Ejercicios

Ejercicio 1

Obtener el autómata de posición de cada una de las siguientes expresiones regulares:

(a)
$$r = (ba)^*b$$

Solución:

El primer paso del algoritmo consiste en obtener la versión linearizada de r:

$$\overline{r} = (b_1 a_2)^* b_3$$

Los autómatas locales estandar para las subexpresiones b_1a_2 y b_3 son:

El autómata local estandar para la expresión $(b_1a_2)^*$ queda como sigue:

Con lo que el autómata para \overline{r} queda:

siendo el autómata de posición de r el obtenido al eliminar los subíndices de los símbolos del alfabeto linealizado:

(b)
$$r = a(a+b)^*$$

El primer paso del algoritmo consiste en obtener la versión linearizada de r:

$$\overline{r} = a_1(a_2 + b_3)^*$$

Los autómatas locales estandar que aceptan los lenguajes representados por las subexpresiones a_1 y a_2+b_3 son:

El autómata local estandar para la expresión $(a_2 + b_3)^*$ queda como sigue:

Siendo el autómata que acepta $L(\overline{r})$ el siguiente:

y el autómata de posición que acepta L(r) el siguiente:

(c)
$$r = a(a+b)*b$$

La versión linearizada de r:

$$\overline{r} = a_1(a_2 + b_3)^*b_4$$

El autómata que acepta $L(a_1(a_2+b_3)^*)$ el siguiente:

Siendo el autómata que acepta $L(\overline{r})$ el siguiente:

y el autómata que acepta L(r) el siguiente:

(d)
$$r = (a^*b^*)^* + (a+b)^*$$

Solución:

$$\overline{r} = (a_1^* b_2^*)^* + (a_3 + b_4)^*$$

El autómata local estandar para la expresión $(a_1^*b_2^*)^*$ queda:

Con lo que el autómata que acepta $L(\overline{r})$ que da como sigue:

y el autómata que acepta L(r) el siguiente:

(e) $r = a(ba + b)^*$

Solución:

$$\overline{r} = a_1(b_2a_3 + b_4)^*$$

El autómata local estandar para $(b_2a_3+b_4)^*$

y el autómata de posición para L(r)

(f) $r = a^*ba^*b(a+b)^*$

Solución:

La correspondiente expresión linearizada es:

$$\overline{r} = a_1^* b_2 a_3^* b_4 (a_5 + b_6)^*$$

y el autómata local estandar que acepta $L(\overline{r})$ el siguiente:

Una vez aplicado el homomorfismo de eliminación de subíndices, el autómata de posición queda como sigue:

(g)
$$r = (a+b)*bb + (a+b)*a$$

$$\overline{r} = (a_1 + b_2)^* b_3 b_4 + (a_5 + b_6)^* a_7$$

El autómata local estandar que acepta $L((a_1+b_2)^*b_3b_4)$ es el siguiente:

y a continuación se muestra el autómata local estandar que acepta el lenguaje representado por $(a_5+b_6)^*a_7$:

Con lo que el autómata de posición que acepta $\mathcal{L}(r)$ es:

(h)
$$r = ((ba + a^*)^* + ba)(ab)^*$$

Solución:

$$\overline{r} = ((b_1 a_2 + a_3^*)^* + b_4 a_5)(a_6 b_7)^*$$

El autómata local estandar que acepta $L((b_1a_2+a_3^*)^*+b_4a_5)$ es el siguiente:

el autómata local estandar que acepta $L(\overline{r})$ el siguiente:

por lo que el autómata de posición que acepta L(r) es el siguiente:

Ejercicio 2

Obtener el autómata follow de cada una de las siguientes expresiones regulares:

(a)
$$r = (ba)^*b$$

El autómata de posición de r es el siguiente:

la siguiente tabla muestra los seguidores de cada estado:

Q	seguidores
q_0	$\{q_1,q_3\}$
q_1	$\{q_2\}$
q_2	$\{q_1,q_3\}$
q_3	Ø

con lo que el autómata follow queda como sigue:

(b)
$$r = a(a+b)^*$$

Solución:

El autómata de posición que acepta L(r) el siguiente:

a continuación se muestra la tabla con los seguidores de cada estado:

Q	seguidores
q_1	$\{q_2\}$
q_2	$\{q_3,q_4\}$
q_3	$\{q_3,q_4\}$
q_4	$\{q_3,q_4\}$

por lo tanto, el autómata follow para r queda:

(c)
$$r = a(a+b)^*b$$

Solución:

El autómata que acepta L(r) el siguiente:

la tabla con los seguidores de cada estado se muestra a continuación:

Q	seguidores
q_0	$\{q_1\}$
q_1	$\{q_2,q_3,q_4\}$
q_2	$\{q_2,q_3,q_4\}$
q_3	$\{q_2, q_3, q_4\}$
q_4	Ø

con lo que el autómata follow que acepta L(r) que da como sigue:

(d)
$$r = (a^*b^*)^* + (a+b)^*$$

El autómata que acepta L(r) el siguiente:

la tabla de seguidores de cada estado:

Q	seguidores
q_1	$\{q_2, q_3, q_4, q_5\}$
q_2	$\{q_2,q_3\}$
q_3	$\{q_2, q_3\}$
q_4	$\{q_4, q_5\}$
q_5	$\{q_4, q_5\}$

y el autómata follow que acepta L(r):

(e) $r = a(ba + b)^*$

Solución:

El autómata de posición para L(r)

teniendo en cuenta los seguidores de cada estado:

Q	seguidores
q_1	$\{q_2\}$
q_2	$\{q_3,q_5\}$
q_3	$\{q_4\}$
q_4	$\{q_3,q_5\}$
q_5	$\{q_3,q_5\}$

el autómata follow que acepta el lenguaje L(r) se muestra a continuación:

(f) $r = a^*ba^*b(a+b)^*$

Solución:

El autómata de posición queda es el siguiente:

y la tabla de seguidores la siguiente:

Q	seguidores
$\overline{q_1}$	$\{q_2,q_4\}$
q_2	$\{q_2,q_4\}$
q_3	$\{q_3,q_5\}$
q_4	$\{q_3,q_5\}$
q_5	$\{q_6,q_7\}$
q_6	$\{q_6,q_7\}$
q_7	$\{q_6,q_7\}$

finalmente, el autómata follow que acepta el lenguaje L(r) el que se muestra a continuación:

(g)
$$r = (a+b)*bb + (a+b)*a$$

Solución:

A continuación se muestra el autómata de posición que acepta ${\cal L}(r)$ es:

y la tabla de seguidores de cada estado:

Q	seguidores
q_1	$\{q_2, q_3, q_4, q_5, q_6, q_7\}$
q_2	$\{q_2,q_3,q_4\}$
q_3	$\{q_2,q_3,q_4\}$
q_4	Ø
q_5	$\{q_5, q_6, q_7\}$
q_6	$\{q_5, q_6, q_7\}$
q_7	$\{q_8\}$
q_8	Ø

finalmente, el autómata follow que acepta el lenguaje L(r) el que se muestra a continuación:

(h)
$$r = ((ba + a^*)^* + ba)(ab)^*$$

Solución:

El autómata de posición que acepta L(r) es el siguiente:

y la tabla de seguidores de cada estado:

Q	seguidores
q_1	$\{q_2, q_4, q_5, q_7\}$
q_2	$\{q_3\}$
q_3	$\{q_2,q_4,q_7\}$
q_4	$\{q_2,q_4,q_7\}$
q_5	$\{q_6\}$
q_6	$\{q_7\}$
q_7	$\{q_8\}$
q_8	$\{q_7\}$

con lo que el autómata follow que acepta el lenguaje L(r) es el que se muestra a continuación:

Ejercicio 3

Obtener, para cada una de las siguientes expresiones regulares, un AFD mediante el algoritmo de Brzozowski.

(a)
$$r = a(ba + b)^*$$

Solución:

Inicializamos el estado inicial con r. El estado inicial no es final ya que $\lambda \notin L(r)$.

