IN THE CLAIMS

The status of each claim is listed below.

Claims 1-81: Canceled.

82. (Currently Amended) A compound represented by formula (I):

$$X \longrightarrow \begin{pmatrix} 1 & & & \\ N & & & \\ N & & & \\ Y & & & \\ Y & & & \\ 1 & & & \\ 2 & & & \\ N & & \\ N$$

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each R^2 is, independently, $-R^7$, $-(CH_2)_m-OR^8$, $-(CH_2)_m-NR^7R^{10}$.

-(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

 $-(CH_{2}CH_{2}O)_{m}-CH_{2}CH_{2}NR^{7}R^{10}, -(CH_{2})_{n}-C(=O)NR^{7}R^{10}, -(CH_{2})_{n}-Z_{g}-R^{7}, -(CH_{2})_{m}-NR^{10}-CH_{2}(CHOR^{8})(CHOR^{8})_{n}-CH_{2}OR^{8}, -(CH_{2})_{n}-CO_{2}R^{7}, or$

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl- lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

$$\underbrace{--(C(R^L)_2)_{\overline{o}}}_{\overline{Q}} \times \underbrace{--(C(R^L)_2)_{\overline{p}}}_{\overline{Q}} \underbrace{Q}_{\overline{Q}}$$

$$\underbrace{-Q}_{\overline{Q}} \stackrel{OH}{Q}$$

$$\underbrace{Q}_{\overline{Q}} \stackrel{OH}{Q}$$

$$\underbrace{Q}_{\overline{Q}} \stackrel{OH}{Q}$$

$$\underbrace{Q}_{\overline{Q}} \stackrel{OH}{Q}$$

$$\underbrace{Q}_{\overline{Q}} \stackrel{OH}{Q}$$

$$\underbrace{Q}_{\overline{Q}} \stackrel{OH}{Q}$$

wherein

each R^L is, independently, -R⁷, -(CH₂)_n-OR⁸, -O-(CH₂)_m-OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

 $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8, -(CH_2CH_2O)_m-R^8,$

-O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}$, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

- $(CH_2)_n$ - CO_2R^7 , -O- $(CH_2)_m$ - CO_2R^7 , -OSO₃H, -O-glucuronide, -O-glucose, or

$$--- CH_2 \longrightarrow 0 \qquad \qquad CH_2 \longrightarrow 0 \qquad \qquad CH_2 \longrightarrow 0 \qquad \qquad R^7 \qquad \qquad CH_2 \longrightarrow 0 \qquad CH_2 \longrightarrow 0 \qquad CH_2 \longrightarrow 0 \qquad CH_2 \longrightarrow 0 \qquad C$$

each x is, independently, O, NR⁷, C=O, CHOH, C=N-R⁶, or represents a single bond;

each o is, independently, an integer from 0 to 10;
each p is, independently, an integer from 0 to 10;
with the proviso that (a) the sum of o and p in each contiguous chain is
from 1 to 10 when x is O, NR⁷, C=O, or C=N-R⁶ or (b) that the sum of o and p
in each contiguous chain is from 4 to 10 when x represents a single bond;
each R⁶ is, independently, -R⁷, -OH, -OR¹¹, -N(R⁷)₂, -(CH₂)_m-OR⁸,
-O-(CH₂)_m-OR⁸, -(CH₂)_n-NR⁷R¹⁰, -O-(CH₂)_m-NR⁷R¹⁰,
-(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-(CH₂CH₂O)_m-R⁸, -O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,
-O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰, -(CH₂)_n-C(=O)NR⁷R¹⁰,
-O-(CH₂)_m-C(=O)NR⁷R¹⁰, -(CH₂)_n-(CH₂)_n-C(=O)NR⁷R¹⁰,
-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
-(CH₂)_m-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -O-Glucuronide, -O-glucose.

