Springer Series in Statistics

Series editors

Peter Bickel, Berkeley, CA, USA Peter Diggle, Lancaster, UK Stephen E. Fienberg, Pittsburgh, PA, USA Ursula Gather, Dortmund, Germany Ingram Olkin, Stanford, CA, USA Scott Zeger, Baltimore, MD, USA

For further volumes: http://www.springer.com/series/692

Robert E. Kass · Uri T. Eden Emery N. Brown

Analysis of Neural Data

Robert E. Kass Carnegie Mellon University Pittsburgh, PA USA

Uri T. Eden Boston University Boston, MA USA Emery N. Brown Massachusetts Institute of Technology Cambridge, MA USA

ISSN 0172-7397 ISSN 2197-568X (electronic) ISBN 978-1-4614-9601-4 ISBN 978-1-4614-9602-1 (eBook) DOI 10.1007/978-1-4614-9602-1

© Springer Science+Business Media New York 2014, Corrected at 2nd printing 2014

Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013955054

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright

Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book serves as a guide and reference for anyone who wishes to understand analysis of neural data generated from studies that range from molecules, to circuits, to systems, to behavior.

Its origins may be traced to the decision by two of us (E.N.B. and R.E.K.), in 1998, to write a review article on statistical analysis of spike train data. Shortly after commencing we realized that some of the methods we thought we ought to be reviewing had, in fact, not yet been developed. After we and others rectified this situation, we published a pair of reviews (Brown et al. 2004; Kass et al. 2005). During this time we also broadened our interests to other experimental modalities, such as neuroimaging, and we began teaching workshops and semester-long courses on statistical methods for neuroscience. In addition, we met the third author of this book (U.E.), who came to share our interests in research and pedagogy (and who pursued his Ph.D. thesis under the guidance of E.N.B.).

It became clear that a book on this subject was desperately needed, and we agreed to write one. While this turned into a longer project than we anticipated, numerous research collaborations, conversations with colleagues at meetings, and extensive comments from students gave us many insights into the content and presentation of the principles and techniques that evolved to form this volume. We feel we are much wiser than when we started, and we hope we have succeeded in imparting a good deal of what we have learned in the process.

Some readers may expect a book organized by type of neural data. We decided, instead, to organize by analysis, with each chapter devoted to broadly categorized statistical concepts described succinctly in section headings that are available in the extended version of the table of contents. Each chapter, however, also contains multiple examples of the way these analytical ideas have been used in the brain sciences: there are more than 100 such examples throughout the book, and they are indexed. A reader wishing to see how we have discussed fMRI data, for instance, should start with the example index. More specific organizational guidelines are given in Chapter 1.

The book is intended as either a reference, or a text. R.E.K. has used preliminary versions of the manuscript in classes populated by graduate students of varying backgrounds, ranging from biologists with minimal mathematical knowledge, who were looking for conceptual understanding, to engineers, who needed to see derivations. We opted to try to satisfy both kinds of audiences.

viii Preface

An appendix is provided as a reminder of key mathematical ideas, and derivations are often marked as optional by indenting them. To those who wish to use the book as a text, R.E.K. would suggest the following ordering of topics:

Part I (Elementary Statistics): Chapters 1–7, 10, 12.1–12.4, 13.1. Part II (Basic Statistical Theory): Chapters 8, 9, 11, 12.5, 13.2–13.4.

Part III (Advanced Topics): Selections from Chapters 14–19.

In his experience, Parts I and II take approximately 12 and 7 classes, respectively.

Many readers will want to see computer code for the methods we have described. We ourselves used both Matlab and R to produce figures. Although we decided not to inject Matlab or R code into the body of the book, we have put code up on our the website http://www.stat.cmu.edu/~kass/KEB.

In addition to the many colleagues and students who made suggestions along the way, including those who are acknowledged within the text, we are indebted to Spencer Koerner, who helped clean up and create much code and many figures, Patrick Foley, who created the website, Heidi Sestrich, who fixed numerous defects in our LATEX, and Matthew Marler, who read the whole manuscript carefully and provided extremely helpful comments. We are also grateful to Elan Cohen and Ryan Sieberg, who each created several figures.

