Learning to Teach && Generating Sentences by Editing Prototypes

Yong Jiang

Tencent Al Lab && Shanghai Tech University

Paper I

LEARNING TO TEACH

```
Yang Fan<sup>†</sup>, Fei Tian<sup>‡</sup>, Tao Qin<sup>‡</sup>, Xiang-Yang Li<sup>†</sup>& Tie-Yan Liu<sup>‡</sup>

†School of Computer Science and Technology, University of Science and Technology of China fyabc@mail.ustc.edu.cn, xiangyangli@ustc.edu.cn

†Microsoft Research

{fetia,taoqin,tyliu}@microsoft.com
```

Motivation

Motivation

Supervised Learning Strategies

- From easy to hard
 - Curriculum Learning
 - Self-paced Learning
- From convex to non-convex
 - Graduated Optimization
- Need task specific heuristic rules!!!
- How to adaptively adopt different teaching strategies?
 - Design loss function for current mini-batch?
 - Design appro-data for current mini-batch?
 - Design hypothesis space for current mini-batch?

The Student Model (Model S)

- Typically, can be seen as our familiar models in sup learn.
 - predictor f with param w, in function class \Omega
 - metric M for evaluation the gap (I0 loss/cross-entropy)
 - training data D
- Minimum risk:

$$R(\omega) = \int \mathcal{M}(y, f_\omega(x)) \, \mathrm{d}P(x,y)$$

• In real application:

$$\omega^* = \operatorname*{arg\,min}_{\omega \in \Omega} \sum_{(x,y) \in D} L(y, f_\omega(x)) \stackrel{\Delta}{=} \mu(D, L, \Omega).$$

learning algorithm of student model

The Teacher Model (Model T)

- Input: info from Model S and past teaching history
- Output: provide inputs to the student model:
 - Training data D
 - Loss function L
 - Hypothesis space \Omega
- Minimum risk: $\min_{D,L,\Omega} \mathcal{M}(\mu(D,L,\Omega),D_{test})$
- In this paper, the authors use "data teaching".
- They point out that they are working on NMT applications with "loss function teaching" in the author response.

How to Teach?

- Modelling as a sequential decision process
 - state s_t \in S, the input for the Model T.
 - s_t is constructed from Model S f_{t-1}
 - and past teaching history
 - action a_t \in A: output of Model T
 - policy: S -> A paramed by \theta (a.k.a: Model T)
 - reward r_t: how good current Model S is.
- RL for learning:

$$\max_{\theta} \sum_{t} r_{t} = \max_{\theta} \sum_{t} r(f_{t}) = \max_{\theta} \sum_{t} r(\mu(\phi_{\theta}(s_{t}), L, \Omega))$$

How to Teach?

Modelling as a sequential decision process

Data Teaching: State Features

- Data features (used in curriculum learning)
 - info for data instance, label category, length of sent.
 - linguistic features for text segments.
 - gradients histogram features.
- Features in Model T
 - passed mini-batch number
 - average historical training loss
 - historical validation accuracy
- Combination of both

Data Teaching: Optimization

Objective function:

$$J(\theta) = E_{\phi_{\theta}(a|s)}[R(s,a)]$$

Policy gradient:

$$\nabla_{\theta} = \sum_{t=1}^{T} E_{\phi_{\theta}(a_{t}|s_{t})} [\nabla_{\theta} \log \phi_{\theta}(a_{t}|s_{t}) R(s_{t}, a_{t})]_{\theta}$$

$$\nabla_{\theta} \approx \sum_{t=1}^{T} \nabla_{\theta} \log \phi_{\theta}(a_{t}|s_{t}) r_{T}$$

$$\uparrow$$
Terminal Reward

• Terminal reward is set by the first mini-batch index in which the accuracy on dev set exceeds τ ,

$$r_T = -\log(i_{\tau}/T')$$

Teaching a new student with the same mode architecture

• Filtration number analysis

Teaching a new student with different architecture

How about accuracy?

Teaching Policy	NoTeach	SPL	L2T
Accuracy	88.54%	88.80%	89.46 %

Paper 2

Generating Sentences by Editing Prototypes

Kelvin Guu*Tatsunori B. Hashimoto*^{1,2} Yonatan Oren¹ Percy Liang^{1,2}
(* equal contribution)

¹Department of Computer Science ²Department of Statistics Stanford University

{kguu, thashim, yonatano}@stanford.edu pliang@cs.stanford.edu

Motivation

- Generation is HARD!!
 - favoring generic utterances such as "I don't know"
 - the reason is due to starting from SCRATCH?
- Why prototype-then-edit?
 - High quality corpus in training data.

