock input/clock output	TCLK	I/O	External clock input pin Input capture control input pin RTC output pin (shared with TMU)
Dedicated RTC power supply	VCC RTC	-	RTC oscillator power supply pin*
Dedicated RTC GND pin	VSS (RTC)	-	RTC oscillator GND pin ^A

Table 88: RTC pins

A. Power must be supplied to the RTC power supply pins even when the RTC is not used. When the RTC is used, power should be supplied to all power supply pins including these pins. In standby mode, also, power should be supplied to all power supply pins including these pins.

7.1.4 Register configuration

Table 89 summarizes the RTC registers.

The register addresses are offset from RTCBASE. Refer to the system address map for the value of RTCBASE.

Register name	Description	Туре	Address offset	Size
RTC.R64CNT	64 Hz counter, see <i>Table 90 on page 185</i>	RO	0x00	8
RTC.RSECCNT	Second counter, see Table 91 on page 186	RW	0x04	8

Table 89: RTC registers

Register name	Description	Туре	Address offset	Size
RTC.RMINCNT	Minute counter, see <i>Table 92 on page 188</i>	RW	0x08	8
RTC.RHRCNT	Hour counter, see <i>Table 93 on page 190</i>	RW	0x0C	8
RTC.RWKCNT	Day of week counter, see <i>Table 94 on page 192</i>	RW	0x10	8
RTC.RDAYCNT	Day counter, see <i>Table 95 on page 194</i>	RW	0x14	8
RTC.RMONCNT	Month counter, see <i>Table 96 on page 196</i>	RW	0x18	8
RTC.RYRCNT	Year counter, see <i>Table 97 on page 198</i>	RW	0x1C	16
RTC.RSECAR	Second alarm register, see <i>Table 98 on page 200</i>	RW	0x20	8
RTC.RMINAR	Minute alarm register, see <i>Table 99 on page 202</i>	RW	0x24	8
RTC.RHRAR	Hour alarm register, see <i>Table 100 on page 204</i>	RW	0x28	8
RTC.RWKAR	Day of week alarm register, see <i>Table 101 on page 206</i>	RW	0x2C	8
RTC.RDAYAR	Day alarm register, see <i>Table 102 on page 208</i>	RW	0x30	8
RTC.RMONAR	Month alarm register, see <i>Table 103 on page 210</i>	RW	0x34	8
RTC.RCR1	RTC control register 1, see <i>Table 104 on page 212</i>	RW	0x38	8

Table 89: RTC registers

184 Overview

7.1.5 Register initialization

Register name	Power-on reset	Manual reset	Standby mode	Initial value
RTC.R64CNT	Counts	Counts	Counts	Undefined
RTC.RSECCNT	Counts	Counts	Counts	Undefined
RTC.RMINCNT	Counts	Counts	Counts	Undefined
RTC.RHRCNT	Counts	Counts	Counts	Undefined
RTC.RWKCNT	Counts	Counts	Counts	Undefined
RTC.RDAYCNT	Counts	Counts	Counts	Undefined
RTC.RMONCNT	Counts	Counts	Counts	Undefined
RTC.RYRCNT	Counts	Counts	Counts	Undefined
RTC.RSECAR	Initialized ^A	Held	Held	Undefined ^A
RTC.RMINAR	Initialized ^A	Held	Held	Undefined ^A
RTC.RHRAR	Initialized ^A	Held	Held	Undefined ^A
RTC.RWKAR	Initialized ^A	Held	Held	Undefined ^A
RTC.RDAYAR	Initialized ^A	Held	Held	Undefined ^A
RTC.RMONAR	Initialized ^A	Held	Held	Undefined ^A
RTC.RCR1	Initialized	Initialized	Held	0x00 ^B
RTC.RCR2	Initialized	Initialized ^C	Held	0x09 ^D
RTC.R64CNT	Counts	Counts	Counts	Undefined
RTC.RSECCNT	Counts	Counts	Counts	Undefined
RTC.RMINCNT	Counts	Counts	Counts	Undefined

- A. The ENB bit in each register is initialized.
- B. The value of the CF bit and AF bit is undefined.
- C. Bits other than the RTCEN bit and START bit are initialized.
- D. The value of the PEF bit is undefined.

7.2 Register descriptions

7.2.1 64 Hz counter (RTC.R64CNT)

RTC.R64CNT is an 8-bit read-only register that indicates a state of 64 Hz to 1 Hz within the RTC frequency divider.

If this register is read when a carry is generated from the 128 kHz frequency division stage, bit 7 (CF) in RTC CONTROL REGISTER 1 (RTC.RCR1) is set to 1, indicating the simultaneous occurrence of the carry and the 64 Hz counter read. In this case, the read value is not valid, and so RTC.R64CNT must be read again after first writing 0 to the CF bit in RTC.RCR1 to clear it.

When the RESET bit or ADJ bit in RTC CONTROL REGISTER 2 (RTC.RCR2) is set to 1, the RTC frequency divider is initialized and RTC.R64CNT is initialized to 0x00. RTC.R64CNT is not initialized by a power-on or manual reset, or in standby mode.

A carry occurs when the counter increments from 63 to 64.

Bit 7 is always read as 0 and cannot be modified.

	RTC.R64	CNT		0x0		
Field	Bits	Size	Volatile	Synopsis	Туре	
r64cnt	[0:6]	7	Yes	64 Hz Counter	RO	
	Operation	Operation Holds a co		unter value which increments at 64Hz		
	Read Returns cu		Returns cu	urrent value		
	Write Ignored			pred		
	Hard rese	et	Undefined	Undefined		
	7	1	Yes	Reserved	RO	
	Operation	n	Reserved			
	Read		0			
	Write		Ignored			
	Hard rese	et	0			

Table 90: RTC.R64CNT

7.2.2 Second counter (RTC.RSECCNT)

RTC.RSECCNT is an 8-bit read/write register used as a counter for setting and counting the BCD-coded second value in the RTC. It counts on the carry generated once per second by the 64 Hz counter.

The setting range is decimal 00 to 59. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag.

RTC.RSECCNT is not initialized by a power-on or manual reset, or in standby mode.

Bit 7 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

RTC.RSECCNT				0x4			
Field	Bits	Size	Volatile	Synopsis	Туре		
units	[0:3]	4	Yes	Second counter	RW		
	Operation	n	Counts up	1 second units			
	Read		Reads curi	Reads current value			
	Write			Updates current value			
	Hard rese	et	Undefined				
tens	[4:6]	3	Yes	10 second counter	RW		
	Operation	Operation		Counts up 10 seconds			
	Read	Read		Reads current value			
	Write		Updates co	Updates current value			
	Hard rese	et	Undefined				

Table 91: RTC.RSECCNT

RTC.RSECCNT				0x4		
Field	Bits	Size	Volatile	Synopsis	Туре	
	7	1	Yes	Reserved	RO	
	Operation	Operation				
	Read		0			
	Write	/rite Ignored				
	Hard rese	et	0			

Table 91: RTC.RSECCNT

7.2.3 Minute counter (RTC.RMINCNT)

RTC.RMINCNT is an 8-bit read/write register used as a counter for setting and counting the BCD-coded minute value in the RTC. It counts on the carry generated once per minute by the second counter.

The setting range is decimal 00 to 59. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag.

RTC.RMINCNT is not initialized by a power-on or manual reset, or in standby mode.

Bit 7 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

RTC.RMINCNT				0x8		
Field	Bits	Size	Volatile	Synopsis	Туре	
units	[0:3]	4	Yes	Minute counter	RW	
	Operation	1	Counts up	1 minute units		
	Read		Reads curi	rent value		
	Write		Updates co	current value		
	Hard rese	et	Undefined			
tens	[4:6]	3	Yes	10 minute counter	RW	
	Operation	1	Counts up 10 Minutes			
	Read		Reads current value			
	Write		Updates co	current value		
	Hard rese	et	Undefined			

Table 92: RTC.RMINCNT

RTC.RMINCNT				0x8		
Field	Bits	Size	Volatile	Synopsis	Туре	
	7	1	Yes	Reserved	RO	
	Operation		Reserved			
	Read		0			
	Write	Write Ignored				
	Hard rese	et	0			

Table 92: RTC.RMINCNT

7.2.4 Hour counter (RTC.RHRCNT)

RTC.RHRCNT is an 8-bit read/write register used as a counter for setting and counting the BCD-coded hour value in the RTC. It counts on the carry generated once per hour by the minute counter.

The setting range is decimal 00 to 23. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag.

RTC.RHRCNT is not initialized by a power-on or manual reset, or in standby mode.

Bits 7 and 6 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

	RTC.RHRCNT			0x0C		
Field	Bits	Size	Volatile	Synopsis	Туре	
units	[0:3]	4	Yes	Hour counter	RW	
	Operation	า	Counts up	1 hour units		
	Read		Reads cur	rent value		
	Write		Updates co	urrent value		
	Hard res	et	Undefined			
tens	[4:5]	2	Yes	10 hour counter	RW	
	Operation	า	Counts up 10 hours			
	Read		Reads current value			
	Write Updates of			current value		
	Hard res	et	Undefined			

Table 93: RTC.RHRCNT

RTC.RHRCNT				0x0C		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[6:7]	2	Yes	Reserved	RO	
	Operation	Operation				
	Read		0			
	Write Ignored		Ignored			
	Hard res	et	0			

Table 93: RTC.RHRCNT

7.2.5 Day-of-week counter (RTC.RWKCNT)

RTC.RWKCNT is an 8-bit read/write register used as a counter for setting and counting the BCD-coded day-of- week value in the RTC. It counts on the carry generated once per day by the hour counter.

The setting range is decimal 0 to 6. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag.

RTC.RWKCNT is not initialized by a power-on or manual reset, or in standby mode.

Bits 7 to 3 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

RTC.RWKCNT				0x10		
Field	Bits	Size	Volatile	Synopsis	Туре	
units	[0:2]	3	Yes	Day of week	RW	
	Operation	n	Indicates of	day of week		
	Read		Returns da	ay of week code:		
			0: Sunday			
			1: Monday	,		
			2: Tuesday	<i>y</i>		
			3: Wednes	sday		
			4: Thursda	ay		
			5: Friday			
			6: Saturda	у		
	Write		Updates c	urrent value		
	Hard rese	et	Undefined			

Table 94: RTC.RWKCNT

RTC.RWKCNT				0x10		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[3:7]	5	Yes	Reserved	RO	
	Operation	Operation			·	
	Read		0			
	Write	te Ignored				
	Hard res	et	0			

Table 94: RTC.RWKCNT

7.2.6 Day counter (RTC.RDAYCNT)

RTC.RDAYCNT is an 8-bit read/write register used as a counter for setting and counting the BCD-coded day value in the RTC. It counts on the carry generated once per day by the hour counter.

The setting range is decimal 01 to 31. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag. RTC.RDAYCNT is not initialized by a power-on or manual reset, or in standby mode.

The setting range for RTC.RDAYCNT depends on the month and whether the year is a leap year, so care is required when making the setting. Bits 7 and 6 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

	RTC.RDAYCNT			0x14			
Field	Bits	Size	Volatile	Synopsis	Туре		
units	[0:3]	4	Yes	Day counter	RW		
	Operation	n	Counts up	1 day units			
	Read Write		Reads cur	Reads current value			
			Updates current value				
	Hard res	et	Undefined				
tens	[4:5]	2	Yes	10 day counter	RW		
	Operation	Operation		Counts up 10 days			
	Read		Reads current value				
	Write		Updates c	urrent value			
	Hard res	et	Undefined				

Table 95: RTC.RDAYCNT

RTC.RDAYCNT				0x14		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[6:7]	2	Yes	Reserved	RO	
	Operation		Reserved		·	
	Read		0			
	Write		Ignored			
	Hard reset		0			

Table 95: RTC.RDAYCNT

7.2.7 Month counter (RTC.RMONCNT)

RTC.RMONCNT is an 8-bit read/write register used as a counter for setting and counting the BCD-coded month value in the RTC. It counts on the carry generated once per month by the day counter.

The setting range is decimal 01 to 12. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag.

RTC.RMONCNT is not initialized by a power-on or manual reset, or in standby mode.

Bits 7 to 5 are always read as 0. A write to these bits is invalid, but the write value should always be $\mathbf{0}$

RTC.RMONCNT				0x18				
Field	Bits	Size	Volatile	Synopsis	Туре			
units	[0:3]	4	Yes	Month counter	RW			
	Operation	n	Counts up	1 month units	<u>.</u>			
	Read		Reads cur	Reads current value				
	Write		Updates current value					
	Hard res	et	Undefined					
tens	4	1	Yes	10 month Counter	RW			
	Operation	n	Counts up 10 Months					
	Read		Reads current value					
	Write		Updates current value					
			Only values 0 to 9 are defined.					
	Hard res	et	Undefined					

Table 96: RTC.RMONCNT

	RTC.RMO	NCNT		0x18		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[5:7]	3	Yes	Reserved	RO	
	Operatio	n	Reserved		<u>.</u>	
	Read		0			
	Write	Write Ig		Ignored		
	Hard res	et	0			

Table 96: RTC.RMONCNT

7.2.8 Year counter (RTC.RYRCNT)

RTC.RYRCNT is a 16-bit read/write register used as a counter for setting and counting the BCD-coded year value in the RTC. It counts on the carry generated once per year by the month counter.

The setting range is decimal 0000 to 9999. The RTC will not operate normally if any other value is set. Write processing should be performed after stopping the count with the START bit in RTC.RCR2, or by using the carry flag.

RTC.RYRCNT is not initialized by a power-on or manual reset, or in standby mode.

	RTC.RYRC	NT		0x1C				
Field	Bits	Size	Volatile	Synopsis	Туре			
units	[0:3]	4	Yes	Year Counter	RW			
	Operation	ion Counts up		1 year units	·			
	Read		Reads current value					
	Write		Updates current value					
	Hard rese	et	Undefined					
tens	[4:7]	4	Yes	10 year Counter	RW			
	Operation		Counts up 10 years					
	Read	Read		Reads current value				
	Write	Write		Updates current value				
			Only values 0 to 9 are defined.					
	Hard rese	et	Undefined					

Table 97: RTC.RYRCNT

	RTC.RYRC	NT		0x1C			
Field	Bits	Size	Volatile	Synopsis	Туре		
hundreds	[8:11]	4	Yes	100 year Counter	RW		
	Operation	1	Counts up	100 years			
	Read		Reads current value				
	Write		Updates current value				
			Only values 0 to 9 are defined.				
	Hard rese	et	Undefined	ed			
thousands	[12:15]	4	Yes	1000 year Counter	RW		
	Operation		Counts up 1000 years				
	Read		Reads current value				
	Write		Updates current value				
	Hard rese	et	Undefined				

Table 97: RTC.RYRCNT

7.2.9 Second alarm register (RTC.RSECAR)

RTC.RSECAR is an 8-bit read/write register used as an alarm register for the RTC's BCD-coded second value counter, RTC.RSECCNT. When the ENB bit is set to 1, the RTC.RSECAR value is compared with the RTC.RSECCNT value. Comparison between the counter and the alarm register is performed for those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1, and the RTC.RCR1 alarm flag is set when the respective values all match.

The setting range is decimal 00 to 59 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RTC.RSECAR is initialized to 0 by a power-on reset. The other fields in RTC.RSECAR are not initialized by a power-on or manual reset, or in standby mode.

	RTC.RSECAR			0x20		
Field	Bits	Size	Volatile	Synopsis	Туре	
units	[0:3]	4	No	Second value	RW	
	Operation	า	1 second v	ralue for comparison		
	Read		Reads curi	Reads current value		
	Write		Updates co	current value		
	Hard rese	et	Undefined			
tens	[4:6]	3	No	10 Second Value	RW	
	Operation	า	10 second	10 second value for comparison		
	Read		Reads current value			
	Write		S			
	Hard rese	et	Undefined			

Table 98: RTC.RSECAR

RTC.RSECAR				0x20		
Field	Bits	Size	Volatile	Synopsis	Туре	
enb	7	1	No	Comparison enable bit	RO	
	Operation	n	Sets this b	bit to 1 to enable second comparison for alarm		
	Read		Returns cu	current value		
	Write		Updates co	urrent value		
	Hard res	et	0			

Table 98: RTC.RSECAR

7.2.10 Minute alarm register (RTC.RMINAR)

RTC.RMINAR is an 8-bit read/write register used as an alarm register for the RTC's BCD-coded minute value counter, RTC.RMINCNT. When the ENB bit is set to 1, the RTC.RMINAR value is compared with the RTC.RMINCNT value. Comparison between the counter and the alarm register is performed for those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1, and the RTC.RCR1 alarm flag is set when the respective values all match.

The setting range is decimal 00 to 59 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RTC.RMINAR is initialized by a power-on reset. The other fields in RTC.RMINAR are not initialized by a power-on or manual reset, or in standby mode.

	RTC.RMINAR			0x24				
Field	Bits	Size	Volatile	Synopsis	Туре			
units	[0:3]	4	No	Minute value	RW			
	Operation	า	1 minute c	1 minute comparison value				
	Read		Reads current value					
	Write		Updates current value					
	Hard rese	et	Undefined					
tens	[4:6]	3	No	10 minute value	RW			
	Operation	า	1 minute comparison value					
	Read		Reads current value					
	Write		Updates current value					
	Hard rese	et	Undefined					

Table 99: RTC.RMINAR

RTC.RMINAR				0x24		
Field	Bits	Size	Volatile	Synopsis	Туре	
ENB	7	1	No	Comparison enable bit	RO	
	Operation	า	Enables co	omparison for alarm		
	Read		Returns cu	irrent value		
	Write		1: Enable minute comparison			
	Hard rese	et	0			

Table 99: RTC.RMINAR

7.2.11 Hour alarm register (RTC.RHRAR)

RTC.RHRAR is an 8-bit read/write register used as an alarm register for the RTC's BCD-coded hour value counter, RTC.RHRCNT. When the ENB bit is set to 1, the RTC.RHRAR value is compared with the RTC.RHRCNT value. Comparison between the counter and the alarm register is performed for those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1, and the RTC.RCR1 alarm flag is set when the respective values all match.

The setting range is decimal 00 to 23 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RTC.RHRAR is initialized by a power-on reset. The other fields in RTC.RHRAR are not initialized by a power-on or manual reset, or in standby mode.

Bit 6 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

	RTC.RHI	RAR		0x28			
Field	Bits	Size	Volatile	Synopsis	Туре		
units	[0:3]	4	No	Hour Value	RW		
	Operation	า	1 Hour cor	nparison value			
	Read		Reads current value				
	Write		Updates current value				
	Hard res	et	Undefined				
tens	[4:5]	2	No	10 Hour Value	RW		
	Operation	า	10 Hour comparison value				
	Read		Reads cur	rrent value			
	Write		Updates current value				
	Hard res	et	Undefined				

Table 100: RTC.RHRAR

	RTC.RHRAR			0x28				
Field	Bits	Size	Volatile	Synopsis	Туре			
	6	1	Yes	Reserved	RO			
	Operation	n	Reserved	Reserved				
	Read Write		0					
			Ignored					
	Hard rese	et	0					
enb	7	1	No	Comparison enable bit	RO			
	Operation	n	Enables ho	Enables hour comparison for alarm				
	Read	Read		Returns current value				
	Write		1: Enables	1: Enables hour comparison				
	Hard rese	et	0					

Table 100: RTC.RHRAR

7.2.12 Day-of-week alarm register (RTC.RWKAR)

RTC.RWKAR is an 8-bit read/write register used as an alarm register for the RTC's BCD-coded day-of-week value counter, RTC.RWKCNT. When the ENB bit is set to 1, the RTC.RWKAR value is compared with the RTC.RWKCNT value. Comparison between the counter and the alarm register is performed for those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1, and the RTC.RCR1 alarm flag is set when the respective values all match.

The setting range is decimal 0 to 6 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RTC.RWKAR is initialized by a power-on reset. The other fields in RTC.RWKAR are not initialized by a power-on or manual reset, or in standby mode.

Bits 6 to 3 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

RTC.RWKAR				0x2C		
Field	Bits	Size	Volatile	Synopsis	Туре	
units	[0:2]	3	No	Week value	RW	
	Operation	า	Day of wee	ek comparison value		
	Read		Returns da	ay of week code:		
			0=Sunday			
			1=Monday			
			2=Tuesday	/		
			3=Wednes	sday		
			4=Thursda	ay		
			5=Friday			
			6=Saturda	у		
	Write		Updates co	urrent value		
	Hard rese	et	Undefined			

Table 101: RTC.RWKAR

	RTC.RWKAR			0x2C			
Field	Bits	Size	Volatile	Synopsis	Туре		
	[3:6]	4	No	Reserved	RO		
	Operation	า	Reserved	Reserved			
	Read		0				
	Write Ignored			gnored			
	Hard rese	et	0				
enb	7	1	No	Comparison enable bit	RO		
	Operation	n	Enables day of week comparison for alarm				
	Read		Returns current value				
	Write		1: Enable day of week comparison				
	Hard rese	et	0				

Table 101: RTC.RWKAR

7.2.13 Day alarm register (RTC.RDAYAR)

RTC.RDAYAR is an 8-bit read/write register used as an alarm register for the RTC's BCD-coded day value counter, RTC.RDAYCNT. When the ENB bit is set to 1, the RTC.RDAYAR value is compared with the RTC.RDAYCNT value. Comparison between the counter and the alarm register is performed for those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1, and the RTC.RCR1 alarm flag is set when the respective values all match.

The setting range is decimal 01 to 31 + ENB bit. The RTC will not operate normally if any other value is set. The setting range for RTC.RDAYAR depends on the month and whether the year is a leap year, so care is required when making the setting.

The ENB bit in RTC.RDAYAR is initialized by a power-on reset. The other fields in RTC.RDAYAR are not initialized by a power-on or manual reset, or in standby mode.

Bit 6 is always read as 0. A write to this bit is invalid, but the write value should always be 0

RTC.RDAYAR				0x30		
Field	Bits	Size	Volatile	Synopsis	Type	
units	[0:3]	4	No	Day alarm value	RW	
	Operation	n	1 day com	parison value		
	Read		Reads cur	rent value		
	Write		Updates c	urrent value		
	Hard res	et	Undefined			
tens	[4:5]	2	No	10 day value	RW	
	Operation	n	10 day comparison value			
	Read		Reads cur	rent value		
	Write		Updates current value			
	Hard res	et	Undefined			

Table 102: RTC.RDAYAR

RTC.RDAYAR				0x30		
Field	Bits	Size	Volatile	Synopsis	Туре	
	6	1	Yes	Reserved	RO	
	Operation	n	Reserved	Reserved		
	Read		0			
	Write		Ignored			
	Hard res	et	0			
enb	7	1	No	Comparison enable bit	RO	
	Operation	n	Enables day comparison for alarm			
	Read	Read Returns of		Returns current value		
	Write		1: Enable	day comparison		
	Hard res	et	0			

Table 102: RTC.RDAYAR

7.2.14 Month alarm register (RTC.RMONAR)

RTC.RMONAR is an 8-bit read/write register used as an alarm register for the RTC's BCD-coded month value counter, RTC.RMONCNT. When the ENB bit is set to 1, the RTC.RMONAR value is compared with the RTC.RMONCNT value. Comparison between the counter and the alarm register is performed for those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1, and the RTC.RCR1 alarm flag is set when the respective values all match.

The setting range is decimal 01 to 12 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RTC.RMONAR is initialized by a power-on reset. The other fields in RTC.RMONAR are not initialized by a power-on or manual reset, or in standby mode.

Bits 6 and 5 are always read as 0. A write to these bits is invalid, but the write value should always be 0

RTC.RMONAR				0x34		
Field	Bits	Size	Volatile	Synopsis	Туре	
units	[0:3]	4	No	Month alarm value	RW	
	Operation	n	1 month co	omparison value		
	Read		Reads cur	rent value		
	Write		Updates co	urrent value		
	Hard res	et	Undefined			
tens	4	1	No	10 Month Alarm Value	RW	
	Operation	n	10 month o) month comparison value		
Read Reads current value				rent value		
	Write		Updates co	urrent value		
	Hard res	et	Undefined			

Table 103: RTC.RMONAR

RTC.RMONAR				0x34	
Field	Bits	Size	Volatile	Synopsis	Туре
	[5:6]	2	Yes	Reserved	RO
	Operation	n	Reserved		
	Read 0				
	Write		Ignored		
	Hard res	et	0		
ENB	7	1	No	Comparison enable bit	RO
	Operation	n	Enables month comparison for alarm		
	Read		Returns cu	urrent value	
	Write		1: Enable i	month comparison	
	Hard res	et	0		

Table 103: RTC.RMONAR

7.2.15 RTC control register 1 (RTC.RCR1)

RTC.RCR1 is an 8-bit read/write register containing a carry flag and alarm flag, plus flags to enable or disable interrupts for these flags.

The CIE and AIE bits are initialized to 0 by a power-on or manual reset; the value of bits other than CIE and AIE is undefined. In standby mode RTC.RCR1 is not initialized, and retains its current value.

RTC.RCR1				0x38				
Field	Bits	Size	Volatile	Synopsis	Туре			
AF	0	1	Yes	Alarm flag	RW			
	Operation			Sets to 1 when the alarm time set in those registers among RTC.RSECAR, RTC.RMINAR, RTC.RHRAR, RTC.RWKAR, RTC.RDAYAR, and RTC.RMONAR in which the ENB bit is set to 1 matches the respective counter values				
	Read		0: Alarm re	egisters and counter values do not match				
				1: Alarm registers in which the ENB bit is set to 1 and counter values match				
	Write		0: Clear the 1: Ignored	0: Clear the alarm condition 1: Ignored				
	Hard rese	et	0					
	[1:2]	2	-	Reserved	RO			
	Operation R		Reserved					
	Read		0 Ignored					
	Write							
	Hard rese	et	0					

Table 104: RTC.RCR1

RTC.RCR1			0x38			
Field	Bits	Size	Volatile	Synopsis	Туре	
aie	3	1	Yes	Alarm interrupt enable flag	RW	
	Operation	n	Enables or (AF) is set	r disables interrupt generation when the a to 1	larm flag	
	Read		Returns cu	ırrent value		
	Write		0: Alarm interrupt is not generated when AF flag is set to 1 (initial value)			
			1: Alarm in	terrupt is generated when AF flag is set t	o 1	
	Hard res	et	0			
cie	4	1	Yes	Carry interrupt enable flag	RW	
	Operation	n	Enables or disables interrupt generation when the carry flag (CF) is set to 1			
	Read		Returns current value			
	Write		0: Alarm interrupt is not generated when AF flag is set to 1 (initial value)			
			1: Carry in	terrupt is generated when CF flag is set t	o 1	
	Hard res	et	0			
	[5:6]	2	-	Reserved	RO	
	Operation	Operation Res		Reserved		
	Read		Undefined			
	Write		Ignored			
	Hard res	et	Undefined			

Table 104: RTC.RCR1

RTC.RCR1				0x38				
Field	Bits	Size	Volatile	Synopsis	Туре			
cf	7	1	Yes	Carry flag	RW			
	Operation	n	64 Hz court	Sets flag to 1 on generation of a second counter carry, or a 64 Hz counter carry when the 64 Hz counter is read The count register value read at this time is not guaranteed, and so the count register must be read again.				
	Read		Hz counter	counter carry, or 64 Hz counter carry whe				
	Write		O: Clear the carry flag 1= Generate a second counter carry, or a 64 Hz counter when the 64 Hz counter is read					
	Hard res	et	Undefined					

Table 104: RTC.RCR1

7.2.16 RTC control register 2 (RTC.RCR2)

RTC.RCR2 is an 8-bit read/write register used for periodic interrupt control, 30-second adjustment, and frequency divider RESET and RTC count control.

RTC.RCR2 is basically initialized to 0x09 by a power-on reset, except that the value of the PEF bit is undefined. In a manual reset, bits other than RTCEN and START are initialized, while the value of the PEF bit is undefined. In standby mode RTC.RCR2 is not initialized, and retains its current value.

