Introduction to Machine Learning and Neural Networks by Nicolas Symeou

Thanks to

Florin Schwappach

for correction and feedback

Machine Learning, An introduction 1:

The BIG question

Yellow

Apple

Banana

Banana = Yellow * 1 + Round *0

Our model is too simple

Apple = Yellow * 0 + Round *1
Banana = Yellow * 1 + Round *0

Solution:

- Expand inputs and weight range
- Hopefully this will add the needed Complexity to the model

OUTPUT

+1 is Yellow or Round like before, -1 is Green or Long, 0 is lack of data.

Value	Input 1	Input 2
+1	Yellow	Round
-1	Red	Long
0	No Data	No Data

- +1 is Yellow or Round like before,
- -1 is Green or Long,
- 0 is lack of data.

+1 is Yellow or Round like before, -1 is Green or Long, 0 is lack of data. Apple = Yellow * 0 + Round *1 Banana = Yellow * 1 + Round *0

Strength of connection (Weight) shows importance of parameter to result

to ease comparison

OUTPUT f(x)=abs(x/2)

1*-1+0*1=-1 f(-1)=0 =>not apple

1*1+0*-1=1 F(1)=0.5 => 50% banana

Apple = Yellow * 0 + Round *1
Banana = Yellow * 1 + Round *0

=> For x>0 : f(x) = x/2For x<0 : f(x) = 0

Input

Activatio n Function

Output

$$\sum (Weights * Inputs) + Bias$$

$$\sum_{i=0}^{m} (w_i * x_i) + Bias$$

Input

Activatio n Function

Output

Input

Activation Function

Output

How about we cut and squeeze the output into a {0,1} range?

For x>0: f(x) = x/2

For x < 0 : f(x) = 0

Apple = $-2 \rightarrow =0$ Banana = $2 \rightarrow =1$

f(Inputs)

Input

Activation Function

Output

Step function (Heaviside)

$$f(x) = \begin{bmatrix} 0 & \text{for } x \le 0 \\ 1 & \text{for } x > 0 \end{bmatrix}$$

Input

Activation Function

Output

Step function (Heaviside)

$$f(x) = \begin{cases} 0 & \text{for } x \le 0 + 0.25 \\ 1 & \text{for } x > 0 + 0.25 \end{cases}$$

$$f(x) = step\ function(x-0.25)$$

Bias

Input

Activation Function

Output

Step function (Heaviside)

$$Bias = 1 * w_b$$

$$f(x) = \begin{bmatrix} 0 & \text{for } x \le 0 \\ 1 & \text{for } x > 0 \end{bmatrix} + 0.25$$

Input

Activation Function

Output

1*1+-1*-1=2 => very Banana => f(x)=2

RELU (Rectified Linear Units)

$$f(x) = \begin{cases} 0 & \text{for } x \le 0 \\ x & \text{for } x > 0 \end{cases}$$

Input

Activation Function

Output

Sigmoid function (logistic function)

function)
$$f(x) = \frac{1}{1 + e^{-x}}$$

...aka Softstep..

...aka Logistic Curve...

Input

Activation Function

Output

Tanh function

$$f(x) = \frac{2}{1 + e^{-2x}} - 1 = 2 \text{ sigmoid } (2x) - 1$$

Input

Activation Function

Output

1*-1+-1*1=-2 => very not apple

1*1+-1*-1=2 => very banana

Tanh function

Range {-1,1} might be used for when you want to make negative predictions, such as Yellow + Long has not just a zero chance of being apple, but a negative chance.

Input

Activation Function

Output

Identity function

$$f(x)=x$$

- Monotonic When the activation function is monotonic, the error surface associated with a single-layer model is guaranteed to be convex. [4]
- Smooth Functions with a Monotonic derivative These have been shown to generalize better in some cases. The argument for these properties suggests that such activation functions are more consistent with Occam's razor.^[8]
- Approximates identity near the origin When activation functions have this property, the neural network will learn efficiently when its weights are initialized with small random values. When the activation function does not approximate identity near the origin, special care must be used when initializing the

