Spawning of wavepackets in 1D non-adiabatic transitions

Raoul Bourquin

Dr. Vasile Grădinaru Prof. Dr. Ralf Hiptmair

Seminar for Applied Mathematics, ETH Zurich Spring semester 2011

Outline

Introduction

Schr[Pleaseinsertintopreamble]dinger equation, Potential and Initial Values

Semiclassical wavepackets

Spawning

In the non-adiabatic setting
Mathematical problem description and details

Implementation

An Example

Future work

End

Time-dependent Schrödinger equation

$$i\varepsilon^2 \frac{\partial}{\partial t} |\psi\rangle = \underbrace{(T+V)}_{H} |\psi\rangle$$

where

$$T := -\frac{1}{2}\varepsilon^4 \frac{\partial^2}{\partial x^2} \qquad V := V(x)$$

- ightharpoonup Time evolution for a state $|\psi\rangle$
- ▶ Kinetic operator T and potential V(x)
- Semi-classical scaling $\varepsilon^2 \approx 10^{-2}, 10^{-3}, \dots$
- ▶ Recover classical mechanics for $\varepsilon \to 0$

Schrödinger equation, Potential and Initial Values

Wavefunction

Representation of the wavefunction

- Separation of variables
- Basis set expansion
 - lacktriangle very successful idea ightarrow Roothaan equations in Hartree-Fock

$$\psi(x,t) = \sum_{k} c_{k}(t) \phi_{k}(x)$$
$$= \sum_{k} c_{k}(t) \phi_{k}[\Pi(t)](x)$$

Parameters:

$$\Pi(t) := \{ P(t), Q(t), p(t), q(t) \}$$

Expansion coefficients:

$$c(t) := (c_0(t), \ldots, c_K(t))$$

Semiclassical wavepackets

Definition of the basis functions

Basis functions: product of a Gaussian times a polynomial

$$\phi_0\left(x\right) := \left(\pi\varepsilon^2\right)^{-\frac{1}{4}} Q^{-\frac{1}{2}} \exp\left(\frac{i}{2\varepsilon^2} P Q^{-1} \left(x-q\right)^2 + \frac{i}{\varepsilon^2} p \left(x-q\right)\right)$$

- ▶ Parameters $P \in \mathbb{C}$, $Q \in \mathbb{C}$
- ▶ Position $q \in \mathbb{R}$ and momentum $p \in \mathbb{R}$
- ▶ Construct ϕ_k by applying the raising operator \mathcal{R}

$$\phi_k := \frac{1}{\sqrt{k!}} \mathcal{R}^k \phi_0$$

• $\{\phi_i\}_i$ complete basis of L^2 for fixed P, Q, p, q

Semiclassical wavepackets

Definition of a wavepacket

General wavepacket as linear combination

$$\Phi(x) := e^{\frac{iS}{\varepsilon^2}} \sum_{k=0}^{K} c_k \phi_k(x)$$

- ▶ In theory $K = \infty$, practically $K \le 512$
- ▶ Time propagation of wavepackets:
 - ▶ propagate parameters P, Q, p, q
 - propagate coefficients $\{c_i\}_i$
- Wavepackets stay in this mathematical form
- lacktriangle Explicit algorithm ightarrow my Bachelor Thesis

Non-adiabatic potentials

- ▶ Potential V(x) with multiple energy levels $\lambda_i(x)$
- Wavepackets can jump to other levels
- and split up over different levels
- Energy levels do never cross

Very simple example

$$V(x) = \begin{bmatrix} \frac{1}{2} \tanh(x) & \delta \\ \delta & -\frac{1}{2} \tanh(x) \end{bmatrix}$$

 $ightharpoonup 0 < \delta \in \mathbb{R}$

Non-adiabatic potentials

Technical details

- Potential V (x) is a matrix
 - Matrix valued TDSE
 - Vector valued wavefunction
- Wavepackets of the form:

$$|\Psi
angle = \left(egin{array}{c} \Phi_0 \ dots \ \Phi_{N-1} \end{array}
ight)$$

- ▶ Usually homogeneous: same Π for all $Φ_i$
 - really a good idea?
 - ▶ no, not always → spawning

Video of the time evolution without spawning

Motivating example

In the non-adiabatic setting

- ▶ Goal: reduce basis size K
 - transformation to better basis
- Split up wavepackets: $|\Psi\rangle = |\Psi_0\rangle + |\Psi_1\rangle$
- ► Each $|Ψ_i\rangle$ has own set $Π_i$
 - ▶ Important if Π_0 and Π_1 differ too much
 - ▶ Allows smaller basis size for Ψ_0 , Ψ_1
- Important:
 - Spawning may solve problems arising in *long-time* simulations
 - It does not help with difficulties at the avoided crossing

In the non-adiabatic setting

- Split up wavepackets: $|\Psi
 angle pprox |\Psi_0
 angle + |\Psi_1
 angle = |\Psi'
 angle$
- **Proof** Reason: part $Φ_1$ on lower level $λ_1$ travels faster
- Before split up by spawning:

$$|\Psi
angle = \left(egin{array}{c} \Phi_0 \ \Phi_1 \end{array}
ight)$$

- Single set Π for both Φ_i
 - ▶ Probably big basis necessary: *K* is large
- After split up by spawning:

$$|\Psi'
angle = \left(egin{array}{c} \Phi_0' \ 0 \end{array}
ight) + \left(egin{array}{c} 0 \ \Phi_1' \end{array}
ight)$$

