Exercício sobre Regularização com redes ELM Redes Neurais Artificiais - PPGEE

Profs. Antônio de Pádua Braga e Frederico Ferreira Coelho September 15, 2022

- Objetivos: Implementação de uma rede neural de duas camadas com capacidade para a
 resolução de problemas não-lineares e estudar os efeitos da regularização sobre o desempenho do modelo.
- Contexto: ELMs são modelos de redes neurais de duas camadas em que os pesos da primeira camada são obtidos aleatoriamente e os da camada de saída utilizando, por exemplo, mínimos quadrados. A solução do vetor de pesos da camada de saída utilizando-se regularização é $\mathbf{w} = (\mathbf{H}^T\mathbf{H} + \lambda\mathbf{I}_p)^{-1}\mathbf{H}^T\mathbf{y}$, em que \mathbf{H} é a projeção aleatória na camada intermediária, λ o parâmetro de regularização, \mathbf{I}_p a matriz identidade de dimensãp p e y os rótulos de treinamento. O efeito do termo de regularização é penalizar soluções de maior magnitude de \mathbf{w} , resultando em funções discriminantes mais suaves, controlando, assim, o efeito de over-fitting da resposta do modelo. O problema é, então, encontrar o valor de λ que resulte na melhor aproximação.

• O que deve ser feito:

- 1. Utilizando dados sintéticos para um problema de classificação¹, com algum nível de superposição entre as amostras de classes opostas, encontre a solução com ELM e apresente a superfície de separação com algum nível de over-fitting. Para a mesma situação altere o valor de λ e observe a suavização da resposta. Discuta.
- 2. Repetir os procedimentos do item anterior para um problema multi-variado de classificação binária de sua escolha, base do *Breast Cancer*, por exemplo. obs1: Não será possóivel visualizar a saída da superfície, é claro! obs2: utilize uma métrica de desempenho, como erro de teste, para observar o efeito do *over-fitting*.

¹Duas classes Gaussianas, por exemplo.