RTC.RCR2				0x3C				
Field	Bits	Size	Volatile	Туре				
start	0	1	Yes	Start bit	RW			
	Operation	า	Stops and	restarts counter (clock) operation				
	Read		Returns cu	irrent value				
	Write			0: Second, minute, hour, day, day-of-week, month, and year counters are stopped ^A				
			1: Second, minute, hour, day, day-of-week, month, and year counters operate normally (initial value)					
	Hard res	et	1					
reset	1	1	Yes	Reset bit	RW			
	Operation		Initializes frequency divider circuits by writing 1 to this bit When 1 is written to the RESET bit, the frequency divider circuits (RTC prescaler and RTC.R64CNT) are reset and the RESET bit is automatically cleared to 0 (that is it does not need to be written with 0).					
Read			Returns cu	rrent value				
			clock operation (initial value) acy divider circuits are reset					
	Hard res	et	0					

Table 105: RTC.RCR2

RTC.RCR2				0x3C		
Field	Bits	Size	Volatile	Synopsis	Туре	
adj	2	1	Yes	Second adjustment	RW	
	Operation	า	When 1 is rounded do more is roucircuits (R	r 30-second adjustment is written to this bit, a value up to 29 seconds is I down to 00 seconds, and a value of 30 seconds or rounded up to 1 minute. The frequency divider (RTC prescaler and RTC.R64CNT) are also reset at e. This bit always returns 0 if read.		
	Read		Returns cu	rrent value		
	Write			clock operation (initial value) nd adjustment performed		
	Hard res	et	0			
rtcen	3	1	Yes	Oscillator enable	RW	
	Operation	า	Controls th	e operation of the RTC's crystal oscillato	r	
	Read		Returns current value			
	Write			rystal oscillator is halted stal oscillator is operated (initial value)		
	Hard res	et	1			

Table 105: RTC.RCR2

	RTC.RC	R2		0x3C			
Field	Bits	Size	Volatile		Syn	opsis	Туре
pes0,	[4:6] 3		Yes	Periodi	Periodic interrupt enable RW		RW
PES1, pes2	Operation	n	Specifies t	the period	for period	lic interrupts	
	Read		Returns co	urrent val	ue		
	Write		Bit 6: PES2	Bit 5: PES1	Bit 4: PES0	Description	
			0	0	0	No periodic interrupt generation (initial value)	
			-	1	0	Periodic interrupt g at 1/256-second int	
			-	-	1	Periodic interrupt g at 1/64-second inte	
			1	0	0	Periodic interrupt g at 1/16-second inte	
			-	-	1	Periodic interrupt g at 1/4-second interv	
			-	1	0	Periodic interrupt g at 1/2-second interv	
			-	-	1	Periodic interrupt g at 1-second interva	
			-	-	-	Periodic interrupt g at 2-second interva	
	Hard res	et	0				

Table 105: RTC.RCR2

	RTC.RC	R2		0x3C				
Field	Bits	Size	Volatile	Synopsis	Туре			
pef	7	1	Yes	Periodic interrupt flag R				
	Operation	n		Allows interrupt generation at the interval specified by bits PES2 to PES0				
	Read		Returns cu	eturns current value				
	Write		0: Interrup	upt is not generated				
			1: Interrup	t is generated				
	Hard res	et	Undefined					

Table 105: RTC.RCR2

A. The 64 Hz counter continues to operate unless stopped by means of the RTCEN bit.

Operation 219

7.3 Operation

Examples of the use of the RTC are shown below.

7.3.1 Time setting procedures

Figure 22 shows examples of the time setting procedures.

Figure 22: Examples of time-setting procedures

The procedure for setting the time after stopping the clock is shown in the first flow diagram in *Figure 22*. The programming for this method is simple, and it is useful for setting all the counters, from second to year.

The procedure for setting the time while the clock is running is shown in the second flow diagram in *Figure 22*. This method is useful for modifying only certain counter values (for example, only the second data or hour data). If a carry occurs during the write operation, the write data is automatically updated and there will be an error in the set data. The carry flag should therefore be used to check the write status. If the carry flag (RTC.RCR1.CF) is set to 1, the write must be repeated.

The interrupt function can also be used to determine the carry flag status.

Operation 221

7.3.2 Time reading procedures

Figure 23 shows examples of the time-reading procedures.

Figure 23: Examples of time-reading procedures

If a carry occurs while the time is being read, the correct time will not be obtained and the read must be repeated. The procedure for reading the time without using interrupts is shown in the first flow diagram, and the procedure using carry interrupts in the second flow diagram in *Figure 23*. The method without using interrupts is normally used to keep the program simple.

7.3.3 Alarm function

The use of the alarm function is illustrated in *Figure 24*.

Figure 24: Example of use of alarm function

An alarm can be generated by the second, minute, hour, day of the week, day or month value, or a combination of these. Write 1 to the ENB bit in the alarm registers involved in the alarm setting, and set the alarm time in the lower bits. Write 0 to the ENB bit in registers not involved in the alarm setting.

When the counter and the alarm time match, RTC.RCR1.AF is set to 1. Alarm detection can be confirmed by reading this bit, but normally an interrupt is used. If 1 has been written to RTC.RCR1.AIE, an alarm interrupt is generated in the event of alarm, enabling the alarm to be detected.

Interrupts 223

The alarm flag remains set while the counter and alarm time match. If the alarm flag is cleared by writing 0 during this period, it will therefore be set again immediately afterward. This needs to be taken into consideration when writing the program.

7.4 Interrupts

There are 3 kinds of RTC interrupt:

- alarm interrupts,
- · periodic interrupts,
- · carry interrupts.

An alarm interrupt request (ATI) is generated when the alarm flag (AF) in RTC.RCR1 is set to 1 while the alarm interrupt enable bit (AIE) is also set to 1.

A periodic interrupt request (PRI) is generated when the periodic interrupt enable bits (PES2 to PES0) in RTC.RCR2 are set to a value other than 000 and the periodic interrupt flag (PEF) is set to 1.

A carry interrupt request (CUI) is generated when the carry flag (CF) in RTC.RCR1 is set to 1 while the carry interrupt enable bit (CIE) is also set to 1.

7.5 Usage notes

7.5.1 Register initialization

After powering on and making the RTC.RCR1 register settings, reset the frequency divider (by setting RTC.RCR2.RESET to 1) and make initial settings for all the other registers.

7.5.2 Crystal oscillator circuit

Crystal oscillator circuit constants (recommended values) are shown in *Table 106*, and the RTC crystal oscillator circuit in *Figure 25*.

f _{osc}	C _{in}	C _{out}
32.768 kHz	10-22 pF	10-22 pF

Table 106: Crystal oscillator circuit constants (recommended values)

Figure 25: Example of crystal oscillator circuit connection

- Note: 1 Select either the C_{IN} or C_{OUT} side for the frequency adjustment variable capacitor according to requirements such as the adjustment range and degree of stability. The typical value of both C_{IN} and C_{OUT} is 15 pF.
 - 2 Built-in resistance value R_F (typical value) = 10 M Ω , R_D (typical value) = 400 k Ω
 - 3 C_{IN} and C_{OUT} values include floating capacitance due to the wiring. Take care when using a solid-earth board.

Usage notes 225

4 The crystal oscillation stabilization time depends on the mounted circuit constants and floating capacitance and should be decided after consultation with the crystal resonator manufacturer.

- 5 Place the crystal resonator and load capacitors C_{IN} and C_{OUT} as close as possible to the chip. (Correct oscillation may not be possible if there is externally induced noise in the EXTAL2 and XTAL2 pins).
- 6 Ensure that the crystal resonator connection pin (EXTAL2 and XTAL2) wiring is routed as far away as possible from other power lines (except GND) and signal lines.
- 7 The typical value of C_{RTC} is 100 nF.

Timer unit (TMU)

8.1 Overview

This chapter describes the on-chip 32-bit timer unit (TMU) module comprising three 32-bit timer channels (channels 0 to 2).

8.1.1 Features

The TMU has the following features:

- · auto-reload type 32-bit down-counter provided for each channel,
- input capture function provided in channel 2,
- selection of rising edge or falling edge as external clock input edge when external clock is selected or input capture function is used,
- 32-bit timer constant register for auto-reload use, read/write at any time, and 32-bit down-counter provided for each channel,
- selection of 7 counter input clocks for each channel,
 - external clock (TCLK),
 - on-chip RTC output clock,
 - 5 internal clocks (P/4, P/16, P/64, P/256, P/1024) (P is the peripheral module clock),
- each channel can also operate in module standby mode when the on-chip RTC output clock is selected as the counter input clock, that is, timer operation continues even when the clock has been stopped for the TMU,

- timer count operations using an external or internal clock are only possible when a clock is supplied to the timer unit,
- synchronous read operation,¹
- 2 interrupt sources,
 - 1 underflow source (channels 0 to 2),
 - 1 input capture source (channel 2),
- · DMAC data transfer request capability,
 - on channel 2, a data transfer request is sent to the DMAC when an input capture interrupt is generated.

^{1.} As the timer counters (TCNT) are serially modified 32-bit registers and the internal peripheral module bus is 16 bits wide, there is a time difference when reading the upper 16 bits and lower 16 bits of TCNT. To prevent counter read value drift due to this time difference, a synchronization circuit is provided that allows simultaneous reading of all 32 bits of the TCNT data.

Overview 229

8.1.2 Block diagram

Figure 26 shows a block diagram of the TMU.

Figure 26: Block diagram of TMU

8.1.3 Pin configuration

Table 107 shows the TMU pins.

Pin Name	Abbreviation	I/O	Function
Clock input/clock output	TCLK	I/O	External clock input pin/input capture control input pin
			RTC output pin (shared with RTC)

Table 107: TMU pins

230 Overview

8.1.4 Register configuration

Table 108 summarizes the TMU registers. All addresses are given as offsets to the TMU base address. Refer to the system address map for the value of TMUBASE.

Channel	Register name	Description	Туре	Address offset	Access size
Common	TMU.TOCR	Timer output control register, see <i>Table 110 on page 232</i>	RW	0x00	8
	TMU.TSTR	Timer start register, see Table 111 on page 233			8
0	TMU.TCOR0	Timer constant register 0, see <i>Table 112 on page 235</i>	RW	0x08	32
	TMU.TCNT0	Timer counter 0, see <i>Table 113 on page 236</i>	RW	0x0C	32
	TMU.TCR0	Timer control register 0, see <i>Table 114 on page 237</i>	RW	0x10	16
	TMU.TCOR1	Timer constant register 1, see <i>Table 112 on page 235</i>	RW	0x14	32
	TMU.TCNT1	Timer counter 1, see Table 113 on page 236	RW	0x18	32
	TMU.TCR1	Timer control register 1, see <i>Table 114 on page 237</i>	RW	0x1C	16
	TMU.TCOR2	Timer constant register 2, see <i>Table 112 on page 235</i>	RW	0x20	32
	TMU.TCNT2	Timer counter 2, see Table 113 on page 236	RW	0x24	32
	TMU.TCR2	Timer control register 2, see <i>Table 115 on page 239</i>	RW	0x28	16
	TMU.TCPR2	Input capture register, see <i>Table 116 on page 243</i>	RO	0x2C	32

Table 108: TMU registers

Register name	Power-on reset	Manual reset	Standby mode	Initial value	
TMU.TOCR	Initialized	Initialized	Held	0x00	
TMU.TSTR	Initialized	Initialized	Initialized ^A	0x00	
TMU.TCOR0	Initialized	Initialized	Held	0xFFFFFFF	
TMU.TCNT0	Initialized	Initialized	Held ^B	0xFFFFFFF	
TMU.TCR0	Initialized	Initialized	Held	0x0000	
TMU.TCOR1	Initialized	Initialized	Held	0xFFFFFFF	
TMU.TCNT1	Initialized	Initialized	Held ^A	0xFFFFFFF	
TMU.TCR1	Initialized	Initialized	Held	0x0000	
TMU.TCOR2	Initialized	Initialized	Held	0xFFFFFFF	
TMU.TCNT2	Initialized	Initialized	Held ^A	0xFFFFFFF	
TMU.TCR2	Initialized	Initialized	Held	0x0000	
TMU.TCPR2	Held	Held	Held	Undefined	

Table 109: Initialization of TMU registers

- A. Not initialized in standby mode when the input clock is the on-chip RTC output clock
- B. Counts in module standby mode when the input clock is the on-chip RTC output clock.

8.2 Register descriptions

8.2.1 Timer output control register (TMU.TOCR)

TMU.TOCR is an 8-bit read/write register that specifies whether external pin TCLK is used as the external clock or input capture control input pin, or as the on-chip RTC output clock output pin.

TMU.TOCR is initialized to 0x00 by a power-on or manual reset, but is not initialized in standby mode.

TMU.TOCR				0x00			
Field	Bits	Size	Volatile	Synopsis	Туре		
TCOE	[0]	1	No	Timer output control	RW		
	Operation		external cl	Specifies whether timer clock pin TCLK is used as the external clock or input capture control input pin, or as the on-chip RTC output clock output pin			
	Read		Returns cu	irrent value			
	Write			0: Timer clock pin (TCLK) is used as external clock input or input capture control input pin			
			1: Timer cl	ock pin (TCLK) is used as on-chip RTC out pin	output		
	Hard res	et	0				
-	[1:7]	7	Yes	Reserved	RO		
	Operation	n	Reserved				
	Read		0				
	Write		Invalid				
	Hard rese	et	0				

Table 110: TMU.TOCR

8.2.2 Timer start register (TMU.TSTR)

TMU.TSTR is an 8-bit read/write register that specifies whether the channel 0 to 2 timer counters (TCNT) are operated or stopped.

TMU.TSTR is initialized to 0x00 by a power-on or manual reset. In module standby mode, TMU.TSTR is not initialized when the input clock selected by each channel is the on-chip RTC output clock (RTCCLK), and is initialized only when the input clock is the external clock (TCLK) or internal clock (P \emptyset)

TMU.TSTR				0x04				
Field	Bits	Size	Volatile	Synopsis	Туре			
STR0	[0]	1	No	Counter 0 start	RW			
	Operation Read Write			Specifies whether timer counter 0 (TMU.TCNT0) is operated or stopped				
			Returns cu	Returns current value				
			0: TMU.TCNT0 count operation is stopped					
			1: TMU.TCNT0 performs count operation					
	Hard rese	et	0					
STR1	[1]	1	No	Counter 1 start	RW			
	Operation	n	Specifies w or stopped	Specifies whether timer counter 1 (TMU.TCNT1) is operated or stopped				
	Read		Returns current value					
	Write		0: TMU.TCNT1 count operation is stopped					
			1: TMU.TCNT1 performs count operation					
	Hard rese	et	0					

Table 111: TMU.TSTR

TMU.TSTR				0x04				
Field	Bits	Size	Volatile	Synopsis	Туре			
STR2	[2]	1	No	Counter 2 start	RW			
	Operation		I -	Specifies whether timer counter 2 (TMU.TCNT2) is operated or stopped				
	Read		Returns current value					
	Write		0: TMU.TCNT2 count operation is stopped					
			1: TMU.TCNT2 performs count operation					
	Hard rese	et	0					
-	[3:7]	7	Yes	Reserved	RO			
	Operation	า	Reserved					
	Read		0					
	Write		Invalid					
	Hard rese	et	0					

Table 111: TMU.TSTR

8.2.3 Timer constant registers (TMU.TCOR)

The TCOR registers are 32-bit read/write registers. There are 3 TCOR registers, 1 for each channel.

When a TCNT counter underflows while counting down, the TCOR value is set in that TCNT, which continues counting down from the set value.

The TCOR registers are initialized to 0xFFFFFFF by a power-on or manual reset, but are not initialized and retain their contents in standby mode.

TMU.TCOR[n] (n = 0 to 2)				0x08 + (n * 0x0C)		
Field	Bits	Size	Volatile	Synopsis	Туре	
-	[0:31]	32	No	Timer constant	RW	
	Operation	Operation		Reloads TCNT [n] when it underflows		
	Read		Returns cu	rrent value		
	Write		Updates current value			
	Hard rese	et	0xFFFF FF	FFF		

Table 112: TMU.TCOR[n]

8.2.4 Timer counters (TMU.TCNT)

The TCNT registers are 32-bit read/write registers. There are 3 TCNT registers, 1 for each channel.

Each TCNT counts down on the input clock selected by TPSC2 to TPSC0 in the timer control register (TCR).

When a TCNT counter underflows while counting down, the underflow flag (UNF) is set in the corresponding timer control register (TCR). At the same time, the timer constant register (TCOR) value is set in TCNT, and the count-down operation continues from the set value.

As the TCNT registers are serially modified 32-bit registers and the internal peripheral module bus is 16 bits wide, there is a time difference when reading the upper 16 bits and lower 16 bits of TCNT. To prevent counter read value drift due to this time difference, a synchronization circuit is provided. When the upper 16 bits are read, the lower 16 bits are simultaneously stored in a buffer register. After the upper 16 bits are read, the lower 16 bits are read from the buffer register.

The TCNT registers are initialized to 0xFFFF FFFF by a power-on or manual reset, but are not initialized and retain their contents in standby mode.

TMU.TCNT[n] (n = 0 to 2)				0x0C + (n * 0x0C)	
Field	Bits Size Volatile			Synopsis	Туре
-	[0:31]	32	Yes	Timer counter	RW
	Operation	n	Counts on the clock selected by TMU.TCR 32-bit down counter		
	Read		Returns cu	rrent value	
	Write		Updates co	urrent value	
	Hard rese	et	0xFFFFF	FF	

Table 113: TMU.TCNT[n]

When the input clock is the on-chip RTC output clock (RTCCLK), TCNT counts even in module standby mode (that is, when the clock for the TMU is stopped). When the input clock is the external clock (TCLK) or internal clock (P), TCNT contents are retained in standby mode.

8.2.5 Timer control registers (TMU.TCR)

The TCR registers are 16-bit read/write registers. There are 3 TCR registers, 1 for each channel.

Each TCR selects the count clock, specifies the edge when an external clock is selected, and controls interrupt generation when the flag indicating timer counter (TCNT) underflow is set to 1. TMU.TCR2 is also used for channel 2 input capture control, and control of interrupt generation in the event of input capture.

The TCR registers are initialized to 0x0000 by a power-on or manual reset, but are not initialized in standby mode.

Note: there are 2 register formats 1 used by TCR[0] and TCR[1] and another by TCR[2].

TMU.TCR[n] (n = 0 to 1)				0x10 + (n * 0x0C)			
Field	Bits	Size	Volatile	Synopsis	Туре		
TPSC	[0:2]	3	No	Timer prescaler	RW		
	Operation	า	Specifies t	he TCNT count clock for channel [n]			
	Read		Returns cu	irrent value			
	Write		000: Coun	ts on Pφ/4			
			001: Coun	ts on P∳/16			
			010: Counts on Pφ/64				
			011: Counts on Pφ/64				
			100: Counts on Pφ/1024				
			101: Reserved (do not set)				
			110: Counts on-chip RTC output clock				
			111: Count	s on external clock			
	Hard rese	et	000				
CKEG	[3:4]	2	No	Clock edge	RW		
	Operation	า	Selects the external clock input edge when an external clock is selected or the input capture function is used				
	Read		Returns current value				
	Write		00: Count or input capture register set on rising edge				
			01: Count or input capture register set on falling edge				
			1x = Count or input capture register set on both rising and falling edges				
	Hard rese	et	00				

Table 114: TMU.TCR[0:1]

TMU.TCR[n] (n = 0 to 1)				0x10 + (n * 0x0C)		
Field	Bits	Size	Volatile	Synopsis	Туре	
UNIE	[5]	1	No	Underflow interrupt control	RW	
	Operation	n		nabling or disabling of interrupt generatio tatus flag is set to 1, indicating TCNT unc		
	Read		Returns cu	urrent value		
	Write		0: Interrup	t due to underflow (TUNI) is not enabled		
			1: Interrup	t due to underflow (TUNI) is enabled		
	Hard res	et	0			
-	[6:7]	2	-	Reserved	RO	
	Operation		Reserved			
	Read		0			
	Write		Ignored			
	Hard res	et	0			
UNF	[8]	1	Yes	Underflow flag	RW	
	Operation	n	Status flag that indicates the occurrence of underflow			
	Read		0= TCNT has not underflowed			
			1= TCNT h	nas underflowed		
	Write		0= Clears flag to 0			
			1= Write ignored			
	Hard res	et	0			
-	[9:15]	7	-	Reserved	RO	
	Operation	n	Reserved			
	Read		0			
	Write		Invalid			
	Hard res	et	0			

Table 114: TMU.TCR[0:1]

When the input capture function is used, a data transfer request is sent to the DMAC in the event of input capture.

When using the input capture function, the TCLK pin must be designated as an input pin with the TCOE bit in the TMU.TOCR register. The CKEG bits specify whether the rising edge or falling edge of the TCLK signal is used to set the TMU.TCNT2 value in the input capture register (TMU.TCPR2).

The TMU.TCNT2 value is set in TMU.TCPR2 only when the TMU.TCR2.ICPF bit is 0. When the TMU.TCR2.ICPF bit is 1, TMU.TCPR2 is not set in the event of input capture. When input capture occurs, a DMAC transfer request is generated regardless of the value of the TMU.TCR2.ICPF bit. However, a new DMAC transfer request is not generated until processing of the previous request is finished.

TMU.TCR[2]				0x28		
Field	Bits	Size	Volatile	Synopsis	Туре	
TPSC	[0:2]	3	No	Timer prescaler	RW	
	Operation	n	Specifies t	he TCNT count clock for channel 2		
	Read		Returns cu	irrent value		
	Write		000: Counts on Pφ/4			
			001: Coun	ts on P∳/16		
			010: Coun	ts on P∳/64		
			011: Count	ts on P∮/64		
			100: Coun	ts on Pφ/1024		
			101: Rese	rved (Do not set		
			110: Count	ts on-chip RTC output clock		
			111: Count	s on external clock		
	Hard rese	et	000			

Table 115: TMU.TCR[2]

TMU.TCR[2]				0x28			
Field	Bits	Size	Volatile	Synopsis	Туре		
CKEG	[3:4]	2	No	Clock edge	RW		
	Operation	•		Selects the external clock input edge when an external clock is selected or the input capture function is used			
	Read		Returns cu	irrent value			
	Write		00: Count or input capture register set on rising edge				
			01: Count or input capture register set on falling edge				
				1x = Count or input capture register set on both rising and falling edges			
	Hard rese	et	00				
UNIE	[5]	1	No	Underflow interrupt control	RW		
	Operation	n		enabling or disabling of interrupt generation when tatus flag is set to 1, indicating TCNT underflow			
	Read		Returns current value				
	Write		0: Interrupt due to underflow (TUNI) is not enabled				
			1: Interrupt due to underflow (TUNI) is enable				
	Hard rese	et	0				

Table 115: TMU.TCR[2]

TMU.TCR[2]		0x28					
Field	Bits	Size	Volatile	Synopsis	Туре		
ICPE	[6:7]	2	No	Input capture control	RW		
	Operation		control ena	Specifies whether the input capture function is used, and control enabling or disabling of interrupt generation when th function is used			
	Read		Returns cu	rrent value			
	Write		00: Input c	apture function not used			
			01: Reserv	ved (do not set)			
			10: Input capture function used, but interrupt due to input capture (TICPI2) not enabled				
			Data transfer request is sent to DMAC in the event of input capture				
			11: Input capture function used, and interrupt due to input capture (TICPI2) enabled				
			Data trans	fer request is sent to DMAC in the event of	of input		
	Hard res	et	0				
UNF	[8]	1	Yes	Underflow flag	RW		
	Operation	า	Indicates the occurrence of underflow				
	Read		0: TCNT has not underflowed				
			1: TCNT has underflowed				
	Write		0: Clear fla	g to 0			
			1= Ignored				
	Hard rese	et	0				

Table 115: TMU.TCR[2]

TMU.TCR[2]				0x28				
Field	Bits	Size	Volatile	Synopsis	Туре			
ICPF	[9]	1	Yes	Input capture interrupt flag	RW			
	Operation			Indicates the occurrence of input capture This status flag is provided in channel 2 only.				
	Read		O: Input capture has not occurred 1: Input capture has occurred					
	Write		0: Clear flag to 0 1: Ignored					
	Hard rese	et	0					
-	[10:15]	6	No	Reserved	RO			
	Operation	า	Reserved					
	Read		0					
	Write	Write		Invalid				
	Hard rese	et	0					

Table 115: TMU.TCR[2]

8.2.6 Input capture register (TMU.TCPR2)

TMU.TCPR2 is a 32-bit read-only register for use with the input capture function, provided only in channel 2.

The input capture function is controlled by means of the input capture control bits (ICPE1, ICPE0) and clock edge bits (CKEG1, CKEG0) in TMU.TCR2. When input capture occurs, the TMU.TCNT2 value is copied into TMU.TCPR2. The value is set in TMU.TCPR2 only when the ICPF bit in TMU.TCR2 is 0.

TMU.TCPR2 is not initialized by a power-on or manual reset, or in standby mode.

TMU.TCPR2				0x2C		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[0:31]	32	No	Input capture value	RO	
	Operation Gives th		Gives the	the value of TMU.TCNT2 when capture occurs		
	Read		Returns cu	rrent value		
	Write		Ignored			
	Hard rese	et	0xFFFFFF	FF		

Table 116: TMU.TCPR2

8.3 Operation

244

Each channel has a 32-bit timer counter (TCNT) that performs count-down operations, and a 32-bit timer constant register (TCOR). The channels have an autoreload function that allows cyclic count operations, and can also perform external event counting. Channel 2 also has an input capture function.

8.3.1 Counter operation

When 1 of bits STR0 to STR2 is set to 1 in the timer start register (TMU.TSTR), the timer counter (TCNT) for the corresponding channel starts counting. When TCNT underflows, the UNF flag is set in the corresponding timer control register (TCR). If the UNIE bit in TCR is set to 1 at this time, an interrupt request is sent to the CPU. At the same time, the value is copied from TCOR into TCNT, and the count-down continues (auto-reload function).

Example of count operation setting procedure

Figure 27 shows an example of the count operation setting procedure.

- 1 Select the count clock with bits TPSC2 to TPSC0 in the timer control register (TCR). When an external clock is selected, set the TCLK pin to input mode with the TCOE bit in TMU.TOCR, and select the external clock edge with bits CKEG1 and CKEG0 in TCR.
- 2 Specify whether an interrupt is to be generated on TCNT underflow with the UNIE bit in TCR.
- 3 When the input capture function is used, set the ICPE bits in TCR, including specification of whether the interrupt function is to be used.
- 4 Set a value in the timer constant register (TCOR).
- 5 Set the initial value in the timer counter (TCNT).
- 6 Set the STR bit to 1 in the timer start register (TMU.TSTR) to start the count

.

Operation 245

Figure 27: Example of count operation setting procedure

Auto-reload count operation

Figure 28 shows the TCNT auto-reload operation.

Figure 28: TCNT auto-reload operation

TCNT count timing

Operating on internal clock

Any of 5 count clocks (Pø/4, Pø/16, Pø/64, Pø/256, or Pø/1024) scaled from the peripheral module clock can be selected as the count clock by means of the TPSC2 to TPSC0 bits in TCR.

Figure 29 shows the timing in this case.

Figure 29: Count timing when operating on internal clock

Operation 247

Operating on external clock

External clock pin (TCLK) input can be selected as the timer clock by means of the TPSC2 to TPSC0 bits in TCR. The detected edge (rising, falling, or both edges) can be selected with the CKEG1 and CKEG0 bits in TCR. *Figure 30* shows the timing for both-edge detection.

Figure 30: Count timing when operating on external clock

Operating on-chip RTC output clock

The on-chip RTC output clock can be selected as the timer clock by means of the TPSC2 to TPSC0 bits in TCR. *Figure 31* shows the timing in this case.

Figure 31: Count timing when operating on on-chip RTC output clock

8.3.2 Input capture function

Channel 2 has an input capture function.

The procedure for using the input capture function follows.

- 1 Use the TCOE bit in the timer output control register (TMU.TOCR) to set the TCLK pin to input mode.
- 2 Use bits TPSC2 to TPSC0 in the timer control register (TCR) to set an internal clock or the on-chip RTC output clock as the timer operating clock.
- 3 Use bits IPCE1 and IPCE0 in TCR to specify use of the input capture function, and whether interrupts are to generated when this function is used.
- 4 Use bits CKEG1 and CKEG0 in TCR to specify whether the rising or falling edge of the TCLK signal is to be used to set the timer counter (TCNT) value in the input capture register (TMU.TCPR2).

This function cannot be used in standby mode.

When input capture occurs, the TMU.TCNT2 value is set in TMU.TCPR2 only when the ICPF bit in TMU.TCR2 is 0. Also, a new DMAC transfer request is not generated until processing of the previous request is finished.

Figure 32 shows the operation timing when the input capture function is used (with TCLK rising edge detection).

Figure 32: Operation timing when using input capture function

8.4 Interrupts

There are 4 TMU interrupt sources, comprising underflow interrupts and the input capture interrupt (when the input capture function is used). Underflow interrupts are generated on channels 0 to 2, and input capture interrupts on channel 2 only.

An underflow interrupt request is generated (for each channel) according to the AND of UNF and the interrupt enable bit (UNIE) in TCR.

When the input capture function is used and an input capture request is generated, an interrupt is requested if the input capture input flag (ICPF) in TMU.TCR2 is 1 and the input capture control bits (ICPE1, ICPE0) in TMU.TCR2 are 11.

The TMU interrupt sources are summarized in *Table 117*.

Channel	Interrupt Source	Description	Priority
0	TUNI0	Underflow interrupt 0	High
1	TUNI1	Underflow interrupt 1	↑
2	TUNI2	Underflow interrupt 2	\
	TICPI2	Input capture interrupt 2	Low

Table 117: TMU interrupt sources

8.5 Usage notes

8.5.1 Register writes

When performing a register write, timer count operation must be stopped by clearing the start bit (STR0 to STR2) for the relevant channel in the timer start register (TMU.TSTR).

8.5.2 TCNT register reads

When performing a TCNT register read, processing for synchronization with the timer count operation is performed. If a timer count operation and register read processing are performed simultaneously, the TCNT counter value prior to the count-down operation is read by means of the synchronization processing.

8.5.3 Resetting the RTC frequency divider

When the on-chip RTC output clock is selected as the count clock, the RTC frequency divider should be reset.

8.5.4 External clock frequency

Ensure that the external clock frequency for any channel does not exceed P/4.

Serial communication interface with FIFO (SCIF)

9.1 Overview

This chapter describes a single-channel serial communication interface module with built-in FIFO registers (SCIF). The SCIF can perform asynchronous serial communication.

16 stage FIFO registers are provided for both transmission and reception, enabling fast, efficient, and continuous communication.

9.1.1 Features

SCIF features are listed below.

 Asynchronous serial communication in which synchronization is achieved character by character. Serial data communication can be carried out with standard asynchronous communication chips such as UART or ACIA.

There is a choice of eight serial data transfer formats:

- data length: 7 or 8 bits,

- stop bit length: 1 or 2 bits

- parity: even, odd or none.

