Actividad Integradora 2

Daniela Jiménez Téllez

2024-11-19

Problema

Utiliza los archivos del Titanic para detectar cuáles fueron las principales características que de las personas que sobrevivieron y elabora en modelo de predicción de sobrevivencia o no en el Titanic. Utiliza en las siguientes bases de datos:

```
entrenamiento <- read.csv("Titanic.csv")
prueba <- read.csv("Titanic_test.csv")</pre>
```

Instrucciones

- 1. Prepara la base de datos Titanic:
 - · Analiza los datos faltantes
 - · Realiza un análisis descriptivo
 - Haz una partición de los datos (70-30) para el entrenamiento y la validación. Revisa la proporción de sobrevivientes para la partición y la base original.

```
# Datos faltantes
cat("---- DATOS FALTANTES ---- \n\n")
```

```
## ---- DATOS FALTANTES ----
```

```
sapply(entrenamiento, function(x) sum(is.na(x)))
```

##	PassengerId	Survived	Pclass	Name	Sex	Age
##	0	0	0	0	0	263
##	SibSp	Parch	Ticket	Fare	Cabin	Embarked
##	0	0	0	1	0	2

```
cat("\n\n")
```

```
# Imputación de datos faltantes
entrenamiento$Age[is.na(entrenamiento$Age)] <- median(entrenamiento$Age, na.rm = TRUE)
entrenamiento$Embarked[is.na(entrenamiento$Embarked)] <- "S"

# Quitar columnas y hacer las categóricas a factores

entrenamiento <- entrenamiento %>%
    select(-c(Name, PassengerId, Ticket, Cabin)) %>%
    mutate(Sex = as.factor(Sex),
        Embarked = as.factor(Embarked),
        Pclass = as.factor(Pclass))

# Análisis descriptivo
cat("---- ANÁLISIS DESCRIPTIVO ---- \n\n")
```

```
## ---- ANÁLISIS DESCRIPTIVO ----
```

summary(entrenamiento)

```
##
       Survived
                     Pclass
                                 Sex
                                               Age
                                                              SibSp
           :0.0000
##
   Min.
                     1:323
                            female:466
                                          Min. : 0.17
                                                          Min.
                                                                 :0.0000
   1st Qu.:0.0000
                             male :843
                                          1st Qu.:22.00
                                                          1st Qu.:0.0000
##
                     2:277
   Median :0.0000
                    3:709
                                          Median :28.00
                                                          Median :0.0000
##
##
   Mean
           :0.3774
                                          Mean
                                                 :29.50
                                                          Mean
                                                                 :0.4989
   3rd Qu.:1.0000
                                          3rd Qu.:35.00
                                                          3rd Qu.:1.0000
##
##
   Max.
           :1.0000
                                          Max.
                                                 :80.00
                                                          Max.
                                                                 :8.0000
##
##
        Parch
                         Fare
                                      Embarked
## Min.
                   Min. : 0.000
                                     C:270
           :0.000
##
   1st Qu.:0.000
                   1st Qu.: 7.896
                                      Q:123
   Median :0.000
                   Median : 14.454
##
                                      S:916
##
   Mean
         :0.385
                   Mean
                         : 33.295
   3rd Qu.:0.000
                    3rd Qu.: 31.275
##
   Max.
          :9.000
                   Max.
                           :512.329
##
##
                    NA's
                           :1
```

Distribución de Sobrevivientes

Distribución de Sobrevivientes por Género

Distribución de Edades por Género y Sobrevivencia


```
## Warning: Removed 1 row containing non-finite outside the scale range
## (`stat_boxplot()`).
```

Distribución de Tarifas por Clase y Sobrevivencia


```
# Partición de datos

cat("---- PARTICIÓN DE LOS DATOS ---- \n\n")
```

```
## ---- PARTICIÓN DE LOS DATOS ----
```

```
set.seed(123)
trainIndex <- createDataPartition(entrenamiento$Survived, p = 0.7, list = FALSE)
train <- entrenamiento[trainIndex, ]
validation <- entrenamiento[-trainIndex, ]
prop.table(table(train$Survived))</pre>
```

```
## 0.6183206 0.3816794
```

```
prop.table(table(validation$Survived))
```

```
##
## 0 1
## 0.6326531 0.3673469
```

2. Con la base de datos de entrenamiento, encuentra un modelo logístico para encontrar el mejor conjunto de predictores que auxilien a clasificar la dirección de cada observación

