

ORDER NO. **ARP2662**

TWIN-TRAY COMPACT DISC PLAYER

7307

COT LIAC THE EOU OWING

Туре	Power Requirement	Remarks
AEMXJS		
ABXJS	AC power supplied from power transformer's secondary of other system component	
ADL		

- This manual is applicable to AEMXJS, ABXJS and ADL types. For the mechanism description, refer to the service guide ARP2144 for PD-Z74T.
- For ABXJS and ADL types, refer to page 37.
- These products are systems components. Each of these products does not function properly when independent; to avoid malfunctions, be sure to connect it to the prescribed system component (s), otherwise damage may result.

According to ADL type; for the system composition, packing, accessories, instruction manuals etc., refer to the service manual ARP2682 for XS-P730M and XS-P730T.

CONTENTO

COMILIAIO	
1. SAFETY INFORMATION2	7. PCB PARTS LIST25
2. DISASSEMBLY3	8. BLOCK DIAGRAM27
3. PACKING AND PARTS LIST5	9. ADJUSTMENTS28
3. PACKING AND PARTS LIST	10. FOR ABXJS AND ADL TYPES37
4. EXPLODED VIEWS AND PARTS LIST6	11. SPECIFICATIONS37
5. SCHEMATIC DIAGRAMS13	
6. PCB CONNECTION DIAGRAMS19	12. PANEL FACILITIES38

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760 Long Beach, California 90801 U.S.A. PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R 0P2 Canada PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Kesiberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS AUSTRALIA PTY. LTD. 178-18:1 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911 © PIONEER ELECTRONIC CORPORATION 1993

SS JAN. 1993 Printed in Japan

1 SAFETY INFORMATION

- (FOR EUROPEAN MODEL ONLY) -

- VARO AVATTAESSA JA SUOJALUKITUS OHITETTAESSA OLET ALTTINA NÄKYMÄTTÖMÄLLE LASERSÄTEILYLLE. Ă! Ă KATSO SĂTEESEEN.

- ADVERSEL: USYNLIG LASERSTRALING VED ABNING NÅR SIKKERHEDSAFBRYDERE ER UDE AF FUNKTION UNDGA UDSAETTELSE FOR STRALING

- VARNING OSYNLIG LASERSTRÄLNING NÄR DENNA DEL ÄR ÖPPNAD OCH SPÄRREN AR URKOPPLAD, BETRAKTA EJ STRÅLEN.

ASER Kuva 1 Lasersateilyn varoitusmerkki

- WARNING! -DEVICE INCLUDES LASER DIODE WHICH EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES. THERE IS A WARNING SIGN ACCORDING TO PICTURE 1 INSIDE THE DEVICE CLOSE TO THE LASER DIODE

Picture 1 laser radiation

- IMPORTANT -THIS PIONEER APPARATUS CONTAINS LASER OF CLASS 1. SERVICING OPERATION OF THE APPARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON.

- LASER DIODE CHARACTERISTICS MAXIMUM OUTPUT POWER: 5 mw WAVELENGTH: 780-785 nm

Warning sign for

LABEL CHECK (TWIN type)

- Additional Laser Caution -Laser Interlock Mechanism The ON/OFF (ON: low level/OFF: high level) status of the U (S601) and L (S603) switches for detecting the disc clamp state is detected by the system microprocessor, and the design prevents laser diode oscillation when both switches U and L are OFF (high Thus the interlock will no longer function if switches U (S601) and L (S603) are deliberately shorted. The interlock also does not operate in the test mode. Laser diode oscillation will continue if pin 1 of M51593FP on PREAMP BOARD assembly of PICK UP assembly are connected to GND, or pin 19 is connected to low level (ON), or else the terminals of Q101 are shorted to each other (fault condition).

2. When the cover is opened, close viewing of the objective lens with the naked eye will cause exposure to a Class 1 laser beam.

* Refer to page 29.

2. DISASSEMBLY

2.1 REMOVING THE MECHANISM ASSEMBLY

- Refer to "4. EXPLODED VIEWS" on pages 7 and 8. · · · · (screws of *1 to *4)
- 1. Remove the bonnet by removing five *1 screws.
- 2. Insert your fingers between the twin-tray mechanism assembly and under base (See Fig. 2-1) and open the tray I and II by turning the idler gear, then remove the name plate. (This is the preparation for removing the front panel.)
- For the tray I, turn the idler gear clockwise. For the tray II, turn the idler gear counterclockwise.

Note: Be careful not to break the claws at the bottom of the name plate, since they are fragile.

Fig. 2-1 Pull out the tray to your side

REMOVAL OF TRAY I AND TRAY II

- 3. Open the tray I.
- 4. Insert the flat blade screwdriver into the slit in the left of tray I. Pull out the tray I by pushing the screwdriver.

Fig. 2-2 Remove the tray I

* When remove the tray II, open it first, insert the flat blade screwdriver into the slit in the right of tray II, and pull out the tray by pushing the screwdriver.

Fig. 2-3 Remove the tray II

- 5. Remove the rear base by removing four *2 screws and front panel by removing four *3 screws.
- 6. Remove the four *4 screws fastening the twin-tray mechanism assembly.
- 7. Remove the clamper clamping the flexible cable, comes from the pick-up assembly, on the mother board assembly.

2.2 MOUNTING OF TRAY I

- 1. Set the disc II to the clamp position and open the tray 1.
- 2. Align the 1st tooth of tray I to ungrooved portion of gear I, and insert the tray I.

Fig. 2-4

2.3 MOUNTING OF TRAY II

- 1. Set the disc I to the clamp position and open the tray II.
- 2. Align the 1st tooth of tray II to __ marked position of gear 11, and insert the tray II.

2.4 MOUNTING AND POSITIONING OF MAIN CAM, FOLLOW GEAR, GEAR I

Set the following gears to the position as shown by arrows.

AND GEAR II

2.5 MOUNTING OF CLAMPER ASSEMBLY

Mount the clamper assembly by aligning the protrusion portion as shown in the figure.

Fig. 2-7

3. PACKING AND PARTS LIST

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "O" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

Parts List

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
	1	Protector (R)	PHA1223		6	Operating instructions	PRE1170
	2	Protector (F)	PHA1218			(English/French/	
	3	Packing case	PHG1853			German/Italian/	
	4					Dutch/Swedish/	
	5	Mirror mat sheet	Z23 – 026			Spanish/Portuguese)	

AEMXJS, ABXJS type

ADL type

Refer to the service manual ARP2682 for XS-P730M and XS-P730T.

4. EXPLODED VIEWS AND PARTS LIST

4.1 EXTERIOR

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "O" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

Parts List

Mark	No.	Description	Part No.
	1 2	Mother board assembly	PWM1710
	3	24P F • F • C / 30V	PDD1113
<u> </u>	4	Power transformer	PTT1279
	5	Bonnet	PNA1707
	6	Foot assembly	REC - 434
	7	Rubber Sheet	AEB1111
	8	Power button	PAC1693
	9		PAC1696
	10	Operate button	PAC1698
	11		PAM1586
			PNW2213
		Name plate 2	PNW2214
	14		RNH - 184
NSP	15	Twin-tray mechanism	PXA1481
		Screw	BDZ30P060FZK
		Screw	PPZ30P100FMC
		Screw	PSA40P060FMC
	19		PNW2212
	2 0	Screw	PDZ30P050FMC
	21	Screw	BBZ30P080FZK
	22	Trans board assembly	PW22445
NSP	23	Jumper wire	D20PYY0515G
NSP	24	Under base	PNA1716
NSP	25	Rear base	PNA1889
NSP	26	PCB holder	PNW1861
NSP	27	Rear cap	PNW2127
	28	Connector board assembly	
	29	Function board assembly	PWZ2444

Exterior

Note: The numbers such as * 1 through * 4 are used in *2. DISASSEMBLY *.

