# Suites numériques

# 1 Généralités

# 1.1 Définition

#### Définition 1.1

On appelle suite réelle toute famille d'éléments de  $\mathbb{R}$  indexée sur  $\mathbb{N}$  ou, de manière équivalente, toute application de  $\mathbb{N}$  dans  $\mathbb{R}$ . L'ensemble des suites réelles est donc  $\mathbb{R}^{\mathbb{N}}$ .

**Remarque.** Une suite de  $\mathbb{R}^{\mathbb{N}}$  peut-être notée u (application) ou  $(u_n)_{n\in\mathbb{N}}$  (famille). On emploie également la notation  $(u_n)$ . Si  $u\in\mathbb{R}^{\mathbb{N}}$ , le terme général de u est noté  $u_n$  (famille) plutôt que u(n) (application).

**Remarque.** Par esprit de simplification, on ne traitera dans ce chapitre que des suites définies à partir du rang 0. On adaptera pour des suites définies à partir d'un certain rang  $n_0 \in \mathbb{N}$ .

#### Modes de définition d'une suite -

Une suite peut être définie de deux manières différentes.

De manière explicite On donne une formule explicite de  $u_n$  en fonction de n du type  $u_n = f(n)$ .

Par récurrence On donne les k premiers termes de la suite et une relation de récurrence exprimant  $u_n$  en fonction des k termes précédents. On dit alors que  $(u_n)$  est une suite récurrente d'ordre k. Une suite récurrente d'ordre 1 vérifie donc une relation de récurrence du type  $u_{n+1} = f(u_n)$ .

De manière implicite  $u_n$  est défini comme solution d'une équation dépendant de n.

#### Exemple 1.1

- La suite de terme général  $u_n = \frac{1}{n^2 + 1}$  est une suite définie de manière explicite.
- La suite  $(u_n)$  de premiers termes  $u_0 = 1$  et  $u_1 = 1$  et définie par la relation de récurrence  $u_{n+2} = u_{n+1} + u_n$  est une suite récurrente d'ordre 2.



ATTENTION! Une relation de récurrence ne permet pas toujours de bien définir une suite. Par exemple, il n'existe pas de suite définie par  $u_0 = 1$  et  $u_{n+1} = 2 + \sqrt{1 - u_n}$ .

La proposition qui suit permet néanmoins de se tirer d'affaire.

# **Proposition 1.1**

Soient D une partie de  $\mathbb{R}$  et f une fonction définie sur D à valeurs dans  $\mathbb{R}$ . On suppose que D est stable par f i.e.  $f(D) \subset D$ . Alors, pour tout  $d \in D$ , il existe une unique suite définie par  $u_0 = d$  et la relation de récurrence  $u_{n+1} = f(u_n)$ . De plus, pour tout  $n \in \mathbb{N}$ ,  $u_n \in D$ .

#### Représentation graphique d'une suite récurrente d'ordre 1 –

On obtient la représentation graphique d'une suite  $(u_n)$  définie par la relation de récurrence  $u_{n+1} = f(u_n)$  en traçant le graphe de f et la première bissectrice.



# 1.2 Vocabulaire

# Définition 1.2 Suites constantes, stationnaires

Une suite  $(u_n)$  est **constante** s'il existe  $C \in \mathbb{R}$  tel que  $\forall n \in \mathbb{N}$ ,  $u_n = C$ . Une suite est **stationnaire** si elle constante à partir d'un certain rang.

#### **Définition 1.3**

On dit qu'une suite  $(u_n)$  est majorée (resp. minorée) s'il existe  $C \in \mathbb{R}$  tel que  $\forall n \in \mathbb{N}$ ,  $u_n \leq C$  (resp.  $u_n \geq C$ ). On dit qu'une suite est bornée si elle est majorée et minorée.

# Méthode Prouver qu'une suite est bornée

Pour prouver qu'une suite  $(u_n)$  est bornée, il est nécessaire et suffisant d'exhiber une constante  $C \in \mathbb{R}_+$  telle que  $\forall n \in \mathbb{N}$ ,  $|u_n| \leq C$ .

#### Définition 1.4 Sens de variation

Une suite réelle  $(u_n)$  est croissante (resp. décroissante) si

$$\forall (n,p) \in \mathbb{N}^2, \ n \leq p \implies u_n \leq u_p$$

Une suite est monotone si elle est croissante ou décroissante.

Une suite réelle est strictement croissante (resp. strictement décroissante) si

$$\forall (n, p) \in \mathbb{N}^2, \ n$$

Une suite est strictement monotone si elle est strictement croissante ou strictement décroissante.



**ATTENTION!** Une suite peut n'être ni croissante, ni décroissante. C'est le cas par exemple des suites géométriques de raison négative.

### **Proposition 1.2**

Soit  $(u_n)$  une suite réelle. Alors

- $(u_n)$  est croissante si et seulement si  $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$ ;
- $(u_n)$  est décroissante si et seulement si  $\forall n \in \mathbb{N}, u_n \geq u_{n+1}$ ;
- $(u_n)$  est strictement croissante si et seulement si  $\forall n \in \mathbb{N}, \ u_n < u_{n+1}$ ;
- $(u_n)$  est strictement décroissante si et seulement si  $\forall n \in \mathbb{N}, \ u_n > u_{n+1}$ .

# Méthode Sens de variation d'une suite

Pour déterminer le sens de variation d'un suite  $(u_n)$ :

- on peut étudier le signe de  $u_{n+1} u_n$ ;
- si la suite est **strictement positive**, on peut étudier la position de  $\frac{u_{n+1}}{u_n}$  par rapport à 1.

**Remarque.** On utilisera la première méthode lorsque le terme général est défini à partir de sommes et de différences. On utilisera la deuxième méthode lorsque le terme général est défini à partir de produits et de quotients.

