Example. Using Gauss forward interpolation formulas, find the value of log 337.5 from

Sol. Let $x_0 = 330$, then $p = \frac{x - 330}{10}$ since h = 10. Now the forward difference table is :

x	p	У,	Δyp	$\Delta^2 y_\mu$	Aly,	$\Delta^4 y_p$	$\Delta^{6}y_{\mu}$
310	-2	2.4914	0.0138				
320	-1	2.5052	0.0133	- 0.0005	0.0002		
330	0	2.5185	0.0130	-0.0003	- 0.0001	- 0.0003	0.0004
340	1	2.5315	0.0126	- 0.0004	0.0000	0.0001	1
350	2	2.5441	0.0122	- 0.0004			
360	3	2.5563					

Gauss's forward formula is

 $\log 337.5 = 2.5283.$

$$y_{p} = y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!} \Delta^{2}y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^{3}y_{-1} + \frac{(p+1)p(p-1)(p-2)}{4!} \Delta^{4}y_{-2} + \frac{(p+2)(p+1)p(p-1)(p-2)}{5!} \Delta^{6}y_{-2} + \dots$$
when $x = 337.5$,
$$p = \frac{337.5 - 330}{10} = 0.75, y_{0} = 2.5185$$

$$\Delta y_{0} = 0.0130, \Delta^{2}y_{-1} = -0.0003, \Delta^{3}y_{-1} = -0.0001,$$

$$\Delta^{4}y_{-2} = -0.0003, \Delta^{5}y_{-2} = 0.0004$$

$$\therefore y_{0.75} = 2.5185 + (0.75)(0.0130) + \frac{(0.75)(0.75 - 1)}{2!} (-0.0003)$$

$$+ \frac{(0.75 + 1)(0.75)(0.75 - 1)}{3!} (-0.0001)$$

$$+ \frac{(0.75 + 2)(0.75 + 1)(0.75)(0.75 - 1)(0.75 - 2)}{4!} (-0.0003)$$

$$= 2.5185 + 9.75 \times 10^{-3} + 2.8125 \times 10^{-5} + 5.46875 \times 10^{-6} - 5.1269531 \times 10^{-6} + 3.7597656 \times 10^{-6}$$

$$= 2.5282822$$

Example. Interpolate by means of Gauss's backward formula the sales of a concern for the year 1976 given that

Year : 1940 1950 1960 1970 - 1980 1990 Sales (in lakhs of Rs.) : 17 20 27 32 36 38

Sol. Taking 1970 as the origin and h = 10 years as one unit the sales of the place is to be found for $p = \frac{x - 1970}{10}$. Now the forward difference table is:

x	p	у	Δy_p	$\Delta^2 y_p$	$\Delta^3 y_p$	Δ4y _p	$\Delta^6 y_p$
1940	-3	17					
			3				
1950	-2	20		4			
			7		-6		
1960	-1	27		-2		7	-9
The second second			5		1		- 9
1970	0	32		-1		-2	1
		0.0	4		-1		
1980	1	36	0	-2	100	100	1
1000	2	38	2	No.			1
1990	4	00		The same of			

Gauss's backward formula is

$$y_p = y_0 + p\Delta y_{-1} + \frac{(p+1)p}{2!} \Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^3 y_{-2} + \frac{(p+2)(p+1)p(p-1)}{4!} \Delta^4 y_{-2} + \frac{(p+2)(p+1)p(p-1)(p-2)}{5!} \Delta^5 y_{-3} + \dots$$
when
$$x = 1976, \ p = \frac{1976 - 1970}{10} = 0.6, \ y_0 = 32, \ \Delta y_{-1} = 5,$$

$$\Delta^2 y_{-1} = -1, \ \Delta^3 y_{-2} = 1, \ \Delta^4 y_{-2} = -2, \ \Delta^5 y_{-3} = -9$$

$$y_{0.6} = 32 + (0.6)(5) + \frac{(0.6+1)(0.6)}{2!} (-1) + \frac{(0.6+1)(0.6)(0.6-1)}{3!} (1)$$

$$+ \frac{(0.6+2)(0.6+1)(0.6)(0.6-1)}{4!} (-2) + \frac{(0.6+2)(0.6+1)(0.6)(0.6-1)(0.6-2)}{5!} (-9)$$

$$= 32 + 3 - 4.8 - 0.064 + 0.0832 - 0.104832 = 30.114368$$

$$\therefore \text{ The sales in the year } 1976 \text{ is Rs } 30.114368 \text{ lakhs.}$$

