Tutorium 04: λ-Kalkül und Haskell

Paul Brinkmeier

22. November 2022

Tutorium Programmierparadigmen am KIT

Übungsblatt 3

Wiederholung: zipWith

```
xs = repeat 1
    => [1, 1, 1, 1, 1, 1, 1, ...]
ys = [1, 2, 3, 4, 5, 6, 7]

zs = zipWith (/) xs ys
    => [1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/6]
```

- zipWith op xs ys wendet op paarweise auf die Elemente von xs und ys an.
- Typisches Beispiel: zipWith (*) (Hadamard-Produkt)

Wiederholung: zipWith

```
xs = repeat 1
    => [1, 1, 1, 1, 1, 1, 1, ...]
ys = [1, 2, 3, 4, 5, 6, 7]

zs = zipWith (/) xs ys
    => [1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/6]
```

- zipWith op xs ys wendet op paarweise auf die Elemente von xs und ys an.
- Typisches Beispiel: zipWith (*) (Hadamard-Produkt)
- Wie die meisten Listenkombinatoren funktioniert zipWith auch mit unendlichen Listen:
 - Beide Eingaben unendlich \implies Ausgabe unendlich
 - Anderenfalls hat die Ausgabe die Länge der kürzeren Eingabe

```
module Fibs where

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```

Auswertung:

```
-- zwp = zipWith (+)
0 : 1 : zwp fibs (tail fibs)
= 0 : 1 : zwp (0 : 1 : _) (1 : _)
= 0 : 1 : 0 + 1 : zwp (1 : 0 + 1 : _) (0 + 1 : _)
= 0 : 1 : 1 : zwp (1 : 1 : _) (1 : _)
= 0 : 1 : 1 : 2 : zwp(1 : 2 : _) (2 : _) = ...
```

fibs = 0 : (1 : zipWith (+) fibs (tail fibs))

- zwp = zipWith (+)
- Laufzeit: Alle Vorkommen von fibs beziehen sich auf dasselbe
 Speicherobjekt (Sharing)
- tail (x:xs) = xs

- tail (x:xs) = xs
- fibs !! 1 == 1
- Keine Berechnung notwendig
- fibs !! 3?

- zwp (x:xs) (y:ys) = (x + y) : zwp xs ys
- fibs !! 2 == 1
- fibs !! 3?

- zwp (x:xs) (y:ys) = (x + y) : zwp xs ys
- fibs !! 3 == 2
- zwp verschiebt nur Zeiger auf bestehendes Objekt, fibs wird nur einmal berechnet und steht ab da zur Verfügung

:sprint

```
*Fibs> :sprint fibs
fibs = _
*Fibs> take 10 fibs
[0,1,1,2,3,5,8,13,21,34]
*Fibs> :sprint fibs
fibs = 0 : 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : _
```

- :sprint a gibt aktuelle Speicherrepräsentation für a aus
- _ steht dabei für "noch nicht ausgewertet"
- → praktisch für Debugging unendlicher Listen

3 — Stream-Kombinatoren

Gesucht für $n \in \mathbb{N}$:

$$\{p^i|p \text{ Primzahl}, 1 \leq i \leq n\}$$

Gegeben:

```
-- [2, 3, 5, 7, ...
primes :: [Integer]

-- Eingabelisten aufsteigend sortiert
-- ==> Ausgabeliste aufsteigend sortiert
merge :: Ord a => [a] -> [a] -> [a]
```

3 — Stream-Kombinatoren

Schematisch sehen (für n = 3) unsere Eingabedaten so aus:

i					map ((^i) pr	rimes			
									23	
									529	
3	8	27	125	343	1331	2197	4913	6859	12167	

- foldr funktioniert auch mit unendlichen Listen
 → Aber weiß nicht, dass primes/merge xs ys monoton.
- foldl funktioniert nur mit endlichen Listen
 ⇒ foldl merge über map (^i) primes

3 — Stream-Kombinatoren

Wiederholung: Algebraische

Datentypen

Cheatsheet: Algebraische Datentypen in Haskell

- data-Definitionen, Datenkonstruktoren
- Algebraische Datentypen: Produkttypen und Summentypen
 - Produkttypen \approx structs in C
 - ullet Summentypen pprox enums
- Typkonstruktoren, bspw. [] :: * -> *
- Polymorphe Datentypen, bspw. [a], Maybe a
- Beispiel:

```
module Shape where

data Shape

= Circle Double -- radius

| Rectangle Double Double -- sides

| Point -- technically equivalent to Circle 0
```

Cheatsheet: Typklassen 1

- Klasse, Operationen/Methoden, Instanzen
- Beispiele:
 - Eq t, {(==), (/=)}, {Eq Bool, Eq Int, Eq Char, ...}
 - Show t, {show}, {Show Bool, Show Int, Show Char, ...}
- Weitere Typklassen: Ord, Num, Enum
- Deklaration/Implementierung:

