Computergrafik

Mitschrift von

Markus Vieth Steffen Eiden Lukas Birklein

24. Januar 2017

Vorwort

Dieses Skript basiert auf unserer Mitschrift der Vorlesung Computergrafik und VR im WS 2016/17 an der JGU Mainz (Dozent: Prof. Dr. E. Schömer).

Es handelt sich nicht um eine offizielle Veröffentlichung der Universität.

Wir übernehmen keine Gewähr für die Fehlerfreiheit und Vollständigkeit des Skripts.

Fehler können unter Github gemeldet werden. Die aktuelle Version dieses Skriptes ist ebenfalls auf Github zu finden.

Inhaltsverzeichnis

Vo	rwort	i
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 2 3 3 3 4 4 5
2	VBO 2.1 Baryzentrische Koordinaten	6 7 8
3	3D-Objekte103.1 Orthogonalprojektion103.2 Perspektivische Projektion13.3 Objekte drehen aka Blickwinkel ändern1	0
4	Qt Formen 19 4.1 OFF-Format 10	-
5	Beleuchtung 5.1 Ein einfaches Beleuchtungsmodel 1 5.1.1 Lambertsches Gesetz 1	7
6	Einschübe186.1 Berechnung des Normalenvektors für parametrisierte Flächen186.2 Tiefenbuffer18	8
7	Beleuchtung (Fortsetzung)197.1 Flatshading	
8	Einschub: virtual Trackball 8.1 Formel von Rodriques	1

In halts verzeichn is

9	Beleuchtung (Fortsetzung)	23
	9.1 Phong Lichtmodell	23
	9.1.1 Phong	23
10	Oberflächen	25
	10.1 Texturen	25
	10.2 Cube-Mapping	26
11	Volume Rendering mit 3D-Texturen	27
	11.1 DVT	27
	11.1.1 Lambert-Beer-Gesetz	27
	11.2 Raycasting mittels front-to-back rendering	28
12	Einschub: Algebraische Flächen	29
13	Shadow-Mapping	30
14	Szenegraph	32

1 Koordinatensysteme

1.1 Normalisiertes Koordinatensystem

glViewport: Ausschnitt wo gezeichnet wird.

1.2 Bildschirmkoordinaten = Weltkoordinaten

(-1|1) (1|1)
$$x' = ax + b$$

$$y' = cy + d$$
(-1|-1) (1|-1)

1 Koordinatensysteme

 b_0 : E-Koordinaten des Ursprungs von System B

 $\boldsymbol{b_1}, \boldsymbol{b_2}$ E-Koordinaten der Basisvektoren von System B

$$E_{X} = b_{0} + {}^{B}x_{1} \cdot b_{1} + {}^{B}x_{2} \cdot b_{2}$$

$$[b_{1}, b_{2}] = R \in \mathbb{R}^{2 \times 2}, \quad |b_{1}| = |b_{2}| = 1, \qquad b_{1}^{T} \cdot b - 2 = 0$$

$$R^{T} \cdot R = \mathbb{E}, \det(R) = 1 \text{ (Rechtssystem)}$$

$$\Rightarrow {}^{E}x = b_{0} + {}^{E}R \cdot {}^{B}x$$

1.3 Homogene Koordinaten

$$E_{x^{1}} = \begin{pmatrix} E_{x_{1}} \\ E_{x_{2}} \\ 1 \end{pmatrix} = \begin{pmatrix} E_{x} \\ 1 \end{pmatrix} \in \mathbb{R}^{3}$$

$$= \begin{pmatrix} E_{R_{B}} & b_{0} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} B_{x} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \cos \varphi & -\sin \varphi & b_{0_{1}} \\ \sin \varphi & \cos \varphi & b_{0_{1}} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B_{x_{1}} \\ B_{x_{2}} \\ 1 \end{pmatrix}$$

Allgemein:

$$^{E}x^{1} = {^{E}M_{B}} \cdot {^{B}\hat{x}}$$

- 1. $^{E}M_{B}$ beschreibt die Transformationsmatrix von Koordinaten aus System B in das System E
- 2. ${}^{E}M_{B}$ kann auch interpretiert werden, als die (starre) Transformation, die E in B überführt.

