Aprendizagem Computacional - Trabalho Prático 3

João Tiago Márcia do Nascimento Fernandes - 2011162899 Joaquim Pedro Bento Gonçalves Pratas Leitão - 2011150072

14 de Novembro de 2014

$\mathbf{\acute{I}ndice}$

1	Intr	rodução	3
2	Apl	icação Desenvolvida	4
	$2.\overline{1}$	Graphical User Interface	4
	2.2	Redes Neuronais Implementadas	5
	2.3	Treino das Redes	6
	2.4	Teste das Redes	8
	2.5	Implementação em Matlab	8
		2.5.1 run.m	8
		2.5.2 createNetwork.m	8
		2.5.3 prepareDataSets.m	9
		2.5.4 processCharacteristics.m	10
		2.5.5 interpretResults.m	10
		2.5.6 interpretGroupResults.m	10
	2.6	Execução	11
3	\mathbf{Trei}	ino e Testes da Aplicação	12
	3.1	Testes Iniciais	12
		3.1.1 Descrição	12
		3.1.2 Análise dos Resultados Obtidos	13
	3.2	Testes Complementares	15
		3.2.1 Redes Selecionadas	15
	3.3	Redução da Dimensionalidade	16
4	Con	ıclusões	17
5	Ane	PXOS	18

1 Introdução

O presente trabalho foca-se na previsão e identificação de crises epiléticas, com base em informação de sinais cerebrais, recolhidos através da realização de um EEG (ElectroEncefaloGrama).

Este exame recolhe dados relativos à atividade cerebral do paciente que o realiza, sendo possível extrair um conjunto de características que permite a identificação de momentos de ocorrência de crises epiléticas (denominadas situações ictais) e de momentos nos quais o paciente não apresenta qualquer problema (denominadas situações não-ictais).

O trabalho proposto visa a criação de uma aplicação em Matlab, que analise os dados recolhidos após a realização de um EEG a um paciente, e que identifique eventuais situações em que a atividade cerebral registada corresponde a uma situação de crise epilética.

Para proceder à identificação das situações *ictais* e *não-ictais*, a aplicação desenvolvida faz uso, na sua arquitetura interna, de redes neuronais, disponíveis na *Neural Networks Toolbox* do próprio *Matlab*.

Para avaliar o desempenho e performance da aplicação desenvolvida, procederemos à análise da sensibilidade e especificidade de cada rede neuronal implementada.

Estas métricas correspondem à percentagem de situações ictais verdadeiras detetadas (sensibilidade) e à percentagem de situações $n\~ao-ictais$ falsas detetadas (especificidade), refletindo a performance da rede na classificação de um dado data set: Uma elevada sensibilidade implica uma boa deteção de situações ictais, enquanto que uma elevada especificidade implica uma boa deteção de casos $n\~ao-ictais$.

Ambas as métricas constituem requisitos necessários para a sua utilização em ambiente clínico, e podem ser definidas da seguinte forma:

$$Sensibilidade = \frac{PositivosVerdadeiros}{PositivosVerdadeiros + FalsosNegativos}$$

$$Especificidade = \frac{NegativosVerdadeiros}{NegativosVerdadeiros + FalsosPositivos}$$

No presente documento pretendemos apresentar de forma mais detalhada a aplicação desenvolvida, discutindo alguns detalhes da sua implementação e apresentando uma reflexão crítica sobre o seu desempenho e performance, nomeadamente da sua sensibilidade e especificidade.

2 Aplicação Desenvolvida

Tal como referido anteriormente, a aplicação desenvolvida visa analisar os dados referentes a um EEG de um paciente, identificando situações correspondentes a uma crise epilética.

Esta classificação pode ser realizada de duas formas distintas, que passamos a descrever.

Numa primeira abordagem, a que chamamos *Classificação Individual*, é atribuído a cada elemento do conjunto de dados de entrada da aplicação uma de duas *classes*, representadas por dois valores binários:

- Classe $n\tilde{a}o$ -ictal, correspondente a um estado normal do paciente (ausência de crises) e representada pelos valores 1 θ
- Classe ictal, correspondente a uma situação de crise, e representada pelos valores θ 1

Na segunda abordagem, a que chamamos *Classificação em Grupo*, o processo de classificação das entradas é realizado de forma semelhante, no entanto são considerados conjuntos de dados de entrada da aplicação, ao invés de cada elemento. Para este tipo de classificação podemos adotar duas métricas diferentes:

- Analisar o número de elementos consecutivos classificados individualmente como *ictais*, comparando-o com um dado limiar. Neste caso, se, por exemplo, existirem pelo menos 10 elementos consecutivos classificados como *ic*tais então é detetada uma crise. Caso contrário nenhuma crise é detetada.
- Adotar um sistema de classificação em janela deslizante, analisando o número de elementos classificados individualmente como ictias, num dado universo restrito. Isto é, se pelo menos cinco dos últimos dez elementos foram classificados como ictais então todos os elementos nesse conjunto são classificados como ictais.

Optámos por adotar o segundo método de *Classificação em Grupo*, considerando uma abordagem por janelas, uma vez que o primeiro método, na nossa opinião, não torna o classificador resistente a variações no tempo. Isto é, caso a saída obtida seja igual à esperada, mas com todos os elementos deslocados, por exemplo, em uma unidade este método irá considerar um número de classificações erradas muito maior do que numa abordagem por janelas.

De seguida apresentamos em maior detalhe a aplicação desenvolvida, salientando alguns dos seus aspetos mais importantes e relevantes.

2.1 Graphical User Interface

Para facilitar a interação do utilizador com a aplicação, foi-nos proposta a criação de uma interface gráfica onde são solicitadas ao utilizador todas as informações relevantes para a execução da aplicação, separando por completo

a sua lógica interna com a especificação dos seus dados de entrada e outros parâmetros.

Assim, na interface gráfica desenvolvida são solicitadas ao utilizador várias informações que permitem a criação e treino das diferentes redes neuronais, nomeadamente:

- Tipo de rede neuronal a criar e treinar. Encontram-se disponíveis as redes Radial Basis Function, Layer Recurrent Network, FeedForward, Feed-Forward Time Input Delay e Distributed Time Delay.
- Função de Aprendizagem (ou Função de Treino) a utilizar na rede neuronal a criar (Se necessário). Encontram-se disponíveis as funções trainscg, traingd e trainrp.
- Função de Performance a utilizar no treino da rede neuronal (se necessário). Estão disponíveis as funções *mse* (mean squared error) e *sse* (sum squared error).
- Função de Activação dos neurónios da rede neuronal a implementar (se necessário). Estão disponíveis as funções hardlim, purelin, logsig e tansig.
- Tipo de Classificação a realizar (Individual ou Em Grupo)
- Ficheiro de dados a utilizar para treinar a rede criada
- Ficheiro de dados a utilizar para testar a rede criada
- Número de características dos pacientes a considerar
- Outros aspetos, como objetivo do treino (Goal), taxa de aprendizagem, etc

Para além disso, na interface desenvolvida, existe também uma secção onde são apresentados os resultados de cada teste realizado, nomeadamente a especificidade e sensibilidade da rede considera.

2.2 Redes Neuronais Implementadas

Como já referimos anteriormente, na nossa aplicação implementámos cinco redes neuronais distintas: Radial Basis Function, Layer Recurrent Network, FeedForward, FeedForward Time Input Delay e Distributed Time Delay.

Estas redes apresentam, naturalmente, características e propriedades distintas, sendo que umas se adequam mais ao trabalho que pretendemos realizar do que outras.

Por exemplo, considerando a rede *Layer Recurrent*, esta rede permite a introdução de atrasos em algumas características, o que lhe permite aprender a prever qualquer saída dinâmica, tendo por base entradas passadas. Este processo é possível se forem considerados neurónios e atrasos suficientes na rede.

Figura 1: Interface Gráfica implementada

De facto, esta é uma propriedade que vai, de certa forma, ao encontro do funcionamento de um cérebro humano, que para além de ser um sistema dinâmico, possui também memória.

Na mesma linha de raciocínio, redes que suportam a introdução de atrasos em algumas das características que constituem os dados de entrada surgem, a uma primeira vista, como boas opções para simular o comportamento de um cérebro humano, realizando uma melhor identificação das situações correspondentes a crises epiléticas. Exemplos destas redes são a rede *Distributed Time Delay* e a *FeedForward Input Time Delay*.

Por seu turno, a rede *FeedForward* também se apresenta como uma solução a considerar, dado o facto de permitir uma boa implementação de qualquer função de entradas e saídas arbitrárias, desde que considerados neurónios suficientes na(s) camada(s) escondida(s).

Por fim, é também necessário referir a rede Radial Basis Function, bastante utilizada para aproximar funções e cujo treino passa nomeadamente pela adição de neurónios à camada escondida até que a rede atinja a performance (goal) pretendida. Assim, embora possa ser necessário adicionar um elevado número de neurónios à camada escondida, acreditamos ser possível ter uma boa performance com esta rede.

2.3 Treino das Redes

Um dos principais aspetos do trabalho realizado, prende-se com o treino das redes neuronais, pois é ele que determina a boa (ou má) performance das redes implementadas.

Para o presente trabalho foram-nos fornecidos dados relativos a três pacientes, constituídos por um conjunto de características extraídas para cada elemento, e pela respetiva classe definida para cada elemento.

Uma vez que as situações em que os pacientes estão a sofrer de uma crise epilética são consideravelmente menos do que as situações em que o paciente não apresenta nenhum problema, a simples seleção de todos os elementos de um

dos conjuntos fornecidos, ou de parte desses elementos, para realizar o treino da rede, sem qualquer cuidado na seleção dos elementos irá conduzir a dados de treino onde predominam situações *não-ictais*.

Nesses casos, iremos verificar uma especialização da rede na identificação de situações $n\~ao-ictais$, sem que faça uma classificação de casos ictais igualmente fiável.

De facto, tal situação não é desejável, uma vez que o nosso principal objetivo passa pela identificação de casos ictais com um grau de confiança mínimo, não a identificação de situações $n\~ao-ictais$.

Assim, para evitar que as redes por nós treinadas se especializem em situações $n\~ao-ictais$, na constituição dos casos de treino das diferentes redes neuronais, consideramos um dos ficheiros fornecidos, e para esse ficheiro selecionamos uma percentagem dos casos ictais (essa percentagem é solicitada ao utilizador através da interface gráfica) que vamos incluir no nosso data set de treino.

Em seguida, selecionamos um número igual de situações $n\~ao$ -ictais, preservando a ordem dos diferentes casos nos dados originais. Como o número de situações $n\~ao$ -ictais é bastante superior ao número de situações ictais, ao selecionarmos um número de situações $n\~ao$ -ictais igual ao de situações ictais temos, necessariamente de não incluir a maior parte das situações $n\~ao$ -ictais.

Para além disso, consideremos duas características observadas em dois momentos distintos do exame: Uma, observada num momento em que o paciente se encontra clinicamente estável (portanto numa situação $n\~ao-ictal$); E outra, observada instantes antes da ocorrência de uma crise.

Embora ambas as situações sejam classificadas como $n\~ao$ -ictais, facilmente compreendemos que a segunda se encontra mais próxima de um estado ictal, do que a primeira. Efetivamente, para evitar que as redes por nós treinadas classifiquem estas duas situações apresentadas com diferentes valores (atribuindo à primeira a classificação de $n\~ao$ -ictal e à segunda de ictal), é necessário incluir, nos dados de treino das redes, uma porção de características que reflitam ambas as situações apresentadas, a par das situações ictais.

Assim, para fazermos a seleção dos dados de treino das nossas redes, selecionamos aleatoriamente um conjunto de situações $n\~ao-ictais$ do conjunto de dados originais, preservando sempre a ordem de ambas as situações ictais e $n\~ao-ictais$, e assegurando a inclus $\~a$ o de exemplos referentes às duas situações apresentadas.

No processo de treino das redes recorremos ainda a diferentes funções de treino, disponíveis e implementadas pela Neural Network Toolbox do Matlab. As funções de treino disponíveis são a função traingd, trainseg e trainrp.

Com exceção da rede RBF (Radial Basis Function) implementada, o treino das restantes redes neuronais é realizado com recurso à função train da Neural Network Toolbox do Matlab. Uma vez que o treino das redes é uma operação complexa e exigente em termos computacionais, tendo em conta o tipo de redes criadas e a dimensão dos dados para proceder ao treino das redes, estas foram treinadas com aceleração gráfica, disponível nas versões mais recentes do Matlab. Para tal, basta adicionar os parâmetros 'useGPU', 'yes' aquando da chamada da função train: train(network, P, T, 'useGPU', 'yes').

Para a rede *RBF*, o *Matlab* realiza o seu treino aquando da criação da rede, não sendo necessária a invocação da função *train*.

2.4 Teste das Redes

Uma vez completo o treino de uma rede neuronal, esta pode ser testada, de forma a verificar o seu bom, ou mau, funcionamento. Para isso, criámos um conjunto de dados de teste, baseados nos três data sets inicialmente fornecidos.

O processo de criação dos dados de teste é semelhante ao utilizado na constituição dos dados de treino das redes neuronais:

É solicitado ao utilizador que indique o ficheiro (de entre os três ficheiros fornecidos) de onde serão extraídos os dados de teste, e qual a percentagem de situações *ictais* a incluir. Em seguida, o ficheiro escolhido é analisado, e são considerados todos os dados nele presentes, a partir do final do ficheiro, até que o número de situações *ictais* incluídas seja igual à percentagem especificada.

Por outras palavras, se o utilizador especifica que pretende incluir 25% das situações *ictais* nos dados de treino, e se todas as situações *ictais* identificadas nesse data set se encontram nas posições 10-20, 40-50, 60-70 e 80-100, então o nosso data set de treino será constituído por todos os elementos do ficheiro, desde a posição 60 até ao final do ficheiro.

Uma vez que aquando da realização dos testes na rede esta já se encontra treinada, é irrelevante considerarmos nos data sets de teste situações ictais na mesma ordem de grandeza do que situações $n\~ao-ictais$, pois apenas estamos a executar a rede para um conjunto de dados, sem que este afete de forma alguma o funcionamento da rede em situações futuras.

2.5 Implementação em Matlab

A aplicação foi por nós desenvolvida e programa quase na sua totalidade, com a exceção do código relativo à interface gráfica. Esta foi desenhada por nós através da interface guide do Matlab, tendo o seu código sido gerado pelo Matlab.

De qualquer forma, toda a lógica interna da aplicação, comunicação da informação recolhida pela interface gráfica para outras estruturas, etc, foi por nós completamente desenvolvida.

2.5.1 run.m

Este é o principal ficheiro da aplicação e que permite a sua execução. É nele que se encontra todo o código gerado, relativo à interface gráfica, mas também onde todas as principais funcionalidades da aplicação (criação das redes neuronais e respetivo treino e classificação dos dados de teste) são invocadas.

2.5.2 createNetwork.m

No ficheiro createNetwork.m encontramos a função createNetwork, responsável pela criação da rede neuronal que irá realizar a identificação das situações

ictais nos dados considerados e fornecidos à aplicação.

