Planche nº 2. Ensembles, relations, applications. Corrigé

Exercice nº 1

Si E = F, alors $\mathscr{P}(E) = \mathscr{P}(F)$.

Réciproquement, supposons que $\mathscr{P}(E) = \mathscr{P}(F)$. F est un élément de $\mathscr{P}(F)$ et donc F est un élément $\mathscr{P}(E)$. Mais alors $F \subset E$. En échangeant les rôles de E et F on a aussi $E \subset F$ et finalement E = F.

Exercice n° 2 Par distributivité de \cup sur \cap ,

$$\begin{split} (A \cup B) \cap (B \cup C) \cap (C \cup A) &= ((A \cap B) \cup (A \cap C) \cup (B \cap B) \cup (B \cap C)) \cap (C \cup A) \\ &= ((A \cap C) \cup B) \cap (C \cup A) \text{ (car } B \cap B = B \text{ et } A \cap B \subset B \text{ et } B \cap C \subset B) \\ &= (A \cap C \cap C) \cup (A \cap C \cap A) \cup (B \cap C) \cup (B \cap A) \\ &= (A \cap B) \cup (B \cap C) \cup (A \cap C) \cup (A \cap C) \\ &= (A \cap B) \cup (B \cap C) \cup (C \cap A). \end{split}$$

Exercice nº 3 Tous les résultats sont clairs si $E = \emptyset$. On suppose dorénavant $E \neq \emptyset$.

1) Si $A = B = \emptyset$ alors $A\Delta B = \emptyset = A \cap B$.

Si $A\Delta B = A\cap B$, alors $A\Delta B = A\cap B = \emptyset$ (car $(A\Delta B)\cap (A\cap B) = \emptyset$). Supposons par exemple $A\neq \emptyset$. Soit $x\in A$. Si $x\in B$, $x\in A\cap B=\emptyset$ ce qui est absurde et si $x\notin B$, $x\in A\Delta B=\emptyset$ ce qui est absurde. Donc $A=\emptyset$ puis $B=\emptyset$ par symétrie des rôles.

Finalement, $A\Delta B = A \cap B \Leftrightarrow A = B = \emptyset$.

- **2)** $A\Delta B = (A \setminus B) \cup (B \setminus A) = (B \setminus A) \cup (A \setminus B) = B\Delta A.$
- 3) Soit $x \in E$.

Par symétrie des rôles de A, B et C, $A\Delta(B\Delta C)$ est également l'ensemble des éléments qui sont dans une et une seule des trois parties A, B ou C ou dans les trois. Donc $(A\Delta B)\Delta C = A\Delta(B\Delta C)$. Ces deux ensembles peuvent donc se noter une bonne fois pour toutes $A\Delta B\Delta C$.

- 4) $A = B \Rightarrow A \setminus B = \emptyset$ et $B \setminus A = \emptyset \Rightarrow A\Delta B = \emptyset$. $A \neq B \Rightarrow \exists x \in E / ((x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B)) \Rightarrow \exists x \in E / x \in (A \setminus B) \cup (B \setminus A) = A\Delta B \Rightarrow A\Delta B \neq \emptyset$.
- 5) \Leftarrow Immédiat.

 \Rightarrow / Si A et B sont vides, alors A=B. Sinon, l'une au moins des deux parties A ou B n'est pas vide. Supposons sans perte de généralité que A n'est pas vide. Soit x un élément de A.

Si $x \notin C$ alors $x \in A\Delta C = B\Delta C$ et donc $x \in B$ car $x \notin C$.

Si $x \in C$ alors $x \notin A\Delta C = B\Delta C$. Puis $x \notin B\Delta C$ et $x \in C$ et donc $x \in B$. Dans tous les cas, x est dans B. Tout élément de A est dans B et donc $A \subset B$.

Maintenant, si $B = \emptyset$, alors $A \subset B = \emptyset$ et donc $A = \emptyset = B$ et si $B \neq \emptyset$, en échangeant les rôles de A et B, on a aussi $B \subset A$ et finalement A = B.

Exercice nº 4

1ère solution.

Réflexivité. Pour tout réel x, on a $xe^x = xe^x$ et donc, pour tout réel x, on a $x\Re x$. Par suite, la relation \Re est réflexive.

Symétrie. Soient x et y deux réels tels que $x\mathcal{R}y$. On a donc $xe^y = ye^x$ puis $ye^x = xe^y$ et donc $y\mathcal{R}x$. On a montré que pour tous réels x et y, si $x\mathcal{R}y$ alors $y\mathcal{R}x$. Par suite, la relation \mathcal{R} est symétrique.

Transitivité. Soient x, y et z trois réels tels que x \mathcal{R} y et y \mathcal{R} z. On a donc x $e^y = ye^x$ et y $e^z = ze^y$. On en déduit que

$$xe^{z} = xe^{y}e^{-y}e^{z} = ye^{x}e^{-y}e^{z} = ye^{z}e^{-y}e^{x} = ze^{y}e^{-y}e^{x} = ze^{x}e^{-y}e^{x}$$

et donc $x\mathcal{R}z$. On a montré que pour tous réels x, y et z, si $x\mathcal{R}y$ et $y\mathcal{R}z$, alors $x\mathcal{R}z$. Par suite, la relation \mathcal{R} est transitive.

Finalement, la relation \mathscr{R} est réflexive, symétrique et transitive et donc, la relation \mathscr{R} est une relation d'équivalence sur \mathbb{R} .

2ème solution. Soit $(x,y) \in \mathbb{R}^2$. $x \mathcal{R} y \Leftrightarrow x e^y = y e^x \Leftrightarrow x e^{-x} = y e^{-y} \Leftrightarrow f(x) = f(y)$ où pour tout réel t, $f(t) = t e^{-t}$.

Avec cette remarque,

- la réflexivité devient : $\forall x \in \mathbb{R}$, f(x) = f(x) et donc $x \mathcal{R} x$.
- la symétrie devient : $\forall (x,y) \in \mathbb{R}^2$, $x \mathcal{R} y \Rightarrow f(x) = f(y) \Rightarrow f(y) = f(x) \Rightarrow y \mathcal{R} x$.
- la transitivité devient : $\forall (x, y, z) \in \mathbb{R}^3$, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Rightarrow (f(x) = f(y) \text{ et } f(y) = f(z)) \Rightarrow f(x) = f(z) \Rightarrow x \mathcal{R} z$.
- 2) Soit x un réel. Déterminons le nombre d'éléments de la classe d'équivalence de x.

