COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

March 15, 2023

Lecture 19: CFGs to PDAs and back

Equivalence of NPDA and CFG

Theorem

L = L(G) for some context-free grammar G if and only if it is accepted by some NPDA.

NPDA

Definition

A non-deterministic pushdown automaton (NPDA)

$$A = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$$
, where

Q: set of states Σ : input alphabet

 Γ : stack alphabet q_0 : start state

 \bot : start symbol F: set of final states

$$\delta \subseteq Q \times \Sigma \times \Gamma \times Q \times \Gamma^*.$$

Understanding δ

For $q \in Q, a \in \Sigma$ and $X \in \Gamma$, if $\delta(q, a, X) = (p, \gamma)$,

then p is the new state and γ replaces X in the stack.

if $\gamma = \epsilon$ then X is popped.

if $\gamma = X$ then X stays unchanges on the top of the stack.

if $\gamma = \gamma_1 \gamma_2 \dots \gamma_k$ then X is replaced by γ_k

and $\gamma_1 \gamma_2 \dots \gamma_{k-1}$ are pushed on top of that.

Example

Consider the grammar:

Example

Consider the grammar:

$$\begin{array}{ll} P \rightarrow 0P0 & P \rightarrow 1P1 \\ P \rightarrow \varepsilon & P \rightarrow 1 \end{array}$$

Example

Consider the grammar:

$$\begin{array}{ll} P \to 0P0 & P \to 1P1 \\ P \to \varepsilon & P \to 1 \end{array}$$

$$A_G = (\{q\}, \{0,1\}, \{0,1,P\}, \delta, q, P, \varnothing)$$

Equivalence of NPDAs and CFGs

Theorem

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- ▶ Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

Proof.

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

e.g. $A \to BC \mid DE$ then non-deterministically choose either BC or DE and depending on the choice, say it is BC, push the string BC on the stack with B on the top of the stack.

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

Proof.

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

e.g. $A \to BC \mid DE$ then non-deterministically choose either BC or DE and depending on the choice, say it is BC, push the string BC on the stack with B on the top of the stack.

- ▶ If the the top is a terminal, then match it off with the input bit,
- ▶ If the top of the stack is ⊥ then accept else make that the new current variable.

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

Proof.

- Assume CFG is in the Chomsky normal form.
- ▶ Push S_0 on the stack and make it the current variable.
- ▶ Push non-deterministically one of the strings in the right hand side of the rule generated from the current variable on the stack.

e.g. $A \to BC \mid DE$ then non-deterministically choose either BC or DE and depending on the choice, say it is BC, push the string BC on the stack with B on the top of the stack.

- ▶ If the the top is a terminal, then match it off with the input bit,
- ▶ If the top of the stack is ⊥ then accept else make that the new current variable.

Repeat the above procedure.

Theorem

Theorem

Let
$$G = (V, T, P, S)$$

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

Let G = (V, T, P, S) then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

Theorem

Let
$$G=(V,T,P,S)$$
 then $A_G=(Q,\Sigma,\Gamma,\delta,q_0,\bot,F)$ where $Q=\{q\}=q_0$ (Single state)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- ▶ $\Sigma = T$ (Input Alphabet is set of terminals)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- ▶ $\Sigma = T$ (Input Alphabet is set of terminals)
- Γ = $V \cup T$ (Stack alphabet is terminals and non-terminals)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- $\Sigma = T$ (Input Alphabet is set of terminals)
- Γ = $V \cup T$ (Stack alphabet is terminals and non-terminals)
- ▶ \bot = S (stack bottom is start symbol of CFG)
- F = Ø (Acceptance by empty stack)

Theorem

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- $\Sigma = T$ (Input Alphabet is set of terminals)
- ▶ $\Gamma = V \cup T$ (Stack alphabet is terminals and non-terminals)
- ▶ \bot = S (stack bottom is start symbol of CFG)
- $F = \emptyset$ (Acceptance by empty stack)
- δ is defined as:

$$\delta(q, \epsilon, B) \coloneqq \{(q, \beta) \mid B \to \beta \text{ in } P\}$$
$$\delta(q, a, a) \coloneqq \{(q, \epsilon)\}$$

Theorem

If L = L(G) for some context-free grammar G then it is accepted by some NPDA.

Let
$$G = (V, T, P, S)$$
 then $A_G = (Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ where

- $Q = \{q\} = q_0$ (Single state)
- $\Sigma = T$ (Input Alphabet is set of terminals)
- ▶ $\Gamma = V \cup T$ (Stack alphabet is terminals and non-terminals)
- ▶ \bot = S (stack bottom is start symbol of CFG)
- F = Ø (Acceptance by empty stack)
- δ is defined as:

$$\delta(q, \epsilon, B) \coloneqq \{(q, \beta) \mid B \to \beta \text{ in } P\}$$
$$\delta(q, a, a) \coloneqq \{(q, \epsilon)\}$$

Guess production rule and push on to the stack and verify guess while popping.

Theorem

L = L(M) for some NPDA M then there is some grammar G such that L(G) = L(M).

Theorem

L = L(M) for some NPDA M then there is some grammar G such that L(G) = L(M).

Proof.

• Want: Given PDA P need CFG G_P that generates all strings P accepts

Theorem

L = L(M) for some NPDA M then there is some grammar G such that L(G) = L(M).

