

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2012 الموضوع (الترجمة الفرنسية)

7	المعامل	RS28	الفيزياء والكيمياء	المادة
3	مدة الإنجاز		شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)	الشعب(ة) أو المسلك

L'usage des calculatrices programmables ou d'ordinateurs n'est pas autorisé Donner les expressions littérales avant les applications numériques

Le sujet se compose de quatre exercices :

Un exercice de chimie et trois exercices de physique

Chimie : (07 points)

- Electrolyse de la solution de bromure de cuivre II ;
- Etude cinétique de l'hydrolyse d'un ester.

Physique: (13 points)

- Les ondes : (02,5 points)
- Etude du phénomène de diffraction de la lumière.
 - Electricité (05 points):
- Etude du circuit idéal LC;
- Réception d'une modulée en amplitude, et la démodulation d'amplitude ;
 - Mécanique (05,5 points) :
- Application des lois de Kepler dans le cas d'une orbite circulaire.

موضوع الامتحان الوطني الموحد للبكالوريا 2012 - الدورة الاستدراكيت مادة الفيزياء و الكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (الترجمة الفرنسية)

Barème

Chimie: (07 points)

Les deux parties sont indépendantes

Première partie (03 points) : Electrolyse de la solution de cuivre II.

L'électrolyse est l'une des principales téchniques adoptées aux laboratoires ou dans les domaines industrièls. elle permet la synthèse de quelques métaux, et d'autres composés chimiques utilisés dans la vie quotidienne.

Le but de cette partie de l'exercice est la synthèse du dibrome Br₂ et du métal cuivre par électrolyse.

Données:

1

- La masse molaire du cuivre : M(Cu) = 63,5 g.mol⁻¹;
- La constante de Faraday : $\mathcal{F} = 9,65.10^4 \text{ C.mol}^{-1}$.

On réalise l'électrolyse d'une solution de bromure de cuivre II de formule $(Cu_{(aq)}^{2+} + 2Br_{(aq)}^{-})$ en utilisant deux électrodes E_1 et E_2 en graphite, il se forme ainsi du dibrome $Br_{2(\ell)}$ au voisinage de E_1 et dépôt de cuivre au voisinage de E_2 .

- 1 Représenter le dispositif expérimental de cette électrolyse, en précisant la 1cathode et l'anode.
 - 2-Ecrire la demie équation modélisant la réaction ayant lieu au voisinage de chaque électrode.
- 0,25 En déduire l'équation bilan modélisant la transformation ayant lieu au cours de l'électrolyse.
- 0.75 Un générateur alimente le circuit électrique par un courant d'intensité constante I = 0.5 A pendant une durée $\Delta t = 2$ h. Déterminer la masse m du cuivre produit au cours de la durée de fonctionnement

de l'électrolyseur.

Deuxième partie (04 points) : Etude cinétique de l'hydrolyse d'un ester

L'éthanoate 3-méthylbutyl, est un composé organique caractérisé par une bonne odeur similaire à celle des bananes. Il est utilisé comme arum dans quelques patisserie, quelques boissons et yaourts.

Le but de cette partie de l'exercice est l'étude cinétique de l'hydrolyse de L'éthanoate 3-méthylbutyl, et la détermination de la constante d'équilibre de cette réaction.

Données:

• La formule semi-développée de l'éthanoate 3-méthylbutyle noté E est :

éveloppée de l'éthanoate 3-méthylbutyle n

$$CH_3 - C$$
 $O - CH_2 - CH_2 - CH - CH_3$
 CH_3
 CH_3

- La masse molaire du composé E est : M(E) = 130 g.mol⁻¹;
- La masse volumique du composé E est : $\rho(E) = 0.87 \text{ g.ml}^{-1}$;
- La masse molaire de l'eau est : $M(H_2O) = 18 \text{ g.mol}^{-1}$;
- La masse volumique de l'eau est : $\rho(H_2O) = 1 \text{ g.ml}^{-1}$.

موضوع الامتحان الوطني الموحد للبكالوريا 2012 - الدورة الاستدراكية - مادة الفيزياء و الكيمياء - شعبة العلوم التجريبية مسلك العلوم الفرنسية)

On pose un ballon contenant un volume $V(H_2O) = 35 \text{ mL}$ d'eau distillée, dans un bain-marie de température constante, puis on y ajoute un volume V(E) = 15 mL du composé (E), pour obtenir un mélange de volume V = 50 mL.

