Monotone crossing number of complete graphs

Martin Balko, Radoslav Fulek and Jan Kynčl

Charles University, Prague

The story

In the beginning...

Theorem: (Erdős-Szekeres)

- For every k > 1, there is a smallest f(k) such that among every f(k) points in general position in the plane some k points form a convex k-gon.
- $f(k) > 2^{k-2}$

Conjecture: (Klein-Szekeres) $f(k) = 2^{k-2} + 1$

- f(2) = 2, f(3) = 3, f(4) = 5 (easy)
- *f*(5) = 9 (Makai and Turán)
- f(6) = 17 (Peters and Szekeres, 2006)

Combinatorial convexity

- $P = \{p_1, p_2, \dots, p_n\}$ in general position, $x(p_1) < x(p_2) < \dots < x(p_n)$
- T_n = set of ordered triples (i, j, k), $1 \le i < j < k \le n$
- signature function σ: T_n ⊂ [n]³ → {-,+}
 σ(i,j,k) ='+' ⇔ triangle p_ip_jp_k is counter-clockwise
 ⇔ point p_j is below segment p_ip_k

Combinatorial convexity

- $P = \{p_1, p_2, \dots, p_n\}$ in general position, $x(p_1) < x(p_2) < \dots < x(p_n)$
- T_n = set of ordered triples (i, j, k), $1 \le i < j < k \le n$
- signature function $\sigma: T_n \subset [n]^3 \to \{-, +\}$ $\sigma(i, j, k) = '+' \Leftrightarrow \text{triangle } p_i p_j p_k \text{ is counter-clockwise}$ $\Leftrightarrow \text{point } p_j \text{ is below segment } p_i p_k$

type of 4-tuple (i, j, k, l):

$$\sigma(i, j, k)\sigma(i, j, l)\sigma(i, k, l)\sigma(j, k, l)$$

Combinatorial convexity

generalized 4-cup:
$$\sigma(i, j, k) = \sigma(j, k, l) = '+'$$

generalized 4-cap: $\sigma(i, j, k) = \sigma(j, k, l) = '-'$

Conjecture: (Peters and Szekeres) For $n > 2^{k-2}$, any signature function on T_n induces a generalized convex k-gon.

• proved for k = 5 and n = 9

Question: What is the <u>minimum number</u> of generalized convex *k*-tuples? In particular, 4-tuples?

More types of 4-tuples

More types of 4-tuples

Monotone drawings of complete graphs

Monotone drawing: edges are *x*-monotone curves forbidden:

simple: any two edges have at most one common point

semisimple: adjacent edges do not cross

Hierarchy of signature functions:

semisimple

simple = semisimple + NO

Crossing numbers

cr(G) = crossing number of G = minimum number of crossings in a drawing of G

 $\overline{\mathbf{cr}}(G)$ = rectilinear crossing number of G

mon-cr(G) = monotone crossing number of G

 $mon-ocr_+(G) =$

monotone semisimple odd crossing number of G = minimum number of <u>pairs</u> of edges with <u>odd</u> number of crossings in a monotone semisimple drawing of G

 $mon-iocr(G) = mon-ocr_{-}(G) =$ monotone independent odd crossing number of G = minimum number of pairs of independent edges with oddmonotone drawing of G

$$\operatorname{cr}(G) \leq \operatorname{mon-cr}(G) \leq \overline{\operatorname{cr}}(G)$$

 $\operatorname{mon-iocr}(G) \leq \operatorname{mon-cr}(G) \leq \operatorname{mon-cr}(G)$

Crossing numbers of complete graphs

n	5	6	7	8	9	10	11	12
$\overline{\operatorname{cr}}(K_n)$	1	3	9	19	36	62	102	153
$\operatorname{cr}(K_n)$	1	3	9	18	36	60	100	150
$mon-cr(K_n)$	1	3	9	18	36	60		
$mon-iocr(K_n)$	1	3	9	18	36	60		

Conjecture: (Hill; Guy)

$$\operatorname{cr}(K_n) = \mathbb{Z}(n) := \frac{1}{4} \left| \frac{n}{2} \right| \left| \frac{n-1}{2} \right| \left| \frac{n-2}{2} \right| \left| \frac{n-3}{2} \right|$$

known:

$$\operatorname{cr}(K_n) \leq Z(n)$$

cylindrical drawings:

2-page book drawings:

Meanwhile...

Theorem: (B. M. Ábrego, O. Aichholzer, S.

Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_n , arXiv:1206.5669 (2012))

The 2-page book crossing number of K_n is Z(n).

Main Theorem:

$$mon-cr(K_n) = Z(n)$$

Theorem:

(B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, LAGOS 2013)

$$mon-cr(K_n) = Z(n)$$

Meanwhile...

Theorem: (B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The 2-page crossing number of K_n , arXiv:1206.5669 (2012)) The 2-page book crossing number of K_n is Z(n).

Main Theorem:

$$mon-ocr_+(K_n) = mon-cr(K_n) = Z(n)$$

Theorem:

(B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, LAGOS 2013)

$$mon-cr(K_n) = Z(n)$$

Outline of the proof

(common with Ábrego et al., 2012)

• k-edges

Outline of the proof

(common with Ábrego et al., 2012)

- k-edges
- ≤k-edges
- <<k-edges

Lemma 1: For every simple drawing D of K_n we have

$$\operatorname{cr}(D) = 3\binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k) E_k(D),$$

equivalently,

$$cr(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 2} E_{\leq \leq k}(D) - \frac{1}{2} \binom{n}{2} \lfloor \frac{n-2}{2} \rfloor - \frac{1}{2} (1 + (-1)^n) E_{\leq \leq \lfloor n/2 \rfloor - 2}(D).$$

Outline of the proof

(common with Ábrego et al., 2012)

Lemma 2: For every 2-page book drawing *D* of K_n and $0 \le k < n/2 - 1$, we have

$$E_{\leq \leq k}(D) \geq 3 \binom{k+3}{3}$$
.

Modifications

- generalization of k-edges to semisimple drawings
- generalization of Lemma 1 to <u>semisimple</u> drawings and <u>odd</u> crossing number
- generalization of Lemma 2 from 2-page book to monotone semisimple drawings

Modifications

- generalization of k-edges to semisimple drawings
- generalization of Lemma 1 to <u>semisimple</u> drawings and <u>odd</u> crossing number
- generalization of Lemma 2 from 2-page book to monotone semisimple drawings

does not satisfy $E_{\leq \leq k}(D) \geq 3 \binom{k+3}{3}$ for k=1.

BUT!

does not satisfy $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ for k=1.

BUT!

it satisfies

$$E_{\leq \leq k}(D) \geq 3 \binom{k+4}{4}$$

Open questions

- Is mon-iocr (K_n) $\geq Z(n)$?
- Let $n \ge 3$ and let D be a simple drawing of K_n . Suppose that $0 \le k < n/2 1$. Is

$$E_{\leq \leq \leq k}(D) \geq 3\binom{k+4}{4}$$
?