Lecture 4: Economic Growth Model

Instructor: Fei Tan

Course: Macroeconomics 201

Date: September 13, 2025

The Road Ahead

- 1. Measuring Standard of Living
- 2. Economic Growth Model

Standard of Living Revisited

- Cross-country comparison of standard of living
 - purchasing power parity (PPP) numbers
 - GDP/GDP per capita constructed with common set of prices for all countries
 - downloadable from Penn World Tables
- Why using PPP numbers
 - exchange rate vary a lot
 - systematic differences in prices across countries
- We measure long-run economic growth by percentage increase in PPP numbers over long periods

$$ext{growth rate} = rac{Y_t - Y_{t-n}}{Y_{t-n}} imes 100\%, \quad n \sim ext{decades}$$

Growth in Rich Countries

	Annual Growth Rate Output per Person (%) 1950–2009	Real Output per Person (2005 dollars)		
		1950	2009	2009/1950
France	2.5	7,112	30,821	4.3
Japan	3.9	3,118	31,958	10.2
United Kingdom	2.0	10,400	33,386	3.2
United States	1.9	13,183	41,102	3.1
Average	2.6	8,453	34,317	5.2

Notes: The data stop in 2009, the latest year (at this point) available in the Penn tables. The average in the last line is a simple unweighted average. Source: Alan Heston, Robert Summers, and Bettina Aten, Penn World Table Version 7.0, Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania, May 2011

- Large increase in output per capita
- Convergence of output per capita across countries

Economic Growth Model

Aggregate production function

$$Y = F(K, N)$$
 (e.g. $Y = AN$)

- Notations
 - $\circ Y$ = aggregate output
 - $\circ K$ = aggregate capital
 - $\circ N$ = aggregate employment
- Three assumptions
 - constant returns to scale

$$xY = F(xK, xN)$$
 for any x

decreasing returns to capital & labor

Economic Growth Model (Cont'd)

Per capita production function

$$rac{Y}{N} = F\left(rac{K}{N}, rac{N}{N}
ight) = F\left(rac{K}{N}, 1
ight) \qquad (ext{set } x = 1/N)$$

- Notations
 - $\circ Y/N$ = output per capita
 - $\circ K/N$ = capital per capita
- Sources of economic growth
 - capital accumulation
 - technological progress

Capital Accumulation

Capital accumulation cannot sustain growth (why?)

Technological Progress

• Sustained growth requires sustained technological progress Fei Tan | Made on Earth by humans.

Readings & Exercises

- Readings
 - HO: chapter 11
 - BJ: lecture 8 (supplementary)
- Exercises
 - HO: problem 2.8, 2.9
 - \circ Let production function be $Y=\sqrt{K}\sqrt{N}$. Compute output when K=49 and N=81. If capital and labor double, what is output? It is constant returns to scale? Compute Y/N when K/N=4.