Esta rede é criada de acordo com algumas características pré-definidas, e outras escolhidas pelo utilizador, como é o caso das funções de ativação e de treino.

Após a sua criação, a rede será treinada com um conjunto de dados previamente criado de acordo com as especificações fornecidas pelo utilizador. Este treino não é realizado neste ficheiro, mas sim no principal ficheiro desenvolvido para a aplicação, run.m.

2.5.3 prepareDataSets.m

Neste ficheiro encontramos a função prepareDataSets, responsável pela criação dos data sets de treino e e de teste, bem como dos respetivos resultados esperados (quer para os dados de treino, quer para os dados de teste). Para além disso, neste ficheiro é ainda invocado o procedimento responsável pela seleção das principais características registadas, para o paciente em questão, que abordaremos em maior detalhe mais à frente nesta secção.

Tal como referimos brevemente numa secção anterior do presente documento, as abordagens seguidas para a criação dos conjuntos de dados de treino e de teste têm pontos em comum, não sendo, no entanto, completamente iguais.

Uma vez que, nos ficheiros fornecidos, o número de situações $n\~ao-ictais$ é bastante superior à quantidade de classificações ictais, se simplesmente considerarmos para o nosso data set de treino uma percentagem dos dados fornecidos, sem nos preocuparmos com a distribuição de situações $n\~ao-ictais$ e ictais, então será altamente provável que as nossas redes sejam treinadas com mais casos $n\~ao-ictais$ do que com ictais, resultando numa especialização da mesma na deteção de situações $n\~ao-ictais$.

Efetivamente, tal situação corresponde ao oposto do desejável, tendo em conta que o nosso objetivo principal passa pela identificação de casos *ictais*, com um grau de confiança mínimo.

Assim, para os dados de treino das redes neuronais criadas são consideradas situações ictais e $n\~ao-ictias$ em igual número e de acordo com uma percentagem das situações ictais totais do ficheiro a considerar, definida pelo utilizador. Nesta seleção, tal como referido anteriormente, é preservada a posição relativa das situações ictais e $n\~ao-ictais$ consideradas, e assegurando a inclusão de exemplos referentes Às duas situações $n\~ao-ictais$ apresentadas.

No que respeita aos dados de teste, também criados neste ficheiro, não é necessária qualquer preocupação em relação ao número de situações ictais e não-ictais, uma vez que pretendemos utilizar estes dados em redes já treinadas, pelo que a sua execução em nada alterará o comportamento futuro da rede.

Assim, os dados de treino são construídos partindo do final de um ficheiro de dados previamente selecionado, incluindo todos os dados (correspondentes a casos *ictais* e *não-ictais*) até que o número de situações *ictais* seja igual a um valor definido pelo utilizador.

2.5.4 processCharacteristics.m

Neste ficheiro podemos encontrar o procedimento responsável pela seleção das principais características registadas, para o paciente em questão.

Esta seleção é feita com base numa análise da correlação entre as diferentes características registadas e a classificação esperada para cada conjunto, selecionando as características que apresentam valores de correlação mais elevados, e em número igual ao especificado pelo utilizador na interface gráfica.

Com este procedimento pretendemos eliminar características redundantes dos nossos ficheiros de dados. Embora seja de prever que esta eliminação em nada altere a aprendizagem da rede (ou, em caso de alteração, que esta seja bastante ténue), é expectável uma melhoria no seu tempo de treino proporcional ao número de características redundantes removidas.

2.5.5 interpretResults.m

É neste ficheiro que se encontra a função *interpretResults*, onde é realizado o processamento da classificação executada pela rede neuronal treinada, nas situações em que o tipo de classificação escolhido é a *Classificação Individual*.

Este processamento consiste simplesmente em percorrer os resultados obtidos na execução da rede neuronal para o caso de teste fornecido, comparando-os elemento a elemento com os resultados esperados para esse caso de teste. Assim, é registado o número de situações em que a classificação da rede se apresenta correta (distinguindo-se entre classificações de situações ictais e $n\~ao-ictais$), bem como situações em que a classificação da rede está incorreta (também distinguindo-se entre ituações ictais e $n\~ao-ictais$).

Para além disso, são também registados o número de classificações positivas e negativas, isto é, de situações ictais e $n\~ao-ictais$, presentes nos dados fornecidos à rede, e que num cenário de classificação perfeita corresponderiam ao número de situações ictais e $n\~ao-ictais$ registadas.

Uma vez que a classificação realizada pela rede nem sempre é clara, podem existir situações para as quais a rede não convergiu, não sendo possível distinguir de forma clara para uma dada situação (ou conjunto de situações) qual a classe atribuída pela rede. Essas situações são também registadas nesta função, sendo posteriormente reportadas como classificações inválidas.

2.5.6 interpretGroupResults.m

O ficheiro *interpret Group Results. m* é responsável por uma importante parte da lógica subjacente à *Classificação em Grupo* realizada pela aplicação.

Neste ficheiro, a abordagem seguida é em tudo semelhante ao realizado no caso da Classificação Individual: Possuindo os resultados esperados para o teste realizado, basta percorrer os dados obtidos como resultado da classificação da rede neuronal, registando as situações em que os dois conjuntos de dados (dados obtidos e esperados) são idênticos (verdadeiros positivos e verdadeiros negativos), bem como situações onde as classificações diferem (falsos positivos e falsos negativos), ou então não são possíveis (classificações inválidas).

2.6 Execução

Para executar a aplicação o utilizador simplesmente necessita de executar o ficheiro *run.m*, sendo imediatamente exibida a interface gráfica desenvolvida.

A partir desse momento, o utilizador poderá escolher a rede a criar e a treinar, definindo algumas das suas propriedades e do seu treino, nomeadamente a escolha do ficheiro de dados a utilizar como fonte para a criação dos dados de treino e para posterior teste da rede treinada. É também possível selecionar o tipo de classificação a realizar, e o número de características a considerar.

Uma vez definidos todos os parâmetros pretendidos pelo utilizador, basta clicar na opção *Train Network*, para proceder ao treino da rede, ou na opção *Test*, para proceder à execução da rede para os dados de teste especificados.

Queremos também salientar a possibilidade de seleção a opção *Test* sem, previamente, ter sido treinada nenhuma rede. Nesse caso, será criada e treinada uma rede de acordo com as especificações para esta definidas na interface. Caso o utilizador não tenha definido nenhuma configuração, será utilizada uma por defeito.

Uma vez finda a execução da rede para os dados de treino selecionados, os resultados dessa execução poderão ser visualizados no painel Results, estando disponível a sensibilidade e especificidade registadas, bem como os dados que permitiram calcular esses valores (verdadeiros positivos e negativos, e falsos positivos e negativos). É ainda apresentado o número de classificações inválidas registadas.

3 Treino e Testes da Aplicação

Após o desenvolvimento inicial da aplicação procedemos ao treino e teste das diferentes redes implementadas, a fim de aferir o seu correto, ou incorreto, funcionamento e da sua adequação às nossas previsões iniciais para a performance de cada rede.

3.1 Testes Iniciais

3.1.1 Descrição

Reformular a partir daqui

Numa fase inicial dos testes realizados procedemos ao treino de todas as redes neuronais implementadas, para uma vasta gama de combinações possíveis das propriedades das redes consideradas, e para os dois tipos de classificação disponíveis. Assim, inicialmente treinámos as redes com as seguintes propriedades:

- Dados de treino retirados do ficheiro 92202.mat
- Percentagem de situações ictais consideradas nos casos de treino de 70%
- Objetivo do treino com o valor de 10^{-6} , com exceção da rede *Radial Basis Function*, onde o valor considerado foi de 10^{-2}
- Número de épocas de treino máximo de 1000
- Número de validation checks necessários para terminar o treino igual a metade do número máximo de épocas de treino, ou seja 500
- Ritmo de aprendizagem de 0.2
- Número de Camadas Totais igual a 4 (incluindo a camada de saída)
- Número de neurónios por cada camada escondida (excluindo a camada de saída) igual a 30
- Funções de ativação consideradas: hardlim, purelin, logsiq e tansiq
- Funções de treino consideradas: trainscg, traingd e trainrp
- \bullet Funções de performance consideradas: sseemse

Antes de entrarmos em maior detalhe sobre os testes realizados gostaríamos de referir alguns pontos que consideramos importantes para uma posterior análise.

Em primeiro lugar, gostaríamos de chamar a atenção do leitor para o número de camadas consideradas nos testes realizados: Um dos pontos defendidos pela bibliografia deste tema refere-se ao facto de, numa rede neuronal com uma única camada escondida (excluindo a camada de entrada e a de saída), ser possível

obter os mesmos resultados que numa rede neuronal equivalente, mas que faça uso de mais camadas.

Simplesmente para obter resultados equivalentes é necessário adicionar um número suficiente de neurónios à camada escondida. Naturalmente que, ao se adicionar um elevado número de camadas e de neurónios por camada, o tempo de treino da rede aumenta consideravelmente.

Para além disso, analisando o número de camadas e de neurónios por camada considerados, este pode parecer demasiado excessivo. Efetivamente, numa fase posterior da nossa análise, iremos considerar algumas destas redes treinadas com um número de camadas e de neurónios por camada bastante mais reduzido, com intenção de compararmos os resultados obtidos em cada situação.

Com o objetivo de aferir a validade das redes implementadas, iniciamos os testes executando as diferentes redes para os dados do ficheiro 92202.mat não utilizados para o treino da rede. Dado que estes dados são relativos ao mesmo paciente com o qual as redes foram treinadas será de prever que estes dados se aproximem mais dos dados de treino das redes, resultando numa melhor performance.

Posteriormente a este teste, foram também executados testes com os dados relativos a outros dois pacientes, considerando para efeitos de teste porções de 30%, 50% e 70% do número total de situações ictais presentes em cada um dos ficheiros.

Em anexo a este documento encontra-se uma lista detalhada dos resultados obtidos em cada teste realizado, que poderá ser consultada pelo leitor.

Na lista apresentada optámos por não incluir os resultados relativos aos testes para as redes treinadas com a função sum squared error como função de performance, uma vez que as redes treinadas com esta função obtiveram valores de performance registados pela Neural Network Toolbox muito superiores aos registados para as redes treinadas com a função de performance mean squared error 1

3.1.2 Análise dos Resultados Obtidos

Analisando os resultados obtidos neste teste, existem alguns pontos que, na nossa opinião, se tornam evidentes e que gostaríamos de salientar, desde já.

Nos testes realizados com os dados provenientes do ficheiro 92202.mat não utilizados no treino das redes, ficámos algo surpreendidos com os resultados obtidos.

De uma forma geral, todas as redes apresentam, nesta situação, valores de especificidade bastante elevados (excluindo algumas situações pontuais). No entanto, os valores de sensibilidade registados são bastante reduzidos e irregulares. Queremos também chamar a atenção para o facto de, nos testes realizados, a rede Radial Basis Function não ter realizado uma única classificação inválida, o que é algo que consideramos bastante positivo.

 $^{^1\}mathrm{Neste}$ caso, quanto maior for o valor registado para a performance de uma rede pior será o seu desempenho

De facto, tal como referimos, seria de esperar que as redes realizassem boas classificações para casos próximos dos com que foram treinadas, como é o caso quando consideramos dados do mesmo paciente. Embora essa situação se verifique, em algumas situações, para os valores de *especificidade*, os valores de *sensibilidade* e também o número de classificações inválidas revelam outra realidade.

Tais resultados sugerem, assim, a possível existência de um erro na implementação destas redes ou, numa situação mais improvável, a possibilidade de, acidentalmente, termos corrompido os dados no ficheiro que utilizámos para o treino da rede, antes ou depois desse mesmo treino.

No entanto, e tal como iremos constatar de seguida, os resultados obtidos quando sujeitamos as redes a outros dados de teste não foram tão negativos.

Numa primeira e superficial análise, seria plausível considerar que, à luz dos resultados obtidos para os restantes pacientes analisados, a maioria das redes implementadas apresenta uma boa capacidade de generalização. No entanto, os resultados que acabámos de apresentar não nos deixam tão confiantes.

Não obstante, passemos à análise da prestação das diferentes redes, quando executadas com dados diferentes dos com que foram treinadas.

Em primeiro lugar, queremos desde já destacar o facto de, também neste conjunto de testes, não ter sido registada nenhuma classificação inválida por parte da rede *Radial Basis Function*.

Para além disso, verificámos que os resultados obtidos para a Classificação Individual e Classificação em Grupo são bastante semelhantes. De facto, este é, de certa forma, um resultado pouco surpreendente, dado que a nossa abordagem para a Classificação em Grupo é bastante semelhante à abordagem para a Classificação Individual. Todos os passos desde a criação dos dados de teste até à sua execução na rede são comuns aos dois tipos de classificação. A única diferença reside na forma como estes são processados após a sua execução na rede neuronal.

Como os nossos dados possuem as situações *ictais* bastante concentradas em locais muito específicos dos *data sets*, e uma vez que optámos pela abordagem em janela para a *Classificação em Grupo*, esta semelhança entre os resultados obtidos nas duas abordagens não completamente inesperada.

Não obstante, gostaríamos também de salientar que, embora os resultados obtidos para os dois tipos de classificações sejam bastante semelhantes, registámos melhores resultados nos testes que relativos à *Classificação Individual*.

De entre todas as redes testadas, aquela que apresentou melhores e mais consistentes resultados em ambos os tipos de classificação foi, sem dúvida, a rede *Radial Basis Function*, apresentando em praticamente todos os testes elevados valores (iguais ou superiores a 0.7) de especificidade e sensibilidade.

Para além desta rede, na *Classificação Individual* registámos ainda bons resultados para a rede *Distributed Time Delay*, treinada com a função *trainscg*, tal como a rede *FeedForward Input Time Delay*, em algumas situações pontuais (nomeadamente utilizando como função de treino a função *trainscg* e funções de ativação as funções *logsig* e *tansig*).

As restantes redes e respetivas configurações não mencionadas, não obtiveram resultados tão positivos, destacando-se sobretudo uma clara irregularidade nos resultados registados: Foi bastante frequente a ocorrência de situações em que uma dada rede registava um valor bastante elevado para a especificidade ou para a sensibilidade, mas o correspondente valor de sensibilidade ou de especificidade registado tomava valores muito reduzidos.

Surpreendentemente, nas redes que apresentam piores resultados, onde se incluem as redes que apresentam as oscilações de resultados que referimos, é bastante comum registarem-se percentagens de dados inválidos mais reduzidas do que em algumas redes com melhores resultados.

No que diz respeito à Classificação em Grupo, os resultados obtidos não são demasiado diferentes dos mencionados. Queremos destacar, à semelhança do que verificámos para a Classificação Individual, a boa performance da rede Radial Basis Function, e da rede Layer Recurrent Network, que desta feita relegou a rede Distributed Time Delay, treinada com a função trainscg para o posto de terceira melhor rede.

