MATTEO SAPONATI

matteosaponati@gmail.com

matteosaponati.github.io

🕠 🏏 🛅 🚇 @matteosaponati

My goal is to develop innovative learning algorithms for Neuromorphic devices, lead cutting-edge research on the interpretability of Foundation Models, and contribute to the evolution of Deep Learning. I conduct my research using analytical and numerical tools, within a multidisciplinary approach getting inspiration from Physics, Theoretical Neuroscience, and Statistical Learning Theory.

Work experience

Oct 2023 - present

Postdoctoral Researcher

Institute of Neuroinformatics, ETH/UZH, Zurich (CH)

- Design novel learning algorithms for Neuromorphic computing.
- Lead scientific projects on mechanistic interpretability of Deep Neural Networks (DNNs), Transformer models, and Recurrent Neural Networks (RNNs).
- Supervise master students from the University of Zürich (UZH) and ETH 7ürich

Sep 2019 - Sep 2023 Ph.D. Candidate

Ernst Strüngmann Institute for Neuroscience, Max-Planck Institute for Brain Research. Frankfurt Am Main (DE)

- Design and implement learning algorithms for Spiking Neural Networks (SNNs), with applications in Machine Learning and Computational Neuroscience.
- Publish scientific articles and present at international conferences.
- Employ state-of-the-art ML frameworks (PyTorch, Tensorflow).

Mar 2019 - Aug 2019

Assistant Research Scientist

Institute des Neurosciences des Systemes Aix-Marseille University, Marseille (FR)

Jul 2018 - Aug 2018

Research Intern

Barcelona Biomedical Research Park, Barcelona (ESP)

Education

May 2020 - Nov 2023 Ph.D. in Neurophysics

Highest Honors (top 5%) - Donders Centre for Neuroscience, Radboud University (NL)

Sep 2016 - Oct 2018 M.Sc. in Physics

110/110 - Department of Physics, University of Pisa (IT)

Sep 2011 - Jun 2016 **B.Sc.** in Physics

94/110 - Department of Physics, University of Pisa (IT)

Research

- **Saponati**, **M.**, & Vinck, M. (2023a, August 27). *Inhibitory feedback enables predictive learning of multiple sequences in neural networks*. https://doi.org/10.1101/2023.08.26.554928
- **Saponati**, **M.**, & Vinck, M. (2023b). Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule. *Nature Communications*, *14*(1), 4985. https://doi.org/10.1038/s41467-023-40651-w
- **Saponati**, **M.**, Garcia-Ojalvo, J., Cataldo, E., & Mazzoni, A. (2022). Thalamocortical Spectral Transmission Relies on Balanced Input Strengths. *Brain Topography*, *35*(1), 4–18. https://doi.org/10.1007/s10548-021-00851-3
- Spyropoulos, G., **Saponati**, **M.**, Dowdall, J. R., Schölvinck, M. L., Bosman, C. A., Lima, B., Peter, A., Onorato, I., Klon-Lipok, J., Roese, R., Neuenschwander, S., Fries, P., & Vinck, M. (2022). Spontaneous variability in gamma dynamics described by a damped harmonic oscillator driven by noise. *Nature Communications*, *13*(1), 2019. https://doi.org/10.1038/s41467-022-29674-x
- **Saponati**, **M.**, Garcia-Ojalvo, J., Cataldo, E., & Mazzoni, A. (2019). Integrate-and-fire network model of activity propagation from thalamus to cortex. *Biosystems*, *183*, 103978. https://doi.org/10.1016/j.biosystems.2019.103978

Grants and Awards

Jan 2024 - Jan 2026 ETH Fellowship - 235200 CHF

ETH Zurich Postdoctoral Fellowship programme (Zürich, CH)

Mar 2023 Cosyne Presenters Travel Grant - 1000 USD

Cosyne Conference 2023 (Montreal, CA)

Sep 2019 - Sep 2023 PhD Research Fellowship - 35000 EUR (estimate)

International Max Planck Research School (IMPRS) for Neural Circuits, MPI for Brain

Research, Frankfurt am Main (DE)

Erasmus program (EU)

Conference presentations and proceedings

2023 Cosyne Conference (Montreal, CA)

Poster: "A predictive plasticity rule entails the anticipation of multiple spike sequences"

2022 SfN, Society for Neuroscience Meeting (San Diego, USA)

Poster: "A predictive plasticity rule explains the anticipation of spike patterns at the single neuron level and the emergence of spike-timing-dependent plasticity mechanisms"

2022 Bernstein Conference (Berlin, DE)

Poster: "V1 classical receptive field response is shaped by the spatio-temporal properties of the input"

2021 Neuromatch Conference (online)

Poster: "Sequence anticipation and STDP emerge from a predictive learning rule"

Skills

Language Skills Italian (Mother tongue), English (Fluent), Portuguese (Intermediate)

Coding Skills Python, PyTorch, Matlab, C++, LaTex, Adobe Illustrator, Music production DAWs **Research Skills** Mathematical Modelling, Data Analysis, Critical Thinking, Teamwork, Public Speak-

ing, Problem Solving