LE Lectures (S) 01

@denchik cdo

Собрано 31.10.2025 в 18:06

its VIOre than a UNIVERSITY

Содержание

1	Вве	едение	
	1.1	Аксиоматическое строение	
	1.2	Множества, отношения, операции	4
	1.3	Алгебранческие структуры (предмет алгебры)	ļ

Предисловие

Предисловие будет дополнятся. Пока что документ только создается. Если захотите предложить внести правки - тг открыт. Спасибо ребятам, что предоставили открытый код по конспектам ЛА и МА. Суть этого документа отличается только тем, что здесь будет находиться вся информация с лекции, а не чистые теоремы и т.д. для успешной сдачи экзамена :) (Deniz, 26.10.25)

1 Введение

1.1 Аксиоматическое строение

Евклидова геометрия:

- 1. Точка
- 2. Прямая
- 3. Плоскость

Определение в математике (обычно):

Пример 2. Через две точи проходит одна и только одна прямая — редукция

Пример 3. 0! = 1 -данность

Виды определений:

- 1. Редукция
- 2. Аксиоматическое
- 3. Дополнение к основному

<u>Замечание</u> 1.1.1. <u>Математическое высказывание</u> — утверждение, допускающее проверку на истинность. Определение - НЕ математическое высказывание!

Теорема 1.1.1. Виды, структура

"Если
$$A$$
, то B " или $A \Longrightarrow B$ (Заключение)

"Тогда и только тогда, когда" $\longrightarrow A \Leftrightarrow B$

Необходимые и достаточные условия:

Критерий — необходимое и достаточное условия.

Множества, отношения, операции

Пример 1. $A = \{-1, \sqrt{2}, \pi\}$ — перечисление

$$B = \{ x \in \mathbb{R} \mid |x| \leqslant 5 \}$$
 — задано свойством

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$
 — множество чисел

$$\emptyset$$
 — пустое множество; $\{\emptyset\}$ — одноэлементное множество

! Множество не может быть своим элементом.

Понятие 1. Множество — совокупность элементов, взятая как целое.

Понятие 2. Отношение (между множествами) — соответствие, правило, сопоставление элементов множеств.

$$x$$
 y R — Отношение

Запись:
$$(x;y)$$
 или xRy — упорядоченная пара $\{x;y\}$ — неупорядоченная пара $(x;y) \neq (y;x)$

Def 1.2.1. Отношение эквивалентности ($x \sim y$) — отношение, заданное свойствами (— аксиоматические):

1.
$$x \sim y$$
 — рефлексивность

$$2. \ y \sim x = x \sim y$$
 — симметричность

3.
$$\begin{array}{c|c} x \sim y \\ y \sim z \end{array} \mid x \sim z \qquad -$$
 транзитивность

 Π ример 1. Равенство:

$$x = x$$
 $x = y \Longrightarrow y = x$

$$x = y \Longrightarrow y = x$$

$$\begin{array}{c|c} x = y \\ y = z \end{array} | x = z$$

$$\begin{array}{c|c} l & l & l \\ l & a \Longrightarrow a = l \end{array}$$

$$\begin{array}{c|c}
l & a \Longrightarrow a = \\
l & a \\
a & p \end{array} \mid l \parallel p$$

Hohsmue 1. Алгебраическая операция — набору элементов множества M сопоставляется вполне определенный элемент множества M.

 $\underline{\mathit{\Pipuмep}}\ 1. \qquad a+b=c \qquad a,b,c\in\mathbb{R} \leftarrow$ бинарная операция сложения)

унарная
$$(\sqrt{a} = b)$$

Замечание 1.2.1. Унарная, бинарная, триарная, m-арная - по числу элементов (1, 2, 3, ...m)

<u>Пример</u> 1. $+, \times, \times \lambda$ ($\lambda \in \mathbb{R}$) — унарная (элемент, умноженное на число)

1.3 Алгебраические структуры (предмет алгебры)

Def 1.3.1. Алгебраическая структура — это множество, с определенной на нем операциями и их свойствами.

Def 1.3.2. Алгебраическая группа (G) — множество G: + — любая операция

- 1. $\forall a, b \in G \mid a+b \in G$ замкнутость
- 2. $\forall a, b, c \in G : a + (b + c) = (a + b) + c$ ассоциативность
- 3. $\exists \theta \in G \mid \forall a \in G : a + \theta = \theta + a = a$ наличие нейтрального элемента
- 4. $\forall a \in G \ \exists ! \ a' \in G \mid a+a'=\theta$ наличие обратного элемента

<u>Замечание</u> 1.3.1. Если \oplus , то группа — аддитивная, θ — ноль (\emptyset), а a'=-a

Если \otimes , то группа — мультипликативная, θ — единица (1), а $a'=a^{-1}$ (обратный элемент)

heta — нейтральный a' — обратный элемент

3амечание 1.3.2. Если к определению группы добавить $a \times b = b \times a$, то группа называется <u>абелевой</u> или коммутативной.

Def 1.3.3. Кольцо это коммутативная аддитивная группа, в которой

- 1. Определено умножение.
- 2. Относительно этого умножения выполняется дистрибутивность $a+b\cdot c=a\cdot c+b\cdot c$ и $c\cdot (a+b)=c\cdot a+c\cdot b$ (т.к. коммутативность для умножения не гарантирована).

Def 1.3.4. Если кольцо обладает свойством коммутативности относительно умножения $\forall a,b \in G \mid a \cdot b = b \cdot a$, то оно называется коммутативным кольцом.

Def 1.3.5. Поле (F) это коммутативное ассоциативное кольцо, в котором

- 1. Есть нейтральный элемент по умножению $\exists \theta \mid \forall a \in F \mid a \cdot \theta = a$.
- 2. Для любого ненулевого элемента существует обратный элемент по умножению $\forall a \in F \mid \exists a^{-1} \mid a \cdot a^{-1} = \theta$.