37. Venus has a mass of about 0.0558 times the mass of Earth and a diameter of about 0.381 times the diameter of Earth. The acceleration of a body falling near the surface of Venus is about: A) 0.21 m/s^2 $\alpha = 6 \frac{M}{r^2} \Rightarrow 6 \frac{0.055814}{(0.381)^2 r^2}$ = 0.38449 = 3.8%B) 1.4 m/s^2 C) 2.8 m/s² D) 3.8 m/s² E) 25 m/s²

- 38. In simple harmonic motion, the magnitude of the acceleration is:
 - A) constant
 - B) proportional to the displacement
 - C) inversely proportional to the displacement
 - D) greatest when the velocity is greatest
 - E) never greater than g
- 39. A man pushes an 80-N crate a distance of 5.0 m upward along a frictionless slope that makes an angle of 30° with the horizontal. His force is parallel to the slope. If the speed of the crate decreases at a rate of 1.5 m/s², then the work done by the mand is:
 - A) -200 J
 - B) 61 J
 - C) 140 J
 - D) 200 J
 - E) 260 J

F: Ma 80-15 - 3

40. A certain spring elongates 9 mm when it is suspended vertically and a block of mass M is hung on it. The natural frequency of this mass-spring system is:

W: 21 F

- A) is 0.088 rad/s
- B) is 33 rad/s
- C) is 200 rad/s
- D) is 1140 rad/s
- (E) cannot be computed unless the value of M is given
- 41. In the formula $F = Gm_1m_2/r^2$, the quantity G:
 - A) depends on the local value of g
 - B) is used only when the Earth is one of the two masses
 - C) is greatest at the surface of the Earth
 - D is a universal constant of nature
 - E) is related to the Sun in the same way that g is related to the Earth