CS 5/7350 Quiz #4 Due Mar 8 for Completion Grade

		Name & ID	: CS5350? Yes / No $\sqrt{}$
1.	[2.5 pt] Consider two different algorithms that each solve a different problem.		
	• Implementation X, I_x , solves Problem P_x and Implementation X is $\Theta(n)$		
	• Implementation Y, I_y , solves Problem P_y and Implementation Y is $\Theta(2^n)$		
	• Implementation Z, I_z , solves Problem P_z and Implementation Z is $O(n^2)$		
Determine if each of these "Yes it is true", "Maybe it is true but doesn't have to be" it is not true"			t is true but doesn't have to be", or "No
	a P_x is harder than P_y	f	Problem X is $\omega(n)$
	b. P_y is harder than P_x	g	Problem X is $O(n^3)$
	c I_y is harder than I_x	h	Problem X is $o(n^2)$
	d I_z is harder than I_x	i	_ Implementation Y is $\Omega(n)$
	e Problem X is $\Omega(n)$	j	_ Implementation X is $\omega(n)$
2.	[2 pts] How many edges exist in:		
	i A complete graph of $ V $ vertices		
	ii A cycle of $ V $ vertices		
	iii A Tree of $ V $ vertices		
	iv A complete bi-partite graph $B_{j,k}$ with j vertices on one part and k vertices on the other part.		

3. [2 pts] Find an integer for n modulo 14635 that satisfies the following equation. Note that

you may use the following: 1/2793 % 14635 is 2047: