

TEWA 1: Advanced Data Analysis

Lecture 10

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

https://github.com/lei-zhang/tewa1_univie

Bayesian warm-up?

Rescorla-Wagner Value Update

cognitive model

statistics

computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE_t$$

Prediction error:

$$PE_t = R_t - V_t$$

choice rule (sigmoid /softmax):

$$p(C=a) = \frac{1}{1 + e^{\tau * (v(b) - v(a))}}$$

learning rate

reward prediction error

value

- reward

softmax temperature

RL – Implementation


```
lpha \sim Uniform \, (0,1) \ 	au \sim Uniform \, (0,3) \ p_t(C=A) = rac{1}{1 + e^{	au(V_t(B) - V_t(A))}} \ V_{t+1}^c = V_t^C + lpha \, (R_t - V_t^C)
```

```
transformed data {
 vector[2] initV;
 initV = rep vector(0.0, 2);
model {
 vector[2] v[nTrials+1];
 real pe[nTrials];
 v[1] = initV;
 for (t in 1:nTrials) {
   choice[t] ~ categorical logit( tau * v[t] );
   pe[t] = reward[t] - v[t,choice[t]];
   v[t+1] = v[t];
   v[t+1, choice[t]] = v[t, choice[t]] + lr * pe[t];
```

cognitive model

statistics

computing

Fitting Multiple Participants as ONE


```
for (s in 1:nSubjects) {
 vector[2] v;
  real pe;
  v = initV;
 for (t in 1:nTrials) {
   choice[s,t] ~ categorical_logit( tau * v );
   pe = reward[s,t] - v[choice[s,t]];
   v[choice[s,t]] = v[choice[s,t]] + lr * pe;
```

cognitive model

statistics

computing

Fitting Multiple Participants Independently


```
model
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
     choice[s,t] ~ categorical_logit( tau[s] * v );
     pe = reward[s,t] - v[choice[s,t]
     v[choice[s,t]] = v[choice[s,t]] + lr[s]
                                               pe;
```

HIERARCHICAL MODELING

cognitive model
statistics
computing

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Simulation study

Hierarchical Bayesian

Maximum likelihood A

Actual values O

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Fixed effects

- all subjects are fitted with the same set of parameters
- worse model fit than "random effects"

Random effects

- each subject is fitted independently of the others
- best model fit for each subject
- parameter estimates can be noisy

Adapted from Jan Gläscher's workshop

Fitting Multiple Participants

Fitting Multiple Participants

cognitive model

statistics

computing

Fitting Multiple Participants

cognitive model

statistics

computing

cognitive model

statistics

computing

Hierarchical Structure

Hierarchical Structure

statistics computing

Hierarchical Structure

statistics computing

Hierarchical Structure

$$P(\Theta, \Phi \mid D) = \frac{P(D \mid \Theta, \Phi)P(\Theta, \Phi)}{P(D)} \propto P(D \mid \Theta)P(\Theta \mid \Phi)P(\Phi)$$

Hierarchical RL Model

statistics

computing

The cognitive model per se is the same!

cognitive model

Implementing Hierarchical RL Model

statistics

computing


```
\mu_{\alpha} \sim Uniform(0,1)
\sigma_{\alpha} \sim halfCauchy(0,1)
\mu_{\tau} \sim Uniform(0,3)
\sigma_{\tau} \sim halfCauchy(0,3)
\alpha_i \sim Normal(\mu_a, \sigma_a)_{\mathcal{T}(0,1)}
\tau_i \sim Normal(\mu_{\tau}, \sigma_{\tau})_{\mathcal{T}(0,3)}
p_{i,t}(C=A) = \frac{1}{1 + e^{\tau_i(V_{i,t}(B) - V_{i,t}(A))}}
V_{i,t+1}^c = V_{i,t}^c + \alpha_i (R_{i,t} - V_{i,t}^c)
```

```
parameters {
 real<lower=0,upper=1> lr mu;
 real<lower=0.upper=3> tau mu:
 real<lower=0> lr sd;
 real<lower=0> tau sd;
 real<lower=0,upper=1> lr[nSubjects];
 real<lower=0,upper=3> tau[nSubjects];
model {
 lr sd \sim cauchy(0,1);
 tau sd \sim cauchy(0,3);
        ~ normal(lr mu, lr sd);
        ~ normal(tau mu, tau sd);
 tau
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
     choice[s,t] ~ categorical_logit( tau[s] * v );
     pe = reward[s,t] - v[choice[s,t]];
     v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

Exercise XI

computing

```
.../06.reinforcement_learning/_scripts/reinforcement_learning_multi_parm_main.R
```

TASK: (1) complete the model (TIP: individual ~ group) (2) fit the hierarchical RL model

```
> source('_scripts/reinforcement_learning_multi_parm_main.R')
> fit_rl3 <- run_rl_mp( modelType ='hrch' )</pre>
```

In addition: Warning messages:

1: There were 97 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
2: Examine the pairs() plot to diagnose sampling problems

Hierarchical Fitting*

statistics

computing

^{*:} adapt_delta=0.999, max_treedepth=100

statistics computing

Posterior Means (indv)

Posterior Means (hrch)*

True Parameters

^{*:} adapt_delta=0.999, max_treedepth=100

cognitive model

statistics

computing

Group-level Parameters

True group parameters

```
lr = rnorm(10, mean=0.6, sd=0.12)
tau = rnorm(10, mean=1.5, sd=0.2)
```

Estimated group parameters

```
      mean
      2.5%
      25%
      50%
      75%
      97.5%

      lr_mu
      0.58
      0.47
      0.54
      0.57
      0.61
      0.69

      lr_sd
      0.09
      0.01
      0.04
      0.08
      0.12
      0.23

      tau_mu
      1.54
      1.26
      1.43
      1.53
      1.63
      1.85

      tau_sd
      0.25
      0.01
      0.13
      0.23
      0.34
      0.65
```


AN JEST 101

Happy Computing!