Теория кодирования

Гошин Егор Вячеславович, к.т.н., доцент кафедры суперкомпьютеров и общей информатики

Код Рида-Маллера

Коды Рида-Маллера — это линейные коды (n,k,d), где

$$n = 2^{m},$$

$$k = \sum_{i=0}^{r} C_{i}^{i},$$

$$d = 2^{m-r}.$$

Рассмотрим альтернативный способ формирования этих кодов, более подходящий для декодирования.

Стандартный порядок

Обозначим позиции в слове длины $n=2^m$ векторами из K^m .

Будем обозначать позицию i вектором $u_i \in K^m$, где u_i является двоичным представлением i с обратным порядком разрядов (младшие биты впереди).

Так стандартным порядком для m=2 будет (00,10,01,11). Для m=2-(000,100,010,110,001,101,011,111).

Векторная форма

Любая функция $f \colon K^m \to \{0,1\}$ может быть представлена в векторной форме

$$v = (f(u_0), f(u_1), \dots, f(u_{2^m-1})) \in K^n,$$

где $u_i \in K^m$, $n = 2^m$ и $u_0, u_1, \dots, u_{2^m-1}$ – стандартный порядок векторов.

Класс базисных функций

Пусть задано подмножество $I\subseteq\{0,1,\dots,m-1\}$. Определим функцию

$$f_I(x_0,x_1,\ldots,x_{m-1}) = egin{cases} \prod_{i\in I} (x_i+1)\,, & ext{если $I
et \emptyset$,} \ 1, & ext{если $I = \emptyset$.} \end{cases}$$

Определим v_I как соответствующую векторную форму для f_I .

Пусть m = 3, тогда $n = 2^3$.

Если $I=\{1,2\}$, тогда $f_I(x_0,x_1,x_2)=(x_1+1)(x_2+1).$

Векторная форма $f_{\{1,2\}}(x_0,x_1,x_2)$ получается подстановкой элементов $x_0x_1x_2\in K^3$ в стандартном порядке и вычислением $f_{\{1,2\}}(x_0,x_1,x_2)$. Таким образом

$$f_{\{1,2\}}(0,0,0) = 1$$
, $f_{\{1,2\}}(1,0,0) = 1$, $f_{\{1,2\}}(0,1,0) = 0$, $f_{\{1,2\}}(1,1,0) = 0$, $f_{\{1,2\}}(0,0,0) = 0$, $f_{\{1,2\}}(1,0,0) = 0$, $f_{\{1,2\}}(0,1,0) = 0$, $f_{\{1,2\}}(1,1,1) = 0$.

$$v_I = \{11000000\}$$

Свойства функции f_I

Есть два важных свойства функции f_I , которые понадобятся в дальнейшем.

- 1. $f_I(x_0, x_1, ..., x_{m-1}) = 1$ тогда и только тогда, когда $x_i = 0$ для всех $i \in I$.
- 2. Для каждого $u_i \in K^m f_I(u_i) f_I(u_i) = f_{I \cup I}(u_i)$ и, следовательно:

$$v_I \cdot v_J = \sum_{i=0}^{2^{m-1}} f_I(u_i) f_J(u_i) = \sum_{i=0}^{2^{m-1}} f_{I \cup J}(u_i) = wt(v_{I \cup J}) (mod 2)$$

Далее для обозначения всего набора $\{0,1,2,\dots,m-1\}$ будет использоваться обозначение Z_m .

Код Рида-Маллера

Код Рида-Маллера RM(r,m) можно определить как линейный код $(\{v_I \mid I \subseteq Z_m, |I| \le r\}).$ Можно показать, что $S=\{v_I \mid I \subseteq Z_m, |I| \le r\}$

линейно независимое множество, и поэтому может являться базисом линейного кода RM(r,m).

Порождающая матрица кода Рида-Маллера

Слова v_I можно расположить в любом порядке для формирования порождающей матрицы $G_{r,m}$. Определим канонический вид матрицы $G_{r,m}$, в котором строки расположены так, что v_I встречается раньше (выше), чем v_I , если:

1.
$$|I| < |J|$$

ИЛИ

2. если
$$|I| = |J|$$
, $f_I(u_j) < f_J(u_j)$ и $f_I(u_i) = f_J(u_i)$ для $i > j$.

Порождающая матрица для RM(3,4)

Порождающая матрица для RM(3,4)

Порождающая матрица для RM(3,4)

Мажоритарное декодирование

Будем называть $I^c \subseteq Z_m$ комплементарным множеством к множеству $I \subseteq Z_m$, если $I^c = Z_m \backslash I$.

Пусть $H_I=\{u\in K^m\mid f_I(u)=1\}$. Напомним, что $f_I(x_0,...,x_{m-1})=1$ тогда и только тогда, когда $x_i=0$ для всех $i\in I$. H_I – подпространство K^m .

