VECTOR CALCULUS NOTES NICHOLAS HAYEK

Lectures by Prof. Jean Pierre Mutanguha

CONTENTS

I Curves and Surfaces	1
Products on Vector Spaces	1
Lines	1
Planes	2
Transformations and Parameterizations	2
Differentiation and Continuity	4
Surfaces	5
Midterm Review	12
II Integration	14
Riemann Integration On Hypercubes	14 14 14 15
III Green's and Stoke's	20
Orthonormal Curvilinear System	20
Path Integrals	20
Vector Fields Differential Forms	20 22
Differential Forms Applications to Line and Surface Integrals	26 28

I Curves and Surfaces

PRODUCTS ON VECTOR SPACES

Recall the definition of the *inner product* over a vector space *V*:

DEF 1.1

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle} = \langle v, u \rangle$ in \mathbb{R} (where we'll be in this class)
- 2. $\langle au + bw, v \rangle = a \langle u, v \rangle + v \langle w, v \rangle$
- 3. $\langle u, u \rangle \ge 0$, and $= 0 \iff u = 0$

From this, we define the *norm* of $u \in V$ to be $||u|| := \sqrt{\langle u, u \rangle}$. This is well-defined, since $\langle u, u \rangle \ge 0$.

DEF 1.2

$$\forall u, v \in V, |\langle u, v \rangle| \le ||u|| ||v||$$

PROP 1.1

Cauchy-Schwartz Inequality PROP 1.2

$$\forall u, v \in V, ||u + v|| \le ||u|| + ||v||$$

Triangle Inequality

The *cross product* of $u, v \in \mathbb{R}$, with respect to \mathbb{R}^3 , is the determinate of the following DEF 1.3 "matrix":

$$u \times v := \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

where $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$. We observe the following two properties of the cross product in \mathbb{R}^3 :

PROP 1.3

- 1. $(u \times v) \cdot u = 0$
- 2. $||u \times v|| = ||u|| ||v|| \sin(\theta)$, where θ is the angle found between u and v. A conceptualization of this property is that "u-cross-v is equal to the area created by the parallelogram bounded by u and v."

LINES

Define a *line* $l(t) \in \mathbb{R}^n$ to be a function from $\mathbb{R} \to \mathbb{R}^n$, with the primary form l(t) = P + td, with $P, d \in \mathbb{R}^n$, $t \in \mathbb{R}$. We call P the "point vector" and d the "direction vector" An alternate form, with two points $P, Q \in \mathbb{R}^n$, would be l(t) = (1-t)P + tQ, where l(t) lies along the path between P and Q for $t \in [0,1]$.

DEF 1.4

Distance between a point and line Using this definition, how an we find the shortest path between a point R and a line l(t), which lies between P and Q?

- *Idea 1* We know the desired vector $w = PR\sin(\theta)$, the angle between PR and PQ. To find this value, note that $||PR \times PQ|| = ||PR||||PQ||\sin(\theta)$.
- *Idea 2* We can project R onto PQ, and then subtract this projection from PR.

Idea 3 We can minimize a distance function between R and a point on l, i.e. l(t). Thus, we take $\min_{t \in \mathbb{R}} \|R - l(t)\| = \alpha$, and then take $Rl(\alpha)$ to be the shortest path.

Idea 4 We can find when $(R - l(t)) \cdot d = 0$.

VECTOR CALCULUS NOTES

Sometimes called "skew lines"

Distance between 2 lines Consider two lines, l_1 and l_2 , which do not intersect but are not necessarily parallel. What is the minimal distance between l_1 and l_2 ?

- *Idea 0* Conceptualize this problem as finding the distance between the parallel planes defined by $\{l_1, l_2\}$.
- *Idea 1* We can minimize $||l_1(t) l_2(s)||$ (really, one should minimize the square to make one's life easier).
- *Idea* 2 Pick any two points, say $l_1(T)$ and $l_2(S)$, and project $l_1(T)l_2(S)$ onto $l_1 \times l_2$.
- *Idea* 3 Minimize dist($l_1(t)$, l_2) for fixed t.

Idea 4 Find t and s such that $[l_1(t) - l_2(s)] \cdot \overrightarrow{d_1} = 0$ and $[l_1(t) - l_2(s)] \cdot \overrightarrow{d_2} = 0$

 $||u \times v|| = ||u|| ||v|| \sin(\theta) = \text{Area of parallelogram defined by } u \text{ and } v.$

PLANES

A plane r(s,t) is a function $[0,1]^2 \to \mathbb{R}^3$ defined by $d_1, d_2 \in \mathbb{R}^3$, two vectors, and $P \in \mathbb{R}^3$, a point. In particular, $r(s,t) = P + s\vec{d_1} + t\vec{d_2}$. This is called the *parametric form*.

The *point-normal* form is a function $\mathbb{R}^2 \to \mathbb{R}^3$ is given by $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$, where $\vec{n}=\langle a,b,c\rangle$ is a vector normal to the plane, and $P=\langle x_0,y_0,z_0\rangle$ is a point lying on the plane.

Distance between a point R and a plane r

Idea 1 Minimize ||R - r(s, t)|| (or the square)

Idea 2 $\|\operatorname{proj}_{\vec{n}}(P-R)\|$, where \vec{n} and P are as given in the point-normal form.

TRANSFORMATIONS AND PARAMETERIZATIONS

The following table give general examples of linear transformations $\lambda : \mathbb{R}^n \to \mathbb{R}^m$.

Dimension	Linear	Affine
n = 0	$\lambda(0) = 0$	$\lambda(0) = P$
n = 1	$\lambda(t) = t\vec{d}$	$\lambda(t) = P + t\vec{d}$
n = 2	$\lambda(t,s) = t\vec{d_1} + s\vec{d_2}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$
n = 3	$\lambda(t, s, r) = t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$	$\lambda(t,s) = P + t\vec{d_1} + s\vec{d_2}$ $\lambda(t,s,r) = P + t\vec{d_1} + s\vec{d_2} + r\vec{d_3}$

PROP 1.4

DEF 1.5

DEF 1.6

We also define the following	important curves in \mathbb{R}^2 :
------------------------------	--------------------------------------

Type	Explicit Form	Parametric Form
Ellipse	$x^2 + y^2 = 1$	$r(t) = \left\langle t, \sqrt{1 - t^2} \right\rangle_{t \in [-1, 1]} = \left\langle \cos(t), \sin(t) \right\rangle_{t \in [-\pi, \pi]}$
Hyperbola	$x^2 - y^2 = 1$	$r(t) = \langle \sqrt{1 + t^2}, t \rangle_{t \in \mathbb{R}} = \langle \cosh(t), \sinh(t) \rangle_{t \in \mathbb{R}}$
Parabola	$x = y^2$	
Double Cone	$x^2 = y^2$	
Any Function	y = F(x)	$r(t) = \langle t, F(t) \rangle$

Define a *path* in \mathbb{R}^m to be a continuous function $r : \mathbb{R} \to \mathbb{R}^m$, e.g. $[a, b] \to \mathbb{R}^m$.

Define a *curve* in \mathbb{R}^m to be the image of a path (i.e. a set of points in \mathbb{R}^m). Recall DEF 1.8 the statement "paths parameterize curves."

For example, the unit circle $x^2 + y^2 = 1$ is parameterized by the path $r : \mathbb{R} \to \mathbb{R}^2$ given by $r(t) = \langle \cos(t), \sin(t) \rangle$.

Define the *tangent* line of \vec{r} at $a \in \mathbb{R}$ to be an affine transformation $l : \mathbb{R} \to \mathbb{R}^m$ satisfying the following:

1.
$$l(t) = r(a) + (t - a)\vec{d} : \vec{d} \neq 0$$

2.
$$\lim_{t\to a} \frac{\|r(t)-l(t)\|}{|t-a|} = 0$$

- **A** Examples **A** ------

E.G. 1.1

We'll now find the derivative of the unit circle at a point $a \in \mathbb{R}$: we have $r(a) = \langle \cos(a), \sin(a) \rangle$. Thus:

$$l(t) = \langle \cos(t), \sin(t) \rangle + (t - a) \langle d_1, d_2 \rangle$$

Where $\langle d_1, d_2 \rangle \neq 0$. Consider now the limit in question 2:

$$\lim_{t \to a} \frac{\|r(t) - l(t)\|}{|t - a|} = \lim_{t \to a} \frac{1}{|t - a|} \sqrt{(\cos(t) - \cos(a) - (t - a)d_1)^2 + (\sin(t) - \sin(a) - (t - a)d_2)^2}$$

$$= \lim_{t \to a} \sqrt{\left(\frac{\cos(t) - \cos(a)}{t - a} - d_1\right)^2 + \left(\frac{\sin(t) - \sin(a)}{t - a} - d_2\right)^2}$$

$$= \int_{t \to a} \sqrt{(-\sin(a) - d_1)^2 + (\cos(a) - d_2)^2} = 0$$

$$\iff d_1 = -\sin(a) \land d_2 = \cos(a)$$

$$\implies l(t) = \langle -\sin(a), \cos(a) \rangle \quad \Box$$

DIFFERENTIATION AND CONTINUITY

Frequently, l(t) is referred to as the "velocity vector" of r(t), and is notated as r'(t). Notice that r'(t) is equivalent to the component-wise derivative of the coordinates of r(t) w.r.t. t. Formally:

Given $\vec{r}: \mathbb{R} \to \mathbb{R}^n$, the *derivative* of \vec{r} at $a \in \mathbb{R}$ is a linear transformation $\vec{\lambda}: \mathbb{R} \to \mathbb{R}^n$ satisfying

$$\lim_{t\to a}\frac{\|r(t)-r(a)-\lambda(t-a)\|}{|t-a|}=0\quad\text{or equivalently}\quad \lim_{h\to 0}\frac{\|r(a+h)-r(a)-\lambda(h)\|}{|h|}=0$$

It is denoted $D\vec{r}_a$, and represented by the $n \times 1$ matrix r'(a). One may now rewrite the tangent line in the form $l(t) = r(a) + \lambda(t - a)$.

