(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002年6月27日(27.06.2002)

PCT

(10) 国際公開番号 WO 02/49632 A1

(51) 国際特許分類?:

A61K 31/055, 31/166, 31/12, 31/18, 31/167, 31/136, 31/17, 31/695, 31/5375, 31/357, 31/404, 31/44, 31/498, 31/403, 31/415, 31/421, 31/422, 31/433, 31/428, 31/505, 31/47, 31/40, 31/381, 31/426, 31/437, 31/4402, 31/4453, 31/445, C07D 295/192, 321/10, 213/82, 209/42, 241/44, 209/88, 333/68, 231/40, 263/48, 413/14, 285/12, 213/75, 239/47, 209/08, 209/42, 215/38, 209/88, 207/325, 333/24, 277/30, 471/04, 213/56, 295/192, 211/16, 207/48, 213/76, 277/46, 277/56, 413/14, C07C 235/60, 233/75, A61P 43/00, 19/02, 29/00, 37/06, 17/00, 21/00, 21/04, 9/00, 1/04, 1/16, 13/12, 1/18, 19/06, 9/10, 17/06, 37/08, 11/00, 3/04, 3/10, 3/06, 27/02, 25/28, 35/00, 35/02, 15/00

(21) 国際出願番号:

PCT/JP01/11084

(22) 国際出願日:

2001年12月18日(18.12.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2000-383202

2000年12月18日(18.12.2000)

- (71) 出願人 (米国を除く全ての指定国について): 株式会社 医薬分子設計研究所 (INSTITUTE OF MEDICINAL MOLECULAR DESIGN. INC.) [JP/JP]; 〒113-0033 東 京都文京区本郷5丁目24番5号 角川本郷ビル4F Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 武藤 進 (MUTO, Susumu) [JP/JP]; 〒184-0003 東京都小金井市緑町1-6-7 メイプルコーポB202 Tokyo (JP). 永野辰夫 (NAGANO, Tatsuo) [JP/JP]; 〒151-0072 東京都渋谷区幡ヶ谷1-7-3 第一西谷ビル401号 Tokyo (JP). 早乙女智美 (SAO-TOME, Tomomi) [JP/JP]; 〒165-0022 東京都中野区江 古田3-7-14 グリュックハイム206 Tokyo (JP). 板井昭 子 (ITAI, Akiko) [JP/JP]; 〒113-0033 東京都文京区本 郷5-16-6 Tokyo (JP).

/続葉有/

- (54) Title: INHIBITORS AGAINST THE PRODUCTION AND RELEASE OF INFLAMMATORY CYTOKINES
- (54) 発明の名称: 炎症性サイトカイン産生遊離抑制剤

(57) Abstract: Medicines having inhibitory activity against the activation of NF-kB, which contain as the active ingredient compounds represented by the general formula (I)(wherein X is a connecting group; A is hydrogen or acetyl; E is aryl or heteroaryl; and Z is arene or heteroarene) or pharmacologically acceptable salts thereof: (I)

(57) 要約:

一般式(I)(Xは連結基を表し、Aは水素原子又はアセチル基を表し、Eはア リール基又はヘテロアリール基を表し、環2はアレーン又はヘテロアレーンを表 す) で表される化合物又は薬理学的に許容される塩を有効成分として含み、NF - κ B活性化阻害作用を有する医薬。:

WO 02/49632

- (74) 代理人: 今村正純, 外(IMAMURA, Masazumi et al.); 〒104-0031 東京都中央区京橋1丁目8番7号 京橋日殖 ビル8階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

炎症性サイトカイン産生遊離抑制剤

技術分野

本発明は、インターロイキン(IL)-1、IL-6、IL-8、腫瘍壊死因子($TNF-\alpha$)などの炎症性サイトカインの産生遊離抑制作用及び $NF-\kappa$ B活性化阻害作用を有する医薬に関する。

背景技術

炎症はさまざまな侵襲に対する基本的な生体防御反応であり、そこでは炎症性サイトカインであるインターロイキン(IL)-1やTNF $-\alpha$ (腫瘍壊死因子)が重要な役割を担っていることが知られている。炎症性サイトカインや炎症性細胞接着因子の遺伝子解析が進み、これらが共通の転写因子(転写調節因子とも呼ぶ)で制御されていることが明らかになってきた。この転写因子がNF $-\kappa$ B(NF κ Bと記されることもある)と呼ばれているタンパク質である(Clark B. D., et al., Nucl. Acids Res., 14, 7898(1984); Nedospasov S. A., et al., Cold Spring Harb. Symp. Quant. Biol., 51, 611(1986))。

このNF- κ Bはp65 (Rel Aとも称する)とp50 (NF- κ B-1 とも称する)とのヘテロ二量体(複合体とも称する)であり、通常、外界刺激の無い状態では $I-\kappa$ Bと結合し、不活性型として細胞質に存在する。 $I-\kappa$ Bはさまざまな外界刺激(酸化的ストレス、サイトカイン、リポ多糖、ウィルス、UV、フリーラジカル、プロテインキナーゼCなど)によってリン酸化を受けユビキチン化し、その後プロテアゾームで分解される(Verma I. M., Stevenson J. K., et al., Genes Dev., 9, 2723-2735(1995))。 $I-\kappa$ Bから離れたNF- κ Bは速やかに核内に移行し、NF- κ Bの認識配列を持つプロモーター領域に結合することにより、転写因子としての役割を果たしている。

1997年になって、 $I-\kappa$ Bのリン酸化に関与するリン酸化酵素($I\kappa$ Bキナーゼと称して I KKと略される)が同定された(DiDonation J., Hayakawa M., et al., Nature, 388, 548-554(1997); Regnier C. H., Song H. Y., et al., Cell, 90, 373-383(1997))。 I KKには互いによく似ている I KK $-\alpha$ (I KK1 とも称する)と I KK $-\beta$ (I KK1 とも称する)が存在しており、この二つは複合体を形成して I κ Bと直接結合して I κ Bをリン酸化することが知られている(Woronicz J. D., et al., Science, 278, 866-869(1997); Zandi, E., et al., Cell, 91, 243-252(1997))。

最近、抗炎症剤として汎用されているアスピリンにシクロオキシゲナーゼ阻害作用以外の作用機序が想定されており、これらNF- κ B活性化抑制によるものであることが知られている(Kopp E., et al., Science, 265, 956-959(1994))。さらに、アスピリンは I κ Bキナーゼである I KK- β にATPと競合して可逆的に結合し、 I κ Bのリン酸化を阻害することで、NF- κ Bの遊離、活性化を抑制していることが明らかになった(Yin M. J., et al., Nature, 396, 77-80(1998))。しかし、十分にNF- κ B活性化を抑制するためには大用量のアスピリンを投与する必要があり、プロスタグランジン合成阻害による胃腸障害や抗血液凝固作用による出血傾向の増大等の副作用発生が高い確率で起こりえる可能性があることから、長期使用には適さない。

アスピリン以外にもNFー κ B活性化抑制作用を有していることが明らかになった薬剤が知られている。デキサメタゾンなどのグルココルチコイド (ステロイドホルモン) はその受容体(グルココルチコイド受容体と呼ばれている)と結合することによってNFー κ B活性化を抑制しているが (Scheinman R. I., et al., Science, 270, 283(1995))、感染症の増悪、消化性潰瘍の発生、骨密度の低下、中枢作用などの重篤な副作用があることより長期使用に適さない。免疫抑制剤であるイソキサゾール系薬剤レフルノミドもNFー κ B抑制作用を有しているが (Manna S., et al., J. Immunol., 164, 2095-2102(1999))、重篤な副作用があることからこれも長期使用には適さない。その他、NF- κ B活性化阻害

剤としては、置換ピリミジン誘導体(特表平 11-512399 号公報、特表平 11-512399 号公報、J. Med. Chem., 41, 413(1998))、キサンチン誘導体(特開平 9-227561 号公報)、イソキノリン誘導体(特開平 10-87491 号公報)、インダン誘導体(W000/05234 号公報)、エポキシキノマイシンC、D及びその誘導体(特開平 10-45738 号公報、Bioorg. Med. Chem. Lett., 10, 865-869(2000))が知られているが、NF $-\kappa$ B活性化阻害の作用機構及び作用している受容体又は蛋白質については明らかにされていない。

発明の開示

 $I \kappa B$ のリン酸化を直接引き起こす $I KK - \beta$ をターゲットとして $I KK - \beta$ 特異的な阻害化合物を見出すことは、他のシグナル伝達経路に影響を及ぼさずに、つまり重篤な副作用を示さずに目的とする炎症性サイトカインの産生遊離抑制作用及び炎症性細胞接着分子の産生抑制を示すことが期待される。また、前記の外界刺激により $NF - \kappa$ B 活性化がおこり炎症性サイトカインなどのタンパク質が発現していることになるが、炎症性サイトカインの中で、特に $TNF - \alpha$ とインターロイキン (IL) -1 はその遺伝子発現自体が $NF - \kappa$ B によって正に制御されて正のフィードバック・ループ [$TNF - \alpha \rightarrow NF - \kappa$ B $\rightarrow TNF - \alpha$] を構成し、炎症の慢性化の一端を担うものと考えられていることから(第18回日本炎症学会、シンポジウム「抗リウマチ薬の作用機序と新しい展開」、東京、2000年)、上記 $IKK - \beta$ をターゲットした特異的阻害化合物は慢性化した炎症性疾患並びに $TNF - \alpha$ 、IL - 1 により引き起こされる疾患への有用な薬剤になることが期待される。

従って、本発明の課題は、炎症性サイトカインが関与している炎症性疾患、慢性関節リウマチなどの自己免疫疾患、骨粗鬆症などの骨疾患などに対する予防及び/又は治療に有用な医薬を提供することにある。また、本発明の別の課題は、 $I \ KK - \beta$ を特異的に阻害することにより副作用を回避することができ、かつ $N \ F - \kappa$ B活性化阻害作用を有する炎症性サイトカイン産生遊離抑制剤を提供す

ることにある。

本発明の医薬は、

(1) 下記一般式 (I):

(式中、

Xは、主鎖の原子数が2ないし4である連結基(該連結基は置換基を有していて もよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテ

PCT/JP01/11084 WO 02/49632

Page 7 of 313

ロアリール基を表し、

環スは、式一〇一A(式中、Aは上記定義と同義である)及び式-X-E(式中、 X及びEは上記定義と同義である)で表される基の他にさらに置換基を有してい てもよいアレーン、又は式一〇一A(式中、Aは上記定義と同義である)及び式 -X-E (式中、X及びEは上記定義と同義である)で表される基の他にさらに 置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学 的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群 から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医 薬である。

これらのうち、好適な医薬としては、

(2) Xが、下記連結基群αより選択される基(該基は置換基を有していてもよ い)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び それらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κ B活性化阻害作用を有する医薬、

$[連結基群 \alpha]$ 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)

(3) Xが、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)で表される 基(該基は置換基を有していてもよい)である化合物及び薬理学的に許容される その塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物 質を有効成分として含み、NF-κ B活性化阻害作用を有する医薬、

(4) Xが、下記式:

(式中、左側の結合手が環Zに結合し右側の結合手がEに結合する)で表される基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa B$ 活性化阻害作用を有する医薬、

- (5) Aが、水素原子である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、
- (6) 環Zが、 $C_6 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)、又は6ないし13員の $^-$ クーアレーン(該 $^-$ クーアレーンは、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

(7) 環Zが、下記環群 β より選択される環(該環は、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

[環群β] ベンゼン環、ナフタレン環、ピリジン環、インドール環、キノキサリン環、カルバゾール環

- (8) 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、
- (9) 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に、下記置換基群 $\gamma-1$ z より選択される基をさらに有していてもよいベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

[置換基群γ-1 z] ハロゲン原子、ニトロ基、シアノ基、置換基を有していて もよいヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していて もよい炭化水素基、置換基を有していてもよいヘテロ環基、置換基を有していて もよいアシル基、置換基を有していてもよいウレイド基、置換基を有していても よいチオウレイド基、置換基を有していてもよいジアゼニル基

(10) 一般式(I) における環Zを含む下記部分構造式(Iz-1):

が下記式 (Iz-2):

(式中、

R*は、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭化水素基、置換基を有していてもよいヘテロ環基、置換基を有していてもよいアシル基、置換基を有していてもよいウレイド基、置換基を有していてもよいチオウレイド基、又は置換基を有していてもよいジアゼニル基を表す)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、

(11) R^z が、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい $C_1 \sim C_6$ のアルコキシ基、ジ ($C_1 \sim C_6$ アルキル) - アミノ基、 $C_6 \sim C_{10}$ のアリールーカルボニルーアミノ基、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、置換基を有していてもよい $C_2 \sim C_6$ のアルケニル基、置換基を有していてもよい $C_2 \sim C_6$ のアルキニル基、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、 $C_7 \sim C_{16}$ のアラルキル基、置換基を有していてもよい5ないし6員のヘテロアリール基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいカルバモイル基、置換基を有していてもよい $C_1 \sim C_6$ のアルキルーカルボニ

ル基、置換基を有していてもよい $C_1 \sim C_6$ のアルコキシーカルボニル基、置換基を有していてもよい5員のヘテロアリールースルホニル基、置換基を有していてもよい6員の非芳香族ヘテロ環ースルホニル基、又は置換基を有していてもよいジアゼニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

(12) R²が、水素原子、ハロゲン原子、ニトロ基、シアノ基、メトキシ基、 ジメチルアミノ基、ベンゾイルアミノ基、メチル基、tert-ブチル基、1-ヒドロキシエチル基、1-(メトキシイミノ)エチル基、1-[(ベンジルオキ シ) イミノ] エチル基、トリフルオロメチル基、ペンタフルオロエチル基、フェ ニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェニル基、2. 4-ジフルオロフェニル基、2-フェニルエテン-1-イル基、2,2-ジシア ノエテン-1-イル基、2-シアノ-2-(メトキシカルボニル) エテン-1-イル基、2-カルボキシー2-シアノエテンー1-イル基、エチニル基、フェニ ルエチニル基、(トリメチルシリル) エチニル基、フェニル基、2-フェネチル 基、2-チエニル基、3-チエニル基、1-ピロリル基、2-メチルチアゾール ー4ーイル基、2-ピリジル基、Nー[3,5-ビス(トリフルオロメチル)フ ェニル] カルバモイル基、ジメチルカルバモイル基、ジメチルスルファモイル基、 アセチル基、イソブチリル基、メトキシカルボニル基、ピペリジノカルボニル基、 4-ベンジルピペリジノ基、(ピロール-1-イル) スルホニル基、3-フェニ ルウレイド基、(3-フェニル)チオウレイド基、(4-ニトロフェニル)ジアゼ ニル基、又は {[(4-ピリジン-2-イル) スルファモイル] フェニル} ジアゼ ニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及 びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NFκ B活性化阻害作用を有する医薬、

(13) R*が、ハロゲン原子である化合物及び薬理学的に許容されるその塩、 並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有

効成分として含み、NF-κB活性化阻害作用を有する医薬、

- (14) Eが、置換基を有していてもよい $C_6\sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし13員のヘテロアリール基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF $-\kappa$ B活性化阻害作用を有する医薬、
- (15) Eが、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基である化合物 及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物 からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用 を有する医薬、
- (16) Eが、置換基を有していてもよいフェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF $-\kappa$ B活性化阻害作用を有する医薬、(17) Eが、 $C_1 \sim C_6$ のハロゲン化アルキル基 2 個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基 2 個の他にさらに置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF $-\kappa$ B活性化阻害作用を有する医薬、
- (18) Eが、 $C_1 \sim C_6$ のハロゲン化アルキル基 2 個で置換されたフェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、
- (19) Eが、3,5ービス(トリフルオロメチル)フェニル基、又は2,5ービス(トリフルオロメチル)フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、
- (20) Eが、3, 5-ビス (トリフルオロメチル) フェニル基である化合物及

び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、

(21) Eが、 $C_1 \sim C_6$ のハロゲン化アルキル基1個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基1個の他にさらに置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基は除く)を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF $-\kappa$ B活性化阻害作用を有する医薬、

(22) Eが、 $C_1 \sim C_6$ のハロゲン化アルキル基1個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基1個の他に、下記置換基群 $\gamma-1$ e より選択される基をさらに有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

[置換基群 y - 1 e] ハロゲン原子、ニトロ基、シアノ基、置換基を有していて もよいヒドロキシ基、置換基を有していてもよい炭化水素基、置換基を有してい てもよいヘテロ環基、置換基を有していてもよいスルファニル基

(23) Eが、 $C_1 \sim C_6$ のハロゲン化アルキル基 1 個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基 1 個の他に、下記置換基群 $\gamma-2$ e より選択される基をさらに有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

[置換基群 $\gamma-2$ e] ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい S_4 ないし S_5 6 員の非芳香族へテロ環基、置換基を有していてもよい $C_1\sim C_6$ のアルコキシ基、置換基を有していてもよい $C_1\sim C_6$ のアルキルースルファニル基

(24) Eが、2-(トリフルオロメチル) フェニル基、3-(トリフルオロメ

チル)フェニル基、4-(トリフルオロメチル)フェニル基、2-フルオロ-3 - (トリフルオロメチル) フェニル基、2-クロロー4- (トリフルオロメチル) フェニル基、2-フルオロー5-(トリフルオロメチル)フェニル基、2-クロ ロー5- (トリフルオロメチル) フェニル基、3-フルオロー5- (トリフルオ ロメチル)フェニル基、3-ブロモ-5-(トリフルオロメチル)フェニル基、 4-クロロ-2-(トリフルオロメチル)フェニル基、4-フルオロ-3-(ト リフルオロメチル)フェニル基、4-クロロ-3-(トリフルオロメチル)フェ ニル基、2-ニトロー5-(トリフルオロメチル)フェニル基、4-ニトロー3 - (トリフルオロメチル) フェニル基、4 - シアノ - 3 - (トリフルオロメチル) フェニル基、2-メチル-3-(トリフルオロメチル)フェニル基、2-メチル -5-(トリフルオロメチル)フェニル基、4-メチル-3-(トリフルオロメ チル)フェニル基、2-メトキシ-5-(トリフルオロメチル)フェニル基、3 -メトキシ-5-(トリフルオロメチル)フェニル基、4-メトキシ-3-(ト リフルオロメチル)フェニル基、2-(メチルスルファニル)-5-(トリフル オロメチル)フェニル基、2-(1-ピロリジノ)-5-(トリフルオロメチル) フェニル基、又は2-モルホリノー5ー(トリフルオロメチル)フェニル基であ る化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの 溶媒和物からなる群から選ばれる物質を有効成分として含み、ΝF−κΒ活性化 阻害作用を有する医薬、

(25) Eが、2-クロロ-5-(トリフルオロメチル)フェニル基、4-クロロ-3-(トリフルオロメチル)フェニル基、2-メトキシ-5-(トリフルオロメチル)フェニル基、又は3-メトキシ-5-(トリフルオロメチル)フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

(26) Eが、2-クロロ-5-(トリフルオロメチル)フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和

物からなる群から選ばれる物質を有効成分として含み、NF $-\kappa$ B活性化阻害作用を有する医薬、

- (27) Eが、置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基は除く)を有していてもよいフェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、

[置換基群γ-3e] ハロゲン原子、ニトロ基、置換基を有していてもよいヒドロキシ基、置換基を有していてもよい炭化水素基、置換基を有していてもよいアシル基

(29) Eが、下記置換基群 γ -4 e L

[置換基群 $\gamma-4$ e] ハロゲン原子、ニトロ基、ヒドロキシ基、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい $C_1\sim C_6$ のアルキレン基、置換基を有していてもよい $C_1\sim C_6$ のアルキレン基、置換基を有していてもよい $C_1\sim C_6$ のアルコキシ基置換基を有していてもよい $C_1\sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1\sim C_6$ のアルコキシーカルボニル基、置換基を有していてもよい $C_1\sim C_6$ のアルコキシーカルボニル基

(30) Eが、フェニル基、3-クロロフェニル基、4-クロロフェニル基、2, 5-ジクロロフェニル基、3, 4-ジクロロフェニル基、3, 5-ジフルオロフェニル基、3, 5-ジクロロフェニル基、3, 4, 5-トリクロロフェニル基、ペンタフルオロフェニル基、3, 5-ジニトロフェニル基、3, 5-ジクロロー

4-ヒドロキシフェニル基、2, 5-ジメトキシフェニル基、3, 5-ジメトキシフェニル基、3, 5-ジメチルフェニル基、2, 5-ビス [(1, 1-ジメチル) エチル] フェニル基、3, 5-ビス [(1, 1-ジメチル) エチル] フェニル基、5-(1, 1-ジメチル) エチル-2-メトキシフェニル基、3, 5, 5, 8, 8-ペンタメチル-5, 6, 7, 8-テトラヒドロナフタレン-2-イル基、ビフェニル-3-イル基、4-メトキシビフェニル-3-イル基、3-アセチルフェニル基、又は3, 5-ビス (メトキシカルボニル) フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κ B活性化阻害作用を有する医薬、

- (31) Eが、2, 5-ビス [(1, 1-ジメチル) エチル] フェニル基、3, 5-ビス [(1, 1-ジメチル) エチル] フェニル基、又は5-(1, 1-ジメチル) エチルー2-メトキシフェニル基である化合物及び薬理学的に許容される その塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、 $NF-\kappa$ B活性化阻害作用を有する医薬、
- (32) Eが、置換基を有していてもよい5ないし13員のヘテロアリール基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、
- (33) Eが、置換基を有していてもよいチエニル基、置換基を有していてもよいピラゾリル基、置換基を有していてもよいオキサゾリル基、置換基を有していてもよいチアジアゾリル基、置換基を有していてもよいピリミジニル基、置換基を有していてもよいピリミジニル基、置換基を有していてもよいインドリル基、置換基を有していてもよいキノリル基、又は置換基を有していてもよいカルバゾリル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、

(34) Eが、置換基を有していてもよいチアゾリル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬、

(35) Eが、下記置換基群 γ - 5 e より選択される基を有していてもよいチア ゾリル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物 及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF - κ B活性化阻害作用を有する医薬、

[置換基群γ-5e] ハロゲン原子、シアノ基、置換基を有していてもよい炭化水素基、置換基を有していてもよいヘテロ環基、置換基を有していてもよいアシル基

(36) Eが、下記置換基群γ-6 e より選択される基を有していてもよいチア ゾリル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物 及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF - κ B活性化阻害作用を有する医薬、

[置換基群 $\gamma-6$ e]ハロゲン原子、シアノ基、置換基を有していてもよい C_1 $\sim C_6$ のアルキル基、置換基を有していてもよい $C_1 \sim C_6$ のハロゲン化アルキル基、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、置換基を有していてもよい $C_7 \sim C_{16}$ のアラルキル基、置換基を有していてもよい $C_1 \sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1 \sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1 \sim C_6$ のアルコキシーカルボニル基

(37) Eが、5-プロモー4-[(1, 1-ジメチル) エチル] チアゾールー2-イル基、5-プロモー4-(トリフルオロメチル) チアゾールー2-イル基、5-シアノー4-[(1, 1-ジメチル) エチル] チアゾールー2-イル基、4-[(1, 1-ジメチル) エチル] チアゾールー2-イル基、5-フェニルー4-(トリフルオロメチル) チアゾールー2-イル基、4-(1, 1-ジメチル)

エチル-5-エチルチアゾール-2-イル基、5-メチル-4-フェニルチアゾ ールー2-イル基、4-イソプロピルー5-フェニルチアゾールー2-イル基、 4-ベンジル-5-フェニルチアゾール-2-イル基、4-(1,1-ジメチル) エチル-5-[(2, 2-ジメチル)プロピオニル]チアゾール-2-イル基、 5-アセチル-4-フェニルチアゾール-2-イル基、5-ベンゾイル-4-フ ェニルチアゾールー2ーイル基、4-(1,1-ジメチル)エチルー5-(エト キシカルボニル) チアゾールー2ーイル基、5-エトキシカルボニルー4ー(ト リフルオロメチル) チアゾールー2ーイル基、5ーエトキシカルボニルー4ーフ ェニルチアゾールー2ーイル基、4-(1,1-ジメチル)エチルー5ーピペリ ジノチアゾールー2ーイル基、4ー(1、1ージメチル)エチルー5ーモルホリ ノチアゾールー2ーイル基、4ー(1,1ージメチル)エチルー5ー(4ーフェ ニルピペリジン-1-イル) チアゾール-2-イル基、4-(1,1-ジメチル) エチル-5-(4-xチルピペリジン-1-4ル)チアゾール-2-4ル基、4、 5-ジフェニルチアゾールー2-イル基、4-フェニルチアゾールー2-イル基、 4. 5-ジメチルチアゾールー2ーイル基、2-チアゾリル基、5-メチルチア ゾールー2ーイル基、4ーエチルー5ーフェニルチアゾールー2ーイル基、5ー カルボキシメチルー4-フェニルチアゾール-2-イル基、5-メチルカルバモ イルー4-フェニルチアゾールー2-イル基、5-エチルカルバモイルー4-フ ェニルチアゾールー2ーイル基、5ーイソプロピルカルバモイルー4ーフェニル チアゾールー2-イル基、5-(2-フェネチル)カルバモイルー4-フェニル チアゾール-2-イル基、4-(n-ブチル)-5-フェニルチアゾール-2-イル基、4-メチル-5- [(3-トリフルオロメチル) フェニル] チアゾール - 2-イル基、又は5- (4-フルオロフェニル) - 4-メチルチアゾール-2 イル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物 及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、NF - κ B活性化阻害作用を有する医薬、及び

(38) E \vec{n} , $4-(1, 1-\vec{v})$ \vec{v} $\vec{v$

プロピオニル] チアゾールー2ーイル基である化合物及び薬理学的に許容される その塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物 質を有効成分として含み、NF-κB活性化阻害作用を有する医薬である。

本発明の医薬は、下記物質群δ:

[物質群 δ] 腫瘍壊死因子(TNF)、インターロイキンー 1、インターロイキンー 2、インターロイキンー 6、インターロイキンー 8、顆粒球コロニー刺激因子、インターフェロンβ、細胞接着因子である I CAM-1、VCAM-1、E LAM-1、ニトリックオキシド合成酵素、主要組織適合抗原系クラス I、主要組織適合抗原系クラス II、β 2 ーマイクログロブリン、免疫グロブリン軽鎖、血清アミロイドA、アンジオテンシノーゲン、補体B、補体C 4、cーmyc、H I Vの遺伝子由来の転写産物、HT L V ー 1 の遺伝子由来の転写産物、シミアンウイルス 4 0 の遺伝子由来の転写産物、サイトメガロウイルスの遺伝子由来の転写産物、及びアデノウイルスの遺伝子由来の転写産物

より選択される1又は2以上の物質の遺伝子の発現抑制剤として用いることができる。

また、本発明の医薬は炎症性サイトカイン産生遊離抑制剤として用いることができ、あるいは免疫抑制剤として用いることができる。本発明の医薬は、下記疾 患群 $\epsilon-1$

[疾患群 ε - 1] 炎症性疾患、自己免疫疾患、アレルギー性疾患、癌腫・肉腫等の癌、代謝性疾患、循環器系疾患、血管増殖性疾患、敗血症性疾患、ウィルス性疾患、

又はNF $-\kappa$ B活性化又は炎症性サイトカイン産生過剰に起因する下記疾患群 $\epsilon-2$:

[疾患群 ε - 2] 慢性関節リウマチ、変形性関節症、全身性エリテマトーデス、全身性強皮症、多発性筋炎、シェーグレン症候群、血管炎症候群、抗リン脂質抗体症候群、スティル病、ベーチェット病、結節性動脈周囲炎、潰瘍性大腸炎、クローン病、活動性慢性肝炎、糸球体腎炎などの自己免疫疾患、慢性腎炎、慢性膵

炎、痛風、アテローム硬化症、多発性硬化症、動脈硬化、血管内膜肥厚、乾癬、 乾癬性関節炎、接触性皮膚炎、アトピー性皮膚炎、花粉症等のアレルギー疾患、 喘息、気管支炎、間質性肺炎、肉芽腫を伴う肺疾患、慢性閉塞性肺疾患、慢性肺 血栓塞栓症、炎症性大腸炎、インスリン抵抗性、肥満症、糖尿病とそれに伴う合 併症(腎症、網膜症、神経症、高インスリン血症、動脈硬化、高血圧、末梢血管 閉塞等)、高脂血症、網膜症等の異常血管増殖を伴った疾患、肺炎、アルツハイ マー症、脳脊髄炎、急性肝炎、慢性肝炎、薬物中毒性肝障害、アルコール性肝炎、 ウイルス性肝炎、黄疸、肝硬変、肝不全、心房粘液腫、キャッスルマン症候群、 メサンギウム増殖性腎炎、腎臓癌、肺癌、肝癌、乳癌、子宮癌、膵癌、その他の 固形癌、肉腫、骨肉腫、癌の転移浸潤、炎症性病巣の癌化、癌性悪液質、癌の転 移、急性骨髄芽球性白血病等の白血病、多発性骨髄腫、レンネルトリンパ腫、悪 性リンパ腫、癌の抗癌剤耐性化、ウイルス性肝炎および肝硬変等の病巣の癌化、 大腸ポリープからの癌化、脳腫瘍、神経腫瘍、エンドトキシンショック、敗血症、 サイトメガロウイルス性肺炎、サイトメガロウイルス性網膜症、アデノウイルス 性感冒、アデノウイルス性プール熱、アデノウイルス性眼炎、結膜炎、エイズ、 ぶどう膜炎、その他バクテリア・ウイルス・真菌等感染によって惹起される疾患 または合併症、全身炎症症候群等の外科手術後の合併症、経皮的経管的冠状動脈 形成術後の再狭窄、虚血再灌流障害等の血管閉塞開通後の再灌流障害、心臓また は肝臓または腎臓等の臓器移植後拒絶反応及び再灌流障害、

掻痒、食欲不振、倦怠感、慢性疲労症候群、骨粗鬆症、骨癌性疼痛等の代謝性骨 疾患、移植前臓器保存時の臓器の劣化

より選択される1又は2以上の疾患の予防及び/又は治療のための医薬として 用いることができる。

別の観点からは、本発明により、上記の(1)~(38)の医薬の製造のための上記の各物質の使用が提供される。

また、本発明により、ヒトを含む哺乳類動物においてNF $-\kappa$ B活性化を阻害する方法であって、上記(1) \sim (38)の医薬をヒトを含む哺乳類動物に投与

する工程を含む方法; ヒトを含む哺乳類動物において上記物質群 δ より選択される1 又は2以上の物質の遺伝子の発現を抑制する方法であって、上記(1)~(38)の医薬をヒトを含む哺乳類動物に投与する工程を含む方法; ヒトを含む哺乳類動物において炎症性サイトカイン産生遊離を抑制する方法であって、上記(1)~(38)の医薬をヒトを含む哺乳類動物に投与する工程を含む方法; ヒトを含む哺乳類動物において免疫を抑制する方法であって、上記(1)~(38)の医薬をヒトを含む哺乳類動物に投与する工程を含む方法; 上記疾患群 ε − 1 から選ばれる1 又は2以上の疾患の予防及び/又は治療方法であって、上記(1)~(38)の医薬をヒトを含む哺乳類動物に投与する工程を含む方法; 及び、NF − κ B活性化又は炎症性サイトカイン産生過剰に起因する上記疾患群 ε − 2 より選択される1 又は2以上の疾患の予防及び/又は治療方法であって、上記(1)~(38)の医薬をヒトを含む哺乳類動物に投与する工程を含む方法; 及び、NF − κ B活性化又は炎症性サイトカイン産生過剰に起因する上記疾患群 ε − 2 より選択される1 又は2以上の疾患の予防及び/又は治療方法であって、上記(1)~(38)の医薬をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。さらに、本発明により、

(1) 下記一般式 (I-1):

$$z^1$$
 N
 E^1
 $(I-1)$

(式中、

Z¹は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、又は5位 に置換基を有していてもよい2-アセトキシフェニル基を表し、

 E^1 は、 $C_1 \sim C_6$ のハロゲン化アルキル基 2 個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基 2 個の他にさらに置換基を有していてもよい)を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記化合物を除く。

・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド

N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒ

ドロキシベンズアミド

- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ブロモー2-ヒ ドロキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5 -ヨードベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5--ニトロベンズアミド
- ・ 2ーヒドロキシーNー[2,3,5ートリス(トリフルオロメチル)フェニル]ベンズアミド)が提供される。

好適には、

- (2) E^1 が、 1 個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基 2 個で置換されたフェニル基(該フェニル基は、 1 個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基 2 個の他にさらに置換基を有していてもよい)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (3) E^1 が、3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基2個で置換されたフェニル基(該フェニル基は、3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基2個の他にさらに置換基を有していてもよい)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (4) E^1 が、3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基2個で置換されたフェニル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (5) E¹が、下記式:

(式中、

 $R^{1 \circ 2}$ 及び $R^{1 \circ 3}$ は、一方が水素原子、他方が 3 個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基を表し、

 R^{1e5} は、3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基を表す)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

- (6) E^1 が、3, 5 ービス(トリフルオロメチル)フェニル基、又は2, 5 ービス(トリフルオロメチル)フェニル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (7) E^1 が、2, 5-ビス(トリフルオロメチル)フェニル基である化合物若 しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒 和物、
- (8) Z¹が、下記式:

(式中、

A¹は、水素原子又はアセチル基を表し、

R¹*は、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していても よいヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していても よい炭化水素基、置換基を有していてもよいヘテロ環基、置換基を有していても

よいアシル基、置換基を有していてもよいウレイド基、置換基を有していてもよ いチオウレイド基、置換基を有していてもよいジアゼニル基

を表す)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和 物若しくはそれらの溶媒和物、

- (9) A^1 が、水素原子である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (10) R^{1z} が、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい $C_1 \sim C_6$ のアルコキシ基、ジ ($C_1 \sim C_6$ アルキル) ーアミノ基、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、置換基を有していてもよい $C_1 \sim C_6$ のハロゲン化アルキル基、置換基を有していてもよい $C_2 \sim C_6$ のアルケニル基、置換基を有していてもよい $C_2 \sim C_6$ のアルキニル基、置換基を有していてもよい $C_1 \sim C_1 \sim C_1$
- (11) R^{12} が、ハロゲン原子、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、又は置換基を有していてもよい $C_1 \sim C_6$ のハロゲン化アルキル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、及び
- (12) R¹ が、ハロゲン原子である化合物若しくは薬理学的に許容されるその 塩、又はそれらの水和物若しくはそれらの溶媒和物が提供される。

最も好適には、下記化合物若しくは薬理学的に許容されるその塩、又はそれら の水和物若しくはそれらの溶媒和物が提供される。

・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-フルオロ-2-

ヒドロキシベンズアミド

- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-シアノ-2-ヒドロキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5--メチルベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(1, 1-ジメチル)エチル-2-ヒドロキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5 -(トリフルオロメチル)ベンズアミド
- ・N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5 (1, 1, 2, 2, 2-ペンタフルオロエチル) ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(2-フェニルエテン-1-イル)ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(2, 2-ジシアノエテン-1-イル)-2-ヒドロキシベンズアミド
- ・3-({3-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル
- ・3- ($\{3-[3,5-{}$ ビス(トリフルオロメチル)フェニル]カルバモイル $\}$
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-エチニル-2-ヒドロキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(トリメチルシリル)エチニル<math>]ベンズアミド
- \cdot N [3, 5 ビス (トリフルオロメチル) フェニル] -4 ヒドロキシビフェニル-3 カルボキサミド

・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(2-フェニルエチル)ベンズアミド

- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(3-チエニル)ベンズアミド
- N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(1-ピロリル)ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5- (2-メチルチアゾール-4-イル)ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(2-ピリジル)ベンズアミド
- ・N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-ジメチルアミノ -2-ヒドロキシベンズアミド
- ・5ーベンゾイルアミノーNー[3,5ービス(トリフルオロメチル)フェニル] -2ーヒドロキシベンズアミド
- ・ $N^3-[3,5-$ ビス(トリフルオロメチル)フェニル]-4-ヒドロキシー N^1,N^1- ジメチルイソフタルアミド
- ・ N^1 , N^3 -ビス [3, 5-ビス (トリフルオロメチル) フェニル] -4-ヒドロキシイソフタルアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5- (ピペリジン-1-カルボニル)ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5- (4-ベンジルピペリジン-1-カルボニル)ベンズアミド
- ・N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-ジメチルスルフ ァモイル-2-ヒドロキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5- (ピロール-1-スルホニル)ベンズアミド
- ・5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-

ヒドロキシベンズアミド

- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5 -イソブチリルベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシイソフタラミン酸 メチルエステル
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(4-ニトロフェニル)ジアゼニル]ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-([(4-ピリジン-2-イル)スルファモイル]フェニル]ジアゼニル)ベンズアミド
- ・N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5 -[(3-フェニル) ウレイド] ベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(3-フェニル) チオウレイド] ベンズアミド
- ・N-[3, 5-ピス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(1-ヒドロキシエチル)ベンズアミド
- ・N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5 -メトキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[1-(メトキシイミノ)エチル]ベンズアミド
- ・5 $\{1-[(ベンジルオキシ) イミノ] エチル<math>\}-N-[3,5-$ ビス (トリフルオロメチル) フェニル]-2-ヒドロキシベンズアミド
- ・N-[2, 5-ビス(トリフルオロメチル)フェニル]-5-クロロー2-ヒ ドロキシベンズアミド
- ・N-[2, 5-ビス(トリフルオロメチル)フェニル]-5-ブロモー2-ヒ ドロキシベンズアミド
- ・2-アセトキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]ベン

ズアミド

・2ーアセトキシーNー [2, 5-ピス(トリフルオロメチル)フェニル] -5 ークロロベンズアミド

・2-アセトキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-5

さらに、本発明により、

(1) 下記一般式 (I-2):

$$Z^2$$
 N
 E_2
 $(I-2)$

(式中、

Z²は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、又は5位 に置換基を有していてもよい2-アセトキシフェニル基を表し、

 E^2 は、3位又は5位が、 $C_1 \sim C_6$ のハロゲン化アルキル基であるフェニル基(該フェニル基は、3位又は5位の $C_1 \sim C_6$ のハロゲン化アルキル基の他に、さらに置換基を有していてもよい(ただし、該置換基が $C_1 \sim C_6$ のハロゲン化アルキル基である場合は除く))を表す)で表される化合物若しくはその塩、又はそれらの水和物又はそれらの溶媒和物(ただし、下記化合物を除く

- ・5 クロロー 2 ヒドロキシー N [3 (トリフルオロメチル) フェニル] ベンズアミド
- ・5 ブロモー2 ヒドロキシーN [3 (トリフルオロメチル) フェニル] ベンズアミド
- ・2-ヒドロキシー5-ヨード-N-[3-(トリフルオロメチル)フェニル] ベンズアミド
- ・5-クロロ-N-[4-クロロ-3-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド
- ・5-クロロ-N-[5-クロロ-3-(トリフルオロメチル)フェニル]-2

- ーヒドロキシベンズアミド
- ・5-クロロ-2-ヒドロキシ-N-[4-ニトロ-3-(トリフルオロメチル)フェニル] ベンズアミド
- ・5-フルオロ-2-ヒドロキシ-N-[2-(2, 2, 2-トリフルオロエトキシ) -5-(トリフルオロメチル) フェニル] ベンズアミド
- ・5-フルオロ-2-ヒドロキシ-N-[2-(6, 6, 6-1)] フェニル] ベンズアミド
- ・5-クロロ-2-ヒドロキシ-N-(3-トリフルオロメチル-4-{[4-(トリフルオロメチル)スルファニル]フェノキシ}フェニル)ベンズアミド
- ・N-[4-(ベンゾチアゾール-2-イル)スルファニル-3-(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド
- ・5-クロローN-[2-(4-クロロフェノキシ)-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド
- ・5-クロローN-[2-(4-クロロフェニル) スルファニルー5-(トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド
- ・5-クロロー2-ヒドロキシ-N-[2-(2-ナフチルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド)が提供される。

好適には、

(2) E^2 が、3位又は5位が、1個以上のフッ素原子で置換された $C_1 \sim C_6$ の アルキル基であるフェニル基(該フェニル基は、3位又は5位の1個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基の他に、さらに置換基を有していても よい(ただし、該置換基が $C_1 \sim C_6$ のハロゲン化アルキル基である場合は除く))である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しく

はそれらの溶媒和物、

- (3) E^2 が、3位又は5位が、3個以上のフッ素原子で置換された $C_1\sim C_6$ の アルキル基であるフェニル基(該フェニル基は、3位又は5位の3個以上のフッ素原子で置換された $C_1\sim C_6$ のアルキル基の他に、さらに置換基を有していてもよい(ただし、該置換基が $C_1\sim C_6$ のハロゲン化アルキル基である場合は除く))である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物
- (4) E^2 が、3位又は5位が、3個以上のフッ素原子で置換された C_1 ~ C_6 のアルキル基であるフェニル基(該フェニル基は、3位又は5位の3個以上のフッ素原子で置換された C_1 ~ C_6 のアルキル基の他に、下記置換基群 γ -7 e より選択される基をさらに有していてもよい)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

[置換基群 $_{7}$ $_{7}$ e] ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{1}$ $_{7}$ $_{1}$ $_{7}$ $_{8}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{$

(5) E^2 が、3位又は5位がトリフルオロメチル基であるフェニル基(該フェニル基は、3位又は5位のトリフルオロメチル基の他に、下記置換基群 γ -7 e より選択される基をさらに有していてもよい)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

[置換基群 $\gamma-7$ e]ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい5ないし6員の非芳香族へテロ環基、置換基を有していてもよい $C_1\sim C_6$ のアルコキシ基、置換基を有していてもよい $C_1\sim C_6$ のアルキルースルファニル基

(6) E²が、3-(トリフルオロメチル)フェニル基、2-フルオロ-3-(トリフルオロメチル)フェニル基、2-フルオロ-5-(トリフルオロメチル)フェニル基、3-フルオロメチル)フェニル基、3-フルオロ

-5-(トリフルオロメチル)フェニル基、3ープロモー5-(トリフルオロメチル)フェニル基、4ーフルオロー3-(トリフルオロメチル)フェニル基、4ークロロー3-(トリフルオロメチル)フェニル基、2ーニトロー5-(トリフルオロメチル)フェニル基、4ーシアノー3-(トリフルオロメチル)フェニル基、2ーメチルー3-(トリフルオロメチル)フェニル基、4ーシアノー3-(トリフルオロメチル)フェニル基、2ーメチルー3-(トリフルオロメチル)フェニル基、4ーメチル)フェニル基、2ーメチルー5-(トリフルオロメチル)フェニル基、4ーメチルー3-(トリフルオロメチル)フェニル基、2ーメトキシー5-(トリフルオロメチル)フェニル基、3ーメトキシー5-(トリフルオロメチル)フェニル基、2ー(メチルスルファニル)ー5-(トリフルオロメチル)フェニル基、2ー(リメテルスルファニル)ー5-(トリフルオロメチル)フェニル基、又は2ーモルホリノー5-(トリフルオロメチル)フェニル基、又は2ーモルホリノー5-(トリフルオロメチル)フェニル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

(7) Z²が、下記式:

(式中、

A²は、水素原子又はアセチル基を表し、

 R^{2z} は、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $C_1 \sim C_6$ のハロゲン化アルキル基を表す)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

- (8) A^2 が、水素原子である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、及び
- (9) R²*が、ハロゲン原子である化合物若しくは薬理学的に許容されるその塩、

又はそれらの水和物若しくはそれらの溶媒和物が提供される。

最も好適には、下記化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物が提供される。

- ・5-クロローN-[2-フルオロ-3-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド
- ・5-クロローN- [2-フルオロ-5-(トリフルオロメチル)フェニル] 2-ヒドロキシベンズアミド
- ・5-クロローNー[2-クロロー5-(トリフルオロメチル)フェニル]-2 ーヒドロキシベンズアミド
- ・5ープロモーN-[2ークロロー5-(トリフルオロメチル)フェニル]-2 ーヒドロキシベンズアミド
- ・2-アセトキシー5-クロロ-N-[2-クロロ-5-(トリフルオロメチル)フェニル] ベンズアミド
- ・N-[2-クロロー5-(トリフルオロメチル)フェニル]-2-ヒドロキシー5-メチルベンズアミド
- ・5-クロロ-N-[3-フルオロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド
- ・5ープロモーNー[3ープロモー5ー(トリフルオロメチル)フェニル]-2 ーヒドロキシベンズアミド
- ・5-クロローN- [3-フルオロ-5- (トリフルオロメチル) フェニル] 2-ヒドロキシベンズアミド
- ・5-クロローN- [4-フルオロ-3-(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド
- ・5 ーブロモーNー [4 ークロロー3 ー (トリフルオロメチル) フェニル] ー2 ーヒドロキシベンズアミド
- ・N-[4-クロロ-3-(トリフルオロメチル)フェニル]-2-ヒドロキシ -5-メチルベンズアミド

・5-クロロ-2-ヒドロキシ-N-[2-ニトロ-5-(トリフルオロメチル) フェニル] ベンズアミド

- ・5ープロモーNー [4ーシアノー3ー(トリフルオロメチル)フェニル] -2 ーヒドロキシベンズアミド
- ・5 クロロー 2 ヒドロキシー N [2 メチルー 3 (トリフルオロメチル) フェニル] ベンズアミド
- ・5 p
- ・2ーヒドロキシー5ーメチルーNー[2ーメチルー5ー(トリフルオロメチル)フェニル] ベンズアミド
- $\cdot 5 \rho \, \text{pp} 2 \text{E} \, \text{Fp} + \text{Pp} \text{N} \left[4 \text{Fp} + \text{Fp} 3 \left(\text{Fp} + \text{Fp} + \text{Fp} \right) \right]$ フェニル] ベンズアミド
- ・2ーヒドロキシー5ーメチルーNー [4-メチルー3-(トリフルオロメチル) フェニル] ベンズアミド
- ・5 ープロモー2 ーヒドロキシーNー [2 ーメトキシー5 ー (トリフルオロメチル) フェニル] ベンズアミド
- ・5-クロロー2-ヒドロキシ-N-[2-メトキシ-5-(トリフルオロメチル)フェニル] ベンズアミド
- ・2ーヒドロキシーNー[2ーメトキシー5ー(トリフルオロメチル)フェニル] -5ーメチルベンズアミド
- ・5 ーブロモー 2 ーヒドロキシーNー [3 ーメトキシー 5 ー (トリフルオロメチル) フェニル] ベンズアミド
- ・5 ー クロロー 2 ー ヒドロキシー N ー [4 ー メ トキシー 3 ー (トリフルオロメチル) フェニル] ベンズアミド
- ・2ーヒドロキシーNー [4ーメトキシー3ー (トリフルオロメチル) フェニル] -5ーメチルベンズアミド
- ・5-クロロ-2-ヒドロキシ-N-[2-メチルスルファニル-5-(トリフ

ルオロメチル)フェニル]ベンズアミド

・5-クロロー2-ヒドロキシーN-[2-(1-ピロリジノ)-5-(トリフルオロメチル)フェニル]ベンズアミド

・5-クロロー2ーヒドロキシーN-[2ーモルホリノー5-(トリフルオロメ チル)フェニル]ベンズアミド

さらに、本発明により、

(1) 下記一般式 (I-3):

$$Z^3$$
 N
 E^3
 $(1-3)$

(式中、

Z³は、5位に置換基を有していてもよい2ーヒドロキシフェニル基、又は5位 に置換基を有していてもよい2ーアセトキシフェニル基を表し、

E3は、下記式:

(式中、

 $R^{3 \cdot 2}$ 及び $R^{3 \cdot 3}$ は、同一又は異なって、水素原子、置換基を有していてもよい 炭化水素基、又は置換基を有していてもよいヒドロキシ基を表し(ただし、 $R^{3 \cdot 2}$ 2及び $R^{3 \cdot 3}$ が同時に水素原子である場合は除く)、

 $R^{3 \circ 5}$ は、置換基を有していてもよい $C_2 \sim C_6$ の炭化水素基を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物が提供される。

好適には、

(2) R^{3 e 2}及びR^{3 e 3}が、同一又は異なって、水素原子、置換基を有していて

もよい $C_1 \sim C_6$ のアルキル基、又は置換基を有していてもよい $C_1 \sim C_6$ のアルコキシ基であり(ただし、 R^{3e2} 及び R^{3e3} が同時に水素原子である場合は除く)、 R^{3e5} が、置換基を有していてもよい $C_2 \sim C_6$ のアルキル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、(3) E^3 が、2, 5-ビス [(1, 1-ジメチル)エチル] フェニル基、3, 5-ビス [(1, 1-ジメチル)エチル] フェニル基、又は5-(1, 1-ジメチル)エチル)エチルー2-メトキシフェニル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

(4) Z³が、下記式:

(式中、

A³は、水素原子又はアセチル基を表し、

 R^{3z} は、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $C_1 \sim C_6$ のハロゲン化アルキル基を表す)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

- (5) A³が、水素原子である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (6) R 3 * が、ハロゲン原子である化合物若しくは薬理学的に許容されるその塩、 又はそれらの水和物若しくはそれらの溶媒和物が提供される。

最も好適には、下記化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物が提供される。

・N- $\{2, 5-$ ビス[(1, 1-ジメチル) エチル] フェニル $\}$ - 5-クロロ - 2-ヒドロキシベンズアミド

・N- $\{2, 5-$ ビス[(1, 1-ジメチル) エチル] フェニル $\}$ -2-ヒドロキシ-5-メチルベンズアミド

- ・N- $\{3, 5-$ ビス[(1, 1-ジメチル) エチル] フェニル $\}$ 5 0 -
- ・N- $\{3, 5-$ ビス[(1, 1-ジメチル) エチル] フェニル $\}$ -5-プロモ-2-ヒドロキシベンズアミド
- ・N- $\{3, 5-$ ビス[(1, 1-ジメチル) エチル] フェニル $\}$ 2-ヒドロキシ-5-メチルベンズアミド
- ・2ーアセトキシーNー $\{3, 5-$ ビス[(1, 1-ジメチル) エチル] フェニル $\}$ -5-クロロベンズアミド
- ・5 0 -
- ・N-[5-(1, 1-ジメチル) エチル-2-メトキシフェニル] -2-ヒドロキシ-5-メチルベンズアミド
- ・2-アセトキシ-5-クロロ-N-[5-(1, 1-ジメチル) エチル-2-メトキシフェニル] ベンズアミド

さらに、本発明により、

(1) 下記一般式 (I-4):

(式中、

2⁴は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、又は5位
に置換基を有していてもよい2-アセトキシフェニル基を表し、

E 4は、下記式:

PCT/JP01/11084

WO 02/49632

(式中、

R⁴⁴⁴は、置換基を有していもよい炭化水素基を表し、

R⁴⁶⁵は、ハロゲン原子、シアノ基、置換基を有していてもよいアシル基、又は 置換基を有していてもよいヘテロ環基を表す)で表される化合物若しくは薬理学 的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物が提供さ れる。

好適には、

- (2) R^{4e4} が、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、置換基を有していてもよい $C_1 \sim C_6$ のハロゲン化アルキル基、又は置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基であり、 R^{4e5} が、ハロゲン原子、シアノ基、置換基を有していてもよい $C_1 \sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1 \sim C_6$ のアルコキシーカルボニル基、又は置換基を有していてもよい $C_1 \sim C_6$ のアルボニル基、置換基を有していてもよい $C_1 \sim C_6$ のアルボニル基、
- (3) E^4 が、5-プロモー4-[(1, 1-ジメチル) エチル] チアゾールー2 -イル基、5-プロモー4-(トリフルオロメチル) チアゾールー2 -イル基、5-シアノー4-[(1, 1-ジメチル) エチル] チアゾールー2 -イル基、4-(1, 1-ジメチル) エチルー5-[(2, 2-ジメチル) プロピオニル] チアゾールー2 -イル基、5-アセチルー4-フェニルチアゾールー2 -イル基、5-ベンゾイルー4-フェニルチアゾールー2 -イル基、4-(1, 1-ジメチル) エチルー5-(エトキシカルボニル) チアゾールー2 -イル基、5-エトキシカルボニルー4-(トリフルオロメチル) チアゾールー2 -イル基、5-エトキシカルボニルー4-フェニルチアゾールー2 -イル基、5-エトキシカルボニルー4-フェニルチアゾールー2 -イル基、5-エトキシカルボニ

ルー4ー(ペンタフルオロフェニル)チアゾールー2ーイル基、4ー(1,1ージメチル)エチルー5ーピペリジノチアゾールー2ーイル基、4ー(1,1ージメチル)エチルー5ーモルホリノチアゾールー2ーイル基、4ー(1,1ージメチル)エチルー5ー(4ーメチルピペリジンー1ーイル)チアゾールー2ーイル基、又は4ー(1,1ージメチル)エチルー5ー(4ーフェニルピペリジンー1ーイル)チアゾールー2ーイル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

- (4) E^4 が、4-(1, 1-i)メチル)エチル-5-[(2, 2-i)メチル)プロピオニル] チアゾール-2-1ル基である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (5) Z⁴が、下記式:

(式中、

A⁴は、水素原子又はアセチル基を表し、

 R^{4z} は、ハロゲン原子、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、又は5員のヘテロアリール基を表す)である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、

- (6) A⁴が、水素原子である化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物、
- (7) R⁴²が、ハロゲン原子である化合物若しくは薬理学的に許容されるその塩、 又はそれらの水和物若しくはそれらの溶媒和物が提供される。

