HTTP-HTTPS

Célian Butré

Janvier 2021

Plan

Protocoles de communications

Protocoles simples Protocoles cryptés

Le Protocole HTTP

Contexte

Description du protocole HTTP

Exemple d'échange suivant le protocole HTTP

Le protocole HTTPS

Motivation

Protocole TLS

Description du protocole HTTPS

Exemple du protocole HTTPS

Références

Protocoles de communications

L'existence de protocoles de communications implique :

Protocoles de communications

L'existence de protocoles de communications implique :

L'existence de communications simples

Protocoles de communications

L'existence de protocoles de communications implique :

- L'existence de communications simples
- L'existence de communications cryptées

Protocoles universels

- Protocoles universels
- Protocoles personnels

- Protocoles universels
- Protocoles personnels
- Analogie du téléphone

- Protocoles universels
- Protocoles personnels
- Analogie du téléphone
- ► Données + Analyse = Information = Communication

Nécessité d'encryption

- Nécessité d'encryption
- ► RSA : clef publique clef privée

- Nécessité d'encryption
- ► RSA : clef publique clef privée
- ► Analogie de la boîte aux lettres

Le Protocole HTTP

Le Protocole HTTP

► Tim Berners-Lee : CERN

- ► Tim Berners-Lee : CERN
- ► World Wide Web

- ► Tim Berners-Lee : CERN
- World Wide Web
- ► Protocole HTTP

1. la méthode employée pour effectuer la requête (PUT, GET, DELETE, ETC.)

- 1. la méthode employée pour effectuer la requête (PUT, GET, DELETE, ETC.)
- 2. l'URL de la ressource

- 1. la méthode employée pour effectuer la requête (PUT, GET, DELETE, ETC.)
- 2. l'URL de la ressource
- 3. la version du protocole utilisé par le client (souvent HTTP 1.1)

- 1. la méthode employée pour effectuer la requête (PUT, GET, DELETE, ETC.)
- 2. l'URL de la ressource
- 3. la version du protocole utilisé par le client (souvent HTTP 1.1)
- 4. le navigateur employé (Firefox, Chrome) et sa version

- 1. la méthode employée pour effectuer la requête (PUT, GET, DELETE, ETC.)
- 2. l'URL de la ressource
- 3. la version du protocole utilisé par le client (souvent HTTP 1.1)
- 4. le navigateur employé (Firefox, Chrome) et sa version
- 5. le type du document demandé (par exemple HTML)

Exemple d'échange suivant le protocole HTTP

Algorithme 1 : Protocole HTTP.

GET /mondossier/monFichier.html HTTP/1.1

User-Agent : Mozilla/5.0

Accept : text/html

HTTP/1.1 200 OK

Date: Sat, 5 nov 1955 14:15:00 GMT

Server: Apache/2.0.54 (Debian GNU/Linux) DAV/2 SVN/1.1.4

Connection: close

Transfer-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

<un document HTML qui prend beaucoup trop de place>
</un document HTML qui prend beaucoup trop de place>

Exemple d'échange suivant le protocole HTTP

1	Information
2	Succès
3	Redirection
4	Erreur du client Web
5	Erreur du serveur

Le protocole HTTPS

Le protocole HTTPS

 $\mathtt{HTTP} + \mathsf{S\'ecurit\'e} = \mathtt{HTTPS}$

Le protocole HTTPS

 $\mathtt{HTTP} + \mathsf{S\'ecurit\'e} = \mathtt{HTTPS}$

Sécurité = Protocole TLS

Motivation

Problèmes du Protocole HTTP

Motivation

Problèmes du Protocole HTTP

► Communications interceptables et non-cryptées

Motivation

Problèmes du Protocole HTTP

- Communications interceptables et non-cryptées
- Aucune preuve de l'authenticité du serveur receveur

Protocole TLS

Le protocole TLS garantit :

Protocole TLS

Le protocole TLS garantit :

* L'authentification du serveur

Protocole TLS

Le protocole TLS garantit :

- * L'authentification du serveur
- * L'encryption des données échangées

Protocole TLS

Le protocole TLS garantit :

- * L'authentification du serveur
- * L'encryption des données échangées
- * L'intégrité des données

Protocole TLS

Le protocole TLS garantit :

- * L'authentification du serveur
- * L'encryption des données échangées
- * L'intégrité des données
- * (optionnel) L'authentification du **client**

TLS(HTTP) = HTTPS

$$TLS(HTTP) = HTTPS$$

$$TLS(HTTP) = HTTPS$$

Le protocole TLS est appliqué directement à la requête HTTP et encrypte

√ URL

$$TLS(HTTP) = HTTPS$$

- ✓ URL
- ✓ Paramètres de la requête

$$TLS(HTTP) = HTTPS$$

- ✓ URL
- √ Paramètres de la requête
- √ Les cookies transmis

$$\mathtt{TLS}(\mathtt{HTTP}) = \mathtt{HTTPS}$$

- ✓ URL
- √ Paramètres de la requête
- √ Les cookies transmis
- X Le nom du domaine accédé

$$TLS(HTTP) = HTTPS$$

- ✓ URL
- √ Paramètres de la requête
- ✓ Les cookies transmis
- × Le nom du domaine accédé
- × Les ports utilisés (et donc l'addresse IP)

Exemple du protocole HTTPS

- Article sur les Couches de Transports Securise
 WikipediaTLS
- Article sur les Couches de Transports Securise. https://fr.wikipedia.org/wiki/Transport_Layer_Security.
- Article sur les Protocoles de Transferts d'HyperText WikipediaHTTP
 - Article sur les Protocoles de Transferts d'HyperText. https://fr.wikipedia.org/wiki/Hypertext_Transfer_ Protocol.
- Article sur les Protocoles de Transferts d'HyperText Securise WikipediaHTTPS
- Article sur les Protocoles de Transferts d'HyperText Securise. https://en.wikipedia.org/wiki/HTTPS.

- Bref Histoire sur les Protocoles de Transferts d'HyperText HTTPHistory
- Bref Histoire sur les Protocoles de Transferts d'HyperText. https://hpbn.co/brief-history-of-http.
- Roche: Cours sur la sécurisation des communications
 PixeesSecurisation
- D. ROCHE. Cours sur la sécurisation des communications. https://pixees.fr/informatiquelycee/n_site/nsi_term_archi_secu.html.
- Scott : Why the Web Is Such a Mess TomScottCookies
 - Tom Scott. Why the Web Is Such a Mess. https://www.youtube.com/watch?v=OFRjZtYs3wY&ab_channel=TomScott.

https://www.pngkey.com/maxpic/u2w7o0e6i1o0y3o0/.