wherein when two R^6 are $-OR^{11}$ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R⁷ is, independently, hydrogen or lower alkyl;
each R⁸ is, independently, hydrogen, lower alkyl, -C(=O)-R¹¹, glucuronide, 2-tetrahydropyranyl, or

each R^9 is, independently, $-CO_2R^7$, $-CON(R^7)_2$, $-SO_2CH_3$, or $-C(=O)R^7$; each R^{10} is, independently, -H, $-SO_2CH_3$, $-CO_2R^7$, $-C(=O)NR^7R^9$, $-C(=O)R^7$, or $-CH_2-(CHOH)_n-CH_2OH$;

each Z is, independently, CHOH, C(=0), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰; each R¹¹ is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, $C-R^5$, $C-R^6$, or a nitrogen atom, wherein two Q in a ring are nitrogen atoms;

or a pharmaceutically acceptable salt thereof, and

inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

- 83. (Previously Presented) The compound of Claim 82, wherein Y is -NH₂.
- 84. (Previously Presented) The compound of Claim 83, wherein R² is hydrogen.
- 85. (Previously Presented) The compound of Claim 84, wherein R¹ is hydrogen.
- 86. (Previously Presented) The compound of Claim 85, wherein X is chlorine.

- 87. (Previously Presented) The compound of Claim 86, wherein R³ is hydrogen.
- 88. (Previously Presented) The compound of Claim 87, wherein each R^L is hydrogen.
- 89. (Previously Presented) The compound of Claim 88, wherein o is 4.
- 90. (Previously Presented) The compound of Claim 89, wherein p is 0.
- 91. (Previously Presented) The compound of Claim 90, wherein x represents a single bond.
 - 92. (Previously Presented) The compound of Claim 91, wherein each R⁶ is hydrogen.
 - 93. (Previously Presented) The compound of Claim 82, wherein

X is halogen;

Y is
$$-N(R^7)_2$$
;

R¹ is hydrogen or C₁-C₃ alkyl; and

$$R^2$$
 is $-R^7$, $-(CH_2)_m$ -OR⁷, or $-(CH_2)_n$ -CO₂R⁷;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

94. (Previously Presented) The compound of Claim 93, wherein

X is chloro or bromo;

Y is
$$-N(R^7)_2$$
;

R² is hydrogen or C₁-C₃ alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

- 95. (Previously Presented) The compound of Claim 94, wherein Y is -NH₂.
- 96. (Previously Presented) The compound of Claim 95, wherein R^4 is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

- 97. (Previously Presented) The compound of Claim 96, wherein x is O, NR⁷, C=O, CHOH, or C=N-R⁶.
- 98. (Previously Presented) The compound of Claim 97, wherein x represents a single bond.
- 99. (Previously Presented) The compound of Claim 82, wherein x is O, NR^7 , C=O, CHOH, or C=N-R⁶.
- 100. (Previously Presented) The compound of Claim 82, wherein x represents a single bond.
- 101. (Previously Presented) The compound of Claim 82, wherein each R⁶ is hydrogen.

- 102. (Previously Presented) The compound of Claim 82, wherein at most two R^6 are other than hydrogen as defined in Claim 82.
- 103. (Previously Presented) The compound of Claim 82, wherein one R⁶ is other than hydrogen as defined in Claim 82.
 - 104. (Previously Presented) The compound of Claim 82, wherein one R⁶ is -OH.
- 105. (Previously Presented) The compound of Claim 82, wherein each $\mathbf{R}^{\mathbf{L}}$ is hydrogen.
- 106. (Previously Presented) The compound of Claim 82, wherein at most two R^L are other than hydrogen as defined in Claim 82.
- 107. (Previously Presented) The compound of Claim 82, wherein one R^L is other than hydrogen as defined in Claim 82.
- 108. (Previously Presented) The compound of Claim 82, wherein x represents a single bond and the sum of o and p is 4 to 6.
- 109. (Previously Presented) The compound of Claim 82, which is in the form of a pharmaceutically acceptable salt.

- 110. (Previously Presented) The compound of Claim 82, which is in the form of a hydrochloride salt.
- 111. (Previously Presented) The compound of Claim 82, which is in the form of a mesylate salt.
- 112. (Previously Presented) A pharmaceutical composition, comprising the compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 113. (Currently Amended) A composition, comprising: the compound of Claim 82; and a P2Y2 receptor agonist inhibitor.
 - 114. (Previously Presented) A composition, comprising: the compound of Claim 82; and a bronchodilator.
- 115. (Previously Presented) A method of blocking sodium channels, comprising contacting sodium channels with an effective amount of the compound of Claim 82.