平成 28 年度 一門試験問題・解答

試験実施日 平成 28 年 12 月 2 日 2 時限

出題者記入欄

試験科目名 応用数学 II-3	出題者名佐藤弘康				
試 験 時 間 <u>60</u> 分	€日 <u>木</u> 曜日 <u>1</u> 時限				
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください			
教科書 ・ 参考書 ・ ノート (手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書 その他 ()					
本紙以外に必要とする用紙 解答用紙 0 枚 計算用紙 0 枚					
通信欄					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	31.7 [[[[]]]]
採 点 欄	評価

微分方程式

$$2y' = \frac{y}{x} - \frac{x}{y} \tag{*1}$$

について次の問に答えなさい..

(1) $x^2 + y^2 = cx$ が (*1) の解であることを示しなさい. ただし、c は任意の定数とする.

(2) 初期条件 x = 1, y = 1 を満たす (*1) の特殊解を求 めなさい.

2 微分方程式

$$xy\,dy - (x^2 + y^2)\,dx = 0\tag{*2}$$

について次の間に答えなさい.

(1)(*2)が同次形微分方程式であることを示しなさい.

(2) 変数を適当に変換することにより、(*2) が変数分離 形微分方程式

$$xzz' = 1$$

に変換されることを示しなさい.

(3) (*2) の一般解を求めなさい.

3 次の間に答えなさい.

(1) 次の4つの中から1階線形微分方程式をすべて選 びなさい.

$$(\mathcal{P}) \ y'' - xy' + 2y = 2x^2 + 1$$

(イ)
$$2y' = \frac{y}{x} - \frac{x}{y}$$

(ウ)
$$y'-y=-x$$

(
$$\perp$$
) $(x^2 - 2y)dx + (y^2 - 2x)dy = 0$

(2) ベルヌーイの微分方程式

$$y' + y = xy^3$$

を適当に変数変換して、線形微分方程式に直しな さい.

4 微分方程式

$$(x^2 + y^2) dx - 2xy dy = 0 (*4)$$

について次の間に答えなさい.

(1) (*4) が完全でないことを示しなさい.

(2) $\frac{1}{r^2}$ は (*4) の積分因子であることを示しなさい.

(3) (*4) の一般解を求めなさい.