Методы оптимизации. Семинар 6. Выпуклые функции.

Корнилов Никита Максимович

Московский физико-технический институт

9 октября 2025г

Расширеннозначные функции

Definition

Пусть U - линейное пространство, и $f:U\to\overline{\mathbb{R}}$ - функция, принимающая значения на всем U во множестве расширенных вещественных чисел $\overline{\mathbb{R}}=\mathbb{R}\cup\{+\infty\}\cup\{-\infty\}$. Будем называть эффективной областью определения функции f множество всех точек, в которых функция принимает конечные значения:

$$dom f = \{x \in U : |f(x)| < +\infty\}$$

Операции с бесконечностями:

Если функция задана только на области определения $Q\subset U$, то удобно доопределить её за пределами Q на всем U, считая, что там функция принимает значение $+\infty$.

Выпуклые функции

Definition (Выпуклые функции)

Пусть U - линейное пространство. Функция $f:U\to\mathbb{R}$ называется выпуклой, если для любых $x,y\in U$ и любого $\alpha\in[0,1]$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

Выпуклые функции

Definition (Выпуклые функции)

Пусть U - линейное пространство. Функция $f:U\to \mathbb{R}$ называется выпуклой, если для любых $x,y\in U$ и любого $\alpha\in[0,1]$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

Если неравенство (1) выполняется как строгое для всех $x \neq y$ и $\alpha \in (0,1)$, то функция f называется *строго выпуклой* функцией.

Выпуклые функции

Definition (Выпуклые функции)

Пусть U - линейное пространство. Функция $f:U\to \mathbb{R}$ называется выпуклой, если для любых $x,y\in U$ и любого $\alpha\in[0,1]$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

Если неравенство (1) выполняется как строгое для всех $x \neq y$ и $\alpha \in (0,1)$, то функция f называется *строго выпуклой* функцией.

- Выпуклая функция может принимать только одно расширенное значение $+\infty$ (или быть $f \equiv -\infty$). Поэтому введём определение собственной функции: $f(x) > -\infty, \forall x \in U$.
- $\forall x,y \in \text{dom } f$ значение выпуклой функции f в любой точке отрезка [x,y] должно быть конечным. Поэтому у выпуклых функций dom f выпуклое множество.

Н. М. Корнилов 9 октября 2025г 3 / 34

Примеры функций

Вогнутые функции

Definition

Пусть U — линейное пространство. Функция $f:U\to\overline{\mathbb{R}}$ называется вогнутой, если для любых $x,y\in U$ и любого $\alpha\in[0,1]$ выполняется

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y). \tag{2}$$

Если это неравенство (2) выполняется как строгое для всех $x \neq y$ и $\alpha \in (0,1)$, то функция f называется *строго вогнутой*.

- Функция f является (строго) выпуклой тогда и только тогда, когда функция -f является (строго) вогнутой.
- ullet У вогнутой функции dom f все также выпуклое множество.
- Вогнутая функция может принимать только значение $-\infty$ (или быть $f\equiv +\infty$.)

4 D > 4 D > 4 E > 4 E > 5 C Y

Докажем по определению

Example (Афинная функция)

Пусть в пространстве U задано (произвольное) скалярное произведение и $f:U\to\mathbb{R}$ - аффинная функция

$$f(x) = \langle a, x \rangle + b,$$

где $a \in U$ и $b \in \mathbb{R}$. Проверьте f на выпуклость/вогнутость.

Example (Норма)

Пусть в пространстве U задана (произвольная) норма $||\cdot||$. Функция $f:U o\mathbb{R}$ задана формулой

$$f(x) = ||x||.$$

Проверьте f на выпуклость/вогнутость.

Пример расширеннозначной выпуклой функции

Example

Функция индикатор множества $Q \subset U$:

$$I_Q(x) = \begin{cases} 1, & x \in Q, \\ +\infty, & x \notin Q. \end{cases}$$

Для выпуклых множеств Q функция I_Q выпуклая.

Н. М. Корнилов

Эпиграф

Definition

Пусть U - линейное пространство. Надграфиком (или эпиграфом) функции $f:U o\overline{\mathbb{R}}$ называется множество

$$\mathsf{Epi}\, f := \left\{ (x,t) \in U \times \overline{\mathbb{R}} : f(x) \leq t \right\}.$$

Н. М. Корнилов 9 октября 2025г

Альтернативное определение выпуклости

Следующее утверждение можно считать альтернативным определением выпуклости функции.

Theorem

Пусть U — линейное пространство. Функция $f:U\to\overline{\mathbb{R}}$ является выпуклой тогда и только тогда, когда её надграфик Epi f является выпуклым множеством в пространстве $U\times\overline{\mathbb{R}}$.

