"PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-071134

(43)Date of publication of application: 04.03.2004

(51)Int.CI.

G11B 7/135 G02B 3/00 G02B 3/08 G02B 5/18 G02B 5/32 G02B 13/00

(21)Application number: 2003-139347

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

16.05.2003

(72)Inventor: KANEUMA YOSHIAKI

(30)Priority

Priority

2002168754

Priority

10.06.2002

Priority

JP

(54) COMPOUND OBJECTIVE LENS, OPTICAL HEAD DEVICE, OPTICAL INFORMATION DEVICE, COMPUTER, OPTICAL DISK PLAYER, CAR NAVIGATION SYSTEM, OPTICAL DISK RECORDER, OPTICAL DISK SERVER

PROBLEM TO BE SOLVED: To enable stable and highly accurate interchangeable recording and reproducing between a BD of base material approximately 0.1mm thick corresponding to a blue light beam and a DVD of base material 0.6mm thick corresponding to a red light beam by using a compound objective lens consisting of hologram and an objective lens.

SOLUTION: Lattices having a cross-sectional shape in which steps of height of 0 times, two times, one times, three times of a unit step giving difference of the optical path of approximately one wavelength for a blue light beam facing an optical axis from the outer peripheral side is one period p1 are formed only at an inner peripheral part of a hologram 131. This hologram does not diffracts a blue light beam, but transmits as 0 order diffraction light as it is, also, radiates a read light beam passing through the inner peripheral part as +1 order diffraction light. Thereby, a focal length of a red light beam is made longer than that of a blue light beam, and operation distance is made longer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against miner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-71134 (P2004-71134A)

(43) 公開日 平成16年3月4日(2004.3.4)

(51) Int.C1. ⁷		Fi				テーマ	コード	(参考	·)
G11B	7/135	G11B	7/135	Α		2HC	49		
GO2B	3/00	G11B	7/135	Z		2 H C	87		
GO2B	3/08	GO2B	3/00	Z		5 D 7	89		
GO2B	5/18	GO2B	3/08						
GO2B	5/32	GO2B	5/18						
		審査請求 未	請求 請求項	の数 32 O	L	(全 40	頁)	最終頁	に続く
(21) 出願番号 (22) 出願日		特願2003-139347 (P2003-139347) 平成15年5月16日 (2003. 5. 16)	(71) 出願人	000005821 松下電器産業株式会社					
(31) 優先権主張番号		特願2002-168754 (P2002-168754)	1	大阪府門真	市大	字門真	100	6番地	
(32) 優先日		平成14年6月10日 (2002.6.10)	(74) 代理人	110000040					
(33) 優先権主張国		日本国 (JP)		特許業務法人池内・佐藤アンドパートナー					
				ズ					
			(72) 発明者	金馬 慶明					
				大阪府門真市大字門真1006番地 松下					
				電器産業株式会社内					
			Fターム(参	考) 2HO49	AA03	AA04	AA26	AA50	AA57
			j		AA63	CAO1	CA05	CA09	CA15
					CA17	CA20			
			İ	2H087	KA13	PA02	PA17	PB02	QA11
					QA21	QA31	QA41	RA46	
				5D789	AA41	BA01	JA43	JA47	JB01
					JB02				

(54) 【発明の名称】複合対物レンズ、光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、カーナビ ゲーションシステム、光ディスクレコーダー、光ディスクサーバー

(57)【要約】

【課題】ホログラムと対物レンズから成る複合対物レン ズにより、青色光ビームに対応した基材厚約0.1mm のBDと、赤色光ビームに対応した基材厚約0.6mm のDVDとの安定かつ高精度な互換再生記録を可能にす る。

【解決手段】ホログラム131の内周部にのみ、外周側 から光軸側に向かって、青色光ビームに対して約1波長 の光路差を与える単位段差の0倍、2倍、1倍、3倍と いう順番の高さの階段を一周期plとする断面形状を有 する格子が形成される。このホログラムは、青色光ビー ムを回折せず0次回折光としてそのまま透過させ、また 内周部を通る赤色光ビームを+1次回折光として発散さ せる。これにより、赤色光ビームの焦点距離は青色光ビ ームよりも長くなり、作動距離が大きくなる。

【選択図】 図3B

【請求項1】

ホログラムと屈折型レンズからなる複合対物レンズであって、前記ホログラムは、少なく とも一部領域内に形成された階段状断面形状を有する格子を備え、前記階段状断面形状の 段差は単位段差d1の整数倍であり、前記単位段差d1は、390nm~415nmの範 囲内にある波長 A 1 を有する第1 光ビームに対して約1波長の光路差を与える段差であり 、前記格子の一周期は、前記ホログラムの外周側から光軸側に向かって前記単位段差dl の0倍、2倍、1倍、3倍という順番の高さの階段からなることを特徴とする複合対物レ ンズ。

【請求項2】

前記格子の階段状断面形状の段差の幅の比が、前記単位段差dlの0倍、2倍、1倍、3 倍という順番の高さにそれぞれ対応して、2:3:3:2であることを特徴とする請求項 1記載の複合対物レンズ。

【請求項3】

前記格子は、前記ホログラムの内周部にのみ形成されることを特徴とする請求項1記載の 複合対物レンズ。

【請求項4】

前記複合対物レンズは、前記第1光ビームの0次回折光を、厚さt1の基材を通して集光 し、630nm~680nmの範囲内にある波長 A2を有する第2光ビームの1次回折光 を、前記厚さt1より大きい厚さt2の基材を通して集光することを特徴とする請求項1 20 記載の複合対物レンズ。

【請求項5】

ホログラムと屈折型レンズからなる複合対物レンズであって、前記ホログラムは、少なく とも内周部に形成された階段状断面形状を有する格子を備え、前記階段状断面形状の段差 は単位段差d2の整数倍であり、前記単位段差d2は、390nm~415nmの範囲内 にある波長 λ 1 を有する第 1 光ビームに対して約 1. 2 5 波長の光路差を与える段差であ り、前記格子の一周期は、前記ホログラムの外周側から光軸側に向かって前記単位段差d 2の0倍、1倍、2倍、3倍という順番の高さの階段からなることを特徴とする複合対物 レンズ。

【請求項6】

前記格子の階段状断面形状の段差の幅の比が、前記単位段差d2の0倍、1倍、2倍、3 倍という順番の高さにそれぞれ対応して、1:1:1:1であることを特徴とする請求項 5記載の複合対物レンズ。

【請求項7】

前記ホログラムは、外周部に形成された階段状断面形状を有する格子を備え、前記外周部 に形成された格子の階段状断面形状の段差は、単位段差は3の整数倍であり、前記単位段 差d3は、前記第1光ビームに対して約0.25波長の光路差を与える段差であり、前記 外周部に形成された格子の一周期は、前記ホログラムの外周側から光軸側に向かって前記 単位段差d3の0倍、1倍、2倍、3倍という順番の高さの階段からなることを特徴とす る請求項5記載の複合対物レンズ。

【請求項8】

前記複合対物レンズは、前記第1光ビームの+1次回折光を、厚さt1の基材を通して集 光し、630nm~680nmの範囲内にある波長 λ2を有し前記ホログラムの内周部に 形成された格子を通る第2光ビームの-1次回折光を、前記厚さt1より大きい厚さt2 の基材を通して集光することを特徴とする請求項5記載の複合対物レンズ。

【請求項9】

ホログラムと屈折型レンズからなる複合対物レンズであって、前記ホログラムは、少なく とも内周部に形成された鋸歯状断面形状を有する格子を備え、前記鋸歯状断面形状の深さ h 1 は、390 nm~415 nmの範囲内にある波長λ1を有する第1光ビームに対して 約2波長の光路差を与えて+2次回折光を最も強く発生させる深さであり、630nm~ 50

10

680 nmの範囲内にある波長 λ2を有する第2光ビームに対して+1次回折光を最も強 く発生させる深さであることを特徴とする複合対物レンズ。

【請求項10】

ホログラムと屈折型レンズからなる複合対物レンズであって、

前記ホログラムは、少なくとも内周部に形成された鋸歯状断面形状を有する格子を備え、 前記鋸歯状断面形状の深さh2は、630nm~680nmの範囲内にある波長ん2を有 する第2光ビームに対して約1波長の光路差を与えて+1次回折光を最も強く発生させる 深さであり、390 nm~415 nmの範囲内にある波長 λ 1を有する第1光ビームに対 して+2次回折光を最も強く発生させる深さであることを特徴とする複合対物レンズ。

【請求項11】

ホログラムと屈折型レンズからなる複合対物レンズであって、

前記ホログラムは、少なくとも内周部に形成された鋸歯状断面形状を有する格子を備え、 前記鋸歯状断面形状の深さh4は、390nm~415nmの範囲内にある波長ん1を有 する第1光ビームに対して1.7波長より大きく2波長より小さい光路差を与えて+2次 回折光を最も強く発生させる深さであり、630 nm~680 nmの範囲内にある波長 λ 2を有する第2光ビームに対して+1次回折光を最も強く発生させる深さであることを特 徴とする複合対物レンズ。

【請求項12】

前記鋸歯状断面形状の深さh4は、前記第1光ビームに対して1.9波長の光路差を与え る深さであることを特徴とする請求項11記載の複合対物レンズ。

【請求項13】

ホログラムと屈折型レンズからなる複合対物レンズであって、

前記ホログラムは、390nm~415nmの範囲内にある波長L1を有する第1光ビー ムに対しては+2次回折光を最も強く発生させ、630nm~680nmの範囲内にある 波長λ2を有する第2光ビームに対しては+1次回折光を最も強く発生させ、

前記屈折型レンズは、前記ホログラムを介した前記第1光ビームの+2次回折光を、厚さ t 1 の基材を通して集光し、前記ホログラムの内周部を介した前記第2 光ビームの+1次 回折光を、前記厚さt1よりも大きい厚さt2の基材を通して集光することを特徴とする 複合対物レンズ。

【請求項14】

前記ホログラムは、外周部に形成された鋸歯状断面形状を有する格子を備え、前記外周部 に形成された格子の鋸歯状断面形状の深さh3は、前記第1光ビームに対して約1波長の 光路差を与えて+1次回折光を最も強く発生させる深さであり、前記第2光ビームに対し ても+1次回折光を最も強く発生させる深さであることを特徴とする請求項9、10、1 1、および13のいずれか一項記載の複合対物レンズ。

【請求項15】

前記第1光ビームを厚さt1の基材を通して集光する場合に、前記ホログラムは、前記波 長11の変化に対する焦点距離の変化を低減するために、凸レンズとして作用するように 構成されることを特徴とする請求項5、9、10、11、および13のいずれか一項記載 の複合対物レンズ。

【請求項16】

前記ホログラムは、光ディスク側の焦点位置を複合対物レンズから離すために、前記第1 光ビームを厚さt1の基材を通して集光する場合に、前記ホログラムの内周部を通る前記 第2光ビームを、厚さ t 2 の基材を通して集光する場合よりも、凸レンズとしての作用が 大きくなるように、あるいは前記ホログラムの内周部を通る前記第2光ビームを、厚さt 2の基材を通して集光する場合に、前記第1光ビームを厚さ t 1の基材を通して集光する 場合よりも、凸レンズとしての作用が小さくなるように構成されることを特徴とする請求 項4、8、9、10、11、および13のいずれか一項記載の複合対物レンズ。

【請求項17】

前記ホログラムを構成する格子の断面形状は、前記ホログラムを形成する基材が外周側に 50

10

20

斜面を有する鋸歯形状であることを特徴とする請求項9、10、11、および13のいずれか一項記載の複合対物レンズ。

【請求項18】

前記ホログラムと前記屈折型レンズは一体固定されることを特徴とする請求項1、5、9、10、11、および13のいずれか一項記載の複合対物レンズ。

【請求項19】

前記屈折型レンズは、集光スポットと反対側の屈折面が非球面であることを特徴とする請求項1、5、9、10、11、および13のいずれか一項記載の複合対物レンズ。

【請求項20】

前記ホログラムは、前記屈折型レンズの前記非球面に一体形成されることを特徴とする請 10 求項19記載の複合対物レンズ。

【請求項21】

前記ホログラムは、前記屈折型レンズの表面に一体形成されることを特徴とする請求項1 、5、9、10、11、および13のいずれか一項記載の複合対物レンズ。

【請求項22】

前記第1光ビームが厚さt1の基材を通して集光される開口数をNAb、前記第2光ビームが厚さt2の基材を通して集光される開口数をNArとした場合、NAb>NArであることを特徴とする請求項4、8、および14のいずれか一項記載の複合対物レンズ。

【請求項23】

390 nm~415 nmの範囲内にある波長 λ 1を有する第1光ビームを出射する第1レ 20 ーザー光源と、

6 3 0 n m ~ 6 8 0 n m の範囲内にある波長 λ 2 を有する第 2 光ビームを出射する第 2 レーザー光源と、

前記第1レーザー光源から出射される第1光ビームを受けて、厚さ t 1 の基材を通して第 1 光ディスクの記録面上に集光し、前記第 2 レーザー光源から出射される第 2 光ビームを受けて、前記厚さ t 1 よりも大きい厚さ t 2 の基材を通して第 2 光ディスクの記録面上に集光する、請求項 1 、5 、 9 、 1 0 、 1 1 、および 1 3 のいずれか一項記載の複合対物レンズと、

前記第1および第2光ディスクの記録面上でそれぞれ反射された前記第1および第2光ビームを受けて、その光量に応じた電気信号を出力する光検出器とを具備したことを特徴と 30 する光ヘッド装置。

【請求項24】

前記光ヘッド装置は、前記第1および第2レーザー光源からそれぞれ出射された前記第1 および第2光ビームを平行光にするコリメートレンズを具備し、

前記第2光ビームを前記第2光ディスクの記録面上に集光する際には、前記コリメートレンズを前記第2レーザー光源側に近づけて、前記第2光ビームを拡散光にして前記複合対物レンズに入射させることにより、前記第2光ディスク側の焦点位置を前記複合対物レンズから離すことを特徴とする請求項23記載の光ヘッド装置。

