Chapter 5 · Section 5.1 — Exercises (Mazidi)

Chapter 5 · Section 5.1 — Exercises (Mazidi)

Problems are paraphrased to respect copyright. Answers show the 32-bit two's-complement representation (hex).

How to convert (quick refresher)

- Positive values: write the hex value and zero-extend to 8 hex digits (32 bits).
- Negative –N: write N in hex (32-bit), then invert (bitwise NOT) and add 1.

1) 32-bit representations

	item value	32-bit two's-complement
(a)	-23	0xFFFFFFE9
(b)	+12	0x0000000C
(c)	-0x28	0xFFFFFFD8
(d)	+0x6F	0x0000006F
(e)	-128	0xFFFFFF80
(f)	+127	0x0000007F
(g)	+365	0x0000016D
(h)	-32,767	0xFFFF8001

Checks (sketch):

- (a) 23 = 0×00000017 ; ~17 = $0 \times FFFFFFE8$; +1 $\rightarrow 0 \times FFFFFE9$.
- (h) 32767 = 0x00007FFF; ~ = 0xFFFF8000; +1 → 0xFFFF8001.

2) 32-bit representations

	item value	32-bit two's-complement
(a)	-230	0xFFFFFF1A
(b)	+1200	0x000004B0
(c)	-0x28F	0xFFFFFD71
(d)	+0x6FF	0x000006FF

Checks (sketch):

- (a) 230 = 0x000000E6; ~ = 0xfffffff19; +1 → 0xffffff1A.
- (c) 0x28F; ~ = 0xFFFFFD70; +1 $\rightarrow 0xFFFFFD71$.

Notes for learners

- The **sign bit** is bit 31 (1 = negative).
- Adding a positive number to its two's-complement negative gives **0** modulo 2^32.
- To verify: in most programmer's calculators, set word size = 32, two's complement, and toggle DEC/HEX.

arm-assembly-mazidi-solutions [page]/[toPage]