SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: SAGAWA, HIROAKI UENO, HARUMI OSHIMA, ATSUSHI KATO, IKUNOSHIN RECEIVED

FEB 2 0 2003 TECH CENTER 1600/2900

- (ii) TITLE OF INVENTION: PLASMID
- (iii) NUMBER OF SEQUENCES: 33
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BIRCH, STEWART, KOLASCH & BIRCH, LLP
 - (B) STREET: PO BOX 747
 - (C) CITY: FALLS CHURCH
 - (D) STATE: VA
 - (E) COUNTRY: USA
 - (F) ZIP: 22040-0747
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: WEINER, MARC S.
 - (B) REGISTRATION NUMBER: 32,181
 - (C) REFERENCE/DOCKET NUMBER: 1422-0319P
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 703-205-8000
 - (B) TELEFAX: 703-205-8050
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 295 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /note= "2=Val or Leu"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Ì	Xaa	Pro	Leu	Asp 5	Lys	Asp	Leu		Lys 10	Ala	Lys	Ile	Ser	Ile 15	Thr
Asp	Phe	Phe	Glu 20	Ile	Thr	Asn	Arg	Val 25	Leu	Asp	Tyr	Phe	Pro 30	Asn	Val
Ile	Asn	Asn 35	Thr	Val	Glu	Lys	Gly 40	Asp	Tyr	Leu	Ile	Ser 45	Ser	Ser	Asn
Ile	Ala 50	Gly	Thr	Ile	Lys	Phe 55	Leu	Arg	Pro	Ile	Asn 60	Arg	Lys	Leu	Phe
Ile 65	Gln	Glu	Lys	Lys	Val 70	Phe	Asn	Asp	Tyr	Phe 75	Gln	Lys	Leu	Ile	Ile 80
Val	Phe	Glu	Asn	Ile 85	Arg	Asn	Lys	Lys	Thr 90	Val	Thr	Glu	Glu	Asp 95	Lys
Ile	Ile	Ile	Asp 100	Arg	Val	Ile	Tyr	Thr 105	Ile	Gln	Gln	Ser	Ile 110	Gly	Ile
Gly	Leu	Asp		Met	Val	Asn	Gln 120	Asn	Ser	Ala	Arg	Lys 125	His	Val	Gly
Asn	Arg 130		Glu	Glu	Leu	Ile 135	Arg	'Val	Ile	Phe	Thr 140	Glu	Ile	Ser	Val
Ser 145		Lys	Arg	Thr	Val 150		Gln	Ile	Pro	Tyr 155	Glu	Thr	Asp	Glu	Gly 160
Gln	Lys	Ile	Tyr	Lys 165		Glu	Asn	Asp	Leu 170	Ile	Ile	Ser	Pro	Phe 175	Glu
Asn	. Val	Glu	Ser 180		Asn	Lys	His	Leu 185	Asp	Glu	. Asn	. Glu	190	e Val	. Val
Ser	· Ile	Lys 195		Thr	Ser	Lys	Asp 200	Arg	Met	Gly	/ Lys	Met 205	Phe	e Ile	e Asp
Lys	210		ı Lev	ı Glu	ı Arç	Phe 215		Lys	His	s Pro	220	Lys	s Vai	l Ile	e Gly
Ile 225		e Le	ı Ası	n Asp	9 Val 230	Glr	a Arg	Lys	s Gli	235 235	Asr 5	n Ası	n Il	e Se:	Phe 240
Thi	. Le	ı Va	l Se	r Gl		ı Phe	e Met	: Val	L Ty:	r Thi	r Lys	s Ph	e Le	u Th. 25	r Thr
Let	ı Glı	ı Gl	y Il 26		r Tyi	r Lei	ı Asp	265	Pro	o Pro	o Ası	n Al	a Le 27	u Ly 0	s Leu
Pro	о Ту:	r Se 27		n Hi	s Me	t Ly:	280	g Phe	e Se	r As	p Le	u Il 28	e Th 5	r Gl	u Asp
Le	u Gl: 29		s Le	u Ph	e Se	r Se:									

