

COMP9517: Computer Vision

Image Formation

Week 1

• « Image formation occurs when a **sensor** registers **radiation** that has interaction with physical abjects? Help & Brown

Geometry of image formation

Mapping world coordinates to image coordinates Assignment Project Exam Help

- Pinhole camera model
 - https://powcoder.com
- Projective geometry
 - Add WeChat powcoder
- Projection matrix

Idea 1: Put a piece of film in front of an object Do we get a reasonable image?

Idea 1: Put a piece of film in front of an object Do we get a reasonable image?

Idea 1: Put a piece of film in front of an object Do we get a reasonable image?

Idea 1: Put a piece of film in front of an object Do we get a reasonable image?

Idea 2: Add a barrier to block off most of the rays
This reduces blurring significantly
Opening known as the **pinhole** or **aperture**

Pinhole camera model

f = focal length c = centre of the camera

Dimensionality reduction machine

Point of o

Projection can be tricky...

Projection can be tricky...

Projective geometry

Figure from Forsyth

Projective geometry

Projective geometry

Assignment Project Exam Help
Parallel lines in the world https://powcoderseeth the image at a WeChat powerishing point"

Vanishing Point

world coordinates => image coordinates

world coordinates => image coordinates

world coordinates => image coordinates

world coordinates > image coordinates

Perspective projection

 Apparent size of object depends on Assistancent Project Exam Help far objects appear smaller • By similar triangles https://powcoder.com

 $(x', y', z') = (f \frac{x}{z}, f \frac{dd}{z}, y)$ eChat powcoder

Ignore the third coordinate

$$(x', y') = (f\frac{x}{z}, f\frac{y}{z})$$

Affine projection

- Suitable when scene depth is small relative to the average distance from the grament Project Exam Help
- Let magnification $m=-f'/z_0$ be a positive constant, treat all https://powcoder.com points in the scene as at constant distance z_0 from camera

• Leads to weak perspective projection coder

$$(x', y') = (-mx, -my)$$

Affine projection

- Camera always remains at roughly constant distance from the scenesignment Project Exam Help
- Orthographic projection / when code a continuous issued to −1

Beyond pinholes: radial distortions

Corrected barrel distortion

29

Comparing with human vision

Cameras imitate the frequency response of the human events pit is ect Exam Vitreous humor Zonule fibers good to know something about it Fovea https://powcoder.com Macula Visual axis lutea Computer vision probably would not Optic axis Disk Aqueous Optic nerve get as much attention it bill exichat powcode Retina-Ciliary body Choroid vision (especially human vision) had Sclera not proven that it is possible to make The Eye

important judgements from 2D images

Electromagnetic spectrum

https://sites.google.com/site/chempendix/em-spectrum

Normalized responsivity spectra of human cone cells (S, M, L types)

Colour represented by RGB images

Colour spaces: RGB

Default colour space

R Assignment Project Exar (G=0,B=0)https://powcoder.com G (R=0,B=0)Add WeChat powcoder 1,0,0 0,0,1 В

Drawback: strongly correlated channels

(R=0,G=0)

Colour spaces: HSV

Intuitive colour space

Colour spaces: YCbCr

Fast to compute, good for compression, used by TV

Cb

Assignment Project Exam Here

https://powcoder.com

Add WeChat powcoder

Cr (Y=0.5,Cb=0.5)

Colour spaces: L*a*b*

"Perceptually uniform" colour space

Digital image formation

Digital image formation

Digitisation by spatial sampling

- **Digitisation** converts an analog image to a digital image by sampling the image project Exam Help
- Sampling digitise styles comownered example:
 - Spatial discretisation of a picture function F(x,y)
 - Uses a (typically rectangular) grid of sampling points:

$$x = j\Delta x, y = k\Delta y \mid j = 1...M, k = 1...N$$

— The Δx , Δy are called the **sampling intervals**

Digital colour images

Spatial resolution

 Spatial resolution: number of pixels per unit of length

• Example: resolution decreases by one half each time (see right) powcoder.com (a)

Human faces can be recognized in 64 x 64 pixels images Add We Chat powered at the contract of t

Too little resolution, poor recognition

Quantisation

- Quantisation digitises the intensity or amplitude values F(x,y)
 - Called intensity or gray level quantisation xam Help
 - Gray-level resolution to be chosen

 - Number of levels should be high enough for human Add WeChat powcoder perception of shading details... requires about
 100 levels for a realistic image

Quantisation and bits/pixel

Further reading

Chapter 2 of Szeliski

• Chapter 2 of Shapiro and Stockman

https://powcoder.com

Add WeChat powcoder

Acknowledgements

- Several slides from Derek Hoiem, Alexei Efros, Steve Seitza Pavid Porsythta Ed Erik Meijering
- Image sources credited where possible
- Some material including images and tables, Add WeChat powcoder were drawn from the referenced textbooks and associated online resources