1.4 Transformationen

1.4.1 Rotation

z.B.

$$x' = R \cdot x$$

1.4.2 + Verschiebung

$$x' = Rx + z$$

$$\rightsquigarrow \hat{x}' = Mx \text{ mit } M = \left(\frac{R \mid t}{0 \mid 1}\right)$$

$$x' = R(x+t)$$

1.4.3 Skalierung

$$\underbrace{S = \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix}}_{\text{homogenisiert}} x' = Sx = \begin{pmatrix} x'_1 = s_1 x_1 \\ x'_2 = s_2 x_2 \end{pmatrix}$$

$$\hat{S} = \begin{pmatrix} S & 0 \\ \hline 0 & 1 \end{pmatrix}$$

mit $s_2 = -1$ Spiegelung um x_1

1.4.4 Translation

Homogen:

$$\hat{T} = \begin{pmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

1 Koordinatensysteme

1.4.5 Hintereinanderausführung von Translation, Rotation und Skalierung

z.B.

$$x''' = S(R(x+t))$$
 $\Rightarrow x' = x+t; \quad x'' = Rx'; \quad x''' = Sx''$
$$x''' = \hat{S}\hat{R}\hat{T}\hat{x}$$
 alles homogenisiert

`wird oft weggelassen, wenn klar.

$$^{B}M_{A}{}^{A}x = {}^{B}x$$

$$^{E}x = {}^{E}M_{B}{}^{B}x$$

$$\Rightarrow {}^{E}x = \underbrace{{}^{E}M_{B}{}^{B}M_{A}}_{E_{M_{A}}}{}^{A}x$$

z.B.

$$^{E}M_{B}$$
 $^{E}M_{A}$

 $^{B}M_{A}$

gesucht

$${}^{E}M_{A} = {}^{E}M_{B}{}^{B}M_{A}$$

$$\Rightarrow {}^{B}M_{A} = {}^{E}M_{B}^{-1} \cdot {}^{E}M_{A}$$

$${}^{E}M_{B}^{-1} = {}^{B}M_{E}$$

1.5 Invertierung von M

Sei
$$M = \left(\frac{R \mid t}{0 \mid 1}\right)$$
 $R^{-1}_{\text{Drehung um } -\varphi} = R^T \text{ u.a. auch, da Rotation } (R^T R = 1)$
$$Mx = Rx + t = x'$$

$$\rightsquigarrow R^T(x' - t) = x$$

$$\rightsquigarrow R^T x' - R^T t$$

$$\rightsquigarrow M^{-1} = \left(\frac{R^T \mid -R^T t}{0 \mid 1}\right)$$

1.6 Qt

```
1 QMatrix4x4 M;
2 M.setToIdentity(); // M=1
3 M.rotate(\varphi, 0, 0, 1); // Rotation um die z-Achse
4 // M=M\cdot R
5 M.scale(s_1, s_2); // M=M\cdot S
6 M.translate(t_1, t_2); // M=M\cdot T
7 // M=\underbrace{1\cdot R\cdot S\cdot T}_{\text{Leserichtung für Transformation}}
8 // Leter Befehl wird zuerst ausgeführt! LIFO!
9 Mx'
```

2 VBO

Shader nimmt die Attribute von den Randpunkten und prozessiert diese auf die Pixel im inneren des Dreiecks.

2.1 Baryzentrische Koordinaten

varying im Vertexshader

Abbildung 2.2: Baryzentrisches Koordinatensystem

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

$$x = \alpha \cdot a + \beta \cdot b + \gamma \cdot c \wedge \alpha + \beta + \gamma = 1$$

$$\Rightarrow f(x) = \alpha \cdot f(a) + \beta \cdot f(b) + \gamma \cdot f(c)$$

(wird bei Qt durch das Keyword "Varying" ausgelöst)

2 VBO

2.2 Texturen

2.2.1 Mipmap

$$S = \sum_{i=0}^{\infty} (\frac{1}{4})^i = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

Bildschirmpixel

Abbildung 2.3: bilineare Interpolation

In der Regel sind Texturkoordinaten in $[0,1]^2$, wenn größer wird sie periodisch verwendet.

