

Разработка алгоритма для синтеза речи по заранее неизвестному тексту на русском языке

Студент: Овчинникова Анастасия Павловна

Научный руководитель:

доцент кафедры ИУ-7, к. ф.-м. н. Романова Татьяна Николаевна

Актуальность

- Успешное развитие систем разговорного языка повысит доступность компьютеров и автоматизированных систем для широкого круга пользователей.
- В настоящее время технология автоматического синтеза находит широкое применение в таких отраслях, как телекоммуникации, мобильные устройства, автомобильная индустрия, компьютеризованные системы, образовательные системы и многих других.
- Голосовые роботы берут на себя большую часть рутинных задач, например, в колл-центрах.
- Использование систем синтеза речи может повысить качество жизни слабослышащих, глухих, немых людей.

Цель и задачи работы

Цель: разработка алгоритма для синтеза речи по произвольному тексту на русском языке и создание ПО для озвучивания текста на основе этого алгоритма.

Задачи, которые следует решить для достижения поставленной цели:

- провести аналитическое исследование существующих подходов к синтезу речи и выбрать наиболее подходящий;
- на основе проведенного исследования модифицировать выбранный метод для достижения поставленной цели;
- разработать алгоритм по модифицированному методу;
- создать программное обеспечение, реализующее данный алгоритм;
- разработать тесты для разработанного ПО;
- провести исследование разработанного ПО для оценки качества синтезируемой речи.

Методы синтеза речи

Название метода	Достоинства	Недостатки		
Параметрический	• Очень высокое качество речи.	• Набор текстовых сообщений, которые необходимо озвучить, должен быть заранее известен.		
Компилятивный	 Простота. Качество синтезируемой речи зависит только качества записи элементов синтеза. 	 Большой объем памяти для хранения предварительно записанного словаря. Содержание и вариативность синтезируемой речи ограничена этим словарем. 		
По фонетическим правилам	• Позволяет синтезировать речь по заранее неизвестному тексту.	 Самый сложный из всех трех методов. Синтезированная речь имеет худшее качество, чем в предыдущих двух методах. 		

Единственный метод, позволяющий озвучить произвольный заранее неизвестный текст, – синтез по фонетическим правилам.

Исходные элементы синтеза

Исходные элементы	Достоинства	Недостатки
Микросегменты	• Наиболее «детально» из всех вариантов учитывается контекст.	Большой объем БД.Трудно выделить границу микросегментов.Много «склеек».
Аллофоны	 При использовании мини-набора объем БД будет небольшим. 	 Трудно выделить границу аллофонов. Для улучшения качества синтеза необходимо сильно увеличить объем БД.
Дифоны	• Контекст учитывается более детально.	 Трудно выделить границу дифонов. Для улучшения качества синтеза необходимо сильно увеличить объем БД.
Полуслоги	• Контекст учитывается более детально.	• Трудно выделить границу полуслогов.
Слоги	• Меньше проблем с выделением границ.	• Большой объем БД.

Аллофоны являются наилучшим компромиссом между возможным качеством синтезируемой речи и объемом БД исходных элементов.

Создание акустической базы данных

- Всего в русском языке насчитывается 42 фонемы.
- Обычно выделяют и используют два практически обоснованных варианта набора аллофонов: мининабор (420 аллофонов) и макси-набор (4140 аллофонов).
- В данной работе используется мини-набор (420 аллофонов).
- Для создания акустической базы данных был использован корпус RUSLAN.

Модификация метода аллофонного синтеза

В потоке речи взаимовлияние соседних аллофонов друг на друга оказывается настолько сильным, что при создании БД аллофонов не всегда удается провести между ними четкую границу.

В данной работе в качестве исходных элементов синтеза использовать не только аллофоны, но и более протяжённые фонетические сегменты (аллослоги).

Спектрограмма слова «загремела» (получена с помощью Adobe Audition).

Функциональная модель реализации метода

Лингвистический текстовый процессор

Схема алгоритма работы лингвистического текстового процессора

- Задачей лингвистического текстового процессора является предварительная обработка текста.
- Под дешифровкой аббревиатур здесь понимается установление правил их чтения, а не расшифровка слов, сокращением которых она является.

