

CHEMISTRY

S-BLOCK (s-વિભાગના તત્વો)

11.0 પ્રસ્તાવના

ક-વિભાગના તત્વો એ છે જેનો છેલ્લો ઇલેક્ટ્રોન ક કક્ષકમાં દાખલ થાય છે. ક કક્ષક માત્ર બે ઇલેક્ટ્રોન ધરાવે છે માટે ક વિભાગમાં માત્ર (1 & 2) સમૂહનો સમાવેશ થાય છે. પ્રથમ સમુહના તત્વો : લિથિયમ, સોડિયમ, પોટેશિયમ, રૂબિડિયમ, સીઝીયમ અને ફ્રાન્સીયમ. આ તત્વોને સામૂહિક રીતે **આલ્કલી તત્વો** કહે છે. કારણ કે આ તત્વો પાણી સાથેની પ્રક્રિયાથી હાઇડ્રોક્સાઇડ બનાવે છે, જે સ્વભાવમાં પ્રબળ બેઇઝ છે. બીજા સમૂહના તત્ત્વો : બેરિલયમ, મેગ્નેશિયમ, કેલ્શિયમ, સ્ટ્રોન્શિયમ, બેરિયમ અને રેડિયમ છે. આ તત્વોમાં બેરિલિયમ સિવાયના તત્વો **આલ્કલાઇન** અર્થ ધાતુ તરીકે ઓળખાય છે. તેનું કારણ તેમના ઑક્સાઇડ અને હાઇડ્રોક્સાઇડનો બેઝીક સ્વભાવ છે. અને તે ધાતુ ઓકસાઈડ સ્વરૂપે પૃથ્વીની પોપડામાંથી મળે છે.

11.1 S-વિભાગના તત્વોના ભૌતિક ગુણધર્મો

s-વિભાગના ભૌતિક, રાસાયશિક અને પરમાણ્વિય ગુણધર્મો નીચે મુજબ છે.

આલ્કલી અને આલ્કલાઈમ તત્વોના ભૌતિક ગુણધર્મો :

s-વિભાગના તત્ત્વોના ભૌતિક ગુણધર્મો

આલ્કલી ધાતુ આલ્કલાઇન અર્થ ધાતુ ભૌતિક ગુણધર્મો

- ●સૌથી બહારની કક્ષામાં એક ઇલેકટ્રોન અને સામાન્ય બંધારણ ns¹
- ●ફ્રાન્સીયમ એ રેડિયો એક્ટિવ તત્ત્વ છે.
- ●બધા જ ચાંદી જેવા સફેદ છે.
- ●હલકી, નરમ, ટીપા ઉપશુ, અને તે વણાવપશુ ધરાવતી ધાતુ, ધાત્વીય ચળકાટ ધરાવતી.
- સૌથી બહારની કક્ષામાં બે ઇલેકટ્રોન અને સામાન્ય બંધારણ ns²
- રેડિયમ રેડિયો એક્ટિવ તત્ત્વ છે.
- બધા જ ચાંદી જેવા સફેદ છે.
- આ ધાતુઓ આલ્કલી ધાતુઓ કરતા સખત હોય છે.

પરમાશુનું કદ

- તેમના આવર્તમાં સૌથી મોટા છે. (નિષ્ક્રિય વાયુ સિવાય)
- Li થી Cs તરફ જતા વધારાની કક્ષા ઉમેરવાથી કદમાં વધારો થાય છે.

$$Li \ < \ Na \ < \ K \ < \ Rb \ < \ Cs$$

ΙA

- IA ના સમુહના તત્ત્વો કરતા નાના હોય છે. ન્યુક્લિયસ પરનો વધારાનો ભાર ઇલેક્ટ્રોન વાદળને આકર્ષે છે.
- Be થી Ba તરફ કદમાં વધારો થાય છે.

s-વિભાગના તત્ત્વો

Be એ સૌથી નાનો છે, Cs એ સૌથી મોટો છે.

Softness

- ●આલ્કલી ધાતુ મૃદુ છે કારણ કે
 - (a) વધુ પરમાણ્વિય કદ
 - (b) નિર્બળ ધાત્વિક બંધ
- s-વિભાગમાં Cs સૌથી મૃદ્ધ ધાતુ છે.

- આ ધાતુઓ IA સમુહ કરતાં થોડી સખત છે કારણ કે
 - (a) નાનું પરમાણ્વિય કદ
 - (b) બાહ્ય કક્ષામાં રહેલા બે ઇલેક્ટ્રોનને કારણે પ્રબળ ધાત્વિક બંધ
- s-વિભાગમાં Be સૌથી સખત તત્વ છે.

ધાત્વિક બંધની પ્રબળતા lpha

ΠA

 $rac{1}{\sqrt{1+|\alpha|}}$ lpha સંયોજકતા કક્ષાના ${
m e}^{-1}$

Ionisation energy (I.E.)

- પ્રથમ આયનીકરણ પોટેન્શિયલ (I.P.) ઘણો ઓછો છે કારણ કે મોટું પરમાણુ કદ અને સૌથી બહારની કક્ષામાં માત્ર એક ઇલેક્ટ્રોન હાજર છે.
- આયનીકરણ પોટેન્શિયલનો ઘટતો ક્રમ -

Li > Na > K > Rb > Cs

 દ્વિતીય આયનીકરણ પોટેન્શિયલ એ ઘણો ઊંચો હોય છે કારણ કે એક ઈલેકટ્રોનને દુર કરતાં નિષ્ક્રીય વાયુ જેવો ઈલેકટ્રોન વિન્યાસ ધરાવે છે.

- પ્રથમ આયનીકરણ પોટેન્શિયલ IA સમુહ કરતા વધુ હોય છે.
 કારણ કે નાનુ પરમાણુ કદ અને સંપૂર્ણ ભરાયેલી s-કક્ષક (સ્થાયી ઈલેકટ્રોન રચના)
- આયનીકરણ પોટેન્શિયલનો ઘટતો ક્રમ -

Be > Mg > Ca > Sr > Ba

 દ્વિતીય આયનીકરણ પોટેન્શિયલ એ IA સમુહના દ્વિતીય આયનીકરણ પોટેન્શિયલ કરતા ઓછો હોય છે.

ઓક્સિડેશન અવસ્થા

ullet આલ્કલી ધાતુઓ $+\ 1$ ઓક્સિડેશન અવસ્થા ધરાવે છે. $(I^{
m st}$ અને $2^{
m nd}$ આયનીકરણ પોટેન્શિયલ તફાવત $> 16 {
m eV})$

ullet આલ્કલાઇન અર્થ ધાતુ +2 ઓક્સિડેશન અવસ્થા દર્શાવે છે. $(\mathrm{I^{st}}\ \mathrm{wh}\ 2^{\mathrm{nd}}\ \mathrm{wuthless}\ \mathrm{vulleff})$

વિદ્યુત ધન ગુણધર્મ અથવા ધાત્વીય ગુણધર્મ

 • વિદ્યુત ધનમયતા ∞ આયનીકરણ પોટેન્શિયલ તેઓની મોટા કદના કારણે ઇલેક્ટ્રોન સરળતાથી દૂર થઈ M⁺ આયન આપે છે. Li થી Cs વિદ્યુત ધન ગુણધર્મો વધે છે.