Etudions la fonction f. f est dérivable sur \mathbb{R} et pour tout réel t, $f'(t) = (1-t)e^{-t}$. f est strictement croissante sur $]-\infty,1]$ et strictement décroissante sur $[1,+\infty[$, tend vers $-\infty$ en $-\infty$ et tend vers 0 en $+\infty$. Le graphe de f est

L'étude de f montre alors que si $x \in]-\infty,0] \cup \{1\}$, la classe de x est un singleton et si $x \in]0,1[\cup]1,+\infty[$, la classe de x est constituée de deux éléments distincts, x et un autre réel distinct de x (et qui a même image que x par f).

Exercice nº 5

Réflexivité. Pour tout élément A de $\mathscr{P}(E)$, on a $A \subset A$. Par suite, la relation \subset est réflexive.

Anti-symétrie. Soient A et B deux éléments de $\mathscr{P}(E)$ tels que $A \subset B$ et $B \subset A$. Alors A = B. Par suite, la relation \subset est anti-symétrique.

Transitivité. Soient A, B et C trois éléments de $\mathscr{P}(E)$ tels que A \subset B et B \subset C. Alors A \subset C. On en déduit que la relation \subset est transitive.

Finalement, la relation \subset est réflexive, anti-symétrique et transitive et donc, la relation \subset est une relation d'ordre sur $\mathscr{P}(\mathsf{E})$.

Si E contient au moins deux éléments distincts x et y, posons $A = \{x\}$ et $B = \{y\}$. On a $A \not\subset B$ et $B \not\subset A$. Donc, $\mathscr{P}(E)$ contient au moins deux éléments non comparables ou encore la relation \subset est une relation d'ordre partiel. Si E est vide ou un singleton, \subset est une relation d'ordre totale sur $\mathscr{P}(E)$.

Exercice nº 6

1) Soient $x \in]-\infty,2]$ et $y \in \mathbb{R}$.

$$y = f(x) \Leftrightarrow y = x^2 - 4x + 3 \Leftrightarrow x^2 - 4x + 3 - y = 0$$
 (E).

Le discriminant réduit de cette dernière équation est $\Delta'=4-(3-y)=y+1.$

- Si y < -1, alors $\Delta' < 0$ et l'équation (E) n'a pas de solution dans \mathbb{R} . En particulier, $y \notin f(I)$.
- Si y > -1, alors $\Delta' > 0$ et l'équation (E) admet deux solutions réelles distinctes à savoir $x_1 = 2 + \sqrt{y+1} \notin I$ et $x_2 = 2 \sqrt{y+1} \in I$. En particulier, $y \in f(I)$.
- Si y=-1, alors $\Delta'=0$ et l'équation (E) admet une solution et une seule dans $\mathbb R$ à savoir $x=2=2-\sqrt{0}\in I$. En particulier, $y\in f(I)$.

Ceci montre déjà que $f(I) = [-1, +\infty[$.

De plus, l'étude précédente montre que pour tout $y \in f(I) = [-1, +\infty[$, il existe un réel x et un seul de $I =]-\infty, 2]$ tel que y = f(x), à savoir $x = 2 - \sqrt{y+1}$. Donc, f réalise une bijection de $]-\infty, 2]$ sur $[-1, +\infty[$ et

$$\forall x \in]-\infty, 2], \ \forall y \in [-1, +\infty[, \ y = f(x) \Leftrightarrow x = 2 - \sqrt{y+1}.$$

On vient de trouver f^{-1} :

$$\forall x \in [-1, +\infty[, f^{-1}(x) = 2 - \sqrt{x+1}]$$

2) Soient $x \in]-2, +\infty[$ et $y \in \mathbb{R}$.

$$y = f(x) \Leftrightarrow y = \frac{2x-1}{x+2} \Leftrightarrow y(x+2) = 2x-1 \Leftrightarrow x(-y+2) = 2y+1$$
 (E).

- Si y = 2, cette équation s'écrit 0x = 5. Dans ce cas, (E) n'a pas de solution dans \mathbb{R} .
- Si $y \neq 2$,

$$y = f(x) \Leftrightarrow x = \frac{2y+1}{-y+2}.$$

Il reste à étudier si, oui ou non, le réel x fourni appartient à $]-2,+\infty[$. Soit $y\in\mathbb{R}\setminus\{2\}$.

$$\frac{2y+1}{-y+2} - (-2) = \frac{2y+1}{-y+2} + 2 = \frac{2y+1+2(-y+2)}{-y+2} = \frac{5}{-y+2}.$$

Cette dernière expression est du signe de -y+2 et est donc strictement positive si et seulement si y < 2. Le réel $x = \frac{2y+1}{-y+2}$ est dans $]-2,+\infty[$ si et seulement si y < 2.

En résumé, pour $y \in \mathbb{R}$ donné, si $y \ge 2$, l'équation f(x) = y n'a pas de solution dans $]-\infty,-2[$ et si y < 2, l'équation f(x) = y a une solution et une seule sans $]-2,+\infty[$, à savoir $x = \frac{2y+1}{-y+2}$. Ceci montre que $f(I) =]-\infty,2[$, que f est bijective de $]-2,+\infty[$ sur $]-\infty,2[$ et que

$$\forall x \in]-\infty, 2[, f^{-1}(x) = \frac{2x+1}{-x+2}$$

3) Soient $x \in \left[-\frac{3}{2}, +\infty\right[\text{ et } y \in \mathbb{R}.$

$$f(x) = y \Leftrightarrow \sqrt{2x+3} - 1 = y \Leftrightarrow \sqrt{2x+3} = y+1.$$

Si y < -1, cette équation n'a pas de solution dans $\left[-\frac{3}{2}, +\infty \right[$. Si $y \ge -1$,

$$f(x) = y \Leftrightarrow 2x + 3 = (y + 1)^2 \Leftrightarrow x = -\frac{3}{2} + \frac{1}{2}(y + 1)^2 \Leftrightarrow x = \frac{y^2}{2} + y - 1.$$

De plus, le réel $x = -\frac{3}{2} + \frac{1}{2}(y+1)^2$ appartient à $\left[-\frac{3}{2}, +\infty\right[$. Ainsi, dans le cas où $y \geqslant -1$, l'équation f(x) = y admet une solution et une seule dans $\left[-\frac{3}{2}, +\infty\right[$. Ceci montre que $f(I) = [-1, +\infty[$, que f est bijective de $\left[-\frac{3}{2}, +\infty\right[$ sur $[-1, +\infty[$ et que

$$\forall x \in [-1, +\infty[, f^{-1}(x) = \frac{x^2}{2} + x - 1.$$

4) f est définie sur \mathbb{R} .