Robert E. Kass Uri T. Eden Emery N. Brown

Short Table of Contents

Pre	face	vii
1	Introduction	1
2	Exploring Data	23
3	Probability and Random Variables	37
4	Random Vectors	71
5	Important Probability Distributions	105
6	Sequences of Random Variables	137
7	Estimation and Uncertainty	149
8	Estimation in Theory and Practice	179
9	Propagation of Uncertainty and the Bootstrap	221
10	Models, Hypotheses, and Statistical Significance	247
11	General Methods for Testing Hypotheses	287
12	Linear Regression	309
13	Analysis of Variance	361
14	Generalized Linear and Nonlinear Regression	391

X

15	Nonparametric Regression	413
16	Bayesian Methods	439
17	Multivariate Analysis	491
18	Time Series	513
19	Point Processes	563
Apj	pendix: Mathematical Background	605
Ref	erences	623
Exa	ample Index	635
Ind	ex	639

Contents

1	Intro	duction		1
	1.1	Data A	nalysis in the Brain Sciences	1
		1.1.1	Appropriate analytical strategies depend crucially	
			on the purpose of the study and the way	
			the data are collected	3
		1.1.2	Many investigations involve a response to a	
			stimulus or behavior	6
	1.2	The Co	ontribution of Statistics	8
		1.2.1	Statistical models describe regularity and variability	
			of data in terms of probability distributions	9
		1.2.2	Statistical models are used to express knowledge	
			and uncertainty about a signal in the presence	
			of noise, via inductive reasoning	13
		1.2.3	Statistical models may be either parametric	
			or nonparametric	14
		1.2.4	Statistical model building is an iterative process	
			that incorporates assessment of fit and is	
			preceded by exploratory analysis	17
		1.2.5	All models are wrong, but some are useful	17
		1.2.6	Statistical theory is used to understand the behavior	
			of statistical procedures under various	
			probabilistic assumptions	19
		1.2.7	Important data analytic ideas are sometimes	
			implemented in many different ways	20
		1.2.8	Measuring devices often pre-process the data	20
		1.2.9	Data analytic techniques are rarely able to	
			compensate for deficiencies in data collection	21
		1.2.10	Simple methods are essential	21
		1.2.11	It is convenient to classify data into several broad	
			types	21

xii Contents

2	Expl	oring D	ata	23
	2.1		bing Central Tendency and Variation	23
		2.1.1	Alternative displays and summaries provide	
			different views of the data	23
		2.1.2	Exploratory methods can be sophisticated	26
	2.2	Data T	Fransformations	28
		2.2.1	Positive values are often transformed	
			by logarithms	28
		2.2.2	Non-logarithmic transformations are sometimes	
			applied	33
3	Prob	ability a	and Random Variables	37
	3.1		alculus of Probability	38
		3.1.1	Probabilities are defined on sets of uncertain	
			events	38
		3.1.2	The conditional probability P(AlB) is the probability	
			that A occurs given that B occurs	40
		3.1.3	Probabilities multiply when the associated	
			events are independent	41
		3.1.4	Bayes' theorem for events gives the conditional	
			probability P(A B) in terms of the conditional	
			probability P(B A)	42
	3.2	Rando	m Variables	46
		3.2.1	Random variables take on values determined	
			by events	47
		3.2.2	Distributions of random variables are defined	
			using cumulative distribution functions and	
			probability density functions, from which theoretical	
			means and variances may be computed	48
		3.2.3	Continuous random variables are similar to discrete	
			random variables	52
		3.2.4	The hazard function provides the conditional	
			probability of an event, given that	
			it has not yet occurred	61
		3.2.5	The distribution of a function of a random variable	
			is found by the change of variables formula	62
	3.3		mpirical Cumulative Distribution Function	64
		3.3.1	P-P and Q-Q plots provide graphical checks	
			for gross departures from a distributional form	65
		3.3.2	Q-Q and P-P plots may be used to judge the	
			effectiveness of transformations	60

