

Licence 1

Mentions : Sciences pour l'Ingénieur – Mathématiques Informatique

ECO 113

MECANIQUE DU POINT

SESSION N° 7 : CHOSES A RETENIR EN

MECANIQUE DU POINT

I. LA METHODOLOGIE

I. 1 Analyse dimensionnelle et ses applications

Tableau 1 : Quelques autres unités du système international (à compléter)

	Unités	Dimensions
Vitesse	m/s	L.T ⁻¹
Surface	m ²	L ²
Accélération	m/s ²	L.T ⁻²
Volume	m³	L ³
Masse volumique	kg/m³	M.L ⁻³
Force	N	M.L.T ⁻²
Quantité de mouvement	?	?
Moment d'une force	?	?
Moment cinétique	?	?

I.2 Utilisation des puissances de 10 et des notations scientifiques

$$A = B \times 10^m$$

B: nombre décimal **compris entre 1 et 10.** m: nombre entier relatif.

Exemple: Application aux nombres suivants.

- 1°) Distance Terre-Soleil, soit 150 millions de kilomètres.
- 2°) Masse de la Terre (6 millions de milliards de milliards de kg)
- 3°) Nombre de secondes contenues dans une année.
- 4°) Une année-lumière (tout d'abord, que signifie ce terme ?).

- Pour des opérations de multiplication ou de division entre des grandeurs : regroupement des puissances de 10 et simplifications avant de terminer les calculs.
- Unité légale pour chaque grandeur (le mètre par seconde, m/s, pour la vitesse) et kilomètre par heure (km/h, unité secondaire.
 Mais, terme kilomètre.heure incorrect.

• A maîtriser :

Opérations de conversion : des m/s en km/h (ou l'inverse), des g/cm³ en kg/m³ (ou l'inverse)...

1.3 La rigueur dans ses écritures et dans ses notations

- Scalaire ou vecteur? Identifier la nature exacte de chaque grandeur et utiliser chaque grandeur en tenant compte de sa nature : forces, vitesses et accélérations, grandeurs vectorielles (opérations vectorielles applicables sous certaines conditions).
- Somme vectorielle ne signifie pas somme des normes !
- Pour rappel: interdiction d'additionner un vecteur-force avec un vecteur-vitesse, ou un vecteur-force avec un vecteur-accélération, ou un vecteur-vitesse avec un vecteur-accélération (« on ne mélange pas des torchons avec des serviettes »).

I.4 La rigueur dans son raisonnement

 Compréhension des conditions d'utilisation des formules appliquées.

Exemple (cinématique), formule entre la distance, le temps et la vitesse : d = v.t (mais valable seulement lorsque la vitesse est constante, c'est-à-dire, mouvement uniforme).

Vitesse instantanée : dérivée, par rapport au temps, de l'abscisse curviligne.

Sur un axe horizontal x'Ox:

$$v = \frac{dx}{dt} = x'(t)$$
. \checkmark temps, de l'expression de x .

• Efforts de compréhension de cette écriture : c'est le calcul de la dérivée, par rapport au temps, de l'expression de x, pas la division d'un quelconque dx par un quelconque dt.

Exemple d'application.

Le déplacement d'un point mobile M sur l'axe horizontal x'Ox (Figure 1) est décrit par une équation :

$$x = t^2 - 2t + 4$$
.

x: position sur l'axe horizontal (en mètres)

et t: temps (en secondes).

Figure 1

1°) Déterminer l'expression de la vitesse instantanée v.

Résolution

Formule à éviter (la vitesse n'est pas constante) : $v = \frac{x}{t}$.

Formule à utiliser : $v = \frac{dx}{dt}$ (dérivée de x par rapport au temps).

$$v = x'(t) = \frac{dx}{dt} = \frac{d(t^2 - 2t + 4)}{dt} = \frac{d(t^2)}{dt} + \frac{d(-2t)}{dt} + \frac{d(4)}{dt}$$

$$v = 2t - 2$$

Remarques:

On constate que l'expression de la vitesse n'est pas constante. Elle est une fonction qui dépend du temps (ici, polynôme du premier degré en t). Par ailleurs, comme x est en m et t en s, la vitesse v est en m/s.

