(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出類公開番号

特開平6-260766

(43)公開日 平成6年(1994)9月16日

(51) Int. Cl. s

識別記号 庁内整理番号

FΙ

技術表示箇所

H05K 3/46

G 6921-4E

N 6921-4E

3/38

B 7011-4E

審査請求 未請求 請求項の数7 OL (全9頁)

(21)出願番号

特願平5-42535

(22)出願日

平成5年(1993)3月3日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 川本 峰雄

茨城県日立市大みか町七丁目1番1号 株

式会社日立製作所日立研究所内

(72)発明者 髙橋 昭雄

茨城県日立市大みか町七丁目1番1号 株

式会社日立製作所日立研究所内

(72)発明者 赤星 晴夫

神奈川県秦野市堀山下1番地 株式会社日

立製作所汎用コンピュータ事業部内

(74)代理人 弁理士 髙橋 明夫 (外1名)

(54) 【発明の名称】多層配線板の製法

(57) 【要約】

【構成】内層回路の表面を粗化後、該表面を酸化して酸化皮膜を形成し、次いで還元処理した後、絶縁層を設け、ブラインドピアホールを形成しる多層を設け、ブラインドピアホールを形成する多層配線を設け、ブラインドピアホールの高級になるの表面に付着とアホールの間部にはないでは、一方のでは、または、一方のでは、

【効果】ブラインドビアホールの内層回路と配線回路との接続信頼性が向上し、該ビアホールの直径が 100μ m以下とすることができ、配線の回路幅と間隔も共に 100μ m以下にできるので高密度実装が可能な多層配線板が提供できる。

10

【特許請求の範囲】

【請求項1】 内層回路の表面を粗化後、該表面を酸化して酸化皮膜を形成し、次いで還元処理した後、絶縁層及び接着層を設け、ブラインドピアホールを形成し、該接着層の表面に無電解めっきで回路を形成する多層医部の製法において、前記ブラインドピアホールのの底部に露出した内層回路の表面に付着している残渣樹脂となまるの酸化膜を除去して活性化し、該活性面とブラインドピアホール内を無電解めっきを施すことにより配線回路を形成することを特徴とする多層配線板の製法。

【請求項3】 前記水溶液が界面活性剤を含む請求項2 に記載の多層配線板の製法。

【請求項4】 少なくとも前記プラインドビアホールをプラズマアッシング処理を行ってから上記ブラインドピアホールの底部に露出した内層回路の表面に付着している残渣樹脂と該表面の酸化膜を除去して活性化する請求項1.2または3に記載の多層配線板の製法。

【請求項5】 前記プラズマアッシング処理は、体積比 30 でCF, が10~30%、O, が60~80%、N, が10~30%の混合ガス中で10~40分行う請求項4に記載の多層配線板の製法。

【請求項6】 前記プラインドビアホールの底部に露出した内層回路の表面に付着している残渣樹脂と該表面の酸化膜を除去する活性化処理の際に、振動を加えながら行う請求項1~5のいずれかに記載の多層配線板の製法:

【請求項7】 前記プラインドピアホールの直径が100μm以下である請求項 $1\sim6$ のいずれかに記載の多層配線板の製法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高密度多層配線板やモジュール基板の内層回路とブラインドビアホール内に形成する無電解めっき膜との接着性を向上させる多層配線板の製法に関する。

[0002]

【従来の技術】多層配線板やモジュール基板の配線密度 を向上させる方法として、内層回路を形成した基板の表 50

面に絶縁層及び接着層を形成し、次いでレーザーまたは溶剤により直径0.3 mm以下のプラインドビアホールを形成し、無電解めっきまたは無電解めっきと電解めっきを併用して回路を形成する際にブラインドビアホールをめっきして導電化することが行われている。

【0003】ブラインドビアホールのレーザーによる形成方法の一例としては、特開昭62-216297号公報がある。しかしこの場合、絶縁層がガラスクロスを含むと、ガラスクロスの切断が困難なためにブラインドできない。 一般では長を持った必然を含む合成樹脂または該合成とのでは長を持った染料を含む合成樹脂または該合成りであることが特別平1-206698号,同3-165594号公報に開示されている。これらによればブラインドビアホールの内壁を精度よく加工することができる。

