CS345: Assignment 10

- Q1. Let $a, n \in \mathbb{Z}_m$. Let gcd(n, m) = 1 and $k = n^{-1}$ in \mathbb{Z}_m . Let b = a.n). Show that $k.b = a \pmod{m}$.
 - Q2. Prove that \mathbb{Z}_N is a commutative ring with unity, for any natural number N.
 - Q3. Find $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \pmod{7}$ using Fermat's little theorem.
- Q4. Suppose that p and q are distinct primes, $a^p \equiv a \pmod{q}$, and $a^q \equiv a \pmod{p}$. Prove that $a^{pq} \equiv a \mod{pq}$.
 - Q5. Compute $1019^{-1} \pmod{2058}$.
- Q6. Describe an efficient procedure to compute $a^b (mod 10^9 + 7)$ where a and b may have hundreds of digits.
- Q7. (i) Show that if N is an odd number, then the number of numbers which are coprime with N is even.
- (ii) Using Fermat's little theorem and part(i) show that for any odd N, there exists a number R which is a power of 2 and $R^2 = 1 \pmod{N}$.
- Q8. Given an odd number N, let R be a power of 2 greater than N. Since N and R are coprime, $R^{-1} \in \mathbb{Z}_N$ and $N^{-1} \in \mathbb{Z}_R$. Let $x \in \mathbb{Z}_N$. Define a bijection $f : \mathbb{Z}_N \to \mathbb{Z}_N$, given by $f(x) = xR^{-1} \pmod{N}$. Consider Algorithm ?? to compute f(x).

```
Input: x \in \mathbb{Z}_N

m := -x.N^{-1} \pmod{R};

u := (x + m.N)/R;

if u \ge N then

u := u - N;

end

return y;
```

Algorithm 1: $f(x) = xR^{-1} \pmod{N}$

- (i) Prove that R divides x + m.N to show that u is well defined.
- (ii) Prove the correctness of the algorithm.
- Observe that this algorithm does not require any division.
- (iii) Design multiplication of two numbers in \mathbb{Z}_N using function f such that it does not require any division operation. Hint: $y \equiv_N R^{-1}.R.y$.
 - (iv) Simplify the algorithm assuming that R is so chosen that $R^2 \equiv_N 1$.
- Q9. Determine S-function and P-function for RSA Cryptosystem for prime numbers 17 and 37.
 - Q10. Prove that the polynomial obtained from interpolating on n distinct values, is unique.