Bài 1. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT

CHUYÊN ĐỀ 1: PHƯƠNG TRÌNH MỮ

A. KIẾN THỰC SÁCH GIÁO KHOA CẦN CẦN NẮM

1. Phương trình mũ cơ bản $a^x = b (a > 0, a \neq 1)$.

- $\ensuremath{ \bigcirc}$ Phương trình có một nghiệm duy nhất $x = \log_a b$ khi b > 0.
- \bigcirc Phương trình vô nghiệm khi $b \leq 0$.

2. Biến đổi, quy về cùng cơ số

$$a^{f(x)} = a^{g(x)} \Leftrightarrow a = 1$$
 hoặc
$$\begin{cases} 0 < a \neq 1 \\ f(x) = g(x). \end{cases}$$

3. Đặt ẩn phụ

$$f[a^{g(x)}] = 0, (0 < a \neq 1) \Leftrightarrow \begin{cases} t = a^{g(x)} > 0 \\ f(t) = 0. \end{cases}$$

Ta thường gặp các dạng:

- $oldsymbol{\odot} m.a^{f(x)} + n \cdot b^{f(x)} + p = 0, \text{ trong d\'o } a.b = 1.$ Đặt $t = a^{f(x)}(t > 0), \text{ suy ra } b^{f(x)} = \frac{1}{t}.$

4. Logarit hóa

5. Sử dụng tính đơn điệu của hàm số

 \odot Tính chất 1. Nếu hàm số y = f(x) luôn đồng biến (hoặc luôn nghịch biến) trên (a;b) thì số nghiệm của phương trình f(x) = k trên (a;b) không nhiều hơn một và

$$f(u) = f(v) \Leftrightarrow u = v, \forall u, v \in (a; b).$$

 \odot Tính chất 2. Nếu hàm số y = f(x) liên tục và luôn đồng biến (hoặc luôn nghịch biến) trên D; hàm số y = g(x) liên tục và luôn nghịch biến (hoặc luôn đồng biến) trên D thì số nghiệm trên D của phương trình f(x) = g(x) không nhiều hơn một.

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

🖒 Dạng 1. Phương trình mũ cơ bản

Phương pháp: $a^{f(x)} = b$.

Nếu b < 0 thì phương trình vô nghiệm.

Nếu b > 0 thì phương trình có nghiệm duy nhất $f(x) = \log_a b$.

1. Các ví du

VÍ DỤ 1. Giải phương trình: $2^{2x-1} = 3$.

VÍ DỤ 2. Giải phương trình: $\left(\frac{1}{2}\right)^{x^2-3x+1}=2.$

VÍ DỤ 3. Giải phương trình: $2^{x^2+3x-2} = \frac{1}{4}$.

VÍ DU 4. Giải phương trình sau: $5^x \cdot 2^{2x-1} = 50$.

	ш	CK	NI	\frown	15
64	UI	\sim r	- 17	U	Е

2. Câu hỏi trắc nghiệm

CÂU 1. Tính tổng tất cả các nghiệm thực của phương trình $2^{2x^2-7x+5}=1$.

🗭 Lời giải.

CĂU 2. Tìm tập nghiệm S của phương trình $3^{x^2-3x+4} = 9$.

A. $S = \{-2, 1\}.$

B. $S = \{-1, 3\}.$

C. $S = \{1, 2\}.$

🗭 Lời giải.

CÂU 3. Phương trình $(2+\sqrt{3})^{x^2-2x-2} = 7-4\sqrt{3}$ có hai nghiệm x_1, x_2 . Tính $P=x_1+$

A. P = -1.

B. P = 4.

C. P = 3.

🗭 Lời giải.

CAU 4. Tìm nghiệm của phương trình $2^{x+1} \cdot 5^x = 200$.

A. x = 3.

B. $x = \log_2 5$.

D. $x = \log_5 2$.

🗭 Lời giải.

CÂU 5. Nghiệm của phương trình $3^{2x-1} = 243$ là

A. x = 1.

B. x = 3.

D. x = 2.

🗭 Lời giải.

CÂU 6. Gọi x_1, x_2 là nghiệm của phương trình $8^{x^2+6x-3} = 4096$, giá trị của $x_1 \cdot x_2$ là bao nhiêu?

A. 7.

B. 9.

🗩 Lời giải.

CÂU 7. Biết phương trình $9^x - 2^{x+\frac{1}{2}} = 2^{x+\frac{1}{2}} - 3^{2x-1}$ có nghiệm là a. Khi đó biểu thức $a + \frac{1}{2}\log_{\frac{9}{2}}2$ có giá trị bằng

A. $1 - \frac{1}{2} \log_{\frac{9}{2}} 2$.

B. 1.

C. $1 - \log_{\frac{9}{2}} 2$. **D.** $\frac{1}{2} \log_{\frac{9}{2}} 2$.

🗭 Lời giải.

CÂU 8. Tập hợp nghiệm của phương trình $3^{x^2-x-4} = \frac{1}{81}$ là

A. {0; 4}.

D. {0; 1}.

CÂU 9.	Phương trình 3^{x^2-5}	-81 = 0 có hai	nghiệm $x_1; x_2$.	Tính giá trị của tích x_1x_2
A. -	9. B.	9.	C. 29.	D. -27 .

A. −9. 🗩 Lời giải. **C.** 29. **D.** -27.

CÂU 10. Cho phương trình $3^{x^2-4x+5}=9$ tổng lập phương các nghiệm thực của phương trình là

A. 28.

B. 27.

C. 26.

D. 25.

🗩 Lời giải.

CÂU 11. Tính tổng T tất cả các nghiệm của phương trình $(x-3)^{2x^2-5x}=1$. **A.** T=0. **B.** T=4. **C.** $T=\frac{13}{2}$. **D.** $T=\frac{15}{2}$.

🗭 Lời giải.

Dạng 2. Phương pháp đưa về cơ số

Phương pháp: Biến đổi phương trình về dạng: $a^{f(x)} = a^{g(x)}$ (1).

+ Nếu cơ số a là một số dương và khác 1 thì: (1) $\Leftrightarrow f(x) = g(x)$.

+ Nếu cơ số a thay đổi thì: (1) \Leftrightarrow $\begin{cases} a > 0 \\ (a-1)[f(x) - g(x)] = 0. \end{cases}$

1. Các ví du

VÍ DU 5. Giải phương trình sau: $2^{x^2-x+8} = 4^{1-3x}$.

VÍ DỤ 6. Giải phương trình sau: $2^{x^2-6x-\frac{5}{2}}=16\sqrt{2}$.

VÍ DU 7. Giải phương trình sau: $2^{x+1} + 2^{x-2} = 36$.

VÍ DU 8. Giải phương trình sau: $2 \cdot 3^{x+1} - 6 \cdot 3^{x-1} - 3^x = 9$.

VÍ DỤ 9. Giải phương trình sau: $2^{x^2-6} \cdot 3^{x^2-6} = \frac{1}{6^5} \cdot (6^{x-1})^4$.

VÍ DU 10. Giải phương trình sau: $2^{x^2-1} - 3^{x^2} = 3^{x^2-1} - 2^{x^2+2}$.

2. Câu hỏi trắc nghiêm

CÂU 12. Tìm nghiệm của phương trình $3^{x-4} = \left(\frac{1}{9}\right)^3$

CÂU 13. Tìm nghiệm của phương trình $\left(\frac{1}{25}\right)^{x+1}=125^{2x}.$

A. 1.

🗭 Lời giải.

CÂU 14. Tìm nghiệm của phương trình $8^{\frac{2x-1}{x+1}} = 0, 25 \cdot (\sqrt{2})^x$.

A. $x = \frac{15 \pm \sqrt{217}}{15}$.

B. $x = \frac{17 \pm \sqrt{215}}{2}$. **C.** $x = 15 \pm \sqrt{217}$. **D.** $x = 17 \pm \sqrt{215}$.

CÂU 15. Tìm nghiệm của phương trình $\frac{3^{2x-6}}{27}$

A. x = 5.

D. x = 2.

Dèi giải.

CÂU 16. Tìm nghiệm của phương trình $2^x = (\sqrt{3})^x$.

A. x = 3.

B. x = 5.

D. x = 0.

🗭 Lời giải.

CÂU 17. Tìm nghiệm của phương trình $(\sqrt{2}-1)^{x^2}=(\sqrt{2}+1)^{2x+1}$.

A. x = -1.

B. x = 1.

🗩 Lời giải.

CÂU 18. Tìm nghiệm của phương trình $2^x + 2^{x+1} + 2^{x+2} = 21$.

A. $x = \log_3 2$.

B. $x = \log_2 3$.

D. x = 3.

Dèi giải.

CÂU 19. Tìm nghiệm của phương trình $\frac{2 \cdot 3^x - 2^{x+2}}{3^x - 2^x} = 1$. **A.** $x = \log_{\frac{2}{3}} 3$. **B.** $x = \log_{\frac{2}{3}} 2$. **C.** $x = \log_{\frac{3}{2}} 3$.

CÂU 20. Nghiệm của phương trình $\left(\frac{2}{3}\right)^{2x-1} = \left(\frac{9}{4}\right)^{2x+3}$ là

A.
$$x = -\frac{5}{6}$$

B.
$$x = \frac{2}{3}$$
.

C.
$$x = 3$$
.

C.
$$x = 3$$
. **D.** $x = \frac{5}{2}$.

CÂU 21. Phương trình $0,125 \cdot 4^{x+4} = \left(\frac{\sqrt{2}}{4}\right)^{-4x+2}$ có nghiệm là **C.** x = -2.

A.
$$x = 2$$
.

B.
$$x = 1$$
.

C.
$$x = -2$$

D.
$$x = -1$$
.

🗩 Lời giải.

Dạng 3. Phương pháp đặt ấn phụ

Phương pháp: $f\left[a^{g(x)}\right] = 0$, $(0 < a \neq 1) \Leftrightarrow \begin{cases} t = a^{g(x)} > 0 \\ f(t) = 0. \end{cases}$

Ta thường gặp các dạng:

$$oldsymbol{o} m.a^{2f(x)} + n \cdot a^{f(x)} + p = 0.$$

$$\textcircled{o} \ m.a^{f(x)} + n \cdot b^{f(x)} + p = 0, \, \text{trong d\'o} \ a.b = 1. \ \text{D\'at} \ t = a^{f(x)}(t>0), \, \text{suy ra} \ b^{f(x)} = \frac{1}{t}.$$

$$\textcircled{o} \ m.a^{2f(x)} + n \cdot (a \cdot b)^{f(x)} + p \cdot b^{2f(x)} = 0. \text{ Chia hai v\'e cho } b^{2f(x)} \text{ và dặt } t = \left(\frac{a}{b}\right)^{f(x)} > 0.$$

1. Các ví du

VÍ DU 11. Giải các phương trình sau: $3^{2x+8} - 4 \cdot 3^{x+5} + 27 = 0$.

VÍ DU 12. Giải các phương trình sau: $25^x - 2 \cdot 5^x - 15 = 0$.

VÍ DU 13. Giải các phương trình sau: $3^{x+2} - 3^{2-x} = 24$.

VÍ DU 14. Giải phương trình sau:

a)
$$6.9^x - 13 \cdot 6^x + 6 \cdot 4^x = 0$$
.

b)
$$2 \cdot 2^{2x} - 9 \cdot 14^x + 7 \cdot 7^{2x} = 0$$
.

c)
$$25^x + 10^x = 2^{2x+1}$$
.

VÍ DU 15. Giải phương trình sau: $(2 + \sqrt{3})^x + (2 - \sqrt{3})^x = 4$.

2. Câu hỏi trắc nghiêm

CÂU 22. Tìm nghiệm của phương trình $9^x - 3 \cdot 3^x + 2 = 0$. **A.** $\begin{bmatrix} x = 0 \\ x = \log_2 3 \end{bmatrix}$ **B.** $\begin{bmatrix} x = 0 \\ x = \log_3 2 \end{bmatrix}$ **C.** $\begin{bmatrix} x = 0 \\ x = -\log_2 3 \end{bmatrix}$ **D.** $\begin{bmatrix} x = 0 \\ x = -\log_3 3 \end{bmatrix}$

$$\begin{bmatrix} x = 0 \\ x = \log_3 2 \end{bmatrix}.$$

🗭 Lời giải.

CÂU 23. Biết phương trình $4^x - 2^{x+1} - 3 = 0$ có duy nhất một nghiệm là a. Tính P = $a \log_3 4 + 1$.

A. P = 2.

B. P = 4.

C. P = 3.

D. P = 5.

\frown	ш	ICK	/ N		те
ы	u		V IV	U	16

CÂU 24. Cho phương trình $4^x + 2^{x+1} - 3 = 0$. Khi đặt $t = 2^x$, ta được phương trình nào dưới đây?

- **A.** $2t^2 3 = 0$.
- **B.** $t^2 + t 3 = 0$.
- **C.** 4t 3 = 0.
- **D.** $t^2 + 2t 3 = 0$.

Dèi giải.

CÂU 25. Tìm nghiệm của phương trình $e^{6x} - 3 \cdot e^{3x} + 2 = 0$

$$\mathbf{A.} \quad \begin{bmatrix} x = 0 \\ x = \frac{1}{3} \ln 2 \end{bmatrix}$$

$$\begin{bmatrix} x = -1 \\ x = \frac{1}{3} \ln 2 \end{bmatrix}.$$

CĂU 26. Số nghiệm của phương trình $7^{2x+1} - 8 \cdot 7^x + 1 = 0$ là

- **A.** 0.
- **B.** 2.
- **D.** 3.