[0004] また、プラインドピアホールの溶剤による形成方法の一例としては、特開平4-148590号公報の実施例に、絶縁層を光硬化性樹脂で構成し、プラインドピアホール形成部以外に紫外線を照射して光硬化し、次いで溶剤によりプラインドピアホール部の未硬化の樹脂を除去してプラインドピアホールを形成する方法が開示されている。

【0005】上記の方法では、内層回路に銅を用いた場合、該銅表面に酸化皮膜があると、無電解銅めっき液のめっき反応電位が内層回路に伝播し、酸化皮膜が還元されて酸化皮膜が消失(ハローイング現象)し、内層回路と絶縁層との間に隙間が生じ、その隙間にめっき液が侵入して接着力を低下させると去う問題がある。

【0006】これを防止する方法としては、本出願人が 先に提案(特開平3-325041号公報)した技術を 利用することができる。それは、内層回路表面を粗化 し、次に超微粒子状の酸化皮膜を形成する。この状態で 酸化皮膜を還元して、その後に絶縁層を形成する方法で ある。その後でレーザーや溶剤でブラインドピアホール を形成すれば、無電解銅めっき時のハローイング現象を 防止することができ、内層回路と絶縁層との接着力を向 上することができる。

[0007]

【発明が解決しようとする課題】しかし、前記の方法においても新たな問題があることが分かった。それは、ブラインドビアホール底部に露出した内層回路と、無電解鋼めっき膜との接着力が不十分で接続信頼性が低いことである。

【0008】上記の原因は、内層回路表面にプラインドビアホール形成時に絶縁層の残渣樹脂が付着していること、、ブラインドビアホール底部に露出した還元済みの内層回路面が、再び空気で酸化されることである。

【0009】上記絶縁層の残渣樹脂は、レーザーでブラインドビアホールを形成したときに発生する絶縁層の破

40

50

片等がカーボナイズされたものや、溶剤でブラインドビアホールを形成したときの現像時の残りかすが主である。また、還元済みの内層回路面が空気で再び酸化されるのは、レーザーによるブラインドビアホールの形成時や、その後に行なわれるめっきの前処理までの待ち時間中や、あるいは、溶剤によるブラインドビアホールの形成後に行う乾燥工程において生じる。

【0010】本発明の目的は、レーザーや溶剤で形成したプラインドビアホール底部に露出した内層回路表面と無電解めっき膜との接着力を高めて接続信頼性を向上し 10た多層配線板の製法を提供することにある。

[0011]

【課題を解決するための手段】前記課題を解決する本発明の要旨は次のとおりである。

【0012】(1) 内層回路の表面を粗化後、該表面を酸化して酸化皮膜を形成し、次いで還元処理した後、絶縁層及び接着層を設け、ブラインドピアホールを形成し、該接着層の表面に無電解めっきで回路を形成する多層配線板の製法において、前記ブラインドピアホールの底部に露出した内層回路の表面に付着している残渣樹脂と該表面の酸化膜を除去して活性化し、該活性面とブラインドピアホール内を無電解めっきを施すことにより配線回路を形成することを特徴とする多層配線板の製法。

【0013】(2) 前記プラインドピアホールの底部に酵出した内層回路の表面に付着している残渣樹脂と該表面の酸化膜を無機酸の水溶液、または該水溶液に過硫酸アンモニウム塩、塩化第二銅、塩化第二鉄、過酸化水素水の1種以上を添加した水溶液で処理することにより除去して活性化し、該活性面とブラインドピアホール内を無電解めっきを施すことにより配線回路を形成する前30記(1)の多層配線板の製法。

