5. Hidrogén és alkáli fémek spektruma

Modern fizika laboratórium

Mérést végezte:

Görgei Anna Mária

Lugosi Lilla

Márton Tamás

Mérés időpontja:

2018.04.16. 10:15-14:00

Hétfő délelőtti csoport

Mérés célja

Alkáli fémek és hidrogén színképvonalainak megfigyelése és mérése, ezekből Rydberg-, és finomszerkezeti állandó meghatározása, deutérium-hidrogén lámpával a proton-elektron tömegarány becslése.

Mérés leírása

Alkáli fémes lámpák:

Mérésünket spektrométerrel végeztük. Színbontó elemnek holografikus optikai rácsot használunk, így csak az elsőrendű elhajlási képeket látjuk. Első lépésként a Cd-lámpával kalibráltuk a mérési elrendezést, hogy pontosan merőleges legyen a használt optikai rács a beeső nyalábra. A goniométer szögskáláját használva beállítottuk, hogy a nulladrendű elhajlási kép éppen a 0°-nál legyen. Így a diffrakciós törvény

$$d * \sin(\theta) = n * \lambda \tag{1}$$

felhasználásával olyan ϑ irányokba kapunk erősítést, amire ez teljesül. A használ rács miatt n=1 és d=1 μ m.

Minden megjelenő vonalhoz lemértük az eltérülés szögét, majd K, Na, Ne esetén is hasonlóan jártunk el.

Hidrogén-deutérium lámpa:

A hidrogén atom alapállapoti energiája:

$$E_n = \frac{-m_e * e^4}{8 * \epsilon_0^2 * h^3 c} * \frac{1}{n^2}$$
 (2)

melyben m_e és e az elektron tömeges és töltése, ϵ_0 a vákuum permittivitása, h a Planck-állandó, n a főkvatnumszám.

Különböző energiaszintű pályákhoz különböző termek tartoznak:

$$T_n = \frac{-E_n}{hc} \tag{3}$$

Két term különbsége megegyezik a kisugárzott fény hullámhosszának reciprokával:

$$\frac{1}{\lambda} = R_{\infty} * \left(\frac{1}{n^2} - \frac{1}{m^2}\right) \tag{4}$$

ahol R∞ az atom Rydberg-állandója, n és m pedig pozitív egész számok. A mérésünk során n=2 Balmer-sorozatot mérjük ki. Ezekhez a Grotian-diagramok alapján megállapítottuk az m értékeket, így ki tudtuk fejezni a Rydberg-állandót.

A protonok-elektron tömegarány megbecsléséhez az alábbi képlet segítségével juthatunk:

$$\frac{\lambda_H}{\lambda_D} = \frac{1 + \frac{m_e}{m_p}}{1 + \frac{m_e}{m_p + m_n}} \tag{5}$$

ha feltesszük, hogy a proton és a neutron tömege egyenlő. Lemérve a hidrogén-deutérium vastag vonalának két szélét, kaphatunk egy becslést a kettő hullámhosszkülönbségére, amiből a proton/elektron tömegarányra is.

Finomszerkezeti állandó:

A finomszerkezeti állandó kiszámítását a Na lámpánál megfigyelt dublettekkel végeztük.

A dublettek hullámhosszaiból:

$$\alpha = \sqrt{\left(\frac{n^3}{R_{\infty} * Z^4} * \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) * \left(\frac{1}{j_2 + \frac{1}{2}} - \frac{1}{j_1 + \frac{1}{2}}\right)\right)}$$
 (6)

ahol Z=3,5 effektív magtöltés Na esetén $j_1=1/2$ és $j_2=3/2$, n=3.

Mérési eszközök

- spektroszkóp
- holografikus rács
- Cd, K, Na, Ne lámpák
- hidrogén-deutérium cső

Mért adatok, kiértékelés

Alkáli fémek spektrumai:

Kadmium			
$\lambda_{mcute{e}rt}[nm]$	$\lambda_{irodalmi}[nm]$	$ \lambda_{m\acute{e}rt} - \lambda_{irodalmi} [nm]$	
512,7923	-	-	
516,2842	-	-	
480,4786	480	0,478629	
468,4439	467,8	0,643889	
442,0278	441,3	0,727782	
431,8234	-	-	

A mérés hibájának meghatározásához a kadmium lámpa mért és irodalmi hullámhosszértékeit ábrázoltuk, majd ezekre a pontokra egyenest illesztettünk. Az illesztett egyenes egyenlete:

$$y = a * x - b$$
.

Az illesztés során kapott paraméterek:

$$a = 1,0059 \pm 0,00250$$

$$b = -3,3704 \pm 1,16178$$

A kapott meredekség relatív hibája 0,25%.

Kálium			
$\lambda_{m cute{e}rt}[nm]$	$\lambda_{irodalmi}[nm]$	$ \lambda_{m\acute{e}rt} - \lambda_{irodalmi} [nm]$	
587,7853	583,2	4,585252	
582,5959	581,2	1,395914	
578,5696	578,2	0,369619	
576,4323	-	-	
534,844	535,4	0,555988	
533,6145	533,5	0,114516	
531,8913	-	-	
510,0426	-	-	
494,7005	-	-	
486,0812	-	-	
404,0775	404,4	0,32247	

A kálium Grotian-diagramját megkaptuk a mérés során, de erről az általunk mért átmeneteket nem tudtuk leolvasni, mert a diagramon nem a látható tartományba eső vonalak szerepeltek.

