习题 6

6.1 什么是学习和机器学习? 为什么要研究机器学习?

解: 略。

6.2 简单的学习模型是由哪几部分组成的?各部分的功能是什么?

解: 略。

6.3 到目前为止, 机器学习的方法有哪些? 如何对它们进行分类?

解: 略。

6.4 现假设有一个物体,用两个属性来描述:大小和形状。大小只有两个值:大和小;形状也有两个值:圆(Circle)、方(Square)。每个物体可以用一个向量表示(x,y):x表示物体的大小,y表示物体的形状。初始变型空间可以用下图进行描述。用候选消除算法学习"圆"概念,即(x circle),给出学习过程。

解: 首先将集合 H 初始化为整个规则空间, <G,S>;

 $G = \{(x,y)\}$

 $S = \{(small, square), (small, circle), (large, square), (large, circle)\}$

提供一个正例(small,circle),对<G,S>进行更新:

 $G=\{(x,y)\}$

S={(small,circle)}

新的描述空间如图 1 所示。

图 1 第一个正例后的变型空间

第二个实例为反例(large,square),对 G 集合进行特殊化: G={(small,y),(x,circle)} S 不变,新的描述空间如图 2 所示。

图 2 第二个反例后的变型空间

最后一个正例为(large,circle),从 S 集合中删去不覆盖该例的元素(small,y),并对 S 集合进行一般化,得到: $G=S=\{(x,circle)\}$

从而算法停止,并给出学习得到的概念(x,circle)。

6.5 设训练例子集如下表所示:

序号	原	分类	
	\mathbf{x}_1	X 2	分矢
1	T	T	+
2	Т	Т	+
3	T	F	-
4	F	F	+
5	F	Т	_
6	F	T	_

请用 ID3 算法完成其学习过程。

解:设根节点为 S, 具有最大的信息熵:

 $H(S) = -(P(+)\log_2 P(+) + P(-)\log_2 P(-)) = -((3/6)\log_2(3/6) + (3/6)\log_2(3/6)) = 1$

S 关于属性 x_1 的条件熵:

 $H(S|x_1)=(|S_T|/|S|)H(S_T)+(|S_F|/|S|)H(S_F)=0.9183$

S 关于属性 x2 的条件熵:

 $H(S|x_2)=(|S_T|/|S|)H(S_T)+(|S_F|/|S|)H(S_F)=1$

选择属性 x₁ 对根节点进行扩展。用 x₁ 对 S 扩展后所得到的部分决策树如下图所示。

扩展 x1 后的部分决策树~

在该决策树中,其 2 个叶节点均不是最终决策方案,因此还需要继续扩展。而要继续扩展,只有属性 x_2 可选择,因此不需要再进行条件熵的计算,可直接对属性 x_2 进行扩展。对 x_2 扩展后所得到的决策树如下图所示:

扩展 x_2 后得到的完整决策树 ϕ

6.6下图给出了一个可能带有噪音的数据集合。它有四个属性,Outlook、Temperature、Humidity、Windy。它被分为两类,P与N,分别为正例与反例。试构造决策树将数据进行分类。

属性	Outlook	Temperature	Humidity	Windy	类
1	Overcast	Hot	High	Not	N
2	Overcast	Hot	High	Very	N
3	Overcast	Hot	High	Medium	N
4	Sunny	Hot	High	Not	P
5	Sunny	Hot	High	Medium	P
6	Rain	Mild	High	Not	N
7	Rain	Mild	High	Medium	N
8	Rain	Hot	Normal	Not	P
9	Rain	Cool	Normal	Medium	N
10	Rain	Hot	Normal	Very	N
11	Sunny	Cool	Normal	Very	P
12	Sunny	Cool	Normal	Medium	P
13	Overcast	Mild	High	Not	N
14	Overcast	Mild	High	Medium	N
15	Overcast	Cool	Normal	Not	P
16	Overcast	Cool	Normal	Medium	P
17	Rain	Mild	Normal	Not	N
18	Rain	Mild	Normal	Medium	N
19	Overcast	Mild	Normal	Medium	P
20	Overcast	Mild	Normal	Very	P
21	Sunny	Mild	High	Very	P
22	Sunny	Mild	High	Medium	P
23	Sunny	Hot	Normal	Not	P
24	Rain	Mild	High	Very	N

解: 初始时刻的熵值为: $H(X) = -\frac{12}{24} log \frac{12}{24} - \frac{12}{24} log \frac{12}{24} = 1$

选取 Outlook 作为测试属性: H(X/Outlook) = 0.5528

选取 Temperature 作为测试属性: H(X/Temp) = 0.6739

选取 Humidity 作为测试属性: H(X/Humid) = 0.9183

选取 Windy 作为测试属性: H(X/Windy) = 1

H(X/Outlook)最小,选择 Outlook 作为测试属性之后将训练实例集分为三个子集,生成三个叶结点,对每个叶结点依次利用上面过程则生成图 3 的决策树。

图 3 生成的决策树

- 6.7 给出基于范例的学习的原理和过程模型。
 - (1) 原理略。
 - (2) 过程模型:

6.8 试解释强化学习模型及其与其它机器学习方法的异同。 解:略。