Bölüm 1 : Sonlu Özdevinirler

Özdevinirler Kuramı ve Biçimsel Diller

Bölüm 1 : Sonlu Özdevinirler

1. ve 2. Haftaların Özeti

1. Sonlu Durumlu Tanıyıcı Modeli (Kısaca Sonlu Özdevinir dendiğinde de bu model anlaşılır)

Örnek

Aritmetik deyimleri tanıyan sonlu özdevinir (tanıyıcı)

$$\mathbf{M} = \langle \mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F} \rangle$$

$$\mathbf{Q} = \{ \mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3 \}$$

$$\Sigma = \{ \mathbf{v}, \mathbf{c}, +, -, *, / \}$$

$$\mathbf{F} = \{ \mathbf{q}_3 \}$$

Bölüm 1 : Sonlu Özdevinirler

Dizgi örneklerinin işlenmesi: $\mathbf{w_1} = \mathbf{v} * \mathbf{c} + \mathbf{v} - \mathbf{v} / \mathbf{c}$

Giriş simgeleri
$$\rightarrow$$
 v * c + v - v / c Durumlar \rightarrow q₀ q₁ q₂ q₃ q₂ q₃ q₂ q₃ q₂ q₃ q₂ q₃

Dizginin tamamı işlenip bir uç duruma ulaşıldığı için $\mathbf{w_1} = \mathbf{v} * \mathbf{c} + \mathbf{v} - \mathbf{v} / \mathbf{c}$ bu makine tarafından tanınır.

Bölüm 1 : Sonlu Özdevinirler

Dizgi örneklerinin işlenmesi: $\mathbf{w_2} = \mathbf{v} + \mathbf{c} + \mathbf{v} \cdot \mathbf{c} - \mathbf{v}$

q3 durumunda c simgesi işlenemediği için makine durur.

Dizginin tamamı işlenip bir uç duruma ulaşılamadığı için $\mathbf{w_2} = \mathbf{v} + \mathbf{c} + \mathbf{v} \cdot \mathbf{c} - \mathbf{v}$ bu makine tarafından tanınmaz.

1. ve 2. Haftaların Özeti

2. Çıkış Üreten Özdevinirler (deterministik)

Bölüm 1 : Sonlu Özdevinirler

 \triangleright Örnek. Girişine uygulanan ikili sayı X ise, çıkışında z = Mod(X, 5) değerini üreten makine: $M_{1.8} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$

	SD		
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$	Z
→ A	A	В	0
В	C	D	1
C	E	A	2
D	В	C	3
E	D	E	4

Durum Çizelgesi

Durum Çizeneği

Bölüm 1 : Sonlu Özdevinirler

	SD		
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$	Z
→ A	A	В	0
В	C	D	1
C	E	A	2
D	В	C	3
E	D	E	4

Durum Çizelgesi

 ➤ Örnek Giriş Dizgisinin işlenmesi:

 X = 1 1 0 0 0

 Girişler
 1 1 0 0 0

 Durumlar
 A B D B C E

 Çıkışlar
 0 1 3 1 2 4

1. ve 2. Haftaların Özeti

2. Çıkış Üreten Özdevinirler (deterministik)

Bölüm 1 : Sonlu Özdevinirler

 \triangleright Örnek Mealy Makinesi: $M_{1.9} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$

	SD, z		
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$	
\rightarrow A	A , 0	B, 1	
В	C, 2	D, 1	
C	A, 1	B, 2	
D	C, 1	D , 0	

Durum Çizelgesi

Durum Çizeneği

Bölüm 1 : Sonlu Özdevinirler

	SD, z		
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$	
\rightarrow A	A , 0	B, 1	
В	C, 2	D , 1	
C	A, 1	B, 2	
D	C, 1	D , 0	

