Série 8

Exercice 1. On munit l'espace d'un repère. Dans chacun des cas ci-dessous, décrire la position relative des plans π et ρ définis par les données. S'ils sont sécants, donner un point et un vecteur directeur de la droite intersection.

a.
$$\pi: x + y - 3z = 2$$
, ρ passe par $A(1,0,0)$, $B(0,1,0)$ et $C(3,1,1)$.

b.
$$\pi: 3x + 2y - z = 8$$
, $\rho: x + 3y + 2z = 5$.

c.
$$\pi: \begin{cases} x = 1 + 3s + 4t \\ y = 1 + s - t \\ z = 2 + 5s + 2t \end{cases}$$
, $s, t \in \mathbb{R}$, $\rho: x + 2y - z = 1$.

Solution:

a. Tout d'abord, observons que le point A n'appartient pas à π . En effet, $1+0-3\cdot 0=1\neq 2$. Par conséquent, les plans π et ρ sont différents. Par ailleurs, les vecteurs $\overrightarrow{AB}\begin{pmatrix} -1\\1\\0\end{pmatrix}$ et $\overrightarrow{AC}\begin{pmatrix} 2\\1\\1\end{pmatrix}$, qui sont directeurs de ρ , sont aussi directeurs de π , car :

$$1 + (-1) - 3 \cdot 0 = 0$$
 et $2 + 1 - 3 \cdot 1 = 0$.

Par conséquent, les plans ρ et π ont même direction. Ils sont donc parallèles (et non confondus).

b. Les parties variables des équations cartésiennes de π et ρ ne sont pas proportionnelles : par conséquent ces plans sont sécants. Leur intersection est formée des points de coordonnées (x, y, z) vérifiant :

$$\begin{cases} 3x + 2y - z = 8 \\ x + 3y + 2z = 5 \end{cases} \Leftrightarrow \begin{cases} z = 3x + 2y - 8 \\ x + y = 3 \end{cases} \Leftrightarrow \begin{cases} y = 3 - x \\ z = -2 + x. \end{cases}$$

Les coordonnées d'un point dans l'intersection sont donc de la forme (x, 3-x, -2+x), ce qui montre que la droite $\pi \cap \rho$ passe par A(0, 3, -2) et est dirigée par $\vec{v} \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$.

c. Le plan π passe par A(1,1,2) et est dirigé par $\vec{u} \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$. Or $A \in \rho$, car $1+2\cdot 1-2=1$ et \vec{u} et \vec{v} sont directeurs de ρ , car :

$$3+2\cdot 1-5=0$$
 et $4+2\cdot (-1)-2=0$.

Par conséquent, les plans π et ρ sont égaux.

Exercice 2. On munit l'espace d'un repère. Dans chacun des cas ci-dessous, décrire la position relative de la droite d avec les plans de coordonnées.

a.
$$d$$
 passe par $A(1,2,0), B(1,3,-5)$.
b. $d: \frac{x+1}{2} = \frac{z-3}{5}, y=2$.
c. $d: \begin{cases} x=1 \\ y=3 \\ z=t-7 \end{cases}$

Solution:

a. d est dirigée par le vecteur $\overrightarrow{AB}\begin{pmatrix} 0\\ 1\\ -5 \end{pmatrix}$. Elle admet donc pour équations paramétriques :

$$d: \begin{cases} x = 1 \\ y = 2 + t, t \in \mathbb{R}. \\ z = -5t \end{cases}$$

La droite d est contenue dans le plan d'équation x = 1. Elle est donc parallèle à (Oyz). Par ailleurs, elle est sécante avec les plans (Oxy) et (Oxz), qu'elle intersecte respectivement aux points de coordonnées (1,2,0) (c'est le point A) et (1,0,10).

- b. La droite d est contenue dans le plan y=2. Elle est donc parallèle au plan (Oxz). Par ailleurs, elle est sécante avec les plans (Oxy) et (Oyz), qu'elle intersecte respectivement aux points de coordonnées $(-\frac{11}{5},2,0)$ et $(0,2,\frac{11}{2})$.
- c. La droite d est contenue dans les plans x = 1 et y = 3. Elle est donc parallèle aux plans (Oyz) et (Oxz). Par ailleurs, elle est sécante avec le plan (Oxy), qu'elle intersecte au point de coordonnées (1,3,0).

Exercice 3. Dans l'espace on donne un point A, une droite d et un plan π .

- a. Existe-t-il une droite l passant par A, parallèle à π et intersectant d? On discutera selon les positions relatives des données.
- b. Application numérique : $A(-3, -2, 1), d : \frac{x-6}{2} = \frac{y+2}{-1} = \frac{z}{3}$ et $\pi : 3x 5y + 4z = 12$.