À semelhança do verificado na Classificação Individual, a rede FeedForward Input Time Delay registou bons resultados em alguns testes onde foi treinada com a função trainscg, tendo sido utilizadas as funções de ativação logsig e tansig.

Também se verificou uma grande oscilação nos resultados obtidos para algumas redes, registando-se situações em que, uma dada rede, foi registado um valor bastante elevado para a especificidade ou para a sensibilidade, mas o correspondente valor de sensibilidade ou de especificidade era muito mais reduzido.

Quanto ao número de classificações inválidas, registámos valores, em média, inferiores aos da *Classificação Individual*, existindo muitas redes que não apresentam qualquer classificação inválida.

Curiosamente, são as redes com maiores oscilações de valores de sensibilidade e especificidade que apresentam os maiores valores de classificações inválidas.

3.2 Testes Complementares

Tendo em conta os testes realizados para dados diferentes dos dados de treino, decidimos avaliar um pouco mais as redes que mostraram um melhor desempenho, realizando pequenas alterações às suas configurações, repetindo os treinos realizados e analisando os resultados.

3.2.1 Redes Selecionadas

Assim, nesta segunda fase de testes, consideramos as seguintes redes neuronais:

- Rede Radial Basis Function, com um goal de 0.01, um neurónio a adicionar entre displays
- Rede Distributed Time Delay, treinada com a função trainscg, e com as funções de ativação logsig e tansig

• Rede FeedForward Input Time Delay, treinada com a função trainscg, e com as funções de ativação logsig e tansig

Todas estas redes foram treinadas com apenas uma camada escondida e com 3, 7 e 15 neurónios por camada. Para além disso, com exceção da rede Radial Basis Function, foi utilizado um goal de 10^{-6} , 1000 epochs e um limite máximo de validation checks de 500 para o treino das redes.

Para os testes realizados, as redes foram executadas considerando os ficheiros 44202.mat e 63502.mat, selecionando 30, 50 e 70% das situações ictais registadas em cada um desses ficheiros.

De uma forma geral, os resultados da *Classificação Individual e em Grupo* não sofreram muitas alterações, face ao verificado para as respetivas redes nos testes anteriormente realizados:

A rede *Radial Basis Function* continuou a não registar dados inválidos, mesmo quando o seu número de neurónios foi reduzido a 3, o que, na nossa opinião, é um ponto positivo.

Verificaram-se também algumas variações nos valores de sensibilidade e especificidade registados, no entanto não existiu nenhum teste em particular onde os valores registados para estas métricas se afastassem por completo do observado nos testes anteriores.

Tendo em conta estes resultados, podemos constatar que as redes escolhidas para este segundo conjunto de testes realizam classificações com o mínimo de confiança, uma vez que mesmo quando constituídas por um reduzido número de neurónios, mantiveram valores de sensibilidade e especificidade elevados.

Isto leva-nos a acreditar que a sua estrutura, bem como as funções de treino e ativação consideradas conferem a estas redes uma boa capacidade para identificar situações ictais na atividade cerebral humana, adequando-se e permitindo simulando com alguma proximidade a atividade do cérebro humano, pelo menos no que respeita aos seus estados ictais e não-ictais.

3.3 Redução da Dimensionalidade

Explicar a ideia por trás disto (Muitas características com informação redundante —> Filtrando as que dão mais ganhos informativos ao sistema podemos ter uma aprendizagem ligeiramente pior, ou até igualmente melhor, necessitando de menos tempo para o treino da rede)

FIXME: MUDAR INTERFACE GRAFICA PARA PERMITIR UTILIZAR REDIMENSIONALIZAÇÃO DOS DADOS

4 Conclusões

Falar na generalização, uma vez que tivemos bons resultados (lol) em dados de pacientes que não o paciente de treino.

Referir os resultados menos positivos obtidos nos testes com os dados do paciente de treino.

5 Anexos

Nas páginas seguintes apresentamos os testes iniciais realizados para ${\it Classificação\ Individual\ e\ em\ Grupo},$

Single Classification

Single Classification														
Network	Number Neurons Network	Training Function	Performance Function	Training Goal	Activation Function	Input	Percentage Crysis (0-100)	Specificity	Sensibility	True Positives	True Negatives	False Positives	False Negatives	Invalid Data
Radial Basis Network	3	-		0.01	-	44202.mat	30	0.94193	0.88824	906	237550	14645	114	0
Radial Basis Network	5			0.01		44202.mat	30	0.94193	0.89314	911	237550	14645	109	0
Radial Basis Network	29			0.01		44202.mat	30	0.89547	0.94706	966	225830	26361	54	0
FeedForward	3	traingd	mse	1.00E-006		44202.mat	30	0.95198	0.85378	870	240070	12109	149	16
FeedForward	5	traingd	mse	1.00E-006		44202.mat	30	0.96111	0.85686	874	242380	9807	146	9
FeedForward	29	traingd	mse	1.00E-006		44202.mat	30	0.97473	0.83988	855	245700	6370	163	125
FeedForward	3	trainrp	mse	1.00E-006		44202.mat	30	0.99914	0.51875	498	251900	216	462	139
FeedForward	5	trainrp	mse	1.00E-006		44202.mat	30	0.99977	0.42217	358	252090	57	490	217
FeedForward	29	trainrp	mse	1.00E-006		44202.mat	30	0.99998	0.54793	503	251910	5	415	382
FeedForward	3	trainscg	mse	1.00E-006		44202.mat	30	0.99772	0.68431	698	251620	575	322	0
FeedForward	5	trainscg	mse	1.00E-006		44202.mat	30	0.99676	0.73084	744	251370	816	274	6
FeedForward	29	trainscg	mse	1.00E-006		44202.mat	30	0.99687	0.72206	730	251330	788	281	86
Laver Recurrent Network	3	traingd	mse	1.00E-006		44202.mat	30	0.95511	0.85083	867	240760	11315	152	116
Layer Recurrent Network	5	traingd	mse	1.00E-006		44202.mat	30	0.93698	0.8845	896	234860	15797	117	1540
Layer Recurrent Network	29	traingd	mse	1.00E-006		44202.mat	30	0.9728	0.84608	863	245180	6855	157	157
Layer Recurrent Network	3	trainrp	mse	1.00E-006		44202.mat	30	0.99994	0.41071	322	251880	15	462	529
Laver Recurrent Network	5	trainrp	mse	1.00E-006		44202.mat	30	0.99986	0.39205	296	252150	35	459	272
Layer Recurrent Network	29	trainrp	mse	1.00E-006		44202.mat	30	0.99998	0.5406	486	251940	5	413	372
Layer Recurrent Network	3	trainscg	mse	1.00E-006		44202.mat	30	0.99765	0.70784	722	251600	592	298	0
Layer Recurrent Network	5	trainscg	mse	1.00E-006		44202.mat	30	0.99561	0.72718	741	251070	1106	278	21
Layer Recurrent Network	29	trainscg	mse	1.00E-006		44202.mat	30	0.9955	0.7399	751	250840	1135	264	218
Distributed Time Delay	3	traingd	mse	1.00E-006	hardlim	44202.mat	30	0	1	1020	0	252190	0	0
Distributed Time Delay	5	traingd	mse	1.00E-006	hardlim	44202.mat	30	0	1	36	0	9	0	253170
Distributed Time Delay	29	traingd	mse	1.00E-006	hardlim	44202.mat	30	0.98112	0.68039	694	247420	4762	326	16
Distributed Time Delay	3	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99385	0.67615	689	250630	1550	330	12
Distributed Time Delay	5	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99881	0.59762	603	251870	299	406	33
Distributed Time Delay	29	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99422	0.67158	683	250660	1458	334	82
Distributed Time Delay	3	traingd	mse	1.00E-006	logsig	44202.mat	30	0.94317	0.86176	879	237840	14332	141	22
Distributed Time Delay	5	traingd	mse	1.00E-006	logsig	44202.mat	30	0.95514	0.86471	882	240740	11307	138	148
Distributed Time Delay	29	traingd	mse	1.00E-006	logsig	44202.mat	30	0.96929	0.85588	873	244400	7744	147	53
Distributed Time Delay	3	traingd	mse	1.00E-006	tansig	44202.mat	30	0.96269	0.86261	879	242140	9385	140	667
Distributed Time Delay	5	traingd	mse	1.00E-006	tansia	44202.mat	30	0.95822	0.86982	882	239380	10438	132	2385
Distributed Time Delay	29	traingd	mse	1.00E-006	tansig	44202.mat	30	0.96338	0.8598	877	242920	9234	143	40
Distributed Time Delay	3	trainrp	mse	1.00E-006	hardlim	44202.mat	30	0	0	0	0	8	1	253200
Distributed Time Delay	5	trainrp	mse	1.00E-006	hardlim	44202.mat	30	NaN	1	11	0	0	0	253200
Distributed Time Delay	29	trainrp	mse	1.00E-006	hardlim	44202.mat	30	0.99809	0.44706	304	250380	478	376	1675
Distributed Time Delay	3	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.99996	0.39394	325	252140	11	500	233
Distributed Time Delay	5	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.99907	0.51813	500	251770	235	465	241
Distributed Time Delay	29	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.99997	0.53799	439	251620	7	377	766
Distributed Time Delay	3	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.99943	0.30317	201	10562	6	462	241980
Distributed Time Delay	5	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.99952	0.55623	549	252030	122	438	75
Distributed Time Delay	29	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.52055	1	180	38	35	0	252960
Distributed Time Delay	3	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.99893	0.58614	592	251910	269	418	24
Distributed Time Delay	5	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.99999	0.46778	363	252160	3	413	273
Distributed Time Delay	29	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.99996	0.57051	534	252040	10	402	232
Distributed Time Delay	3	trainscg	mse	1.00E-006	hardlim	44202.mat	30	0.99897	0.5451	556	251930	261	464	0
Distributed Time Delay	5	trainscg	mse	1.00E-006	hardlim	44202.mat	30	0.99945	0.20588	210	252060	138	810	0
Distributed Time Delay	29	trainscg	mse	1.00E-006	hardlim	44202.mat	30	0.72802	0.7527	767	183600	68589	252	7
Distributed Time Delay	3	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99614	0.63645	646	251210	974	369	18
Distributed Time Delay	5	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99551	0.6297	636	251010	1133	374	58
Distributed Time Delay	29	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99557	0.64653	642	250380	1115	351	730
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.99824	0.72397	737	251700	444	281	48

Single Classification logsig logsig tansig tansig Distributed Time Delay trainsco mse mse mse mse mse 1.00F-006 44202.mat 0.99816 0.72647 741 755 704 756 741 1020 251690 464 279 37 74 9 47 171 Distributed Time Delay trainscy trainscy trainscy trainscy trainscy 0.99718 0.99696 0.99614 0.99692 711 767 974 776 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 1.00E-006 44202 ma 0.74238 251410 262 315 263 270 1.00E-006 1.00E-006 1.00E-006 44202.mat 44202.mat 44202.mat 44202.mat 0.74238 0.69087 0.7419 0.73294 251410 251420 251170 251260 tansig FF Input Time Delay traingd 1.00E-006 hardlim 44202.mat 0 0 252190 0 0 1 0 2 20 18 1063 64 80 FF Input Time Delay traingd mse mse mse mse mse 1.00E-006 hardlim 44202.mat 1020 252190 FF Input Time Delay trainad 1.00E-006 hardlim 44202.mat 1020 252190 FF Input Time Delay
FF Input Time Delay traingd traingd traingd traingd 1677 1652 1730 14597 11018 purelin purelin purelin 1.00E-006 44202 mat 0.99335 0.68922 703 696 696 884 880 858 879 250510 317 324 323 133 140 1.00E-006 1.00E-006 1.00E-006 1.00E-006 0.99345 0.99314 0.94188 44202 ma 0.68235 250520 44202.mat 44202.mat 44202.mat 0.68235 0.68302 0.86922 0.86275 250450 250450 236540 241110 logsig mse 0.9563 traingd logsig FF Input Time Delay traingd mse 1.00E-006 logsig 44202.mat 0.97929 0.84283 246890 5222 160 FF Input Time Delay 3 5 traingd mse mse 1.00E-006 tansig 44202.mat 0.96274 0.86176 242120 9371 141 697 FF Input Time Delay 1.00E-006 tansia 44202.mat 0.94861 0.86654 883 889 239200 12958 136 41 FF Input Time Delay FF Input Time Delay FF Input Time Delay FF Input Time Delay traingd trainrp trainrp mse mse mse mse 129 0 1020 0 436 29 3 5 29 1.00E-006 44202 mat 0.94982 0.87328 238370 12594 1231 44202.mat 44202.mat 44202.mat 1020 0 0 0 252190 252190 0 1 0 NaN 253210 trainrp 1.00E-006 hardlim 252100 FF Input Time Delay trainrp mse 1.00E-006 purelin 44202.mat 0.99968 0.57171 582 80 16 3 5 29 3 5 29 3 5 29 FF Input Time Delay trainrp mse mse mse mse mse 1.00E-006 purelin 44202.mat 0.99958 0.58457 591 611 1010 430 811 1020 252040 106 420 51 65 19 44 FF Input Time Delay
FF Input Time Delay trainro 1.00E-006 . purelin 44202.mat 0.99927 0.60555 251950 185 398 trainrp trainrp trainrp trainrp 1.00E-006 1.00E-006 1.00E-006 1.00E-006 logsig logsig logsig 252180 12 1130 252190 0 558 0 0 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 0.99995 0.43522 252170 251270 tansig 7 266 FF Input Time Delay trainrp mse 1.00E-006 tansig 0.99938 0.62554 583 571 251860 155 349 FF Input Time Delay trainrp mse 1.00E-006 tansia 44202.mat 0.99982 0.5598 252140 45 449 5 FF Input Time Delay 3 trainsco mse 1.00E-006 hardlim 44202.mat 0 1020 0 252190 0 0 FF Input Time Delay
FF Input Time Delay trainsco 1.00E-006 hardlim 44202.mat 252190 1020 trainscg trainscg trainscg mse mse mse mse mse 1.00E-006 1.00E-006 1.00E-006 1.00E-006 hardlim purelin purelin 44202.mat 44202.mat 44202.mat 44202.mat 252190 1796 981 990 0 250280 29 3 5 29 3 5 1020 673 639 647 731 718 745 710 725 725 1379 1380 1449 0 343 378 371 287 0.99288 0.99611 0.99607 0.6624 0.62832 0.63556 118 17 16 29 45 19 52 51 46 0 0 251200 251190 trainscg purelin FF Input Time Delay trainsco 1.00E-006 logsig 44202.mat 0.99622 0.71807 251210 952 logsig logsig tansig tansig tansig FF Input Time Delay trainsco mse 1.00E-006 44202.mat 0.99675 0.70392 251330 820 302 274 309 294 289 190 189 mse mse mse mse FF Input Time Delay 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 trainsco 1.00F-006 44202 mat 0.99753 0.73111 251550 623 FF Input Time Delay FF Input Time Delay FF Input Time Delay FF Input Time Delay Radial Basis Network 1.00E-006 44202 mat 0 99499 0.69676 1264 1.00E-006 1.00E-006 0.01 0.01 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 0.99499 0.99792 0.99674 0.87707 0.71148 0.71499 0.8789 0.87954 251620 251330 475900 472910 525 823 66704 69691 Radial Basis Network 0.87156 Radial Basis Network 0.01 44202.mat 0.8097 0.92352 439350 103260 120 0 488 51 373 154350 3843 1239 52 56 FeedForward trainad mse 1.00E-006 44202.mat 0.76955 0.80242 1259 417190 124930 310 traingd traingd trainrp trainrp trainrp FeedForward mse mse mse mse mse 1.00F-006 44202 mat 0.73427 0.78458 1231 1233 358 625 896 1184 398380 144170 338 333 377 660 541 44202.mat 44202.mat 44202.mat 44202.mat 0.78736 0.48707 0.48638 0.62352 78553 3052 3320 5002 1 00E-006 0.85513 463680 1.00E-006 1.00E-006 1.00E-006 0.85513 0.99216 0.99384 0.99076 386040 535720 536490 FeedForward 521710 FeedForward trainscg 1.00E-006 44202.mat 0.96158 0.75462 20844 385 FeedForward trainsco mse mse 1.00E-006 44202.mat 0.95471 0.74298 1165 517980 24570 403 FeedForward trainsco 1.00E-006 44202.mat 0.94217 0.73529 1100 510080 31308 396 1286

