Class12

Hetian Su

Install Bioconductor

The following objects are masked from 'package:base':

anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.2.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':
rowMedians

The following objects are masked from 'package:matrixStats': anyMissing, rowMedians

Read in data for input to DESeq2

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")
head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG00000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG00000000003	SRR1039517 1097	SRR1039520 806	SRR1039521 604		
ENSG00000000003 ENSG00000000005					
	1097	806	604		
ENSG0000000005	1097	806	604		
ENSG000000000419	1097 0 781	806 0 417	604 0 509		

head(metadata)

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

Q1

nrow(counts)

[1] 38694

There are 38694 genes.

```
sum(metadata$dex=='control')
[1] 4
```

There are 4 control samples.

Toy differential gene expression analysis

Q3

We can make this approaches into methods with "control" or "treated" as input. Also, the 4 should be replaced by a code that extract number of samples automatically.

Q4

```
treated <- metadata[metadata[,"dex"]=="treated",]
treated.counts <- counts[ ,treated$id]
treated.mean <- rowSums( treated.counts )/sum(metadata$dex=='treated')
head(treated.mean)

ENSG000000000003 ENSG00000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
658.00 0.00 546.00 316.50 78.75
ENSG000000000938
0.00
```

```
meancounts <- data.frame(control.mean, treated.mean)
colSums(meancounts)</pre>
```

```
control.mean treated.mean 23005324 22196524
```

Q5

```
plot(control.mean, treated.mean, xlab='Control', ylab='Treated')
```



```
library(ggplot2)
ggplot(meancounts)+
  aes(control.mean, treated.mean)+
  geom_point()
```


Q6

```
plot(control.mean, treated.mean, log='xy')
```

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

meancounts\$log2fc <- log2(meancounts[,"treated.mean"]/meancounts[,"control.mean"])
head(meancounts)</pre>

log2fc	${\tt treated.mean}$	${\tt control.mean}$	
-0.45303916	658.00	900.75	ENSG0000000003
NaN	0.00	0.00	ENSG0000000005
0.06900279	546.00	520.50	ENSG00000000419
-0.10226805	316.50	339.75	ENSG00000000457
-0.30441833	78.75	97.25	ENSG00000000460
-Inf	0.00	0.75	ENSG00000000938

zero.vals <- which(meancounts[,1:2]==0, arr.ind=TRUE)

to.rm <- unique(zero.vals[,1])
mycounts <- meancounts[-to.rm,]
head(mycounts)</pre>

	${\tt control.mean}$	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520 50	546.00	0.06900279

ENSG00000000457	339.75	316.50 -0.10226805
ENSG00000000460	97.25	78.75 -0.30441833
ENSG00000000971	5219.00	6687.50 0.35769358
ENSG0000001036	2327.00	1785.75 -0.38194109

Q7

arr.ind tells the function to return array indices instead of logical vectors. When array indices are returned, a gene that has 0 expression in both control and treated will give rise to duplicated array indices, so the unique() function is needed.

```
up.ind <- mycounts$log2fc > 2
down.ind <- mycounts$log2fc < (-2)</pre>
```

Q8

```
sum(up.ind)
```

[1] 250

There are 250 upregulated genes.

Q9

```
sum(down.ind)
```

[1] 367

There are 367 down-regulated genes.

Q10

No because the counts are not normalized.

DESeq Analysis

```
dds <- DESeqDataSetFromMatrix(countData=counts,</pre>
                                 colData=metadata,
                                 design=~dex)
converting counts to integer mode
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds
class: DESeqDataSet
dim: 38694 8
metadata(1): version
assays(1): counts
rownames(38694): ENSG00000000003 ENSG0000000005 ... ENSG00000283120
  ENSG00000283123
rowData names(0):
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(4): id dex celltype geo_id
  dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
```

res <- results(dds) res</pre>

log2 fold change (MLE): dex treated vs control Wald test p-value: dex treated vs control DataFrame with 38694 rows and 6 columns

DataFiame with	30094 IOWS	and o corumns			
	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.1942	-0.3507030	0.168246	-2.084470	0.0371175
ENSG00000000005	0.0000	NA	NA	NA	NA
ENSG00000000419	520.1342	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.6648	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.6826	-0.1471420	0.257007	-0.572521	0.5669691
ENSG00000283115	0.00000	NA	NA	NA	NA
ENSG00000283116	0.00000	NA	NA	NA	NA
ENSG00000283119	0.000000	NA	NA	NA	NA
ENSG00000283120	0.974916	-0.668258	1.69456	-0.394354	0.693319
ENSG00000283123	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENSG00000000003	0.163035				
ENSG00000000005	NA NA				
ENSG00000000419	0.176032				
ENSG00000000457	0.961694				
ENSG00000000460	0.815849				
ENSG00000283115	NA NA				
ENSG00000283116	NA NA				
ENSG00000283119) NA				
ENSG00000283120) NA				
ENSG00000283123	NA NA				

summary(res)

out of 25258 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up) : 1563, 6.2% LFC < 0 (down) : 1188, 4.7% outliers [1] : 142, 0.56% low counts [2] : 9971, 39%

(mean count < 10)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

```
res05 <- results(dds, alpha=0.05)
summary(res05)</pre>
```

out of 25258 with nonzero total read count

adjusted p-value < 0.05

LFC > 0 (up) : 1236, 4.9% LFC < 0 (down) : 933, 3.7% outliers [1] : 142, 0.56% low counts [2] : 9033, 36%

(mean count < 6)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results