【請求項25】

前記第1および第2レーザー光源は、その発光点が両方とも、前記複合対物レンズの前記 40 第1および第2光ディスク側の焦点位置に対して結像関係にあるように配置され、前記光検出器は、前記第1および第2光ディスクの記録面上でそれぞれ反射された前記第1および第2光ビームに対して共通に設けられ、前記第1および第2光ビームを受けてサーボ信号を検出することを特徴とする請求項23または24記載の光ヘッド装置。

【請求項26】

390nm~415nmの範囲内にある波長 λ 1を有する第1光ビームを出射する第1レーザー光源と、630nm~680nmの範囲内にある波長 λ 2を有する第2光ビームを出射する第2レーザー光源と、前記第1レーザー光源から出射される第1光ビームを受けて、厚さt1の基材を通して第1光ディスクの記録面上に集光し、前記第2レーザー光源から出射される第2光ビームを受けて、前記厚さt1よりも大きい厚さt2の基材を通し

て第2光ディスクの記録面上に集光する、請求項1、5、9、10、11、および13のいずれか一項記載の複合対物レンズと、前記第1および第2光ディスクの記録面上でそれぞれ反射された前記第1および第2光ビームを受けて、その光量に応じた電気信号を出力する光検出器とを具備した光ヘッド装置と、

前記第1および第2光ディスクを回転するモーターと、

前記光ヘッド装置から得られる信号を受けて、該信号に基づいて前記モーター、前記複合対物レンズ、前記第1および第2レーザー光源を駆動制御する電気回路とを具備したことを特徴とする光情報装置。

【請求項27】

前記光ヘッド装置は、前記第1および第2レーザー光源からそれぞれ出射された前記第1 10 および第2光ビームを平行光にするコリメートレンズを具備し、前記光情報装置は、基材の厚さt2が0.6mmである前記第2光ディスクが装填された場合に、前記コリメートレンズを前記第2レーザー光源側に移動制御することを特徴とする請求項26記載の光情報装置。

【請求項28】

光情報装置と、

情報を入力するための入力手段と、

前記入力手段から入力された情報、および前記光情報装置から再生された情報に基づいて 演算を行う演算装置と、

前記入力手段から入力された情報、前記光情報装置から再生された情報、および前記演算 20 装置によって演算された結果を表示あるいは出力するための出力手段とを備えたコンピュータであって、

前記光情報装置は、

 $390 \, \text{nm} \sim 415 \, \text{nm}$ の範囲内にある波長 $\lambda 1$ を有する第1 光ビームを出射する第1 レーザー光源と、 $630 \, \text{nm} \sim 680 \, \text{nm}$ の範囲内にある波長 $\lambda 2$ を有する第2 光ビームを出射する第2 レーザー光源と、前記第1 レーザー光源から出射される第1 光ビームを受けて、厚さ t 1 の基材を通して第1 光ディスクの記録面上に集光し、前記第2 レーザー光源から出射される第2 光ビームを受けて、前記厚さ t 1 よりも大きい厚さ t 2 の基材を通して第2 光ディスクの記録面上に集光する、請求項1、5、9、10、11、および13のいずれか一項記載の複合対物レンズと、前記第1 および第2 光ディスクの記録面上でそれ 30 ぞれ反射された前記第1 および第2 光ビームを受けて、その光量に応じた電気信号を出力する光検出器とを具備した光ヘッド装置と、

前記第1および第2光ディスクを回転するモーターと、

前記光ヘッド装置から得られる信号を受けて、該信号に基づいて前記モーター、前記複合対物レンズ、前記第1および第2レーザー光源を駆動制御する電気回路とを具備したことを特徴とするコンピュータ。

【請求項29】

光情報装置と、

前記光情報装置から得られる情報信号を画像信号に変換するデコーダとを備えた光ディス クプレーヤーであって、

前記光情報装置は、

前記第1および第2光ディスクを回転するモーターと、

前記光ヘッド装置から得られる信号を受けて、該信号に基づいて前記モーター、前記複合 対物レンズ、前記第1および第2レーザー光源を駆動制御する電気回路とを具備したこと を特徴とする光ディスクプレーヤー。

【請求項30】

光情報装置と、

前記光情報装置から得られる情報信号を画像信号に変換するデコーダとを備えたカーナビ ゲーションシステムであって、

前記光情報装置は、

390 nm~415 nmの範囲内にある波長 λ 1 を有する第1 光ビームを出射する第1 レ 10 ーザー光源と、630nm~680nmの範囲内にある波長 λ 2 を有する第 2 光ビームを 出射する第2レーザー光源と、前記第1レーザー光源から出射される第1光ビームを受け て、厚さt1の基材を通して第1光ディスクの記録面上に集光し、前記第2レーザー光源 から出射される第2光ビームを受けて、前記厚さ t 1よりも大きい厚さ t 2の基材を通し て第2光ディスクの記録面上に集光する、請求項1、5、9、10、11、および13の いずれか一項記載の複合対物レンズと、前記第1および第2光ディスクの記録面上でそれ ぞれ反射された前記第1および第2光ビームを受けて、その光量に応じた電気信号を出力 する光検出器とを具備した光ヘッド装置と、

前記第1および第2光ディスクを回転するモーターと、

前記光ヘッド装置から得られる信号を受けて、該信号に基づいて前記モーター、前記複合 20 対物レンズ、前記第1および第2レーザー光源を駆動制御する電気回路とを具備したこと を特徴とするカーナビゲーションシステム。

【請求項31】

光情報装置と、

画像信号を前記光情報装置に記録する情報信号に変換するエンコーダとを備えた光ディス クレコーダーであって、

前記光情報装置は、

390 nm~415 nmの範囲内にある波長 λ1を有する第1光ビームを出射する第1レ ーザー光源と、630nm~680nmの範囲内にある波長λ2を有する第2光ビームを 出射する第2レーザー光源と、前記第1レーザー光源から出射される第1光ビームを受け 30 て、厚さt1の基材を通して第1光ディスクの記録面上に集光し、前記第2レーザー光源 から出射される第2光ビームを受けて、前記厚さ t 1よりも大きい厚さ t 2の基材を通し て第2光ディスクの記録面上に集光する、請求項1、5、9、10、11、および13の いずれか一項記載の複合対物レンズと、前記第1および第2光ディスクの記録面上でそれ ぞれ反射された前記第1および第2光ビームを受けて、その光量に応じた電気信号を出力 する光検出器とを具備した光ヘッド装置と、

前記第1および第2光ディスクを回転するモーターと、

前記光ヘッド装置から得られる信号を受けて、該信号に基づいて前記モーター、前記複合 対物レンズ、前記第1および第2レーザー光源を駆動制御する電気回路とを具備したこと を特徴とする光ディスクレコーダー。

【請求項32】

光情報装置と、

外部から入力された情報信号を前記光情報装置に記録し、また前記光情報装置から再生さ れた情報信号を外部に出力するための入出力端子とを備えた光ディスクサーバーであって

前記光情報装置は、

390 nm~415 nmの範囲内にある波長 l 1を有する第1光ビームを出射する第1レ ーザー光源と、630 nm~680 nmの範囲内にある波長λ2を有する第2光ビームを 出射する第2レーザー光源と、前記第1レーザー光源から出射される第1光ビームを受け て、厚さt1の基材を通して第1光ディスクの記録面上に集光し、前記第2レーザー光源 50

から出射される第2光ビームを受けて、前記厚さ t 1 よりも大きい厚さ t 2 の基材を通して第2光ディスクの記録面上に集光する、請求項1、5、9、10、11、および13のいずれか一項記載の複合対物レンズと、前記第1および第2光ディスクの記録面上でそれぞれ反射された前記第1および第2光ビームを受けて、その光量に応じた電気信号を出力する光検出器とを具備した光ヘッド装置と、

前記第1および第2光ディスクを回転するモーターと、

前記光ヘッド装置から得られる信号を受けて、該信号に基づいて前記モーター、前記複合 対物レンズ、前記第1および第2レーザー光源を駆動制御する電気回路とを具備したこと を特徴とする光ディスクサーバー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、対物レンズと回折素子であるホログラムとを複合した複合対物レンズ、かかる複合対物レンズを介して光ディスク上に複数の波長の光ビームを集光させて情報の記録、再生あるいは消去を行う光ヘッド装置、かかる光ヘッド装置を塔載した光情報装置、およびかかる光情報装置が適用されるコンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー、光ディスクサーバーに関する。

[0002]

【従来の技術】

高密度、大容量の記憶媒体として、ピット状パターンを有する光ディスクを用いる光メモ 20 リ技術は、ディジタルオーディオディスク、ビデオディスク、文書ファイルディスク、さらにはデータファイルと用途を拡張しつつ、実用化されてきている。微小に絞られた光ビームを介して、光ディスクに対する情報記録再生が高い信頼性のもとに首尾よく遂行される機能は、回折限界の微小スポットを形成する集光機能、光学系の焦点制御(フォーカスサーボ)とトラッキング制御、及びピット信号(情報信号)検出に大別される。

[0003]

近年、光学系設計技術の進歩と光源である半導体レーザの短波長化により、従来以上の記憶容量を有する高密度光ディスクの開発が進んでいる。高密度化のアプローチとしては、光ディスク上へ光ビームを微小に絞る集光光学系の光ディスク側開口数(NA)を大きくすることが検討されている。その際、問題となるのが光軸の傾き(いわゆるチルト)による収差の発生量の増大である。NAを大きくすると、チルトに対して発生する収差量が大きくなる。これを防ぐためには、光ディスクの基板の厚み(基材厚)を薄くすれば良い。【0004】

光ディスクの第1世代といえるコンパクトディスク(CD)は赤外光(波長 λ 3は780 nm~820nm)と、NA0.45の対物レンズを使用し、ディスクの基材厚は1.2 mmである。第2世代のDVDは赤色光(波長 λ 2は630nm~680nm、標準波長660nm)と、NA0.6の対物レンズを使用し、ディスクの基材厚は0.6mmである。そしてさらに、第3世代の光ディスク(以下、BD(Blue-ray Disk)とも称する)は青色光(波長 λ 1は390nm~415nm、標準波長405nm)と、NA0.85の対物レンズを使用し、ディスクの基材厚は0.1mmである。なお、本明40 細書中では、基材厚とは、光ディスク(または情報媒体)に光ビームの入射する面から情報記録面までの厚みを指す。

[0005]

このように、高密度化に伴って光ディスクの基材厚は小さくなる。経済性や装置の占有スペースの観点から、上記基材厚や記録密度の異なる光ディスクを記録再生できる光情報装置が望まれている。そのためには、異なる基材厚の光ディスク上に回折限界まで光ビームを集光することのできる集光光学系を備えた光ヘッド装置が必要である。

[0006]

また、基材の厚い光ディスクを記録再生する場合には、ディスク表面から奥の方にある記録面上に光ビームを集光する必要があるので、焦点距離をより長くしなければならない。

10

[0007]

基材厚が異なる光ディスクに対する記録再生を行う光ヘッド装置を実現することを目的とした構成が、特開平7-98431号公報に開示されている。これを第1の従来例として、図25Aおよび図25Bを参照して説明する。

[0008]

図25Aおよび図25Bにおいて、40は対物レンズ、41はホログラムである。ホログラム41には、入射光ビーム44に対して透明な基板に同心円状の格子パターンが形成されている。

[0009]

対物レンズ40は、開口数NAが0.6以上で、図25Aに示すように、ホログラム41 10を回折されずに透過した0次回折光42を、例えば、0.6 mmの基材厚(t2)を有する光ディスク10上に回折限界の集光スポットを形成できるよう設計されている。また、図25Bは、より厚い1.2 mmの基材厚(t1)を有する光ディスク11上に回折限界の集光スポットを形成できることを示している。図25Bにおいて、ホログラム41で回折された+1次回折光43は、対物レンズ40によって光ディスク11に集光される。ここで、+1次回折光43を、厚さt1の基板を通して回折限界まで絞れるように収差補正が施されている。

[0010]

このように、入射光を回折するホログラム41と対物レンズ40を組み合わせることによって、異なる次数の回折光を利用して、異なる基材厚(t1とt2)を有する光ディスク10、11上にそれぞれ回折限界にまで集光される集光スポットを形成することができる2焦点レンズを実現している。また、上記とは逆に、ホログラム40を、凸レンズ作用を有するように設計し、基材厚t1の光ディスク11に対して0次回折光を用い、基材厚t2を有する光ディスク10に対して+1次回折光を用いることによって、基材厚t2を有する光ディスク10の記録再生時の波長変動に対して、焦点位置変動を低減することも開示されている。

[0011]

他にも、異なる種類の光ディスクに対して複数の波長を有する光ビームを用いて互換再生することを目的とした構成が開示されている。第2の従来例として、波長選択位相板を対物レンズと組み合わせる構成が、特開平10-334504号公報やISOM2001のセッションWe-C-05(予稿集30頁)に開示されている。ISOM2001のセッションWe-C-05(予稿集30頁)に開示されている構成について、図26、図27Aおよび図27Bを参照して説明する。

[0012]

図26は、第2の従来例としての光へッド装置の概略構成を示す断面図である。図26において、波長λ1=405nmの青色光源(不図示)を有する青色光光学系51から出射した平行光は、ビームスプリッター161、波長選択位相板205を透過して、対物レンズ50によって、基材厚0.1mmの光ディスク9 (第3世代光ディスク:BD) の情報記録面に集光される。光ディスク9で反射した光は、逆の経路をたどって青色光光学系51の検出器(不図示)で検出される。一方、波長λ2=660nmの赤色光源(不図示)を有する赤色光光学系52から出射した発散光は、ビームスプリッター161で反射され、波長選択位相板205を透過して、対物レンズ50によって、基材厚0.6mmの光ディスク10 (第2世代光ディスク:DVD) の情報記録面に集光される。光ディスク10で反射した光は、逆の経路をたどって赤色光光学系52の検出器(不図示)で検出される

[0013]

