Tutorial 6

November 24, 2019

1. Suppose that x_1, x_2, \dots, x_n is a sample with the p.d.f.

$$f(x;\theta) = e^{-(x-\theta)}, x > \theta$$

and $f(x; \theta) = 0$ otherwise.

- (a) Find the method of moment estimate $\hat{\theta}_1$ of θ . Is $\hat{\theta}_1$ consistent? Is $\hat{\theta}_1$ unbiased?
- (b) Find the maximum likelihood estimate $\hat{\theta}_2$ of θ . Is $\hat{\theta}_2$ consistent? Is $\hat{\theta}_2$ unbiased?
- (c) Find the sufficient statistic for θ .
- 2. Suppose that in the population of twins, males (M) and females (F) are equally likely to occur and that the probability that twins are identical is α . If twins are not identical, their genes are independent.
 - (a) Show that

$$P(MM) = P(FF) = \frac{1+\alpha}{4}, \quad P(MF) = \frac{1-\alpha}{2}$$

- (b) Suppose that n twins are sampled. It is found that n_1 are MM, n_2 are FF, and n_3 are MF, but it is not known which twins are identical. Find the MLE of α .
- 3. Suppose that x_1, x_2, \dots, x_n is a sample with the p.d.f.

$$f(x; \theta) = \begin{cases} 1, & \theta - 1/2 \le x \le \theta + 1/2; \\ 0, & \text{otherwise.} \end{cases}$$

Prove that both the sample mean \bar{x} and $\frac{1}{2}(x_{(1)}+x_{(n)})$ are unbiased for θ . Which one is more efficient?

4. Suppose that the p.d.f. is

$$f(x; \theta) = \theta x^{\theta - 1}, 0 < x < 1, \theta > 0.$$

Let x_1, x_2, \dots, x_n be a sample.

- (a) Find the maximum likelihood estimate of $g(\theta) = \frac{1}{\theta}$;
- (b) Find the UMVUE of $g(\theta)$;
- 5. Suppose that x_1, x_2, \dots, x_n is a sample from Poisson distribution $P(\lambda)$.
 - (a) Find the UMVUE of λ .
 - (b) Find the UMVUE of $e^{-\lambda}$. (Hint: $I\{x_1=0\}$ is an unbiased estimate of $e^{-\lambda}$)

6. Suppose that x_1, x_2, \dots, x_n is a sample from Geometric distribution with p.m.f.

$$f(x|\theta) = \theta(1-\theta)^{k-1}, k = 1, 2, \cdots$$

Assume that the prior of θ is a uniform distribution U(0,1).

- (a) Find the posterior of θ ;
- (b) Suppose that there are four observations: 4, 3, 1, 6. Find the Bayes estimate of θ .
- 7. Prove that the Gamma distribution is a conjugate prior for a Poisson distribution $P(\lambda)$.