An e-commerce company has prepared a rough dataset containing shopping details of it customers, which include CustomerID, Genre, Age, Annual Income (k\$), and Spending Score (1-100). The company is unable to target a specific set of customers with a particular set of SKUs.

Objective: Segment customers into different groups based on their shopping trends.

```
In [1]: import pandas as pd
        import numpy as np
        customer data = pd.read csv("shopping data.csv")
In [3]:
        customer_data
```

Out[3]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [4]: #discard all data except annual income and spending score data = customer_data.iloc[:,3:5].values data

```
Out[4]: array([[ 15,
                       39],
                [ 15, 81],
                [ 16,
                        6],
                 16,
                       77],
                [ 17,
                       40],
                [ 17,
                       76],
                [ 18,
                        6],
                [ 18,
                       94],
                [ 19,
                        3],
                [ 19,
                       72],
                [ 19,
                       14],
                [ 19,
                       99],
                  20,
                       15],
                  20,
                       77],
                 20,
                       13],
                  20,
                       79],
                  21,
                       35],
                [ 21,
                       66],
                  23,
                       29],
                  23,
                       98],
                  24,
                       35],
                  24,
                       73],
                [ 25,
                        5],
                  25,
                       73],
                  28,
                       14],
                  28,
                       82],
                  28,
                       32],
                  28,
                       61],
                  29,
                       31],
                  29,
                       87],
                [ 30,
                        4],
                [ 30,
                       73],
                [ 33,
                        4],
                [ 33,
                       92],
                 33,
                       14],
                  33,
                       81],
                  34,
                       17],
                       73],
                  34,
                [ 37,
                       26],
                [ 37,
                       75],
                [ 38,
                       35],
                [ 38,
                       92],
                [ 39,
                       36],
```

```
[ 39,
       61],
[ 39,
       28],
[ 39,
       65],
 40,
       55],
 40,
       47],
 40,
       42],
 40,
       42],
 42,
       52],
 42,
       60],
 43,
       54],
 43,
       60],
 43,
       45],
 43,
       41],
 44,
       50],
 44,
       46],
       51],
  46,
 46,
       46],
 46,
       56],
 46,
       55],
 47,
       52],
 47,
       59],
 48,
       51],
 48,
       59],
 48,
       50],
 48,
       48],
 48,
       59],
 48,
       47],
 49,
       55],
 49,
       42],
 50,
       49],
 50,
       56],
 54,
       47],
 54,
       54],
 54,
       53],
 54,
       48],
 54,
       52],
 54,
       42],
 54,
       51],
 54,
       55],
 54,
       41],
 54,
       44],
[ 54,
       57],
[ 54,
       46],
```

```
[ 57,
       58],
[ 57,
       55],
[ 58,
       60],
 58,
       46],
 59,
       55],
 59,
       41],
 60,
       49],
 60,
       40],
 60,
       42],
 60,
       52],
 60,
       47],
 60,
       50],
 61,
       42],
 61,
       49],
[ 62,
       41],
 62,
       48],
[ 62,
       59],
[ 62,
       55],
[ 62,
       56],
 62,
       42],
[ 63,
       50],
 63,
       46],
[ 63,
       43],
ſ 63,
       48],
[ 63,
       52],
[ 63,
       54],
 64,
       42],
 64,
       46],
[ 65,
       48],
 65,
       50],
[ 65,
       43],
[ 65,
       59],
[ 67,
       43],
[ 67,
       57],
[ 67,
       56],
[ 67,
       40],
[ 69,
       58],
[ 69,
       91],
[ 70,
       29],
[ 70,
       77],
[ 71,
       35],
       95],
[ 71,
[ 71,
       11],
```

```
[ 71, 75],
[ 71,
        9],
[ 71,
       75],
[ 72,
       34],
[ 72,
       71],
[ 73,
        5],
[ 73,
       88],
[ 73,
        7],
[ 73,
       73],
[ 74,
       10],
[ 74,
       72],
[ 75,
        5],
75,
       93],
[ 76,
       40],
[ 76,
       87],
[ 77,
       12],
[ 77,
       97],
[ 77,
       36],
[ 77,
       74],
[ 78,
       22],
[ 78,
       90],
[ 78,
       17],
[ 78,
       88],
[ 78,
       20],
[ 78,
       76],
[ 78,
       16],
[ 78,
       89],
[ 78,
        1],
<sup>[</sup> 78,
       78],
[ 78,
        1],
[ 78,
       73],
[ 79,
       35],
[ 79,
       83],
[ 81,
        5],
[ 81,
       93],
[ 85,
       26],
[ 85,
       75],
 86,
       20],
[ 86,
       95],
[ 87,
       27],
[ 87,
       63],
[87,
       13],
[ 87,
       75],
```

```
[ 87, 10],
[ 87, 92],
[ 88, 13],
[ 88, 86],
[ 88, 15],
[ 88,
      69],
[ 93,
      14],
[ 93,
      90],
[ 97,
      32],
[ 97,
      86],
[ 98,
      15],
[ 98, 88],
[ 99,
      39],
[ 99, 97],
[101, 24],
[101, 68],
[103, 17],
[103, 85],
[103, 23],
[103, 69],
[113,
      8],
[113, 91],
[120, 16],
[120, 79],
[126, 28],
[126, 74],
[137, 18],
[137, 83]], dtype=int64)
```

```
In [5]: # Creating Denograms
        import matplotlib.pyplot as plt
        %matplotlib inline
        import scipy.cluster.hierarchy as shc
        plt.figure(figsize=(10,7))
        plt.title('Customer Dendrograms')
        dend = shc.dendrogram(shc.linkage(data,method='ward'))
```



```
In [15]: #Agglomerative Clustering. Since there are five clusters, group the data points into these five clusters
      from sklearn.cluster import AgglomerativeClustering
      cluster = AgglomerativeClustering(n clusters=5, affinity='euclidean', linkage='ward')
      cluster.fit predict(data)
4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2,
           1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2,
           0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
           0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
           0, 2], dtype=int64)
```

```
In [16]: plt.figure(figsize=(10,7))
         plt.scatter(data[:,0], data[:,1], c=cluster.labels_, cmap='rainbow')
```

Out[16]: <matplotlib.collections.PathCollection at 0x22f85a69040>

In []: