Applications

- 1. Soient $E = \{a; b; c; d\}$ et $F = \{1; 2; 3; 4; 5; 6\}$. Parmi les ensembles suivants, lesquels définissent le graphe d'une application de E dans F?
 - a) $\{(b; 1); (c; 3); (d; 5); (e; 3); (a; 6)\},\$
 - b) $\{(d; 6); (c; 5); (a; 4); (d; 4); (b; 3)\}$,
 - c) $\{(a; 3); (b; 3); (c; 3); (d; 3)\},\$
 - d) $\{(a; 5); (b; 5); (d; 2)\}$.
- 2. Parmi les ensembles suivants, lesquels définissent le graphe d'une application? Si il y a lieu, modifier les ensembles de départ ou d'arrivée de manière à définir une application.
 - a) $A = \{(x; y) \in \mathbb{R}_+ \times \mathbb{R}_+ \mid y = \frac{x^2}{x+2} \},$
 - b) $B = \{(x; y) \in \mathbb{Z} \times \mathbb{R} \mid y = \frac{x^2}{x+2} \},$
 - c) $C = \{(x; y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x + 1\},\$
 - d) $D = \{(x; y) \in \mathbb{Q} \times \mathbb{Q} \mid y = \frac{x}{x^2 2} \}.$
- **3.** Soient $A = \{-2; -1; 0; 1; 2\}$, $B = \{x \in \mathbb{Z} \mid -4 \le x \le 0\}$ et l'application $f: A \longrightarrow B$ telle que $f(x) = x^2 |x| 2$.
 - a) Enumérer les éléments du graphe de $\ f$ et le représenter graphiquement.
 - b) Enumérer les éléments de : $f(\{-1;\,0\})$, $\operatorname{Im} f$, $f^{-1}(\{-2\})$, $f^{-1}(\{0\})$, $f^{-1}(\{-3;\,-2;\,-1\})$.
- 4. Soit : $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto \begin{cases} \frac{1}{2}x 1 & \text{si } x < 2\\ -x + 3 & \text{si } x \ge 2 \end{cases}$
 - a) Donner la représentation graphique de f (une unité = 4 carrés) et en déduire ${\rm Im} f$.
 - b) A l'aide de a) , expliciter : $f(\{2\}) \,, \,\, f^{-1}(\{2\}) \,, \,\, f^{-1}(\{0\}) \,, \,\, f^{-1}(f(\{1\})).$
 - c) A l'aide de a), expliciter: $f([1; 3]), f([1; 3[), f^{-1}([-1; 0]), f^{-1}([-1; 0]).$

5. Soit :
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \begin{cases} \frac{1}{2}x - 1 & \text{si } x < 2\\ 3 & \text{si } x = 2\\ -x + 3 & \text{si } x > 2 \end{cases}$$

- a) Donner la représentation graphique de f (une unité = 4 carrés) et en déduire $\operatorname{Im} f$.
- b) A l'aide de a), expliciter : $f^{-1}(\{3\}), f^{-1}(\{2\})$.
- c) A l'aide de a), expliciter: f([1; 2]), f([1; 2]),f([1; 3]), f([1; 3]), $f^{-1}([1; 4]), f^{-1}([0; 4]).$

6. Soit :
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = x^2 - |x| - 2$$

- a) Donner la représentation graphique de f (une unité = 4 carrés).
- b) A l'aide de a), expliciter : Imf, f(]-1,0], $f^{-1}(A)$, $f^{-1}(B)$, $f^{-1}(A\cap B)$ où A = [-3; -2[et B =]-9/4; -1].
- c) Comparer $f^{-1}(A) \cap f^{-1}(B)$ et $f^{-1}(A \cap B)$, $f(f^{-1}(A))$ et A.
- 7. Soient E et F deux ensembles et f une application de E dans F . Démontrer les propriétés suivantes :
 - a) $\forall A, B \subset E, A \subset B \Rightarrow f(A) \subset f(B)$. La réciproque est-elle vraie?
 - b) $\forall A, B \subset E, f(A \cup B) = f(A) \cup f(B)$.
 - c) $\forall A, B \subset F, f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
 - d) $\forall B \subset F$, $f(f^{-1}(B)) \subset B$. A-t-on égalité en général?
 - e) $\forall A \subset E, A \subset f^{-1}(f(A)).$ A-t-on égalité en général?
 - f) $\forall B \subset F, f(f^{-1}(B)) = B \cap f(E).$
- 8. Soient E et F deux ensembles et f une application de E dans F. Soit $A \subset E$ et $B \subset F$. Démontrer l'équivalence :