【0014】上記プラインドビアホール内の残渣樹脂とブラインドビアホール形成時に生成した酸化膜は、ブラインドビアホールを形成した基板を、単に希硫酸、希塩酸、希釈王水などの無機酸の水溶液で処理することでの除去できる。例えば、希硫酸は濃硫酸10~50ml/1の20~40℃に加温した水溶液中に2分以上浸漬することで達成される。また、上記希釈王水の場合には、王水30~200ml/1の10~40℃に加温した水溶液中に0.5~2分浸漬することで達成される。

【0015】また、ブラインドビアホールの直径が0.3mm以下、特に100μm以下とのものでは、前記水溶液に界面活性剤を添加して該水溶液の表面張力を低下させたものが、ブラインドビアホール内に該水溶液を十分浸入させる上で好ましい。なお、上記界面活性剤としては、該水溶液の表面張力を低下させる効果があるものであれば特に制限しないが、振動を付加する場合には冷であれば特に制限しないが、振動を付加する場合には冷であれば特に制限しないが、振動を付加する場合には冷化水素系湿潤剤が優れている。

【0016】ブラインドビアホール内に露出した内層回路の表面は、一般に絶縁層の形成時にその破片等が残渣樹脂となって部分的に付着しているものが多い。これを除去するには、上記無機酸の水溶液に過硫酸アンモニウム塩、塩化第二銅、塩化第二鉄、過酸化水素水の1種以上を溶解したものを用いることにより内層回路の溶解度を高めて処理することができる。即ち、残渣樹脂付着の下層にある内層回路が溶解され、その結果、付着していた残渣樹脂が剥離されて取り除かれる。

【0017】なお、希硫酸水溶液の場合は過硫酸アンモニウム塩を $20\sim250$ g/ 1または/および36%過酸化水素水 $10\sim100$ ml/ 1溶解して用いる。希塩酸水溶液の場合は、塩化第二銅または塩化第二鉄を10g/ 1以上溶解して用いる。また、前記界面活性剤を添加するとその効力は増大する。

【0018】次に、上記の各処理を行うに際し、振動を加える方法がある。その際には、基板を80~500サイクル/秒で微振動させるとよい。特に、絶縁層が0.1mm以上と厚い場合や、ブラインドピアホールの直径が100μm以下の場合に有効である。振動によっつである。振動によってであれ、処理液が十分に浸入すると云う効果がある。また、内層回路の溶解により発生するガスの付着を防止することができ、処理液の循環にも効果があり、内層回路表面をより均一に活性化することができる。

【0019】また、上記の各処理を行うに先立ちプラズマアッシング処理を行って、ブラインドピアホール底部の内層回路の表面にある絶縁層の残渣を除去してもよい。特に、内層回路表面に比較的強固に付着している残酷間の除去にはプラズマアッシングが効果的である。プラズマアッシングのガスにはCF、、O、、N、の混合ガスが好ましく、体積比でCF、が10~30%、O、が60~80%、N、が10~30%のものが望ましい。プラズマアッシングで残渣樹脂を除去した後、前記の方法で内層回路の表面を活性化面することによりめっき膜との接着性をより向上することができる。

【0020】次に、本発明の多層配線板の製造例を図1に基づき説明する。

【0021】図1(A)は、両面銅張り積層板1を用い、エッチングによって内層回路2を形成し、この内層回路表面を希硫酸と過硫酸アンモニウム塩とからなる水溶液で処理して粗化し、更に、リン酸三ナトリウムと過塩素酸ナトリウムを溶解したアルカリ性水溶液で処理して粗化面上に超微粒子状の酸化膜を形成し、次いで、ジメチルアミンポランを溶解したアルカリ性水溶液で酸化膜を還元して銅の還元膜3を形成した状態を示す。

[0022] これによって、後述の内層回路2と絶縁層4との接着力を向上することができる。また、ブラインドレアホール6の形成後に行う無電解めっき時の反応電

位が伝播しても、内層回路2と絶縁層4との界面でのハ ローイングの発生を抑制することができる。

【0023】図1(B)は、上記(A)で形成した内層 回路1の表面に絶縁層4及び接着層5を形成した状態を 示す。絶縁層4は熱硬化性樹脂のフィルムや、光硬化性 樹脂のフィルムが用いられる。これらはホットロールに よるラミネート法や、ホットプレスによる圧着法が適用 できる。そして加熱や紫外線照射により絶縁層4を硬化 し、更に接着層 5 を形成する。接着層 5 も熱硬化性や光 硬化型の樹脂またはそれらのフィルムを用いることがで 10 き、加熱や紫外線照射により硬化する。

【0024】図1 (C) は、上記(B) で絶縁層4及び 接着層5を形成したものにブラインドピアホール6を形 成した状態を示す。絶縁層4や接着層5が熱硬化性樹脂 の場合は、レーザーによりブラインドビアホール6を形 成することができる。また、絶縁層4と接着層5が光硬 化性樹脂の場合は、ブラインドビアホールの形成部分の みをマスクで遮蔽して紫外線を露光し、溶剤で現像する ことによって露光されなかった部分の樹脂が溶解除去さ れてブラインドビアホール 6 が形成される。もちろん、 レーザーでブラインドビアホール 6 を形成することもで きる。ブラインドピアホール6を形成したとき、露出し た還元済みの内層回路が空気にさらされて再び酸化され 酸化膜7が形成される。そして、その表面には絶縁層の 残渣樹脂 8 が残留している。

【0025】図1 (D) は、上記 (C) で形成した酸化 膜1や残渣樹脂8を取り除いた状態である。これは、前 記水溶液等による処理を行うことによって達成され、内 層回路表面に新たな活性化面9が得られる。

【0.026】図1 (E) は、無電解めっきのための公知 30 い。 の処理を行なった状態を示す。即ち、接着層5の表面を 粗化して粗化面10を形成し、全表面を清浄化後、めつ き触媒 1 1 の付与とその活性化等の処理を行なった状態 である。

[-0-0 2 7] 図1 (F) は、無電解めっきや電解めっき により最外層回路12を形成した状態を示す。この時、 ブラインドビアホール内にもめっき膜が形成される。め っき方法は、無電解銅めっきのみで厚付けを行ってもよ いし、また、無電解銅めっき膜を薄く形成した上に電解 銅めっきで厚付けしてもよい。なお、これらは公知の工_40 ッチング法で配線回路を形成することができる。

【0028』また、無電解銅めっき膜を薄く形成し、配 線回路形成部以外をめっきレジストで覆い、電解銅めっ きを施して回路部を厚付けし、めっきレジストを除去し た後、露出した薄い無電解銅めっき膜をエッチング除去 して回路を形成する、いわゆるセミアディティブ法を適 用することができる。更にまた、接着層5の表面の回路 形成部以外をめっきレジストで覆い、回路形成部のみを 無電解銅めっきで厚付けするフルアディティブ法も適用 できる。

【0029】なお、本発明は図1で示した工程に限定さ れるものではなく、例えば、接着剤層を粗化した後にブ ラインドピアホールを形成してもよい。

【0030】また、前記図1の工程を繰り返すことによ って、接続信頼性の高い、より多層の多層配線板あるい は各種モジュール基板を提供することができる。

[0031]

【作用】本発明において、ブラインドピアホールの内層 回路と無電解めっき膜との接着力が向上し、接続信頼性 が高められる理由は次の作用によるものと考える。

【0032】希硫酸、希塩酸、希釈王水などの水溶液、 またはこれらに過硫酸アンモニウム塩、塩化第二銅、塩 化第二鉄、過酸化水素水等を溶解した水溶液で処理する と、内層回路表面の酸化膜や付着残渣樹脂が取り除かれ ると同時に、内層回路表面がの極く薄くエッチングされ て新たな金属面が露出する。その上に、該表面に微細な 凹凸が形成されるために、無電解めっき膜との結合が強 固になるものと推定される。

[0033] 例えば、希硫酸水溶液で処理して無電解銅 めっき (膜厚30μm) を行った場合は、そのピール強 度(接着力)は8~12kg/cmで、そのパラツキも 小さい。更に、希塩酸水溶液に塩化第二鉄及び界面活性 剤を添加した水溶液で処理した場合には、そのピール強 度はめっき膜の引張強度(30kg/cm)を超え、め っき膜が切断して真のピール強度が測定できないほどで

【0034】これに対して、無処理の内層回路銅表面に 無電解銅めっき(膜厚30μm)を行った場合のピール 強度は2~10kg/cmと低く、そのバラツキも大き

【0035】また、プラズマアッシングを施すことによ り、絶縁層の内層回路表面に付着した残渣樹脂が除去さ れ、その後に行う内層回路表面の酸化膜の除去が十分に 行われるために、内層回路と無電解めっき膜との接着カ はより向上し、接続信頼性を更に向上することができ る。

[0036]

【実施例】 [実施例 1] 紫外線不透過タイプで18 μ m厚の銅箔貼り積層板(日立化成工業社製;MCL-6 7 Nw)を用い、所定のエッチングにより内層電源回路 を形成した。該回路の銅箔表面を30℃の粗化液(硫酸 7ml/1+過硫酸アンモニウム塩180g/1)で2 分間処理して微細な凹凸を形成した。これを水洗後、7 0℃の酸化膜形成液 (リン酸三ナトリウム35g/1+ 過塩素酸ナトリウム100g/1+水酸化ナトリウム1 0g/1)で5分間処理して前記の凹凸面に超微粒子状 の酸化膜を形成し、水洗後、40℃の還元液(ジメチル アミンポラン10g/l+水酸化ナトリウム7g/l) で2分間処理して還元した。これを水洗後、窒素ガスを 50 吹き付けて水切りを行い乾燥した。

【0037】この内層回路板の両面に、絶縁層として厚さ 70μ mの光硬化性絶縁フィルム(日立化成工業社製; SR-2300)をラミネートしホットプレスした。これに紫外線を2.0 J / c m^2 照射した後、150 ℃で30 分加熱硬化した。

【0038】次に、上記絶縁層表面に接着層として厚さ 30μ mの光硬化性接着フィルム(日立化成工業社製;AP-1530)をホットロールでラミネートし、紫外線を1.5 J / c m^1 照射後、150 $\mathbb C$ $\mathbb C$

【0039】次に、クロム硫酸混液で接着層表面を粗化、水洗後、50℃の湯洗を行い、更に50℃のアルカリ水溶液(水酸化ナトリウム4g/1)で10分処理し、接着層表面に付着している粗化残渣物を除去した。水洗乾燥後、エキシマレーザーで直径200μmのブラインドビアホールを片面にそれぞれ50個(両面で100個)形成した試片を作製した。

【0040】上記試片のブラインドビアホール底部に露出した内層回路表面の残渣樹脂と、酸化膜を除去するため、表1に示す処理液を調製した。なお、界面活性剤と20しては、フッ化炭化水素系湿潤剤 FLUORAD FC-95(住友3M社製)を用いた。本実施例では各処理液での処理は空気攪拌しながら行った。

【0041】上記の処理後、ブラインドピアホール底部の内層回路表面への残渣樹脂の付着の有無を光学顕微鏡(500倍)で観測し、残渣樹脂が付着しているブラインドピアホールの数を全ブラインドピアホール数に対する比を、残渣残存率(%)で表1に示した。

【0042】次に、上記処理後の試片を水洗し、更に、 湯洗してブラインドピアホール内に残留している処理液 30 を十分に洗浄した後、公知の方法でめっき触媒の付与と 活性化を行った。

【0043】次に、硫酸銅10g/l, EDTA35g

/ 1, 37% H C H O 2.5 m l / 1, ポリエチレングリコール(分子量約600)20 m l / 1, α , α ージピリジル30 m g / 1を配合し p H 1 2.6(at 20 $\mathbb C$)に調整した70 $\mathbb C$ の無電解銅めっき液で、接着層の全表面及びブラインドビアホール内に厚さ約 30μ mの銅めっき膜を形成し、水洗後、80 $\mathbb C$ で乾燥した。

【0044】これの回路形成部分にエッチングレジストを被覆して、回路部以外の銅めっき膜を溶解除去後、該エッチングレジストを除き最外層回路を形成した。水洗10後、140℃で30分間乾燥し、図1(F)で示すようなブラインドビアホールを有する4層の多層配線板を完成した。

【0045】表1に、ブラインドビアホール内に形成した銅めっき膜と内層回路との接着力を示す。該接着力の測定は、ブラインドビアホール内の銅めっき膜に直径130 μ mのニッケルー鉄合金線を挿入して半田で固定し、5mm/分の速度で垂直方向に引張り測定した。【0046】更に、(-60 $\mathbb{C}/30$ 分)のヒートサイクル試験を実施し、50サイクル毎にブラインドビアホール部を切断してその断面を観察し、銅めっき膜と内層回路との接続状態を鯛べた。この試験で剥離が1個所でも認められた時までのサイクル数を接続信頼性として示した。

【0047】表1から明らかなように、本発明の処理を施したものは残渣残存率が低い。また、めっき膜と内層回路との接着力が高く、接続信頼性も優れていた。なお、希硫酸水溶液または希塩酸水溶液のみで処理した場合より、該水溶液に前記添加剤や界面活性剤を配合した水溶液で処理した場合は、更に残渣残存率が低くなり、接着力や接続信頼性も向上していることが分かる。

[0048]

【表1】

表 1

	処	理	液	の	組	成	処理	条件	残渣残存率	接着力	接続信頼性
無	機	酸	添	加	剤	界面活性剤	温度(℃)	時間(分)	(%)	kgf/mm²	(サイクル数)
·						_	3 0	5	1 3	5 1	400
			過硫酸	アンモ	ニウム		v	3	8	74	>600
渡	碱	酸	(150] g /	1)	0.2 g / 1	,,	2	5	7 3	"
(30	m 1/1)	36% à	直酸イ	化水素	_	,,	3	7	76	"
			(20r	1/1)	,	0.2g/1	y	2	2	8 1	"
							25	5	18	4.9	350
3			塩 化	第	二 銅	-	u	2	9	8 3	>600
3 6	3 %塩	融	(50	g / 1	}	0.2g/1	"	0.5	4	88	"
(10	Oml/	′1)	塩 化	第	二鉄	_	J.	2	7	7 5	"
			(30	g / 1	}	0.2g/1	y	0.5	2	84	<i>!!</i>
王		水		_			3 5	"	6	8 2	"
(10	Oml/	1)		_		0.2g/1	v	"	1	7 7	"
				無	ļ	也 理			4 8	3 8	150

【0049】 〔実施例 2〕 ブラインドビアホール底部の内層回路表面の残渣樹脂の除去効率を見るため、処理液は実施例1と同じものを用い、これに振動を組合せた。振動機としては、VIBLEX PS-2(PLANTEX社製)を用いた。その結果を表2に示す。

【0050】めっき膜と内層回路との接着力や接続信頼

性は実施例1とそれほど差はないが、振動を加えることにより樹脂の残渣残存率が0%と優れた除去効率を示すことが分かった。

[0051]

【表2】

ı	1	
1	Ł	

処理	後の離	盤	墩	埋条 作	11	残渣残存率	接着力	接続信頼性
無職	数据数	界面活性剂	温度(C)	時間(分)	玻璃	(%)	kgf/m^{3}	(サイクル数)
	1	1	3.0	2	120	0	23	450
	過硫酸アンモニウム		"	3	"	"	8 L	009<
通訊	(150 g / 1)	0.28/1	"	2	"	"	7.7	"
(30m1/1)	36%遗骸化水素	l	"	3	180	n	8 0	"
	(20a1/1)	0.28/1	"	2	"	"	83	"
i i	-	l	2.5	വ	"	"	99	400
	堆化第二鲷	ļ	"	2	"	"	84	009<
36%堆酸	(50 g / 1)	0.28/1	"	0.5	"	n	8 1	n
(100ml/1)	描化第二条	_	- "	2	,,	"	9 4	П
	(30 g / 1)	0.28/1	" .	0.5	*	n	88	Л
H	1		3.5	"	120	"	8 0	"
(100m1/1)	1	0.28/1	"	"	"	"	83	n,
	## -	双	闡			48	3 8	150
	_							

製:SA-7070)をホットロールでラミネートした。次に、直径 60μ mのブラインドビアホールを形成する部分のみを光遮蔽できるマスクを設けてその上から紫外線を2.5 J / c m 照射し、硬化した。更に、1,

1,1-トリクロロエタンを用いて現像し、ブラインド ピアホールを形成した試片を作製した。

【0053】次に、CF,:20%,O::70%,N::10%の混合ガス内で20分プラズマアッシング処理を行なった後、絶縁層表面をクロム硫酸混液で粗化した。水洗、湯洗してブラインドビアホール内の残留クロム硫酸混液を除去した。

[0054] ブラインドピアホール底部の露出内層回路の表面の残渣樹脂(現像残り) を実施例1と同様にして観察した。

0 【0055】また、上記試片を公知の手法でめっき触媒の付与と活性化を行い、水洗後N:ガスで水分を吹き飛ばし、直ちに厚さ35μmのめっきレジストフィルム(日立化成社製:SR-3200)をラミネートし、マスクを介して回路形成部以外に紫外線を0.25J/c-mi照射した。次いで、1.1.1-トリクロロエタンで現像して回路形成部のめっきレジストフィルムを除去した

【0056】次に、実施例1と同様に無電解銅めつきを 行い、回路形成部分とブラインドピアホール内にめっき 30 膜を形成し、4層の多層配線板を作製した。

特開平6-260766

14

【0057】上記多層配線板の接続信頼性を1000サ イクル実施した。その結果を表3に示す。ブラズマアッ シングを施した場合は、残渣残存率は0%で、めっき膜 と内層回路との接続信頼性は1000サイクル後でも異 常は認めらなかった。

【0058】本実施例によれば、回路幅を80μmと し、この回路中に直径50μmのブラインドビアホール を形成することが可能である。

[0059]

【表3】

表

プラズマ	処 理	液の粗	成	処 理	条件	残渣残存率	接続信頼性
アッシング	無機酸	添加 剤	界面活性剤	温度(℃)	時間(分)	(%)	(サイクル数)
	濃 硫 酸	過硫酸アンモニウム	_	30	3	8	650
あり	(30m1/1)	(50 g / 1)	0.2g/1	"	2	5	"
			-	"	3	0	>1000
なし	"	y.	0.2g/1	<i>- "</i>	2	Ħ	"
	36%塩酸	塩化第二鉄	_	2 5	2	7	700
あり	(100m1/1)	(50 g / l)	0.2g/1	"	1	2	"
		_	_	11	2	0	>1000
な し	, ,	y y	0.2g/1	"	1	П	77
なし		無 処	-	理		4.8	150

[0060]

【発明の効果】本発明によれば、ブラインドピアホール -の内層回路と配線回路との接続信頼性が向上し、ブライ 30 【図1】本発明の多層配線板の製造工程に示す模式断面 ンドビアホールの直径が100μm以下のものを提供で *きる。従って、配線の回路幅及びその間隔も共に100 μπ以下とすることができ高密度実装が可能な多層配線 板を提供できる。

【0061】また、内層にランドのない回路を形成する ことも可能であり、最外層も部品を接続するランド以外 にランドのない回路も同様に形成することができる。

【図面の簡単な説明】

図である。

【符号の説明】

1 …積層板、2 …内層回路、3 …還元膜、4 …絶縁層、

5…接着層、6…ブラインドビアホール、7…酸化膜、

8…残渣樹脂、9…活性化面、10…粗化面、11…め

っき触媒、12…最外層回路。

13

【図1】

