Appendix B. Parameters

LZU-CHINA

October 12, 2023

Abstract

This appendix show the parameters we applied to the model we establish. The parameters are determined by model assumptions, references, and estimation calculation.

1 Model Review

1.1 Oleic acid induction system

$$\frac{dR}{dt} = r_{x,R} - r_{seq} - \lambda (E_g) R,$$

$$\frac{dD}{dt} = r_{x,D} - \lambda (E_g) D,$$

$$\frac{dA}{dt} = r_D - r_B - 2 \cdot r_{seq} - \lambda (E_g) A,$$

$$\frac{dC}{dt} = r_{seq} - \lambda (E_g) C,$$

$$\frac{dE_g}{dt} = r_{x,E_g} - \lambda (E_g) \cdot E_g,$$

$$\frac{dF}{dt} = r_f.$$
(1)

1.2 Comparison of oleic acid inducer with native circuit

Native circuit:
$$P_{\rm R}(R) = \frac{a_{\rm R}}{1 + K_{\rm R}R}$$
 (2)

Oleic acid inducer :
$$P_{\rm R}(R) = \begin{cases} \frac{a_{\rm R}}{1 + K_{\rm R}R}, & \text{for } R > \frac{1}{K_p} = 0.0033 \mu \rm M \cdot h^{-1} \\ \frac{a_{\rm R}K_{\rm R}R}{1 + K_{\rm R}R}, & \text{for } R \le \frac{1}{K_p} = 0.0033 \mu \rm M \cdot h^{-1} \end{cases}$$
 (3)

1.3 Parameter estimation

$$AFI = \frac{RFI}{OD600} \tag{4}$$

Corrected $AFI_{n\%} = AFI_{n\%} - Empty$

$$\operatorname{Exp} F_{n\%} = A \cdot AFI_{n\%} + B \tag{5}$$

2 Parameters

Parameter description	Term	Value	Units	Reference
Forward sequestration	$k_{ m f}$	612.55	$\mu\mathrm{M}^{-2}\cdot\mathrm{h}^{-1}$	[2]
Reverse sequestration	$k_{ m r}$	900.73	h^{-1}	[2]
PlsB turnover rate	$k_{\rm cat,B}$	192.91	h^{-1}	[2]
FadD turnover rate	$k_{\rm cat,D}$	49	h^{-1}	[2]
FadR'strength to promote itself(NAR)	a_{R}	0.0131	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	[2]
FadR leaky expression (NAR)	$b_{ m R}$	0.0007	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	[2]
FadD'strength to promote itself	a_{D}	0.0517	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	[2]
FadD leaky expression	b_{D}	0.0108	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	[2]
FadR affinity to own promoter (NAR)	K_{R}	4.3222	$\mu\mathrm{M}^{-1}$	[2]
FadR affinity to fadD	K_{D}	305.95	$\mu\mathrm{M}^{-1}$	[2]
Michaelis constant	$K_{ m m,B}$	45429	$\mu \mathrm{M}$	[2]
Michaelis constant	$K_{ m m,D}$	0.0672	$\mu \mathrm{M}$	[2]
PlsB concentration	В	0.1369	μM	[2]
Cell growth parameter	$\lambda_{ m max}$	0.1818	h^{-1}	[2], E. coli DH1 Δ fadE strain.
$E_{\rm g}$ promoter strength	a_{g}	$\lambda_{ m max}$	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	To ensure full express at λ_{max} .
FadR'strength to promote itself(PAR)	a_{R}	0.0131	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	Same as NAR by assumption
FadR leaky expression (PAR)	$b_{ m R}$	0.0007	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	Same as NAR by assumption
Decrease paramameter in growth	s_{T}	0.7	_	[3], By pgi down-regulation.
FadR affinity to own promoter (PAR)	$K_{ m R}$	4.3222×7	$\mu\mathrm{M}^{-1}$	Multiple times the value of NAR
FadR affinity to $E_{\rm g}$ promoter	$K_{ m g}$	$= K_{\rm R} = 4.9114$	$\mu\mathrm{M}^{-1}$	the same promoter as FadR with PAR
Affinity of FadR for prod synthesis enzyme $E_{\rm p}$	K_{p}	$= K_{\rm D} = 305.95$	$\mu \mathrm{M}\cdot \mathrm{h}^{-1}$	[1], Designed with FadR operator site from fadD promoter.
Aerobic coefficient	A_{ae}	1.59	_	Parameter estimation calculation
Aerobic intercept	B_{ae}	1.82	_	Parameter estimation calculation
Anaerobic coefficient	A_{an}	1.73	_	Parameter estimation calculation
Anaerobic intercept	B_{an}	0.98	_	Parameter estimation calculation

Figure 1: Parameter estimation by measuring the fluorescence intensity and fitting