

Testing Large Structures in the Field

George James,
NASA-Johnson Space Center,
Houston, TX

Thomas G. Carne
Sandia National Laboratories (ret.),
Albuquerque, NM

International Modal Analysis Conference – XXVII
Orlando, FL
February 9-12, 2009

Large Structure Test Issues

- Need to test in the field
- Large input forces required
- Limited choices for boundary conditions
- Natural excitation sources cannot be removed
- May not be able to take out of service

Purpose

- ☐ To review a trajectory in the evolution of field testing of large structures as driven by Tom Carne and his colleagues.
 - Step relaxation testing Can input large yet controlled forces
 - ✓ Vertical Axis Wind Turbine non-rotating
 - ✓ Vertical Axis Wind Turbine rotating
 - Support system modelling Allows a wider range of support conditions
 - ✓ STARS launch system
 - Natural excitation analysis Uses the natural environment for excitation
 - ✓ Vertical Axis Wind Turbines non-rotating
 - ✓ Vertical Axis Wind Turbines rotating
 - ✓ Other applications HAWT's, Trucks, STARS, Space Shuttle
 - Hybrid force reconstruction Augments test data with analytical data
 - ✓ Space Shuttle Rollout Stack

Making Step Relaxation Testing Viable

Step Relaxation Testing – E'ole Wind Turbine

Step Relaxation Device - E'OLE

Step Relaxation

10,000 pounds on blade

30,000 pounds on tower

Release < 0.1 seconds

Attaching cable for Step Input

Free Support to Match Flight Conditions

Increasing the Fidelity of Free B.C.'s

Hydroset and pulley block weighted several thousands pounds and were modeled as a double pendulum.

Reconciliation Performed with B.C. Model

Model Match for STARS Shell Modes

Early Assessment of Natural Excitation Input

MODE SHAPE DESCRIPTION	STEP RELAXATION (Hz)	WIND EXCITATION (Hz)	FINITE ELEMENT MODEL (Hz)
FIRST TOWER OUT-OF-PLANE	0.63	0.63	0.63
FIRST TOWER IN-PLANE	0.74	0.73	0.75
SECOND TOWER OUT-OF-PLANE	0.93	0.94	0.92
BLADE FLATWISE ANTI-SYMMETRIC	1.30	1.30	1.27
BLADE FLATWISE SYMMETRIC	1.32	1.34	1.29
SECOND TOWER IN-PLANE	1.38	1.39	1.42
BLADES BENDING OUT-OF-PLANE	1.55	1.55	1.61
THIRD TOWER OUT-OF-PLANE	1.79		1.76
ROTOR TWIST (DUMBBELL)	1.93	1.94	1.96
SECOND FLATWISE SYMMETRIC	2.24	2.25	2.20
SECOND BLADE OUT-OF-PLANE	2.33	2.33	2.34
SECOND BLADE ANTI-SYMMETRIC	2.40	2.39	2.38

Making Natural Excitation Work

- □ Natural Excitation used on E'OLE and other turbines
 □ E'OLE test published '88 IMAC and M.A. journal
 □ Formalized approach in '92 IMAC & Oct.95 journal
- Called this NExT:
 - 1. Acquire response data -- long time histories
 - 2. Calculate auto & cross- correlation functions
 - ✓ Showed that correlation fcns sum of decaying sinusoids
 - ✓ Reference dofs
 - 3. Time domain modal id algorithm to estimate
 - ✓ Poly-Reference and ERA
 - 4. Extract mode shapes
- NExT used on rotating systems (VAWT & HAWT)
- □ Applied to flight systems (STARS and Space Shuttle)

Rotating 34-Meter VAWT Using NExT

Space Shuttle Roll-Out Numbers

Space Shuttle Elements:

Orbiter (Orb) – 250,000 lbs

External Tank (ET) – 65,000 lbs

Solid Rocket Boosters (SRBs) – 3x10⁶ lbs

Mobile Launch Platform (MLP) – 8x10⁶ lbs

Crawler Transporter (CT) – 1x10⁶ lbs

Total - 12x106 lbs

Historical Roll-out Speed - .9 mph
Constrained Roll-out Speed - .8 mph
Desired Roll-Out Speed - 1.0 mph
Max CT Speed - 2.0 mph