最も好適には、下記化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物が提供される。

・5-プロモーN- $\{5-$ プロモー4- [(1, 1-ジメチル) エチル] チアゾールー2-イル $\}-2-$ ヒドロキシベンズアミド

- ・5-プロモ-N- [5-プロモ-4- (トリフルオロメチル) チアゾール-2-イル] -2-ヒドロキシベンズアミド
- ・5-クロロ-N- $\{5-$ シアノ-4- [(1, 1-ジメチル) エチル] チアゾ -ル-2-イル $\}$ -2-ヒドロキシベンズアミド
- ・5-プロモーN- $\{5-$ シアノー4- [(1, 1-ジメチル) エチル] チアゾールー2-イル $\}-2-$ ヒドロキシベンズアミド
- ・5-クロロ-N- $\{4-$ (1, 1-ジメチル) エチル-5- [(2, 2-ジメチル) プロピオニル] チアゾール-2-イル $\}$ -2-ヒドロキシベンズアミド
- ・5-プロモーN- $\{4-$ (1, 1-ジメチル) エチルー5- [(2, 2-ジメチル) プロピオニル] チアゾールー2-イル $\}$ -2-ヒドロキシベンズアミド
- ・N-(5-アセチル-4-フェニルチアゾール-2-イル)-5-ブロモ-2-ヒドロキシベンズアミド
- ・N-(5-ベンゾイル-4-フェニルチアゾール-2-イル)-5-ブロモー 2-ヒドロキシベンズアミド
- ・2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノー4-[(1, 1-ジメチル)エチル]チアゾール-5-カルボン酸 エチルエステル
- ・2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノ-4-(トリフルオロメチル) チアゾール-5-カルボン酸 エチルエステル
- ・2-(5-クロロ-2-ヒドロキシベンゾイル) アミノー4-フェニルチアゾ ール-5-カルボン酸 エチルエステル
- ・2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノー4-フェニルチアゾ ール-5-カルボン酸 エチルエステル
- ・2-[(4-ヒドロキシビフェニル) -3-カルボニル] アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル
- ・2- [(4'-フルオロ-4-ヒドロキシビフェニル) -3-カルボニル] ア

ミノー4-フェニルチアゾールー5-カルボン酸 エチルエステル

- ・2-[(2', 4' ージフルオロー4ーヒドロキシピフェニル) ー3ーカルボニル] アミノー4ーフェニルチアゾールー5ーカルボン酸 エチルエステル
- ・2- {[4-ヒドロキシ-4'- (トリフルオロメチル) ビフェニル] -3-カルボニル} アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル
- ・2-[2-ヒドロキシー5-(1-ピロリル)ベンゾイル]アミノー4-フェニルチアゾールー5-カルボン酸 エチルエステル
- ・2-[2-ヒドロキシー5-(1ーチエニル)ベンゾイル]アミノー4ーフェニルチアゾールー5ーカルボン酸 エチルエステル
- ・2-(5-プロモ-2-ヒドロキシベンゾイル) アミノ-4-(ペンタフルオロフェニル) チアゾール-5-カルボン酸 エチルエステル
- ・5-プロモ-N-[4-(1, 1-ジメチル) エチル-5-ピペリジノチアゾ -ル-2-イル] -2-ヒドロキシベンズアミド
- ・5-プロモ-N-[4-(1, 1-ジメチル) エチル-5-モルホリノチアゾ -ル-2-イル] -2-ヒドロキシベンズアミド
- ・5-プロモ-N- [4-(1, 1-ジメチル) エチル-5-(4-メチルピペリジン-1-イル) チアゾール-2-イル] -2-ヒドロキシベンズアミド
- ・5-プロモ-N- [4-(1, 1-ジメチル) エチル-5-(4-フェニルピペリジン-1-イル) チアゾール-2-イル]-2-ヒドロキシベンズアミド

発明を実施するための最良の形態

本明細書において用いられる用語の意味は以下の通りである。

「ハロゲン原子」としては、特に言及する場合を除き、フッ素原子、塩素原子、 臭素原子、又はヨウ素原子のいずれを用いてもよい。

「炭化水素基」としては、例えば、脂肪族炭化水素基、アリール基、アリーレン基、アラルキル基、架橋環式炭化水素基、スピロ環式炭化水素基、及びテルペ

ン系炭化水素等が挙げられる。

「脂肪族炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキニル基、アルキレン基、アルケニレン基、アルキリデン基等の直鎖状又は分枝鎖状の1価若しくは2価の非環式炭化水素基;シクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基、シクロアルキルーアルキル基、シクロアルキレン基、シクロアルケニレン基等の飽和又は不飽和の1価若しくは2価の脂環式炭化水素基等が挙げられる。

「アルキル基」としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s e c -ブチル、t e r t - τ - τ τ - τ

「アルケニル基」としては、例えば、ビニル、プロパー1ーエンー1ーイル、アリル、イソプロペニル、プター1ーエンー1ーイル、ブター2ーエンー1ーイル、ブター3ーエンー1ーイル、2ーメチルプロパー2ーエンー1ーイル、1ーメチルプロパー2ーエンー1ーイル、ペンター2ーエンー1ーイル、ペンター2ーエンー1ーイル、ペンター3ーエンー1ーイル、ペンター4ーエンー1ーイル、3ーメチルブター2ーエンー1ーイル、3ーメチルブター3ーエンー1ーイル、ヘキサー1ーエンー1ーイル、ヘキサー2ーエンー1ーイル、ヘキサー3ーエンー1ーイル、ヘキサー4ーエンー1ーイル、ヘキサー5ーエンー1ーイル、4ーメチルペンター3ーエンー1ーイル、4ーメチルペンター3ーエンー1ーイル、

へプター1-xンー1-dル、ヘプター6-xンー1-dル、オクター1-xンー1-dル、オクター7-xンー1-dル、ノナー1-xンー1-dル、ノナー1-xンー1-dル、デカー1-xンー1-dル、デカー1-xンー1-dル、デカー1-xンー1-dル、ドデカー1-xンー1-dル、ドデカー1-xンー1-dル、ドデカー1-xンー1-dル、トリデカー12-xンー1-dル、トリデカー12-xンー1-dル、テトラデカー13-xンー1-dル、ペンタデカー1-xンー1-dル、ペンタデカー14-xンー1-dル、ペンタデカー14-xンー1-dル等の14-x0の直鎖状又は分枝鎖状のアルケニル基が挙げられる。

「アルキニル基」としては、例えば、エチニル、プロパー1ーインー1ーイル、プロパー2ーインー1ーイル、ブター1ーインー1ーイル、ブター3ーインー1ーイル、1ーメチルプロパー2ーインー1ーイル、ペンター1ーインー1ーイル、ペンター4ーインー1ーイル、ヘキサー1ーインー1ーイル、ヘキサー5ーインー1ーイル、ヘプター6ーインー1ーイル、オクター1ーインー1ーイル、オクター7ーインー1ーイル、プカー1ーインー1ーイル、ブカー9ーインー1ーイル、ブカー9ーインー1ーイル、デカー1ーインー1ーイル、デカー1ーインー1ーイル、デカー1ーインー1ーイル、ドデカー1ーインー1ーイル、ドデカー1ーインー1ーイル、ドデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、テトラデカー1ーインー1ーイル、アトラデカー13ーインー1ーイル、ペンタデカー14ーインー1ーイル、ペンタデカー14ーインー1ーイル、ペンタデカー14ーインー1ーイル、ペンタデカー14ーインー1ーイル、キューエが挙げられる。

「アルキレン基」としては、例えば、メチレン、エチレン、エタン-1, 1-ジイル、プロパン-1, 3-ジイル、プロパン-1, 2-ジイル、プロパン-2, 2-ジイル、ブタン-1, 4-ジイル、ペンタン-1, 5-ジイル、ヘキサン-1, 6-ジイル、1, 1, 4, 4-テトラメチルブタン-1, 4-ジイル等の-10 -0 -1 -2 -3 の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルケニレン基」としては、例えば、エテンー 1,2-ジイル、プロペンー 1,3-ジイル、プター1-エンー 1,4-ジイル、ブター2-エンー 1,4-ジイル、2-メチルプロペンー 1,3-ジイル、ペンター2-エンー 1,5-ジイル、ヘキサー3-エンー 1,6-ジイル等の $C_1\sim C_6$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルキリデン基」としては、例えば、メチリデン、エチリデン、プロピリデン、イソプロピリデン、ブチリデン、ペンチリデン、ヘキシリデン等のC₁~C₆の直鎖状又は分枝鎖状のアルキリデン基が挙げられる。

「シクロアルキル基」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の $C_3 \sim C_8$ のシクロアルキル基が挙げられる。

なお、上記「シクロアルキル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1- インダニル、2- インダニル、1 、2 、3 、4- テトラヒドロナフタレン-1- イル、1 、2 、3 、4- テトラヒドロナフタレン-2 ーイル等の基が挙げられる。

「シクロアルケニル基」としては、例えば、2-シクロプロペン-1-イル、2-シクロブテン-1-イル、3-シクロペンテン-1-イル、3-シクロペンテン-1-イル、2-シクロへキセン-1-イル、3-シクロへキセン-1-イル、1-シクロブテン-1-イル、 $1-シクロペンテン-1-イル等の<math>C_3\sim C_6$ のシクロアルケニル基が挙げられる。

なお、上記「シクロアルケニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1ーインダニル、2ーインダニル、1, 2, 3, 4ーテトラヒドロナフタレンー1ーイル、1, 2, 3, 4ーテトラヒドロナフタレンー2ーイル、1ーインデニル、2ーインデニル等の基が挙げられる。

「シクロアルカンジエニル基」としては、例えば、2, 4 – シクロペンタンジエンー1 – イル、2, 4 – シクロヘキサンジエンー1 – イル、2, 5 – シクロヘキサンジエンー1 – イル等の C_5 \sim C_6 のシクロアルカンジエニル基が挙げられ

る。

なお、上記「シクロアルカンジエニル基」は、ベンゼン環、ナフタレン環等と 縮環していてもよく、例えば、1-インデニル、2-インデニル等の基が挙げら れる。

「シクロアルキルーアルキル基」としては、「アルキル基」の1つの水素原子が、「シクロアルキル基」で置換された基が挙げられ、例えば、シクロプロピルメチル、1-シクロプロピルエチル、2-シクロプロピルエチル、3-シクロプロピルプロピル、4-シクロプロピルブチル、5-シクロプロピルペンチル、6-シクロプロピルへキシル、シクロブチルメチル、シクロペンチルメチル、シクロブチルメチル、シクロペンチルメチル、シクロブチルメチル、シクロペンチルメチル、シクロへキシルブチル、シクロへキシルブチルメチル、シクロへキシルブチルメチル、シクロへナシルブロピル、シクロへキシルブチル、シクロへプチルメチル、シクロオクチルメチル、6-シクロオクチルへキシル等の $C_4\sim C_{14}$ のシクロアルキルーアルキル基が挙げられる。

「シクロアルケニレン基」としては、例えば、2ーシクロプロペン-1, 1ージイル、2ーシクロブテン-1, 1ージイル、2ーシクロペンテン-1, 1ージイル、3ーシクロペンテン-1, 1ージイル、2ーシクロヘキセン-1, 1ージイル、2ーシクロヘキセン-1, 4ージイル、3ーシクロヘキセン-1, 1ージイル、1ーシクロブテン-1, 2ージイ

ル、1-シクロペンテンー1, 2-ジイル、1-シクロへキセンー1, 2-ジイル等の C_3 ~ C_6 のシクロアルケニレン基が挙げられる。

「アリール基」としては、単環式又は縮合多環式芳香族炭化水素基が挙げられ、例えば、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、アセナフチレニル等の $C_6\sim C_{14}$ のアリール基が挙げられる。

「アリーレン基」としては、例えば、1, 2-フェニレン、1, 3-フェニレン、1, 4-フェニレン、ナフタレン-1, 2-ジイル、ナフタレン-1, 3-ジイル、ナフタレン-1, 4-ジイル、ナフタレン-1, 5-ジイル、ナフタレン-1, 8-ジイル、ナフタレン-1, 6-ジイル、ナフタレン-1, 7-ジイル、ナフタレン-1, 8-ジイル、ナフタレン-2, 3-ジイル、ナフタレン-2, 4-ジイル、ナフタレン-2, 5-ジイル、ナフタレン-2, 6-ジイル、ナフタレン-2, 7-ジイル、ナフタレン-2, 8-ジイル、アントラセン-1, 4-ジイル等の $C_6\sim C_{14}$ のアリーレン基が挙げられる。

「アラルキル基」としては、「アルキル基」の1つの水素原子が、「アリール基」で置換された基が挙げられ、例えば、ベンジル、1-ナフチルメチル、2-ナフチルメチル、アントラセニルメチル、フェナントレニルメチル、アセナフチレニルメチル、ジフェニルメチル、1-フェネチル、2-フェネチル、1-(1-ナフチル) エチル、1-(2-ナフチル) エチル、2-(1-ナフチル) エチル、2-(1-ナフチル) プ

ロピル、3-(2-ナフチル) プロピル、4-フェニルブチル、4-(1-ナフチル) ブチル、4-(2-ナフチル) ブチル、5-フェニルペンチル、5-(1-ナフチル) ペンチル、5-(2-ナフチル) ペンチル、6-フェニルヘキシル、6-(1-ナフチル) ヘキシル、6-(2-ナフチル) ヘキシル等の $C_7\sim C_{16}$ のアラルキル基が挙げられる。

「架橋環式炭化水素基」としては、例えば、ビシクロ〔2.1.0〕ペンチル、ビシクロ〔2.2.1〕ヘプチル、ビシクロ〔2.2.1〕オクチル、アダマンチル等の基が挙げられる。

「スピロ環式炭化水素基」、としては、例えば、スピロ [3.4] オクチル、スピロ [4.5] デカー1, 6-ジエニル等の基が挙げられる。

「テルペン系炭化水素」としては、例えば、ゲラニル、ネリル、リナリル、フィチル、メンチル、ボルニル等の基が挙げられる。

「ハロゲン化アルキル基」としては、「アルキル基」の1つの水素原子が「ハロゲン原子」で置換された基が挙げられ、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリプロモメチル、ヨードメチル、ジョードメチル、トリョードメチル、2, 2, 2ートリフルオロエチル、ペンタフルオロエチル、3, 3, 3ートリフルオロプロピル、ヘプタフルオロプロピル、ヘプタフルオロイソプロピル、ノナフルオロプチル、パーフルオロヘキシル等の1ないし13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキル基が挙げられる。

「ヘテロ環基」としては、例えば、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種を少なくとも1個含む単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種を少なくとも1個含む単環式又は縮合多環式非芳香族ヘテロ環基が挙げられる。

「単環式へテロアリール基」としては、例えば、2-フリル、3-フリル、2 ーチエニル、3ーチエニル、1ーピロリル、2ーピロリル、3ーピロリル、2ー オキサゾリル、4ーオキサゾリル、5ーオキサゾリル、3ーイソオキサゾリル、 4-イソオキサゾリル、5-イソオキサゾリル、2-チアゾリル、4-チアゾリ ル、5ーチアゾリル、3ーイソチアゾリル、4ーイソチアゾリル、5ーイソチア ブリル、1-イミダブリル、2-イミダブリル、4-イミダブリル、5-イミダ **ゾリル、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル、5-ピラゾリル、** (1, 2, 3-オキサジアゾール) -4-イル、(1, 2, 3-オキサジアゾー (1, 2, 4-3) ル) (1, 2, 4-3) ル) (1, 2, 4-3)オキサジアゾール)-5-イル、(1,2,5-オキサジアゾール)-3-イル、 (1, 2, 5-オキサジアゾール) - 4-イル、(1, 3, 4-オキサジアゾー (1, 3, 4-x) (1, 3, 4-x) (1, 3, 4-x) (1, 3, 4-x)2, 3-チアジアゾール)-4-イル、(1, 2, 3-チアジアゾール)-5-イル、(1, 2, 4ーチアジアゾール) -3-イル、(1, 2, 4ーチアジアゾー (1, 2, 5-7) (1, 2, 5-7) (1, 2, 5-7)3. 4-チアジアゾリル) -5-イル、(1H-1, 2, 3-トリアゾール) -1- イル、(1H-1, 2, 3- トリアゾール) -4- イル、(1H-1, 2, 3)-トリアゾール) -5 -イル、(2H-1, 2, 3-トリアゾール) -2-イル、 (2H-1, 2, 3-1) (2H-1, 2, 4-1) (2H-1, 2, 4-1) $-3-4\nu$, (4H-1, 2, 4-1)ール) -1 - イル、(1H-テトラゾール) - 5 - イル、(2H-テトラゾール)-2-イル、(2H-テトラゾール)-5-イル、2-ピリジル、3-ピリジル、 4ーピリジル、3ーピリダジニル、4ーピリダジニル、2ーピリミジニル、4ー ピリミジニル、5ーピリミジニル、2ーピラジニル、(1, 2, 3ートリアジン)

「縮合多環式へテロアリール基」としては、例えば、2-ベンゾフラニル、3 ーベンゾフラニル、4ーベンゾフラニル、5ーベンゾフラニル、6ーベンゾフラ ニル、7ーベンゾフラニル、1ーイソベンプフラニル、4ーイソベンプフラニル、 5-イソベンゾフラニル、2-ベンゾ [b] チエニル、3-ベンゾ [b] チェニ ル、4 ーベンゾ [b] チエニル、5 ーベンゾ [b] チエニル、6 ーベンゾ [b] チエニル、7ーベング [b] チエニル、1ーベング [c] チエニル、4ーベング [c] チエニル、5ーベンプ[c] チエニル、1ーインドリル、1ーインドリル、 2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-イン ドリル、7-インドリル、(2H-イソインドール) -1-イル、(2H-イソイ ンドール)-2-イル、(2H-イソインドール)-4-イル、(2H-イソイン ドール) -5 - イル、(1H- インダゾール) - 1 - イル、<math>(1H- インダゾール)-3-イル、(1H-インダゾール)-4-イル、(1H-インダゾール)-5-イル、(1Hーインダゾール) -6-イル、(1H-インダゾール) -7-イル、 (2H-インダゾール) -1-イル、<math>(2H-インダゾール) -2-イル、(2Hーインダゾール) - 4 - イル、(2 H - インダゾール) - 5 - イル、2 - ベンソ オキサゾリル、2ーベンゾオキサゾリル、4ーベンゾオキサゾリル、5ーベンゾ オキサゾリル、6-ベンゾオキサゾリル、7-ベンゾオキサゾリル、(1, 2-

ベンゾイソオキサゾール) -3-イル、(1,2-ベンゾイソオキサゾール) -4-イル、(1, 2-ベンゾイソオキサゾール)-5-イル、(1, 2-ベンゾイ ソオキサゾール) - 6 - イル、(1, 2 - ベンゾイソオキサゾール) - 7 - イル、 (2. 1-ベンゾイソオキサゾール) -3-イル、(2, 1-ベンゾイソオキサ -ベンゾイソオキサゾール) - 6 - イル、(2, 1 - ベンゾイソオキサゾール)-7-イル、2ーベンゾチアゾリル、4ーベンゾチアゾリル、5ーベンゾチアゾ リル、6-ベンゾチアゾリル、7-ベンゾチアゾリル、(1,2-ベンゾイソチ (1, 2-4) (1, 2-4) (1, 2-4) (1, 2-4) (1, 2-4)ーベンゾイソチアゾール) -5-イル、(1, 2-ベンゾイソチアゾール) -6 -イル、(1, 2 -ベンゾイソチアゾール) -7 -イル、(2, 1 -ベンゾイソチ アゾール)-3-イル、(2.1-ベンゾイソチアゾール) -4-イル、(2.1 ーベンゾイソチアゾール) -5-イル、(2.1-ベンゾイソチアゾール) -6 -イル、(2, 1-ベンゾイソチアゾール)-7-イル、(1, 2, 3-ベンゾオ キサジアゾール) -4-イル、(1, 2, 3-ベンゾオキサジアゾール) -5-イル、(1, 2, 3 - ベンゾオキサジアゾール) - 6 - イル、<math>(1, 2, 3 - ベンゾオキサジアゾール) -7-イル、(2, 1, 3-ベンゾオキサジアゾール) -4-イル、(2, 1, 3-ベンゾオキサジアゾール) -5-イル、(1, 2, 3-ベンゾチアジアゾール)-4-イル、(1,2,3-ベンゾチアジアゾール)-5-イル、(1, 2, 3-ベンゾチアジアゾール) <math>-6-イル、(1, 2, 3-ベンゾチアジアゾール) -7-イル、(2, 1, 3-ベンゾチアジアゾール) -4 -イル、(2, 1, 3 -ベングチアジアゾール) - 5 -イル、(1 H -ベンゾトリ アゾール)-1-イル、(1H-ベンゾトリアゾール) -4-イル、(1H-ベン ゾトリアゾール) - 5 - イル、(1H-ベンゾトリアゾール) - 6 - イル、(1H ーベンゾトリアゾール)-7-イル、(2H-ベンゾトリアゾール)-2-イル、 (2H-ベンゾトリアゾール) - 4 - イル、(2H-ベンゾトリアゾール) - 5ーイル、2ーキノリル、3ーキノリル、4ーキノリル、5ーキノリル、6ーキノ

リル、7ーキノリル、8ーキノリル、1ーイソキノリル、3ーイソキノリル、4 ーイソキノリル、5ーイソキノリル、6ーイソキノリル、7ーイソキノリル、8 ーイソキノリル、3ーシンノリニル、4ーシンノリニル、5ーシンノリニル、6 ーシンノリニル、7ーシンノリニル、8ーシンノリニル、2ーキナゾリニル、4 ーキナゾリニル、5ーキナゾリニル、6ーキナゾリニル、7ーキナゾリニル、8 ーキナゾリニル、2ーキノキサリニル、5ーキノキサリニル、6ーキノキサリニ ル、1-フタラジニル、5-フタラジニル、6-フタラジニル、2-ナフチリジ ニル、3 ーナフチリジニル、4 ーナフチリジニル、2 ープリニル、6 ープリニル、 7ープリニル、8ープリニル、2ープテリジニル、4ープテリジニル、6ープテ リジニル、7ープテリジニル、1ーカルバゾリル、2-カルバゾリル、3-カル バプリル、4 -カルバプリル、9 -カルバブリル、2 - (α-カルボリニル)、 $3-(\alpha-\pi)\pi$ ルボリニル)、 $4-(\alpha-\pi)\pi$ ルボリニル)、 $5-(\alpha-\pi)\pi$ ルボリニル)、 6 − $(\alpha$ −カルボリニル)、7 − $(\alpha$ −カルボリニル)、8 − $(\alpha$ −カルボリニル)、 $9-(\alpha-\mu)$ $4-(\beta-\pi)\pi$ 7-(β-π)ルボニリル)、8-(β-π)ルボニリル)、9-(β-π)ルボニリル)、 $8-(y-\pi)$ カルボリニル)、 $9-(y-\pi)$ カルボリニル)、 $1-\pi$ クリジニル、 $2-\pi$ アクリジニル、3ーアクリジニル、4ーアクリジニル、9ーアクリジニル、1ー フェノキサジニル、2-フェノキサジニル、3-フェノキサジニル、4-フェノ キサジニル、10-フェノキサジニル、1-フェノチアジニル、2-フェノチア ジニル、3-フェノチアジニル、4-フェノチアジニル、10-フェノチアジニ ル、1-フェナジニル、2-フェナジニル、1-フェナントリジニル、2-フェ ナントリジニル、3ーフェナントリジニル、4ーフェナントリジニル、6ーフェ ナントリジニル、7ーフェナントリジニル、8ーフェナントリジニル、9ーフェ ナントリジニル、10-フェナントリジニル、2-フェナントロリニル、3-フ

ェナントロリニル、4ーフェナントロリニル、5ーフェナントロリニル、6ーフェナントロリニル、7ーフェナントロリニル、8ーフェナントロリニル、9ーフェナントロリニル、10ーフェナントロリニル、1ーチアントレニル、2ーチアントレニル、1ーインドリジニル、2ーインドリジニル、3ーインドリジニル、5ーインドリジニル、6ーインドリジニル、7ーインドリジニル、8ーインドリジニル、6ーインドリジニル、7ーインドリジニル、8ーインドリジニル、1ーフェノキサチイニル、2ーフェノキサチイニル、3ーフェノキサチイニル、4ーフェノキサチイニル、チエノ [2,3-b] フリル、ピロロ [1,2-b] ピリダジニル、ピラゾロ [1,5-a] ピリジル、イミダゾ [1,2-b] ピリダジニル、イミダゾ [1,5-a] ピリジル、イミダゾ [1,2-b] ピリダジニル、イミダゾ [1,2-b] ピリダジニル、イミダゾ [1,2-a] ピリジル、1,2,4ートリアゾロ [4,3-a] ピリジル、1,2,4ートリアゾロ [4,3-a] ピリダジニル等の8ないし14員の縮合多環式へテロアリール基が挙げられる。

「単環式非芳香族へテロ環基」としては、例えば、1ーアジリジニル、1ーアゼチジニル、1ーピロリジニル、2ーピロリジニル、3ーピロリジニル、2ーテトラヒドロフリル、3ーテトラヒドロフリル、チオラニル、1ーイミダゾリジニル、2ーイミダゾリジニル、4ーイミダゾリジニル、1ーピラゾリジニル、3ーピラゾリジニル、4ーピラゾリジニル、1ー(2ーピロリニル)、1ー(2ーイミダゾリニル)、2ー(2ーイミダゾリニル)、1ー(2ーピラゾリニル)、3ー(2ーピラゾリニル)、ピペリジノ、2ーピペリジニル、3ーピペリジニル、4ーピペリジニル、1ーホモピペリジニル、2ーテトラヒドロピラニル、モルホリノ、(チオモルホリン)ー4ーイル、1ーピペラジニル、1ーホモピペラジニル等の3ないし7員の飽和若しくは不飽和の単環式非芳香族へテロ環基が挙げられる。

「縮合多環式非芳香族へテロ環基」としては、例えば、2ーキヌクリジニル、2ークロマニル、3ークロマニル、4ークロマニル、5ークロマニル、6ークロマニル、7ークロマニル、8ークロマニル、1ーイソクロマニル、3ーイソクロマニル、7ーマニル、4ーイソクロマニル、5ーイソクロマニル、7ー

イソクロマニル、8-イソクロマニル、2-チオクロマニル、3-チオクロマニ ル、4ーチオクロマニル、5ーチオクロマニル、6ーチオクロマニル、7ーチオ クロマニル、8-チオクロマニル、1-イソチオクロマニル、3-イソチオクロ マニル、4-イソチオクロマニル、5-イソチオクロマニル、6-イソチオクロ マニル、7ーイソチオクロマニル、8ーイソチオクロマニル、1ーインドリニル、 2-インドリニル、3-インドリニル、4-インドリニル、5-インドリニル、 6ーインドリニル、7ーインドリニル、1ーイソインドリニル、2ーイソインド リニル、4-イソインドリニル、5-イソインドリニル、2-(4H-クロメニ $(4H-2\pi)$ 、3-(4H-2\pi)、4-(4H-2\pi)、5-(4H-2\pi) メニル)、6-(4H-クロメニル)、7-(4H-クロメニル)、8-(4H-クロメニル)、1 ーイソクロメニル、3 ーイソクロメニル、4 ーイソクロメニル、 5ーイソクロメニル、6ーイソクロメニル、7ーイソクロメニル、8ーイソクロ メニル、1-(1H-ピロリジニル)、2-(1H-ピロリジニル)、3-(1H ーピロリジニル)、5-(1H-ピロリジニル)、6-(1H-ピロリジニル)、 7- (1H-ピロリジニル) 等の8ないし10員の飽和若しくは不飽和の縮合多 環式非芳香族へテロ環基が挙げられる。

上記「ヘテロ環基」の中で、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種を有していてもよい単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種を有していてもよい単環式又は縮合多環式非芳香族ヘテロ環基を「環状アミノ基」と称し、例えば、1ーピロリジニル、1ーイミダゾリジニル、1ーピラゾリジニル、1ーオキサゾリジニル、1ーチアゾリジニル、ピペリジノ、モルホリノ、1ーピペラジニル、チオモルホリンー4ーイル、1ーホモピペリジニル、1ーホモピペラジニル、チオモルホリンー4ーイル、1ーホモピペリジニル、1ーホモピペラジニル、2ーピロリンー1ーイル、2ーイミダゾリンー1ーイル、2ーピラゾリンー1ーイル、1,2,3

4ーテトラヒドロキノリンー1ーイル、1, 2, 3, 4ーテトラヒドロイソキノリンー2ーイル、1ーピロリル、1ーイミダプリル、1ーピラブリル、1ーインドリル、1ーインダブリル、2ーイソインドリル等の基が挙げられる。

「炭化水素-オキシ基」としては、「ヒドロキシ基」の水素原子が「炭化水素 基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と 同様の基が挙げられる。「炭化水素-オキシ基」としては、例えば、アルコキシ 基(アルキル-オキシ基)、アルケニル-オキシ基、アルキニル-オキシ基、シ クロアルキル-オキシ基、シクロアルキル-アルキル-オキシ基等の脂肪族炭化 水素-オキシ基;アリール-オキシ基;アラルキル-オキシ基;アルキレン-ジ オキシ基等が挙げられる。

「アルコキシ基(アルキルーオキシ基)」としては、例えば、メトキシ、エトキシ、n-プロポキシ、(1)プロポキシ、(1)プロポキシ、(1)プロポキシ、(1)プロポキシ、(1)プロポキシ、(1)プロポキシ、(1) では (1) では (1

「アルケニルーオキシ基」としては、例えば、ビニルオキシ、(プロパー1-エンー1-イル)オキシ、アリルオキシ、イソプロペニルオキシ、(ブター1-エンー1-イル)オキシ、(ブター2-エンー1-イル)オキシ、(ブター3-エンー1-イル)オキシ、(2-メチルプロパー2-エンー1-イル)オキシ、(1

ーメチルプロパー2ーエンー1ーイル)オキシ、(ペンター1ーエンー1ーイル) オキシ、(ペンター2-エンー1-イル) オキシ、(ペンター3-エンー1-イル) オキシ、(ペンター4ーエンー1ーイル) オキシ、(3ーメチルプター2ーエンー 1ーイル)オキシ、(3ーメチルブター3ーエン-1ーイル)オキシ、(ヘキサー 1-エン-1-イル) オキシ、(ヘキサ-2-エン-1-イル) オキシ、(ヘキサ -3-エン-1-イル)オキシ、(ヘキサ-4-エン-1-イル)オキシ、(ヘキ サー5-エン-1-イル) オキシ、(4-メチルペンタ-3-エン-1-イル) オキシ、(4-メチルペンタ-3-エン-1-イル)オキシ、(ヘプタ-1-エン ー1ーイル)オキシ、(ヘプター6ーエンー1ーイル)オキシ、(オクター1ーエ ン-1-イル)オキシ、(オクタ-7-エン-1-イル)オキシ、(ノナ-1-エ ンー1ーイル)オキシ、(ノナー8ーエンー1ーイル)オキシ、(デカー1ーエン ー1ーイル)オキシ、(デカー9ーエンー1ーイル)オキシ、(ウンデカー1ーエ ンー1ーイル)オキシ、(ウンデカー10ーエンー1ーイル)オキシ、(ドデカー 1-エンー1ーイル)オキシ、(ドデカー11ーエンー1ーイル)オキシ、(トリ デカー1-エンー1-イル)オキシ、(トリデカー12-エンー1-イル) オキ シ、(テトラデカー1ーエンー1ーイル)オキシ、(テトラデカー13ーエンー1 ーイル)オキシ、(ペンタデカー1ーエンー1ーイル)オキシ、(ペンタデカー1 4-エン-1-イル) オキシ等のC。~C、5の直鎖状又は分枝鎖状のアルケニル ーオキシ基が挙げられる。

オキシ、(ノナー8ーインー1ーイル) オキシ、(デカー1ーインー1ーイル) オキシ、(デカー9ーインー1ーイル) オキシ、(ウンデカー1ーインー1ーイル) オキシ、(ウンデカー1 0ーインー1ーイル) オキシ、(ドデカー1 1ーインー1ーイル) オキシ、(トリデカー1 1ーインー1ーイル) オキシ、(トリデカー1ーインー1ーイル) オキシ、(トリデカー1ーインー1ーイル) オキシ、(テトラデカー1ーインー1ーイル) オキシ、(テトラデカー1 3ーインー1ーイル) オキシ、(ペンタデカー1ーインー1ーイル) オキシ、(ペンタデカー1ーインー1ーイル) オキシ、(ペンタデカー1 4ーインー1ーイル) オキシ等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルキニルーオキシ基が挙げられる。

「シクロアルキルーオキシ基」としては、例えば、シクロプロポキシ、シクロプトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロヘプチルオキシ、シクロオクチルオキシ等の $C_3 \sim C_8$ のシクロアルキルーオキシ基が挙げられる。

「シクロアルキルーアルキルーオキシ基」としては、例えば、シクロプロピルメトキシ、1-シクロプロピルエトキシ、2-シクロプロピルエトキシ、3-シクロプロピルプロポキシ、4-シクロプロピルブトキシ、5-シクロプロピルペンチルオキシ、6-シクロプロピルへキシルオキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロペンチルメトキシ、シクロペンチルメトキシ、シクロペキシルオトキシ、3-シクロへキシルプロポキシ、4-シクロへキシルブトキシ、シクロへプチルメトキシ、シクロオクチルメトキシ、6-シクロオクチルへキシルオキシ等の $C_4 \sim C_{14}$ のシクロアルキルーアルキルーオキシ基が挙げられる。

「アリールーオキシ基」としては、例えば、フェノキシ、1ーナフチルオキシ、2ーナフチルオキシ、アントリルオキシ、フェナントリルオキシ、アセナフチレニルオキシ等の $C_6 \sim C_{1,4}$ のアリールーオキシ基が挙げられる。

「アラルキルーオキシ基」としては、例えば、ベンジルオキシ、1ーナフチル メトキシ、2ーナフチルメトキシ、アントラセニルメトキシ、フェナントレニル

メトキシ、アセナフチレニルメトキシ、ジフェニルメトキシ、1-フェネチルオキシ、2-フェネチルオキシ、1- (1-ナフチル) エトキシ、1- (2-ナフチル) エトキシ、2- (1-ナフチル) エトキシ、2- (2-ナフチル) エトキシ、3-フェニルプロポキシ、3- (1-ナフチル) プロポキシ、3- (2-ナフチル) プロポキシ、4- (1-ナフチル) プトキシ、4- (1-ナフチル) ブトキシ、4- (1-ナフチル) ブトキシ、1- (1- (1- (1-) ブトキシ、1- (1-) ベンチルオキシ、1- (1-) ベンチルオキシ (1-) ベンチル (

「アルキレンジオキシ基」としては、例えば、メチレンジオキシ、エチレンジオキシ、1-メチルメチレンジオキシ、1, 1-ジメチルメチレンジオキシ等の基が挙げられる。

「ハロゲン化アルコキシ基(ハロゲン化アルキルーオキシ基)」としては、「ヒドロキシ基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、フルオロメトキシ、ジフルオロメトキシ、クロロメトキシ、ブロモメトキシ、ヨードメトキシ、トリフルオロメトキシ、トリクロロメトキシ、2,2,2ートリフルオロエトキシ、ペンタフルオロエトキシ、3,3,3ートリフルオロプポキシ、ヘプタフルオロプポキシ、ヘプタフルオロイソプロポキシ、ノナフルオロブトキシ、パーフルオロヘキシルオキシ等の1ないし13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルコキシ基が挙げられる。

「ヘテロ環ーオキシ基」としては、「ヒドロキシ基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ーオキシ基」としては、例えば、単環式ヘテロアリールーオキシ基、縮合多環式ヘテロアリールーオキシ基、単環式非芳香族ヘテロ環ーオキシ基、縮合多環式非芳香族ヘテロ環ーオキシ基等が挙げられる。

「単環式へテロアリールーオキシ基」としては、例えば、3ーチエニルオキシ、

(イソキサゾールー3ーイル) オキシ、(チアゾールー4ーイル) オキシ、2ーピリジルオキシ、3ーピリジルオキシ、4ーピリジルオキシ、(ピリミジンー4ーイル) オキシ等の基が挙げられる。

「縮合多環式へテロアリールーオキシ基」としては、5ーインドリルオキシ、 (ベンズイミダゾールー2ーイル) オキシ、2ーキノリルオキシ、3ーキノリル オキシ、4ーキノリルオキシ等の基が挙げられる。

「単環式非芳香族へテロ環ーオキシ基」としては、例えば、3 - ピロリジニルオキシ、4 - ピペリジニルオキシ等の基が挙げられる。

「縮合多環式非芳香族へテロ環ーオキシ基」としては、例えば、3ーインドリニルオキシ、4ークロマニルオキシ等の基が挙げられる。

「炭化水素-スルファニル基」としては、「スルファニル基」の水素原子が、「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素-スルファニル基」としては、例えば、アルキルースルファニル基、アルケニルースルファニル基、アルキニルースルファニル基、シクロアルキルースルファニル基、シクロアルキルーアルキルースルファニル基等の脂肪族炭化水素-スルファニル基;アリールースルファニル基、アラルキルースルファニル基等が挙げられる。

「アルキルースルファニル基」としては、例えば、メチルスルファニル、エチルスルファニル、nープロピルスルファニル、イソプロピルスルファニル、nーブチルスルファニル、イソブチルスルファニル、secーブチルスルファニル、tertーブチルスルファニル、nーペンチルスルファニル、イソペンチルスルファニル、(2ーメチルブチル) スルファニル、(1ーメチルブチル) スルファニル、ネオペンチルスルファニル、(1,2ージメチルプロピル) スルファニル、(1ーエチルプロピル) スルファニル、nーヘキシルスルファニル、(4ーメチルペンチル) スルファニル、(3ーメチルペンチル) スルファニル、(2ーメチルペンチル) スルファニル、(1ーメチルペンチル) スルファニル、(1,1ージブチル) スルファニル、(1,1ージブチル) スルファニル、(1,1ージブチル) スルファニル、(1,1ージブチル) スルファニル、(1,1ージ

「アルケニルースルファニル基」としては、例えば、ビニルスルファニル、(プ ロパー1ーエンー1ーイル) スルファニル、アリルスルファニル、イソプロペニ ルスルファニル、(ブター1-エン-1-イル) スルファニル、(ブター2-エン メチルプロパー2ーエンー1ーイル)スルファニル、(1ーメチルプロパー2ー xy=1-1 (ペンター1-xy=1) スルファニル、 (ペンター2ーエンー1ーイル) スルファニル、(ペンター3ーエンー1ーイル) スルファニル、(ペンター4-エン-1-イル) スルファニル、(3-メチルブタ スルファニル、(ヘキサー1ーエンー1ーイル) スルファニル、(ヘキサー2ーエ ンー1ーイル) スルファニル、(ヘキサー3-エンー1-イル) スルファニル、(ヘ キサー4-エンー1-イル)スルファニル、(ヘキサー5-エンー1-イル)ス ルファニル、(4-メチルペンタ-3-エン-1-イル) スルファニル、(4-メ チルペンター3-エンー1-イル)スルファニル、(ヘプター1-エンー1-イ ル)スルファニル、(ヘプター6-エン-1-イル)スルファニル、(オクター1 ーエンー1ーイル)スルファニル、(オクター7ーエンー1ーイル)スルファニ ル、(ノナー1ーエンー1ーイル) スルファニル、(ノナー8ーエンー1ーイル) スルファニル、(デカー1ーエンー1ーイル) スルファニル、(デカー9-エンー 1ーイル)スルファニル、(ウンデカー1ーエンー1ーイル)スルファニル、(ウ

ンデカー10-xンー1-dル)スルファニル、(ドデカー1-xンー1-dル)スルファニル、(ドデカー11-xンー1-dル)スルファニル、(トリデカー1-xンー1-dル)スルファニル、(トリデカー12-xンー1-dル)スルファニル、(テトラデカー1-xンー1-dル)スルファニル、(テトラデカー13-xンー1-dル)スルファニル、(ペンタデカー1-xンー1-dル)スルファニル、(ペンタデカー1-xンー1-dル)スルファニル、(ペンタデカー14-xンー1-dル)スルファニル等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルケニルースルファニル基が挙げられる。

「アルキニルースルファニル基」としては、例えば、エチニルスルファニル、 (プロパー1-インー1-イル) スルファニル, (プロパー2-インー1-イル) スルファニル, (ブター1ーインー1ーイル) スルファニル、(ブター3ーインー 1ーイル)スルファニル、(1ーメチルプロパー2ーイン-1ーイル)スルファ ニル、(ペンター1ーイン-1ーイル) スルファニル、(ペンター4ーイン-1-イル) スルファニル、(ヘキサー1ーインー1ーイル) スルファニル、(ヘキサー 5ーイン-1ーイル)スルファニル、(ヘプタ-1ーイン-1ーイル、(ヘプター 6ーインー1ーイル)スルファニル、(オクター1ーインー1ーイル)スルファ ニル、(オクター7ーイン-1ーイル) スルファニル、(ノナー1ーイン-1ーイ ル)スルファニル、(ノナー8ーインー1ーイル)スルファニル、(デカー1ーイ ンー1ーイル)スルファニル、(デカー9ーインー1ーイル)スルファニル、(ウ ンデカー1ーインー1ーイル) スルファニル、(ウンデカー10ーインー1ーイ ル) スルファニル、(ドデカー1ーインー1ーイル) スルファニル、(ドデカー1 **1ーイン-1ーイル)スルファニル、(トリデカ-1-イン-1-イル)スルフ** ァニル、(トリデカー12ーインー1ーイル)スルファニル、(テトラデカー1ー インー1ーイル)スルファニル、(テトラデカー13ーインー1ーイル)スルフ ァニル、(ペンタデカー1ーインー1ーイル)スルファニル、(ペンタデカー14 - イン - 1 - イル)スルファニル等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルキ ニルースルファニル基が挙げられる。

「シクロアルキルースルファニル基」としては、例えば、シクロプロピルスル

ファニル、シクロブチルスルファニル、シクロペンチルスルファニル、シクロヘ キシルスルファニル、シクロヘプチルスルファニル、シクロオクチルスルファニ ル等の $C_3 \sim C_8$ のシクロアルキルースルファニル基が挙げられる。

「シクロアルキルーアルキルースルファニル基」としては、例えば、(シクロプロピルメチル) スルファニル、(1-シクロプロピルエチル) スルファニル、(2-シクロプロピルエチル) スルファニル、(3-シクロプロピルプロピル) スルファニル、(4-シクロプロピルプチル) スルファニル、(5-シクロプロピルペンチル) スルファニル、(6-シクロプロピルへキシル) スルファニル、(0クロプロピルペンチル) スルファニル、(0クロプロピルへキシル) スルファニル、(0クロプロピルへキシル) スルファニル、(0クロブチルメチル) スルファニル、(0クロブチルメチル) スルファニル、(0クロペンチルメチル) スルファニル、(0クロペンチルメチル) スルファニル、(0クロペンチルメチル) スルファニル、(0クロペキシルプロピル) スルファニル、(0クロペキシルプチル) スルファニル、(0クロペキシルプチル) スルファニル、(0クロペナシャンプチルメチル) スルファニル、(00クロペプチルメチル) スルファニル、(00クロペーで、00シクロアルキルーアルキルースルファニルをが挙げられる。

「アリールースルファニル基」としては、例えば、フェニルスルファニル、1ーナフチルスルファニル、2ーナフチルスルファニル、アントリルスルファニル、フェナントリルスルファニル、アセナフチレニルスルファニル等の $C_6 \sim C_{14}$ のアリールースルファニル基が挙げられる。

「アラルキルースルファニル基」としては、例えば、ベンジルスルファニル、(1ーナフチルメチル) スルファニル、(2ーナフチルメチル) スルファニル、(アシトラセニルメチル) スルファニル、(フェナントレニルメチル) スルファニル、(アセナフチレニルメチル) スルファニル、(ジフェニルメチル) スルファニル、(1ーフェネチル) スルファニル、(2ーフェネチル) スルファニル、(1ー(1ーナフチル) エチル) スルファニル、(1ー(2ーナフチル) エチル) スルファニル、(2ー(2ーナフチル) エチル) スルファニル、(3ー(1ーナフチル) スルファニル、(3ー(1ーナフチル) スルファニル、(3ー(1ーナフチル) スルファニル、(3ー(1ーナフ

チル)プロピル)スルファニル、(3-(2-t)フチル)プロピル)スルファニル、(4-(1-t) チル)ブチル)スルファニル、(4-(1-t) チル)ブチル)スルファニル、(5-(1-t) チル)スルファニル、(5-(1-t) チル)スルファニル、(5-(2-t) チル)スルファニル、(5-(2-t) ペンチル)スルファニル、(5-(2-t) ペンチル)スルファニル、(5-(2-t) ペンチル)スルファニル、(5-(2-t) ペンチル)スルファニル、(5-(2-t) ペンチル)スルファニル、(5-(2-t) ペキシル)スルファニル、(5-(2-t) アラルキルースルファニル基が挙げられる。

「ハロゲン化アルキルースルファニル基」としては、「スルファニル基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、(フルオロメチル) スルファニル、(クロロメチル) スルファニル、(ブロモメチル) スルファニル、(ヨードメチル) スルファニル、(ジフルオロメチル) スルファニル、(トリフルオロメチル) スルファニル、(トリクロロメチル) スルファニル、(2,2,2ートリフルオロエチル) スルファニル、(ペンタフルオロエチル) スルファニル、(3,3,3ートリフルオロプロピル) スルファニル、(ヘプタフルオロプロピル) スルファニル、(ノナフルオロブチル) スルファニル、(ハーフルオロイソプロピル) スルファニル、(ノナフルオロブチル) スルファニル、(パーフルオロヘキシル) スルファニル等の1ないし13個のハロゲン原子で置換された C1~C6の直鎖状又は分枝鎖状のハロゲン化アルキルースルファニル基が挙げられる。

「ヘテロ環ースルファニル基」としては、「スルファニル基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ースルファニル基」としては、例えば、単環式ヘテロアリールースルファニル基、縮合多環式ヘテロアリールースルファニル基、単環式非芳香族ヘテロ環ースルファニル基、縮合多環式非芳香族ヘテロ環ースルファニル基等が挙げられる。

「単環式へテロアリールースルファニル基」としては、例えば、(イミダゾールー2ーイル) スルファニル、(1, 2, 4ートリアゾールー2ーイル) スルファニル、(ピリジンー4ーイル) スルファ

ニル、(ピリミジンー2ーイル)スルファニル等の基が挙げられる。

「縮合多環式へテロアリールースルファニル基」としては、(ベンズイミダゾ ールー2ーイル) スルファニル、(キノリンー2ーイル) スルファニル、(キノリ ンー4ーイル) スルファニル等の基が挙げられる。

「単環式非芳香族へテロ環ースルファニル基」としては、例えば、(3-ピロリジニル)スルファニル、(4-ピペリジニル)スルファニル等の基が挙げられる。

「縮合多環式非芳香族へテロ環ースルファニル基」としては、例えば、(3 ーインドリニル)スルファニル、(4 ークロマニル)スルファニル等の基が挙げられる。

「アシル基」としては、例えば、ホルミル基、グリオキシロイル基、チオホルミル基、及び下記式:

VO 02/49632 Page 63 of 313

WO 02/49632 PCT/JP01/11084

(式中、R^{a1}及びR^{b1}は、同一又は異なって、炭化水素基又はヘテロ環基を表すか、或いはR^{a1}及びR^{b1}が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシル基」の定義において、

式 $(\omega-1$ A) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーカルボニル基」(具体例:アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ラウロイル、ミリストイル、パルミトイル、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、イソクロトノイル、シクロヘキシルカルボニル、シクロヘキシルメチルカルボニル、ベンゾイル、1- ナフトイル、2- ナフトイル、フェニルアセチル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーカルボニル基」(具体例:2- テノイル、3- フロイル、ニコチノイル、イソニコチノイル等の基)と称する。

式(ω-2A)で表される基の中で、R^{a1}が炭化水素基である基を「炭化水素ーオキシーカルボニル基」(具体例:メトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル等の基)、R^{a1}がヘテロ環基である基を「ヘテロ環ーオキシーカルボニル基」(具体例:3-ピリジルオキシカルボニル等の基)と称する。

式(ω – 3 A)で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素 – カルボニルーカルボニル基」(具体例:ピルボイル等の基)、 R^{*1} がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニル基」と称する。

式($\omega-4$ A)で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニル基」(具体例:メトキサリル、エトキサリル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニル基」と称する。

式 $(\omega - 5 A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ースルファニルーカルボニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニル基」と称する。

式 $(\omega-6A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーチオカルボニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環ーチオカルボニル基」と称する。

式(ω-7A)で表される基の中で、R゚¹が炭化水素基である基を「炭化水素-

オキシーチオカルボニル基」、R^{al}がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニル基」と称する。

式 (ω-8A) で表される基の中で、R^{al}が炭化水素基である基を「炭化水素-スルファニルーチオカルボニル基」、R^{al}がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニル基」と称する。

式($\omega-1$ 0A)で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイル基」(具体例:N, N-ジメチルカルバモイル等の基)、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -カルバモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ー置換カルバモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニル基」(具体例:モルホリノカルボニル等の基)と称する。

式($\omega-1$ 1A)で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素-チオカルバモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環-チオカルバモイル基」と称する。

式 $(\omega-12A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素)-チオカルバモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-チオカルバモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-Nーヘテロ環-チオカルバモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニル基」と称する。

式($\omega-1$ 3A)で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素-スルファモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環-スルファモイル基」と称する。

式(ω-14A)で表される基の中で、R^{a1}及びR^{b1}が炭化水素基である基を「N, N-ジ(炭化水素)-スルファモイル基」(具体例:N, N-ジメチルスルファモイル等の基)、R^{a1}及びR^{b1}がヘテロ環基である基を「N, N-ジ(ヘテロ環)スルファモイル基」、R^{a1}が炭化水素基でありR^{b1}がヘテロ環基である基を「N ー炭化水素-N-ヘテロ環-スルファモイル基」、R^{a1}及びR^{b1}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニル基」(具体例:1-ピロリルスルホニル等の基)と称する。

式 $(\omega-15A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「N-炭化水素-スルフィナモイル基」、 R^{*1} がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル基」と称する。

式 $(\omega-16A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素) -スルフィナモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルフィナモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ースルフィナモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニル基」と称する。

式 $(\omega-17A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 - オキシースルホニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環ーオキシースルホニル基」と称する。

式($\omega-18A$)で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素 - オキシースルフィニル基」、 R^{*1} がヘテロ環基である基を「ヘテロ環- オキシースルフィニル基」と称する。

式 $(\omega-19A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「O, O'ージ (炭化水素) -ホスホノ基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「O, O'ージ (ヘテロ環) -ホスホノ基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「O一炭化水素—O'ーヘテロ環ーホスホノ基」と称する。

式(ω-20A)で表される基の中で、R¹が炭化水素基である基を「炭化水素

-スルホニル基」(具体例:メタンスルホニル、ベンゼンスルホニル等の基)、R * 1がヘテロ環基である基を「ヘテロ環-スルホニル基」と称する。

上記式($\omega-1$ A)ないし($\omega-2$ 1 A)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「炭化水素ーカルボニル基」としては、アルキルーカルボニル基、アルケニルーカルボニル基、アルキニルーカルボニル基、シクロアルキルーカルボニル基、シクロアルケニルーカルボニル基、シクロアルカンジエニルーカルボニル基、シクロアルキルーアルキルーカルボニル基等の脂肪族炭化水素ーカルボニル基;アリールーカルボニル基;アラルキルーカルボニル基;架橋環式炭化水素ーカルボニル基;スピロ環式炭化水素ーカルボニル基;テルペン系炭化水素ーカルボニル基が挙げられる。以下、式($\omega-2$ A)ないし($\omega-2$ 1 A)で表される基も同様である。

上記式($\omega-1$ A)ないし($\omega-2$ 1 A)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式($\omega-2$ A)ないし($\omega-2$ 1 A)で表される基も同様である。上記式($\omega-1$ 0 A)ないし($\omega-1$ 6 A)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシル基」、「カルバモイル基」、「チオカルバモイル基」、「スルファモイル基」、及び「スルフィナモイル基」を総称して、「置換基を有していてもよいアシル基」と称する。

本明細書において、ある官能基について「置換基を有していてもよい」という

場合には、特に言及する場合を除き、その官能基が、化学的に可能な位置に1個 又は2個以上の「置換基」を有する場合があることを意味する。官能基に存在す る置換基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置 換基が存在する場合には、それらは同一であっても異なっていてもよい。官能基 に存在する「置換基」としては、例えば、ハロゲン原子、オキソ基、チオキソ基、 ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアナト基、チオシアナト基、 イソシアナト基、イソチオシアナト基、ヒドロキシ基、スルファニル基、カルボ キシ基、スルファニルカルボニル基、オキサロ基、メソオキサロ基、チオカルボ キシ基、ジチオカルボキシ基、カルバモイル基、チオカルバモイル基、スルホ基、 スルファモイル基、スルフィノ基、スルフィナモイル基、スルフェノ基、スルフ エナモイル基、ホスホノ基、ヒドロキシホスホニル基、炭化水素基、ヘテロ環基、 炭化水素-オキシ基、ヘテロ環-オキシ基、炭化水素-スルファニル基、ヘテロ 環ースルファニル基、アシル基、アミノ基、ヒドラジノ基、ヒドラゾノ基、ジア ゼニル基、ウレイド基、チオウレイド基、グアニジノ基、カルバモイミドイル基 (アミジノ基)、アジド基、イミノ基、ヒドロキシアミノ基、ヒドロキシイミノ 基、アミノオキシ基、ジアゾ基、セミカルバジノ基、セミカルバゾノ基、アロフ アニル基、ヒダントイル基、ホスファノ基、ホスホロソ基、ホスホ基、ボリル基、 シリル基、スタニル基、セラニル基、オキシド基等を挙げることができる。

上記「置換基を有していてもよい」の定義における「置換基」が2個以上存在する場合、該2個以上の置換基は、それらが結合している原子と一緒になって環式基を形成してもよい。このような環式基には、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種が1個以上含有されていてもよく、該環上には1個以上の置換基が存在していてもよい。該環は、単環式又は縮合多環式のいずれであってもよく、芳香族又は非芳香族のいずれであってもよい。