対物レンズ50は、平行光の入射時に基材厚0.1mmを透過して集光されるように設計されており、よって基材厚0.6mmのDVDの記録・再生時には、基材厚の違いによって球面収差が発生する。この球面収差を補正するため、赤色光光学系52から出射する光ビームを発散光にすると共に、波長選択位相板205を用いている。対物レンズ50に発 50

散光を入射させると新たな球面収差が発生するので、基材厚の違いによって発生する球面 収差をこの新たな球面収差で打ち消すとともに、波長選択位相板205によっても波面を 補正している。

[0014]

図27Aおよび図27Bは、それぞれ、図26における波長選択位相板205の平面図および断面図である。波長選択位相板205は、波長 λ 1での屈折率をn1、 $h=\lambda$ 1/(n1-1)とした場合、高さh、3hの段差205aで構成される。波長 λ 1の光に対しては、高さhの段差により生じる光路差は使用波長 λ 1であり、これは位相差2 π に相当するため、位相差0と同じである。このため、高さhの段差は波長 λ 1の光ビームの位相分布に影響を与えず、光ディスク9(図26)の記録再生には影響を与えない。一方、波 10長 λ 2の光に対しては、波長 λ 2での波長選択位相板205の屈折率をn2とすると、h×(n2-1)/ λ 2 =0.6、すなわち波長の整数倍ではない光路差を生じる。この光路差による位相差を利用して、先に述べた収差補正を行っている。

[0015]

また、第3の従来例として、複数の対物レンズを機械的に切り替えて用いる構成が、特開 平11-296890号公報等に開示されている。

[0016]

さらに、第4の従来例として、異なる曲率半径を有する反射面を有するミラーが光軸を折り曲げる立ち上げミラーの機能も兼ねる構成が、特開平11-339307号公報に開示されている。

[0017]

第5の従来例としては、第1の従来例と同様に、屈折型の対物レンズとホログラムを組み合わせて、異なる波長の光の同じ次数の回折光に生じる色収差を利用して、基材厚の差を補正する構成が、特開平2000-81566号公報に開示されている。

[0018]

第6の従来例としては、図28に示すように、屈折型の対物レンズ281と、回折面と屈折面を有するホログラム282を組み合わせる構成が、西岡澄人らによる"BD/DVD/CD互換光ピックアップ技術"(第50回春季応用物理学関係連合講演会講演予稿集、27p-ZW-10(2003.3 神奈川大学))に記載されている(本願の優先権出願の出願後に公開)。この第6の従来例では、ホログラム282により、青色光ビームに対しては+2次回折光を、赤色光ビームに対しては+1次回折光を発生させて、色収差補正を行い、また、青色光ビームに対しては発散光を、赤色光ビームに対しては収束光をホログラム282と対物レンズ281に入射させることにより、異なる基材厚により発生する球面収差を補正している。

[0019]

【発明が解決しようとする課題】

上記第1の従来例の技術思想は、少なくとも以下の3点の技術思想を提案している。第1に、ホログラムの回折を利用して、基材厚の異なる光ディスクの互換を実現し、第2に、内外周の設計を変えることによって、NAの異なる集光スポットを形成し、第3に、ホログラムの回折を利用して、基材厚の異なる光ディスクに対して集光スポットの焦点位置を 40変化させる。これらの技術思想は、光源の発する光の波長を限定するものではない。

[0020]

ここで、第2世代の光ディスクであるDVDは、記録面を2面有する2層ディスクを含む。対物レンズに近い側の記録面(第1記録面)は、対物レンズから遠い面へも光を通す必要があるため、反射率は30%程度に設定される。ところが、この反射率は、赤色光に対してのみ保証されており、他の波長では保証されていない。従って、DVDの再生を確実に行うためには、赤色(波長 λ 2=630nm~680nm)の光を用いる必要がある。また、第3世代の光ディスクであるBDの記録、再生においては、集光スポット径を十分に小さくするため、青色(波長 λ 1=390nm~415nm)の光を用いる必要がある。このように、特に赤色と青色光を用いて異なる種類の光ディスクを互換する際に、光の50

利用効率をより高くする構成は、第1の従来例には開示されていない。

[0021]

また、第1の従来例では、ホログラムを凸レンズ型にして+1次回折光を利用し、1種類の光ディスクに対しては、波長変化による焦点位置移動を低減する実施例が開示されているが、2種以上の光ディスクに対して、それぞれ波長変化による焦点位置移動を同時に低減する方策は、開示されていない。

[0022]

第2の従来例では、互換素子として、波長選択位相板を用いている。基材厚の厚いディスクを記録再生する際には、記録面が対物レンズに対して、基材厚の分だけ遠くなるので、焦点距離を延ばす必要がある。焦点距離は、互換素子がレンズパワーを有することによっ 10 て伸ばすこともできるが、波長選択位相板にはレンズパワーがない。また、従来例2のように、赤色光を発散光にして、このレンズパワーをすべて実現しようとすると、トラック追従などによる対物レンズの移動時に、大きな収差が生じて、記録・再生特性が劣化する

[0023]

第3の従来例では、対物レンズを切り替えているので、複数の対物レンズを要し、部品点数が多くなると共に、光ヘッド装置の小型化が困難である。また、切り替え機構を要する点でも、装置の小型化を困難にする。

[0024]

第4の従来例では、対物レンズをミラーに対して独立に駆動している(特開平11-33 20 9307号公報の第4図から第6図を参照)。ところが、上述のような曲率半径を有するミラーによって光ビームを平行光から変換するので、対物レンズがトラック制御などによって移動すると、入射光波面に対する対物レンズの相対位置が変化し、収差が発生し、集光特性が劣化する。また、ミラーの反射面は、曲率半径を有する面、すなわち球面によって構成されているが、基材厚の差と波長の差を補正するためには球面では不十分であり、5次以上の高次収差を十分に低減することができない。

[0025]

第5の従来例では、これをそのまま赤色光ビームと青色光ビームに適用すると、波長差が大き過ぎるために、同じ次数の回折効率を同時に高くすることができず、光の利用効率が低下するという問題がある。

[0026]

第6の従来例では、青色光ビームに対しては発散光を、赤色光ビームに対しては収束光をホログラムと対物レンズに入射させているので、合焦時(すなわち、光ディスクの情報記録面に回折減界の集光スポットが形成されている状態)において、光ディスクから反射して戻ってきた光ビームも同様に、青色光ビームと赤色光ビームとで平行度が異なるものとなり、サーボ信号を検出するための光検出器を青色光ビームと赤色光ビームとで共用することができない。すなわち、2個以上の光検出器を必要とし、部品点数の増大とこれに伴うコストアップを招くという問題がある。

[0027]

本発明は、上記従来の問題点に鑑みてなされたものであり、その目的は、基材厚 $0.6m^{40}$ mで波長 λ 2 (標準的には約 6.60nm) の赤色光ビームに対応した光ディスクと、基材厚 0.1mmで波長 λ 1 (標準的には約 4.05nm) の青色光ビームに対応した光ディスクとの互換再生や互換記録を実現する、高い光利用効率を有する複合対物レンズを提供することにある。

[0028]

また、本発明の目的は、かかる複合対物レンズを用いた光ヘッド装置を塔載することで、 単一の光ヘッド装置によって、記録密度の異なる複数の光ディスクに対応できる光情報装 置を提供することにある。

[0029]

さらに、本発明の目的は、かかる光情報装置を内蔵することで、異なる種類の光ディスク 50

を用途に応じて選択して安定に情報の記録あるいは再生ができるコンピュータ、光ディス クプレーヤー、カーナビゲーションシステム、光ディスクレコーダー、光ディスクサーバ ーを提供することにある。

[0030]

【課題を解決するための手段】

前記の目的を達成するため、本発明に係る第1の複合対物レンズは、ホログラムと屈折型 レンズからなる複合対物レンズであって、ホログラムは、少なくとも一部領域内に形成さ れた階段状断面形状を有する格子を備え、階段状断面形状の段差は単位段差 d 1 の整数倍 であり、単位段差d1は、390nm~415nmの範囲内にある波長 λ 1 を有する第 1 光ビームに対して約1波長の光路差を与える段差であり、格子の一周期は、ホログラムの 10 外周側から光軸側に向かって単位段差 d 1 の 0 倍、 2 倍、 1 倍、 3 倍という順番の高さの 階段からなることを特徴とする。

[0031]

第1の複合対物レンズにおいて、格子の階段状断面形状の段差の幅の比が、単位段差dl の0倍、2倍、1倍、3倍という順番の高さにそれぞれ対応して、2:3:3:2である

[0032]

また、第1の複合対物レンズにおいて、格子は、ホログラムの内周部にのみ形成される。 [0033]

また、第1の複合対物レンズは、第1光ビームの0次回折光を、厚さt1の基材を通して 20 集光し、630nm~680nmの範囲内にある波長 λ 2 を有する第 2 光ビームの 1 次回 折光を、厚さt1より大きい厚さt2の基材を通して集光する。

[0034]

前記の目的を達成するため、本発明に係る第2の複合対物レンズは、ホログラムと屈折型 レンズからなる複合対物レンズであって、ホログラムは、少なくとも内周部に形成された 階段状断面形状を有する格子を備え、階段状断面形状の段差は単位段差d2の整数倍であ り、単位段差d2は、390nm~415nmの範囲内にある波長λ1を有する第1光ビ ームに対して約1. 25波長の光路差を与える段差であり、格子の一周期は、ホログラム の外周側から光軸側に向かって単位段差 d 2 の 0 倍、 1 倍、 2 倍、 3 倍という順番の高さ の階段からなることを特徴とする。

[0035]

第2の複合対物レンズにおいて、格子の階段状断面形状の段差の幅の比が、前記単位段差 d2の0倍、1倍、2倍、3倍という順番の高さにそれぞれ対応して、1:1:1:1で ある。

[0036]

また、第2の複合対物レンズにおいて、ホログラムは、外周部に形成された階段状断面形 状を有する格子を備え、外周部に形成された格子の階段状断面形状の段差は、単位段差d 3の整数倍であり、単位段差 d 3 は、第1光ビームに対して約0. 25波長の光路差を与 える段差であり、外周部に形成された格子の一周期は、ホログラムの外周側から光軸側に 向かって単位段差d3の0倍、1倍、2倍、3倍という順番の高さの階段からなる。

[0037]

また、第2の複合対物レンズは、第1光ビームの+1次回折光を、厚さt1の基材を通し て集光し、630 nm~680 nmの範囲内にある波長λ2を有しホログラムの内周部に 形成された格子を通る第2光ビームの-1次回折光を、厚さt1より大きい厚さt2の基 材を通して集光する。

[0038]

前記の目的を達成するため、本発明に係る第3の複合対物レンズは、ホログラムと屈折型 レンズからなる複合対物レンズであって、ホログラムは、少なくとも内周部に形成された 鋸歯状断面形状を有する格子を備え、鋸歯状断面形状の深さhlは、390nm~415 nmの範囲内にある波長 λ 1 を有する第 1 光ビームに対して約 2 波長の光路差を与えて+ 50

2次回折光を最も強く発生させる深さであり、 $630nm\sim680nm$ の範囲内にある波長 λ 2 を有する第2 光ビームに対して +1 次回折光を最も強く発生させる深さであることを特徴とする。

[0039]

前記の目的を達成するため、本発明に係る第4の複合対物レンズは、ホログラムと屈折型レンズからなる複合対物レンズであって、ホログラムは、少なくとも内周部に形成された鋸歯状断面形状を有する格子を備え、鋸歯状断面形状の深さ h 2 は、6 3 0 nm~6 8 0 nmの範囲内にある波長 λ 2を有する第2光ビームに対して約1波長の光路差を与えて+1次回折光を最も強く発生させる深さであり、3 9 0 nm~4 1 5 nmの範囲内にある波長 λ 1を有する第1光ビームに対して+2次回折光を最も強く発生させる深さであることを特徴とする。

[0040]

前記の目的を達成するため、本発明に係る第5の複合対物レンズは、ホログラムと屈折型レンズからなる複合対物レンズであって、ホログラムは、少なくとも内周部に形成された鋸歯状断面形状を有する格子を備え、鋸歯状断面形状の深さh4は、390nm~415nmの範囲内にある波長λ1を有する第1光ビームに対して1.7波長より大きく2波長より小さい光路差を与えて+2次回折光を最も強く発生させる深さであり、630nm~680nmの範囲内にある波長λ2を有する第2光ビームに対して+1次回折光を最も強く発生させる深さであることを特徴とする。

[0041]

第5の複合対物レンズにおいて、鋸歯状断面形状の深さh4は、第1光ビームに対して1.9波長の光路差を与える深さであることが好ましい。

[0042]

前記の目的を達成するため、本発明に係る第6の複合対物レンズは、ホログラムと屈折型レンズからなる複合対物レンズであって、ホログラムは、390mm~415mmの範囲内にある波長λ1を有する第1光ビームに対しては+2次回折光を最も強く発生させ、630mm~680mmの範囲内にある波長λ2を有する第2光ビームに対しては+1次回折光を最も強く発生させ、屈折型レンズは、ホログラムを介した第1光ビームの+2次回折光を、厚さt1の基材を通して集光し、ホログラムの内周部を介した第2光ビームの+1次回折光を、厚さt1よりも大きい厚さt2の基材を通して集光することを特徴とする

[0043]

第3から第6の複合対物レンズにおいて、ホログラムは、外周部に形成された鋸歯状断面 形状を有する格子を備え、外周部に形成された格子の鋸歯状断面形状の深さ h 3 は、第1 光ビームに対して約1波長の光路差を与えて+1次回折光を最も強く発生させる深さであ り、第2光ビームに対しても+1次回折光を最も強く発生させる深さである。

[0044]

第2から第6の複合対物レンズにおいて、第1光ビームを厚さ t 1の基材を通して集光する場合に、ホログラムは、波長λ1の変化に対する焦点距離の変化を低減するために、凸レンズとして作用するように構成される。

[0045]

