Aula de exercícios

Prof. Dr. Vinícius Wasques

Departamento de Matemática

Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP.

https://viniciuswasques.github.io/home/

email: viniciuswasques@gmail.com

Exercício: Determine se o conjunto $\{(1,1),(1,0)\}$ é uma base para \mathbb{R}^2 (plano).

Para verificar esse fato precisamos mostrar que o conjunto é L.I e gera o seu plano.

a) Linearmente Independente:

Sejam α_1 e α_2 escalares tais que

$$\alpha_1(1,1) + \alpha_2(1,0) = (0,0)$$

Para mostrar que esse conjunto é L.I devemos provar que necessariamente $\alpha_1 = \alpha_2 = 0$.

A equação acima fica:

$$(\alpha_1, \alpha_1) + (\alpha_2, 0) = (0, 0)$$

$$(\alpha_1 + \alpha_2, \alpha_1) = (0, 0)$$

Isso resulta no seguinte sistema linear:

$$\begin{cases} \alpha_1 + \alpha_2 = 0 \\ \alpha_1 = 0 \end{cases}$$

Assim temos que $\alpha_1 = 0$. Substituindo na primeira equação obtemos

$$0 + \alpha_2 = 0$$

$$\Rightarrow \alpha_2 = 0$$

Logo, $\alpha_1 = \alpha_2 = 0$ e portanto os vetores são L.I.

Podemos também resolver esse problema utilizando o conceito de matrizes. Isto é, coloca-se os vetores do conjunto fornecido nas linhas da matriz e calcula-se o seu determinante. Se der igual a 0, então o conjunto é L.D. Caso contrário, o conjunto é L.I.

Assim,

$$\det \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = 1.0 - 1.1 = 0 - 1 = -1 \neq 0$$

Portanto, o conjunto é L.I.

b) O conjunto é gerador.

Para mostrar esse fato, precisamos provar que qualquer elemento do plano pode ser escrito como combinação linear dos vetores do conjunto fornecido.

Seja $(x,y) \in \mathbb{R}^2$, mostremos que existem α_1 e α_2 escalares tais que

$$\alpha_1(1,1) + \alpha_2(1,0) = (x,y)$$

$$(\alpha_1, \alpha_1) + (\alpha_2, 0) = (x, y)$$

$$(\alpha_1 + \alpha_2, \alpha_1) = (x, y)$$

Obtemos então o seguinte sistema linear:

$$\begin{cases} \alpha_1 + \alpha_2 = x \\ \alpha_1 = y \end{cases}$$

Assim, da segunda equação obtemos que $\alpha_1=y$. Substituindo $\alpha_1=y$ na primeira equação, concluímos que

$$y + \alpha_2 = x$$

$$\Rightarrow \alpha_2 = x - y$$

Portanto, $\alpha_1 = y$ e $\alpha_2 = x - y$ e assim temos que o conjunto $\{(1,1),(1,0)\}$ é gerador do plano.

Logo, pelos itens a) e b) verificamos que o conjunto $\{(1,1),(1,0)\}$ é uma base do plano.

Exercício: Mostre que o conjunto $\{(1,1,0),(1,0,0)\}$ não é uma base do espaço \mathbb{R}^3 .

a) Veja que esse conjunto é L.I. Pois, suponha que existam α_1 e α_2 tais que:

$$\alpha_1(1,1,0) + \alpha_2(1,0,0) = (0,0,0)$$

$$(\alpha_1, \alpha_1, 0) + (\alpha_2, 0, 0) = (0, 0, 0)$$

$$(\alpha_1 + \alpha_2, \alpha_1, 0) = (0, 0, 0)$$

$$\begin{cases} \alpha_1 + \alpha_2 = 0 \\ \alpha_1 = 0 \\ 0 = 0 \end{cases}$$

Assim, pelo sistema acima concluímos que $\alpha_1 = \alpha_2 = 0$ e portanto o conjunto é L.I.

Obs: Veja que para esse conjunto não pe possível determinar a dependência linear através do conceito de matrizes, pois a matriz associada ao conjunto não é quadrada.

b) Veja que o conjunto não é gerador do R^3 .

Suponha que o conjunto $\{(1,1,0),(1,0,0)\}$ seja um gerador para R^3 . Isto é, para qualquer vetor $(x,y,z) \in R^3$ existem α_1 e α_2 tais que

$$\alpha_1(1,1,0) + \alpha_2(1,0,0) = (x,y,z)$$

$$(\alpha_1, \alpha_1, 0) + (\alpha_2, 0, 0) = (x, y, z)$$

$$(\alpha_1 + \alpha_2, \alpha_1, 0) = (x, y, z)$$

$$\begin{cases} \alpha_1 + \alpha_2 = x \\ \alpha_1 = y \\ 0 = z \end{cases}$$

Portanto, do sistema acima concluímos que $\alpha_1 = y$, $\alpha_2 = x - y$ e z = 0.

Note que o vetor (0,0,1) não pode ser escrito dessa forma, pois

$$\alpha_1(1,1,0) + \alpha_2(1,0,0) = (0,0,1)$$

Para que essa equação seja verdadeira devemos ter que $\alpha_1 = \alpha_2 = 0$. Assim,

$$0(1,1,0) + 0(1,0,0) = (0,0,1)$$

$$(0,0,0) + (0,0,0) = (0,0,1)$$

$$(0,0,0) = (0,0,1)$$

O que não é verdadeiro. Portanto, o conjunto não é gerador do espaço.

Obs: Qualquer elemento que tenha coordenada $z \neq 0$ não pode ser obtida através de combinação linear desses dois vetores. Veja que o conjunto $\{(1,1,0),(1,0,0)\}$ gera o plano z=0 dentro do espaço R^3 .