Approach

- Math is fancy! But it can be simplified!
 - the reason is due to starting from SCRATCH?

$$\mathcal{L}_{ ext{Lex}} = \sum_{x \in \mathcal{X}} \sum_{x' \in \mathcal{N}(x)} \log p(x \mid x')$$

Conditional generation process

$$\begin{split} \log p(x \mid x') &= \log \int_z p_{\text{edit}}(x \mid x', z) p(z) dz \\ &\geq \ell(x, x') = \mathbb{E}_{z \sim q(z \mid x, x')} [\log p_{\text{edit}}(x \mid x', z)] \\ &- D_{\text{KL}}(q(z \mid x, x') || p(z)). \end{split}$$

Model Components

- Neural Editor, a.k.a: decoder in VAE, P(x|x',z)
 - encoder-decoder structure
 - at each time step, vector z is concatted to predict x.
- Edit Prior, a.k.a: prior in VAE, P(z)
 - In vanilla VAE, a gaussian
- Approximate edit posterior,
- a.k.a: Encoder in vanilla VAE, Q(z|x,x')
 - In vanilla VAE, a gaussian

Model Components

- Edit Prior, a.k.a: prior in VAE
 - two steps: $z_{\text{norm}} \sim \text{Unif}(0, 10)$ $z_{\text{dir}} \sim \text{vMF}(0)$
 - result: $z=z_{\mathrm{norm}}z_{\mathrm{dir}}$
- Approximate edit posterior, a.k.a: Encoder in vanilla VAE
 - Generalization of word vectors $f(x,x') = \sum_{w \in I} \Phi(w) \oplus \sum_{w \in D} \Phi(w)$
 - Stochastic!
 - perturb the norm of f by adding uniform noise
 - perturb direction of f by adding von-Mises Fisher noise

$$q(z_{ ext{dir}} \mid x, x') = ext{vMF}(z_{ ext{dir}}; f_{ ext{dir}}, \kappa) \ \propto \exp(\kappa z_{ ext{dir}}^{ op} f_{ ext{dir}}) \ q\left(z_{ ext{norm}} \mid x, x'\right) = ext{Unif}(z_{ ext{norm}}; [ilde{f}_{ ext{norm}}, ilde{f}_{ ext{norm}} + \epsilon])$$
 $z = z_{ ext{norm}} z_{ ext{dir}}$

Learning

• KL term: $D_{\mathrm{KL}}(\mathrm{vMF}(\kappa)\|\mathrm{vMF}(0)) = \kappa \frac{I_{d/2+1}(\kappa) + I_{d/2}(\kappa) \frac{d}{2\kappa}}{I_{d/2}(\kappa) - \frac{d}{2\kappa}} + \frac{d}{2}\log(\kappa/2) - \log(I_{d/2}(\kappa)\Gamma(d/2+1)),$

- Reconstruction Term:
 - Reparameterization Trick
 - Reject Sampling of Wood (1994)

Experiments: Perplexity

Model	Perplexity	Perplexity
Model	(Yelp)	(BILLIONWORD)
KN5	56.546	78.361
KN5+MEMORIZATION	55.180	73.468
NLM	40.174	55.146
NLM+MEMORIZATION	38.980	50.969
NLM+KN5	38.149	47.472
NeuralEditor($\kappa = 0$)	27.600	48.755
NeuralEditor($\kappa = 25$)	27.480	48.921

Table 1: Perplexity of the NEURALEDITOR with the two VAE parameters κ outperform all methods on YELP and all non-ensemble methods on BILLIONWORD.

Experiments: Examples

Prototype x'	Revision x	
i had the fried whitefish taco	i had the <unk> and the fried</unk>	
which was decent, but i've	carnitas tacos, it was pretty	
had much better.	tasty, but i've had better.	
"hash browns" are unsea-	the hash browns were crispy	
soned, frozen potato shreds	on the outside, but still the	
burnt to a crisp on the outside	taste was missing.	
and mushy on the inside.		
i'm not sure what is prevent-	i'm currently giving <car-< td=""></car-<>	
ing me from giving it <car-< td=""><td>dinal> stars for the service</td></car-<>	dinal> stars for the service	
dinal> stars, but i probably	alone.	
should.		
quick place to grab light and	this place is good and a quick	
tasty teriyaki.	place to grab a tasty sand-	
	wich.	
sad part is we've been there	i've been here several times	
before and its been good.	and always have a good time.	

Table 2: Edited generations are substantially different from the sampled prototypes.

Experiments: Comp with SVAE

Figure 4: The neural editor frequently generates paraphrases and similar sentences while avoiding unrelated and degenerate ones. In contrast, the SVAE frequently generates identical and unrelated sentences and rarely generates paraphrases.¹⁰

Ideas

- Learning to reweight training sample in noise situations
- Learning to provide searching space && loss in generation
- Specialised the edit vector
 - sentiment
 - topic
 - subject
 - ...