01/18/21	
· HW#1: Du	01/20
• HW#2: Due	01/28 (Fri) 5pm
· Midterm 1:	02/03 (Th) - not 02/01

- \clubsuit Example (contd): Assume that observations, x_1, \ldots, x_n are iid from $N(\theta, \sigma^2)$, where μ and σ^2 are unknown. Consider $\tilde{\pi}(\theta, \sigma) = 1/\sigma^2$ (not a probability density, i.e., improper prior).
 - Find the joint posterior distribution, $\tilde{\pi}(\theta, \sigma^2 \mid \mathbf{x})$.
 - Find the posterior distributions $\tilde{\pi}_1(\theta \mid \mathbf{x}, \mathbf{v}^2)$ and $\tilde{\pi}_2(\sigma^2 \mid \mathbf{x})$.
 - Find the marginal posterior distribution of θ , $\tilde{\pi}(\theta \mid \mathbf{x})$. ** Also, read Hoff §5.3, BDA §3.2, and Robert §4.4.1-4.4.2.

$$\frac{1}{\sqrt{3^2 + \frac{1}{2}} - 1} = -\left(\frac{2}{2} \cdot \frac{2}{2}\right)$$

$$\frac{1}{\sqrt{3^2 + \frac{1}{2}} - \frac{1}{2}} \cdot \exp\left(-\frac{8^2}{2a^2}\right)$$

$$= \frac{n-1}{2}$$

$$= \frac{n-1}{2}$$

$$= \frac{n-1}{2}$$

$$= \frac{n-1}{2}$$

$$= \frac{1}{2}$$

$$\frac{2}{2} \qquad \frac{1}{2} \left(\Theta \left(\right. \times \right) = \int_{\infty}^{\infty} \frac{1}{2} \left(\Theta^{\prime} a_{s} \right) \times \gamma^{2}$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right) dq^{2}$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$= \int_{0}^{\infty} (q^{2})^{-\frac{n}{2}-1} \exp\left(-\frac{1}{q^{2}} \cdot \frac{1}{2} \left(\delta^{2} + n (\overline{X} - \Theta)^{2}\right)\right)$$

$$\frac{1 + \frac{n!}{n!} \frac{n (X - \Theta)^{2}}{6^{2}} - \frac{n - i + 1}{2}}{1 + \frac{n!}{n!} \frac{n (X - \Theta)^{2}}{6^{2}}} + \frac{n! + 1}{2}} = \frac{1}{2} \frac{\sqrt{2} + \frac{n!}{2}}{\sqrt{2}} = \frac{1}{2} \frac{n!}{2} = \frac{1}{2} \frac{\sqrt{2} + \frac{n!}{2}}{\sqrt{2}} = \frac{1}{2} \frac{\sqrt{2} + \frac{n!}{2}}{\sqrt{2}} = \frac{1}{2} \frac{n!}{2} = \frac{n!}{2} = \frac{n!}{2} \frac{n!}{2} = \frac{n!}{2} =$$

$$(2/(3\cdot2) = 2$$

$$\theta(x) \sim \pm_{n-1} \left(x, \frac{6^2}{n(n-1)}\right)$$

 \clubsuit Example: Assume that observations, x_1, \ldots, x_n are iid from

$$N(\overline{\theta}, \sigma^2)$$
, where θ and σ^2 are unknown. Consider $\overline{\Psi}$, S^* $\underline{\Psi}$ $\underline{\theta} \in \mathbb{R} \rightarrow \underline{\theta} \in \mathbb{R} \rightarrow \underline{\theta} \in \mathbb{R} \rightarrow \underline{\theta} \in \mathbb{R} \rightarrow \underline{\theta} \in \mathbb{R}$

where (π_1) is a normal distribution $N(\mu, \sigma^2/n_0)$ and π_2 is a inverse gamma distribution $IG(v/2, s_0^2/2)$.

- Find the joint posterior distribution $\pi(\theta, \sigma^2 \mid \mathbf{x})$.
- Find the joint posterior distributions $\underline{\pi_1(\theta \mid \mathbf{x}, \underline{\sigma}^2)}$ and $\underline{\pi_2(\sigma^2 \mid \mathbf{x})}$.
- Find the marginal posterior distribution of θ , $\pi(\theta \mid \mathcal{A}(\theta))$.
 - * Read Hoff §5.3, BDA §3.3, and Robert §4.4.1-4.4.2.
 - * Hoff and BDA use different parameterization for π_2 .
 - * Do the example on Hoff pages 76-78.

