Arquitectura de Sistemas e Computadores II 3ª Frequência e Exame

Departamento de Informática Universidade de Évora

11 de Janeiro de 2017

• ()s sím	bolc	s à	esquerda	a de	cada	pergunta	identificam	а	prova	ou	provas a	q	lue	ela	pertence:
-----	--------	------	-----	----------	------	------	----------	-------------	---	-------	----	----------	---	-----	-----	-----------

- assinala as perguntas do exame;
- \diamondsuit assinala as perguntas da $2^{\underline{a}}$ frequência.
- Indique todos os cálculos efectuados

Perguntas rápidas

- **1.** [0,5 valores] Sabendo que o CPI de um programa no processador X é inferior ao CPI do mesmo programa no processador Y, pode concluir que o desempenho de X é superior ao de Y?
- **2.** [0,5 valores] A execução *pipelined* é uma técnica que aumenta o *throughput* ou que diminui o tempo que uma instrução demora a executar?
- ♣ ♦ 3. [0,5 valores] Se uma cache *direct mapped* e uma cache *fully associative* tiverem a mesma capacidade, em qual é de esperar uma menor *miss rate* durante a execução do mesmo programa?
- ♣ ♦ 4. [0,5 valores] Na memória virtual, qual a estratégia usada para lidar com as operações de escrita, write-through ou write-back?
 - ♦ 5. [0,5 valores] Qual a excepção que ocorre quando é acedida uma página virtual que não se encontra em memória física?
 - ♦ **6.** [0,5 valores] A comunicação entre processos em sistemas de multiprocessamento de memória partilhada é explícita ou pode ser implícita?

Desempenho

7. Na execução do programa P no computador A, cujo relógio funciona a uma frequência de $2 \,\text{GHz}$, são executadas 10^9 instruções, com a seguinte distribuição:

Classe	Aritméticas	Acesso à memória	Saltos
%	40	40	20
CPI	1	4	2

- (a) [1,5 valores] Quanto tempo demora a execução de P em A?
- (b) [1,5 valores] A que frequência deverá o funcionar o relógio de um computador B, em que o CPI do programa é 20% superior, para que o programa execute em metade do tempo?

Implementação MIPS monociclo

8. [4 valores] Pretende-se que a implementação MIPS monociclo da Figura 1 suporte a execução da instrução nori (nor immediate), que é uma instrução tipo-I, com três argumentos:

Esta instrução calcula o OU-lógico negado (NOR) bit a bit entre o valor no registo rs e o valor immediate estendido com zeros, e guarda o resultado no registo rt.

- (a) Quais das unidades funcionais e dos multiplexers existentes serão usados na execução desta instrução?
- (b) Que unidades funcionais (incluindo multiplexers) e que sinais de controlo é necessário acrescentar?
- (c) Quais os valores que os vários sinais de controlo deverão ter durante a execução desta instrução?
 (Não precisa de indicar o valor de ALUOp, basta dizer qual será a operação executada pela ALU durante a execução desta instrução.)
- (d) Apresente na Figura 1 as alterações à implementação que considerar necessário fazer.

Pipeline MIPS de 5 andares

9. [2 valores] Simule a execução do código seguinte num processador com *forwarding*, com decisão dos saltos condicionais no andar ID, com previsão perfeita do resultado das instruções de salto condicional e sem *delay slots*, assumindo que o valor inicial no registo \$a0 é 1. Apresente a evolução do estado do *pipeline* durante a execução, indicando todos os atrasos introduzidos e todos os pontos onde foi necessário o *forwarding* de algum valor, identificando claramente entre que andares o *forwarding* foi feito.

1.		or	\$v0,	\$0, \$0
2.		beq	\$a1,	\$0, fim
3.	ciclo:	lw	\$t2,	0(\$a0)
4.		add	\$v0,	\$v0, \$t2
5.		addiu	\$a0,	\$a0, 4
6.		addi	\$a1,	\$a1, -1
7.		bne	\$a1,	\$0, ciclo
8.	fim:	jr	\$ra	

Quantos ciclos de relógio são necessários para executar o código nas condições acima? Quantos ciclos de relógio seriam necessários para executar o código se o ciclo (instruções 3 a 7) fosse executado 100 vezes?

Cache

Considere que uma palavra tem 32 bits e que os endereços seguintes são acedidos pela ordem indicada:

- ♣ ♦ 10. [3 valores] Simule o funcionamento de uma cache direct-mapped, com 8 palavras e blocos de 2 palavras, para a sequência de acessos indicada. Assuma que a cache inicialmente está vazia e, para cada acesso, indique a palavra acedida, o número do bloco a que pertence a palavra, o índice da posição da cache que irá ocupar, o tag, se há um hit ou um miss e, quando aplicável, o número do bloco que será substituído. Apresente o conteúdo final da cache, tão completo quanto possível, e calcule a miss rate verificada.
 - \diamond 11. [2 valores] No índice 5 de uma cache com 16 conjuntos e blocos com 4 palavras, encontra-se um bloco cujo tag tem o valor 20_{16} . Qual o número desse bloco e quais as palavras que pertencem ao bloco? (Dê a resposta na base que preferir.)

Memória virtual

♣ ♦ 12. Considere um sistema MIPS em que os endereços virtuais têm 42 bits, os endereços físicos têm 38 bits e a dimensão das páginas de memória é de 64KB. Num momento da execução de um programa, a sua tabela de páginas apresenta o conteúdo (parcialmente) mostrado:

Tabela de páginas

	Dirty	Pág. física
29	0	19
30	0	12
31	1	5
32	0	DISCO
33	0	23

- (a) [2 valores] Assumindo que as páginas virtuais foram acedidas pela ordem 29, 30, 31 e 33, apresente o conteúdo do TLB do sistema (*direct-mapped*, com 4 blocos de uma tradução).
- (b) [2 valores] Descreva, tão detalhadamente quanto conseguir, o que acontece no sistema quando é feito um acesso ao endereço virtual $20\,33\,F0_{16}$, $at\acute{e}$ ao momento em que é identificada a página física que irá ser usada.

Multiprocessamento

- ♦ 13. [2 valores] Qual deverá ser a duração da parte sequencial de um programa para permitir obter um speedup de 50 quando o programa é executado em paralelo em 99 processadores?
- ♣ ♦ 14. [2 valores] Num multiprocessador de memória partilhada é executado um programa paralelo, sendo as instruções seguintes executadas no processador indicado:

Processador 1	Processador 2	Processador 3
x = x * 5;	x = x + 4;	x = 17

Liste as possíveis sequências de valores que a variável ${\tt x}$ poderá assumir durante a execução deste código se, inicialmente, o valor de ${\tt x}$ for 2.

Nome: _______ Número: ______

Figura 1: Diagrama de blocos da implementação MIPS monociclo

Figura 2: Diagrama de blocos do $\it pipeline$ MIPS