Math Problem Set #2: Inner Product Spaces

OSM Lab - University of Chicago Geoffrey Kocks

Problem 1: HJE 3.1.

Solution.

(i). The right side of the polarization identity is equivalent to:

$$\begin{split} \frac{1}{4}(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2) &= \frac{1}{4}(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle) \\ &= \frac{1}{4}(\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + 2\langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle) \\ &= \frac{1}{4}(4\langle \mathbf{x}, \mathbf{y} \rangle) = \langle \mathbf{x}, \mathbf{y} \rangle. \end{split}$$

Therefore we have verified the polarization identity that:

$$\overline{\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} (\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2)}.$$

(ii). The left side of the parallelogram identity is equivalent to:

$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle.$$

The right side of the parallelogram identity is equivalent to:

$$\frac{1}{2}(\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2) = \frac{1}{2}(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle)
= \frac{1}{2}(\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle - 2\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle)
= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

Therefore we have verified the parallelogram identity that:

$$||\mathbf{x}||^2 + ||\mathbf{y}||^2 = \frac{1}{2}(||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2)$$

Problem 2: HJE 3.2.

Solution. The right side of the polarization identity for complex numbers is equivalent to:

$$\frac{1}{4}(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 + i\|\mathbf{x} - i\mathbf{y}\|^2 - i\|\mathbf{x} + i\mathbf{y}\|^2) =
\frac{1}{4}(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle + i\langle \mathbf{x} - i\mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle - i\langle \mathbf{x} + i\mathbf{y}, \mathbf{x} + i\mathbf{y} \rangle) =
\frac{1}{4}(2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle) + \frac{1}{4}i(i\langle \mathbf{x}, \mathbf{y} \rangle - i\langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle + i\langle \mathbf{x}, \mathbf{y} \rangle - i\langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle) =
\frac{1}{4}(2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle) - \frac{1}{4}(2\langle \mathbf{x}, \mathbf{y} \rangle - 2\langle \mathbf{y}, \mathbf{x} \rangle) =
\frac{1}{4}(4\langle \mathbf{y}, \mathbf{x} \rangle) = \langle \mathbf{x}, \mathbf{y} \rangle.$$

Therefore we have verified the complex inner product space identity that:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} (\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 + i\|\mathbf{x} - i\mathbf{y}\|^2 - i\|\mathbf{x} + i\mathbf{y}\|^2)$$

Problem 3: HJE 3.3.

Solution.

(i). The angle θ between x and x^5 is given by:

$$\cos \theta = \frac{\langle x, x^5 \rangle}{\|x\| \|x^5\|} = \frac{\int_0^1 x^6 dx}{\sqrt{(\int_0^1 x^2 dx)(\int_0^1 x^{10} dx)}} = \frac{\frac{1}{7}}{\sqrt{(\frac{1}{3})(\frac{1}{11})}} = \frac{\sqrt{33}}{7}.$$

$$\theta = \arccos \frac{\sqrt{33}}{7}.$$

(ii). The angle θ between x^2 and x^4 is given by:

$$\cos \theta = \frac{\langle x^2, x^4 \rangle}{\|x^2\| \|x^4\|} = \frac{\int_0^1 x^6 dx}{\sqrt{(\int_0^1 x^4 dx)(\int_0^1 x^8 dx)}} = \frac{\frac{1}{7}}{\sqrt{(\frac{1}{5})(\frac{1}{9})}} = \frac{\sqrt{45}}{7}.$$

$$\theta = \arccos \frac{\sqrt{45}}{7}.$$

Problem 4: HJE 3.8.

Solution.

(i). A collection S of $\{x_i\}_{i\in J}$ is an orthonormal set if for all $i, j \in J$ we have $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = 1$ if i = j and 0 if $i \neq j$. With the given inner product definition, we verify this definition as follows (all integrals solved using Wolfram Alpha):

$$\langle \cos(t), \cos(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos(t))(\cos(t))dt = 1.$$

$$\langle \cos(t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos(t))(\cos(2t))dt = 0.$$

$$\langle \cos(t), \sin(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos(t))(\sin(t))dt = 0.$$

$$\langle \cos(t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos(t))(\sin(2t))dt = 0.$$

$$\langle \sin(t), \sin(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin(t))(\sin(t))dt = 1.$$

$$\langle \sin(t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin(t))(\cos(2t))dt = 0.$$

$$\langle \sin(t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin(t))(\sin(2t))dt = 0.$$

$$\langle \cos(2t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos(2t))(\cos(2t))dt = 1.$$

$$\langle \cos(2t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\cos(2t))(\sin(2t))dt = 0.$$

$$\langle \sin(2t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin(2t))(\sin(2t))dt = 1.$$