Pour
$$x \in [0, +\infty[$$
, $0 \le f(x) = \frac{x}{1+x} < \frac{1+x}{1+x} = 1$. Donc, $f([0, +\infty[) \subset [0, 1[$.

Pour
$$x \in]-\infty, 0], 1-x > 0$$
 et donc $0 \ge f(x) = \frac{x}{1-x} > \frac{x-1}{1-x} = -1$. Donc, $f(]-\infty, 0]) \subset]-1, 0]$.

Finalement, $f(\mathbb{R}) \subset]-1,1[$.

Vérifions alors que f réalise une bijection de \mathbb{R} sur]-1,1[.

Soit $y \in [0, 1[$ et $x \in \mathbb{R}$. L'égalité f(x) = y impose à x d'être dans $[0, +\infty[$. Mais alors

$$f(x) = y \Leftrightarrow \frac{x}{1+x} = y \Leftrightarrow x = y(1+x) \Leftrightarrow x(1-y) = y \Leftrightarrow x = \frac{y}{1-y}.$$

Le réel x obtenu est bien défini, car $y \neq 1$, et positif, car $y \in [0, 1[$. On a montré que :

$$\forall y \in [0,1[, \exists! x \in \mathbb{R}/y = f(x) \text{ (à savoir } x = \frac{y}{1-y}).$$

Soit $y \in]-1,0[$ et $x \in \mathbb{R}$. L'égalité f(x)=y impose à x d'être dans $]-\infty,0[$. Mais alors

$$f(x) = y \Leftrightarrow \frac{x}{1-x} = y \Leftrightarrow x = y(1-x) \Leftrightarrow x = \frac{y}{1+y}.$$

Le réel x obtenu est bien défini, car $y \neq -1$, et strictement négatif, car $y \in]-1,0[$. On a montré que :

$$\forall y \in]-1,0[, \exists !x \in \mathbb{R}/y = f(x) \text{ (à savoir } x = \frac{y}{1+y}).$$

Finalement,

$$\forall y \in]-1,1[, \exists!x \in \mathbb{R}/y = f(x),$$

ce qui montre que $f(\mathbb{R})=]-1,1[$, que f réalise une bijection de \mathbb{R} sur]-1,1[. De plus, pour $y\in]-1,1[$ donné, $f^{-1}(y)=\frac{y}{1-y}$ si $y\geqslant 0$ et $f^{-1}(y)=\frac{y}{1+y}$ si y<0. Dans tous les cas, on a $f^{-1}(y)=\frac{y}{1-|y|}$. Finalement,

$$\forall x \in]-1,1[, f^{-1}(x) = \frac{x}{1-|x|}.$$

Exercice nº 7

1) Si A = E, pour tout X de $\mathscr{P}(E)$, $\varphi_A(X) = X \cap E = X$ et donc $\varphi_A = Id_{\mathscr{P}(E)}$. Dans ce cas, φ_A est injective et surjective.

Soit A une partie de E, distincte de E. Vérifions que φ_A n'est ni injective, ni surjective.

Puisque $A \neq E$, il existe un élément x_0 de E qui n'est pas dans A. Soient $B = \emptyset$ et $C = \{x_0\}$. On a

$$\varphi_A(B) = B \cap A = \emptyset = C \cap A = \varphi_A(C)$$

avec $B \neq C$. Donc, φ_A n'est pas injective. D'autre part, pour tout X de $\mathscr{P}(E)$, $A \cap X$ est contenue dans A et en particulier ne peut être égale à E. Donc, E n'a pas d'antécédent par φ_A . Ceci montre que φ_A n'est pas surjective.

En résumé, si A = E, φ_A est injective et surjective et si $A \neq E$, φ_A n'est ni injective, ni surjective. On a donc montré que : φ_A injective $\Leftrightarrow \varphi_A$ surjective $\Leftrightarrow A = E$.

2) Si $A = \emptyset$, pour tout X de $\mathscr{P}(E)$, $\psi_A(X) = X \cup \emptyset = X$ et donc $\psi_A = Id_{\mathscr{P}(E)}$. Dans ce cas, ψ_A est injective et surjective.

Soit A une partie de E, distincte de \varnothing . Vérifions que ψ_A n'est ni injective, ni surjective.

Puisque $A \neq \emptyset$, il existe un élément x_0 de A. Soient $B = \emptyset$ et $C = \{x_0\}$. Puisque x_0 est dans A, on a

$$\psi_A(B) = B \cup A = A = C \cup A = \psi_A(C)$$

avec $B \neq C$. Donc, ψ_A n'est pas injective. D'autre part, pour tout X de $\mathscr{P}(E)$, $A \cup X$ contient A et en particulier ne peut être égale à \varnothing . Donc, \varnothing n'a pas d'antécédent par ψ_A . Ceci montre que ψ_A n'est pas surjective.

En résumé, si $A = \emptyset$, ψ_A est injective et surjective et si $A \neq \emptyset$, ψ_A n'est ni injective, ni surjective. On a donc montré que : ψ_A injective $\Leftrightarrow \psi_A$ surjective $\Leftrightarrow A = \emptyset$.

Autre solution : pour tout $X \in \mathcal{P}(E)$, (en notant \overline{X} le complémentaire de X)

$$\psi_A(X) = X \cup A = \overline{\overline{X} \cap \overline{A}} = \overline{\phi_{\overline{A}}\left(\overline{X}\right)} = \left(f \circ \phi_{\overline{A}} \circ f\right)(X)$$

où f est l'application $X \mapsto \overline{X}$. f est une involution et en particulier f est une bijection de $\mathscr{P}(E)$ sur lui-même. D'après la question 1),

$$\psi_A \ \mathrm{injective} \Leftrightarrow \phi_{\overline{A}} \ \mathrm{injective} \Leftrightarrow \overline{A} = E \Leftrightarrow A = \varnothing$$

et de même, ψ_A surjective $\Leftrightarrow A = \emptyset$.

