	there is some probability that the particle can be four and so the probability of finding the particle here also Consider the the 1-dimensional time-independent Sc	
	appropriate for each region. Region 1	$V(x)=0 \ \psi''-rac{2m}{\hbar^2}(V(x)-E)\psi(x)=0 \ \sqrt{rac{2m}{\hbar^2}(V(x)-E)}=lpha \ lpha^2=rac{2m}{\hbar^2}(V(x)-E) \ \psi''-lpha^2\psi(x)=0 \ \psi(x)=Ae^{lpha x}+Be^{-lpha x} \ \psi(x) ightarrow 0$
	Region 2	$x o -\infty \ B = 0 \ \psi(x) = Ae^{lpha x}$ $V(x) = V0$ $\psi'' - rac{2m}{\hbar^2}(V(x) - E)\psi(x) = 0$ $\sqrt{-rac{2m}{\hbar^2}(V(x) - E)} = k$ $k^2 = -rac{2m}{\hbar^2}(V(x) - E)$ $\psi'' + k^2\psi(x) = 0$
	Symmetric Asymmetric Region 3	$egin{aligned} \psi(x) &= Ccoskx + Dsinkx \ \psi(x) &= Ccoskx \end{aligned}$ $egin{aligned} V(x) &= Dsinkx \end{aligned}$ $V(x) &= 0 \ \psi'' - rac{2m}{\hbar^2}(V(x) - E)\psi(x) = 0 \ \sqrt{rac{2m}{\hbar^2}(V(x) - E)} = lpha \end{aligned}$
		$lpha^2=rac{2m}{\hbar^2}(V(x)-E)$ $\psi''-lpha^2\psi(x)=0$ $\psi(x)=Ee^{lpha x}+Fe^{-lpha x}$ $\psi(x) o 0$ $x o \infty$ $E=0$ $\psi(x)=Fe^{-lpha x}$ ry conditions to their derivatives, we arrive at transcedental equations:
	from a position far outside the well. After doing this wintegrations. We try rescale the results from integration edge of the well. After rescaling, we compare the derind the energy in which the derivatives would match.	$cos(\zeta)=rac{\zeta}{\zeta_0}$ $sin(\zeta)=rac{\zeta}{\zeta_0}$ well, we integrate from the middle of the well to the edge of the well, we then integrate compare the wavefunction and the derivative of the wavefunction of the results on of a position outside the well to match the other integration from the middle to ivatives obtained from both integrations, if they're not equal, we use brentq functions we used ballpark estimates of energies and plugged into our integrate functions ing at for these energy eigenvalues. What happens on the left side depends on h
	set the initial conditions. For if we chose $\psi(0)=1$ a we reverse initial conditions so that $\psi(0)=0$ and $\dot{\psi}$ based functions, while antisymmetric correspond to t results from solving the transcedental equations.	Ind $\dot{\psi}(0)=0$ we get the symmetrical case, so left side is just mirrored right side. $\dot{\psi}(0)=1$, we get the asymmetric case. Symmetrical states correspond to the cosine sine based functions. We compared results gotten from this root finding algorithm $\dot{\psi}(0)=1$ to $\dot{\psi}(0)=1$, and $\dot{\psi}(0)=1$, for the asymmetric case. Symmetrical case and $\dot{\psi}(0)=0$ and $\dot{\psi}(0)=1$, for the asymmetric case.
7]:	Set initial conditions to be $\psi(0)=1$ and $\psi(0)=0$ for the roots of the transcedental equations to check answers with the roots of the transcedental equations to check answers with the roots of the transcedental equations to check answers with the roots of the transcedental equations to check answers with the roots of the roots	for the symmetrical case and $\psi(0)=0$ and $\psi(0)=1$, for the asymmetric case. Swers.
