Context-Free Languages

$$\{a^nb^n: n \ge 0\}$$
 $\{ww^R\}$

Regular Languages
 $a*b*$ $(a+b)*$

 $\{a^nb^n\}$

 $\{ww^R\}$

Regular Languages

Context-Free Languages

Context-Free Grammars

Example

A context-free grammar
$$G\colon S\to aSb$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

A context-free grammar
$$G\colon S\to aSb$$
 $S\to \lambda$

Another derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \to aSb$$
$$S \to \lambda$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Describes parentheses: (((())))

Example

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

$$S\to \lambda$$

Another derivation:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

$$S \to aSa$$

$$S \to bSb$$

$$S \to \lambda$$

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

Example

A context-free grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

A context-free grammar
$$G\colon S\to aSb$$

$$S\to SS$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

$$S \to aSb$$

$$S \to SS$$

$$S \to \lambda$$

$$L(G) = \{w : n_a(w) = n_b(w),$$
and $n_a(v) \ge n_b(v)$
in any prefix $v\}$

Describes
matched
parentheses: ()((()))(())

Definition: Context-Free Grammars

Grammar
$$G = (V, T, S, P)$$

Variables Terminal Start symbols variable

Productions of the form:

$$A \rightarrow x$$

Variable

String of variables and terminals

$$G = (V, T, S, P)$$

$$L(G) = \{w: S \Longrightarrow w, w \in T^*\}$$

Definition: Context-Free Languages

A language L is context-free

if and only if

there is a context-free grammar G with L = L(G)

Derivation Order

1.
$$S \rightarrow AB$$

2.
$$A \rightarrow aaA$$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

Leftmost derivation:

Rightmost derivation:

$$S \rightarrow aAB$$
 $A \rightarrow bBb$
 $B \rightarrow A \mid \lambda$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

 $\Rightarrow abbbbB \Rightarrow abbbb$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$
$$\Rightarrow abbBbb \Rightarrow abbbb$$

Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB$$

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \rightarrow Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$$

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$B \to Bb \mid \lambda$$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

Partial Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB$$

Partial derivation tree

$S \Rightarrow AB \Rightarrow aaAB$

$$S \Rightarrow AB \Rightarrow aaAB$$
 sentential form

Sometimes, derivation order doesn't matter

Leftmost:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \to E + E \mid E * E \mid (E) \mid a$$
$$a + a * a$$

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two derivation trees

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

 $\Rightarrow a + a * E \Rightarrow a + a * a$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more derivation trees

In other words:

A context-free grammar G is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

Why do we care about ambiguity?

2 + 2 * 2

$$2 + 2 * 2 = 6$$

$$2+2*2=8$$

Correct result: 2+2*2=6

Ambiguity is bad for programming languages

· We want to remove ambiguity

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar:
$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

Unique derivation tree

The grammar $G: E \to E + T$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Another Ambiguous Grammar

If expr1 then if expr2 then stmt1 else stmt2

Inherent Ambiguity

Some context free languages have only ambiguous grammars

Example:
$$L = \{a^nb^nc^m\} \cup \{a^nb^mc^m\}$$

$$S \to S_1 \mid S_2 \qquad S_1 \to S_1c \mid A \qquad S_2 \to aS_2 \mid B$$

$$A \to aAb \mid \lambda \qquad B \to bBc \mid \lambda$$

The string $a^n b^n c^n$

has two derivation trees

Compilers

Machine Code

Program

```
v = 5;
if (v>5)
  x = 12 + v
while (x !=3) {
 x = x - 3:
 v = 10;
```

Compiler

Add v,v,0 cmp v,5 jmplt ELSE THEN: add x, 12, v ELSE: WHILE: cmp x,3

Compiler Lexical parser analyzer input output machine program

A parser knows the grammar of the programming language

Parser

```
PROGRAM → STMT_LIST

STMT_LIST → STMT; STMT_LIST | STMT;

STMT → EXPR | IF_STMT | WHILE_STMT

| { STMT_LIST }
```

EXPR → EXPR + EXPR | EXPR - EXPR | ID

IF_STMT → if (EXPR) then STMT

| if (EXPR) then STMT else STMT

WHILE_STMT → while (EXPR) do STMT

The parser finds the derivation of a particular input

derivation tree

derivation

derivation tree

Parsing

Example:

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Longrightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Longrightarrow \lambda$$

Find derivation of aabb

All possible derivations of length 1

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow \lambda$$

aabb

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

aabb

$$S \Rightarrow SS \Rightarrow bSaS$$

$$S \Rightarrow SS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Longrightarrow SS \Longrightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

Phase 3

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Final result of exhaustive search (top-down parsing)

Time complexity of exhaustive search

Suppose there are no productions of the form

$$A \rightarrow \lambda$$

$$A \rightarrow B$$

Number of phases for string w: 2|w|

For grammar with k rules

Time for phase 1: k

k possible derivations

Time for phase 2: k^2

 k^2 possible derivations

Time for phase
$$2|w|$$
: $k^{2|w|}$

 $k^{2|w|}$ possible derivations

Total time needed for string w:

Extremely bad!!!

There exist faster algorithms for specialized grammars

Pair (A,a) appears once

S-grammar example:

$$S \to aS$$

$$S \to bSS$$

$$S \to c$$

Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w: |w|

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$

(we will show it in the next class)