તેઓનું પરમાશુ કદ IA સમુહ કરતાં નાનુ હોય છે. આથી તેઓ
 IA સમુહ કરતા ઓછા વિદ્યુત ધન હોય છે. Be થી Ba તરફ
 વિદ્યુત ઘનમયતામાં વધારો.

વાહકતા

● ધાતુ સ્ફ્ટીકમાં મુક્ત રીતે ચલિત થતાં સંયોજકતા ઇલેક્ટ્રોન નિર્બળ રીતે જકડાયેલ હોવાથી આ તત્ત્વો ઉષ્મા અને વિદ્યુતના સારા સુવાહક છે. બે મુક્ત ઈલેક્ટ્રોનની હાજરીના કારણે ઉખ્મા અને વિદ્યુતના સુવાહકો છે.

વાહકતા IA < IIA

જયોત કસોટી

 આલ્કલી ધાતુઓ અને તેમના ક્ષારો બર્ન્સન જયોતમાં લાક્ષણિક રંગ ધરાવતી જયોત આપે છે. આ જયોતનું કારણ સૌથી બહારના ઇલેક્ટ્રોનનું ઉત્તેજિત થઇને પાછા ભૂમિ અવસ્થામાં આવતા શોષાયેલી ઉર્જાનું ઉત્સર્જન કરીને દેશ્ય પ્રકાશ આપે છે.

Li-કીરમજી લાલ Na-સોનેરી પીળો K-જાંબલી

Rb-લાલજાંબલી Cs-વાદળી

- Be અને Mg પરમાશુઓમાં નાના કદના કારણે તેઓનાં ઈલેક્ટ્રોન વધુ પ્રબળતાથી જોડાયેલ હોય છે. આથી તેઓ ઉચ્ચ સ્તરે ઉત્તેજીત થતા નથી, આથી જયોત કસોટી આપતા નથી.
- અન્ય તત્વો Ca-ઈટ જેવા લાલ Sr-િકરમજી લાલ Ba- લીલા સફરજન જેવા રંગની જયોત આપે છે.

ફોટો ઇલેકટ્રીક અસર

- K, Rb અને Cs ના પરમાણુઓનું કદ થોડું મોટું હોવાથી તેમનો આયનીકરણ પોટેન્શિયલ ઘણો ઓછો હોય છે.
- ઘણા નીચા આયનીકરણ પોટેન્શિયલના કારણે સંયોજકતા કક્ષાના ઇલેક્ટ્રોનો દશ્ય પ્રકાશના શોષણથી ઉત્તેજિત થઈ જાય છે. આથી ફોટો ઈલેક્ટ્રીક કોષમાં Cs વપરાય છે.
- આ તત્ત્વો તેમના નાના પરમાશુ કદના કારણે આ ગુશધર્મો દર્શાવતા નથી. ઉપરાંત સમુહ IA કરતા આયનીકરણ પોટેન્શિયલ વધુ હોય છે.

ઉદાહરણ

Illustration 1. s-વિભાગના તત્વો એ તત્વો છે જેમાં છેલ્લો ઈલેક્ટ્રોન કક્ષાની s-કક્ષકમાં દાખલ થાય છે.

(1) છેલ્લેથી બીજી

(2) છેલ્લેથી ત્રીજી

(3) બાહ્ય

(4) એકપણ નહિ

Solution

Ans. (3)

છેલ્લો ઈલેક્ટ્રોન બાહ્ય કક્ષાની s-કક્ષકમાં દાખલ થાય છે. તેથી તેમની બાહ્ય કક્ષાનો સામાન્ય ઇલેક્ટ્રોન રચના ns¹⁻² છે.

Illustration 2. s-વિભાગમાં તત્વોમાં રેડિયો સક્રિય છે.

(1) Ra અને Ba

(2) Ra અને Fr

(3) Fr અને Cs

(4) Rb અને Sr

Solution.

Ans. (2)

Illustration 3. આલ્કલી ધાતુની દ્વિતિય આયનીકરણ એન્થાલ્પી (IE₂)

(1) ખુબ જ ઓછી

(2) ઓછી

(3) વધારે

(4) ખૂબ જ વધારે

Solution.

Ans. (4)

કારણ કે ઇલેક્ટ્રોનને એક સંયોજક ઉમદાવાયુ જેવી ઈલેક્ટ્રોન રચના વાળા ધન આયન માંથી દુર કરવો પડે છે.

Illustration 4. બધી જ આલ્કલી ધાતુ અને તેમના ક્ષાર (ખાસ કરીને ક્લોરાઈડ કારણ કે તે વધુ બાષ્પશીલ છે.) બન્સન બર્નરજયોતમાં

લાક્ષણિક રંગ આપે છે. નીચેના પૈકી કોણ સોનેરી પીળો કલર આપે છે ?

(1) Li

(2) K

(3) Na

(4) Cs

Solution.

Ans. (3)

Illustration 5. આવર્ત કોષ્ટકના બીજા સમુહમાં છ-તત્વો છે. સિવાય તેઓ સામાન્ય રીતે આલ્કલાઈન અર્થ ધાતુ તરીકે

ઓળખાય છે.

(1) Be

(2) Mg

(3) Ca

(4) Sr

Solution.

Ans. (1)

Mg, Ca, Ba, અને Sr ને આલ્કલાઈન અર્થ ધાતુ કે છે કારણ કે તેમના ઑક્સાઈડ બેઝિક છે તથા ઉષ્માકે આગની કોઈ

અસર થતી નથી અને પૃથ્વીના પોપોડમાં મળે છે.

Illustration 6. નીચેના પૈકી કયું વિધાન સાચું છે?

(1) બીજા સમુહના તત્વોની પ્રથમ અને દ્વિતિય આયનીકરણ એન્થાલ્પી પ્રથમ સમુહના તત્વો કરતા વધારે છે.

(2) બીજા સમુહના તત્વોની પ્રથમ અને દ્વિતિય આયનીકરણ એન્થાલ્પી પ્રથમ સમૂહ કરતાં ઓછી છે.

(3) બીજા સમુહના તત્વોની પ્રથમ આયનીકરણ એન્થાલ્પી વધુ છે જયારે દ્વિતિય આયનીકરણ એન્થાલ્પી સમુહ એક કરતાં

આોછી છે.

(4) બીજા સમુહના તત્વોની પ્રથમ આયનીકરણ એન્થાલ્પી ઓછી છે જયારે દ્વિતિય આયનીકરણ એન્થાલ્પી સમૂહ એક

કરતાં વધારે છે.

Solution. Ans. (3)

Illustration 7. નીચેના પૈકી કયું વિધાન ખોટું છે ?

