Optimización de viajes compartidos en taxis utilizando algoritmos evolutivos

Gabriel Fagúndez de los Reyes Renzo Massobrio

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Contenido

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Motivación

Car pooling

- Beneficios en el plano ecológico y económico, individuales y colectivos.
- Iniciativas para atender el interés del público: carriles exclusivos, campañas para compartir los viajes al trabajo y aplicaciones para encontrar compañeros de viaje.

Taxi pooling

- Los taxis son un medio de transporte rápido y confiable, especialmente en ciudades donde el transporte público es poco eficiente.
- Los taxis raramente viajan a capacidad completa, impactando en la congestión del tráfico y en la contaminación de las ciudades.
- Tarifas altas desalientan a los usuarios.
- 15 % de los accidentes fatales en Uruguay involucran a un conductor alcoholizado (UNASEV).

Motivación

Car pooling

- Beneficios en el plano ecológico y económico, individuales y colectivos.
- Iniciativas para atender el interés del público: carriles exclusivos, campañas para compartir los viajes al trabajo y aplicaciones para encontrar compañeros de viaje.

Taxi pooling

- Los taxis son un medio de transporte rápido y confiable, especialmente en ciudades donde el transporte público es poco eficiente.
- Los taxis raramente viajan a capacidad completa, impactando en la congestión del tráfico y en la contaminación de las ciudades.
- Tarifas altas desalientan a los usuarios.
- 15 % de los accidentes fatales en Uruguay involucran a un conductor alcoholizado (UNASEV).

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas ubicadas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Se busca determinar la cantidad de taxis, la asignación de pasajeros y las rutas a seguir, de forma de minimizar el costo total del grupo de pasajeros.

- Cada taxi puede trasladar a un número limitado de pasajeros.
- el número máximo de taxis para N pasajeros es N.
- Costo de un taxi = costo inicial ("bajada de bandera") + costo determinado por la distancia.
- No se consideran otros posibles costos (e.g. esperas, propinas, peajes).

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante *B* indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \leq N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante *B* indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \leq N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- un conjunto de pasajeros $P = \{p_1, p_2, \dots, p_N\}$ que viajan desde un origen común O a un conjunto de destinos $D = \{d_1, d_2, \dots, d_N\}$.
- un conjunto de taxis $T = \{t_1, t_2, \dots, t_M\}$; con $M \le N$; y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ que indica la cantidad de pasajeros en un taxi. C_{MAX} es la capacidad máxima permitida en un mismo taxi.
- una constante B indica el costo inicial del taxi ("bajada de bandera").
- una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- una función de costo asociado a la distancia recorrida por cada taxi, $cost: \mathbb{R}^+_0 \to \mathbb{R}^+_0$.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \bigg(\textit{dist} \underbrace{\bigg(\textit{dest} \big(f^{-1}(t_i, j-1) \big), \textit{dest} \big(f^{-1}(t_i, j) \big) \bigg)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

Variante multiobjetivo del PVCT: formulación matemática

Se busca minimizar simultáneamente el costo total y la demora total.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right) \right] \right]$$
tiempo tolerado por el pasajero en la posición j del taxi t_i

- $time: \{\{O\} \cup D\} \times D \to \mathbb{R}^+_0$ indica el tiempo de recorrido.
- $tol: P \to \mathbb{R}^+_0$ indica el tiempo adicional tolerado por cada pasajero.

Variante multiobjetivo del PVCT: formulación matemática

Se busca minimizar simultáneamente el costo total y la demora total.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{dest}} \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t_i

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \underbrace{tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{tiemportolerado por el pasaiero en la posición } i del taxi transferencia.} \right]$$

- $time: \{\{O\} \cup D\} \times D \to \mathbb{R}^+_0$ indica el tiempo de recorrido.
- $tol: P \to \mathbb{R}^+_0$ indica el tiempo adicional tolerado por cada pasajero.

Variante multiobjetivo del PVCT: formulación matemática

Se busca minimizar simultáneamente el costo total y la demora total.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{dest}} \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi ti

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h-1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \underbrace{tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{tiempo tolerado por el pasajero en la posición } j \text{ del taxi} \ t_i \right]$$

- $time: \{\{O\} \cup D\} \times D \to \mathbb{R}^+_0$ indica el tiempo de recorrido.
- $tol: P \to \mathbb{R}_0^+$ indica el tiempo adicional tolerado por cada pasajero.

Complejidad del PVCT

Complejidad

Baldacci et al. (2004) estudiaron una variante del *Car Pooling Problem* (*CPP*) donde trabajadores desean compartir vehículos hacia y desde el lugar de trabajo.

Esta variante es un caso particular del *Vehicle Routing Problem (VRP)* con demanda unitaria, el cual es \mathcal{NP} -difícil [Letcheford et al. (2002)].

Estrategias de resolución

Cuando se utilizan instancias de tamaños realistas, los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente. Heurísticas y metaheurísticas permiten calcular soluciones de calidad aceptable en tiempos razonables.

