|                     | $\overline{\text{REG}}$ | REG | CFL | DEC. | REC. | P | NP | NPC |
|---------------------|-------------------------|-----|-----|------|------|---|----|-----|
| $L_1 \cup L_2$      | no                      | ✓   | ✓   | ✓    | ✓    | √ | √  | no  |
| $L_1\cap L_2$       | no                      | ✓   | no  | ✓    | ✓    | ✓ | √  | no  |
| $\overline{L}$      | ✓                       | ✓   | no  | ✓    | no   | ✓ | ?  | ?   |
| $L_1 \cdot L_2$     | no                      | ✓   | ✓   | ✓    | ✓    | ✓ | √  | no  |
| $L^*$               | no                      | ✓   | ✓   | ✓    | ✓    | √ | ✓  | no  |
| $_L\mathcal{R}$     | ✓                       | ✓   | ✓   | ✓    | ✓    | ✓ |    |     |
| $L_1 \setminus L_2$ | no                      | ✓   | no  | ✓    | no   | √ | ?  |     |
| $L\cap R$           | no                      | ✓   | ✓   | ✓    | ✓    | ✓ |    |     |

- (**DFA**)  $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q.$
- (NFA)  $M = (Q, \Sigma, \delta, q_0, F), \delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q).$
- (GNFA)  $(Q, \Sigma, \delta, q_0, q_a)$ ,
  - $\delta: (Q \setminus \{q_{\mathrm{a}}\}) imes (Q \setminus \{q_{\mathrm{start}}\} o \mathcal{R}$  (where
- $\mathcal{R} = \{ \text{Regex over } \Sigma \} )$
- (DFA → GNFA → Regex)



- GNFA accepts  $w \in \Sigma^*$  if  $w = w_1 \cdots w_k$ , where  $w_i \in \Sigma^*$ and there exists a sequence of states  $q_0, q_1, \dots, q_k$  s.t.  $q_0=q_{ ext{start}}$ ,  $q_k=q_{ ext{a}}$  and for each i, we have  $w_i\in L(R_i)$ , where  $R_i = \delta(q_{i-1}, q_i)$ .
- n-state DFA A, m-state DFA  $B \implies \exists nm$ -state DFA Cs.t.  $L(C) = L(A)\Delta L(B)$ .
- p-state DFA C, if  $L(C) 
  eq \emptyset$  then  $\exists \ s \in L(C)$  s.t. |s| < p.
- Every NFA has an equiv. NFA with a single accept

- $A = L(N_{\mathsf{NFA}}), B = (L(M_{\mathsf{DFA}}))^{\complement}$  then  $A \cdot B \in \mathsf{REG}$ . (NFA → DFA)
- $N = (Q, \Sigma, \delta, q_0, F)$
- $D=(Q'=\mathcal{P}(Q),\Sigma,\delta',q_0'=E(\{q_0\}),F')$
- $F' = \{q \in Q' \mid \exists p \in F : p \in q\}$
- $E(\{q\}) := \{q\} \cup \{\text{states reachable from } q \text{ via } \varepsilon\text{-arrows}\}$
- $orall R\subseteq Q, orall a\in \Sigma, \delta'(R,a)=E\left(igcup \delta(r,a)
  ight)$

#### Regular Expressions Examples:

 $\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$ 

 $\{w: \#_w(\mathtt{0}) \geq 2 \lor \#_w(\mathtt{1}) \leq 1\} \equiv$ 

 $(\Sigma^*0\Sigma^*0\Sigma^*) \cup (0^*(\varepsilon \cup 1)0^*)$ 

 $\{w: |w| \bmod n = m\} \equiv (a \cup b)^m ((a \cup b)^n)^*$ 

 $\{w : \#_b(w) \bmod n = m\} \equiv (a^*ba^*)^m \cdot ((a^*ba^*)^n)^*$ 

 $\{w : |w| \text{ is odd}\} \equiv (a \cup b)^* ((a \cup b)(a \cup b)^*)^*$ 

 $\{w: \#_a(w) \text{ is odd}\} \equiv b^*a(ab^*a \cup b)^*$ 

 $\{w:\#_{ab}(w)=\#_{ba}(w)\}\equivarepsilon\cup a\cup b\cup a\Sigma^*a\cup b\Sigma^*b$  $\{a^mb^n\mid m+n \text{ is odd}\}\equiv a(aa)^*(bb)^*\cup (aa)^*b(bb)^*$ 

 $\{aw : aba \not\subset w\} \equiv a(a \cup bb \cup bbb)^*(b \cup \varepsilon)$ 

# Pumping lemma for regular languages: $A \in \text{REG} \implies \exists p : \forall s \in A, \ |s| \geq p, \ s = xyz, \ \textbf{(i)} \ \forall i \geq 0, xy^iz \in A, \ \textbf{(ii)} \ |y| > 0 \ \text{and (iii)} \ |xy| \leq p.$

