

Lecture 15: Beyond K Means
Clustering

Recap

- Kmeans algorithm
- Expectation Maximization
- Centroid initialization with kmeans++
- Kmeans decision boundary
- Kmeans limitations with oblong data clusters
- Kmeans limitations with outliers
- Using Kmeans and silhouette analysis for outlier detection

Mixture Models

Another way of looking at clusters

- Hard versus soft clustering
- Hard:
 - Clusters don't overlap
 - Elements belong to a cluster or they don't
 - E.g. K-Means
- Soft
 - Clusters may overlap
 - Strength of association between cluster and instances
 - •60% confidence of cluster1 membership, 40% cluster2
 - E.g. Gaussian Mixture Model Clustering

Mixture Model clustering

- Probabilistic way of doing soft clustering
 - •Soft clustering Cluster membership is not 0/1
 - Probability
- Each cluster is a generative model (probability distribution)
- But parameters (mean and covariance) are unknown
 - Discovered as part of clustering
- Parameters are discovered by EM
 - •EM in GMM is EM in true sense ©

Recap: Estimate Mean & variance in generative ML

- We are given data x1 .. xn
 - Mean and variance not known
 - Easy to find from labeled data

$$\mu_{blue} = \frac{x_1 + x_2 + \dots + x_{n_b}}{n_b}$$

$$= \sum (x_i - \mu_{blue})^2$$

 What if we didn't know which data came from which distribution? (unsupervised learning)

Gaussian Mixture Models

- Chicken & Egg
 - We need labels to determine mean, variance
 - \circ \circ \circ \circ \circ
 - We need mean, variance to predict labels

•If we knew mean/var, we could guess which point came from which Gaussian. But we don't know

Gaussian Mixture Models Intuition

- We are given data points
- They came from k Gaussian distributions
- We don't know which point came from which Gaussian

- Solution: EM
- Start with two Gaussian with random mean and variances
 - Just like kmeans centroids

Gaussian Mixture Models EM

- 2 Gaussian with random mean and variances
- For each point xi, does this look like it came from a or b?

- Soft assignment
- No max P calc

$$P(x^{(i)}|b) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x^{(i)} - \mu_b}{\sigma_b}\right)^2}$$

$$P(b|x^{(i)}) = \frac{P(x^{(i)}|b)P(b)}{P(x^{(i)}|b)P(b) + P(x^{(i)}|a)P(a)}$$

$$P(a|x^{(i)}) = \frac{P(x^{(i)}|a)P(a)}{P(x^{(i)}|b)P(b) + P(x^{(i)}|a)P(a)}$$

Gaussian Mixture Models EM

Rinse and Repeat

$$p_{b_i} = P(b|x^{(i)}) = \frac{P(x^{(i)}|b)P(b)}{P(x^{(i)})}$$

$$p_{a_i} = P(a|x^{(i)}) = \frac{P(x^{(i)}|a)P(a)}{P(x^{(i)})}$$

Calculate the new mean/var

$$\mu_b = \frac{p_{b_1}x^{(1)} + p_{b_2}x^{(2)} + ...p_{b_n}x^{(n)}}{p_{b_1} + p_{b_2} + ... + p_{b_n}}$$

$$\mu_a = \frac{p_{a_1}x^{(1)} + p_{a_2}x^{(2)} + ...p_{a_n}x^{(n)}}{p_{a_1} + p_{a_2} + ... + p_{a_n}}$$

GMM clustering applications

- Real life scenarios are mixtures, never black and white
- Finance
 - Investment Portfolio construction
 - Identifying stocks for growth (outliers in a good way)

GMM clustering applications

- Image segmentation (less expensive way)
 - Split into patches & cluster based on image characteristics
 - Medical image locate specific structures

GMM clustering applications

- One tool of many towards explainable solution
 - Population to 2 wheeler, 4 wheeler ratio
 - Accident stats, Poisson mixtures for pattern identification

$$p_{b_i} = P(b|x^{(i)}) = \frac{P(x^{(i)}|b)P(b)}{P(x^{(i)})}$$

$$p_{a_i} = P(a|x^{(i)}) = \frac{P(x^{(i)}|a)P(a)}{P(x^{(i)})}$$

$$P(x^{(i)}|b) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x^{(i)} - \mu_b}{\sigma_b}\right)^2}$$

GMM decision boundary

Quadratic decision boundary

GMM model

- Clustering every time some new data comes is expensive
- Could use extracted mean, variance, covariance as model
 - Multivariate Gaussian model from scratch!!