	<pre>else: return V0 L=1.0 N=10000 well = np.linspace(-L-1 ,L+1.,N) potential=[] for i in range(len(well)): potential.append(V(well[i])) pl.grid() pl.grid() pl.plot(well, potential) [<matplotlib.lines.line2d 0x27798c73<="" at="" pre=""></matplotlib.lines.line2d></pre>	lfc8>]
	-20 -40 -60 -80 -100 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5	5 2.0
00]:	<pre>psi0, psip0 = 1.0, 0.0 # start psi ass=np.array([psi0, psip0]) hbar=1.0 # pick convenient units m=1.0 def RK4Step(s, x, derivs, dx, E): """ Take a single RK4 step. (our old for But this time we're integrating in """ dxh=dx/2.0 f1 = derivs(s, x, E) f2 = derivs(s+f1*dxh, x+dxh, E) f3 = derivs(s+f2*dxh, x+dxh, E)</pre>	riend)
1]:	<pre>f4 = derivs(s+f3*dx, x+dx, E) return s + (f1+2*f2+2*f3+f4)*dx/6.* def SWE_derivs(s, x, E): psi=s[0] psip=s[1] psipp = (2*m/hbar**2)*(V(x)-E)*psi return np.array([psip, psipp]) def Integrate(E, startX=0.0, stopX=L, """ E is the test energy. results is an option dictionary to</pre>	num=N, psi0=1, psip0=0, results=None):
	<pre>returns: final values of psi and p """ s=np.array([psi0, psip0]) xs = np.linspace(startX, stopX, num dx = xs[1] - xs[0] for x in xs: s=RK4Step(s, x, SWE_derivs, dx if results is not None: xvals = results.get('x',[]) xvals.append(x) results['x'] = xvals psiVals = results.get('psi', psiVals.append(s[0])</pre>	m) , E)
	<pre>results['psi'] = psiVals psiPrimeVals = results.get(') psiPrimeVals.append(s[1]) results['psip'] = psiPrimeVal return s def Integrate_as(E, startX=0.0, stopX=0.0) """ E is the test energy. results is an option dictionary to</pre>	L, num=N, psi0=0, psip0=1, results=None): store results
	<pre>returns: final values of psi and partial s=np.array([psi0, psip0]) xs = np.linspace(startX, stopX, num dx = xs[1] - xs[0] if results is not None: results['x'] = [xs[0]] results['psi'] = [psi0] results['psip'] = [psip0] for x in xs: s=RK4Step(s, x, SWE_derivs, dx if results is not None: xvals = results.get('x',[])</pre>	m)
	<pre>xvals.append(x) results['x'] = xvals psiVals = results.get('psi', psiVals.append(s[0]) results['psi'] = psiVals psiPrimeVals = results.get(') psiPrimeVals.append(s[1]) results['psip'] = psiPrimeVals. return s</pre>	psip',[])
	<pre>def integrateAtEnergy(E): results = {} Integrate(E,0,L,N,1,0,results) results2 = {} Integrate(E, 3*L, L, N, 1e-30, 0, 1) x1 = np.array(results['x']) psi1 = np.array(results['psi']) psip1 = np.array(results['psip']) psi2 = np.array(results2['psip']) psip2 = np.array(results2['psip']) x2 = np.array(results2['x']) psi2rescaled = psi1[-1]*psi2/results2</pre>	
3]:	<pre>x2 = np.array(results2['x']) psi2rescaled = psi1[-1]*psi2/result psip2rescaled = psi1[-1]*psip2/result return x1, psi1, psip1, x2, psi2res def diff(E): x1, psi1, psip1, x2, psi2, psip2 = return psip1[-1] - psip2[-1] Eigen1 = brentq(diff, -95, -100) Eigen1 -98.92462525020724 x1, psi1, psip1, x2, psi2, psip2 = interest</pre>	ults2['psi'][-1] scaled, psip2rescaled integrateAtEnergy(E)
±]:	pl.plot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.title("Wave function of the Symmetry pl.xlabel("x") pl.ylabel("psi(x)") pl.grid() Wave function of the Symmetric Ground S 10 0.8 0.6	ic Ground State")
	0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.0
6]:	<pre>x1, psi1, psip1, x2, psi2, psip2 = into pl.plot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid() pl.title("Wave function of the Symmetry pl.xlabel("x") pl.ylabel("psi(x)") Text(0, 0.5, 'psi(x)') Wave function of the Symmetric First Excit 100</pre> Wave function of the Symmetric First Excit	ic First Excited State")
