Федеральное государственное бюджетное образовательное учреждение
высшего образования

"Уфимский государственный авиационный технический университет"

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Математическое моделирование

Отчет по лабораторной работе № 4

на тему: «Моделирование двумерных диффузионных процессов методом непрерывных случайных блужданий»

Группа ПМ-453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Шамаев И.Р.			
Принял	Лукащук В.О.			

Цель: получить навык статистического моделирования диффузионных процессов методом случайных блужданий.

Задание:

Рассматривается случайный процесс движения диффундирующей частицы на плоскости. В начальный момент времени положение частицы — начало координат. Затем частица совершает прыжок на случайную величину l, которая подчиняется заданному закону распределения с плотностью вероятности f(l). Направление прыжка (равновероятно), т.е. выбирается произвольно из четырех возможных: вверх, вниз, вправо или влево. Процесс повторяется на следующем шагом с новым случайным значением l.

- Необходимо повторить процесс для M частиц, совершающих N прыжков.
- Вычислить функции распределения $P_N(x), P_N(y)$ по результатам моделирования.
- Вычислить значения $\dot{c}x_N > , \dot{c}y_N > \dot{c}, \dot{c}x_N^2 > , \dot{c}y_N^2 > \dot{c}$.
- Вычислить: $\dot{\iota} \Delta x_N^2 > \dot{\iota} \dot{\iota} x_N^2 > -\dot{\iota} x_N \dot{\iota}^2$, $\dot{\iota} \Delta y_N^2 > \dot{\iota} \dot{\iota} y_N^2 > -\dot{\iota} y_N \dot{\iota}^2$.
- Вычислить средний квадрат полного смещения:

$$\dot{\omega} \Delta R_N^2 > \dot{\omega} \Delta x_N^2 > + \dot{\omega} \Delta y_N^2 > \dot{\omega}$$
.

- Выполнить аппроксимацию для больших значений N: $\iota \Delta R_{\scriptscriptstyle N}^{\scriptscriptstyle 2} > \, \approx \, \alpha \, N^{\scriptscriptstyle
 m V}$
- Построить соответствующие графики и гистограммы.

Вариант:

$$f(l) = \frac{A}{\ddot{\iota} \ddot{\iota}}$$

Из условия нормировки найдем параметр А, содержащийся в функции плотности распределения вероятности длины прыжка:

$$\int\limits_{0}^{+\infty}f(l)dl\!=\!1,$$

Откуда

$$\int_{0}^{+\infty} \frac{A}{\dot{i}\dot{i}}\dot{i}$$

Получили, что заданная плотность распределения длины прыжка имеет вид:

$$f(l) = \frac{4}{\ddot{\iota} \ddot{\iota}}$$

Построим график функции f(l):

Рис.1 - график функции f(l).

Возьмем случайную величину, равномерно распределенную на отрезке[0,1] для генерации случайного блуждания:

$$\int_{0}^{l} f(\xi)d\xi = r, l = l(r)$$

Откуда

$$l = \frac{2r}{\sqrt{1 - r^2}}$$

С помощью программы, написанной на С++ сгенерируем случайное блуждание частиц.

Нарисуем облако частиц:

Рис. 2 - Случайное блуждание частиц при M=10000, N=1000.

Возьмем M=1, N=1000 и нарисуем траекторию одной частицы:

Рис. 3 – Случайное перемещение частицы.

Построим гистограммы относительных частот:

Рис. 4 – Гистограмма относительных частот

Рис. 5 – Гистограмма относительных частот для y

Вычислим характеристики случайных величин $\langle x_N \rangle$, $\langle y_N \rangle$, $\langle \Delta x_N^2 \rangle$, $\langle \Delta y_N^2 \rangle$, $\langle \Delta R_N^2 \rangle$, $\langle R_N \rangle$. Результаты занесем в Таблицу 1,2,3, количество прыжков будем варьировать.

Таблица 1. Результаты вычислений характеристик случайных величин при M=100.

N	$\langle x_N \rangle$	$\langle y_N \rangle$	$\langle \Delta x_N^2 \rangle$	$\langle \Delta y_N^2 \rangle$	$\langle \Delta R_N^2 \rangle$	$\langle R_N \rangle$
500	2.40003	6.32567	3521.31	3487.06	7008.37	83.716
1000	-12.3266	2.86313	8551.89	8695.64	17247.5	131.33
1500	-3.23663	-31.9383	15483.5	14474	29957.5	173.082
2000	-19.1505	-6.29582	26071.2	26398.3	52469.6	229.062
2500	25.4981	12.8227	22806.9	23292.6	46099.5	214.708
3000	-20.375	2.77565	35608.7	36016.1	71624.8	267.628
3500	-25.087	0.408858	36847.1	37476.3	74323.3	272.623
4000	7.09321	12.6202	39673.2	39564.2	79237.4	281.491
4500	-0,511706	-23,2508	50133	49592,7	99725,7	315,794
5000	0,561064	-20,0534	52581,2	52179,4	104761	323,667
5500	-1,11198	39,2093	63129,9	61587,8	124712	353,145
6000	18,6482	-23,924	58020,3	57795,7	115816	340,318
6500	-3,13016	-16,3598	78231,2	77973,2	156205	395,227
7000	16.0226	-0.536922	67343.9	67600.3	134944	367.348
7500	21.9852	-35.2747	73836.1	73075.1	146911	383.29

Рис. 6 – График среднего квадрата полного отклонения при М=100.