TWIN — TRAY MECHANISM Assembly (See pages 9 — 11) NOTE: Screws adjacent to ▼ mark on the product are used for disassembly. D

D

Parts List

Mark	No.	Description	Part No.
	1	Clamp spring	PBH1103
			PBH1104
	2	Lever spring	PEB1106
	3	Belt	PNW1634
	4	Motor pulley	PNW1839
	5	Tray 1	F1444 1023
	6	Tray 2	PNW1840
	7	Sub tray	PNW1841
	8	Loading base	PNW1842
	9	Main cam	PNW1843
	10	Follow gear	PNW1844
	11	Gear 1	PNW1845
	12	Gear 2	PNW 1846
	13		PNW1847
	14	Clamper arm U	PNW1850
	15		PNW1851
	15	Clamper arm B	111111001
	16	Clamp cam	PNW1852
	17	Float base	PNW2041
	18	Lock lever	PNW1854
	19	Motor (LOADING)	PXM1010
	20		PEB1014
		Flanting subbor	PEB1132
	21 22	Floating rubber	PBA1048
			IPZ30P080FMC
	23		IPZ20P080FMC
	24		PMZ26P040FM0
	25	Screw	FWIZZOFO40FWI
	26	Gear pulley	PNW1848
	27	Push spring	PBH1105
	. 28	Screw	IPZ30P200FMC
	29	Screw	IPZ30P120FMC
NSP	30	Yoke	PNB1216
NSP	31	Clamper magnet	PMF1014
NSP	32	Clamper holder	PNW1849
NSP	33		PNW1609
NSP	34	Mechanism P.C.B	PWX1145
Nor	34	assembly	
1100	25	Servo mechanism	PXA1478
NSP	35		
		assembly Sub plate	PNB1287
NSP	36	•	PDE1146
NSP	37	assembly (4P)	IDLIIIO
NOT			PEB1249
NSP	38	n rubber	I LDIO

SERVO MECHANISM Assembly

Parts List

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
	1 2 3	Pinion gear DC motor (CARRIAGE) DC motor assembly (SPINDLE) Carridge base	PNW2055 PXM1027 PEA1235 PNW2058	NSP	16 17 18 19 20	PWB holder Screw Earth lead unit Screw	PNW2057 BPZ26P100FMC PDF1104 BBZ26P060FMC
	5 6 7 8 9	Disc table Screw Screw Gear 3 Gear 2 Washer	PNW1068 JFZ20P030FNI JFZ17P025FZK PNW2054 PNW2053 WT12D032D025	NSP	21 22	Mechanism board assembly DC motor assembly	PWX1192 PEA1246
NSP	11 12 13 14 15	Pickup assembly Guide bar Gear 1 Gear stopper Screw	PEA1179 PLA1094 PNW2052 PNB1303 BPZ20P060FMC				
			11				
			5	10			
						20	
		4	3/10		16.5		
		12		13	\ \.		—17
			3		ર્વ	18	
			22	2)	21	14 15	

SCHEMATIC DIAGRAMS

Note:

(Type 6)

- 1. When ordering service parts, be sure to refer to "PARTS LIST of EXPLODED VIEWS" or "PCB PARTS LIST".
- 2. Since these are basic circuits, some parts of them or the values of some components may be changed for improve-

Unit: $k:k\Omega$, $M:M\Omega$, or Ω unless otherwise noted.

Rated power: 1/4W, 1/6W, 1/8W, 1/10W unless otherwise

Tolerance: (F): $\pm 1\%$, (G): $\pm 2\%$, (K): $\pm 10\%$, (M): $\pm 20\%$ or $\pm 5\%$ unless otherwise noted.

4. CAPACITORS:

Unit: p:pF or µF unless otherwise noted.

Ratings: capacitor (μF)/ voltage (V) unless otherwise noted. Rated voltage: 50V except for electrolytic capacitors.

5. COILS:

Unit: m:mH or µH unless otherwise noted.

6. VOLTAGE AND CURRENT:

: DC voltage (V) in STOP mode unless otherwise noted.

- 7. OTHERS:
- ⇒ : Signal route.
- Ø : Adjusting point.
- ▼ (Red) : Measurement point.
- The 4 mark found on some component parts indicates the importance of the safety factor of the parts. Therefore, when replacing, be sure to use parts of identical designation.

8. SWITCHES (Underline indicates switch position):

MOTHER BOARD ASSEMBLY

S351 : TEST MODE

FUNCTION BOARD ASSEMBLY

S701 : DISC 1 (DISC SELECT)

S702 : OPEN/CLOSE 1 S703 : OPEN/CLOSE 2

S704 : DISC 2 (DISC SELECT)

S705 : PLAY / PAUSE (►/II)

S706 : STOP (E)

S707 : MANUAL/TRACK SEARCH FWD (>>+>+)

: MANUAL/TRACK SEARCH REV (H4.44)

: EDIT S709

S710 : PROGRAM

S711 : TIME

S712 : AUTO EJECT

S713 : REPEAT

S714 : RANDOM

S751 : POWER ON/OFF

MECHANISM PCB ASSEMBLY

S601 : TRY 1

S602 : TSEL

S603 : TRY 2

MECHANISM BOARD ASSEMBLY

S610 : INSIDE

Terminal Voltages

(unit : V)

				(0.11.
	C15	(1 A13720)		
ĺ	Pin No.	Voltage	Pin No.	Voltage
Ì	1	0	25	5
I	2	0	26	0
Ì	3	0	27	5
Ì	4	0	28	0
l	5	- 0. 2	29	0
Ì	8	0	30	N. C.
Ì	7	0. 2	31	2. 5
1	8	0	32	2. 5
ı	9	0	33	5
i	10	5	34	-1.5
	11	0	35	-1.7
i	12	0	36	5
	13	0	37	-0.7
İ	14	0, 2 - 0, 8	38	-1.6
į	15	0	39	0
	16	-4	40	0.8
	17	1, 3	41	-5
	18	0	42	0
	19	-5	43	0
	20	5	44	0
	21	5	45	0
	22	5	45	0
	73		47	1 0 1

(M5	2981
Pin	
No.	٧,

Pin No.	Voltage	Pin No.	Voltage
1	-8.7	9	5
2	N. C.	10	N. C.
7	-5	111	0. 6
4	0. 2	12	. 5
3	-8.7	13	8. 2
6	-6. 9	14	5
7	H. C.	15	1. 7
8	N. C.	16	8. 2

(CXD7500AQ)

Yoltage No. Voltage

1	5	41	N.C.
2	N. C.	42	5
3	5	43	N. C.
4	2. 6	44	H. C.
5	N. C.	45	N.C.
6	5	46	4,4
7	N.C.	47	0
8	N.C.	48	0
9	0	49	0 - 0.3
10	0	50	N.C.
11	N.C.	51	N.C.
12	0	57	0
13	N. C.	53	2.5
14	нC	54	ĸς
15	N.C.	55	0
15	N.C.	56	K C
17	0	57	N.C.
18	2.5	58	N.C.
19	7.4	59	0
20	2. 4	60	ХC
21	0	61	N.C.
22	2.5	62	H. C.
23	5	63	0
24	2.5	64	N.C.
75	N. C.	85	0
26	0	66	3.3 -4.6
21	2.5	67	5
78	0	68	0
79	N.C.	69	2.1 -3
30	0	70	5
31	N.C.	71	5
32	7.5	72	5
		175	

