Posicionamento de ERBs

Objetivo

O objetivo do problema é maximizar a cobertura, determinando as melhores posições para as estações-base fornecidas. Os espaços em que a cobertura é desejada são representados por hexágonos.

Definição

Cada estação-base é representada por uma área circular de raio R com centro c e faz parte de um conjunto $BS = \{BS_1, BS_2, ..., BS_K\}$, onde K é o número de estações-base na instância.

O espaço de posicionamento é determinado por uma matriz quadrada binária M com dimensão tMax.

Cada hexágono é representado por uma tupla H = (x, y), onde (x, y) é seu centro, e pela distância de seu centro aos vértices D.

Definimos uma cidade como a união dos hexágonos que a compõe $L = \{H_1 \cup H_2 \cup ... \cup H_n\}, n$ é o número de hexágonos.

A cobertura C, que deve ser maximizada, é calculada como segue:

$$\frac{(BS_1 \cup BS_2 \cup ... \cup BS_K) \cap L}{L}$$

Ou seja, o numerador é a área da forma geométrica determinada pela união das circunferências formadas pelas estações interseccionada com a cidade *L*. O denominador é simplesmente a área da forma geométrica criada pelos hexágonos unidos.

Instâncias

Em todas as instâncias o valor de tMax é 625.

Instância 1

K	7
D	63
R	63
H_1	(219, 287)
H_2	(219, 393)
H_3	(312, 234)
H_4	(312, 340)
H_5	(312, 448)
H_6	(405, 287)
H_7	(405, 393)

Ilustração:

Instância 2

K	3
D	63
R	170
H_1	(127, 124)
H_2	(127, 231)
H_3	(127, 340)
H_4	(127, 448)
H_5	(220, 178)
H_6	(220, 286)
H_7	(220, 394)
H_8	(220, 502)
H_9	(312, 124)
H_{10}	(312, 231)
H_{11}	(312, 340)
H_{12}	(312, 448)
H_{13}	(406, 178)
H_{14}	(406, 286)
H_{15}	(406, 394)
H_{16}	(406, 502)
H_{17}	(499, 124)
H_{18}	(499, 231)
H_{19}	(499, 340)
H_{20}	(499, 448)

Ilustração

Instância 3

K	6
D	63
R	126
H_1	(127, 231)
H_2	(127, 340)
H_3	(127,448)
H_4	(220, 178)
H_5	(220, 286)
H_6	(220, 394)
H_7	(312, 124)
H_8	(312, 231)
H_9	(406, 178)
H_{10}	(406, 286)
H_{11}	(406, 394)
H_{12}	(499, 231)
H_{13}	(499, 340)
H_{14}	(499, 448)

Ilustração

