MTH 316 Homework 6

Evan Fox (efox20@uri.edu) April 6, 2022

Question 1.

Let G be a group and define $H = \{(g,g)|g \in G\}$

(a) Show $H \leq G \oplus G$

Proof. Note the the identity in $G \oplus G$ is (e,e) and since $e \in G$ we have $(e,e) \in H$. Then let $(a,a),(b,b) \in H$. Again since $b \in G$ we must have $b^{-1} \in G$ which implys $(b^{-1},b^{-1}) \in H$ and this is clearly the inverse of $(b,b) \in H$. We note (a,a)(b,b) = (ab,ab) Then similarly since $a,b \in G$ we have $ab \in G$ so $(ab,ab) \in H$. Hence by the two step subgroup test we have that H is a subgroup of $G \oplus G$. □

(b) Prove $H \cong G$.

Proof. Define $\phi: H \to G$ such that $(g,g) \mapsto g$. Injectivity is clear. For $h \in G$ we can see h is mapped to by $(h,h) \in H$. Hence ϕ is a bijection. Then

$$\phi((a,a)(b,b)) = \phi(ab,ab) = ab = \phi(a,a)\phi(b,b)$$

and this completes the proof.

Question 2.

For prime p show that $\mathbb{Z}_p \oplus \mathbb{Z}_p$ has p+1 subgroups of order p

Proof. We start by counting the number of elements of order p in $\mathbb{Z}_p \oplus \mathbb{Z}_p$. Each non-idenity element in \mathbb{Z}_p has order p. Then an element of $\mathbb{Z}_p \oplus \mathbb{Z}_p$, say (a,b) has order p only if lcm(|a|,|b|) = p, but since the only possible orders for a and b are 1 and p, every case must give us an lcm of p unless both a,b have order 1 which can only occure when they are both the identity. That is, every element of $\mathbb{Z}_p \oplus \mathbb{Z}_p$ has order p except for the identity. Then since

 $|\mathbb{Z}_p \oplus \mathbb{Z}_p| = p^2$, there must exist $p^2 - 1$ elements of order p. Every subgroup of order p is cyclic with p-1 generators so we have counted each subgroup p-1 times. Then the number of subgroups of order p is given by

$$\frac{p^2 - 1}{p - 1} = \frac{(p - 1)(p + 1)}{p - 1} = p + 1$$

Hence there must be p+1 distinct subgroups of order p.