上記「置換基を有していてもよい」の定義における「置換基」は、該置換基上 の化学的に可能な位置で、上記「置換基」によって置換されていてもよい。置換

基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換基で置換される場合には、それらは同一であっても異なっていてもよい。そのような例として、例えば、ハロゲン化アルキルーカルボニル基(具体例:トリフルオロアセチル等の基)、ハロゲン化アルキルースルホニル基(具体例:トリフルオロメタンスルホニル等の基)、アシルーオキシ基、アシルースルファニル基、Nー炭化水素基ーアミノ基、N,Nージ(炭化水素)ーアミノ基、Nーヘテロ環ーアミノ基、Nー炭化水素ーNーヘテロ環ーアミノ基、アシルーアミノ基、ジ(アシル)ーアミノ基等の基が挙げられる。又、上記「置換基」上での「置換」は複数次にわたって繰り返されてもよい。

「アシルーオキシ基」としては、「ヒドロキシ基」の水素原子が「アシル基」 で置換された基が挙げられ、例えば、ホルミルオキシ基、グリオキシロイルオキ シ基、チオホルミルオキシ基、及び下記式:

(式中、R^{a²}及びR^{b²}は、同一又は異なって、炭化水素基、又はヘテロ環基を表すか、或いはR^{a²}及びR^{b²}が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーオキシ基」の定義において、

式 $(\omega - 1 B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素 - カルボニルーオキシ基」(具体例: アセトキシ、ベンゾイルオキシ等の基)、 R^{a^2} がヘテロ環基である基を「ヘテロ環ーカルボニルーオキシ基」と称する。

式 $(\omega - 2B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素ーオキシーカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーオキシ基」と称する。

式 (ω-3B) で表される基の中で、R²が炭化水素基である基を「炭化水素-カルボニルーカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルーオキシ基」と称する。

式 (ω-4B) で表される基の中で、R²が炭化水素基である基を「炭化水素-オキシーカルボニルーカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘ テロ環-オキシーカルボニルーカルボニルーオキシ基」と称する。

式 $(\omega - 5B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素 - スルファニルーカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーオキシ基」と称する。

式 (ω-6B) で表される基の中で、R²が炭化水素基である基を「炭化水素ーチオカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環ーチオカルボニルーオキシ基」と称する。

式 $(\omega - 7B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素ーオキシーチオカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーオキシ基」と称する。

式 (ω-8B) で表される基の中で、R²が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルーオキシ基」と称する。

式 $(\omega - 9B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「N - 炭化水素 - カルバモイルーオキシ基」、 R^{a^2} がヘテロ環基である基を「N - ヘテロ環ーカルバモイルーオキシ基」と称する。

式 $(\omega-10B)$ で表される基の中で、 R^{a^2} 及び R^{b^2} が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイルーオキシ基」、 R^{a^2} 及び R^{b^2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -カルバモイルーオキシ基」、 R^{a^2} が炭化水素基であり R^{b^2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ーカルバモイルーオキシ基」、 R^{a^2} 及び R^{b^2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルーオキシ基」と称する。

式($\omega-1$ 1B)で表される基の中で、 R^{*2} が炭化水素基である基を「N-炭化水素-チオカルバモイル-オキシ基」、 R^{*2} がヘテロ環基である基を「N-ヘテロ環ーチオカルバモイル-オキシ基」と称する。

式 $(\omega-1\ 2\ B)$ で表される基の中で、 $R^{a\,2}$ 及び $R^{b\,2}$ が炭化水素基である基を「N, N-ジ(炭化水素) -チオカルバモイルーオキシ基」、 $R^{a\,2}$ 及び $R^{b\,2}$ がヘテロ環基である基を「N, N-ジ(ヘテロ環) -チオカルバモイルーオキシ基」、 $R^{a\,2}$ が炭化水素基であり $R^{b\,2}$ がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ーチオカルバモイルーオキシ基」、 $R^{a\,2}$ 及び $R^{b\,2}$ が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーオキシ基」と称する。

式 $(\omega-13B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「N-炭化水素-スルファモイルーオキシ基」、 R^{a^2} がヘテロ環基である基を「N-ヘテロ環ースルファモイルーオキシ基」と称する。

式 $(\omega-14B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素) -スルファモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルファモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルファモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルーオキシ基」と称する。

式 $(\omega-15B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「N-炭化水素-スルフィナモイルーオキシ基」、 R^{*2} がヘテロ環基である基を「N-ヘテロ環-スルフィナモイルーオキシ基」と称する。

式 $(\omega-16B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素) -スルフィナモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルフィナモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ースルフィナモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニルーオキシ基」と称する。

式 (ω-17B) で表される基の中で、R²が炭化水素基である基を「炭化水素 -オキシースルホニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーオキシ基」と称する。

式($\omega-18B$)で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素 - オキシースルフィニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーオキシ基」と称する。

式 $(\omega - 19B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「O, O'ージ(炭化水素) -ホスホノーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「O, O'ージ(ヘテロ環) -ホスホノーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「O一炭化水素置換-O'ーヘテロ環置換ホスホノーオキシ基」と称する。

式 $(\omega - 20B)$ で表される基の中で、 R^2 が炭化水素基である基を「炭化水素 - スルホニルーオキシ基」、 R^2 がヘテロ環基である基を「ヘテロ環- スルホニルーオキシ基」と称する。

上記式($\omega-1$ B)ないし($\omega-2$ 1 B)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ B)で表される「炭化水素 - カルボニルーオキシ基」としては、アルキルーカルボニルーオキシ基、アルケニルーカルボニルーオキシ基、アルキニルーカルボニルーオキシ基、シクロアルケニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基;アリールーカルボニルーオキシ基;アラルキルーカルボニルーオキシ基;アリールーカルボニルーオキシ基;スピロ環式炭化水素 - カルボニルーオキシ基;スピロ環式炭化水素 - カルボニルーオキシ基;アルペン系炭化水素 - カルボニルーオキシ基が挙げられる。以下、式($\omega-2$ B)ないし($\omega-2$ 1 B)で表される基も同様である。

上記式($\omega-1$ B)ないし($\omega-2$ 1 B)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ B)で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式($\omega-2$ B)ないし($\omega-2$ 1 B)で表される基も同様である。上記式($\omega-1$ 0 B)ないし($\omega-1$ 6 B)で表される基における「環状アミ

上記「アシルーオキシ基」、「炭化水素ーオキシ基」、及び「ヘテロ環ーオキシ 基」を総称して、「置換オキシ基」と称する。又、これら「置換オキシ基」と「ヒ ドロキシ基」を総称して、「置換基を有していてもよいヒドロキシ基」と称する。

ノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

「アシルースルファニル基」としては、「スルファニル基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルスルファニル基、グリオキシロイルスルファニル基、チオホルミルスルファニル基、及び下記式:

(式中、R^{a3}及びR^{b3}は、同一又は異なって、置換基を有していてもよい炭化水 素基、又は置換基を有していてもよいヘテロ環基を表すか、或いはR^{a3}及びR^b ³が一緒になって、それらが結合している窒素原子と共に、置換基を有していて もよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルースルファニル基」の定義において、

式($\omega-1$ C)で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 π カルボニルースルファニル基」、 π^{a3} がヘテロ環基である基を「ヘテロ環ーカルボニルースルファニル基」と称する。

式 $(\omega - 2C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルースルファニル基」と称する。

式 (ω -3 C) で表される基の中で、R a 3 が炭化水素基である基を「炭化水素 a カルボニルーカルボニルースルファニル基」、R a 3 がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルースルファニル基」と称する。

式($\omega-4$ C)で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルースルファニル基」と称する。式($\omega-5$ C)で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ースルファニルーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルースルファニル基」と称する。

式 (ω-6 C) で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-チオカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-チオカルボニルースルファニル基」と称する。

式(ω -7 C)で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーチオカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルースルファニル基」と称する。

式 (ω-8C)で表される基の中で、R³が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルースルファニル基」、R³がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルースルファニル基」と称する。

式 $(\omega - 9C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素 - カルバモイルースルファニル基」、 R^{a3} がヘテロ環基である基を「N-ヘテ

ロ環ーカルバモイルースルファニル基」と称する。

式($\omega-1$ 0C)で表される基の中で、R a3 及びR b3 が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイルースルファニル基」、R a3 及びR b3 がヘテロ環基である基を「N, N-ジ(ヘテロ環) -カルバモイルースルファニル基」、R a3 が炭化水素基でありR b3 がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-カルバモイルースルファニル基」、R a3 及びR b3 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルースルファモイル基」と称する。

式(ω-11C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水素-チオカルバモイル-スルファニル基」、R^{a3}がヘテロ環基である基を「N-ーヘテロ環-チオカルバモイル-スルファニル基」と称する。

式 $(\omega-1\ 2\ C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素)-チオカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-チオカルバモイルースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素ーNーヘテロ環ーチオカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルースルファニル基」と称する。

式(ω-13C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水素-スルファモイル-スルファニル基」、R^{a3}がヘテロ環基である基を「N-ヘテロ環-スルファモイル-スルファニル基」と称する。

式($\omega-1$ 4C)で表される基の中で、R a3 及びR b3 が炭化水素基である基を「N, N -ジ(炭化水素) -スルファモイルースルファニル基」、R a3 及びR b3 がヘテロ環基である基を「N, N - ジ(ヘテロ環) -スルファモイルースルフィニル基」、R a3 が炭化水素基でありR b3 がヘテロ環基である基を「N - 炭化水素-N - ヘテロ環スルファモイルースルファニル基」、R a3 及びR b3 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニ

ルースルファニル基」と称する。

式 $(\omega-15C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素ースルフィナモイルースルファニル基」、 R^{a3} がヘテロ環基である基を「N-ヘテロ環ースルフィナモイルースルファニル基」と称する。

式(ω-16C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル-スルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル-スルファニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-スルファニル基」、R^{a3}及びR^{b3}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノスルファニルースルファニル基」と称する。

式 $(\omega-17C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - オキシースルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシースルホニルースルファニル基」と称する。

式 $(\omega-18C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 $-オキシースルフィニルースルファニル基」、<math>R^{a3}$ がヘテロ環基である基を「ヘテロ環ーオキシースルフィニルースルファニル基」と称する。

式(ω -19C)で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「O, O'-ジ(炭化水素) -ホスホノースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「O, O'-ジ(ヘテロ環) -ホスホノースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「Oー炭化水素-O'-ヘテロ環ーホスホノースルファニル基」と称する。

式 (ω-20C) で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素 -スルホニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-ス ルホニルースルファニル基」と称する。

式 (ω-21C) で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素 -スルフィニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環ー

スルフィニルースルファニル基」と称する。

上記式($\omega-1$ C)ないし($\omega-2$ 1 C)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「炭化水素-カルボニルースルファニル基」としては、アルキルーカルボニルースルファニル基、アルケニルーカルボニルースルファニル基、アルキニルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基、シクロアルカンジエニルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基;アリールーカルボニルースルファニル基;アラルキルーカルボニルースルファニル基;架橋環式炭化水素-カルボニルースルファニル基;スピロ環式炭化水素-カルボニルースルファニル基;スパファニル基が挙げられる。以下、式($\omega-2$ C)ないし($\omega-2$ 1 C)で表される基も同様である。

上記式 ($\omega-1$ C) ないし ($\omega-2$ 1 C) で表される基における「ヘテロ環」 としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 ($\omega-1$ C) で表される「ヘテロ環ーカルボニルースルファニル基」としては、例えば、単環 式ヘテロアリールーカルボニルースルファニル基、縮合多環式ヘテロアリールー カルボニルースルファニル基、単環式非芳香族ヘテロ環ーカルボニルースルファ ニル基、縮合多環式非芳香族ヘテロ環ーカルボニルースルファニル基が挙げられ る。以下、式 ($\omega-2$ C) ないし ($\omega-2$ 1 C) で表される基も同様である。

上記式($\omega-1$ 0C)ないし($\omega-1$ 6C)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルースルファニル基」、「炭化水素ースルファニル基」、及び「ヘテロ環ースルファニル基」を総称して、「置換スルファニル基」と称する。又、これら「置換スルファニル基」と「スルファニル基」を総称して、「置換基を有していてもよいスルファニル基」と称する。

「N一炭化水素-アミノ基」としては、「アミノ基」の1つの水素原子が、「炭

化水素基」で置換された基が挙げられ、例えば、N-アルキル-アミノ基、N-アルケニル-アミノ基、N-アルキニル-アミノ基、N-シクロアルキル-アミノ基、N-シクロアルキル-アミノ基、N-アリール-アミノ基、N-アラルキル-アミノ基等が挙げられる。

「N-Pルキルーアミノ基」としては、例えば、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-プチルアミノ、イソプチルアミノ、n-プチルアミノ、イソプチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルアミノ、n-ペンチルプロピル)アミノ、n-ペンチルアミノ、n-ペンチルプロピル)アミノ、n-ペンチルアミノ、n-ペンチル)アミノ、n-ペンチル)アミノ、n-ペンチル)アミノ、n-ペンチル)アミノ、n-ペンチル)アミノ、n-ペンチル)アミノ、n-ペンチル)アミノ、n- アミノ、n- アミノ n- アルアミノ n- アルア・n- アルア・n-

「N-rルケニルーアミノ基」としては、例えば、ビニルアミノ、(プロパー1-エンー1ーイル) アミノ、アリルアミノ、イソプロペニルアミノ、(ブター1-エンー1ーイル) アミノ、(ブター3ーエンー1ーイル) アミノ、(ブター3ーエンー1ーイル) アミノ、(2ーメチルプロパー2ーエンー1ーイル) アミノ、(1ーメチルプロパー2ーエンー1ーイル) アミノ、(ペンター1ーエンー1ーイル) アミノ、(ペンター3ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(ペンター3ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(3ーメチルブター2ーエンー1ーイル) アミノ、(3ーメチルブター2ーエンー1ーイル) アミノ、(3ーメチルブター3ーエンー1ーイル) アミノ、(ヘ

「N-Pルキニルーアミノ基」としては、例えば、エチニルアミノ、(プロパー1ーインー1ーイル) アミノ,(プロパー2ーインー1ーイル) アミノ,(ブター1ーインー1ーイル) アミノ、(ブター3ーインー1ーイル) アミノ、(1ーメチルプロパー2ーインー1ーイル) アミノ、(ペンター1ーインー1ーイル) アミノ、(ペンター4ーインー1ーイル) アミノ、(ペンター4ーインー1ーイル) アミノ、(ヘキサー1ーインー1ーイル) アミノ、(ヘキサー5ーインー1ーイル) アミノ、(ヘプター1ーインー1ーイル) アミノ、(オクター1ーインー1ーイル) アミノ、(オクター7ーインー1ーイル) アミノ、(オクター7ーインー1ーイル) アミノ、(ブカー9ーインー1ーイル) アミノ、(デカー9ーインー1ーイル) アミノ、(ヴンデカー1ーインー1ーイル) アミノ、(ヴンデカー10ーインー1ーイル) アミノ、(ドデカー11ーインー1ーイル) アミノ、(ドデカー11ーインー1ーイル) アミノ、(ドデカー11ーインー1ーイル) アミノ、(ドデカー11ーインー1ーイル) アミノ、(ドデカー11ーインー1ー

イル)アミノ、(トリデカー12-インー1-イル)アミノ、(テトラデカー1-インー1-イル)アミノ、(テトラデカー13-インー1-イル)アミノ、(ペンタデカー1-インー1-イル)アミノ、(ペンタデカー14-インー1-イル)アミノ等の C_2 ~ C_{15} の直鎖状又は分枝鎖状のN-アルキニルーアミノ基が挙げられる。

「N-シクロアルキルーアミノ基」としては、例えば、シクロプロピルアミノ、シクロブチルアミノ、シクロペンチルアミノ、シクロヘキシルアミノ、シクロヘプチルアミノ、シクロオクチルアミノ等の $C_3\sim C_8$ のN-シクロアルキルーアミノ基が挙げられる。

「N-シクロアルキル-アルキル-アミノ基」としては、例えば、(シクロプロピルメチル) アミノ、(1-シクロプロピルエチル) アミノ、(2-シクロプロピルエチル) アミノ、(3-シクロプロピルプロピル) アミノ、(4-シクロプロピルブチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロペンチルメチル) アミノ、(6-シクロペンチルメチル) アミノ、(6-2) アミノ、(6-2) クロペキシルメチル) アミノ、(6-2) クロペキシルメチル) アミノ、(6-2) ロペキシルプロピル) アミノ、(6-2) ロペキシルプロピル) アミノ、(6-2) ロペキシルプロピル) アミノ、(6-2) ロペキシル アミノ、(6-2) ロペキシル アミノ、(6-2) ロペキシル) アミノ、(6-2) ロペキシル ペキシル) アミノ等の6-2 (6-2) ロペキシル) アミノ等の6-3 (6-2) ロペキシル) アミノ等の6-4 (6-4) アミノ基が挙げられる。

「N-アリールーアミノ基」としては、例えば、フェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ、アントリルアミノ、フェナントリルアミノ、アセナフチレニルアミノ等の $C_6\sim C_{14}$ のN-モノーアリールアミノ基が挙げられる。

「N-アラルキル-アミノ基」としては、例えば、ベンジルアミノ、(1-ナフチルメチル) アミノ、(2-ナフチルメチル) アミノ、(アントラセニルメチル) アミノ、(アセナフチレニルメチル) アミノ、

(ジフェニルメチル)アミノ、(1-フェネチル) アミノ、(2-フェネチル) アミノ、(1-(1-t)) エチル)アミノ、(1-(2-t)) エチル)エチル)アミノ、(2-(2-t)) エチル)アミノ、(2-(2-t)) エチル)アミノ、(3-(2-t)) アミノ、(3-(2-t)) プロピル)アミノ、(3-(1-t)) プロピル)アミノ、(3-(2-t)) プロピル)アミノ、(4-(2-t)) アミノ、(4-(1-t)) ブチル)アミノ、(4-(2-t)) ブチル)アミノ、(5-(2-t)) アミノ、(5-(2-t)) ペンチル)アミノ、(6-(2-t)) ペンチル)アミノ、(6-(2-t)) ペンチル)アミノ、(6-(2-t)) ペンチル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ、(6-(2-t)) ペキシル)アミノ

「N, N-ジ(炭化水素)ーアミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、N, N-ジメチルアミノ、N, N-ジエチルアミノ、N-エチルーN-メチルアミノ、N, N-ジーn-プロピルアミノ、N, N-ジイソプロピルアミノ、N-アリルーN-メチルアミノ、N-(プロパー2-イン-1-イル)ーN-メチルアミノ、N, N-ジシクロヘキシルアミノ、N-シクロヘキシルーN-メチルアミノ、N-シクロヘキシルメチルアミノ、N-メチルアミノ、N, N-ジフェニルアミノ、N-メチルーN-フェニルアミノ、N, N-ジベンジルアミノ、N-ベンジルーN-メチルアミノ等の基が挙げられる。

「N-炭化水素-N-ヘテロ環-アミノ基」としては、「アミノ基」の2つの 水素原子が、「炭化水素基」及び「ヘテロ環基」で1つずつ置換された基が挙げ

られ、例えば、N-メチル-N-(4-ピペリジニル) アミノ、N-(4-クロマニル)-N-メチルアミノ、<math>N-メチル-N-(3-チェニル) アミノ、N-メチル-N-(3-ナェニル) アミノ、N-メチル-N-(3-ナノリル) アミノ、N-メチル-N-(3-ナノリル) アミノ等の基が挙げられる。

「アシルーアミノ基」としては、「アミノ基」の1つの水素原子が、「アシル基」 で置換された基が挙げられ、例えば、ホルミルアミノ基、グリオキシロイルアミ ノ基、チオホルミルアミノ基、及び下記式:

(式中、R⁴4及びR⁶4は、同一又は異なって、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、或いはR⁴4及びR⁶4が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーアミノ基」の定義において、

式 (ω-1D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-カルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-カルボニルーアミノ基」と称する。

式(ω - 2 D)で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 - オキシーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーアミノ基」と称する。

式 (ω-3D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-カルボニルーカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルーアミノ基」と称する。

式 (ω-4D) で表される基の中で、R * 4が炭化水素基である基を「炭化水素-オキシーカルボニルーカルボニルーアミノ基」、R * 4がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルーアミノ基」と称する。

式 (ω-5D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-スルファニルーカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーアミノ基」と称する。

式($\omega-6$ D)で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーチオカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーチオカルボニルーアミノ基」と称する。

式 (ω-7D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-オキシーチオカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーアミノ基」と称する。

式 (ω-8D)で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルーアミノ基」と称する。

式 $(\omega - 9D)$ で表される基の中で、 R^4 が炭化水素基である基を「N - 炭化水素 - カルバモイル基」、 R^4 がヘテロ環基である基を「N - - - - - カルバモ

イルーアミノ基」と称する。

式($\omega-10D$)で表される基の中で、R * 4 及びR b4 が炭化水素基である基を「N, N - ジ(炭化水素) -カルバモイルーアミノ基」、R * 4 及びR b4 がヘテロ環基である基を「N, N - ジ(ヘテロ環) -カルバモイルーアミノ基」、R * 4 が炭化水素基でありR b4 がヘテロ環基である基を「N - 炭化水素-N - ヘテロ環-カルバモイルーアミノ基」、R * 4 及びR b4 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルーアミノ基」と称する。

式(ω-11D)で表される基の中で、R⁴が炭化水素基である基を「N-炭化水素-チオカルバモイル-アミノ基」、R⁴がヘテロ環基である基を「N-ヘテロ環-チオカルバモイル-アミノ基」と称する。

式($\omega-12D$)で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「N, N-ジ(炭化水素) -チオカルバモイルーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を「N, N-ジ(ヘテロ環) -チオカルバモイルーアミノ基」、 R^4 が炭化水素基であり R^4 がヘテロ環基である基を「Nー炭化水素-Nーヘテロ環ーチオカルバモイルーアミノ基」、 R^4 及び R^4 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーアミノ基」と称する。

式 $(\omega-13D)$ で表される基の中で、 R^4 が炭化水素基である基を「N-炭化水素-スルファモイルーアミノ基」、 R^4 がヘテロ環基である基を「N-ヘテロ環ースルファモイルーアミノ基」と称する。

式 $(\omega-14D)$ で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「ジ (炭化水素)スルファモイルーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を 「N, N - \varnothing (ヘテロ環)スルファモイルーアミノ基」、 R^4 が炭化水素基で あり R^4 がヘテロ環基である基を 「N - 炭化水素 - N

式($\omega-15D$)で表される基の中で、 R^{4} が炭化水素基である基を「N-炭化水素-スルフィナモイルーアミノ基」、 R^{4} がヘテロ環基である基を「N-ヘテロ環ースルフィナモイルーアミノ基」と称する。; 式($\omega-16D$)で表される基の中で、 R^{4} 及び R^{5} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイルーアミノ基」、 R^{4} 及び R^{5} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイルーアミノ基」、 R^{4} 及び R^{5} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイルーアミノ基」、 R^{4} が炭化水素基であり R^{5} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイルーアミノ基」、 R^{4} 及び R^{5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニルーアミノ基」と称する。

式 (ω-17D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 - オキシースルホニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーアミノ基」と称する。

式 (ω-18D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 - オキシースルフィニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーアミノ基」と称する。

式 (ω-20D) で表される基の中で、R*4が炭化水素基である基を「炭化水素 -スルホニルーアミノ基」、R*4がヘテロ環基である基を「ヘテロ環-スルホニ ルーアミノ基」と称する。

式 (ω-21D) で表される基の中で、R*4が炭化水素基である基を「炭化水素 -スルフィニルーアミノ基」、R*4がヘテロ環基である基を「ヘテロ環 - スルフィニルーアミノ基」と称する。

上記式 $(\omega-1D)$ ないし $(\omega-21D)$ で表される基における「炭化水素」

としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「炭化水素-カルボニルーアミノ基」としては、アルキルーカルボニルーアミノ基、アルケニルーカルボニルーアミノ基、アルキニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基、シクロアルカンジエニルーカルボニルーアミノ基、シクロアルカンジエニルーカルボニルーアミノ基、シクロアルカンジエニルーカルボニルーアミノ基;アリールーカルボニルーアミノ基;アラルキルーカルボニルーアミノ基;架橋環式炭化水素-カルボニルーアミノ基;スピロ環式炭化水素-カルボニルーアミノ基;スピロ環式炭化水素-カルボニルーアミノ基;テルペン系炭化水素-カルボニルーアミノ基が挙げられる。以下、式($\omega-2$ D)ないし($\omega-2$ 1 D)で表される基も同様である。

上記式($\omega-1$ D)ないし($\omega-2$ 1 D)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「ヘテロ環ーカルボニルーアミノ基」としては、例えば、単環式ヘテロアリールーカルボニルーアミノ基、縮合多環式ヘテロアリールーカルボニルーアミノ基、単環式非芳香族ヘテロ環ーカルボニルーアミノ基、縮合多環式非芳香族ヘテロ環ーカルボニルーアミノ基、縮合多環式非芳香族ヘテロ環ーカルボニルーアミノ基が挙げられる。以下、式($\omega-2$ D)ないし($\omega-2$ 1 D)で表される基も同様である。

上記式($\omega-10D$)ないし($\omega-16D$)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

「ジ(アシル)-アミノ基」としては、「アミノ基」の2つの水素原子が、上記「置換基を有していてもよい」の「置換基」の定義における「アシル基」で置換された基が挙げられ、例えば、ジ(ホルミル)-アミノ基、ジ(グリオキシロイル)-アミノ基、ジ(チオホルミル)-アミノ基、及び下記式:

$$\begin{array}{c} -N \begin{pmatrix} C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, E) \,, & -N \begin{pmatrix} C - O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, E) \,, \\ -N \begin{pmatrix} C - C - C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 3 \, E) \,, & -N \begin{pmatrix} C - C - O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 4 \, E) \,, \\ -N \begin{pmatrix} C - S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 5 \, E) \,, & -N \begin{pmatrix} C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 6 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 7 \, E) \,, & -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 8 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 9 \, E) \,, & -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 0 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 1 \, E) \,, & -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} S - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 3 \, E) \,, & -N \begin{pmatrix} S - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N \begin{pmatrix} S - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N \begin{pmatrix} S - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N \begin{pmatrix} O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 9 \, E) \,, & -N \begin{pmatrix} S - O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 8 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 9 \, E) \,, & -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 0 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 0 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 0 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,, \\ -N \begin{pmatrix} S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, 1 \, E) \,,$$

(式中、R * 5及びR * 5は、同一又は異なって、水素原子、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、或いはR * 5及びR * 5が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す)で表される基があげられる

上記「ジ (アシル) -アミノ基」の定義において、

式 $(\omega-1E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素

ーカルボニル) -アミノ基」、R * 5 がヘテロ環基である基を「ビス (ヘテロ環ーカルボニル) -アミノ基」と称する。

式 $(\omega - 2E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - オキシーカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ーオキシーカルボニル) - アミノ基」と称する。

式 (ω-3E) で表される基で、R*5が炭化水素基である基を「ビス(炭化水素 -カルボニル-カルボニル)-アミノ基」、R*5がヘテロ環基である基を「ビス (ヘテロ環-カルボニル-カルボニル)-アミノ基」と称する。

式 (ω-4E) で表される基で、R * 5 が炭化水素基である基を「ビス (炭化水素 - オキシーカルボニルーカルボニル) - アミノ基」、R * 5 がヘテロ環基である基を「ビス (ヘテロ環-オキシーカルボニルーカルボニル) - アミノ基」と称する。

式 (ω-5E) で表される基で、R*5が炭化水素基である基を「ビス (炭化水素 -スルファニルーカルボニル) -アミノ基」、R*5がヘテロ環基である基を「ビス (ヘテロ環-スルファニルーカルボニル) -アミノ基」と称する。

式 $(\omega - 6E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - チオカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ 環ーチオカルボニル) - アミノ基」と称する。

式 $(\omega - 7E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - オキシーチオカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス (ヘテロ環- オキシーチオカルボニル) - アミノ基」と称する。

式 (ω-8E) で表される基で、R^{*5}が炭化水素基である基を「ビス (炭化水素 -スルファニルーチオカルボニル) -アミノ基」、R^{*5}がヘテロ環基である基を 「ビス (ヘテロ環-スルファニルーチオカルボニル) -アミノ基」と称する。

式 (ω-9E) で表される基で、R^{a5}が炭化水素基である基を「ビス (N-炭化水素-カルバモイル) アミノ基」、R^{a5}がヘテロ環基である基を「ビス (N-ヘテロ環ーカルバモイル) -アミノ基」と称する。

式(ω-10E)で表される基で、R * 5 及びR b 5 が炭化水素基である基を「ビス

[N, N-ジ(炭化水素) -カルバモイル] -アミノ基」、R*5及びRb5がヘテロ環基である基を「ビス[N, N-ジ(ヘテロ環) -カルバモイル] -アミノ基」、R*5が炭化水素基でありRb5がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環ーカルバモイル) -アミノ基」、R*5及びRb5が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノーカルボニル) -アミノ基」と称する。

式($\omega-1$ 1 E)で表される基で、 $R^{\,6}$ が炭化水素基である基を「ビス(N-炭化水素- チオカルバモイル)- アミノ基」、 $R^{\,6}$ がヘテロ環基である基を「ビス (N-ヘテロ環- チオカルバモイル)- アミノ基」と称する。

式($\omega-1$ 2 E)で表される基で、 R^{*5} 及び R^{*5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素) - チオカルバモイル] - アミノ基」、 R^{*5} 及び R^{*5} が ヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環) - チオカルバモイル] - アミノ基」、 R^{*5} が炭化水素基であり R^{*5} がヘテロ環基である基を「ビス (N-炭化水素- N-ヘテロ環- チオカルバモイル) - アミノ基」、 R^{*5} 及び R^{*5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノーチオカルボニル) - アミノ基」と称する。

式($\omega-1$ 4E)で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, Nージ(炭化水素)-スルファモイル] -アミノ基」、 R^{a5} 及び R^{b5} がへ テロ環基である基を「ビス [N, Nージ(ヘテロ環)-スルファモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(Nー炭化水素-Nーヘテロ環-スルファモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルホニル)-アミノ基」と称する。

式(ω-15E)で表される基で、R*5が炭化水素基である基を「ビス(N-炭

化水素-スルフィナモイル) -アミノ基」、R * 5 がヘテロ環基である基を「ビス (N-ヘテロ環-スルフィナモイル) -アミノ基」と称する。

式($\omega-16E$)で表される基で、 R^{*5} 及び R^{*5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素)-スルフィナモイル] -アミノ基」、 R^{*5} 及び R^{*5} が ヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環)-スルフィナモイル] -アミノ基」、 R^{*5} が炭化水素基であり R^{*5} がヘテロ環基である基を「ビス (N-炭化水素-N-ヘテロ環-スルフィナモイル)-アミノ基」、 R^{*5} 及び R^{*5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルフィニル)-アミノ基」と称する。

式 $(\omega-17E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素-オキシースルホニルー)アミノ基」、 R^{*5} がヘテロ環基である基を「ビス(ヘテロ環ーオキシースルホニル)-アミノ基」と称する。

式 $(\omega-18E)$ で表される基で、 R^{5} が炭化水素基である基を「ビス(炭化水素ーオキシースルフィニル)ーアミノ基」、 R^{5} がヘテロ環基である基を「ビス(ヘテロ環ーオキシースルフィニル)ーアミノ基」と称する。

式($\omega-19E$)で表される基で、 $R^{\bullet5}$ 及び $R^{\bullet5}$ が炭化水素基である基を「ビス [O,O'-ジ(炭化水素) -ホスホノ] -アミノ基」、 $R^{\bullet5}$ 及び $R^{\bullet5}$ がヘテロ環基である基を「ビス [O,O'-ジ(ヘテロ環) -ホスホノ] -アミノ基」、 $R^{\bullet5}$ が炭化水素基であり $R^{\bullet5}$ がヘテロ環基である基を「ビス (O-炭化水素-O' -ヘテロ環-ホスホノ) -アミノ基」と称する。

式 $(\omega - 20E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ースルホニル) - T > 1 基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ースルホニル) - T > 1 と称する。

式 $(\omega - 21E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素ースルフィニル) - rミノ基」、 R^{*5} がヘテロ環基である基を「ビス(ヘテロ環ースルフィニル) - rミノ基」と称する。

上記式 $(\omega - 1E)$ ないし $(\omega - 21E)$ で表される基における「炭化水素」

としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1E$)で表される「ビス(炭化水素ーカルボニル)-アミノ基」としては、ビス(アルキルーカルボニル)-アミノ基、ビス(アルケニルーカルボニル)-アミノ基、ビス(アルキニルーカルボニル)-アミノ基、ビス(シクロアルキルーカルボニル)-アミノ基、ビス(シクロアルキルーカルボニル)-アミノ基、ビス(シクロアルキルーカルボニル)-アミノ基、ビス(シクロアルキルーアルキルーカルボニル)-アミノ基等のビス(脂肪族炭化水素-カルボニル)-アミノ基;ビス(アリールーカルボニル)-アミノ基;ビス(アラルキルーカルボニル)-アミノ基;ビス(アリーカルボニル)-アミノ基;ビス(スピロ環式炭化水素-カルボニル)-アミノ基;ビス(テルペン系炭化水素-カルボニル)-アミノ基が挙げられる。以下、式($\omega-2E$)ないし($\omega-21E$)で表される基も同様である。

上記式($\omega-1E$)ないし($\omega-21E$)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1E$)で表される「ビス(ヘテロ環ーカルボニル)-アミノ基」としては、例えば、ビス(単環式ヘテロアリールーカルボニル)-アミノ基、ビス(縮合多環式ヘテロアリールーカルボニル)-アミノ基、ビス(単環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)-アミノ基が挙げられる。以下、式($\omega-2E$)ないし($\omega-21E$)で表される基も同様である。

上記式($\omega-10E$)ないし($\omega-16E$)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーアミノ基」及び「ジ(アシル)ーアミノ基」を総称して、「アシル置換アミノ基」と称する。又、上記「Nー炭化水素ーアミノ基」、「N, Nージ(炭化水素)ーアミノ基」、「Nーヘテロ環ーアミノ基」、「Nー炭化水素ーNーヘテロ環ーアミノ基」、「環状アミノ基」、「アシルーアミノ基」、及び「ジ(アシル)ーアミノ基」を総称して、「置換アミノ基」と称する。さらに、これら「置

換アミノ基」と「アミノ基」を総称して、「置換基を有していてもよいアミノ基」 と称する。

以下、上記一般式 (I)、(I-1)、(I-2)、(I-3)、(I-4) で表される化合物について具体的に説明する。

Xの定義における「主鎖の原子数が2ないし4である連結基」とは、環ZとEの間に、主鎖の原子が2ないし4個連なっている連結基を意味する。上記「主鎖の原子数」は、ヘテロ原子の有無に関わらず、環ZとEとの間に存在する原子の数が最小となるように数えるものとする。例えば、1,2ーシクロペンチレンの原子数を2個、1,3ーシクロペンチレンの原子数を3個、1,4ーフェニレンの原子数を4個、2,6ーピリジンジイルの原子数を3個として数える。

上記「主鎖の原子数が 2 ないし 4 である連結基」は、下記 2 価基群 ξ -1 より選択される基 1 個で形成されるか、或いは、下記 2 価基群 ξ -2 より選択される基 1 ないし 4 個結合して形成される。

[2価基群と-1]下記式:

[2価基群と-2] 下記式:

該 2 価基が 2 個以上結合する場合、各基は同一であっても異なっていてもよい。 上記「主鎖の原子数が 2 ないし 4 である連結基」としては、好適には、下記連 結基群 α より選択される基である。

[連結基群α] 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) 最も好適には、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)で表される基である。

「主鎖の原子数が 2 ないし 4 である連結基」の定義における「該連結基は置換基を有していてもよい」の置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられ、好適には、 $C_1 \sim C_6$ のアルキル基であり、さらに好適には、メチル基である。該置換基は、環 Z 又はE が有する置換基と一緒になって、それらが結合している原子と共に、置換基を有していてもよい環式基を形成してもよい。このような例としては、一般式(I)で表される化合物が、下記式:

である化合物が挙げられる。

上記一般式(I)において、Aとしては、水素原子又はアセチル基を挙げることができ、好適には水素原子である。

環Zの定義における「置換基を有していてもよいアレーン」の「アレーン」としては、単環式又は縮合多環式芳香族炭化水素が挙げられ、例えば、ベンゼン環、ナフタレン環、アンラセン環、フェナントレン環、アセナフチレン環等が挙げられる。好適には、ベンゼン環、ナフタレン環等の $C_6 \sim C_{10}$ のアレーンであり、さらに好適には、ベンゼン環及びナフタレン環であり、最も好適には、ベンゼン環である。

環Zが、ベンゼン環である場合、「式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい」の「置換基」は、一般式(I)における環I2を含む下記部分構造式(I2I2I1):

が下記式 (Iz-2):

で表される場合のR²の位置に存在することが好ましい。

環2の定義における「置換基を有していてもよいヘテロアレーン」の「ヘテロ アレーン」としては、環系を構成する原子(環原子)として、酸素原子、硫黄原 子及び窒素原子等から選択されたヘテロ原子1ないし3種を少なくとも1個含 む単環式又は縮合多環式芳香族複素環が挙げられ、例えば、フラン環、チオフェ ン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソ チアゾール環、イミダゾール環、ピラゾール環、1,2,3-オキサジアゾール 環、1,2,3ーチアジアゾール環、1,2,3ートリアゾール環、ピリジン環、 ピリダジン環、ピリミジン環、ピラジン環、1,2,3-トリアジン環、1,2, 4-トリアジン環、1H-アゼピン環、1,4-オキセピン環、1,4-チアゼ ピン環、ベンゾフラン環、イソベンゾフラン環、ベンゾ〔b〕チオフェン環、ベ ンゾ〔c〕チオフェン環、インドール環、2H-イソインドール環、1H-イン ダゾール環、2H-インダゾール環、ベンゾオキサゾール環、1,2-ベンゾイ ソオキサゾール環、2,1-ベンゾイソオキサゾール環、ベンゾチアゾール環、 1, 2 - ベンゾイソチアゾール環、2, 1 - ベンゾイソチアゾール環、1, 2, 3-ベンゾオキサジアゾール環、2,1,3-ベンゾオキサジアゾール環、1, 2. 3-ベンゾチアジアゾール環、2, 1, 3-ベンゾチアジアゾール環、1H ーベンゾトリアゾール環、2Hーベンゾトリアゾール環、キノリン環、イソキノ リン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチ リジン環、1H-1, $5-ベングジアゼピン環、カルバグール環、<math>\alpha-$ カルボリ ン環、β ―カルボリン環、γ ―カルボリン環、アクリジン環、フェノキサジン環、 フェノチアジン環、フェナジン環、フェナントリジン環、フェナントロリン環、 チアントレン環、インドリジン環、フェノキサチイン環等の5ないし14員の単

環式又は縮合多環式芳香族複素環が挙げられる。好適には、6ないし13員の単 環式又は縮合多環式芳香族複素環であり、さらに好適には、ピリジン環、インド ール環、キノキサリン環、及びカルバゾール環である。

環Zの定義における「式一〇一A(式中、Aは一般式(I)における定義と同義である)及び式一X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい」の「置換基」と同様の基が挙げられ、環Zが、「式一〇一A(式中、Aは一般式(I)における定義と同義である)及び式一X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、該置換基としては、好適には、置換基群γー1 z として定義される、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアシル基、置換基を有していてもよいアシル基、置換基を有していてもよいアシル基、置換基を有していてもよいウレイド基、置換基を有していてもよいチオウレイド基、及び置換基を有していてもよいジアゼニル基である。

置換基群 γ − 1 z の定義における「置換基を有していてもよいヒドロキシ基」、及びR ²の定義における「置換基を有していてもよいヒドロキシ基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいヒドロキシ基」と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいとドロキシ基」としては、好適には、置換基を有していてもよいによい炭化水素−オキシ基であり、さらに好適には、置換基を有していてもよいC 1~C6のアルコキシ基であり、特にさらに好適には、メトキシ基である。

置換基群γ-1zの定義における「置換基を有していてもよいアミノ基」、及びR²の定義における「置換基を有していてもよいアミノ基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいアミノ基」

と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいアミノ基」としては、好適には、ジ(炭化水素)-アミノ基及び炭化水素 - カルボニルーアミノ基であり、さらに好適には、ジ($C_1 \sim C_6$ アルキル)-アミノ基及び $C_6 \sim C_{10}$ のアリールーカルボニルーアミノ基であり、特にさらに好適には、ジメチルアミノ基及びベンゾイルアミノ基である。

置換基群γ-1 zの定義における「置換基を有していてもよい炭化水素基」の 「置換基」、及びR'の定義における「置換基を有していてもよい炭化水素基」の 「置換基」としては、上記「置換基を有していてもよい」の定義における「置換 基」と同様の基が挙げられる。該「置換基を有していてもよい炭化水素基」とし ては、好適には、置換基を有していてもよいС₁~С。のアルキル基、置換基を有 していてもよいC,~C。のハロゲン化アルキル基、置換基を有していてもよいC 2~C6のアルケニル基、置換基を有していてもよいC2~C6のアルキニル基、置 換基を有していてもよいC。~C、。のアリール基、及び置換基を有していてもよ いC,~C16のアラルキル基であり、さらに好適には、メチル基、tertーブ チル基、1-ヒドロキシエチル基、1- (メトキシイミノ) エチル基、1- [(ベ ンジルオキシ) イミノ] エチル基、トリフルオロメチル基、ペンタフルオロエチ ル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェ ニル基、2,4-ジフルオロフェニル基、2-フェニルエテン-1-イル基、2, 2-ジシアノエテン-1-イル基、2-シアノ-2-(メトキシカルボニル) エ テンー1-イル基、2-カルボキシー2-シアノエテン-1-イル基、エチニル 基、フェニルエチニル基、(トリメチルシリル) エチニル基、フェニル基、及び 2-フェネチル基である。

置換基群 γ - 1 z の定義における「置換基を有していてもよいヘテロ環基」の「置換基」、及びR z の定義における「置換基を有していてもよいヘテロ環基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいヘテロ環基」とし

ては、好適には、置換基を有していてもよいへテロアリール基であり、さらに好適には、置換基を有していてもよい5ないし6員のヘテロアリール基であり、特にさらに好適には、2-チエニル基、3-チエニル基、1-ピロリル基、2-メチルチアゾール-4-イル基、及び2-ピリジル基である。

置換基群γ-1 zの定義における「置換基を有していてもよいアシル基」、及 びR*の定義における「置換基を有していてもよいアシル基」としては、上記「置 換基を有していてもよいアシル基」の定義において例示した基と同様の基が挙げ られ、該置換基としては、上記「置換基を有していてもよい」の定義における「置 換基」と同様の基が挙げられる。該「置換基を有していてもよいアシル基」とし ては、好適には、置換基を有していてもよいカルバモイル基、置換基を有してい てもよいスルファモイル基、置換基を有していてもよい炭化水素-カルボニル基、 置換基を有していてもよい炭化水素ーオキシーカルボニル基、置換基を有してい てもよいヘテロ環ーカルボニル基、及び置換基を有していてもよいヘテロ環ース ルホニル基であり、さらに好適には、置換基を有していてもよいカルバモイル基、 置換基を有していてもよいスルファモイル基、置換基を有していてもよいC,~ C_6 のアルキルーカルボニル基、置換基を有していてもよい $C_1 \sim C_6$ のアルコキ シーカルボニル基、置換基を有していてもよい5員のヘテロアリールースルホニ ル基、及び置換基を有していてもよい6員の非芳香族へテロ環-スルホニル基で あり、さらに特に好適には、[3,5-ビス(トリフルオロメチル)フェニル] カルバモイル基、ジメチルカルバモイル基、ジメチルスルファモイル基、アセチュ ル基、イソブチリル基、メトキシカルボニル基、ピペリジノカルボニル基、4-ベンジルピペリジノカルボニル基、及び (ピロールー1ーイル) スルホニル基で ある。

置換基群 γ - 1 z の定義における「置換基を有していてもよいウレイド基」の「置換基」、及びR ²の定義における「置換基を有していてもよいウレイド基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいウレイド基」とし

ては、好適には、3-フェニルウレイド基である。

置換基群 y - 1 z の定義における「置換基を有していてもよいチオウレイド基」の「置換基」、及びR z の定義における「置換基を有していてもよいチオウレイド基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいチオウレイド基」としては、好適には、(3-フェニル)チオウレイド基である。

R*としては、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭化水素基、置換基を有していてもよいヘテロ環基、置換基を有していてもよいアシル基、置換基を有していてもよいウレイド基、置換基を有していてもよいチオウレイド基、及び置換基を有していてもよいジアゼニル基が挙げられ、最も好適には、ハロゲン原子である。

Eの定義における「置換基を有していてもよいアリール基」の「アリール基」としては、上記「炭化水素基」の定義における「アリール基」と同様の基が挙げられ、好適には、フェニル基、1-ナフチル基、2-ナフチル基等の $C_6\sim C_{10}$ のアリール基であり、最も好適には、フェニル基である。

Eの定義における「置換基を有していてもよいアリール基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。

Eの定義における「置換基を有していてもよいフェニル基」としての好適な態様は、

(1) $C_1 \sim C_6$ のハロゲン化アルキル基2個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基2個の他に、さらに置換基を有していてもよい)

- (2) $C_1 \sim C_6$ のハロゲン化アルキル基1個で置換されたフェニル基 (該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基1個の他に、さらに置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよい)
- (3) 置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよいフェニル基である。

Eの定義における「 $C_1 \sim C_6$ のハロゲン化アルキル基2個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基2個の他に、さらに置換基を有していてもよい)」の「 $C_1 \sim C_6$ のハロゲン化アルキル基」としては、上記「 $C_1 \sim C_6$ のハロゲン化アルキル基」の定義において例示した基と同様の基が挙げられる。該「(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基2個の他に、さらに置換基を有していてもよい)」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「 $C_1 \sim C_6$ のハロゲン化アルキル基2個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基2個の他に、さらに置換基を有していてもよい)」としては、好適には、「 $C_1 \sim C_6$ のハロゲン化アルキル基2個で置換されたフェニル基2個で置換されたフェニル基」であり、さらに好適には、3,5ービス(トリフルオロメチル)フェニル基及び2,5ービス(トリフルオロメチル)フェニル基であり、最も好適には、3,5ービス(トリフルオロメチル)フェニル基である。

Eの定義における「 $C_1 \sim C_6$ のハロゲン化アルキル基1個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基1個の他に、さらに置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよい)」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基は除く)が挙げら

れ、好適には、置換基群 y - 1 e として定義される、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいヒドロキシ基、置換基を有していてもよい 炭化水素基、置換基を有していてもよいヘテロ環基、及び置換基を有していても よいスルファニル基である。

置換基群 $\gamma-1$ eの定義における「置換基を有していてもよいヒドロキシ基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいヒドロキシ基」と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいヒドロキシ基」としては、好適には、置換基を有していてもよい炭化水素ーオキシ基であり、さらに好適には、置換基群 $\gamma-2$ eとして定義される、置換基を有していてもよい $C_1\sim C_6$ のアルコキシ基であり、特にさらに好適には、メトキシ基である。

置換基群 $\gamma-1$ eの定義における「置換基を有していてもよい炭化水素基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよい炭化水素基」としては、好適には、置換基群 $\gamma-2$ eとして定義される、置換基を有していてもよい $C_1\sim C_6$ のアルキル基であり、さらに好適には、メチル基である。

置換基群 γ − 1 e の定義における「置換基を有していてもよいへテロ環基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいへテロ環基」としては、好適には、置換基群 γ − 2 e として定義される、置換基を有していてもよい5 ないし6 員の非芳香族へテロ環基であり、さらに好適には、1 − ピロリジニル基、及びモルホリノ基である。

置換基群γ-1 e の定義における「置換基を有していてもよいスルファニル基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいスルファニル基」と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げら

れる。該「置換基を有していてもよいスルファニル基」としては、好適には、置換基を有していてもよい炭化水素-スルファニル基であり、さらに好適には、置換基群 $\gamma-2$ eとして定義される、置換基を有していてもよい $C_1\sim C_6$ のアルキル-スルファニル基であり、特にさらに好適には、メチルスルファニル基である。

Eの定義における「 $C_1 \sim C_6$ のハロゲン化アルキル基1個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基1個の他に、さらに置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよい)」の「 $C_1 \sim C_6$ のハロゲン化アルキル基」としては、上記「 $C_1 \sim C_6$ のハロゲン化アルキル基」と同様の基が挙げられ、好適には、1個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基であり、さらに好適には、3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基であり、よりに好適には、3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基であり、最も好適には、トリフルオロメチル基である。

Eの定義における「 $C_1 \sim C_6$ のハロゲン化アルキル基1個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基1個の他に、さらに置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよい)」としては、好適には、2-(トリフルオロメチル)フェニル基、3-(トリフルオロメチル)フェニル基、2- フルオロメチル)フェニル基、2- フルオロコンチル)フェニル基、2- フルオロコンチル)フェニル基、2- クロロー4ー(トリフルオロメチル)フェニル基、2- クロロー4ー(トリフルオロメチル)フェニル基、2- クロロー5ー(トリフルオロメチル)フェニル基、3- フルオロー5ー(トリフルオロメチル)フェニル基、3- フルオロンチル)フェニル基、3- フェニル基、3- フルオロンチル)フェニル基、3- フルオロンチル)フェニル基

フルオロメチル)フェニル基、2ーメトキシー5ー(トリフルオロメチル)フェニル基、3ーメトキシー5ー(トリフルオロメチル)フェニル基、4ーメトキシー3ー(トリフルオロメチル)フェニル基、2ー(メチルスルファニル)ー5ー(トリフルオロメチル)フェニル基、2ー(1ーピロリジノ)ー5ー(トリフルオロメチル)フェニル基、及び2ーモルホリノー5ー(トリフルオロメチル)フェニル基であり、さらに好適には、2ークロロー5ー(トリフルオロメチル)フェニル基、4ークロロー3ー(トリフルオロメチル)フェニル基、2ーメトキシー5ー(トリフルオロメチル)フェニル基、カび3ーメトキシー5ー(トリフルオロメチル)フェニル基であり、最も好適には、2ークロロー5ー(トリフルオロメチル)フェニル基である。

Eの定義における「置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよいフェニル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられ、好適には、置換基群 $\gamma-3$ e として定義される、ハロゲン原子、ニトロ基、置換基を有していてもよいヒドロキシ基、置換基を有していてもよい炭化水素基、及び置換基を有していてもよいアシル基である。

置換基群 $\gamma-3$ eの定義における「置換基を有していてもよいヒドロキシ基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいヒドロキシ基」と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいヒドロキシ基」としては、好適には、無置換のヒドロキシ基、及び置換基を有していてもよい炭化水素ーオキシ基であり、さらに好適には、置換基群 $\gamma-4$ eとして定義される、無置換のヒドロキシ基、及び置換基を有していてもよい $C_1\sim C_6$ のアルコキシ基であり、特にさらに好適には、無置換のヒドロキシ基、及びメトキシ基である。

置換基群 γ - 3 e の定義における「置換基を有していてもよい炭化水素基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換

基」と同様の基が挙げられる。該「置換基を有していてもよい炭化水素基」としては、好適には、置換基群 $\gamma-4$ eとして定義される、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい $C_6\sim C_{10}$ のアリール基、及び置換基を有していてもよい $C_1\sim C_6$ のアルキレン基であり、さらに好適には、メチル基、tert-プチル基、フェニル基、及び1、1、4、4ーテトラメチルプタン-1、4ージイル基である。

置換基群 $\gamma-3$ eの定義における「置換基を有していてもよいアシル基」としては、上記「置換基を有していてもよいアシル基」の定義において例示した基と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいアシル基」としては、好適には、置換基を有していてもよい炭化水素ーカルボニル基、及び置換基を有していてもよい炭化水素ーオキシーカルボニル基であり、さらに好適には、置換基群 $\gamma-4$ eとして定義される、置換基を有していてもよい $C_1\sim C_6$ のアルキルーカルボニル基、及び置換基を有していてもよい $C_1\sim C_6$ のアルコキシーカルボニル基であり、さらに特に好適には、アセチル基及びメトキシカルボニル基である。

Eの定義における「置換基(ただし、 $C_1 \sim C_6$ のハロゲン化アルキル基を除く)を有していてもよいフェニル基」としては、好適には、フェニル基、3ークロロフェニル基、4ークロロフェニル基、2,5ージクロロフェニル基、3,4ージクロロフェニル基、3,5ージクロロフェニル基、3,5ージクロロフェニル基、3,5ージクロロフェニル基、3,5ージクロロフェニル基、3,5ージートロフェニル基、3,5ージクロロー4ーとドロキシフェニル基、2,5ージメトキシフェニル基、3,5ージメトキシフェニル基、3,5ージメチルフェニル基、2,5ービス [(1,1ージメチル)エチル]フェニル基、3,5ービス [(1,1ージメチル)エチル]フェニル基、3,5ービス [(1,1ージメチル)エチル]フェニル基、5ー(1,1ージメチル)エチルー2ーメトキシフェニル基、3,5,5,8,8ーペンタメチルー5,6,7,8ーテトラヒドロナフタレンー2ーイル基、ビフェニルー3ーイル基、4ーメト

キシビフェニルー3ーイル基、3ーアセチルフェニル基、及び3, 5ービス(メトキシカルボニル)フェニル基であり、さらに好適には、2, 5ービス [(1, 1-ジメチル)エチル]フェニル基、3, 5-ビス [(1, 1-ジメチル)エチル]フェニル基、及び5-(1, 1-ジメチル)エチルー2-メトキシフェニル基である。

