Chapter 17

4/7:

Carboxylic Acids and Derivatives

17.1 Carboxylic Acids and Derivatives 1

- We now consider compounds that have heteroatoms where the α carbon of the carbonyl used to be.
 - The heteroatoms can be oxygen (esters), nitrogen, etc.
- Today, we will do oxygen and nitrogen nucleophiles but in this context.
 - Next Tuesday, we will do carbon and hydrogen nucleophiles in this context.
- Carboxylic acid derivatives.

Figure 17.1: Carboxylic acid derivatives.

- Once again, we will not be tested on nomenclature, but it's good to know.
- Acid anhydrides are so named because it is two carboxylic acids, minus a water molecule.
- Nitriles are still a carbon bonded to three heteroatoms; it's just the same heteroatom.
- $\bullet\,$ A key property of carboxylic acids is that they're. . . acidic.
- Acidity.
 - Gives the p K_a 's of benzoic acid, benzyl alcohol, and phenol to demonstrate that resonance is king in determining acidity.
 - Benzoic acid is more acidic than phenol, which is more acidic than benzyl alcohol.

- Inductive effects (changes to the α carbon) play a smaller role.
- EWGs on arene rings when present play an even smaller role.
- These latter two effects allow us to fine-tune acidity.
- Methods of carboxylic acid synthesis.
 - 1. Overoxidation.
 - 2. Carboxylation of Grignards or lithiates.
 - 3. Nitrile hydrolysis.
- Overoxidation.
- General form.

$$CRH(OH) \xrightarrow{CrO_3, H_2SO_4} RCOOH$$

- Note that the reagents constitute Jones reagent.
- Mechanism.
 - Virtually identical to that from Labalme (2022).
- Carboxyliation of Grignards and lithiates.
- General form.

RLi
$$\xrightarrow{1. \text{CO}_2}$$
 RCOOH

- Note that we may use either lithiates (RLi) or Grignards (RMgBr), even though only an organolithium compound is shown above.
- Mechanism.

Figure 17.2: Carboxylation of lithiates mechanism.

• Mechanistic interlude: Nucleophilic acyl substitution.

Figure 17.3: The typical reactivity of carboxylic acid derivatives.

- This mode of reactivity is the one that is most typical of carboxylic acid derivatives.
 - It is so-named because the portion of a carboxylic acid derivative that is not the leaving group is called an acyl group, and we are substituting one group on the acyl for another.
- Think of all of the carboxylic acid derivatives (see Figure 17.1) as containing a leaving group on one of their sides.
 - When these compounds react nucleophiles, the nucleophile replaces the leaving group.
- These reactions are either acid- or base-catalyzed.
 - In the acid-catalyzed version (Figure 17.3a), the first step proceeds exactly as in Figure 16.8a, except that R' = LG. The second step proceeds exactly as in Figure 16.8b, except that it is the leaving group that is protonated and kicked out instead of the nucleophile we just added in.
 - The basic mechanism is related to Figure 16.9, but rather than being a straight replication, the alkoxide species produced in Figure 16.9a proceeds straight to the reactivity of the alkoxide in Figure 16.9b (see Figure 17.3b).
- **Tetrahedral intermediates**: The nucleophilic acyl substitution intermediates (of both the acidic and basic pathways) that have four groups attached to the central carbon.

Figure 17.4: The tetrahedral intermediates.

- Historically, the name arose when scientists were arguing about whether or not an sp^3 carbon could be in this reaction. Some scientists supported the theory that these tetrahedral intermediates existed, while others disagreed.
- Nitrile hydrolysis.
- General form.

$$RCN + H_3O^+ \longrightarrow RCOOH + NH_4^+$$

- Note that here we're using a stoichiometric full equivalent of acid, not just catalytic acid, because we are liberating ammonia which mops up our acid, forming $\mathrm{NH_4}^+$ as a byproduct.
- The existence of this reaction is the reason we consider nitriles to be carboxylic acid derivatives (i.e., because we can interconvert them with carboxylic acids).
- Mechanism.
 - Note that the fourth intermediate is one deprotonation away from being an amide.
 - However, the reaction conditions do not produce an amide but continue as drawn to a carboxylic acid.
 - This is because in general, the amide oxygen is more basic than the nitrile nitrogen, so if the conditions are such that the nitrile will begin the reaction, the amide will certainly finish it.
 - Note that there are some enzymes that can stop at the amide through various mechanisms that recognize one species as substrate but not another.
 - Every once in a while, people will claim that they've isolated the amide in this mechanism, but these results are hard to reproduce because of the above facts.
 - If we do add up all of the equivalents of water and acid added, we can see that only one equivalent
 of acid is added, overall (and two equivalents of water).