Contents xiii

4	Rand		ctors	71
	4.1	Two o	or More Random Variables	71
		4.1.1	The variation of several random variables is	
			described by their joint distribution	73
		4.1.2	Random variables are independent when their joint	
			pdf is the product of their marginal pdfs	75
	4.2	Bivari	ate Dependence	76
		4.2.1	The linear dependence of two random variables	
			may be quantified by their correlation	77
		4.2.2	A bivariate normal distribution is determined	
			by a pair of means, a pair of standard deviations,	
			and a correlation coefficient	82
		4.2.3	Conditional probabilities involving random	
			variables are obtained from conditional densities	84
		4.2.4	The conditional expectation $E(Y X=x)$ is	
			called the regression of Y on X	85
	4.3	Multiv	variate Dependence	90
		4.3.1	The mean of a random vector is a vector and its	
			variance is a matrix	90
		4.3.2	The dependence of two random vectors may be	
			quantified by mutual information	92
		4.3.3	Bayes' theorem for random vectors is analogous	
			to Bayes' theorem for events	98
		4.3.4	Bayes classifiers are optimal	99
5	Impo	ortant P	Probability Distributions	105
	5.1		ulli Random Variables and the Binomial Distribution	105
		5.1.1	Bernoulli random variables take values 0 or 1	105
		5.1.2	The binomial distribution results from a sum of	
			independent and homogeneous Bernoulli random	
			variables	106
	5.2	The Po	oisson Distribution	110
		5.2.1	The Poisson distribution is often used to describe	
			counts of binary events	110
		5.2.2	For large n and small p the binomial	
			distribution is approximately the same as Poisson	113
		5.2.3	The Poisson distribution results when the binary	
			events are independent	115
	5.3	The N	ormal Distribution	116
		5.3.1	Normal random variables are within 1 standard	
			deviation of their mean with probability 2/3; they	
			are within 2 standard deviations of their mean with	
			probability .95	116

xiv Contents

		5.3.2	Binomial and Poisson distributions are	
			approximately normal, for large n or large λ	118
	5.4	Some	Other Common Distributions	119
		5.4.1	The multinomial distribution extends the binomial	
			to multiple categories	119
		5.4.2	The exponential distribution is used to describe	
			waiting times without memory	120
		5.4.3	Gamma distributions are sums of exponentials	123
		5.4.4	Chi-squared distributions are special cases	
			of gamma distributions	124
		5.4.5	The beta distribution may be used to describe	
			variation on a finite interval	124
		5.4.6	The inverse Gaussian distribution describes the	
			waiting time for a threshold crossing by Brownian	
			motion	125
		5.4.7	The t and F distributions are defined from normal	
			and chi-squared distributions	128
	5.5		variate Normal Distributions	129
		5.5.1	A random vector is multivariate normal if linear	
			combinations of its components are univariate	
			normal	129
		5.5.2	The multivariate normal pdf has elliptical contours,	
			with probability density declining according	
			to a χ^2 pdf	130
		5.5.3	If X and Y are jointly multivariate normal	
			then the conditional distribution of Y given X is	100
			multivariate normal	132
6	Seau	ences of	f Random Variables	137
	6.1		m Sequences and the Sample Mean	137
		6.1.1	The standard deviation of the sample mean	
			decreases as $1/\sqrt{n}$	139
		6.1.2	Random sequences may converge according	
			to several distinct criteria	142
	6.2	The La	aw of Large Numbers	143
		6.2.1	As the sample size n increases, the sample mean	
			converges to the theoretical mean	143
		6.2.2	The empirical cdf converges	
			to the theoretical cdf	144
	6.3	The C	entral Limit Theorem	145
		6.3.1	For large n , the sample mean is approximately	
			normally distributed	145
		6.3.2	For large n , the multivariate sample mean	
			is approximately multivariate normal	147