🗭 Lời giải.

CAU 27. Gọi x_1, x_2 là hai nghiệm thực của phương trình $(2 + \sqrt{3})^x + 2(2 - \sqrt{3})^x = 3$.

- $Tinh P = x_1 + x_2.$ **A.** $P = \log_{2+\sqrt{3}} 2$.
- **B.** P = 0.
- **C.** $P = \log_{2-\sqrt{3}} 2$.

🗩 Lời giải.

CÂU 28. Gọi x_1, x_2 là hai nghiệm thực của phương trình $\left(5 - \sqrt{21}\right)^x + 7\left(5 + \sqrt{21}\right)^x =$ 2^{x+3} .

Tính $P = x_1 + x_2$.

A.
$$P = \log_{\frac{5+\sqrt{21}}{2}} 7$$
. **B.** $P = -8$.

B.
$$P = -8$$
.

- **C.** P = 8.
- **D.** $P = \log_{\frac{5-\sqrt{21}}{2}} 7.$

				QUICK NOTE
CÂU 29. Số nghiệm của	phương trình $6.9^{\frac{1}{x}}$	$1 - 13 \cdot 6^{\frac{1}{x}} + 6 \cdot 4^{\frac{1}{x}} =$	= 0 là	
A. 3. © Lời giải.	B. 2.	C. 1.	D. 0.	
,5 101 g.a				
			•••••	
CÂU 30. Số nghiệm của	a phương trình 3.8^x	$+4\cdot 12^x - 18^x - 2$	$27^x = 0$ là	
A. 1.	B. 2.	C. 0.	D. 3.	
🗩 Lời giải.				
CÂU 31. Gọi x_1, x_2 là h	ai nghiệm của phươ	ong trình: $2^{2x^4+4x^2}$	$^{6} - 2 \cdot 2^{x^{4} + 2x^{2} - 3} + 1 = 0.$	
Tính $P = x_1 \cdot x_2$. A. $P = -9$.	B. $P = -1$.	C D = 1	D. $P = 9$.	
A. P = −9. D Lời giải.	P = -1.	P = 1.	P = 9.	
CÂU 22 Tìm nghiệm c	åa nhương trình 9 s	$\sin^2 x \cos^2 x 2$. 0	
CÂU 32. Tìm nghiệm c A. $x = (2k + 1)\pi$.	B. $x = - + k2\pi$	$-z$ $-s$ $=$ $x = -k\pi$	$\mathbf{D}, \ \ r = k\pi$	
$x = (2\kappa + 1)\kappa$. ∞ Lời giải.	$\omega = \frac{1}{2}$	$\frac{2}{2}$ $\frac{1}{2}$	$\omega - m \kappa$.	
- Lui giui.				

TRƯỜNG THPT SỐ 1 TUY PHƯỚC	C ♥
QUICK NOTE	
	CÂU 33. Tìm nghiệm của phương trình: 4^{x^2}
	A. $\begin{bmatrix} x=1 \\ x=2 \end{bmatrix}$ B. $\begin{bmatrix} x=-1 \\ x=1 \end{bmatrix}$
	₽ Lời giải.
	CÂU 34. Cho phương trình $3^{1+x} + 3^{1-x} = 10^{-x}$
	A. Phương trình có hai nghiệm âm.C. Phương trình có hai nghiệm dương.
	D Lời giải.
	CÂU 25 Tim nabiêm của nhương thình (1)
	CÂU 35. Tìm nghiệm của phương trình $\left(\frac{1}{2}\right)$
	A. $x = -1$. B. $x = \log_2 5$. D. D. D. D. D. D. D. D.
	De Loi giui.
	CÂU 36. Số nghiệm của phương trình 4^{2x^2} –
	A. 3. B. 2.
	₽ Lời giải.
	CÂU 37. Tích các nghiệm thực của phương t
	A. −3. B. −1.
	🗩 Lời giải.
	CÂU 38. Số nghiệm của phương trình $12 \cdot 9^x$
	A 0

. Khẳng đinh nào dưới dây là đúng?

- B. Phương trình vô nghiệm.
 - - D. Phương trình có hai nghiệm trái dấu.

- $-2 \cdot 4^x 3(\sqrt{2})^{2x} = 0.$
 - **C.** x = 0. **D.** $x = \log_2 3$.

- $2 \cdot 4^{x^2 + x} + 4^{2x} = 0$ là **D.** 4.

rình $2^{2x^4+2x^2-4} - 2^{x^4+x^2-1} + 1 = 0$ là

 $-35 \cdot 6^x + 18 \cdot 4^x = 0$ là

C. 1. 🗩 Lời giải.

CÂU 39. Phương trình $(3+2\sqrt{2})^x + (3-2\sqrt{2})^x = 6$ có nghiệm là **A.** $x=\pm 1$.

C. $x = \pm 2$.			
🗭 Lời giải.			
CÂU 40. Gọi x_1, x_2 là 2 nghiệm của y_1	phương trình $4^x - 3 \cdot 2^x + 2 = 0$ với $x_1 < x_2$.		
Tính giá trị $P = 2x_2 - x_1$.			
A. $P = 3$. B. $P = 1$. D. Lời giải.	C. $P = 2$. D. $P = -1$.		
Loi giai.			
	$+1 = 0$ có hai nghiệm x_1, x_2 trong đó $x_1 < x_2$, chọn		
phát biểu đúng? A. $x_1 + x_2 = -2$. B. $x_1x_2 = -$	-1. C. $2x_1 + x_2 = 0$. D. $x_1 + 2x_1 = -1$.		
A. $x_1 + x_2 = -2$. B. $x_1x_2 = -2$. D. Lời giải.	$2x_1 + x_2 = 0. x_1 + 2x_1 = -1.$		
,			
	$5^{1-x} = 12$. Khẳng định nào sau đây là khẳng định		
dúng?	a và mat mahiana dugan a		
A. Phương trình có một nghiệm âmB. Phương trình có hai nghiệm âm			
C. Phương trình vô nghiệm.	•		
D. Phương trình có hai nghiệm dươ	ing.		
🗩 Lời giải.			
	$5^{1+x^2}-5^{1-x^2}=24$ đồng thời cũng là nghiệm của		
phương trình nào sau đây?	5 - 5 = 24 dong thời cũng là nghiệm của		
A. $x^2 + 5x - 6 = 0$.	B. $x^4 + 3x^2 - 4 = 0$.	•••••	
$\mathbf{C.} \ \sin^2 x + 2\sin x - 3 = 0.$	D. $x^2 + 1 = 0$.		
🗭 Lời giải.			

QI	ш	\frown	.	NI	\frown	•	П
- WI		ι.	ĸ	IN	w		н
	УЦ	\mathbf{v}		ш	\mathbf{v}		Ľ

CÂU 44. Phương trình $3^{1-x}=2+\left(\frac{1}{9}\right)^x$ có bao nhiều nghiệm âm? **A.** 3. **B.** 1. **C.** 2.

🗩 Lời giải.

🗭 Lời giải.

CÂU 45. Số nghiệm của phương trình $9^{\frac{x}{2}} + 9 \cdot \left(\frac{1}{\sqrt{3}}\right)^{2x+2} - 4 = 0$ là **A.** 2. **B.** 4. **C.** 1. **D.** 0.

CÂU 46. Tổng lập phương các nghiệm của phương trình $2^x + 2 \cdot 3^x - 6^x = 2$ là **A.** $2\sqrt{2}$. **B.** 25. 🗩 Lời giải.

Dạng 4. Logarit 2 vế

VÍ DỤ 16. Giải phương trình sau: $8^x \cdot 5^{x^2-1} = \frac{1}{8}$.

VÍ DU 17. Giải phương trình sau: $3^x \cdot 2^{x^2} = 1$.

1. Câu hỏi trắc nghiệm

CÂU 47. Tìm nghiệm của phương trình $5^{x-2} \cdot 8^{\frac{x-1}{x}} = 20$. **A.** $\begin{bmatrix} x = 2 \\ x = -\log_2 5 \end{bmatrix}$ **B.** $\begin{bmatrix} x = 3 \\ x = -\log_5 2 \end{bmatrix}$ **C.** $\begin{bmatrix} x = 2 \\ x = -\log_5 3 \end{bmatrix}$

A.
$$\begin{bmatrix} x=2\\ x=-\log_2 5 \end{bmatrix}$$
 \bigcirc Lời giải.

$$\begin{vmatrix} x = 3 \\ x = -\log_5 2 \end{vmatrix}$$

$$\begin{bmatrix} x = 3 \\ x = \log_5 3 \end{bmatrix}$$

CÂU 48. Tìm nghiệm của phương trình $3^{x-1} \cdot 5^{\frac{2x-2}{x}} = 15$. **A.** x = 1. **B.** $\begin{bmatrix} x = 2 \\ x = -\log_5 3 \end{bmatrix}$. **C.** x = 4.

A.
$$x = 1$$

$$\begin{bmatrix} x = 2 \\ x = 1 \end{bmatrix}$$

C.
$$x = 4$$
.

$$\begin{bmatrix} x = 3 \\ x = \log x \end{bmatrix}$$

🗩 Lời giải.

CÂU 49. Phương	$g trình 2^x \cdot 3^{\frac{2x-1}{x}} = 6$	có một nghiệm dạng :	$x = -\log_a b,$	với a, b là các số
nguyên dương lớn	hơn 1 và nhỏ hơn 8. l	Khi đó $P = a + 2b$ có	giá trị bằng	
A. 9.	B. 6.	C. 7.	D.	8.
🗩 Lời giải.				

QUICK NOTE					
	CÂU 50. Phương t	$\sinh 3^x \cdot 5^{\frac{2x-2}{x}} = 45 \text{ c}$	ó một nghiệm dang :	$x = -\log_a b$, với a , b là các s	số
		ơn 1 và nhỏ hơn 6. Kl			
	A. 7.	B. −1.	C. 1.	D. 2.	
	🗭 Lời giải.				
•••••					
•••••					
	2	Dạng 5. Sử dụng	tính đơn điệu củo	ı hàm sô	
	Phương pháp: Sử	dung tính đơn điệu c	rủa hàm số mũ nhẩ	m nghiệm và sử dụng tính	
				ng công cụ đạo hàm).	
	Ta thường sử dụng	g các tính chất sau:			
		Nếu hàm số f tăng (1	hoặc giảm) trong kh	pang(a;b) thì phương trình	
	$f(x) = C \operatorname{co}$	không quá một nghiện	m trong khoảng $(a; b)$). (do đó nếu tồn tại $x_0(a;b)$	
	sao cho $f(x_0)$	$(0) = C \text{ thì d\'o là nghiệ}$	m duy nhất của phu	fong trình $f(x) = C$).	
	❷ Tính chất 2:	Nếu hàm f tăng tron	ng khoảng $(a;b)$ và h	àm g là hàm một hàm giảm	
				niều nhất một nghiệm trong	
). (do đó nêu tôn tại a phương trình $f(x)$ =		$g(x_0) = g(x_0)$ thì đó là nghiệm	
	duy imat cua	a photong trimi $f(x)$ -	=g(x)).		
	1. Các ví dụ				
	•				
	VI DŲ 18. Giải các	e phương trình sau: 3°	$x + 4^x = 5^x.$		
	2. Câu hỏi trắc	c nghiêm			
		n của phương trình 3	$-x = \frac{x}{2} + 1$ là		
	A. 2.	B. 0.	3 C. 1.	D. 3.	
	₽ Lời giải.	 0.	1.	.	
	CÂLIES Co: M 12	tổng tất cả các nglia	m ala nhươn m thì - 1-	7x + 9x = 9 + 7x The second is	 :
	$\operatorname{của} M$.	tong tat ca cac ngniệ	an cua phương trình	$7^x + 2^x = 2 + 7x$. Tìm giá t	ιj
	A. $M = -1$.	B. $M = -3$.	C. $M = 1$.	D. $M = 3$.	
	🗭 Lời giải.				

	ICK	NIC	\
ผม	IC_K	NC	лн

 •
 •

CÂU 56. Tìm m để phương trình $9^x - 2 \cdot 3^{x+1} + m = 0$ có hai nghiệm thực x_1, x_2 thỏa

- m=3. m=3.
- **B.** m = -3.
- **D.** m = 6.

CÂU 57. Tìm m để phương trình $5^{x^2+2mx+2}-5^{2x^2+4mx+m+2}=x^2+2mx+m$ có nghiêm.

- $m \leq 0, m \geq 1.$

Thi: $x^2 + 2mx + m = 0$ có nghiện $\rightleftharpoons \Delta$

VT>1-50=0> VP => pt 5 my

CÂU 58. Phương trình $\left(\frac{2}{3}\right)^{2x+4m} = \left(\frac{9}{4}\right)^x$ (m là tham số) có nghiệm là

A. x = 2m.

CÂU 59. Phương t	trình $9\left(\frac{9}{25}\right)^{2x+m} =$	$=25\left(\frac{5}{3}\right)^{-2x}$	(m là tham số) có nghiệm là
-------------------------	---	-------------------------------------	-----------------------------

A. x = m - 3. 🗩 Lời giải.

B. x = m + 1.

C. x = -m - 1.

D. x = 2m - 4.

CÂU 60. Tìm m để phương trình 2^{2x-}

-1 < m < 3.

🗩 Lời giải.

CÂU 61. Tìm m để phương trình $2^{x^2+1} - m^2 - m = 0$ có nghiệm.