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 885 base pairs(B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TGGATAAAGA	TTTACAAAAA	GCAAAGATTT	CAATTACTGA	TTTTTTTGAA	60
GAGTTTTAGA	TTATTTCCCC	AATGTAATCA	ATAATACAGT	TGAAAAAGGA	120
TATCCTCATC	AAATATTGCT	GGAACAATAA	AATTCCTAAG	ACCAATCAAT	180
					240
					300
					360
					420
TATCGAATAA	AAGAACTGTA	TTACAAATTC	CATATGAAAC	TGATGAAGGA	480
					540
					600
					660
					720
					780
					840
					885
	GAGTTTTAGA TATCCTCATC TTATTCAGGA ATATAAGGAA ACACAATACA GAAAGCACGT TATCGAATAA ACAAATGCGA ATCTAGATGA AAATGTTTAT GGATTTTCCT CAGGATTATT	GAGTTTTAGA TTATTTCCCC TATCCTCATC AAATATTGCT TTATTCAGGA AAAAAAAGTT ATATAAGGAA CAAAAAAACT ACACAATACA GCAATCTATT GAAAGCACGT TGGTAACCGA TATCGAATAA AAGAACTGTA ACAAATGCGA GAATGACCTC ATCTAGATGA AAATGAGATT AAATGTTTAT AGATAAAATT GGATTTTCCT CAATGATGTA CAGGATTATT TATGGTGTAT ATCCACCACC TAATGCATTG	GAGTTTTAGA TTATTTCCCC AATGTAATCA TATCCTCATC AAATATTGCT GGAACAATAA TTATTCAGGA AAAAAAAGTT TTCAATGATT ATATAAGGAA CAAAAAAACT GTAACAGAGG ACACAATACA GCAATCTATT GGAATTGGTT GAAAGCACGT TGGTAACCGA TTTGAAGAAT TATCGAATAA AAGAACTGTA TTACAAATTC ACAAATGCGA GAATGACCTC ATTATTTCTC ATCTAGATGA AAATGAGATT GTTGTTTCAA AAATGTTTAT AGATAAAATT TTACTTGAAA GGATTTTCCT CAATGATGTA CAAAGAAAAG CAGGATTATT TATGGTGTAT ACTAAATTCT ATCCACCACC TAATGCATTG AAACTACCAT	GAGTTTTAGA TTATTTCCCC AATGTAATCA ATAATACAGT TATCCTCATC AAATATTGCT GGAACAATAA AATTCCTAAG TTATTCAGGA AAAAAAAGTT TTCAATGATT ATTTTCAAAA ATATAAGGAA CAAAAAAACT GTAACAGAGG AAGATAAAAT ACACAATACA GCAATCTATT GGAATTGGTT TAGATTTAAT GAAAGCACGT TGGTAACCGA TTTGAAGAAT TAATTAGAGT TATCGAATAA AAGAACTGTA TTACAAATTC CATATGAAAC ACAAATGCGA GAATGACCTC ATTATTCTC CTTTTGAAAA ATCTAGATGA AAATGAGATT GTTGTTCAA TAAAGACAAC AAATGTTTAT AGATAAAATT TTACTTGAAA GGTTTGTTAA GGATTTTCCT CAATGATGTA CAAAGAAAAG AAGACAACAA CAGGATTATT TATGGTGTAT ACTAAATTCT TAACTACTCT ATCCACCACC TAATGCATTG AAACTACCAT ATTCTAATCA	TGGATAAAGA TTTACAAAAA GCAAAGATTT CAATTACTGA TTTTTTGAA GAGTTTTAGA TTATTTCCC AATGTAATCA ATAATACAGT TGAAAAAGGA TATCCTCATC AAATATTGCT GGAACAATAA AATTCCTAAG ACCAATCAAT TTATTCAGGA AAAAAAAGTT TTCAATGATT ATTTTCAAAA ACTGATTATA ATATAAGGAA CAAAAAAACT GTAACAGAGG AAGATAAAAT TATTATTGAT ACACAATACA GCAATCTATT GGAATTGGTT TAGATTTAAT GGTTAATCAA GAAAGCACGT TGGTAACCGA TTTGAAGAAT TAATTAGAGT CATTTTTACA TATCGAATAA AAGAACTGTA TTACAAATTC CATATGAAAC TGATGAAGGA ACAAATGCGA GAATGACCTC ATTATTCTC CTTTTGAAAA TGTAGAATCT ATCTAGATGA AAATGAGATT GTTGTTTCAA TAAAGACACA ATCAAAAGAT AAATGTTTAT AGATAAAAATT TTACTTGAAA GGTTTGTTAA ACACCCTCAA GGATTTTCCT CAATGATGTA CAAAGAAAAG AAGACAACAA TATCAGCTTT CAGGGATTATT TATGGTGTAT ACTAAATTCT TAACTACTCT TGAAGGGATC ATCCACCACC TAATGCATTG AAACTACCAT ATTCTAATCA TATGAAAAGA

