Final Report: Election Prediction

Alexander Bendeck, Lynn Fan, Cathy Lee, Alice Liao, Justina Zou

28 October 2020

Introduction

The United States is getting closer to the 2020 presidential and Congressional elections on November 3, 2020. All 435 seats in the United States House of Representatives, 35 of the 100 seats in the United States Senate, and the office of President of the United States are up for election (Wikipedia, 2020). With the current polarizing political landscape, the election outcomes are significant to determine the next stage of this country. Polarization also makes election prediction both less and more difficult. It is less difficult because election results are less subject to election or candidate-specific factors, and it is more difficult as elections become increasingly close and fierce competitions, especially for presidential elections (Gelman, 2020). Therefore, we believe 2020 is a particularly challenging yet interesting year for statisticians to predict election outcomes and compare results with other predictions and the actual outcome to reflect on methodologies and unaccounted predictors. These election predictions not only inform the public about campaign trends and political sentiments but also help political strategists make decisions on allocating campaign resources for different candidates (Linzer et al.). American political pundits have been spending countless hours obtaining and analyzing relevant data to predict the election outcomes, and historical models and predictions and pre-election polls are two of the most important sources of information (Linzer et al.). In this report, similarly, we will also be using both literature review and polls for 2020 to build our prediction models.

We plan to build prediction models for the 2020 U.S. presidential election and the Senate election nationwide. Also, among all states, we decide to further predict the U.S. House election outcome for North Carolina, as it has been a swing state in presidential and Congressional elections for decades. Since 1996, the Republican statewide vote share in Congressional elections has varied "from a low of 45% in 2008 to a high of 55% in 2014" (Perrin et al.). To summarize, this report aims to use statistical models to predict (1) the outcome of the presidential election, (2) whether the US Senate remains in Republican control, (3) the electoral college vote, (4) the outcomes of all NC Congressional elections (the 13 federal Representatives to Congress), and (5) the outcome of the NC Senate election, including characterization of uncertainty in predictions.

Data Description

In literature, election prediction relies on polling data as well as the fundamentals, which are economic indicators (The Economist, 2020) and voter turnout by demographic groups (Hansford, et al.). To forecast the outcomes of presidential election, senate election and house election (for North Carolina only), we obtained 2020 presidential polling data from *The Economist*, 2020 senate and house polling data as well as partisan lean data from *FiveThirtyEight*.

The fundamentals data were retrieved from various online sources, including Andrew Gelman's presidential election prediction model Github repository (for correlation across states and historical incumbent party's June approval ratings), Federal Reserve Economic Data (for second quarter real income growth), and NC Board of Elections website (for 2020 NC registered voter demographics). Please refer to Appendix B for a detailed description of all data sets used.

Data Processing and Missing Data

For both the President and Senate models, we had to choose which states we considered to be "battlegrounds" to include in the models. We chose states for the models separately, since some states have a competitive race for President but not for Senate or vice versa.

For the presidential election data, we choose to use polling data from 30 days before the election (as opposed to over 30 days), as this aligns with Andrew Gelman's observation that polling data becomes more predictive as the day of poll becomes closer to election day (The Economist). Note that state-wide polls 30 days or less are unavailable for Oregon, Idaho, Wyoming, Nebraska, North Dakota, Illinois, Tennessee, Arkansas, Mississippi, and many Northeastern states. But these states are not swing states in recent elections, so we did not include those in our modeling process. For modeling, we will filter out those states with obvious party preferences and focus on those states showing percentages swinging right above or below 50%. For the presidential model, the states chosen are Arizona, Florida, Georgia, Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania, Texas, and Wisconsin. These thirteen states are swing states in the plot, and are rated as either "Toss Up", "Lean Republican", or "Lean Democrat" races (the three most competitive categories) by the Cook Political Report (CITE), an nonpartisan elections newsletter, as of October 28. These states are also projected to be competitive in the Presidential race by both the FiveThirtyEight and Economist models. We select poll responses from likely voters only, since it is known that using all responses may overestimate support for the Democratic party, according to FiveThirtyEight (Silver, 2014).

For the Senate model, the states chosen are Alabama, Alaska, Arizona, Colorado, Georgia, Iowa, Kansas, Maine, Michigan, Montana, North Carolina, South Carolina, and Texas. Similarly, for states such as California with strong historical party preferences, state-wide polls within 30 days of election are missing, but the missing data does not hurt our modeling process as we are only focusing on the swing states. There is also a special election for the Senate in Georgia in addition to the regularly scheduled election. These fourteen races are rated as either "Toss Up", "Lean Republican", or "Lean Democrat" (the three most competitive categories) by the Cook Political Report (CITE) as of October 29. These states are also projected to have competitive Senate races by both the FiveThirtyEight and Economist models.

For the U.S. House election, due to the scarcity of poll responses for the NC House elections, we included all poll responses within 115 days of the election. We will supplement the polls with the voter turnout results from our interim report to predict the House election for NC.

Exploratory Data Analysis

After initial data cleanup for analysis, Figure 1 aims to explore polling data we have for the 2020 presidential election within 30 days of election, after filtering for the states of interest. The left plot shows that most states, as the polls indicate, have a vote share higher than 50% for Biden, averaging on all the polls available for each state respectively. While unsurprisingly Washington and California turn out to be blue, Louisiana, for example, still shows a deep red color. The right plot shows that within 30 days to election, variations exist for Biden support rate among polls within individual states. Combined with abundant literature that takes time into account for outcome prediction models, we will take days to election as a part of our model prediction as well (Gelman, 2020).

Similarly, Figure 2 visualizes the polling data we have for the 2020 U.S. Senate election, also within 30 days of election and after filtering for the states of interest. The left plot shows that most states, as the polls indicate, have a vote share higher than 50% for the Democratic Party, averaging on all the polls available for each state respectively. Nebraska is the only state with a bright red color in this data set. The right plot shows that within 30 days to election, variations exist for the Democratic party vote share among polls within individual states, such as the trend seen for North Carolina as Democratic Party vote share decreases getting closer to the election. We will take days to election as a part of our model prediction as well.

Figure 3 shows the different Democratic Party vote shares predicted by our interim report for all congressional districts in North Carolina. After predicting for voter turnout in the interim report, we use the party registration for predicted voters to get the vote share for Democratic Party. First, we grouped predicted voters for congressional districts. There are three categories in party registration: Democratic, Republican, and other (indicating a

Figure 1: Presidential Election Data Visualization

Figure 2: U.S. Senate Election Data Visualization

Figure 3: Democratic Vote Share Predicted By The Interim Report

third party or unaffiliated). Within each congressional district, we split the other population in half, and add it to both the Democratic Party vote count and the Republican Party vote count, as FiveThirtyEight used the same approach to get vote share for their House predictions, shown in[https://projects.fivethirtyeight.com/2020-election-forecast/house/]. Among 13 districts, 6 of them have a Democratic Party vote share higher than 50%.

Method

Similarly to prior work (Linzer 2013), we use a hierarchical model structure for our election models to overcome the limitation that not every state is polled on every day, allowing the model to borrow data across states (or Congressional districts). This also helps account for the fact that polls from each individual state are correlated data observations. We believe that vote share should be modeled as a normal distribution because, historically, vote shares among candidates have mode toward the center of the distribution (landslides are unlikely, especially in the case of a presidential election). In addition, we chose for our random walk to be lag-1 because it's more sensical to have updated predicted dependent on the previous prediction as opposed to being from a longer time period ago (see model specification below).

To specify priors for the mean of two-party vote share for Democrats in each state or district, we used a combination of state partisanship, economic fundamentals, candidate incumbency, and projected voter turnout based on demographics. First, we started with state or district partisan lean calculated by FiveThirtyEight (see "FiveThirtyEight's Partisan Lean" in references). Partisan lean is the average difference between how a state or district votes and how the country votes overall, based on results from the past two presidential elections as well as statewide elections in 2018. For example, North Carolina has a partisan lean of R+4, meaning that in a 50/50 political environment nationwide, a Republican would be expected to win North Carolina by 4 points. For each partisan lean, we turn the parsian lean into a prior mean of Democratic vote share by adding or subtracting half the partisan lean from 50%. North Carolina is a Republican-leaning state, so we subtract 2 from 50% to get a partisan lean prior of 48% (note that the Republican would then get 52% of the two-party vote, resulting in an R+4 margin of victory).

Presidential Election Model

For the presidential model, the states chosen are Arizona, Florida, Georgia, Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania, Texas, and Wisconsin. These thirteen states are rated as either "Toss Up", "Lean Republican", or "Lean Democrat" races (the three most competitive categories) by the Cook Political Report (as of October 28), an nonpartisan elections newsletter. These states are also projected to be competitive in the Presidential race by both the FiveThirtyEight and Economist models. We select poll responses from likely voters only, since it is known that using all responses may overestimate support for the Democratic party, according to FiveThirtyEight (Silver, 2014).

The response we will use is Y_k , Biden's share of the two-party vote using the following model where the poll k (of K=3361 [insert final number] polls) ended t days (of T=30 days) before the election and was conducted on state j (of J=13 states of interest). We choose to use polling data from 30 days before the election (as opposed to over 30 days), as this aligns with Andrew Gelman's observation that polling data becomes more predictive as the day of poll becomes closer to election day (The Economist).

```
\begin{split} Y_k &\sim N(\theta_{jt}, \sigma_{yj}^2) \\ \theta_{\cdots t} &\sim MVN(\theta_{\cdots t-1}, \Sigma) \\ \Sigma &\sim Wishart(S, J+1) \text{ where } S \text{ is the state covariance matrix (obtained from Andrew Gelman's model) and } J \\ \text{is the number of states in the model.} \\ \text{Priors for } \sigma_{yj}^2 : \sigma_{yj}^2 &\sim InvGamma(\nu_u, \nu_y \tau_y) \\ \nu_y &\sim Uniform(0, 100) \text{ and } \tau_y \sim Uniform(0, 100). \\ \text{Priors for } \theta_{j1} : \theta_{j1} &\sim N(\mu_j, \sigma^2) \\ \sigma^2 &\sim InvGamma(0.5, 0.5) \\ \mu_j &\sim N(h_j, 7.5^2) \\ h_j &= 0.1 * \text{Presidential Fundamentals}_{2020} + 0.9 * \text{Vote Share from Partisan Lean}_j \\ \text{Presidential Fundamentals}_i &= 100 - \text{Incumbent Party Vote Share}_i \\ \text{Incumbent Party Vote Share}_i &= \gamma_0 + \gamma_1 \text{June Approval Rating for Incumbent Party}_i + \gamma_2 \text{Three Month Stock Growth}_i + \gamma_3 \text{2nd Quarter Real Income Growth}_i + \epsilon_i \\ \epsilon_i &\sim N(0, \phi^2) \end{split}
```

For our presidential model, we wanted to incorporate state-level correlations that differ between each pair of states. For example, Wisconsin is much more similar to its Great Lakes neighbor Michigan both geographically and demographically than it is to Arizona, which is in the Southwest and has a much larger Hispanic population. So, we would expect that Wisconsin and Michigan have a higher correlation in their election results than Wisconsin and Arizona. In order to incorporate this into our presidential model, we used a multivariate normal distribution to model two-party vote share in each state, which allowed us to specify a covariance matrix for the states. We used a covariance matrix which was downloaded from *The Economist* forecast model (Gelman, 2020). These similarities between states were calculated by comparing their demographic and political profiles, such as the state's share of white voters and how urban/rural the state is.

In essence, the presidential model used fundamentals and vote share from partisan lean as a starting point for the expected vote share for the Democratic party, and update the priors with presidential election polling data. We first predicted incument party's national vote share (Incumbent Party Vote Share_i) based on the corresponding election year i's economic data and June net approval rating of the incumbent party. Since in the 2020 presidential election Biden's Democratic party is not the incumbent party, Presidental Fundamentals₂₀₂₀, which can be though of as the national level prior of Biden's vote share, is 100 minus Incumbent Party Vote Share₂₀₂₀. When computing the state specific prior, 10% weight is allocated to the fundamentals based on economic data and 90% weight to the state's partisan lean because the effect of economic indicators has shrunk over the years as electorates became increasingly polarized (The Economist, 2020). In addition, economic indicators are particularly volatile in 2020 due to the COVID-19 pandemic. We chose not to do this for the U.S. House and Senate models because these races are generally more localized (Gillespie et al. 2020).

one sentence on hyperparameters

Presidential elections in the United States are decided by the Electoral College, so estimating percentage support in each state alone does not tell us who wins the election. For each set of MCMC samples of two-party vote share by state, we subsequently use the predicted winner in each state to add up the electoral votes of each candidate. For states not in the model, their electoral votes are allocated assuming they vote the same way as in 2016. The probability of President Trump winning re-election is then the probability that he receives 270 or more electoral votes across simulations. Note that although Maine and Nebraska allocate some electoral votes by Congressional District, only two electoral votes are competitive due to this wrinkle, so for simplicity we simply allocate all electoral votes to the statewide winner of each respective state.

Senate Election Model

For the Senate model, the states chosen are Alaska, Arizona, Colorado, Georgia, Iowa, Kansas, Maine, Michigan, Montana, North Carolina, South Carolina, and Texas. There is also a special election for the Senate in Georgia in addition to the regularly scheduled election. These fourteen races are rated as either "Toss Up", "Lean Republican", or "Lean Democrat" (the three most competitive categories) by the Cook Political Report (as of October 29). These states are also projected to have competitive Senate races by both the FiveThirtyEight and Economist models. Note that the Georgia special election actually has multiple Republicans and Democrats running on the same ballot. If no candidate wins over 50% of the vote, which is considered likely, the top two finishers will advance to a one-on-one runoff election in January (Ballotpedia, 2020). For simplicity, our model simply sums up the support for Republican candidates and compares that to the sum of the support for Democratic candidates, then treats this election like the others. By summing the Republican and Democratic support, we essentially assume that partisan support will consolidate around one candidate for each party and will remain about balanced between the two parties. (This is not the ideal way to simulate this election, but the difficulty of predicting turnout and the political environment for the January runoff election made this decision seem like the best one to make.) Once again, we only included poll respones from likely voters that responded within 30 days of the election.

The response we will use is Y_k , the Democrat candidate's share of the two-party vote using the following model where the poll k (of K=fill in polls) ended t days (of T = 60 days) before the election and was conducted on state j (of J=14 states of interest).

```
\begin{split} Y_k &\sim N(\beta_{jt}, \sigma_{yj}^2) \\ \beta_{jt} &\sim N(\beta_{jt-1}, \sigma_{\beta_j}^2) \\ \text{Priors for } \sigma_{yj}^2 \colon \sigma_{yj}^2 \sim InvGamma(\nu_u, \nu_y \tau_y) \\ \nu_y &\sim Uniform(0, 100) \text{ and } \tau_y \sim Uniform(0, 100). \\ \text{Priors for } \sigma_{\beta_j}^2 \sigma_{\beta_j}^2 \sim InvGamma(\nu_\beta, \nu_\beta \tau_\beta)) \\ \nu_\beta &\sim Uniform(0, 100) \text{ and } \tau_\beta \sim Uniform(0, 100). \\ \text{Priors for } \beta_{j1} \ \beta_{j1} \sim N(\mu_j, \sigma^2) \\ \sigma^2 &\sim InvGamma(0.5, 0.5) \\ \mu_j &\sim N(h_j, 7.5^2) \\ h_j &= \text{Vote Share from Partisan Lean}_j + \text{Incumbency Advantage}_j \end{split}
```

For the U.S. Senate model we also take into account incumbency advantage. Analysis by FiveThirtyEight (Rakich, 2018) found that incumbent senators get a 2.6-point boost. For each incumbent was running a Senate race, depending on whether they were a Democrat or Republican, we either added or subtracted this incumbency adjustment with the prior mean computed from partisan lean.

For the NC-specific prior, we supplemented partisan lean and incumbency adjustment with voter turnout predicted by the model in our Interim Report. When computing the prior for NC only, 10% weight is allocated to predicted Democratic vote share from turnout and demographics, and 90% weight is allocated to partisan lean and incumbency adjustment. The turnout is weighted much less because there is considerable uncertainty surrounding turnout because of the COVID-19 pandemic. See Appendix A.2 for more specifics on how the voter turnout model was used to compute predicted Democratic vote share.

For predicting control of the U.S. Senate, things are complicated slightly by the fact that a 50/50 split of Senate seats is a possible outcome of the elections. In this case, the Vice President breaks the tie, so the party that wins the Presidential election will only need 50 Senate seats for a Senate majority, while the party that loses will need 51. Since our President model gives Democrat Joe Biden a very high chance of winning (discussed more below), we assume in the Senate model that Democrats will control the Senate in the case of a 50/50 split.

House Election Model

The response we will use is Y_k , the Democrat candidate's share of the two-party vote using the following model where the poll k (of K=fill in polls) ended t days (of T = 30 days) before the election and was conducted on district j (where j is in districts $1, \dots, 11, 13$ of North Carolina). For district 12, the vote share is coded as 100 because there is only one candidate, and she is a Democrat. Note that, due to the scarcity of poll responses for the NC House elections, we included all poll responses within 115 days of the election.

```
\begin{split} Y_k &\sim N(\beta_{jt}, \sigma_{yj}^2) \\ \beta_{jt} &\sim N(\beta_{jt-1}, \sigma_{\beta_j}^2) \\ \sigma_{yj}^2 &\sim InvGamma(\nu_u, \nu_y \tau_y) \\ \nu_y &\sim Uniform(0, 100) \text{ and } \tau_y \sim Uniform(0, 100). \\ \sigma_{\beta j}^2 &\sim InvGamma(\nu_\beta, \nu_\beta \tau_\beta)) \\ \nu_\beta &\sim Uniform(0, 100) \text{ and } \tau_\beta \sim Uniform(0, 100). \\ \beta_{j1} &\sim N(h_j, 7.5) \\ h_j &= 0.9 * \text{Vote Share from Partisan Lean}_j + 0.1 * \text{Expected Vote Share from Voter Turnout}_j \end{split}
```

According to FiveThirtyEight (Rakich, 2018),incumbent members of the House get a 2.7-point margin boost in their favor. For the U.S. House races, the incumbency adjustment was calculated by the same method as it was for the Senate races. Expected Vote Share from Voter $Turnout_j$ was calculated from the model in the Interim Report. Please see Appendix A.3 for more details.

Results

Presidential Election Model

Figure 4: Probability of Re-election for President Trump over the 30 Days Before Election Day

Figure 5: Plot of Predicted Presidential Result for States of Interest on Election Day

4 shows how Trump's probability of winning the election changes over the 60 days before the election in each state of interest. It appears that his probability of winning increased after the last presidential debate. *check for final results* From 5 we see that swing states such as Florida and Ohio are predicted to vote Trump while other swing states such as Pennsylvania and North Carolina are predicted to vote Biden. *check for final results*

Table 1: Predicted Probability of Winning and Electoral Vote Count

	Win Probability	Estimated EC Votes	2.5% Quantile EC Votes	97.5% Quantile EC Votes
Trump	0.23	238	168	325
Biden	0.77	300	213	370

The probability that Trump wins re-election is 0.23. The predicted electoral colleges votes for Trump is 238 with a 95% confidence interval of (168, 325).

Senate Election Model

Figure 7: Plot of Predicted Senate Results for States of Interest on Election Day

For the NC Senate race (Tillis vs. Cunningham), the predicted vote share for Cunningham is 51.78% with a 95% confidence interval of (48.2, 54.99).

House Election Model

Table 3: Predicted Republican Vote Share in NC's 13 Districts

	Estimate	2.5% Quantile	97.5% Quantile
District 1	41.69	36.32	47.02
District 2	40.75	35.29	46.17
District 3	63.61	58.32	68.56
District 4	33.29	27.84	38.48
District 5	69.54	64.20	74.93
District 6	41.19	35.87	46.64
District 7	61.81	56.40	67.43
District 8	55.74	50.67	61.01
District 9	56.79	51.40	61.90
District 10	70.68	65.16	75.96
District 11	56.12	51.86	60.59
District 12	0.00	0.00	0.00
District 13	69.60	64.12	75.01

^{##} OGR data source with driver: ESRI Shapefile

^{##} Source: "/Users/cathylee/Documents/Course Folders/Fall 2020/STA 440/Case 3/sta440casestudy3/C-Goo

^{##} with 13 features

^{##} It has 2 fields

^{##} Integer64 fields read as strings: POPULATION

confidence intervals for predicted vote share are also all above 50). From 8 we can see that the vote share for districts 1, 2, 4, and 6 lean toward Democrat (note that the only candidate on the ballot for district 12 is a Democrat).

Model Validation and Sensitivity Analysis

For model validation, we trained our 2020 presidential election model on 2016 polling data and adjusted fundamentals accordingly. For instance, instead of predicting on 2020 economic indicators, we removed the year 2016 from the fundamentals training data and predicted on 2016 economic indicators. This 2016 model produced a 7% probability that Trump would win the presidency, which is within the range of predictions by respected models available in 2016 (The Economist, 2016). Polls were skewed in 2016, so it is expected that the model would not be entirely accurate.

For sensitivity analysis, we adjusted the relative weights placed on the components of prior for the presidential election model. Instead of 10% fundamentals and 90% partisan lean, we ran a model with 50% fundamentals and 50% partisan lean multiple times and the predictions for Trump's re-election probability was generally higher (approximately 0.25) than that from our main model, which makes sense since economic fundamental model contains stock growth and is slightly favored toward Trump. However, the sensitivity analysis models still point to an unlikely re-election.

We also adjusted the prior parameters for sensitivity analysis. In both the senate and house model, changing the priors from $\nu_y, \tau_y, \nu_\beta, \tau_\beta \sim Uniform(0, 100)$ to $\nu_y, \nu_\beta \sim Uniform(0, 10), \tau_y, \tau_\beta \sim Uniform(0, 1000)$ to increase the variance had little change on the estimates. Changing the relevant uniform priors in the presidential model resulted in a slightly higher probability of Trump's re-election (the probability was about 0.23), but again, this still indicates Using a stronger prior for the variance for the estimate on the day of election ($\sigma^2 \sim InvGamma(10, 0.5)$) for the senate and presidential models resulted in comparable performance to our main senate model while the presidential model had higher win probabilities and slightly narrower credible intervals for Trump compared to our main model (the win probability was about 0.34). Similarly, reducing the variance for the house model ($\beta_{ji} \sim N(h_j, 1)$) also resulted in comparable performance, though the quantiles were more narrow, as expected (Linzer, 2013). To account for shock events, we could modify the priors to increase the variance associated with Y_k to reflect the increased uncertainty due to the shock event in each relevant model.

Diagnostics

```
## No id variables; using all as measure variables
```

As shown in ref{presresid}, the residuals for the estimates of the probability that Biden wins the election are distributed around 0 for all of the states of interest.

```
## No id variables; using all as measure variables
```

No id variables; using all as measure variables

Discussion and Limitations

One place where we made decisions regarding predictive ability of variables was in presidential election model. We followed Alan Abramowitz's "Time for Change" model where annualized second quarter GDP growth rates and incumbent party's June approval ratings were incorporated as the fundamentals data (Abramowitz 2008). However, given the economic impact of COVID-19, this year's annualized second quarter GDP growth rate is abnormally low (-34%) (), which subsequently resulted in a very low predicted probability of Trump's re-election (approximately 5%). Therefore we felt annualized second quarter GDP growth rate is not an appropriate predictor and substituted it with second quarter real income growth from one year ago and stock performance three month prior to the election date. As seen in the Results section, the updated predicted probability of Trump winning the election is more sensible.

Figure 9: Presidential Model Residual Plot

NC

States

ΝV

ОΉ

PΑ

ΤX

Ŵ١

ΝH

MN

MI

ΙÁ

GΑ

FL

ΑZ

Figure 10: Senate Model Residual Plot

Boxplot of House Model Residuals the Day Before the Election

Figure 11: House Model Residual Plot

For the NC House election model and NC Senate election model we incorporated voter turnout prediction based on registered voters' demographics from the Interim Report. We believe that even if we had abundant polling data, there's a difference between how people respond to a poll and whether or not they actually turn out to vote. Therefore, we included turnout information from our interim model.

A limitation of our model is that we did not explicitly weight any polls more strongly than others. Poll-based models often weight polls based on recency of the poll, sample size, and pollster quality (Silver, 2014). Our model actually does take into account poll recency, since our prior specification assumes that polls closer to election day have less variance (noise) around the true level of candidate support. However, we do not weight based on sample size or pollster quality. While it would have been possible to do this, it would have required making many arbitrary decisions. For example, what is a "good" sample size, and how heavily should sample size be weighted? How do we determine pollster quality, especially if we don't just want to blindly use FiveThirtyEight's pollster ratings? We decided to avoid these issues, especially since it has been observed that such adjustments rarely have a large impact on models (Silver, 2014).

There are inherent limitations to modeling elections based on polls. In some cases, as with the U.S. House races in North Carolina, there may be few or no polls for a given district. Even when polling data is plentiful, we are essentially assuming that the polls are reasonably accurate measures of candidate support. It has been well-documented that systematic polling errors during the 2016 election cycle underestimated the support of then-candidate Trump. While many pollsters have adjusted their sample weighting methods (for example, to adjust for education level), it is not impossible that we could witness a 2016-level polling error again (Skelley, 2020). A recent election prediction study shows that state polls have much higher margins of error than expected (Shirani-Mehr et al., 2018). It has also been noted that registered Democrats have been overrepresented in recent polling samples compared to their proportion of the population overall (Cohn, 2020). In addition, we acknowledge that with the COVID-19 pandemic, polling has moved from in-person interviews to phone calls, live surveys and internet questions, which could lead to unknown biases with its lower response rates (Gelman, 2020). In addition, COVID-19 posted significant uncertainty to election outcomes. For example, rejected absentee ballots due to mailing issues were not as significant in previous elections. But in 2020, so much more voters are mailing their votes, and an unknown number of them will be rejected, potentially changing voter turnout (Rakich, 2020). We could have also used early voting data, but we excluded them because abundant literature has proven early voting data to have strong partisan bias (McDonald, 2020). Another factor that could significantly affect

election results is potential shock events - terrorist attacks, natural disasters, power outages. Although literature proves that sometimes elections could be vulnerable to those events, because our predictions are so close to the actual day of election, we did not account for specific shock events in our analysis (Morley, 1905). However, we did sensitivity analysis by increasing variance to account for unpredictable events.

One feature that we did not include is correlation between simulations of the Presidential, House, and Senate elections. For instance, if Joe Biden wins the Presidential election by a wide margin, we would also expect Democrats to do better in the House and Senate elections comapred to if Biden did not win (Desilver, 2020). This is especially true by state; if Biden wins North Carolina by a wide margin, this would likely help Democrat Cal Cunningham win the NC Senate race. Additionally, since the Vice President can determine Senate control in the case of a 50/50 split in seats, having model correlations could help account for this dependence between Senate control and Presidential results. Instead, all of our models simply run independently.

We do account for state-by-state correlations in our President model, but we do not for the Senate model or the House model. Although there is likely still some correlation in these cases, such races are generally a bit more localized (Gillespie et al. 2020) and incumbency advantages can contradict national trends. As a result, we treated these races as being uncorrelated. Possible ideas for addressing this in future studies could be to try to compute our own covariances between districts based on voter demographics, or for the Senate to try predicting covariance between states that is similar to that in the Presidential model but "weaker".

Furthermore, for making our prior of Democrat vote share in the House and Senate model (for NC), we assume that registered Democrats and Republicans will vote for their party's candidate, and then we split unaffiliated voters evenly between the two parties. FiveThirtyEight's models such as the 2020 President and Senate models allocate undecided voters in polls 50/50 as well, so our assumption is in line with standard approaches. However, other reasonable approaches could have been to allocate unaffiliated voters proportionally to partisan support within the state of interest, or even to calculate the split based on Trump's overperformance of polls in 2016 based on winning over undecided voters (Golshan, 2016). Such approaches have been explored in the past by FiveThirtyEight (Silver, 2008) but are not the norm.

Conclusion

In conclusion, the probability that Trump wins re-election is 0.23. The predicted electoral colleges votes for Trump is 238. We predict that the US Senate is unlikely to remain in Republican control (in fact, we predict there is only a 0.1 chance that Republicans retain control) For the House elections in NC's 13 districts, it appears that the Republican candidate will win in districts 3, 5, 7, 8, 9, 10, 11, and 13, and that the Democratic candidate will win districts 1, 2, 4, and 6. For the NC Senate race (Tillis vs. Cunningham), the predicted vote share for Cunningham is 51.78%, and we predict that he will win by a small margin. *check to see if nothing changes*

Key parts of our model include: the incorporation of a state covariance matrix and use of economic fundamentals in our presidential model, the incumbency adjustment in our Senate model, and the inclusion of voter turnout information in our NC House model. As mentioned before, there are several limitations, but overall, we believe our analysis to be thorough and robust.

Appendix A

A.1 Presidential Election Model

Presidential Model Purpose and Structure

The purpose of this model is to predict the probability that president Trump will win the election, as well as to predict the electoral college vote. The states chosen are Arizona, Florida, Georgia, Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania, Texas, and Wisconsin. These thirteen states are deemed to be competitive in the 2020 presidential race by political analysts.

The response we will use is Y_k , Biden's share of the two-party vote using the following model where the poll k (of K=3361 [insert final number] polls) ended t days (of T=30 days) before the election and was conducted on state j (of J=13 states of interest). We choose to use polling data from 30 days before the election (as opposed to over 30 days), as this aligns with Andrew Gelman's observation that polling data becomes more predictive as the day of poll becomes closer to election day (The Economist).

```
Y_k \sim N(\theta_{jt}, \sigma_{yj}^2)
\theta_{\cdots t} \sim MVN(\theta_{\cdots t-1}, \Sigma)
\Sigma \sim Wishart(S, J+1) \text{ where } S \text{ is the state covariance matrix (obtained from Andrew Gelman's model) and } J
is the number of states in the model.
Priors \text{ for } \sigma_{yj}^2 \colon \sigma_{yj}^2 \sim InvGamma(\nu_u, \nu_y \tau_y)
\nu_y \sim Uniform(0, 100) \text{ and } \tau_y \sim Uniform(0, 100).
Priors \text{ for } \theta_{j1} \colon \theta_{j1} \sim N(\mu_j, \sigma^2)
\sigma^2 \sim InvGamma(0.5, 0.5)
\mu_j \sim N(h_j, 7.5^2)
h_j = 0.1 * \text{Presidential Fundamentals}_{i} = 100 - \text{Incumbent Party Vote Share}_{i}
Incumbent \text{ Party Vote Share}_{i} = \gamma_0 + \gamma_1 \text{ June Approval Rating for Incumbent Party}_{i} + \gamma_2 \text{ Three Month Stock Growth}_{i} + \gamma_3 \text{ 2nd Quarter Real Income Growth}_{i} + \epsilon_i
\epsilon_i \sim N(0, \phi^2)
```

A hierarchical model was used, where Biden's share of the two-party vote for poll k on any given day t for state j is modelled as a normal distribution with mean θ_{jt} and variance σ_{yj}^2 . A random walk was used to calculate θ_{jt} for each day t before the election (up until 30 days before the election) from θ_{jt-1} and Σ , a JxJ state covariance matrix. The mean h_j of the normal prior on μ_j (which is the mean of the normal prior on θ_{j1}) was calculated by multiplying the economic fundamentals Presidental Fundamentals $_i$ for i=2020 by 0.1 and state partisan lean by 0.9, then summing those two values.

We predicted Incumbent Party Vote $\operatorname{Share}_{2020}$ (i.e. Republican Party's national vote share in the 2020 election) from a linear regression model that had historical election year's June approval rating of the incumbent party, three month stock growth, and 2nd quarter real income growth as predictors. We borrowed this idea from the "Time for Change" model which assumes that presidential election is referendum on the performance of incumbent president (Alan Abramowitz, 2008). Then we used 100 minus Incumbent Party Vote $\operatorname{Share}_{2020}$ to obtain the predicted vote share for Democrats (Presidential Fundamentals $_{2020}$).