(TC9237BF)

Pin No.	Voltage	Pin No.	Voltage
1	5	15	0
2	0	16	1.9
3	5	17	1,9
4	5, 5	18	5
5	2.5	19	2
6	2.5	20	0
7	0	21	0
8	0	22	0
9	2. \$	23	0.
10	2. 5	24	5
11	5	25	2. 5
12	0	25	2.5
13	N.C.	27	2.5
14	O	28	5

IC351

(PD4435A)

Pin No.	Voltage	Pin No.	Voltage	Pin: No.	Voltage	Pin No.	Voltage
1	5. 0	17	-16.6	33	4. 9	49	0
2	N. C.	18	-26. 0	34	3.9~4.2	50	N. C.
3	N. C.	19	-5. 0	35	4. 9	51	5. 0
4	-22. 3	20	-1.1	36	0	52	5. 0
5	-22. 3	21	-0.2~-1.9	37	4. 9	53	5. 0
6	-22. 3	22	1.1~1.6	38	1.2~2.5	54	5. 0
7	-22. 3	23	1.0~1.5	39	0	55	0
8	-22. 3	24	0.6~1.5	40	5. 0	56	2. 3
9	-22. 3	25	0.7~1.2	41	N. C.	57	2. 3
10	-22. 3	26	5. 0	42	0	58	0
11	-22.3	27	-1.0	43	5. 0	59	0
12	0	28	-22. 0	44	0	60	N. C.
13	0	29	-12~-18	45	5. 0	61	5. 0
14	N. C.	30	-0.3~-1.1	46	0	62	0
15	N. C.	31	0	47	0	63	5. 0
16	-1.0	32	4. 8	48	0	64	5. 0

Waveforms

Note: The encircled numbers denote measuring points in the schematic diagram.

- *1 50T-JUMP: After switching to the pause mode, press the manual search key.
- *2 FOCUS-IN: Press the key without loading a disc.

PD-P730T

D

Ε

IC301 : CXD2500AQ

IC401: TC9237BF

6. PCB CONNECTION DIAGRAMS

• View from component side

Pin Na	₹a}:z ; ∢	91.a	Valinge.	9:2 No.	Vel:age	9:3 %z.	Yellage
1	5. 0	21	ő	4.1	NC	51	NG
2	N/C	22	2. 5	42	5. 8	6.2	NC
3	5. 0	23	5. 0	43	NC	63	ð
4	2. 6	24	2. 5	44	NC	6.4	NC
5	NC	25	NC	45	NC	65	0
5	5. 0	2.6	S	4 6	4. 4	56	13 10 4.8
7	NC	27	2. 5	47	0	67	5. 0
8	NC	28	0	48	O.	58	0
9	0	29	NC	49	0 to 0.3	89	2 1 to 3.8
10	Q	30	C	50	NC	70	5. 0
11	NC	31	NC	51	NC	71	5. 0
12	0	3 2	2. 5	52	6	7.2	5. 0
13	NC	3 3	5. 0	53	2. 5	73	5. 0
14	NC	34	2. 5	54	NC	74	5. 0
15	NC	35	2. 5	55	0	75	5. 0
16	NC	3 5	NC	56	NC	78	0
17	O	37	NC	57	NC	77	5. 0
13	2. 5	38	NC	58	NC	78	5. 0
19	2. 4	39	NC	59	0	79	5. 0
20	2. 4	40	NC	60	NC	80	0

2:5			Na	
So		3::8	No.	¥¢:135*
So ;			25	5. 0
2	0		2.8	0
3	. 3		27	5. 0
4	. 0		28	0
5	-0.	2	29	0
5	9		30	NC
7	c.	2	3 1	2. 5
8	0		·	2. 5
9	9		33	5. 0
10	5.	3	34	-1.5
11	0		3.5	-1. 7
1.2	0		3.5	5. 0
13	S		37	-0.7
14	1:10	3. 3	38	-1. 3
15	0		39	. 0
16	- 4.	0		0.8
17		3		-5.0
18	0			0
19	- 5.		43	C
20	5.	0		0
21		G		6
22	5.	0		0
23	5. 5.	9		0

Pin Mo.	, 40 13 k		3 i a		Yelta	20
1	5.	0	1 :	5	9	
2	0			5	1	S
3	5.	0	1	7	1.	g
4	5.	S	1 :	3	5.	0
5	2.	5	7.5	9	2.	0
ε	2.	5	2 ()	0	
7	ŷ.		2		C	
8	0		2.2	?	3	
9	2.	5	23	3	٥	
1.0	2	S	2 4	٤	5.	0
1.1	5.	٥	2 :	3	2.	5
1.2	0		2 8	\$	2.	S
13	NC		2 7	,	2.	5
1.4	0		2 8	;	5.	0

213	Voltage	912	901124a	Piz No.	ร์อไรและ	a: ,	¥a (t
še		32.		20.		36	
	5. 3	17	-15.8	33	4. 9	49	û
2	NC	13	-28.0	3 4	10043	5 C	N
3	NO	19	-5.0	35	4. 9	5 :	5
4	-22.3	2 0	-1. :	3 5	٥	5.2	S
5	-22.3	21	-9. 2te-1, 3	37	4, 3	53	5
5	-22.3	22	11 10 1.5	33	1.1 0 2.5	54	5
7	-22.3	23	1, 0 to 1, 5	39	0	3.5	\$
8	-22.3	2 4	\$ 8 to 1, 5	40	5. 3	5 8	2
9	-22.3	25	17 to 3.2	4:	NC	57	2
10	-22.3	23	9. 0	42	3	58	0
1 1	-22. 3	27	-1.0	43	5.0	59	¢
12	٥	23	-22. Q	44	2	60	5
13	3	29	-12 to -18	45	5. 0	5 1	Ŋ
14	NC	3 0	-1,3:a-1,1	46	-3	3.2	0
15	NC	31	ŝ	47	3	5.3	S
1 8	-1 3	32	4. 8	43		8.4	5

2,

6. PCB CONNECTION DIAGRAMS

• View from soldering side

(C301 (CXD2500AC)

				12289	<i>) (</i> 6)	(UXU) (964
8361107	6 i 6	\$41198	2 i 1	*#&lloV	s 4 8 a	835336V	515
NC	1.3	NC	4 1	0		5.0	1
эи	6.2	5.0	4.2	2.5	22	ЭИ	2
0	£ ô	NC	43	5. 0	23	5, Q	ε
NC	64	ис	44	2. 5	2.4	2. 6	à
0	ðô	ис	45	ри	2.5	NC	2
8 4 00 2 5	88	4. 4	3 &	0	2.6	5.0	õ
5.0	50	0	4.7	2.5	2.7	ис	Y
. 8	80	0	8 %	0	28	ЭИ	8
0 8 00 1 1	8.9	\$ 0 ot 6	48	эи	2.8	0	E
5. 0	7.0	NC	50	٥	3.0	Q	0.7
6. 0	15	OM	ſċ	NC	1 &	NC	1
6.0	7.2	0	5 2	2.5	3.2	0	2.7
5. 0	εT	2.5	εa	5. 0	33	NC	8 1
0 .3	7.4	NC	5.4	2.5	3.4	NC	3.7
5. O	ĉ۲	٥	8 8	2. 5	3.5	ОИ	81
0	7.6	NC	56	NC	3.6	NC	3.1
5. 0	1, 1,	NC	5.7	NC	τε	0	57
5, 0	7.8	NC	82	ЭИ	38	2. 5	81
5.0	7.9	0	еĕ	ис	3.9	2. 4	81
0	0.8	эи	0 8	ои	40	2. 4	2.0