(ii). The norm of t is given by:

$$||t|| = \sqrt{\langle t, t \rangle} = \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} (t^2) dt} = \sqrt{\frac{1}{\pi} (\frac{1}{3} \pi^3 - \frac{1}{3} (-\pi^3))} = \sqrt{\frac{2}{3} \pi^2} = \boxed{\sqrt{\frac{2}{3} \pi}}$$

(iii). The projection is given by:

$$proj_X(\cos(3t)) = \langle \cos t, \cos 3t \rangle \cos t + \langle \sin t, \cos 3t \rangle \sin t + \langle \cos 2t, \cos 3t \rangle \cos 2t + \langle \sin 2t, \cos 3t \rangle \sin 2t$$
$$= 0 + 0 + 0 + 0 = \boxed{0}.$$

(iv). The projection is given by:

$$proj_X(t) = \langle \cos t, t \rangle \cos t + \langle \sin t, t \rangle \sin t + \langle \cos 2t, t \rangle \cos 2t + \langle \sin 2t, t \rangle \sin 2t$$
$$= 0 + 2\sin t + 0 + -\sin 2t = 2\sin t - \sin 2t.$$

Problem 5: HJE 3.9.

Solution. Define $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$. Then the standard inner product space of the column vectors is $x_1y_1 + x_2y_2$. The rotation transformation is orthonormal if the standard inner product space of the transformation preserves the original inner product space. The transformations result in the following:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{pmatrix}$$
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 \cos \theta - y_2 \sin \theta \\ y_1 \sin \theta + y_2 \cos \theta \end{pmatrix}$$

Taking the standard inner product space (dot product) of the two resulting column vectors gives:

$$(x_1 \cos \theta - x_2 \sin \theta)(y_1 \cos \theta - y_2 \sin \theta) + (x_1 \sin \theta + x_2 \cos \theta)(y_1 \sin \theta + y_2 \cos \theta) =$$

$$x_1 y_1(\cos \theta)^2 + x_2 y_2(\sin \theta)^2 - \sin \theta \cos \theta(x_1 y_2 + x_2 y_1) + x_1 y_1(\sin \theta)^2$$

$$+ x_2 y_2(\cos \theta)^2 + \sin \theta \cos \theta(x_1 y_2 + x_2 y_1) =$$

$$x_1 y_1((\sin \theta)^2 + (\cos \theta)^2) + x_2 y_2((\sin \theta)^2 + (\cos \theta)^2) = x_1 y_1 + x_2 y_2.$$

The resulting inner product space is the same as the original inner product space so the rotation transformation is orthonormal.

Problem 6: HJE 3.10. Solution.

- (i.) The matrix Q being orthonormal is equivalent to $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$. This implies that $Q^H Q \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$. Because these are equal, then $Q^H Q = I$. By the properties of matrix inverses, AB = I implies BA = I, so we also have that $QQ^H = I$. The same reasoning applies for the converse, so that if the product is I, then it directly follows that $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$. Therefore a matrix Q is orthonormal if and only if $Q^H Q = QQ^H = I$.
- (ii.) $\|Q\mathbf{x}\| = \sqrt{\langle \mathbf{x}^H Q^H, Q\mathbf{x} \rangle} = \sqrt{\langle QQ^H \rangle \langle \mathbf{x}^H, \mathbf{x} \rangle} = \sqrt{\langle \mathbf{x}^H, \mathbf{x} \rangle}$ by the property proved in part (i). The last square root is equivalent to $\|\mathbf{x}\|$. Therefore if Q is an orthonormal matrix, then $\|Q\mathbf{x}\| = \|\mathbf{x}\|$.
- (iii.) By part (i) of this problem $Q^HQ = QQ^H = I$. By the definition of the matrix inverse: $Q^{-1}Q = QQ^{-1} = I$. Therefore, for an orthonormal matrix Q: $Q^{-1} = Q^H$. We also have that for any Q by definition, $(Q^{-1})^{-1} = Q$ and $(Q^H)^H = Q$. Thus: $(Q^{-1})^{-1} = (Q^H)^H = (Q^{-1})^H$. Because the H and inverse of Q^{-1} are equal, Q^{-1} is also an orthogonal matrix.
- (iv.) By part (i) of this problem, $QQ^H = I$. Each entry in the product QQ^H is an inner product space of columns of Q, and this inner product space equals 1 along the diagonals and 0 elsewhere. This implies that $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = 1$ only when i = j and 0 any other time, satisfying the definition of an orthonormal set.
- (v.) By definition, $\det I = 1$. By part (i), since $Q^HQ = I$, $\det Q^HQ = 1$. By the properties of determinants, this implies that $\det Q^2 = 1 \implies |\det Q| = 1$. However the converse is not true because there are matrices that have a determinant of 1 that are not orthonormal. One example is the matrix: $\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$ which has a determinant of 1 but does not satisfy the property proved in part (i) of this problem.
- (vi.) Let Q_1 and Q_2 both be orthonormal matrices. Then $(Q_1Q_2)^{-1} = (Q_2)^{-1}(Q_1)^{-1}$. By part (i) this is equivalent to $(Q_2)^H(Q_1)^H = (Q_1Q_2)^H$. Since the H is the same as the transpose, the product Q_1Q_2 is also orthonormal.

Problem 7: HJE 3.11.

Solution. We show below that attempting to apply the Gram-Schmidt orthonormalization process to a collection of linearly dependent vectors will not work because we will end up dividing by 0.

Denote the set of linearly dependent vectors as $\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}$. Let $\mathbf{x_j}$ be the first vector that is a linear combination of preceding vectors. The beginning of the Gram-Schmidt process gives:

$$q_1 = \frac{x_1}{\left\|x_1\right\|}$$

Projecting $\mathbf{x_2}$ onto $\mathbf{q_1}$ gives:

$$\mathbf{p_1} = \langle \mathbf{q_1}, \mathbf{x_2} \rangle \mathbf{q_1}.$$

Define $\mathbf{r_i} = \mathbf{x_i} - \mathbf{p_{i-1}}$. Then the next vector in the construction of the orthonormal set is defined by:

$$\mathbf{q_2} = rac{\mathbf{r_2}}{\|\mathbf{r_2}\|}.$$

We continue this process until we get to $\mathbf{r_j} = \mathbf{x_j} - \mathbf{p_{j-1}} = \mathbf{x_j} - \langle \mathbf{q_{j-1}}, \mathbf{x_j} \rangle \mathbf{q_{j-1}} = 0$. Then in the next step, we will be dividing by 0, and cannot construct an orthonormal set.

Problem 8: HJE 3.16.

Solution.

(i.) The QR decomposition is not unique because if there are two matrices Q and R that multiply to equal another matrix A, then we can obtain the same product by multiplying every value in Q by α and every value in R by $\frac{1}{\alpha}$. As an example, we take the Matrix A from Example 3.3.11 of the textbook. We can obtain a decomposition of the same matrix by multiplying Q and R each by -1, obtaining:

$$Q = \begin{pmatrix} -1/2 & 1/2 & -1/2 \\ -1/2 & -1/2 & 1/2 \\ -1/2 & -1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{pmatrix}$$
$$R = \begin{pmatrix} -2 & -1 & -3 \\ 0 & -5 & 1 \\ 0 & 0 & -3 \end{pmatrix}$$

(ii.) Assume that A is invertible and has two different QR decompositions with only positive diagonal elements. Then $A=Q_1R_1=Q_2R_2 \implies Q_2^{-1}Q_1=R_2R_1^{-1}$. The matrix $Q_2^{-1}Q_1$ is orthonormal and $R_2R_1^{-1}$ is upper triangular. This means that each of the matrix products will be upper triangular and orthonormal, which occurs if the product is I or -I. We are assuming that there are positive diagonals so the product must be I. Then: $Q_2^{-1}Q_1=I \implies Q_2=Q_1$. $R_2R_1^{-1}=I \implies R_1=R_2$.

Therefore there is a unique QR decomposition.

Problem 9: HJE 3.17.

Solution. We start with the assumption that $A^H A \mathbf{x} = A^H b$. When A can be decomposed as $A = \hat{Q}\hat{R}$:

$$A^{H}A\mathbf{x} = A^{H}b \implies (\hat{Q}\hat{R})^{H}(\hat{Q}\hat{R})\mathbf{x} = (\hat{Q}\hat{R})^{H}\mathbf{b}$$

$$\implies \hat{R}^{H}\hat{Q}^{H}\hat{Q}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$$

$$\implies \hat{R}^{H}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$$

$$\implies \hat{R}\mathbf{x} = \hat{Q}^{H}\mathbf{b}.$$

Problem 10: HJE 3.23.

Solution. By the triangle inequality:

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y|| \implies ||x|| - ||y|| \le ||x - y||.$$

$$||y|| = ||y - x + x|| \le ||x - y|| + ||x|| \implies ||y|| - ||x|| \le ||x - y||.$$

Therefore $|||x|| - ||y||| \le ||x - y||$.

Problem 11: HJE 3.24.

