Zvyšování výkonu procesorů

Zlepšování výrobní technologie, problematika zvyšování výkonu, snižování spotřeby

- Základní problémy výrobní technologie mikroprocesorů
 - rychlost tranzistorů (snažíme se zvyšovat)
 - rozměr tranzistorů (snažíme se snižovat)
 - spotřeba procesoru (snažíme se snižovat)
 - poruchovost (snažíme se snižovat)

Výroba procesoru

- Procesor se vyrábí z kruhové křemíkové desky označované jako wafer
- Wafer je přes fotomasku osvícen světlem o extrémně krátké vlnové délce a dále pak chemicky upravován
- Chemickou cestou vzniknou tranzistory a vodivé cesty
- Velká část čipů je defektní a ze zbylých funkčních jsou některé podařené méně, jiné více - méně hřejí
- Všechny funkční čipy se otestují a dle přísných kritérii roztřídí
- Podle kvality čipu se nastaví násobič základní frekvence a další parametry
- Například procesory Celeron a Pentium4 pocházejí se stejného waferu. Procesory Celeron se stávají ty čipy, které byly vyhodnoceny jako méně podařené a po jejich otestování u nich byly záměrně deaktivovány některé funkční bloky a snížen jejich výkon

Wafer

Videa

- https://videacesky.cz/video/jak-se-vyrabejiprocesory
- https://www.youtube.com/watch?v=A0X9lkKB kTM
- https://www.youtube.com/watch?v=SkLHEjh
 WaPA

Zvyšování výkonu procesorů

- Naivní pravidlo výkonu procesoru říká, že výkon je počet vykonaných instrukcí za čas
- Naivní výpočetní výkon = počet instrukcí vykonaných během jednoho hodinového cyklu * počet hodinových cyklu za vteřinu (neboli frekvence)
- IPC Instructions per clock Počet vykonaných instrukcí během jednoho hodinového cyklu je veličina závislá na architektuře čipu (počtu výpočetních jednotek, predikci větvení po podmínkách, velikosti cache...)
- Superskalární procesor má IPC>1
- Frekvence je veličina závislá na rychlosti tranzistorů, množství stupňů pipeline a na teplotních podmínkách v čipu
- Zvýšení výpočetního výkonu procesoru je možné
 - zvýšením IPC (vylepšení architektury čipu)
 - zvýšením frekvence (zdokonalení výrobní technologie)

Zvyšování výkonu mikroprocesorů

Příklad

 Mikroprocesor s taktovací frekvencí 3 GHz vykoná v průměru 6 miliard operací za sekundu. Jaké je jeho průměrné IPC?

- IPC = 6 000 000 000 / 3 000 000 000 = 2
- Mikroprocesor vykoná v průměru 2 instrukce naráz v jednom taktu

Zvyšování výkonu mikroprocesorů

Příklad

 Mikroprocesor s taktovací frekvencí 2 GHz má průměrné IPC=2,5. Kolik instrukcí za sekundu v průměru vykoná?

Průměrný počet instrukcí za sekundu = IPC x
 Frekvence = 2,5 x 200000000 = 5 miliard

- Od počátků procesorů rodiny x86 vzrostl výpočetní výkon více než 10000x. 1000x díky výrobní technologii (tj. díky vyšší frekvenci) a více než 10x díky propracovanější architektuře
- Počet transistorů se zvýšil z původních pár tisíc na dnešní miliardy

- Se zvyšujícím se počtem tranzistorů roste spotřeba elektrické energie
- Pentium bylo schopné dosahovat místy až dvojnásobného výkonu oproti 486 na stejné frekvenci, ale za cenu dvaapůlkrát vyšší spotřeby.
 Ta prakticky lineárně vzrostla s počtem tranzistorů

	80486 DX2 66 MHz	Pentium 66 MHz
Jádro	P24D Write back	P5
	enhanced	
Napětí	5V	5V
Transistorů	1.25 milionu	3.1 milionu
Spotřeba	6.43W	16W

