Neural Combinatorial Optimization with RL

백승언

08 Nov, 2021

Contents

- Introduction
 - Combinatorial optimization problem
 - Examples of CO
- Neural Combinatorial Optimization with Reinforcement Learning(NCO)
 - Backgrounds
 - Pointer Network
 - Methodology
- Experiment results

Introduction

Combinatorial optimization problems

What is Combinatorial Optimization(CO) problem?

- Finding an optimal objects from a finite set of objects^[1]
- In many hard CO problems, exhaustive search is not tractable
 - Optimal solution require exponential computing time
- Conventional CO problems generally rely on handcrafted heuristics or optimization methods
 - Once the problem statement changes slightly, they need to be revised and this processes are time-consuming

Machin learning approaches to CO problem

- Supervised learning is not applicable to most CO problems because it is difficult to acquire optimal labels
 - Exceptionally, Pointer Network beats the CO problem with small-size problems
 - TSP-50, TSP-100, TSP-200 and so on
- Many studies show that the Reinforcement Learning(RL) have potential to tackle the CO problems
 - This paper^[2] is the beginning of such studies.

[1]: https://en.wikipedia.org/wiki/Combinatorial_optimization

[2]: https://arxiv.org/pdf/1611.09940.pdf

Examples of CO

Knapsack Problem(KP)

- 무게 제한 아래에서, 최고의 효용을 얻을 수 있는 물품들을 가방에 담는 문제
 - $z = \sum_{i=1}^{n} v_i x_i$, s.t. $\sum_{i=1}^{n} w_i x_i \le W$, $x_i \in Z^{0+}$

Travelling Salesman Problem(TSP)

- 방문 판매원이 최소 비용으로 모든 지역을 순회하는
 는 방법에 관해 묻는 문제
 - $z = ||x_n x_1||_2 + \sum_{i=1}^{n-1} ||x_i x_{i+1}||_2$

Neural Combinatorial Optimization with RL

Backgrounds

The difficulty in applying existing search heuristics to newly encountered problem

- All search algorithms require the prior knowledge over problems to guarantee performance
- Requirements for generalized solution at which can handle the various CO problems has increased
 - Oh, can neural network do this?

Previous application of neural networks to combinatorial optimization

- Hopfield network
 - Hopfield proposed Hopfield networks to solve the TSP (1985)
 - Limitation of Hopfield network was issued and resolved by Wilson & Pawley (1988)
- Deformable template model
 - Durbin proposed the elastic network to solve TSP (1987)
 - The application of Self Organizing Map to TSP was proposed by Fort, Angeniol, Kohonen, (1988~1990)
- Seq2Seq learning
 - Yuitan et al, Zoph & Le purposed the study for optimization in various domain. (2016)
 - Vinyals et al revisited the TSP by their Pointer Network (2015)

Important previous study: Pointer network

- A network that can adjust the output length
 - Previous recurrent network cannot handle the variable frame
 - Seq2Seq paradigm beaten this issue using encoder-decoder structure
 - Seq2Seq, however, has limitation that it cannot adjust the variable output length
 - The Pointer Network resolve this issue by simple idea
 - The Pointer Network utilize the attention score of the input embedding vector
 - It seems like decoder output point the input vector

Sequence / Content-based input attention

Pointer Network

https://arxiv.org/abs/1506.03134

Methodology (I)

Neural network architecture for TSP

- Problem definition
 - State
 - sequence of n cities in a 2D Euclidean space
 - $s = \{\mathbf{x}_i\}_{i=1}^n, \ \mathbf{x}_i \in \mathbb{R}^2$
 - Objective function of TSP(return *G*)
 - length of a tour defined by a permutation π
 - $-L(\pi \mid s) = \left| \left| \mathbf{x}_{\pi(n)} \mathbf{x}_{\pi(1)} \right| \right|_{2} + \sum_{i=1}^{n-1} \left| \left| \mathbf{x}_{\pi(i)} \mathbf{x}_{\pi(i+1)} \right| \right|_{2}, \quad \left| \left| \cdot \right| \right| denots \ l_{2} \ norm$
 - Policy
 - Using Pointer network
 - Chain rule to factorize the probability of a tour as
 - $p(\pi \mid s) = \prod_{i=1}^{n} p(\pi(i) \mid \pi(< i), s)$
 - Pointing mechanism
 - $u_i = \begin{cases} v^T \cdot \tanh(W_{ref} \cdot r_i + W_q \cdot q) & \text{if } i \neq \pi(j) \text{ for all } j < i \\ -\infty & \end{cases} \text{ for } i = 1, 2, ..., k$
 - $A(ref, q; W_{ref}, W_q, v) \triangleq softmax(C tanh(u)), C is a hyperparameter$