- (the following are non-reuglar but CFL)
- $\{w = w^{\mathcal{R}}\}; \quad s = 0^p 10^p = xyz. \text{ then }$  $xy^2z = 0^{p+|y|}10^p \notin L.$
- $\{a^nb^n\}; \quad s=a^pb^p=xyz, \text{ where } |y|>0 \text{ and } |xy|\leq p.$ Then  $xy^2z=a^{p+|y|}b^p \notin L$ .
- $\{w:\#_a(w)>\#_b(w)\};\, s=a^pb^{p+1},\, |s|=2p+1\geq p,$
- $xy^2z = a^{p+|y|}b^{p+1} \notin L.$  $\{w: \#_a(w) = \#_b(w)\}; s = a^p b^p = xyz$  but
- $\{w: \#_w(a) \neq \#_w(b)\};$  (pf. by 'complement-closure',
- $L = \{w : \#_w(a) = \#_w(b)\})$  $\{a^i b^j c^k : i < j \lor i > k\}; \ s = a^p b^{p+1} c^{2p} = xyz, \ \mathsf{but}$

 $xy^2z=a^{p+|y|}b^p
otin L.$ 

- $xy^2z = a^{p+|y|}b^{p+1}c^{2p}, \ p+|y| \ge p+1, \ p+|y| \le 2p.$ (the following are both non-CFL and non-reuglar)
- $\{w = a^{2^k}\}; \quad k = \lfloor \log_2 |w| \rfloor, s = a^{2^k} = xyz.$  $2^k = |xyz| < |xy^2z| \le |xyz| + |xy| \le 2^k + p < 2^{k+1}.$
- $\{a^p: p \text{ is prime}\}; \quad s=a^t=xyz \text{ for prime } t \geq p.$ r := |y| > 0
- $\{www:w\in\Sigma^*\};\,s=a^pba^pba^p=xyz=a^{|x|+|y|+m}ba^pba^pb$ ,  $m\geq 0$ , but  $xy^2z=a^{|x|+2|y|+m}ba^pba^pb
  otin L.$
- $\{a^{2n}b^{3n}a^n\}; s=a^{2p}b^{3p}a^p=xyz=a^{|x|+|y|+m+p}b^{3p}a^p,$  $m\geq 0$ , but  $xy^2z=a^{2p+|y|}b^{3p}a^p
  otin L.$
- $(\textbf{PDA}) \ M = (Q, \underset{\mathsf{stack}}{\Sigma}, \underset{\mathsf{stack}}{\Gamma}, \delta, q_0 \in Q, \underset{\mathsf{accepts}}{F} \subseteq Q). \ \delta : Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon}). \quad L \in \mathbf{CFL} \Leftrightarrow \exists G_{\mathsf{CFG}} : L = L(G) \Leftrightarrow \exists P_{\mathsf{PDA}} : L = L(P)$
- (CFG  $\leadsto$  CNF) (1.) Add a new start variable  $S_0$  and a rule  $S_0 \to S$ . (2.) Remove  $\varepsilon$ -rules of the form  $A \to \varepsilon$ (except for  $S_0 
  ightarrow arepsilon$ ). and remove A's occurrences on the RH of a rule (e.g.: R o uAvAw becomes  $R 
  ightarrow u AvAw \mid u Avw \mid u v Aw \mid u v w$ . where  $u, v, w \in (V \cup \Sigma)^*$ ). (3.) Remove unit rules  $A \to B$  then whenever  $B \to u$  appears, add  $A \to u$ , unless this was a unit rule previously removed. ( $u \in (V \cup \Sigma)^*$ ). (4.) Replace each rule  $A \to u_1 u_2 \cdots u_k$  where  $k \ge 3$  and  $u_i \in (V \cup \Sigma)$ , with the rules  $A \to u_1 A_1, A_1 \to u_2 A_2, ...,$  $\textbf{(CFG)} \ G = (V, \Sigma, R, S), \ A \rightarrow w, \ (A \in V, w \in (V \cup \Sigma)^*); \ \textbf{(CNF)} \ A \rightarrow BC, \ A \rightarrow a, S \rightarrow \varepsilon, \ \textbf{(}A, B, C \in V, \ a \in \Sigma, B, C \neq S\textbf{)}.$
- $A_{k-2} 
  ightarrow u_{k-1} u_k$ , where  $A_i$  are new variables. Replace terminals  $u_i$  with  $U_i \rightarrow u_i$ .
  - If  $G \in \mathsf{CNF}$ , and  $w \in L(G)$ , then  $|w| \leq 2^{|h|} 1$ , where his the height of the parse tree for w.
  - $\forall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
  - (derivation)  $S \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = w$ , where each  $u_i$  is in  $(V \cup \Sigma)^*$ . (in this case, G generates w (or S derives w),  $S \stackrel{*}{\Rightarrow} w$ )
  - M accepts  $w \in \Sigma^*$  if there is a seq.  $r_0, r_1, \ldots, r_m \in Q$ and  $s_0, s_1, \ldots, s_m \in \Gamma^*$  s.t.: (1.)  $r_0 = q_0$  and  $s_0 = \varepsilon$ ; (2.)
- For  $i=0,1,\ldots,m-1$ , we have  $(r_i,b)\in\delta(r_i,w_{i+1},a)$ , where  $s_i = at$  and  $s_{i+1} = bt$  for some  $a,b \in \Gamma_{arepsilon}$  and  $t \in \Gamma^*$ ; (3.)  $r_m \in F$ .
- (PDA transition) " $a,b \rightarrow c$ ": reads a from the input (or read nothing if  $a = \varepsilon$ ). **pops** b from the stack (or pops nothing if  $b = \varepsilon$ ). **pushes** c onto the stack (or pushes nothing if  $c = \varepsilon$ )
- $R \in \mathrm{REG} \wedge C \in \mathrm{CFL} \implies R \cap C \in \mathrm{CFL}$ . (pf. construct PDA  $P' = P_C \times D_R$ .)