Raw Model Output

```
##
                                                2.5%
                                                          97.5%
                      mean
                                   sd
## Sigma[1,1]
                 0.5926277 0.4169338 0.1401836021
                                                      1.7274851
## Sigma[2,1]
                 0.4251874 0.3387688 -0.0002283602
                                                      1.2701249
## Sigma[3,1]
                 0.2440198 0.3449571 -0.2321267767
                                                      1.1510161
## Sigma[4,1]
                 0.3132443 0.2933798 -0.0848882218
                                                      1.0270067
## Sigma[5,1]
                 0.3266411 0.2721255 -0.0305401182
                                                     1.0137364
```

```
1.0713749
  Sigma[6,1]
                 0.3040325 0.2888737 -0.0476364569
   Sigma[7,1]
##
                 0.2275937 0.2554548 -0.1548570273
                                                      0.8166067
  Sigma[8,1]
##
                 0.2820362 0.3265992 -0.1752488754
                                                      1.0902519
  Sigma[9,1]
##
                 0.4943119 0.4183646
                                       0.0524378585
                                                      1.5207589
##
  Sigma[10,1]
                 0.3178951 0.2708774 -0.0233583632
                                                      1.0321280
  Sigma[11,1]
                 0.3589893 0.2818443 -0.0119504340
                                                      1.1193115
  Sigma[12,1]
                 0.4009916 0.3857631 -0.0477329538
                                                      1.3872376
  Sigma[13,1]
                 0.3061326 0.2816699 -0.0846494342
                                                      1.0119030
  Sigma[1,2]
                 0.4251874 0.3387688 -0.0002283602
                                                      1.2701249
## Sigma[2,2]
                 0.6284036 0.4727188
                                                      1.8809586
                                       0.1453472902
##
  Sigma[3,2]
                 0.1956539 0.3666133 -0.3847343035
                                                      1.1170539
  Sigma [4,2]
                 0.3845201 0.3332699
                                       0.0008520579
                                                      1.2503345
                 0.4174954 0.3186108
  Sigma[5,2]
                                       0.0545438564
                                                      1.2107249
  Sigma[6,2]
                 0.3220976 0.2888364 -0.0473801960
                                                      1.0693034
## Sigma[7,2]
                 0.2918273 0.2863269 -0.0675107533
                                                      1.0166839
  Sigma[8,2]
##
                 0.3521511 0.3605598 -0.1198860302
                                                      1.2946100
  Sigma[9,2]
                 0.4418112 0.3873470 -0.0269089642
                                                      1.3853154
  Sigma[10,2]
                 0.3762308 0.3015611
                                       0.0268614225
                                                      1.1961907
  Sigma[11,2]
                 0.4609680 0.3381195
                                       0.0744841422
                                                      1.3865660
  Sigma[12,2]
                 0.3059777 0.3749321 -0.2145964918
                                                      1.2486763
  Sigma[13,2]
                 0.3581039 0.2993956 -0.0231285944
                                                      1.1027838
  Sigma[1,3]
                 0.2440198 0.3449571 -0.2321267767
                                                      1.1510161
  Sigma[2,3]
                 0.1956539 0.3666133 -0.3847343035
                                                      1.1170539
  Sigma[3,3]
##
                 0.5615323 0.5228857
                                       0.1159923302
                                                      2.0302963
  Sigma[4,3]
                 0.1460615 0.3168338 -0.4461193730
                                                      0.8921857
##
  Sigma[5,3]
                 0.2050582 0.3072212 -0.2677881563
                                                      0.9652456
  Sigma[6,3]
                 0.1599571 0.2863692 -0.3170963647
##
                                                      0.9039876
                                                      1.1112296
##
  Sigma[7,3]
                 0.2895306 0.2892311 -0.0669233363
  Sigma[8,3]
                 0.1030601 0.3600340 -0.5429747553
                                                      0.9347838
  Sigma[9,3]
                 0.2033842 0.4127043 -0.4100539557
                                                      1.1625597
                                                      1.0570924
  Sigma[10,3]
                 0.2314251 0.3251117 -0.2175799164
##
  Sigma[11,3]
                 0.1799239 0.3059580 -0.3750970240
                                                      0.9211500
  Sigma[12,3]
                 0.2051472 0.3715473 -0.4130821536
                                                      1.1013664
  Sigma[13,3]
##
                 0.1598724 0.2796824 -0.3101837479
                                                      0.8603737
  Sigma[1,4]
##
                 0.3132443 0.2933798 -0.0848882218
                                                      1.0270067
  Sigma[2,4]
                 0.3845201 0.3332699
                                       0.0008520579
                                                      1.2503345
  Sigma[3,4]
                 0.1460615 0.3168338 -0.4461193730
                                                      0.8921857
  Sigma[4,4]
                 0.5531209 0.4611783
                                       0.1189037976
                                                      1.7968496
##
  Sigma[5,4]
                 0.4247840 0.3346626
                                       0.0701215819
                                                      1.2988731
                                       0.0470746496
  Sigma[6,4]
                 0.3732796 0.3059434
                                                      1.1820607
##
  Sigma[7,4]
                 0.3160422 0.2931324 -0.0312562443
                                                      1.0494564
  Sigma[8,4]
##
                 0.3651697 0.3406580 -0.0328973357
                                                      1.2633326
  Sigma[9,4]
                 0.3033084 0.3504380 -0.1487407521
                                                      1.1789423
  Sigma[10,4]
                 0.3869015 0.3047337
                                       0.0464524121
                                                      1.1546177
## Sigma[11,4]
                 0.4262938 0.3172997
                                       0.0647142114
                                                      1.2820444
  Sigma[12,4]
                 0.2657040 0.4000015 -0.2300013413
##
                                                      1.3090124
  Sigma[13,4]
                 0.4067303 0.3554714
                                       0.0488870334
                                                      1.3077756
  Sigma[1,5]
##
                 0.3266411 0.2721255 -0.0305401182
                                                      1.0137364
##
  Sigma[2,5]
                 0.4174954 0.3186108
                                       0.0545438564
                                                      1.2107249
  Sigma[3,5]
                 0.2050582 0.3072212 -0.2677881563
                                                      0.9652456
  Sigma[4,5]
                 0.4247840 0.3346626
                                       0.0701215819
                                                      1.2988731
## Sigma[5,5]
                 0.4813892 0.3280486
                                       0.1284036536
                                                      1.3577086
```

```
Sigma[6,5]
                 0.3538441 0.2730992
                                       0.0439592847
                                                      1.0772349
   Sigma[7,5]
##
                 0.3185697 0.2591231
                                       0.0047367015
                                                      0.9961968
  Sigma[8,5]
##
                 0.3480787 0.3005127 -0.0294529672
                                                      1.0997538
   Sigma[9,5]
                 0.3267678 0.3076279
                                      -0.0640653402
##
                                                      1.0958794
##
  Sigma[10,5]
                 0.3919361 0.2828736
                                       0.0721733143
                                                      1.1451009
   Sigma[11,5]
                 0.4325306 0.2909003
                                       0.0921156048
                                                      1.1724666
  Sigma[12,5]
                 0.2527650 0.3124424 -0.1687341159
                                                      1.0423785
  Sigma[13,5]
                 0.3926725 0.2899983
                                       0.0643848731
                                                      1.1564069
  Sigma[1,6]
                 0.3040325 0.2888737 -0.0476364569
                                                      1.0713749
##
  Sigma[2,6]
                 0.3220976 0.2888364 -0.0473801960
                                                      1.0693034
##
  Sigma[3,6]
                 0.1599571 0.2863692 -0.3170963647
                                                      0.9039876
  Sigma[4,6]
                 0.3732796 0.3059434
                                                      1.1820607
                                       0.0470746496
  Sigma[5,6]
                 0.3538441 0.2730992
                                       0.0439592847
                                                      1.0772349
  Sigma[6,6]
                 0.4479472 0.3320102
                                       0.1143899911
                                                      1.3378654
  Sigma[7,6]
                 0.2611669 0.2375416 -0.0420831327
                                                      0.8503527
  Sigma[8,6]
##
                 0.3725363 0.3305535
                                       0.0277772075
                                                      1.2645876
  Sigma[9,6]
                 0.2486553 0.2823299 -0.1569249338
                                                      0.9551400
##
   Sigma[10,6]
                 0.3560221 0.2731348
                                       0.0603535392
                                                      1.1225273
  Sigma[11,6]
                 0.3847001 0.2780287
                                       0.0616680229
                                                      1.1358873
  Sigma[12,6]
                 0.2426971 0.3381054 -0.1685774626
                                                      1.1419630
  Sigma[13,6]
                 0.3844812 0.2936880
                                       0.0740909417
                                                      1.1803948
  Sigma[1,7]
                 0.2275937 0.2554548 -0.1548570273
                                                      0.8166067
  Sigma[2,7]
                 0.2918273 0.2863269 -0.0675107533
                                                      1.0166839
  Sigma[3,7]
##
                 0.2895306 0.2892311 -0.0669233363
                                                      1.1112296
  Sigma[4,7]
                 0.3160422 0.2931324 -0.0312562443
                                                      1.0494564
##
  Sigma[5,7]
                 0.3185697 0.2591231
                                       0.0047367015
                                                      0.9961968
  Sigma[6,7]
                 0.2611669 0.2375416 -0.0420831327
##
                                                      0.8503527
##
  Sigma[7,7]
                 0.3996740 0.2825407
                                       0.1005733042
                                                      1.1042876
  Sigma[8,7]
                 0.2331518 0.2688362 -0.1533396025
                                                      0.8874913
  Sigma[9,7]
                 0.2172113 0.2772271 -0.1574032481
                                                      0.8784702
  Sigma[10,7]
                 0.3106344 0.2510559
                                       0.0107480615
                                                      0.9606069
##
  Sigma[11,7]
                 0.3031140 0.2592399 -0.0332402903
                                                      0.9789891
  Sigma[12,7]
                 0.2193556 0.2997994 -0.1699836537
                                                      0.9870879
  Sigma[13,7]
##
                 0.2916892 0.2554411 -0.0194041517
                                                      0.9498543
  Sigma[1,8]
##
                 0.2820362 0.3265992 -0.1752488754
                                                      1.0902519
  Sigma[2,8]
                 0.3521511 0.3605598 -0.1198860302
                                                      1.2946100
   Sigma[3,8]
                 0.1030601 0.3600340 -0.5429747553
                                                      0.9347838
  Sigma[4,8]
                 0.3651697 0.3406580 -0.0328973357
                                                      1.2633326
##
  Sigma[5,8]
                 0.3480787 0.3005127 -0.0294529672
                                                      1.0997538
                 0.3725363 0.3305535
  Sigma[6,8]
                                       0.0277772075
                                                      1.2645876
##
  Sigma[7,8]
                 0.2331518 0.2688362 -0.1533396025
                                                      0.8874913
  Sigma[8,8]
##
                 0.5481863 0.4555987
                                       0.1150046040
                                                      1.7984107
  Sigma[9,8]
                 0.2322145 0.3299794 -0.2663684193
                                                      1.0547727
  Sigma[10,8]
                 0.3236458 0.3054760 -0.0998811413
                                                      1.1261311
## Sigma[11,8]
                 0.3895159 0.3216926 -0.0221792702
                                                      1.2321954
  Sigma[12,8]
                 0.2370998 0.3864578 -0.2651359762
                                                      1.1599556
##
  Sigma[13,8]
                 0.3875809 0.3254926
                                       0.0276139110
                                                      1.2341771
   Sigma[1,9]
##
                 0.4943119 0.4183646
                                       0.0524378585
                                                      1.5207589
##
  Sigma[2,9]
                 0.4418112 0.3873470 -0.0269089642
                                                      1.3853154
  Sigma[3,9]
                 0.2033842 0.4127043 -0.4100539557
                                                      1.1625597
  Sigma[4,9]
                                                      1.1789423
                 0.3033084 0.3504380 -0.1487407521
## Sigma[5,9]
                 0.3267678 0.3076279 -0.0640653402
                                                      1.0958794
```

```
0.9551400
  Sigma[6,9]
                 0.2486553 0.2823299 -0.1569249338
   Sigma[7,9]
##
                 0.2172113 0.2772271 -0.1574032481
                                                      0.8784702
  Sigma[8,9]
                 0.2322145 0.3299794 -0.2663684193
##
                                                      1.0547727
   Sigma[9,9]
##
                 0.6539936 0.5863633
                                       0.1367808333
                                                      2.1184583
##
  Sigma[10,9]
                 0.2887912 0.2929506 -0.0820150392
                                                      1.0193222
   Sigma[11,9]
                 0.3451387 0.3059127 -0.0598508639
                                                      1.1328531
  Sigma[12,9]
                 0.4071460 0.4155616 -0.0576674367
                                                      1.4614689
  Sigma[13,9]
                 0.2788308 0.3053013 -0.1420735774
                                                      1.0041301
  Sigma[1,10]
                 0.3178951 0.2708774 -0.0233583632
                                                      1.0321280
  Sigma[2,10]
                 0.3762308 0.3015611
                                       0.0268614225
                                                      1.1961907
  Sigma[3,10]
                 0.2314251 0.3251117 -0.2175799164
                                                      1.0570924
  Sigma[4,10]
                 0.3869015 0.3047337
                                       0.0464524121
                                                      1.1546177
  Sigma[5,10]
                 0.3919361 0.2828736
                                       0.0721733143
                                                      1.1451009
  Sigma[6,10]
                 0.3560221 0.2731348
                                       0.0603535392
                                                      1.1225273
## Sigma[7,10]
                 0.3106344 0.2510559
                                       0.0107480615
                                                      0.9606069
  Sigma[8,10]
##
                 0.3236458 0.3054760
                                      -0.0998811413
                                                      1.1261311
  Sigma[9,10]
                 0.2887912 0.2929506 -0.0820150392
                                                      1.0193222
  Sigma[10,10]
                 0.4575235 0.3234459
                                       0.1171387406
                                                      1.3386603
  Sigma[11,10]
                 0.4057823 0.2775314
                                       0.0719267095
                                                      1.1372539
  Sigma[12,10]
                 0.2210826 0.3000177 -0.1870721665
                                                      0.9442876
  Sigma[13,10]
                 0.3766181 0.2757837
                                       0.0671847989
                                                      1.0786055
  Sigma[1,11]
                 0.3589893 0.2818443 -0.0119504340
                                                      1.1193115
  Sigma[2,11]
                 0.4609680 0.3381195
                                       0.0744841422
                                                      1.3865660
  Sigma[3,11]
##
                 0.1799239 0.3059580 -0.3750970240
                                                      0.9211500
  Sigma[4,11]
                 0.4262938 0.3172997
                                       0.0647142114
                                                      1.2820444
  Sigma[5,11]
                 0.4325306 0.2909003
                                       0.0921156048
                                                      1.1724666
  Sigma[6,11]
##
                 0.3847001 0.2780287
                                       0.0616680229
                                                      1.1358873
  Sigma[7,11]
                 0.3031140 0.2592399 -0.0332402903
                                                      0.9789891
  Sigma[8,11]
                 0.3895159 0.3216926 -0.0221792702
                                                      1.2321954
  Sigma[9,11]
                 0.3451387 0.3059127 -0.0598508639
                                                      1.1328531
  Sigma[10,11]
                 0.4057823 0.2775314
                                       0.0719267095
                                                      1.1372539
  Sigma[11,11]
                 0.5235450 0.3399323
                                       0.1358923790
                                                      1.4453185
  Sigma[12,11]
                 0.2625726 0.3243554 -0.1881208387
                                                      1.0742784
  Sigma[13,11]
                 0.4142582 0.2871448
                                       0.0728608906
                                                      1.1408192
  Sigma[1,12]
##
                 0.4009916 0.3857631 -0.0477329538
                                                      1.3872376
  Sigma[2,12]
                 0.3059777 0.3749321 -0.2145964918
                                                      1.2486763
  Sigma[3,12]
                 0.2051472 0.3715473 -0.4130821536
                                                      1.1013664
  Sigma[4,12]
                 0.2657040 0.4000015 -0.2300013413
                                                      1.3090124
##
  Sigma[5,12]
                 0.2527650 0.3124424 -0.1687341159
                                                      1.0423785
  Sigma[6,12]
                 0.2426971 0.3381054 -0.1685774626
                                                      1.1419630
##
  Sigma[7,12]
                 0.2193556 0.2997994 -0.1699836537
                                                      0.9870879
  Sigma[8,12]
                 0.2370998 0.3864578 -0.2651359762
##
                                                      1.1599556
  Sigma[9,12]
                 0.4071460 0.4155616 -0.0576674367
                                                      1.4614689
  Sigma[10,12]
                 0.2210826 0.3000177 -0.1870721665
                                                      0.9442876
## Sigma[11,12]
                 0.2625726 0.3243554 -0.1881208387
                                                      1.0742784
  Sigma[12,12]
##
                 0.6280694 0.5767020
                                       0.1243429154
                                                      2.2033130
  Sigma[13,12]
                 0.2544873 0.3577528 -0.1868714233
                                                      1.1438745
   Sigma[1,13]
                 0.3061326 0.2816699 -0.0846494342
                                                      1.0119030
##
  Sigma[2,13]
                 0.3581039 0.2993956 -0.0231285944
                                                      1.1027838
  Sigma[3,13]
                 0.1598724 0.2796824 -0.3101837479
                                                      0.8603737
  Sigma[4,13]
                 0.4067303 0.3554714
                                       0.0488870334
                                                      1.3077756
## Sigma[5,13]
                 0.3926725 0.2899983
                                       0.0643848731
                                                      1.1564069
```

```
## Sigma[6,13]
                 0.3844812 0.2936880
                                       0.0740909417
                                                     1.1803948
  Sigma[7,13]
                 0.2916892 0.2554411 -0.0194041517
                                                     0.9498543
  Sigma[8,13]
                 0.3875809 0.3254926
                                       0.0276139110
                                                     1.2341771
  Sigma[9,13]
                 0.2788308 0.3053013 -0.1420735774
                                                     1.0041301
##
##
  Sigma[10,13]
                 0.3766181 0.2757837
                                       0.0671847989
                                                     1.0786055
  Sigma[11,13]
                 0.4142582 0.2871448
                                       0.0728608906
                                                     1.1408192
## Sigma[12,13]
                 0.2544873 0.3577528 -0.1868714233
                                                     1.1438745
  Sigma[13,13]
                 0.4732744 0.3452920
                                       0.1123685507
                                                     1.3645763
  sigma2_y[1]
                 2.0631807 0.4200509
                                       1.3870137066
                                                     2.9433971
## sigma2_y[2]
                 1.9571972 0.3755882
                                       1.3275332882
                                                     2.8096934
  sigma2_y[3]
##
                 2.1106819 0.4542211
                                       1.4196045776
                                                     3.2142118
  sigma2_y[4]
                 2.0630892 0.4452591
                                                     3.1091737
##
                                       1.3583745536
  sigma2_y[5]
                 2.2417661 0.4562729
                                       1.5720275705
                                                     3.2751637
## sigma2_y[6]
                 1.9866924 0.4300040
                                       1.2666244420
                                                     2.9180791
  sigma2_y[7]
                 1.8909327 0.3703109
                                       1.2359783462
                                                     2.6689607
  sigma2_y[8]
##
                 1.9989117 0.4777182
                                       1.2531722490
                                                     2.9656064
  sigma2_y[9]
                 2.0168268 0.4603962
                                       1.2751520466
                                                     3.0331654
##
  sigma2_y[10]
                 1.9445118 0.4149592
                                       1.2135413636
                                                     2.8749040
  sigma2_y[11]
                 1.9940210 0.3782283
                                       1.3578814364
##
                                                     2.8688157
  sigma2_y[12]
                 1.9642988 0.4210706
                                       1.2395456762
                                                     2.8454045
## sigma2_y[13]
                 1.9782000 0.3692536
                                       1.3651748113
                                                     2.8174252
  theta[1,1]
                48.0194135 2.0836772 43.6142452243 51.9545187
##
  theta[2,1]
                48.7149570 2.1791798 44.1220274640 53.1787715
## theta[3,1]
                48.0160544 2.1220506 43.5233782490 51.8645864
## theta[4,1]
                47.8690570 2.2645322 42.7809010828 51.4733646
##
  theta[5,1]
                51.4117743 1.7444836 48.3715016168 54.8335647
                51.4797346 1.7345245 47.7037921433 54.2858014
## theta[6,1]
## theta[7,1]
                49.3298396 1.7453197 46.0742712849 52.7612071
## theta[8,1]
                53.1836658 2.8757671 46.5072760843 58.1831573
  theta[9,1]
                50.1423759 2.6569660 44.6985116032 55.1245100
## theta[10,1]
                46.0793044 1.7337032 42.8994507747 49.2815498
## theta[11,1]
                50.1685276 1.6677493 46.8360317555 53.3025424
  theta[12,1]
                47.1694021 2.5359719 41.2455675411 51.5600100
##
  theta[13,1]
                51.0595498 1.8395423 47.2871151522 54.2248898
##
## theta[1,2]
                48.2005858 2.0420682 43.8034771616 51.9797879
  theta[2,2]
                48.8684490 2.1569324 44.3032530345 53.0808257
##
                48.1479844 2.0889905 43.9121391212 51.9027261
  theta[3,2]
  theta[4,2]
                48.0275491 2.2322704 42.9369767614 51.6170428
##
  theta[5,2]
                51.5683780 1.7453916 48.3746868359 54.9701871
## theta[6,2]
                51.6227860 1.7148365 47.7898120819 54.3690313
##
  theta[7,2]
                49.4577184 1.7248713 46.2599464251 52.7922985
## theta[8,2]
                53.3276536 2.8151959 46.7906349607 58.2701408
  theta[9,2]
                50.3317166 2.5936220 44.9718371297 54.9993546
##
  theta[10,2]
                46.2298405 1.7300599 42.9683348256 49.5578765
## theta[11,2]
                50.3255967 1.6732408 46.9658550466 53.3246325
## theta[12,2]
                47.3206680 2.4867933 41.3438755931 51.6125176
  theta[13,2]
                51.2237174 1.8131468 47.3180633686 54.2517714
  theta[1,3]
                48.3867365 1.9873948 44.1203522786 52.0785041
##
## theta[2,3]
                49.0337120 2.1062678 44.5593745095 53.0271219
##
  theta[3,3]
                48.2622922 2.0435096 43.8308527437 51.9508104
##
  theta[4,3]
                48.2152660 2.2012105 43.3628798760 51.8157023
## theta[5,3]
                51.7534159 1.7055923 48.5233937737 54.9733359
```

```
## theta[6,3]
                51.7905340 1.6992881 48.1352722040 54.6024736
##
  theta[7,3]
                49.6023035 1.6784783 46.4397515349 52.9722285
## theta[8,3]
                53.4769845 2.7739353 47.1295992703 58.4456949
  theta[9,3]
                50.5230305 2.5429008 45.0546645921 55.0281471
##
##
  theta[10,3]
                46.4011767 1.7129774 43.1411531336 49.7113688
                50.5183460 1.6449181 47.0833111543 53.4588188
  theta[11,3]
  theta[12,3]
                47.4767831 2.4206002 41.5497196225 51.6475773
##
## theta[13,3]
                51.4014135 1.7674557 47.5695651031 54.4440405
## theta[1,4]
                48.5707330 1.9353794 44.4168449993 52.0322179
## theta[2,4]
                49.1961993 2.0074119 44.8131742379 52.9146955
## theta[3,4]
                48.3983131 2.0027347 44.2165300133 52.0064287
                48.3861388 2.1555568 43.5736171324 51.9106645
## theta[4,4]
## theta[5,4]
                51.9200685 1.6694016 48.6002339856 55.1127822
## theta[6,4]
                51.9508465 1.6713573 48.3284662104 54.7783641
## theta[7,4]
                49.7365093 1.6491807 46.4720644545 52.9396431
## theta[8,4]
                53.6427043 2.7431981 47.4308555796 58.6304251
                50.7035760 2.4612564 45.3328080620 55.1008541
## theta[9,4]
## theta[10,4]
                46.5663475 1.6749146 43.3351439244 49.8136818
##
                50.6891647 1.6064510 47.2988606305 53.5170652
  theta[11,4]
  theta[12,4]
                47.6330833 2.3158721 42.1023612914 51.6338072
##
                51.5811698 1.7089813 47.9988245538 54.5081859
## theta[13,4]
  theta[1,5]
                48.7647074 1.8546090 44.6546625466 52.1391024
## theta[2,5]
                49.3747381 1.9185482 45.2611049983 52.8848838
## theta[3,5]
                48.5366756 1.9559349 44.3183639250 52.0966332
                48.5712361 2.0871839 44.0876541414 52.1052023
## theta[4,5]
## theta[5,5]
                52.0951286 1.6147949 48.9554744031 55.1769550
                52.1273479 1.6280528 48.5685423901 54.9758469
## theta[6,5]
## theta[7,5]
                49.8756669 1.6023593 46.6957057742 52.9290806
                53.8070479 2.6850806 47.7086681293 58.5789683
## theta[8,5]
## theta[9,5]
                50.9007698 2.3514359 45.8796805805 55.1071589
## theta[10,5]
                46.7294354 1.6437330 43.5016720028 49.9597897
                50.8804829 1.5573108 47.4925741384 53.6961799
## theta[11,5]
## theta[12,5]
                47.8121703 2.2182067 42.5900871060 51.5624664
                51.7603999 1.6556004 48.2127187839 54.6172484
## theta[13,5]
                48.9726927 1.7766647 44.9986255502 52.1191735
## theta[1,6]
##
  theta[2,6]
                49.5631812 1.8239610 45.6019822505 52.7613317
  theta[3,6]
                48.6740369 1.8415674 44.7198556631 51.9331442
                48.7540986 2.0006101 44.4250094773 52.1654704
## theta[4,6]
## theta[5,6]
                52.2623727 1.5285166 49.2250276275 55.1395534
                52.3059776 1.5728479 48.8130941969 55.1088310
## theta[6,6]
## theta[7,6]
                50.0207367 1.5244430 46.9727550983 52.9726310
                53.9819940 2.5988676 48.0248996011 58.6935114
## theta[8,6]
## theta[9,6]
                51.0899932 2.2454450 46.1817758868 55.0506378
## theta[10,6]
                46.9045736 1.5761369 43.8755068091 49.9669511
                51.0808320 1.4893209 47.8839140304 53.7451700
## theta[11,6]
## theta[12,6]
                47.9923703 2.1235128 42.9712522088 51.6088889
## theta[13,6]
                51.9522960 1.5719358 48.5451984487 54.8210730
## theta[1,7]
                49.1585068 1.6566612 45.5432487287 52.1905979
## theta[2,7]
                49.7041678 1.6996595 46.0558367172 52.8118195
## theta[3,7]
                48.8109139 1.7423934 45.0349420454 51.8865980
                48.9122033 1.8972867 44.8714682037 52.2334420
## theta[4,7]
## theta[5,7]
                52.4112395 1.4422377 49.6681793564 55.3206037
```

```
## theta[6,7]
                52.4685807 1.5077468 49.2332393246 55.1339865
##
  theta[7,7]
                50.1343777 1.4571926 47.1959278506 52.9616529
## theta[8,7]
                54.1304708 2.4886633 48.5637582786 58.6564767
  theta[9,7]
                51.2740041 2.1202984 46.7060924740 55.1718800
##
##
  theta[10,7]
                47.0637671 1.5154936 44.1088333783 50.0027533
                51.2496517 1.4095868 48.2462000194 53.9040233
  theta[11,7]
##
  theta[12,7]
                48.1691269 2.0260135 43.4506779460 51.7618420
##
  theta[13,7]
                52.1297994 1.4923165 48.9402837829 54.7887794
## theta[1,8]
                49.3574878 1.5367899 46.0540282041 52.1754454
## theta[2,8]
                49.8576965 1.5847662 46.4147912871 52.6681518
## theta[3,8]
                48.9297587 1.6296276 45.3967750908 51.7754042
                49.0888348 1.7645509 45.3218468678 52.1413260
## theta[4,8]
## theta[5,8]
                52.5790224 1.3235070 49.9366673373 55.1006069
## theta[6,8]
                52.6616338 1.4341366 49.6662983896 55.2005105
## theta[7,8]
                50.2605664 1.3530552 47.4786929640 52.8114127
## theta[8,8]
                54.3035110 2.3846770 48.9164215314 58.6020836
                51.4713096 1.9699409 47.1989364039 55.0950369
## theta[9,8]
## theta[10,8]
                47.2299275 1.4509282 44.4138790209 50.0503719
                51.4337962 1.3407777 48.6137556427 53.9119833
##
  theta[11,8]
  theta[12,8]
                48.3331351 1.9175354 43.8908989763 51.7227505
##
                52.3160909 1.3987612 49.3736788625 54.8695010
##
  theta[13,8]
  theta[1,9]
                49.5536406 1.4040749 46.4545278834 52.0657258
##
  theta[2,9]
                50.0129344 1.3928513 46.9352400519 52.5109378
## theta[3,9]
                49.0531188 1.4921050 45.9026779466 51.8943749
## theta[4,9]
                49.2736179 1.5780902 45.9060511384 52.0322617
## theta[5,9]
                52.7385434 1.1731980 50.3014535411 54.9957947
                52.8448606 1.3399070 50.0108149698 55.1646446
## theta[6,9]
## theta[7,9]
                50.3790665 1.2272601 47.7641405628 52.7635325
## theta[8,9]
                54.4809611 2.2518099 49.5302889243 58.4684450
## theta[9,9]
                51.6395833 1.8218429 47.7967844896 55.0159388
## theta[10,9]
                47.4029544 1.3395265 44.7209261322 50.0211180
                51.6160344 1.2057453 49.1044171624 53.7757336
## theta[11,9]
  theta[12,9]
                48.5014563 1.7616794 44.5381343241 51.5062061
                52.5171991 1.2572524 49.8448385076 54.8048237
##
  theta[13,9]
                49.7594271 1.2310446 47.0728821306 51.9668135
## theta[1,10]
##
  theta[2,10]
                50.1535281 1.1917890 47.6593874490 52.3595717
  theta[3,10]
                49.1832413 1.3280663 46.2393595106 51.5725689
                49.4442818 1.4098870 46.3593486120 51.9885365
## theta[4,10]
## theta[5,10]
                52.8936362 0.9976061 50.8675166362 54.7795306
                53.0177448 1.2077936 50.4605090190 55.2500567
## theta[6,10]
## theta[7,10]
                50.4882818 1.0751332 48.1914565591 52.5514301
                54.6403878 2.1007692 50.0859093764 58.3446227
## theta[8,10]
## theta[9,10]
                51.8189360 1.6493946 48.4482965913 54.9082434
## theta[10,10]
                47.5667879 1.2116454 45.2093736670 49.9930620
## theta[11,10] 51.7907474 1.0568310 49.5873790253 53.7475703
## theta[12,10] 48.6817655 1.5925164 45.1271847886 51.5641189
  theta[13,10] 52.6944925 1.1032371 50.2936180521 54.8021702
## theta[1,11]
                49.9661692 0.9516389 47.9960097412 51.8140815
## theta[2,11]
                50.3224773 0.8554144 48.4965007745 51.9403330
## theta[3,11]
                49.2927379 1.1106281 46.9445843580 51.2724890
                49.6264932 1.1707811 47.1293585564 51.8375866
## theta[4,11]
## theta[5,11]
                53.0691029 0.7312868 51.6573689528 54.4427241
```

```
## theta[6,11]
                53.2120903 1.0418536 51.0475684793 55.1102195
##
  theta[7,11]
                50.6079341 0.8711309 48.7445406313 52.2437767
## theta[8,11]
                54.8163646 1.9210365 50.8017819536 58.2739088
                51.9930305 1.4463397 49.1690714657 54.8439116
##
  theta[9,11]
##
  theta[10,11] 47.7497729 1.0288299 45.7476826106 49.8254993
  theta[11,11] 51.9958741 0.8356289 50.3247715116 53.5675725
  theta[12,11] 48.8412235 1.3873969 45.8444838106 51.3800816
  theta[13,11] 52.8997410 0.8910864 51.0721090416 54.6489848
## theta[1,12]
                50.8073194 0.8929034 48.9266478953 52.5351180
## theta[2,12]
                51.1581960 0.7145099 49.7424451081 52.5391973
## theta[3,12]
                49.6929103 0.8478207 47.9931275191 51.3597887
                50.3099410 0.9966297 48.3167033370 52.2492006
## theta[4,12]
## theta[5,12]
                53.7760523 0.7213931 52.3799706009 55.2211548
                53.8461306 0.8993057 52.0771206535 55.5965702
## theta[6,12]
## theta[7,12]
                51.0961063 0.6910615 49.7490171584 52.4678429
## theta[8,12]
                55.4461173 1.7127478 51.8084536712 58.4912699
                52.7611782 1.3158479 50.2906203938 55.3645717
## theta[9,12]
## theta[10,12] 48.4202830 0.9075974 46.6915739160 50.2460817
## theta[11,12] 52.7746706 0.6959655 51.3957556656 54.1688134
  theta[12,12] 49.4597801 1.1538186 47.0274446589 51.6314529
## theta[13,12] 53.6008666 0.7407441 52.2044904378 55.1405270
  theta[1,13]
                50.9886633 0.8663505 49.2364143716 52.6319682
## theta[2,13]
                51.2202051 0.7274560 49.7382350821 52.6187791
## theta[3,13]
                49.5530022 0.8816141 47.6828061972 51.1856682
                50.2219953 1.0008149 48.1698201332 52.1474025
## theta[4,13]
## theta[5,13]
                53.6885556 0.7634024 52.2036032741 55.2448972
                53.7740556 0.8902820 52.0076817238 55.4585143
## theta[6,13]
                50.8912552 0.6831546 49.4555847172 52.2137851
## theta[7,13]
## theta[8,13]
                55.4040566 1.7018004 51.7664354113 58.4559123
                52.9169946 1.2596596 50.5299571975 55.4515686
## theta[9,13]
## theta[10,13] 48.3401017 0.9151566 46.5542840023 50.1526908
## theta[11,13] 52.7161556 0.7650869 51.2035727439 54.1543804
## theta[12,13] 49.5525350 1.1079575 47.1682928815 51.6012106
## theta[13,13] 53.4778166 0.7696114 51.9435932070 55.1012395
## theta[1,14]
                51.4648000 0.7550408 50.0386970331 52.9710481
##
  theta[2,14]
                51.6938683 0.7509458 50.1936359590 53.1815212
                49.7764494 0.7947843 48.1425408737 51.2645833
  theta[3,14]
                50.5324189 0.9214005 48.6613692002 52.3982419
## theta[4,14]
## theta[5,14]
                54.0187490 0.7320607 52.6038395665 55.5152281
## theta[6,14]
                54.0370062 0.8205407 52.3316131183 55.5872900
## theta[7,14]
                51.2007786 0.6502664 49.8356729464 52.4780861
                55.6764636 1.6310859 52.1982587413 58.7151787
## theta[8,14]
## theta[9,14]
                53.3623411 1.1325959 51.2420723234 55.6790194
## theta[10,14]
                48.6482817 0.8661439 46.9345189925 50.3479949
## theta[11,14] 53.0588751 0.7190628 51.6170233598 54.4562143
## theta[12,14] 49.9219786 0.9460095 47.9439401942 51.6501094
## theta[13,14] 53.7380478 0.7231375 52.3367963259 55.2312475
## theta[1,15]
                51.9843888 0.6366638 50.7800520750 53.2719258
## theta[2,15]
                52.2388752 0.5098974 51.2399715292 53.2856610
## theta[3,15]
                50.3602718 0.7330088 48.9313724954 51.8379573
## theta[4,15]
                50.9068835 0.6589941 49.6327789732 52.2475710
## theta[5,15]
                54.4612427 0.5264018 53.4628913761 55.5564513
```

```
## theta[6,15]
                54.3760957 0.6390550 53.1256250487 55.5923037
##
  theta[7,15]
                51.6792130 0.5028657 50.7009380484 52.6752387
## theta[8,15]
                56.0071125 1.4150643 52.9827246655 58.6840602
                53.8475165 0.9462986 52.0281172072 55.7907119
##
  theta[9,15]
##
  theta[10,15] 49.0907926 0.6681314 47.8128269946 50.4299165
  theta[11,15]
                53.4879345 0.4556448 52.6265751046 54.3849530
  theta[12,15] 50.3793097 0.6827448 49.0231946729 51.7177708
  theta[13,15] 54.0877773 0.4918699 53.1306765469 55.0738723
## theta[1,16]
                51.9906093 0.6497328 50.7509923896 53.3313426
## theta[2,16]
                52.0354065 0.5708449 50.8987419165 53.1968899
## theta[3,16]
                50.4473033 0.7371756 49.0295467021 51.8759288
                50.6375945 0.6605114 49.3263812554 51.9429314
## theta[4,16]
## theta[5,16]
                54.2159494 0.5201690 53.2234944322 55.2844758
## theta[6,16]
                54.1421187 0.6961035 52.8107241475 55.4408400
## theta[7,16]
                51.5943173 0.4843420 50.6704570955 52.5678609
## theta[8,16]
                55.7518340 1.3886867 52.6568035089 58.4407107
## theta[9,16]
                53.7427518 0.9572301 51.8677886518 55.6546891
## theta[10,16] 48.9048154 0.7061873 47.5233714926 50.3030763
  theta[11,16] 53.1678894 0.4487227 52.2733772901 54.0187198
  theta[12,16] 50.2898247 0.6906292 48.8725849282 51.5723212
  theta[13,16] 53.8039946 0.4824179 52.8776348305 54.7682133
##
  theta[1,17]
                51.7332601 0.6892863 50.3941481108 53.2351292
## theta[2,17]
                51.5454396 0.7249223 50.1068935213 52.9509078
## theta[3,17]
                50.4760674 0.8514468 48.7313478923 52.1529665
                50.0857268 0.7816024 48.5171647075 51.5972024
## theta[4,17]
## theta[5,17]
                53.7110147 0.5738594 52.5402125035 54.8091502
                53.6977011 0.7707939 52.2280847386 55.1887042
## theta[6,17]
                51.3325232 0.5581719 50.2242238682 52.3981928
## theta[7,17]
## theta[8,17]
                55.3017289 1.4170360 52.2268607997 57.9155884
                53.4256523 1.0172235 51.4683013610 55.4987954
## theta[9,17]
## theta[10,17] 48.4841483 0.7871893 46.9305375125 49.9930699
## theta[11,17] 52.6164071 0.6198776 51.3134354804 53.8135786
## theta[12,17] 50.0837323 0.7772785 48.5436797013 51.6372720
## theta[13,17] 53.2897730 0.5994404 52.0498342489 54.4107594
## theta[1,18]
                51.5319983 0.8110356 49.9369969280 53.1917433
##
  theta[2,18]
                51.2633804 0.8492491 49.4984979931 52.8669601
                50.5053319 0.9561380 48.6267728773 52.3857961
  theta[3,18]
                49.7780071 0.9245334 47.8100496732 51.4505537
  theta[4,18]
## theta[5,18]
                53.4559564 0.7326230 52.0097925796 54.8332963
## theta[6,18]
                53.5116973 0.8727760 51.7471028362 55.1078994
## theta[7,18]
                51.1977971 0.6465334 49.8683302941 52.4321006
                55.1082869 1.4681030 51.9156356114 57.8167960
## theta[8,18]
## theta[9,18]
                53.1578704 1.1340415 50.9944348408 55.4586737
## theta[10,18]
                48.3052204 0.8877976 46.5253484196 49.9956075
## theta[11,18]
                52.3797765 0.7944337 50.6622725117 53.8572919
## theta[12,18] 49.8488775 1.0174648 47.7442113491 51.8933214
## theta[13,18] 53.0907395 0.7397186 51.5219066925 54.4113526
## theta[1,19]
                51.4112435 0.7530038 49.9884928835 52.9127197
## theta[2,19]
                51.0848405 0.7666204 49.5083543085 52.5563658
## theta[3,19]
                50.6285924 0.9820212 48.7867534135 52.5092913
## theta[4,19]
                49.5832993 0.9162309 47.6311433671 51.2645995
## theta[5,19]
                53.2885484 0.7385071 51.8076657078 54.6835269
```

```
## theta[6,19]
                53.4132538 0.8292212 51.7831150124 55.0027772
## theta[7,19]
                51.1843101 0.7034635 49.7830698889 52.5434106
## theta[8,19]
                55.0110523 1.4103815 51.9822522776 57.5496586
                52.9687501 1.0943290 50.8838709147 55.1894117
##
  theta[9,19]
##
  theta[10,19] 48.2347860 0.8990597 46.4383018092 49.9248686
  theta[11,19] 52.2427056 0.7867842 50.5628629639 53.6592591
  theta[12,19] 49.7065731 1.0622138 47.5188490717 51.8109367
  theta[13,19] 52.9990299 0.7149180 51.5141784076 54.3312910
## theta[1,20]
                51.4363897 0.8279347 49.8065030272 53.0859428
## theta[2,20]
                51.0618494 0.8362894 49.3397932314 52.6404751
## theta[3,20]
                50.8529294 0.9785894 49.0702200433 52.9047971
                49.5086687 0.9721984 47.4853062769 51.2174899
## theta[4,20]
## theta[5,20]
                53.2524566 0.7706357 51.6494097501 54.7078328
## theta[6,20]
                53.4361201 0.7874091 51.8724728248 54.9333443
## theta[7,20]
                51.2781130 0.7241406 49.7965520756 52.6980280
## theta[8,20]
                55.0190734 1.3961085 52.0102943507 57.5483981
## theta[9,20]
                52.9129274 1.1382420 50.7232243223 55.2216628
## theta[10,20] 48.3003476 0.8976707 46.4941810566 49.9986712
## theta[11,20] 52.2436512 0.8419333 50.4688790212 53.7203226
## theta[12,20] 49.6812418 1.1768295 47.2348016535 51.9269707
## theta[13,20] 53.0319683 0.7719897 51.3714415040 54.4494659
  theta[1,21]
                51.5259999 0.7625470 50.0579335068 53.0955008
## theta[2,21]
                51.1191979 0.7525809 49.5614824211 52.5245915
## theta[3,21]
                51.1537702 0.9091806 49.5389195781 53.0557340
               49.5105923 0.9331490 47.4851707956 51.1322069
## theta[4,21]
## theta[5,21]
                53.2929945 0.7071102 51.8394212027 54.5553159
                53.5676389 0.8042537 51.9638274299 55.0388052
## theta[6,21]
## theta[7,21]
                51.4431859 0.6467815 50.1682124724 52.7343776
## theta[8,21]
                55.1251170 1.3002144 52.3769004712 57.5098160
                52.8921251 1.1051643 50.7591167040 55.0540054
## theta[9,21]
## theta[10,21] 48.4402802 0.8653932 46.6960820411 50.1434248
## theta[11,21] 52.3489724 0.7915330 50.6783385685 53.7660853
## theta[12,21] 49.6881129 1.2127657 47.1927635822 52.0635334
## theta[13,21] 53.1548705 0.7639108 51.5507618815 54.5703110
## theta[1,22]
                51.5868785 0.7363148 50.1658695419 53.0646195
## theta[2,22]
                51.2815895 0.6647398 49.8657452398 52.5273098
                50.9962069 0.8433777 49.4694744556 52.8811155
## theta[3,22]
## theta[4,22]
                49.7014650 0.7793702 48.0690831793 51.1163274
## theta[5,22]
                53.5560011 0.5567881 52.4130276892 54.5756240
## theta[6,22]
                53.8330083 0.7107329 52.4183129876 55.1846331
## theta[7,22]
                51.4936138 0.5549349 50.3951047730 52.5522372
                55.4172739 1.1621214 52.9613096517 57.6505545
## theta[8,22]
## theta[9,22]
                52.9064576 1.0369670 50.9067323216 54.9860789
## theta[10,22]
               48.6740872 0.7519562 47.2236615105 50.1708506
               52.6281003 0.6692615 51.2546974527 53.8628249
## theta[11,22]
## theta[12,22] 49.6173002 1.1270405 47.3080772973 51.7439460
## theta[13,22] 53.4535056 0.6360031 52.2326039502 54.7065241
## theta[1,23]
                51.8192804 0.7281157 50.4201378636 53.3115141
## theta[2,23]
                51.8667693 0.5400564 50.7910665279 52.9243708
## theta[3,23]
                51.1055523 0.6784736 49.8365544765 52.5528090
## theta[4,23]
                50.1962654 0.7338292 48.6514181722 51.5958571
## theta[5,23]
                54.0613261 0.5541310 53.0145111627 55.1708954
```

```
## theta[6,23]
                54.1365776 0.7375408 52.7477679001 55.6267147
## theta[7,23]
                51.8378407 0.5612503 50.7657576432 52.9742289
## theta[8,23]
                55.7923405 0.9664923 53.8141598331 57.7272965
                53.1457819 0.9544325 51.3418132698 55.0801706
## theta[9,23]
##
  theta[10,23] 49.1141268 0.6510162 47.8667176803 50.4146761
  theta[11,23]
               53.1201264 0.5491930 52.0384976958 54.1978069
  theta[12,23] 49.7177657 0.9931884 47.7368664054 51.7102701
## theta[13,23] 53.8397406 0.5910736 52.7299709628 55.0532780
## theta[1,24]
                51.5492772 0.6385654 50.2839227406 52.7920190
## theta[2,24]
                51.8726119 0.5521938 50.8228146817 52.9722832
                50.5359033 0.6114479 49.3323793053 51.7378299
## theta[3,24]
                50.2268804 0.6423640 48.9873864016 51.4607594
## theta[4,24]
## theta[5,24]
                54.0315503 0.4996609 53.0788040499 55.0487275
## theta[6,24]
                54.0597810 0.6650996 52.7373957998 55.3449930
## theta[7,24]
                51.6569591 0.4647910 50.7545299855 52.5526924
## theta[8,24]
                55.8437700 1.0986010 53.5317627324 58.0474071
## theta[9,24]
                52.9040264 0.8078593 51.3332866259 54.5291211
## theta[10,24] 49.0075115 0.5688452 47.9357690482 50.1296406
## theta[11,24] 53.1664214 0.4589237 52.2174262912 54.0199720
## theta[12,24] 49.4000406 0.8270114 47.7274189637 50.9977105
## theta[13,24] 53.8319036 0.4586615 52.9688083517 54.7950311
  theta[1,25]
                51.4161459 0.7823299 49.7587410785 52.9414598
## theta[2,25]
                51.7856005 0.6789754 50.4342421831 53.0969589
## theta[3,25]
                50.3562644 0.8346449 48.6640000828 51.9673082
                50.1316661 0.7847099 48.5558918205 51.6414296
## theta[4,25]
## theta[5,25]
                53.9046061 0.6592192 52.6147404239 55.2354657
                53.9306520 0.8013663 52.3564723659 55.4802355
## theta[6,25]
## theta[7,25]
                51.5105954 0.6482916 50.1949239762 52.7988983
## theta[8,25]
                55.7583231 1.2369338 53.2272881405 58.1928356
## theta[9,25]
                52.8445492 0.9395917 50.9496308352 54.6655769
## theta[10,25] 48.8985322 0.7407623 47.4159154625 50.3795218
## theta[11,25] 53.0554860 0.6609424 51.7374484929 54.3334404
## theta[12,25] 49.2880811 0.9992422 47.1913403396 51.1763443
## theta[13,25] 53.7010649 0.6621943 52.3866203332 54.9959922
                51.2578217 0.7374468 49.7333438807 52.6269270
## theta[1,26]
## theta[2,26]
                51.6526151 0.7070511 50.2434446602 53.0002236
                50.1680329 0.8944496 48.3102448939 51.8940947
## theta[3,26]
## theta[4,26]
                50.0117037 0.7321633 48.5012431018 51.3888958
## theta[5,26]
                53.7606359 0.6203088 52.5622114919 54.9912395
                53.7752044 0.8048841 52.1366297419 55.3160056
## theta[6,26]
## theta[7,26]
                51.3622759 0.6748189 49.9894453727 52.6479511
                55.6420302 1.2683458 53.0355163181 58.1434638
## theta[8,26]
## theta[9,26]
                52.7411454 0.8677459 51.0328931087 54.4102899
## theta[10,26] 48.7613891 0.7134260 47.3539976406 50.1746084
## theta[11,26] 52.9113312 0.6218117 51.6748892055 54.1146326
## theta[12,26] 49.1591198 1.0064712 47.0745755042 51.0076855
## theta[13,26] 53.5379659 0.6446720 52.2701952571 54.7533763
## theta[1,27]
                51.0761519 0.6329387 49.7590152061 52.2787242
                51.5691879 0.6580916 50.2274212486 52.8573972
## theta[2,27]
## theta[3,27]
                49.9819352 0.9096610 48.1144229547 51.6812423
                49.9825919 0.7794595 48.3841411581 51.4590167
## theta[4,27]
## theta[5,27]
                53.7059698 0.6145023 52.5140261039 54.9484744
```

```
## theta[6,27]
                53.7194988 0.8187078 52.0974938824 55.2855512
## theta[7,27]
                51.2660625 0.6774158 49.9297796190 52.6476564
## theta[8,27]
                55.6240885 1.2804306 52.9538623472 58.1581180
                52.5859364 0.9400319 50.7139141982 54.3607232
## theta[9,27]
##
  theta[10,27] 48.7102985 0.6710318 47.3704757327 50.0587400
  theta[11,27]
                52.8594153 0.6042102 51.6525985224 54.0211021
  theta[12,27] 48.9866382 1.0320735 46.8254517351 50.8796392
  theta[13,27] 53.4660960 0.6136055 52.2597307155 54.6650362
## theta[1,28]
                51.5504928 0.6515730 50.2195802384 52.8044283
## theta[2,28]
                52.0446445 0.6604395 50.6701862343 53.2908029
## theta[3,28]
                50.0643153 0.8797872 48.3189210860 51.7583340
                50.3563603 0.8254974 48.6735307980 51.9770465
## theta[4,28]
## theta[5,28]
                54.0646953 0.6836498 52.7483713645 55.4150987
## theta[6,28]
                54.0345069 0.8389081 52.4013246846 55.6330151
## theta[7,28]
                51.4741955 0.6637727 50.1215745301 52.7935611
## theta[8,28]
                55.9489555 1.2686818 53.3848696152 58.4723131
## theta[9,28]
                53.0096538 0.9613699 51.0716045561 54.9065521
## theta[10,28] 49.0543641 0.7274197 47.6200186987 50.4871733
## theta[11,28] 53.2739532 0.6684137 51.9187258058 54.6267775
## theta[12,28] 49.2808782 0.9616694 47.2321161189 51.0507042
## theta[13,28] 53.7884832 0.6711769 52.5424433688 55.1245163
  theta[1,29]
                52.2300313 0.6280084 51.0291279148 53.4824088
## theta[2,29]
                52.6727052 0.5915961 51.5375073941 53.8390905
## theta[3,29]
                50.4177109 0.9930148 48.3634715690 52.2804135
                50.8473771 0.6815458 49.5323893414 52.2214199
## theta[4,29]
## theta[5,29]
                54.5539922 0.5726671 53.4672541922 55.7197350
## theta[6,29]
                54.4534418 0.7636820 52.9279717082 55.9315270
## theta[7,29]
                51.8331739 0.5597589 50.7341733765 52.9580707
## theta[8,29]
                56.3622541 1.1610181 54.0598460306 58.7554720
## theta[9,29]
                53.5952545 0.8716067 51.9392624476 55.3151240
## theta[10,29] 49.5378014 0.6606843 48.2250410570 50.8636896
## theta[11,29] 53.8120100 0.5370700 52.7929250441 54.8907263
## theta[12,29] 49.7010820 0.7606935 48.2024838933 51.2224253
## theta[13,29] 54.2166747 0.5531435 53.1477910962 55.3230307
## theta[1,30]
                52.6513217 0.7359755 51.2679539259 54.1950704
##
  theta[2,30]
                53.1784391 0.6839792 51.9122151520 54.6086305
                50.6733003 1.2030382 48.2386582814 52.9964342
  theta[3,30]
## theta[4,30]
                51.2543950 0.7549703 49.8177018446 52.7661563
## theta[5,30]
                54.9492055 0.7143217 53.6343631251 56.3946687
                54.7639979 0.8824018 53.0084222770 56.4971519
## theta[6,30]
## theta[7,30]
                52.1725989 0.6471917 50.9183814392 53.4633062
                56.6686858 1.1766394 54.3527931306 59.1077607
## theta[8,30]
## theta[9,30]
                54.0103216 1.0231429 51.9654248586 56.0954251
## theta[10,30]
               49.8964483 0.7596871 48.4486490462 51.4337556
## theta[11,30] 54.2407679 0.5747335 53.1613084893 55.4045407
## theta[12,30] 49.9714304 0.8088389 48.3697194163 51.5963996
## theta[13,30] 54.4975915 0.6343205 53.3278977151 55.8138512
## theta[1,31]
                52.0256256 0.7330838 50.6325453506 53.4796399
## theta[2,31]
                52.3509488 0.5761369 51.2228410016 53.4832495
## theta[3,31]
                50.3009877 1.1619101 47.9521356913 52.5247082
## theta[4,31]
                50.5819357 0.8174118 48.9501642601 52.1616251
## theta[5,31]
                54.2746414 0.6455829 53.0194406469 55.5164824
```

```
## theta[6,31] 54.2055323 0.8627026 52.5183836623 55.9216718
## theta[7,31] 51.6138961 0.6158961 50.3639977573 52.8505602
## theta[8,31] 56.1075072 1.0957691 53.9451150085 58.2713166
## theta[9,31] 53.3416942 1.0658056 51.1963946869 55.4712585
## theta[10,31] 49.2899299 0.7633165 47.8325871726 50.8524960
## theta[11,31] 53.5364504 0.5709050 52.4025325693 54.6639845
## theta[12,31] 49.2737366 0.8458534 47.5907394420 50.9015152
## theta[13,31] 53.8634156 0.5834134 52.7181439098 55.0251801
## mean Rhat: 1.017614
## mean effective sample size: 860.6576
```