TSP on Euclidean space

Pointer network architecture

Methodology (II)

Neural network architecture for TSP

- Policy optimization
 - Actor
 - Using Pointer network
 - Mapping input sequence s and previous action set $\{a_i\}, j \in \{1, ..., i-1\}$ to action a_i
 - Critic
 - Using Pointer network
 - Mapping input sequence s to baseline $b_{\theta_v}(s)$
 - Loss function of actor, critic
 - $J(\boldsymbol{\theta} \mid s) = \mathbb{E}_{\pi \sim p_{\boldsymbol{\theta}}(\cdot \mid s)} L(\pi \mid s), \ s \in \mathcal{S}$
 - $\nabla_{\theta} J(\theta \mid s) = \mathbb{E}_{\pi \sim p_{\theta}(\cdot \mid s)} [(L(\pi \mid s) b(s)) \nabla_{\theta} \log p_{\theta}(\pi \mid s)],$ (REINFORCE)
 - $L(\theta_v) = \frac{1}{B} \sum_{i=1}^{B} \left| \left| b_{\theta_v}(s_i) L(\pi_i \mid s) \right| \right|_{2}^{2}$

Algorithm 1 Actor-critic training

```
1: procedure TRAIN(training set S, number of training steps T, batch size B)
            Initialize pointer network params \theta
            Initialize critic network params \theta_v
            for t = 1 to T do
                  s_i \sim \text{SAMPLEINPUT}(S) \text{ for } i \in \{1, \dots, B\}
                  \pi_i \sim \text{SAMPLESOLUTION}(p_{\theta}(.|s_i)) \text{ for } i \in \{1, \dots, B\}
                 b_i \leftarrow b_{\theta_v}(s_i) \text{ for } i \in \{1, \dots, B\}
                 g_{\theta} \leftarrow \frac{1}{B} \sum_{i=1}^{B} (L(\pi_i|s_i) - b_i) \nabla_{\theta} \log p_{\theta}(\pi_i|s_i)
                  \mathcal{L}_v \leftarrow \frac{1}{B} \sum_{i=1}^{B} \|b_i - L(\pi_i)\|_2^2
                 \theta \leftarrow \text{ADAM}(\theta, q_{\theta})
10:
11:
                  \theta_v \leftarrow \text{ADAM}(\theta_v, \nabla_{\theta_v} \mathcal{L}_v)
12:
            end for
13:
            return \theta
14: end procedure
```

Pseudo code of actor-critic training

Methodology (III)

Search strategies

- RL pretraining Greedy
 - After training, select the tours from $p_{\theta}(\cdot|s)$ and greedy method
- RL pretraining Sampling
 - After training, select the multiple candidate tours(1.28M) from stochastic policy $p_{\theta}(\cdot|s)$ and select the shortest one
 - Controlling the diversity of the sampled tour with a temperature hyperparameter T
 - $A(ref, q, T; W_{ref}, W_q, v) \triangleq softmax(u/T)$
- Active Search
 - Refining the parameters of stochastic policy $p_{\theta}(\cdot | s)$ during inference to minimize $J(\theta)$ on a single test input **s**
 - Only policy updated, not critic.
- RL pretraining Active Search
 - After training, using active search

Algorithm 2 Active Search

```
1: procedure ACTIVESEARCH(input s, \theta, number of candidates K, B, \alpha)
            \pi \leftarrow \text{RANDOMSOLUTION}()
            L_{\pi} \leftarrow L(\pi \mid s)
            n \leftarrow \lceil \frac{K}{R} \rceil
            for t=1\dots n do
                  \pi_i \sim \text{SAMPLESOLUTION}(p_{\theta}(. \mid s)) \text{ for } i \in \{1, \dots, B\}
                  j \leftarrow \text{ARGMIN}(L(\pi_1 \mid s) \dots L(\pi_B \mid s))
                  L_j \leftarrow L(\pi_j \mid s)
                  if L_i < L_{\pi} then
10:
11:
                         L_{\pi} \leftarrow L_{i}
12:
                  end if
                  g_{\theta} \leftarrow \frac{1}{B} \sum_{i=1}^{B} (L(\pi_i \mid s) - b) \nabla_{\theta} \log p_{\theta}(\pi_i \mid s)
13:
14:
                  \theta \leftarrow \text{ADAM}(\theta, q_{\theta})
                  b \leftarrow \alpha \times b + (1 - \alpha) \times (\frac{1}{B} \sum_{i=1}^{B} b_i)
15:
16:
            end for
             return \pi
18: end procedure
```