 \triangleright Örnek Giriş Dizgisinin işlenmesi: X = 100010

Durum Çizelgesi

$$A \xrightarrow{X = 100010} C$$

$$Z = 121012$$

Moore ve Mealy Makinelerinin Eşdeğerliği

Moore Makinesine Eşdeğer Mealy Makinesinin Bulunması

Giriş Dizgisi x_1 x_2 x_3 x_4 x_5 x_k Moore makinesi çıkışı: z_0 z_1 z_2 z_3 z_4 z_5 z_k Mealy makinesi çıkışı z_1 z_2 z_3 z_4 z_5 z_k $M_1 = < Q, \Sigma, \Delta, \delta, \lambda, q_0 >$ bir Moore makinesi olsun.

$$M_2 = \langle Q, \Sigma, \Delta, \delta, \lambda', q_0 \rangle$$
 eşdeğer Mealy makinesi

$$\lambda'(q, a) = \lambda(\delta(q, a))$$

Bölüm 1 : Sonlu Özdevinirler

> Mealy Makinesine Eşdeğer Moore Makinesinin Bulunması

 $M_2 = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$ bir Mealy makinesi olsun.

$$\begin{split} M_1 = &< Q', \Sigma, \Delta, \delta', \lambda', \, q'_0 > \text{ eşdeğer Moore Makinesi} \\ Q' = Q \text{ x } \Delta \\ q'_0 = [q_0, z_j] & (z_j = \text{çıkış simgelerinden rasgele seçilmiş biri}) \\ \delta'([q_i, z_k], x_j) = [\delta(q_i, x_j), \lambda(q_i, x_j)] \\ \lambda'([q_i, z_k]) = z_k \end{split}$$

1.3. Sonlu Özdevinirlerin İndirgenmesi

1.3.1.Ardıl, Öncel, Denk ve Ayırdedilebilir Durum Tanımları

> Bir durumun x ve X ardılları

$$A \xrightarrow{\mathbf{x} = \mathbf{1}} B$$

$$A \xrightarrow{X = 100010} C$$

A'nın 1-ardılı B'dir.

A'nın 100010-ardılı C'dir.

Bir durumun x ve X öncelleri

B'nın 1-öncellerinden biri A'dır.

C'nin 100010-öncellerinden biri A'dır.

1.3. Sonlu Özdevinirlerin İndirgenmesi

1.3.1.Ardıl, Öncel, Denk ve Ayırdedilebilir Durum Tanımları

- \triangleright M makinesi S_1 ve S_2 durumlarından herhangi birinde iken, hangi giriş simgesi uygulanırsa uygulansın makine hep aynı çıkış simgesini üretiyorsa, bu durumlara 1-denk durumlar denir.
- \triangleright M makinesi S_1 ve S_2 durumlarından herhangi birinde iken, uzunluğu n ya da daha kısa olan hangi giriş dizgisi uygulanırsa uygulansın, makine hep aynı çıkış dizgisini üretiyorsa, bu durumlara n-denk durumlar denir.
- > Tüm n'ler için n-denk olan durumlara denk durumlar denir.
- > n-ayırdedilebilir durumlar, Ayırdedilebilir durumlar.

1.3.2. İndirgeme Yöntemi

- Sonlu özdevinirlerin indirgenmesi için denklik bölümlemeleri (*equivalence* partitions) kullanılır. Bir M makinesi için, P_k ile gösterilen k-denklik bölümlemesi, k-denk durumların aynı bölümde yer aldığı bir bölümlemedir.
- $ightharpoonup P_k$ denklik bölümlenmesinin türetilmesi için aşağıdaki Teorem'den yararlanılır.
- **Teorem:** M makinesinin S_1 ve S_2 durumunun (k+1)-denk olması için aşağıdaki iki koşulun sağlanması gerekli ve yeterlidir.
 - 1. S₁ ve S₂ k-denk olmalı (P_k denklik bölümlemesinde aynı bölümde bulunmalı).
 - 2. Tüm x giriş simgeleri için S_1 ve S_2 durumlarının x-ardılları da k-denk olmalı (P_k denklik bölümlemesinde aynı bölümde bulunmalı).
- \geq Eğer $P_{k+1} = P_k$ bulunursa, Denklik Bölümlemesi elde edilmiş olur : $P = P_k$

\triangleright Örnek 1.11. Mealy türü makine ($M_{1.11}$)

	Önceki Durum	
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$
A	A, 0	D, 1
В	C, 0	E, 1
C	G , 0	E,1
D	G , 0	F , 1
E	E, 1	C, 0
F	В, 0	D, 1
G	В, 0	E, 1

- A nın 0 ardılı A dır.
- Anın 1 ardılı D dir.
- Anın 010 ardılı G dir.
- D nin 1 öncelleri A ve F dir.
- > A ve B 1-denktir.
- > D ve E 1-ayırdedilebilirdir.
- > A ile B 2-ayırdedilebilirdir.

$$A \xrightarrow{11} F \qquad B \xrightarrow{11} C$$

$$11 \qquad 10$$

C ve G denktir.