- Auxiliate del criterio de AIC para determinar cuál es el mejor modelo.
- Propón por lo menos los dos que consideres mejores modelos.

```
# Transformar variables categóricas a dummies
train <- dummy_cols(train,</pre>
                     select_columns = c("Sex", "Embarked", "Pclass"),
                     remove_first_dummy = TRUE,
                     remove_selected_columns = TRUE)
validation <- dummy_cols(validation,</pre>
                           select_columns = c("Sex", "Embarked", "Pclass"),
                           remove_first_dummy = TRUE,
                           remove_selected_columns = TRUE)
prueba <- dummy_cols(prueba,</pre>
                       select_columns = c("Sex", "Embarked", "Pclass"),
                       remove_first_dummy = TRUE,
                      remove_selected_columns = TRUE)
train <- na.omit(train)</pre>
validation <- na.omit(validation)</pre>
prueba <- na.omit(prueba)</pre>
```

```
# Modelo logístico completo

modelo_completo <- glm(Survived ~ ., data = train, family = binomial)
step(modelo_completo, direction = "both", trace = 1)</pre>
```

```
## Start: AIC=696.88
## Survived ~ Age + SibSp + Parch + Fare + Sex_male + Embarked_Q +
##
      Embarked_S + Pclass_2 + Pclass_3
##
##
               Df Deviance
                              AIC
                   676.93 694.93
## - Embarked_S 1
## - Parch
                   677.21 695.21
## - Embarked Q 1
                   677.33 695.33
## - Fare
                1
                   678.85 696.85
## <none>
                   676.88 696.88
## - SibSp
               1 685.50 703.50
## - Pclass_2
               1 692.11 710.11
## - Age
               1 699.80 717.80
## - Pclass 3
               1 724.94 742.94
## - Sex male
                1 1059.01 1077.01
##
## Step: AIC=694.93
## Survived ~ Age + SibSp + Parch + Fare + Sex_male + Embarked_Q +
##
      Pclass_2 + Pclass_3
##
##
               Df Deviance
                              AIC
## - Parch
               1
                   677.27 693.27
## - Embarked_Q 1
                   677.75 693.75
## <none>
                   676.93 694.93
## - Fare
                1
                   679.11 695.11
## + Embarked_S 1 676.88 696.88
## - SibSp
                1 685.81 701.81
## - Pclass 2
                1
                   692.93 708.93
## - Age
                   700.02 716.02
## - Pclass_3
               1 725.93 741.93
## - Sex_male
               1 1060.12 1076.12
##
## Step: AIC=693.27
## Survived ~ Age + SibSp + Fare + Sex_male + Embarked_Q + Pclass_2 +
##
      Pclass_3
##
##
               Df Deviance
                              AIC
## - Embarked_Q 1
                   678.27 692.27
## - Fare
                1
                   679.21 693.21
## <none>
                   677.27 693.27
## + Parch
               1 676.93 694.93
## + Embarked_S 1
                   677.21 695.21
## - SibSp
               1
                   687.69 701.69
## - Pclass_2
               1
                   693.88 707.88
## - Age
               1 700.35 714.35
## - Pclass_3
               1
                   728.63 742.63
## - Sex male
                1 1071.02 1085.02
##
## Step: AIC=692.27
## Survived ~ Age + SibSp + Fare + Sex_male + Pclass_2 + Pclass_3
##
##
               Df Deviance
                              AIC
```

```
## - Fare
                1
                    680.18 692.18
## <none>
                    678.27 692.27
## + Embarked Q 1
                    677.27 693.27
## + Embarked_S 1
                    677.73 693.73
## + Parch
                1
                    677.75 693.75
## - SibSp
                1
                    689.90 701.90
## - Pclass 2
                1
                    694.77 706.77
## - Age
                    700.81 712.81
                1
## - Pclass_3
                1 728.70 740.70
## - Sex_male
                1 1085.08 1097.08
##
## Step: AIC=692.18
## Survived ~ Age + SibSp + Sex_male + Pclass_2 + Pclass_3
##
##
               Df Deviance
                              AIC
## <none>
                    680.18 692.18
## + Fare
                    678.27 692.27
                1
## + Embarked Q 1
                    679.21 693.21
## + Embarked_S 1
                    679.29 693.29
## + Parch
                1
                    679.98 693.98
## - SibSp
                1
                    690.47 700.47
## - Age
                1 703.58 713.58
## - Pclass_2
               1 707.48 717.48
## - Pclass_3
               1 774.13 784.13
## - Sex male
                1 1100.04 1110.04
```

```
##
## Call: glm(formula = Survived ~ Age + SibSp + Sex_male + Pclass_2 +
       Pclass_3, family = binomial, data = train)
##
##
## Coefficients:
## (Intercept)
                                   SibSp
                                             Sex_male
                                                           Pclass_2
                        Age
                                                                        Pclass_3
##
       4.58822
                   -0.04037
                                -0.29437
                                             -3.65933