Solution. There are three necessary conditions for a map to be considered a norm:

- (1) Positivity: $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = 0$.
- (2) Scale preservation: $||a\mathbf{x}|| = |a|||\mathbf{x}||$.
- (3) Triangle Inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
- (i.) $||f||_{L^1} = \int_a^b |f(t)| dt$. (1) $|f(t)| \ge 0$ for all f(t) so the integral from a to b will always be at least 0. The integral will also only equal 0 when f(t) = 0 for all t in the domain.
 - (2) $\|\alpha \mathbf{x}\|_{L^1} = \int_a^b |\alpha f(t)| dt = |\alpha| \int_a^b |f(t)| dt = |\alpha| \|\mathbf{x}\|_{L^1}$
 - (3) $||f + g||_{L^1} = \int_a^b |f(t) + g(t)| dt \le \int_a^b |f(t)| dt | + \int_a^b |g(t)| dt = ||f|| + ||g||.$
 - (ii.) $||f||_{L^2} = (\int_a^b |f(t)|^2 dt)^{1/2}$.
- (1) Once again, |f(t)| is non-negative, so its square will be non-negative, as well as the integral of this value and its square root. $||f||_{L^2} = 0$ implies that |f(t)| = 0which only occurs when f(t) = 0 for all t in the domain.
 - (2) $\|\alpha f\|_{L^2} = (\int_a^b |\alpha f(t)|^2 dt)^{1/2} = |\alpha|((\int_a^b |f(t)|^2 dt)^{1/2} = |\alpha|\|f\|_{L^2}.$
 - (3)

$$||f+g||_{L^{2}}^{2} = \int_{a}^{b} |f+g|^{2} dt \le \int_{a}^{b} (|f|^{2} + 2|f||g| + |g|^{2}) dt$$

$$\le ||f||_{L^{2}}^{2} + ||g||_{L^{2}}^{2} + 2||f||_{L^{2}}||g||_{L^{2}} = ||f||_{L^{2}}^{2} + ||g||_{L^{2}}^{2}$$

$$\implies ||f+g||_{L^{2}}^{2} \le ||f||_{L^{2}}^{2} + ||g||_{L^{2}}^{2}.$$

- (iii.) $||f||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x)|.$
- (1) Because each norm |f(x)| is always non-negative, its supremum will also be non-negative. The norm will only equal 0 when f(x) is always 0 in the domain.
 - $(2) \|\alpha f(x)\|_{L^{\infty}} = \sup_{x \in [a,b]} |\alpha f(x)| = |\alpha| \sup_{x \in [a,b]} |f(x)| = |\alpha| \|f(x)\|_{L^{\infty}}.$
 - (3)

$$||f(x) + g(x)||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x) + g(x)|$$

$$\leq \sup |f(x)| + \sup |g(x)| = ||f(x)||_{L^{\infty}} + ||g(x)||_{L^{\infty}}.$$

Problem 12: HJE 3.26.

Solution. First we note that topological equivalence is an equivalence relation. Topological equivalence is an equivalence relation because it if norm $\|.\|_a$ and $\|.\|_b$ are topologically equivalent, and $\|.\|_b$ and $\|.\|_c$ are topologically equivalent, then it is also true that $\|.\|_a$ and $\|.\|_c$ are topologically equivalent. The equivalences imply:

$$m_1 \|x\|_b \le \|x\|_a \le M_1 \|x\|_b.$$

$$m_2 \|x\|_b \le \|x\|_c \le M_2 \|x\|_b.$$

$$\frac{m_1}{m_2} \le \frac{\|x\|_a}{\|x\|_c} \le \frac{M_1}{M_2}.$$

$$\frac{m_1 \|x\|_c}{m_2} \le \|x\|_a \le \frac{M_1 \|x\|_c}{M_2}.$$

Therefore we also will have an equivalence between $\|.\|_a$ and $\|.\|_c$.

We now show that the p-norms for $p = 1, 2, \infty$ are topologically equivalent:

(i.) Let $||x||_2$ denote the p-norm for p = 2 and let $||x||_1$ denote the p-norm for p=1 on \mathbb{F}^n . First, by the Cauchy-Schwartz inequality:

$$(\sum |x_j|)^2 \le n \sum |x_j^2|.$$

$$\sum |x_j| \le \sqrt{n \sum |x_j^2|}.$$

$$||x||_1 \le \sqrt{n}||x||_2.$$

It also holds that:

$$(\sum x_i)^2 = \sum_{i=1}^n \sum_{j=1}^n x_i x_j = \sum_{i=1}^n x_i^2 + \sum_i \sum_{j \neq i} x_i x_j \ge \sum x_i^2.$$

$$\sum |x_i| \ge \sqrt{\sum |x_i|^2}.$$

$$||x||_1 \ge ||x||_2.$$

Therefore the p-norms for p=1 and p=2 are topologically equivalent.

(ii.) Let $||x||_2$ denote the p-norm for p = 2 and let $||x||_{\infty}$ denote the p-norm for $p = \infty$ on \mathbb{F}^n . First, we have:

$$||x||_2^2 = \sum |x_i|^2 \le n \sup |x_i|^2 = n(\sup |x_i|)^2 = n||x||_{\infty}^2.$$

$$||x||_2 \le \sqrt{n} ||x||_{\infty}.$$

where sup $|x_i|$ is shorthand for sup($|x_1|, |x_2|, ..., |x_n|$). We also have:

$$(\sup |x_i|)^2 = (\sup |x_i|^2) \le |x_i^2| + \sum_{j \ne i} |x_j^2| = ||x||_2^2.$$

$$||x||_{\infty} \le ||x||_2.$$

Therefore the p-norms for $p = \infty$ and p = 2 are also topologically equivalent.

