Deep Learning I

7. 现代卷积神经网络

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

深度卷积神经网络 AlexNet

回顾: LeNet

LeNet是早期神经网络的成功案例

- 但是在更大、更真实的数据集上训练卷积神经网络?
- 90年代初到2012年之间: 其他机器学习算法, 例如支持向量机

回顾: LeNet

LeNet是早期神经网络的成功案例

- 但是在更大、更真实的数据集上训练卷积神经网络?
- 90年代初到2012年之间: 其他机器学习算法, 例如支持向量机

期间: 卷积神经网络更像是"异类"

- 输入: 原始像素值, 或是简单预处理过的像素
- 经典机器学习:核心是精心设计的特征流水线

理论学派: 机器学习

核方法: 支持向量机 SVM

特征工程:构造核函数凸优化:公式推导漂亮

理论学派:视觉几何

多视图几何: 主要用于计算机视觉

- 描述图像内在的(三维)几何特征
- 工业实践的标准方法

早期特征工程

特征: 描述目标对象的标识

• 图像: 关键点附近的像素分布

SIFT、SURF文本: 词的分布词袋、词嵌入

通常这些特征来源于偶然的发现

• 算法往往归于事后的解释

早期特征工程

特征: 描述目标对象的标识

• 图像: 关键点附近的像素分布

■ SIFT、SURF

文本: 词的分布词袋、词嵌入

通常这些特征来源于偶然的发现

• 算法往往归于事后的解释

人工设计好特征之后才能应用SVM等经典机器学习算法

• 当时研究的主流:设计特征、实验对比、包装成论文

理论分歧:特征工程有多重要?

经典机器学习的工作流程

- 1. 创建数据集: 早期传感器非常昂贵
- 2. 特征工程: 光学、几何学、其他知识、偶然发现
- 3. 特征流水线:将提取的特征转化成输入数据
- 4. 训练分类器: 例如SVM

理论分歧:特征工程有多重要?

经典机器学习的工作流程

- 1. 创建数据集: 早期传感器非常昂贵
- 2. 特征工程: 光学、几何学、其他知识、偶然发现
- 3. 特征流水线: 将提取的特征转化成输入数据
- 4. 训练分类器: 例如SVM

机器学习: 倾向于理论证明; 忽略工程实践的话, 数学分析的确很有趣

理论分歧:特征工程有多重要?

经典机器学习的工作流程

- 1. 创建数据集: 早期传感器非常昂贵
- 2. 特征工程: 光学、几何学、其他知识、偶然发现
- 3. 特征流水线:将提取的特征转化成输入数据
- 4. 训练分类器: 例如SVM

机器学习: 倾向于理论证明; 忽略工程实践的话, 数学分析的确很有趣

视觉实践: 必须能够解决实际问题, 就会发现算法改进不太重要

推动领域进步的是数据工程,而繁琐的数据处理非常枯燥

数据,硬件

年代	数据规模	内存	每秒浮点运算
1970	100 (鸢尾花卉)	1 KB	100 KF (Intel 8080)
1980	1 K (波士顿房价)	100 KB	1 MF (Intel 80186)
1990	10 K (光学字符识别)	10 MB	10 MF (Intel 80486)
2000	10 M (网页)	100 MB	1 GF (Intel Core)
2010	10 G (广告)	1 GB	1 TF (Nvidia C2050)
2020	1 T (社交网络)	100 GB	1 PF (Nvidia DGX-2)

ImageNet (2010)

	ImageNet	MNIST	
图片	自然物体、彩色	手写数字、黑白	
大小	469x387	28x28	
样本数	1.2M	60K	
类别数	1000	10	

• 所有传统方法(包括机器学习)都无法处理这个量级的数据

实践派的崛起

计算机视觉的新思路: 特征本身应该是能够被学习的参数

底层: 边缘、颜色和纹理 高层: 复合纹理、抽象概念

AlexNet

首个深度卷积神经网络

- 2012年ImageNet竞赛冠军
- 对LeNet的主要改进
 - 丢弃法
 - ReLU
 - 最大池化

AlexNet: 学术贡献

- 首个深度卷积神经网络
- 2012年ImageNet竞赛冠军
- 对LeNet的主要改进
 - 丟弃法
 - ReLU
 - 最大池化

引发计算机视觉方法论的改变

• 之前: 人工特征工程

■ SVM判定类别

• 之后: CNN自动提取特征

■ softmax回归分类

AlexNet 架构:对比 LeNet

AlexNet 架构:卷积I

- 更大的池化窗口
 - 最大池化
- 更大的核、步长
 - 11x11
- 更大的图片
 - 3通道 (彩色)