## $\{w:\#_w(a)=\#_w(b)\};\,S\to SS\mid aSb\mid bSa\mid\varepsilon$

- (the following are CFL but non-reuglar)  $\{w:\#_w(a)
  eq\#_w(b)\}=\{w:\#_w(a)>\#_w(b)\}\cup\{w:\#_w(a)
  eq\#_w(b)\} o aSb\midarepsilon$
- $\{w: w=w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$  $\overline{\{a^nb^n\}}$ ;  $S \to XbXaX \mid A \mid B$ ;  $A \to aAb \mid Ab \mid b$ ;  $\{w: w \neq w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid aXb \mid bXa;$ 
  - $B 
    ightarrow aBb \mid aB \mid a$ ;  $X 
    ightarrow aX \mid bX \mid arepsilon$ .

  - $\{a^ib^jc^k \mid i \leq j \text{ or } j \leq k\}; S \rightarrow S_1C \mid AS_2;$  $S_1 
    ightarrow a S_1 b \mid S_1 b \mid arepsilon; S_2 
    ightarrow b S_2 c \mid S_2 c \mid arepsilon;$
- $\{w\#x: w^\mathcal{R}\subseteq x\}; S\to AX; A\to 0\\ A0\mid 1\\ A1\mid \#X; X\to 0\\ X\mid 4\\ X\to \varepsilon\\ Aa\mid \varepsilon; C\to Cc\mid \varepsilon$
- $\{w:\#_w(a)>\#_w(b)\};S\rightarrow TaT;T\rightarrow TT\mid aTb\mid bTa\mid a\mid \varepsilon\quad \{x\mid x\neq ww\};S\rightarrow A\mid B\mid AB\mid BA;A\rightarrow CAC\mid 0;$

- - $B 
    ightarrow CBC \mid$  1; $C 
    ightarrow 0 \mid 1$

- $\{a^nb^m\mid m\leq n\leq 3m\};S\rightarrow aSb\mid aaSb\mid aaaSb\mid \varepsilon;$
- $\{a^nb^m\mid n>m\};S o aSb\mid aS\mid a$
- $\{a^nb^m\mid n\geq m\geq 0\};\,S o aSb\mid aS\mid a\mid arepsilon$
- $\{a^nb^m\mid n\neq m\};S\rightarrow aSb\mid A\mid B;A\rightarrow aA\mid a;B\rightarrow bB\mid b^*\quad \{a^ib^jc^k\mid i+j=k\};S\rightarrow aSc\mid X;X\rightarrow bXc\mid \varepsilon\in A^nb^m\mid n\neq m\}$ 
  - ${xy : |x| = |y|, x \neq y};$
  - $S \rightarrow AB \mid BA; \, A \rightarrow a \mid aAa \mid aAb \mid bAa \mid bAb; \, B \rightarrow b \mid aBa \mid aBb \mid b \mid b \mid aBa \mid aBb \mid b \mid b \mid aBa \mid aBb \mid aBa \mid aBb \mid b \mid aBa \mid aBb \mid aBa \mid aBa \mid aBb \mid aBa \mid$
  - (the following are both CFL and regular)
  - $\{w:\#_w(a)\geq 3\};\,S o XaXaXaX;X o aX\mid bX\mid arepsilon$

# $\textbf{Pumping lemma for context-free languages:} \ L \in \text{CFL} \implies \exists p: \forall s \in L, |s| \geq p, \ s = uvxyz, \textbf{(i)} \ \forall i \geq 0, uv^i xy^i z \in L, \textbf{(ii)} \ |vxy| \leq p, \ \textbf{and (iii)} \ |vy| > 0.$

 $\{w=a^nb^nc^n\}; s=a^pb^pb^p=uvxyz.\ vxy$  can't contain all of a, b, c thus  $uv^2xy^2z$  must pump one of them less than the others.

 $\{ww^{\mathcal{R}}\} = \{w : w = w^{\mathcal{R}} \land |w| \text{ is even}\}; S \rightarrow aSa \mid bSb \mid \varepsilon$ 

 $\{wa^nw^{\mathcal{R}}\};\,S o aSa\mid bSb\mid M;M o aM\mid arepsilon$ 

 $\{w: \#_w(a) \geq \#_w(b)\}; S \rightarrow SS \mid aSb \mid bSa \mid a \mid \varepsilon$ 

