Devoir maison 13.

À rendre le lundi 5 juin 2023

Exercice 1

Un joueur lance 100 fois de suite une pièce de monnaie donnant pile avec probabilité p, avec $p \in]0,1[$. Pour $N \in \{2,\ldots,100\}$, on note X_N la variable aléatoire égale au nombre de fois, au cours des N premiers lancers, que deux résultats consécutifs ont été différents.

Autrement dit, X_N est égale au nombre de « changements » au cours des N premiers lancers. Par exemple, si les 9 premiers lancers sont

PPFPFFFPP

Alors
$$X_2 = 0$$
, $X_3 = 1$, $X_4 = 2$, $X_5 = 3$, $X_6 = 3$, $X_7 = 3$, $X_8 = 4$ et $X_9 = 4$.

- 1°) Justifier que, pour tout $N \in \{2, ..., 100\}$, X_N est à valeurs dans $\{0, ..., N-1\}$. On pose, pour tout $k \in \{1, ..., 100\}$, A_k : « On obtient pile au kième lancer ». Dans les questions 2 et 3, on se servira de ces événements.
 - **2°**) Montrer que X_2 suit la loi de Bernoulli de paramètre 2p(1-p). Quelle est son espérance? Déterminer la loi de X_3 .
 - **3**°) Soit $N \in \{2, ..., 100\}$. Montrer que $P(X_N = 0) = p^N + (1 p)^N$.
 - **4°)** Pour tout $k \in \{3, ..., 100\}$, on définit la variable aléatoire Y_k par :

$$Y_k = X_k - X_{k-1}$$

et on pose également $Y_2 = X_2$.

- a) Justifier sans calcul que pour tout $k \in \{2, ..., 100\}$, Y_k suit la même loi que X_2 .
- b) Soit $N \in \{2, ..., 100\}$. Exprimer X_N à l'aide des Y_k , en déduire $E(X_N)$.
- 5°) a) Soit $k \in \{3, \dots, 99\}$. Calculer $P((Y_k = 1) \cap (Y_{k+1} = 1))$. En déduire que si $p \neq \frac{1}{2}$, Y_k et Y_{k+1} ne sont pas indépendantes.
 - b) On admet que si $p = \frac{1}{2}$, alors toutes les variables Y_k sont indépendantes. Soit $N \in \{2, ..., 100\}$. Déterminer, sans calcul, la loi de X_N .

Exercice 2

Soit n un entier supérieur ou égal à 2.

On tire au hasard un numéro entre 1 et n, et on note X le numéro obtenu.

On effectue ensuite X lancers successifs d'une pièce parfaitement équilibrée.

On note Y le nombre de fois où l'on a obtenu pile au cours de ces lancers.

- 1°) Quelle est la loi de X?
- 2°) Déterminer la loi conjointe de X et Y.
- **3**°) Démontrer que : $\forall j \in \{0, ..., n\}, P(Y = j) = \frac{1}{n} \sum_{i=j}^{n} {i \choose j} \frac{1}{2^i}$.
- **4**°) Pour $j \in \{1, ..., n\}$ et $i \in \{j, ..., n\}$, transformer $j \binom{i}{j}$.
- **5°)** Montrer que $E(Y) = \frac{n+1}{4}$.