AlexNet 架构: 卷积II

- 新加3个卷积层、1个池化层
- 更多的输出通道: 增多, 再减少

AlexNet 架构: 全连接

• 问题更复杂:输出1000个类

• 展平成更长的向量

更多技术细节

激活函数: 从sigmoid改成ReLU

• 缓解梯度消失问题

更多技术细节

激活函数: 从sigmoid改成ReLU

• 缓解梯度消失问题

全连接模块中加入了丢弃层

更多技术细节

激活函数: 从sigmoid改成ReLU

• 缓解梯度消失问题

全连接模块中加入了丢弃层

数据增广: 增强数据多样性

复杂度

	AlexNet	LeNet	AlexNet	LeNet
Increase	80x	1x	250x	1x
Total	46M	0.6M	1G	4M
Dense2	16M	0.1M	16M	0.1M
Dense1	26M	0.48M	26M	0.48M
Conv3-5	3M	N/A	445M	N/A
Conv2	614K	2.4K	415M	2.4M
Conv1	35K	150	101M	1.2M
	参数量		FLOPS	

实验: AlexNet

小结: AlexNet

- AlexNet是更大、更深的LeNet
 - 80x参数量, 250x计算量
- 新加入: 丢弃法、ReLU、最大池化、数据增广
- 标志着新一轮人工智能热潮的兴起
 - ImageNet 2012 竞赛冠军

使用块的网络 VGG

AlexNet 的启示

AlexNet是更大、更深的LeNet

- 80x参数量, 250x计算量
- 模型容量提升: 解决更复杂的问题

假如将AlexNet做得更大、更深呢?

- 全连接层? 得不偿失 (回顾参数表)
 - 参数量大, 丢失空间信息
- 卷积层: 如何组织?

VGG: 模块单元

VGG: 以模块作为基本单元, 仿照AlexNet卷积序列

VGG: 模块单元

VGG: 以模块作为基本单元, 仿照AlexNet卷积序列

- 深, 但窗口窄的网络性能更佳:
 - 3x3卷积核、填充1: 保持宽、高
 - 2x2池化窗口、步幅2: 特征图分辨率减半

VGG: 模块单元

VGG: 以模块作为基本单元, 仿照AlexNet卷积序列

- 深, 但窗口窄的网络性能更佳:
 - 3x3卷积核、填充1: 保持宽、高
 - 2x2池化窗口、步幅2: 特征图分辨率减半
- 牛津大学的视觉几何组(Visual Geometry Group)

VGG: 架构

架构: 串联重复的模块单元

VGG-16、VGG-19

最后仍然接全连接层

架构演化

LeNet: 最早的卷积神经网络

• 卷积 + 池化层、全连接层

AlexNet: 更大、更深的LeNet

• ReLU、Dropout、最大池化、数据增广

VGG: 更大、更深的AlexNet

• 串联重复的模块单元

架构演化

LeNet: 最早的卷积神经网络

• 卷积 + 池化层、全连接层

AlexNet: 更大、更深的LeNet

• ReLU、Dropout、最大池化、数据增广

VGG: 更大、更深的AlexNet

• 串联重复的模块单元

下一步: 更大、更深的VGG?