Abbildung 2.4: Maps Mipmapping

Denkanstoß: Welche Kette von Transformationen braucht man um zu einem Fixpunkt zu zoomen?

3 3D-Objekte

3.1 Orthogonalprojektion

$$x \in [l,r]$$

$$y \in [b,t]$$

$$z \in [-f,-n]$$

 $Sichtquader \rightarrow Einheitsquader$

$$x' \in [-1, 1]$$

 $y' \in [-1, 1]$
 $z' \in [-1, 1]$

$$x' = \alpha \cdot x + \beta$$
$$l \mapsto -1, \ r \mapsto 1$$

(1)
$$-1 = \alpha \cdot l + \beta$$
(2)
$$1 = \alpha \cdot r + \beta$$
(2)
$$2 = \alpha \cdot r - \alpha \cdot l \Rightarrow \alpha = \frac{2}{r - l}$$

$$1 = \frac{2 \cdot r}{r - l} + \beta$$

$$\beta = 1 - \frac{2r}{r - l} = \frac{r - l - 2r}{r - e} = -\frac{r + l}{r - l}$$

Analog für y' und z'

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & \frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & \frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{O} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$z' = -\frac{2}{f-n}z - \frac{f+n}{f-n}$$

$$z = n$$
 $z* = \frac{2n - (f+n)}{f-n} = \frac{n-f}{f-n} = -1$

$$-n \mapsto -1, -f \mapsto 1$$

Qmatrix4x4.ortho(1,n,b,t,n,f); liefert O

3.2 Perspektivische Projektion

$$\frac{y'}{-n} = \frac{y}{z}$$

$$y' = -\frac{n \cdot y}{z}$$

3 3D-Objekte

Sichtpyramide \rightarrow Einheitswürfel

$$y' = -\frac{n \cdot y}{z}$$

$$[b, t] \mapsto [-1, 1]$$

$$y'' = \alpha \cdot y' + \beta$$

$$y'' = \frac{2}{t \cdot b} \cdot y' - \frac{t + b}{t - b}$$

$$y'' = \frac{2n}{t - b} \cdot \frac{y}{-z} - \frac{t + b}{t - b}$$

analog für $x^{\prime\prime},\,z^{\prime\prime}$

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \xrightarrow{\text{Dehomogen-}} \begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{pmatrix}$$
 Kartesiche koord.

Homogenisierungsmatrix:

$$\begin{pmatrix} x'' \\ y'' \\ z'' \\ w'' \end{pmatrix} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$y'' = \frac{2n}{t-b} \cdot y + \frac{t+b}{t-b} \cdot z$$

$$w'' = -z$$

$$\frac{y''}{w''} = \frac{2n}{t-b} \frac{y}{(-z)} + \frac{t+b}{t-b} \frac{z}{(-z)}$$

$$z''' = \frac{z''}{w''} = \frac{\alpha \cdot z + \beta}{-z} = -\alpha - \frac{\beta}{z}$$

$$-n \mapsto -1, -f \mapsto 15$$

$$-\alpha - \frac{\beta}{-n} = -1$$

$$-\alpha - \frac{\beta}{-f} = 1$$

$$-\alpha + \frac{\beta}{n} = -1(1)$$

$$-\alpha + \frac{\beta}{f} = 1(2)$$

$$\frac{\beta}{f} - \frac{\beta}{n} = 2(2) - (1)$$

$$\beta \left(\frac{1}{f} - \frac{1}{n}\right) = 2$$

$$\beta \left(\frac{n - f}{fn}\right)$$

$$\beta = \frac{-2nf}{f - n}$$

$$\alpha = \frac{\beta}{f} - 1 = -\frac{2n - (f - n)}{f - n} = \frac{f + n}{f - n}$$

3.3 Objekte drehen aka Blickwinkel ändern

3D-Brille

Abbildung 3.1: Streckenangaben sind beispielhaft

4 Qt Formen

Um den $\operatorname{GL_TRIANGLE_STRIP}$ abzuschließen wird der letzte Knoten (hier V_7) zweimal gesendet.

