Bioinformatics

TEN

Introduction to Next Generation Sequencing

Dept of Computer Science San José State University Biology/CS/SE 123A Fall 2014

Sequencing Technologies

Traditional sequencing

Sanger Sequencing

Next Generation Sequencing (NGS)

- Pyrosequencing
- Illumina/Solexa
- Ion Torrent (charge based detection)
- Helicos
- Pacific Biosciences
- Oxford Nanopore

History of DNA Sequencing

Sanger vs NGS

Sanger sequencing' has been the only DNA sequencing method for 30 years but...

...hunger for even greater sequencing throughput and more economical sequencing technology...

NGS has the ability to process millions of sequence reads in parallel rather than 96 at a time (1/6 of the cost)

NGS Platforms

- Illumina GAII, HiSeq, MiSeq
- Life Technologies Ion Torrent
- Helicos HeliscopeTM
- Pacific Biosciencies SMRT
- Oxford Nanopore Technologies
- Roche/454 FLX
- Applied Biosystems SOLiDTM System

Illumina

Video: https://www.youtube.com/watch?v=womKfikWlxM

Ion Torrent

Video: https://www.youtube.com/watch?v=WYBzbxIfuKs

Helicos

Video: https://www.youtube.com/watch?v=TboL7wODBj4

Pacific Biosciencies SMRT

Video: https://www.youtube.com/watch?v=v8p4ph2MAvI

Oxford Nanopore Technology

Video: https://www.youtube.com/watch?v=3UHw22hBpAk

Next Generation Sequencing: Why Now?

- Motivation: HGP and its derivatives, personalized medicine
- Short reads applications: (re-)sequencing, other methods (e.g. gene expression)
- Advancements in technology

Genomic DNA Sequencing using Sanger

Generation of Polony array: DNA Beads (Ion Torrent)

DNA Beads are placed in wells

Generation of Polony array: Bridge-amplification (Illumina)

Single Molecule Sequencing (Helicos, PacBio SMRT, Oxford Nanopore)

- Direct sequencing of DNA molecules: no amplification stage
- DNA fragments are attached to array (Helicos & PacBio SMRT)
- Potential benefits: higher throughput, less errors (DNA amplification can introduce errors)

Sanger Sequencing

Advantages	Disadvantages
Lowest error rate	High cost per base
Long read length (~750 bp)	Long time to generate data
Can target a primer	Need for cloning
	Amount of data per run is low

Ion Torrent Sequencing

Advantages	Disadvantages
Low startup costs Scalable (10 – 1000 Mb of data per run) Medium/low cost per base Low error rate	Relatively higher error rate than Illumina Difficult to enumerate long repeats such as homopolymer repeats of the same nucleotide (e.g. GGGGG)
Fast runs (<3 hours)	Read lengths only ~100-400 bp so far Relatively low throughput

Illumina Sequencing

Advantages	Disadvantages
Low error rate (< 1%) Lowest cost per base Tons of data (15 Gb to 1.8 Tb)	Short read length (50-300 bp) Runs take multiple days
	High startup costs Difficult for De Novo assembly

PacBio Sequencing

Advantages	Disadvantages
Can use single molecule as template Potential for very long reads (several kb+)	High error rate (~10-15%) Medium/high cost per base High startup costs

Sequencing the Human Genome

The interpretation bottleneck