						Single Classificati	on							
Layer Recurrent Network	3	traingd	mse	1.00E-006	-	44202.mat	50	0.82324	0.79795	1248	444620	95465	316	2519
Layer Recurrent Network	5	traingd	mse	1.00E-006	-	44202.mat	50	0.72391	0.78266	1228	392180	149570	341	849
Layer Recurrent Network	29	traingd	mse	1.00E-006	-	44202.mat	50	0.8603	0.75783	1186	466340	75725	379	544
Layer Recurrent Network	3	trainrp	mse	1.00E-006	-	44202.mat	50	0.9968	0.46944	722	540610	1737	816	286
Layer Recurrent Network	5	trainrp	mse	1.00E-006	-	44202.mat	50	0.98867	0.44917	433	513760	5889	531	23557
Layer Recurrent Network	29	trainrp	mse	1.00E-006	-	44202.mat	50	0.99253	0.61208	912	536790	4042	578	1850
Layer Recurrent Network	3	trainscq	mse	1.00E-006	-	44202.mat	50	0.91632	0.80115	1257	497170	45402	312	31
Layer Recurrent Network	5	trainscg	mse	1.00E-006	-	44202.mat	50	0.95957	0.76148	1194	520600	21932	374	68
Layer Recurrent Network	29	trainscg	mse	1.00E-006	-	44202.mat	50	0.94428	0.77991	1219	511770	30200	344	641
Distributed Time Delay	3	traingd	mse	1.00E-006	hardlim	44202.mat	50	0.98478	0.3276	514	534340	8261	1055	4
Distributed Time Delay	5	traingd	mse	1.00E-006	hardlim	44202.mat	50	0.99452	0.52934	830	539590	2975	738	41
Distributed Time Delay	29	traingd	mse	1.00E-006	hardlim	44202.mat	50	0.98904	0.45252	710	536620	5949	859	29
Distributed Time Delay	3	traingd	mse	1.00E-006	purelin	44202.mat	50	0.99024	0.63892	998	537050	5293	564	270
Distributed Time Delay	5	traingd	mse	1.00E-006	purelin	44202.mat	50	0.99108	0.63771	991	536930	4833	563	849
Distributed Time Delay	29	traingd	mse	1.00E-006	purelin	44202.mat	50	0.98734	0.64199	1006	535640	6866	561	95
Distributed Time Delay	3	traingd	mse	1.00E-006	logsig	44202.mat	50	0.68754	0.80051	1256	372950	169490	313	157
Distributed Time Delay	5	traingd	mse	1.00E-006	logsig	44202.mat	50	0.76235	0.80115	1257	412160	128480	312	1962
Distributed Time Delay	29	traingd	mse	1.00E-006	logsig	44202.mat	50	0.86451	0.81749	1281	467990	73349	286	1261
Distributed Time Delay	3	traingd	mse	1.00E-006	tansig	44202.mat	50	0.71801	0.79911	1253	389070	152800	315	737
Distributed Time Delay	5	traingd	mse	1.00E-006	tansig	44202.mat	50	0.82793	0.82642	1295	447220	92944	272	2444
Distributed Time Delay	29	traingd	mse	1.00E-006	tansig	44202.mat	50	0.84607	0.81801	1281	457320	83200	285	2082
Distributed Time Delay	3	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0.00007372	0.98406	1543	40	542560	25	6
Distributed Time Delay	5	trainrp	mse	1.00E-006	hardlim	44202.mat	50	1	0	0	542120	0	1255	799
Distributed Time Delay	29	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0.99951	0.3283	457	541580	265	935	934
Distributed Time Delay	3	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99684	0.58604	865	535470	1699	611	5524
Distributed Time Delay	5	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99828	0.44417	533	539740	932	667	2301
Distributed Time Delay	29	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99496	0.54428	676	535690	2714	566	4523
Distributed Time Delay	3	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.0058596	0.81637	1147	3167	537310	258	2287
Distributed Time Delay	5	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.99824	0.25957	305	539390	953	870	2653
Distributed Time Delay	29	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.9915	0.54807	667	535960	4596	550	2393
Distributed Time Delay	3	trainrp	mse	1.00E-006	tansig	44202.mat	50	3.6873E-006	1	1509	2	542400	0	261
Distributed Time Delay	5	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.99978	0.081006	58	526360	115	658	16976
Distributed Time Delay	29	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.98987	0.62575	943	535660	5480	564	1528
Distributed Time Delay	3	trainscg	mse	1.00E-006	hardlim	44202.mat	50	0.99953	0.021033	33	542350	255	1536	1
Distributed Time Delay	5	trainscg	mse	1.00E-006	hardlim	44202.mat	50	0.99949	0.08413	132	542320	277	1437	0
Distributed Time Delay	29	trainscg	mse	1.00E-006	hardlim	44202.mat	50	0.98925	0.52263	820	536750	5833	749	15
Distributed Time Delay	3	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.98867	0.63596	994	536020	6141	569	450
Distributed Time Delay	5	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.98796	0.64244	999	535620	6527	556	468
Distributed Time Delay	29	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.99056	0.63931	927	534730	5098	523	2891
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.95216	0.76835	1204	516130	25930	363	543
Distributed Time Delay	5	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.94663	0.78594	1230	512520	28896	335	1185
Distributed Time Delay	29	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.93795	0.7886	1231	507210	33552	330	1844
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.94665	0.77856	1220	513440	28936	347	231
Distributed Time Delay	5	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.9512	0.7743	1211	514810	26414	353	1378
Distributed Time Delay	29	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.93537	0.7918	1236	506120	34973	325	1521
FF Input Time Delay	3	traingd	mse	1.00E-006	hardlim	44202.mat	50	1	0	0	542600	0	1569	1
FF Input Time Delay	5	traingd	mse	1.00E-006	hardlim	44202.mat	50	0	1	1569	0	542600	0	1
FF Input Time Delay	29	traingd	mse	1.00E-006	hardlim	44202.mat	50	9.2149E-006	0.99936	1568	5	542600	1	1
FF Input Time Delay	3	traingd	mse	1.00E-006	purelin	44202.mat	50	0.98843	0.6388	1001	536270	6277	566	52
FF Input Time Delay	5	traingd	mse	1.00E-006	purelin	44202.mat	50	0.98588	0.64615	1008	534530	7654	552	422
FF Input Time Delay	29	traingd	mse	1.00E-006	purelin	44202.mat	50	0.9847	0.64634	1007	533820	8293	551	499
FF Input Time Delay	3	traingd	mse	1.00E-006	logsig	44202.mat	50	0.76613	0.83673	1312	415500	126830	256	273
FF Input Time Delay	5	traingd	mse	1.00E-006	logsig	44202.mat	50	0.69151	0.80433	1262	375060	167320	307	224

						Single Classificati	on							
FF Input Time Delay	29	traingd	mse	1.00E-006	logsig	44202.mat	50	0.84887	0.81022	1268	458760	81678	297	2168
FF Input Time Delay	3	traingd	mse	1.00E-006	tansig	44202.mat	50	0.70143	0.82526	1294	380460	161940	274	199
FF Input Time Delay	5	traingd	mse	1.00E-006	tansig	44202.mat	50	0.80199	0.81314	1275	434360	107240	293	1000
FF Input Time Delay	29	traingd	mse	1.00E-006	tansig	44202.mat	50	0.85393	0.81302	1274	461090	78873	293	2644
FF Input Time Delay	3	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0	1	1568	0	542600	0	7
FF Input Time Delay	5	trainrp	mse	1.00E-006	hardlim	44202.mat	50	ō	1	1	0	6	ō	544160
FF Input Time Delay	29	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0.99999	0.00063735	1	542590	7	1568	0
FF Input Time Delay	3	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99513	0.60335	937	539480	2642	616	499
FF Input Time Delay	5	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99428	0.61282	956	539060	3102	604	447
FF Input Time Delay	29	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99162	0.63542	983	537070	4538	564	1011
FF Input Time Delay	3	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.99501	0.74261	955	517010	2593	331	23278
FF Input Time Delay	5	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.99709	0.75064	876	495980	1446	291	45577
FF Input Time Delay	29	trainrp	mse	1.00E-006	logsig	44202.mat	50	0	1	1066	0	6797	0	536310
FF Input Time Delay	3	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.99517	0.62017	947	538900	2615	580	1127
FF Input Time Delay	5	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.99953	0.5867	538	523360	244	379	19648
FF Input Time Delay	29	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.99659	0.58854	914	540150	1849	639	617
FF Input Time Delay	3	trainscq	mse	1.00E-006	hardlim	44202.mat	50	0.000012901	0.99936	1568	7	542590	1	0
FF Input Time Delay	5	trainscg	mse	1.00E-006	hardlim	44202.mat	50	1	0	0	542600	0	1569	2
FF Input Time Delay	29	trainscg	mse	1.00E-006	hardlim	44202.mat	50	1	0	0	6	0	1	544160
FF Input Time Delay	3	trainsco	mse	1.00E-006	purelin	44202.mat	50	0.98584	0.65237	1019	534700	7681	543	231
FF Input Time Delay	5	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.98665	0.64875	1014	534900	7237	549	469
FF Input Time Delay	29	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.98547	0.64387	998	534280	7880	552	465
FF Input Time Delay	3	trainsco	mse	1.00E-006	logsig	44202.mat	50	0.93853	0.78799	1234	508840	33328	332	436
FF Input Time Delay	5	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.9562	0.77046	1205	517920	23722	359	963
FF Input Time Delay	29	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.94379	0.78526	1225	511070	30440	335	1103
FF Input Time Delay	3	trainscq	mse	1.00E-006	tansia	44202.mat	50	0.96559	0.74646	1160	522440	18620	394	1556
FF Input Time Delay	5	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.96361	0.75622	1185	522290	19723	382	591
FF Input Time Delay	29	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.93715	0.79145	1241	507730	34050	327	818
Radial Basis Network	3	-	-	0.01	-	44202.mat	70	0.87692	0.86339	1776	502580	70539	281	0
Radial Basis Network	5		-	0.01	-	44202.mat	70	0.87107	0.86339	1776	499230	73893	281	0
Radial Basis Network	29	-	-	0.01	-	44202.mat	70	0.81372	0.91492	1882	466360	106760	175	0
FeedForward	3	traingd	mse	1.00E-006	-	44202.mat	70	0.77137	0.81274	1671	441680	130920	385	524
FeedForward	5	traingd	mse	1.00E-006	-	44202.mat	70	0.73627	0.80165	1649	421930	151140	408	52
FeedForward	29	traingd	mse	1.00E-006	-	44202.mat	70	0.85608	0.79698	1637	490310	82425	417	393
FeedForward	3	trainrp	mse	1.00E-006	-	44202.mat	70	0.99224	0.51266	506	406520	3178	481	164490
FeedForward	5	trainrp	mse	1.00E-006	-	44202.mat	70	0.99392	0.49385	843	565990	3461	864	4025
FeedForward	29	trainrp	mse	1.00E-006	-	44202.mat	70	0.99093	0.62716	1196	566790	5190	711	1291
FeedForward	3	trainscg	mse	1.00E-006	-	44202.mat	70	0.96169	0.7545	1552	551110	21956	505	55
FeedForward	5	trainscg	mse	1.00E-006	-	44202.mat	70	0.9547	0.74805	1538	547100	25959	518	63
FeedForward	29	trainscg	mse	1.00E-006	-	44202.mat	70	0.94225	0.74811	1482	538830	33025	499	1344
Layer Recurrent Network	3	traingd	mse	1.00E-006	-	44202.mat	70	0.82412	0.80839	1658	470090	100320	393	2713
Layer Recurrent Network	5	traingd	mse	1.00E-006	-	44202.mat	70	0.72568	0.80117	1648	415260	156970	409	895
Layer Recurrent Network	29	traingd	mse	1.00E-006	-	44202.mat	70	0.86094	0.7735	1588	492930	79615	465	583
Layer Recurrent Network	3	trainrp	mse	1.00E-006	-	44202.mat	70	0.99683	0.45982	927	571040	1816	1089	304
Layer Recurrent Network	5	trainrp	mse	1.00E-006	-	44202.mat	70	0.98879	0.46646	605	542410	6150	692	25323
Layer Recurrent Network	29	trainrp	mse	1.00E-006	-	44202.mat	70	0.99262	0.61264	1202	567080	4218	760	1920
Layer Recurrent Network	3	trainscg	mse	1.00E-006	-	44202.mat	70	0.91619	0.80117	1648	525060	48029	409	33
Layer Recurrent Network	5	trainscg	mse	1.00E-006	-	44202.mat	70	0.95971	0.76216	1567	549960	23088	489	74
Layer Recurrent Network	29	trainscg	mse	1.00E-006	-	44202.mat	70	0.94429	0.78146	1602	540550	31888	448	690
Distributed Time Delay	3	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.98427	0.31356	645	564100	9015	1412	6
Distributed Time Delay	5	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.99453	0.53064	1091	569940	3137	965	44
Distributed Time Delay	29	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.98914	0.45892	944	566870	6222	1113	32
Distributed Time Delay	3	traingd	mse	1.00E-006	purelin	44202.mat	70	0.99041	0.64063	1312	567350	5496	736	281