Ограничения разработанного лингвистического текстового процессора (ЛТП)

Блок очистки текста удаляет из входного текста выделенные ограничения.

Что ЛТП может делать:

- обрабатывать собственно текст на русском языке, состоящий из предложений или отдельных слов и знаков препинания;
- дешифровать аббревиатуры;
- заменять «е» на «ё» в словах, где написана буква «е» вместо «ё».

Что ЛТП не может обрабатывать:

• сокращения.

Что ЛТП удаляет из текста:

- иностранные слова;
- специальные символы;
- многоразрядные и дробные числа;
- телефонные номера;
- обозначения времени и даты;
- интернет-адреса;
- какую-либо разметку текста (например, просодическую);
- математические выражения.

Схема разработанного алгоритма для дешифровки неизвестных аббревиатур

Просодический процессор

- Просодический процессор выделяет в каждом предложении последовательности слов, связанные синтаксической связью, которые представляют из себя цельные просодические единицы (синтагмы).
- В речи синтагмы отделяются друг от друга паузами.
- В данной работе производится выделение только пунктуационных синтагм.
- Считается, что пунктуационные синтагмы ограничены следующими знаками препинания: [;], [:], [,], [-], [(], [)], [«], [«], [,-]. Если знак препинания стоит после сочинительного союза (и, да, но и, так и, а и др.), то граница синтагмы в этом месте не проводится.

Фонетический процессор

Схема алгоритма работы фонетического процессора

- Задачей фонетического процессора является преобразование орфографического текста в последовательность аллофонов и деление последовательности аллофонов на аллослоги.
- Фонетический процессор использует правила преобразования орфографического текста в фонемную последовательность (с учетом целого ряд сложившихся исключений).
- Аллофон является конкретной реализацией фонемы в речи. Аллофоны делятся на комбинаторные (определяются ближайшим контекстом фонему) и позиционные (определяются положением фонемы по отношению к ударному слогу в слове).

Акустический процессор

- Задачей акустического процессора является выбор необходимых элементов из базы данных исходных элементов и их склейка в общий выходной аудиофайл.
- После склейки всех аллофонов на синтагму накладывается эффект fade in (постепенное увеличение громкости аудио-дорожки к ее концу) с помощью библиотеки pydub.
- Для того, чтобы речь звучала более равномерно, используется алгоритм интерполяции звуковых сигналов (увеличения частоты дискретизации сигнала в N раз) из библиотеки pydub.

Организация хранения данных

- Для разработанной системы синтеза речи необходимо четыре словаря и БД исходных элементов синтеза.
- Для хранения словарей используется NoSQL база данных типа «ключ-значение».
- Исходные элементы хранятся в файловой системе в виде звуковых файлов.

Структура хранилища исходных элементов

Результаты тестирования

Для тестирования разработанного программного обеспечения были разработаны unit-тесты. Все тесты были пройдены.

Nº	Входные данные	Ожидаемый результат		
1	"ПРИНЁ+С_ИГРУ+ШКУ	["p", "r", "i", "n", "o", "+", "s", "_", "y", "g", "r",		
	п	"u", "+", "sh", "k", "u"]		
2	"ОТЦА+"	["a", "c", "c", "a", "+"]		

Примеры входных данных и ожидаемых результатов тестов для блока преобразования буквафонема.

Nº	Входные данные	Ожидаемый результат	
1	["#", "u"]	["pause_1", "u_100"]	
2	["_", "a", "_"]	["pause_0", "a_100", "pause_0"]	

Nº	Входные данные	Ожидаемый результат
1	"КО+ЛОСА"	[["k", "o"], ["l", "a"], ["s", "a"]]
2	"A+MMO"	[["a"], ["m", "m", "a"]]

Примеры входных данных и ожидаемых результатов тестов для блока преобразования фонема-аллофон.

Примеры входных данных и ожидаемых результатов тестов для блока деления на открытые слоги.

Сравнение исходного и модифицированного методов

Исходные элементы синтеза	Фразовая разборчивость	Смысловая разборчивость	Словесная разборчивость	Естественность (0-5 баллов)
Аллофоны	42%	Неудовлетворительная	28%	< 1,7 балла
Аллофоны+аллослоги	100%	Отличная	100%	3,0 — 3,4 балла

Сравнение размера БД при использовании различных исходных элементов синтеза

Заключение

В результате выполненной работы были решены все поставленные задачи.