Exercice nº 8

1) Soit $(x_1, x_2) \in E^2$.

$$\begin{split} f(x_1) &= f(x_2) \Rightarrow g(f(x_1)) = g(f(x_2)) \text{ (car } g \text{ est une application)} \\ &\Rightarrow (g \circ f) (x_1) = (g \circ f) (x_2) \\ &\Rightarrow x_1 = x_2 \text{ (car } g \circ f \text{ est injective).} \end{split}$$

On a montré que $\forall (x_1, x_2) \in E^2$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Donc f est injective.

2) Soit $z \in H$. Puisque $g \circ f$ est surjective, il existe un élément x dans E tel que g(f(x)) = z. En posant y = f(x), y est un élément de F tel que g(y) = z. On a montré : $\forall z \in G$, $\exists y \in F/g(y) = z$. Donc g est surjective.

Exercice nº 9

 \bullet Supposons f injective. Soit x un élément de E. Par hypothèse, f(f(x)) = f(x). Puisque f est injective, on en déduit que f(x) = x.

Ainsi, pour tout x de E, f(x) = x et donc $f = Id_F$. En particulier, f est bijective et en particulier, f est surjective.

• Supposons f surjective. Soit x_1 et x_2 deux éléments de E. Puisque f est surjective, il existe deux éléments y_1 et y_2 de E tels que $x_1 = f(y_1)$ et $x_2 = f(y_2)$.

$$\begin{split} f(x_1) &= f(x_2) \Rightarrow f(f(y_1)) = f(f(y_2)) \Rightarrow f(y_1) = f(y_2) \; (\operatorname{car} \, f \circ f = f) \\ &\Rightarrow x_1 = x_2. \end{split}$$

Donc, f est injective puis f est bijective. On note de nouveau que puisque f est injective, nécessairement $f = Id_E$.

Autre solution. Soit $x \in E$. Puisque f est surjective, il existe $y \in E$ tel que f(y) = x. Mais alors, f(x) = f(f(y)) = f(y) = x. Ainsi, pour tout x de E, f(x) = x et donc $f = Id_E$. En particulier, f est injective.

Remarque. Si on sait que f est bijective, on peut simplifier par f :

$$f\circ f=f\Rightarrow f\circ f\circ f^{-1}=f\circ f^{-1}\Rightarrow f=Id_E.$$

Exercice nº 10

On peut supposer sans perte de généralité que $f \circ g \circ h$ et $g \circ h \circ f$ sont injectives et que $h \circ f \circ g$ est surjective. D'après le n° 9, puisque $f \circ g \circ h = (f \circ g) \circ h$ est injective, h est injective et puisque $h \circ f \circ g = h \circ (f \circ g)$ est surjective, h est surjective.

Déjà h est bijective. Mais alors, h^{-1} est surjective et donc $f \circ g = h^{-1} \circ (h \circ f \circ g)$ est surjective en tant que composée de surjections. Puis h^{-1} est injective et donc $f \circ g = (f \circ g \circ h) \circ h^{-1}$ est injective. $f \circ g$ est donc bijective.

 $f \circ g$ est surjective donc f est surjective. $g \circ h \circ f$ est injective donc f est injective. Donc f est bijective. Enfin $g = f^{-1} \circ (f \circ g)$ est bijective en tant que composée de bijections.

Exercice nº 11

1) a) • Supposons f injective.

Soit $X \in \mathscr{P}(E)$. On a toujours $X \subset f^{-1}(f(X))$. $(x \in X \Rightarrow f(x) \in f(X) \Rightarrow x \in f^{-1}(f(X)))$.

Réciproquement, soit $x \in E$.

$$x \in f^{-1}(f(X)) \Rightarrow f(x) \in f(X) \Rightarrow \exists x' \in X/ \ f(x) = f(x') \Rightarrow \exists x' \in X/ \ x = x' \ (puisque \ f \ est \ injective) \Rightarrow x \in X.$$

Finalement, $f^{-1}(f(X)) \subset X$ et donc $f^{-1}(f(X)) = X$.

- Supposons que pour tout X de $\mathcal{P}(E)$, $f^{-1}(f(X)) = X$. Soit $x \in X$. Par hypothése, $f^{-1}\{f(x)\} = f^{-1}(f(\{x\})) = \{x\}$ ce qui signifie que f(x) a un et un seul antécédent à savoir x. Par suite, tout élément de l'ensemble d'arrivée a au plus un antécédent par f et f est injective.
- **b)** Supposons f injective. Soit $(X,Y) \in (\mathscr{P}(E))^2$. On a toujours $f(X \cap Y) \subset f(X) \cap f(Y)$ $(X \cap Y \subset X \Rightarrow f(X \cap Y) \subset f(X)$ et de même, $f(X \cap Y) \subset f(Y)$ et finalement, $f(X \cap Y) \subset f(X) \cap f(Y)$.

Réciproquement, soit $y \in F$. $y \in f(X) \cap f(Y) \Rightarrow \exists (x, x') \in X \times Y / y = f(x) = f(x')$. Mais alors, puisque f est injective, $x = x' \in X \cap Y$ puis $y = f(x) \in f(X \cap Y)$. Finalement, $f(X) \cap f(Y) \subset f(X \cap Y)$ et donc $f(X \cap Y) = f(X) \cap f(Y)$.

• Supposons que pour tout $(X,Y) \in (\mathscr{P}(E))^2$, on a $f(X \cap Y) = f(X) \cap f(Y)$. Soit $(x_1,x_2) \in E^2$ tel que $f(x_1) = f(x_2)$. Posons $X = \{x_1\}$ et $Y = \{x_2\}$. Par hypothèse $f(X \cap Y) = f(X) \cap f(Y)$ ce qui fournit

$$f(\{x_1\} \cap \{x_2\}) = f(\{x_1\}) \cap f(\{x_2\}) = \{f(x_1)\} \cap \{f(x_2)\} = \{f(x_1)\}.$$

En particulier, $f(\{x_1\} \cap \{x_2\}) \neq \emptyset$ ce qui impose $\{x_1\} \cap \{x_2\} \neq \emptyset$ puis $x_1 = x_2$. Donc f est injective.

2) • Supposons f surjective. Soit $X \in \mathcal{P}(E)$. On a toujours $f(f^{-1}(X)) \subset X$ (l'image d'un antécédent d'élément de X est dans X).