#### Exercice 1.1

Déterminer le sens de variation des suites de terme généraux  $u_n = \sum_{k=1}^n \frac{1}{k}$  et  $v_n = \frac{1 \times 3 \times \cdots \times (2n-1)}{2 \times 4 \times \cdots \times (2n)}$ .

# **Proposition 1.3**

Si une suite  $(u_n)$  est définie explicitement par  $u_n = f(n)$  pour tout  $n \in \mathbb{N}$ . Si f est constante, majorée, minorée, bornée, croissante ou décroissante, alors  $(u_n)$  est constante, majorée, minorée, bornée, croissante ou décroissante.



**ATTENTION!** La réciproque est **fausse**.

# 1.3 Suites classiques

#### Définition 1.5 Suites arithmétiques

On appelle suite **arithmétique** de **raison**  $r \in \mathbb{K}$  toute suite  $(u_n)$  vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + r$$

On a alors  $u_n = u_0 + nr$  pour tout  $n \in \mathbb{N}$ .

#### Définition 1.6 Suites géométriques

On appelle suite **géométrique** de **raison**  $q \in \mathbb{K}$  toute suite  $(u_n)$  vérifiant la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = qu_n$$

On a alors  $u_n = u_0 q^n$  pour tout  $n \in \mathbb{N}$ .

# Définition 1.7 Suites arithmético-géométriques

On appelle suite **arithmético-géométrique** toute suite  $(u_n)$  vérifiant une relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$$

avec  $(a, b) \in \mathbb{K}^2$ .

# Méthode Calculer le terme général d'une suite aritmético-géométrique

Soit  $(u_n)$  vérifiant la relation de récurrence  $u_{n+1} = au_n + b$ . On suppose  $a \ne 1$  (sinon  $(u_n)$  est arithmétique).

- On détermine un point fixe de  $x \mapsto ax + b$  i.e. on résout l'équation x = ax + b. Comme  $a \ne 1$ , on trouve une unique solution  $l = \frac{b}{1-a}$ .
- On montre que la suite  $(u_n l)$  est géométrique de raison a.
- On en déduit une expression du terme général de  $(u_n l)$  puis de  $(u_n)$ .

# Exercice 1.2

Déterminer le terme général de la suite  $(u_n)$  définie par  $\begin{cases} \forall n \in \mathbb{N} \ u_{n+1} = 3u_n - 4, \\ u_0 = -1 \end{cases}.$ 

#### Définition 1.8 Suites récurrentes linéaires homogènes d'ordre 2

On dit que  $(u_n) \in \mathbb{K}^{\mathbb{N}}$  est une suite récurrente linéaire homogène d'ordre 2 s'il existe  $(a,b) \in \mathbb{K}^2$  tel que  $u_{n+2} + au_{n+1} + bu_n = 0$  pour tout  $n \in \mathbb{N}$ . Le **polynôme caractéristique** associée à une telle suite est  $X^2 + aX + b$ .

# Proposition 1.4 Forme générale des suites récurrentes linéaires d'ordre 2

Pour  $(a,b) \in \mathbb{K} \times \mathbb{K}^*$ , on note  $E_{a,b}$  l'ensemble des suites  $(u_n) \in \mathbb{K}^{\mathbb{N}}$  telles que  $u_{n+2} + au_{n+1} + bu_n = 0$  pour tout  $n \in \mathbb{N}$ .

Cas complexe :  $\mathbb{K} = \mathbb{C}$ 

- Si  $\Delta \neq 0$ ,  $E_{a,b}$  est l'ensemble des suites de terme général  $\lambda r_1^n + \mu r_2^n$  où  $r_1$  et  $r_2$  sont les racines du polynôme caractéristique et  $(\lambda, \mu) \in \mathbb{C}^2$ .
- Si  $\Delta = 0$ ,  $E_{a,b}$  est l'ensemble des suites de terme général  $(\lambda n + \mu)r^n$  où r est la racine double du polynôme caractéristique et  $(\lambda, \mu) \in \mathbb{C}^2$ .

Cas réel :  $\mathbb{K} = \mathbb{R}$ 

- Si  $\Delta > 0$ ,  $E_{a,b}$  est l'ensemble des suites de terme général  $\lambda r_1^n + \mu r_2^n$  où  $r_1$  et  $r_2$  sont les racines réelles du polynôme caractéristique et  $\lambda, \mu \in \mathbb{R}$ .
- Si  $\Delta = 0$ ,  $E_{a,b}$  est l'ensemble des suites de terme général  $(\lambda n + \mu)r^n$  où r est la racine double réelle du polynôme caractéristique et  $(\lambda, \mu) \in \mathbb{R}^2$ .
- Si  $\Delta < 0$ ,  $E_{a,b}$  est l'ensemble des suites de terme général  $\lambda r^n \cos(n\theta) + \mu r^n \sin(n\theta)$  où  $re^{\pm i\theta}$  sont les racines complexes conjuguées du polynôme caractéristique et  $(\lambda, \mu) \in \mathbb{R}^2$ .

**Remarque.** La donnée de conditions initiales (valeurs de  $u_0$  et  $u_1$ ) permettent de déterminer les constantes  $\lambda$  et  $\mu$ .

#### Exercice 1.3

- 1. Déterminer la suite réelle  $(u_n)$  telle que  $u_0 = 0$ ,  $u_1 = 1$  et  $u_{n+2} = 2u_{n+1} u_n$  pour tout  $n \in \mathbb{N}$ .
- 2. Déterminer la suite réelle  $(u_n)$  telle que  $u_0 = u_1 = 1$  et  $u_{n+2} = u_{n+1} u_n$  pour tout  $n \in \mathbb{N}$ .

# 2 Limite d'une suite

# 2.1 Définition de la limite

#### Définition 2.1 Limite d'une suite

Soit  $(u_n)$  une suite.

