Exercícios - Algoritmos Aleatorizados

Prof. André Vignatti

Exercício 1. Jogamos uma moeda não viciada dez vezes. Encontre a probabilidade dos seguintes eventos:

- (a) O número de caras e o número de coroas serem iguais.
- (b) Há mais caras que coroas.
- (c) a *i*-ésima jogada e a (11-i)-ésima jogada são iguais, para $i=1,\ldots,5$.

Exercício 2. Dados números inteiros x, y, N denotamos por $x \equiv y \mod N$ o fato de N dividir x-y. Por exemplo, $253 \equiv 13 \mod 60$ pois 253-13 é múltiplo de 60. Com base nesta definição, o $Pequeno\ Teorema\ de\ Fermat\$ é enunciado como:

Teorema 1. Se N é um número primo, então para todo $1 \le a < N$,

$$a^{N-1} \equiv 1 \mod N$$

O Pequeno Teorema de Fermat pode ser usado diretamente para obter o seguinte algoritmo:

Algoritmo primo(N)

Escolha aleatoriamente um inteiro a < N se $a^{N-1} \mod N = 1$ então retorna SIM senão retorna NÃO

- (a) Reescreva o enunciado do Pequeno Teorema de Fermat usando a contrapositiva da implicação (dada uma implicação $a \Rightarrow b$, a contrapositiva é $\bar{b} \Rightarrow \bar{a}$. Ambas implicações são equivalentes do ponto de vista da lógica).
- (b) Qual o problema com a corretude do algoritmo acima? (Dica: releia com atenção o pequeno teorema de Fermat. Ler sua contrapositiva pode ajudar também)
- (c) Considere o seguinte teorema:

Teorema 2. ¹ Se N não é primo, então $a^{N-1} \equiv 1 \mod N$ para no máximo (N-1)/2 valores de a < N.

Qual a probabilidade do algoritmo acima retornar SIM quando N é primo? Qual a probabilidade do algoritmo acima retornar SIM quando N não é primo?

¹Esse teorema é verdadeiro para *quase* todos os números, com exceção dos *números de Carmichael*, que são números raros. Mais informações em CLRS, Cap. 31