Solution:

a. Figure d'étude :

On note ρ le plan parallèle à π et passant par A. Une droite l comme dans l'énoncé passe par A et est parallèle à π . Par conséquent, elle doit être contenue dans ρ . Si la droite donnée d est parallèle au plan ρ , il n'y a donc pas de solution au problème posé. On discute alors selon les autres positions relatives possibles de d et ρ :

- d et ρ sont sécants en un point I. Si les points A et I sont distincts, alors la droite l=(AI) est la seule solution au problème posé. Par contre si I=A alors toute droite de π passant par A convient.
- d est contenue dans ρ . Alors si A n'appartient pas à d, toute droite joignant A à un point de d est solution. Par contre si A appartient à d, la droite l=d est la seule solution au problème.
- b. Avec ces données numériques, on voit que ρ a pour équation :

$$\rho: 3x - 5y + 4z = 5 (= 3 \cdot (-3) - 5 \cdot (-2) + 4 \cdot 1).$$

La droite d admet pour équations paramétriques :

$$d: \begin{cases} x = 6 + 2t \\ y = -2 - t, t \in \mathbb{R}. \\ z = 3t \end{cases}$$

L'intersection de d et ρ correspond donc au(x) valeur(s) de t telle(s) que :

$$3(6+2t) - 5(-2-t) + 4(3t) = 5$$
 c'est-à-dire $t = -1$.

Le plan ρ et la droite d s'intersectent donc au point I(4,-1,-3). Par conséquent, la droite l recherchée passe par A et est dirigée par $\overrightarrow{AI}\begin{pmatrix} 7\\1\\-4 \end{pmatrix}$. On en déduit alors qu'elle a pour équations cartésiennes :

$$l: \frac{x+3}{7} = y+2 = \frac{z-1}{-4}.$$

Exercice 4. Dans l'espace muni d'un repère, on considère les points suivants :

$$A(5,0,0), B(2,4,5), C(0,3,1), D(-5,14,6), E(-4,17,1).$$

- a. Montrer que A, B, C définissent un plan que l'on notera π . En calculer une équation cartésienne.
- b. Montrer que (DE) intersecte π en un point I dont on donnera les coordonnées.
- c. Quelle est l'abscisse de I sur la droite (DE) munie du repère (E, \overrightarrow{ED}) ?
- d. Quelles sont les coordonnées de I dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$ du plan π ?

Solution:

a. On a $\overrightarrow{AB}\begin{pmatrix} -3\\ 4\\ 5 \end{pmatrix}$ et $\overrightarrow{AC}\begin{pmatrix} -5\\ 3\\ 1 \end{pmatrix}$. Ces vecteurs n'étant pas colinéaires, les points $A,\ B,\ C$ ne sont pas alignés, et définissent donc un plan dans l'espace. Ce plan π admet comme équations paramétriques :

$$\pi: \begin{cases} x = 5 - 3s - 5t \\ y = 4s + 3t \\ z = 5s + t \end{cases}, s, t \in \mathbb{R}.$$

On trouve une équation cartésienne de π en éliminant les paramètres. Eliminons d'abord s:

$$\pi: \left\{ \begin{aligned} 4x + 3y &= 20 - 11t \\ 5y - 4z &= 11t \end{aligned} \right., \, t \in \mathbb{R}.$$

En éliminant t, on trouve maintenant une équation cartésienne de π :

$$\pi: x + 2y - z = 5.$$

b. Comme $\overrightarrow{DE}\begin{pmatrix} 1\\3\\-5 \end{pmatrix}$, on voit que la droite (DE) admet pour équations paramétriques :

$$(DE): \begin{cases} x = -5 + t \\ y = 14 + 3t, t \in \mathbb{R}. \\ z = 6 - 5t \end{cases}$$

L'intersection de π et (DE) correspond au(x) réels(s) t tels que :

$$(-5+t)+2(14+3t)-(6-5t)=5$$
 autrement dit $t=-1$.

Le plan π et la droite (DE) se rencontrent donc en un unique point I de coordonnées (-6,11,11).

- c. L'abscisse recherchée est le réel x vérifiant $\overrightarrow{EI} = x\overrightarrow{ED}$. Un tel réel existe bien car I est sur la droite (DE). Or $\overrightarrow{EI}\begin{pmatrix} -2\\-6\\10\end{pmatrix}$ et $\overrightarrow{ED}\begin{pmatrix} -1\\-3\\5\end{pmatrix}$. Par conséquent, x=2.
- d. Les coordonnées recherchées sont les réels x, y vérifiant :

$$\overrightarrow{AI} = x\overrightarrow{AB} + y\overrightarrow{AC}.$$

De tels réels existent car I appartient au plan défini par A, B et C. On a :

$$\overrightarrow{AI} \begin{pmatrix} -11 \\ 11 \\ 11 \end{pmatrix}$$
, $\overrightarrow{AB} \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} -5 \\ 3 \\ 1 \end{pmatrix}$.