Eの定義における「置換基を有していてもよいへテロアリール基」の「ヘテロアリール基」としては、上記「ヘテロ環基」の定義における「単環式ヘテロアリール基」及び「縮合多環式ヘテロアリール基」と同様の基が挙げられる。好適には、5ないし13員のヘテロアリール基であり、さらに好適には、チエニル基、ピラゾリル基、オキサゾリル基、チアゾリル基、チアジアゾリル基、ピリジル基、ピリミジニル基、インドリル基、及びカルバゾリル基であり、最も好適には、チアゾリル基である。

上記Eの定義における「置換基を有していてもよいへテロアリール基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。

上記Eの定義における「置換基を有していてもよいチアゾリル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。好適には、置換基群γ-5 e として定義される、ハロゲン原子、シアノ基、置換基を有していてもよい炭化水素基、置換基を有していてもよいヘテロ環基、及び置換基を有していてもよいアシル基である。

置換基群 $\gamma-5$ eの定義における「置換基を有していてもよい炭化水素基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよい炭化水素基」としては、好適には、置換基群 $\gamma-6$ eとして定義される、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい $C_1\sim C_6$ のアルキル基、置換基を有していてもよい $C_1\sim C_6$ のアリール基、及び置換基を有していてもよい $C_1\sim C_1$ 0のアリール基、及び置換基を有していてもよい $C_1\sim C_1$ 0のアラルキル基であり、さらに好適には、メチル基、エ

チル基、イソプロピル基、n-ブチル基、tert-ブチル基、カルボキシメチル基、トリフルオロメチル基、フェニル基、4-フルオロフェニル基、3-(トリフルオロメチル)フェニル基、ペンタフルオロフェニル基、及びベンジル基である。

置換基群 y - 5 e の定義における「置換基を有していてもよいへテロ環基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいへテロ環基」としては、好適には、置換基群 y - 6 e として定義される、置換基を有していてもよい6 員の非芳香族へテロ環基であり、さらに好適には、ピペリジノ基、モルホリノ基、4ーメチルピペリジン-1ーイル基、及び4ーフェニルピペリジン-1ーイル基である。

置換基群 $\gamma-5$ eの定義における「置換基を有していてもよいアシル基」としては、上記「置換基を有していてもよいアシル基」の定義において例示した基と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいアシル基」としては、好適には、置換基を有していてもよい炭化水素ーカルボニル基、置換基を有していてもよいカルバモイル基、及び炭化水素ーオキシーカルボニル基であり、さらに好適には、置換基群 $\gamma-6$ eとして定義される、置換基を有していてもよいカルバモイル基、置換基を有していてもよい $C_1\sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1\sim C_6$ のアルコキシーカルボニル基であり、さらに特に好適には、N-メチルカルバモイル基、N- ル基、N- エチルカルバモイル基、N- クアルコキシーカルボニル基であり、さらに特に好適には、N- カルバモイル基、N- クアルコキシーカルボニル基であり、さらに特に好適には、N- カルバモイル基、N- クアルカルバモイル基、N- クグエトキシカルボニル基である。

Eの定義における「置換基を有していてもよいチアゾリル基」としては、好適 には、5 - ブロモー4 - [(1, 1 - ジメチル) エチル] チアゾールー2 - イル

基、5ーブロモー4ー(トリフルオロメチル)チアゾールー2ーイル基、5ーシ T = T - 4 - [(1, 1 - i) + i) + i] エチル] チアゾールー 2 ーイル基、4 ー [(1, 1 - i) + i]1ージメチル) エチル] チアゾールー2ーイル基、5ーフェニルー4ー(トリフ ルオロメチル) チアゾールー2-イル基、4-(1.1-ジメチル) エチルー5 ーエチルチアゾールー2ーイル基、5ーメチルー4ーフェニルチアゾールー2ー イル基、4-イソプロピル-5-フェニルチアゾール-2-イル基、4-ベンジ ルー5ーフェニルチアゾールー2ーイル基、4-(1.1-ジメチル)エチルー 5- [(2, 2-ジメチル) プロピオニル] チアゾール-2-イル基、5-アセ チルー4-フェニルチアゾールー2-イル基、5-ベンゾイルー4-フェニルチ アゾールー2-イル基、4-(1,1-ジメチル)エチル-5-(エトキシカル ボニル)チアゾールー2ーイル基、5-エトキシカルボニルー4-(トリフルオ ロメチル) チアゾールー2ーイル基、5-エトキシカルボニルー4ーフェニルチ アゾールー2-イル基、4-(1,1-ジメチル)エチルー5-ピペリジノチア ゾールー2-イル基、4-(1,1-ジメチル)エチルー5-モルホリノチアゾ ールー2ーイル基、4ー(1, 1ージメチル)エチルー5ー(4ーフェニルピペ リジン-1-イル) チアゾール-2-イル基、4-(1,1-ジメチル) エチル -5-(4-メチルピペリジン-1-イル)チアゾール-2-イル基、4.5-ジフェニルチアゾールー2ーイル基、4-フェニルチアゾールー2ーイル基、4. 5-ジメチルチアゾールー2-イル基、2-チアゾリル基、5-メチルチアゾー ルー2ーイル基、4ーエチルー5ーフェニルチアゾールー2ーイル基、5ーカル ボキシメチルー4-フェニルチアゾール-2-イル基、5-メチルカルバモイル -4-フェニルチアゾール-2-イル基、5-エチルカルバモイル-4-フェニ ルチアゾールー2ーイル基、5ーイソプロピルカルバモイルー4ーフェニルチア ゾールー2ーイル基、5-(2-フェネチル)カルバモイルー4-フェニルチア ゾールー2ーイル基、4-(n ープチル)-5-フェニルチアゾールー2ーイル 基、4-メチル-5- [(3-トリフルオロメチル) フェニル] チアゾール-2 ーイル基、及び5- (4-フルオロフェニル) - 4-メチルチアゾール-2-イ

ル基であり、さらに好適には、4-(1, 1-i)メチル)エチル-5-[(2, 2-i)メチル)プロピオニル] チアゾール-2-iイル基である。

上記一般式(I-1)において、 Z^1 は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、又は5位に置換基を有していてもよい2-アセトキシフェニル基である。

E¹の定義における「C₁~C6のハロゲン化アルキル基2個で置換されたフェ ニル基(該フェニル基はC,~C。のハロゲン化アルキル基2個の他に、さらに置 換基を有していてもよい)」の「C,~C,のハロゲン化アルキル基」としては、 上記「C₁~C₆のハロゲン化アルキル基」の定義において例示した基と同様の基 が挙げられる。該「(該フェニル基はC」~C。のハロゲン化アルキル基2個の他 に、さらに置換基を有していてもよい)」の「置換基」としては、上記「置換基 を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「C 1~C6のハロゲン化アルキル基2個で置換されたフェニル基(該フェニル基はC 1~C6のハロゲン化アルキル基2個の他に、さらに置換基を有していてもよい)」 としては、好適には、1個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基 2個で置換されたフェニル基(該フェニル基は、1個以上のフッ素原子で置換さ れたC₁~C₆のアルキル基2個の他にさらに置換基を有していてもよい)であり、 さらに好適には、3個以上のフッ素原子で置換されたC₁~C₆のアルキル基2個 で置換されたフェニル基(該フェニル基は、1個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基2個の他にさらに置換基を有していてもよい)であり、特 にさらに好適には、3個以上のフッ素原子で置換されたC,~C6のアルキル基2 個で置換されたフェニル基である。これら2個の置換基は、フェニル基上の2位 及び5位、又は3位及び5位で置換されていることが好ましい。

 $R^{1 \circ 2}$ 、 $R^{1 \circ 3}$ 及び $R^{1 \circ 5}$ の定義における「3個以上のフッ素原子で置換された $C_1 \sim C_6$ のアルキル基」としては、最も好適には、トリフルオロメチル基である。 E^1 は、好適には、3,5-ビス(トリフルオロメチル)フェニル基、又は 2,

ス (トリフルオロメチル) フェニル基である。

A¹は、水素原子及びアセチル基であり、好適には、水素原子である。

R¹*の定義における「置換基を有していてもよいヒドロキシ基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいヒドロキシ基」と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいヒドロキシ基」としては、好適には、置換基を有していてもよい炭化水素ーオキシ基であり、さらに好適には、置換基を有していてもよいC₁ ~C₆のアルコキシ基であり、特にさらに好適には、メトキシ基である。

 R^{12} の定義における「置換基を有していてもよいアミノ基」としては、上記「置換基を有していてもよい」の定義における「置換基を有していてもよいアミノ基」と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいアミノ基」としては、好適には、ジ(炭化水素)-アミノ基及び炭化水素-カルボニル-アミノ基であり、さらに好適には、ジ($C_1 \sim C_6$ アルキル)-アミノ基及び $C_6 \sim C_{10}$ のアリール-カルボニル-アミノ基であり、特にさらに好適には、ジメチルアミノ基及びベンゾイルアミノ基である。

 R^{12} の定義における「置換基を有していてもよい炭化水素基」の「置換基」と しては、上記「置換基を有していてもよい」の定義における「置換基」と同様の 基が挙げられる。該「置換基を有していてもよい炭化水素基」としては、好適に は、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、置換基を有していてもよ い $C_1 \sim C_6$ のハロゲン化アルキル基、置換基を有していてもよい $C_2 \sim C_6$ のアル ケニル基、置換基を有していてもよい $C_2 \sim C_6$ のアルキニル基、置換基を有して いてもよい $C_6 \sim C_{10}$ のアリール基、及び置換基を有していてもよい $C_7 \sim C_{16}$ のアラルキル基であり、さらに好適には、メチル基、tertーブチル基、1-ヒドロキシエチル基、1- (メトキシイミノ) エチル基、1- [(ベンジルオキ シ) イミノ] エチル基、トリフルオロメチル基、ペンタフルオロエチル基、フェ

ニル基、4 - (トリフルオロメチル) フェニル基、4 - フルオロフェニル基、2, 4 - ジフルオロフェニル基、2 - フェニルエテン-1 - イル基、2, 2 - ジシアノエテン-1 - イル基、2 - シアノ-2 - (メトキシカルボニル) エテン-1 - イル基、2 - カルボキシ-2 - シアノエテン-1 - イル基、エチニル基、フェニルエチニル基、(トリメチルシリル) エチニル基、フェニル基、及び2 - フェネチル基である。

R¹²の定義における「置換基を有していてもよいへテロ環基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいへテロ環基」としては、好適には、置換基を有していてもよいへテロアリール基であり、さらに好適には、置換基を有していてもよい5ないし6員のヘテロアリール基であり、特にさらに好適には、2ーチエニル基、3ーチエニル基、1ーピロリル基、2ーメチルチアゾールー4ーイル基、及び2ーピリジル基である。

R¹*の定義における「置換基を有していてもよいアシル基」としては、上記「置換基を有していてもよいアシル基」の定義において例示した基と同様の基が挙げられ、該置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいアシル基」としては、好適には、置換基を有していてもよいカルバモイル基、置換基を有していてもよいスルファモイル基、置換基を有していてもよい炭化水素ーカルボニル基、置換基を有していてもよい次であまった。とのアルギニル基、及び置換基を有していてもよいヘテロ環ースルホニル基であり、さらに好適には、置換基を有していてもよいカルバモイル基、置換基を有していてもよいスルファモイル基、置換基を有していてもよいへテロ環ースルホニル基であり、さらに好適には、置換基を有していてもよいに1~C6のアルキルーカルボニル基、置換基を有していてもよいに1~C6のアルキルーカルボニル基、置換基を有していてもよいに1~C6のアルコキシーカルボニル基、置換基を有していてもよいら員のヘテロアリールースルホニル基、及び置換基を有していてもよいら員の非芳香族ヘテロ環ースルホニル基であり、さらに特に好適には、[3,5ービス(トリフルオロメチル)フェニル]

カルバモイル基、ジメチルカルバモイル基、ジメチルスルファモイル基、アセチル基、イソプチリル基、メトキシカルボニル基、ピペリジノカルボニル基、4ーベンジルピペリジノカルボニル基、及び(ピロールー1ーイル)スルホニル基である。

R¹*の定義における「置換基を有していてもよいウレイド基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいウレイド基」としては、好適には、3-フェニルウレイド基である。

R¹²の定義における「置換基を有していてもよいチオウレイド基」の「置換基」 としては、上記「置換基を有していてもよい」の定義における「置換基」と同様 の基が挙げられる。該「置換基を有していてもよいチオウレイド基」としては、 好適には、(3-フェニル) チオウレイド基である。

R¹²の定義における「置換基を有していてもよいジアゼニル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいジアゼニル基」としては、好適には、(4ーニトロフェニル)ジアゼニル基及び {[(4ーピリジン-2ーイル)スルファモイル]フェニル}ジアゼニル基である。

 R^{1} としては、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいヒドロキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよい炭化水素基、置換基を有していてもよいウレイド基、置換基を有していてもよいアシル基、置換基を有していてもよいウレイド基、置換基を有していてもよいジアゼニル基が挙げられ、好適には、ハロゲン原子、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、及び置換基を有していてもよい $C_1 \sim C_6$ のアルキルも好適には、ハロゲン原子である。

上記一般式(I-1)で定義される化合物若しくは薬理学的に許容されるその 塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記6化合物は除

く)はいずれも新規化合物であり、本物質発明に基づく化合物の用途に関しては特に限定されない。

- ・N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベン ズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-クロロー2-ヒドロキシベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ブロモ-2-ヒ ドロキシベンズアミド
- ・N-[3, 5-ピス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5--ヨードベンズアミド
- ・N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5--ニトロベンズアミド
- ・2-ヒドロキシ-N-[2, 3, 5-トリス (トリフルオロメチル) フェニル] ベンズアミド

上記一般式(I-2)において、 Z^2 は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、及び5位に置換基を有していてもよい2-アセトキシフェニル基である。

 E^2 の定義における「3位又は5位が、 $C_1\sim C_6$ のハロゲン化アルキル基であるフェニル基(該フェニル基は、3位又は5位の $C_1\sim C_6$ のハロゲン化アルキル基の他に、さらに置換基を有していてもよい(ただし、該置換基が $C_1\sim C_6$ のハロゲン化アルキル基である場合は除く))」の「 $C_1\sim C_6$ のハロゲン化アルキル基」としては、上記「 $C_1\sim C_6$ のハロゲン化アルキル基」の定義において例示した基と同様の基が挙げられ、好適には、1個以上のフッ素原子で置換された $C_1\sim C_6$ のアルキル基であり、さらに好適には、3個以上のフッ素原子で置換された $C_1\sim C_6$ のアルキル基であり、最も好適には、10リンルオロメチル基である。該「(該フェニル基は、11位又は11位の11位の11位のではアルキル基の他に、さらに置換基を有していてもよい(ただし、該置換基が11へ110のハロゲン化アルキル

基である場合は除く))」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられ、好適には、置換基群 $_{\gamma}$ ー 7 e として定義される、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい $_{1}$ ~ $_{6}$ のアルキル基、置換基を有していてもよい $_{1}$ ~ $_{6}$ のアルコキシ基、及び置換基を有していてもよい $_{1}$ ~ $_{6}$ のアルコキシ基、及び置換基を有していてもよい $_{1}$ ~ $_{6}$ のアルコキシ基、及び置換 基を有していてもよい $_{1}$ ~ $_{6}$ のアルキルースルファニル基であり、さらに好適には、ハロゲン原子、ニトロ基、シアノ基、メトキシ基、メチル基、 $_{1}$ -ピロリジニル基、モルホリノ基、メチルスルファニル基である。

 E^2 の定義における「3位又は5位が、 $C_1 \sim C_6$ のハロゲン化アルキル基であ るフェニル基(該フェニル基は、3位又は5位のC₁~C₆のハロゲン化アルキル 基の他に、さらに置換基を有していてもよい(ただし、該置換基がC₁~C₆のハ ロゲン化アルキル基である場合は除く))」としては、好適には、3-(トリフル オロメチル)フェニル基、2-フルオロ-3-(トリフルオロメチル)フェニル 基、2-フルオロー5-(トリフルオロメチル)フェニル基、2-クロロー5-(トリフルオロメチル)フェニル基、3-フルオロ-5-(トリフルオロメチル) フェニル基、3-ブロモー5-(トリフルオロメチル)フェニル基、4-クロロ -2-(トリフルオロメチル)フェニル基、4-フルオロ-3-(トリフルオロ メチル) フェニル基、4-クロロー3-(トリフルオロメチル)フェニル基、2 ーニトロー5ー (トリフルオロメチル) フェニル基、4ーニトロー3ー (トリフ ルオロメチル)フェニル基、4-シアノ-3-(トリフルオロメチル)フェニル 基、2-メチル-3-(トリフルオロメチル)フェニル基、2-メチル-5-(ト リフルオロメチル)フェニル基、4-メチル-3-(トリフルオロメチル)フェ ニル基、2-メトキシ-5-(トリフルオロメチル)フェニル基、3-メトキシ -5-(トリフルオロメチル)フェニル基、4-メトキシ-3-(トリフルオロ メチル)フェニル基、2-(メチルスルファニル)-5-(トリフルオロメチル) フェニル基、2-(1-22) フェニル基、2-(1-22) フェニル基、 及び2-モルホリノー5-(トリフルオロメチル)フェニル基である。

A²は、水素原子及びアセチル基であり、好適には、水素原子である。

 R^{2z} としては、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基及び $C_1 \sim C_6$ のハロゲン化アルキル基が挙げられ、好適には、ハロゲン原子、メチル基、 tert-ブチル基、トリフルオロメチル基、及びペンタフルオロエチル基である。

上記一般式(I-2)で定義される化合物若しくは薬理学的に許容されるその塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記15化合物は除く)はいずれも新規化合物であり、本物質発明に基づく化合物の用途に関しては特に限定されない。

- ・5-クロロー2-ヒドロキシ-N-[3-(トリフルオロメチル)フェニル] ベンズアミド
- ・5ーブロモー2ーヒドロキシーN-[3-(トリフルオロメチル)フェニル] ベンズアミド
- ・2-ヒドロキシー5-ヨード-N-[3-(トリフルオロメチル)フェニル] ベンズアミド
- ・5 クロローN [4 クロロー3 (トリフルオロメチル)フェニル] 2 ヒドロキシベンズアミド
- ・5-クロローN-[5-クロロー3-(トリフルオロメチル)フェニル]-2 ーヒドロキシベンズアミド
- ・5 クロロー 2 ヒドロキシー N [4 ニトロー 3 (トリフルオロメチル) フェニル] ベンズアミド
- ・5-7ルオロ-2-ヒドロキシ-N-[2-(6, 6, 6-トリフルオロヘキシルオキシ) -5-(トリフルオロメチル) フェニル] ベンズアミド
- ・5-クロロ-2-ヒドロキシ-N-(3-トリフルオロメチル-4- {[4-(トリフルオロメチル) スルファニル] フェノキシ} フェニル) ベンズアミド
- ・N-[4-(ベンゾチアゾール-2-イル) スルファニル-3-(トリフルオ

ロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド

- ・5-クロロ-N-[2-(4-クロロフェノキシ)-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド
- ・5-クロロ-2-ヒドロキシ-N-[2-(4-メチルフェノキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド
- ・5-クロロ-N-[2-(4-クロロフェニル) スルファニル-5-(トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド
- ・5-クロロ-2-ヒドロキシ-N-[2-(1-ナフチルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド
- ・5-クロロー2-ヒドロキシ-N-[2-(2-ナフチルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド

上記一般式(I-3)において、 Z^3 は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、及び5位に置換基を有していてもよい2-アセトキシフェニル基である。

 R^{3e^2} 、 R^{3e^3} の定義における「置換基を有していてもよい炭化水素基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよい炭化水素基」としては、好適には、 $C_1 \sim C_6$ のアルキル基であり、最も好適には、tert-ブチル基である。

 R^{3e2} 、 R^{3e3} の定義における「置換基を有していてもよいヒドロキシ基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいヒドロキシ基」としては、好適には、 $C_1 \sim C_6$ のアルコキシ基であり、最も好適には、メトキシ基である。

 R^{3e5} の定義における「置換基を有していてもよい $C_2 \sim C_6$ の炭化水素基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよい $C_2 \sim C_6$ の炭化水

素基」としては、好適には、 $C_2 \sim C_6$ のアルキル基であり、最も好適には、tertonetar t –ブチル基である。

 E^{3} は、好適には、2, 5-ビス [(1, 1-ジメチル) エチル] フェニル基、3, 5-ビス [(1, 1-ジメチル) エチル] フェニル基、及び5-(1, 1-ジメチル) エチル-2-メトキシフェニル基である。

A³は、水素原子及びアセチル基であり、好適には、水素原子である。

 R^{3} 2としては、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基及び $C_1 \sim C_6$ のハロゲン化アルキル基が挙げられ、好適には、ハロゲン原子、メチル基、tert-ブチル基、トリフルオロメチル基、及びペンタフルオロエチル基である。

上記一般式(I-3)で定義される化合物若しくは薬理学的に許容されるその 塩、又はそれらの水和物若しくはそれらの溶媒和物はいずれも新規化合物であり、 本物質発明に基づく化合物の用途に関しては特に限定されない。

上記一般式(I-4)において、2⁴は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、及び5位に置換基を有していてもよい2-アセトキシフェニル基である。

 R^{4e4} の定義における「置換基を有していてもよい炭化水素基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよい炭化水素基」としては、好適には、置換基を有していてもよい $C_1 \sim C_6$ のアルキル基、置換基を有していてもよい $C_1 \sim C_6$ のハロゲン化アルキル基、及び置換基を有していてもよい $C_6 \sim C_1$ 0のアリール基であり、さらに好適には、メチル基、イソプロピル基、tert一プチル基、フェニル基、及びペンタフルオロフェニル基である。

 $R^{4\circ 5}$ の定義における「置換基を有していてもよいアシル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいアシル基」としては、好適には、置換基を有していてもよい $C_1 \sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1 \sim C_6$ のアルキルーカルボニル基、置換基を有していてもよい $C_1 \sim C_1 \sim C$

~C₆のアルコキシーカルボニル基、であり、さらに好適には、アセチル基、ピ バロイル基、及びベンゾイル基である。

the same and the s

R^{4°5}の定義における「置換基を有していてもよいへテロ環基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該「置換基を有していてもよいへテロ基」としては、好適には、置換基を有していてもよい6員の非芳香族へテロ環基であり、さらに好適には、ピペリジノ基、モルホリノ基、4ーメチルピペラジン-1ーイル基、4ーフェニルピペラジン-1ーイル基及びである。

 E^4 は、好適には、5-ブロモー4- [(1, 1-ジメチル) エチル] チアゾー ルー2ーイル基、5ーブロモー4ー (トリフルオロメチル) チアゾールー2ーイ ル基、5-シアノ-4-[(1, 1-ジメチル) エチル] チアゾール-2-イル 基、4-(1,1-ジメチル)エチル-5-[(2,2-ジメチル) プロピオニ ル] チアゾールー2ーイル基、5ーアセチルー4ーフェニルチアゾールー2ーイ ル基、5-ベンゾイルー4-フェニルチアゾールー2-イル基、4-(1, 1-ジメチル)エチルー5-(エトキシカルボニル)チアゾールー2-イル基、5-エトキシカルボニルー4ー (トリフルオロメチル) チアゾールー2ーイル基、5 -エトキシカルボニル-4-フェニルチアゾール-2-イル基、5-エトキシカ ルボニルー4ー (ペンタフルオロフェニル) チアゾールー2ーイル基、4ー (1. 1ージメチル) エチルー5ーピペリジノチアゾールー2ーイル基、4ー(1、1 ージメチル) エチルー5ーモルホリノチアゾールー2ーイル基、4ー(1.1ー ジメチル)エチルー5-(4-メチルピペリジン-1-イル)チアゾール-2-イル基、及び4-(1,1-ジメチル)エチル-5-(4-フェニルピペリジン ー1ーイル)チアゾールー2ーイルであり、最も好適には、4-(1,1ージメ チル)エチル-5- [(2.2-ジメチル)プロピオニル] チアゾール-2-イ: ル基である。

 A^4 は、水素原子及びアセチル基であり、好適には、水素原子である。 R 4 2 としては、ハロゲン原子、置換基を有していてもよい C_6 \sim C_{10} のアリー

ル基、及び5員のヘテロアリール基が挙げられ、好適には、ハロゲン原子、フェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、4-(トリフルオロメチル)フェニル基、1-ピロリル基、及び2-チエニル基である。

上記一般式(I-4)で定義される化合物若しくは薬理学的に許容されるその 塩、又はそれらの水和物若しくはそれらの溶媒和物はいずれも新規化合物であり、 本物質発明に基づく化合物の用途に関しては特に限定されない。

上記一般式 (I)、(I-1)、(I-2)、(I-3)、及び (I-4)で表される化合物は塩を形成することができる。薬理学的に許容される塩としては、酸性基が存在する場合には、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属塩、又はアンモニウム塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩、ジシクロヘキシルアンモニウム塩等のアンモニウム塩をあげることができ、塩基性基が存在する場合には、例えば、塩酸塩、臭酸塩、硫酸塩、硝酸塩、リン酸塩等の鉱酸塩、あるいはメタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩、酢酸塩、プロピオン酸塩、酒石酸塩、フマール酸塩、マレイン酸塩、リンゴ酸塩、シュウ酸塩、コハク酸塩、クエン酸塩、安息香酸塩、マンデル酸塩、ケイ皮酸塩、乳酸塩等の有機酸塩をあげることができる。グリシンなどのアミノ酸と塩を形成する場合もある。本発明の医薬の有効成分としては、薬学的に許容される塩も好適に用いることができる。

上記一般式 (I)、(I-1)、(I-2)、(I-3)、及び (I-4) で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もある。本発明の医薬の有効成分としては、上記のいずれの物質を用いてもよい。さらに一般式 (I)、(I-1)、(I-2)、(I-3)、及び (I-4) で表される化合物は1以上の不斉炭素を有する場合があり、光学活性体やジアステレオマーなどの立体異性体として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の立体異性体、光学対掌体又はジアステレオマーの任意の混合物、ラセミ体などを用いてもよい。また、一般式 (I)、(I-1)、(I-2)、(I-3)、及び

(I-4)で表される化合物がオレフィン性の二重結合を有する場合には、その配置はZ配置又はE配置のいずれでもよく、本発明の医薬の有効成分としてはいずれかの配置の幾何異性体又はそれらの混合物を用いてもよい。

本発明の医薬の有効成分として好適な化合物を以下に例示するが、本発明の医薬の有効成分は下記の化合物に限定されることはない。ただし、表中、Meはメチル基、Etはエチル基を表す。

		,	
化合物番号	A O	x	E
1	OH Br	O N N	CF ₃
2	OH Br	O H	
3	OH Br	O N H	o → N → O
4	МеОООН	•	ОМе
5	OH C	OH OH	CI
6	MeO		MeO

7	OH Me		
8	Me O O		
9	OH C	*	CI
10	OH Br	H N N	C C
. 11	OH	==	CF ₃
1 2	OH	P > O	<u>c</u>
1 3	OH	H N S O	CI CI
1 4	OH Br	∕N H	CI
1 5	OH Br	H N N N N N N N N N N N N N N N N N N N	ОН

1 6	OH	O N Me	CF ₃
1 7	OH Br	o	CF ₃

化合物番号	A .0 z	E
1 8	OH	CI
1 9	OH	CI
2 0	OH	OMe OMe
2 1	OH	CF ₃
2 2	ОН	SO₂F

2 3	OH CI	SO₂F
2 4	OH N	CF ₃
2 5	OH N CI	CF ₃
2 6	OH Z C	Me Me Me Me
2 7	OH N	CF ₃
2 8	OH HN CI	CF ₃
2 9	OH N N N	CF ₃

|--|

化合物番号	A . o . z	E
3 1	OH	
3 2	OH CI	
3 3	OH CI	OMe
. 34	O Me CI	OMe

PCT/JP01/11084

WO 02/49632

化合物番号	A o	E
3 5	OH	EtO ₂ C
3 6	OH Br	N-NH
3 7	OH Br	Et N Et
3 8	OH Br	N I O
. 39	OH Br	
4 0	OH	N-N US CF3

4 1	OH Br	N-N US CF3
4 2	OH CI	CI
4 3	OH	OMe N CI
4 4	Me O CI	H Z
4 5	Me O	HN CO ₂ Et
4 6	OH OH	
4 7	OH	Et N

化合物番号	A o	E
4 8	OH	CF ₃
4 9	OH F	CF ₃
5 0	OH	CF ₃
5 1	OH Br	CF ₃
5 2	OH	CF ₃
5 3	OH NO ₂	CF ₃

5 4	OH CN	CF ₃
5 5	OH Me	CF ₃
5 6	OH Me Me	CF ₃
5 7	НО	CF ₃
5 8	MeO N Me	CF ₃
5 9	OH O N Me	CF ₃
6 0	OH CN	CF ₃

6 1	OH CO2H	CF ₃
6 2	OH CN CO ₂ Me	CF ₃
6 3	OH	CF ₃
. 64	OH	CF ₃
6 5	OH	CF ₃

6 6	OH SiMe ₃	CF ₃
6 7	OH OH	CF ₃
68	OH	CF ₃
6 9	OH CF ₃	CF ₃
7 0	OH CF ₂ CF ₃	CF ₃
7 1	OH N	CF ₃

7 2	OH S	CF ₃
7 3	OH S	CF ₃
7 4	OH N S—Me	CF ₃
7 5	OH N N N	CF ₃
7 6	OH OH	CF ₃
7 7	OH OMe	CF ₃

7 8	óн	ÇF ₃
	O Me	CF ₃
7 9	OH O Me Me	CF ₃
8 0	OH CO ₂ H	CF ₃
8 1	OH CO ₂ Me	CF ₃
8 2	OH CF3	CF ₃
8 3	OH O NMe ₂	CF ₃
8 4	OH OH	CF ₃

8 5	OH I	ÇF₃
		CF ₃
8 6	OH .	CF ₃
	0=8=0	CF ₃
8 7	NMe ₂	0.5
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OH	CF₃
		CF ₃
	0=\$=0	
8 8	ОН	CF ₃
	NH₂ OH	CF ₃
8 9		CF ₃
	NIMA.	CF ₃
9 0	NMe₂ OH	ÇF₃
	HN	CF ₃
	, i	
9 1	ОН	CF ₃
	HN N N	CF ₃

9 2	OH HN N S	CF ₃
9 3	OH N N NO ₂	CF ₃
9 4	O = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	CF ₃
9 5	Me	CF ₃
9 6	Me O CI	CF ₃

		
9 7	OH OH OH CI	CF ₃
9 8	СІ	CF ₃
9 9	OH	CF ₃ CF ₃
100	OH CI	CF ₃
101	OH Br	CF ₃
102	OH Me	CF ₃
103	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CF ₃ CF ₃

化合物番号	A O	E
104	ĕ — — — — — — — — — — — — — — — — — — —	F ₃ C
1 0 5	OH C	F ₃ C CI
106	OH Br	CF ₃
107	OH C	CF ₃
108	OH C	CF ₃
109	OH Br	CF ₃

	T	
1 1 0	OH CI	CF ₃
111	OH Br	CF ₃
1 1 2	OH CI	CF ₃
113	OH	CF ₃
114	OH Br	CF ₃
115	OH CI	CF ₃ NO ₂
116	OH CI	CF ₃
117	OH Br	CF ₃ CN
118	OH OH	Me CF ₃

1 1 9	OH	CF ₃ Me
1 2 0	OH	CF ₃
1 2 1	OH	CF ₃ OMe
1 2 2	OH Br	CF ₃
1 2 3	OH Br	CF ₃
1 2 4	OH	CF ₃
1 2 5	OH CI	CF ₃
1 2 6	OH Br	CF ₃

1 2 7	OH	CF ₃
	Вr	(N)
1 2 8	OH CI	CF ₃
1 2 9	OH Br	CI CF ₃
130	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CF ₃
131	OH NO ₂	CF ₃
1 3 2	OH Me	CF ₃
1 3 3	OH OMe	CF ₃
134	OH Me	CF ₃

1 3 5	OH Me	CF ₃ Me
1 3 6	OH Me	CF ₃
1 3 7	OH Me	CF ₃ OMe
1 3 8	OH Me	CF ₃

VO 02/49632

WO 02/49632 PCT/JP01/11084

化合物番号	A O	E
1 3 9	OH Br	
140	OH Br	C -
1 4 1	OH Br	C
1 4 2	OH	2-\2
1 4 3	OH Br	CI
1 4 4	OH Br	F

		,
1 4 5	OH	CI
1 4 6	OH F	CI
1 4 7	OH	CI
1 4 8	OH Br	CI
1 4 9	OH .	CI
1 5 0	OH Br Br	CI
151	CI	CI
1 5 2	OH NO ₂	CI
153	OH Me	CI

	T	
154	OH OMe	CI
155	OH Br	CI
156	OH Br	СІ
157	OH	F F F
158	OH Br	NO ₂
159	OH CI	Me Me Me Me
160	OH	Me Me OMe
161	OH Br	Me Me

1 6 2	OH	Me Me Me Me
163	OH Br	Me Me Me Me
164	OH	Me Me Me Me
1 6 5	OH	
166	OH	OMe
167	OH Br	OMe OMe
168	OH Br	OMe

1 6 9	OH CI	Me
170	OH Br	CO ₂ Me
171	ОН	H H S CI CI
172		CI
173	OH Me	Me Me Me Me Me
174	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Me Me Me Me
175	OH NO ₂	Me Me Me Me

	r	,
176	OH Me	Me Me Me Me Me
177	OH OMe	Me Me Me Me
178	O CI	Me Me Me OMe
179	OH Me	Me Me Me OMe

化合物番号	A o z	E
180	OH Br	~ s
181	OH Br	Me Me Me S Br
182	OH Br	N CF3 Br
183	OH C	Me Me Me S CN
184	OH Br	Me Me Me S CN
185	OH Br	N S Me

100	он	
1 8 6	Br	Me Me Me
187	OH Br	N Me
188	OH Br	N N N N N N N N N N N N N N N N N N N
1 8 9	OH Br	N Me
190	OH Br	N Me CF3
191	OH Br	Me Me Me S Et
192	OH Br	N Et
193	OH Br	Me N Me s

194	OH Br	N Me
195	OH	Me Me Me S Me Me Me
196	OH Br	Me Me Me Me Me Me Me
197	OH Br	N Me Me Me CO ₂ Et
198	OH Br	Me Me Me
199	OH Br	Me Me Me S N O
200	OH Br	Me Me Me S N N Me

2 0 1	OH Br	Me Me Me
2 0 2	OH Br	~ S
203	OH Br	N CO₂H
204	OH Br	~N C
2 0 5	OH Br	N S
2 0 6	OH Br	N CF3
207	OH Br	N Me

2 0 8	OH Br	N C O
2 0 9	OH Br	N CO ₂ Et
2 1 0	OH CI	N CO ₂ Et
2 1 1	OH Br	N F F CO ₂ Et
212	OH Br	N H N Me
2 1 3	OH Br	S H N Et
214	OH Br	N H Me O Me

2 1 5	OH Br	
2 1 6	OH Br	N CF3 CO ₂ Et
2 1 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Me Me Me S O Me Me Me
2 1 8	OH .	N CO ₂ Et
2 1 9	OH F	N CO ₂ Et
2 2 0	OH F	N CO ₂ Et

2 2 1	OH CF ₃	N CO ₂ Et
2 2 2	OH N	N CO ₂ Et
2 2 3	OH S	N CO ₂ Et

一般式(I)で表される化合物は、例えば、以下に示した方法によって製造することができる。

<方法1>

一般式(I)において、Xが-CONH-(窒素上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式1に示す方法によって製造することができる。

反応工程式1

(式中、 A^{101} は水素原子又はヒドロキシ基の保護基(好ましくは、メチル基等のアルキル基;ベンジル基等のアラルキル基;アセチル基;メトキシメチル基等のアルコキシアルキル基;トリメチルシリル基等の置換シリル基)を表し、 R^{10} 1は水素原子、 $C_1 \sim C_6$ のアルキル基等を表し、 E^{101} は、一般式(I)の定義におけるE又はEの前駆体を表し、Gはヒドロキシ基、ハロゲン原子(好ましくは、塩素原子)、炭化水素ーオキシ基(好ましくは、ハロゲン原子で置換されていてもよいアリールーオキシ基)、アシルーオキシ基、イミドーオキシ基等を表す)(第1工程)

カルボン酸誘導体(1)とアミン(2)とを脱水縮合させることにより、アミド(3)製造することができる。この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、無溶媒又は非プロトン性溶媒中0 $^{\circ}$ ~180 $^{\circ}$ の反応温度で行われる。

この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在 下、無溶媒又は非プロトン性溶媒中0℃~180℃の反応温度で行われる。

酸ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、塩化スルフ

リル、オキシ塩化リン、三塩化リン、五塩化リンなどを挙げることができ、A¹⁰ ¹が水素原子の場合には三塩化リンが、A¹⁰¹がアセチル基等の場合にはオキシ塩化リンが好ましい。脱水縮合剤としては、例えば、N,N'ージシクロヘキシルカルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、ジフェニルホスホリルアジドなどを挙げることができる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,N'ージエチルアニリン等の有機塩基が挙げられる。非プロトン性溶媒としてはジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、1,4ージオキサン、ベンゼン、トルエン、モノクロロベンゼン、oージクロロベンゼン、N,N'ージメチルホルムアミド、Nーメチルピロリドンなどを挙げることができ、酸ハロゲン化剤の存在下に反応を行う場合には、特に、トルエン、モノクロロベンゼン、oージクロロベンゼンが好ましい。

又、例えば、J. Med. Chem., 1998, 41, 2939. に記載の 方法及びこれらに準じた方法により、予めカルボン酸から酸塩化物を製造、単離 し、次いでE¹⁰¹を有するアミンと反応させることにより目的とするアミドを製 造することもできる。

(第2工程)

アミド(3)が保護基を有する場合及び/又は官能基修飾に有利な置換基(例えば、アミノ基及びその保護体若しくは前駆体;カルボキシ基及びその保護体若しくは前駆体など)を有する場合、この工程で脱保護反応及び/又は官能基修飾反応を行うことにより最終目的物である化合物(4)を製造することができる。該反応は、種々の公知の方法を用いることができ、脱保護反応及び官能基修飾反応としては、例えば、「プロテクティブ グループス イン オーガニック シンセシス (Protective Groups in Organic Syntheses)」(P. G. M. ブッツ (P. G. M. Wuts)、T. グリーン (T. Green) 編、第3版、19

99年、ウィリー、ジョン アンド サンズ (Wiley, John & Sons)刊)、「ハンドブック オブ リエージェンツ フォー オーガニック シンセシス (Handbook of Reagents for Organic Synthesis)」(L. A. パケット(L. A. Paquette)編、全4巻、1999年、ウィリー、ジョン アンド サンズ (Wiley, John & Sons)刊)等に記載の方法を;官能基修飾反応としては、例えば、「パラジウム リエージェンツ イン オーガニック シンセシス (Palladium Reagents in Organic Syntheses)」(R. F. ヘック(R. F. Heck)著、1985年、アカデミック プレス(Academic Press)刊)、「パラジウム リエージェンツ アンドカタリスツ:イノベーション イン オーガニック シンセシス (Palladium Reagents and Catalysts:Innovations in Organic Synthesis)」(辻二郎(J. Tsuji)著、1999年、ウィリー、ジョン アンド サンズ(Wiley, John & Sons)刊等に記載の方法を用いることができる。

上記方法は、Xが他の連結基(例えば、 $-SO_2NH-$ 、-NHCO-、 $-NHSO_2-$ 、 $-CONHCH_2-$ 、 $-CONHCH_2CH_2-$; 該連結基上の水素原子は置換されていてもよい)である場合においても、原料を適切に組み合わせることによって適用可能である。

<方法2>

一般式 (I) において、Xが一 CH_2NH 一で表される化合物は、例えば、反応工程式 2 に示す方法によって製造することができる。

反応工程式2

PCT/JP01/11084

(式中、A及びEは、一般式 (I) における定義と同意義である)

まず、アルデヒド(5)とアミン(6)とを脱水縮合させることにより、式(7) ($R^1 \sim R^4$ 及びBは一般式(I)における定義と同義である)のイミン誘導体を製造することができる。この反応は、脱水剤の存在下又は非存在下において、溶媒中で0C~100Cの反応温度で行われる。脱水剤としては無水硫酸マグネシウム、モレキュラーシーブなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール等が好ましい。

上記方法は、Xが他の連結基(例えば、-CONHN=CH-; 該連結基上の 水素原子は置換されていてもよい)である場合においても、原料を適切に組み合 わせることによって適用可能である。

次いで、イミン誘導体(7)を還元することにより目的化合物である(8)を製造することができる。この反応は、還元剤の存在下に溶媒中で0 \mathbb{C} ~100 \mathbb{C} の反応温度で行われる。還元剤としては水素化ホウ素ナトリウム、水素化ホウ素リチウムなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール等が好ましい。またこの反応は、接触水素添加法によっても行われる。触媒としてはパラジウム炭素、白金炭素、水酸化パラジウム、パラジウムブラックなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール、水等が好ましい。反応は0 \mathbb{C} ~200 \mathbb{C} の反応温度、水素圧は常圧又は加圧下で行われる。

<方法3>

一般式 (I) において、Xが-CH=CH-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式3に示す方法によって製造することができる。

反応工程式3

(式中、A及びEは、一般式(I)における定義と同意義を表し、Wは、O,O'ージー炭化水素-ホスホノ基又はトリアリールホスホニウム基を表す)

アルデヒド (9) とリン化合物 (10) とを脱水縮合させることにより、目的化合物である (11) を製造することができる。この反応は、塩基存在下、溶媒中で0℃~溶媒沸点の反応温度で行われる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,N'ージエチルアニリン等の有機塩基が挙げられる。非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。

<方法4>

一般式(I)において、Xが-COCH=CH-及び-COCH₂CH₂-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式4に示す方法によって製造することができる。

まず、ケトン(12)とアルデヒド(13)とを脱水縮合させることにより、

目的化合物であるエノン(14)を製造することができる。この反応は、塩基の存在下において、溶媒中で0℃~溶媒沸点の反応温度で行われる。塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,N'ージエチルアニリン等の有機塩基が挙げられる。非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。

次いで、エノン(14)を還元することにより目的化合物である(15)を製造することができる。この反応は、還元剤の存在下に溶媒中で0 \mathbb{C} ~100 \mathbb{C} の反応温度で行われる。還元剤としては水素化ホウ素ナトリウム、水素化ホウ素リチウムなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール等が好ましい。またこの反応は、接触水素添加法によっても行われる。触媒としてはパラジウム炭素、白金炭素、水酸化パラジウム、パラジウムブラックなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール、水等が好ましい。反応は0 \mathbb{C} ~200 \mathbb{C} の反応温度、水素圧は常圧又は加圧下で行われる。

本明細書の実施例には、一般式(I)に包含される代表的化合物の製造方法が 具体的に説明されている。従って、当業者は、上記の一般的な製造方法の説明及 び実施例の具体的製造方法の説明を参照しつつ、適宜の反応原料、反応試薬、反 応条件を選択し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えるこ とによって、一般式(I)に包含される化合物をいずれも製造可能である。

一般式 (I) で示される化合物はNF $-\kappa$ B活性化阻害作用及び炎症性サイトカイン産生遊離抑制作用を有しており、NF $-\kappa$ B活性化阻害剤及び炎症性サイトカイン産生遊離抑制剤などの医薬の有効成分として有用である。上記の医薬は、腫瘍壊死因子 (TNF)、インターロイキン-1、インターロイキン-2、インターフィキン-6、インターロイキン-8、顆粒球コロニー刺激因子、インターフ

ェロンβ、細胞接着因子であるICAM-1やVCAM-1及びELAM-1、ニトリックオキシド合成酵素、主要組織適合抗原系クラスI、主要組織適合抗原系クラスII、β2-マイクログロブリン、免疫グロブリン軽鎖、血清アミロイドA、アンジオテンシノーゲン、補体B、補体C4、c-myc、HIVの遺伝子由来の転写産物、HTLV-1の遺伝子由来の転写産物、シミアンウイルス40の遺伝子由来の転写産物、サイトメガロウイルスの遺伝子由来の転写産物、及びアデノウイルスの遺伝子由来の転写産物からなる群より選ばれる1又は2以上の物質の遺伝子の発現抑制剤として好適に用いることができる。また、上記の医薬は、NF-κB活性化に起因する疾患及び炎症性サイトカイン産生過剰に起因する疾患の予防及び/又は治療のための医薬として有用である。

より具体的には、本発明の医薬は、次に示すようなNF—κBの活性化及び/ 又は炎症性サイトカインが関与していると考えられる疾患、例えば慢性関節リウ マチ、変形性関節症、全身性エリテマトーデス、全身性強皮症、多発性筋炎、シ エーグレン症候群、血管炎症候群、抗リン脂質抗体症候群、スティル病、ベーチ エット病、結節性動脈周囲炎、潰瘍性大腸炎、クローン病、活動性慢性肝炎、糸 球体腎炎などの自己免疫疾患、慢性腎炎、慢性膵炎、痛風、アテローム硬化症、 多発性硬化症、動脈硬化、血管内膜肥厚、乾癬、乾癬性関節炎、接触性皮膚炎、 アトピー性皮膚炎、花粉症等のアレルギー疾患、喘息、気管支炎、間質性肺炎、 肉芽腫を伴う肺疾患、慢性閉塞性肺疾患、慢性肺血栓塞栓症、炎症性大腸炎、イ ンスリン抵抗性、肥満症、糖尿病とそれに伴う合併症(腎症、網膜症、神経症、 高インスリン血症、動脈硬化、高血圧、末梢血管閉塞等)、高脂血症、網膜症等 の異常血管増殖を伴った疾患、肺炎、アルツハイマー症、脳脊髄炎、急性肝炎、 慢性肝炎、薬物中毒性肝障害、アルコール性肝炎、ウイルス性肝炎、黄疸、肝硬 変、肝不全、心房粘液腫、キャッスルマン症候群、メサンギウム増殖性腎炎、腎 臓癌、肺癌、肝癌、乳癌、子宮癌、膵癌、その他の固形癌、肉腫、骨肉腫、癌の 転移浸潤、炎症性病巣の癌化、癌性悪液質、癌の転移、急性骨髄芽球性白血病等 の白血病、多発性骨髄腫、レンネルトリンパ腫、悪性リンパ腫、癌の抗癌剤耐性

化、ウイルス性肝炎および肝硬変等の病巣の癌化、大腸ポリープからの癌化、脳腫瘍、神経腫瘍、エンドトキシンショック、敗血症、サイトメガロウイルス性肺炎、サイトメガロウイルス性網膜症、アデノウイルス性感冒、アデノウイルス性 プール熱、アデノウイルス性眼炎、結膜炎、エイズ、ぶどう膜炎、その他バクテリア・ウイルス・真菌等感染によって惹起される疾患または合併症、全身炎症症 候群等の外科手術後の合併症、経皮的経管的冠状動脈形成術後の再狭窄、虚血再灌流障害等の血管閉塞開通後の再灌流障害、心臓または肝臓または腎臓等の臓器 移植後拒絶反応及び再灌流障害、掻痒、食欲不振、倦怠感、慢性疲労症候群などの疾患の予防及び/又は治療に有用である。また、炎症性サイトカインならびに NFーκ Bが破骨細胞の分化と活性化に関与していることから、本発明の医薬は、骨粗鬆症、骨癌性疼痛等の代謝性骨疾患などの予防及び/又は治療にも有用である。移植前臓器保存時の臓器の劣化を防ぐ用途にも利用可能である。

本発明の医薬の有効成分としては、一般式(I)で表される化合物及び薬理学的に許容されるそれらの塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質の1種又は2種以上を用いることができる。本発明の医薬としては上記の物質自体を用いてもよいが、好適には、本発明の医薬は有効成分である上記の物質と1又は2以上の薬学的に許容される製剤用添加物とを含む医薬組成物の形態で提供される。上記医薬組成物において、製剤用添加物に対する有効成分の割合は、1重量%から90重量%程度である。

本発明の医薬は、例えば、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、シロップ剤、乳剤、懸濁剤、又は液剤などの経口投与用の医薬組成物として投与してもよいし、静脈内投与、筋肉内投与、若しくは皮下投与用の注射剤、点滴剤、坐剤、経皮吸収剤、経粘膜吸収剤、点鼻剤、点耳剤、点眼剤、吸入剤などの非経口投与用の医薬組成物として投与することもできる。粉末の形態の医薬組成物として調製された製剤を用時に溶解して注射剤又は点滴剤として使用してもよい。

医薬用組成物の製造には、固体又は液体の製剤用添加物を用いることができる。

製剤用添加物は有機又は無機のいずれであってもよい。すなわち、経口用固形製 剤を製造する場合は、主薬に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢 剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠剤、顆粒剤、 散剤、カプセル剤などの形態の製剤を調製することができる。用いられる賦形剤 としては、例えば、乳糖、蔗糖、白糖、ブドウ糖、コーンスターチ、デンプン、 タルク、ソルビット、結晶セルロース、デキストリン、カオリン、炭酸カルシウ ム、二酸化ケイ素などを挙げることができる。結合剤としては、例えば、ポリビ ニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、 アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロ ース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリ ン、ペクチンなどを挙げることができる。滑沢剤としては、例えば、ステアリン 酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化直物油などを 挙げることができる。着色剤としては、通常医薬品に添加することが許可されて いるものであればいずれも使用することができる。矯味矯臭剤としては、ココア 末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末などを使用することができる。 これらの錠剤、顆粒剤には、糖衣、ゼラチン衣、その他必要により適宜コーティ ングを付することができる。また、必要に応じて、防腐剤、抗酸化剤等を添加す ることができる。

経口投与のための液体製剤、例えば、乳剤、シロップ剤、懸濁剤、液剤の製造には、一般的に用いられる不活性な希釈剤、例えば水又は植物油を用いることができる。この製剤には、不活性な希釈剤以外に、補助剤、例えば湿潤剤、懸濁補助剤、甘味剤、芳香剤、着色剤又は保存剤を配合することができる。液体製剤を調製した後、ゼラチンのような吸収されうる物質のカプセル中に充填してもよい。非経口投与用の製剤、例えば注射剤又は坐剤等の製造に用いられる溶剤又は懸濁剤としては、例えば、水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチンを挙げることができる。坐剤の製造に用いられる基剤としては、例えば、カカオ脂、乳化カカオ脂、ラウリン脂、

ウィテップゾールを挙げることができる。製剤の調製方法は特に限定されず、当 業界で汎用されている方法はいずれも利用可能である。

注射剤の形態にする場合には、担体として、例えば、水、エチルアルコール、マクロゴール、プロピレングリコール、クエン酸、酢酸、リン酸、乳酸、乳酸ナトリウム、硫酸及び水酸化ナトリウム等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム及びリン酸ナトリウム等のpH 調整剤及び緩衝剤;ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸及びチオ乳酸等の安定化剤等が使用できる。なお、この場合、等張性の溶液を調製するために十分な量の食塩、ブドウ糖、マンニトール又はグリセリンを製剤中に配合してもよく、通常の溶解補助剤、無痛化剤又は局所麻酔剤等を使用することもできる。

軟膏剤、例えば、ペースト、クリーム及びゲルの形態にする場合には、通常使用される基剤、安定剤、湿潤剤及び保存剤等を必要に応じて配合することができ、常法により成分を混合して製剤化することができる。基剤としては、例えば、白色ワセリン、ポリエチレン、パラフィン、グリセリン、セルロース誘導体、ポリエチレングリコール、シリコン及びベントナイト等を使用することができる。保存剤としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル等を使用することができる。貼付剤の形態にする場合には、通常の支持体に上記軟膏、クリーム、ゲル又はペースト等を常法により塗布することができる。支持体としては、綿、スフ及び化学繊維からなる織布又は不織布;軟質塩化ビニル、ポリエチレン及びポリウレタン等のフィルム又は発泡体シートを好適に使用できる。

本発明の医薬の投与量は特に限定されないが、経口投与の場合には、成人一日あたり本発明化合物の重量として通常0.01~5,000mgである。この投与量を患者の年令、病態、症状に応じて適宜増減することが好ましい。前記一日量は一日に一回、又は適当な間隔をおいて一日に2~3回に分けて投与してもよいし、数日おきに間歇投与してもよい。注射剤として用いる場合には、成人一日あたり本発明化合物重量として0.001~100mg程度である。

実施例

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。又、本実施例中には、市販の試薬を購入しそのまま試験に供した化合物が含まれる。そのような化合物については、試薬の販売元及びカタログに記載されているコード番号を示す。

例1:N-{[3, 5-ビス(トリフルオロメチル)フェニル]メチル}-5-ブロモ-2-ヒドロキシベンズアミド(化合物番号1)の製造

アルゴン雰囲気下、5ーブロモサリチル酸(217mg, 1mmol)、3, 5ービス(トリフルオロメチル)ベンジルアミン(243mg, 1mmol)、4ージメチルアミノピリジン(12mg, 0.1mmol)、テトラヒドロフラン(10ml)の混合物に1ー(3ージメチルアミノプロピル)-3ーエチルカルボジイミド塩酸塩(以下、WSC・HClと略す;192mg, 1mmol)を加え、室温で1時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色固体(244.8mg, 55.4%)を得た。

¹H-NMR (DMSO-d₆): δ 4. 69 (2H, d, J=5. 7Hz), 6. 93 (1H, d, J=8. 7Hz), 7. 56 (1H, dd, J=8. 7, 2. 4 Hz), 8. 02 (1H, d, J=2. 4Hz), 8. 06 (3H, s), 9. 41 (1H, t, J=5. 7Hz), 12. 13 (1H, s).