Since the outcome of the election is decided by Electoral College vote, for each set of MCMC samples of the two-party vote share by state, we use the predicted winner in each state j on the day of the election (β_{j1}) and sum the electoral votes from those states for each candidate. For states not in the model, votes were given to the candidates based on how the states voted in 2016. The probability of President Trump winning re-election is the probability that he receives 270 or more electoral votes across simulations. (Note: Maine and Nebraska do not have a "winner-take-all" framework for allocating votes, but for simplicity, we assume that they have the same vote-allocating procedures as the other states).

A.2 Senate Election Model

The purpose of the Senate model is to predict whether the U.S. Senate remains in Republican control (and to predict the outcome for the NC Senate race). The states included in the model are Alaska, Arizona, Colorado, Georgia, Iowa, Kansas, Maine, Michigan, Montana, North Carolina, South Carolina, and Texas. These states were chosen because they are deemed by political analysts as being competitive states for the Senate race in 2020. There is also a special election for the Senate in Georgia in addition to the regularly scheduled election. For the Georgia special election, our model sums up the support for Republican candidates and compares that to the sum of the support for Democratic candidates, and treats this election in the same way as the other states.

The response we will use is Y_k , the Democrat candidate's share of the two-party vote using the following model where the poll k (of K=fill in polls) ended t days (of T = 30 days) before the election and was conducted on state j (of J=14 states of interest).

```
\begin{split} Y_k &\sim N(\beta_{jt}, \sigma_{yj}^2) \\ \beta_{jt} &\sim N(\beta_{jt-1}, \sigma_{\beta_j}^2) \\ \text{Priors for } \sigma_{yj}^2 \colon \sigma_{yj}^2 \sim InvGamma(\nu_u, \nu_y \tau_y) \\ \nu_y &\sim Uniform(0, 100) \text{ and } \tau_y \sim Uniform(0, 100). \\ \text{Priors for } \sigma_{\beta j}^2 \sigma_{\beta j}^2 \sim InvGamma(\nu_\beta, \nu_\beta \tau_\beta)) \\ \nu_\beta &\sim Uniform(0, 100) \text{ and } \tau_\beta \sim Uniform(0, 100). \\ \text{Priors for } \beta_{j1} \ \beta_{j1} \sim N(\mu_j, \sigma^2) \\ \sigma^2 &\sim InvGamma(0.5, 0.5) \\ \mu_j &\sim N(h_j, 7.5^2) \\ h_j &= \text{Vote Share from Partisan Lean}_j + \text{Incumbency Advantage}_j \end{split}
```

A hierarchical model was used, where the Democratic candidate's share of the two-party vote for poll k on any given day t for state j is modeled as a normal distribution with mean β_{jt} and variance σ_{yj}^2 . A random walk was used to calculate β_{jt} for each day t before the election (up until 30 days before the election) from β_{jt-1} and $\sigma_{\beta j}$. The mean h_j of the normal prior on mu_j (which is the mean of the normal prior on β_{j1}), was calculated by the sum of the Vote Share from Partisan Lean_j and Incumbency Advantage_j.

