北京高档酒店价格因素分析

数据分析实战又来啦,今天我们进行的是北京高档酒店的价格因素分析,话不多说,直接上代码。

1. 导入所需要的包

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import warnings
warnings.filterwarnings("ignore")
```

2. 读取文件

```
hotel=pd. read_csv('hoteldata.csv')
#将四项评分的平均分作为总体评分
hotel['总体评分']=(hotel['卫生评分']+hotel['服务评分']+hotel['设施评分
']+hotel['位置评分'])/4
#2015 之前的旧装修,2015 之后的为新装修
hotel['装修新旧']=pd. cut(hotel['装修时间'],[0,2015,2019],labels=['旧装修','新装修'])
hotel.head()
```

	酒店名称	地区	地址	卫生评分	服务评分	设施评分	位置评分	评价数	装修时间	房间	房价	经度	纬度	公司	出行住宿	校园生活	总体 评分	装修新旧
0	北京朝丽兹西山 花园酒店	海淀区	海淀永丰路与北清路十字路口往 南800米路南	4.8	4.8	4.7	4.4	143	2014	豪华 套间	9970	116.292419	40.095804	0	0	0	4.675	旧裝修
1	北京钓鱼台国宾 信	海淀区	海淀阜成路2号	4.9	4.8	4.8	4.6	9	2013	豪华 官间	9888	116.339444	39.928419	28	80	43	4.775	旧装修
2	北京顧和安機道 店	海淀区	海淀颐和良宫门前街1号	4.7	4.6	4.4	4.4	104	2008	豪华 套间	9269	116.288607	40.005692	2	18	5	4.525	旧裝修
3	北京华尔道夫胡 同四合院	东城区	东城金鲁胡同5-15号	5.0	5.0	4.5	4.5	7	2016	豪华 費间	6777	116,420463	39.922276	33	185	35	4.750	新装修
4	北京颐和安缦酒 店	海淀区	海淀颐和园宫门前街1号	4.7	4.6	4.4	4.4	104	2008	商务间	5813	116,288607	40.005692	2	18	5	4.525	旧装修

将各个酒店的情况进行评分,总体评分由卫生评分、服务评分、设施评分和位置 评分构成,装修的新旧以装修时间来划分。

3 描述性统计分析

3.1 酒店房价分布直方图

```
price=hotel['房价']
plt.figure("hist",figsize=(15,7))
n, bins, patches = plt.hist(price, bins=20)
plt.show()
```


3.2 因变量数字特征

```
price=hotel['房价']
plt.figure("hist",figsize=(15,7))
n, bins, patches = plt.hist(price, bins=20)
plt.show()
```

酒店房价平均值

hotel['房价'].mean() 1655 5125899280577

3.3 酒店因素箱型图

#酒店房间类型

hotel['对数房价']=np.log(hotel['房价'])

plt.figure(figsize=(7,7))

sns.boxplot(x='房间类型',y='对数房价',data=hotel)

符合一般的房价标准,按照标准间、商务间、豪华套间价格依次递增。

根据地区划分的箱型图展示,其中,东城区和朝阳区的房价最高,海淀区紧随其后。

```
#酒店装修时间
hotel['对数房价']=np.log(hotel['房价'])
plt.figure(figsize=(7,7))
sns.boxplot(x='装修新旧',y='对数房价',data=hotel)
```


新装修的价格高于就旧装修,并且价格差异明显。

3.4 评分因素相关系数

```
grade=pd.DataFrame([hotel['卫生评分'],hotel['服务评分'],hotel['设施评分'],hotel['位置评分']]).transpose()
correlation=grade.corr()
plt.subplots(figsize=(9, 9)) # 设置画面大小
sns.heatmap(correlation, annot=True, vmax=1, square=True, cmap="Blues")
```


#评分因素箱型图

hotel['评分分组']=pd. cut (hotel['总体评分'], [0, 4. 5, 5. 0], labels=['评分低','评分高'])

sns.boxplot(x='评分分组',y='对数房价',data=hotel)

评分高的房价高于评分低的房价。

4 对数线性回归模型

4.1 特征处理

```
#特征选择与处理
features=['地区','房间类型','装修新旧','总体评分','校园生活','公司','出行住宿']
X=hotel[features]
X['地区']=pd.get_dummies(X['地区'])
X['房间类型']=pd.get_dummies(X['房间类型'])
X['装修新旧']=pd.get_dummies(X['装修新旧'])

# 对特征进行归一化处理
from sklearn import preprocessing
X['总体评分']=preprocessing.scale(X['总体评分'])
X['校园生活']=preprocessing.scale(X['校园生活'])
X['公司']=preprocessing.scale(X['公司'])
X['出行住宿']=preprocessing.scale(X['出行住宿'])
```

4.2 模型拟合

```
from sklearn import linear_model
model=linear_model.LinearRegression()
model.fit(X,y)
```

4.3 计算残差

```
np.mean(abs(model.predict(X)-y))
0.375942
```

4.4 查看模型拟合情况

```
import statsmodels.api as sm
est=sm.OLS(y, X).fit()
print(est.summary())
```

Dep. Variable:		对数房	价 R-sq	uared:		0.90		
Model:		OLS	Adj. R-	squared:		0.900		
Method:	1	Least Squares	F-stati	stic:		712.4		
Date:	, 29 Dec 2018	Dec 2018 Prob (F-statistic)			9.44e-271			
Time:		10:25:05	Log-Lik	elihood:		-1249.0		
No. Observation	is:	556	AIC:			2512.		
Df Residuals:		549	BIC:			2542.		
Df Model:		7						
Covariance Type	2:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
 地区	0.8242	0.307	2.683	0.008	0.221	1.428		
房间类型	0.9906	0.201	4.930	0.000	0.596	1.38		
装修新旧	6.7286	0.137	49.179	0.000	6.460	6.99		
总体评分	0.3948	0.104	3.801	0.000	0.191	0.599		
校园生活	-0.1958	0.106	-1.839	0.066	-0.405	0.01		
公司	-0.0832	0.200	-0.417	0.677	-0.475	0.309		
出行住宿	-0.0156	0.227	-0.069	0.945	-0.462	0.43		
Omnibus:		257.645	Durbin-	Watson:		1.694		
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	899.966				
Skew:		Prob(JB		3.76e-196				
Kurtosis:	7.271	Cond. N	0.		5.73			