例 2:5-ブロモー2-ヒドロキシーN- (2-フェネチル) ベンズアミド (化 合物番号 2)

(1) 2-アセトキシーN-(2-フェネチル)ベンズアミドo-アセチルサリチル酸クロリド(0.20g, 1.00mmol)をベンゼ

ン(8 mL)に溶かし、フェネチルアミン(0.12g, 1.00 mm o l)、ピリジン(0.3 mL)を加え、室温で2時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー($n-\wedge$ キサン:酢酸エチル= $2:1\rightarrow 1:1$)で精製して標題化合物の白色結晶(155.5 mg, 54.9%)を得た。

¹H-NMR (CDCl₃): δ 2. 09 (3H, s), 2. 92 (2H, t, J = 6. 8Hz), 3. 71 (2H, q, J=6. 8Hz), 6. 32 (1H, br s), 7. 07 (1H, dd, J=8. 4, 1. 2Hz), 7. 23-7. 35 (6H, m), 7. 44 (1H, ddd, J=8. 0, 7. 6, 1. 6Hz), 7. 7 3 (1H, dd, J=7. 6, 1. 6Hz).

(2) 2-ヒドロキシーN-(2-フェネチル) ベンズアミド

2-アセトキシーN-(2-フェネチル)ベンズアミド(155.5mg)にメタノール(5mL)、2規定水酸化ナトリウム(0.1mL)を加え、室温で30分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣を結晶化(ジクロロメタン/ヘキサン)して標題化合物の白色固体(106.9mg,80.7%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 86 (2H, t, J=7.6Hz), 3. 52 (1H, q, J=7.6Hz), 6. 84-6. 88 (2H, m), 7. 18 -7. 31 (5H, m), 7. 37 (1H, ddd, J=8.4, 7.2, 1.6 Hz), 7. 80 (1H, dd, J=8.4, 1.6Hz), 8. 84 (1H, s), 12. 51 (1H, s).

(3) 5-プロモー2-ヒドロキシーN-(2-フェネチル) ベンズアミド 2-ヒドロキシ-N-(2-フェネチル) ベンズアミド $(79.6 \,\mathrm{mg},\ 0.1)$

 $33 \, \mathrm{mmo} \, 1$)に四塩化炭素($5 \, \mathrm{mL}$)、鉄粉($0.03 \, \mathrm{g}$)、臭素($25 \, \mu \, 1$, $0.48 \, \mathrm{mmo} \, 1$)を加え、室温で1時間攪拌した。反応混合物を亜硫酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-n++ン:酢酸エチル=5:1)で精製して標題化合物の白色粉末($62 \, \mathrm{mg}$, 58.7%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 85 (2H, t, J=7.6Hz), 3. 52 (1H, q, J=7.6Hz), 6. 87 (1H, d, J=8.8Hz), 7. 18-7. 31 (5H, m), 7. 52 (1H, dd, J=8.8, 2.4Hz), 8. 01 (1H, d, J=2.4Hz), 8. 90 (1H, s), 12. 51 (1H, s).

例3:5-ブロモー2-ヒドロキシ-N-[5-(モルホリノカルボニル) インダン-2-イル] ベンズアミド (化合物番号3)

5 ープロモサリチル酸(109mg, 0.5mmol)、2ーアミノー5ー(モルホリノ)カルボニルインダン(Chem. Pharm. Bull., 2000, 48, 131.参照; 141mg, 0.5mmol)、トリエチルアミン(70μL, 0.5mmol)のジクロロメタン(5mL)溶液に、WSC・HCl(96mg, 0.5mmol)を添加し、40℃で1.5時間加熱攪拌した。冷却後、酢酸エチルで希釈し、2規定塩酸、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=19:1)で精製し、標題化合物の白色結晶(26mg, 11.9%)を得た。

¹H-NMR (CDCl₃): δ 2. 66 (1H, dd, J=16.2, 7.2 Hz), 2. 82 (1H, dd, J=16.2, 7.2Hz), 3.16-3.2 5 (2H, m), 3.43-3.86 (8H, m), 4.79-4.92 (1H, m), 6.88 (1H, d, J=8.7Hz), 7.14-7.15 (3H, m),

7. 46 (1H, dd, J=8. 7, 2. 4Hz), 7. 74 (1H, d, J=7. 8Hz), 7. 84 (1H, d, J=2. 4Hz).

例4:3-(4-クロロフェニル)-1-(2,6-ジヒドロキシフェニル)-3-(4-ヒドロキシフェニル)プロパン-1-オン(化合物番号4)本化合物は、市販化合物である。

販売元:Apin Chemicals社 カタログコード番号:N 0100D

本化合物は、市販化合物である。

販売元:Specs社

カタログコード番号:AI-233/31581024

例6:1-(2-ヒドロキシー4-メトキシフェニル)-3-(2-メトキシフェニル)プロペン-1-オン(化合物番号 6)

本化合物は、市販化合物である。

販売元: Maybridge社

カタログコード番号: RJC 00106

例 7:3-(3,4-ジヒドロ-2H-ベンゾ[b][1,4]ジオキセピン-7 -イル)-1-(2-ヒドロキシ-5-メチルフェニル)プロペン-1-オン(化合物番号7)

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号:BTB 13230

例8:3-(3,4-ジヒドロ-2H-ベンゾ [b] [1,4] ジオキセピン-7 -イル) -1- [2-ヒドロキシ-4-(メトキシメチル) フェニル] プロペン -1-オン (化合物番号8)

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号:BTB 114482

例9:4-クロロー2-[(4-クロロフェニル) エテンー2-イル] フェノール (化合物番号9)

5ークロロサリチルアルデヒド(313mg, 2mmol)、4ークロロベンジルトリフェニルフォスフォニウムクロリド(847mg, 2mmol)をN, Nージメチルホルムアミド(20mL)に溶解し、炭酸カリウム(1.382g, 10mmol)を水(10mL)に溶かして加え、5時間加熱還流した。冷却後、反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=3:1)で精製して標題化合物の灰白色固体(44.6mg, 8.4%)を得た。

¹H-NMR (CDCl₃): δ 5. 04 (1H, s), 6. 74 (1H, d, J = 9. 0Hz), 7. 05 (1H, d, J=16. 5Hz), 7. 10 (1H, d d, J=8. 4, 2. 4Hz), 7. 26 (1H, d, J=16. 5Hz), 7. 33 (2H, d, J=8. 4Hz), 7. 45 (2H, d, J=8. 4Hz), 7. 49 (1H, d, J=2. 4Hz).

例10:5-プロモ-N-(3,5-ジクロロ)フェニル-2-ヒドロキシベンゼンスルホンアミド(化合物番号10)

(1) 5 - ブロモーNー(3, 5 - ジクロロ)フェニルー2 - メトキシベンゼン

スルホンアミド

5ープロモー2ーメトキシベンゼンスルホニルクロリド (857mg, 3mm o 1) をジクロルメタン (6mL) に溶解し、氷冷、アルゴン雰囲気下に3, 5ージクロロアニリン (510mg, 3.15mmol)、ピリジン (261mg, 3.3mmol) のジクロルメタン (2mL) を滴下、次いで室温で6時間攪拌した。反応混合物をジクロルメタンで希釈し2規定塩酸,水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーヘキサンー酢酸エチル晶析して5ープロモー2ーメトキシーNー (3,5ージクロロ) ベンゼンスルホンアミドの白色結晶 (900mg,73.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 03 (3H, s), 6. 92 (1H, d, J=9. 0Hz), 7. 01 (2H, d, J=1. 8Hz), 7. 07-7. 08 (1H, m), 7. 24 (1H, brs), 7. 63 (1H, dd, J=8. 7, 2. 4Hz), 7. 99 (1H, d, J=2. 4Hz).

(2) 5ープロモーNー(3, 5ージクロロ)フェニルー2ーヒドロキシベンゼンスルホンアミド

5ープロモーNー(3,5ージクロロ)フェニルー2ーメトキシベンゼンスルホンアミドの白色結晶(206mg,0.5mmol)、沃化リチウム(134mg,1mmol)、2,4,6ーコリジン(5mL)の混合物をアルゴン雰囲気下に30分間加熱還流した。反応混合物を室温まで冷却した後、2規定塩酸にあけて酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し,無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーへキサンー酢酸エチルで晶析して標題化合物の白色結晶(90mg,45.3%)を得た。

mp 158-159°C.

 $^{1}H-NMR (DMSO-d_{6}, \delta): 6.92 (1H, d, J=8.7Hz), 7.$

11 (2H, d, J=2. 1Hz), 7. 21-7. 22 (1H, m), 7. 62 (1H, dd, J=8. 7, 2. 7Hz), 7. 80 (1H, d, J=2. 4Hz), 10. 70 (1H, br), 11. 37 (1H, br).

例11:3,5-ビス(トリフルオロメチル)-N-(2-ヒドロキシフェニル) ベンズアミド(化合物番号11)

2-アミノフェノール(120mg, 1.1mmol)をジクロロメタン(5mL)に溶解し、氷冷、アルゴン雰囲気下に3,5ービス(トリフルオロメチル)ベンゾイルクロリド(300mg, 1.1mmol)のジクロルメタン(3mL)溶液、ピリジン(0.5mL)を滴下し、次いで室温で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をエタノール(5mL)に溶解し、2規定水酸化ナトリウム(0.1mL, 0.2mmol)を滴下し、次いで室温で30分攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製し、標題化合物の淡桃色結晶(288mg,73.6%)を得た。

mp 183℃ (dec.).

¹H-NMR (DMSO-d₆, δ): 6. 83 (1H, td, J=8. 0, 1. 2Hz), 6. 93 (1H, dd, J=8. 0, 1. 2Hz), 7. 08 (1H, td, J=8. 0, 1. 6Hz), 7. 50 (1H, d, J=8. 0Hz), 8. 35 (2H, s), 9. 61 (1H, s), 10. 15 (1H, s).

例12:N-(5-クロロ-2-ヒドロキシフェニル)-3,5-ジクロロベン ズアミド(化合物番号12)

2-rミノー4-クロロフェノール (316mg, 2.2mmol)、トリエチ

ルアミン(243mg, 2.4mmol)をジクロルメタン(8mL)に溶解し、 水冷、アルゴン雰囲気下に3,5ージクロロベンゾイルクロリド(419mg, 2mmol)のジクロルメタン(2mL)溶液を滴下し、次いで室温で15時間 攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄し、無 水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカ ゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=3:1)で精製し、 淡褐色固体を得た。これをnーヘキサン-酢酸エチルで加熱還流下に懸濁洗浄して 標題化合物の白色結晶(205mg,32.4%)を得た。

mp 251-252°C.

¹H-NMR (DMSO- d_6): δ 6. 93 (1H, d, J=9.0Hz), 7. 11 (1H, dd, J=8.7, 2.7Hz), 7. 67 (2H, d, J=2.7 Hz), 7. 86-7. 87 (1H, m), 7. 97 (1H, d, J=1.8Hz), 9. 85 (1H, s), 10. 03 (1H, s).

例13:N-(5-クロロ-2-ヒドロキシフェニル)-3,5-ジクロロベンゼンスルホンアミド(化合物番号13)

2-アミノー4-クロロフェノール(287 mg, 2 mm o 1)、3, 5-ジクロロベンゼンスルホニルクロリド(<math>540 mg, 2.2 mm o 1)をジクロルメタン(4 mL)に溶解し、氷冷、アルゴン雰囲気下にピリジン(1 mL)を滴下し、次いで室温で1時間攪拌した。反応混合物を 2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー($n-{\wedge}$ キサン:酢酸エチル= $3:1\rightarrow 1:1$)で精製し、赤褐色固体を得た。これを $n-{\wedge}$ キサン一酢酸エチル晶析して標題化合物の微褐色結晶(45 mg, 63.1%)を得た。

mp 190-191°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 68 (1H, d, J=9. 0Hz),

7. 08 (1H, dd, J=8. 7, 2. 7Hz), 7. 17 (1H, d, J=2. 4Hz), 7. 70 (2H, d, J=1.8Hz), 7. 95-7. 96 (1H, m), 10. 00 (1H, s), 10. 06 (1H, s).

例 14: N-[(5-プロモー2-ヒドロキシフェニル) メチル] -3, 5-ジクロロアニリン (化合物番号 14)

(1) 4-ブロモー2- [(3, 5-ジフェニルイミノ) メチル] フェノール 5-プロモサリチルアルデヒド (1. 01g, 5 mm o 1), 3, 5-ジクロロアニリン (810mg, 5 mm o 1)、エタノール (25 mL) の混合物をアルゴン雰囲気下に1時間加熱還流した。反応混合物を室温まで冷却後、析出した結晶を濾取して3,5-ジクロローN-(5-ブロモー2-ヒドロキシベンジリデン)アニリンの橙色結晶 (1. 52g, 88. 2%) を得た。

mp 161-163°C. ¹H-NMR (CDC1₃, δ): 6. 94 (1H, d, J=9. 0Hz), 7. 16 (2H, d, J=1. 8Hz), 7. 30-7. 31 (1H, m), 7. 47-7. 53 (2H, m), 8. 51 (1H, s).

- 3,5ージクロローNー(5ープロモー2ーヒドロキシベンジリデン)アニリン(1.04g,3mmol)をテトラヒドロフラン(12mL)及びエタノール(6mL)に溶解し、氷冷、アルゴン雰囲気下に水素化ホウ素ナトリウム(113mg,3mmol)を添加し、次いで室温で12時間攪拌した。反応混合物にアセトン(10mL)を添加し、減圧下に濃縮して得られた残渣に水を加えてジクロルメタンで抽出した。ジクロルメタン層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーへキサン:酢酸エチル=4:1)で精製し、淡黄色粘稠性物質を得た。これをnーへキサンで結晶化して標題化合物の白

色結晶 (971mg, 93.3%) を得た。

mp 125-126°C. ¹H-NMR (CDC1₃, δ): δ 4. 31 (2H, s), 6. 64 (2H, d, J=1.8Hz), 6. 74-6. 77 (1H, m), 6. 84-6. 85 (1H, m), 7. 30-7. 34 (2H, m).

例15:5-クロロー2-ヒドロキシ安息香酸(2,4-ジヒドロキシベンジリデン)ヒドラジド (化合物番号15)

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: 53203-5

例16:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロー 2-ヒドロキシ-N-メチルベンズアミド(化合物番号16)

 $5-\rho$ ロロサリチル酸(173 mg, 1mmo1)、3, 5-ビス(トリフルオロメチル)-N-メチルアニリン(243mg, 1mmo1)、三塩化リン($44 \mu 1$, 0.5mmo1)、モノクロロベンゼン(5mL)の混合物をアルゴン雰囲気下に3時間加熱還流した。反応混合物を室温まで冷却した後、n-ヘキサン(50mL)を添加し、析出した粗結晶を濾取して酢酸エチル(50mL)に溶解した。酢酸エチル溶液を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製し、標題化合物の白色結晶(75mg, 18.9%)を得た。

¹H-NMR (CDCl₃): δ 6. 59 (1H, d, J=2. 4Hz), 6. 9 4 (1H, d, J=9. 0Hz), 7. 21 (1H, dd, J=9. 0, 2. 7Hz), 7. 58 (2H, s), 7. 80 (1H, s), 10. 00 (1H, brs).

例17:1-(5-ブロモ-2-ヒドロキシ) ベンゾイル-7-(トリフルオロ

メチル)-1, 2, 3, 4-テトラヒドロキノリン(化合物番号17) 原料として、5-ブロモサリチル酸、及び7- (トリフルオロメチル)-1, 2, 3, 4-テトラヒドロキノリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:42.0%

¹H-NMR (CDCl₃): δ 2. 08 (2H, m), 2. 92 (2H, t, J = 6. 6Hz), 3. 95 (2H, t, J=6. 6Hz), 6. 91-6. 94 (2H, m), 7. 14 (1H, s), 7. 32-7. 35 (2H, m), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 10. 06 (1H, s).

例18:N-(3,5-ジクロロフェニル)-2-ヒドロキシ-1-ナフトアミド(化合物番号18)

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:51.2%

mp 246-248°C.

¹H-NMR (DMSO-d₆): δ 7. 26 (1H, d, J=9. 3Hz), 7. 31-7. 37 (2H, m), 7. 44-7. 50 (1H, m), 7. 65-. 68 (1H, m), 7. 85-7. 90 (4H, m), 10. 23 (1H, s), 10. 74 (1H, s).

例19:N-(3,5-ジクロロフェニル)-3-ヒドロキシ-2-ナフトアミド(化合物番号19)

原料として、3ーヒドロキシナフタレンー2ーカルボン酸、及び3,5ージクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

mp 254-255°C.

 $^{1}H-NMR$ (DMSO-d₆): 7. 34-7. 39 (3H, m), 7. 49-7. 54 (1H, m), 7. 76-7. 79 (1H, m), 7. 89 (2H, d, J=

1. 8Hz), 7. 92 (1H, m), 8. 39 (1H, s), 10. 75 (1H, s), 11. 01 (1H, s).

例20:N-(3,5-ジメトキシフェニル)-3-ヒドロキシ-2-ナフトアミド(化合物番号20)

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S01361-8

例21:N-[3, 5-ビス (トリフルオロメチル) フェニル] -1-ヒドロキシ-2-ナフトアミド (化合物番号21)

原料として、1-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス (トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.5%

¹H-NMR (DMSO- d_{6}): δ 7. 51 (1H, d, J=9.0Hz), 7. 60 (1H, td, J=7.8, 0.9Hz), 7. 70 (1H, td, J=7.8, 0.9Hz), 7. 89 (1H, s), 7. 93 (1H, d, J=8.4Hz), 8. 09 (1H, d, J=9.0Hz), 8. 33 (1H, d, J=8.7Hz), 8. 51 (2H, s), 10. 92 (1H, s), 13. 36 (1H, s).

例22:{[(1-ヒドロキシナフタレン-2-イル) カルボニル] アミノ} ベンゼンスルホニル フルオリド (化合物番号22)

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S58026-0

例23:4-({[4-(2,5-ジクロロフェニル) アゾー1-ヒドロキシナフタレン-2-イル] カルボニル} アミノ) ベンゼンスルホニル フルオリド (化合物番号23)

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S63263-5

例24:N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-クロロー 2-ヒドロキシピリジン-3-カルボキサミド (化合物番号24)

 $5-\rho$ ロロー2ーヒドロキシニコチン酸(174mg,1mmo 1)、3,5ービス(トリフルオロメチル)アニリン(275mg,1.2mmo 1),ピリジン(316mg,4mmo 1)をテトラヒドロフラン(20mL)及びジクロルメタン(10mL)に溶解し,オキシ塩化リン(0.112ml,1.2mmo 1)を添加し,次いで室温で2時間攪拌した。反応混合物を酢酸エチル(100mL)及び0.2規定塩酸(100mL)にあけ,30分間攪拌したあとにセライトろ過紙、濾液の水層を酢酸エチルで抽出した。合わせた酢酸エチル層を水、飽和食塩水で順次洗浄し,無水硫酸マグネシウムで乾燥した後溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=2:1 $\rightarrow 1:1$)で精製し、淡黄色固体を得た。これをエタノールで加熱還流下に懸濁洗浄して標題化合物の白色結晶(183mg,47.6%)を得た。

融点:>270℃

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 83 (1H, s), 8. 15 (1H, d, J=3. 3Hz), 8. 36 (1H, d, J=3. 0Hz), 8. 40 (2H, s), 12. 43 (1H, s).

例 25:N-[2-クロロ-5-(トリフルオロメチル) フェニル] -5-クロロ-2-ヒドロキシニコチンアミド (化合物番号 <math>25)

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:42.9%

¹H-NMR (DMSO-d₆): δ 7. 52 (1H, dd, J=8. 4, 2. 1Hz), 7. 81 (1H, d, J=8. 4Hz), 8. 16 (1H, s), 8. 3 9 (1H, d, J=2. 7Hz), 8. 96 (1H, d, J=2. 1Hz), 12. 76 (1H, s), 13. 23 (1H, s).

例26: N- $\{3, 5$ -ビス [(1, 1-ジメチル) エチル] フェニル $\}$ -5-クロロ-2-ヒドロキシニコチンアミド (化合物番号26)

原料として、5-クロロー2-ヒドロキシニコチン酸、及び3,5-ビス[(1,1-ジメチル) エチル] アニリンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:59.1%

¹H-NMR (DMSO-d₆): δ 1. 29 (18H, s), 7. 18 (1H, t, J=1.8Hz), 7. 52 (2H. d, J=1.8Hz), 8. 07 (1H, d, J=2.4Hz), 8. 35 (1H, d, J=3.3Hz), 11. 92 (1H, s), 13. 10 (1H, s).

例27:N-[3, 5-ビス (トリフルオロメチル) フェニル] -3-ヒドロキ シピリジン-2-カルボキサミド (化合物番号27)

原料として、3-ヒドロキシーピリジン-2-カルボン酸、及び<math>3, 5-ビス (トリフルオロメチル)アニリンを用いて例 2 4 と同様にして、標題化合物を得た。 収率: 4 5. 0 %

¹H-NMR (CDCl₃): δ 7. 40 (1H, dd, J=8. 4, 1. 8H z), 7. 46 (1H, dd, J=8. 4, 4. 2Hz), 7. 68 (1H, s).

8. 16 (1H, dd, J=4. 2, 1. 2Hz), 8. 25 (2H, s), 10. 24 (1H, s), 11. 42 (1H, s).

例28:N-[3,5-ビス(トリフルオロメチル)フェニル]-6-クロロー 2-ヒドロキシインドール-3-カルボキサミド(化合物番号28)

アルゴン雰囲気下、3,5-ビス(トリフルオロメチル)イソシアネート(25 mg,1.0 mm o 1)をテトラヒドロフラン(5 mL)に溶解し、6-クロローオキシインドール(184 mg,1.1 mm o 1)のテトラヒドロフラン(5 m 1)溶液、トリエチルアミン(0.3 m L)を加え、室温で4時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の桃色固体(172.2 mg,40.7%)を得た。

¹H-NMR (DMSO- d_6): δ 3. 97 (2H, s), 7. 29 (1H, d d, J=8. 1, 2. 1Hz), 7. 41 (1H, d, J=8. 1Hz), 7. 8 (1H, s), 8. 04 (1H, d, J=2. 1Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例29:N-[3,5-ビス(トリフルオロメチル)フェニル]-3-ヒドロキシキノキサリン-2-カルボキサミド(化合物番号29)

原料として、3-ヒドロキシキノキサリン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:2.7%

¹H-NMR (DMSO-d₆): δ 7. 40-7. 45 (2H, m), 7. 69 (1H, td, J=8. 4, 1. 5Hz), 7. 90-7. 93 (2H, m), 8. 41 (2H, s), 11. 64 (1H, s), 13. 02 (1H, s).

例30:N-(4-クロロフェニル)-2-ヒドロキシ-9H-カルバゾールー 3-カルボキサミド(化合物番号30)

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S83846-2

例31:2-ヒドロキシ-N-(1-ナフチル) ベンズアミド (化合物番号31) 本化合物は、市販化合物である。

販売元: Maybridge社

カタログコード番号: RDR 01818

例32:5-クロロー2-ヒドロキシ-N-(1-ナフチル) ベンズアミド (化合物番号32)

原料として、5-クロロサリチル酸、及び1-ナフチルアミンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:65.0%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=8. 7Hz), 7. 51-7. 61 (4H, m), 7. 85 (1H, d, J=8. 4Hz), 7. 96 (1H, d, J=7. 5Hz), 7. 99-8. 05 (2H, m), 8. 13 (1H, d, J=2. 7Hz), 10. 88 (1H, s), 12. 31 (1H, s).

例33:5-クロロー2-ヒドロキシ-N-(4-メトキシナフタレン-2-イル) ベンズアミド (化合物番号33)

原料として、5-クロロサリチル酸、及び4-メトキシ-1-ナフチルアミン . を用いて例16と同様の操作を行い、標題化合物を得た。

収率:84.3%

¹H-NMR (DMSO-d₆): δ 3. 99 (3H, s), 7. 05 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=1. 5Hz), 7. 39-7. 45 (1H, m), 7. 48-7. 54 (2H, m), 7. 83 (1H, d, J=7. 8Hz), 8. 00 (1H, s), 8. 02 (1H, d, J=2. 4Hz), 8. 0 (1H, d, J=7. 8Hz), 10. 54 (1H, s), 11. 88 (1H, s).

例34:2-アセトキシ-5-クロロ-N-(4-メトキシナフタレン-2-イル) ベンズアミド (化合物番号34)

原料として、2-アセトキシ-5-クロロ安息香酸、及び4-メトキシ-1-ナフチルアミンを用いて例24と同様の操作を行い、標題化合物を得た(2-アセトキシ-5-クロロ安息香酸: Eur. J. Med. Chem., 1996, 31, 861. 参照)。

収率:39.9% 赤色固体

¹H-NMR (DMSO- d_6): δ 2. 23 (3H, s), 3. 96 (3H, s), 7. 23 (1H, d, J=1. 2Hz), 7. 34 (1H, d, J=8. 7Hz), 7. 40 (1H, dt, J=8. 1, 1. 2Hz), 7. 50 (1H, dt, J=8. 1, 1. 5Hz), 7. 67 (1H, dd, J=8. 7, 2. 7Hz), 7. 81 (1H, d, J=8. 7Hz), 8. 72 (1H, d, J=3. 0Hz), 8. 02 (1H, s), 8. 08 (1H, d, J=8. 7Hz), 10. 58 (1H, s).

例35:2-(5-クロロ-2-ヒドロキシベンゾイル) アミノー4, 5, 6, 7-テトラヒドロベンゾ[b] チオフェン-3-カルボン酸 エチルエステル (化合物番号35)

原料として、5-クロロサリチル酸、及び2-アミノ-4, 5, 6, 7-テトラヒドロベンゾ [b] チオフェン-3-カルボン酸 エチルエステルを用いて例

16と同様の操作を行い、標題化合物を得た。

収率:49.6%

¹H-NMR (DMSO-d₆): δ 1. 32 (3H, t, J=7. 2Hz), 1. 74 (4H, br), 2. 63 (2H, br), 2. 75 (2H, br), 4. 30 (2H, q, J=7. 2Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 5 0 (1H, dd, J=8. 7, 3. 0Hz), 7. 92 (1H, d, J=3. 0Hz), 12. 23 (1H, s), 13. 07 (1H, s).

例36:5-プロモー2-ヒドロキシ-N-(5-フェニルピラゾール-3-イル) ベンズアミド (化合物番号36)

原料として、5-プロモサリチル酸、及び3-アミノ-5-フェニルピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:9.2%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 01 (1H, s), 7. 35 (1H, t, J=7.6Hz), 7. 46 (2H, t, J=7.6Hz), 7. 58 (1H, dd, J=8.8, 2.8Hz), 7. 74 -7. 76 (2H, m), 8. 19 (1H, s), 10.86 (1H, s), 12. 09 (1H, s), 13.00 (1H, brs).

例37:5-プロモーN-(4,5-ジエチルオキサゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号37)

(1) 2-アミノー4, 5-ジエチルオキサゾール

プロピオイン (1.03g, 8.87mmol) をエタノール (15mL) に溶かし、シアナミド (0.75g, 17.7mmol) ナトリウムエトキシド (1.21g, 17.7mmol) を加え、室温で3.5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラ

フィー (ジクロロメタン:メタノール=9:1) で精製して標題化合物の黄色アモルファス (369.2 mg, 29.7%) を得た。

¹H-NMR (DMSO-d₆): δ 1. 04 (3H, t, J=7.5Hz), 1. 06 (3H, t, J=7.5Hz), 2. 20 (2H, q, J=7.5Hz), 2. 43 (2H, q, J=7.5Hz), 6. 15 (2H, s).

(2) 2ーアセトキシー5ープロモーN-(4, 5ージエチルオキサゾール-2 ーイル) ベンズアミド

原料として、2-アセトキシ-5-プロモ安息香酸、及び<math>2-アミノ-4, 5 -ジェチルオキサゾールを用いて例 <math>24と同様の操作を行い、標題化合物を得た (2-アセトキシ-5-プロモ安息香酸: Eur. J. Med. Chem., 19 96, 31, 861. 参照)。

収率:22.0%

¹H-NMR (CDCl₃): δ 1. 22 (3H, t, J=7. 5Hz), 1. 2 3 (3H, t, J=7. 5Hz), 2. 48 (2H, q, J=7. 5Hz), 2. 57 (2H, q, J=7. 5Hz), 6. 96 (1H, d, J=8. 7Hz), 7. 58 (1H, dd, J=8. 7, 2. 7Hz), 8. 32 (1H, s), 11. 4 0 (1H, br).

(3) 5-プロモ-N-(4, 5-ジェチルオキサゾール-2-イル) -2-ヒドロキシベンズアミド

原料として、2-アセトキシ-5-プロモ-N-(4,5-ジェチルオキサゾール-2-イル) ベンズアミドを用いて例 2(2) と同様の操作を行い、標題化合物を得た。

収率:70.2%

¹H-NMR (CDCl₃) δ : 1. 25 (3H, t, J=7. 5Hz), 1. 26 (3H, t, J=7. 5Hz), 2. 52 (2H, q, J=7. 5Hz), 2.

60 (2H, q, J=7.5Hz), 6.84 (1H, d, J=8.7Hz), 7. 43 (1H, dd, J=8.7, 3.0Hz), 8.17 (1H, d, J=3.0Hz), 11.35 (1H, br), 12.83 (1H, br).

例38:5-プロモーN-(4,5-ジフェニルオキサゾール-2-イル)-2-ヒドロキシベンズアミド (化合物番号38)

原料として、5ープロモサリチル酸、及び2ーアミノー4,5ージフェニルオキサゾールを用いて例16と同様の操作を行い、標題化合物を得た(2ーアミノー4,5ージフェニルオキサゾール: Zh. Org. Khim.,1980,16,2185.参照)。

収率:32.6%

融点:188-189℃

¹H-NMR (DMSO- d_6 , δ): 6. 98 (1H, d, J=8. 7Hz), 7. 40-7. 49 (6H, m), 7. 53-7. 56 (2H, m), 7. 59-7. 63 (3H, m), 8.'01 (1H, d, J=2. 4Hz), 11. 80 (2H, brs).

例39:5ーブロモーN-[4,5ービス (フラン-2-イル) オキサゾール-2-イル] -2-ヒドロキシベンズアミド (化合物番号39)

(1) 2-アミノー4, 5-ビス (フラン-2-イル) オキサゾール

フロイン (0.50g, 2.60mmol) をエタノール (15ml) に溶かし、シアナミド (218.8mg, 5.20mmol)、ナトリウムエトキシド (530.8mg, 7.80mmol) を加え、室温で2時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (へキサン:酢酸エチル=1:1→1:2) で精製して標題化合物の黒褐色結晶 (175.0mg, 31.1%) を得た。

¹H-NMR (DMSO- d_6): δ 6. 59 (1H, dd, J=3. 3, 2. 1Hz), 6. 62 (1H, dd, J=3. 3, 2. 1Hz), 6. 73 (1H, dd, J=3. 3, 0. 6Hz), 6. 80 (1H, dd, J=3. 3, 0. 9Hz), 7. 05 (2H, s), 7. 75-7. 76 (2H, m).

(2) 5-プロモーN-[4, 5-ビス (フラン-2-イル) オキサゾール-2 -イル]-2-ヒドロキシベンズアミド

原料として、5ープロモサリチル酸、及び2ーアミノー4,5ーピス(フランー2ーイル)オキサゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.9%

¹H-NMR (DMSO-d₆): δ 6. 65 (1H, dd, J=3. 6, 1. 8Hz), 6. 68 (1H, dd, J=3. 6, 1. 8Hz), 6. 75 (1H, d, J=8, 7Hz), 6. 92 (1H, dd, J=3. 6, 0. 9Hz), 6. 93 (1H, d, J=3. 3Hz), 7. 37 (1H, dd, J=8. 7, 2. 7Hz), 7. 80 (1H, dd, J=1. 8, 0. 9Hz), 7. 84 (1H, dd, J=1. 8, 0. 9Hz), 7. 92 (1H, d, J=3. 0Hz), 14. 88 (2H, br).

例 40:2-ビドロキシ-N-5-[(トリフルオロメチル) -1, 3, 4-チアジアゾ-ル-2-イル] ベンズアミド (化合物番号 40)

(1) 2-アセトキシ-N-5-[(トリフルオロメチル)-1, 3, 4-チアジアゾール-2-イル] ベンズアミド

原料として、o-アセチルサリチル酸クロリド、及び2-アミノ-5-(トリフルオロメチル)-1, 3, 4-チアジアゾールを用いて例 2 (1) と同様の操作を行い、標題化合物を得た。

収率:51.1%

¹H-NMR (DMSO-d₆, δ): 2. 23 (3H, s), 7. 32 (1H, d d, J=8. 0, 1. 2Hz), 7. 45 (1H, td, J=7. 6, 1. 2Hz), 7. 69 (1H, td, J=8. 0, 2. 0Hz), 7. 87 (1H, dd, J=8. 0, 2. 0Hz), 13. 75 (1H, brs).

原料として、2-アセトキシ- N- 5 - [(トリフルオロメチル) - 1, 3, 4 - チアジアゾール- 2 - イル] ベンズアミドを用いて例 2 (2) と同様の操作を行い、標題化合物を得た。

収率:92.9%

¹H-NMR (DMSO- d_6): δ 7. 00 (1H, td, J=8. 0, 0. 8Hz), 7. 06 (1H, d, J=8. 4Hz), 7. 51 (1H, ddd, J=8. 4, 7. 6, 2. 0Hz), 7. 92 (1H, dd, J=8. 0, 1. 6Hz), 12. 16 (1H, br).

例 41:5-プロモ-2-ヒドロキシ-N-[5-(トリフルオロメチル)-1, 3, 4-チアジアゾール-2-イル] ベンズアミド (化合物番号 41)

原料として、5-プロモサリチル酸、及び<math>2-アミノ-5-(トリフルオロメチル)-1, 3, 4-チアジアゾールを用いて例<math>16と同様の操作を行い、標題化合物を得た。

収率:80.2%

¹H-NMR (DMSO-d₆): δ 7. 01 (1H, d, J=9.0Hz), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 97 (1H, d, J=2.4Hz).

例42:5-クロロ-N-(2-クロロピリジン-4-イル)-2-ヒドロキシ

ベンズアミド (化合物番号42)

原料として、5-クロロサリチル酸、及び4-アミノ-2-クロロピリジンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.2%

¹H-NMR (DMSO- d_6): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 3.0Hz), 7. 54 (1H, d, J=8.4 Hz), 7. 88 (1H, d, J=2.7Hz), 8. 21 (1H, dd, J=8.7, 2.7Hz), 8. 74 (1H, d, J=2.7Hz), 10. 62 (1H, s), 11. 57 (1H, s).

例43:5-クロローN-(6-クロロー4-メトキシピリミジン-2-イル) -2-ヒドロキシベンズアミド(化合物番号43)

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロ-4-メト キシピリミジンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:2.2%、白色固体

¹H-NMR (DMSO-d₆): δ 3. 86 (3H, s), 6. 85 (1H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 81 (1H, d, J=3. 0Hz), 11. 08 (1H, s), 11. 65 (1H, s).

例44:2-アセトキシー5-クロロ-N- (インドール-2-イル) ベンズアミド (化合物番号44)

原料として、2-アセトキシ-5-クロロサリチル酸、及び2-アミノインド ールを用いて例24と同様の操作を行い、標題化合物を得た。

収率:13.3%

¹H-NMR (DMSO-d₆): δ 2. 20 (3H, s), 6. 41 (1H, t, J=2. 1Hz), 7. 27-7. 36 (4H, m), 7. 63 (1H, dd, J

=8. 7, 2. 7 Hz), 7. 74 (1H, d, J=2. 7 Hz), 7. 93 (1 H, s), 10. 21 (1H, s), 11. 04 (1H, s).

例45:7-[(2-アセトキシベンゾイル) アミノ] インドール<math>-3-カルボン酸 エチルエステル (化合物番号45)

本化合物は、市販化合物である。

販売元:Peakdale社

カタログコード番号: PFC-0448

例46:5-クロロー2-ヒドロキシ-N-(キノリン-3-イル)ベンズアミド(化合物番号46)

原料として、5-クロロサリチル酸、及び2-アミノキノリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率: 4. 3%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8. 7Hz), 7. 51 (1H, dd, J=9. 0, 3. 0Hz), 7. 61 (1H, dt, J=7. 8, 1. 2Hz), 7. 70 (1H, dt, J=7. 8, 1. 5Hz), 7. 98 (2H, d, J=3. 0Hz), 8. 01 (1H, s), 8. 82 (1H, d, J=2. 4Hz), 10. 80 (1H, s), 11. 74 (1H, s).

例47:N-(9-エチルカルバゾール-3-イル)-5-クロロ-2-ヒドロキシベンズアミド(化合物番号47)

原料として、5-クロロサリチル酸、及び3-アミノ-9-エチルカルバゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.6%

¹H-NMR (DMSO- d_6): δ 1. 33 (3H, t, J=7.0Hz), 4. 46 (2H, q, J=7.0Hz), 7. 04 (1H, d, J=9.0Hz), 7.

21 (1H, t, J=7. 3Hz), 7. 45-7. 52 (2H, m), 7. 64
-7. 65 (2H, m), 7. 70 (1H, d, J=8. 4, 1. 9Hz), 8.
11-8. 15 (2H, m), 8. 49 (1H, d, J=1. 9Hz), 10. 5
5 (1H, s), 12. 22 (1H, s).

例48:2-アセトキシー[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(化合物番号95)

原料として、o-アセチルサリチル酸クロリド、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例2(1)と同様の操作を行い、標題化合物を得た。

収率:84.2%

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, s), 7. 19 (1H, d d, J=8.0, 1.2Hz), 7. 39 (1H, td, J=7.6, 1.2Hz), 7. 57 (1H, ddd, J=8.0, 7.6, 1.6Hz), 7. 65 (1H, s), 7. 83 (1H, dd, J=8.0, 1.6Hz), 8. 11 (2H, s), 8. 31 (1H, s).

例49:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキ シベンズアミド (化合物番号48)

原料として、2-アセトキシー[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。 収率:45.1%

¹H-NMR (DMSO-d₆): δ 6. 96-7. 02 (2H, m), 7. 45 (1H, ddd, J=8. 0, 7. 2, 1. 6Hz), 7. 81 (1H, s), 7. 87 (1H, dd, J=8. 0, 1. 6Hz), 8. 46 (2H, s), 10. 8 0 (1H, s), 11. 26 (1H, s).

例50:N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-フルオロ -2-ヒドロキシベンズアミド(化合物番号49)

原料として、5-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.7%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, ddd, J=9.0, 4.5, 1.2Hz), 7. 30-7. 37 (1H, m), 7. 66 (1H, ddd, J=9.0, 3.3, 1.2Hz), 7. 84 (1H, s), 8. 46 (2H, s), 10. 85 (1H, s), 11. 21 (1H, brs).

例51:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロー 2-ヒドロキシベンズアミド(化合物番号50)

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:85.5%

¹H-NMR (DMSO-d₆): δ 7. 05 (1H, d, J=8.7Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 85 (1H, s), 7. 87 (1H, d, J=2.7Hz), 8. 45 (2H, s), 10. 85 (1H, s), 11. 39 (1H, s).

例52:N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ブロモー 2-ヒドロキシベンズアミド(化合物番号51)

原料として、5 ープロモサリチル酸、及び3,5 ービス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:88.5%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 59 (1H, dd, J=8.8, 2.8Hz), 7. 83 (1H, s), 7. 98

(1H, d, J=2.8Hz), 8. 43 (2H, s), 10. 82 (1H, s), 11. 37 (1H, s).

例 5 3: N- [3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-ヨードベンズアミド (化合物番号 5 2)

原料として、5-ヨードサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.2%

¹H-NMR (DMSO-d₆): δ 6. 86 (1H, d, J=8. 4Hz), 7. 74 (1H, dd, J=8. 7, 2. 4Hz), 7. 84 (1H, s), 8. 13 (1H, d, J=2. 1Hz), 8. 84 (2H, s), 10. 82 (1H, s), 11. 41 (1H, s).

例54:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-ニトロベンズアミド (化合物番号53)

原料として、5-ニトロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.2%

¹H-NMR (DMSO-d₆): δ 7. 18 (1H, d, J=9.0Hz), 7. 86 (1H, s), 8. 31 (1H, dd, J=9.0, 3.0Hz), 8. 45 (2H, s), 8. 70 (1H, d, J=3.0Hz), 11. 12 (1H, s).

例55:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-シアノー 2-ヒドロキシベンズアミド(化合物番号54)

原料として、5 - シアノサリチル酸、及び3,5 - ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.6%

¹H-NMR (DMSO-d₆): δ 7. 15 (1H, d, J=8. 7Hz), 7. 85 (1H, s), 7. 86 (1H, dd, J=8. 7, 2. 1Hz), 8. 22 (1H, d, J=2. 4Hz), 8. 43 (2H, s), 10. 93 (1H, s), 12. 00 (1H, brs).

例 56:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-メチルベンズアミド(化合物番号 <math>55)

原料として、5-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:54.9%

¹H-NMR (DMSO-d₆): δ 6. 92 (1H, d, J=8. 7Hz), 7. 28 (1H, dd, J=8. 7, 1. 8Hz), 7. 71 (1H, d, J=1. 8 Hz), 7. 82 (1H, s), 8. 47 (2H, s), 10. 80 (1H, s), 11. 14 (1H, s).

例 5 7: N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-(1, 1 -ジメチル) エチル-2-ヒドロキシベンズアミド (化合物番号 5 6)

原料として、5-[(1, 1-ジメチル). エチル] サリチル酸、及び<math>3, 5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:53.8%

¹H-NMR (DMSO-d₆): δ 1. 30 (9H, s), 6. 96 (1H, d, J=8. 7Hz), 7. 50 (1H, dd, J=8. 7, 2. 4Hz), 7. 82 (1H, d, J=2. 4Hz), 7. 83 (1H, s), 8. 46 (2H, s), 10. 80 (1H, s) 11. 12 (1H, s).

例58:5-アセチルーN-[3, 5-ビス(トリフルオロメチル)フェニル]

-2-ヒドロキシベンズアミド(化合物番号78)

(1) 5-アセチル-2-ベンジルオキシ安息香酸 メチルエステル

5-アセチルサリチル酸 メチルエステル (13.59g,70mmol)、ベンジルブロミド (17.96g,105mmol)、炭酸カリウム (19.35g,140mmol)、メチルエチルケトン (350mL) の混合物を 8時間加熱環流した。冷却後、溶媒を減圧留去し、残渣に 2規定塩酸を加え、酢酸エチルで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をイソプロピルエーテルから再結晶して、標題化合物の白色固体 (14.20g,71.4%) を得た。

¹H-NMR (CDCl₃): δ 2. 58 (3H, s), 3. 93 (3H, s), 5. 27 (2H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 26-7. 43 (3H, m), 7. 47-7. 50 (2H, m), 8. 07 (1H, dd, J=8. 7, 2. 4Hz), 8. 44 (1H, d, J=2. 4Hz).

(2) 5-アセチル-2-ベンジルオキシ安息香酸

5-アセチルー2ーベンジルオキシ安息香酸 メチルエステル (5.69g, 20mmol)をメタノール (20mL)、テトラヒドロフラン (20mL)の混合溶媒に溶解し、2規定水酸化ナトリウム (11mL)を滴下し、8時間撹拌した。溶媒を減圧留去し、残渣に2規定塩酸を加え、ジクロロメタンで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をイソプロピルエーテルで洗浄して、標題化合物の白色固体 (4.92g, 91.0%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 55 (3H, s), 5. 32 (2H, s), 7. 30-7. 43 (4H, m), 7. 49-7. 52 (2H, m), 8. 09 (1 H, dd, J=9. 0, 2. 7Hz), 8. 22 (1H, d, J=2. 4Hz).

(3) 5-アセチル-2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロ

メチル)フェニル]ベンズアミド

原料として、5-アセチル-2-ベンジルオキシ安息香酸、及び3,5-ビス (トリフルオロメチル)アニリンを用いて例24と同様の操作を行い、標題化合物の微黄緑色固体(5.47g,63.1%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 57 (3H, s), 7. 11 (1H, d, J=8. 7Hz), 7. 86 (1H, s), 8. 05 (1H, dd, J=8. 4, 2. 1Hz), 8. 44 (1H, d, J=2. 1Hz), 8. 47 (2H, s), 10. 96 (1H, s), 11. 97 (1H, brs).

(4) 5-アセチル-N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミドの製造

5-アセチルー2-ベンジルオキシーN-[3, 5-ビス (トリフルオロメチル)フェニル]ベンズアミド (602mg, 1.25mmo1)、5%パラジウム炭素 (60mg) にエタノール (6mL)、テトラヒドロフラン (72mL) を加え、室温で30分間水素添加した。不溶物を濾別後、溶媒を減圧留去し、残渣をn-ヘキサンー酢酸エチルから再結晶して、標題化合物の白色固体(230mg, 47.0%) を得た。

¹H-NMR (DMSO-d₆): δ 2. 59 (3H, s), 5. 35 (2H, s), 7. 32-7. 36 (3H, m), 7. 43 (1H, d, J=8. 7Hz), 7. 52-7. 55 (2H, m), 7. 82 (1H, s), 8. 16 (1H, dd, J=8. 7, 2. 4Hz), 8. 25 (1H, d, J=2. 4Hz), 8. 31 (2H, s), 10. 89 (1H, s).

例 59:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(1-ヒドロキシエチル)ベンズアミド(化合物番号 <math>57)

5-アセチル-N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド (50. 5mg, 0. 13mm o1) をエタノール (2

mL) に懸濁し、水素化ホウ素ナトリウム(23.6 mg, 0.62 mm o 1)を加え、室温で12時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をイソプロピルエーテル/nーへキサンで懸濁洗浄して標題化合物の白色粉末(39.7 mg, 78.3%)を得た。

¹H-NMR (DMSO-d₆): δ 1.34 (3H, d, J=6.3Hz), 4.71 (1H, q, J=6.3Hz), 5.18 (1H, brs), 6.97 (1H, d, J=8.4Hz), 7.44 (1H, dd, J=8.4, 2.1Hz), 7.84 (1H, s), 7.86 (1H, d, J=2.1Hz), 8.48 (2H, s), 10.85 (1H, s), 11.32 (1H, s).

例60:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(1-メトキシイミノ)エチル]ベンズアミド(化合物番号58)

 $5-アセチル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(100.0mg,0.26mmol)をエタノール(3mL)に溶かし、ピリジン(45<math>\mu$ 1,0.56mmol)、O-メチルヒドロキシルアミン塩酸塩(25.8mg,0.31mmol)を加え、1時間加熱還流した。冷却後、反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色結晶(102.1mg,95.3%)を得た。

¹H-NMR (DMSO- d_6): δ 2. 19 (3H, s), 3. 91 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 7. 77 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 8. 09 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 87 (1H, s), 11. 48 (1H, s).

例61:5-[(1-ベンジルオキシイミノ) エチル] -N-[3,5-ビス(ト

リフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号 59) 原料として、5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド、及びO-ベンジルヒドロキシルアミン塩酸塩を用いて例 60と同様の操作を行い、標題化合物を得た。

収率:79.9%

¹H-NMR (DMSO-d₆): δ 2. 24 (3H, s), 5. 20 (2H, s), 7. 04 (1H, d, J=8. 7Hz), 7. 29-7. 47 (5H, m), 7. 76 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 8. 07 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 87 (1H, s), 11. 47 (1H, s).

例62:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(2,2 ージシアノエテン-1-イル)-2-ヒドロキシベンズアミド(化合物番号60) (1)5-(2,2-ジシアノエテン-1-イル)-2-ヒドロキシ安息香酸 マロノニトリル(132mg,2mmol)をエタノール(6mL)に溶解し、 5-ホルミルサリチル酸(332mg,2mmol)を加え、氷浴で冷却した後、 ベンジルアミン(0.1mL)を加え、室温で2時間攪拌した。析出した黄色結晶をろ取し、再結晶(エタノール)して標題化合物の淡黄色固体(139.9mg,32.7%)を得た。

¹H-NMR (DMSO- d_6): δ 7. 12 (1H, d, J=8.7Hz), 8. 09 (1H, dd, J=8.7, 2.4Hz), 8. 41 (1H, s), 8. 50 (1H, d, J=2.4Hz).

(2) N- [3, 5-ビス (トリフルオロメチル) フェニル]-5-(2, 2-ジシアノエテン-1-イル) -2-ヒドロキシベンズアミド

様の操作を行い、標題化合物を得た。

収率:9.1%

¹H-NMR (DMSO- d_6): δ 7. 13 (1H, d, J=9.0Hz), 7. 83 (1H, s), 8. 04 (1H, dd, J=9.0, 2.4Hz), 8. 36 (1H, s), 8. 38 (1H, d, J=2.4Hz), 8. 43 (2H, s), 1 1. 43 (1H, s).

例 $63:3-({N-[3,5-ビス(トリフルオロメチル)フェニル] カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル(化合物番号<math>62$)

(1) 5- [(2-シアノ-2-メトキシカルボニル) エテン-1-イル] -2-ヒドロキシ安息香酸

5-ホルミルサリチル酸(332mg, 2mmol)、シアノ酢酸メチルエステル(198mg, 2mmol)、酢酸(6mL)の混合物にトリエチルアミン(0.2ml)を加え、5時間加熱還流した。冷却後、反応混合物を水にあけ、析出した結晶をろ取し、再結晶(n-ヘキサン)して標題化合物の淡黄色固体(327.7mg, 66.3%)を得た。

¹H-NMR (DMSO- d_6): δ 3. 85 (3H, s), 7. 15 (1H, d, J=8. 7Hz), 8. 20 (1H, dd, J=8. 7, 2. 4Hz), 8. 37 (1H, s), 8. 66 (1H, d, J=2. 4Hz).

(2) $3-({N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル 原料として、<math>5-[(2-シアノ-2-メトキシカルボニル)エテン-1-イル]-2-ヒドロキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た 収率 66.3%$

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 7. 15 (1H, d, J=8. 7Hz), 8. 20 (1H, dd, J=8. 7, 2. 4Hz), 8. 37 (1H, s), 8. 66 (1H, d, J=2. 4Hz).

例64:3-({N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸(化合物番号61)3-({N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸メチルエステル(50mg,0.11mmol)をエタノール(5mL)に溶解し、2規定水酸化ナトリウム(0.11ml,0.22mmol)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣を再結晶(酢酸エチル)して標題化合物の淡黄色固体(13.5mg,30.4%)を得た。1H-NMR(DMSO-d₆):δ7.12(1H,d,J=8.4Hz),7.84(1H,s),7.94(1H,dd,J=8.4,2.1Hz),8.38(1H,d,J=2.1Hz),8.38(1H,d,J=2.1Hz),8.45(2H,s),9.87(1H,s),1

例65:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー5-(2-フェニルエテンー1-イル) ベンズアミド (化合物番号63) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー5-ヨードベンズアミド (475mg, 1mmo1)、スチレン (130mg, 1.25mmo1)、酢酸パラジウム (4.5mg, 0.02mmo1)、トリス (オルトートリル) ホスフィン (12.2mg, 0.04mmo1)、ジイソプロピルアミン (388mg, 3mmo1)、N, Nージメチルホルムアミド (2mL) の混合物を8時間加熱還流した。冷却後、水を加え酢酸エチルで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をシリカゲルカラ

ムクロマトグラフィー(ヘキサンーイソプロピルエーテル: $2/1\rightarrow 1/1$)で精製して標題化合物の淡黄色固体($173\,\mathrm{mg}$, 38.3%)を得た。 $^1\mathrm{H-NMR}$ ($\mathrm{DMSO-d_6}$): δ 7.04 ($1\mathrm{H}$, d , $\mathrm{J=8.4Hz}$), 7.20-7.29 ($3\mathrm{H}$, m), 7.38 ($2\mathrm{H}$, t , $\mathrm{J=7.5Hz}$), 7.59 ($2\mathrm{H}$, d , $\mathrm{J=7.5Hz}$), 7.72 ($1\mathrm{H}$, d d, $\mathrm{J=8.4}$, 2.1 Hz), 7.86 ($1\mathrm{H}$, s), 8.07 ($1\mathrm{H}$, d, $\mathrm{J=2.1Hz}$), 8.49 ($2\mathrm{H}$, s), 10.89 ($1\mathrm{H}$, s), 11.33 ($1\mathrm{H}$, brs).

例66:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-[(トリメチルシリル)エチニル]ベンズアミド(化合物番号66)N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5ーヨードベンズアミド(950mg,2mmo1)、トリメチルシリルアセチレン(246mg,2.5mmo1)をトリエチルアミン(2mL)及びN,Nージメチルホルムアミド(4mL)に溶解し、アルゴン雰囲気下にテトラキス(トリフェニルホスフィン)パラジウム(23mg,0.02mmo1)、沃化第一銅(4mg,0.02mmo1)を添加し、次いで40℃で2時間攪拌した。反応混合物を室温まで冷却後、酢酸エチル(100mL)及び1規定クエン酸(100mL)にあけて攪拌し、次いでセライト濾過した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=19:1)で精製して淡橙色固体を得た。これをnーヘキサンで結晶化して標題化合物の白色結晶(286mg,32.1%)を得た。

¹H-NMR (DMSO-d₆): δ 0. 23 (9H, s), 7. 00 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 7. 98 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 86 (1H, s), 11. 69 (1H, s).

例 67:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-エチニル <math>-2-ヒドロキシベンズアミド(化合物番号 64)

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(トリメチルシリル)エチニル]ベンズアミド(233mg.0.5mmol)をメタノール(1mL)に溶解し2規定水酸化ナトリウム(1mL)を添加し、次いで室温で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた残渣をエタノール-水で晶析して標題化合物の灰白色結晶(67mg,35.9%)を得た。

¹H-NMR (DMSO- d_6): δ 4. 11 (1H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 4, 2. 1Hz), 7. 85 (1H, s), 7. 98 (1J, d, J=2. 1Hz), 8. 46 (2H, s), 8. 46 (2H, s), 10. 86 (1H, s), 11. 62 (1H, s).