A. -1 < m < 0.

C. $-2 \le m \le 1$.

CÂU 62. Tìm m để phương trình $2^{\sqrt{x-1}} + 2m^2 - 3m = 0$ có nghiệm.

A. $0 \le m \le \frac{3}{2}$. 🗩 Lời giải.

c. $\frac{1}{2} < m < 1$.

CÂU 63. Tìm m để tập nghiệm của phương trình sau có <u>đúng</u> 1 phần tử $4^x + m \cdot 2^{x+1} + m \cdot 2$

A. m < -2.

C. -1 < m < 2.

D. m < -2.

m + 2 = 0.

 $t=2^{2}>0$, $t^{2}+2mt+m+2=0$

home is ytep to >0 home co 2 mpb to <0 < to home to =0 <

m + 2 = 0 (the f = 0)

			• • • • • • • • • • • • • • • • • • • •	QUICK NOTE
CÂU 65. Tìm m để ph	hương trình sau có 4	nghiệm phân biệt: 2^{2a}	$x^2 - 2^{x^{2+2}} + m = 0.$	
A. $\begin{cases} 0 < m < 4 \\ m \neq 2 \end{cases}$.	B. $3 < m < 4$.	C. $0 < m < 4$.	D. $m < 4$.	
$m \neq 3$ P Lời giải.				
CÂU 66 Tìm tất cả m	ić tri aša tham aấ m	để nhương trình, $22x+$	$-1 - 10 \cdot 3^x + m = 0$ có hai	
nghiệm phân biệt x_1, x_2			$-10 \cdot 3^n + m = 0 \text{ co nar}$	
A. $m = 1$.		C. $m = -1$.	D. $m = 3$.	
🗭 Lời giải.				
			$-m \cdot 2^x + 2m = 0 \text{ c\'o hai}$	
nghiệm phân biệt x_1, x_2			D 17h 2	
A. $m=4$. \bigcirc Lời giải.	B. $m=2$.	C. $m = 1$.	D. Không có m .	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	QUICK NOTE
Lip BBT $f(x) = (2^x + 3^x), (x^3 + 3x - 1)$	
$\hat{\mathbf{CAUZO}}$ Characteristics of	
CÂU 70. Số nguyên dương lớn nhất để phương trình $25^{1+\sqrt{1-x^2}}-(m+2)\cdot 5^{1+\sqrt{1-x^2}}+2m+1=0$ có nghiệm là	
A. 20. B. 25. C. 30. D. 35.	
🗩 Lời giải.	
+- 5-1+V1-X ²	
$t = 5^{-1+\sqrt{1-x^2}}$	
$0 \le \sqrt{1-x^2} \le 1 \Rightarrow 5 \le t < 5^2$	
$0 \le \sqrt{1-x^2} \le 1 \Rightarrow 5 \le t < 5^2$	Γ 5 ; 52]
$t = 5^{1+11-x^2}$ $t = 5^{1+11-x^2}$ $(1-x^2 \le 1) \Rightarrow 5 \le t \le 5^2$ $y(t) = t^2 - (m+2)t + 2m+1 = 0 \text{ of yhigh } t \in [m+2]$	[5)5 ²]
$0 \le \sqrt{1-x^2} \le 1 \Rightarrow 5 \le t < 5^2$	[5)5°]
$0 \le \sqrt{1-x^2} \le 1 \Rightarrow 5 \le t < 5^2$	[5)5 ²]
$0 \le \sqrt{1-x^2} \le 1 \Rightarrow 5 \le t < 5^2$	[5)5 ²]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5) 5°]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5) 5 ²]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5:52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5:52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5:52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5) 52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5:52]
$0 \le \sqrt{1-z^2} \le 1 \implies 5 \le t \le 5^{2}$ yett = $(m+2) + 2m+1 = 0$ co yhuein $t \in $	[5)52]

\sim 11	ICK	/ NI	\frown T	
6 U		V IV	UI	

_					
	Dana	7 M	ột số c	dana	khác
	Duily	7. IVI	ا مو اب	aung	KIIGC

CÂU 71. Cho các số thực m, n, p khác 0 và thỏa mãn $4^m = 10^n = 25^p$. Tính $T = \frac{n}{m} + \frac{n}{p}$.

A.
$$T = 1$$
.

B.
$$T = 2$$
.

C.
$$T = \frac{5}{2}$$

D.
$$T = \frac{1}{10}$$

🗭 Lời giải.

$$4^{m} = 10^{n} = 25^{p} = t \Rightarrow \begin{cases} n = \log_{10} t \Rightarrow \frac{1}{n} = \log_{10} t \\ p = \log_{5} t \end{cases} \Rightarrow \begin{cases} \frac{1}{n} = \log_{10} t \Rightarrow \frac{1}{n} = \log_{10} t \end{cases}$$

$$T = \frac{n}{m} + \frac{n}{p} = \frac{\log_{t} + \log_{t} 25}{\log_{t} 10} + \frac{\log_{t} 25}{\log_{t} 10} = \log_{t} 4 + \log_{t} 25 = \log_{t} 100 = 2$$

CÂU 72. Cho x, y, z là các số thực khác 0 và thỏa mãn $2^x = 3^y = 6^{-z}$. Tính giá trị của biểu thức Q = xy + yz + zx.

A.
$$Q = 3$$
.

B.
$$Q = 6$$
.

C.
$$Q = 0$$
.

D.
$$Q = 1$$
.

Dài giải.

CÂU 73. Biết rằng phương trình $2^{x^2-1}=3^{x+1}$ có hai nghiệm thực $x_1,\,x_2.$ Tính giá trị của

biểu thức $M = x_1 + x_2 + x_1 \cdot x_2$. **A.** M = -1.

B.
$$M = -1 + 2\log_2 3$$
.

C.
$$M = 1 + \log_2 3$$
.

D.
$$M = 1$$
.

🗭 Lời giải.

giui.	2	1 /		N) 🥝	
			2+1	ノイ	د روم	

CÂU 74. Phương trình $6^x+6=3^{x+1}+2^{x+1}$ có hai nghiệm thực x_1, x_2 . Tính $M=x_1\cdot x_2$.

A. $M = 1$.	B. $M = -1$.	C. $M = \log_2 3$.	D. $M = \log_3 2$.	QUICK NOTE
🗭 Lời giải.				
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
^				
CAU 75. Số nghiện	n của phương trình 8.3			
A. 2. D Lời giải.	B. 3.	C. 1.	D. 0.	
p Lot gran				
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
CÂU 76. Biết rằng	phương trình $2^{x+\sqrt{2x+3}}$	$\sqrt{5} - 2^{1+\sqrt{2x+5}} + 2^{6-x} - 3$	2 = 0 có hai nghiệm thực	
	của biểu thức $M = x_1 \cdot$		D 11 0	
A. $M = -3$. Cap Lời giải.	B. $M = 3$.	C. $M = 2$.	D. $M = -2$.	
p Lor gran.				
	• • • • • • • • • • • • • • • • • • • •			

QUICK NOTE				
••••••				
			- 1	
		g các nghiệm của ph B. 2.	arong trình $5^{x-1} + 5 \cdot ($	
	A. 4. Lời giải.	D. 2.	C. 1.	D. 3.
	J 201 3 10			
	CÂU 78. Số nghiện	n của phương trình	$4^{x^2+x} + 2^{1-x^2} = 2^{(x+1)}$	$y^2 + 1$ là
	A. 3.	B. 2.	C. 1.	D. 4.
	🗩 Lời giải.			
	D > 1 E DI	UVONIO TDÌA		IVONO TRÌVIII
	Bai 5. Ph	HUONG IRI	NH MU VA PH	UONG TRÌNH
			LOGARII	
	C	HUYÊN ĐỀ 2: P	HƯƠNG TRÌNH L	OGARIT
	A. KIÊN THI	<mark>ức sách gi</mark> á	ÁO KHOA CẦN	CÂN NĂM
	Điều kiện cho $\log_a f$	$f(x)$ là $\begin{cases} f(x) > 0 \end{cases}$.		
	1. Dạng cơ bả			
	$\log_a f(x) = b \Leftrightarrow f(x)$			
	$\int \log_a f(x) - v \Leftrightarrow f(x)$	j-a.		

2. Biến đổi, quy về cùng cơ số

 $\log_a f(x) = \log_a g(x) \Leftrightarrow f(x) = g(x)$ với f(x) > 0 hoặc g(x) > 0.

3. Đặt ấn phu

Đặt $t = \log_a f(x)$ với a và f(x) thích hợp để đưa phương trình logarit về phương trình đại số đối với t.

4. Logarit hóa

$$\log_a g(x) = f(x) \left(0 < a \neq 1 \right) \Leftrightarrow \begin{cases} g(x) > 0 \\ g(x) = a^{f(x)}. \end{cases}$$

5. Sử dụng tính đơn điệu của hàm số

🗁 Dạng 8. Phương trình logarit cơ bản và phương pháp mũ hóa

Phương pháp:

B1: Tìm điều kiện có nghĩa.

B2: $\log_a f(x) = b \Leftrightarrow f(x) = a^b$.

1. Các ví du

VÍ DU 23. Tập nghiệm của phương trình $\log_2(3x-7)=3$ là

VÍ DU 24. Phương trình $\log_2(x^2 + 2x + 1) = 0$ có bao nhiều nghiệm?

VÍ DU 25. Giải phương trình sau $\log_2[x \cdot (x-1)] = 1$.

VÍ DU 26. Giải phương trình sau $\log_3(2x+1) - \log_3(x-1) = 1$.

VÍ DU 27. Giải phương trình $\log_3(x+2) = 1 - \log_3 x$.

VÍ DU 28. Giải phương trình $\log_2 (5 - 2^x) = 2 - x$.

VÍ DU 29. Biết phương trình $\log_3(3^{x+1}-1)=2x+\log_32$ có hai nghiệm x_1,x_2 . Tính tổng $S = 27^{x_1} + 27^{x_2}.$

2. Câu hỏi trắc nghiệm

CÂU 79. Nghiệm của phương trình $\log_3(2x+3)=3$ là

A. x = 3.

B. x = 12.

D. x = 6.

🗭 Lời giải.

CÂU 80. Phương trình $\ln x + \ln(2x - 1) = 0$ có bao nhiều nghiệm?

A. 0. 🗭 Lời giải.

D. 3.

CÂU 81. Nghiệm của phương trình $\log_2(2-3x)=5$ là

A. x = -10.

B. x=2. **C.** $x=-\frac{8}{3}$. **D.** $x=-\frac{7}{3}$.

🗭 Lời giải.

CAU 82. Số nghiệm của phương trình $\log_2(x^2 - 2x + 4) = 2$ là

D. 3.

QUICK NOTE		
	CÂU 83. Phương trình $\log x + \log(11x - 10) = 3$ có nghiệm là	
	A. 7. B. 8. C. 9. p Lời giải.	D. 10.
	- Eoi giui.	
	CÂU 84. Nghiệm của phương trình $2^{\log_2(x-2)} = x^2 - 2x - 6$ là $x = -1$	$\lceil r - 3 \rceil$
	A. $\begin{vmatrix} x = -1 \\ x = 4 \end{vmatrix}$. B. $x = -1$. C. $x = 4$.	$ \begin{array}{l} \mathbf{D.} & \begin{cases} x = 3 \\ x = 2 \end{cases}. \end{array} $
	🗩 Lời giải.	L. 2
	CÂU 85. Số nghiệm của phương trình $3^{\log_3(x-1)} = x^2 + x - 5$ là	
	A. 1. B. 0. C. 2.	D. 3.
	🗩 Lời giải.	
	CÂU 86. Tập nghiệm của phương trình $\log_6[x(5-x)]=1$ là	
	A. $\{2;3\}$. B. $\{4;6\}$. C. $\{1;-6\}$.	D. $\{-1; 6\}.$
	🗩 Lời giải.	
	CÂU 87. Số nghiệm của phương trình $\log_2(x-3\sqrt{x}+4)=3$ là	
	A. 0. B. 1. C. 2. p Lời giải.	D. 3.
	μ Loi giαi.	
	2 0 . 0	
	CÂU 88. Biết phương trình $\log_{\frac{1}{2}} \frac{x^2 - 3x + 2}{x} = 0$ có hai nghiệm x_1 ,	$,x_{2}.$ Tích của hai nghiệm
	này là số nào dưới đây: $\begin{array}{ccc} & x & \\ \end{array}$	
	A. 4. B. $2\sqrt{2}$. C. 2.	D. 0.
	🗩 Lời giải.	