1.3.2.1. Mealy Makinelerinin İndirgenmesi

> Örnek 1.11. Mealy türü M_{1.11} makinesinin indirgenmesi

	Önceki Durum	
ŞD	x = 0 x = 1	
A	A, 0	D, 1
В	C, 0	E , 1
C	G , 0	E,1
D	G, 0	F, 1
E	E, 1	C, 0
F	В, 0	D, 1
G	В, 0	E, 1

$$P_0 = (ABCDEFG)$$

$$P_1 = (ABCDFG)(E)$$

$$P_2 = (ADF)(BCG)(E)$$

$$P_3 = (A)(DF)(BCG)(E)$$

$$P_4 = P_3 = (A)(DF)(BCG)(E)$$

$$P = (A)(DF)(BCG)(E)$$

$$\frac{ABCDFG}{0}$$

$$\frac{ADF}{0}$$

$$ACGGBB$$

$$DEEFDE$$

$$AGB$$

$$AGB$$

Bölüm 1 : Sonlu Özdevinirler

	Önceki Durum	
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$
A	A, 0	D, 1
В	C, 0	E, 1
C	G , 0	E,1
D	G , 0	F, 1
${f E}$	E, 1	C, 0
${f F}$	B, 0	D, 1
G	В, 0	E, 1

Denklik bölümlenmesi:

$$P = (A)(DF)(BCG)(E)$$

≻ A	için S_0 ,
DF	için S ₁ ,
BCG	için S ₂ ,
E	için S_3

	SD, z		
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$	
S_0	$S_0, 0$	S ₁ , 1	
S_1	$S_2, 0$	S_1 , 1	
S_2	$S_2, 0$	S_3 , 1	
S_3	S_3 , 1	S_2 , 0	

1.3.2.2. Moore Makinelerinin İndirgenmesi

> Örnek 1.12. Moore türü M1.12 makinesinin indirgenmesi

	SD		
ŞD	$\mathbf{x} = 0$	x = 1	Z
A	C	В	0
В	В	D	1
C	A	Н	2
D	E	G	1
E	C	D	2
F	C	Н	2
G	G	Н	1
Н	F	В	1

$$P_0 = (A)(BDGH)(CEF)$$

$$P_1 = (A)(BG)(DH)(C)(EF)$$

$$P_2 = P_1 = (A)(BG)(DH)(C)(EF)$$

$$P = (A)(BG)(DH)(C)(EF)$$

1.3.2.2. Moore Makinelerinin İndirgenmesi

> Örnek 1.12. Moore türü M1.12 makinesinin indirgenmesi

	SD		
ŞD	$\mathbf{x} = 0$	x = 1	Z
A	C	В	0
В	В	D	1
C	A	Н	2
D	E	G	1
E	C	D	2
${f F}$	C	Н	2
G	G	Н	1
Н	F	В	1

Denklik bölümlemesi:

$$P = (A)(BG)(DH)(C)(EF)$$

A için S_0 ,
BG için S_1 ,
DH için S_2 ,
C için S_3 EF için S_4

	SD, z		
ŞD	$\mathbf{x} = 0$	x = 1	Z
S_0	S_3	S_1	0
S_1	S_1	S_2	1
S_2	S_4	S_1	1
S_3	S_0	S_2	2
S ₄	S_3	S_2	2