Было создано ПО, которое:

- позволяет синтезировать речь по произвольному входному тексту, качество речи достаточно высоко: речь понятна, но не эмоциональна (нет интонации);
- позволяет повысить коммуникативные возможности слабослышащих, глухих, немых людей;
- может быть успешно использовано в различных отраслях при создании голосовых роботов.

Дальнейшее развитие

- Улучшение качества синтезируемой речи за счет увеличения объема БД исходных элементов.
- Усовершенствование алгоритмов обработки входного текста.
- Поддержка пользовательской разметки (расстановка словесного и синтагматического ударения).
- Интеграция синтаксического и семантического анализатора с целью уменьшения ограничений, накладывающихся на исходный текст.
- Добавление интонационного оформления речи.

Спасибо за внимание!

Критерии оценки качества синтезируемой речи

- Словесная разборчивость оценивается количество правильно воспринятых никак не связанных между собой слов;
- Фразовая разборчивость оценивается количество правильно распознанных фраз;
- Смысловая разборчивость оценивается понимание содержания речи.
- Фразовая разборчивость должна быть на уровне 98-100%. При оценке словесной разборчивости требуется результат не менее 99%.

Градации качества при оценке смысловой разборчивости речи

- отлично полное понимание речи, отсутствие переспросов;
- хорошо понимание речи полное, но возможны переспросы необычных слов, фамилий и терминов;
- удовлетворительно переспросы отдельных слов и фраз, но в целом восприятие речевой информации правильное;
- неудовлетворительно отдельные слова непонятны даже при переспросе;
- плохо смысл речевой информации понимается с трудом.

Градации качества при оценке естественности речи

- 4,6 5,0 баллов естественность звучания речи, полное отсутствие искажений;
- 4,0 4,5 естественность звучания речи, малозаметные искажения;
- 3,5 3,9 естественность звучания речи, слабое постоянное присутствие искажений;
- 3,0 3,4 незначительное нарушение естественности, заметное присутствие искажений;
- 2,5 2,9 заметное нарушение естественности, присутствие искажений или помех;
- 1,7 2,4 существенное искажение естественности, постоянное присутствие искажений или помех;
- < 1,7 сильные искажения, механический голос, потеря естественности.

Контрольные примеры

- «Темной зимней ночью несколько английских судов направлялись к бухте».
- «Загремела с визгом якорная цепь».
- «Молния блистала все чаще и ярче».
- «На пароходе зажгли электричество».
- «Они пошли в гостиную к роялю».
- «Жара понемногу спадала».
- «Жарко от летнего солнца и от теплой земли».

- Шаромыжник.
- Свентицкой.
- Смоковников.
- Геннисон.
- Энниок.
- Эбергайль.
- Коломб.

Основные определения

- Фонема абстрактная единица языка, служащая для формирования означающего языковых знаков. Фонемы участвуют в различении звуковых оболочек. Фонема является абстрактной единицей языка, а ее конкретной реализацией в речи является звук.
- **Аллофон** реализация фонемы, один из ее вариантов, обусловленный конкретным фонетическим окружением. В отличие от фонемы, является не абстрактным понятием, а конкретным речевым звуком.
- Дифон сегмент речи между серединами соседних аллофонов.
- **Полуслог** сегмент, содержащие половину согласного и половину примыкающего к нему гласного.
- Аллослог слоговой сегмент с учетом позиционной и комбинаторной аллофонии.

Основные определения

- **Фонетическое слово** отрезок речевой цепи, объединяемый одним (словесным) ударением.
- Синтагма последовательность слов, связанных синтаксической связью, которые представляют из себя цельные просодические единицы. На границах синтагмы происходит смена просодического оформления.
- Просодические параметры подразделяются на тональные (мелодика, изменения частоты основного тона), количественно-динамические (паузы, длительность, темп и интенсивность), артикуляционные (раствор рта, назализация, смещение язычной артикуляции) и фонационные (различные типы голоса).

Диаграмма классов