Oba procesory měly stejné napájecí napětí i frekvenci. Liší se počtem tranzistorů

Problém spotřeby

	Pentium 200	Pentium Pro 200
	MHz	MHz, 256kB L2
Jádro	P54C	P6
Napětí	3.3V (STD)	3.3V
		21 milionů (z toho
Transistorů	3.1 milionu	15.5 milionu L2
		cache)
Spotřeba	11.6W	35W

Oba procesory měly stejné napájecí napětí i frekvenci. Liší se počtem tranzistorů

- Pentium Pro má významně zdokonalenou architekturu (RISC jádro, out-oforder zpracování instrukcí, spekulativní vykonávání kódu, více instrukčních dekodérů a více výpočetních jednotek...), ale jeho výkonnostní náskok proti Pentiu je v průměru jen +40% na stejné frekvenci
- Přitom elektrická spotřeba Pentia PRO je více než trojnásobná
- Další tranzistory v jádře, ať už se jedná o klíčové změny (výpočetní jádro) nebo jen menší (zvětšení cache, bufferů) vždy zvyšují spotřebu
- Přepočteno na počet transistorů se výkon procesorů neustále snižuje, tj.
 každý další přidaný transistor má menší a menší vliv na výkon
- Každý přidaný tranzistor ovšem zvyšuje elektrickou spotřebu (a tím pádem zahřívání) procesoru

Problém spotřeby

- Spotřebu lze významně snížit zmenšováním rozměrů tranzistorů
- u Intel procesorů při přechodu z 0.18um na 0.13um klesla spotřeba o více než 30%

 Důležitým faktorem, který ovlivňuje zmíněný pokles spotřeby, je fakt, že menší tranzistory potřebují méně energie k přepnutí. Jsou tedy rychlejší

a stačí jim menší napětí

 Při zmenšení rozměru tranzistoru o 30% lze na stejnou plochu umístit dvojnásobek transistorů

Zmenšování tranzistorů

20 nm

plochu **400 nm²** (méně něž poloviční) Na 1 mm² se jich vejde cca 2,5 miliardy

Řešení problému spotřeby

- leakage current stálá (statická) neovlivnitelná spotřeba (nezávislá na frekvenci a překlápění)
- PState (Performance State) Kombinace napětí a frekvence
 - Každý z procesorů používajících šetřící technologie má definovány PState, které zvládne
 - Nižší napětí umožňuje výrazně redukovat spotřebu, ale klesá také provozní frekvence, protože s nižším napětí se stávají hradla pomalejšími (trvá jim déle než překlopí)
 - Vhodným přepínáním mezi Pstates je možné docílit v případě nízkého vytížení nízké spotřeby

Řešení problému spotřeby

- Intel SpeedStep První generace šetřící technologie použitá v procesorech Pentium III
 - softwarově ovládaný způsob, což není příliš efektivní (procesor do úsporného režimu neumí sám sebe přepnout, musí být přepnut instrukcí)
 - využívá pouze dva PState. Přechod mezi PState je pomalý
- Stop Grant / Halt úsporné režimy, kdy procesor rapidním způsobem snižuje svojí vnitřní frekvenci (až na jednotky MHz), ale bez redukce napětí.
 - Redukuje pouze spotřebu při nevytížení, za to však významně
 - Procesor nezpracovává další instrukce, pouze čeká na přerušení od některého ze zařízení
 - Uživatel obvykle nemá možnost zjistit zapnutí těchto režimu, protože čítač taktu používaný pro výpočet frekvence obvykle pracuje se stále stejnou frekvencí (aby fungovaly časovače a měření času, i když procesor "stojí")