Raw Model Output

mean sd 2.5% 97.5%

```
## beta[1,1]
                   46.4507584 2.2433708 41.59965446 50.6435166
## beta[2,1]
                   52.3060134 2.1867985 46.72905116 55.6747117
## beta[3,1]
                   54.3407636 1.7697115 50.52703121 57.6127336
## beta[4,1]
                   48.6580340 1.6538193 45.60341428 51.9550692
## beta[5,1]
                   45.5772068 1.9532845 41.67556604 49.6975127
## beta[6,1]
                   50.7226677 1.6592584 47.18653081 53.7717883
## beta[7,1]
                   46.2249577 2.6063537 40.90148615 51.1973216
## beta[8,1]
                   52.0308945 2.2519892 47.08007333 55.9982111
## beta[9,1]
                   53.9554866 1.7664757 50.67107557 57.9060076
                   47.5874120 2.0102568 43.45416459 51.5177091
## beta[10,1]
                   51.7831808 1.6530492 48.20280605 54.9907635
## beta[11,1]
                   48.8159096 1.9127126 45.15421200 52.8553178
## beta[12,1]
## beta[13,1]
                   45.7833702 1.8480167 42.38430159 49.9298690
                   46.4896459 2.2087097 41.73140473 50.7067420
## beta[1,2]
## beta[2,2]
                   52.3289635 2.1332011 46.76305635 55.6280756
## beta[3,2]
                   54.3711092 1.7153990 50.70312546 57.5107585
## beta[4,2]
                   48.6820835 1.5900333 45.55906919 51.7720312
## beta[5,2]
                   45.5860786 1.8948276 41.78424188 49.4964545
## beta[6,2]
                   50.7492053 1.6070817 47.32136332 53.6024884
## beta[7,2]
                   46.2482261 2.5790858 40.95415039 51.1620338
## beta[8,2]
                   52.0342957 2.2127825 47.17982380 55.9353012
## beta[9,2]
                   53.9700156 1.7005589 50.93251803 57.7808375
## beta[10,2]
                   47.6105677 1.9664164 43.60635351 51.4052042
## beta[11,2]
                   51.8087928 1.5742675 48.42741143 54.8897353
## beta[12,2]
                   48.8315938 1.8713619 45.27158091 52.8845275
## beta[13,2]
                   45.8203025 1.8035136 42.50382068 49.8369427
## beta[1,3]
                   46.4972722 2.1748183 41.79078922 50.6082250
## beta[2,3]
                   52.3504019 2.0757404 46.89180959 55.5676551
                   54.4025269 1.6743724 50.83741377 57.4734257
## beta[3,3]
## beta[4,3]
                   48.7026871 1.5316694 45.66027082 51.6917491
## beta[5,3]
                   45.5939497 1.8587148 41.96836855 49.4744802
## beta[6,3]
                   50.7842206 1.5345155 47.56099990 53.5312636
## beta[7,3]
                   46.2874322 2.5704155 41.03692954 51.1878884
## beta[8,3]
                   52.0451801 2.1927681 47.31900495 56.0179210
                   53.9616679 1.6422515 51.02280354 57.7440600
## beta[9,3]
## beta[10,3]
                   47.6457081 1.9178816 43.67544160 51.3512848
## beta[11,3]
                   51.8224261 1.5060512 48.57959501 54.7184358
## beta[12,3]
                   48.8449458 1.8210090 45.44757736 52.9417926
## beta[13,3]
                   45.8366463 1.7529638 42.65491212 49.7247423
                   46.5096325 2.1446964 41.93718701 50.5971583
## beta[1,4]
## beta[2,4]
                   52.3811437 2.0084432 47.18445415 55.4559586
## beta[3,4]
                   54.4305865 1.6369488 51.02141715 57.4256656
## beta[4,4]
                   48.7264314 1.4754701 45.70538022 51.5413339
                   45.5914780 1.8051970 42.05007872 49.3659552
## beta[5,4]
## beta[6,4]
                   50.8000562 1.4696533 47.72206160 53.3727090
## beta[7,4]
                   46.3211874 2.5536161 41.19514273 51.1742377
## beta[8,4]
                   52.0428598 2.1662293 47.43433726 55.9819806
## beta[9,4]
                   53.9696348 1.5858942 51.09637291 57.6014267
## beta[10,4]
                   47.6724513 1.8668032 43.89282346 51.2309429
## beta[11,4]
                   51.8493091 1.4369846 48.83034407 54.6103632
## beta[12,4]
                   48.8576964 1.7708459 45.71742528 52.7111169
## beta[13,4]
                   45.8545564 1.6860656 42.79886556 49.5855540
```

```
## beta[1,5]
                   46.5270050 2.1184366 42.04091230 50.5605798
## beta[2,5]
                   52.3960022 1.9357695 47.40427586 55.3663511
## beta[3,5]
                   54.4590620 1.6011863 51.10509080 57.3259556
## beta[4,5]
                   48.7412904 1.4171168 45.81660090 51.4376954
## beta[5,5]
                   45.5938862 1.7675097 42.11294752 49.1187604
## beta[6,5]
                   50.8211279 1.4119876 47.90429088 53.3159518
## beta[7,5]
                   46.3494214 2.5448663 41.13449596 51.2228690
## beta[8,5]
                   52.0688027 2.1458932 47.40572776 55.9524187
## beta[9,5]
                   53.9749684 1.5443841 51.16636715 57.5088164
                   47.7098359 1.8038902 43.97822741 51.1170287
## beta[10,5]
## beta[11,5]
                   51.8806487 1.3733100 48.98335827 54.5870886
                   48.8678520 1.7168686 45.75473610 52.6724863
## beta[12,5]
## beta[13,5]
                   45.8739376 1.6433555 42.91525381 49.5902015
                   46.5369181 2.0918170 42.30038580 50.5286182
## beta[1,6]
## beta[2,6]
                   52.4209609 1.8622084 47.65261644 55.3620168
## beta[3,6]
                   54.4934255 1.5479439 51.22021999 57.3540242
## beta[4,6]
                   48.7565441 1.3599191 45.99376876 51.3513729
## beta[5,6]
                   45.5914292 1.7333413 42.14084013 49.1108980
## beta[6,6]
                   50.8723847 1.3477733 48.15517471 53.2286846
## beta[7,6]
                   46.3865869 2.5345902 41.11783543 51.2642474
## beta[8,6]
                   52.0944968 2.1202371 47.53904839 56.0144854
## beta[9,6]
                   53.9684720 1.4624460 51.34241802 57.3044058
## beta[10,6]
                   47.7515750 1.7459987 44.24095880 51.1506414
## beta[11,6]
                   51.9025948 1.3072086 49.13922418 54.5755418
                   48.8775857 1.6746169 45.86563107 52.5292894
## beta[12,6]
## beta[13,6]
                   45.9026161 1.5877677 42.99714600 49.4096485
## beta[1,7]
                   46.5517737 2.0788082 42.20078284 50.5648052
## beta[2,7]
                   52.4423884 1.8214850 47.83797315 55.2662000
## beta[3,7]
                   54.5344213 1.5061993 51.42066337 57.3478975
## beta[4,7]
                   48.7721559 1.3043131 46.11785442 51.2292675
## beta[5,7]
                   45.5929511 1.6707891 42.26243636 48.9654654
## beta[6,7]
                   50.9084257 1.2986088 48.29994155 53.1661204
## beta[7,7]
                   46.4051745 2.5277135 41.18396603 51.2405435
## beta[8,7]
                   52.1100098 2.0981936 47.66774052 55.9174251
                   53.9754413 1.3875629 51.51574680 57.0159137
## beta[9,7]
## beta[10,7]
                   47.7693629 1.6955459 44.26638293 51.0479234
## beta[11,7]
                   51.9338738 1.2186668 49.50430523 54.4152876
## beta[12,7]
                   48.8928983 1.6291872 45.94802949 52.3799161
## beta[13,7]
                   45.9204989 1.5234208 43.04064776 49.3011859
                   46.5557695 2.0482870 42.29479623 50.5355847
## beta[1,8]
## beta[2,8]
                   52.4693559 1.7171679 48.18092780 55.1291038
## beta[3,8]
                   54.5658777 1.4590191 51.64203041 57.3086507
## beta[4,8]
                   48.7917064 1.2390551 46.29392651 51.1663349
## beta[5,8]
                   45.6090295 1.6115669 42.32538218 48.7935958
## beta[6,8]
                   50.9393386 1.2460120 48.40704975 53.1458583
## beta[7,8]
                   46.4466889 2.5029317 41.22708808 51.2999787
## beta[8,8]
                   52.1339057 2.0695220 47.70566073 55.8567010
## beta[9,8]
                   53.9720083 1.3142507 51.60079827 56.9336924
## beta[10,8]
                   47.8072502 1.6310934 44.51403974 50.9382348
## beta[11,8]
                   51.9786793 1.1525195 49.61881294 54.4439017
## beta[12,8]
                   48.8842396 1.5855617 46.06751590 52.3273228
## beta[13,8]
                   45.9357006 1.4643750 43.17433684 49.1612021
```

```
## beta[1,9]
                   46.5670768 2.0241419 42.28102749 50.5473141
## beta[2,9]
                   52.5028970 1.6293033 48.32601925 55.0614260
## beta[3,9]
                   54.6185609 1.3956296 51.75957982 57.2449812
## beta[4,9]
                   48.8034662 1.1744828 46.48385806 51.0059174
## beta[5,9]
                   45.6034800 1.5457346 42.46873154 48.6337861
## beta[6,9]
                   50.9476722 1.1788262 48.51608288 53.0401498
## beta[7,9]
                   46.4908841 2.4581752 41.26567023 51.1615794
## beta[8,9]
                   52.1616163 2.0472942 47.62660697 55.8343743
## beta[9,9]
                   53.9766551 1.2299404 51.74557072 56.6013325
                   47.8441955 1.5706324 44.69935624 50.8690019
## beta[10,9]
## beta[11,9]
                   52.0023916 1.0794169 49.80329178 54.2249423
                   48.8734921 1.5387937 46.15679907 52.3062505
## beta[12,9]
## beta[13,9]
                   45.9468701 1.3896232 43.27160058 49.0166319
                   46.5678919 2.0058839 42.32787193 50.4871242
## beta[1,10]
                   52.5390031 1.5105729 48.69645194 54.8742624
## beta[2,10]
## beta[3,10]
                   54.6743274 1.3283331 51.95506185 57.1823165
## beta[4,10]
                   48.8089650 1.1067851 46.59030224 50.9459729
## beta[5,10]
                   45.6182920 1.4673513 42.62461690 48.4394718
## beta[6,10]
                   50.9589061 1.1176928 48.65209331 52.8557514
## beta[7,10]
                   46.5379063 2.4407841 41.33779109 51.2025385
                   52.1807310 2.0268314 47.64778182 55.7261525
## beta[8,10]
## beta[9,10]
                   53.9739212 1.1381429 51.91497703 56.3897657
## beta[10,10]
                   47.8871395 1.5012262 44.87418303 50.8326995
## beta[11,10]
                   52.0246213 1.0056766 49.98163736 54.0750713
                   48.8645445 1.5075891 46.23353781 52.2559794
## beta[12,10]
## beta[13,10]
                   45.9557357 1.3205726 43.33332685 48.9188215
## beta[1,11]
                   46.5657722 1.9884405 42.47851727 50.4111217
## beta[2,11]
                   52.5871373 1.3717250 49.06990092 54.7918520
## beta[3,11]
                   54.7400065 1.2813795 52.04151691 57.2546969
## beta[4,11]
                   48.8263871 1.0265121 46.80608246 50.7639370
## beta[5,11]
                   45.6229736 1.3946257 42.81182773 48.3699546
## beta[6,11]
                   50.9801055 1.0438403 48.76111023 52.8246632
## beta[7,11]
                   46.5696643 2.4023754 41.27155079 51.1483077
## beta[8,11]
                   52.2079035 2.0094587 47.72323788 55.5756930
                   53.9590365 1.0167393 52.09094606 56.1472696
## beta[9,11]
## beta[10,11]
                   47.9399924 1.4382705 45.08574550 50.8092628
## beta[11,11]
                   52.0390239 0.9176663 50.21353504 53.8657094
                   48.8479921 1.4812537 46.24737533 52.1934658
## beta[12,11]
## beta[13,11]
                   45.9599444 1.2276616 43.47051693 48.6080411
## beta[1,12]
                   46.5714547 1.9538748 42.56145599 50.2601810
## beta[2,12]
                   52.6422271 1.2120834 49.65909631 54.6130190
## beta[3,12]
                   54.7796973 1.2322518 52.24493741 57.1065122
## beta[4,12]
                   48.8241898 0.9347758 46.96862712 50.5515212
## beta[5,12]
                   45.6430506 1.3163577 42.89452579 48.1590470
## beta[6,12]
                   50.9883574 0.9800345 48.91056324 52.7813585
## beta[7,12]
                   46.6107457 2.3502945 41.38512564 51.1682618
## beta[8,12]
                   52.2146382 2.0078566 47.80023470 55.5988958
## beta[9,12]
                   53.8425879 0.9400988 52.10605867 55.7705086
## beta[10,12]
                   47.9706309 1.3642976 45.24576448 50.5990511
## beta[11,12]
                   52.0693416 0.8175119 50.41380058 53.6838658
## beta[12,12]
                   48.8440897 1.4287400 46.28222135 52.0444698
## beta[13,12]
                   45.9811842 1.1335226 43.68615188 48.3956155
```

```
## beta[1,13]
                   46.5876383 1.9218749 42.58312108 50.3284772
## beta[2,13]
                   52.6891150 1.0461506 50.27943163 54.4381734
## beta[3,13]
                   54.8395928 1.1751190 52.48355262 57.0792011
## beta[4,13]
                   48.7926745 0.8883001 47.04169779 50.4494619
## beta[5,13]
                   45.6557143 1.2381279 43.13541646 48.0919228
## beta[6,13]
                   51.0000905 0.8927554 49.09466934 52.5801656
## beta[7,13]
                   46.6552101 2.2921448 41.57173330 51.1101449
## beta[8,13]
                   52.2276404 1.9684165 47.85446957 55.4976038
## beta[9,13]
                   53.7173751 0.8618031 52.08186888 55.5516843
## beta[10,13]
                   48.0013049 1.2600938 45.42117298 50.4480650
## beta[11,13]
                   52.0184638 0.7707851 50.49038887 53.5629130
                   48.8407254 1.3757495 46.33568886 51.8699864
## beta[12,13]
## beta[13,13]
                   45.9923947 1.0500376 43.91426454 48.1153740
                   46.6229871 1.8726832 42.85334043 50.2933601
## beta[1,14]
## beta[2,14]
                   52.9666038 0.8457280 51.15682373 54.4630778
## beta[3,14]
                   54.9092964 1.1112883 52.66372207 57.0326530
## beta[4,14]
                   48.7760120 0.8189630 47.17509433 50.3058560
## beta[5,14]
                   45.6609027 1.1838267 43.23871605 47.9725141
## beta[6,14]
                   51.0115363 0.7988418 49.40733822 52.4348770
## beta[7,14]
                   46.7010099 2.2500168 41.64344074 51.0391557
                   52.2455939 1.9593516 47.90972633 55.5146364
## beta[8,14]
## beta[9,14]
                   53.6008012 0.7617864 52.06529968 55.0934147
## beta[10,14]
                   48.0410622 1.1925141 45.53014963 50.2580502
## beta[11,14]
                   51.9433993 0.7044818 50.51203083 53.3278228
                   48.8306216 1.3210952 46.45141792 51.6902215
## beta[12,14]
## beta[13,14]
                   45.9985113 0.9352965 44.09483641 47.8686881
                   46.6458309 1.8442028 42.95508554 50.2851475
## beta[1,15]
## beta[2,15]
                   53.1461151 0.7395091 51.61317260 54.4908439
## beta[3,15]
                   54.9750359 1.0182329 52.99031086 56.9488146
## beta[4,15]
                   48.8341676 0.7962061 47.29228520 50.3736713
## beta[5,15]
                   45.9265245 1.1217179 43.56152539 48.1300919
## beta[6,15]
                   51.1413157 0.7525674 49.60599917 52.5815186
## beta[7,15]
                   46.7357382 2.1813822 41.77010350 50.9043960
## beta[8,15]
                   52.2572799 1.9496084 47.88088430 55.3668462
                   53.4845287 0.6461339 52.20040491 54.7143214
## beta[9,15]
## beta[10,15]
                   48.0739475 1.1115507 45.72275331 50.1018411
## beta[11,15]
                   51.9966479 0.6396810 50.72183860 53.2612563
                   48.8230295 1.2764186 46.45960717 51.5080448
## beta[12,15]
## beta[13,15]
                   46.0059997 0.8319034 44.25857352 47.6864369
                   46.6857907 1.7850144 43.15820470 50.1988322
## beta[1,16]
## beta[2,16]
                   53.3670823 0.6463870 52.03214116 54.5841181
## beta[3,16]
                   55.0755165 0.9922047 53.09893958 56.9708163
## beta[4,16]
                   48.9124194 0.7855444 47.36550357 50.5040986
## beta[5,16]
                   46.1857349 1.0956328 43.84692791 48.3209172
## beta[6,16]
                   51.3535917 0.7244868 49.89473148 52.7222249
## beta[7,16]
                   46.7427876 2.2430579 41.80418504 51.0793865
## beta[8,16]
                   52.2782003 1.9247401 48.06497504 55.3736604
## beta[9,16]
                   53.3664815 0.6365839 52.05778199 54.5860187
## beta[10,16]
                   48.0084506 1.1192421 45.65320355 50.1161985
## beta[11,16]
                   52.0820862 0.6131808 50.91801927 53.3244301
## beta[12,16]
                   48.7129144 1.2720920 46.37203848 51.3063113
## beta[13,16]
                   46.0164093 0.8116112 44.36180327 47.6053965
```

```
## beta[1,17]
                   46.7028880 1.7228092 43.35995183 50.0810660
## beta[2,17]
                   53.5305265 0.6793261 52.16274992 54.8757080
## beta[3,17]
                   55.1803550 0.9332272 53.28641361 56.9787842
## beta[4,17]
                   48.9319298 0.8485414 47.31213588 50.6031499
## beta[5,17]
                   46.2653397 1.1300489 43.89912988 48.4355767
                   51.3887070 0.8243632 49.70430353 52.9750254
  beta[6,17]
## beta[7,17]
                   46.7497226 2.2991594 41.63006534 51.0984169
## beta[8,17]
                   52.2843067 1.9094081 48.08334810 55.3344178
## beta[9,17]
                   53.2805018 0.6635770 51.91987207 54.5118972
                   47.9371653 1.1271367 45.66019767 50.0652831
## beta[10,17]
## beta[11,17]
                   52.0230307 0.6489327 50.75655496 53.3063521
                   48.5740598 1.2640516 46.18405026 51.0738517
## beta[12,17]
## beta[13,17]
                   46.0250522 0.8851848 44.24224428 47.7693131
## beta[1,18]
                   46.7191474 1.6849682 43.37287806 49.9894809
## beta[2,18]
                   53.6993091 0.7032252 52.30481462 55.0809696
## beta[3,18]
                   55.2918572 0.8898372 53.51782732 57.0021850
## beta[4,18]
                   48.9570142 0.8990033 47.26337927 50.7539149
## beta[5,18]
                   46.3654826 1.1661034 44.02401079 48.6048889
                   51.4340005 0.8929114 49.57896593 53.1963433
## beta[6,18]
## beta[7,18]
                   46.7545369 2.3458972 41.57946265 51.2566181
                   52.2918695 1.8741920 48.21060194 55.3887927
## beta[8,18]
## beta[9,18]
                   53.1913995 0.7125515 51.70608770 54.5131026
## beta[10,18]
                   47.8208705 1.1798427 45.45918056 50.1042142
## beta[11,18]
                   52.0348514 0.6632475 50.65707936 53.3067999
## beta[12,18]
                   48.4413338 1.2539374 46.05390072 50.8629306
## beta[13,18]
                   46.0264615 0.9369834 44.12348258 47.9383915
                   46.7421722 1.6016921 43.54344622 49.7863545
## beta[1,19]
## beta[2,19]
                   53.8693082 0.7158984 52.52157535 55.3957116
## beta[3,19]
                   55.4003856 0.8175367 53.78862581 56.9665940
                   48.9647817 0.9209987 47.21677596 50.7942971
## beta[4,19]
## beta[5,19]
                   46.4612821 1.2003758 44.06536548 48.7720284
## beta[6,19]
                   51.4905103 0.9519827 49.52667423 53.3854068
## beta[7,19]
                   46.7601683 2.3832760 41.63232402 51.3653629
## beta[8,19]
                   52.2944480 1.8615495 48.19078230 55.3370190
                   53.1191294 0.7229911 51.64951317 54.4534752
## beta[9,19]
## beta[10,19]
                   47.7283845 1.2228423 45.28487685 50.1013232
## beta[11,19]
                   52.1019241 0.6812656 50.67895815 53.4229057
                   48.3219121 1.2352106 45.94940141 50.7075071
## beta[12,19]
## beta[13,19]
                   46.0205789 0.9521834 44.04763945 47.9163047
## beta[1,20]
                   46.7582842 1.5352911 43.73173446 49.7050819
## beta[2,20]
                   53.9160116 0.7264295 52.57913230 55.4433531
## beta[3,20]
                   55.3806216 0.7737028 53.82986717 56.8416627
## beta[4,20]
                   48.9781951 0.9234619 47.22012021 50.8176672
## beta[5,20]
                   46.5439817 1.2129056 44.19475206 48.8982318
## beta[6,20]
                   51.5285021 0.9917533 49.48773575 53.5262365
## beta[7,20]
                   46.7639945 2.4207134 41.58969934 51.3864437
## beta[8,20]
                   52.3163486 1.8168325 48.26509074 55.2879608
## beta[9,20]
                   53.0319687 0.7065565 51.50450038 54.3218997
## beta[10,20]
                   47.6212562 1.2740673 45.08221853 50.1020328
## beta[11,20]
                   52.1880136 0.6670004 50.86017541 53.4863884
                   48.1991681 1.2166046 45.88051505 50.4596289
## beta[12,20]
## beta[13,20]
                   46.0143552 0.9618815 44.05770633 48.0022406
```

```
## beta[1,21]
                   46.7867748 1.4608324 43.78679190 49.5976637
## beta[2,21]
                   53.9627333 0.7133019 52.64062644 55.4582007
## beta[3,21]
                   55.3917216 0.7602843 53.86113700 56.8728672
## beta[4,21]
                   48.9973325 0.9028998 47.28894242 50.8021263
## beta[5,21]
                   46.6284567 1.2130280 44.27558319 49.1251114
                   51.5949363 1.0058461 49.51228545 53.6714812
## beta[6,21]
## beta[7,21]
                   46.7686597 2.4794534 41.48974505 51.5905315
## beta[8,21]
                   52.3184579 1.7838715 48.31533347 55.2417579
## beta[9,21]
                   53.1274968 0.7071195 51.64861973 54.4375554
## beta[10,21]
                   47.5207537 1.3034189 44.89221432 50.0244359
                   52.2554363 0.6082433 51.07245111 53.4918906
## beta[11,21]
                   48.0540662 1.1969640 45.75188289 50.2858863
## beta[12,21]
## beta[13,21]
                   46.0102836 0.9687428 44.05574358 47.8820252
                   46.9138681 1.4702115 43.87444960 49.7132180
## beta[1,22]
## beta[2,22]
                   53.9280857 0.6806370 52.66031623 55.3697297
## beta[3,22]
                   55.3909755 0.7627844 53.89025506 56.8790100
## beta[4,22]
                   49.0171836 0.8686521 47.29466320 50.7478746
## beta[5,22]
                   46.7094752 1.2132755 44.28517901 49.0972275
## beta[6,22]
                   51.6452200 1.0085701 49.56952211 53.6278500
## beta[7,22]
                   46.7599454 2.5191544 41.44002023 51.6686499
                   52.3274020 1.7383628 48.40335725 55.2711821
## beta[8,22]
## beta[9,22]
                   53.2003764 0.6739861 51.82058867 54.4739230
## beta[10,22]
                   47.4205357 1.3180979 44.78243620 49.8706666
## beta[11,22]
                   52.3761841 0.5800552 51.24988800 53.5497691
## beta[12,22]
                   48.0102021 1.23333392 45.61759356 50.3119820
## beta[13,22]
                   46.0085939 0.9463558 44.11870181 47.8884170
                   47.0232361 1.4814496 43.91782910 49.9315878
## beta[1,23]
## beta[2,23]
                   53.8669594 0.7174250 52.50044430 55.3438474
## beta[3,23]
                   55.3670157 0.8033922 53.77174617 56.9774226
## beta[4,23]
                   49.0392598 0.8268835 47.40021465 50.6494120
## beta[5,23]
                   46.7962967 1.2039744 44.43139050 49.1931114
## beta[6,23]
                   51.6930843 1.0107959 49.71234878 53.8058706
## beta[7,23]
                   46.7614674 2.5658209 41.35513589 51.8528121
## beta[8,23]
                   52.3389353 1.6916018 48.58238159 55.2809663
## beta[9,23]
                   53.2287894 0.6573569 51.86899606 54.5250160
## beta[10,23]
                   47.3236751 1.3460824 44.58790379 49.8583770
## beta[11,23]
                   52.4861980 0.5989203 51.37275263 53.7528760
## beta[12,23]
                   47.9452698 1.2447301 45.45634922 50.2473777
## beta[13,23]
                   46.0020642 0.9207214 44.15558873 47.8619245
## beta[1,24]
                   47.1305436 1.4869033 43.88884664 50.0421037
## beta[2,24]
                   53.8081838 0.7034063 52.45534988 55.2121716
                   55.3511499 0.8095567 53.71748443 56.9488549
## beta[3,24]
## beta[4,24]
                   48.8683044 0.8151464 47.23374258 50.4731764
## beta[5,24]
                   46.6405702 1.1818212 44.32265636 48.9996827
## beta[6,24]
                   51.7246580 0.9944392 49.79219166 53.8391161
## beta[7,24]
                   46.7495695 2.6084561 41.44290247 51.8995926
## beta[8,24]
                   52.3529625 1.6348484 48.77106141 55.1723407
## beta[9,24]
                   53.2245996 0.6638911 51.87331308 54.5047005
## beta[10,24]
                   47.2340111 1.3460257 44.42973164 49.6907910
## beta[11,24]
                   52.6098662 0.5596440 51.58168714 53.7578403
## beta[12,24]
                   47.8901211 1.2638985 45.43499646 50.2952325
## beta[13,24]
                   45.9815802 0.8946495 44.19968961 47.8335330
```

```
## beta[1,25]
                   47.2423711 1.4813390 43.96972453 50.0950786
## beta[2,25]
                   53.6804149 0.7280380 52.21821671 55.1005840
## beta[3,25]
                   55.3100243 0.8440411 53.62275803 56.9828277
## beta[4,25]
                   48.7773472 0.8666345 47.08144277 50.4819196
## beta[5,25]
                   46.4909435 1.1667758 44.24379518 48.7740719
                   51.7657467 0.9760860 49.79779801 53.7531843
## beta[6,25]
## beta[7,25]
                   46.7458671 2.6409454 41.43742045 51.9413585
## beta[8,25]
                   52.3512352 1.5890911 48.92201779 55.1477914
## beta[9,25]
                   53.2668154 0.7064152 51.82130832 54.6135692
## beta[10,25]
                   47.1365071 1.3479176 44.32592250 49.6017676
## beta[11,25]
                   52.5266708 0.6568606 51.33416299 53.9571469
                   47.9037261 1.3397291 45.30471282 50.3954086
## beta[12,25]
## beta[13,25]
                   46.0381220 0.9314409 44.21415386 47.9691454
## beta[1,26]
                   47.3565627 1.4751398 43.93836281 50.3243612
## beta[2,26]
                   53.5714810 0.7184205 52.12762987 54.9467133
## beta[3,26]
                   55.2790811 0.8710228 53.49875774 56.9581881
## beta[4,26]
                   48.6911341 0.9040403 46.88819116 50.4056816
## beta[5,26]
                   46.3461420 1.1552840 44.08583818 48.5561571
## beta[6,26]
                   51.8022736 0.9293562 49.97182332 53.6897940
## beta[7,26]
                   46.7498456 2.6828938 41.39557134 51.9919580
                   52.3537983 1.5436570 48.99796781 55.1439165
## beta[8,26]
## beta[9,26]
                   53.2971362 0.6964640 51.88290091 54.6503765
## beta[10,26]
                   47.0431523 1.3533366 44.26502066 49.4627238
## beta[11,26]
                   52.4467005 0.7354556 51.04320166 53.9862058
                   47.9046602 1.4283001 44.93686676 50.5560030
## beta[12,26]
## beta[13,26]
                   46.0984842 0.9448671 44.28554119 48.0987626
                   47.4618450 1.4700258 44.09461319 50.3972924
## beta[1,27]
## beta[2,27]
                   53.6111881 0.7078093 52.24430199 54.9594438
## beta[3,27]
                   55.2679870 0.9362267 53.37511242 57.1152185
## beta[4,27]
                   48.6024534 0.9173805 46.74524389 50.3933464
## beta[5,27]
                   46.2016904 1.1621773 43.91817702 48.3829458
## beta[6,27]
                   51.8327335 0.9539375 49.97904837 53.7463876
## beta[7,27]
                   46.7452836 2.7133898 41.29619052 52.0879452
## beta[8,27]
                   52.3640944 1.4948538 49.20271106 55.1464839
                   53.4495606 0.7081610 52.07726318 54.8664754
## beta[9,27]
## beta[10,27]
                   46.9520061 1.3574939 44.08995442 49.4453710
## beta[11,27]
                   52.3771826 0.7578924 50.91932501 53.8852459
## beta[12,27]
                   47.9196206 1.5196270 44.77370048 50.7517371
## beta[13,27]
                   46.1524774 0.9366134 44.33378084 48.0825628
## beta[1,28]
                   47.5722609 1.4605450 44.23145966 50.4744615
## beta[2,28]
                   53.6942170 0.7224197 52.29598129 55.1091818
## beta[3,28]
                   55.2672804 0.9914321 53.25603453 57.2040805
## beta[4,28]
                   48.5022231 0.9164981 46.66678874 50.2971843
## beta[5,28]
                   46.0848688 1.1801998 43.82973407 48.3405981
## beta[6,28]
                   51.8413230 0.9615027 49.95065859 53.7982913
## beta[7,28]
                   46.7603785 2.7476268 41.24162876 52.2203267
## beta[8,28]
                   52.3590314 1.4207960 49.40816857 55.0015970
## beta[9,28]
                   53.6043712 0.7257379 52.16331887 55.0172231
## beta[10,28]
                   46.8523748 1.3631335 44.02617140 49.3986889
## beta[11,28]
                   52.3068993 0.7784794 50.74224627 53.8319352
## beta[12,28]
                   47.9131191 1.6167875 44.54409007 51.0062493
## beta[13,28]
                   46.1935809 0.9022764 44.56786932 48.1391365
```

```
## beta[1,29]
                   47.6848497 1.4344787 44.45177709 50.5091427
## beta[2,29]
                   53.6673304 0.7679560 52.13265892 55.1472795
## beta[3,29]
                   55.2585334 1.0287523 53.13190571 57.2435084
## beta[4,29]
                   48.3580718 0.9985588 46.30876496 50.2707486
## beta[5,29]
                   46.0312334 1.2366088 43.54426637 48.3755283
  beta[6,29]
                   51.8677925 0.9387419 50.03582876 53.7358149
## beta[7,29]
                   46.7554409 2.7807474 41.15111317 52.2648013
## beta[8,29]
                   52.3619139 1.3557810 49.48227192 54.8444986
  beta[9,29]
##
                   53.6382803 0.7852292 52.09806866 55.1898938
## beta[10,29]
                   46.8636525 1.4377624 43.83159561 49.6131254
                   52.2322878 0.7727406 50.59331291 53.7419728
## beta[11,29]
                   47.9130771 1.7037495 44.21988677 50.9993214
## beta[12,29]
## beta[13,29]
                   46.2489814 0.8655470 44.69269510 48.0894850
## beta[1,30]
                   47.7991288 1.4156141 44.69305877 50.5769502
## beta[2,30]
                   53.6506213 0.7774959 52.13880114 55.1265817
                   55.2627770 1.1256573 53.01983584 57.3903348
## beta[3,30]
## beta[4,30]
                   48.3550312 1.1031878 46.08211241 50.4331675
## beta[5,30]
                   46.0259933 1.3216892 43.37429385 48.5746496
## beta[6,30]
                   51.9194306 0.9743408 50.02526565 53.8536274
  beta[7,30]
                   46.7472582 2.8285276 41.14622590 52.2613860
##
## beta[8,30]
                   52.2579323 1.3622229 49.49011940 54.8201552
  beta[9,30]
                   53.6713997 0.8551522 52.03762314 55.4141234
  beta[10,30]
                   46.8650164 1.5038064 43.80688647 49.6510935
## beta[11,30]
                   52.1206822 0.8143506 50.38648947 53.6985330
## beta[12,30]
                   47.9236093 1.7686198 44.21213856 51.1759230
## beta[13,30]
                   46.2149077 0.9222641 44.50317426 48.1660882
## beta[1,31]
                   47.8996625 1.3788202 44.76095190 50.4355935
## beta[2,31]
                   53.6912338 0.8528018 52.00973344 55.3179302
                   55.2785179 1.2092872 52.90852160 57.6307819
## beta[3,31]
## beta[4,31]
                   48.3585808 1.2016861 45.86013835 50.6686478
                   46.0219710 1.3913000 43.19006592 48.7444100
## beta[5,31]
## beta[6,31]
                   51.9119956 1.0926269 49.75673560 54.1812027
## beta[7,31]
                   46.7432851 2.8569825 41.01971904 52.3066243
                   52.1675439 1.3656409 49.40700955 54.7009520
##
  beta[8,31]
## beta[9,31]
                   53.6930802 0.9112265 51.84999218 55.5205501
  beta[10,31]
                   46.8551461 1.5830819 43.61816394 49.7614292
  beta[11,31]
                   52.0090255 0.8341724 50.25811229 53.5760578
## beta[12,31]
                   47.9192727 1.8396770 43.94391158 51.3031586
## beta[13,31]
                   46.1789356 0.9681142 44.33602796 48.1880520
                                                      0.6455778
## sigma2_beta[1]
                    0.2174465 0.1709002
                                         0.03591539
## sigma2_beta[2]
                    0.2195665 0.1769982
                                          0.03763168
                                                      0.6657771
## sigma2_beta[3]
                    0.2117813 0.1594372
                                          0.03599774
                                                      0.6146854
## sigma2_beta[4]
                    0.2150078 0.1639863
                                          0.03653461
                                                      0.6168701
## sigma2_beta[5]
                    0.2248891 0.1892429
                                          0.03824851
                                                      0.6904631
## sigma2_beta[6]
                    0.2127312 0.1623794
                                          0.03671041
                                                      0.6352535
## sigma2_beta[7]
                    0.2177799 0.1719668
                                          0.03634232
                                                      0.6345328
  sigma2_beta[8]
                    0.2146970 0.1668502
                                          0.03705036
                                                      0.6189533
## sigma2_beta[9]
                    0.2103161 0.1587663
                                          0.03750246
                                                      0.6029883
## sigma2_beta[10]
                    0.2202669 0.1761017
                                          0.03688560
                                                      0.6480835
  sigma2_beta[11]
                    0.2111939 0.1591431
                                          0.03804373
                                                      0.5951090
## sigma2_beta[12]
                    0.2172667 0.1701173
                                          0.03499755
                                                      0.6603020
## sigma2_beta[13]
                    0.2134587 0.1636727
                                          0.03839452
                                                      0.6263231
```

```
## sigma2_y[1]
                    4.3393222 2.2137569
                                          2.06291739
                                                       8.9778112
## sigma2_y[2]
                    3.8692044 1.0191342
                                          2.27841397
                                                       6.2710692
## sigma2_y[3]
                    3.4111862 1.1556115
                                          1.48423175
                                                       6.0022095
## sigma2_y[4]
                    3.9842974 1.2215696
                                          2.22593396
                                                       6.8663237
## sigma2_y[5]
                    7.4445583 4.5573201
                                          3.38615960 20.3325823
## sigma2_y[6]
                    3.7518461 1.1728339
                                          1.95333042
                                                       6.6424013
## sigma2_y[7]
                    4.3641806 3.0370416
                                          1.89056380 10.3323020
## sigma2 y[8]
                    4.2269202 2.2465433
                                          1.94931827
                                                       8.4792981
## sigma2_y[9]
                    3.5124807 0.9368648
                                          1.89915246
                                                       5.5939477
## sigma2 y[10]
                    3.9496067 1.6799443
                                          1.69059348
                                                       7.7787986
## sigma2_y[11]
                    3.6043268 0.9004233
                                          2.11599421
                                                       5.7642380
## sigma2 y[12]
                    4.2285806 1.8916422
                                          1.99432151
                                                       8.2372830
## sigma2_y[13]
                    3.7806794 1.1815197
                                          1.90567452
                                                       6.6652333
## mean Rhat: 1.077681
  mean effective sample size: 710.0193
```

For predicting control of the U.S. Senate, if a 50/50 split is predicted, then the VP breaks the tie. In this case, we predict Democrat majority since our presidential model gives Biden a high chance of winning (and a Democrat VP will break the tie).

A.3 House Election Model

House Model Purpose and Structure

The purpose of the House model is to predict which candidate in each of NC's 13 congressional districts will win in their respective elections.

The response we will use is Y_k , the Democrat candidate's share of the two-party vote using the following model where the poll k (of K=fill in polls) ended t days (of T = 60 days) before the election and was conducted on district j (where j is in districts $1, \dots, 11, 13$ of North Carolina). For district 12, the vote share is coded as 100 because there is only one candidate, and she is a Democrat. Note that, due to the scarcity of poll responses for the NC House elections, we included all poll responses within 115 days of the election.

```
\begin{split} Y_k &\sim N(\beta_{jt}, \sigma_{yj}^2) \\ \beta_{jt} &\sim N(\beta_{jt-1}, \sigma_{\beta_j}^2) \\ \sigma_{yj}^2 &\sim InvGamma(\nu_u, \nu_y \tau_y) \\ \nu_y &\sim Uniform(0, 100) \text{ and } \tau_y \sim Uniform(0, 100). \\ \sigma_{\beta j}^2 &\sim InvGamma(\nu_\beta, \nu_\beta \tau_\beta)) \\ \nu_\beta &\sim Uniform(0, 100) \text{ and } \tau_\beta \sim Uniform(0, 100). \\ \beta_{j1} &\sim N(h_j, 7.5) \\ h_j &= 0.9 * \text{Vote Share from Partisan Lean}_j + 0.1 * \text{Expected Vote Share from Voter Turnout}_j \end{split}
```

A hierarchical model was used, where the Democratic candidate's share of the two-party vote for poll k on any given day t for district j is modelled as a normal distribution with mean β_{jt} and variance σ_{yj}^2 . A random walk was used to calculate β_{jt} for each day t before the election (up until 30 days before the election) from β_{jt-1} and $\sigma_{\beta j}$. The mean h_j of the normal prior on mu_j is computed by multiplying Vote Share from Partisan Lean_j by 0.9 and Expected Vote Share from Voter Turnout_j by 0.1, then summing those two values.

