Лабораторная работа №6 (цикл работ).

Изучение движения тела под углом к горизонту.

Цель: по результатам эксперимента определить начальную скорость снаряда, дальность полёта и высоту подъёма при стрельбе под углом к горизонту.

Оборудование: баллистический пистолет, линейка демонстрационная, листок белой и копировальной бумаги.

Содержание и метод выполнения работы

При выполнении этой работы можно использовать известные формулы:

- 1. Дальность полёта снаряда: $l = \frac{2v_0^2 cos\alpha sin\alpha}{g}$
- 2. Максимальная высота поднятия снаряда при стрельбе под углом к горизонту: $h_{max} = \frac{v_0^2 sin^2 \alpha}{2a}$
- 3. Начальная скорость снаряда при стрельбе вертикально вверх: $v_0 = \sqrt{2gH}$

Для вычисления этих величин необходимо знать начальную скорость снаряда v_0 . Её следует определять опытным путём. Для этого надо направить пистолет вертикально вверх и, сделав несколько выстрелов, измерить высоту подъёма снаряда. Затем, зная H и g, вычислить начальную скорость снаряда v_0 .

Порядок выполнения работы

- 1. Прикрепите баллистический пистолет к краю стола и направьте его по угломеру строго вертикально.
- 2. Рядом с пистолетом держите вертикально линейку так, чтобы начало отсчёта совпало с центром шарика. Сделайте несколько выстрелов и заметьте по делениям линейки высоту поднятия шарика h.
- 3. Вычислите скорость v_0 вылета шарика.
- 4. Направьте пистолет вдоль стола под каким то углом 45°. Вычислите для выбранного угла дальность полёта $\ell_{\scriptscriptstyle T}$ шарика и высоту поднятия шарика $h_{\scriptscriptstyle T}$. На вычисленном расстоянии $\ell_{\scriptscriptstyle T}$ положите лист белой бумаги с копировальной, который будет служить мишенью.
- 5. По середине этого расстояния установите вертикально демонстрационную линейку так, чтобы шарик пролетал рядом, но не задевал её и при этом можно была измерить высоту в верхней точке полета. Произведите пять выстрелов. Измерьте линейкой дальность полёта ℓ_9 и максимальную высоту подъема h_9 шарика. Если расчёт был сделан правильно, шарик попадёт в расчётные точки.
- 6. Занесите все экспериментальные данные в таблицу:

α, 0	h, м	h _{cp} , м	v_0 , M/c	α, 0	h _э , м	h _{э ср} , м	h _т , м	<i>l</i> э, м	<i>l</i> ₃ cp, M	<i>l</i> _T , M
]			ļ	
90				45						

7. Сделайте оценку погрешностей и постройте доверительные интервалы для дальности полета и максимальной высоты.

Контрольные вопросы

- ❖ Отличается ли максимальная высота полёта шарика при стрельбе под углом 45^0 и при зенитной стрельбе?
- ❖ Под каким углом надо установить пистолет, чтобы максимальная высота подъёма шарика оказалась в четыре раза меньше, чем при зенитной стрельбе?
- Каким способом можно поразить цель, если дальность стрельбы под углом 30^{0} соответствует нахождению цели, но высота холма на пути снаряда немного превышает высоту поднятия снаряда?