Généralités sur les applications. 1

Définition 1.1. Soient E, F deux ensembles.

Une application f de E dans F associe à tout élément x de E un unique élément y de F.

Vocabulaire et notation.

- -E désigne l'ensemble de départ de f; F désigne l'ensemble d'arrivée de f;
- y est l'image de x par f; on la note f(x);
- -x est un antécédent de y par f;
- On appelle **graphe** de f, l'ensemble,noté $\mathcal{G}(f)$, défini ainsi : $\mathcal{G}(f) = \{(x,y) \in E \times F/y = f(x)\}$;
- $-f \mid E \rightarrow F \atop x \mapsto f(x)$ et $\mathcal{G}(f)$ sont deux notations usuelles de f.

Axiome. Soient E, F deux ensembles.

Les applications définies de E dans F forment un ensemble noté $\mathcal{A}(E,F)$.

Remarque 1.1.

Si $E = \emptyset$ alors $\mathcal{A}(\emptyset, F) = \{\nu\}$ où ν est l'application dont le graphe est l'ensemble vide.

Si $E \neq \emptyset$ alors : si $F = \emptyset$ alors $\mathcal{A}(E, \emptyset) = \emptyset$;

si F est un singleton alors $\mathcal{A}(E,F)$ est un singleton.

Exercice 1.1. Déterminer A(E, F) lorsque E est un singleton.

Exemple 1.1. Applications particulières : vocabulaire et notations à connaître.

Application identité : $Id_E \begin{vmatrix} E & \rightarrow & E \\ x & \mapsto & x \end{vmatrix}$. Déterminer son graphe.

Application constante : soit $a \in F$ $\tilde{a} \begin{vmatrix} E & \rightarrow & F \\ x & \mapsto & a \end{vmatrix}$. Déterminer son graphe.

Restriction: soit $f \mid E \rightarrow F$ Si $A \in \mathcal{P}(E)$ alors $f_{\mid A} \mid A \rightarrow F$ est la restriction de f à A.

 $\mbox{\bf Module } : |.| \left| \begin{array}{ccc} \mathbb{C} & \to & \mathbb{R}_+ \\ z & \mapsto & |z| = \sqrt{z\overline{z}} \end{array} \right. \mbox{\bf D\'{e}terminer son graphe}.$

Indicatrice: soit E un ensemble non vide; soit A, une partie de E: $\Gamma_A \begin{vmatrix} E & \to & \{0,1\} \\ x & \mapsto & \begin{cases} 1 & \text{si} & x \in A \\ 0 & \text{sinon} \end{cases}$

Déterminer son graphe.

Homothétie de rapport λ : soit $\lambda \in \mathbb{R}^*$ $h_{\lambda} \begin{vmatrix} \mathbb{R}^3 & \to \mathbb{R}^3 \\ (x_1, x_2, x_3) & \mapsto & (\lambda x_1, \lambda x_2, \lambda x_3) \end{vmatrix}$ Changement de coordonnées : $c \begin{vmatrix} \mathbb{R}_+ \times [-\pi, \pi[& \to & \mathbb{R}^2 \\ (r, a) & \mapsto & (r\cos(a), r\sin(a)) \end{vmatrix}$

 $\mathbf{Param\'etrage} : \mathbf{soit} \ I \ \mathbf{un} \ \mathbf{intervalle} \ \mathbf{de} \ \mathbb{R}, \ \ f \in \mathcal{C}^1(I,\mathbb{R}) \ \mathbf{et} \ \mathbf{l'application} \ \phi \left| \begin{array}{ccc} \mathbb{R} & \to & \mathcal{C}^1(I,\mathbb{R}) \\ \lambda & \mapsto & \left((\lambda \cdot f) \middle| \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & \lambda \times f(x) \end{array} \right)$

Nombre intégral : soient $a, b \in \mathbb{R}$ tels que a < b et l'application $I \begin{bmatrix} \mathcal{C}^0([a, b], \mathbb{R}) & \to & \mathbb{R} \\ f & \mapsto & \int_a^b f(t) dt \end{bmatrix}$

2 Propriétés d'une application.

Définition 2.1. Egalité de deux applications : soient E, F deux ensembles. Soient $f, g \in \mathcal{A}(E, F)$. f et g sont égales si et seulement si, pour tout élément de E, elles associent le même élément de F.

$$\forall f, g \in \mathcal{A}(E, F) \ (f = g) \Leftrightarrow (\forall x \in E \ f(x) = g(x)).$$

Exemple 2.1. Considérons $f \mid \mathbb{R} \to \mathbb{R}$ et $g \mid \mathbb{R}^*_+ \to \mathbb{R}$, On a « seulement » : $f_{\mid \mathbb{R}^*_+} = g_*$

Définition 2.2. Soit $f: E \to F$.