Řešení problému spotřeby

- On Demand Clock Modulation (ODCM) Systém vkládání prázdných hodinových cyklu (duty cycles) na vyžádání.
 - Podporuje kombinace od 12.5% do 87.5% (1/8 až 7/8)
 - Režim ODCM se používal u některých notebooků s Pentiem 4, kde fakticky bránil procesoru fungovat na maximální výpočetní výkon - kdyby totiž takový výkon povolil, notebook uvolňované teplo nevydrží.
 - Řada zákazníku tak získala notebook s Pentiem 4, které mělo zapnutý "omezovač" (spekuluje se, zda vlastně nejde o podvod)
- Enhanced Intel SpeedStep (EIST) novější způsob použitý u procesoru Pentium M, Pentium 4 s jádrem Prescott a Pentium D.
 - Obvykle mívá definováno více Pstate (např. 6)
 - Změna napětí je prováděna za plného chodu, což tuto verzi činí rychlou.

Řešení problému spotřeby AMD

- **PowerNow! verze 1.0** Šetřící technologie procesoru AMD K6-2E+ a K6-IIIE+ s několika PState režimy. Softwarové ovládání. Přepínání mezi PState je pomalé.
- PowerNow! verze 1.2 Obdoba použitá u procesoru Mobile AMD Athlon 4,
 Mobile Athlon XP-M a Mobile AMD Duron. Ovládá se softwarově. Přepínání je rychlejší než u verze 1.0
- PowerNow! verze 1.4 Použitý je u procesoru Athlon 64 a z něj odvozených.
 Ovládá se softwarově. Změna napětí probíhá za plného chodu, násobiče jsou přizpůsobeny rapidní rychlosti změn..
- Cool'n'Quiet kombinace PowerNow! verze 1.4 spolu s regulací otáček ventilátoru. Používá se pouze u stolních systémů (desktopů), kde je cílem nejen redukce spotřeby, ale také redukce hluku

Problematika zahřívání

- V elektronických čipech (jakýchokoliv, nejen v mikroprocesorech) se veškerá spotřebovaná elektrická energie mění v teplo
- Toto teplo vzniká ve velmi malém prostoru (tenký křemíkový čip, obdélník s hranou několik málo milimetrů)
- Teplo je potřeba odvádět, jinak by došlo tepelné destrukcí čipu
- Mikroprocesor Pentium IV by dokázal uvařit šálek čaje (ohřát 2 dcl vody na 100 °C) za necelých 5 minut
- Sám sebe bez chlazení ale dokáže tento čip uvařit během několika sekund

Problematika zahřívání

- Čím je čip menší, tím vyšší teplota v něm vzniká (teplo ho rychleji zahřeje a je menší plochou vyzařováno do okolí)
- Řešením by možná bylo vyrábět větší mikroprocesory (rozprostřít stávající počet tranzistorů na větší plochu)
- Zvětšovat samotné tranzistory by možné nebylo, protože tím by došlo k
 jejich zpomalení (miniaturní tranzistor = rychlý tranzistor)
- Ve velkém mikroprocesoru (který by se pomaleji zahříval a snáze ochlazoval), kde by mezi miniaturními tranzistory byly mezery, by byl ale problém s časovým zpožděním signálu
- Signál se může šířit maximálně rychlostí světla (300 000 000 m/s)
- Elektrický signál by během jednoho taktu nestihl urazit velkou vzdálenost do cílového bodu (při frekvenci 3 GHz urazí signál rychlostí světla maximálně 10 cm ve vakuu, ale v křemíkovém čipu je to ještě méně a cesty signálu jsou dlouhé složité)

Problematiká zahřívání

- Nastává tedy zásadní problém
 - Aby mohl mikroprocesor běžet na vysoké frekvenci, musí být napájen trochu vyšším napětím
 - S vyšším napájecím napětím ale roste kvadraticky spotřeba
 - S vyšší frekvenci roste počet přepnutí tranzistorů a tedy také spotřeba
 - S vyšší frekvencí vzniká efekt "mikrovlnné trouby" částice jsou ohřívány kmitáním na vysoké frekvenci
 - Aby mohl mikroprocesor běžet na vysoké frekvenci, musí být co nejmenší, aby signál šířící se maximálně rychlostí světla, stíhal putovat během jednoho taktu po svých trasách
 - Vše se tedy děje v miniaturním prostoru