- $\{ww : w \in \{a, b\}^*\};$ (more example of not CFL)
  - ${a^i b^j c^k \mid 0 \le i \le j \le k}, {a^n b^n c^n \mid n \in \mathbb{N}},$
  - $\{ww \mid w \in \{a,b\}^*\}, \{a^{n^2} \mid n \ge 0\}, \{a^p \mid p \text{ is prime}\},$
- $L = \{ww^{\mathcal{R}}w: w \in \{a,b\}^*\}$  $\{w \mid \#_w(a) = \#_w(b) = \#_w(c)\}$ : (pf. since
- Regular  $\cap$  CFL  $\in$  CFL, but
- $\{a^*b^*c^*\}\cap L=\{a^nb^nc^n\}\not\in \mathrm{CFL}$

## $L \in \text{DECIDABLE} \iff (L \in \text{REC. and } L \in \text{co-REC.}) \iff \exists M_{\mathsf{TM}} \text{ decides } L.$

- (TM)  $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\prod\limits_{\mathsf{tape}},\delta,q_0,q_{lacktriangle},q_{lacktriangle}),$  where  $\sqcup\in\Gamma,$ 
  - $\sqcup \notin \Sigma$ ,  $q_{\mathbb{R}} \neq q_{\mathbb{A}}$ ,  $\delta : Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$
- (recognizable) **A** if  $w \in L$ ,  $\mathbb{R}$ /loops if  $w \notin L$ ; A is co**recognizable** if  $\overline{A}$  is recognizable.
- $L \in \text{RECOGNIZABLE} \iff L \leq_{\text{m}} A_{\text{TM}}.$
- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable)  $\triangle$  if  $w \in L$ ,  $\mathbb{R}$  if  $w \notin L$ .

 $X o aX \mid bX \mid \epsilon$ 

 $L \in {
m DECIDABLE} \iff L \leq_{
m m} {
m 0*1*}.$ 

- $L \in \mathrm{DECIDABLE} \iff L^{\mathcal{R}} \in \mathrm{DECIDABLE}.$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM  $M_1$  and  $M_2$ , we have
- $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$
- Then P is undecidable. (e.g.  $INFINITE_{TM}$ ,  $ALL_{TM}$ ,  $E_{\mathsf{TM}}$ ,  $\{\langle M_{\mathsf{TM}} \rangle : 1 \in L(M)\}$ )
- $\{\text{all TMs}\}\ \text{is count.};\ \Sigma^*\ \text{is count.}\ (\text{finite }\Sigma);\ \{\text{all lang.}\}\ \text{is}$ uncount.; {all infinite bin. seq.} is uncount.
- $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \subset \mathsf{NPDA} \equiv \mathsf{CFG} \subset \mathsf{DTM} \equiv \mathsf{NTM}$
- $f:\Sigma^* o\Sigma^*$  is computable if  $\exists M_{\mathsf{TM}}: \forall w\in\Sigma^*,\, M$  halts
- If  $A \leq_{\mathrm{m}} B$  and B is decidable, then A is dec.

on w and outputs f(w) on its tape.

- If  $A \leq_{\mathrm{m}} B$  and A is undecidable, then B is undec.
- If  $A \leq_m B$  and B is recognizable, then A is rec.
- If  $A \leq_{\mathrm{m}} B$  and A is unrecognizable, then B is unrec.
- (transitivity) If  $A \leq_m B$  and  $B \leq_m C$ , then  $A \leq_m C$ .
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A \text{)}$
- If  $A \leq_{\mathrm{m}} \overline{A}$  and  $A \in \text{RECOGNIZABLE}$ , then  $A \in \text{DEC}$ .

#### $FINITE \subset REGULAR \subset CFL \subset CSL \subset DECIDABLE \subset RECOGNIZABLE$

```
(unrecognizable) \overline{A_{\rm TM}}, \, \overline{EQ_{\rm TM}}, \, EQ_{\rm CFG}, \, \overline{HALT_{\rm TM}},
REG_{TM}, E_{TM}, EQ_{TM}, ALL_{CFG}, EQ_{CFG}
```

- (recognizable but undecidable)  $A_{TM}$ ,  $HALT_{TM}$ ,
- $\overline{EQ_{\mathsf{CFG}}}, \, \overline{E_{\mathsf{TM}}}, \, \{\langle M, k \rangle \mid \exists x \ (M(x) \ \mathrm{halts \ in} \ \geq k \ \mathrm{steps})\}$
- (decidable)  $A_{\mathrm{DFA}},\,A_{\mathrm{NFA}},\,A_{\mathrm{REX}},\,E_{\mathrm{DFA}},\,EQ_{\mathrm{DFA}},\,A_{\mathrm{CFG}},$  $E_{\mathsf{CFG}},\, A_{\mathsf{LBA}},\, ALL_{\mathsf{DFA}} = \{\langle D \rangle \mid L(D) = \Sigma^*\},$  $A\varepsilon_{\mathsf{CFG}} = \{\langle G \rangle \mid \varepsilon \in L(G)\}$
- **Examples of Deciders:**
- $INFINITE_{DFA}$ : "On n-state DFA  $\langle A \rangle$ : const. DFA B s.t.  $L(B) = \Sigma^{\geq n}$ ; const. DFA C s.t.  $L(C) = L(A) \cap L(B)$ ; if