Contents xv

7	Estin	nation a	nd Uncertainty	149		
	7.1	Fitting	Statistical Models	149		
	7.2	The Pro	oblem of Estimation	151		
		7.2.1	The method of moments uses the sample mean			
			and variance to estimate the theoretical mean			
			and variance	153		
		7.2.2	The method of maximum likelihood maximizes			
			the likelihood function, which is defined up to a			
			multiplicative constant	154		
	7.3	Confid	ence Intervals	158		
		7.3.1	For scientific inference, estimates are useless			
			without some notion of precision	158		
		7.3.2	Estimation of a normal mean is a paradigm case	160		
		7.3.3	For non-normal observations the central limit			
			theorem may be invoked	162		
		7.3.4	A large-sample confidence interval for μ is			
			obtained using the standard error s/\sqrt{n}	162		
		7.3.5	Standard errors lead immediately to confidence			
			intervals	164		
		7.3.6	Estimates and standard errors should be reported			
			to two digits in the standard error	169		
		7.3.7	Appropriate sample sizes may be determined			
			from desired size of standard error	169		
		7.3.8	Confidence assigns probability indirectly,			
			making its interpretation subtle	170		
		7.3.9	Bayes' theorem may be used to assess			
			uncertainty	173		
		7.3.10	For small samples it is customary to use			
			the <i>t</i> distribution instead of the normal	176		
8	Estin	timation in Theory and Practice				
	8.1	Mean S	Squared Error	181		
		8.1.1	Mean squared error is bias squared plus variance	181		
		8.1.2	Mean squared error may be evaluated by computer			
			simulation of pseudo-data	186		
		8.1.3	In estimating a theoretical mean from			
			observations having differing variances a weighted			
			mean should be used, with weights inversely			
			proportional to the variances	190		
		8.1.4	Decision theory often uses mean squared error			
			to represent risk	195		

xvi Contents

	8.2		tion in Large Samples	196		
		8.2.1	In large samples, an estimator should be very			
			likely to be close to its estimand	196		
		8.2.2	In large samples, the precision with which			
			a parameter may be estimated is bounded			
			by Fisher information	196		
		8.2.3	Estimators that minimize large-sample variance			
			are called efficient	200		
	8.3	Proper	ties of ML Estimators	202		
		8.3.1	In large samples, ML estimation is optimal	202		
		8.3.2	The standard error of the MLE is obtained			
			from the second derivative of the loglikelihood			
			function	203		
		8.3.3	In large samples, ML estimation is approximately			
			Bayesian	207		
		8.3.4	MLEs transform along with parameters	208		
		8.3.5	Under normality, ML produces the weighted			
			mean	209		
	8.4	Multip	arameter Maximum Likelihood	209		
		8.4.1	The MLE solves a set of partial differential			
			equations	210		
		8.4.2	Least squares may be viewed as a special			
		0.1.2	case of ML estimation	212		
		8.4.3	The observed information is the negative	212		
		0.4.5	of the matrix of second partial derivatives			
			of the loglikelihood function, evaluated at $\hat{\theta}$	213		
		8.4.4	When using numerical methods to implement	213		
		0.7.7	ML estimation, some care is needed	214		
		8.4.5	MLEs are sometimes obtained with the	214		
		6.4.3		215		
		016	EM algorithm			
		8.4.6	Maximum likelihood may produce bad estimates	219		
9	Duon	agation	of Uncortainty and the Poststran	221		
9	9.1	agation of Uncertainty and the Bootstrap Propagation of Uncertainty				
	9.1	9.1.1	Simulated observations from the distribution	223		
		9.1.1				
			of the random variable X produce simulated			
			observations from the distribution of the random	222		
		0.1.0	variable $Y = f(X)$	223		
		9.1.2	In large samples, transformations of consistent			
			and asymptotically normal random variables	220		
		-	become approximately linear	229		
	9.2		ootstrap	237		
		9.2.1	The bootstrap is a general method of assessing			
			uncertainty	237		

