Circuitos CMOS No Lineales

86.46 Microelectrónica 66.61 Tecnología de Circuitos Integrados FIUBA

- Comparador
- Schmitt Trigger
- Osciladores
- PLL Digital
- Charge Pump

Presentación Basada en el texto:

R.J. Baker - CMOS Circuit Design, Layout and Simulation 3rd Edition, Wiley – IEEE Press

Operación básica

$$v_p > v_m$$
 then $v_{out} = VDD = logic 1$

$$v_p < v_m$$
 then $v_{out} = 0 = \text{logic } 0$

- Características principales:
 - Velocidad
 - Ganancia

Diagrama en bloques

Preamp

Etapa de decisión: con realimentación positiva

Esquemático completo

Transferencia

Transferencia

Esquemático

Umbral de conmutación

Umbral de conmutación

Umbral de conmutación

Osciladores basados en ST

Osciladores basados en ST

Digital Phase-Locked Loop (DPLL)

PLL Digital

Diagrama en bloques

PLL Digital - PFD

Phase Frecuency Detector (PFD)

PLL Digital - PFD

PLL Digital -PFD

PFD output buffer

PLL Digital - PFD

PFD loop filter

PLL Digital – VCO RO

 Voltage controlled oscilator (VCO) 1: Starved Ring Oscilator

PLL Digital -VCO RO

Linealización del VCO 1

PLL Digital – VCO SC

VCO 2: Source-Coupled

PLL Digital – VCO SC

VCO 2: Source-Coupled

PLL Digital - FD

Divisor de frecuencia

Charge Pump

Generador de tensión mayor a V_{DD}

Charge Pump

Dickson CP

Charge Pump

Dickson CP multistage

