

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is located at the bottom of the page, spanning most of the width.

**(43) International Publication Date
8 November 2001 (08.11.2001)**

PCT

(10) International Publication Number
WO 01/83698 A2

(51) International Patent Classification⁷:

C12N

(74) Agent: MATHEWS, COLLINS, SHEPHERD & GOULD, P.A.; Suite 306, 100 Thanet Circle, Princeton, NJ 08540 (US).

(22) International Filing Date: 30 April 2001 (30.04.2001)

(21) D. A. P. L. G. S. J. C. S. S. A. M. A. G. M. M. M. M. M. M.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Date:

Priority Date: 60/200,487 28 April 2000 (28.04.2000) US
60/260,806 1 January 2001 (01.01.2001) US

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(71) Applicant (for all designated States except US):
**SUPRATEK PHARMA, INC. [US/US]; Suite 700,
275 St. Jaques, Montreal, Quebec H2Y 1M9 (CA).**

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KABANOV, Alexander V. [US/US]; 1304 South 126th Street, Omaha, NE 68144 (US). LEMIEUX, Pierre [CA/CA]; 97 des Chenes, St. Therese, Quebec J7E 4Z2 (CA). GUERIN, Nadia [CA/CA]; 575 rue Villeray, apt. 5, Longueuil, Quebec J4L 4M8 (CA). ALAKHOV, Valery [CA/CA]; 48 David Kennedy, Baie D'Urfe, Montreal, Quebec (CA). VINOGRADOV, Serguei [US/US]; 10921 Curtis Avenue, Omaha, NE 68164 (US).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/83698 A2

(54) Title: COMPOSITIONS AND METHODS FOR INDUCING ACTIVATION OF DENDRITIC CELLS

(57) Abstract: Compositions induce the activation of dendritic cells comprising a polynucleotide, such as viruses, RNA, DNA, plasmid DNA, or derivatives thereof and at least one block copolymer of alkylethers. The present invention further relates to compositions for inducing the activation of dendritic cells wherein the block copolymers are PLURONIC F127 and L61. More particularly, the compositions comprise block copolymers PLURONIC F127/PLURONIC L61. The invention also relates to methods of inducing the activation of dendritic cells in animals comprising administering the compositions of the invention. Additionally, the present invention relates to methods of increasing the immune response of animals comprising administering the compositions of the present invention.

2

COMPOSITIONS AND METHODS FOR
INDUCING ACTIVATION OF DENDRITIC CELLS

4

FIELD OF THE INVENTION

6 The invention relates to compositions and methods for activation of dendritic
cells by administering compositions comprising polynucleotides, such as viruses,
8 RNA, DNA, or derivatives thereof, and at least one block copolymer of an
alkyether.

10

BACKGROUND OF THE INVENTION

12 Vaccination is an efficient way of preventing death or disability from infectious
diseases. The success of this method in the field of infectious disease has also
stimulated interest in utilizing vaccination in the treatment or prevention of
14 neoplastic disease. Despite the successes achieved with the use of vaccines,
however, there are still many challenges in the field of vaccine development.
16 Parenteral routes of administration, the numbers of different vaccinations required
and the need for, and frequency of, booster immunizations all impede efforts or
18 eliminate disease.

20 One such difficulty is lack of immunogenicity, i.e., the antigen is unable to
promote an effective immune response against the pathogen. In addition, certain
antigens may elicit only a certain type of immune response, for example, a cell-
22 mediated or a humoral response. Adjuvants are substances that enhance,
augment or potentiate an immune response, and can in some instances, be used
24 to promote one type of immune response over another. Although numerous
vaccine adjuvants are known, aluminum salt is the only adjuvant widely used in
26 humans, not, however, without any safety concern.

28 There is now convincing evidence that the immune system can recognize, and
in some cases destroy, malignant cells and infectious agents. Furthermore, T
cells, and in particular CD8+ cytotoxic T lymphocytes (CTLs), appear to be the

2 principal affectors of anti-tumor and anti-infectious disease immunity. Activation of
4 T cells is known to be dependent on dendritic cells. Dendritic cells (DC) are
6 unique among antigen presenting cells (APC) by virtue of their potent capacity to
8 activate immunologically naive T cells (Steinman, 1991). DC express
10 constitutively, or after maturation, several molecules that mediate physical
12 interaction with and deliver activation signals to responding T cells. These include
14 class I and class II MHC molecules. CDSO (B7-1) and CD86 (B7-2); CD 40;
16 CD11a/CD18 (LFA-1); and CD54 (ICAM-1) (Steinman, 1991; Steinman et al.
18 1995). The unique ability of dendritic cells to present antigens and to activate
naive and memory CD4+ and CD8+ T cells provides the possibility of using them
to trigger specific anti-tumor immunity. Therefore, an agent that could selectively
induce dendritic cells and increase their ability to stimulate immune response
would be of wide importance. Numerous studies have shown a high potency of
dendritic cell-based vaccines for cancer immunotherapy in animal models, some
have been carried out against human cancers in clinical trials. Human tumors
express a number of protein antigens that can be recognized by cytotoxic
lymphocytes (CTL), thus providing potential targets for cancer immunotherapy.

Dendritic cells (DCs) are rare leukocytes that are uniquely potent in their
ability to present antigens to T cells, and this property has promoted their recent
application to therapeutic cancer vaccines. Other cells are also known to be able
to present antigens such as macrophages and B-cells. However, macrophages
cannot take up soluble antigens efficiently, while immature dendritic cells can take
up large amount of antigen from extracellular fluid by macropinocytosis.

B-cells, by contrast, are uniquely adapted to bind specific soluble molecules
through their cell-surface immunoglobulin. B-cells internalize the soluble antigen
bound by their immunoglobulin receptors and then display peptide fragments of
these antigens as peptides: MHC class II complexes. The problem with B-cells is
that they do not constitutively express co-stimulatory activity. Although B-cells

2 efficiently present soluble proteins, they are unlikely to initiate a potent CTL
3 response in the absence of co-stimulatory activity. As a result the antigen not only
4 fails to activate naïve T-cells, but causes them to become anergic, or non-
5 responsive.

6 Isolated DCs loaded with tumor antigen *ex vivo* and administered as a cellular
7 vaccine have been found to induce protective and therapeutic anti-tumor immunity
8 in experimental animals. In pilot clinical trials of DC vaccination for patients with
9 non-Hodgkin's lymphoma and melanoma, induction of anti-tumor immune
10 responses and tumor regressions have been observed. Timmerman *et al.*, *Annal,*
11 *Rev Med* 1999, 50:507-29; Tarte *et al.*, *Leukemia*, 13:653-663 (1999). Additional
12 trials of DC vaccination for a variety of human cancers are under way, and
methods for targeting tumor antigens to DCs *in vivo* are also being explored.
13 Exploitation of the antigen-presenting properties of DCs thus offers new
possibilities for the development of effective cancer immunotherapies. Therefore,
14 DCs can be used as a cell vaccine, but they can also be used as an
immunomodulating factor in combination with DNA vaccine. Following DNA
15 vaccination, DCs efficiently present vaccine-encoded antigens. Casares *et al.*, *J.*
Exp. Med., 186(9):1481-6 (1997). Plasmid DNA has an adjuvant effect that
16 promotes DC maturation and migration to lymphoid tissue. However, only a very
low number of DCs are usually transfected with a direct injection of plasmid DNA,
17 and a very low number of DCs migrate to the site of injection. Lane *et al.*,
Immunology, 11:308-313 (1999). The expression of antigen by directly transfected
18 DCs become undetectable after 2 weeks, but memory CD4+ T cell responses are
maintained over 40 weeks, questioning the role of persistent antigen in
19 maintaining CD4+ T cell memory. Bacterial DNA (CpG motifs) induces maturation
of Langerhans cells and of immature bone-marrow-derived DCs. Bacterially-
20 derived lipopolysaccharide (LPS) has long been known to be an activator for DCs.
By triggering a Th1-type response, not only can inflammatory T cells be recruited
21

2 to sites of infection in order to activate macrophages, but also they attract
neutrophils to the infected area by secreting chemokines.

4 Co-delivery of the GM-CSF adjuvant and glycoprotein D antigen boosts
immune response during plasmid DNA vaccination with naked DNA. Flo *et al.*,
6 *Vaccine*, 18(28): 3242-53 (2000). Gene delivery has been used to express
cytokines (interleukin-12) through the use of plasmid DNA encoding cytokines with
8 poly(α -4-aminobutylglycolic acid) complexes. Maheshwari *et al.*, *Mol. Ther.*, 2(2):
121-130. (2000). The tumor suppressor (antigen) p53 and interleukin12 (as well
10 as TNF- α and IFN γ) have been administered *via* gene delivery in a gene delivery
system named "LPD" to initiate cytokine response and inhibit tumor growth .
12 Whitmore *et al.*, *Gene Ther.*, 6(11) 1867-75 (1999). Intravenous injection of
plasmids encoding the human FLT-3 ligand increase the number of functional and
14 natural killer cells (NK). He *et al.*, *Hum. Gene Ther.*, 11(4): 547-54 (2000).
Several workers have used FLT-3 to boost gene expression during a retroviral-
16 mediated gene therapy. Murray *et al.*, *Hum. Gene Ther.*, 10(11): 1743-52 (1999)
and Goerner *et al.*, *Blood*, 94(7): 2287-92 (1999). FLT-3, as well as GM-CSF, has
18 been used to induce development of dendritic cells and boost gene expression
during a retrovirus-mediated gene vaccination therapy. Mach *et al.*, *Cancer Res.*,
20 60(12): 3239-46 (2000). CD40 and FLT-3 ligands induce dendritic cells and
boost gene expression during a retrovirus-mediated gene vaccination therapy.
22 Borges *et al.*, *J. Immunol.* 163(3) 1289-97 (1999).

The present invention relates to compositions comprising polynucleotides,
24 such as plasmid DNA, DNA, RNA, viruses or vectors, and at least one block
copolymer that induce an increased level of production and infiltration of DCs in
26 response to the expression of the gene product encoded by the above DNA, in
particular plasmid DNA. This event leads to a higher immune response against an
28 encoded exogenous antigen (transgene), and a better humoral and cellular
immune reponse is acheived. The compositions of the present invention can also

2 be used to generate large amount of dendritic cells both *in vitro* and *in vivo*. The
4 current methods of generation, stimulation, and maturation of DCs are extremely
4 difficult and tedious, while the present invention significantly simplifies the process.

6 Direct injection of naked plasmid DNA either *intramuscularly* or *intradermally*
8 induces strong, long-lived immune responses to the antigen encoded by the DNA
10 vaccines. Both routes of immunization lead to production of specific antibodies
12 and the activation of both MHC class I-restricted, antigen-specific CTL and MHC
14 class II-restricted Th cells secreting Th1-type cytokines (Genetic vaccines,
16 *Scientific Amer.*, July 1999, pp. 50-57). These properties have made plasmid
18 DNA vaccines an attractive alternative to conventional immunizations using
proteins, live attenuated viruses or killed whole organisms. Consequently, DNA
vaccines are actively being investigated as therapies or preventive measures in
such diverse areas as infectious diseases, allergies, and cancers. Despite the
avid interest in this method of immunization, DNA vaccines are limited by the
capacity to express the protein. An efficient immunization is dependent upon
gene expression, which means that the DNA vaccines have to express the
protein.

20 The unique features of smooth, skeletal, and cardiac muscles, have
22 presented numerous challenges for the development and administration of
effective polynucleotide compositions for intramuscular administration. Direct
24 injection of purified plasmids ("naked DNA") in isotonic saline into muscle was
found to result in DNA uptake and gene expression in smooth, skeletal, and
26 cardiac muscles of various species. Rolland A., *Critical Reviews in Therapeutic*
Drug Carrier Systems, Begell House, 143 (1998). It is believed that the unique
28 cytoarchitectural features of muscle tissue are responsible for the uptake of
polynucleotides because skeletal and cardiac muscle cells appear to be better
suited to take-up and express injected foreign DNA vectors relative to other types
of tissues. Dowty & Wolff, *Gene Therapeutics: Methods and Applications of Direct*

2 Gene Transfer, Birkhäuser, Boston, p.182 (1994). The relatively low expression
3 levels attained by this method, however, have limited its applications. See Aihara
4 and Miyazaki, *Nature Biotechnology*, 16:867 (1998). Additionally, traditional gene
5 delivery systems such as polycations, cationic liposomes, and lipids that are
6 commonly proposed to boost gene expression in other tissues usually result in
7 inhibition of gene expression in skeletal and cardiac muscles. Dowty & Wolff, *loc.*
8 *cit.*, p. 82 (1994).

