Roll Nos	Problems							
1-9	A morning newspaper lists the following used-car prices for a foreign compact with age x_1 measured in years and selling price x_2 measured in thousands of dollars:							
	$x_1 \mid 1 2$	3 3 4	5 6	8 9 11				
	x ₂ 18.95 19.00 1	7.95 15.54 14.00	12.95 8.94 7.4	49 6.00 3.99				
	(a) Construct a scatter plot of	the data and mark	ainal dat diaarar					
	 (a) Construct a scatter plot of the data and marginal dot diagrams. (b) Infer the sign of the sample covariance s₁₂ from the scatter plot. 							
	•				2. Com-			
	(c) Compute the sample means \bar{x}_1 and \bar{x}_2 and the sample variances s_{11} and s_{22} . Compute the sample covariance s_{12} and the sample correlation coefficient r_{12} . Interpret these quantities.							
							(d) Display the sample mean array $\hat{\mathbf{x}}$, the sample variance-covariance array \mathbf{S}_n , and the sample correlation array \mathbf{R} u	
	The world's 10 largest compan	ies yield the follo	wing data:		-			
	The World's 10 Largest Companies ¹							
		$x_1 = \text{sales}$	$x_2 = profits$	$x_3 = assets$				
		Company	(billions)	(billions)	(billions)			
	Citigroup General Electric	108.28 152.36	17.05 16.59	1,484.10 750.33				
	American Intl Group	95.04	10.91	766.42				
	Bank of America	65.45	14.14	1,110.46				
	HSBC Group ExxonMobil	62.97 263.99	9.52 25.33	1,031.29 195.26				
	Royal Dutch/Shell	265.19	18.54	193.83				
	BP	285.06	15.73	191.11				
	ING Group Toyota Motor	92.01 165.68	8.10 11.13	1,175.16 211.15				
	¹ From www.Forbes.com partially based on Forber The Forbes Global 2000, April 18, 2005.							
	7.17		(a) Plot the scatter diagram and marginal dot diagrams for variables x_1 and x_2 . Com-					
	(a) Plot the scatter diagram a		diagrams for vari	iables x_1 and x_2	. Com-			
	(a) Plot the scatter diagram as ment on the appearance of	the diagrams.		iables x_1 and x_2	2. Com-			
	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 	the diagrams.		iables x_1 and x_2	2. Com-			
	(a) Plot the scatter diagram as ment on the appearance of	the diagrams.		iables x_1 and x_2	2. Com-			
	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 	the diagrams. r_{12} , and r_{12} . Inter	pret r ₁₂ .		. Com-			
	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x 1, x 2, s 1, s 2. (a) Plot the scatter diagrams and do 	t diagrams for (x_2, x_3)	pret r ₁₂ .		. Com-			
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute \$\bar{x}_1\$, \$\bar{x}_2\$, \$s_{11}\$, \$s_{22}\$, \$s_{22}\$ 2. (a) Plot the scatter diagrams and do the patterns. 	of the diagrams. Interest diagrams for (x_1, x_2, x_3) .	pret r_{12} . 3) and (x_1, x_3) . Co		. Com-			
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute \$\bar{x}_1\$, \$\bar{x}_2\$, \$s_{11}\$, \$s_{22}\$, \$s_{22}\$ (a) Plot the scatter diagrams and do the patterns. (b) Compute the \$\bar{x}\$, \$S_n\$, and \$\bar{x}\$ arrays 	of the diagrams. Interest diagrams for (x_1, x_2, x_3) .	pret r_{12} . 3) and (x_1, x_3) . Co		. Com-			
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute \$\bar{x}_1\$, \$\bar{x}_2\$, \$s_{11}\$, \$s_{22}\$, \$s_{22}\$ (a) Plot the scatter diagrams and do the patterns. (b) Compute the \$\bar{x}\$, \$S_n\$, and \$\bar{x}\$ arrays Given the matrix 	f the diagrams. r_{12} , and r_{12} . Interest diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	pret r_{12} . 3) and (x_1, x_3) . Co	omment on				
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decomposition. 	t diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associal	pret r_{12} . 3) and (x_1, x_3) . Co	omment on				
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decomment (a) Find A⁻¹. 	f the diagrams. r_{12} , and r_{12} . Interest diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ And the association of	pret r_{12} . 3) and (x_1, x_3) . Co $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ ted normalized of \mathbf{A} .	omment on				
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decomposition. 	f the diagrams. r_{12} , and r_{12} . Interest diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ The association of the associa	pret r_{12} . 3) and (x_1, x_3) . Co $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ ted normalized of \mathbf{A} .	mment on	and e_2 .			
10-20	 (a) Plot the scatter diagram as ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues 	f the diagrams. r_{12} , and r_{12} . Interest diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ The association of the associa	pret r_{12} . 3) and (x_1, x_3) . Co $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ ted normalized of \mathbf{A} .	mment on	and e_2 .			