Contents xvii

		9.2.2	The parametric bootstrap draws pseudo-data	
			from an estimated parametric distribution	239
		9.2.3	The nonparametric bootstrap draws pseudo-data	
			from the empirical cdf	241
	9.3	Discuss	sion of Alternative Methods	245
10	Mode	els, Hyp	otheses, and Statistical Significance	247
	10.1		uared Statistics	248
		10.1.1	The chi-squared statistic compares model-fitted	
			values to observed values	249
		10.1.2	For multinomial data, the chi-squared statistic	
			follows, approximately, a χ^2 distribution	250
		10.1.3	The rarity of a large chi-squared is judged	
			by its <i>p</i> -value	253
		10.1.4	Chi-squared may be used to test independence	
			of two traits	254
	10.2	Null H	ypotheses	256
		10.2.1	Statistical models are often considered	
			null hypotheses	256
		10.2.2	Null hypotheses sometimes specify a particular	
			value of a parameter within a statistical model	257
		10.2.3	Null hypotheses may also specify a constraint	
			on two or more parameters	257
	10.3	Testing	Null Hypotheses	258
		10.3.1	The hypothesis H_0 : $\mu = \mu_0$ for a normal random	
			variable is a paradigm case	258
		10.3.2	For large samples the hypothesis H_0 : $\theta = \theta_0$	
			may be tested using the ratio $(\hat{\theta} - \theta_0)/SE(\hat{\theta})$	260
		10.3.3	For small samples it is customary to test	
			H_0 : $\mu = \mu_0$ using a t statistic	262
		10.3.4	For two independent samples, the hypothesis	
			H_0 : $\mu_1 = \mu_2$ may be tested using the <i>t</i> -ratio	264
		10.3.5	Computer simulation may be used	
			to find <i>p</i> -values	266
		10.3.6	The Rayleigh test can provide evidence against	
			a uniform distribution of angles	268
		10.3.7	The fit of a continuous distribution may be	
			assessed with the Kolmogorov-Smirnov test	270
	10.4	Interpre	etation and Properties of Tests	271
		10.4.1	Statistical tests should have the correct probability	
			of falsely rejecting H_0 , at least approximately	271
		10.4.2	A confidence interval for θ may be used to test	
			H_0 : $\theta = \theta_0$	274

xviii Contents

		10.4.3	Statistical tests are evaluated in terms of their	
			probability of correctly rejecting H_0	276
		10.4.4	The performance of a statistical test may be	
			displayed by the ROC curve	278
		10.4.5	The <i>p</i> -value is not the probability that H_0 is true	281
		10.4.6	Borderline <i>p</i> -values are especially worrisome	
			with low power	282
		10.4.7	The <i>p</i> -value is conceptually distinct from type	
			one error	283
		10.4.8	A non-significant test does not, by itself,	
			indicate evidence in support of H_0	283
		10.4.9	One-tailed tests are sometimes used	285
11	Gene	ral Metl	hods for Testing Hypotheses	287
	11.1		ood Ratio Tests	288
		11.1.1	The likelihood ratio may be used to test	
			H_0 : $\theta = \theta_0$	288
		11.1.2	<i>P</i> -values for the likelihood ratio test of	
			H_0 : $\theta = \theta_0$ may be obtained from the χ^2	
			distribution or by simulation	290
		11.1.3	The likelihood ratio test of H_0 : $(\omega, \theta) = (\omega, \theta_0)$	
			plugs in the MLE of ω , obtained under H_0	291
		11.1.4	The likelihood ratio test reproduces, exactly	
			or approximately, many commonly-used	
			significance tests	293
		11.1.5	The likelihood ratio test is optimal for simple	
			hypotheses	293
		11.1.6	To evaluate alternative non-nested models	
			the likelihood ratio statistic may be adjusted	
			for parameter dimensionality	294
	11.2	Permut	ation and Bootstrap Tests	297
		11.2.1	Permutation tests consider all possible	
			permutations of the data that would be consistent	
			with the null hypothesis	297
		11.2.2	The bootstrap samples with replacement	300
	11.3	Multipl	e Tests	301
		11.3.1	When multiple independent data sets are used	
			to test the same hypothesis, the <i>p</i> -values are easily	
			combined	301
		11.3.2	When multiple hypotheses are considered,	
			statistical significance should be adjusted	302

