Măsurători cu osciloscopul în timp real II

1. Configurarea măsurătorilor

Pentru determinări practice, vor fi utilizate următoarele instrumente:

- Osciloscop cu două canale (OSC) - Generator de funcții (FG) - Voltmetru digital (multimetru) (DV)

Fig. 1. Configurarea măsurătorilor pentru U_{p-p} și U_{r.m.s.}

Semnalul de la generatorul de funcții va fi aplicat atât la intrările osciloscopului (CH1 sau CH2) cât și la intrarea voltmetrului digital folosind un conector T coaxial (Figura 1).

1.1. Determinări practice

Generați un semnal de 10V (curent alternativ), cu frecvența între 50 Hz și 10 kHz.

- Determinați valoarea vârf la vârf a tensiunii U_{p-p} (pe osciloscop).
- Măsurați valoarea efectivă a tensiunii U_{r.m.s.} a semnalului (pe voltmetru).
- Verificați acuratețea măsurătorilor folosind relațiile:

$$U_{r.m.s.} = \frac{1}{2\sqrt{2}} U_{p-p} \cong 0.35 \cdot U_{p-p}$$

sau,

$$U_{p-p} \cong 2.83 \cdot U_{r,m,s}$$

- Calculați această diferență pentru 6 valori diferite de frecvență (50Hz, 200 Hz, 1 kHz, 2 kHz, 5 KHz, 10 kHz) pentru un semnal sinusoidal: $\Delta U = U_{p-p} - 2.83 \cdot U_{r.m.s.}$

Aceasta este <u>eroarea absolută</u> a osciloscopului! Realizați în Excel cele 3 grafice ε(f)

Tip semnal	Frecvență	U_{p-p}	$U_{r.m.s.}$	ΔU	ε
sinusoidal					
triunghiular					
dreptunghiular					

1.2. O nouă metodă de a măsura frecvența unui semnal

Pentru a determina frecvența unui semnal dreptunghiular (un puls) la frecvențe înalte, se poate folosi timpul de creștere (t_{rise}) măsurat cu un osciloscop. Pulsul se potrivește astfel încât să se

încadreze pe marcajele de pe ecran (Figura 2). Imaginea obținută va permite măsurarea timpului de creștere cumulativ, t_{total}.

Fig. 2. Măsurarea timpului de creștere (Rise time)

Pentru o vizualizare mai bună, apăsați XMAG, care multiplică scara orizontală de 10 ori. În cele din urmă, timpul de creștere măsurat t_{total} trebuie împărțit la 10!

Valoarea corectă a timpului de creștere este: $t_{rise} = \sqrt{t_{total}^2 - t_{OSC}^2 - t_p^2}$

- t_{total} este timpul de creșetere măsurat
- tosc este timpul de creștere al osciloscopului
- t_p este timpul de creștere al probei

Lățimea de bandă, B se calculează astfel:

$$B(MHz) = \frac{0.35}{t_{rise}(\mu s)}$$

$t_{rise}(\mu s)$	B(MHz)	Frecv. Gen (MHz)	ε	
		1 MHz		
		500 kHz		

2. Întrebări

- 1. La ce frecvențe multimetrul dă cele mai bune rezultate (din punct de vedere al erorii)?
- 2. Cum se calculează valoarea efectivă (R.M.S.) pentru cele trei tipuri de semnale (sinusoidal, triunghiular, dreptunghiular)?
- 3. Cât de eficientă este noua metodă de măsurare a frecvenței (din punct de vedere al erorii)? Încercați diferite frecvențe înalte (500 kHz, 1 MHz)

Forma semnal		rms	med	\mathbf{k}_{F}	k _v
$\circ \overbrace{ \qquad \qquad }^{v_m}$	sinus	$\frac{V_m}{\sqrt{52}}$ 0.707 V_m	$\frac{2}{\pi} V_{m}$ 0.637 V_{m}	$\left \frac{\pi}{2\sqrt{2}}\right = 1.111$	√2 = 1.414
→ V _m	Dreptunghiular simetric	V _m	V _m	1	1
$\frac{1}{\sqrt{1-v_m}}$	Triunghiular	<u>V_m</u> √3	<u>V_m</u> 2	$\frac{2}{\sqrt{3}}$ = 1.155	√3 = 1.732

Indiciu -->