                                                           -1.49436
                                                                        -2.45874
##
## Degrees of Freedom: 915 Total (i.e. Null); 910 Residual
## Null Deviance:
                        1218
## Residual Deviance: 680.2
                                AIC: 692.2
```

```
summary(modelo_completo)
```

```
##
## Call:
## glm(formula = Survived ~ ., family = binomial, data = train)
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                                   8.525 < 2e-16 ***
## (Intercept) 4.355973
                          0.510988
              -0.040149
                          0.008681 -4.625 3.74e-06 ***
## Age
                          0.103212 -2.779 0.005451 **
## SibSp
              -0.286834
## Parch
              -0.063380
                          0.110660 -0.573 0.566817
## Fare
               0.003204
                          0.002382 1.345 0.178484
## Sex_male
              -3.633589
                          0.227030 -16.005 < 2e-16 ***
## Embarked_Q 0.277019
                          0.413585 0.670 0.502986
## Embarked S -0.056552
                          0.263847 -0.214 0.830284
## Pclass_2
              -1.281809
                          0.330417 -3.879 0.000105 ***
## Pclass_3
              -2.272608
                          0.326277 -6.965 3.28e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1218.43 on 915 degrees of freedom
## Residual deviance: 676.88 on 906 degrees of freedom
## AIC: 696.88
##
## Number of Fisher Scoring iterations: 5
# Modelo logístico con algunas variables
```

```
# Modelo logístico con algunas variables
variables <- Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age + SibSp + Fare + Embarked_S + Embarked_Q

modelo_reducido <- glm(variables, data = train, family = binomial)
step(modelo_reducido, direction = "both", trace = 1)</pre>
```

```
## Start: AIC=695.21
## Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age + SibSp + Fare +
##
      Embarked_S + Embarked_Q
##
##
               Df Deviance
                              AIC
                    677.27 693.27
## - Embarked S 1
## - Embarked_Q 1
                    677.73 693.73
                    678.95 694.95
## - Fare
                1
## <none>
                    677.21 695.21
## - SibSp
                1
                    687.23 703.23
## - Pclass_2
              1 692.91 708.91
## - Age
                1 700.09 716.09
## - Pclass_3
                1 727.33 743.33
## - Sex male
                1 1070.26 1086.26
##
## Step: AIC=693.27
## Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age + SibSp + Fare +
##
      Embarked_Q
##
##
               Df Deviance
                              AIC
## - Embarked Q 1
                    678.27 692.27
## - Fare
                1
                    679.21 693.21
## <none>
                    677.27 693.27
## + Embarked_S 1 677.21 695.21
## - SibSp
                1
                    687.69 701.69
## - Pclass 2
                1
                    693.88 707.88
## - Age
                1 700.35 714.35
## - Pclass 3
                1
                    728.63 742.63
## - Sex_male
                1 1071.02 1085.02
##
## Step: AIC=692.27
## Survived ~ Pclass 2 + Pclass 3 + Sex male + Age + SibSp + Fare
##
##
               Df Deviance
                              AIC
                1
                    680.18 692.18
## - Fare
## <none>
                    678.27 692.27
## + Embarked_Q 1
                    677.27 693.27
## + Embarked_S 1
                    677.73 693.73
## - SibSp
                1
                    689.90 701.90
## - Pclass_2
                1 694.77 706.77
## - Age
                1 700.81 712.81
## - Pclass 3
                1
                    728.70 740.70
                1 1085.08 1097.08
## - Sex_male
##
## Step: AIC=692.18
## Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age + SibSp
##
##
               Df Deviance
                              AIC
## <none>
                    680.18 692.18
## + Fare
                1
                    678.27 692.27
## + Embarked Q 1
                    679.21 693.21
## + Embarked_S 1
                    679.29
                           693.29
```

```
##
## Call: glm(formula = Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age +
       SibSp, family = binomial, data = train)
##
## Coefficients:
  (Intercept)
                   Pclass 2
                                Pclass_3
                                             Sex male
                                                               Age
                                                                          SibSp
##
       4.58822
                   -1.49436
                                -2.45874
                                             -3.65933
                                                          -0.04037
                                                                       -0.29437
##
## Degrees of Freedom: 915 Total (i.e. Null); 910 Residual
## Null Deviance:
                        1218
## Residual Deviance: 680.2
                                AIC: 692.2
```