$$f(A) \cap B = \emptyset \iff A \cap f^{-1}(B) = \emptyset$$

9. On considère l'application :

$$g:]-1, 2[\longrightarrow \mathbb{R}$$

 $a \longmapsto g(a) = a^{E(1+a)}$

Rappel : E(x) est la partie entière de x.

A l'aide de la représentation graphique de g, expliciter $g^{-1}([1, 4])$.

10. On donne les applications :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto 2E(-\sin x)$$

$$g: [0; 3] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} -(x-2)^2 & \text{si } x \neq 2 \\ 2 & \text{si } x = 2 \end{cases}$$

Rappel : E(x) est la partie entière de x.

- a) A l'aide des graphes de f et g, expliciter $\operatorname{Im} f$ et $\operatorname{Im} g$.
- b) Représenter graphiquement les éléments de $\operatorname{Im} f \times \operatorname{Im} g$.
- c) Déterminer $g^{-1}(F)$ lorsque F = [-2, 1].

11. Soient $E = \{a; 4; b; 3\}, F = \{3; e; i; 5\} \text{ et } G = \{c; d; e\}.$

On considère les applications $f: E \longrightarrow F$ définie par : $\{(a; 3); (4; e); (b; 5); (3; 5)\}$ et l'application $g: F \longrightarrow G$ définie par : g(3) = g(e) = g(i) = c et g(5) = d.

- a) Définir $g \circ f$.
- b) Enumérer les éléments de $(g \circ f)(A)$ où $A = \{a; b; 3\}$.
- c) Enumérer les éléments de $(g \circ f)^{-1}(B)$ où $B = \{d; e\}$.

12. Soient :

Déterminer tous les ensembles $A \subset \mathbb{R}$ tels que f et g soient des applications, puis définir $g \circ f$.

13. Soient $E = \{x \in \mathbb{R} \mid -2 \le x < 0 \text{ ou } -1 < x < 2\}$ et les deux applications :

$$f: E \longrightarrow \mathbb{R}^2 \qquad g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$x \longmapsto (x; -x^2 + x) \qquad (x; y) \longmapsto (-x; |y|)$$

- a) Définir $q \circ f$.
- b) Définir $\operatorname{Im}(g \circ f)$ et le représenter graphiquement.

14. Soit :

$$f: A \subset \mathbb{R} \longrightarrow \mathbb{R}_+ \times \mathbb{R}_+$$

 $x \longmapsto (x^2 + 1; x^4 - 1)$

a) Déterminer le plus grand intervalle A de \mathbb{R} pour que f soit une application.

- b) Expliciter Im f et faire sa représentation graphique.
- c) Soit:

$$g: \mathbb{R}_{+} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$$

$$(x; y) \longmapsto \begin{cases} x/y & \text{si } y \neq 0 \\ 2 & \text{si } y = 0 \end{cases}$$

Déterminer $(g \circ f)^{-1}(\{2\})$.

15. Déterminer l'ensemble image des applications suivantes.

a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $x \longmapsto (x+2; x^2+6x)$

a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$
 c) $h: \mathbb{R} - \{1\} \longrightarrow \mathbb{R}$
 $x \longmapsto (x+2; x^2+6x)$ $x \longmapsto \frac{x^2}{x-1}$

b)
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto x^2 + 5x + 6$

b)
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto x^2 + 5x + 6$ d) $j: \mathbb{R} - \{-1; 1\} \longrightarrow \mathbb{R}$
 $x \longmapsto \frac{2x^2 + 1}{x^2 - 1}$

16. Soit l'application :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x^2 + y^2, x^2 - y^2)$

- a) Expliciter $\operatorname{Im} f$ et le représenter graphiquement.
- b) Déterminer $f^{-1}(K)$ où $K=\left\{(x',y')\in\mathbb{R}^2\,|\,y'=-\frac{1}{2}x'\right\}$ et le représenter graphiquement.
- c) Enumérer les éléments de $f^{-1}(f(\{(3,1)\}))$.
- 17. On considère les applications de \mathbb{R} dans \mathbb{R} suivantes : $f(x) = |x^2 1|$, q(x) = x|x - 1| et $h(x) = \sin |x|$.