(1) આલ્કલી ધાતુની જેમ આલ્કલાઈન અર્થ ધાતુ ઊંચી વિદ્યુતીય અને ઉખ્મીય વાહકતા ધરાવે છે.

(2) આલ્કલાઈન અર્થ ધાતુ આલ્કલી ધાતુ કરતા વધારે વિદ્યુતધન (ધાતુ ગુણ ધરાવે) છે.

(3) સમુહમાં નીચે જતા આલ્કલાઈન અર્થ ધાતુની વિદ્યુતધનમયતા (ધાતુ ગુણ) વધે છે.

(4) એક પણ નહી

Solution.

Ans. (2)

BEGINNER'S BOX-1

- 1. પોટેશિયમની સાપેક્ષમાં સોડિયમ
 - (1) ઓછું વિદ્યુતઋણ
 - (3) વધુ પરમાણ્વિય ત્રિજયા
- 2. આલ્કલી ધાતુ માટે નીચેના પૈકી કયુ વિધાન સાચું છે ?
 - (1) ધનાયન એ હેલોજન જેવી ઈલેક્ટ્રોન રચના ધરાવે છે.
 - (3) મૂળ તત્વ અને ધનાયનનું કદ સમાન હોય છે.
- **3.** આલ્કલી ધાતુમાં સંયોજકતા ઈલેક્ટ્રોનની સંખ્યા છે.
 - $(1)\ 1$

(2)7

(3)4

(2) વધુ આયનીકરણ એન્થાલ્પી

(2) મૂળ તત્વ કરતાં ધનાયન કદમાં નાનું હોય છે.

(4) મૂળ તત્વ કરતાં ધનાયનનું કદ વધારે હોય છે.

(4) ઓછું ગલનબિંદ્

(4) 2

- 4. નીચેના પૈકી કઈ આલ્કલી ધાતુનું કદ સૌથી ઓછું છે ?
 - (1) Rb

(2) K

(3) Na

(4) Li

- 5. નીચેના પૈકી કયો ધનાયન સૌથી નાનો છે?
 - (1) Na+

(2) Mg⁺²

(3) Ca⁺²

(4) Al+3

- 6. કઈ આલ્કલી ધાતુ સૌથી વધુ ધાત્વીક ગુણ ધરાવે છે ?
 - (1) K

(2) *Cs*

(3) Na

(4) *Li*

S-વિભાગના તત્વોના રાસાયણિક ગુણધર્મો

ક્રિયાશીલતા

 આ તત્ત્વો ખૂબ જ ક્રિયાશીલ છે. આથી કુદરતમાં મુક્ત અવસ્થામાં જોવા મળતા નથી.

ક્રિયાશીલતા ∞ 1/આયનીકરણ પોટેન્શિયલ

ક્રિયાશીલતાનો ક્રમ – Li $\,<$ Na $\,<\,$ K $\,<\,$ Rb $\,<\,$ Cs

• આલ્કલી ધાતુઓ કરતા ઓછા સક્રીય

ક્રિયાશીલતાનો ક્રમ :-

Be < Mg < Ca < Sr < Ba

હવા સાથે પ્રક્રિયા

- આલ્કલી ધાતુઓ હવામાં ખૂલ્લી રાખતા હવામાના ઓક્સિજન સાથે પ્રક્રિયા કરી તેની સપાટી પર ઓકસાઇડનું પડ બને છે. જેથી સપાટી ઝાંખી પડે છે. તેથી તેને કેરોસીન અથવા પેરાફીનમાં રાખવામાં આવે છે.
- આ તત્ત્વો ભેજવાળી હવા સાથે પ્રક્રિયા કરતા કાર્બોનેટ બનાવે છે.

$$4Na + O_2 \rightarrow 2Na_2O$$

 $Na_2O + H_2O \rightarrow 2NaOH$

(moist)

 $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$ (in air)

શુષ્ક હવામાં માત્ર Li તત્વ નાઇટ્રાઈડ અને ઓકસાઇડ બંને આપે છે. જયારે અન્ય તત્ત્વો માત્ર ઓકસાઇડ આપે છે.

- Be, સિવાય, આ ધાતુઓ હવામાં ખૂલ્લી રાખતા સપાટી પર ઓકસાઇડનું સ્તર બનાવે છે. જેથી સરળતાથી ઝાંખી પડે છે.
- બેરેલિયમ એ પાઉડર સ્વરૂપે હોય તો હવામાં સળગાવતા તે એકાએક તેજસ્વીજયોતની સળંગ છે.
- ભેજવાળી હવામાં, Be સિવાયના બધા તત્ત્વો કાર્બોનેટમાં રૂપાંતર પામે છે.
- શુષ્ક હવામાં આ સમુહના બધા જ તત્વો નાઇટ્રાઈડ અને ઓકસાઇડ બંને આપે છે.

ઓક્સિજન સાથે પ્રક્રિયા

ઓકસાઇડ આયન [O²-] :

● Li એ માત્ર Li₂O બનાવે છે. (લીથીયમ ઓકસાઇડ)

પેરોક્સાઈડ $[{\bf O_2}^{-2}]$:

- Na એ O_2 સાથે પ્રક્રિયા કરીને મુખ્યત્વે પેરોકસાઇડ બનાવે છે (Na $_2O_2$). સુપર ઓકસાઇડ [O_2 -] :
- મોટું કદ ધરાવતી આલ્કલી ધાતુઓ જેવી કે K, Rb અને Cs એ વધુ માત્રામાં O₂ સાથે પ્રક્રિયા કરી MO₂ પ્રકારના ઓકસાઇડ (સુપર ઓકસાઇડ) બનાવે છે. સુપર ઓકસાઇડ એ અનુચુંબકીય અને રંગીન હોય છે.

(Li₂O) (Na₂O₂) (KO₂, RbO₂, CsO₂)

ધાતુના અલગ અલગ ઓક્સાઈડના સ્થાયિત્વનો ક્રમ આ પ્રમાણે
 છે

સામાન્ય ઓક્સાઈડ > પેરોક્સાઈડ > સુપરઓક્સાઈડ

• આલ્કલાઇન અર્થ ધાતુઓ O_2 સાથે પ્રક્રિયા કરીને 'MO' પ્રકારના ઓકસાઇડ બનાવે છે.

(M = Be, Mg, Ca, Sr, Ba)

 પરંતુ Ca, Sr અને Ba નીચા આયનીય પૉટેન્શીયલના લીધે
 વધુ સક્રિય છે અંતે નીચા તાપમાને MO₂ (પેરોકસાઈડ) પ્રકારના સંયોજનો બનાવે છે.

(Ex. CaO₂, SrO₂, BaO₂)

• BeO એ ઉભય ગુણધર્મી છે.

MgO → નિર્બળ બેઝીક

CaO, SrO & BaO → પ્રબળ બેઝીક

• BeO થી BaO તરફ જતા બેઝીક ગુણધર્મોમાં વધારો થાય છે.

