Cryptography – Homework 5

Discussed on **Tuesday**, 29th January, 2019.

Exercise 5.1

Suppose Eve is given (N, e) the public key of an RSA cryptosystem. Show that she can efficiently factor N = pq in each of the following cases:

- (a) she can efficiently compute $\varphi(N)$ (Hint: What are the roots of the polynomial $X^2 X(N+1-\varphi(N)) + N$?).
- (b) she can efficiently compute an $0 \neq x \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$.

Exercise 5.2 Collision resistance of the DLP-CCF

In the lecture we have seen the proof sketch that the DLP-CCF is collision-resistant, given that the DLP relative to $\mathsf{Gen}\mathbb{QR}_{\mathsf{safe}}$ is hard, i.e.:

Assuming we have a collision attack \mathcal{A} on the DLP-CCF we build from it the following algorithm \mathcal{B} for computing discrete logarithms. Define \mathcal{B} as:

- Input: (p,q,g) and $r=g^x \bmod p$ for some secret $x \stackrel{u}{\in} \mathbb{Z}_q$.
- If r = 1, output x = 0.
- Otherwise, pass (p, q, g, r) to \mathcal{A} to obtain $(a, b) \neq (u, v)$.
- If $h_I(a,b) \neq h_I(u,v)$, output any element in \mathbb{Z}_q .
- Otherwise return $(a-u) \cdot (v-b)^{-1} \mod q$.

Complete the proof bz determining the probability that \mathcal{B} succeeds in computing a logarithm of r modulo p. Why is it important that q is prime?

Exercise 5.3

Let f be a OWP with hardcore bit hc(x). Show that $G_l(x) := f^l(x) || BM^l(x)$ is a PRG of fixed stretch for every fixed l polynomial in n.

- Discuss the advantages/disadvantages of outputting also $f^{l}(x)$.
- \bullet In particular, consider the case when a TDP is used for f and the resulting PRG is used within the prOTP.