				• • • • • • • • • • • • • • • • • • • •	
				nực có nghiệm x_1, x_2 thỏa	
	mãn $x_1 < x_2$ thì giá t	- '		D 9	
	A. 1. D Lời giải.	B. 6.	C. 9.	D. 3.	
	Eoi gidi.				
•					
• •					
				1	
	CAU 93. Phương trì mãn $x_1 < x_2$ thì giá t	nn $\log_3 x^2 + 2\log_3(x)$	(x+6) = 4 trên tập số t	hực có nghiệm x_1, x_2 thỏa	
	A. 100^{100} .	B. 162^{50} .	c. 132 ⁵⁰ .	D. 132 ¹⁰⁰ .	
	₽ Lời giải.	·			
••					
• •					
		⊳ Dạng 9.	Đưa về cùng cơ số		
	Phương pháp: \log_a				
	Phương pháp: \log_a		Đưa về cùng cơ số $\begin{cases} f(x) = g(x) \\ f(x) > 0 \left(g(x) > 0\right). \end{cases}$		
	Phương pháp: \log_a 1. Các ví dụ				
	1. Các ví dụ	$f(x) = \log_a g(x) \Leftrightarrow$	$\begin{cases} f(x) = g(x) \\ f(x) > 0 (g(x) > 0) . \end{cases}$		
	1. Các ví dụ VÍ Dụ 30. Giải phư	$f(x) = \log_a g(x) \Leftrightarrow$ ong trình $\log_{\sqrt{5}}(x + x)$	$\begin{cases} f(x) = g(x) \\ f(x) > 0 (g(x) > 0) . \end{cases}$ $-2) = \log_5(4x + 6).$	x. m. = 2	
	1. Các ví dụ VÍ Dụ 30. Giải phư	$f(x) = \log_a g(x) \Leftrightarrow$ ong trình $\log_{\sqrt{5}}(x + x)$	$\begin{cases} f(x) = g(x) \\ f(x) > 0 (g(x) > 0) . \end{cases}$	$g_9 x = 8.$	
	1. Các ví dụ VÍ DỤ 30. Giải phươ VÍ DỤ 31. Tìm số n	$f(x) = \log_a g(x) \Leftrightarrow$ ơng trình $\log_{\sqrt{5}}(x+$ ghiệm của phương t	$\begin{cases} f(x) = g(x) \\ f(x) > 0 (g(x) > 0) . \end{cases}$ $-2) = \log_5(4x + 6).$		
	 Các ví dụ VÍ DỤ 30. Giải phươ VÍ DỤ 31. Tìm số n VÍ DỤ 32. Tính tổng 	$f(x) = \log_a g(x) \Leftrightarrow$ ong trình $\log_{\sqrt{5}}(x + ghiệm của phương tạ giác nghiệm của ph$	$\begin{cases} f(x) = g(x) \\ f(x) > 0 \ (g(x) > 0) \ . \end{cases}$ $-2) = \log_5(4x+6).$ $\text{trình } \log_{\sqrt{3}} x \cdot \log_3 $	$+ 2\log_4 3 \cdot \log_3 x = 2.$	
	 Các ví dụ VÍ DỤ 30. Giải phươ VÍ DỤ 31. Tìm số n VÍ DỤ 32. Tính tổng 	$f(x) = \log_a g(x) \Leftrightarrow$ ong trình $\log_{\sqrt{5}}(x + ghiệm của phương tạ giác nghiệm của ph$	$\begin{cases} f(x) = g(x) \\ f(x) > 0 \ (g(x) > 0) \ . \end{cases}$ $-2) = \log_5(4x + 6).$ $\text{trình } \log_{\sqrt{3}} x \cdot \log_3 x \cdot \log_$	$+ 2\log_4 3 \cdot \log_3 x = 2.$	

2. Câu hỏi trắc nghiện	2.	Câu	hỏi	trắc	nghiện
------------------------	----	-----	-----	------	--------

CÂU 94.	Phương trình $\log (72 - x^2)$	$=2\log x$ có nghiệm là
_		<u> </u>

A. 1. 🗭 Lời giải.

D. 4.

🗭 Lời giải.

CÂU 95.	Phương trình $\ln x + \ln(2x)$	-1) = 0 có bao nhiêu nghiệm?
A. 0.	B. 1.	C. 2.

CÂU 96. Phương trình $\ln(x^2 - 2x - 7) = \ln(-x + 5)$ có tập nghiệm là **A.** $\{4; -3\}.$ **B.** {3; 4}. **C.** $\{-4; 3\}.$

🗭 Lời giải.

CÂU 97. Số nghiệm của phương trình $\log_6\left(x^2+x\right)-\log_{\frac{1}{6}}(x+2)=1$

A. 2. 🗭 Lời giải. **B.** 0.

D. 3.

CÂU 98. Số nghiệm của phương trình $\log_2 \frac{x-2}{x+2} + \log_2 \left(x^2-4\right) = 1$ là **B.** 0. **C.** 3. **D.**

QUICK NOTE		$\operatorname{trình} \log x + \log(11x)$	-10) = 3 có nghiệm là	
	A. 7.	B. 8.	C. 9.	D. 10.
	🗩 Lời giải.			
			• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •		
			$(x-3) = \ln(x-5) \text{ có b}$	
	A. 0.	B. 1.	C. 2.	D. 3.
	🗭 Lời giải.			
	CÂU 404 DI	4 > 1 1 + 1	. 11	^ 1\
			$+\log_{27} x = \frac{11}{2}$ có nghi	
	A. 24.	B. 36.	C. 27.	D. 9.
	🗩 Lời giải.			
	CÂU 102. Số nghi		$\log_3(x+2)^2 + 2\log_3 x$	
	A. 1.	B. 2.	C. 3.	D. 0.
	🗭 Lời giải.			
			• • • • • • • • • • • • • • • • • • • •	
			(0)	
	CAU 103. Nghiệm	ı của phương trình lo	$g_2\left(x^2 + 2x\right) + \log_{\frac{1}{2}}(2x)$	+1) = 0 là
	A. $x = 2$.	B. $x = \pm 1$.	C. $x = -2$.	D. $x = 1$.
	🗩 Lời giải.			
			. 1 /	
	CAU 104. Phương	g trình $\log_4\left(x^2 + 3x\right)$	$+1) + \frac{1}{2} \log_{\frac{1}{2}} (\sqrt{3}x^2 +$	$\overline{6x} + 2x$) = 0 trên tập số
			giá trị $S = x_1^2 + (x_2 + 1)$	
	A. 1.	B. $\sqrt[3]{2} - 1$.	C. 5.	D. 2.

🗭 Lời giải.	QUICK NOTE
CÂU 105. Gọi $x_1, x_2(x_1 > x_2)$ là các nghiệm của phương trình $2\log_2(2x+2) + \log_{\frac{1}{2}}(9x-1)$	
1) = 1. Khi đó giá trị của $M=(2x_1-2x_2)^{2017}$ là $ (1)^{2017} $	
A. 1. B. -1. C. 2^{2017} . D. $\left(\frac{1}{2}\right)^{2017}$.	
♥ Lời giải.	
CÂU 106. Phương trình $\log_2(x-3) + 2\log_4 3 \cdot \log_3 x = 2$ có số nghiệm là A. 1. B. 2. C. 3. D. Vô nghiệm.	
A. 1. B. 2. C. 3. D. Vo ngniệm. D Lời giải.	
CÂU 107. Phương trình $\log_4 (x^2 + 3x + 1) + \frac{1}{2} \log_{\frac{1}{2}} (\sqrt{3x^2 + 6x} + 2x) = 0$ trên tập số	
thực có nghiệm x_1 , x_2 thỏa $x_1 > x_2$ thì giá tri $S = x_1^2 + (x_2 + 1)^6$ bằng	
thực có nghiệm x_1, x_2 thỏa $x_1 > x_2$ thì giá trị $S = x_1^2 + (x_2 + 1)^6$ bằng A. 1. B. $\sqrt[3]{2} - 1$. C. 5. D. 2.	
🗭 Lời giải.	

🕈 TRƯỜNG THPT SỐ 1 TUY PHƯĆ	ÓC ♥			XÁC SUẤT
QUICK NOTE				
• • • • • • • • • • • • • • • • • • • •				
	CÂU 112. Biết rằ	ng bất phương trình l	$\log_2(5^x + 2) + 2 \cdot \log_{(5^x)}$	$_{+2)}$ 2 > 3 có tập nghiệm là
	$S = (\log_a b; +\infty), \text{ v}$	ới a, b là các số nguyên	dương nhỏ hơn 6 và a 7	
	A. $P = 16$.	B. $P = 7$.	C. $P = 11$.	D. $P = 18$.
	🗭 Lời giải.			
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		1 7	1	21
		x_2 la cac nghiệm của x_2^2 bằng bao nhiêu?	phương trinh $\log_2^- x - 3$	$\operatorname{Blog}_2 x + 2 = 0$. Giá trị của
	A. 20.	B. 5.	C. 36.	D. 25.
	🗭 Lời giải.			
	CÂU 114. Cho ph	$\log_4 x \cdot \log_4 x$	$g_2(4x) + \log_{\sqrt{2}} \left(\frac{x^3}{6}\right) =$	0. Nếu đặt $t = \log_2 x$, ta
	được phương trình		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. 02 /
	A. $t^2 + 14t - 4$	$= 0.$ B. $t^2 + 11t - 3$	$= 0. \mathbf{C.} t^2 + 14t - 2 =$	$= 0. \mathbf{D.} t^2 + 11t - 2 = 0.$
	🗭 Lời giải.			

Dạng 11. Bài toán logarit chứa tham số

1. Các ví dụ

VÍ DỤ 40. Tìm tất cả các giá trị của tham số m để phương trình $\log_3^2 x + 2\log_3 x - m = 0$ có nghiệm

$$A$$
, $m < -1$

B.
$$m \ge -1$$
.

C.
$$m \ge 0$$
.

D.
$$m \le -2$$
.

VÍ DỤ 41. Tìm tất cả giá trị của tham số m để phương trình $\log_3^2 x + \sqrt{\log_3^2 x + 1} - m = 0$ có nghiệm

A.
$$m \ge 1$$
.

B.
$$m \ge -\frac{5}{4}$$
. **C.** $m \le \frac{5}{4}$. **D.** $m \le -1$.

C.
$$m \le \frac{5}{4}$$

D.
$$m \le -1$$

VÍ DỤ 42. Tìm tất cả giá trị của tham số m để phương trình $\log_2^2 x - 4 \log_2 x - m = 0$ có nghiệm thuộc [2;4]?

_			
Δ.	m	<	3.

B.
$$m \ge 1$$
.

C.
$$-4 \le m \le -3$$
. **D.** $3 \le m \le 4$.

D.
$$3 < m < 4$$

2. Câu hỏi trắc nghiệm

CÂU 115. Tìm tất cả giá trị của tham số m để phương trình $\log_3^2 x - 2\log_3 x - m = 0$ có nghiệm thuộc [1; 3].

A.
$$\begin{bmatrix} m > 0 \\ m < -1 \end{bmatrix}$$
P Lời giải.

B.
$$\begin{bmatrix} m \ge 0 \\ m \le -1 \end{bmatrix}$$
. **C.** $0 \le m \le 1$.

C.
$$0 \le m \le 1$$
.

D.
$$-1 \le m \le 0$$
.

CÂU 116. Tìm tất cả giá trị của tham số m để phương trình $\log_2^2 x - 4\log_2 x - m = 0$ có nghiệm thuộc [2;4]?

A. $m \le 3$. 🗭 Lời giải.

B. (m	\geq	1
-------------	---	--------	---

C.
$$-4 \le m \le -3$$
. **D.** $3 \le m \le 4$.

D.
$$3 \le m \le 4$$

CÂU 117. Tìm tất cả giá trị của tham số m để phương trình $\log_2^2 x - 4\log_2 x - m = 0$ có nghiệm thuộc $\left[\frac{1}{4};4\right]$.

A. $-4 \le m \le 12$.

В.	-12 < m < -4.

C.
$$m \ge 0$$
.

D.
$$m \le -1$$
.

				💡 TRƯỜNG THPT SỐ 1 TUY PHƯỚC 🕻
				QUICK NOTE
CÂU 120. Phương tr			ahiôm trái dấu khi và	ahi
khi	$\lim \log_2 \left(-x - 3x\right)$	-m + 10) = 3 co 2 n	ginệm trai dad kin va	
A. $m > 2$.	B. $m < 2$.	C. $m > 4$.	D. $m < 4$.	
🗩 Lời giải.				
				····
CÂU 121. Tìm giá tr			$\frac{2}{3}x - m\log_3 x + 2m - 7$	= 0
có hai nghiệm x_1, x_2 th		31. C. $m = 81$.	D 44	
A. $m=-4$. \bigcirc Lời giải.	b. $m = 4$.	m = 81.	D. $m = 44$.	
julio gran				
				••••
				••••
				••••
				••••
	2	2 1 2 12		····
CÂU 122. Tìm tất co $\log_{\frac{1}{3}}(x+m-4) = 0$ co	à các giả trị thực c ó hại nghiệm thực r	của tham số <i>m</i> để phi shân biết	$\log t \sinh \log_3 (1-x^2)$) +
			1	
A. $-\frac{1}{4} < m < 0$.	B. $5 \le m \le \frac{21}{4}$.	C. $5 < m < \frac{21}{4}$.	D. $-\frac{1}{4} \le m \le 2$.	
🗭 Lời giải.				