```
module Truthy where

class Truthy t where
  toBool :: t -> Bool

instance Truthy Int where
  toBool x = x /= 0
```

Cheatsheet: Typklassen 2

Vererbung: Typklassen mit Voraussetzungen

```
module Truthy2 where
class Truthy t where
  toBool :: t -> Bool
instance Truthy Int where
  toBool x = x /= 0
instance Truthy t => Truthy (Maybe t) where
  toBool Nothing = False
  toBool (Just x) = toBool x
```

Spielkarten

```
module PlayingCard where

data PlayingCard = PlayingCard Suit Rank

data Suit = Hearts | Diamonds | Clubs | Spades
data Rank
= Rank7 | Rank8 | Rank9 | Rank10
| Jack | Queen | King | Ace
```

Monopolykarten

```
module Monopoly where
data MonopolyCard
  = Street String Rent Int Color
  | Station String
  | Utility String
data Rent = Rent Int Int Int Int
data Color
  = Brown | LightBlue | Pink | Orange
  l Red
         | Yellow | Green | Blue
```

Boolesche Logik

```
module BoolExpr where
data BoolExpr
  = Const Bool
  | Var String
  | Neg BoolExpr
  | BinaryOp BoolExpr BinaryOp BoolExpr
data BinaryOp = AND | OR | XOR | NOR
```

Beispiele:

- $a \wedge b$ entspricht BinaryOp (Var "a") AND (Var "b")
- $a \lor (b \land 0)$ entspricht BinaryOp (Var "a") AND (BinaryOp (Var "b") OR (Const False))

λ -Kalkül

λ -Kalkül

- "Funktionales Gegenstück zur Turingmaschine"
- Gönnt Punkte in der Klausur
 - 13P. im 19SS
 - 10P. (+15P.) im 18WS
 - 20P. (+15P.) im 18SS

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

- "λ-Term ": rekursive Datenstruktur
- Semantik definieren wir später

λ -Terme

Ein Term im λ -Kalkül hat eine der drei folgenden Formen:

Notation	Besteht aus	Bezeichnung
X	x : Variablenname	Variable
$\lambda p.b$	p : Variablenname	Abstraktion
	$b:\lambda$ -Term	
f a	f , a : λ -Terme	Funktionsanwendung

- "λ-Term ": rekursive Datenstruktur
- Semantik definieren wir später
- Jetzt: Ergänzt das Modul Lambda um die fehlenden Typen
 - +Fragen zur ÜB-Korrektur

λ -Terme in Haskell