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "synthetic DNA"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TATGGATATG TTCATAAACA CGCATGTAGG CAGATAGATC TTTGGTTGTG AATCGCAACC 60
AGTGGCCTTA TGGCAGGAGC CGCGGATCAC CTACCATCCC TAATGACCTG CAGGCATGCA 120

AGCTTGCATG CCTGCAGGTC ATTAGGTACG GCAGGTGTGC TCGAGGCGAA GGAGTGCCTG	180
CATGCGTTTC TCCTTGGCTT TTTTCCTCTG GGACA	215
(2) INFORMATION FOR SEQ ID NO:4:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 215 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
TATGTCCCAG AGGAAAAAAG CCAAGGAGAA ACGCATGCAG GCACTCCTTC GCCTCGAGCA	60
CACCTGCCGT ACCTAATGAC CTGCAGGCAT GCAAGCTTGC ATGCCTGCAG GTCATTAGGG	120
ATGGTAGGTG ATCCGCGGCT CCTGCCATAA GGCCACTGGT TGCGATTCAC AACCAAAGAT	180
CTATCTGCCT ACATGCGTGT TTATGAACAT ATCCA	215
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
AGATCTAGAG CAAACAAAAA AACCACCG	28
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
GGTCTAGATC CCAGAGGAAA AAAG	24
(2) INFORMATION FOR SEQ ID NO:7:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
CTCGAGATTT AGGTGACACT ATAGAATACG GAATTGTGAG CGGATAACAA TTCCAAGCT	T 60
CACAGGAAAC AGACCATGGC TTAAGTAACT AGTGAATTCG	100
(2) INFORMATION FOR SEQ ID NO:8:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CGAATTCACT AGTTACTTAA GCCATGGTCT GTTTCCTGTG AAGCTTGGAA TTGTTATC	CG 60
CTCACAATTC CGTATTCTAT AGTGTCACCT AAATCTCGAG	100
(2) INFORMATION FOR SEQ ID NO:9:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

AATCCCATGG AACGCTACGA ATCTCTG

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	
		SEQUENCE DESCRIPTION: SEQ ID NO:10:	2.0
CCGG	CCAT	GG TTATTTTTGA CACCAGACC	29
(2)	INFO	RMATION FOR SEQ ID NO:11:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:11:	
TAAC	TTGA	AT CCATGGGTTC TCACCG	26
(2)	INFO	RMATION FOR SEQ ID NO:12:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TAC	TCAGT	AG CCATGGCTCT CATAGACCG	29
(2)	INFC	RMATION FOR SEQ ID NO:13:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 308 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single	

(2) INFORMATION FOR SEQ ID NO:10:

(D) TOPOLOGY: linear

(1i) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Asn Glu Ile Ala Phe Asp Asn Tyr Ser Tyr Ile Pro Lys Leu Lys 1 5 10 15