હાઇડ્રોજન સાથે પ્રક્રિયા

• આલ્કલી ધાતુઓ H_2 સાથેની પ્રક્રિયાથી આયોનિક હાઇડ્રાઇડ બનાવે છે.

$$2M + H_2 \rightarrow 2MH$$

 જયારે અન્ય આયોનિક છે. આલ્કલી ધાતુઓના હાઇડ્રાઇડ પાણી સાથે પ્રક્રિયા કરીને પાછો હાઈડ્રોજન આપે છે.

$${
m MH} \ + \ {
m H_2O}
ightarrow {
m MOH} \ + \ {
m H_2}$$

 ${
m LiH}, \ {
m NaH}, \ {
m KH}, \ {
m RbH}, \ {
m CsH}$
 ઉપ્મીય સ્થાયીતા ઘટશે , બેઝીક ગુણધર્મ વધશે

- Be સિવાયની બધી જ આલ્કલાઈન ધાતુઓ સીધા જ H_2 સાથે પ્રક્રિયા કરીને MH_2 પ્રકારના હાઇડ્રાઇડ બનાવે છે. $(MgH_2, CaH_2, SrH_2, BaH_2)$
- BeCl $_2$ ની LiAlH $_4$ સાથે પ્રક્રિયા દ્વારા BeH $_2$ બનાવી શકાય છે. $2\text{BeCl}_2 + \text{LiAlH}_4 \rightarrow 2\text{BeH}_2 + \text{LiCl} + \text{AlCl}_3$ (રિડકશન કર્તા)
- BeH₂ અને MgH₂ એ સહસંયોજક છે. અન્ય હાઈડ્રાઈડ આયોનિક છે.

પાણી સાથે પ્રક્રિયા

 આલ્કલી ધાતુઓ પાણી સાથે ઝડપથી પ્રક્રિયા કરીને હાઇડ્રોકસાઇડ બનાવે છે અને H₂ છુટો પડે છે.

$$2M + 2H_2O \rightarrow 2MOH + H_2$$

• Li થી Cs તરફ જતાં પાણી સાથે ક્રિયાશીલતા વધે છે.

 $Li \rightarrow$ પાણી સાથે ઓછા સક્રિય

Na → ઝડપથી પ્રક્રિયા કરે

 $K \rightarrow \lambda$ પ્રક્રિયાથી જયોત બનાવે છે.

Rb, Cs → વિસ્ફોટક પ્રક્રિયા કરે છે.

• મોનોકસાઇડ એ પાણી સાથે પ્રબળ આલ્કલાઇન દ્રાવણ આપે છે . ${\rm M_2O} + {\rm H_2O} \rightarrow {\rm 2MOH}$

 આ ધાતુઓ પાણી સાથે ધીમેથી પ્રક્રિયા કરીને H₂ અને ધાતુ હાઇડ્રોકસાઇડ બનાવે છે.

$$M + 2H_2O \rightarrow M(OH)_2 + H_2$$

- Be એ પાણી સાથે પ્રક્રિયા કરતો નથી.
- Mg એ માત્ર ગરમ પાણી સાથે પ્રક્રિયા કરે છે.
- Ca, Sr, Ba એ ઠંડા પાણી સાથે પ્રક્રિયા કરે પરંતુ આલ્કલી ધાતુઓ જેટલી તીવ્રતાથી નહીં.
- Be(OH)₂ થી Ba(OH)₂ તરફ જતા બેઝીક ગુણધર્મમાં વધારો થાય છે.

હેલાઇડ

બનાવે છે.

• આયોનિક સ્વભાવનો ક્રમ

• BeCl, અને MgCl, સ્વભાવે સહસંયોજક છે.

- આલ્કલી ધાતુઓ સીધા જ હેલોજન સાથે પ્રક્રિયા કરીને MX બનાવે છે.
 (M આલ્કલી ધાતુ, X હેલાઇડ આયન)
- MX ના આયોનિક ગુણધર્મો LiCl થી C₅Cl તરફ જતા વધે છે.
- K, Rb અને Cs ના હેલાઇડ વધુ હેલોજન સાથે પ્રક્રિયા કરીને પોલીહેલાઇડ બનાવે છે.

$$\text{KI + I}_2 \, \rightarrow \, \text{KI}_3$$

 $CsBr + Br_2 \rightarrow CsBr_3$

કાર્બો નેટ

- બધી જ આલ્કલી ધાતુ M₂CO₃ પ્રકારના કાર્બોનેટ આપે છે.
- Li₂CO₃, સિવાય બધા જ કાર્બોનેટ ઉખ્મીય રીતે સ્થાયી છે.
 Li₂CO₃ → Li₂O + CO₂
- કાર્બોનેટની ઉષ્મીય સ્થીરતા ∞ 1/ધ્રુવીભવન
 ઉષ્મીય સ્થિરતાનો ઘટતો ક્રમ
 Cs₂CO₃ > Rb₂CO₃ > K₂CO₃ > Na₂CO₃ > Li₂CO₃
- બધી જ આલ્કલાઈન અર્થ ધાતુ MCO₃ પ્રકારના કાર્બોનેટ આપે છે.

આલ્કલાઇન ધાતુઓ X (હેલોજન) સાથે પ્રક્રિયા કરતા MX,

 $BeCl_{2} < MgCl_{2} < CaCl_{2} < SrCl_{2} < BaCl_{2}$

 આલ્કલાઈન અર્થ ધાતુના બધા જ કાર્બોનેટને ગરમ કરતાં ઉષ્મીય વિઘટન થાય છે.

$$BeCO_3 \xrightarrow{\Delta} BeO + CO_2$$

• ઉષ્મીય સ્થિરતાનો ઘટતો ક્રમ ${\rm BaCO_3} > {\rm SrCO_3} > {\rm CaCO_3} > {\rm MgCO_3} > {\rm BeCO_3}$

નાઈટ્રેટ

- આલ્કલી ધાતુ MNO₃ પ્રકારના નાઈટ્રેટ આપે છે. (M આલ્કલી ધાતુ)
- LiNO $_3$ થી CsNO $_3$. તરફ જતાં ઉષ્મીય સ્થિરતા વધે છે. LiNO $_3$ ને ગરમ કરતાં વિઘટન થઈ લિથીયમ ઑક્સાઇડ, NO $_2$ અને O $_2$ આપે છે. (કારણ કે Li ની ϕ વધુ છે.)

$$4 \text{LiNO}_{3} \stackrel{\vartriangle}{\longrightarrow} 2 \text{Li}_{2} \text{O} + 4 \text{NO}_{2} + \text{O}_{2}$$

 બીજા તત્વોના નાઈટ્રેટને ગરમ કરતાં નાઈટ્રાઈટ અને ઑક્સિજન આપે છે.

$${\rm MNO_3} \xrightarrow{\Delta \atop {\rm flig aluqua}} {\rm 2MNO_2} + {\rm O_2}$$

જયાં $M \rightarrow Na, K, Rb, Cs$

- આલ્કલાઈન અર્થ ધાતુ M(NO₃)₂ પ્રકારના નાઇટ્રેટ આપે છે.
 (M –આલ્કલાઈન અર્થ ધાતુ).
- Be(NO₃)₂ થી Ba(NO₃)₂ તરફ જતા ઉખ્મીય સ્થિરતા વધે છે.
 પણ IA સમુહ કરતાં ઓછા સ્થાયી છે કારણ કે તે કદમાં નાના છે.
- બધા જ આલ્કલાઈન અર્થધાતુના નાઈટ્રેટને ગરમ કરતાં ધાતુ ઑક્સાઈડ, NO_2 અને O_2 આપે છે.

$$M(NO_3)_2 \xrightarrow{\Delta} MO + NO_2 + O_2$$

• Be(NO $_3$) $_2$ ની સપાટી પર BeO સ્તર બનતા પ્રક્રિયા અટકી જાય છે.