例 68:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(フェニルエチニル)ベンズアミド(化合物番号 <math>65)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド、及びフェニルアセチレンを用いて例66と同様の操作を行い、標題化合物を得た。

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8. 4Hz), 7. 42-7. 46 (3H, m), 7. 53-7. 57 (2H, m), 7. 64 (1H, dd, J=8. 7, 2. 1Hz), 7. 86 (1H, s), 8. 06 (1H, d, J=2. 1Hz), 8. 48 (2H, s), 10. 94 (1H, s), 11. 64 (1H, brs).

例69:N-[3,5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキ ・ シビフェニル-3-カルボキサミド(化合物番号67)

N-[3, 5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシー5 ーヨードベンズアミド(200mg, 0. 42mmol)、を1, 2-ジメトキシエタン(3mL)に溶解し、アルゴン雰囲気下にテトラキス(トリフェニルホスフィン)パラジウム(16mg, 0. 0014mmol)を添加し、室温で5分間攪拌した。次いでジヒドロキシフェニルボラン(57mg, 0. 47mmol)及び1M炭酸ナトリウム(1. 3mL)を添加し、次いで2時間加熱還流した。反応混合物を室温まで冷却後 希塩酸にあけて酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=6:1→3:1)で精製して標題化合物の白色結晶(109mg, 61.1%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 12 (1H, d, J=8. 7Hz), 7. 33-7. 38 (1H, m), 7. 48 (2H, t, J=7. 5Hz), 7. 67 -7. 70 (2H, m), 7. 79 (1H, dd, J=8. 4, 2. 4Hz), 7. 87 (1H, s), 8. 17 (1H, d, J=2. 4Hz), 8. 49 (2H, s), 10. 92 (1H, s), 11. 41 (1H, s).

例 7 0: N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-(2-フェネチル) ベンズアミド (化合物番号68)

原料として、N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-(フェニルエチニル) ベンズアミドを用いて例 <math>58(4) と同様の操作を行い、標題化合物を得た。

収率:86.2%

¹H-NMR (DMSO-d₆): δ 2. 88 (4H, s), 6. 93 (1H, d, J=8. 1Hz), 7. 15-7. 34 (6H, m), 7. 76 (1H, d, J=2. 4Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 79 (1H, s), 11. 15 (1H, s).

例71:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(トリフルオロメチル)ベンズアミド(化合物番号<math>69)

原料として、2-ヒドロキシ-5-(トリフルオロメチル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た(2-ヒドロキシ-5-(トリフルオロメチル)安息香酸:Chem. Pharm. Bull, 1996, 44, 734.参照)。

収率:44.7%

¹H-NMR (CDCl₃, δ): 7. 17 (1H, d, J=9. 0Hz) 7. 7 2-7. 75 (2H, m), 7. 86 (1H, s), 8. 17 (2H, s), 8. 3 5 (1H, s) 11. 88 (1H, s).

例72:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ペンタフルオロエチル)ベンズアミド(化合物番号<math>70)

原料として、2-ヒドロキシ-5-(ペンタフルオロエチル)安息香酸、及び 3, 5-ビス(トリフルオロメチル)アニリンを用いて例 16と同様の操作を行い、標題化合物を得た(2-ヒドロキシ-5-(ペンタフルオロエチル)安息香酸: Chem. Pharm. Bull, 1996, 44, 734. 参照)。

収率:65.7%

¹H-NMR (CDCl₃, δ): 7. 19 (1H, d, J=9. 0Hz) 7. 7 0 (1H, dd, J=8. 7, 2. 1Hz), 7. 81 (1H, d, J=2. 1 Hz), 8. 17 (2H, s), 8. 37 (1H, s), 11. 92 (1H, s).

例73:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピロール-1-イル)ベンズアミド(化合物番号<math>71)

原料として、2-ビドロキシ-5-(ピロール-1-イル) 安息香酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、

標題化合物を得た。

収率:57.8%

¹H-NMR (DMSO- d_6): δ 6. 27 (2H, dd, J=2. 4, 1. 8Hz), 7. 10 (1H, d, J=9. 0Hz), 7. 29 (2H, dd, J=2. 4, 1. 8Hz), 7. 66 (1H, dd, J=9. 0, 2. 7Hz), 7. 86 (1H, s), 7. 98 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 89 (1H, s), 11. 24 (1H, s).

例 74:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(チオフェン-2-イル)ベンズアミド(化合物番号 <math>72)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド、及び<math>2-チオフェンボロン酸を用いて例69と同様の操作を行い、標題化合物を得た。

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8. 4Hz), 7. 14 (1H, dd, J=5. 4, 3. 6Hz), 7. 45 (1H, dd, J=3. 6, 1. 2Hz), 7. 51 (1H, dd, J=5. 1, 0. 9Hz), 7. 75 (1H, dd, J=8. 4, 2. 4Hz), 7. 59 (1H, s), 8. 08 (1H, d, J=2. 4Hz), 8. 48 (2H, s), 10. 91 (1H, s), 11. 38 (1H, s).

例75:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(チオフェン-3-イル)ベンズアミド(化合物番号<math>73)

原料として、N-[3, 5-ビス (トリフルオロメチル) フェニル] <math>-2-ヒ ドロキシ-5-ョードベンズアミド、及び<math>3-チオフェンボロン酸例 69 と同様の操作を行い、標題化合物を得た。

収率:38.7%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7.06 (1H, d, J=8.7Hz), 7.

57 (1H, dd, J=4.8, 1.5Hz), 7.66 (1H, dd, J=4.8, 3.0Hz), 7.81-7.84 (2H, m), 7.86 (1H, s), 8.18 (1H, d, J=2.1Hz), 8.49 (2H, s), 10.90 (1H, s), 11.33 (1H, s).

例76:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(2-メチルチアゾール-4-イル)ベンズアミド(化合物番号75)(1)2-ベンジルオキシ-5-(2-プロモアセチル)-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド

5-アセチルー2-ベンジルオキシーN-[3, 5-ピス(トリフルオロメチル)フェニル] ベンズアミド(4.81g, 10mmo1)をTHF(30m1)に溶解し、フェニルトリメチルアンモニウムトリプロミド(3.75g, 10mmo1)を加え、室温で12時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を亜硫酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、再結晶(酢酸エチル/ヘキサン)して標題化合物の白色固体(2.39g, 42.7%)を得た。 ^1H-NMR ($DMSO-d_6$): δ 4.91(2H, s), 5.36(2H, s), 7.32-7.35(3H, m), 7.47(1H, d, J=9.0Hz), 7.52-7.56(2H, m), 7.82(1H, m), 8.21(1H, m), 10.91 (1H, m), 10.91

(2) 2-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(2-メチルチアゾール-<math>4-イル)ベンズアミド

2-ベンジルオキシ-5-(2-プロモアセチル)-N-[3, 5-ピス (トリフルオロメチル)フェニル]ベンズアミド (280mg, 0.5mmol)、チ

オアセタミド (41mg, 0.55mmo1)、炭酸水素ナトリウム (50mg, 0.60mmo1)、エタノール (15mL) の混合物を1時間加熱還流した。反応混合物を水にあけ、炭酸水素ナトリウムで中和し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (ヘキサン:酢酸エチル=4:1) で精製して標題化合物の白色固体 (181mg, 67.5%) を得た。
1 H-NMR (DMSO-d₆): δ 2.72 (3H, s), 5.29 (2H, s), 7.33-7.36 (3H, m), 7.40 (1H, d, J=9.0Hz), 7.54-7.57 (2H, m), 7.81 (1H, s), 7.94 (1H, s), 8.12 (1H, dd, J=8.7, 2.1Hz), 8.27 (1H, d, J=2.1Hz), 8.31 (2H, s), 10.86 (1H, s).

(3) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-(2-メチルチアゾール-4-イル) ベンズアミド 2-ベンジルオキシーN-[3, 5-ビス (トリフルオロメチル) フェニル] -5-(2-メチルチアゾール-4-イル) ベンズアミド (160mg, 0.3 mmol)、10%Pd-C (240mg) をエタノール (10ml) に溶かし、水素雰囲気下3.5時間攪拌した。反応混合物をろ過し、ろ液を減圧留去して標題化合物の白色固体 (103.4mg, 79.2%) を得た。 ¹H-NMR (DMSO-d₆):δ 2.72 (3H, s), 7.08 (1H, d, J=8.7Hz), 7.83 (1H, s), 7.85 (1H, s), 8.01 (1H, d, d, J=8.7, 2.4Hz), 8.42 (1H, d, J=2.1Hz), 8.

例 $7: N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー<math>5-(4 \le 6 5)$ (化合物番号75)

50 (2H, s), 10. 96 (1H, s), 11. 40 (1H, s).

2-ベンジルオキシ-5-(2-ブロモアセチル)-N-[3, 5-ビス(ト リフルオロメチル) フェニル] ベンズアミド (280mg, 0.5mmol)、2 ーアミノピリジン (51.8mg, 0.55mmol)、炭酸水素ナトリウム (5 0mg, 0.6mmol)、エタノール (10mL) の混合物を2時間加熱還流し た。冷却後、反応混合物を炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出 した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、 減圧留去して得られた残渣をシリカゲルクロマトグラフィー (n-ヘキサン:酢・ 酸エチル=1:2)で精製して標題化合物の白色固体(130.3mg,46. 9%) を得た。次いでこの固体 (108mg, 0.19mmol)、10%Pd-C (11mg)、エタノール (8mL)、酢酸エチル (8mL) の混合物を水素雰 囲気下、7時間攪拌した。反応混合物をろ過し、ろ液を減圧留去して得られた残 渣をシリカゲルクロマトグラフィー (n-ヘキサン:酢酸エチル=1:3) で精 製して標題化合物の白色固体(18.3mg,20.2%)を得た。 $^{1}H-NMR$ (DMSO-d₆): δ 6. 90 (1H, dt, J=6. 6, 0. 9 H z), 7. 10 (1H, d, J = 8.7 H z), 7. 25 (1H, m), 7. 5 7 (1H, d, J=9.0Hz), 7.86 (1H, s), 8.04 (1H, dd, J=8. 7, 2. 1Hz), 8. 35 (1H, s), 8. 48-8. 56 (4H, m), 11.00 (1H, s), 11.41 (1H, s).

例78:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-(ピリジン-2-イル) ベンズアミド (化合物番号76)

(1) N-[3, 5-ビス (トリフルオロメチル) フェニル]-5-ヨード-2-メトキシメトキシベンズアミド

N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-コードベンズアミド (4.75g, 10mmol)、クロロメチルメチルエーテル (1.14ml, 15mmol)、炭酸カリウム (2.76g, 20mmol)、アセトン (50mL) の混合物を8時間加熱還流した。反応混合物を希塩酸にあ

け、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、再結晶(n-ヘキサン/酢酸エチル)して標題化合物の白色固体(3.96g,76.3%)を得た。 ^1H-NMR ($DMSO-d_6$): δ 3.38(3H,s),5.28(2H,s),7.12(1H,d,J=9.0Hz),7.81(1H,s),7.82(1H,dd,J=8.7,2.4Hz),7.88(1H,d,J=2.4Hz),8.40(2H,s),10.87(1H,s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシー5-(ピリジン-2-イル)ベンズアミド

N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ヨード-2ーメトキシメトキシベンズアミド(0.20g,0.39mmol)をN,Nージメチルホルムアミド(8ml)に溶かし、トリーnーブチル(2ーピリジル)スズ(0.13ml,0.41mmol)、ジクロロビス(トリフェニルフォスフィン)パラジウム(32.1mg、0.05mmol)を加え、100℃で1.5時間攪拌した。冷却後、反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=2:1→1:1)で精製して標題化合物の白色粉末(37.9mg,20.8%)を得た。

1H-NMR(CDCl₈):る 3.64(3H,s),5.53(2H,s),7.23-7.28(1H,m),7.36(1H,d,J=8.7Hz),7.65(1H,s),7.77-7.84(2H,m),8.20(2H,s),8.31(1H,dd,J=8.7,2.4Hz),8.68-8.70(1H,m),8.83(1H,dd,J=2.4Hz),8.68-8.70(1H,m),8.83(1H,d,J=2.4Hz),10.12(1H,s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ

-5-(ピリジン-2-イル)ベンズアミド

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシー5-(ピリジン-2-イル)ベンズアミド(37.9mg,0.08mmo1)にメタノール(3m1)、濃塩酸(0.5m1)を加え、2時間加熱還流した。 冷却後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減、圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して標題化合物の白色粉末(16.2mg,47.2%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 13 (1H, d, J=8. 4Hz), 7. 33 (1H, d d d, J=7. 5, 6. 3, 1. 2Hz), 7. 86-7. 91 (2 H, m), 7. 97 (1H, d, J=7. 8Hz), 8. 20 (1H, d d, J=8. 7, 2. 1Hz), 8. 50 (2H, s), 8. 59 (1H, d, J=2. 4 Hz), 8. 64-8. 66 (1H, m), 10. 97 (1H, s), 11. 53 (1 H, s).

例79:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー5-メトキシベンズアミド (化合物番号77)

原料として、5-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:56.8%

¹H-NMR (DMSO- d_6): δ 3. 77 (3H, s), 6. 97 (1H, d, J=9. 0Hz), 7. 10 (1H, dd, J=9. 0, 3. 0Hz), 7. 43 (1H, d, J=3. 0Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 84 (1H, s), 10. 91 (1H, s).

例80:N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキ

シー5-イソブチリルベンズアミド(化合物番号79)

(1) 5-アセチル-2-メトキシ安息香酸 メチルエステル

5-アセチルサリチル酸 メチルエステル (5.00g, 25.7mmol)、 炭酸カリウム (7.10g, 51.4mmol)、N, Nージメチルホルムアミド (25mL) の混合物を氷浴で冷却した後、沃化メチル (2.5mL、40.1 mmol) を加え、室温で3時間攪拌した。反応混合物を水にあけ、塩酸で中和 し、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリ ウムで乾燥した後、減圧留去して得られた残渣を懸濁洗浄 (イソプロピルエーテ ル/nーヘキサン) して標題化合物の白色結晶 (5.17g, 96.5%) を得 た。

¹H-NMR (CDC1₃): δ 2. 59 (3H, s), 3. 92 (3H, s), 3. 99 (3H, s), 7. 04 (1H, d, J=8. 7Hz), 8. 12 (1H, dd, J=8. 7, 2. 4Hz), 8. 41 (1H, d, J=2. 4Hz).

(2) 5-イソブチリルー2-メトキシ安息香酸 メチルエステル

¹H-NMR (CDCl₃): δ 1. 22 (6H, d, J=6. 9Hz), 3. 5 2 (1H, m), 3. 92 (3H, s), 3. 98 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 8. 13 (1H, dd, J=8. 7, 2. 4Hz), 8. 42 (1H, d, J=2. 4Hz).

(3) 5-イソブチリルー2-メトキシ安息香酸

5-イソブチリルー2-メトキシ安息香酸 メチルエステル(143.1mg, 0.60mmol)をメタノール(5mL)に溶かし、2規定水酸化ナトリウム溶液(1ml)を加え、1時間加熱還流した。冷却後、反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して標題化合物の白色結晶(134mg,収率:定量的)を得た。

¹H-NMR (CDCl₃): δ 1. 22 (6H, d, J=6. 9Hz), 3. 5 9 (1H, m), 4. 15 (3H, s), 7. 16 (1H, d, J=8. 7Hz), 8. 24 (1H, dd, J=8. 7, 2. 4Hz), 8. 73 (1H, d, J=2. 1Hz).

(4) 5ーブチリルーNー[3, 5ービス(トリフルオロメチル)フェニル] - 2ーメトキシベンズアミド

原料として、5ーイソブチリルー2ーメトキシ安息香酸、及び3,5ービス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

¹H-NMR (CDCl₃): δ 1. 23 (6H, d, J=6. 9Hz), 3. 6 4 (1H, m), 4. 20 (3H, s), 7. 18 (1H, d, J=8. 7Hz), 7: 65 (1H, s), 8. 19 (2H, s), 8. 22 (1H, dd, J=8. 7, 2. 1Hz), 8. 88 (1H, d, J=2. 1Hz), 9. 98 (1H, s).

(5) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-イソブチリルベンズアミド

5-ブチリル-N-[3, 5-ビス (トリフルオロメチル) フェニル] <math>-2-メトキシベンズアミド (143.4mg, 0.33mmol)、2,4,6-コリ

ジン (3m1)、沃化リチウム (53.1mg, 0.40mmo1) の混合物を1時間加熱還流した。冷却後、反応混合物を2N 塩酸にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (n-n+y):酢酸エチル=3:1) で精製し、結晶化(酢酸エチル/イソプロピルエーテル)して標題化合物の白色結晶 (90.3mg, 65.3%) を得た。

¹H-NMR (DMSO- d_6): δ 1. 12 (6H, d, J=6. 9Hz), 3. 66 (1H, m), 7. 12 (1H, d, J=8. 4Hz), 7. 85 (1H, s), 8. 07 (1H, dd, J=8. 4, 2. 4Hz), 8. 45 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 93 (1H, s), 11. 95 (1H, brs).

例81:N-[3,5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキ・ シイソフタラミン酸 メチルエステル(化合物番号81)

原料として、4-ヒドロキシイソフタル酸-1-メチルエステル、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行って、標題化合物を得た。

収率:91.5%)

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 7. 12 (1H, d, J=8. 4Hz), 7. 86 (1H, s), 8. 02 (1H, dd, J=8. 7, 2. 4Hz), 8. 46-8. 47 (3H, m), 10. 96 (1H, s), 12. 03 (1H, brs).

例82:N-[3,5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシイソフタラミン酸(化合物番号80)

N-[3, 5-ビス (トリフルオロメチル) フェニル] -4-ヒドロキシイソ フタラミン酸 メチルエステル <math>(2.85g, 7mmol) をメタノール (14

mL)、テトラヒドロフラン(14mL)の混合溶媒に懸濁し、2規定水酸化ナトリウム水溶液(14mL)を滴下、次いで2時間加熱還流した。冷却後、2規定塩酸(20ml)を添加し、析出した固体を濾取、水洗、乾燥して標題化合物の白色結晶(2.68g,97.4%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 10 (1H, d, J=8. 7Hz), 7. 82 (1H, s), 7. 86 (1H, s), 8. 01 (1H, dd, J=8. 7, 2. 4Hz), 8. 47 (2H, s), 8. 48 (1H, d, J=2. 4Hz), 10. 97 (1H, s), 11. 98 (1H, brs).

例83: N^1 , N^3 -ビス [3, 5-ビス (トリフルオロメチル) フェニル] -4-ヒドロキシイソフタルアミド (化合物番号82)

4-ビドロキシイソフタル酸(182mg, 1mmo1)、3, 5-ビス(トリフルオロメチル)アニリン(687mg, 3mmo1)、三塩化リン($87\mu1$; 1mmo1)、トルエン(10mL)を用いて例16と同様の操作を行い、標題化合物の白色結晶(151mg, 25.0%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 18 (1H, d, J=8.7Hz), 7. 82 (1H, s), 7. 86 (1H, s), 8. 11 (1H, dd, J=8.7, 2. 4Hz), 8. 50 (2H, s), 8. 54 (2H, s), 8. 56 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 10. 99 (1H, s), 11. 84 (1H, brs).

例84: $N^3-[3,5-$ ビス (トリフルオロメチル) フェニル] -4-ヒドロキシ $-N^1$, N^1- ジメチルイソフタルアミド (化合物番号83)

(1) 4ーベンジルオキシーNー [3, 5ービス (トリフルオロメチル) フェニル] イソフタラミン酸 メチルエステル

水素化ナトリウム(60%; 1.04g, 26mmol)をn-ヘキサンで洗 浄してN, N-ジメチルホルムアミド(100mL)に懸濁し、氷浴で冷却しな

がらN-[3,5-ビス(トリフルオロメチル)フェニル] -4-ヒドロキシイソフタラミン酸 メチルエステル(8.15g,20mmol)のN,N-ジメチルホルムアミド(100mL)溶液を滴下した。滴下終了後、室温で1時間攪拌した後、ベンジルブロミド(4.45g,26mmol)のN,N-ジメチルホルムアミド(10mL)溶液を加え、60℃で3時間攪拌した。冷却後、反応混合物を氷水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣を再結晶(酢酸エチル/n-ヘキサン)して標題化合物の白色固体(5.38g,54.1%)を得た。

¹H-NMR (DMSO- d_6): δ 3. 87 (3H, s), 5. 33 (2H, s), 7. 33-7. 36 (3H, m), 7. 46 (1H, d, J=8. 7Hz), 7. 53-7. 56 (2H, m), 7. 82 (1H, s), 8. 15 (1H, dd, J=8. 7, 2. 1Hz), 8. 25 (1H, d, J=2. 1Hz) 8. 28 (2H, s), 10. 87 (1H, s).

(2) 4ーベンジルオキシーNー[3,5ービス(トリフルオロメチル)フェニル]イソフタラミン酸

原料として、4 ーベンジルオキシーNー[3,5ービス(トリフルオロメチル)フェニル]イソフタラミン酸 メチルエステルを用いて例82と同様の操作を行い、標題化合物を得た。

収率:79.7%

¹H-NMR (DMSO-d₆): δ 5. 32 (2H, s), 7. 32-7. 34 (3H, m), 7. 43 (1H, d, J=8. 7Hz), 7. 52-7. 56 (2H, m), 7. 81 (1H, s), 8. 12 (1H, dd, J=8. 7, 2. 1Hz), 8. 22 (1H, d, J=2. 1Hz), 8. 28 (2H, s), 10. 85 (1H, s), 13. 81 (1H, brs).

(3) $4-ベンジルオキシ-N^3-[3,5-ビス(トリフルオロメチル)フェニル]-N^1, <math>N^1$ -ジメチルイソフタルアミド

4ーベンジルーNー[3,5ーピス(トリフルオロメチル)フェニル]イソフタラミン酸(242mg,0.50mmol)、ジメチルアミン塩酸塩(41mg,0.50mmol)、トリエチルアミン(51mg,0.50mmol)のテトラヒドロフラン(5mL)溶液に、氷冷下WSC・HCl(95mg,0.50mmol)を加え、その後室温で3時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を希塩酸、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=1:4)で精製して標題化合物の白色固体(165mg,64.9%)を得た。

¹H-NMR (DMSO- d_6): δ 2. 99 (6H, s) 5. 29 (2H, s), 7. 32-7. 38 (4H, m), 7. 52-7. 56 (2H, m), 7. 64 (1H, dd, J=8. 7, 2. 1Hz), 7. 73 (1H, d, J=2. 1Hz), 7. 80 (1H, s), 8. 28 (2H, s), 10. 83 (1H, s).

(4) $N^3-[3,5-ビス(トリフルオロメチル)フェニル] <math>-4-ヒドロキ$ シー N^1 、 $N^1-ジメチルイソフタルアミド$

¹H-NMR (DMSO- d_6): δ 2. 98 (6H, s), 7. 02 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 1Hz), 7. 84 (1H, s), 7. 95 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 1. 10 (1H, brs), 11. 63 (1H, brs).

WO 02/49632

PCT/JP01/11084

例85:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキ シー5-(ピペリジン-1-カルボニル) ベンズアミド

(1) 2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(ピペリジン-1-カルボニル)ベンズアミド

原料として、4ーベンジルーNー[3,5ービス(トリフルオロメチル)フェニル]イソフタラミン酸、及びピペリジンを用いて例84(3)と同様の操作を行い、標題化合物を得た。

収率:56.4%

¹H-NMR (CDC1₃): δ 1. 53-1. 70 (6H, m), 3. 44 (2H, brs), 3. 70 (2H, brs), 5. 26 (2H, s), 7. 24 (1H, d, J=8. 7Hz), 7. 26 (1H, s), 7. 52-7. 58 (5H, m), 7. 66 (2H, s), 7. 74 (1H, dd, J=8. 7, 2. 4Hz), 8. 37 (1H, d, J=2. 1Hz), 10. 27 (1H, s).

(2) N− [3, 5−ビス (トリフルオロメチル) フェニル] −2−ヒドロキシ−5− (ピペリジン−1−カルボニル) ベンズアミド

原料として、2 ーベンジルオキシーN ー [3, 5 ービス (トリフルオロメチル) フェニル] ー 5 ー (ピペリジンー1 ーカルボニル) ベンズアミドを用いて例 8 4 (4) と同様の操作を行い、標題化合物を得た。

収率:96.3% 白色固体

¹H-NMR (DMSO-d₆): δ 1. 51 (4H, brs), 1. 60-1. 65 (2H, m), 3. 47 (4H, brs), 7. 04 (1H, d, J=8. 4 Hz), 7. 48 (1H, dd, J=8. 4, 2. 1Hz), 7. 85 (1H, s), 7. 92 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 99 (1H, s), 11. 64 (1H, brs).

例86:5-(4-ベンジルピペリジン-1-カルボニル)-N-[3,5-ビス (トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド

(1) 2-ベンジルー5- (4-ベンジルピペリジン-1-カルボニル) - N- [3, 5-ビス (トリフルオロメチル) フェニル] ベンズアミド

原料として、4ーベンジルーNー[3,5ービス(トリフルオロメチル)フェニル]イソフタラミン酸、及び4ーベンジルピペリジンを用いて例84(3)と同様の操作を行い、標題化合物を得た。

収率:76.7%

¹H-NMR (CD₃OD): δ 1. 18-1. 38 (2H, m), 1. 67 (1H, brs), 1. 74 (1H, brs), 1. 84-1. 93 (1H, m), 2. 60 (2H, d, J=7. 2Hz), 2. 83 (1H, brs), 3. 10 (1H, brs), 3. 78 (1H, brs), 4. 59 (1H, brs), 5. 34 (2H, s), 7. 15-7. 18 (3H, m), 7. 24-7. 28 (2H, m), 7. 40-7. 46 (4H, m), 7. 57-7. 63 (3H, m), 7. 65 (1H, dd, J=8. 7, 2. 4Hz), 7. 96 (2H, s), 8. 05 (1H, d, J=2. 1Hz).

(2) N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-(4-ベンジルピペリジン-1-カルボニル)ベンズアミド原料として、2-ベンジルー5-(4-ベンジルピペリジン-1-カルボニル)-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミドを用いて例84(4)と同様の操作を行い、標題化合物を得た。

収率 54.3% 白色固体

¹H-NMR (DMSO-d₆): δ 1. 08-1. 22 (2H, m), 1. 59 -1. 62 (2H, m), 1. 77-1. 80 (1H, m), 2. 50-2. 55 (2H, m), 2. 87 (2H, brs), 3. 75 (1H, br), 4. 39 (1 H, br), 7. 06 (1H, d, J=8. 4Hz), 7. 17-7. 20 (3H,

m), 7. 28 (2H, t, J=7. 2Hz), 7. 49 (1H, dd, J=8. 4, 2. 1Hz), 7. 84 (1H, s), 7. 93 (1H, d, J=2. 1Hz), 8. 47 (2H, s), 10. 89 (1H, s), 11. 65 (1H, s).

例87:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ジメチル スルファモイル-2-ヒドロキシベンズアミド

(1) 2-メトキシー5-スルファモイル安息香酸

メチル 2-メトキシー5-スルファモイルベンゾエート (4.91g,20 mm o 1) をメタノール (30 mL) に溶解し、2規定水酸化ナトリウム溶液 (30 mL,60 mm o 1) を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、析出した固体をろ取して表題化合物の白色固体 (4.55 g,98.3%) を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 3. 89 (3H, s), 7. 30 (1H, d, J=8. 7Hz), 7. 32 (2H, s), 7. 92 (1H, dd, J=8. 7, 2. 7Hz), 8. 09 (1H, d, J=2. 7Hz), 13. 03 (1H, br).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシー 5-スルファモイルベンズアミド

原料として、2-メトキシー5-スルファモイル安息香酸、及び3,5-ビス (トリフルオロメチル)アニリンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:24.2%

¹H-NMR (DMSO-d₆): δ 3. 97 (3H, s), 7. 38 (2H, s), 7. 39 (1H, d, J=8. 7Hz), 7. 85 (1H, s), 7. 96 (1H, dd, J=8. 7, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 8. 43 (2H, s), 10. 87 (1H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシー5-スルファモイルベンズアミド(442mg,1.0mmol)、沃化メチル(710mg,5.0mmol)、炭酸カリウム(415mg,3.0mmol)のアセトニトリル(10mL)懸濁液を3時間加熱還流した。反応混合液を室温まで冷却後水にあけ、酢酸エチルにて抽出した。有機層を水、飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して得られた残渣をn-ヘキサン、酢酸エチル(2:1)の混合溶媒より再結晶して標題化合物の白色固体(207mg,44.1%)を得た。

¹H-NMR (DMSO- d_6): δ 2. 62 (6H, s), 3. 99 (3H, s), 7. 45 (1H, d, J=9. 0Hz), 7. 85 (1H, s), 7. 91 (1H, dd, J=8. 7, 2. 4Hz), 7. 95 (1H, d, J=2. 4Hz) 8. 4 3 (2H, s), 10. 90 (1H, s).

(4) N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-ジメチルス ルファモイル-2-ヒドロキシベンズアミド

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミドを用いて例<math>80(5)と同様の操作を行い、標題化合物を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 77 (3H, d, J=4. 5Hz), 4. 37 (1H, brs), 6. 70 (1H, d, J=3. 6Hz), 7. 04 (2H, s).

(1) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシー

5-(ピロールー1-スルホニル) ベンズアミド

¹H-NMR (DMSO- d_6): δ 3. 96 (3H, s), 6. 36 (2H, dd, J=2.4, 2.1Hz), 7. 37 (2H, dd, J=2.4, 2.1Hz), 7. 42 (1H, d, J=9.0Hz), 7. 85 (1H, s), 8. 80 (1H, dd, J=9.0, 2.4Hz) 8. 18 (1H, d, J=2.7Hz), 8. 38 (2H, s), 10. 92 (1H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピロール-1-スルホニル)ベンズアミド

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-(ピロール-1-スルホニル)ベンズアミドを用いて例80(5)と同様の操作を行い、標題化合物を得た。

収率:79.4%

¹H-NMR (DMSO-d₆, δ): 6. 36 (2H, dd, J=2. 4, 2. 1Hz), 7. 18 (1H, d, J=9. 0Hz), 7. 34 (2H, d, J=2. 4, 2. 1Hz), 7. 86 (1H, s), 7. 99 (1H, dd, J=9. 0, 2. 7Hz) 8. 31 (1H, d, J=2. 7Hz), 8. 42 (2H, s), 10. 98 (1H, s).

例89:5-アミノーN-[3, 5-ビス (トリフルオロメチル) フェニル] - 2-ヒドロキシベンズアミド (化合物番号88)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ニトロベンズアミドを用いて例84(4)と同様の操作を行い、標題化合物を得た。

収率:98.0%

¹H-NMR (DMSO-d₆): δ 4. 79 (2H, brs), 6. 76 (1H, d, J=2. 1Hz), 6. 76 (1H, s), 7. 09 (1H, dd, J=2. 1, 1. 2Hz), 7. 80 (1H, s), 8. 45 (2H, s), 10. 30 (1H, br), 10. 84 (1H, s).

例90:N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ジメチルアミノ-2-ヒドロキシベンズアミド

原料として、5-ジメチルアミノサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.8%

¹H-NMR (DMSO- d_6): δ 2. 85 (6H, s), 6. 92 (1H, d, J=9. 0Hz), 7. 01 (1H, dd, J=8. 7, 3. 0Hz), 7. 22 (1H, d, J=3. 0Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 62 (1H, s), 10. 83 (1H, s).

例91:5ーベンゾイルアミノーNー[3,5ービス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド (化合物番号90)

アルゴン雰囲気下、5-アミノ-N-[3, 5-ビス (トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド (364mg, 1mmol)、ピリジン(95mg, 1.2mmol)、テトラヒドロフラン(10mL)の混合物を氷冷し、ベンゾイルクロリド(155mg, 1.1mmol)を加え、1時間攪拌し

た。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色固体(121mg, 25.7%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 51-7. 62 (3H, m), 7. 81 (1H, dd, J=8.7, 2.4Hz), 7. 83 (1H, s), 7. 98 (2H, d, J=7.2Hz), 8. 22 (1H, d, J=2.4Hz), 8. 49 (2H, s), 10. 27 (1H, s), 10. 8 9 (1H, s), 11. 07 (1H, s).

例92:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキ シー5-[(3-フェニル) ウレイド] ベンズアミド (化合物番号91)

 $5-アミノ-N-[3,5-ピス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(100.2mg,0.28mmol)をアセトニトリル(4ml)溶かし、<math>4-ジメチルアミノピリジン(3mg),フェニルイソシアネート(30<math>\mu$ l,0.28mmol)を加え、60で5分間攪拌した。反応混合物を濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製して標題化合物の薄褐色固体(54.8mg,41.2%)を得た。

¹H-NMR (DMSO- d_6): δ 6. 93-6. 98 (1H, m), 6. 97 (1H, d, J=9. 3Hz), 7. 27 (2H, t, J=7. 8Hz), 7. 3 4-7. 46 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 4Hz), 7. 83 (1H, s), 7. 88 (1H, s), 8. 47 (2H, s), 8. 56 (1H, s), 8. 63 (1H, s), 10. 87 (1H, s), 10. 89 (1H, s).

例93:N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキ シー5-[(3-フェニル) チオウレイド] ベンズアミド (化合物番号92)

原料として、5-アミノーN-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド、及びフェニルイソチオシアネートを用いて例92と同様の操作を行い、標題化合物を得た。

収率:66.3%

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, d, J=8. 4Hz), 7. 13 (1H, tt, J=7. 5, 1. 2Hz), 7. 34 (2H, t, J=7. 8 Hz), 7. 45-7. 51 (3H, m), 7. 84 (1H, s), 7. 87 (1H, d, J=2. 7Hz), 8. 47 (2H, s), 9. 65 (1H, s), 9. 74 (1 H, s), 10. 84 (1H, s), 11. 32 (1H, s).

例94:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-[(4-ニトロフェニル)ジアゼニル]ベンズアミド(化合物番号93)原料として、5-[(4-ニトロフェニル)ジアゼニル]サリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例<math>16と同様な操作を行い、標題化合物を得た。

収率:11.3%

¹H-NMR (DMSO- d_6): δ 7. 23 (1H, d, J=9. 0Hz), 7. 87 (1H, s), 8. 06 (2H, d, J=9. 0Hz), 8. 10 (1H, d d, J=9. 0, 2. 4Hz), 8. 44 (2H, d, J=9. 0Hz), 8. 5 0 (2H, s), 8. 53 (1H, d, J=2. 4Hz), 11. 13 (1H, s), 12. 14 (1H, br).

例95:N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-({[(4-ピリジン-2-イル)スルファモイル]フェニル}ジアゼニル)ベンズアミド(化合物番号94)

原料として、5- ({[(4-ピリジン-2-イル) スルファモイル] フェニル} ジアゼニル) サリチル酸、及び3, 5-ビス (トリフルオロメチル) アニリンを WO 02/49632

PCT/JP01/11084

用いて例16と同様な操作を行い、標題化合物を得た。

収率:7.9%

¹H-NMR (DMSO-d₆): δ 6. 87 (1H, t, J=6.0Hz), 7. 22 (1H, d, J=8.7Hz), 7. 21-7. 23 (1H, m), 7. 77 (1H, t, J=8.4Hz), 7. 87 (1H, s), 7. 95-7. 98 (3H, m), 8. 03-8. 07 (4H, m), 8. 47 (1H, d, J=2.4Hz), 8. 49 (2H, s), 11. 14 (1H, s), 12. 03 (1H, br).

例96:2ーアセトキシーNー[3,5ービス(トリフルオロメチル)フェニル] -5-クロロベンズアミド(化合物番号96)

N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-クロロー2-ヒドロキシベンズアミド (1.51g, 3mmol)、ピリジン (285mg, 3.6mmol)をテトラヒドロフラン (6mL) に溶解し、氷冷下、アセチルクロリド (234mg, 3.3mmol)を滴下し、室温で1時間撹拌した。溶媒を減圧留去し、残渣に2規定塩酸を加え、酢酸エチルで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をn-ヘキサン-酢酸エチルから再結晶して、標題化合物の白色固体 (1.06g, 83.0%)を得た。 1 H-NMR (DMSO- d_6): δ 2.22 (3H, s), 7.35 (1H, d, J=9.0Hz), 7.71 (1H, dd, J=8.7, 2.7Hz), 7.85 (1H, s), 7.88 (1H, d, J=2.7Hz), 8.37 (2H, s), 11.05 (1H, brs).

例97:4-アセチルアミノーN-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号97)

(1) 4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸

原料として、4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸 メチルエステルを用いて例82と同様な操作を行い、標題化合物を得た。

収率:88.0%

¹H-NMR (DMSO-d₆): δ 2. 16 (3H, s), 3. 78 (3H, s), 7. 72 (1H, s), 7. 77 (1H, s), 9. 57 (1H, s), 12. 74 (1H, s).

(2) 4-アセチルアミノーN-[3, 5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-メトキシベンズアミド

原料として、4-アセチルアミノー5-クロロー2-メトキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例24と同様な操作を行い、標題化合物を得た。

収率:23.8%

¹H-NMR (DMSO-d₆): δ 2. 17 (3H, s), 3. 89 (3H, s), 7. 77-7. 82 (3H, m), 8. 45-8. 49 (2H, m), 9. 66 (1H, s), 10. 68 (1H, s).

(3) 4-アセチルアミノーN-[3, 5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド

原料として、4-アセチルアミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-メトキシベンズアミドを用いて例80と同様の操作を行い、標題化合物を得た。

収率:72.8%

¹H-NMR (DMSO-d₆): δ 2. 17 (3H, s), 7. 75 (1H, s), 7. 82 (1H, s), 7. 95 (1H, s), 8. 44 (2H, s), 9. 45 (1H, s), 11. 16 (1H, brs), 11. 63 (1H, brs).

例98:N-[3,5-ビス(トリフルオロメチル)フェニル]-4-クロロー 2-ヒドロキシベンズアミド(化合物番号98) WO 02/49632

PCT/JP01/11084

原料として、4-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:55.8%

¹H-NMR (DMSO-d₆): δ 7. 05-7. 08 (2H, m), 7. 84 -7. 87 (2H, m), 8. 45 (2H, s), 10. 84 (1H, s) 11. 64 (1H, brs).

例99:N-[3,5-ビス(トリフルオロメチル)-2-ブロモフェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号99)

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) -2-プロモアニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:14.5%

¹H-NMR (DMSO- d_6): δ 7: 11 (1H, d, J=9.0Hz), 7. ⁵3 (1H, dd, J=9.0, 2.7Hz), 7. 91 (1H, d, J=1.8 Hz), 7. 98 (1H, d, J=2.7Hz), 9. 03 (1H, d, J=1.8 8Hz), 11. 26 (1H, brs).

例100:N-[2,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号<math>100)

原料として、5-クロロサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:3.6%

¹H-NMR (CDC1₃): δ 7. 03 (1H, d, J=8. 7Hz), 7. 4 3-7. 48 (2H, m), 6. 61 (1H, d, J=8. 1Hz), 7. 85 (1 H, d, J=8. 4Hz), 8. 36 (1H, br s), 8. 60 (1H, s), 11. 31 (1H, s).

例101:N-[2, 5-ビス (トリフルオロメチル) フェニル] -5-ブロモ -2-ヒドロキシベンズアミド (化合物番号101)

原料として、5 - ブロモサリチル酸、及び2,5 - ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:24.0%

 1 H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.7Hz), 7. 65 (1H, dd, J=8.7, 2.7Hz), 7. 76 (1H, d, J=8.4 Hz), 8. 03 (1H, d, J=8.1Hz) 8. 11 (1H, d, J=2.7 Hz), 8. 74 (1H, s), 11. 02 (1H, s), 12. 34 (1H, s).

例102:N-[2,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-メチルベンズアミド(化合物番号<math>102)

原料として、5-メチルサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:1.5%

¹H-NMR (CDC1₃): δ 2. 36 (3H, s), 6. 97 (1H, d, J = 8. 4Hz), 7. 23 (1H, s), 7. 32 (1H, dd, J=8. 4, 1. 5Hz), 7. 57 (1H, d, J=8. 4Hz), 7. 83 (1H, d, J=8. 4Hz), 8. 46 (1H, s), 8. 69 (1H, s), 11. 19 (1H, s).

例103:2-アセトキシ-N-[2,5-ビス (トリフルオロメチル) フェニル]-5-クロロベンズアミド (化合物番号103)

原料として、N-[2, 5-ビス (トリフルオロメチル) フェニル] -5-クロロ-2-ヒドロキシベンズアミド、及びアセチルクロリドを用いて例96と同様の操作を行い、標題化合物を得た。

収率:6.6%

 $^{1}H-NMR$ (CDCl₃): δ 2. 35 (3H, s), 7. 17 (1H, d, J

=8. 7 Hz), 7. 54 (1H, dd, J=8. 7, 2. 4 Hz), 7. 55 (1H, d, J=8. 1 Hz), 7. 80 (1H, d, J=8. 1 Hz), 7. 95 (1H, d, J=2. 4 Hz), 8. 60 (1H, s), 8. 73 (1H, s).

例104:5-クロロ-2-ヒドロキシ-N-[2-(トリフルオロメチル)フェニル] ベンズアミド (化合物番号104)

原料として、5-クロロサリチル酸、及び2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.0%

¹H-NMR (DMSO-d₈): δ 7. 07 (1H, d, J=8.7Hz), 7. 42 (1H, t, J=7.5Hz), 7. 52 (1H, d, J=8.7, 2.7Hz), 7. 74 (1H, t, J=8.1Hz), 7. 77 (1H, t, J=8.1Hz), 7. 99 (1H, d, J=2.7Hz), 8. 18 (1H, d, J=8.1Hz), 10. 76 (1H, s), 12. 22 (1H, s).

例105:5-クロロ-N-[4-クロロ-2-(トリフルオロメチル) フェニル]-2-ヒドロキシベンズアミド(化合物番号105)

原料として、5-クロロサリチル酸、及び4-クロロ-2-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.5%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 80-7. 85 (2H, m), 7. 97 (1H, d, J=2.7Hz), 8. 26 (1H, d, J=8.4Hz), 10. 80 (1H, s), 12. 26 (1H, s).

例106:5-ブロモー2-ヒドロキシ-N-[3-(トリフルオロメチル)フェニル] ベンズアミド (化合物番号106)

WO 02/49632

PCT/JP01/11084

原料として、5ーブロモサリチル酸、及び3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:50.3%

¹H-NMR (DMSO-d₆, δ): 6. 98 (1H, d, J=8. 7Hz), 7. 48-7. 52 (1H, m), 7. 59 (1H, dd, J=8. 7, 2. 7Hz), 7. 62 (1H, t, J=8. 1Hz), 7. 92-7. 96 (1H, m), 8. 02 (1H, d, J=2. 4Hz), 8. 20 (1H, s), 10. 64 (1H, s), 11. 60 (1H, s).

例107:5-クロローN-[2-フルオロ-3-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号107)

原料として、5-クロロサリチル酸、及び2-フルオロ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率 71.7% 白色固体

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=9.0Hz), 7. 46 (1H, t, J=7.8Hz), 7. 52 (1H, dd, J=9.0, 2.7 Hz), 7. 58 (1H, t, J=7.2Hz), 7. 96 (1H, d, J=2.7Hz), 8. 49 (1H, t, J=7.2Hz), 10. 82 (1H, s), 12. 13 (1H, brs).

例108:5-クロローN-[4-フルオロ-3-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号108)

原料として、5-クロロサリチル酸、及び4-フルオロ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率 72.1% 白色固体

 $^{1}H-NMR$ (DMSO-d₆): 7. 03 (1H, d, J=9. 0Hz), 7. 4 8 (1H, dd, J=8. 7, 2. 7Hz), 7. 56 (1H, d, J=9. 9H

z), 7. 90 (1H, d, J=2. 7Hz), 7. 99-8. 03 (1H, m), 8. 21 (1H, dd, J=6. 6, 2. 4Hz), 10. 63 (1H, s), 1 1. 58 (1H, s).

例109:5-プロモーN- [4-クロロー3- (トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド (化合物番号109)

原料として、5ープロモサリチル酸、及び4ークロロー3ー(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.4%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 59 (1H, dd, J=8.7, 2.4Hz), 7. 73 (1H, d, J=8.7 Hz), 7. 98 (1H, d, J=2.4Hz), 8. 00 (1H, dd, J=8.7, 2.4Hz), 8. 31 (1H, d, J=2.4Hz), 10. 68 (1H, s), 11. 52 (1H, brs).

例110:5-クロロ-N-[3-フルオロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号110)

原料として、5-クロロサリチル酸、及び3-フルオロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.0%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 42 (1H, d, J=8.4Hz), 7. 48 (1H, dd, J=9.0, 3.0 Hz), 7. 85 (1H, d, J=2.4Hz), 7. 94 (1H, dd, J=1 1.4, 2.1Hz), 7. 99 (1H, s), 10. 73 (1H, s), 11. 46 (1H, s).

例111:5-プロモーN-[3-ブロモー5-(トリフルオロメチル)フェニ

ル] -2-ヒドロキシベンズアミド (化合物番号111)

原料として、5-ブロモサリチル酸、及び3-ブロモ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (DMSO-d₆): δ 6. 99 (1H, d, J=9. 0Hz), 7. 60 (1H, dd, J=9. 0, 2. 4Hz), 7. 72 (1H, s), 7. 97 (1H, d, J=2. 7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 10. 69 (1H, s), 11. 45 (1H, s).

例112:5-クロローN-[2-フルオロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号112)

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.9%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=9. 0Hz), 7. 52 (1H, dd, J=9. 0, 2. 7Hz), 7. 58-7. 61 (2H, m), 7. 95 (1H, d, J=2. 7Hz), 8. 71 (1H, d, J=7. 5Hz), 10. 90 (1H, s), 12. 23 (1H, s).

例113:5-クロローN-[2-クロロー5-(トリフルオロメチル)フェニ ・ル]-2-ヒドロキシベンズアミド(化合物番号113)

原料として、5-クロロサリチル酸、及び2-クロロ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:49.1%

¹H-NMR (DMSO-d₆): δ ·7. 09 (1H, d, J=9. 0Hz), 7. 53 (1H, dd, J=9. 0, 3. 0Hz), 7. 55 (1H, dd, J=8. 4, 2. 7Hz), 7. 83 (1H, d, J=8. 4Hz), 7. 98 (1H, d,

J=3.0Hz), 8.88 (1H, d, J=2.7Hz), 11.14 (1H, s), 12.39 (1H, s).

例114:5-ブロモーN-[2-クロロー5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号114)

原料として、5-プロモサリチル酸、及び2-クロロ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:34.2%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8. 7Hz), 7. 56 (1H, ddd, J=8. 1, 2. 4, 1. 2Hz), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 7. 83 (1H, dd, J=8. 1, 1. 2Hz), 8. 11 (1H, d, J=2. 7Hz), 8. 87 (1H, d, J=2. 4Hz), 11. 12 (1H, s), 12. 42 (1H, s).

例115:5-クロロー2-ヒドロキシ-N-[4-ニトロー3-(トリフルオロメチル)フェニル]ベンズアミド (化合物番号115)

原料として、5-クロロサリチル酸、及び4-ニトロ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.8%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 2.7Hz), 7. 81 (1H, d, J=2.7 Hz), 8. 23-8. 24 (2H, m), 8. 43 (1H, d, J=1.2Hz), 11. 02 (1H, s), 11. 30 (1H, br).

例116:5-クロロ-2-ヒドロキシ-N-[2-ニトロ-5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号116)

原料として、5-クロロサリチル酸、及び2-ニトロ-5-(トリフルオロメ

チル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:8.1%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=9. 0Hz), 7. 53 (1H, dd, J=8. 7, 2. 7Hz), 7. 73 (1H, dd, J=8. 4, 1. 8Hz), 7. 95 (1H, d, J=3. 0Hz), 8. 36 (1H, d, J=8. 7Hz), 9. 01 (1H, d, J=1. 8Hz), 12. 04 (1H, s), 12. 20 (1H, s).

例117:5-プロモー2ーヒドロキシーN-[4-ニトロー3-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号117)

原料として、5-ブロモサリチル酸、及び4-ニトロ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:49.7%

¹H-NMR (DMSO-d₆): δ 6. 99 (1H, d, J=8.7Hz), 7. 60 (1H, dd, J=8.7, 2.4Hz), 7. 92 (1H, d, J=2.7 Hz), 8. 16 (2H, s), 8. 42 (1H, s), 10. 93 (1H, s), 11. 36 (1H, s).

例118:5-クロロー2-ヒドロキシ-N-[2-メチル-3-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号118)

原料として、5-クロロサリチル酸、及び2-メチル-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:14.5%

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, d, J=1. 2Hz), 7. 05 (1H, d, J=8. 7Hz), 7. 46 (1H, t, J=8. 1Hz), 7. 50 (1H, dd, J=8. 7, 2. 7Hz), 7. 60 (1H, d, J=7. 2Hz), 7. 99 (1H, d, J=7. 2Hz), 8. 00 (1H, d, J=2.

4Hz), 10. 43 (1H, s), 12. 08 (1H, s).

例119:5-クロロー2ーヒドロキシーN-[4-メチルー3-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号119)

原料として、5-クロロサリチル酸、及び4-メチル-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.2%

¹H-NMR (DMSO-d₆): δ 7. 01 (1H, d, J=8. 7Hz), 7. 44 (1H, d, J=8. 4Hz), 7. 47 (1H, dd, J=9. 0, 2. 7 Hz), 7. 84 (1H, dd, J=8. 4, 2. 1Hz), 7. 92 (1H, d, J=2. 7Hz), 8. 13 (1H, d, J=2. 1Hz), 10. 65 (1H, s), 11. 68 (1H, br).

例120:5-クロロー2-ヒドロキシ-N-[2-メチル-5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号120)

原料として、5-クロロサリチル酸、及び2-メチル-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (DMSO-d₆): δ 2. 39 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 44-7. 54 (3H, m), 7. 99 (1H, d, J=3. 0Hz), 8. 43 (1H, s), 10. 52 (1H, s), 12. 17 (1H, brs).

例121:5-クロロ-2-ヒドロキシ-N- [4-メトキシ-3-(トリフルオロメチル)フェニル] ベンズアミド (化合物番号121)

原料として、5-クロロサリチル酸、及び4-メトキシ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:79.1%

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=9. 0Hz), 7. 48 (1H, dd, J=9. 0, 3. 0 Hz), 7. 92 (1H, dd, J=9. 0, 2. 4Hz), 7. 96 (1H, d, J=2. 7Hz), 8. 04 (1H, d, J=2. 4Hz), 10. 47 (1H, s), 11. 78 (1H, s).

例122:5-ブロモー2ーヒドロキシーN-[3-メトキシー5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号122)

原料として、5-ブロモサリチル酸、及び3-メトキシ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.8%

¹H-NMR (DMSO-d₆): δ 3. 85 (3H, s), 6. 98 (1H, d, J=8. 7Hz), 7. 03 (1H, s), 7. 57-7. 61 (2H, m), 7. 77 (1H, s), 8. 00 (1H, d, J=2. 4Hz), 10. 57 (1H, s), 11. 56 (1H, s).

例123:5-ブロモ-2-ヒドロキシ-N-[2-メトキシ-5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号123)

原料として、5ープロモサリチル酸、及び2ーメトキシー5ー (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:71.3%

¹H-NMR (DMSO-d₆): δ 3. 99 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=8. 7Hz), 7. 47-7. 51 (1H, m), 7. 61 (1H, dd, J=9. 0, 2. 4Hz), 8. 10 (1H, d, J=2. 4Hz), 8. 82 (1H, d, J=2. 1Hz) 11. 03 (1H, s), 12. 19 (1H, s).

例124:5-クロローヒドロキシーN-[2-メトキシー5-(トリフルオロメチル)フェニル]-2ベンズアミド(化合物番号124)

原料として、5-クロロサリチル酸、及び2-メトキシー5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:83.4%

¹H-NMR (DMSO- d_6): δ 4. 00 (3H, s), 7. 08 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=8. 7Hz), 7. 47-7. 52 (2H, m), 7. 97 (1H, d, J=2. 7Hz), 8. 83 (1H, d, J=2. 4Hz), 11. 05 (1H, s), 12. 17 (1H, s).

例125:5-クロロ-2-ヒドロキシ-N-[2-メチルスルファニル-5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号125)

原料として、5-クロロサリチル酸、及び2-メチル-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:79.2%

¹H-NMR (DMSO-d₆): δ 2. 57 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 4Hz), 7. 55 (1H, dd, J=8. 4, 1. 5Hz), 7. 63 (1H, d, J=8. 1Hz), 8. 00 (1H, d, J=2. 4Hz), 8. 48 (1H, d, J=1. 5Hz), 10. 79 (1H, s), 12. 26 (1H, s).

例126:5-プロモ-2-ヒドロキシ-N- [2-(1-ピロリジニル)-5- (トリフルオロメチル)フェニル]ベンズアミド (化合物番号126)

原料として、5 ープロモサリチル酸、及び2 ー (1 ーピロリジニル) ー5 ー (トリフルオロメチル)アニリンを用いて例1 6 と同様の操作を行い、標題化合物を得た。

収率:44.5%

¹H-NMR (DMSO- d_6): δ 1. 86-1. 91 (4H, m), 3. 20 -3. 26 (4H, m), 6. 99 (1H, d, J=8. 7Hz), 7. 07 (1 H, d, J=8. 7Hz), 7. 43 (1H, dd, J=8. 7, 2. 1Hz), 7. 62 (1H, dd, J=8. 7, 2. 4Hz), 7. 94 (1H, d, J=2. 1Hz), 8. 17 (1H, d, J=2. 4Hz), 10. 54 (1H, s), 12. 21 (1H, s).