Figure 17.5: Nitrile hydrolysis mechanism.

- Dehydration of amides.
- General form.

$$RCONH_2 \xrightarrow{reagents} RCN$$

- This is the reverse reaction to nitrile hydrolysis.
- Reagents is either SOCl₂ or POCl₃.
- SOCl₂ and POCl₃ are dehydrating agents.
- Dehydrating agent: A chemical that drives conversions in which water is lost from a molecule.
 - Notice how the amide overall loses two hydrogens and an oxygen (i.e., a water molecule overall) in Figure 17.6.

- Part of the reason the amide oxygen is such a good nucleophile is because the nitrogen can participate, as in step 1 above.
- Driving force: Kicking out a gas (SO₂) and chloride.
- Note that the mechanism implies that we must have an amide with two H's (esp., we cannot have one or two R groups in their place).
- Although only the mechanism for SOCl₂ is illustrated, the mechanism is virtually identical for POCl₃.

$$\begin{array}{c} O \\ O \\ R \\ \hline \\ NH_2 \\ \hline \\ R \\ \hline \\ CI \\ S \\ CI \\ R \\ \hline \\ H \\ \hline \\ R \\ \\ R \\ \hline \\ R \\ \\ R \\$$

Figure 17.6: Dehydration of amides mechanism.

• Comparing methods 2 and 3 of synthesizing carboxylic acids.

Figure 17.7: Two ways to synthesize a carboxylic acid from an alkyl halide.

- Both carboxylation and nitrile hydrolysis achieve the same end result from the same starting material, begging the question of why both are necessary.
- The answer lies in the fact that both suit different types of reaction conditions.
- Carboxylation is strongly basic, so we can't use molecules with free H's.
- Nitrile hydrolysis proceeds through $S_{\rm N}2$ to start, so we can't use tertiary bromides.
 - This is important on part of PSet 1!
- Methods of ester synthesis.
 - 1. Nucleophilic.
 - 2. Fischer esterification.
- Nucleophilic.
- \bullet General form.

- We deprotonate the carboxylic acid using a relatively weak base.

- K₂CO₃ is often the weak base of choice because it's insoluble in most solvents but will react in a biphasic mixture.
- Additionally, since KHCO₃ is usually insoluble and the carboxylate is typically soluble in the organic solvent in which the reaction is being carried out, it's really easy to separate the two.
- The second step proceeds via an $S_{\rm N}2$ mechanism, so methyl or primary alkyl halides are best.
- Note that the two initial oxygens (green) proceed through the whole of the process and end up in the product.
- Fischer esterification.
- General form.

- The acid is a catalyst, and we need an excess of the alcohol, which we typically just use as our solvent.
- Reasons we need an excess of the alcohol.
 - This is essentially a thermoneutral reaction; there's not a great thermodynamic driving force between the carboxylic acid and ester.
 - Thus, the only way to get the reaction to go forward is to overwhelm it with an excess of the alcohol so that Le Châtelier's principle comes into play.
- Removing water can also help drive the reaction.
- H_3O^+ (i.e., excess water) reverses the reaction.
- Note that the mechanism here is a nucleophilic attack, and it is the *methanol* oxygen (blue) that gets incorporated into the final ester (whose initial oxygens are colored green).
- Saponification: Subjecting an ester to a single equivalent of KOH (or any other hydroxide base) to form the carboxylate and the alcohol.
 - This is very old chemistry.
 - Sapon- is the Latin prefix for soap.
 - Ancient peoples discovered that combining and heating animal fat, wood ash, and a bit of water creates soap.
 - Combining triglycerides with pot ash yields glycerol soap and long-chain fatty acid carboxylates.
 - Pot ash is where we get the name for potassium, because the ashes from a wood stove are rich in potassium hydroxide.
 - Fatty acid carboxylates serve to solublize grease in water because the lipid end interacts with the grease and the carboxylate end interacts with the water. This is how all soaps work!
- General form.

$$RCOOR' \xrightarrow{KOH} RCOOK + R'OH$$

- The carboxylate is an end-stage product. Resonance delocalizes the negative charge over the carbon atom, significantly decreasing its electrophilicity and hence its capacity to participate in future reactions.
- The presence of basic conditions make it so that this reaction is not reversible. Indeed, if we mix a base with RCOOH, we will just deprotonate the acid and return to the carboxylate form.
- Mechanism.