- $L(C) \neq \emptyset$  (by  $E_{\mathsf{DFA}}$ ) **(A)**; O/W,  $\mathbb{R}$ "  $\{\langle D \rangle \mid \not\exists w \in L(D) : \#_1(w) \text{ is odd}\}$ : "On  $\langle D \rangle$ : const. DFA
- A s.t.  $L(A) = \{w \mid \#_1(w) \text{ is odd}\}$ ; const. DFA B s.t.  $L(B) = L(D) \cap L(A)$ ; if  $L(B) = \emptyset$  ( $E_{\mathsf{DFA}}$ )  $\triangle$ ; O/W  $\mathbb{R}$ "  $\{\langle R,S\rangle\mid R,S \text{ are regex}, L(R)\subseteq L(S)\}$ : "On  $\langle R,S\rangle$ :
- $E_{DFA}$ ),  $\triangle$ ; O/W,  $\mathbb{R}$ "  $\{\langle D_{\mathsf{DFA}}, R_{\mathsf{REX}}\rangle \mid L(D) = L(R)\} \text{: "On } \langle D, R\rangle \text{: convert } R$ to DFA  $D_R$ ; if  $L(D)=L(D_R)$  (by  $EQ_{\mathsf{DFA}}$ ), lacktriangle; O/W,  $\mathbb{R}$ "

const. DFA D s.t.  $L(D) = L(R) \cap \overline{L(S)}$ ; if  $L(D) = \emptyset$  (by

- $\{\langle D_{\mathsf{DFA}}\rangle \mid L(D) = (L(D))^{\mathcal{R}}\}$ : "On  $\langle D\rangle$ : const. DFA  $D^{\mathcal{R}}$ s.t.  $L(D^{\mathcal{R}}) = (L(D))^{\mathcal{R}}$ ; if  $L(D) = L(D^{\mathcal{R}})$  (by  $EQ_{\mathsf{DFA}}$ ),
- $\{\langle M, k \rangle \mid \exists x \ (M(x) \text{ runs for } \geq k \text{ steps})\}$ : "On  $\langle M, k \rangle$ : (foreach  $w \in \Sigma^{\leq k+1}$ : if M(w) not halt within k steps, lacktriangle); O/W R"
  - $\{\langle M, k \rangle \mid \exists x \ (M(x) \ \text{halts in} \leq k \ \text{steps})\}$ : "On  $\langle M, k \rangle$ : (foreach  $w \in \Sigma^{\leq k+1}$ : run M(w) for  $\leq k$  steps, if halts, ♠); O/W, ℝ"
- $\{\langle M_{\mathsf{DFA}}
  angle \mid L(M) = \Sigma^*\}$ : "On  $\langle M
  angle$ : const. DFA  $M^{\complement} = (L(M))^{\complement}$ ; if  $L(M^{\complement}) = \emptyset$  (by  $E_{\mathsf{DFA}}$ ), **A**; O/W  $\mathbb{R}$ ."
- $\{\langle R_{\mathsf{REX}} \rangle \mid \exists s,t \in \Sigma^* : w = s111t \in L(R)\} : \text{"On } \langle R \rangle$ : const. DFA D s.t.  $L(D) = \Sigma^* 111 \Sigma^*$ ; const. DFA C s.t.  $L(C) = L(R) \cap L(D)$ ; if  $L(C) \neq \emptyset$  ( $E_{\mathsf{DFA}}$ )  $\triangle$ ; O/W  $\mathbb{R}$ "

### Mapping Reduction: $A \leq_{\mathrm{m}} B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is computable.

- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle \mid L(M) = (L(M))^{\mathcal{R}} \};$  $f(\langle M, w \rangle) = \langle M' \rangle$ , where M' ="On x, if  $x \notin \{01, 10\}$ ,  $\mathbb{R}$ ; if x = 01, return M(x); if x = 10,  $\triangle$ ;"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} L = \{\langle \underbrace{M}, \underbrace{D}_{\mathsf{DEA}} \rangle \mid L(M) = L(D)\};$
- $f(\langle M, w \rangle) = \langle M', D \rangle$ , where M' ="On x: if x = w return M(x); O/W,  $\mathbb{R}$ ;" D is DFA s.t.  $L(D) = \{w\}$ .
- $A \leq_{\mathrm{m}} HALT_{\mathsf{TM}}; f(w) = \langle M, \varepsilon \rangle$ , where  $M = \mathsf{"On}\ x$ : if  $w \in A$ , halt; if  $w \notin A$ , loop;"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} CFL_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \};$  $f(\langle M, w \rangle) = \langle N \rangle$ , where N ="On x: if  $x = a^n b^n c^n$ ,  $\triangle$ ; O/W, return M(w);"
- $A \leq_{\mathrm{m}} B = \{0w : w \in A\} \cup \{1w : w 
  otin A\}; f(w) = 0w.$
- $E_{\mathsf{TM}} \leq_{\mathsf{m}} USELESS_{\mathsf{TM}}; \ f(\langle M \rangle) = \langle M, q \mathbf{A} \rangle$
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} REGULAR_{\mathsf{TM}}; f(\langle M, w \rangle) = \langle M' \rangle, M' = \mathsf{"On}$