Interim Report Model

```
Vote_{i} \sim Binomial(n_{i}, \pi_{i}) logit(\pi_{i}) = \alpha_{0} + \Sigma_{j=1,2,3}\beta_{j} * I(Income_{i} = Income\ Category_{s}) + \Sigma_{j=5,6}\beta_{j} * I(Gender_{i} = Gender\ Category_{g}) +  \Sigma_{j=7,8}\beta_{j} * I(Race_{i} = Race\ Category_{r}) + \Sigma_{j=9,10,11}\beta_{j} * I(Age_{i} = Age\ Category_{a}) +  \Sigma_{j=12,13}\beta_{j} * I(Party_{i} = Party\ Category_{p}) +  \Sigma_{j=14,...,17}\beta_{j} * I(Gender_{i} = Gender\ Category_{g})I(Party_{i} = Party\ Category_{p}) +  \Sigma_{j=18,...,21}\beta_{j} * I(Race_{i} = Race\ Category_{r})I(Party_{i} = Party\ Category_{p}) +  \Sigma_{j=22,...,27}\beta_{j} * I(Gender_{i} = Gender\ Category_{g})I(Age_{i} = Age\ Category_{a}) +  \Sigma_{j=28,...,33}\beta_{j} * I(Party_{i} = Party\ Category_{p})I(Age_{i} = Age\ Category_{a})
```

where:

```
Income Category<sub>s</sub> \in {Median Income $46864 - $52798, Median Income $52798 - $64509, Median Income > $64509}

Gender Category<sub>g</sub> \in {Male, Unspecified}

Race Category<sub>r</sub> \in {Black, Other}

Age Category<sub>a</sub> \in {Age 30 - 44, Age 45 - 59, Age 60+}

Party Category<sub>p</sub> \in {Republican, Other}
```

Where π_i is the probability that subgroup i votes. $Vote_i$ is the number of people in the ith subgroup that voted in the 2016 election. The baseline is Median Income < \$46864 for income, Female for gender, White for race, 18-29 for age, and Democrat for party affiliation.

We fit the voter turnout model from the Interim Report on the 2020 registered voter dataset. The predicted values were the number of people that will vote for each demographic subgroup in each congressional district. We made a reasonable assumption that if someone is registered as a Democrat, that they will indeed vote for the Democratic candidate (and made the same assumption for registered Republicans). If the demographic subgroup had third/unaffiliated party, then we split their predicted number of voters evenly between the Democrat and Republican parties. From this, we calculated Democratic party vote share for each district by taking the ratio of the predicted number of Democratic voters to total number of registered voters in that district.

Raw Output for Appendix

##	mean	sd 2.5	5% 97.5%
## beta[1,1]	58.306127	2.716740 52.97769753	39 63.675746
## beta[2,1]	59.253823	2.777571 53.83087332	29 64.707466
## beta[3,1]	36.385167	2.670935 31.4367925	75 41.684174
## beta[4,1]	66.711295	2.729256 61.52344578	59 72.155486
## beta[5,1]	30.463614	2.735714 25.0701672	16 35.796273
## beta[6,1]	58.811408	2.742312 53.36276143	35 64.131692
## beta[7,1]	38.194965	2.812420 32.56643960	03 43.595922
## beta[8,1]	44.256514	2.564823 38.99160944	41 49.328885
## beta[9,1]	43.211496	2.580971 38.10132833	37 48.597018
## beta[10,1]	29.324002	2.730484 24.04375613	34.836887
## beta[11,1]	43.880322	2.187492 39.40863984	48 48.139221
## beta[12,1]	68.969534	2.744467 63.67742984	45 74.298244
## beta[13,1]	30.396369	2.731562 24.98980088	35.883334
## beta[1,2]	58.352260	3.040225 52.32025519	96 64.302066
## beta[2,2]	59.267556	3.127547 53.20965470	01 65.536052
## beta[3,2]	36.362939	3.021067 30.63934889	90 42.443572

##	beta[4,2]	66.670367	3.077007	60.774331456	72.879396
##	beta[5,2]	30.484026	3.009829	24.789901778	36.339399
##	beta[6,2]	58.837266	3.089096	52.785350981	64.904593
##	beta[7,2]	38.250039	3.142514	32.211870346	44.520885
##	beta[8,2]	44.391225	2.886468	38.351914439	50.094210
##	beta[9,2]	43.362126	2.858532	37.344276524	49.189518
##	beta[10,2]	29.309636	3.026344	23.355513128	35.415154
##	beta[11,2]	44.172316	2.432975	39.122144150	48.877901
##	beta[12,2]	68.944352	3.063979	62.817791974	75.036508
##	beta[13,2]	30.438862	3.056301	24.270146352	36.417821
##	beta[1,3]	58.368669	3.332791	51.870150051	65.069312
	beta[2,3]	59.276091	3.526879	52.585839537	66.302592
	beta[3,3]	36.311190	3.348195	29.895473390	43.097538
##	beta[4,3]	66.643560		59.891919751	73.405557
	beta[5,3]	30.509747		23.975655355	37.144857
	beta[6,3]	58.835481		52.333112910	65.587899
##	beta[7,3]	38.270992		31.412035147	45.103616
##	beta[8,3]	44.527720		37.845925520	50.696095
	beta[9,3]	43.556225		37.057456871	49.830085
	beta[10,3]	29.268348		22.691576703	36.030820
	beta[10,3] beta[11,3]	44.449054		39.078423450	49.665543
	beta[11,3] beta[12,3]	68.965937		62.124234052	75.664384
	beta[12,3] beta[13,3]	30.413120		23.691910985	37.108805
##	beta[13,3] beta[1,4]	58.365505		51.204359548	65.601744
##	beta[1,4] beta[2,4]	59.247331		51.932215509	66.917361
	beta[2,4] beta[3,4]	36.324428		29.518788188	43.596500
	beta[4,4]	66.643179		59.100184032	73.824224
##	beta[5,4]	30.524889		23.559421377	37.711960
##	beta[6,4]	58.827705		51.710010972	65.968050
	beta[7,4]	38.288599		31.153627517	45.668316
	beta[8,4]	44.679465		37.482810933	51.309609
	beta[9,4]	43.751912		36.798965705	50.308274
	beta[10,4]	29.255932		22.086106219	36.447439
	beta[11,4]	44.764004	2.895262	39.063448015	50.837896
	beta[12,4]	68.929958		61.456805864	76.261149
	beta[13,4]	30.387894		23.327469316	37.687980
	beta[1,5]	58.338204		50.811769371	65.923478
	beta[2,5]	59.304872		51.184248393	67.420540
	beta[3,5]	36.328763		28.770960718	43.989578
	beta[4,5]	66.607566		58.584637237	74.066816
	beta[5,5]	30.536652		23.111815665	38.045611
	beta[6,5]	58.801986		51.305185383	66.367658
	beta[7,5]	38.303831		30.444724652	46.468960
	beta[8,5]	44.773397		37.028889643	51.641192
	beta[9,5]	43.976716		36.669634874	51.004485
	beta[10,5]	29.244137		21.102460081	37.069445
	beta[11,5]	45.018522		38.894429749	51.740404
	beta[12,5]	68.949205		60.863494047	76.536290
	beta[13,5]	30.420340		22.998457762	38.371319
	beta[1,6]	58.304867		50.187979967	66.708488
	beta[2,6]	59.298593		51.048209626	67.985691
	beta[3,6]	36.296599		28.526117351	44.655085
	_ , , , , ,				

шш	h-+-[4 6]	66 611220	4 OF6136	EQ 420E74020	74 605760
	beta[4,6]	66.611332		58.438574939	74.625763
	beta[5,6]	30.540835		22.771174840	38.650854
	beta[6,6]	58.798035		50.655577589	67.076381
##	beta[7,6]	38.278691		29.909428996	46.882767
	beta[8,6]	44.859569		36.777941715	52.028967
	beta[9,6]	44.177958		36.320956602	51.437296
	beta[10,6]	29.234336		20.191063565	37.803459
	beta[11,6]	45.344910		39.247710483	52.329855
##	beta[12,6]	68.955890		60.000992617	77.507457
##	beta[13,6]	30.437395	4.104944	22.633896225	38.840688
##	beta[1,7]	58.260632	4.306509	49.709411964	66.726407
##	beta[2,7]	59.296329	4.427612	50.649496907	68.289360
##	beta[3,7]	36.290133	4.390128	27.648299375	44.901723
##	beta[4,7]	66.587814	4.284334	58.055145300	74.968408
##	beta[5,7]	30.550488	4.468446	21.970548559	39.483955
##	beta[6,7]	58.785063	4.453932	50.054345089	67.709637
	beta[7,7]	38.232816	4.527592	29.557921255	47.813748
##	beta[8,7]	45.012496		36.749567232	52.526230
##	beta[9,7]	44.386974		35.800904827	51.635625
##	beta[10,7]	29.210670		19.810118586	38.031075
	beta[11,7]	45.643531		39.595918578	52.994591
	beta[12,7]	68.881387		59.847795152	77.936175
##	beta[13,7]	30.427835		21.856797765	39.307411
	beta[1,8]	58.268414		49.406168860	67.277460
	beta[1,8]	59.289803		49.959924066	69.108799
##	beta[2,8]	36.292499		27.042237016	45.811325
##	-	66.587719		57.369607330	75.431523
	beta[4,8]				
##	beta[5,8]	30.536804		20.920941442	39.485781
	beta[6,8]	58.820231		49.813537225	68.160952
	beta[7,8]	38.252243		29.162048851	48.192117
##	beta[8,8]	45.170439		36.650085483	53.032581
	beta[9,8]	44.573776		36.114132518	52.188508
	beta[10,8]	29.236626		19.645196332	38.439721
	beta[11,8]	45.918617		39.925660440	54.117024
	beta[12,8]	68.925147		59.228405231	78.340733
	beta[13,8]	30.458401		21.540221068	40.207513
	beta[1,9]	58.227481		48.827534270	67.469793
##	beta[2,9]	59.300895		49.486445285	68.985516
##	beta[3,9]	36.300910	4.859348	26.559610569	46.483395
##	beta[4,9]	66.595457	4.741732	56.713108738	76.074615
##	beta[5,9]	30.514089	4.885376	20.698788360	40.394455
##	beta[6,9]	58.815551	4.893609	49.066195290	68.597732
##	beta[7,9]	38.219263	4.860930	29.018163419	48.782226
##	beta[8,9]	45.337447	4.021454	36.231640253	53.609536
##	beta[9,9]	44.811520	3.851604	36.438462750	52.170171
##	beta[10,9]	29.238296	4.809784	19.195282646	38.955400
##	beta[11,9]	46.232525	3.600083	40.118419854	54.684602
##	beta[12,9]	68.932522	4.855149	58.768413473	78.859970
	beta[13,9]	30.448421	4.741623	21.260496585	40.199192
	beta[1,10]	58.247449	4.972730	48.729943726	68.096116
	beta[2,10]	59.271930	5.101482	49.054202063	69.489015
	beta[3,10]	36.288553		26.103773020	46.527697
	- ,		· -·-		

шш	h-+-[4 10]	66 61210E	E 000004	EE 062462400	77 020201
	beta[4,10]	66.613195		55.863463490	77.038381
	beta[5,10]	30.529794		20.587857122	40.700657
	beta[6,10]	58.820469		48.872829775	69.218663
##	beta[7,10]	38.203178		28.439100941	48.950892
	beta[8,10]	45.505679		36.658987968	54.134671
	beta[9,10]	45.013589		36.868484116	52.509908
	beta[10,10]	29.230443		18.593361748	38.984593
	beta[11,10]	46.492548		40.393340003	55.071663
	beta[12,10]	68.973765	5.087724	58.200282340	79.389829
##	beta[13,10]	30.435523	4.949181	20.576660287	40.537013
##	beta[1,11]	58.266623	5.150298	47.914787416	68.444945
##	beta[2,11]	59.261359	5.348439	48.660363549	70.413664
##	beta[3,11]	36.290370	5.306424	25.568221934	46.688181
##	beta[4,11]	66.608036	5.238743	55.543123369	76.979618
##	beta[5,11]	30.567121	5.348584	20.332275024	40.832868
##	beta[6,11]	58.783717	5.348421	48.383420142	69.777938
##	beta[7,11]	38.163950	5.306011	27.768373582	49.661997
	beta[8,11]	45.631587	4.169952	36.246264533	54.293494
##	beta[9,11]	45.259294		37.023478633	53.159288
##	beta[10,11]	29.197206		18.512118346	39.628136
	beta[11,11]	46.792953		40.804479041	55.857930
	beta[12,11]	68.962130		57.936207098	80.052020
	beta[13,11]	30.415973		20.418780079	40.832706
	beta[1,12]	58.302510		47.413902113	68.966592
	beta[1,12] beta[2,12]	59.254457		48.007494430	70.723173
##	beta[2,12] beta[3,12]	36.339969		25.012205351	47.060490
		66.627207		55.412321982	77.221734
##	beta[4,12]				
##	beta[5,12]	30.557454		19.567388996	41.269077
	beta[6,12]	58.769380		47.746141566	70.927868
	beta[7,12]	38.166790		27.333278172	49.773512
	beta[8,12]	45.783401		36.437352864	54.277444
	beta[9,12]	45.508003		37.326282803	53.433867
	beta[10,12]	29.166221		18.173942715	39.838540
	beta[11,12]	47.065534		41.070979469	56.422165
	beta[12,12]	68.972807		57.898251724	80.041023
	beta[13,12]	30.449992		19.841436368	41.483756
	beta[1,13]	58.262313		46.995975079	69.220810
##	beta[2,13]	59.234750		47.389997901	71.195490
##	beta[3,13]	36.337262	5.687907	24.650370831	47.574810
##	beta[4,13]	66.681401	5.595423	54.717485504	77.793053
	beta[5,13]	30.571042	5.675612	18.524365707	41.905032
##	beta[6,13]	58.766203	5.708592	47.507514407	70.808711
##	beta[7,13]	38.154545	5.642853	26.812866801	50.231639
##	beta[8,13]	45.946299	4.255413	36.752409829	54.615902
##	beta[9,13]	45.740808	4.017914	37.658940787	53.461500
##	beta[10,13]	29.180726	5.505926	17.687237104	40.514079
##	beta[11,13]	47.335563	3.862901	41.262953767	56.209493
##	beta[12,13]	68.959719	5.617269	57.312723831	80.479439
	beta[13,13]	30.421329	5.540451	19.387162344	41.702633
	beta[1,14]	58.301873	5.622821	46.772466916	69.775547
	beta[2,14]	59.256256	5.875500	47.116404303	71.167237
	beta[3,14]	36.321832		24.440119288	47.524982
	= · -				

	beta[4,14]	66.664215	5.733737	54.466354809	78.439103
##	beta[5,14]	30.584811	5.892816	18.677108888	42.366872
##	beta[6,14]	58.786263	5.882636	46.692209525	71.088970
##	beta[7,14]	38.155730	5.745581	26.623484389	50.353594
##	beta[8,14]	46.065682	4.284096	36.994539345	55.070331
##	beta[9,14]	45.967892	4.063710	38.607971485	53.715757
##	beta[10,14]	29.178485	5.697925	17.281554521	41.122449
##	beta[11,14]	47.624024	3.934260	41.512498814	56.677932
##	beta[12,14]	68.946208	5.777823	56.821399985	80.522566
	beta[13,14]	30.397295	5.665580	19.325979259	41.994068
##	beta[1,15]	58.338386	5.770202	46.809363654	70.520053
##	beta[2,15]	59.267685	6.008962	46.820573422	71.862300
	beta[3,15]	36.324546	6.065624	24.029639291	48.310091
	beta[4,15]	66.652767	5.893977	53.977288833	78.749912
	beta[5,15]	30.562379	5.967742	17.874243540	42.629890
	beta[6,15]	58.771929	5.988793	46.153458767	71.306672
	beta[7,15]	38.148955	5.947232	26.109563892	50.253487
	beta[8,15]	46.171479		36.802827741	55.095160
	beta[9,15]	46.157744	4.125107	38.508443584	54.359149
	beta[10,15]	29.197460		17.000430591	41.134019
	beta[11,15]	47.927912		41.786060481	56.732997
	beta[12,15]	68.943342		56.365425554	80.908491
	beta[13,15]	30.339386		18.255294150	42.375917
	beta[1,16]	58.336171	6.020326	45.998982492	71.063162
##	beta[2,16]	59.285772		47.306352062	72.365226
##	beta[3,16]	36.318764	6.268369	23.478254023	48.889813
##	beta[4,16]	66.611462	6.068660	53.806954659	79.289792
	beta[5,16]	30.598517	6.381035	17.291937897	43.244396
	beta[6,16]	58.755407	6.164153	46.238480893	71.749485
##	beta[7,16]	38.117870	6.125044	26.140244127	50.603916
	beta[8,16]	46.307109	4.334710	37.058711739	55.486353
	beta[9,16]	46.349035	4.112395	38.477622404	54.326619
##	beta[10,16]	29.183833	6.025569	15.892613625	41.596688
##	beta[11,16]	48.233554		41.852107165	56.849217
	beta[12,16]	68.966861	6.125410	56.060643175	81.237433
	beta[13,16]	30.342432	6.034239	18.207775029	42.661679
##	beta[1,17]	58.321885	6.179098	45.735560302	71.086734
##	beta[2,17]	59.277326	6.286190	46.436573437	72.419428
	beta[3,17]	36.322355	6.468998	22.724240017	49.132843
	beta[4,17]	66.647102	6.272970	53.352299422	78.970055
	beta[5,17]	30.614980	6.461924	16.467270534	43.295403
	beta[6,17]	58.753352	6.341515	45.959687652	72.076108
##	beta[7,17]	38.128562	6.295447	25.498031197	50.544361
##	beta[8,17]	46.443068	4.308399	37.910732732	55.805522
##	beta[9,17]	46.528473	4.091345	38.567649964	54.672241
	beta[10,17]	29.150410	6.280176	15.540721166	42.205867
##	beta[11,17]	48.514818	3.997312	42.317656921	56.910574
	beta[12,17]	68.975130	6.289467	55.886608126	81.612148
	beta[13,17]	30.305449	6.211051	17.864343045	43.255705
	beta[1,18]	58.306574	6.348285	45.470567881	70.878594
	beta[2,18]	59.268614	6.502635	45.688482924	72.741568
	beta[3,18]	36.322982	6.643092	22.464560254	49.742693

##	beta[4,18]	66.630158		52.954368029	79.301547
##	beta[5,18]	30.634613		16.839208491	43.901412
##	beta[6,18]	58.836614		45.957680319	72.923843
	beta[7,18]	38.132090	6.409905	25.235019125	50.910532
	beta[8,18]	46.544646	4.300672	38.174085608	55.803514
	beta[9,18]	46.747231	4.170000	39.175698347	55.130454
	beta[10,18]	29.165170	6.495744	15.358244357	42.315736
	beta[11,18]	48.669777		42.192984959	58.346601
##	beta[12,18]	68.954676		55.553014150	81.849917
##	beta[13,18]	30.287081		17.509148367	43.407955
##	beta[1,19]	58.317593	6.482085	45.184238176	71.461042
	beta[2,19]	59.261916		45.869593571	73.014204
	beta[3,19]	36.309328		22.138946429	49.995614
	beta[4,19]	66.618513	6.610978	52.565389495	79.545391
	beta[5,19]	30.637351	6.769377	16.736999562	43.598655
	beta[6,19]	58.899817		45.392925886	73.139528
##	beta[7,19]	38.147194	6.531765	25.102000748	50.886627
##	beta[8,19]	46.643279	4.303104	38.414612893	56.288110
##	beta[9,19]	46.945444	4.146384	39.448491536	55.268373
	beta[10,19]	29.171655		14.916578822	42.486671
	beta[11,19]	48.807238		42.300357935	59.218277
	beta[12,19]	68.914446		54.334482328	81.901753
	beta[13,19]	30.258996		17.231882583	43.309585
##	beta[1,20]	58.384975		45.184399152	72.558088
##	beta[2,20]	59.262215	6.814608	45.546585146	73.152117
##	beta[3,20]	36.329758	6.939561	21.656203568	50.302140
##	beta[4,20]	66.599803	6.796110	52.160772009	80.203364
	beta[5,20]	30.621707	6.867378	16.535627750	44.618199
##	beta[6,20]	58.843324		45.077492033	73.329814
##	beta[7,20]	38.150904		24.365897975	51.139155
	beta[8,20]	46.801834		38.828148397	55.990622
	beta[9,20]	47.139525		39.719027087	55.747196
	beta[10,20]	29.165116		14.798461824	42.528742
	beta[11,20]	48.953740		42.088507479	59.896537
	beta[12,20]	68.932992		54.376634353	82.577678
	beta[13,20]	30.239741		16.863660637	43.761707
	beta[1,21]	58.333028		44.745900753	73.257284
##	beta[2,21]	59.277259		44.862863959	73.239429
	beta[3,21]	36.338224		21.382581325	50.741968
	beta[4,21]	66.618064		52.232482411	80.653652
	beta[5,21]	30.622130		16.631665016	44.548853
	beta[6,21]	58.787358		44.782995340	73.652071
	beta[7,21]	38.123990		24.532088954	51.516649
	beta[8,21]	46.948894		38.977576236	55.886760
	beta[9,21]	47.362618		39.939018308	56.273426
##	beta[10,21]	29.154332		14.575735504	43.223389
	beta[11,21]	49.027885		41.857931032	60.606829
	beta[12,21]	68.911713		54.036193279	82.982557
##	beta[13,21]	30.173366		16.517150409	44.207430
	beta[1,22]	58.379061		44.840159036	73.412273
	beta[2,22]	59.301829		44.849758762	74.169925
##	beta[3,22]	36.334380	7.252386	20.908706664	50.910205

шш	h-+-[4 00]	66 650260	7 100600	E0 0EE700200	01 100720
	beta[4,22]	66.658360		52.255798392	81.190738
	beta[5,22]	30.669940		16.059923887	44.707825
##		58.778950		44.404180745	74.098098
	beta[7,22]	38.142335		24.102572084	51.911347
	beta[8,22]	47.111675		39.196836491	55.741875
	beta[9,22]	47.603159		40.614446872	56.875426
	beta[10,22]	29.132797		14.316880108	43.495748
	beta[11,22]	49.128431		41.976107304	61.152214
##	beta[12,22]	68.932881	7.068263	54.207193517	82.832962
##	beta[13,22]	30.166614	7.216423	15.671189128	44.467775
##	beta[1,23]	58.351089	7.051408	44.868240496	74.288377
##	beta[2,23]	59.288893	7.202677	44.676707287	74.032352
##	beta[3,23]	36.310744	7.370730	21.193100408	50.997657
##	beta[4,23]	66.711161	7.246430	51.889429279	81.337818
##	beta[5,23]	30.641085	7.261301	15.413448042	44.719305
##	beta[6,23]	58.799939	7.281320	44.031787435	74.778473
##	beta[7,23]	38.098832	7.213834	23.954320030	52.044849
##	beta[8,23]	47.307544	4.132758	39.502083029	56.313161
##	beta[9,23]	47.790716	4.298330	40.322991956	56.888825
##	beta[10,23]	29.119000	7.159204	13.544456447	43.218340
	beta[11,23]	49.212014	5.017169	41.892056284	61.738726
	beta[12,23]	68.935403		54.031189201	83.249761
	beta[13,23]	30.115630		14.515217728	44.475752
	beta[1,24]	58.336031		43.923917841	73.272731
	beta[2,24]	59.270694		44.419761293	74.227630
##	beta[3,24]	36.314991	7.440503	20.997475824	51.450585
	beta[4,24]	66.708827		51.476692114	81.649857
	beta[5,24]	30.685977	7.431120	15.430687298	45.368144
	beta[6,24]	58.812885		43.492548274	75.069349
	beta[7,24]	38.055070	7.427031	23.139100328	52.620093
	beta[8,24]	47.527704	4.090125	39.811023449	56.178769
	beta[9,24]	47.954563	4.295914	40.438208619	57.221168
	beta[10,24]	29.142509	7.290425	13.803735115	43.611149
	beta[11,24]	49.245636		41.545158973	62.085743
	beta[12,24]	68.990411		54.268737105	83.550418
	beta[13,24]	30.140435		14.293596367	44.936380
	beta[1,25]	58.359116		43.605945472	74.203684
##	beta[2,25]	59.271064		44.006202915	74.728816
	beta[3,25]	36.334136		20.440892035	51.878908
	beta[4,25]	66.700430		50.970011594	81.687284
	beta[5,25]	30.689227		15.219242366	46.221770
	beta[6,25]	58.813084		43.722227739	74.929812
	beta[7,25]	38.080828		22.681492650	52.842327
	beta[8,25]	47.713083		40.433527135	56.775155
	beta[9,25]	48.079428		40.457255275	57.418738
##	beta[10,25]	29.130557		13.506115896	44.280967
	beta[10,25] beta[11,25]	49.290853		41.667173561	62.025878
	beta[11,25] beta[12,25]	68.966794		53.811914763	84.126075
##		30.160118		14.092971878	45.275305
##	beta[13,25]	58.360611		43.205607838	74.028565
	beta[1,26] beta[2,26]	59.232147		43.765551891	74.028505
##	beta[3,26]	36.314586	1.131102	20.101718783	52.162711

##	beta[4,26]	66.685476	7.643953	50.722188456	82.136138
##	beta[5,26]	30.680942	7.977261	14.898505814	46.489211
##	beta[6,26]	58.787844	7.684557	43.414280882	75.071718
##	beta[7,26]	38.114291	7.589911	22.239582752	53.103183
##	beta[8,26]	47.895263	3.844534	40.882362570	56.815278
##	beta[9,26]	48.260340		40.732152402	57.445194
##	beta[10,26]	29.124755	7.512582	12.881415916	44.244382
##	beta[11,26]	49.408161	5.408229	41.771690631	62.720774
##	beta[12,26]	68.948972	7.509845	53.463921133	84.132349
##	beta[13,26]	30.133584	7.734837	13.776098867	45.385171
##	beta[1,27]	58.352661	7.577134	43.384365724	74.126017
##	beta[2,27]	59.213533	7.764217	43.320253250	75.383021
##	beta[3,27]	36.327205	7.919219	19.929613001	52.171283
##	beta[4,27]	66.702326	7.768731	50.515620001	82.360221
##	beta[5,27]	30.664580	8.011198	13.989054365	46.819722
##	beta[6,27]	58.781013	7.864430	42.957864910	75.284220
##	beta[7,27]	38.154901	7.757022	22.025412803	53.359401
##	beta[8,27]	48.059529	3.747971	41.404372109	56.688012
##	beta[9,27]	48.381731	4.306679	41.169647913	57.342771
##	beta[10,27]	29.120428	7.686989	12.719665265	44.763436
##	beta[11,27]	49.461466	5.477838	41.822762660	63.932493
##	beta[12,27]	68.968277	7.675911	53.083295671	84.497324
##	beta[13,27]	30.109131	7.836403	13.845008502	45.501562
##	beta[1,28]	58.388813	7.749344	43.126231736	74.114999
##	beta[2,28]	59.221344	7.886189	43.094458205	75.254985
##	beta[3,28]	36.325693	8.130292	19.330446330	52.314718
##	beta[4,28]	66.704719	7.907875	49.217919743	82.686228
##	beta[5,28]	30.647430	7.878266	13.348651640	46.757838
##	beta[6,28]	58.770549	7.953038	42.896862188	75.768467
##	beta[7,28]	38.176783	7.859607	22.124564158	53.623693
##	beta[8,28]	48.180134	3.536938	42.151152631	56.040795
##	beta[9,28]	48.543158	4.354064	41.426635951	57.451410
##	beta[10,28]	29.076100	7.784649	12.518390421	45.048406
##	beta[11,28]	49.538702	5.573821	41.729774462	64.569799
##	beta[12,28]	69.016248	7.725038	53.192741102	85.110034
##	beta[13,28]	30.112135	7.955354	13.758173225	45.728022
##	beta[1,29]	58.388375	7.895937	42.912426552	74.772536
##	beta[2,29]	59.209923	8.037368	42.330713311	75.337637
##	beta[3,29]	36.329592	8.136441	19.091861127	52.356614
##	beta[4,29]	66.693147	8.056034	49.686300795	82.997463
##	beta[5,29]	30.661621	8.051739	13.586113546	47.113767
##	beta[6,29]	58.786726	8.042698	42.789835667	75.772358
##	beta[7,29]	38.121583	8.011942	22.261782318	53.609690
##	beta[8,29]	48.374186	3.343004	42.666469128	55.689562
##	beta[9,29]	48.675968	4.291979	41.636738451	57.494187
##	beta[10,29]	29.076926	7.940232	12.168736672	45.255600
##	beta[11,29]	49.619604	5.729946	41.795605221	65.059051
##	beta[12,29]	69.006914	7.903579	53.233256734	85.516148
##	beta[13,29]	30.113794	8.038976	13.931821996	46.138378
##	beta[1,30]	58.405280	7.985358	42.409859745	75.375195
##	beta[2,30]	59.190132	8.121986	42.414946881	75.714370
##	beta[3,30]	36.324500	8.257989	18.505170231	52.519473

##	beta[4,30]	66.717932	8.279229	48.587751944	83.738281
##	beta[5,30]	30.665387	8.125884	13.108117849	47.456315
##	beta[6,30]	58.809266	8.241909	42.766113711	76.314390
##	beta[7,30]	38.136258	8.113950	21.605238611	53.838367
##	beta[8,30]	48.374920	3.469840	42.472431181	56.262291
##	beta[9,30]	48.858458	4.321865	41.742379798	57.650443
##	beta[10,30]	29.068039	8.061060	11.651731872	45.545969
##	beta[11,30]	49.676875	5.836066	41.725145417	65.500220
##	beta[12,30]	68.984087	8.023210	52.746320250	85.452682
##	beta[13,30]	30.099370	8.099412	13.371774534	45.976690
##	beta[1,31]	58.405322	8.141417	42.219517033	75.767319
##	beta[2,31]	59.202163	8.240867	41.428756071	76.259253
##	beta[3,31]	36.330624	8.318322	18.474305923	52.465169
##	beta[4,31]	66.767165	8.409721	48.561604539	84.166468
##	beta[5,31]	30.715365	8.161749	12.896407598	48.113251
##	beta[6,31]	58.770578	8.336039	42.180950777	75.876092
	beta[7,31]	38.141041	8.281447	20.753533164	54.228917
##	beta[8,31]	48.352146	3.591761	42.522402831	56.547823
##	beta[9,31]	48.978578		41.827528315	57.965734
	beta[10,31]	29.087480	8.203606	11.815270435	45.626210
	beta[11,31]	49.766943		41.699531137	65.662993
	beta[12,31]	69.001572		52.811669334	85.757175
	beta[13,31]	30.043771		12.790561647	45.798382
	beta[1,32]	58.397283		41.754774571	75.982748
##	beta[2,32]	59.246670		41.310874283	76.355037
##	beta[3,32]	36.379510		18.216258228	53.359564
	beta[4,32]	66.717809		48.188657130	84.293506
	beta[5,32]	30.691713		12.536224390	47.799236
	beta[6,32]	58.749662		42.234912385	76.185943
##		38.171561		21.210772986	54.146962
	beta[8,32]	48.337925		42.018881707	57.012004
	beta[9,32]	49.197333		42.081565198	57.846987
	beta[3,32] beta[10,32]	29.101255		11.581156230	46.233340
	beta[10,32] beta[11,32]	49.760127		41.478098841	66.011081
	beta[11,32] beta[12,32]	69.002466		52.206337790	86.132964
	beta[12,32] beta[13,32]	30.057511		12.521668364	46.299268
##		58.363050		41.803872189	76.780161
##	beta[1,33] beta[2,33]	59.259829		40.988121226	77.221818
		36.357808		17.787882918	53.958855
	beta[3,33]	66.702033		48.669019007	
	beta[4,33]				84.441895
	beta[5,33]	30.690800		12.309171787	48.083626
##	- / -	58.738126		42.122644404	75.922231
	beta[7,33]	38.188739		20.622662113	54.501034
	beta[8,33]	48.336329		42.115415592	56.800534
	beta[9,33]	49.385765		42.021157236	57.793415
	beta[10,33]	29.129031		10.715903408	46.283507
	beta[11,33]	49.782489		41.199014102	65.772357
	beta[12,33]	69.015222		51.883178649	86.552070
	beta[13,33]	30.056081		11.935030707	46.595457
	beta[1,34]	58.337080		41.250944281	76.227461
	beta[2,34]	59.240301		41.114094045	77.206329
##	beta[3,34]	36.337712	8.749139	17.777673824	54.126746