Leu Tyr Ser Glu Ile Glu Leu Lys Pro Phe Phe Ile Ser Lys Asn Gly 20 25 30

Ser Leu Phe Asn Val Asp Ala Ile Asp Phe Leu Arg Lys Leu Glu Ser 35 40 45

Asn Ser Val Asp Leu Ile Phe Ala Asp Pro Pro Tyr Asn Ile Lys Lys 50 55 60

Ala Glu Trp Asp Ile Phe Ser Ser Gln Asn Glu Tyr Leu Glu Trp Ser 65 70 75 80

Lys Glu Trp Ile Met Glu Ala His Arg Val Leu Lys Asp Asn Gly Ser 85 90 95

Leu Tyr Val Cys Gly Phe Ser Glu Ile Leu Ala Asp Ile Lys Phe Ile 100 105 110

Thr Ser Lys Tyr Phe His Ser Cys Lys Trp Leu Ile Trp Phe Tyr Arg 115 120 125

Asn Lys Ala Asn Leu Gly Lys Asp Trp Gly Arg Ser His Glu Ser Ile 130 135 140

Leu Leu Leu Arg Lys Ser Lys Asn Phe Ile Phe Asn Ile Asp Glu Ala 145 150 155 160

Arg Ile Pro Tyr Asn Glu His Thr Val Lys Tyr Pro Gln Arg Thr Gln 165 170 175

Ala Glu Ser Ser Gln Tyr Ser Asn Ser Lys Lys Gln Tyr Ile Trp Glu 180 185 190

Pro Asn Pro Leu Gly Ala Lys Pro Lys Asp Val Leu Glu Ile Pro Thr 195 200 205

Ile Ser Asn Gly Ser Trp Glu Arg Ser Ile His Pro Thr Gln Lys Pro 210 215 220

Val Glu Leu Leu Lys Lys Ile Ile Leu Ser Ser Asn Lys Asp Ser 225 230 230 235

Leu Ile Leu Asp Pro Phe Gly Gly Ser Gly Thr Thr Tyr Ala Val Ala 245 250 255

Glu Ala Phe Gly Arg Lys Trp Ile Gly Thr Glu Leu Asp Lys Asn Tyr 260 265 270

Cys Leu Glu Ile Gln Lys Arg Leu Lys Asp Glu Ser Met Ile Asn Arg

275 280 285

Ile Phe Ser Gly Asp Asp Asp Ser Asn Ser Gln Asn Arg Arg Lys Lys
290 295 300

Leu Arg Gly Glu 305

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 924 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GTGAATGAAA	TAGCGTTTGA	TAATTACAGT	TATATACCAA	AATTAAAACT	TTATTCGGAA	60
ATCGAGCTTA	AACCATTTTT	TATTTCAAAA	AACĠGTTCAC	TTTTCAATGT	TGATGCTATT	120
GATTTTTTAA	GAAAATTAGA	GAGTAATTCT	GTGGATTTAA	TTTTTGCAGA	TCCACCTTAT	180
AACATTAAAA	AGGCAGAGTG	GGATATTTTT	TCTTCTCAAA	ATGAATATCT	CGAATGGAGT	240
AAAGAATGGA	TAATGGAAGC	TCATAGAGTT	TTAAAAGATA	ATGGCAGTTT	ATATGTTTGT	300
GGCTTTTCAG	AAATTCTGGC	AGACATAAAA	TTTATCACTT	CAAAATATTT	TCACAGTTGT	360
AAATGGTTGA	TTTGGTTCTA	TAGAAACAAG	GCAAATTTAG	GTAAAGATTG	GGGACGTTCA	420
CACGAAAGTA	TACTGTTATT	AAGAAAATCT	AAAAATTTTA	TTTTTAATAT	TGATGAGGCA	480
CGAATCCCGT	ATAATGAGCA	TACAGTTAAA	TATCCACAAA	GAACCCAGGC	CGAATCTTCG	540
CAATATTCGA	ACTCAAAAAA	GCAATATATT	TGGGAGCCAA	ACCCATTAGG	AGCTAAGCCA	600
AAAGATGTTT	TGGAGATTCC	CACAATTTCA	AATGGTTCTT	GGGAAAGAAG	TATTCACCCT	660
ACGCAAAAGC	CAGTAGAATT	GCTTAAAAAA	ATAATTTTAT	CTTCATCTAA	TAAAGATAGT	720
TTAATTCTTG	ATCCATTTGG	TGGTTCGGGA	ACTACATATG	CTGTTGCGGA	AGCTTTTGGC	780
AGAAAATGGA	TTGGAACAGA	GTTAGATAAA	AATTATTGTC	TGGAAATTCA	AAAGCGATTG	840
AAAGACGAAA	GTATGATCAA	CAGGATTTTT	TCAGGCGATG	ATGATTCAAA	TTCTCAAAAT	900
AGAAGAAAAA	AATTAAGAGG	AGAA				924

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
TCGA	AGATTTA GGTGACACTA TAGAATACA	29
(2)	INFORMATION FOR SEQ ID NO:16:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
AGC	TTGTATT CTATAGTGTC ACCTAAATC	29
(2)	INFORMATION FOR SEQ ID NO:17:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 54 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
TCG	AGATTTA GGTGACACTA TAGAATACGG AATTGTGAGC GGATAACAAT TCCA	54
(2)	INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 54 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "synthetic DNA"

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "synthetic DNA"