Н. М. Корнилов 9 октября 2025г

Критерий выпуклости первого порядка

Theorem (Критерий выпуклости 1-го порядка)

Пусть dom f является открытым множеством и собственная функция f дифференцируема всюду на dom f. Функция f является выпуклой тогда и только тогда, когда dom f является выпуклым множеством и

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle, \quad x, y \in dom \ f.$$
 (3)

Example

Проверьте критерий на функции $f(x) = \sum_{i=1}^d \frac{1}{x_i}, x \in \mathbb{R}^n$ с dom $f = \mathbb{R}^n_{++}$.

Example

Проверьте критерий на функции $f(x) = ||x||_2, x \in \mathbb{R}^n$.

Н. М. Корнилов 9 октября 2025г

Критерий выпуклости первого порядка

График функции f(x) лежит выше касательной $f(y) + \langle \nabla f(y), x - y \rangle$ в любой точке dom f.

9 октября 2025г

11 / 34

Н. М. Корнилов

Оптимальность

Theorem (Дифференциальное условие оптимальности для выпуклой функции)

Пусть f — собственная выпуклая функция, dom f является открытым множеством, на котором f дифференцируемая, и $x^* \in$ dom f. Тогда x^* является глобальным минимумом функции f, если и только если $\nabla f(x^*) = 0$. Другими словами любая стационарная точка автоматически является глобальным минимумом функции f.

Критерий выпуклости второго порядка

Theorem (Критерий выпуклости 2-го порядка)

Пусть dom f является открытым множеством и собственная функция f дважды дифференцируема на dom f. Функция f является выпуклой тогда и только тогда, когда dom f является выпуклым множеством и

билинейная форма $d^2f(x)$ неотрицательно определена

для всех $x \in dom f$.

В случае $f:\mathbb{R}^n o\overline{\mathbb{R}}$ условие имеет вид

$$\nabla^2 f(x) \succeq 0, \quad x \in \text{dom } f.$$

13 / 34

 Н. М. Корнилов
 9 октября 2025г

Докажем по критериям

Example

- ullet $f(x) = \exp(ax)$ выпукла для любого $a \in \mathbb{R}$,
- \bullet $f(x) = -\ln x$ выпукла с dom $f = \mathbb{R}_{++}$,
- \bullet $f(x) = x \ln x$ выпукла с dom $f = \mathbb{R}_+$,
- ullet $f(x) = -\sqrt{x}$ выпукла с dom $f = \mathbb{R}_{++}$
- ullet $f(x)=x^p$ для $p\geq 1$ или $p\leq 0$ выпукла с dom $f=\mathbb{R}_{++}$ и вогнута для $0\leq p\leq 1$.

Докажем по критериям

Example

Пусть $A \in \mathbb{S}^n, b \in \mathbb{R}^n$. Рассмотрим квадратичную функцию

$$f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle.$$

Она является выпуклой в том и только в том случае, когда $A\succeq 0$.

Example

В частности, в \mathbb{R}^2 рассмотрим матрицу $A = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$.

15 / 34

H. М. Корнилов 9 октября 2025г

Докажем по критериям

Example

Функция

$$f(X) = -\ln \det(X)$$

является выпуклой на \mathbb{S}^n_{++} .

Example

Функция

$$f(x) = \ln(e^{x_1} + e^{x_2} + ... + e^{x_n})$$

является выпуклой на \mathbb{R}^n .

Неравенство Йенсена

Theorem

Пусть $f(x): U \to \overline{\mathbb{R}}$ — выпуклая функция. Пусть также $x_1,...,x_k$ — точки из U и коэффициенты $\alpha_1,...,\alpha_k$ таковы, что $\alpha_i \geq 0$ и $\sum_{i=1}^k \alpha_i = 1$. Тогда справедливо следующее неравенство:

$$f\left(\sum_{i=1}^k \alpha_i x_i\right) \le \sum_{i=1}^k \alpha_i f(x_i). \tag{4}$$

Причем равенство достигается тогда и только тогда, когда функция f является аффинной или когда все точки x_i совпадают.