##	beta[4,34]	66.733223	0 710/71	49.012065320	84.902938
		30.696055		11.972031662	48.263148
	beta[5,34] beta[6,34]	58.690203		41.788576846	77.036900
##	beta[7,34]	38.152323		20.538360018	54.864974
	beta[8,34]	48.327681		41.724390849	56.810018
	beta[9,34]	49.386044		41.855367443	58.049463
	beta[10,34]	29.116853		10.510940846	46.748104
	beta[11,34]	49.753827		41.100226162	65.096384
	beta[12,34]	69.021027		51.688666137	87.282493
##	beta[13,34]	30.038949		11.542266387	46.922635
##	beta[1,35]	58.301167	8.676634	41.391949657	76.495223
##	beta[2,35]	59.239932	8.936085	40.114102584	77.601488
##	beta[3,35]	36.375970	8.968403	17.820692170	54.768484
##	beta[4,35]	66.707187	8.772537	49.030541861	85.027266
##	beta[5,35]	30.738280	8.669593	12.272459321	48.876473
##	beta[6,35]	58.691741	8.685950	41.421417352	77.411867
##	beta[7,35]	38.179575	8.954459	20.402896140	55.122419
##	beta[8,35]	48.326164	3.592566	42.098410192	56.683027
##	beta[9,35]	49.385504	4.656056	41.464022839	58.689330
##	beta[10,35]	29.089098	8.695084	10.685081980	46.845660
##	beta[11,35]	49.734665	5.763414	41.148496195	64.073444
##	beta[12,35]	68.956366	8.779555	50.967050708	87.263363
##	beta[13,35]	29.994411	8.704314	11.022609108	47.259752
##	beta[1,36]	58.322351	8.786967	40.933249212	76.883964
##	beta[2,36]	59.270942	9.032085	39.860439848	78.529761
##	beta[3,36]	36.362008	9.088661	17.601532312	55.174064
##	beta[4,36]	66.752500	8.920629	48.845998864	85.994887
##	beta[5,36]	30.764507	8.803632	12.629435694	49.131105
##	beta[6,36]	58.702858	8.836718	40.971385361	77.716841
##	beta[7,36]	38.163203	9.002164	20.205639274	55.511474
##	beta[8,36]	48.321837	3.524404	42.052537616	56.383302
##	beta[9,36]	49.399843	4.873875	41.347955702	59.500296
##	beta[10,36]	29.047275	8.894310	10.064662584	46.861783
##	beta[11,36]	49.756600	5.642103	41.228426815	64.068104
##	beta[12,36]	68.951891	8.874267	51.020552750	87.590803
##	beta[13,36]	30.002838	8.850375	11.200756574	47.942744
##	beta[1,37]	58.341108	8.840590	41.264843599	77.051938
##	beta[2,37]	59.287404	9.157310	40.322821289	78.633457
##	beta[3,37]	36.366248	9.252908	17.627972176	55.296685
##	beta[4,37]	66.757056	9.043156	47.926249689	85.193607
##	beta[5,37]	30.773170	8.844649	11.760803474	49.231633
##	beta[6,37]	58.704776	8.950223	41.133307694	78.306443
##	beta[7,37]	38.149012	9.195791	20.160715882	56.041741
##	beta[8,37]	48.335032	3.320553	42.530093976	56.179212
##	beta[9,37]	49.415194	5.086141	40.750152182	60.281467
##	beta[10,37]	29.055831	9.028082	10.065773373	47.103764
##	beta[11,37]	49.736746	5.492626	41.056461263	64.073448
##	beta[12,37]	68.953397	8.939985	51.127304349	87.830202
	beta[13,37]	30.016123	8.999085	10.699783852	48.176534
##	beta[1,38]	58.340468	8.915533	40.180364778	77.327484
##	beta[2,38]	59.286290	9.297610	40.067979567	78.734585
	beta[3,38]	36.368730	9.367791	17.491857229	55.832696

##	beta[4,38]	66.788116	9.225656	47.588104682	85.396471
##	beta[5,38]	30.767453	8.905424	11.422559599	49.843618
##	beta[6,38]	58.720409	9.082314	41.162307046	78.581337
##	beta[7,38]	38.172983	9.242998	19.182914386	56.549156
##	beta[8,38]	48.387789	3.498412	42.168388358	56.413607
##	beta[9,38]	49.444886	5.306420	40.800231582	60.749636
##	beta[10,38]	29.035435	9.142563	9.418918387	47.089320
##	beta[11,38]	49.715431	5.352785	41.035532568	63.293734
	beta[12,38]	68.920898	9.070841	50.354393036	88.211045
	beta[13,38]	30.038596		10.567711050	48.120986
##	beta[1,39]	58.359120		40.087699119	77.355351
	beta[2,39]	59.284449		39.502874714	78.399574
	beta[3,39]	36.408078		16.818198437	56.536652
	beta[4,39]	66.776303		47.168488626	85.992522
##		30.758422		11.085774912	49.653635
	beta[6,39]	58.710203		40.576298194	78.587820
	beta[0,33] beta[7,39]	38.140829		18.894201298	56.998035
##		48.429538		41.858979011	56.709754
	beta[9,39]	49.473816		40.357940479	60.951173
	· ·		9.302294	9.130487427	
	beta[10,39]	28.995772			47.417964
	beta[11,39]	49.709755		41.182487243	62.277429
	beta[12,39]	68.942451		49.783307056	88.434486
	beta[13,39]	30.003333		10.393625232	47.771017
	beta[1,40]	58.353360		39.431915295	77.871004
##	beta[2,40]	59.290483		38.411617382	78.866058
##	beta[3,40]	36.399430	9.659436	16.597760585	56.977430
	beta[4,40]	66.768518		47.229364921	85.992447
	beta[5,40]	30.727088		11.412599951	49.889352
	beta[6,40]	58.709054		39.995344031	78.472721
##		38.146629		19.164503954	57.627618
	beta[8,40]	48.451595		41.368817089	57.200151
	beta[9,40]	49.448852		39.983535608	61.891590
	beta[10,40]	28.999952		8.618916745	47.525784
	beta[11,40]	49.685392		41.061955231	61.435476
	beta[12,40]	68.931455		49.594773334	88.582473
	beta[13,40]	30.051289		9.718960143	48.051397
	beta[1,41]	58.336727		39.071837410	78.805922
##	beta[2,41]	59.286191		38.720183462	79.558980
	beta[3,41]	36.418498		16.493530288	57.493731
	beta[4,41]	66.831560	9.482985	47.615645885	86.931792
##	beta[5,41]	30.701429		11.048517588	49.874717
##	beta[6,41]	58.741832	9.421281	39.671102795	78.852236
	beta[7,41]	38.183375	9.411449	19.164451608	57.790796
	beta[8,41]	48.495216	3.912999	41.193255320	57.663554
##	beta[9,41]	49.441621	5.840838	39.995993475	62.198043
##	beta[10,41]	29.026590	9.435413	8.788286374	47.850572
##	beta[11,41]	49.671192	4.730102	41.188750018	60.665107
##	beta[12,41]	68.911594	9.396281	49.524821191	88.890187
##	beta[13,41]	30.080213	9.401652	10.507102014	48.092876
##	beta[1,42]	58.327299	9.464999	38.494441114	79.135529
##	beta[2,42]	59.315197	9.904535	38.758678715	79.756946
##	beta[3,42]	36.431269	9.855190	16.702552703	57.422336

##	beta[4,42]	66.794619	9.618841	47.270909739	87.279727
##	beta[5,42]	30.724200	9.270947	11.697667477	49.581526
##	beta[6,42]	58.709875	9.539052	39.072112399	78.369050
##	beta[7,42]	38.200600	9.499330	19.127685432	58.811867
##	beta[8,42]	48.485498	4.018009	40.977861641	58.217997
##	beta[9,42]	49.489778	5.953679	39.464632502	62.525827
##	beta[10,42]	28.976214	9.587119	8.456011989	48.057925
##	beta[11,42]	49.606954	4.854200	40.985117783	61.233931
##	beta[12,42]	68.922454	9.483470	49.213112779	88.231759
##	beta[13,42]	30.113020	9.519371	10.527053415	48.956384
##	beta[1,43]	58.394157	9.561621	38.319952365	79.931830
##	beta[2,43]	59.262977	9.878818	38.906056136	78.935442
##	beta[3,43]	36.390810	9.981834	16.160352123	57.869348
##	beta[4,43]	66.806487	9.716313	47.240231384	88.402134
##	beta[5,43]	30.755100	9.442915	11.307810825	50.556291
##	beta[6,43]	58.698953	9.636199	38.785208086	78.747404
##	beta[7,43]	38.189758	9.633878	19.518471948	58.635497
##	beta[8,43]	48.496378	4.160272	40.617589007	58.535339
##	beta[9,43]	49.483359	6.064949	39.055451967	63.309265
##	beta[10,43]	28.983426	9.576681	8.159164170	47.874831
##	beta[11,43]	49.552887	5.009932	40.541488469	61.582569
##	beta[12,43]	68.939115	9.540294	49.246824195	88.995207
##	beta[13,43]	30.138320	9.697521	9.535885444	49.358725
##	beta[1,44]	58.405969	9.633922	38.387239157	79.697591
##	beta[2,44]	59.302714	9.957654	38.498677602	79.710075
##	beta[3,44]	36.412800	10.035501	16.343707023	57.240067
##	beta[4,44]	66.854301	9.828002	46.902249065	88.266295
##	beta[5,44]	30.755484	9.481572	10.800641827	50.965044
##	beta[6,44]	58.702254	9.784251	39.029395870	78.735606
##	beta[7,44]	38.203245	9.651559	18.652743731	58.949260
##	beta[8,44]	48.529961	4.245846	40.282785902	59.027521
##	beta[9,44]	49.453420	6.148721	38.741434479	62.775051
##	beta[10,44]	29.014147	9.656701	8.626992705	48.055538
##	beta[11,44]	49.427021	5.099508	39.999163899	61.011901
##	beta[12,44]	68.923515	9.702870	48.915360632	89.206240
##	beta[13,44]	30.141496	9.814635	10.204458277	50.130765
##	beta[1,45]	58.430856	9.717739	38.972051096	79.758418
##	beta[2,45]	59.312852	10.088833	38.256471921	80.287300
##	beta[3,45]	36.378715	10.062634	15.659445261	57.202105
##	beta[4,45]	66.802716	9.866866	47.024185883	88.505745
##	beta[5,45]	30.766169	9.586867	9.965656773	50.708335
##	beta[6,45]	58.714490	9.897630	38.570894024	79.643478
##	beta[7,45]	38.219739	9.718123	19.029486536	59.264245
##	beta[8,45]	48.549159	4.309225	39.720507688	58.072259
##	beta[9,45]	49.478769	6.373041	38.560404723	63.430349
##	beta[10,45]	29.032992	9.689625	8.090693482	48.261811
	beta[11,45]	49.344680	5.196111	39.642010590	61.275254
##	beta[12,45]	68.878893	9.754842	49.325852234	89.337864
	beta[13,45]	30.166113	9.855824	10.166690817	50.701074
	beta[1,46]	58.499507	9.761177	38.409384574	80.097271
	beta[2,46]	59.330301	10.269850	38.493708436	80.978253
	beta[3,46]	36.410325	10.179832	15.619467395	57.070546

##	beta[4,46]	66.721869	10.040144	45.963368365	88.335803
##	beta[5,46]	30.790977	9.689562	9.849343843	50.858197
##	beta[6,46]	58.752577		38.282581329	79.618938
	beta[7,46]	38.224216		18.222606321	58.963267
	beta[8,46]	48.568829		39.555711824	58.544346
	beta[9,46]	49.478814	6.492325	38.766877622	63.394037
	beta[10,46]	29.081176	9.858958	7.923523351	48.403863
	beta[11,46]	49.269274		39.254654944	61.349672
##	beta[12,46]	68.918785		48.085270324	89.964039
##	beta[13,46]	30.181177	9.998305	9.735086322	50.057624
##	beta[1,47]	58.423416		38.576325587	80.338348
	beta[2,47]	59.283561		38.303267450	81.235734
	beta[3,47]	36.379006		15.081852478	57.482141
	beta[4,47]	66.729498		45.610250117	88.876759
	beta[5,47]	30.815304	9.835193	9.599901756	51.673917
	beta[6,47]	58.758131		37.866078057	79.835772
##	beta[7,47]	38.212291		17.729374945	59.259893
##	beta[8,47]	48.608688		39.193238629	57.986176
##	beta[9,47]	49.442414		38.139298413	64.214771
	beta[10,47]	29.121687	9.988454	7.296830671	49.486167
	beta[11,47]	49.197262		38.616841354	60.913929
	beta[12,47]	68.936028		47.907419430	89.631177
	beta[13,47]	30.190164		10.412857376	50.130141
##	beta[1,48]	58.376473		38.088012056	79.725484
##	beta[2,48]	59.316804		38.339091728	81.578694
##	beta[3,48]	36.383144	10.409268	14.380657387	57.154426
	beta[4,48]	66.735541		45.536808312	88.417871
	beta[5,48]	30.821549		10.212783464	51.782073
##	beta[6,48]	58.763379		37.563366017	79.826758
##	beta[7,48]	38.192056		18.057363093	59.112538
	beta[8,48]	48.643146		39.692474090	57.852687
	beta[9,48]	49.456994		37.905764264	64.284976
	beta[10,48]	29.111836		6.897197424	49.585019
	beta[11,48]	49.073080		37.974862071	61.387713
	beta[12,48]	68.953508		48.101115995	90.397385
	beta[13,48]	30.215184		10.135639255	50.678913
	beta[1,49]	58.371748		37.610775850	80.675610
##	beta[2,49]	59.262730		38.194307498	81.923461
	beta[3,49]	36.401477		14.374298813	57.507530
	beta[4,49]	66.791020		44.781314836	89.294955
	beta[5,49]	30.861386	10.016867		52.220877
	beta[6,49]	58.727007		37.561745616	79.754401
	beta[7,49]	38.173544		17.952996392	58.910903
	beta[8,49]	48.665191		39.611942349	58.550163
	beta[9,49]	49.393515		36.959567670	64.542820
##	beta[10,49]	29.149170	10.113054	6.766574563	49.558695
	beta[11,49]	48.979910		37.953116067	61.139598
	beta[12,49]	68.975411		47.854051187	90.485636
##	beta[13,49]	30.183653	10.215848	9.427334993	50.598959
	beta[1,50]	58.359633		37.726434046	80.278073
	beta[2,50]	59.254114		37.828848998	81.586989
##	beta[3,50]	36.373283	10.709186	14.387938771	57.587661

##	beta[4,50]	66.780769	10.471904	44.737988893	89.022409
##	beta[5,50]	30.846789	10.105321	9.152477380	52.042250
##	beta[6,50]	58.759141	10.279610	37.756613081	80.158068
##	beta[7,50]	38.121702	10.177687	17.780112791	59.767881
##	beta[8,50]	48.679945	4.567504	39.497142616	57.927683
##	beta[9,50]	49.385363	6.986503	36.891909846	64.707378
##	beta[10,50]	29.142695	10.250042	6.658297429	49.806549
##	beta[11,50]	48.894773	5.482486	37.388418318	60.792996
##	beta[12,50]	68.939555	10.367675	47.644376610	91.177732
##	beta[13,50]	30.187666	10.255948	8.777585890	50.407425
##	beta[1,51]	58.360508	10.253196	37.391792101	80.466785
##	beta[2,51]	59.214193	10.762827	37.563021517	81.792932
##	beta[3,51]	36.372563	10.788348	14.107608358	57.888447
##	beta[4,51]	66.832387	10.530477	44.684969452	89.726578
##	beta[5,51]	30.842377	10.285400	9.259517983	52.490213
##	beta[6,51]	58.771224	10.342302	37.582263220	80.131550
##	beta[7,51]	38.124566	10.325040	17.343901195	59.462827
##	beta[8,51]	48.666946	4.547974	39.576742231	58.176938
##	beta[9,51]	49.403413	7.142299	36.147592232	65.078941
##	beta[10,51]	29.173840	10.417500	6.709338557	50.130286
##	beta[11,51]	48.796643	5.539586	37.460855979	60.910156
##	beta[12,51]	68.933561	10.493311	47.371023231	91.104252
##	beta[13,51]	30.177794	10.336718	8.327671177	50.996954
##	beta[1,52]	58.358538	10.238379	37.396494319	80.939294
##	beta[2,52]	59.234402	10.865255	37.556279355	82.498279
##	beta[3,52]	36.379327	10.957520	13.548887188	57.988779
##	beta[4,52]	66.896477	10.540694	45.137626078	89.427730
##	beta[5,52]	30.812262	10.383023	8.924519973	53.395845
##	beta[6,52]	58.737873	10.494347	36.513691614	80.817242
##	beta[7,52]	38.129867	10.375952	17.131317373	60.727658
##	beta[8,52]	48.648500	4.516445	39.721257965	57.914559
##	beta[9,52]	49.408848	7.220367	36.147935818	64.860569
##	beta[10,52]	29.167035	10.390763	6.073941805	50.503183
##	beta[11,52]	48.734515	5.636700	37.446339036	60.993169
##	beta[12,52]	68.880616	10.535383	47.012084178	90.937786
##	beta[13,52]	30.193530	10.389880	8.003942688	51.143873
##	beta[1,53]	58.341440	10.260756	36.870105757	80.802492
##	beta[2,53]	59.218473	10.946704	38.010436406	81.834745
##	beta[3,53]	36.386089	11.063236	13.740314043	59.118357
##	beta[4,53]	66.874743	10.623580	45.084557438	88.915980
##	beta[5,53]	30.807665	10.542474	9.332499709	53.797092
##	beta[6,53]	58.789201	10.545334	36.597044566	80.953247
##	beta[7,53]	38.128572	10.490000	16.936744619	60.634267
##	beta[8,53]	48.564014	4.514155	39.632684987	58.633418
##	beta[9,53]	49.402590	7.391540	35.937221252	65.269496
##	beta[10,53]	29.157230	10.403835	6.254603198	50.162928
##	beta[11,53]	48.644189	5.629157	36.752845703	61.395883
##	beta[12,53]	68.867769	10.657177	46.960059281	91.292683
	beta[13,53]	30.235656	10.580251	7.845516186	51.964238
	beta[1,54]	58.351241	10.423225	37.282258057	81.733496
	beta[2,54]	59.222953	11.046093	37.419624873	82.533546
	beta[3,54]	36.414459	11.100828	13.226809567	59.347321

##	beta[4,54]	66.900985	10.686572	45.026811314	89.628045
##	beta[5,54]	30.773649	10.644238	8.799265359	54.224195
##	beta[6,54]	58.755876	10.612440	36.207909358	81.116149
##	beta[7,54]	38.121836	10.591404	16.351813840	60.820745
##	beta[8,54]	48.564066	4.464247	39.684957586	58.439100
##	beta[9,54]	49.432602	7.581063	35.819965337	66.004459
	beta[10,54]	29.159083	10.544954	6.541942937	51.352615
	beta[11,54]	48.582843	5.714138	36.756121162	61.381583
	beta[12,54]	68.880772		46.541235569	91.511470
	beta[13,54]	30.232632	10.707013	7.507528645	51.545120
##	beta[1,55]	58.343371		36.562238189	81.479082
	beta[2,55]	59.229158		36.900865752	82.705022
	beta[2,55] beta[3,55]	36.365920		12.864779686	59.466620
	beta[4,55]	66.917908		45.010219945	89.941779
		30.780107	10.864908		
	beta[5,55]			7.786811227 36.586321595	53.919234 81.370895
	beta[6,55]	58.805079			
	beta[7,55]	38.134680		16.027044153	61.503235
	beta[8,55]	48.510220		39.514798471	57.916517
	beta[9,55]	49.460040		35.172964231	66.315828
	beta[10,55]	29.164294	10.530930	6.561905336	50.806524
	beta[11,55]	48.556084		36.819071593	61.521158
	beta[12,55]	68.863385		46.136422023	91.602013
	beta[13,55]	30.232908	10.832946	7.900152233	51.800465
##	beta[1,56]	58.371922		36.116386784	81.913443
##	beta[2,56]	59.267522	11.182612	37.492784085	83.161382
##	beta[3,56]	36.382676	11.345059	12.963487104	60.321347
##	beta[4,56]	66.910817	10.900907	44.729870439	90.445138
##	beta[5,56]	30.793502	10.982388	7.895552844	53.916957
##	beta[6,56]	58.835567	10.851720	36.431103803	81.554842
##	beta[7,56]	38.163235	10.752045	16.026432348	60.646408
##	beta[8,56]	48.513139	4.419162	39.451658984	57.990484
##	beta[9,56]	49.452286	7.901976	34.663283088	66.420171
##	beta[10,56]	29.169069	10.648283	6.478439505	51.585557
##	beta[11,56]	48.484691	5.854181	36.702473733	61.666074
##	beta[12,56]	68.844701	10.991723	46.272332667	91.873197
##	beta[13,56]	30.267814	10.897896	7.626706282	52.009110
##	beta[1,57]	58.356785	10.820326	36.309412844	82.617113
##	beta[2,57]	59.218785	11.207454	37.275134821	82.897199
##	beta[3,57]	36.366838	11.413242	13.057425364	60.329897
	beta[4,57]	66.934335	10.901233	44.588549850	90.700158
	beta[5,57]	30.808424	11.120891	7.637684719	54.254930
##	beta[6,57]	58.846877		36.490434651	81.787732
	beta[7,57]	38.143969		16.376183478	61.043716
	beta[8,57]	48.465420		39.367811830	57.935443
	beta[9,57]	49.453209		33.884218092	66.651680
	beta[10,57]	29.194361	10.776201	6.490554527	51.299729
	beta[10,57]	48.381313		36.673099218	61.690526
	beta[11,57]	68.849023		45.255149913	92.088191
	beta[12,57]	30.285477	10.956350	8.390324596	52.622708
	beta[1,58]	58.329161		35.470286955	82.345793
				35.470286955	
	beta[2,58]	59.206358			83.013399
##	beta[3,58]	36.380671	11.531063	12.910055425	60.636513

##	beta[4,58]	66.931938	10 050507	43.796551416	90.622406
	<u>-</u>	30.786600			54.419597
	beta[5,58]	58.828922	11.258816	7.020274303 35.863443852	81.851471
##	beta[6,58]				
##	beta[7,58]	38.137641	10.875510	15.960975008	61.244778
	beta[8,58]	48.393890		39.102932054	58.065218
	beta[9,58]	49.421673		34.164584881	66.743577
	beta[10,58]	29.142205	10.914206	6.707854288	51.584996
	beta[11,58]	48.268719		36.436398721	62.264508
	beta[12,58]	68.841191		45.055445507	92.216677
	beta[13,58]	30.263699	11.063687	8.004322381	52.672884
##	beta[1,59]	58.367483	11.096307	35.187186501	83.697803
##	beta[2,59]	59.208403	11.255258	37.442798539	82.954968
##	beta[3,59]	36.398560	11.657224	13.115135881	60.861212
##	beta[4,59]	66.896607	11.024604	44.344113119	90.822548
##	beta[5,59]	30.822151	11.357791	7.259622816	54.458574
##	beta[6,59]	58.854387	11.030556	36.276026604	82.682631
##	beta[7,59]	38.137141	11.039464	15.874004305	61.027153
	beta[8,59]	48.337983	4.427708	38.844276032	57.868409
	beta[9,59]	49.423118	8.348622	33.655405610	66.933881
##	beta[10,59]	29.146749	10.966565	6.162773092	50.860331
	beta[11,59]	48.200853		36.399784986	62.582954
	beta[12,59]	68.800269		45.041936902	92.512809
	beta[13,59]	30.233704	11.034258	7.467569945	52.322719
	beta[1,60]	58.399385		35.299687117	83.912895
	beta[1,60] beta[2,60]	59.221091		36.293106530	82.595534
##	beta[3,60]	36.407102		13.333197127	61.079396
		66.928589		43.383818775	90.714565
##	beta[4,60]				
	beta[5,60]	30.787482	11.349042	6.824251845	54.764170
	beta[6,60]	58.858079		36.868076389	82.592953
	beta[7,60]	38.165060		15.786224385	61.782034
	beta[8,60]	48.267115		38.898205129	57.504716
	beta[9,60]	49.413152		33.105198061	68.323963
	beta[10,60]	29.199060	11.088639	5.441454211	51.715760
	beta[11,60]	48.077798		36.350945112	62.273026
	beta[12,60]	68.837330		45.059385147	92.416020
	beta[13,60]	30.190974	11.126890	7.239842949	53.175586
	beta[1,61]	58.371852		34.701425186	83.659054
	beta[2,61]	59.219874		36.450351763	83.746174
##	beta[3,61]	36.437960	11.735315	12.703765676	61.793046
##	beta[4,61]	66.916942	11.121217	43.104250789	91.228247
##	beta[5,61]	30.781223	11.545389	6.576052289	54.329584
##	beta[6,61]	58.853556	11.117743	36.304430192	82.952119
##	beta[7,61]	38.158854	11.218346	15.518861044	61.261440
##	beta[8,61]	48.256132	4.430269	39.239965241	57.361407
##	beta[9,61]	49.420281	8.603216	32.650724922	68.153958
##	beta[10,61]	29.148674	11.172535	5.309437026	52.322882
	beta[11,61]	47.976439		35.826713427	61.475557
	beta[12,61]	68.837590		45.624958727	92.615233
	beta[13,61]	30.162911	11.213700	6.334993787	53.166707
	beta[1,62]	58.391343		34.461657051	82.773453
	beta[2,62]	59.238652		36.204043700	83.918613
	beta[3,62]	36.429648		12.458547333	61.602292
π π	5504[0,02]	50.425040	11.002300	12.100011000	01.002232

##	beta[4,62]	66.953771	11.290503	42.995189708	91.811529
##	beta[5,62]	30.777061	11.719088	6.643962964	54.700657
##	beta[6,62]	58.822960	11.239776	36.133674386	82.527150
##	beta[7,62]	38.192201	11.337867	14.988273257	61.409143
##	beta[8,62]	48.153490	4.306677	39.115646432	56.658797
##	beta[9,62]	49.431759	8.723153	32.894364583	68.274806
##	beta[10,62]	29.151681	11.306333	5.169229961	52.452953
##	beta[11,62]	47.866026	6.251211	34.834361162	61.797696
##	beta[12,62]	68.848084	11.504274	45.165849442	92.573702
##	beta[13,62]	30.166750	11.290535	6.122693283	53.399221
##	beta[1,63]	58.373729	11.515945	34.079818559	84.043405
	beta[2,63]	59.202479	11.628876	35.727945320	84.208520
##	beta[3,63]	36.417399	11.930145	11.885525227	61.881696
##	beta[4,63]	66.954686	11.349544	42.698047641	91.513979
##	beta[5,63]	30.810003	11.822721	6.933093799	54.825385
##	beta[6,63]	58.880541	11.368932	35.940211580	83.389061
##	beta[7,63]	38.203453	11.496070	13.864259274	62.037468
##	beta[8,63]	48.116468	4.324737	38.586997265	57.050284
##	beta[9,63]	49.420086	8.879292	32.314616284	68.501876
##	beta[10,63]	29.112195	11.457877	4.775617753	52.606172
##	beta[11,63]	47.772666	6.241172	34.831031978	61.623744
##	beta[12,63]	68.849640	11.618509	45.129750446	93.230882
##	beta[13,63]	30.149187	11.327947	5.711058387	53.599843
##	beta[1,64]	58.375628	11.520699	33.872698478	83.599130
##	beta[2,64]	59.177138	11.763269	35.605706196	84.651303
##	beta[3,64]	36.427187	11.994397	12.360076599	61.910626
##	beta[4,64]	66.942923	11.447698	42.963776574	91.565736
##	beta[5,64]	30.829439	11.696516	6.622654464	55.359942
##	beta[6,64]	58.895988	11.467617	35.351837032	84.106282
##	beta[7,64]	38.213059	11.631348	13.813603747	62.804926
##	beta[8,64]	47.992343	4.335173	38.520324624	56.755129
##	beta[9,64]	49.397296	9.073611	32.534713759	68.376852
##	beta[10,64]	29.107985	11.607488	4.081686529	52.564719
##	beta[11,64]	47.694091	6.249770	34.814495849	61.420876
##	beta[12,64]	68.870790	11.735939	44.863761849	93.904641
##	beta[13,64]	30.178077	11.407891	5.821665232	53.480482
##	beta[1,65]	58.360293	11.615244	33.923621724	83.323372
##	beta[2,65]	59.152876	11.851874	35.142731077	85.146911
##	beta[3,65]	36.462653	12.092097	11.707490776	61.670257
##	beta[4,65]	66.967801	11.554573	42.683096204	91.463034
##	beta[5,65]	30.896622	11.819904	6.511232906	55.885813
##	beta[6,65]	58.843573	11.538920	34.853962209	84.591943
##	beta[7,65]	38.223277	11.735928	14.018747249	62.881761
##	beta[8,65]	47.938952	4.317256	38.274920125	57.092983
##	beta[9,65]	49.416578	9.197400	32.083009851	68.838766
##	beta[10,65]	29.087871	11.675726	4.266908684	52.742621
##	beta[11,65]	47.639925	6.274316	34.509333380	60.919568
##	beta[12,65]	68.871959	11.789986	45.340007609	94.105321
##	beta[13,65]	30.194340	11.510016	5.337938975	54.040600
##	beta[1,66]	58.319068	11.740632	33.433443007	83.614582
##	beta[2,66]	59.153497	11.874212	34.720834645	84.958936
##	beta[3,66]	36.467368	12.177388	11.887423043	62.034647

## beta[4,66]	66.964838	11.623368	43.095558132	91.223000
## beta[5,66]	30.882659	11.820394	6.591294988	55.942858
## beta[6,66]	58.876684		35.000832680	84.249143
## beta[7,66]	38.213197		14.037734423	63.043339
## beta[8,66]	47.828085	4.290763	38.277693346	56.159101
## beta[9,66]	49.433882	9.350091	31.521365898	69.135348
## beta[10,66]	29.071038	11.765064	3.798024744	52.709295
## beta[11,66]	47.582478	6.293944	34.431942064	61.430073
## beta[12,66]	68.843516	11.845838	44.454908881	94.459279
## beta[13,66]	30.166756	11.654989	5.591366970	54.338490
## beta[1,67]	58.335350	11.863195	33.593979298	83.070067
## beta[2,67]	59.145296	11.935702	35.110508035	85.251156
## beta[3,67]	36.490503	12.214464	11.822771719	62.087071
## beta[4,67]	66.955054	11.710533	43.636065803	91.682543
## beta[5,67]	30.911322	12.170245	5.635220508	56.720341
## beta[6,67]	58.880914	11.657765	34.889448986	84.544273
## beta[7,67]	38.229864	11.899796	14.117395868	63.434659
## beta[8,67]	47.704448	4.283660	38.268340695	55.915032
## beta[9,67]	49.457194	9.423271	31.340991634	69.631722
## beta[10,67]	29.083442	11.892838	3.614520539	52.397398
## beta[11,67]	47.550898	6.239501	33.837221721	60.831068
## beta[12,67]	68.824949	11.981327	43.763197087	95.013018
## beta[13,67]	30.204274	11.704860	4.155919560	54.274206
## beta[1,68]	58.338325	11.984597	32.761158696	83.665478
## beta[2,68]	59.167650	11.970022	34.454614518	86.098268
## beta[3,68]	36.483560	12.314699	11.850445126	62.589779
## beta[4,68]	67.004598	11.854641	42.587606149	92.807817
## beta[5,68]	30.951491	12.311378	5.820253640	57.063566
## beta[6,68]	58.831470	11.750276	34.038952511	84.533575
## beta[7,68]	38.266988	11.959153	13.903926425	63.739515
## beta[8,68]	47.647819	4.303650	38.250003639	56.235636
## beta[9,68]	49.423036	9.534090	31.534536076	69.782768
## beta[10,68]	29.139129		2.914690032	53.526170
## beta[11,68]	47.513857	6.232526	33.774650920	60.842811
## beta[12,68]	68.820723		43.832960337	94.977532
## beta[13,68]	30.232503	11.772844		54.330568
## beta[1,69]	58.340948		32.308162336	83.671443
## beta[2,69]	59.180642		34.794681196	84.628579
## beta[3,69]	36.517004		11.180227182	63.024401
## beta[4,69]	67.074346		42.591502206	93.206374
## beta[5,69]	30.980940	12.468565	5.372143052	57.498884
## beta[6,69]	58.827283		34.368102837	84.737354
## beta[7,69]	38.276345		13.672977752	64.366874
## beta[8,69]	47.582802		37.674961692	56.003573
## beta[9,69]	49.440078		31.160361510	70.014294
## beta[9,69]	29.137937	12.065679		53.795796
## beta[10,69]	47.497258		34.060121599	60.997473
## beta[11,69] ## beta[12,69]	68.835773		43.921416916	94.873925
	30.271566	12.113050		54.615339
- , -				
## beta[1,70]	58.376557		32.307987744	84.039839
## beta[2,70]	59.180403		34.317278123	84.715138
## beta[3,70]	36.532871	12.493138	10.847719694	63.308818