The arc length of a curve r(t) is given by

$$s = \int_{a}^{b} ||r'(t)|| dt$$

An arc length parameterization of r(t) is some $t = \alpha(s)$ such that $r(\alpha(s))$ has a unit velocity vector, i.e. $||r'(\alpha(s))|| = 1$. Alternatively, one could find an expression for arc length, and then parameterize r(t) in terms of its arc length. The resultant will be equivalent.

 $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at \vec{a} if, for any $\varepsilon > 0$, we can find $\delta > 0$ such that

$$\|\vec{x} - \vec{a}\| < \delta \implies \|\lambda(\vec{x}) - \lambda(\vec{a})\| < \varepsilon \ \forall \vec{x} \in \mathbb{R}^n$$

———— ♦ Examples ♣ —————

We'll do an arc length parameterization of a semicircle of radius 1 with its center at the origin, i.e. $y = \sqrt{1 - x^2}$. We get the natural parameterization $r(t) = \langle t, \sqrt{1 - t^2} \rangle$, where $t \in [-1, 1]$. We'd like to find a change of parameters $t = \alpha(s)$ such that $||r(\alpha(s))|| = 1$ and $\alpha' \ge 0$.

$$r(\alpha(s)) = \left\langle \alpha(s), \sqrt{1 - \alpha(s)^2} \right\rangle$$

$$r'(\alpha(s)) = \left\langle \alpha'(s), \frac{1}{2} (1 - \alpha(s)^2)^{-\frac{1}{2}} \cdot (-2\alpha(s)\alpha'(s)) \right\rangle$$

$$= \alpha'(s) \left\langle 1, \frac{-\alpha(s)}{\sqrt{1 - \alpha(s)^2}} \right\rangle$$
Then $1 = \|r'(\alpha(s))\| = \alpha'(s) \sqrt{1 + \frac{\alpha(s)^2}{1 - \alpha(s)^2}}$

$$= \frac{\alpha'(s)}{\sqrt{1 - \alpha(s)^2}}$$

DEF 1.9

DEF 1.10

DEF 1.11

DEF 1.12

E.G. 1.2

Integrating with respect to s, we get $s = \arcsin(\alpha(s)) = \arcsin(t)$. Thus, $t = \sin(s)$, and $s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, and we yield the parameterization $\langle \sin(s), \cos(s) \rangle : s \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

SURFACES

We note the following quadric surfaces:

Type	Explicit Form
Ellipsoid	$x^2 + y^2 + z^2 = 1$
Elliptic Hyperboloid	$x^2 + y^2 - z^2 = 1$
Elliptic Paraboloids	$x^2 + y^2 - z^2 = -1$
Hyperbolic Paraboloids	$x = y^2 - z^2$
Double Cones	$x^2 = y^2 + z^2$

A surface F(x, y) is called *differentiable* at (a, b) if there exists some linear transformation $\lambda : \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k)-F(a,b)-\lambda(h,k)|}{\|\langle h,k\rangle\|}$$

One may represent $\lambda(h, k) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix} = uh + vk$

E.G. 1.3 € Examples ♣

Let F(x, y) = xy. We consider F at (a, b). Then

$$0 \leq \frac{|F(a+h,b+k) - F(a,b) - \lambda(h,k)|}{\|\langle h,k \rangle\|} = \frac{|(a+h)(b+k) - ab - (uk+vk)|}{\|\langle h,k \rangle\|}$$

$$= \frac{|bh + ak + hk - uh - vk|}{\|\langle h,k \rangle\|} = \frac{|(b-u)h + (a-v)k + hk|}{\|\langle h,k \rangle\|}$$

$$\leq \frac{|b-u||h|}{|h|} + \frac{|a-v||k|}{|k|} + \frac{|h||k|}{|h|} \quad \text{since } |h|, |k| \leq \|\langle h,k \rangle\|$$

$$= |b-u| + |a-v| + |k| \to |b-u| + |a-v|$$

$$= 0 \quad \text{when } b = u, a = v$$

Thus, the desired limit is always \geq and \leq 0, so especially it is 0. Our derivative at (a, b) is then $\lambda(x, y) = bx + ay$.

One may also find these coefficients as the partial derivative of *F*, i.e.

$$\nabla F(a,b) = \left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right\rangle \Big|_{(a,b)}$$

DEF 1.14

This is called the *gradient*. Similarly, $\alpha(x, y) = F(a, b) + \lambda(x - a, y - b)$ is called the *affine approximation* at (a, b).

PROP 1.5

Note that the converse is *false* (as a counterexample, see $F = \sqrt{|xy|}$)

If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then all partial derivatives of F at \vec{a} exist. Furthermore, $\lambda(\vec{a}) = F'(\vec{a}) = \left[\partial_1 F \cdots \partial_n F\right]_{\vec{a}}$.

1.1 Partial Converse

If all partial derivatives of $F : \mathbb{R}^n \to \mathbb{R}$ exist near \vec{a} and are continuous at \vec{a} , then F is differentiable at \vec{a} .

PROOF FOR n = 2.

Let $\lambda: \mathbb{R}^n \to \mathbb{R}$ be a linear transformation defined by $\left[\partial_1 F \cdots \partial_n F\right]_{\vec{\sigma}}$. Then

$$\lambda(\vec{h}) = \sum_{i=1}^{n} \partial_i F(\vec{a}) h_i$$

Let n = 2. Then

$$|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})| = |F(a_1 + h_1, a_2 + h_2) - F(a_1 + h_1, a_2) + F(a_1 + h_1, a_2) - F(a_1, a_2) - \partial_1 F(\vec{a}) h_1 - \partial_2 F(\vec{a}) h_2|$$

$$\leq |F(a_1 + h_1, a_2 + h_2) - F(a_1 + h_1, a_2) - \partial_2 F(\vec{a}) h_2|$$

$$+ |F(a_1 + h_1, a_2) - F(a_1, a_2) - \partial_1 F(\vec{a}) h_1|$$

$$= |\partial_2 F(\vec{c}) h_2 - \partial_2 F(\vec{a}) h_2| + |\partial_1 F(\vec{d}) h_1 - \partial_1 F(\vec{a}) h_1|$$
by mean value thm.
$$= |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| |h_2| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| |h_1|$$

$$\frac{|F(\vec{a} + \vec{h}) - F(\vec{a}) - \lambda(\vec{h})|}{||\vec{h}||} = |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| \frac{|h_2|}{||\vec{h}||} + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \frac{|h_1|}{||\vec{h}||}$$

$$\leq |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| \frac{|h_2|}{|h_2|} + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \frac{|h_1|}{|h_1|}$$

$$\sin |h_i| < ||\vec{h}||$$

$$= |\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})|$$

Then, as $\vec{h} \to 0$, \vec{c} , $\vec{d} \to \vec{a}$. Since F, is continuous, we know $F(\vec{c}) \to F(\vec{a})$ and similarly for $F(\vec{d})$. Thus,

$$|\partial_2 F(\vec{c}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{d}) - \partial_1 F(\vec{a})| \rightarrow |\partial_2 F(\vec{a}) - \partial_2 F(\vec{a})| + |\partial_1 F(\vec{a}) - \partial_1 F(\vec{a})| = 0$$

And we conclude that the limit, as \leq and \geq 0, is 0.

 $F: \mathbb{R}^n \to \mathbb{R}$ is called C^1 continuous (or *continuously differentiable*) at \vec{a} if all partial

exists near \vec{a} and are continuous at \vec{a} .

Note that the converse to our partial converse is *not* true: i.e. if F is differentiable at \vec{a} , it is not necessarily continuously differentiable at \vec{a} . Some counter examples include F(x, y) = |y| and $F(x) = x^2 \sin(\frac{1}{x})$ s.t. $x \ne 0$ and 0 otherwise.

We have an alternative and equivalent definition of differentiability. Let E be PROP 1.6 continuous and = 0 at 0. Let $\lambda : \mathbb{R}^n \to \mathbb{R}$ be a linear transformation. Then

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})$$
 $\forall h$

implies differentiability.

E.G. 1.4 ■

In our previous example, we prove (laboriously) that F(x, y) = xy is differentiable for all (a, b). We can now use Thm 1.1 to show this result: the partial derivatives $F_x = y$ and $F_y = x$ exist and are continuous $\forall x, y \in \mathbb{R}$, so F is differentiable $\forall x, y \in \mathbb{R}$.

1.2 Characterization of the Derivative

Let $\vec{F} : \mathbb{R}^n \to \mathbb{R}^m$. The derivative at \vec{a} exists if:

1. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$\lim_{\vec{h}\to\vec{0}}\frac{||F(\vec{a}+\vec{h})-F(\vec{a})-\lambda(\vec{h})||}{||\vec{h}||}=0$$

2. \exists a linear transformation $\vec{\lambda}: \mathbb{R}^n \to \mathbb{R}^m$ and a function E such that

$$F(\vec{a} + \vec{h}) - F(\vec{a}) = \lambda(\vec{h}) + ||\vec{h}||E(\vec{h})$$

and E(0) = 0 is continuous at 0.

Such a λ is unique when found, and is called the derivative. We denote it by $D\vec{F}_{\vec{a}}$.

This follows from Def 1.12 and Thm 1.1.

PROOF.

We may represent the partial derivatives of $\vec{F}: \mathbb{R}^n \to \mathbb{R}^m = \langle F_1, ..., F_m \rangle$ using a DEF 1.16 *Jacobian* matrix, denoted $F'(\vec{a})$, and defined as follows:

PROP 1.7 Chain Rule Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\vec{a} \in \mathbb{R}^n$. Let $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{b} = f(\vec{a}) \in \mathbb{R}^m$. Then

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$
 is differentiable at \vec{a}

and $D\vec{h}_{\vec{a}} = D\vec{g}_{\vec{b}} \circ D\vec{f}_{\vec{a}}$. Furthermore, their Jacobians obey

$$h'(a) = g'(b)f'(a)$$

(matrix multiplication) E.G. 1.5

– ♦ Examples ♣ ———

1. Consider $f(x, y) = \langle x + y, x - y \rangle$ and $g(x, y) = \frac{1}{4}x^2 - \frac{1}{4}y^2$. Then $h = g \circ f$: $\mathbb{R}^2 \to \mathbb{R}$ is given by

$$\frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2$$

Let $\vec{a} = \langle a_1, a_2 \rangle$. Then $f(a) = b = \langle a_1 + a_2, a_1 - a_2 \rangle$. What about the Jacobian of f?

$$f'(a) = \begin{bmatrix} \partial_1 f_1 & \partial_2 f_1 \\ \partial_1 f_2 & \partial_2 f_2 \end{bmatrix} \Big|_{(a_1, a_2)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Similarly, for *g* we have

$$g'(b) = \begin{bmatrix} \partial_1 g & \partial_2 g \end{bmatrix}_{(a_1 + a_2, a_1 - a_2)} = \begin{bmatrix} \frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \end{bmatrix}$$

Then, by the chain rule, we multiple these two matrices to yield

$$\left[\frac{1}{2}(a_1 + a_2) - \frac{1}{2}(a_1 - a_2) \right] \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} a_2 & a_1 \end{bmatrix}$$

One can (less) manually find that $h = g \circ f$ is xy, and conclude the same.

2. Let *S* be a surface in R^3 given by F(x, y, z) = 0 (this is called a "level surface," e.g. xy - z = 0). Let P = (a, b, c) be a point on *F*, and let *C* be a curve in *S* containing *P*, parameterized by r(t).

Denote $r(t) = \langle x(t), y(t), z(t) \rangle$. Then $g = F \circ r = F(x(t), y(t), z(t)) = 0$. By chain rule, we have $0 = g'(t_0) = F'(P) \cdot r'(t_0)$, where we choose t_0 such that $r(t_0) = \langle a, b, c \rangle$. Then, we observe that

$$0 = \nabla F(P) \cdot \vec{v}(t_0) \implies \nabla F(P) \perp \vec{v}(t_0)$$

Where $\vec{v} = r'$ is the velocity vector of r. By considering all curves that satisfy our construction $C \subset S$, we yield the tangent plane of S at P with normal vector $\vec{n} = \nabla F(P)$. In particular, the point-normal form of the tangent plane of a surface F at P = (a, b, c) is given by

$$\partial_x F(P)(x-a) + \partial_y F(P)(y-b) + \partial_z F(P)(z-c) = 0$$

3. Generally, we can consider $S^{n-1} \subset \mathbb{R}^n$ of $F : \mathbb{R}^n \to \mathbb{R}$. (This is called a *hypersurface*). Suppose this is differentiable at $P \in S$. Let $C \subset S$ be a curve in S through P, parameterized by $r : \mathbb{R} \to \mathbb{R}^n$ and differentiable at t_0 with $r(t_0) = P$.

Then, by the chain rule, $v(t_0) \perp \nabla F(P)$. If $v(t_0) \neq 0$, then the tangent line to C at P has derivative $r(t_0)$. If $\nabla F(P) \neq 0$, then the tangent hyperplane to S at P has a normal vector $n = \nabla F(P)$.

Let $\mathbb{R}^n \to \mathbb{R}$, \vec{a} , $\vec{h} \in \mathbb{R}^n$. Let l(t) = a + th. Then the *directional derivative* of F along h at a, denoted $\partial_{\vec{h}} F(\vec{a})$, is given by

$$\lim_{t \to 0} \frac{F(a+th) - F(a)}{t}$$

Then, if *F* is differentiable at *a*, we have the more useful form

$$\partial_{\vec{h}}F(\vec{a}) = \vec{h} \cdot \nabla F(\vec{a}) = \sum_{i=1}^{n} h_i \partial_i F(\vec{a})$$

Let $F : \mathbb{R}^n \to R$ be differentiable, and let $a, h \in \mathbb{R}^n$, with $h \neq 0$. Then

$$F(a+h) - F(a) = \partial_{\overrightarrow{h}} F(c_h) = h \nabla F(c_h) \quad c_h \in [a, a+h]$$

Note that, since a, h are vectors, by $c_h \in [a, a + h]$ we mean that c_h lies along the line segment connecting a and a + h.

We now restate the chain rule:

1.3 Chain Rule

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at \vec{a} . Let $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{b} = F(\vec{a})$. Then

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$

is differentiable at \vec{a} and $h'(\vec{a}) = g'(\vec{b}) \circ f'(\vec{a})$.

Let λ be the derivative of f. Let \vec{t} , \vec{s} be arbitrary. Then we have

$$f(\vec{a} + \vec{t}) - f(\vec{a}) = \lambda(\vec{t}) + ||\vec{t}|| \varepsilon_1(\vec{t})$$

where $\varepsilon_1 : \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $\vec{0}@\vec{0}$. Similarly, for g:

$$g(\vec{b} + \vec{s}) - g(\vec{b}) = \mu(\vec{s}) + ||\vec{s}|| \varepsilon_2(\vec{s})$$

where μ is the derivative of g, and ε_2 is as above. Our goal is to write $h = g \circ f$

DEF 1.17

Thus, if $h = e_1$, then $\partial_{e_1} F(\vec{a}) = \partial_1 F(\vec{a})$.

PROP 1.8 Mean Value Thm.

PROOF.

in the same manner. Let $\nu = \mu \circ \lambda$. Then

$$h(\vec{a} + \vec{t}) - h(\vec{a}) = g(f(\vec{a} + \vec{t})) - g(f(\vec{a}))$$

$$= g(f(\vec{a}) + \lambda(\vec{t}) + ||\vec{t}|| \epsilon_1(\vec{t})) - g(f(\vec{a}))$$

$$= \mu(\vec{s}) + ||\vec{s}|| \epsilon_2(\vec{s})$$

$$= \mu(\lambda(\vec{t}) + ||\vec{t}|| \epsilon_1(\vec{t})) + ||\vec{s}|| \epsilon_2(\vec{s})$$

$$= \mu(\lambda(\vec{t})) + ||\vec{t}|| \mu(\epsilon_1(\vec{t})) + ||\vec{s}|| \epsilon_2(\vec{s})$$

$$= \nu(\vec{t}) + ||\vec{t}|| \left(\mu(\epsilon_1(\vec{t})) + \frac{||\vec{s}||}{||\vec{t}||} \epsilon_2(\vec{s})\right) \quad \text{if } \vec{t} \neq 0$$

$$= \epsilon_3(\vec{t})$$

$$\vec{t} \neq 0 \implies 0 \leq ||\epsilon_3(\vec{t})|| \leq ||\mu(\epsilon_1(\vec{t}))|| + \frac{||\lambda(\vec{t})|| + ||\vec{t}||||\epsilon_1(\vec{t})||}{||\vec{t}||} ||\epsilon_2(\vec{s})||$$

$$\leq M||\epsilon_1(\vec{t})|| + (L + ||\epsilon_1(\vec{t})||)||\epsilon_2(\vec{s})||$$

$$(\text{where } \lambda(\vec{t}) \leq L||\vec{x}|| \text{ and } \mu(\vec{x})) \leq M||\vec{x}||)$$

$$\implies \lim_{\vec{t} \to 0} \epsilon_3(\vec{t}) = 0 \quad \square$$

DEF 1.18 Iterated Partial Derivatives Suppose $g = \partial_i f$ is defined near $\vec{a} \in \mathbb{R}^n$, where $F : \mathbb{R}^n \to \mathbb{R}$. Then if $\partial_j g$ exists at \vec{a} , we call it a 2^{nd} order partial derivative of f at \vec{a} . We denote this $\partial_j \partial_i f(\vec{a})$, where $i, j \in [1, n]$.