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:18:	
AGCT	TGGA	AT TGTTATCCGC TCACAATTCC GTATTCTATA GTGTCACCTA AATC	54
(2)	INFO	RMATION FOR SEQ ID NO:19:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: peptide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	Met 1	Leu Pro Leu Asp Lys Asp Leu Gln Lys Ala Lys Ile Ser Ile Thr 5 10 15	
	Asp	Phe Phe Glu 20	
(2)	INFO	RMATION FOR SEQ ID NO:20:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	
	(ix)	<pre>FEATURE: (A) NAME/KEY: primer_bind (B) LOCATION: 123 (D) OTHER INFORMATION: /note= "6, 9, 12 = inosine"</pre>	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:	
ATG	TTNCC	NY TNGAYAARGA YYT	23
(2)	INFO	RMATION FOR SEQ ID NO:21:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"	

(ix) FEATURE:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
AAGG	GATTINC ARAARGCNAA RAT	23
(2)	INFORMATION FOR SEQ ID NO:22:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
TAAF	ATCTAAA CCAATTCCAA TAGATTGCTG	30
(2)	INFORMATION FOR SEQ ID NO:23:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
TAAA	ATCTAAA CCAATTCCAA TAGATTGCTG	30
(2)	INFORMATION FOR SEQ ID NO:24:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic DNA"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	

(A) NAME/KEY: primer_bind
(B) LOCATION: 1..23
(D) OTHER INFORMATION: /note= "9 = inosine"

GAACTGTATT ACAAATTCCA TATGAAACTG

30

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GACAGAAAT TTACAAATGC GAGAATGACC

30

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1588 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CCATGGCACA	CGTTTCAAAA	AAGAAATCCT	CGAAGTCAAA	TATGATGAGA	AAAACATCTC	60
AGACATCCTG	CATATGACGG	TGGATGAAGC	ATTGGAATTT	TTCTCGGAAA	ATCACGAAGA	120
AAAAATTGTA	ACCAAACTAA	AACCTTTGCA	GGACGTTGGT	TTGGGTTATC	TTCAGTTAGG	180
CCAGTCCTCC	TCTACTCTTT	CCGGCGGTGA	AGCCCAAAGA	GTGAAGCTCG	CCTCTTTCCT	240
TGTGAAAGGT	GTAACGACGG	AAAAAACGTT	ATTTGTTTTT	GATGAACCAT	CAACAGGATT	300
ACATTTCCAC	GACATTCAAA	AATTACTGAA	ATCACTTCAG	GCACTGATAG	AATTAGGGCA	360
TTCGGTTGTA	GTGATTGAGC	ATCAGCCGGA	TATTATCAAA	TGCGCCGATT	ACATCATCGA	420
TGTCGGACCC	AATGCCGGAA	AATACGGTGG	CGAAATTGTT	TTCACAGGAA	CTCCGGAAGA	480
TTTGGTAAAA	GAGAAAAAGT	CGTTTACAGG	GAAGTATATT	AAGGAGAAGT	TAAAGTAATT	540
TATTTATATT	TGAAGTTATG	CTACCACTGG	ATAAAGATTT	ACAAAAAGCA	AAGATTTCAA	600
TTACTGATTT	TTTTGAAATT	ACAAATAGAG	TTTTAGATTA	TTTCCCCAAT	GTAATCAATA	660
ATACAGTTGA	AAAAGGAGAT	TATTTAATAT	CCTCATCAAA	TATTGCTGGA	ACAATAAAAT	720
TCCTAAGACC	AATCAATAGA	AAGTTATTTA	TTCAGGAAAA	AAAAGTTTTC	AATGATTATT	780

TTCAAAAACT	GATTATAGTT	TTTGAAAATA	TAAGGAACAA	AAAAACTGTA	ACAGAGGAAG	840
ATAAAATTAT	TATTGATAGG	GTAATTTACA	CAATACAGCA	ATCTATTGGA	ATTGGTTTAG	900
ATTTAATGGT	TAATCAAAAT	AGTGCTAGAA	AGCACGTTGG	TAACCGATTT	GAAGAATTAA	960
TTAGAGTCAT	TTTTACAGAA	ATATCAGTAT	CGAATAAAAG	AACTGTATTA	CAAATTCCAT	1020
ATGAAACTGA	TGAAGGACAG	AAAATTTACA	AATGCGAGAA	TGACCTCATT	ATTTCTCCTT	1080
TTGAAAATGT	AGAATCTACA	AACAAACATC	TAGATGAAAA	TGAGATTGTT	GTTTCAATAA	1140
AGACAACATC	AAAAGATAGG	ATGGGAAAAA	TGTTTATAGA	TAAAATTTTA	CTTGAAAGGT	1200
TTGTTAAACA	CCCTCAAAAA	GTTATAGGGA	TTTTCCTCAA	TGATGTACAA	AGAAAAGAAG	1260
ACAACAATAT	CAGCTTTACA	CTTGTTTCAG	GATTATTTAT	GGTGTATACT	AAATTCTTAA	1320
CTACTCTTGA	AGGGATCTAT	TATTTAGATC	CACCACCTAA	TGCATTGAAA	CTACCATATT	1380
CTAATCATAT	GAAAAGATTT	TCAGATTTAA	TTACAGAAGA	CCTTGAAAAA	TTATTCTCCT	1440
CTTAATTTTT	TTCTTCTATT	TTGAGAATTT	GAATCATCAT	CGCCTGAAAA	AATCCTGTTG	1500
ATCATACTTT	CGTCTTTCAA	TCGCTTTTGA	ATTTCCAGAC	AATAATTTTT	ATCTAACTCT	1560
GTTCCAATCC	ATTTTCTGCC	AAAAGCTT				1588