##	beta[4,70]	67.045646	12.039169	42.391243970	93.138444
##	beta[5,70]	30.971603	12.793942	4.982994407	57.275895
##	beta[6,70]	58.825254	11.849343	34.594148388	84.647890
##	beta[7,70]	38.257487	12.069729	13.910830265	64.611359
##	beta[8,70]	47.499951	4.363396	37.361483064	56.000985
##	beta[9,70]	49.462794	9.778698	30.726174630	70.453000
##	beta[10,70]	29.141884	12.062563	3.109836522	53.955494
##	beta[11,70]	47.512724	6.143290	34.206399401	61.177899
##	beta[12,70]	68.878035	12.193529	44.242526446	95.134336
##	beta[13,70]	30.295872	11.995297	4.955058760	55.732865
##	beta[1,71]	58.389135	12.171906	32.094280559	84.138663
##	beta[2,71]	59.139176	12.034133	34.170543889	84.868332
##	beta[3,71]	36.512162	12.617404	10.104695942	63.608130
##	beta[4,71]	67.073922	12.111629	42.616533721	93.493815
##	beta[5,71]	30.991149	13.092239	4.279579041	57.150367
##	beta[6,71]	58.821858	11.867665	34.551054006	84.285714
##	beta[7,71]	38.253813	12.207121	12.485185945	64.915939
##	beta[8,71]	47.469760	4.376404	37.278858315	55.803421
##	beta[9,71]	49.517369	9.920173	30.063638875	71.616799
##	beta[10,71]	29.124487	12.126597	3.328032843	54.763195
##	beta[11,71]	47.477054	6.149547	34.299553257	61.363167
	beta[12,71]	68.899953	12.265686	43.669368042	94.927925
	beta[13,71]	30.368542	12.080691	4.998923155	56.128048
	beta[1,72]	58.414393	12.298819	31.666610346	84.186927
##	beta[2,72]	59.200237	12.180809	34.115466880	85.234820
##	beta[3,72]	36.507679	12.752761	9.715142074	64.297358
##	beta[4,72]	67.044334	12.133782	41.785651851	93.558911
	beta[5,72]	30.949765	13.209077	4.594940175	56.814419
	beta[6,72]	58.802256	12.001162	34.052073739	84.539552
##	beta[7,72]	38.278682	12.312897	13.036511822	64.869772
##	beta[8,72]	47.410875	4.399645	37.113256583	55.943761
	beta[9,72]	49.516255		30.322847470	72.141849
	beta[10,72]	29.120122	12.193277	3.477082916	54.102608
	beta[11,72]	47.462080		34.517458640	61.028475
	beta[12,72]	68.919687	12.334761	43.163687501	95.580325
	beta[13,72]	30.358773	12.203530	4.401692206	55.667976
	beta[1,73]	58.449060	12.372700	30.798546104	85.222698
##	beta[2,73]	59.238416	12.271963	34.275660387	85.614054
##	beta[3,73]	36.521323	12.887359	9.981926698	63.729871
	beta[4,73]	67.040703	12.202768	41.548395113	93.486045
	beta[5,73]	30.963490	13.312499	4.609267070	56.619057
##	beta[6,73]	58.758012	12.023991	32.920769845	84.581795
##	beta[7,73]	38.261928		12.577460540	64.197204
	beta[8,73]	47.356301		37.152438616	55.215584
	beta[9,73]	49.543790		30.851432615	71.710668
##	beta[10,73]	29.151020	12.195170	3.476246834	54.522922
	beta[11,73]	47.465257		34.323694181	60.893485
	beta[12,73]	68.916134		42.488397083	95.467160
##	beta[13,73]	30.330845	12.258066	4.500789090	55.023851
##	beta[1,74]	58.463040		30.294223787	84.434830
	beta[2,74]	59.259105		34.266725650	85.591715
##	beta[3,74]	36.520008	12.942036	9.465940951	64.439258
			012000	2.230010001	5 - 1 - 1 - 1 - 1 - 1 - 1

##	beta[4,74]	67.011043	12 250510	42.102533514	93.556858
	beta[4,74] beta[5,74]	30.950975	13.247195	3.862107925	56.923023
	beta[6,74]	58.792671		32.649687665	84.857500
	· ·	38.231942		12.165510732	64.076279
##	- / -				
	beta[8,74]	47.348046		37.251180494	55.568351
	beta[9,74]	49.459961		30.657190794	71.021424
	beta[10,74]	29.184352	12.281924	3.420815648	54.323875
	beta[11,74]	47.463473		34.628183337	61.251493
	beta[12,74]	68.889007	12.601500	42.615350553	95.895221
##	beta[13,74]	30.331375	12.363635	4.960443263	55.846072
##	beta[1,75]	58.434137	12.638000	30.394348276	84.352801
##	beta[2,75]	59.263301	12.399018	33.439190924	85.487078
##	beta[3,75]	36.506027	13.024933	9.125295795	64.452571
##	beta[4,75]	67.027579	12.294680	41.817997232	94.363861
##	beta[5,75]	30.957306	13.526832	3.553272651	57.181566
##	beta[6,75]	58.806512	12.187032	32.904725204	85.320917
	beta[7,75]	38.244119	12.578479	11.746589641	63.913766
		47.361629		37.441233029	55.237735
	beta[9,75]	49.487540		29.914458405	71.205841
	beta[10,75]	29.199321	12.284474	2.863219821	55.071708
	beta[11,75]	47.469991		34.302432028	61.262171
	beta[11,75] beta[12,75]	68.850578		41.985190023	96.106345
	beta[12,75] beta[13,75]	30.339860	12.730394	4.247127217	56.113875
	beta[1,76]	58.474796		30.159055192	85.414651
	beta[2,76]	59.253370		32.921076769	86.101379
##	beta[3,76]	36.471748	13.134295	8.315161521	64.852105
##	beta[4,76]	67.071777		41.465248810	93.968322
	beta[5,76]	30.989195	13.577187	2.961328379	58.097902
	beta[6,76]	58.792099	12.284230	32.671086447	86.096819
	beta[7,76]	38.228862		11.142634379	65.086725
##	beta[8,76]	47.380522	4.366588	37.476536224	55.116488
##	beta[9,76]	49.512021	10.181306	29.345030677	71.536225
##	beta[10,76]	29.246713	12.329187	3.676782078	54.261305
##	beta[11,76]	47.449339	5.942041	34.406261691	61.103637
##	beta[12,76]	68.818546	12.787133	42.340259523	96.016407
##	beta[13,76]	30.348127	12.484313	4.029957544	56.098686
##	beta[1,77]	58.440115	12.839389	30.194062579	84.842276
##	beta[2,77]	59.285687	12.612232	33.074322410	85.726805
##	beta[3,77]	36.458178	13.145206	9.857862274	65.602520
	beta[4,77]	67.075767	12.439711	41.643106008	93.944982
	beta[5,77]	30.995338	13.668198	2.777438536	58.093984
	beta[6,77]	58.803491		32.929037354	85.831217
	beta[7,77]	38.217071		11.537155924	65.494304
	beta[7,77] beta[8,77]	47.354370		37.327727416	55.048040
	beta[9,77]	49.489741		28.625434689	71.959150
	beta[10,77]	29.231871	12.392294	3.612038822	54.266606
	beta[11,77]	47.451691		34.211588926	61.428655
	beta[12,77]	68.821310		42.445271876	97.086950
	beta[13,77]	30.361160	12.497925	3.894510184	56.419447
	beta[1,78]	58.442399		30.286695099	84.665727
	beta[2,78]	59.297688		33.438602249	86.420344
##	beta[3,78]	36.501079	13.260490	8.946310993	65.639211

##	beta[4,78]	67.079286	12.470051	41.254533868	94.069775
##	beta[5,78]	31.030724	14.130040	2.330889531	58.781413
##	beta[6,78]	58.710647	12.355916	32.579096109	85.523627
##	beta[7,78]	38.227864	12.742695	10.985115421	66.055869
##	beta[8,78]	47.336597	4.387756	37.359393957	55.136432
##	beta[9,78]	49.499875	10.496797	29.162125590	72.437681
##	beta[10,78]	29.231761	12.487892	2.873191906	54.678556
##	beta[11,78]	47.480486	5.902921	34.457122278	61.027930
##	beta[12,78]	68.774596	12.927679	41.726635381	97.127861
##	beta[13,78]	30.326017	12.526485	3.673811482	56.419497
##	beta[1,79]	58.418095	13.078510	30.262801135	84.313174
##	beta[2,79]	59.281973	12.710055	32.299275965	86.800214
##	beta[3,79]	36.462680	13.365958	8.404600955	66.662058
##	beta[4,79]	67.117670	12.594917	41.711344061	94.735824
##	beta[5,79]	30.982659	13.717177	1.829955961	58.189314
##	beta[6,79]	58.750004	12.537748	32.701258175	85.517729
##	beta[7,79]	38.264444	12.820554	10.454754609	65.887888
##	beta[8,79]	47.315194	4.401318	37.180134967	55.269292
##	beta[9,79]	49.532062	10.542824	29.136100369	72.491871
##	beta[10,79]	29.222979	12.502015	3.044710347	54.166543
##	beta[11,79]	47.547716	5.872066	34.735857209	60.955238
##	beta[12,79]	68.773562	12.962920	41.316164105	96.779547
##	beta[13,79]	30.303660	12.574035	3.202266224	56.557982
##	beta[1,80]	58.450192	13.202012	31.153967472	85.372306
##	beta[2,80]	59.270896	12.739603	32.643423179	86.528572
##	beta[3,80]	36.447746	13.374385	8.607800548	65.990425
##	beta[4,80]	67.133856	12.682451	41.207539943	95.340824
##	beta[5,80]	30.996376	13.982576	1.414040497	59.429336
##	beta[6,80]	58.764803	12.611418	31.640037146	86.333946
##	beta[7,80]	38.243988	12.896864	10.788548998	66.071397
##	beta[8,80]	47.271060	4.452798	37.109150453	55.201199
##	beta[9,80]	49.545967	10.597010	28.982333137	72.511281
##	beta[10,80]	29.295029	12.514982	2.754774552	54.495338
##	beta[11,80]	47.514720	5.725496	34.965498472	60.871616
##	beta[12,80]	68.792624	13.032590	41.493209905	96.587079
##	beta[13,80]	30.306317	12.608364	3.062780582	56.320468
##	beta[1,81]	58.442139	13.340047	30.628266799	85.095463
##	beta[2,81]	59.307031	12.922564	32.496577079	86.561729
##	beta[3,81]	36.471298	13.445158	8.511642093	66.355875
##	beta[4,81]	67.132254	12.744687	40.886507530	94.692614
##	beta[5,81]	31.010128	14.031865	1.068535156	58.413731
##	beta[6,81]	58.720344	12.717022	31.496459500	86.777700
##	beta[7,81]	38.263884	13.018900	10.594698851	66.461683
##	beta[8,81]	47.287926	4.482460	37.291124907	55.367806
##	beta[9,81]	49.567884	10.651740	28.480436150	72.808832
##	beta[10,81]	29.294580	12.680438	2.603868098	55.451300
	beta[11,81]	47.536844	5.599482	35.140365008	59.818959
	beta[12,81]	68.831353	13.101126	41.547322992	97.338746
	beta[13,81]	30.298639	12.665924	2.226043615	57.201053
	beta[1,82]	58.446079		30.104044759	85.376755
	beta[2,82]	59.344437		32.188058657	86.701779
	beta[3,82]	36.474577	13.599161	8.633338176	66.686279
	- -				

##	beta[4,82]	67.100393	12.843710	41.158613904	94.848676
##	beta[5,82]	31.014529	14.226937	2.045232788	59.299384
##	beta[6,82]	58.734116		31.087698640	87.498141
	beta[7,82]	38.244843	13.046531	10.190872996	66.530521
##	beta[8,82]	47.325448	4.442578	37.191517119	55.069577
##	beta[9,82]	49.627856	10.755914	28.994929267	74.046594
##	beta[10,82]	29.353550	12.726875	1.712609381	55.530820
##	beta[11,82]	47.526263	5.448350	35.421864097	58.877770
##	beta[12,82]	68.800796	13.138503	41.169607961	97.028130
##	beta[13,82]	30.295392	12.743703	1.841897214	56.323586
##	beta[1,83]	58.451397	13.309849	29.804767288	85.255314
##	beta[2,83]	59.318403	13.002163	31.920984149	87.272427
##	beta[3,83]	36.495897	13.632266	8.216115795	67.438267
##	beta[4,83]	67.078619	12.860300	40.502382408	95.625360
##	beta[5,83]	31.064226	14.614560	1.838264011	59.385550
##	beta[6,83]	58.773653	12.910748	31.733657930	86.939983
##	beta[7,83]	38.196548	13.170629	9.736291597	67.105815
##	beta[8,83]	47.320611	4.421482	37.124546160	54.806194
##	beta[9,83]	49.632754	10.920383	28.457661251	74.219645
##	beta[10,83]	29.357860	12.809497	1.491561971	56.300331
##	beta[11,83]	47.551638	5.370239	35.332850154	59.287343
##	beta[12,83]	68.828486	13.217327	41.510878793	96.420626
##	beta[13,83]	30.320098	12.809140	1.519127453	56.574302
##	beta[1,84]	58.479495	13.369851	30.577309577	85.751641
##	beta[2,84]	59.328970	13.099365	31.718523608	86.892667
##	beta[3,84]	36.501320	13.733241	8.427217125	67.274308
##	beta[4,84]	67.117476	12.955959	40.185280012	96.244169
##	beta[5,84]	31.074040	14.692053	2.177909512	59.044887
##	beta[6,84]	58.779312	12.969305	31.435276279	87.202697
##	beta[7,84]	38.199893	13.253178	9.564712697	66.728874
##	beta[8,84]	47.310601	4.383836	36.908493658	54.861786
##	beta[9,84]	49.658444	11.016255	28.170202380	74.361974
##	beta[10,84]	29.344164	12.910673	1.653413421	56.376747
##	beta[11,84]	47.549821	5.276159	35.367699322	59.122216
##	beta[12,84]	68.863841	13.243987	41.304902907	96.575641
##	beta[13,84]	30.315187	12.912650	1.373321751	57.488981
##	beta[1,85]	58.450981	13.446973	30.170860361	85.594329
##	beta[2,85]	59.319050	13.257428	32.360578257	87.450596
##	beta[3,85]	36.482719	13.740438	7.957199609	67.556561
##	beta[4,85]	67.164678	13.013702	40.719959879	96.006662
##	beta[5,85]	31.073472	14.555819	1.888448595	59.792780
##	beta[6,85]	58.779733	12.999525	31.890488762	87.790030
##	beta[7,85]	38.192673	13.453433	9.154076625	66.328917
##	beta[8,85]	47.349584	4.353061	36.756278448	54.969211
##	beta[9,85]	49.617940	11.169704	27.719251817	74.494411
##	beta[10,85]	29.346789	13.061989	1.594366474	56.869497
##	beta[11,85]	47.561990	5.121236	35.386786642	58.332326
##	beta[12,85]	68.866892	13.303604	41.998672753	97.146323
##	beta[13,85]	30.254567	13.016166	1.939608534	58.090779
##	beta[1,86]	58.472047	13.515010	29.719558080	86.016975
##	beta[2,86]	59.315879	13.331707	31.537552222	87.756812
##	beta[3,86]	36.463548	13.888965	7.182969407	68.353288

##	beta[4,86]	67.176013	13.109186	40.870965281	95.888008
##	beta[5,86]	31.086835	14.560016	1.553743888	60.146822
##	beta[6,86]	58.781629		31.365959452	87.812980
	beta[7,86]	38.191801	13.444150	8.838913672	66.563783
	beta[8,86]	47.351458		36.713539351	54.929296
	beta[9,86]	49.640554		27.944028588	74.673949
	beta[10,86]	29.338459	13.094629	1.181589780	56.322007
	beta[11,86]	47.517310		35.321525812	57.853291
##	beta[12,86]	68.888690		41.688129982	97.103812
##	beta[13,86]	30.297120	13.069863	1.922848588	58.858301
##	beta[1,87]	58.450824		30.343039121	86.450893
	beta[2,87]	59.299618		30.804740647	88.040584
	beta[3,87]	36.417415	13.934157	6.979624160	68.039295
	beta[4,87]	67.225310		40.792196519	96.938613
	beta[5,87]	31.075939	14.709691	1.771144810	59.991173
	beta[6,87]	58.782616		31.286870200	87.842434
##	beta[7,87]	38.186399	13.533528	8.294664597	66.734514
##	beta[8,87]	47.363533		36.652024423	54.483616
##	beta[9,87]	49.613345		27.603298939	74.483422
	beta[10,87]	29.327194	13.180760	1.279026979	56.392973
	beta[11,87]	47.512452		35.279910431	56.765063
	beta[12,87]	68.900888	13.388940	41.240044693	96.975178
	beta[13,87]	30.321100	13.177257	1.948253278	58.525529
##	beta[1,88]	58.455364		29.963649679	87.392755
##	beta[2,88]	59.298919	13.499998	31.243585377	88.184607
##	beta[3,88]	36.415218	13.969182	7.108364831	67.769917
##	beta[4,88]	67.232183	13.254010	40.419797044	97.475984
	beta[5,88]	31.066556	14.521748	1.099408845	60.309538
##	beta[6,88]	58.773534		30.061747979	88.519206
##	beta[7,88]	38.163138	13.630254	8.136026309	67.202803
	beta[8,88]	47.379579		36.483659657	54.707998
	beta[9,88]	49.583559		26.873136594	74.419207
	beta[10,88]	29.370933	13.289700	0.982845701	56.486055
	beta[11,88]	47.463292		35.360682726	56.014810
	beta[12,88]	68.921394		41.491560507	97.139183
	beta[13,88]	30.284860	13.267151	2.251015829	58.779831
	beta[1,89]	58.490435		29.073572307	86.508526
##	beta[2,89]	59.275649		30.701411466	88.392121
	beta[3,89]	36.409046	14.010696	6.486718581	67.311473
	beta[4,89]	67.228914		40.438214172	97.156912
##	beta[5,89]	31.015448	14.512065	1.188575826	60.600105
##	beta[6,89]	58.797814		30.570428238	88.359945
	beta[7,89]	38.160310	13.717254	8.042544992	66.394773
##	beta[8,89]	47.419292		36.572815906	54.474855
##	beta[9,89]	49.600551		26.556160027	74.833353
##	beta[10,89]	29.379659	13.334638	0.777739093	56.611651
	beta[11,89]	47.442683		35.550487136	55.237011
##	beta[12,89]	68.911740		41.390790421	97.602479
##	beta[13,89]	30.269347	13.395703	2.107129687	58.666754
##	beta[1,90]	58.503702		28.524807485	87.025442
	beta[2,90]	59.256433		30.277394685	88.306656
##	beta[3,90]	36.381748	14.195180	5.450641477	67.550584

##	beta[4,90]	67.239086	13.452026	39.787298646	97.315084
##	beta[5,90]	31.026342	14.588261	0.538517549	60.441714
##	beta[6,90]	58.786394	13.496273	30.352589842	88.382582
##	beta[7,90]	38.125724	13.842857	7.501782909	66.891963
	beta[8,90]	47.437551	4.368079	36.694080236	54.809547
##	beta[9,90]	49.619771	11.739493	25.578959090	74.673209
##	beta[10,90]	29.459543	13.452899	1.096111340	57.344588
	beta[11,90]	47.384902	4.289008	35.605570979	54.545550
##	beta[12,90]	68.910305	13.601626	41.475952669	97.699939
##	beta[13,90]	30.263290	13.504422	2.207613559	58.962556
##	beta[1,91]	58.481698	13.814705	28.720929554	87.079811
##	beta[2,91]	59.284588	13.872279	29.956252266	88.149971
##	beta[3,91]	36.419896	14.316089	5.942044071	68.488022
##	beta[4,91]	67.223129	13.492837	40.068851229	97.497651
##	beta[5,91]	31.089511	14.773280	0.147549870	61.019326
##	beta[6,91]	58.767858	13.612250	29.353352911	88.540321
##	beta[7,91]	38.137107	13.894436	7.219636029	67.046431
##	beta[8,91]	47.501993	4.273436	37.015406041	54.803213
##	beta[9,91]	49.602096	11.804760	25.656752845	75.005149
##	beta[10,91]	29.457050	13.526091	-0.431972067	57.249462
##	beta[11,91]	47.374163	4.465825	35.372902753	54.704423
##	beta[12,91]	68.898816	13.654034	40.756598685	98.653165
##	beta[13,91]	30.269491	13.551687	1.570205521	59.404653
##	beta[1,92]	58.487072	13.886613	28.144193822	86.565171
##	beta[2,92]	59.300380	13.917326	28.815908071	88.213779
##	beta[3,92]	36.465951	14.350817	5.866131724	68.794601
##	beta[4,92]	67.218516	13.605910	39.361666354	97.947839
	beta[5,92]	31.096583	14.926044	0.790871303	60.589752
##	beta[6,92]	58.779828	13.692409	29.352800520	89.323443
##	beta[7,92]	38.157595	13.924427	7.072891348	67.230771
##	beta[8,92]	47.556838	4.259204	37.261004492	54.799448
##	beta[9,92]	49.591745	11.858030	26.315650160	75.688881
##	beta[10,92]	29.421657	13.540965	-0.401557400	58.776704
##	beta[11,92]	47.371563	4.592290	35.313944451	55.166417
##	beta[12,92]	68.904757	13.756313	40.350982444	98.438777
##	beta[13,92]	30.255230	13.593713	0.731245872	59.175457
##	beta[1,93]	58.505022		28.882161558	87.859738
##	beta[2,93]	59.331251	13.928071	29.200141303	89.019961
	beta[3,93]	36.487717	14.405551	6.165259593	69.177613
##	beta[4,93]	67.254018	13.705624	39.422730850	98.075588
##	beta[5,93]	31.083305	14.940060	0.784822563	60.977175
##	beta[6,93]	58.813315	13.676760	30.078270812	88.748184
##	beta[7,93]	38.159992	13.901255	7.103293309	67.443064
##	beta[8,93]	47.629225	4.158204	37.366183868	54.953121
##	beta[9,93]	49.551770	12.046538	24.786687215	75.260830
##	beta[10,93]	29.404384	13.511006	0.053257895	58.729657
	beta[11,93]	47.329129	4.711456	35.110188947	55.259214
##	beta[12,93]	68.863087	13.899593	39.755665925	98.824786
##	beta[13,93]	30.238805	13.663890	1.424466846	59.465303
##	beta[1,94]	58.467914	14.059569	28.485090541	87.514468
	beta[2,94]	59.345293		29.280251184	88.909074
##	beta[3,94]	36.461428	14.473528	6.013463359	68.277224

##	beta[4,94]	67.299892	13.732530	39.418030383	97.799708
##	beta[5,94]	31.132974	14.972969	0.116464872	61.279563
##	beta[6,94]	58.779761	13.734265	30.422117162	88.864566
##	beta[7,94]	38.186749	14.012908	7.577535614	67.682480
##	beta[8,94]	47.732827	3.990566	38.463843577	55.041498
##	beta[9,94]	49.519404	12.144891	24.549838750	75.022243
##	beta[10,94]	29.371810	13.569355	-0.147888897	58.056595
	beta[11,94]	47.361416	4.808430	35.244023668	55.564992
##	beta[12,94]	68.861086	14.014480	39.897491680	99.272416
##	beta[13,94]	30.222478	13.698995	0.755021410	59.035740
##	beta[1,95]	58.482808	14.175845	28.485783910	87.631161
##	beta[2,95]	59.351240	14.132131	28.652784587	89.370345
##	beta[3,95]	36.462526	14.512482	5.751421249	67.557621
##	beta[4,95]	67.291735	13.835573	38.635527609	98.114346
##	beta[5,95]	31.157622	14.798585	0.423109146	61.808388
##	beta[6,95]	58.797763	13.760962	30.428505922	88.359082
##	beta[7,95]	38.219543	14.111109	7.659775227	68.122932
##	beta[8,95]	47.887089	3.881354	39.044230588	54.968705
##	beta[9,95]	49.479677	12.289840	24.946801583	75.346613
	beta[10,95]	29.365906	13.664192	-0.213591842	58.101443
	beta[11,95]	47.347834	4.890665	35.075989258	55.801208
	beta[12,95]	68.907631	14.009427	39.882085597	98.965252
	beta[13,95]	30.250757	13.794187	0.966625646	59.564176
	beta[1,96]	58.470147	14.341229	28.007354065	88.063465
##	beta[2,96]	59.383379		29.223881702	89.960092
##	beta[3,96]	36.475569	14.603313	5.961839464	67.878356
	beta[4,96]	67.350706		37.466005696	98.781810
	beta[5,96]	31.162449	14.892975	0.126986471	62.037761
	beta[6,96]	58.780786	13.841211	30.246819785	88.557202
	beta[7,96]	38.221740	14.146828	7.631020547	68.156196
	beta[8,96]	47.991230		39.499304572	55.092858
	beta[9,96]	49.464369		24.615125709	75.509600
	beta[10,96]	29.368463		-0.216200567	58.211732
	beta[11,96]	47.339879		35.113948413	55.753835
	beta[12,96]	68.898168		40.346360446	99.261886
	beta[13,96]	30.230053		0.599638460	59.102963
	beta[1,97]	58.422051		27.440604529	87.708792
	beta[2,97]	59.398398		29.321168830	89.977041
	beta[3,97]	36.505868	14.654644	6.446507279	68.574365
	beta[4,97]	67.429649		37.503238721	98.338374
	beta[5,97]	31.144112	14.839137	0.589855152	62.221399
	beta[6,97]	58.761657		29.533231026	87.842365
	beta[7,97]	38.225421	14.214132	7.572076666	68.382226
	beta[7,97] beta[8,97]	48.076125		39.799179406	54.741156
	beta[9,97]	49.474629		24.576602727	75.102741
	beta[9,97]	29.372509		-0.445664576	58.307552
				34.937497435	55.833838
	beta[11,97]	47.347251			
	beta[12,97]	68.906167		39.478769479	99.224588
	beta[13,97]	30.274044		-0.427158997	59.006927
	beta[1,98]	58.463782		28.194444764	88.065125
	beta[2,98]	59.413152		28.938822420	90.159595
##	beta[3,98]	36.505273	14.664654	5.487817382	68.163572

	beta[4,98]	67.406780	14.070760	37.725935495	98.268650
##	beta[5,98]	31.138782	14.779542	0.261473277	61.977819
##	- / -	58.772726		28.728758701	88.659861
	beta[7,98]	38.242399		7.442526449	67.969882
	beta[8,98]	48.043589		39.149747167	55.251722
	beta[9,98]	49.450973		23.712587454	75.378349
	beta[10,98]	29.401973		-0.009670088	58.381403
	beta[11,98]	47.395392		35.110375281	56.209231
##	beta[12,98]	68.932335		39.908564843	99.154203
##	beta[13,98]	30.268511	13.976989	-0.305729195	59.415597
##	beta[1,99]	58.499174	14.510359	28.097884337	89.147595
##	beta[2,99]	59.418196	14.563652	29.156445006	90.238250
##	beta[3,99]	36.490699	14.699476	5.878880701	69.284636
##	beta[4,99]	67.419464	14.146375	37.704625936	98.283254
##	beta[5,99]	31.165018	14.708415	0.301018704	61.902421
##	beta[6,99]	58.843354	14.035628	29.205962075	88.766827
##	beta[7,99]	38.220541	14.355419	7.338553207	69.052431
##	beta[8,99]	48.042217	4.127688	38.219562586	55.815799
##	beta[9,99]	49.478334	12.547817	23.555054498	75.477932
##	beta[10,99]	29.414188	13.925284	-0.218125998	58.993668
##	beta[11,99]	47.465187	4.987996	34.776077602	56.146041
##	beta[12,99]	68.923579	14.223529	39.798434781	99.758196
##	beta[13,99]	30.246880	14.110841	-0.572031303	60.071933
##	beta[1,100]	58.534356	14.670160	27.492948858	89.026205
##	beta[2,100]	59.460839	14.643741	29.342075834	91.052187
##	beta[3,100]	36.435958	14.797745	5.795247637	69.327556
##	beta[4,100]	67.454667	14.189188	37.535697856	98.773128
##	beta[5,100]	31.148354	14.851306	0.798445748	62.431481
##	beta[6,100]	58.827908	14.055433	29.144694590	89.412444
##	beta[7,100]	38.208685	14.532615	7.872218580	68.988919
##	beta[8,100]	48.073761	4.366229	38.166698215	56.229272
##	beta[9,100]	49.466808	12.539796	23.947357982	75.294324
##	beta[10,100]	29.371451	14.032972	-0.209541674	59.131644
##	beta[11,100]	47.501948	4.987343	34.834993438	56.538364
##	beta[12,100]	68.922751	14.295474	39.827583202	99.836571
##	beta[13,100]	30.348948	14.185084	-0.816649133	60.599818
##	beta[1,101]	58.529822	14.724542	27.827608597	89.306480
##	beta[2,101]	59.453514	14.723742	28.725260014	91.317838
##	beta[3,101]	36.423404	14.836332	5.729896311	68.904759
##	beta[4,101]	67.410830	14.314282	37.623476356	98.391202
##	beta[5,101]	31.174707	15.053658	0.462350540	62.434975
##	beta[6,101]	58.832297	14.126485	28.907162929	89.093957
##	beta[7,101]	38.222217	14.623938	7.644012334	69.202068
##	beta[8,101]	48.107596	4.542158	37.428722570	57.044382
##	beta[9,101]	49.413702	12.665056	23.668460312	75.561908
##	beta[10,101]	29.401776	14.115092	-1.331262971	58.578592
##	beta[11,101]	47.561980	5.012752	34.776263139	56.554404
	beta[12,101]	68.901387		39.213791642	100.067515
##	beta[13,101]	30.360479		-0.712555535	60.370076
##	beta[1,102]	58.521702		27.187243468	89.117030
	beta[2,102]	59.457708		28.746759008	91.098138
##	beta[3,102]	36.410562	14.844185	5.917651220	69.210490
	- ,			· · · ·•	•

```
## beta[4,102]
                     67.415961
                                  14.337409 37.846790360
                                                           98.265397
## beta[5,102]
                     31.162766
                                  15.211181
                                             0.413221855
                                                           62.510389
## beta[6,102]
                     58.859362
                                  14.100761 28.848892298
                                                           90.078939
## beta[7,102]
                                  14.680565
                                             6.986384293
                                                           69.468690
                     38.238055
##
  beta[8,102]
                     48.106959
                                   4.724519 37.344831468
                                                           57.142700
  beta[9,102]
                                  12.804696 23.648705129
                     49.375945
                                                           75.467155
## beta[10,102]
                     29.440138
                                  14.205465 -0.855583642
                                                           59.038375
## beta[11,102]
                     47.617317
                                   4.978334 34.971509545
                                                           56.656813
## beta[12,102]
                     68.889719
                                  14.448748 39.662058718
                                                           99.865979
## beta[13,102]
                     30.369069
                                  14.258307 -0.266364472
                                                           61.134376
                                  15.010239 28.930458941
## beta[1,103]
                     58.517287
                                                           89.328765
## beta[2,103]
                                  14.763821 29.014057882
                                                           91.565093
                     59.486934
## beta[3,103]
                     36.422907
                                  14.861680
                                             5.989911688
                                                           69.054668
## beta[4,103]
                                  14.424688 37.246279328
                     67.423203
                                                           98.364621
## beta[5,103]
                     31.144332
                                  15.166507
                                             0.158879528
                                                           63.396573
## beta[6,103]
                     58.851272
                                  14.164084 29.200453354
                                                           89.785004
## beta[7,103]
                     38.313594
                                  14.807774
                                             7.456951065
                                                           69.719509
## beta[8,103]
                     48.158270
                                   4.896836 37.094423327
                                                           57.823683
## beta[9,103]
                     49.388000
                                  12.867716 23.677683052
                                                           76.523458
  beta[10,103]
##
                     29.425878
                                  14.260382 -1.136299170
                                                           59.025516
## beta[11,103]
                     47.672236
                                   4.986336 34.770470366
                                                           56.700244
## beta[12,103]
                     68.871270
                                  14.537572 38.418041527 100.122615
## beta[13,103]
                     30.411603
                                  14.306189 -1.139135510
                                                           60.704431
## beta[1,104]
                     58.544594
                                  15.100534 26.909723825
                                                           90.038070
## beta[2,104]
                     59.515983
                                  14.852131 28.966174975
                                                           91.372763
## beta[3,104]
                     36.434451
                                  14.952258
                                             5.650089117
                                                           68.880497
## beta[4,104]
                                  14.462891 37.345534276
                     67.437531
                                                           98.581485
## beta[5,104]
                                                           63.238677
                     31.174100
                                  15.365335
                                             0.163437593
## beta[6,104]
                     58.854444
                                  14.231139 28.978202559
                                                           90.022006
## beta[7,104]
                     38.313777
                                  14.902038
                                             7.353152015
                                                           71.417893
## beta[8,104]
                     48.148655
                                   5.052438 36.621283000
                                                           58.037955
## beta[9,104]
                     49.389890
                                  12.927949 24.090460257
                                                           76.376971
## beta[10,104]
                     29.421340
                                  14.274005 -1.510781794
                                                           59.131230
## beta[11,104]
                     47.744162
                                   4.990501 34.818052656
                                                           56.747213
## beta[12,104]
                                  14.583227 37.113884658
                     68.878453
                                                           99.586788
## beta[13,104]
                     30.373950
                                  14.371021 -0.757236832
                                                           61.354466
## beta[1,105]
                     58.552910
                                  15.130429 27.162968167
                                                           91.401876
## beta[2,105]
                     59.496220
                                  14.948010 28.535133470
                                                           92.355080
## beta[3,105]
                     36.455978
                                  15.047226
                                             5.363157804
                                                           68.925238
                     67.405996
## beta[4,105]
                                  14.530614 37.242263226
                                                           98.466239
##
  beta[5,105]
                     31.145710
                                  15.594986 -0.460060907
                                                           63.726685
## beta[6,105]
                                  14.311385 28.212065465
                     58.855607
                                                           89.021862
## beta[7,105]
                     38.300764
                                  14.910170
                                             6.918394815
                                                           70.386569
## beta[8,105]
                     48.127553
                                   5.329854 35.713633388
                                                           58.377534
## beta[9,105]
                     49.417462
                                  13.011171 23.405940699
                                                           76.120228
## beta[10,105]
                     29.423359
                                  14.326569 -1.418406720
                                                           59.317289
## beta[11,105]
                     47.799051
                                   5.029693 34.817944439
                                                           57.072574
## beta[12,105]
                                  14.590462 37.946993600
                     68.872178
                                                           99.943065
## beta[13,105]
                     30.388877
                                  14.463342
                                             0.262617665
                                                           61.282308
## beta[1,106]
                     58.570802
                                  15.163902 27.067249277
                                                           90.523098
## beta[2,106]
                                  14.994128 28.695201146
                     59.518113
                                                           92.130398
## beta[3,106]
                     36.460448
                                  15.132319
                                             5.156811011
                                                           69.605806
```