Для любого $u=(x_0,x_1,\dots,x_{m-1})\in K^m$ и для любого $t=(t_0,\dots,t_{m-1})\in K^m$ определим функцию $f_{I,t}=f_I(x_0+t_0,\dots,x_{m-1}+t_{m-1})=f_I(x+t)$. Соответственно, $v_{I,t}$ векторная форма это функции.

Алгоритм мажоритарного декодирования

Пусть w — принятое слово.

- 1. Пусть i = r и пусть w(r) = w.
- 2. Для каждого $J\subseteq Z_m$, удовлетворяющего условию |J|=i, вычисляем $w(i)\cdot v_{J^c,t}$ для каждого $t\in H_J$ до тех пор, пока 0 или 1 не встретятся более чем 2^{m-i-1} раз, в этом случае m_j принимаем равным 0 или 1, соответственно. Если и 0, и 1 встретились более, чем $2^{m-r-1}-1$ раз, запрашиваем повторную отправку сообщения.
- 3. Если i>0, $w(i-1)=w(i)+\sum_{J\subseteq Z_m}m_Jv_J$, где |J|=i. Если w(i-1) имеет вес не более $2^{m-r-1}-1$, принимаем $m_J=0$ и для всех $J\subseteq Z_m$, где $|J|\le r$ и останавливаем выполнение алгоритма. Иначе, заменяем i на i-1 и возвращаемся к шагу 2. (Если i=0, тогда m_J было вычислено для всех $J\subseteq Z_m$, где $|J|\le r$ и наиболее вероятное отправленное сообщение было вычислено)

Используем рассмотренный ранее алгоритм для декодирования слова w=0101011110100000, закодированного с использованием $G_{2,4}$.

```
Начинаем с i=r=2 и w(2)=w. Пусть J=\{0,1\}. Тогда J^c=\{2,3\} и H_J=\{0000,0010,0001,0011\}. v_{J^c,t}\colon v_{\{2,3\},\{0000\}}=\{1111\ 0000\ 0000\ 0000\} v_{\{2,3\},\{0010\}}=\{0000\ 1111\ 0000\} v_{\{2,3\},\{0001\}}=\{0000\ 0000\ 1111\}
```

$v_{\{2,3\},\{0000\}}$ и $v_{\{2,3\},\{0010\}}$

 $v_{\{2,3\},\{0000\}} = \{1111\ 0000\ 0000\ 0000\}$

единицы только в тех строках, в номерах которых в позициях 2 и 3 нули, то есть вида (** 00)!

$$\begin{array}{ll} f_{\{2,3\},\{0000\}}(0000) = 1, & f_{\{2,3\},\{0000\}}(1000) = 1, \\ f_{\{2,3\},\{0000\}}(0100) = 1, & f_{\{2,3\},\{0000\}}(1100) = 1, \\ f_{\{2,3\},\{0000\}}(0010) = 0, & f_{\{2,3\},\{0000\}}(1010) = 0, \\ f_{\{2,3\},\{0000\}}(0110) = 0, & f_{\{2,3\},\{0000\}}(1110) = 0, \\ f_{\{2,3\},\{0000\}}(0101) = 0, & f_{\{2,3\},\{0000\}}(1101) = 0, \\ f_{\{2,3\},\{0000\}}(0101) = 0, & f_{\{2,3\},\{0000\}}(1101) = 0, \\ f_{\{2,3\},\{0000\}}(0111) = 0, & f_{\{2,3\},\{0000\}}(1011) = 0, \\ f_{\{2,3\},\{0000\}}(0111) = 0, & f_{\{2,3\},\{0000\}}(1111) = 0, \\ \end{array}$$

$$v_{\{2,3\},\{0010\}} = \{0000\ 1111\ 0000\ 0000\}$$
 $t = 0010$

это означает, что бит на 2 позиции инвертируется, поэтому единицы только в тех строках, в номерах которых в позиции 2 – единица, а в позиции 3 – ноль, то есть вида (** 10)

