감성 분석이 결합된 MVO 전략: 심층 분석과 적용 가능성

24-1 DART 프로젝트

목차

PART 01	연구 방법론
PART 02	Sentiment Analysis
PART 03	연구 및 분석
PART 04	결론

PART 01 I 연구방법론 소개

: 연구방법론

감성 분석 일반적으로(NLP: Natural Language Processing), 텍스트 마이닝 (text mining), 기계 학습(ML: Machine Learning) 등의 기술을 사용하여 문장 또는 문서에서의 표현이 긍정, 부정 혹은 중립인지를 판별하는 기술

PART 02 | Sentiment Analysis

: 데이터 설명

01 - 블룸버그 서비스 제공 기사

주로 해외 매크로 지표(PCE, 금리인하 등)뉴스를 다루고 있음. 2020.11.17~2024.06.05 일간의 데이터를 수집하였으며, 총 4045(809*5)개의 기사를 기반으로 추출

02 – 한국 경제 사이트 제공 코스피 태그 데이터

코스피에 집중적으로 관련이 있는 데이터만 모아놓음. 기사는 사이트에서 제공하고 있는 2016.07.08 ~ 2024.05.31 까지 총 7583개의 기사를 기반으로 추출

03 - 매일경제 사이트 코스피 검색 데이터

한국 경제에서 제공하는 코스피 태그 데이터 보다 많은 데이터를 다루고 있지만 다소 노이즈와 같은 기사도 포함되어 있음. 기사는 2016-03-22 ~ 2024.06.05 까지 총 25577개의 기사를 기반으로 추출

[정규화]

monthly sentimental score = -

min _senti_score = min (monthly sentimental score12 ~monthly sentimental score1) ← $\max_senti_score = \max(monthly sentimental score12 \sim monthly sentimental score1) \leftrightarrow$

adjusted senti score = 1 : if (senti score > max _senti_score) \(\) adjusted senti score = (senti score − min senti score)/(max senti score − min senti score)

Sentiment Scores Over Time 매일경제 블룸버그 2016 2022 2017 2020 2023 2024 Date

PART 02 | Sentiment Analysis

: Corr

$$Sentiment\ Index = \frac{\sum_{d} Positive - \sum_{d} Negative}{\sum_{d} Positive + \sum_{d} Negative}$$

: Granger Causality

시차	경기선행지수	M2	втс	sent-index
1	0.5699	0.707	0.6506	0*
2	0.0383*	0.8049	0.347	0*
3	0.0678	0.4673	0.5562	0*
4	0.2748	0.1211	0.5762	0.0001*
5	0.3913	0.0204*	0.4863	0.0001*
6	0.0609	0.0423*	0.5569	0*
7	0.0199*	0.0591	0.5448	0*
8	0.0536	0.0117*	0.5725	0.0005*
9	0.0469*	0.0066*	0.6216	0.0008*
10	0.0515	0.0136*	0.7625	0.0001*
11	0.0549	0.0106*	0.5006	0*
12	0.0597	0.0062*	0.1439	0*

: Basic Mean-Variance Optimization

: Basic Mean-Variance Optimization

[벡테스트를 통한 월별 수익률]

: Sentimental Data 추출 방식

[Sentimental Data 추출 방법]

- 1. 무위험 자산 없이 mvo weight 를 뽑는다.
- 2. (1 한달전 sentiscore * 0.4 + 두달전 senti score * 0.3 + 세달전 senti score * 0.3) 한 만큼의 weight 를 무위험 자산에 투자한다.
- 3. 한달마다 리밸런싱을 진행하며 최종 수익률을 계산한다.

Asset Value Over Time

: Monte-Carlo 활용한 최적 weight 판단

Sharpe Ratio

Sortino Ratio

Information Ratio

MDD

0.7919

Senti2 (0.7,0.2,0.1)

0.4301

-0.2046

0.8782

0.8278

[senti 2]

0.6512

-0.1599

1.3679

0.9012

Senti1 (M.C)

Senti3 (0.4,0.3,0.3) **Basic Mvo** 0.4354 -0.1245 -0.2104 -0.5445 0.8812 -0.2293

[senti 1]

Nan

: Sentimental Data 변경

	Senti(코스피 검색)	Senti(코스피 태그)	Senti(해외 매크로)	Basic MVO
Sharpe Ratio	0.2265	0.4354	0.3331	-0.1245
MDD	-0.2351	-0.2104	-0.0924	-0.5445
Sortino Ratio	0.4162	0.8812	0.6840	-0.2293
Informatio Ratio	0.4654	0.7919	2.0457	Nan

PART 04 I 결론

: 결과

KR-finbert 모델을 활용해서 코스피와 관련된 sentimental score를 뽑아보았다.

그 결과 sentiment score가 실제 코스피 200의 지수에 선행하는 경향이 있음을 확인할 수 있었다.

Corr은 0.6과 같이 나왔으며 약 5개월 전 senti가 가장 코스피 지수를 잘 예측한다고 볼 수 있었다.

또한, granger 인과검정을 통해서 코스피와 기타 다른 지표들관의 인과관계를 비교해 보았을 경우 M2, 경기선행지수, 비트코인 가격 등 기존에 알려진 주가와 선행관계를 띈다는 모델보다 senti score가 기존에 알려진 주가에 선행하는 지표보다 주가를 예측하는데 더도움이 됨을 확인할 수 있었다.

이를 바탕으로 senti score를 활용해서 mvo weight를 최적화 해 보았다. 그 결과 sharp ratio가 기본 mvo 대비 -0.12 \rightarrow 0.43, MDD가 - 0.54 \rightarrow -0.2로 크게 상승한 것을 관측할 수 있었다. sentimental data의 경우 코스피 태그를 통해 직접적으로 코스피와 관련된 데이터가 다른 해외 매크로 데이터 혹은 코스피 검색 데이터 보다 성능이 더 뛰어남을 관측할 수 있었다.

•

감사합니다

한 학기동안 수고많으셨습니다.