Esquisser leur graphe, puis choisir un ensemble de départ et (ou) d'arrivée afin qu'ainsi restreinte, ces applications soient :

- a) injective
- b) surjective
- 18. Montrer que les applications suivantes sont injectives :

a)
$$f: \mathbb{R} - \{3\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x-2}{x-3}$

b)
$$g: \mathbb{R}_{-} - \{-1\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{x^{2}}{x^{2} - 1}$$

c)
$$h: \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2$$

 $(x; y) \longmapsto (x^2 + y^2; x^2 - y^2)$

d)
$$j:]-\infty; -1] \longrightarrow \mathbb{R}^2$$

 $x \longmapsto (x^2+1; x^2+4x)$

e)
$$k: [1; +\infty[\longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{2x}{x^2+1}$

19. Les applications suivantes sont-elles injectives? justifier votre réponse par une démonstration ou un contre-exemple.

a)
$$f: \mathbb{R} - \{\frac{1}{2}\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x^2 + 12}{2x - 1}$

b)
$$g: \mathbb{R}^* \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x^2 + 9}{2x}$

c)
$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x; y) \longmapsto \begin{cases} \frac{x+y}{x+y-2} & \text{si } x+y \neq 2 \\ \frac{1}{2} & \text{si } x+y=2 \end{cases}$

20. Déterminer l'image des applications suivantes et montrer à l'aide d'un contreexemple qu'elles ne sont pas surjectives. Puis restreindre leur ensemble d'arrivée pour qu'elles soient surjectives.

a)
$$f: \mathbb{R} - \{-1\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x^2}{x+1}$

b)
$$g: \mathbb{R}^* \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x^2 + x + 4}{r^2}$

c)
$$h: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x^2 - 2x}{x^2 - 2x + 2}$

d)
$$j: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x^2 + 12}{x^2 + 1}$

e)
$$k: \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $x \longmapsto (x+1; x^2+4x)$

f)
$$l: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{2x}{x^2 + 1}$

21. a) Soient

Soient
$$f: \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2 \qquad g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x; y) \longmapsto (x^2 + y^2; x^2 - y^2) \qquad (u; v) \longmapsto \begin{cases} \frac{u+v}{u+v-2} & \text{si } u+v \neq 2 \\ \frac{1}{2} & \text{si } u+v = 2 \end{cases}$$
 Définir $q \circ f$.

Définir $g \circ f$.

Montrer que $g \circ f$ n'est pas surjective.

Déterminer B, sous-ensemble de l'ensemble d'arrivée de $g\circ f$, de sorte que $g \circ f$ soit surjective.

b) Même questions avec les applications suivantes

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{2}$$

$$t \longmapsto f(t) = (\sqrt{|t|}, t^{2} - 4)$$

$$g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$(x, y) \longmapsto g(x, y) = (x^{2}, y - 3x^{2})$$

- 22. Même donnée que l'exercice numéro 15. Choisir un ensemble de départ et (ou) d'arrivée afin qu'ainsi restreinte, ces applications soient bijectives.
- 23. Montrer que les applications suivantes sont injectives. Puis restreindre leur ensemble d'arrivée pour qu'elles soient bijectives et définir alors l'application réciproque.

a)
$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{10}{x^2 + 4}$

b)
$$g: \mathbb{R} - \{3\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{x-2}{x-3}$

c)
$$h: \mathbb{R}_{-} - \{-1\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{x^2}{x^2 - 1}$$

24. Soit l'application

$$f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}^*$$

 $(n, p) \longmapsto f(n, p) = 2^n (2p+1)$

- a) Montrer que f est bijective.
- b) Définir une application g de \mathbb{N}^* dans \mathbb{N} telle que $g \circ f$ soit une bijection de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} .
- **25.** Soient E et F deux ensembles.

f est une application de E vers F et g est une application de F vers E. On note I_E l'application identité sur E et I_F l'application identité sur F.

- a) $g \circ f = I_E \implies f$ est injective.
- b) $f \circ g = I_F \implies f$ est surjective.

- **26.** Soient E et F deux ensembles et f une application de E dans F.
 - a) Démontrer l'implication suivante :

$$\forall A, B \subset E, \quad f \text{ injective } \Rightarrow f(A) \cap f(B) \subset f(A \cap B).$$

b) Montrer, en construisant un contre-exemple, que la proposition suivante est fausse :

$$\forall A, B \subset E, \quad f(A) \cap f(B) \subset f(A \cap B).$$

27. Soient E et F deux ensembles et f une application de E dans F . Démontrer l'implication suivante :

$$f$$
 surjective $\Rightarrow \overline{f(A)} \subset f(\overline{A})$

28. Soient E un ensemble, $\mathcal{P}(E)$ l'ensemble de ses parties et $A \neq \emptyset$ une partie fixée de E. On considère les applications :

$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$$
 $g: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$ $X \longmapsto A \cup X$

- a) Définir $f \circ g$.
- b) Montrer que $f \circ g$ n'est pas surjective.
- **29.** Montrer par la géométrie élémentaire que toute rotation de centre O et d'amplitude φ est la composée de deux symétries d'axes a et b passant par O et tels que l'angle orienté entre a et b soit $\frac{\varphi}{2}$.
- **30.** Etudier les bijections g^{-1} , $f \circ g$ et $g \circ f$ du plan, dans les cas suivants :
 - a) f est la translation de vecteur \vec{a} et g est la translation de vecteur \vec{b} .
 - b) f est la symétrie d'axe a et g est la symétrie d'axe b.
 - c) f est la rotation de centre O et d'amplitude φ et g est la rotation de centre O et d'amplitude θ .
- **31.** Soient r une rotation de centre O et d'amplitude φ , et s une symétrie d'axe a passant par O.
 - a) Montrer que $r \circ s \neq s \circ r$, et $(r \circ s)^2 = Id$.
 - b) Etudier les applications $(r \circ s)^{-1}$ et $r^2 \circ s^{-3}$.
- **32.** Parmi les applications f de E dans F suivantes, lesquelles sont bijectives?
 - a) E=F est l'ensemble des points du plan, f est la projection des points du plan sur une droite d donnée, parallèle à une direction \vec{v} (\vec{v} non-parallèle à d).

- b) E = F est l'ensemble des points d'un cercle, f fait correspondre à tout point du cercle le point diamétralement opposé.
- c) E est l'ensemble des points d'une sphère Σ , excepté un point fixé N, F est le plan tangent à Σ en O, point diamétralement opposé à N, f est la projection de centre N, des points de E sur F.
- d) Même situation que c), mais on restreint $\ E$ aux points de la demi-sphère contenant $\ N$.

