- Integrated Transient Voltage Suppression
- ESD Protection for Bus Terminals Exceeds:
 ±30 kV IEC 61000-4-2, Contact Discharge
 ±15 kV IEC 61000-4-2, Air-Gap Discharge
 ±15 kV EIA/JEDEC Human Body Model
- Circuit Damage Protection of 400-W Peak (Typical) Per IEC 61000-4-5
- Controlled Driver Output-Voltage Slew Rates Allow Longer Cable Stub Lengths
- 250-kbps in Electrically Noisy Environments
- Open-Circuit Fail-Safe Receiver Design
- 1/4 Unit Load Allows for 128 Devices Connected on Bus
- Thermal Shutdown Protection
- Power-Up/-Down Glitch Protection
- Each Transceiver Meets or Exceeds the Requirements of TIA/EIA-485 (RS-485) and ISO/IEC 8482:1993(E) Standards
- Low Disabled Supply Current 300 μA Max
- Pin Compatible With SN75176
- Applications:
 - Industrial Networks
 - Utility Meters
 - Motor Control

description

The SN75LBC184 and SN65LBC184 are differential data line transceivers in the trade-standard footprint of the SN75176 with built-in protection against high-energy noise transients. This feature provides a substantial increase in reliability for better immunity to noise transients coupled to the data cable over most existing devices. Use of these circuits provides a reliable low-cost direct-coupled (with no isolation transformer) data line interface without requiring any external components.

The SN75LBC184 and SN65LBC184 can withstand overvoltage transients of 400-W peak (typical). The conventional combination wave called out in IEC 61000-4-5 simulates the overvoltage transient and models a unidirectional surge caused by overvoltages from switching and secondary lightning transients.

SN65LBC184D (Marked as 6LB184) SN75LBC184D (Marked as 7LB184) SN65LBC184P (Marked as 65LBC184) SN75LBC184P (Marked as 75LBC184)

functional logic diagram (positive logic)

Figure 1. Surge Waveform — Combination Wave

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description (continued)

A biexponential function defined by separate rise and fall times for voltage and current simulates the combination wave. The standard 1.2 μ s/50 μ s combination waveform is shown in Figure 1 and in the test description in Figure 15.

The device also includes additional desirable features for party-line data buses in electrically noisy environment applications including industrial process control. The differential-driver design incorporates slew-rate-controlled outputs sufficient to transmit data up to 250 kbps. Slew-rate control allows longer unterminated cable runs and longer stub lengths from the main backbone than possible with uncontrolled and faster voltage transitions. A unique receiver design provides a fail-safe output of a high level when the inputs are left floating (open circuit). The SN75LBC184 and SN65LBC184 receiver also includes a high input resistance equivalent to one-fourth unit load allowing connection of up to 128 similar devices on the bus.

The SN75LBC184 is characterized for operation from 0°C to 70°C. The SN65LBC184 is characterized from -40°C to 85°C.

schematic of inputs and outputs

DRIVER FUNCTION TABLE

INPUT	ENABLE	OUTPUTS				
D	DE	Α	В			
Н	Н	Н	L			
L	Н	L	Н			
Х	L	Z	Z			

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

RECEIVER FUNCTION TABLE

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A – B	RE	R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 \text{ V}$	L	L
X	Н	Z
Open	L	Н

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

AVAILABLE OPTIONS

	PACKAGE					
TA	PLASTIC SMALL-OUTLINE [†] PLASTIC DUAL-IN-LINE PACKAGE (JEDEC MS-012) (JEDEC MS-001)					
0°C to 70°C	SN75LBC184D	SN75LBC184P				
-40°C to 85°C	SN65LBC184D	SN65LBC184P				

† Add R suffix for taped and reel.

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN65LBC184, SN75LBC184 DIFFERENTIAL TRANSCEIVER WITH TRANSIENT VOLTAGE SUPPRESSION