TDP

- Thermal Design Power
- Udává se ve Wattech
- Navržený tepelný výkon, který musí být chlazení schopno odvést
- TDP obvykle neodpovídá elektrické spotřebě procesoru (ta může značně kolísat podle zatížení)
- U moderních procesorů se v podstatě jedná o informaci, jak účinné chlazení bude procesor vyžadovat, aby se nepřehříval
- Dva různé procesory se stejným elektrickým příkonem mohou mít uvedeno různé TDP, protože kvůli rozdílným rozměrům, materiálu a režimům činnosti mohou být různě snadno chladitelné
- Chladič procesoru musí být schopen odvádět minimálně množství tepla odpovídající hodnotě TDP

- Vykonání každé instrukce je rozděleno na několik fází
- Vykonání každé fáze trvá určitou dobu
- Doba trvání těchto fází je nestejná
- Vykonání následující fáze nesmí proběhnout dříve, než je předchozí fáze dokončena
- Řadič musí mít "přehled o čase" a umět odměřit časový interval, po kterém lze provést další fázi
- Z tohoto důvodu jsou všechny mikroprocesory synchronní a jsou řízeny hodinovým signálem
- Perioda hodinového signálu je nastavena tak, aby byla delší než doba trvání nejdelší ze všech fází vykonávání instrukce
- Všechny takty trvají stejně dlouho
- Čím kratší bude tato doba, tím vyšší může být taktovací frekvence procesoru
- Tato doba bude kratší, když bude provádění instrukcí rozděleno do velkého počtu krátkých fází, během kterých se vykonávají jednoduché dílčí kroky – mnohastupňový pipelining (proto mohlo Pentium IV běžet na tak vysokých frekvencích)

- Vykonání každé dílčí fáze nelze provést v nekonečně krátkém čase
- Signály v procesoru procházejí přes tisíce hradel a každé vnáší do cesty signálu určité zpoždění
- Samo elektrické pole se pohybuje relativně pomalu (rychlostí 300 000 km/s ve vakuu)
- U procesoru s frekvencí 1 GHz trvá jeden takt miliardtinu vteřiny tj. jednu nanosekundu
- Za tuto dobu by elektromagnetické pole ve vakuu urazilo 30 cm
- V polovidiči je však jeho rychlost ještě nižší a navíc dochází k již zmíněným zpožděním na všech hradlech (než dojde k jejich překlopení)
- Cesty signálu v procesoru jsou navíc pořádně komplikované a dlouhé
- I tento problém je řešen pipeliningem procesor je rozdělen na několik stupňů a signál při průchodu každým z nich během jednoho taktu to "stihne"

- Pipelining má bohužel i stinné stránky.
- Nevýhodou je, že je-li jedna instrukce datově závislá na druhé, tuto instrukci nelze vykonat, dokud nebude výsledek instrukce první známý – dnes umíme vyřešit forwardingem
- Čím více stupňů má pipeline, tím vyšší může být taktovací kmitočet procesoru (instrukce je rozdělena na více jednoduchých krátkých fází, jednoduché stupně procesoru vnáší do signálu kratší zpoždění)
- Čím více stupňů má pipeline, tím je ale také pravděpodobnější výskyt datových závislostí, load-use delay a podmíněných skoků, které naruší plynulé proudové zpracování

- Problém pipeline byl částečně vyřešen s příchodem Pentia PRO a zpracováním instrukcí Out-of-order
- Procesor vnitřně pracuje s malým množstvím instrukcí zvaných microOPs (jedná se o RISC jádro), kde na začátku pipeline jsou instrukční dekodéry, které přijímají instrukce a vytvářejí z nich microOPs - instrukce pro vnitřní RISCové jádro procesoru
- Uvnitř si jádro organizuje microOPs podle potřeb, a provádí tak instrukce mimo programátorem stanovené pořadí - dynamická paralelizace
- Nárust výkonu je proti in-order zpusobu často významný
- Nevýhodou ale je, že takto navrhnutý čip je velmi složitý a výkon ale nenarostl uměrně s počtem tranzistorů
- a jsme opět u toho velký počet tranzistorů, velký el. příkon...