• Soit  $l \in \mathbb{R}$ . On dit que  $(u_n)$  admet l pour limite si :

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \implies |u_n - l| \leq \varepsilon$$

• On dit que  $(u_n)$  admet  $+\infty$  pour limite si :

$$\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geq N \implies u_n \geq A$$

• On dit que  $(u_n)$  admet  $-\infty$  pour limite si :

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geq N \implies u_n \leq A$$

Remarque. Les propositions où les inégalités larges finales sont remplacées par des inégalités strictes sont équivalentes.

# REMARQUE.

• Dans le premier cas (limite égale à l), la définition signifie que les termes de  $(u_n)$  sont tous à une distance inférieure à  $\varepsilon$  à partir d'un certain rang N. Comme on peut choisir  $\varepsilon$ , cela signifie que les termes de la suite sont aussi proches que l'on veut de l quitte à ne considérer les termes qu'à partir d'un certain rang.

Dans le second cas (limite égale à +∞), la définition signifie que les termes de (u<sub>n</sub>) sont tous supérieurs à A à partir d'un certain rang N. Comme on peut choisir A, cela signifie que les termes de la suite sont aussi grands positivement que l'on veut quitte à ne considérer les termes qu'à partir d'un certain rang.

Dans le troisième cas (limite égale à -∞), la définition signifie que les termes de (u<sub>n</sub>) sont tous inférieurs à A à partir d'un certain rang N. Comme on peut choisir A, cela signifie que les termes de la suite sont aussi grands négativement que l'on veut quitte à ne considérer les termes qu'à partir d'un certain rang.



**ATTENTION!** L'indice N de la définition dépend du choix de  $\varepsilon$  ou A.

**Remarque.** On peut condenser ces trois définitions en une seule en utilisant la notion de voisinage. La définition est la suivante.

Soit  $l \in \mathbb{R}$ . On dit que  $(u_n)$  admet l pour limite si pour tout voisinage  $\mathcal{V}$  de l, il existe  $N \in \mathbb{N}$  tel que  $n \ge N \implies u_n \in \mathcal{V}$ .

**Remarque.** La définition «epsilonesque» de la limite sert assez peu en pratique. On possède de nombreux théorèmes pour montrer l'existence d'une limite et même la déterminer le cas échéant.

**Remarque.** On considère toujours la limite d'une suite quand n tend vers  $+\infty$ . Considérer la limite de  $u_n$  quand n tend vers un entier n'a aucun intérêt.

#### Exercice 2.1

Soit  $u \in \mathbb{Z}^{\mathbb{N}}$  de limite fine. Montrer que cette limite est entière et que u est stationnaire.

#### Théorème 2.1 Unicité de la limite

Soit  $(u_n)$  une suite. Si  $(u_n)$  possède une limite, elle est **unique**. On la note  $\lim_{n\to +\infty} u_n$ . La relation  $\lim_{n\to +\infty} u_n = l$  se note aussi souvent  $u_n \xrightarrow[n\to +\infty]{} l$ .

**REMARQUE.** La notation  $\lim_{n \to +\infty} u_n = l$  signifie en fait deux choses : primo,  $(u_n)$  admet une limite ; secundo, cette limite vaut l. On parle toujours de la valeur d'une limite sous réserve d'existence de celle-ci.

#### **Proposition 2.1**

Soient  $(u_n)$  une suite et  $l \in \mathbb{R}$ . Alors

$$u_n \xrightarrow[n \to +\infty]{} l \iff u_n - l \xrightarrow[n \to +\infty]{} 0$$

#### **Proposition 2.2**

Soit  $(u_n)$  une suite admettant l > 0 pour limite. Alors  $(u_n)$  est minorée par un réel **strictement positif** à partir d'un certain rang.

**REMARQUE.** Dire que  $(u_n)$  est minorée par un réel **strictement positif** à partir d'un certain rang est plus fort que de dire que  $(u_n)$  est strictement positive à partir d'un certain rang. Par exemple, la suite de terme général  $\frac{1}{n}$  est strictement positive mais elle n'est en aucun cas minorée par un réel strictement positif (elle est au mieux minorée par 0).

# 2.2 Convergence et divergence

## Définition 2.2 Convergence et divergence

On dit qu'une suite  $(u_n)$  converge ou qu'elle est convergente si elle possède une limite finie. Dans le cas contraire, on dit qu'elle diverge ou qu'elle est divergente.



**ATTENTION!** Une suite divergente est une suite qui ne possède pas de limite  $\underline{ou}$  qui tend vers  $\pm \infty$ .

#### **Proposition 2.3**

Toute suite convergente est bornée.



**ATTENTION!** La réciproque de cette proposition est **fausse**. Il suffit par exemple de considérer la suite de terme général  $(-1)^n$ .

#### 2.3 Limite et suites extraites

#### Définition 2.3 Suites extraites

Soit  $(u_n)$  une suite. On appelle **suite extraite** (ou sous-suite) de  $(u_n)$  toute suite du type  $(u_{\varphi(n)})$  où  $\varphi$  est une application **strictement croissante** de  $\mathbb{N}$  dans  $\mathbb{N}$ .

**Remarque.** Une application strictement croissante de  $\mathbb N$  dans  $\mathbb N$  est une suite strictement croissante d'entiers naturels. On aurait pu également pu définir une suite extraite de  $(u_n)$  comme une suite de la forme  $(u_{n_k})_{k\in\mathbb N}$  où  $(n_k)_{k\in\mathbb N}$  est une suite strictement croissante d'entiers.

#### Exemple 2.1

Pour toute suite  $(u_n)$ , les suites  $(u_{2,n})$  et  $(u_{2n+1})$  sont deux suites extraites de  $(u_n)$ .