- Receive error detection:
 - parity,
 - framing,
 - overrun errors.
- Break detection: if the receive data following that in which a framing error occurred is also at the space 0 level, and there is a frame error, a break is detected. When a framing error occurs, a break can also be detected by reading the RXD pin level directly from the serial port register (SCIF.SCSPTR).
- Full duplex communication capability: the transmitter and receiver are independent units, enabling transmission and reception to be performed simultaneously.

The transmitter and receiver both have a 16 stage FIFO buffer structure, enabling fast and continuous serial data transmission and reception.

- · On-chip baud rate generator allows any bit rate to be selected.
- Choice of serial clock source: internal clock from baud rate generator or external clock from SCK pin.
- 4 interrupt sources: there are 4 interrupt sources that can issue requests independently:
 - TRANSMIT-FIFO-DATA-EMPTY,
 - BREAK,
 - RECEIVE-FIFO-DATA-FULL,
 - RECEIVE-ERROR.
- The DMA controller (DMAC) can be activated to execute a data transfer by issuing a DMA transfer request in the event of a TRANSMIT-FIFO-DATA-EMPTY or RECEIVE-FIFO-DATA-FULL interrupt.
- When not in use, the SCIF can be stopped by halting its clock supply to reduce power consumption.
- · Modem control functions (RTS and CTS) are provided.
- The amount of data in the transmit and receive FIFO registers, and the number of receive errors in the receive data in the receive FIFO register, can be ascertained.
- A TIME-OUT ERROR (DR) can be detected during reception.

Overview 253

9.1.2 Block diagram

Figure 33 shows a block diagram of the SCIF.

Figure 33: Block diagram of SCIF

254 Overview

9.1.3 Pin configuration

Table 118 shows the SCIF pin configuration.

Pin name	Abbreviation	I/O	Function
Serial clock pin	MRESET/SCK	Input	Clock input
Receive data pin	MD2/RXD	Input	Receive data input
Transmit data pin	MD1/TXD	Output	Transmit data output
Modem control pin	CTS	I/O	Transmission enabled (clear to send)
Modem control pin	MD8/RTS	I/O	Transmission request (request to send)

Table 118: SCIF pins

Note:

The MRESET/SCK pin functions as the MRESET manual reset pin when a manual reset is executed. The MD1/TXD, MD/RXD, and MD8/RTS pins function as the MD1, MD2, and MD8 mode input pins after a power-on reset. These pins are made to function as serial pins by performing SCIF operation settings with the TE and RE bits in SCIF.SCSCR and the MCE bit in SCIF.SCFCR. Break state transmission and detection can be set in the SCIF's SCIF.SCSPTR register.

Overview 255

9.1.4 Register configuration

The SCIF has the internal registers shown in *Table 119*. These registers are used to specify the data format and bit rate, and to perform transmitter and receiver control. All addresses are given as offsets from the base address for this module. See the system address map for details.

Register name	Description	Туре	Initial value	Address offset	Access size
SCIF.SCRSR	Receive shift register	RW	-	-	8
SCIF.SCFRDR	Receive FIFO data register, see <i>Table 120 on page 257</i>	RO	Undefined	0x14	8
SCIF.SCTSR	Transmit shift register	RW	-	-	8
SCIF.SCFTDR	Transmit FIFO data register, see <i>Table 121 on page 258</i>	WO	Undefined	0x0C	8
SCIF.SCSMR	Serial mode register, see <i>Table 122 on page 259</i>	RW	0x0000	0x00	16
SCIF.SCSCR	Serial control register, see <i>Table 123 on page 264</i>	RW	0x0000	0x08	16
SCIF.SCFSR	Serial status register, see <i>Table 124 on page 271</i>	R(W) ^A	0x0060	0x10	16
SCIF.SCBRR	Bit rate register, see <i>Table 125 on page 283</i>	RW	0xFF	0x04	8
SCIF.SCFCR	FIFO control register, see <i>Table 127 on page 285</i>	RW	0x0000	0x18	16
SCIF.SCFDR	FIFO data count register, see <i>Table 128 on page 291</i>	RO	0x0000	0x1C	16
SCIF.SCSPTR	Serial port register, see <i>Table 129 on page 293</i>	RW	0x0000 ^B	0x20	16
SCIF.SCLSR	Line status register, see <i>Table 130 on page 301</i>	R(W) ^C	0x0000	0x24	16

Table 119: SCIF registers

A. Only 0 can be written, to clear flags. Bits 15 to 8, 3, and 2 are read-only, and cannot be modified.

- B. The value of bits 6. 4 and 0 is undefined.
- C. Only 0 can be written, to clear flags. Bits 15 to 1 are read-only, and cannot be modified.

9.2 Register descriptions

This section describes all register states for the SCIF module.

Note: all addresses are given as offsets from the base address for this module. See the system address map for details.

9.2.1 Receive shift register (SCIF.SCRSR)

SCIF.SCRSR is the register used to receive serial data.

The SCIF sets serial data input from the RXD pin in SCIF.SCRSR in the order received, starting with the LSB (bit 0), and converts it to parallel data. When 1one byte of data has been received, it is transferred to the receive FIFO register, SCIF.SCFRDR, automatically.

SCIF.SCRSR cannot be directly read or written to by the CPU.

9.2.2 Receive FIFO data register (SCIF.SCFRDR)

SCIF.SCFRDR is a 16 stage FIFO register that stores received serial data.

When the SCIF has received 1 byte of serial data, it transfers the received data from SCIF.SCRSR to SCIF.SCFRDR where it is stored, and completes the receive operation. SCIF.SCRSR is then enabled for reception, and consecutive receive operations can be performed until the receive FIFO register is full (16 data bytes).

SCIF.SCFRDR is a read-only register, and cannot be written to by the CPU.

If a read is performed when there is no receive data in the receive FIFO register, an undefined value will be returned. When the receive FIFO register is full of receive

data, subsequent serial data is lost. The contents of SCIF.SCFRDR are undefined after a power-on reset or manual reset.

SCIF.SCFRDR				0x14	
Field	Bits	Size	Volatile	Synopsis	Туре
SCIF.SCF	[0:7]	8	Yes	16-byte receive FIFO data register	RO
RDR	Operation Holds data		Holds data	a transferred from the SCIF.SCRSR register	
	Read		Returns and removes the next data item in the FIFO If the FIFO is empty an undefined value is returned.		
	Write Invalid		Invalid		
	Hard reset U		Undefined		

Table 120: SCIF.SCFRDR

9.2.3 Transmit shift register (SCIF.SCTSR)

SCIF.SCTSR is the register used to transmit serial data.

To perform serial data transmission, the SCIF first transfers transmit data from SCIF.SCFTDR to SCIF.SCTSR, then sends the data to the TXD pin starting with the LSB (bit 0).

When transmission of 1 byte is completed, the next transmit data is transferred from SCIF.SCFTDR to SCIF.SCTSR, and transmission started, automatically.

SCIF.SCTSR cannot be directly read or written to by the CPU.

9.2.4 Transmit FIFO data register (SCIF.SCFTDR)

SCIF.SCFTDR is a 16 stage FIFO register that stores data for serial transmission.

If SCIF.SCTSR is empty when transmit data has been written to SCIF.SCFTDR, the SCIF transfers the transmit data written in SCIF.SCFTDR to SCIF.SCTSR and starts serial transmission.

SCIF.SCFTDR is a write-only register, and cannot be read by the CPU.

The next data cannot be written when SCIF.SCFTDR is filled with 16 bytes of transmit data. Data written in this case is ignored. The contents of SCIF.SCFTDR are undefined after a power-on reset or manual reset.

SCIF.SCFTDR				0x0C	
Field	Bits	Size	Volatile	Synopsis	Туре
SCFTDR	[0:7]	8	Yes	16-byte transmit FIFO data register	WO
	Operation Stores data		Stores data	a for serial transmission	
	Read		Invalid		
	SCIF.SC		SCIF.SC1	lata to the FIFO register to be copied to TSR is full the write is ignored.	
	Hard reset Undefined		Undefined		

Table 121: SCIF.SCFTDR

9.2.5 Serial mode register (SCIF.SCSMR)

SCIF.SCSMR is a 16-bit register used to set the SCIF's serial transfer format and select the baud rate generator clock source.

SCIF.SCSMR can be read or written to by the CPU at all times.

SCIF.SCSMR is initialized to 0x0000 by a power-on reset or manual reset. It is not initialized in standby mode or in the module standby state.

SCIF.SCSMR		0x00				
Field	Bits	Size	Volatile	Synopsis	Туре	
CKS1,	[0:1]	2	No	Clock select 1 and 0	RW	
CKS0	Operation		See Section	Selects the clock source for the on-chip baud rate generator. See Section: Bits 1 and 0: clock select 1 and 0 (CKS1, CKS0) on page 263		
	Read		Returns cu	irrent value		
	Write		Updates c	urrent value		
	Hard reset		0			
	[2]	1	-	Reserved	RO	
	Operation		Reserved			
	Read		0			
	Write		0			
	Hard res	et	0			
STOP	[3]	1	No	Stop bit length	RW	
	Operation Sets		Sets the stop bit length			
	Read		Returns current value			
	Write		See Section : Bit 3: stop bit length (STOP) on page 262			
	Hard reset		0			

Table 122: SCIF.SCSMR

SCIF.SCSMR			0x00			
Field	Bits	Size	Volatile	Synopsis	Туре	
O/E	[4]	1	No	Parity mode	RW	
	Operation		checking	Selects either even or odd parity for use in parity addition and checking This field is only used when the PE bit is set to 1.		
	Read		Returns th	e current value.		
	Write		See Section	on : Bit 4: parity mode (O/E) on page 261		
	Hard res	et	0			
PE	[5]	1	No	Parity Enable	RW	
	Operation	n	Selects whether or not parity bit addition is performed in transmission, and parity bit checking in reception			
	Read		Returns current value			
	Write		See Section : Bit 5: parity enable (PE) on page 261			
	Hard res	et	0			
CHR	[6]	1	No	Character Length	RW	
	Operation	n	Selects 7 or 8 bits as the asynchronous mode data length.			
	Read		Returns current value			
	Write		See Section	on : Bit 6: character length (CHR) on pag	e 261	
	Hard res	et	0			
	[7:15]	9	-	Reserved	RO	
	Operation Reserved		Reserved			
	Read 0		0			
	Write 0		0			
	Hard reset 0		0			

Table 122: SCIF.SCSMR

Bits 15 to 7: reserved

These bits are always read as 0, and should only be written with 0.

Bit 6: character length (CHR)

Selects 7 or 8 bits as the asynchronous mode data length.

Bit 6: CHR	Description	
0	8-bit data (initial value)	
1	7-bit data ^A *	

A. When 7-bit data is selected, the MSB (bit 7) of SCIF.SCFTDR is not transmitted.

Bit 5: parity enable (PE)

Selects whether or not parity bit addition is performed in transmission, and parity bit checking in reception.

Bit 5: PE	Description
0	Parity bit addition and checking disabled (Initial value)
1	Parity bit addition and checking enabled ^A

A. When the PE bit is set to 1, the parity (even or odd) specified by the O/E bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the O/E bit.

Bit 4: parity mode (O/E)

Selects either even or odd parity for use in parity addition and checking. The O/E bit setting is only valid when the PE bit is set to 1, enabling parity bit addition and

checking. The O/E bit setting is invalid when parity addition and checking is disabled.

Bit 4: O/E	Description		
0	Even parity ^A (initial value)		
1	Odd parity ^B		

- A. When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even. In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.
- B. When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd. In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

Bit 3: stop bit length (STOP)

Selects 1 or 2 bits as the stop bit length.

Bit 3: STOP	Description		
0	1 stop bit ^A (initial value)		
1	2 stop bits ^B		

- A. In transmission, 1 bit (stop bit) is added to the end of a transmit character before it is sent.
- B. In transmission, 2 bits (stop bits) are added to the end of a transmit character before it is sent.

In reception, only the first stop bit is checked, regardless of the stop bit setting. If the second stop bit is 1, it is treated as a stop bit; if it is 0, it is treated as the start bit of the next transmit character.

Bit 2: reserved

This bit is always read as 0, and should only be written with 0.

Bits 1 and 0: clock select 1 and 0 (CKS1, CKS0)

These bits select the clock source for the on-chip baud rate generator. The clock source can be selected from Pø, Pø/4, Pø/16, and Pø/64, according to the setting of bits CKS1 and CKS0. For the relation between the clock source, the bit rate register setting, and the baud rate, see *Section 9.2.8: Bit rate register (SCIF.SCBRR) on page 282*.

Bit 1: CKS1	Bit 0: CKS0	Description
0	0	Pφ ^A clock (initial value)
	1	Pφ/4 clock
1	0	Pφ/16 clock
	1	Pφ/64 clock

A. Pø: Peripheral clock

9.2.6 Serial control register (SCIF.SCSCR)

The SCIF.SCSCR register performs enabling or disabling of SCIF transfer operations, and interrupt requests, and selection of the serial clock source.

SCIF.SCSCR can be read or written at any time.

SCIF.SCSCR is initialized to 0x0000 by a power-on reset or manual reset. It is not initialized in standby mode or in the module standby state.

SCIF.SCSCR				0x08	
Field	Bits	Size	Volatile	Synopsis	Туре
CKE0	[0]	1	No	Clock enable 0	RW
	Operation		Selects the SCIF clock source		
	Read		Returns the current value		
	Write		See Clock enable (CKE0 and CKE1) on page 269		
	Hard reset		0		
CKE1	[1]	1	No	Clock enable 1	RW
	Operation		Selects the SCIF clock source		
	Read		Returns the current value		
	Write		See Clock enable (CKE0 and CKE1) on page 269		
	Hard reset		0		
	[2]			Reserved	RO
	Operation		Reserved		
	Read		0		
	Write		Invalid		
	Hard reset		0		

Table 123: SCIF.SCSCR

SCIF.SCSCR				0x08	
Field	Bits	Size	Volatile	Synopsis	Туре
REIE	[3]	1	No	Receive error interrupt enable	RW
	Operation		Enables or disables generation of receive-error interrupt (ERI) and BREAK interrupt (BRI) requests		
	Read		Returns the current value		
	Write		See Bit 3: receive error interrupt enable (REIE) on page 269.		
	Hard reset		0		
RE	[4]	1	No	Receive enable	RW
	Operation		Enables or disables the start of serial reception by the SCIF		
	Read		Returns the current value		
	Write		See Bit 4: receive enable (RE) on page 268		
	Hard reset		0		
TE	[5]	1	No	Transmit enable	RW
	Operation		Enables or disables the start of serial transmission by the SCIF		
	Read		Returns the current value		
	Write		See Bit 5: transmit enable (TE) on page 268.		
	Hard reset		0		
RIE	[6]	1	No	Receive interrupt enable	RW
	Operation		Enables or disables generation of a receive interrupts		
	Read		Returns the current value		
	Write		See Bit 6: receive interrupt enable (RIE) on page 267		
	Hard reset		0		

Table 123: SCIF.SCSCR

SCIF.SCSCR				0x08	
Field	Bits	Size	Volatile	Synopsis	Туре
TIE	[7]	1	No	Transmit interrupt enable	RW
	Operation		Enables or disables transmit interrupts		
	Read		Returns the current value		
	Write		See Bit 7: transmit interrupt enable (TIE) on page 267		
	Hard reset		0		
	[8:15]		No	Reserved	RO
	Operation Read Write		Reserved		
			0		
			Invalid		
	Hard rese	et	0		

Table 123: SCIF.SCSCR

Bits 15 to 8 and 2: reserved

These bits are always read as 0, and should only be written with 0.

Bit 7: transmit interrupt enable (TIE)

Bit 7 enables or disables TRANSMIT-FIFO-DATA-EMPTY interrupt (TXI) request generation when serial transmit data is transferred from SCIF.SCFTDR to SCIF.SCTSR. The number of data bytes in the transmit FIFO register falls to or below the transmit trigger set number, and the TDFE flag in the serial status register (SCIF.SCFSR) is set to 1.

Bit 7: TIE	Description
0	TRANSMIT-FIFO-DATA-EMPTY interrupt (TXI) request disabled ^A (initial value)
1	Transmit-FIFO-data-empty interrupt (TXI) request enabled

A. TXI interrupt requests can be cleared by writing transmit data exceeding the transmit trigger set number to SCIF.SCFTDR, reading 1 from the TDFE flag, then clearing it to 0, or by clearing the TIE bit to 0.

Bit 6: receive interrupt enable (RIE)

Bit 6 enables or disables generation of the following requests:

- a receive data full interrupt (RXI) request when the RDF flag or DR flag in SCIF.SCFSR is set to 1,
- a receive error interrupt (ERI) request when the ER flag in SCIF.SCFSR is set to 1,
- a BREAK interrupt (BRI) request when the BRK flag in SCIF.SCFSR or the ORER flag in SCIF.SCLSR is set to 1.

Bit 6: RIE	Description
0	Disables the RXI, ERI and BRI requests (initial value) ^A
1	Enables the RXI, ERI and BRI requests

A. An RXI interrupt request can be cleared by reading 1 from the RDF or DR flag, then clearing the flag to 0, or by clearing the RIE bit to 0. ERI and BRI interrupt requests can be cleared by reading 1 from the ER, BRK, or ORER flag, then clearing the flag to 0, or by clearing the RIE and REIE bits to 0.

Bit 5: transmit enable (TE)

Bit 5 enables or disables the start of serial transmission by the SCIF.

Bit 5: TE	Description
0	Transmission disabled (initial value)
1	Transmission enabled ^A

A. Serial transmission is started when transmit data is written to SCIF.SCFTDR in this state.

Serial mode register (SCIF.SCSMR) and FIFO control register (SCIF.SCFCR) settings must be made, the transmission format decided, and the transmit FIFO reset, before the TE bit is set to 1.

Bit 4: receive enable (RE)

Bit 4 enables or disables the start of serial reception by the SCIF.

Bit 4: RE	Description	
0	Reception disabled ^A (initial value)	
1	Reception enabled ^B	

A. Clearing the RE bit to 0 does not affect the DR, ER, BRK, RDF, FER, PER, and ORER flags, which retain their states.

B. Serial transmission is started when a start bit is detected in this state. Serial mode register (SCIF.SCSMR) and FIFO control register (SCIF.SCFCR) settings must be made, the reception format decided, and the receive FIFO reset, before the RE bit is set to 1.

Bit 3: receive error interrupt enable (REIE)

Bit 3 enables or disables generation of receive error interrupt (ERI) and BREAK interrupt (BRI) requests. The REIE bit setting is valid only when the RIE bit is 0.

Bit 3: REIE	Description
0	ERI and BRI requests disabled ^A (initial value)
1	ERI and BRI requests enabled

A. ERI and BRI requests can be cleared by reading 1 from the ER, BRK, or ORER flag, then clearing the flag to 0, or by clearing the RIE and REIE bits to 0. When REIE is set to 1, ERI and BRI requests are generated even if RIE is cleared to 0. In DMAC transfer, this setting is made if the interrupt controller is to be notified of ERI and BRI requests.

Bit 2: reserved

This bit is always read as 0, and cannot be modified.

Clock enable (CKE0 and CKE1)

These bits select the SCIF clock source and enable or disable clock output from the SCK pin. The combination of CKE1 and CKE0 determine whether the SCK pin functions as serial clock output pin or the serial clock input pin.

Note: however, the setting of the CKE0 bit is valid only when CKE1: 0 (internal clock operation). When CKE1: 1 (external clock) CKE0 is ignored. These bits must be set before determining the SCIF's operating mode with SCIF.SCSMR.

Bit 1: CKE1	Bit 0: CKE0	Description
0	0	Use internal clock
		SCK pin functions as input pin, input signal ignored (initial value)
0	1	Use internal clock
		SCK pin functions as clock output ^A

A. Outputs a clock with a frequency 16 times the bit rate.

9.2.7 Serial status register (SCIF.SCFSR)

SCIF.SCFSR is a 16-bit register. The lower 8 bits consist of status flags that indicate the operating status of the SCIF, and the upper 8 bits indicate the number of receive errors in the data in the receive FIFO register.

SCIF.SCFSR can be read or written to by the CPU at all times. However, 1 cannot be written to flags ER, TEND, TDFE, BRK, RDF, and DR.

Note: in order to clear these flags they must be read as 1 beforehand. The FER flag and PER flag are read-only flags and cannot be modified.

SCIF.SCFSR is initialized to 0x0060 by a power-on reset or manual reset. It is not initialized in standby mode or in the module standby state.

SCIF.SCFSR				0X10		
Field	Bits	Size	Volatile	Synopsis	Туре	
DR	[0]	1	Yes	Receive data ready	RW [*]	
	Operation		number of has arrived received	hat there are fewer than the receive trigged data bytes in SCIF.SCFRDR, and no fur of for at least 15 etu after the stop bit of the receive data ready (DR) on page 282	ther data	
	Read		Returns cu	ırrent value		
	Write		0: Clear th	e flag		
	Hard reset		0			
RDF	[1]	1	Yes	RECEIVE-FIFO-DATA-FULL	RW [*]	
	Operation		SCIF.SCF receive da than the re RTRG0 in	hat the received data has been transferre RSR to SCIF.SCFRDR, and the number ta bytes in SCIF.SCFRDR is equal to or eceive trigger number set by bits RTRG1 at the FIFO control register (SCIF.SCFCR) receive-FIFO-data-full (RDF) on page 28	of greater and	
	Read		Returns current value			
	Write		0: Clear the flag			
	Hard rese	et	0			
PER	[2]	1	Yes	Parity error	RO	
	Operation		Indicates a parity error in the data read from SCIF.SCFRDR See Bit 2: parity error (PER) on page 280		SCFRDR	
	Read		Returns current value			
	Write		Invalid	alid		
	Hard reset		0			

Table 124: SCIF.SCFSR

SCIF.SCFSR			0X10		
Field	Bits	Size	Volatile	Synopsis	Туре
FER	[3]	1	Yes	Framing error	RO
	Operation	า	SCIF.SCF	a framing error in the data read from FRDR framing error (FER) on page 280.	
	Read			urrent value	
				inent value	
	Write		Invalid		
	Hard rese	et	0		
BRK	[4]	1		Break detect	RW [*]
	Operation		Indicates that a receive data break signal has been detected		
			See Bit 4: break detect (BRK) on page 279		
	Read		Returns current value		
	Write		0: Clear the flag		
	Hard rese	et	0		
TDFE	[5]	1	Yes	TRANSMIT-FIFO-DATA-EMPTY	RW [*]
	Operation		to SCIF.SC has fallen to bits TTRG	That data has been transferred from SCIF. CTSR, the number of data bytes in SCIF. Sto or below the transmit trigger data number and TTRG0 in the FIFO control register (CR), and new transmit data can be writter CR	SCFTDR per set by
			See Bit 5: transmit-FIFO-data-empty (TDFE) on page 278		
	Read		Returns current value		
	Write		0: Clear th	e flag	
	Hard reset		1		

Table 124: SCIF.SCFSR

SCIF.SCFSR				0X10		
Field	Bits	Size	Volatile	Synopsis	Туре	
TEND	[6]	1	Yes	Transmit end	RW [*]	
	Operation		the last bit has been e	Indicates that there is no valid data in SCIF.SCFTDR when the last bit of the transmit character is sent, and transmission has been ended See Bit 6: transmit end (TEND) on page 277.		
	Read		Returns cu	irrent value		
	Write		0: Clear th	e flag		
	Hard reset		1			
ER	[7]	1		Receive error	RW^*	
	Operation		Indicates that a framing error or parity error occurred during reception. See Bit 7: receive error (ER) on page 274.			
	Read		Returns current value			
	Write		*Only 0 can be written. This clears the flag			
	Hard res	et	0			
FER3 to	[8:11]	4	Yes	Number of framing errors	RO	
FERU	Operation			indicate the number of data bytes in which for occurred in the receive data stored in FRDR	ch a	
			See Bits 1 on page 27	1 to 8: number of framing errors (FER3 to 74	FER0)	
	Read		Returns cu	urns current value		
	Write		Invalid			
	Hard reset		0			

Table 124: SCIF.SCFSR

SCIF.SCFSR				0X10	
Field	Bits	Size	Volatile	Synopsis	Туре
PER3 to	[12:15]	4	Yes	Number of parity errors	RO
PER0	Operation		These bits indicate the number of data bytes in which error occurred in the receive data stored in SCIF.SC See Bits 15 to 12: number of parity errors (PER3 to Fpage 274.	CFRDR	
	Read Returns c		Returns cu	irrent value	
	Write Invalid		Invalid		
	Hard reset 0		0		

Table 124: SCIF.SCFSR

Bits 15 to 12: number of parity errors (PER3 to PER0)

Bits 15 to 12 indicate the number of data bytes in which a parity error occurred in the receive data stored in SCIF.SCFRDR. After the ER bit in SCIF.SCFSR is set, the value indicated by bits 15 to 12 is the number of data bytes in which a parity error occurred. If all 16 bytes of receive data in SCIF.SCFRDR have parity errors, the value indicated by bits PER3 to PER0 will be 0.

Bits 11 to 8: number of framing errors (FER3 to FER0)

Bits 11 to 8 indicate the number of data bytes in which a framing error occurred in the receive data stored in SCIF.SCFRDR. After the ER bit in SCIF.SCFSR is set, the value indicated by bits 11 to 8 is the number of data bytes in which a framing error occurred. If all 16 bytes of receive data in SCIF.SCFRDR have framing errors, the value indicated by bits FER3 to FER0 will be 0.

Bit 7: receive error (ER)

Bit 7 indicates that a framing error or parity error occurred during reception. The ER flag is not affected and retains its previous state when the RE bit in SCIF.SCSCR is cleared to 0. When a receive error occurs, the receive data is still transferred to SCIF.SCFRDR, and reception continues. The FER and PER bits in SCIF.SCFSR can be used to determine whether there is a receive error in the data read from SCIF.SCFRDR.

.

Bit 7: ER	Description
0	No framing error or parity error occurred during reception (initial value)
	Clearing conditions are:
	Power-on reset
	Manual reset
	When 0 is written to ER after reading ER = 1
1	A framing error or parity error occurred during reception
	Setting conditions are:
	When the SCIF checks whether the stop bit at the end of the receive data is 1
	When reception ends, and the stop bit is 0 ^A
	When, in reception, the number of 1 bits in the receive data plus the parity bit does not match the parity setting (even or odd) specified by the O/E bit in SCIF.SCSMR

A. In 2 stop bit mode, only the first stop bit is checked for a value of 1. The second stop bit is not checked.

Bit 6: transmit end (TEND)

Bit 6 indicates that there is no valid data in SCIF.SCFTDR when the last bit of the transmit character is sent, and transmission has been ended.

Bit 6: TEND	Description		
0	Transmission in progress		
	Clearing conditions are:		
	When transmit data is written to SCIF.SCFTDR, and 0 is written to TEND after reading TEND = 1.		
	When data is written to SCIF.SCFTDR by the DMAC		
1	Transmission ended (initial value)		
	Setting conditions are:		
	When there is a power-on reset or manual reset.		
	When the TE bit in SCIF.SCSCR is 0.		
	When there is no transmit data in SCIF.SCFTDR on transmission of the last bit of a 1-byte serial transmit character.		

Bit 5: transmit-FIFO-data-empty (TDFE)

Bit 5 indicates that data has been transferred from SCIF.SCFTDR to SCIF.SCTSR, the number of data bytes in SCIF.SCFTDR has fallen to or below the transmit trigger data number set by bits TTRG1 and TTRG0 in the FIFO control register (SCIF.SCFCR), and new transmit data can be written to SCIF.SCFTDR.

Bit 5: TDFE	Description
0	A number of transmit data bytes exceeding the transmit trigger set number written to SCIF.SCFTDR
	Clearing conditions are:
	When transmit data exceeding the transmit trigger set number is written to SCIF.SCFTDR, and 0 is written to TDFE after reading TDFE = 1.
	When transmit data exceeding the transmit trigger set number is written to SCIF.SCFTDR by the DMAC.
1	The number of transmit data bytes in SCIF.SCFTDR does not exceed the transmit trigger set number (initial value)
	Setting conditions are:
	When there is a power-on reset or manual reset.
	When the number of SCIF.SCFTDR transmit data bytes falls to or below the transmit trigger set number as the result of a transmit operation ^A .
	do in to the distriction of the

A. As SCIF.SCFTDR is a 16-byte FIFO register, the maximum number of bytes that can be written when TDFE = 1 is 16 (transmit trigger set number). Data written in excess of this will be ignored. The number of data bytes in SCIF.SCFTDR is indicated by the upper bits of SCIF.SCFDR.

Bit 4: break detect (BRK)

Bit 4 indicates that a receive data BREAK signal has been detected.

Bit 4: BRK	Description
0	A BREAK signal has not been received (initial value)
	Clearing conditions are:
	Power-on reset or manual reset
	When 0 is written to BRK after reading BRK = 1
1	A break signal has been received ^A
	Setting condition is:
	When data with a framing error is received, followed by the space 0 level (low level) for at least 1 frame length

A. When a BREAK is detected, the receive data (0x00) following detection is not transferred to SCIF.SCFRDR. When the break ends and the RECEIVE signal returns to mark 1, receive data transfer is resumed.

Bit 3: framing error (FER)

Bit 3 indicates a framing error in the data read from SCIF.SCFRDR.

Bit 3: FER	Description		
0	No framing error in the receive data read from SCIF.SCFRDR (initial value)		
	Clearing conditions are:		
	When there is a power-on reset or manual reset.		
	When there is no framing error in SCIF.SCFRDR read data.		
1	Framing error in the receive data read from SCIF.SCFRDR		
	Setting condition is:		
	When there is a framing error in SCIF.SCFRDR read data.		

Bit 2: parity error (PER)

Bit 2 indicates a parity error in the data read from SCIF.SCFRDR.

