

SSD Internals

伯瑜

2012-11-23

http://weibo.com/pagefault

议题

- SSD 的构造
- SSD 的特性
- 对 FTL 行为的分析
- SSD 内部并行的分析

Inside SSD

NAND 芯片性能

Page Read to Register	$25 \mu \mathrm{s}$
Page Program (Write) from Register	$200 \mu \mathrm{s}$
Block Erase	1.5 ms
Serial Access to Register (Data bus)	$100 \mu \mathrm{s}$
Die Size	2 GB
Block Size	256 KB
Page Size	4 KB
Data Register	4 KB
Planes per die	4
Dies per package (2GB/4GB/8GB)	1,2 or 4
Program/Erase Cycles	100 K

NAND 芯片性能分析

- 读性能很好,1 个页需要 200us(100us 读取,传输 +25ns/byte*4096 大约 100us)
- 写速度很慢 300us(200us 写 +100us 传输)
- 如果写有 erase 的参与则更慢 (erase 需要 1.5ms)
- 即使能够 interleave, 单个芯片也只能达到 40MB/s 的读

对FTL的要求

- NAND 芯片都一样,关键在 FTL
- 需要有效的屏蔽掉 erase 过程
- 单芯片需要很好的 interleave
- 需要多芯片很好的并行

FTL 的设计要点

- Logical Block Map
- Cleaning, Garbage Collection
- Parallelism and Interconnect Density
- Persistence, wear leveling

对 FTL 行为的分析

RANDOM READ vs SEQUENTIAL READ

FTL 的行为的分析

Sequential write vs. random write

FTL 的行为的分析

Disk Cache

FTL 的行为的分析

Fragmentation affects performance

Figure 9: Bandwidth of fragmented SSDs. For

SSD内可以并行的地方

FTL 的并行分析

- Chunk size the size of the largest unit of data that is continuously mapped within an individual domain.
- **Interleaving degree** the number of domains at the same level. The interleaving degree is essentially determined by the redundancy of the resources (e.g. channels).
- Mapping policy the method that determines the domain to which a chunk of logical data is mapped. This policy determines the physical data layout.

Chunk size = 4KB

Interleave degree

Mapping Policy

并行的好处

并行的好处

并行读写

	Seq. Write	Rnd Write	None
Seq. Read	109.2	103.5	72.6
Rnd. read	32.8	33.2	21.3
None	61.4	59.4	

读写干扰严重 , randread+seqwrite 条件下 :

write 61.4->13.4

read 21.3->19.4

并行分析

ill-mapped data layout impact read

参考论文

- Design Tradeoffs for SSD Performance
- Understanding Intrinsic Characteristics and System Implications of Flash Memory based Solid State Drives
- Essential Roles of Exploiting Internal Parallelism of Flash Memory based Solid State Drives in High-Speed Data Processing