In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V:
 visa_df=pd.read_csv(path)
 visa_df.head(3)

Out[1]:

	case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_
0	EZYV01	Asia	High School	N	N	
1	EZYV02	Asia	Master's	Υ	N	
2	EZYV03	Asia	Bachelor's	N	Υ	

Standardization

- · Standardization means scaling the data into one scale
- · We have different columns has different units so that the value will vary
- One column has very huge values
- Another column has very less values
- So it is important to scale all type of units under one scale
- · We have 2 procedures
- Standrdization
 - Z-score:

$$Z=rac{x-\mu}{\sigma}$$

- the values ranges from -3 to 3
- Normalization
 - Min max scalar

$$x_{cd} = rac{x - x_{min}}{x_{max} - x_{min}}$$

• Values ranges from 0 to 1

```
In [ ]: # step-1:Take the prevalaing wage column
          # Z-score = x-mean/sigma
          # Step-2: Calculate mean of prevailing wage
          # step-3: Calculate std of prewage
          # Step-4: Nr: Pwage-mean
          # Step-5: pwage_zscore=Nr/Dr
         pwage=visa_df['prevailing_wage']
 In [3]:
          pwage_mean=visa_df['prevailing_wage'].mean()
          pwage_std=visa_df['prevailing_wage'].std()
          Nr=pwage-pwage_mean
          visa_df['prevailing_wage_z']=Nr/pwage_std
 In [5]: | visa_df[['prevailing_wage', 'prevailing_wage_z']]
 Out[5]:
                 prevailing_wage prevailing_wage_z
              0
                       592.2029
                                       -1.398510
              1
                     83425.6500
                                       0.169832
              2
                    122996.8600
                                       0.919060
              3
                     83434.0300
                                       0.169991
              4
                    149907.3900
                                       1.428576
          25475
                    77092.5700
                                       0.049923
          25476
                    279174.7900
                                       3.876083
          25477
                    146298.8500
                                       1.360253
           25478
                     86154.7700
                                       0.221504
           25479
                     70876.9100
                                       -0.067762
          25480 rows × 2 columns
 In [7]: visa_df['prevailing_wage'].max(),visa_df['prevailing_wage_z'].max()
          # 99.7% data between -3 to 3
 Out[7]: (319210.27, 4.634101837909902)
 In [8]: visa_df['prevailing_wage'].idxmax()
          # In the prevailing wage column the maximum value id is 21077
 Out[8]: 21077
 In [9]: visa_df['prevailing_wage_z'].idxmax()
 Out[9]: 21077
In [10]: visa_df['prevailing_wage'].min(),visa_df['prevailing_wage_z'].min()
Out[10]: (2.1367, -1.4096818992891214)
```

```
In [11]: visa df['prevailing wage'].idxmin()
Out[11]: 20575
In [14]: # 21077 is max value id
          # 20575 is min value id
          # can you get only these two rows values
          visa_df.iloc[[21077,20575]]
Out[14]:
                    case_id continent education_of_employee has_job_experience requires_job_trainin
          21077 EZYV21078
                               Asia
                                              High School
                                                                       Ν
                               North
          20575 EZYV20576
                                                 Master's
                                                                       Ν
                             America
In [17]: cols=['prevailing_wage','prevailing_wage_z']
          ids=[2107,20575]
          visa_df[['prevailing_wage','prevailing_wage_z']].iloc[[2107,20575]]
          visa_df[cols].iloc[ids]
Out[17]:
                 prevailing_wage prevailing_wage_z
           2107
                     56741.4400
                                      -0.335398
          20575
                         2.1367
                                      -1.409682
 In [ ]: # Generally will overwrite the column values
          # because we want to clean our data before we apply ML model
          # If you create any extra columns make sure drop some of non required column
          StandardScalar
In [22]: # read the package
          # save the pcakage
          # apply fit trans
          from sklearn.preprocessing import StandardScaler
          ss=StandardScaler()
          visa_df['prevailing_wage_ss']=ss.fit_transform(visa_df[['prevailing_wage']]
```

```
In [23]: cols=['prevailing_wage','prevailing_wage_z','prevailing_wage_ss']
visa_df[cols]
```

Out[23]:

	prevailing_wage	prevailing_wage_z	prevailing_wage_ss
0	592.2029	-1.398510	-1.398537
1	83425.6500	0.169832	0.169835
2	122996.8600	0.919060	0.919079
3	83434.0300	0.169991	0.169994
4	149907.3900	1.428576	1.428604
25475	77092.5700	0.049923	0.049924
25476	279174.7900	3.876083	3.876159
25477	146298.8500	1.360253	1.360280
25478	86154.7700	0.221504	0.221509
25479	70876.9100	-0.067762	-0.067763

25480 rows × 3 columns

Normalization

minmaxscalar

```
In [24]: # Read the data agian
         path=r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\Datafiles\V
         visa df=pd.read csv(path)
In [26]: \# x-x_{min}/(x_{max}-x_{min})
         # step-1: Read the pawge column
         # step-2: Find the min value of the pwage column
         # step-2: Find the max value of the pwage column
         # Step-3: nr= datacolumn-min value
         # Step-4: dr= max_value-min_value
         # Step-5: nr/dr
         pwage=visa_df['prevailing_wage']
         pwage_min=visa_df['prevailing_wage'].min()
         pwage max=visa df['prevailing wage'].max()
         nr=pwage-pwage_min
         dr=pwage max-pwage min
         visa_df['prevailing_wage_norm']=nr/dr
In [28]: |visa_df['prevailing_wage_norm'].min(),visa_df['prevailing_wage_norm'].max()
```

Out[28]: (0.0, 1.0)

MinMaxScalar