Contents xix

12	Linea	ar Regre	ession	309
	12.1	The Li	near Regression Model	310
		12.1.1	Linear regression assumes linearity of $f(x)$	
			and independence of the noise contributions	
			at the various observed x values	31:
		12.1.2	The relative contribution of the linear signal	
			to the total response variation is summarized	
			by R^2	31
		12.1.3	Theory shows that if the model were correct	
			then the least-squares estimate would be likely	
			to be accurate for large samples	31
	12.2	Checki	ng Assumptions	319
		12.2.1	Residuals should represent unstructured noise	319
		12.2.2	Graphical examination of (x, y) data can	
			yield crucial information	32
		12.2.3	Failure of independence among the errors	
			can have substantial consequences	32
	12.3	Eviden	ce of a Linear Trend	32
		12.3.1	Confidence intervals for slopes are based on SE,	
			according to the general formula	32
		12.3.2	Evidence in favor of a linear trend can be	
			obtained from a <i>t</i> -test concerning the slope	32:
		12.3.3	The fitted relationship may not be accurate	
			outside the range of the observed data	32
	12.4		ation and Regression	32
		12.4.1	The correlation coefficient is determined	
			by the regression coefficient and the standard	
			deviations of x and y	32
		12.4.2		32
		12.4.3	Confidence intervals for ρ may be based	
			on a transformation of r	32
		12.4.4	When noise is added to two variables,	
			their correlation diminishes	33
	12.5	_	le Linear Regression	33
		12.5.1	Multiple regression estimates the linear	
			relationship of the response with each	
			explanatory variable, while adjusting for the other	
			explanatory variables	33
		12.5.2	Response variation may be decomposed into signal	
			and noise sums of squares	33:
		12.5.3	Multiple regression may be formulated concisely	
			using matrices	33
		12.5.4	The linear regression model applies to polynomial	
			regression and cosine regression	340

xx Contents

		12.5.5	Effects of correlated explanatory variables	
			cannot be interpreted separately	350
		12.5.6	In multiple linear regression interaction effects	
			are often important	352
		12.5.7	Regression models with many explanatory	
			variables often can be simplified	353
		12.5.8	Multiple regression can be treacherous	358
13	Anal	ysis of V	ariance	361
	13.1	One-W	ay and Two-Way ANOVA	361
		13.1.1	ANOVA is based on a linear model	363
		13.1.2	One-way ANOVA decomposes total variability	
			into average group variability and average	
			individual variability, which would be roughly	
			equal under the null hypothesis	365
		13.1.3	When there are only two groups, the ANOVA	
			<i>F</i> -test reduces to a <i>t</i> -test	368
		13.1.4	Two-way ANOVA assesses the effects of one	
			factor while adjusting for the other factor	369
		13.1.5	When the variances are inhomogeneous across	
			conditions a likelihood ratio test may be used	371
		13.1.6	More complicated experimental designs	
			may be accommodated by ANOVA	371
		13.1.7	Additional analyses, involving multiple comparisons,	
			may require adjustments to <i>p</i> -values	372
	13.2	ANOV	A as Regression	374
		13.2.1	The general linear model includes both regression	
			and ANOVA models	374
		13.2.2	In multi-way ANOVA, interactions are often	
			of interest	377
		13.2.3	ANOVA comparisons may be adjusted using	
			analysis of covariance	380
	13.3	Nonpar	rametric Methods	381
		13.3.1	Distribution-free nonparametric tests may	
			be obtained by replacing data values with	
			their ranks	382
		13.3.2	Permutation and bootstrap tests may be used	
			to test ANOVA hypotheses	385
	13.4	Causati	ion, Randomization, and Observational Studies	385
		13.4.1	Randomization eliminates effects of confounding	
			factors	385
		13.4.2	Observational studies can produce substantial	
			evidence	387