- Want: Given PDA P need CFG G_P that generates all strings P accepts
- ▶ *G* should generate a string if that string causes PDA to go from start to accept state.

Theorem

L = L(M) for some NPDA M then there is some grammar G such that L(G) = L(M).

- Want: Given PDA P need CFG G_P that generates all strings P accepts
- ▶ *G* should generate a string if that string causes PDA to go from start to accept state.
- ▶ Idea: Design a CFG that for each pair of states p,q in P, have a variable $A_{p,q}$ which generates all strings that can take P from p (with empty stack) to q (with empty stack).

Theorem

L = L(M) for some NPDA M then there is some grammar G such that L(G) = L(M).

- Want: Given PDA P need CFG G_P that generates all strings P accepts
- G should generate a string if that string causes PDA to go from start to accept state.
- ▶ Idea: Design a CFG that for each pair of states p,q in P, have a variable $A_{p,q}$ which generates all strings that can take P from p (with empty stack) to q (with empty stack).
- ▶ Modify P so that
 - It has single accept state.
 - It empties its stack before accepting.
 - ► Each transition either pushes a symbol or pops a symbol (not both).

Given a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \bot, q_F)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q, a, X)$ contains either (q_0, YX) or (q_0, ϵ) .

Given a PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,\bot,q_F)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q,a,X)$ contains either (q_0,YX) or (q_0,ϵ) . Consider the grammar $G_p=(V,T,P,S)$ such that

 $V = \{A_{p,q} : p, q \in Q\}$

- $V = \{A_{p,q} : p, q \in Q\}$
- $ightharpoonup T = \Sigma$

- $\blacktriangleright \ V = \{A_{p,q}: p,q \in Q\}$
- $T = \Sigma$
- $\blacktriangleright \ S = A_{q_0,q_F}$

- $\blacktriangleright \ V = \{A_{p,q} : p, q \in Q\}$
- $T = \Sigma$
- P has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;

- $\blacktriangleright \ V = \{A_{p,q} : p, q \in Q\}$
- $T = \Sigma$
- ▶ *P* has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;
 - $A_{p,q} \to A_{p,r} A_{r,q}$ for all $p,q,r \in Q$,

- $\blacktriangleright \ V = \{A_{p,q}: p,q \in Q\}$
- $T = \Sigma$
- ▶ *P* has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;
 - $A_{p,q} \rightarrow A_{p,r}A_{r,q}$ for all $p,q,r \in Q$,
 - ► $A_{p,q} \to aA_{r,s}b$ if $\delta(p,a,\epsilon)$ contains (r,X) and $\delta(s,b,X)$ contains (q,ϵ) .

Given a PDA P = $(Q, \Sigma, \Gamma, \delta, q_0, \bot, q_F)$ with restriction that every transition is either pushes a symbol or pops a symbol form the stack, i.e. $\delta(q, a, X)$ contains either (q_0, YX) or (q_0, ϵ) . Consider the grammar G_p = (V, T, P, S) such that

- $V = \{A_{p,q} : p, q \in Q\}$
- $T = \Sigma$
- $ightharpoonup S = A_{q_0,q_F}$
- P has transitions of the following form:
 - $A_{q,q} \to \epsilon$ for all $q \in Q$;
 - $\qquad \qquad A_{p,q} \to A_{p,r} A_{r,q} \text{ for all } p,q,r \in Q,$
 - ► $A_{p,q} \to aA_{r,s}b$ if $\delta(p,a,\epsilon)$ contains (r,X) and $\delta(s,b,X)$ contains (q,ϵ) .

Lemma

$$L(G_p) = L(P).$$

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

▶ Base case. If $A_{p,q} \Longrightarrow^* x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p,p} \to \epsilon$.

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

- ▶ Base case. If $A_{p,q} \Longrightarrow^* x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p,p} \to \epsilon$.
- ▶ Inductive step. If $A_{p,q} \Longrightarrow^* x$ in n+1 steps. The first step in the derivation must be $A_{p,q} \to A_{p,r} A_{r,q}$ or $A_{p,q} \to a A_{r,s} b$.

Lemma

If $A_{p,q} \Longrightarrow^* x$ then x can bring the PDA P from state p on empty stack to state q on empty stack.

Proof (by induction on number of steps in derivation of x from $A_{p,q}$.)

- ▶ Base case. If $A_{p,q} \Longrightarrow^* x$ in one step, then the only rule that can generate a variable free string in one step is $A_{p,p} \to \epsilon$.
- ▶ **Inductive step.** If $A_{p,q} \Longrightarrow^* x$ in n+1 steps. The first step in the derivation must be $A_{p,q} \to A_{p,r} A_{r,q}$ or $A_{p,q} \to a A_{r,s} b$.
 - ▶ If it is $A_{p,q} \to A_{p,r} A_{r,q}$, then the string x can be broken into two parts x_1x_2 such that $A_{p,r} \Longrightarrow^* x_1$ and $A_{r,q} \Longrightarrow^* x_2$ in at most n steps. The claim easily follows in this case.
 - ▶ If it is $A_{p,q} \to aA_{r,s}b$, then the string x can be broken as ayb such that $A_{r,s} \Longrightarrow^* y$ in n steps. Notice that from p on reading a the PDA pushes a symbol X to stack, while it pops X in state s and goes to q.

