

Univariate analyses

Map of beta values:

Map of contrast values: (faces-objects)

Thresholded contrast: (on structural scan)

Univariate analyses

Region of interest: Average of beta values

Multivariate analyses

Pattern of response across voxels
(= using differences among voxels)

Data set 1

Data set 2

Variety of names:

multivariate fMRI, multivoxel pattern analyses (**MVPA**), brain decoding, brain reading, representational similarity analyses

Multivariate analyses

Simplest index of pattern difference: Data set 1 Data set 2 Correlations Mean activation Activity pattern Correlational MVPA: r(same) = 0.6r(diff) = -0.3

A simple example of MVPA

Shape representation in object-selective cortex

Shape envelope

Why MVPA?

Op de Beeck et al., 2008

A simple example of MVPA

Shape representation in object-selective cortex

Shape envelope

Correlation matrix

Common term: Representational (Dis)similarity Matrix (RDM/RSM)

Alternative metrics of (dis)similarity

Consistency between metrics

Correlation distance: 1 – corr

Classifier performance (LDA; SVM; ...)

Euclidean distance

Mahalanobis distance

Cross-validated or not?

A lot of fuzz about metrics

Multiple sessions:

- "Battle of the metrics"
- "Quantifying Similarity between Neural Population Codes"

Analyzing a (dis)similarity matrix

Multidimensional Scaling (MDS)

Principal Component Analysis (PCA)

Hierarchical Cluster Analysis

Nonlinear Dimensionality Reduction (t-SNE)

Comparing (dis)similarity matrices

Perceived shape

Representational Similarity Analysis (RSA)

Similarity structure

Representational geometry

Which metric to use?

Kriegeskorte et al., 2008

How complex to make my analysis pipeline?

"Overall, we suggest being conservative before adding steps and complexities to the (pre)processing pipeline for RSA."

- From Ritchie et al., 2021, NeuroImage

Main reasons to move to multivariate analyses

1) You are looking for a signal that is too weak or fine-scale to pick up with

univariate analyses

2) Interest in similarity structure

Design considerations for MVPA

- You can have more conditions than in a traditional experiment Helps to introduce interesting similarity structure
- 2) Still, the more data per condition, the better
- 3) Try to go for shorter runs to get more runs (min. 4-6 for decoding)

What works well, and what is borderline?

Large-scale similarity structures

Shape x category space, Bracci et al., 2016

What works well, and what is borderline?

Subordinate differences can be ok-ish, but be careful

Hendriks et al., 2021; Also see Goesaert et al., 2013

What works well, and what is borderline?

Example from numerical cognition

Bulthé et al., 2014

Towards a hands-on example

Our current approach & alternatives:

- Preprocessing: fMRIPrep (or SPM)
- GLM model estimation in SPM12
- Input to the MVPA: beta maps from GLM
- MVPA: CoSMoMVPA (Matlab)

Benefit: comprehensive & flexible

- Alternatives for CosMo:
 - PyMVPA (Python toolbox on which CoSMo was based)
 - Decoding Toolbox (official SPM toolbox, originally only decoding but now more comprehensive)
 - Rsatoolbox (Python; Kriegeskorte etc.)