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(u, v) \to (x, y, z)$$

 $\begin{tabular}{l} \textbf{Vertex Buffer Objects} &\leftarrow {\tt Koordinatenzusatzinformationen} \\ \textbf{Index Buffer Objects} &\leftarrow {\tt Indices der Vertexe} \\ \end{tabular}$

$4\ Qt\ Formen$

4.1 OFF-Format

Index Face Set GL_ELEMENT_ARRAY_BUFFER

5 Beleuchtung

5.1 Ein einfaches Beleuchtungsmodel

Abbildung 5.1: Diffuse Reflexion

5.1.1 Lambertsches Gesetz

$$I_O = I_L \cdot \ell^T \cdot n$$
 $|n| = |\ell| = 1$

 ℓ zeigt zur Lichtquelle.

$$\cos(\varphi) = \frac{\ell^T \cdot n}{|n||\ell|} \left(= \frac{\langle \ell, n \rangle}{|n||\ell|} \right)$$

6 Einschübe

6.1 Berechnung des Normalenvektors für parametrisierte Flächen

$$(u,v) \to (x,y,z) = f$$

$$\frac{\partial f(u,v)}{\partial u} \times \frac{\partial f(u,v)}{\partial v} = n$$

Im Allgemeinen gilt $|n| \neq 1$

6.2 Tiefenbuffer

glEnable(GL_DEPTH_TEST) - Tiefentest aktivieren.

7 Beleuchtung (Fortsetzung)

7.1 Flatshading

Alle Knoten einer Fläche habe die gleiche Normale Normale ermitteln + normieren (u.U. Gewichten z.B. Fläche oder Winkel)

7 Beleuchtung (Fortsetzung)

Lambert

$$I_D = I_L \cdot \left(n^T \cdot \ell \right)$$

$$x'=M\cdot x$$

$$E=\{x|n^Tx=n_0\} \qquad M\in\mathbb{R}^{3\times 3}$$

$$\{Mx|n^Tx=n_0\}$$
 z.B. $M=R$
$$R^{-1}=R^T \qquad R: \text{ Rotation}$$

$$x' = \mathbb{R}x$$
$$n' = \mathbb{R}n$$

Behauptung

$$x' = Mx$$
 für Rotationen $(R^{-1})^T = \mathbb{R}$
$$n' = (M^{-1})^T n$$

Beweis

$$n'^T x' = ((M^{-1})^T n)^T M x = n^T M^{-1}^{T^T} \cdot M x = n^T M^{-1} M x$$

= $n^T x = n_0$

 $\mathbf{Qt} \quad \left(M^{-1}\right)^T. \ \mathbf{QMatrix4x4::normalMatrix}$

8 Einschub: virtual Trackball

Abbildung 8.1: Virtueller Trackball

$$a = \left(x_a, y_a, \sqrt{1 - x_a^2 - y_a^2}\right)$$
$$b = \left(x_b, y_b, \sqrt{1 - x_b^2 - y_b^2}\right)$$
$$r = a \times b \pm \text{normieren}$$

Bewege a nach b auf einem Großkreis Normale der Großkreisebene ist $\frac{a\times b}{|a\times b|}=r\hat{=}$ Rotationsachse

Winkel

$$\cos \sphericalangle(a,b) = \frac{a \cdot b}{|a \cdot b|}$$

8.1 Formel von Rodriques

Achse, Winkel
$$\rightarrow$$
 Rotations
matrix
$$(r,\varphi) \rightarrow R \qquad \qquad |r|=1$$

8 Einschub: virtual Trackball

zu c

$$\ell = \cos \alpha \cdot |p|$$

$$= \underbrace{\frac{r^T p}{|p|}|p|}_{=1}|p|$$

$$Rp = p' = c + \cos \varphi u + \sin \varphi v$$

$$= c + \cos \left(\frac{1}{0}\right) + \sin \varphi \left(\frac{0}{1}\right)$$

$$= c + \cos \varphi (p - c) + \sin \varphi (r \times (p - c))$$

$$= (1 - \cos \varphi)c + \cos \varphi p + \sin \varphi (r \times p) \qquad \text{da } r \times c = 0$$