summary(modelo_reducido)

```
##
## Call:
## glm(formula = variables, family = binomial, data = train)
##
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.345659 0.509893 8.523 < 2e-16 ***
## Pclass 2
          -1.295762 0.329315 -3.935 8.33e-05 ***
## Pclass 3
           0.221762 -16.269 < 2e-16 ***
## Sex male
           -3.607767
            ## Age
## SibSp
           ## Fare
            0.002935 0.002310 1.271 0.20387
## Embarked_S -0.066003
                      0.262841 -0.251 0.80172
## Embarked Q 0.296410 0.411200 0.721 0.47101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
     Null deviance: 1218.43 on 915 degrees of freedom
## Residual deviance: 677.21 on 907 degrees of freedom
## AIC: 695.21
##
## Number of Fisher Scoring iterations: 5
```

```
# Comparar AIC entre modelos

aic_completo <- AIC(modelo_completo)
aic_reducido <- AIC(modelo_reducido)

cat("AIC Modelo Completo:", aic_completo, "\n")</pre>
```

```
## AIC Modelo Completo: 696.8818
```

```
cat("AIC Modelo Reducido:", aic_reducido, "\n")
```

```
## AIC Modelo Reducido: 695.209
```

Se puede observar que el AIC del modelo completo es más grande, lo que nos dice que el modelo reducido muestra mejores resultados.

3. Analiza los modelos a través de:

- Identificación de la Desviación residual de cada modelo
- Identificación de la Desviación nula
- · Cálculo de la Desviación Explicada
- Prueba de la razón de verosimilitud
- Define cuál es el mejor modelo
- Escribe su ecuación, analiza sus coeficientes y detecta el efecto de cada predictor en la clasificación.

```
# Desviación residual y nula para el modelo completo

desviacion_residual_completo <- modelo_completo$deviance
desviacion_nula_completo <- modelo_completo$null.deviance

cat("Desviación Residual Modelo Completo:", desviacion_residual_completo, "\n")</pre>
```

```
## Desviación Residual Modelo Completo: 676.8818
```

```
cat("Desviación Nula Modelo Completo:", desviacion_nula_completo, "\n")
```

```
## Desviación Nula Modelo Completo: 1218.428
```

```
# Desviación residual y nula para el modelo reducido

desviacion_residual_reducido <- modelo_reducido$deviance
desviacion_nula_reducido <- modelo_reducido$null.deviance

cat("Desviación Residual Modelo Reducido:", desviacion_residual_reducido, "\n")</pre>
```

```
## Desviación Residual Modelo Reducido: 677.209
```

```
cat("Desviación Nula Modelo Reducido:", desviacion_nula_reducido, "\n")
## Desviación Nula Modelo Reducido: 1218.428
# Desviación explicada para el modelo completo
desviacion_explicada_completo <- 1 - (desviacion_residual_completo / desviacion_nula_completo)</pre>
cat("Desviación Explicada Modelo Completo:", desviacion_explicada_completo, "\n")
## Desviación Explicada Modelo Completo: 0.4444631
# Desviación explicada para el modelo reducido
desviacion_explicada_reducido <- 1 - (desviacion_residual_reducido / desviacion_nula_reducido)</pre>
cat("Desviación Explicada Modelo Reducido:", desviacion_explicada_reducido, "\n\n")
## Desviación Explicada Modelo Reducido: 0.4441946
# Prueba de razón de verosimilitud
prueba_lrt <- anova(modelo_reducido, modelo_completo, test = "Chisq")</pre>
cat("Prueba de Razón de Verosimilitud: \n")
## Prueba de Razón de Verosimilitud:
print(prueba lrt)
## Analysis of Deviance Table
##
## Model 1: Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age + SibSp + Fare +
       Embarked S + Embarked Q
##
```

```
## Analysis of Deviance Table
##
## Model 1: Survived ~ Pclass_2 + Pclass_3 + Sex_male + Age + SibSp + Fare +
## Embarked_S + Embarked_Q
## Model 2: Survived ~ Age + SibSp + Parch + Fare + Sex_male + Embarked_Q +
## Embarked_S + Pclass_2 + Pclass_3
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 907 677.21
## 2 906 676.88 1 0.32721 0.5673
```

