Exercice 1.

- 1. (a) $u_1 = \frac{3 \times u_0}{1 + 2u_0}$ donc $u_1 = \frac{3}{4}$ et $u_2 = \frac{3 \times u_1}{1 + 2u_1}$ soit $u_2 = \frac{9}{10}$.
 - (b) Soit \mathcal{P}_n la proposition : « $0 < u_n$ ».

Initialisation: vérifions que \mathcal{P}_0 est vraie.

On a $u_0 = \frac{1}{2} > 0$, donc \mathcal{P}_0 est vraie.

• *Hérédité*. Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n vraie, c'est-à-dire, $0 < u_n$. Montrons alors que \mathcal{P}_{n+1} est vraie c'est-à-dire $0 < u_{n+1}$.

Par hypothèse de récurrence :

 $0 < u_n \text{ donc } 0 < 3u_n \text{ et } 0 < 1 + 2u_n$. Ainsi, u_{n+1} est le quotient de deux nombres strictement positifs, donc $0 < u_{n+1}$ et \mathcal{P}_{nk+1} est vraie.

• \mathcal{P}_0 et \mathcal{P}_n est héréditaire. \mathcal{P}_n est donc vraie pour tout entier naturel n.

$$\forall n \in \mathbb{N}, u_n > 0$$

2. (a) $\forall n \in \mathbb{N}$,

$$u_{n+1} - u_n = \frac{3u_n}{1 + 2u_n} - u_n$$
$$= \frac{2u_n(1 - u_n)}{1 + 2u_n}$$

 $\forall n \in \mathbb{N}, \ 0 < u_n < 1 \ \text{donc} \ 2u_n > 0, \ 1 - u_n > 0 \ \text{et} \ 1 + 2u_n > 0 \ \text{puis}$ $\frac{2u_n(1-u_n)}{1+2u_n} > 0 \ \text{soit} \ u_{n+1}-u_n > 0 \ \text{ce qui prouve que la suite} \ (u_n)$ est croissante.

(b) La suite (u_n) est **croissante** et **majorée** par 1; elle converge donc vers une limite ℓ telle que $\ell \le 1$.

3. (a) $\forall n \in \mathbb{N}$,

$$v_{n+1} = \frac{u_{n+1}}{1 - u_{n+1}}$$

$$= \frac{\frac{3u_n}{1 + 2u_n}}{1 - \frac{3u_n}{1 + 2u_n}}$$

$$= \frac{\frac{3u_n}{1 + 2u_n}}{\frac{1 + 2u_n}{1 + 2u_n}}$$

$$= \frac{3u_n}{1 - u_n}$$

$$= 3v_n$$

La suite (v_n) est donc la suite géométrique de raison 3 et de premier terme $v_0 = \frac{u_0}{1 - u_0} = 1$.

- (b) Pour tout entier naturel n, $v_n = v_0 \times q^n$ donc $v_n = 3^n$.
- (c) Pour tout entier naturel n, $v_n = \frac{u_n}{1 u_n} \iff (1 u_n)v_n = u_n$ $\iff v_n = u_n + u_n v_n$ $\iff u_n = \frac{v_n}{1 + v_n}$ $\iff u_n = \frac{3^n}{2^{n+1}}$

(d) $3 > 1 \implies \lim_{n \to +\infty} 3^n = +\infty$. On a une forme indéterminée du type $(\frac{\infty}{\infty})^n$, on change alors d'écriture. $\forall n \in \mathbb{N}$,

$$u_n = \frac{3^n}{3^n + 1}$$

$$u_n = \frac{3^n \times 1}{3^n \left(1 + \frac{1}{3^n}\right)}$$

$$= \frac{1}{1 + \frac{1}{3^n}}$$

Comme $-1 < \frac{1}{3} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$ D'où $\lim_{n \to +\infty} 1 + \left(\frac{1}{3}\right)^n = 1$, enfin, par inverse des limites $\lim_{n \to +\infty} u_n = 1$ La suite (u_n) converge vers 1.

Exercice 2.

- 1. (a) La suite (u_n) semble être **décroissante** et **converger** vers 1.
 - (b) À l'aide de la calculatrice, il semble que lorsque $u_0 = 3, 1$, la suite (u_n) diverge vers $+\infty$.
- 2. Dans cette question, on prend a = 2,9.
 - (a) f est dérivable sur $[1; +\infty[$ et pour tout réel $x \in [1; +\infty[$,

$$f'(x) = x - 1.$$

 $\forall x \in [1; +\infty[, f'(x) \ge 0 \text{ donc } f \text{ est strictement croissante sur } [1; +\infty[.$

(b) Soit \mathscr{P}_n : « $1 \le u_{n+1} \le u_n$ »

Initialisation. Si n=0 on a $u_0=2,9$ et $u_1=f(2,9)=2,805$ ce qui

prouve que $1 \le u_1 \le u_0$ donc \mathcal{P}_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons \mathscr{P}_n vraie c'est-à-dire que $1 \le u_{n+1} \le u_n$ et montrons que \mathscr{P}_{n+1} c'est-à-dire que $1 \le u_{n+2} \le u_{n+1}$.

Par hypothèse de récurrence $1 \le u_{n+1} \le u_n$ donc $f(1) \le f(u_{n+1}) \le f(u_n)$ car la fonction f est strictement croissante sur $[1; +\infty[$.