```
module Lambda where
```

data LambdaTerm

```
= Var String -- Variable
| App () () -- Funktionsanwendung: f a
| Abs () () -- Abstraktion: \p.b
```

- Variable x hat einen Variablennamen x
- ullet Funktionsanwendung f a hat zwei $\lambda ext{-Terme}$: Funktion f und Argument a
- Abstraktion λp. b hat Variablennamen p als Parameter und λ-Term b als Körper (Body)

Begriffe im λ -Kalkül

Begriff	Formel	Bedeutung
lpha-Äquivalenz	$t_1 \stackrel{lpha}{=} t_2$	t_1 , t_2 sind gleicher
		Struktur
η -Äquivalenz	$\lambda x.f \ x \stackrel{\eta}{=} f$	"Unterversorgung"
Freie Variablen	$fv(\lambda p.b) = b$	Menge der nicht durch
		λ s gebundenen Varia-
		blen
Substitution	$(\lambda p.b)[b \rightarrow c] = \lambda p.c$	Ersetzung freier Varia-
		blen
Redex	(λp.b) t	"Reducible expression"
β -Reduktion	$(\lambda p.b) \ t \Rightarrow b [p \rightarrow t]$	"Funktionsanwendung"

Freie Variablen

- $f_V(t)$ bezeichnet die frei vorkommenden Variablen im Term t
- ullet Frei vorkommend pprox nicht durch ein λ gebunden
 - $fv(x) = \{x\}$, wenn x Variable
 - $fv(f x) = fv(f) \cup fv(x)$
 - $fv(\lambda p.b) = fv(b) \setminus \{p\}$
- Beispiele:
 - $fv(\lambda x.x) = \emptyset$
 - $fv(\lambda x.y) = \{y\}$

Freie Variablen

- fv(t) bezeichnet die frei vorkommenden Variablen im Term t
- Frei vorkommend pprox nicht durch ein λ gebunden
 - $fv(x) = \{x\}$, wenn x Variable
 - $fv(f x) = fv(f) \cup fv(x)$
 - $fv(\lambda p.b) = fv(b) \setminus \{p\}$
- Beispiele:
 - $fv(\lambda x.x) = \emptyset$
 - $fv(\lambda x.y) = \{y\}$
- Implementiert fv :: LambdaTerm -> Set String
 - Benutzt Set, union, delete und fromList aus Data. Set
 - Bspw. fv (Abs "p"(Var "b")) == fromList ["b"]

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f \times)[f \rightarrow g][x \rightarrow y] = g y$

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f x)[f \rightarrow g][x \rightarrow y] = g y$
 - $(\lambda x.f \ x)[x \rightarrow y] = \lambda x.f \ x \ (x \text{ ist nicht frei})$
 - $(\lambda x.f \ x)[f \rightarrow g] = \lambda x.g \ x \ (f \text{ ist frei})$

Substitution

- Substitution ersetzt alle freien Variablen in einem Term
- $t[a \rightarrow b]$ Ersetze a durch b in t
- Beispiele:
 - $a[a \rightarrow b] = b$
 - $a[b \rightarrow c] = a$
 - $(f x)[f \rightarrow g][x \rightarrow y] = g y$
 - $(\lambda x.f \ x)[x \to y] = \lambda x.f \ x \ (x \text{ ist nicht frei})$
 - $(\lambda x.f \ x)[f \rightarrow g] = \lambda x.g \ x \ (f \text{ ist frei})$
- Implementiert

substitute :: (String, Term) -> Term -> Term

- type Term = LambdaTerm
- Annahme: Einzusetzender Term hat keine freien Variablen.

α -Äquivalenz

- $t_1 \stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t₁ in t₂ allein durch Substitution der (gebundenen) Variablen möglich

α -Äquivalenz

- $t_1\stackrel{lpha}{=} t_2$ Strukturelle Äquivalenz der Terme t_1 und t_2
- Umformung von t₁ in t₂ allein durch Substitution der (gebundenen) Variablen möglich
- Bspw.:
 - $x \neq y$, da x und y frei sind
 - $\lambda x.x \stackrel{\alpha}{=} \lambda y.y$, durch Umbenennen von x zu y
 - $f(\lambda x.y) \stackrel{\alpha}{=} f(\lambda p.y)$
 - $\lambda x.y \stackrel{\alpha}{\neq} \lambda x.z$

η -Äquivalenz

- $\lambda x.f \ x \stackrel{\eta}{=} f$, wenn $x \notin fv(f)$
- Wie bei Haskell:

```
all list = foldl (&&) True list \Leftrightarrow all = \list -> foldl (&&) True list \Leftrightarrow all = foldl (&&) True
```

- Also:
 - ullet η -Äquivalenz: eher Umformungsschritt als Gleichheitskriterium
 - Formelle Definition von Unterversorgung

β -Reduktion

Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik

β -Reduktion

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- (λp.b) a

β -Reduktion

- Bisher: λ-Terme als (seltsame) Datenstruktur
 Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$

β -Reduktion

- Bisher: λ -Terme als (seltsame) Datenstruktur Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$
- "Ausführung" (besser: Auswertung) von λ -Termen: Anwenden der β -Reduktion, bis Term "konvergiert"
- ullet Term konvergiert pprox Normalform pprox enthält keinen Redex mehr
 - Notation: t ⇒

β -Reduktion

- Bisher: λ -Terme als (seltsame) Datenstruktur Jetzt: Ausführungssemantik
- RedEx: "Reducible expression" \Leftrightarrow Funktionsanwendung $(f \ a)$, mit $f = \lambda p.b$
- $(\lambda p.b)$ $a \implies b[p \rightarrow a]$
- "Ausführung" (besser: Auswertung) von λ -Termen: Anwenden der β -Reduktion, bis Term "konvergiert"
- ullet Term konvergiert pprox Normalform pprox enthält keinen Redex mehr
 - Notation: t ⇒
- id $a = (\lambda x.x)$ $a \implies x[x \rightarrow a] = a \implies$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$
 $\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$
 $= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$

AND
$$c_{\text{true}}$$
 $c_{\text{true}} = (\underline{\lambda a. \lambda b. a \ b \ c_{\text{false}}}) \ c_{\text{true}} \ c_{\text{true}}$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$
 $\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$
 $= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$

AND
$$c_{\mathsf{true}} \ c_{\mathsf{true}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{true}} \ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{true}}] \ c_{\mathsf{true}} = (\underline{\lambda b. \, c_{\mathsf{true}} \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{true}}$$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$
 $\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$
 $= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$

AND
$$c_{\mathsf{true}} \ c_{\mathsf{true}} = (\underline{\lambda a}.\ \lambda b.\ a\ b\ c_{\mathsf{false}})\ c_{\mathsf{true}}\ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (\lambda b.\ a\ b\ c_{\mathsf{false}}) [a \to c_{\mathsf{true}}]\ c_{\mathsf{true}} = (\underline{\lambda b}.\ c_{\mathsf{true}}\ b\ c_{\mathsf{false}})\ c_{\mathsf{true}}$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}}\ b\ c_{\mathsf{false}}) [b \to c_{\mathsf{true}}] = (\underline{\lambda x}.\ \lambda y.\ x)\ c_{\mathsf{true}}\ c_{\mathsf{false}}$$

$$c_{\mathsf{true}} = \lambda x. \, \lambda y. \, x$$
 $c_{\mathsf{false}} = \lambda x. \, \lambda y. \, y$

$$\mathsf{AND} = \lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}$$

$$= \lambda a. \, \lambda b. \, (a \, b) \, c_{\mathsf{false}}$$

AND
$$c_{\text{true}} \ c_{\text{true}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\text{false}}}) \ c_{\text{true}} \ c_{\text{true}}$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\text{false}}) [a \rightarrow c_{\text{true}}] \ c_{\text{true}} = (\underline{\lambda b. \, c_{\text{true}} \, b \, c_{\text{false}}}) \ c_{\text{true}}$$

$$\Rightarrow_{\beta} (c_{\text{true}} \ b \, c_{\text{false}}) [b \rightarrow c_{\text{true}}] = (\underline{\lambda x. \, \lambda y. \, x}) \ c_{\text{true}} \ c_{\text{false}}$$

$$\Rightarrow_{\beta} (\underline{\lambda y. \, c_{\text{true}}}) \ c_{\text{true}} \Rightarrow_{\beta} c_{\text{true}} \ \checkmark$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a}. \, \lambda b. \, a \, b \, c_{\mathsf{false}}) \, c_{\mathsf{false}} \, t$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a}.\ \lambda b.\ a\ b\ c_{\mathsf{false}})\ c_{\mathsf{false}}\ t$$

 $\Rightarrow_{\beta} (\lambda b.\ a\ b\ c_{\mathsf{false}}) [a \to c_{\mathsf{false}}]\ t = (\underline{\lambda b}.\ c_{\mathsf{false}}\ b\ c_{\mathsf{false}})\ t$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \ \lambda b. \ a \ b \ c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \ a \ b \ c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \ c_{\mathsf{false}} \ b \ c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \ c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \ \lambda y. \ y}) \ t \ c_{\mathsf{false}}$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t c_{\mathsf{false}} = (\underline{\lambda a. \lambda b. a b c_{\mathsf{false}}}) t c_{\mathsf{false}}$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t$$
 $c_{\mathsf{false}} = (\underline{\lambda a}. \, \lambda b. \, a \, b \, c_{\mathsf{false}}) \, t \, c_{\mathsf{false}}$
 $\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \to t] \, c_{\mathsf{false}} = (\underline{\lambda b. \, t \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}}$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t$$
 $c_{\mathsf{false}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \, t \, c_{\mathsf{false}}$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \to t] \, c_{\mathsf{false}} = (\underline{\lambda b. \, t \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}}$$

$$\Rightarrow_{\beta} (t \, b \, c_{\mathsf{false}}) [b \to c_{\mathsf{false}}] = t \, c_{\mathsf{false}} \, c_{\mathsf{false}}$$

AND
$$c_{\mathsf{false}} \ t = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \ c_{\mathsf{false}} \ t$$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow c_{\mathsf{false}}] \ t = (\underline{\lambda b. \, c_{\mathsf{false}} \, b \, c_{\mathsf{false}}}) \ t$$

$$\Rightarrow_{\beta} (c_{\mathsf{true}} \ b \, c_{\mathsf{false}}) [b \rightarrow t] = (\underline{\lambda x. \, \lambda y. \, y}) \ t \ c_{\mathsf{false}}$$

$$\Rightarrow^{2} c_{\mathsf{false}}$$

AND
$$t$$
 $c_{\mathsf{false}} = (\underline{\lambda a. \, \lambda b. \, a \, b \, c_{\mathsf{false}}}) \, t \, c_{\mathsf{false}}$

$$\Rightarrow_{\beta} (\lambda b. \, a \, b \, c_{\mathsf{false}}) [a \rightarrow t] \, c_{\mathsf{false}} = (\underline{\lambda b. \, t \, b \, c_{\mathsf{false}}}) \, c_{\mathsf{false}}$$

$$\Rightarrow_{\beta} (t \, b \, c_{\mathsf{false}}) [b \rightarrow c_{\mathsf{false}}] = t \, c_{\mathsf{false}} \, c_{\mathsf{false}}$$

$$\sim c_{\mathsf{false}}$$