Умножение по алгоритму с анализом старшего разряда множителя со сдвигом множимого

Пусть необходимо вычислить произведение $Z = X \cdot Y$, где

множимое
$$X = x_{n-1}x_{n-2}..x_1x_0$$
; множитель $Y = y_{n-1}y_{n-2}...y_1y_0$.

Представим у в развёрнутом виде:

$$Y = y_{n-1} \cdot 2^{n-1} + y_{n-2} \cdot 2^{n-2} + \dots + y_1 \cdot 2 + y_0 \cdot 2^0$$

$$Z = X \cdot Y = (Xy_{n-1}) \cdot 2^{n-1} + (X \cdot y_{n-2}) \cdot 2^{n-2} + \dots + (X \cdot y_1) \cdot 2^1 + (X \cdot y_0) \cdot 2^0$$
 (*)

Произведение множимого не один бит множителя называется частичным произведением $z_i = (X \cdot y_i) \cdot 2^i$, а сумма k частичных произведений называют k-ой суммой частичных произведений (СЧП). При κ =n СЧП превращается в произведение Z.

Произведение n-бит сомножителей имеет длину 2n.

Формула (*) преобразуется к следующему виду:

$$X \cdot Y = 2^{n} (y_0 \cdot 2^{-n} X + y_1 \cdot 2^{1-n} X + \dots y_{n-2} \cdot 2^{-2} X + y_{n-1} \cdot 2^{-1} X)$$

В соответствии с формулой структурная схема имеет следующий вид:

Из формулы и схемы видно, что умножение сводится к операциям сложения и сдвига.

Множимое X имеет разрядность 2n. Множитель Y имеет разрядность n Произведение Z имеет разрядность 2n. CT — счетчик циклов.

Перед выполнением операции умножения множимое сдвигаем влево на *п* разрядов. Чтобы анализировать каждый раз старший бит множителя Y сдвигаем влево.

Вычисление $X*2^{-1}$ сводится к сдвигу X вправо на 1 разряд.

Пример

n=4

формула для n=4 имеет следующий вид:

$$X \cdot Y = 2^{4} (y_{0} \cdot 2^{-4} X + y_{1} \cdot 2^{-3} X + y_{2} \cdot 2^{-2} X + y_{3} \cdot 2^{-1} X)$$

Mножимое = 6, множитель = 5

множимое X множитель Y произведение Z 0000 0110 0101 0000 0000 $X=SHL4(X)=0110\ 0000$

CT=4

	Частич- ное произве- дение	Анализ старшего бита множител я	Сдвиг множимого вправо	СЧП	Сдвиг множи- теля влево	CT=CT-1
1.	$y_3 \cdot 2^{-1} \cdot X$	$y_3 \cdot = 0$	$\cdot 2^{-1} \cdot X = 0011\ 0000$	СЧП = 0000 0000	<i>Y</i> = 1 010	3
2.	$y_3 \cdot 2^{-1} \cdot X$	$y_3 \cdot =1$	$\cdot 2^{-1} \cdot X = 0001 \ 1000$	СЧП = 0000 0000	Y=0 100	2
				0001 1000		
				0001 1000		
3.	$y_3 \cdot 2^{-1} \cdot X$	$y_3 \cdot = 0$	$\cdot 2^{-1} \cdot X = 0000 \ 1100$	$C\Pi = 0001 \ 1000$	Y=1 000	1
	,					
4	$y_3 \cdot 2^{-1} \cdot X$	$y_3 \cdot =1$	$\cdot 2^{-1} \cdot X = 0000\ 0110$	$CH\Pi = 0001\ 1000$	Y =0000	0
				0000 0110		
				0001 1110		

Умножение по алгоритму с анализом младшего разряда множителя со сдвигом множимого

Пусть необходимо вычислить произведение $Z = X \cdot Y$, где

множимое
$$X = x_{n-1}x_{n-2}..x_1x_0$$
; множитель $Y = y_{n-1}y_{n-2}...y_1y_0$.

Представим у в развёрнутом виде:

$$Y = y_{n-1} \cdot 2^{n-1} + y_{n-2} \cdot 2^{n-2} + \dots + y_1 \cdot 2 + y_0 \cdot 2^{\theta}$$

$$Z = X \cdot Y = (Xy_{n-1}) \cdot 2^{n-1} + (X \cdot y_{n-2}) \cdot 2^{n-2} + \dots + (X \cdot y_1) \cdot 2^1 + (X \cdot y_0) \cdot 2^0$$
 (*)

Произведение множимого не один бит множителя называется частичным произведением $z_i = (X \cdot y_i) \cdot 2^i$, а сумма k частичных произведений называют k-ой суммой частичных произведений (СЧП). При κ =n СЧП превращается в произведение Z.

Произведение n-бит сомножителей имеет длину 2n.

Формула (*) преобразуется к следующему виду:

$$X \cdot Y = 0 + y_0 X + y_1 X \cdot 2 + y_2 \cdot X \cdot 2^2 + \dots + y_{n-1} \cdot X \cdot 2^{n-1}$$

В соответствии с формулой структурная схема имеет следующий вид:

Из формулы и схемы видно, что умножение сводится к операциям сложения и сдвига.

Множимое X имеет разрядность 2n.

Множитель Y имеет разрядность *n*

Произведение Z имеет разрядность 2n.

СТ – счетчик циклов.

Чтобы анализировать каждый раз младший бит множителя У сдвигаем вправо.

Вычисление $X*2^1$ сводится к сдвигу X влево на 1 разряд.

Пример

n=4

формула для n=4 имеет следующий вид: $X \cdot Y = 0 + y_0 X + y_1 X \cdot 2 + y_2 \cdot X \cdot 2^2 + y_3 \cdot X \cdot 2^3$

Множимое = 6, множитель = 5

множимое X множитель Y произведение Z 0000 0110 0101 0000 0000

CT=4

	Частич- ное произве- дение	Анализ младшего бита множи- теля	СЧП	Сдвиг множимого влево	Сдвиг множи- теля вправо	CT=CT-1
1.	$y_0 \cdot X$	$y_0 \cdot = 1$	СЧП = 0000 0000	$X = 0000 \ 1100$	Y =0010	3
			0000 0110			
			0000 0110			
2.	$y_0 \cdot X$	$y_0 \cdot = 0$	СЧП = 0000 0110	X = 0001 1000	Y =0001	2
3	$y_0 \cdot X$	$y_0 \cdot =1$	СЧП = 0000 0110	$X = 0011\ 0000$	Y =0000	1
	- 0		0001 1000			
			0001 1110			
4	$y_0 \cdot X$	$y_0 \cdot = 0$	СЧП = 0001 1110	X = 0011 0000	<i>Y</i> =0000	0

Умножение по алгоритму с анализом старшего разряда множителя со сдвигом СЧП

Пусть необходимо вычислить произведение $Z = X \cdot Y$, где

множимое
$$X = x_{n-1}x_{n-2}...x_1x_0$$
; множитель $Y = y_{n-1}y_{n-2}...y_1y_0$.

Представим у в развёрнутом виде:

$$Y = y_{n-1} \cdot 2^{n-1} + y_{n-2} \cdot 2^{n-2} + \dots + y_1 \cdot 2 + y_0 \cdot 2^0$$

$$Z = X \cdot Y = (Xy_{n-1}) \cdot 2^{n-1} + (X \cdot y_{n-2}) \cdot 2^{n-2} + \dots + (X \cdot y_1) \cdot 2^1 + (X \cdot y_0) \cdot 2^0$$
 (*)

Произведение множимого не один бит множителя называется частичным произведением $z_i = (X \cdot y_i) \cdot 2^i$, а сумма k частичных произведений называют k-ой суммой частичных произведений (СЧП). При κ =n СЧП превращается в произведение Z.

Произведение n-бит сомножителей имеет длину 2n.

Формула (*) преобразуется к следующему виду:

$$X \cdot Y = (...(0 + X \cdot y_{n-1})2 + X \cdot y_{n-2})2 + ... \times y_1) \cdot 2 + X \cdot y_0$$

В соответствии с формулой структурная схема имеет следующий вид:

Из формулы и схемы видно, что умножение сводится к операциям сложения и сдвига.

Множимое X имеет разрядность n.

Множитель Ү имеет разрядность п

Произведение Z имеет разрядность 2n.

СТ – счетчик циклов.

Чтобы анализировать каждый раз старший бит множителя Ү сдвигаем влево.

Вычисление $(0+X*y_{n-1})*2$ сводится к сдвигу СЧП влево на 1 разряд.