10 Even if the muscle is known to be the only tissue that efficiently takes up
11 and expresses plasmid DNA in the absence of a viral vector, the muscle is not
12 considered to be a site for antigen presentation because it contains few if any
13 dendritic cells, macrophages, and lymphocytes. The skin and mucous
14 membranes are the anatomical sites where most exogenous antigens are
15 normally encountered. The skin-associated lymphoid tissue contain specialized
16 cells that enhance immune responses. Raz *et al.*, *PNAS*, 91: 9519-9523 (1994).

17 Anionic polymers such as dextran sulfate and salmon DNA can decrease
18 gene expression in the muscle. Rolland A., *Loc. cit.*. Various noncondensive
19 interactive polymers have been used with a limited success to modify gene
20 expression in striated muscle. Nonionic polymers such as poly(vinyl pyrrolidone)
21 poly(vinyl alcohol) interact with plasmids through hydrogen bonding. *Id.* These
22 polymers may facilitate the uptake of polynucleotides in muscle cells and cause up
23 to 10-fold enhancement of gene expression. However, to achieve a significant
24 increase in gene expression, high concentrations of polymers (about 5% and
25 more) need to be administered. Mumper *et al.*, *Pharmacol. Res.*, 13, 701-709
26 (1996); March *et al.*, *Human Gene Therapy*, 6(1), 41-53 (1995). This high
27 concentration of poly(vinyl pyrrolidone) poly(vinyl alcohol) needed to improve gene
28 expression can be associated with toxicity, inflammation, and other adverse
 effects in muscle tissues. Block copolymers have been used to improve gene
 expression in muscle or to modify the physiology of the muscle for subsequent

2 therapeutic applications. See U.S. Patent Nos. 5,552,309; 5,470,568; 5,605,687;
4 and 5,824,322. For example, block copolymers can be used in a gel-like form
6 (more than 1% of block copolymers) to formulate virus particles used to perform
8 gene transfer in the vasculature. In the same range of block copolymers
10 concentration (1-10%), it is possible with block copolymer to modify the
12 permeability of damaged muscle tissue (radiation and electrical injury, and frost
bite). In addition DNA molecules can be incorporated into cells following
membrane permeabilization with block copolymers. For these applications, block
14 copolymers were used at concentrations giving gel-like structures and viscous
16 delivery systems. These systems are unlikely to enable diffusion of the DNA
18 injected into the muscle, however, thus limiting infusion of the DNA into the
myofibers.

20 There is thus a need for compositions and methods increasing efficacy of
polynucleotides expression upon administration to a patient, in particular, in the
22 muscle and in the skin. There is also a need for methods of increasing the
efficiency of delivering polynucleotides to cells.

24 Beside the need to improve gene expression in muscle and skin, other tissues
in the body would benefit from a gene transfer in a situation when there is a
26 genetic disorder, and/or an abnormal over-expression of a gene, and/or absence
of a normal gene.

28 Several polynucleotides such as RNA, DNA, viruses, and ribozymes can be
used for gene therapy purposes. However, many problems, like the ones
described below, have been encountered for successful gene therapies.

The use of antisense polynucleotides to treat genetic diseases, cell mutations
30 (including cancer causing or enhancing mutations) and viral infections has gained
widespread attention. This treatment tool is believed to operate, in one aspect, by
32 binding to "sense" strands of mRNA encoding a protein believed to be involved in
causing the disease site sought to be treated, thereby stopping or inhibiting the

2 translation of the mRNA into the unwanted protein. In another aspect, genomic
DNA is targeted for binding by the antisense polynucleotide (forming a triple helix),
4 for instance, to inhibit transcription. See Helene, *Anti-Cancer Drug Design*, 6:569
6 (1991). Once the sequence of the mRNA sought to be bound is known, an
antisense molecule can be designed that binds the sense strand by the Watson-
Crick base-pairing rules, forming a duplex structure analogous to the DNA double
8 helix. *Gene Regulation: Biology of Antisense RNA and DNA*, Erikson and Ixzant,
eds., Raven Press, New York, 1991; Helene, *Anti-Cancer Drug Design*, 6:569
10 (1991); Crooke, *Anti-Cancer Drug Design*, 6:609 (1991). A serious barrier to fully
exploiting this technology is the problem of efficiently introducing into cells a
12 sufficient number of antisense molecules to effectively interfere with the translation
of the targeted mRNA or the function of DNA.

14 SUMMARY OF THE INVENTION

The invention relates to compositions for inducing activation of dendritic cells comprising a polynucleotide and at least one block copolymer of an alkylether. Further, the present invention relates to methods of activation of dendritic cells comprising administering, particularly intramuscular and intradermal administration, of polynucleotides, such as viruses, RNA, DNA, plasmid DNA or derivatives thereof, and at least one polyoxyethylene-polyoxypropylene block copolymer. In particular embodiments the block copolymer is present in amounts insufficient for gel formation. The invention also relates to methods of use and compositions comprising at least one polynucleotide or derivative thereof and at least one block copolymer wherein the block copolymer is present at a concentration below about 15% wt/vol. In more particular embodiments, the compositions further comprise a polycation. The compositions also comprise mixtures of block copolymers. The invention also relates to compositions wherein the composition forms a molecular solution or colloidal dispersion, including but not limited to, a suspension, emulsion, microemulsion, micelle, polymer complex,

2 or other types of molecular aggregates. These compositions are useful for
increasing the level of production and infiltration for DCs in response to the
4 expression of the gene product encoded by the polynucleotide present in the
compositions. The compositions are also useful for increasing the immune
6 response and to generate large amounts of dendritic cells *in vivo* and *in vitro*. The
invention further relates to methods of delivering polynucleotides to a cell
8 comprising administering to a cell the described compositions.

The invention is based in part, on a number of unanticipated surprising
10 discoveries. One is that the infiltration and activation of dendritic cells *in vitro*
increased significantly upon previous exposure of the cells to a composition
12 comprising a polynucleotide and at least one block copolymer. Another is that
immunization is improved when polynucleotide molecules (e.g. plasmid DNA and
14 viruses) are formulated with a single or a combination of block copolymers. The
other is that when block copolymers, also called "poloxamers", are used, fewer
16 polynucleotide molecules are required to get an immune response, the time to
raise the response is shortened, and that there is no need for a booster injection.
18 As a result, using fewer polynucleotide molecules will decrease the likelihood of
getting polynucleotides integrated into the chromosome(s) of the host organism.
20 Further, using fewer polynucleotides will decrease the likelihood of developing
anti-polyucleotide (or anti-DNA) antibodies which have been associated with
22 diseases such as, but not limited to, systemic lupus erythematosus.

DETAILED DESCRIPTION OF THE INVENTION

24 DEFINITIONS

As used herein, the terms below have the following meaning:

26 Backbone: Used in graft copolymer nomenclature to
describe the chain onto which the graft is
28 formed.

- | | | |
|----|--------------------------|---|
| 2 | <u>Block copolymer:</u> | A combination of two or more chains of constitutionally or configurationally different features. |
| 4 | | |
| 6 | <u>Branched polymer:</u> | A combination of two or more chains linked to each other, in which the end of at least one chain is bonded at some point along the other chain. |
| 8 | | |
| 10 | <u>Chain:</u> | A polymer molecule formed by covalent linking of monomeric units. |
| 12 | | |
| 14 | <u>Configuration:</u> | Organization of atoms along the polymer chain, which can be interconverted only by the breakage and reformation of primary chemical bonds. |
| 16 | | |
| 18 | <u>Conformation:</u> | Arrangements of atoms and substituents of the polymer chain brought about by rotations about single bonds. |
| 20 | | |
| 22 | <u>Copolymer:</u> | A polymer that is derived from more than one species of monomer. |
| 24 | | |
| 26 | <u>Cross-link:</u> | A structure bonding two or more polymer chains together. |
| 28 | | |
| 30 | <u>Dendrimer:</u> | A regularly branched polymer in which branches start from one or more centers. |
| 32 | | |
| 34 | <u>Dispersion:</u> | Particulate matter distributed throughout a continuous medium. |
| 36 | | |

- 2 Graft copolymer: A combination of two or more chains of constitutionally or configurationally different features, one of which serves as a backbone main chain, and at least one of which is bonded at some points along the backbone and constitutes a side chain.
- 4
- 6
- 8 Homopolymer: Polymer that is derived from one species of monomer.
- 10 Link: A covalent chemical bond between two atoms, including bond between two monomeric units, or between two polymer chains.
- 12
- 14 Polymer blend: An intimate combination of two or more polymer chains of constitutionally or configurationally different features, which are not bonded to each other.
- 16
- 18 Polymer fragment (or Polymer segment): A portion of polymer molecule in which the monomeric units have at least one constitutional or configurational feature absent from adjacent portions.
- 20
- 22 Polynucleotide: A natural or synthetic nucleic acid sequence.
- 24 Repeating unit: Monomeric unit linked into a polymer chain.
- 26 Side chain: The grafted chain in a graft copolymer.
- 28 Starblock copolymer: Three or more chains of different constitutional or configurational features linked together at one end through a central moiety.

- 2 Star polymer: Three or more chains linked together at one end through a central moiety.

4 Surfactant: Surface active agent that is adsorbed at interface.

6 Viral vector: A construct derived from a virus and used in gene transfer.

8 COMPOSITIONS

The present invention is directed to compositions for activation of dendritic cells comprising at least one block copolymer and compositions comprising at least one polynucleotide or derivative therof and at least one polyoxyethylene-polyoxypropylene block copolymer. The present invention is also directed to methods of inducing the activation of dendritic cells and increasing the immune response of an animal by administrating the compositions.

Preferred embodiments include compositions comprising polynucleotides and
16 block copolymers with cationic segments as well as compositions comprising
polynucleotides and nonionic polyether block copolymers. In one embodiment,
18 particularly useful for intramuscular and intradermal administration,
polynucleotides are formulated with block copolymers of poly(oxyethylene) and
20 poly(oxypropylene). The preferred compositions of this invention further comprise
polycations.

22 The compositions of the current invention provide an efficient vehicle for
introducing polynucleotides into a cell, protecting polynucleotides against
24 degradation in body fluids, transport of polynucleotides across biological
membranes and biological barriers (such as the blood-brain barrier, blood-cerebral
26 fluid barrier, and intestinal barrier), modification of biodistribution of
polynucleotides in the body and enhancement of gene expression including

- 2 selective gene expression in various tissues and organs in the body of human or animal.
- 4 The invention further relates to methods of inserting or delivering polynucleotides into cells utilizing the compositions of the invention, and methods
- 6 of treatment comprising administering these compositions to humans and animals.

In a preferred embodiment, the block copolymer conforms to one of the
8 following formulae:

wherein A and A' are A-type linear polymeric segments, B and B' are B-type linear
12 polymeric segments, and R¹, R², R³, and R⁴ are either block copolymers of
formulas (I), (II), or (III), or hydrogen and L is a linking group, with the proviso that
14 no more than two of R¹, R², R³, or R⁴ are hydrogen.

In another preferred embodiment, the block copolymers are poly(oxyethylene)
16 and poly(oxypropylene) chain segments. In yet another preferred embodiment,
the polynucleotide compositions have polycationic polymers having a plurality of
18 cationic repeating units. In this case, the polynucleotides can be complexed with
the polycation and stabilized in the complex. These compositions demonstrate
20 increased permeability across cell membranes and are well suited for use as
vehicles for delivering nucleic acid into cells.