第1から第6の複合対物レンズにおいて、ホログラムは、光ディスク側の焦点位置を複合対物レンズから離すために、第1光ビームを厚さt1の基材を通して集光する場合に、ホログラムの内周部を通る第2光ビームを、厚さt2の基材を通して集光する場合よりも、凸レンズとしての作用が大きくなるように、あるいはホログラムの内周部を通る第2光ビームを、厚さt2の基材を通して集光する場合に、第1光ビームを厚さt1の基材を通して集光する場合よりも、凸レンズとしての作用が小さくなるように構成される。これにより、光ディスク側の焦点位置を複合対物レンズから離す、すなわちワーキングディスタンスを広げることができる。

[0046]

50

第3から第6の複合対物レンズにおいて、ホログラムを構成する格子の断面形状は、ホログラムを形成する基材が外周側に斜面を有する鋸歯形状である。

[0047]

第1から第6の複合対物レンズにおいて、ホログラムと屈折型レンズは一体固定されることが好ましい。

[0048]

または、第1から第6の複合対物レンズにおいて、屈折型レンズは、集光スポットと反対 側の屈折面が非球面であることが好ましい。この場合、ホログラムは、屈折型レンズの非 球面に一体形成されることが好ましい。

[0049]

または、第1から第6の複合対物レンズにおいて、ホログラムは、屈折型レンズの表面に 一体形成されることが好ましい。

[0050]

第1から第6の複合対物レンズにおいて、第1光ビームが厚さt1の基材を通して集光される開口数をNAb、前記第2光ビームが厚さt2の基材を通して集光される開口数をNArとした場合、NAb>NArである。

[0051]

前記の目的を達成するため、本発明に係る光ヘッド装置は、390nm~415nmの範囲内にある波長 λ 1を有する第1光ビームを出射する第1レーザー光源と、630nm~680nmの範囲内にある波長 λ 2を有する第2光ビームを出射する第2レーザー光源と 20、第1レーザー光源から出射される第1光ビームを受けて、厚さt1の基材を通して第1光ディスクの記録面上に集光し、第2レーザー光源から出射される第2光ビームを受けて、厚さt1よりも大きい厚さt2の基材を通して第2光ディスクの記録面上に集光する、第1から第6の複合対物レンズのいずれか1つと、第1および第2光ディスクの記録面上でそれぞれ反射された第1および第2光ビームを受けて、その光量に応じた電気信号を出力する光検出器とを具備したことを特徴とする。

[0052]

本発明に係る光ヘッド装置は、第1および第2レーザー光源からそれぞれ出射された第1 および第2光ビームを平行光にするコリメートレンズを具備し、第2光ビームを第2光ディスクの記録面上に集光する際には、コリメートレンズを第2レーザー光源側に近づけて 30 、第2光ビームを拡散光にして複合対物レンズに入射させることにより、第2光ディスク側の焦点位置を複合対物レンズから離すことが好ましい。

[0053]

本発明に係る光ヘッド装置において、第1および第2レーザー光源は、その発光点が両方とも、複合対物レンズの第1および第2光ディスク側の焦点位置に対して結像関係にあるように配置され、光検出器は、第1および第2光ディスクの記録面上でそれぞれ反射された第1および第2光ビームに対して共通に設けられ、第1および第2光ビームを受けてサーボ信号を検出する。

(0054)

前記の目的を達成するため、本発明に係る光情報装置は、本発明に係る光ヘッド装置と、 第1および第2光ディスクを回転するモーターと、光ヘッド装置から得られる信号を受けて、該信号に基づいてモーター、複合対物レンズ、第1および第2レーザー光源を駆動制御する電気回路とを具備したことを特徴とする。

[0055]

本発明に係る光情報装置において、光ヘッド装置は、第1および第2レーザー光源からそれぞれ出射された第1および第2光ビームを平行光にするコリメートレンズを具備し、本発明に係る光情報装置は、基材の厚さt2が0.6mmである第2光ディスクが装填された場合に、コリメートレンズを第2レーザー光源側に移動制御する。

[0056]

前記の目的を達成するため、本発明に係るコンピュータは、本発明に係る光情報装置と、

情報を入力するための入力手段と、入力手段から入力された情報、および光情報装置から 再生された情報に基づいて演算を行う演算装置と、入力手段から入力された情報、光情報 装置から再生された情報、および演算装置によって演算された結果を表示あるいは出力す るための出力手段とを備えたことを特徴とする。

[0057]

前記の目的を達成するため、本発明に係る光ディスクプレーヤーは、本発明に係る光情報装置と、光情報装置から得られる情報信号を画像信号に変換するデコーダとを備えたことを特徴とする。

[0058]

前記の目的を達成するため、本発明に係るカーナビゲーションシステムは、本発明に係る 10 光情報装置と、光情報装置から得られる情報信号を画像信号に変換するデコーダとを備えたことを特徴とする。

[0059]

前記の目的を達成するため、本発明に係る光ディスクレコーダーは、本発明に係る光情報装置と、画像信号を光情報装置に記録する情報信号に変換するエンコーダとを備えたことを特徴とする。

[0060]

前記の目的を達成するため、本発明に係る光ディスクサーバーは、本発明に係る光情報装置と、外部から入力された情報信号を光情報装置に記録し、また光情報装置から再生された情報信号を外部に出力するための入出力端子とを備えたことを特徴とする。

[0061]

【発明の実施の形態】

以下、本発明の好適な実施の形態について、図面を参照して説明する。

[0062]

(実施の形態1)

図1は、本発明の実施の形態1による光ヘッド装置の一構成例を示す断面図である。図1において、1は波長λ1(390nm~415nm:標準的には405nmが多くの場合用いられるので、390nm~415nmの波長を総称して約405nmと呼ぶ)を有する第1光ビームを出射する第1レーザー光源としての青色レーザー光源、20は波長λ2(630nm~680nm:標準的には660nmが多くの場合用いられるので、630nm~680nmの波長を総称して約660nmと呼ぶ)の第2光ビームを出射する第2レーザー光源としての赤色レーザー光源、8はコリメートレンズ、12は光軸を折り曲げる立ち上げミラー、13はホログラム(回折型の光学素子)、14は屈折型レンズとしての対物レンズである。ここで、ホログラム13と対物レンズ14とで、本実施の形態における複合対物レンズが構成される。

[0063]

9は基材厚み t 1が約0.1mm (0.06mm~0.11mmの基材厚を約0.1mm と呼ぶ)あるいはより薄い基材厚みで、波長 λ 1の第1光ビームによって記録・再生をされる第3世代の光ディスクであるBD (第1光ディスク)、10は基材厚み t 2が約0.6mm (0.54mm~0.65mmの基材厚を約0.6mmと呼ぶ)で、波長 λ 2の第 402光ビームによって記録・再生をされるDVD等の第2世代の光ディスク (第2光ディスク)である。第1光ディスク 9 および第2光ディスク 10 は、光の入射面から記録面までの基材のみを図示しているが、実際には、機械的強度を補強し、また外形をCDと同じ1.2mmにするため、保護板が張り合わせられる。第2光ディスク 10 には、厚み 0.6mmの保護材が張り合わせられる。第1光ディスク 9 には、厚み 1.1mmの保護材が張り合わせられる。各実施の形態を通じて参照する図面では、例示を簡単にするため、保護材は省略する。

[0064]

青色レーザー光源1および赤色レーザー光源20は、好ましくは半導体レーザー光源とすることにより、光ヘッド装置、及びこれを用いた光情報装置を小型化、軽量化、低消費電 50

30

力化することができる。

[0065]

最も記録密度の高い第1光ディスク9の記録再生を行う際には、青色レーザー光源1から出射した波長 λ 1 の青色光ビーム 6 1 がビームスプリッター4 によって反射され、1/4 波長板 5 によって円偏光になる。1/4 波長板 5 は、波長 λ 1 の青色光ビーム 6 1 および波長 λ 2 の赤色光ビーム 6 2 の両方に対して、1/4 波長板として作用するように設計されている。1/4 波長板 5 を通過した青色光ビーム 6 1 は、コリメートレンズ 8 によって略平行光にされ、さらに立ち上げミラー12 によって光軸を折り曲げられ、ホログラム 1 3 と対物レンズ 1 4 によって、第1光ディスク 9 の厚さ約 0 . 1 mmの基材を通して情報記録面 9 1(図 2 参照)に集光される。

[0066]

情報記録面91で反射した青色光ビーム61は、もとの光路を逆にたどって(復路)、1/4波長板5によって初期とは直角方向の直線偏光になり、ビームスプリッター4をほぼ全透過し、ビームスプリッター16で全反射され、検出ホログラム31によって回折され、さらに検出レンズ32によって焦点距離を伸ばされて、光検出器33に入射する。光検出器33からの出力信号を演算することによって、焦点制御やトラッキング制御に用いるサーボ信号や情報信号が得られる。

[0067]

上記のように、ビームスプリッター4は、波長 λ 1の青色光ビームに対しては、一方向の直線偏光を全反射し、それと直角方向の直線偏光を全透過する偏光分離膜である。またビ 20 ームスプリッター4は、後で述べるように、波長 λ 2の赤色光ビームに対しては、赤色レーザー光源20から出射する赤色光ビーム62を全透過する。このように、ビームスプリッター4は、偏光特性と共に波長選択性を有する光路分岐素子である。

[0068]

次に、第2光ディスク10の記録あるいは再生を行う際には、赤色レーザー光源20から出射した略直線偏光で波長λ2の赤色光ビーム62が、ビームスプリッター16とビームスプリッター4を透過し、コリメートレンズ8によって略平行光にされ、さらに立ち上げミラー12によって光軸を折り曲げられ、ホログラム13と対物レンズ14によって第2光ディスク10の厚さ約0.6mmの基材を通して情報記録面101(図2参照)に集光される。

[0069]

情報記録面101で反射した赤色光ビームは、もとの光路を逆にたどって(復路)、ビームスプリッター4をほぼ全透過し、ビームスプリッター16で全反射され、検出ホログラム31によって回折され、さらに検出レンズ32によって焦点距離を伸ばされて、光検出器33に入射する。光検出器33からの出力信号を演算することによって、焦点制御やトラッキング制御に用いるサーボ信号や情報信号が得られる。

[0070]

上記のように、共通の光検出器33から、第1光ディスク9と第2光ディスク10のサーボ信号を得るためには、青色レーザー光源1と赤色レーザー光源20は、それらの発光点が対物レンズ14側の共通の位置に対して結像関係にあるように配置される。これにより 40、光検出器の数も配線数も減らすことができる。

[0071]

ビームスプリッター16は、波長λ2の赤色光ビーム62に対して、一方向の直線偏光を全透過し、それと直角方向の直線偏光を全反射する偏光分離膜である。またビームスプリッター16は、波長λ1の青色光ビーム61を全透過する。このように、ビームスプリッター16も、ビームスプリッター4と同様に、偏光特性と共に波長選択性を有する光路分岐素子である。

[0072]

図2は、図1のホログラム13と対物レンズ14からなる複合対物レンズの具体例を示す 断面図である。図2において、131は回折型の光学素子としてのホログラムである。ホ 50 ログラム131は、波長λ1の青色光ビーム61は回折することなく多くの光量を透過し、波長λ2の赤色光ビーム62に対しては、後に説明するように回折を起こす。なお、回折素子を透過する際に回折を受けていない光を0次回折光とも呼ぶので、以下、0次回折光と表記する。

[0073]

ホログラム131は、波長 λ 1の青色光ビーム61を0次回折光として透過させるので、 青色光ビーム61に対して波面の変換は行わない。従って、対物レンズ141は、波長 λ 1の略平行な青色光ビーム61を、第1光ディスク9の厚さt1の基材を通して情報記録 面91上へ集光するように設計される。ホログラム131が青色光ビーム61に対して波 面変換を行わないので、第1光ディスク9の記録・再生の観点からは、ホログラム131 と対物レンズ141の相対位置を高精度にする必要がなくなる。最も波長が短く、最も高 い記録密度の第1光ディスク9に対して記録再生を行う波長 λ 1の青色光ビーム61に対 して、対物レンズ141とホログラム131の許容位置誤差を大きくでき、後で述べるよ うに、より波長の長い光ビームによってより低い記録密度の光ディスクの記録再生を行う 場合において、ホログラム131と対物レンズ141の相対位置を考慮すればよい。従っ て、相対位置の許容誤差量をより大きくすることができ、生産性の優れた光へッド装置を 構成することが可能である。

[0074]

次に、赤色光ビーム 62 を用いて光ディスク 10 の記録、再生を行う際のホログラム 13 1の働きを詳細に説明する。ホログラム 13 1は、波長 λ 1 の青色光ビーム 6 1 を 0 次光 20 として透過し、波長 λ 2 の赤色光ビーム 6 2 は回折する。そして、対物レンズ 1 4 1 は、赤色光ビーム 6 2 を第 2 光ディスク 1 0 の厚さ約 0. 6 mmの基材を通して情報記録面 1 0 1 に集光する。ここで、第 2 ディスク 1 0 は、その光入射面から情報記録面 1 0 1 1 までの基材厚が 0. 6 mmと厚くなっており、そのため基材厚 0. 1 mmの第 1 光ディスク 9 の記録、再生を行う場合の焦点位置よりも焦点位置を対物レンズ 1 4 1 から離す必要がある。図 2 に示すように、波面変換によって、赤色光ビーム 6 2 を発散光にすることで、この焦点位置の補正と基材厚の差による球面収差の補正を実現している。

[0075]

波長λ2の赤色光ビーム62は、ホログラム131によって、波面の変換を受ける。従って、ホログラム131と対物レンズ141の相対位置に誤差があると、設計通りの波面が 30 対物レンズ141に入射せず、第2光ディスク10へ入射する波面に収差が生じ、集光特性が劣化する。そこで、望ましくは、ホログラム131と対物レンズ141を支持体34によって一体に固定し、あるいはホログラム131を対物レンズ141表面に直接形成することにより、焦点制御やトラッキング制御に際しては、共通の駆動手段15 (図1) によって一体に駆動を行う。

[0076]

