

EE 381: Robotics I							
Course Code:	EE-381	Semester:	Spring 2024				
Credit Hours:	3+1	Prerequisite:	None				
Instructor:	Dr. Hafsa Iqbal	Discipline:	Electrical Engineering				
Office:	A-225 Faculty block	Telephone:					
Lecture Days:	Tuseday and Wednesday	E-mail:	Hafsa.iqbal@seecs.edu.pk				
Class Room:	Lecture hall 1 (PG block)	Consulting Hours:					
Lab Engineer:	Engr. Munadi Ahmad Sial	Lab Engr. Email:	Munadi.sial@seecs.edu.pk				
Knowledge Grou	ı p: EPC	Updates on LMS:	Weekly				

Course Description:

Robotics, as a field of study, is undergoing massive research and development to improve the dynamic, perceptual and behavioral aspects of robots. Students will learn the basics to model, simulate and design various robotic systems (with an emphasis on robotic manipulators).

The course will cover introduction to different types of robots and their applications. It will also reflect upon coordinate systems, kinematic principles, locomotion, and robot perception techniques (which will include robotic sensors, data acquisition, use of computer vision techniques in robotics, image processing applied to robotic perception, and feature extraction from various sensor data). In addition, an introduction to Robot localization problem will also be discussed in detail.

Course Objective:

The course material and associated lab-work is aimed to enable the students to simulate the kinematic and dynamic responses as well as the control of the robotics systems. It is also desired that the students are motivated by getting introduced with state-of-the-art in the field of robot automation.

Course Learning Outcomes (CLOs)

CLO	Description	ВТ	PLOs
	After the completion of the course the students will be able to:	Level	
1.	Explain the mathematical modelling of the robots.	C2	1
2.	Analyze the capabilities of robotic systems from the perspective of kinematics and dynamics.	C4	2
3.	Describe the role of sensors, actuators, computation and control in an autonomous robot.	C2	1
4.	Design and implement basic techniques for robot mechanisms.	C6	5
5.	Execute ROS (Robot Operating System)-based projects in teams.	P4	5
6.	Exhibit good professional ethics while adhering to lab safety rules.	A3	8
7.	Function effectively both individually and as a member of a team	A3	9

PLOs/CLOs	CLO1	CLO2	CLO3	CLO4	CLO5	CLO6	CLO7
PLO 1 (Engineering Knowledge)	✓		✓				
PLO 2 (Problem Analysis)		✓					
PLO 3 (Design/Development of Solutions)							
PLO 4 (Investigation)							
PLO 5 (Modern tool usage)				✓	✓		
PLO 6 (The Engineer and Society)							
PLO 7 (Environment and Sustainability)							
PLO 8 (Ethics)						✓	
PLO 9 (Individual and Team Work)							✓
PLO 10 (Communication)							
PLO 11 (Project Management)							
PLO 12 (Lifelong Learning)							

Books:

Text Book:

- 1. "Robot Dynamics and Control"—by M.W. Spong, [John Wiley & Sons], 20028.
- 2. "Robot Modeling and Control"- by M. W. Spong, [John Wiley & Sons], 2020.
- 3. "Robotics, Vision and Control" by Peter Corke—, [Springer], 2017.

Reference

Books:

- 4. "Introduction to Robotics, Mechanics and Control", by John J. Craig [Pearson Education International], 1987.
- 5. "Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents series)" by Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza—, [The MIT Press], 2011
- 6. "Learning ROS for Robotics Programming" by Aaron Martinez, Enrique Fernández. [Packet Publishing], 2015.

Main Topics to be Covered:

The course spans over a number of topics as under:

Topic 1 --- Course Introduction, Locomotion

- Introduction to Robotics
- History of Robotics
 - o Robots Classification
 - Robot Accessories and Coordinates
 - → Robot Programming

Topic 2 --- Transformations and Robot Kinematics

- Kinematic models and constraints
- Robot maneuverability
- Robot Workspace

Page 2 of 4

- o Degrees of freedom
- Holonomic constraints in robotics
- Robot Motion Control

Topic 3 --- Learning ROS (Robot Operating System) for Robotic Programming

- o Getting started with ROS / Installation
- o Understanding ROS file system
- o Debugging and visualization
- Using sensors and actuators with ROS

Topic 4 --- Robot Perception

- Sensors for robots, their use and classification
- Computer vision techniques to process sensor data
- Image processing techniques to process sensor data
- Feature extraction from images / sensor data

Topic 5 --- Robot Localization and Locomotion

- The challenge of localization
- Probabilistic map-based localization
 - o Belief representation
 - Map representation
 - Markov localization
 - o Kalman filter based localization
- Landmark based localization
- Positioning beacon system
- Route based localization
- Locomotion / Key issues in locomotion

Lecture Breakdown	:	
Textbook	Topics	Lectures Hours
	Week 1	
	Topic 1 Course Introduction, Locomotion	
[Spong]	An overview of the course contents	3
Chap 1 – 2	 Robot History, Taxonomy, Classification and Configuration 	
	Week 2	
	Topic 1 Course Introduction, Locomotion	
[Spong]	Current Trends in Robotics	3
Chap 1 – 2	 Applications 	
	 Industrial robots 	
	 Locomotion 	
<u> </u>	Week 3	
	Topic 2 Transformations and Robot Kinematics	

	 Representation and Homogenous Transformations 	3
	 Kinematic Models and Constraints 	
	 Representing robot position 	
[Spong]	 Forward Position kinematic model 	
Chap 3 - 4	 Inverse Position Kinematics 	
	 Robot kinematic constraints 	
	Week 4	
	Topic 2 Transformations and Robot Kinematics	
[Spong]	Robot maneuverability	3
Chap 3 - 4	 Degree of mobility 	
	 Degree of steerability 	
	 Robot workspace 	
	 Degree of freedom 	
	 Holonomic robots 	
	Robot Motion Control	
	 Open loop control 	
	 Feedback Control 	
	Kinematic Model	
	The Control Law	
	Local Stability Issues	
	Week 5	
1	Topic 3 Learning ROS (Robot Operating System) for Robotic Programn	ning
	 Getting started with ROS / ROS Installation 	3
[Martinez]	 ROS Architecture with examples 	
Chap -1,2	 ROS file system 	
	 ROS community level 	
	Week 6	
	Topic 3 Learning ROS (Robot Operating System) for Robotic Program	
[Martinez]	 Debugging and Visualization in ROS 	3
Chap -3,4	 Debugging ROS nodes / messages 	
	 Plotting scalar data 	
	 Visualization of images 	
	3D visualization	
	 Using sensors and actuators with ROS 	
	Using Kinect sensor to view in 3D	
	Using servomotors	
	■ Using IMU	
	Week 7 Topic 4 Robot Perception - Sensors and Their Usage	
[Cmana]		2
[Spong]	• Sensors for Robots	3
Chap – 10	Sensor classification	
	Characterization of sensor performance	
	Week 8	
	Topic 4 Robot Perception - Sensors and Their Usage	

	3
pong]	3
ip – 10,	
11	
pong]	<u>3</u>
ip – 10,	3
11	
	аде
pong]	3
ap – 11	
·	
,	
,	
pong]	
ap – 11	
•	
•	
•	
	3
egwart]	
ap – 5	
,	
egwart]	3
ap – 5	
,	
_	3

		Week 14	
		Topic 5 Robot Localization	
[Craig] Chap – 5/6	LegLegConExample	omotion / Key issues in locomotion ged Mobile Robots configuration and stability sideration of dynamics mples of legged robots (one leg, two legs, four and six legs robots)	3
		Week 15	
		Topic 5 Robot Localization	
[Craig] Chap – 5/6	• Who	eel Mobile Robots eel geometry, stability, maneuverability, and trollability eeled locomotion: Case Studies	3
		Week 16	
		Topic 5 Robot Localization	
[Craig]	• Aer	al Mobile Robots (only top level discussion)	3
Chap – 6	• Res	earch challenges discussion	
		Week 17	
	Stude	nt Presentations	3
		Total:	51
		- I Otuli	
		Totui	
xperiments		Totali	
operiments	01	Python Programming and Installing Linux Tern	ninal
periments	01 02		
(periments		Python Programming and Installing Linux Tern	amming
kperiments	02	Python Programming and Installing Linux Tern Data Structures and Modules in Python progra	amming obot Operating System
operiments	02 03	Python Programming and Installing Linux Tern Data Structures and Modules in Python progra Installing, Configuration and Introduction of R	amming obot Operating System es in Robot Operating System
(periments	02 03 04	Python Programming and Installing Linux Tern Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag	amming obot Operating System ses in Robot Operating System s
kperiments	02 03 04 05 06	Python Programming and Installing Linux Tern Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P	amming obot Operating System ses in Robot Operating System s lots
(periments	02 03 04 05 06 07	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robe	amming obot Operating System ses in Robot Operating System s lots ot Operating System
(periments	02 03 04 05 06 07 08	Python Programming and Installing Linux Tern Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Opera	emming obot Operating System tes in Robot Operating System s lots ot Operating System ating System
«periments	02 03 04 05 06 07 08	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Operating	emming obot Operating System tes in Robot Operating System s lots ot Operating System ating System
kperiments	02 03 04 05 06 07 08 09	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Operating Introduction to OpenCV	emming obot Operating System ges in Robot Operating System s lots ot Operating System ating System System System
kperiments	02 03 04 05 06 07 08 09 10	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Opera Localization and Mapping in Robot Operating Introduction to OpenCV OpenCV and Robot Operating System CV Bridge	emming obot Operating System ges in Robot Operating System s lots ot Operating System ating System System System
«periments	02 03 04 05 06 07 08 09 10 11	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Operating Introduction and Mapping in Robot Operating Introduction to OpenCV OpenCV and Robot Operating System CV Bridg Line Follower in Robot Operating System USIN	emming obot Operating System ges in Robot Operating System s lots ot Operating System eting System System System ge
xperiments	02 03 04 05 06 07 08 09 10 11 12	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Operat Localization and Mapping in Robot Operating Introduction to OpenCV OpenCV and Robot Operating System CV Bridg Line Follower in Robot Operating System USIN Forward and Inverse Kinematics in Robot Ope	emming obot Operating System ges in Robot Operating System s lots ot Operating System eting System System System ge IF Visual Feedback
xperiments	02 03 04 05 06 07 08 09 10 11	Python Programming and Installing Linux Term Data Structures and Modules in Python progra Installing, Configuration and Introduction of R Publishing and Subscribing Topics and Messag Intro to Gazebo Simulator and Twist Messages Custom Teleportation, Launch Files and RQt P Laser Range Finder and Wall Following in Robot Parameter Server and Services in Robot Operating Introduction and Mapping in Robot Operating Introduction to OpenCV OpenCV and Robot Operating System CV Bridg Line Follower in Robot Operating System USIN	obot Operating System ses in Robot Operating System solots ot Operating System ating System System System Ge JF Visual Feedback rating System

Assessments/CLOs	CLO1	CLO2	CLO3	CLO4	CLO5	CLO6	CLO7	
Quizzes: 10-15% of the theory part	√	✓	√					
Assignments: 5-10% of the theory part	√	✓	√					
Mid Exam: 25-40 % of the theory part	✓	✓	✓					
End Semester Exam: 40-50% of theory part	✓	✓	√					
Labs: 25% of the course			✓	✓	√	✓	✓	•
Project: 0 – 20%			√	✓	√	√	√	

Gra	Grading Policy:									
	Quiz Policy:	A number of quizzes will take place in the class to measure the learning progress of the students. These quizzes, which may be announced or unannounced, will usually last for 10 minutes.								
Assi	gnment Policy:	The course website will be th	e primar	y source f	or anno	uncemen	ts and su	bmitting	assignme	nts.
	Lab Conduct:	for study and analysis. The la their lab tasks at the end o	The labs will be conducted for three hours every week. A lab handout will be given in advance for study and analysis. The lab handouts will also be placed on LMS. The students are to submit their lab tasks at the end of lab for evaluation. One submission per group will be required. However, students may also be evaluated by oral viva during the lab.							
	Plagiarism:	SEECS maintains a strict no highly encouraged, you must Plagiarism occurs when the codes of others is presented information in your assignmental strict penalties including zero office.	ensure t words, id as your ents. Fail	that you of deas, asso own work ing to cor	do claim ertions, k. You m nply wit	other pe theories, nust cite a h the SEE	ople's wo figures, and ackno CS plagia	ork/ idea images, p owledge a rism polic	as your o programn all source by will lea	own. ning es of d to