MAC0210: Relatório EP 1

18 de Setembro de 2016

Nathan Benedetto Proença - 8941276 Victor Sena Molero - 8941317

Sumário

Parte 1: Aritmética de Ponto Flutuante	3
Questão 1 (3.11)	9
Questão 2 (5.1)	3
Questão 3 (6.4)	4
Questão 4 (6.8)	4
Parte 3: Exemplos	
Parte 5: Exemplos	

Parte 1: Aritmética de Ponto Flutuante

Questão 1 (3.11)

Suponha que temos um sistema de representação de ponto flutuante com base 2 e,

$$x = \pm S \times 2^{E},$$

com $S = (0.1b_{2}b_{3}b_{4}\dots b_{24}),$
i.e, $\frac{1}{2} \le S < 1$

onde o expoente -128 < E < 127.

a) Qual é o maior número de ponto flutuante desse sistema?

 $Resposta. \ 2^{126}-2^{101}$, basta preencher todos os bits (de b_2 até b_{24}) e escolher o maior expoente possível.

b) Qual é o menor número de ponto flutuante positivo desse sistema?

Resposta. 2^{-128} , basta escolher a menor mantissa possível (0.1) e o menor expoente possível (-127). \square

c) Qual é o menor inteiro positivo que não é exatamente representável nesse sistema?

Resposta. $2^{24} + 1$, basta escolher a menor mantissa não representável (0.10...01) e o menor expoente para o qual ela representa um inteiro (25).

Questão 2 (5.1)

Qual é a representação do número 1/10 no formato IEEE single para cada um dos quatro modos de arredondamento?

Resposta. A resposta curta é:

$$x = 0.0\overline{0011},$$

 ${\rm round_down}(x) = {\rm round_towards_zero}(x) = 1.100110011001100110011001100 \times 2^{-4} \ {\rm e}$ ${\rm round_up}(x) = {\rm round_to_nearest}(x) = 1.10011001100110011001101 \times 2^{-4}.$

Se x é uma representação binária exata de 1/10, $x=0.0\overline{0011}=1.\overline{1001}\times 2^{-4}$ (os números abaixo da barra representam uma dízima periódica, se repetem infinitamente).

Calculamos então $x_-=1.100110011001100110011001100\times 2^{-4}$ e $x_+=1.100110011001100110011001101101101\times 2^{-4}$. Se o modo é *Round Down*, o número será representado por x_- e se for *Round Up*, será x_+ , ambos pela definição dos modos.

Já que x > 0, o modo Round towards zero também usará x_- , porém x é mais próximo de x_+ do que de x_- , basta perceber que o erro relativo entre x e x_- é maior que 1/2, portanto, o modo Round to nearest usará a representação x_+ .

E para os números $1 + 2^{-25}$

Resposta.

Já que x > 0, o modo Round towards zero também usará x_- , além disso, o erro relativo entre x e x_- é 1/4, logo, o modo Round to nearest também levará para x_- .

 $e^{2^{130}}$?

Resposta.

Questão 3 (6.4)

Qual é o maior número de ponto flutuante x tal que $1 \oplus x$ é exatamente 1, assumindo que o formato usado é IEEE single e modo de arredondamento para o mais próximo?

Resposta. $x=2^{-24}$. 1+x é igualmente próximo de $1+2^{-23}$ e 1, porém, por causa do critério de arredondamento em empate (0 menos significativo), ele é arredondado para 1, qualquer x maior do que esse causará um arredondamento para um número maior do que 1.

E se o formato for IEEE double?

Resposta. $x=2^{-53}$, seguindo a mesma lógica usada para concluir a resposta do item anterior.

Questão 4 (6.8)

Em aritmética exata, a soma é um operador comutativo e associativo. O operador de soma de ponto flutuante é comutativo?

Resposta. Sim, pois para calcular o resultado em soma de ponto flutuante o padrão exige que seja calculado o valor exato e, então, arredondado para o sistema escolhido. Formalmente, denotaremos por fl(x) a representação em ponto flutuante de um real x e por \oplus a operação de soma em ponto flutuante. Temos $fl(x) \oplus fl(y) = fl(fl(x) + fl(y)) = fl(fl(y) + fl(y)) = fl(fl(y)) = fl(fl(y))$

E associativo?

Resposta. Não, os erros de arredondamento podem fazer com que a ordem das somas faça diferença. Por exemplo, considere um sistema com um dígito binário de precisão $(1.b_1)$ e expoentes entre -4 e 4, por exemplo. Escolha os números $x=1=2^0$ e $y=z=1/4=2^{-2}$. Teremos, na notação do sistema (base binária) que $(x \oplus y) \oplus z = (1.0 \times 2^0 \oplus 1.0 \times 2^{-2}) \oplus 1.0 \times 2^{-2} = 1.0 \times 2^0 \oplus 1.0 \times 2^{-2} = 1.0 \times 2^0$, por outro lado, $x \oplus (y \oplus z) = 1.0 \times 2^0 \oplus 1.0 \times 2^{-1} = 1.1 \times 2^0$.

Parte 3: Exemplos

Para ilustrar o uso do método desenvolvido na parte 3 do EP. Escolhemos gerar as Newton Basins para um polinômio e as expansões de Taylor deste polinômio em torno do ponto 0. Para isso, escolhemos a função $f(x) = x^6 + (3-7i)x^5 + (-20-15i)x^4 + (-40+20i)x^3 + (-26+40i)x^2 + (52+52i)x$ e rodamos nosso EP nela.

E, como planejado, repetimos o processo para as expansões de Taylor de diversos graus deste polinômio. Denotaremos a i-ésima expansão por $f_i(x)$. Primeiro, expandimos em grau 5, ou seja $f_5(x) = (3-7i)x^5 + (-20-15i)x^4 + (-40+20i)x^3 + (-26+40i)x^2 + (52+52i)x$.

Depois $f_4(x) = (-20 - 15i)x^4 + (-40 + 20i)x^3 + (-26 + 40i)x^2 + (52 + 52i)x$.

Depois $f_3(x) = (-40 + 20i)x^3 + (-26 + 40i)x^2 + (52 + 52i)x$.

Seguido de $f_2(x) = (-26 + 40i)x^2 + (52 + 52i)x$.

E, finalmente $f_1(x) = (52 + 52i)x$.