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATATTTGAAG CCATGGTACC ACTGG

25

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4146 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AGATCTGGTC	ATCCCAAACA	AAAATCTTTC	GGTTTACGAA	GATGCAGTCG	CTTCCTGGAA	60
AGGCGAAAGT	ATGAGCGAAT	GGAAAAAGGA	ATTCATCAAA	AAAGCCAAAG	ATTTCCCAAT	120
TCACAAGCCT	TATCATCAAC	TCACAAAAGA	GCAGAAACAG	TTCCTTTGGA	AAGGCGATAA	180
AACCAGAAGT	TTCCCAAGTA	TTGATAATTT	TTTÇAAAATG	CTTGAAGAGA	ATCTTTACAA	240
GATCCAATAC	CGCGTAATGC	TTTCGCGCTA	TCGTGGGAAA	ACACTTTGCC	CCGATTGCGA	300
AGGATTACGA	TTGCGGGAAG	AAACAAGCTG	GGTGAAGATT	GACGGACACA	ACATTCAGTC	360
TTTGATTGAA	TTACCTTTGG	ATGAACTCCT	GCCATTGATC	AAAAGCTTAA	AACTGAACGT	420
CCACGACAGA	GAAATTGCCA	AACGCCTGAC	TTACGAAATC	GAAACGAGAT	TAGAATTCCT	480
GACGAAAGTC	GGCCTTGGAT	ATCTGACTTT	GAACCGAACA	TCCAACACGC	TTTCCGGAGG	540
AGAAAGCCAG	AGAATCAATC	TGGCGACAGC	TTGGGAAGTT	CGCTGGTTGG	TTCTATTTAT	600
ATTTTGGATG	AGCCGAGCAT	TGGTCTGCAT	TCCCGCGATA	CAGAAAATCT	GATTGGTGTC	660
CTCAAACAAC	TCCGCGATTT	GGGAANTACC	GTGATTGTTG	TAGAACACGA	CGAAGATGTG	720
ATGCTTGCGG	CAGNTTACAT	TATAGATATT	GGCCCNGNAG	CGGGCTACCT	TGGTGGCGAT	780
CTTGTTTTCA	GCGNGGATTA	TAAAGAGATG	CTGAAGTNTN	ATACTTTAAC	CGCAAAATAC	840
CTGAATGGCG	AACTGAAAAT	AGAAGTTCCT	GAAAAACGAA	GAAAACCGAA	GGAATTCATC	900
GCAATAAAAG	GTGCCCGCCA	GAATAATTTA	AAAAATATTG	ACGTTGATGT	TCCGTTAGAA	960
TGTCTGACAG	TTATCACAGG	CGTTTCTGGA	AGCGGGAAAT	CCACTTTGAT	GAAGGAAGTG	1020
ATGACCAATG	CCATCCAGAT	CCAACTGGGA	ATGGGCGGCA	AAAAAGCCGA	TTACGATTCG	1080
GTGGAATTCC	CGAAAAAGCT	GATCCAGAAT	ATCGAACTGA	TTGACCAGAA	CCCAATCGGG	1140
AAATCGTCCC	GCTCCAACCC	CGTGACTTAT	CTGAAAGCTT	ACGACGATAT	CCGGGATCTT	1200
TTTGCGAAAC	AAAAATCCGC	AAAAATCCAG	GGTTACAAAC	CGAAGCATTT	CTCCTTCAAT	1260
GTGGATGGCG	GAAGATGTGA	CGAGTGCAAA	GGCGAAGGTA	TCATTACCGT	ATCAATGCAG	1320