#### Lemme 2.1

Soit  $\varphi$  une application strictement croissante de  $\mathbb{N}$  dans  $\mathbb{N}$ . Alors  $\forall n \in \mathbb{N}$ ,  $\varphi(n) \geq n$ .

#### Théorème 2.2

Soit  $(u_n) \in \mathbb{R}^{\mathbb{N}}$  une suite de limite  $l \in \overline{\mathbb{R}}$ . Alors toute suite extraite de  $(u_n)$  admet aussi l pour limite.



**ATTENTION!** Il ne suffit pas qu'une suite extraire admette une limite pour garantir l'existence d'une limite pour la suite initiale.

**Remarque.** Le résultat reste vrai si l'on considère une suite du type  $(u_{\varphi(n)})$  où  $\varphi$  n'est plus forcément une application strictement croissante de  $\mathbb{N}$  dans  $\mathbb{N}$  mais une application de  $\mathbb{N}$  dans  $\mathbb{N}$  telle que la suite  $(\varphi(n))$  soit de limite  $+\infty$ .

### **Proposition 2.4**

Soit  $(u_n) \in \mathbb{R}^{\mathbb{N}}$  une suite telle que  $(u_{2,n})$  et  $(u_{2n+1})$  admettent pour limite  $l \in \mathbb{R}$ . Alors  $(u_n)$  admet également pour limite l

# Méthode Prouver qu'une suite diverge

Le théorème précédent permet de montrer qu'une suite  $(u_n)$  n'admet pas de limite par l'absurde. On suppose en effet que  $(u_n)$  admet une limite et on exhibe deux suites extraites de  $(u_n)$  qui admettent deux limites différentes. Ceci contredit alors l'unicité de la limite.

#### Exercice 2.2

Montrer que la suite de terme général  $(-1)^n$  n'admet pas de limite.

# 2.4 Opérations sur les limites

#### Proposition 2.5 Limite d'une somme

Le tableau suivant résume les différents cas possibles.

| $\lim_{n\to+\infty}u_n$       | $l \in \mathbb{R}$  | $l \in \mathbb{R}$ | +∞        | +∞ | -∞ |
|-------------------------------|---------------------|--------------------|-----------|----|----|
| $\lim_{n\to+\infty}v_n$       | $l' \in \mathbb{R}$ | +∞                 | $-\infty$ | +∞ | -∞ |
| $\lim_{n\to+\infty}(u_n+v_n)$ | l+l'                | +∞                 | F.I.      | +∞ | -∞ |

#### Proposition 2.6 Limite d'un produit

Le tableau suivant résume les différents cas possibles.

| lii<br>n→      |                                    | $l \in \mathbb{R}$  | $l \in \mathbb{R}_+^*$ | $l \in \mathbb{R}_+^*$ | 0    | $l \in \mathbb{R}_{-}^{*}$ | $l \in \mathbb{R}_{-}^{*}$ | +∞ | +∞        | $-\infty$ |
|----------------|------------------------------------|---------------------|------------------------|------------------------|------|----------------------------|----------------------------|----|-----------|-----------|
|                | $\underset{+\infty}{\text{m}} v_n$ | $l' \in \mathbb{R}$ | +∞                     | -∞                     | ±∞   | +∞                         | -∞                         | +∞ | $-\infty$ | -∞        |
| $\lim_{n\to+}$ | $u_n v_n$                          | ll'                 | +∞                     | -∞                     | F.I. | -∞                         | +∞                         | +∞ | $-\infty$ | +∞        |

# Proposition 2.7 Limite de l'inverse

On suppose que la suite  $(u_n)$  ne s'annule pas à partir d'un certain rang. Le tableau suivant résume les différents cas possibles.

| $\lim_{n\to+\infty}u_n$           | $l \in \mathbb{R}^*$ | 0                                                                                                                                                                                          | ±∞ |
|-----------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $\lim_{n\to+\infty}\frac{1}{u_n}$ | $\frac{1}{l}$        | $\begin{cases} +\infty \text{ si } u_n > 0 \text{ à partir d'un certain rang} \\ -\infty \text{ si } u_n < 0 \text{ à partir d'un certain rang} \\ \text{pas de limite sinon} \end{cases}$ | 0  |

#### REMARQUE.

- $\lim_{n \to +\infty} u_n = 0$  avec  $u_n > 0$  à partir d'un certain rang peut se noter  $\lim_{n \to +\infty} u_n = 0^+$ .
- $\lim_{n \to +\infty} u_n = 0$  avec  $u_n < 0$  à partir d'un certain rang peut se noter  $\lim_{n \to +\infty} u_n = 0^-$ .

**Remarque.** La limite d'un quotient se déduit des tableaux donnant la limite d'un produit et de l'inverse puisque  $\frac{u_n}{v_n} = u_n \times \frac{1}{v_n}$ .

# 2.5 Composition par une fonction

# **Proposition 2.8**

Soit  $(u_n)$  une suite de limite  $l \in \mathbb{R}$  et f une fonction de limite  $L \in \mathbb{R}$  en l. Alors la suite  $(f(u_n))$  admet L pour limite.

#### Corollaire 2.1

Soit  $(u_n)$  une suite de limite  $l \in \mathbb{R}$  et f une fonction continue en l. Alors la suite  $(f(u_n))$  admet f(l) pour limite.

# Corollaire 2.2 Suite récurrente et point fixe

Soit  $(u_n)$  une suite vérifiant la relation de récurrence  $u_{n+1} = f(u_n)$ . Si  $(u_n)$  converge vers  $l \in \mathbb{R}$  et que f est continue en l, alors f(l) = l i.e. l est un point fixe de f.

# 2.6 Limites classiques

# Proposition 2.9 Limite d'une suite géométrique

Soit  $a \in \mathbb{R}$ .