Réciproquement, soit y un élément de X. Puisque f est surjective, y a un antécédent x par f qui est par définition un élément de $f^{-1}(X)$. Mais alors, y qui est l'image de x appartient à $f\left(f^{-1}(X)\right)$. On a montré que $X\subset f\left(f^{-1}(X)\right)$ est finalement que $f\left(f^{-1}(X)\right)=X$

• Supposons que pour tout $X \in \mathcal{P}(E)$, $f(f^{-1}(X)) = X$. Soient y un élément de E puis $X = \{y\}$. Par hypothèse, $f(f^{-1}(\{y\})) = \{y\}$. y est donc l'image d'un élément de $f^{-1}(\{y\})$ et en particulier y a un antécédent par f. On a montré que tout élément y de E a un antécédent par f dans E et donc f est surjective.

Exercice nº 12

- 1) Il y a l'injection triviale $f: E \rightarrow \mathscr{P}(E)$. $\chi \mapsto \{\chi\}$
- 2) Soit f une application quelconque de E dans $\mathcal{P}(E)$. Montrons que f ne peut être surjective. Soit $A = \{x \in E \mid x \notin f(x)\}$. Montrons que A n'a pas d'antécédent par f. Supposons par l'absurde que A a un antécédent a. Dans ce cas, où est a?

$$a \in A \Rightarrow a \notin f(a) = A$$
,

ce qui est absurde et

$$a \notin A \Rightarrow a \in f(a) = A$$

ce qui est absurde. Finalement, A n'a pas d'antécédent et f n'est pas surjective. On a montré le théorème de Cantor : pour tout ensemble E (vide, fini ou infini), il n'existe pas de bijection de E sur $\mathscr{P}(E)$.

Exercice nº 13

f est bien une application de \mathbb{N}^2 dans \mathbb{N} car, pour tout couple (x,y) d'entiers naturels, l'un des deux entiers x+y ou x+y+1 est pair et donc, $\frac{(x+y)(x+y+1)}{2}$ est bien un entier naturel (on peut aussi constater que $\frac{(x+y)(x+y+1)}{2} = 1+2+...+(x+y)$ est entier pour $x+y\geqslant 1$).

Remarque. La numérotation de \mathbb{N}^2 a été effectuée de la façon suivante :

	0	1	2		 χ	
0	0-	>1_	3	4 6		
1	2	4	7			
2	5	8				
3	9					
:						
y						
:						

Sur une parallèle à la droite d'équation y=-x, la somme x+y est constante. Il en est de même de l'expression $\frac{(x+y)(x+y+1)}{2}$ et quand on descend de 1 en y, on avance de 1 dans la numérotation.

$$\mathbf{Lemme}. \ \forall n \in \mathbb{N}, \ \exists ! p \in \mathbb{N} / \ \frac{p(p+1)}{2} \leqslant n < \frac{(p+1)(p+2)}{2}.$$

 $\frac{\textbf{Démonstration}. \text{ Pour démontrer ce lemme, on pourrait se contenter de constater que la suite des nombres triangulaires }{\left(\frac{p(p+1)}{2}\right)_{p\geqslant 0}} \text{ est strictement croissante. Néanmoins, on va faire mieux et fournir explicitement } p \text{ en fonction de } n.$

Soient n et p deux entiers naturels.

$$\begin{split} \frac{p(p+1)}{2} \leqslant n < \frac{(p+1)(p+2)}{2} &\Leftrightarrow p^2 + p - 2n \leqslant 0 \text{ et } p^2 + 3p + 2 - 2n > 0 \\ &\Leftrightarrow p \leqslant \frac{-1 + \sqrt{8n+1}}{2} \text{ et } p > \frac{-3 + \sqrt{8n+1}}{2} = -1 + \frac{-1 + \sqrt{8n+1}}{2} \\ &\Leftrightarrow p \leqslant \frac{-1 + \sqrt{8n+1}}{2}$$

Le lemme est démontré car $\mathbb{E}\left(\frac{-1+\sqrt{8n+1}}{2}\right)$ est un entier naturel.

Montrons que f est surjective (et au passage, déterminons l'antécédent d'un entier $\mathfrak n$ donné).

Soient n un entier naturel et $p = E\left(\frac{-1 + \sqrt{8n+1}}{2}\right)$ (p est un entier naturel). On pose $\begin{cases} x + y = p \\ y = n - \frac{p(p+1)}{2} \end{cases}$ ou encored

$$\begin{cases} y = n - \frac{p(p+1)}{2} \\ x = p - y = \frac{p(p+3)}{2} - n \end{cases}$$
. Tout d'abord, $y + \frac{(x+y)(x+y+1)}{2} = n - \frac{p(p+1)}{2} + \frac{p(p+1)}{2} = n$. Mais il reste encore

à vérifier que x et y ainsi définis (qui sont à l'évidence des entiers relatifs) sont bien des entiers naturels. Puisque $\frac{p(p+1)}{2}$ est un entier naturel et que $n \geqslant \frac{p(p+1)}{2}$, y est bien un entier naturel. Ensuite, $\frac{p(p+3)}{2} = \frac{p(p+1)}{2} + p$ est aussi un entier naturel et de plus,

$$\frac{p(p+3)}{2} - n \geqslant \frac{p(p+3)}{2} - \left(\frac{(p+1)(p+2)}{2} - 1\right) = 0,$$

et x est bien un entier naturel. Ainsi, pour n naturel donné, en posant $p = E\left(\frac{-1+\sqrt{8n+1}}{2}\right)$ puis $x = \frac{p(p+3)}{2} - n$ et $y = n - \frac{p(p+1)}{2}$, x et y sont des entiers naturels tels que f((x,y)) = n. f est donc surjective.