						Single Classificati	on							
Distributed Time Delay	5	traingd	mse	1.00E-006	purelin	44202.mat	70	0.99124	0.64029	1303	567250	5015	732	881
Distributed Time Delay	29	traingd	mse	1.00E-006	purelin	44202.mat	70	0.98754	0.64296	1320	565880	7142	733	99
Distributed Time Delay	3	traingd	mse	1.00E-006	logsig	44202.mat	70	0.68914	0.81818	1683	394850	178110	374	160
Distributed Time Delay	5	traingd	mse	1.00E-006	logsig	44202.mat	70	0.76389	0.81274	1671	436210	134830	385	2082
Distributed Time Delay	29	traingd	mse	1.00E-006	logsig	44202.mat	70	0.86519	0.81938	1683	494720	77084	371	1318
Distributed Time Delay	3	traingd	mse	1.00E-006	tansig	44202.mat	70	0.72026	0.8142	1674	412240	160110	382	770
Distributed Time Delay	5	traingd	mse	1.00E-006	tansig	44202.mat	70	0.82846	0.82871	1703	472690	97873	352	2564
Distributed Time Delay	29	traingd	mse	1.00E-006	tansig	44202.mat	70	0.84688	0.82132	1687	483530	87427	367	2172
Distributed Time Delay	3	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.000078518	0.98784	2031	45	573070	25	8
Distributed Time Delay	5	trainrp	mse	1.00E-006	hardlim	44202.mat	70	1	0	0	572610	0	1663	902
Distributed Time Delay	29	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.9995	0.31318	575	572050	284	1261	1011
Distributed Time Delay	3	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99686	0.58717	1135	565500	1780	798	5967
Distributed Time Delay	5	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99827	0.44144	701	570140	989	887	2464
Distributed Time Delay	29	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99502	0.53479	884	565930	2832	769	4766
Distributed Time Delay	3	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.0057697	0.80196	1470	3294	567620	363	2433
Distributed Time Delay	5	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.99825	0.29693	465	569750	997	1101	2865
Distributed Time Delay	29	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.99164	0.5628	941	566230	4772	731	2504
Distributed Time Delay	3	trainrp	mse	1.00E-006	tansig	44202.mat	70	3.4909E-006	1	1991	2	572920	0	268
Distributed Time Delay	5	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.99979	0.097895	93	555900	116	857	18213
Distributed Time Delay	29	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.99	0.62582	1241	565880	5714	742	1606
Distributed Time Delay	3	trainscg	mse	1.00E-006	hardlim	44202.mat	70	0.99954	0.019932	41	572860	262	2016	2
Distributed Time Delay	5	trainscg	mse	1.00E-006	hardlim	44202.mat	70	0.99948	0.082645	170	572820	299	1887	0
Distributed Time Delay	29	trainscg	mse	1.00E-006	hardlim	44202.mat	70	0.98838	0.5124	1054	566450	6657	1003	15
Distributed Time Delay	3	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.98884	0.63912	1307	566270	6390	738	477
Distributed Time Delay	5	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.98815	0.64587	1315	565860	6785	721	499
Distributed Time Delay	29	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.99071	0.6408	1222	564920	5296	685	3056
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.95223	0.76934	1581	545190	27353	474	585
Distributed Time Delay	5	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.94671	0.78606	1613	541370	30475	439	1283
Distributed Time Delay	29	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.93794	0.78965	1618	535720	35444	431	1970
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.94668	0.78151	1606	542330	30545	449	252
Distributed Time Delay	5	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.95127	0.77561	1590	543810	27858	460	1456
Distributed Time Delay	29	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.93537	0.79277	1622	534590	36940	424	1606
FF Input Time Delay	3	traingd	mse	1.00E-006	hardlim	44202.mat	70	1	0	0	573120	0	2057	1
FF Input Time Delay	5	traingd	mse	1.00E-006	hardlim	44202.mat	70	0	1	2057	0	573120	0	1
FF Input Time Delay	29	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.000015704	0.99951	2056	9	573110	1	1
FF Input Time Delay	3	traingd	mse	1.00E-006	purelin	44202.mat	70	0.98862	0.64167	1318	566550	6519	736	57
FF Input Time Delay	5	traingd	mse	1.00E-006	purelin	44202.mat	70 70	0.98604 0.98484	0.65005	1330 1327	564680 563920	7993 8681	716 717	458 533
FF Input Time Delay	29 3	traingd	mse	1.00E-006 1.00E-006	purelin	44202.mat 44202.mat	70 70	0.98484	0.64922	1727	439050	133770	717 329	308
FF Input Time Delay FF Input Time Delay	5	traingd traingd	mse mse	1.00E-006	logsig logsig	44202.mat	70	0.69305	0.83998 0.81964	1686	397040	175850	371	235
FF Input Time Delay	29	traingd	mse	1.00E-006	logsig	44202.mat	70	0.84965	0.81393	1671	485030	85830	382	2270
FF Input Time Delay	3	traingd	mse	1.00E-006	tansia	44202.mat	70	0.70411	0.83414	1715	403390	169520	341	212
FF Input Time Delay	5	traingd	mse	1.00E-006	tansig	44202.mat	70	0.80339	0.82004	1686	459600	112480	370	1045
FF Input Time Delay	29	traingd	mse	1.00E-006	tansig	44202.mat	70	0.85469	0.81655	1678	487460	82874	377	2793
FF Input Time Delay	3	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.03403	1	2056	0	573110	0	11
FF Input Time Delay	5	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0	1	1	0	10	Ö	575170
FF Input Time Delay	29	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.99998	0.00048614	1	573110	11	2056	0
FF Input Time Delay	3	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99518	0.60039	1223	569860	2761	814	518
FF Input Time Delay	5	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99435	0.61117	1248	569440	3236	794	464
FF Input Time Delay	29	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99174	0.63717	1289	567380	4725	734	1048
FF Input Time Delay	3	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.99506	0.73843	1245	546220	2713	441	24561
FF Input Time Delay	5	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.99709	0.7474	1148	523730	1527	388	48383
FF Input Time Delay	29	trainrp	mse	1.00E-006	logsig	44202.mat	70	0	1	1394	0	7052	0	566730

						Single Classificati	on							
FF Input Time Delay	3	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.99522	0.61993	1238	569270	2734	759	1176
FF Input Time Delay	5	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.99951	0.5834	703	552950	270	502	20751
FF Input Time Delay	29	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.9966	0.58673	1194	570560	1948	841	638
FF Input Time Delay	3	trainscq	mse	1.00E-006	hardlim	44202.mat	70	0.000019193	0.99951	2056	11	573110	1	0
FF Input Time Delay	5	trainscq	mse	1.00E-006	hardlim	44202.mat	70	1	0	0	573120	0	2057	2
FF Input Time Delay	29	trainscq	mse	1.00E-006	hardlim	44202.mat	70	1	ō	ō	10	0	1	575170
FF Input Time Delay	3	trainscq	mse	1.00E-006	purelin	44202.mat	70	0.986	0.6561	1345	564860	8023	705	242
FF Input Time Delay	5	trainscq	mse	1.00E-006	purelin	44202.mat	70	0.98683	0.65334	1340	565080	7542	711	503
FF Input Time Delay	29	trainscq	mse	1.00E-006	purelin	44202.mat	70	0.98556	0.64764	1316	564370	8269	716	509
FF Input Time Delay	3	trainscq	mse	1.00E-006	logsig	44202.mat	70	0.93848	0.78958	1621	537430	35229	432	465
FF Input Time Delay	5	trainscq	mse	1.00E-006	logsig	44202.mat	70	0.95635	0.77122	1581	547140	24975	469	1017
FF Input Time Delay	29	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.94385	0.78554	1608	539850	32117	439	1169
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.96575	0.74841	1526	551920	19574	513	1649
FF Input Time Delay	5	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.96373	0.7562	1554	551750	20762	501	616
FF Input Time Delay	29	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.93706	0.79319	1630	536230	36017	425	876
Radial Basis Network	3	-	-	0.01	-	63502.mat	30	0.93157	0.67449	1092	153600	11283	527	0
Radial Basis Network	5	_		0.01	-	63502.mat	30	0.91729	0.71587	1159	151250	13637	460	0
Radial Basis Network	29	_	-	0.01	-	63502.mat	30	0.80161	0.75479	1222	132170	32712	397	0
FeedForward	3	traingd	mse	1.00E-006		63502.mat	30	0.80417	0.6972	1119	131220	31955	486	1725
FeedForward	5	traingd	mse	1.00E-006		63502.mat	30	0.94104	0.66395	1059	153040	9589	536	2281
FeedForward	29	traingd	mse	1.00E-006		63502.mat	30	0.94187	0.66646	1067	154860	9558	534	484
FeedForward	3	traingu	mse	1.00E-006		63502.mat	30	0.94167	0.46497	657	149920	2563	756	12614
FeedForward	5			1.00E-006	-	63502.mat	30	0.98319	0.46497	632	153180	1067	634	10991
FeedForward	29	trainrp	mse	1.00E-006			30	0.99308		704	159750		642	3361
FeedForward	3	trainrp	mse	1.00E-006		63502.mat	30	0.97216	0.52303 0.62555	1004	159030	2053 4555	601	1313
FeedForward	5	trainscg	mse	1.00E-006		63502.mat	30	0.97216	0.62555	915			608	206
	29	trainscg	mse			63502.mat	30	0.96968	0.57485	887	161370 158090	3408 4943	656	1926
FeedForward	29 3	trainscg	mse	1.00E-006 1.00E-006		63502.mat 63502.mat	30	0.96968	0.6518	1052	158090	4943 5678	562	1926
Layer Recurrent Network		traingd	mse		-								562 611	468
Layer Recurrent Network	5	traingd	mse	1.00E-006 1.00E-006	-	63502.mat 63502.mat	30 30	0.97964 0.97553	0.61955 0.5701	995 858	161080 160020	3348 4013	647	468 972
Layer Recurrent Network	29 3	traingd	mse				30	0.97553		6	39266	4013 9	369	126860
Layer Recurrent Network		trainrp	mse	1.00E-006		63502.mat			0.016					
Layer Recurrent Network	5 29	trainrp	mse	1.00E-006	-	63502.mat 63502.mat	30 30	0.99341 0.98549	0.37527 0.55663	343 860	153830 159780	1020 2352	571 685	10745 2826
Layer Recurrent Network		trainrp	mse	1.00E-006	-									
Layer Recurrent Network	3	trainscg	mse	1.00E-006	-	63502.mat	30	0.9761	0.57947	937	160930	3941	680	13
Layer Recurrent Network	5	trainscg	mse	1.00E-006	-	63502.mat	30	0.9825	0.60842	968	161420	2875	623	615
Layer Recurrent Network	29	trainscg	mse	1.00E-006		63502.mat	30	0.97164	0.56075	863	159400	4652	676	918
Distributed Time Delay	3	traingd	mse	1.00E-006	hardlim	63502.mat	30	0	1	1567	0	164860	0	81
Distributed Time Delay	5	traingd	mse	1.00E-006	hardlim	63502.mat	30	0.97006	0.50309	814	159910	4935	804	39
Distributed Time Delay	29	traingd	mse	1.00E-006	hardlim	63502.mat	30	0.94932	0.41313	623	155590	8307	885	1101
Distributed Time Delay	3	traingd	mse	1.00E-006	purelin	63502.mat	30	0.94497	0.58936	953	155760	9070	664	59
Distributed Time Delay	5	traingd	mse	1.00E-006	purelin	63502.mat	30	0.95054	0.59071	954	156560	8147	661	186
Distributed Time Delay	29	traingd	mse	1.00E-006	purelin	63502.mat	30	0.97701	0.59975	950	158880	3738	634	2299
Distributed Time Delay	3	traingd	mse	1.00E-006	logsig	63502.mat	30	0.77261	0.74442	1200	125910	37058	412	1922
Distributed Time Delay	5	traingd	mse	1.00E-006	logsig	63502.mat	30	0.89539	0.66522	1075	147590	17244	541	55
Distributed Time Delay	29	traingd	mse	1.00E-006	logsig	63502.mat	30	0.89905	0.71375	1137	146490	16449	456	1970
Distributed Time Delay	3	traingd	mse	1.00E-006	tansig	63502.mat	30	0.95112	0.66893	1083	156730	8055	536	103
Distributed Time Delay	5	traingd	mse	1.00E-006	tansig	63502.mat	30	0.94897	0.67846	1093	156220	8400	518	271
Distributed Time Delay	29	traingd	mse	1.00E-006	tansig	63502.mat	30	0.91309	0.69164	1108	149690	14248	494	969
Distributed Time Delay	3	trainrp	mse	1.00E-006	hardlim	63502.mat	30	NaN	NaN	0	0	0	0	166510
Distributed Time Delay	5	trainrp	mse	1.00E-006	hardlim	63502.mat	30	0.99987	0	0	164290	22	1578	613
Distributed Time Delay	29	trainrp	mse	1.00E-006	hardlim	63502.mat	30	0.6279	0.33488	72	1274	755	143	164260
Distributed Time Delay	3	trainrp	mse	1.00E-006	purelin	63502.mat	30	0.9922	0.48952	607	160320	1260	633	3687
Distributed Time Delay	5	trainrp	mse	1.00E-006	purelin	63502.mat	30	0.94569	0.55611	778	144920	8322	621	11867

Single Classification 2118 1179 0 616 710 300 656 695 Distributed Time Delay 29 3 trainro mse mse mse mse mse 1.00F-006 nurelin 63502.mat 0.98661 0.5665 805 156010 6954 Distributed Time Delay trainrp trainrp trainrp trainrp logsig logsig logsig 0.47794 0 0.56899 0.56207 650 0 866 892 910 1 00E-006 63502 ma 0.9927 160340 3623 3623 164290 1898 1965 985 4227 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 1911 153790 159540 159590 0.94299 0.97903 0.97333 9297 3417 4373 29 3 5 29 tansig Distributed Time Delay trainrp 1.00E-006 tansig 63502.mat 0.58333 650 667 Distributed Time Delay trainrp mse mse mse mse mse 1.00E-006 tansig 63502.mat 0.98389 0.54564 801 158220 2590 Distributed Time Delay 3 5 29 3 5 29 3 5 trainsco 1.00E-006 hardlim 63502.mat 0 460 0 49 166040 trainscg trainscg trainscg trainscg hardlim hardlim purelin purelin 0.9697 1568 721 926 937 838 1011 164470 19 1751 36 2885 5054 Distributed Time Delay 1.00F-006 63502 mat 0.0024444 403 0.91408 0.97315 0.98058 0.98459 0.97712 14040 4427 3147 2465 3772 Distributed Time Delay 1.00E-006 1.00E-006 1.00E-006 1.00E-006 149380 160420 158900 157520 618 693 641 63502 ma 0.53846 0.53846 0.57196 0.59379 0.57123 63502.mat 63502.mat 63502.mat mse 629 trainscg purelin Distributed Time Delay trainscg mse 1.00E-006 logsig 63502.mat 0.62485 161110 607 4 111 Distributed Time Delay trainsco mse 1.00E-006 logsig 63502.mat 0.97608 0.50155 807 754 991 957 943 1612 160840 3941 802 logsig tansig tansig Distributed Time Delay 29 3 5 29 3 5 trainsco mse 1.00E-006 63502.mat 0.97651 0.53475 159320 3833 656 1939 Distributed Time Delay Distributed Time Delay Distributed Time Delay FF Input Time Delay trainscg trainscg trainscg trainscg mse mse mse mse 12 151 1602 52 1.00E-006 63502 mat 0.97652 0.61248 161000 3872 627 63502.mat 63502.mat 63502.mat 0.98059 0.95833 0.0024994 3198 6809 164430 0.59478 161550 156610 652 539 tansig traingd 1.00E-006 hardlim 0.99876 412 2 3 2 FF Input Time Delay traingd mse 1.00E-006 hardlim 63502.mat 0 0 31 0 5 166470 0.97585 FF Input Time Delay 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 traingd mse mse mse mse mse 1.00E-006 hardlim 63502.mat 0.6 202 166290 FF Input Time Delay
FF Input Time Delay traingd traingd traingd traingd purelin purelin purelin logsig 1.00E-006 63502.mat 0.97021 0.57882 929 939 954 1087 1052 1045 1140 159330 4893 676 674 161430 158180 158210 158610 3070 5029 6657 5964 11850 399 1697 22 316 1.00E-006 63502.mat 0.98134 0.58505 666 649 532 563 563 63502.mat 63502.mat 63502.mat 0.96919 0.95962 0.96376 0.59513 0.6714 0.65139 0.64988 traingd logsig FF Input Time Delay traingd mse 1.00E-006 logsig 63502.mat 0.92785 152390 653 722 FF Input Time Delay trainad mse 1.00E-006 63502.mat 0.7601 0.70545 124780 39384 476 FF Input Time Delay traingd mse 1.00E-006 tansig 63502.mat 0.83522 0.68128 1088 137290 27086 509 533 FF Input Time Delay
FF Input Time Delay traingd trainrp trainrp trainrp tansig hardlim hardlim hardlim 1.00E-006 63502.mat 0.95542 0.62108 990 156780 7316 604 813 mse mse mse mse mse 1.00E-006 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 76 164470 82 158790 0 138 164680 5155 4347 166420 288 135 950 921 0 5 1611 0.99916 0.00049769 0.96856 0.0018587 0.99627 0.58524 1603 944 924 930 6 669 63502.mat trainrp purelin FF Input Time Delay trainrp 1.00E-006 purelin 63502.mat 0.97349 0.57391 159630 686 FF Input Time Delay trainrp mse 1.00E-006 . purelin 63502.mat 0.96914 0.58089 158770 5056 671 1083 mse mse mse mse mse logsig logsig logsig tansig FF Input Time Delay trainro 1.00F-006 63502 mat 0.99977 0 0 1619 164360 37 1525 581 FF Input Time Delay
FF Input Time Delay
FF Input Time Delay
FF Input Time Delay
FF Input Time Delay trainm 1.00E-006 63502 mat 0 164890 0 0 12 0 1 trainrp trainrp trainrp trainrp 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 1119 1568 1616 1074 15230 164270 164850 12669 150160 289 35 152260 29 3 5 29 0.0022352 0.99241 368 0 506 tansig 0.99907 0.038406 FF Input Time Delay trainrp mse 1.00E-006 tansig 63502.mat FF Input Time Delay 3 5 trainscg mse 1.00E-006 hardlim 63502.mat 0 5 383 0 1 0 7 166120 FF Input Time Delay trainsco mse 1.00E-006 hardlim 63502.mat 0 37 400 166100 FF Input Time Delay
FF Input Time Delay mse mse mse mse mse 29 3 5 29 3 5 29 3 trainsco 1.00F-006 hardlim 63502 mat 0.43529 0.125 48 166410 trainscg trainscg trainscg 0.96126 0.97644 0.97503 0.97858 0.61524 0.58048 0.59045 0.43562 46 6369 3875 4082 3505 493 441 1469 1315 1 00E-006 63502 ma 993 934 940 680 939 158030 621 675 652 881 676 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 160580 159360 160120 trainscg logsig logsig logsig tansig FF Input Time Delay trainscg mse 1.00E-006 63502.mat 0.97997 0.58142 161430 3299 161 FF Input Time Delay trainsco mse mse 1.00E-006 63502.mat 0.98199 0.59252 951 161510 2962 654 424

0.9756

0.62075

1005

160860

4023

63502.mat

1.00E-006

FF Input Time Delay

trainsco

Single Classification mse mse FF Input Time Delay trainsco 1.00F-006 tansig 63502.mat 0.96958 0.61053 986 159590 5007 629 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 FF Input Time Delay FF Input Time Delay Radial Basis Network Radial Basis Network Radial Basis Network 3855 9599 9604 10369 1.00E-006 63502 ma 0.97646 0.56591 159890 685 358 358 315 318 1184 893 734 734 777 774 741 0.01 0.01 0.01 63502.mat 63502.mat 63502.mat 0.97646 0.91551 0.91547 0.90873 0.67216 0.67216 0.71154 104010 104010 103240 0 0 0 416 190 476 FeedForward traingd mse 1.00E-006 63502.mat 0.91189 0.70879 103220 9974 9970 FeedForward traingd mse mse mse mse mse 1.00E-006 63502.mat 0.9121 0.67919 103450 350 FeedForward traingd 1.00E-006 63502.mat 0.94468 0.65074 708 113 481 467 683 624 756 755 713 91 485 508 628 106880 6259 380 963 15 518 444 409 459 trainrp trainrp trainrp trainscg FeedForward 1.00F-006 63502 mat 0.94243 0.10502 105400 6438 1791 1791 111660 4283 29 13 844 FeedForward FeedForward FeedForward 2102 3148 5023 4389 4547 1.00E-006 63502 ma 0.17536 447 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 0.17536 0.97123 0.95578 0.96136 0.47411 0.59303 0.62546 106290 108560 109210 trainscg mse FeedForward FeedForward trainscg mse 1.00E-006 63502.mat 0.95968 0.57618 108230 Layer Recurrent Network 3 5 traingd mse mse 1.00E-006 63502.mat 0.9122 0.69231 103640 9975 336 0 484 Laver Recurrent Network 1.00E-006 63502.mat 0.91525 0.69203 103540 9588 336 Layer Recurrent Network Layer Recurrent Network Layer Recurrent Network Layer Recurrent Network traingd trainrp trainrp mse mse mse mse 8287 303 2824 3496 375 659 515 513 1.00E-006 63502 mat 0.92691 0.65533 105090 235 29 3 5 29 1.00E-006 1.00E-006 1.00E-006 0.92691 0.99727 0.97452 0.96848 0.12133 0.485 0.49755 110560 108020 107430 3092 2862 2761 trainrp 63502.mat Layer Recurrent Network trainscg mse 1.00E-006 63502.mat 0.96415 0.57509 109480 4071 464 437 66 138 3 5 29 3 5 29 3 5 29 Layer Recurrent Network trainsco mse mse mse mse mse 1.00E-006 63502.mat 0.94226 0.59945 654 674 1091 1091 406 596 587 106920 6552 Laver Recurrent Network trainsco 1.00E-006 63502.mat 0.95236 0.61892 107860 5396 415 357 207 119 352 89 147 Distributed Time Delay traingd traingd traingd 1.00E-006 1.00E-006 1.00E-006 1.00E-006 hardlim 63502.mat 0.000052907 113400 0 0 684 494 500 63502.mat 63502.mat 63502.mat 0.000032907 0.00033482 0.97479 0.96888 113460 113460 2855 3533 0.37248 0.54679 0.54002 110410 109990 110230 traingd purelin Distributed Time Delay traingd mse 1.00E-006 purelin 63502.mat 0.97142 3243 Distributed Time Delay trainad mse 1.00E-006 . purelin 63502.mat 0.97055 0.54529 590 768 766 756 761 746 727 24 2 109850 3333 492 443 traingd traingd traingd traingd traingd traingd Distributed Time Delay 3 mse 1.00E-006 logsig 63502.mat 0.88578 0.70394 100530 12963 323 117 logsig logsig tansig tansig 9896 9260 13114 8452 6625 1508 Distributed Time Delay 1.00E-006 63502.mat 0.91272 0.70404 103490 235 322 335 326 345 364 1051 Distributed Time Delay mse mse mse mse mse 1.00E-006 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 0.91832 0.69294 104120 29 3 5 29 3 5 237 491 224 754 87 0.91632 0.88408 0.92546 0.9413 0.70009 0.68378 0.66636 100010 104940 106230 63502.mat traingd tansig Distributed Time Delay trainrp 1.00E-006 hardlim 63502.mat 0.98672 0.022326 112030 Distributed Time Delay trainrp mse mse mse mse mse 1.00E-006 hardlim 63502.mat 438 0 71 114260 0.96212 0.013889 1473 Distributed Time Delay 29 3 5 29 3 5 29 3 5 trainro 1.00F-006 hardlim 63502 mat 58 113100 Distributed Time Delay purelin purelin purelin 2746 1553 3104 5592 4599 1345 4835 3863 108510 trainm 1.00E-006 63502 mat 0.97555 0.51141 538 409 455 604 338 379 109560 514 528 463 0 4 109560 107380 106820 0 146 108010 trainrp trainrp trainrp 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 0.4365 0.49564 0.07000 logsig 0 0.030769 0.9883 109620 Distributed Time Delay trainrp mse mse 1.00E-006 logsig 63502.mat Distributed Time Delay trainrp 1.00E-006 logsig 63502.mat 0.96858 0.38634 3504 602 2207 Distributed Time Delay trainrp mse 1.00E-006 63502.mat 0.2334 0.21212 246 808 113620 26 477 477 0 843 772 482 tansig tansig tansig hardlim hardlim mse mse mse mse mse Distributed Time Delay trainm 1.00F-006 63502 mat 0.99182 0.3087 213 600 0 249 304 581 105130 867 8022 1623 0.3087 0.5571 NaN 0.22802 0.28253 0.54657 Distributed Time Delay trainrp trainscg trainscg trainscg 0.97028 0.68085 0.97057 0.96635 3329 15 3344 3809 29 3 5 29 1 00E-006 63502 ma 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 32 110270 109400 109690 114660 0 417 1389 3 5 29 Distributed Time Delay trainscg mse 1.00E-006 purelin 63502.mat 0.97721 2558 Distributed Time Delay trainsco mse mse 1.00E-006 purelin 63502.mat 0.97331 0.55079 591 109530 3003 482 1103

0.97693

0.54468

579

109760

484

1290

63502.mat

1.00E-006

. purelin

Distributed Time Delay

trainsco

Single Classification logsig logsig logsig tansig tansig Distributed Time Delay trainsco mse mse mse mse mse 1.00F-006 63502.mat 0.93491 0.60714 663 105680 7358 429 571 663 657 652 665 651 656 Distributed Time Delay trainscy trainscy trainscy trainscy trainscy 107610 108350 106030 107130 5840 4881 7577 6342 1.00E-006 63502 ma 0.94853 0.60165 435 432 427 441 432 1092 158 394 5 142 763 16 145 176 16 388 172 77 164 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 0.94853 0.95689 0.93331 0.94411 0.60165 0.60148 0.60897 0.59615 29 3 5 29 Distributed Time Delay trainscg 1.00E-006 tansig 63502.mat 0.95369 0.60294 5226 FF Input Time Delay traingd mse mse mse mse mse 1.00E-006 hardlim 63502.mat 0 0 113600 0 3 5 29 3 5 29 3 5 0.00041421 FF Input Time Delay trainad 1.00E-006 hardlim 63502.mat 1091 47 39 113420 0 FF Input Time Delay
FF Input Time Delay 113420 113400 4382 4047 3497 12843 traingd traingd traingd traingd 1.00E-006 hardlim 63502 mat 0.0003438 1091 592 577 605 771 774 749 779 762 1.00E-006 1.00E-006 1.00E-006 1.00E-006 purelin purelin purelin 0.96142 0.96427 0.96917 0.88688 109210 109200 109950 100690 63502 ma 0.54212 500 488 483 320 316 63502.mat 63502.mat 63502.mat 0.54212 0.54178 0.55607 0.70669 mse traingd logsig FF Input Time Delay traingd mse 1.00E-006 logsig 63502.mat 0.90063 0.71009 102180 11274 FF Input Time Delay 29 3 5 29 3 5 29 traingd mse mse 1.00E-006 logsig 63502.mat 0.9223 0.68969 104500 8804 337 310 FF Input Time Delay 1.00E-006 63502.mat 0.87958 0.71402 99647 13642 312 324 FF Input Time Delay FF Input Time Delay FF Input Time Delay FF Input Time Delay traingd traingd trainrp trainrp mse mse mse mse tansig tansig tansig hardlim 0.6978 0.68836 0.00091575 330 340 1091 0 286 409 17 114690 1.00E-006 63502 mat 0.90287 102320 11007 63502.mat 63502.mat 63502.mat 0.90287 0.90792 0.99854 0.78947 751 1 0 102780 113430 10424 166 1.00E-006 hardlim NaN 15 0 FF Input Time Delay trainrp mse 1.00E-006 hardlim 63502.mat 0 1091 113430 180 FF Input Time Delay trainrp mse mse mse mse mse 1.00E-006 purelin 63502.mat 0.98954 0.33052 274 556 580 764 0 646 134 109610 1159 555 3106 3 5 29 3 5 29 3 5 FF Input Time Delay
FF Input Time Delay 526 500 0 865 trainro 1.00E-006 . purelin 63502.mat 0.96623 0.51386 109620 3831 168 trainrp trainrp trainrp trainrp 1.00E-006 1.00E-006 1.00E-006 1.00E-006 purelin logsig logsig 723 3946 2824 106820 63502.mat 0.96851 0.53704 109350 3555 63502.mat 63502.mat 63502.mat 0 0.99988 0.0728 1 0 0.99845 0.12762 109990 13 6712 111000 logsig 527 111480 1 916 FF Input Time Delay trainrp mse 1.00E-006 tansig 63502.mat 0.98332 1891 280 FF Input Time Delay trainrp mse 1.00E-006 tansia 63502.mat 0.99981 0 0 113430 22 1089 168 0.32768 348 FF Input Time Delay 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 trainrp mse 1.00E-006 tansig hardlim 63502.mat 0.97163 110020 3212 714 415 FF Input Time Delay
FF Input Time Delay trainsco 1.00E-006 63502.mat 0.99828 0.00091575 113420 1091 195 0 155 3177 2747 3258 114530 38 568 100 155 39 151 trainscg trainscg trainscg trainscg mse mse mse mse mse 1.00E-006 1.00E-006 1.00E-006 1.00E-006 hardlim hardlim purelin 63502.mat 63502.mat 63502.mat 63502.mat 175 113420 109870 110770 1 1091 488 487 493 0.99864 0.00091575 0.55147 0.55198 600 600 596 0.9719 0.9758 trainscg purelin FF Input Time Delay trainsco 1.00E-006 purelin 63502.mat 0.97129 0.54729 110200 logsig logsig logsig tansig tansig 430 FF Input Time Delay trainsco mse mse mse mse mse 1.00E-006 63502.mat 0.92997 0.6055 660 105620 7954 638 676 642 459 668 440 484 504 414 440 418 206 96 156 FF Input Time Delay trainsco 1.00F-006 63502 mat 0.96507 0.5864 109500 3963 450 414 450 582 420 344 FF Input Time Delay
FF Input Time Delay
FF Input Time Delay
FF Input Time Delay
FF Input Time Delay trainscg trainscg trainscg trainscg trainscg 7460 5317 3926 7710 1.00E-006 63502 mat 0.93422 0.62018 105940 214 53 1323 280 0 0 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 0.93422 0.95318 0.96505 0.93197 0.58791 0.44092 0.61397 108240 108410 105630 tansig Radial Basis Network 0.01 63502.mat 0.87158 0.56122 38314 5645 6110 Radial Basis Network 0.01 63502.mat 0.86101 0.61735 37849 300 Radial Basis Network 29 3 5 29 3 5 29 0.01 63502.mat 0.86767 0.64286 38142 5817 280 traingd traingd traingd trainrp trainrp 166 15 195 575 1120 FeedForward mse mse mse mse mse 1.00F-006 63502 mat 0.9007 0.53009 39447 4349 367 344 363 526 645 532 FeedForward FeedForward FeedForward 1.00E-006 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 63502.mat 63502.mat 0.56122 0.53521 0.28142 0.12955 3756 3389 497 883 0.91453 40188 0.91453 0.92257 0.98856 0.97941 40188 40378 42939 41999 FeedForward FeedForward trainrp 1.00E-006 63502.mat 0.97781 0.22674 41825 949 1281 FeedForward trainscg mse mse 1.00E-006 63502.mat 0.94807 0.41964 329 41665 2282 455 12