例127:5-プロモー2-ヒドロキシ-N-[2-モルホリノ-5-(トリフルオロメチル)フェニル] ベンズアミド (化合物番号127)

原料として、5-プロモサリチル酸、及び2-モルホリノー5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:65.9%

¹H-NMR (DMSO-d₆): δ 2. 90 (4H, dd, J=4. 5, 4. 2Hz), 3. 84 (4H, dd, J=4. 8, 4. 2Hz), 7. 09 (1H, d, J=8. 4Hz), 7. 48 (2H, s), 7. 61 (1H, dd, J=8. 4, 2. 7Hz), 8. 13 (1H, d, J=2. 7Hz), 8. 90 (1H, s), 11. 21 (1H, s), 12. 04 (1H, s).

例128:5-クロロ-2-ヒドロキシ-N-[4-(トリフルオロメチル)フェニル] ベンズアミド (化合物番号128)

原料として、5-クロロサリチル酸、及び4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.0%、白色固体

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 74 (2H, d, J=8.7 Hz), 7. 90 (1H, d, J=2.7Hz), 7. 95 (2H, d, J=9.

0Hz), 10. 65 (1H, s), 11. 59 (1H, s).

例129:5-プロモーN-[2-クロロー4-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号129)

原料として、5-プロモサリチル酸、及び2-クロロ-4-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:34.9%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 64 (1H, dd, J=8.7, 2.7Hz), 7. 79 (1H, dd, J=9.0, 2.1Hz), 7. 99 (1H, d, J=2.1Hz), 8. 11 (1H, d, J=2.4Hz), 8. 73 (1H, d, J=9.0Hz), 11. 15 (1H, s), 12. 42 (1H, s).

例130:2-アセトキシ-5-クロロ-N-[2-クロロ-5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号130)

原料として、5-クロロ-N-[2-クロロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド、及びアセチルクロリドを用いて例 9 6 と同様の操作を行い、標題化合物を得た。

収率:34.0%

¹H-NMR (CDC1₃): δ 2. 39 (3H, s), 7. 16 (1H, d, J = 8. 7Hz), 7. 37 (1H, ddd, J=8. 7, 2. 4, 0. 6Hz), 7. 51-7. 56 (2H, m), 7. 97 (1H, d, J=3. 0Hz), 8. 85 (1H, s), 8. 94 (1H, d, J=1. 8Hz).

例131:N-[2-クロロ-5-(トリフルオロメチル)フェニル]-2-ヒ ドロキシ-5-ニトロベンズアミド (化合物番号131)

原料として、5-ニトロサリチル酸、及び2-クロロー5-(トリフルオロメ

チル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:31、1%

¹H-NMR (DMSO- d_6): δ 6. 98 (1H, d, J=9. 3Hz), 7. 52 (1H, dd, J=8. 4, 2. 1Hz), 7. 81 (1H, d, J=8. 4 Hz), 8. 21 (1H, dd, J=9. 0, 3. 3Hz), 8. 82 (1H, d, J=3. 0Hz), 8. 93 (1H, d, J=2. 4Hz), 12. 18 (1H, s).

例132:N-[2-クロロ-5-(トリフルオロメチル)フェニル]-2-ヒ ドロキシ-5-メチルベンズアミド(化合物番号132)

原料として、5-メチルサリチル酸、及び2-クロロ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:15.8%

¹H-NMR (CDC1₃): δ 2. 36 (3H, s), 6. 95 (1H, d, J = 8. 1Hz), 7. 26-7. 31 (2H, m), 7. 37 (1H, dd, J = 8. 4, 1. 8Hz), 7. 56 (1H, d, J=8. 4Hz), 8. 65 (1H, br s), 8. 80 (1H, d, J=1. 8Hz), 11. 33 (1H, br s).

例133:N-[2-クロロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-メトキシベンズアミド(化合物番号<math>133)

原料として、5-メトキシサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:56.4%

¹H-NMR (DMSO-d₆): δ 3. 77 (3H, s), 6. 91 (1H, d, J=9. 0Hz), 7. 07 (1H, dd, J=8. 7, 3. 0Hz), 7. 20 (1H, t, J=1. 8Hz), 7. 52-7. 54 (3H, m), 10. 33 (1H, s), 11. 44 (1H, s).

例134:N-[4-クロロ-3-(トリフルオロメチル)フェニル]-2-ヒ ドロキシ-5-メチルベンズアミド(化合物番号134)

原料として、5-メチルサリチル酸、及び4-クロロ-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:70.4%

¹H-NMR (DMSO-d₆): δ 2. 29 (3H, s), 6. 91 (1H, d, J=8. 3Hz), 7. 27 (1H, ddd, J=8. 3, 2. 2, 0. 6Hz), 7. 71 (1H, d, J=2. 2Hz), 7. 72 (1H, d, J=8. 5Hz), 8. 02 (1H, dd, J=8. 5, 2. 5Hz), 8. 33 (1H, d, J=2. 5Hz), 10. 64 (1H, s), 11. 25 (1H, s).

例135:2-ヒドロキシー5-メチル-N-[4-メチルー3-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号135)

原料として、5-メチルサリチル酸、及び4-メチル-3-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.7%

¹H-NMR (DMSO- d_6): δ 2. 29 (3H, s), 2. 42 (3H, s), 6. 89 (1H, d, J=8. 4Hz), 7. 26 (1H, ddd, J=8. 4, 2. 1, 0. 6Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 75 (1H, d, J=2. 1Hz), 7. 86 (1H, dd, J=8. 4, 1. 8Hz), 8. 13 (1H. d, J=2. 1Hz), 10. 50 (1H, s), 11. 42 (1H, s).

例136:2-ヒドロキシー5-メチル-N-[2-メチル-5-(トリフルオロメチル)フェニル] ベンズアミド (化合物番号136)

原料として、5ーメチルサリチル酸、及び2ーメチルー5ー(トリフルオロメ

チル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:14.2%、白色固体

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 29 (3H, s), 2. 38 (3H, s),

6. 94 (1H, d, J=8.4Hz), 7. 27 (1H, ddd, J=8.4.

2. 4, 0. 6 Hz), 7. 44 (1H, dd, J=8. 1, 1. 5 Hz), 7.

52 (1H, d, J=7.8Hz), 7.84 (1H, d, J=2.4Hz), 8.

46 (1H, d, J=1.5Hz), 10.55 (1H, s), 11.72 (1H, s).

例137:2-ヒドロキシーN-[4-メトキシ-3-(トリフルオロメチル)フェニル]-5-メチルベンズアミド(化合物番号137)

原料として、5-メチルサリチル酸、及び4-メトキシ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.1%、微黄色固体

¹H-NMR (DMSO-d₆): δ 2. 35 (3H, s), 3. 89 (3H, s), 6. 88 (1H, d, J=8. 4Hz), 7. 26 (1H, dd, J=8. 1, 1. 8Hz), 7. 30 (1H, d, J=8. 4Hz), 7. 77 (1H, d, J=2. 1Hz), 7. 92 (1H, dd, J=9. 0, 2. 7Hz), 8. 04 (1H, d, J=2. 7Hz), 10. 42 (1H, s), 11. 54 (1H, s).

例138:2-ヒドロキシ-N-[2-メトキシ-5-(トリフルオロメチル)フェニル]-5-メチルベンズアミド(化合物番号138)

原料として、5-メチルサリチル酸、及び2-メトキシ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.9%

¹H-NMR (CDC1₃): δ 2. 35 (3H, s), 4. 02 (3H, s), 6. 93 (1H, d, J=9. 0Hz), 6. 98 (1H, d, J=8. 4Hz),

7. 25-7. 28 (2H, m), 7. 36 (1H, ddd, J=8. 4, 2. 1, 0. 9Hz), 8. 65 (1H, br s), 8. 73 (1H, d, J=2. 1Hz), 11. 69 (1H, s).

例139:5-ブロモー2-ヒドロキシ-N-フェニルベンズアミド (化合物番号139)

原料として、5-ブロモサリチル酸、及びアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.8%

mp 229-230 °C.

¹H-NMR (DMSO-d₆): δ 6. 96 (1H, d, J=9.0Hz), 7. 12-7. 18 (1H, m), 7. 35-7. 41 (2H, m), 7. 58 (1H, dd, J=8.7, 2.7Hz), 7. 67-7. 71 (2H, m), 8. 08 (1H, d, J=2.7Hz), 10. 43 (1H, s), 11. 87 (1H, s).

例140:5-プロモ-N-(3-クロロフェニル)-2-ヒドロキシベンズアミド(化合物番号140)

原料として、5 ープロモサリチル酸、及び3 ークロロアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:63.1%

mp 231-232°C.

¹H-NMR (DMSO-d₆): δ 6. 97 (1H, d, J=8. 7Hz), 7. 19-7. 22 (1H, m), 7. 38-7. 43 (1H, m), 7. 57-7. 63 (2H, m), 7. 91-7. 92 (1H, m), 8. 01 (1H, d, J=2. 7Hz), 10. 49 (1H, s), 11. 64 (1H, s).

例141:5 - プロモーN- (4-クロロフェニル) - 2-ヒドロキシベンズア

ミド(化合物番号141)

本化合物は、市販化合物である。

販売元:東京化成社

カタログコード番号:B0897

例142:5-クロロ-N-(2,5-ジクロロフェニル)-2-ヒドロキシベンズアミド(化合物番号142)

原料として、5-クロロサリチル酸、及び2,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:10.8%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=9. 0Hz), 7. 24-7. 28 (1H, m), 7. 50-7. 54 (1H, m), 7. 61 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=2. 7Hz), 8. 58 (1H, d, J=2. 4Hz), 11. 02 (1H, s), 12. 35 (1H, br s).

例143:5-ブロモーN-(3,4-ジクロロフェニル)-2-ヒドロキシベンズアミド(化合物番号143)

原料として、5-ブロモサリチル酸、及び3,4-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:58.2%

mp 249-251°C.

¹H-NMR (DMSO-d₆): δ 6. 97 (1H, d, J=8. 7Hz), 7. 57-7. 70 (3H, m), 7. 98 (1H, d, J=2. 7Hz), 8. 10 (1H, d, J=2. 4Hz), 10. 54 (1H, s), 11. 55 (1H, s).

例144:5-ブロモ-N-(3,5-ジフルオロフェニル)-2-ヒドロキシ

ベンズアミド (化合物番号144)

原料として、5ーブロモサリチル酸、及び3,5ージフルオロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:36.3%

mp 259-261°C.

¹H-NMR (DMSO-d₆): δ 6. 96-7. 04 (2H, m), 7. 45-7. 54 (2H, m), 7. 58 (1H, dd, J=8. 7, 2. 7Hz), 7. 94 (1H, d, J=2. 7Hz), 10. 60 (1H, s) 11. 48 (1H, s).

例145:2-アセトキシーN-(3,5-ジクロロフェニル)ベンズアミド(化 合物番号172)

原料として、oーアセチルサリチル酸クロリド、及び3,5ージクロロアニリンを用いて例2(1)と同様の操作を行い、標題化合物を得た。

収率:73.5%

mp 167-168°C.

¹H-NMR (CDCl₃): δ 2. 35 (3H, s), 7. 14-7. 18 (2 H, m), 7. 35-7. 40 (1H, m), 7. 52-7. 57 (3H, m), 7. 81 (1H, dd, J=7. 8, 1. 8Hz), 8. 05 (1H, brs).

例146:N-(3,5-ジクロロフェニル)-2-ヒドロキシベンズアミド (化 合物番号145)

原料として、2-アセトキシ-N-(3, 5-ジクロロフェニル) ベンズアミドを用いて例 2(2) と同様の操作を行い、標題化合物を得た。

収率:60.3%

mp 218-219°C.

 $^{1}H-NMR$ (DMSO- d_{6}): δ 6. 95-7. 02 (2H, m), 7. 35

-7. 36 (1H, m), 7. 42-7. 47 (1H, m), 7. 83-7. 87 (3H, m), 10. 54 (1H, s), 11. 35 (1H, s).

例147:N-(3,5-ジクロロフェニル)-5-フルオロ-2-ヒドロキシベンズアミド(化合物番号146)

原料として、5-フルオロサリチル酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.3%

mp 258-260°C.

¹H-NMR (DMSO-d₆): δ 7. 00-7. 05 (1H, m), 7. 28 -7. 37 (2H, m), 7. 63 (1H, dd, J=9. 3, 3. 3Hz), 7. 84 (2H, d, J=2. 1Hz), 10. 56 (1H, s), 11. 23 (1H, s).

例148:5-クロロ-N-(3,5-ジクロロフェニル)-2-ヒドロキシベンズアミド (化合物番号147)

原料として、5-クロロサリチル酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:41.2%

¹H-NMR (DMSO- d_6): δ 7. 03 (1H, d, J=9.0Hz), 7. 36-7. 37 (1H, m), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 83-7. 84 (3H, m), 10. 56 (1H, s), 11. 44 (1H, s).

例149:5-プロモーN-(3,5-ジクロロフェニル)-2-ヒドロキシベンズアミド(化合物番号148)

原料として、5-ブロモサリチル酸、及び3,5-ジクロロアニリンを用いて

例16と同様の操作を行い、標題化合物を得た。

収率:61.6%

mp 243-244°C.

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8. 7Hz), 7. 36-7. 37 (1H, m), 7. 59 (1H, dd, J=9. 0, 2. 4Hz), 7. 83 (2H, d, J=1. 8Hz), 7. 95 (1H, d, J=2. 4Hz), 10. 56 (1H, s), 11. 46 (1H, s).

例150:N-(3,5-ジクロロフェニル)-2-ヒドロキシー5-ヨードベンズアミド (化合物番号149)

原料として、5-ヨードサリチル酸、及び3,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:65.4%

mp 244-245°C.

¹H-NMR (DMSO-d₆): δ 6. 84 (1H, d, J=9.0Hz), 7. 35-7. 37 (1H, m), 7. 72 (1H, dd, J=9.0, 2.1 Hz), 7. 83 (2H, d, J=1.8Hz), 8. 09 (1H, d, J=2. 1Hz), 10. 55 (1H, s), 11. 45 (1H, s).

例151:3,5-ジブロモ-N-(3,5-ジクロロフェニル)-2-ヒドロキシベンズアミド(化合物番号150)

原料として、3,5-ジブロモサリチル酸、及び3,5-ジクロロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.2%

mp 181-182°C.

¹H-NMR (DMSO-d₆): δ 7. 42-7. 43 (1H, m), 7. 80 (2H, d, J=1. 8Hz), 8. 03 (1H, d, J=2. 1Hz), 8. 1

7 (1H, d, J=2. 1Hz), 10. 82 (1H, s).

例152:4-クロローN-(3,5-ジクロロフェニル)-2-ヒドロキシベンズアミド(化合物番号151)

原料として、4-クロロサリチル酸、及び3,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:57.2%

mp 255-256°C.

¹H-NMR (DMSO-d₆): δ 7. 03-7. 06 (2H, m), 7. 34
-7. 36 (1H, m), 7. 82-7. 85 (3H, m), 10. 51 (1H, s),
11. 70 (1H, brs).

例153:N-(3,5-ジクロロフェニル)-2-ヒドロキシ-5-ニトロベンズアミド(化合物番号152)

原料として、5-ニトロサリチル酸、及び3,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:83.1%

mp 232-233.

¹H-NMR (DMSO- d_6): δ 7. 16 (1H, d, J=9.6Hz), 7. 37-7. 39 (1H, m), 7. 84 (1H, d, J=2.1Hz), 8. 29 (1H, dd, J=9.0, 3.0Hz), 8. 65 (1H, d, J=3.0Hz), 10. 83 (1H, s).

例154:N-(3,5-ジクロロフェニル)-2-ヒドロキシ-5-メチルベンズアミド (化合物番号153)

原料として、5-メチルサリチル酸、及び3,5-ジクロロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:71.0%

mp 216-217°C.

¹H-NMR (DMSO-d₆): δ 2. 28 (3H, s), 6. 90 (1H, d, J=8. 4Hz), 7. 26 (1H, dd, J=8. 7, 1. 8Hz), 7. 34-7. 36 (1H, m), 7. 67 (1H, d, J=1. 5Hz), 7. 85 (2H, d, J=1. 8Hz), 10. 52 (1H, s), 11. 15 (1H, s).

例155:N-(3,5-ジクロロフェニル)-2-ヒドロキシ-5-メトキシベンズアミド (化合物番号154)

原料として、5-メトキシサリチル酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:29.8%

mp 230-232°C.

¹H-NMR (DMSO-d₆): δ 3. 76 (3H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 08 (1H, dd, J=9. 0, 3. 0Hz), 7. 35-7. 36 (1H, m), 7. 40 (1H, d, J=3. 0Hz), 7. 85 (2H, d, J=1. 5Hz), 10. 55 (1H, s), 10. 95 (1H, s).

例156:5-プロモー2-ヒドロキシ-N-(3, 4, 5-トリクロロフェニル) ベンズアミド (化合物番号155)

原料として、5ープロモサリチル酸、及び3,4,5ートリクロロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:78.6%

mp 297-299°C.

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=9.0Hz), 7. 58 (1H, dd, J=8.4, 2.4Hz), 7. 95 (1H, d, J=2.4Hz), 8. 03 (1H, s), 10. 58 (1H, s), 11. 49 (1H, s).

例157:5-プロモー2-ヒドロキシ-N-(3,5-ジクロロー4-ヒドロキシフェニル) ベンズアミド (化合物番号156)

原料として、5-プロモサリチル酸、及び3,5-ジクロロー4-ヒドロキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

22.5%)を得た。

¹H-NMR (DMSO-d₆): δ 6. 96 (1H, d, J=8. 7Hz), 7. 58 (1H, dd, J=8. 7, 2. 4Hz), 7. 76 (2H, s), 8. 01 (1H, d, J=2. 4Hz), 10. 03 (1H, s), 10. 36 (1H, s), 11. 67 (1H, brs).

例158:5-クロロ-2-ヒドロキシ-N-(2, 3, 4, 5, 6-ペンタフルオロフェニル) ベンズアミド (化合物番号157)

原料として、5-クロロサリチル酸、及び2,3,4,5,6-ペンタフルオロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:58.6%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=8. 7Hz), 7. 53 (1H, dd, J=8. 7, 2. 7Hz), 7. 91 (1H, d, J=2. 7Hz), 10. 38 (1H, brs), 11. 74 (1H, brs).

例159:5-ブロモーN-(3,5-ジニトロフェニル)2-ヒドロキシーベンズアミド(化合物番号158)

原料として、5-ブロモサリチル酸、及び3,5-ジニトロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:32.2%

mp 258-260°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98-7. 02 (1H, m), 7. 59

-7. 63 (1H, m), 7. 96-7. 97 (1H, m), 8. 56-8. 58 (1H, m), 9. 03-9. 05 (2H, m), 11. 04 (1H, s), 11. 39 (1H, brs).

例 $160:N-\{2,5-$ ビス[(1,1-ジメチル)エチル]フェニル $\}-5-$ クロロ-2-ヒドロキシベンズアミド(化合物番号159)

原料として、5-クロロサリチル酸、及び2,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.7%

¹H-NMR (DMSO-d₆): δ 1. 27 (9H, s), 1. 33 (9H, s), 7. 04 (1H, d, J=9. 0Hz), 7. 26 (1H, dd, J=8. 4, 2. 1Hz), 7. 35-7. 38 (2H, m), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 8. 07 (1H, d, J=2. 4Hz), 10. 22 (1H, s), 12. 38 (1H, br s).

例161:5-クロロ-N-[5-(1, 1-ジメチル) エチル-2-メトキシフェニル] -2-ヒドロキシベンズアミド (化合物番号160)

原料として、5-クロロサリチル酸、及び5- [(1, 1-ジメチル) エチル] -2-メトキシアニリンを用いて例 16 と同様の操作を行い、標題化合物を得た。 収率: 89.5%

¹H-NMR (DMSO- d_6): δ 1. 28 (9H, s), 3. 33 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 11 (1H, dd, J=8. 7, 2. 4Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 99 (1H, d, J=3. 0Hz), 8. 49 (1H, d, J=2. 4Hz), 10. 78 (1H, s), 12. 03 (1H, s).

例162:5-プロモ-N-(3,5-ジメチルフェニル)-2-ヒドロキシベ

ンズアミド (化合物番号161)

原料として、5ープロモサリチル酸、及び3,5ージメチルアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:58.1%

mp 188-190°C.

¹H-NMR (DMSO-d₆): δ 2. 28 (6H, s), 6. 80 (1H, s), 6. 96 (1H, d, J=8.7Hz), 7. 33 (2H, s), 7. 58 (1H, dd, J=9. 0, 2. 4Hz), 8. 10 (1H, d, J=2. 4Hz), 10. 29 (1H, s), 11. 93 (1H, brs).

例163:N-{3, 5-ビス [(1, 1-ジメチル) エチル] フェニル} -5-クロロ-2-ヒドロキシベンズアミド (化合物番号 162)

原料として、5-クロロサリチル酸、及び3,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:34.1%

¹H-NMR (CDC1₃): δ 1. 26 (18H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 29 (1H, t, J=1. 8Hz), 7. 39 (1, dd, J=9. 0, 2. 4Hz), 7. 41 (2H, d, J=1. 5Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 81 (1H, br s), 12. 01 (1H, s).

例 $164:N-{3,5-ビス[(1,1-ジメチル) エチル] フェニル}-5-$ プロモ-2-ヒドロキシベンズアミド(化合物番号163)

原料として、5ーブロモサリチル酸、及び3,5ービス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:45.2%

¹H-NMR (DMSO-d₆, δ): 1. 30 (18H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 20 (1H, t, J=1. 5Hz), 7. 56 (2H,

d, J=1. 5Hz), 7. 58 (1H, dd, J=8. 7, 2. 4Hz), 8. 12 (1H, d, J=2. 7Hz), 10. 39 (1H, s), 11. 98 (1H, s).

例165:5-クロロー2-ヒドロキシー(3, 5, 5, 8, 8-ペンタメチルー5, 6, 7, 8-テトラヒドロナフタレンー2-イル) ベンズアミド(化合物番号164)

原料として、5-クロロサリチル酸、及び2-アミノ-3, 5, 5, 8, 8-ペンタメチル-5, 6, 7, 8-テトラヒドロナフタレンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.5%

¹H-NMR (DMSO-d₆): δ 1. 23 (6H, s), 1. 24 (6H, s), 1. 64 (4H, s), 2. 19 (3H, s), 7. 13 (1H, d, J=9. 0 Hz), 7. 20 (1H, s), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 7. 67 (1H, s), 8. 04 (1H, d, J=2. 7Hz), 10. 23 (1H, s), 12. 26 (1H, s).

例166:N-(ビフェニル-3-イル) -5-クロロ-2-ヒドロキシベンズ アミド (化合物番号165)

原料として、5-クロロサリチル酸、及び3-アミノビフェニルを用いて例1 6と同様の操作を行い、標題化合物を得た。

収率:75.6%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 35-7. 44 (1H, m), 7. 45-7. 54 (5H, m), 7. 65-7. 68 (2H, m), 7. 72 (1H, dt, J=7. 2, 1Hz). 7. 99 (1H, d, J=3.0Hz), 8. 03 (1H, m), 10. 50 (1H, s), 11. 83 (1H, brs).

PCT/JP01/11084

WO 02/49632

例167:5-クロロー2-ヒドロキシーN-(4-メトキシビフェニルー3-イル) ベンズアミド (化合物番号166)

原料として、5-クロロサリチル酸、及び3-アミノー4-メトキシビフェニルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.0%

¹H-NMR (DMSO-d₆): δ 3. 95 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 20 (1H, d, J=8. 4Hz), 7. 34 (1H, t, J=7. 2Hz), 7. 40-7. 50 (4H, m), 7. 62 (1H, d, J=8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 77 (1H, d, J=2. 1Hz), 10. 92 (1H, s), 12. 09 (1H, s).

例168:5-ブロモーN-(2,5-ジメトキシフェニル)-2-ヒドロキシベンズアミド (化合物番号167)

原料として、5-ブロモサリチル酸、及び2,5-ジメトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.7%

¹H-NMR (DMSO- d_6): δ 3. 72 (3H, s), 3. 84 (3H, s), 6. 66 (1H, ddd, J=9. 0, 3. 0, 0. 6Hz), 6. 99-7. 0 3 (2H, m), 7. 58 (1H, ddd, J=9. 0, 2. 7, 0. 6Hz), 8. 10 (1H, dd, J=2. 4, 0. 6Hz), 8. 12 (1H, d, J=3. 0Hz), 10. 87 (1H, s), 12. 08 (1H, s).

例169:5-ブロモーN-(3,5-ジメトキシフェニル)-2-ヒドロキシベンズアミド(化合物番号168)

原料として、5-ブロモサリチル酸、及び3,5-ジメトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.3%

mp 207-209°C.

¹H-NMR (DMSO-d₆): δ 3. 75 (6H, s), 6. 30-6. 32 (1H, m), 6. 94-6. 97 (3H, m), 7. 57 (1H, dd, J=8. 7, 2. 4Hz), 8. 04 (1H, d, J=2. 4Hz), 10. 32 (1H, s), 11. 78 (1H, s).

例170:5-クロロ-N-(3-アセチルフェニル)-2-ヒドロキシベンズアミド(化合物番号169)

原料として、5-クロロサリチル酸、及び3-アセチルアニリンを用いて例1 6と同様の操作を行い、標題化合物を得た。

収率:80.0%

¹H-NMR (DMSO- d_6): δ 2. 60 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 49 (1H, dd, J=9. 0, 3. 0Hz), 7. 54 (1H, t, J=8. 1Hz), 7. 76 (1H, dq, J=7. 8, 0. 9Hz), 7. 96-8. 00 (2H, m), 8. 30 (1H, t, J=1. 8Hz), 10. 56 (1H, s), 11. 75 (1H, s).

例171:5- {[(5-プロモ-2-ヒドロキシ) ベンゾイル] アミノ} イソフタル酸 ジメチルエステル (化合物番号170)

原料として、5-ブロモサリチル酸、及び5-アミノイソフタル酸 ジメチル エステルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.1%

mp 254-256°C.

¹H-NMR (DMSO- d_6): δ 3. 92 (6H, s), 6. 97 (1H, d, J=9. 0Hz), 7. 60 (1H, dd, J=9. 0, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 8. 24-8. 25 (1H, m), 8. 62

(2H, m), 10. 71 (1H, s), 11. 57 (1H, s).

例 $172:N-\{4-[3-(2,3-ジクロロフェニル)チオウレイド]フェニル<math>\}-2-$ ヒドロキシベンズアミド (化合物番号171)

本化合物は、市販化合物である。

販売元:Maybridge社

カタログ番号: RDR 01434

例 $173:N-\{2,5-ビス[(1,1-ジメチル) エチル] フェニル} -2-$ ヒドロキシ-5-メチルベンズアミド (化合物番号173)

原料として、5-メチルサリチル酸、及び2,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 27 (9H, s), 1. 33 (9H, s),

- 2. 28 (3H, s), 6. 89 (1H, d, J=8.1Hz), 7. 24 (1H,
- d, J=2. 1 H z), 7. 27 (1 H, d, J=2. 1 H z), 7. 32 (1 H,
- d, J = 2.4 Hz), 7.37 (1H, d, J = 8.4 Hz), 7.88 (1H,
- d, J=1.5Hz), 10.15 (1H, s), 11.98 (1H, br s).

例174:2-アセトキシ-N- $\{3,5$ -ビス[(1,1-ジメチル) エチル] フェニル $\}$ -5-クロロベンズアミド (化合物番号174)

原料として、 $N-\{3,5-ビス[(1,1-ジメチル) エチル] フェニル\} -5-クロロ-2-ヒドロキシベンズアミド、及びアセチルクロリドを用いて例96と同様の操作を行い、標題化合物を得た。$

収率:66.1%

¹H-NMR (CDC1₃): δ 1. 34 (18H, s), 2. 36 (3H, s), 7. 12 (1H, d, J=8. 4Hz), 7. 25 (1H, d, J=1. 5Hz),

7. 44 (2H, d, J=1. 2Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 87 (1H, d, J=2. 4Hz), 7. 98 (1H, s).

例175:N-{3,5-ビス[(1,1-ジメチル) エチル] フェニル}-2-ヒドロキシ-5-ニトロベンズアミド (化合物番号175)

原料として、5-ニトロサリチル酸、及び3,5-ビス [(1,1-ジメチル) エチル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:46.7%

¹H-NMR (CDCl₃): δ 1. 37 (18H, s), 7. 13 (1H, d, J=9. 3Hz), 7. 32 (1H, t, J=1. 8Hz), 7. 46 (2H, d, J=1. 8Hz), 8. 07 (1H, s), 8. 33 (1H, dd, J=9. 3, 2. 1Hz), 8. 59 (1H, d, J=2. 4Hz), 13. 14 (1H, s).

例176:N-{3, 5-ビス [(1, 1-ジメチル) エチル] フェニル} -2-ヒドロキシ-5-メチルベンズアミド (化合物番号176)

原料として、5-メチルサリチル酸、及び3,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.3%

¹H-NMR (CDC1₃): δ 1. 35 (18H, s), 2. 35 (3H, s), 6. 94 (1H, d, H=8. 4Hz), 7. 23-7. 28 (2H, m), 7. 31 (1H, s), 7. 42 (1H, d, J=1. 8Hz), 7. 88 (1H, s), 11. 86 (1H, s).

例 $177:N-{3,5-ピス[(1,1-ジメチル) エチル] フェニル}-2-$ ヒドロキシ-5-メトキシベンズアミド (化合物番号177)

原料として、5-メトキシサリチル酸、及び3,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.7%

¹H-NMR (DMSO-d₆): δ 3. 56 (3H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 11 (1H, dd, J=9. 0, 3. 0Hz), 7. 52 -7. 56 (2H, m), 7. 83 (1H, d, J=8. 1Hz), 8. 95 (1H, d, J=1. 5Hz), 11. 29 (1H, s), 11. 63 (1H, s).

例178:2-アセトキシー5-クロロ-N-[5-(1, 1-ジメチル) エチルー2-メトキシフェニル] ベンズアミド (化合物番号178)

原料として、5-クロロ-N-[5-(1, 1-ジメチル) エチル-2-メトキシフェニル] エチル-2-ヒドロキシベンズアミド、及びアセチルクロリドを用いて例 96 と同様の操作を行い、標題化合物を得た。

収率:87.5%

¹H-NMR (CDC1₃): δ 1. 35 (9H, s), 2. 37 (3H, s), 3. 91 (3H, s), 6. 86 (1H, d, J=8. 7Hz), 7. 12 (1H, dd, J=8. 7, 2. 4Hz), 7. 13 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 2. 4Hz), 8. 02 (1H, d, J=2. 7Hz), 8. 66 (1H, d, J=2. 4Hz), 8. 93 (1H, s).

例179:N-[5-(1,1-ジメチル) エチルー2-メトキシフェニル] -2-ヒドロキシー5-メチルベンズアミド (化合物番号178)

原料として、5-メチルサリチル酸、及び5-(1, 1-ジメチル) エチルー 2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:84.7%

¹H-NMR (CDC1₃): δ 1. 35 (9H, s), 2. 34 (3H, s), 3. 93 (3H, s), 6. 86 (1H, d, J=8. 7Hz), 6. 93 (1H, d, J=8. 4Hz), 7. 12 (1H, dd, J=8. 7, 2. 4Hz), 7. 24 (1H, dd, J=8. 4, 1. 8Hz), 7. 27 (1H, br s), 8.

48 (1H, d, J=2. 4Hz), 8. 61 (1H, brs), 11. 95 (1H, s).

例180:5-ブロモー2-ヒドロキシ-N-(チアゾール-2-イル) ベンズ アミド(化合物番号180)

原料として、5 - ブロモサリチル酸、及び2-アミノチアゾールを用いて例1 6 と同様の操作を行い、標題化合物を得た。

収率:12.0%

mp 212°C (dec.).

¹H-NMR (DMSO-d₆): δ 6. 94 (1H, brd, J=8.0Hz), 7. 25 (1H, brd, J=3.2Hz), 7. 56 (2H, m), 8. 05 (1 H, d, J=2.8Hz).

例181:5-プロモ $-N-\{4-[(1,1-$ ジメチル) エチル] チアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド (化合物番号186)

(1) 2-アミノー4-[(1, 1-ジメチル) エチル] チアゾール

1ープロモー3, 3-ジメチルー2-プタノン (5.03g, 28.1mmo 1)、チオウレア (2.35g, 30.9mmo1)、エタノール (30mL) の混合物を1.5時間加熱還流した。冷却後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー (ヘキサン:酢酸エチル=2:1→1:1) で精製して標題化合物の黄白色粉末 (3.99g, 90.9%) を得た。

¹H-NMR (CDCl₃): δ 1. 26 (9H, s), 4. 96 (2H, brs), 6. 09 (1H, s).

(2) 2-アセトキシ-5-ブロモ-N- {4- [(1, 1-ジメチル) エチル]

WO 02/49632

PCT/JP01/11084

チアゾールー2ーイル} ベンズアミド

原料として、2-アセトキシー5-プロモ安息香酸、及び<math>2-アミノー4-[(1,1-ジメチル) エチル] チアゾールを用いて例 24 と同様の操作を行い、標題化合物を得た。

収率:59.4%

¹H-NMR (CDCl₃): δ 1. 31 (9H, s), 2. 44 (3H, s), 6. 60 (1H, s), 7. 13 (1H, d, J=8. 4Hz), 7. 68 (1H, dd, J=8. 7, 2. 4Hz), 8. 17 (1H, d, J=2. 4Hz), 9. 72 (1H, brs).

(3) 5-プロモ $-N-\{4-[(1, 1-$ ジメチル) エチル] チアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド

2-アセトキシー5-ブロモーNー {4-[(1,1-ジメチル) エチル] チアゾールー2ーイル} ベンズアミド (100.1mg,0.25mmol) をテトラヒドロフラン (3mL) に溶かし、2規定水酸化ナトリウム (0.2ml) を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣を結晶化 (イソプロピルエーテル/nーヘキサン) して標題化合物の白色粉末 (70.1mg,78.9%) を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 1. 30 (9H, s), 6. 80 (1H, b r s), 6. 95 (1H, b r s), 7. 57 (1H, b r s), 8. 06 (1H, d, J=2.4Hz), 11. 82 (1H, b r s), 13. 27 (1H, b r s).

例182:5-プロモ $-N-\{5-$ プロモ-4-[(1,1-ジメチル) エチル] チアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド (化合物番号181)

(1) 2-rセトキシー5-プロモ-N- $\{5-$ プロモ-4- [(1, 1-ジメチル) エチル] チアゾール-2-イル $\}$ ベンズアミド

 $2-アセトキシー5-ブロモーNー {4-[(1,1-ジメチル) エチル] イミダゾールー2ーイル} ベンズアミド (0.20g,0.50mmol)をアセトニトリル (10mL) に溶かし、<math>N-$ ブロモスクシンイミド (97.9mg,0.55mmol)を加え、室温で1時間攪拌した。反応混合物に減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー (n-ヘキサン:酢酸エチル=3:1)で精製して標題化合物を粗生成物として得た。

原料として、2-アセトキシ-5-プロモ-N-{5-プロモ-4-[(1, 1-ジメチル) エチル] チアゾール-2-イル} ベンズアミドを用いて例2(2) と同様の操作を行い、標題化合物を得た。

収率:90.9%(2工程)

¹H-NMR (DMSO-d₆): δ 1. 42 (9H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 61 (1H, dd, J=8. 7, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 79 (1H, brs), 12. 00 (1H, brs).

例183:5-プロモーN-[5-プロモー4-(トリフルオロメチル)チアゾ ール-2-イル]-2-ヒドロキシベンズアミド(化合物番号182)

原料として、5ープロモサリチル酸、及び2ーアミノー5ープロモー4ー(トリフルオロメチル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た(2ーアミノー5ープロモー4ー(トリフルオロメチル)チアゾール:J.

Heterocycl. Chem., 1991, 28, 1017. 参照)。

収率:22.4%

mp 215°C (dec.).

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 00 (1H, d, J=8.8Hz),

7. 61 (1H, dd, J=8. 8, 2. 8Hz), 7. 97 (1H, d, J=2. 4Hz).

例184:5-クロロ $-N-\{5-$ シアノ-4-[(1, 1-ジメチル) エチル] チアプール-2-イル $\}-2-$ ヒドロキシベンズアミド

(1) αープロモーピバロイルアセトニトリル

ピバロイルアセトニトリル (1.00g, 7.99mmo1)を四塩化炭素 (15mL) に溶かし、N-プロモスクシンイミド (1.42g, 7.99mmo1)を加え、15分間加熱還流した。冷却後、不溶物をろ過して除去し、ろ液を減圧留去して得られた残渣をシリカゲルクロマトグラフィー (n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の黄褐色オイル (1.43g,87.9%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 33 (9H, s), 5. 10 (1H, s).

(2) 2-アミノー 5-シアノー {4- [(1, 1-ジメチル) エチル] チアゾール

原料として、 α -プロモーピパロイルアセトニトリル、及びチオウレアを用いて例181(1)と同様の操作を行い、標題化合物を得た。

収率:66.3%

 $^{1}H-NMR$ (CDC1₃): δ 1. 41 (9H, s), 5. 32 (2H, s).

(3) $5-\rho$ ロローNー $\{5-\nu$ アノー4ー $[(1, 1-\nu)$ メチル) エチル] チア ゾールー2ーイル $\}$ ー2ーヒドロキシベンズアミド

原料として、5-クロロサリチル酸、及び2-アミノー5-シアノー $\{4-$ [(1, 1-ジメチル) エチル] チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.4%

¹H-NMR (DMSO-d₆): δ 1. 43 (9H, s), 7. 06 (1H, d, J=8. 7Hz), 7. 51 (1H, dd, J=8. 7, 3. 0Hz), 7. 85 (1H, d, J=2. 7Hz), 12. 31 (2H, br).

例 $185:5-プロモーN-{5-シアノ-4-[(1,1-ジメチル) エチル]$ チアゾール-2-イル $}-2-$ ヒドロキシベンズアミド (化合物番号184)

原料として、 $5-プロモサリチル酸、及び<math>2-アミノ-5-シアノ-\{4-[(1,1-i)+i) エチル] チアゾールを用いて例<math>16$ と同様の操作を行い、標題化合物を得た。

収率:61.3%

¹H-NMR (DMSO-d₆): δ 1. 43 (9H, s), 7. 00 (1H, d, J=8. 7Hz), 7. 62 (1H, dd, J=8. 7, 2. 7Hz), 7. 97 (1H, d, J=2. 7Hz), 11. 75 (1H, br), 12. 43 (1H, br).

例186:5-プロモー2-ヒドロキシ-N-(5-メチルチアゾールー2-イル) ベンズアミド (化合物番号185)

原料として、5-ブロモサリチル酸、及び2-アミノ-5-メチルチアゾール を用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.9%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 33 (3H, s), 6. 91 (1H, d, J=7. 6Hz), 7. 26 (1H, s), 7. 54 (1H, d, J=9. 6Hz), 8. 03 (1H, d, J=2. 8Hz).

例187:5-プロモーN-(4,5-ジメチルチアゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号<math>187)

原料として、5ープロモサリチル酸、及び2-アミノー4, 5-ジメチルチア

ゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:14.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 18 (3H, s), 2. 22 (3H, s),

6. 89 (1H, d, J=8.8Hz), 7. 51 (1H, d, J=6.8Hz),

8. 02 (1H, d, J=2. 8Hz), 13. 23 (1H, brs).

例188:5-プロモーN-(5-メチル-4-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド(化合物番号188)

原料として、5ーブロモサリチル酸、及び2ーアミノー5ーメチルー4ーフェニルチアゾールを用いて例16と同様の操作を行い、標題化合物を得た(2ーアミノー5ーメチルー4ーフェニルチアゾール: Yakugaku Zasshi, 1961, 81, 1456. 参照)。

収率:27.7%

mp 243-244°C.

¹H-NMR (CD₃OD): δ 2. 47 (3H, s), 6. 92 (1H, d, J = 8. 7Hz), 7. 36-7. 41 (1H, m), 7. 44-7. 50 (2H, m), 7. 53 (1H, dd, J=9. 0, 2. 7Hz), 7. 57-7. 61 (2H, m), 8. 16 (1H, d, J=2. 7Hz).

例189:5-ブロモ-N-[4-メチル-5-(4-フルオロフェニル) チア ゾール-2-イル]-2-ヒドロキシベンズアミド (化合物番号189)

原料として、(4-フルオロフェニル)アセトンを用いて例184(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:28.8%(3工程)

(1) αーブロモー(4ーフルオロフェニル)アセトン

¹H-NMR (CDC1₈): δ 2. 33 (3H, s), 5. 41 (1H, s), 7. 07 (2H, t, J=8. 7Hz), 7. 43 (2H, dd, J=8. 7, 5.

1 H z).

- (2) $2-7 \le J-4-3 \ne N-5-(4-7N \ne D7z=N) \ne T \checkmark -N$ ^1H-NMR (CDCl₃): δ 2. 27 (3H, s), 4. 88 (2H, s), 7. 07 (2H, t, J=8. 7Hz), 7. 32 (2H, dd, J=8. 7, 5. 4Hz).
- (3) 5-プロモーN-[4-メチルー5-(4-フルオロフェニル) チアゾー <math>n-2-4n n-2-4

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, s), 6. 95 (1H, d, J=8. 4Hz), 7. 33 (2H, t, J=8. 7Hz), 7. 52-7. 59 (3H, m), 8. 06 (1H, d, J=3. 0Hz), 12. 01-13. 65 (2H, br).

例190:5-プロモ-N- $\{4-$ メチル-5- [3-(トリフルオロメチル)フェニル]チアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド(化合物番号190)

原料として、3-(トリフルオロメチル)フェニルアセトンを用いて例 $184(1) \sim (3)$ と同様の操作を行い、標題化合物を得た。

収率:39.8%(3工程)

- (1) α -プロモー3-(トリフルオロメチル) フェニルアセトン 1 H-NMR (CDC1₃): δ 2. 38 (3H, s), 5. 43 (1H, s), 7. 52 (1H, t, J=7. 8Hz), 7. 61-7. 66 (2H, m), 7. 69-7. 70 (1H, m).
- (2) 2-アミノー4-メチルー5- [3-(トリフルオロメチル)フェニル] チアゾール
- ¹H-NMR (CDC1₃): δ 2. 32 (3H, s), 4. 95 (2H, s), 7. 46-7. 56 (3H, m), 7. 59-7. 61 (1H, m).
- (3) 5 -プロモ-N- $\{4$ -メチル-5- [3-(トリフルオロメチル) フェ

=ル] チアゾールー 2 ーイル} ー 2 ー ヒドロキシベンズアミド 1 H ー NMR (DMSO – 1 d₆): δ 2. 40 (3H, s), 6. 97 (1H, d, J=8. 7Hz), 7. 59 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 ー 7. 84 (4H, m), (2H, m), 8. 06 (1H, d, J=2. 4Hz), 12. 09 (1H, br), 12. 91 – 13. 63 (1H, br).

例191:5-プロモ $-N-\{4-[(1,1-$ ジメチル)エチル]-5-エチルチアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド (化合物番号191) 原料として、2,2-ジメチル-3-ヘキサノンを用いて例 $184(1)\sim(3)$ と同様の操作を行い、標題化合物を得た。

収率:17.0%(3工程)

- (2) $2-r \in J-4-[(1, 1-i) \ne \mu]$ $x \ne \mu] -5-x \ne \mu \ne r \ne \mu$ ^1H-NMR (CDC1₃): δ 1. 21 (3H, t, J=7. 5Hz), 1. 3 2 (9H, s), 2. 79 (2H, q, J=7. 5Hz), 4. 63 (2H, br s).
- (3) 5-ブロモ-N- $\{4-$ [(1, 1-ジメチル) エチル] -5-エチルチア ゾール-2-イル $\}$ -2-ヒドロキシベンズアミド

¹H-NMR (CDCl₃): δ 1. 32 (3H, t, J=7. 5Hz), 1. 4 1 (9H, s), 2. 88 (2H, q, J=7. 5Hz), 6. 84 (1H, d, J=9. 0Hz), 7. 44 (1H, dd, J=8. 7, 2. 4Hz), 8. 05 (1H, d, J=2. 7Hz), 11. 46 (2H, br).

例192:5-プロモーN-(4-エチル-5-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド (化合物番号192)

原料として、5 ープロモサリチル酸、及び2 ーアミノー4 ーエチルー5 ーフェニルチアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.4%

mp 224-225°C.

¹H-NMR (DMSO-d₆): δ 1. 24 (3H, t, J=7.6Hz), 2. 70 (2H, q, J=7.6Hz), 6. 95 (1H, brd, J=7.6 Hz), 7. 39-7. 42 (1H, m), 7. 45-7. 51 (4H, m), 7. 56 (1H, brd, J=8.0Hz), 8. 06 (1H, d, J=2.8Hz), 11. 98 (1H, brs).

例193:5-プロモ-N-(4-エチル-5-イロプロピルチアゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号193)

原料として、ベンジルイソプロピルケトンを用いて例184(1)~(3)と 同様の操作を行い、標題化合物を得た。

収率: 4. 4% (3工程)

(2) 2-アミノー4-エチルー5-イロプロピルチアゾール

¹H-NMR (CDCl₃): δ 1. 23 (6H, d, J=6. 6Hz), 3. 0 5 (1H, m), 4. 94 (2H, s), 7. 28-7. 41 (5H, m).

(3) 5 - ブロモーN - (4 - エチル - 5 - イロプロピルチアゾール - 2 - ヒドロキシベンズアミド

¹H-NMR (DMSO-d₆): δ 1. 26 (6H, d, J=6.0Hz), 3. 15 (1H, m), 6. 98 (1H, brs), 7. 43-7. 53 (5H, m), 7. 59 (1H, brs), 8. 08 (1H, d, J=2.7Hz), 11. 90 (1H, brd), 13. 33 (1H, brd).

例194:5-プロモーN-(4-ブチル-5-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド (化合物番号194)

原料として、1-フェニル-2-ヘキサノンを用いて例184(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:52.6%(3工程)

(1) $\alpha - \vec{J} \, \Box \, \Xi - 1 - 1 - 2 \, \Xi \, \Box \, \Delta = 2 - \Delta + 4 \, \Box \, \Delta = 2 - \Delta + 2 \, \Box \, \Delta$

¹H-NMR (CDC1₃): δ 0. 85 (3H, t, J=7. 2Hz), 1. 1 9-1. 32 (2H, m), 1, 50-1. 60 (2H, m), 2. 59 (2H, td, J=7. 5, 3. 9Hz), 5. 44 (1H, s), 7. 34-7. 45 (5 H, m).

(2) 2-アミノー4-ブチルー5-フェニルチアゾール

¹H-NMR (CDCl₃, δ): 0. 89 (3H, t, J=7. 5Hz), 1. 2 8-1. 41 (2H, m), 1. 61-1. 71 (2H, m), 2. 56-2. 6 1 (2H, m), 4. 87 (2H, s), 7. 25-7. 40 (5H, m).

(3) 5 - ブロモーN-(4 - プチルー5 - フェニルチアゾールー2 - イル) - 2 - ヒドロキシベンズアミド

¹H-NMR (DMSO-d₆): δ 0. 85 (3H, t, J=7. 2Hz), 1. 23-1. 35 (2H, m), 1. 59-1. 69 (2H, m), 2. 70 (2H, t, J=7. 2Hz), 6. 96 (1H, d, J=6. 9Hz), 7. 39-7. 59 (6H, m), 8. 07 (1H, d, J=2. 4Hz), 11. 93 (1H, br), 13. 18-13. 59 (1H, br).

例195:5ークロロ $-N-\{4-(1,1-i)$ メチル)エチル-5-[(2,2-i) インメチル)プロピオニル] チアゾール-2-4ル $\}$ -2-4ドロキシベンズアミド (化合物番号195)

(1) α ープロモジピバロイルメタン

ジピバロイルメタン (1.00g, 5.42mmol) を四塩化炭素 (10m L) に溶かし、Nーブロモスクシンイミド (965.8mg, 5.42mmol) を加え、2時間加熱還流した。冷却後、不溶物をろ過して除去し、ろ液を減圧留去して表題化合物の白色結晶 (1.42g, quant) を得た。

 $^{1}H-NMR$ (CDC1₃, δ): 1. 27 (18H, s), 5. 67 (1H, s).

(2) 2-アミノ-4-[(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール

 α ーブロモジピバロイルメタン (1.42g)、チオウレア (451.8mg)、エタノール (15mL) の混合物を 2 時間加熱還流した。冷却後、反応混合物を 飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残 査を結晶化 (ジクロロメタン/へキサン) して標題化合物の白色結晶 (1.23g)、(34.5%) を得た。

¹H-NMR (CDCl₃, δ): 1. 26 (9H, s), 1. 29 (9H, s), 5. 03 (2H, s).

(3) 5-クロローN- {4-(1, 1-ジメチル) エチルー5-[(2, 2-ジメチル) プロピオニル] チアゾールー2ーイル} -2-ヒドロキシベンズアミド 5ープロモサリチル酸(0.20g,0.92mmol)、2-アミノー4-[(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール (221.5mg,0.92mmol)、三塩化リン(40・1、0.46mmol)、クロロベンゼン(5mL)の混合物を3時間加熱還流した。反応混合物を減圧濃縮して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1) で精製して標題化合物の白色粉末(96.2mg,23.8%)を得た。

¹H-NMR (CDC1₃): δ 1. 33 (9H, s), 1. 35 (9H, s), 6. 94 (1H, d, J=8, 7Hz), 7. 55 (1H, dd, J=8. 7, 2. 1Hz), 7. 85 (1H, d, J=2. 1Hz), 10. 51 (2H, br).

例196:5-ブロモ-N- $\{4-(1,1-ジメチル)$ エチル-5-[(2,2-5)] エチル-5-[(2,2-5)] プロピオニル-5-[(2,2-5)] チアゾール-2-[(2,2-5)] まド (化合物番号196)

原料として、5-プロモサリチル酸、及び2-アミノー4-[(1,1-ジメチル) エチル] -5-[(2,2-ジメチル) プロピオニル] チアゾールを用いて例 195(3) と同様の操作を行い、標題化合物を得た。

収率:23.8%

¹H-NMR (CDC1₃): δ 1. 33 (9H, s), 1. 35 (9H, s), 6. 94 (1H, d, J=8, 7Hz), 7. 55 (1H, dd, J=8. 7, 2. 1Hz), 7. 85 (1H, d, J=2. 1Hz), 10. 51 (2H, br).

例197:2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-[(1,1-ジメチル) エチル】チアゾール-5-カルボン酸 エチルエステル (化合物番号197)

原料として、ピバロイル酢酸 エチルエステルを用いて例195(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:45.7%(3工程)

- (1) α ブロモーピバロイル酢酸 エチルエステル
- ¹H-NMR (CDCl₃): δ 1. 28 (9H, s), 1. 29 (3H, t, J = 7. 2Hz), 4. 26 (2H, q, J=7. 2Hz), 5. 24 (1H, s).
- (2) 2-アミノー4-[(1, 1-ジメチル) エチル] チアゾール-5-カルボン酸 エチルエステル
- ¹H-NMR (CDCl₃, δ): 1. 32 (3H, t, J=7. 2Hz), 1. 4 3 (9H, s), 4. 24 (2H, q, J=7. 2Hz), 5. 18 (2H, s).
- (3) 2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-[(1, 1- ジメチル) エチル] チアゾールー5-カルボン酸 エチルエステル
- ¹H-NMR (DMSO-d₆): δ 1. 30 (3H, t, J=7. 2Hz), 1. 44 (9H, s), 4. 27 (2H, q, J=6. 9Hz), 7. 00 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 80 (1H, br), 12. 12 (1H,

br).

例198:5-プロモーN-[4-(1, 1-ジメチル) エチルー5ーピペリジノチアゾールー2ーイル] -2ーヒドロキシベンズアミド(化合物番号198)
(1)2-アミノー5ープロモー4ー[(1, 1-ジメチル) エチル] チアゾール2ーアミノー4ー[(1, 1-ジメチル) エチル] チアゾール(0.87g, 5.6mmol)を四塩化炭素(9mL) に溶かし、Nープロモスクシンイミド(1.00g, 5.6mmol)を加え、室温で1時間攪拌した。反応混合物にヘキサンを加え、不溶物をろ過して除去し、ろ液を減圧留去して得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製して標題化合物の黄灰色粉末(1.23g, 93.7%)を得た。

 $^{1}H-NMR (CDCl_{3}): \delta$ 1. 39 (9H, s), 4. 81 (2H, brs).

(2) 2-アミノー4- [(1, 1-ジメチル) エチル] -5-ピペリジノチアゾ ール

2-アミノー5-ブロモー4-[(1,1-ジメチル)エチル]チアゾール(0.10g,0.42mmol)、ピペリジン(0.1mL)、炭酸カリウム(0.20g)、アセトニトリル(4mL)の混合物を3時間加熱還流した。反応混合物を水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して標題化合物の黄色結晶(80.7mg,79.3%)を得た。

¹H-NMR (CDC1₃): δ 1. 32 (9H, s), 1. 64 (4H, t, J = 5. 7Hz), 1. 71-1. 77 (2H, m), 2. 35 (2H, brs), 2. 99 (2H, brs), 4. 68 (2H, s).

5-ピペリジノチアゾールー2-イル] ペンズアミド

アルゴン雰囲気下、2-アセトキシー5-プロモ安息香酸(J. Med. Cehm. 31,861-874 1996)(90.3mg, 0.35mmo1)、チアゾール(80.7mg, 0.34mmo1)、ピリジン(0.1mL)、THF(3mL)の混合物にオキシ塩化リン($46\mu1$, 0.50mmo1)を加え、室温で2時間攪拌した。反応混合物を2N塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して標題化合物の粗生成物(84.3mg)を得た。

(4) 5-プロモーNー [4-(1, 1-ジメチル) エチルー5-ピペリジノチアゾールー2-イル]-2-ヒドロキシベンズアミド

2-アセトキシー5-ブロモーN-[4-(1,1-ジメチル)エチルー5-ピペリジノチアゾールー2-イル]ベンズアミド(粗生成物,84.3mg)をエタノール(3mL)に溶かし、2規定水酸化ナトリウム溶液(0.1mL)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色粉末(54.1mg,36.3%;2工程)を得た。

¹H-NMR (CDCl₃): δ 1. 41 (9H, s), 1. 56 (2H, brs), 1. 67-1. 74 (4H, m), 2. 79 (4H, brs), 6. 85 (1H, d, J=9. 0Hz), 7. 45 (1H, dd, J=9. 0, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 11. 70 (2H, br).

例199:5-ブロモ-N-[4-(1, 1-ジメチル) エチル-5-モルホリノチアゾール-2-イル] -2-ヒドロキシベンズアミド(化合物番号199)

原料として、モルホリンを用いて例198(2) \sim (4)と同様の操作を行い、 標題化合物を得た。

収率:17.1%

(2) 2-アミノー4- [(1, 1-ジメチル) エチル] -5-モルホリノチアゾ ール

¹H-NMR (CDCl₃): δ 1.33 (9H, s), 2.76 (4H, brs), 3.79 (4H, brs), 4.66 (2H, s).

(3) 2-rセトキシー5-ブロモーN- [4- (1, 1-ジメチル) エチルー5-モルホリノチアゾーn-2-1ノイル] ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-プロモーN-[4-(1, 1-ジメチル) エチルー5-モルホリノチアゾールー2-イル]-2-ヒドロキシベンズアミド

¹H-NMR (CDCl₃): δ 1. 24 (9H, s), 2. 89 (4H, dd, J=4. 8, 4. 2Hz), 3. 83 (4H, dd, J=4. 5, 4. 2Hz), 6. 89 (1H, d, J=9. 0Hz), 7. 49 (1H, dd, J=9. 0, 2. 4Hz), 7. 98 (1H, d, J=2. 1Hz), 11. 20 (2H, br).

例200:5-プロモーN-[4-(1,1-ジメチル)エチル-5-(4-メ チルピペラジン-1-イル)チアゾール-2-イル]-2-ヒドロキシベンズア ミド(化合物番号200)

原料として、4-メチルピペラジンを用いて例198(2)~(4)と同様の 操作を行い、標題化合物を得た。

収率: 6.9%

(2) 2-アミノー4-(1, 1-ジメチル) エチルー5-(4-メチルピペラジン-1-イル) チアゾール

 $^{1}H-NMR$ (DMSO- d_{6}): δ 1. 25 (9H, s), 2. 12 (2H, b r s), 2. 19 (3H, s), 2. 57 (2H, b r s), 2. 72 (4H, b r

s), 6. 51 (2H, s).

(3) 2-アセトキシ-N-[4-(1, 1-ジメチル) エチルー5-(4-メチルピペラジン-1-イル) チアゾールー<math>2-イル ベンズアミド

粗生成物のまま次反応に用いた。

(4) $5-プロモ-N-[4-(1, 1-ジメチル) エチル-5-(4-メチル ピペラジン-1-イル) チアゾール-2-イル] -2-ヒドロキシベンズアミド <math>^1H-NMR$ (CD₈OD): δ 1. 41 (9H, s), 2. 55 (3H, s), 2. 87 (4H, brs), 3. 03 (4H, brs), 6. 88 (1H, d, J=8. 7Hz), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 8. 11 (1H, d, J=2. 7Hz).

例 $2 \ 0 \ 1 : 5 -$ プロモーN - [4 - (1, 1 -ジメチル) エチル- 5 - (4 -フェニルピペラジン- 1 -イル) チアゾール- 2 -イル] - 2 -ヒドロキシベンズアミド (化合物番号 $2 \ 0 \ 1$)

原料として、4-フェニルピペラジンを用いて例198(2) ~ (4) と同様の操作を行い、標題化合物を得た。

収率: 6.9%

(2) 2-アミノー4-(1, 1-ジメチル) エチルー5-(4-フェニルピペラジン-1-イル) チアゾール

¹H-NMR (CDCl₃): δ 1.34 (9H, s), 2.80 (2H, brs), 3.03 (4H, brs), 3.55 (2H, brs), 4.69 (2H, s), 6. 88 (1H, tt, J=7.2, 1.2Hz), 6.95 (2H, dd, J=9. 0, 1.2Hz), 7.28 (2H, dd, J=8.7, 7.2Hz).

(3) 2-re++v-5-プロモ-N-[4-(1, 1-ジメチル) エチルー 5-(4-フェニルピペラジン-1-イル) チアゾールー<math>2-イル] ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-プロモ-N-[4-(1, 1-ジメチル) エチル-5-(4-フェニルピペラジン-1-イル) チアゾール-2-イル] <math>-2-ヒドロキシベンズアミド

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 39 (9H, s), 2. 97 (4H, s), 3. 30 (4H, s), 6. 82 (1H, t, J=7. 5Hz), 6. 97 (2H, brs), 6. 99 (2H, t, J=7. 5Hz), 7. 58 (1H, brs), 8. 05 (1H, d, J=2. 4Hz), 11. 69 (1H, brs), 11. 82 (1H, brs).

例202:5-プロモーN-(4-フェニルチアゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号202)

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:16.0%

mp 239℃ (dec.).

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=8. 4Hz), 7. 34 (1H, t, J=7. 6Hz), 7. 44 (2H, t, J=7. 6Hz), 7. 62 (1H, dd, J=8. 4, 2. 8Hz), 7. 67 (1H, s), 7. 92 (2H, d, J=7. 2Hz), 8. 08 (1H, d, J=2. 8Hz), 1 1. 88 (1H, brs), 12. 05 (1H, brs).

例203:{2-[(5-プロモ-2-ヒドロキシベンゾイル) アミノ] -4-フェニルチアゾール-5-イル) 酢酸 (化合物番号203)

(1) {2-[(5-プロモー2-ヒドロキシベンゾイル) アミノ] -4-フェニルチアゾール-5-イル) 酢酸 メチルエステル

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-酢酸 メチルエステルを用いて例195(3)と同様の操作を行い、標

PCT/JP01/11084 WO 02/49632

題化合物を得た。

収率:32.1%

8 (1H, brs).

mp 288. 5-229. 5°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 66 (3H, s), 3. 95 (2H, s),

6. 99 (1H, d, J=8.0Hz), 7. 42 (1H, d, J=6.0Hz),

7. 48 (2H, brt, J=7. 6Hz), 7. 56-7. 61 (3H, m),

8. 07 (1H, d, J=2.4Hz), 11. 85 (1H, brs), 11. 9

(2) {2- [(5-プロモー2-ヒドロキシベンゾイル) アミノ] -4-フェニ

ルチアゾールー5-イル}酢酸

2-[(5-プロモー2-ヒドロキシベンゾイル)アミノ]-4-フェニルチア ゾール-5-酢酸 メチルエステル (75mg, 0.17mmol) をメタノー ル (5 m L) に溶解し、2 規定水酸化ナトリウム (0. 5 m L, 1 m m o 1) を 添加し、次いで室温で12時間攪拌した。反応混合物を2規定塩酸にあけて酢酸 エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナト リウムで乾燥した後、溶媒を減圧留去した。得られた残渣をn-ヘキサン-酢酸 エチルで加熱還流下に懸濁洗浄して標題化合物の淡黄白色結晶(56mg,77. 3%)を得た。

mp 284-286℃.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 84 (2H, s), 6. 98 (1H, d, J = 8. 8 H z), 7. 4 2 (1 H, d, J = 6. 8 H z), 7. 4 9 (2 H, d)t, I = 7.6 Hz, 7.58 - 7.61(3 H, m), 8.07(1 H, d)J = 2.8 Hz), 12.25 (H, brs).

M204:5-ブロモ-N-(4.5-ジフェニルチアゾール-2-イル) -2ーヒドロキシベンズアミド (化合物番号204)

原料として、5-プロモサリチル酸、及び2-アミノー4, 5-ジフェニルチアゾールを用いて例195 (3) と同様の操作を行い、標題化合物を得た(2-アミノー4, 5-ジフェニルチアゾール: Nihon Kagaku Zasshi, 1962, 83, 209. 参照)。

収率:25.9%

mp 262-263°C.

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=8. 1Hz), 7. 34-7. 47 (10H, m), 7. 63 (1H, d, J=6. 9Hz), 8. 08 (1H, d, J=2. 4Hz), 11. 88 (1H, brs), 12. 08 (1H, brs).

例 205:5 ープロモーNー(4 ーベンジルー5 ーフェニルチアゾールー2 ーイル) -2 ーヒドロキシベンズアミド(化合物番号205)

原料として、5-ブロモサリチル酸、及び2-アミノー4-ベンジルー5-フェニルチアゾール例195(3)と同様の操作を行い、標題化合物を得た(2-アミノー4-ベンジルー5-フェニルチアゾール: Chem. Pharm. Bull., 1962, 10, 376.参照)。

収率:28.1%

mp 198-200°C.

¹H-NMR (DMSO-d₆): δ 4. 08 (2H, s), 6. 95 (1H, d, J=8. 8Hz), 7. 15-7. 22 (3H, m), 7. 30 (2H, t, J=7. 6Hz), 7. 38-7. 43 (1H, m), 7. 47 (4H, d, J=4. 4Hz), 7. 57 (1H, brd, J=8. 8Hz), 8. 05 (1H, d, J=2. 4Hz), 11. 98 (1H, brs).

例206:5-プロモーN-[5-フェニル-4-(トリフルオロメチル)チア ゾール-2-イル]-2-ヒドロキシベンズアミド(化合物番号206)

原料として、5 - ブロモサリチル酸、及び2 - アミノ-5 - フェニル-4 - (トリフルオロメチル)チアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:33.2%

mp 250% (dec.). $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1 H, d, J=8. 8Hz), 7. 51 (5H, s), 7. 63 (1H, dd, J=8. 8, 2. 4Hz), 8. 02 (1H, d, J=2. 8Hz), 12. 38 (1 H, brs).

例207:5-プロモーN-[5-アセチル-4-フェニルチアゾール-2-イル] -2-ヒドロキシベンズアミド (化合物番号207)

原料として、1-フェニル-1, 3-ブタンジオンを用いて例195(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:8.9%(3工程)

- (1) α -プロモ-1 -フェニル-1, 3 -ブタンジオン
- ¹H-NMR (CDCl₃): δ 2. 46 (3H, s), 5. 62 (1H, s), 7. 48-7. 54 (2H, m), 7. 64 (1H, tt, J=7. 5, 2. 1Hz), 7. 97-8. 01 (2H, m).
- ¹H-NMR (DMSO-d₆): δ 2. 18 (3H, s), 7. 50-7. 55 (2H, m), 7. 59-7. 68 (3H, m), 8. 69 (2H, brs).
- (3) 5 ー ブロモー N ー [5 ー アセチルー 4 ー フェニルチアゾールー 2 ー イル] - 2 ー ヒドロキシベンズアミド
- ¹H-NMR (DMSO- d_6): δ 2. 44 (3H, s), 6. 99 (1H, d, J=9. 0Hz), 7. 55-7. 71 (4H, m), 7. 76-7. 80 (2H, m), 8. 01 (1H, d, J=2. 4Hz), 12. 36 (2H, br).

例208:5-ブロモーN-[5-ベンゾイル-4-フェニルチアゾール-2-イル]-2-ヒドロキシベンズアミド (化合物番号208)

原料として、1, 3-ジフェニル-1, 3-プロパンジオンを用いて例195 (1) \sim (3) と同様の操作を行い、標題化合物を得た。

収率: 49. 7%

(1) α - プロモー 1, 3 - ジフェニルー 1, 3 - プロパンジオン

¹H-NMR (CDCl₃, δ): 6. 55 (1H, s), 7. 45-7. 50 (4 H, m), 7. 61 (2H, tt, J=7. 2, 2. 1Hz), 7. 98-8. 0 1 (4H, m).

(2) 2-アミノー5-ベンゾイルー4-フェニルチアゾール

¹H-NMR (DMSO-d₆): δ 7. 04-7. 18 (5H, m), 7. 22 -7. 32 (3H, m), 7. 35-7. 38 (2H, m), 8. 02 (2H, s).

(3) 5 - プロモーN - [5 - ベンゾイル - 4 - フェニルチアゾール - 2 - イル] - 2 - ヒドロキシベンズアミド

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.7Hz), 7. 17-7. 30 (5H, m), 7. 39-7. 47 (3H, m), 7. 57-7. 60 (2H, m), 7. 64 (1H, dd, J=8.7, 2.7Hz), 8. 05 (1H, d, J=2.4Hz), 11. 82 (1H, brs), 12. 35 (1H, brs).

例209:2-(5-クロロ-2-ヒドロキシベンゾイル)アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号209)

原料として、5-クロロサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:69.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 22 (3H, t, J=7.5Hz), 4.

21 (2H, q, J=7.5Hz), 7.07 (1H, d, J=8.7Hz), 7. 43-7.47 (3H, m), 7.53 (1H, dd, J=8.7, 2.4Hz), 7.70-7.74 (2H, m), 7.92 (1H, d, J=3.0Hz), 11. 88 (1H, br), 12.29 (1H, brs).

例210:2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号210)

原料として、5ープロモサリチル酸、及び2ーアミノー4ーフェニルチアゾールー5ーカルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:28.6%

mp 197-199°C.

¹H-NMR (DMSO-d₆): δ 1. 21 (3H, t, J=6.8Hz), 4. 20 (2H, q, J=6.8Hz), 7. 01 (1H, d, J=8.8Hz), 7. 43-7. 48 (3H, m), 7. 63 (1H, dd, J=8.8, 2.4 Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 33 (1H, brs).

例211:2-(5-プロモー2-ヒドロキシベンゾイル)アミノー4-(ペンタフルオロフェニル)チアゾール-5-カルボン酸 エチルエステル(化合物番号211)

原料として、ペンタフルオロベンゾイル酢酸を用いて例195(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:40.0%(3工程)

- (2) 2-アミノー4-(ペンタフルオロフェニル) チアゾールー5-カルボン

酸 エチルエステル

¹H-NMR (CDCl₃): δ 1. 23 (3H, t, J=7. 2Hz), 4. 2 1 (2H, q, J=7. 2Hz), 5. 41 (2H, s).

(3) 2- (5-プロモー2-ヒドロキシベンゾイル) アミノ-4- (ペンタフルオロフェニル) チアゾール-5-カルボン酸 エチル

¹H-NMR (DMSO-d₆): δ 1. 20 (3H, t, J=7. 2Hz), 2. 51 (2H, q, J=7. 2Hz), 7. 02 (1H, d, J=8. 7Hz), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 7. 90 (1H, d, J=3. 0Hz), 11. 92 (1H, br), 12. 58 (1H, br).

例212:[2-(5-プロモ-2-ヒドロキシベンゾイル) アミノ-4-(ペンタフルオロフェニル) チアゾール-5-イル] -N-メチルカルボキサミド(化合物番号212)

- (1) 2-(5-ブロモー2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾール-5-カルボン酸
- 2- (5-ブロモ-2-ヒドロキシベンゾイル) アミノ-4- (ペンタフルオロフェニル) チアゾール-5-カルボン酸 エチルエステルを用いて例82と同様の操作を行い、標題化合物を得た。
- 2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾール-5-カルボン酸(0.20g,0.48mmol)、メチルアミン 40%メタノール溶液(0.2ml)、1-ヒドロキシベンゾトリアゾール 水和物(96.7mg、0.72mmol)、WSC・HCl(137.2mg,0.72mmol)、テトラヒドロフラン(15mL)の混合物を室温で18時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去し

て得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=1:2)で精製し、結晶化(ジクロロメタン/n-ヘキサン)して標題化合物の白色粉末(87.9mg, 42.6%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 70 (3H, d, J=4.5Hz), 7. 0.2 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=9.0, 2.4Hz), 7. 68-7. 71 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 16 (1H, t, J=4.5Hz), 1. 88 (1H, br), 12. 15 (1H, brs).

例 2 1 3 : [2 - (5 - プロモー2 - E F ロキシベンゾイル) アミノー4 - (ペンタフルオロフェニル) チアゾール <math>- 5 - イル] - N - エチルカルボキサミド (化合物番号 <math>2 1 3)

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノ-4-(ペンタフルオロフェニル)チアゾール-5-カルボン酸、及びエチルアミンの70% 水溶液を用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率:62.5%

¹H-NMR (DMSO-d₆): δ 1. 05 (3H, t, J=6.9Hz), 3. 15-3. 24 (2H, m), 7. 02 (1H, d, J=8.7Hz), 7. 40 -7. 47 (3H, m), 7. 63 (1H, dd, J=8.7, 3.0Hz), 7. 69-7. 72 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 20 (1H, t, J=5.4Hz), 11. 84 (1H, br), 12. 14 (1H, br s).

例214:[2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾール-5-イル] -N-イソプロピルカルボキサミド(化合物番号214)

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-(ペ

ンタフルオロフェニル)チアゾール-5-カルボン酸、及びイソプロピルアミンを用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率:23.9%

¹H-NMR (DMSO-d₆): δ 1. 07 (6H, d, J=6. 3Hz), 4. 02 (1H, m), 7. 02 (1H, d, J=9. 0Hz), 7. 40-7. 52 (3H, m), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 7. 69-7. 73 (2H, m), 8. 06 (1H, d, J=2. 7Hz), 11. 89 (1H, br), 12. 14 (1H, brs).

例215:[2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾール-5-イル] -N-(2-フェネチル) カルボキサミド (化合物番号215)

原料として、2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾール-5-カルボン酸、及び2-フェネチルアミンを用いて例212と同様の操作を行い、標題化合物を得た。

収率:62.2%

¹H-NMR (DMSO-d₆): δ 2. 78 (2H, t, J=7. 5Hz), 3. 43 (2H, q, J=7. 5Hz), 7. 02 (1H, d, J=9. 0Hz), 7. 19-7. 24 (3H, m), 7. 27-7. 33 (2H, m), 7. 39-7. 41 (3H, m), 7. 61-7. 65 (3H, m), 8. 06 (1H, d, J=2. 4Hz), 8. 25 (1H, t, J=6. 0Hz), 11. 85 (1H, brs), 12. 15 (1H, brs).

例216:2-(5-プロモー2-ヒドロキシベンゾイル)アミノー4-(トリフルオロメチル)チアゾール-5-カルボン酸 エチルエステル(化合物番号216)

原料として、5-プロモサリチル酸、及び2-アミノー4-(トリフルオロメ

チル) チアゾール-5-カルボン酸 エチルエステルを用いて例195 (3) と 同様の操作を行い、標題化合物を得た。

収率:88.7%

¹H-NMR (DMSO-d₆): δ 1. 32 (3H, t, J=7. 2Hz), 4. 33 (2H, q, J=7. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 7. 98 (1H, d, J=2. 4Hz), 12. 64 (1H, br).

例 2 1 7 : 2 - 7 + 2 - 5 - 0 - 0 - 1 - 1 - 1 - 1 +

原料として、 $5-\rho$ ロローNー $\{4-(1,1-i)$ メチル)エチルー5-[(2,2-i)メチル)プロピオニル] チアゾールー2-1ル $\}$ ー2-1にはいるでは、及びアセチルクロリドを用いて例 9 6 と同様の操作を行い、標題化合物を得た。

収率:65.3%

¹H-NMR (CDC1₃): δ 1. 32 (9H, s), 1. 33 (9H, s), 2. 46 (3H, s), 7. 22 (1H, d, J=8. 4Hz), 7. 56 (1H, d d, J=8. 7, 2. 4Hz), 8. 05 (1H, d, J=2. 7Hz), 9. 8 2 (1H, brs).

例218:2-[(4-ヒドロキシビフェニル)-3-カルボニル] アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号218)

原料として、4ーヒドロキシビフェニルー3ーカルボン酸及び2ーアミノー4ーフェニルチアゾールー5ーカルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た(4ーヒドロキシビフェニルー3ーカルボン酸: Tetrahedron, 1997, 53, 11437. 参照)。

収率:61.7%

mp 207-208℃.

¹H-NMR (DMSO-d₆): δ 1. 23 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7. 2Hz), 7. 16 (1H, d, J=8. 7Hz), 7. 36 (1H, t, J=7. 5Hz), 7. 45-7. 50 (5H, m), 7. 69 -7. 76 (4H, m), 7. 85 (1H, dd, J=8. 7, 2. 4Hz), 8. 31 (1H, d, J=2. 4Hz), 11. 73 (1H, brs), 12. 60 (1H, brs).

例219:2-[(4'-7)ルオロー4-ヒドロキシビフェニル) -3-カルボニル] アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号219)

原料として、(4'-7)ルオロー4ーヒドロキシビフェニル)-3-カルボン酸及び2-アミノー4ーフェニルチアゾールー5ーカルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た((4'-7)ルオロー4ーヒドロキシビフェニル)-3-カルボン酸:Tetrahedron, 1997, 53, 11437. 参照)。

収率:62.7%

mp 237-238℃.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 13 (1H, d, J=8. 4Hz), 7. 28 (2H, t, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 71-7. 75 (4H, m), 7. 81 (1H, dd, J=8. 8, 2. 4Hz), 8. 27 (1H, d, J=2. 4Hz), 11. 67 (1H, brs), 12. 5 8 (1H, brs).

例220:2-[(2', 4' -ジフルオロー4-ヒドロキシビフェニル) -3-

カルボニル] アミノー 4 ーフェニルチアゾールー5 ーカルボン酸 エチルエステル (化合物番号220)

原料として、(2', 4' -ジフルオロ-4-ヒドロキシビフェニル) -3-カルボン酸及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:45.6%

mp 206-207°C.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7, 2Hz), 7. 17 (1H, d, J=9. 0Hz), 7. 21 (1H, td, J=8. 7, 2. 4Hz), 7. 38 (1H, ddd, J=11. 7, 9. 3, 2. 4Hz), 7. 44-7. 46 (3H, m), 7. 6 0-7. 75 (4H, m), 8. 13-8. 14 (1H, m), 11. 86 (1H, brs), 12. 46 (1H, brs).

例221:2- {[4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル] -3-カルボニル} アミノー4-フェニルチアゾール-5-カルボン酸 エチル エステル (化合物番号221)

(1) [4'-(トリフルオロメチル) -4-ヒドロキシビフェニル] -3-カル ボン酸

5ープロモサリチル酸 (500 mg, 2.30 mmol)、ジヒドロキシー4ー(トリフルオロメチル)フェニルボラン (488mg, 2.57mmol)、酢酸パラジウム (10mg, 0.040mmol)及び1M 炭酸ナトリウム (7mL)の混合物を80℃で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を、定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー (nーヘキサン:酢酸エチル=5:1)で精製して無

色液体(563 mg)を得た。これをメタノール(10 mL)に溶解し、2規定 水酸化ナトリウム(3 mL)を添加し、次いで60 %で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、 $MgSO_4$ で乾燥した後、溶媒を減圧留去した。得られた残渣をn-へキサンージクロルメタンで加熱還流下に懸濁洗浄して標題化合物の白色結晶(458 mg, 70.4%)を得た。

mp 185℃ (dec.).

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=8.8Hz), 7. 77 (2H, d, J=8.0Hz), 7. 85 (2H, d, J=8.0Hz), 7. 90 (1H, dd, J=8.8, 2.0Hz), 8. 10 (1H, d, J=2.4Hz), 11.80 (brs).

(2) 2- {[4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル] -3 -カルボニル} アミノー4-フェニルチアゾール-5-カルボン酸 エチルエス テル

原料として、[4'-(トリフルオロメチル)-4-ヒドロキシビフェニル]-3-カルボン酸及び2-アミノー4-フェニルチアゾールー<math>5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:41.7%

mp 236-237°C.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 18 (1H, d, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 72-7. 74 (2H, m), 7. 81 (2 H, d, J=8. 4Hz), 7. 91 (1H, dd, J=8. 8, 2. 4Hz), 7. 93 (2H, d, J=8.4Hz), 8. 36 (1H, d, J=2. 4Hz), 11. 78 (1H, brs), 12. 62 (1H, brs).

例222:2-[2-ヒドロキシ-5-(1-ピロリル) ベンゾイル] アミノー 4-フェニルチアゾール-5-カルボン酸 エチルエステル(化合物番号222) 原料として、2-ヒドロキシ-5-(1-ピロリル) 安息香酸、及び2-アミ ノー4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例19 5(3)と同様の操作を行い、標題化合物を得た。

収率:55.0%

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7. 2Hz), 6. 26 (2H, t, J=2.1Hz), 7. 13 (1H, d, J=8.7Hz), 7. 32 (2H, t, J=2.1Hz), 7. 43-7. 47 (3H, m), 7. 70-7. 75 (3H, m), 8. 09 (1H, d, J=2.7Hz), 11. 58 (1H, brs), 12. 55 (1H, brs).

例223:2- [2-ヒドロキシ-5-(2-チェニル) ベンゾイル] アミノー 4-フェニルチアゾール-5-カルボン酸 エチルエステル(化合物番号223) (1) 2-ヒドロキシ-5-(2-チェニル) 安息香酸

5ーブロモサリチル酸(500mg, 2.30mmol)、を1,2ージメトキシエタン(5mL)に溶解し、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(80mg, 0.07mmol)を添加、室温で10分間攪拌した。次いでジヒドロキシー2ーチエニルボラン(324mg, 2.53mmol)及び1M炭酸ナトリウム(7mL)を添加し2時間加熱還流した。反応混合物を室温まで冷却後2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー(nーへキサン:酢酸エチル=5:1)で精製して黄色液体(277mg)を得た。これをメタノール(5mL)に溶解し、2規定水酸化ナトリウム(1.5mL)を添加し、次いで60℃で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあ

PCT/JP01/11084

け酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン-ジクロルメタンで晶析して標題化合物の白色結晶(58mg, 11. 5%)を得た。 ^1H-NMR ($DMSO-d_{\theta}$): δ 6. 95(1H, d, J=8. 8Hz), 7. 09(1H, dd, J=4. 8, 3. 6Hz), 7. 37(1H, dd, J=4. 0, 1. 2Hz), 7. 45(1H, dd, J=5. 2, 1. 2Hz), 7. 74(1H, dd, J=8. 8, 2. 8Hz), 7. 96(1H, d, J=2. 8Hz).

(2) 2- [2-ヒドロキシ-5-(2-チェニル)ベンゾイル]アミノー4-フェニルチアゾールー5ーカルボン酸 エチルエステル

原料として、2-Eドロキシ-5-(2-Fエニル)安息香酸、及び2-Pミ 1-4-Dェニルチアゾール-5-Dルボン酸 エチルエステルを用いて例 195 (3) と同様の操作を行い、標題化合物を得た。

収率:58.2%

mp 213-214℃.

 $^{1}H-NMR(DMSO-d_{6}): \delta$ 1. 22(3H, t, J=7. 2Hz9, 4. 2 1(2H, q, J=7. 2Hz), 7. 10(1H, d, J=9. 2Hz), 7. 12(1 H, dd, J=4. 8, 3. 6Hz), 7. 44-7. 46(4H, m), 7. 50 (1H, dd, J=4. 8, 1. 2Hz), 7. 71-7. 74(2H, m), 7. 7 9(1H, dd, J=8. 8, 2. 4Hz), 8. 21(1H, d, J=2. 4Hz), 11. 78(1H, brs), 12. 44(1H, brs).

試験例:NF-κB活性化阻害測定

NF- κ B活性化阻害作用を Hill らの方法(Hill C.S., et al., Cell, 73, 395-406(1993)) を参考にして実施した。NF- κ B 結合配列 (TGGGGACTTTCCGC) を 5 個連結(タンデムに) したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んだプラスミド (pNF κ B-Luc Reporter Plasmid:

PCT/JP01/11084

STRATAGENE 社製)をトランスフェクション試薬(Effectene、QIAGEN 社製)を用いてヒト肝癌由来細胞株 H e p G 2 又はヒト子宮癌由来細胞株 H e L a にQIAGEN 社のプロトコールに従いトランスフェクトして、 $6 \sim 24$ 時間培養した。その後、被検化合物の存在下又は非存在下で、 $TNF-\alpha$ (40 ng/ml)を加えて 4 時間培養した後、細胞内のルシフェラーゼ活性をピッカジーンLT (東洋インキ社製)及び化学発光測定装置、(SPECTRAFLUORPLUS、TECAN 社製)を用いて測定した。被検化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被検化合物 $10 \mu g/ml$ 及び $1 \mu g/ml$ 存在下におけるNF- κ B活性阻害率を下記の表に示す。

化合物番号	NF-κB活性化阻害率 (%)	
	薬物濃度10μg/mL	薬物濃度1μg/mL
1	54.4	-33.6
2 .	83.2	18.6
3	68.4	5 4. 2
4	94.1	42.9
5	98.0	33.3
6	61.9	27.8
7	68.7	30.4
8	59.9	35.3
9	99. 2	21. 9
10	78.6	7. 1
11	44. 1	28.4
1 2	87.3	68.6
1 3	63.8	-7. 1
1 4	98.9	21. 7
1 5	70.4	15.2
1 6	91.6	36.4
1 7	96.5	19.9
1 8	90.2	85.3
1 9	95.1	-55.4
2 0	86.8	-12.1
2 1	95.0	89.6
2 2	92.9	37.0
2 3	96.6	75.7

2 4	82.2	58.1
2 5	86.9	85.4
2 7	47.3	68.5
2 8	41. 7	16.3
2 9	73.0	46.3
3 0	98.1	76.5
3 1	93.2	13.3
3 2	96.3	89. 3
3 3	99.5	95.1
3 4	98.5	90.5
3 5	85.4	88. 2
3 6	84.7	26.6
3 7	63.1	29. 1
38 .	81.8	-10.1
3 9	56.0	21.4
4 0	81. 9	3. 9
4 1	90.3	26.1
4 2	92.3	14.3
4 3	78.9	25.5
4 4	65.8	36.7
4 5	91. 3	61.7
4 6	85.7	-43.7
4 7	99.4	91.3
4 8	95.6	93.3
4 9	94. 3	81.5
5 0	99.5	96.3

5 1	98.6	94.9
5 2	85.4	86.6
5 3	99. 2	92.0
5 4	99.6	92. 2
5 5	99.4	95.8
5 6	98.3	92.9
5 7	96.0	76.8
. 58	98.3	94.7
5 9	99. 2	94.5
6 0	99.4	42. 7
6 1	98.5	59.7
6 2	99. 1	74.9
6 3	96.9	95.5
6 4	90.1	53.3
6 5	97.1	83.9
6 6	94.9	91.1
6 7	96.8	91.8
6 8	98.3	92.3
6 9	9 9. 6	96.4
7 0	95.4	93.3
7 1	97.9	93.8 .
7 2	97.8	79.5
7 3	9 2. 9	81.7
7 4	95.3	8 2. 1
7 6	99.0	90.4
77	97.0	30.7

		,
7 8	99. 2	86.3
7 9	98.7	90.7
8 1	96.4	88.2
8 2	94.5	-8. 7
8 3	87.1	16.0
8 4	82.2	23.7
8 5	96.0	44.9
8 6	95.9	42.2
8 7	98.1	84.4
8 9	67.5	-21.6
9 0	63.4	1. 0
9 1	88.4	20.5
9 2	97. 2	51.8
9 3	98.7	96.2
9 4	8 9. 1	19.4
9 5	97.1	90.9
9 6	99. 2	96.5
9 7	96.0	6 9. 9
9 8	98. 2	90.5
101	98.3	9 5. 7
104	96.9	76.2
105	93.9	89.6
106	93.3	80.7
107	95.0	9 2. 3
108	97.6	94.7
109	88.8	8 3. 0

110	98.9	94.7
111	98.7	96.7
112	95.9	93.1
113	97.1	94.8
114	94.1	88.9
1 1 5	94.3	89.0
1 1 6	96.7	86.3
117	93.0	89.2
· 118	96.3	94.1
119	91.7	88.1
1 2 0	97.9	93.8
1 2 1	96.5	85.5
1 2 2	97.2	84.5
1 2 3	93.4	76.6
1 2 5	99.1	94.6
1 2 6	97.8	95.8
1 2 7	8 6. 4	81.8
1 2 8	9 5. 0	87.2
1 2 9	8 5 . 8	75.4
1 3 9	60.2	-48.2
1 4 0	96.7	94.2
141	96.4	83.3
1 4 2	96.9	95.1
1 4 3	93.8	91.6
1 4 4	96.8	91.8
1 4 5	95.5	92.9

1 4 6	97.0	94. 2
1 4 7	96.8	84.5
1 4 8	92.8	77.1
149	97.1	85.4
150	95.1	91.4
151	71.8	-42.8
152	70.6	-56.8
153	88.7	49. 1
154	48.2	-31.0
155	94.1	85.6
156	74.9	7. 3
157	98.1	86.2
158	. 95.6	91.0
159	96.3	8 9. 1
1 6 0	99. 2	. 86.2
161	92.6	86.3
1 6 3	82.0	70.9
164	98.6	94.9
165	95.1	88.2
166	97.9	8 2. 4
1 6 7	95.7	3 2. 4
1 6 8	96.8	38.3
169	88. 1	14.5
170	56.4	-40.0
171	95.8	3 3. 7
172	97.5	88.6

180	42.8	-23.1
181	98. 7	96.5
182	94.4	85.3
183	92. 4	92.6
184	93.8	20.0
185	69.7	-1.5
186	95. 2	88.4
187	67.2	4. 6
188	94.4	83.6
189	82.0	-8.4
190	71.7	- 32. 4
191	98. 1	90.5
192	87.6	28.8
193	96.1	70.1
194	88. 7	46.1
1 9 5	98.3	95.7
1 9 6	97.5	86.8
197	92.4	84.5
198	97.8	93.6
199	96.8	87.8
200	89.6	36.3
201	95.9	92.5
202	78.8	-41.8
203	72. 1	2. 4
2 0 4	67.0	-5.8
2 0 5	95.0	79.7

PCT/JP01/11084

206 89. 4 85. 1 207 95. 9 70. 2 208 97. 3 90. 7 209 82. 8 55. 8 210 94. 2 80. 7 211 96. 0 82. 2 212 58. 6 50. 8 213 84. 0 51. 9
208 97.3 90.7 209 82.8 55.8 210 94.2 80.7 211 96.0 82.2 212 58.6 50.8 213 84.0 51.9
209 82.8 55.8 210 94.2 80.7 211 96.0 82.2 212 58.6 50.8 213 84.0 51.9
210 94. 2 80. 7 211 96. 0 82. 2 212 58. 6 50. 8 213 84. 0 51. 9
211 96. 0 82. 2 212 58. 6 50. 8 213 84. 0 51. 9
212 58.6 50.8 213 84.0 51.9
213 84.0 51.9
214 91.3 49.6
2 1 5 6 0 . 4 3 3 . 3
2 1 6 9 6 . 5 8 7 . 6
217 97.7 95.0
2 1 8 7 8 . 6 3 4 . 6
219 85.8 45.0
2 2 0 9 0 . 3 3 1 . 8
221 90.0 66.9
222 90.1 74.0
2 2 3 8 4 . 8 4 0 . 8

産業上の利用可能性

本発明の医薬は転写因子NF $-\kappa$ Bの活性化阻害作用を有し、さらに炎症性サイトカインの産生遊離抑制作用を有するので、NF $-\kappa$ B活性化に起因する疾患及び炎症性サイトカイン産生過剰に起因する疾患の予防及び/又は治療剤として有用である。

PCT/JP01/11084

請求の範囲

1. 下記一般式(I):

(式中、

Xは、主鎖の原子数が2ないし4である連結基(該連結基は置換基を有していてもよい)を表し、

·Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環Zは、式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含み、NF-κB活性化阻害作用を有する医薬。

2. Xが、下記連結基群 α より選択される基(該基は置換基を有していてもよい) である請求の範囲第1項に記載の医薬。

「連結基群 α] 下記式:

(式中、左側の結合手が環2に結合し右側の結合手がEに結合する)

3. Xが、下記式:

(式中、左側の結合手が環Zに結合し右側の結合手がEに結合する)で表される 基(該基は置換基を有していてもよい)である請求の範囲第1項に記載の医薬。

- 4. Aが、水素原子である請求の範囲第1項ないし第3項のいずれか1項に記載の医薬。
- 5. 環Zが、 $C_6 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)、又は6ないし13員のヘテロアレーン(該ヘテロアレーンは、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第1項ないし第4項のいずれか

- 1項に記載の医薬。
- 6. 環Ζが、下記環群β:

[環群 β] ベンゼン環、ナフタレン環、ピリジン環、インドール環、キノキサリン環、およびカルバゾール環

より選択される環(該環は、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第1項ないし第5項のいずれか1項に記載の医薬。

- 7. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他に更に置換基を有していてもよいベンゼン環である請求の範囲第6項に記載の医薬。
- 8. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他にハロゲン原子を更に有していてもよいベンゼン環である請求の範囲第7項に記載の医薬。
- 9. Eが、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし13員のヘテロアリール基である請求の範囲第1項ないし第8項のいずれか1項に記載の医薬。
- 10. Eが、置換基を有していてもよいフェニル基である請求の範囲第9項に記載の医薬。
- 11. Eが、3, 5 ジトリフルオロメチルフェニル基である請求の範囲第10項に記載の医薬。
- 12. Eが、置換基を有していてもよい5員のヘテロアリール基である請求の範囲第8項に記載の医薬。
- 13. 下記物質群δ:

[物質群δ] 腫瘍壊死因子 (TNF)、インターロイキン-1、インターロイキン

-2、インターロイキン-6、インターロイキン-8、顆粒球コロニー刺激因子、インターフェロンβ、細胞接着因子であるICAM-1、VCAM-1、ELAM-1、ニトリックオキシド合成酵素、主要組織適合抗原系クラスI、主要組織適合抗原系クラスI、主要組織適合抗原系クラスI、主要組織適合抗原系クラスI、方の担保アープリン、免疫グロブリン軽鎖、血清アミロイドA、アンジオテンシノーゲン、補体B、補体C4、c-myc、HIVの遺伝子由来の転写産物、HTLV-1の遺伝子由来の転写産物、シミアンウイルス40の遺伝子由来の転写産物、サイトメガロウイルスの遺伝子由来の転写産物、及びアデノウイルスの遺伝子由来の転写産物

より選択される1又は2以上の物質の遺伝子の発現抑制剤である、請求の範囲第 1項ないし第12項のいずれか1項に記載の医薬。

14. 炎症性サイトカイン産生遊離抑制剤又は免疫抑制剤である、請求の範囲第1項ないし第12項のいずれか1項に記載の医薬。

15. 下記一般式 (I-1):

$$z^1$$
 N
 E^1
 $(I-1)$

(式中、Z¹は、5位に置換基を有していてもよい2ーヒドロキシフェニル基、 又は5位に置換基を有していてもよい2ーアセトキシフェニル基を表し、

 E^1 は、 $C_1 \sim C_6$ のハロゲン化アルキル基2個で置換されたフェニル基(該フェニル基は $C_1 \sim C_6$ のハロゲン化アルキル基2個の他に更に置換基を有していてもよい)を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記の化合物を除く:

N-[3, 5-ビス (トリフルオロメチル) フェニル] <math>-2-ヒドロキシベンズ アミド、

N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド、

N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-プロモ-2-ヒド

ロキシベンズアミド、

N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ-5-ヨードベンズアミド、

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ニトロベンズアミド、及び

2-ヒドロキシ-N-[2, 3, 5-トリス (トリフルオロメチル) フェニル] ベンズアミド)。

16. 下記一般式 (I-2):

(式中、Z²は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、 又は5位に置換基を有していてもよい2-アセトキシフェニル基を表し、

 E^2 は、3位又は5位が、 $C_1\sim C_6$ のハロゲン化アルキル基であるフェニル基(該フェニル基は、3位又は5位の $C_1\sim C_6$ のハロゲン化アルキル基の他に、更に置換基を有していてもよい(但し、該置換基が $C_1\sim C_6$ のハロゲン化アルキル基である場合は除く))を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記の化合物を除く:

5-クロロ-2-ヒドロキシ-N-[3-(トリフルオロメチル)フェニル] ベンズアミド、

5-プロモ-2-ヒドロキシ-N-[3-(トリフルオロメチル)フェニル]ベンズアミド、

2-ヒドロキシ-5-ヨード-N-[3-(トリフルオロメチル)フェニル]ベンズアミド、

5-クロローN- [4-クロロー3- (トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド、

5-クロロ-N-[5-クロロ-3-(トリフルオロメチル)フェニル]-2-

PCT/JP01/11084

ヒドロキシベンズアミド、

5-クロロー2-ヒドロキシーN- [4-ニトロー3-(トリフルオロメチル)フェニル] ベンズアミド、

5-フルオロ-2-ヒドロキシ-N-[2-(2, 2, 2-トリフルオロエトキシ) <math>-5-(トリフルオロメチル) フェニル] ベンズアミド、

5-フルオロ-2-ヒドロキシ-N-[2-(6, 6, 6-トリフルオロヘキシ ルオキシ) -5-(トリフルオロメチル) フェニル] ベンズアミド、

5-クロロ-2-ヒドロキシ-N-(3-トリフルオロメチル-4-{[4-(トリフルオロメチル) スルファニル] フェノキシ} フェニル) ベンズアミド、

N-[4-(ベンゾチアゾール-2-イル) スルファニル-3-(トリフルオロメチル) フェニル] <math>-5-クロロ-2-ヒドロキシベンズアミド、

5-クロロ-N-[2-(4-クロロフェノキシ)-5-(トリフルオロメチル) フェニル] -2-ヒドロキシベンズアミド、

5-クロロー2-ヒドロキシーN-[2-(4-メチルフェノキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド、

5-クロロ-N-[2-(4-クロロフェニル) スルファニルー5-(トリフル オロメチル) フェニル] -2-ヒドロキシベンズアミド、

5-クロロー2-ヒドロキシーN-[2-(1-ナフチルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド、及び

5-クロロー2-ヒドロキシーN-[2-(2-ナフチルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド)。

17. 下記一般式 (I-3):

(式中、Z³は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、 又は5位に置換基を有していてもよい2-アセトキシフェニル基を表し、 VO 02/49632

WO 02/49632

PCT/JP01/11084

E³は、下記式:

(式中、 R^{3e^2} 及び R^{3e^3} は、同一又は異なって、水素原子、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヒドロキシ基を表し(但し、 R^{3e^2} 及び R^{3e^3} が同時に水素原子である場合は除く)で表される基を表し、 R^{3e^5} は、置換基を有していてもよい $C_2 \sim C_6$ の炭化水素基を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。 18. 下記一般式 (I-4):

$$z^4$$
 N
 E^4
 $(I-4)$

(式中、 Z^4 は、5位に置換基を有していてもよい2ーヒドロキシフェニル基、 又は5位に置換基を有していてもよい2ーアセトキシフェニル基を表し、 E^4 は、下記式:

(式中、R⁴e⁴は、置換基を有していもよい炭化水素基を表し、 R⁴e⁵は、ハロゲン原子、シアノ基、置換基を有していてもよいアシル基、又は 置換基を有していてもよいヘテロ環基を表す)で表される化合物若しくはその塩、 又はそれらの水和物若しくはそれらの溶媒和物。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/11084

A. CLASSII (See	PICATION OF SUBJECT MATTER extra sheet.)		
According to	International Patent Classification (IPC) or to both nation	onal classification and IPC	
B. FIELDS	SEARCHED		
(See	cumentation searched (classification system followed by extra sheet.)		
Documentati	on searched other than minimum documentation to the e	xtent that such documents are included i	n the fields searched
Electronic de CAPL	ata base consulted during the international search (name US (STN), REGISTRY (STN)	of data base and, where practicable, sear	ch terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appr	ropriate, of the relevant passages	Relevant to claim No.
х .	WO, 99/65449, A2 (Smithkline 1 23 December, 1999 (23.12.99), (Full text) & AU 9940255 A	Beecham Corp.),	1-18
X X A	Madan Babita et al., "2'-Hydronuclear factor-κB and blocks factor-α-and lipopolysaccharide-induneutrophils to human umbilicatells", Mol. Pharmacol., Vol. 2000), pages 526 to 533 (Particularly, abstract, page EP, 221211, A1 (Unilever PLC. 13 May, 1987 (13.05.87), (Family: none) (Particularly, page 6, lines	tumor necrosis ced adhesion of l vein endothelial 58, No.3 (October 531)	1,2,4-10,13, 14 16 1-15,17,18
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.	<u></u>
* Specis "A" docum considere "E" earlier date "L" docum cited occum mean "P" docum than t Date of the	"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		the application but cited to derlying the invention cannot be claimed invention cannot be ered to involve an inventive te claimed invention cannot be ep when the document is the documents, such moskilled in the art tramily
Name and Jap	mailing address of the ISA/ anese Patent Office	Authorized officer	
Facsimile 1	No.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP01/11084

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages Relevant to claim No.
X A	JP, 62-99329, A (Unilever N.V.), 08 May, 1987 (08.05.87), (Particularly, claim 7) & US 4560549 A & US 4725590 A & US 4742083 A	16 1-15,17,18
X A	US, 6117859, A (The Research Foundation o University of New York), 12 September, 2000 (12.09.00), (Particularly, column 4, line 17 to column line 19) & US 5958911 A	1-15,17,18
х	US, 4358443, A (The Research Foundation o University of New York), 09 November, 1982 (09.11.82), (Particularly, column 10; Example 4; Tabl & US 4287191 A & EP 38192 Al & JP 57-112360 A	
A	Naoki MATSUMOTO et al., "Synthesis of NK-Activation Inhibitors Derived from Epoxyquinomicin C Bioorg. Med. Chemical Lett., Vol.10, No.9 2000), Pages 865 to 869	ш,

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP01/11084

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ A61K31/055, 31/166, 31/12, 31/18, 31/167, 31/136, 31/17, 31/695, 31/5375, 31/357, 31/404, 31/44, 31/498, 31/403, 31/415, 31/421, 31/422, 31/433, 31/428, 31/505, 31/47, 31/40, 31/381, 31/426, 31/437, 31/4402, 31/4453, 31/445, C07D295/192, 321/10, 215/12, 213/82, 209/42, 241/44, 209/88, 333/68, 231/40, 263/48, 413/14, 285/12, 213/75, 239/47, 209/08, 209/42, 215/38, 209/88, 207/325, 333/24, 277/30, 471/04, 213/56, 295/192, 211/16, 207/48, 213/76, 277/46, 277/56, 413/14, C07C235/60, 233/75, A61P43/00, 19/02, 29/00, 37/06, 17/00, 21/00, 21/04, 9/00, 1/04, 1/16, 13/12, 1/18, 19/06, 9/10, 17/06, 37/08, 11/00, 3/04, 3/10, 3/06, 27/02, 25/28, 35/00, 35/02, 15/00
(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation searched (International Patent Classification (IPC))

Int.Cl7 A61K31/055, 31/166, 31/12, 31/18, 31/167, 31/136, 31/17, 31/695, 31/5375, 31/357, 31/404, 31/44, 31/498, 31/403, 31/415, 31/421, 31/422, 31/433, 31/428, 31/505, 31/47, 31/40, 31/381, 31/426, 31/437, 31/4402, 31/4453, 31/445, C07D295/192, 321/10, 215/12, 213/82, 209/42, 241/44, 209/88, 333/68, 231/40, 263/48, 413/14, 285/12, 213/75, 239/47, 209/08, 209/42, 215/38, 209/88, 207/325, 333/24, 277/30, 471/04, 213/56, 295/192, 211/16, 207/48, 213/76, 277/46, 277/56, 413/14, C07C235/60, 233/75, A61P43/00, 19/02, 29/00, 37/06, 17/00, 21/00, 21/04, 9/00, 1/04, 1/16, 13/12, 1/18, 19/06, 9/10, 17/06, 37/08, 11/00, 3/04, 3/10, 3/06, 27/02, 25/28, 35/00, 35/02, 15/00
Minimum Documentation Searched(classification system followed by classification symbols)

REMARK CONCERNING THE SUBJECT OF SEARCH:

Each of claims 1-14 relates to medicines containing an extraordinary variety of compounds as the active ingredient.

However, only a small part of the compounds represented by the general formula (I) are supported by the description within the meaning of Article 6 of the PCT and disclosed within the meaning of Article 5 of the PCT.

Therefore, this search has been carried out with priority given to the part supported by the description and disclosed therein, that is, to Examples.

国際調査報告

国際出願番号 PCT/JP01/11084

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl¹ A61K31/055, 31/166, 31/12, 31/18, 31/167, 31/136, 31/17, 31/695, 31/5375, 31/357, 31/404, 31/44, 31/498, 31/403, 31/415, 31/421, 31/422, 31/433, 31/428, 31/505, 31/47, 31/40, 31/381, 31/426, 31/437, 31/4402, 31/4453, 31/445, C07D295/192, 321/10, 215/12, 213/82, 209/42, 241/44, 209/88, 333/68, (特別ページに続く) 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' A61K31/055, 31/166, 31/12, 31/18, 31/167, 31/136, 31/17, 31/695, 31/5375, 31/357, 31/404, 31/44, 31/498, 31/403, 31/415, 31/421, 31/422, 31/433, 31/428, 31/505, 31/47, 31/40, 31/381, 31/426, 31/437, 31/4402, 31/4453, 31/445, C07D295/192, 321/10, 215/12, 213/82, 209/42, 241/44, 209/88, 333/68, (特別ページに続く) 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) · CAPLUS (STN), REGISTRY (STN) 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 カテゴリー* WO 99/65449 A 2 (SMITHKLINE BEECHAM CORPORATION) 1 - 18X 1999.12.23 (文献全体) & AU 9940255 A Madan Babita et al., "2'-Hydroxychalcone inhibits nuclear 1, 2, 4–10, 13, X factor- κB and blocks tumor necrosis factor- α - and 14 lipopolysaccharide-induced adhesion of neutrophils to human umbilical vein endothelial cells", Mol. Pharmacol., Vol. 58, No. 3 (October 2000) pp. 526-533 (特に、abstract及び531頁) □ パテントファミリーに関する別紙を参照。 x C欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの の理解のために引用するもの 「E」国際出願日前の出願または特許であるが、国際出願日 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) よって進歩性がないと考えられるもの 「O」ロ頭による開示、使用、展示等に官及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送日 国際調査を完了した日 12.03.02 21.02.02 特許庁審査官(権限のある職員) 4 C 8517 国際調査機関の名称及びあて先 印 今村 玲英子 日本国特許庁 (ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3450 東京都千代田区霞が関三丁目4番3号

国際調査報告

国際出願番号 PCT/JP01/11084

<u> </u>	and the large by the world	
C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X A	EP 221211 A1 (UNILEVER PLC) 1987.05.13 (ファミリーなし) (特に、6頁1,3,6行)	16 1–15, 17, 18
X A	JP 62-99329 A (ユニリーバー・ナームローゼ・ベン ノートシャープ) 1987.05.08 (特に、クレーム7) & US 4560549 A & US 4725590 A & US 4742083 A	16 1–15, 17, 18
X A	US 6117859 A (THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK) 2000.09.12 (特に、第4欄17行~第6欄19行) & US 5958911 A	16 1–15, 17, 18
х	US 4358443 A (THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK) 1982.11.09 (特に、第10欄EXAMPLE 4及びTABLE 1) & US 4287191 A & EP 38192 A1 & JP 57-112360 A	16
A	Naoki MATSUMOTO et al., "Synthesis of NK- kB Activation Inhibitors Derived from Epoxyquinomicin C", Bioorg. Med. Chemical Lett., Vol. 10, No. 9 (MAY 2000) pp. 865-869	1-18

国際調査報告

国際出願番号 PCT/JP01/11084

「A. 発明の属する分野の分類(国際特許分類(IPC))」の続き

231/40, 263/48, 413/14, 285/12, 213/75, 239/47, 209/08, 209/42, 215/38, 209/88, 207/325, 333/24, 277/30, 471/04, 213/56, 295/192, 211/16, 207/48, 213/76, 277/46, 277/56, 413/14, C07C235/60, 233/75, A61P43/00, 19/02, 29/00, 37/06, 17/00, 21/00, 21/04, 9/00, 1/04, 1/16, 13/12, 1/18, 19/06, 9/10, 17/06, 37/08, 11/00, 3/04, 3/10, 3/06, 27/02, 25/28, 35/00, 35/02, 15/00

「B. 調査を行った分野」 の続き

231/40, 263/48, 413/14, 285/12, 213/75, 239/47, 209/08, 209/42, 215/38, 209/88, 207/325, 333/24, 277/30, 471/04, 213/56, 295/192, 211/16, 207/48, 213/76, 277/46, 277/56, 413/14, C07C235/60, 233/75, A61P43/00, 19/02, 29/00, 37/06, 17/00, 21/00, 21/04, 9/00, 1/04, 1/16, 13/12, 1/18, 19/06, 9/10, 17/06, 37/08, 11/00, 3/04, 3/10, 3/06, 27/02, 25/28, 35/00, 35/02, 15/00

<調査の対象について>

請求の範囲1-14は、いずれも、非常に広範な化合物を有効成分とする医薬に関する発明である。

しかし、PCT6条の意味において明細書に裏付けられ、PCT5条の意味において開示されているのは、式Iに包含される化合物のうちのわずかな部分にすぎない。

したがって、調査は、明細書に裏付けられ、開示されている部分、すなわち、実施例を中心にして行った。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

IMAGES ARE BEST AVAILABLE COPY.

LINES OR MARKS ON ORIGINAL DOCUMENT

☐ OTHER:

☐ GRAY SCALE DOCUMENTS

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY