1 Let G be a compact Lie group. Show that G admits a bi-invariant metric, i.e., both right and left translations are isometries. *Hint:* Fix a left invariant metric g_L and a volume form $\omega = \sigma^1 \wedge \cdots \wedge \sigma^n$ where σ^i are left invariant 1-forms. Then define g as the average over right translations:

$$g(v, w) = \frac{1}{\int \omega} \int g_L(DR_x(v), DR_x(w))\omega.$$

Let g_L be a left invariant metric on G, i.e. $g_L(v,w) = g_L(DL_x(v),DL_x(w))$ for all $x \in G$. Suppose also $\omega = \sigma^1 \wedge \cdots \wedge \sigma^n$ for σ^i left invariant 1-forms, and define as in the hint

$$g(v, w) = \frac{1}{\int \omega} \int g_L(DR_x(v), DR_x(w))\omega.$$

First compute

$$\begin{split} g(DL_y(v), DL_y(w)) &= \frac{1}{\int \omega} \int g_L(DR_x(DL_y(v)), DR_x(DL_y(w))) \omega \\ &= \frac{1}{\int \omega} \int g_L(DL_y(DR_x(v)), DL_y(DR_x(w))) \omega \\ &= \frac{1}{\int \omega} \int g_L(DR_x(v), DR_x(w)) \\ &= g(v, w) \end{split}$$

so g left invariant.

From the right we have

$$g(DR_y(v), DR_y(w)) = \frac{1}{\int \omega} \int g_L(DR_x(DR_y(v)), DR_x(DR_y(w)))\omega$$
$$= \frac{1}{\int \omega} \int g_L(DR_{x \cdot y}(v), DR_{x \cdot y}(w))\omega$$
$$= g(v, w)$$

2 Consider the upper-half plane

$$\mathbb{R}^{2}_{+} = \{(x, y) \in \mathbb{R}^{2} \mid y > 0\}$$

with the hyperbolic metric

$$\frac{dx^2 + dy^2}{y^2}.$$

Show that the vertical line segment between (0,1) and (0,2) is the shortest path between these points.

Let $\gamma(t) = \langle \gamma_x(t), \gamma_y(t) \rangle$ be a path $\gamma : [0, a] \to \mathbb{R}^2_+$ with $\gamma(0) = (0, 1)$ and $\gamma(a) = (0, 2)$. Assume without loss of generality that γ is parameterized by (Euclidean) arclength. We can compute

$$|\gamma| = \int_0^a \frac{1}{\gamma_y(t)} \sqrt{\gamma_x'(t)^2 + \gamma_y'(t)^2}$$

since we assumed γ arclength parameterized this reduces to

$$|\gamma| = \int_0^a \frac{1}{\gamma_u(t)} dt.$$

By assumption, $\gamma_y'(t) \in [-1,1]$. In particular $\gamma_y' \le 1 \Rightarrow \gamma_y(t) \le 1+t$. Notice $a \ge 1$ since γ is arclength parameterized and the Euclidean distance between its endpoints is 1. Now compute:

$$\begin{aligned} |\gamma| &= \int_0^a \frac{1}{\gamma_y(t)} dt \\ &\geq \int_0^1 \frac{1}{1+t} dt + \underbrace{\int_1^a \frac{1}{\gamma_y(t)} dt}_{(*)} \end{aligned}$$

Of course the contribution of (*) is strictly positive if a > 1 since γ_y is restricted to take only positive values. Thus, our bound is tight if and only if a = 1 and $\gamma_y(t) = 1 + t$, to wit, when

$$\gamma(t) = \langle 0, 1 + t \rangle$$

as desired.

3 Consider \mathbb{R}^2_+ with the hyperbolic metric as above. Let $v_0 = (0,1)$ be a tangent vector at the point (0,1) of \mathbb{R}^2_+ . Let v(t) be the parallel transport of v_0 along the curve x = t, y = 1. Show that v(t) makes an angle t with the direction of the y-axis, measured in the clockwise sense.

First note that the nonzero components of the metric and respectively inverse metric are just

$$g^{xx} = g^{yy} = y^2$$
 and $g_{xx} = g_{yy} = \frac{1}{y^2}$.