	L có số nghiệm nhiệu nhật?		
	có số nghiệm nhiều nhất? A. vô số. B. 1.	C. 4.	D. 5.
	P Lời giải.	4.	D. 0.
• • •			
•			
• •			
• • •			
	CÂU 124. Gọi a, b lần lượt là giá trị lớ	n nhất, nhỏ nhất của số ng	uyên m thốa mãn phương
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$	(n) nhất, nhỏ nhất của số ng $(n)^2 = 0$ có duy nhất một n	uyên m thõa mãn phương ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	n nhất, nhỏ nhất của số ng $\binom{2}{2}=0$ có duy nhất một n	uyên m thõa mãn phương ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$
	trình $\log_{0.5}(m+6x) + \log_2(3-2x-x)$ bằng A. $a-b=22$. B. $a-b=24$	2) = 0 có duy nhất một n	ghiệm. Khi đó hiệu $a-b$

	<u> </u>	IRUONG IHPI SO I TUY PHUOC 🖣
		OUICK NOTE
		QUICK NOTE
CÂU 125. Để phương trình $2\log_2\left(2x^2-x+2m-4m^2\right)+1$	$\log_{1} (x^{2} + mx - 2m^{2}) = 0$ có	
hai nghiệm phân biệt thì tập tất cả các giá trị của m là	$\frac{1}{2}$	
A. $m \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$.	(, 1)	
C. $m \in \left(-1; \frac{1}{2}\right) \setminus \left\{\frac{1}{3}\right\}$.	$\left(\frac{1}{2}\right)\setminus\left\{0;\frac{1}{3}\right\}.$	
♥ Lời giải.	2/ (3)	
—————————————————————————————————————		
CÂU 126. Gọi S là tập hợp số thực m để phương trình :	$\log_{\sqrt{5}-2} \left(x^2 + mx + m + 1 \right) +$	
$\log_{\sqrt{5}-2} x = 0$ có nghiệm duy nhất. Biết a là giá trị lớn của S	và b là giá trị trong các phần	
tử nguyên của S . Khi đó $a+b$ bằng bao nhiêu? A. $a+b=3-3\sqrt{2}$. B. $a+b=4$	$\frac{1}{2}$	
C. $a+b=-3+2\sqrt{3}$. D. $a+b=2$		
₽ Lời giải.	-, .	

QUICK NOTE				
	••••••••••••••••••••••••••••••••••••••		2 1	(2 - 7
	duy phất thì ma 13	tất cả các số thực m	để phương trình log ₅	$(25^{\circ} - \log_5 m) = x$
	duy nhat thi m_0 is \mathbf{A} . $0,7$.	à giá trị nhỏ nhất. Kh B. 0,5.	i do gia trị nao sau di C. 1.	ay gan m_0 nhat D. 1,6.
	₽ Lời giải.	 0,0.	. 1.	—• 1,0.
			• • • • • • • • • • • • • • • • • • • •	
	CÂU 128. Gọi S'	" là tập tất cả các số tl	hực m để phương trìn	$h \log_2 \left(4^x - m \right) = x$
	nghiệm phân biệt.	. Tập S' là		
	A. $S = \left(-1; \frac{1}{2}\right)$	$S = \left(0; \frac{1}{2}\right)$). C. $S = (-1;$	$(s-\frac{1}{2}).$ D. $S=(-\frac{1}{2})$
	D Lời giải. 2 → 2	(2)		2)
	, Loi gidi.			

🕜 XÁC SUẤT			🕈 TRƯỜNG THPT SỐ 1 TUY PHƯỚC 🗣
			QUICK NOTE
CÂU 129. Tìm m để phương trình log	$g_{\sqrt{5}+2}(x^2+mx+m+1)$	$1) + \log_{\sqrt{5}-2} x = 0 \text{ c\'o nghiện}$	n
duy nhất .			
A. $m \in (-\infty; -1] \cup \{3 - 2\sqrt{3}\}.$ C. $m \in (-\infty; -2] \cup \{3 + 2\sqrt{3}\}.$	B. $m \in (-\infty;$ $\mathbf{D}.$ $m \in (-\infty;$	-1) $\cup \{3 - 2\sqrt{3}\}.$	
p Lời giải.	20 m c (30,	-j.	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
CÂU 130. Gọi $m=m_0$ là số nguyên nh	hỏ nhất để phương trình	$\log_2(5^x - 1) \cdot \log_4(2 \cdot 5^x - 2)$) =
m có nghiệm thuộc $[1; +\infty)$. Trong các	: số sau, đâu là số gần \imath	n_0 nhất?	· · · · · · · · · · · · · · · · · · ·
A. 5. B. 2. p Lời giải.	C. −1.	D. 8.	
- Loi giui.			
		• • • • • • • • • • • • • • • • • • • •	

$$\bullet \ a^{f(x)} \geq a^{g(x)} \Leftrightarrow \begin{cases} a > 0 \\ (a-1) \cdot [f(x) - g(x)] \geq 0. \end{cases}$$

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

Dạng 12. Phương pháp đưa về cơ số và logarit hóa

Phương pháp:

- Nếu a>1 thì: $a^{f(x)}>a^{g(x)}\Leftrightarrow f(x)>g(x)$ và $a^{f(x)}\geq a^{g(x)}\Leftrightarrow f(x)\geq g(x).$
- Nếu 0 < a < 1 thì: $a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) < g(x)$ và $a^{f(x)} \ge a^{g(x)} \Leftrightarrow f(x) \le g(x)$.

1. Các ví du

- **VÍ DỤ 1.** Tìm tập nghiệm của bất phương trình $\left(\frac{3}{4}\right)^{2x-1} \leq \left(\frac{3}{4}\right)^{2-x}$.
- **VÍ DU 2.** Giải bất phương trình $2^{-x^2+3x} < 4$.
- **VÍ DỤ 3.** Tìm nghiệm của bất phương trình $2^{x^2+3x-2} \ge \frac{1}{4}$.
- **VÍ DỤ 4.** Bất phương trình $2^{x^2-3x+4} \le \left(\frac{1}{2}\right)^{2x-10}$ có bao nhiều nghiệm nguyên dương?
- **VÍ DỤ 5.** Tìm nghiệm của bất phương trình: $\left(\frac{3}{5}\right)^{x^2-2x-1} \ge \left(\frac{25}{9}\right)^{2x-1}$.
- **VÍ DU 6.** Tìm nghiệm của bất phương trình: $(2-\sqrt{3})^{x^2-3x} > (2+\sqrt{3})^2$.
- **VÍ DỤ 7.** Tìm tập nghiệm của bất phương trình $5^{x+1} \frac{1}{5} > 0$.
- **VÍ DU 8.** Bất phương trình $2^{x^2} \cdot 3^x < 1$ có bao nhiêu nghiệm nguyên?

2. Câu hỏi trắc nghiêm

- **CÂU 132.** Cho $(2-\sqrt{3})^m > (2-\sqrt{3})^n$ $(m,n\in\mathbb{Z})$. Khẳng định nào sau đây là khẳng đinh đúng?
 - A. m > n.
- \mathbf{B} , m < n.
- **C.** m = n.
- $\mathbf{D.} \ m > n.$

- 🗭 Lời giải.
- **CÂU 133.** Cho 0 < a < 1. Khẳng định nào dưới đây là đúng?
 - $\mathbf{A.} \ a^x > 1 \Leftrightarrow x \ge 0.$

B. $a^x > 1 \Leftrightarrow x > 0$.

 $\mathbf{C.} \ a^x > 1 \Leftrightarrow x < 0.$

D. $a^x > 1 \Leftrightarrow 0 < x < 1$.

- 🗭 Lời giải.
- **CÂU 134.** Nghiệm của bất phương trình $3^{2x+1} > 3^{3-x}$ là **A.** $x > \frac{3}{2}$. **B.** $x < \frac{2}{3}$. **C.** $x > -\frac{2}{3}$.

- **D.** $x > \frac{2}{2}$.

- 🗢 Lời giải
- **CÂU 135.** Cho α , β là hai số thực. Khẳng định nào sau đây là khẳng định đúng?
 - **A.** $\left(\frac{2}{\alpha}\right)^{\alpha} > \left(\frac{2}{\alpha}\right)^{\beta} \Leftrightarrow \alpha, \beta$ là hai số thực luôn luôn dương.
 - **B.** $\left(\frac{2}{\alpha}\right)^{\alpha} > \left(\frac{2}{\alpha}\right)^{\beta} \Leftrightarrow \alpha > \beta$.
 - **C.** $\left(\frac{2}{e}\right)^{\alpha} > \left(\frac{2}{e}\right)^{\beta} \Leftrightarrow \alpha, \beta$ là hai số thực không âm.
 - **D.** $\left(\frac{2}{e}\right)^{\alpha} > \left(\frac{2}{e}\right)^{\beta} \Leftrightarrow \alpha < \beta.$
- 🗩 Lời giải.
- **CÂU 136.** Cho $(3-2\sqrt{2})^m > (3-2\sqrt{2})^n$. Khẳng định nào dưới đây đúng?
 - **A.**m > n.
- **B.** m = n.

- 🗩 Lời giải.
- **CÂU 137.** Tìm tập nghiệm của bất phương trình $\left(\frac{1}{3}\right)^x > 9$.
 - $\mathbf{A}. \ (-\infty; 2).$

🗭 Lời giải.

CÂU 138.	Tìm nghiệm	của bất phương t	trình $\left(\frac{1}{3}\right)^{x^2-3x+1}$	< 3
----------	------------	------------------	---	-----

A.
$$-2 < x < 0$$

A.
$$-2 < x < 0$$
. **B.** $-1 < x < 1$.

D.
$$1 < x < 2$$
.

Dèi giải.

CÂU 139. Tìm nghiệm của bất phương trình: $\left(\frac{7}{11}\right)^{3x+2} \le \left(\frac{11}{7}\right)^{x^2}$

$$\mathbf{A.} \quad \begin{bmatrix} x \ge 2 \\ x \le 1 \end{bmatrix}.$$

B.
$$\begin{bmatrix} x \ge -1 \\ x \le -2 \end{bmatrix}$$
 C. $-2 \le x \le 1$. **D.** $1 \le x \le 2$.

C.
$$-2 \le x \le 1$$
.

D.
$$1 \le x \le 2$$

CÂU 140. Tìm nghiệm của bất phương trình: $2^{x^2-x+8} < 4^{1-3x}$

A.
$$-3 < x < -2$$
.

B.
$$\begin{bmatrix} x < -3 \\ x > -2 \end{bmatrix}$$

C.
$$2 < x < 3$$
.

D.
$$-1 < x < 1$$
.

🗩 Lời giải.

CÂU 141. Tập các số x thỏa mãn bất phương trình $\left(\frac{2}{3}\right)^{4x} \leq \left(\frac{3}{2}\right)^{2-x}$ là

A.
$$\left[-\frac{2}{3}; +\infty\right)$$
.

B.
$$\left[\frac{2}{5}; +\infty\right)$$
.

c.
$$\left(-\infty; \frac{2}{3}\right]$$
.

C.
$$\left(-\infty; \frac{2}{3}\right]$$
. **D.** $\left(-\infty; \frac{2}{5}\right]$.

Dèi giải.

CÂU 142. Giải bất phương trình $e^{2x+3} > e^{x+5}$. Kết quả tập nghiệm là

A.
$$(4; +\infty)$$
.

B.
$$(2; +\infty)$$
.

C.
$$(3; +\infty)$$
.

D.
$$(-\infty; 3)$$
.

🗭 Lời giải.

CÂU 143. Hệ phương trình $\begin{cases} 4^{x+1} \leq 8^{6-2x} \\ 3^{4x+5} \geq 27^{1+x} \end{cases}$ có tập nghiệm là

A.
$$[2; +\infty)$$
. \bigcirc Lời giải.

B.
$$[-2; 2]$$
.

$$\mathbf{C.} \ \ (-\infty;1]$$

CÂU 144. Tìm
$$x$$
 biết $\left(\frac{1}{2}\right)^{x^2-5x+4} > 4$.

B.
$$\frac{5-\sqrt{17}}{2} < x < \frac{5+\sqrt{17}}{2}$$
.

D. 2 < x < 3.

CÂU 145. Tập nghiệm của bất phương trình $\frac{1}{9} \cdot 3^{2x} > 1$ là

A. $[1; +\infty)$. 🗩 Lời giải.

- **B.** $(1; +\infty)$.
- **C.** $(0; +\infty)$.
- **D.** $[0; +\infty)$.

CÂU 146. Tìm nghiệm của bất phương trình $2^{x+1} \cdot 4^{x-1} \cdot \frac{1}{8^{1-x}} > 16^x$

- **A.** x > 0.
- **B.** x > 2.

🗭 Lời giải.

CÂU 147. Tìm nghiệm của bất phương trình $\frac{1}{8} \cdot 4^{2x-3} \le \left(\frac{\sqrt{2}}{8}\right)^{-x}$.

- **A.** $x \geq 3.$
- **B.** x < 3.

🗭 Lời giải.

CÂU 148. Tìm nghiệm của bất phương trình $8^{\frac{2x-1}{x+1}} \ge 0.25(\sqrt{2})^{7x}$.

- **A.** $x \ge -1$.
- **B.** $\begin{bmatrix} \frac{1}{2} & \frac{1}{2}$

🗩 Lời giải.

CÂU 149. Số nguyên nhỏ nhất thỏa mãn bất phương trình $4^x \cdot 3^3 > 3^x \cdot 4^3$ là

- **A.** -3.
- **B.** 3.

🗩 Lời giải.

CÂU 150. Có tất cả bao nhiều số nguyên thỏa mãn bất phương trình $8^x \cdot 2^{1-x^2} > (\sqrt{2})^{2x}$?

- **A.** 2.
- **B.** 3.
- **C.** 4.
- **D.** 5.

🗩 Lời giải.

CÂU 151. Biết S=[a;b] là tập nghiệm của bất phương trình $\left(\frac{1}{6}\right)^{x^2-x} \geq \left(\frac{1}{6}\right)^{x+3}$ (với $a, b \in \mathbb{R}$ và a < b). Khi đó hiệu b - a bằng bao nhiêu?

A. −4.

C. 2.

D. Không xác định.

🗭 Lời giải.

