Smart Irrigation ECE Capstone

Austin Morlan, Dylan Johnson, Bryan Martin, Taylor Griffin

Problem

- Water is precious
- Current irrigation methods are wasteful
- Need more efficiency without lowering crop yield
- Existing irrigation controllers require:
 - Frequent calibration
 - Array of costly sensors
 - Frequent sensor replacement

Problem

- There is a need for low cost, low maintenance controllers
- Should work in any location, terrain, and local climate
- Should contain few sensors for minimal cost

Solution

- Water-budgeting & irrigation scheduling
- Tracks amount of water entering and leaving soil
 - Evaporation of water from soil to environment
 - Transpiration of water from crops to environment
 - + Precipitation of water from environment to soil
 - + Added water from water source

Hargreaves Reduced-set Method

$$E_{to} = HC \cdot R_a \cdot (T_{max} - T_{min})^{HE} \cdot (\frac{T_{max} + T_{min}}{2} + HT)$$

- Estimates evapotranspiration w/ ambient air temperature, latitude, and day of the year
- Requires two sensors: temperature and precipitation
- Latitude and calendar day supplied by app
- Calculates how much water has left soil
- Amount that has left is resupplied by water source

$$Irr = E_{to} - P$$

Irr - amount of water to be applied (mm)

E_{to} - crop evapotranspiration (mm)

P - precipitation (mm)

Device Technology

- MCU:
 - BL600 nRF51822 (Cortex M0) with smartBASIC added
- Sensors:
 - Temperature, rain for evapotranspiration algorithm
 - Soil moisture to check calculations against reality
 - Flow to measure amount of water distributed
- Enclosure
 - Waterproof
 - Snazzy

Functionality Overview

- Samples temperature and precipitation sensors hourly
- Track wet or dry precipitation readings throughout day
- E_{to} calculations performed once per day with daily high and low temperature values
- E_{to} multiplied by crop area to find volume of water leaving soil
- Sölenoid activated to actuate water flow
 - Flow sensor calculates how much water has been distributed

Android App

- Communicates with device via Bluetooth Low-Energy (BLE)
- Sends configuration info for irrigation policy (time, date, latitude)
- Downloads 32 days of irrigation statistics (max temp, min temp, etc)
- Receives and displays live sensor readings

Case Design

- Modeled in SolidWorks
- Laser cut in L.I.D.
- Ver. 1 built with ¼ inch clear cast acrylic
- Housed both the PCB and hose connections

Case Design

- Ver. 2 built with ¼ inch white cast acrylic
- Hose connections moved outside box

Results

- Field tested from May 4th-23rd
- Area to be irrigated was 3m²
- Total evapotranspiration calculated at 67.91mm
- Irrigated 46.3 gallons total
- Precipitation provided 10.6 gallons
- Together: 56.9 gallons of water supplied to vegetable bed

Date	Tmax (°C)	Tmin (°C)	Eto (mm)	Gallons
05/04/16	17	12	2.44	1.93
05/05/16	22	12	3.59	2.85
05/06/16	27	13	4.49	3.56
05/07/16	30	13	5.02	3.98
05/08/16	18	12	2.73	2.16
05/09/16	21	12	3.34	2.65
05/10/16	26	10	4.53	3.59
05/11/16	29	10	5.01	3.97
05/12/16	28	12	4.79	3.80
05/13/16	33	12	5.67	4.49
05/14/16	16	13	1.99	0
05/15/16	15	12	1.93	0
05/16/16	17	12	2.47	0
05/17/16	24	13	3.89	3.08
05/18/16	22	13	3.47	2.75
05/19/16	14	10	2.11	1.67
05/20/16	18	9	3.07	0
05/21/16	13	11	1.57	1.24
05/22/16	16	10	2.59	2.05
05/23/16	20	12	3.21	2.54

Historical/Rule of (Green) Thumb Comparison

- Historical
 - 10-year evapotranspiration for Forest Grove, OR: 84.4mm
- Rule of Thumb:
 - 1" of water per week
 - Additional 0.5" of water per week for avg temp above 70 °F
 - Using this: 63.4 gallons needed by either irrigation or rain

Conclusions

- An overall success!
- Water-budgeting and evapotranspiration estimates work
- Compares favorably to historical data & rule of thumb guidelines
- Future Improvements:
 - More testing data
 - Sites varying in location, soil quality, and crops grown
 - Possibly adjust constants in calculations
 - Different rain detection

References

- 1. FAO Irrigation and Drainage Paper 56
- 2. USGS, Oregon Water Science Center, HYDRA Rainfall Network
- US Department of Interior, Bureau of Reclamation, Cooperative Agricultural Weather Network
- 4. Bonnie Plant Farm, "How Much Water Do Plants Need?"