Contents xxi

14	Gene	ralized]	Linear and Nonlinear Regression	391
	14.1		c Regression, Poisson Regression,	-,-
			neralized Linear Models	392
		14.1.1	Logistic regression may be used	
			to analyze binary responses	392
		14.1.2	In logistic regression, ML is used to estimate	
			the regression coefficients and the likelihood ratio	
			test is used to assess evidence of a logistic-linear	
			trend with x	395
		14.1.3	The logit transformation is one among many	
			that may be used for binomial responses,	
			but it is the most commonly applied	398
		14.1.4	The usual Poisson regression model transforms	
			the mean λ to $\log \lambda$	400
		14.1.5	In Poisson regression, ML is used to estimate	
			coefficients and the likelihood ratio test is used	
			to examine trends	401
		14.1.6	Generalized linear models extend regression	
			methods to response distributions from exponential	
			families	402
	14.2	Nonline	ear Regression	405
		14.2.1	Nonlinear regression models may be fitted	
			by least squares	405
		14.2.2	Generalized nonlinear models may be fitted using	
			maximum likelihood	409
		14.2.3	In solving nonlinear optimization problems,	
			good starting values are important, and it	
			can be helpful to reparameterize	411
15	Nonn	arametr	cic Regression	413
	15.1	•		
		15.1.1	Linear smoothers are fast	415
		15.1.2		
			are obtained via a "hat matrix," and it is easy	
			to apply propagation of uncertainty	415
	15.2	Basis F	Sunctions	416
			Splines may be used to represent complicated	
			functions	418
		15.2.2	Splines may be fit to data using linear models	418
		15.2.3	Splines are also easy to use in generalized	
			linear models.	421
		15.2.4	With regression splines, the number and location	
			of knots controls the smoothness of the fit	422

xxii Contents

		15.2.5	Smoothing splines are splines with knots	
			at each x_i , but with reduced coefficients obtained	
			by penalized ML	423
		15.2.6	A method called BARS chooses knot sets	
			automatically, according to a Bayesian criterion	424
		15.2.7	Spline smoothing may be used with multiple	
			explanatory variables	425
		15.2.8	Alternatives to splines are often used	
			in nonparametric regression	427
	15.3	Local F	itting	429
		15.3.1	Kernel regression estimates $f(x)$ with a weighted	
			mean defined by a pdf	430
		15.3.2	Local polynomial regression solves a weighted	
			least squares problem with weights defined	
			by a kernel	432
		15.3.3	Theoretical considerations lead	
			to bandwidth recommendations for linear smoothers	434
	15.4	Density	Estimation	435
		15.4.1	Kernels may be used to estimate a pdf	435
		15.4.2	Other nonparametric regression methods may	
			be used to estimate a pdf	436
			1	
16	Bayes	sian Met	hods	439
	16.1		or Distributions	440
		16.1.1	Bayesian inference equates descriptive	
			and epistemic probability	441
		16.1.2	Conjugate priors are convenient	442
		16.1.3	For exponential families with conjugate priors	
			the posterior mean is a weighted combination	
			of the MLE and the prior mean	443
		16.1.4	There is no compelling choice of prior distribution	447
		16.1.5	For large samples, posteriors are approximately	
			normal and centered at the MLE	448
		16.1.6	Powerful methods exist for computing posterior	
			distributions	450
	16.2	Latent \	Variables	457
		16.2.1	Hierarchical models produce estimates of related	
			quantities that are pulled toward each other	459
		16.2.2	For hierarchical models, posterior distributions	
			are often computed by Gibbs sampling	466
		16.2.3	Penalized regression may be viewed as Bayesian	.00
		10.2.0	estimation	469
			ESHIHAHOH	409