Pseudo code of active search

Configuration	Learn on training data	Sampling on test set	Refining on test set
RL pretraining-Greedy	Yes	No	No
Active Search (AS)	No	Yes	Yes
RL pretraining-Sampling	Yes	Yes	No
RL pretraining-Active Search	Yes	Yes	Yes

Different learning configurations

Experiment Results

Experiment results (I)

Comparison with different strategies for TSP family

- 3 개의 TSP에 대해서, 논문에서 제시한 기법과, 기존에 사용되던 기법들, 최적 해 사이의 성능을 비교하는 실험을 수행(TSP20, TSP50, TSP100)
 - Supervised learning(Pointer network)
 - RL pretraining greedy
 - RL pretraining sampling
 - RL pretraining active search

- Active search
- Christofides: polynomial time complexity
- OR Tools' local search: made by Google
- Optimal solution
- 각 기법들을 비교할 성능 지표로는, Average tour length와 running time을 선택
 - RL+sampling, RL+AS의 경우, optimal에 근접한 결과를 얻어냈음을 확인
 - RL+greedy의 경우, 다른 기법들과 비교해 보았을 때 , 시간 효율적임을 확인

Sample results. TSP50, TSP100

Task Supervised		RL pretraining			AS	Christo	OR Tools'	Optimal	
lask	Learning	greedy	greedy@16	sampling	AS	AS	-fides	local search	Optimai
TSP20	$3.88^{(\dagger)}$	3.89	_	3.82	3.82	3.96	4.30	3.85	3.82
TSP50	$6.09^{(\dagger)}$	5.95	5.80	5.70	5.70	5.87	6.62	5.80	5.68
TSP100	10.81	8.30	7.97	7.88	7.83	8.19	9.18	7.99	7.77

Average tour length of different methods

Task	RL p	retraining	OR-Tools'	Optimal		
	greedy	greedy@16	local search	Concorde	LK-H	
TSP50	0.003s	0.04s	0.02s	0.05s	0.14s	
TSP100	0.01s	0.15s	0.10s	0.22s	0.88s	

Running time in seconds

Experiment results (II)

Comparison with different strategies for KnapSack problems

- 3 개의 KanpSack problem에 대해서, 논문에서 제시한 기법 일부와, 기존에 사용되던 기법들, 최적 해 사이의 성능을 비교하는 실험을 수행(KNAP50, KNAP100, KNAP200)
 - RL pretraining greedy
 - Active Search

- Random search
- Greedy
- Optimal solution
- 각 기법들을 비교할 성능 지표로는, total value z로 설정
 - RL+greedy의 경우, optimal solution의 1% 이하의 오차율을 보였음을 확인
 - Active Search의 경우, 최적해를 찾았음을 확인

Task	RL pretraining greedy	Active Search	Random Search	Greedy	Optimal
KNAP50	19.86	20.07	17.91	19.24	20.07
KNAP100 KNAP200	40.27 57.10	40.50 57.45	33.23 35.95	38.53 55.42	40.50 57.45

Total value of different methods

Thank you!

Q&A

Implementation of NCO

Environment setting

Environment: OR-gym

- Knapsack-v0
 - 무게 제한 아래에서, 최고의 효용을 얻을 수 있는 물품들을 가방에 담는 문제
 - $z = \sum_{i=1}^{n} v_i x_i$, s.t. $\sum_{i=1}^{n} w_i x_i \le W$, $x_i \in Z^{0+}$
- MDP formulation
 - State:
 - [Item weights, item values, current weight]
 - Action:
 - Number of item
 - Reward:
 - Item value : value of item
 - Over packed penalty : -100

- TSP-v0
 - 최소 비용으로 모든 지역을 순회하는 방법에 관해 묻는 문제
 - $z = ||x_n x_1||_2 + \sum_{i=1}^{n-1} ||x_i x_{i+1}||_2$
- MDP formulation
 - State:
 - [current node, connection(adjacency matrix)]
 - Action:
 - Number of node
 - Reward:
 - Cost of move : -distance
 - Invalid action penalty : -100
 - Success : 1000

Result analysis

- LunarLanderContinuous-v2
 - Comparison with Vanilla TD3(TD3_None), TD3_gSDE(8, 16, 32, 64, Episode)
 - Figure 1 shows that TD3_gSDE is better stability than Vanilla TD3

실험중

Learning environment