Réponses

- 1. a) Non car $e \notin E$.
 - b) Non car d a deux images.
 - c) Oui.
 - d) Non car c n'a pas d'image.
- **2.** a) Oui.
 - b) Non car $-2 \in \mathbb{Z}$ n'a pas d'image, oui par exemple si $(x; y) \in \mathbb{N} \times \mathbb{R}$.
 - c) Non car $\forall x \geq -1$, x a deux images dans \mathbb{R} définies par $y^2 = x + 1$, oui par exemple si $(x; y) \in [-1, \to [\times \mathbb{R}]$ (image définie par $y = -\sqrt{x+1}$).
 - d) Oui.
- **3.** $B = \{-4; -3; -2; -1; 0\}$.
 - a) $\mathcal{G}_f = \{(-2; 0); (-1; -2); (0; -2); (1; -2); (2; 0)\}.$
 - b) $f(\{-1; 0\}) = \{-2\}$, $\operatorname{Im} f = \{-2; 0\}$, $f^{-1}(\{-2\}) = \{-1; 0; 1\}$, $f^{-1}(\{-3; -2; -1\}) = f^{-1}(\{-2\})$, $f^{-1}(\{0\}) = \{-2; 2\}$.
- **4.** a) $\text{Im } f =]-\infty; 1].$
 - b) $f(\{2\}) = \{1\}, f^{-1}(\{2\}) = \emptyset, f^{-1}(\{0\}) = \{3\},$ $f^{-1}(f(\{1\})) = f^{-1}(\{-\frac{1}{2}\}) = \{1; 3, 5\}.$
 - c) $f([1; 3]) = [-\frac{1}{2}; 1], f([1; 3]) = [-\frac{1}{2}; 0] \cup [0; 1],$ $f^{-1}([-1; 0]) = [0; 2] \cup [3; 4], f^{-1}([-1; 0]) = [0; 2] \cup [3; 4].$
- **5.** a) $\text{Im} f =]-\infty; 1[\cup \{3\}.$
 - b) $f^{-1}(\{3\}) = \{2\}, f^{-1}(\{2\}) = \emptyset.$
 - c) $f([1; 2]) = [-\frac{1}{2}; 0[\cup \{3\}, f([1; 2]) = [-\frac{1}{2}; 0[, f([1; 3]) = [-\frac{1}{2}; 1[\cup \{3\}, f([1; 3]) = [-\frac{1}{2}; 0[\cup]0; 1[\cup \{3\}, f^{-1}(]1; 4[) = \{2\}, f^{-1}(]0; 4[) = [2; 3[.$
- **6.** b) Im $f = [-9/4, \rightarrow [, f(]-1, 0]) = [-9/4, -2],$ $f^{-1}(A) =]-1, 0[\cup]0, 1[,$ $f^{-1}(B) = [\frac{-1-\sqrt{5}}{2}, -\frac{1}{2}[\cup]-\frac{1}{2}, \frac{1}{2}[\cup]\frac{1}{2}, \frac{1+\sqrt{5}}{2}],$ $f^{-1}(A \cap B) =]-1, -\frac{1}{2}[\cup]-\frac{1}{2}, 0[\cup]0, \frac{1}{2}[\cup]\frac{1}{2}, 1[,$
 - c) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$, $f(f^{-1}(A)) = [-9/4, -2[, f(f^{-1}(A)) \neq A \text{ mais } f(f^{-1}(A)) \subset A$.

9.
$$g^{-1}([1, 4]) =]-1, 0[\cup [1, 2].$$

10. a) Im
$$f = \{-2; 0; 2\}$$
, Im $g = [-4; 0] \cup \{2\}$.

c)
$$g^{-1}(F) = |2 - \sqrt{2}, 2| \cup |2, 3|$$
.

11. a)
$$g \circ f : E \longrightarrow G$$

 $a \longmapsto c$
 $4 \longmapsto c$

$$b \longmapsto d$$

$$\sigma \mapsto a$$

b)
$$(g \circ f)(A) = \{c; d\}$$
.

c)
$$(g \circ f)^{-1}(B) = \{b; 3\}$$
.

12.
$$A = [-2, a], \quad a \in \mathbb{R}_+.$$
 $g \circ f : [-2, 2] \longrightarrow \mathbb{R} \text{ tel que } (g \circ f)(x) = \sqrt{-|x| + 2}.$

13. a)
$$g \circ f : E \longrightarrow \mathbb{R}^2$$

 $x \longmapsto (-x; |-x^2 + x|)$

b)
$$\operatorname{Im}(g \circ f) = \{(x', y') \in \mathbb{R}^2 \mid x' \in]-2, 2] \text{ et } y' = |x'^2 + x'| \}.$$

14. a)
$$A =] \leftarrow, -1] \cup [1, \rightarrow [$$
.

b) Im
$$f = \{(x'; y') \in \mathbb{R}_+ \times \mathbb{R}_+ \mid y' = x'(x' - 2) \text{ et } x' \ge 2\}$$
.

c)
$$(g \circ f)^{-1}(\{2\}) = \{-\sqrt{3/2}; -1; 1; \sqrt{3/2}\}.$$

15. a) Im
$$f = \{(x'; y') \in \mathbb{R}^2 \mid y' = x'^2 + 2x' - 8 \}$$
.

b)
$$\text{Im } g = [-\frac{1}{4}; +\infty[$$

c)
$$\text{Im } h =]-\infty;0] \cup [4;+\infty[$$

d) Im
$$j =]-\infty; -1] \cup]2; +\infty[$$

16. a) Im
$$f = \{(x'; y') \in \mathbb{R}^2 \mid x' + y' \ge 0 \text{ et } x' - y' \ge 0\}$$
.