Пример

n=4

формула для n=4 имеет следующий вид:

$$X \cdot Y = (((0 + X \cdot y_3)2 + X \cdot y_2)2 + X \cdot y_1) \cdot 2 + X \cdot y_0$$

Mножимое = 6, множитель = 5

множимое X множитель Y произведение Z 0110 0101 0000 0000

CT=4

	Частичное произведение	Анализ старшего бита множителя	СЧП	Сдвиг СЧП влево	Сдвиг множи- теля влево	CT=CT-1
1.	$(C\Psi\Pi + y_3 \cdot X)2$	$y_3 \cdot = 0$	0000 0000	0000 0000	<i>Y</i> =1010	3
2.	$(C\Psi\Pi + y_3 \cdot X)2$	$y_3 \cdot =1$	0000 0000 0110 0000 0110	0000 1100	<i>Y</i> =0100	2
3	$(C\Psi\Pi + y_3 \cdot X)2$	$y_3 \cdot = 0$	0000 0110	0001 1000	<i>Y</i> =1000	1
4	$C\Psi\Pi + y_3 \cdot X$	<i>y</i> ₃ ⋅=1	0001 1000 0110 0001 1110	На последнем шаге сдвига нет	Y =0000	0

Умножение по алгоритму с анализом младшего разряда множителя со сдвигом СЧП

Пусть необходимо вычислить произведение $Z = X \cdot Y$, где

множимое
$$X = x_{n-1}x_{n-2}...x_1x_0$$
; множитель $Y = y_{n-1}y_{n-2}...y_1y_0$.

Представим у в развёрнутом виде:

$$Y = y_{n-1} \cdot 2^{n-1} + y_{n-2} \cdot 2^{n-2} + \dots + y_1 \cdot 2 + y_0 \cdot 2^0$$

$$Z = X \cdot Y = (Xy_{n-1}) \cdot 2^{n-1} + (X \cdot y_{n-2}) \cdot 2^{n-2} + \dots + (X \cdot y_1) \cdot 2^1 + (X \cdot y_0) \cdot 2^0$$
 (*)

Произведение множимого не один бит множителя называется частичным произведением $z_i = (X \cdot y_i) \cdot 2^i$, а сумма k частичных произведений называют k-ой суммой частичных произведений (СЧП). При κ =n СЧП превращается в произведение Z.

Произведение n-бит сомножителей имеет длину 2n.

Формула (*) преобразуется к следующему виду:

$$X \cdot Y = 2^{n} (...((0 + X \cdot y_{0}) \cdot 2^{-1} + X \cdot y_{1}) \cdot 2^{-1} + ... + X \cdot y_{n-1}) \cdot 2^{-1}$$

В соответствии с формулой структурная схема имеет следующий вид:

Из формулы и схемы видно, что умножение сводится к операциям сложения и сдвига.

Множимое X имеет разрядность n.

Множитель Ү имеет разрядность п

Произведение Z имеет разрядность 2n.

СТ – счетчик шиклов.

Чтобы анализировать каждый раз младший бит множителя Ү сдвигаем вправо.

Вычисление $(0+X*y_0)*2^{-1}$ сводится к сдвигу СЧП вправо на 1 разряд.

Обратите внимание, Х прибавляем к старшим разрядам СЧП.

Пример

n=4

формула для n=4 имеет следующий вид:

$$X \cdot Y = 2^{4}((((0 + X \cdot y_{0}) \cdot 2^{-1} + X \cdot y_{1}) \cdot 2^{-1} + X \cdot y_{2}) \cdot 2^{-1} + X \cdot y_{3}) \cdot 2^{-1}$$

Mножимое = 6, множитель = 5

множимое X множитель Y произведение Z 0110 0101 0000 0000

CT=4

	Частичное произведение	Анализ младшего бита множителя	СЧП	Сдвиг СЧП вправо	Сдвиг множи- теля вправо	CT=CT-1
1.	$(C\Psi\Pi + y_0 \cdot X)2^{-1}$	$y_0 \cdot =1$	0000 0000	0011 0000	<i>Y</i> =0010	3
			0110			
			0110 0000			
2.	$(C\Psi\Pi + y_0 \cdot X)2^{-1}$	$y_0 \cdot = 0$	0011 0000	0001 1000	Y =0001	2
3	$(C4\Pi + y_0 \cdot X)2^{-1}$	$y_0 \cdot =1$	0001 1000	0011 1100	Y =0000	1
			0110			
			0111 1000			
4	$(C\Psi\Pi + y_0 \cdot X)2^{-1}$	$y_0 \cdot = 0$	0011 1100	0001 1110	Y =0000	0