$$\begin{array}{ll} f_{\{2,3\},\{0010\}}(0000) = 0, & f_{\{2,3\},\{0010\}}(1000) = 0, \\ f_{\{2,3\},\{0010\}}(0100) = 0, & f_{\{2,3\},\{0010\}}(1100) = 0, \\ f_{\{2,3\},\{0010\}}(0010) = 1, & f_{\{2,3\},\{0010\}}(1010) = 1, \\ f_{\{2,3\},\{0010\}}(0110) = 1, & f_{\{2,3\},\{0010\}}(1110) = 1, \\ f_{\{2,3\},\{0010\}}(0001) = 0, & f_{\{2,3\},\{0010\}}(1001) = 0, \\ f_{\{2,3\},\{0010\}}(0101) = 0, & f_{\{2,3\},\{0010\}}(1101) = 0, \\ f_{\{2,3\},\{0010\}}(0011) = 0, & f_{\{2,3\},\{0010\}}(1011) = 0, \\ f_{\{2,3\},\{0010\}}(0111) = 0, & f_{\{2,3\},\{0010\}}(1111) = 0, \\ \end{array}$$

```
w(2) = (0101\ 0111\ 1010\ 0000)
           J = \{0,1\}, v_{\{2,3\},t}:
v_{\{2,3\},\{0000\}} = \{1111\ 0000\ 0000\ 0000\}
v_{\{2,3\},\{0010\}} = \{0000\ 1111\ 0000\ 0000\}
v_{\{2,3\},\{0001\}} = \{0000\ 0000\ 1111\ 0000\}
v_{\{2,3\},\{0011\}} = \{0000\ 0000\ 0000\ 1111\}
             w \cdot v_{\{2,3\},\{0000\}} = 0
             w \cdot v_{\{2,3\},\{0010\}} = 1
             w \cdot v_{\{2,3\},\{0001\}} = 0
             w \cdot v_{\{2,3\},\{0011\}} = 0
                  m_{\{0,1\}}=0
```

```
w(2) = (0101\ 0111\ 1010\ 0000)
           J = \{0,2\}, \qquad v_{\{1,3\},t}:
v_{\{1,3\},\{0000\}} = \{1100\ 1100\ 0000\ 0000\}
v_{\{1,3\},\{0100\}} = \{0011\ 0011\ 0000\ 0000\}
v_{\{1,3\},\{0001\}} = \{0000\ 0000\ 1100\ 1100\}
v_{\{1,3\},\{0101\}} = \{0000\ 0000\ 0011\ 0011\}
             w \cdot v_{\{1,3\},\{0000\}} = 0
             w \cdot v_{\{1,3\},\{0100\}} = 1
             w \cdot v_{\{1,3\},\{0001\}} = 1
             w \cdot v_{\{1,3\},\{0101\}} = 1
                   m_{\{0,2\}}=1
```

```
w=0101011110100000. w(2)=(0101\,0111\,1010\,0000). Таким образом, для i=2 и w(2). m_{0,1}=0,\ m_{0,2}=1,\ m_{0,3}=0,\ m_{1,2}=0,\ m_{1,3}=0,\ m_{2,3}=0. Тогда w(1)=w(2)+v_{0,2}=1111\,0111\,0000\,0000 i=1
```

```
w(1) = (1111\ 0111\ 0000\ 0000)
                             J = \{0\}, \qquad v_{\{1,2,3\},t}:
v_{\{1,2,3\},\{0000\}} = \{1100\ 0000\ 0000\ 0000\}
                                                            w \cdot v_{\{1,2,3\},\{0000\}} = 0
v_{\{1,2,3\},\{0100\}} = \{0011\ 0000\ 0000\ 0000\}
                                                           w \cdot v_{\{1,2,3\},\{0100\}} = 0
v_{\{1,2,3\},\{0010\}} = \{0000\ 1100\ 0000\ 0000\}
                                                            w \cdot v_{\{1,2,3\},\{0010\}} = 1
v_{\{1,2,3\},\{0110\}} = \{0000\ 0011\ 0000\ 0000\}
                                                            w \cdot v_{\{1,2,3\},\{0110\}} = 0
v_{\{1,2,3\},\{0001\}} = \{0000\ 0000\ 1100\ 0000\}
                                                            w \cdot v_{\{1,2,3\},\{0001\}} = 0
v_{\{1,2,3\},\{0101\}} = \{0000\ 0000\ 0011\ 0000\}
                                                            w \cdot v_{\{1,2,3\},\{0101\}} = 0
v_{\{1,2,3\},\{0011\}} = \{0000\ 0000\ 0000\ 1100\}
                                                            w \cdot v_{\{1,2,3\},\{0011\}} = -
v_{\{1,2,3\},\{0111\}} = \{0000\ 0000\ 0000\ 0011\}
                                                            w \cdot v_{\{1,2,3\},\{0111\}} = -
```

$$m_{\{0\}} = 0$$

 $w = 0101\ 0111\ 1010\ 0000.$

$$m_{0,1} = 0$$
, $m_{0,2} = 1$, $m_{0,3} = 0$, $m_{1,2} = 0$, $m_{1,3} = 0$, $m_{2,3} = 0$. $m_0 = 0$, $m_1 = 0$, $m_2 = 0$, $m_3 = 1$.

 $m_{\emptyset}=0.$

Отправленное сообщение равно:

$$u = 0 \ 1000 \ 000010$$

При умножении на порождающую матрицу $G_{2,4}$ даёт:

$$v = (0101\ 1111\ 1010\ 0000)$$