

Documentação do aplicativo de demonstração do REP-ZPM e descrição do protocolo de comunicação - SDK

Registrador Eletrônico de Ponto

RepZPM Família "R"

www.zpm.com.br

Sumário

Sum	nário2
1.	Revisões3
2.	Descrição geral do aplicativo
3.	Formas de comunicação do aplicativo de demonstração com o REP-ZPM 6
	Comunicação com o REP-ZPM via Ethernet6
	Troca de dados com o REP-ZPM via Pen Drive6
4.	Descrição do protocolo de comunicação do REP-ZPM7
	Formato geral dos registros do arquivo de comando
	Formato geral dos registros do arquivo de retorno
	Retornos caso o arquivo de comando não tenha sido processado pelo REP 8
5.	Descrição dos comandos9
	Configuração/atualização do empregador9
	Manutenção da lista de empregados10
	Ajuste do Relógio do REP
	Leitura Status do REP
	Leitura de marcação de ponto
	Leitura de dados da MRP14
	Ajuste do horário de verão15
	Excluir marcação de ponto
	Excluir registros de AFD
	Leitura de dados da MRP por NSR
	Leitura Completa de Status do equipamento
	Reset de fábrica para as senhas21
	Leitura de eventos ¹
	Leitura de dados da MRP por range de data/hora ¹ 23
	Leitura de registros de ponto por range de data/hora ¹ 24
	Cancela a conexão ¹
	Configura máscara do código de barras ¹
	Leitura dos últimos 10 registros ¹
	Modo de leitura TAG ¹
	Configuração da criptografia do código de barras ¹
	Modo de leitura MIFARE ¹ 30
6.	Descrição da transmissão de dados via Rede
	Transmissão de dados via Pasta Compartilhada do Windows
	Transmissão de dados via TCP/IP
7.	Descrição do modo Client do REP-ZPM ¹
8.	Criptografia ¹
9.	Identificação automática de REPs ¹ 40
10.	Modo ON-LINE ¹ :

1. Revisões

1.0 -30/05/2014

Revisão Inicial.

1.1 -29/10/2014

- ❖ Inclusão do "Modo Leitura Mifare" no item 5.
- ❖ Correção no item 10: Inserido o cabeçalho do comando enviado pelo equipamento.

1.2 -24/02/2015

❖ Inclusão do item "ESTADO_TAMPA_BATERIA" no tópico "Leitura de Eventos".

2. Descrição geral do aplicativo

A finalidade deste aplicativo é demonstrar as funcionalidades do REP-ZPM.

O aplicativo deve ser executado no sistema operacional Windows.

A tela principal do aplicativo é dividida em blocos, de acordo com as funcionalidades do REP-ZPM, como Cadastro do empregador, Manutenção da lista de empregados, Leitura da marcação de ponto, etc.

Nesta janela (Figura 01) podem ser selecionados os vários comandos a serem enviados para o REP.

Figura 01: Janela principal do aplicativo de comunicação com o REP

Após a seleção do comando desejado, é exibida a janela que monitora a transmissão de dados para o REP (Figura 02).

Figura 02: Janela de transmissão de comando para o REP

Na parte superior da janela é mostrado o "Conteúdo do Arquivo de Comando" (gerado a partir dos dados inseridos na janela principal) que será enviado para o REP.

Clicando no botão "Iniciar Transmissão", o arquivo de comando é enviado para o REP via Rede ou via Pen Drive, dependendo da seleção efetuada na janela principal (Figura 01).

Em seguida, o aplicativo monitora regularmente se o REP retornou o arquivo esperado, via rede ou via Pen Drive. O arquivo terá o mesmo nome, mas extensão .ret.

O conteúdo do arquivo de retorno é visualizado na parte inferior da janela da Figura 02.

Depois de recebido o arquivo de retorno do REP, selecione o botão "Retornar" para voltar à janela principal. Se o REP retornou dados, estes serão atualizados nos respectivos campos da janela principal (Figura 01).

3. Formas de comunicação do aplicativo de demonstração com o REP-ZPM

A comunicação do aplicativo de demonstração com o REP-ZPM é realizada através de arquivos com formato específico, como descrito no capítulo 3. Os arquivos de comando são gerados pelo aplicativo no PC e transferidos para o REP-ZPM utilizando um dos métodos abaixo:

- Transferência de dados via Ethernet
- Transferência de dados via Pen Drive

Comunicação com o REP-ZPM via Ethernet

Para enviar um comando via rede para o REP-ZPM com o aplicativo de demonstração, selecionar "Via Ethernet" e digitar o IP do REP no campo "IP do REP" (Figura 01).

A execução do programa ocorre como descrita no capítulo 1.

Troca de dados com o REP-ZPM via Pen Drive

Nesta modalidade de transferência, o aplicativo gravará o arquivo de comando no Pen Drive. O nome do arquivo é livre, sendo, no entanto, obrigatória a extensão ".cmd". O aplicativo de demonstração do REP-ZPM gera um arquivo de nome aleatório.

O arquivo é então copiado para uma pasta no Pen Drive. O nome da pasta deve ser o número de fabricação do REP-ZPM, permitindo assim a utilização do mesmo Pen Drive para enviar comandos a vários equipamentos REP-ZPM.

Exemplo de um arquivo de comando no Pen Drive:

12345678901234567/teste.cmd

Ao conectar o Pen Drive no REP, este lerá automaticamente o arquivo de comando do Pen Drive, o processará e gravará a resposta novamente no Pen Drive.

Exemplo:

12345678901234567/teste.ret

4. Descrição do protocolo de comunicação do REP-ZPM

O protocolo de comunicação é baseado em arquivos texto para facilitar eventuais operações manuais e também integrações com os mais diversos sistemas. Uma pasta será monitorada pelo REP e quando houver um arquivo com a extensão ".cmd", o mesmo será processado e apagado.

Após o processamento será gerado um arquivo de resposta com o mesmo nome do arquivo de comando, porém com a extensão ".ret".

Formato geral dos registros do arquivo de comando

Linha 1: <ID COMANDO>;<TOTAL REGISTROS COMANDO>

Linha 2-n: <PARAMETROS/REGISTROS>

Observações:

- O tamanho máximo de linhas do arquivo é limitado a 10241 (10K + 1).
- Os campos informados são separados por ponto e vírgula.
- Cada linha deve ser finalizada com os caracteres de controle <CR><LF> (byte "0x0D" seguido do byte "0x0A", valores em hexadecimal) ou somente <LF> (byte"0x0A").

Formato geral dos registros do arquivo de retorno

Linha 1: <ID COMANDO>;<TOTAL REGISTROS RETORNO>

Linha 2-n: <LINHA>;<RESULTADO OPERACAO>;<MSG COMPLEMENTAR>

Observações:

 Cada linha de retorno do REP é finalizada com o caractere de controle <LF> (byte" 0A" em hexadecimal).

<LINHA>: número da linha do arquivo de comando que gerou esta resposta.

<RESULTADO_OPERACAO>:

- > 00 = OK
- > 01 = Registro mal formado
- > 02 = Valor inválido
- > 03 = Falha durante a operação do comando
- > 04 = Comando inválido
- > 05 = Registro não encontrado (comando de busca)
- > 06 = Troca de comandos via Pen Drive desativada (ver Observação 2)
- > 07 = Arquivo de comando excede tamanho permitido (ver Observação 2)
- 08 = Memória de Trabalho esgotada
- > 09 = MRP esgotada
- ➤ 10 = Sem alteração¹

<MSG_COMPLEMENTAR>: mensagem complementar opcional para descrever um retorno de erro na execução de um comando.