- 0,25
- 1- Déterminer le groupe caractéristique du composé (E).
- 0,75
- **2-** Ecrire, en utilisant les formules semi-développées, l'équation modélisant la réaction d'hydrolyse du composé (E).
- 3- Le suivi de l'évolution de l'avancement x(t) de la réaction en fonction du temps, permet d'obtenir la courbe représentée sur la figure suivante :

- 0,5
- 3-1-La vitesse volumique de la réaction est donnée par la relation : $v(t) = \frac{1}{V} \frac{dx(t)}{dt}, \text{ où } V \text{ est le volume total du mélange}.$

Calculer, en mol.L⁻¹.min⁻¹, la valeur de cette vitesse à l'instant t = 20 min. (La droite (T) représente la tangente à la courbe au point d'abscisse t = 20 min)

- 0,5
- 3-2-Déterminer graphiquement, la valeur de l'avancement final $x_{\rm f}$, et le temps de demi-réaction $t_{1/2}$.
- 1,5
- 3-3-Construire le tableau descriptif de l'évolution du système, puis trouver la composition molaire du mélange à l'équilibre.
- 0,5
- **3-4-** Déterminer la constante d'équilibre K associée à la réaction d'hydrolyse du composé (E).

0,5

موضوع الامتحان الوطني الموحد للبكالوريا 2012 – الدورة الاستدراكيت – مادة الفيزياء و الكيمياء – شعبت العلوم التجريبيت مسلك العلوم الفيزيائيت (الترجمت الفرنسيت)

Physique: (13 points)

Les ondes (02,5 points) : Etude du phénomène de diffraction de la lumière

Les rayons lasers sont utilisés dans plusieurs domaines tels que la métallurgie, l'ophtalmologie et opérations chirurgicales ... Ils sont aussi utilisés pour la détermination des dimensions microscopiques de quelques corps.

Cet exercice vise la détermination de la longueur d'onde d'une onde électromagnétique, et la détermination du diamètre d'un fil fin métallique en exploitant le phénomène de diffraction.

On envoie, à l'aide d'une source laser, un faisceau de lumière monochromatique de longueur d'onde λ , sur une plaque contenant une fente verticale de largeur a=0,06 mm, on observe un phénomène de diffraction sur un écran vertical situé à une distance D=1,5 m de la plaque.

La mesure de la longueur de la frange centrale donne $L_1=3.5$ cm. (Figure ci-contre)

- 1- Quelle est la condition que doit satisfaire la largeur a de la fente pour que le phénomène de diffraction se produise ?
- 0,5 | 2- Quelle est la nature de la lumière mise en évidence par cette expérience ?
- 0,75 | 3- Exprimer λ en fonction de L_1 , D et a. calculer sa valeur. (On considère tan $\theta \approx \theta$ pour les petit angles)

Electricité (05 points) :

Les condensateurs et les bobines jouent un role très important dans la transmission et la reception d'ondes électromagnétiques.

Le but de cet exercice est l'étude du circuit idéal LC et à la réception et démodulation d'une ondes modulée en amplitude.

Les deux parties sont indépendantes

Première partie : Etude du circuit LC :

On réalise le circuit de la figure 2, qui est constitué de :

- Générateur de f.é.m. E = 12 V et de résistance négligeable ;
- Condensateur de capacité $C = 4,7.10^{-3} F$;
- Résistor de résistance $R = 200 \Omega$;
- Bobine d'inductance L et de résistance négligeable ;

• Interruptur K à double position. Figure 1 On ferme l'interrupteur sur la position 1 jusqu'à ce que le condensateur soit chargé complétement, puis on le bascule vers la position 2, à un instant considéré comme origine des temps $t_0=0$.

R
C
K
1
2

0,5

موضوع الامتحان الوطني الموحد للبكالوريا 2012 – الدورة الاستدراكيت – مادة الفيزياء و الكيمياء – شعبت العلوم التجريبيت مسلك العلوم الفيزيائيت (الترجمة الفرنسية)

- 0,5 | 1- Etablir l'équation différentielle vérifiée par la charge q du condensateur.
- 0,25 **2-** Trouver l'expression de la période propre T_0 de l'oscillateur en fonction de L et C, pour que l'expression $q(t) = Q_m \cos(\frac{2\pi}{T_0}t)$ soit solution de cette équation différentielle.
- 0,25 | 3- Verifier que la période est homogène à un temps.
- 0,5 4- Calculer la valeur maximale Q_m de la charge du condensateur.
 - 5- La figure 2 donne les variations de l'énergie électrique E_e emmagasinée dans le condensateur en fonction du temps.
- 0,25 **5-1-** Sachant que la période T de l'énergie est $T = \frac{T_0}{2}$, déterminer la valeur de T_0 .