- Hydroxide attacks the ester as a nucleophile, and OR⁻ leaves to form a carboxylic acid. But OR⁻ (a strong base) will then deprotonate RCOOH (a strong acid) to form the carboxylate and alcohol.
- Acid chloride synthesis.
- General form.

RCOOH
$$\xrightarrow{SOCl_2}$$
 RCOCl + [PyH]Cl + SO₂

- Pyridine is not strictly necessary, but it greatly increases the reaction rate.
- Driven in a similar way to the dehydration of amides; we release SO₂ gas, expel a water molecule,
 and mop up the extra Cl⁻ with pyridine.
- Mechanism.

Figure 17.8: Acid chloride synthesis mechanism.

- Since chloride is a fairly week nucleophile, it's addition in step 3 takes a while and is reversible.
 - However, this step is driven in the forward direction by releasing SO₂ gas from the resulting tetrahedral intermediate (Le Châtelier's principle).
- Anhydride synthesis.
- General form (standard).

RCOOH
$$\xrightarrow{\Delta}$$
 RCOOCOR

- High heat is required.
- If you use two different carboxylic acids, you will get a statistical mixture (no real selectivity).
- You can selectively create 5-6 membered rings containing anhydrides because this reaction proceeds intramolecularly as well as intramolecularly.
- General form (intramolecular).

$$\begin{array}{c|c}
O \\
OH \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
\hline{[-H_2O]}
\end{array}$$

$$\begin{array}{c}
O \\
O \\
O
\end{array}$$

- In particular, if you have a single molecule with two different carboxylic acid groups 2-3 carbons apart, then heating a sample of said molecule while removing water will result in a ring-closing anhydridization.
- If we want to make a ring with another number of carbons, we should go through acid chlorides (see below).

- A way to selectively create anhydrides is via acid chlorides and sodium carboxylates.
- Mixed anhydride synthesis.
- General form.

- This reaction proceeds via nucleophilic substitution.
- Amide synthesis.
- General form.

$$RCOOH + NHR'R'' \xrightarrow{DCC} RCONR'R''$$

$$\begin{array}{c} O \\ R \\ O \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} Py \\ R \\ \end{array} \begin{array}{c} O \\ R \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} Py \\ R \\ \end{array} \begin{array}{c} O \\ R \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c}$$

Figure 17.9: Amide synthesis mechanism.

- Note that as in other mechanisms, DCC eventually transforms into a type of leaving group.
- Normally, we use external reagents for proton transfers because doing an internal one would in most cases involve a transition state with a 4-membered ring, which is highly strained.
 - However, in step 5 here, we can do an internal proton transfer because the transition state's conformation is that of a 6-membered ring.
- DCC: Dicyclohexylcarbodiimide, a dehydrating reagent key to amide synthesis. Structure

Figure 17.10: Dicyclohexylcarbodiimide (DCC).

• DCC reacts with water as follows.

Figure 17.11: DCC and water.

- DCU: Dicyclohexylurea, the product of the reaction of DCC and water.
- Reactivity scale.

acid chloride > anhydride > ester > amide > carboxylate

- It should make intuitive sense that acid chlorides are the most reactive carboxylic acid derivatives and carboxylates are the least.
 - Acid chlorides have an electronegative group on the already electrophilic carbon, exacerbating the molecular dipole.
 - Carboxylates delocalize their negative charge over the carbon (as discussed earlier), greatly reducing or eliminating the molecular dipole.
 - A good rule of thumb is that the compound with the best leaving group and worst nucleophile (an acid chloride) is the most reactive, and vice versa in that the compound with the worst leaving group and the best nucleophile (a carboxylate) is the most reactive.
- What we mean by "reactivity" is that compounds higher on the reactive scale can react with an appropriate nucleophile to become compounds lower on the scale.
 - For instance, we can take an acid chloride to an anhydride, ester, amide, or carboxylate (and we have reactions to do that), but we cannot take all (or any) of these molecules back to an acid chloride without forcing conditions.
 - Some things that qualify as forcing conditions are the use of acidic conditions and dehydrating reagents.
 - In other words, this reactivity scale is for the compounds in basic media with no dehydrating reagents present.
- MCAT comments.
- Trialkyl amines and pyridines.
 - According to our reactivity scale, we should be able to react NEt₃ with RCOCl to yield an amine, for example.
 - However, this leads to a positively charged nitrogen in the amine that cannot be quenched (e.g., by deprotonation). Thus, this is a highly reversible reaction that favors the reactants.
 - Similarly, we should be able to react an anhydride with pyridine.
 - But since pyridine cannot be deprotonated either, the reactants are favored in this reversible reaction once again.
- However, this implies that pyridines can be used to catalyze nucleophilic acyl substitutions.
- DMAP: Dimethylaminopyridine, which is one of the best catalysts for nucleophilic acyl substitutions. Structure
 - Levin gives an example synthesis using DMAP, namely nucleophilic addition to an anhydride.

