CHAPITRE 20

Fractions rationnelle

Table des matières

Ι	Construction de $\mathbb{K}(X)$	2
II	Décomposition en éléments simples	6

Première partie $\label{eq:construction} \mbox{Construction de } \mathbb{K}(X)$

I

Proposition

Définition: On définit la relation $\sim \operatorname{sur} \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$ par

$$(P,Q) \sim (A,B) \iff PB = QA$$

Cette relation est une relation d'équivalence. On note $(\mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\}))/_{\sim}$. Les éléments de $\mathbb{K}(X)$ sont appelés <u>fractions rationnelles</u>.

On note $\frac{P}{Q}$ la classe d'équivalence du couple (P,Q).

Proposition: Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$ et $R \in \mathbb{K}[X] \setminus \{0\}$. Alors

 $\frac{PR}{QR} = \frac{P}{Q}$

Définition: Soit $(P,Q) \in \mathbb{K}[X] \setminus (\mathbb{K}[X] \setminus \{0\})$. On dit que la fraction $\frac{P}{Q}$ est sous forme <u>irréductible</u> si $P \wedge Q = 1$.

Proposition

Définition: Soient $(P,Q) \sim (A,B)$. Alors

$$\deg(P) - \deg(Q) = \deg(A) - \deg(B)$$

Le <u>degré</u> de $\frac{P}{Q}$ est $\deg(P) - \deg(Q)$. On note ce "nombre" $\deg\left(\frac{P}{Q}\right)$.

Proposition

Définition: Soient $(P,Q) \sim (A,B)$ et $(R,S) \sim (C,D)$. Alors, $(PR,QS) \sim (AC,BD)$

Le produit de $\frac{P}{Q}$ avec $\frac{R}{S}$ est $\frac{PR}{QS}$

Proposition

Définition: Avec les notations précédentes,

$$(PS + RQ, QS) \sim (AD + BC, BD)$$

On définit la somme de $\frac{P}{Q}$ et $\frac{R}{S}$ par

$$\frac{P}{Q} + \frac{R}{S} = \frac{PS + RQ}{QS}$$

Théorème: $(\mathbb{K}(X), +, \times)$ est un corps.

Proposition:

osition:
$$\forall P,A\in\mathbb{K}[X],\forall Q\in\mathbb{K}[X]\setminus\{0\},\qquad \frac{P}{Q}+\frac{A}{Q}=\frac{P+A}{Q}$$

Proposition: $i: \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}(X) \\ P & \longmapsto & \frac{P}{1} \end{array}$ est un morphisme d'anneaux in-

Définition: Soient $\lambda \in \mathbb{K}$ et $F = \frac{P}{Q} \in \mathbb{K}(X)$. On pose

$$\lambda F = \frac{\lambda P}{Q} = \frac{\lambda}{1} \times \frac{P}{Q}$$

Proposition: $(\mathbb{K}(X), +, \cdot)$ est un \mathbb{K} -espace vectoriel et $i: \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}(X) \\ P & \longmapsto & \frac{P}{1} \end{array}$ est linéaire.

Remarque:

On peut identifier $P \in \mathbb{K}[X]$ avec $\frac{P}{1} \in \mathbb{K}(X)$ i.e. écrire $P = \frac{P}{1}$ et alors

 $\int \mathbb{K}[X]$ est un sous-anneau de $\mathbb{K}(X)$

 $\mathbb{K}[X]$ est un sous-espace vectoriel de $\mathbb{K}(X)$

De plus, les deux définitions de degré coïncident.

Proposition: Soit $F, G \in \mathbb{K}(X)$.

- $\begin{aligned} 1. & \deg(F+G) \leqslant \max(\deg F, \deg G) \\ & \text{Si } \deg(F) \neq \deg(G) \text{ alors } \deg(F+G) = \max(\deg F, \deg G) \,; \end{aligned}$
- 2. $\deg(FG) = \deg(F) + \deg(G)$; 3. Si $F \neq 0$, $\deg\left(\frac{1}{F}\right) = -\deg(F)$.

Deuxième partie Décomposition en éléments simples

II

Définition

Lemme:
$$\forall F \in \mathbb{K}(X), \exists ! (E,G) \in \mathbb{K}[X] \times \mathbb{K}(X), \begin{cases} F = E + G \\ \deg(G) < 0 \end{cases}$$
 On dit que E est la partie entière de F .

$$\begin{cases} (P,A,B) \in \mathbb{K}[X]^3; \\ A \neq 0; B \neq 0; \\ A \wedge B = 1; \deg F < 0. \end{cases}$$

Lemme: Soit $H \in \mathbb{K}[X]$ irréductible, $n \in \mathbb{N}_*$, $P \in \mathbb{K}[X]$, $F = \frac{P}{H^n}$ et $\deg F < 0$. Alors, $\begin{cases} \exists ! (U,V) \in \mathbb{K}[X]^2, F = \frac{U}{H^n} + \frac{V}{H^{n-1}}; \\ \deg U < \deg H; \\ \deg \left(\frac{V}{H^{n+1}}\right) < 0. \end{cases}$

$$\begin{cases} \exists ! (U, V) \in \mathbb{K}[X]^2, F = \frac{U}{H^n} + \frac{V}{H^{n-1}} \\ \deg U < \deg H; \\ \deg \left(\frac{V}{H^{n+1}}\right) < 0. \end{cases}$$

Théorème (Théorème de décomposition en éléments simples sur $\mathbb{C}(\mathbf{X})$): Soit $F \in \mathbb{K}(X)$, $F = \frac{P}{Q}$ la forme irréductible de F. On note (z_1, \ldots, z_p) les racines complexes de Q et (μ_1, \ldots, μ_p) leur multiplicité.