22 In another embodiment, the invention relates to polynucleotide compositions
having:

- 24 (a) a polynucleotide or derivative thereof;
- (b) a block copolymer having a polyether segment and a polycation segment,
26 wherein the polyether segment comprises at least an A-type block, and the
polycation segment comprises a plurality of cationic repeating units.

28 In a preferred second embodiment, the copolymer relates to polymers of
formulae:

2	B-A-R (V-a)	A-R (VI-a)	A-R-A' and R-A-R' (VII) (VIII-a)
4	A-B-R (V-b)	A-R-B (VI-b)	R-A-B R-A-B-A and R-A-B-A-R (VIII-b) (VIII-c) (VIII-d)
6	wherein A, A', and B are as described above, wherein R and R' are polymeric segments having a plurality of cationic repeating units, and each cationic repeating unit in a segment is the same or different from another unit in the segment. The polymers of this embodiment can be termed		
10	"polynonionic/polycationic" polymers. Preferred polynonionic/polycationic polymers include polycations that are covalently linked to nonionic polymer		
12	segments where the nonionic polymer segments are homopolymer or copolymer of at least one of the monomers selected from the group consisting of acrylamide,		
14	glycerol, vinylalcohol, vinylpyrrolidone, vinylpyridine, vinylpyridine N-oxide, oxazoline, or a acrolymorpholine, and derivatives thereof. This includes for example polyacrylamides, polyglycerols, polyvinylalcohols, polyvinylpyrrolidones, polyvinylpyridine N-oxides, copolymers of vinylpyridine N-oxide and vinylpyridine,		
16	polyoxazolines, polyacrolymorpholines or derivatives thereof. Nonionic segments comprising products of polymerization of vinyl monomers are also preferred		
18	The R and R', blocks can be termed "R-type" polymeric segments or blocks. The polynucleotide compositions of this embodiment provide an efficient vehicle for		
20	introducing polynucleotides into a cell.		
22			

Accordingly, the invention thus further relates to methods of inserting polynucleotide into cells utilizing the compositions of the invention.

In yet another embodiment, the invention relates to polynucleotide compositions comprising a polynucleotide derivative comprising a polynucleotide segment and a polyether segment attached to one or both of the polynucleotide 5' and 3' ends, wherein the polyether comprises an A-type polyether segment.

2 In a preferred third embodiment, the derivative comprises a block copolymer
of formulas:

4

Designation	Structure
IX-a)	A-pN
(X-a)	pN-A
(XI)	A-pN-A'
(XII)	pN-A-B,
(XIII)	B-A-pN
(XIII-a)	A-B-A-pN
(XIII-b)	pN-A-B-A-pN
(IX-b)	A-pN-R
(IX-c)	R-A-pN
(IX-d)	A-R-pN
(X-b)	pN-A-R
(X-c)	R-pN-A
(X-d)	pN-R-A
(X-e)	B-A-B-pN
(X-f)	pN-B-A-B-pN

wherein pN represents a polynucleotide having 5' to 3' orientation, and A, A', and
6 B are polyether segments as described above. In another preferred third
embodiment, the polynucleotide complex comprises a polycationic polymer. The
8 polynucleotide component (pN) of formulas (IX) through (XIII) will preferably have
from about 5 to about 1,000,000 bases, more preferably about 5 to about 100,000
10 bases, yet more preferably about 10 to about 10,000 bases.

The polynucleotide compositions provide an efficient vehicle for introducing
12 polynucleotides into a cell. Accordingly, the invention also relates to methods of
inserting polynucleotide into cells the compositions of the invention. In another
14 preferred embodiment, polynucleotides are covalently linked to block copolymers
of poly(oxyethylene) and poly(oxypropylene).

2 Another embodiment of the invention relates to a polyetherpolycation
 4 copolymers having a polymer, a polyether segment, and a polycationic segment
 6 having a plurality of cationic repeating units of formula -NH-R⁰, wherein R⁰ is a
 8 straight chain aliphatic group of 2 to 6 carbon atoms, which may be substituted,
 10 wherein said polyether segments comprise at least one of an A-type or B-type
 12 segment. In another preferred embodiment, the polycation polymer has a polymer
 14 according to the following formulae:

B-A-R	A-R	A-R-A' and R-A-R',
(V)	(VI)	(VII) (VIII)

10 wherein A, A', and B are as described above, wherein R and R' are polymeric
 12 segments having a plurality of cationic repeating units of formula -NH-R⁰-, wherein
 14 R⁰ is a straight chain aliphatic group having from 2 to 6 carbon atoms, which may
 16 be substituted. Each -NH-R⁰- repeating unit in an R-type segment can be the
 same or different from another -NH-R⁰- repeating unit in the segment.

18 In yet another embodiment, the invention provides a polycationic polymer
 having a plurality of repeating units of formula:

18 where R⁸ is:

- (1) -(CH₂)_n-CH(R¹³)-, wherein n is an integer from 0 to about 5, and R¹³ is
 20 hydrogen, cycloalkyl having 3-8 carbon atoms, alkyl having 1-6 carbon atoms, or
 (CH₂)_mR¹⁴, where m is an integer from 0 to about 12 and R¹⁴ is a lipophilic
 22 substituent of 6 to 20 carbon atoms;
- (2) a carbocyclic group having 3-8 ring carbon atoms, wherein the group can
 24 be for example, cycloalkyl or aromatic groups, and which can include alkyl having
 1-6 carbon atoms, alkoxy having 1-6 carbon atoms, alkylamino having 1-6 carbon

2 atoms, dialkylamino wherein each alkyl independently has 1-6 carbon atoms,
4 amino, sulfonyl, hydroxy, carboxy, fluoro, or chloro substituents; or (3) a
6 heterocyclic group, having 3-8 ring atoms, including heterocycloalkyl or
8 heteroaromatic groups from 1 to 4 heteroatoms selected from the group consisting
of oxygen, nitrogen, sulfur and mixtures thereto, and which further can include
alkyl having 1-6 carbon atoms, alkoxy having 1-6 carbon atoms, alkylamino having
1-6 carbon atoms, dialkylamino wherein each alkyl independently has 1-6 carbon
atoms, amino, sulfonyl, hydroxy, carboxy, fluoro or chloro substituents.

10 R⁹ is a straight chain aliphatic group of 1 to 12 carbon atoms, and R¹⁰, R¹¹,
12 and R¹² are independently hydrogen, an alkyl group of 1-4 carbon atoms. R⁹
14 preferably is 2-10 carbon atoms, more preferably, 3-8 carbon atoms. R¹⁴
preferably includes an intercalating group, which is preferably an acrydine or
16 ethyldium bromide group. The number of repeating units in the polymer is
preferably between about 3 and 50, more preferably between about 5 and 20.
18 This polymer structure can be incorporated into other embodiments of the
invention as an R-type segment or polycationic polymer. The ends of this polymer
can further be modified with a lipid substituent.

The monomers that are used to synthesize polymers of this embodiment are
20 suitable for use as the monomers fed to a DNA synthesizer, as described below.
Thus, the polymer can be synthesized very specifically. Further, the additional
22 incorporation of polynucleotide sequences, polyether blocks, and lipophilic
substituents can be done using the advanced automation developed for
24 polynucleotide syntheses. This embodiment also encompasses the method of
synthesizing a polycationic polymer.

26 In yet another embodiment, the invention relates to polymers having a plurality
of covalently bound polymer segments wherein the segments have (a) at least
28 one polycation segment which segment is a cationic homopolymer, copolymer, or
block copolymer comprising at least three aminoalkylene monomers, said

2 monomers being selected from the group consisting of: (i) at least one tertiary amino monomer of the formula:

4

6

A.

8 and the quaternary salts of said tertiary amino monomer, and (ii) at least one secondary amino monomer of the formula:

10

12 and the acid addition and quaternary salts of said secondary amino monomer, in which:

14 R¹ is hydrogen, alkyl of 2 to 8 carbon atoms, an A monomer, or a B monomer; each of R² and R³, taken independently of the other, is the same or different
16 straight or branched chain alkanediyl group of the formula:

18 in which z has a value of from 2 to 8; R⁴ is hydrogen satisfying one bond of the depicted geminally bonded carbon atom; and R⁵ is hydrogen, alkyl of 2 to 8 carbon
20 atoms, an A monomer, or a B monomer; R⁶ is hydrogen, alkyl of 2 to 8 carbon atoms, an A monomer, or a B monomer; R⁷ is a straight or branched chain
22 alkanediyl group of the formula:

- 2 in which z has a value of from 2 to 8; and R⁸ is hydrogen, alkyl of 2 to 8 carbon atoms, an A monomer, or a B monomer; and
- 4 (b) at least one straight or branched chained polyether segment having from about 5 to about 400 monomeric units which is:
- 6 (i) a homopolymer of a first alkyleneoxy monomer -OC_nH_{2n}- or
- 8 (ii) a copolymer or block copolymer of said first alkyleneoxy monomer and a second different alkyleneoxy monomer -OC_mH_{2m}-, in which n has a value of 2 or 3 and m has a value of from 2 to 4.
- 10 Polymers of formulas (I), (II), (III), or (IV) can also be mixed with each other or can be mixed either additionally or alternatively with one or more of the polymers of formula (V-a or b), (VI-a or b), (VII-a or b), and (VIII-a or b) and/or with polynucleotide derivatives of formulas (IX-a,b,c, or d), (X-a,b,c,d,e, or f), (XI), (XII) or (XIII) to provide an efficient vehicle for delivering polynucleotide to the interior of cells.
- 16 The degree of polymerization of the hydrophilic (A-type) blocks or the hydrophobic (B-type) blocks of formulas (I) - (XIII) can preferably be between about 5 and about 400. More preferably, the degree of polymerization shall be between about 5 and about 200, still more preferably, between about 5 and about 80. The degree of polymerization of the R-type polycation blocks can preferably be between about 2 and about 300. More preferably, the degree of polymerization shall be between about 5 and about 180, still more preferably, between about 5 and about 60. The degree of polymerization of the polycationic polymer can preferably be between about 10 and about 10,000. More preferably, the degree of polymerization shall be between about 10 and about 1,000, still more preferably, between about 10 and about 100.

The repeating units that comprise the blocks, for A-type, B-type and R-type blocks, will generally have molecular weight between about 30 and about 500, preferably between about 30 and about 100, still more preferably between about

2 30 and about 60. Generally, in each of the A-type or B-type blocks, at least about
80% of the linkages between repeating units will be ether linkages, preferably, at
4 least about 90% will be ether linkages, more preferably, at least about 95% will be
ether linkages. Ether linkages, for the purposes of this application, encompass
6 glycosidic linkages (*i.e.*, sugar linkages). However, in one aspect, simple ether
linkages are preferred.

8 In yet another preferred embodiment, the compositions of the invention are
useful for gene therapy purposes, including gene replacement or excision therapy,
10 and gene addition therapy, vaccination, and any therapeutic situation in which a
polypeptide should be expressed or down-regulated in the body or *in vitro*. In one
12 aspect of this invention the polynucleotide compositions are used for gene therapy
in muscle tissue, including but not limited to smooth, skeletal and cardiac muscles
14 of the human or animals. It is preferred that compositions for intramuscular
administration comprise the block copolymers of poly(oxyethylene) and
16 poly(oxypropylene).

18 In still another preferred embodiment, the invention relates to compositions
comprising at least one poly(oxyethylene) and poly(oxypropylene) block
copolymer with oxyethylene content of 50% or less, and at least one
20 poly(oxyethylene) and poly(oxypropylene) block copolymer with oxyethylene
content of 50% or more, and a polynucleotide. The preferable ratio by weight of
22 the block copolymer with oxyethylene content of 50% or less to the block
copolymer with oxyethylene content of 50% or more is 1:2, more preferably 1:5.

24 It is preferred that the compositions of this invention do not form gels. It is
preferred that the compositions form molecular solutions or colloidal dispersions.
26 The colloidal dispersions include suspensions, emulsions, microemulsions,
micelles, polymer complexes, or other types of molecular aggregates are
28 particularly preferred. In one aspect the concentration of the polymers and block

2 copolymers in the polynucleotide compositions is less than 10%, preferably less
that 1%, more preferred less than 0.5%, yet more preferred less than 0.1%.