b)
$$f^{-1}(K) = {\sqrt{3}x - y = 0 \text{ ou } \sqrt{3}x + y = 0}$$

c)
$$f^{-1}(\{(10; 8)\}) = \{(3; 1); (-3; 1); (3; -1); (-3; -1)\}.$$

19. Aucune de ces applications est injective.

20. a) Im
$$f =]-\infty; -4] \cup [0; +\infty[$$

b) Im
$$g = [\frac{15}{16}; +\infty[$$

c)
$$\text{Im } h = [-1, 1[$$

d)
$$\text{Im } j =]1; 12]$$

e)
$$\operatorname{Im} k = \{(x'; y') \in \mathbb{R}^2 | y' = (x'+3)(x'-1), x' \in \mathbb{R} \}$$

f)
$$\text{Im } l = [-1, 1]$$

21. a)
$$g \circ f$$
: $\mathbb{R}^2_+ \longrightarrow \mathbb{R}$
$$(x; y) \longmapsto \begin{cases} \frac{x^2}{x^2 - 1} & \text{si } x \neq 1 \\ 1/2 & \text{si } x = 1 \end{cases}$$

$$B = \,] - \infty \, , \, 0] \; \cup \; \{ \tfrac{1}{2} \} \, \cup \,] 1 \, , \, + \infty [\, .$$

b)
$$g \circ f : \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $t \longmapsto (u; v) = (|t|; t^2 - 3|t| - 4)$

$$B = \{(u; v) \in \mathbb{R}^2 \mid u \ge 0, v = (u+1)(u-4)\}\$$

23. a)
$$f^{-1}:]0; \frac{5}{2}] \longrightarrow \mathbb{R}_+$$

$$x \longmapsto \sqrt{\frac{10-4x}{x}}$$

b)
$$g^{-1}: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{3\}$$

$$x \longmapsto \frac{3x - 2}{x - 1}$$

c)
$$h^{-1}$$
: $]-\infty; 0] \cup]1; +\infty[\longrightarrow \mathbb{R}_{-} - \{-1\}]$

$$x \longmapsto -\sqrt{\frac{x}{x-1}}$$

26. b) Il faut choisir une application f non injective, par exemple : f de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^2$, avec A = [-2, -1] et B = [1, 2].

28.
$$f \circ g : \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$$

$$X \longmapsto C_E A \cap C_E X$$

- **30.** a) g^{-1} est la translation de vecteur $-\vec{b}$, $f \circ g = g \circ f$ est la translation de vecteur $\vec{a} + \vec{b}$.
 - b) g^{-1} est la symétrie d'axe b.

Si a et b se coupent en O, l'angle orienté entre a et b étant α , alors :

- $f \circ g$ est la rotation de centre O et d'amplitude -2α ,
- $g \circ f$ est la rotation de centre O et d'amplitude 2α .

Cas particulier : si $\alpha = \frac{\pi}{2}$: $f \circ g = g \circ f$ est la symétrie centrale de centre O.

Si a et b sont parallèles, avec a translatée de b de vecteur \vec{v} , alors :

- $f \circ g$ est la translation de vecteur $2\vec{v}$,
- $g \circ f$ est la translation de vecteur $-2\vec{v}$.

- c) g^{-1} est la rotation de centre O et d'amplitude $-\theta$, $f\circ g=g\circ f$ est la rotation de centre O et d'amplitude $\varphi+\theta$.
- **31.** b) $(r \circ s)^{-1}$ est la symétrie d'axe b telle que l'angle orienté entre a et b vaut $\frac{\varphi}{2}$. $r^2 \circ s^{-3}$ est la symétrie d'axe d telle que l'angle orienté entre a et d vaut φ .
- **32.** a) Non, car deux points M et P tels que (MP) soit parallèle à \vec{v} ont même image.
 - b) Oui.
 - c) Oui.
 - d) Non, car si M' appartient au disque ouvert dont la frontière est l'image de l'équateur, alors $(NM')\cap E=\emptyset$.