Or f(1) = 1, $f(u_n) = u_{n+1}$ et $f(u_{n+1}) = u_{n+2}$ donc $1 \le u_{n+2} \le u_{n+1}$ ce qui prouve que \mathcal{P}_{n+1} est vraie.

Conclusion : \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire.

On en déduit que \mathcal{P}_n est vraie pour tout entier naturel n.

 $\forall n \in \mathbb{N}, 1 \leqslant u_{n+1} \leqslant u_n.$

- (c) $-\forall n \in \mathbb{N}, u_{n+1} \leq u_n$: la suite (u_n) est décroissante.
 - \forall *n* ∈ \mathbb{N} , 1 \leq *u*_n : la suite (*u*_n) est donc minorée par 1.
 - (u_n) converge vers une limite ℓ telle que $\ell \geqslant 1$.

Résolvons l'équation f(x) = x.

$$\frac{1}{2}x^2 - x + \frac{3}{2} = x \iff \frac{1}{2}x^2 - 2x + \frac{3}{2} = 0 \ x_1 \text{ est solution \'evidente de}$$
$$\iff x^2 - 4x + 3 = 0$$

cette équation. L'autre est $x_2 = 3$.

Par ailleurs $u_0 = 2,9$ et la suite (u_n) est décroissante donc on ne peut avoir $\ell = 3$ donc $\ell = 1$.

- 3. Dans cette question, on prend a = 3, 1 et on admet que la suite (u_n) est croissante.
 - (a) Pour tout entier naturel n, on a donc $3,1 \le u_n \le u_{n+1}$ car la suite (u_n) est supposée croissante et $u_0 = 3,1$. Soit A un réel quelconque. Il existe donc un rang n tel que $u_n > A$ ce qui prouve que la suite (u_n) n'est pas majorée.
 - (b) D'après la question précédente, il existe un entier naturel n tel que $u_n > A$. De plus, la suite (u_n) est croissante donc pour tout $n \ge k$ on a donc $u_n \ge u_n > A$.

Tous les termes de la suite (u_n) appartiennent à l'intervalle $]A; +\infty[$ à partir du rang n ce qui prouve que la suite (u_n) diverge vers $+\infty$.

Exercice 3.

Partie 1.

- 1. f'(-1) = 0: la tangente au point d'abscisse -1 est horizontale. $f'(0) = \frac{\Delta_y}{\Delta_x}$ donc f'(0) = -1.
- 2. f semble concave sur $]-\infty;0]$ donc f''<0 sur cet intervalle et ainsi f''(-1)<0.

De même f semble convexe sur $[0; +\infty]$ donc f'' > 0 sur cet intervalle : ainsi f''(3) > 0.

Enfin f''(0) = 0 car f semble changer de convexité au point d'abscisse 0.

3. À l'aide des questions précédentes, on en déduit le tableau de variation de f' sur \mathbb{R} :

x	$-\infty$	0	+∞
Variation de f'			

- 4. Pour f': on utilise la question précédente. f' est décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$ donc seule la courbe C_4 peut représenter f'.
 - Pour f'': f est concave sur $]-\infty; 0]$ et convexe sur $[0; +\infty[$ donc on doit avoir $f'' \ge 0$ sur $[0; +\infty[$ et $f'' \le 0$ sur $]-\infty; 0]$. On doit avoir $\mathscr{C}f''$ située au dessus de l'axe des abscisses sur $[0; +\infty[$ et en dessous de l'axe des abscisse sur $]-\infty; 0]$. On en déduit que la courbe C_2 peut représenter f''.

Partie 2.

1. f est dérivable sur \mathbb{R} . $\forall x \in \mathbb{R}$,

$$f'(x) = 1e^{-x} + (x+2)(-1)e^{-x}$$
$$= (1-x-2)e^{-x}$$
$$= (-x-1)e^{-x}$$

2. On étudie le signe de f'(x) sur \mathbb{R} . $\forall x \in \mathbb{R}$, $e^{-x} > 0$ donc f'(x) a le même signe que -x - 1.

Calcul de la racine : $-x - 1 = 0 \iff x = -1$.

On en déduit le signe de f'(x) et les variations de f sur \mathbb{R} :

х	$-\infty$		-1		$+\infty$
signe de $f'(x)$		+	0	_	
variations de f			e _		•

$$f(-1) = e$$

3. Pour étudier la convexité de f on étudie le signe de f''(x). f' est dérivable sur \mathbb{R} . $\forall x \in \mathbb{R}$,

$$f''(x) = -1e^{-x} + (-x-1)(-1)e^{-x}$$
$$= (-1+x+1)e^{-x}$$
$$= xe^{-x}$$

 $\forall x \in \mathbb{R}, e^{-x} > 0 \text{ donc } f''(x) \text{ est du signe de } x.$

X	$-\infty$	0	$+\infty$
signe de $f''(x)$	_	0	+
variations de f'		<u></u>	,

- f est concave sur $]-\infty;0]$.
- f est convexe sur $|0; +\infty[$.
- 4. f change de convexité au point d'abscisse 0 : le point B(0; f(0)) soit B(0; 2) est le seul point d'inflexion de \mathscr{C} .