On weakly ordering by choosing from valued pairwise outranking situations

ILIAS Research Note 2014-01

Raymond Bisdorff Université du Luxembourg, FSTC/ILIAS raymond.bisdorff@uni.lu

January 22, 2014

Abstract

Polarised outrankings with considerable performance differences (weighted majority margins with vetoes and counter-vetoes) appear as weakly complete (and reflexive) relations ([7]). For any two potential decision actions x and y, if x does effectively not outrank y then it is not the case that y does effectively not outrank x. Constructing weak orderings (rankings with potential ties) from such outranking relations consists in computing, hence, a transitive closure of the given outranking relation. Determining optimal transitive closures is a computational difficult problem ([6]). However, global scoring methods based on average ranks (like Borda scores) or average netflows like in the PROMETHEE approach, may easily deliver such a heuristic closure. Now, such weak orderings may also result from the iterated application of a certain choice procedure, an approach called ranking-by-choosing ([1]). In this contribution we shall present such a new ranking-by-choosing approach based on the Rubis best choice method ([3]).

Contents

1	Illus	stration	2
	1.1	Sample outranking relation	2
		Ranking-by-choosing	
	1.3	Partial ranking result	4

2	$Th\epsilon$	e setting	4
	2.1	Weakly complete relations	4
	2.2	The Rubis choice procedure	(
	2.3	Properties	,
3	Rar	nking-by-choosing	8
		Algorithm	8
	3.2	Properties	,
	3.3	Empirical Validation	1(

1 Illustration

1.1 Sample outranking relation

Let $X = \{a_1, ..., a_7\}$ be seven potential decision actions evaluated on three cost criteria (g_1, g_4, g_5) of equi-significance 1/6 and two benefit criteria (g_2, g_3) of equi-signifiance 1/4. The given performance tableau is shown in Table 1 below.

Table 1: Sample performance tableau

Objectives	Costs			Benefits		
Criteria	$g_1(\downarrow)$	$g_4(\downarrow)$	$g_5(\downarrow)$	$g_2(\uparrow)$	$g_3(\uparrow)$	
weights $\times 12$	2.0	2.0	2.0	3.0	3.0	
indifference	3.41	4.91	-	_	2.32	
preference	6.31	8.31	-	_	5.06	
veto	60.17	67.75	-	-	48.24	
$\overline{a_1}$	22.49	36.84	7	8	43.44	
a_2	16.18	19.21	2	8	19.35	
a_3	29.41	54.43	3	4	33.37	
a_4	82.66	86.96	8	6	48.50	
a_5	47.77	82.27	7	7	81.61	
a_6	32.50	16.56	6	8	34.06	
a_7	35.91	27.52	2	1	50.82	

The resulting bipolar outranking relation S is shown below. We may notice in Table 2 that:

1. a_6 is a Condorcet winner,

Table 2:	r-valued	bipolar	outranking	relation
Table 2.	/ varaca	DIPOIGI	Outranining	1 Clauloll

$r(S) \times 12$	$ a_1 $	a_2	a_3	a_4	a_5	a_6	a_7
a_1	_	0	+8	+12	+6	+4	-2
a_2	+6	_	+6	+12	0	+6	+6
a_3	-8	-6	_	0	-12	+2	-2
a_4	-12	-12	0	_	-8	-12	0
a_5	-2	0	+12	+12	_	-6	0
a_6	+2	+4	+8	+12	+6	_	+2
a_7	+2	-2	+2	+6	0	+2	_

- 2. a_2 is a weak Condorcet winner,
- 3. a_4 is a weak Condorcet looser.

1.2 Ranking-by-choosing

Let X_1 be the set X of potential decision actions we wish to rank.

While the remaining set X_i (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from X_i the best (B_i), respectively worst (W_i) RUBIS choice recommendations and set $X_{i+1} = X_i - B_i$, respectively $X_{i+1} = X_i - W_i$.

Both iterations determine, hence, two – usually slightly different – opposite weak orderings on X:

- 1. a ranking-y-best-choosing order and,
- 2. a ranking-by-worst-rejecting order.