0,75 6- On rappelle que l'énergie totale E_T du circuit est, à chaque instant, la somme des énergies : électrique et magnétique, emmagasinées respectivement dans le condensateur et la bobine.

Montrer que l'énergie E_T se conserve. Calculer sa valeur.

Deuxième partie : Réception d'une onde modulée en amplitude et démodulation :

Pour recevoir une onde issue d'une station de diffusion, on utilise le dispositif simplifié, qui est constitué de trois parties comme l'indique la figure 3.

- 1- La partie 1 est constituée d'une antenne reliée à un circuit parallèle, constitué d'une bobine d'inductance ajustable et de résistance négligeable et d'un condensateur de capacité $C_1 = 4,7.10^{-10}\,\text{F}$.
- 0,25 | 1-1- Quel est le rôle de la partie 1?
 - 1-2- Pour recevoir une onde AM de fréquence f = 160 KHz, on fixe l'inductance de la bobine sur la valeur L_1 . Calculer L_1 .
- 0,5 2- Les deux parties 1 et 2, permettent la démodulation du signal recu. Quel est le rôle de chacune des deux parties dans la démodulation ?
- 0,75 | 3- On visualise sur l'écran d'un oscilloscope les tensions u_{EM} , u_{GM} et u_{HM} , on obtient les courbes suivantes :

الصفحة 6 6

موضوع الامتحان الوطني الموحد للبكالوريا 2012 – الدورة الاستدراكيت – مادة الفيزياء و الكيمياء – شعبت العلوم التجريبيت مسلك العلوم الفيزيائيت (الترجمة الفرنسية)

Associer chacune des courbes (a), (b) et (c), à la tension corréspondante. Justifier.

Mécanique : (05,5 points) :

La planète Jupiter est la plus grande planète du système solaire, elle constitue avec les soixante six satellites naturels gravitant autour d'elle, un univers miniaturusé dans ce système.

Le but de cet exercice est d'étudier le mouvement de Jupiter autour du soleil, et de déterminer quelques grandeurs physiques caractérisant cette planète.

Données:

0.5

1,25

1

1

1

0,75

- Masse du soleil : $M_S = 2.10^{30} \text{ kg}$;
- Constante d'attraction universelle : $G = 6,67.10^{-11}$ (SI) ;
- Période de révolution de Jupiter autour du soleil : $T_J = 3,74.10^8$ s ;

On considères que le soleil et Mars sont à répartitions sphériques de masses, et on note la masse de Jupiter M_J .

On néglige les dimensions de la planète Jupiter devant la distance qui la sépare du centre du Soleil, ainsi que les forces qui lui sont appliquées devant la force d'attraction universelle entre elle et le Soleil.

1- <u>Détermination du rayon orbital de Jupiter et sa vitesse :</u>

On considère que le mouvement de Jupiter dans le repère héliocentrique est circulaire de rayon orbital r.

- 1-1-Ecrire en fonction de M_J, M_S, G, et r, l'expression de l'intensité de la force de gravitation universelle exercée par le Soleil sur Jupiter.
 - 1-2- En appliquant la deuxième loi de Newton :
 - a- Ecrire les expressions des composantes du vecteur accélération dans le repère de Freinet, et déduire que le mouvement de Jupiter est circulaire uniforme.
 - b- Montrer que la troisième loi de Kepler s'écrit : $\frac{T_J^2}{r^3} = \frac{4.\pi^2}{G.M_S}$.
 - 1-3- S'assurer que $r \approx 7.8.10^{11} \text{m}.$
 - 1-4-Déterminer la valeur de la vitesse V de révolution de Jupiter autour du soleil.

2- <u>Détermination de la masse de Jupiter :</u>

On considère que la lune « Io » l'un des satellites découvert par Galilée, est en mouvement circulaire uniforme à une distance $r' = 4,2.10^8$ m du centre de Jupiter.

La période de ce mouvement est $T_I = 1,77$ jours.

(On néglige les dimensions de Io devant les autres dimensions, ainsi que les forces qui lui sont appliquées devant la force d'attraction universelle entre lui et Jupiter).

En étudiant le mouvement de Io dans un repère d'origine confondu avec le centre de Jupiter et supposé galiléen, déterminer la masse M_J de Jupiter.