Bit 2: PER	Description
0	No parity error in the receive data read from SCIF.SCFRDR (initial value)
	Clearing conditions are:
	When there is a power-on reset or manual reset.
	When there is no parity error in SCIF.SCFRDR read data.
1	Parity error in the receive data read from SCIF.SCFRDR
	Setting condition is:
	When there is a parity error in SCIF.SCFRDR read data.

Bit 1: receive-FIFO-data-full (RDF)

Bit 1 indicates that the received data has been transferred from SCIF.SCRSR to SCIF.SCFRDR, and the number of receive data bytes in SCIF.SCFRDR is equal to or greater than the receive trigger number set by bits RTRG1 and RTRG0 in the FIFO control register (SCIF.SCFCR).

Bit 1: RDF	Description
0	The number of receive data bytes in SCIF.SCFRDR is less than the receive trigger set number (initial value)
	Clearing conditions are:
	Power-on reset or manual reset
	When SCIF.SCFRDR is read until the number of receive data bytes in SCIF.SCFRDR falls below the receive trigger set number, and 0 is written to RDF after reading RDF = 1
	When SCIF.SCFRDR is read by the DMAC until the number of receive data bytes in SCIF.SCFRDR falls below the receive trigger set number
1	The number of receive data bytes in SCIF.SCFRDR is equal to or greater than the receive trigger set number Setting condition is:
	When SCIF.SCFRDR contains at least the receive trigger set number of receive data bytes ^A

A. SCIF.SCFRDR is a 16-byte FIFO register. When RDF = 1, at least the receive trigger set number of data bytes can be read. If all the data in SCIF.SCFRDR is read and another read is performed, the data value will be undefined. The number of receive data bytes in SCIF.SCFRDR is indicated by the lower bits of SCIF.SCFDR.

Bit 0: receive data ready (DR)

Bit 0 indicates that there are fewer than the receive trigger set number of data bytes in SCIF.SCFRDR, and no further data has arrived for at least 15 etu after the stop bit of the last data received.

Bit 0: DR	Description
0	Reception is in progress or has ended normally and there is no receive data left in SCIF.SCFRDR (initial value)
	Clearing conditions are:
	Power-on reset or manual reset
	When all the receive data in SCIF.SCFRDR has been read, and 0 is written to DR after reading DR = 1
	When all the receive data in SCIF.SCFRDR has been read by the DMAC
1	No further receive data has arrived
	Setting condition is:
	When SCIF.SCFRDR contains fewer than the receive trigger set number of receive data bytes, and no further data has arrived for at least 15 etu ^A after the stop bit of the last data received ^B

- A. Etu: elementary time unit (time for transfer of 1 bit)
- B. Equivalent to 1.5 frames with an 8-bit, 1 stop bit format

9.2.8 Bit rate register (SCIF.SCBRR)

SCIF.SCBRR is an 8-bit register that sets the serial transfer bit rate in accordance with the baud rate generator operating clock selected by bits CKS1 and CKS0 in SCIF.SCSMR.

SCIF.SCBRR can be read or written to by the CPU at all times.

SCIF.SCBRR is initialized to H'FF by a power-on reset or manual reset. It is not initialized in standby mode or in the module standby state.

SCIF.SCBRR				0x04		
Field	Bits	Size	Volatile	Synopsis	Туре	
SCBRR	[0:7]	8		Bit rate register	RW	
	Operation	n		he serial transfer bit rate in accordance w generator operating clock	vith the	
	Read	Read Returns co		irrent value		
	Write	e Updates c		urrent Value		
	Hard res	et	0xFF			

Table 125: SCIF.SCBRR

The SCIF.SCBRR setting is found from the following equation. Asynchronous mode

$$\frac{P_{\phi}}{64 \times 2^{2n-1} \times B} \times 10^{6} - 1 = N$$

Where:

B = Bit rate (bits/s)

N = SCIF.SCBRR setting for band rate generator $(0 \le N \le 255)$

 $P \varphi = Peripheral \ module \ operating \ frequency \ (MHz)$

n = Baud rate generator input clock (n = 0 to 3)

(See Table 126 for the relation between n and the clock.)

		SCIF.SCSMR setting		
n	Clock	CKS1	CKS0	
0	Рф	0	0	
1	Рф/4	0	1	
2	Рф/16	1	0	
3	Pø/64	1	1	

Table 126: Relation between n and the clock

The bit rate error in asynchronous mode is found from the following equation:

Error(%) =
$$\left\{ \frac{P_{\phi} \times 10^{6}}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

9.2.9 FIFO control register (SCIF.SCFCR)

SCIF.SCFCR performs data count resetting and trigger data number setting for the transmit and receive FIFO registers, and also contains a loopback test enable bit.

SCIF.SCFCR can be read or written at any time.

SCIF.SCFCR is initialized to 0x0000 by a power-on reset or manual reset. It is not initialized in standby mode or in the module standby state.

SCIF.SCFCR			0x18			
Field	Bits	Size	Volatile	Synopsis	Туре	
LOOP	[0]	1	No	Loopback test	RW	
	Operation	า	Enables lo	opback testing	•	
			See Bit 0:	loopback test (LOOP) on page 290		
	Read		Returns cu	rrent value		
	Write		Updates c	urrent value		
	Hard res	et	0			
RFRS	[1]	1	No	Received FIFO data register reset	RW	
	Operation	า	Enables F	IFO reset on a power-on or manual reset		
			See Bit 1: page 290.	: receive FIFO data register reset (RFRST) on).		
	Read		Returns current value			
	Write		Updates current value			
	Hard res	et	0			
TFRST	[2]	1	No	Transmit FIFO data register reset	RW	
	Operation	Operation		Enables FIFO reset on a power-on or manual reset. See <i>Bit</i> 2: transmit FIFO data register reset (TFRST) on page 290.		
	Read		Returns current value			
	Write		Updates c	urrent value		
	Hard res	et	0			
MCE	[3]	1	No	Modem control enable	RW	
	Operation	Operation		Enables modem control signals. See Bit 3: modem control enable (MCE) on page 289		
	Read		Returns current value			
	Write		Updates c	urrent value		
	Hard reset 0					

Table 127: SCIF.SCFCR

SCIF.SCFCR		0x18			
Field	Bits	Size	Volatile	Synopsis	Туре
TTRG0	[4:5]	2	No	Transmit FIFO data number triggers	RW
TTRG1	Operation	n	Sets the number of remaining transmit data bytes that sets the transmit FIFO data register empty (TDFE) flag See Bits 5 and 4: transmit FIFO data number trigger		
				TRG0) on page 289.	
	Read		Returns cu	irrent value	
	Write		Updates c	urrent value	
	Hard res	et	0		
RTRG0	[6:7]	2	No	Receive FIFO data number triggers	RW
RTRG1	Operation	n	Sets the number of receive data bytes that sets the receive data full (RDF) flag		
				and 6: receive FIFO data number trigger RTRG0) on page 288	•
	Read		Returns cu	rrent value	
	Write		Updates c	urrent value	
	Hard res	et	0		
RSTRG0	[8:10]	3	No	RTS output active trigger	RO
RSTRG1 RSTRG2	Operation			umber of receive data bytes that sets the signal active	
			See Bits 10, 9 and 8: RTS output active trigger (RSTRG2, RSTRG1 and RSTRG0) on page 288		
	Read		Returns current value		
	Write		Updates current value		
	Hard res	et	0		

Table 127: SCIF.SCFCR

SCIF.SCFCR				0x18		
Field	Bits	Size	Volatile	Synopsis	Туре	
	[11:15]	5	Yes	Reserved	RO	
	Operation Reserved.		Reserved.			
	Read 0		0			
	Write 0 (should		0 (should o	only be written with 0)		
	Hard reset 0		0			

Table 127: SCIF.SCFCR

Bits 15 to 11: reserved

Bits 15 to 11 are always read as 0, and should only be written with 0.

Bits 10, 9 and 8: RTS output active trigger (RSTRG2, RSTRG1 and RSTRG0)

Bits 10, 9 and 8 set the NOT_RTS signal active when the number of received data stored in the receive FIFO data register (SCFRDR) exceeds the trigger number, as shown in the table.

Bit 10: RSTRG2	Bit 9: RSTRG1	Bit 8: RSTRG0	RTS output active trigger
0	0	0	15 (initial value)
0	0	1	1
0	1	0	4
0	1	1	6
1	0	0	8
1	0	1	10
1	1	0	12
1	1	1	14

Bits 7 and 6: receive FIFO data number trigger (RTRG1, RTRG0)

Bits 7 and 6 are used to set the number of receive data bytes that sets the receive data full (RDF) flag in the serial status register (SCIF.SCFSR).

The RDF flag is set when the number of receive data bytes in SCIF.SCFRDR is equal to or greater than the trigger set number shown in the following table.

Bit 7: RTRG1	Bit 6: RTRG0	Receive trigger number
0	0	1 (initial value)
	1	4
1	0	8
	1	14

Bits 5 and 4: transmit FIFO data number trigger (TTRG1, TTRG0)

Bits 5 and 4 are used to set the number of remaining transmit data bytes that sets the transmit FIFO data register empty (TDFE) flag in the serial status register (SCIF.SCFSR). The TDFE flag is set when the number of transmit data bytes in SCIF.SCFTDR is equal to or less than the trigger set number shown in the following table.

Bit 5: TTRG1	Bit 4: TTRG0	Transmit trigger number	Empty bytes in SCIF.SCFTDR when TDFE flag is set
0	0	8	8
	1	4	12
1	0	2	14
	1	1	15

Bit 3: modem control enable (MCE)

Bit 3 enables the CTS and RTS modem control signals.

Bit 3: MCE	Description
0	Modem signals disabled ^A (initial value)
1	Modem signals enabled

A. CTS is fixed at active 0 regardless of the input value, and RTS output is also fixed at 0.

Bit 2: transmit FIFO data register reset (TFRST)

Bit 2 invalidates the transmit data in the transmit FIFO data register and resets it to the empty state.

Bit 2: TFRST	Description	
0	Reset operation disabled ^A (initial value)	
1	Reset operation enabled	

A. A reset operation is performed in the event of a power-on reset or manual reset.

Bit 1: receive FIFO data register reset (RFRST)

Bit 1 invalidates the receive data in the receive FIFO data register and resets it to the empty state. A reset operation is performed in the event of a power-on reset or manual reset.

Bit 1: RFRST	Description
0	Reset operation disabled (initial value)
1	Reset operation enabled

Bit 0: loopback test (LOOP)

Bit 0 internally connects the transmit output pin (TXD) and receive input pin (RXD), and the RTS pin and CTS pin, enabling loopback testing.

Bit 0: LOOP	Description
0	Loopback test disabled (initial value)
1	Loopback test enabled

9.2.10 FIFO data count register (SCIF.SCFDR)

SCIF.SCFDR is a 16-bit register that indicates the number of data bytes stored in SCIF.SCFTDR and SCIF.SCFRDR.

The upper bits show the number of transmit data bytes in SCIF.SCFTDR, and the lower bits show the number of receive data bytes in SCIF.SCFRDR.

SCIF.SCFDR can be read by the CPU at all times.

SCIF.SCFDR		0x1C				
Field	Bits	Size	Volatile	Synopsis	Туре	
R0	[0:4]	8	Yes	Received data count	RO	
R1 R2	Operation	n	These bits SCIF.SCFI	show the number of receive data bytes i	n	
R3 R4	Read		Returns the current count A value of 0x00 indicates that there is no receive data, and a value of 0x10 indicates that SCIF.SCFRDR is full of receive data.			
	Write		Invalid			
	Hard rese	et	0x00			
	[5:7]	3	Yes	Reserved	RO	
	Operation F		Reserved.			
	Read 0		0	0		
	Write 0 (should		0 (should o	only be written with 0)		
	Hard reset 0		0			

Table 128: SCIF.SCFDR

SCIF.SCFDR		0x1C			
Field	Bits	Size	Volatile	Synopsis	Туре
T0 to T4	[8:12]	8	Yes	Transmitted data count	RO
	Operation	Operation		number of untransmitted data bytes in FDR	
	Read		Returns the current count A value of 0x00 indicates that there is no transmit data, and a value of 0x10 indicates that SCIF.SCFTDR is full of transmit data		
	Write		Invalid		
	Hard rese	et	0x00		
	[13:15]	3	Yes	Reserved	RO
	Operation		Reserved		
	Read		0		
	Write 0 (should		0 (should o	only be written with 0)	
	Hard reset 0		0		

Table 128: SCIF.SCFDR

9.2.11 Serial port register (SCIF.SCSPTR)

SCIF.SCSPTR is a 16-bit read/write register that controls input/output and data for the port pins multiplexed with the serial communication interface (SCIF) pins. Input data can be read from the RXD pin, output data written to the TXD pin, and breaks in serial transmission and reception controlled by means of bits 1 and 0. Data can be read from, and output data written to, the CTS pin by means of bits 5 and 4. Data can be read from, and output data written to, the RTS pin by means of bits 6 and 7.

SCIF.SCSPTR can be read or written to at any time.

All SCIF.SCSPTR bits except bits 6, 4, and 0 are initialized to 0 by a power-on reset or manual reset; the value of bits 6, 4, and 0 is undefined. SCIF.SCSPTR is not initialized in standby mode or in the module standby state.

SCIF.SCSPTR		0x20				
Field	Bits	Size	Volatile	Synopsis	Туре	
SPB2DT	[0]	1	No	Serial port break data	RW	
	Operation		output data			
			See Bit 0:	serial port break data (SPB2DT) on page	e 298.	
	Read		Returns cu	Returns current value		
	Write		Updates current value			
	Hard reset		Undefined			
SPB2IO	[1]	1	No	Serial port break I/O	RW	
	Operatio	n	Specifies t	he serial port TxD pin output condition		
	Se		See Bit 1:	serial port break I/O (SPB2IO) on page 2	298.	
	Read Ret		Returns current value			
	Write Updates c		Updates c	urrent value		
	Hard reset 0		0			

Table 129: SCIF.SCSPTR

SCIF.SCSPTR		0x20				
Field	Bits	Size	Volatile	Synopsis	Туре	
SCKDT	[2]	1	No	Serial port clock port data (SCKDT)	RW	
	Operatio	n	Specifies t	Specifies the I/O data for the SCK pin serial port		
			See Bit 2:	See Bit 2: serial port clock port data (SCKDT) on page 297		
	Read		Returns cu	urrent value		
	Write		Updates c	urrent value		
	Hard res	et	0			
SCKIO	[3]	1	Yes	Serial port clock port I/O		
	Operatio	n	Sets the I/	O for the SCK pin serial port		
			See Bit 3:	See Bit 3: serial port clock port data (SCKIO) on page 297		
	Read		Returns current value			
	Write		Updates current value			
	Hard reset		0			
CTSDT	[4]		No	Serial port CTS port data	RW	
	Operatio	n	Specifies the serial port CTS pin input/output data			
			See Bit 4:	serial port CTS port data (CTSDT) on pa	age 297.	
	Read		Returns cu	urrent value		
	Write		Updates current value			
	Hard res	et	Undefined			
CTSIO	[5]	1	No	Serial port CTS port I/O	RW	
	Operatio	n	Specifies t	he serial port CTS pin input/output cond	ition	
			See Bit 5: serial port CTS port I/O (CTSIO) on page 296		e 296	
	Read		Returns cu	urrent value		
	Write		Updates c	urrent value		
	Hard res	Hard reset 0				

Table 129: SCIF.SCSPTR

SCIF.SCSPTR			0x20			
Field	Bits	Size	Volatile	Synopsis	Туре	
RTSDT	[6]		No	Serial port RTS port data	RW	
	Operation	n	Specifies t	Specifies the serial port RTS pin input/output data		
			See Bit 6:	See Bit 6: serial port RTS port data (RTSDT) on page 296.		
	Read		Returns cu	urrent value		
	Write		Updates c	urrent value		
	Hard reset		Undefined	Undefined		
RTSIO	[7]	1	No	Serial port RTS port I/O	RW	
	Operation		Specifies the serial port RTS pin input/output condition			
			See Bit 7: serial port RTS port I/O (RTSIO) on page 296.			
	Read		Returns current value			
	Write		Updates current value			
	Hard res	et	0			
	[8:15]	8	Yes	Reserved	RO	
	Operation		Reserved			
	Read		0x00	0x00		
	Write		0 (should only be written with 0)			
	Hard reset		0			

Table 129: SCIF.SCSPTR

Bits 15 to 8: reserved

Bits 15 to 8 are always read as 0, and should only be written with 0.

Bit 7: serial port RTS port I/O (RTSIO)

Bit 7 specifies the serial port RTS pin input/output condition. When the RTS pin is actually set as a port output pin and outputs the value set by the RTSDT bit, the MCE bit in SCIF.SCFCR should be cleared to 0.

Bit 7: RTSIO	Description			
0	RTSDT bit value is not output to RTS pin (initial value)			
1	RTSDT bit value is output to RTS pin			

Bit 6: serial port RTS port data (RTSDT)

Bit 6 specifies the serial port RTS pin input/output data. Input or output is specified by the RTSIO bit (see the description of bit 7, RTSIO, for details). In output mode, the RTSDT bit value is output to the RTS pin. The RTS pin value is read from the RTSDT bit regardless of the value of the RTSIO bit. The initial value of this bit after a power-on reset or manual reset is undefined.

Bit 6: RTSDT	Description		
0	Input/output data is low level		
1	Input/output data is high level		

Bit 5: serial port CTS port I/O (CTSIO)

Bit 5 specifies the serial port CTS pin input/output condition. When the CTS pin is actually set as a port output pin and outputs the value set by the CTSDT bit, the MCE bit in SCIF.SCFCR should be cleared to 0.

Bit 5: CTSIO	Description
0	CTSDT bit value is not output to CTS pin (initial value)
1	CTSDT bit value is output to CTS pin

Bit 4: serial port CTS port data (CTSDT)

Bit 4 specifies the serial port CTS pin input/output data. Input or output is specified by the CTSIO bit (see the description of bit 5, CTSIO, for details). In output mode, the CTSDT bit value is output to the CTS pin. The CTS pin value is read from the CTSDT bit regardless of the value of the CTSIO bit. The initial value of this bit after a power-on reset or manual reset is undefined.

Bit 4: CTSDT	Description
0	Input/output data is low level
1	Input/output data is high level

Bit 3: serial port clock port data (SCKIO)

Bit 3 sets the I/O for the SCK pin serial port. To actually set the SCK pin as the port output pin and output the value set in the SCKDT bit, set the CKE1 and CKE0 bits of the SCSCR register to 0.

Bit 3: SCKIO	Description
0	Shows that the value of the SCKDT bit is not output to the SCK pin (initial value)
1	Shows that the value of the SCKDT bit is output to the SCK pin.

Bit 2: serial port clock port data (SCKDT)

Bit 2 specifies the I/O data for the SCK pin serial port. The SCKIO bit specifies input or output (see bit 3: SCKIO for details). When set for output, the value of the SCKDT bit is output to the SCK pin. Regardless of the value of the SCKIO bit, the value of the SCK pin is fetched from the SCKDT bit. The initial value after a power-on reset or manual reset is undefined.

Bit 2: SCKDT	Description
0	Shows input/output data is low level
1	Shows input/output data is high level

Bit 1: serial port break I/O (SPB2IO)

Bit 1 specifies the serial port TXD pin output condition. When the TXD pin is actually set as a port output pin and outputs the value set by the SPB2DT bit, the TE bit in SCIF.SCSCR should be cleared to 0.

Bit 1: SPB2IO	Description
0	SPB2DT bit value is not output to the TxD pin (initial value)
1	SPB2DT bit value is output to the TxD pin

Bit 0: serial port break data (SPB2DT)

Bit 0 specifies the serial port RXD pin input data and TXD pin output data. The TXD pin output condition is specified by the SPB2IO bit (see the description of bit 1, SPB2IO, for details). When the TXD pin is designated as an output, the value of the SPB2DT bit is output to the TXD pin. The RXD pin value is read from the SPB2DT bit regardless of the value of the SPB2IO bit. The initial value of this bit after a power-on reset or manual reset is undefined.

Bit 0: SPB2DT	Description		
0	Input/output data is low level		
1	Input/output data is high level		

SCIF I/O port block diagrams are shown in Figure 34 to Figure 37.

Figure 34: MD8/RTS pin

Figure 35: CTS pin

Figure 36: MD1/TxD pin

Figure 37: MD2/RxD pin

9.2.12 Line status register (SCIF.SCLSR)

SCIF.SCLSR is a 16-bit register which contains the overrun error flag.

SCIF.SCLSR				0X24	
Field	Bits	Siz e	Volatile	Synopsis	Туре
ORER	[0]	1	Yes	Overrun error	RW*
	Operation		Indicates that an overrun error occurred		
			See Bit 0:	overrun error (ORER) on page 302.	
	Read		Returns th	e current value	
	Write		0: clear th	e flag	
			Only 0 car	n be written	
	Hard reset		0		

Table 130: SCIF.SCLSR

SCIF.SCLSR				0X24		
Field	Bits	Siz e	Volatile	Synopsis	Туре	
	[1:15]	15	Yes	Reserved	RO	
	Operation		Reserved			
	Read		0			
	Write		0			
Hard reset		0				

Table 130: SCIF.SCLSR

Bits 15 to 1: reserved

Bits 15 to 1 are always read as 0, and should only be written with 0.

Bit 0: overrun error (ORER)

Bit 0 indicates that an overrun error occurred during reception, causing abnormal termination.

Bit 0: ORER	Description			
0	Reception in progress, or reception has ended normally ^A *1 (initial value)			
	Clearing conditions are:			
	Power-on reset or manual reset			
	When 0 is written to ORER after reading ORER = 1			
1	An overrun error occurred during reception ^{B*2}			
	Setting condition is:			
	When the next serial reception is completed while the receive FIFO is full			

A. The ORER flag is not affected and retains its previous state when the RE bit in SCIF.SCSCR is cleared to 0.

Operation 303

B. The receive data prior to the overrun error is retained in SCIF.SCFRDR, and the data received subsequently is lost. Serial reception cannot be continued while the ORER flag is set to 1.

9.3 Operation

9.3.1 Overview

The SCIF can carry out serial communication in asynchronous mode, in which synchronization is achieved character by character.

16 stage FIFO buffers are provided for both transmission and reception, reducing the CPU overhead and enabling fast, continuous communication to be performed. RTS and CTS signals are also provided as modem control signals. The transmission format is selected using the serial mode register (SCIF.SCSMR), as shown in *Table 122*. The SCIF clock source is determined by the CKE1 bit in the serial control register (SCIF.SCSCR), as shown in *Table 131*. SCIF communication provides the following features:

- · choice of 7 or 8 bits for data length,
- choice of parity addition and addition of 1 or 2 stop bits (the combination of these parameters determines the transfer format and character length),
- detection of framing errors, parity errors, RECEIVE-FIFO-DATA-FULL state, overrun errors, receive data ready state, and breaks, during reception,
- indication of the number of data bytes stored in the transmit and receive FIFO registers,
- choice of internal or external clock as SCIF clock source.
 - when internal clock is selected the SCIF operates on the baud rate generator clock,
 - when external clock is selected a clock with a frequency of 16 times the bit rate must be input (the on-chip baud rate generator is not used)

.

SCIF.S	SCIF.SCSMR settings				SCIF transfer f	ormat	
Bit 6: CHR	Bit 5: PE	Bit 3: STO P	Mode	Data length	Multiprocessor bit	Parity bit	Stop bit length
0	0	0	Asynchronous mode	8-bit data	No	No	1 bit
-	-	1	-	-	-	-	2 bits
-	1	0	-	-	-	Yes	1 bit
-	-	1	-	-	-	-	2 bits
1	0	0	-	7-bit data	-	No	1 bit
-	-	1	-	-	-	-	2 bits
-	1	0	-	-	-	Yes	1 bit
-	-	1	-	-	-	-	2 bits

;	SCIF.SCSCR s	setting	SCIF transmit/receive clock		
Bit 1: CKE1	Bit 0: CKE0	Mode	Clock source	SCK pin function	
0	0	Asynchronous mode	Internal	SCIF does not use SCK pin	
0	1	Asynchronous mode	Internal	Output clock with frequency of 16 times the bit rate.	
1	0	Asynchronous mode	External	Inputs clock with frequency of 16 times the bit rate	
1	1	Asynchronous mode	External	Inputs clock with frequency of 16 times the bit rate	

Table 131: SCIF.SCSCR settings for SCIF clock source selection

Operation 305

9.3.2 Serial operation

Data transfer format

Table 132 shows the data transfer formats that can be used. Any of the 8 transfer formats can be selected according to the SCIF.SCSMR settings. In *Table 132* S = start bit, STOP = stop bit and P = parity bit.

SCIF.S	CIF.SCSMR settings						Sei	rial tra	ansfe	er fo	ormat	and fran	nd frame length				
CHR	PE	STOP	1	2	3	4	5	6	7		8	9	10	11	12		
0	0	0	s	8-b	it da	ıta							STOP	-			
0	0	1	s	8-b	it da	ıta							STOP	STOP			
0	1	0	s	8-b	it da	ıta							Р	STOP	-		
0	1	1	s	8-b	it da	ıta							Р	STOP	STOP		
1	0	0	S	7-b	it da	ıta						STOP	_				
1	0	1	s	7-b	it da	ıta						STOP	STOP	-			
1	1	0	s	7-b	it da	ıta						Р	STOP	-			
1	1	1	s	7-b	it da	ıta						Р	STOP	STOP	-		
					T- 1- 1	- 40	0- 0	!-14		c	£						

Table 132: Serial transfer formats

Clock

306

Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCIF's serial clock, according to the setting of the CKE1 bit in SCIF.SCSCR. For details of SCIF clock source selection, see *Table 131*.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

Data transfer operations

SCIF initialization

Before transmitting and receiving data, it is necessary to clear the TE and RE bits in SCIF.SCSCR to 0, then initialize the SCIF as described below.

When the transfer format is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, SCIF.SCTSR is initialized.

Note: clearing the TE and RE bits to 0 does not change the contents of SCIF.SCFSR, SCIF.SCFTDR, or SCIF.SCFRDR.

The TE bit should be cleared to 0 after all transmit data has been sent and the TEND flag in SCIF.SCFSR has been set. TEND can also be cleared to 0 during transmission, but the data being transmitted will go to the mark state after the clearance. Before setting TE again to start transmission, the TFRST bit in SCIF.SCFCR should first be set to 1 to reset SCIF.SCFTDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation will be unreliable in this case.

Figure 38 shows a sample SCIF initialization flowchart.

Operation 307

Figure 38: Sample SCIF initialization flowchart

Serial data transmission

Figure 39 shows a sample flowchart for serial transmission.

Use the following procedure for serial data transmission after enabling the SCIF for transmission.

Figure 39: Sample serial transmission flowchart

Operation 309

In serial transmission, the SCIF operates as described below.

- 1 When data is written into SCIF.SCFTDR, the SCIF transfers the data from SCIF.SCFTDR to SCIF.SCTSR and starts transmitting. Confirm that the TDFE flag in the serial status register (SCIF.SCFSR) is set to 1 before writing transmit data to SCIF.SCFTDR. The number of data bytes that can be written is at least 16 (transmit trigger setting).
- When data is transferred from SCIF.SCFTDR to SCIF.SCTSR and transmission is started, consecutive transmit operations are performed until there is no transmit data left in SCIF.SCFTDR. When the number of transmit data bytes in SCIF.SCFTDR falls to or below the transmit trigger number set in the FIFO control register (SCIF.SCFCR), the TDFE flag is set. If the TIE bit in SCIF.SCSCR is set to 1 at this time, a TRANSMIT-FIFO-DATA-EMPTY interrupt (TXI) request is generated. The serial transmit data is sent from the TXD pin in the following order:
- 2.1 start bit: one 0-bit is output,
- 2.2 transmit data: 8-bit or 7-bit data is output in LSB first order,
- 2.3 parity bit: 1 parity bit (even or odd parity) is output (a format in which a parity bit is not output can also be selected),
- 2.4 stop bit(s): 1 or two 1-bits (stop bits) are output,
- 2.5 mark state: 1 is output continuously until the start bit that starts the next transmission is sent.
- 3 The SCIF checks the SCIF.SCFTDR transmit data at the timing for sending the stop bit. If data is present, the data is transferred from SCIF.SCFTDR to SCIF.SCTSR, the stop bit is sent, and then serial transmission of the next frame is started. If there is no transmit data, the TEND flag in SCIF.SCFSR is set to 1, the stop bit is sent, and then the line goes to the mark state in which 1 is output.

Figure 40 shows an example of the operation for transmission in asynchronous mode.

Figure 40: Example of transmit operation (example with 8-bit data, parity, 1 stop bit)

When modem control is enabled, transmission can be stopped and restarted in accordance with the CTS input value. When CTS is set to 1, if transmission is in progress, the line goes to the mark state after transmission of 1 frame. When CTS is set to 0, the next transmit data is output starting from the start bit. *Figure 41* shows an example of the operation when modem control is used.

Figure 41: Example of operation using modem control (CTS)

Operation 311

Serial data reception

Figure 42 and *Figure 43* show a sample flowchart for serial reception. Use the following procedure for serial data reception after enabling the SCIF for reception.

Figure 42: Sample serial reception flowchart (1)

Figure 43: Sample serial reception flowchart (2)

In serial reception, the SCIF operates as described below.