1.4 Mixed Partials are Equal

Let $f: \mathbb{R}^2 \to \mathbb{R}$, $\vec{a} = \langle a_1, a_2 \rangle$. Let $\partial_1 f, \partial_2 \partial_1 f$ exist near \vec{a} , with $\partial_2 \partial_1 f$ continuous at \vec{a} . Suppose further that $\partial_1 f(x, a_2)$ is defined near $x = a_1$.

 $\implies \partial_1 \partial_2 f$ is defined at \vec{a} and $\partial_1 \partial_2 f(\vec{a}) = \partial_2 \partial_1 f(\vec{a})$.

PROOF.

$$\partial_{1}\partial_{2}f(\vec{a}) = \lim_{h_{1}\to 0} \underbrace{\frac{\partial_{2}f(a_{1}+h_{2}) - \partial_{2}f(a_{1},a_{2})}{h_{1}}}_{\beta(h_{1}):\mathbb{R}_{\neq 0}\to\mathbb{R}}$$

$$\Rightarrow \beta(h_{1}) = \frac{\lim_{h_{2}\to 0} \frac{f(a_{1}+h_{1},a_{2}+h_{2}) - f(a_{1}+h_{1},a_{2})}{h_{2}} - \lim_{h_{2}\to 0} \frac{f(a_{1},a_{2}+h_{2}) - f(a_{1},a_{2})}{h_{2}}}{h_{1}}$$

$$= \lim_{h_{2}\to 0} \underbrace{\frac{1}{h_{2}} \frac{(f(a_{1}+h_{1},a_{2}+h_{2}) - f(a_{1}+h_{1},a_{2})) - (f(a_{1},a_{2}+h_{2}) - f(a_{1},a_{2}))}_{\alpha(h_{1},h_{2}):\mathbb{R}^{2}_{\neq 0}\to\mathbb{R}}}$$

Now, for a break...

If $\lim_{\vec{h}\to\vec{0}} \alpha(\vec{h})$ exists, then $\lim_{h_1\to 0} \beta(h_1)$ exists, where $\beta(h_1) = \lim_{\vec{h}\setminus h_1\to 0} \alpha(h_1, (\vec{h}\setminus prop 1.9 h_1))$. Furthermore, we conclude

$$\lim_{h_1 \to 0} \beta(h_1) = \lim_{\vec{h} \to \vec{0}} \alpha(\vec{h})$$

Now, it's enough to show that $\lim_{\vec{h}\to\vec{0}}\alpha(\vec{h})=\partial_2\partial_1 f(\vec{a})$. By the Mean Value Thm, we have

PROOF (CONTINUED).

$$\alpha(\vec{h}) = \frac{1}{h_2} (\partial_1 f(c_1, a_2 + h_2) - \partial_1 f(c_1, a_2))$$
$$= \partial_2 \partial_1 f(c_1, c_2) : c_2 \in [a_2, a_2 + h]$$

Let $\vec{c} = \langle c_1, c_2 \rangle$. Then as $\vec{h} \to \vec{0}$, we have $\vec{c} \to \vec{a}$. Thus

$$\lim_{\vec{h} \to \vec{0}} = \lim_{\vec{c} \to \vec{a}} \partial_2 \partial_1 f(\vec{c}) = \partial_2 \partial_1 \vec{a} \qquad \Box$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is k-times continuously differentiable at \vec{a} if all k^{th} -order partial derivatives exist near \vec{a} and are continuous at \vec{a} .

We say that f is k-times continuously differentiable near \vec{a} if it is continuously differentiable at \vec{a} and all k-th order partial derivatives are continuous near \vec{a} .

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable at \vec{a} , then all mixed partial PROP 1.10 derivatives are equal at \vec{a} .

If f is k-time continuously differentiable at \vec{a} , then the (k-1)-order partial derivatives are continuously differentiable (hence differentiable and continuous) at \vec{a}

is the following a proof? proposition?

Let $\vec{h} \in \mathbb{R}^n, \vec{l} : \mathbb{R} \to \mathbb{R}^n$ given by $\vec{l}(t) = \vec{a} + t\vec{h}$. Set $g := f \circ \vec{l} : \mathbb{R} \to \mathbb{R}$, i.e. $g(t) = f(\vec{a} + t\vec{h})$.

PROOF.

Then let f be k-times continuously differentiable at \vec{a} . Then g is k-times differentiable at 0, and we have

$$\partial_{\vec{h}}^{i} f(\vec{a}) = g^{(i)}(0) \underset{CR}{=} (\vec{h} \cdot \nabla)^{i} f \Big|_{\vec{a}}$$

For example, with n = 2, we have

$$\partial_{\vec{h}}^2 = (\vec{h} \boldsymbol{\cdot} \nabla)(\vec{h} \boldsymbol{\cdot} \nabla) = (h_1 \partial_1 + h_2 \partial_2)(h_1 \partial_1 + h_2 \partial_2)$$

VECTOR CALCULUS NOTES 12

1.5 Multivariable Taylor's Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be k-times continuously differentiable near \vec{a} with $\vec{a} \in \mathbb{R}^n$. Let $\alpha_j: \mathbb{R}^n \to \mathbb{R}$ be a degree j homogeneous polynomial, i.e. all non-zero terms have the same degree.

Let $E: \mathbb{R}^n \to \mathbb{R}$ be such that

$$\begin{cases} \bullet \ f(\vec{a} + \vec{h}) - f(\vec{a}) = \alpha_1(\vec{h}) + \dots + \overbrace{\alpha_k(\vec{h}) + \underbrace{||h||^k E(\vec{h})}_{R_k(\vec{h})}}^{R_{k-1}(\vec{h})} \ \forall \vec{h} \\ \bullet \ E(\vec{0}) = 0 \end{cases}$$

To find such an *E*, we can take

$$E(\vec{h}) = \begin{cases} \frac{1}{||h||^k} (f(\vec{a} + \vec{h}) - f(\vec{a}) - \alpha_1(\vec{h}) - \dots - \alpha_k(\vec{h})) & \vec{h} \neq 0 \\ \vec{0} & \vec{h} = 0 \end{cases}$$

Then Taylor's Theorem states:

E continuous at
$$\vec{0} \iff \alpha_j(\vec{h}) = \frac{1}{j!} \partial_{\vec{h}}^j f(\vec{a}) = \frac{1}{j!} (\vec{h} \cdot \nabla)^j f(\vec{a}) \quad \forall j \in [1, k]$$

If *E* is continuous at \vec{a} and $\vec{h} \neq \vec{0}$ is near $\vec{0}$, then:

$$R_{k-1}(\vec{h}) = \frac{1}{k!} \partial_{\vec{h}}^k f(\vec{c}_h)$$

where $\vec{c} \in [\vec{a}, \vec{a} + \vec{h}]$.

MIDTERM REVIEW

Recall that the directional derivative is defined as follows

$$\partial_{\vec{h}} f(\vec{a}) := \lim_{t \to 0} \frac{f(\vec{a} + t\vec{h}) - f(\vec{a})}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0) \qquad g(t) := f(\vec{a} + t\vec{h})$$

An *iterated directional derivative*, denoted $\partial_{\vec{h}}^{i} f(\vec{a})$, is then

$$g^{(i)}(0)$$

If f is i-times continuously differentiable at \vec{a} , then we can write

$$\partial_{\vec{h}}^{i}(\vec{a}) = (\vec{h} \cdot \nabla)^{i} f(\vec{a})$$

II Integration

VECTOR CALCULUS NOTES

RIEMANN INTEGRATION

On Hypercubes

Let \mathcal{B} be a box in \mathbb{R}^n . Choose $F: \mathbb{R}^n \to \mathbb{R}$ which is bounded on the box. Then, informally, F is *integrable* if the limit of its Riemann summation is equivalent across all orderings of tagged partitions.

