```
응 {
Writer: Akshay S Tharval
1st draft: Sept 27, 2015
Last modified: Sept 27, 2015
Subject: Assignment2 Q8
응}
function Prob8()
clear all % Clear stored variables
clc % Clear the screen
close all % Close all previously created plots
% Given values of K1 and K2 in case a
K11 = 0.1071;
K21 = 0.01493;
% Given initial concentrations of components
NoCO21 = 0.333333333333;
NoO21 = 0.3333333333333;
NoN21 = 0.33333333333333
NoCO1 = 0;
NoNO1 = 0;
% Given values of K1 and K2 in case a
K12 = 0.1071;
K22 = 0.01493;
% Given initial concentrations of components
NoCO22 = 2;
NoO22 = 0.333333333333;
NoN22 = 0.333333333333;
NoCO2 = 0;
NoNO2 = 0;
E = [0.5; 0.5];
%Calling functioneval1 for case a
fun1 = @(E) eval1 (E, K11, K21, NoCO21, NoO21, NoN21, NoCO1, NoNO1);
fun1(E);
%Calling functionevall for case b
fun2 = @(E) eval1(E, K12, K22, NoCO22, NoO22, NoN22, NoCO2, NoNO2);
fun2(E);
options = optimoptions('fsolve','Display','iter');
[Ea] = fsolve(fun1, E, options);
[Eb] = fsolve(fun2, E, options);
disp('For case a the extent of reaction is (E1 and E2)')
disp('For case b the extent of reaction is (E1 and E2)')
Eb
end
```

function func = eval1(E, K1, K2, NoCO2, NoO2, NoN2, NoCO, NoNO)

%Defining the functions which will be returned when called func(1) = $((((NoCO + 2*E(1))^2)*(NoO2 - E(2) + E(1)))/(((NoCO2 - 2*E(1))^2)*(NoCO2 + NoCO + NoO2 + NoN2 + NoNO + E(1))))-K1;$ func(2) = $(((NoNO + 2*E(2))^2)/((NoO2 + E(1) - E(2))*(NoN2 - E(2))))-K2;$

end

			Norm of	First-order	
Trust-region					
Iteration	Func-count	f(x)	step	optimality	
radius					
0	3	324.692		973	
1					
1	6	143.763	0.536168	365	
1					
2	9	45.7472	1	69.4	
1					
3	12	11.7483	1	11.5	
1					
4	15	3.02318	1	0.722	
_ 1					
5	18	0.668911	1	0.0928	
1	0.1	0 (10(70	0.5	0 506	
6	21	0.618679	2.5	0.536	
2.5	0.0	0 610670	6.05	0 526	
7 6.25	22	0.618679	6.25	0.536	
6.25 8	23	0.618679	1.5625	0.536	
8 1.56	∠3	0.618679	1.3023	0.536	
9	26	0.599584	0.390625	0.104	
0.391	20	0.399364	0.390023	0.104	
10	27	0.599584	0.390625	0.104	
0.391	27	0.333301	0.350023	0.101	
11	30	0.598522	0.0976563	0.109	
0.0977	30	0.330322	0.0370303	0.105	
12	33	0.598135	0.0976563	0.0643	
0.0977					
13	34	0.598135	0.0976563	0.0643	
0.0977					
14	37	0.597965	0.0244141	0.0578	
0.0244					
15	40	0.597797	0.0244141	0.0258	
0.0244					
16	41	0.597797	0.0244141	0.0258	
0.0244					
17	44	0.597779	0.00610352	0.0193	
0.0061					
18	47	0.597764	0.00610352	0.0125	
0.0061					

19 0.0061	50	0.597763	0.00610352	0.00936
20 0.0061	53	0.597758	0.00610352	0.00678
21 0.0061	54	0.597758	0.00610352	0.00678
22 0.00153	57	0.597757	0.00152588	0.0047
23 0.00153	60	0.597756	0.00152588	0.00321
24 0.00153	63	0.597755	0.00152588	0.00187
25 0.00153	66	0.597755	0.00152588	0.000959
26 0.00153	69	0.597755	0.00152588	0.000392
27 0.00153	70	0.597755	0.00152588	0.000392
28 0.000381	73	0.597755	0.00038147	0.000195
29 0.000381	74	0.597755	0.00038147	0.000195
30 9.54e-05	77	0.597755	9.53674e-05	0.00014
31 9.54e-05	80	0.597755	9.53674e-05	0.000105
32 9.54e-05	81	0.597755	9.53674e-05	0.000105
33 2.38e-05 34	84 87	0.597755	2.38419e-05 2.38419e-05	7.12e-05 4.94e-05
2.38e-05 35	90	0.597755	2.38419e-05	3.55e-05
2.38e-05 36	93	0.597755	2.38419e-05	2.66e-05
2.38e-05 37	96	0.597755	2.38419e-05	2.08e-05
2.38e-05 38	97	0.597755	2.38419e-05	2.08e-05
2.38e-05 39	100	0.597755	5.96046e-06	1.43e-05
5.96e-06 40	103	0.597755	5.96046e-06	8.33e-06
5.96e-06 41	106	0.597755	5.96046e-06	4.46e-06
5.96e-06 42	109	0.597755	5.96046e-06	1.98e-06
5.96e-06 43	110	0.597755	5.96046e-06	1.98e-06
5.96e-06 44	113	0.597755	1.49012e-06	1.05e-06
1.49e-06 45 1.49e-06	114	0.597755	1.49012e-06	1.05e-06

46 117 0.597755 3.72529e-07 7.37e-07 3.73e-07

No solution found.

fsolve stopped because the problem appears regular as measured by the gradient,

but the vector of function values is not near zero as measured by the default value of the function tolerance.

			Norm of	First-order
Trust-regi	on			
Iteration	Func-count	f(x)	step	optimality
radius				
0	3	324.538		973
1				
1	6	0.882078	1	1.73
1				
2	9	0.0052727	0.497895	0.114
2.5				
3	10	0.0052727	0.135749	0.114
2.5				
4	13	0.000770041	0.0339372	0.0281
0.0339				
5	14	0.000770041	0.0848431	0.0281
0.0848				
6	17	0.000162829	0.0212108	0.00541
0.0212				
7	18	0.000162829	0.0312042	0.00541
0.053				
8	21	7.64897e-05	0.00780104	0.00573
0.0078				
9	24	1.04821e-05	0.0127548	0.00405
0.0195				
10	27	2.60839e-08	0.00262437	0.000182
0.0195				
11	30	2.34452e-13	0.000145191	5.43e-07
0.0195				

Equation solved.

fsolve completed because the vector of function values is near zero as measured by the default value of the function tolerance, and the problem appears regular as measured by the gradient.

For case a the extent of reaction is (E1 and E2)

Ea =

```
1.4991
0.1141
For case b the extent of reaction is (E1 and E2)
Eb =
0.4050
0.0284
```

Published with MATLAB® R2015a