	0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00	5 3.0
7]: 8]:	<pre>Eigen3 = brentq(diff, -70, -85) Eigen3 -73.28912301831238 x1, psi1, psip1, x2, psi2, psip2 = intoplot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid() pl.title("Wave function of the Symmetry pl.xlabel("x") pl.ylabel("psi(x)")</pre>	
8]:	Wave function of the Symmetric Second Exercises 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.75 0.50 0.75 0.75 0.75 0.75 0.7	cited State
9]:	Eigen4 = brentq(diff, -40, -55) Eigen4 -48.09630735413568 x1, psi1, psip1, x2, psi2, psip2 = intoplot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid()	
00]:	pl.title("Wave function of the Symmetry pl.xlabel("x") pl.ylabel("psi(x)") Text(0, 0.5, 'psi(x)') Wave function of the Symmetric Third Exci	
1]:	-0.25 -0.50 -0.75 -1.00 0.0 0.5 1.0 1.5 2.0 2 x Eigen5 = brentq(diff, -20, -10) Eigen5 -15.854979189479215	5 3.0
	<pre>x1, psi1, psip1, x2, psi2, psip2 = interpl.plot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid() pl.title("Wave function of the Symmetry pl.xlabel("x") pl.ylabel("psi(x)") Text(0, 0.5, 'psi(x)') Wave function of the Symmetric Fourth Exception 100 0.75 0.50</pre>	ic Fourth Excited State")
33]:	0.25 0.00 -0.25 -0.50 -0.75 -1.00 0.0 0.5 1.0 1.5 2.0 2 x print ("Energy eigenvalues for Symmetration of the company of the	5.4f" % Eigen1)
	print ("Energy Eigenvalue for n = 1: % print ("Energy Eigenvalue for n = 3: % print ("Energy Eigenvalue for n = 4: % print ("Energy Eigenvalue for n = 5: % Energy eigenvalues for Symmetric case: Energy Eigenvalue for n = 1: -98.9246 Energy Eigenvalue for n = 2: -90.3408 Energy Eigenvalue for n = 3: -73.2891 Energy Eigenvalue for n = 4: -48.0963 Energy Eigenvalue for n = 5: -15.8550 Asymmetric case	5.4f" % Eigen2) 5.4f" % Eigen3) 5.4f" % Eigen4)
	<pre>def integrateAtEnergy_as(E): results = {} Integrate_as(E,0,L,N,0,1,results) results2 = {} Integrate_as(E, 3*L, L, N, 0, 1e-3* x1 = np.array(results['x']) psi1 = np.array(results['psi']) psi2 = np.array(results['psip']) psi2 = np.array(results2['psip']) psi2 = np.array(results2['psip']) x2 = np.array(results2['x']) psi2rescaled = psi1[-1]*psi2/result psip2rescaled = psi1[-1]*psip2/result return x1, psi1, psip1, x2, psi2result </pre>	ts2['psi'][-1] ults2['psi'][-1]
5]:		integrateAtEnergy_as(E)
6]:	pl.grid() pl.title("Wave function of the Asymmetry pl.xlabel("x") pl.ylabel("psi(x)") Text(0, 0.5, 'psi(x)') Wave function of the Asymmetric Ground 0.35 0.30 0.25	
	0.20 0.15 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 2.0 2.5 x Eigen_as2 = brentq(diff_as, -84, -82) Eigen_as2 -82.86020355285109	3.0
8]:	<pre>x1, psi1, psip1, x2, psi2, psip2 = into pl.plot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid() pl.title("Wave function of the Asymmetry pl.xlabel("x") pl.ylabel("psi(x)") Text(0, 0.5, 'psi(x)') Wave function of the Asymmetric First Excel 0.15</pre>	ric First Excited State")
	0.10 0.05 0.00 -0.05 -0.10 -0.15 0.0 0.5 1.0 1.5 2.0 2	5 3.0
9]:	<pre>Eigen_as3 = brentq(diff_as, -60, -64) Eigen_as3 -61.67472921931975 x1, psi1, psip1, x2, psi2, psip2 = intople plot(x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid() pl.title("Wave function of the Asymmetry pl.xlabel("x") pl.ylabel("psi(x)")</pre> Text(0, 0.5, 'psi(x)')	
	Wave function of the Asymmetric Second Ex 0.10 0.05 -0.05 -0.10	cited State
