Les quelques exercices qui suivent n'ont aucune vocation à être originaux ou sophistiqués. Leur seul objectif est de vous faire manipuler les quelques théorèmes que nous avons vus ensemble lors de la séance du mercredi 22 septembre.

- 1. Théorème de Dini : Soit K un compact d'un e.v.n. E, et (f_n) une suite croissante de fonctions numériques continues sur K, convergeant simplement vers une fonction continue f. On veut prouver que cette convergence est uniforme.
 - a. Prouver qu'une intersection décroissante de fermés non vides inclus dans K est non vide.
- **b.** On fixe $\varepsilon > 0$, et on pose $K_n = \{x \in K \mid f_n(x) \le f(x) \varepsilon\}$. Prouver que la suite (K_n) est une suite décroissante de fermés, d'intersection vide.
 - c. Conclure.
 - **d.** Application au théorème de convergence monotone dans le cas des fonctions continues Soit (f_n) une suite de fonctions numériques positives et continues sur un intervalle I de \mathbb{R} , convergeant simple-

ment sur I en croissant vers une fonction continue f. On suppose la suite $\left(\int\limits_I f_n\right)$ majorée.

- i. Prouver que pour tout segment J inclus dans I, la suite $\left(\int_J f_n\right)$ est convergente et déterminer sa limite.
- ii. En déduire que f est sommable sur I.
- *iii.* Prouver enfin que $\int_I f = \lim_n \int_I f_n$.
- 2. f désignant une fonction continue et bornée sur \mathbf{R} , on pose, pour tout entier n non nul, $I_n = \int_0^{+\infty} e^{-t^n} f(t) dt$. Étudier l'existence de I_n et calculer la limite de la suite (I_n) .
- 3. Pour tout entier naturel n, on pose $I_n = \int_0^{+\infty} \frac{e^{-x}}{1 + n^2 x^2} dx$. Étudier la suite (I_n) puis la série $\sum I_n$.
- **4.** On pose, pour x réel, $\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$.
 - **a.** Donner le domaine de définition de la fonction Γ .
 - **b.** Prouver que pour tout t du segment [0,n] (n entier), on a $0 \le (1-\frac{t}{n})^n \le e^{-t}$.
 - **c.** En déduire que si x est un réel strictement positif, $\Gamma(x) = \lim_{n \to \infty} \int_{0}^{n} (1 \frac{t}{n})^{n} t^{x-1} dt$.
 - **d.** Prouver alors que pour x > 0, $\Gamma(x) = \lim_{n} \frac{n^{x} n!}{x(x+1)...(x+n)}$.
- 5. Calculer $L = \lim_{n} I_n$ avec $I_n = \int_{0}^{+\infty} \frac{\mathrm{d}t}{1+t^n}$, puis donner un équivalent de $I_n L$ (nettement plus délicat !).
- **6.** Étudier l'existence et la sommabilité sur \mathbf{R}^{+*} de $f(x) = \sum_{n=1}^{\infty} e^{-n^{\alpha} x^{\beta}}$ (α et β réels strictement positifs).
- 7. Théorème de Poincaré

f et g désignent deux fonctions de classe C^1 sur \mathbf{R}^2 à valeurs dans \mathbf{R} . On suppose que $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$ sur \mathbf{R}^2 . Prouver l'existence d'une fonction h de classe C^1 vérifiant $\frac{\partial h}{\partial x} = f$ et $\frac{\partial h}{\partial y} = g$.