Retornos caso o arquivo de comando não tenha sido processado pelo REP

Caso a troca de comandos via Pen Drive esteja desativada no REP, é retornada somente a linha abaixo pelo REP:

0;6;<Mensagem Erro>

Sendo:

<Mensagem Erro>: é a descrição do código de Erro 6

Caso a quantidade de linhas do arquivo de comandos tenha excedido o limite permitido, é retornada somente a linha abaixo pelo REP:

0;7;<Mensagem Erro>

Sendo:

<Mensagem Erro>: é a descrição do código de Erro 7

5. Descrição dos comandos

Campo ID_COMANDO = 1;

Neste tópico é descrito o formato de cada arquivo de comando do REP-ZPM.

Configuração/atualização do empregador

```
Campo PARAMETROS com a seguinte formatação:
<OPERACAO>;<TIPO>;<IDENTIFICAÇÃO>;<CEI>;<RAZAO SOCIAL>;<LOCAL TRABALHO>;
Sendo:
       <OPERACAO>:
             1 = INCLUSÃO,
             2 = ALTERAÇÃO,
             3 = BUSCA
             4 = INCLUSÃO/ALTERAÇÃO1.
       <TIPO>:
             1 = CNPJ,
             2 = CPF.
       <IDENTIFICAÇÃO>: número do CNPJ ou CPF.
       <CEI>: Cadastro Especifico no INSS.
       <RAZAO SOCIAL>: Razão Social da empresa.
       <LOCAL TRABALHO>: Descrição do local onde o equipamento esta instalado.
Exemplos:
a) Inclusão empregador:
  1;1;00908118000152;8561217496;ZPM Ind. Com. LTDA;Rua Araguaia, 145
b) Alteração empregador:
  2;1;00908118000152;8561217496;ZPM Ind. Com. LTDA;Rua Araguaia, 175
c) Busca empregador:
  1;1
  3
d) Inclusão/Alteração1:
  4;1;00908118000152;8561217496;ZPM Ind. Com. LTDA;Rua Araguaia, 145
```

Este comando tem a função de incluir o empregador caso o mesmo não esteja cadastrado no equipamento ou alterá-lo caso já exista um empregador cadastrado no equipamento.

Manutenção da lista de empregados

```
Campo ID_COMANDO = 2;
```

Campo PARAMETROS com a seguinte formatação:

<OPERACAO>;<PIS>;<MATRICULA>;<NOME>;<TEMPLATE_BIOMÉTRICO>;<PIS_TECLADO>;
<CODIGO_K>;<CODIGO_B>;<CODIGO_M>;<CODIGO_T>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;

Sendo:

```
<OPERACAO>:
       0 = EXCLUSÃO,
       1 = INCLUSÃO,
       2 = ALTERAÇÃO,
       3 = BUSCA,
       4 = INCLUSÃO/ALTERAÇÃO1.
<PIS>: PIS do empregado.
<MATRICULA>: Matrícula do empregado.
<NOME>: Nome do empregado.
<TEMPLATE_BIOMÉTRICO>: identificação biométrica 1 (opcional).
<PIS_TECLADO>: 1 ou 0 para permitir ou não a digitação do PIS no teclado.
<CODIGO_K>: código a ser utilizado no teclado (Keyboard) (opcional).
<CODIGO_B>: código a ser utilizado no cartão de barras (opcional).
<CODIGO M>: código a ser utilizado com o MIFARE (opcional).
<CODIGO_T>: código a ser utilizado com o TAG (opcional).
<TEMPLATE BIOMÉTRICO>: identificação biométrica 2 (opcional).
<TEMPLATE BIOMÉTRICO>: identificação biométrica 3 (opcional).
<TEMPLATE_BIOMÉTRICO>: identificação biométrica 4 (opcional).
<TEMPLATE_BIOMÉTRICO>: identificação biométrica 5 (opcional).
<TEMPLATE_BIOMÉTRICO>: identificação biométrica 6 (opcional).
<TEMPLATE BIOMÉTRICO>: identificação biométrica 7 (opcional).
<TEMPLATE BIOMÉTRICO>: identificação biométrica 8 (opcional).
<TEMPLATE_BIOMÉTRICO>: identificação biométrica 9 (opcional).
<TEMPLATE BIOMÉTRICO>: identificação biométrica 10 (opcional).
```

Observações:

• Para a operação de busca de empregado (<OPERACAO> = 3), os dados dos empregados retornados pelo REP nas linhas 2 até n-1, têm o seguinte formato:

<LINHA>;<RESULTADO_OPERACAO>;<PIS>;<MATRICULA>;<NOME>;<TEMPLATE_BIOM
ÉTRICO>;<PIS_TECLADO>;<CODIGO_K>;<CODIGO_B>;<CODIGO_M>;<CODIGO_T>;<TE
MPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;<TEMPLATE_BIOMÉTRICO>;

- O campo < PIS> retornado pelo REP é do tipo numérico (sem zeros precedentes).
- Na operação de alteração, para remover um parâmetro opcional, preencha o campo com o caractere #. Caso o campo não seja preenchido, o valor antigo será mantido.
- Para operação de exclusão, informar apenas < OPERACAO> e < PIS>.
- Para operação de busca, informar < OPERACAO> e opcionalmente o < PIS>;
- Quando for executado um comando de busca de empregado onde não é informado o PIS, o resultado corresponderá a uma listagem de todos empregados. O campo LINHA conterá, então, sempre o mesmo valor, visto que o comando que originou as diversas linhas de resposta é o mesmo.

Exemplos:

a) Exclusão empregado:

2:1

0;987654321098

b) Inclusão empregados:

2;2

```
1;987654321098;015000080055;João;11111111111111111;1;123;;456;789
1;123456789012;015000080056;Maria da Silva;222222222222222;0;23;;46;
```

c) Alterar nome do empregado mantendo os campos template_biométrico, codigo_t, código_b e removendo código_k e código_m:

2;1

2;987654321098;;José Maria da Silva;;0;#;;#;

d) Buscar dados de um empregado com PIS = 87654321098:

2;1

3:87654321098

e) Buscar dados de todos os empregados:

2;1

3

f) Incluir/Alterar1:

2:1

4;987654321098;015000080055;João;11111111111111111;1;123;;456;789

Ajuste do Relógio do REP

Este comando ajusta a data e hora do REP.

Campo ID_COMANDO = 4;

Campo PARAMETROS com a seguinte formatação:

<DATA_HORA>;

Sendo:

<DATA HORA>: Data hora no formato DD/MM/YYYY HH:mm:SS

Exemplos:

a) Comando:

4:1

23/09/2010 15:34:00

b) Retorno:

4;1

Leitura Status do REP

Campo ID_COMANDO = 5;

Este comando não tem parâmetros.

Retorno:

<LINHA>;<RESULTADO_OPERAÇÃO>;<NUMERO_FABRICAÇÃO>;<PIS_ÚLTIMA_MARCAÇÃ
O>;<DATA_HORA_ÚLTIMA_MARCAÇÃO>;<STATUS_PAPEL>;<DATA_HORA>;<MEM_MRP_T
OTAL>;<MEM_MRP_UTILIZADA>;

Sendo:

<NUMERO_FABRICAÇÃO>: Número de fabricação do REP

xxxxyyyyyzzzzzzz

xxxxx = Número do fabricante registrado no MTE no caso ZPM = 00021.

yyyyy = Número de registro do produto no MTE.

zzzzzzz = Número de série do equipamento.

