Введение в анализ данных

Лекция 9

Измерение качества моделей и многоклассовая классификация

Евгений Соколов

sokolov.evg@gmail.com

НИУ ВШЭ, 2016

Организационное

- Скоро зачёт (коллоквиум)!
- 12 апреля
- Список вопросов на вики

План на сегодня

- Метрики качества классификации и регрессии
- Параметры и гиперпараметры моделей
- Кросс-валидация
- Многоклассовая классификация

Метрики качества

- Не все алгоритмы подходят для решения задачи
- Как выбрать лучший?
- Если много способов определить, что такое «лучший»
- Метрики качества
 - Насколько алгоритм подходит для решения задачи?
 - Какой из двух алгоритмов лучше подходит?

Метрики качества регрессии

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Легко минимизировать
- Сильно штрафует за большие ошибки

Средняя абсолютная ошибка

MAE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

- Сложнее минимизировать
- Выше устойчивость к выбросам

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Подходит, чтобы сравнивать разные модели
- Чем меньше, тем лучше
- Не позволяет понять, хорошая ли модель получилась
- MSE = 32955 хорошо или плохо?

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

- $\bar{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$ средний ответ
- Доля дисперсии, объясненная моделью, в общей дисперсии ответов
- Значение можно интерпретировать

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

- $0 \le R^2 \le 1$ (для разумных моделей)
- $R^2 = 1$ идеальная модель
- $R^2 = 0$ модель на уровне константной
- $R^2 < 0$ модель хуже константной

Метрики качества классификации

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Точность и полнота

- Точность можно ли доверять классификатору при a(x) = 1?
- Полнота как много положительных объектов находит a(x)?

- Оптимизировать две метрики одновременно очень неудобно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

- precision = 0.1
- recall = 1
- A = 0.55

• Плохой алгоритм

Арифметическое среднее

$$A = \frac{1}{2}$$
(precision + recall)

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же, как у плохого

 $M = \min(\text{precision, recall})$

 $M = \min(\text{precision}, \text{recall})$

- precision = 0.05
- recall = 1
- M = 0.05

 $M = \min(\text{precision}, \text{recall})$

- precision = 0.55
- recall = 0.55
- M = 0.55

 $M = \min(\text{precision}, \text{recall})$

- precision = 0.4, recall = 0.5
- M = 0.4

- precision = 0.4, recall = 0.9
- M = 0.4

• Но второй лучше!

$$F = \frac{2 * precision * recall}{precision + recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44

- precision = 0.4, recall = 0.9
- M = 0.55

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 0.5$
- Важнее полнота

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 2$
- Важнее точность

Оценки принадлежности классу

Классификатор

• Частая ситуация:

$$a(x) = [b(x) > t]$$

• b(x) — оценка принадлежности классу +1

Линейный классификатор

$$a(x) = [\langle w, x \rangle > t]$$

- $b(x) = \langle w, x \rangle$ оценка принадлежности классу +1
- Обычно t = 0

- Как оценить качество b(x)?
- Порог выбирается позже
- Порог зависит от ограничений на точность или полноту

- Высокий порог:
 - Мало объектов относим к +1
 - Точность выше
 - Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

Оценка принадлежности

- Пример: кредитный скоринг
- b(x) оценка вероятности возврата кредита
- a(x) = [b(x) > 0.5]
- precision = 0.1, recall = 0.7
- В чем дело в пороге или в алгоритме?

PR-кривая

- Кривая точности-полноты
- Ось X полнота
- Ось Ү точность
- Точки значения точности и полноты при последовательных порогах

PR-кривая

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

PR-кривая в реальности

PR-кривая

- Левая точка: (0, 0)
- Правая точка: (1,r), r доля положительных объектов
- Для идеального классификатора проходит через (1, 1)
- AUC-PRC площадь под PR-кривой

ROC-кривая

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось Y — True Positive Rate $TPR = \frac{TP}{TPR}$

ROC-кривая

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

ROC-кривая в реальности

ROC-кривая

- Левая точка: (0, 0)
- Правая точка: (1, 1)
- Для идеального классификатора проходит через (0, 1)
- AUC-ROC площадь под ROC-кривой

AUC-ROC

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}$$

- FPR и TPR нормируются на размеры классов
- AUC-ROC не поменяется при изменении баланса классов
- Идеальный алгоритм: AUC-ROC = 1
- Худший алгоритм: $AUC-ROC \approx 0.5$

AUC-PRC

$$precision = \frac{TP}{TP + FP}; recall = \frac{TP}{TP + FN}$$

- Точность поменяется при изменении баланса классов
- AUC-PRC идеального алгоритма зависит от баланса классов
- Проще интерпретировать, если выборка несбалансированная
- Лучше, если задачу надо решать в терминах точности и полноты

