

WEATHER SENSE

Presentation, April 2024

PRESENTATION

About Project

WeatherSense is a weather tracking website that updates weather data and classification every 10 minutes. Leveraging our trained random forest classification model, WeatherSense provides accurate classification and historical weather information.

PRESENTATION

WEATHERSENSE PROJECT

ARCHITECTURE

PRIMANRY DATA

OUR PRIMARY DATA IS COLLECTED BY THE KIDBRIGHT BOARD, INCORPORATING A TEMPERATURE AND HUMIDITY SENSOR FROM THE KY-015 MODULE, AND USING MQTT TO SEND A DATA TO NODERED

SECONDARY DATA

OUR SECONDARY DATA IS COLLECTED BY CALL API FROM OPENWEATHERMAP API (CURRENT WEATHER) USING NODERED TO FETCH DATA FROM API

ATTRIBUTE SELECT:

- HUMIDITY (%)
- TEMPERATURE (DEGREE CELSIUS)
- PRESSURE (HPA)
- CLOUNDINESS (%)
- WEATHER: SUCH AS CLOUD, FEW CLOUDS ETC.

PRESENTATION

WEATHERSENSE PROJECT

CORRECT MECHANISM

CORRECTING USING NODRED

DATABASE SCHEMA

weathersense_gather

ts: timestamp

id: int

temp_sensor: float

temp_api: float

humidity_sensor: float

humidity api: float

pressure: float

wind_speed: float

cloudiness: float

weather: varchar

weathersense_hist

ts: timestamp

id: int

temp_sensor: float

temp_api: float

humidity_sensor: float

humidity_api: float

pressure: float

wind_speed: float

cloudiness: float

weather: varchar

weather_pred: varchar

DATA SHARING API

API

Our data sharing APIConsists of 2 major server

Backend

ModelAPI

BACKEND API ENDPOINT

- /latest: (GET) This endpoint receives API requests from those who want the latest weather data from our database. In ourproject, the first page of the website
 - result: lastest data from weathersense_hist table

```
"id": 1422,
"ts": "2024-05-09T02:39:29.000Z",
"temp_sensor": 31,
"humidity_sensor": 77,
"temp_api": 33.66,
"humidity_api": 67,
"pressure": 1011,
"wind_speed": 0.51,
"cloudiness": 40,
"weather": "Clouds",
"weather_pred": "Clouds"
}
```

BACKEND API ENDPOINT

- /host/history: (GET) This endpoint receives API requests from those who want all weather data from our database, ordered from latest to oldest. In our project, the history page and Data visualization page use this endpoint.
 - result: All data from weathersense_hist table

BACKEND API ENDPOINT

- /host/weather/:id: (GET) This endpoint receives API requests from those who want the weather data by its ID from our database. In our project, the /weather/id endpoint requests this to show specific data.
 - result: data with specific data id from weathersense_hist table

http://localhost:3000/weather/1

```
"id": 1,
"ts": "2024-04-18T10:04:21.000Z",
"temp_sensor": 20,
"humidity_sensor": 50,
"temp_api": 36.88,
"humidity_api": 57,
"pressure": 1004,
"wind_speed": 5.66,
"cloudiness": 20,
"weather": "Clouds",
"weather_pred": "Clouds"
}
```

MODEL API ENDPOINT

- host/predict: (POST) This endpoint receives API requests from those who want to predict data from our model by sending data in json and receiving responses. In our project, NodeJs server sent a data to Model
 - result: data with label "weather_pred"

```
[]
{
    "id": 1,
    "ts": "2024-04-14 21:51:13",
    "temp_sensor": 25,
    "humidity_sensor": 50,
    "temp_api": 31.03,
    "humidity_api": 73,
    "pressure": 1010,
    "wind_speed": 5.66,
    "cloudiness": 20,
    "weather": "few clouds",
    "weather_pred": "Clouds"
}
```

DATA VISUALIZATION

Data Visualization

We are focsuing on desscriptive of weather dataset to question desciptive probelm such

- What a distribution of numericalweather data
- What is the most weather type?
- What a relation of temperature and humidty?
- What day of week have high temperature?

PRESENTATION

chart.js

Chart.js provides a set of frequently used chart types, plugins, and customization options. In addition to a reasonable set of built-in chart types, you can use additional community-maintained chart types.

PRESENTATION

DEMO

PROJECT MEMBER

1. WISSARUT KANASUB

2. SUKPRACHOKE LEELAPISUTH