1.3.2.3. Deterministik Sonlu Özdevinirlerin (DFA) İndirgenmesi

	SD	
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$
\rightarrow q ₀	${f q_0}$	$\mathbf{q_1}$
$\mathbf{q_1}$	$\mathbf{q_2}$	$\mathbf{q_4}$
$\mathbf{q_2}$	$\mathbf{q_4}$	\mathbf{q}_{7}
\mathbf{q}_3	$\mathbf{q_6}$	\mathbf{q}_{5}
$\mathbf{q_4}$	\mathbf{q}_{5}	$\mathbf{q_3}$
q_5	\mathbf{q}_{5}	\mathbf{q}_7
\mathbf{q}_{6}	\mathbf{q}_{7}	$\mathbf{q_2}$
Q 7	\mathbf{q}_{7}	\mathbf{q}_{5}

$$\begin{aligned} \mathbf{P}_0 &= (\mathbf{q}_0 \ \mathbf{q}_1 \ \mathbf{q}_2 \ \mathbf{q}_3 \ \mathbf{q}_4 \ \mathbf{q}_6)(\mathbf{q}_5 \ \mathbf{q}_7) \\ \mathbf{P}_1 &= (\mathbf{q}_0 \ \mathbf{q}_1)(\mathbf{q}_2 \ \mathbf{q}_3)(\mathbf{q}_4 \ \mathbf{q}_6)(\mathbf{q}_5 \ \mathbf{q}_7) \\ \mathbf{P}_2 &= (\mathbf{q}_0)(\mathbf{q}_1)(\mathbf{q}_2 \ \mathbf{q}_3)(\mathbf{q}_4 \ \mathbf{q}_6)(\mathbf{q}_5 \ \mathbf{q}_7) \\ \mathbf{P}_3 &= \mathbf{P}_2 = (\mathbf{q}_0)(\mathbf{q}_1)(\mathbf{q}_2 \ \mathbf{q}_3)(\mathbf{q}_4 \ \mathbf{q}_6)(\mathbf{q}_5 \ \mathbf{q}_7) \\ \mathbf{P} &= (\mathbf{q}_0)(\mathbf{q}_1)(\mathbf{q}_2 \ \mathbf{q}_3)(\mathbf{q}_4 \ \mathbf{q}_6)(\mathbf{q}_5 \ \mathbf{q}_7) \end{aligned}$$

1.3.2.3. Deterministik Sonlu Özdevinirlerin (DFA) İndirgenmesi

	SD	
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$
\rightarrow q ₀	$\mathbf{q_0}$	$\mathbf{q_1}$
$\mathbf{q_1}$	${f q_2}$	$\mathbf{q_4}$
$\mathbf{q_2}$	$\mathbf{q_4}$	\mathbf{q}_7
\mathbf{q}_3	$\mathbf{q_6}$	\mathbf{q}_{5}
$\mathbf{q_4}$	\mathbf{q}_{5}	\mathbf{q}_3
q_5	\mathbf{q}_{5}	\mathbf{q}_7
\mathbf{q}_{6}	\mathbf{q}_{7}	$\mathbf{q_2}$
$\overline{\mathbf{q}_7}$	\mathbf{q}_{7}	\mathbf{q}_{5}

Denklik bölümlemesi:

$$\mathbf{P} = (\mathbf{q}_0)(\mathbf{q}_1)(\mathbf{q}_2 \ \mathbf{q}_3)(\mathbf{q}_4 \ \mathbf{q}_6)(\mathbf{q}_5 \ \mathbf{q}_7)$$

$$\mathbf{q_0}$$
 için $\mathbf{S_0}$,
 $\mathbf{q_1}$ için $\mathbf{S_1}$,
 $\mathbf{q_2}$ $\mathbf{q_3}$ için $\mathbf{S_2}$,
 $\mathbf{q_4}$ $\mathbf{q_6}$ için $\mathbf{S_3}$,
 $\mathbf{q_5}$ $\mathbf{q_7}$ için $\mathbf{S_4}$

	SD	
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$
\rightarrow S ₀	$\mathbf{S_0}$	$\mathbf{S_1}$
S_1	$\mathbf{S_2}$	S_3
S_2	S_3	S_4
S_3	S_4	$\mathbf{S_2}$
<u>S</u> ₄	S_4	S_4