What could go examp w/ gluing coductions?

Assume K alg. closed and fix a, BEK M O< lat < | B| < 1. D:= { market z E K : |z| = 1 } M admissible affinoid cover X,UX,2

 $X_1 := \{z \in D : |z| \le |\beta|\}, X_2 := \{z \in D : |\alpha| \le |z| \le |\beta|\}$ (genuine overlap) $X_1 \cap X_2 = \{z \in D : |\alpha| \le |z| \le |\beta|\}.$

 X_1 closed disk $\Rightarrow \overline{X_1} = A_{\overline{k}}^1$; $X_2, X_1 \cap X_2$ annuli \Rightarrow reductions are $A_1^1 \cup A_2^1$ (intersecting axes) ["interiors" get collapsed to a pt.]

Exercise: Supposed gluing data for X1, X2, X1 NX2 does not reduce to glving data. X1 NX2 -> X1, X2 not open immersions.

Another weied thing: take $k = a_p \ \text{W} \ |p| = \ \text{Vp}, \ X := \{ z \in \hat{k} : |z| \leq |p|^{1/2} \}.$ Rational subdomain $\ \text{W} \ |\frac{z^2}{p}| \leq 1$.

X = Sp(A) for $A = K(z, T)/(T-z^2/p) = \{ f = \sum_{i=1}^{n} a_i z^i \in K[[z]] : \lim_{i \to \infty} |a_i| |p|^{i/2} = 0 \}.$

A = { \$: |a; | |p| = 2 } , A = { \$: |a; | |p| = 2 }.

cz2i+1 ∈ A=0 ⇒ |c|| p| (2i+1)|2 ≤ 1 ⇔ |cpi| ≤ |p|-112 ⇔ |cpi| < |p|-112 ⇔ cz2i+1 ∈ A∞ =.

So, $A^{\circ} \rightarrow \overline{A}$ kills and powers of z. $\overline{X} = A'$ by red: $X \rightarrow \overline{X}$, $z \mapsto (\frac{z^2}{p}) \in \overline{k}$. Furthy business occurs because

1-1sp on A takes values not in IKI.

Prop: Suppose X = Sp(A) by A coduced and spectral seminorm on X takes values in IKI. Then, for every open affine subschane $U \subseteq X$, $ced^{-1}(U) \subseteq X$ is affinish ceduced by spectral seminarm on ced⁻¹(U) taking values in lk1. Moreover, 126-1(N) = N.

2Xi3ieI

Def: X ceduced rigid space, an adm. car. On is pure affinoid carec if

- (1) Each X; is offinaid.
- 12) Spectral seminorm on X; takes values in 1Kl.
- (3) VIEIB Forly finitely many & je Is.t. X; NX; # &.
- (4) Xinx; ≠ Ø ⇒ not. map O(Xi)° & O(Xi)° → O(XinXi)° is surj.

Remark: This is exactly what we need to give reductions.

~> K-scheme (X,9U) = UX;. min [x, ql) ~ X surj. on closed pts.

(5) XinXi ≠Ø ⇒ 3 open offine Uisi € Xi s.t. ced; : Xi → Xi satisfies X; nx; = ced; (U;). Example: Fix $\pi \in k$ or $0 < |\pi| < 1$. Let X = SpK < z > X, given by $|z| \le |\pi|$; X_2 given by $|\pi| \le |z| \le 1$.

It's a fact that $9 = \{X_1, X_2\}$ is pure affinoid.

 $X_1 = \operatorname{Sp}(A_1) \ \ M \ A_1 = K\langle z, z/\pi \rangle = K\langle z, \omega \rangle / (\omega - z/\pi). \ \ \overline{A}_1 = \overline{K} [\omega_1] \ \Rightarrow \overline{X}_1 = A_{\omega_1}^1.$

 $\chi_2 = Sp(A_2) \text{ if } A_2 = k < z, \pi/2 > = k < z, \omega_2 > /(z\omega_2 - \pi). \ \overline{A}_2 = \overline{k} \{z, \omega_2 \} / (z\omega_2) \Rightarrow \overline{\chi}_2 = 3 \text{ if } A_2' \cup A_{\omega_2}'.$

 $\Rightarrow (\overline{X}, \overline{au}) = A_z^1 \cup P'_{w_1 \overline{w}_2}$ joined at point z=0 in A' and $w_1 = \infty, w_2 = 0$ in P'.