El modelo reducido es mejor porque logra un buen equilibrio entre ser simple y funcionar bien. Aunque el modelo completo tiene un ajuste un poco mejor, la diferencia es tan pequeña que no es significativa en la prueba de verosimilitud. Además, el modelo reducido tiene un AIC más bajo, lo que indica que es más eficiente al no incluir variables que no aportan mucho al resultado. Ambos modelos explican prácticamente la misma cantidad de la variabilidad, pero el reducido es más fácil de interpretar y probablemente se generalice mejor a otros datos.

4. Analiza las predicciones para los datos de entrenamiento

- Elabora la matriz de confusión
- · Elabora la Curva ROC
- Elabora el gráfico de violín
- Concluye sobre el modelo basándote en las predicciones de los datos de entrenamiento.

```
# Predicciones en datos de entrenamiento
predicciones <- ifelse(predict(modelo_reducido, type = "response") > 0.5, 1, 0)
# Matriz de confusión
confusion_matrix <- table(Real = train$Survived, Predicho = predicciones)</pre>
print(confusion_matrix)
       Predicho
##
## Real
          0
##
      0 502 64
      1 79 271
##
# Curva ROC
roc_obj <- roc(train$Survived, predict(modelo_reducido, type = "response"))</pre>
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
```

```
plot(roc_obj, col = "blue", main = "Curva ROC - Modelo Reducido")
```

Curva ROC - Modelo Reducido


```
auc_value <- auc(roc_obj)
print(paste("Área bajo la curva (AUC):", auc_value))
```

```
## [1] "Área bajo la curva (AUC): 0.898672387682988"
```

Gráfico de Violín - Probabilidades Predichas

El modelo reducido tiene un buen desempeño para ver si alguien sobrevive o no en el Titanic. El gráfico de violín demuestra una separación entre las probabilidades predichas de sobrevivientes y no sobrevivientes. La curva ROC, con un AUC de 0.898, muestra buenos resultados. La matriz de confusión muestra que el modelo clasifica correctamente a la mayoría de los casos, aunque existen algunos falsos positivos (64) y falsos negativos (79). En general, el modelo es confiable para predecir la supervivencia con precisión y balance entre sensibilidad y especificidad.

5. Validación del modelo con la base de datos de validación

- Elije un umbral de clasificación óptimo
- Elabora la matriz de confusión con el umbral de clasificación óptimo

```
validation <- na.omit(validation)

# Predicciones

predicciones_val <- predict(modelo_reducido, newdata = validation, type = "response")

# Clasificación

umbral_optimo <- coords(roc(validation$Survived, predicciones_val), "best", ret = "threshold")
[[1]]</pre>
```

```
## Setting levels: control = 0, case = 1
```

```
## Setting direction: controls < cases

cat("Umbral óptimo:", umbral_optimo, "\n")</pre>
```

```
## Umbral óptimo: 0.5721826
```

```
predicciones_clasificadas <- ifelse(predicciones_val > umbral_optimo, 1, 0)

# Matriz de confusión

confusion_matrix_val <- table(Real = validation$Survived, Predicho = predicciones_clasificadas)
print(confusion_matrix_val)</pre>
```

```
## Predicho
## Real 0 1
## 0 228 20
## 1 30 114
```

6. Elabora el testeo con la base de datos de prueba

```
prueba <- na.omit(prueba)

predicciones_prueba <- predict(modelo_reducido, newdata = prueba, type = "response")
predicciones_clasificadas_prueba <- ifelse(predicciones_prueba > umbral_optimo, 1, 0)

resultados_prueba <- data.frame(
   PassengerId = prueba$PassengerId,
   Survived = predicciones_clasificadas_prueba)

resultados_prueba</pre>
```