Montrons que f est injective. Pour cela, on montre que si x et y sont des entiers naturels vérifiant $y + \frac{(x+y)(x+y+1)}{2} = n$, alors nécessairement, x + y = p (et donc $y = n - \frac{p(p+1)}{2}$ puis $x = \frac{p(p+3)}{2} - n$). Soient donc x et y deux entiers naturels. On a :

$$\frac{(x+y)(x+y+1)}{2} \leqslant \frac{(x+y)(x+y+1)}{2} + y = n < \frac{(x+y)(x+y+1)}{2} + (x+y+1) = \frac{(x+y+1)(x+y+2)}{2} + (x+y+1) = \frac{(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y)(x+y+1)}{2} + \frac{(x+y)(x+y)(x+y+1)}{2} +$$

et le lemme montre que x+y=p. L'unicité du couple (x,y) est donc démontrée. f est une application injective et surjective et donc f est bijective. Sa réciproque est $f^{-1}: \mathbb{N} \to \mathbb{N}^2$ où $p=E\left(\frac{-1+\sqrt{8n+1}}{2}\right)$. $n \mapsto \left(\frac{p(p+3)}{2}, n-\frac{p(p+1)}{2}\right)$

Planche nº 3. Raisonnement par récurrence. Corrigé

Exercice nº 1

Montrons par récurrence que : $\forall n \in \mathbb{N}, 2^n > n$.

- Pour n = 0, $2^0 = 1 > 0$. L'inégalité à démontrer est donc vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $2^n > n$ ou encore plus précisément, $2^n \ge n+1$ (puisque 2^n est un entier) et montrons que $2^{n+1} > n+1$.

$$2^{n+1} = 2 \times 2^n$$

 $\geq 2(n+1)$ (par hypothèse de récurrence)
 $= n+1+n+1$
 $> n+1$.

On a montré par récurrence que :

$$\forall n \in \mathbb{N}, \ 2^n > n.$$

Exercice nº 2

Montrons par récurrence que : $\forall n \ge 4, n! \ge n^2$.

- Pour n = 4, $4! = 4 \times 3 \times 2 \times 1 = 24$ et $4^2 = 16$. Puisque $24 \ge 16$, l'inégalité à démontrer est donc vraie quand n = 4.
- Soit $n \ge 4$. Supposons que $n! \ge n^2$ et montrons que $(n+1)! \ge (n+1)^2$.

$$(n+1)! = (n+1) \times n!$$

 $\geqslant (n+1) \times n^2$ (par hypothèse de récurrence).

Or,
$$(n+1) \times n^2 - (n+1)^2 = (n+1)(n^2 - n - 1) = (n+1)(n(n-1) - 1) \ge 5 \times (4 \times 3 - 1) = 55 \ge 0$$
 et donc $(n+1) \times n^2 \ge (n+1)^2$ puis $(n+1)! \ge (n+1)^2$.

On a montré par récurrence que :

$$\forall n \geqslant 4, \ n! \geqslant n^2.$$

Exercice nº 3

Montrons par récurrence que : $\forall n \ge 2$, n est divisible par au moins un nombre premier.

- ullet 2 est divisible par 2 qui est un nombre premier. La propriété à démontrer est donc vraie quand $\mathfrak{n}=2$.
- Soit $n \ge 2$. Supposons que pour tout $k \in [2, n]$, k est divisible par au moins un nombre premier et montrons que n+1 est divisible par au moins un nombre premier.

Si n+1 est un nombre premier, n+1 admet au moins un diviseur premier à savoir lui-même. Sinon, n+1 n'est pas premier. Dans ce cas, il existe deux entiers $\mathfrak a$ et $\mathfrak b$ éléments de $[\![2,n]\!]$ tels que $\mathfrak n+1=\mathfrak a\times\mathfrak b$. Par hypothèse de récurrence, l'entier $\mathfrak a$ est divisible par au moins un nombre premier $\mathfrak p$. L'entier $\mathfrak p$ divise l'entier $\mathfrak a$ et l'entier $\mathfrak a$ divise l'entier $\mathfrak n+1$. Donc le nombre premier $\mathfrak p$ divise l'entier $\mathfrak n+1$.

Dans tous les cas, l'entier n + 1 est divisible par au moins un nombre premier.

On a montré par récurrence que tout entier supérieur ou égal à 2 est divisible par au moins un nombre premier.

Exercice nº 4

Montrons par récurrence que : $\forall n \in \mathbb{N}, \ u_n = (-2)^n + 3^n$.

- $\bullet \ (-2)^0 + 3^0 = 2 = u_0 \ \mathrm{et} \ (-2)^1 + 3^1 = 1 = u_1. \ \mathrm{L'\acute{e}galit\acute{e}} \ \grave{\mathrm{a}} \ \mathrm{d\acute{e}montrer} \ \mathrm{est} \ \mathrm{donc} \ \mathrm{vraie} \ \mathrm{quand} \ n = 0 \ \mathrm{et} \ n = 1.$
- Soit $n \ge 0$. Supposons que $u_n = (-2)^n + 3^n$ et que $u_{n+1} = (-2)^{n+1} + 3^{n+1}$ et montrons que $u_{n+2} = (-2)^{n+2} + 3^{n+2}$.

$$\begin{split} u_{n+2} &= u_{n+1} + 6u_n \\ &= \left((-2)^{n+1} + 3^{n+1} \right) + 6 \left((-2)^n + 3^n \right) \text{ (par hypothèse de récurrence)} \\ &= (-2+6) \times (-2)^n + (3+6) \times 3^n = 4 \times (-2)^n + 9 \times 3^n \\ &= (-2)^2 \times (-2)^n + 3^2 \times 3^n = (-2)^{n+2} + 3^{n+2}. \end{split}$$

On a montré par récurrence que :

$$\forall n \in \mathbb{N}, (-2)^n + 3^n$$

Exercice nº 5

1) Montrons par récurrence que : $\forall n \ge 1$, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

• Pour
$$n = 1$$
, $\frac{1 \times (1+1)}{2} = 1 = \sum_{k=1}^{1} k$. L'égalité à démontrer est vraie quand $n = 1$.

• Soit
$$n \ge 1$$
. Supposons que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ et montrons que $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$.

$$\begin{split} \sum_{k=1}^{n+1} k &= \left(\sum_{k=1}^n k\right) + (n+1) = \frac{n(n+1)}{2} + (n+1) \text{ (par hypothèse de récurrence)} \\ &= (n+1) \left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}. \end{split}$$

On a montré par récurrence que :

$$\forall n \geqslant 1, \ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

On peut donner plusieurs démonstrations directes.