- $x \in \{0,1\}^*$ : if  $x = 0^n 1^n$ , **A**; O/W, return M(w);"  $A_{\mathsf{TM}} \leq_{\mathrm{m}} EQ_{\mathsf{TM}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "**A** all";  $M_2 =$ "On x: return M(w);"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{EQ_{\mathsf{TM}}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "R all";  $M_2$  ="On x: return M(w);"
- $ALL_{\mathrm{CFG}} \leq_{\mathrm{m}} EQ_{\mathrm{CFG}}; f(\langle G \rangle) = \langle G, H \rangle, \text{ s.t. } L(H) = \Sigma^*.$
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{\langle M_{\mathsf{TM}} \rangle : |L(M)| = 1\}; f(\langle M, w \rangle) = \langle M' \rangle,$ where M' = "On x: if  $x = x_0$ , return M(w); O/W,  $\mathbb{R}$ ;" (where  $x_0 \in \Sigma^*$  is fixed).
- $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} E_{\mathsf{TM}}; f(\langle M, w \rangle) = \langle M' \rangle$ , where  $M' = \mathsf{"On}\ x$ : if  $x \neq w$ ,  $\mathbb{R}$ ; O/W, return M(w);"
- $A_{\mathsf{TM}} \leq_{\mathrm{m}} \{\langle M_{\mathsf{TM}} \rangle : |L(M)| = 1\};$
- $\overline{\mathit{HALT}_\mathsf{TM}} \leq_{\mathrm{m}} \{\, \langle M_\mathsf{TM} \rangle : |L(M)| \leq 3\}; \, f(\langle M, w \rangle) = \langle M' \rangle, \, |$ where M' = "On x:  $\triangle$  if M(w) halts"
- $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : |L(M)| \geq 3 \}; f(\langle M, w \rangle) = \langle M' \rangle,$

- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : M \ \triangle \ \text{all even num.} \};$  $f(\langle M, w \rangle) = \langle M' \rangle$ , where M' ="On x:  $\mathbb{R}$  if M(w) halts within |x|. O/W,  $\blacksquare$ "
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is finite} \};$  $f(\langle M, w \rangle) = \langle M' \rangle$ , where M' = "On x: **A** if M(w) halts"
- $\overline{HALT_{\mathsf{TM}}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle : L(M) \text{ is infinite} \};$
- $f(\langle M,w
  angle)=\langle M'
  angle$ , where M'= "On x:  $\hbox{$\Bbb R$}$  if M(w) halts within |x| steps. O/W,  $\blacksquare$ "
- $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_1, M_2 \rangle : \varepsilon \in L(M_1) \cup L(M_2) \};$
- $f(\langle M, w \rangle) = \langle M', M' \rangle$ , M' = "On x:  $\triangle$  if M(w) halts"  $\mathit{HALT}_{\mathsf{TM}} \leq_{\mathrm{m}} \overline{E_{\mathsf{TM}}}; f(\langle M, w \rangle) = \langle M' 
  angle, ext{ where } M' = ext{"On}$ x: if  $x \neq w \mathbb{R}$ ; else,  $\triangle$  if M(w) halts"
  - $HALT_{\mathsf{TM}} \leq_{\mathrm{m}} \{ \langle M_{\mathsf{TM}} \rangle \mid \exists x : M(x) \text{ halts in } > |\langle M \rangle| \text{ steps} \}$  $f(\langle M, w \rangle) = \langle M' \rangle$ , where M' ="On x: if M(w) halts, make  $|\langle M \rangle| + 1$  steps and then halt; O/W, loop"

## $\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k) \subseteq \mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k) = \{L \mid L \text{ is decidable by a PT verifier}\} \supseteq \mathbf{NP\text{-complete}} = \{B \mid B \in \mathsf{NP}, \forall A \in \mathsf{NP}, A \leq_{\mathsf{P}} B\}.$

- ((Running time) decider M is a f(n)-time TM.)  $f: \mathbb{N} \to \mathbb{N}$ , where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any *n*-length input. resp.).
- (verifier for L) TM V s.t.  $L = \{w \mid \exists c : V(\langle w, c \rangle) = \clubsuit\};$ (certificate for  $w \in L$ ) str. c s.t.  $V(\langle w, c \rangle) = \triangle$ .
- $f:\Sigma^* o \Sigma^*$  is **PT computable** if there exists a PT TM M s.t. for every  $w \in \Sigma^*$ , M halts with f(w) on its tape.
- If  $A \leq_{\mathbf{P}} B$  and  $B \in \mathbf{P}$ , then  $A \in \mathbf{P}$ . If  $A \leq_{\mathbf{P}} B$  and  $B \leq_{\mathbf{P}} A$ , then A and B are **PT equivalent**, denoted  $A \equiv_P B$ .  $\equiv_P$  is an equiv. relation on NP.  $P \setminus \{\emptyset, \Sigma^*\}$  is an equiv. class of  $\equiv_P$ .
- $ALL_{DFA}$ , CONNECTED, TRIANGLE,  $L(G_{CFG})$ ,
  - RELPRIME,  $PATH \in P$
- $\mathit{CNF}_2 \in \mathrm{P}$ : (alg.  $\forall x \in \phi$ : (1) If x occurs 1-2 times in same clause  $\rightarrow$  del cl.; (2) If x is twice in 2 cl.  $\rightarrow$  del
- both cl.; (3) Similar to (2) for  $\overline{x}$ ; (4) Replace any  $(x \vee y)$ ,  $(\neg x \lor z)$  with  $(y \lor z)$ ;  $(y, z \text{ may be } \varepsilon)$ ; (5) If  $(x) \land (\neg x)$ found,  $\mathbb{R}$ . (6) If  $\phi = \varepsilon$ , (A); CLIQUE, SUBSET-SUM, SAT, 3SAT, COVER.