- 的确有做深网络的尝试, 但遇到了瓶颈
- 各种模块开发如百花齐放

GluonCV Model Zoo: 分类

cv.gluon.ai/model_zoo/classification

实验: VGG

小结: VGG

- VGG架构: 串联重复的模块单元来构造深度卷积网络
- 超参数: 卷积块的个数、(超)参数

网络中的网络 NiN

LeNet、AlexNet和VGG

• 卷积层 + 池化层: 提取空间结构信息

• 全连接层: 特征空间变换, 信息投影

AlexNet和VGG: 加大、加深以上两个模块

LeNet、AlexNet和VGG

• 卷积层 + 池化层: 提取空间结构信息

• 全连接层: 特征空间变换, 信息投影

AlexNet和VGG: 加大、加深以上两个模块

NiN将串联的每个模块看成完整网络

• 架构设计: 递归构造

LeNet、AlexNet和VGG

• 卷积层 + 池化层: 提取空间结构信息

• 全连接层: 特征空间变换, 信息投影

AlexNet和VGG: 加大、加深以上两个模块

NiN将串联的每个模块看成完整网络

• 架构设计: 递归构造

• 简单方案: 中间模块使用全连接

■ 问题:特征的空间结构会丢失

LeNet、AlexNet和VGG

• 卷积层 + 池化层: 提取空间结构信息

• 全连接层: 特征空间变换, 信息投影

AlexNet和VGG: 加大、加深以上两个模块

NiN将串联的每个模块看成完整网络

• 架构设计: 递归构造

• 简单方案: 中间模块使用全连接

■ 问题:特征的空间结构会丢失

• 创新方案: 使用1x1卷积层

NiN: 模块

回顾: 1x1卷积等价于全连接

• 每个像素的通道维度上可以看成感知机

NiN: 模块

回顾: 1x1卷积等价于全连接

• 每个像素的通道维度上可以看成感知机

卷积层 + 两个1x1卷积层

• 两个ReLU激活函数: 加强非线性

• 步幅1, 无填充: 形状不变

NiN: 架构

交替使用: NiN模块、步幅2的最大池化 层

- 每个模块等价于完整网络
- 逐步缩小特征图、增多通道

无全连接层

- 实际上每个模块都有全连接: 1x1卷 积
- 最后输出: 使用全局平均池化层
 - 输出通道数 = 类别数

全连接: 计算之源

卷积层的参数量 (W): $c_o \times c_i \times k^2$

• k: 卷积核大小; c_i, c_o : 输入、输出通道数

全连接: 计算之源

卷积层的参数量 (W): $c_o \times c_i \times k^2$

• k: 卷积核大小; c_i, c_o : 输入、输出通道数

卷积层之后的第一个全连接层

• LeNet: $16 \times 5 \times 5 \times 120 = 48 \text{ k}$

• AlexNet: $256 \times 5 \times 5 \times 4096 = 26 \text{ M}$

• VGG: $512 \times 7 \times 7 \times 4096 = 102 \text{ M}$

全连接: 计算之源

卷积层的参数量(**W**): $c_o \times c_i \times k^2$

• k: 卷积核大小; c_i, c_o : 输入、输出通道数

卷积层之后的第一个全连接层

• LeNet: $16 \times 5 \times 5 \times 120 = 48 \text{ k}$

• AlexNet: $256 \times 5 \times 5 \times 4096 = 26 \text{ M}$

• VGG: $512 \times 7 \times 7 \times 4096 = 102 \text{ M}$

参数量决定计算、存储: 限制网络深度

- NiN标志着网络架构调优竞赛的开始
 - 给定硬件平台:参数量恒定,只能优化架构设计

实验: NiN

小结: NiN

- NiN模块: 等价于完整网络
 - 卷积层 + 两个1x1卷积层
- 使用1x1卷积替代全连接
 - 模块参数更少: 单个模块计算量可控; 并且能够把网络做深

含并行连结的网络 GoogLeNet

卷积层超参数: 选择困难症

LeNet、AlexNet、VGG、NiN

- 1x1、3x3、5x5、11x11?
- 平均、最大池化?
- · 多少个1x1?

