Divisores en variedades normales:

Sea X una voiedad ireducible y normal (i.e. $\forall p \in X$ $O_{X,p}$ es integralmente cerado o equiv. si exista apres {Ui} ieI can UUi = X y $O_{X}(Ui)$ int cerado $\forall i$ } Ejarcio (durate equivalence) Deg: Un divisor primo en X es una subvaridad irreducible cerada $D \subseteq X'$ con dim(D) = dim(X) - 1Div(X) = Z-modulo libe generado por los Un duisa de Weil W es un elemento de Dh(X) W = a, D, + + a = Du ai = 7L.

Si f E C(X) y D C X es un divisor primo entonces, (por la clase anterior) sabemos que la normalidad de X implica que el anillo OXD es normal
y al ser local y 1-dinensional => OXD es un DVR. Es dean existe y: ((X)* ->> Z valvación con O_{X,D} = {fe C(X)*: Y_D(f) ≥ 0}. Def: Si $f \in C(X)^*$ podemos depune el orden de desvancimiento de f en D $Y_D(f)$. Eso permite depun E Div(X)
Divisores
Principales $div(\xi) = \sum_{D \in X} \gamma_D(\xi) D$ cody (DX) =1 Los divisors de funciones racionales se llaman "PRINCIPALES". 'PDiv(X):= {div(f): fe C(X)* } | < Div(X)

Divisores principales:

 $f \in C(X)^*$ $V_D(f) = O \forall D salvo por finites.$ Tone USX abouts after. F(X) = Q(Q(U))as q we exist polinois $P_1(x_1, x_2) = f$ S. DEX => DEXIU = FIV. UFRUELINGLIN Comparts toda, hundry (Fi) & dr(X)-1 $D \cap (X \setminus U) \neq \emptyset$ con iqualded hay so to D & V(P1) y => \$ 9 \$ 6 Q D De (Fi., Fe). 20(t) = 0 Obs. Areas Yp(f) >0 [Des m cero con mult. Vo (f)] [D es em polo con milt. /80/fo/] YD(f) <0

puitos.

ambos solo

Deg: El "Class group" de la viredad X es
$\mathcal{O}(X) := D_{iv}(X)$ "Espano de clave, de equivalina liver!"
E, Fe Div(X) son Irreduct equivalents E~F (=) E-F=dv(f)
Ejercicio: Sean X, y variedades y $y: X \longrightarrow y$ un isono-fismo. demonstre que $Pic(X) \cong Pic(Y)$.
Motivación: [Dinsons de hiperplano] Si X E P " un hiperplano de P" Dinsons
H = V (ao Xo++an Xn) entorces podemos usan Har de hiperpla para de primer un divisor en X, X MH Jasi:
(1) Para i = 0, n de ginamos una función nacional
$\frac{a_0 X_0 + \dots + a_n X_n}{X_i} = g_i \in \mathcal{O}_X (U_i \cap X) \subseteq \mathcal{L}(X)$ $1 \times i = g_i \in \mathcal{O}_X (U_i \cap X) \subseteq \mathcal{L}(X)$
(2) Si DeX es un divison primo I i: Dalité
$dw(H) = \frac{\sum_{i} Y_{D}(g_{i})}{D \in D_{N}(X)} $ de $g: depende de$

Note que el divisor esta bien definido po-que, si DAVI 7 y DAVI 7 entonces tendríamos las dos gi y gj. En uinuj note que $(i) \quad \exists i \quad \frac{Xi}{X_i} = \exists j$ \Rightarrow $\gamma_D(g_i) = \gamma_D(g_i(\frac{x_i}{S_i}))$ (ii) Xi es una unidad en Ox (U:NUj) = YD(gi) + YD(xi) P+ unded! Ahora, si teremos dos hiperplanos H1 y H2 per alguna preid racional. $div(H_1) - div(H_2) = div(\xi)$ Dem: $f = \frac{H_1}{H_2} \in C(X)^*$ Hi=V(ao Xot-ton Xn) En Ui miraremos a los divoces de hipopho H2 = V (bo X0 + + ba X4) f = ao Xo + . + an Xn Xi bo Xo + . + bn Xn Qué fieren en comos los dohnto hiperplanos? (R: son lin. equil.). YD(f) = 70 (gi) - YD(gi)

El concepto de equivalencia lineal abstrue la idia de ser "secciones de hiperplano distritos del mismo embeddag" entre divisões efectivos. (DE Div(X) es exectivo D>0 si hodis los coeps sor >0). Como se calcula el class group? (l(X)? En general tenemos dos maneras: (1) × es normal

Teorema: Si X es afin y Q(X) es un DFU entras:

(2) Todo divor DEX es principal y en pubicular $\mathcal{C}(X) = 0$.

Teorema: Si X es nonal & , U = X es un abiento irreducible y Di., De son las compontes de XVU que son divisões prinos entones tenemos la signiente sucesión exacta:

 $\bigoplus ZD_j \longrightarrow \mathcal{Cl}(X) \longrightarrow \mathcal{Cl}(U) \longrightarrow 0$ Iaj Dj [Iaj Dj]

Ejemplo: Determine Cl(P")

PORFAVOR DETENGA EL VIDEO Y CALCULELO UD MIME ...

Ejemplo: Como x uson los dos Teornes?

Cl (IPM) = ?

U

Sea H un hiperplano IPM H & AM

[AM es afrin y O (AM) = C [21, 2m] UFD asi que Cl(U) = O]

S: truck tension $\exists a \in \mathbb{Z}$ as a > 0 [a + 1] = (0) => $PL(IP^n) \times \mathbb{Z}$ a + 1 = $div(f) \Rightarrow f \in O_{pn}(IP^n) \Rightarrow div(f) = 0$ $f \in C(X)$ entorces: $\exists F_{prop. 4.0.16}$ $\exists div(f) > 0$ => $f \in O_X(X)$ [CLS] $\exists div(f) = 0$ => $f \in U(O_X(X)) = :O_X(X)$