ICK NOTE CÂU 152. Số n	ghiệm nguyên của bất p	ohương trình $(3-2\sqrt{2})$	$(2)^{x^2-x-3} \ge 3 + 2\sqrt{2}$ là	
A. 2.	B. 3.	C. 4.	D. Vô số.	
œ Lời giải.				
CÂU 153. Cho	hất phương trình (1/1	$(\frac{7}{10} + 3)^{\frac{x-5}{x-1}} < (\sqrt{10} -$	$3\Big)^{\frac{x+1}{x+5}}$. Gọi x_1, x_2 lần	lượt
			h. Khi đó $x_1 + x_2$ bằng	
nhiệu?	n ion imat va imo ima	t cua bat phuong tim	II. Kill do $x_1 + x_2$ bang	Dao
A. −2.	B. −1.	C. 0.	D. 4.	
🗩 Lời giải.				
CÂU 154 . Tân	nghiệm của bất phương	$\sqrt{5} = 2 \frac{2x}{x-1} < 0$	$(\sqrt{5} + 2)^x$ 1à	
	-1] \cup [0: 1].	B. $S = [-1; 0]$	(V 0 + 2) 1a	
	-1) \cup $(0; +\infty)$.	D. $S = [-1; 0]$		
🗭 Lời giải.				
			1 ,	
CAU 155. Gọi	x_0 là nghiệm nhỏ nhất	của bất phương trình	$\frac{1}{2^{\sqrt{x^2-2x}}} \le 2^{x-1}$. Hỏi gia	á trị
····· nào sau đây gần	với x_0 nhất?	_		
A. 1.	B. $\frac{1}{2}$.	C. $\frac{3}{2}$.	D. 3.	
····· 🗭 Lời giải.	2	2		
CÂU 156. Môt	học sinh giải bất phươn $x \neq 0$	$\operatorname{ag trình}\left(\frac{2}{x}\right)^{-\frac{1}{x}} < 0$	$\left(\frac{2}{2}\right)^{-5}$ phư sau	

Bước 2: Vì $0 < \frac{2}{\sqrt{5}} < 1$ nên $\left(\frac{2}{\sqrt{5}}\right)^{-\frac{1}{x}} \le \left(\frac{2}{\sqrt{5}}\right)^{-5} \Leftrightarrow \frac{1}{x} \le 5$.

Bước 3: Từ đó suy ra $1 \le 5x \Leftrightarrow x \ge \frac{1}{5}$. Vậy tập nghiệm của bất phương trình là S = $\left[\frac{1}{5};+\infty\right).$

A. Sai ở bước 1. 🗩 Lời giải.

B. Sai ở bước 2.

C. Sai ở bước 3.

D. Đúng.

CÂU 157. Tìm tập nghiệm S của bất phương trình $3^x \cdot 5^{x^2} < 1$.

A. $S = (-\log_5 3; 0].$

B. $S = [\log_3 5; 0).$

C. $S = (-\log_5 3; 0).$

D. $S = (\log_3 5; 0).$

🗩 Lời giải.

CÂU 158. Cho hàm số $f(x) = \frac{7^x}{3^{x-2}}$. Khẳng định nào sau đây **sai**?

A.
$$f(x) > 1 \Leftrightarrow x > (x-2)\log_7 3$$
.

B. $f(x) > 1 \Leftrightarrow \frac{x}{1 + \log_7 3} > \frac{x-2}{1 + \log_3 7}$.

C. $f(x) > 1 \Leftrightarrow x \log 7 > (x-2)\log 3$.

D. $f(x) > 1 \Leftrightarrow x \log_{\frac{1}{5}} 7 > (x-2)\log_5 3$.

Lời giải.

🗁 Dạng 13. Phương pháp đặt ấn phụ

Phương pháp: $f\left[a^{g(x)}\right] > 0 \ (0 < a \neq 1) \Leftrightarrow \begin{cases} t = a^{g(x)} > 0 \\ f(t) > 0 \end{cases}$

Ta thường gặp các dạng:

- $m \cdot a^{2f(x)} + n \cdot a^{f(x)} + p > 0$.
- $m \cdot a^{f(x)} + n \cdot b^{f(x)} + p > 0$, trong đó $a \cdot b = 1$. Đặt $t = a^{f(x)}$ (t > 0), suy ra $b^{f(x)} = \frac{1}{1}.$
- $m \cdot a^{2f(x)} + n \cdot (a \cdot b)^{f(x)} + p \cdot b^{2f(x)} > 0$. Chia hai vế cho $b^{2f(x)}$ và đặt $t = \left(\frac{a}{h}\right)^{f(x)} > 0$.

1. Các ví du

VÍ DỤ 1. Tìm nghiệm của bất phương trình $9^{x-1} - 36 \cdot 3^{x-3} + 3 \le 0$.

VÍ DU 2. Giải bất phương trình $7^{2x} - 7^{x+1} + 6 > 0$ được tập nghiệm là

VÍ DU 3. Tìm nghiệm của bất phương trình: $3^x + 9 \cdot 3^{-x} - 10 < 0$.

VÍ DỤ 4. Tìm nghiệm của bất phương trình: $3 \cdot 4^x - 2 \cdot 6^x > 9^x$.

VÍ DỤ 5. Tìm nghiệm của bất phương trình: $(4+\sqrt{15})^x+(4-\sqrt{15})^x\leq 62$.

2. Câu hỏi trắc nghiệm

CÂU 159. Tập nghiệm của bất phương trình $8 \cdot 4^{x+1} - 18 \cdot 2^x + 1 < 0$ là

A. (2; 4).

B. (1;4).

QUICK NOTE	🗭 Lời giải.			
	CÂU 160. Giải bất ph			
		pất phương trình là (1; -	*	
	,	oất phương trình là $(-c)$		
		oất phương trình là (0;3		
	Di Tạp nghiệm của t	oat phuong trini ia (0, e	<i>5)</i> .	
	CÂU 161. Bất phương	trình $0^x - 3^x - 6 > 0$	có tận nghiệm là	
	~	B. $(1; +\infty)$.		D. $(-\infty; 1)$.
	🗩 Lời giải.		, ,	, ,
	CÂU 162. Tìm nghiệm	n của bất phương trình:	$3^{2x+1} - 9 \cdot 3^x + 6 > 0.$	
	A. $0 < x < \log_3 2$.			
	Ţ.	0 < x < 1.		x < 0.
	🗩 Lời giải.			
	CÂU 163. Tìm nghiệm	n của bất phương trình:	$25^x - 6 \cdot 5^x + 5 \le 0.$	
			C. $-1 \le x \le 1$.	$x \ge 1$
		$0 \le x \le 1$.	$1 \leq x \leq 1$.	$x \leq 0.$
	🗭 Lời giải.			
	CÂU 164. Nghiệm của	bất phương trình $e^x +$	$e^{-x} < \frac{5}{2}$ là	
	A. $x < -\ln 2$ hoặc x		B. $-\ln 2 < x < \ln 2$.	
	C. $x < \frac{1}{2} \text{ hoăc } x > 2$		D. $\frac{1}{2} < x < 2$.	
	© Lời giải.		2	
	, , , , , , , , , , , , , , , , , , ,			
		, 1 %, 1	r 0 r^{1-x} 10 r 0	
	CÂU 165. Tìm nghiệm A. $x > 0$.	B. $x < 0$.	$x^2 - 2 \cdot t^2 = +13 < 0$ C. $x > 1$.	
	p Lời giải.	<i>w</i> < 0.	w > 1.	
	CÂU 166. Tìm nghiện	oro hất shuar t> 1	$6.0\frac{1}{2}$ 12.6 $\frac{1}{2}$ + 6.4	$\frac{1}{2} < 0$
	A. $0 \le x \le 2$.	$\begin{bmatrix} x \ge 2 \\ x \le 0. \end{bmatrix}$		D. $-1 \le x \le 1$.
	🗩 Lời giải.	ſ — ".	Ľ., —	

47

ЮU	ICK	NC) I F

CÂU 172. Tìm nghiệm của bất phương trình: $(7+3\sqrt{5})^x + (7-3\sqrt{5})^x < 7 \cdot 2^x$.

A.
$$\begin{bmatrix} x > 2 \\ x < -2. \end{bmatrix}$$
 D Lời giải.

B.
$$-1 < x < 1$$
.

C.
$$-2 < x <$$

C.
$$-2 < x < 2$$
. **D.** $\begin{bmatrix} x > 2 \\ x < 3 \end{bmatrix}$

CÂU 173. Tìm nghiệm của bất phương trình: $(3 + \sqrt{5})^x + 16 \cdot (3 - \sqrt{5})^x \le 2^{x+3}$.

A.
$$x \ge 2$$
.
C. $x = \log_{2+\sqrt{2}} 4$.

C.
$$x = \log_{\frac{3+\sqrt{5}}{2}} 4$$
.

B.
$$x = 2$$
.

B.
$$x = 2$$
.
D. $0 \le x \le \log_{\frac{3+\sqrt{5}}{2}} 4$.

Dèi giải.

CÂU 174. Tìm nghiệm của bất phương trình: $4^x + 4^{\sqrt{x}+1} \ge 3 \cdot 2^{x+\sqrt{x}}$. **A.** $\forall x \in \mathbb{R}$. **B.** $x \ge 0$. **C.** x > 0.

 $\mathbf{A.} \ \forall x \in \mathbb{R}.$ **B.** $x \ge 0$. 🗭 Lời giải.

🖶 Dạng 14. Sử dụng tính đơn điệu của hàm sô

1. Các ví dụ

VÍ DU 6. Giải bất phương trình: $2^x + 3^x < 17 - 2x$.

2. Câu hỏi trắc nghiệm

CÂU 175. Tìm nghiệm của bất phương trình: $3^x + 2^x > 13^{\frac{x}{2}}$.

A. x > 1. Lời giải.

D. x < 1.

CAU 176. Tìm nghiệm của bất phương trình: $3^x + 5^x \ge 17 \cdot 2^{x-1}$.

A. x > 1. 🗭 Lời giải.

D. x < 1.

CÂU 177. Tìm tất cả các giá trị thực của tham số $a\ (a>0)$ thỏa mãn: $\left(2^a+\frac{1}{2^a}\right)^{2017}\leq$

 $\left(2^{2017} + \frac{1}{2^{2017}}\right)^a.$

A. $0 < a < 1$. D Lời giải.	B. 1 < a < 2017.	C. $a \ge 2017$.	D. $0 < a \le 2017$.	QUICK NOTE
	► Dana 15 Pài+	oán chứa tham số		
	During 13. Built	odii ciida iiidiii so		
1. Các ví dụ				
•	ić tui thur ara tham a	á maga aba bát nbươ	$\text{fing trình } 9^x + 2 \cdot 3^x - m > 0$	
có nghiệm thuộc $(0;1)$.		o <i>m</i> sao cho dat phuo	$\lim_{n \to \infty} \operatorname{trinn} 9^n + 2 \cdot 3^n - m > 0$	
		,1	1 15, 1	
$(3m+1)12^x + (2-m)$			cho bất phương trình	
	_	_	\cdots	
$3^x - 3 - 2m > 0$ nghiện			from trình $9^x - 2(m+1)$.	
_	_	•		
2. Câu hỏi trắc r	•			
		ham số m để bất phu	$fong trình 4^x - 2^x - m \ge 0$	
có nghiệm đúng với mọ		_ 1		
A. $m < -1$.	B. $m < -\frac{1}{2}$.	C. $m \le -\frac{1}{4}$.	D. $m \le 0$.	
🗩 Lời giải.				
		số m sao cho bất phươ	$\operatorname{ong tr} nh 9^x + 2 \cdot 3^x - m > 0$	
có nghiệm thuộc $(0; 1]$? A. $m < 15$.	B. $m < 3$.	C. $m \le 15$.	D. $m \le 3$.	
D Lời giải.	_, ,,, ,,,			
-				
			• • • • • • • • • • • • • • • • • • • •	

Bài 6. BẤT PHƯƠNG TRÌNH MŨ - BẤT PHƯƠNG TRÌNH LOGARIT

CHUYÊN ĐỀ 2: BẤT PHƯƠNG TRÌNH LOGARIT

A. KIẾN THỰC SÁCH GIÁO KHOA CẦN CẦN NẮM

Ta có thể dùng các phương pháp biến đổi như phương trình logarit và các công thức sau

- \odot Nếu a > 1 thì
 - $-\log_a f(x) > \log_a g(x) \Leftrightarrow f(x) > g(x) > 0.$
 - $--\log_a f(x) \ge \log_a g(x) \Leftrightarrow f(x) \ge g(x) > 0.$
- \bigcirc Nếu 0 < a < 1 thì
 - $--\log_a f(x) > \log_a g(x) \Leftrightarrow 0 < f(x) < g(x).$
 - $--\log_a f(x) \ge \log_a g(x) \Leftrightarrow 0 < f(x) \le g(x).$

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

Dang 16. Đưa về cùng cơ số

Phương pháp

- \odot Nếu a > 1 thì
 - $-\log_a f(x) > \log_a g(x) \Leftrightarrow f(x) > g(x) > 0.$
 - $--\log_a f(x) \ge \log_a g(x) \Leftrightarrow f(x) \ge g(x) > 0.$
- \odot Nếu 0 < a < 1 thì
 - $--\log_a f(x) > \log_a g(x) \Leftrightarrow 0 < f(x) < g(x).$
 - $--\log_a f(x) \ge \log_a g(x) \Leftrightarrow 0 < f(x) \le g(x).$

1. Các ví du

VÍ DỤ 10. Tìm tập nghiệm bất phương trình $\log_3(5x-1) > 2$.

VÍ DỤ 11. Tìm tập nghiệm bất phương trình $\log_{\frac{1}{2}}(3x+1) > -2$.

VÍ DU 12. Cho hàm số $f(x) = \log(2x+4) - 1$. Tìm tất cả các giá trị thực của x để $f(x) \ge 0$.

