Introducere în CUDA Continuare

Cosmin – Ioan Niță

- Memorie globală
- Memorie partajată (shared memory)
- Regiștrii
- Caracteristici:
 - Vizibilitate
 - Perioadă de viață
 - Latență

- Memorie globală
 - Se alocă și eliberează doar de pe CPU (cudaMalloc, cudaFree)
 - Poate fi accesată atât de CPU cât și de GPU (cudaMemset, cudaMemcpy).
 - La nivel de GPU este vizibilă orcărui thread.
 - Accesul este foarte lent.

- Memorie partajată (shared memory)
 - Vizibilă doar de pe GPU la nivelul unui bloc.
 - Se alocă în interiorul unui kernel. Ex:
 __shared__ float f[128];
 - Accesul este foarte rapid.
 - Limitată, mult mai mică decât memoria globală

Regiștrii

- Vizibili doar la nivel de thread.
- Variabilele declarate local într-un thread vor fi automat plasate în regiștrii.
- Nu pot fi declarați ca un tablou.
- Accesul este foarte rapid.

- Durata de viață
 - Regiştrii: kernel
 - Mem. Partajată: kernel
 - Mem. Globală: Aplicație

Utilizare

```
- Regiștrii:
  __global __ voi d kernel ()
{
    //Registrii
    float f1, f2, f3;
}
```

- Utilizare
 - Memoria partajata:

```
__global __ void kernel()
{
    //Shared memory
    __shared__ float tmp[128];
}
```

Factori ce limitează paralelismul

- Dacă se depășește numărul maxim de regiștrii aceștia vor vi alocați în memoria globală.
- Dacă se depășește cantitatea de memorie shared se reduce paralelismul
- DeviceQuery
- Opţinuea --ptxas-options=-v

Optimizarea accesului la memoria globală

- Accesul la memoria globală

 factor ce limitează viteza
 de execuție.
- Mascarea latenței
- Cand un warp asteaptă date de la mem. Globală, GPU-ul porneste execuția altui warp.
- Citirea din mem. Globală se poate face în paralel pentru jumătate de warp dacă se accesează adrese de memorie consecutive.

SFU – special function unit = unitate de calcul a operațiilor speciale

Optimizarea accesului la memoria globală

• Exemplu:

- Transformarea unei mulţimi de puncte 3D.
- Fiecare thread va executa o transformare.

$$\begin{aligned} \boldsymbol{p}_i &\leftarrow \boldsymbol{T} \cdot \boldsymbol{p}_i \\ \boldsymbol{p}_i &= [u_i, v, w_i]^T \\ T &= \begin{bmatrix} t_{xx} & t_{xy} & t_{xz} \\ t_{yx} & t_{yy} & t_{yz} \\ t_{zx} & t_{zy} & t_{zz} \end{bmatrix} \end{aligned}$$

Optimizarea accesului la memoria globală

- Exemplu:
 - Înmulțirea a două matrici.

- Exemplu pentru înmulțirea a două matrici
 - Accesări redundante ale memoriei globale.

- Exemplu pentru înmulțirea a două matrici
 - Accesări redundante ale memoriei globale.
 - Produse partiale
 - Fiecare thread va copia valori din mem. Gobală în memoria shared.

- Bariera de sincronizare a thread-urilor dintrun bloc.
 - __synchtreads();

- Bariera de sincronizare a thread-urilor dintrun bloc.
 - __synchtreads();
 - Deadlock

Md _{0.0} Md _{1.1} Md _{2.0} Md _{3.0}	Pd ₀ Pd ₀ Pd _{2,0} Pd _{3,0}
$Md_{0,1}Md_{1,1}Md_{2,1}Md_{3,1}$	$\mathbf{Pd_{0,1}} \mathbf{Pd_{1,1}} \mathbf{Pd_{2,1}} \mathbf{Pd_{3,1}}$
	Pd _{0,2} Pd _{1,2} Pd _{2,2} Pd _{3,2}
	Pd _{0,3} Pd _{1,3} Pd _{2,3} Pd _{3,3}

	Faza 1			Faza 2		
T _{0,0}	Md _{0,0} ↓ Mds _{0,0}	Nd _{0,0} ↓ Nds _{0,0}	Pval _{0,0} += Mds _{0,0} *Nds _{0,0} + Mds _{1,0} *Nds _{0,1}	Md _{2,0} ↓ Mds _{0,0}	Nd _{0,2} ↓ Nds _{0,0}	Pval _{0,0} += Mds _{0,0} *Nds _{0,0} + Mds _{1,0} *Nds _{0,1}
T _{1,0}	Md _{1,0} ↓ Mds _{1,0}	Nd _{1,0} ↓ Nds _{1,0}	Pval _{1,0} += Mds _{0,0} *Nds _{1,0} + Mds _{1,0} *Nds _{1,1}	Md _{3,0} ↓ Mds _{1,0}	Nd _{1,2} ↓ Nds _{1,0}	Pval _{1,0} += Mds _{0,0} *Nds _{1,0} + Mds _{1,0} *Nds _{1,1}
T _{0,1}	Md _{0,1} ↓ Mds _{0,1}	Nd _{0,1} ↓ Nds _{0,1}	Pval _{0,1} += Mds _{0,1} *Nds _{0,0} + Mds _{1,1} *Nds _{0,1}	Md _{2,1} ↓ Mds _{0,1}	Nd _{0,3} ↓ Nds _{0,1}	Pval _{0,1} += Mds _{0,1} *Nds _{0,0} + Mds _{1,1} *Nds _{0,1}
T _{1,1}	Md _{1,1} ↓ Mds _{1,1}	Nd _{1,1} ↓ Nds _{1,1}	Pval _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}	Md _{3,1} ↓ Mds _{1,1}	Nd _{1,3} ↓ Nds _{1,1}	Pval _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}

Timp ----