(0.5	era:	(OXA)	110
Yollage	9 i c Ka.	eşşlick	6:1 .c8
5. 0	2.8	6	î
0	8.8	Ü	2
5.0	2.7	0	É
0	2.8	Ģ	ja.
0	8.2	-0.2	3
5 M	0.8	Ð	8
2. 8	3.1	9. 2	4
2, 5	SE	0	8
5, 0	33		8
-1. 5	85		0.1
V , I	3.5	Ü	11
6.8	3.6	0	1.2
-0.7	3.7	0	1.3
8 .1 -	88	\$.0 es \$.\$	<i>5</i> -1
0	08	0	ā ſ
8 .0	0.8	-4, 0	16
-6.0	13	8 .1	۲:
٥	4.2	. 0	1.8
0	43	-5.0	er
0	44	5.0	2.0
0	45	5. 0	2.3
	45	6.8	2.2
0	47	6.0	23
0	4.8	5. 0	2.4

IC401 (TC92379F)

	nis		414
egs:loV	,o iš	0261 68	, o if
٥	3.1	6.0	ŕ
e .r	3.5	0	S
9 .7		B. 6	ε
5. 0	81	5. 5	\$
2. 0	19	2. 5	ŝ
c	0.5	2 . S	2
0	12.	٥	Υ
0	22	ρ	8
٥	23	2. 5	5
5. 0	24	2. s	0 1
2. 5	25	5.0	11
2.5	25	0	2.1
2.5	27	NC	2 0 1
5. 0	28	٥	1.4

				(,	3 5 A	1 (PD44	C 3 5
932310Y	P10	036112V	Pin No.	8881188	eia Jo	*2131¢V	Pis No
Ü	4.9	4. 9	88	a .a r	17	ő .ä	1
NC	0.8	1 2 01 8 E	3.4	-26.0	1.8	NC	2
5. 0	6.3	4. 8	3.5	-5.0	6 1	эи	٤
5.0	5.2	Û	38	1.1	20	-22.3	à.
6.0	8.3	8.8	3.7	2.1-415.0-	2.5	- 22. 3	3
5.0	* 2	2 ° 0 ° 5 3	88	8 61 1	22	-22.3	0
Ü	9.8	0	23	1.0 10 1.3	23	-22.3	Υ
2. 3	8.8	8.0	0.5	9,5101,5	24	-22.3	8
2.3	57	NC	ĮΑ	5.1 01 1 0	35	-22, 3	6
Ö	5.8	0	4.2	5. O	26	22.3	0.7
0	5.8	5.0	43	-1.0	2.7	-22.3	11
5. 0	0.6	0	44	-22.0	2.8	0	2.1
ЭИ	6.1	5.0	45	81- 01 21-	2.6	٥	8 3
0	8 8	٥	46	1.1~e38.å~	3.0	NC	3.4
0.8	80	0	4.7	0	12	эи	ë f
5. 0	\$ ô	٥	4.8	4, 8	3 2	0 .1-	3 [

(V:tinU)

TO TO THE POOLS STATE OF THE POO

5.85 **3.8**

PICKUP ASSEMBLY (PEA 1179)

TRANS BOARD ASSEMBLY (PWZ244

7. PCB PARTS LIST

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The ⚠ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "⊙" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex.1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and

K=10%	ph/gpMSGTT
560 O	→ 56 × 10 ¹ → 561 · · · · · · · RDI/8PM [561] J
500 11	→ 47 × 10' → 473 · · · · · · · RD1/4PS 4 7 3 J
47k Ω	→ 47 × 10 → 4/3
0.5.0	→ 47 × 10 → 473 ······ RN2H ORISK
0.5 32	→ 010 · · · · · · · · RS1P 0 1 0 K
lΩ	→ 010
	with a sin high precision metal film resistors).

Ex.2 When there are 3 effective digits (such as in high precision metal film resistors).

5.62k Q→562 × 10'→5621 RN1/4PC 5 6 2 1 F

/ark	No. Descrip	tion Part No.	Mark	No.	Description	Part No.
	OF ASSEMBLY			C158, C15	9, C161, C163, C301, C304.	CKSQYB104K25
.151	OF ASSEMBLE					CACOADTESKED
	MOTHER BOARD ASSEMBLY	PWM1710		C306, C44	1, C442	CKSQYB152K50
	FUNCTION BOARD ASSEMBL			C155		CKSQYB182K50
	FUNCTION BOARD ASSEMBLY	PWZ2445		C170		CKSQYB332K50
	TRANS BOARD ASSEMBLY			C156, C16	8	CKSQYB333K25
	CONNECTOR BOARD ASSEME			C171, C17		CKSQYB472K50
SP	MECHANISM PCB ASSEMBLY	PWX1145		01.1.01	· -	
		DEV1100		C307		CKSQYB473K25
SP	MECHANISM BOARD ASSEMI	BLY PWX1192		C42-C44	C203, C205, C353, C356, C36	CKSQYF103Z50
				C20E C4	10, C411, C414-C416, , C422.	CKSQYF104Z25
TON	HER BOARD A	SSEMBLY				**********
				C423, C4		CKSQYF473Z25
EMIC	CONDUCTORS			C420, C4	21, C424, C426	Choq11 110000
ITIIL	IC151	CXA1372Q				_
	IC301	CXD2500AQ	RESI	STORS		RCP1046
		LA6520		VR151	(R=22K . W= 0.1)	
₾	IC201, IC202	NJM4565D-D		R222, R2	24, R240-R242, R326.	RS1/10S000J
	IC405	PD4435A		R362-R3	64, R367, R369, R450	
IC	IC351	LD4403u			ESISTORS	RS1/10S□□□J
		TC9237BF				
	IC401	2SC1740S	отн	ERS		
	Q381. Q382		J	CN131 F	FFC CONNECTOR 12P	12FM-1.0ST
	Q403. Q404	2SD2144S		CNSEL	FC CONNECTOR 24P	HLEM24R
	Q406	DTA124ES		V 101 C	RYSTAL RESONATOR	PSS1008
	0405	DTC124ES				
	4			(16. 93	44MHZz) ERAMIC RESONATOR(4.19MHz)	VSS1014
	D381-D383	1SS133X		X351 C	ERAMIC RESONATOR (4. 19mn2)	1331014
	D211	MTZJ6. 2B			W DOD ACCEME	ıv
	D211		ME	CANIS	M PCB ASSEMB	L1
swn	CHES		0140	TCHES		
	S351	PSG1006	2441	S601-S	ena	DSG1017
COIL		LFA010K	FU	NCTIC	N BOARD ASSE	MBLY
	L402	LFAUTUR	. •			
	AOITORS		SEN	MICOND	UCTORS	
CAP	ACITORS	CCSQCH180J50		D701-I	705	1SS254
	C403, C404	CCSQCH390J50				
	C435-C438	CCSQCH560J50	sw	ITCHES		
	C429, C430		5	S701-	3714	PSG1006
	C433, C434	CEJA220M25		S751	J. 1.	PSG1007
	C31-C34, C216, C217, C	302, C351 CEJA330M16		3131		
		CE IL IDTHE O	PF	SISTORS	3	
	C160, C162	CEJA4R7M50	ne.		ESISTORS	RD1/6PM□□□
	C309	CEJAR47M50		ALL K	2131003	
	C40	CKCYF103Z50		LIEBO		
	C41, C157, C164, C167,	C169, C202, CKSQYB103K50	от	HERS	EDG COMMECTOR 24P	HLEM24R
	C206, C212, C308, C354			CN701	FFC CONNECTOR 24P	I ILLUME TIL
		. L313				

D11-D14, D52 MTZJ18B CAPACITORS CEAS010M50 C60 CEAS101M10 C28 CEAS101M35 C52

CEAS102M16 C26 CEAS222M6R3 C27 CEAS472M16 C25 CKCYF103Z50 C11-C16

RESISTORS

RD1/6PM□□□J ALL RESISTORS

CONNECTOR BOARD ASSEMBLY

OTHERS

SOCKET 15P

MECHANISM BOARD ASSEMBLY

SWITCHES

DSG1016 S610

8. BLOCK DIAGRAM

9. ADJUSTMENTS

1. Adjustment Methods

If a disc player is adjusted incorrectly or inadequately, it may malfunction or not work at all even though there is nothing at all wrong with the pickup or the circuitry. Adjust correctly following the adjustment procedure.