図3 A は、ホログラム 1 3 1 の構造を示す平面図で、図3 B は、ホログラム 1 3 1 の構造を示す、図2 と同様の断面図である。ホログラム 1 3 1 は、内外周境界 1 3 1 A の内側(内周部 1 3 1 C) と外側(内外周境界 1 3 1 A と有効範囲 1 3 1 D との間の外周部 1 3 1 B) とで異なる構造を有する。内周部 1 3 1 C は、ホログラム 1 3 1 と光軸との交点、すなわち中心を含む領域である。この領域は、赤色光ビーム 6 2 を用いて第 2 光ディスク 1 0 の記録、再生を行う際も、青色光ビーム 6 1 を用いて第 1 光ディスク 9 の記録、再生を行う際も使用される。

[0077]

従って、内周部131Cに、同心円状の回折格子が形成される。外周部131Bについては、第1光ディスク9を青色光ビーム61によって記録、再生するときの開口数NAbが、第2光ディスク10を赤色光ビーム62によって記録、再生するときの開口数NArよりも大きい(NAb>NAr)必要があるので、青色光ビーム61および赤色光ビーム62をそれぞれ対応する第1光ディスク9と第2光ディスク10に対して集光する内周部131Cの周囲に、青色光ビーム61のみを第1光ディスク9に対して集光し、赤色光ビー 50

ム62は第2光ディスク10に対して収差を有するような外周部131Bを設ける必要がある。

[0078]

本実施の形態では、外周部131Bにはホログラムを形成しない。外周部131Bを透過した青色光ビーム61が、第1光ディスク9に対して約0.1mmの基材を透過した後に集光されるように、対物レンズ141を設計することにより、外周部131Bを通る赤色光ビーム62は、第2光ディスク10に対して絞られず、NAb>NArの条件を実現できる。

[0079]

図4 A および図4 B は、それぞれ、図3 A に示すホログラム 131 の内周部 131 C に形成される格子の一周期(p1)間の物理的な段差を示す断面図、および図4 A に対応した赤色光ビーム 62 (波長 λ 2) に対する位相変調量を示す図である。ここで、本実施の形態によるホログラム 131 は、レンズ作用を有するものであり、格子ピッチは局所的に変化している。なお、格子ピッチは、ホログラム 131 上の任意の点におけるものを代表として取り上げているに過ぎない。以下、他の実施の形態でも同じである。図4 A および図4 B において、下側がホログラム基材側(屈折率の高い側)、上側が空気側(屈折率の低い側)を表している。以下、類似の図面では同じ定義を用いる。

[0800]

図4Aにおいて、縦方向は段差を示している。このように、矩形形状を組み合わせたような形状を、本願では、階段状の形状と呼ぶ。nbは、青色光ビーム61(波長λ1)に対 20 するホログラム材料の屈折率である。ホログラム材料を、例えばBK7とすると、nb=1.5302である。ここでは、単に一例としてBK7を例示する。他のガラス材料、さらには、ポリカーボネイトや、ポリシクロオレフィン系の樹脂材料を用いることも可能である。このことは、以下の実施の形態においても同様である。

[0081]

格子の段差を単位段差 d 1 の整数倍にし、階段状の断面形状にすると、この形状による青色光ビーム 6 1 に対する位相変調量は 2 π の整数倍となり、これは実質的に、位相変調が 30 無いことになる。

[0083]

一方、赤色光ビーム 6 2 に対するホログラム材料の屈折率を n r とすると、ホログラム材料が B K 7 の場合は、 n r = 1. 5 1 4 2 なので、単位段差 d 1 によって赤色光ビーム 6 2 に発生する光路長差は、 d 1 × (n r - 1) / λ 2 = 0. 5 9 5、すなわち、波長 λ 2 の約 0. 6 倍となる。

[0084]

そこで、図4Aに示すように、右から、段差をd1の0倍、2倍、1倍、3倍の順にした階段形状とすると、まず、上記の説明の通り、青色光ビーム61に対しては、原理的には位相変調が起こらず、回折が起こらない、すなわち0次回折光が最も強くなる。そして、赤色光ビーム62に対しては光路長差が、波長 λ 2の0倍、1.2倍、0.6倍、1.8倍の順の階段形状に変化するが、このうち整数倍は位相変調がないのと同じことなので、実質的には、波長 λ 2の、0倍、0.2倍、0.6倍、0.8倍の順の階段形状に変化することとなり、図4Bに示したようになる。このような階段形状の変化に対して、さらに、一周期の中での各階段の幅を変化させて回折効率を計算したところ、図4Aに示すように、階段幅の比を約2:3:3:2としたときに、赤色光ビーム62の+1次回折光の回折効率が最も高くなり、スカラー計算によると、約75%得られることがわかった。

[0085]

なお、ここで言う階段幅の比は、周囲の格子ピッチが一定の時はそのまま物理長の比になるが、周囲の格子ピッチが急激に変化しているときはその変化に合わせて、変化させるこ 50

とが望ましい。後から述べる実施の形態でもこの点は同じである。青色光ビーム61に対 しては位相変調が起こらず、赤色光ビーム62に対しては回折させる階段状の構造は、第 2の従来例として挙げた特開平10-334504号公報やISOM2001のセッショ ンWe-C-05(予稿集30頁)にも開示されているが、本実施の形態のように、段差 を単位段差d1の0倍、2倍、1倍、3倍の順にした階段形状にすること、また階段幅の 比を約2:3:3:2とすることは示されていない。

[0086]

本実施例の構成により、まず、段差を単位段差 d 1 の 3 倍までという、 4 段の階段形状と しては最小とすることで、製作誤差や、階段の壁面(図の上下方向に切り立つ面)による 光量損失を最小限に抑えると共に、最適な階段幅の比を見いだすことによって、赤色光ビ 10 ーム62の+1次回折光の光量を多くでき、特に記録光量の確保に有利であるが、従来例 では、このような効果を得ることはできない。

[0087]

さらに、光ヘッド装置の全体構成として、下記に付加的に有効な構成例を示す。下記は、 すべての実施の形態において有効である。ただし、本実施の形態の重要な点は、第1光デ ィスク9と第2光ディスク10の互換再生・記録を実現するためのホログラム13 (本実 施の形態では131)と、これに組み合わせて用いる対物レンズ14(本実施の形態では 141) にあり、それ以外に説明する構成は下記を含め、すでに説明した構成でも、ビー ムスプリッター16や、検出レンズ32、検出ホログラム31は必須の要素ではなく、好 ましい構成としてそれぞれ効果を有するものの、それ以外の構成も適宜使用可能である。 [0088]

図1において、3ビーム格子(回折素子)3をさらに青色レーザー光源1からビームスプ リッター4までの間に配置することにより、第1光ディスク9のトラッキングエラー信号 を、よく知られたディファレンシャルプッシュプル(DPP)法によって検出することも 可能である。

[0089]

また、光軸に対して垂直な2方向をx方向とy方向と定義した場合、例えばx方向のみを 拡大するようなビーム整形素子2をさらに青色レーザー光源1からビームスプリッター4 までの間に配置することにより、青色光ビーム61の遠視野像を、光軸を中心に点対称系 に近い強度分布に近づけることができ、光の利用効率の向上を図ることができる。ビーム 30 整形素子2は、両面シリンドリカルレンズなどを用いることによって構成可能である。

[0090]

3ビーム格子(回折素子)22をさらに赤色レーザー光源20からビームスプリッター1 6までの間に配置することにより、第2光ディスク10のトラッキングエラー信号を、よ く知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能で ある。

[0091]

また、コリメートレンズ8を光軸方向(図1の左右方向)へ動かすことにより、光ビーム の平行度を変化させることも有効である。基材の厚さ誤差や、第1光ディスク9が2層デ ィスクの場合に層間厚さに起因する基材厚さがあると、球面収差が発生するが、このよう にコリメートレンズ8を光軸方向に動かすことによって、その球面収差を補正することが できる。このように、コリメートレンズ8を動かすことによる球面収差の補正は、第1光 ディスク9に対する集光光の開口数NAが0.85の場合に数100mぇ程度可能であり 、±30μmの基材厚さを補正することもできる。

[0092]

しかし、基材厚0.1mmに対応した対物レンズ14を用いて、DVDの記録・再生を行 う際には基材厚差を 0. 5 mm以上補償する必要があり、コリメートレンズ 8 の移動だけ では球面収差の補正能力が不足であり、ホログラム13(一例として131)による波面 変換が必要である。ただし、赤色光ビーム62を用いて第2光ディスク10の記録・再生 を行う場合に、コリメートレンズ8を図1の左側、すなわち赤色レーザー光源20へ近い 50

側に移動しておくことによって、対物レンズ14へ向かう赤色光ビーム62を発散光にし 、第2光ディスク10に対する集光スポットをより対物レンズ14から離すと共に、基材 厚さによる収差の一部を補正し、ホログラム13に求められる収差補正量を低減してホロ グラムピッチを広くし、ホログラム13の作成を容易にすることもできる。

[0093]

さらに、ビームスプリッター4を、青色レーザー光源1から出射する直線偏光の光を一部 (例えば、10%程度) 透過するよう構成にして、透過した光ビームをさらに集光レンズ 6によって光検出器7へ導くことで、光検出器7から得られる信号を用いて青色レーザー 光源1の発光光量変化をモニターしたり、さらに、その光量変化をフィードバックして、 青色レーザー光源1の発光光量を一定に保つ制御を行うこともできる。

[0094]

さらに、ビームスプリッター4を、赤色レーザー光源20から出射する直線偏光の光を一 部(例えば、10%程度)反射するように構成して、反射した光ビームをさらに集光レン ズ6によって光検出器7へ導くことで、光検出器7から得られる信号を用いて赤色レーザ ー光源20の発光光量変化をモニターしたり、さらに、その光量変化をフィードバックし て、赤色レーザー光源20の発光光量を一定に保つ制御を行うこともできる。

[0095]

また、図2に示すように、青色光ビーム61を第1光ディスク9に対して集光する際の開 口数(NA)を所望の値(約0.85)にするために、開口制限手段341を設けること が有効である。特に、支持体34を用いて対物レンズ141とホログラム131を一体的 20 に固定し、これを駆動手段15(図1)によって移動する場合には、支持体34の形状を 例えば図2のような形状にして、開口制限手段341を一体形成して兼ねると、部品点数 を削減できる。

[0096]

また、図2において、対物レンズ14(一例として141)の、第2光ディスク10に近 い側であって、光軸から離れていて青色光ビーム61が通らない部分を切り取る(切り欠 き部1411を形成する)、あるいは、はじめから部材のない形に形成することにより、 カートリッジに入った光ディスクの記録あるいは再生時に、カートリッジへの対物レンズ 14の接触を防止することもできる。

[0097]

(実施の形態2)

次に、本発明の実施の形態 2 について説明する。本実施の形態による光ヘッド装置の全体 構成は、実施の形態1の説明で参照した図1に示す構成と同じである。本実施の形態では 、図1に示すホログラム13と対物レンズ14の構成が実施の形態1とは異なる。

[0098]

図5は、図1に示すホログラム13と対物レンズ14からなる複合対物レンズの具体例を 示す断面図である。図5において、132はホログラムである。ホログラム132は、波 長 λ 1 の 青色光ビーム 6 1 を回折させて、凸レンズ作用を及ぼし、波長 λ 2 の赤色光ビー ム62に対しては、後述するように、回折させて凹レンズ作用を及ぼす。ここでは、凸レ ンズ作用を及ぼす最も低次の回折を+1次回折と定義する。すると、赤色光ビーム62は 40 、+1次回折光と共役な、すなわちホログラム132上の各点における回折方向が逆の-1次回折によって、凹レンズ作用を受ける。

[0099]

対物レンズ142は、波長11の青色光ビーム61がホログラム132によって回折され 凸レンズ作用を受けた後、さらに青色光ビーム61を収束させて第1光ディスク9の厚さ 約0.1mmの基材を通して情報記録面91上へ集光するように設計される。

[0100]

次に、赤色光ビーム62を用いて第2光ディスク10の記録・再生を行う際のホログラム 132の働きを詳細に説明する。ホログラム132は、波長λ2の赤色光ビーム62を一 1次回折して、凹レンズ作用を及ぼす。そして、対物レンズ142は、赤色光ビーム62 50

を、第2光ディスク10の厚さ約0.6mmの基材を通して情報記録面101に集光する。ここで、第2ディスク10はその光入射面から情報記録面101までの基材厚が0.6mmと厚くなっており、基材厚0.1mmの第1光ディスク9を記録再生する場合の焦点位置よりも焦点位置を対物レンズ142より離す必要がある。図5に示すように、波面変換によって、青色光ビーム61を収束光にし、赤色光ビーム62を発散光にすることにより、この焦点位置補正と基材厚差による球面収差の補正を実現している。

[0101]

波長 λ 1 の青色光ビーム 6 1 と波長 λ 2 の赤色光ビーム 6 2 は、いずれもホログラム 1 3 2 によって波面の変換を受ける。従って、ホログラム 1 3 2 と対物レンズ 1 4 2 の相対位置に誤差があると、設計通りの波面が対物レンズ 1 4 2 に入射せず、第 1 光ディスク 9 や 10 第 2 光ディスク 1 0 へ入射する波面に収差が生じ、集光特性が劣化する。そこで、望ましくは、ホログラム 1 3 2 と対物レンズ 1 4 2 を一体に固定し、焦点制御やトラッキング制御に際しては、共通の駆動手段 1 5 (図 1) によって一体に駆動を行う。

[0102]

図6 A は、ホログラム132の構造を示す平面図で、図6 B は、ホログラム132の構造を示す、図5と同様の断面図である。ホログラム132は、内外周境界132Aの内側(内周部132C)と外側(内外周境界132Aと有効範囲132Dの間の外周部132B)とで異なる構造を有する。内周部132Cは、ホログラム132と光軸との交点、すなわち中心を含む領域である。この領域は、赤色光ビーム62を用いて第2光ディスク10の、記録・再生を行う際も、青色光ビーム61を用いて第1光ディスク9の記録・再生を行う際も使用される。従って、内周部132Cの回折格子と、ここから回折される赤色光ビーム62が通過する対物レンズ142の部分は、青色光ビーム61の+1次回折光を第1光ディスク9に、赤色光ビーム62の-1次回折光を第2光ディスク10に集光するように設計される。

