Numerical Analysis - Winter 2019

Assignment #4

Issued: Dec. 4, 2019 Due: Dec.25, 2019

Please upload to the 'hw4' directory if you submit your homework in time.

Problem 1:

Construct the Lagrange interpolating polynomials for the following functions, and find a bound for the absolute error on the interval $[x_0, x_n]$.

a.
$$f(x) = e^{2x} \cos 3x$$
, $x_0 = 0$, $x_1 = 0.3$, $x_2 = 0.6$, $x_2 = 0.6$

b.
$$f(x) = \sin(\ln x)$$
, $x_0 = 2.0$, $x_1 = 2.4$, $x_2 = 2.6$, $n = 2$

Problem 2:

Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5,y), (1,3), and (2,2). The coefficient of x^3 in $P_3(x)$ is 6. Find y.

Problem 3:

Neville's method is used to approximate f(0.4), giving the following table.

$$x_0 = 0$$
 $P_0 = 1$
 $x_1 = 0.25$ $P_1 = 2$ $P_{01} = 2.6$
 $x_2 = 0.5$ P_2 $P_{1,2}$ $P_{0,1,2}$
 $x_3 = 0.75$ $P_3 = 8$ $P_{2,3} = 2.4$ $P_{1,2,3} = 2.96$ $P_{0,1,2,3} = 3.016$

Determine $P_2 = f(0.5)$.

Suppose $x_j = j$, for j = 0, 1, 2, 3 and it is known that

$$P_{0,1}(x) = 2x + 1$$
, $P_{0,2}(x) = x + 1$, and $P_{1,2,3}(2.5) = 3$.

Find $P_{0.1,2,3}(2.5)$.

Problem 4:

For a function f, the forward-divided differences are given by

$$x_0 = 0.0$$
 $f[x_0]$ $f[x_0, x_1]$ $f[x_0, x_1]$ $f[x_0, x_1, x_2] = \frac{50}{7}$ $x_2 = 0.7$ $f[x_2] = 6$

Determine the missing entries in the table.

Problem5:

Determine the natural cubic spline S that interpolates the data f(0) = 0, f(1) = 1, and f(2) = 2. Determine the clamped cubic spline s that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and satisfies s'(0) = s'(2) = 1.