Par conséquent, x et y sont solutions du système :

$$\begin{cases}
-3x - 5y = -11 \\
4x + 3y = 11 \\
5x + y = 11.
\end{cases}$$

La dernière équation permet d'écrire y en fonction de x. En substituant l'expression trouvée dans les deux premières équations, on trouve :

$$\begin{cases}
-3x - 55 + 25x = -11 \\
4x + 33 - 15x = 11 \\
y = 11 - 5x
\end{cases}
\text{ ou encore } \begin{cases}
x = 2 \\
y = 1.
\end{cases}$$

Le point I a donc pour coordonnées (2,1) dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$ du plan π .

Exercice 5. Dans l'espace muni d'un repère, on donne les points A(-1,2,1), $B(0,3,\frac{5}{2})$ et les plans :

$$\rho: x + y - z = 1, \sigma: x - 3y + z + 1 = 0.$$

Montrer qu'il existe un unique plan π contenant A et B, et tel que l'intersection $\pi \cap \rho \cap \sigma$ est vide. Donner une équation cartésienne de π .

Solution: Figure d'étude :

Les plans ρ et σ ne sont pas parallèles (les parties variables de leurs équations cartésiennes ne sont pas proportionnelles) : ils s'intersectent donc selon une droite que l'on notera d. Cherchons des équations de cette droite. Par définition, on a :

$$d: \begin{cases} x + y - z = 1\\ x - 3y + z + 1 = 0 \end{cases}$$

En imposant de plus x=0, on voit que d passe par le point C(0,0,-1), et, en imposant de plus que z=0, on trouve que $D(\frac{1}{2},\frac{1}{2},0)$ appartient à d. Comme $\overrightarrow{CD}\begin{pmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 1 \end{pmatrix}$, on voit que le vecteur $\overrightarrow{v}\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}$ est directeur de d, qui a donc pour équations cartésiennes :

$$d: x = y = \frac{z+1}{2}$$
.

Le plan π ne doit pas intersecter la droite d: il doit donc lui être parallèle. Autrement dit, le vecteur \vec{v} doit être directeur de π . De plus, comme les points A et B doivent appartenir à π , le vecteur $\vec{w} = \overrightarrow{AB} \begin{pmatrix} 1 \\ \frac{1}{3} \end{pmatrix}$ est aussi directeur de π . Les vecteurs \vec{v} et \vec{w} n'étant pas colinéaires, on voit donc qu'il y a un unique plan solution du problème posé, à savoir celui d'équations paramétriques :

$$\pi: \begin{cases} x = -1 + s + t \\ y = 2 + s + t \\ z = 1 + 2s + \frac{3}{2}t \end{cases}, s, t \in \mathbb{R}.$$

On trouve alors une équation cartésienne de π en éliminant les paramètres. Eliminons d'abord s:

$$\pi: \left\{ \begin{array}{l} x-y=-3\\ z-2y=-3-\frac{1}{2}t \end{array}, t \in \mathbb{R}. \right.$$

Le paramètre t ayant disparu dans la première équation à ce stade, on a déjà trouvé une équation cartésienne de π :

$$\pi: x - y + 3 = 0.$$

Exercice 6. Dans l'espace, on donne un point A et deux droites gauches d et g.

- a. Existe-t-il une droite l passant par A et intersectant à la fois d et g? On discutera selon les positions relatives des données.
- b. Application numérique : A(0,-1,2), $d:\frac{x-1}{2}=1-y=z$ et g:x=-z,y=1.

Solution:

a. Figure d'étude :

Si A appartient à d, alors une droite l solution est construite chaque fois que l'on rejoint A à un point de g. De même, si A appartient à g, toute droite joignant A à un point de g est solution. On supposera dorénavant que A n'appartient ni à d ni à g. Dans ce cas, il existe un unique plan π contenant A et g. Une droite l comme dans l'énoncé doit alors être contenue dans π , car elle passe par A et intersecte g. On discute alors selon les positions relatives possibles de d et π :