VÍ DỤ 13. Tìm tập nghiệm bất phương trình $\log_{0.5}(4x+11) < \log_{0.5}(x^2+6x+8)$.

VÍ DỤ 14. Tìm tập nghiệm bất phương trình $\log_{\frac{1}{2}}(x+1) > \log_3(2-x)$.

VÍ DỤ 15. Tìm tập nghiệm bất phương trình $\log_{\frac{1}{2}}(x^2 - 6x + 5) + 2\log_3(2 - x) \ge 0$.

2. Câu hỏi trắc nghiệm

CÂU 182. Giải bất phương trình $\log_2(3x-1) > 3$.

- **A.** x > 3.
- **B.** $\frac{1}{3} < x < 3$. **C.** x < 3.
- **D.** $x > \frac{10}{3}$.

Lời giải.

CÂU 183. Tìm tập nghiệm S của bất phương trình $\log_2(3x-2) > \log_2(6-5x)$.

- **A.** $S = \left(1; \frac{6}{5}\right)$. **B.** $S = \left(\frac{2}{3}; 1\right)$. **C.** $S = (1; +\infty)$. **D.** $S = \left(\frac{2}{3}; \frac{6}{5}\right)$.

🗭 Lời giải.

51

CÂU 184. Tìm tập nghiệm T của bất phương trình $\log_{\frac{1}{2}}(4x-2) \ge -1$.

A.
$$\left[\frac{3}{2}; +\infty\right)$$
.

B.
$$\left(\frac{1}{2}; \frac{3}{2}\right)$$
.

c.
$$\left[\frac{1}{2}; \frac{3}{2}\right]$$
. **D.** $\left(\frac{1}{2}; \frac{3}{2}\right]$.

D.
$$\left(\frac{1}{2}; \frac{3}{2}\right]$$

Dèi giải.

CÂU 185. Có bao nhiêu số nguyên trên [0; 10] nghiệm đúng bất phương trình $\log_e(3x-4) > \log_e(x)$

B. 11.

D. 8.

A. 10. 🗭 Lời giải.

CÂU 186. Tập nghiệm S của bất phương trình $\log_{\frac{\pi}{3}}\left(\frac{x-1}{x+1}\right)>0$ là

A.
$$S = (1; +\infty).$$

B.
$$S = (-\infty; 1)$$
.

C.
$$S = (-\infty; -1)$$
. **D.** $S = (-1; +\infty)$.

D.
$$S = (-1; +\infty)$$

🗭 Lời giải.

CÂU 187. Tập nghiệm S của bất phương trình $\log_{\frac{1}{2}}(x+1) < \log_{\frac{1}{2}}(2x-1)$ là

A.
$$S = (2; +\infty).$$

B.
$$S = (-\infty; 2)$$

B.
$$S = (-\infty; 2)$$
. **C.** $S = (\frac{1}{2}; 2)$. **D.** $S = (-1; 2)$.

D.
$$S = (-1; 2)$$
.

De Loi giải.

CÂU 188. Nghiệm của bất phương trình $\log_2(x+1) + \log_{\frac{1}{2}} \sqrt{x+1} \leq 0$ là

A.
$$-1 < x \le 0$$
.

B.
$$-1 \le x \le 0$$
.

C.
$$-1 < x \stackrel{2}{\leq} 1$$
.

D.
$$x < 0$$

🗭 Lời giải.

CÂU 189. Có bao nhiêu giá trị nguyên x thỏa mãn bất phương trình $\log(x-40) + \log(60-10)$ x) < 2?

- **A.** 10.
- **B.** 18.
- **C.** 15.
- D. Vô số.

🗩 Lời giải.

CÂU 1	90.	Nghiệm	của	bất	phương	trình	\log_5	(3x +	2)	>	1	là
-------	-----	--------	-----	-----	--------	-------	----------	-------	----	---	---	----

A. x < 1.

B. x > 1. **C.** $x > -\frac{2}{3}$.

D. x < -1.

🗭 Lời giải.

CÂU 191. Giải bất phương trình $\log_2 (x^2 - 4x + 5) \le 4$.

A. $-7 \le x \le -1$.

B. $-3 \le x < -1$ hoặc $5 < x \le 7$. **D.** $2 - \sqrt{15} \le x \le 2 + \sqrt{15}$.

C. $-3 \le x \le 7$.

🗭 Lời giải.

CÂU 192. Giải bất phương trình $\log_{\frac{1}{2}}(x^2 - 3x + 2) \ge -1$.

A. $x \in (-\infty; 1)$.

C. $x \in [0;1) \cup (2;3]$.

D. $x \in [0; 2) \cup (3; 7].$

🗩 Lời giải.

CÂU 193. Tập nghiệm của bất phương trình $\log_{\frac{1}{2}}(5x+1) < -5$ là

A. $\left(-\infty; -\frac{1}{5}\right)$.

B. $\left(-\frac{1}{5}; \frac{31}{5}\right)$.

 $\mathbf{C.} \ \left(\frac{31}{5}; +\infty\right).$

Lời giải.

CÂU 194. Bất phương trình $\log_{\frac{2}{3}} (2x^2 - x + 1) < 0$ có tập nghiệm là

A. $S = \left(0; \frac{3}{2}\right)$.

B. $S = \left(-1; \frac{3}{2}\right)$.

 $\mathbf{C.} \ \ S = (-\infty; 0) \cup \left(\frac{1}{2}; +\infty\right).$

D. $S=(-\infty;1)\cup\left(\frac{3}{2};+\infty\right).$

🗩 Lời giải.

CÂU 195. Giải bất phương trình $\log_2(3x-1) > 3$.

_			_
A.	\boldsymbol{x}	>	3

B.
$$\frac{1}{3} < x < 3$$
. **C.** $x < 3$.

C.
$$x < 3$$

D.
$$x > \frac{10}{3}$$
.

🗭 Lời giải.

CÂU 196. Tìm tập nghiệm của bất phương trình $\log_{0.2}(x-3) + 2 \ge 0$.

B.
$$[28, +\infty)$$
.

C.
$$(3, +\infty)$$
.

D.
$$(-\infty; 28)$$
.

🗭 Lời giải.

CÂU 197. Tập nghiệm của bất phương trình $3 < \log_2 x < 4$ là:

C.
$$(8; +\infty)$$
.

🗭 Lời giải.

CÂU 198. Tìm tập nghiệm S của bất phương trình $\log_{0.5}(x-1) > 2$.

A.
$$S = \left(-\infty; \frac{5}{4}\right)$$
. **B.** $S = \left(1; \frac{5}{4}\right)$. **C.** $S = \left(\frac{5}{4}; +\infty\right)$. **D.** $S = (1; +\infty)$.

B.
$$S = \left(1; \frac{5}{4}\right)$$

$$\mathbf{C.} \ \ S = \left(\frac{5}{4}; +\infty\right).$$

D.
$$S = (1; +\infty)$$

🗩 Lời giải.

CÂU 199. Tìm tập nghiệm S của bất phương trình $\log_2\left(\log_{\frac{1}{2}}x\right) > 0$.

A.
$$S = \left(1; \frac{3}{2}\right)$$
.

B.
$$S = (0; 1)$$
.

A.
$$S = \left(1; \frac{3}{2}\right)$$
. **B.** $S = (0; 1)$. **C.** $S = \left(-\infty; \frac{1}{2}\right)$. **D.** $S = (1; +\infty)$.

D.
$$S = (1; +\infty)$$

🗭 Lời giải.

CÂU 200. Tập nghiệm của bất phương trình $\log_3 \frac{4x+6}{r} \leq 0$ là

A.
$$S = \left[-2; -\frac{3}{2} \right)$$
.

B.
$$S = [-2; 0).$$

C.
$$S = (-\infty; 2].$$

D.
$$S = \mathbb{R} \setminus \left[-\frac{3}{2}; 0 \right]$$
.

🗭 Lời giải.

CÂU 201. Cho hàm số $f(x) = \log_2(x-1)$. Tìm tập nghiệm của bất phương trình f(x+1) > 1

A.
$$S = (2; +\infty).$$

B.
$$S = (3; +\infty).$$

C.
$$S = (1; +\infty).$$

D.
$$S = (1; 2).$$

🗭 Lời giải.

CÂU 202. Tìm tập nghiệm của bất phương trình $\log_{\frac{1}{2}}(x+1) \leq \log_{\frac{1}{2}}(2x-1)$.

A.	S =	$:(-\infty;$	1

B.
$$S = (1; +\infty).$$

C.
$$(-1;1)$$
.

D.
$$\left(\frac{1}{2};1\right]$$
.

🗭 Lời giải.

CÂU 203. Cho hàm số $f(x) = \log_2 x$ và $g(x) = \log_2 (4 - x)$. Tìm tập nghiệm của bất phương trình f(x+1) < g(x+2).

A.
$$S = \left(-\infty; \frac{1}{2}\right)$$
. **B.** $S = \left(-1; \frac{1}{2}\right)$. **C.** $S = (0; 2)$.

B.
$$S = \left(-1; \frac{1}{2}\right)$$

C.
$$S = (0; 2)$$

D.
$$S = (-\infty; 2)$$

🗭 Lời giải.

CÂU 204. Tập nghiệm của bất phương trình $\log_{0.8}(x^2+x) < \log_{0.8}(-2x+4)$ là **B.** $(-\infty; -4) \cup (1; 2)$.

C.
$$(-\infty; -4) \cup (1; +\infty)$$
.

D.
$$(-4; 1)$$
.

🗭 Lời giải.

CÂU 205. Tìm nghiệm nguyên nhỏ nhất của bất phương trình $\log_3\left(1-x^2\right) \leq \log_{\frac{1}{2}}(1-x^2)$

A.
$$x = 0$$
.

x)

B.
$$x = 1$$
.

C.
$$x = \frac{1 - \sqrt{5}}{2}$$

C.
$$x = \frac{1 - \sqrt{5}}{2}$$
. **D.** $x = \frac{1 + \sqrt{5}}{2}$.

🗩 Lời giải.

CÂU 206. Điều kiện xác định của bất phương trình $\log_{0.5}(5x+15) \le \log_{0.5}(x^2+6x+8)$

A. x > -2.

$$\begin{bmatrix} x < -4 \\ x > -2 \end{bmatrix}$$

C.
$$x > -3$$
.

B.
$$\begin{bmatrix} x < -4 \\ x > -2 \end{bmatrix}$$
. **D.** $-2 < x \le \frac{1}{2} \left(\sqrt{29} - 1 \right)$.

🗭 Lời giải.

CÂU 207. Tập nghiệm của bất phương trình $\log_{\frac{1}{3}}\left(x^2-6x+5\right)+\log_{3}(x-1)\geq 0$ là **A.** S=[1;6]. **B.** S=(5;6]. **C.** $S=(5;+\infty).$ **D.** $S=(1;+\infty).$

A.
$$S = [1:6].$$

B.
$$S = (5; 6]$$

c.
$$S = (5; +\infty).$$

D.
$$S = (1; +\infty)$$

🗩 Lời giải.

ຊຸມ	/ NI		
6 U	· IVI	OI.	Е.

.....

CÂU 208. Điều kiện xác định của bất phương trình $\log_{\frac{1}{2}}(4x+2) - \log_{\frac{1}{2}}(x-1) > \log_{\frac{1}{2}}x$

là

A.
$$x > -\frac{1}{2}$$
.

B.
$$x > 0$$
.

C.
$$x > 1$$
.

D.
$$x > -1$$
.

🗭 Lời giải.

CÂU 209. Điều kiện xác định của bất phương trình $\ln \frac{x^2-1}{x} < 0$ là

B.
$$x > -1$$
.

C.
$$x > 0$$
.

🗭 Lời giải.

CÂU 210. Nghiệm nguyên nhỏ nhất của bất phương trình $\log_{0,2} x + \log_{0.2} (x-2) < \log_{0,2} 3$ là

A. x = 6.

B.
$$x = 3$$
.

B. x = 2.

C.
$$x = 5$$
.

C. x = 1.

D.
$$x = 4$$
.

🗭 Lời giải.

CÂU 211. Nghiệm nguyên lớn nhất của bất phương trình $\log_3\left(4\cdot 3^{x-1}\right)>2x-1$ là

🗭 Lời giải.

A. x = 3.

\vdash Dạng 17. Đặt ẩn phụ

Phương pháp: Đặt $t = \log_a f(x)$ với a và f(x) thích hợp để đưa phương trình logarit về phương trình đại số đối với t.

1. Các ví dụ

VÍ DỤ 16. Bất phương trình $\log_{\frac{1}{2}}^2 x + 3\log_{\frac{1}{2}} x + 2 \le 0$ có tập nghiệm S = [a; b]. Tính giá trị của $a^2\sqrt{b}$.

VÍ DỤ 17. Tìm tập nghiệm bất phương trình $\log_3^2\left(x-\frac{2x^2}{3}\right)+\log_{\frac{1}{3}}\left(x-\frac{2x^2}{3}\right)<2.$

VÍ Dụ 18. Tìm nghiệm của bất phương trình $\log_{\frac{1}{2}}^2 x - \log_2(2x) - 5 \ge 0$.

2. Câu hỏi trắc nghiệm

CÂU 212. Tìm tập nghiệm S của bất phương trình $\log_2^2 x - 5\log_2 x + 4 \ge 0$.

A.
$$S = (-\infty; -2] \cup [16; +\infty).$$

B.
$$S = [2; 16].$$

C.
$$S = (0; 2] \cup [16; +\infty).$$

D.
$$S = (-\infty; 1] \cup [4; +\infty).$$

🗭 Lời giải.

