PadhAl: 6 Jars of Sigmoid Neuron

One Fourth Labs

Computing Partial Derivatives

How do I compute Δ w and Δ b

- 1. Consider the following example
- 2. Loss = $\frac{1}{5} \sum_{i=1}^{5} (f(x_i) y_i)^2$ (where f(x_i) refers to the sigmoid function)
- 3. $\Delta w = \frac{\partial L}{\partial w} = \frac{1}{5} \sum_{i=1}^{5} \frac{\partial}{\partial w} (f(x_i) y_i)^2$
- 4. Let's consider only one term in this sum
- 5. $\nabla w = \frac{\partial}{\partial w} [\frac{1}{2} * (f(x) y)^2]$ (where ∇w refers to the gradient/partial derivative of L(w,b) w.r.t
- 6. Using chain rule, we expand it

a.
$$\nabla w = \frac{1}{2} * [2 * (f(x) - y) * \frac{\partial}{\partial w} (f(x) - y)]$$

b.
$$\nabla w = (f(x) - y) * \frac{\partial}{\partial w} (f(x))$$

c. $\nabla w = (f(x) - y) * \frac{\partial}{\partial w} (\frac{1}{1 + e^{-(wx + b)}})$, Let's look into the derivative of the sigmoid function in detail

i.
$$\frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$

i.
$$\frac{\partial}{\partial w} \left(\frac{1}{1 + e^{-(wx+b)}} \right)$$
ii.
$$\frac{-1}{(1 + e^{-(wx+b)})^2} \frac{\partial}{\partial w} \left(e^{-(wx+b)} \right)$$

iii.
$$\frac{-1}{(1+e^{-(wx+b)})^2} * (e^{-(wx+b)}) \frac{\partial}{\partial w} (-(wx+b))$$

iv.
$$\frac{1}{(1+e^{-(wx+b)})^2} * (e^{-(wx+b)}) * (-x)$$
v.
$$\frac{1}{(1+e^{-(wx+b)})} * \frac{(e^{-(wx+b)})}{(1+e^{-(wx+b)})} * (x)$$

V.
$$\frac{1}{(1+e^{-(wx+b)})} * \frac{(e^{-(wx+b)})}{(1+e^{-(wx+b)})} * (x)$$

vi.
$$f(x) * (1 - f(x)) * x$$

d. Therefore,
$$\nabla w = (f(x) - y) * f(x) * (1 - f(x)) * x$$

7. For each of the 5 points

a.
$$\Delta w = \frac{1}{5} \sum_{i=1}^{5} (f(x_i) - y_i) * f(x_i) * (1 - f(x_i)) * x_i$$

b. Similarly
$$\Delta b = \frac{1}{5} \sum_{i=1}^{5} (f(x_i) - y_i) * f(x_i) * (1 - f(x_i))$$