- 34 Figuur 6.78 is een gemengde schakeling met twee bekende weerstanden en een onbekende weerstand 3. De totale stroomsterkte is 0,30 A.
 - a Toon aan dat de stroomsterkte door weerstand 1 en 3 gelijk is aan 0,20 A.
 - b Bereken de waarde van weerstand 3.

Figuur 6.78

Opgave 34

a I₁ en I₃ bereken je met het kenmerk van stroom in een parallelschakeling. I₂ bereken je met de wet van Ohm.

U2 volgt uit het kenmerk van spanning in een parallelschakeling.

Voor de parallelschakeling geldt $U_2 = U_{\text{bat}} = 6,0 \text{ V}.$

```
U_2 = I_2 \cdot R_2
R_2 = 60 \Omega
6,0 = 60 × I_2
 I_2 = 0,10 \text{ A}
Voor de parallelschakeling geldt I_{tot} = I_2 + I_{1,3}.

I_{tot} = 0,30 \text{ A}

0,30 = 0,10 + I_{1,3}
  I_{1,3} = 0,20 \text{ A}
```

b R₃ bereken je met het kenmerk van weerstand in een serieschakeling. R_{1,3} (de weerstand 1 en 3 samen) bereken je met de wet van Ohm toegepast op de bovenste

 $U_{1,3}$ (de spanning over de bovenste tak) volgt uit het kenmerk van spanning in een parallelschakeling.

Voor de parallelschakeling geldt U_{1,3} = U_{bst} = 6,0 V.

```
U_{1,3} = I_{1,3} \cdot R_{1,3}
6,0 = 0,20 \cdot R_{1,3}
R_{1,3} = 30 \Omega
Voor de serieschakeling geldt R_{1,3} = R_1 + R_3.
30 = 12 + R_3
R_3 = 18 \Omega
```