- Si |a| < 1, alors  $\lim_{n \to +\infty} a^n = 0$ .
- Si a = 1, alors  $\lim_{n \to +\infty} a^n = 1$ .
- Si a > 1, alors  $\lim_{n \to +\infty} a^n = +\infty$ .
- Si  $a \le -1$ , alors  $(a^n)$  n'admet pas de limite.

# Exercice 2.3

Soit  $a \in ]-1,1[$ . Déterminer la limite de  $a^{2^n}$ .

# 2.7 Passage à la limite

### Théorème 2.3 Passage à la limite

Soient  $(u_n)$  et  $(v_n)$  deux suites convergeant respectivement vers l et l'. Soient  $m, M \in \mathbb{R}$ .

- Si  $u_n \le v_n$  à partir d'un certain rang, alors  $l \le l'$ .
- Si  $u_n \le M$  à partir d'un certain rang, alors  $l \le M$ .
- Si  $u_n \ge m$  à partir d'un certain rang, alors  $l \ge m$ .

**Remarque.** Autrement dit, le passage à la limite conserve les inégalités **larges**. Il ne conserve pas les inégalités strictes. Par exemple,  $\frac{1}{n} \longrightarrow 0$  et  $\forall n \in \mathbb{N}^*, \frac{1}{n} > 0$ . Mais on a évidemment pas 0 > 0.

#### Corollaire 2.3

Soit  $(u_n)$  une suite convergeant vers l.

- Si  $(u_n)$  est croissante, alors  $u_n \le l$  pour tout  $n \in \mathbb{N}$ .
- Si  $(u_n)$  est décroissante, alors  $u_n \ge l$  pour tout  $n \in \mathbb{N}$ .
- Si  $(u_n)$  est strictement croissante, alors  $u_n < l$  pour tout  $n \in \mathbb{N}$ .
- Si  $(u_n)$  est strictement décroissante, alors  $u_n > l$  pour tout  $n \in \mathbb{N}$ .

# 3 Théorèmes d'existence de limites

# 3.1 Théorèmes d'encadrement, de minoration et de majoration

Ces théorèmes proviennent de l'existence d'une relation d'ordre sur R.

#### Théorème 3.1 Théorèmes d'encadrement, de minoration et de majoration

Soient  $(u_n)$ ,  $(v_n)$  et  $(w_n)$  trois suites et  $l \in \mathbb{R}$ .

**Théorème des gendarmes/d'encadrement :** Si  $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l$  et  $u_n \le v_n \le w_n$  à partir d'un certain rang, alors  $(v_n)$  admet une limite et celle-ci vaut l.

**Théorème de minoration :** Si  $\lim_{n\to+\infty} u_n = +\infty$  et  $u_n \le v_n$  à partir d'un certain rang, alors  $(v_n)$  admet une limite et celle-ci vaut  $+\infty$ .

**Théorème de majoration :** Si  $\lim_{n\to+\infty} w_n = -\infty$  et  $v_n \le w_n$  à partir d'un certain rang, alors  $(v_n)$  admet une limite et celle-ci vaut  $-\infty$ .

**Remarque.** Ce théorème est un théorème d'**existence** : il prouve l'existence d'une limite. Il est vrai qu'il nous fournit en plus la valeur de la limite. Mais si l'existence de la limite était garantie, le simple théorème de passage à la limite nous aurait fourni la valeur de la limite.

#### Exercice 3.1

Déterminer la limite de (n!) et de  $\left(\frac{n!}{n^n}\right)$ .

**Remarque.** Il existe une version «améliorée» du théorème des gendarmes. Si  $u_n \le v_n \le w_n$  à partir d'un certain rang et si  $u_n \sim w_n$ , alors  $u_n \sim v_n \sim w_n$ .

#### Corollaire 3.1

Soient  $(u_n)$  et  $(\varepsilon_n)$  deux suites telles que  $\varepsilon_n \underset{n \to +\infty}{\longrightarrow} 0$  et  $|u_n| \le \varepsilon_n$  à partir d'un certain rang. Alors  $\lim_{n \to +\infty} u_n = 0$ .

# Exemple 3.1

Soient  $(u_n)$  une suite,  $l \in \mathbb{R}$  et  $K \in [0, 1[$  tels que

$$\forall n \in \mathbb{N}, |u_{n+1} - l| \le K|u_n - l|$$

Alors  $\lim_{n\to+\infty} u_n = l$ .

#### Corollaire 3.2

Soient  $(u_n)$  une suite bornée et  $(\varepsilon_n)$  une suite de limite nulle. Alors  $\lim_{n \to +\infty} u_n \varepsilon_n = 0$ .

#### Corollaire 3.3

Soient  $(u_n)$  et  $(v_n)$  deux suites.

- Si  $(u_n)$  est minorée et  $\lim_{n \to +\infty} v_n = +\infty$ , alors  $\lim_{n \to +\infty} (u_n + v_n) = +\infty$ .
- Si  $(u_n)$  est majorée et  $\lim_{n\to+\infty}v_n=-\infty$ , alors  $\lim_{n\to+\infty}(u_n+v_n)=-\infty$ .

# 3.2 Caractérisation séquentielle des bornes supérieures et inférieures, de la densité

### **Proposition 3.1**

Soient  $\mathcal{A}$  une partie de  $\mathbb{R}$  et  $c \in \overline{\mathbb{R}}$ . Alors  $c = \sup \mathcal{A}$  (resp.  $c = \inf \mathcal{A}$ ) si et seulement si c est un majorant (resp. un minorant) de  $\mathcal{A}$  et s'il existe une suite d'éléments de  $\mathcal{A}$  de limite c.

# Proposition 3.2 Caractérisation séquentielle de la densité

Soit A une partie de  $\mathbb{R}$ . A est dense dans  $\mathbb{R}$  si et seulement si pour tout  $x \in \mathbb{R}$ , il existe une suite  $(x_n)$  d'éléments de A de limite x.