Operation 313

- 1 The SCIF monitors the transmission line, and if a 0 start bit is detected, performs internal synchronization and starts reception.
- 2 The received data is stored in SCIF.SCRSR in LSB to MSB order.
- 3 The parity bit and stop bit are received. After receiving these bits, the SCIF carries out the following checks:
- 3.1 stop bit check: the SCIF checks whether the stop bit is 1 (if there are 2 stop bits, only the first is checked),
- 3.2 the SCIF checks whether receive data can be transferred from the receive shift register (SCIF.SCRSR) to SCIF.SCFRDR,
- 3.3 overrun error check: the SCIF checks that the ORER flag is 0, indicating that no overrun error has occurred.
- 3.4 break check: the SCIF checks that the BRK flag is 0, indicating that the break state is not set. If all the above checks are passed, the receive data is stored in SCIF.SCFRDR.

Note: Reception continues when a receive error occurs.

4 If the RIE bit in SCIF.SCSCR is set to 1 when the RDF or DR flag changes to 1, a RECEIVE-FIFO-DATA-FULL interrupt (RXI) request is generated. If the RIE bit or REIE bit in SCIF.SCSCR is set to 1 when the ER flag changes to 1, a receive error interrupt (ERI) request is generated. If the RIE bit or REIE bit in SCIF.SCSCR is set to 1 when the BRK or ORER flag changes to 1, a break reception interrupt (BRI) request is generated.

Figure 44 shows an example of the operation for reception.

Figure 44: Example of SCIF receive operation (example with 8-bit data, parity, 1 stop bit)

5 When modem control is enabled, the RTS signal is output when SCIF.SCFRDR is empty. When RTS is 0, reception is possible. When RTS is 1, this indicates that SCIF.SCFRDR contains 15 or more bytes of data, and there is no free space, reception is not possible. *Figure 45* shows an example of the operation when modem control is used.

Figure 45: Example of operation using modem control (RTS)

9.4 SCIF interrupt sources and the DMAC

The SCIF has 4 interrupt sources:

- TRANSMIT-FIFO-DATA-EMPTY interrupt (TXI) request,
- receive error interrupt (ERI) request,
- RECEIVE-FIFO-DATA-FULL interrupt (RXI) request,
- BREAK interrupt (BRI) request.

Table 133 shows the interrupt sources and their order of priority. The interrupt sources are enabled or disabled by means of the TIE, RIE, and REIE bits in SCIF.SCSCR. A separate interrupt request is sent to the interrupt controller for each of these interrupt sources.

When transmission and reception is carried out using the DMAC, output of interrupt requests to the interrupt controller can be inhibited by clearing the RIE bit in SCIF.SCSCR to 0. By setting the REIE bit to 1 while the RIE bit is cleared to 0, it is possible to output ERI and BRI interrupt requests, but not RXI interrupt requests.

When the TDFE flag in the serial status register (SCIF.SCFSR) is set to 1, a TXI request is generated separately from the interrupt request. A TXI request can activate the DMAC to perform data transfer.

When the RDF flag or DR flag in SCIF.SCFSR is set to 1, a RXI request is generated separately from the interrupt request. A RXI request can activate the DMAC to perform data transfer.

When using the DMAC for transmission and reception, set and enable the DMAC before making the SCIF settings. See the specification of the DMA controller module for details of the DMAC setting procedure.

When the BRK flag in SCIF.SCFSR or the ORER flag in the line status register (SCIF.SCLSR) is set to 1, a BRI request is generated. The TXI indicates that transmit data can be written, and the RXI indicates that there is receive data in SCIF.SCFRDR.

Interrupt source	Description	DMAC activation	Priority on reset release
ERI	Interrupt initiated by receive-error flag (ER)	Not possible	High
RXI	Interrupt initiated by receive-FIFO-data-full flag (RDF) or receive data ready flag (DR)		
BRI	Interrupt initiated by break flag (BRK) or overrun error flag (ORER)	Not possible	
TXI	Interrupt initiated by TRANSMIT-FIFO-DATA-EMPTY flag (TDFE)	Possible	Low

Table 133: SCIF interrupt sources

See the *Exceptions chapter of the CPU Architecture manual*, for priorities and the relationship with non-SCIF interrupts.

9.5 Usage notes

Note the following when using the SCIF.

9.5.1 SCIF.SCFTDR writing and the TDFE flag

The TDFE flag in the serial status register (SCIF.SCFSR) is set when the number of transmit data bytes written in the transmit FIFO data register (SCIF.SCFTDR) has fallen to or below the transmit trigger number set by bits TTRG1 and TTRG0 in the FIFO control register (SCIF.SCFCR). After TDFE is set, transmit data up to the number of empty bytes in SCIF.SCFTDR can be written, allowing efficient continuous transmission.

However, if the number of data bytes written in SCIF.SCFTDR is equal to or less than the transmit trigger number, the TDFE flag will be set to 1 again after being read as 1 and cleared to 0. TDFE clearing should therefore be carried out when SCIF.SCFTDR contains more than the transmit trigger number of transmit data bytes.

The number of transmit data bytes in SCIF.SCFTDR can be found from the upper 8 bits of the FIFO data count register (SCIF.SCFDR).

Usage notes 317

9.5.2 SCIF.SCFRDR reading and the RDF flag

The RDF flag in the serial status register (SCIF.SCFSR) is set when the number of receive data bytes in the receive FIFO data register (SCIF.SCFRDR) has become equal to or greater than the receive trigger number set by bits RTRG1 and RTRG0 in the FIFO control register (SCIF.SCFCR). After RDF is set, receive data equivalent to the trigger number can be read from SCIF.SCFRDR, allowing efficient continuous reception.

However, if the number of data bytes in SCIF.SCFRDR is equal to or greater than the trigger number, the RDF flag will be set to 1 again if it is cleared to 0. RDF should therefore be cleared to 0 after being read as 1 after all the receive data has been read.

The number of receive data bytes in SCIF.SCFRDR can be found from the lower 8 bits of the FIFO data count register (SCIF.SCFDR).

9.5.3 Break detection and processing

BREAK signals can be detected by reading the RXD pin directly when a framing error (FER) is detected. In the BREAK state the input from the RXD pin consists of all 0s, so the FER flag is set and the parity error flag (PER) may also be set. Although the SCIF stops transferring receive data to SCIF.SCFRDR after receiving a BREAK, the receive operation continues.

9.5.4 Sending a break signal

The input/output condition and level of the TXD pin are determined by bits SPB2IO and SPB2DT in the serial port register (SCIF.SCSPTR). This feature can be used to send a BREAK signal.

After the serial transmitter is initialized, the TXD pin function is not selected and the value of the SPB2DT bit substitutes for the mark state until the TE bit is set to 1 (that is transmission is enabled). The SPB2IO and SPB2DT bits should therefore be set to 1 (designating output and high level) beforehand.

To send a BREAK signal during serial transmission, clear the SPB2DT bit to 0 (designating low level), then clear the TE bit to 0 (halting transmission). When the TE bit is cleared to 0, the transmitter is initialized, regardless of its current state, and 0 is output from the TXD pin.

9.5.5 Receive data sampling timing and receive margin

The SCIF operates on a base clock with a frequency of 16 times the bit rate. In reception, the SCIF synchronizes internally with the fall of the start bit, which it samples on the base clock. Receive data is latched at the rising edge of the 8th base clock pulse. The timing is shown in *Figure 46*.

Figure 46: Receive data sampling timing in asynchronous mode

The receive margin in asynchronous mode can therefore be expressed as shown in equation (1).

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) | F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

.....(1)

M = Receive margin (%)

N = Ratio of clock frequency to bit rate (N = 16)

D = Clock duty cycle (D = 0 to 1.0)

L = Frame length (L = 9 to 12)

Usage notes 319

F = Absolute deviation of clock frequency

From equation (1), if F = 0 and D = 0.5, the receive margin is 46.875%, as given by equation (2).

When D = 0.5 and F = 0:

$$M = (0.5 - 1/(2 \times 16)) \times 100\% = 46.875\%$$
(2)

This is a theoretical value. A reasonable margin to allow in system designs is 20% to 30%.

9.5.6 SCK/MRESET

As the manual reset pin is multiplexed with the SCK pin, a manual reset must not be executed while the SCIF is operating in external clock mode.

9.5.7 When using the DMAC

When using the DMAC for transmission and reception, inhibit output of RXI and TXI requests to the interrupt controller. If interrupt request output is enabled, interrupt requests to the interrupt controller will be cleared by the DMAC without regard to the interrupt handler.

9.5.8 Serial ports

Note: when the SCIF pin value is read using a serial port, the value read will be the value 2 peripheral clock cycles earlier.

User break controller (UBC)

10

10.1 Overview

The user break controller (UBC) provides functions that simplify program debugging. When break conditions are set in the UBC, a user break interrupt is generated according to the contents of the bus cycle generated by the CPU. This function makes it easy to design an effective self-monitoring debugger, enabling programs to be debugged with the chip alone, without using an in-circuit emulator.

10.1.1 Features

The UBC has the features described below.

- Two break channels (A and B): user break interrupts can be generated on independent conditions for channels A and B, or on sequential conditions (sequential break setting: channel A then channel B).
- Five break compare conditions:
 - address (selection of 32-bit virtual address and ASID for comparison),
 - data: channel B only, 32-bit mask capability,
 - bus cycle: instruction access or operand access,
 - read/write,
 - operand size: byte, word, longword, quadword.

- · Address comparison has the following options:
 - all bits compared,
 - lower 10 bits masked,
 - lower 12 bits masked,
 - lower 16 bits masked,
 - lower 20 bits masked,
 - all bits masked.
- ASID comparison has the following options:
 - all bits compared,
 - all bits masked.
- An instruction access cycle break can be effected before or after the instruction is executed.

Overview 323

10.1.2 Block diagram

Figure 47 shows a block diagram of the UBC.

Figure 47: Block diagram of user break controller

10.2 Register overview

Table 134 shows a summary of the UBC registers.

Register	Description	Time	Addres	s offset	Access	Initial
name	Description	Type	P4	Area	size	value
UBC.BARA	Break address register A, see Section 10.3.2: Break address register A (UBC.BARA) on page 328	RW	0xFF200000	0x1F200000	32	Undefined
UBC.BAMRA	Break address mask register A, see Section 10.3.4: Break address mask register A (UBC.BAMRA) on page 329	RW	0xFF200004	0x1F200004	8	Undefined
UBC.BBRA	Break bus cycle register A, see Section 10.3.5: Break bus cycle register A (UBC.BBRA) on page 331	RW	0xFF200008	0x1F200008	16	0x0000
UBC.BASRA	Break ASID register A, see Section 10.3.3: Break ASID register A (UBC.BASRA) on page 329	RW	0xFF000014	0x1F000014	8	Undefined

Table 134: UBC registers

Register	Description	Туре	Addres	s offset	Access	Initial
name	Description	туре	P4	Area	size	value
UBC.BARB	Break address register B, see Section 10.3.6: Break address register B (UBC.BARB) on page 333	RW	0xFF20000 C	1F20000C	32	Undefined
UBC.BAMRB	Break address mask register B, see Section 10.3.8: Break address mask register B (UBC.BAMRB) on page 333	RW	0xFF200010	0x1F200010	8	Undefined
UBC.BBRB	Break bus cycle register B, see Section 10.3.11: Break bus cycle register B (UBC.BBRB) on page 336	RW	0xFF200014	0x1F200014	16	0x0000
UBC.BASRB	Break ASID register B, see Section 10.3.7: Break ASID register B (UBC.BASRB) on page 333	RW	0xFF000018	0x1F000018	8	Undefined
UBC.BDRB	Break data register B, see Section 10.3.9: Break data register B (UBC.BDRB) on page 334	RW	0xFF200018	0x1F200018	32	Undefined

Table 134: UBC registers

Register	Description	Address Description Type			Access	Initial	
name	bescription		P4	Area	size	value	
UBC.BDMRB	Break data mask register B, see Section 10.3.10: Break data mask register B (UBC.BDMRB) on page 335	RW	0xFF20001 C	0x1F20001C	32	Undefined	
UBC.BRCR	Break control register, see Section 10.3.12: Break control register (UBC.BRCR) on page 337	RW	0xFF200020	0x1F200020	16	0x0000 ^A	

Table 134: UBC registers

A. Some bits are not initialized. See Section 10.3.12: Break control register (UBC.BRCR) on page 337, for details.

10.3 Register descriptions

10.3.1 Access to UBC control registers

The access size must be the same as the control register size. If the sizes are different, a write will not be effected in a UBC register write operation, and a read operation will return an undefined value. UBC control register contents cannot be transferred to a floating-point register using a floating-point memory load instruction.

When a UBC control register is updated, use either of the following methods to make the updated value valid.

- Execute an RTE instruction after the memory store instruction that updated the register. The updated value will be valid from the RTE instruction jump destination onward.
- Execute instructions requiring 5 states for execution after the memory store instruction that updated the register. As the ST40 executes 2 instructions in parallel and a minimum of 0.5 state is required for execution of 1 instruction, 11 instructions must be inserted. The updated value will be valid from the 6th state onward.

10.3.2 Break address register A (UBC.BARA)

Bit	31	30	29	28	27	26	25	24
	BAA31	BAA30	BAA29	BAA28	BAA2 7	BAA26	BAA2 5	BAA2 4
Initial value	-	-	-	-	-	-	-	-
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Bit	23	22	21	20	19	18	17	16
	BAA23	BAA22	BAA21	BAA20	BAA1 9	BAA18	BAA1 7	BAA1 6
Initial value	-	-	-	-	-	-	-	-
Type	RW	RW	RW	RW	RW	RW	RW	RW
Bit	15	14	13	12	11	10	9	8
	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8
Initial value	-	-	-	-	-	-	-	-
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Bit	7	6	5	4	3	2	1	0
	BAA7	BAA6	BAA5	BAA4	ВААЗ	BAA2	BAA1	BAA0
Initial value	-	-	-	-	-	-	-	-
Туре	RW	RW	RW	RW	RW	RW	RW	RW

Break address register A (UBC.BARA) is a 32-bit read/write register that specifies the virtual address used in the channel A break conditions. UBC.BARA is not initialized by a power-on reset or manual reset.

Bits 31 to 0: break address A31 to A0 (BAA31 to BAA0)

These bits hold the virtual address (bits 31 to 0) used in the channel A break conditions.

10.3.3 Break ASID register A (UBC.BASRA)

Break ASID register A (UBC.BASRA) is an 8-bit read/write register that specifies the ASID used in the channel A break conditions. UBC.BASRA is not initialized by a power-on reset or manual reset.

Bits 7 to 0: break ASID A7 to A0 (BASA7 to BASA0)

These bits hold the ASID (bits 7 to 0) used in the channel A break conditions.

10.3.4 Break address mask register A (UBC.BAMRA)

Break address mask register A (UBC.BAMRA) is an 8-bit read/write register that specifies which bits are to be masked in the break ASID set in UBC.BASRA and the break address set in UBC.BARA. UBC.BAMRA is not initialized by a power-on reset or manual reset.

\\ \\ \\ \

Bits 7 to 4: reserved

These bits are always read as 0, and should only be written with 0.

Bit 2: break ASID mask A (BASMA):

Specifies whether all bits of the channel A break ASID (BASA7 to BASA0) are to be masked.

Bit 2: BASMA	Description
0	All UBC.BASRA bits are included in break conditions
1	No UBC.BASRA bits are included in break conditions

Bits 3, 1, and 0: break address mask A2 to A0 (BAMA2 to BAMA0):

These bits specify which bits of the channel A break address (BAA31 to BAA0) set in UBC.BARA are to be masked.

Bit 3: BAMA2	Bit 1: BAMA1	Bit 0: BAMA0	Description
0	0	0	All UBC.BARA bits are included in break conditions
		1	Lower 10 bits of UBC.BARA are masked, and not included in break conditions
	1	0	Lower 12 bits of UBC.BARA are masked, and not included in break conditions
		1	All UBC.BARA bits are masked, and not included in break conditions
1	0	0	Lower 16 bits of UBC.BARA are masked, and not included in break conditions
		1	Lower 20 bits of UBC.BARA are masked, and not included in break conditions
	1	Don't care	Reserved (cannot be set)

10.3.5 Break bus cycle register A (UBC.BBRA)

Bit	15	14	13	12	11	10	9	8
	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0
Type	RO	RO	RO	RO	RO	RO	RO	RO
Bit	7	6	5	4	3	2	1	0
	-	SZA2	IDA1	IDA0	RWA1	RWA0	SZA1	SZA0
Initial value	0	0	0	0	0	0	0	0
Type	RO	RW						

Break bus cycle register A (UBC.BBRA) is a 16-bit read/write register that sets 3 conditions:

- instruction access/operand access,
- · read/write,
- operand size

from among the channel A break conditions.

UBC.BBRA is initialized to 0x0000 by a power-on reset or manual reset. It retains its value in standby mode.

Bits 15 to 7: reserved

These bits are always read as 0, and should only be written with 0.

Bits 5 and 4: instruction access/operand access select A (IDA1, IDA0):

These bits specify whether an instruction access cycle or an operand access cycle is used as the bus cycle in the channel A break conditions.

Bit 5: IDA1	Bit 4: IDA0	Description
0	0	Condition comparison is not performed (Initial value)
	1	Instruction access cycle is used as break condition
1	0	Operand access cycle is used as break condition
	1	Instruction access cycle or operand access cycle is used as break condition

Bits 3 and 2: read/write select A (RWA1, RWA0)

These bits specify whether a read cycle or write cycle is used as the bus cycle in the channel A break conditions.

Bit 3: RWA1	Bit 2: RWA0	Description
0	0	Condition comparison is not performed (Initial value)
	1	Read cycle is used as break condition
1	0	Write cycle is used as break condition
	1	Read cycle or write cycle is used as break condition

Bits 6, 1, and 0: operand size select A (SZA2 to SZA0)

These bits select the operand size of the bus cycle used as a channel A break condition.

Bit 6: SZA2	Bit 1: SZA1	Bit 0: SZA0	Description
0	0	0	Operand size is not included in break conditions (initial value)
		1	Byte access is used as break condition
	1	0	Word access is used as break condition
		1	Longword access is used as break condition
1	0	0	Quadword access is used as break condition
		1	Reserved (cannot be set)
	1		Reserved (cannot be set)

10.3.6 Break address register B (UBC.BARB)

UBC.BARB is the channel B break address register. The bit configuration is the same as for UBC.BARA.

10.3.7 Break ASID register B (UBC.BASRB)

UBC.BASRB is the channel B break ASID register. The bit configuration is the same as for UBC.BASRA.

10.3.8 Break address mask register B (UBC.BAMRB)

UBC.BAMRB is the channel B break address mask register. The bit configuration is the same as for UBC.BAMRA.

10.3.9 Break data register B (UBC.BDRB)

Bit	31	30	29	28	27	26	25	24
	BDB31	BDB30	BDB29	BDB28	BDB27	BDB26	BDB25	BDB24
Initial value	-	-	-	-	-	-	-	-
Type	RW							
Bit	23	22	21	20	19	18	17	16
	BDB23	BDB22	BDB21	BDB20	BDB19	BDB18	BDB17	BDB16
Initial value	-	-	-	-	-	-	-	-
RW	RW	RW	RW	RW	RW	RW	RW	RW
Bit	15	14	13	12	11	10	9	8
	BDB15	BDB14	BDB13	BDB12	BDB11	BDB10	BDB9	BDB8
Initial value	-	-	-	-	-	-	-	-
RW	RW	RW	RW	RW	RW	RW	RW	RW
Bit	7	6	5	4	3	2	1	0
	BDB7	BDB6	BDB5	BDB4	BDB3	BDB2	BDB1	BDB0
Initial value	-	-	-	-	-	-	-	-
RW	RW	RW	RW	RW	RW	RW	RW	RW

Break data register B (UBC.BDRB) is a 32-bit read/write register that specifies the data (bits 31 to 0) to be used in the channel B break conditions. UBC.BDRB is not initialized by a power-on reset or manual reset.

Bits 31 to 0: break data B31 to B0 (BDB31 to BDB0):

These bits hold the data (bits 31 to 0) to be used in the channel B break conditions.

10.3.10 Break data mask register B (UBC.BDMRB)

Bit	31	30	29	28	27	26	25	24
	BDMB31	BDMB30	BDMB29	BDMB28	BDMB27	BDMB26	BDMB25	BDMB24
Initial value	-	-	-	-	-	-	-	-
Type	RW	RW	RW	RW	RW	RW	RW	RW
-								4.0
Bit	23	22	21	20	19	18	17	16
	BDMB23	BDMB22	BDMB21	BDMB20	BDMB19	BDMB18	BDMB17	BDMB16
Initial value	-	-	-	-	-	-	-	-
Type	RW	RW	RW	RW	RW	RW	RW	RW
Bit	15	14	13	12	11	10	9	8
Bit	15 BDMB15	14 BDMB14	13 BDMB13	12 BDMB12		10 BDMB10	9 BDMB9	8 BDMB8
Bit Initial value								
Initial								
Initial value	BDMB15	BDMB14	BDMB13	BDMB12	BDMB11	BDMB10	BDMB9	BDMB8
Initial value	BDMB15	BDMB14	BDMB13	BDMB12	BDMB11	BDMB10	BDMB9	BDMB8
Initial value Type	BDMB15 - RW	BDMB14 - RW	BDMB13 - RW	BDMB12 - RW	BDMB11 - RW	BDMB10 - RW	BDMB9	BDMB8
Initial value Type	- RW 7	BDMB14 - RW 6	BDMB13 - RW 5	BDMB12 - RW 4	BDMB11 - RW 3	BDMB10 - RW 2	BDMB9 - RW	BDMB8 - RW 0

57 -

Break data mask register B (UBC.BDMRB) is a 32-bit read/write register that specifies which bits of the break data set in UBC.BDRB are to be masked. UBC.BDMRB is not initialized by a power-on reset or manual reset.

Bits 31 to 0: break data mask B31 to B0 (BDMB31 to BDMB0)

These bits specify whether the corresponding bit of the channel B break data (BDB31 to BDB0) set in UBC.BDRB is to be masked.

Bit 31 to 0: BDMBA	Description (where n = 31 to 0)
0	Channel B break data bit BDB[n] is included in break conditions
1	Channel B break data bit BDB[n] is masked, and not included in break conditions

Note: when the data bus value is included in the break conditions, the operand size should be specified. When byte size is specified, set the same data in bits 15 to 8 and 7 to 0 of UBC.BDRB and UBC.BDMRB.

10.3.11 Break bus cycle register B (UBC.BBRB)

UBC.BBRB is the channel B bus break register. The bit configuration is the same as for UBC.BBRA.

10.3.12 Break control register (UBC.BRCR)

Bit	15	14	13	12	11	10	9	8
	CMFA	CMFB	-	-	-	РСВА	-	-
Initial value	0	0	0	0	0	-	0	0
Туре	RW	RW	RO	RO	RO	RW	RO	RO
Bit	7	6	5	4	3	2	1	0
	DBEB	РСВВ	-	-	SEQ	-	-	UBDE
Initial value	-	-	0	0	-	0	0	0
Туре	RW	RW	RO	RO	RW	RO	RO	RW

The break control register (UBC.BRCR) is a 16-bit read/write register that specifies

- 1 whether channels A and B are to be used as 2 independent channels or in a sequential condition,
- 2 whether the break is to be effected before or after instruction execution,
- 3 whether the UBC.BDRB register is to be included in the channel B break conditions, and
- 4 whether the user break debug function is to be used. UBC.BRCR also contains condition match flags. The CMFA, CMFB, and UBDE bits in UBC.BRCR are initialized to 0 by a power-on reset, but retain their value in standby mode. The value of the PCBA, DBEB, PCBB, and SEQ bits is undefined after a power-on reset or manual reset, so these bits should be initialized by software as necessary.

Bit 15: condition match flag A (CMFA)

Set to 1 when a break condition set for channel A is satisfied. This flag is not cleared to 0 (to confirm that the flag is set again after once being set, it should be cleared with a write.)

Bit 15: CMFA	Description
0	Channel A break condition is not matched (initial value)
1	Channel A break condition match has occurred

Bit 14: condition match flag B (CMFB)

Set to 1 when a break condition set for channel B is satisfied. This flag is not cleared to 0 (to confirm that the flag is set again after once being set, it should be cleared with a write.)

Bit 14: CMFB	Description
0	Channel B break condition is not matched (initial value)
1	Channel B break condition match has occurred

Bits 13 to 11: reserved

These bits are always read as 0, and should only be written with 0.

Bit 10: instruction access break select A (PCBA)

Specifies whether a channel A instruction access cycle break is to be effected before or after the instruction is executed. This bit is not initialized by a power-on reset or manual reset.

Bit 10: PCBA	Description
0	Channel A PC break is effected before instruction execution
1	Channel A PC break is effected after instruction execution

Bits 9 and 8: reserved

These bits are always read as 0, and should only be written with 0.

Bit 7: data break enable B (DBEB)

Specifies whether the data bus condition is to be included in the channel B break conditions. This bit is not initialized by a power-on reset or manual reset.

Bit 7: DBEB	Description
0	Data bus condition is not included in channel B conditions
1	Data bus condition is included in channel B conditions

Note:

when the data bus is included in the break conditions, bits IDB1 to 0 in break bus cycle register B (UBC.BBRB) should be set to 10 or 11.

Bit 6: PC break select B (PCBB)

Specifies whether a channel B instruction access cycle break is to be effected before or after the instruction is executed. This bit is not initialized by a power-on reset or manual reset.

Bit 6: PCBB	Description
0	Channel B PC break is effected before instruction execution
1	Channel B PC break is effected after instruction execution

Bits 5 and 4: reserved

These bits are always read as 0, and should only be written with 0.

Bit 3: sequence condition select (SEQ)

Specifies whether the conditions for channels A and B are to be independent or sequential. This bit is not initialized by a power-on reset or manual reset.

Bit 3: SEQ	Description
0	Channel A and B comparisons are performed as independent conditions
1	Channel A and B comparisons are performed as sequential conditions (channel A then channel B)

Bits 2 and 1: reserved

These bits are always read as 0, and should only be written with 0.

Bit 0: user break debug enable (UBDE)

Specifies whether the user break debug function (see *Section 10.6: User break debug support function on page 352*) is to be used.

Bit 0: UBDE Description				
0	User break debug function is not used (initial value)			
1	User break debug function is used			

Operation 341

10.4 Operation

10.4.1 Explanation of terms relating to accesses

An instruction access is an access that obtains an instruction. An operand access is any memory access for the purpose of instruction execution. For example, the access to address PC + dispx2 + 4 in the instruction MOV.W @ (disp, PC), Rn (an access very close to the program counter) is an operand access. The fetching of an instruction from the branch destination when a branch instruction is executed is also an instruction access. As the term "data" is used to distinguish data from an address, the term "operand access" is used in this section.

In the ST40, all operand accesses are treated as either read accesses or write accesses. The following instructions require special attention:

- PREF. OCBP. and OCBWB instructions: treated as read accesses.
- MOVCA and OCBI instructions: treated as write accesses,
- TAS instruction: treated as 1 read access and 1 write access.

The operand accesses for the PREF, OCBP, OCBWB, and OCBI instructions are accesses with no access data.

The ST40 handles all operand accesses as having a data size. The data size can be byte, word, longword, or quadword. The operand data size for the PREF, OCBP, OCBWB, MOVCA, and OCBI instructions is treated as longword.

10.4.2 Explanation of terms relating to instruction intervals

In this section, "1 (2, 3,...) instruction(s) after...", as a measure of the distance between 2 instructions, is defined as follows. A branch is counted as an interval of 2 instructions.

Example of sequence of instructions with no branch

```
100 Instruction A (0 instructions after instruction A)

102 Instruction B (1 instruction after instruction A)

104 Instruction [c] (2 instructions after instruction A)

106 Instruction [d] (3 instructions after instruction A)
```

Example of sequence of instructions with a branch

```
100 Instruction A:BT/S L200 (0 instructions after instruction A)

102 Instruction B (1 instruction after instruction A, 0 instructions after instruction B)

L200 200 Instruction [c] (3 instructions after instruction A, 2 instructions after instruction B)

202 Instruction [d] (4 instructions after instruction A, 3 instructions after instruction B)
```

The example of a sequence of instructions with no branch should be applied when the branch destination of a delayed branch instruction is the instruction itself + 4.

10.4.3 User break operation sequence

The sequence of operations from setting of break conditions to user break exception handling is described below.

- 1 Specify pre- or post-execution breaking in the case of an instruction access, inclusion or exclusion of the data bus value in the break conditions in the case of an operand access, and use of independent or sequential channel A and channel B break conditions, in the break control register (UBC.BRCR).
- 2 Set the break addresses in the break address registers for each channel (UBC.BARA, UBC.BARB), the ASIDs corresponding to the break space in the break ASID registers (UBC.BASRA, UBC.BASRB), and the address and ASID masking methods in the break address mask registers (UBC.BAMRA, UBC.BAMRB).

Operation 343

3 If the data bus value is to be included in the break conditions, also set the break data in the break data register (UBC.BDRB) and the data mask in the break data mask register (UBC.BDMRB).