4 Block copolymers are most simply defined as conjugates of at least two
different polymer segments (Tirrel, M., *Interactions of Surfactants with Polymers*
6 and *Proteins*, Goddard E.D. and Ananthapadmanabhan, K.P. (eds.), CRC Press,
Boca Raton, Ann Arbor, London, pp. 59-122, (1992). The simplest block
8 copolymer architecture contains two segments joined at their termini to give an A-
B type diblock. Consequent conjugation of more than two segments by their
10 termini yields an A-B-A type triblock, A-B-A-B- type multiblock, or even
12 multisegment A-B-C- architectures. If a main chain in the block copolymer can be
14 defined in which one or several repeating units are linked to different polymer
16 segments, then the copolymer has a graft architecture of, e.g., an A(B)_n type.
18 More complex architectures include for example (AB)_n or A_nB_m starblocks which
20 have more than two polymer segments linked to a single center. Formulas XVIII -
XXIII of the invention are diblocks and triblocks. At the same time, conjugation of
22 polycation segments to the ends of polyether of formula XVII yields starblocks
(e.g., (ABC)₄ type). In addition, the polyspermine of examples 13-15 (below) are
24 branched. Modification of such a polycation with poly(ethylene oxide) yields a
mixture of grafted block copolymers and starblocks. In accordance with the
present invention, all of these architectures can be useful for polynucleotide
delivery.

The entire disclosure of U.S. Patent No. 5,783,178 is hereby incorporated
24 herein by reference.

In another aspect, the invention provides a polynucleotide complex between a
26 polynucleotide and polyether block copolymers. Preferably, the polynucleotide
complex will further include a polycationic polymer. The compositions can further
28 include suitable targeting molecules and surfactants. In another aspect, the
invention provides a polynucleotide complex between a polynucleotide and a

- 2 block copolymer comprising a polyether block and a polycation block. In yet
another aspect, the invention provides polynucleotides that have been covalently
4 modified at their 5' or 3' end to attach a polyether polymer segment.

6 Polycations. Preferred polycation polymers and polycation segments of the
copolymers include but are not limited to polyamines (e.g., spermine,
8 polyspermine, polyethyleneimine, polypropyleneimine, polybutylene-imine,
polypentyleneimine, polyhexyleneimine and copolymers thereof), copolymers of
10 tertiary amines and secondary amines, partially or completely quaternized amines,
polyvinyl pyridine, and the quaternary ammonium salts of these polycation
12 segments. These preferred polycation fragments also include aliphatic,
heterocyclic or aromatic ionenes. Rembaum *et al.*, *Polymer Letters*, 6:159 (1968);
14 Tsutsui, T., *Development in Ionic Polymers-2*, Wilson A.D. and Prosser, H.J.
(Eds.) Applied Science Publishers, London, New York, Vol. 2, pp. 167-187 (1986).

16 The polycationic polymers and the R-type blocks have several positively
ionizable groups and a net positive charge at physiologic pH. The
polyether/polycation polymers of Formulas (V) - (VIII) can also serve as
18 polycationic polymers. Preferably, the polycation segments have at least about 3
positive charges at physiologic pH, more preferably, at least about 6, still more
20 preferably, at least about 12. Also preferred are polymers or segments that, at
physiologic pH, can present positive charges with a distance between the charges
22 of about 2Å to about 10Å. The distances established by ethyleneimine,
aminopropylene, aminobutylene, aminopentylene and aminohexylene repeating
24 units, or by mixtures of at least two of these groups are most preferred. Preferred
are polycationic segments that utilize (NCH₂CH₂), (NCH₂CH₂CH₂),
26 (NCH₂CH₂CH₂CH₂), (NCH₂CH₂CH₂CH₂CH₂), and (NCH₂CH₂CH₂CH₂CH₂CH₂)
repeating units, or a mixture thereof.

28 In preferred compositions of the current invention the polycation polymers and
polyether/polycation copolymers are mixed with polyoxyethylene-

2 polyoxypropylene block copolymers. Oligoamines and conjugates of oligoamines
4 with polyethers, including conjugates of oligoamines with polyoxyethylene-
6 polyoxypropylene block copolymers can be used in this invention as polycationic
8 molecules, particularly, in mixtures with polyoxyethylene-polyoxypropylene block
10 copolymers. Examples of oligoamines useful in this invention include but are not
12 limited to spermine, spermidine, and other DNA-condensing agents.
14 Ethyleneimine oligoamines such as diethylenetriamine and pentaethylene-
hexamine, propyleneimine oligoamines such as N-(3-aminopropyl)-1,3-
16 propanediamine and N,N'-bis-(3-aminopropyl)-1,3-propanediamine, butyleneimine
18 oligoamines, pentyleneimine oligoamines, hexyleneimine oligoamines,
20 heptyleneimine oligoamines and derivatives thereof are particularly useful in this
22 invention.

24 Polycation segments having an -N-R⁰- repeating unit are also preferred. R⁰ is
26 preferably an ethylene, propylene, butylene, pentylene, or hexylene chain which
28 can be modified. In a preferred embodiment, in at least one of the repeating units
R⁰ includes a DNA intercalating group such as an ethidium bromide group. Such
intercalating groups can increase the affinity of the polymer for nucleic acid.
Preferred substitutions on R⁰ include alkyl of 1-6 carbon atoms, hydroxy,
hydroxyalkyl, wherein the alkyl has 1-6 carbon atoms, alkoxy having 1-6 carbon
atoms, an alkyl carbonyl group having 2-7 carbon atoms, alkoxy carbonyl wherein
the alkoxy has 1-6 carbon atoms, alkoxy carbonyl alkyl wherein the alkoxy and alkyl
each independently has 1-6 carbon atoms, alkyl carboxy alkyl wherein each alkyl
group has 1-6 carbon atoms, amino alkyl wherein the alkyl group has 1-6 carbon
atoms, alkyl amino or dialkyl amino where each alkyl group independently has 1-6
carbon atoms, mono- or di-alkyl amino alkyl wherein each alkyl independently has
1-6 carbon atoms, chloro, or chloro alkyl wherein the alkyl has from 1-6 carbon
atoms, fluoro, or fluoro alkyl wherein the alkyl has from 1-6 carbon atoms, cyano,

2 or cyano alkyl wherein the alkyl has from 1-6 carbon atoms or a carboxyl group.
More preferably, R⁰ is ethylene, propylene, or butylene.

4 The polycation polymers and polycation segments in the copolymers of the
invention can be branched. For example, polyspermine-based copolymers are
6 branched. The cationic segment of these copolymers was synthesized by
condensation of 1,4-dibromobutane and N-(3-aminopropyl)-1,3-propanediamine.
8 This reaction yields highly branched polymer products with primary, secondary,
and tertiary amines.

10 An example of branched polycations are products of the condensation
reactions between polyamines containing at least 2 nitrogen atoms and alkyl
12 halides containing at least 2 halide atoms (including bromide or chloride). In
particular, the branched polycations are produced as a result of polycondensation.
14 An example of this reaction is the reaction between N-(3-aminopropyl)-1,3-
propanediamine and 1,4-dibromobutane, producing polyspermine. Branched
16 polycation polymers of this type can be represented by the formula:

18 Another example of a branched polycation is polyethyleneimine represented
by the formula:

22 Additionally, cationic dendrimers, for example, polyamidoamines can be also
used as polycation segments of block copolymers for gene delivery. Tomalia *et*
24 *al.*, *Angew. Chem., Int. Ed. Engl.*, **29**, 138 (1990).

In a preferred embodiment the polycations are covalently linked with nonionic
26 polymer segments. It is preferred that nonionic polymer segments comprise
water-soluble polymers that are nontoxic and nonimmunogenic. One preferred
28 example of such polymers is polyether polymers that are homopolymers and

2 copolymers of the ethyleneoxy monomer (-OCH₂CH₂-) and propyleneoxy
 monomer (-OCH(CH₃)CH₂-) including poly(oxyethylene), poly(oxypropylene),
 4 poly(oxyethylene)/poly(oxypropylene) block copolymers and poly(oxyethylene)/
 poly(oxypropylene) random copolymers. Another preferred example of nonionic
 6 polymer segment of use in the present invention is homopolymer or copolymer of
 at least one of the monomers selected from the group consisting of acrylamide,
 8 glycerol, vinylalcohol, vinylpyrrolidone, vinylpyridine, vinylpyridine N-oxide,
 oxazoline, or a acrolymorpholine, and derivatives thereof. This includes for
 10 example polyacrylamides, polyglycerols, polyvinylalcohols, polyvinylpyrrolidones,
 polyvinylpyridine N-oxides, copolymers of vinylpyridine N-oxide and vinylpyridine,
 12 polyoxazolines, polyacrolymorpholines or derivatives thereof. Nonionic segments
 comprising products of polymerization of vinyl monomers are also preferred,
 14 including but not limiting to the following nonionic polymer segments and
 derivatives thereof:

16

2

4

, or

6

in which m a value of from 3 to about 10,000.

2 Examples of useful polymers pursuant to formulas (V) - (VIII) include the poly(oxyethylene)-poly-L-lysine diblock copolymer of the following formula:

4

wherein i is an integer of from about 5 to about 100, and j is an integer from about 6 to about 100.

A second example is the poly(oxyethylene)-poly-(L-alanine-L-lysine) diblock

8 copolymer of formula:

10 wherein i is an integer of from about 5 to about 100, and j is an integer from about 4 about 100.

12 A third example is the poly(oxyethylene)-poly(propyleneimine/butyleneimine) diblock copolymer of the following formula:

14

16 wherein i is an integer from about 5 about 200 and j is an integer from 1 to about 10.

18 A fourth example is the poly(oxyethylene)-poly(N-ethyl-4-vinylpyridinium bromide) ("pOE-pEVP-Br") of formula:

2 wherein i is an integer of from about 5 to about 100 and j is an integer of from
about 10 to about 500. Still another example is the polymer of formula:

4 $\text{CH}_3\text{O}-(\text{CH}_2\text{CH}_2\text{O})_k\text{CO}[(\text{NH}(\text{CH}_2)_3)_2\text{NH}(\text{CH}_2)_4]_r(\text{NH}(\text{CH}_2)_3)_2-\text{NHCO-O}-(\text{CH}_2\text{CH}_2\text{O})_k-\text{CH}_3$

6 (XXII)

wherein i is an integer from about 10 to about 200, j is an integer from about 1 to
8 about 8, and k is an integer from about 10 to about 200. Still another example is
the polymer of formula:

10 H-G_{*n*}-(NH(CH₂)₃)₂-N-NH-CO-O-(CH₂CH₂O)_{*m*}CO-G_{*m*}-(NH(CH₂)₃)₂-NH₂

(XXIII)

12 wherein "G" comprises $-(\text{NH}(\text{CH}_2)_3)_3-\text{CH}_2\text{NH}_2-$, , and , are as defined for formula (XVIII), and m is an integer from about 1 to about 8.

14 Nonionic polyether block copolymers and polyether segments are exemplified by the block copolymers having the formulas:

16

- 2 in which x , y , z , i , and j have values from about 2 to about 800, preferably from
 4 about 5 to about 200, more preferably from about 5 to about 80, and wherein for
 6 each R^1 , R^2 pair, one is hydrogen and the other is a methyl group. Formulas
 8 (XXIV) through (XXVI) are oversimplified in that, in practice, the orientation of the
 10 isopropylene radicals within the B block will be random. This random orientation
 12 is indicated in formulas (XXVII) and (XXVIII), which are more complete. Such
 14 poly(oxyethylene)-poly(oxypropylene) block copolymers have been described by
 Santon, *Am. Perfumer Cosmet.*, 72(4):54-58 (1958); Schmolka, *Loc. cit.* 82(7):25-
 30 (1967); *Non-ionic Surfactants*, Schick, ed. (Dekker, N.Y., 1967), pp. 300-371.
 A number of such compounds are commercially available under such generic
 trade names as "lipoloxamers", "poloxamers", "Pluronic®", and "synperonics."
 poly(oxyethylene)-poly(oxypropylene) polymers within the B-A-B formula are often
 referred to as "reversed" Pluronic®, "Pluronic-R®" or "meroxapol."