[0103]

外周部132Bについては、第1光ディスク9を青色光ビーム61によって記録・再生するときの開口数NAbが、第2光ディスク10を赤色光ビーム62によって記録・再生するときの開口数NArよりも大きい(NAb>NAr)必要があるので、青色光ビーム61および赤色光ビーム62をそれぞれ対応する第1光ディスク9と第2光ディスク10に対して集光する内周部の周囲に、青色光ビーム61の+1次回折光のみを第1光ディスク9に対して集光し、赤色光ビーム62の−1次回折光は第2光ディスク10に対して収差を持つように、外周部132Bおよび、これに対応する対物レンズ142の外周部を設ける必要がある。すなわち、図示しないが、対物レンズ142もホログラム132と同様に、内外周によって、異なる設計をすることが望ましい。これによって、最適なNAすなわち、NAb>NArの条件を実現できる。

[0104]

図7A、図7B、および図7Cは、それぞれ、ホログラム132に形成される格子の一周期 (p2) 間の物理的な段差を示す断面図、図7Aに対応した青色光ビーム61 (波長 λ 1) に対する位相変調量を示す図、および図7Aに対応した赤色光ビーム62 (波長 λ 2) に対する位相変調量を示す図である。

[0105]

[0106]

格子の段差を単位段差 d 2 の整数倍にし、 4 段で階段幅の比が 1:1:1:1:1 の階段状の断面形状にすると、この形状による青色光ビーム 6 1 に対する位相変調量は $2\pi + \pi / 2$ の整数倍となり、これは実質的に、位相変調量が一段あたり $\pi / 2$ であることになる。

[0107]

一方、赤色光ビーム 6 2 に対するホログラム材料の屈折率をn r とすると、ホログラム材料がBK7の場合は、n r = 1. 5 1 4 2 であるので、単位段差 d 2 によって赤色光ビーム 6 2 に発生する光路長差は、d 2 × (n r - 1) / λ 2 = 0. 7 4 4、すなわち、波長 λ 2 の約 3 / 4 倍となり、位相変調量は一段あたり約 - π / 2 となる。

[0108]

そこで、図7Aのように、格子の段差を単位段差 d 2 の整数倍にし、4 段の階段状の断面形状にすると、青色光ビーム 6 1 に対しては、段差を重ねていくと、図7Bに示すように、位相変調量が一段あたり π / 2 ずつ変化する、すなわち光路長差は λ 1 の + 0 . 2 5 倍ずつ変化する。段差の物理的形状を図7Aのように作ると、青色光ビーム 6 1 は、凸レン 「20 ズ作用を受ける + 1 次回折光の回折効率が約80%と計算(スカラー計算)され、回折次数の中で、最も強くなる。

[0109]

[0110]

本実施の形態で説明した、一段あたり波長の1.25倍の光路長差を生じるような階段状 20 の断面形状を有するホログラム構成により、それぞれ50%以上の回折効率を有する+1 次回折光と-1次回折光を利用した異種ディスクの互換記録・再生については、先に挙げたいずれの従来例にも開示されていない。

[0111]

本実施の形態では、上記の新規な構成により、青色光ビーム 6 1 と赤色光ビーム 6 2 はその回折次数がそれぞれ + 1 次回折光と - 1 次回折光となり、その次数差が 2 となる。従って、同じ収差補正効果や、焦点位置の移動効果を発揮させるために必要なホログラムの最小ピッチを、実施の形態 1 のそれよりも広くでき、ホログラムを容易に製作でき、また計算通りの回折光量を得やすくできる。

[0112]

また、青色光ビーム61に対しては、ホログラム132が凸レンズ作用を有する。回折作用は、色分散が屈折作用とは逆方向であるので、屈折型の凸レンズである対物レンズ142と組み合わせたときに、数nm以内の波長変化に対する色収差、とりわけ焦点距離の波長依存性を相殺し低減できるという利点がある。

[0113]

さらに、光ヘッド装置の全体構成としては、実施の形態1において付加的に述べた構成を 組み合わせることも可能である。

[0114]

(実施の形態3)

次に、本発明の実施の形態3について説明する。本実施の形態による光ヘッド装置の全体 40構成は、実施の形態1の説明で参照した図1に示す構成と同じである。本実施の形態では、図1に示すホログラム13の構成が実施の形態1、2とは異なる。

[0115]

図8Aおよび図8Bは、それぞれ、図1に示すホログラム13の具体例を示す平面図および断面図である。図8Aおよび図8Bにおいて、133はホログラムである。ホログラム133の内周部133Cは、実施の形態2で例示および説明したホログラム132の内周部132Cと同じである。また、外周部133Bの格子ピッチも、実施の形態2で例示および説明したホログラム132の外周部132Bと同じであるが、図8Bに示すように、外周部133Bに形成された格子の断面形状が異なる。

[0116]

50

図9A、図9B、および図9Cは、それぞれ、ホログラム133の外周部133Bに形成される格子の一周期 (p3) 間の物理的な段差を示す断面図、図9Aに対応した青色光ビーム61 (波長 λ 1) に対する位相変調量を示す図、および図9Aに対応した赤色光ビーム62 (波長 λ 2) に対する位相変調量を示す図である。

[0117]

図9Aにおいて、縦方向は段差を示している。 n b は、青色光ビーム 6 1 に対するホログラム材料の屈折率である。ホログラム材料を、例えばBK7とすると、 n b = 1.5302である。

[0118]

[0119]

一方、赤色光ビーム 6 2 に対するホログラム材料の屈折率を n r とすると、ホログラム材料が B K 7 の場合は、 n r = 1 . 5 1 4 2 であるので、単位段差 d 3 によって赤色光ビーム 6 2 に発生する光路長差は、 d 3 \times (n r - 1) / λ 2 = 0 . 1 4 9 、すなわち、波長 λ 2 の約 0 . 1 5 倍となり、位相変調量は一段あたり約 0 . 3 π となる。

[0120]

そこで、図9Aに示すように、格子の段差を単位段差d3の整数倍にし、4段で各段差の幅の比がほぼ1:1:1:1の階段状の断面形状にすると、青色光ビーム61に対しては 20、段差を重ねていくと、図9Bに示すように、位相変調量が一段あたりπ/2ずつ変化する、すなわち光路長差はλ1の+0.25倍ずつ変化する。段差の物理的形状を図9Aのように作ると、青色光ビーム61は、凸レンズ作用を受ける+1次回折光の回折効率が約80%と計算(スカラー計算)され、回折次数の中で、最も強くなる。

[0121]

そして、赤色光ビーム 6 2 に対しては、段差を重ねていくと、図9 C に示すように、位相変調量が一段あたり-0. 3π ずつ変化する、すなわち光路長差は λ 2 σ 0 . 1 5 倍ずつ変化する。段差の物理的形状を図9 A のように作ると、赤色光ビーム 6 2 は、凸レンズ作用を受ける + 1 次回折光の回折効率が約 5 0 %と計算(スカラー計算)され、回折次数の中で、最も強くなるが、これは、青色光ビーム 6 1 と同じ次数なので、第 2 光ディスク 1 0 に対しては収差が大きく、集光されない。また、赤色光ビーム 6 2 は、凹レンズ作用を受ける -1 次回折光の回折効率が 10 %以下と十分弱い。従って、赤色光ビーム 6 2 の第 2 光ディスク 1 0 に対する開口数を小さくすることで、第 1 光ディスク 9 を青色光ビーム 6 1 によって記録・再生するときの開口数 N A b が、第 2 光ディスク 1 0 を赤色光ビーム 6 2 によって記録・再生するときの開口数 N A r よりも大きい(N A b > N A r)という条件を容易に実現できる。

[0122]

本実施の形態で説明した、ホログラム133の外周部133Bだけ一段あたり波長の0. 25倍の光路長差を生じるような階段状の断面形状を有するホログラム構成や、内周部1 33Cは共役光を利用した異種ディスクの互換記録・再生については、先に挙げたいずれ 40 の従来例にも開示されていない。

[0123]

本実施の形態では、上記の新規な構成により、実施の形態2において挙げた利点に加えて、ホログラム133の格子ピッチが比較的狭くなる外周部133Bの格子高さを低くできるので、ホログラム133を容易に製作でき、赤色光ビーム62の第2光ディスク10に対する開口数を小さくすることで、第1光ディスク9を青色光ビーム61によって記録・再生するときの開口数NAbが、第2光ディスク10を赤色光ビーム62によって記録・再生するときの開口数NArよりも大きい(NAb>NAr)という条件を容易に実現できるという利点がある。

[0124]

さらに、光ヘッド装置の全体構成としては、実施の形態1において付加的に述べた構成を 組み合わせることも可能である。

[0125]

(実施の形態4)

次に、本発明の実施の形態4について説明する。本実施の形態による光ヘッド装置の全体構成は、実施の形態1の説明で参照した図1に示す構成と同じである。本実施の形態では、図1に示すホログラム13と対物レンズ14の構成が実施の形態1~3とは異なる。【0126】

図10は、図1に示すホログラム13と対物レンズ14からなる複合対物レンズの具体例を示す断面図である。図10において、134はホログラムである。ホログラム134は 10、波長 λ 1の青色光ビーム61を回折して、凸レンズ作用を及ぼし、波長 λ 2の赤色光ビーム62に対しては、後述するように回折して青色光ビーム61に対する作用よりも弱い凸レンズ作用を及ぼす。ここでは、凸レンズ作用を及ぼす最も低次の回折を+1次回折と定義する。本実施の形態では、青色光ビーム61に対しては、+2次の回折が最も強く起こるように、ホログラム134が設計される。そうすることで、赤色光ビーム62に対しては、+1次回折が最も強く起こる。その結果、赤色光ビーム62の方が青色光ビーム61よりも波長が長いにもかかわらず、ホログラム134上の各点における回折角度は小さくなる。すなわち、ホログラム134が、波長 λ 1の青色光ビーム61を回折するときの凸レンズ作用の方が、波長 λ 2の赤色光ビーム62に対して及ぼす凸レンズ作用よりも強くなる。言い換えると、赤色光ビーム62は、ホログラム134によって凸レンズ作用を受ける。

[0127]

対物レンズ144は、波長 λ 1 の青色光ビーム 6 1 がホログラム 1 3 4 によって + 2 次回 折されて凸レンズ作用を受けた後に、青色光ビーム 6 1 をさらに収束させて、第 1 光ディ スク 9 の厚さ約 0. 1 mmの基材を通して情報記録面 9 1 上へ集光するように設計される

[0128]

次に、赤色光ビーム62を用いて第2光ディスク10の記録・再生を行う際のホログラム134の働きについて詳細に説明する。ホログラム134は、波長 λ2の赤色光ビーム62を+1次回折して、凸レンズ作用を及ぼす。そして、対物レンズ144は、赤色光ビーム62を第2光ディスク10の厚さ約0.6mmの基材を通して情報記録面101に集光する。ここで、第2光ディスク10はその光入射面から情報記録面101までの基材厚が0.6mmと厚くなっており、基材厚0.1mmの第1光ディスク9を記録再生する場合の焦点位置よりも焦点位置を対物レンズ144から離す必要がある。図10に示すように、波面変換によって、青色光ビーム61を収束光にし、赤色光ビーム62の収束度を青色光ビーム61の収束度よりも緩くすることにより、この焦点位置補正と基材厚差による球面収差の補正を実現する。

[0129]

波長λ1の青色光ビーム61と波長λ2の赤色光ビーム62は、いずれもホログラム13 44によって波面の変換を受ける。従って、ホログラム134と対物レンズ144の相対位置に誤差があると、設計通りの波面が対物レンズ144に入射せず、第1光ディスク9や第2光ディスク10へ入射する波面に収差が生じ、集光特性が劣化する。そこで、望ましくは、ホログラム134と対物レンズ144を一体に固定し、焦点制御やトラッキング制御に際しては、共通の駆動手段15(図1)によって一体に駆動を行う。

[0130]

図11Aは、ホログラム134の構造を示す平面図で、図11Bは、ホログラム134の構造を示す、図10と同様の断面図である。ホログラム134は、内外周境界134Aの内側(内周部134C)と外側(内外周境界134Aと有効範囲134Dの間の外周部134B)とで異なる構造を有する。内周部134Cは、ホログラム134と光軸との交点 50

、すなわち中心を含む領域である。この領域は、赤色光ビーム62を用いて第2光ディスク10の記録・再生を行う際も、青色光ビーム61を用いて第1光ディスク9の記録・再生を行う際も使用される。従って、内周部134Cの回折格子と、ここから回折される赤色光ビーム62が通過する対物レンズ144の部分は、青色光ビーム61の+2次回折光を第1光ディスク9に、赤色光ビーム62の+1次回折光を第2光ディスク10に集光するように設計される。

[0131]

外周部134Bについては、第1光ディスク9を青色光ビーム61によって記録・再生するときの開口数NAbが、第2光ディスク10を赤色光ビーム62によって記録・再生するときの開口数NArよりも大きい(NAb>NAr)必要があるので、青色光ビーム6101と赤色光ビーム62をそれぞれ対応する第1光ディスク9と第2光ディスク10に対して集光する内周部の周囲に、青色光ビーム61の+2次回折光のみを第1光ディスク9に対して集光し、赤色光ビーム62の+1次回折光は第2光ディスク10に対して収差を有するように、外周部132B、およびこれに対応する対物レンズ144の外周部を設ける必要がある。すなわち、図示しないが、対物レンズ144もホログラム134と同様に、内外周によって、異なる設計をすることが望ましい。これによって、最適なNAすなわち、NAb>NArの条件を実現できる。

[0132]

図12A、図12B、および図12Cは、それぞれ、ホログラム134に形成される格子の一周期 (p4) 間の物理的形状を示す断面図、図12Aに対応した青色光ビーム 61 (20 波長 λ 1) に対する位相変調量を示す図、および図12Aに対応した赤色光ビーム 62 (波長 λ 2) に対する位相変調量を示す図である。