Figure 17.12: Dimethylaminopyridine (DMAP).

- In essence, DMAP adds to the carbonyl, kicks out the leaving group, and then the nucleophile adds to the carbonyl and kicks out DMAP.
- Adding DMAP can accelerate a reaction that would take overnight to taking only a few minutes.
- Acid chlorides, anhydrides, and esters all create the same product (an amide) when reacting with an amine.
 - But, you need only one equivalent of the amine for esters while you need two equivalents for the first two.
 - This is because of the pK_a 's.
 - In order of increasing pK_a , we have $HCl < RCOOH < NR_2H_2^+ < ROH$.
 - Thus, the first two byproducts (HCl and RCOOH) protonate amines in solution, whereas ROH does not.

17.2 Discussion Section

- We will be working with hot sand baths in the next lab, so just leave them to cool and do not dispose of the contents unless you're sure they're cool.
 - Practice problems.

1.

4/8:

- − We form a COO[−] ion instead of the carboxylic acid because we are in basic solution.
- The mechanism is a nucleophilic attack on the carbonyl, the oxygen electrons swinging back down and kicking out EtO⁻, and then deprotonation of the acid.

2.

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
1. \text{ CrO}_3, \text{H}_2\text{SO}_4, \text{H}_2\text{O} \\
\hline
2. \text{ NH}_3, \text{DCC}
\end{array}$$

$$\begin{array}{c}
O \\
\text{NH}_2
\end{array}$$

- The intermediate after step 1 is the carboxylic acid, as we have used aqueous Jones reagent.

3.

- The reaction of the ester (left) is called **transesterification**; the reaction of the carboxylic acid (right) is called ether formation.
- It's important to know that you can get ester formation in both of these cases.
- This is a common problematic side reaction in synthetic chemistry.
- Mechanism: Methanol attacks each carbonyl, the other group leaves, and then deprotonation.

4.

- We choose this enamine as the major product by Zaitsev's rule.

5.

6.

$$\begin{array}{c|c} & OH \\ \hline & & 1. \ PCC \\ \hline & 2. \nearrow PPh_3 \end{array}$$

7.

$$\begin{array}{c|c}
O \\
\hline
Me_2CuLi
\end{array}$$

$$\begin{array}{c|c}
1. & MeLi \\
\hline
2. & H_3O^+
\end{array}$$

17.3 Office Hours (Levin)

4/11: • α , β -unsaturated carbonyls?

Figure 17.13: Reduction of α, β unsaturated compounds.

- Levin's predictions basically line up with those from Labalme (2022), although he has a different way of deriving them.
- The 1,2-reduction product is the same in both. But for the NaBH₄, you get full reduction as the other major byproduct.
- We will never be asked to use this reaction synthetically because it is not selective.

- We're most likely to encounter alkyllithiums or cuprates. The thing to keep in mind with the
 messy ones is that they're messy. We're more just interested in introducing enolate chemistry
 with these.
- Problem Set 1, Question 3a: We form one bond with the best stereochemistry and then do an S_N2 to simultaneously form the epoxide and kick out SPh₂.
- Problem Set 1, Question 2f: Cyclic systems are one of the only places you see hemi-acetals.
- Problem Set 1, Question 3b: The transition state has too much ring strain, so show proton transfers as being mediated by solvent molecules.
- n-butyl lithium stands for "normal"-butyl lithium; s-butyl lithium is sec-butyl lithium.