નાઈટ્રાઈડ્સ

• માત્ર Li એ N_2 સાથે સીધા જ પ્રક્રિયા કરતા નાઈટ્રાઈડ બનાવે છે જે પાણી સાથે પ્રક્રિયાથી $\mathrm{NH_3}$ આપે છે.

6Li +
$$N_2 \rightarrow 2Li_3N$$

 $\text{Li}_{3}\text{N} + 3\text{H}_{2}\text{O} \rightarrow 3\text{LiOH} + \text{NH}_{3}^{\uparrow}$

• બધા જ II-A તત્વો N_2 સાથે સળગીને M_3N_2 (nitrides) બનાવે છે . (Be_3N_2,Mg_3N_2)

$$Be_3N_2 + 6H_2O \rightarrow 3Be(OH)_2 + 2NH_3\uparrow$$

 $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3\uparrow$

એમાલ્ગમની બનાવટ

- આલ્કલી ધાતુઓ Hg સાથે એમાલ્ગમ બનાવે છે
- આ ધાતુઓ અન્ય ધાતુઓ સાથે મિશ્ર થઈને મિશ્ર ધાતુ (એલોય)
 આપે છે.

• સમાન ગુણધર્મા દર્શાવે છે.

સલ્ફેટસ્

- આલ્કલી ધાતુ M₂SO₄ પ્રકારના સલ્ફ્રેટ આપે છે.
- બધા જ આલ્કલી ધાતુના સલ્ફેટ્સ આયનિક છે. તેમના આયોનિક ગુણનો ક્રમ.

$$\text{Li}_2 \text{SO}_4 < \text{Na}_2 \text{SO}_4 < \text{K}_2 \text{SO}_4 < \text{Rb}_2 \text{SO}_4 < \text{Cs}_2 \text{SO}_4$$

લિથિયમ સિવાય IA સમુહના તત્વોના સલ્ફેટ ત્રિસંયોજકધાતુ જેવી
 કે Fe⁺³, Cr⁺³, Al⁺³ ના સલ્ફેટ સાથે દિક્ષાર આપે છે.

એલમનું સામાન્ય સૂત્ર

 $M_2SO_4.M'_2(SO_4)_3.24H_2O$

જ્યાં M - એક સંયોજક ધનાયન

M' - ત્રિસંયોજક ધનાયન

આલ્કલાઈન અર્થધાતુઓ MSO₄ પ્રકારના સલ્ફેટ આપે છે.

આયોનિક સ્વભાવનો ક્રમ

 $BeSO_4 < MgSO_4 < CaSO_4 < SrSO_4 < BaSO_4$

ઍસિડ સાથે પ્રતિક્રિયાત્મકતા

એસિડ સાથે ઝડપી પ્રક્રિયા આપે છે.
 2M + H₂SO₄ → M₂SO₄ + H₂↑

ઍસિડ સાથે સરળતાથી પ્રક્રિયા કરી હાઈડ્રોજન મુક્ત કરે.
 M + 2HCl → MCl₂ + H₂↑

પ્રવાહી એમોનિયામાં દ્રાવ્યતા

- બધા જ આલ્કલી તત્વો એમોનિયામાં દ્રાવ્ય થાય છે, અને વાદળી રંગનું દ્રાવણ આપે છે.
- દ્રાવણના વાદળી રંગનું કારણ વિદ્યુતીય વાહકતા રિડક્શન પામવાની ક્ષમતા અને એમોનિયેટેડ ઇલેક્ટ્રોનના કારણે છે.

$$Na_{(s)} + (x + y)NH_3 \rightarrow \left[Na(NH_3)_x\right]^+ + \left[e(NH_3)_y\right]^-$$
 અમોભિયેટડ અથવન

આનું મંદ દ્રાવણ અનુચંબકીય છે.

- માત્ર Ca, Sr અને Ba એમોનિયેટેડ ઇલેક્ટ્રોનનું વાદળી દ્રાવણ આપે છે.
- Be અને Mg નું કદ નાનું છે. અને ઊંચી આયનીકરણ એન્થાલ્પી હોવાથી પ્રવાહી એમોનિયામાં અદ્રાવ્ય છે.
- દ્રાવશનો ઘેરો વાદળી કલર લાંબા સમય પછી આછો બને છે.
 કારણ કે ધાતુ એમાઇડની રચના થાય છે.

 દ્રાવણમાં સાંદ્રતામાં વધારો કરવા તે બ્રોન્ઝ રંગમાં રૂપાંતર પામે છે કારણ કે ધાતુ આયનનું જૂથમાં નિર્માણ થાય છે.

ઉદાહરણ

Illustration 1. નીચેના પૈકી કયું તત્વ વાયું અવસ્થામાં સૌથી પ્રબળ રિડક્શન કર્તા છે.

(1) Cs

(2) Li

(3) K

(4) Na

Solution. Ans. (1)

આયનીકરણ પ્રક્રિયામાં વાયુ અવસ્થામાંથી ઈલેક્ટ્રોન દુર કરવામાં આવે છે. આયની કરણ એન્થાલ્પી ઓછી તો ઈલેક્ટ્રોન મુક્ત કરવાની વૃત્તિ વધુ તે વધુ પ્રબળ રિડક્શન કર્તા હોય. તથા વધુ સિક્રયતા ધરાવે સમુહમાં નીચે જતા IE ઘટે છે તેથી રિડક્શન કર્તા તરીકેનો ગુણધર્મ (વાયુ અવસ્થામાં ક્રિયાશીલતા) Li થી Cs તરફ જતા વધે છે.

Illustration 2. સમુહ IA ના તત્વો રાસાયશિક રીતે ખૂબ જ સક્રિય છે. તેઓ બનવાને લીધે ઝાંખુ પડે છે.