The "polyoxamine" polymer of formula (XXVII) is available from BASF
 (Wyandotte, MI) under the tradename Tetronic®. The order of the polyoxyethylene
 and polyoxypropylene blocks represented in formula (XXVII) can be reversed,
 creating Tetronic-R®, of formula (XXVIII) also available from BASF. See,
 Schmolka, *J. Am. Oil. Soc.*, 59:110 (1979). Polyoxypropylene-polyoxyethylene
 block copolymers can also be designed with hydrophilic blocks comprising a
 random mix of ethylene oxide and propylene oxide repeating units. To maintain
 the hydrophilic character of the block, ethylene oxide will predominate. Similarly,
 the hydrophobic block can be a mixture of ethylene oxide and propylene oxide
 repeating units. Such block copolymers are available from BASF under the
 tradename Pluradot™.

2 A number of pluronics are designed to meet the following formula:

4

The values of m and n will usually represent a statistical average and the
 6 number of repeating units of the first block of a given molecule will generally not
 be exactly the number of repeating units of the third block. The characteristics of
 8 a number of block copolymers, described with reference to formula (XXIX), are as
 follows:

10

Copolymer	MW	Average # of oxypropylene units, n	Average # of oxyethylene units, n	HLB	CMC, μM^c
L31	1100	17.1	2.5	5	1180
L35	1900	16.4	21.6	19	5260
L43	1850	22.3	12.6	12	2160
L44	2200	22.8	20.0	16	3590
L61	2000	31.0	4.5	3	110
L62	2500	34.5	11.4	7	400
L64	2900	30.0	26.4	15	480
F68	8400	29.0	152.7	29	480
L81	2750	42.7	6.2	2	23
P84	4200	43.4	38.2	14	71
P85	4600	39.7	52.3	16	65
F87	7700	39.8	122.5	24	91
F88	11400	39.3	207.8	28	250
L92	3650	50.3	16.6	6	88
F98	13000	44.8	236.4	28	77
L101	3800	58.9	8.6	1	2.1

Copolymer	MW	Average # of oxypropylene units, n	Average # of oxyethylene units, n	HLB	CMC, μM^{c}
P103	4950	59.7	33.8	9	6.1
P104	5900	61.0	53.6	13	3.4
P105	6500	56.0	73.9	15	6.2
F108	14600	50.3	265.4	27	22
L121	4400	68.2	10.0	1	1
P123	5750	69.4	39.2	8	4.4
F127	12600	65.2	200.4	22	2.8

- 2 The average numbers of oxyethylene and oxypropylene units were calculated
 4 using the average molecular weights (MW) provided by the manufacturer. The
 6 hydrophilic-lipophilic balance (HLB) of the copolymers were determined by the
 8 manufacturer (BASF Co.). The critical micellization concentrations (CMC) were
 10 determined by the surface tension method described in Kabanov *et al.*,
Macromolecules 28: 2303-2314 (1995).
- 8 Some other specific poly(oxyethylene)-poly(oxypropylene) block copolymers
 relevant to the invention include:

No.	Block Copolymer	Formula	Hydrophobe Weight	Hydrophobe Percentage
1	F38	XXIV	900	20%
2	L42	XXIV	1200	80%
3	L63	XXIV	1750	70%
4	P65	XXIV	1750	50%
5	L72	XXIV	2050	80%
6	F75	XXIV	2050	50%
7	P77	XXIV	2050	30%
8	L122	XXIV	4000	80%
9	10R5	XXVI	1000	50%
10	10R8	XXVI	1000	20%
11	12R3	XXVI	1200	70%

No.	Block Copolymer	Formula	Hydrophobe Weight	Hydrophobe Percentage
12	17R1	XXVI	1700	90%
13	17R2	XXVI	1700	80%
14	17R4	XXVI	1700	60%
15	17R8	XXVI	1700	20%
16	22R4	XXVI	2200	60%
17	25R1	XXVI	2500	90%
18	25R2	XXVI	2500	80%
19	25R4	XXVI	2500	60%
20	25R5	XXVI	2500	50%
21	25R8	XXVI	2500	50%
22	31R1	XXVI	3100	90%
23	31R2	XXVI	3100	80%
24	31R4	XXVI	3100	60%
25	304	XXVII	500	60%
26	504	XXVII	1100	60%
27	701	XXVII	2200	90%
28	702	XXVII	2200	80%
29	704	XXVII	2200	60%
30	707	XXVII	2200	30%
31	901	XXVII	3300	90%
32	904	XXVII	3300	60%
33	908	XXVII	3300	20%
34	1101	XXVII	4400	90%
35	1102	XXVII	4400	80%
36	1104	XXVII	4400	60%
37	1107	XXVII	4400	30%
38	1301	XXVII	5500	90%
39	1302	XXVII	5500	80%
40	1304	XXVII	5500	60%
41	1307	XXVII	5500	30%
42	1501	XXVII	7000	90%

No.	Block Copolymer	Formula	Hydrophobe Weight	Hydrophobe Percentage
43	1502	XXVII	7000	80%
44	1504	XXVII	7000	60%
45	1508	XXVII	7000	20%
46	50R1	XXVIII	2100	90%
47	50R4	XXVIII	2100	60%
48	50R8	XXVIII	2100	20%
49	70R1	XXVIII	3000	90%
50	70R2	XXVIII	3000	80%
51	70R4	XXVIII	3000	60%
52	90R1	XXVIII	3900	90%
53	90R4	XXVIII	3900	60%
54	90R8	XXVIII	3900	20%
55	110R1	XXVIII	4800	90%
56	110R2	XXVIII	4800	80%
57	110R7	XXVIII	4800	30%
58	130R1	XXVIII	5700	90%
59	130R2	XXVIII	5700	80%
60	150R1	XXVIII	6700	90%
61	150R4	XXVIII	6700	60%
62	150R8	XXVIII	6700	20%

2 In a preferred embodiment, the compositions comprising a polynucleotide or
 4 derivative thereof and at least one block copolymer wherein the block copolymer
 6 is PLURONIC® F127 and L61. In another embodiment, the composition
 comprises a polynucleotide and at least one block copolymer, wherein the block
 copolymer is PLURONIC® P85.

8 The diamine-linked block copolymer of formula (XXVII) can also be a member
 10 of the family of diamine-linked polyoxyethylene-polyoxypropylene polymers of
 formula:

2

- 4 wherein the dashed lines represent symmetrical copies of the polyether extending
 off the second nitrogen, R^* an alkylene of about 2 to about 6 carbons, a
 6 cycloalkylene of about 5 to about 8 carbons or phenylene, for R^1 and R^2 , either (a)
 8 both are hydrogen or (b) one is hydrogen and the other is methyl, for R^3 and R^4
 either (a) both are hydrogen or (b) one is hydrogen and the other is methyl, if both
 10 of R^3 and R^4 are hydrogen, then one R^5 and R^6 is hydrogen and the other is
 methyl, and if one of R^3 and R^4 is methyl, then both of R^5 and R^6 are hydrogen.

The hydrophobic/hydrophilic properties of a given block copolymer depends
 12 upon the ratio of the number of oxypropylene groups to the number of
 14 oxypropylene groups. For a composition containing a single block copolymer of
 16 poly(oxyethylene)-poly(oxypropylene), for example, this relationship, taking into
 account the molecular masses of the central hydrophobic block and the terminal
 hydrophilic blocks, can be expressed as follows:

$$18 \quad n = \frac{H}{L} \cdot 1.32 \\ 20$$

- 22 in which H is the number of oxypropylene units and L is the number of
 24 oxyethylene units. In the general case of a block copolymer containing
 hydrophobic B-type segments and hydrophilic A-type segments, the hydrophobic-
 26 hydrophilic properties and micelle-forming properties are related to the value n as
 defined as:

2

$$n = (|B|/|A|) \times (b/a)$$

where $|B|$ and $|A|$ are the number of repeating units in the hydrophobic and hydrophilic blocks of the copolymer, respectively, and b and a are the molecular weights for the respective repeating units.

Selecting a block copolymer with the appropriate n value will depend upon the hydrophobic/hydrophilic properties of the specific agent, or the composite hydrophilic/hydrophilic properties of a mixture of agents to be formulated. Typically, n will range in value from about 0.2 to about 9.0, more preferably between about 0.25 and about 1.5. This range should be viewed not as numerically critical but as expressing the optimum hydrophobic/hydrophilic balance between the predominantly hydrophilic poly(oxyethylene) blocks, and the predominantly hydrophobic poly(oxypropylene) blocks.

An important aspect of the present invention-involves utilizing mixture of different block-copolymers of poly(oxyethylene)-poly(oxypropylene) to achieve a more specific hydrophobic-hydrophilic balance suitable for a given cytokine or mixture of several cytokines, preserving the optimal size of particles. For example, a first block copolymer may have an n of 1.0 whereas a second may have a value of 1.5. If material having an n of 1.3 is desired, a mixture of one weight portion of the first block copolymer and 1.5 weight portion of the second block-copolymer can be employed.

Thus, a more generalized relationship for such mixtures can be expressed as follows:

$$N = 1.32 \cdot \left[\frac{H_1 \cdot m_1}{(L_1) \cdot (m_1 + m_2)} + \frac{H_2 \cdot m_2}{(L_2) \cdot (m_1 + m_2)} \right]$$

24

in which H_1 and H_2 are the number of oxypropylene units in the first and second block copolymers, respectively; L_1 is the number of oxyethylene units in

- 2 the first block copolymer; L_2 is the number of oxyethylene units in the second
 4 block copolymer; m_1 is the weight proportion in the first block-copolymer; and m_2 is
 6 the weight proportion in the second block copolymer. Typically, N will range in
 value from about 0.2 to about 9.0, more preferably between about 0.25 and about
 1.5.

An even more general case of a mixture of K block copolymers containing
 8 hydrophobic B-type block copolymers and hydrophilic A-type block copolymers,
 the N value can be expressed as follows:

$$= \frac{b}{a} \sum_{i=1}^k \left[\frac{|B|_i}{|A|_i}, \frac{m_i}{M} \right]$$

10 where $|A|_i$ and $|B|_i$ are the numbers of repeating units in the hydrophilic (A-type) and hydrophobic (B-type) blocks of the i -th block copolymer, m is the weight
 12 proportion of this block copolymers, M is the sum of weight proportions of all block
 14 copolymers in the mixture ($M = \sum_{i=1}^k m_i$), and a and b are the molecular weights for
 the repeating units of the hydrophilic and hydrophobic blocks of these block
 copolymers respectively.

16 If only one block copolymer of poly(oxyethylene)-poly(oxypropylene) is
 utilized, N will equal n . An analogous relationship will apply to compositions
 18 employing more than two block copolymers of poly(oxyethylene)-
 poly(oxypropylene).

20 Where mixtures of block copolymers are used, a value N will be used, which
 22 value will be the weighted average of n for each contributing copolymers, with the
 24 averaging based on the weight portions of the component copolymers. The value
 N can be used to estimate the micelle-forming properties of a mixture of
copolymers. The use of the mixtures of block copolymers enhances solubility and
prevents aggregation of more hydrophobic block copolymers in the presence of

2 the serum proteins. Particularly, the mixtures comprise poly(oxyethylene)-
4 poly(oxypropylene) block copolymers with the ethylene oxide content of more than
6 50% solubilize hydrophobic block copolymers with ethylene oxide content of no
8 more than 50%. Preferably, the mixtures of block copolymers comprise block
10 copolymers with oxyethylene content of 70% or more and at least one block
12 copolymer with oxyethylene content of 50% or less. More particularly
14 PLURONIC® F127 is preferred. In such mixtures, the preferred ratio of the
16 hydrophilic and hydrophobic copolymer is at least 2:1 (w/w), preferably at least 5:1
18 (w/w), still more preferably at least 8:1 (w/w). When copolymers other than
20 polyethylene oxide-polypropylene oxide copolymers are used, similar approaches
can be developed to relate the hydrophobic/hydrophilic properties of one member
of the class of polymers to the properties of another member of the class.

