Process	Biochemical reaction	Formulation	Description
Gross primary production (GPP)	$\begin{aligned} &106\text{CO}_2 + 16\text{HNO}_3 + \text{H}_3\text{PO}_4 + \\ &122\text{H}_2\text{O} + (\text{sunlight}) \\ &\rightarrow (\text{CH}_2\text{O})_{106}(\text{NH}_3)_{16}\text{H}_3\text{PO}_4 + 138\text{O}_2 \\ &\text{Nutrient limitation for phytoplankton growth} \\ &\text{nlim} = \frac{\text{NO}_3 + \text{NH}_4}{\text{NO}_3 + \text{NH}_4 + K_\text{N}} \times \frac{\text{PO}_4}{\text{PO}_4 + K_{\text{PO}_4}} \\ &\times \frac{DSi}{DSi + K_{\text{Si}}} \end{aligned}$	$\begin{aligned} &\text{GPP} = P_{max}^B(T) \times \text{nlim} \times \text{phytoplankton} \\ \times \int_H^0 1 - \exp\left(-\frac{\alpha}{P_{\max}^B(T)} \times I(0) \times \exp(-K_D \cdot H)\right) \mathrm{d}z \\ &P_{max}^B \text{: photosynthesis rate} \\ &\text{nlim: Nutrient limitation for phytoplankton growth} \end{aligned}$	GPP refers to the total rate of organic carbon production by phytoplankton based on the rate of photosynthesis $I(0)$: solar radiation K_D : Light extinction coefficient H: water depth
Net primary production (NPP)	NPP is the rate of phytoplankton produces biomass which already subtract the respiration of primary producers, including: $k_{\rm excr}$ phytoplankton excretion $k_{\rm maint}$ phytoplanktonic maintenance	$\begin{aligned} \text{NPP} &= \frac{\text{GPP}}{H} \times (1 - k_{\text{excr}}) \times \left(1 - k_{\text{growth}}\right) \\ &- k_{\text{maint}}\left(T\right) \times \text{phytoplankton} \\ k_{\text{growth}} &\text{growth constants of phytoplankton} \end{aligned}$	NPP is GPP minus the autotrophs' respiration rate (i.e., only by the primary producers).
Nitrification	$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$	$N = k_{\rm nit}(T) \times \frac{{\rm NH_4}}{{\rm NH_4} + K_{\rm NH_4}} \times \frac{{\rm O_2}}{{\rm O_2} + K_{{\rm O_2,nit}}}$ $k_{\rm nit}(T) \ {\rm maximum \ rate \ constant}$	Under aerobic conditions, ammonia is oxidized to nitrite and nitrate via nitrification $K_{\mathrm{NH_4}}$ half-saturation constants
Denitrification	$94.4 \text{HNO}_3 + (\text{CH}_2\text{O})_{106} (\text{NH}_3)_{16} (\text{H}_3\text{PO}_4) \\ \rightarrow 106 \text{CO}_2 + 55.2 \text{N}_2 + \text{H}_3 \text{PO}_4 + 177.2 \text{H}_2 \text{O}$	$D = k_{\text{denit}} (T) \times \frac{\text{TOC}}{\text{TOC} + K_{\text{TOC}}} \times \frac{\text{NO}_3}{\text{NO}_3 + K_{\text{NO}_3}} \times \frac{K_{\text{in,O}_2}}{\text{O}_2 + K_{\text{in,O}_2}}$	Under anaerobic conditions, nitrate is reduced to gas forms as N_2 , N_2O while organic P is degraded to
Aerobic degradation (respiration)	$\begin{aligned} &1380_2 + (\mathrm{CH_2O})_{106} (\mathrm{NH_3})_{16} (\mathrm{H_3PO_4}) \\ &\rightarrow 106\mathrm{CO_2} + 16\mathrm{HNO_3} + \mathrm{H_3PO_4} + 122\mathrm{H_2O} \end{aligned}$	$R = k_{\rm OX}(T) \cdot \frac{\rm TOC}{\rm TOC} + K_{\rm TOC} \cdot \frac{\rm O_2}{\rm O_2 + K_{\rm O_2,ox}}$	inorganic PO ₄ ³ Degradation of organic carbon in the aerobic condition that converts into inorganic matters
Phytoplankton = NPP - Ph	ytoplankton mortality	$TOC = Phytoplankton\ mortality - Aerobic\ degradation - Denitrification$	
$\mathrm{DSi} = \mathrm{NPP}$ of $\mathrm{Diatom} = \mathrm{NPP}$ x Redfield ratio for silica (15/106)		$O_2 = Oxygen \ air \ exchange + NPP - Aerobic \ degradation - Nitrification$	
$\mathrm{NH_{4}^{+}}=\mathrm{Aerobic}$ degradation		PO_4^{3-} = Aerobic degradation + Denitrification	on – NPP _{PO4} – PO4 adsorption
$NO_{3}^{-} = Nitrification - Denit$	rification – NPP _{NO3}		