Importing the Dependencies

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

Data Collection & Processing

```
# load the data from csv file to Pandas DataFrame
titanic_data = pd.read_csv('/content/train (2).csv')
# printing the first 5 rows of the dataframe
titanic_data.head()

D>
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0

Values

Distributions

Survived

Categorical distributions

number of rows and Columns
titanic_data.shape

```
(891, 12)
# getting some informations about the data
titanic_data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 12 columns):
                       Non-Null Count Dtype
      # Column
      0
          PassengerId 891 non-null
                                        int64
          Survived
                       891 non-null
                                        int64
      1
          Pclass
                       891 non-null
                                        int64
      3
          Name
                       891 non-null
                                        object
      4
          Sex
                       891 non-null
                                        object
                       714 non-null
                                        float64
          Age
          SibSp
                       891 non-null
                                        int64
                       891 non-null
                                        int64
          Parch
          Ticket
                       891 non-null
                                        object
          Fare
                       891 non-null
                                        float64
                       204 non-null
      10 Cabin
                                        object
      11 Embarked
                       889 non-null
                                        object
     dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB
\ensuremath{\text{\#}} check the number of missing values in each column
titanic_data.isnull().sum()
     PassengerId
     Survived
     Pclass
                       0
     Name
                      0
     Sex
                      0
     Age
                     177
     SibSp
                      0
     Parch
     Ticket
                      0
     Fare
                    687
     Cabin
     Embarked
     dtype: int64
             Ø
Handling the Missing values
# drop the "Cabin" column from the dataframe
titanic_data = titanic_data.drop(columns='Cabin', axis=1)
# replacing the missing values in "Age" column with mean value
titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
# finding the mode value of "Embarked" column
print(titanic_data['Embarked'].mode())
     Name: Embarked, dtype: object
print(titanic_data['Embarked'].mode()[0])
# replacing the missing values in "Embarked" column with mode value
titanic_data['Embarked'].fillna(titanic_data['Embarked'].mode()[0], inplace=True)
# check the number of missing values in each column
titanic_data.isnull().sum()
     PassengerId
     Survived
     Pclass
                    0
     Name
                    0
     Sex
                    0
     Age
     SibSp
                    0
     Parch
     Ticket
                    a
     Fare
                    0
     Embarked
     dtype: int64
```

Data Analysis

getting some statistical measures about the data titanic_data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Values

Distributions

Categorical distributions

2-d distributions

Faceted distributions

count -

finding the number of people survived and not survived
titanic_data['Survived'].value_counts()

0 5491 342

Name: Survived, dtype: int64

Data Visualization

sns.set()

titanic_data['Sex'].value_counts()

male 577 female 314

Name: Sex, dtype: int64

Encoding the Categorical Columns

titanic_data['Sex'].value_counts()

```
titanic_data['Embarked'].value_counts()

S     646
C     168
Q     77
Name: Embarked, dtype: int64

# converting categorical Columns

titanic_data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'Q':2}}, inplace=True)

titanic_data.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	0
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	1
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	0
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	0

Values

Distributions

1.0 1.5 2.0 2.5 3.0

Categorical distributions

2-d distributions

2-d categorical distributions

Faceted distributions

Separating features & Target

```
X = titanic_data.drop(columns = ['PassengerId','Name','Ticket','Survived'],axis=1)
Y = titanic_data['Survived']
print(X)
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	0	22.000000	1	0	7.2500	0
1	1	1	38.000000	1	0	71.2833	1
2	3	1	26.000000	0	0	7.9250	0
3	1	1	35.000000	1	0	53.1000	0
4	3	0	35.000000	0	0	8.0500	0
886	2	0	27.000000	0	0	13.0000	0
887	1	1	19.000000	0	0	30.0000	0
888	3	1	29.699118	1	2	23.4500	0
889	1	0	26.000000	0	0	30.0000	1
890	3	0	32.000000	0	0	7.7500	2

[891 rows x 7 columns]

```
print(Y)
```

```
1
       1
2
       1
       1
4
       0
886
       0
887
       1
888
       a
889
       1
Name: Survived, Length: 891, dtype: int64
```

Name. Sarvivea, Length. 051, atype. Into-

A/2 711/1

Splitting the data into training data & Test data

(891, 7) (712, 7) (179, 7)

Model Training

Logistic Regression

model = LogisticRegression()

, assengena

```
# training the Logistic Regression model with training data
model.fit(X_train, Y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

• >