By the extreme value theorem, if F is continuous on \mathcal{B} , then F is bounded on \mathcal{B} .

2.1 Integrability Criterion

If F is continuous on \mathcal{B} , then F is integrable over \mathcal{B} .

2.2 Fubini

Let $\mathcal{B} = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Let $F : \mathbb{R}^n \to \mathbb{R}$ be continuous on \mathcal{B} . Then

$$\int_{\mathcal{B}} F dV^n = \int_{x_n=a_n}^{x_n=b_n} \cdots \left(\int_{x_1=a_1}^{x_1=b_1} F(x_1, ..., x_n) dx_1 \right) \cdots dx_n$$

Furthermore, the order of integration doesn't matter.

$$\int_{a}^{b} g(x)dx = g(c)(b-a) \text{ where } a < c < b.$$

 $\frac{G(b)-G(a)}{b-a}=G'(c)=g(c)$ by the mean value theorem and the FTC.

2.3

The set of discontinuities of F in \mathcal{B} has zero measure $\iff F$ is integrable over \mathcal{B} .

Note that this theorem is not useful in MATH 248, and its proof is out of the scope of this course.

Point-Set Topology

A set $S \subseteq \mathbb{R}^n$ has zero measure if $\forall \varepsilon > 0$ we can choose a set of open balls such that

PROP 2.1

PROP 2.2

PROOF.

DEF 2.2

15 INTEGRATION

 $S \subseteq \bigcup B(x_i, \varepsilon_i)$ where $\sum \operatorname{vol}(B(x_i, \varepsilon_i)) < \varepsilon$.

In general, hypersurfaces in \mathbb{R}^n have zero measure. Thus, if $F: \mathbb{R}^n \to \mathbb{R}$ is continuous except on a hypersurface, F is still integrable.

 $\vec{p} \in \text{Int}(S)$ is called an *interior point* of S if $\exists \varepsilon > 0$ such that $B(\vec{p}, \varepsilon) \subseteq S$.

DEF 2.3

1. If $S \subseteq \mathbb{R}^n$ has zero measure and $S' \subseteq S$, then S' has zero measure.

PROP 2.3

2. If $S \subseteq \mathbb{R}^n$ has zero measure, then S has no interior points.

Let $S \subseteq \mathbb{R}^n$. Then

DEF 2.4

- 1. Int(S), the *interior of S*, is the set of all interior points of S
- 2. S is called *open* if S = Int(S).
- 3. S^c , the compliment of S, is $\mathbb{R}^n \setminus S$.
- 4. $p \in S^c$ is called an *exterior point* of S if $\exists \varepsilon > 0$ with $B(p, \varepsilon) \subseteq S^c$.
- 5. Ext(S), the *exterior* of S, is the set of all exterior points of S.
- 6. *S* is *closed* if $S^c = \text{Ext}(S)$.
- 7. $p \in \mathbb{R}^n$ is called a boundary point of S if $p \notin \text{Int}(S) \land p \notin \text{Ext}(S)$.
- 8. The boundary of S, denoted ∂S , is the set of all boundary points of S.
- 9. *S* is bounded if $\exists \mathcal{B}$ with $S \subseteq \mathcal{B} \subseteq \mathbb{R}^n$.

S is closed \iff S^c is open \iff S contains its boundary.

PROP 2.4

On Arbitrary \mathbb{R}^n Subsets

Let $\mathscr{D} \subseteq \mathbb{R}^n$ be closed and bounded. Let $f: \mathscr{D} \to \mathbb{R}^n$ be some function. $\hat{f}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\hat{f}(x) = \begin{cases} f(x) & x \in \mathcal{D} \\ 0 & \text{o.w.} \end{cases}$$

is called the *trivial extension of* f.

f is integrable over \mathcal{D} if its trivial extension is integrable over a box $\mathcal{B} \supseteq \mathcal{D}$.

PROP 2.5

2.4

Let $\mathscr{D} \subseteq \mathbb{R}^n$ be closed and bounded, with a boundary that has zero measure. Then, if $f: \mathscr{D} \to \mathbb{R}$ is continuous on \mathscr{D} , then f is integrable.

PROOF.

If f is continuous on \mathcal{D} , then \hat{f} is continuous on both $\operatorname{Int}(\mathcal{D})$ and $\operatorname{Ext}(\mathcal{D})$ (for any point in either of these sets, we can find epsilon balls centered at the point and contained in the set—within these intervals $\hat{f} = f$). Thus, since $\mathcal{D} = \operatorname{Int}(\mathcal{D}) \cup \operatorname{Ext}(\mathcal{D}) \cup \partial D$, the set of discontinuities of \hat{f} has at most measure 0. Hence, \hat{f} is integrable over any box containing \mathcal{D} , and hence f is integrable over \mathcal{D} by Prop 2.5.

DEF 2.5

 $\mathcal{D} \subseteq \mathbb{R}^2$ is called *y-simple* if, for $a, b \in \mathbb{R}$ and $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ continuous, we may write

$$\mathcal{D} = \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases}$$

Similarly, \mathcal{D} is *x-simple* if

$$\mathcal{D} = \begin{cases} a \le y \le b \\ g_1(y) \le x \le g_2(y) \end{cases}$$

Note that, since $x \in [a, b]$ is closed (hence compact), $g_1(x)$ and $g_2(x)$ are bounded. We reason similarly for x-simple domains.

 $\mathscr{D} \subseteq \mathbb{R}^2$ is *elementary* if it is *y*- or *x*-simple. It is *simple* if it is both.

DEF 2.6

2.5 Fubini

If $\mathscr{D} \subseteq \mathbb{R}^n$ is elementary and $f : \mathscr{D} \to \mathbb{R}$ is continuous, then

•
$$\mathscr{D}$$
 is y-simple $\implies \iint_{\mathscr{D}} f dA = \int_{x=a}^{x=b} \int_{y=g_1(x)}^{y=g_2(x)} f(x,y) dy dx$

•
$$\mathscr{D}$$
 is x-simple $\implies \iint_{\mathscr{D}} f dA = \int_{y=a}^{y=b} \int_{x=g_1(y)}^{x=g_2(y)} f(x,y) dx dy$

E.G. 2.1

1. Consider $\iint_{\mathscr{D}} (1+2y)dA$, where \mathscr{D} is bounded by $y=2x^2$ and $y=1+x^2$. We first find the intersection between these two curves: $2x^2=1+x^2 \implies x=\pm 1$.

17 Integration

Then, by Thm 2.5 (\mathcal{D} is *y*-simple), we write

$$\iint_{\mathscr{D}} (1+2y)dA = \int_{x=-1}^{x=1} \int_{2x^2}^{1+x^2} (1+2y)dy dx = \int_{-1}^{1} y + y^2 \Big|_{2x^2}^{1+x^2}$$

$$= \int_{-1}^{1} (1+x^2) + (1+x^2)^2 - 2x^2 - 4x^4$$

$$= \int_{-1}^{1} 1 + x^2 + 1 + x^4 + 2x^2 - 2x^2 - 4x^4$$

$$= \int_{-1}^{1} -3x^4 + x^2 + 2 = \frac{-3}{5}x^5 + \frac{1}{3}x^3 + 2x \Big|_{-1}^{1} = 2\frac{-3}{5} + 2\frac{1}{3} + 4$$

$$= 2\left(\frac{-9}{15} + \frac{5}{15} + \frac{30}{15}\right) = \frac{52}{15}$$

2. Consider $\iint \mathcal{D} y dA$, where \mathcal{D} is bounded by $x = y - y^3$, $x = \sqrt{y} - 1$, x = -1, and y = -1 (OOF). By Thm 2.5 (*y*-simple):

We split this up into two *x*-simple graphs, one in $y \in [-1, 0]$, and one in $y \in [0, 1]$. Then we have $\iint_{\mathcal{D}} = I_1 + I_2$, with

$$I_{1} = \int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^{3}} y dx dy \qquad I_{2} = \int_{-1}^{1} \int_{-1}^{y-y^{3}} y dx dy$$

Computing this integral a hassle. Try it yourself.

3. We may also flip the bounds of integration using Thm 2.5. For example, consider $\int_0^3 \int_y^3 \sin(x^2) dx dy$. This is a non-elementary integral to evaluate in x. But observe that our bounds are equivalent to $y \in [0, x]$ and $x \in [0, 3]$, so we may re-write this as $\int_0^3 \int_0^x \sin(x^2) dy dx$.

We pick up an x, not, after integrating WRT y, so this is easy to evaluate!

DEF 2.7

DEF 2.8

This is distinct from elementary-ness of $\mathcal{D} \subseteq \mathbb{R}^2$, which we characterized by y and x simple-ness. DEF 2.9

DEF 2.10

DEF 2.11

A set $S \subseteq \mathbb{R}^n$ is called *path-connected* if, for every $a, b \in S$, there exists a continuous mapping containing a and b (i.e., there exists a path between them).