Problem 13: HJE 3.28.

Solution.

(i.) Let $||A||_2$ denote the operator 2-norm and let $||A||_1$ denote the operator 1-norm. Then by the properties proven in Exercise 3.26:

$$\frac{1}{\sqrt{n}} \|A\|_{2} = \frac{1}{\sqrt{n}} \sup \frac{\|A\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} \le \sup \frac{\|A\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{1}} \le \sup \frac{\|A\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} = \|A\|_{1}$$

Similarly:

$$||A||_1 \le \sup \frac{\sqrt{n}||A\mathbf{x}||_2}{||\mathbf{x}||_1} \le \sqrt{n}\sup \frac{||A\mathbf{x}||_2}{||\mathbf{x}||_2} = \sqrt{n}||A||_2$$

(ii.) Let $||A||_2$ denote the operator 2-norm and let $||A||_{\infty}$ denote the operator ∞ -norm. Then by the properties proved in Exercise 3.26:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} = \frac{1}{\sqrt{n}} \sup \frac{\|A\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \le \sup \frac{\|A\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}} \le \sup \frac{\|A\mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} = \|A\|_{2}$$

Similarly:

$$||A||_2 \le \sup \frac{\sqrt{n} ||A\mathbf{x}||_{\infty}}{||\mathbf{x}||_2} \le \sqrt{n} \sup \frac{||A\mathbf{x}||_{\infty}}{||\mathbf{x}||_{\infty}} = \sqrt{n} ||A||_{\infty}$$

Problem 14: HJE 3.29.

Solution.

We first show that the induced norm of the transformation is equal to $\|\mathbf{x}\|_2$. In Exercise 3.10(ii), we showed that if Q is an orthonormal matrix, then $\|Q\mathbf{x}\| = \|\mathbf{x}\|$ for all \mathbf{x} . Therefore, when Q is orthonormal, the 2-norm is given by:

$$||Q||_2 = \sup \frac{||Q\mathbf{x}||_2}{||\mathbf{x}||_2} = \sup \frac{||\mathbf{x}||_2}{||\mathbf{x}||_2} = 1.$$

We now show that the induced norm of the transformation R_x is equal to $\|\mathbf{x}\|_2$. By definition, $\|\mathbf{x}\|_2^2 = \mathbf{x}^H \mathbf{x}$. Then $\|A\mathbf{x}\|_2^2 = (A\mathbf{x})^H (A\mathbf{x}) = \mathbf{x}^H A^H A\mathbf{x} = \mathbf{x}^H \mathbf{x} = \|\mathbf{x}\|_2^2$. Therefore the induced norm of the transformation is equal to $\|\mathbf{x}\|_2$.

Problem 15: HJE 3.30.

Solution. There are three necessary conditions for a map to be considered a norm:

- (1) Positivity: $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = 0$.
- (2) Scale preservation: $||a\mathbf{x}|| = |a|||\mathbf{x}||$.
- (3) Triangle Inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
- (1) We already know that $\|.\|$ is a matrix norm so it satisfies the conditions of a norm. Therefore $\|\mathbf{x}\|_S \geq 0$. We also know that it will only equal 0 if $SAS^{-1} = 0$, which only occurs when A = 0. Therefore positivity holds.

(2)
$$\|\alpha A\|_{S} = \|\alpha S A S^{-1}\| = |\alpha| \|S A S^{-1}\| = |\alpha| \|A\|_{S}$$

The steps above follow from the fact that $\|.\|$ is a matrix norm. Therefore scale preservation holds.

(3)

$$||A + B||_S = ||S(A + B)S^{-1}|| = ||(SA + SB)S^{-1}||$$

= $||SAS^{-1} + SBS^{-1}|| \le ||SAS^{-1}|| + ||SBS^{-1}|| = ||A||_S + ||B||_S.$

The steps above hold by the triangle inequality of $\|.\|$ because it is already a matrix norm. Therefore the triangle inequality also holds for $\|.\|_S$. Because all three properties hold, $\|.\|_S$ is considered a matrix norm.

Problem 16: HJE 3.37.