17.4 Carboxylic Acids and Derivatives 2

- 4/12: Last time:
 - We discussed the reactivity of compounds of the form RCOOXR' where X is a heteroatom.
 - We looked at nucleophilic addition to such compounds under acidic and basic conditions, which
 more often than not proceeds through a nucleophilic acyl substitution mechanism.
 - Certain classes can be taken to others by the addition of a nucleophile.
 - Reviews adding amines to acid chlorides, anhydrides, and esters, and the amount of amine needed for each
 - Today: How carboxylic acid derivatives interact with hydrides and carbides.
 - Most of the early lecture content is straight outta CHEM 221. Highlights will follow.
 - Carbide addition to...
 - 1. Ketones and aldehydes.
 - 2. Carboxylic acids.
 - 3. Esters.
 - Ketones and aldehydes.

$$RCOR' \xrightarrow[2.H_3O^+]{1.R''Li} CRR'R''(OH)$$

- We can use lithiates or Grignards.
- Carboxylic acids.

$$RCOOH \xrightarrow{R'Li} RCOOLi + R'H$$

- We protonate the lithiate, yielding a carboxylate with a lithium countercation and an aliphatic species.
- Esters.

$$RCOOR' \xrightarrow{1. R''Li} CR(R'')_2(OH)$$

- Two equivalents of the lithiate add in, the OR' group leaves, and the alcohol is reduced.
- See Figure 9.2 of Labalme (2022) for the mechanism.
- The fact that we observe double addition means that the overaddition product is the major product.
- If you only add one equivalent of lithiate, the major products will be the overaddition product
 and unreacted ester; the ketone will only be a very minor product.

- This is because esters are less electrophilic due to donation from the ether oxygen, so the lithiate will selectively go for the ketone as soon as it becomes available.
- Ester resonance essentially partially protects it from nucleophilic addition.
- Overaddition product: A nucleophilic addition product in which the nucleophile adds more than
 once.
 - So named because we typically only want monoaddition.
- Hydride addition to...
 - 1. Esters (NaBH₄, LiAlH₄, and DIBAL-H).
 - 2. Amides (LiAlH₄ and DIBAL-H).
- Esters (NaBH₄).
 - $NaBH_4 + MeOH$ does not react with esters (for the purposes of this class).
- Esters (LiAlH₄).

$$RCOOR' \xrightarrow{1. LiAlH_4} RCOH + R'OH$$

- $-\,$ See Figure 9.2 of Labalme (2022) for the mechanism.
- Mechanistically, the aldehyde intermediate is much more reactive than the ester, once again.
- Is it the lithium cation that bonds to the alkoxide or the AlH₃ species?
- Selecting for addition to the ester instead of addition to the aldehyde intermediate.
 - We are going to change the structure of our reducing agent.
 - We want to continue using aluminum since NaBH₄ is not strong enough, but we can play with the ligands.
 - Thus, we change from the tetracoordinate AlH₄⁻ to **DIBAL-H**.
- **DIBAL-H**: Diisobutylaluminum hydride, a neutral, tricoordinate aluminum species with an empty *p* orbital that is useful for selecting the mono-hydride addition product in cases where overaddition is common. *Also known as* **DIBAL**. *Structure*

Figure 17.14: Diisobutylaluminum hydride (DIBAL-H).

- Esters (DIBAL-H).
- General form.

$$RCOOR' \xrightarrow{1. DIBAL-H} RCOH + R'OH$$

- Mechanism.
 - We might commonly expect to see the second intermediate (the zwitterion) decompose back into the initial reactants. However, it reacts to form a charge-neutral species that will not dissociate, as doing so would create an aluminum cation (highly unstable) in addition to the alkoxide.

Figure 17.15: Monoreducton of esters mechanism.