This depends on the choice of π !

Ex: TEK pseudo-uniformizer. Compute the reduction map for X = P' and pure offinoid cover

 $X_1 = \{|z| \le |\pi|\}$ $X_2 = \{|\pi| \le |z| \le |\}$ $X_3 = \{|z| \ge |\}$

Ex: Suppose valuation on k is discrete - e.g., $k = Q_{\phi} \cdot \chi$ flat proj. schene / k° . $\chi = \chi \times Speck^{\circ}$ Speck.

and $X_s = \chi \times Spec K$ special Fiber. Naive reduction $\chi^{an} = \xi$ closed pts. of $X_s \to X_s$. $\chi \in \chi$ closed pt.

 \sim Speck_x \rightarrow X. By valuative critecion of propeness this extends to Speck_x \rightarrow \$\mathbb{X}\$. Reduce this to Speck_x \rightarrow X₅.

This defines ced: Xan -> X5 as besided.

Claim: This comes from pure offinoid cover 9h of X.

 $\frac{(X \cdot M)}{(X \cdot M)} \stackrel{=}{\sim} X^{2}$ $X \stackrel{\text{def}}{\sim} X$

Fix $\chi \to P_k^n$ of homogeneous coords. $z_0, ..., z_n$. Let $\chi_i \in \chi$ given by $z_i \neq 0$ (so work in P_k^n and intersect of χ). $\chi_i \in \chi$ generic fiber. Each χ_i has coord. functions $\frac{z_0}{z_i}, ..., \frac{z_i}{z_i}, ..., \frac{z_n}{z_i}$. Define open affinoid $u_i \in \chi_i^{con}$ by $\left|\frac{z_0}{z_0}\right| \cdot \frac{z_n}{z_i} \leq 1$. $\chi_i^{con} = u_0 \cup ... \cup u_n$. $u_i = \{u_0, ..., u_n\}$ is the desired pure affinoid cover.

Renack: The projectivity really does matter here.

Separated and Proper Morphisms

Pef: f: Z → X map of cigid spaces is

- · closed immersion if I closed analytic subsect YEX (defined by ideal sheat) and factorization Z ~ Y ~ X;
- · open immersion if Fadm. open UEX s.t. Z~U~X;
- · locally closed immersion if ... (usual definition same for separatedness)

Def: let X=Sp(A)=Y=Sp(B) affinoid domains. Y lies in the interior of X (YCCX) if 3k<z1,...,zn> >> A s.t.

 $\exists p < 1 \text{ M } Y \subseteq \{x \in X : |z_i(x)| \le p \text{ Vi } \}$. So, there is the lossed immersion of X into closed polydisk of Y contained in strictly smaller polydisk. Without coords., red: $X \to \overline{X}$ collapses Y to a pt.

Def: Rigid space X is peoples if \exists finite admissible definoid cover $X = X_1 \cup \cdots \cup X_n$ and another finite admissible affinoid cover

X = X 1 U ... U X x s. x . X (cc X ; .

Sp(R) JP(B)

For the celative notion, let $X \rightarrow Y$ be map of rigid spaces and $X' \subseteq X$ affinoid subdomain. $X' \subset X$ if $A \cap Y$ and

B(z,, ..., zn) ↑ A

Sit. X' ⊆ {x∈X : |z;(x)| < p ∀i}. Df: f: X > Y map of rigid spaces is proper if I who affinoid car. {Y; } of Y s.t. every f'(Y;) admits finite adm. affinoid car.'s \(\chi_{\chi_{\infty}}\) and \(\chi_{\chi_{\infty}}\) \(\chi_{\infty}\) \(\chi_{

Example: Closed immersion is peopler.

Remark: X proper >> only X -> Y is peopler.

Cor: Image of proper morphism is closed analytic subset.

 $f: J:X \rightarrow Y$ people \Rightarrow image defined by

(cohecent!) ideal sheaf $I := ker(Q \rightarrow f_*Q_X)$. \square

Thm: (1) X peoper, 7 coherent sheaf / X > dim Hi (X,7) < 00 Vi.

