Input	Code	Output			
Healthy	print("Predicting custom image") labels = ["BACTERIAL_SPOT", "EARLY_BLIGHT", " HEALTHY", "LATE_BLIGHT", "LEAF_MOLD"] img = cv2.imread(r"C:/Users/aishwarya/Desktop/h1.JPG") img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_pred = cv2.resize(img, (150, 150)) #plt.imshow(img_pred,cmap="gray") img_pred2 = np.reshape(img_pred, (1, img_pred.shape[0]) **img_pred.shape[1])) e=model.predict(img_pred2) #print(labels[(e[0])]) NUM_ROWS = 1 IMGs_IN_ROW = 3 f, ax = plt.subplots(NUM_ROWS, IMGs_IN_ROW, figsize = (8,8)) img1 = cv2.imread(r"C:/Users/aishwarya/Desktop/h1.JPG") ax[0].imshow(img1) ax[1].imshow(img_pred,cmap="hsv") img3 = cv2.cvtColor(img3, cv2.COLOR_BGR2GRAY) ax[2].imshow(img3,cmap="gray") ax[0].set_title('Input image') ax[1].set_title('Output in hsv') ax[2].set_title('Output in gray') title = 'predicting custom image' plt.tight_layout() plt.show() print(labels[(e[0])])	Predicting custom image Input image 50 100 150 200 250 100 125 100 HEALTHY	Output in hsv Output in gray 100 150 200 250 0 100 200		

Input	Code	Output
Late Blight	print("Predicting custom image") labels = ["BACTERIAL_SPOT", "EARLY_BLIGHT", "HEALTHY", "LATE_BLIGHT", "LEAF_MOLD"] img = cv2.imread(r"C:/Users/aishwarya/Desktop/lb1.JPG")) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_pred = cv2.resize(img, (150, 150)) img_pred2 = np.reshape(img_pred, (1, img_pred.shape[0]*img_pred.shape[1])) e=model.predict(img_pred2) NUM_ROWS = 1 IMGs_IN_ROW = 3 f, ax = plt.subplots(NUM_ROWS, IMGs_IN_ROW, figsiz e=(8,8)) img1 = cv2.imread(r"C:/Users/aishwarya/Desktop/lb1.JPG ") ax[0].imshow(img1) ax[1].imshow(img_pred,cmap="hsv") img3 = cv2.imread(r"C:/Users/aishwarya/Desktop/lb1.JPG ") img3 = cv2.cvtColor(img3, cv2.COLOR_BGR2GRAY) ax[2].imshow(img3,cmap="gray") ax[0].set_title('original image') ax[1].set_title('Output in hsv') ax[2].set_title('Output in gray') title = 'predicting custom image' plt.tight_layout() plt.show() print(labels[(e[0])])	Predicting custom image Original image Solution image Output in hsv Output in gray Solution image Soluti

Input	Code	Output		
Early blight Early blight the state of the	print("Predicting custom image") labels = ["BACTERIAL_SPOT", "EARLY_BLIGHT", " HEALTHY", "LATE_BLIGHT", "LEAF_MOLD"] img = cv2.imread(r"C:/Users/aishwarya/Desktop/eb1.JPG") img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_pred = cv2.resize(img, (150, 150)) img_pred2 = np.reshape(img_pred, (1, img_pred.shape[0]) *img_pred.shape[1])) e=model.predict(img_pred2) NUM_ROWS = 1 IMGs_IN_ROW = 3 f, ax = plt.subplots(NUM_ROWS, IMGs_IN_ROW, figsize =(8,8)) img1 = cv2.imread(r"C:/Users/aishwarya/Desktop/eb1.JPG") ax[0].imshow(img1) ax[1].imshow(img_pred,cmap="hsv") img3 = cv2.cvtColor(img3, cv2.COLOR_BGR2GRAY) ax[2].imshow(img3,cmap="gray") ax[0].set_title('original image') ax[1].set_title('Output in hsv') ax[2].set_title('Output in gray') title = 'predicting custom image' plt.tight_layout() print(labels[(e[0])])	Predicting custom image Output in hsv Output in gray To provide the second of the s		

• Number of images trained

500

Accuracy

```
from sklearn import svm
from sklearn import metrics
classifier=svm.SVC(kernel='poly',gamma='auto',C=2)
classifier.fit(X_train,Y_train)
Y_predict=classifier.predict(X_test)
accuracy = classifier.score(X_test, Y_test)*100
print("Accuracy: ",accuracy)
print("Precision Score: ",metrics.precision_score(Y_test, Y_predict,average='macro')*100)
print("Recall Score: ",metrics.recall_score(Y_test, Y_predict,average='macro')*100)
```

Accuracy: 97.0

Precision Score : 97.26190476190476 Recall Score : 96.84210526315789

• Precision classification Report

from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(Y_test, Y_predict))

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	20	
1	1.00	0.89	0.94	19	
2	0.90	1.00	0.95	19	
3	1.00	0.95	0.97	19	
4	0.96	1.00	0.98	23	
accuracy			0.97	100	
	0.07	0.97		100	
macro avg weighted avg	0.97 0.97	0.97	0.97 0.97	100	

• Confusion matrix (graph)

0

3

0

Predicted label

```
#finding accuracy from the confusion matrix.
a = cm.shape
corrPred = 0
falsePred = 0
for row in range(a[0]):
    for c in range(a[1]):
        if row == c:
             corrPred +=cm[row,c]
        else:
             falsePred += cm[row,c]
print('Correct predictions: ', corrPred)
print('False predictions', falsePred)
kernelPolyAccuracy = corrPred/(cm.sum())
print ('Accuracy of the SVC Clasification is: ', corrPred/(cm.sum()))
Correct predictions: 97
False predictions 3
Accuracy of the SVC Clasification is: 0.97
Confusion matrix, without normalization
[[20 0 0 0 0]
[017 2 0 0]
[0 0 19 0 0]
[0 0 0 18 1]
[0 0 0 0 23]]
             Confusion matrix
                  2
                         0
                               0
      0
  1
                                      - 15
True label
                         0
      0
```

- 10

- 5

1

• Graph (precision-recall curve):

Precision recall curve for each class

micro-average Precision-recall (area = 0.45)

Precision-recall for class 0 (area = 0.41)

Precision-recall for class 1 (area = 0.28)

Precision-recall for class 2 (area = 0.68)

Precision-recall for class 3 (area = 0.51)

Precision-recall for class 4 (area = 0.61)

Class 0-Bacterial_spot

Class 1-Early blight

Class 2-Healthy

Class 3- Late blight

Class 4-Leaf mold