0.96388

0.44015

342

42107

1578

435

281

63502.mat

1.00E-006

FeedForward

trainsco

						Single Classificati	ion							
FeedForward	29	trainscq	mse	1.00E-006		63502.mat	70	0.94626	0.47382	371	41329	2347	412	284
Layer Recurrent Network	3	traingd	mse	1.00E-006		63502.mat	70	0.86668	0.60332	473	38070	5856	311	33
Layer Recurrent Network	5	traingd	mse	1.00E-006		63502.mat	70	0.87515	0.58876	461	38348	5471	322	141
Layer Recurrent Network	29	traingd	mse	1.00E-006		63502.mat	70	0.94908	0.47066	369	41617	2233	415	109
Layer Recurrent Network	3	trainrp	mse	1.00E-006	-	63502.mat	70	1	0	0	43275	0	686	782
Layer Recurrent Network	5	trainrp	mse	1.00E-006	-	63502.mat	70	0.99826	0.016014	9	41251	72	553	2858
Layer Recurrent Network	29	trainrp	mse	1.00E-006	-	63502.mat	70	0.97818	0.26381	191	42138	940	533	941
Layer Recurrent Network	3	trainscg	mse	1.00E-006	-	63502.mat	70	0.93256	0.43718	341	40989	2964	439	10
Layer Recurrent Network	5	trainscg	mse	1.00E-006	-	63502.mat	70	0.94812	0.43295	339	41598	2276	444	86
Layer Recurrent Network	29	trainscg	mse	1.00E-006	-	63502.mat	70	0.95529	0.45967	359	41708	1952	422	302
Distributed Time Delay	3	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.98137	0.034439	27	43140	819	757	0
Distributed Time Delay	5	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.00004551	1	784	2	43944	0	13
Distributed Time Delay	29	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.9713	0.29449	230	42611	1259	551	92
Distributed Time Delay	3	traingd	mse	1.00E-006	purelin	63502.mat	70	0.96747	0.40434	317	42527	1430	467	2
Distributed Time Delay	5	traingd	mse	1.00E-006	purelin	63502.mat	70	0.96573	0.41956	326	42406	1505	451	55
Distributed Time Delay	29	traingd	mse	1.00E-006	purelin	63502.mat	70	0.96759	0.40154	312	42425	1421	465	120
Distributed Time Delay	3	traingd	mse	1.00E-006	logsig	63502.mat	70	0.8729	0.60077	471	38342	5583	313	34
Distributed Time Delay	5	traingd	mse	1.00E-006	logsig	63502.mat	70	0.90192	0.57015	447	39645	4311	337	3
Distributed Time Delay	29	traingd	mse	1.00E-006	logsig	63502.mat	70	0.90406	0.53699	421	39680	4211	363	68
Distributed Time Delay	3	traingd	mse	1.00E-006	tansig	63502.mat	70	0.86954	0.59821	469	38197	5731	315	31
Distributed Time Delay	5	traingd	mse	1.00E-006	tansig	63502.mat	70	0.89616	0.56888	446	39379	4563	338	17
Distributed Time Delay	29	traingd	mse	1.00E-006	tansig	63502.mat	70	0.90787	0.52679	413	39809	4040	371	110
Distributed Time Delay	3	trainrp	mse	1.00E-006	hardlim	63502.mat	70	0.016393	NaN	0	1	60	0	44682
Distributed Time Delay	5	trainrp	mse	1.00E-006	hardlim	63502.mat	70	1	0	0	43879	0	783	81
Distributed Time Delay	29	trainrp	mse	1.00E-006	hardlim	63502.mat	70	0.12568	1	3	23	160	0	44557
Distributed Time Delay	3	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.95321	0.12483	90	40971	2011	631	1040
Distributed Time Delay	5	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.9952	0.18704	101	40410	195	439	3598
Distributed Time Delay	29	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.98043	0.25036	176	42382	846	527	812
Distributed Time Delay	3	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.00036447	0.99343	756	16	43883	5	83
Distributed Time Delay	5	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.99891	0.0051414	4	43864	48	774	53
Distributed Time Delay	29	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.9845	0.099042	62	41672	656	564	1789
Distributed Time Delay	3	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.97207	0.27967	205	42185	1212	528	613
Distributed Time Delay	5	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.96049	0.3534	270	41842	1721	494	416
Distributed Time Delay	29	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.95969	0.34404	257	41852	1758	490	386
Distributed Time Delay	3	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0	1	784	0	43959	0	0
Distributed Time Delay	5	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.99936	0.002551	2	43913	28	782	18
Distributed Time Delay	29	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.9841	0.1199	94	43209	698	690	52
Distributed Time Delay	3	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.96702	0.40903	317	42309	1443	458	216
Distributed Time Delay	5	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.9665	0.38613	295	42291	1466	469	222
Distributed Time Delay	29	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.97165	0.39446	299	42297	1234	459	454
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	70	1	0	0	43959	0	784	0
Distributed Time Delay	5	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.93703	0.44929	350	41088	2761	429	115
Distributed Time Delay	29	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.95474	0.45839	358	41743	1979	423	240
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.92735	0.40306	316	40760	3193	468	6
Distributed Time Delay	5	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.91875	0.46341	361	40298	3564	418	102
Distributed Time Delay	29	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.9445	0.48531	380	41407	2433	403	120
FF Input Time Delay	3	traingd	mse	1.00E-006	hardlim	63502.mat	70	0	1	784	0	43958	0	1
FF Input Time Delay	5	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.000068281	1	784	3	43933	0	23
FF Input Time Delay	29	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.99977	0	0	43927	10	784	22
FF Input Time Delay	3	traingd	mse	1.00E-006	purelin	63502.mat	70	0.97201	0.39063	300	42617	1227	468	131
FF Input Time Delay	5	traingd	mse	1.00E-006	purelin	63502.mat	70	0.96031	0.42228	326	42122	1741	446	108
FF Input Time Delay	29	traingd	mse	1.00E-006	purelin	63502.mat	70	0.96536	0.39586	306	42307	1518	467	145
FF Input Time Delay	3	traingd	mse	1.00E-006	logsig	63502.mat	70	0.85902	0.60332	473	37761	6197	311	1

Nas páginas seguintes apresentamos os testes posteriores realizados às redes que apresentaram melhores resultados nos testes iniciais, conforme o descrito na $Secç\~ao$ 3 deste documento.

						Single Classificati	on							
FF Input Time Delay	5	traingd	mse	1.00E-006	logsig	63502.mat	70	0.88683	0.58291	457	38976	4974	327	9
FF Input Time Delay	29	traingd	mse	1.00E-006	logsig	63502.mat	70	0.91237	0.5645	442	40035	3845	341	80
FF Input Time Delay	3	traingd	mse	1.00E-006	tansig	63502.mat	70	0.86323	0.59311	465	37902	6005	319	52
FF Input Time Delay	5	traingd	mse	1.00E-006	tansig	63502.mat	70	0.87174	0.59694	468	38292	5634	316	33
FF Input Time Delay	29	traingd	mse	1.00E-006	tansia	63502.mat	70	0.9024	0.58036	455	39554	4278	329	127
FF Input Time Delay	3	trainrp	mse	1.00E-006	hardlim	63502.mat	70	0	1	784	0	43933	0	26
FF Input Time Delay	5	trainrp	mse	1.00E-006	hardlim	63502.mat	70	1	0	0	43929	0	784	30
FF Input Time Delay	29	trainrp	mse	1.00E-006	hardlim	63502.mat	70	0.99986	0	0	43927	6	784	26
FF Input Time Delay	3	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.96586	0.30218	236	42355	1497	545	110
FF Input Time Delay	5	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.97616	0.24332	182	42551	1039	566	405
FF Input Time Delay	29	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.96784	0.323	250	42465	1411	524	93
FF Input Time Delay	3	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.99511	0.082251	57	42966	211	636	873
FF Input Time Delay	5	trainrp	mse	1.00E-006	logsig	63502.mat	70	0	NaN	0	0	1	0	44742
FF Input Time Delay	29	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.94621	0.42292	310	39773	2261	423	1976
FF Input Time Delay	3	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.071429	1	1	3	39	0	44700
FF Input Time Delay	5	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.9597	0.28954	227	42149	1770	557	40
FF Input Time Delay	29	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.0002276	1	784	10	43926	0	23
FF Input Time Delay	3	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.99993	0	0	43945	3	784	11
FF Input Time Delay	5	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.9998	0	0	43924	9	784	26
FF Input Time Delay	29	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.00013659	1	784	6	43920	0	33
FF Input Time Delay	3	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.96827	0.37629	292	42478	1392	484	97
FF Input Time Delay	5	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.96556	0.39487	308	42413	1513	472	37
FF Input Time Delay	29	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.96449	0.40337	311	42339	1559	460	74
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.92554	0.43878	344	40671	3272	440	16
FF Input Time Delay	5	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.94457	0.42857	336	41457	2433	448	69
FF Input Time Delay	29	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.94641	0.44955	352	41533	2352	431	75
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.94955	0.42656	334	41730	2217	449	13
FF Input Time Delay	5	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.94894	0.43423	340	41700	2244	443	16
FF Input Time Delay	29	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.95065	0.46213	360	41628	2161	419	175

Group Classification

Group Classification														
Network	Number Neurons Network	Training Function	Performance Function	Training Goal	Activation Function	Input	Percentage Crysis (0-100)	Specificity	Sensibility	True Positives	True Negatives	False Positives	False Negatives	Invalid Data
Radial Basis Network	3			0.01		44202.mat	30	0.97411	0.89052	911	245650	6528	112	0
Radial Basis Network	5	-		0.01		44202.mat	30	0.97209	0.8915	912	245140	7038	111	0
Radial Basis Network	29	-	-	0.01	-	44202.mat	30	0.94392	0.9609	983	238040	14141	40	0
FeedForward	3	traingd	mse	1.00E-006	-	44202.mat	30	0.9737	0.86804	888	245550	6632	135	0
FeedForward	5	traingd	mse	1.00E-006		44202.mat	30	0.978	0.86999	890	246630	5547	133	0
FeedForward	29	traingd	mse	1.00E-006		44202.mat	30	0.98626	0.85435	874	248720	3465	149	0
FeedForward	3	trainrp	mse	1.00E-006		44202.mat	30	0.99994	0.53177	544	252160	15	479	0
FeedForward	5	trainrp	mse	1.00E-006		44202.mat	30	1	0.39562	379	252180	0	579	65
FeedForward	29	trainrp	mse	1.00E-006		44202.mat	30	0.99999	0.53177	544	252180	3	479	0
FeedForward	3	trainscq	mse	1.00E-006		44202.mat	30	0.99967	0.69599	712	252100	84	311	0
FeedForward	5	trainscg	mse	1.00E-006		44202.mat	30	0.99956	0.74878	766	252070	112	257	0
FeedForward	29	trainscg	mse	1.00E-006		44202.mat	30	0.99967	0.74682	764	252100	82	259	0
Layer Recurrent Network	3	traingd	mse	1.00E-006		44202.mat	30	0.97523	0.8651	885	245930	6246	138	0
Layer Recurrent Network	5	traingd	mse	1.00E-006		44202.mat	30	0.96994	0.88172	902	244600	7580	121	0
Layer Recurrent Network	29	traingd	mse	1.00E-006		44202.mat	30	0.98512	0.86119	881	248430	3753	142	0
Layer Recurrent Network	3	trainrp	mse	1.00E-006		44202.mat	30	0.99999	0.3563	362	252180	3	654	7
Layer Recurrent Network	5	trainrp	mse	1.00E-006		44202.mat	30	0.99999	0.336	326	252180	2	674	23
Layer Recurrent Network	29	trainrp		1.00E-006	-	44202.mat	30	0.99999	0.50783	526 519	252180	4	503	23 1
Layer Recurrent Network	3		mse	1.00E-006	-	44202.mat	30	0.99996	0.50763	735	252180	4 87	288	0
		trainscg	mse		-		30		0.71848			127		0
Layer Recurrent Network	5 29	trainscg	mse	1.00E-006	-	44202.mat	30	0.9995 0.99932	0.73998	757 772	252050 252010	172	266 251	0
Layer Recurrent Network		trainscg	mse	1.00E-006	in a self-sec	44202.mat								-
Distributed Time Delay	3	traingd	mse	1.00E-006	hardlim	44202.mat	30	0	1	1023	0	252180	0	0
Distributed Time Delay	5	traingd	mse	1.00E-006	hardlim	44202.mat	30	1	0.2844	31	83	0	78	253010
Distributed Time Delay	29	traingd	mse	1.00E-006	hardlim	44202.mat	30	0.99159	0.68426	700	250060	2122	323	0
Distributed Time Delay	3	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99911	0.68915	705	251960	224	318	0
Distributed Time Delay	5	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99987	0.60508	619	252150	34	404	0
Distributed Time Delay	29	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99929	0.68035	696	252000	179	327	0
Distributed Time Delay	3	traingd	mse	1.00E-006	logsig	44202.mat	30	0.96892	0.8739	894	244340	7837	129	0
Distributed Time Delay	5	traingd	mse	1.00E-006	logsig	44202.mat	30	0.9748	0.87195	892	245820	6356	131	0
Distributed Time Delay	29	traingd	mse	1.00E-006	logsig	44202.mat	30	0.98317	0.86315	883	247940	4244	140	0
Distributed Time Delay	3	traingd	mse	1.00E-006	tansig	44202.mat	30	0.97898	0.86999	890	246880	5302	133	0
Distributed Time Delay	5	traingd	mse	1.00E-006	tansig	44202.mat	30	0.97733	0.87195	892	246460	5716	131	0
Distributed Time Delay	29	traingd	mse	1.00E-006	tansig	44202.mat	30	0.97954	0.86901	889	247020	5160	134	0
Distributed Time Delay	3	trainrp	mse	1.00E-006	hardlim	44202.mat	30	1	0	0	80	0	10	253110
Distributed Time Delay	5	trainrp	mse	1.00E-006	hardlim	44202.mat	30	NaN	0	0	0	0	75	253130
Distributed Time Delay	29	trainrp	mse	1.00E-006	hardlim	44202.mat	30	0.99984	0.33822	323	252140	40	632	68
Distributed Time Delay	3	trainrp	mse	1.00E-006	purelin	44202.mat	30	1	0.34874	347	252180	0	648	28
Distributed Time Delay	5	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.9999	0.51711	529	252160	24	494	0
Distributed Time Delay	29	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.99999	0.46523	475	252180	3	546	2
Distributed Time Delay	3	trainrp	mse	1.00E-006	logsig	44202.mat	30	1	0.24885	217	52080	0	655	200250
Distributed Time Delay	5	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.99996	0.5523	565	252170	9	458	0
Distributed Time Delay	29	trainrp	mse	1.00E-006	logsig	44202.mat	30	1	0.26816	144	579	0	393	252090
Distributed Time Delay	3	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.99985	0.59629	610	252140	37	413	0
Distributed Time Delay	5	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.99999	0.41195	386	252180	3	551	86
Distributed Time Delay	29	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.99999	0.53666	549	252180	3	474	0
Distributed Time Delay	3	trainscq	mse	1.00E-006	hardlim	44202.mat	30	1	0.53177	544	252180	1	479	0
Distributed Time Delay	5	trainscq	mse	1.00E-006	hardlim	44202.mat	30	0.99997	0.22287	228	252170	8	795	0
Distributed Time Delay	29	trainscg	mse	1.00E-006	hardlim	44202.mat	30	0.76345	0.81623	835	192530	59653	188	ō
Distributed Time Delay	3	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99956	0.62757	642	252070	111	381	ō
Distributed Time Delay	5	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99953	0.62366	638	252060	118	385	ō
Distributed Time Delay	29	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99949	0.64125	656	252050	128	367	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.99979	0.73998	757	252130	54	266	0
, 20my	-		******		55									-