Пример

- AUC-ROC = 0.95
- AUC-PRC = 0.001

50000 объектов

y = -1

100 объектов y = +1

> 950000 объектов

> > y = -1

Пример

- Выберем конкретный классификатор
- a(x) = 1 50095 объектов
- Из них FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

50000 объектов

y = -1

100 объектов у – +1

> 950000 объектов

> > y = -1

Параметры и гиперпараметры

Переобучение

Регуляризация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

Гиперпараметры

- Параметры модели веса w
 - Позволяют подогнать модель под обучающую выборку
 - Настраиваются по обучающей выборке
- Гиперпараметр модели коэффициент регуляризации λ
 - Определяют сложность модели
 - Лучшее качество на обучении достигается при $\lambda=0$
 - Необходимо настраивать по другим данным

Гиперпараметры

Без регуляризации

Высокое качество на обучении

С регуляризацией

Качество на обучении ниже

Гиперпараметры

Без регуляризации

Низкая обобщающая способность

С регуляризацией

Высокая обобщающая способность

Оценивание обобщающей способности

Как оценить качество?

- Как алгоритм будет вести себя на новых данных?
- Какая у него будет доля ошибок?
- ...или другая метрика качества
- По обучающей выборке нельзя это оценить

Отложенная выборка

- Разбиваем выборку на две части
 - Обучающая выборка
 - Отложенная выборка
- На первой обучаем алгоритм
- На второй измеряем качество
- Доля ошибок
 - MSE
 - ...

Training Data

Holdout Data

Пропорции разбиения

- Маленькая отложенная часть
 - (+) Обучающая выборка репрезентативная
 - (-) Оценка качества ненадежная
- Большая отложенная часть
 - (+) Оценка качества надежная
 - (-) Оценка качества смещенная
- Обычно: 70/30, 80/20, 0.632/0.368

Отложенная выборка

- (+) Обучаем алгоритм один раз
- (-) Зависит от разбиения
- Подходит, если данных очень много

Training Data

Holdout Data

Отложенная выборка

- (+) Обучаем алгоритм один раз
- (-) Зависит от разбиения
- Подходит, если данных очень много

Training Data

«Особые» объекты

Holdout Data

Много отложенных выборок

- Улучшение: разбиваем выборку на две части n раз
- Усредняем оценку качества

Training Data **Training Data** Training Data Holdout Data Holdout Data Holdout Data

Много отложенных выборок

• Нет гарантий, что каждый объект побывает в обучении

Training Data Training Data Training Data ••• Holdout Data Holdout Data Holdout Data

Кросс-валидация

- Разбиваем выборку на к блоков
- Каждая по очереди выступает как тестовая

Число блоков

- Мало блоков
 - Тестовая выборка всегда большая (+) надежные оценки
 - Обучение маленькое (-) смещенные оценки
- Много блоков
 - (-) Ненадежные оценки
 - (+) Несмещенные оценки

Число блоков

- Обычно: k = 3, 5, 10
- ullet Чем больше выборка, тем меньше нужно k
- Чем больше k, тем больше раз надо обучать алгоритм

Совет

- Перемешивайте выборку!
- Объекты могут быть отсортированы
- При разбиении в обучении могут оказаться только мальчики, в контроле только девочки

Многоклассовые задачи

Многоклассовая классификация

• $\mathbb{Y} = \{1, 2, ..., K\}$

Бинарная классификация

$$a(x) = sign \langle w, x \rangle$$

- Способ сведения многоклассовой задачи к набору бинарных классификаций
- Обучаем свой классификатор для каждого класса
- Задача: отделение класса от всех остальных

- К задач бинарной классификации
- *k*-я задача:
 - $X = (x_i, [y_i = k])_{i=1}^{\ell}$
 - Классификатор $a_k(x) = \operatorname{sign} \langle w_k, x \rangle$
- Алгоритм:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} \langle w_k, x \rangle$$

Матрица ошибок

	y = 1	y = 2	•••	y = K
a(x) = 1	q_{11}	q_{12}		q_{1K}
a(x) = 2	q_{21}	q_{22}	•••	q_{2K}
•••	•••	•••	•••	•••
a(x) = K	q_{K1}	q_{K2}	•••	q_{KK}

Доля правильных ответов

$$accuracy(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Точность и полнота

- Относительно каждого класса
- Можно усреднить точность и полноту по всем классам
- Можно усреднить F-меру

Резюме

- Два вида классификаторов:
 - Ответ класс
 - Ответ оценка принадлежности классу
- Метрики в первом случае: доля правильных ответов, точность, полнота, F-мера
- Метрики во втором случае: AUC-ROC, AUC-PRC
- В регрессии: MSE, MAE, R^2
- Кросс-валидация
- Многоклассовая классификация: one-vs-all

Далее в программе

- Четвёртый модуль:
 - Решающие деревья
 - Случайные леса
 - Кластеризация
- Коллоквиум 12 апреля