Energy shocks and aggregate fluctuations Is Decoupling possible? WORK IN PROGRESS

Thomas Bourany
The University of Chicago

Meeting w/ Professor Uhlig

April. 2021

Motivation

- ▶ How important is energy for economic fluctuations?
 - Energy e.g. oil or electricity is complementary in production
 - Contribute to output growth, inflation, capital deepening ...

Motivation

- ▶ How important is energy for economic fluctuations?
 - Energy e.g. oil or electricity is complementary in production
 - Contribute to output growth, inflation, capital deepening ...
 - ... but also to global warming
 - as fossil fuels $\sim 82\%$ of energy consumed
 - ... or secular stagnation
 - as global energy production growth declined threefold in 50 years

Motivation

- ▶ How important is energy for economic fluctuations?
 - Energy e.g. oil or electricity is complementary in production
 - Contribute to output growth, inflation, capital deepening ...
 - ... but also to global warming
 - as fossil fuels $\sim 82\%$ of energy consumed
 - ... or secular stagnation
 - as global energy production growth declined threefold in 50 years
- Quantitative question :
 - By how much?
 - Is energy an important driver of business cycles fluctuations?

Introduction – Motivation

▶ Real production growth limited by physical constraints.

This paper

- Try to provide a quantitative answer on the importance of energy
- ► Theoretical contribution :
 - Energy as a complementary factor and non-linearity in the production process
 - DSGE model with multiple shocks.
 - Potential transmission and spillovers to the rest of the economy
- Empirical contribution :
 - Particle filtering and non-linear estimation methods
- Counterfactuals (if time permits)
 - A long-lasting decline in energy supply
 - A policy to reduce demand for energy

New data - 1

► Energy per sources and large sectors

U.S. energy consumption by source and sector, 2019

Total = 37.1

Model

- ▶ Use the simplest RBC framework, with 2 small differences :
 - Energy as a factor, in a nested CES production, complementary to capital
 - Stochastic energy supply shock, and energy augmenting shocks (in addition to 4 other standard macro shocks)
- ▶ Perform a Business Cycle accounting procedure
 - Decompose business cycles in a set of 5 shocks, including energy
- ► Next steps : introduce different sectors?

Model - RBC - Production

Production process :

$$Y = \mathcal{F}(M, L) = Z_t \left[\alpha^{\frac{1}{\varepsilon_y}} M^{\frac{\varepsilon_y - 1}{\varepsilon_y}} + (1 - \alpha) (Z_t^{\ell} L)^{\frac{\varepsilon_y - 1}{\varepsilon_y}} \right]^{\frac{\varepsilon_y}{\varepsilon_y - 1}}$$
$$M = \mathcal{M}(E, K) = \left[\eta^{\frac{1}{\varepsilon_e}} (Z_t^{es} E)^{\frac{\varepsilon_e - 1}{\varepsilon_e}} + (1 - \eta) K^{\frac{\varepsilon_e - 1}{\varepsilon_e}} \right]^{\frac{\varepsilon_e}{\varepsilon_e - 1}}$$

- Special case : if $\varepsilon_e \to 0$, $\mathcal{M} \sim$ Leontieff, if $\varepsilon_e \to 1$, $\mathcal{M} \sim$ Cobb-Douglas
- Price of energy as marginal product (demand curve) :

$$Q_t^E = \frac{\partial \mathcal{F}(M,L)}{\partial M} \frac{\partial \mathcal{M}(E,K)}{\partial E} = \alpha Y^{1/\varepsilon_y} H^{(1/\varepsilon_e) - (1/\varepsilon_y)} \eta E^{-1/\varepsilon_e}$$

Model – Energy sector - 1

- Energy production problem :
 - Microfunded as in: "A World Equilibrium Model of the Oil Market", Bornstein, Krusell and Rebelo (2021)

$$V_0^E = \max_{\{I_t^E, E_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_t \left[Q_t^E E_t - I_t^E - \bar{C} \left(\xi_t^e \frac{E_t}{\mathcal{R}_t^E} \right)^{\nu} \mathcal{R}_t^E \right]$$

s.t.

• Evolution of "Exploration capital" X_t^E

$$K_{t+1}^{E} = (1 - \lambda)K_{t}^{E} + \Xi_{t}^{X}\Theta(I_{t}^{E})^{\theta}(L^{E})^{1-\theta}$$

• Stock of capacity of energy production C_t^E

$$\mathcal{R}_{t+1}^E = \mathcal{R}_t^E - E_t + \lambda X_t^E$$

• Two AR(1) shocks:

$$\log \xi_t^e = \rho \log \xi_t^e + \omega_t^e \qquad \qquad \log \Xi_t^x = \rho \log \Xi_t^x + \omega_t^e$$

Model – Energy sector - 2

- ▶ This allows for lags λ in a model *a la Hotelling*
 - FOCs : optimal decisions for $s_t^E = \frac{E_t}{\mathcal{R}_t^E}$ and \mathcal{C}_t^E

$$Q_{t+1}^{E} = \nu \bar{C}(s_{t+1}^{E})^{\nu-1} + \mu_{t+1}^{\mathcal{R}}$$

$$\mu_{t}^{\mathcal{R}} = \mathbb{E}_{t} \Big[\Lambda_{t+1} \Big(Q_{t+1}^{E} s_{t+1}^{E} + (1 - s_{t+1}^{E}) \mu_{t+1}^{\mathcal{R}} - \bar{C}(s_{t+1}^{E})^{\nu} \Big) \Big]$$

Model – RBC

- Rest of model : standard RBC :
 - Representative HH with preferences a la *King Plosser Rebelo* + Euler equation

$$U(C,L) = \frac{1}{1-\sigma} \left(C_t^{1-\sigma} \left(1 - \psi(1-\sigma) \frac{L^{1+\varphi}}{1+\varphi} \right)^{\sigma} - 1 \right)$$

$$\Rightarrow \qquad U(C,L) = \log(C) - \psi \frac{L^{1+\varphi}}{1+\varphi} \qquad \& \quad 1 = \mathbb{E}_t [\Lambda_{t,t+1} (1 + r_{t+1}^k)]$$

- LoM for capital and investment with adjustment cost
- ▶ Business cycle accounting exercise :
- Set of shocks :
 - TFP shock Z_t and ω^z
 - Labor wedge τ_t^{ℓ} and ω^{ℓ}
 - Investment wedge τ_t^i and ω^i
 - Government wedge G_t and ω^g
 - In addition: Energy augmenting technology shock Z_t^{es}

Parameters – Estimation

Parameters		Post. mean		
ε_{y}	Elasticity Machine/Labor	0.671		
ε_e	Elasticity Energy/Capital	0.470		
φ	Inverse Frisch elasticity	1.272		
ν	Cost elasticity of energy production	6.259		
θ	Capital intensity of energy	0.4392		
λ	Lags in energy production	0.163		

Prior/Posterior distributions of capital share of energy production θ

10

T. Bourany

0.8

Analytics of the model: "pure" supply shock

Analytics of the model: reserve shock

Model – Stationary variance decomposition

Variable	ω_z	ω_ℓ	ω_g	ω_{es}	ω_e	ω_{x}	
Y_t	58.8	24.4	9.9	2.4	2.7	1.8	
L_t	13.3	62.2	24.6	0.4	0.3	0.2	
E_t	2.4	1.0	1.1	0.8	54.0	40.8	
Q_t^E	10.3	4.3	0.7	2.4	46.1	36.2	
K_t	48.1	19.9	2.0	7.6	8.7	13.7	
I_t	55.1	22.8	2.3	8.5	7.2	4.1	
C_t	25.6	10.6	54.9	2.1	3.3	3.4	

Historical shock decomposition - energy supply shocks and output

Historical shock decomposition – energy shocks and labor (hours)

Oil Shocks – 1973 vs. 1980

Case studies

Conclusion and future paths

- ▶ How important is energy for economic fluctuations?
 - With complementarity in production the energy shocks can be amplified
 - ... However, with reallocation toward the energy sector : the effects are smoothed dramatically
- ► In our quantitative : energy shocks do not seem to matter enormously
- Future plans:
 - Zoom in a particular event (oil shocks of 1973 and 1980)
 - Investigate the reallocation channels?
 - Decompose economy by sector and the energy sector by sources?