10-20	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. 	f the diagrams. r_{12} , and r_{12} . Interest diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\mathbf{A}_{12} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the association of the same diagrams for \mathbf{A}_{12} .	pret r_{12} . 3) and (x_1, x_3) . Co 2 -2 ted normalized of \mathbf{A} . rs of \mathbf{A}^{-1} .	mment on	and e_2 .			
10-20	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (c) Write the spectral decommon (b) Compute the eigenvalues (c) Write the spectral decommon (d) Find A⁻¹. 	f the diagrams. x_{12} , and x_{12} . Interest diagrams for (x_2, x_3) . $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the association of the diagrams for \mathbf{A} . and eigenvectors are sufficiently as $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.	pret r_{12} . 3) and (x_1, x_3) . Co 2 2 2 1 ted normalized of \mathbf{A} . rs of \mathbf{A}^{-1} . 1 4.001 4.002001	eigenvectors e	and e_2 .			
10-20	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (c) Write the spectral decommon (b) Compute the eigenvalues (c) These matrices A =	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate aposition (x_1, x_2, x_3) . A is an eigenvector of the analysis of (x_1, x_2, x_3) . A is an eigenvector of (x_1, x_2, x_3) . A is an eigenvector of (x_1, x_2, x_3) .	pret r_{12} . 3) and (x_1, x_3) . Co 2 2 2 1 ted normalized of \mathbf{A} . rs of \mathbf{A}^{-1} . 1 4.001 1 4.002001 ence in the $(2, 2)$ early dependent. See	eigenvectors e ₁ re it with tha	and e_2 .			
10-20	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (c) Write the spectral decommon (b) Compute the eigenvalues (c) Write the spectral decommon (c) Write the spectral decommon (d) 4.001 These matrices are identical except Moreover, the columns of A (and A⁻¹ = (-3)B⁻¹. Consequently, small substantially different inverses. 	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate aposition $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ are nearly ling of the appearance of the association $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ are nearly ling of the appearance of the association $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ are nearly ling of the appearance of the ap	pret r_{12} . 3) and (x_1, x_3) . Co 2 2 2 2 3. ted normalized of \mathbf{A} . The of \mathbf{A}^{-1} . 4.001 4.002001 4.002001 ence in the $(2, 2)$ are also dependent. Searly dependent. Searly dependent. Searly dependent.	eigenvectors e ₁ re it with that position. Show that —can give	and e_2 .			
10-20	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decord (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decord (c) Write the spectral decord (a) Find A⁻¹. (c) Write the spectral decord (b) Consider the matrices A =	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate position of the positive definite if the positive definite	and (x_1, x_3) . Co $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ ted normalized of \mathbf{A} . The of \mathbf{A}^{-1} . $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and comparate the comparate of the $\begin{bmatrix} 4.001 \\ 1 \end{bmatrix}$ tence in the $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	eigenvectors e ₁ re it with that position. Show that —can give	and e_2 .			
10-20	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (c) Write the spectral decommon (b) Compute the eigenvalues (c) Write the spectral decommon (c) Write the spectral decommon (d) 4.001 These matrices are identical except Moreover, the columns of A (and A⁻¹ = (-3)B⁻¹. Consequently, small substantially different inverses. 	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate position of the positive definite if the positive definite	and (x_1, x_3) . Co $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ ted normalized of \mathbf{A} . The of \mathbf{A}^{-1} . $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and comparate the comparate of the $\begin{bmatrix} 4.001 \\ 1 \end{bmatrix}$ tence in the $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	eigenvectors e ₁ re it with that position. Show that —can give	and e_2 .			
	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decommon (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decommon (a) Find A⁻¹. (c) Write the spectral decommon (b) Compute the eigenvalues (c) Write the spectral decommon (c) Write the spectral decommon (d) 4.001 4.002 These matrices are identical except Moreover, the columns of A (and A⁻¹ = (-3)B⁻¹. Consequently, small substantially different inverses. A quadratic form x'A x is said to be 1s the quadratic form 3x₁² + 3x₂² - 2 	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate aposition of the apposition of the ap	pret r_{12} . 3) and (x_1, x_3) . Co 2 2 2 2 1 ted normalized of \mathbf{A} . rs of \mathbf{A}^{-1} . 1 4.001 1 4.002001 ence in the $(2, 2)$ early dependent. Saused by rounding ematrix \mathbf{A} is positive?	eigenvectors e ₁ re it with that position. Show that —can give ive definite.	and e_2 .			
10-20 21-29	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decord (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decord (c) Write the spectral decord (a) Find A⁻¹. (c) Write the spectral decord (b) Consider the matrices A =	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate position of the properties of the pr	pret r_{12} . 3) and (x_1, x_3) . Co 2 2 2 2 1 ted normalized of \mathbf{A} . rs of \mathbf{A}^{-1} . 1 4.001 1 4.002001 ence in the $(2, 2)$ early dependent. Saused by rounding ematrix \mathbf{A} is positive?	eigenvectors e ₁ re it with that position. Show that —can give	and e_2 .			