If the specified values cannot be obtained or no adjustment is possible by performing the verifications or adjustments described in steps 1-4, the pickup block may be defective.

		Test point	Adjustment location
Step	Item	TP1, Pin 6 (FCS. ERR)	None
1	Focus offset verification		None
<u>-</u>	Tracking error balance verification	TP1, Pin 2 (TRK, ERR)	
2	Pickup radial/tangential direction tilt	TP1, Pin 1 (RF)	Radial tilt adjustment screw. Tangential tilt adjustment screw
3		TP1, Pin 1 (RF)	None
	RF level verification		
_ -	Focus servo loop gain adjustment	TP1, Pin 5 (FCS. IN) TP1, Pin 6 (FCS. ERR)	VR152 (FCS. GAN)
		TP1, Pin 3 (TRK. IN)	VR151 (TRK. GAN)
6	Tracking servo loop gain adjustment	TP1, Pin 2 (TRK. ERR)	

Abbreviation table

FCS. ERR : Focus Error TRK. ERR : Tracking Error FCS. GAN : Focus Gain TRK. GAN: Tracking Gain FCS. IN : Focus In TRK. IN : Tracking In

1-2 Measuring instruments and tools

- 1. Dual trace oscilloscope (10:1 probe)
- 2. Low-frequency oscillator
- 3. Test disc (YEDS-7)
- 4. 8-cm disc (with about 20 minutes of recording)
- 5. Low-pass filter (39 k Ω + 0.001 μ F)
- 6. Resistor (100 k Ω)
- 7. Ball point hexagon wrench (size: 1.5 mm) GGK1002
- 8. Standard tools

1-3 Test point and adjustment variable resistor positions

Figure 1 Adjustment Locations

1-4 Notes

- 1. Use a 10:1 probe for the oscilloscope.
- 2. All the knob positions (settings) for the oscilloscope in the adjustment procedures are for when a 10:1 probe is used.

1-5 Test mode

These models have a test mode so that the adjustments and checks required for service can be carried out easily. When these models are in test mode, the keys on the front panel work differently from normal. Adjustments and checks can be carried out by operating these keys with the correct procedure. For these models, all adjustments are carried out in test mode.

[Setting these models to test mode]

How to set this model into test mode.

- 1. Turn off the power switch.
- 2. Press the switch (S351) for test mode on the MAIN BOARD ASSEMBLY.
- 3. Turn on the power switch.

When the test mode is set correctly, the display is different from what it usually is when the power is turned on. If the display is still the same as usual, test mode has not been set correctly, so repeat Steps 1-3.

[Release from test mode]

Here is the procedure for releasing the test mode:

- 1. Press the STOP key to stop all operations.
- 2. Turn off the power switch on the front panel.

[Operations of the keys in test mode]

Code	: Key name	Function in test mode	Explanation
	PGM (PROGRAM)	Focus servo close	If Disc Tray 1 is closed. Disk Tray 1 is moved to the play position. Then the laser diode is lit up and the focus actuator is lowered, then raised slowly and the focus servo is closed at the point where the objective lens is focused on the disc. With the player in this state, if you lightly rotate the stopped disc by hand, you can hear the sound the focus servo. If you can hear this sound, the focus servo is operating correctly. If you press this key with no disc mounted, the laser diode lights up, the focus actuator is pulled down, then the actuator is raised and lowered three times and returned to its original position.
►/11	PLAY/PAUSE	Spindle servo ON	Starts the spindle motor in the clockwise direction and when the disc rotation reaches the prescribed speed (about 500 rpm at the inner periphery), sets the spindle servo in a closed loop. Be careful. Pressing this key when there is no disc mounted make motor run at the maximum speed. If the focus servo does not go correctly into a closed loop or the laser ght shines on the mirror section at the outermost periphery of the disc, the same symptom occurs.
≻ /II	PLAY/PAUSE	Tracking servo close/open	Pressing this key when the focus servo and spindle servo are operating correctly in closed loops puts the tracking servo into a closed loop, displays the track number being played back and the elapsed time on the front panel, and outputs the playback signal. If the elapsed time is not displayed or not counted correctly or the audio is not played back correctly, it may be that the laser is shining on the section with no sound recorded at the outer edge of the disc, that something is out of adjustment, or that there is some other problem. This key is a toggle key and open/close the tracking servo alternately. This key has no effect if no disc is mounted.
44.	MANUAL/ TRACK SEARCH REV	Carriage reverse (inwards)	Moves the pickup position toward the inner periphery of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the pickup does not automatically stop at the mechanical end point in test mode, be careful with this operation.
₩ :	MANUAL/ TRACK SEARCH FWD	Carriage forward (outwards)	Moves the pickup position toward the outer periphery of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the pickup does not automatically stop at the mechanical end point in test mode, be careful with this operation.
	STOP	Stop	Switches off all the servos and initializes. The pickup remains where it was when this key was pressed.
▲	OPEN/CLOSE DISC 1	Disc tray open/close	Opens/closes the disc tray. This key is a toggle key and open/close tray alternately.

[How to play back a disc in test mode]

In test mode, since the servos operate independently, playing back a disc requires that you operate the keys in the correct order to close the

Here is the key operation sequence for playing back a disc in test mode.

Wait at least 2-3 seconds between each of these operations.

1. Focus Offset Adjustment

Symptom when out of	The model does not focus in and the RF signal is dirty.				
adjustment	The model does not looks in site with a signature of the model does not look and the signature of the model does not look and the signature of the model does not look and the signature of the s				
Measurement instrument connections	Connect the oscilloscope to TP1, Pin 6 (FCS, ERR).	Player state	Test mode, stopped (just the Power switch on)		
	[Settings] 5 mV/division 10 ms/division DC mode	Adjustment location	None		
		Disc	None needed		

Note: If the specified values cannot be obtained or no adjustment is possible by performing the verifications or adjustments described in adjustment items 1-4, the pickup block may be defective.

2. Tracking Error Balance Adjustment

Objective Symptom when out of adjustment	To verify that there is no variation in the sensitivity of the traching photo diode Play does not start or track search is impossible			
Measurement instrument connections	Connect the oscilloscope to TP1, Pin 2 (TRK. ERR). This connection may be via a low pass filter.	Player state	Test mode, focus spindle servos closed and cicking servo open	
	[Settings] 50 mV/division 5 ms/division DC mode	Adjustment location	None	
		Disc	YEDS-7	

[Procedure]

- 1. Move the pickup to midway across the disc (R = 35 mm) with the MANUAL/TRACK SEARCH FWD ▶ ▶ or REV ◄ ◄ key.
- Press the PGM (PROGRAM) key, then the PLAY ► key in that order to close the focus servo then the spindle servo.
- 3. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
- 4. Supposing that the positive amplitude of the tracking error signal at TP1 Pin 2 (TRK. ERR) is (A) and the regative amplitude is (B), the following expression is satisfied.

