Course Code	Course Name	Course Structure	
ECECE68	Speech and Audio Signal Processing	L-T-P	3-0-2

COURSE OUTCOME (CO): After completing the course, the students shall be able to:

CO1: Understand fundamental concepts of OSI, TCP/IP models and network architecture

CO2: Analyse internetworking principles and LAN technologies

CO3: Understand Internet and Transport Protocols and gain knowledge on Internetwork operations

CO4: Design multistage switching structures involving time and space switching stages

CO5: Implement routing and congestion control algorithms

UNIT	COURSE CONTENT	LECTURE NO.	PRACTICALS
Unit-I: (O9)	Introduction to Speech and Audio Signals		Experiment 1: Write a MATLAB/Python function for visualizing Audio Signals - Reading from a File and Working on it. Experiment 2: Write a MATLAB/Python function for characterizing the Audio Signal: Transforming to Frequency Domain.
	Acoustic theory of speech production	02	
	Short-Time Speech Analysis	03	
	Time domain analysis (Short time energy, short time zero crossing Rate, ACF)		
	Parametric representation of speech: AR Model, ARMA model	06-07	
	LPC Analysis (LPC model, Auto correlation method)	08-09	

Unit-II: (09)	Frequency domain analysis (Filter Banks, STFT, Spectrogram)	10-11	Experiment 3: Write a MATLAB/Python function for	
	Cepstral Analysis		generating Monotone Audio Signal.	
	MFCC	13	Oigilai.	
	Fundamentals of Speech recognition and Text-to- speech Conversion	14	Experiment 4: Write a	
	Speech coding	icatare Extraction no		
	Speech enhancement	16	Speech.	
	Speaker Verification, Language Identification	17-18		
Unit-III: (08)	Signal Processing Models of Audio Perception: Basic anatomy of hearing System	19-20	Experiment 5: Write a MATLAB/Python function for recognition of Spoken Words.	
	Auditory Filter Banks	21		
	Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing			
	Simultaneous Masking	23	Experiment 6: Write a MATLAB/Python function for speech Recognition:	
	Temporal Masking	24		
	Quantization Noise Shaping	25	Converting Speech to Text.	
	MPEG psychoacoustic Model	26		

Unit-IV: (09)	Audio compression methods: Sampling rate and bandwidth requirement for digital audio	27-28	Experiment 7: Write a MATLAB/Python function to				
	Redundancy removal and perceptual irrelevancy removal Transform coding of digital audio: MPEG2-AAC coding standard MDCT and its properties Pre-echo and pre-echo Suppression		Create an ARIMA Model for Time Series Forecasting. Experiment 8: Write MATLAB/Python program for Mel-frequency cepstral coefficients (MFCC).				
				Loss less coding methods	34-35		
				Unit-V: (07)	Spatial Audio Perception and rendering: The physical and psycho-acoustical basis of sound localization and space perception	36-37	Experiment 9: Write MATLAB/Python function to compute modified Discrete Cosine Transform (MDCT).
					Spatial audio standards	38	, ,
	Audio quality analysis: Objective analysis methods- PEAQ		Experiment 10: Use machine learning/ deep-learning to				
Subjective analysis methods - MOS score	41	design a mini project of your choice with application of speech/audio signals.					
MUSHRA score							

Suggested Readings:

- 1) Ben Gold, Nelson Morgan, Speech and Audio Signal Processing: Processing and Perception of Speech and Music, John Wiley, 2001
- 2) A.R. JAYAN, Speech and Audio Signal Processing, PHI Learning Pvt. Ltd., 2017
- 3) L R Rabiner and R W Schafer "Digital Processing of Speech Signals" Pearson, 2003
- 4) Khalid Sayood "Introduction to Data Compression" Elsevier, 2006

EVALUATION SCHEME FOR CONTINUOUS ASSESSMENT:

Sr. No.	Component	Continuous Assessment	Marks
1.	TCA (15)	Class tests	5
2.		Attendance/Response in Class	10
3.	PCA (15)	Lab Test/Viva	5
4.		Lab Files, Attendance/Performance in Lab	1 mark per turn
5.			
6.		Total	30 marks