Potential Field Methods

- Idea robot is a particle
- Environment is represented as a potential field (locally)
- Advantage capability to generate on-line collision avoidance

Compute force acting on a robot - incremental path planning

$$F(q) = -\nabla U(q)$$

Example: Robot can translate freely, we can control independently Environment represented by a potential function

Force is proportional to the gradient of the potential function

$$\left[\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right] = -\nabla U(x,y)$$

Some slide thanks to http://cs.cmu.edu/~motionplanning

Attractive potential field

- Linear function of distance

$$U_a(q) = \xi \|q - q_{goal}\|$$
 $F_a(q) = -\nabla U_a(q) = -\xi \frac{(q - q_{goal})}{\|q - q_{goal}\|}$

- Quadratic function of distance

$$U_a(q) = \xi \frac{1}{2} ||q - q_{goal}||^2$$
 $F_a(q) = -\nabla U_a(q) = -\xi (q - q_{goal})$

Combination of two - far away use lincloser by use parabolic well

Jana Kosecka, GMU

Repulsive potential field

$$U_{rep} = \frac{1}{2}\nu \left(\frac{1}{\rho(q,q_{obst})} - \frac{1}{\rho_0}\right)^2 \text{if} \qquad \rho(q,q_{obst})\| \le \rho_0$$

$$\text{else} \qquad U_r(q) = 0$$

Minimal distance between the robot and the obstacle

$$F_{rep} = -\nabla U_{rep} = \nu \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0}\right) \frac{1}{\rho(q)^2} \frac{q - q_{obs}}{\rho(q)}$$

Outside of sensitivity zone repulsive force is 0

Jana Kosecka,

Another example of repulsive potential field

$$U_r(q) = rac{1}{2}
u \left(rac{1}{
ho(q, q_{obst})} - rac{1}{
ho_o}
ight) \quad ext{if} \quad
ho(q, q_{obst}) \| \le
ho_0$$

Minimal distance between the robot and the obstacle

Previously - repulsive potential related to the square of the Inverse distance - here just proportional to inverse distance Note: need to compute gradient to get the force

Jana Kosecka, GMU

Potential Function

Resulting force

$$F(q) = -\nabla (U_a(q) + U_r(q))$$

Iterative gradient descent planning $q_{i+1} = q_i + \delta_i \frac{F(q)}{\|F(q)\|}$

Potential Fields

Simple way to get to the bottom, follow the gradient

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = -\nabla U(x, y) \qquad \dot{q} = -\nabla U(q)$$

- i.e. Gradient descent strategy $q_{i+1} = q_i + \delta_i \frac{F(q)}{\|F(q)\|}$
- A critical, stationary point is such that abla U(q) = 0
- · Equation is stationary at the critical point

 To check whether critical point is a minimum - look at the second order derivatives (Hessian for m -> n function)

Computing Distances

Using sensor measurements

Potential Functions

How do we know we have single global minimum?

- If global minimum is not guaranteed, need to do something else then gradient descent
- Design functions in such a way that global minimum can be guaranteed

Potential function

- Heuristics for escaping the local minima
- Can be used in local and global context
- Numerical techniques, Random walk methods
- Navigation functions (Rimon & Kodistchek, 92)
- Navigations in sphere worlds and worlds diffeomorphic to them

Navigation functions

$$\phi(q) = -\frac{d^2(q,q_{goal})}{[d(q,q_{goal})^{2k} + \beta(q)]^{1/k}} \quad \beta(q) \quad \text{ Obstacle term}$$

• For sufficiently large k - this is a navigation function [Rimon-Koditschek, 92]

Potential Field Path Planning: Using Harmonic Potentials

- Hydrodynamics analogy
 - robot is moving similar to a fluid particle following its

- Note:
 - Complicated, only simulation shown

Potential fields for Rigid Bodies

- So far robot was considered a point- gradient of the potential function - force acting on a point
- how to generalize to manipulators of objects?
- Idea forces acting on objects forces acting on multiple points of the object (black board)
- http://www.cs.cmu.edu/~motionplanning/
- For robots, pick enough control points to pin down the robot
 define forces in workspace map them to configuration
 space

Brush fire algorithm

Resulting map - distance to the nearest obstacle - gradient of the distance

Wave-front planner

- Apply brushfire algorithm starting from the goal
- Label goal 2, add all zeros labels to Q
- While Q non-empty
- Set $d(q) = 1 + min \ d(q)$ of the neighbours which are different from 1 and 0
- Add all neighbours of the selected point to the Q
- The results is a distance for each point to the goal
- Follow gradient descent to the goal

Navigation functions - Discrete version

- Useful potential functions for any starting point you will reach a goal: Navigation function (see previously how to define these in continuous spaces)
- In discrete state space navigation function has to have some value for each state, consider grid
- Goal: will have zero potential
- Obstacles have infinite potential
- Example of useful navigation function: optimal cost to go to goal G^* (example), assuming that for each state

$$l(x,u) = 1$$

Wavefront planner

								_	_	_		_	_	_		
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

			_	_	_	,	,	_	,	_	,	,	,	,	_	
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	7	7	7	7	7
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	7	6	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	7	6	5	4	3	3
0	0	0	0	0	0	0	0	0	0	0	7	6	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9	
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8	
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7	
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6	
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5	
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4	
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3	
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	0	1	2	3	4	5	6	7 8	3 9	9 1	0 1	1 1	12	13	14	15	

- Zeros should exist only in unreachable regions exist
- · Ones for regions which cannot be reached
- · Other book keeping methods can be used

Finding the path

- From any initial grid cell, move toward the cell
- with the lowest number follow the steepest
- descent

