DS for Range Reporting

1. Computation Model
2. R-Tree
2.1 Structure

Yufei Tao. Practical and Theoretical I/O-Efficient Data Structures for Range Reporting. VLDB'15 Summer School Lecture Notes, 2015.

- range reporting query. Let P be a set of N points in \mathbb{R}^2 . Given an axis-parallel rectangle $q = [x_1, x_2] \times [y_1, y_2]$, a range reporting query reports all the points of P that are covered by q.
 - o application: "find all the restaurants in the area";
 - relational database application: TaxPayer(id, sal, age), select id from TaxPayer where 10<=sal<=20 and 50<=age<=60;
- theme: IO-efficient data structure for Range Reporting

1. Computation Model

- RAM model. An O(NlogN) algorithm means the algorithm is able to solve the problem by performing O(NlogN) "basic operations"
 - o standard CUP work or access a memory location
- External memory model. Since an I/O is rather expensive (1-10 milliseconds)
 - \circ space: M words of memory and unbounded disk with block size being B words
 - o space complexity: number of disk blocks occupied
 - time complexity: number of I/Os (read B words from disk to memory or write B words conversely),
 i.e., CPU calculation and memory accesses are free
 - \circ O(N/B) instead of O(N) linear cost

2. R-Tree

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust access method for points and rectangles. In SIGMOD, pages 322-331, 1990.

2.1 Structure

Figure 1: An R-tree

- Minimal bounding rectangle (MBR): smallest rectangle that tightly encloses all data points, see r_1 , r_2 , ... in the figure for example
 - o good MBR: square-like by reducing perimeter
- leaf node: b/4-b points where $b = \Theta(B)$
- non-leaf node: b/4-b children, and store an MBR for each child
- O(N/B) space and of $O(\log_B N)$ height