- **Each** $Φ'_i$ has own parameter set $Π_i$
- ▶ Hopefully each Ψ'_i needs only much smaller basis

Mathematical problem description

Given a linear combination $\sum_{k=\alpha}^{\beta} c_k \phi_k [\Pi](x)$ with $\alpha \geq 0$ and $\beta \leq K$ find a new, optimal basis of L^2 . More precisely, find a new set $\tilde{\Pi}$ of parameters. Then do a basis expansion in the new basis $\sum_{k=\alpha}^{\beta} \tilde{c}_k \phi_k [\tilde{\Pi}]$ resulting in new coefficients \tilde{c} .

Mathematical problem description and details

Spawning

Parameter estimation in detail

- A fragment: $w := \sum_{k=\alpha}^{\beta} c_k \phi_k$
- ▶ Estimate optimal $\tilde{\Pi}$ for w via expectation values

$$\tilde{q} := \frac{\langle w \mid x \mid w \rangle}{\langle w \mid w \rangle} = \frac{\sqrt{2\varepsilon^{2}}}{\sum_{k=\alpha}^{\beta} \overline{c_{k}} c_{k}} \Re \left(Q \sum_{k=\alpha+1}^{\beta} \overline{c_{k}} c_{k-1} \sqrt{k} \right) + q$$

$$\tilde{p} := \frac{\langle w \mid -i\varepsilon^{2} \frac{\partial}{\partial x} \mid w \rangle}{\langle w \mid w \rangle} = \frac{\sqrt{2\varepsilon^{2}}}{\sum_{k=\alpha}^{\beta} \overline{c_{k}} c_{k}} \Re \left(P \sum_{k=\alpha+1}^{\beta} \overline{c_{k}} c_{k-1} \sqrt{k} \right) + p$$

- Similar procedure for \tilde{Q} and \tilde{P}
- ▶ Non-adiabatic setting: $\Phi_1 \equiv w$ and $\alpha = 0$, $\beta = K$

Spawning in the non-adiabatic setting

Spawning

Mathematical problem description and details

Spawning Change of basis

- ▶ Find the expansion coefficients \tilde{c}_k
- Different strategies possible
 - Lumping
 - Basis projection
 - **.** . . .
- Both have advantages and drawbacks
 - ▶ Basis projection is the cleaner solution

Mathematical problem description and details

Spawning

Basis projection

▶ Project w to first μ new basis functions $\tilde{\phi}_k := \phi_k[\tilde{\Pi}]$

$$\tilde{c}_i := \frac{\left\langle w \middle| \tilde{\phi}_i \right\rangle}{\left\langle w \middle| w \right\rangle}$$

Do these integrals with highly accurate quadrature

$$\tilde{c}_{i} = \varepsilon \cdot Q_{0} \sum_{r=0}^{R-1} \sum_{k=\alpha}^{\beta} c_{k} \phi_{k} (\gamma_{r}) \cdot \tilde{\phi}_{i} (\gamma_{r}) \cdot \omega_{r}.$$

Finally assign the coefficients

$$ilde{c}:=egin{pmatrix} ilde{c}_0 & \cdots & ilde{c}_\mu & ilde{c}_{\mu+1}=0 & \cdots & ilde{c}_{\eta-1}=0 \end{pmatrix} \ (c_lpha & \cdots & c_eta):=0 \, .$$

Spawning criteria

- An oracle telling us if and when to spawn
 - Spawn to early is very bad
 - ► Spawn to late is of little risk

- Simple threshold based criterion
 - $ightharpoonup \langle w, w \rangle \geq \tau$
 - asymptotic value pprox au
 - but a priori unknown!
- More advanced criteria possible

Implementation

- Implementation on top of WaveBlocks
 - My code framework from the Bachelor Thesis
 - Currently about 8k lines of python code (core only)
 - Highly modular and easily extendable
 - Object oriented python code using numpy for numerics
- Adding spawning algorithms was really easy
 - Only 4 new classes
 - Parameter estimation routines
 - Change of basis routines
 - Code that checks for spawning during time propagation
 - ► About 500 lines of new code (w/o data analysis and plotting)

An example

Estimated parameters

An example

Norms

Spawning in the non-adiabatic setting _An Example

An example Video

Video of the time evolution with spawning

An example

Spawning error

Systematic ways to reduce the spawning error

Current research

Refine spawning in the non-adiabatic case

- Open issues with parameter estimation
- Can we improve the change of basis?
- Compare spawn criteria and find best one
- Propagation algorithm in case the interaction of the spawned packets can not be neglected (hard!)
- Adaptive basis size (almost done)

Thanks for your attention

Questions?

More information on the topic

- ► The full thesis: http://n.ethz.ch/~raoulb/research/term_thesis/main.pdf
- ► The WaveBlocks source code:

```
http://waveblocks.origo.ethz.ch/
SVN http://svn.origo.ethz.ch/waveblocks/
```