H. М. Корнилов 9 октября 2025г 17 / 34

Иллюстрация

Следствия

f 0 Для вектора чисел $x\in \mathbb{R}^n_{++}$ верно

$$\frac{x_1+\cdots+x_n}{n}\geq \sqrt[n]{x_1\cdot\cdots\cdot x_n}.$$

Следствия

f 0 Для вектора чисел $x\in \mathbb{R}^n_{++}$ верно

$$\frac{x_1+\cdots+x_n}{n}\geq \sqrt[n]{x_1\cdot\cdots\cdot x_n}.$$

② Неравенство Гельдера в частности Коши-Буняковского: Для векторов $x,y\in\mathbb{R}^d$ и чисел $p\geq 1, \frac{1}{q}+\frac{1}{p}=1$ выполняется неравенство

$$\langle x, y \rangle \le |\langle x, y \rangle| \le ||x||_p ||y||_q.$$
 (5)

Следствия

f 0 Для вектора чисел $x\in \mathbb{R}^n_{++}$ верно

$$\frac{x_1+\cdots+x_n}{n}\geq \sqrt[n]{x_1\cdot\cdots\cdot x_n}.$$

② Неравенство Гельдера в частности Коши-Буняковского: Для векторов $x,y\in\mathbb{R}^d$ и чисел $p\geq 1, \frac{1}{q}+\frac{1}{p}=1$ выполняется неравенство

$$\langle x, y \rangle \le |\langle x, y \rangle| \le ||x||_p ||y||_q. \tag{5}$$

ullet Для выпуклой функции f и случайной величины X верно,

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$

Н. М. Корнилов

Операции, сохраняющие выпуклость

• Неотрицательная взвешенная сумма

Proposition

Пусть функции $f_1,...f_m$ выпуклы, $c_1,...,c_n\in\mathbb{R}_+$ Тогда функция

$$f(x) = \sum_{i=1}^{k} c_i f_i(x)$$

является выпуклой.

Операции, сохраняющие выпуклость

• Неотрицательная взвешенная сумма

Proposition

Пусть функции $f_1,...f_m$ выпуклы, $c_1,...,c_n\in\mathbb{R}_+$ Тогда функция

$$f(x) = \sum_{i=1}^{k} c_i f_i(x)$$

является выпуклой.

• Аффинная подстановка аргумента

Proposition

Пусть $f:\mathbb{R}^n o\overline{\mathbb{R}}$ - выпуклая функция, $A\in\mathbb{R}^{n imes m}$, и $b\in\mathbb{R}^n$. Тогда

$$g(x) = f(Ax + b)$$

выпуклая с областью определения $dom\ g = \{x \mid Ax + b \in dom\ f\}$.

Н. М. Корнилов 9 октября 2025г

20 / 34

Докажем по сохранению

Example

Пусть $a,b\in\mathbb{R}^k$ и $c\in\mathbb{R}^k_+$. Функция

$$f(x) = \sum_{i=1}^{k} c_i \exp(\langle a_i, x \rangle + b_i)$$

является выпуклой.

Поточечный максимум

Пересекая выпуклые эпиграфы двух выпуклых функций f_1 и f_2 , приходим к новому выпуклому множеству, которое является эпиграфом функции

$$f(x) = max \{f_1(x), f_2(x)\}.$$

Пересекая произвольное число выпуклых множеств, мы опять получаем выпуклое множество.

Theorem

Если функция двух аргументов g(x,y) выпукла по x для любого $y \in Y$, то следующая функция

$$f(x) = \sup_{y \in Y} g(x, y)$$

так же выпукла по х.

(□) (□) (□) (□) (□)

Примеры на максимум

Example

Кусочно-линейная функция

$$f(x) = \max \left\{ a_1^\top x + b_1, ..., a_m^\top x + b_m \right\},$$

где $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $1 \le i \le m$, выпукла на \mathbb{R}^n .

Example (Сумма r максимальных координат)

Обозначим i-ю максимальную координату вектора $x \in \mathbb{R}^n$ через $x_{[i]}$, т.е.

$$x_{[1]} \ge x_{[2]} \ge ... \ge x_{[n]}$$

Тогда функция

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

то есть сумма r максимальных координат, есть выпуклая функция.

Н. М. Корнилов 9 октября 2025г

23 / 34

Примеры на максимум

Example (Расстояние до наиболее удаленной точки множества)

Пусть $C\subseteq \mathbb{R}^n, ||\cdot||$ - произвольная норма. Тогда расстояние от точки x до наиболее удаленной точки множества C

$$f(x) = \sup_{y \in C} ||x - y||,$$

— выпуклая функция.

Example (Наибольшее собственное число)

Пусть X — симметрическая матрица. Тогда

$$f(X) = \lambda_{\mathsf{max}}(X)$$

является выпуклой.

Монотонная суперпозиция

Definition

Функция $h:\mathbb{R}^m \to \mathbb{R}$ неубывающая, если $\forall x,y \in \mathbb{R}^m$ покоординатно $x \leq y$ верно то, что

$$h(x) \leq h(y)$$
.

Аналогично обобщаются другие варианты монотонности.

