Variograms, covariance functions and kriging

Abhi Datta

04.07.2017

Review of last lecture

- Types of spatial data point referenced, areal and point pattern data
- Exploratory data analysis for point referenced data plotting, empirical variograms

$$\gamma(t_k) = \frac{1}{|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2$$

- Applicability of of ordinary linear regression
- How to incorporate spatial information in linear regression?

$$y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + w(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$$

Abhirup Datta 2 / 19

Review of last lecture

- Types of spatial data point referenced, areal and point pattern data
- Exploratory data analysis for point referenced data plotting, empirical variograms

$$\gamma(t_k) = \frac{1}{|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) - Y(\mathbf{s}_j))^2$$

- · Applicability of of ordinary linear regression
- How to incorporate spatial information in linear regression?

$$y(\mathbf{s}_i) = \beta_0 + x(\mathbf{s}_i)\beta_1 + w(\mathbf{s}_i) + \epsilon(\mathbf{s}_i)$$

• One approach: Model w(s) as a stochastic process instead of a deterministic function

Abhirup Datta 2 / 19

Stochastic Processes

- Collection of random variables indexed by locations in continuous domain D: {Y(s) | s ∈ D}
- For any s_1, s_2, \ldots, s_n , $(Y(s_1), Y(s_2), \ldots, Y(s_n))'$ is a multivariate ry
- Kolmogorov's Consistency conditions for a well-defined stochastic process:
 - $(Y(s_1), Y(s_2), \dots, Y(s_n)) \stackrel{d}{\sim} (Y(s_{\pi(1)}), Y(s_{\pi(2)}), \dots, Y(s_{\pi(n)}))$ for any permutation π
 - $\int dF(Y(s_0), Y(s_1), Y(s_2), \dots, Y(s_n))ds_0 = dF(Y(s_1), Y(s_2), \dots, Y(s_n))$

Abhirup Datta 3 / 19

Intrinsic stationarity and semivariograms

- Strong stationarity: If for any given set of sites, and any displacement h, the distribution of $(Y(s_1), ..., Y(s_n))$ is the same as, $(Y(s_1 + h), ..., Y(s_n + h))$.
- Recall: Empirical variogram: $\gamma(t_k) = \frac{1}{|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) Y(\mathbf{s}_j))^2$
- Under strong stationarity: $E(Y(s+h)-Y(s))^2=2\gamma(h)$

Abhirup Datta 4 / 19

Intrinsic stationarity and semivariograms

- Strong stationarity: If for any given set of sites, and any displacement \mathbf{h} , the distribution of $(Y(\mathbf{s}_1),...,Y(\mathbf{s}_n))$ is the same as, $(Y(\mathbf{s}_1 + \mathbf{h}),...,Y(\mathbf{s}_n + \mathbf{h}))$.
- Recall: Empirical variogram: $\gamma(t_k) = \frac{1}{|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) Y(\mathbf{s}_j))^2$
- Under strong stationarity: $E(Y(s+h)-Y(s))^2=2\gamma(h)$
- Weaker condition
 - Intrinsic stationarity: E(Y(s+h) Y(s)) = 0 and $E(Y(s+h) Y(s))^2 = 2\gamma(h)$
 - $\gamma(h)$ is referred to as the semivariogram

Abhirup Datta 4 / 19

Intrinsic stationarity and semivariograms

- Strong stationarity: If for any given set of sites, and any displacement h, the distribution of $(Y(s_1), ..., Y(s_n))$ is the same as, $(Y(s_1 + h), ..., Y(s_n + h))$.
- Recall: Empirical variogram: $\gamma(t_k) = \frac{1}{|N(t_k)|} \sum_{\mathbf{s}_i, \mathbf{s}_j \in N(t_k)} (Y(\mathbf{s}_i) Y(\mathbf{s}_j))^2$
- Under strong stationarity: $E(Y(s+h)-Y(s))^2=2\gamma(h)$
- Weaker condition
 - Intrinsic stationarity: E(Y(s+h) Y(s)) = 0 and $E(Y(s+h) Y(s))^2 = 2\gamma(h)$
 - $\gamma(h)$ is referred to as the semivariogram
 - Can we characterize the stochastic process by modeling $\gamma(h)$?
 - What are some necessary assumptions on the function $\gamma(h)$?