1ère demonstration. Pour $k \geqslant 1$, $(k+1)^2 - k^2 = 2k+1$ et donc $\sum_{k=1}^{n} \left((k+1)^2 - k^2\right) = 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$ ce qui s'écrit $(n+1)^2 - 1 = 2\sum_{k=1}^{n} k + n$ ou encore $2\sum_{k=1}^{n} k = n^2 + n$ ou enfin $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

2ème demonstration. On écrit

et en additionnant (verticalement), on obtient $2S = \underbrace{(n+1) + (n+1) + \ldots + (n+1)}_{n \text{ termes}} = n(n+1)$ d'où le résultat. La même démonstration s'écrit avec le symbole sigma :

$$2S = \sum_{k=1}^{n} k + \sum_{k=1}^{n} (n+1-k) = \sum_{k=1}^{n} (k+n+1-k) = \sum_{k=1}^{n} (n+1) = n(n+1).$$

3ème demonstration. On compte le nombre de points d'un rectangle ayant n points de large et n+1 points de long. Il y en a n(n+1). Ce rectangle se décompose en deux triangles isocèles contenant chacun 1+2+...+n points. D'où le résultat.

4ème démonstration. Dans le triangle de PASCAL, on sait que pour n et p entiers naturels donnés, $\binom{n}{n} + \binom{n}{n+1} =$ $\binom{n+1}{p+1}$. Donc, pour $n \ge 2$ (le résultat est clair pour n = 1),

$$1+2+...+n=1+\sum_{k=2}^{n}\binom{k}{1}=1+\sum_{k=2}^{n}\binom{k+1}{2}-\binom{k}{2}=1+\binom{n+1}{2}-1=\frac{n(n+1)}{2}.$$

2) Pour $k \ge 1$, $(k+1)^3 - k^3 = 3k^2 + 3k + 1$. Donc, pour $n \ge 1$:

$$3\sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \sum_{k=1}^{n} ((k+1)^3 - k^3) = (n+1)^3 - 1.$$

D'où,

$$\sum_{k=1}^{n} k^2 = \frac{1}{3} \left((n+1)^3 - 1 - 3 \frac{n(n+1)}{2} - n \right) = \frac{1}{6} (2(n+1)^3 - 3n(n+1) - 2(n+1)) = \frac{1}{6} (n+1) \left(2n^2 + n \right),$$

et donc

$$\forall n \geqslant 1, \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Pour $k \ge 1$, $(k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$. Donc, pour $n \ge 1$, on a

$$4\sum_{k=1}^{n} k^{3} + 6\sum_{k=1}^{n} k^{2} + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \sum_{k=1}^{n} ((k+1)^{4} - k^{4}) = (n+1)^{4} - 1.$$

D'où:

$$\begin{split} \sum_{k=1}^n k^3 &= \frac{1}{4} \left((n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n \right) = \frac{1}{4} ((n+1)^4 - (n+1)(n(2n+1) + 2n+1)) \\ &= \frac{1}{4} \left((n+1)^4 - (n+1)^2(2n+1) \right) = \frac{(n+1)^2 \left((n+1)^2 - (2n+1) \right)}{4} = \frac{n^2(n+1)^2}{4} \\ &\qquad \qquad \qquad \forall n \geqslant 1, \ \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{k=1}^n k \right)^2. \end{split}$$

Pour $k \ge 1$, $(k+1)^5 - k^5 = 5k^4 + 10k^3 + 10k^2 + 5k + 1$. Donc, pour $n \ge 1$,

$$5\sum_{k=1}^{n}k^{4}+10\sum_{k=1}^{n}k^{3}+10\sum_{k=1}^{n}k^{2}+5\sum_{k=1}^{n}k+\sum_{k=1}^{n}1=\sum_{k=1}^{n}((k+1)^{5}-k^{5})=(n+1)^{5}-1.$$

D'où:

$$\begin{split} \sum_{k=1}^{n} k^4 &= \frac{1}{5} \left((n+1)^5 - 1 - \frac{5}{2} n^2 (n+1)^2 - \frac{5}{3} n (n+1) (2n+1) - \frac{5}{2} n (n+1) - n \right) \\ &= \frac{1}{30} (6(n+1)^5 - 15n^2 (n+1)^2 - 10n (n+1) (2n+1) - 15n (n+1) - 6(n+1)) \\ &= \frac{1}{30} (n+1) (6n^4 + 9n^3 + n^2 - n) = \frac{n(n+1) (6n^3 + 9n^2 + n - 1)}{30} \end{split}$$

Finalement,

$$\begin{split} \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k &= \frac{n(n+1)}{2} \\ \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}{6} \\ \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^3 &= \frac{n^2(n+1)^2}{4} = \left(\sum_{k=1}^n k\right)^2 \\ \forall n \in \mathbb{N}^*, \ \sum_{k=1}^n k^4 &= \frac{n(n+1)(6n^3+9n^2+n-1)}{30}. \end{split}$$

Exercice nº 6

- 1) Montrons par récurrence que $\forall n \geqslant 1, \ \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}.$
 - Pour n = 1, $\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{1+1}$ et la formule proposée est vraie pour n = 1.
 - Soit $n \geqslant 1$. Supposons que $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ et montrons que $\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{n+2}$.

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right) + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} \text{ (par hypothèse de récurrence)}$$

$$= \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2} = \frac{n+1}{(n+1)+1}.$$

On a montré par récurrence que :

$$\forall n \geqslant 1, \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Démonstration directe. Pour $k \geqslant 1$,

$$\frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{(k+1)},$$

et donc,

$$\begin{split} \sum_{k=1}^n \frac{1}{k(k+1)} &= \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{(k+1)} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} \\ &= 1 - \frac{1}{n+1} = \frac{n}{n+1}. \end{split}$$

- $\textbf{2)} \ \mathrm{Montrons} \ \mathrm{par} \ \mathrm{r\'ecurrence} \ \mathrm{que} \ \forall n \geqslant 1, \ \sum_{k=1}^n \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$
 - Pour n = 1, $\sum_{k=1}^{1} \frac{1}{k(k+1)(k+2)} = \frac{1}{6} = \frac{1 \times (1+3)}{4 \times (1+1)(1+2)}$ et la formule proposée est vraie pour n = 1.
 - Soit $n \ge 1$. Supposons que $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$ et montrons que $\sum_{k=1}^{n+1} \frac{1}{k(k+1)(k+2)} = \frac{(n+1)(n+4)}{4(n+2)(n+3)}$.