##	PassengerId	Survived
## 1	892	0
## 2	893	0
## 3	894	0
## 4	895	0
## 5	896	1
## 6	897	0
## 7	898	1
## 8	899	0
## 9	900	1
## 10	901	0
## 12	903	0
## 13	904	1
## 14	905	0
## 15	906	1
## 16	907	1
## 17	908	0
## 18	909	0
## 19	910	1
## 20	911	0
## 21	912	0
## 22	913	0
## 24	915	0
## 25	916	1
## 26	917	0
## 27	918	1
## 28	919	0
## 29	920	0
## 31	922	0
## 32	923	0
## 33	924	1
## 35	926	0
## 36	927	0
## 38	929	1
## 39	930	0
## 41	932	0
## 43	934	0
## 44	935	1
## 45	936	1
## 46	937	0
## 47	938	0
## 49	940	1
## 50	941	1
## 51	942	0
## 52	943	0
## 53	944	1
## 54	945	1
## 56	947	0
## 57	948	0
## 58	949	0
## 60	951	1
## 61	952	0

## 62	953	0
## 63	954	0
## 64	955	1
## 65	956	1
## 67	958	1
## 68	959	0
## 69	960	0
## 70	961	1
## 71	962	1
## 72	963	0
## 73	964	1
## 74	965	0
## 75	966	1
## 76	967	0
## 78	969	1
## 79	970	0
## 80	971	1
## 81	972	0
## 82	973	0
## 83	974	0
## 87	978	1
## 88	979	1
## 90	981	0
## 91	982	1
## 93	984	1
## 95	986	0
## 96	987	0
## 97	988	1
## 98	989	0
## 99	990	1
## 100	991	0
## 101	992	1
## 102	993	0
## 104	995	0
## 105	996	1
## 106	997	0
## 107	998	0
## 110	1001	0
## 111	1002	0
## 113	1004	1
## 114	1005	1
## 115	1006	1
## 116	1007	0
## 118	1009	1
## 119	1010	0
## 120	1011	1
## 121	1012	1
## 123	1014	1
## 124	1015	0
## 126	1017	1
## 127	1018	0
## 129	1020	0

. ,			
##	130	1021	0
##	131	1022	0
##	132	1023	0
##	135	1026	0
##	136	1027	0
##	137	1028	0
##		1029	0
##	139	1030	1
##	140	1031	0
##	141	1032	0
##	142	1033	1
##	143	1034	0
##	144	1035	0
##	145	1036	0
##	146	1037	0
##	148	1039	0
##	150	1041	0
##	151	1042	1
	154	1045	1
##	155	1045	0
##	156	1047	0
##	157	1047	1
		1046	1
##	158		
##	159	1050	0
##	160	1051	1
##	162	1053	0
##	163	1054	1
##	165	1056	0
##	166	1057	1
##	167	1058	0
##	168	1059	0
##	170	1061	1
##	172	1063	0
##	173	1064	0
##	175	1066	0
##	176	1067	1
##	177	1068	1
##	178	1069	0
##	179	1070	1
##	180	1071	1
##	181	1072	0
##	182	1073	0
##	183	1074	1
##	185	1076	1
##	186	1077	0
##	187	1078	1
##	188	1079	0
##	190	1081	0
##	191	1082	0
##	193	1084	0
##	194	1085	0
##	195	1086	0

## 196	1087	0
## 197	1088	1
## 198	1089	1
## 199	1090	0
## 202	1093	0
## 203	1094	0
## 204	1095	1
## 205	1096	0
## 207	1098	1
## 208	1099	0
## 209	1100	1
## 210	1101	0
## 211	1102	0
## 213	1104	0
## 214	1105	1
## 215	1106	0
## 216	1107	0
## 218	1109	0
## 219	1110	1
## 221	1112	1
## 222	1113	0
## 223	1114	1
## 224	1114	0
## 225	1116	1
## 227	1118	0
## 227	1110	0
## 229	1120	0
## 230	1121	0
## 231	1122	1
## 232	1123	0
## 235	1124	0
## 236	1127	0
	1127	_
## 237 ## 238	1128	0
	1129	0 1
## 239		1
## 240 ## 241	1131 1132	1
## 241	1132	1
## 242	1134	0
## 245	1134	0
## 240	1137	1
## 247	1130	0
## 249	1140	1
## 249	1140	1
## 251	1142	0
## 252	1143	0
## 253	1144	0
## 254 ## 255	1145	0
## 258	1146	0
## 258 ## 259	1149	1
		0
	1151 1152	
## 261	1127	0