# 3.3 Théorème de convergence monotone

Ce théorèmes provient à nouveau de l'existence d'une relation d'ordre sur  $\mathbb{R}$ .

#### Théorème 3.2 Théorème de convergence monotone

Toute suite monotone admet une limite dans  $\overline{\mathbb{R}}$ . Plus précisément,

- toute suite croissante majorée converge, toute suite croissante non majorée diverge vers +∞;
- toute suite décroissante minorée converge, toute suite décroissante non minorée diverge vers  $-\infty$ .



**ATTENTION!** Une suite décroissante et minorée (resp. majorée) ne converge pas forcément vers son minorant (resp. majorant). Lequel d'ailleurs?



**ATTENTION!** Le majorant ou le minorant doit être une **constante**. Par exemple, si  $(u_n)$  est décroissante et si  $u_n \ge -n$  pour tout  $n \in \mathbb{N}$ , on ne peut absolument rien dire sur la convergence de  $(u_n)$ .

#### Exercice 3.2

Déterminer la limite de la suite  $(u_n)$  définie par son premier terme  $u_0$  et par la relation de récurrence  $u_{n+1} = u_n + e^{u_n}$ .

# Exercice 3.3

Déterminer la limite de la suite  $(u_n)$  définie par son premier terme  $u_0 = 1$  et par la relation de récurrence  $u_{n+1} = \frac{u_n}{1 + u_n^2}$ .

#### Exercice 3.4 ★★

La série harmonique

Soient  $\geq 1$  et

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que  $(H_n)_{n\geqslant 1}$  est croissante. Quelle alternative en déduit-on quant au comportement asymptotique de  $(H_n)_{n\geqslant 1}$ ?
- 2. Montrer que  $\forall n \ge 1$ ,

$$H_{2n} - H_n \geqslant \frac{1}{2}.$$

Décrire le comportement de  $(H_n)_{n\geqslant 1}$ .

# 3.4 Suites adjacentes

#### Définition 3.1 Suites adjacentes

On dit que deux suites  $(u_n)$  et  $(v_n)$  sont adjacentes si l'une est croissante, l'autre décroissante et si  $\lim_{n \to +\infty} (u_n - v_n) = 0$ .

#### Théorème 3.3 Suites adjacentes

Deux suites adjacentes convergent et ont même limite.



**ATTENTION!** Si on a seulement  $\lim_{n \to +\infty} (u_n - v_n) = 0$ , on ne peut pas déduire que  $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$  car on ne sait même pas a priori que  $(u_n)$  et  $(v_n)$  admettent des limites. Ce sont les sens de variations de  $(u_n)$  et  $(v_n)$  qui garantissent l'existence de ces limites.

#### Exercice 3.5

Les suites de termes généraux  $u_n = \sum_{k=0}^n \frac{1}{k!}$  et  $v_n = u_n + \frac{1}{n \cdot n!}$  convergent vers la même limite.

#### Exercice 3.6

# Théorème des segments emboîtés

On appelle segment tout intervalle **fermé** de  $\mathbb{R}$  i.e. du type [a,b]. On appelle **longueur** du segment [a,b] le réel b-a. Soit  $(I_n)$  une suite décroissante de segments (i.e.  $\forall n \in \mathbb{N}$ ,  $I_{n+1} \subset I_n$ ) dont la suite des longeurs tend vers 0. Alors  $\bigcap_{n \in \mathbb{N}} I_n$  est un singleton.

Le résultat est-il toujours vrai si les intervalles  $I_n$  ne sont plus fermés?

# Recherche d'un zéro d'une fonction continue par dichotomie

Soit f une fonction continue sur [a,b] avec  $f(a) \le 0$  et  $f(b) \ge 0$ . On construit les suites  $(a_n)$  et  $(b_n)$  par récurrence de la manière suivante.

• On pose  $a_0 = a$  et  $b_0 = b$ .

• On suppose avoir défini 
$$a_n$$
 et  $b_n$ . Si  $f\left(\frac{a_n+b_n}{2}\right) \leq 0$ , on pose 
$$\begin{cases} a_{n+1} = \frac{a_n+b_n}{2} \\ b_{n+1} = b_n \end{cases}$$
. Sinon, on pose 
$$\begin{cases} a_{n+1} = a_n \\ b_{n+1} = \frac{a_n+b_n}{2} \end{cases}$$

On montre alors que  $(a_n)$  et  $(b_n)$  convergent vers un zéro c de f. De plus,  $a_n - c = \mathcal{O}\left(\frac{1}{2^n}\right)$  et  $b_n - c = \mathcal{O}\left(\frac{1}{2^n}\right)$ .

# Algorithme 1 Dichotomie

**Données:** une fonction f

deux réels a et b tels que  $f(a)f(b) \le 0$ 

un réel strictement positif  $\epsilon$ 

**Résultat :** une valeur approchée m d'un zéro de f à  $\varepsilon$  près

 $c \leftarrow a$   $d \leftarrow b$ 

Tant que  $|d-c| > \varepsilon$  Faire

 $m \leftarrow \frac{c+c}{2}$ 

Si  $f(c)f(m) \le 0$  Alors

Sinon

 $c \leftarrow 1$ 

Fin Si

Fin Tant que

 $m \leftarrow \frac{c+d}{2}$ 

# 3.5 Théorème de Bolzano-Weierstrass

Le théorème suivant est admis.

# Théorème 3.4 Bolzano-Weierstrass

De toute suite **bornée**, on peut extraire une sous-suite **convergente**.