Abhirup Datta 4 / 19

Classical spatial prediction or "Kriging"

- Named by Matheron (1963) in honor of D.G. Krige, a South African mining engineer whose seminal work on empirical methods for geostatistical data inspired the general approach.
- Optimal spatial prediction: given observations of a random field $\mathbf{Y} = (Y(\mathbf{s}_1), \dots, Y(\mathbf{s}_n))'$, predict the variable Y at a site \mathbf{s}_0 where it has not been observed
- Under squared error loss, the best linear prediction minimizes $E[Y(\mathbf{s}_0) \sum \ell_i Y(\mathbf{s}_i)]^2$ over ℓ_i
- Unbiased $\iff \sum \ell_i = 1$

Abhirup Datta 5 / 19

Kriging

- Let $\Gamma = (\gamma(s_i s_j))_{1 \le i, j \le n}$ and $\gamma_0 = (\gamma(s_0 s_1)), \gamma(s_0 s_2), \dots, \gamma(s_0 s_n)))'$
- Optimal $\ell = \Gamma^{-1} \left(\gamma_0 + \frac{(1-1'\Gamma^{-1}\gamma_0)}{1'\Gamma^{-1}1} 1 \right)$
- Minimum $E[Y(\mathbf{s}_0) \sum \ell_i Y(\mathbf{s}_i)]^2 = \gamma_0' \Gamma^{-1} \gamma_0 \frac{(1'\Gamma^{-1} \gamma_0 1)^2}{1'\Gamma^{-1}}$
- With a model/estimate for γ , one immediately obtains the ordinary kriging estimate
- Other than intrinsic stationarity, no distributional assumptions are required for the $Y(\mathbf{s}_i)$
- Under intrinsic stationarity: For any a_0, a_1, \ldots, a_n , such that $\sum a_i = 0$, $E(\sum a_i Y(s_i))^2 = -\sum_{i,j} a_i a_j \gamma(s_i s_j)$

Abhirup Datta 6 / 19

Variogram models

• Necessary condition for valid variogram – Conditional negative definiteness: For any a with $a'1=0, -\sum_{i,j} a_i a_j \gamma(s_i-s_j) \geq 0$

model	Variograi	m, $\gamma(h)=\gamma(t)$ where $t= h $
Linear	$\gamma(t) = $	$ au^2 + \sigma^2 t$ if $t > 0$ 0 otherwise
Spherical	$\gamma(t) = \left\{ ight.$	$egin{pmatrix} au^2+\sigma^2 & ext{if } t\geq 1/\phi \ au^2+\sigma^2\left[rac{3}{2}\phi t-rac{1}{2}(\phi t)^3 ight] & ext{if } 0< t\leq 1/\phi \ 0 & ext{otherwise} \end{cases}$
Exponential	$\gamma(t) = \left\{ \right.$	$ au^2 + \sigma^2(1 - \exp(-\phi t))$ if $t > 0$ otherwise
Powered exponential	$\gamma(t) = \left\{ \right.$	otherwise $ au^2+\sigma^2(1-\exp(-\phi t))$ if $t>0$ 0 otherwise $ au^2+\sigma^2(1-\exp(- \phi t ^p))$ if $t>0$ 0 otherwise

Abhirup Datta 7 / 19

Variogram models

Abhirup Datta 7 / 19

Examples: Spherical Variogram

$$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 & \text{if } t \ge 1/\phi \\ \tau^2 + \sigma^2 \left[\frac{3}{2} \phi t - \frac{1}{2} (\phi t)^3 \right] & \text{if } 0 < t \le 1/\phi \\ 0 & \text{if } t = 0. \end{cases}$$

- While $\gamma(0) = 0$ by definition, $\gamma(0^+) \equiv \lim_{t\to 0^+} \gamma(t) = \tau^2$; this quantity is the *nugget*.
- $\lim_{t\to\infty} \gamma(t) = \tau^2 + \sigma^2$; this asymptotic value of the semivariogram is called the *sill*. (The sill minus the nugget, σ^2 in this case, is called the *partial sill*.)
- Finally, the value $t=1/\phi$ at which $\gamma(t)$ first reaches its ultimate level (the sill) is called the *range*, $R\equiv 1/\phi$.

Abhirup Datta 8 / 19

Examples: Spherical Variogram

Abhirup Datta 8 / 19

Variogram fitting using least squares

• Fit a parametric model to the empirical estimates $\hat{\gamma}(t_k)$ using least squares

$$\hat{\theta} = \arg\min \sum_{k} (\hat{\gamma}_{(t_k)} - \gamma(t_k \mid \theta))^2$$

Abhirup Datta 9 / 19

Variogram fitting using least squares

• Fit a parametric model to the empirical estimates $\hat{\gamma}(t_k)$ using least squares

$$\hat{\theta} = \arg\min \sum_{k} (\hat{\gamma}_{(t_k)} - \gamma(t_k \mid \theta))^2$$

- Problems:
 - $(Y(s+h)-Y(s))^2$ is a highly skewed rv
 - $\gamma(t_k)$'s are not independent
- Weighted least squares with weights w_k
 - Default in geoR package: $w_k = |N(t_k)|$
 - Cressie 1985: $w_k \propto 1/Var(\hat{\gamma}(t_k)) \approx |N(t_k)|/\gamma(t_k \mid \theta)^2$