CÂU 213. Bất phương trình $\log_2(1+3^x) + \log_{(1+3^x)}2 - 2 > 0$ có nghiệm là

A. x > 0. 🗭 Lời giải.

CÂU 214. Tìm tập nghiệm S của bất phương trình $\log_{\frac{1}{3}}^2 x + 3 \log_{\frac{1}{3}} x + 2 \le 0$. **A.** S = [-2; -1]. **B.** $S = \emptyset$. **C.** S = [3; 9]. **D.** S = [-2; -1].

🗩 Lời giải.

CÂU 215. Cho hàm số $f(x) = 3 \ln x - 2$ và $g(x) = \ln^2 x$. Gọi S là tập tất cả các giá trị nguyên của x thỏa điều kiện x < 10 và f(x) < g(x). Tính số phần tử của S ứng với

A. 10. 🗩 Lời giải.

CÂU 216. Cho hàm số $f(x) = \log_2 x$ và $g(x) = -\frac{2}{\log_2 x - 3}$. Tìm tất cả các giá trị thực của x để f(x) > g(x)của x để f(x) > g(x).

C. 2 < x < 4.

D. 4 < x < 8.

🗭 Lời giải.

CÂU 217. Tìm nghiệm bất phương trình $4\log_9 x + \log_x 3 \ge 3$.

A. $S = \left(0; \frac{1}{2}\right) \cup (1; +\infty).$

B. $S = (1; \sqrt{3}) \cup (3; +\infty).$

C. $S = (1; +\infty).$ 🗭 Lời giải.

D. $S = (3; +\infty).$

CÂU 218. Tìm nghiệm bất phương trình $\log_5 x \ge \log_x 5$.

A. $S = [5; +\infty).$

B. $S = \left(0; \frac{1}{5}\right] \cup [1; +\infty).$

c. $S = \left[\frac{1}{5}; 5\right] \setminus \{1\}.$

 $\textbf{D.} \ S = \left[\frac{1}{5};1\right) \cup [5;+\infty).$

QUICK NOTE	🗩 Lời giải.
	CÂU 219. Tìm tập nghiệm S của bất phương trình $\sqrt{x-2} \left(\log_{\sqrt{2}}^2 x - 5 \log_{\sqrt{2}} x + 4 \right) < 0$
	A. $S = (2;4)$. B. $S = (\sqrt{2};4)$. C. $S = [2;4)$. D. $S = (1;2)$.
	🗭 Lời giải.
	(1, 2,
	CÂU 220. Tìm tập nghiệm S của bất phương trình $\sqrt{5x-12}\left(\frac{\log_2^2 x+3}{\log_2 x+3}-2\right)\geq 0.$
	/
	A. $S = \left[\frac{5}{12}; \frac{1}{2}\right] \cup [8; +\infty).$ B. $S = \left[\frac{1}{3}; \frac{1}{2}\right] \cup (8; +\infty).$
	C. $S = \left(-\infty; \frac{1}{3}\right) \cup \left(\frac{1}{2}; 8\right).$ D. $S = \left(\frac{5}{12}; \frac{1}{2}\right] \cup (8; +\infty).$
	© Lời giải. (12 2)
	CÂU 221. Tìm tập nghiệm S của bất phương trình $\log_3\left(\frac{x+1}{243}\right) + \log_{x+1} 729 \le 0.$
	A. $S = (-1;0) \cup [8;26]$. B. $S = [8;26]$.
	C. $S = (-1; 8].$ D. $S = (-1; 0) \cup (0; 8].$
	C. $S = (-1; 8].$ D. $S = (-1; 0) \cup (0; 8].$
	C. $S = (-1; 8].$ D. $S = (-1; 0) \cup (0; 8].$
	C. $S = (-1; 8].$ D. $S = (-1; 0) \cup (0; 8].$
	C. $S = (-1; 8].$ D. $S = (-1; 0) \cup (0; 8].$
	C. $S = (-1; 8].$ D. $S = (-1; 0) \cup (0; 8].$
	C. $S = (-1, 8].$ D. $S = (-1, 0) \cup (0, 8].$
	C. $S = (-1, 8].$ D. $S = (-1, 0) \cup (0, 8].$
	C. $S = (-1, 8].$ D. $S = (-1, 0) \cup (0, 8].$
	C. $S = (-1, 8].$ D. $S = (-1, 0) \cup (0, 8].$
	C. $S = (-1, 8].$ D. $S = (-1, 0) \cup (0, 8].$
	C. $S = (-1, 8].$ D. $S = (-1, 0) \cup (0, 8].$
	C. $S = (-1; 8]$. D. $S = (-1; 0) \cup (0; 8]$.
	C. $S = (-1; 8]$. D. $S = (-1; 0) \cup (0; 8]$.
	C. $S=(-1;8]$. D. $S=(-1;0)\cup(0;8]$. P Lời giải. CÂU 222. Giải bất phương trình $\log_9\left(3^x-1\right)\cdot\log_{\frac{1}{9}}\left(\frac{3^x-1}{81}\right)\leq \frac{3}{4}$. Ta được tập nghiệm
	C. $S = (-1; 8]$. D. $S = (-1; 0) \cup (0; 8]$. P Lời giải. CÂU 222. Giải bất phương trình $\log_9(3^x - 1) \cdot \log_{\frac{1}{9}}\left(\frac{3^x - 1}{81}\right) \leq \frac{3}{4}$. Ta được tập nghiện A. $S = (-\infty; 2\log_3 2] \cup [\log_3 28; +\infty)$. B. $S = [2\log_3 2; \log_3 28]$.
	C. $S=(-1;8]$. D. $S=(-1;0)\cup(0;8]$. P Lời giải. CÂU 222. Giải bất phương trình $\log_9\left(3^x-1\right)\cdot\log_{\frac{1}{9}}\left(\frac{3^x-1}{81}\right)\leq \frac{3}{4}$. Ta được tập nghiệm
	C. $S=(-1;8]$. D. $S=(-1;0)\cup(0;8]$.
	C. $S=(-1;8]$. D. $S=(-1;0)\cup(0;8]$.
	C. $S=(-1;8]$. D. $S=(-1;0)\cup(0;8]$.

	🕈 TRƯỜNG THPT SỐ 1 TUY PHƯỚC 🕻
	QUICK NOTE
	QUICK HOIL
🗁 Dạng 18. Sử dụng tính đơn điệu của hàm số	
	<u> </u>
1. Các ví dụ	
VÍ DỤ 19. Gọi $S_1; S_2; S_3$ lần lượt là tập nghiệm của các bất phương trình sau:	
$2^{x} + 2 \cdot 3^{x} - 5^{x} + 3 > 0; \log_{2}(x+2) \le -2; \left(\frac{1}{\sqrt{5}-1}\right)^{x} > 1.$	
, , _	
A. $S_1 \subset S_3 \subset S_2$. B. $S_2 \subset S_1 \subset S_3$. C. $S_1 \subset S_2 \subset S_3$. D. $S_2 \subset S_3 \subset S_1$.	
📂 Dạng 19. Bài toán logarit chứa tham số	
	<u> </u>
1. Các ví du	
VÍ DỤ 20. Tìm tất cả các giá trị thực của tham số m để bất phương trình $\log_2^2 x - 2\log_2 x + 2\log_2 x$	
3m-2<0 có nghiệm thực.	
VÍ DỤ 21. Có bao nhiêu giá trị nguyên của m để bất phương trình $\log_2^2 x + m \log_2 x - m \ge 0$	0
nghiệm đúng với mọi giá trị của $x \in (0; +\infty)$?	
VÍ DỤ 22. Tìm tất cả các giá trị của tham số m để hàm số $y = \frac{1}{\sqrt{m \log_3^2 x - 4 \log_3 x + m + 1}}$	=
	3
xác định trên khoảng $(0; +\infty)$.	
VÍ DỤ 23. Tìm tất cả giá trị thực của tham số m sao cho bất phương trình $\log_2^2 x - 2\log_2 x - m > 0$ có nghiệm thuộc $(1,4)^2$	
$m \ge 0$ có nghiệm thuộc $(1;4)$?	
2. Câu hỏi trắc nghiệm	
CÂU 223. Bất phương trình $\lg^2 x - m \lg x + m + 3 \le 0$ có nghiệm $x > 1$ khi giá trị của n	<i>1</i>
là A. $(-\infty; -3) \cup [6; +\infty)$. B. $(-\infty; -3)$.	
C. $[6; +\infty)$. D. $(3;6]$.	
🗭 Lời giải.	
	•
CÂU 224. Gọi S là tổng tất cả giá trị nguyên của tham số m , với $m < 3$ để bất phương	g
trình $\log_{\frac{1}{5}} (mx - x^2) \le \log_{\frac{1}{5}} 4$ vô nghiệm. Tính S .	
A. $S = -3$. B. $S = -7$. C. $S = 0$. D. $S = -4$.	

QUICK NOTE	🗭 Lơi giải.			
	CÂU 225. Tìm tất cả $\log_2(2 \cdot 5^x - 2) > m - 1$	các giá trị thực của có nghiệm $x > 1$?	tham số m để bất phu	fong trình $\log_2(5^x-1)$.
	A. $m \ge 7$. Description:	B. $m > 7$.	C. $m \le 7$.	D. $m < 7$.
	CÂU 226. Tìm tất cả nghiệm của bất phương	g trình $\log_5(x^2+1) >$	$> \log_5 (x^2 + 4x + m) -$	khoảng $(2;3)$ thuộc tập 1 (1) . D. $m \in [-13;-12]$.
	$m \in [-12, 13].$ p Lời giải.	$m \in [12, 13].$	$m \in [-13, 12].$	$m \in [-13, -12].$
	CÂU 227. Tìm tất cả g		số m sao cho bất phươn	g trình $\log_2^2 x - 2\log_2 x -$
	$m \ge 0$ có nghiệm thuộc			
	A. $m < 0$. \bigcirc Lời giải.	B. $m \le 0$.	C. $m > 0$.	$\mathbf{D.} \ m \geq 0.$
	CÂU 228. Tìm tất cả g		số m sao cho bất phươn	g trình $\log_2^2 x - 2\log_2 x -$
	$m \ge 0$ có nghiệm thuộc A. $m \le 0$.	[1;4]? B. $m < 0$.	C. $m > 0$.	$\mathbf{D.} \ m \geq 0.$
	p Lời giải.	<i>m</i> < 0.	· 110 > 0.	<i>m</i> ≥ 0.

	🕈 TRƯỜNG THPT SỐ 1 TUY PHƯỚC 🗣
	QUICK NOTE
CÂU 229. Tìm tất cả giá trị thực của tham số m sao cho bất phương tr $m \ge 0$ có mọi x thuộc $(1;4)$ là nghiệm?	$ \frac{1}{2} \ln \log_2^2 x - 2 \log_2 x - \frac{1}{2} \ln \ln \log_2^2 x - \frac{1}{2} \ln \log_2 x -$
A. $m \ge -1$. B. $m < -1$. C. $m > -1$.	D. $m \le -1$.
🗩 Lời giải.	
CÂU 230. Tìm tất cả giá trị thực của tham số m sao cho bất phương tr $m \ge 0$ có mọi $x \in [1; 4)$ là nghiệm?	$ \frac{1}{2} \ln \log_2^2 x - 2 \log_2 x - \frac{1}{2} \ln \ln \log_2^2 x - \frac{1}{2} \ln \ln \log_2^2 x - \frac{1}{2} \ln \ln \log_2^2 x - \frac{1}{2} \ln \log_2 x - 1$
A. $m > -1$. B. $m \le 0$. C. $m \le -1$.	D. $m \ge -1$.
🗩 Lời giải.	
	\lambda 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CÂU 231. Tìm tất cả giá trị thực của tham số m sao cho bất phương tr $m \ge 0$ có mọi $x \in [1; 4]$ là nghiệm?	$\sinh \log_2^2 x - 2 \log_2 x - \left \dots \right $
	D. $m \le -1$.
🗩 Lời giải.	

▼ TRƯỜNG THPT SỐ 1 TUY PHƯỚC ♥

XÁC SUẤT

	7 TRƯỜNG THPT SỐ 1 TUY PHƯỚC 😯
	QUICK NOTE
CÂU 235. Tìm tất cả giá trị thực của tham số m sao cho bất phương trình $(3m+1)12^x + (2-m)6^x + 3^x < 0$ nghiệm đúng $\forall x > 0$ là	
A. $(-2; +\infty)$. B. $(-\infty; -2]$. C. $\left(-\infty; -\frac{1}{3}\right]$. D. $\left(-2; -\frac{1}{3}\right)$.	
₽ Lời giải.	
CÂU 236. Tìm m để bất phương trình $1 + \log_5(x^2 + 1) \ge \log_5(mx^2 + 4x + m)$ thỏa mãn với mọi $x \in \mathbb{R}$.	
A. $-1 < m \le 0$. B. $-1 < m < 0$. C. $2 < m \le 3$. D. $2 < m < 3$.	
🗭 Lời giải.	
CÂU 237. Tìm tất cả các giá trị thực của tham số m để bất phương trình $9^x - 2(m+1) \cdot 3^x - 3 - 2m > 0$ nghiệm đúng với mọi $x \in \mathbb{R}$.	
A. $m \in \mathbb{R}$. B. $m \neq \frac{-4}{3}$. C. $m < \frac{-3}{2}$. D. $m \leq \frac{-3}{2}$.	
9 2	
🗭 Lời giải.	