The following table compares the properties of severa								
Name	Plot	Equation	Derivative (with respect to x)	Range	Order of continuity	Monotonio	Derivative Monotonio	Approximates identity near the origin
		f(x) = x	f'(x) = 1		C^{∞}	Yes	Yes	Yes
		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$	{0,1}		Yes	No	No
Logistic (a.k.a. Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))	(0, 1)	C^{∞}	Yes	No	No
		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$	(-1,1)	C ^x	Yes	No	Yes
		$f(x)=\tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	C*/	Yes	No	Yes
Softsign ^{[7][6]}		$f(x) = \frac{x}{1 + x }$	$f'(x) = \frac{1}{(1+ x)^2}$	(-14)	C^1	Yes	No	Yes
Inverse square root unit (ISRU) ⁽⁹⁾		$f(x) = \frac{x}{\sqrt{1 + ax^2}}$	$f'(x) = \left(\frac{1}{\sqrt{1 + \alpha x^2}}\right)^3$	$\left(-\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\alpha}}\right)$	C^{∞}	Yes	No	Yes
Rectified linear unit (ReLU) ⁽¹⁵⁾		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	[0, ∞}		Yes	Yes	Via
Leaky rectified linear unit (Leaky ReLU) ^[11]		$f(x) = \begin{cases} 0.01x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0.01 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$		C^0	Yes	Yes	Na
Parameteric rectified linear unit (PReLU) ^[12]		$f(\alpha,x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x > 0 \end{cases}$	$f'(\qquad \qquad \text{for } x < 0 \\ \text{for } x \ge 0 $		C^0	Yes iff $lpha \geq 0$	Yes	Yes If $a=1$
Randomized leaky rectified linear unit (RReLU)[13]		$f(\alpha,x) = \begin{cases} \alpha x & \text{for } x < 0 \text{ for } x \leq 0 \end{cases}$	$f'(a)$ $x < 0$ ≥ 0	$(-\infty,\infty)$		Yes	Yes	No
Exponential linear unit (ELU) ^[14]		$f(\alpha,x)=\begin{cases}\alpha(e^x-1)&x\\x&x\geq\end{cases}$	$f'(\alpha) := \begin{cases} f(\alpha, x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$		$\begin{array}{c} \text{en } \alpha = 1 \\ \text{etwise} \end{array}$	Yes iff α ≥ 0	Yes iff $0 \le \alpha \le 1$	Yes if $lpha=1$
Scaled exponential linear unit (SELU) 15		$f(\alpha,x) = \begin{cases} \alpha(e^x - 1) & x \\ x & \text{with } \lambda = 1 \end{cases}$	$f'(\alpha,x) = \int_{\mathbb{R}^n} (e^x)$ $x \ge 1$)		Yes	No	No
S-shaped rectified linear activation unit (SReLU)		$f_{0,n,t_{r},n_{r}}(x) = \begin{cases} t_{r} - t_{t} & \text{for } x \leq t_{t} \\ \text{for } t_{t} < x < t_{r} \end{cases}$ for $t_{t} < x < t_{r}$ for $t_{t} < x < t_{r}$ and the parameters.	$(x) = \begin{cases} f_0 \\ \text{for } t \end{cases}$	(-xx)	C ⁰	No	No	No
Inverse square root linear unit (ISRLU) ^[0]		$f(x) = \begin{cases} \frac{x}{\sqrt{1 + \alpha x^2}} & \text{for } x < 0 \\ x & \text{for } s \end{cases}$	$r) = \left\{ \begin{array}{c} \left(\frac{1}{1 + \cos^2 x} \right)^2 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{array} \right.$	$\left(-\frac{1}{\sqrt{\alpha}},\infty\right)$	C^2	Yes	Yes	Yes
Adaptive piecewise linear (APL) [17]		$= \nu (0,x) \stackrel{S}{\smile} a_i^* (0,-,-)$	$f'(x) = H(x) - \sum_{i=1}^{S} a_i^x H(-x + b_i^x)^{[2]}$	$(-\infty,\infty)$	C^0	No	No	No
SoftPlus ^[18]		In VI	$f'(x) = \frac{1}{1 + e^{-x}}$	(0,∞)	C^{∞}	Yes	Yes	No
Bent identity		$r) = \frac{\sqrt{x^2}}{2} + 1$	$f'(x) = \frac{x}{2\sqrt{x^2+1}} + 1$		C^{∞}	Yes	Yes	Yes
SoftExponential (19)		$f(\alpha, \beta) = \begin{cases} \frac{\sin(1-\alpha(x+\alpha))}{\alpha} & \text{for } \alpha < 0 \\ \frac{x}{\alpha} & \text{for } \alpha = 0 \\ \frac{x^{\alpha}-1}{\alpha} + \alpha & \text{for } \alpha > 0 \end{cases}$	$f'(\alpha, x) = \begin{cases} \frac{1}{1-\alpha(\alpha+x)} & \text{for } \alpha < 0 \\ e^{\alpha x} & \text{for } \alpha \geq 0 \end{cases}$	$(-\infty,\infty)$	C^{∞}	Yes	Vas	Yes if $lpha=0$
		$f(x) = \sin(x)$	$f'(x) = \cos(x)$	[-1,1]	C^{∞}	No	No	Yes
		$f(x) = \begin{cases} 1 & \text{for } x = 0 \\ rac{\sin(x)}{x} & \text{for } x \neq 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x = 0\\ \frac{\cos(x)}{x} = \frac{\sin(x)}{x^2} & \text{for } x \neq 0 \end{cases}$	[≈ −.217234, 1]	C^{∞}	No	No	No
		$f(x) = e^{-x^2}$	$f'(x) = -2xe^{-x^2}$	(0, 1	C^{∞}	No	No	No

Where's the Advantage?

Where's the Advantage?

$$f\left(\sum_{j=0}^{\infty} f\left(\sum_{i=0}^{\infty} w_{i,j} * x_{i,j}\right) + Bias\right)$$

http://www.learnbymarketing.com/wp-content/uploads/2016/09/neural-net-r-multi-layer-tut.png

https://archive.ics.uci.edu/ml/datasets/Iris/

Famous Iris dataset which measured the Different Length of Iris petals and classifies them as one of 3 Species

Error: 2.220313 Steps: 25896

http://www.learnbymarketing.com/tutorials/neural-networks-in-r-tutorial/

http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/

https://archive.ics.uci.edu/ml/datasets/lris/

Classification Example for IRIS data by DNN

Famous Iris dataset which measured the Different Length of Iris petals and classifies them as one of 3 Species

https://stats.stackexchange.com/questions/268202/backpropagation-algorithm-nn-with-rectified-linear-unit-relu-activation

http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/

Machine Learning, An introduction 1: Conclusion

Machine Learning is the training of a model which learns based on data X to predict Y

It imitates the system which generated data X and Y, hopefully well...

See you next time for:

- Math!
- Optimization methods!
- More Math!!
- Eating habits of Neural Networks!
- Descending Gradients!

Written by Nicolas Symeou for the Physical-Digital Affordances Group of the University of Regensburg