Roll-out found to possess narrow-band excitation which drives system dynamics

Hybrid Approach Developed for Shuttle Stack

- ☐ Measured data at .8, .9, and 1.0 mph from STS-115:
 - MLP, SRB, and Orbiter sensors used;
 - CT, SSME, and wireless sensors not used; and
 - Six bad channels removed (2 on HDP's, 3 on SRB, 1 on Orb.).
- Model from Shuttle Modeling and Integration Group:
 - CT, MLP, and SRB models used for past roll-out work;
 - ET shell model developed by DCI, Inc.;
 - Cargo Hi-Fi Orbiter model with Lo-Fi SSME models; and
 - Node at undeformed C.G. and RBE3's to MLP/CT interfaces;
- ☐ SWAT Forces and Moments Calculated:
 - Sum of Weighted Accelerations Technique (SWAT)
 - 29 modes (including 6 rigid body) to 6.17 Hz; and
 - 400 seconds of data at 64 samples/second used.

Hybrid Approach Developed for Shuttle Stack

- **□** SWAT forces time-shifted to estimate other speeds:
 - Assumes that the frequency content changes slowly with speed;
 - Assumes that the magnitude changes slowly with speed; and

New Time Vector = (Original CT Speed / New CT Speed) * Original Time Vector.

- □ .8 mph SWAT forces generated .76, .78, .82, and .84 mph forces.
- □ .9 mph SWAT forces generated .86, .88, .92, and .94 mph forces.
- □ 1.0 mph SWAT forces generated .96, .98, 1.02, and 1.04 mph forces.
- ☐ Forces used to drive the vehicle model at the C.G.
- **□** 15 NASTRAN transient solutions produced.
- □ RMS and PSD data plotted as a function of CT speed.

Source of Roll-Out Harmonic Forces

Frequency Sensitivity for Orbiter Tail

Conclusions

- □ Testing large structures in the field creates unique challenges.
- ☐ Several critical developments have been covered:
 - Step Relaxation Testing has been developed into a useful technique to apply large forces to operational systems by appropriate windowing;
 - Capability for large structures testing with free support conditions has been expanded by implementing modeling of the support structure;
 - Natural excitation has been developed as a viable approach to testing large structures in the field; and
 - A hybrid approach as been developed to allow forces to be estimated in operating structures.
- ☐ These developments have greatly increased the ability to extract information from large structures.

References

- □ T.G. Carne, D.W. Lobitz, A.R. Nord, R.A. Watson, Finite Element Analysis and Modal Testing of a Rotating Wind Turbine, AIAA Paper 82-0697, in: AIAA 23rd Structures, Structural Dynamics and Materials Conference, New Orleans, Louisiana, USA, 1982, pp. 335-347.
- □ T.G. Carne, J.P. Lauffer, A.J. Gomez, H. Benjannet, Modal Testing Immense Flexible Structure Using Natural and Artificial Excitation, The International Journal of Analytical and Experimental Modal Analysis, vol 3, no 4, (1988) pp.117-122.
- □ T. G. Carne and E. C. Stasiunas, "Lessons Learned in Modal Testing – Part 3: Transient Excitation for Modal Testing, More Than Just Hammer Impacts", *Experimental Techniques*, May/June 2006, pp. 69–79.
- E.L. Marek, T.G. Carne, G.H. James, and R.L. Mayes, "STARS Missile Comparison of Pre-Flight Predictions from Test-Reconciled Models to Actual Flight Data," *Proceedings of the 12th International Modal Analysis Conference*, Honolulu, HI, January 31 February 3, 1994.

References

- □ T. G. Carne and G. H. James, "The Inception of OMA in the Modal Testing Technology for Wind Turbines", submitted to *Mechanical Systems and Signal Processing*, June 2008.
- ☐ G. H. James, T.G. Carne, and R.L. Mayes, "Modal Parameter Extraction from Large Operating Structures Using Ambient Excitation," *Proceedings of the 14th SEM International Modal Analysis Conference*, Dearborn, MI, February 12-15, 1996.
- □ G.H. James, T.G. Carne, and J.P. Lauffer, "The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Structures," SEM *International Journal of Analytical and Experimental Modal Analysis*, Vol. 10, No. 4, October 1995.
- □ G. H. James, T. G. Carne, and B. Wilson, "Reconstruction of the Space Shuttle Roll-Out Forcing Function", *Proceedings of* the 25th International Modal Analysis Conference, Orlando, FL, February 19-23, 2007.