11 класс

1. Куб. Сосуд представляет собой куб с длиной ребра a. Внутренняя полость сосуда также имеет форму куба с длиной ребра 4a/5. Толщина всех стенок сосуда одинакова. Плотность материала, из которого изготовлен сосуд, 3ρ . На уровне дна полости и в её потолке имеются сквозные отверстия малого диаметра. Сосуд заполнен водой (плотность воды ρ). Нижнее отверстие закрыто пробкой. Сосуд помещают в пустой цилиндр с площадью шероховатого дна $3a^2$. Затем вынимают пробку из отверстия куба. Во сколько раз отличаются силы давление сосуда на дно цилиндра до извлечения пробки и после прекращения вытекания жидкости?

Возможное решение:

Возможны два сценария развития событий. Либо вода полностью выльется из полости и ее уровень окажется ниже отверстия в стенке сосуда, либо уровень воды окажется выше уровня отверстия и, следовательно, в полости останется некоторое количество воды. Второй случай сложнее для вычислений. Проверим сначала первый вариант. Используем равенство начального объема воды и объема воды, вылившейся в стакан.

 $\frac{64}{125}a^3=(3a^2-a^2)h$, где h – искомая высота уровня воды. После вычислений получаем:

$$\frac{64}{125}a^3 = 2a^2h, \quad h = \frac{64}{250}a$$

Это больше толщины стенки сосуда d, которая в нашем случае равна $d = \frac{a - \frac{1}{5}a}{2} = \frac{1}{10}a$. Значит, реализуется второй вариант, когда часть воды останется в полости сосуда. Запишем условие равенства объемов воды для второго случая:

$$\frac{64}{125}a^3 = (3a^2 - a^2)h + \frac{16}{25}a^2(h - \frac{a - \frac{4}{5}a}{2})$$

$$\frac{64}{125}a^3 = 2a^2h + \frac{16}{25}a^2h - \frac{16}{250}a^3$$

$$\frac{144}{250}a^3 = \frac{66}{25}a^2h$$

$$h = \frac{12}{55}a$$

Таким образом, вода установится на высоте $h=\frac{12}{55}a$ от дна стакана, а в сосуде ее высота окажется равной $h_1=h-\frac{a-\frac{4}{5}a}{2}=\frac{12}{55}a-\frac{1}{10}a=\frac{13}{110}a$

Сила давления сосуда в первом случае F_1 определяется массой самого сосуда и массой заполняющей его воды

$$F_1 = \left(a^3 - \frac{64}{125}a^3\right)3\rho g + \frac{64}{125}a^3\rho g = \frac{247}{125}a^3\rho g$$

После вынимания пробки часть воды выльется в стакан, и сила давления F_2 сосуда на дно стакана во втором случае определяется силой тяжести самого сосуда, минус сила Архимеда, действующая на него. При вычислении силы Архимеда надо понимать, что вода вытесняется только той частью **стенок** сосуда, которые находятся в воде. Силу F_2 можно вычислить также как силу тяжести самого сосуда, плюс сила давления на дно полости слоя

11 класс

воды, находящегося в сосуде, минус сила давления слоя воды в стакане на внешнюю нижнюю грань сосуда. Результат, естественно, будет одинаковым.

$$F_2 = \left(a^3 - \frac{64}{125}a^3\right)3\rho g + \frac{13}{110}a\frac{16}{25}a^2\rho g - \frac{12}{55}a\rho g a^2 = \frac{1817}{1375}a^3\rho g$$

Найдем отношение
$$\frac{F_1}{F_2} = \frac{247}{125} \cdot \frac{1375}{1817} = \frac{2717}{1817} = \frac{11}{23} \cdot \frac{13}{79} \cdot \frac{19}{1}$$

Otbet:
$$\frac{F_1}{F_2} = \frac{2717}{1817} \approx 1.5$$
.

Критерии оценивания.

№	критерий	баллы
1.	Проверка реализации второго сценария (в сосуде остается вода)	0,5
2.	Правильно записан объем воды до выливания	0,5
3.	Правильно записан объем воды после выливания	1,0
4.	Получен уровень воды в стакане после вынимания пробки	1,0
5.	Получен уровень воды в сосуде после вынимания пробки	1,0
6.	Вычисление силы давления F_1 (до открытия отверстия)	2,0
	(Если использована правильная формула для вычисления, но из-за	
	арифметических ошибок, результат не верный, то 1 балл)	
7.	Вычисление силы давления F_2 (после открытия отверстия)	3,0
	(Если использована правильная формула для вычисления, но из-за	
	арифметических ошибок, результат не верный, то 1 балл)	
8.	Получено правильное отношение $\frac{F_1}{F_2}$	1,0
итого:		10,0

11 класс

2. Идеальные показания. Электрическая цепь, схема которой представлена на рисунке, состоит из двух идеальных источников ЭДС, шести резисторов и одного идеального амперметра. Определите показания амперметра. ЭДС источников и сопротивления резисторов указаны на рисунке. Сопротивлением соединительных проводов можно пренебречь.

Возможное решение.

Обозначим узлы, как это представлено на рисунке. Так как амперметр идеальный, то точки C и D имеют одинаковый потенциал. Откуда, с учётом закона Ома, сила тока $I_{CD} = \frac{\mathcal{E}}{R}$, а $I_{CB}R = I_{DB}2R$, $I_{ED}R = I_{EC}2R$.

Для узла E и узла B можно записать первое правило Кирхгофа:

$$I_{BE}=I_{EC}+I_{ED}=I_{CB}+I_{DB}$$
, а для контура $BEDCB$ — второе правило Кирхгофа: $7\mathcal{E}=I_{BE}R+I_{ED}R+0+I_{CB}R$.

Из вышеприведённых соотношений получаем $I_{ED}=\frac{2\mathcal{E}}{R}$, $I_{DB}=\frac{\mathcal{E}}{R}$.

Из первого правила Кирхгофа для узла D получаем ответ:

$$I_A = I_{CD} + I_{ED} - I_{DB} = \frac{2\mathcal{E}}{R}.$$

Критерии оценивания.

No	критерий	баллы
1.	Рисунок с правильной расстановкой токов	2
2.	Найден ток I_{CD}	1
3.	первое правило Кирхгофа для узла E или аналог	1
4.	первое правило Кирхгофа для узла В или аналог	1
5.	второе правило Кирхгофа для контура ВЕДСВ или аналог	1
6.	первое правила Кирхгофа для узла D (или C) или аналог	1
7.	Найден I_A	3
итого:		10

Примечание: пункты 3-6 необходимо интерпретировать, как наличие необходимого количества уравнений для нахождения распределения токов в схеме. Пункт 7 относится к решению системы уравнений и нахождению ответа на поставленный вопрос.

11 класс

3. Квазицикл. На горизонтальных проводящих рельсах лежит перемычка массой m. Расстояние между рельсами d. Цепь помещена в однородное вертикальное магнитное поле B и замкнута на сопротивление R. Электрическое сопротивление рельсов мало. В начальный момент времени на перемычку начинает действовать горизонтальная сила F_0 . При этом зависимость приложенной силы F(v) от скорости перемычки линейна, а перемычка движется с постоянным ускорением. Когда скорость перемычки стала равна u ($u = v_m$), действие силы прекратилось. Трения нет. Определите:

- 1) направления тока в перемычке и силы Ампера действующей не неё при разгоне (сделайте рисунок);
- 2) ускорение a, с которым двигалась перемычка при разгоне;
- 3) ΔF ;
- 4) перемещение S перемычки за всё время движения.

ЭДС индукции в движущемся проводнике $\varepsilon_i = Bvd$, тогда сила тока $I = \varepsilon_i/R$. Величина силы Ампера $F_4 = IBd = (Bd)^2 v/R$,

Запишем II закон Ньютона для перемычки в произвольный момент времени $ma=(F-F_A)$ Так как ускорение постоянно, а начальная скорость (и сила Ампера) равна 0, то $a=F_0/m$. К моменту достижения скорости u внешняя сила возросла на величину силы Ампера (так как ускорение, а значит и равнодействующая, не поменялась): $\Delta F = \frac{(Bd)^2 u}{R}$.

Двигаясь равноускорено, перемычка прошла к моменту окончания разгона расстояние перемещение при разгоне $S_1 = \frac{u^2}{2a} = \frac{mu^2}{2F_0}$.

После прекращения действия силы F на перемычку, в горизонтальном направлении на неё будет действовать только сила Ампера $F_A = IBd = \left(Bd\right)^2 \upsilon / R$, где $\upsilon -$ модуль мгновенной скорости перемычки. Эта сила сообщает перемычке ускорение $a = F_A / m$, направленное противоположно скорости перемычки.

За малый промежуток времени Δt перемычка совершает перемещение, равное по модулю $\Delta S = \upsilon \cdot \Delta t = \upsilon \cdot \Delta \upsilon / a$, где $\Delta \upsilon$ — модуль изменения скорости. Заметим, что $\upsilon / a = mR / \left(Bd\right)^2 = const$. Поэтому, при изменении скорости перемычки от υ до 0 совершаемое ей перемещение будет равно $S_2 = mR\upsilon / \left(Bd\right)^2$.

А путь за всё время движения $S = \frac{mR}{(Bd)^2}u + \frac{mu^2}{2F_0}$.

Критерии оценивания.

