Introduction

- Recommender Systems predict what you'll like
- Put another way: they predict your preferences
- What are some examples?

- Recommender Systems predict what you'll like
- Put another way: they predict your preferences
- More examples
 - Products
 - Movies
 - Music
 - Books
 - Video games
 - Colleagues
 - Friends

Recommendation Background

- Amazon wants you to buy nice stuff
 - Partially makes up for difficult browsing
- Netflix wants you to like what you're watching
- In the old days, they especially liked when you liked old movies
 - Netflix needed to have at least one copy of many titles, to keep selection up
 - If everyone wants new releases, Netflix needed to buy a lot of copies of one title
 - Much nicer for Netflix if you rented something no one else wanted
 - Offered Netflix Prize; more later

Recommendation Challenges

- Recommendation is common, but surprisingly hard
- Lots of recommendations to make
- 10,000s of products
- Users have very little tolerance for adding preference data; system knows almost nothing about you
- Everyone is different (right?)

Algorithms

- How to predict what movies you like? Features?
- One approach: do it like Web pages
 - Collect data on my movie likes

The Godfather	4
Ernest Goes to Camp	3
Casablanca	2
36 Hours	5
Love and Death	4

- Collect features: genre, length, year, etc
- Build score-predictor; recommend high-scorers
- Problems?

Collaborative Filtering

- Unfortunately, film-qualities (features) may be difficult to extract
- How to recommend movies without knowing anything about movies?
 - Recommend movies enjoyed by people who are similar to you

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	?	2	5	1
Chris	4	2	4	?
Donna	3	?	5	1

How can we estimate scores?

- Filling in missing scores
- Approach #1: average for film

Average over all users

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	3.66	2	5	1
Chris	4	2	4	2
Donna	3	2	5	1

How can we estimate scores?

- Approach #1: average for film
- Approach #2: use rating of closest user
- One way to find user-closeness is with an approach similar to tf-idf
 - Consider u and v's vectors of ratings
 - Each movie is a dimension
 - Each score is a weight
 - Compute cosine(u, v), just as with tf-idf info-retrieval docranking
- What is the equivalent of "inverse doc frequency"?

How can we estimate scores?

- Approach #1: average for film
- Approach #2: use rating of closest user
- One way to find user-closeness is with an approach similar to tf-idf
 - Consider u and v's vectors of ratings
 - Each movie is a dimension
 - Each score is a weight
 - Compute cosine(u, v), just as with tf-idf info-retrieval docranking
- What is the equivalent of "inverse doc frequency"?
 - Inverse-user-frequency. Rarely-seen movies are more influential

User similarity

- Another method is Pearson correlation
 - S = set of movies
 - r_{u,i} = rating of user u on movie *i*
 - $S_u = \{i \in S \mid u \text{ saw movie } i\}$
 - $S_{uv} = \{i \in S \mid both u and v saw movie i\}$

$$r_{u} = \sum_{i \in S_{u}} r_{u,i} / |S_{u}| \frac{\sum_{i \in S_{uv}} (r_{u,i} - r_{u})(r_{v,i} - r_{v})}{\sqrt{\sum_{i \in S_{uv}} (r_{u,i} - r_{u})^{2} \sum_{i \in S_{uv}} (r_{v,i} - r_{v})^{2}}}$$

User similarity

- Pearson correlation
 - How related are ratings from two users?

Chris' closest match is Alice, so...

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	?	2	5	1
Chris	4	2	4	?
Donna	3	?	5	1

Chris' closest match is Alice, so...

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	3	2	5	1
Chris	4	2	4	4
Donna	3	2	5	1

Can't Pick Just One

Can also weight by similarity

$$r_{u,i} = k \sum_{v \in Top-Sim(u)} sim(u,v) r_{v,i}$$

- Where Top-Sim(u) is the n most-similar user neighbors to u
- k is a normalizer

$$k = 1/\sum_{v \in Top - Sim(u)} |sim(u,v)|$$

Can't Pick Just One

Can also re-add user average scores

$$r_{u,i} = r_u + k \sum_{v \in Top-Sim(u)} sim(u,v)(r_{v,i} - r_v)$$

Miscellaneous

- We've seen a collaborative filtering algorithm:
 - User-based
 - Neighborhood-based (top-N neighbors)
- What is the time-complexity of finding nearestneighbor?
 - With locality-sensitive hashing, linear
 - Remember efficient shingling? The algorithm we saw is example of locality-sensitive hashing
- Many analogies between doc IR and collab. filtering
 - What would doc d say about term t, even though it is silent on t now?

Other Algorithms

- Problems so far?
 - What if data is sparse, i.e., a user can only rate a tiny number of products?
 - What if the # of users and products is millions each?
 Computationally difficult
- One solution: item-based filtering
 - Avoid nearest-neighbor operations on users
 - Recommend products similar to ones the user has liked in the past

Item-Based Filtering

- For test item *i*, find *k* most-similar items the user has rated previously
 - *i*'s score is a weighted combination of user's ratings on those *k* items
- How can we compute item similarity?
 - Can use cosine or correlation, as before
 - The vector for item *i* is the set of user-reviews associated with *i*

Model-Based Efficiency

- We can also skimp on the item-item model. New algorithm:
- For each item j, compute k nearest-items, where k
- When predicting u's opinion of i, retrieve the k nearest-items for i. Predict score based on the subset of k that u has rated
- Tradeoff between quality and model size!

Netflix Prize

- Announced October 2, 2006
- •\$1M to whoever could improve NetFlix's own recommender by 10%
- Data from Netflix in the form:
 - <user, movie, date, grade>
 - Where grade is 1...5
 - That's it
- Training data: 100M examples from ~500k users on ~18k movies
- Ideas for how you might do this?

Netflix Prize

- How did they do it?
- Among many ideas:
 - Use IMDB for director, genre, etc
 - Some movies' grades change over time; they "age" well or poorly
 - User grades depend on day of week

Netflix Prize

- Dan Tillberg's progress
- Dropped out in 2008 while in 5th place