Problém pomalé paměti

- Zatímco frekvence pamětí je dnes maximálně asi 800 MHz (DDR), frekvence procesorů se dostala na hranici 4 GHz
- Operační paměť je několikrát pomalejší než procesor
- Aby procesor neustále nezahálel čekáním na přečtení dat z paměti, musí v sobě integrovat vyrovnávací paměť - cache.
- Ta je rychlá, ale také drahá (SRAM) a uchovává aktuálně důležitá data (viz pretentace o Cache)
- Úspěšnost nalezení potřebných informací v cache je u nových procesorů velmi vysoká průměrně kolem 95 procent a více
- Trend poslední doby je neustálé zvětšování velikosti cache (několik MB)
- Pokud počítač vykonává více programů v multitaskingu, dochází k rychlému přepínání úloh a cache sdílí více programů.
- Čím větší cache je, tím vyšší výkon v opačném případě je při přechodu mezi programy nutné zapsat stav cache do RAM a načíst jinou sadu dat z RAM.
- Procesor stejného typu, ale s dvojnásobnou cache může být v tomto případě až o 30% výkonnější

- Výkon moderních mikroprocesorů roste díky
 - Hledání nových metod práce mikroprocesoru
 - Zvyšování IPC (zlepšování metod dynamické paralelizace)
 - Zvětšování Cache
 - Paralelizací (hyperthreading, více jader, SIMD)

Všimněte si, že v tomto výčtu chybí zvyšování taktovací frekvence

Kontrolní otázky

- Která z uvedených tvrzení jsou pravdivá
 - Hyperthreading lze provádět pouze na mikroprocesorech s IPC>1
 - VLIW procesory mají IPC>1
 - Pentium PRO má IPC>1
 - Některé superskalární mikroprocesory mají IPC<1
 - Čím vyšší frekvence tím vyšší IPC
- Jaké maximální taktovací frekvence dosáhly procesory pro počítače PC ? 4
 GHz
- Co je to wafer ? Plát čistého křemíku, ze kterého se dělají procesory
- Výkon mikroprocesorů v letech 1975-1990 rostl především díky zvyšování frekvence nebo zvyšováním IPC? Zvyšování frekvence
- Výkon mikroprocesorů v letech 2004-2014 roste především díky zvyšování frekvence nebo zvyšováním IPC? Zvyšování IPC
- Výkon přepočtený na jeden tranzistor se neustále zvyšuje nebo snižuje ?
- Kolikrát klesne spotřeba mikroprocesoru snížením napájecího napětí na polovinu ? 4x
- Kolikrát více tranzistorů se vejde na stejnou plochu čipu zdokonalením výrobní technologie na poloviční rozměr tranzistoru ? 4x

Kontrolní otázky

- Co je to Pstate ? performance state kombinací frekvence a napětí
- Menší tranzistor je rychlejší nebo pomalejší ? rychlejší
- Čip s menší plochou a stejným počtem tranzistorů se zahřívá rychleji nebo pomaleji ? - rychleji
- Proč nelze rešit problém zahřívání moderních rychlých mikroprocesorů zvětšením plochy čipu ? – přenosová rychlost
- Vysvětlete zkratku TDP thermal design power udává, kolik tepla je z procesoru odvádět
- Více stupňů pipeline způsobní zvýšení nebo snížení taktovací frekvence ? zvýšení
- Proč je nevýhodný mnohastupňový pipelining ? Instrukce je nutné zbytečné rozdělovat do mnoha kroků
- Proč je výhodný mnohastupňový pipelining ? vyšší frekvence