Mat 10364, Mathématiques de l'ingénieur II : examen I, 22/02/02

- Durée de l'examen : deux heures.
- Documentation permise : deux feuilles-résumé.
- Vous êtes priés de vous identifier (nom et numéro matricule) sur le cahier et de placer votre carte d'étudiant sur la table à côté de vous.
- Chaque réponse devra être accompagnée des calculs détaillés. Dans le cas contraire, elle sera considérée comme nulle.

nº 1 (20pts) On considère le domaine D du plan défini par les inégalités $y \le \frac{1}{2}$, $x + y \ge 1$ et la courbe $y + x^2 \le 1$.

- (a) (8pts) Faites une représentation graphique de D.
- (b) (12pts) Calculer le moment d'inertie de D par rapport à Ox sous l'hypothèse que la masse surfacique est $\sigma = x$

n° 2 (20pts) Un solide S représenté à la figure 2, est constitué d'une portion du cylindre $x^2+y^2=1$ et de deux calottes sphériques d'équation $x^2+y^2+z^2=$ 4.

> **Z** 0 -0.5 -0.5 y X 0.5

figure 2

The sind of point with a sind of the sind

Ecrire le volume de S à l'aide d'une intégrale en coordonnées sphériques. Ne pas évaluer.

nº 3 (20pts) L'intégrale

$$I = \int_{\theta=0}^{\frac{\pi}{6}} \int_{r=0}^{\frac{\sqrt{3}}{\cos \theta}} r^2 \sin \theta \, dr \, d\theta,$$

exprimée en coordonnées polaires (r, θ) est définie sur le domaine du plan xOy illustré à la figure 3.

figure 3

- (a) (6pts) Déterminer les coordonnées cartésiennes des points B et C.
- (b) (14pts) Transformer I en une intégrale en coordonnées cartésiennes. Ne pas évaluer.

 \mathbf{n}° 4 (20pts) On considère la plaque P, de la figure 4, qui prend la forme du domaine délimité par les paraboles $y=x^2$ et $y=2x^2$ et les droites y=4x et y=6x.

Sachant que la masse surfacique de cette plaque est $\sigma = y$, calculer sa masse. (Note: Utiliser un changement de variables approprié.)

 ${f n^o}$ 5 (20pts) Le récepteur d'une antenne parabolique d'axe Oz et d'équation $z=x^2+y^2$ prend la forme du solide R de la figure 5, délimité par ce paraboloïde et par le cône $z=12-4\sqrt{x^2+y^2}$.

Sachant que le volume de R est $V = \frac{56}{3}\pi$ et que le matériau est homogène (c'est-à-dire que sa densité est constante), calculer la position \bar{z} du centre de gravité.

I) Quelques angles remarquables

θ	$\sin heta$	$\cos \theta$	an heta
0	0	1	0
$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	_
$2\pi/3$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$
$3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1
$5\pi/6$	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$
π	0	-1	0
$3\pi/2$	-1	0	
2π	0	1	0

II) Quelques intégrales utiles.

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int f'(x)(f(x))^n dx = \frac{1}{n+1} (f(x))^{n+1} + C, \quad \text{si } n \neq -1$$

$$\int \ln x dx = x \ln x - x + C$$

$$\int e^{f(x)} f'(x) dx = e^{f(x)} + C$$

$$\int x \ln x dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$$

$$\int \sqrt{a^2 x^2 + 1} dx = \frac{1}{2} x \sqrt{a^2 x^2 + 1} + \frac{1}{2a} \ln \left(ax + \sqrt{a^2 x^2 + 1} \right) + C$$

Soit $a \neq 0$; alors

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax) + C$$

$$\int \tan(ax) \, dx = -\frac{1}{a} \ln|\cos(ax)| + C$$

$$\int \cot(ax) \, dx = \frac{1}{a} \ln|\sin(ax)| + C$$

$$\int \sec^2(ax) \, dx = \frac{1}{a} \ln|\sec(ax)| + C$$

$$\int \sec^2(ax) \, dx = \frac{1}{a} \ln|\sec(ax)| + C$$

$$\int \csc^2(ax) \, dx = \frac{1}{a} \ln|\sec(ax)| + C$$

$$\int \csc(ax) \, dx = \frac{1}{a} \ln|\sec(ax)| + C$$

$$\int \csc(ax) \, dx = \frac{1}{a} \ln|\sec(ax)| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2}) + C$$

$$\int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{4} \sin 2x + C$$

$$\int \sin^3 x \, dx = -\frac{1}{3} \cos t \left(\sin^2 t + 2\right) + C$$

$$\int \sin^4 x \, dx = -\frac{1}{8} \left(2 \cos^3 x \sin x + 3 \cos x \sin x + 3x\right) + C$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$