14 Using the above parameters, one or more block copolymers of
16 poly(oxyethylene)-poly(oxypropylene) are combined so as to have a value for N of
18 from about 0.1 to about 9, more preferably from about 0.25 to about 1.5. The
20 combined copolymers form micelles, the value of N affecting in part the size of the
micelles thus produced. Typically, the micelles will have an average diameter of
from about 10 to about 25nm, although this range can vary widely. The average
diameter of any given preparation can be readily determined by quasi-elastic light
scattering techniques.

22 According to one embodiment of the present invention, the compositions
comprises a polynucleotide or derivative thereof and at least one polyethylene-
24 polypropylene block copolymer wherein the block copolymers form a molecular
solution or colloidal dispersion (the colloidal dispersion includes, but is not limited
26 to, a suspension, emulsion, microemulsion, micelles, polymer complexes, or other
types of molecular aggregates or species). In the molecular solution or colloidal
28 dispersion, the size of the molecular species formed by the block copolymers is
one major parameter determining usefulness of the compositions of the current

2 invention. After administration in the body large particles are eliminated by the
4 reticuloendothelial system and cannot be easily transported to the disease site
6 (see, for example, Kabanov *et al.*, *J. Contr. Release*, 22, 141 (1992); Volkheimer,
8 *Pathologe* 14:247 (1993); Kwon and Kataoka, *Adv. Drug. Del. Rev.* 16:295 (1995).
10 Also, the transport of large particles in the cell and intracellular delivery is limited
12 or insignificant. See, e.g., Labhasetwar *et al.* *Adv. Drug Del. Res.* 24:63 (1997). It
14 was demonstrated that aggregated cationic species with a size from 300 nm to
16 over 1 μm are ineffective in cell transfection, see Kabanov *et al.*, *Self-Assembling*
18 *Complexes for Gene Delivery. From Laboratory to Clinical Trial*, Kabanov *et al.*
20 (eds.), John Wiley, Chichester (1998) and references cited. Large particles,
22 particularly, those positively charged exhibit high toxicity in the body, in part due to
24 adverse effects on liver and embolism. See e.g., Volkheimer, *Pathologe* 14:247
26 (1993); Khopade *et al.*, *Pharmazie* 51:558 (1996); Yamashita *et al.*, *Vet. Hum.*
28 *Toxicol.*, 39:71 (1997). Small polymer species are nontoxic, can enter into small
capillaries in the body, transport in the body to a disease site, cross biological
barriers (including but not limited to the blood-brain barrier and intestinal
epithelium), absorb into cell endocytic vesicles, cross cell membranes and
transport to the target site inside the cell. The particles in that size range are
believed to be more efficiently transferred across the arterial wall compared to
larger size microparticles, see Labhasetwar *et al.*, *Adv. Drug Del. Res.* 24:63
(1997). Without wishing to be bound by any particular theory it is also believed
that because of high surface to volume ratio, the small size is essential for
successful targeting of such particles using targeting molecules. The preferred
range of the species formed in the compositions of the current invention is less
than about 300 nm, more preferred less than about 100 nm, still more preferred
less than about 50 nm.

28 In another aspect, the invention relates to a polynucleotide complex comprising a block copolymer at least one of formulas (I) - (XIII), wherein the A-

- 2 type and B-type blocks are substantially made up of repeating units of formula -O-R⁹, where R⁹ is:
- 4 (1) -(CH₂)_n-CH(R⁶), wherein n is an integer from 0 to about 5 and R⁶ is
hydrogen, cycloalkyl having 3-8 carbon atoms, alkyl having 1-6 carbon atoms,
6 phenyl, alkylphenyl wherein the alkyl has 1-6 carbon atoms, hydroxy, hydroxylalkyl, wherein the alkyl has 1-6 carbon atoms, alkoxy having 1-6 carbon atoms, an alkyl carbonyl group having 2-7 carbon atoms, alkoxy carbonyl, wherein the alkoxy has 1-6 carbon atoms, alkoxy carbonylalkyl, wherein the alkoxy and
8 alkyl each independently has 1-6 carbon atoms, alkylcarboxyalkyl, wherein each alkyl group has 1-6 carbon atoms, aminoalkyl wherein the alkyl group has 1-6 carbon atoms, alkylamine or dialkylamino, wherein each alkyl independently has 1-6 carbon atoms, mono- or di-alkylaminoalkyl wherein each alkyl independently has 1-6 carbon atoms, chloro, or chloroalkyl wherein the alkyl has from 1-6 carbon atoms, fluoro, fluoroalkyl wherein the alkyl has from 1-6 carbon atoms, cyano or
14 cyano alkyl wherein the alkyl has from 1-6 carbon atoms or carboxyl; (2) a carbocyclic group having 3-8 ring carbon atoms, wherein the group can be for example, cycloalkyl or aromatic groups, and which can include alkyl having 1-6 carbon atoms, alkoxy having 1-6 carbon atoms, alkylamino having 1-6 carbon atoms, dialkylamino wherein each alkyl independently has 1-6 carbon atoms, amino, sulfonyl, hydroxy, carboxy, fluoro or chloro substitutions, or (3) a heterocyclic group, having 3-8 ring atoms, which can include heterocycloalkyl or heteroaromatic groups, which can include from 1-4 heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and mixtures thereof, and which can include alkyl of 1-6 carbon atoms, alkoxy having 1-6 carbon atoms, alkylamino having 1-6 carbon atoms, dialkylamino wherein each alkyl independently has 1-6 carbon atoms, amino, sulfonyl, hydroxy, carboxy, fluoro, or chloro substitutions.
- 22 Preferably, n is an integer from 1 to 3. The carbocyclic or heterocyclic groups comprising R⁶ preferably have from 4-7 ring atoms, more preferably 5-6.

2 Heterocycles preferably include from 1-2 heteroatoms, more preferably, the
4 heterocycles have one heteroatom. Preferably, the heterocycle is a carbohydrate
6 or carbohydrate analog. Those of ordinary skill will recognize that the monomers
8 required to make these polymers are synthetically available. In some cases,
10 polymerization of the monomers will require the use of suitable protective groups,
12 as will be recognized by those of ordinary skill in the art. Generally, the A- and B-
14 type blocks are at least about 80% comprised of -OR⁵- repeating units, more
16 preferably at least about 90%, yet more preferably at least about 95%.

18 In another aspect, the invention relates to a polynucleotide complex
20 comprising a block copolymer of one of formulas (I) - (XIII) wherein the A-type and
22 B-type blocks consist essentially of repeating units of formula -O-R⁵ wherein R⁷ is
24 a C to C alkyl group.

26 The block copolymers utilized in the invention will typically, under certain
28 circumstances, form micelles of from about 10nm to about 100nm in diameter.
16 Micelles are supramolecular complexes of certain amphiphilic molecules that form
18 in aqueous solutions due to microphase separation of the nonpolar portions of the
20 amphiphiles. Micelles form when the concentration of the amphiphile reaches, for
22 a given temperature, a critical micellar concentration ("CMC") that is characteristic
24 of the amphiphile. Such micelles will generally include from about 10 to about 300
26 block copolymers. By varying the sizes of the hydrophilic and hydrophobic
28 portions of the block copolymers, the tendency of the copolymers to form micelles
at physiological conditions can be varied. The micelles have a dense core formed
by the water insoluble repeating units of the B blocks and charge-neutralized
nucleic acids, and a hydrophilic shell formed by the A blocks. The micelles have
translational and rotational freedom in solution, and solutions containing the
micelles have low viscosity similar to water. Micelle formation typically occurs at
copolymer concentrations from about 0.001 to 5% (w/v). Generally, the
concentration of polycationic polymers and polynucleic acid will be less than the

2 concentration of copolymers in the polynucleotide compositions, preferably at
least about 10-fold less, more preferably at least about 50-fold.

4 At high concentrations, some of the block copolymers utilized in the invention
will form gels. These gels are viscous systems in which the translational and
6 rotational freedom of the copolymer molecules is significantly constrained by a
continuous network of interactions among copolymer molecules. In gels,
8 microsegregation of the B block repeating units may or may not occur. To avoid
the formation of gels, polymer concentrations (for both block copolymers and
10 polyether/polycation polymers) will preferably be below about 15% (w/v), more
preferably below about 10%, still more preferably below about 5%. In the first
12 embodiment of the invention, it is more preferred that gels be avoided.

When the polynucleotide composition includes cationic components, the
14 cations will associate with the phosphate groups of the polynucleotide,
neutralizing the charge on the phosphate groups and rendering the polynucleotide
16 component more hydrophobic. The neutralization is preferably supplied by
cations on R-type polymeric segments or on polycationic polymers. However, the
18 phosphate charge can also be neutralized by chemical modification or by
association with a hydrophobic cations such as N-[1-(2,3-dioleyloxy)-propyl]-
20 N,N,N,-trimethylammonium chloride]. In aqueous solution, the charge-neutralized
polynucleotides are believed to participate in the formation of supramolecular,
22 micelle-like particles, termed "polynucleotide complexes." The hydrophobic core of
the complex comprises the charge-neutralized polynucleotides and the B-type
24 copolymer blocks. The hydrophilic shell comprises the A-type copolymer blocks.
The size of the complex will generally vary from about 10nm to about 100nm in
26 diameter. In some contexts, it is practical to isolate the complex from
unincorporated components. This can be done, for instance, by gel filtration
28 chromatography.

2 The ratio of the components of the polynucleotide composition is an important
4 factor in optimizing the effective transmembrane permeability of the
6 polynucleotides in the composition. This ratio can be identified as ratio \emptyset , which
8 is the ratio of positively charged groups to negatively charged groups in the
10 composition at physiological pH. If $\emptyset < 1$, the complex contains non-neutralized
12 phosphate from the polynucleotide. The portions of the polynucleotides adjacent
14 to the non-neutralized charges are believed to be a part of the shell of a
16 polynucleotide complex. Correspondingly, if $\emptyset > 1$, the polycationic polymer or R-
18 type segment will have non-neutralized charges, and the un-neutralized portions
20 will fold so that they form a part of the shell of the complex. Generally, \emptyset will vary
from about 0 (where there are no cationic groups) to about 100, preferably \emptyset will range between about 0.01 and about 50, more preferably, between about 0.1 and
about 20. \emptyset can be varied to increase the efficiency of transmembrane transport
and, when the composition comprises polynucleotide complexes, to increase the
stability of the complex. Variations in \emptyset can also affect the biodistribution of the
complex after administration to an animal. The optimal \emptyset will depend on, among
other things, (1) the context in which the polynucleotide composition is being
used, (2) the specific polymers and oligonucleotides being used, (3) the cells or
tissues targeted, and (4) the mode of administration.

Surfactant-Containing Polynucleotide Compositions. The invention also
includes compositions of polynucleotides, cationic copolymer, and a suitable
surfactant. The surfactant, should be (i) cationic (including those used in various
transfection cocktails), (ii) nonionic (e.g., Pluronic or Tetronic), or (iii) zwitterionic
(including betains and phospholipids). These surfactants increase solubility of the
complex and increase biological activity of the compositions.