SLLS236E - OCTOBER 1996 - REVISED APRIL 2002

absolute maximum ratings†

Supply voltage, V _{CC} (see Note 1)	\dots -0.5 V to 7 V
Continuous voltage range at any bus terminal	\ldots –15 V to 15 V
Data input/output voltage	$-0.3\ V$ to $7\ V$
Electrostatic discharge: Contact discharge (IEC61000-4-2) A, B, GND (see Note 2)	30 kV
Air discharge (IEC61000-4-2) A, B, GND (see Note 2)	15 kV
Human body model (see Note 3) A, B, GND (see Note 2)	15 kV
All pins	3 kV
All terminals (Class 3A) (see Note 2)	8 kV
All terminals (Class 3B) (see Note 2)	1200 V
Continuous total power dissipation (see Note 4)	Internally Limited
Operating free-air temperature range, T _A : SN65LBC184	. -40° C to 85° C
SN75LBC184	0°C to 70°C
Storage temperature range, T _{stq}	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.
 - 2. GND and bus terminal ESD protection is beyond readily available test equipment capabilities for IEC 61000-4-2, EIA/JEDEC test method A114-A and MIL-STD-883C method 3015. Ratings listed are limits of test equipment; device performance exceeds these limits.
 - 3. Tested in accordance with JEDEC Standard 22, Test Method A114-A.
 - 4. The driver shuts down at a junction temperature of approximately 160°C. To operate below this temperature, see the Dissipation Rating Table.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25$ °C DERATING FACTOR POWER RATING ABOVE $T_A = 25$ °C		T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
D	725 mW	5.8 mW/°C	464 mW	377 mW	
Р	1150 mW	9.2 mW/°C	736 mW	598 mW	

recommended operating conditions

		MIN‡	TYP	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
oltage at any bus terminal (separately or common mode), VI or VIC		-7		12	V
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, V _{IL}	D, DE, and RE			0.8	V
Differential input voltage, V _{ID}				12	V
	Driver	-60			mA
High-level output current, I _{OH}	Receiver	-8	-7 12 2 0.8 12 -60 r -8 r 60 4 r	mA	
Law law law at autout assessed 1	Driver			60	4
Low-level output current, IOL	Receiver			4	mA
On continue for a stirit consequent of	SN75LBC184	0		70	°C
Operating free-air temperature, T _A	SN65LBC184	-40		85	°C

[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet.

DRIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	ALTERNATE SYMBOLS	TEST CONDITIONS	MIN	түр†	MAX	UNIT	
			$DE = \overline{RE} = 5 \text{ V}$, No Load		12	25	mA	
ICC	Supply current	NA	DE = 0 V, RE = 5 V, No Load		175	300	μΑ	
lН	High-level input current (D, DE, RE)	NA	V _I = 2.4 V			50	μΑ	
I _{IL}	Low-level input current (D, DE, RE)	NA	V _I = 0.4 V	-50			μΑ	
			V _O = -7 V	-250	-120			
los	Short-circuit output current (see Note 5)	NA	AO = ACC			250	250 mA	
	(655 11615 5)		V _O = 12 V			250		
loz	OZ High-impedance output current			See	Receive	er I _I	mA	
Vo	Output voltage	V _{oa} , V _{ob}	IO = 0	0		VCC	V	
V _{OC(PP)}	Peak-to-peak change in common- mode output voltage during state transitions	NA	See Figures 5 and 6		0.8		٧	
Voc	Common-mode output voltage	V _{os}	See Figure 4	1		3	V	
ΔV _{OC} (SS)	Magnitude of change, common- mode steady-state output voltage	$ V_{OS} - \overline{V}_{OS} $	See Figure 5			0.1	V	
11/2-1	Magnitude of differential output	.,,	IO = 0	1.5		6	V	
IVODI	voltage V _A – V _B	Vo	$R_L = 54 \Omega$, See Figure 4	1.5			V	
Δ V _{OD}	Change in differential voltage mag- nitude between logic states	$ V_t - \overline{V}_t $	R _L = 54 Ω			0.1	٧	

 † All typical values are measured with T_A = 25°C and V_{CC} = 5 V. NOTE 5: This parameter is measured with only one output being driven at a time.

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT		
t _{d(DH)}	Differential output delay time, low-to-high-level output	R _L = 54 Ω, See Figure 5				1.3	μs		
t _{d(DL)}	Differential-output delay time, high-to-low-level output						1.3	μs	
tPLH	Propagation delay time, low-to-high-level output						0.5	1.3	μs
tPHL	Propagation delay time, high-to-low-level output					_		0.5	1.3
t _{sk(p)}	Pulse skew $(t_{d(DH)} - t_{d(DL)})$				75	150	ns		
t _r	Rise time, single ended					0.25		1.2	μs
tf	Fall time, single ended			0.25		1.2	μs		
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 2			3.5	μs		
tPZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 3			3.5	μs		
tPHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 2			2	μs		
t _{PLZ}	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 3			2	μs		

RECEIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP [†]	MAX	UNIT
		$DE = \overline{RE} = 0 \text{ V},$	No Load				3.9	mA
ICC	Supply current (total package)	RE = 5 V, No Load	DE = 0 V,				300	μА
			V _I = 12 V				250	
I .	Input current	Other input = 0 V	V _I = 12 V,	VCC = 0			250	4
11			V _I = −7 V		-200			μΑ
			$V_{I} = -7 V$,	VCC = 0	-200			
loz	High-impedance-state output current	$V_0 = 0.4 \text{ V to } 2.4 \text{ V}$					±100	μΑ
V _{hys}	Input hysteresis voltage					70		mV
V _{IT+}	Positive-going input threshold voltage						200	mV
V _{IT} _	Negative-going input threshold voltage				-200			mV
VOH	High-level output voltage	$I_{OH} = -8 \text{ mA}$	Figure 7		2.8			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA	Figure 7				0.4	V