• Use the variogram $\gamma(\cdot\,|\,\hat{ heta})$ to krige at a new location

Abhirup Datta 9 / 19

Beyond variograms

- Process depends on choice of binning (Thumb rule: at least 30 observations per bin)
- Squared differences are not independent
- No inference, no uncertainty
- Does not lead to a unique stochastic process Y(s)
- Intrinsic stationarity defines only the first and second moments of the differences Y(s+h)-Y(s). It says nothing about the joint distribution of a collection of variables $\{Y(s_1),\ldots,Y(s_n)\}$, and thus provides no likelihood

Abhirup Datta 10 / 19

Weak Stationarity

- E(Y(s)) = E(Y(s+h)), Cov(Y(s), Y(s+h)) = C(h)
- WS ⇒ IS

$$2\gamma(\mathbf{h}) = Var(Y(\mathbf{s} + \mathbf{h})) + Var(Y(\mathbf{s})) - 2Cov(Y(\mathbf{s} + \mathbf{h}), Y(\mathbf{s}))$$
$$= C(\mathbf{0}) + C(\mathbf{0}) - 2C(\mathbf{h})$$
$$= 2[C(\mathbf{0}) - C(\mathbf{h})].$$

Does IS ⇒ WS?

Abhirup Datta 11 / 19

Weak Stationarity

- E(Y(s)) = E(Y(s+h)), Cov(Y(s), Y(s+h)) = C(h)
- WS ⇒ IS

$$2\gamma(\mathbf{h}) = Var(Y(\mathbf{s} + \mathbf{h})) + Var(Y(\mathbf{s})) - 2Cov(Y(\mathbf{s} + \mathbf{h}), Y(\mathbf{s}))$$
$$= C(\mathbf{0}) + C(\mathbf{0}) - 2C(\mathbf{h})$$
$$= 2[C(\mathbf{0}) - C(\mathbf{h})].$$

- Does IS ⇒ WS?
- Needs the additional assumption $\lim_{\|\mathbf{u}\|\to\infty} C(\mathbf{u}) = 0$.
- Then we can recover the covariance function C from γ as

$$C(\mathbf{h}) = \lim_{\|\mathbf{u}\| \to \infty} \gamma(\mathbf{u}) - \gamma(\mathbf{h}).$$

Abhirup Datta 11 / 19

Gaussian Processes (GPs)

- $\{Y(s) \mid s \in D\}$ is a Gaussian Process if all finite dimensional densities $\{Y(s_1), \ldots, Y(s_n)\}$ follow multivariate Gaussian distribution
- A Gaussian Process is completely characterized by a mean function m(s) and a covariance function $C(\cdot, \cdot)$
- Advantage: Likelihood based inference. $Y = (Y(s_1), \dots, Y(s_n))' \sim N(m, C)$ where $m = (m(s_1), \dots, m(s_n))'$ and $C = C(s_i, s_j)$

Abhirup Datta 12 / 19

Valid covariance functions and isotropy

- $C(\cdot, \cdot)$ needs to be valid. For all n and all $\{s_1, s_2, ..., s_n\}$, the resulting covariance matrix $C(s_i, s_j)$ for $(Y(s_1), Y(s_2), ..., Y(s_n))$ must be positive definite
- So, $C(\cdot, \cdot)$ needs to be a positive definite function
- When $\gamma(\mathbf{h})$ or $C(\mathbf{h})$ depends only on $\|\mathbf{h}\|$, we say that the variogram or the covariance function is *isotropic*, respectively. In that case, we write $\gamma(\|\mathbf{h}\|)$ or $C(\|\mathbf{h}\|)$. Otherwise we say that they are *anisotropic*.
- Isotropic models are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for C (and γ).

Abhirup Datta

Some common isotropic covariograms

Model	Covariance function, $C(t) = C(h)$		
Linear	C(t) does not exist		
	ſ	0 if $t \geq 1/\phi$	
Spherical	$C(t) = \langle$	$\left\{egin{array}{ll} 0 & ext{if } t \geq 1/\phi \ \sigma^2 \left[1-rac{3}{2}\phi t + rac{1}{2}(\phi t)^3 ight] & ext{if } 0 < t \leq 1/\phi \ au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$	
	l	$ au^2+\sigma^2$ otherwise	
Exponential	C(t) =	$\sigma^2 \exp(-\phi t)$ if $t>0$ $ au^2+\sigma^2$ otherwise	
Powered exponential	C(t) =	$\sigma^2 \exp(- \phi t ^p)$ if $t>0$ $ au^2 + \sigma^2$ otherwise	
Matérn at $\nu=3/2$	$C(t) = \left\{ ight.$	$\sigma^2 \exp(-\phi t) \text{if } t > 0$ $\tau^2 + \sigma^2 \text{otherwise}$ $\sigma^2 \exp(- \phi t ^p) \text{if } t > 0$ $\tau^2 + \sigma^2 \text{otherwise}$ $\sigma^2 (1 + \phi t) \exp(-\phi t) \text{if } t > 0$ $\tau^2 + \sigma^2 \text{otherwise}$	

