1.5 HW4

Theorem 1.5.1. (Monotone Convergence Theorem) Let f_n be a sequence of measurable functions on E:

- (a) If $f_n \nearrow f$ a.e. on E and there exists $\varphi \in L(E)$ such that $f_n \ge \varphi$ a.e. on E for all n, then $\int_E f_n \to \int_E f$.
- (b) If $f_n \searrow f$ a.e. on E and there exists $\varphi \in L(E)$ such that $f_n \leq \varphi$ a.e. on E for all n, then $\int_E f_n \to \int_E f$.

Question 33

Show that Monotone convergence Theorem may fail if we drop the hypothesis that f_n is dominated by φ . Show that Uniform convergence Theorem may fail if we drop the hypothesis that domain is of finite measure.

Proof. For failure of first part of monotone convergence Theorem, define $f_n:(0,\infty)\to\mathbb{R}$ by

$$f_n(x) \triangleq \begin{cases} 1 & \text{if } x < n \\ -\infty & \text{if } x \ge n \end{cases}$$

Observe that $f_n \nearrow 1$ but $\int_0^\infty f_n = -\infty$ does not converge to $\int_0^\infty 1 = \infty$. For failure of the second part of monotone convergence Theorem, define $f_n: (0, \infty) \to \mathbb{R}$ by

$$f_n \triangleq \mathbf{1}_{(n,\infty)}$$

Observe that $f_n \searrow 0$ but $\int_0^\infty f_n = \infty$ does not converge to 0. For failure of uniform convergence Theorem, consider $\frac{1}{n} \to 0$ uniformly on \mathbb{R} but

$$\int_{\mathbb{R}} \frac{1}{n} dx = \infty \text{ does not converge to } \int_{\mathbb{R}} 0 dx = 0$$

Question 34

If $f \in L(0,1)$, show that $x^n f(x) \in L(0,1)$ for all $n \in \mathbb{N}$ and $\int_0^1 x^n f(x) dx \to 0$.

Proof. Because f(x) and x^n are both measurable on (0,1), we know $x^n f(x)$ is measurable on (0,1). Because 0 < x < 1, if f(x) is finite, then $x^n f(x) \to 0$ as $n \to \infty$. Because f is integrable on (0,1), we know that f is finite almost everywhere on (0,1). We now see that

 $x^n f(x)$ converge to 0 almost everywhere on (0,1). Again because 0 < x < 1, we see that $|x^n f(x)| \le |f(x)|$. In other words, $x^n f(x)$ is dominated by $|f| \in L(0,1)$. We now can use dominated convergence Theorem to deduce $\int_0^1 x^n f(x) \to 0$.

$\overline{\text{Question}}$ 35

Let $f:(0,1)^2\to\mathbb{R}$ satisfy

- (a) f(x, y) is always integrable in y on (0, 1).
- (b) $\frac{\partial f}{\partial x}$ exists and is bounded on $(0,1)^2$.

Show that $\frac{\partial f}{\partial x}$ is a measurable function in y for all x and

$$\frac{d}{dx} \int_0^1 f(x,y) dy = \int_0^1 \frac{\partial}{\partial x} f(x,y) dy$$

Proof. For all $n \geq 2$, define $g_n : (0, 1 - \frac{1}{n}) \times (0, 1)$ by

$$g_n(x,y) \triangleq \frac{f(x+\frac{1}{n},y) - f(x,y)}{\frac{1}{n}}$$

It is clear that for all $n \geq 2$

$$\left. \frac{\partial f}{\partial x} \right|_{(0,1-\frac{1}{n})\times(0,1)} = \lim_{k\to\infty} \left(g_{n+k} \right|_{(0,1-\frac{1}{n})\times(0,1)}$$

This implies that

$$\frac{\partial f}{\partial x}$$
 is measurable on $(0, 1 - \frac{1}{n}) \times (0, 1)$ for all $n \geq 2$

It then follows that $\frac{\partial f}{\partial x}$ is measurable on $(0,1)^2$. Observe that for all $x_0 \in (0,1)$, we have

$$\{y \in (0,1) : \frac{\partial f}{\partial x}(x_0, y) > a\} = \{(x, y) \in (0,1)^2 : \frac{\partial f}{\partial x}(x, y) > a\} \cap (\{x_0\} \times (0,1))$$