<PIS ÚLTIMA MARCAÇÃO>: PIS do funcionário que realizou a última marcação de ponto

<DATA_HORA_ÚLTIMA_MARCAÇÃO>: Data hora no formato DD/MM/YYYY HH:mm:SS da última marcação de ponto

<STATUS_PAPEL>: Status do papel na impressora

0 : Falta de papel

1 : Presença de papel

2 : Pouco papel

<DATA HORA>: Data hora no formato DD/MM/YYYY HH:mm:SS

<MEM_MRP_TOTAL>: Memória MRP total em bytes

<MEM_MRP_UTILIZADA>: Memória MRP utilizada em bytes

Observações:

- O campo < PIS_ÚLTIMA_MARCAÇÃO > retornado pelo REP é do tipo numérico (sem zeros precedentes).
- Quando não houver nenhuma marcação de ponto registrada no REP, é retornado "---" nos campos
 <PIS_ÚLTIMA_MARCAÇÃO> e <DATA_HORA_ÚLTIMA_MARCAÇÃO>.

Exemplos:

a) Comando:

5;1

1

b) Retorno:

5;1

2;0;12345000010000009;2222222221;17/08/2010 09:17:27;1;21/08/2010 15:28:45;1073741824;12984

Leitura de marcação de ponto

Este comando busca as marcações de ponto de um período.

Campo ID_COMANDO =6;

Campo PARAMETROS com a seguinte formatação:

<DATA_INICIO>;<DATA_FIM>

Sendo:

```
< DATA INICIO > e < DATA FIM>: formato DD/MM/YYYY
```

Retorno:

```
<LINHA>;<RESULTADO_OPERAÇÃO>;<PIS>;<DATA_HORA>;<NSR>;
```

Sendo:

PIS>: PIS do funcionário que realizou a última marcação de ponto.

<DATA_HORA>: Data hora no formato DD/MM/YYYY HH:mm:SS do horário da marcação de ponto.

<NSR>: Número sequencial do registro na MRP.

Observações:

 O campo < PIS> e o campo <NSR> retornado pelo REP s\u00e3o do tipo num\u00e9rico (sem zeros precedentes).

Exemplos:

a) Comando:

6;1

17/09/2010;17/09/2010

b) Retorno:

6;1

2;0;11111111116;17/09/2010 12:00:13;5

2;0;33333333337;17/09/2010 12:00:22;6 2;0;123458;17/09/2010 07:59:24;7 2;0;111111111116;17/09/2010 07:59:04;8

Leitura de dados da MRP

Este comando retorna os registros da MRP do REP relativos a um período.

O retorno será no formado de AFD.

Campo ID_COMANDO =7;

Campo PARAMETROS com a seguinte formatação:

<DATA_INICIO>;<DATA_FIM>

Sendo:

< DATA_INICIO > e < DATA_FIM>: formato DD/MM/YYYY

Retorno:

Registros da MRP no formato AFD.

Observações:

 Nesse comando a primeira linha n\u00e3o \u00e9 retornada com "<ID COMANDO>;<TOTAL REGISTROS COMANDO>".

Exemplos:

a) Comando:

7:1

07/01/2011;11/01/2011

b) Retorno:

00000000119631697100011400000000000ZPM Indústria e Comércio Ltda.

123457777700000060101197012012011120120111821

0000142953070120111517010000000016

0000142963070120111517010000000024

0000142973070120111517010000000016

0000142983070120111517010000000024

0000143015070120111533I010000099993Teste 9999

0000153923110120111749010000000024

0000153933110120111749010000000016

0000153943110120111749010000000024

0000153953110120111749010000000032

0000153963110120111749010000000016

0000153973110120111749010000000024

0000153983120120111802010000000016

0000153993120120111819010000000016

Ajuste do horário de verão

```
Este comando tem como objetivo configurar o horário de verão no equipamento.
Campo ID_COMANDO =8;
Campo PARAMETROS com a seguinte formatação:
<DATA_INICIO>;<DATA_FIM>
Sendo:
       < DATA_INICIO > e <DATA_FIM>: formato DD/MM/YYYY
Retorno:
       <LINHA>;<RESULTADO_OPERAÇÃO>;
Exemplos:
a) Comando de inclusão de período:
   17/12/2010;17/02/2011
b) Comando de exclusão de período:
  Período inicial:
    #;17/02/2011
  Período final
    8;1
    01/01/2012;#
  Período total
    8;1
    #;#
c) Retorno:
  Sucesso:
    8;1
    1;0
  Erro:
    8;1
    2;<Código do erro>;<Mensagem de erro>
  Leitura de período cadastrado:
       Comando:
        8;0
       Retorno:
       Nenhum período cadastrado:
           8;1
           1;0;0
       Período Cadastrado:
           8;1
           1;01/01/2012;17/02/2012
```

Excluir marcação de ponto

Este comando exclui as marcações de ponto de um período.

Obs.: Utilizado somente em equipamentos de controle de acesso da Família 200.

Campo ID_COMANDO =9;

Campo PARAMETROS com a seguinte formatação:

```
<DATA_INICIO>;<DATA_FIM>
```

Sendo:

```
< DATA_INICIO > e < DATA_FIM> : formato DD/MM/YYYY
```

Retorno:

```
<LINHA>;<RESULTADO_OPERAÇÃO>
```

Exemplos:

a) Comando:

9.1

17/09/2010;17/09/2010

b) Retorno:

Sucesso:

9;1

2;0

Erro:

9;1

2;<Código do erro>;<Mensagem de erro>

Exclusão total:

Para a exclusão total dos registros de ponto é necessário informar a data inicial igual a 01/01/2000 e a data final igual 01/12/2100.

Excluir registros de AFD

Este comando exclui os registros de AFD de um período.

Obs.: Utilizado somente em equipamentos de controle de acesso da Família 200.

Campo ID_COMANDO =10;

Campo PARAMETROS com a seguinte formatação:

```
<DATA_INICIO>;<DATA_FIM>
```

Sendo:

< DATA_INICIO > e <DATA_FIM>: formato DD/MM/YYYY

Retorno:

<LINHA>;<RESULTADO_OPERAÇÃO>

Exemplos:

a) Comando:

10:1

17/09/2010;17/09/2010

b) Retorno:

Sucesso:

10:1

2;0

Erro:

10;1

2;<Código do erro>;<Mensagem de erro>

Exclusão total:

Para a exclusão total dos registros de AFD é necessário informar a data inicial igual a 01/01/2000 e a data final igual 01/12/2100.

Leitura de dados da MRP por NSR

Versões que contemplam o comando:

Família R100: a partir da versão: 01.40.30

<u>Família R200:</u> a partir da versão: 03.00.17

• <u>Família R300:</u> a partir da versão: 02.01.00

Este comando retorna os registros da MRP do REP relativos a um range de NSRs.

Campo ID_COMANDO =11;

Campo PARAMETROS com a seguinte formatação:

```
<NSR_INICIO>;<NSR_FIM>
```

Sendo:

```
< NSR_INICIO > e < NSR_FIM>: formato decimal
```

Retorno:

Registros da MRP no formato AFD.

Observações:

 Nesse comando a primeira linha n\u00e3o \u00e9 retornada com "<ID COMANDO>;<TOTAL REGISTROS COMANDO>".

Exemplos:

a) Comando:

11;1

1:20

b) Retorno:

000000001100908118000112 ZPM Indústria e Comércio Ltda.

000210012100010030101190001011900290620120944

000000012260620121550100908118000112 ZPM Indústria e Comércio Ltda.

Rua Araguaia, 175

0000000025260620121558I000000000019Teste 1

0000000035260620121558I000000000027Teste 2

0000000045260620121558I00000000035Teste 3

0000000055260620121558I000000000043Teste 4

0000000065260620121558I00000000051Teste 5

000000075260620121558I000000000060Teste 6

000000085260620121558I00000000078Teste 7

0000000095260620121558I000000000086Teste 8

000000105260620121558I000000000094Teste 9

000000115260620121558I00000000108Teste 10

0000000125260620121558I000000000116Teste 11

0000000135260620121558I000000000124Teste 12

0000000145260620121558I00000000132Teste 13

0000000155260620121558I00000000140Teste 14

0000000165260620121558I000000000159Teste 15

0000000175260620121558I000000000167Teste 16

0000000185260620121558I000000000175Teste 17

0000000195260620121558I000000000183Teste 18

0000000205260620121558I00000000191Teste 19

Leitura Completa de Status do equipamento

Versões que contemplam o comando:

<u>Família R100</u>: a partir da versão: 01.40.31

<u>Família R200:</u> a partir da versão: 03.00.17

Família R300: a partir da versão: 02.01.00

Campo ID COMANDO = 12;

Este comando não tem parâmetros.