HAMPATH, UHAMATH,  $3COLOR \in NP$ -complete.

- $\emptyset, \Sigma^* \notin NP$ -complete.
- If  $B \in \mathrm{NP\text{-}complete}$  and  $B \in \mathrm{P}$ , then  $\mathrm{P} = \mathrm{NP}.$ If  $B \in \text{NPC}$  and  $C \in \text{NP}$  s.t.  $B \leq_{\text{P}} C$ , then  $C \in \text{NPC}$ .
- If P = NP, then  $\forall A \in P \setminus \{\emptyset, \Sigma^*\}, A \in NP$ -complete.

### Polytime Reduction: $A \leq_P B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is polytime computable.

- $SAT \leq_{\mathbf{P}} DOUBLE\text{-}SAT; \quad f(\phi) = \phi \wedge (x \vee \neg x)$
- $3SAT \leq_{\mathrm{P}} 4SAT$ ;  $f(\phi) = \phi'$ , where  $\phi'$  is obtained from the CNF  $\phi$  by adding a new var. x to each clause, and adding a new clause  $(\neg x \lor \neg x \lor \neg x \lor \neg x)$ .
- $3SAT \leq_{\mathrm{P}} CNF_3; f(\langle \phi \rangle) = \phi'.$  If  $\#_{\phi}(x) = k > 3$ , replace x with  $x_1, \ldots x_k$ , and add  $(\overline{x_1} \vee x_2) \wedge \cdots \wedge (\overline{x_k} \vee x_1)$ .
- $SUBSET\text{-}SUM \leq_{P} SET\text{-}PARTITION;$
- $f(\langle x_1,\ldots,x_m,t
  angle)=\langle x_1,\ldots,x_m,S-2t
  angle$  , where S sum of  $x_1, \ldots, x_m$ , and t is the target subset-sum.
- $3COLOR \leq_{\operatorname{P}} 3COLOR; f(\langle G \rangle) = \langle G' \rangle, \ G' = G \cup K_4$
- (dir.)  $HAM-PATH \leq_P 2HAM-PATH$ ;  $f(\langle G,s,t
  angle)=\langle G',s',t'
  angle$ , where

 $V'=V\cup\{s',t',a,b,c,d\},$ 

- $E' = E \cup \{(s', a), (a, b), (b, s)\} \cup \{(s', b), (b, a), (a, s)\}$  $\cup \, \{(t,c), \, (c,d), \, (d,t')\} \cup \{(t,d), \, (d,c), \, (c,t')\}.$ (undir.)  $CLIQUE_k \leq_P HALF-CLIQUE;$
- $f(\langle G=(V,E),k\rangle)=\langle G'=(V',E')\rangle$ , if  $k=\frac{|V|}{2}$ , E=E',
- V' = V. if  $k > \frac{|V|}{2}$ ,  $V' = V \cup \{j = 2k |V| \text{ new nodes}\}$ . if  $k < \frac{|V|}{2}$  ,  $V' = V \cup \{j = |V| - 2k \text{ new nodes}\}$  and  $E' = E \cup \{ \text{edges for new nodes} \}$
- (dir.) HAM- $PATH \leq_P HAM$ -CYCLE;
- $f(\langle G,s,t \rangle) = \langle G',s,t \rangle$  where  $V' = V \cup \{x\}$ ,  $E'=E\cup\{(t,x),(x,s)\}$
- $\mathit{HAM-CYCLE} \leq_{\mathrm{P}} \mathit{UHAMCYCLE}; f(\langle G \rangle) = \langle G' \rangle.$  For
  - replaced by  $\{v_{\text{out}}, u_{\text{in}}\}, \{u_{\text{in}}, u_{\text{mid}}\}; \text{ and } (u, v)$  by  $\{u_{\mathsf{out}}, v_{\mathsf{in}}\}, \{u_{\mathsf{mid}}, u_{\mathsf{out}}\}.$
  - $UHAMPATH \leq_{\mathbf{P}} PATH_{\geq k};$