Abhirup Datta 14 / 19

Notes on exponential model

$$C(t) = \begin{cases} \tau^2 + \sigma^2 & \text{if } t = 0 \\ \sigma^2 \exp(-\phi t) & \text{if } t > 0 \end{cases}.$$

- We define the *effective range*, t_0 , as the distance at which this correlation has dropped to only 0.05. Setting $\exp(-\phi t_0)$ equal to this value we obtain $t_0 \approx 3/\phi$, since $\log(0.05) \approx -3$.
- Finally, the form of C(t) shows why the nugget τ^2 is often viewed as a "nonspatial effect variance," and the partial sill (σ^2) is viewed as a "spatial effect variance."
- Note discontinuity at 0 due to the nugget. Intentional! To account for measurement error or micro-sale variability.

Abhirup Datta 15 / 19

The Matern Correlation Function

- Much of statistical modeling is carried out through correlation functions rather than variograms
- The Matèrn is a very versatile family:

$$C(t) = \begin{cases} \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (2\sqrt{\nu}t\phi)^{\nu} K_{\nu}(2\sqrt{(\nu)}t\phi) & \text{if } t > 0 \\ \tau^2 + \sigma^2 & \text{if } t = 0 \end{cases}$$

 K_{ν} is the modified Bessel function of order ν (computationally tractable)

- ν is a smoothness parameter controlling process smoothness. Remarkable!
- $\nu = 1/2$ gives the exponential covariance function

Abhirup Datta 16 / 19

Another look at kriging

- If $\{Y(s)\}$ is a zero-mean GP then $E(Y(s_0) | Y(s_1), ..., Y(s_n))$ minimizes $E(Y(s_0) f(Y(s_1), ..., Y(s_n))^2$
- $E(Y(s_0) | Y(s_1), ..., Y(s_n)) = c'_0 C^{-1} Y$ where $Y = (Y(s_1), ..., Y(s_n))',$ $c_0 = (C(||s_1 s_0||), ..., C(||s_n s_0||))'$ and $C = (C(||s_i s_j))_{1 \le i, j \le n}$

Abhirup Datta 17 / 19

Another look at kriging

- If $\{Y(s)\}$ is a zero-mean GP then $E(Y(s_0) | Y(s_1), ..., Y(s_n))$ minimizes $E(Y(s_0) f(Y(s_1), ..., Y(s_n))^2$
- $E(Y(s_0) | Y(s_1), ..., Y(s_n)) = c'_0 C^{-1} Y$ where $Y = (Y(s_1), ..., Y(s_n))',$ $c_0 = (C(||s_1 s_0||), ..., C(||s_n s_0||))'$ and $C = (C(||s_i s_j))_{1 \le i, j \le n}$
- Better than the (variogram based) ordinary kriging estimator in terms of predictive squared error
- Full predictive distribution: $Y(s_0) \mid Y \sim N(c_0'C^{-1}Y, C(s_0, s_0) - c_0'C^{-1}c_0)$

Abhirup Datta 17 / 19

Modeling: estimation and prediction

$$y(\mathbf{s}) = \beta_0 + x(\mathbf{s})\beta_1 + w(\mathbf{s}) + \epsilon(\mathbf{s})$$

- w(s) modeled as $GP(0, C(\cdot | \theta))$ (usually without a nugget)
- $\epsilon(s) \stackrel{\text{iid}}{\sim} N(0, \tau^2)$ contributes to the nugget
- Under isotropy: $C(s + h, s) = \sigma^2 R(||h||; \phi)$
- $w = (w(s_1), ..., w(s_n))' \sim N(0, \sigma^2 R(\phi))$ where $R(\phi) = \sigma^2 R(||s_i s_i||; \phi)$
- $y = (y(s_1), ..., y(s_n))' \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I)$
- Kriging: $y(s_0) | Y \sim N(x'\beta + c'_0(\sigma^2 R(\phi) + \tau^2 I)^{-1}(Y X\beta), \sigma^2 + \tau^2 c'_0(\sigma^2 R(\phi) + \tau^2 I)^{-1}c_0)$

Abhirup Datta 18 / 19

References

- BCG book chapters 2.1 and 2.4
- Cressie, N. 1985. Fitting Variogram Models by Weighted Least Squares. Mathematical Geology, 17: 565–586
- Lichtenstern, A. 2013. Kriging Methods in Spatial Statistics, Bachelor's thesis, Munchen University.

Abhirup Datta