In $\mathcal{D} \subseteq \mathbb{R}^n$, we call \mathcal{D} elementary if it is closed, bounded, and both its interior and boundary are path-connected.

Let $\mathcal{D}, \mathcal{D}^*$ be elementary subsets of \mathbb{R}^n . Let $T: \mathcal{D}^* \to \mathcal{D}$. We call T onto , or *surjective*, if the whole of \mathcal{D} is mapped to, i.e. $\forall d^* \in \mathcal{D} \exists d \in \mathcal{D} : T(d) = d'$.

Using the same notation, we call T one-to-one, or injective, if no two points share a mapping, i.e. $\forall d_1^*, d_2^* \in \mathcal{D}^*$, we have $T(d_1^*) = T(d_2^*) \implies d_1^* = d_2^*$.

 $S \subseteq \mathbb{R}^n$ is a *hypersurface* if, $\forall s \in S$, $\exists \varepsilon > 0$, an open set $\vec{0} \in U$, and a function $T: U \to B(s, \varepsilon)$ such that

- T is injective on $Int(\mathcal{D}^*)$ and also surjective
- $T(U \cap \{s = \langle x_1, ..., x_n \rangle : x_n = 0\}) = S \cap B(s, \varepsilon)$

2.6 Change of Variables

Let $T: \mathcal{D}^* \to \mathcal{D}$ be continuously differentiable on $\operatorname{Int}(\mathcal{D}^*)$ (i.e. all partial derivatives exist and are continuous on $\operatorname{Int}(\mathcal{D}^*)$). Let T' be the Jacobian induced by T. Let $F^* = F \circ T$.

If $F: \mathcal{D} \to \mathbb{R}$ is integrable over \mathcal{D} , then F^* is integrable over \mathcal{D}^* and

$$\int_{\mathcal{Q}} F dV = \int_{\mathcal{Q}^*} F^* |\det(T)| dV$$

For example, in n=2 polar coordinates, $\int_{\mathscr{D}} F dA = \int_{\mathscr{D}^*} F^* r dA$. For this, see that the relevant Jacobian is

$$T' = \begin{bmatrix} \partial_r x & \partial_{\theta} x \\ \partial_r y & \partial_{\theta} y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \implies |\det(T')| = |r| = r$$

Consider the area of the following parallelogram:

Then, $x = \frac{2u-v}{3}$ and $y = \frac{u+v}{3}$. Hence, we compute our Jacobian and conclude that $\det(T') = \frac{1}{3}$. However, we may also compute the determinate of the *inverse*'s Jacobian, i.e. u = x + y and v = -x + 2y, which will yield 3, and invert the result.

Hence, since the area of the left rectangle is 9, we get an area of 3 for the parallel-ogram.

2.7 Mean Value Theorem in \mathbb{R}^n

Let $F: \mathscr{D} \to \mathbb{R}$ be integrable over an elementary region $\mathscr{D} \subseteq \mathbb{R}^n$. Let $\overline{F} := \int_{\mathscr{D}} F dV \frac{1}{\operatorname{vol}(\mathscr{D})}$ be the mean value of F. Then

$$\exists c \in \mathcal{D} : F(c) = \overline{F}$$

Let $\delta: \mathscr{D} \to \mathbb{R}_+$ be a density function (which is integrable). Then define mass(\mathscr{D}) = $\int\limits_{\mathscr{D}} \delta dV$. Then the center of mass $x \in \mathscr{D}$ is given by

$$x_i = \frac{\int\limits_{\mathscr{D}} x_i \delta dV}{\text{mass}(\mathscr{D})}$$

The mean value theorem gives the fact that $\exists c : \delta(c) = \overline{\delta}$, where $\overline{\delta} = \frac{\text{mass}(\mathcal{D})}{\text{vol}(\overrightarrow{D})}$

III Green's and Stoke's

ORTHONORMAL CURVILINEAR SYSTEM

Let $T: U^* \to U$ be given by $T(\vec{u}) = \langle x_1(\vec{u}), ..., x_n(\vec{u}) \rangle$. Then we call T orthogonal if $\partial_j T \perp \partial_i T \ \forall i \neq j$. We then call the Jacobian of T anorthonormal system. Intuitively, we have the grid-lines in U^* being mapped to (not necessarily straight) lines in U, such that all their intersections are perpendicular.

PATH INTEGRALS

 \vec{r} : $[a, b] \to \mathbb{R}^n$ is called a *regular path* if it is C^1 continuous and $||r'(t)|| > 0 \forall a < t < b$

 $C \subset \mathbb{R}^n$ is called a *regular curve* if it is the image of a regular path. Thus, since ||r'(t)|| > 0 on (a, b), there exists some arc length parameterization $p : [0, l] \to \mathbb{R}^n$.

Regular curves have zero measure, and hence zero n-dimensional volume, but we can measure 1-dimensional volume, i.e. length. Hence, $\operatorname{vol}_1(C) := \int\limits_C 1 ds = l$.

In practice, we have

$$\operatorname{mass}(C) = \int_{C} \delta ds = \int_{0}^{l} \delta(p(s)) ds = \int_{\operatorname{ch. of var's}}^{b} \int_{a}^{b} \delta(r(t)) ||r'(t)|| dt$$

where p(s) is an arc length parameterization.

Hence, the center of mass across a curve is going to be given by

$$x_i = \left(\int\limits_C x_i \delta ds\right) \frac{1}{\text{mass}(C)}$$

A regular path r is *simple* if it is injective (except possibly r(a) = r(b)). r is called *closed* if, in particular, r(a) = r(b).

A regular curve C is simple or closed if its pre-image path r is simple or closed, respectively.

If a curve is regular, there exists a unique arc length parameterization $p:[0,l] \to \mathbb{R}^n$ of it.

VECTOR FIELDS

An *orientation* on a simple, regular curve *C* is a function $\mu: C \to \mathbb{R}^n$ which gives

DEF 3.1

DEF 3.2

DEF 3.3

DEF 3.4

PROP 3.1

DEF 3.5

DEF 3.6

the tangent vector to C at a. Two orientations are equivalent if they differ by a positive scaling function. C then has exactly two orientations (\mathcal{O} for "forwards" and $\overline{\mathcal{O}}$ for "backwards"). Given an orientation, there exists a unique equivalent unit orientation T. (The other unique unit will be -T).

The boundary of the oriented curve will be a pair of "oriented points," i.e. $\{A^+, B^-\}$.

A vector field is a function $F : \mathbb{R}^n \to \mathbb{R}^n$.

DEF 3.7

Fix an orientation on a simple curve C. The *integral* of F over C, $\int_C F \cdot T ds := DEF 3.8$ $\int_{[0,l]} (F \circ \rho) \cdot \rho'$, where ρ is some arc length parameterization of C.

$$\int_{C} F \cdot T ds = \int_{a}^{b} (F \circ r) \cdot r' dt, \text{ where } r \text{ is } any \text{ parameterization of } C.$$
PROP 3.2

🌢 Examples 🕭 ------

E.G. 3.1

Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $F(x, y, z) = \langle 2x, 2y, 2z \rangle = 2 \langle x, y, z \rangle$. Hence, at any point, the vector generated by F will go through the line between the origin and that point (away).

We want to integrate over the triangle $C \subseteq \mathbb{R}^3$ bounded by (1, 0, 0), (0, 1, 0), (0, 0, 1). We orient this path as $(1, 0, 0) \to (0, 1, 0) \to (0, 0, 1)$.

Then, we split C up into 3 parts (the lines traversing each point)

$$C_1 = r_1(t) \langle 1, 0, 0 \rangle + t \langle -1, 1, 0 \rangle$$

$$C_2 = r_2(t) = \langle 0, 1, 0 \rangle + t \langle 0, -1, 1 \rangle$$

$$C_3 = r_3(t) = \langle 0, 0, 1 \rangle + t \langle 1, 0, -1 \rangle$$

Then

$$\int_{C_1} F \cdot T ds = \int_{0}^{1} \langle 2(1-t), 2t, 2(0) \rangle \cdot \langle -1, 1, 0 \rangle dt = \int_{0}^{1} 4t - 2dt$$
$$= [2t^2 - 2t]_{0}^{1} = 0$$

By symmetry, the integral across C_2 , C_3 will be the same, i.e. $3 \cdot 0 = 0$.

3.1 Line Integrals on Gradient Fields

Let $U \subseteq \mathbb{R}^n$ be open and $\varphi : U \to \mathbb{R}$ by C^1 continuous. Then $\nabla \varphi : U \to \mathbb{R}^n$ is a continuous gradient field. Let $C \subseteq U$ be a regular oriented curve with a parameterization $r : [a, b] \to U$ and an orientation T. Let A = r(a) and B = r(b).

$$\implies \int\limits_C \nabla \varphi \cdot T \, ds = \varphi(B) - \varphi(A)$$

PROOF.