Retorno:

<LINHA>;<RESULTADO_OPERAÇÃO>;<NUMERO_FABRICAÇÃO>;<PIS_ÚLTIMA_MARCAÇÃ
O>;<DATA_HORA_ÚLTIMA_MARCAÇÃO>;<STATUS_PAPEL>;<DATA_HORA>;<MEM_MRP_T
OTAL>;<MEM_MRP_UTILIZADA>;<VERSAO_REP>;<CUTTER>;<VERSAO_MT>;<EMP_CAD>;
<MAX_EMP_CAD>;<NSR_ATUAL>;<NSR_MAX>;<TIPO_BIO>;<VERSAO_BIO>;<SEG_BIO>;<C
AD_BIO>;<MAX_BIO>;<VERSAO_MRP>;<DHCP>;<IP>;<GATEWAY>;<MASK>;<PORT>;<MAC
>;<HORARIO_VERAO>;<HORARIO_VERAO_INI>;<HORÁRIO_VERAO_FIM>

Sendo:

<NUMERO FABRICAÇÃO>: Número de fabricação do REP.

XXXXXYYYYYZZZZZZZ

xxxxx = Número do fabricante registrado no MTE no caso ZPM = 00021.

yyyyy = Número de registro do produto registrado no MTE.

zzzzzzz = Número de série do equipamento.

<PIS_ÚLTIMA_MARCAÇÃO>: PIS do funcionário que realizou a última marcação de ponto .

<DATA_HORA_ÚLTIMA_MARCAÇÃO>: Data hora no formato "DD/MM/YYYY HH:mm:SS" da última marcação de ponto.

<STATUS_PAPEL>: Status do papel

0 : Falta de papel

1 : Presença de papel

2: Pouco papel

<DATA_HORA>: Data hora no formato "DD/MM/YYYY HH:mm:SS".

<MEM_MRP_TOTAL>: Memória MRP total em bytes.

<MEM_MRP_UTILIZADA>: Memória MRP utilizada em bytes.

VERSAO_REP>: Versão do firmware do equipamento.

<CUTTER>: Nível que cutter está programado, apenas para REP.

<VERSAO_MT>: Versão da Memória de trabalho.

EMP_CAD>: Quantidade de empregados cadastrados na MT.

<MAX_EMP_CAD>: Quantidade máxima de empregados que pode ser cadastrados na MT.

<NSR_ATUAL>: É o valor do NSR atual no equipamento.

<NSR_MAX>: É o valor de NSR máximo do equipamento.

<TIPO_BIO>: Tipo de leitor biométrico do equipamento.

0: Nenhum

1: Finger Print

2: Suprema

3: Nitgen

4: Cama

5: Sagem

<VERSAO_BIO>: Versão do firmware do leitor biométrico.

<SEG_BIO>: Nível de segurança do leitor biométrico.

<CAD_BIO>: Quantidade de digitais cadastradas no leitor biométrico.

<MAX_BIO>: Quantidade máxima de digitais que o equipamento suporta.

<VERSAO_MRP>: Versão do firmware da MRP.

<DHCP>: Habilitação do DHCP

0: Desabilitado

1: Habilitado

<IP>: Endereço IP do equipamento.

XXX.XXX.XXX

<GATEWAY>: Configuração do gateway do equipamento.

XXX.XXX.XXX

<MASK>: Configuração da mascara de rede do equipamento.

XXX.XXX.XXX

<PORT>: Porta de comunicação do equipamento.

<MAC>: Endereço MAC do equipamento.

XX:XX:XX:XX:XX

<HORARIO_VERAO>: Habilitação do horário de verão.

0: Desabilitado

1: Habilitado. Se está configurado para entrar no horário de verão.

<HORARIO_VERAO_INI>: Inicio do horário de verão.

0: Não configurado

DD/MM/YYYY: data para entrar no horário de verão.

<HORARIO_VERAO_FIM>: Final do horário de verão.

0: Não configurado

DD/MM/YYYY: data para sair do horário de verão

Observações:

- O campo < PIS_ÚLTIMA_MARCAÇÃO > retornado pelo REP é do tipo numérico (sem zeros precedentes).
- Quando não houver nenhuma marcação de ponto registrada no REP, é retornado "---" nos campos
 PIS_ÚLTIMA_MARCAÇÃO> e <DATA_HORA_ÚLTIMA_MARCAÇÃO>.
- Se o campo <TIPO_BIO> = 0. Nada irá constar nos demais campos abaixo, apenas constará o ",":
 - > <VERSAO_BIO>
 - SEG_BIO>
 - CAD_BIO>
 - > <MAX_BIO>

Exemplos:

a) Comando:

12;1

1

b) Retorno:

12:1

1;0;00021001210001003;00000000019;28/06/2012 14:09:23;1;29/06/2012 09:23:11;1073741824;3224498;01.40.28;16;3;999;1000;4;2090000;2;1;3000;01.00.02;1;192.168.0.73;19 2.168.0.254;255.255.0;5000;C8:C1:26:FF:02:03;1;28/07/2012;0

Reset de fábrica para as senhas

Este comando faz com que as senhas de administrador, supervisor dos equipamentos voltem às senhas iniciais:

Família R100

Administrador: 111111 Supervisor: 123456

Família R200

Administrador: 12345 Supervisor: 1111 Browser:

Usuário: admin Senha: repzpm

Família R300

Administrador: 111111 Supervisor: 123456

Reseta usuário vinculado ao Administrador Reseta usuário vinculado ao Supervisor

Exemplos:

a) Comando:

13;1 1

b) Retorno:

13:1

Leitura de eventos¹

Este comando obtém as informações relacionadas aos eventos do equipamento.

Campo ID_COMANDO = 15;

Este comando não tem parâmetros.

Exemplo:

a) Comando:

15;1

1

Retorno:

<ID_COMANDO>;<QT_LINHAS>

<MODELO_EQUIPAMENTO>;<NUMERO_FABRICAÇÃO>;<ESTADO_IMP_1>;<ESTADO_PL_IM
P_1>;<ESTADO_CABEÇOTE_IMP_1>;<ESTADO_TAMPA_IMP_1>;<NIVEL_PL_IMP_1>;<QT_TI
CKETS_REST_IMP_1>;<NIVEL_POUCO_PL_IMP_1>;<ESTADO_IMP_2>;<ESTADO_PL_IMP_2
>;<ESTADO_CABEÇOTE_IMP_2>;<ESTADO_TAMPA_IMP_2>;<NIVEL_PL_IMP_2>;<QT_TICK
ETS_REST_IMP_2>;<NIVEL_POUCO_PL_IMP_2>;<ESTADO_BATERIA>;<NIVEL_BATERIA>;<
QUEDA_ENERGIA>;<RETORNO_ENERGIA>;<ESTADO_PEN_FISCO>;<ESTADO_PEN_USU>;
<ESTADO_PEN_USU_COMANDO>;<ESTADO_GABINETE>;<ESTADO_RIM>;<ESTADO_MENU_ADMIN>;<ESTADO_MENU_SUP>;

Sendo:

<MODELO_EQUIPAMENTO>: Modelo de fabricação do equipamento.