It follows that $\frac{\partial f}{\partial x}$ is measurable in y for all x. Fix $x \in (0,1)$. By MVT, we know that for all y and h (small enough to make the following express make sense) we have

$$\frac{f(x+h,y) - f(x,y)}{h} = \frac{\partial f}{\partial x}(x+t,y) < M \text{ for some } t$$

where M is the constant that bounds $\frac{\partial f}{\partial x}$ on $(0,1)^2$. It then follows from DCT (dominated by M on (0,1)) that

$$\frac{d}{dx} \int_0^1 f(x,y) dy = \lim_{h \to 0} \frac{\int_0^1 f(x+h,y) dy - \int_0^1 f(x,y) dy}{h}$$

$$= \lim_{h \to 0} \int_0^1 \frac{f(x+h,y) - f(x,y)}{h} dy$$

$$= \int_0^1 \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} dy$$

$$= \int_0^1 \frac{\partial f}{\partial x} (x,y) dy$$

Question 36

Suppose p > 0 and $\int_E |f - f_n|^p \to 0$. Show that $f_n \stackrel{m}{\to} f$ (and thus have a almost everywhere convergent subsequence).

Proof. Fix ϵ . The proof follows from Tchebysheff's inequality,

$$\left| \left\{ \left| f_n - f \right| > \epsilon \right\} \right| = \left| \left\{ \left| f_n - f \right|^p > \epsilon^p \right\} \right| \ge \frac{\int_E \left| f - f_n \right|^p}{\epsilon^p} \to 0$$

Question 37

If p > 0, $\int_E |f - f_n|^p \to 0$ and $\int_E |f_n|^p \le M$ for all n, show that $\int_E |f|^p \le M$.

Proof. By the last question, there exist some subsequence f_{n_k} converge to f almost everywhere. It then follows that $|f_{n_k}|^p \to |f|^p$ almost everywhere. We then have from Fatou's Lemma that

$$\int_{E} |f|^{p} \le \liminf_{k \to \infty} \int_{E} |f_{n_{k}}|^{p} \le M$$

Question 38

Give an example of a bounded continuous f on $(0, \infty)$ such that $\lim_{x\to\infty} f(x) = 0$ but $f \notin L^p((0, \infty))$.

Proof. Let $f(x) \triangleq \frac{1}{\ln(x+2)}$. It is clear that f is bounded continuous on $(0, \infty)$ and converge to 0 at infinity. Note that doing a change of variables $t = \ln(x+2)$, we have $dt = \frac{dx}{x+2} = \frac{dx}{e^t}$. Then for all p > 0, we have

$$\int_0^\infty f^p(x)dx = \int_0^\infty \frac{1}{(\ln(x+2))^p} dx$$
$$= \int_{\ln 2}^\infty \frac{e^t}{t^p} dt$$

which diverge since the integrand itself converge to ∞ .

Question 39

If $\int_A f = 0$ for every measurable subset A of measurable set E, show that f = 0 almost everywhere on E.

Proof. Observe that for all $n \in \mathbb{N}$

$$0 = \int_{\{f > \frac{1}{n}\}} f dx \ge \int_{\{f > \frac{1}{n}\}} \frac{1}{n} dx = \frac{\left| \{f > \frac{1}{n}\} \right|}{n}$$

This implies that $\left|\{f>\frac{1}{n}\}\right|=0$ for all $n\in\mathbb{N}$. Again observe for all $n\in\mathbb{N}$

$$0 = \int_{\{f < \frac{-1}{n}\}} f dx \le \int_{\{f < \frac{-1}{n}\}} \frac{-1}{n} dx = \frac{-\left|\{f < \frac{-1}{n}\}\right|}{n}$$

This implies that $\left|\left\{f<\frac{-1}{n}\right\}\right|=0$ for all $n\in\mathbb{N}$. It then follows from $\left\{f>\frac{1}{n}\right\}\cup\left\{f<\frac{-1}{n}\right\}\nearrow\left\{f\neq0\right\}$ that $\left|\left\{f\neq0\right\}\right|=0$, i.e., f=0 almost everywhere on E.