1]:	Eigen_as4 = brentq(diff_as, -32, -36) Eigen_as4 -32.70310679762348 x1, psi1, psip1, x2, psi2, psip2 = interplet (x1, psi1, 'r-') pl.plot(x2, psi2, 'r-') pl.grid() pl.title("Wave function of the Asymmetry	
22]:	pl.title("Wave function of the Asymmetry pl.xlabel("x") pl.ylabel("psi(x)") Text(0, 0.5, 'psi(x)') Wave function of the Asymmetric Third Extended to the Asymmetric Third Extended	
	print ("Energy eigenvalues for Asymmetry print ("Energy Eigenvalue for n = 1: % print ("Energy Eigenvalue for n = 2: % print ("Energy Eigenvalue for n = 3: % print ("Energy Eigenvalue for n = 4: % Energy eigenvalues for Asymmetric case:	5.4f" % Eigen_as1) 5.4f" % Eigen_as2) 5.4f" % Eigen_as3) 5.4f" % Eigen_as4)
4]: 4]:	<pre>Energy Eigenvalue for n = 1: -95.7016 Energy Eigenvalue for n = 2: -82.8602 Energy Eigenvalue for n = 3: -61.6747 Energy Eigenvalue for n = 4: -32.7031 Analytical Solution z0 = L*np.sqrt(-2*m*V0)/hbar; z0 14.142135623730951 z = np.linspace(0,z0,N)</pre>	
•	pl.plot(z,z/z0,'r-') pl.plot(z,abs(np.cos(z)),'r-') pl.plot(z,abs(np.sin(z)),'b-') pl.grid() 10 0.8 0.6 0.4	
6]: 7]:	0.2 0.0 0.0 0.0 0.0 0.0 0.0 2 4 6 8 10 12 0.0 1.4668849966730226 E1 = V0 + (hbar*k0)**2/(2*m) E1 -98.9241242032678	14 , 1,2); k0
8]: 8]: 9]: 9]:	-98.9241242032678 k1 = brentq(lambda z: np.sin(z) - z/z0 2.9327033818989654 E_as1 = V0 + (hbar*k1)**2/(2*m) E_as1 -95.69962543689918 k2 = brentq(lambda z: abs(np.cos(z)) - 4.3962866150340565	
1]: 1]: 2]: 2]:	E2 = V0 + (hbar*k2)**2/(2*m) E2 -90.3363319992362 k3 = brentq(lambda z: abs(np.sin(z)) - 5.856233423716016 E_as2 = V0 + (hbar*k3)**2/(2*m) E_as2	z/z0, 5.5,6.1); k3
4]: 4]: 5]: 6]:	-82.8522650434757 k4 = brentq(lambda z: abs(np.cos(z)) - 7.310703614472121 E3 = V0 + (hbar*k4)**2/(2*m) E3 -73.27680633067213 k5 = brentq(lambda z: abs(np.sin(z)) -	
6]: 7]: 7]: 8]:	<pre>k5 = brentq(lambda z: abs(np.sin(z)) - 8.757034307665888 E_as3 = V0 + (hbar*k5)**2/(2*m) E_as3 -61.657175067181306 k6 = brentq(lambda z: abs(np.cos(z)) - 10.190899214952116 E4 = V0 + (hbar*k6)**2/(2*m) E4</pre>	
9]: 0]: 0]:		
2]: 3]:	12.975416979484846 E5 = V0 + (hbar*k8)**2/(2*m) E5 -15.819277104248172 print ("Analytical Symmetrical Energy print ("Energy Eigenvalue for n = 1: % print ("Energy Eigenvalue for n = 2: % print ("Energy Eigenvalue for n = 3: % print ("Energy Eigenvalue for n = 4: % print ("Energy Eigenval	Eigenvalues:") 5.4f" % E1) 5.4f" % E2) 5.4f" % E3) 5.4f" % E3)
	print ("Energy Eigenvalue for n = 4: % print ("Energy Eigenvalue for n = 5: % Analytical Symmetrical Energy Eigenvalue Energy Eigenvalue for n = 1: -98.9241 Energy Eigenvalue for n = 2: -90.3363 Energy Eigenvalue for n = 3: -73.2768 Energy Eigenvalue for n = 4: -48.0728 Energy Eigenvalue for n = 5: -15.8193 print ("Analytical Asymmetrical Energy print ("Energy Eigenvalue for n = 1: % print ("Energy Eigenvalue for n = 2: % print ("Energy Eigenvalue for n = 3: % print ("Energy Eigenvalue for n = 3: % print ("Energy Eigenvalue for n = 4: % print ("Energy Eigen	<pre>5.4f" % E5) es: Eigenvalues:") 5.4f" % E_as1) 5.4f" % E_as2) 5.4f" % E_as3)</pre>
	print ("Energy Eigenvalue for $n = 4$: %. Analytical Asymmetrical Energy Eigenval Energy Eigenvalue for $n = 1$: -95.6996 Energy Eigenvalue for $n = 2$: -82.8523	
	Energy Eigenvalue for n = 3: -61.6572 Energy Eigenvalue for n = 4: -32.6732 Comparing Root-finding and Analytica	Root-finding Method Results Analytical Results -98.9246 -98.9241