<NUMERO_FABRICAÇÃO>: Número de fabricação do REP.

xxxxx = Número do fabricante registrado no MTE no caso ZPM = 00021.

yyyyy = Número de registro do produto registrado no MTE.

zzzzzzz = Número de série do equipamento.

<ESTADO_IMP_1>: Estado da impressora 1 do equipamento (frontal), indica se a impressora esta em funcionamento ou não.

<ESTADO_PL_IMP_1>: Estado do papel da impressora 1.

0: com papel

1: sem papel

ESTADO_CABEÇOTE_IMP_1>: Estado do cabeçote da impressora 1.

0: estado normal

1: super-aquecimento

ESTADO_TAMPA_IMP_1>: Estado da tampa da impressora 1.

0: tampa fechada

1: tampa aberta

<NIVEL_PL_IMP_1>: Nível do papel em uso na impressora 1 ².

<QT_TICKETS_REST_IMP_1>: Quantidade média de tickets restantes na impressora 1 ².

<NIVEL_POUCO_PL_IMP_1>: Nível de pouco papel (configurado pelo usuário no equipamento)².

<ESTADO_IMP_2>: Estado da impressora 2 do equipamento (lateral), indica se a impressora está em funcionamento ou não.

<ESTADO_PL_IMP_2>: Estado do papel da impressora 2.

0: com papel

1: sem papel

<ESTADO_CABEÇOTE_IMP_2>: Estado do cabeçote da impressora 2.

0: estado normal

1: super-aquecimento

<ESTADO_TAMPA_IMP_2>: Estado da tampa da impressora 2.

0: tampa fechada

1: tampa aberta

<NIVEL_PL_IMP_2>: Nível do papel em uso na impressora 2.

<QT_TICKETS_REST_IMP_2>: Quantidade média de tickets restantes na impressora 2.

<NIVEL_POUCO_PL_IMP_2>: Nível de pouco papel (configurado pelo usuário no equipamento).

<ESTADO_BATERIA>: Estado da bateria.

0: bateria em operação normal

1: bateria baixa

<NIVEL BATERIA>: Nível da bateria.

De 0 a 5 são os níveis de carga, sendo que 0 é o mínimo e 5 o máximo

100: carregando a bateria caso haja bateria

<QUEDA_ENERGIA>: Indica queda de energia.

0: com energia elétrica

1: sem energia elétrica

<RETORNO_ENERGIA>: Indica o retorno de energia.

0: não houve retorno de energia

1: houve retorno de energia

<ESTADO_PEN_FISCO>: Indica a inserção de algum Pen Drive a USB fiscal.

0: não há Pen Drive inserido

1: há Pen Drive inserido

ESTADO_PEN_USU>: Indica a inserção de algum Pen Drive na USB do usuário.

0: não há Pen Drive inserido

1: há Pen Drive inserido

<ESTADO_PEN_USU_COMANDO>: Indica se o Pen Drive inserido na USB de usuário possui comando ou não.

0: não possui comando

1: possui comando

<ESTADO_GABINETE>: Indica o estado do gabinete do equipamento.

0: equipamento não violado

1: equipamento violado

<ESTADO_TAMPA_BATERIA>: Indica o estado da tampa da bateria.

0: Tampa fechada

1: Tampa aberta

<ESTADO RIM>: Indica a situação do RIM.

0: não esta sendo impresso

1: esta sendo impresso

<ESTADO_MENU_ADMIN>: Indica o acesso ao menu de administrador.

0: sem acesso ao menu

1: acessando o menu

<ESTADO_MENU_SUP>: Indica o acesso ao menu de supervisor.

0: sem acesso ao menu

1: acessando o menu

Exemplo:

a) Retorno:

15:1

2: Comandos não implementados. Hardware não suporta.

Leitura de dados da MRP por range de data/hora¹

Este comando retorna os registros da MRP em forma de AFD em um range de data e hora.

Campo ID_COMANDO =18;

Campo PARAMETROS com a seguinte formatação:

<DATA_INICIO HORA_INICIO>;<DATA_FIM HORA_FIM>

Sendo:

<DATA_INICIO e DATA_FIM>: no formato DD/MM/YYYY
<HORA_INICIO e HORA_FIM>: no formato HH:MM:SS

Observações:

Nesse comando a primeira linha não é retornada com "<ID COMANDO>;<TOTAL REGISTROS COMANDO>".

Exemplos:

a) Comando:

18;1

21/05/2013 11:00:00;21/05/2013 12:00:00

b) Retorno:

000000001100908118000112123456799000ZPM Indústria e Comércio Ltda.

000210008599999982105201321052013140520131322

0001968575210520131113A000000008443Teste 844

0001968583210520131114000000008443

0001968593210520131114000000008443

0001968603210520131114000000008443

0001968614210520131139210520131144

0001968624210520131146210520131145 00019686342105201311146140520131111

Leitura de registros de ponto por range de data/hora¹

Este comando retorna apenas os registros de ponto em um formato específico e é por range de data e hora.

Campo ID_COMANDO =19;

Campo PARAMETROS com a seguinte formatação:

<DATA_INICIO HORA_INICIO>;<DATA_FIM HORA_FIM>

Sendo:

<DATA_INICIO e DATA_FIM>: no formato DD/MM/YYYY
<HORA_INICIO e HORA_FIM>: no formato HH:MM:SS

Observações:

Nesse comando a primeira linha não é retornada com "<ID COMANDO>;<TOTAL REGISTROS COMANDO>".

Exemplos:

a) Comando:

19;1

21/05/2013 11:00:00;21/05/2013 12:00:00

b) Retorno:

19;1

2;0;00000008443;21/05/2013 11:14:08;000196858

2;0;00000008443;21/05/2013 11:14:10;000196859

2;0;00000008443;21/05/2013 11:14:48;000196860

Cancela a conexão¹

Este comando cancela e fecha a comunicação TCP/IP.

Exemplo:

a) Comando:

98:1

Não há retorno.

Configura máscara do código de barras¹

Apenas para equipamentos da família R300 com versão de software superior à:04.00.02

Este comando possibilita a configuração da máscara do código de barras lido pelo equipamento. Isso possibilita a remoção ou alteração no código de barras lido.

Exemplo:

a) Comando:

20;1

Campo PARAMETROS com a seguinte formatação:

```
<Operação>;<Campo1>;...<Campo20>
```

Se a Operação for Leitura: 2, não é necessário informar os parâmetros Campo.

Exemplos:

a) Comando:

20;1

2

b) Retorno:

20:1

2;0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20

Sendo:

2 = Registro da linha.

0 = Registro de sucesso na leitura.

1;2;...;20 = A configuração da máscara do código de barras cadastrado no equipamento.

Se a Operação for inclusão: 1, é obrigatório informar todos os 20 campos.

Exemplos:

a) Comando

20:1

1;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;19

b) Retorno:

20;1

2;0

Cada campo será a posição lida do código de barras pelo equipamento.

Então se, por exemplo, tenhamos o seguinte código de barras:

```
12345678901234567890
```

a) Enviando a seguinte configuração:

```
20;1
1;0;20;19;18;17;16;15;14;13;12;11;10;9;8;7;6;5;4;3;2;1
```

- Teremos o seguinte código lido pelo equipamento 09876543210987654321
- b) Enviando a seguinte configuração:

```
20;1
1;0;1;1;2;2;3;3;4;4;5;5;6;6;7;7;8;8;9;9;10;10
```

- Teremos o seguinte código lido pelo equipamento 11223344556677889900
- c) Enviando a seguinte configuração:

Teremos o seguinte código lido pelo equipamento 11111111111111111111110

Leitura dos últimos 10 registros¹

Apenas para equipamentos da família R300 com versão de software superior à:04.00.02

Este comando tem por objetivo ler os últimos 10 registros da MRP. Os não são retidos no equipamento de o mesmo for desligado. Comando esta funcional apenas para comunicação via rede.

Exemplo:

a) Comando:

21;1

Campo PARAMETROS com a seguinte formatação:

<Operação>

A operação será sempre leitura: 2

Exemplo:

a) Comando:

21;1

2

b) Retorno:

Os dados não virão tabulados, todos virão na sequência de uma única linha, a cima apenas é uma representação para facilitar o entendimento dos registros.

Sendo por exemplo na primeira linha:

```
2;00908118000112;000024980;50;65;29/04/2014 14:30:04
```

```
2 = índice da linha (comando mais recente)

00908118000112 = identificador (PIS, PASEP, CPF ou CNPJ)

000024980 = NSR

50 = Tipo (Tipo de registro)

50 = Empregador

51 = Ponto

52 = Alteração de relógio

53 = Manipulação de empregado

65 = Operação do registro

48 = Sem descrição

65 = Alteração

69 = Exclusão

73 = Inclusão
```

29/04/2014 14:30:04 = Data e Hora da execução do registro

Importante:

Se este comando for enviado logo após que o equipamento seja ligado e nenhum registro for feito na MRP, todos os campos virão zerados.

Este efeito pode ser visto a partir da linha 6.

Em nosso exemplo foram feitos 4 registros no equipamento e foi enviado o comando.

Modo de leitura TAG1

Apenas para equipamentos da família R300 com versão de software superior à: 04.00.02

Altera o dado lido pelo leitor de proximidade TAG.

Este dado pode ser representado em hexadecimal ou decimal.

Exemplo:

a) Comando: 22:1

Campo PARAMETROS com a seguinte formatação:

<Operação>

Operação de alteração para modo Decimal: 1

Exemplos:

a) Comando:

22;1

b) Retorno:

22;1 1

Exemplos:

- Operação de alteração para modo Hexadecimal: 2
 - a) Comando:

22;1

2

b) Retorno:

22;1

Exemplos:

- Operação de leitura do modo atual: 3
 - a) Comando:

22;1

3

b) Retorno:

Modo Decimal

22;1 2;0;1

Modo Hexadecimal

22;1

2;0;2

Se for configurado para ler em modo Decimal o equipamento apresentará um código do tipo: 1234567

Se for configurado para ler em modo Hexadecimal o equipamento apresentará um código do tipo: 12D687

Configuração da criptografia do código de barras¹

Apenas para equipamentos da família R300 com versão de software superior à: 04.00.02

Este comando possibilita a utilização de criptografia na leitura do código de barras.

Para que este funcione será necessário um arquivo específico contendo as informações criptográficas do código de barras.

Exemplo:

a) Comando:

23;1

Campo PARAMETROS com a seguinte formatação:

<Operação>

Operação para desabilitar a utilização da criptografia:

Exemplos:

a) Comando:

23;1:

0

b) Retorno:

23;1

2:0

• Operação para habilitar a utilização da criptografia:

Exemplos:

a) Comando:

23;1

1;[conteúdo do arquivo contendo as informações criptográficas]

b) Retorno:

23;1

2;0

 Operação de leitura, esta verifica se o equipamento esta utilizando ou não algum tipo de criptografia para o código de barras.

Exemplos:

a) Comando:

23;1

2

b) Retorno:

Utilizando Criptografia:

23;1

2;0;1

Não utilizando Criptografia

23;1

2;0;0

Modo de leitura MIFARE¹

Apenas para equipamentos da família R300 com versão de software superior à: 04.00.16

Altera o dado lido pelo leitor de proximidade MIFARE.

Este dado pode ser representado no formato little-endian ou big-endian.

Por exemplo, um cartão com ID = 2864434397, pode ser representado em Hexa por AABBCCDD.

- -Configurado como little-endian o ID em hexa será AABBCCDD e em decimal será 2864434397.
- -Configurado como big-endian o ID em hexa será DDCCBBAA e em decimal será 3721182122.

Exemplo:

a) Comando:

22;1

Campo PARAMETROS com a seguinte formatação:

<Operação>

Operação de alteração para modo Little-endian: 1

Exemplos:

a) Comando:

22;1

b) Retorno:

22;1

Exemplos:

- Operação de alteração para modo Big-endian: 2
 - a) Comando:

22;1

2

b) Retorno:

22;1

1

Exemplos:

- Operação de leitura do modo atual: 3
 - a) Comando:

22;1

3

b) Retorno:

Modo Little-endian

22;1

2;0;1

Modo Big-endian

22;1

2;0;2

6. Descrição da transmissão de dados via Rede

A transmissão de dados via Rede Ethernet pode ser realizada de duas maneiras:

- Via Pasta Compartilhada do Windows
- Via TCP/IP (Sockets)

Observação:

O aplicativo de demonstração do REP-ZPM utiliza o modo de transmissão TCP/IP (Sockets).

Transmissão de dados via Pasta Compartilhada do Windows

Esta forma de comunicação se dá apenas para a Família R200.

O envio de comandos para o REP-ZPM via Pasta Compartilhada do Windows com o REP ocorre copiandose um arquivo de comando, como descrito no capítulo 3, para a pasta compartilhada do Windows.

Após o processamento do comando, o REP-ZPM retorna à mesma Pasta Compartilhada o arquivo de retorno.

Para visualizar o diretório no "Windows Explorer", digite o seguinte caminho:

\\<IP do REP na rede>\trans

Sendo:

IP do REP na rede>: deve ser substituído pelo IP do REP na rede.

Observações:

O IP do REP pode ser visualizado no Menu do REP (tecla MENU) ou , se o empregador ainda não tiver sido cadastrado, através da tecla "F1".

Alternativamente ao IP, o REP pode ser acessado via "Nome do REP na rede Windows". Nesse caso devese inserir no "Windows Explorer" o caminho abaixo:

\\<Nome do REP na rede Windows>\trans

Sendo:

<Nome do REP na rede Windows>: pode ser configurado através do "Configurador Web do REP" no menu "Rede Windows".

Observações:

O link de acesso ao Configurador Web do REP é:

https://<IP do REP>

Sendo:

<IP do REP deve ser substituído pelo IP do REP>

Na primeira vez em que a Pasta Compartilhada do REP é acessada em um PC, são requisitadas as credenciais de acesso ao REP, como mostra a Figura 03:

Figura 03: Requisição das credenciais de acesso ao REP

Nessa janela devem ser inseridos os dados de acesso ao REP.

A configuração de fábrica é:

Nome de usuário: rep\admin

Senha: repzpm

Em seguida, selecione a opção "Lembrar minha senha", caso a senha deva ser gravada no PC, e confirme com "OK".

Se não for possível acessar a Pasta Compartilhada do REP no **Windows Vista**, configure a Diretiva de segurança local "<u>Segurança de rede nível de autenticação LAN Manager</u>" conforme descrito abaixo:

- 1. Clicar no botão "Iniciar" do Windows; no campo "Iniciar Pesquisa", digitar "secpol.msc" e pressionar ENTER.
- 2. A janela "Diretiva de segurança local" será aberta, como mostra a Figura 04:

Figura 04: Diretiva de segurança local

No lado esquerdo da janela, abra a pasta "Diretivas locais" e localize "Opções de segurança" (Figura 04).

Na parte direita da janela, dê um clique duplo em "Segurança de rede nível de autenticação LAN Manager" a fim de abrir a janela abaixo (Figura 05):

Figura 05: Segurança de rede – nível de autenticação LAN Manager

Selecione "Enviar LM e NTLM - use a segurança da sessão NTLMv2, se estiver negociada" e confirme com "OK".

Transmissão de dados via TCP/IP

O envio de comandos para o REP-ZPM via TCP/IP é realizado através de "Sockets". Os comandos a serem enviados via TCP/IP estão definidos no capítulo 3.

A porta de conexão Socket utilizada pelo REP é a 5000.

O conteúdo do comando a ser enviado para o REP deve ser dividido em "frames" de 1024 bytes. Cada frame contém uma estrutura de dados no seguinte modelo:

- long flag (4 bytes)
- long nBytes (4 bytes)
- char Buffer (1024 bytes)

Cada frame deve ser enviado via Socket para o REP em pacotes de tamanho fixo de 1032 bytes, sendo cada pacote formado pelos seguintes campos, onde:

flag: deve ser setado de acordo com a sequência do pacote a ser enviado:

- 1 Primeiro pacote de n pacotes (INICIO)
- 2 Segundo pacote a pacote "n-1" (MEIO)
- 4 Pacote n (FIM)
- 5 Quando o comando a ser enviado couber em somente um pacote (INICIO_FIM)

nBytes: contém a quantidade de dados do comando efetivamente setados no campo Buffer.

Buffer: contém os dados do comando a ser enviado.

Se o comando a ser enviado para o REP possuir, por exemplo, 2000 bytes, serão criados dois pacotes:

O primeiro, com o campo flag igual a 1;

O segundo, com flag igual a 4.

Note-se que o primeiro possui 1024 no campo nBytes, enquanto o segundo possui 976.

Por fim, o campo Buffer descreve os dados que serão passados na íntegra.

Exemplo:

Após receber todo(s) o(s) pacote(s) do comando corretamente, o REP ficará constantemente "ouvindo" na porta 5000.

Ao receber via Socket um pacote com o campo flag = 1 (INICIO) ou flag = 5 (INICIO_FIM), o REP inicia efetivamente a interpretação dos dados como um comando enviado.

Caso receba flag = 5 (INICIO_FIM), o REP há de processar o comando imediatamente, pois se trata de um comando que coube em apenas um pacote.

Caso receba flag = 1 (INICIO), continuará a receber os pacotes com flag = 2 (MEIO) até que receba um pacote com flag = 4 (FIM), quando processará o comando enviado.

Após o processamento do comando, o REP retorna a resposta em pacote(s) segundo o mesmo protocolo descrito para o envio de comandos.

Observações:

Após cada pacote enviado pelo PC, o REP retorna um ACK (byte com valor 0x6). Somente após recebimento do ACK o PC deve enviar o próximo pacote.

Da mesma forma, o PC deverá enviar um ACK (byte com valor 0x6) para o REP após recebimento de cada pacote, para que a transmissão ocorra de forma sincronizada.

Funcionamento Geral:

Todo o procedimento pode ser exemplificado da seguinte maneira:

Suponhamos que o cliente possua um comando de 2000 bytes a ser enviado. Primeiramente, cria-se um novo descritor no cliente com o tamanho de 1032 e preenchem-se os campos adequadamente. O REP, ao receber o comando, retorna 1 byte de ACK e permite ao cliente enviar os próximos bytes. Criar-se-á, então, um novo descritor cujo campo nBytes é 976. Recebido esse descritor, mais um ACK será retornado pelo REP. Agora este sabe que possui todo o comando e o submete para processamento. Ao verificar a conclusão do comando, o REP cria os descritores necessários e, para cada um deles, o cliente envia um ACK de 1 byte.

Exemplo:

a) Para enviar o comando de ajuste de relógio abaixo via TCP/IP (Socket) para o REP:

4;1 20/08/2010 08:00:00

Os seguintes bytes devem ser enviados via socket (coluna Conteúdo do Byte representada em ASCII, exceto quando precedido por "0x" representação em hexadecimal):

Byte	Conteúdo do Byte	Observação
1	0x05	Os bytes 1 a 4 representam o FLAG "INICO_FIM" (5), pois o comando cabe em
2	0x00	somente um pacote. Como o REP espera um tipo "long" (4 bytes), devem ser
3	0x00	enviados os bytes 5, 0, 0,0 (valores em hexadecimal).
4	0x00	Citylados os bytes o, o, o,o (valores em noxadecimal).
5	0x1A	Os bytes 5 a 8 representam o tamanho do "frame" do comando, neste caso 26
6	0x00	
7	0x00	bytes. Como neste valor o REP espera um tipo "long" (4 bytes), devem ser enviados os bytes 1A, 0, 0, 0 (valores em hexadecimal).
8	0x00	
9	4	Os bytes 9 a 13 são a primeira linha do comando. Estes valores estão
10	,	representados em ASCII (por exemplo o "Byte 9" deve ser enviado com o valor
11	1	"0x34" em hexadecimal).
12	0x0D	Valor do caractere de controle "CR" em hexadecimal
13	0x0A	Valor do caractere de controle "LF" em hexadecimal
14	2	
15	0	
16	/	
17	0	0.1.4.4.04
18	8	Os bytes 14 a 34 representam a segunda linha do comando.
19	/	Fatos valoros estão representados em ASCII (por exemplo a bida 4.4 deve con
20	2	Estes valores estão representados em ASCII (por exemplo o byte 14 deve ser
21	0	enviado como "0x31" em hexadecimal.
22	1	O byte 26 é o caractere "espaço", que é representado com "0x20" em
23	0	- O byte 26 e 6 caractere espaço , que e representado com 10x20 em - hexadecimal.
24	0x20	
25	0	
26	8	7
27	:	

28	0	
29	0	
30	:	
31	0	
32	0	
33	0x0D	Valor do caractere de controle "CR" em hexadecimal
34	0x0A	Valor do caractere de controle "LF" em hexadecimal
35 a		Nos bytes restantes pode ser enviado qualquer valor, pois são enviados para
1032		fazer o tamanho do pacote ficar igual a 1032 bytes.

Observação:

O REP retorna então o byte 0x06 (em hexadecimal), que é o "ACK" de recebimento do pacote enviado.

Após processar o comando de ajuste de relógio, o REP retorna a resposta a tal comando. Se o ajuste de relógio ocorreu com sucesso, retornam –se, por exemplo, os seguintes bytes via conexão socket:

Byte	Conteúdo do Byte	Observação
1	0x05	
2	0x00	Os bytes 1 a 4 representam o FLAG "INICO_FIM" (5), pois o REP retorna os
3	0x00	dados em somente um pacote.
4	0x00	
5	0x04	
6	0x00	Os bytes 5 a 8 representam o tamanho do "frame" do comando, neste caso 4 bytes.
7	0x00	
8	0x00	
9	4	Os bytes 9 a 11 são os bytes de retorno do REP representados em código
10	•	ASCÍI (4;0 indica que o comando de Número 4 foi processado sem erro – veja
11	1	capitulo 3).
12	0x0A	Valor do caractere de controle "LF" em hexadecimal
13 a		Os bytes 13 a 1032 contém quaisquer valores e são somente enviados pelo
1032		REP para fazer o tamanho do pacote ficar igual a 1032 bytes.

Ao fim do processo, o aplicativo do PC envia ao REP um ACK sinalizando o recebimento da resposta, como requerido previamente.

7. Descrição do modo Client do REP-ZPM¹

O REP-ZPM possui a funcionalidade de operar como cliente.

As formas de operação do REP-ZPM são as seguintes:

REP	PC
Server	Client
Server+Client	Server
Server+Client	Client

Mediante configurações no equipamento o mesmo começa a operar no modo server e client.

Quando configurado o REP irá enviar automaticamente o seu status (eventos) atual, assim não há necessidade de fazer algum tipo de pooling para a comunicação, sendo que o REP irá tomas a iniciativa de abrir a conexão e enviar os eventos.

No REP existem duas formas de configuração para o envio dos eventos:

1a: Por tempo.

- > Nesta forma o REP irá enviar o frame de eventos no tempo configurado.
- A configuração do tempo se dá na ordem de 1 segundo até 99999999 segundos
- Para desativar esta opção basta setar o tempo de 0 segundo (default).

2a: Por Evento

- Nesta forma o REP irá enviar o frame de eventos quando algum dos seguintes eventos ocorrer:
- Impressora 1 acusar sem papel
- Impressora 1 acusar cabeçote superaquecido
- > Impressora 1 acusar tampa aberta
- > Impressora 2 estar sem papel
- > Impressora 2 acusar cabeçote superaquecido
- Impressora 2 acusar tampa aberta
- Impressora 2 acusar pouco papel
- Bateria acusar nível baixo
- > Faltar energia elétrica no equipamento e o mesmo ficar operante apenas no no-break.
- Retornar energia elétrica no equipamento.
- Algum Pen Drive for conectado a USB fiscal (coleta de AFD).
- Algum Pen Drive sem comando for conectado a USB de usuário.
- > Algum Pen Drive com comando for conectado a USB de usuário.
- Violação do equipamento, gabinete for aberto.
- > Extração do Relatório das últimas 24 horas (RIM).
- > Acesso ao menu de administrador
- Acesso ao menu de supervisor.

As duas formas de envio de eventos podem ser ativadas individualmente ou em conjunto.

Para configurar o REP para envio de eventos por tempo é necessário seguir o seguinte caminho no menu do REP:

Menu Admin → Rede → Configuração Geral → Tempo auto-conexão

Para configurar o REP para envio de eventos por eventos é necessário seguir o seguinte caminho no menu do REP:

Nesta situação o botão Eventos deverá estar verde para ativado e vermelho para desativado.

No modo cliente o equipamento irá enviar informações (EVENTOS) para um IP de servidor pré-configurado e uma PORTA lógica pré-configurada.

Para acessar as configurações de rede do REP deve-se seguir o seguinte caminho:

- Neste Menu é possível configurar as seguintes opções:
 - IP Local
 - Gateway
 - Porta UDP
 - Mascara de sub-rede
 - IP Server
 - Porta TCP (Utilizada quando o REP estiver no modo Client). Depende da versão do equipamento, ver manual do usuário.

IMPORTANTE: Após modificar alguns dos itens acima é necessário clicar no botão "Salvar".

O equipamento irá enviar via protocolo TCP/IP as mesmas informações do comando de "Leitura de Eventos".

Nesta situação o servidor (PC) pode receber estas informações e fechar a conexão com o comando "Cancela Conexão" ou pode enviar qualquer outro comando que o protocolo prevê.

Assim o equipamento poderá sempre tomar a iniciativa da comunicação e teremos qualquer informação do mesmo utilizando os demais comandos.

Após o servidor (PC) receber as informações necessárias é indispensável que o mesmo encerre a conexão, isto pelo comando "Cancela Conexão" ou simplesmente encerrando a conexão.

8. Criptografia¹

A criptografia do REP-ZPM é aplicada apenas na utilização da dll fornecida pela ZPM Indústria e Comércio LTDA.

9. Identificação automática de REPs¹

Esta opção é um facilitador para encontrar REPs conectados na REDE.

É utilizado o protocolo UDP e enviado um comando específico como broadcast.

Abaixo o frame do comando:

Byte	Descrição	Observação
0	0x02	Caractere de inicialização (cabeçalho)
1	TAMANHO	Tamanho do frame menos rodapé = 0x04
2	0x05	Comando específico
3	Checksum	Operação XOR entre os bytes: 0, 1 e 2.
4	0x03	Caractere de finalização (rodapé)

Abaixo o frame de resposta:

Byte	Descrição	Observação
0	0x02	Caractere de inicialização (cabeçalho)
1	TAMANHO	Tamanho do frame menos rodapé= 0x29
2	0x05	Comando específico
36	Modelo	Modelo do equipamento
723	Número de série	Número de fabricação do equipamento
2426	Versão Firmware	Versão de firmware que esta sendo executada no equipamento
2730	IP	IP atual do equipamento
3136	MAC Address	Endereço MAC do equipamento
37	Flag Cripto	Indicativo se o equipamento esta operando com ou sem criptografia: 0 =
31		sem e 1 = com
38.39	Porta TCP	Porta TCP configurada no equipamento para envio de EVENTOS
40	Checksum	Operação XOR do byte 0 até o byte 39
41	0x03	Caractere de finalização (rodapé)

Para configurar a Porta UDP no REP é necessário seguir o seguinte caminho no menu:

Menu Admin → Rede → Configuração Rede → Porta UDP

10. Modo ON-LINE¹:

Este modo de operação é apenas para equipamentos da família R300 com versão superior à: 04.00.02.O modo on-line consiste em manter o canal de conexão TCP sempre aberto entre device e host.

Isto é possível se o equipamento estiver com a opção "Auto-conexão" ou "Eventos" habilitada. Isto permite que o equipamento se comporte como cliente, sendo assim o mesmo tomará a iniciativa da conexão. Esta conexão é estabelecida pelo envio dos eventos do equipamento.

Após a conexão estabelecida, é possível que se envie todos os comandos possíveis para a família especificada e receba as respectivas respostas.

Cada comando deve ser enviado em uma forma síncrona, sendo que deve-se aguardar a reposta do comando enviado para que se possa enviar um novo comando.

Não é garantido que após um comando enviado será recebido sua resposta, pode ser que o equipamento envie os seus eventos e após isso envie a reposta do comando.

O equipamento continua a enviar seus eventos, caso não haja comandos a ser enviados ao equipamento, após receber um evento do equipamento o servidor deve enviar um "ACK", já documentado mais a cima.

IMPORTANTE:

O equipamento pode enviar o seus eventos a qualquer momento da comunicação.

Abaixo algumas sequências de comunicação:

Se a opção "Eventos" do menu do REP estiver setada em amarelo além dos eventos o equipamento enviará os "últimos registros" e o "status completo".

Dados enviados pelo equipamento:

19:49:53;1073741824;1189768;04.00.02;14;6.0.0_0;2;4500;18718;14000000;4;;2;1;3000;01.00.05;1;192.1 68.0.93;192.168.0.254;255.255.255.255.0;5000;C8:C1:26:04:00:3D;0;0;0

A descrição do comando acima é apenas para exemplificar.

O equipamento enviará o seguinte frame:

<Cabeçalho><0x0d><0x0a><Eventos><0x0d><Ultimos_Registros><0x0d><0x0a><Status_Completo>

Exemplo:

```
<15;1>
<0x0d><0x0a>
<0x0d> <0x0a>
<0;0;00908118000112;000024980;50;65;29/04/2014 14:30:04;
00000000000000;000024979;52;48;30/04/2014 00:30:28;
0000000000027;000024978;53;65;30/04/2014 00:29:59;
0000000000019:000024977;51;48;30/04/2014 00:29:29:
00000000000000;0000000000;0;0;01/01/2000 00:00:00;
0000000000000;000000000;0;0;01/01/2000 00:00:00>
<0x0d><0x0a>
<00021002240000061;000000000019;14/04/2014 19:47:47;1;14/04/2014
19:49:53:1073741824:1189768:04.00.02:14:6.0.0 0:2:4500:18718:14000000:4::2:1:3000:01.00.05:1:192.1
68.0.93;192.168.0.254;255.255.255.0;5000;C8:C1:26:04:00:3D;0;0;0>
```

Esta opção é válida para que no modo on-line seja possível estar sempre com todas as informações do equipamento em um único envio de evento pelo equipamento.

Abaixo algumas sequências de comunicação:

1: Funções implementadas apenas para a família R300