BIL 362 Mikroişlemciler

M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Konular

Temel I/O Arayüzü

- I/O Arayüzüne Giriş
- I/O Port Adres Çözümleme
- Programlanabilir Çevrebirim Arayüzü
- Analog-Dijital ve Dijital-Analog Çeviriciler

I/O Arayüzüne Giriş

- Mikroişlemciler I/O cihazına veri aktarmak için (OUT) ve I/O cihazından veri almak için komutlara (IN) sahiptir.
- 80186 ve üstü işlemcilerde OUTS ve INS komutlarıyla memory ve I/O cihazı arasında string veri transferi yapılmaktadır.
- IN ve OUT komutları I/O cihazıyla mikroişlemci akümülatör'ü (AL, AX, EAX) arasında veri transferi yapar.
- I/O adresi DX register'ında 16-bit olarak saklanır. Veya 8-bit immediate olarak opcode'dan hemen sonra verilir.

I/O Arayüzüne Giriş

- IN ve OUT komutlarıyla veri transferi yapılacağı zaman I/O adresi (port numarası) adres bus'a gönderilir.
- I/O arayüzü port numarasını çözümler (hafıza arayüzünün hafıza adresini çözümlediği gibi).
- İlk 256 port adresine (00H-FFH) immediate ve DX ile ve 0100H-FFFH arasındaki port adreslerine DX register'ıyla erişilir.
- ISA (industry standart architecture) bus için 0000H-03FFH arasındaki I/O adresleri kullanılır.

Instruction	Data Width	Function
IN AL, p8	8	A byte is input into AL from port p8
IN AX, p8	16	A word is input into AX from port p8
IN EAX, p8	32	A doubleword is input into EAX from port p8
IN AL, DX	8	A byte is input into AL from the port addressed by DX
IN AX, DX	16	A word is input into AX from the port addressed by DX
IN EAX, DX	32	A doubleword is input into EAX from the port addressed by DX
INSB	8	A byte is input from the port addressed by DX and stored into the extra segment memory location addressed by DI, then DI = DI \pm 1
INSW	16	A word is input from the port addressed by DX and stored into the extra segment memory location addressed by DI, then DI = DI \pm 2
INSD	32	A doubleword is input from the port addressed by DX and stored into the extra segment memory location addressed by DI, then DI = DI \pm 4
OUT p8, AL	8	A byte is output from AL into port p8
OUT p8, AX	16	A word is output from AL into port p8
OUT p8, EAX	32	A doubleword is output from EAX into port p8
OUT DX, AL	8	A byte is output from AL into the port addressed by DX
OUT DX, AX	16	A word is output from AX into the port addressed by DX
OUT DX, EAX	32	A doubleword is output from EAX into the port addressed by DX
OUTSB	8	A byte is output from the data segment memory location addressed by SI into the port addressed by DX, then SI = SI ±1
OUTSW	16	A word is output from the data segment memory location addressed by SI into the port addressed by DX, then SI = SI ±2
OUTSD	32	A doubleword is output from the data segment memory location addressed by SI into the port addressed by DX, then SI = SI ±4

I/O Arayüzüne Giriş

Isolated and memory-mapped I/O

- Isolated I/O yaklaşımında IN, INS, OUT ve OUTS komutları mikroişlemci akümülatörü ve hafıza ile I/O cihazı arasında veri transferi yapar.
- Memory-mapped I/O yaklaşımında IN, INS, OUT ve OUTS komutları kullanılmaz bunların yerine hafıza ile mikroişlemci arasında veri transferi yapan herhangi bir komut kullanılabilir.
- Isolated I/O cihazlarının adresleri (port) hafızanın dışındadır ve I/O ile mikroişlemci arasında veri aktarımı IN, INS, OUT ve OUTS komutlarıyla yapılır.
- Memory-mapped I/O cihazlarına erişim için IN, INS, OUT ve OUTS komutları kullanılmaz. Hafıza ile mikroişlemci arasında veri aktarımı yapan komutlar kullanılır.
- Memory içerisinde bir alan I/O cihazlarına ayrılır.

I/O Port Adres Çözümleme

- I/O port adres çözümleme özellikle memory-mapped I/O için memory adres çözümlemeyle aynıdır.
- Isolated I/O adresi çözümlemede kullanılan adres pin sayısı farklıdır.
- Memory için 32, 24 veya 20 adres biti çözümlenir. Isolated I/O için 16-bit adres çözümlenir.

I/O Port Adres Çözümleme

8-bit I/O adres çözümleme

- Immediate operandla adresleme yapan I/O komutları 8-bit adresleme yapar (0000H-00FFH arasındaki adresler).
- Eğer sistem 256'dan fazla cihaz kullanmayacaksa sadece A7-A0 adres bağlantıları kullanılır.
- Aşağıdaki şekilde F0H-F7H arasında adresleme yapan decoder görülmektedir.

I/O Port Adres Çözümleme

16-bit I/O adres çözümleme

 16-bit adres çözümlemede A15-A0 arasındaki bitlerin tümü kullanılır.

___ Analog-Dijital ve Dijital-Analog Çeviriciler

- ADC ve DAC elemanları mikroişlemcinin analog değerleri değerlendirebilmesi amacıyla kullanılır.
- Aşağıda DAC0830 dijital-analog çevirici görülmektedir.
- DAC0830 8-bit çeviricidir. VREF girişindeki referans gerilimi
 256 farklı seviyede 255 aralıkla ifade eder.
- 10-bit DAC elemanlar 1024 farklı seviyede çıkış üretirler.
- 1001 0010 girişi için
 +2.862V çıkış üretir.

Analog-Dijital ve Dijital-Analog Çeviriciler

- Aşağıda ADC0804 8-bit çevirici görülmektedir.
- INTR çıkışı çevirme işleminin bittiğini göstermek için kullanılır.
- Analog giriş VI+ ve VI- pinlerinden yapılır.