DEF 3.9

DEF 3.10

E.G. 3.2

DEF 3.11

$$\int_{C} \nabla \varphi \cdot T ds = \int_{a}^{b} \nabla \varphi(r(t)) \cdot r'(t) dt$$

$$\stackrel{\text{CR}}{=} \int_{a}^{b} (\varphi \circ r)'(t) dt \stackrel{\text{FTC}}{=} [\varphi \circ r]_{a}^{b}$$

$$= \varphi(r(b)) - \varphi(r(a)) = \varphi(B) - \varphi(A)$$

Differential Forms

A differential 0-form on C (or any open set U) is a scalar function $F: C \to \mathbb{R}$ (or $F: U \to \mathbb{R}$).

A differential 1-form on C (or U) is a set of functions such that, for fixed $a \in C$ (or U), $\omega_a : T_a C \to \mathbb{R}$ is linear.

- 1. Consider dx on $U \in \mathbb{R}^2$. Then $\forall a \in U$, we define $dx_a : \mathbb{R}^2 \to \mathbb{R}$ by $dx_a(u, v) = u$. We also have dy on U, with $dx_a : \mathbb{R}^2 \to \mathbb{R}$ by $dy_a(u, v) = v$.
- 2. Any differential 1-form ω can be written as w = gds for some scalar function $g: C \to \mathbb{R}$, where ds is the length element of the oriented curve.
- 3. Let ω be a 1-form on $U \subseteq \mathbb{R}^2$. Then $\omega = \alpha dx + \beta dy$ for some scalar functions α , β .

A differential 1-form on U is a set of functions such that, for fixed $a \in U$), $d\varphi_a : \mathbb{R}^n \to \mathbb{R}$ is such that $d\varphi_a = D\varphi_a$, i.e. the derivative of φ at a.

The chain rule dictates that $d\varphi_a(\vec{v}) = \nabla \varphi(a) \cdot \vec{v}$. Hence

$$d\varphi_a(\vec{a}) = \partial_1 \varphi(a) \underbrace{v_1}_{dx_1(\vec{v})} + \dots + \partial_n \varphi(a) v_n$$

Hence, $d\varphi = \partial_1 \varphi dx_1 + ... + \partial_n \varphi dx_n$. On a point on an oriented curve C, T, we have $d\varphi = \nabla \varphi \cdot T ds$.

A gradient field F is a C^1 vector field such that $F = \nabla \varphi$, with φC^2 continuous DEF 3.12 $(\partial_i \partial_j \varphi = \partial_j \partial_i \varphi)$.

A vector field *F* is *conservative* if $\partial_1 F_2 = \partial_2 F_1$ for $F = \langle F_1, F_2 \rangle$.

A vector field T is called *unit tangent* for C if $T = \langle T_1, T_2 \rangle$ is the tangent unit vector to C (AKA an orientation). Similarly, a vector field n is called *unit normal* for C if $n = \langle T_2, -T_1 \rangle$.

3.2 Jordan Curve Theorem

Let $C \subseteq \mathbb{R}^2$ be a simple closed curve. Then there exists an elementary region $D \subseteq \mathbb{R}^2$ such that C is the boundary of D.

3.3 Green

Given an open $U \subseteq \mathbb{R}^2$, an elementary region $D \subseteq U$, an orientation T for ∂D , and a C^1 vector field $F: U \to \mathbb{R}^2$, we have

$$\int\limits_{\partial D} F \bullet T ds = \int\limits_{D} \partial_1 F_2 - \partial_1 F_1 dA$$

Note that $\partial_1 F_2 - \partial_1 F_1 = \det \begin{pmatrix} \partial_1 & \partial_2 \\ F_1 & F_2 \end{pmatrix} =: \operatorname{curl}(F)$, so we can restate Green's as $\int\limits_{\partial D} F \cdot T ds = \int\limits_{D} \operatorname{curl}(F) dA$

An open set *U* is *convex* if all line segments between points in *U*, *l*, are such that $l \subseteq U$.

3.4 Conservative \iff Gradient, n = 2

Let $U \subseteq \mathbb{R}^n$ be open and convex. Let $F: U \to \mathbb{R}^2$ be a C^1 conservative vector field. Then F is gradient.

PROOF.

DEF 3.13

Fix $a \in U$. For any $x \in U$, let [a, x] denote the line segment from a to x (oriented). Define $\varphi : U \to \mathbb{R} : x \mapsto \int\limits_{[a, x]} F \cdot T ds$.

24

We claim that $\partial_1 \varphi(x) = F_1(x)$. An identical proof for F_2 will establish $F = \nabla \varphi$. Expanding

$$x = \langle x_1, x_2 \rangle \implies \partial_1 \varphi(x) = \lim_{h \to 0} \frac{\varphi(x_1 + h, x_2) - \varphi(x_1, x_2)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\int_{[a, x + he_1]} F \cdot T ds - \int_{[a, x]} F \cdot T ds \right) \quad \text{by def.}$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{[x, x + he_1]} F \cdot T ds \quad \text{by Green}$$

At this point, observe that $\operatorname{curl}(F) = \partial_1 F_2 - \partial_2 F_1 = 0$, since F is conservative, so consider C the curve bounded by $a \to x + he_1 \to x \to a$. Then

$$\int_{[x+he_1,x]} + \int_{[x,a]} + \int_{[a,x+he_1]} = \int_C F \cdot T ds \iint_D \operatorname{curl}(F) = 0$$

Then, continuing from above...

$$\partial_1 \varphi(x) = \lim_{h \to 0} \int_{x_1}^{x_1 + h} F_1(t, x_2) dt \stackrel{\text{FTC}}{=} F_1(x_1, x_2) = F_1(x)$$

For a vector field F, $\operatorname{div}(F)$, or *divergence*, is $\nabla \dot{F} = \partial_1 F_1 + \partial_2 F_2$.

Conceptually, curl of *F* at a point gives how much "spinning" is occurring in the area, and divergence measures the tendency of nearby vectors to move "away" (positive) or "toward" (negative) the point.

3.5 Green 2

Given the same conditions as in Thm 3.3, we have

$$\int_{\partial D} F \cdot n ds = \iint_{D} \operatorname{div}(F) dA$$

where *n* is the unit normal vector field for ∂D .

DEF 3.16

Let $D \subseteq \mathbb{R}^2$ be an elementary region. Then $p: D \to \mathbb{R}^3$ be called a *regular*, DEF 3.17 2*D-parameterization* if it is one-to-one, and $\|\partial_1 p \times \partial_2 p\| > 0$.

 $S \subseteq \mathbb{R}^3$ is called a *regular surface* if it is closed and bounded, and $\forall x \in S, \exists \varepsilon > 0$ DEF 3.18 such that $B(x, \varepsilon) \cap S$ is the image of a 2D-parameterization.

Let *S* be a regular surface with a regular parameterization $p: D \to \mathbb{R}^3$ for some open $D \subseteq \mathbb{R}^2$. Then, for a function $\varphi: S \to \mathbb{R}$, we define

$$\iint_{S} \varphi d\sigma = \iint_{D} \varphi \circ p \|\partial_{1}p \times \partial_{2}p\| dA$$

Given a surface $S \subseteq \mathbb{R}^3$ which is path-connected, $\mu \to \mathbb{R}^3$ is called an *orientation* DEF 3.19 *representative* if it is continuous and $\mu(\vec{a})$ is nontrivial and normal to S.

S is *orientable* if an orientation representative exists.

DEF 3.20

Two orientation representative μ , ν are said to be *equivalent* if $\mu(\vec{a}) \cdot \nu(\vec{a}) > 0 \ \forall \vec{a} \in S$. DEF 3.21

A maximal collection of equivalent orientation representatives *O* is called an DEF 3.22 *orientation* on *S*.

For $\vec{a} \in S$, $d\sigma_{\vec{a}} : T_{\vec{a}}S \times T_{\vec{a}}S \to \mathbb{R}$ is defined by $d\sigma_{\vec{a}}(v, w) = n(a) \cdot (v \times w)$, where $T_{\vec{a}}S$ denotes the space of all tangent vectors to S at \vec{a} . We have the following properties of $d\sigma_{\vec{a}}$:

Bilinearity $d\sigma_{\vec{a}}(\alpha u + \beta v, w) = \alpha d\sigma_{\vec{a}}(u, w) + \beta d\sigma_{\vec{a}}(v, w)$

Alternating $d\sigma_{\vec{d}}(w, v) = -d\sigma_{\vec{d}}(v, w)$

If *S* is orientable, then it has exactly 2 orientations *O* and \overline{O} , and hence two unit PROP 3.3 normal vector fields \vec{n} and $-\vec{n}$, and 2 area elements $d\sigma$ and $-d\sigma$.