† Likelihood Principle

- (Recall the definition of Likelihood) For the observed data, X = x, the function $\ell(\theta \mid x) = f(x \mid \theta)$, considered as a function of θ , is called the likelihood function.
 - ****** no guarantee that $\ell(\theta \mid x)$ as a function of θ is a pdf.
 - ** Intuitive reason for the name: given x, the value of θ_1 is more likely to be the true parameter than θ_2 if $\ell(\theta_1 \mid x) > \ell(\theta_2 \mid x)$, (x would be more probable occurrence with θ_1).

• **Likelihood Principle** The information brought by an observation x about θ is entirely contained in the likelihood $\ell(\theta \mid x)$. Moreover, if x_1 and x_2 are two observations depending on the same parameter θ , such that there exists a constant c satisfying

$$\frac{\ell_1(\theta \mid x_1) = \mathcal{C}\ell_2(\theta \mid x_2)}{\theta \times c\theta} \xrightarrow{\text{for } \theta \in \mathcal{H}} \underset{\text{proof distribution}}{\text{proof distribution}} \underbrace{\ell_1(\theta \mid x_1)}_{\theta \times c\theta}$$

for every θ , they then bring the same information about θ and must lead to identical inference.

- c does not depend on θ .
- In other words, In the inference about θ , after x is observed, all relevant experimental information is contained in the likelihood function for the observed x. Furthermore, the likelihood functions contain the same information about θ if they are proportional to each other.

- † The Likelihood Principle is emphasized in Bayesian statistics!
 - Recall The Bayesian approach is entirely based on the posterior distribution.

$$\underline{\pi(\theta \mid x)} = \underline{\underline{\mathscr{L}}\ell(\theta \mid x)\pi(\theta)}_{\int \underline{\mathscr{L}}\ell(\theta \mid x)\pi(\theta)d\theta}.$$

That is, the posterior depends on data (x) only through $\ell(\theta \mid x)$.

 Thus, the Likelihood Principle is automatically satisfied in a Bayesian setting.

Example 15 (JB, p28) – Testing fairness (1)

Suppose we are interested in testing θ , the unknown probability of heads for a possibly biased coin. Suppose we test $H0: \theta = 1/2$ vs $Ha: \theta > 1/2$. An experiment is conducted by flipping the coin independently in a series of trials and 9 heads and 3 tails are observed. The information is not sufficient to fully specify the model, $f(x \mid \theta)$. Let's consider classical testing.

• **Scenario 1** The number of flips is pre-determined. N=12

Example 15 (JB, p28) – Testing fairness (2)

Y: # of heads,
$$\theta = \text{Rrob. of H}$$
 $X(\theta) \sim \text{Negative binomizal}(3g^{1-\theta})$
 $I_2(\theta|X) = {x+3-1 \choose 2} \theta^X(1-\theta)^3 \qquad X = 0, 1, 2, \dots$
 $P = P_r(X Z 9 | \theta = \frac{1}{2}) = 1 - P_r(X \le 8 | \theta = \frac{1}{2})$
 $= 0.0325$
 $\Rightarrow d = 0.05$, reject Ho

 $I_2(\theta|X) = {n \choose X} \theta^X(1-\theta)^{N-X} \propto I_2(\theta|X)$

Example 15 (JB, p28) - Testing fairness (3)

How about Bayesian inference?

$$\pi (\Theta(X)) \propto \left(\frac{n}{x} \right) \theta^{X} (I-\Theta)^{N-X} \pi(\Theta)$$

$$\propto \theta^{9} (I-\Theta)^{3} \pi(\Theta)$$

$$(2) \qquad \pi(\Theta(X) \quad \propto \quad \left(\begin{array}{c} \Sigma \\ X+3-1 \end{array}\right) \qquad \theta_{X} \quad (I-\Theta)_{3} \quad \times \quad \pi(\Theta)$$

Example 15 (JB, p28)— Testing fairness (4)

- * What does this imply?
 - We did not really need to know anything about the "series of trials". That is, the rules governing when data collection stops are <u>irrelevant</u> to data interpretation.
 - It is entirely appropriate to collect data until a point has been proven or disproven, or until the data collector runs out of time, money, or patience. — Edwards, Lindman, and Savage (1963, 193)

† Few Remarks!

- The correspondence of information from proportional likelihood functions applies only when the two likelihood functions are for the same parameter.
- The likelihood principle does not say all information about θ is contained in $\ell(\theta)$, just that all *experimental* information is.
- It is of fundamental importance to get the likelihood function right (the likelihood function should be a close approximation or representation of data).
- Also, see Example 1.3.5.
- Optional: read Example 1.3.6 & Stopping Rule Principle
 CR p17 & JB Chapter 7.7