(1) Les éléments de F qui ont au moins un antécédent par f forment un ensemble appelé «image de f», noté :

$$Im(f) = \{ y \in F \mid \exists x \in E \ y = f(x) \}$$
 ou encore $Im(f) = \{ f(x), \ x \in E \}$.

(2) Soit A, une partie de E.

Les images par f des éléments appartenant à A forment un ensemble appelé « **image directe de** A **par** f » et noté :

$$f(A) = \{ f(x) \mid x \in A \}.$$

(3) Soit B, une partie de F.

Les éléments de E dont l'image par f appartient à B forment un ensemble appelé «**image réciproque de** B par f» et noté :

$$f^{-1}(B) = \{x \in E \; / \; f(x) \in B\} \; \; \text{ou encore} \; f^{-1}(B) = \bigcup_{y \in B} \left\{x \in E \; / \; f(x) = y\right\}.$$

Théorème 2.1. Soit $f: E \to F$.

- (1) $\forall A \in \mathcal{P}(E) \quad A \subset f^{-1}(f(A))$
- (2) $\forall B \in \mathcal{P}(F) \quad f(f^{-1}(B)) \subset B$

Définition 2.3. Soit $f: E \to F$.

f est surjective si et seulement si tout élément de F a au moins un antécédent par f_{\cdot}

f est injective si et seulement si tout élément de F a au plus un antécédent par f.

f est bijective si et seulement si tout élément de F a un et un seul antécédent par f.

Remarque 2.1.

Autres formulations de la surjectivité et de l'injectivité.

f est surjective $\Leftrightarrow (Im(f) = F)$

- (1) f est injective $\Leftrightarrow [\forall y \in F \mid (f^{-1}(\{y\}) = \emptyset) \text{ ou } (\exists x \in E \mid f^{-1}(\{y\}) = \{x\})].$
- $(2) \ f \ \text{est non injective} \quad \Leftrightarrow [\exists y \in F \quad \exists x \in E \quad \exists x' \in E \ / \ (x \neq x') \ \text{et} \ (f(x) = f(x'))].$
- (3) f est injective $\Leftrightarrow [\forall x, x' \in E \ (f(x) = f(x')) \Rightarrow (x = x')].$
- (4) f est injective $\Leftrightarrow [\forall x, x' \in E \ (x \neq x') \Rightarrow (f(x) \neq f(x'))].$

f est bijective $\Leftrightarrow [\forall y \in F \quad \exists! x \in E \ / \ y = f(x)].$

Exercice 2.1. On considère l'application ϕ $\begin{vmatrix} \mathbb{Z} & \to & \mathbb{Z} \\ n & \mapsto & \begin{cases} 2n & \text{si} & n \in \mathbb{N} \\ -n & \text{si} & n \notin \mathbb{N} \end{cases}$

- 1. Déterminer $\phi(A)$ où $A = \{n \in \mathbb{Z}/-5 \le n \le 5\}$.
- 2. Déterminer $\phi^{-1}(A)$ où $A = \{n \in \mathbb{Z}/-5 \le n \le 5\}$.
- 3. ϕ est-elle injective?
- 4. ϕ est-elle surjective?

Définition 2.4. Soit E un ensemble non vide et A une partie non propre de E.

E est dit fini si et seulement si il existe un entier naturel n, non nul, tel qu'il existe une bijection définie de Edans [1, n].

L'entier n est alors appelé cardinal de E. On note : card(E) = n.

E est dit *infini* si et seulement il existe une application injective définie de E dans A.

E est dit infini dénombrable si et seulement il existe une application bijective définie de E dans une partie de \mathbb{N} .

Théorème 2.2. Les ensembles suivants sont dénombrables :

- (1) les ensembles finis;
- (2) \mathbb{Z} l'ensemble des entiers relatifs $(\mathbb{Z} = \{n, -n, n \in \mathbb{N}\});$ (3) \mathbb{Q} l'ensemble des rationnels $(\mathbb{Q} = \left\{\frac{a}{b}, (a, b) \in \mathbb{Z} \times \mathbb{N} \setminus \{0\}\right\}).$

Preuve directe du (2).

Théorème 2.3. Soit $f: E \to F$.

- (1) f est surjective si et seulement si $[\forall B \in \mathcal{P}(F) \mid B = f(f^{-1}(B))]$.
- (2) f est injective si et seulement si $[\forall A \in \mathcal{P}(E) \mid A = f^{-1}(f(A))]$.

Définition 2.5. Soit $f: E \to F$ bijective.

