Γενικές οδηγίες για την εκτέλεση των ασκήσεων

- Τα μοντέλα .slx του Simulink εκτελούνται πατώντας το κουμπί Run ≥, και σταματούν με το κουμπί Stop ■. Το ροδάκι του ποντικιού λειτουργεί ως zoom in/out.
- Κατά την εκτέλεση των προσομοιώσεων, η σηματοθορυβική σχέση θα καθορίζεται ως SNR. Ωστόσο, ο οριζόντιος άξονας των διαγραμμάτων BER θα είναι σε E_b/N₀.
- Οι μετρήσεις των πιθανοτήτων σφάλματος θα ξεκινούν από την τιμή BER $\cong 10^{-1}$ και θα καταλήγουν σε τιμή BER $< 10^{-5}$. Μέριμνα να ληφθεί, ώστε οι καμπύλες που θα προκύψουν να είναι κατά το δυνατόν λείες.

ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 2

Εργαστηριακή Άσκηση Προσομοίωσης 2.1: Σύστημα QPSK διαμόρφωσης σε περιβάλλον αργών, συχνοτικά επιλεκτικών διαλείψεων Rayleigh

Μετρήστε την επίδοση BER ενός συστήματος με διαμόρφωση QPSK σε περιβάλλον αργών (slow), συχνοτικά επιλεκτικών (frequency-selective) διαλείψεων Rayleigh, και τη βελτίωσή της με χρήση βέλτιστου (ML) εξισωτή καναλιού (channel equalizer). Συγκεκριμένα:

- 1) εκτελέστε το μοντέλο *QpskFSRC.slx*, και καταλήξτε στην καμπύλη BER του QPSK.
- εκτελέστε το μοντέλο QpskEqualization.slx, και καταλήξτε στην καμπύλη BER του QPSK. Η είσοδος του εξισωτή για τους συντελεστές του καναλιού θα είναι συνδεμένη στην έξοδο Without του εκτιμητή καναλιού.
- εκτελέστε το μοντέλο QpskEqualization.slx, και καταλήξτε στην καμπύλη BER του QPSK. Η είσοδος του εξισωτή για τους συντελεστές του καναλιού θα είναι συνδεμένη στην έξοδο With του εκτιμητή καναλιού.

Σημείωση: Στην αναφορά σας θα **συμ**περιλάβετε ένα (1) συγκριτικό διάγραμμα των τριών (3) παραπάνω BER καμπυλών, μαζί με τη θεωρητική καμπύλη του QPSK για κανάλι διαλείψεων Rayleigh με διαφορισμό (diversity) τάξης 3.

Εργαστηριακή Άσκηση Προσομοίωσης 2.2: Διαφορισμός χώρου QPSK σήματος σε περιβάλλον iid, συχνοτικά επίπεδων διαλείψεων Rayleigh

Μετρήστε την επίδοση BER ενός συστήματος με διαμόρφωση QPSK σε περιβάλλον iid, συχνοτικά επίπεδων (frequency-flat) διαλείψεων Rayleigh, και τη βελτίωσή της με χρήση διαφορισμού χώρου σήματος (signal-space diversity). Συγκεκριμένα:

- 1) εκτελέστε το μοντέλο *QpskFFRC.slx*, και καταλήξτε στην καμπύλη BER του QPSK. Η στροφή φάσης (phase offset) του αστερισμού θα είναι (στο διαμορφωτή και στον ανιχνευτή) $\pi/_{4}$.
- 2) εκτελέστε το μοντέλο rotatedQpskFFRC.slx, και καταλήξτε στην καμπύλη BER του QPSK. Η στροφή φάσης του αστερισμού θα είναι (στο διαμορφωτή και στον ανιχνευτή) $\pi/4$.
- 3) εκτελέστε το μοντέλο rotatedQpskFFRC.slx, και καταλήξτε στην καμπύλη BER του QPSK. Η στροφή φάσης του αστερισμού θα είναι (στο διαμορφωτή και στον ανιχνευτή) $3\pi/8$.

Σημείωση: Στην αναφορά σας θα **συμ**περιλάβετε ένα (1) συγκριτικό διάγραμμα των τριών (3) παραπάνω BER καμπυλών, μαζί με τις θεωρητικές καμπύλες του QPSK για κανάλι διαλείψεων Rayleigh με διαφορισμό (diversity) τάξης 1 και 2.

Εργαστηριακή Άσκηση Προσομοίωσης 2.3: Σύστημα 16-QAM διαμόρφωσης σε περιβάλλον AWGN και συγκαναλικών παρεμβολών

Μετρήστε την επίδοση BER ενός συστήματος με διαμόρφωση 16-QAM σε περιβάλλον AWGN, επιβαρυμένου επιπλέον από συγκαναλική παρεμβολή (co-channel interference) ίδιου σήματος. Συγκεκριμένα, εκτελέστε το μοντέλο *CCI.slx*, και καταλήξτε στην καμπύλη BER του 16-QAM όταν το παρεμβάλον 16-QAM σήμα εμφανίζει στροφή φάσης (phase offset) $0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}$ και $\frac{\pi}{2}$ rad.

Σημείωση: Στην αναφορά σας θα **συμ**περιλάβετε ένα (1) συγκριτικό διάγραμμα με πέντε (5) BER καμπύλες.