CS4361/5361 Machine Learning Fall 2020

Logistic Regression Exercise 2

Add the following functionality to the logistic_regresssion.py class provided:

- a. Adaptive learning rate reduce learning rate when mse has stopped improving
 - It receives the parameters *Ir_reduction* and *patience*
 - Multiplies Ir by Ir reduction if the lowest mse obtained has not decreased in patience epochs
 - Default values choose values that will result in no adaptive learning rate
 - Experiment with *Ir_reduction = 0.5, patience =3.*
- b. Momentum Compute gradient as a weighted average of the previous gradient estimation and the one obtained using the current batch
 - It receives the parameter *momentum*
 - Gradient = Gradient * momentum + (1-momentum) (gradient_estimate from batch)
 - Default values choose values that will result in no momentum
 - Experiment with *momentum* = 0.9
- c. Label smoothing
 - Changes target values according to formula in slides (α is the label smoothing parameter), since sigmoid function can only reach values of 0 or 1 with weights with infinite magnitude
 - Default values choose values that will result in no smoothing
 - Suggested default value *label smoothing = 0.9*

Thus the fit function would look like this:

def fit(self,X,y,batch_size=512,lr=0.1, tol =0.001, max_it = 100, display_period=-1, lr_reduction = ??, patience =??, momentum = ??, label_smoothing = ??)