ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN KHOA CÔNG NGHỆ THÔNG TIN

Bài tập môn:

Nhập môn mã hóa & mật mã.

Sinh viên thực hiện: Tôn Thất Tâm Định - 1512112

a. Vì g là primitive root của F_p nên (g,p)=1. Do đó theo định lý Fermat ta có $g^{p-1}\equiv 1 \pmod p$.

Do đó nên ta có $g^a \equiv g^b \equiv h \pmod{p}$, điều này tương đương với $g^a \equiv g^b \cdot (g^{p-1})^k$, hay a = k(p-1) + b.

Vậy $a \equiv b \pmod{p-1}$.

Người ta đặt \log_g là một hàm từ $F_p \rightarrow Z/(p-1)Z$ để loại trừ bót các trường hợp $a = b \pmod{p-1}$.

b. Đặt $x = \log_g(h_1h_2)$, $y = \log_g(h_1)$, $z = \log_g(h_2)$.

Theo cách đặt thì ta có: $g^x \equiv h_1 h_2 \pmod{p}$, $g^y \equiv h_1 \pmod{p}$ và $g^z \equiv h_2 \pmod{p}$. Do đó $g^x \equiv g^{y+z} \pmod{p}$. Điều này tương đương với x = y + z.

c. Áp dụng bài b vào ta có: $log_g(h^n) = log_g(h) + ... + log_g(h) = nlog_g(h)$.

2.4

a. Ta sẽ thử tính tất cả các giá trị của $g^x \mod p$ với $0 \le x \le p-2$.

Dựa vào kết quả tính toán ta có: x = 7 và x = 18 là giá trị cần tìm.

b. Làm tương tự câu a ta có: x = 11.

c. Làm tương tự câu a và b ta có: x = 18 là giá trị cần tìm.

2.6. Ta có:
$$p = 1373$$
, $g = 2$, $A = 974$, $b = 871$.

Theo thuật toán tạo khóa Diffe-Hellman ta có: $B \equiv g^b \pmod{p} \equiv 805 \pmod{p}$ đồng thời ta tính được khóa trao đổi giữa 2 người là: $g^{ab} \equiv (g^a)^b \equiv A^b \equiv 397 \pmod{p}$.

Giá trị của a sao cho $g^a \equiv A \pmod{p}$ là:

- a. Nếu ta giải được bài toán Diffie-Hellman thì ta có thể tính được g^{ab} từ g^a và g^b , rồi sau đó lấy giá trị này so sánh với C. Khi đó bài toán Diffie-Hellman Decision Problem được giải quyết.
- b. Bài toán Diffie-Hellman Decision là một bài toán dễ. Vì người ta đã có thể tìm được một vài elliptic curve trên F_p sao cho có thể dễ dàng kiểm tra được C có bằng g^{ab} hay không. Cho nên bài toán DHD là bài toán dễ hơn so với bài toán DH và DLP.