Fix an orientation O on S and a unit normal vector field \vec{n} . Consider a regular parameterization $p:D\to\mathbb{R}^3$ of S, where $D\subseteq\mathbb{R}^2$. Then

$$\iint\limits_{S} F \cdot nd\sigma = \iint\limits_{D} (F \circ p) \cdot (\partial_{1}p \times \partial_{2}p) dA$$

where, in particular $\vec{n} = \partial_1 p \times \partial_2 p$. Otherwise, dot instead with $\partial_2 p \times \partial_1 p$.

26

3.6 Stoke's

Consider $U \subseteq \mathbb{R}^3$ and $S \subseteq U$, a C^2 -regular surface. Let $F: U \to \mathbb{R}^3$ be a C^1 vector field. Fix an orientation T for ∂S . Then

$$\int_{\partial S} \vec{F} \cdot \vec{T} ds = \iint_{S} \operatorname{curl}_{3}(\vec{F}) \cdot \vec{n} dS$$

where $\operatorname{curl}_3(\vec{F})$ denotes $\nabla \times \vec{F}$, i.e.

$$\det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{pmatrix} \quad \text{where } \vec{F} = \langle F_1, F_2, F_3 \rangle$$

3.7 Conservative \iff Gradient, n = 3

Let $U \subseteq \mathbb{R}^3$ be open and convex. Let $F: U \setminus X \to \mathbb{R}^3$ be a C^1 vector field (where X is finite). Then

$$\operatorname{curl}_3(F) = 0 \iff F = \nabla \varphi$$

for some C^2 function $\varphi: U \setminus X \to \mathbb{R}$.

We call a vector field G in \mathbb{R}^3 solenoidal if div(G) = 0.

3.8 Solenoidal \iff curl₃

DEF 3.24

DEF 3.25

Let $U \subseteq \mathbb{R}^3$ be open and convex. Let $G: U \to \mathbb{R}^3$ be a C^2 vector field. Then

$$\operatorname{div}(G) = 0 \iff G = \operatorname{curl}_3(H)$$

for some other C^2 vector field $H: U \to \mathbb{R}^3$.

DIFFERENTIAL FORMS

A bilinear transformation $T: X \times Y \rightarrow Z$ is such that

$$T(\alpha x_1 + \beta x_2, y) = \alpha T(x_1, y) + \beta T(x_2, y)$$
 and $T(x, \alpha y_1 + \beta y_2) = \alpha T(x, y_1) + \beta T(x, y_2)$

This idea extends to k-dimensional domains, the transformations on which are called *multilinear*.

An alternating transformation $T: X \times Y \to Z$ is such that T(x, y) = -T(y, x).

A 2-form ω on an open set $U \subseteq \mathbb{R}^n$ is, for fixed $a \in U$, an alternating bilinear transformation

$$\omega_{\vec{a}}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

Similarly, a k-form is a k-linear alternating transformation $\nu : \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$ k times

– 🜢 Examples 🕹

1(a). dV^n denotes the differential n-form on \mathbb{R}^n given by

$$dV^{n}(v_{1},...,v_{n}) = \det \begin{pmatrix} \begin{vmatrix} & & & \\ v_{1} & \cdots & v_{n} \\ & & & \end{vmatrix} \quad v_{i} \in \mathbb{R}^{n}$$

Note that, here, our differential form is independent of a choice for $a \in \mathbb{R}^n$. We call this the "volume element" with respect to the standard basis of \mathbb{R}^n .

1(b). Any differential k-form on $U \subseteq \mathbb{R}^n$ is of the form

$$\nu = \sum_{i_1=1}^n \cdots \sum_{i_k=i_{k-1}+1}^n \alpha_{i_1,\ldots,i_k} dx_{i_1} \cdots dx_{i_k} \quad \alpha_{i_1,\ldots,i_k} : U \to \mathbb{R}$$

A simpler and equivalent way of constructing this is to consider instead

$$\nu = \sum_{S \in \mathcal{C}_k^n} \alpha_S \prod_{i \in S} dx_i$$

where C_k^n denotes the set of unique integer combinations of size k of [n].

 $|\mathcal{C}_k^n| = \binom{n}{k}$

1(c). For example, a differential 3-form on \mathbb{R}^4 looks like

$$\nu = \alpha_{123} dx_1 dx_2 dx_3 + \alpha 124 dx_1 dx_2 dx_4 + \alpha 134 dx_1 dx_2 dx_4 + \alpha_{234} dx_2 dx_3 dx_4$$

2(a). $dx_i dx_i$ denotes the differential 2-form on \mathbb{R}^n given by

$$dx_i dx_j(v, w) = \det \begin{pmatrix} v_i & w_i \\ v_j & w_j \end{pmatrix} \quad v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \in \mathbb{R}^n$$

Note that, if v = w, then $dx_i dx_j = 0$. Also, generally, $dx_i dx_j = -dx_j dx_i$, since swapping rows changes the sign of the determinate.

2(b). *Any* differential 2-form on $U \subseteq \mathbb{R}^n$ is of the form

$$\omega_{\vec{a}} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \alpha_{ij}(\vec{a}) dx_i dx_j \quad \alpha_{ij} : U \to \mathbb{R}$$

Hence, we say a 2-form is C^k continuous if α_{ij} are all C^k continuous.

PROOF.

VECTOR CALCULUS NOTES 28

Any bilinear transformation $W: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ may be represented by a $n \times n$ matrix A such that $W(u, v) = u^T A v$. If W is a 2-form, it is alternating, so A is a skew-symmetric matrix (i.e. $A^T = -A$). Hence, the diagonal of A must be comprised of 0s, and $a_{ij} = -a_{ji}$, so we can write

$$W(v, w) = \sum_{1 \le i, j \le n} \alpha_{ij} \det \begin{pmatrix} v_i & w_i \\ v_j & w_j \end{pmatrix} \qquad \Box$$

3. φ denotes the 0-form given by any function $\varphi: U \to \mathbb{R}$.

Applications to Line and Surface Integrals

Recall, for a curve $C \subseteq U$ with a parameterization r and orientation T, and a continuous vector field $F: U \to \mathbb{R}^n$,

$$\int_{C} F \cdot T ds = \int_{a}^{b} F \cdot r'(t) dt$$

Let $F = \langle F_1, ..., F_n \rangle$ and $v = \langle v_1, ..., v_n \rangle \in \mathbb{R}^n$, we deconstruct:

$$F(a) \cdot v = F_1(a)v_1 + ... + F_n(a)v_n = \sum_{i=1}^n F_i(a)dx_i(v)$$

 $\implies F \cdot v = (F_1 dx_1 + ... + F_n dx_n)(v)$, so we may rewrite

$$\int_{a}^{b} F \cdot r'(t)dt = \int_{C} F_{1}dx_{1} + \dots + F_{n}dx_{n}$$

Recall, for a surface $C \subseteq U$ with a parameterization $\rho: D \to \mathbb{R}^3$ and normal vector \vec{n} , and a continuous vector field $G: U \to \mathbb{R}^3$, we have

$$\iint\limits_{S} G \cdot nd\sigma = \iint\limits_{D} G \cdot (\partial_{1} \rho \times \partial_{2} \rho)$$

Let $G = \langle G_1, G_2, G_3 \rangle$. Then

$$G(a) \cdot (v \times w) = G_1 \det \begin{pmatrix} v_2 & v_3 \\ w_2 & w_3 \end{pmatrix} - G_2 \begin{pmatrix} v_1 & v_3 \\ w_1 & w_3 \end{pmatrix} + G_3 \begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix}$$
$$= (G_1 dx_2 dx_3 - G_2 dx_1 dx_3 + G_3 dx_1 dx_2)(v, w)$$

so, rewriting, we have

$$\iint\limits_D G \cdot (\partial_1 \rho \times \partial_2 \rho) = \iint\limits_S G_1 dx_2 dx_3 - G_2 dx_1 dx_3 + G_3 dx_1 dx_2$$

Recall Green's Theorem:

$$\int_{\partial D} F \cdot T ds = \iint_{D} \operatorname{curl}_{2}(F) dA \leadsto \int_{\partial D} F_{1} dx_{1} + F_{2} dx_{2} = \iint_{D} \partial_{1} F_{2} - \partial_{2} F_{1} dA$$

Recall Stoke's Theorem:

$$\int_{\partial S} F \cdot T ds = \iint_{S} \operatorname{curl}_{3}(F) \cdot n d\sigma \leadsto$$

Given a k-form, we have

PROP 3.4

0-form $\varphi \rightsquigarrow d\varphi = \partial_1 \varphi dx_1 + ... + \partial_n \varphi dx_n$

1-form $\omega = F_1 dx_1 + ... + F_n dx_n \rightsquigarrow d\omega = dF_1 dx_1 + ... + dF_n dx_n$. Re-arranging, we can write *BLAH*.