Notions de climatologie

Travaux dirigés

Série 1

17.02-22.02.2020

Notions de climatologie

Exercice 1:

Utilisation du Diagramme ombrothermique de GAUSSEN

Le diagramme ombrothermique de Gaussen est un graphe utilisé en climatologie pour caractériser une zone climatique à partir de la répartition annuelle de la température et de la pluviométrie.

Il est construit en plaçant en abscisse les mois de l'année et en ordonnées respectivement droite et gauche, les moyennes mensuelles des températures et de la pluviométrie. L'échelle de la pluviosité est double de la température (fig. 1).

Fig. 1- Diagramme ombrothermique de GAUSSEN

On obtient ainsi deux courbes superposées dont les allures sont caractéristiques des types de climats sur notre planète (fig. 2).

Température moyenne annuelle	Amplitude thermique	Précipitations totales	Nombre de mois secs	CLIMAT
>20°C	< 5°C	>1500 mm	•••	équatorial
>20°C	> 5°C	•••	> 3	tropical
>20°C	>5°C	•••	> 10	désertique chaud
De 15 à 20°C	•••	•••	De 3 à 5 mois en été	méditerranéen
De 0 à 15°C	<20°C	>500 mm	•••	tempéré
De 0 à 15°C	>20°C	De 250 à 500 mm	•••	continental
De 0 à 15°C	> 20°C	< 250 mm	•••	désertique froid
< 0°C	•••	•••	•••	polaire

Fig. 2. Classification des principaux types de climats à partir du Diagramme de GAUSSEN16

Exercice 2: Le tableau ci-dessous (fig. 3) représente l'évolution annuelle de la température et de la pluviométrie la ville Agadir.

Agadir	janv	fév	mars	avril	mai	juin	juillet	août	sept	oct	nov	déc
T° maxima moyenne	20	23	26	20	22	25	27	28	27	28	23	22
T° minima moyenne	6	11	11	12	14	17	19	20	18	18	13	13
T° moyenne mensuelle												
Pluviométrie en mm	3	4	2	7	0	0	0	1	0	8	12	13

Fig. 3 - Evolution annuelle de la température et de la pluviométrie pour la ville de Agadir

Calculer les températures moyennes pour chaque mois dans cette station

Exercice 2: Le tableau ci-dessous (fig. 3) représente l'évolution annuelle de la température et de la pluviométrie la ville Agadir.

Agadir	janv	fév	mars	avril	mai	juin	juillet	août	sept	oct	nov	déc
	20	22	2.6	20	22	25	0.7	20	0.7	20	22	22
T° maxima	20	23	26	20	22	25	27	28	27	28	23	22
moyenne												
T° minima	6	11	11	12	14	17	19	20	18	18	13	13
moyenne												
T° moyenne	13	17	18.5	16	18	21	23	24	22.5	23	18	17.5
Pluviométrie en	3	4	2	7	0	0	0	1	0	8	12	13
mm												

Fig. 3 - Evolution annuelle de la température et de la pluviométrie pour la ville de Agadir.

Exercice 3: Le tableau ci-dessous (fig. 4) représente l'évolution annuelle de la température et de la pluviométrie la ville Rabat.

Rabat	janv	fév	mars	avril	mai	juin	jui	août	sept	oct	nov	déc
T° maxima moyenne	17	18	19	20	23	25	27	28	27	25	20	18
T° minima moyenne	7	8	9	10	12	15	17	18	16	14	11	9
T° moyenne												
Pluviométrie en mm	62	62	65	44	30	9	0	1	9	54	94	93

Fig. 4 - Evolution annuelle de la température et de la pluviométrie pour la ville de Rabat

Calculer les températures moyennes pour chaque mois dans cette station

Exercice 3: Le tableau ci-dessous (fig. 4) représente l'évolution annuelle de la température et de la pluviométrie la ville Rabat.

Rabat	janv	fév	mars	avril	mai	juin	jui	août	sept	oct	nov	déc
T° maxima moyenne	17	18	19	20	23	25	27	28	27	25	20	18
T° minima moyenne	7	8	9	10	12	15	17	18	16	14	11	9
T° moyenne	12	13	14	15	17,5	20	22	23	21,5	19,5	15,5	13,5
Pluviométrie en mm	62	62	65	44	30	9	0	1	9	54	94	93

Fig. 4 - Evolution annuelle de la température et de la pluviométrie pour la ville de Rabat

Exercice 4: En quelle partie de la journée sont enregistrées :

• les températures minimales?

les températures minimales sont enregistrées Au lever du Soleil.

• les températures maximales?

les températures maximales sont enregistrées au début de l'après-midi

Exercice 5: Donner une définition précise de :

• météo ?

La météo:

Les conditions de l'atmosphére dans un lieu et un moment donné et leurs conséquences sur le quotidien et les activités humaines.