Inception 模块: "我全都要"

工程美学的典范: 使用不同大小卷积核的组合

- 4条路径: 从不同视角提取信息
 - 不同卷积核大小: 识别不同尺寸的细节模式
 - 每条路径输出: 形状不变; 通道数是超参数

Inception 模块: "我全都要"

工程美学的典范: 使用不同大小卷积核的组合

- 4条路径: 从不同视角提取信息
 - 不同卷积核大小: 识别不同尺寸的细节模式
 - 每条路径输出: 形状不变; 通道数是超参数
- 合并所有路径的输出通道: (不同视角的)模式组合

Inception 模块: "我全都要"

工程美学的典范: 使用不同大小卷积核的组合

- 4条路径: 从不同视角提取信息
 - 不同卷积核大小: 识别不同尺寸的细节模式
 - 每条路径输出: 形状不变; 通道数是超参数
- 合并所有路径的输出通道: (不同视角的) 模式组合

GoogLeNet

- 5个"阶段"
- 9个Inception模块

阶段 1, 2

与AlexNet(右)对比

- 更小窗口: 减少计算量
- 通道数增长速度更平稳

阶段 3

核心: 2x Inception 模块

• 通道数增加: 递进的复杂度

Inception 模块: S3B1

第一个Inception 模块的通道数图示

每条路径输出:形状不变;通道数是超参数

■ 1x1卷积:减少分支通道数、控制复杂度

■ 通道数: 与卷积核大小成反比

	#参数	FLOPS
Inception	0.16 M	128 M
3x3 Conv	0.44 M	346 M
5x5 Conv	1.22 M	963 M

阶段 4,5

Inception: 变种

Inception-BN (V2): 使用batch normalization

Inception: 变种

Inception-BN (V2): 使用batch normalization

Inception-V3: 模块调优

- 替换5x5为两个3x3
- 替换5x5为1x7和7x1
- 替换3x3为1x3和3x1

Inception: 变种

Inception-BN (V2): 使用batch normalization

Inception-V3: 模块调优

- 替换5x5为两个3x3
- 替换5x5为1x7和7x1
- 替换3x3为1x3和3x1

Inception-V4: 使用残差连接

替换5x5为两个3x3

参数: 25 → 2 × 9 = 18

替换5x5为两个3x3

- 参数: $25 \rightarrow 2 \times 9 = 18$
- 感受野不变: 两个3x3相邻近似于5x5
 - 提示: 从两层计算依赖关系来看, 第二个3x3相当于扩充一圈边界

替换3x3为1x7和7x1

参数: 9 → 2 × 7 = 14

替换3x3为1x7和7x1

- 参数: 9 → 2 × 7 = 14
- **感受野变大**: 1x7和7x1相邻近似于7x7
- 感受野变形: 水平、垂直的特征

替换3x3为1x3和3x1(也有替换5x5为两个3x3)

参数: 9 → 2 × 3 = 6

GluonCV Model Zoo: 分类

cv.gluon.ai/model_zoo/classification

实验: GoogLeNet

小结: GoogLeNet

Inception模块: 4条不同路径

- 从不同视角提取信息
- 模型参数少、计算复杂度低

GoogLeNet: 9个Inception模块

- 第一个达到上百层的网络
- 后续一系列版本改进

批量规范化

深度带来的问题

网络非常深: 计算依赖链过长, 层间信息传递变难, 导致收敛变慢。想象用桶烧水

损失函数在最后:后面层参数关联直接、训练较快

深度带来的问题

网络非常深: 计算依赖链过长, 层间信息传递变难, 导致收敛变慢。想象用桶烧水

损失函数在最后:后面层参数关联直接、训练较快

数据在最前:前面层易受数据影响、训练较慢

• 前面层的变化导致全都跟着变, 例如异常数据

深度带来的问题

网络非常深: 计算依赖链过长, 层间信息传递变难, 导致收敛变慢。想象用桶烧水

损失函数在最后:后面层参数关联直接、训练较快

数据在最前:前面层易受**数据影响**、训练较慢

• 前面层的变化导致全都跟着变, 例如异常数据

能否避免层间学习难度剧烈变化?