Contents xxiii

		16.2.4	State-space models allow parameters to evolve dynamically	470	
		16.2.5	The Kalman filter may be used to estimate state	470	
		10.2.3	variables for linear Gaussian state-space models	473	
	16.3	Bayes	Factors	475	
	10.5	16.3.1	Bayes factors can provide evidence in favor	.,.	
		10.5.1	of hypotheses.	477	
		16.3.2	Bayes factors provide an interpretation		
			of scientific progress	480	
		16.3.3	Bayes factors can be difficult to use when there		
			is little information about unknown parameters	481	
		16.3.4	•	482	
	16.4	Derivat	tions of Results on Latent Variables	482	
17	Mult	ivariate	Analysis	491	
.,	17.1		ection	49	
	17.2		ariate Analysis of Variance	492	
	17.2	17.2.1		.,,	
		17.2.1	of ANOVA	492	
		17.2.2		.,,	
		17.12.2	are unequal, the likelihood ratio test		
			may be applied	490	
	17.3	Dimens	sionality Reduction	498	
	17.00	17.3.1	A variance matrix may be decomposed	.,,	
			into principal components	498	
		17.3.2	Methods other than PCA may be used		
			to reduce dimensionality	503	
	17.4	Classif	ication and Clustering	505	
		17.4.1	Bayes classifiers for multivariate normal		
			distributions take a simple form	505	
		17.4.2		500	
		17.4.3	Multivariate observations may be clustered		
			into groups	510	
18	Time Series				
	18.1		ection	513	
	18.2	Time I	Domain and Frequency Domain	518	
			Fourier analysis is one of the great		
			achievements of mathematical science	522	
		18.2.2	The periodogram is both a scaled representation		
			of contributions to R^2 from harmonic regression		
			and a scaled power function associated with		
			the discrete Fourier transform of a data set	525	
		18.2.3	Autoregressive models may be fitted		
			by lagged regression	530	

xxiv Contents

	18.3	The Pe	riodogram for Stationary Processes	535
		18.3.1	The periodogram may be considered an estimate	
			of the spectral density function	535
		18.3.2	For large samples, the periodogram ordinates	
			computed from a stationary time series are	
			approximately independent of one another	
			and chi-squared distributed	537
		18.3.3	Consistent estimators of the spectral density	
			function result from smoothing the periodogram	539
		18.3.4	Linear filters can be fast and effective	541
		18.3.5	Frequency information is limited	
			by the sampling rate	544
		18.3.6	Tapering reduces the leakage of power	
			from non-Fourier to Fourier frequencies	546
		18.3.7	Time-frequency analysis describes the evolution	
			of rhythms across time	548
	18.4	Propag	ation of Uncertainty for Functions	
			Periodogram	550
		18.4.1	Confidence intervals and significance tests may	
			be carried out by propagating the uncertainty	
			from the periodogram	550
		18.4.2	Uncertainty about functions of time series may be	
			obtained from time series pseudo-data	552
	18.5	Bivaria	te Time Series	553
		18.5.1	The coherence $\rho_{XY}(\omega)$ between two series	
			X and Y may be considered the correlation	
			of their ω -frequency components	555
		18.5.2	In examining cross-correlation or coherence	
		10.0.2	of two time series it is advisable first	
			to pre-whiten the series	557
		18.5.3	Granger causality measures the linear predictability	557
		10.5.5	of one time series by another	559
			of one time series by another.	337
19	Point	Process	ses	563
1,	19.1		Process Representations	566
	17.1	19.1.1	A point process may be specified in terms	500
		17.1.1	of event times, inter-event intervals,	
			or event counts	566
		19.1.2	A point process may be considered, approximately,	500
		19.1.2	to be a binary time series	567
		10.1.2	· · · · · · · · · · · · · · · · · · ·	307
		19.1.3	Point processes can display a wide variety	560
			of history-dependent behaviors	568

Contents xxv

19.2	Poissor	n Processes	570
	19.2.1	Poisson processes are point processes for which	
		event probabilities do not depend on occurrence	
		or timing of past events	570
	19.2.2	Inhomogeneous Poisson processes have	
		time-varying intensities	573
19.3	Non-Po	pisson Point Processes	578
	19.3.1	Renewal processes have i.i.d. inter-event	
		waiting times	578
	19.3.2	The conditional intensity function specifies	
		the joint probability density of spike times	
		for a general point process	582
	19.3.3	The marginal intensity is the expectation	
		of the conditional intensity	584
	19.3.4	Conditional intensity functions may be fitted	
		using Poisson regression	586
	19.3.5	Graphical checks for departures from a point	
		process model may be obtained by time rescaling	594
	19.3.6	There are efficient methods for generating	
		point process pseudo-data	597
	19.3.7	Spectral analysis of point processes requires care	599
19.4	Additio	onal Derivations	601
Appendix	: Mathe	matical Background	605
• •			
Reference	es		623
Example	Index .		635
Indev			639
inuca			05)