(1) ઑક્સાઇડ

(2) હાઈડ્રોક્સાઈડ

(3) કાર્બોનેટ્સ

(4) આપેલ તમામ

Solution. Ans. (4)

 $O_2(g)$ સાથે ઑક્સાઈડ બનાવે છે જે હવામાંના ભેજ સાથે જોડાઈને હાઈડ્રોક્સાઈડ આપે જે CO_2 નું શોષણ કરી કાર્બોનેટ્સ બનાવે છે. M(s) $\xrightarrow{O_2} M_2O$ $\xrightarrow{H_2O} MOH$ $\xrightarrow{CO_2} M_2CO_3$

Illustration 3. નીચેના પૈકી શેમાં પ્રબળ સહસંયોજક ગુણ જોવા મળે છે?

(1) LiF

(2) LiCl

(3) LiBr

(4) LiI

Solution. Ans. (4)

સહસંયોજક લક્ષણ 🗴 ઋણ આયનનું કદ

Illustration 4. બધી જ આલ્કલી ધાતુ પ્રવાહી એમોનિયામાં દ્રાવ્ય થઈ ને …… કલરનું ખુબ જ વાહક દ્રાવણ આપે છે.

(1) રંગવિહિન

(2) ઘેરો વાદળી

(3) પીળા

(4) કાળા

Solution. Ans. (2)

આલ્કલી ધાતુનું એમોનિયામાં મંદ દ્રાવણ ઘેરા વાદળી કલરનું હોય છે. જે એમોનિયેટેડ ધાતુ આયન તથા એમોનિયેટેડ

ઈલેક્ટ્રોન ધરાવે છે. $M + (x + y)NH_3 \longrightarrow [M(NH_3)_x]^+ + [e^-(NH_3)_y]^-$

જયારે એમોનિયેટેલ ઈલેક્ટ્રોન પર પ્રકાશ પડે ત્યારે ઊંચા ઊર્જા સ્તરમાં ઉત્તેજીત થાય છે તે દેશ્યમાન વિભાગમાંથી લાલ રંગની આવૃત્તિનું શોષણ કરે છે તેથી ઉત્સર્જાતી ઊર્જા વાદળી રંગનું દ્રાવણ આપે છે.

Illustration 5. નીચેનામાંથી કોણ ઈથેનોલ જેવા કાર્બનિક દ્રાવકમાં દ્રાવ્ય થાય છે ?

(1) LiCl

(2) NaCl

(3) KCl

(4) RbCl

Solution. Ans. (1)

જેમ ધનઆયનનું કદ વધે તેમ સહસંયોજકગુણ ઘટે છે.

LiCl > NaCl > KCl > RbCl > CsCl

પરીષ્મામે LiCl મહત્તમ સહસંયોજક ગુણ ધરાવતો હોવાથી ઈથેનોલ, એસિટોન અને ઈથાઈલ એસિટેટમાં દ્રાવ્ય છે. તે પિરિડિનમાં પણ દ્રાવ્ય છે.

Illustration 6. આપેલ હાઈડ્રેટેડ આયનોની ત્રિજ્યાનો સાચો ક્રમ

(1) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$

(2) $Rb^+ < Na^+ < Li^+ < Cs^+ < K^+$

(3) $Cs^+ < Rb^+ < K^+ < Na^+ < Li^+$

(4) Li+< K+< Na+< Rb+< Cs+

Solution. Ans. (3)

લિથિયમ આયનના નાના કદના કારણે મહત્તમ વિજભાર ઘનતા ધરાવે છે તેથી તેની જલીય ત્રિજયા વધુ હોય છે.

Illustration 7. નીચેનામાંથી કોણ ઠંડાપાણી સાથે ઝડપથી પ્રક્રિયા આપે છે ?

(1) Ca

(2) Sr

(3) Ba

(4) આપેલ તમામ

Solution.

Ans. (4)

Illustration 8. નીચેનામાંથી કયો પેરોક્સાઈડ જાણીતો નથી ?

(1) BaO₂

(2) SrO₂

(3) CaO₂

(4) BeO,

Solution.

Ans. (4)

Illustration 9. નીચેનામાંથી કઈ ધાતું HNO₃ સાથેની પ્રક્રિયાથી નિષ્ક્રિય બને છે ?

(1) Ba

(2) Mg

(3) Ca

(4) Be

Solution. Ans. (4)

Illustration 10. સમુહ 2 ના તત્વોનો કયો હાઈડ્રોક્સાઈડ સ્વભાવે ઊભયગુણધર્મી છે ?

(1) Mg(OH)₂

(2) Ca(OH)₂

(3) Be(OH)₂

(4) Sr(OH)₂

Solution. Ans. (3)

Illustration 11. નીચેનામાંથી કયો હેલાઈડ સ્વભાવે આયોનિક છે ?

(1) BaX₂

(2) CaX₂

(3) SrX₂

(4) આપેલ તમામ

Solution.

Ans. (4)

Illustration 12. નીચેનામાંથી કયો કાર્બોનેટ સૌથી વધુ ઉષ્મીય સ્થિરતા ધરાવે છે ?

(1) BeCO₃

(2) MgCO₃

(3) CaCO₃

(4) BaCO₃

Solution. Ans. (4)

BEGINNER'S BOX-2

1. પોટેશિયમને શેમાં રાખવામાં આવે છે.

(1) આલ્કોહોલ

(2) પાણી

(3) કેરોસીન

(4) પ્રવાહીએમોનિયા

2. લિથિયમની સરખામણીમાં સોડિયમ પાણી સાથે ઝડપથી પ્રક્રિયા કરે છે. કારણ કે……

(1) તેનો અશુભાર ઓછો છે.

(2) તે પ્રબળ વિદ્યુતઋણ છે.

(3) તે પ્રબળ વિદ્યુત ધન છે.

(4) તે ધાતુ છે.

3. નીચેનામાંથી કોણ સ્વભાવે વધુ બેઝીક ગુણ ધરાવે છે ?

(1) RbOH

(2) KOH

(3) NaOH

(4) LiOH

4. નીચેનામાંથી કોણ પાણી સાથે ઝડપથી પ્રક્રિયા કરે છે ?

(1) Li

(2) K

(3) Na

(4) Rb

5. CsI₃ અણુ માટે નીચેનામાંથી કયું વિધાન સાચું છે ?

(1) તે Cs³+ અને I⁻ આયન ધરાવે છે.

(2) તે Cs+, I⁻ અને લેટાઈસ I₂ અશુ ધરાવે છે.

(3) તે સહસંયોજક અશુ છે.

(4) તે C_{S^+} અને I_3^- આયન ધરાવે છે.

ANSWER KEY

BEGINNER'S BOX-1	Que.	1	2	3	4	5	6		
	Ans.	2	2	1	4	4	2		
BEGINNER'S BOX-2				•					
DECININEDIC DOV 0	Que.	1	2	3	4	5			

s-વિભાગના તત્વોના સંયોજનો

11.2 સોડિયમ કલોરાઇડ NaCl

પ્રાપ્તિસ્થાન : દરિયાઇ પાણી મુખ્ય સ્ત્રોત અને તળાવના ક્ષારોમાં પણ મળે છે.

બનાવટ :

- (i) દરિયાઇ પાણી NaCl(2.7 − 2.9%)—Evaporation by solar heat crude NaCl
- (ii) તેમાં રહેલ અશુદ્ધિઓ Na₂SO₄ (અદ્રાવ્ય), MgCl₂ અને CaCl₂ દ્રાવ્ય વગેરે.
- (iii) ગાળણથી અદ્રાવ્ય અશુદ્ધિઓ દુર થાય છે.
- (iv) ગાળણ HCl gas passed શુદ્ધ NaCl ના અવક્ષેપ (સમાન આયન અસર)

 $HCl \rightleftharpoons H^+ + Cl^-$

 $NaCl \rightleftharpoons Na^+ + Cl^-$

આયનીય નીપજ [Na $^+$] [Cl $^-$] > NaCl $^-$ ની દ્રાવ્યતા નીપજ તેથી અવક્ષેપ દુર થાય છે.

(v) MgCl₂ અને CaCl₂ એ NaCl ના જલીય દ્રાવણમાં વધુ દ્રાવ્ય છે આથી દ્રાવણમાં બાકી રહે છે.

ગુણધર્મો :

- i. ટેબલ ક્ષાર એ મેગ્નેશિયમ અને કેલ્શિયમ ક્લોરાઇડના ઓછા પ્રમાણના કારણે થોડા ભેજ શોષક છે.
- ii. AgNOુસાથે પ્રક્રિયા

NaCl +
$$AgNO_3 \rightarrow NaNO_3 + AgCl(સફેદ અવક્ષેપ)$$

ઉપયોગો i. અથાણામાં, માંસ અને માછલીની જાળવણીમાં (પરીરક્ષક તરીકે)

ii. બરફ સાથે ઠારણ મિશ્રણની બનાવટમાં

11.3 સોડિયમ હાઇડ્રોકસાઇડ (NaOH), કોસ્ટીક સોડા

બનાવટ: NaCl ના વિદ્યુતવિભાજન દ્વારા

કાસ્ટનેર - કેલનેર કોષ : (Hg – કેથોડ પદ્ધતિ)

વિદ્યુત વિભાજય (બ્રાઈન) NaCl $\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$

વિદ્યુત વિભાજન દ્વારા -

કેથોડ ઉપર (Hg) થતી પ્રક્રિયા

 $Na^+ + e^- \rightarrow Na$. and $Na + Hg \rightarrow Na$. Hg (amalgam)

એનોડ ઉપર (ગ્રેફાઇટ) થતી પ્રક્રિયા

 $2\text{Cl}^{\scriptscriptstyle -} \rightarrow \text{Cl}_2(g) \ + \ 2\text{e}^{\scriptscriptstyle -} \quad \text{ and } \quad 2\text{Na.Hg} \ + \ 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} \ + \ \text{H}_2 \ + \ 2\text{Hg}$

ગુણધર્મો :

- i. તે ભેજગ્રાહી સફેદ સ્ફટીક ઘન
- ii. તે હવામાંથી CO_2 શોષી ને $\mathrm{Na_2CO}_3$ બનાવે છે.
- iii. NaOH એ પ્રબળ બેઇઝ

$$NaOH \xrightarrow{SiO_2} Na_2SiO_3 + H_2O$$

$$Al_2O_3 \rightarrow 2NaAlO_2 + H_2O$$

iv. ધાતુ સાથે પ્રક્રિયા :

ઉપયોગો (i) સાબુ, રેયોન, રંગકો, પેપર અને ઓષધોની બનાવટમાં.

(ii) પેટ્રોલિયમના શુદ્ધિકરણમાં

11.4 સોડિયમ બાયકાર્બોનેટ અથવા બેકીંગ સોડા (NaHCO₃) અને

સોડિયમ કાર્બોનેટ અથવા ધોવાના સોડા [Na₂CO₃.10H₂O]

બનાવટમાં : સોલ્વેની પદ્ધતિ (ઔદ્યોગિક સ્તરે)/એમોનિયા સોડા પદ્ધતિ

(i)
$$CaCO_3 \longrightarrow CaO + CO_2$$

(ii)
$$NH_3 + H_2O + CO_2 \longrightarrow NH_4HCO_3$$

(iv) NaHCO₃ ને ગરમ કરતાં સોડીયમ કાર્બોનેટ બને છે.

$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O$$

(v)
$$2NH_4Cl + CaO \longrightarrow CaCl_2 + 2NH_3 + H_2O$$

(34- $-flux$)

નોંધ: પોટેશિયમ બાયકાર્બોનેટ (KHCO્ર) સોલ્વની પદ્ધતિ દ્વારા બનાવી શકાતો નથી કારણકે તે NaHCO_રની સાપેક્ષે પાણીમાં દ્રાવ્ય છે.

$NaHCO_3$ ના ગુણધર્મો :

(i) હાઇડ્રોલીસીસ (જળવિભાજન)
$$NaHCO_3 + H_2O \Longrightarrow NaOH + H_2CO_3$$

(ii) ઉષ્માની અસર (temp.
$$> 100$$
°C) $2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$ ↑

(iii) એસિડ સાથે પ્રક્રિયા – gives
$${\rm CO_2}$$
 NaHCO $_3$ + HCl \longrightarrow NaCl + H $_2$ O + ${\rm CO_2}^{\uparrow}$

(iv) બેઇઝ સાથે પ્રક્રિયા
$$\mathrm{NaHCO_3} \ + \ \mathrm{NaOH} {\longrightarrow} \mathrm{Na_2CO_3} \ + \ \mathrm{H_2O}$$

Note : પ્રક્રિયા (iii) અને (iv) NaHCO₃ નો ઉભયગુણધર્મ સમજાવે છે.

 Na_2CO_3 ના ગુણધર્મો

(i) ભેજસ્ત્રાવ :

 ${
m Na_2CO_3.10H_2O}$ ને જયારે હવામાં ખૂલ્લો રાખતા તે ${
m H_2O}$ ના દસ અશુઓમાંથી નવ અશુઓ મૂક્ત થાય છે.

$$Na_2CO_3.10H_2O \longrightarrow Na_2CO_3.H_2O + 9H_2O$$
(Monohydrate)

આ પદ્ધતિને ભેજસ્રાવ કહે છે. તેથી ધોવાનાં સોડા ને હવામાં ખૂલ્લો રાખતા વજનમાં ઘટાડો થાય છે.

(ii) જળવિભાજન : Na₂CO₃ ના જલીય દ્રાવણમાં એનાયનીક જળવિભાજનના કારણે આલ્કલાઇન સ્વભાવ ધરાવે છે.

$$Na_2CO_3$$
 \longrightarrow $2Na^+ + CO_3^{-2}$ અને $CO_3^{-2} + H_2O \Longrightarrow H_2CO_3 + 2OH^-$ (Carbonic acid)

NaHCO₃ ના ઉપયોગો i. ખાવાના સોડાની બનાવટમાં

ii. ઉભરાવાળા ડ્રિંક્સની બનાવટમાં

iii. આગ ઓલવવા માટે

iv. એન્ટિ ઍસિડ દવા (એસીડીટી દૂર કરવા) [NaHCO₃ + Mg(OH)₂]

 Na_2CO_3 ના ઉપયોગો i. કાચ, કોસ્ટીક સોડા, સાબુ પાઉડર વગેરેની બનાવટમાં.

ii. લોન્ડ્રીમા અને પાણીને નરમ બનાવવામાં.

