

(An ISO – 9001: 2015 Certified & 'A+' Grade accredited Institution by NAAC)

Experiment-No.8

Objective: Write a program to demonstrate the working of Bayesian network for the following graph:

Calculate the probability of a burglary if John and Mary calls (0: True, 1: False)

Calculate the probability of alarm starting if there is a burglary and an earthquake (0: True, 1: False)

Calculate the probability of alarm starting if there is a burglary and an earthquake (0: True, 1: False)

Scheduled Date:	Compiled Date:	Submitted Date:
27 Sep 2023	28 Sep 2023	30- Sep 2023

Abhishek Pandey

2200290140010

Python code:

(An ISO – 9001: 2015 Certified & 'A+' Grade accredited Institution by NAAC)

```
cpd burglary = pgmpy. factors . discrete .TabularCPD(" Burglary " , 2 , [[0.0
01] , [0.999]])
# Probability of earthquake (True , False )
cpd earthquake = pgmpy. factors . discrete .TabularCPD("Earthquake" , 2 , [[0
.002] , [0.998]])
# Probability of alarm going of (True , False ) given a burglary and/or earth
quake
cpd alarm = pgmpy. factors . discrete .TabularCPD( 'Alarm ' , 2 , [[0.95 , 0.
94 , 0.29 , 0.001] , [0.05 , 0.06 , 0.71 , 0.999]] ,
                                                  evidence = ['Burglary', 'E
arthquake '] , evidence card =[2, 2])
# Probability that John calls (True , False ) given that the alarm has sounde
cpd john = pgmpy. factors . discrete .TabularCPD( ' JohnCalls ' , 2 , [[0.90
, 0.05] , [0.10 , 0.95]] , evidence =['Alarm'] , evidence card =[2])
# Probability that Mary calls (True , False ) given that the alarm has sounde
cpd mary = pgmpy. factors . discrete .TabularCPD( ' MaryCalls ' , 2 , [[0.70
, 0.01] , [0.30 , 0.99]] , evidence =['Alarm'] , evidence card =[2])
# Add CPDs to the network structure
model . add cpds ( cpd burglary , cpd earthquake , cpd alarm , cpd john , cpd
mary)
# Check i f the model is valid , throw an exception otherwise
model . check model ()
# Print probability distributions
print ( ' Probability distribution , P( Burglary ) ')
print ( cpd burglary )
print ()
print ( ' Probability distribution , P(Earthquake ) ')
print ( cpd earthquake )
```


(An ISO – 9001: 2015 Certified & 'A+' Grade accredited Institution by NAAC)

```
print ()
print ( ' Joint probability distribution , P(Alarm | Burglary , Earthquake )
print ( cpd alarm )
print ()
print ( ' Joint probability distribution , P( JohnCalls | Alarm) ')
print ( cpd john )
print ()
print ( ' Joint probability distribution , P(MaryCalls | Alarm) ')
print (cpd mary) print () # Plot the model
nx. draw(model , with labels=True) plt . savefig ( ' alarm1 .png ') plt . clo
# Perform variable elimination for inference
# Variable elimination (VE) is a an exact inference algorithm in bayesian net
infer = pgmpy. inference . VariableElimination (model)
# Calculate the probability of a burglary i f John and Mary calls (0: True ,
1: False )
posterior probability = infer . query ([ ' Burglary '] , evidence={'JohnCalls
' : 0 , 'MaryCalls ' : 0})
# Print posterior probability
print ( ' Posterior probability of Burglary i f JohnCalls (True) and MaryCall
s(True ) ')
print ( posterior probability )
print ()
# Calculate the probability of alarm starting i f there is a burglary and an
earthquake (0: True , 1: False )
posterior probability = infer . query ([ ' Alarm '] , evidence= { ' Burglary '
: 0 , 'Earthquake ' : 0})
```


(An ISO – 9001: 2015 Certified & 'A+' Grade accredited Institution by NAAC)

```
# Print posterior probability
print ( ' Posterior probability of Alarm sounding i f Burglary (True) and Ear
thquake(True ) ')
print ( posterior probability )
print ()
```

Output:

Probability distribution, P(Burglary)

Burglary(0) | 0.001 |

Burglary(1) | 0.999 |

Probability distribution, P(Earthquake)

Earthquake(0) | 0.002 |

Earthquake(1) | 0.998 |

Doint probability distribution, P(Alarm | Burglary, Earthquake)

Burglary | Burglary(0) | Burglary(1) | Burglary(1) |

Earthquake | Earthquake(0) | Earthquake(1) | Earthquake(0) | Earthquake(1) |

Alarm(0) | 0.95 | 0.94 | 0.29 | 0.001 |

Alarm(1) | 0.05 | 0.06 | 0.71 | 0.999

Joint probab	ility distribu	tion, P(JohnCalls	Alan	1)
+	+	++		
Alarm	Alarm(0)	Alarm(1)		

11.		1
+		++
JohnCalls(0)	0.9	0.05
+		++
JohnCalls(1)	0.1	0.95
*		*

Joint probability distribution, P(MaryCalls | Alarm)

Alarm	Alarm(0)	Alarm(1)
+	+	+
MaryCalls(0)	0.7	0.01
*		+
MaryCalls(1)	0.3	0.99
+		+

						14.504	
Posterior	probability	01	Burglary	17	JohnCalls(True)	and	MaryCalls(True)

Burglary	phi(Burglary)
	+=======+
Burglary(0)	0.2842
	++
Burglary(1)	0.7158
	++

Finding Elimination Order: : 0/0 [00:00<?, ?it/s]

0/0 [00:00<?, ?it/s]

Posterior probability of Alarm sounding if Burglary(True) and Earthquake(True)

A				
Alarm	phi(Alarm)			
+=======+				
Alarm(0)	0.9500			
++				
Alarm(1)	0.0500			
+				