Таблица 2. Результаты вычислений характеристик случайных величин при M = 1000.

N	$\langle x_N \rangle$	$\langle y_N \rangle$	$\langle \Delta x_N^2 \rangle$	$\langle \Delta y_N^2 \rangle$	$\langle \Delta R_N^2 \rangle$	$\langle R_N \rangle$
500	-1.94326	-2.86781	4495	4490.55	8985.54	94.7921
1000	-1.66576	3.55217	9169.64	9159.8	18329.4	135.386
1500	-5.56832	-1.68729	15790.7	15818.8	31609.5	177.791
2000	3.17293	8.24549	19516.4	19458.5	38975	197.421
2500	-1.48379	-6.07533	25290.9	25256.2	50547	224.827
3000	-4.79039	-1.00812	28586.8	28608.8	57195.6	239.156
3500	1.99536	1.97056	30755.6	30755.7	61511.3	248.015
4000	-6.81424	1.81445	37429.6	37472.7	74902.3	273.683
4500	-3.95411	-0.118539	42026	42041.6	84067.6	289.944
5000	-0.629739	14.0705	49033.8	48836.2	97870	312.842
5500	8.07422	3.6788	54268.7	54320.4	108589	329.529
6000	-6.16895	5.02219	60456.6	60469.4	120926	374.744
6500	2.69363	-6.27444	59289.4	59257.3	118547	344.306
7000	-9.37515	6.24125	68497.1	68546	137043	370.193
7500	-12.1288	-11.8166	68505.1	68512.6	137018	370.159

Рис. 7 – График среднего квадрата полного отклонения при М=1000.

Таблица 3. Результаты вычислений характеристик случайных величин при M = 10000.

N $\langle x_N \rangle$	$ y_N\rangle$ $ \Delta x_N^2\rangle$	$\langle \Delta y_N^2 \rangle$	$\langle \Delta R_N^2 \rangle$	$\langle R_N \rangle$
-------------------------	--------------------------------------	--------------------------------	--------------------------------	-----------------------

500	-0,164635	-0,659594	4653,24	4652,83	9306,07	96,468
1000	-0,900851	0,184812	9609,82	9610,6	19220,4	138,638
1500	0,0245119	0,0308188	15049,2	15049,2	30098,5	173,489
2000	-0,166417	-0,606138	19290,5	19290,2	38580,7	196,42
2500	0,0543019	1,37893	24360,3	24358,4	48718,8	220,723
3000	1,38408	-1,30248	29193,2	29193,4	58386,7	241,633
3500	-0,516971	-0,81307	33613,7	33613,3	67227,1	259,282
4000	1,59107	1,38866	38134,5	38135,1	76269,6	276,17
4500	-0,468095	-0,435528	42592,1	42592,1	85184,2	291,863
5000	-3,09482	-1,50675	49074,1	49081,4	98155,5	313,298
5500	-1,34833	-0,746757	52627,2	52628,5	105256	324,431
6000	2,27062	0,61583	55887,6	55892,4	111780	334,335
6500	-3,05352	-0,127625	63319,1	63328,4	126648	355,876
7000	-3,49375	-3,78407	67300,8	67298,7	134599	366,878
7500	-0,59352	1,74969	70254,1	70251,4	140506	374,841

$$\alpha = 19,9591, v = 1,0295.$$

Рис. 8 – График среднего квадрата полного отклонения при М=10000.

Получили, для достаточно больших значений M и N значение среднего квадрата полного отклонения аппроксимируется степенной зависимостью:

$$\&\Delta R_N^2 > \approx 19,9591 * N^{1,0295}$$

Таким образом, $\alpha = 19,9591$, v = 1,0295.

Далее найдем первый и второй моменты:

$$f(l) := 4/(l^2 + 4)^{\frac{3}{2}};$$

$$f := l \mapsto \frac{4}{\left(l^2 + 4\right)^{\frac{3}{2}}};$$

$$int(l \cdot f(l), l = 0 ..infinity);$$

$$\sqrt{4}$$

$$int(l^2 \cdot f(l), l = 0 ..infinity);$$

$$\infty$$

Первый момент конечный, второй бесконечный, значит, блуждание частиц ускоренное и описывается уравнением аномальной диффузии. В отличие от классической диффузии, характеризующейся линейной зависимостью среднего квадрата смещения частиц от времени, в аномальных процессах наблюдается отклонение от линейного закона.

В нашем случае (супердиффузии) в уравнении $\&\Delta R_N^2 \ge A N^v$ параметрv может принимать значения от 1 до 2 (а не от 0 до 1, как в уравнении нормальной диффузии).

Вывод

В ходе лабораторной работы был получен навык статистического моделирования диффузионных процессов методом случайных блужданий.

С помощью программы, написанной на языке C++ были проведены серии вычислительных экспериментов, в ходе которых получены графики относительных частот и среднего квадрата отклонения.

Было получено, что при достаточно больших значениях M и N значение среднего квадрата полного отклонения аппроксимируется степенной зависимостью:

$$\Delta R_N^2 > \approx 19,9591 * N^{1,0295}$$

В нашем случае (супердиффузии) в уравнении $\&\Delta R_N^2 \ge A N^v$ параметрv может принимать значения от 1 до 2 (а не от 0 до 1, как в уравнении нормальной диффузии).