Problem R-275: Determine the structure from the ¹H NMR spectrum. Suggest an average conformation for the molecule from the coupling constants and chemical shifts.

Problem R-275 (C₁₂H₁₂O)

Because of second order effects resulting from several close-coupled protons, the spectrum in CDCl₃ cannot be analyzed. In C_6D_6 the spectrum is mostly first order, and allows complete analysis (see next page for ASIS analysis).

Here are the coupling constants obtained by analysi of the C₆D₆ spectrum

E is hard to analyze a priori, but all coupling to E can be identified from the "left-over" J values in the other multiplets

	Α	В	С	D	Ε	F	G
δ	6.7	5.9	3.1	2.4	2.25	1.95	1.8
	dt	dt	dd	dd	(dddd)	ddt	dq
J	5.5	5.5	13.0	13.0	(9.3)	18.6	18.6
	2.5	2.2	3.9	9.3	(6.5)	6.5	2.5
	2.5	2.2			(3.9)	2.4	2.5
					(2.5)	2.4	2.5

The coupling constants can be matched up as shown in the scheme below

The chemical shifts and couplings lead to the following part structures:

This defines all protons and carbons in the molecule. The three "?" position ae filled by C=O and Ph.

Two structures fit the data:

The cyclohexenone would have a ca 10 Hz HC=CH coupling. Since it is only 5.5 Hz, must be the cyclopentenone

$$H_{A}$$
 H_{B}
 H_{B

Conformation of benzyl:

J_{DE} large

 H_{E}

 $J_{DE}\approx J_{CE}$

J_{CE} small, H_C downfield (C=O anisotropy)

This fits best

J_{DE} large

J_{CE} small

Chemical shift of H_C?

The observed shifts fit well with the "transient pi complex" model for ASIS. H^A moves the most, H^F and H^G also move a lot; H^C and H^D move the least - they are furthest from the positive end of the enone dipole.

Problem R-275: Determine the structure from the ¹H NMR spectrum. Suggest an average conformation for the molecule from the coupling constants and chemical shifts.