**ATTENTION!** Une même suite bornée peut admettre plusieurs sous-suites convergeant vers des limites différentes.

**REMARQUE.** La démonstration est hors programme mais on peut en donner l'idée :

 On construit par dichotomie une suite (I<sub>n</sub>) décroissante de segments emboîtés contenant chacun une infinité de termes de la suite.

- On choisit dans chaque  $I_n$  un élément  $u_{\varphi(n)}$  de telle sorte que  $\varphi : \mathbb{N} \to \mathbb{N}$  soit strictement croissante.
- La suite extraite  $(u_{\varphi(n)})$  converge d'après le théorème des suites adjacentes.

**Remarque.** Dans le même ordre d'idée, de toute suite réelle non majorée (resp. non minorée), on peut extraire une sous-suite divergeant vers  $+\infty$  (resp. vers  $-\infty$ ).

# 3.6 Lemme de Césaro (hors programme)

Le théorème suivant est hors programme mais tellement classique qu'il mérite de figurer dans ce chapitre.

#### Théorème 3.5 Lemme de Césaro

Soit  $(u_n)$  une suite de limite  $l \in \mathbb{R}$ . Alors la suite  $(v_n)$  définie par :

$$\forall n \in \mathbb{N}, \ v_n = \frac{u_0 + u_1 + \dots + u_n}{n+1} = \frac{1}{n+1} \sum_{k=0}^n u_k$$

admet aussi *l* pour limite.

**Remarque.** Autrement dit, les **moyennes** successives des termes de la suite  $(u_n)$  converge vers la même limite que  $(u_n)$ . C'est également vrai si on ne débute pas au rang 0. La suite  $(v_n)$  définie par :

$$\forall n \in \mathbb{N}, \ v_n = \frac{u_1 + u_2 + \dots + u_n}{n}$$

converge elle aussi vers l.



**ATTENTION!** La réciproque de ce théorème est **fausse** comme on s'en convainc facilement avec la suite de terme général  $(-1)^n$ .

# 4 Comparaison de suites

#### 4.1 Définition

Les définitions sont totalement similaires à celles vues dans le cadre des fonctions. C'est encore plus simple puisque dans le cas des suites, on travaille toujours au voisinage de  $+\infty$ .

#### **Définition 4.1**

Soient  $(u_n)$  et  $(v_n)$  deux suites.

- On dit que  $(u_n)$  est **négligeable** devant  $(v_n)$  et on note  $u_n = o(v_n)$  s'il existe une suite  $(\varepsilon_n)$  de limite nulle telle que  $u_n = v_n \varepsilon_n$  à partir d'un certain rang.
- On dit que  $(u_n)$  est **équivalente** à  $(v_n)$  et on note  $u_n \sim v_n$  s'il existe une suite  $(\eta_n)$  de limite 1 telle que  $u_n = v_n \eta_n$  à partir d'un certain rang.
- On dit que  $(u_n)$  est **dominée** par  $(v_n)$  et on note  $u_n = \mathcal{O}(v_n)$  s'il existe une constante K telle que  $|u_n| \le K|v_n|$  à partir d'un certain rang.

# Méthode En pratique

Si  $(v_n)$  ne s'annule pas à partir d'un certain rang, ces trois définitions sont respectivement équivalentes à :

- $\lim_{n\to+\infty}\frac{u_n}{v_n}=0,$
- $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1,$
- $\left(\frac{u_n}{v_n}\right)$  est bornée.

Tout ce qui a été dit sur la comparaison des fonctions reste, mutatis mutandis, vrai pour la compraison des suites. En particulier, on a la propritété suivante :

# **Proposition 4.1**

Soient  $(u_n)$  et  $(v_n)$  deux suites telles que  $u_n \sim v_n$ . Alors  $u_n$  et  $v_n$  sont de même signe à partir d'un certain rang.

# 4.2 Comparaison des suites de références

#### Suites de référence -

On appelle suites de référence les suites  $(a^n)$ ,  $(n^\alpha)$ ,  $(\ln n)^\beta$ , (n!) avec  $\alpha > 0$  et  $\alpha, \beta \in \mathbb{R}$ .

# **Proposition 4.2**

- Soit  $\alpha, \beta \in \mathbb{R}$ . Alors  $\alpha < \beta \iff n^{\alpha} = o(n^{\beta})$ .
- Soit  $a, b \in \mathbb{R}_+^*$ . Alors  $a < b \iff a^n = o(b^n)$ .
- Soit  $\alpha, \beta \in \mathbb{R}$  avec  $\beta > 0$ . Alors  $(\ln n)^{\alpha} = o(n^{\beta})$ .
- Soit  $a, \alpha \in \mathbb{R}$  avec a > 1. Alors  $n^{\alpha} = o(a^n)$ .
- Soit  $a \in \mathbb{R}$ . Alors  $a^n = o(n!)$ .

# Exercice 4.1

Déterminer un équivalent de  $ch(e^{-n}) - cos \frac{\pi}{n}$ 

### Exercice 4.2

Déterminer la limite de  $n\left(\frac{\pi}{2}e^{\frac{1}{n}} - \arccos\frac{1}{n}\right)$ .

# Exercice 4.3

Soit  $x \in \mathbb{R}$ . Déterminer la limite de  $((1 + \frac{x}{n})^n)$ . Piège!

### Proposition 4.3 Formule de Stirling

$$n! \underset{n \to +\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

# 4.3 Suites implicites

On appelle **suite implicite** une suite dont le terme général  $u_n$  est donné comme la solution d'une équation dépendant d'un paramètre  $n \in \mathbb{N}$ .

#### Exercice 4.4 \*\*\*

- 1. Montrer que pour  $n \in \mathbb{N}$ , l'équation  $\tan x = x$  admet une unique solution  $u_n$  dans l'intervalle  $\left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[$ .
- 2. Déterminer un équivalent de  $(u_n)$ .
- 3. On pose  $v_n = u_n n\pi$  pour tout  $n \in \mathbb{N}$ . Déterminer la limite  $\ell$  de  $(v_n)$ .
- 4. Déterminer un équivalent de  $(v_n \ell)$ . En déduire un développement asymptotique à 3 termes de  $(u_n)$ .