When A
$$\geq$$
 B. $\frac{A-B}{C} \times \frac{1}{2} \leq 0.1$
When A < B. $\frac{B-A}{C} \times \frac{1}{2} \leq 0.1$

component

When there is no DC component

3. Pickup Radial/Tangential Tilt Adjustment

Objective	To adjust the angle of the pickup relative to the disc so that the laser beams are shone straight down into the disc for the best read out of the RF signals.				
Symptom when out of adjustment	Sound broken; some discs can be played but not others.				
Measurement instrument connections	Connect the oscilloscope to TP1, Pin 1 (RF).	Player state	Test mode, play		
	[Settings] 20 mV/division 200 ns/division AC mode	● Adjustment location	Pickup radial tilt adjustment screw and tangential tilt adjustment screw		
		Disc	8-cm disc (with about 20 minutes of recording)		

[Procedure]

- 1. Press the MANUAL/TRACK SEARCH FWD ➤➤ ➤➤ or REV 🕶 ◄◄ key to move the pickup position toward the outer periphery of
- Press the PGM (PROGRAM) key, the PLAY ▶ key, then the PAUSE **|||** key in that order to close the respective servos and put the player into play mode.
- 2. First, adjust the radial tilt adjustment screw with the hexagon wrench GGK1002 so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly.
- 3. Next, adjust the tangential tilt adjustment screw with the hexagon wrench GGK1002 so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly (Figure 3). Note: A standard hexagon wrench can not be used as the disc hinders adjustment.
- 4. Adjust the radial tilt adjustment screw and the tangential tilt adjustment screw again so that the eye pattern can be seen the most clearly. As necessary, adjust the two screws alternately so that the eye pattern can be seen the most clearly.
- 5. When the adjustment is completed, lock the radial and tangential adjustment screw.

Note: Radial and tangential mean the directions relative to the disc shown in Figure 2.

Disc Figure 2

Hexagon wrench

4. RF Level Verification

Objective	To verify the playback RF signal amplitude				
 Symptom when out of adjustment 	No play or no search				
Measurement instrument connections	Connect the oscilloscope to TP1, Pin 1 (RF).	Player state	Test mode, play		
	[Settings] 50 mV/division 10 ms/division AC mode	Adjustment location	None		
	·	Disc	YEDS-7		

[Procedure]

- Move the pickup to midway across the disc (R = 35 mm) with the MANUAL/TRACK SEARCH FWD ► ► Or REV ► then press the PGM (PROGRAM) key, the PLAY ► key, then the PAUSE key in that order to close the respective servos and put the player into play mode.
- 2. Verify the RF signal amplitude is 1.2 Vp-p ± 0.2V.

5. Focus Servo Loop Gain Adjustment

Objective Symptom when out of	To optimize the focus servo loop gain Playback does not start or focus actuator noisy				
adjustment		Player state	Test mode, play		
Measurement instrument	See Figure 4.	 Adjustment location 	VR152 (FCS. GAN)		
connections	[Settings]	Disc	YEDS-7		
	20 mV/division 5 mV/c X-Y mode	livision			

[Procedure]

- 2. Press the MANUAL/TRACK SEARCH FWD ➤ ➤ or REV ► key to move the pickup to halfway across the disc (R = 35 mm), then press the PGM (PROGRAM) key, the PLAY ➤ key, then the PAUSE key in that order to close the corresponding servos
- 3. Adjust VR152 (FCS, GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Figure 4

Focus Gain Adjustment

6. Tracking Servo Loop Gain Adjustment

Objective Symptom when out of adjustment	To optimize the tracking servo loop gain Playback does not start, during searches the actuator is noisy, or tracks are skipped.				
Measurement instrument connections	See Figure 5. [Settings] CH1 CH2 50 mV/division X-Y mode	Player stateAdjustment locationDisc	Test mode, play VR151 (TRK. GAN) YEDS-7		

[Procedure]

- 1. Set the AF generator output to 1.2 kHz and 2 Vp-p.
- Press the MANUAL/TRACK SEARCH FWD ► •► or REV ► or REV key to move the pickup to halfway across the disc (R = 35 mm), then press the PGM (PROGRAM) key, the PLAY ► key, then the PAUSE key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR151 (TRK. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Figure 5

Tracking Gain Adjustment

Higher gain

Optimum gain

Lower gain

10. FOR ABXJS AND ADL TYPES

CONTRAST OF MISCELLANEOUS PARTS

NOTES

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by " (a)" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

PD-P730T/ABXJS, ADL and AEMXJS have the same construction except for the following:

Mark					
	Symbol & Description	AEMXJS type	ABXJS type	ADL type	Remarks
Δ	Power transformer	PTT1279	PTT1279	PTT1272	
	Packing case	PHG1853	PHG1853		
NSP	Rear base	PNA1889	PNA1905	PNA1989	
	Operating instructions (English/German/	PRE1170	•••••		
	Italian/Dutch/Spanish/Portuguese/Swedish/				
	French)				
	Operating instructions (English)		PRB1179]

11. SPECIFICATIONS

Type
Other Dimensions 260 (W) × 84 (H) × 255 (D) mm Weight 2.4 kg
Accessories Operating instructions

NOTE:

The specifications and design of this product are subject to change without notice, due to improvements.

12. PANEL FACILITIES

FRONT PANEL

1) POWER switch (STANDBY / = ON)

Press to turn power to the unit ON and STANDBY. This power switch is only secondarily connected; even when it is set to the STANDBY position, it does not disconnect the unit from the power supply.

2 DISC (I, II) trays

Insert the discs here. When power is switched ON and OPEN/CLOSE button is pressed, the tray is ejected forward. To close the tray, press the OPEN/CLOSE button, or lightly push the tray in.

3 DISC SELECT buttons (DISC I, DISC II)

DISC I: Use to select DISC I for playback or programming.

DISC II: Use to select DISC II for playback or programming.

4 OPEN/CLOSE I, II buttons

Press when you wish to eject or load a disc. Each time the button is pressed, the tray alternately opens and

⑤ RANDOM PLAY button

Press to begin random playback.

6 TIME button

This button selects the display mode of the display section. Each time the button is pressed, the indication changes from TIME, REMAIN, to TOTAL in that order. (For details concerning the display contents, refer to the explanation about the "DISPLAY SECTION".)

7 REPEAT button

Press this button for repeat playback. Pressing the button once, twice, or three times will change the repeat mode from single track repeat, to all tracks repeat, and repeat playback cancellation respectively.

® PROGRAM button

Use to program a sequence of tracks.

· Press this button after selecting a desired disc and track with the DISC SELECT and Track search buttons. Tracks will be added in the program in the order in which they are specified.

AUTO EJECT button

Press to perform auto eject playback.

When a disc is finished playing, its disc tray will automatically open. The other disc tray will close and playback will start. By replacing discs, continuous playback can be maintained.

(10) EDIT button

If this button is pressed for A.S.E.S. recording and the Manual/Track search buttons are used to designate the length (in minutes) of the recording tape, the CD player will automatically select and program the CD tracks to be recorded. The tracks will be selected for recording so that the empty portion remaining at the end of the tape will be as short as possible. For details regarding this function, consult the operating instructions for the receiver used.

(1) Display

(12) Manual/Track search buttons (Idd . dd . bb . bb)

To perform track search in normal playback, programmed playback or PAUSE mode. You can advance to the next track or go back to the previous one by using the Manual/Track search buttons. The Fast forward or fast reverse function will be activated by holding down these buttons.

(⅓) Stop button (■)

Press to stop playback. When pressed, the player goes into stop mode and all operations stop. Press to clear a program. When pressed during stop mode, the program stored in memory is cleared.