$$= (1 - \cos \varphi) \left(rr^{t}\right) p + \cos \varphi p + \sin \varphi (r^{x}p) \qquad (AB)C = A(BC)$$

$$= (1 - \cos \varphi)rr^{T} + \cos \varphi I + \sin \varphi r^{x}$$

$$r^{T}r = \begin{pmatrix} r_{1}^{2} & r_{1}r_{2} & r_{1}r_{3} \\ r_{2}r_{1} & r_{2}^{2} & r_{2}r_{3} \\ r_{3}r_{1} & r_{3}r_{2} & r_{3}^{2} \end{pmatrix}$$

8.1.1 dyadisches Produkt

$$(rr^{T})^{T} = r^{T} r^{T} = rr^{T}$$
 \Rightarrow symmetrisch
$$r \times p = Ap$$

$$\begin{pmatrix} r_{1} \\ r_{2} \\ r_{3} \end{pmatrix} \times \begin{pmatrix} p_{1} \\ p_{2} \\ p_{3} \end{pmatrix} = \begin{pmatrix} r_{2}p_{3} - r_{3}p_{2} \\ r_{3}p_{1} - r_{1}p_{3} \\ r_{1}p_{2} - r_{2}p_{1} \end{pmatrix} = \begin{pmatrix} 0 & -r_{3} & r_{2} \\ r_{3} & 0 & -r_{1} \\ -r_{2} & r_{1} & 0 \end{pmatrix} \begin{pmatrix} p_{1} \\ p_{2} \\ p_{3} \end{pmatrix}$$

A = Axiator von r $r^x := A$

Qt

$$R - e^{\varphi r^x}$$

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot A^n$$

$$r^{x^T} = -r^x$$

$$\operatorname{sch}(A) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} A^{2n+1} \cdot (-1)^n$$

Alternative: Quaternionen

9 Beleuchtung (Fortsetzung)

9.1 Phong Lichtmodell

S = Shininess

$$I_S = I_L(\cos \alpha)^S = I_L(r^T v)^S, \quad I_D = I_L(n^T \ell)$$

9.1.1 Phong

$$I_{\text{Color}} = I_{\text{Ambient,Color}} + I_{\text{Diffuse,Color}} + I_{\text{Specular, Color}}$$

$$\text{Color} \in \{\text{Red, Green, Blue}\}$$

```
void main() {
vec3 normal = normalize(vNormal);
vec3 lightDir = normalize(lighPos - vPos);
vec3 reflectDie = reflect(lightDir, normal);
vec3 viewDir = normalize(-vPos);

float lambertian = max(dot(loghtDir, normal), 0.0.);
```

9 Beleuchtung (Fortsetzung)

```
float specular = 0.0;

if (lambertian > 0.0) {
    float specAngle = max(dot(reflectDir, viewDir), 0.0);
    specular = pow(specAngle, uShininess);
}

gl_FragColor = vec4(uAmbient + lambertian * uDiffuse + specular * uSpecular, 1.0);
}
```


Abbildung 9.1: Zu ignorierende Lichtquelle

10 Oberflächen

10.1 Texturen

$$(\varphi, \vartheta) \mapsto \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \vartheta \cdot \sin \varphi \\ \sin \vartheta \\ \cos \vartheta \cdot \cos \varphi \end{pmatrix}$$
$$0 \le \varphi \le 2\pi$$
$$-\frac{\pi}{2} \le \vartheta \le \frac{\pi}{2}$$

Abbildung 10.1: Field of view

perspective(fov, aspectratio, n, f);

10 Oberflächen

10.2 Cube-Mapping

11 Volume Rendering mit 3D-Texturen

11.1 DVT

11.1.1 Lambert-Beer-Gesetz

$$I^{\text{out}} = I^{\text{in}} \cdot e^{-\mu \cdot d}$$

Schwächungskoeffizienten

$$I_S = I_0 \cdot e^{\prod_{(i,j)\cap S \neq \emptyset} \sum_{\mu_{ij} \cdot d_{ij}} \mu_{ij} \cdot d_{ij}}$$

$$\ln \frac{I_0}{I_S} = \sum_{\prod_{(i,j)\cap S \neq \emptyset} \mu_{ij} \cdot d_{ij}} \mu_{ij} \cdot d_{ij}$$

$$I = D \cdot \mu$$

$$\prod_{\substack{(i,j) \in S \neq \emptyset \\ \mathbb{R}^{360.000.000 \times 128.000.000}} \cdot \mu_{ij} \cdot \mu_{ij}$$

Inverses Problem

Gegeben: Gemessene Intensitäten I_S für alle Strahlen, die die Bildebene treffen für hinreichend viele Aufnahmerichtungen.