We can therefore reduce the expression for Christoffel symbols

$$\Gamma_{ij}^{m} = \frac{1}{2} \sum_{k} \left(\frac{\partial}{\partial x_{i}} g_{jk} + \frac{\partial}{\partial x_{j}} g_{ki} - \frac{\partial}{\partial x_{k}} g_{ij} \right) g^{km} = \frac{y^{2}}{2} \left(\frac{\partial}{\partial x_{i}} g_{jm} + \frac{\partial}{\partial x_{j}} g_{mi} - \frac{\partial}{\partial x_{m}} g_{ij} \right)$$

Clearly this can only be nonzero if at least one of i, j, m is y and the others coincide. Thus compute:

$$\Gamma^y_{yy} = \Gamma^x_{xy} = \Gamma^x_{yx} = -\frac{1}{y}; \quad \Gamma^y_{xx} = \frac{1}{y}; \quad \Gamma^m_{ij} = 0 \text{ otherwise}.$$

Now let

$$v(t) = \langle \sin t, \cos t \rangle$$
 $x(t) = \langle t, 1 \rangle$ $\dot{x}(t) = \langle 1, 0 \rangle$

and check

$$\frac{dv^x}{dt} + \sum_{i,j} \Gamma_{ij}^x v^j \frac{dx_i}{dt} = \cos t - \frac{1}{y} \cos t = 0 \quad \text{and} \quad \frac{dv^y}{dt} + \sum_{i,j} \Gamma_{ij}^y v^j \frac{dx_i}{dt} = -\sin t + \frac{1}{y} \sin t = 0.$$

4 For any $p \in (M,g)$ and orthonormal basis e_1, \ldots, e_n for T_pM , show that there is an orthonormal frame E_1, \ldots, E_n in a neighborhood of p such that $E_i = e_i$ and $(\nabla E_i)|_p = 0$. Hint: Fix an orthonormal frame \overline{E}_i near $p \in M$ with $\overline{E}_i(p) = e_i$. If we define $E_i = \alpha_i^j \overline{E}_j$, where $[\alpha_i^j(x)] \in SO(n)$ and $\alpha_i^j(p) = \delta_i^j$, then this will yield the desired frame provided that the $D_{e_k} \alpha_i^j$ are appropriately prescribed.

Let \overline{E}_i be an orthonormal frame on a neighboorhood of p. Define $E_i = \alpha_i^j \overline{E}_j$ and suppose that

$$\nabla_j E_l = \left(\frac{\partial E_l^i}{\partial x^j} + E_l^k \Gamma_{jk}^i\right) e_i = 0 \text{ for all } i, j, l$$
(1)

Computing, we get

$$\frac{\partial}{\partial x^j}E^i_l = \alpha^m_l \frac{\partial}{\partial x^j}\overline{E}^i_m + \overline{E}^i_m \frac{\partial}{\partial x^j}\alpha^m_l$$

which reduces, at p to

$$\frac{\partial}{\partial x^j} E_l^i = \frac{\partial}{\partial x^j} \overline{E}_l^i + \frac{\partial}{\partial x^j} \alpha_l^i.$$

Thus, (1) is equivalent (at p) to

$$\begin{split} 0 &= \frac{\partial}{\partial x^j} \overline{E}_l^i + \frac{\partial}{\partial x^j} \alpha_l^i + \overline{E}_l^k \Gamma_{jk}^i \\ &= \frac{\partial}{\partial x^j} \overline{E}_l^i + \frac{\partial}{\partial x^j} \alpha_l^i + \Gamma_{jl}^i \\ &= \Gamma_{ij}^l + \frac{\partial}{\partial x^j} \alpha_l^i + \Gamma_{jl}^i \end{split}$$

Now, let $[\alpha_l^i]$ be a family of matrices defined on a neighborhood of p by setting $\alpha_i^j(p) = \delta_i^j$ and demanding that α_l^i satisfy the family of differential equations

$$\frac{\partial}{\partial x^j}\alpha_l^i = -\Gamma_{ij}^l - \Gamma_{jl}^i$$

Since these derivatives are antisymmetric in i, l the matrices $[\alpha_l^i]$ must belong to SO(n). Furthermore, $E_i = \alpha_i^j \overline{E}_j$ has the desired $(\nabla E_i)|_p = 0$ by our previous computation.

- 5 For any point p in a Riemannian manifold (M, g), show that there exist coordinates x^1, \ldots, x^n near p such that $\partial_i = e_i$ and $\nabla \partial_i = 0$ at p.
- 6 Let (M,g) be oriented and define the Riemannian volume form dvol as follows:

$$d\mathbf{vol}(v_1,\ldots,v_n) = \det(g(v_i,e_j)),$$

where e_1, \ldots, e_n is a positively oriented orthonormal basis for T_pM .

- 7 Petersen, Chapter 2, Exercise 11 on p. 58
- 8 Petersen, Chapter 2, Exercise 13 on p. 58