On mesure la météo par ces éléments:

La température, les précipitations, le vent, la visibilité, l'humidité, l'état de ciel (nuages) et la pression atmosphérique

•climat?

Le climat:

Les conditions de l'atmosphére sur une échelle temporelle beaucoup plus longue et sur une échelle géographique plus vaste. Sur des années, des millénaires, les scientifiques étudient comment les températures, les précipitations, les vents, la pression atmosphérique évoluent. Souvent ce sont des tous petits changements mais qui, au fil des années, deviennent de vraies tendances.

Exercice 6: Quels sont les facteurs qu'il faut prendre en compte quand on étudie la méteórologie, la climatologie et la paléoclimatologie

Le rayonnement solaire

La Température

L'atmosphère

La circulation des vents

Precipitation

Les précipitations

Exercice 7: Définissez les grandes zones climatiques et leurs caractéristiques

Exercice 7: Définissez les grandes zones climatiques et leurs caractéristiques

Exercice 8: Tracer, sur la fig. 5, les courbes de variation des températures moyennes et de pluviométrie pour les deux villes

Fig. 5 - Diagrammes ombrothermiques de GAUSSEN pour Agadir

Fig. 6 - Diagrammes ombrothermiques de GAUSSEN pour Rabat

Exercice 9: Pour les deux villes, compléter le tableau (fig. 7) en calculant la température moyenne annuelle, l'amplitude thermique annuelle et la quantité des précipitations totales.

	Température moyenne annuelle	Amplitude thermique	Précipitations totales en mm	Nombre de mois secs	CLIMAT
Agadir					
Rabat					

Fig. 7- Tableau des données climatiques

➤ La température moyenne annuelle
= somme des T° mensuelles moyennes/12

Pour la ville de **AGADIR** La température moyenne annuelle = **231.5/12 = 19.29** °C

Pour la ville de **Rabat** La température moyenne annuelle = **207/12 = 17,2** °C

➤ L'amplitude thermique annuelle A.T.A = T° moyenne du mois le plus chaud - T° moyenne du mois le plus froid

Pour Agadir : 24-13= 11

Pour Rabat: 23-12=11

- Précipitations totales annuelles = somme des précipitations mensuelles.
 - ■Pour Agadir, Précipitations totales annuelles = 50 mm
 - ■Pour Rabat, Précipitations totales annuelles = 523 mm

Exercice 9: Pour les deux villes, compléter le tableau (fig. 7) en calculant la température moyenne annuelle, l'amplitude thermique annuelle et la quantité des précipitations totales.

	Température moyenne annuelle	Amplitude thermique	Précipitations totales en mm	Nombre de mois secs	CLIMAT
Agadir	19,29	11	50	12	
Rabat	17,2	11	523	5	

Fig. 7- Tableau des données climatiques

Exercice 10: Définissez les types de climat des deux villes Agadir et Rabat

- ➤ Un mois est qualifié de sec lorsque sa courbe de température passe au-dessus de sa courbe des précipitations; c.à.d. Température supérieure à la moitié des précipitations
- ➤ Un mois est qualifié d'humide lorsque sa courbe de température passe en dessous de sa courbe de précipitations. c.à.d. Température inférieure à la moitié des précipitations

Pour Agadir, tous les mois sont secs

Température	Amplitude	Précipitations	Nombre de mois	CLIMAT
moyenne annuelle	thermique	totales	secs	CLIMAI
>20°C	< 5°C	>1500 mm	•••	équatorial
>20°C	> 5°C	•••	> 3	tropical
>20°C	>5°C	•••	> 10	désertique chaud
De 15 à 20°C	•••	•••	De 3 à 5 mois en été	méditerranéen
De 0 à 15°C	<20°C	>500 mm	•••	tempéré
De 0 à 15°C	>20°C	De 250 à 500 mm	•••	continental
De 0 à 15°C	> 20°C	< 250 mm	•••	désertique froid
< 0°C	•••	•••	•••	polaire

	Température moyenne annuelle	Amplitude	Précipitations totales en mm		CLIMAT
Agadir	19,29	11	50	12	Désertique chaud
Rabat	17,2	11	523	5	méditerranéen

Exercice 11: A quelle zone climatique se rattache chacune des deux villes ?

En comparant les caractéristiques climatiques des deux villes (**Fig. 7**) avec les données de la **figure 2**, on peut conclure que la ville de **Rabat** se rattache au **climat méditerranéen** alors que la ville de **Agadir** appartient à une zone **désertique chaud**.

	Température moyenne annuelle	Amplitude thermique	Précipitations totales en mm	Nombre de mois secs	CLIMAT
Agadir	19,29	11	50	12	Désertique chaud
Rabat	17,2	11	523	5	méditerranéen

Exercice 12: Dans quel hémisphère se trouve des deux villes ? justifier

Comme la **période chaude** des deux villes se situe entre **juin et septembre**, elles sont dans **l'hémisphère nord**.