- 4 Set the break bus conditions in the break bus cycle registers (UBC.BBRA, UBC.BBRB).
- 5 If either of the instruction access/operand access select group (IDA[n] and IDB[n] bits) or read/write select group (RWA[n] and RWB[n] bits) of the UBC.BBRA OR UBC.BBRB registers are set to 00, a user break interrupt is not generated on the corresponding channel.
- 6 Make the UBC.BBRA and UBC.BBRB settings after all other break-related register settings have been completed. If breaks are enabled with UBC.BBRA/ UBC.BBRB while the break address, data, or mask register, or the break control register is in the initial state after a reset, a break may be generated inadvertently.
- 7 The operation when a break condition is satisfied depends on the BL bit (in the CPU's SR register). When the BL bit is 0, exception handling is started and the condition match flag (CMFA, CMFB) for the respective channel is set for the matched condition. When the BL bit is 1, the condition match flag (CMFA, CMFB) for the respective channel is set for the matched condition but exception handling is not started.
 - The condition match flags (CMFA, CMFB) are set by a branch condition match, but are not reset. Therefore, a memory store instruction should be used on the UBC.BRCR register to clear the flags to 0. See *Section 10.4.6: Condition match flag setting on page 346*, for the exact setting conditions for the condition match flags.
- 8 When sequential condition mode has been selected, and the channel B condition is matched after the channel A condition has been matched, a break is effected at the instruction at which the channel B condition was matched. See Section 10.4.8: Contiguous A and B settings for sequential conditions on page 348, for the operation when the channel A condition match and channel B condition match occur close together. With sequential conditions, only the channel B condition match flag is set. When sequential condition mode has been selected, if it is wished to clear the channel A match when the channel A condition has been matched but the channel B condition has not yet been matched, this can be done by writing 0 to the SEQ bit in the UBC.BRCR register.

10.4.4 Instruction access cycle break

- 1 When an instruction access, read or word setting is made in the break bus cycle register (UBC.BBRA, UBC.BBRB), an instruction access cycle can be used as a break condition. In this case, breaking before or after execution of the relevant instruction can be selected with the PCBA/PCBB bit in the break control register (UBC.BRCR). When an instruction access cycle is used as a break condition, clear the LSB of the break address registers (UBC.BARA, UBC.BARB) to 0. A break will not be generated if this bit is set to 1.
- When a pre-execution break is specified, the break is effected when it is confirmed that the instruction is to be fetched and executed. Therefore, an overrun-fetched instruction (an instruction that is fetched but not executed when a branch or exception occurs) cannot be used in a break. However, if a TLB miss or TLB protection violation exception occurs at the time of the fetch of an instruction subject to a break, the break exception handling is carried out first. The instruction TLB exception handling is performed when the instruction is reexecuted (see *Exception Types and Priorities in the ST40 CPU Architecture Manual*). Also, since a delayed branch instruction and the delay slot instruction are executed as a single instruction, if a pre-execution break is specified for a delay slot instruction, the break will be effected before execution of the delayed branch instruction. However, a pre-execution break cannot be specified for the delay slot instruction for an RTE instruction.
- 3 With a pre-execution break, the instruction set as a break condition is executed, then a break interrupt is generated before the next instruction is executed. When a post-execution break is set for a delayed branch instruction, the delay slot is executed and the break is effected before execution of the instruction at the branch destination (when the branch is made) or the instruction 2 instructions ahead of the branch instruction (when the branch is not made).
- 4 When an instruction access cycle is set for channel B, break data register B (UBC.BDRB) is ignored in judging whether there is an instruction access match. Therefore, a break condition specified by the DBEB bit in UBC.BRCR is not executed.

Operation 345

10.4.5 Operand access cycle break

1 In the case of an operand access cycle break, the bits included in address bus comparison vary as shown in *Table 135* according to the data size specification in the break bus cycle register (UBC.BBRA, UBC.BBRB).

Data size	Address bits compared
Quadword (100)	Address bits A31 to A3
Longword (011)	Address bits A31 to A2
Word (010)	Address bits A31 to A1
Byte (001)	Address bits A31 to A0
Not included in condition (000)	In quadword access, address bits A31 to A3
	In longword access, address bits A31 to A2
	In word access, address bits A31 to A1
	In byte access, address bits A31 to A0

Table 135: Bits included in address bus comparison

When data value is included in the break conditions in channel B, set the DBEB bit in the break control register (UBC.BRCR) to 1. In this case, break data register B (UBC.BDRB) and break data mask register B (UBC.BDMRB) settings are necessary in addition to the address condition. A user break interrupt is generated when all 3 conditions (address, ASID, and data) are matched. When a quadword access occurs, the 64-bit access data is divided into an upper 32 bits and lower 32 bits, and interpreted as two 32-bit data units. A break is generated if either of the 32-bit data units satisfies the data match condition.

Set the IDB1 and IDB0 bits in break bus cycle register B (UBC.BBRB) to 10 or 11. When byte data is specified, the same data should be set in the 2 bytes comprising bits 15 to 8 and bits 7 to 0 in break data register B (UBC.BDRB) and break data mask register B (UBC.BDMRB). When word or byte is set, bits 31 to 16 of UBC.BDRB and UBC.BDMRB are ignored.

3 When the DBEB bit in the break control register (UBC.BRCR) is set to 1, a break is not generated by an operand access with no access data (an operand access in a PREF, OCBP, OCBWB, or OCBI instruction).

10.4.6 Condition match flag setting

Instruction access with post-execution condition, or operand access

The flag is set when execution of the instruction that causes the break is completed. As an exception to this, however, in the case of an instruction with more than 1 operand access the flag may be set on detection of the match condition alone, without waiting for execution of the instruction to be completed.

Example 1

```
100 BT L200 (branch performed)
```

102 Instruction (operand access break on channel A): flag not set

Example 2

```
110 FADD (FPU exception)
```

112 Instruction (operand access break on channel A): flag

Instruction access with pre-execution condition

The flag is set when the break match condition is detected.

Example 1

```
110     Instruction (pre-execution break on channel A): flag
     set
```

112 Instruction (pre-execution break on channel B): flag
not set

Example 2

110 Instruction (pre-execution break on channel B, instruction access TLB miss): flag set

Operation 347

10.4.7 Program counter (PC) value saved

- 1 When instruction access (pre-execution) is set as a break condition, the program counter (PC) value saved to SPC in user break interrupt handling is the address of the instruction at which the break condition match occurred. In this case, a user break interrupt is generated and the fetched instruction is not executed.
- 2 When instruction access (post-execution) is set as a break condition, the program counter (PC) value saved to SPC in user break interrupt handling is the address of the instruction to be executed after the instruction at which the break condition match occurred. In this case, the fetched instruction is executed, and a user break interrupt is generated before execution of the next instruction.
- 3 When an instruction access (post-execution) break condition is set for a delayed branch instruction, the delay slot instruction is executed and a user break is effected before execution of the instruction at the branch destination (when the branch is made) or the instruction 2 instructions ahead of the branch instruction (when the branch is not made). In this case, the PC value saved to SPC is the address of the branch destination (when the branch is made) or the instruction following the delay slot instruction (when the branch is not made).
- 4 When operand access (address only) is set as a break condition, the address of the instruction to be executed after the instruction at which the condition match occurred is saved to SPC.
- 5 When operand access (address + data) is set as a break condition, execution of the instruction at which the condition match occurred is completed. A user break interrupt is generated before execution of instructions from 1 instruction later to 4 instructions later. It is not possible to specify at which instruction, from 1 later to 4 later, the interrupt will be generated. The start address of the instruction after the instruction for which execution is completed at the point at which user break interrupt handling is started is saved to SPC.
- If an instruction between 1 instruction later and 4 instructions later causes another exception, control is performed as follows. Designating the exception caused by the break as exception 1, and the exception caused by an instruction between 1 instruction later and 4 instructions later as exception 2, the fact that memory updating and register updating that essentially cannot be performed by exception 2 cannot be performed is guaranteed irrespective of the existence of exception 1. The program counter value saved is the address of the first instruction for which execution is suppressed. Whether exception 1 or exception 2 is used for the exception jump destination and the value written to the exception register (EXPEVT, INTEVT) is not guaranteed. However, if exception 2 is from a source not synchronized with an instruction (external interrupt or

peripheral module interrupt), exception 1 is used for the exception jump destination and the value written to the exception register (EXPEVT, INTEVT).

10.4.8 Contiguous A and B settings for sequential conditions

When channel A match and channel B match timings are close together, a sequential break may not be guaranteed. Rules relating to the guaranteed range are given below.

Instruction access matches on both channel A and channel B

Instruction B is 0 instructions after instruction A	Equivalent to setting the same address. Do not use this setting.		
Instruction B is 1 instruction after instruction A	Sequential operation is not guaranteed.		
Instruction B is 2 or more instructions after instruction A	Sequential operation is guaranteed.		

Instruction access match on channel A, operand access match on channel B

Instruction B is 0 or 1 instruction after instruction A	Sequential operation is not guaranteed.			
Instruction B is 2 or more instructions after instruction A	Sequential operation is guaranteed.			

Operand access match on channel A, instruction access match on channel B

Instruction B is 0 to 3 instructions after instruction A	Sequential operation is not guaranteed.
Instruction B is 4 or more instructions after instruction A	Sequential operation is guaranteed.

Operation 349

Operand access matches on both channel A and channel B

Do not make a setting such that a single operand access will match the break conditions of both channel A and channel B. There are no other restrictions. For example, sequential operation is guaranteed even if 2 accesses within a single instruction match channel A and channel B conditions in turn.

10.5 Usage notes

- 1 Do not execute a post-execution instruction access break for the SLEEP instruction.
- 2 Do not make an operand access break setting between 1 and 3 instructions before a SLEEP instruction.
- 3 The value of the BL bit referenced in a user break exception depends on the break setting, as follows.
- 3.1 Pre-execution instruction access break: the BL bit value before the executed instruction is referenced.
- 3.2 Post-execution instruction access break: the OR of the BL bit values before and after the executed instruction is referenced.
- 3.3 Operand access break (address or data): the BL bit value after the executed instruction is referenced.
- 3.4 Instruction that modifies the BL bit: see *Table 136*.

SL.BL	Pre-executio n instruction access	Post-executi on instruction access	Pre-executio n instruction access	Post-executi on instruction access	Operand access (address/ data)
0 to 0	Accepted	Accepted	Accepted	Accepted	Accepted
1 to 0	Masked	Masked	Masked	Masked	Accepted
0 to 1	Accepted	Masked	Accepted	Masked	Masked
1 to 1	Masked	Masked	Masked	Masked	Masked

Table 136: Break setting for an instruction that modifies the BL bit

3.5 RTE delay slot: the BL bit value before execution of a delay slot instruction is the same as the BL bit value before execution of an RTE instruction. The BL bit value after execution of a delay slot instruction is the same as the first BL bit value for the first instruction executed on returning by means of an RTE

Usage notes 351

- instruction (the same as the value of the BL bit in SSR before execution of the RTE instruction).
- 3.6 If an interrupt or exception is accepted with the BL bit cleared to 0, the value of the BL bit before execution of the first instruction of the exception handling routine is 1.
- 4 If channels A and B both match independently at virtually the same time, and, as a result, the SPC value is the same for both user break interrupts, only 1 user break interrupt is generated, but both the CMFA bit and the CMFB bit are set.

For example:

- 110 Instruction (post-execution instruction break on channel A) \rightarrow SPC = 112, CMFA = 1
- Instruction (pre-execution instruction break on channel B) \rightarrow SPC = 112, CMFB = 1
 - 5 The PCBA or PCBB bit in UBC.BRCR is invalid for an instruction access break setting.
 - 6 When the SEQ bit in UBC.BRCR is 1, the internal sequential break state is initialized by a channel B condition match.

For example:

 $A \rightarrow A \rightarrow B$ (user break generated) $B \rightarrow$ (no break generated)

- 7 In the event of contention between a re-execution type exception and a post-execution break in a multistep instruction, the re-execution type exception is generated. In this case, the CMF bit may or may not be set to 1 when the break condition occurs.
- 8 A post-execution break is classified as a completion type exception. Consequently, in the event of contention between a completion type exception and a post-execution break, the post-execution break is suppressed in accordance with the priorities of the 2 events. For example, in the case of contention between a TRAPA instruction and a post-execution break, the user break is suppressed. However, in this case, the CMF bit is set by the occurrence of the break condition.

10.6 User break debug support function

The user break debug support function enables the processing used in the event of a user break exception to be changed. When a user break exception occurs, if the UBDE bit is set to 1 in the UBC.BRCR register, the DBR register value will be used as the branch destination address instead of [VBR + offset]. The value of R15 is saved in the SGR register regardless of the value of the UBDE bit in the UBC.BRCR register or the kind of exception event. A flowchart of the user break debug support function is shown in *Figure 48*.

Figure 48: User break debug support function flowchart

10.7 Examples of use

10.7.1 Instruction access cycle break condition settings

Independent channel A channel B mode: user break interrupt generated

Under these conditions a user break is generated after execution of the instruction at address 0x00000404 with ASID = 0x80, or before execution of an instruction at addresses 0x00008000 to 0x000083FE with ASID = 0x70.

Register settings

UBC.BASRA = 0x80,

UBC.BARA = 0x00000404,

UBC.BAMRA = 0x00,

UBC.BBRA = 0x0014,

UBC.BASRB = 0x70,

UBC.BARB = 0x00008010,

UBC.BAMRB = 0x01,

UBC.BBRB = 0x0014,

UBC.BDRB = 0x000000000.

UBC.BDMRB = 0x000000000

UBC.BRCR = 0x0400.

Conditions set

Independent channel A channel B mode

Channel A

ASID: 0x80

Address: 0x00000404

Address mask: 0x00

Bus cycle: instruction access (post-instruction- execution), read (operand size not included in conditions)

Channel B

ASID: 0x70

Address: 0x00008010

Address mask: 0x01

Data: 0x00000000

Data mask: 0x00000000

Bus cycle: instruction access (pre-instruction- execution), read (operand size not

included in conditions)

Channel A channel B sequential mode: user break interrupt generated

Under these conditions the instruction at address 0x00037266 with ASID = 0x80 is executed, then a user break is generated before execution of the instruction at address 0x0003722E with ASID = 0x70.

Register settings

UBC.BASRA = 0x80,

UBC.BARA = 0x00037226,

UBC.BAMRA = 0x00.

UBC.BBRA = 0x0016,

UBC.BASRB = 0x70,

UBC.BARB = 0x0003722E,

UBC.BAMRB = 0x00,

UBC.BBRB = 0x0016,

UBC.BDRB = 0x0000000000,

UBC.BDMRB = 0x000000000,

UBC.BRCR = 0x0008.

Examples of use 355

Conditions set

Channel A channel B sequential mode

Channel A

ASID: 0x80

Address: 0x00037226

Address mask: 0x00

Bus cycle: instruction access (pre-instruction- execution), read, word

Channel B

ASID: 0x70

Address: 0x0003722E Address mask: 0x00

Data: 0x00000000

Data mask: 0x00000000

Bus cycle: instruction access (pre-instruction- execution), read, word

Independent channel A channel B mode: user break interrupts not generated

Under these conditions a user break interrupt is not generated on channel A since the instruction access is not a write cycle.

A user break interrupt is not generated on channel B since instruction access is performed on an even address.

Register settings

UBC.BASRA = 0x80

UBC.BARA = 0x00027128

UBC.BAMRA = 0x00

UBC.BBRA = 0x001A

UBC.BASRB = 0x70

UBC.BARB = 0x00031415

UBC.BAMRB = 0x00

UBC.BBRB = 0x0014

UBC.BDRB = 0x000000000

UBC.BDMRB = 0x000000000

UBC.BRCR = 0x0000

Conditions set

Independent channel A and channel B mode

Channel A

ASID: 0x80

Address: 0x00027128 Address mask: 0x00

Bus cycle: CPU, instruction access (pre-instruction- execution), write, word

Channel B

ASID: 0x70

Address: 0x00031415 Address mask: 0x00

Data: 0x00000000

Data mask: 0x00000000

Bus cycle: CPU, instruction access (pre-instruction- execution), read (operand size

not included in conditions)

10.7.2 Operand access cycle break condition settings

Under these conditions on channel A, a user break interrupt is generated in the event of a longword read at address 0x00123454, a word read at address 0x00123456, or a byte read at address 0x00123456, with ASID = 0x80.

On channel B, a user break interrupt is generated when 0xA512 is written by word access to any address from 0x000AB000 to 0x000ABFFE with ASID = 0x70.

Examples of use 357

Register settings

UBC.BASRA = 0x80

UBC.BARA = 0x00123456

UBC.BAMRA = 0x00

UBC.BBRA = 0x0024

UBC.BASRB = 0x70

UBC.BARB = 0x000ABCDE

UBC.BAMRB = 0x02

UBC.BBRB = 0x002A

 $\mathsf{UBC.BDRB} = 0x0000A512$

UBC.BDMRB = 0x000000000

UBC.BRCR = 0x0080

Conditions set

Independent channel A channel B mode

Channel A

ASID: 0x80

Address: 0x00123456

Address mask: 0x00

Bus cycle: operand access, read (operand size not included in conditions)

Channel B

ASID: 0x70

Address: 0x000ABCDE

Address mask: 0x02

Data: 0x0000A512

Data mask: 0x00000000

Bus cycle: operand access, write, word data break enabled

477 –

10.7.3 User break controller stop function

This function stops the clock supplied to the user break controller and is used to minimize power dissipation when the chip is operating.

Note: If you use this function, you cannot use the user break controller.

10.7.4 Transition to user break controller stopped state

Setting the MSTP5 bit of the CPG.STBGR2 (inside the CPG) to 1 stops the clock supply and causes the user break controller to enter the stopped state. Follow steps 1 to 5 below to set the MSTP5 bit to 1 and enter the stopped state.

- 1 Initialize UBC.BBRA and UBC.BBRB to 0.
- 2 Initialize UBC.BBCR to 0.
- 3 Make a dummy read of UBC.BBCR.
- 4 Read CPG.STBCR2, then set the MSTP5 bit in the read data to 1 and write back.
- 5 Make 2 dummy reads of CPG.STBCR2.

Make sure that, if an exception or interrupt occurs while performing steps 1 to 5, you do not change the values of these registers in the exception handling routine.

Do not read or write the following registers while the user break controller clock is stopped:

- UBC.BARA,
- · UBC.BAMRA,
- UBC.BBRA,
- UBC.BARB,
- UBC.BAMRB,
- · UBC.BBRB,
- · UBC.BDRB,
- UBC.BDMRB.
- UBC.BRCR.

If these registers are read or written, the value cannot be guaranteed.

10.7.5 Cancelling the user break controller stopped state

The clock supply can be restarted by setting the CPG.MSTP5 bit of STBCR2 (inside the CPG) to 0. The user break controller can then be operated again. Follow steps 6 and 7 below to clear the MSTP5 bit to 0 to cancel the stopped state. This is similar to the transition to the stopped state.

- 6 Read CPG.STBCR2, then clear the MSTP5 bit in the read data to 0 and write the modified data back.
- 7 Make 2 dummy reads of CPG.STBGR2.

As with the transition to the stopped state, if an exception or interrupt occurs while processing steps 6 and 7, make sure that the values in these registers are not changed in the exception handling routine.

10.7.6 Examples of stopping and restarting the user break controller

The following are example programs:

```
; Transition to user break controller stopped state
; (1) Initialize BBRA and BBRB to 0.
    mov #0, R0
    mov.l#BBRA, R1
    mov.w R0, @R1
    mov.1#BBRB, R1
    mov.w R0, @R1
; (2) Initialize BBCR to 0.
    mov.l #BBCR, R1
    mov.w R0, @R1
; (3) Dummy read BRCR.
    mov.w R1, R0
; (4) Read STBCR2, then set MSTP5 bit in the read data to 1 and
write
     it back
    mov.1 #STBCR2, R1
    mov.b @R0, R1
    or #H'1, R0
    mov.bR0, @R1
; (5) Twice dummy read STBCR2.
    mov.b @R1, R0
    mov.b @R1, R0
```

```
; Canceling user break controller stopped state
; (6)Read STBCR2, then clear MSTP5 bit in the read data to 0 and
write
    it back
    mov.l #STBCR2, R1
    mov.b @R1, R0
    and #H'FE, R0
    mov.b R0, @R1
; (7)Twice dummy read STBGR2.
    mov.b@R1, R0
    mov.b@R1, R0
```

- 477

User debug interface (UDI)

11.1 Overview

11.1.1 Features

The user debug interface (UDI) is a serial input/output interface conforming to JTAG, IEEE 1149.1, and IEEE Standard Test Access Port and Boundary-Scan Architecture. The ST40's UDI supports boundary-scan, and is used for emulator connection. The functions of this interface should not be used when using an emulator. Refer to the emulator manual for the method of connecting the emulator. The UDI uses 6 pins (DCK, TMS, TDI, TDO, NOT_TRST, and NOT_ASEBRK/BRKACK). The pin functions and serial transfer protocol conform to the JTAG specifications.

11.1.2 Block diagram

Figure 49 shows a block diagram of the UDI. The TAP (test access port) controller and control registers are reset independently of the chip reset pin by driving the NOT_TRST pin low or setting TMS to 1 and applying DCK for at least 5 clock cycles. The other circuits are reset and initialized in an ordinary reset. The UDI circuit has 6 internal registers: SDBPR, SDBSR, SDIR, SDDRH, and SDDRL (these last 2 together designated SDDR) and SDINT. The SDBPR register supports the JTAG bypass mode, SDBSR is a shift register forming a JTAG boundary scan, SDIR is the command register, SDDR is the data register and SDINT is the UDI interrupt register. SDIR can be accessed directly from the TDI and TDO pins.

Figure 49: Block diagram of UDI circuit

Overview 363

11.1.3 Pin configuration

Table 137 shows the UDI pin configuration.

Pin name	Description	I/O	Function	When not used
DCK	Clock pin	Input	Same as the JTAG serial clock input pin (TCK). Data is transferred from data input pin TDI to the UDI circuit, and data is read from data output pin TDO, in synchronization with this signal.	Open ^A
TMS	Mode pin	Input	The mode select input pin. Changing this signal in synchronization with DCK determines the meaning of the data input from TDI. The protocol conforms to the JTAG (IEEE Std 1149.1) specification.	Open ^A
NOT_TRST	Reset pin	Input	The input pin that resets the UDI. This signal is received asynchronously with respect to DCK, and effects a reset of the JTAG interface circuit when low. NOT_TRST must be driven low for a certain period when powering on, regardless of whether or not JTAG is used. This differs from the IEEE specification.	Fix at ground ^B
TDI	Data input pin	Input	The data input pin. Data is sent to the UDI circuit by changing this signal in synchronization with DCK.	Open ^A
TDO	Data output pin	Output	The data output pin. Data is sent to the UDI circuit by reading this signal in synchronization with DCK.	Open ^A
NOT_ASEBRK/ BRKACK	Emulator pin	Input/ output	Dedicated emulator pin	Open ^A

Table 137: UDI pins

A. Pulled up inside the chip. When designing a board that allows use of an emulator, or when using interrupts and resets via the UDI, there is no problem in connecting a pull-up resistance externally.

364 Overview

B. When designing a board that enables the use of an emulator, or when using interrupts and resets via the UDI, drive NOT_TRST low for a period overlapping NOT_RESET at power-on, and also provide for control by NOT_TRST alone.

The maximum frequency of DCK (TMS, TDI, TDO) is 20 MHz. Make the DCK or ST40 CPG setting so that the DCK frequency is lower than that of the ST40's on-chip peripheral module clock.

11.1.4 Register configuration

Table 138 shows the UDI registers. Except for SDBPR and SDBSR, these registers are mapped in the control register space and can be referenced by the CPU.

Register			CPU side					
name	Description	Initial value ^A	Туре	P4 address	Area 7 address	Access size		
UDI.SDIR	Instruction register, see Section 11.2.1: Instruction register (SDIR) on page 367	0xFFFFFFD Fixed values ^B	RO	0xFFF00000	0x1FF00000	16		
UDI.SDDR/ SDDRH	Data register H, see Section 11.2.2: Data register (SDDR) on page 370	Undefined	RW	0xFFF00008	0x1FF00008	32/16		
UDI.SDDRL	Data register L, see Section 11.2.2: Data register (SDDR) on page 370	Undefined	RW	0xFFF0000A	0x1FF0000A	16		

Table 138: UDI registers on CPU side

Overview 365

Degister			CPU side					
Register name	Description	Initial value ^A	Туре	P4 address	Area 7 address	Access size		
UDI.SDBPR	Bypass register, see Section 11.2.3: Bypass register (SDBPR) on page 371	Undefined	-	-	-	-		
UDI.SDINT	Interrupt factor register, see Section 11.2.4: Interrupt factor register (SDINT) on page 371	0x00000000	RW	0xFFF00014	0x1FF00014	18		
UDI.SDBSR	Boundary scan register see Section 11.2.5: Boundary scan register (SDBSR) on page 372	Undefined	-	-	-	-		

Table 138: UDI registers on CPU side

- A. Initialized when the NOT_TRST pin goes low or when the TAP is in the test-logic-reset state.
- B. The value read from UDI is fixed (0xFFFF FFFD)

Register	Decerinties	1 A	UDI side		
name	Description	Initial value ^A	Туре	Access size	
UDI.SDIR	Instruction register, see Section 11.2.1: Instruction register (SDIR) on page 367	0xFFFFFFD Fixed values ^B	RW	16	
UDI.SDDR/ SDDRH	Data register H, see Section 11.2.2: Data register (SDDR) on page 370	Undefined	-	32	
UDI.SDDRL	Data register L, see Section 11.2.2: Data register (SDDR) on page 370	Undefined	-	-	
UDI.SDBPR	Bypass register, see Section 11.2.3: Bypass register (SDBPR) on page 371	Undefined	RW	1	
UDI.SDINT	Interrupt factor register, see Section 11.2.4: Interrupt factor register (SDINT) on page 371	0x00000000	woc	32	
UDI.SDBSR	Boundary scan register see Section 11.2.5: Boundary scan register (SDBSR) on page 372	Undefined	-	-	

Table 139: UDI registers on UDI side

- A. Initialized when the NOT_TRST pin goes low or when the TAP is in the test-logic-reset state.
- B. The value read from UDI is fixed (0xFFFF FFFD)
- C. 1 can be written to the LSB using the UDI interrupt command.

11.2 Register descriptions

11.2.1 Instruction register (SDIR)

The instruction register (SDIR) is a 16-bit register that can only be read by the CPU. In the initial state, bypass mode is set. The value (command) is set from the serial input pin (TDI). SDIR is initialized by the NOT_TRST pin or in the TAP test-logic-reset state. When this register is written to from the UDI, writing is possible regardless of the CPU mode. Operation is undefined if a reserved command is set in this register.

Bit	15	14	13	12	11	10	9	8
	TI7	TI6	TI5	TI4	T13	T12	T11	T10
Initial value	1	1	1	1	1	1	1	1
RW	RO							
Bit	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-
Initial value	1	1	1	1	1	1	1	1
RW	RO							

Bits 15 to 8:

Bit 15: T17	Bit 14: T16	Bit 13: T15	Bit 12: T14	Bit 11: TI3	Bit 10: TI2	Bit 9: TI1	Bit 8: TI0	Description
0	0	0	0	0	0	0	0	EXTEST
0	0	0	0	0	1	0	0	SAMPLE/ PRELOAD
0	1	1	0	-	-	-	-	UDI reset negate
0	1	1	1	-	-	-	-	UDI reset assert

- 77

Bit 15: T17	Bit 14: T16	Bit 13: T15	Bit 12: T14	Bit 11: TI3	Bit 10: Tl2	Bit 9: TI1	Bit 8: TI0	Description
1	0	1	-	-	-	-	-	UDI interrupt
1	1	1	1	1	1	1	1	Bypass mode (initial value)
Other than above							Reserved	

Test instruction bits (TI7 to TI0)

Bit 15: T17	Bit 14: T16	Bit 13: T15	Bit 12: T14	Bit 11: TI3	Bit 10: TI2	Bit 9: TI1	Bit 8: TI0	Description
0	0	0	0	0	0	0	0	EXTEST
0	0	0	0	0	1	0	0	SAMPLE/ PRELOAD
0	1	1	0	-	-	-	-	UDI reset negate
0	1	1	1	-	-	-	-	UDI reset assert
1	0	1	-	-	-	-	-	UDI interrupt
1	1	1	1	1	1	1	1	Bypass mode (initial value)
Other than above								Reserved

Bits 7 to 0: reserved

These bits are always read as 1, and should only be written with 1.

11.2.2 Data register (SDDR)

The data register (SDDR) is a 32-bit register, comprising the 2 16-bit registers SDDRH and SDDRL, that can be read and written to by the CPU. The value in this register is not initialized by a NOT_TRST or CPU reset.

Bits 31 to 0: DR Data

These bits store the SDDR value.

11.2.3 Bypass register (SDBPR)

The bypass register (SDBPR) is a 1-bit register that cannot be accessed by the CPU. When bypass mode is set in SDIR, SDBPR is connected between the TDI pin and TDO pin of the UDI.

11.2.4 Interrupt factor register (SDINT)

The interrupt factor register (SDINT) is a 16-bit register that can be read and written from the CPU. When a UDI interrupt command is set in the SDIR (Update-IR) using the UDI pin, the INTREQ bit is set to 1. While SDIR has the UDI interrupt command, the SDINT register is connected between UDI pins TDI and TDO, and can be read as a 32-bit register. The high 16 bits are 0 and the low 16 bits are SDINT.

Only 0 can be written to the INTREQ bit from the CPU. While this bit is 1, the interrupt request continues to be generated, and must therefore be cleared to 0 by the interrupt handler. This register is initialized by NOT_TRST or when in the test-logic-reset state.

Bits 15 to 1: reserved

These bits always read as 1, and should only be written with 0.

Bit 0: interrupt request bit (INTREQ)

Shows the existence of an interrupt request from the UDI interrupt command. The interrupt request can be cleared by writing 0 to this bit from the CPU. When 1 is written to this bit, the existing value is retained.

11.2.5 Boundary scan register (SDBSR)

The boundary scan register (SDBSR) is a shift register on the pad for controlling the chip's I/O pins. Using the EXTEST and SAMPLE/PRELOAD commands, it can perform a JTAG (IEEE Std 1149.1)-compatible boundary scan test.