(4) PLAY/PAUSE button (►/#1)

Playback will begin if this button is pressed when the CD player is stopped or paused. Pressing the button during playback will cause the player to temporarily

(I) PIONEER

SERVICE GUIDE ORDER NO. **ARP2144**

TWIN-TRAY COMPACT DISC PLAYER D-Z74T

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760, Long Beach, California 90801 U.S.A. PIONEER ELECTRONICS OF CANADA, INC. 505 Cochrane Drive, Markham, Ontario L3R 8E3 Canada PIONEER ELECTRONIC [EUROPE] N.V. Keetberglaan 1, 9120 Beveren, Belgium
PIONEER ELECTRONICS AUSTRALIA PTY, LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911

© PIONEER ELECTRONIC CORPORATION 1991 SO MAR. 1991 Printed in Japan

DISASSEMBLY AND REASSEMBLY PROCEDURE OF TWIN MECHANISM

1. DISASSEMBLY

1.1 REMOVAL OF TRAY I

 Set the tray I to the OPEN position by pressing the OPEN/CLOSE button.

Note: When openning the tray I manually, insert a finger from the groove and rotate the idler gear in clockwise direction, shown in Fig. 1-1.

(2) As shown in Fig. 1-2, insert a screw driver to the left slit of the tray I and pull out the tray in the direction of the arrow B, while the screw driver keeping to press in the direction of the arrow A.

1.2 REMOVAL OF TRAY II

 Set the tray II to the OPEN position by pressing the OPEN/CLOSE button.

Note: When openning the tray II manually, rotate the idler gear in the counterclockwise direction, shown in Fig. 1-1.

(2) As shown in Fig. 1-3, insert a screw driver to the right slit of the tray II and pull out the tray in the direction of the arrow B, while the screw driver keeping to press in the direction of the arrow'A.

Fig. 1-3

1.3 REMOVAL OF CLAMPER ARM U AND B

(1) As shown in Fig. 1-4, rotate the idler gear so that the clamper assembly not to be clamped on the disc table. Next, take out the clamp sprig and the screw (3), and remove the clamper arm U and B.

1.4 REMOVAL OF SERVO MECHANISM ASSEMBLY

- (1) Remove the tray I. (Refer to 1.1, REMOVAL OF TRAY I)
- (2) Remove the tray II. (Refer to 1.2, REMOVAL OF TRAY II)
- (3) Remove the clamper arm U and B. (Refer to 1.3, REMOVAL OF CLAMPER ARM U AND B)
- (4) Remove four screws holding the servo mechanism assembly. Note: As shown in Fig. 1-5, lead wires from the servo mechanism assembly are fixed by two hooks and a binder on the back of the twin tray mechanism section.

Fig. 1-5

1.5 REMOVAL OF LOADING BELT AND LOADING MOTOR

- (1) Remove the tray I. (Refer to 1.1, REMOVAL OF TRAY I)
- (2) Set the tray II to the OPEN position. (Refer to 1.2, REMOVAL OF TRAY II (1))
- (3) Remove the belt and two screws (3), shown in Fig. 1-6.

Fig. 1—6

- (4) Set the tray II to the Close position.
- (5) Remove screws holding the twin tray mechanism, and take out the twin tray mechanism from the body.
- (6) Turn over the twin tray mechanism to set the position as shown in Fig. 1-7.
- (7) Remove a screw Cholding the mechanism PCB assembly.
- (8) Hold the A section of the mechanism PCB assembly and lift it up to the direction of the arrow, and remove the loading motor accompanied with the mechanism PCB assembly.

Fig. 1-7

2. REASSEMBLY

2.1 ASSEMBLY OF CLAMPER CAM AND FLOATING BASE

 As shown in Fig. 2-1, adjust the notches (3 points) in the clamper cam to the claws (3 points) of the loading base, and set the clamper cam to the position as the arrow shows.

Fig. 2-1

(2) After adjusting the notches in the clamper cam to the claws (3 points) showing in Fig. 2-1, place the protrusions of the floating base on the grooves (2 points) of loading base as the arrow shows in Fig. 2-2.

Fig. 2-2

(3) Rotate the clamper cam in the direction of the arrow A, and stop the rotation when the floating base reaches to the lowest position.

Note: Keep the floating base to the lowest position till the assembling of the main cam, follow gear, gear I, gear II, clamper arm U and B is completed.

2.2 ASSEMBLY OF MAIN CAM, FOLLOW GEAR, GEAR I, GEAR II AND GEAR PULLEY

 As shown in Fig. 2-3, attach the main cam, trying to adjust the main cam hole A to the clamper cam protrusion. Next, hold it with screw .

Fig. 2-3

(2) As shown in Fig. 2-4, after adjusting

marks (2 points) on the main cam to the same marks on the two follow gears, insert them into the section A and B respectively.

Fig. 2-4

- (3) As shown in Fig. 2-5, adjust mark on the gear 1 and the gear 11 to the hole on follow gears, insert to positions shown in Fig., and hold them with two screws respectively.
- (4) Insert the gear pulley to the position shown in Fig., and hold with the screw .

Adjust the Mark to the hole and insert.

(5) Finally, each gear position should be as follows.

Fig. 2-5-2

2.3 ASSEMBLY OF CLAMPER ARM B, CLAMPER ARM U AND CLAMPER ASSEMBLY

 As shown in Fig. 2-6, insert the protrusion A of the clamper arm B into the groove of the loading base, and insert the protrusion C into the groove on the loading base, while the protrusion B being inserted into the groove on the clamper cam.

Fig. 2-6

(2) As shown in Fig. 2-7, attach the clamper assembly to the clamper arm B so that the protrusion D of the clamper assembly may turn to the position as Fig. shows.

Fig. 2-7

(3) As shown in Fig. 2-7, insert the protrusion of the clamper arm U to the groove on the clamper assembly, and slide in the direction of the arrow A. Next, insert the protrusion of the clamper arm U to the groove on the loading base, while the protrusion E being pushed into the hook of the loading

2.4 ASSEMBLY OF LOADING MOTOR

 Press down the motor pulley toward the upper surface of the loading motor, keeping the space of 3 mm between the motor pulley and the upper surface of the loading motor.

Fig. 2-8

(2) Solder the terminals of the loading motor to the mechanism PCB assembly. Since the loading motor has polarity, the positional relation between the label of the motor and the mechanism PCB assembly is shown in Fig. 2-9.

Fig. 2-9

(3) As shown in Fig. 2-10, after turning over the loading base, insert section A into the section B as the arrow shows, and fix with the screw .

Fig. 2-10

(4) Turn over the loading base once again, and tighten the loading motor with two screws

and set the belt as shown in Fig. 2-11.

Fig. 2-11

2.5 ASSEMBLY TRAY I AND TRAY II

(1) As shown in Fig. 2-12, attach the lock lever and the lever spring to the sub tray (the two same forms), which must be placed to the left hand of the sub tray, if the sub tray is attached with the tray I, and which must be placed to the right hand of it, if it is attached with the tray II, looking from the front of the sub tray.

Note: Two lock levers are the same forms.

Fig. 2-12

(2) As shown in Fig. 2-13, attach the tray I or II to the sub tray by the hook applied to the section A. At that time note that the tray I has the gear on the left hand, and the tray II has the gear on the right hand. When attaching respectively, make sure the position where the lock lever attached.

Fig. 2-13

(3) As shown in Fig. 2-14, turn over the tray, and put three screws (1) on it.

Fig. 2-14

2.6 ATTACHMENT OF TRAY II

(1) Press the OPEN/CLOSE button to make the tray I is in clamp condition, and the tray II is in open condition.

