Randomized Algorithm for Checking Associativity of Binary **Operation**

This paper described a randomized algorithm for checking whether a given binary operation has associative property. The solution will prove that the algorithm run in $O(n^2 \log(\frac{1}{s}))$ timecomplexity where n is the number of elements in the binary operation, and δ is the probabity that the algorithm will give the wrong answer.

Lemma 1. Given set S and binary operation (C, \circ) . We define set G as follows. The element is G are sums of elements of S with coefficients is either 0 or 1. (i.e, $g \in G \Leftrightarrow g = \sum_{s \in S} \alpha_s s$ where $\alpha_s \in \{0,1\} \forall s \in S$). G is equipped with the following operatation.

- (1) Addition: $\sum_s \alpha_s s + \sum_s \beta_s s = \sum_s (\alpha_s + \beta_s) s$ (where 1+1=0; 0+0=0; 1+0=1+0=1) (2) The operation \circ : $(\sum_s \alpha_s s) \circ (\sum_s \beta_s s) = \sum_r \sum_s \alpha_s \beta_s (r \circ s)$

Easily observe that (C, \circ) is associative $\Leftrightarrow (G, \circ)$ is also associative

Lemma 2. We can easily see that there are 2^n elements in set G. Therefore, checking for associativity require us to check for 8^n operations of 3 elements in G. We are going to prove that if the operation \circ in G is not associative, then more than $\frac{1}{8}$ of 3-element operation is not associative. Proof.

Since \circ is non-associative, there exists $a, b, c \in G$ $(a, b, c \neq 0)$, such that

$$a \circ (b \circ c) \neq (a \circ b) \circ c$$

By definition, we have $a = \sum_{i=1}^{n} \alpha_i s$. Since $a \neq 0$, exists $\alpha_m = 1$. We define set

$$A = \{x = \sum_{i=1}^{n} \alpha_{i} s | x \in G, \alpha_{m} = 0\}$$

For every $x \in A$, we consider $(a + x) \circ (b \circ c)$ and $((a + x) \circ b) \circ c$. If they don't equal, we have another 3-element operation that disatifies associativity. If they equal, then since a, b, c disatifies associativity then x, a, b also disatifies associativity.

We can easily observe that $(a + x_i) \neq x_j \forall x_i, x_j \in A$ since $\alpha_m = 1$ in a, and $(a + x_i) \neq A$ $(a+x_i)\forall x_i, x_i \in A, x_i \neq x_i$

We also have $|A| = 2^{n-1}$, therefore, there are another 2^{n-1} set that disatifies associativity. Prove similarly with b and c, we have 8^{n-1} set that disatifies associativity

Algorithm.

1. Choosing randomly 3 element in G, from lemma 1, if they dissatify associativity then Sis also non-associative. From lemma 2, there is $\frac{1}{8}$ chance for dectecting non-associativity. Checking for associativity will take $O(n^2)$ time-complexity for a brute force solution

2. If we want the error to be an arbitrary $\delta>0$, repeat step $1\log_{8/7}\frac{1}{\delta}$. Therefore, the algorithm runs in $O(n^2log(\frac{1}{\delta}))$. Choosing $\delta=\frac{1}{n}$, we have an algorithm that runs in $O(n^2logn)$ time-complexity

In conclusion, if there procedure results in non-associativity, then the outcome is guaranteed since it finds a set that dissatifies associativity. If procedure results in associativity, then the probability of error is 1/n