- $f(\langle G, a, b \rangle) = \langle G, a, b, k = |V(G)| 1 \rangle$
- $_{COVER_{k}}^{VERTEX} \leq_{\mathbf{p}} \mathit{CLIQUE}_{k};$ 
  - $f(\langle G, k \rangle) = \langle G^{\complement} = (V, E^{\complement}), |V| k \rangle$
- $CLIQUE_k \leq_{\mathbf{P}} \{\langle G, t \rangle : G \text{ has } 2t\text{-clique}\};$
- $f(\langle G, k \rangle) = \langle G', t = \lceil k/2 \rceil \rangle, G' = G \text{ if } k \text{ is even};$  $G' = G \cup \{v\}$  (v connected to all G nodes) if k is odd.
- $CLIQUE_k \leq_{\mathrm{P}} CLIQUE_k$ ;  $f(\langle G, k \rangle) = \langle G', k+2 \rangle$ , where  $G'=G\cup\{v_{n+1},v_{n+2}\}$  and  $v_{n+1},v_{n+2}$  are con. to all G
- $VERTEX \\ COVER_k \le_P DOMINATING-SET_k;$ 
  - $f(\langle G, k \rangle) = \langle G', k \rangle$ , where
  - $V' = \{ \text{non-isolated node in } V \} \cup \{ v_e : e \in E \},$
- $E' = E \cup \{(v_e, u), (v_e, w) : e = (u, w) \in E\}.$
- $\textit{CLIQUE} \leq_{P} \textit{INDEP-SET}; \textit{SET-COVER} \leq_{P} \textit{COVER};$  $3SAT \leq_{P} SET\text{-}SPLITTING; INDEP\text{-}SET \leq_{P} COVER$

#### Counterexamples

- $A \leq_{\mathrm{m}} B$  and  $B \in \text{REG}$ , but,  $A \notin \text{REG}$ :  $A = \{0^n 1^n \mid n \ge 0\}, B = \{1\}, f : A \to B,$  $\begin{cases} 1 & \text{if } w \in A \\ 0 & \text{if } w \notin A \end{cases}$
- $L \in \text{CFL}$  but  $\overline{L} \notin \text{CFL}$ :  $L = \{x \mid \forall w \in \Sigma^*, x \neq ww\},\$  $\overline{L} = \{ww \mid w \in \Sigma^*\}.$
- $L_1, L_2 \in \text{CFL}$  but  $L_1 \cap L_2 \notin \text{CFL}$ :  $L_1 = \{a^n b^n c^m\}$ ,  $L_2 = \{a^m b^n c^n\}, L_1 \cap L_2 = \{a^n b^n c^n\}.$
- $L_1 \in \mathrm{CFL},\, L_2$  is infinite, but  $L_1 \setminus L_2 
  otin \mathrm{REG}: \quad L_1 = \Sigma^*$ ,  $L_2 = \{a^nb^n \mid n \geq 0\}$ ,  $L_1 \setminus L_2 = \{a^mb^n \mid m \neq n\}$ .
- $L_1, L_2 \in \text{REG}, L_1 \not\subset L_2, L_2 \not\subset L_1$ , but,  $(L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathtt{a},\mathtt{b},\mathtt{ab}\}, \, L_2 = \{\mathtt{a},\mathtt{b},\mathtt{ba}\}$
- $L_1 \in \mathrm{REG},\, L_2 
  otin \mathrm{REG},\, \mathrm{but},\, L_1 \cap L_2 \in \mathrm{REG},\, \mathrm{and}$  $L_1 \cup L_2 \in \text{REG}: \quad L_1 = L(\mathbf{a}^*\mathbf{b}^*), L_2 = \{\mathbf{a}^n\mathbf{b}^n \mid n \ge 0\}.$
- $L_1, L_2, L_3, \dots \in \mathrm{REG}$ , but,  $igcup_{i=1}^\infty L_i 
  ot\in \mathrm{REG}$  :  $L_i = \{\mathtt{a}^i\mathtt{b}^i\}, \ igcup_{i=1}^\infty L_i = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1 \cdot L_2 \in \mathrm{REG}$ , but  $L_1 
  otin \mathrm{REG}: \quad L_1 = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}$ ,
  - $L_2\in \mathrm{CFL}$ , and  $L_1\subseteq L_2$ , but  $L_1
    ot\in \mathrm{CFL}:\quad \Sigma=\{a,b,c\},$  $L_1=\{a^nb^nc^n\mid n\geq 0\}$  ,  $L_2=\Sigma^*$  .
- $\overline{L_1,L_2}\in \operatorname{DECIDABLE}$ , and  $L_1\subseteq L\subseteq L_2$ , but  $L \in \mathrm{UNDECIDABLE}: \quad L_1 = \emptyset, \, L_2 = \Sigma^*, \, L \, \mathsf{is some}$ undecidable language over  $\Sigma$ .
- $L_1 \in \text{REG}, L_2 \notin \text{CFL}, \text{ but } L_1 \cap L_2 \in \text{CFL}: \quad L_1 = \{\varepsilon\},$  $L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- $L^* \in \mathrm{REG}$ , but  $L 
  ot\in \mathrm{REG}: \quad L = \{a^p \mid p \ \mathrm{is \ prime}\},$  $L^* = \Sigma^* \setminus \{a\}.$
- $A \not\leq_m \overline{A}$ :  $A = A_{\mathsf{TM}} \in \mathsf{RECOGNIZABLE}$ ,  $\overline{A} = \overline{A_{\mathsf{TM}}} \notin \mathsf{RECOG}.$ 
  - $A \notin DEC., A \leq_{\mathrm{m}} \overline{A}:$
- $L \in \mathrm{CFL}, L \cap L^{\mathcal{R}} \notin \mathrm{CFL} : L = \{a^n b^n a^m\}.$