[0133]

図12Aにおいて、格子の一周期 (p4) 間の物理的な断面形状は、鋸歯状の断面形状を有する。ここで、鋸歯状の断面形状における斜面の方向を表すため、図12Aの断面形状を、基材が左側に斜面を有する断面形状と表現する。この呼び方に従い、図11Bに示すホログラム134の断面形状を、基材が外周側に斜面を有する鋸歯状の断面形状(または、単に、鋸歯形状)と表現する。

[0134]

図12Aにおいて、縦方向は鋸歯状の断面形状を有する格子の深さを示している。 n b は ³⁰、青色光ビーム 6 1 に対するホログラム材料の屈折率である。ホログラム材料を、例えば B K 7 とすると、 n b = 1. 5 3 0 2 である。

[0135]

鋸歯状格子の深さ h 1 は、青色光ビーム 6 1 に対して光路長差が約 2 波長、すなわち位相差が約 4 π になる量にすると、 h 1 = 2 × λ 1 / (n b - 1) = 1.5 3 μ mとなる。

[0136]

この形状による青色光ビーム 61 に対する位相変調量は格子一周期の中で 4π (= $2\times 2\pi$) 変化するため、青色光ビーム 61 に対しては、+ 2 次回折光の強度が最大となり、スカラー計算上は 100 %の回折効率となる。

[0137]

図12Aに示すように、格子一周期の形状を、深さh1の鋸歯状の断面形状にすると、青色光ビーム61に対しては、先に説明したように+2次回折が最も強いので、回折角度を決める格子周期は、実質p4/2であり、位相変化は図12Bのようになる。そして、赤色光ビーム62に対しては、+1次回折が最も強いので、回折角度を決める格子周期は、

50

実質 p 4 である。

[0139]

本実施の形態で説明した、青色光ビーム61に対して波長λ1の2倍の光路長差を生じさ せ+2次回折を起こす深さの鋸歯状の断面形状を有するホログラムを利用して、赤色光ビ ーム 6 2 の + 1 次回折光によって異種ディスクの互換記録・再生を実現する概念について は、先に挙げたいずれの従来例にも開示されていない。

[0140]

本実施の形態では、上記の新規な構成により、青色光ビーム61および赤色光ビーム62 のいずれに対してもホログラム134が凸レンズ作用を有する。回折作用は、色分散が屈 折作用とは逆方向であるので、屈折型の凸レンズである対物レンズ144と組み合わせた 10 場合、数nm以内の波長変化に対する色収差、とりわけ焦点距離の波長依存性を相殺し低 滅できるという利点がある。

[0141]

従って、本実施の形態によれば、ホログラム134だけで、異種ディスクの互換と色収差 補正、焦点位置補正という、3つの課題を一挙に解決することができるという顕著な効果 が得られる。

[0142]

さらに、光ヘッド装置の全体構成としては、実施の形態1において付加的に述べた構成を 組み合わせることも可能である。

[0 1 4 3]

(実施の形態5)

次に、本発明の実施の形態5について説明する。本実施の形態は、実施の形態4のホログ ラム134における内周部134Cに形成される格子断面形状のみを変更するものである

[0144]

図13A、図13B、および図13Cは、それぞれ、本実施の形態によるホログラム13 4の内周部134Cに形成される格子の一周期 (p4) 間の鋸歯形状を示す断面図、図1 3Aに対応した青色光ビーム61(波長귂1)に対する位相変調量を示す図、および図1 3Aに対応した赤色光ビーム62(波長λ2)に対する位相変調量を示す図である。

[0145]

図13Aにおいて、縦方向は鋸歯状格子の深さを示している。本実施の形態では、実施の 形態4とは異なり、深さは、赤色光ビーム62を基準に決定される。nrは、赤色光ビー ム 6 2 に対するホログラム材料の屈折率である。ホログラム材料を、例えばBK7とする $k \cdot nr = 1.5142$ である。

[0146]

鋸歯状格子の深さh2は、赤色光ビーム62に対して光路長差が約1波長、すなわち位相 差が約2πになる量にすると、h2= λ 2/(nr-1)=1.28μmとなる。

[0147]

一方、青色光ビーム61に対するホログラム材料の屈折率を n b とすると、ホログラム材 料がBK7の場合は、nb=1.5302であるので、鋸歯状格子の深さh2によって青 40 色光ビーム 6 1 に発生する光路長差は、h 2 × (n b − 1) / λ 1 = 1. 6 8、すなわち 、波長 λ 1 の約 1. 7 倍となり、位相変調量は約 3. 3 5 π となる。このため、青色光ビ ーム 6 1 に対しては、+ 2 次回折光の強度が最大となり、スカラー計算上は約80%の回 折効率となる。

[0148]

図13Aに示すように、格子一周期の形状を、深さh2の鋸歯状の断面形状にすると、青 色光ビーム61に対しては、先に説明したように+2次回折が最も強いので、回折角度を 決める格子周期は、実質 p 4 / 2 であり、位相変化は図13Bのようになる。図13Aに 示す形状周期 p 4 あたりの位相変調量は約 3 . 3 5 π であるので、図 1 3 B に示すように 、実質的な一周期p4/2あたりの光路長差を考えると、波長11の0.83倍、位相変 50

20

調量は約1.7 π となる。そして、赤色光ビーム62に対しては、+1次回折光の強度が最大となり、スカラー計算上は回折効率が100%になり、光の利用効率を高くできる。【0149】

また、青色光ビーム61の+2次回折光の回折効率は80%程度に下がるが、中心部が下がると相対的に外周部分の光量が上がることになる。半導体レーザー光源の遠視野像は外周部分ほど強度が低くその一部しか使用できないが、このように内周部分の光量が下がると、遠視野像の、より広い範囲を使用できるので、光の利用効率を向上することができる。これは、コリメートレンズ8の焦点距離を短くすることによって実現できるが、これによって、内周部分の光量低下分を補うことが可能である。

[0150]

従って、本実施の形態によれば、図13Aを用いて説明したように、ホログラム134の 内周部分を深さh2の鋸歯状格子とすることで、赤色光ビーム62の回折光強度を最大に することができ、このときに、青色光ビーム61の集光スポットに対する光の利用効率は 低下しない。

[0151]

本実施の形態においても、青色光ビーム61および赤色光ビーム62のいずれに対してもホログラム134が凸レンズ作用を有する。回折作用は、色分散が屈折作用とは逆方向であるので、屈折型の凸レンズである対物レンズ144と組み合わせた場合、数nm以内の波長変化に対する色収差、とりわけ焦点距離の波長依存性を相殺し低減できるという利点がある。

[0152]

従って、本実施の形態によれば、ホログラム134だけで、異種ディスクの互換と色収差補正、焦点位置補正という、3つの課題を一挙に解決することができるという顕著な効果が得られる。

[0153]

また、高いNAのレンズは製作の難易度が高いが、ホログラム134が凸レンズ作用を受け持つことにより、組み合わせる屈折型の対物レンズ144の製作難易度を緩和できるという利点もある。

[0154]

さらに、光ヘッド装置の全体構成としては、実施の形態1において付加的に述べた構成を 30 組み合わせることも可能である。

[0155]

(実施の形態6)

次に、本発明の実施の形態6について説明する。本実施の形態による光ヘッド装置の全体構成は、実施の形態1の説明で参照した図1に示す構成と同じである。本実施の形態では、図1に示すホログラム13の構成が実施の形態1~5とは異なる。

[0156]

図14は、図1に示すホログラム13と対物レンズ14からなる複合対物レンズの具体例を示す断面図である。図15Aは、ホログラム135の構造を示す平面図で、図15Bは、ホログラム135の構造を示す、図14と同様の断面図である。

図14、図15Aおよび図15Bにおいて、135はホログラムである。図15Aにおいて、ホログラム135の内間部135Cは、例えば実施の形態4あるいは5によるホログラム134の内間部134Cと同じ構造を有する。ここで、ホログラム135の内間部135Cは、実施の形態1~5において示したいずれの構成であってもよいが、ホログラム134の内間部134Cと同じ構造にした方が、鋸歯形状という形の類似性から、より製作が容易であるという利点がある。

[0157]

図16A、図16B、および図16Cは、それぞれ、本実施の形態によるホログラム13 5の外周部135Bに形成される格子の一周期(p7)間の物理的な鋸歯形状を示す断面 図、図16Aに対応した青色光ビーム61(波長λ1)に対する位相変調量を示す図、お 50

10

20

よび図16Aに対応した赤色光ビーム62(波長 $\lambda2$)に対する位相変調量を示す図である。

[0158]

図16Aにおいて、縦方向は鋸歯形状の深さを示している。 n b は、青色光ビーム 6 1 に対するホログラム材料の屈折率である。ホログラム材料を、例えばBK7とすると、n b = 1.5302である。

[0159]

鋸歯形状の深さh3は、青色光ビーム61に対して光路長差が約1波長(図16B)、すなわち位相差が約 2π になる量とすると、h3 $=\lambda$ 1/(n b - 1)= 0. 7 6 4 μ m となる。

[0160]

[0161]

このように、図16Aのように、格子一周期の形状を、深さh3の鋸歯状の断面形状にすると、青色光ビーム61に対しては、+1次回折光が最も強い(実施の形態4や5では外周部においても+2次回折光が最も強いが、本実施の形態はこの点が異なる)ので、回折 20 角度を決める格子周期は、実質p7であり、位相変化は図16Bに示すようになる。そして、赤色光ビーム62に対しても、+1次回折光が最も強く、回折角度を決める格子周期は、やはり実質p7である。

[0162]

ホログラム135の外周部135Bは、青色光ビーム61が厚さ約0.1mmの基材を通して集光されるように設計される。このとき、赤色光ビーム62も青色光ビーム61と同じ回折次数である+1次回折を受け、赤色光ビーム62の波長λ2が青色光ビームの波長λ1よりも長いので回折角度は大きくなる。

[0163]

ホログラム135の外周部135Bのブレーズ方向は、内周部135Cと同様に、凸レン 30 ズ作用を有するように設計される。このとき、青色光ビーム61よりも赤色光ビーム62 の回折角度が大きいので、赤色光ビーム62は、ホログラム135の外周部135Bにおいて強い凸レンズ作用を受ける。これは、例えば、実施の形態4または5によるホログラム134の内周部134Cにおいて赤色光ビーム62の方が青色光ビーム61よりも弱い凸レンズ作用を受ける、あるいは、例えば、実施の形態1によるホログラム131の内周部131Cにおいて凹レンズ作用を受けるのとは全く異なる。このため、外周部135Bによって回折される赤色光ビーム62は内周部135Cを通る赤色光ビーム62と同じ場所に集光されない。

[0164]

このようにして、第1光ディスク9を青色光ビーム61によって記録・再生するときの開 40口数NAbを、第2光ディスク10を赤色光ビーム62によって記録・再生するときの開口数NArよりも大きく(NAb>NAr)することができる。

[0165]

さらに、光ヘッド装置の全体構成としては、実施の形態1において付加的に述べた構成を 組み合わせることも可能である。

$[0\ 1\ 6\ 6\]$

(実施の形態 7)

次に、本発明の実施の形態 7 について説明する。本実施の形態による光ヘッド装置の全体構成は、実施の形態 1 の説明で参照した図 1 に示す構成と同じである。本実施の形態では、図 1 に示すホログラム 1 3 の構成が実施の形態 1 ~ 6 とは異なる。

10

[0167]

本実施の形態は、先に説明した実施の形態 4 と本実施の形態 5 の中間形態として、ホログラムの内周部における鋸歯形状の格子の深さ h 4 を、 h 2 < h 4 < h 1 としたものである

[0168]

図17は、本実施の形態におけるホログラム136の内周部136Cに形成される鋸歯状格子の深さh4と回折効率の関係を示すグラフである。図17において、横軸は、鋸歯状格子の深さh4から決まる青色光ビーム61の光路長差が波長λ1の何倍になるかを示している。縦軸は、回折効率の計算値である。

[0169]

鋸歯状格子の深さh4を、h2<h4<h1にするということは、横軸である(光路長差 /λ1)が1.7より大きく、2よりも小さい範囲の値を選ぶということを意味する。特 に、赤色光ビーム62の+1次回折光の回折効率(破線で示す)と青色光ビーム61の+ 2次回折光の回折効率(実線で示す)とがほぼ等しくなるように、(光路長差/λ1)を 1.88(約1.9)に選ぶ。すなわち、鋸歯状格子の深さh4は、

 $h 4 \times (n b - 1) / \lambda 1 = 1.88$

を満たすように選ばれる。こうすることで、計算上、赤色光ビーム62の+1次回折光に対しても青色光ビーム61の+2次回折光に対しても、約95%の回折効率が得られ、いずれも光量損失を少なく抑えることができる。

[0170]

上記の条件を満たす h 4 は、 λ 1 が 4 0 5 n m であり、ホログラム材料を B K 7 とした場合、約 1 . 4 4 μ m となる。

[0171]

(実施の形態8)

次に、本発明の実施の形態 8 について説明する。本実施の形態による光ヘッド装置の全体構成は、実施の形態 1 の説明で参照した図 1 に示す構成とほぼ同じである。本実施の形態では、図 1 に示すホログラム 1 3 と対物レンズ 1 4 からなる複合対物レンズの構成が実施の形態 1 ~ 7 とは異なる。

[0172]

図18は、本実施の形態における対物レンズの具体例を示す断面図である。図18におい 30 て、本実施の形態における屈折型の対物レンズ147は、第1レンズ1471と第2レンズ1472という、2枚組レンズとして構成される。2枚組レンズは当然ながら、屈折面を4面有するので、設計の自由度が高く、例えば青色光ビーム61に対して対物レンズ147が傾いたときに発生する収差や、軸外収差を小さくできるなど、対物レンズの収差特性を向上させることができる。特に、第1レンズ1471の外側(第2レンズ1472から離れた側)の屈折面を非球面とすることにより、軸外収差を小さくできる。

[0173]