- Aluminum's empty p orbital plays a key role in the third step as a Lewis acid/electron acceptor for the electrons of the ether oxygen.
- The chelate is extra stable.
 - Even though there are only four atoms in its ring (as opposed to five or six), aluminum is a *third*-row main group element, meaning that it forms longer, more flexible bonds. Thus, aluminum-containing rings can tolerate smaller number of atoms than normal organic ring systems.
 - The implication is that it will not break down to kick out the alkoxide OR'-. This stability is what most directly favors the monoaddition product.
- The last several steps (after the addition of the acid) constitute the decomposition of a hemiacetal under acidic conditions.
- In practice, this reaction is really difficult to pull off.
 - The chelate is only stable at -78 °C. If it warms up much beyond that, it will decompose into the aldehyde.
 - The reaction of DIBAL-H with the ester is exothermic, so you have to keep it really cold and do the addition really slowly. Otherwise, the internal exotherm will raise the temperature and ruin the reaction.
 - Thus, you will often see in the literature chemists circumventing this reaction via a reduction $(LiAlH_4 + H_3O^+)$ followed by PCC/Swern.
 - However, for the purposes of this class, we can treat the DIBAL-H method as if it works perfectly in every case, i.e., as if we're just laying out a synthetic plan and the person performing the reactions will do everything perfectly. In other words, we should definitely feel free to use this method (as written from a naïve perspective) in any synthesis questions we encounter.
- Amides (LiAlH₄).
- General form.

$$\mathrm{RCONR'R''} \xrightarrow{\mathrm{LiAlH_4}} \mathrm{RCH_2NR'R''}$$

We don't need an aqueous workup, but it's often performed anyway to remove excess alumina.

Figure 17.16: Reduction of amides mechanism.

- Unlike with esters, nitrogen is a stronger donor than the oxygen atom, so it will kick it out in the second step.
- Amides (DIBAL-H).
- General form.

$$RCONR'R'' \xrightarrow{1. DIBAL-H} RCOH + NHR'R''$$

Figure 17.17: Monoreducton of amides mechanism.

- Amides coordinate with DIBAL much more easily than esters.
- Note that in the last step, the acid destroys any remaining DIBAL-H and then reduces the final species.
 - This likely proceeds analogously to the steps in the latter parts of Figure 17.5.
- Note that the role, stability, and structure of the tetrahedral intermediates are what determines the reactivity of amines with both sets of reagents.
- Reactions of nitriles.
- Nitriles (R'Li).
- General form.

$$RCN \xrightarrow[2.\text{H}_3O^+]{1.\text{R'Li}} RCOR'$$

- Useful for generating a ketone from a carboxylic acid derivative.
- No overaddition.
- Mechanism.

Figure 17.18: Nitrile alkylation mechanism.

- Explaining the lack of overaddition.
 - Unlike with esters, there is no good leaving group in the first intermediate.
 - Indeed, adding another lithiate would kick out an N^{2-} species (highly unstable), but this would never happen.

- Additionally, since the acid destroys the LiAlH₄, even though we end up producing a ketone (an electrophilic carbonyl), there is no further reactivity.
- The last step is imine hydrolysis, which Levin mentioned in Lecture 2 is reactivity to which imines are prone.
- Nitriles (DIBAL-H).
- General form.

$$\text{RCN} \xrightarrow[2.\text{ H_3O}^+]{\text{1. DIBAL-H}} \text{RCOH}$$

- Mechanism.
 - As in Figure 17.15, the heteroatom (nitrogen) attacks the aluminum of DIBAL-H to start. We then undergo the same proton rearrangement to get to a stable species. However, instead of forming a chelate, the acid takes us to the same imine as in Figure 17.18, and then further to the aldehyde (also as in Figure 17.18).
- Nitriles (LiAlH₄).
- General form.

$$RCN \xrightarrow{1. LiAlH_4} CH_2RNH_2$$

Figure 17.19: Nitrile reduction mechanism.

- Why does this work here but not with R'Li?
- This nitrile reactivity allows two important types of transformations.
 - From an alkyl halide precursor, use KCN to take it to a nitrile, and then transform it to your carboxylic acid derivative of choice.
 - From a ketone, use HCN to take it to a cyanohydrin, and then move to a carboxylic acid derivative.
 - Watch out for acidic protons on the alcohol here, though!
 - Because of it, we can reduce to an amine with LiAlH₄ with ease, but we have to play with the concentrations to get the others to work (for example, by using a huge excess of the reagent in comparison to a lithiate).
- Transforming carboxylates to ketones.
- General form.

RCOOH
$$\xrightarrow{1. \text{R'Li}, \Delta}$$
 CORR'

- Grignards won't work here; we do need the stronger lithiates.
- We need an excess of R'Li and high heat ($\sim 100\,^{\circ}$ C).

Figure 17.20: Carboxylic acid to ketone mechanism.

- The excess lithiate is used to both deprotonate the carboxylic acid and alkylate the carboxylate that gets formed.
- The heat is used to overcome the low electrophilicity of the carboxylate.