Suitable cationic surfactants include primary amines, secondary amines,
tertiary amines (e.g., N,N',N'-polyoxyethylene(10)-N-tallow-1,3-diaminopropane),
quaternary amine salts (e.g., dodecyltrimethylammonium bromide, hexadecyl-

2 trimethylammonium bromide, mixed alkyltrimethylammonium bromide,
4 tetradecyltrimethylammonium bromide, benzalkonium chloride, benzethonium
chloride, benzylidimethyldodecylammonium chloride, benzylidimethylhexa-
decylammonium chloride, benzyltrimethylammonium methoxide,
6 cetyltrimethylammonium bromide, dimethyl dioctadecyl ammonium bromide,
methylbenzethonium chloride, decamethonium chloride, methyl mixed trialkyl
8 ammonium chloride, methyl trioctylammonium chloride, N,N-dimethyl-N-[2-(2-
methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxyethoxy)ethyl]benzenemethanaminium
10 chloride (DEBDA), dialkyldimethylammonium salts, N-[1-(2,3-dioleyloxy)-propyl]-
N,N,N-trimethylammonium chloride, 1,2-diacyl-3-(trimethylammonio)propane (acyl
12 group = dimyristoyl, dipalmitoyl, distearoyl, dioleoyl), 1,2-diacyl-3-
(dimethylammonio)propane (acyl group = dimyristoyl, dipalmitoyl, distearoyl,
14 dioleoyl), 1,2-dioleoyl-3-(4'-trimethylammonio) butanoyl-syn-glycerol, 1,2-dioleoyl-
3-succinyl-syn-glycerol choline ester, cholesteryl (4'-trimethylammonio)
16 butanoate), N-alkyl pyridinium salts (e.g. cetylpyridinium bromide and
cetylpyridinium chloride), N-alkylpiperidinium salts, dicationic bolaform electrolytes
18 ($C_{12}Me_6$; $C_{12}Bu_6$), dialkylglycerylphosphorylcholine, lysolecithin, L- α -dioleoyl
phosphatidylethanolamine), cholesterol hemisuccinate choline ester,
20 lipopolyamines (e.g., dioctadecylamidoglycylspermine (DOGS), dipalmitoyl
phosphatidylethanolamidospermine (DPPE), lipopoly-L(or D)-lysine (LPLL,
22 LPDL), poly(L (or D)-lysine conjugated to N-glutarylphosphatidylethanolamine,
didodecyl glutamate ester with pendant amino group ($C_{12}GluPhC_nN^+$), ditetradecyl
24 glutamate ester with pendant amino group ($C_{14}GluC_nN^+$), cationic derivatives of
cholesterol (e.g., cholesteryl-3 β -oxysuccinamidoethylenetriethylammonium salt,
26 cholesteryl-3 β -oxysuccinamidoethylenedimethylamine, cholesteryl-3 β -
carboxyamidoethylenetriethylammonium salt, cholesteryl-3 β -carboxylamido-
28 ethylenedimethylamine, 3 β [N-(N',N'-dimethylaminoetane-carbamoyl] cholesterol).

2 Suitable non-ionic surfactants include *n*-Alkylphenyl polyoxyethylene ether, *n*-alkyl polyoxyethylene ethers (e.g., TritonsTM), sorbitan esters (e.g., SpansTM),
4 polyglycol ether surfactants (TergitolTM), polyoxyethylenesorbitan (e.g., TweensTM), polysorbates, polyoxyethylated glycol monoethers (e.g., BrijTM, polyoxylethylene 9
6 lauryl ether, polyoxylethylene 10 ether, polyoxylethylene 10 tridecyl ether), lubrol, copolymers of ethylene oxide and propylene oxide (e.g., PluronicTM, Pluronic RTM,
8 TeronicTM, PluradotTM), alkyl aryl polyether alcohol (TyloxapolTM), perfluoroalkyl polyoxylated amides, N,N-bis[3-D-gluconamidopropyl]cholamide, decanoyl-N-methylglucamide, *n*-decyl α-D-glucopyranoside, *n*-decyl β-D-glucopyranoside, *n*-decyl β-D-maltopyranoside, *n*-dodecyl β-D-glucopyranoside, *n*-undecyl β-D-glucopyranoside, *n*-heptyl β-D-glucopyranoside, *n*-heptyl β-D-thioglucopyranoside, *n*-hexyl β-D-glucopyranoside, *n*-nonanoyl β-D-glucopyranoside 1-monooleyl-rac-glycerol, nonanoyl-N-methylglucamide, *n*-dodecyl α-D-maltoside, *n*-dodecyl β-D-maltoside, N,N-bis[3-gluconamidepropyl]deoxycholamide, diethylene glycol monopentyl ether, digitonin, heptanoyl-N-methylglucamide, heptanoyl-N-methylglucamide, octanoyl-N-methylglucamide, *n*-octyl β-D-glucopyranoside, *n*-octyl α-D-glucopyranoside, *n*-octyl β-D-thiogalactopyranoside, *n*-octyl β-D-thioglucopyranoside.

20 Suitable zwitterionic surfactants include betaine ($R_1R_2R_3N^+R'CO_2^-$, where $R_1R_2R_3R'$ are hydrocarbon chains and R_1 is the longest one), sulfobetaine ($R_1R_2R_3N^+R'SO_3^-$), phospholipids (e.g., dialkyl phosphatidylcholine), 3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate, N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, N-octadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, N-octyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, and dialkyl phosphatidylethanolamine.

2 Polynucleotides/Nucleic acids. A wide variety of polynucleotides or nucleic
acid molecules can be the polynucleotide component of the compositions. These
4 include viruses, natural and synthetic DNA or RNA molecules, analogs thereof, or
derivatives thereof, and nucleic acid molecules that have been covalently modified
6 (to incorporate groups including lipophilic groups, photo-induced crosslinking
groups, alkylating groups, organometallic groups, intercalating groups, lipophilic
8 groups, biotin, fluorescent, and radioactive groups, and groups that modify the
phosphate backbone). Such nucleic acid molecules are, but not limited to,
10 antisense nucleic acid molecules, viruses, viral vectors, gene-encoding DNA
(usually including an appropriate promoter sequence), ribozymes, aptamers,
12 antigen nucleic acids, oligonucleotide α -anomers, ethylphosphotriester analogs,
alkylphosphomates, phosphorothionate and phosphorodithionate oligonucleotides,
14 and the like. Further, the polynucleotides can be nucleic acid molecules encoding
a secreted or non-secreted protein or peptide, vaccines or antigens. In fact, the
16 nucleic acid component can be any nucleic acid that can beneficially be
transported into a cell with greater efficiency, or stabilized from degradative
18 processes, or improved in its biodistribution after administration to an animal.

Targeting molecules. It will in some circumstances be desirable to
20 incorporate, by noncovalent association, targeting molecules. See for example,
Kabanov et al., *J. Controlled Release*, 22:141 (1992), the contents of which are
22 hereby incorporated by reference. The targeting molecules that can be
associated with the composition typically have a targeting group having affinity for
24 a cellular site and a hydrophobic group. The targeting molecule will
spontaneously associate with the polynucleotide complex and be "anchored"
26 thereto through the hydrophobic group. These targeting adducts will typically
comprise about 10% or less of the copolymers in a composition.

28 In the targeting molecule, the hydrophobic group can be, among other things,
a lipid group such as a fatty acyl group. Alternately, it can be a block copolymer

2 or another natural synthetic polymer. The targeting group of the targeting
4 molecule will frequently comprise an antibody, typically with specificity for a certain
cell surface antigen. It can also be, for instance, a hormone having a specific
interaction with a cell surface receptor, or a drug having a cell surface receptor.
6 For example, glycolipids could serve to target a polysaccharide receptor. It should
be noted that the targeting molecule can be attached to any of the polymer blocks
8 identified herein, including R-type polymeric blocks and to the polycationic
polymers. For instance, the targeting molecule can be covalently attached to the
10 free-terminal groups of the polyether segment of the block copolymer of the
invention. Such targeting molecules can be covalently attached to the -OH end
12 group of the polymers of the formulas XVIII, XIX, XX, and XXI, and the -NH₂ end
group of the polymers of formulas XVIII (preferably the ε-amino group of the
14 terminal lysyl residue), XX or XXIII, or the -COOH end group of the polymers of
formulas XVIII and XIX. Targeting molecules can be used to facilitate intracellular
16 transport of the polynucleotide composition, for instance transport to the nucleus,
by using, for example, fusogenic peptides as targeting molecules described by
18 Soukchareun *et al.*, *Bioconjugate Chem.*, 6:43 (1995), or Arar *et al.*, *Bioconjugate
Chem.*, 6:43 (1995), caryotypic peptides, or other biospecific groups providing
20 site-directed transport into a cell (in particular, exit from endosomal compartments
into cytoplasm, or delivery to the nucleus).

22 The polynucleotide component of the compositions can be any polynucleotide,
but are preferably a polynucleotide with at least about 3 bases, more preferably at
24 least about 5 bases. Still more preferred are at least 10 bases. Included among
the suitable polynucleotides are viral genomes and viruses (including the lipid or
26 protein viral coat). This includes viral vectors including, but not limited to,
retroviruses, adenoviruses, herpes-virus, or Pox-virus. Other suitable viral vectors
28 for use with the present invention will be obvious to those skilled in the art. The

2 terms "poly(nucleic acid)" and "polynucleotide" are used interchangeably herein.
An oligonucleotide is a polynucleotide, as are DNA and RNA.

4 A polynucleotide derivative is a polynucleotide having one or more moieties (i)
wherein the moieties are cleaved, inactivated or otherwise transformed so that the
6 resulting material can function as a polynucleotide, or (ii) wherein the moiety does
not prevent the derivative from functioning as a polynucleotide.

8 Therapeutic applications. The present compositions can be used in a variety
of treatments. In a preferred embodiment, the compositions are used to induce
10 activation or proliferation of dendritic cells and to increase the immune response in
animals by administering the above described compositions. Preferably, the
12 compositions for inducing activation of dendritic cells comprise a polynucleotide
and at least one polyoxyethylene-polyoxypropylene block copolymer. More
14 preferably, the block copolymers are PLURONIC F127 and L61. In an even more
16 preferred embodiment, the block copolymers are a mixture of about 2% w/v F127
18 and 0.025% L61. In other specific embodiments, the block copolymers are a 10
fold dilution of PLURONIC F127/PLURONIC L61, and in another embodiment the
block copolymers are a 100 fold dilution of PLURONIC F127/PLURONIC L61. In
another specific embodiment, the block copolymers are a mixture of PLURONIC
20 F127 and L61 in a ratio of 8:1.

For example, the compositions can be used in gene therapy including gene
22 replacement or excision therapy, and gene addition therapy (B. Huber, *Gene
therapy for neoplastic diseases*; B.E. Huber and J.S. Lazo Eds., The New York
24 Academy of Sciences, N.Y., N.Y., 1994, pp. 6-11). Also, antisense therapy
targets genes in the nucleus and/or cytoplasm of the cell, resulting in their
26 inhibition (Stein and Cheng, *Science* 261:1004 (1993); De Mesmaeker *et al.*, *Acc.
Chem. Res.*, 28:366 (1995)). Aptamer nucleic acid drugs target both intra-and
28 extracellular proteins, peptides and small molecules. See Ellington and Szostak,
Nature (London), 346:818 (1990). Antigen nucleic acid compounds can be used

2 to target duplex DNA in the nucleus. See Helene and Tolume, *Biochim, Biophys.,*
Acta 1049:99 (1990). Catalytic polynucleotides target mRNA in the nucleus
4 and/or cytoplasm. Cech, *Curr. Opp. Struct. Biol.*, 2:605 (1992).

6 Examples of genes to be replaced, inhibited and/or added include genes
8 encoding therapeutic secreted proteins, non-secreted proteins, vaccines and
10 antigens, adenosine deaminase, tumor necrosis factor, cell growth factors, Factor
12 IX, interferons (such as α -, β -, and γ -interferon), interleukins (such interleukin 2, 4,
14 6, and 12), HLA-B7, HSV-TK, CFTR, HIV -1, β -2, microglobulin, retroviral genes
16 (such as *gag*, *pol*, *env*, *tax*, and *rex*), cytomegalovirus, herpes viral genes (such as
18 herpes simplex virus type I and II genes ICP27/UL54, ICP22/US1, ICP/IE175,
20 protein kinase and exonuclease/UL13, protein kinase/US3, ribonuclease
reductase ICP6/UL39, immediate early (IE) mRNA IE3/IE175/ICP4,
22 1E4/ICP22/US1, IE5/ICP47, IE110, DNA polymerase/UL30, UL13), human
multidrug resistance genes (such as *mdr1*), oncogenes (such as H-c-ras, c-myb, c-
24 myb, bcl-2, bcr/abl), tumor suppressor gene p53, human MHC genes (such as
26 class 1 MHC), immunoglobulins (such as IgG, IgM, IgE, IgA), hemoglobin α - and
28 β - chains, enzymes (such as carbonic anhydrase, triosephosphate isomerase,
GTP-cyclhydrdolase I, phenylalanine hydrolase, sarcosine dehydrogenase,
glucocerobrosidase, glucose-6-phosphate dehydrogenase), dystrophin,
fibronectin, apolipoprotein E, cystic fibrosis transmembrane conductance protein, c-
src protein, V(D)J recombination activating protein, immunogenes, peptide and
protein antigens ("DNA vaccines") and the like.