On appelle «application réciproque de f »l'application notée f^{-1} définie de F dans E telle que *

$$\forall x \in E \quad \forall y \in F \quad (y = f(x)) \Leftrightarrow (f^{-1}(y) = x).$$

Exercice 2.2. Dans un triangle ABC, on note respectivement a = BC, b = AC et c = AC. On admet:

$$\cos(\vec{AB}, \vec{AC}) = \frac{-a^2 + b^2 + c^2}{2bc}, \quad \cos(\vec{AB}, \vec{AC}) = \frac{a^2 - b^2 + c^2}{2ac} \quad \cos(\vec{AB}, \vec{AC}) = \frac{a^2 + b^2 - c^2}{2ab}.$$

Un triangle a pour longueur de côtés 4, 13 et 16 cm. Quelle est la mesure de l'angle le plus grand?

Théorème 2.4. Soit $f: E \to F$ bijective.

- (1) L'application réciproque de f est unique.
- (2) L'application réciproque de f est bijective.
- (3) $\forall x \in E \ \forall y \in F \ (f(f^{-1}(y)) = y = Id_F(y)) \text{ et } (f^{-1}(f(x)) = x = Id_E(x)).$

Remarque 2.2. \wedge Notation. Soit $f: E \to F$.

Pour tout y de F, $f^{-1}(\{y\})$ est défini : c'est un élément de $\mathcal{P}(E)$.

 $f^{-1}(y)$ désigne un élément de E qui n'est défini que si f est bijective, f^{-1} désignant l'application réciproque de f.

3 Relations et opérations sur les applications.

Définition 3.1. \heartsuit Soient E, F, G, trois ensembles.

L'application qui calcule les images en appliquant deux applications l'une après l'autre est appelée «composition» et est notée o :

$$\circ \left| \begin{array}{ccc} \mathcal{A}(E,F) \times \mathcal{A}(F,G) & \to & \mathcal{A}(E,G) \\ (f,g) & \mapsto & \left((g \circ f) \middle| \begin{array}{ccc} E & \to & G \\ x & \mapsto & g(f(x)) \end{array} \right) \right| .$$

Théorème 3.1.

- (1)La composition est associative : $\forall f \in \mathcal{A}(E,F), \ \forall g \in \mathcal{A}(F,G), \forall h \in \mathcal{A}(G,H), \ h \circ (g \circ f) = (h \circ g) \circ f.$
- (2)La composition n'est pas commutative.
- (4)L'application identité est neutre pour la composition : $\forall f \in \mathcal{A}(E,F), (Id_F \circ f) = f$ et $(f \circ Id_E) = f$.
- (3)La composée de deux bijections est une bijection.
- (4) L'application réciproque de la composée de deux bijections est la composée des applications réciproques :

$$\forall f \in \mathcal{A}(E, F) \ / \exists ! f^{-1} \in \mathcal{A}(F, E), \ \forall g \in \mathcal{A}(F, G) \ / \exists ! g^{-1} \in \mathcal{A}(G, F) \ (g \circ f)^{-1} = (f^{-1} \circ g^{-1}).$$

4 Cas de $\mathcal{A}(E,\mathbb{R})$.

Définition 4.1. Opérations sur les applications de $\mathcal{A}(E, \mathbb{R})$. Multiplication d'une application par un réel :

$$\forall \lambda \in \mathbb{R} \ \forall f \in \mathcal{A}(E, \mathbb{R}) \ (\lambda \cdot f) \left| \begin{array}{ccc} E & \to & \mathbb{R} \\ x & \mapsto & \lambda \times f(x) \end{array} \right|.$$

Addition de deux applications:

$$\forall f,g \in \mathcal{A}(E,\mathbb{R}) \qquad (f \oplus g) \left| \begin{array}{ccc} E & \rightarrow & \mathbb{R} \\ x & \mapsto & f(x) + g(x) \end{array} \right|$$

Multiplication de deux applications :

$$\forall f,g \in \mathcal{A}(E,\mathbb{R}) \qquad (f \otimes g) \left| egin{array}{ccc} E &
ightarrow & \mathbb{R} \\ x & \mapsto & f(x) imes g(x) \end{array} \right.$$

Exercices à préparer. 5

1. Exercice: notion de graphe d'application.

On considère les ensembles suivants : $E = \{1, 2, 3\}$; $F = \{a, b\}$; $\mathcal{A}(E, F)$.

- (a) Soit \tilde{a} l'application constante qui à tout élément de E associe a. Décrire le graphe de \tilde{a} en extension, par produit cartésien, en compréhension.
- (b) Soit f un élément de $\mathcal{A}(E,F)\setminus\{\tilde{a},b\}$. Déterminer les graphes possibles de f.
- (c) Soit f un élément de $\mathcal{A}(E, F)$. Dans quel ensemble le graphe de f est-il inclus ? Déduire de quel ensemble le graphe de f est un élément.
- (d) Déterminer le cardinal de $\mathcal{A}(E, F)$.

2. Exercice : application numérique de référence.

Soit
$$f \mid \begin{bmatrix} -1, & 3 \end{bmatrix} \rightarrow \mathbb{R}$$

 $x \mapsto x^2$.

