Trabajo Práctico: Unidad 6

Mellino, Natalia Farizano, Juan Ignacio

1. Ejercicio 1

1.1. Sintaxis Abstracta

```
intexp ::= nat \mid var \mid -_u intexp
           | intexp + intexp
           | intexp -_b intexp
           | intexp \times intexp |
           | intexp \div intexp
           | var = intexp
           | intexp, intexp
boolesxp := \mathbf{true} \mid \mathbf{false}
           | intexp == intexp
           | intexp \neq intexp
           | intexp < intexp
           | intexp > intexp
           \mid boolexp \lor boolexp
           \mid boolexp \land boolexp
           | \neg boolexp
  comm :: = \mathbf{skip}
           | var = intexp
           | comm; comm
           | if boolexp then comm else comm
           \mid while boolexp do comm
```

1.2. Sintaxis Concreta

```
digit ::= '0' \mid '1' \mid \dots \mid '9'
   letter ::= 'a' \mid \dots \mid 'Z'
     nat ::= digit \mid digit \ nat
     var ::= letter \mid letter \ var
  intexp ::= nat
           |var|
           '-' intexp
           | intexp '+' intexp
           | intexp '-' intexp
           | intexp '*' intexp
           | intexp '/' intexp
           (', intexp')'
           | var '=' intexp
           | intexp ',' intexp
boolesxp :: = 'true' | 'false'
           \mid intexp '==' intexp
           | intexp '!=' intexp
           | intexp '<' intexp
           | intexp'>' intexp
           | boolexp '&&' boolexp
           | boolexp '||' boolexp
            '!' boolexp
           | '(' boolexp ')'
     com :: = \mathbf{skip}
           | var '=' intexp
           | comm ';' comm
            'if' boolexp '{' comm '}'
           | 'if' boolexp '{' comm '}' 'else' '{' comm '}'
           'while' boolexp '{' comm '}'
```

2. Ejercicio 4:

3. Ejercicio 5:

Asumimos que la relación \downarrow_{exp} es determinista y procedemos por inducción en la última regla de derivación. Queremos probar : $c \leadsto c'$, $c \leadsto c'' \Rightarrow c' = c''$

• Si $c \leadsto c'$ usando como última regla ASS: c tiene la forma $\langle v = e, \sigma \rangle$ y tenemos la premisa $\langle e, \sigma \rangle \downarrow_{exp} \langle n, \sigma' \rangle$, inmediatamente debido a la regla ASS obtenemos que $c' = \langle \mathbf{skip}, [\sigma' | v : n] \rangle$.

Supongamos entonces, que esta relación no es determinista, es decir que $c' \neq c''$. Por la forma que tiene c observemos que la única regla que podemos usar en la derivación $c \leadsto c''$ es la regla ASS, entonces tenemos que: $\langle v = e, \sigma \rangle \leadsto \langle \mathbf{skip}, [\sigma'' \mid v : n'] \rangle$ con la premisa $\langle e, \sigma \rangle \Downarrow_{exp} \langle n', \sigma'' \rangle$ Como $c' \neq c''$ vemos que $\sigma' \neq \sigma'' \lor n \neq n''$. Esto es una contradicción ya que por determinismo de la relación \Downarrow_{exp} necesariamente debe ocurrir que $\sigma' = \sigma'' \land n = n''$.

$$\therefore c' = c''$$