No	критерий	баллы
1.	верно определено направление силы тока	1.0
2.	верно определено направление силы Ампера	1.0
3.	ЭДС индукции в движущемся проводнике $\varepsilon_i = Bvd$	0.5
4.	величина силы тока $I = \varepsilon_i/R$	0.5
5.	величина силы Ампера $F_A = IBd$	0.5
6.	II закон Ньютона $m\alpha = (F - F_A)$	0.5
7.	при $v=0$ сила Ампера $F_{\rm A}=0$	0.5
8.	ускорение $a = F_0/m$	1.0
9.	$\Delta F = (Bd)^2 u / R$	1.0
10.	перемещение при разгоне $S_1 = \frac{mu^2}{2F_0}$	1.0
11.	связь между ускорением и скоростью при торможении $a_2 = \frac{(Bd)^2}{mR} v$	1.0
12.	перемещение при торможении $S_2 = \frac{mR}{(Bd)^2}u$	1.0
13.	Полный путь $S = \frac{mR}{(Bd)^2}u + \frac{mu^2}{2F_0}$	0.5
итого:		10

11 класс

4. Пролёт. Небольшой шарик массой m с электрическим зарядом Q может сблизиться до расстояния l = 10 см с таким же закреплённым шариком с зарядом q, если вдалеке ему сообщить скорость v (рисунок (a)). До какого минимального расстояния s б) m Q m q сблизятся шарики, если второй не будет закреплён (рисунок (б))? сблизятся шарики, если второй не будет закреплён (рисунок (б))?

Возможное решение.

Запишем ЗСЭ для случая а:

Начальная кинетическая энергия шарика с зарядом О перешла в потенциальную энергию взаимодействия зарядов (начальной потенциальной энергией пренебрегаем)

$$\frac{mv^2}{2} = k \frac{qQ}{l}$$

Если второй шар не закреплён, то начальная кинетическая энергия шарика с зарядом Qчастично перейдёт в кинетическую энергию шара с зарядом q, в потенциальную энергию взаимодействия зарядов на расстоянии s.

$$\frac{mv^{2}}{2} = \frac{mv_{1}^{2}}{2} + \frac{mv_{2}^{2}}{2} + k\frac{qQ}{s}$$

В момент наибольшего сближения скорости у шариков будут одинаковы.

$$\upsilon_1 = \upsilon_2 = \upsilon_0$$

А из закона сохранения импульса

$$m\upsilon = m\upsilon_1 + m\upsilon_2 = 2m\upsilon_0$$

$$v_0 = \frac{v}{2}$$

Подставим всё в закон сохранения энергии для случая δ :

$$\frac{m\upsilon^2}{2} = \frac{m\upsilon^2}{8} + \frac{m\upsilon^2}{8} + k\frac{qQ}{s}$$

$$\frac{mv^2}{4} = k \frac{qQ}{s}$$

Используем первый ЗСЭ и получим

$$s = 2l = 20 \text{ cm}$$

Критерии оценивания.

№	критерий	баллы
1.	ЗСЭ для первой ситуации	2
2.	ЗСЭ для второй ситуации	2
3.	Условие на скорость для наибольшего сближения	2
4.	ЗСИ для второй ситуации	2
5.	Найдена скорость при наибольшем сближении	0,5
6.	Найдена связь s и l	1
7.	Численный ответ	0,5
итого:		10

11 класс

5. Скороварка. В кастрюле-скороварке крышка закрывается герметично, но в ней имеется предохранительный клапан, который открывается, когда давление p газа внутри кастрюли превышает атмосферное давление p_0 в 2 раза. Пустую кастрюлю закрыли при нормальных условиях (давление p_0 , температура T_0). В этот момент внутренняя энергия воздуха в ней равнялась U_0 . Затем воздух в окружающей среде медленно нагрели до $4T_0$, а затем остудили до первоначальной температуры. Считая, что стенки кастрюли хорошо проводят тепло, постройте график зависимости внутренней энергии U воздуха в кастрюле от температуры T воздуха в окружающей среде в процессе его нагревания и охлаждения. Укажите на графике значения физических величин в характерных точках. Наружное давление оставалось неизменным.

Возможное решение.

При нагревании до 2Tо внутренняя энергия будет линейно возрастать до 2Uо, так как

 $U = \frac{5}{2} vRT$, а количество молей воздуха в сосуде остается неизменным, клапан закрыт. Давление при этом возрастет в два раза и при T = 2Tо клапан откроется.

При дальнейшем нагревании давление в кастрюле будет оставаться неизменным и равным $2p_0$. При постоянном объеме и росте температуры это возможно лишь за счет того, что из кастрюли через клапан будет выходить воздух. При нагреве от $2T_0$ до $4T_0$ количество молей воздуха уменьшится в два раза. Таким образом, во время этого процесса внутренняя энергия воздуха в кастрюле будет оставаться постоянной.

Как только начнется охлаждение, давление в кастрюле станет меньше $2p_0$, клапан закроется, количество воздуха останется постоянным, внутренняя энергия вновь будет изменяться пропорционально температуре. При ее уменьшении от $4T_0$ до T_0 внутренняя энергия также уменьшится в 4 раза и примет значение $U_0/2$.

Критерии опенивания.

критерии оценивания.		
№	критерий	баллы
1.	Имеется участок графика 1 (линейный рост внутренней энергии)	1
2.	Имеется участок графика 2 (постоянная внутренняя энергия)	3
3.	Имеется участок графика 3 (линейное уменьшение внутренней энергии)	2
	За верно указанные на графике характерные точки:	
4.	$oxed{U_0}$	0,5
5.	T_0	0,5
6.	$2U_0$	0,5
7.	$2T_0$	0,5
8.	$U_0/2$	1
9.	$4T_0$	1
итого:		10