Derivamos a continuación r respecto cada símbolo del alfabeto.

$$a^{-1}a(ba+b)^* = (a^{-1}a)(ba+b)^* =$$

$$= \lambda(ba+b)^* = (ba+b)^* = r_1$$

$$b^{-1}a(ba+b)^* = (b^{-1}a)(ba+b)^* =$$

$$= \emptyset(ba+b)^* = \emptyset = r_2$$

ambas expresiones denotan lenguajes que no han aparecido previamente, por lo tanto añadimos nuevos estados $(r_1 \ y \ r_2)$ y transiciones $(\delta(r,a) = r_1 \ y \ \delta(r,b) = r_2)$ al autómata. Añadimos también r_1 al conjunto de estados finales ya que $\lambda \in L(r_1)$. Continuamos derivando:

$$a^{-1}r_1 = a^{-1}(ba+b)^* = (a^{-1}(ba+b))(ba+b)^* =$$

$$= (a^{-1}(ba) + a^{-1}b)(ba+b)^* = \emptyset = r_2$$

$$b^{-1}r_1 = b^{-1}(ba+b)^* = (b^{-1}(ba+b))(ba+b)^* =$$

$$= (b^{-1}(ba) + b^{-1}b)(ba+b)^* =$$

$$= (a+\lambda)(ba+b)^* = r_3$$

$$a^{-1}r_2 = b^{-1}r_2 = \emptyset = r_2$$

Actualizamos Q, δ y F. Derivamos ahora r_3 respecto los símbolos del alfabeto:

$$a^{-1}r_3 = a^{-1}(a+\lambda)(ba+b)^* = (a^{-1}(a+\lambda))(ba+b)^* + (a^{-1}(ba+b)^*) =$$

$$= \lambda(ba+b)^* + \emptyset = r_1$$

$$b^{-1}r_3 = b^{-1}(a+\lambda)(ba+b)^* = (b^{-1}(a+\lambda))(ba+b)^* + (b^{-1}(ba+b)^*) =$$

$$= \emptyset + (b^{-1}(ba+b)^*) = r_3$$

Con lo que el diagrama de estados del autómata es:

(b)
$$r = b(ab^*a)^*b$$

El estado inicial se inicializa con r. La cadena vacía no está incluida en el lenguaje L(r), por lo que el estado inicial no es final. Derivamos a continuación r respecto cada símbolo del alfabeto.

$$a^{-1}r = a^{-1}b(ab^*a)^*b = (a^{-1}b)(ab^*a)^*b = \emptyset = r_1$$

 $b^{-1}r = b^{-1}b(ab^*a)^*b = (b^{-1}b)(ab^*a)^*b = (ab^*a)^*b = r_2$

actualizamos el autómata con los dos nuevos estados y las correspondientes transiciones. El conjunto de finales no se actualiza y continuamos derivando:

$$a^{-1}r_{1} = b^{-1}r_{1} = \emptyset = r_{1}$$

$$a^{-1}r_{2} = a^{-1}(ab^{*}a)^{*}b =$$

$$= (a^{-1}(ab^{*}a)^{*})b + (a^{-1}b) =$$

$$= (a^{-1}ab^{*}a)(ab^{*}a)^{*}b + \emptyset =$$

$$= b^{*}a(ab^{*}a)^{*}b = r_{3}$$

$$b^{-1}r_{2} = b^{-1}(ab^{*}a)^{*}b =$$

$$= (b^{-1}(ab^{*}a)^{*})b + (b^{-1}b) =$$

$$= \emptyset + \lambda = \lambda = r_{4}$$

Actualizamos Q, δ y F ($r_4 \in F$). Derivamos ahora r_3 y r_4 respecto los símbolos del alfabeto:

$$a^{-1}r_3 = a^{-1}b^*a(ab^*a)^*b =$$

$$= (a^{-1}b^*)a(ab^*a)^*b + (a^{-1}a(ab^*a)^*b) =$$

$$= (a^{-1}b)b^*a(ab^*a)^*b + (ab^*a)^*b =$$

$$= (ab^*a)^*b = r_2$$

$$b^{-1}r_3 = b^{-1}b^*a(ab^*a)^*b =$$

$$= (b^{-1}b^*)a(ab^*a)^*b + (b^{-1}a(ab^*a)^*b) =$$

$$= (b^{-1}b)b^*a(ab^*a)^*b + \emptyset =$$

$$= b^*a(ab^*a)^*b = r_3$$

$$a^{-1}r_4 = b^{-1}r_4 = \emptyset = r_1$$

Con lo que obtenemos el siguiente autómata:

(c)
$$r = (ab + b)((aa)^*(a + ba + \lambda))$$

El estado inicial corresponde a $\lambda^{-1}r=r$. El estado inicial no es final ya que $\lambda \not\in L(r)$. Derivamos a continuación r respecto cada símbolo del alfabeto.

$$a^{-1}(ab+b)(aa)^*(a+ba+\lambda) = (a^{-1}(ab+b))(aa)^*(a+ba+\lambda) = b(aa)^*(a+ba+\lambda) = r_1$$

$$b^{-1}(ab+b)(aa)^*(a+ba+\lambda) = (b^{-1}(ab+b))(aa)^*(a+ba+\lambda) = (aa)^*(a+ba+\lambda)) = r_2$$

actualizamos el autómata con los dos nuevos estados y las correspondientes transiciones. Añadimos r_2 al conjunto de finales y continuamos derivando:

$$a^{-1}r_1 = a^{-1}b(aa)^*(a+ba+\lambda) = (a^{-1}b)(aa)^*(a+ba+\lambda) = \emptyset = r_3$$

$$b^{-1}r_1 = b^{-1}b(aa)^*(a+ba+\lambda) = (b^{-1}b)(aa)^*(a+ba+\lambda) = (aa)^*(a+ba+\lambda) = r_2$$

Actualizamos Q, δ y F. Derivamos ahora r_2 y r_3 respecto los símbolos del alfabeto:

$$a^{-1}r_2 = a^{-1}(aa)^*(a + ba + \lambda) =$$

$$= (a^{-1}(aa)^*)(a + ba + \lambda) + (a^{-1}(a + ba + \lambda)) =$$

$$= (a^{-1}aa)(aa)^*(a + ba + \lambda) + \lambda =$$

$$= a(aa)^*(a + ba + \lambda) + \lambda = r_4$$

$$b^{-1}r_2 = b^{-1}(aa)^*(a+ba+\lambda) =$$

$$= (b^{-1}(aa)^*)(a+ba+\lambda) + (b^{-1}(a+ba+\lambda) =$$

$$= (b^{-1}aa)(aa)^*(a+ba+\lambda) + a =$$

$$= \emptyset + a = a = r_5$$

$$a^{-1}r_3 = b^{-1}r_3 = \emptyset = r_3$$

Volvemos a actualizar Q, δ y F (r_4) . Derivamos ahora r_4 y r_5 respecto los símbolos del alfabeto:

$$a^{-1}r_4 = a^{-1}(a(aa)^*(a+ba+\lambda)+\lambda) =$$

= $(a^{-1}a(aa)^*(a+ba+\lambda))+(a^{-1}\lambda) =$
= $(aa)^*(a+ba+\lambda)+\emptyset = r_2$

$$b^{-1}r_4 = b^{-1}(a(aa)^*(a+ba+\lambda)+\lambda) =$$

= $(b^{-1}a(aa)^*(a+ba+\lambda))+(b^{-1}\lambda) =$
= $\emptyset = r_3$

$$a^{-1}r_5 = \lambda = r_6$$

$$b^{-1}r_5 = \emptyset = r_3$$

Finalmente, derivamos r_6 :

$$a^{-1}r_6 = b^{-1}r_6 = \emptyset = r_3$$

Con lo que el diagrama de estados del autómata es:

Ejercicio 4

Obtener una expresión regular para los lenguajes aceptados por cada uno de los siguientes autómatas

(a)

Solución:

Construimos el sistema de ecuaciones para el autómata:

$$\begin{cases} X_0 = aX_1 + bX_1 = (a+b)X_1 \\ X_1 = aX_1 + bX_2 \\ X_2 = aX_1 + bX_2 + \lambda \end{cases}$$

Aplicando el lema de Arden obtenemos que $X_2 = b^*(aX_1 + \lambda) = b^*aX_1 + b^*$. Sustituyendo en el sistema de ecuaciones:

$$\begin{cases}
X_0 = (a+b)X_1 \\
X_1 = aX_1 + bb^*aX_1 + b^* = (a+bb^*a)X_1 + bb^*
\end{cases}$$

Aplicando de nuevo el lema de Arden $X_1 = (a + bb^*a)^*bb^*$. Sustituyendo en la ecuación de X_0 obtenemos la expresión regular para el lenguaje que buscamos:

$$(a+b)(a+bb^*a)^*bb^*$$

Nota:

En ocasiones es interesante simplificar las expresiones obtenidas. En este ejercicio, la expresión regular obtenida mediante Arden para X_1 puede simplificarse y obtener una expresión más reducida, de este modo:

$$X_1 = (a + bb^*a)^*bb^* = ((\lambda + bb^*)a)^*bb^* = (b^*a)^*bb^* = (b^*a)^*b^*b = (a + b)^*b$$

con lo que la expresión que se buscaba queda:

$$(a+b)(a+b)^*b$$

(b)

Solución:

Sistema de ecuaciones para el autómata:

$$\begin{cases} X_0 = aX_1 + bX_0 \\ X_1 = aX_0 + bX_2 \\ X_2 = aX_1 + \lambda \end{cases}$$

sustitituyendo directamente el valor de X_2 , el sistema queda:

$$\begin{cases} X_0 = aX_1 + bX_0 \\ X_1 = aX_0 + b(aX_1 + \lambda) = aX_0 + baX_1 + b \end{cases}$$

aplicando el lema de Arden se obtiene $X_1=(ba)^*(aX_0+b)$ con lo que:

$$X_0 = a(ba)^*(aX_0 + b) + bX_0 =$$

= $a(ba)^*aX_0 + a(ba)^*b + bX_0 =$
= $(a(ba)^*a + b)X_0 + a(ba)^*b$

y aplicando una última vez el lema de Arden, obtenemos la expresión regular:

$$(a(ba)^*a + b)^*a(ba)^*b$$

(c)

Solución:

Sistema de ecuaciones para el autómata:

$$\begin{cases} X_0 = aX_1 + aX_3 \\ X_1 = bX_2 + \lambda \\ X_2 = bX_0 + bX_1 + aX_2 + bX_3 \\ X_3 = (a+b)X_3 \end{cases}$$

Aplicando el lema de Arden se obtiene que $X_3 = (a+b)^*\emptyset = \emptyset$, por lo que podemos simplificar el sistema de ecuaciones que queda:

$$\begin{cases} X_0 = aX_1 \\ X_1 = bX_2 + \lambda \\ X_2 = bX_0 + bX_1 + aX_2 \end{cases}$$

aplicando de nuevo el lema de Arden, obtenemos:

$$X_2 = a^*(bX_0 + bX_1) = a^*bX_0 + a^*bX_1$$

sustituyendo de nuevo en el sistema:

$$\begin{cases} X_0 = aX_1 \\ X_1 = b(a^*bX_0 + a^*bX_1) + \lambda = ba^*bX_0 + ba^*bX_1 + \lambda \end{cases}$$

de nuevo aplicando Arden:

$$X_1 = (ba^*b)^*(ba^*bX_0 + \lambda) = ba^*b(ba^*b)^*X_0 + (ba^*b)^*$$

con lo que:

$$X_0 = aba^*b(ba^*b)^*X_0 + a(ba^*b)^*$$

y aplicando el lema de Arden por última vez:

$$X_0 = (aba^*b(ba^*b)^*)^*a(ba^*b)^*$$

que representa el lenguaje aceptado por el autómata.

(d)

Solución:

Sistema de ecuaciones para el autómata:

$$\begin{cases} X_0 = aX_1 \\ X_1 = bX_2 + \lambda \\ X_2 = aX_2 + bX_3 \\ X_3 = bX_2 + aX_1 + \lambda \end{cases}$$

sustituyendo el valor de X_3 en el sistema:

$$\begin{cases} X_0 = aX_1 \\ X_1 = bX_2 + \lambda \\ X_2 = aX_2 + b(aX_1 + bX_2 + \lambda) = baX_1 + (a+bb)X_2 + b \end{cases}$$

sustituimos también el valor de X_1 en el sistema:

$$\begin{cases} X_0 = a(bX_2 + \lambda) = abX_2 + a \\ X_2 = ba(bX_2 + \lambda) + (a + bb)X_2 + b = (a + bab + bb)X_2 + b + ba \end{cases}$$

aplicando el lema de Arden se obtiene $X_2 = (a+bab+bb)^*(b+ba)$. Sustituyendo por último en la última ecuación obtenemos la expresión regular para el lenguaje:

$$ab(a+bab+bb)^*(b+ba)+a$$