Group Classification 70 82 86 128 95 252180 logsig logsig tansig tansig Distributed Time Delay trainsco mse mse mse mse mse 1.00F-006 44202.mat 0.99972 0.74291 760 252110 263 0 0 0 0 0 0 0 0 0 0 0 Distributed Time Delay trainscy trainscy trainscy trainscy trainscy 0.76051 0.6999 0.76735 0.74291 252110 252100 252090 252050 252080 778 716 785 760 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 1.00E-006 44202 ma 0.99967 1.00E-006 1.00E-006 1.00E-006 44202.mat 44202.mat 44202.mat 44202.mat 0.99967 0.99966 0.99949 0.99962 307 238 263 tansig FF Input Time Delay traingd 1.00E-006 hardlim 44202.mat 0 1023 0 FF Input Time Delay traingd mse mse mse mse mse 1.00E-006 hardlim 44202.mat 1023 252180 traingd traingd traingd traingd traingd traingd FF Input Time Delay 1.00E-006 hardlim 44202.mat 1023 252180 FF Input Time Delay
FF Input Time Delay purelin purelin purelin 1.00E-006 44202 mat 0.99902 0.70968 726 720 725 893 891 251930 246 297 1.00E-006 1.00E-006 1.00E-006 1.00E-006 0.99905 0.99903 0.96705 0.97516 0.70381 0.7087 0.87292 251930 251940 251940 243870 245920 239 244 8309 6264 2799 44202 ma 303 298 130 132 153 44202.mat 44202.mat 44202.mat logsig mse traingd logsig 0.87097 FF Input Time Delay traingd mse 1.00E-006 logsig 44202.mat 0.9889 0.85044 870 249380 FF Input Time Delay 3 5 traingd mse mse 1.00E-006 tansig 44202.mat 0.97928 0.86999 890 246960 5225 133 0 FF Input Time Delay 1.00E-006 tansia 44202.mat 0.97126 0.87195 892 244930 7248 131 FF Input Time Delay FF Input Time Delay FF Input Time Delay FF Input Time Delay traingd trainrp trainrp mse mse mse mse 125 0 1023 29 3 5 29 1.00E-006 44202 mat 0.973 0.87781 898 245370 6810 0 44202.mat 44202.mat 44202.mat 44202.mat 1 0 NaN 0.57771 0 252180 0 253190 trainrp 1.00E-006 hardlim 10 0 432 252170 FF Input Time Delay trainrp mse 1.00E-006 purelin 44202.mat 0.99996 591 0 3 5 29 3 5 29 3 5 29 FF Input Time Delay trainrp mse mse mse mse mse 1.00E-006 purelin 44202.mat 0.99996 0.58749 601 252170 10 422 0 FF Input Time Delay
FF Input Time Delay trainro 1.00E-006 . purelin 44202.mat 0.99994 0.60411 618 252160 15 405 trainrp trainrp trainrp trainrp 1.00E-006 1.00E-006 1.00E-006 1.00E-006 logsig logsig logsig 0.99511 0.44184 0.95376 1018 452 825 5 571 40 0 44202.mat 252180 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 0.99999 0.98945 252180 3 89 252180 243900 1023 592 tansig 0 0.99994 1 0.57869 0 0 252170 FF Input Time Delay trainrp mse 1.00E-006 tansig 14 431 FF Input Time Delay trainrp mse 1.00E-006 tansia 44202.mat 0.99998 0.56696 580 252170 443 FF Input Time Delay 3 trainsco mse 1.00E-006 hardlim 44202.mat 0 1 1023 0 252180 0 FF Input Time Delay
FF Input Time Delay trainsco 1.00E-006 hardlim 44202.mat 0 252180 1023 trainscg trainscg trainscg trainscg mse mse mse mse mse 1.00E-006 1.00E-006 1.00E-006 1.00E-006 hardlim purelin purelin 44202.mat 44202.mat 44202.mat 44202.mat 0 252010 252060 252060 252180 168 116 119 1023 29 3 5 29 3 5 0 350 386 381 274 0.99933 0.99954 0.99953 0.65787 0.62268 0.62757 673 637 642 749 trainscg purelin FF Input Time Delay trainsco 1.00E-006 logsig 44202.mat 0.99952 0.73216 252060 121 logsig logsig tansig tansig tansig FF Input Time Delay trainsco mse 1.00E-006 44202.mat 0.99959 0.71652 733 252080 103 290 90 143 35 111 49368 51892 mse mse mse mse FF Input Time Delay 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 3 5 29 trainsco 1.00F-006 44202 mat 0.99964 0.74878 766 252090 257 FF Input Time Delay FF Input Time Delay FF Input Time Delay FF Input Time Delay Radial Basis Network 725 743 742 1398 1409 1.00E-006 44202 mat 0.99943 0.7087 298 1.00E-006 1.00E-006 0.01 0.01 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 0.99943 0.99986 0.99956 0.90901 0.90436 0.7087 0.7263 0.72532 0.88706 0.89404 252140 252070 493220 280 281 178 167 Radial Basis Network 490690 Radial Basis Network 0.01 44202.mat 0.86006 0.95241 1501 466660 75928 75 FeedForward trainad mse mse mse mse mse mse 1.00E-006 44202.mat 0.81088 0.82107 1294 439970 102610 282 traingd traingd trainrp trainrp trainrp 306 297 1189 915 613 FeedForward 1.00F-006 44202 mat 0.77018 0.80584 1270 417890 124700 44202.mat 44202.mat 44202.mat 44202.mat 0.80584 0.81155 0.20362 0.41496 0.61104 1279 304 649 963 1 00E-006 0.90438 51883 490700 540910 542440 541240 1.00E-006 1.00E-006 1.00E-006 0.99894 0.99974 0.99753 573 143 1341 10432 1186 16 0 0 0 FeedForward FeedForward trainscg 1.00E-006 44202.mat 0.98077 0.76586 1207 532150 369 FeedForward trainsco mse mse 1.00E-006 44202.mat 0.97789 0.7665 1208 530590 11994 368 FeedForward trainsco 1.00E-006 44202.mat 0.96824 0.74175 1169 525350 17234 407

Group Classification traingd traingd trainrp trainrp Layer Recurrent Network mse mse mse mse mse 1.00F-006 44202.mat 0.87671 0.81662 1287 475690 66893 289 0 0 0 0 136 0 0 0 0 0 0 0 0 0 Layer Recurrent Network 0.79759 0.76904 0.45114 0.30212 319 364 865 1021 1 00E-006 44202 ma 409980 132610 0.7556 0.9073 0.99977 0.9977 1.00E-006 1.00E-006 1.00E-006 44202.mat 44202.mat 44202.mat 44202.mat 1257 1212 711 442 964 492290 542460 541320 50297 126 1246 691 29 3 5 29 Layer Recurrent Network trainrp 1.00E-006 44202.mat 0.99873 0.61168 541890 612 Layer Recurrent Network trainsco mse mse mse mse mse 1.00E-006 44202.mat 0.9534 0.80203 1264 517300 25286 312 Laver Recurrent Network trainsco 1.00E-006 44202.mat 0.97968 0.77094 1215 531560 11026 361 Layer Recurrent Network Layer Recurrent Network Distributed Time Delay Distributed Time Delay Distributed Time Delay Distributed Time Delay trainscy trainscy traingd traingd traingd 1242 507 846 712 1019 29 3 5 29 3 5 1.00F-006 44202 mat 0.97105 0.78807 526880 15709 334 0.78807 0.3217 0.5368 0.45178 0.64657 0.6453 1.00E-006 1.00E-006 1.00E-006 1.00E-006 0.99867 0.99986 0.99907 0.99767 723 77 504 1263 1069 730 864 557 hardlim 44202 ma 541860 44202.mat 44202.mat 44202.mat 44202.mat 542510 542080 541320 mse traingd purelin Distributed Time Delay traingd mse 1.00E-006 purelin 44202.mat 0.99893 1017 542000 580 559 Distributed Time Delay 29 3 5 29 3 5 29 traingd mse 1.00E-006 purelin 44202.mat 0.99826 0.66434 1047 541640 945 529 Distributed Time Delay mse 1.00E-006 . Ioasia 44202.mat 0.70903 0.81536 1285 384710 157880 291 Distributed Time Delay traingd traingd mse mse mse mse logsig logsig 1.00E-006 44202 mat 0.80202 0.81916 1291 435160 107420 285 44202.mat 44202.mat 44202.mat 44202.mat 0.80202 0.91044 0.7461 0.87595 0.81916 0.81028 0.8217 0.8217 1291 1277 1295 1295 493990 404820 475280 0 0 0 traingd tansig traingd 1.00E-006 tansig 67308 281 Distributed Time Delay traingd mse 1.00E-006 tansig 44202.mat 0.89597 0.81472 1284 486140 56445 292 Distributed Time Delay 3 5 trainrp mse mse mse mse mse 1.00E-006 hardlim 44202.mat 0 0.99429 1567 0 542580 0 Distributed Time Delay trainro 1.00E-006 hardlim 44202.mat 0 0 485 542580 0 1413 163 Distributed Time Delay trainrp trainrp trainrp trainrp hardlim purelin purelin purelin 1091 700 976 815 0.30774 29 3 5 29 1.00E-006 44202.mat 0.99999 542580 1 55 6 0 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 0.99998 0.99992 0.99932 0.55556 0.35832 0.48089 875 545 755 1291 542520 542540 542220 64 45 368 541900 Distributed Time Delay 3 5 trainrp mse 1.00E-006 logsig 0.001268 0.81916 688 285 1215 Distributed Time Delay trainrp mse 1.00E-006 loasia 44202.mat 0.99996 0.20171 307 542560 24 Distributed Time Delay 29 3 5 29 3 5 29 trainrp mse 1.00E-006 logsig tansig 44202.mat 0.99871 0.46928 718 541890 698 812 Distributed Time Delay trainro 1.00E-006 44202.mat 0.000033185 0.97843 1542 18 542390 34 tansig tansig tansig hardlim Distributed Time Delay trainrp trainrp trainscg mse mse mse mse mse 1.00E-006 1.00E-006 1.00E-006 1.00E-006 44202.mat 44202.mat 44202.mat 44202.mat 0.0117 0.61992 0.019036 0.043782 1267 599 1546 1507 542390 15 977 30 69 854 0.99744 0.99999 0.99999 541200 542580 542580 trainscg hardlim Distributed Time Delay trainsco 1.00E-006 hardlim 44202.mat 0.99953 0.54188 542330 257 722 Distributed Time Delay trainsco mse 1.00E-006 purelin 44202.mat 0.99844 0.64848 1022 541740 848 554 3 5 29 3 5 29 3 5 mse mse mse mse mse Distributed Time Delay trainsco 1.00F-006 nurelin 44202 mat 0.99827 0.65102 1026 541650 936 550 Distributed Time Delay trainscg trainscg trainscg trainscg trainscg 1.00E-006 nurelin 44202 mat 0.99895 0.62246 981 542010 570 595 355 328 328 331 1.00E-006 1.00E-006 1.00E-006 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 0.99895 0.97563 0.97258 0.96756 0.62246 0.77475 0.79188 0.79188 1221 1248 1248 1248 1245 529360 527710 524980 527890 13225 14877 17603 logsig logsig logsig Distributed Time Delay trainscg mse 1.00E-006 tansig 0.97291 0.78997 Distributed Time Delay trainsco mse 1.00E-006 tansig 44202.mat 0.97356 0.77919 1228 528240 14346 348 29 Distributed Time Delay trainsco mse 1.00E-006 tansia 44202.mat 0.96504 0.79695 1256 523610 18971 320 trainscg traingd traingd traingd traingd traingd mse mse mse mse mse FF Input Time Delay 3 1.00F-006 hardlim 44202 mat 0 542580 0 1576 FF Input Time Delay
FF Input Time Delay
FF Input Time Delay
FF Input Time Delay
FF Input Time Delay 1 00E-006 hardlim 44202 ma 1576 542580 0 1.00E-006 1.00E-006 1.00E-006 hardlim purelin purelin 44202.mat 44202.mat 44202.mat 44202.mat 1576 1576 1044 1046 1043 542580 542580 788 902 1103 29 3 5 29 541800 541680 541480 0.99855 0.99834 0.66244 0.66371 532 530 FF Input Time Delay traingd mse 1.00E-006 purelin 44202.mat 0.99797 0.6618 533 FF Input Time Delay traingd mse mse 1.00E-006 logsig logsig 44202.mat 0.81342 0.84264 1328 441350 101240 248 FF Input Time Delay 1.00E-006 44202.mat 0.7139 0.81853 1290 387350 155230 286

Page 14