11.3 Operation

11.3.1 TAP control

Figure 50 shows the internal states of the TAP control circuit. These conform to the state transitions specified by JTAG.

- The transition condition is the TMS value at the rising edge of DCK.
- The TDI value is sampled at the rising edge of DCK, and shifted at the falling edge.
- The TDO value changes at the falling edge of DCK. When not in the Shift-DR or Shift-IR state, TDO is in the high-impedance state.
- In a transition to NOT_TRST = 0, a transition is made to the Test-Logic-Reset state asynchronously with respect to DCK.

Figure 50: TAP control state transition diagram

11.3.2 **UDI** reset

A power-on reset is effected by an SDIR command. A reset is effected by sending a UDI reset assert command, and then sending a UDI reset negate command, from the UDI pin (see *Figure 51*). The interval required between the UDI reset assert command and the UDI reset negate command is the same as the length of time the reset pin is held low in order to effect a power-on reset.

Figure 51: UDI reset

11.3.3 UDI interrupt

The UDI interrupt function generates an interrupt by setting a command value in SDIR from the UDI. The UDI interrupt is of general exception/interrupt operation type, with a branch to an address based on VBR and return effected by means of an RTE instruction. The exception code stored in control register INTEVT in this case is 0x600. The priority of the UDI interrupt can be controlled with bits 3 to 1 of control register IPRC.

The UDI interrupt request signal is asserted when, after the command is set (UPDATE-IR), the INTREQ bit of the SDINT register is set to 1. The interrupt request signal is not negated until 0 is written to the INTREQ bit by software, and there is therefore no risk of the interrupt request being unexpectedly missed. While the UDI interrupt command is set in SDIR, the SDINT register is connected between TDI and TDO.

11.3.4 Bypass

The UDI pins can be set to the bypass mode specified by JTAG by setting a command in SDIR from the UDI.

11.3.5 Boundary scan (EXTEST, SAMPLE/RELOAD)

The UDI pin can be set in the JTAG boundary scan mode by setting a command in SDIR from the UDI. Limitations to this are detailed in the relevant product datasheet.

Usage notes 375

11.4 Usage notes

11.4.1 SDIR command

Once an SDIR command has been set, it remains unchanged until initialization by asserting NOT_TRST or placing the TAP in the test-logic-reset state, or until another command (other than a UDI interrupt command) is written from the UDI.

11.4.2 SDIR commands in sleep mode

Sleep mode is cleared by a UDI interrupt or UDI reset, and these exception requests are accepted in this mode. In standby mode, neither a UDI interrupt nor a UDI reset is accepted.]

11.4.3 Emulator

The UDI is used for emulator connection. Therefore, UDI functions cannot be used when an emulator is used.

Advanced user debugger (AUD)

12.1 Overview

The advanced user debugger (AUD) provides the function to support debugging of user programs. This function traces such events as branch and memory access that occur when a program is executed and outputs them.

12.1.1 Features

Features of the AUD are as follows:

- 6 input/output pins,
- · memory mapped control and status register,
- branch tracing function: tracing of branch destination and branch source addresses,
- window data tracing function: support of A and B 2-channel windows,
 - for tracing addresses for CPU memory accesses made in the range and their data,
 - support of 8-, 16-, 32- and 64-bit data lengths,
- for outputting address differential information by small bit count,
- incorporation of 8-level FIFO,
- $\bullet \quad \text{full trade mode: for outputting all traced data} \\$
- \bullet $\;$ real-time trace mode: for obtaining traced data in real-time,
- AUD output clock ratio select function: support of 1, 1/2, 1/4 and 1/8 CPU clock ratios.

378 Overview

12.1.2 Block diagram

Figure 52 shows a block diagram of the AUD.

Figure 52: Block diagram of AUD

12.2 AUD interface pins

The AUD has 6 pins for outputting various traced data. The details are shown in *Table 140*.

Pin name	Description	I/O	Description
AUDCK	AUD clock	Output	AUD clock output
			The clock ratios are selected from 1, 1/2, 1/4 and 1/8 times of the CPU clock.
AUDATA[3:0]	AUD data bus	Output	The following information is time-shared for output:
			AUD bus command,
			branch destination address/branch source address,
			address/data contents.
AUDSYNC	AUD sync signal	Output	AUD bus command valid signals
			0: Valid data output to AUDATA
			1: AUD bus command output to AUDATA

Table 140: AUD pins

12.3 Register summary

The AUD has such registers such as AUCSR for controlling the AUD functions, and AUWASR, AUWBSR, AUWAER and AUWBER for setting windows. These 4 registers are detailed in *Table 141*.

Register name	Description	Type	Add	ress	Access	Initial
Register name	Description	Туре	P4	Area 7	size	value
AUD.AUCSR	AUD control register	RW	0xFF2000CC	0x1F2000CC	16	0x0000
AUD.AUWASR	AUD window A start address register	RW	0xFF2000D0	0x1F2000D0	32	Undefined
AUD.AUWAER	AUD window A end address register	RW	0xFF2000D4	0x1F2000D4	32	Undefined
AUD.AUWBSR	AUD window B start address register	RW	0xFF2000D8	0x1F2000D8	32	Undefined
AUD.AUWBER	AUD window B end address register	RW	0xFF2000DC	0x1F2000DC	32	Undefined

Table 141: AUD registers

Note: The AUCSR, AUWASR, AUWAER, AUWBSR and AUWBER registers are readable and writable only in the ASE mode.

ASE hardware break controller

13.1 Overview

The ASE hardware break controller is partly responsible for emulation functions. When break conditions are set, the controller generates an ASE hardware break interrupt in response to the content of the CPU bus cycle. This function facilitates the creation of a self-monitoring debugger.

13.1.1 Features

The ASE hardware break controller has the following features:

- 4 channels (S, T, U, and V),
- conditions set independently for the individual channels, or ASE hardware break interrupts can be requested with sequential conditions (sequential settings: channel $U \to \text{channel } V$, channel $T \to \text{channel } V$, channel $S \to \text{channel } T \to \text{channel } U \to \text{channel } V$),
- 32-bit logical address and ASID compare:
 - address compare: compare all bits, mask lower 10 bits, mask lower 12 bits, mask lower 16 bits, mask lower 20 bits, mask all bits,
 - ASID compare: compare all bits, mask all bits,
- data: channel V only, 32-bit maskable,
- bus cycle: instruction access, operand access
- · read/write

- data size: byte, word, longword, quadword
- break on instruction access cycle can be set for either before or after instruction execution.

13.1.2 Differences between the user break controller and ASE hardware break controller

- 1 The user break controller has 2 channels (A and B); the ASE hardware break controller has 4 channels (S, T, U, and V) which are completely independent from A and B.
- 2 The branch is to address VBR + 0x00000100 or DBR on a user break, and address 0xFC000000 on an ASE hardware break.
- 3 There is a change to privileged mode on a user break; the change is to ASE mode on an ASE hardware break.

Overview 383

13.1.3 Block diagram

Figure 53 illustrates the block diagram of the User break controller and the ASE hardware break controller.

Figure 53: Block diagram of user break controller and ASE hardware break controller

13.2 Register summary

Table 142 shows the control register configuration of the ASE hardware break controller. The BRCR is the same as that listed for the user break controller.

Register name	Description
ASE.BARS	Break address register S
ASE.BAMRS	Break address mask register S
ASE.BBRS	Break bus cycle register S
ASE.BASRS	Break ASID register S ^A
ASE.BART	Break address register T
ASE.BAMRT	Break address mask register T
ASE.BBRT	Break bus cycle register T
ASE.BASRT	Break ASID register T ^A
ASE.BARU	Break address register U
ASE.BAMRU	Break address mask register U
ASE.BBRU	Break bus cycle register U
ASE.BASRU	Break ASID register U ^A
ASE.BARV	Break address register V
ASE.BAMRV	Break address mask register V
ASE.BBRV	Break bus cycle register V
ASE.BASRV	Break ASID register V ^A
ASE.BDRV	Break data register V
ASE.BDMRV	Break data mask register V
ASE.BRCRA	ASE Break control register

Table 142: ASE hardware break controller registers

Register name	Description
ASE.BRCRS	Break control register S
ASE.IOBAR	I/O break address register
ASE.IOBDR	I/O break data register
ASE.ASEEVT	ASE interrupt source register

Table 142: ASE hardware break controller registers

A. BASRS, BASRT, BASRU, BASRV registers are located in CCN.

Appendices

ST40 system architectural conventions

A.1 Introduction

The ST40 follows architectural conventions which present a consistent interface to ST40 modules.

Note: since systems are typically a mixture of legacy blocks and new IP, in places it is not practical to follow these convention strictly. Nonetheless this appendix documents some of those conventions and describes the semantics of the formats used in this document.

A.1.1 Memory blocks

There are three types of memory blocks:

- control blocks (CB),
- data blocks (DB),
- undefined blocks (UB).

A control block contains a collection of memory-mapped registers holding a variety of status and control information for an ST40 module. There is a 1-to-1 association between ST40 modules and control blocks. Most control blocks contain a Version Control Register (VCR). A VCR identifies the module associated with that control block, the version number of that module, the memory blocks associated with that module (if any) and the module's error status.

A data block is a contiguous range of data memory blocks associated with a module. These blocks are not control blocks and do not contain a VCR. Data blocks are typically used to provide access to memory. A module may be associated with 0, 1 or more data blocks. The set of data blocks associated with a module must be

contiguous in physical address space. Each data block is associated with exactly 1 module.

All blocks which are neither control blocks nor data blocks are undefined blocks. Undefined blocks do not provide useful functionality and all accesses to undefined blocks are errors. Packets destined for an undefined block are routed to the Debug module where an error is recorded. Control blocks are typically 64 Kbytes to 16 Mbytes for the ST40 implementation.

A.1.2 Control registers

A control register is a memory-mapped register held in a control block. Control registers are 32 or 64-bit wide and allocated on addresses that are 4- or 8-byte aligned.

Each control register has a unique name. Control register names are composed hierarchically by concatenating sub-names together separated by a period ('.'). The left-most sub-name indicates the module that implements that control register. Succeeding sub-names repeatedly refine the classification of the control register. A control register can be refined to a field by concatenating the control register name with the field name separated by a period ('.'). A field can be refined to a single bit by concatenating the field with the bit name separated by a period ('.').

An example control register is DMA.VCR. This name refers to the VCR register within the DMA module. An example field is DMA.VCR.STATUS.PERR_FLAGS. This name refers to the PERR_FLAGS field within the DMA.VCR control register. An example bit is DMA.VCR.STSUS.PERR_FLAGS.ERR_RCV. This name refers to the ERR_RCV bit within the DMA.VCR.PERR_FLAGS field.

Control registers are accessed using the SuperHyway. The set of transactions that are supported by a control register depends on the implementation of that control register. Control registers are typically read using a whole-word **LoadWord** transaction and written using a whole-word **StoreWord** transaction. It is possible to have control registers that support other transactions, though these are much less common.

Each control block is fully populated by an array of control registers. For ST40 there are 16 Mbytes of control registers space in each control block. Typically, however, each module will only implement a very small proportion of the available control registers.

The semantics of a control register are, in general, specific to that control register and defined by the architecture of the module that implements that control register. However, there are conventions which all control registers adhere to. Additionally,

there is a standard table format for describing the layout of control registers. These are described in the following sections.

Register conventions

Each control register is either reserved, undefined or defined.

Reserved control registers

Reserved control registers are used to reserve parts of the control block address space. A read from a reserved control register always returns 0. Writes to a reserved control register are always ignored.

In some ST40 implementations reserved registers have specific functionality. Software must therefore not make assumptions about these registers. A read should be considered to contain undefined data, and writes should only be of zero.

If a control register is reserved, it is possible that this control register will have a different implementation in future components in the ST40 family.

Undefined control registers

Undefined control registers are used to identify parts of the control block address space where the behavior of accesses is not well defined by the architecture. The specification of a particular undefined control register may elaborate on the actual behavior.

Typically, an access causing a request to an undefined control register will result in an error flag being set in the VCR of the module that deals with the request. Additionally, a response from an access to an undefined control register might result in an error flag being set in the VCR of the module that deals with the response.

A read from an undefined control register will typically return an undefined value or an implementation defined value. A write to an undefined control register will typically be ignored or lead to behavior that is architecturally undefined.

If a control register is undefined, it is possible that this control register will have a different implementation in future components in the ST40 family.

Defined control registers

Defined control registers are implemented and the behavior of accesses is well defined. A defined control register is composed of 1 or more fields. Each field is a collection of bits in the control register. All bits in a defined control register belong to a field. Further categorization of a defined control register is performed at the field level.

Field conventions

Each field in a defined control register is either reserved or defined.

Reserved fields

Reserved fields are used to reserve parts of a control register. A read from a reserved field always returns 0. Writes to a reserved field are always ignored.

If a field is reserved, it is possible that this control field will have a different implementation in future components in the ST40 family.

Defined fields

A defined field is either read-only, read/write or other.

A read-only field indicates that the value of the field cannot be changed by software. A read from a read-only field returns the value associated with that field. A write to a read-only field is ignored.

A read/write field indicates that the value of the field has conventional read and write behavior. A read from a read-write field returns the value of that field. A write to a read/write field sets the value of the field.

An other field indicates that the field has atypical semantics. The specification of an other field describes the actual semantics.

In addition to the above defined field types, a field is also either volatile or non-volatile. A non-volatile field is never changed autonomously by hardware, while a volatile field may be changed autonomously by hardware. When a field is volatile, its specification describes the actual semantics. A non-volatile read-only field has an immutable value.

When the value of a field is not architecturally defined, the field is said to have an undefined value. For example, a writable field might have an undefined value between hard reset and the first time that it is written.

A field may have some values which are reserved. These values must not be written into that field, otherwise the behavior of the access is not well defined by the architecture. The specification of a particular writable field which has reserved values will enumerate the reserved values and may elaborate on the actual behavior. It is possible that all values apart from 1 specific value may be reserved. In this case, the field must be programmed with that specific value.

Control register layout

The standard table format for describing the layout of a control register is illustrated in *Table 143*.

[register name]				[address offse	et]
Field	Bits	Size	Volatile	Synopsis	Туре
[field]	[bits]	[size]	[volatile]	[synopsis]	[type]
	Opera	tion	[operation]		
	Read	Read [read]			
	Write		[write]		
	Hard r	eset	[hard reset]		

Table 143: Standard table format for describing a control register layout

The fields in square brackets in this table are place-holders for the following information:

- [register name]: the name of the register,
- [address offset]: the byte-offset of the register in the control block of the module containing the register,
- [field]: the name of the field,
- *[bits]:* the bit numbers occupied by this field. The least significant bit in a control register is bit 0; the most significant bit in a control register is bit 63. A single number indicates a single bit. The notation [x:y] represents the inclusive contiguous range of bits starting at bit x and ending at bit y,
- *[size]:* the number of bits occupied by this field,
- *[volatile]:* yes indicates that the field is volatile, while no indicates that the field is not volatile,
- [synopsis]: a summary of the purpose of this field,
- [type]: the type of this field. This can be Res to indicate a reserved field, RO to indicate a read-only field, RW to indicate a read-write field or Other to indicate an other field.
- [operation]: defines the operation of this field,

- *[read]:* defines the behavior of this field for a valid read access,
- [write]: defines the behavior of this field for a valid write access,
- [hard reset]: defines the value of this field after a hard reset.

The set of rows used to describe a field are repeated for each field in the control register.

A.1.3 Version control registers

The control register at offset 0 of every control block is the version control register of the module that implements that control block. Thus, the physical address of a control block is the same as the physical address of the VCR in that control block.

Every VCR uses the same layout. This allows software to parse a VCR value without knowledge of the implementation of the module that provided the VCR. It is architecturally guaranteed that no VCR will ever have a value of 0.

The VCR of each module contains the fields listed below.

- PERR_FLAGS: this field contains the packet error flags (P-ERROR flags) which report the error status of the interface between this module and the packet-router. The set of supported flags and their standard semantics are described in *Appendix A: P-ERROR flags on page 397*. Further information on the supported P-ERROR flags of the module is given in the VCR description for that module.
- MERR_FLAGS: this field contains module specific error flags (M-ERROR flags).
 The set of supported flags (if any) and their semantics are given in the VCR description for that module.
- MOD_VERS: this field is provided to allow software to distinguish different versions of a module. This allows software to take appropriate action if there are differences between module versions.
- MOD_ID: this field is provided to allow software to identify and distinguish different modules.
- BOT_MB: if this module is associated with 1 or more data blocks then this value indicates the destination value for the data block with the lowest address. If this module is associated with 0 data blocks then this value will be the destination value for the control block of this module.
- TOP_MB: if this module is associated with 1 or more data blocks then this value indicates the destination value for the data block with the highest address. If

this module is associated with 0 data blocks then this value will be the destination value for the control block of this module.

Note: If a module is associated with data blocks, then these data blocks will be contiguous in the address space. This allows ranges of data blocks to be described as the inclusive range from the value of bot_mb to the value of top_mb.

The VCR format is illustrated in *Table 144*.

[MC	ODULE].V	CR		0x000000		
Field	Bits	Size	Volatile	Synopsis	Туре	
PERR_FLAGS	[0:7]	8	Yes	P-port error flags	Varies	
	Operation	n	See Appe	ndix A: P-ERROR flags on page 397		
	Read		See Appe	ndix A: P-ERROR flags on page 397		
	Write		See Appe	ndix A: P-ERROR flags on page 397		
	Hard res	et	0			
MERR_FLAGS	[8:15]	8	Yes	P-MODULE error flags (module specific)	Varies	
	Operation	n	See Appendix A: M-ERROR flags on page 401			
	Read		See Appendix A: M-ERROR flags on page 401			
	Write		See Appendix A: M-ERROR flags on page 401			
	Hard res	et	0			
MOD_VERS	[16:31]	16	No	Module version	RO	
	Operation	n	Indicates r	nodule version number		
	Read		Returns [MOD_VERS]			
	Write		Ignored			
	Hard res	et	[MOD_VE	/ERS]		

Table 144: Standard VCR format

[MC	ODULE].V	CR		0x000000			
Field	Bits	Size	Volatile	Synopsis	Туре		
MOD_ID	[32:47]	16	No	Module identity	RO		
	Operation	า	Identifies r	nodule			
	Read		Returns [M	IOD_ID]			
	Write		Ignored				
	Hard rese	et	[MOD_ID]				
BOT_MB	[48:55]	8	No	Bottom memory block	RO		
	Operation	า	Identifies b	s bottom memory block			
	Read		Returns [B	OT_MB]			
	Write		Ignored				
	Hard rese	et	[BOT_MB]				
TOP_MB	[56:63]	8	No	Top memory block	RO		
	Operation	า	Identifies to	op memory block			
	Read			Returns [TOP_MB]			
Write Ignored							
	Hard rese	et	[TOP_MB]				

Table 144: Standard VCR format

The fields in square brackets in this table are place-holders for the following information:

- [MODULE]: the name of the module that contains this VCR. The module name will be 1 of the modules provided by the ST40,
- [MOD_VERS]: the version number of this module,
- [MOD_ID]: the identity of this module,
- [BOT_MB]: the destination value for the bottom memory block of this module,
- [TOP_MB]: the destination value for the top memory block of this module.

A.1.4 P-ERROR flags

The P-ERROR flags are a set of 8 flags in a ST40 module's VCR which indicate errors in the interface between that module and the packet-router. 2 of these error flags are reserved and always read 0. The remaining 6 error flags are used in a standard way by all ST40 modules, though not all modules implement all of these flags. If a module does not implement a particular P-ERROR flag, then that flag has reserved behavior.

All P-ERROR flags are 0 after hard reset. Implemented P-ERROR flags are volatile and are set to 1 by hardware whenever the associated error condition arises. The P-ERROR flags will be cleared autonomously by hardware only at hard reset. Software can read and write these flags at any time using appropriate accesses.

It is possible for multiple error conditions to be triggered by a single request. The actual behavior in such cases is specified by the module receiving that request.

The complete set of supported P-ERROR flags is given in *Table 145*.

Bit Name	Bit	Size	Volatile	Synopsis	Туре
ERR_RCV	0	1	Yes	An error response has been received	RW or Res
	Operat	tion	Indicates	that an earlier request from that module w	as invalid
			This bit is set by the module hardware if an error response received by that module from the packet-router. It is cleared autonomously by hardware only at hard reset.		
	Read		Returns current value		
	Write		Updates the current value if this bit is implemented by this module		
			Ignored if this bit is not implemented by this module		
			Software may write to this bit at any time.		
	Hard re	eset	0		

Table 145: P-ERROR flags

Bit Name	Bit	Size	Volatile	Synopsis	Туре		
ERR_SNT	1	1	Yes	An error response has been sent	RW or RES		
	Opera	tion	Indicates	that an earlier request to that module was	invalid		
			sent by the	This bit is set by the module hardware if an error response is sent by that module to the packet-router. It is cleared autonomously by hardware only at hard reset.			
	Read		Returns c	urrent value			
	Write		Updates ti module	Updates the current value if this bit is implemented by this module			
			Ignored if	this bit is not implemented by this module			
			Software may write to this bit at any time.				
	Hard r	eset	0				
BAD_ADDR	2	1	Yes	A request for an undefined control register has been received	RW or Res		
	Operatio			This bit is set by the module hardware if the module re a request for an undefined control register. It is cleare autonomously by hardware only at hard reset.			
	Read		Returns current value				
	Write			Updates the current value if this bit is implemented by this module			
			Ignored if this bit is not implemented by this module				
			Software i	may write to this bit at any time.			
	Hard r	eset	0				

Table 145: P-ERROR flags

Bit Name	Bit	Size	Volatile	Synopsis	Туре			
UNSOL_RESP	3	1	Yes	An unsolicited response has been received	RW or Res			
	Opera	tion	that it has	This bit is set by the module hardware if the module detects that it has received an unsolicited response. It is cleared autonomously by hardware only at hard reset.				
		A response is unsolicited if it does not match an outstand request sent by that module. If a module is incapable of generating requests then all responses to that module are unsolicited. All responses with illegal destinations are rou to the DEBUG where they are signalled as unsolicited responses. It is possible that a module may receive an unsolicited response which is not detected as unsolicited. This will ca that module to exhibit architecturally undefined behavior.						
						However, error cond	can attempt to clear this flag by writing a 0 this does not necessarily remove the caus lition. If the error condition persists then this be set until a subsequent hard reset.	se of this
	Read		Returns c	urrent value				
	Write		Updates ti module	he current value if this bit is implemented	by this			
			Ignored if this bit is not implemented by this module					
			Software may write to this bit at any time.					
	Hard r	eset	0					

Table 145: P-ERROR flags

Bit Name	Bit	Size	Volatile	Synopsis	Туре			
BAD_DEST	4	1	Yes	A request with an illegal destination has been received	RW or Res			
	Opera	Operation		This bit is set by the module hardware if a request with an illegal destination is received by that module from the packet-router. This bit will be cleared autonomously by hardware only at hard reset.				
	Read		Returns c	urrent value				
	Write		If this bit is implemented by this module, writes update the current value. If this bit is not implemented by this module, writes are ignored. Software may write to this bit at any time.					
	Hard r	eset	0					
BAD_OPC	5	1	Yes	A request with an unsupported opcode has been received	RW or Res			
	Operation		This bit is set by the module hardware if a request with an unsupported opcode is received by that module from the packet-router. This error can arise because not all modules support all packet-router opcodes. This bit will be cleared autonomously by hardware only at hard reset.					
	Read		Returns current value					
	Write		Updates the current value if this bit is implemented by this module					
			Ignored if this bit is not implemented by this module					
			Software may write to this bit at any time.					
	Hard r	eset	0	-				
-	[6:7]	2	-	Reserved	Res			
	Opera	tion	Reserved					
	Read		Returns 0					
	Write		Ignored					
	Hard r	eset	0					

Table 145: P-ERROR flags

A.1.5 M-ERROR flags

The M-ERROR flags are a set of 8 flags in a module's VCR which indicate errors specific to that module. If a module does not implement a particular M-ERROR flag, then that flag has reserved behavior.

All M-ERROR flags are 0 after hard reset. Implemented M-ERROR flags are volatile and are set to 1 by hardware whenever the associated error condition arises. The M-ERROR flags will be cleared autonomously by hardware only after hard reset. Software can read and write these flags at any time using appropriate accesses.

A.1.6 Memory map conventions

The ST40 physical memory map is organized so that each control block contains a VCR at offset 0. Additionally, the address range of each data block is described by the VCR of its associated control block. In general, each control block is allocated at a higher address than its data block.

This organization allows software to scan the ST40 memory map to locate control blocks and data blocks. The software can run on a ST40 CPU, or it can run on the host and access ST40 memory using the debug link protocol. The scanning can be achieved in a safe manner with accesses that do not cause major changes to the architectural state of the system. The scanning algorithm scans downwards through the memory map reading 8-byte words from addresses aligned to 2^{24} bytes.

This scan should start at the highest address aligned to 2^{24} i.e. 0xFF000000. The BOT_MB and TOP_MB information in the VCR of each control block should be used to ensure that data blocks are skipped over in the scanning sequence. It is important to ensure that data blocks are not read from, since data blocks may correspond to areas of data that have to be configured carefully and to address space that is implemented using off-chip state. It is possible that reads from off-chip state could modify the state of external memory-mapped peripherals.

Each 8-byte quadword that is read is to the first 8-byte quad word in a memory block. If the access is to an undefined block then the access will be to an illegal destination address. This will cause the following behavior:

- DEBUG.VCR.PERR_FLAGS.BAD_ADDR will be set since the access will cause a request to an illegal destination to be sent to the DEBUG module.
- DEBUG.VCR.PERR_FLAGS.ERR_SNT will be set since the access will cause an error response to be returned by the DEBUG.
- If the access is to a control block then the access will return the value of the VCR for that control block without setting any error bit nor generating an error response.

These different behaviors can be used to distinguish accesses to an undefined block from accesses to a control block. The scanning algorithm detects data blocks through the VCR values of control blocks. The scanning algorithm itself makes no accesses to locations within data blocks.

This algorithm can be used to classify each ST40 memory block between 0x00000000 and 0xFF000000 (inclusive) as a control block, a data block or an undefined block. Since each VCR value contains a module identity and module version, it is possible for software to check for the presence of particular modules and to handle different module versions appropriately.

A.1.7 P-MODULE specification standards

The specification of each module defines the functionality provided by that module. Each module defines the following:

- The memory map of each memory block associated with that module. In
 particular, the memory map of each control block associated with that module
 indicates whether each control register in that block has defined, reserved or
 undefined behavior.
- The interactions of that module with the SuperHyway packet-router. This includes the set of transactions that can be initiated by that module, and the transactions that can be serviced by that module. The behavior and signalling of error cases is also fully described.
- The format of all control registers defined by that module and the behavior of all fields in each control register for different types of access.