TTTATGGCGG	ACATCGAGCT	GGAGTGTGAG	CATTGCCATG	GCACACGTTT	CAAAAAAGAA	1380
ATCCTCGAAG	TCAAATATGA	TGAGAAAAAC	ATCTCAGACA	TCCTGCATAT	GACGGTGGAT	1440
GAAGCATTGG	AATTTTTCTC	GGAAAATCAC	GAAGAAAAA	TTGTAACCAA	ACTAAAACCT	1500
TTGCAGGACG	TTGGTTTGGG	TTATCTTCAG	TTAGGCCAGT	CCTCCTCTAC	TCTTTCCGGC	1560
GGTGAAGCCC	AAAGAGTGAA	GCTCGCCTCT	TTCCTTGTGA	AAGGTGTAAC	GACGGAAAAA	1620
ACGTTATTTG	TTTTTGATGA	ACCATCAACA	GGATTACATT	TCCACGACAT	TCAAAAATTA	1680
CTGAAATCAC	TTCAGGCACT	GATAGAATTA	GGGCATTCGG	TTGTAGTGAT	TGAGCATCAG	1740
CCGGATATTA	TCAAATGCGC	CGATTACATC	ATCGATGTCG	GACCCAATGC	CGGAAAATAC	1800
GGTGGCGAAA	TTGTTTTCAC	AGGAACTCCG	GAAGATTTGG	TAAAAGAGAA	AAAGTCGTTT	1860
ACAGGGAAGT	ATATTAAGGA	GAAGTTAAAG	TAATTTATTT	ATATTTGAAG	TTATGCTACC	1920
ACTGGATAAA	GATTTACAAA	AAGCAAAGAT	TTCAATTACT	GATTTTTTG	AAATTACAAA	1980
TAGAGTTTTA	GATTATTTCC	CCAATGTAAT	CAATAATACA	GTTGAAAAAG	GAGATTATTT	2040
AATATCCTCA	TCAAATATTG	CTGGAACAAT	AAAATTCCTA	AGACCAATCA	ATAGAAAGTT	2100
ATTTATTCAG	GAAAAAAAAG	TTTTCAATGA	TTATTTTCAA	AAACTGATTA	TAGTTTTTGA	2160
AAATATAAGG	ААСАААААА	CTGTAACAGA	GGAAGATAAA	ATTATTATTG	ATAGGGTAAT	2220
TTACACAATA	CAGCAATCTA	TTGGAATTGG	TTTAGATTTA	ATGGTTAATC	AAAATAGTGC	2280
TAGAAAGCAC	GTTGGTAACC	GATTTGAAGA	ATTAATTAGA	GTCATTTTTA	CAGAAATATC	2340
AGTATCGAAT	AAAAGAACTG	TATTACAAAT	TCCATATGAA	ACTGATGAAG	GACAGAAAAT	2400
TTACAAATGC	GAGAATGACC	TCATTATTTC	TCCTTTTGAA	AATGTAGAAT	CTACAAACAA	2460
ACATCTAGAT	GAAAATGAGA	TTGTTGTTTC	AATAAAGACA	ACATCAAAAG	ATAGGATGGG	2520
AAAAATGTTT	ATAGATAAAA	TTTTACTTGA	AAGGTTTGTT	AAACACCCTC	AAAAAGTTAT	2580
AGGGATTTTC	CTCAATGATG	TACAAAGAAA	AGAAGACAAC	AATATCAGCT	TTACACTTGT	2640
TTCAGGATTA	TTTATGGTGT	ATACTAAATT	CTTAACTACT	CTTGAAGGGA	TCTATTATTT	2700
AGATCCACCA	CCTAATGCAT	TGAAACTACC	ATATTCTAAT	CATATGAAAA	GATTTTCAGA	2760
TTTAATTACA	GAAGACCTTG	AAAAATTATT	CTCCTCTTAA	TTTTTTTCTT	CTATTTTGAG	2820
AATTTGAATC	ATCATCGCCT	GAAAAAATCC	TGTTGATCAT	ACTTTCGTCT	TTCAATCGCT	2880
TTTGAATTTC	CAGACAATAA	TTTTTATCTA	ACTCTGTTCC	AATCCATTTT	CTGCCAAAAG	2940
CTTCCGCAAC	AGCATATGTA	GTTCCCGAAC	CACCAAATGG	ATCAAGAATT	AAACTATCTT	3000
TATTAGATGA	AGATAAAATT	ATTTTTTAA	GCAATTCTAC	TGGCTTTTGC	GTAGGGTGAA	3060
TACTTCTTTC	CCAAGAACCA	TTTGAAATTG	TGGGAATCTC	CAAAACATCT	TTTGGCTTAG	3120

