EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

VIDEO ANALYSIS

OPEN CV FOR VIDEO PROCESSING

Date	08 November 2022			
Team ID	PNT2022TMID12327			
Project Name	Emerging Methods for Early Detection of			
	Forest Fires			

Importing The ImageDataGenerator Library

import keras

from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rot ati on_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDriv e/Dataset/train_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive / Dataset/test_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential
from keras.models import Sequential
#To add layers import Dense
from keras.layers import Dense
#To create Convolution kernel import Convolution2D
from keras.layers import Convolution2D
#import Maxpooling layer
from keras.layers import MaxPooling2D
#import flatten layer
from keras.layers import Flatten
import warnings
warnings.filterwarnings('ignore')

Initializing the model

model=Sequential()

Add CNN Layer

```
model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu'))#add maxpooling layer

model.add(MaxPooling2D(pool_size=(2,2)))

#add flatten layer
model.add(Flatten())
```

Add Hidden Layer

#add hidden layer model.add(Dense(150,activation='relu'))
#add output layer model.add(Dense(1,activation='sigmoid')

)

Configure the learning process

model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["ac curacy"])

Train the model

```
model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_ da
ta=x_test, validation_steps=4)
Epoch 1/10
14/14 [======] - 97s 7s/step - loss:
1.3060 -
accuracy: 0.7775 - val_loss: 0.5513 - val_accuracy: 0.8512Epoch 2/10
14/14 [=======] - 26s 2s/step - loss:
0.3178 -
accuracy: 0.8807 - val_loss: 0.1299 - val_accuracy: 0.9421Epoch 3/10
14/14 [======] - 26s 2s/step - loss:
0.2226 -
accuracy: 0.9106 - val_loss: 0.1311 - val_accuracy: 0.9421Epoch 4/10
14/14 [======] - 31s 2s/step - loss:
0.1836 -
accuracy: 0.9174 - val_loss: 0.1129 - val_accuracy: 0.9339Epoch 5/10
14/14 [======] - 30s 2s/step - loss:
0.1675 -
```

```
accuracy: 0.9243 - val_loss: 0.0925 - val_accuracy: 0.9669Epoch 6/10
14/14 [======] - 26s 2s/step - loss:
0.1884 -
accuracy: 0.9289 - val_loss: 0.1287 - val_accuracy: 0.9339Epoch 7/10
14/14 [======] - 28s 2s/step - loss:
0.1724 -
accuracy: 0.9335 - val_loss: 0.0926 - val_accuracy: 0.9752Epoch 8/10
14/14 [======] - 26s 2s/step - loss:
0.1510 -
accuracy: 0.9404 - val_loss: 0.0757 - val_accuracy: 0.9752Epoch 9/10
                                                                 0.173 - 2
2s/step - loss:
accuracy: 0.9174 - val_loss: 0.0537 - val_accuracy: 0.9835
                                                                 0.154 - 6
Epoch 10/10
14/14 [=======] - 26s
2s/step - loss:
accuracy: 0.9312 - val_loss: 0.0573 - val_accuracy: 0.9835
 <keras.callbacks.History at 0x7f05d66a9c90>
```

Save The Model

model.save("forest1.h5")

Predictions

```
#import load_model from
keras.model fromkeras.models
import load_model #import image
class from keras
from tensorflow.keras.preprocessing import image #importnumpy
import numpy as np
#import cv2
import cv2
```

OpenCV For Video Processing

pip install twilio

Looking in indexes: https://pypi.org/simple, https://us-

python.pkg.dev/colab-wheels/public/simple/ Requirement already

satisfied: twilio in

/usr/local/lib/python3.7/dist-packages (7.15.1)

Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from

twilio) (2022.5)

Requirement already satisfied: requests>=2.0.0 in

/usr/local/lib/python3.7/dist-packages (from twilio) (2.23.0)Requirement

already satisfied: PyJWT<3.0.0,>=2.0.0 in

/usr/local/lib/python3.7/dist-packages (from twilio) (2.6.0) Requirementalready satisfied:

urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0-

>twilio) (1.24.3)

Requirement already satisfied: certifi>=2017.4.17 in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)(2022.9.24)

Requirement already satisfied: idna<3,>=2.5 in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)(2.10)

Requirement already satisfied: chardet<4,>=3.0.2 in

/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)(3.0.4)

pip install playsound

Looking in indexes: https://pypi.org/simple, https://us-

python.pkg.dev/colab-wheels/public/simple/ Requirement already

satisfied: playsound in

/usr/local/lib/python3.7/dist-packages (1.3.0)

#import opency library

import cv2

#import numpy

import numpy as np

#import image function from keras

from keras.preprocessing import

image #import load_model fromkeras
from keras.models import load_model
#import client from twilio API from
twilio.rest import Client #import
playsound package
from playsound import playsound

WARNING:playsound:playsound is relying on another python subprocess. Please use `pip install pygobject` if you want playsound torun more efficiently.

#load the saved model
model=load_model("forest1.h5") #define
video video=cv2.VideoCapture(0) #define
the features name=['forest','with fire']