Flume: Basics

- Flume is a distributed, reliable, available service for efficiently moving large amounts of data as it is produced
 - Ideally suited to gathering logs from multiple systems and inserting them into HDFS as they are generated

Flume: Usage Patterns

- Flume is typically used to ingest log files from real-time systems such as Web servers, firewalls, and mailservers into HDFS
- Used in many large organizations, ingesting millions of events per day

Flume: High-Level Overview

Avro, others)

as required

throughput as required

Optionally pre-process incoming data perform transformations, suppressions, metadata enrichment Each agent can be configured with an in-memory or durable channel.

Flume Agent Characteristics

- Each Flume agent has a source and a sink
- Source
 - Tells the node where to receive data from
- Sink
 - Tells the node where to send data to
- Channel
 - A queue between the Source and Sink
 - Can be in memory or 'Durable'

Flume's Reliability

- Channels provide Flume's reliability
- Memory Channel
 - Data will be lost if power is lost
- Disk-based Channel
 - Disk-base queue guarantees durability of data in face of a power loss
- Data transfer between Agents and Channels is transactional
- Can configure multiple Agents with the same task
 - e.g., 2 Agents doing the job of 1 'collector' if one agent fails then upstream agents would fail over

Flume's Scalability

- Scalability
 - The ability to increase system performance linearly or better
 - by adding more resources to the system
 - Flume scales horizontally
 - As load increases, more machines can be added to the configuration

Flume's Extensibility

- Flume can be extended by adding Sources and Sinks to existing storage layers or data platforms
 - General Sources include data from files, syslog, and standard output from any Linux process
 - General Sinks include files on the local filesystem or HDFS
 - You can write your own Sources or Sinks