Fusion of best and worst choice rankings

Ranking by recursively choosing:

Ranking by recursively rejecting:

1st Best Choice ['a02','a05']
2nd Best Choice ['a06']
3rd Best Choice ['a07']
4th Best Choice ['a01']
5th Best Choice ['a03','a04']

Last Choice ['a03','a04']
2nd Last Choice ['a05','a07']
3rd Last Choice ['a01']
4th Last Choice ['a06']
5th Last Choice ['a02']

We may fuse both rankings, the first and the converse of the second,

with the help of the *epistemic conjunction* operator $(\emptyset)^1$ to make apparent a valued relation R which represents a weakly complete and transitive closure of the given bipolar valued outranking.

1.3 Partial ranking result

Table 1.3: Weakly complete transitive closure of

$\underline{\hspace{1cm}}$								
r(R)	a_2	a_5	a_6	a_1	a_7	a_3	a_4	
a_2	_	0	+6	+6	+6	+6	+12	
a_5	0	_	0	0	0	+12	+12	
a_6	-4	0	_	+2	+2	+8	+12	
a_1	0	0	-4	_	0	+8	+12	
a_7	-2	0	-2	0	_	+2	+6	
a_3	-6	-12	-2	-8	-2	_	0	
a_4	-12	-8	-12	-12	0	0	_	

Notice the contrasted ranks of $action a_5$ (first best as well as second last), indicating a lack of comparability, which becomes apparent in the conjunctive epistemic fusion R of both weak orderings shown in the Table 1.3 above and illustrated in the corresponding Hasse diagram.

2 The setting

2.1 Weakly complete relations

Let $X = \{x, y, z, ...\}$ be a finite set of m decision alternatives.

We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].

Bipolar semantics: For any pair $(x, y) \in X^2$,

$$\phi \otimes \psi = \begin{cases} (\phi \wedge \psi) & \text{if} \quad (\phi \wedge \psi) \text{ is true;} \\ (\phi \vee \psi) & \text{if} \quad (\neg \phi \wedge \neg \psi) \text{ is true;} \\ \text{Indeterminate} & \text{otherwise.} \end{cases}$$

¹Let ϕ and ψ be two logical formulas:

- 1. r(x R y) = +1.0 means x R y valid for sure,
- 2. r(x R y) > 0.0 means x R y more or less valid,
- 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
- 4. r(x R y) < 0.0 means x R y more or less valid,
- 5. r(x R y) = -1.0 means x R y valid for sure.

Boolean operations: Let ϕ and ψ be two relational propositions.

- 1. $r(\neg \phi) = -r(\phi)$.
- 2. $r(\phi \lor \psi) = \max(r(\phi), r(\psi)),$
- 3. $r(\phi \wedge \psi) = \min(r(\phi), r(\psi)).$

Let R be an r-valued binary relation defined on X.

Definition 1. We say that R is weakly complete on X if, for all $(x, y) \in X^2$, either $r(x R y) \ge 0.0$ or $r(y R x) \ge 0.0$.

Examples:

- 1. Marginal semi-orders observed on each criterion,
- 2. Weighted condordance relations,
- 3. Polarised outranking relations,
- 4. Ranking-by-choosing results,
- 5. Weak and linear orderings.

Universal properties:

Let \mathcal{R} denote the set of all possible weakly complete relations definable on X.

Property 1 (\mathcal{R} -internal operations).

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.

3. The epistemic-conjunctive (resp. -disjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

Examples: Concordance of linear, weak orders or semiorders, bipolar outranking (concordance-discordance) relations.

Useful properties:

We say that a binary relation $R \in \mathcal{R}$ verifies the *coduality principle* $(> \equiv \nleq)$, if the converse of its negation equals its asymetric part : $\min (r(x R y), -r(y R x)) = -r(y R x)$. Let \mathcal{R}^{cd} denote the set of all possible relations $R \in \mathcal{R}$ that verify the coduality principle.

Property 2 (Coduality principle). The convex and epistemic-disjunctive (resp. -conjunctive) combinations of a finite set of relations in \mathcal{R}^{cd} verify again the coduality principle.

Example: Marginal linear-, weak- and semi-orders, concordance and bipolar outranking relations, all verify the coduality principle.

2.2 The Rubis choice procedure

Pragmatic principles of the Rubis choice:

- P₁: Elimination for well motivated reasons: Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the Rubis choice (RC).
- \mathcal{P}_2 : Minimal size:

 The RC must be as limited in cardinality as possible.
- P₃: Stable and efficient:

 The RC must not contain a self-contained sub-RC.
- P₄: Effectively better (resp. worse):

 The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.
- P₅: Maximally significant:

 The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as" relations.

Qualifications of a choice in X

Let S be an r-valued outranking relation defined on X and let Y be a non empty subset of X, called a *choice* in X.

- Y is called *outranking* (resp. *outranked*) iff for all non retained alternative x there exists an alternative y retained such that r(y S x) > 0.0 (resp. r(x S y) > 0.0).
- Y is called *independent* iff for all $x \neq y$ in Y, we observe $r(x S y) \leq 0.0$.
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking (resp. outranked) hyper-kernel iff Y is an outranking (resp. outranked) choice containing chordless circuits of odd order $p \ge 1$.

Translating the pragmatic Rubis principles in terms of choice qualifications:

- \mathcal{P}_1 : Elimination for well motivated reasons. The RC is an *outranking choice* (resp. *outranked choice*).
- \mathcal{P}_{2+3} : Minimal and stable choice. The RC is a hyper-kernel.
 - P₄: Effectivity.

 The RC is a choice which is *strictly more outranking than outranked* (resp. *strictly more outranked than outranking*).
 - \mathcal{P}_5 : Maximal significance. The RC is the *most determined* one in the set of potential outranking (resp. outranked) hyper-kernels observed in a given r-valued outranking relation.

2.3 Properties

Properties of the Rubis choice:

Property 3 (decisiveness). Every r-valued (strict) outranking relation admits at least one outranking and one outranked hyper-kernel.

Definition 2. Let S and S' be two r-valued outranking relations defined on X.

1. We say that S' upgrades action $x \in X$, denoted $S^{x\uparrow}$, if $r(xS'y) \ge r(xSy)$, and $r(yS'x) \le r(ySx)$, and r(yS'z) = r(ySz) for all $y, z \in X - \{x\}$.

2. We say that S' downgrades action $x \in X$, denoted $S^{x\downarrow}$, if $r(y S' x) \geqslant r(y S x)$, and $r(x S' y) \leqslant r(x S y)$, and r(y S' z) = r(y S z) for all $y, z \in X - \{x\}$.

Properties of the Rubis choice:

Let A be a subset of X. Let $RBC(S_{|A})$ (resp. $RBC(S'_{|A})$) be the RUBIS best choice wrt to S (resp. S') restricted to A and let $RWC(S_{|A})$ (resp. $RWC(S'_{|A})$) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

Property 4. The Rubis choice procedure verifies following properties:

1.
$$S_{|A} = S'_{|A} \Rightarrow RBC(S_{|A}) = RBC(S'_{|A})$$
 (RBC local),

2.
$$S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$$
 (RWC local),

3.
$$x \in RBC(S_{|A}) \implies x \in RBC(S_{|A}^{x\uparrow})$$
 (RBC weakly monotonic),

4.
$$x \in RWC(S_{|A}) \implies x \in RWC(S_{|A}^{x\downarrow})$$
 (RWC weakly monotonic).

It is noticeable that the Rubis choice procedure is weakly monotonic despite the fact it does not satisfy the Super Set Property (SSP, see [1]).

3 Ranking-by-choosing

3.1 Algorithm

Let X_1 be the set X of potential decision actions we wish to rank on the basis of a given outranking relation S.

- 1. While the remaining set X_i (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from X_i the best (B_i), respectively worst (W_i), RUBIS choice recommendation and set $X_{i+1} = X_i B_i$, respectively $X_{i+1} = X_i W_i$.
- 2. Both independent iterations determine, hence, two usually slightly different opposite weak orderings on X: a ranking-y-best-choosing and a ranking-by-worst-choosing order.
- 3. We fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator (\otimes) to make apparent a weakly complete ranking relation \succeq_S on X. We denote \succ_S the codual of \succeq_S .

3.2 Properties

Definition 3. We call a ranking procedure transitive if the ranking procedure renders a (partial) strict ordering \succ_S on X with a given r-valued outranking relation S such that for all $x, y, z \in X$: $r(x \succ_S y) > 0$ and $r(y \succ_S z) > 0$ imply $r(x \succ_S z) > 0$.

Property 5. Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are transitive ranking procedures.

Corollary 1. The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation Sqives:

- 1. a weakly complete and transitive ranking of X,
- 2. which is a transitive closure of the codual of S.

Definition 4 (Weak monotinicity). We call a ranking procedure weakly monotonic if for all $x, y \in X$: $(x \succ_S y) \Rightarrow (x \succ_{S^{x\uparrow}} y)$ and $(y \succ_S x) \Rightarrow (y \succ_{S^{x\downarrow}} x)$,

Property 6. The ranking by Rubis best choice and the ranking by Rubis worst choice are, both, weakly monotonic ranking procedures.

Corollary 2. The ranking-by-choosing, resulting from the fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice, is hence a weakly monotonic procedure.

Definition 5 (Condorcet consistency). We call a ranking procedure *Condorcet-consistent* if the ranking procedure renders the same linear (resp. weak) order \succ_S on X which is, the case given, modelled by the strict majority cut of the codual of a given r-valued outranking relation S.

Property 7. Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are Condorcet consistent.

Corollary 3. The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation S is, hence, also Condorcet consistent.

3.3 Empirical Validation

Revisiting the introductory example:

Comparing ranking-by-choosing result with Kohler's and Tideman's:

Quality of ranking result:

We may compare, with a sample of 1000 random r-valued outranking relations defined on 20 actions and evaluated on 13 criteria the results obtained with respectively the Rubis **ranking-by-choosing**, **Kohler's**, and **Tideman's** (ranked pairs) procedure.

Mean extended Kendall τ correlations with r-valued outranking relation:

• Ranking-by-choosing: $\tau_{rbc} = +.906$

• Tideman's ranking: $\tau_{tid} = +.875$

• Kohler's ranking: $\tau_{koh} = +.835$

r-valued determination of ranking result:

- Mean outranking significance: 0.351 (67.5% of total criteria support),
- Mean Ranking-by-choosing significance: 0.268 (63.4% of total criteria support),
- Mean covered part of significance: 0.268/0.351 = 76%.

Scalability of ranking procedures:

Ranking execution times (in sec.) for 1000 random 20x13 outrankings:

• Kohler's procedure on the right y-axis (less than 1/100 sec.),

- Tideman's procedure on the left y-axis (less than 1/3 sec.),
- the Rubis ranking-by-choosing procedure on the x-axis (mostly less than 2 sec.). But, heavy right tail (up to 11 sec. !).

Practical application

- Spiegel (DE) On-line 50 000 Students' Survey (2004) about the evaluation of 41 German universities with respect to 15 academic disciplines;
- XMCDA 2.0 encoding of performace tableau;
- Ranking-by-choosing result.

Concluding remarks

To be written ...

References

- [1] D. Bouyssou, Monotonicity of 'ranking by choosing'; A progress report. Social Choice Welfare (2004) 23: 249-273.
- [2] R. Bisdorff, M. Pirlot and M. Roubens, *Choices and kernels from bipolar valued digraphs*. European Journal of Operational Research, 175 (2006) 155-170.
- [3] R. Bisdorff, P. Meyer and M. Roubens, Rubis: a bipolar-valued outranking method for the choice problem. 4OR, A Quarterly Journal of Operations Research, Springer-Verlag, Volume 6 Number 2 (2008) 143-165.
- [4] R. Bisdorff, On a bipolar foundation of the outranking concept. In Proceedings of the 25th Mini EURO Conference Uncertainty and Robustness in Planning and Decision Making URPDM-2010, University of Coimbra, ISBN 978-989-95055-3-7 (2010) 1-6.
- [5] R. Bisdorff, On measuring and testing the ordinal correlation between bipolar outranking relations. In Proceedings of DA2PL'2012 - From Multiple Criteria Decision Aid to Preference Learning, University of Mons (2012) 91-100.

- [6] O. Hudry. Complexity of computing median linear orders and variants. Electronic Notes in Discrete Mathematics (2013) 42:57-64.
- [7] R. Bisdorff, On polarizing outranking relations with large performance differences. Journal of Multi-Criteria Decision Analysis, Wiley, Number 20 (2013) DOI: 10.1002/mcda.1472 3-12.