Neon			
$\lambda_{m cute{e}rt}[nm]$	$\lambda_{irodalmi}[nm]$	$ \lambda_{m\acute{e}rt} - \lambda_{irodalmi} [nm]$	
651,4366	650,6	0,836559	
649,0056	-	-	
639,2153	638,3	0,915328	
636,7513	-	-	
632,0293	633,4	1,370697	
629,3204	-	-	
625,2427	-	-	
621,1478	-	-	
614,5147	614,3	0,214709	
612,2173	-	-	
607,6069	607,4	0,2069	
605,5255	-	-	
601,815	-	-	
597,1586	597,5	0,341408	
593,8871	594,5	0,612946	
587,7853	588,2	0,414748	
584,2497	585,2	0,950334	

Nátrium				
$\lambda_{mcute{e}r}$	$_{t}[nm]$	$\lambda_{irodalmi}[nm]$	$ \lambda_{m\acute{e}rt} - \lambda_{irodalmi} [nm]$	az átmenet
				típusa
415	,4872	-	-	-
453	,9905	-	-	-
515	,0381	-	-	-
496	,7215	497,9	1,178483	?
614	,5147	616	1,485291	5S → 3P
dublett	594,1211	589,6	4,521063	3P → 3S
vonal	584,4857	589	4,514282	3P → 3S

A Grotian-diagramról leolvastuk az átmenet típusát azon vonalak esetében, amelyeket megtaláltunk és a diagramon is szerepeltek. A dublett vonal esetében nem tudtuk elkülöníteni a két vonalat, így a helyettük látható egy vonal két szélén mértünk.

Hidrogén-deutérium lámpa, Rydberg-állandó:

Hidrogén-deutérium				
$\lambda_{mcute{e}r}$	t[nm]	$\lambda_{irodalmi}[nm]$	$ \lambda_{m\acute{e}rt} - \lambda_{irodalmi} [nm]$	az átmenet
				típusa
dublett	484,0462	486,1	2,053814	4S →2P
vonal	486,8436		0,743638	$(H_{\beta} vonal)$
dublett	432,8726	434	1,127418	5S → 2P
vonal	434,7072		0,707242	(H _γ vonal)
436	,2784	-	-	-
409	9,923	410,2	0,276966	6S → 2P
				(H _δ vonal)
25,0)1378	-	-	-
613	,5964	- -	-	-
dublett	653,2004	656,3	3,099625	3S → 2P
vonal	656,059		0,240971	$(H_{\alpha} vonal)$

A lámpa hidrogén-deutérium keveréket tartalmazott, ez okozza a dublettek kialakulását. Ebben az esetben sem vált szét a vonal ketté, így a két szélét mértük. Azon szélen vett érték, ahol a nagyobb hullámhosszértéket kaptuk meg, a hullámhosszok alapján jól azonosíthatóak a Balmer-sorozat elemei.

A Rydberg-állandó meghatározásához először a diffrakciós törvény (1. egyenlet) segítségével kiszámoltuk a mért vonalakhoz tartozó hullámhosszakat. Az 1, 2 és 7 vonal jobb és bal oldali vonalai is láthatók voltak, ezért ezeknél a vonalaknál a mért szögekre a kiszámolt hullámhosszak átlagával számoltunk, így a Balmer-sorozathoz tartozó Rydberg-állandók (4) alapján a következők:

Vonal	Rydberg-állandó [10 ⁷ /m]
Ηα	1,100±0,0027
Нβ	1,099±0,0027
Нү	1,098±0,0027
Нδ	1,098±0,0027
Átlag	1,099±0,0027
Irodalmi érték	1,09737

A Rydberg-állandó hibáját az egyenes illesztésből származtattuk. A kapott átlagérték hibán belül egyezik az irodalmi adattal.

A proton-elektron tömegarányára az 5. képletből számolva kapott maximumok:

dublett	$rac{m_e}{m_p}$
1	0,011626
2	0,008512
7	0,008791
átlag	0,009643
irodalmi érték	0,000539

Az átlagérték hibájának a mért értékek közül az ehhez képesti legnagyobb eltérést vettük.

Az átlagként megkapott 0,009643 tömegarány, tehát egy felső korlátot ad a valós értéknek.

Finomszerkezeti állandó:

A Nátrium lámpa dublettjéből meghatároztuk a finomszerkezeti állandót, melynek számolt értéke azt mutatja meg, hogy ennél mindenképpen kisebb.

A 6. képletet használva (ahol a Rydberg-állandó a fent kiszámolt érték és a hibát is) a következő eredményre jutottunk: $\alpha=1,514*10^{-2}\pm3,76*10^{-5}$

A finomszerkezeti állandó $\alpha_{irodalmi} = 0,7299*10^{-2}$, tehát a számolt értékünket a mérésünk pontosságát figyelembe véve eredményesnek tekinthetjük.

Diszkusszió

A mérés során kapott szögeltérülések alapján meghatároztuk, az átmenetek során keletkező fotonok hullámhosszát. A kapott értékeket összehasonlítottuk az irodalmi adatokkal, ahol lehetett az átmenet típusát is meghatároztuk. Emellett a mérési adatokból becslést tudtunk adni a proton-neutron tömegarányra és a finomszerkezeti állandóra.

<u>Hivatkozások</u>

[1] Modern fizika laboratórium, 5. Hidrogén és alkálifémek spektruma, 2013 (http://wigner.elte.hu/koltai/labor/parts/modern5.pdf)

[2] Modern fizika laboratórium, A. Függelék: Atomspektroszkópia, 2013 (http://wigner.elte.hu/koltai/labor/parts/modernA.pdf)

[3] The spectral lines (http://www.free-form.ch/tools/specli.html)