$$\begin{split} \sum_{k=1}^{n+1} \frac{1}{k(k+1)(k+2)} &= \left(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}\right) + \frac{1}{(n+1)(n+2)(n+3)} \\ &= \frac{n(n+3)}{4(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} \text{ (par hypothèse de récurrence)} \\ &= \frac{n(n+3)^2 + 4}{4(n+1)(n+2)(n+3)} = \frac{n^3 + 6n^2 + 9n + 4}{4(n+1)(n+2)(n+3)} \\ &= \frac{(n+1)(n^2 + 5n + 4)}{4(n+1)(n+2)(n+3)} = \frac{(n+1)(n+4)}{4(n+2)(n+3)} = \frac{(n+1)((n+1) + 3)}{4((n+1) + 1)((n+2) + 1)} \end{split}$$

On a montré par récurrence que :

$$\forall n \geqslant 1, \ \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$$

Démonstration directe. Pour $k \ge 1$,

$$\frac{1}{k(k+1)(k+2)} = \frac{1}{2} \frac{(k+2) - k}{k(k+1)(k+2)} = \frac{1}{2} \left(\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right),$$

et donc,

$$\begin{split} \sum_{k=1}^n \frac{1}{k(k+1)(k+2)} &= \frac{1}{2} \left(\sum_{k=1}^n \frac{1}{k(k+1)} - \sum_{k=1}^n \frac{1}{(k+1)(k+2)} \right) = \frac{1}{2} \left(\sum_{k=1}^n \frac{1}{k(k+1)} - \sum_{k=2}^{n+1} \frac{1}{k(k+1)} \right) \\ &= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right) = \frac{n^2 + 3n}{4(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}. \end{split}$$

Exercice nº 7

Montrons par récurrence que, pour $n \ge 2$, H_n peut s'écrire sous la forme $\frac{p_n}{q_n}$ où q_n est un entier pair et p_n est un entier impair (la fraction précédente n'étant pas nécessairement irréductible mais n'étant à coup sûr pas un entier).

- Pour n = 2, $H_2 = \frac{3}{2}$ et H_2 est bien du type annoncé.
- Soit $n \ge 2$. Supposons que pour tout entier k tel que $2 \le k \le n$, on ait $H_k = \frac{p_k}{q_k}$ où p_k est un entier impair et q_k est un entier pair et montrons que $H_{n+1} = \frac{p_{n+1}}{q_{n+1}}$ où p_{n+1} est un entier impair et q_{n+1} est un entier pair.

(Recherche. L'idée $H_{n+1}=\frac{p_n}{q_n}+\frac{1}{n+1}=\frac{(n+1)p_n+q_n}{(n+1)q_n}$ ne marche à coup sur que si $(n+1)p_n+q_n$ est impair ce qui est assuré si n+1 est impair et donc si n est pair).

1er cas. Si n est pair, on peut poser n=2k où $k\in\mathbb{N}^*$. Dans ce cas, $H_{n+1}=\frac{p_n}{q_n}+\frac{1}{2k+1}=\frac{(2k+1)p_n+q_n}{(2k+1)q_n}$. (2k+1) est p_n sont impairs et donc $(2k+1)p_n$ est impair puis $(2k+1)p_n+q_n$ est impair car q_n est pair. D'autre part, q_n est pair et donc $(2k+1)q_n$ est pair. H_{n+1} est bien le quotient d'un entier impair par un entier pair.

2ème cas. Si n est impair, on pose n = 2k - 1 où $k \ge 2$ (de sorte que $2k - 1 \ge 3$).

$$H_{n+1} = \sum_{i=1}^{2k} \frac{1}{i} = \sum_{i=1}^{k} \frac{1}{2i} + \sum_{i=0}^{k-1} \frac{1}{2i+1}$$

(en séparant les fractions de dénominateurs pairs des fractions de dénominateurs impairs)

$$=\frac{1}{2}\sum_{i=1}^k\frac{1}{i}+\sum_{i=0}^{k-1}\frac{1}{2i+1}=\frac{1}{2}H_k+\sum_{i=0}^{k-1}\frac{1}{2i+1}.$$

Maintenant, en réduisant au même dénominateur et puisque un produit de nombres impairs est un nombre impair, on voit que $\sum_{i=0}^{k-1} \frac{1}{2i+1}$ est du type $\frac{K}{2K'+1}$ où K et K' sont des entiers. Ensuite, puisque $2 \leqslant k \leqslant 2k-1 = n$, par hypothèse de récurrence, $H_k = \frac{p_k}{q_k}$ où p_k est un entier impair et q_k un entier pair. Après réduction au même dénominateur, on obtient

$$H_{n+1} = \frac{p_k}{q_k} + \frac{K}{2K'+1} = \frac{(2K'+1)p_k + Kq_k}{q_k(2K'+1)}$$

 Kq_k est un entier pair et $(2K'+1)p_k$ est un entier impair en tant que produit de deux nombres impairs. Donc le numérateur est bien un entier impair et puisque qk(2K'+1) est un entier pair, H_{n+1} est encore une fois de la forme désirée.

On a montré par récurrence que pour tout naturel $n \ge 2$, H_n est le quotient d'un entier impair par un entier pair et en particulier H_n n'est pas un entier.

Exercice nº 8

Soit f une application injective de \mathbb{N} dans \mathbb{N} telle que pour tout entier naturel n, $f(n) \leq n$. Montrons par récurrence que : $\forall n \in \mathbb{N}, \ f(n) = n$.

- f(0) est un entier naturel tel que $f(0) \le 0$. Donc, f(0) = 0. L'égalité à démontrer est vraie quand n = 0.
- Soit $n \in \mathbb{N}$. Supposons que pour tout $k \in [0, n]$, f(k) = k. f(n+1) est un entier naturel inférieur ou égal à n+1. Donc, $f(n+1) \in [0, n+1]$. Mais f est injective et donc, pour tout $k \in [0, n]$, $f(n+1) \neq f(k)$ ou encore $f(n+1) \neq k$. Par suite, $f(n+1) \notin [0, n]$. En résumé, $f(n+1) \in [0, n+1] \setminus [0, n]$ et donc f(n+1) = n+1.

On a montré par récurrence que : $\forall n \in \mathbb{N}, \, f(n) = n.$ Donc, $f = Id_{\mathbb{N}}.$

Réciproquement, $Id_{\mathbb{N}}$ est une application injective de \mathbb{N} dans \mathbb{N} telle que pour tout entier naturel \mathfrak{n} , $\mathfrak{f}(\mathfrak{n}) \leqslant \mathfrak{n}$. Le problème posé admet une solution et une seule, à savoir $Id_{\mathbb{N}}$.