- d est parallèle à π . Il n'y a alors pas de solution au problème posé, car une droite contenue dans π ne peut intersecter d.
- d et π sont sécants en un point I. Le point I est disctinct de A car il appartient à d, et on a supposé que A n'appartient pas à d. La droite recherchée l est alors nécessairement la droite (AI).
 On voit donc que de deux choses l'une : soit (AI) est parallèle à g et il n'y a pas de solution, soit elle n'est pas parallèle à g, auquel cas c'est la seule doite solution du problème posé.
- d est contenue dans π . Ce cas ne peut pas se produire car d et g sont gauches et ne peuvent donc pas être contenues dans un même plan.
- b. Avec ces données numériques, on voit facilement que A n'appartient pas à g. Le plan π est donc bien défini. Il contient les points A(0,-1,2), B(0,1,0) et C(1,1,-1) (B et C sont deux points pris sur g). On trouve alors qu'il a pour équation cartésienne :

$$\pi : x + y + z = 1.$$

La droite d admet pour équations paramétriques :

$$d: \begin{cases} x = 1 + 2t \\ y = 1 - t \\ z = t \end{cases}, t \in \mathbb{R}.$$

L'intersection de d et ρ correspond donc au(x) valeur(s) de t telle(s) que :

$$(1+2t) + (1-t) + t = 1$$
 c'est-à-dire $t = -\frac{1}{2}$.

Le plan π et la droite d s'intersectent donc au point $I(0, \frac{3}{2}, -\frac{1}{2})$. Par conséquent, la droite l recherchée passe par A(0, -1, 2) et est dirigée par $\overrightarrow{AI}\begin{pmatrix} \frac{5}{2} \\ -\frac{5}{2} \end{pmatrix}$. On en déduit alors facilement qu'elle a pour équations cartésiennes :

$$l: x = 0, y + 1 = 2 - z.$$

Exercice 7. Dans l'espace, on donne deux droites gauches, d et g, et deux droites parallèles, p et q.

- a. Existe-t-il une droite l intersectant à la fois d, g, p et q? On discutera selon les positions relatives des données.
- b. Application numérique : d passe par (0,0,0) et est dirigée par $\begin{pmatrix} 1\\-1\\0\end{pmatrix}$, g a pour équations cartésiennes :

$$x-1=-2z-4, y-1=0$$

la droite p passe par (2,0,-3) et (6,-6,7), et la droite q passe par (-1,1,0).

Solution:

a. Figure d'étude :

Les droites p et q étant parallèles, elles définissent un plan que l'on note π . Une droite l comme dans l'énoncé doit intersecter à la fois p et q, et doit donc être contenue dans π . Si l'une des droites d ou gest parallèle à π , il n'y a donc pas de solution au problème posé. On discute alors selon les positions relatives restantes possibles de d et g avec π :

- d et q sont sécants à π , respectivement aux points I et J. Ces deux points sont distincts car les droites sont gauches. La droite l recherchée est nécessairement la droite (IJ). On voit donc que de deux choses l'une : soit (IJ) est parallèle (non confondue) à p ou q et il n'y a pas de solution, soit elle n'est pas parallèle à p et q, auquel cas c'est la seule doite solution du problème posé.
- d est sécante à π en I et g est contenue dans π . Dans ce cas toutes les droites de π passant par I(sauf les parallèles à p, q et g passant par I) sont solutions du problème.
- d est contenue dans π et q est sécante à π en J. Dans ce cas toutes les droites de π passant par J (sauf les parallèles à p, q et d passant par J) sont solutions du problème.
- d et g sont contenues dans π . Ce cas ne peut pas se produire car d et g sont gauches.
- b. Le plan π contient les points (2,0,-3), (6,-6,7) et (-1,1,0). On trouve alors qu'il admet pour équation cartésienne :

$$\pi : 2x + 3y + z = 1.$$

Les droites d et g ont pour équations paramétriques :

$$d: \begin{cases} x = t \\ y = -t, t \in \mathbb{R} \text{ et } g: \\ z = 0 \end{cases} \begin{cases} x = 1 + t \\ y = 1 \\ z = -2 - \frac{1}{2}t \end{cases}, t \in \mathbb{R}.$$

On trouve alors que les droites d et g sont toutes deux sécantes au plan π , respectivement aux points I(-1,1,0) et $J(-\frac{1}{3},1,-\frac{4}{3})$. Enfin, la droite (IJ) n'est parallèle ni à p ni à q, car le vecteur $\overrightarrow{IJ}\begin{pmatrix} \frac{2}{3} \\ 0 \\ -\frac{4}{3} \end{pmatrix}$ n'est pas colinéaire au vecteur directeur $\begin{pmatrix} 4 \\ -6 \\ 10 \end{pmatrix}$ de p et q. On en déduit qu'il n'y a qu'une seule solution

au problème posé, à savoir la droite d'équations cartésiennes :

$$l: x+1=\frac{z}{-2}, y=1.$$