$$D = \left(\begin{array}{cccc} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \cdots & 0 & d_n \end{array} \right)$$

Remarque: on note aussi $D = diag(d_1,...,d_n)$.

5.2.2 Opérations matricielles

- □ Vecteur-vecteur Il y a deux types de multiplication vecteur-vecteur :
 - Produit scalaire : pour $x,y \in \mathbb{R}^n$, on a :

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

— Produit dyadique : pour $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, on a :

$$xy^{T} = \begin{pmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ \vdots & & \vdots \\ x_{m}y_{1} & \cdots & x_{m}y_{n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

□ Matrice-vecteur – Le produit de la matrice $A \in \mathbb{R}^{m \times n}$ et du vecteur $x \in \mathbb{R}^n$ est un vecteur de taille \mathbb{R}^m , tel que :

$$Ax = \begin{pmatrix} a_{r,1}^T x \\ \vdots \\ a_{r,m}^T x \end{pmatrix} = \sum_{i=1}^n a_{c,i} x_i \in \mathbb{R}^m$$

où $a_{r,i}^T$ sont les vecteurs-ligne et $a_{c,j}$ sont les vecteurs-colonne de A et x_i sont les entrées de x.

□ Matrice-matrice – Le produit des matrices $A \in \mathbb{R}^{m \times n}$ et $B \in \mathbb{R}^{n \times p}$ est une matrice de taille $\mathbb{R}^{n \times p}$, tel que :

$$AB = \begin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \\ \vdots & & \vdots \\ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

où $a_{r,i}^T, b_{r,i}^T$ sont des vecteurs-ligne et $a_{c,j}, b_{c,j}$ sont des vecteurs-colonne de A et B respectivement.

 \Box Transposée – La transposée est une matrice $A \in \mathbb{R}^{m \times n},$ notée $A^T,$ qui est telle que ses entrées sont renversées.

$$\forall i, j, \qquad A_{i,j}^T = A_{j,i}$$

Remarque : pour des matrices A, B, on a $(AB)^T = B^T A^T$