Note 1: When opening the tray II manually, insert a finger into the groove shown in Fig. 2-15, and fully rotate the idler gear counterclockwise. (As for the idler gear, refer to

Note 2: Tray I should be attached after tray II's attachment has been completed.

(2) As shown in Fig. 2-15, adjust the \square mark on the gear II to the first tooth of the tray II, then push in the tray II slowly.

Fig. 2-15

2.7 ATTACHMENT OF TRAY I

(1) Press the OPEN/CLOSE button to make the disc II is in clamp condition, and the tray I is in open condition.

Note: When opening the tray I manually, insert a finger into the groove shown in Fig. 2-15, and rotate the idler gear clockwise, and tray II is clamped. Further, rotate the idler gear, the pin pressing the switch appears at B position. When the pin moves to A position,

shown in the figure. At this position, attach the tray I. (2) As shown in Fig. 2-16, adjust the first tooth of the tray I to the clogged part of the gear I, then push in the tray I slowly.

2.8 STYLING

(1) Bend the wires as shown in Fig. 2-17.

Fig. 2-17

3. OPERATION OUTLINE

3.1 CHARACTERISTICS

The twin-tray mechanism of this unit is characterized by two basic features.

The first one is that both trays are driven by only one loading motor like in conventional single-tray system. This is a continuation of the design thought underlying the last generation twin-tray mechanism.

The second feature is the sandwiched tray design together with the utilization of a vertically moving servo mechanism for clamping, and horizontally arranged parts, resulting in a simplified construction and reducing the depth and width of the mechanism. As a result, the dimensions of the tray mechanism are almost the same size as for conventional single-tray system. In addition, the mechanism is suited for mini-sized (260 mm width) products.

3.2 STRUCTURE OF THE TRAY SECTION

The tray section consists of a tray and a sub tray, as shown in Fig. 3-1. The tray slides in the sub tray grooves and is secured by three screws.

The switching between tray and sub tray operation is performed via a lock lever mounted on the sub tray.

Fig. 3-1

As shown in Fig. 3-2, while the tray is opening or closing, the lock lever is held in the guide rib notch portion of the sub tray by the force of the lever spring, so that tray and sub tray move as one unit.

Fig. 3-2

When the tray is closed, the lock lever is disengaged from the guide rib notch of the sub tray by way of the guide groove in the loading base, and the interlocking between tray and sub tray is released.

Fig. 3-3

When CHANGE or PLAY button is depressed, only the tray moves on the sub tray, as shown in Fig. 3-4. The driving gear for tray 1 is located on the left side of the tray and the lock lever is mounted on the left side of the sub tray. The driving gear and the lock lever for tray II are located on the right side.

Fig. 3-4

3.3 POWER TRANSMISSION FROM THE LOADING MOTOR

As shown in Fig. 3-5, the rotation of the loading motor is transmitted to the main gear via a rubber belt, gear pulley, and idler gear.

The follow gears located on both side of the main gear are synchronized with the rotation of the main gear and rotate gear I and gear II respectively. Gears I and II drive the two trays.

As shown in Fig. 3-6, the drive power of the tray is transmitted by gears I and II to the gear section on the side of the sub tray and the tray. When the OPEN button is depressed, only the sub tray side is engaged, changing over to the tray side half-way between tray OPEN position and tray CLOSE position and then driving only the tray side to perform operation switching by the lock lever.

Fig. 3-6

The clamp cam, as shown in Fig. 3-7, rotates in synchronization with the main cam rotation to move the float base vertically. The cam groove of the clamp cam drives clamper arm B which, together with clamper arm U and the clamper holder, moves the clamper assembly up and down. (Refer to Fig. 1-4)

3.4 TRAY POSITION DETECTION

The mechanism for tray position detection is shown in Fig. 3-8. The tray position is detected by the tips of three plastic springs, which are located on the loading base to follow the change of diameter in two grooves on the rear side of the main cam, and the ON/OFF condition of three switches located on the mechanism board.

Fig. 3-8

3.5 MAIN CAM OPERATION

The main cam performs switching between operations.

(1) OPEN/CLOSE Operation

The two follow gears are located on the left and the right side of the main cam respectively. The left follow gear drives tray I via gear I and the right follow gear drives tray II via gear II.

As shown in Fig. 3-9, when tray I is in OPEN position, the left follow gear is engaged with the main cam gear. The non-toothed sections of the right follow gear and the main cam face each other, and the follow gear does not rotate. Therefore, when the motor rotates to tray I CLOSE direction (main cam rotates counterclockwise), only the left follow gear is driven to tray I to CLOSE direction. At this time, tray II is in the PLAY position.

abla	\	TRAY	TRAY2	TRY1	TSEL switch	TRY2 switch	Remerks	
	0	OPEN	PLAY	L	н	L	When tray 2 is in play position, indicates that tray 1 has arrived in open position from close position.	
	9	OPEN/ CLOSE	PLAY	н	н	١	When tray 2 is in play position, indicates that tray 1 is between close position and open position.	
	3	CLOSE	PLAY	н	L	L	When tray 2 is in play position, indicates that tray 1 is at close position.	
POSITION	@	CHANGE	CHANGE	н	L	н	When there is transition from @ to ⑤, indicates that there is move- ment in progress with tray 1 to pla position and tray 2 to close positio	
MECHANISM POSITION	6	CHANGE	CHANGE	н	н	indicates t ment in progre	When there is transition from (5) to (4), indicates that there is movement in progress with tray 1 to close position and tray 2 to play position.	
	0	PLAY	CLOSE	L	н	н	Indicates that tray 1 is in play position and tray 2 in close position.	
	0	PLAY	OPEN/ CLOSE	L	L	н	When tray 1 is in play position, indicates that tray 2 is between close position and open position.	
	8	PLAY	OPEN	L	L	L	When tray 1 is in play position, indicates that tray 2 has arrived in open position.	

As shown in Fig. 3-10, when tray I is in CLOSE position, the non-toothed sections of the main cam and the left follow gear face each other, so that the follow gear does not rotate. At this time, the right follow gear is still positioned at the non-toothed section of the main cam so that tray II remains in PLAY position. OPEN/CLOSE operation of tray II is performed by reversing the above operation.

Fig. 3-10

(2) DISC Change Operation

As shown in Fig. 3-11, when tray I is in CLOSE position and tray II is in PLAY position, the follow gears (right and left) do not rotate as described above. At this time, the single tooth of the main cam and the 2-tooth of the clamp cam will be engaged and the clamp carn starts to rotate.

Fig. 3--11

When the main carn rotates counterclockwise as shown in Fig. 3-12, the clamp cam also rotates synchronously. The float base supported by the loading base guide moves down along the three V-shaped cams of the clamp cam. At the same time, the clamper arm moves along the groove on the right side of the clamp cam to raise the clamper assembly. By this operation the DISC clamp is released.

Fig. 3-12

When the main cam rotates further as shown in Fig. 3-13, the float base moves to the valley of the V-shaped cam and the gear section of the main cam and the follow gears are engaged. The follow gears (right and left) simultaneously rotate in clockwise direction. Driven by the follow gears, gears I and II rotate and simultaneously move tray I from the CLOSE position to the PLAY position and tray II from the PLAY position to the CLOSE position.

By this operation the DISC is changed. At this time, the non-toothed sections of the clamp cam and the main cam face each other so that the cams do not rotate.

PD-Z74T

As shown in Fig. 3-14, the second level gear of the main cam and the clamp cam gear engage just before the movements of tray I and tray II are completed, and the clamp cam starts to rotate again. The right and left follow gears face the non-toothed sections of the main cam, and at the same time the rotation stops.

Fig. 3-14