Лабораторная работа № 4 Криптографические функции хэширования

Базовое задание (6 баллов, дата сдачи $\leq 03.06.2021$).

На основе блочной криптосистемы, реализованной в лабораторной работе \mathbb{N}_2 3, построить блочно-итерационную функцию хэширования с шаговой функцией σ (см. вариант в таблице). Описание блочно-итерационных функций хэширования см. в [1] (глава 4).

Фамилия, имя	$\sigma(X \parallel Y)$
Белицкий Евгений	$F_{_{Y}}(X) \oplus X$
Бислюк Артём	$F_{_{Y}}(X\oplus Y)\oplus X\oplus Y$
Бокун Адам	$F_{Y}(X) \oplus X \oplus Y$
Виноградова Анастасия	$F_{Y}(X \oplus Y) \oplus X$
Врублевская Екатерина	$F_X(Y) \oplus Y$
Доскоч Роман	$F_X(X \oplus Y) \oplus X \oplus Y$
Ищенко Иван	$F_X(Y) \oplus X \oplus Y$
Козунов Алексей	$F_X(X \oplus Y) \oplus Y$
Кукса Андрей	$F_{X \oplus Y}(X) \oplus X$
Левданская Елизавета	$F_{X \oplus Y}(Y) \oplus Y$
Мигас Злата	$F_{X \oplus Y}(X) \oplus Y$
Никончик Даниил	$F_{X \oplus Y}(Y) \oplus X$
Руткевич Родион	$F_{X \oplus Y}(Y) \oplus X$
Семенович Дмитрий	$F_X(Y) \oplus Y$
Икромов Джовид	$F_{X\oplus Y}(X)\oplus X$

Дополнительные задания (принимаются при условии, что сдано основное задание, i-ое дополнительное задание принимается при условии, что сданы дополнительные задания 1,...,i-1,i=2,3,...).

- -1. (2 балла, дата сдачи $\leq 27.05.2021$). Найти коллизию построенной функции хэширования длины 24 бита.
- -2. (2 балла, дата сдачи $\leq 20.05.2021$). Исследовать лавинный эффект для построенной функции хэширования h по следующей схеме:
 - а. Выбрать 100 различных сообщений: $x_1,...,x_{100}$.
- б. В каждом из этих 100 сообщений изменить 1 бит, эти измененные сообщения обозначим $y_1,...,y_{100}$.
 - e. Вычислить хэш-значения: $h(x_1),...,h(x_{100}),h(y_1),...,h(y_{100})$.

 ε . Изобразить на графике множество точек: $\{(i, L(h(x_i), h(y_i))) : i = 1,...,100\}$. Где L – расстояние Хэмминга (число отличающихся бит строк $h(x_i)$ и $h(y_i)$ на одинаковых позициях, примеры: L(000, 111) = 3, L(000, 000) = 0, L(000, 001) = 1, L(101, 111) = 1, L(100, 001) = 2).

Прокомментировать полученные результаты.

-3. (1+4 балла, дата сдачи $\leq 13.05.2021$). Найти коллизию построенной функции хэширования длины 32 бита.

Литература

1. Криптографические методы. С.В. Агиевич. – 2014. http://apmi.bsu.by/assets/files/agievich/cm.pdf