Mon Feb 6, 2017

Last time

- Van de Graaff generator: demonstration
- Calculating electric field flux: Group Activity

This time

- Group Activity review
- Properties of conductors
- Infinite charged plane: non-conducting vs. conducting
- Gauss' Law applied to conductors

(10 marks) The figure below shows an octahedral Gaussian surface made up of equilateral triangles with a square base of length l and a pill-box with a square base of length l. The horizontal plane represents a large thin sheet with uniform surface charge density $-\sigma$. Find the electric flux through the octahedral Gaussian surface.

- 1. (1 mark) In one sentence, state the meaning of Gauss' relation $\oiint \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$.
- 2. (3 marks) Find the total electric flux through the Gaussian surface in figure B and draw the surface area vectors for each face.
- 3. (2 marks) For the pill-box in figure B, using Gauss's relation; $\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$, find an expression for the electric field in terms of the charge density σ .
- 4. (1 mark) What is the difference between the electric field flux through the pill-box and the octahedron? Explain.
- 5. (2 marks) Find the total electric flux through the octahedral Gaussian surface?
- (1 mark for the correct answer) What is the electric flux through the octahedron? Express your answer in terms of σ using the relation $E = \sigma/2\epsilon_0$.

A.
$$-\frac{\sigma}{2\epsilon_0}l^2$$
 B. $-\frac{\sigma}{\epsilon_0}l^2$ C. $\frac{\sigma}{2\epsilon_0}l^2$ D. $\frac{\sigma}{\epsilon_0}l^2$

Planar Symmetry

An infinite plane is perfectly symmetric under side to side translations, and rotations in the x,y plane. Consequences:

- 1) E-field must point in same direction everywhere (translations)
- 2) E-field must point perpendicular to the surface (rotations)

This alone is enough to predict E-field is uniform for infinite plane

Using the right symmetry

For which of these Gaussian surfaces will Gauss' law help us to calculate E at point A due to the plane of charge? *Point A is at the top center of each surface*.

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0}$$

TopHat questions

Conductors

A conductor is a material in which the charges are free to move.

This means that two things are true:

- 1. There is zero net charge inside a conductor. ($Q_{net} = 0$)
- 2. There is zero electric field inside a conductor. ($E_{in} = 0$)

Conductors -- Explanations

1. There is zero net charge inside a conductor. ($Q_{net} = 0$)

If there are 2 (or more) like charges inside a conductor then they will repel each other and push each other far away. (ie --to the surface)

2. There is zero electric field inside a conductor. ($E_{in} = 0$)

If there is a non-zero E field then F = qE implies there is a net force which means charges would move until the force on them is zero – we have a STATIC situation. (Equilibrium)

Hollow Conductors

The electric field inside a conductor is zero. This immediately implies that conductors are electrically neutral in their interiors.

$$\oint \vec{E} \cdot d\vec{A} = 0 = \frac{q_{enc}}{\varepsilon_0}$$

This also means that the surface of a hollow cavity inside a conductor cannot carry any excess charge. All excess charge must reside on the outside surface only.

Van de Graaff generator

Summary of Conductors and Electric Fields

(a) The electric field inside the conductor is zero.

All excess charge is on the surface.

A void completely enclosed by the conductor

The electric field inside the enclosed void is zero.

(b) The electric field at the surface is perpendicular to the surface.

Electric field due to conducting plate