11.5 કેલ્શિયમ ઓકસાઇડ (CaO) ક્વિક લાઇમ

çkklóx : 800°C લાઇમસ્ટોન ને ગરમ કરતાં કેલ્શિયમ સીલીકેટ

$$CaCO_3 \stackrel{800^{\circ}C}{\longrightarrow} CaO + CO_2$$

ગુણધર્મો :

(i) **પાણીની પ્રક્રિયા :** CaO + H₂O → Ca(OH)₂ યૂનાનું ફુટવું (quick lime) (ફોડેલો યુનો)

(quick lime) (ફાડલા (ii) **બેઝીક સ્વભાવ** :

CaO + SiO₂ → CaSiO₃ (ધાતુ કર્મ વિધિમાં ઉપયોગી) (કેલ્શિયમ સીલીકેટ)

CaO + P_4O_{10} $\xrightarrow{\Delta}$ $2Ca_3(PO_4)_2$ (Calcium phosphate) (ખાતરની બનાવટમાં)

(iii) કાર્બન સાથે પ્રક્રિયા :

CaO + 3C
$$\xrightarrow{2000^{\circ}\text{C}}$$
 CaC₂ + CO↑ (Calcium carbide)

CaO ના ઉપયોગો :

- (i) બ્લીચીંગ પાઉડર, સિમેન્ટ, કાચ, કેલ્શિયમ કાર્બાઇડની બનાવટમાં.
- (ii) સુગરના શુદ્ધિકરણ
- (iii) NH, અને C, H, OH માટે શુષ્ક એજન્ટ તરીકે
- (iv) ભકીનું અસ્તર ચઢાવવા માટે
- (v) સોડા લાઇમ (NaOH + CaO) ની બનાવટમાં

11.6 કેલ્શિયમ હાઇડ્રોકસાઇડ Ca(OH), ફાળેલો ચુનો સફેદ અસ્ફટીકમય

બનાવટમાં : ક્વિક લાઇમ પર પાણી સાથે પ્રક્રિયા

Ca(OH), ના ગુણધર્મો

(i) **CO₂ સાથે પ્રક્રિયા :** CO₂ વાયુ પસાર કરતાં લાઇમ વોટર દૂધીયા રંગનું બને છે.

$$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$$
Milkiness

$$CaCO_3 \xrightarrow{Excess of} Ca(HCO_3)_2 \xrightarrow{\Delta} CaCO_3$$

(soluble)

(ii) કલોરીન સાથે પ્રક્રિયા :

$$Ca(OH)_2 + Cl_2 \xrightarrow{below 35^{\circ}C} CaOCl_2 + H_2O$$
dry

Bleaching powder

$$2Ca(OH)_2 \ + \ 2Cl_2 \xrightarrow{red \ hot} \ 2CaCl_2 \ + \ 2H_2O \ + \ O_2 \uparrow$$

મિલ્ક ઓફ લાઈમ : $\operatorname{Ca}(\operatorname{OH})_2$ - ફોડેલા ચુનાનું પાણીમાં અવલંબન (Suspension)

લાઈમ વોટર (ચુનાનું નિતર્યું પાણી) : મિલ્ક ઓફ લાઈમનું ગાળણ

Ca(OH)₂ ના ઉપયોગો

- (i) સખત પાણીને નરમ બનાવવા માટે
- (ii) બળતણ વાયુ અને સુગરના શુદ્ધિકરણ માટે
- (iii) બ્લીચીંગ પાઉડર, કોસ્ટીક સોડા અને સોડા લાઇમની બનાવટમાં
- (iv) મોરટાર, પ્લાસ્ટર અને વાઇટ વોશિંગની બનાવટમાં.

11.7 કેલ્શિયમ સલ્ફેટ CaSO₄.2H₂O (જીપ્સમ) / ચિરોડી

બનાવટ : $CaSO_4.2H_2O$ કુદરતમાં કેલ્શિયમ સલ્ફેટ સ્વરૂપે અસ્તિત્વ ધરાવે છે. તે 60° C થી નીચા તાપમાને દ્રાવ્ય કેલ્શિયમ ક્ષાર ઉપર મંદ H_2SO_4 સાથે પ્રક્રિયા કરતા તે ઉદ્ભવે છે.

Gypsum ના ગુણધર્મો

(i) ઉષ્માની પ્રક્રિયા :

$$2(\text{CaSO}_4.2\text{H}_2\text{O}) \xrightarrow{120^{\circ}\text{C}} 2(\text{CaSO}_4).\text{H}_2\text{O} \xrightarrow{200^{\circ}\text{C}} 2\text{CaSO}_4 + \text{H}_2\text{O}$$
 (Gypsum) (Plaster of paris) (Anhydride)

(ii) તે અગત્યના ખાતર $(NH_4)_2SO_4$ તરીકે ઉપયોગી છે.

$$CaSO_4 + 2NH_3 + CO_2 + H_2O \longrightarrow CaCO_3 \downarrow + (NH_4)_2 SO_4$$

Gypsum ના ઉપયોગો

- (i) પ્લાસ્ટર ઓફ પેરીસની બનાવટમાં
- (ii) નિર્જળ CaSO, નો ઉપયોગ ડ્રાઇંગ એજન્ટમાં થાય છે.
- (iii) નિર્જળ (CaSO₄) જે સલ્ફયુરીક એસિડ અને એમોનિયમ સલ્ફેટની બનાવટમાં થાય છે.

11.8 પ્લાસ્ટર ઓફ પેરીસ [POP] $2CaSO_4.H_2O$ અથવા $CaSO_4\cdot 1/2H_2O$

બનાવટ : જીપ્સમને 120℃ તાપમાને ગરમ કરતા ઉદ્ભવે છ.

$$2(CaSO_4.2H_2O) \longrightarrow 2(CaSO_4).H_2O + 3H_2O$$

POP ના ગુણધર્મો

- (i) તે સફેદ પાઉડર છે.
- (ii) તેમા પાણી નાખીને લુગ્દી બનાવીને થોડી વાર માટે રાખી મુકતા $CaSO_4$ ના સ્કટીકના આંતર જોડાણથી તે સખત થવાનો ગુણધર્મ ધરાવે છે.
- (iii) જયારે તેને 200° C ગરમ કરતા, નિર્જળ $CaSO_4$ ની બનાવટમાં

POP ના ઉપયોગો

- (i) તુટેલા હાડકાંઓ જોડવાની સર્જરીમાં વપરાય છે.
- (ii) રમકડાં અને મૂર્તિઓની બનાવટમાં
- (iii) બ્લેક બોર્ડના ચોકની બનાવટમાં