CTCCTAATGG	GTTTGGCTCC	CAAATATATT	GCTTTTTTGA	GTTCGAATAT	TGCGAAGATT	3180
CGGCCTGGGT	TCTTTGTGGA	TATTTAACTG	TATGCTCATT	ATACGGGATT	CGTGCCTCAT	3240
CAATATTAAA	AATAAAATTT	TTAGATTTTC	TTAATAACAG	TATACTTTCG	TGTGAACGTC	3300
CCCAATCTTT	ACCTAAATTT	GCCTTGTTTC	TATAGAACCA	AATCAACCAT	TTACAACTGT	3360
GAAAATATTT	TGAAGTGATA	AATTTTATGT	CTGCCAGAAT	TTCTGAAAAG	CCACAAACAT	3420
ATAAACTGCC	ATTATCTTTT	AAAACTCTAT	GAGCTTCCAT	TATCCATTCT	TTACTCCATT	3480
CGAGATATTC	ATTTTGAGAA	GAAAAAATAT	CCCACTCTGC	CTTTTTAATG	TTATAAGGTG	3540
GATCTGCAAA	AATTAAATCC	ACAGAATTAC	TCTCTAATTT	TCTTAAAAAA	TCAATAGCAT	3600
CAACATTGAA	AAGTGAACCG	TTTTTTGAAA	TAAAAAATGG	TTTAAGCTCG	ATTTCCGAAT	3660
AAAGTTTTAA	TTTTGGTATA	TAACTGTAAT	TATCAAACGC	TATTTCATTC	ACAAATGAAT	3720
CAATCTGCTG	TTGTGTATAA	ACCCTGTAAT	TATTAATAGG	ATGTCTTAAA	CTTTTGAATT	3780
TTCCAGAATT	ATCCCATCTT	CCTTAATGTC	TCAGAGTTAA	CATCTAATAA	TTTCGCCGCT	3840
TCTTTTATTG	ATAAATAATC	ATCCATATCT	TACACAACAT	TACACAAGTT	TATACAGCAA	3900
ATATAAATAT	TTTTTATACA	TTGTAAAAAT	TTTATTTACT	TTTATTTTGT	TCAATTGTCT	3960
CAATAAATAG	TTAATCGAAA	TACATTTTGA	ATATGATAAA	ATTGACTCCA	ACAAATCTAA	4020
CACAATGACA	TTAAAACCAA	TAAAAACGGA	AGAAGATTAC	AATCAGGTTT	TAGAAAGACT	4080
TTCACAAATT	TTCGACGCTA	AACCAAATAC	CAAAGATGGA	GATGAATTGG	GAAATCTTGG	4140
GAATTC						4146

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

ATTTAGGTGA CACTATAGAA TAC

23

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:31:	
AAGC	TCGAC	GT CTGATGACGA AGCTTGACTG ACTGAGATCA GCTTGCAAC	49
(2)	INFOR	RMATION FOR SEQ ID NO:32:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:32:	
CTCG	AGATI	IT AGGTGACACT ATAGAATACA AGCTT	3
(2)	INFO	RMATION FOR SEQ ID NO:33:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:33:	

CTCGAGATTT AGGTGACACT ATAGAATACG GAATTGTGAG CGGATAACAA TTCCAAGCTT 60

(ii) MOLECULE TYPE: other nucleic acid

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Tradomark Office Address COMMISSENER OF PATENTS AND TRADEMARKS Washington DC 20291 www.uspto.gov

APPLICATION NO	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO	
09-690,885	10 18 2000	Hiroaki Sagawa	1422-0442P	6993	
2292 75	01 14 2003				
BIRCH STEW	CART KÖLASCH & BI	EXAMINER			
PO BÓX 747			GUZO, I	DAVID	
FALLS CHUR	CH, VA 22040-0747				
			ART UNIT	PAPER NUMBER	
		Park C	1636		
		Was 1	DATE MAILED: 01-14-2003		
		, ***			

Please find below and or attached an Office communication concerning this application or proceeding.

RECEIVED
FEB 2 0 2003
TECH CENTER 1600/2000