Solution. The Riesz representation theorem tells us that there will be a unique $q \in V$ such that $L(p) = \langle q, p \rangle$ but it does not tell us what this q will be. Define a generic $q = ex^2 + fx + g$ and $p = ax^2 + bx + c$. We want to find e, f, g such that $\langle q, p \rangle = \int_0^1 qp dx = L(p) = 2a + b$. This gives us:

$$\int_0^1 (ex^2 + fx + g)(ax^2 + bx + c)dx = 2a + b$$

$$\int_0^1 aex^4 + (be + af)x^3 + (ce + bf + ag)x^2 + (cf + bg)x + cg = \frac{ae}{5} + \frac{be + af}{4} + \frac{ce + bf + ag}{3} + \frac{cf + bg}{2} + cg = a(\frac{e}{5} + \frac{f}{4} + \frac{g}{3}) + b(\frac{e}{4} + \frac{f}{3} + \frac{g}{2}) + c(\frac{e}{3} + \frac{f}{2} + g)$$

We then set this equation equal to 2a + b and solve the following system of equations:

$$0.2e + 0.25f + (1/3)g = 2$$
$$0.25e + (1/3)f + 0.5g = 1$$
$$(1/3)e + 0.5f + q = 0$$

This yields solution e = 180, f = -168, g = 24. Therefore, the unique q guaranteed by the Riesz representation theorem is: $180x^2 - 168x + 24$.

Problem 17: HJE 3.38.

Solution. With respect to the power basis, we seek a D such that:

$$D(1,0,0) = (0,0,0).$$

$$D(0,1,0) = (1,0,0).$$

$$D(0,0,1) = (0,2,0).$$

This is satisfied by:

$$D = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

Following example 3.7.8 in the textbook, the adjoint is given by the Hermitian conjugate D^H so:

$$D^* = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{array}\right)$$

Problem 18: HJE 3.39.

Solution.

(i.)

$$\langle \mathbf{v}, (S+T)^*, \mathbf{w} \rangle = \langle (S+T)\mathbf{x}, \mathbf{w} \rangle = \langle S\mathbf{v}, \mathbf{w} \rangle + \langle T\mathbf{v}, \mathbf{w} \rangle$$
$$= \langle \mathbf{v}, T^*\mathbf{w} \rangle + \langle \mathbf{v}, S^*\mathbf{w} \rangle = \langle \mathbf{v}, (T^* + S^*)\mathbf{w} \rangle.$$

Therefore, we have that $(S+T)^* = S^* + T^*$. Additionally, $\langle Q_1, \alpha T(Q_2) \rangle = \alpha \langle T^*(Q_1), Q_2 \rangle = \langle \overline{\alpha} T^*(Q_1), Q_2 \rangle$.

(ii.) We have that $\langle \mathbf{v}, S\mathbf{w} \rangle = \langle S^*\mathbf{v}, \mathbf{w} \rangle$. By reflexive properties, we therefore also have that $\langle S\mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{w}, S^*\mathbf{w} \rangle$. Finally, by the definition of the adjoint: $\langle \mathbf{w}, S^*\mathbf{v} \rangle = \langle (S^*)^*\mathbf{w}, \mathbf{v} \rangle$. Therefore, $(S^*)^* = S$.

(iii.)

$$\langle Q_1, (ST)^*Q_2 \rangle = \langle STQ_1, Q_2 \rangle = \langle TQ_1, S^*Q_2 \rangle = \langle Q_1, T^*S^*Q_2 \rangle.$$

Therefore $(ST)^* = T^*S^*$.

(iv.) We have that:

$$\langle T^*(T^{-1})^*Q_1, Q_2 \rangle = \langle Q_1, T^{-1}TQ_2 \rangle = \langle Q_1, Q_2 \rangle = \langle Q_1, Q_2 \rangle.$$

Therefore, because the product of T^* and $(T^{-1})^*$ is the identity matrix, they are each the inverse of each other, so: $(T^{-1})^* = (T^*)^{-1}$.

Problem 19: HJE 3.40.

Solution.

- (i.) $\langle A^*Q_1, Q2 \rangle = \langle Q_1, AQ_2 \rangle = tr(Q_1^HAQ_2)$. Equivalently, $\langle A^HQ_1, Q_2 \rangle = tr(Q_1^HAQ_2)$. Therefore $A^* = A^H$.
 - (ii.) For any A_1, A_2, A_3 :

$$\langle A_2, A_3 A_1 \rangle = tr(A_2^H A_3 A_1) = tr(A_1 A_2^H A_3) = \langle A_2 A_1^H, A_3 \rangle = \langle A_2 A_1^*, A_3 \rangle.$$

Therefore $\langle A_2, A_3 A_1 \rangle = \langle A_2 A_1^*, A_3 \rangle$.

(iii.) Define $T_A(X) = AX - XA$. First we have:

$$\langle T_{A^*}(Q_1), Q_2 \rangle = \langle A^*Q_1 - Q_1A^*, Q_2 \rangle = \langle A^HQ_1 - Q_1A^H, Q_2 \rangle = tr(Q_1^HAQ_2 - Q_1^HQ_2A).$$

We also have:

$$\langle T_A^*(Q_1), Q_2 \rangle = \langle Q_1, T_A(Q_2) \rangle = \langle Q_1, AQ_2 - Q_2A \rangle = tr(Q_1^H A Q_2 - Q_1^H Q_2A).$$

Therefore $(T_A)^* = T_{A^*}$.