(2) We have push forward and higher direct images for pooper morphisms.

Thm (Rigid GAGA): I equiv. of cat's Ecoh. sheaves / Pn 3 ~ E coh. sheaves / Pn, an 3 respecting cohomology.

This plays rice of coh. ideal sheaves.

Consequence: Show that cigid space is analytificultion of variety, it suffices to embed into pagi. space.

Def: X reduced peoper separated rigid space. Ch. line bundle L& 1825 is gen. by global sections if I Jo,..., In & H°(X,L)

(sections)

and adm. cov. at of X by open affinoids s.t.

(1) Yu=sp(A) ea: Llu=Qu; (functions)

(2) this induces Ho(U, Llu) = A y (fo, ..., fn) = A.

We get induced (well-defined) morphism $X \xrightarrow{\phi} \mathbb{P}^n$.

Prop: of inj. and separates tangent vectors => of is dosed imm.

Df: Analytic reduction of rigid space X is scheme Z over TK of FT y ced: X > Z s.t. I pure offinoid cover

at of
$$X$$
 and $\frac{X}{(X,ai)} \cong Z$

Thm: k discretely valued field, X icred. smooth proj. curve/K There is a bijection between

- (1) analytic codvetions of X an ;
- (2) flat proj. ko-schenes X M generic fiber X and reduced special fiber.

Pf: Stact of flat pcgi, model X as in (2). Fix pcgi. enb. X → P 10 y homogeneous coords. zo,..., zn.

Consider adm. affinoid corec $X^{an} = X^{an} \cup \cdots \cup X^{an} \cup X^{an$

[enough just to take something ample] Pick L very ample line bundle on X, so that $X = Proj(\bigoplus_{n \geq 0} H^{o}(X, L^{\otimes n}))$.

Bosic idea: Choose L (depending on Z) s.t. rigid line budle Lan on Xan has natural substreaf of Ko-submodules

Lan, og Lan. Define X:= Proj (# H°(X, (Lan,o) on)).

Write 2 = 2, U.-. UZ, union of irred. components. Pick closest pt. 2; in smooth locus of Z; Vi. Pick lifts

pi∈X on s.t. red(pi) = pick U; ∈ QL containing pi ⇒ Ui open affine nbhd of qi. This could contain bits

of the irred, components. Pick Zariski open offine Z' = Ui NZ; small enough s.t. 3 g; & Oz(Z') W (g:has single simple zero)

divig:) = 9; let $u_i' = \frac{1}{2} \frac{1}{$ 9; & Oxan (U!) = Oz(Z!)

Now check f; generates maximal ideal of ox(U().

So, for each Z; we have $q_i \in Z_i$ and lift to $p_i \in U_i$ of $U_i \in U_i$ offinoid. Refine $Q_i \in Z_i$ and lift to $p_i \in U_i$ of $Q_i \in U_i$ of $Q_i \in U_i$ of $Q_i \in Q_i$ and $Q_i \in Z_i$ and $Q_i \in Z_i$ and $Q_i \in Q_i$ are $Q_i \in Q_i$ and $Q_i \in Q_i$ a

u', ..., u's e a und all other u e a have u disjoint from {q, ..., qs]. Define analytic line bundle L= m by

Llui = 100 , Llu = Ou for all other uear.

Observation: L has global section by divisor p1+...tps. (just use constant function 1 EM xan (Xan))

GAGA \Rightarrow this is analytification of line bundle / X, namely $L = O_X(D)^{an} f$ positive degree! Riemann - Roch

 \Rightarrow some power $O_X(mD)$ very ample $\Rightarrow X = Proj \bigoplus_{n \geq 0} A_n \quad \forall A_n := H^o(X, O_X(nmD)) = H^o(X^{an}, L^{\otimes mn})$.

Define subsheaf $L^{\circ} \subseteq L$ of k° -modules by $L^{\circ}|_{\mathcal{U}_{i}^{\circ}} := \frac{1}{f_{i}} \mathcal{O}_{i}^{\circ}$, $||_{\mathcal{U}_{i}} := \mathcal{O}_{u}^{\bullet}$ otherwise. Define \mathcal{X} by f_{coj} . \square

Remark: What precisely is the nature of the bijection here? Does this depend on a choice of projective embedding?