Complejidad del PVCT

Complejidad

Baldacci et al. (2004) estudiaron una variante del *Car Pooling Problem* (*CPP*) donde trabajadores desean compartir vehículos hacia y desde el lugar de trabajo.

Esta variante es un caso particular del *Vehicle Routing Problem (VRP)* con demanda unitaria, el cual es \mathcal{NP} -difícil [Letcheford et al. (2002)].

Estrategias de resolución

Cuando se utilizan instancias de tamaños realistas, los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente.

Heurísticas y metaheurísticas permiten calcular soluciones de calidad aceptable en tiempos razonables.

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Car pooling problem (CPP)

Yan et al. (2011) CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one—to—many** y many—to—one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one—to—many** y many—to—one Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011) **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003) **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007) Heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013) TPP dinámico con pedidos en tiempo real. 13 % de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumen

- Introducción
- Definición del problema
- Trabajo relacionado
- 4 Implementación
- Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Algoritmos evolutivos

Definición

- Los algoritmos evolutivos (AE) son técnicas estocásticas que emulan el proceso de evolución natural de las especies para resolver problemas de optimización, búsqueda y aprendizaje.
- Un AE es una técnica iterativa (cada iteración se denomina generación) que aplica operadores estocásticos sobre un conjunto de individuos (la población).
- Cada individuo en la población codifica una solución tentativa al problema y tiene un valor de fitness, dado por una función de evaluación que determina su adecuación para resolver el problema.
- El propósito del AE es mejorar el fitness de los individuos en la población mediante la aplicación iterativa de operadores evolutivos a individuos seleccionados según su fitness, guiando al AE hacia soluciones tentativas de mayor calidad.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva: desplaza ceros para romper secuencias de dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Tuplas de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

AE para el PVCT monoobjetivo

seqEA

AE secuencial. Utiliza selección proporcional.

Modelos paralelos en AE

Buscan mejorar el desempeño de los AE.

Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

AE paralelo con micro-población $(p\mu EA)$

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona.
- Topología de anillo unidireccional.

AE para el PVCT monoobjetivo

seqEA

AE secuencial. Utiliza selección proporcional.

Modelos paralelos en AE

Buscan mejorar el desempeño de los AE.

Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

AE paralelo con micro-población (pμEA)

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona.
- Topología de anillo unidireccional.

AE para el PVCT monoobjetivo

seqEA

AE secuencial. Utiliza selección proporcional.

Modelos paralelos en AE

Buscan mejorar el desempeño de los AE.

Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

AE paralelo con micro-población ($p\mu EA$)

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona.
- Topología de anillo unidireccional.

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT$$
,
 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C$

NSGA-I

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-I

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\#islas}: 1], w_D = 1 - w_C.$$

NSGA-II

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-II

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

Propósitos en AE multiobjetivos (MOEA)

Acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).

$p\mu MOEA/D$

$$F = w_C \times CT + w_D \times DT,$$

$$w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C.$$

NSGA-II

Ordenamiento no-dominado (elitista) y crowding para preservar diversidad.

Aspectos comunes

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Generación de instancias

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- Instancias en Montevideo generadas manualmente.
- API para obtener tarifas TaxiFareFinder (TFF).

Instancias generadas

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing)
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).

Cuatro variantes de cada instancias para el PVCT multiobjetivo considerando distintas capacidades y tolerancias.

Generación de instancias

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- Instancias en Montevideo generadas manualmente.
- API para obtener tarifas TaxiFareFinder (TFF).

Instancias generadas

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).

Cuatro variantes de cada instancias para el PVCT multiobjetivo considerando distintas capacidades y tolerancias.

PVCT monoobjetivo

Entorno de ejecución

- La evaluación experimental fue realizada en el Cluster FING.
- seqEA: Dell Power Edge 2950, 1 núcleo de Intel Xeon E5430 2.66GHz, 8GB RAM.
- pmuEA: HP Proliant DL585, 24 núcleos de AMD Opteron 2.09GHz, 48GB RAM.

Configuración paramétrica,

- **seqEA**: 20 ejecuciones de 2000 generaciones sobre 3 instancias. $\#P \in \{150, 200, 250\}; p_C \in \{0,6,0,75,0,95\}; p_M \in \{0,001,0,01,0,1\}.$
- pmuEA: micro-población de 15 individuos, torneo (m = 2, k = 1), migración cada 500 generaciones.
 20 ejecuciones de 100.000 generaciones sobre 5 instancias.
 p_C ∈ {0,6,0,75,0,95}; p_M ∈ {0,001,0,01,0,1}.

Evaluación experimental

Evaluación experimental

Comparativa de métodos de inicialización

Mejora seqEA sobre algoritmo ávido

Se alcanzaron mejores valores en **todas** las instancias. En el mejor caso se superó el costo en un 35.9%.

Mejora $p\mu EA$ sobre algoritmo ávido

Se alcanzaron mejores valores en **todas** las instancias. En el mejor caso se superó el costo en un 41%.

Evaluación experimental

Evaluación experimental

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Planificador de viajes compartidos en línea

- Introducción
- 2 Definición del problema
- Trabajo relacionado
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Conclusiones y trabajo futuro