Problem 20: HJE 3.44.

Solution. To prove the Fredholm alternative, we first show that if $A\mathbf{x} = \mathbf{b}$ has no solution, then there is no \mathbf{y} in the null of A^H s.t. $\langle \mathbf{y}, \mathbf{b} \rangle = 0$. Assume that there is a solution to the equation and let \mathbf{y} be part of the null space as described above. Then:

$$\langle \mathbf{y}, \mathbf{b} \rangle = \langle \mathbf{y}, \mathbf{A} \mathbf{x} \rangle = tr(\mathbf{y}^H A \mathbf{x}) = \langle A^H \mathbf{y}, \mathbf{x} \rangle = \langle 0, \mathbf{x} \rangle = 0.$$

We next show that if $\langle \mathbf{y}, \mathbf{b} \rangle \neq 0$, then there is no solution to the equation. \mathbf{y} is in the null space of A^H which also means that \mathbf{y} is in $R(A)^{\perp}$. However, if there is a solution to the equation, then \mathbf{b} is in R(A). There is a contradiction since for $\langle \mathbf{y}, \mathbf{b} \rangle$ to not equal 0, \mathbf{b} cannot be in R(A). There can be no solution to the equation. We have then proven the Fredholm alternative.

Problem 21: HJE 3.45.

Solution. We define a linear transformation $L: M_n(\mathbb{R}) \to M_n(\mathbb{R})$. as $L(A) = A + A^T$. The definition of Skew gives: $Skew_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) | A^T = -A\}$. For linear transformation L this is exactly equivalent to the null space because L(A) = 0 when $A = -A^T$.

Next, we show that $Sym_n(\mathbb{R}) = R(L)$. The definition of Sym gives: $Sym_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) | A^T = A\}$. Because $(A + A^T)^T = A + A^T$ the kernel of L is part of $Sym_n(\mathbb{R})$. We also note that for any matrix A in $Sym_n(\mathbb{R})$: $A = A^T$ so $A = 0.5A^T + 0.5A$ so $Sym_n(\mathbb{R})$ is also part of the kernel of L. Therefore $Sym_n(\mathbb{R}) = R(L)$.

Finally, we seek to prove that $L = L^*$. We note that $tr(BA) = tr(AB) \implies tr(A^TB^T) = tr(AB) \implies tr(A^T(B+B^T)) = tr((A+A^T)B) \implies \langle A, L(B) \rangle = \langle L(A), B \rangle$. Therefore $L = L^*$.

We already have that $Sym_n(\mathbb{R})^{\perp} = R(L)^{\perp}$. By the Fundamental Subspaces Theorem, this is then equal to $N(L^*) = N(L)$ since $L = L^*$. Since $N(L) = Skew_n(\mathbb{R})$, we have that $Sym_n(\mathbb{R})^{\perp} = Skew_n(\mathbb{R})$.

Problem 22: HJE 3.46.

Solution.

- (i.) Since \mathbf{x} is in the null space of $A^H A$: $A^H A \mathbf{x} = 0 \implies A^H (A \mathbf{x}) = 0 \implies A \mathbf{x}$ is in the null space of A^H . By definition $A \mathbf{x}$ is also in the kernel of A.
- (ii.) By definition (and from the result of part (i): $N(A) \subseteq N(A^H A)$. Now let $\mathbf{x} \in N(A^H A)$. Then $\mathbf{x}^H A^H A \mathbf{x} = 0 \implies (A \mathbf{x})^H (A \mathbf{x}) = 0 \implies A \mathbf{x} = 0$. Therefore $N(A^H A) \subseteq N(A)$. Then $N(A^H A) = N(A)$.

- (iii.) From part (ii) above, $dimN(A) = dimN(A^HA) \implies n rank(A) = n rank(A^HA)$. Therefore, A and A^HA have the same rank.
- (iv.) If A has linearly independent columns then N(A) = 0 and by part (ii), $N(A) = N(A^H A)$. Because the null space is 0, $A^H A$ is invertible.

Problem 23: HJE 3.47.

Solution.

(i.) Let $P = A(A^H A)^{-1}A^H$. First we note that $A^H A$ is a symmetric matrix. Therefore we can proceed to show the lemma that $(A^H A)^{-1} = ((A^H A)^{-1})^H$. Let $Q = (A^H)A$. By the properties of the matrix inverse, $QQ^{-1} = I$. Then:

$$I = I^{H}.$$

$$(QQ^{-1}) = (QQ^{-1})^{H}.$$

$$QQ^{-1} = (Q^{-1})^{H}Q^{H}.$$

And since $Q = Q^H$:

$$Q^{-1}Q = (Q^{-1})^{H}Q.$$

$$Q^{-1} = (Q^{-1})^{H}.$$

$$(A^{H}A)^{-1} = ((A^{H}A)^{-1})^{H}.$$

Having verified this, it is easy to calculate $P^2 = A((A^HA)^{-1})^HA^HA((A^HA)^{-1})A^H = A(A^HA)^{-1}A^H = P$. Therefore $P^2 = P$ so the operator P is a projection.

