EE309(S2): Microprocessors

Spring 2025

[Week #3 Slides]

Instructor: Shalabh Gupta

Program Status Word (PSW

What is the default RS0 and RS1 pair??

Table 1-1. PSW: Program Status Word Register

(MSB)							(LSB)
CY	AC	F0	RS1	RS0	OV	-	Р

Symbol	Position	Name and Significance
CY	PSW.7	Carry flag
AC	PSW.6	Auxiliary Carry flag. (For BCD operations.)
F0	PSW.5	Flag 0 (Available to the user for general purposes.)
RS1	PSW.4	Register bank Select control bits 1 & 0. Set/cleared by software to determine working register bank (see Note).
RS0	PSW.3	
OV	PSW.2	Overflow flag.
~	PSW.1	(reserved)
P	PSW.0	Parity flag. Set/cleared by hardware each instruction cycle to indicate and odd/even number of "one" bits in the accumulator, i.e., even parity.

Note:

The contents of (RS1, RS0) enable the working register banks as follows:

- (0.0)-Bank 0(00H-07H)
- (0.1)-Bank 1(08H-0FH)
- (1.0)-Bank 2(10H-17H)
- (1.1)-Bank 3(18H-1FH)

Data Transfer Instructions (Internal RAM)

58 instructions that can be used with the operation "MOV"

Table 1-4. Atmel 8051 Data Transfer Instructions that Access Internal Data Memory Space

Mnemonic	Operation	Addressing Modes				Execution Time @ 12MHz (μs)
		Dir	Ind	Reg	lmm	
MOV A, <src></src>	A = <src></src>	X	Х	Х	Х	1
MOV <dest>, A</dest>	<dest> = A</dest>	X	Х	Х		1
MOV <dest>, <src></src></dest>	<dest> = <src></src></dest>	X	x	х	x	2
MOV DPTR, # data 16	DPTR = 16-bit immediate constant				X	2
PUSH <src></src>	INC SP: MOV "@SP", <scr></scr>	X				2
POP <dest></dest>	MOV <dest>, "@SP": DEC SP</dest>	X				2
XCH A, <byte></byte>	ACC and <byte> Exchange Data</byte>	X	Х	Х		1
XCHD A, @Ri	ACC and @ Ri exchange low nibbles		х			1

Courtesy: 8051 Manual

Data Transfer: External RAM

Table 1-7. Data Transfer Instructions that Access External Data Memory Space

Address Width	Mnemonic	Operation	Execution Time @ 12MHz (μs)
8 bits	MOVX A, @Ri	Read external RAM @ Ri	2
8 bits	MOVX @ Ri, A	Write external RAM @ Ri	2
16 bits	MOVX A, @ DPTR	Read external RAM @ DPTR	2
16 bits	MOVX @ DPTR, A	Write external RAM @ DPTR	2

Look Up Table

Table 1-8. Lookup Table Read Instructions

Mnemonic	Operation	Execution Time @ 12MHz (µs)		
MOVC A, @A + DPTR	Read Pgm Memory at (A + DPTR)	2		
MOVC A, @A + PC	Read Pgm Memory at (A + PC)	2		

Indexed Addressing

MOV A, ENTRY_NUMBER CALL TABLE

#The subroutine "TABLE":

TABLE: MOVC A, @A + PC

RET

Arithmetic Instructions

Table 1-2. A list of the Atmel 8051 Arithmetic Instructions.

Mnemonic	Operation	A	ddressi	ng Mod	Execution Time in X1 Mode @12 MHz (μs)	
		Dir	Ind	Reg	lm m	
ADD A, <byt>e</byt>	A = A + <byte></byte>	X	X	X	X	
ADDC A, byte>	A = A + <byte> + C</byte>	X	x	x	x	1
SUBB A, <byte></byte>	A = A - <byte> - C</byte>	X	x	x	x	1
INC A	A = A + 1	Accui	Accumulator only			1
INC <byte></byte>	<byte> = <byte> + 1</byte></byte>	X	X	X		1
INC DPTR	DPTR = DPTR + 1	Data	Data Pointer only		2	
DEC A	A = A - 1	Accui	Accumulator only			1
DEC <byte></byte>	<byte> = <byte> - 1</byte></byte>	X	X	X		1
MUL AB	$B:A = B \times A$	ACC	and B o	nly	4	
DIV AB	A = Int [A/B] B = Mod [A/B]	ACC	and B o	nly	4	
DA A	Decimal Adjust	Accumulator only				ì

Courtesy: 8051 Manual

ADD Instructions

Instructions	OpCode	Bytes	Flags
ADD A,#data	0x24	2	C, AC, OV
ADD A,iram addr	0x25	2	C, AC, OV
ADD A,@R0	0x26	1	C, AC, OV
ADD A,@R1	0x27	1	C, AC, OV
ADD A,R0	0x28	1	C, AC, OV
ADD A,R1	0x29	1	C, AC, OV
ADD A,R2	0x2A	1	C, AC, OV
ADD A,R3	0x2B	1	C, AC, OV
ADD A,R4	0x2C	1	C, AC, OV
ADD A,R5	0x2D	1	C, AC, OV
ADD A,R6	0x2E	1	C, AC, OV
ADD A,R7	0x2F	1	C, AC, OV

Affects C, AC, OV flags

OV flag is set if the two's complement number addition overflows

Courtesy: 8051 Manual

List of operands (arguments) in 8051

Addr11: An 11-bit address destination. This argument is used by <u>ACALL</u> and <u>AJMP</u> instructions. The target of the CALL or JMP must lie within the same 2K page as the first byte of the following instruction.

Addr16: A 16-bit address destination. This argument is used by <u>LCALL</u> and <u>LJMP</u> instructions.

Bit: A direct addressed bit in internal data RAM or SFR memory.

Direct: An internal data RAM location (0-127) or SFR (128-255).

Immediate: A constant included in the instruction encoding.

Offset: A signed (two's complement) 8-bit offset (-128 to 127) relative to the first byte of the following instruction.

@Ri: An internal data RAM location (0-255) addressed indirectly through R0 or R1.

Rn: Register R0-R7. There are 2⁽⁸⁾ RAM locations in 8051 and each one of them is 8-bit long = 2⁽⁸⁾