2°) Calculer le temps nécessaire pour atteindre une vitesse de 36 km/h.

Résolution

On convertit d'abord : $36 \ km/h = 10m/s$.

On résout l'équation : 10 = 2t - 2

$$\implies 2t = 10 + 2 \implies$$

$$t = 6 s$$

3°) Calculer la distance parcourue entre le temps t = 0 et l'instant où cette vitesse a été atteinte.

Rappel : la formule $d = v \cdot t$ n'est pas la bonne (la vitesse n'est pas constante).

On calcule : $d = x_{(t=6)} - x_{(t=0)}$

(différence entre les positions à l'instant t = 6s et à l'instant t = 0).

$$x_{(t=6)} = 6^2 - 2 \times 6 + 4 = 36 - 12 + 4 = 28$$
.

$$x_{(t=0)} = 0^2 - 2 \times 0 + 4 = 4$$
.

$$d = 28 - 4$$

$$d = 24 \quad m$$

II. DEMARCHE GENERALE DE RESOLUTION D'UN EXERCICE OU PROBLEME DE PHYSIQUE

- 1°) **Poser le problème** en identifiant les inconnues recherchées.
- 2°) **Reformuler les données** (en écrivant, par exemple, certaines données dans les bonnes unités) et les hypothèses.
- 3°) Chercher les **relations** qui existent entre les grandeurs indiquées et les inconnues.
- 4°) Etablir l'expression littérale des inconnues recherchées.
- 5°) Faire **l'application numérique** (remplacer les grandeurs par leurs valeurs), en utilisant la notation scientifique conseillée au § **1.2**).

III. DEMARCHE POUR UN BILAN DE FORCES EXTERIEURES

- 1°) **Isoler le système** (ou le solide ou une pièce, numérotée i).
- 2°) Compter toutes les actions mécaniques (forces) extérieures de contact.

 $\vec{M}_{j/i}$: action exercée au point M par le solide n°j sur le solide n°i (isolé).

Exemple : on a isolé le solide ${\bf 1}$, l'action exercée au point M par le solide ${\bf 0}$ sur le solide ${\bf 1}$ est une action extérieure, notée $\vec{M}_{0/1}$ (mais, son opposée, l'action $\vec{M}_{1/0}$ exercée par ${\bf 1}$ sur ${\bf 0}$ n'est pas une action mécanique extérieure).

- 3°) Ajouter les actions à distance (exemple, poids du système isolé).
- 4°) Présenter éventuellement l'ensemble des actions sous forme de tableau.

IV. APPLICATION A LA STATIQUE

Statique (état d'équilibre), se traduit par un système d'équations :

$$\begin{cases} \sum \vec{F}_{\text{ext}} = \vec{0} \\ \sum \vec{M}_{M(\vec{F}_{\text{ext}})} = \vec{0}, \ \forall \ M \end{cases}$$

En termes plus clairs :

*Somme vectorielle des forces extérieures = vecteur nul.

ET

*Somme vectorielle des moments, par rapport à un point quelconque *M*, des forces extérieures = vecteur nul.

IV.1 Equilibre sous l'action de deux forces extérieures

Deux forces extérieures \vec{F}_1 et \vec{F}_2 : $\vec{F}_1 + \vec{F}_2 = \vec{0} \Longrightarrow \vec{F}_2 = -\vec{F}_1$.

Ces deux forces sont directement opposées :

- même direction (même droite d'action).
- même norme (même longueur):

$$\|\vec{F}_2\| = \|-\vec{F}_1\| = \|\vec{F}_1\|$$
 ou $F_2 = F_1$.

sens contraires.

Figure 2

IV.2 Equilibre sous l'action de trois forces extérieures parallèles

Ces trois forces extérieures $\vec{F_1}$, $\vec{F_2}$ et $\vec{F_3}$: $\vec{F_1} + \vec{F_2} + \vec{F_3} = \vec{0}$.

$$\Rightarrow \vec{F}_3 = -(\vec{F}_1 + \vec{F}_2)$$
.

- \vec{F}_3 a **même direction** (même droite d'action) que \vec{F}_1 et \vec{F}_2 .
- ullet $ec{F}_3$ a le **sens contraire** à celui de $ec{F}_1$ et de $ec{F}_2$
- La norme de \vec{F}_3 est telle que :

$$\|\vec{F}_3\| = \|-(\vec{F}_1 + \vec{F}_2)\| = \|(\vec{F}_1 + \vec{F}_2)\| = \|\vec{F}_1\| + \|\vec{F}_2\|$$
.

Figure 3

En termes clairs, longueur de \vec{F}_3 = somme des longueurs des deux premiers vecteurs forces.

IV.3 Equilibre sous l'action de trois forces extérieures concourantes

Forces non parallèles, deux relations à vérifier :

$$\begin{cases} \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0} \\ \vec{M}_{M(\vec{F}_1)} + \vec{M}_{M(\vec{F}_2)} + \vec{M}_{M(\vec{F}_3)} = \vec{0} \end{cases}$$

$$\sum \vec{M}_{M(\vec{F}_{\text{ext}})} = \vec{0} \Rightarrow \vec{M}_{I(\vec{F}_{1})} + \vec{M}_{I(\vec{F}_{2})} + \vec{M}_{I(\vec{F}_{3})} = \vec{0}.$$

Rappel: pour tout point situé sur la direction d'une force, le moment de cette force par rapport à ce point est un vecteur nul.

Soit *I*, un point de la direction de \vec{F}_1 : $\vec{M}_{I(\vec{F}_1)} = \vec{0}$.

Si I est également un point de la direction de \vec{F}_2 : $\vec{M}_{I(\vec{F}_2)} = \vec{0}$.

- Donc les directions de $\vec{F_1}$ et de $\vec{F_2}$ doivent se couper en ce point I (point de concours de leurs directions).
- Direction de \vec{F}_3 : doit alors également passer par ce même point I, car $\vec{M}_{I(\vec{F}_3)} = \vec{0}$.
- Principe de la construction graphique :
 - Tracé de la droite Δ'_1 parallèle à Δ_1 (toutes deux en rouge)
 - Tracé de la droite ∆'₂ parallèle à ∆₂ (toutes deux en bleu)
 - Tracé de la droite Δ'_3 parallèle à Δ_3 (toutes deux en vert).
- Résultat : **triangle des forces** (Figure 4-b) en prenant une échelle pour les représenter.

Figure 4

Ce triangle traduit la relation vectorielle :

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0} .$$

- •A chaque sommet du triangle, arrive une flèche et une seule.
- •Ce triangle donne également les normes (en fonction de l'échelle choisie pour une des forces) et les sens des forces encore inconnues.
- La somme des vecteurs-forces est nulle, mais la somme des normes des vecteurs-forces (somme des longueurs) est toujours supérieure à 0 (sauf si toutes ces forces sont nulles).

$$\|\vec{F}_1\| + \|\vec{F}_2\| + \|\vec{F}_3\| \ge 0$$
.

V. DEMARCHE DE RESOLUTION D'UN PROBLEME DE DYNAMIQUE.

- 1°) Isoler le système qui matérialise le point.
- 2°) Faire le bilan des forces extérieures (forces de contact, forces à distance) qui s'exercent sur le système. Par exemple, « II y a n forces extérieures $\vec{F_1}$, $\vec{F_2}$, $\vec{F_3}$... $\vec{F_n}$ ».
- 3°) Ecrire la relation fondamentale de la Dynamique : $\sum \vec{F}_{\rm ext} = m \cdot \vec{a}$, soit . $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 ... + \vec{F}_n = m \cdot \vec{a}$.
- 4°) **Projeter** cette relation vectorielle dans un système d'axes O_x , O_y , O_z .
- 5°) Résoudre les équations scalaires qui en découlent.

MERCI POUR VOTRE AIMABLE ATTENTION!

- Thank you for your attention!
- Obrigado!

- Danke schoen!
- Grémési
- Grazie mille!

Arigato

Xie Xie