Proposition

Пусть $f_i:\mathbb{R}^n \to \mathbb{R}$ — выпуклые функции для $i=\overline{1,m}$, а $h:\mathbb{R}^m \to \mathbb{R}$ - выпуклая неубывающая функция. Тогда композиция этих функции $g(x)=h(f_1(x),\dots,f_m(x))$ является выпуклой функцией.

< ロ ト ∢ @ ト ∢ 重 ト ∢ 重 ト → 重 → か Q (~)

Примеры на монотонность

Example

Пусть f(x) выпукла на \mathbb{R}^n . Тогда функция

$$g(x) = e^{f(x)}$$

является выпуклой на \mathbb{R}^n .

Example

Пусть $||\cdot||$ — произвольная норма. Тогда функция

$$g(x) = ||x||^p$$

является выпуклой на \mathbb{R}^n при $p\geq 1$.

Алгоритм проверки на выпуклость

- Для простых функций: попробовать воспользоваться определением или выпуклость эпиграфа
- ② Посчитать второй дифференциал и проверить, что он положительно определен $d^2f(x)[h,h] \geq 0$. Если функция $f: \mathbb{R}^n \to \mathbb{R}$, то можно поверить гессиан на $\nabla^2 f(x) \succeq 0$.
- Если считать второй дифференциал сложно или невозможно, можно проверить операции, сохраняющие выпуклость: аффинная постановка, максимум, положительная сумма, неубывающие суперпозиция. Особенно полезно целевая функция состоит из максимумов или множества простых выпуклых функций.

Н. М. Корнилов

Сильная выпуклость

Definition

Функция $f:\mathbb{R}^n o \overline{\mathbb{R}}$ называется μ -сильно выпуклой, если для любых $x,y\in\mathbb{R}^n$ и $\alpha\in[0,1]$ выполнено

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \alpha(1 - \alpha)\frac{\mu}{2}||x - y||_2^2.$$

(а) μ-сильно выпуклая парабола.

(b) Не сильно выпуклая прямая.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ り♀@

28 / 34

Критерии сильной выпуклости

Theorem

Пусть dom f является открытым множеством и собственная функция f дифференцируема всюду на dom f. Функция f является μ -сильно выпуклой тогда и только тогда, когда dom f является выпуклым множеством и

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2, \quad x, y \in dom \ f.$$

Theorem

Пусть dom f является открытым множеством и собственная функция f дважды дифференцируема на dom f. Функция f является μ -сильно выпуклой тогда и только тогда, когда dom f является выпуклым множеством и

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x \in dom \ f.$$

H. М. Корнилов 9 октября 2025г 29 / 34

Гладкость

Definition

Пусть дана непрерывно дифференцируемая на \mathbb{R}^n функция $f:\mathbb{R}^n \to \mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (говорить, что она является L-гладкой), если для любых $x,y\in\mathbb{R}^n$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

Theorem

Пусть дана L-гладкая функция $f:\mathbb{R}^n \to \mathbb{R}$. Тогда для любых $x,y \in \mathbb{R}^n$ выполнено

$$|f(x)-f(y)-\langle \nabla f(y),x-y\rangle|\leq \frac{L}{2}||x-y||_2^2.$$

30 / 34

Выпуклые и гладкие функции

Непрерывно дифференцируемая функция является μ -сильно выпуклой и *L*-гладкой:

$$\frac{\mu}{2}||x-y||^2 \leq f(x) - f(y) - \langle \nabla f(y), x - y \rangle \leq \frac{L}{2}||x-y||_2^2, \quad \forall x, y \in \mathbb{R}^n,$$

или эквивалентное утверждение для дважды непрерывно дифференцируемой функции

$$\mu I \preceq \nabla^2 f(x) \preceq LI, \quad \forall x \in \mathbb{R}^n,$$

или же через спектр

$$\mu \leq \lambda_i(\nabla^2 f(x)) \leq L, \quad i = \overline{1, n}, \quad \forall x \in \mathbb{R}^n.$$

Н. М. Корнилов

Иллюстрация

Рис.: Иллюстрация понятий L-гладкости и (μ -сильной) выпуклости

Н. М. Корнилов

Выпуклость линии уровней

Definition

Для функции $f:U o\overline{\mathbb{R}}$ множество \mathfrak{L}_{eta} , определенное скаляром $eta\in\mathbb{R}$:

$$\mathfrak{L}_{\beta} = \{ x \in U : f(x) \le \beta \}$$

называется множеством подуровня β функции f(x).

Proposition

Пусть U — линейное пространство и $f:U\to\overline{\mathbb{R}}$ выпуклая функция. Тогда $\forall \beta\in\mathbb{R}$ множество подуровня \mathfrak{L}_{β} выпукло.

Верное ли обратное?

Линии уровня

