◆ 회귀(Regression) 모델

- → 핵심 : y= W₁X₁+W₂X₂+...+W_nX_n+b
- → 핵심 : y = W₀₊W₁X₁+W₂X₂+...+W_nX_n
- > 오차(Error)/잔차(Residual) : 실제값 예측값
- > 오차/잔차를 최소화 하는 W, b

◆ 회귀(Regression) 모델

MSE(Mean Squared Error)

- (실제값-예측값)²의 합에 대한 평균
- 특이값이 존재하면 수치가 많이 늘어남
- 제곱을 하기 때문에 에러가 크면 클수록 그에 따른 가중치가 높이 반영

RMSE(Root Mean Squared Error)

- MSE값을 루트(제곱근)을 씌워 값을 작게 만든 것
- MSE와 함께 가장 일반적으로 많이 사용되는 성능분석지표
- Error에 따른 손실이 기하급수적으로 올라가는 상황에 적합

MAE(Mean Absolute Error)

- |실제값-예측값|의 절대값 합에 대한 평균
- Error 그대로 반영되며 Error에 따른 손실이 선형적으로 올라갈때 적합
- 이상치 많을 때 적합

◆ 회귀(Regression) 모델

SSE(Error sum of squares)

- 회귀선에 위치한 값(예측값)과 실제값의 차이(오차)의 제곱
- 표준화 한것이 MSE
- SSE가 작으면 작을수록 좋은 모델이라고 볼 수 있음
- 오차(Error)에 대한 변동성

SSR(Regression Sum of Squares)

- 회귀선에 위치한 값(예측값) 과 실제값 Y의 평균을 뺀 값의 제곱
- 직선(Regression)에 대한 변동성

SST(Total Sum of Squares)

- 전체 변동성

◆ 회귀(Regression) 모델

◆ 회귀(Regression) 모델

R²(Coefficient of Determination) 결정계수

- 선형 회귀 모형이 실제 데이터를 얼마나 잘 설명하는지 지표
- 값의 범위: 0~1
- 입력 변수로 설명할 수 있는 Y 변동

◆ 분류(Classification) 모델

Confusion Matrix 혼동(오차)행렬

- 이진 분류에서 성능 지표 활용
- 예측과 실제 클래스 결정 값 => Negative(0), Posivie(1)

		예측 결과		
		음성(N)	양성(P)	
실제 결과	음성(N)	진음성(True Negative) TN	위양성(False Positive) FP	
	양성(P)	위음성(False Negative) FN	진양성(True Positive) TP	

◆ 분류(Classification) 모델

Confusion Matrix 혼동(오차)행렬

		Predicted		
		Negative (0)	Positive (1)	
Actual	Negative (0)	True Negative TN	False Positive FP (Type I error)	Specificity $= \frac{TN}{TN + FP}$
	Positive (1)	False Negative FN (Type II error)	True Positive TP	Recall, Sensitivity, True positive rate (TPR) $= \frac{TP}{TP + FN}$
		$= \frac{Accuracy}{TP + TN}$ $= \frac{TP + TN}{TP + TN + FP + FN}$	Precision, Positive predictive value (PPV) $= \frac{TP}{TP + FP}$	F1-score $= 2 \times \frac{Recall \times Precision}{Recall + Precision}$

CA(Classification Accuracy) 정확도

- 예측 건수에서 정답을 맞힌 건수의 비율
- (TN+TP)/(TN+FP+FN+TP)
- 전체 데이터 수 중 예측 결과와 실제 값이 동일한 건수
- 불균형 데이터의 경우 정확도 신뢰성 떨어짐

예) 90명의 건강한사람과 10명의 환자가 있을 경우, 모든 사람을 건강한 사람으로 예측할 경우에도 정확도는 90%

◆ 분류 모델

Precision 정밀도

모델(예측)이 True라고 분류한 것 중에서 실제 True인 것의 비율 PPV(Positive Predictive Value)라고도 함 → TP / (FP + TP)

Recall 재현울

실제 True인 것 중에서 모델이 True라고 예측한 것의 비율 Sensitivity, Hit rate, TPR(True Positive Rate)라고도 함 → TP / (FN + TP)

F1 Score

정밀도와 재현율의 상충관계 평가 반영하여 분류기 비교 한쪽을 높이면 한쪽 수치가 떨어지는 Trade off 현상 해결 정밀도와 재현율 어느 한쪽으로 치우치지 않는 수치를 나타낼 때 F1 score는 상대적으로 높은 값

→ 2 * (Precision * Recall) / (Precision + Recall)

◆ 분류 모델

■ 재현율 더 중요한 지표인 경우

실제 Positive 데이터 예측 → Negative 판단한 경우 큰 악영향 발생
(예) 암 양성 → 음성 판단 → 사망
사기범죄자 양성 → 음성 판단 → 범죄 피해 심각

■ 정밀도 더 중요한 지표인 경우 실제 Negative 데이터 예측 → Positive 판단한 경우 큰 악영향 발생 (예) 스팸 메일 아님 음성 → 양성 판단 → 메일 수신되지 않음.

■ 가장 좋은 성능 평가 : 정밀도 ▲ 재현율 ▲

◆ 분류 모델

ROC(Receiver Operation Characteristic Curve) 수신자판단곡선

이진 분류 모델 예측 성능을 판단하는 중요한 평가 지표

- TRP(True Positive Rate) 민감도(sensitivity), 재현율 → 진양성율
- FPR(False Positive Rate) 특이값(specificity) → 위양성율