- (a) Vérifier : $[-1, 0] \subset f^{-1}(f([-1, 0]))$.
- (b) Vérifier : $f(f^{-1}([-3, 3])) \subset [-3, 3]$.

3. Exercice : applications-lineaires de \mathbb{R}^2 dans \mathbb{R}^2

On considère les applications suivantes :

$$f \left| \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x, y) & \mapsto & (x+y, 2x+3y) \end{array} \right| \text{ et } g \left| \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x, y) & \mapsto & (2x-3y, -4x+6y) \end{array} \right|$$

Pour chacune des applications f et g, répondre aux questions suivantes :

- (a) Déterminer l'ensemble des antécédents de (0, 0).
- (b) Déterminer l'ensemble des images et interprêter cet ensemble géométriquement.
- (c) L'application est-elle bijective?

4. Exercice : étude d'une fonction.

Soit
$$f \mid \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{2x}{1+x^2}$.

- (a) Préliminaire
 - i. Vérifier que f est impaire sur son domaine de définition.
 - ii. Soit $y \in \mathbb{R}_{+}^{*}$. En discutant par disjonction de cas, en fonction de |y-1|, déterminer $f^{-1}(\{y\})$.
 - iii. Vérifier que $: \forall x \in \mathbb{R}^*, \ f(\frac{1}{x}) = f(x).$
- (b) Etudier l'injectivité et la surjectivité de f.
- (c) Montrer que l'ensemble image de f est l'intervalle [-1, 1].
- (d) Déterminer l'image directe par f de l'intervalle [-1, 1].
- (e) Déduire que la restriction de f à l'intervalle [-1, 1] est bijective dans [-1, 1].

5. Exercice : composition d'applications numériques.

Soient
$$f, g \in \mathbf{A}(\mathbb{R}, \mathbb{R})$$
 avec $g \mid \mathbb{R} \to \mathbb{R}$
 $x \mapsto x + 2\pi$
Montrer que $(f \circ g)$ et $(g \circ f)$ sont égales si et seulement si $(f - \mathrm{Id}_{\mathbb{R}})$ est 2π -périodique.

6. Exercice : application de \mathbb{R}^2 dans \mathbb{R}

On considère les applications suivantes :

$$f \mid \mathbb{R}^2 \quad \to \quad \mathbb{R}$$
 et $h \mid \mathbb{R}^2 \quad \to \quad \mathbb{R}^2$ $(x, y) \quad \mapsto \quad (x + y^2, y)$.

- (a) L'application f est-elle bijective ?
- (b) L'application h est-elle bijective ?
- (c) Déterminer $\bullet \bullet \bullet$ l'application composée $f \circ h$.
- (d) Déduire l'application $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ telle que $\phi \circ h = Id_{\mathbb{R}^2}$. Quelle est la relation entre les applications ϕ et h?

7. Exercice: composition de transformations du plan.

Le plan P est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

On considère les applications :
$$f \mid P \to P \atop M(x,y) \mapsto M'(-y,x)$$
 et $g \mid P \to P \atop M(x,y) \mapsto M'(-x,y)$

- (a) Interpréter géométriquement les applications f et g.
- (b) Déterminer les applications $f \circ g$ et $g \circ f$.
- (c) Pour toute application h, définie d'un ensemble E dans lui-même,on appelle "ensemble des points fixes de h", la partie de E dont les éléments sont égaux à leur propre image par h.

 Ecrire en compréhenssion l'ensemble des points fixes de chacune des applications : $f \circ g$ et $g \circ f$.

 Pouvait-on prévoir ces résultats ?

8. Exercice : étude d'une équivalence.

 $\text{Montrer l'équivalence }: \forall f \in \mathcal{A}(E,E) \ \ (f \ \text{surjective}) \Leftrightarrow [\forall g,h \in \mathcal{A}(E,E) \ \ (g \circ f = h \circ f) \Rightarrow (g = h)].$

9. Exercice: ensemble infini.

Soit E, un ensemble non vide.

Si un ensemble E est fini alors quelque soit une partie A, non propre de E, toute application définie de E dans A est non injective.

- (a) Construire un exemple le plus simple possible illustrant ce théorème.
- (b) Montrer ce théorème par un raisonnement par l'absurde. Indication : pour tout A de $\mathscr{P}(E)$, A et son complémentaire forment une partition de E.
- (c) Enoncer en mots la contraposée de ce théorème.
- (d) Appliquer ce théorème pour montrer que $\mathbb N$ est un ensemble infini. On note A l'ensemble des entiers pairs de $\mathbb N$ et $f:\mathbb N\to A$ l'application telle que $:\forall n\in\mathbb N$ f(n)=2n.
 - i. Justifier que A est une partie non propre.
 - ii. Montrer que f est bijective.
 - iii. Déduire que N est un ensemble infini.