• 同一套优化算法: 同一种优化速率

标准化中间层

回忆: 输出、梯度可以看成随机变量

• 中间层变量分布偏移: 阻碍网络收敛

只要控制统计量,就能避免数据分布的剧烈变化

标准化中间层

回忆: 输出、梯度可以看成随机变量

• 中间层变量分布偏移: 阻碍网络收敛

只要控制统计量,就能避免数据分布的剧烈变化

批量标准化: γ , β 是可学习参数

$$x_i = \gamma \frac{x_i - \mu}{\sigma} + \beta$$

γ: 拉伸参数; β: 偏移参数

标准化中间层

回忆: 输出、梯度可以看成随机变量

• 中间层变量分布偏移: 阻碍网络收敛

只要控制统计量,就能避免数据分布的剧烈变化

批量标准化: γ , β 是可学习参数

$$x_i = \gamma \frac{x_i - \mu}{\sigma} + \beta$$

- γ: 拉伸参数; β: 偏移参数
- 想象: 按生产线批次控制零件质量(符号)标准, 便于组装产品

估计批量的均值、方差:

$$\hat{\mu}_B = rac{1}{|B|} \sum_i x_i \ \hat{\sigma}_B^2 = rac{1}{|B|} \sum_i (x_i - \hat{\mu}_B)^2 + \epsilon$$

• 注意: 小常数 $\epsilon > 0$ 保证分母不为0

估计批量的均值、方差:

$$\hat{\mu}_B = rac{1}{|B|} \sum_i x_i \ \hat{\sigma}_B^2 = rac{1}{|B|} \sum_i (x_i - \hat{\mu}_B)^2 + \epsilon$$

- 注意: 小常数 $\epsilon > 0$ 保证分母不为0
- 优化中各种噪声源通常会导致训练更快、较少过拟合
 - 可以看成正则化的一种形式

估计批量的均值、方差:

$$egin{aligned} \hat{\mu}_B &= rac{1}{|B|} \sum_i x_i \ \hat{\sigma}_B^2 &= rac{1}{|B|} \sum_i (x_i - \hat{\mu}_B)^2 + \epsilon \end{aligned}$$

- 注意: 小常数 $\epsilon > 0$ 保证分母不为0
- 优化中各种噪声源通常会导致训练更快、较少过拟合
 - 可以看成**正则化**的一种形式
- 批量选择变得更重要
 - 批量不能为1: 减去均值后,每个隐藏单元输出0
 - 批量规范化最适用 50~100 范围的中等批量大小

估计批量的均值、方差:

$$\hat{\mu}_B = rac{1}{|B|} \sum_i x_i \ \hat{\sigma}_B^2 = rac{1}{|B|} \sum_i (x_i - \hat{\mu}_B)^2 + \epsilon$$

- 注意: 小常数 $\epsilon > 0$ 保证分母不为0
- 优化中各种噪声源通常会导致训练更快、较少过拟合
 - 可以看成**正则化**的一种形式
- 批量选择变得更重要
 - 批量不能为1: 减去均值后,每个隐藏单元输出0
 - 批量规范化最适用 50~100 范围的中等批量大小

测试模式:使用训练阶段的移动平均估算(整个数据集的均值、方差)

可学习参数: γ, β

$$x_i = \gamma rac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + eta$$

• 作用在: 全连接、卷积层的输出, 激活函数之前

可学习参数: γ, β

$$x_i = \gamma rac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + eta$$

• 作用在: 全连接、卷积层的输出, 激活函数之前

- 全连接层(2维张量):作用在特征
 - 维
- 卷积层(4维张量):作用在通道维

批量规范化在做什么?

最初论文猜测:减少内部协方差的偏移

• 但其实与协变量偏移的严格定义不同

批量规范化在做什么?

最初论文猜测:减少内部协方差的偏移

• 但其实与协变量偏移的严格定义不同

后续工作认为: 给批量加入噪音, 进而增强模型鲁棒性

$$x_i = \gamma rac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + eta$$

- $\hat{\mu}_B$, $\hat{\sigma}_B$: 随机偏移、缩放
- 因此没必要与丢弃法混合使用

批量规范化在做什么?

最初论文猜测:减少内部协方差的偏移

• 但其实与协变量偏移的严格定义不同

后续工作认为: 给批量加入噪音, 进而增强模型鲁棒性

$$x_i = \gamma rac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + eta$$

- $\hat{\mu}_B$, $\hat{\sigma}_B$: 随机偏移、缩放
- 因此没必要与丢弃法混合使用

深度学习论文的特点: 理论基本靠猜

• 先有实践发现,然后**倒推、猜测**可能的原因

实验: 批量规范化

小结: 批量规范化

- 批量规范化: 估计批量的均值、方差
 - 学习出合适的偏移、缩放
- 可以加快收敛速度, 但一般不改变模型精度

残差网络 ResNet

网络可以无限加深吗?

回顾: 似乎将网络做深就能提升效能。那么有极限吗?

• 越深的网络:可表示出更多函数种类

网络可以无限加深吗?

回顾: 似乎将网络做深就能提升效能。那么有极限吗?

• 越深的网络:可表示出更多函数种类

• 将所有可表示的函数种类看成集合: 最优函数不一定能通过扩充函数类涵盖

网络可以无限加深吗?

回顾:似乎将网络做深就能提升效能。那么有极限吗?

- 越深的网络:可表示出更多函数种类
- 将所有可表示的函数种类看成集合: 最优函数不一定能通过扩充函数类涵盖

- 扩充得到的函数类: 应该严格包含原函数类
 - 将新添加的层训练成恒等映射,新、原模型将同等有效
 - $\bullet \ \forall t, f_2(f_1(t)) = f_1(t) \Rightarrow f_2(x) = x$

残差

虚线: 串联一个模块

• 左边: 假设理想映射是f(x)

右边: 拟合目标转换成f(x)-x

残差: 只需学习增量 $\Delta = f(x) - x$

- 由函数类讨论: f(x) = x
 - 故∆≈0
 - 数值计算比较稳定

残差

虚线: 串联一个模块

• 左边: 假设理想映射是f(x)

右边: 拟合目标转换成f(x) - x

残差: 只需学习增量 $\Delta = f(x) - x$

- 由函数类讨论: f(x) = x
 - 故∆≈0
 - 数值计算比较稳定

实线旁路:数据可以跨层直接传播

• 避免因层数过多而丢失信息

ResNet: 模块

类似VGG的3x3卷积层设计

• 3x3卷积、BN、ReLU

数据旁路:接在最后激活之前

ResNet: 模块

类似VGG的3x3卷积层设计

• 3x3卷积、BN、ReLU

数据旁路:接在最后激活之前

• 1x1卷积:调整成相同的通道数

ResNet: 模块变种

ResNet: 架构

类似GoogLeNet架构

• 共18层: ResNet-18

ResNet架构更简单, 修改也更方便

• ResNet-152: ImageNet'15识别冠军

GluonCV Model Zoo: 分类

cv.gluon.ai/model_zoo/classification

实验: ResNet

小结: ResNet

- ResNet 模块: 训练更稳定, 跨层直接传递信息
 - 甚至可以训练一千层的网络
- 目前最为流行的架构之一
 - 对之后的架构设计产生了深远影响

Review

本章内容

深度卷积神经网络 AlexNet。使用块的网络 VGG。网络中的网络 NiN。含并行连结的 网络 GoogLeNet。批量规范化。残差网络 ResNet。

重点: AlexNet; VGG; NiN; Inception模块; 批量规范化; 残差网络 ResNet。

难点: Inception变种。

学习目标

- 理解深度卷积神经网络对数据特征的观点: 可被学习
- 理解AlexNet的设计特点(丢弃法、ReLU、最大池化、数据增广)、学术贡献(特征工程自动化)
- 理解VGG的设计特点(模块化设计)
- 理解NiN的设计特点(模块等价于完整网络)、创新点(1x1卷积替代全连接)
- 理解Inception模块的设计特点(分支处理、模式组合),及其变种的设计特点
- 理解批量规范化的动机、原理、方法
- 理解ResNet的原理,及其模块的设计特点

问题

简述AlexNet的设计特点、学术贡献。

简述VGG的设计特点。

简述NiN的设计特点、创新点。

简述Inception模块的设计特点,及其变种的设计特点。

简述批量规范化的动机、原理、方法。

简述ResNet的原理,及其模块的设计特点。