##	beta[4,106]	67.435537	14 628972	36.769868924	99.538277
	beta[5,106]	31.171708		-0.025628651	63.378785
	beta[6,106]	58.876191		28.221159745	90.362644
##	beta[7,106]	38.303126	14.996612	6.677285931	70.075741
	beta[8,106]	48.156693		35.936097054	58.794730
	beta[9,106]	49.415531		23.124763105	76.460347
	beta[10,106]	29.448561		-1.463237263	59.269382
	beta[11,106]	47.846381		34.818447099	57.062207
	beta[12,106]	68.882775		38.077909283	99.770044
##	beta[13,106]	30.389892		-0.223573344	61.912249
##	beta[1,107]	58.552472		27.241626457	90.104349
##	beta[2,107]	59.526814		27.775031205	91.781373
	beta[3,107]	36.460840	15.142161	4.844790553	68.865694
	beta[4,107]	67.422996		36.997562514	98.903184
	beta[5,107]	31.192744		-0.619976216	63.784903
	beta[6,107]	58.871325		28.173915577	91.128825
	beta[7,107]	38.288381	15.009083	6.950172900	71.139246
	beta[8,107]	48.186743		35.762459031	59.568449
##	beta[9,107]	49.423711		23.184197734	76.383584
##	beta[10,107]	29.443143		-0.869191926	60.155940
	beta[11,107]	47.885350		34.886000230	56.963134
	beta[12,107]	68.861550		37.733814740	99.641203
	beta[13,107]	30.348519		-1.198661825	61.660106
	beta[1,108]	58.544221		26.911381778	90.849436
	beta[2,108]	59.538989		27.644695957	92.331898
##	beta[3,108]	36.441877	15.262197	5.113834547	69.764514
##	beta[4,108]	67.432595		36.469311440	98.880791
##	beta[5,108]	31.195703		-1.750979455	63.992782
	beta[6,108]	58.874570		28.256350076	90.777014
	beta[7,108]	38.292938	15.101103	6.421582645	71.870207
	beta[8,108]	48.176146		35.677776457	59.373725
	beta[9,108]	49.454760		22.750586273	76.848945
	beta[10,108]	29.440327		-1.485287948	60.396572
	beta[11,108]	47.918438		35.156977527	57.158629
	beta[12,108]	68.891212		37.807289181	
	beta[13,108]	30.318894		-0.990335556	61.679571
	beta[1,109]	58.578381		25.788257857	90.848784
	beta[2,109]	59.485097		27.339304653	91.909942
##	beta[3,109]	36.447677	15.292005	4.098015234	69.574413
	beta[4,109]	67.426084		36.850682105	99.044158
	beta[5,109]	31.204160		-1.725583908	64.639333
##	beta[6,109]	58.889569		28.393632931	90.777817
##	beta[7,109]	38.247543	15.130284	6.155371904	71.547239
	beta[8,109]	48.131687		35.095250614	59.560235
	beta[9,109]	49.485247		22.734438962	77.459559
##	beta[10,109]	29.402153		-1.914017531	59.461746
##	beta[11,109]	47.912860		35.426172746	57.025462
	beta[11,103] beta[12,109]	68.898512		37.652883068	99.654569
	beta[12,103] beta[13,109]	30.314435		-1.886341589	62.172336
	beta[1,110]	58.574114		25.963782478	90.609463
	beta[2,110]	59.534774		26.731660150	92.569710
	beta[3,110]	36.457748	15.386269	4.908989639	69.652404
ırπ	5554[5,110]	00.401140	10.000203	1.00000000	JJ. JJZ-10-1

```
## beta[4,110]
                     67.440380
                                  14.887063 36.171478342
                                                           98.904479
## beta[5,110]
                     31.222180
                                  15.820166 -1.641929183
                                                           63.127376
## beta[6,110]
                                  14.579627 28.454970948
                                                           91.234244
                     58.884785
## beta[7,110]
                     38.264974
                                  15.241585
                                             6.114061278
                                                           71.745790
##
  beta[8,110]
                     48.110088
                                  6.204888 34.834746404
                                                           59.883539
                                  13.256462 22.160783119
  beta[9,110]
                     49.454403
                                                           76.941123
## beta[10,110]
                     29.360868
                                  14.675493 -2.299724194
                                                           59.530251
## beta[11,110]
                     47.938202
                                   4.933461 35.368095977
                                                           56.810279
## beta[12,110]
                     68.909035
                                  14.916958 37.107266150 101.050474
## beta[13,110]
                                  14.851165 -1.492861174
                     30.342436
                                                           61.936053
## beta[1,111]
                     58.564797
                                  15.462214 25.634529326
                                                           91.233327
## beta[2,111]
                                  15.240979 27.475753312
                                                           92.300253
                     59.515223
## beta[3,111]
                     36.383021
                                  15.454878
                                             4.128870601
                                                           69.400622
## beta[4,111]
                                  14.999565 36.481841054
                     67.456707
                                                           99.719814
## beta[5,111]
                     31.205580
                                  15.867948 -1.406752424
                                                           64.086389
## beta[6,111]
                     58.855824
                                  14.655752 27.785173340
                                                           90.562325
## beta[7,111]
                     38.241728
                                  15.349047
                                             6.496787798
                                                           71.807272
## beta[8,111]
                     48.146661
                                  6.314744 34.753354661
                                                           59.857590
## beta[9,111]
                     49.473490
                                  13.343273 22.106760491
                                                           77.137463
  beta[10,111]
                                  14.784262 -1.870301499
##
                     29.344498
                                                           60.299285
                     48.031646
## beta[11,111]
                                  4.863332 35.506032665
                                                           56.791706
## beta[12,111]
                     68.891588
                                  14.983982 36.596948151 100.596558
## beta[13,111]
                     30.348096
                                  14.939825 -1.533104954
                                                           61.755255
## beta[1,112]
                     58.532854
                                  15.463239 25.150847947
                                                           90.577494
## beta[2,112]
                     59.553275
                                  15.282585 27.963490818
                                                           92.695369
## beta[3,112]
                     36.371279
                                  15.455754
                                             3.941339189
                                                           70.007357
## beta[4,112]
                     67.424977
                                  15.144009 35.933950358 100.222911
## beta[5,112]
                                  15.790971 -1.704779282
                     31.181657
                                                           63.032831
## beta[6,112]
                                  14.724141 28.350776947
                     58.893787
                                                           91.308534
## beta[7,112]
                     38.224304
                                  15.448736
                                             6.068094473
                                                           72.499084
## beta[8,112]
                     48.153561
                                   6.450529 35.044014384
                                                           60.361278
## beta[9,112]
                     49.445104
                                  13.443656 22.066419673
                                                           77.500670
## beta[10,112]
                     29.340805
                                  14.821354 -1.805016737
                                                           59.783853
## beta[11,112]
                                   4.810704 35.410971090
                     48.046158
                                                           56.877441
## beta[12,112]
                     68.940182
                                  15.061226 36.627503261 100.815146
## beta[13,112]
                                  15.001039 -2.501783385
                     30.340149
                                                           62.138620
## beta[1,113]
                     58.512854
                                  15.582554 24.798178375
                                                           91.472426
## beta[2,113]
                     59.573891
                                  15.307105 26.817808832
                                                           92.201276
## beta[3,113]
                     36.355777
                                  15.500318
                                             3.907971815
                                                           70.483131
## beta[4,113]
                     67.447400
                                  15.173743 36.180667980 100.069040
## beta[5,113]
                     31.145040
                                  15.862183 -1.813990146
                                                           63.311154
## beta[6,113]
                                  14.801884 27.984599577
                                                           91.282050
                     58.881602
## beta[7,113]
                     38.267546
                                  15.570668
                                             6.043142050
                                                           72.800092
## beta[8,113]
                     48.169177
                                   6.586409 34.417454327
                                                           60.752258
## beta[9,113]
                     49.416787
                                  13.472163 21.451649705
                                                           77.396961
## beta[10,113]
                     29.337697
                                  14.842759 -2.201555402
                                                           60.306090
## beta[11,113]
                     48.047547
                                  4.731630 35.519314497
                                                           56.775413
## beta[12,113]
                                  15.096326 36.587673985 100.506048
                     68.942640
## beta[13,113]
                     30.323328
                                  15.056708 -2.513245288
                                                           61.655171
## beta[1,114]
                     58.480654
                                  15.633596 25.004711826
                                                           90.792900
## beta[2,114]
                     59.563926
                                  15.379890 27.208771989
                                                           92.592575
## beta[3,114]
                     36.394915
                                  15.556948 4.013376121
                                                           71.004690
```

```
## beta[4,114]
                     67.452730
                                  15.255744 36.665513183 100.311589
  beta[5,114]
##
                     31.171045
                                  15.915308 -2.260333397
                                                           64.094180
## beta[6,114]
                                                           91.301716
                     58.854556
                                  14.861429 28.193465128
## beta[7,114]
                                  15.716984
                                             5.714380488
                                                           72.526767
                     38.265627
## beta[8,114]
                     48.214652
                                  6.815766 33.682449793
                                                           62.125410
  beta[9,114]
                                                           77.534027
                     49.377833
                                  13.589180 21.054750172
## beta[10,114]
                     29.355287
                                  14.929723 -1.528255157
                                                           59.873379
## beta[11,114]
                     48.084391
                                   4.697465 35.690524648
                                                           56.631079
## beta[12,114]
                     68.949386
                                  15.132711 36.527058511 100.720395
## beta[13,114]
                     30.338341
                                  15.208953 -2.996330970
                                                           61.734911
                                  15.672772 24.470528695
##
  beta[1,115]
                     58.461322
                                                           90.919361
  beta[2,115]
                                  15.531058 26.443103930
                                                           93.410377
##
                     59.569209
##
  beta[3,115]
                     36.398617
                                  15.687246
                                             3.893716597
                                                           70.869696
## beta[4,115]
                     67.428692
                                  15.337208 36.012638208 100.386296
## beta[5,115]
                     31.192249
                                  16.068145 -2.367557346
                                                           64.529868
  beta[6,115]
                                  14.895428 28.953342686
                     58.890005
                                                           90.781675
## beta[7,115]
                     38.261816
                                  15.709511
                                             5.967598825
                                                           72.553018
                                                           62.324705
## beta[8,115]
                     48.258049
                                  6.950195 33.652875577
  beta[9,115]
                     49.404457
                                  13.716344 20.621321785
                                                           77.487928
##
##
  beta[10,115]
                     29.338346
                                  14.959042 -1.555941243
                                                           60.506202
## beta[11,115]
                     48.075969
                                   4.590628 35.691189070
                                                           56.318053
## beta[12,115]
                     68.966326
                                  15.217738 37.266791466 101.520492
## beta[13,115]
                     30.353083
                                  15.265654 -2.345823449
                                                           61.604019
  sigma2_beta[1]
                      1.983584
                                   2.619386
                                             0.067432770
                                                            9.811024
  sigma2_beta[2]
                      2.123004
                                   6.608926
                                             0.068747630
                                                            9.154619
  sigma2_beta[3]
                      1.998874
                                   2.700569
                                             0.067607334
                                                            9.785534
  sigma2 beta[4]
                      1.990037
                                  2.628090
                                             0.069899162
                                                            9.827270
  sigma2_beta[5]
                                  10.277233
                      2.177180
                                             0.068706091
                                                            9.399325
  sigma2_beta[6]
                      2.009647
                                   2.882833
                                             0.070212655
                                                            9.610445
  sigma2_beta[7]
                      2.016162
                                   2.950729
                                             0.070508205
                                                            9.488029
  sigma2_beta[8]
                      1.922471
                                   2.481571
                                             0.074708213
                                                            9.502068
  sigma2_beta[9]
                      1.990683
                                   2.643962
                                             0.062246212
                                                            9.629270
  sigma2_beta[10]
                                   3.124264
                      2.011775
                                             0.069299203
                                                            9.668897
  sigma2_beta[11]
                      1.903645
                                   2.461996
                                             0.079021045
                                                            9.060829
  sigma2_beta[12]
##
                      2.002740
                                   2.699599
                                             0.069533108
                                                            9.788253
   sigma2_beta[13]
                      1.980313
                                   2.623479
                                             0.070235126
                                                            9.407093
   sigma2_y[1]
                    110.421134 4140.772763
                                             3.630945679
                                                           98.700218
  sigma2_y[2]
                     37.433096
                                 219.283024
                                             3.657232440 100.172850
##
   sigma2_y[3]
                     32.606741
                                  32.253440
                                             3.605711682
                                                           97.711550
  sigma2_y[4]
                     32.953798
                                  63.934587
                                             3.779732662
                                                           97.786865
##
  sigma2_y[5]
                     37.302642
                                 226.543715
                                             3.702411676
                                                           98.689607
  sigma2_y[6]
                                                           99.768413
##
                     32.556122
                                  31.099612
                                             3.834331138
  sigma2_y[7]
                     43.575421
                                 555.350283
                                             3.686516698 100.398992
  sigma2_y[8]
                     31.245772
                                  26.743780
                                             3.666795868
                                                           94.702051
  sigma2_y[9]
                     32.297343
                                  28.016058
                                             3.940521011
                                                           97.735543
  sigma2_y[10]
                                  31.998891
                                                           99.966396
                     32.578443
                                             3.694215054
  sigma2_y[11]
                     31.093843
                                  27.015430
                                             3.591506985
                                                           95.332058
   sigma2_y[12]
                                  38.049204
                     32.599110
                                             3.647017778
                                                           98.692937
## sigma2_y[13]
                     35.672709
                                  90.873938
                                             3.742074546 101.658292
  mean Rhat: 1.116908
```

mean effective sample size: 2018.325

Appendix B

Presidential Election Model:

- 2020 US presidential election polls all_polls.csv: 2020 U.S. Presidential Election Polls compiled by *The Economist*. Available at https://projects.economist.com/us-2020-forecast/president/how-this-works. + We only used poll responses from likely voters in the battleground states within 30 days prior to the election date. From the poll responses we calculated Biden's vote share in the two-party race in each poll (Y_k) .
- partisan_leans_538.csv: effect of partisan lean on the Democratic candidate's presidential election vote share in each state. Available at https://github.com/fivethirtyeight/data/tree/master/partisan-lean. + 90% weight is allocated to this variable Vote Share from Partisan Lean_j when computing hyperparameter h_j for each state j.
- abramowitz_data.csv: downloaded from Andrew Gelman's Github repository on the 2020 Presidential Election. Available at https://github.com/TheEconomist/us-potus-model. + This data set contains information on each of the 1948-2016 election year i's annualized 2nd quarter GDP performance (not used due to its abnormally low value in 2020), incumbent party's June net approval rating (June Approval Ratings for Incumbent Party_i) and incumbent party's national vote share (Presidental Fundamentals_i).
- states_cov_matrix_full.csv: covariance matrix of states which takes into account similarity between states based on their demographic and political profiles. Retrieved from Andrew Gelman's Github repository on the 2020 Presidential Election (https://github.com/TheEconomist/us-potus-model). + The covariance matrix corresponds to S, the scale matrix in the prior distribution of Σ
- abramowitz_additional.csv: we supplemented abramowitz_data.csv with the corresponding year i's 2nd quarter real income growth compared to one year ago (2nd Quarter Real Income Growth_i) and S&P stock performance 3 months prior to the election date (Three Month Stock Growth_i). Data sets are from https://fred.stlouisfed.org/series/A067RO1Q156NBEA and https://www.multpl.com/s-p-500-historical-prices/table/by-month. A subset of the combined data set is displayed below. check where the table is + We fitted a linear regression model on historical incumbent party's national vote share with June Approval Ratings for Incumbent Party, 2nd Quarter Real Income Growth, and Three Month Stock Growth as predictors. We then predicted this year's incumbent party's national vote share (i.e. Republican's national vote share) and used 100 minus the predicted value to obtain Democrat's national vote share (Presidental Fundamentals₂₀₂₀). We can think of Presidental Fundamentals₂₀₂₀ as a national level prior. 10% weight is allocated to the "national prior" when computing the state specific prior h_j .

	Incumbent				3 Month	
	Party Vote	Democrat	Incumbent Party	2nd Quarter	Stock	2nd Quarter Real
Year	Share	Incumbency	June Net Approval	GDP Growth	Growth	Income Growth
2016	51.10	Yes	4	1.1	0.0033832	1.8
2012	52.00	Yes	1	1.3	-0.0338848	2.4
2008	46.30	No	-40	0.6	-0.2743827	0.0
2004	51.24	No	-1	2.9	0.0458816	2.5
2000	50.30	Yes	15	8.0	-0.0613126	5.8
1996	54.70	Yes	10	7.1	0.0900753	3.3

Senate Election Model:

• senate_polls.csv: Senate election polls compiled by FiveThirtyEight. Available at https://projects.fivethirtyeight.com/polls-page/senate_polls.csv. + Similar to the presidential election prediction model,

we only included poll responses from likely voters in the battleground states within 30 days prior to the senate election date. From the poll responses we calculated Democratic candidates' vote share in the two-party race in each poll (Y_k) .

- partisan_leans_538.csv: same as the data set in presidential election model and we used this partisan lean in the calculation of prior hyperparameter h_i .
- We also incroporated incumbency advantage in calculating h_j . As Five Thirty Eight suggests, incumbency advantage is on average 2.6 for senate incumbents (https://fivethirtyeight.com/features/how-much-was-incumbency-worth-in-2018/).
- For NC Senate race only, we supplemented the prior with predicted voter turnout from the Interim Report model.

House Election Model (for North Carolina):

- house_polls.csv: House election polls compiled by FiveThirtyEight. Available at https://projects. fivethirtyeight.com/polls-page/house_polls.csv. + We only used polls related to the NC House race. Due to the lack of poll responses for the NC House elections, we included all poll responses within 115 days of the election.
- ncvoter_1027_small.rds: NC registered voter demographics information provided by the NC State Board of Elections (https://dl.ncsbe.gov/list.html). + Please refer to the Interim Report to see a detailed explanation of how voter turnout is modeled by registered voters' race, age, party affiliation, income and gender.
- Partisan lean and incumbency information was taken from FiveThirtyEight at the following links, respectively: https://fivethirtyeight.com/features/north-carolinas-new-house-map-hands-democrats-two-seats-but-it-still-leans-republican/, https://fivethirtyeight.com/features/how-much-was-incumbency-worth-in-2018/

Appendix C

Traceplots for Presidential Model

Traceplots for Senate Model

Traceplots for House Model

References

- 1. Linzer, D. A. (2013). Dynamic Bayesian Forecasting of Presidential Elections in the States. Journal of the American Statistical Association, 108(501), 124-134. doi:10.1080/01621459.2012.737735
- 2. Hansford, T. G., & Gomez, B. T. (2010). Estimating the Electoral Effects of Voter Turnout. American Political Science Review, 104(2), 268-288. doi:10.1017/s0003055410000109
- 3. 2020 Election. (2020, October 20). Retrieved October 20, 2020, from https://fivethirtyeight.com/politics/elections/
- 4. Park, D. K., Gelman, A., & Bafumi, J. (2006). State-Level Opinions from National Surveys:. Public Opinion in State Politics, 209-228. doi:10.2307/j.ctvr33bdg.17
- 5. Mahler, V. A., Jesuit, D. K., & Paradowski, P. R. (2013). Electoral Turnout and State Redistribution. Political Research Quarterly, 67(2), 361-373. doi:10.1177/1065912913509306
- 6. Uhlaner, C. J., & Scola, B. (2015). Collective Representation as a Mobilizer. State Politics & Policy Quarterly, 16(2), 227-263. doi:10.1177/1532440015603576
- 7. Godbout, J. (2012). Turnout and presidential coattails in congressional elections. Public Choice, 157(1-2), 333-356. doi:10.1007/s11127-012-9947-7
- 8. Kim, S. S., Alvarez, R. M., & Ramirez, C. M. (2020). Who Voted in 2016? Using Fuzzy Forests to Understand Voter Turnout. doi:10.33774/apsa-2020-xzx29
- 9. Weinschenk, A. C. (2019) That's Why the Lady Lost to the Trump: Demographics and the 2016 Presidential Election, Journal of Political Marketing, 18:1-2, 69-91, DOI: 10.1080/15377857.2018.1478657
- 10. Charles, K. K., & Stephens, M. (2011). Employment, Wages and Voter Turnout. doi:10.3386/w17270
- 11. Hills, M. (2020, September 25). US election 2020: A really simple guide. Retrieved October 20, 2020, from https://www.bbc.com/news/election-us-2020-53785985
- 12. Railey, K. (2016). Federal Judges Let Stand North Carolina,'s New Congressional Map. The Hotline. https://link.gale.com/apps/doc/A498010836/ITOF?u=duke_perkins&sid=ITOF&xid=119d6ad9
- 13. Perrin, A. J., & Ifatunji, M. A. (2020). Race, Immigration, and Support for Donald Trump: Evidence From the 2018 North Carolina Election. Sociological Forum, 35(S1), 941-953. doi:10.1111/socf.12600
- 14. Redistricting in North Carolina. (2020). Retrieved October 21, 2020, from https://ballotpedia.org/Redistricting_in_North_Carolina
- 15. § 132-1. Public Records. https://www.ncleg.gov/EnactedLegislation/Statutes/PDF/BySection/Chapter_132/GS_132-1.pdf
- 16. § 163-82.10. Official record of voter registration. https://www.ncleg.gov/EnactedLegislation/Statutes/PDF/BySection/Chapter_163/GS_163-82.10.pdf
- 17. FairVote.org. (n.d.). Voter Turnout. Retrieved October 22, 2020, from https://www.fairvote.org/voter_turnout

- 18. McDonald, M. P. (2020). Voter Turnout Demographics. Retrieved October 23, 2020, from http://www.electproject.org/home/voter-turnout/demographics
- 19. Y. Ghitza, A. Gelman's (2013). Deep interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups. American Journal of Political Science 57 762–776.
- 20. Walker, H.L., Herron, M.C. & Smith, D.A. Early Voting Changes and Voter Turnout: North Carolina in the 2016 General Election. Polit Behav 41, 841–869 (2019). https://doi-org.proxy.lib.duke.edu/10.1007/s11109-018-9473-5
- 21. Pew Research Center (2020). Men and women in the U.S. continue to differ in voter turnout rate, party identification. https://www.pewresearch.org/fact-tank/2020/08/18/men-and-women-in-the-u-s-continue-to-differ-in-voter-turnout-rate-party-identification/
- 22. Pew Research Center (2016). Party affiliation among voters: 1992-2016. https://www.pewresearch.org/politics/2016/09/13/2-party-affiliation-among-voters-1992-2016/
- 23. J. Misra (2019). Voter Turnout Rates Among All Voting Age and Major Racial and Ethnic Groups Were Higher Than in 2014. https://www.pewresearch.org/fact-tank/2020/08/18/men-and-women-in-the-u-s-continue-to-differ-in-voter-turnout-rate-party-identification/
- 24. Killian, L. (2012). Five Myths About Independent Voters. Retrieved October 22, 2020, from https://www.washingtonpost.com/opinions/five-myths-about-independent-voters/2012/05/17/gIQAZmGyWU story.html
- 25. Igielnik, R. (2020). Men and Women in the U.S. Continue to Differ in Voter Turnout Rate. Retrieved October 22, 2020, from https://www.pewresearch.org/fact-tank/2020/08/18/men-and-women-in-the-u-s-continue-to-differ-in-voter-turnout-rate-party-identification/
- 26. Akee, R. (2019). Voting and Income. Retrieved October 22, 2020, from https://econofact.org/voting-and-income
- 27. Wikipedia. 2020 United States elections. (2020, October 27). Retrieved October 31, 2020, from https://en.wikipedia.org/wiki/2020_United_States_elections
- 28. Gelman, A., & Heidemanns, M. (2020). President-Forecasting the US 2020 elections. Retrieved November 01, 2020, from https://projects.economist.com/us-2020-forecast/president
- 29. Gelman, A., Hullman, J., Wlezien, C., & George, E. M. (2020). Information, incentives, and goals in election forecasts. Judgment and Decision Making, 15(5), 863-880.
- 30. Gelman, A. and Heidemanns, M. (2020). President-Forecasting the US 2020 Elections | The Economist. Retrieved October 31, 2020 from https://projects.economist.com/us-2020-forecast/president
- 31. The Cook Political Report (2020). 2020 Electoral College Ratings. Retrieved October 31, 2020 from https://cookpolitical.com/sites/default/files/2020-10/EC%20Ratings.102820.pdf
- 32. The Cook Political Report (2020). 2020 Senate Race Ratings. Retrieved October 31, 2020 from https://cookpolitical.com/ratings/senate-race-ratings
- 33. Ballotpedia (2020). United States Senate special election in Georgia, 2020. Retrieved October 31, 2020 from https://ballotpedia.org/United States Senate special election in Georgia, 2020

- 34. FiveThirtyEight (2020). FiveThirtyEight's Partisan Lean. Retrieved October 31, 2020 from https://github.com/fivethirtyeight/data/tree/master/partisan-lean
- 35. Rakich, N. (2018). How Much Was Incumbency Worth In 2018? Retrieved October 31, 2020 from https://fivethirtyeight.com/features/how-much-was-incumbency-worth-in-2018/?
 ?? Nilsen, E. (2020). Georgia's two super-competitive Senate races, explained. Retrieved October 31, 2020 from https://www.vox.com/21536826/georgia-senate-race-ossoff-loeffler-warnock-perdue
- 36. Gillespie, A. et al. (2020). Race for the Senate 2020: Experts' views from the states. Retrieved October 31, 2020 from https://www.brookings.edu/blog/fixgov/2020/10/30/race-for-the-senate-2020-experts-views-from-the-states/
- 37. Delsiver, D. (2020). Most Senate Elections Reflect States' Presidential Votes. Retrieved October 31, 2020 from https://www.pewresearch.org/fact-tank/2020/09/01/most-senate-elections-reflect-states-presidential-votes/
- 38. Silver, N. (2014) Registered Voter Polls Will (Usually) Overrate Democrats. Retrieved October 31, 2020 from https://fivethirtyeight.com/features/registered-voter-polls-will-usually-overrate-democrats/
- 39. The Economist. (2016). Hillary Clinton has got this. Probably. Very probably https://www.economist.com/graphic-detail/2016/11/08/hillary-clinton-has-got-this-probably-very-probably
- 40. Shirani-Mehr, H., Rothschild, D., Goel, S., & Gelman, A. (2018). Disentangling Bias and Variance in Election Polls. Journal of the American Statistical Association, 113(522), 607-614. doi:10.1080/01621459.2018.1448823
- 41. McDonald, M. (2020). 2020 General Election Early Vote Statistics. Retrieved November 01, 2020, from https://electproject.github.io/Early-Vote-2020G/index.html
- 42. Morley, M. (1905). Election Emergencies: Voting in the Wake of Natural Disasters and Terrorist Attacks, 67 Emory L. J. 545. Available at: https://scholarlycommons.law.emory.edu/elj/vol67/iss3/6
- ?? Abramawitz, A. (2008). Forecasting the 2008Presidential Election with the Time-for-Change Model. Political Science and Politics Vol. 41, No. 4 (Oct., 2008), pp. 691-695. https://www.jstor.org/stable/20452296?seq=1# metadata info tab contents
- ?? Golshan, T. (2016). Survey: Trump Won Big Among Voters Who Decided in the Last 2 Weeks of the Campaign. Retrieved November 1, 2020 from https://www.vox.com/policy-and-politics/2016/12/21/14025198/trump-undecided-final-weeks-survey
- ?? Silver, N. (2008). Allocating the Undecideds. Retrieved November 1, 2020 from https://fivethirtyeight.com/features/allocating-undecideds/
- ?? Silver, N. (2014). How The FiveThirtyEight Senate Forecast Model Works. Retrieved November 1, 2020 from https://fivethirtyeight.com/features/how-the-fivethirtyeight-senate-forecast-model-works/
- ?? Skelley, G. (2020). What Pollsters Have Changed Since 2016 And What Still Worries Them About 2020. Retrieved November 1, 2020 from https://fivethirtyeight.com/features/what-pollsters-have-changed-since-2016-and-what-still-worries-them-about-2020/
- ?? Cohn, N. (2020). Are the Polls Missing Republican Voters? Retrieved November 1, 2020 from https://www.nytimes.com/2020/07/29/upshot/polls-political-party-republicans.html

Additional EDA

Map For The Number of Filtered Polls Among States

Figure 12: Additional Presidential Election Data Visualization

Map For The Number of Filtered Polls Among States

Figure 13: Additional Senate Election Data Visualization