7

II

Alors

$$\exists! (E, a_{1,1}, \dots, a_{1,\mu_1}, a_{2,1}, \dots, a_{2,\mu_2}, \dots, a_{p,1}, \dots, a_{p,\mu_p}) \in \mathbb{C}[X] \times \mathbb{C}^{\deg Q},$$

$$F = E + \sum_{i=1}^{p} \left(\sum_{j=1}^{\mu_i} \frac{a_{i,j}}{(X - z_i)^j} \right).$$

Théorème (Théorème de décomposition en éléments simples sur $\mathbb{R}(X)$): Soit $(P,Q) \in \mathbb{R}[X]^2$, $P \wedge Q = 1$, Q unitaire, $Q \notin \{0,1\}$. On pose

$$Q = \prod_{i=1}^{p} (X - a_i)^{\mu_i} \prod_{k=1}^{q} (X^2 + \alpha_k X + \beta_k)^{\nu_k}$$

avec

$$\begin{cases} p \in \mathbb{N}, q \in \mathbb{N}, \\ (a_1, \dots, a_p) \in \mathbb{R}^p \\ (\alpha_1, \dots, \alpha_q, \beta_1, \dots, \beta_q) \in \mathbb{R}^{2q} \\ (\mu_1, \dots, \mu_p, \nu_1, \dots, \nu_p) \in \mathbb{N}^{p+q} \\ \forall j \in [1, q], \alpha_k^2 - 4\beta_k < 0 \end{cases}$$

Alors

$$\begin{split} \exists ! (E, \gamma_{1,1}, \dots, \gamma_{1,\mu_1}, \gamma_{2,1}, \dots, \gamma_{2,\mu_2}, \dots, \gamma_{p,1}, \dots, \gamma_{p,\mu_p}, \\ \delta_{1,1}, \dots, \delta_{1,\nu_1}, \delta_{2,1}, \dots, \delta_{2,\nu_2}, \dots, \delta_{q,1}, \dots, \delta_{q,\nu_q}, \\ \varepsilon_{1,1}, \dots, \varepsilon_{1,\nu_1}, \varepsilon_{2,1}, \dots, \varepsilon_{2,\nu_2}, \dots, \varepsilon_{q,1}, \dots, \varepsilon_{q,\nu_q}) \\ \in \mathbb{R}[X] \times \mathbb{R}^{\mu_1 + \dots + \mu_p} \times \mathbb{R}^{2(\nu_1 + \dots + \nu_q)} \end{split}$$

$$\begin{split} \frac{P}{Q} &= E + \sum_{i=1}^{p} \sum_{j=1}^{\mu_{i}} \frac{\gamma_{i,j}}{(X - a_{i})^{j}} \\ &+ \sum_{k=1}^{q} \sum_{j=1}^{\nu_{k}} \frac{\delta_{k,j} X + \varepsilon_{k,j}}{\left(X^{2} + \alpha_{k} X + \beta_{k}\right)^{j}} \end{split}$$

 $\textbf{D\'efinition:} \quad \text{Soit } F \in \mathbb{C}(X). \text{ Soient } (P,Q) \in \mathbb{C}[X]^2 \text{ tels que } \begin{cases} P \wedge Q = 1 \\ F = \frac{P}{Q} \end{cases} .$

Les racines de P sont appelées <u>zéros de F</u> Les racines de Q sont appelées <u>pôles de F</u> **Proposition:** Soit $F \in \mathbb{C}(X)$ et $z \in \mathbb{C}$ un pôle simple de F. Le coefficiant devant $\frac{1}{X-z}$ dans la décomposition en éléments simples de F est $\frac{P(z)}{Q'(z)}$.

Proposition: Soit $P \in \mathbb{C}[X]$ avec $\deg(P) \geqslant 1, (z_1, \dots, z_p)$ les racines de P, μ_1, \dots, μ_p leur multiplicité. Alors $\frac{P'}{P} = \sum_{i=1}^p \frac{\mu_i}{X - z_i}$

$$\frac{P'}{P} = \sum_{i=1}^{p} \frac{\mu_i}{X - z_i}$$

Remarque:

Il existe un "truc" pour retenir cette formule :

$$\frac{P'}{P} = \underbrace{\ln(P)'}_{\text{n'existe pas}} = \left(\ln\left(\alpha \prod_{i=1}^{p} (X - z_i)^{\mu_i}\right)\right)' = \left(\sum_{i=1}^{p} \mu_i \ln(X - z_i)\right)' = \sum_{i=1}^{p} \mu_i \frac{1}{X - z_i}$$