11 Volume Rendering mit 3D-Texturen

Gesucht: Schwächungskoeffizienten für alle Voxel des zu rekonstruierenden Volumens.

$$c^{\text{out}} = c^{\text{in}} \cdot (1 - \alpha_i) + c_i \alpha_i$$

 $\alpha_i = \text{Deckkraft der Farbe } c_i$

 $1-lpha_i$ $\hat{}$ Transparenz

$$c^{\text{out}} = \sum_{i=1}^{n} c_i \alpha_i \prod_{j=i+1}^{n} (1 - \alpha_j)$$

11.2 Raycasting mittels front-to-back rendering

Auf der Sichtlinie werden in regelmäßigen Abständen im Körper Messpunkte gesetzt. Für jeden Messpunkt wird nun, wie vorher beschrieben, die Farbe und Leuchtkraft bestimmt. Anschließend werden diese zu einer Farbe für den entsprechenden Pixel auf dem Bildschirm zusammengefasst. Wir beginnen dabei mit dem entferntesten und enden mit dem Messpunkt am nähesten. Dadurch werden Voxel, welche hinter "soliden" Voxeln liegen in der Farbwahl nicht betrachtet.

12 Einschub: Algebraische Flächen

$$f(x,y,z) = 0$$
 z.B. $\{(x,y,z) | x^2 + y^2 + z^2 - 1 = 0 \}$

Abbildung 12.1: Finden von Nullstellen durch Suche nach Vorzeichenwechsel

Wie beim Raycasting wird der Bereich in Abschnitte unterteilt und diese einzeln untersucht, folgt auf ein + ein - (oder umgekehrt), liegt dazwischen eine Nullstelle.

$$p \ \nabla f(p) = n$$

13 Shadow-Mapping

- 1. Rendere die Szene aus der Sicht der Lichtquelle in eine Tiefenkarte (shadow map)
- 2. Rendere die Szene aus der Sicht der Kamera, wobei jedes Fragment F überprüft, ob sein Abstand zur Lichtquelle L größer ist als der Abstand des ersten Schnittpunktes des Strahles von L zu F mit der Szene. Diese Abstandsinformation findet sich in der Shadow map.

lookat(eye, center, up)

c

$$v = \frac{c - e}{|c - e|}, \quad r = \frac{v \times u}{|v \times u|}, \quad S = \frac{r \times v}{|r \times v|}$$

$$^{\mathrm{Welt}}x = ^{\mathrm{Welt}}M_{\mathrm{Cam}} \cdot ^{\mathrm{Cam}}$$

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} r \\ r \\ \hline 0 \end{bmatrix}, \begin{bmatrix} s \\ s \end{bmatrix}, \begin{bmatrix} v \\ v \end{bmatrix}, \begin{bmatrix} e \\ 1 \end{bmatrix} \end{pmatrix}$$

14 Szenegraph

Man kann sich einen Szenengraphen als Baum vorstellen (Es ist keiner, da er geschlossene Pfade beinhalten kann). Wir haben einen Wurzelknoten, welcher die Gesamtszene darstellt. Dieser hat Kindknoten, welche z.B. Teilszenen oder Gruppen darstellen. Diese können weitere Kindknoten haben, welche wiederum Teilszenen oder Eigenschaften beinhalten (im Beispiel mit Rechtecken dargestellt). Einzelne Szenen besitzen weiter auch eine Transformation (im Beispiel mit T bezeichnet).

Abbildung 14.1: Beispiel

$${}^{0}p = T_0 \cdot T_1 \cdot T_2 \cdot p$$