Register address list

Block	Pagistar nama	Description	Address offset ^A		
Block Register name		Description	P4	Area 7	
AUD	AUCSR	AUD control register Table 141 on page 380	0xFF2000CC	0x1F2000CC	
AUD	AUWAER	AUD window A end address register Table 141 on page 380	0xFF2000D4	0x1F2000D4	
AUD	AUWASR	AUD window A start address register Table 141 on page 380	0xFF2000D0	0x1F2000D0	
AUD	AUWBER	AUD window B end address register Table 141 on page 380	0xFF2000DC	0x1F2000DC	
AUD	AUWBSR	AUD window B start address register Table 141 on page 380	0xFF2000D8	0x1F2000D8	
DMA	CHAN[0]	State associated with channel 0 Table 20 on page 47	0x100 to 0x1F8		

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
			P4	Area 7
DMA	CHAN[0]. ACTION	Cause action on a control bit associated with this channel Table 35 on page 83	0x20	
DMA	CHAN[0]. CONTROL	Channel control Table 45 on page 93	0x80	
DMA	CHAN[0]. COUNT	Channel count Table 46 on page 99	0x88	
DMA	CHAN[0]. DAR	Channel destination address Table 48 on page 101	0x98	
DMA	CHAN[0]. DISABLE	Disable a control bit associated with this channel Table 33 on page 77	0x10	
DMA	CHAN[0]. ENABLE	Enable a control bit associated with this channel Table 32 on page 75	0x08	
DMA	CHAN[0]. IDENTITY	Channel identity Table 31 on page 71	0x00	
DMA	CHAN[0]. POINTER	Pointer to the current or last register memory image Table 36 on page 85	0x28	
DMA	CHAN[0]. SAR	Channel source address Table 47 on page 100	0x90	
DMA	CHAN[0]. STATUS	Status of a control bit associated with this channel Table 34 on page 80	0x18	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
			P4	Area 7
DMA	CHAN[0]. SUBBASE	Base pointer to the table of register images in main memory Table 38 on page 88	0x30	
DMA	CHAN[0]. SUBDISABLE	Subheading disable Table 40 on page 90	0x40	
DMA	CHAN[0]. SUBENABLE	Subchannel enable Table 39 on page 89	0x38	
DMA	CHAN[0]. SUBINT_ACT	Subchannel interrupt action Table 44 on page 92	0x60	
DMA	CHAN[0]. SUBINT_DIS	Subchannel interrupt disable Table 42 on page 91	0x50	
DMA	CHAN[0]. SUBINT_ENB	Subchannel interrupt enable Table 41 on page 90	0x48	
DMA	CHAN[0]. SUBINT_STAT	Subchannel interrupt status Table 44 on page 92	0x58	
DMA	CHAN[1:4]. CONTROL	Channel control Table 45 on page 93	0x80	
DMA	CHAN[1:4]. COUNT	Channel count Table 46 on page 99	0x88	
DMA	CHAN[1:4]. DAR	Channel destination address Table 48 on page 101	0x98	
DMA	CHAN[1:4]. DISABLE	Disable or reset a control bit associated with this channel Table 33 on page 77	0x10	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
			P4	Area 7
DMA	CHAN[1:4]. DST_LENGTH	2D destination line length Table 52 on page 105	0xB8	
DMA	CHAN[1:4]. ENABLE	Enable or set a control bit associated with this channel Table 32 on page 75	0x08	
DMA	CHAN[1:4]. IDENTITY	Channel identity Table 31 on page 71	0x00 0xA0	
DMA	CHAN[1:4]. NEXT_PTR	Pointer to the next register set Table 49 on page 102		
DMA	CHAN[1:4]. POINTER	Pointer to the current or last register set Table 36 on page 85	0x28	
DMA	CHAN[1:4]. REQUEST	The number of the request associated with this channel Table 37 on page 86	0x30	
DMA	CHAN[1:4]. SAR	Channel source address Table 47 on page 100	0x90	
DMA	CHAN[1:4]. SRC_LENGTH	2D source line length Table 50 on page 103	0xA8	
DMA	CHAN[1:4]. SRC_STRIDE	2D source line stride Table 51 on page 104	0xB0	
DMA	CHAN[1:4]. STATUS	Status of a control bit associated with this channel Table 34 on page 80	0x18	

Table 146: Register address list

Block	Register name	Description	Address offset ^A		
			P4	Area 7	
DMA	CHAN[1]	State associated with channel 1	0x200 to 0x2F8		
		Table 21 on page 49			
DMA	CHAN[2]	State associated with channel 2	0x300 to 0x3F8		
		Table 21 on page 49			
DMA	CHAN[3]	State associated with channel 3	0x400 to 0x4F8		
		Table 21 on page 49			
DMA	CHAN[4]	State associated with channel 4	0x500 to 0x4F8		
		Table 21 on page 49			
DMA	CHANNEL[1:4]. ACTION	Cause action on a control bit associated with this channel	0x20		
		Table 35 on page 83			
DMA	DEFINED	Global DMA channel defined	0x38		
		Table 29 on page 70			
DMA	DISABLE	Global disable	0x18		
		Table 25 on page 66			
DMA	ENABLE	Global enable	0x10		
		Table 24 on page 65			
DMA	ERROR	Global error status	0x30		
		Table 28 on page 69			
DMA	HANDSHAKE	Global request handshake protocol	0x40		
		Table 30 on page 70			

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
			P4	Area 7
DMA	INTERRUPT	Global interrupt status	0x28	
		Table 27 on page 68		
DMA	STATUS	Global DMA status	0x20	
		Table 26 on page 67		
DMA	VCR.STATUS	Version control register: module status	0x00	
		Table 22 on page 62		
DMA	VCR.VERSION	Version control register: module version	0x08	
		Table 23 on page 64		
INTC	ICR	Interrupt control	0x00	
		Section 3.3.2: Interrupt control register (ICR) on page 27		
INTC	IPRA	Interrupt priority level A	0x04	
		Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26		
INTC	IPRB	Interrupt priority level B	0x08	
		Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26		
INTC	IPRC	Interrupt priority level C	0x0C	
		Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26		
INTC	IPRD	Interrupt priority level D	0x10	
		Section 3.3.1: Interrupt priority registers A to D (IPRA to IPRD) on page 26		

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
			P4	Area 7
INTC2	INTC2MODE	INTC2 mode Table 18 on page 39	0x80	
INTC2	INTMSK00	Interrupt mask 00 Table 12 on page 34	0x40	
INTC2	INTMSK04	Interrupt mask 04 Table 13 on page 35	0x44	
INTC2	INTMSK08	Interrupt mask 08 Table 14 on page 35	0x48	
INTC2	INTMSKCLR00	Interrupt mask clear 00 Table 15 on page 36	0x60	
INTC2	INTMSKCLR04	Interrupt mask clear 04 Table 16 on page 37	0x64	
INTC2	INTMSKCLR08	Interrupt mask clear 08 Table 17 on page 37	0x68	
INTC2	INTPRI00	Interrupt priority level 00 Table 6 on page 30	0x00	
INTC2	INTPRI04	Interrupt priority level 04 Table 7 on page 31	0x04	
INTC2	INTPRI08	Interrupt priority level 08 Table 8 on page 31	0x08	
INTC2	INTREQ00	Interrupt request level 00 Table 9 on page 32	0x20	
INTC2	INTREQ04	Interrupt request level 04 Table 10 on page 33	0x24	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
BIOCK			P4	Area 7
INTC2	INTREQ08	Interrupt request level 08 Table 11 on page 33	0x28	
PIO	PC0[0:2]	Configuration Table 59 on page 113	0x1B010020 + (0x10000 * n)
PIO	PC1[0:2]	Configuration Table 60 on page 114	0x1B010030 + (0x10000 * n)
PIO	PC2[0:2]	Configuration Table 61 on page 115	0x1B010040 + (0x10000 * n)
PIO	PCOMP[0:2]	Compare data Table 63 on page 117	0x1B010050 + (0x10000 * n)
PIO	PIN[0:2]	Input data Table 58 on page 112	0x1B010010 + (0x10000 * n)
PIO	PMASK[0:2]	Compare mask Table 64 on page 117	0x1B010060 + (0x10000 * n)
PIO	POUT[0:2]	Output data Table 55 on page 109	0x1B010000 + (0x10000 * n)
RTC	R64CNT	64 Hz counter Table 90 on page 185	0x00	
RTC	RCR1	RTC control register 1 Table 104 on page 212	0x38	
RTC	RCR2	RTC control register 2 Table 105 on page 215	0x3C	
RTC	RDAYAR	Day alarm register Table 102 on page 208	0x30	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
			P4	Area 7
RTC	RDAYCNT	Day counter Table 95 on page 194	0x14	
RTC	RHRAR	Hour alarm register Table 100 on page 204	0x28	
RTC	RHRCNT	Hour counter Table 93 on page 190	0x0C	
RTC	RMINAR	Minute alarm register Table 99 on page 202	0x24	
RTC	RMINCNT	Minute counter Table 92 on page 188	0x08	
RTC	RMONAR	Month alarm register Table 103 on page 210	0x34	
RTC	RMONCNT	Month counter Table 96 on page 196	0x18	
RTC	RSECAR	Second alarm register Table 98 on page 200	0x20	
RTC	RSECCNT	Second counter Table 91 on page 186	0x04	
RTC	RWKAR	Day of week alarm register Table 101 on page 206	0x2C	
RTC	RWKCNT	Day of week counter Table 94 on page 192	0x10	
RTC	RYRCNT	Year counter Table 97 on page 198	0x1C	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
Biock	Register flame		P4	Area 7
SCIF	SCBRR2	Bit rate register Table 125 on page 283	0x04	
SCIF	SCFCR2	FIFO control register Table 127 on page 285	0x18	
SCIF	SCFDR2	FIFO data count register Table 128 on page 291	0x1C	
SCIF	SCFRDR2	Receive FIFO data register Table 120 on page 257	0x14	
SCIF	SCFSR2	Serial status register Table 124 on page 271	0x10	
SCIF	SCFTDR2	Transmit FIFO data register Table 121 on page 258	0x0C	
SCIF	SCLSR2	Line status register Table 130 on page 301	0x24	
SCIF	SCRSR2	Receive shift register Section 9.2.1: Receive shift register (SCIF.SCRSR) on page 256	-	
SCIF	SCSCR2	Serial control register Table 123 on page 264	0x08	
SCIF	SCSMR2	Serial mode register Table 122 on page 259	0x00	
SCIF	SCSPTR2	Serial port register Table 129 on page 293	0x20	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
BIOCK	Register flame		P4	Area 7
SCIF	SCTSR2	Transmit shift register Section 9.2.3: Transmit shift register (SCIF.SCTSR) on page 257	-	
TMU	TCNT0	Timer counter 0 Table 113 on page 236	0x0C	
TMU	TCNT1	Timer counter 1 Table 113 on page 236	0x18	
TMU	TCNT2	Timer counter 2 Table 113 on page 236	0x24	
TMU	TCOR0	Timer constant register 0 Table 112 on page 235	0x08	
TMU	TCOR1	Timer constant register 1 Table 112 on page 235	0x14	
TMU	TCOR2	Timer constant register 2 Table 112 on page 235	0x20	
TMU	TCPR2	Input capture register Table 116 on page 243	0x2C	
TMU	TCR0	Timer control register 0 Table 114 on page 237	0x10	
TMU	TCR1	Timer control register 1 Table 114 on page 237	0x1C	
TMU	TCR2	Timer control register 2 Table 115 on page 239	0x28	
TMU	TOCR	Timer output control register Table 110 on page 232	0x00	

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
DIOCK	Register flame		P4	Area 7
TMU	TSTR	Timer start register Table 111 on page 233	0x04	
UBC	BAMRA	Break address mask register A Section 10.3.4: Break address mask register A (UBC.BAMRA) on page 329	0xFF200004	0x1F200004
UBC	BAMRB	Break address mask register B Section 10.3.8: Break address mask register B (UBC.BAMRB) on page 333	0xFF200010	0x1F200010
UBC	BARA	Break address register A Section 10.3.2: Break address register A (UBC.BARA) on page 328	0xFF200000	0x1F200000
UBC	BARB	Break address register B Section 10.3.6: Break address register B (UBC.BARB) on page 333	0xFF20000C	1F20000C
UBC	BASRA	Break ASID register A Section 10.3.3: Break ASID register A (UBC.BASRA) on page 329	0xFF000014	0x1F000014
UBC	BASRB	Break ASID register B Section 10.3.7: Break ASID register B (UBC.BASRB) on page 333	0xFF000018	0x1F000018

Table 146: Register address list

Block	Register name	Description	Address offset ^A	
BIOCK	Register flame		P4	Area 7
UBC	BBRA	Break bus cycle register A Section 10.3.5: Break bus cycle register A (UBC.BBRA) on page 331	0xFF200008	0x1F200008
UBC	BBRB	Break bus cycle register B Section 10.3.11: Break bus cycle register B (UBC.BBRB) on page 336	0xFF200014	0x1F200014
UBC	BDMRB	Break data mask register B Section 10.3.10: Break data mask register B (UBC.BDMRB) on page 335	0xFF20001C	0x1F20001C
UBC	BDRB	Break data register B Section 10.3.9: Break data register B (UBC.BDRB) on page 334	0xFF200018	0x1F200018
UBC	BRCR	Break control register Section 10.3.12: Break control register (UBC.BRCR) on page 337	0xFF200020	0x1F200020
UDI	SDBPR	Bypass register Section 11.2.3: Bypass register (SDBPR) on page 371	-	-
UDI	SDBSR	Boundary scan register Section 11.2.5: Boundary scan register (SDBSR) on page 372	-	-
UDI	SDDRH	Data register H Section 11.2.2: Data register (SDDR) on page 370	0xFFF00008	0x1FF00008

Table 146: Register address list

Block	Register name	Description	Address	s offset ^A
Block	Register flame		P4	Area 7
UDI	SDDRL	Data register L	0xFFF0000A	0x1FF0000A
		Section 11.2.2: Data register (SDDR) on page 370		
UDI	SDINT	Interrupt factor register	0xFFF00014	0x1FF00014
		Section 11.2.4: Interrupt factor register (SDINT) on page 371		
UDI	SDIR	Instruction register	0xFFF00000	0x1FF00000
		Section 11.2.1: Instruction register (SDIR) on page 367		

Table 146: Register address list

- A. Some peripherals are listed with 2 addresses. This is because when accessed from the SH4 CPU Core the allowed physical address depends on the MMU in the SH4 CPU core.
- When address translation in the MMU is on, then only the Area 7 address may be used to access peripherals. Area 7 control register access may be used by programming the P0,P3 or U0 regions TLB entries appropriately.
- When the address translation in the MMU is off then only the P4 region may be used.
- For further details about Area 7 addresses see SH-4 32-bit CPU Core Architecture, sections 2.5 and 3.4.

Index

A	Bootstrap 58
Address 4-5, 9, 11, 13, 23, 40, 43, 45-46, 48-50, 52, 55-56, 61, 73, 81, 85, 88, 100-106, 108, 118-119, 122-123, 154, 182, 230, 255-256, 321-322, 324-325, 328-330, 333, 341-345, 347-348, 350, 352-357, 364, 374, 377, 379-382, 384-385, 390-391, 394-395, 401-406, 414 Address map 13, 45, 122-123, 182, 230,	BOT_MB 396 Bot_mb 394-396, 401 Branch instruction 341, 344, 347 Break 5, 40, 173, 252, 254, 265, 267, 269, 272, 279, 293, 298, 303, 313, 315-317, 321-326, 328-340, 342-356 381-385, 414-415 BRK 267-270, 272, 279, 313, 315-316 Byte 154, 333, 345
256	Byte 101, 000, 010
Af 212 Aie 213 Alarm 180, 183, 200-213, 222-223, 410-411 Alarm interrupts 180, 223 Aligned 43, 53, 81, 108, 118, 390, 401 Alignment 52-53, 63, 74, 76, 78, 81, 84, 99-101, 103-106 AND 249 Architectural state 401 ASE 1, 5, 380-385	CACHE 4 Cache 4-5, 172 Carry interrupt 180, 213, 222-223 Cf 214 Channel 5-6, 43-55, 57-61, 63, 65-81, 83-86, 88-94, 98-106, 109, 167-168, 227-228, 233-237, 239, 242-244, 248-250, 321, 328-340, 342-345, 348-349, 351, 353-357, 381-382, 403-407
В	Character 251, 260, 262-263, 273, 277, 303
Backus-Naur Form XXIII	CHR 260-261, 304-305
Bad_addr 398	Cie 213
Bad_dest 400	CKE 264, 269-270, 303-304, 306
Bad_opc 400	CKEG 237, 239-240, 243-244, 247-248
BNF. See Backus-naur Form.	CKS 155, 157, 159-160, 173, 259, 263,

282, 284 401 Clock output pin 232 DEBUG.VCR 402 Clock pause function 174 Delayed branch 3, 342, 344, 347 Compatibility 1 Denormalize 3 DMA 43-47, 49-62, 64-72, 75, 77, 80, Configuration register (CFG) 107, 113-115 83-86, 88-94, 99-106, 162, 168, 173, 252, 315, 390, 403, 407-408 Control block 389-391, 393-395, 401-402 DMA.STATUS 45, 66-67, 408 Control registers (CR) 17, 20, 27, 122, 159. 164-165. 168-169. 173. 175. 183. DMAC 5, 44-45, 53-54, 161, 228, 239, 185, 230, 235, 244, 248, 255, 241, 248, 252, 269, 277-278, 281-282, 268-269, 271-272, 278, 281, 303, 309, 315-316, 319 316-317, 326-327, 337, 342-345, 361, Double 8 364, 374, 380, 384-385, 390-394, 398, Dreq 70 402-403, 408, 410, 412-413, 415 COUNT 48-49, 55-57, 404-405 Е CPG 122, 134, 154-162, 164-165, ENB 184, 200, 202, 204, 206, 208, 210, 168-169, 171-173, 175-176, 364 212, 222 Crystal oscillator 6, 179, 216, 224 Enb 201, 203, 205, 207, 209, 211 CTSDT 294, 296-297 Endian 44 Big-endian 44, 57 D **Endianess** 57 DAR 48, 50, 97, 404-405 Little-endian 61 Data 3, 5, 9, 36-37, 39, 43-44, 51-57, ER 267-270, 273-274, 276, 313, 316 60-61, 72-73, 93, 95-97, 99-101, Err_rcv 390, 397 103-105, 107-112, 116-117, 119, Err snt 398 136-137, 142-143, 158, 220, 228, 239, Errors 78, 81, 84, 252, 270, 273-274, 241, 251-252, 254-258, 261, 267-268, 303, 390, 397, 401 270-274, 276-282, 284-286, 288-298, Event 22-23, 40, 60, 72, 94, 176-177, 303-306, 308-311, 313-318, 325-326, 222, 236, 239, 241, 252, 290, 334-336, 339, 341-345, 347, 350, 351-352, 356, 377 354-357, 361, 363-364, 366, 370, 377, Exception 3, 15, 20, 22-23, 38-39, 171, 379, 381-382, 384-385, 389, 401, 410, 174-175, 316, 342-344, 346-348, 412, 415-416 350-352, 374-375 Data block 389-390, 394-395, 401-402 EXTAL 174, 182 Day 179-180, 183, 192, 194, 196, 206-209, 215, 222, 410-411 F DBR 352, 382 FDIV 3 DEBUG 5, 399, 402 FER 268, 270, 272-274, 280, 317 Debug 1, 5, 62, 337, 340, 352, 361, 390,

FIFO 6, 25, 251-252, 255-258, 267-272, J 278, 281, 284-286, 288-291, 302-303, JTAG 5, 361, 363, 372, 374 309, 316-317, 377, 412 FIPR 4 L Floating-point 3, 327 Leap year 180, 194, 208 FMAC 3 Link 82, 94, 401 FPU 1, 3 LIST 94 Frame 252, 279, 282, 305, 309-310 Load 3 FSORT 3 Load instruction 327 FTRV 4 Loading 58 Function 5-6, 15, 52, 107, 113, 116, 162, LoadWord 390 165, 174-177, 179-180, 182, 220, 227, LOCK 138, 144 229, 237, 239-241, 243-244, 248-249, 254, 304, 317, 321, 337, 340, 352, **Long 159** 363, 374, 377, 381 M Functions 1, 6, 162, 179, 252, 254, 270, 321, 361, 375, 380-381 Map 38, 401 Matrix 4 G MCE 254, 285, 289, 296 **Graphics 4** MDIV 136, 139, 142, 145 Memory 4-5, 7, 42-44, 46-47, 49, 52-54, Н 57-61, 67, 80-81, 88-89, 93, 102, 162, Hour 179-180, 183, 190, 192, 194, 173, 327, 341, 343, 347, 377, 204-205, 215, 220, 222, 411 389-390, 401, 404-405 Memory block 389, 396, 402 I Memory map 401-402 ICPE 241, 243-244, 249 Merr_flags 394-395 **Identifier 4** Minute 179-180, 183, 188, 190, 202, 215-216, 222, 411 **IEEE7543** Misaligned 78 IF 56 MMU 1, 4 Instruction set 1, 344 MOD_ID 396 INTC 15-17, 19, 25-26, 38-40, 160, 409 Mod_id 63, 394, 396 Interrupt controller 40, 173, 269, 315, MOD_VERS 396 319 IOVF 155, 157, 160 Mod vers 394-395 IRL 5, 17, 19-24, 26, 29, 38, 171-172, Mode 1, 3-6, 19-21, 26-29, 38, 40, 53, 76, 174-175 79, 107, 154-157, 159-162, 164-166, 171-176, 182, 184-186, 188, 190, 192, IRLM 22, 29

194, 196, 198, 200, 202, 204, 206, P 208, 210, 212, 215, 227, 231-236, Packet-router 7-11, 13, 394, 397-398, 243-244, 248, 254, 259-261, 264, 268, 400, 402 270, 276, 283-284, 293, 296-297, Parity 251-252, 260-262, 271, 273-274, 303-304, 309, 318-319, 331, 337, 343, 276, 280, 303-304, 309-310, 313-314, 353-357, 361, 363, 367, 371, 374-375, 317 377, 380, 382, 409 PC 40, 107, 113-116, 338-339, 347 Privileged 382 Switch 154 PCI 161, 176-177 **MODULE 395-396** PDIV 137, 143 Month 179-180, 183, 194, 196, 198, 208, PE 260-261, 304-305 210-211, 215, 222, 411 Pef 218 MOV.W 341 PER 268, 270-271, 274, 280, 317 MSTP 163, 165, 167-170, 175-176 Performance counters 1 Periodic 215, 217-218, 223 N Periodic interrupts 180, 217, 223 Name 17, 45, 47, 49, 154, 164-165, 182, Perr_flags 390, 394 229, 254-255, 364, 366, 379, 384, Pes 217 390, 393, 396-397, 403 Physical memory 401 NDIV 136, 142 PHZ 165-166 NMI 5, 15, 17, 19-20, 23, 27-28, 159, Pipe-lining 10 171-172, 174-175 Pipelining 54 Notation 393 PLL 6, 127, 134, 136-139, 142-144, 159 **PLL1EN 134** 0 **PMU 161** O/E 260-262, 276 POWER 6 Object 1 Power management 121, 161 OCBI 341, 345 Power-on reset 19, 27, 154-156, 169, 176, OCBP 341, 345 200, 202, 204, 206, 208, 210, 215, OCBWB 341, 345 254, 257-259, 264, 270, 276-284, 290, On-chip peripheral 5, 22-23, 26, 162, 293, 296-298, 302, 328-329, 331, 334, 167-168, 171-172, 174-175, 364 336-340, 373 Opcode 400 P-port 8, 395 Operand 4, 321, 331-333, 336, 341-343, P-protocol 10 345-350, 354, 356-357, 381 PPU 165-166 OR 350 Precision OTHER 136-138, 140-141, 143 Double 3 Outputs 296, 298, 377 Single 3-4

-47

PREF 341, 345	65, 70, 75-76, 86-90, 93-97,
Priority 5, 15, 17-23, 26, 30-31, 40, 42,	99-106, 109, 113-115, 182-183,
54-55, 57, 250, 315-316, 374,	186, 188, 190, 192, 194, 196,
408-409	198-200, 202, 204, 206, 208, 210,
Priority Register 26, 30	212-218, 238, 240-241, 397-400
Process 11	RESERVED 135, 138, 141, 146-152,
Process 11	397-400
D	FPSCR Field
R	ENABLE 47, 49, 137, 143, 404, 406
RDF 267-268, 270-271, 281, 286, 288,	FLAG 39
313, 315-317	INTEVT 22-23, 38-40, 42, 171, 174,
RE 254, 265, 268-269, 274, 302, 306	347-348, 374
REAL-TIME 6	R 17-19, 39, 108, 122, 134-135,
Register 15, 17-20, 22-23, 26-27, 30-40,	154-155, 164-165, 169, 230,
44-47, 49-50, 52-54, 57-71, 74-75, 77,	232-237, 239-242, 255, 259-260,
80, 83-86, 88-90, 93-94, 99-101,	264-266, 271-273, 283, 285-286,
103-119, 122-123, 134, 136-139, 142,	291, 293-295, 301, 324-326,
145, 154-155, 158-165, 167, 169-176,	328-329, 331, 334-335, 337, 352,
179, 182, 184-186, 188, 190, 192,	364, 366, 370, 380
194, 196, 198, 200, 202, 204, 206,	SR 17, 20, 22-23, 40, 42, 171, 174, 343
208, 210, 212, 214-215, 222-223, 228,	SR.BL 15, 28
230, 232-237, 239-240, 243-244, 248,	SSR 40, 42, 171, 174, 351
250-252, 254-259, 263-264, 267,	VBR 40, 374
269-270, 278, 281-284, 291, 293, 301,	Registers
303, 313, 316-317, 324-329, 331,	Floating point 327
333-337, 339, 342-345, 347-348,	Program Counter 40, 341, 347
352-356, 361, 364-367, 370-371, 377,	REIE 265, 268-269, 313, 315
380, 384-385, 389-391, 393, 404-406,	RESERVED 39, 135, 138, 141, 146-152,
408-410, 412-416	212-213, 259-260, 264, 266, 286,
DR 252, 267-268, 270-271, 282, 313,	294-295, 302, 400
315-316	Reserved bits 26
EXPEVT 347-348	RESET 154-155, 159, 165, 169, 171,
Field Type	174, 176, 185, 215, 364
READ-ONLY 63-64, 67-74, 80-81,	
85-87, 91, 108, 112, 117, 138, 144,	Reset 19, 23, 26-27, 30-37, 39, 44, 49, 52,
185, 187, 189, 191, 193, 195, 197,	57, 60, 62-106, 108-115, 117-118, 134-152, 154-156, 159-160, 162-163,
201, 203, 205, 207, 209, 211-213,	165, 171-172, 174, 184-218, 223,
232, 234, 238, 242-243, 257,	231-243, 250, 254, 257-260, 264-266,
259-260, 264, 266, 271-274,	268-274, 276-287, 290-298, 301-302,
286-287, 291-292, 294-295, 302,	306, 316, 319, 328-329, 331, 334,
395-396	336-340, 343, 361, 363-364, 367,
READ-WRITE 30-31, 34-35, 62-63,	330-340, 343, 301, 303-304, 307,

369-370, 373-375, 392-401, 405 SLEEP 159, 162-163, 166, 171-174, 350 Response 10-11, 54, 62, 116, 381, 391, Sleep 6, 19-20, 28, 162, 165-166, 171-172, 175, 375 397-399, 402 RIE 265, 267-269, 313, 315 SPC 40, 42, 171, 174, 347, 351 RISC 1, 3 SRC 50, 53, 93, 95-96, 406 Rising edge 28, 227, 237, 239-240, 248, Stack 171, 174 318, 372 Standard 251, 361, 391, 393-395, 397, RSTS 155-156, 160 RTC 21-22, 24-26, 163, 167, 173-176, Standby 6, 19-21, 26-28, 122, 155, 159, 179, 181-186, 188, 190, 192, 194, 162-166, 168-176, 182, 184-186, 188, 196, 198, 200, 202, 204, 206, 208, 190, 192, 194, 196, 198, 200, 202, 210, 212, 215-216, 219-220, 222-224, 204, 206, 208, 210, 212, 215, 227, 227, 229, 231-233, 236-237, 239, 231-236, 243, 248, 259, 264, 270, 247-248, 250, 410-411 283-284, 293, 331, 337, 375 RTCCLK 233, 236 Status bit 83-84 Rtcen 216 Status register (SR) 19-20, 22-23, 40, 255, 267, 288-289, 309, 315-317, 412 RTE 22, 40, 42, 327, 344, 350-351, 374 Status register field RTS 168, 252, 254, 289-290, 293, ASID 4, 321-322, 324, 329-330, 333, 295-296, 299, 303, 314 342, 345, 353-357, 381, 384, 414 RTSDT 295-296 BL 19-20, 22-23, 40, 42, 171, 174, 343, RTSIO 295-296 350-351 M 318-319, 395, 401 S MD 40, 134, 168, 254, 299-301 SAR 48-49, 96, 404, 406 S 381-382, 384 SCIF 6, 22, 24-26, 167-168, 170, 175, STBY 162-163, 165-166, 171-173 251-259, 261, 263-265, 267-274, STOP 259, 262-263, 304-305 276-285, 288-289, 291-293, 296, Store 5, 57, 108, 118, 256, 258, 370 298-299, 301-309, 311-319, 412 StoreWord 390 Second 6, 45, 52, 54, 179-180, 182-183, STR 233-234, 244, 250 186, 188, 200-201, 214-216, 220, 222, **SUB 94** 263, 276, 411 SuperH SH-Series Section 7, 11, 107-108, 163, 166, 172, documentation suite 174, 176, 256, 259-260, 263-266, notation XXIII 271-274, 285-286, 293-295, 301, 326, Superscalar 3 341, 343, 391, 394-395 Symbol 393 Segment 53 Synchronization 228, 235, 250-251, 303, Serial status register 255, 412 313, 363 SETUP 137, 143

T

TCLK 168, 182, 227, 229, 232-233, 236, 239, 244, 247-248 TCNT 228, 233-241, 244, 246, 248, 250 TCOE 232, 239, 244, 248 TCOR 234-235, 244 TCR 235-236, 244, 246-249 TDFE 267, 270, 272, 278, 286, 289, 309, 315-316 TEND 270, 273, 277, 306, 309 TIE 266-267, 309, 315 **TLB 344** TME 155, 159-160, 173 TMU 22, 24-26, 167-168, 173, 175-176, 182, 227, 229-237, 239, 243-244, 248-250, 413-414 TMUBASE 230 TOP_MB 396 Top_mb 394-396, 401 TPSC 235, 237, 239, 244, 246-248 Tracing 377 **TRAPA 351** Type 5, 19, 30-37, 39, 46, 61-71, 75, 77, 80, 83, 85-86, 88-93, 99-106, 108-115, 117, 134, 136, 139, 142, 145, 147-152, 160, 162, 185-186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 215, 227, 232-233, 235-237, 239, 243, 257-259, 264, 271, 283, 285, 291, 293, 301,

344, 351, 374, 389, 392-393, 395,

U

UDI 22, 24, 26 Undefined block 389-390, 402 UNF 235, 238, 240-241, 244, 249 UNIE 238, 240, 244, 249 Unsol_resp 399

V

VCR 389-391, 394-397, 401-402 Volatile 30-37, 39, 62, 64-71, 75, 77, 80, 83, 85-86, 88-93, 99-106, 109-115, 117, 134, 136, 139, 142, 145, 147-152, 185-186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 215, 232-233, 235-237, 239, 243, 257-259, 264, 271, 283, 285, 291, 293, 301, 392-393, 395, 397, 401

W

Watchdog timer 22, 122, 154-158, 160, 165, 169, 171, 176

WDT 22, 25-26, 153-157, 159-160, 173-175

WinCE 1

WOVF 155-156, 159-160

WT/IT 155-156, 160

WTCNT 122, 155, 158

XYZ

XTAL 182 Year 179, 183, 194, 198-199, 208, 215, 220, 411

397, 402

UM0339 Revision history

Revision history

Table 1. Document revision history

Date	Revision	Changes	
24-May-2002	1	Initial release	
12-Jul-2006	2	Second revision based on ADCS 7153464_G 9 May 2003 Changed cover page and disclaimer	

425/426

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

4