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS		TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	0 50 55 000 500	7			150	ns
tPHL	Propagation delay time, high-to-low-level output	$C_L = 50 \text{ pF},$ See Figure 1	See Figure 7			150	ns
tsk(p)	Pulse skew (tpHL - tpLH)					50	ns
t _r	Rise time, single ended	0			20		ns
t _f	Fall time, single ended	See Figure 7	See Figure 7		20		ns
^t PZH	Output enable time to high level					100	ns
^t PZL	Output enable time to low level	See Figure 8	San Figure 9			100	ns
^t PHZ	Output disable time from high level	See Figure 6				100	ns
tPLZ	Output disable time from low level					100	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1.25 kHz, 50% duty cycle, $t_f \le 10$ ns, $t_f \le 10$ ns, t

B. C_L includes probe and jig capacitance.

Figure 2. Driver tpzH and tpHZ Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1.25 kHz, 50% duty cycle, $t_{f} \le 10$ ns, $t_{f} \le 10$ ns, $t_{O} = 50 \Omega$.

B. C_L includes probe and jig capacitance.

Figure 3. Driver tpZL and tpLZ Test Circuit and Voltage Waveforms

NOTES: A. Resistance values are in ohms and are 1% tolerance.

B. C_L includes probe and jig capacitance.

Figure 4. Driver Test Circuit, Voltage, and Current Definitions

PARAMETER MEASUREMENT INFORMATION

Figure 5. Driver Timing, Voltage and Current Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Resistance values are in ohms and are 1% tolerance.

B. C_L includes probe and jig capacitance (\pm 10%).

Figure 6. Driver V_{OC(PP)} Test Circuit and Waveforms

NOTE A: This value includes probe and jig capacitance (\pm 10%).

Figure 7. Receiver tplH and tpHL Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE A: This value includes probe and jig capacitance (\pm 10%).

Figure 8. Receiver $t_{\mbox{\scriptsize PZL}}, t_{\mbox{\scriptsize PLZ}}, t_{\mbox{\scriptsize PZH}},$ and $t_{\mbox{\scriptsize PHZ}}$ Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

DRIVER DIFFERENTIAL OUTPUT VOLTAGE FREE-AIR TEMPERATURE 3.0 VOD - Driver Differential Output Voltage - V $R_L = 54 \Omega$ 2.5 $V_{CC} = 5.25 \text{ V}$ **V_{CC}** = 5 **V** 2.0 V_{CC} = 4.75 V 1.5 1.0 -40 -20 20 40 60 80 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 9

TYPICAL CHARACTERISTICS

SN65LBC184 SN75LBC184 SN75LBC184 SN65LBC184 SN75LBC184 SN75LBC184 SN75LBC184

NOTE A: The line should be terminated at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 14. Typical Application Circuit

APPLICATION INFORMATION

'LBC184 test description

The 'LBC184 is tested against the IEC 61000–4–5 recommended transient identified as the combination wave. The combination wave provides a 1.2-/50- μ s open-circuit voltage waveform and a 8-/20- μ s short-circuit current waveform shown in Figure 15. The testing is performed with a combination/hybrid pulse generator with an effective output impedance of 2 Ω . The setup for the overvoltage stress is shown in Figure 16 with all testing performed with power applied to the 'LBC184 circuit.

NOTE

High voltage transient testing is done on a sampling basis.

Figure 15. Short-Circuit Current Waveforms

The 'LBC184 is tested and evaluated for both maximum (single pulse) as well as life test (multiple pulse) capabilities. The 'LBC184 is evaluated against transients of both positive and negative polarity and all testing is performed with the worst-case transient polarity. Transient pulses are applied to the bus pins (A & B) across ground as shown in Figure 16.

Figure 16. Overvoltage-Stress Test Circuit

An example waveform as seen by the 'LBC184 is shown in Figure 17. The bottom trace is current, the middle trace shows the clamping voltage of the device and the top trace is power as calculated from the voltage and current waveforms. This example shows a peak clamping voltage of 16 V, peak current of 33.6 A yielding an absorbed peak power of 538 W.

NOTE

A circuit reset may be required to ensure normal data communications following a transient noise pulse of greater than 250 W peak.

APPLICATION INFORMATION

Figure 17. Typical Surge Waveform Measured At Terminals 5 and 7

MECHANICAL INFORMATION

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

P (R-PDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated