Функциональные узлы цифровой техники

Базовые логические функции

Булевый базис

Значки для изображения пяти основных вентилей. (элементарные логические функции) Режимы работы функции для каждого вентиля

Обозначение логических элементов

ТАБЛИЦА COOTBETCTBUЯ ОБОЗНАЧЕНИЙ ГОСТ И СТАНДАРТА МЭК СТАНДАРТУ
MILSPEC

Логические функции в «железе»

Несколько базовых элементов в одном корпусе

Напряжение питания

Потенциал земли принимается равным 0 вольт.

$$\underline{\underline{\hspace{1cm}}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \operatorname{GND} = 0$$
 Вольт

В электронных устройствах выбирается некоторая общая точка, потенциал которой считается равным 0 (схемная земля GND (Ground) или общий COM (Common)).

Все остальные напряжения измеряются относительно этой точки.

Напряжение может быть:

- постоянным («V=»);
- переменным («V~»).

Блок питания

ATX Main Power Connector

Какими параметрами физических сигналов представить двоичные данные 0 и 1?

Например, как от одного цифрового элемента передать 1 или 0 другому элементу?

Два типа сигналов

Непрерывный (аналоговый) сигнал

Сигнал может принимать любое (бесконечное) количество значений на определенном интервале

Сигнал может принимать конечное число значений на определенном интервале

Составляющие цифрового сигнала

Активный уровень сигнала - уровень, при котом сигнал на входе схемы выполняет в ней какие-то действия.

Положительный фронт - переход из 0 в 1 Отрицательный фронт – переход из 1 в 0

Представление 0 или 1 цифровыми сигналами

Представление амплитудой цифрового сигнала (импульса);

- (например, единица 0 Вольт, ноль 5 Вольт)
- Представление перепадом (фронтом) цифрового сигнала (импульса)

Обозначение входов и выходов на схемах

Как правило, слева входы справа выходы

Выходы с третьим состоянием (высокоомным состоянием или Z-состоянием)

Внутренний вывод микросхемы отключается от физического выхода («ножки») специальным сигналом и «висит» в воздухе.

Обозначение шин сигналов

Классификация цифровых элементов

Последовательные и параллельные ЦЭ

- По характеру информации на входах и выходах цифровые элементы подразделяются на:
 - последовательные;
 - параллельные ;
 - смешанные.
- По зависимости между входными и выходными сигналами с учётом их изменения по тактам работы – на:
 - комбинационные;
 - элементы с памятью.

Комбинационные элементы и элементы с памятью

- В комбинационных элементах значения выходных сигналов определяются только значениями (комбинацией) действующих в данный момент (такт) входных сигналов.
- В элементах с памятью значения выходных сигналов в текущем такте зависит не только от значений входных сигналов в этом такте, но и от внутренних состояний устройства, которые произошли в предыдущие такты.

Общий подход к синтезу элементов комбинационного типа

- Создать таблицу истинности работы элемента
- По таблице истинности записать СКНФ или СДНФ реализуемой логической функции элемента
- Минимизировать полученные логические функции
 - Расчетный метод;
 - Метод карт Карно Вейча;
 - Метод Квайна;
 - Метод Блейка Порецкого;
- Разработать принципиальную схему
- Реализовать схему

Шифратор

- Шифратор (кодер)
 - Элемент, преобразующий **m**-разрядный позиционный код в n- разрядный двоичный код.
 - В позиционном коде число определяется позицией единицы в последовательности нулей, или позицией нуля в последовательности единиц

000000100

Находил широкое применение в устройствах ввода информации (пультах, клавиатурах) для преобразования десятичных чисел в двоичную систему счисления.

Таблица истинности шифратора

Входы	Входы	Выходы			
Х		Y ₃	Y ₂	Y ₁	Y ₀
0	000000000	0	0	0	0
1	000000001	0	0	0	1
2	000000010	0	0	1	0
3	000000100	0	0	1	1
4	000001000	0	1	0	0
5	0000010000	0	1	0	1
6	0000100000	0	1	1	0
7	0001000000	0	1	1	1
8	0010000000	1	0	0	0
9	01000000000	1	0	0	1

Y0=X1+X3+X5+X7+X9 Y1=X2+X3+X6+X7 Y2=X4+X5+X6+X7 Y3=X8+X9

- Задача:
- На пульте десять клавиш с обозначениями от 0 до 9. При нажатии любой из них на вход шифратора подается единичный сигнал (X₀, ..., X₉).
- На выходе шифратора должен появиться двоичный код (Y₀, ..., Y₉) этого десятичного числа.

Реализация шифратора

Дешифраторы

- Дешифратор (декодер)
 - преобразует входной n разрядный двоичный код в выходной m разрядный позиционный код по формуле:

$$m = 2^{n}$$

Таблица истинности для дешифратора трехразрядного двоичного кода

Входы		Ы	(Y)	Выходы	
X ₂	X ₁	X_0			
0	0	0	1	Y0	
0	0	1	1	Y1	
0	1	0	1	Y2	
0	1	1	1	Y3	
1	0	0	1	Y4	
1	0	1	1	Y5	
1	1	0	1	Y6	
1	1	1	1	Y7	

 $Y0 = \overline{X2} \times \overline{X1} \times \overline{X0}$; $Y1 = \overline{X2} \times \overline{X1} \times X0$; $Y2 = \overline{X2} \times \overline{X1} \times \overline{X0}$

 $Y3 = \overline{X2} \times X1 \times X0$; $Y4 = X2 \times \overline{X1} \times \overline{X0}$; $Y5 = X2 \times X1 \times X0$; $Y6 = X2 \times X1 \times \overline{X0}$;

Y7= X2*X1*X0

Дешифратор на три входа

Дешифраторы бывают с прямыми и инверсными выходами

Дешифраторы широко применяются в устройствах управления, для построения распределителей импульсов по различным цепям, в элементах памяти, ЖК-матрицах и др.

Цифровой компаратор

- Цифровые компараторы выполняют сравнение двух чисел А и В, заданных в двоичном коде с одинаковым количеством разрядов.
- Имеют три выхода: F(a > b), F(a = b), F(a < b).

Таблица истинности одноразрядного компаратора:

Входы		Выходы			
а	Ь	$F_{a>b}$	$F_{a=b}$	$F_{a < b}$	
1	1	0	1	0	
1	0	1	0	0	
0	1	0	0	1	
0	0	0	1	0	

Цифровой компаратор

- Логические выражения для каждой функции имеют вид:
 - $F(a > b) = a \cdot \overline{b}$
 - F(a = b) = ab + ab
 - F(a < b) = ab

Микросхема компаратора

Цифровой компаратор в отдельном корпусе

Входы А>В, А<В, А=В служат для наращивания разрядов.

Сложение по модулю 2 (исключающее «ИЛИ»)

Сумматор по модулю «2» вырабатывает на своем выходе сигнал логической единицы, если количество единиц на его входах нечетное.

 $a \otimes b = \overline{ab} + a\overline{b}$

a	b	$a \oplus b$			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Цифровой мультиплексор

 Пропускает (коммутирует) биты с одного из N входов на один выход в зависимости от двоичного кода на адресных входах.

a1	a0	Х3	X2	X1	XO	Y
0	0	X	X	X	X0	Х0
0	1	X	X	X1	X	X1
1	0	X	X2	X	X	X2
1	1	Х3	X	X	X	Х3

(N к одному)

Демультиплексор

 Коммутирует биты с одного информационного входа на один из выходов в зависимости от кода на адресных входах.

Таблица истинности

D	A0	A1	<i>y</i> 3	<i>y</i> 2	<i>y</i> 1	v o
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

$$Y0 = D \cdot \overline{A0} \cdot \overline{A1};$$

$$Y1 = D \cdot \overline{A0} \cdot A1;$$

$$Y2 = D \cdot A0 \cdot \overline{A1}$$
:

$$Y3 = D \cdot A0 \cdot A1$$

(Один к N

Одноразрядный двоичный сумматор

ΡI	Α	В	ន	PO
0	O	Ō	ō	Ō
Ŏ	9	1	1	ΙŅ
0	1	0	ΙδΙ	0
0 1 1	Ô	ô	Ĭĭ	0
1	Ó	1	0	1
1	1	Ō	ļo	1
1	1	1	1	1

РІ – перенос из предыдущего разряда

А – бит первого числа

В- бит второго числа

S - сумма

Р0 – перенос в следующий разряд

$$PO = ABPI + \overline{ABPI} + \overline{ABPI} + \overline{ABPI}$$

Сумматор

Цифровые устройства с памятью

Запоминающие элементы - триггеры

- Триггер
 - Устройство с двумя устойчивыми состояниями предназначенное для записи, хранения и чтения одного бита информации.

ПОЧТА СССР 1988

 Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в

другое.

Триггер изобрел М.А. Бонч-Бруевич в 1918

Триггеры

- По способу записи информации триггеры делят на :
 - *асинхронные* переключаются в момент подачи входных сигналов,
 - *синхронные* (тактируемые) переключаются только при подаче дополнительных синхронизирующих сигналов
 - *статические* переключаются уровнем синхросигнала .
 - **динамические** переключаются фронтом (перепадом) синхросигнала.

Асинхронный RS – триггер защелка (latch)

R	S	Q	Q
1	0	1	0
0	1	0	1
1	1	Q	Q
0	0	зап	зап

При подаче на входы двух нулей состояние выходов триггера не определено.

Состояние неопределенности иногда называют запрещенным состоянием

Недостатки:

- два информационных входа, которые должны меняться одновременно;
 - наличие запрещенного состояния.

Статическая память - СОЗУ

- Элемент асинхронный RS-триггер защелка
- Содержит 6 транзисторов

Синхронный RS - триггер

- S, R информационные входы
- Ś, Ŕ входы принудительной установки в 0 или 1
- C Clock вход синхронизации
- При C=0 триггер переходит в режим хранения

Для управления используются дополнительный вход С

Одноступенчатый D – триггер защелка

- D-триггер имеет один информационный вход D и вход синхронизации.
- Не имеет запрещенного состояния, переключается по уровню
- При C=1 информация с входа записывается в триггер и появляется на выходе
- При C=0 триггер хранит информацию

- Недостаток:
- при записи (C=1) триггер прозрачен, все изменения на входе D (в том числе и помехи) появляются на выходе.
- В режиме записи и наличии обратной связи может переходить в автоколебательный режим (самовозбуждаться)

Двухступенчатый динамический D- триггер (Flip – Flop)

- Построен по схеме «ведущий-ведомый или Flip Flop»
- D1- ведущий, D2 ведомый, оба **D-latch**
 - При C = 0 информация с входа D записывается в триггер D1.
 D2 хранит предыдущее состояние D1
 - При переходе синхросигнала С из 0 в 1 (по нарастающему фронту) информация из D1 записывается в ведомый D2.

D1 – хранит предыдущее состояние на входе D

Двухступенчатый динамический триггер

• При изображении динамического входа указывают, по какому фронту триггер изменяет своё состояние.

- а- нарастающий фронт
- б спадающий фронт.

Т- триггеры

Т – триггер строится на базе двухтактного D -триггера и меняет свое состояние на противоположное при каждом переходе тактового сигнала:

- из **0** в **1** (для триггера на элементах **NOR**)
- из 1 в 0 (для триггера на элементах NAND)

Один Т-триггер делит тактовую частоту в два раза.

Двоичный счетчик

- Счётчик предназначен для счёта поступающих на его вход импульсов, в интервале между которыми он должен хранить информацию об их количестве.
- Коэффициент пересчета равен количеству состояний в которых может быть счетчик, разрядностью N:

$$K_{cy} = 2^N$$

Максимальное число M, которое может быть получено в счетчике равно :

$$M = 2^N - 1$$

Двоичный счетчик

- По направлению счета счетчики бывают:
 - суммирующие, вычитающие, реверсивные.
- По типу хранимой информации:
 - Двоичные, двоично-десятичные
- По способу переключения:
 - Асинхронные переключение соответствующих разрядов происходит последовательно друг за другом;
 - Синхронные когда переключение происходит одновременно параллельно.

Трехразрядный двоичный счетчик

Суммирующий счетчик

Q_3	Q_2	Q_1	CR
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
			1
0	0	0	
	0 0 0 1 1 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1

Счетчик состоит из последовательно соединенных Т-триггеров Счетчик считает переходы из 0 в 1

Регистры

- Регистры это функциональные узлы на основе триггеров, предназначенные для записи, хранения, чтения и преобразования многоразрядной цифровой информации
- В зависимости от способа записи и чтения информации регистры бывают:
 - параллельные;
 - последовательные (сдвигающие);
 - параллельно последовательные.

Чаще всего регистры строятся на основе двухтактных триггеров

Параллельный регистр

Вход С – запись Вход R – сброс

- Код на входах D0-D2 записывается в регистр по переходу сигнала на входе С из 0 в 1(или из 1 в 0)
- Вход **R** служит для установки триггеров в нулевое состояние перед записью информации.

Запись кода в параллельные регистры осуществляется параллельно, то есть во все разряды регистра одновременно.

Регистр сдвига

- Триггеры соединены в цепочку
 - Каждый выход одного триггера соединен с входом другого.
- Последовательные данные подаются на D-вход первого триггера.
- По положительному (отрицательному) фронту предыдущее состояние одного триггера переписывается в другой триггер.

Информация продвигается по регистру от первого триггера к последнему слева на право.

Реверсивный регистр сдвига

- При N=1 тактовые импульсы производят сдвиг вправо,
- При N=0 сдвиг информации влево

Таймер

• Отсчитывает заданный интервал

