Data Mining

Concepts & Algorithms

DSA 8102: Data mining, data storage and retrieval

Objectives

- Determine why data mining is in high demand.
- Describe the concept of data mining and the technologies associated with it.
- Identify which kinds of data may be mined,
- Describe the data mining algorithms and areas of applications.
- Discuss significant issues in data mining.

Data Mining

Why data mining?

- Recent advances in data collection and storage technology have led to accumulation of all sorts of data.
- Unfortunately, these accumulation of data in disparate structures became overwhelming.
- The initial chaos led to the creation of unstructured and structured databases (i.e., RDBMS).
- The rapid growth of different forms of data led to the advent of Big Data.
- Today, we have far more information that we can handle from business transactions, scientific data, satellite pictures, text reports, military intelligence, etc.

Sources of data

- Here is a non-exclusive list of a variety of information:
 - Business transactions
 - Scientific data
 - Medical and personal data
 - Surveillance video and pictures
 - Satellite sensing
 - Games
 - CAD and Software Engineering data
 - Text reports and memos (email messages)
 - World Wide Web repositories

Data Mining Concept

© Strathmore University, 2021

Multidisciplinary

Data Mining

Strathmore UNIVERSITY

- Data mining is a crucial part of (KDD) knowledge discovery in databases.
- It is the process of converting raw data into useful information.
 - Input data: Flat files, spreadsheets or relational tables)
 - Data preprocessing: Cleaning data to remove noise and duplicate observations
 - Data mining: Techniques are applied to extract patterns potentially useful
 - Data Analysis: Either through visualization or pattern interpretation.
 - Information: Output of the knowledge discovery

The process of knowledge discovery in databases (Tan et al. 2013)

Data for mining

- In principle data mining is not specific to one type of data.
- Examples of data sources that can be mined:
 - Flat files
 - Relational databases
 - Data warehouse
 - Transaction databases
 - Multimedia databases
 - Spatial databases
 - Time-series databases
 - World Wide Web

Data Mining Tasks & Algorithms

Common mining tasks

- Predictive data mining: is used to predict future outcomes.
- Descriptive data mining: focuses on what has happened.
- Most common data mining tasks.
 - Classification
 - Regression
 - Time series analysis
 - Association rules
 - Clustering
 - Sequence discovery
 - Summarization

1. Classification

- Predict if a data point belongs to one of the predefined classes.
 The predictions are usually from a known data set.
- Common examples:
 - Determining whether a particular credit card transaction is fraudulent or not;
 - Assessing whether a mortgage application is a good or bad credit risk;
 - Diagnosing whether a particular disease is present or not;
- Popular algorithms:
 - Decision trees, neural networks,
 Bayesian models, induction rules etc.

2. Regression

- One of the oldest statistical technique used to predict a numeric or continuous value.
- Common examples:
 - Predicting unemployment rate for the following year.
 - Estimating insurance premium.
- Popular algorithms:
 - Linear regression and logistic regression.

3. Clustering

- Data is partitioned into several meaningful groups. Clustering differs from classification in that there is no target variable.
- Common examples:
 - Finding customer segments in a company based on transaction, web and customer call data.
 - For gene expression clustering, where very large quantities of genes may exhibit similar behaviour.
- Popular algorithms:
 - K-means clustering, DBSCAN

4. Time Series Analysis

- Predict the value of the target variable for a future time frame based on historical value.
- Common examples:
 - Forecasting of sales events,
 - Tracking daily, hourly, or weekly weather data.
 - Tracking changes in application performance.
 - Tracking network logs.
- Popular algorithms:
 - Exponential smoothing, autoregressive integrated moving average (ARIMA), regression.

5. Summarization

- Involves techniques for finding a compact description of a dataset. Presents useful information about the data, e.g. mean, charts, graphs, etc.
- Common examples:
 - Monitor the activity of a network
 - Compare different entities.
- Popular algorithms:
 - Multivariate visualization

6. Association Rules

- Describes relationship between items of a data set.
- Common examples:
 - Finding out which items in a supermarket are purchased together, and which items are never purchased together,
 - Determining the proportion of cases in which a new drug will exhibit dangerous side effects.
- Popular algorithms:
 - Apriori algorithm, FP-Growth.

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples $\{bread\} \Rightarrow \{milk\}$ $\{soda\} \Rightarrow \{chips\}$ $\{bread\} \Rightarrow \{jam\}$

7. Sequence Discovery

- Discovers statistically relevant patterns in sequential data. Event occurrences are usually governed by timing constraints.
- Common examples:
 - Customer shopping sequences:
 First buy computer, then CD-ROM, then digital camera, within 6 months.
 - Web access patterns
 - Weather prediction.
 - Medical treatments, natural disasters (e.g. earthquakes), stocks and markets.
- Popular algorithms:
 - Apriori, FP-Growth.

A se	equend	e dat	abase

SID	Sequence		
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>		
20	<(ad)c(bc)(ae)>		
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>		
40	<eg(af)cbc></eg(af)cbc>		

A <u>sequence</u>: < (ef) (ab) (df) c b >

- An <u>element</u> may contain a set of *items* (also called events)
- Items within an element are unordered and we list them alphabetically

<a(bc)dc> is a <u>subsequence</u> of $<\underline{a(abc)(ac)d(cf)}>$

Exercise - Group Discussion

- Differentiate between "explainable AI" and "AI" as used in knowledge discovery.
- 2. Differentiate between clustering and classification.

Categories, Application Areas & Issues

Categories

© Strathmore University, 2021

Categories of data mining tasks

- Categorize according to the type of data source
 - spatial data, multimedia data, time-series data, text data, www, etc.
- Categorize according to the data model drawn on
 - relational database, object-oriented database, data warehouse, transactional, etc.
- Categorize according to the kind of knowledge discovered
 - characterization, discrimination, association, classification, clustering, etc.
- Categorize according to mining techniques used
 - machine learning, neural networks, genetic algorithms, statistics, visualization, database-oriented or data warehouse-oriented, etc.

Popular Data Mining Tools

Application Areas

© Strathmore University, 2021

Application Areas

- Healthcare:
 - reducing costs and improving patient outcomes
- Education:
 - predicting at-risk students.
- Customer relationship management:
 - know the needs of customers and build loyalty
- Manufacturing engineering:
 - forecasting the overall time for product development
- Finance and banking:
 - correlations and trends in market costs and business information
- Market basket analysis and segmentation:
 - understand the buying habits of customers
- Fraud detection:
 - identify patterns in fraudulent documents
- Etc.

Data Mining Issues

© Strathmore University, 2021

Data Mining Issues

- Note that these issues are not exclusive:
 - Security and privacy issues
 - User interface issues
 - Mining methodology issues
 - Performance issues
 - Data sources issues

Exercise

- Describe the issues that come with data mining.
- 2. Discuss possible solutions to the issues described above.

References

© Strathmore University, 2021

30

Thank you!

Any Questions?