## 262	1153	0
## 263	1154	1
## 264	1155	1
## 265	1156	0
## 270	1161	0
## 271	1162	0
## 273	1164	1
## 276	1167	1
## 277	1168	0
## 278	1169	0
## 279	1170	0
## 280	1171	0
## 281	1172	1
## 282	1173	0
## 284	1175	1
## 285	1176	1
## 286	1177	0
## 288	1179	0
## 292	1183	1
## 294	1185	0
## 295	1186	0
## 296	1187	0
## 297	1187	1
## 299	1190	0
## 300	1190	0
## 300	1191	0
	1192	0
	1194	0
	1195	1
## 306 ## 307	1197	0
## 308	1199 1200	0 0
## 309		_
## 310	1201	0
## 311	1202	0
## 312	1203	0
## 314	1205	1
## 315	1206	1
## 316	1207	1
## 317	1208	0
## 318	1209	0
## 319	1210	0
## 320	1211	0
## 321	1212	0
## 322	1213	0
## 323	1214	0
## 324	1215	0
## 325	1216	1
## 326	1217	0
## 327	1218	1
## 328	1219	0
## 329	1220	0
## 330	1221	0

## 331	1222	1
## 332	1223	0
## 334	1225	1
## 335	1226	0
## 336	1227	0
## 337	1228	0
## 338	1229	0
## 339	1230	0
## 341	1232	0
## 342	1233	0
## 344	1235	1
## 346	1237	1
## 347	1238	0
## 348	1239	1
## 349	1240	0
## 350	1241	1
## 351	1242	1
	1242	
	1243	0
## 353		0
## 354	1245	0
## 355	1246	1
## 356	1247	0
## 357	1248	1
## 360	1251	1
## 361	1252	0
## 362	1253	1
## 363	1254	1
## 364	1255	0
## 365	1256	1
## 368	1259	1
## 369	1260	1
## 370	1261	0
## 371	1262	0
## 372	1263	1
## 373	1264	0
## 374	1265	0
## 375	1266	1
## 376	1267	1
## 377	1268	1
## 378	1269	0
## 379	1270	0
## 380	1271	0
## 382	1273	0
## 384	1275	1
## 386	1277	1
## 387	1278	0
## 388	1279	0
## 389	1280	0
## 390	1280	0
## 390	1281	0
_		1
## 392	1283	
## 393	1284	0

7. Concluye en el contexto del problema:

- Define las principales características que influyen en el modelo seleccionado e interpretalas: ¿qué características tuvieron las personas que sobrevivieron?
- Interpreta los coeficientes del modelo
- Define cuál es el mejor umbral de clasificación y por qué

```
# Coeficientes

coeficientes <- summary(modelo_reducido)$coefficients
print(coeficientes)</pre>
```

```
##
                Estimate Std. Error
                                      z value
                                                 Pr(>|z|)
                                    8.5226938 1.558845e-17
## (Intercept) 4.345659220 0.509892685
## Pclass_2 -1.295762239 0.329314969 -3.9347201 8.329369e-05
## Pclass_3 -2.294274421 0.323905491 -7.0831600 1.409038e-12
## Sex_male -3.607766730 0.221761787 -16.2686582 1.647279e-59
## Age
             ## SibSp
            -0.300179203 0.100856690 -2.9762944 2.917546e-03
## Fare
             0.002934529 0.002309562 1.2705994 2.038712e-01
## Embarked S -0.066003486 0.262841169 -0.2511155 8.017248e-01
## Embarked_Q 0.296410145 0.411199509 0.7208427 4.710063e-01
```

```
# Umbral
roc_val <- roc(validation$Survived, predict(modelo_reducido, newdata = validation, type = "respo
nse"))</pre>
```

```
## Setting levels: control = 0, case = 1
```

```
## Setting direction: controls < cases</pre>
```

```
umbral_optimo <- coords(roc_val, "best", ret = "threshold")[[1]]
cat("El umbral óptimo de clasificación es:", umbral_optimo, "\n")</pre>
```

```
## El umbral óptimo de clasificación es: 0.5721826
```

El análisis muestra que las principales características que influyen en la probabilidad de sobrevivir en el Titanic son el género, la clase, la tarifa, la edad y el puerto de embarque. Las mujeres, los pasajeros en primera clase, los que pagaron tarifas más altas y las personas más jóvenes tuvieron mayores probabilidades de sobrevivir. En el modelo, ser hombre o estar en tercera clase disminuye significativamente las probabilidades, mientras que una tarifa más alta incrementa la posibilidad de sobrevivir.