Handling outliers with GMM

- •GMM is sensitive to outliers
- Can use multivariate Gaussian techniques (Mahalanobis distance) or silhouette analysis
- Can use Minimum Covariance Determinant also

Beyond K-Means & GMM

Clustering for mixed data types

- K-Mode
- K-Prototypes
- K Medoids
 - Gowers distance
 - Manhattan for numeric, Dice for categorical

K-Means cannot handle asymmetric globular data

K-Means cannot handle non globular data

K-Means cannot handle non globular data

K-Means cannot handle non globular data

Different types of clustering (optional)

- DBSCAN
 - Some patterns of non globular data, diff metrics
 - NLP clustering, Cosine distance (1-cos theta)
 - DBSCAN Clearly explained Josh Stammer
 - https://www.youtube.com/watch?v=RDZUdRSDOok
 - Evaluation metric is also different (DBCV etc.)
- BIRCH clustering for large datasets
- Mean shift clustering
 - Finds use in unsupervised image segmentation

Case for Distance metrics

- Choice of distance metric is crucial for clustering success
- Also success in any distance based ML method
 - E.g. Nearest Centroid, KNN
- Each metric has strengths and appropriate use cases
 - For e.g. NLP and cosine distance
 - Linear Regression without outliers and Euclidean
- Sometimes metric is chosen by empirical eval (hyperparameter tuning)

Distance Metric

Euclidean distance

Manhattan distance

p norm as generalization of Euclidean

- Numerical attribute: Euclidean distance
 - Pros: Symmetrical, Spherical

- $\mathbf{E} \mathcal{D}(x, x') = \sqrt{\sum_{i=1}^{a} (x_i x'_i)^2}$
- Cons: Sensitive to extreme value of any single attribute
- Minkowski distance (p-norm)
 - •P=1 Manhattan, p=2 Euclidean

$$\mathcal{D}(x, x') = \sqrt[p]{\sum_{i=1}^{d} |x_i - x_i'|^p}$$

Default choice of distance

- Categorical attribute: Hamming distance
 - Number of attributes where x, x' differ
 - Best for categorical attributes

$$\mathcal{D}(x, x') = \sum_{i=1}^{d} |x_i - x'_i|$$

$$\mathcal{D}(x, x') = \sum_{i=1}^{a} \mathbb{I}_{x_i = x'_i}$$

Special case of One Hot encoded feature

Category	F1	F2	F3
Low	0	0	1
Medium	0	1	0
High	1	0	0

p norm for different p

- Minkowski distance (p-norm) p=0
 - When x not equal to x'
 - When x equal to x'
 - Behaves like Hamming distance
- P=infinity $\mathcal{D}(x,x') = max_d|x_i x_i'|$
- Different p

$$\mathcal{D}(x, x') = \sqrt[p]{\sum_{i=1}^{d} |x_i - x_i'|^p}$$

Cosine similarity & Cosine distance

- Euclidean distance does not matter
- Angular separation matters (e.g. NLP)
- A theta decreases Cosine similarity increases
- •Cosine distance $=1-cos\theta$

Jaccard similarity & Jaccard distance

Applies to set similarity, community similarity

Sentence A: "I like chocolate ice cream."

set $A = \{I, like, chocolate, ice, cream\}$

Sentence B: "Do I want chocolate cream or vanilla cream?"

set $B = \{Do, I, want, chocolate, cream, or, vanilla\}$

- •Jaccard similarity $= \frac{A \cap B}{A \cup B} = \frac{3}{9}$
- •Jaccard distance $=1-\frac{A\cap B}{A\cup B}=1-\frac{3}{9}=\frac{6}{9}$

Custom distance metrics

- •Always non negative $||x_1-x_2||>=0$
- $||x_1 x_2|| = 0 \iff x_1 = x_2$
- $\|x_1 x_2\| = \|x_2 x_1\|$
- •Triangle inequality ||x+y|| <= ||x|| + ||y||

Intuitively true:
Sides of triangle

Should satisfy all of the above (generally speaking)

Distance metrics in sklearn

- •from sklearn.metrics import pairwise_distances
- •dist = pairwise_distances(X, X', metric="")
- •metric = euclidean, manhattan, cosine, jaccard

Dimensionality Reduction + Clustering for visualization (optional)

Dimensionality reduction

- Apply dimensionality reduction
 - PCA
 - •T-SNE
- •Then clustering in 2-D or 3-D
- E.g. PCA and t-SNE with MNIST for 2D clustering
 - Notice t-SNE gives better cluster
 separation

Dimensionality reduction

- Truncated SVD
 - Sparse Matrix cases (such as TF-IDF)

Clustering after dim reduction

- Truncated SVD
 - Sparse Matrix cases (such as TF-IDF)