22.9. (c) STIRLING'S FORMULA IS

$$\begin{aligned} \mathbf{y}_{\mathbf{x}} &= \mathbf{y}_0 + \mathbf{x} \cdot \frac{1}{2} \, \left(\Delta \mathbf{y}_0 + \Delta \mathbf{y}_{-1} \right) + \frac{\mathbf{x}^2}{2!} \, \Delta^2 \mathbf{y}_{-1} + \frac{\mathbf{x} (\mathbf{x}^2 - 1)}{3!} \cdot \frac{1}{2} \, \left(\Delta^3 \mathbf{y}_{-1} + \Delta^3 \mathbf{y}_{-2} \right) \\ &\quad + \frac{\mathbf{x}^2 (\mathbf{x}^2 - 1)}{4!} \, \Delta^4 \mathbf{y}_{-2} + \dots \end{aligned}$$

$$f(x) = f(x_0) + (x - x_0) \xrightarrow{\Delta} f(x_0) + (x - x_0)(x - x_1) \xrightarrow{\Delta} f(x_0)$$

$$+ \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1}) \xrightarrow{\Delta^n} f(x_0)$$

Sol. The divided difference table is as follows

-	1		to as follows :	
x	f(x)	Δf(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$
4	48			
		$\frac{\Delta}{5} f(4) = \frac{100 - 48}{5 - 4} = 52$		
5	100		$ \Delta^2_{5,7} f(4) = \frac{97 - 52}{7 - 4} = 15 $	
		$\frac{\Delta}{7} f(5) = \frac{294 - 100}{7 - 5} = 97$		$\Delta^3_{5,7,10}$ $f(4) = \frac{21-15}{10-4} = 1$
7	294	mineral march	$\Delta^2_{7,10} f(5) = \frac{202 - 97}{10 - 5} = 21$	
		$\frac{\Delta}{10} f(7) = \frac{900 - 294}{10 - 7} = 202$		$\Delta^{3}_{7,10,11} f(5) = \frac{27 - 21}{11 - 5} = 1$
10	900	1010 000	$\Delta_{10,11}^{2} f(7) = \frac{310 - 202}{11 - 7} = 27$	
		$\frac{\Delta}{11} f(10) = \frac{1210 - 900}{11 - 10} = 310$		$\Delta^3_{10, 11, 13} f(7) = \frac{33 - 27}{13 - 7} = 1$
11	1210		$\Delta^{2}_{11, 13} f(10) = \frac{409 - 310}{13 - 10} = 33$	
		$\frac{\Delta}{13} f(11) = \frac{2028 - 1210}{13 - 11} = 409$		
13	2028			
	The same of the same of			

Newton's divided difference formula is

$$f(x) = f(4) + (x - 4) \underset{5}{\Delta} f(4) + (x - 4)(x - 5) \underset{5,7}{\Delta^2} f(4)$$

+
$$(x-4)(x-5)(x-7)$$
 $\Delta_{5,7,10}^{3} f(4) + ...$

Putting
$$x = 8$$
, we get $f(8) = 48 + (8 - 4) \times 52 + (8 - 4)(8 - 5) \times 15 + (8 - 4)(8 - 5)(8 - 7) \times 1$
= $48 + 208 + 180 + 12 = 448$

Putting x = 15, we get

$$f(15) = 48 + (15 - 4) \times 52 + (15 - 4)(15 - 5) \times 15 + (15 - 4)(15 - 5)(15 - 7) \times 1$$

= 48 + 572 + 1650 + 880 = 3150.

TEST YOUR KNOWLEDGE

The values of annuities for certain ages are given for the following ages. Find the annuity at a $27\frac{1}{2}$ using Gauss's forward interpolation formula

 Age
 :
 25
 26
 27
 28
 29

 Annuity
 :
 16.195
 15.919
 15.630
 15.326
 15.006