- 一、选择题(本大题共5小题,每小题3分,总计15分)
- 1. 若函数 $f(x) = \left(\frac{x^2 x}{x^2 + 2x 3}\right)^{2020}$ 在自变量的某一变化过程中是无穷大,则自变

量的变化趋势为()

- (A) $x \to 0$ (B) $x \to 1$ (C) $x \to -3$ (D) $x \to \infty$ 2. 设函数 $f(x) = \begin{cases} \frac{\sqrt{1+x}-1}{\tan\frac{x}{3}} & x \neq 0 (x \geq -1) \\ k & x = 0 \end{cases}$ 在点 x = 0 处连续,则 k = (
- (A) 0 (B) 1 (C) $\frac{3}{2}$ (D) $\frac{2}{3}$
- 3. 设 $y = f(\frac{1}{x})$, 其中函数 f(x) 可导,则 $\frac{dy}{dx} = ($

- (A) $f'(\frac{1}{x})$ (B) $f'(-\frac{1}{x^2})$ (C) $\frac{1}{x}f'(\frac{1}{x})$ (D) $-\frac{1}{x^2}f'(\frac{1}{x})$
- 4.若 $f(x) = e^{-2020x}$,则 $\int \frac{f'(\ln x)}{x} dx = ($)

 - (A) $\frac{1}{r^{2020}} + C$ (B) $-\frac{1}{r^{2020}} + C$ (C) $-\ln x + C$ (D) $\ln x + C$
- 5. 设反常积分 $I_1 = \int_0^1 \frac{1}{\sqrt{1-x^2}} dx$ 、 $I_2 = \int_0^1 \frac{1}{1-x^2} dx$,则(
 - (A) *I*₁与 *I*₂ 都收敛
- (B) I_1 与 I_2 都发散
- (C) I_1 收敛, I_2 发散 (D) I_1 发散, I_2 收敛
- 二、填空题(本大题共5小题,每小题3分,总计15分)
- 6. 已知 $\lim_{x\to 0} \frac{\sin ax}{2x} = \frac{1}{3}$,则常数 a =______.
- 7. 设 $y = e^{2x-1}$,则 $y^{(4)} \left(\frac{1}{2}\right) =$ ______.
- 8. 曲线 $y = x^3 \frac{3}{5}x + 2$ 的拐点坐标为______.
- 9. 已知 $\int f(x)dx = \sin^2 x 2^{\sin x} + C$,则 f(x) =_____.
- 10. 定积分 $\int_{-1}^{1} (1+x^{2020})(e^x-e^{-x})dx =$ ______.

三、解答题(本大题共7小题,每小题10分,总计70分)

11. 求极限: (1)
$$\lim_{x\to\infty} \left(\frac{x-2}{x}\right)^{3x+1}$$
; (2) $\lim_{x\to 0} \left[\frac{1}{x} + \frac{1}{x^2}\ln(1-x)\right]$.

(2)
$$\lim_{x\to 0} \left[\frac{1}{x} + \frac{1}{x^2} \ln(1-x) \right].$$

(2) 已知函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = \ln t - 1 \\ y = \frac{1}{t} + 1 \end{cases}$$
 (t 为参数),求 $\frac{d^2 y}{dx^2} \Big|_{t=1}$.

13. (1) 求不定积分 $\int \sin \sqrt{x} dx$;

(2) 设
$$f(x) = \begin{cases} \frac{1}{1+x^2} & x \ge 0 \\ 2x+1 & x < 0 \end{cases}$$
, 求定积分 $\int_0^2 f(x-1)dx$.

14. 设函数
$$f(x) = \int_{1}^{x} \frac{e^{-t^2}}{\sqrt{t^2 + 1}} dt$$
 .

- (1) 证明: 函数 f(x) 在 $(-\infty, +\infty)$ 上是单调增加函数;
- (2) $\Re f'(0)$, $f'(1) \Re (f^{-1})'(0)$.
- 15. 已知曲线 y = y(x) 由方程 $e^{xy} y^3 = 2x$ 确定,求曲线 y = y(x) 在点(0,1)处的 切线方程与法线方程.
- 16. 设函数 f(x) 可积,且满足关系式 $f(x) = -x^4 + \frac{30}{7}x^2 \int_0^1 f(x) dx$,
 - (1) 求 f(x) 的表达式; (2) 求函数 f(x) 的极值.
- 17. 已知平面图形由曲线 $y = \sqrt{x}$ 与直线 y = 1, x = 4 围成, 求:
 - (1) 该平面图形的面积;
 - (2) 该平面图形绕 x 轴旋转一周所得到的旋转体的体积.