Sequence models & Attention mechanism

CALIFICACIÓN DEL ÚLTIMO ENVÍO

100%

Consider using this encoder-decoder model for machine translation.

1 / 1 puntos

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False
 - ✓ Corrector
- 2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1 / 1 puntos

- Beam search will run more slowly.
 - ✓ Correcto
- Beam search will use up more memory.
 - Correcto

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)

- Beam search will converge after fewer steps.
- 3. In machine translation, if we carry out beam search without using sentence normalization, 1/1 puntos the algorithm will tend to output overly short translations.
 - True
 - False

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1 / 1 puntos

On a dev set example, given an input audio clip, your algorithm outputs the transcript \hat{y} = "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript y^* = "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- No, because $P(y^* \mid x) \le P(y \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

/11/2020	Sequence models & Attention mechanism Coursera	
0	Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.	
	Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.	
•	✓ Correcto	
we a m	ntinuing the example from Q4, suppose you work on your algorithm for a few more eks, and now find that for the vast majority of examples on which your algorithm makes nistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on proving the search algorithm.	1 / 1 puntos
	True.	
0	False.	
•	✓ Correcto	
6.		1 / 1 puntos

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_x} \exp(e^{})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

✓ Correcto

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t>}$ that are highly relevant to the value the network should output for $\gamma^{< t'>}$. (Note the indices in the superscripts.)
- $\sum_{t} \alpha^{< t, t'>} = 1$ (Note the summation is over t.)
- $\sum_{t'} \alpha^{< t, t'>} = 1$ (Note the summation is over t'.)

✓ Correcto

7.	The network learns where to "pay attention" by learning the values $e^{< t, t^{>}}$, which are computed using a small neural network:	1 / 1 puntos
	We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.	
	True	
	○ False	
	✓ Correcto	
8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	1 / 1 puntos
	$lacktriangle$ The input sequence length T_x is large.	
	\bigcirc The input sequence length T_x is small.	
	Correcto	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1 / 1 puntos
	c_oo_o_kkb_oooooookkk	
	cokbok	
	cookbook	
	Cook book	
	coookkbooooookkk	
	Correcto	

10. In trigger word detection, $x^{< t>}$ is:

1 / 1 puntos

- **(Section 2)** Features of the audio (such as spectrogram features) at time t.
- The *t*-th input word, represented as either a one-hot vector or a word embedding.
- Whether the trigger word is being said at time t.
- Whether someone has just finished saying the trigger word at time *t*.

✓ Correcto