また、実施の形態1において説明したように、ホログラム137を対物レンズ147の表面に形成することで、部品点数を削減できるという利点があるが、特に、ホログラム137を第1レンズ1471の外側(集光スポットや第2レンズ1472から最も離れた側)の面に形成することにより、赤色光ビーム62と青色光ビーム61の両方に対して、対物レンズ147が傾いたときに発生する収差を低減できるという利点がある。なお、ホログラム137としては、実施の形態5~7いずれかのホログラム構成が用いられる。

[0174]

前述した第6の従来例は、本実施の形態の構成と一見似ているが、第1レンズ1471の外側(第2レンズ1472から離れた側)の屈折面を非球面とすることは開示されておらず、十分な収差特性が得られないという点で異なるものである。また、第6の従来例は、赤色光ビームを強い発散光にしてホログラムと対物レンズに入射している点でも、本実施の形態とは異なり、赤色光ビームと青色光ビームに対して共通の光検出器を用いてサーボ信号を検出することはできない。

10

20

[0175]

(実施の形態9)

図19は、本発明の実施の形態9による光情報装置の概略構成図である。本実施の形態に よる光情報装置67は、実施の形態1から8のいずれかの光ヘッド装置を用いる。

[0176]

図19において、第1光ディスク9(あるいは第2光ディスク10、以下同じ)は、ター ンテーブル82に乗せられ、モータ64によって回転される。光ヘッド装置55は、第1 光ディスク9上の所望の情報の存在するトラックまで、光ヘッド装置の駆動装置51によ って粗動される。

[0177]

また、光ヘッド装置55は、第1光ディスク9との位置関係に対応して、フォーカスエラ ー (焦点誤差) 信号やトラッキングエラー信号を電気回路53へ送る。電気回路53はこ の信号受けて、光ヘッド装置55へ、対物レンズを微動させるための信号を送る。この信 号によって、光ヘッド装置55は、第1光ディスク9に対してフォーカス制御とトラッキ ング制御を行いながら、情報の読み出しまたは書き込み(記録)や消去を行う。

[0178]

光情報装置67は、光ヘッド装置として、実施の形態1から8のいずれかの光ヘッド装置 を用いるので、単一の光ヘッド装置によって、記録密度の異なる複数の光ディスクに対応 することができる。

[0179]

(実施の形態10)

図20は、本発明の実施の形態10によるコンピュータの一構成例を示す概略図である。 なお、本実施の形態によるコンピュータ100は、実施の形態9による光情報装置67を 内蔵している。

[0180]

図20において、コンピュータ100は、光情報装置67と、情報の入力を行うためのキ ーボードあるいはマウス、タッチパネルなどの入力装置101と、入力装置101から入 力された情報や、光情報装置67から読み出された情報などに基づいて演算を行う中央演 算装置(CPU)などの演算装置102と、演算装置102によって演算された結果など の情報を表示するCRT表示装置や液晶表示装置、プリンターなどの出力装置103とか 30 ら構成される。なお、図18は、入力装置101としてキーボードを、出力装置103と してCRT表示装置を用いた場合について例示している。

[0181]

6.

(実施の形態11)

図21は、本発明の実施の形態11による光ディスクプレーヤーの一構成例を示す概略図 である。なお、本実施の形態による光ディスクプレーヤー110は、実施の形態9による 光情報装置67を内蔵している。

[0182]

図21において、光ディスクプレーヤー110は、光情報装置67と、光情報装置67か ら得られる情報信号を画像信号に変換するデコーダ111と、液晶モニター112とで構 40 成される。なお、本実施の形態では、表示装置としての液晶モニター112が一体となっ た携帯型の光ディスクプレーヤー110について例示および説明したが、表示装置が別体 である形態も可能である。

[0183]

(実施の形態12)

図22は、本発明の実施の形態12によるカーナビゲーションシステムを塔載した自動車 の概略構成図である。図22において、カーナビゲーションシステムは、GPS(Glo bal Positioning System) 161と、実施の形態11による光デ ィスクプレーヤー110と、光ディスクプレーヤー110からの映像信号を表示する表示 装置163とから構成される。ここで、光ディスクプレーヤー110としては、映像、ゲ 50

10

ーム、地図などの情報を光ディスクから再生できるものであればよく、用途に限定される ものではない。

[0184]

このようなカーナビゲーションシステムを塔載した自動車では、青色光ビームを用いて大 容量の映像などを再生でき、広範囲かつ詳細な地図データを扱うことができると共に、既 存のDVDに記録された情報も活用できるという利便性を享受することができる。

[0185]

なお、本実施の形態では、乗物として自動車を例に挙げて説明したが、自動車に限らず、 電車、飛行機、船舶などの他の乗物にも適用できることは勿論である。

[0186]

(実施の形態13)

図23は、本発明の実施の形態13による光ディスクレコーダーの一構成例を示す概略図 である。なお、本実施の形態による光ディスクレコーダー120は、実施の形態9による 光情報装置67を内蔵している。

[0187]

図23において、光ディスクレコーダー120は、光情報装置67と、画像信号を光ディ スクに記録する情報信号に変換するエンコーダ121と、光情報装置67から得られる情 報信号を画像信号に変換するデコーダ111とから構成され、光ディスクレコーダー12 0には、CRT表示装置などの出力装置103が接続されている。これにより、入力され た画像信号をエンコーダ121により情報信号に変換して光ディスクに記録しながら、光 20 ディスクに既に記録されている情報信号を再生しデコーダ111により画像信号に変換し て、出力装置103であるCRT表示装置に表示させることができる。

[0188]

(実施の形態14)

図24は、本発明の実施の形態14による光ディスクサーバーの一構成例を示す概略図で ある。なお、本実施の形態による光ディスクサーバー150は、実施の形態9による光情 報装置67を内蔵している。

[0189]

図24において、光ディスクサーバー150は、光情報装置67と、外部から光情報装置 67に記録する情報信号を取り込んだり、光情報装置67から読み出した情報信号を外部 30 に出力する有線または無線の入出力端子151と、複数の光ディスクを光情報装置67に 出し入れするチェンジャー152とから構成される。また、光ディスクサーバー150に は、入力装置101としてキーボードが、出力装置103としてCRT表示装置が接続さ れている。

[0190]

これによって、光ディスクサーバー150は、ネットワーク153、すなわち、複数の機 器、例えばコンピューター、電話、テレビチューナーなどと情報をやりとりし、これら複 数の機器に対する共有の情報サーバーとして利用することが可能となる。また、チェンジ ャー152を内蔵することにより、多くの情報を記録・蓄積することができる。

[0191]

【発明の効果】

以上説明したように、本発明によれば、基材厚0.6mmで波長 λ 2 (標準的には約66 0 nm) の赤色光ビームによる記録再生に対応した光ディスクと、基材厚 0. 1 mmで波 長 λ 1 (標準的には約 4 0 5 n m) の青色光ビームによる記録再生に対応した光ディスク との互換再生や互換記録を実現する、高い光利用効率を有する複合対物レンズを提供する ことが可能になる。

[0192]

また、かかる複合対物レンズを光ヘッド装置に用い、かかる光ヘッド装置を光情報装置に 塔載することで、単一の光ヘッド装置によって、記録密度の異なる複数の光ディスクに対 応することが可能になる。

[0193]

さらに、上記の光情報装置をコンピュータや、光ディスクプレーヤー、光ディスクレコーダー、光ディスクサーバー、カーナビゲーションシステムに内蔵することで、異なる種類の光ディスクに対して安定した情報の記録あるいは再生ができるので、広い用途に使用することが可能になる。

【図面の簡単な説明】

- 【図1】本発明の実施の形態1による光ヘッド装置の一構成例を示す断面図
- 【図 2】図 1 のホログラム 1 3 と対物レンズ 1 4 からなる複合対物レンズの具体例を示す 断面図
- 【図3A】図2のホログラム131の構造を示す平面図
- 【図3B】図2のホログラム131の構造を示す断面図
- 【図4A】図3Aに示すホログラム131の内周部131Cに形成される格子の一周期(p1)間の階段形状を示す断面図
- 【図4B】図4Aに対応した赤色光ビーム62(波長λ2)に対する位相変調量を示す図 【図5】本発明の実施の形態2における、図1に示すホログラム13と対物レンズ14か らなる複合対物レンズの具体例を示す断面図
- 【図6A】図5のホログラム132の構造を示す平面図
- 【図6B】図5のホログラム132の構造を示す断面図
- 【図7A】ホログラム132に形成される格子の一周期(p2)間の階段形状を示す断面図
- 【図7B】図7Aに対応した青色光ビーム61 (波長λ1) に対する位相変調量を示す図
- 【図70】図7Aに対応した赤色光ビーム62 (波長λ2)に対する位相変調量を示す図
- 【図8A】本発明の実施の形態3における、図1に示すホログラム13の具体例を示す平 面図
- 【図8B】本発明の実施の形態3における、図1に示すホログラム13の具体例を示す断 面図
- 【図9A】ホログラム133の外周部133Cに形成される格子の一周期(p3)間の階段形状を示す断面図
- 【図9B】図9Aに対応した青色光ビーム61 (波長λ1) に対する位相変調量を示す図
- 【図9C】図9Aに対応した赤色光ビーム62(波長λ2)に対する位相変調量を示す図 30
- 【図10】本発明の実施の形態4における、図1に示すホログラム13と対物レンズ14 からなる複合対物レンズの具体例を示す断面図
- 【図11A】図10のホログラム134の構造を示す平面図
- 【図11B】図10のホログラム134の構造を示す断面図
- 【図12A】ホログラム134に形成される格子の一周期 (p4) 間の鋸歯形状を示す断面図
- 【図12B】図12Aに対応した青色光ビーム61(波長 λ 1)に対する位相変調量を示 す図
- 【図12C】図12Aに対応した赤色光ビーム62(波長 λ 2)に対する位相変調量を示す図
- 【図13A】本発明の実施の形態4によるホログラム134の内周部134Cに形成される格子の一周期(p4)間の鋸歯形状を示す断面図
- 【図13B】図13Aに対応した青色光ビーム61 (波長 λ1) に対する位相変調量を示す図
- 【図13C】図13Aに対応した赤色光ビーム62 (波長 λ2) に対する位相変調量を示す図
- 【図14】本発明の実施の形態5における、図1に示すホログラム13と対物レンズ14からなる複合対物レンズの具体例を示す断面図
- 【図15A】図14のホログラム135の構造を示す平面図
- 【図15B】図14のホログラム135の構造を示す断面図

10

20

- 【図16B】図16Aに対応した青色光ビーム61 (波長λ1) に対する位相変調量を示す図
- 【図16C】図16Aに対応した赤色光ビーム62(波長 λ 2)に対する位相変調量を示す図
- 【図17】本発明の実施の形態7におけるホログラム136の内周部136Cに形成される鋸歯状格子の深さh4と回折効率の関係を示すグラフ
- 【図18】本発明の実施の形態8における複合対物レンズの具体例を示す断面図
- 【図19】本発明の実施の形態9による光情報装置の概略構成図
- 【図20】本発明の実施の形態10によるコンピュータの一構成例を示す概略図
- 【図21】本発明の実施の形態11による光ディスクプレーヤーの一構成例を示す概略図
- 【図 2 2】 本発明の実施の形態 1 2 によるカーナビゲーションシステムの一構成例を示す 概略図
 - 【図23】本発明の実施の形態13による光ディスクレコーダーの一構成例を示す概略図
 - 【図24】本発明の実施の形態14による光ディスクサーバーの一構成例を示す概略図
- 【図25A】第1の従来例において、基材厚0.6mmの光ディスク10に0次回折光42を集光する光ヘッド装置の概略構成を示す断面図
- 【図25B】第1の従来例において、基材厚1.2mmの光ディスク11に+1次回折光43を集光する光ヘッド装置の概略構成を示す断面図
- 【図26】第2の従来例としての光ヘッド装置の概略構成を示す断面図
- 【図27A】図26の波長選択位相板205の構造を示す平面図
- 【図27B】図26の波長選択位相板205の構造を示す断面図
- 【図28】第6の従来例としての光ヘッド装置の概略構成を示す断面図

【符号の説明】

- 1 青色レーザー光源
- 2 ビーム整形素子
- 3、22 3ビーム格子
- 4、16 ビームスプリッター
- 5 1/4波長板
- 6 集光レンズ
- 7 光検出器
- 8 コリメートレンズ
- 9 第1光ディスク
- 10 第2光ディスク
- 13、131、132、133、134、135、136、137 ホログラム
- 14、141、142、143、144、145、147 対物レンズ
- 1471 第1対物レンズ
- 1472 第2対物レンズ
- 15 駆動手段
- 20 赤色レーザー光源
- 32 検出レンズ
- 33 光検出器
- 51 光ヘッド装置の駆動装置
- 53 電気回路
- 55 光ヘッド装置
- 61 青色光ビーム (第1光ビーム)
- 62 赤色光ビーム (第2光ビーム)
- 64 モーター
- 67 光情報装置

30

10

20

- 100 コンピュータ
- 101 入力装置
- 102 演算装置
- 103 出力装置
- 110 光ディスクプレーヤー
- 111 デコーダ
- 112 液晶モニター
- 120 光ディスクレコーダー
- 121 エンコーダ
- 150 光ディスクサーバー
- 151 入出力端子
- 152 チェンジャー
- 153 ネットワーク
- 161 GPS
- 163 表示装置

【図1】

1

【図2】

【図3A】

【図3B】

【図4A】

【図4B】

【図5】

【図6B】

【図7A】

【図7B】

【図7C】

【図8A】

【図8B】

【図9A】

【図9B】

【図9C】

【図10】

【図11B】

【図12A】

【図13C】

【図14】

【図12B】

【図12C】

【図13B】

【図15A】

【図15B】

【図16A】

【図 1 6 C】 ##最差/A2 10.6

【図21】

【図22】

【図23】

【図24】

【図25A】

【図25B】

【図26】

【図27B】

【図28】

フロントページの続き

(51)Int.Cl.' G 0 2 B 13/00 FΙ

テーマコード (参考)

G 0 2 B 5/32 G 0 2 B 13/00