- (ii.) Using the fact proved in part (i), we have $P^H = A((A^HA)^{-1})^HA^H = A(A^HA)^{-1}A^H = P$. Therefore $P^H = P$.
- (iii.) First we note that by the result of Exercise 2.14(i), $rank(KL) \leq min(rank(L), rank(K))$ so we also have:

$$rank(P) \le min(rank(A), rank((A^H A)^{-1} A^H)) \le rank(A).$$

Then, let $\mathbf{b} \in R(A)$. This implies that $\mathbf{b} = A\mathbf{x}$ for some \mathbf{x} . We then have that: $P(\mathbf{b}) = A(A^HA)^{-1}A^HA\mathbf{x} = A\mathbf{x}$ so \mathbf{b} is also in the range of P. Therefore the range of A is a subset of the range of P so:

$$rank(A) \le rank(P)$$
.

Since $rank(A) \le rank(P)$ and $rank(P) \le rank(A)$, rank(P) = rank(A) = n.

Problem 24: HJE 3.48.

Solution.

(i.) P is linear if it preserves addition, preserves multiplication, and preserves 0. We first show that P preserves addition:

$$P(A+B) = \frac{A+B+(A+B)^T}{2} = (\frac{A+A^T}{2}) + (\frac{B+B^T}{2}) = P(A) + P(B).$$

We next show that P preserves multiplication:

$$P(cA) = \frac{cA + (cA)^T}{2} = \frac{c(A + A^T)}{2} = cP(A).$$

Finally, P preserves 0 so it is linear:

$$P(0) = \frac{0+0}{2} = 0.$$

(ii.) We define P^2 as applying the linear transformation P twice consecutively. Then:

$$P^{2} = \frac{1}{2} \left(\frac{A + A^{T}}{2} + \left(\frac{A + A^{T}}{2} \right)^{T} \right) = \frac{1}{2} \left(\frac{A}{2} + \frac{A^{T}}{2} + \frac{A^{T}}{2} + \frac{A}{2} \right) = \frac{A + A^{T}}{2} = P.$$

Therefore $P^2 = P$.

(iii.)

$$\begin{split} \langle A_1, P(A_2) \rangle &= \langle A_1, \frac{A_2 + A_2^T}{2} \rangle = \frac{1}{2} tr(A_1^T(A_2 + A_2^T)) \\ &= \frac{1}{2} tr(A_1^T A_2 + A_1^T A_2^T) = \frac{1}{2} tr(A_1^T A_2) + \frac{1}{2} tr(A_1^T A_2^T) \\ &= \frac{1}{2} tr(A_1^T A_2) + \frac{1}{2} tr(A_2 A_1) = \frac{1}{2} tr(A_1 A_2 + A_1^T A_2) \\ &= \langle P(A_1), A_2 \rangle \end{split}$$

Therefore $P^* = P$.

(iv.) $Skew_n(R)$ is defined as $\{A \in M_n(\mathbb{R}) | A^T = -A\}$. When $A^T = -A$, then P(A) = 0 so this is equivalent to being in the null space of P.

(v.) $Sym_n(R)$ is defined as $\{A \in M_n(\mathbb{R}) | A^T = A\}$. When $A^T = A$, then $\frac{1}{2}A = \frac{1}{2}A^T \implies A = \frac{1}{2}(A + A^T)$. so $A \in R(P)$.

(vi.)

$$\begin{split} \|A - P(A)\| &= \sqrt{(\langle A - P(A), A - P(A) \rangle)} \\ &= \sqrt{\langle A/2 - A^T/2, A/2 - A^T/2 \rangle} = \sqrt{tr((A^T - 2 - A/2)(A/2 - A^T/2))} \\ &= \sqrt{tr(A^T A/4 - A^2/4 + AA^T/4 - A^TA^T/4)} \\ &= \sqrt{\frac{tr(A^T A) - tr(A^2)}{2}} \end{split}$$

Problem 25: HJE 3.50.

Solution. If we believe that data points $(x_i, y_i)_{i=1}^n$ lie roughly on an ellipse of form $rx^2 + sy^2 = 1$, we would solve the normal equation $A\mathbf{x} = b$ where:

$$A = \begin{pmatrix} 1 & x_1^2 \\ 1 & x_2^2 \\ \dots & \dots \\ 1 & x_n^2 \end{pmatrix}$$
$$b = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$
$$\mathbf{x} = \begin{pmatrix} \frac{1}{s} \\ \frac{-r}{s} \end{pmatrix}$$

We would then use this equation and the data points to solve for the unknowns r and s.