	 (a) Plot the scatter diagram at ment on the appearance of (b) Compute x̄₁, x̄₂, s₁₁, s₂₂, s 2. (a) Plot the scatter diagrams and do the patterns. (b) Compute the x̄, S_n, and R arrays Given the matrix find the eigenvalues λ₁ and λ Determine the spectral decorn (a) Find A⁻¹. (b) Compute the eigenvalues (c) Write the spectral decorn (a) Find A⁻¹. (c) Write the spectral decorn (b) Compute the eigenvalues (c) Write the spectral decorn (c) Write the spectral decorn (c) Write the spectral decorn (d) 4.001 4.002 These matrices are identical except Moreover, the columns of A (and A⁻¹ ± (-3)B⁻¹. Consequently, small substantially different inverses. A quadratic form x' A x is said to be 1s the quadratic form 3x₁² + 3x₂² - 2 Determine the square-root matrix A^{1/2}. 	t diagrams for (x_2, x_3) . A = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and the associate position of the properties of the pr	pret r_{12} . 3) and (x_1, x_3) . Co 2 2 2 2 1 ted normalized of \mathbf{A} . rs of \mathbf{A}^{-1} . 1 4.001 1 4.002001 ence in the $(2, 2)$ early dependent. Saused by rounding ematrix \mathbf{A} is positive?	eigenvectors e ₁ re it with that position. Show that —can give ive definite.	and e_2 .			

	[1 1]				
	$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 2 & 2 \end{bmatrix}$				
	(a) Calculate A'A and obtain its eigenvalues and eigenvectors.				
	(b) Calculate AA' and obtain its eigenvalues and eigenvectors. Check that the nonzero eigenvalues are the same as those in part a.				
	(c) Obtain the singular-value decomposition of A.				
30-39	$\mathbf{A} = \begin{bmatrix} 4 & 8 & 8 \\ 3 & 6 & -9 \end{bmatrix}$				
	(a) Calculate AA' and obtain its eigenvalues and eigenvectors.				
	(b) Calculate A'A and obtain its eigenvalues and eigenvectors. Check that the no eigenvalues are the same as those in part a.	onzero			
	(c) Obtain the singular-value decomposition of A.				
	Let X have covariance matrix				
	$\mathbf{\Sigma} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1 \end{bmatrix}$				
	 Find (a) Σ⁻¹ (b) The eigenvalues and eigenvectors of Σ. 				
	(c) The eigenvalues and eigenvectors of Σ^{-1} .				
40-49	. Let X have covariance matrix				
	$\Sigma = \begin{bmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{bmatrix}$				
	(a) Determine ρ and $V^{1/2}$. (b) Multiply your matrices to check the relation $V^{1/2}\rho V^{1/2} = \Sigma$.				
	2.				
	(a) Find ρ_{13} .				
	(b) Find the correlation between X_1 and $\frac{1}{2}X_2 + \frac{1}{2}X_3$.				
	You are given the random vector $\mathbf{X}' = [X_1, X_2, X_3, X_4]$ with mean $\boldsymbol{\mu}'_{\mathbf{X}} = [4, 3, 2, 1]$ and variance—covariance matrix	an vector			
	$\mathbf{\Sigma_{x}} = \begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 9 & -2 \\ 2 & 0 & -2 & 4 \end{bmatrix}$				
	Partition X as				
	$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}$	(a) $E(\mathbf{X}^{(1)})$			
	Let	(b) $E(\mathbf{A}\mathbf{X}^{(1)})$			
	$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix} \text{and} \mathbf{B} = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}$	(c) Cov(X ⁽¹⁾) (d) Cov(AX ⁽¹⁾)			
	and consider the linear combinations $\mathbf{A}\mathbf{X}^{(1)}$ and $\mathbf{B}\mathbf{X}^{(2)}$. Find (e) $E(\mathbf{X}^{(2)})$				
	(g) Cov(X ⁽²⁾)				
	(h) Cov (BX ⁽²⁾) (i) Cov (X ⁽¹⁾ , X ⁽²⁾)				
	(j) $Cov(\mathbf{AX}^{(1)}, \mathbf{BX}^{(2)})$				
	1				

Compulsory		and consider the linear combinations $\mathbf{A}\mathbf{X}^{(1)}$ and $\mathbf{B}\mathbf{X}^{(2)}$. Find
for all		(a) $E(\mathbf{X}^{(1)})$
group	xercise 2.32, but with X partitioned as	(b) $E(\mathbf{A}\mathbf{X}^{(1)})$
		(c) Cov(X ⁽¹⁾) (d) Cov(AX ⁽¹⁾)
	$\mathbf{x} = \begin{bmatrix} X_1 \\ X_2 \\ X_2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{(1)} \\ X_2 \end{bmatrix}$	(e) $E(\mathbf{X}^{(2)})$
	$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}$	(a) $Cov(AX^{(1)})$ (e) $E(X^{(2)})$ (f) $E(BX^{(2)})$
		$(a) \operatorname{Cov}(\mathbf{X}^{(2)})$
	A and B replaced by	$(h) Cov(BX^{(2)})$
	A and B replaced by $\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \text{and} \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$	(i) $Cov(\mathbf{X}^{(1)}, \mathbf{X}^{(2)})$
		(j) Cov(AX''', BX''')