# 5 Suites récurrentes d'ordre 1

Une suite récurrente d'ordre 1 est tout simplement une suite vérifiant une relation de récurrence du type  $u_{n+1} = f(u_n)$  pour tout  $n \in \mathbb{N}$ . On s'intéresse à la convergence de  $(u_n)$ . On supposera f continue sur son ensemble de définition. On sait alors que  $\underline{\mathbf{si}}(u_n)$  converge, alors sa limite est un point fixe de f. Graphiquement un point fixe est l'abscisse (ou l'ordonnée) de l'intersection du graphe de f et de la première bissectrice.

# Méthode Étude d'une suite récurrente d'ordre 1

On considère une suite  $(u_n)$  vérifiant la relation de récurrence  $u_{n+1} = f(u_n)$ .

• On trace le graphe de f et la première bissectrice et on place les premiers termes de la suite  $(u_n)$  afin d'avoir une idée de son comportement asymptotique.

#### Si f est croissante

- On recherche le signe et les zéros de  $x \mapsto f(x) x$  (i.e. les points fixes de f).
- Suivant la position de  $u_0$  par rapport au(x) point(s) fixe(s) de f on en déduit une majoration/minoration de  $(u_n)$  par un point fixe ainsi que son sens de variation.
- On utilise le théorème de convergence monotone et la convergence vers un point fixe pour conclure. On raisonne par l'absurde pour prouver la divergence le cas échéant.

#### Si f est décroissante

- En remarquant que f o f est croissante, on peut étudier les suites (u<sub>2,n</sub>) et (u<sub>2n+1</sub>) grâce à ce qui précède.
  Si f n'est ni croissante ni décroissante
- On essaie de repèrer un intervalle I stable par I tel que u<sub>n</sub> ∈ I à partir d'un certain rang. On peut alors se reporter à un des deux cas précédents.

#### Exercice 5.1

Etude des suites récurrentes  $(u_n)$  définies par

1. 
$$u_0 \ge -1$$
 et  $u_{n+1} = \sqrt{1 + u_n}$ ,

2. 
$$u_0 = 0$$
 et  $u_{n+1} = \ln(u_n + 3)$ ,

3. 
$$u_0 = 1$$
 et  $u_{n+1} = u_n^2 + u_n$ ,

4. 
$$u_0 = 1$$
 et  $u_{n+1} = 1 + \frac{1}{u_n}$ .

# 6 Suites complexes

#### Définition 6.1 Suite complexe

On appelle suite complexe toute application de  $\mathbb N$  dans  $\mathbb C$ .

#### Définition 6.2 Suite bornée

On dit qu'une suite complexe  $(u_n)$  est bornée s'il existe  $K \in \mathbb{R}_+$  tel que  $|u_n| \le K$  pour tout  $n \in \mathbb{N}$ .

REMARQUE. Géométriquement, cela signifie que les termes de la suite sont dans un disque de centre O et de rayon K.

# Définition 6.3 Limite d'une suite complexe

On dit qu'une suite complexe  $(u_n)$  admet  $l \in \mathbb{C}$  si  $|u_n - l| \xrightarrow[n \to +\infty]{} 0$ .

**Remarque.** La suite  $(|u_n - l|)$  est réelle donc la définition a bien un sens.

#### Exemple 6.1

On considère une suite géométrique  $(u_n)$  de raison  $q \in \mathbb{C}$  et de premier terme  $u_0 \neq 0$  (sinon  $(u_n)$  est la suite nulle).

- Si |q| > 1, on peut seulement dire que  $\lim_{n \to +\infty} |u_n| = +\infty$ .
- Si |q| < 1,  $(u_n)$  converge vers 0.
- Si |q| = 1, il existe  $\alpha \in \mathbb{R}$  tel que  $q = e^{i\alpha}$  et  $(u_n)$  ne converge que si  $\alpha \equiv 0[2\pi]$ .



**ATTENTION!** Une suite complexe ne peut avoir une limite égale à  $\pm \infty$ . Ces symboles n'ont d'ailleurs pas de sens puisqu'il n'y a pas de relation d'ordre dans  $\mathbb C$ . On peut tout au plus dire que  $|u_n| \underset{n \to +\infty}{\longrightarrow} +\infty$ .

# **Proposition 6.1**

Soient  $(u_n)$  une suite complexe et  $l \in \mathbb{C}$ . Alors  $\lim_{n \to +\infty} u_n = l$  si et seulement si  $\lim_{n \to +\infty} \overline{u_n} = \overline{l}$ .

#### Corollaire 6.1

Soient  $(u_n)$  une suite complexe et  $l \in \mathbb{C}$ . Alors  $\lim_{n \to +\infty} u_n = l$  si et seulement si  $\lim_{n \to +\infty} \operatorname{Re}(u_n) = \operatorname{Re}(l)$  et  $\lim_{n \to +\infty} \operatorname{Im}(u_n) = \operatorname{Im}(l)$ .

Tout ce qui a été dit sur les suites réelles reste vrai pour les suites complexes excepté ce qui est lié à la relation d'ordre, c'est-à-dire :

- les opérations sur les limites contenant  $\pm \infty$ ,
- le théorème de passage à la limite (il contient des inégalités),
- les théorèmes d'encadrement, de minoration et de majoration (encore des inégalités),
- le théorème de la limite monotone et celui des suites adjacentes (la monotonie n'a pas de sens pour une suite complexe).

Par contre, le théorème de Bolzano-Weierstrass reste vrai dans le cas complexe mais la version complexe n'est pas au programme en première année.