Inverse Problems Exercises: 2024s s04 (non-sc)

https://www.umm.uni-heidelberg.de/miism/

Notes

- Please **DO NOT** change the name of the .ipynb file.
- Please **DO NOT** import extra packages to solve the tasks.
- Please put the .ipynb file directly into the .zip archive without any intermediate folder.

Please provide your personal information

• full name (Name):

YOUR ANSWER HERE

D07: Singular value decomposition

```
In [ ]: import numpy as np
   import matplotlib.pyplot as plt

from numpy import linalg as LA

In [ ]: file_gaussian = 'file_gaussian.npz'
   with np.load(file_gaussian) as data:
     f_true = data['f_true']
     A_psf = data['A_psf']
     list_gn = data['list_gn']
```

Imaging model

The imaging model can be represented by

$$g = h \otimes f_{ ext{true}} = A f_{ ext{true}} = \mathcal{F}^{-1} \{ \mathcal{F} \{ h \} \mathcal{F} \{ f_{ ext{true}} \} \},$$
 $g' = g + \epsilon.$

- ullet $f_{
 m true}$ is the input signal
- h is the point spread function (kernel)
- ullet \otimes is the convolution operator
- ullet A is the Toeplitz matrix of h
- ullet ${\cal F}$ and ${\cal F}^{-1}$ are the Fourier transform operator and inverse Fourier transform operator
- ullet is the additive Gaussian noise
- ullet g is the filtered signal
- g' is the noisy signal

Frobenius norm

Implement the Frobenius norm by definition

$$\|A\|_{ ext{F}} = \sqrt{\sum_{i}^{m} \sum_{j}^{n} \left|a_{ij}
ight|^{2}},$$

where A is an $m \times n$ matrix. When m = 1 or n = 1, A is a vector.

- ullet Given the matrix A
- Calculate the Frobenius norm (numpy.linalg.norm() should NOT be used.)
- Implement the function frobenius_norm()

```
In [ ]: def frobenius_norm(mat_A):
    """ Compute the Frobenius norm of the matrix:
        :param mat_A: Input matrix or vector.
        :returns: Frobenius norm.
        """
# YOUR CODE HERE
raise NotImplementedError()
```

```
In [ ]: # This cell contains hidden tests.
```

Condition number of A

Calculate the condition number of matrix A

$$cond_{\rm F}(A) = \|A^{-1}\|_{\rm F} \|A\|_{\rm F}$$

- Apply the calculation to A_psf
- Save $||A||_{\rm F}$ in the variable norm_A_psf (using frobenius_norm())
- ullet Save $\|A^{-1}\|_{
 m F}$ in the variable <code>norm_A_inv</code> (using <code>frobenius_norm()</code>)
- Save $\operatorname{cond}_F(A)$ in the variable $\operatorname{cond}_A\operatorname{_psf}$ ($\operatorname{numpy.linalg.cond}$ () should not be used.)

```
In [ ]: # YOUR CODE HERE
    raise NotImplementedError()

In [ ]: # This cell contains tests.
    print(cond_A_psf)
```

Question: Condition number of A

Is the inversion of the system with A_psf stable?

YOUR ANSWER HERE

Singular value decomposition

Calculate the singular value decomposition (SVD) of real matrix \boldsymbol{A}

$$A = USV^T$$
,

where $UU^T = VV^T = I$, and S is a rectangular diagonal matrix with non-negative real numbers on the diagonal. The entries on the diagonal $diag(S)_i$ are the singular values.

- Apply the calculation to A_psf (using numpy.linalg.svd())
- Plot A, U, S and V^T in order in the subplots of axs
- ullet Plot the matrices A, U, and V^T as grayscale images in the corresponding subplots
- Show the colorbar of the above three subplots
- Plot the singular values $diag(S)_i$ as a line in the third subplot
- Add proper titles to the subplots of axs

```
In [ ]: fig, axs = plt.subplots(1, 4, figsize=(15, 5))
    fig.suptitle('Singular value decomposition')

# YOUR CODE HERE
    raise NotImplementedError()

In [ ]: # This cell contains hidden tests.
```

Condition number of S

Calculate the condition number of matrix S

- ullet Apply the calculation to the S from SVD
- Save $||S||_{\mathrm{F}}$ in the variable norm_S_psf (using frobenius_norm())
- Save $\|S^{-1}\|_{\mathrm{F}}$ in the variable norm_S_inv (using frobenius_norm())
- ullet Save $\mathrm{cond}_{\mathrm{F}}(S)$ in the variable $\begin{subarray}{c} \mathsf{cond}_{-}\mathsf{S}_{-}\mathsf{psf} \end{subarray}$ ($\mathsf{numpy.linalg.cond}()$ should not be used.)

```
In [ ]: # YOUR CODE HERE
    raise NotImplementedError()

In [ ]: # This cell contains tests.
    print(cond_S_psf)
```

Question: Condition number of S

Is the equation $\operatorname{cond}_{\mathrm{F}}(A) = \operatorname{cond}_{\mathrm{F}}(S)$ valid? Why?

YOUR ANSWER HERE

Truncated singular values

 S_t contains the truncated singular values as

$$\mathrm{diag}(S_t)_i = \left\{ egin{array}{ll} \mathrm{diag}(S)_i & \mathrm{diag}(S)_i \geq \mathrm{TH} \ 1 & \mathrm{otherwise} \end{array}
ight.,$$

i.e. to set the singular values in S less than the threshold TH to 1.

- Set TH with $2\% \cdot \max(\operatorname{diag}(S)_i)$, $10\% \cdot \max(\operatorname{diag}(S)_i)$, $50\% \cdot \max(\operatorname{diag}(S)_i)$, respectively
- Generate S_t
- ullet Save $A_t = U S_t V^T$ in the variable list_A_tsvd (as list of numpy.array)
- Save $\operatorname{cond}_{\mathrm{F}}(A_t)$ in the variable <code>list_cond_A_tsvd</code> (<code>numpy.linalg.cond()</code> should not be used.)

```
In [ ]: # YOUR CODE HERE
    raise NotImplementedError()

In [ ]: # This cell contains tests.
    print(list_cond_A_tsvd)
```

Reconstruction

Reconstruct the signal by

$$ilde{f} = A_t^{-1} g'$$

- Apply this operation to the noisy signals in list_gn
- ullet Return the outputs with different A_t in <code>list_A_tsvd</code>
- Save the outputs in the variable list_f_tsvd (as list of numpy.array)

Display the result

- Plot the outputs in list_f_tsvd in the same order of the noisy signals in the subplots of axs
- Show the cases of the same noisy signal in the same subplot column
- Show the cases with the same A_t in the same subplot row
- Plot the corresponding noisy signal in each subplot (after the filter output)
- Plot the input signal f_true in each subplot (after the noisy signal)
- Show the legend in each subplot
- Show the case information in the titles to the subplots

```
In [ ]: fig, axs = plt.subplots(3, 3, figsize=(15, 15))
    fig.suptitle('Reconstruction')

# YOUR CODE HERE
    raise NotImplementedError()

In [ ]: # This cell contains hidden tests.
```

Question: Truncated singular values

Describe the visual effect on the reconstruction result considering the influence of TH.

YOUR ANSWER HERE