24 More than one plasmid or gene can be expressed according to this invention.
This can include at least one gene expressing an antigen and at least one gene
26 expressing a molecule that can activate dendritic cells or other antigen presenting
cells and thus serve as an adjuvant for enhanced antigen presentation and
28 induced immune response; e.g. a cytokine. Examples of such adjuvants include
but are not limited to interleukins, such as interleukin-12, Flt3 ligand, GM-CSF,

2 CD40 ligand. The antigen can be any product for which an immune response is
4 produced. In addition, either antigen or adjuvant protein can be added in
4 combination with the gene therapy. For example, FLT-3 ligand can be injected in
the body with the plasmid or retrovirus encoding the antigen.

6 A MIXTURE OF PLURONIC F127/PLURONIC L61 has the capability to
8 induce NF- κ B-driven genes known like cytokines and chemokines that are to
10 provoke infiltration of dendritic cells. As shown below, SP1O17 has a promoter
12 dependence and seems to favor activation of the transcription factor NF- κ B.
14 Studies have demonstrated that DNA constructs driven by CMV promoter or NF- κ B-sensitive
16 element cassette are considerably more responsive to the
18 PLURONIC F127/PLURONIC L61 carrier effect compared to the constructs under
20 SV-40 promoter or AP- 1-sensitive cassette, suggesting that in addition to the
22 delivery effect, PLURONIC F127/PLURONIC L61 acts as a biological response
24 modifier by interfering with transcriptional control of the transgene expression.

16 The p65 subunit of NF- κ B (also known as RelA, NF κ B3 and NF- κ B p65
18 subunit) is a member of the Rel/NF- κ B family of transcription factors which
20 includes p50, cRel, p52 and RelB. NF- κ B p65 subunit was first isolated from
22 Jurkat T cells using a probe that spanned a conserved domain to the proto-
24 oncogene cRel (Ruben et al., *Science*, 1991, **251**, 1490-1493) and since that time,
26 a naturally occurring transforming variant of the protein has been shown to exist
28 (Narayanan et al., *Science*, 1992, **256**, 367-370). In addition, the NF- κ B binding
DNA sequence has been found in various genes and it has been shown that it is
actually important for the expression of the function of genes. The binding
sequence of NF- κ B (κ B motifs) is composed of about 10 bases having a common
sequence which starts with a cluster of G (guanine) and ends with a cluster of C
(cytosine) (consensus sequence 5'-GGGRNNYCCC-3'). However, a number of
sequences to which DNA binding proteins can be bonded are present on the
genes of interleukin- 1 (to be referred to as IL-1 hereinafter in some cases) and

2 tumor necrosis factor (to be referred to as TNF hereinafter in some cases) which
4 are known as inflammatory proteins, and it is known that the NF- κ B binding
6 sequence is also present therein (Clark, B. D. et al., *Nuci. Acids Res.*, **14**, 7898,
8 1984; Nedospasov, S. A. et al., *Cold Spring Harb. Symp. Quant. Biol.*, **51**, 611,
1986). It has been reported that the binding of NF- κ B inhibits transcription to
mRNA (Hiscott, J. et al., *Mol. Cell. Biol.*, **13**, 6231, 1993; Collart, M. A. et al., *Mol.
Cell. Biol.*, **10**, 1498, 1990).

Genetic diseases can also be treated by the instant compositions. Such
10 diseases include, rheumatoid arthritis, psoriasis, Crohn's disease, ulcerative
12 colitis, α -thalassemia, β -thalassemia, carbonic anhydrase II deficiency syndrome,
14 triosephosphate isomerase deficiency syndrome, tetrahydrobiopterindeficient
16 hyperphenylalaniemia, classical phenylketonuria, muscular dystrophy such as
18 Duchenne Muscular Dystrophy, hypersarkosinemia, adenomatous intestinal
polyposis, adenosine deaminase deficiency, malignant melanoma, glucose-6-
phosphste dehydrogenase deficiency syndrome, arteriosclerosis and
hypercholesterolemia, Gaucher's disease, cystic fibrosis, osteopetrosis, increased
spontaneous tumors, T and B cell immunodeficiency, high cholesterol, arthritis
including chronic rheumatoid arthritis, glaucoma, alcoholism and the like.

20 The compositions can also be used to treat neoplastic diseases including, but
not limited to, breast cancer (e.g., breast, pancreatic, gastric, prostate, colorectal,
22 lung, ovarian), lymphomas (such as Hodgkin and non-Hodgkin lymphoma),
melanoma and malignant melanoma, advanced cancer hemophilia B, renal cell
24 carcinoma, gliblastoma, astrocytoma, gliomas, AML and CML and the like.

Additionally, the compositions can be used to treat (i) cardiovascular diseases
26 including but not limited to stroke, cardiomyopathy associated with Duchenne
Muscular Dystrophy, myocardial ischemia, restenosis and the like, (ii) infectious
28 diseases such as Hepatitis, HIV infections and AIDS, Herpes, CMV and
associated diseases such as CMV reinitis, (iii) transplantation related disorders

2 such as renal transplant rejection and the like, and (iv) are useful in vaccine
therapies and immunization, including but not limited to melanoma vaccines, HIV
4 vaccines, malaria, tuberculosis, and the like. The compositions are useful in all
applications where polynucleotides and viruses are used for vaccination and
6 immunization.

8 Target Cells. The present invention is also directed to a method of delivering
a polynucleotide to a cell comprising administering a composition of the present
invention. In one embodiment, the method of delivering a polynucleotide to a cell
10 comprises administering a composition comprising a polynucleotide or derivative
thereof and at least one polyethylene-polypropylene block copolymer, wherein the
12 block copolymer is present in amounts insufficient for gel formation. In another
embodiment, the block copolymer is present at a concentration below about 15%
14 wt/vol, more preferably at a concentration below about 10% wt/vol, and most
preferably, in concentrations below about 5%. A further embodiment, the
16 composition forms a molecular solution or colloidal dispersion, more particularly,
the colloidal dispersion is a suspension, emulsion, microemulsion, micelle,
18 polymer complex or other types of molecular aggregates.

20 Target cells for the delivery of a polynucleotide composition are, but not limited
to, dendritic cells prokaryotic or eukaryotic cells, preferably animal cells, more
preferably mammalian cells, and most preferably human cells. Cell targets can be
22 *ex vivo* and/or *in vivo*, and include T and B lymphocytes, primary CML, tumor
infiltrating lymphocytes, tumor cells, leukemic cells (such as HL-60, ML-3, KG-1
24 and the like), skin fibroblasts, myoblasts, cells of central nervous system including
primary neurons, liver cells, carcinoma (such as Bladder carcinoma T24, human
26 colorectal carcinoma Caco-2), melanoma, CD34+ lymphocytes, NK cells,
macrophages, hematopoietic cells, neuroblastoma (such as LAN-5 and the like),
28 gliomas, lymphomas (such as Burkitt lymphomas ST486), JD38), T-cell
hybridomas, muscle cells such as primary smooth muscle, and the like.

2 Methods of use. The polynucleotide compositions of the present invention
can be used for treatment of animals, including, but not limited to animals such as
4 chickens, pigs, cows, cats, dogs, horses, fish, shrimp, and preferably to mammals,
and most preferably humans. The polynucleotide compositions of the invention
6 can be administered orally, topically, rectally, vaginally, by pulmonary route by use
of an aerosol, or parenterally, *i.e.* intramuscularly, intradermally, subcutaneously,
8 intraperitoneally or intravenously. For inducing activation of dendritic cells and for
increasing the immune response in an animal, the preferred routes of
10 administration include, but are not limited to intravenous, oral, intradermal,
intramuscularly, subcutaneously or intraperitoneally. Preferably, the route of
12 administration is direct injection into the tumor. The polynucleotide compositions
can be administered alone, or it can be combined with a pharmaceutically-
14 acceptable carrier or excipient according to standard pharmaceutical practice. For
oral administration, the polynucleotide compositions can be used in the form of
16 tablets, capsules, lozenges, troches, powders, syrups, elixirs, aqueous solutions
and suspensions, and the like. In the case of tablets, carriers that can be used
18 include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants
such as starch, and lubricating agents such as magnesium stearate, sodium lauryl
20 sulfate and talc, are commonly used in tablets. For oral administration in capsule
form, useful diluents are lactose and high molecular weight polyethylene glycols.
22 When aqueous suspensions are required for oral use, the polynucleotide
compositions can be combined with emulsifying and suspending agents. If
24 desired, sweetening and/or flavoring agents can be added. For parenteral
administration, sterile solutions of the conjugate are usually prepared, and the pH
26 of the solutions are suitably adjusted and buffered. For intravenous use, the total
concentration of solutes should be controlled to render the preparation isotonic.
28 For ocular administration, ointments or droppable liquids may be delivered by
ocular delivery systems known to the art such as applicators or eye droppers.

2 Such compositions can include mucomimetics such as hyaluronic acid,
4 chondroitin sulfate, hydroxypropyl methylcellulose or poly(vinyl alcohol),
6 preservatives such as sorbic acid, EDTA or benzylchronium chloride, and the
usual quantities of diluents and/or carriers. For pulmonary administration, diluents
and/or carriers will be selected to be appropriate to allow the formation of an
aerosol.

8 For intramuscular administration, the formulation of the polynucleotides will be
10 without any polycationic moiety since naked polynucleotides itself can be
transferred and expressed in muscle without any polycation- containing delivery
systems. The muscle has the following features: unique cytoarchitecture, multiple
12 nuclei per myotubes, specific-polynucleotides binding proteins (tradin), and
unique nucleocytoplasmic transport. At present, it is still unclear as to which
14 features listed above may be responsible for the uptake and expression of naked
polynucleotides in muscle. Cationic complexes of polynucleotides have been
16 shown to enhance uptake and gene expression in virtually all tissue types but
surprisingly the same complexes do not contribute to a better uptake and gene
18 expression in muscle. In fact, cationic complexation of polynucleotides inhibit
uptake and gene expression in muscle and reported by several laboratories.
20 Thus, for intramuscular injection of polynucleotides, complexation of
polynucleotides should be avoided. This invention uses nonionic block
22 copolymers for intramuscular delivery of polynucleotides. Block copolymers alone
are totally inefficient at transferring genetic material in cells *in vitro* and *in vivo* (see
24 example 42). Moreover, unlike polycation-containing block copolymers, the above
nonionic block copolymers do not increase gene expression in the peripheral
26 organs such as lungs, liver, kidneys.

The following examples will serve to further typify the nature of the invention
28 but should not be construed as a limitation on the scope thereof.

2

Example 1
Transfection Efficiencies

4 This experiment introduced plasmid p β -Gal into NIH 3T3 cells, a mouse
6 mammary tumor cell line. Plasmid p β -Gal comprises plasmid pUC19 (available
8 from the Institute of Gene Biology, Russian Academy of Sciences) into which a
10 hybrid of a eukaryotic transcription unit and a *E. coli* β -galactosidase has been
12 incorporated. With this plasmid, the efficiency of cell uptake can be measured by
14 measuring β -galactosidase activity extractable from the treated cells. The
16 copolymer utilized was a triblock copolymer of formula (XIV) wherein x plus z was
18 51 and y was 39 (hereinafter "Pluronic A"). The polycation used was poly(N-ethyl-
20 4-vinylpyridinium bromide) ("pEVP-Br"). A 10 μ g/ml solution of p β -Gal
22 (predominantly supercoiled) was prepared in a solution of PBS containing
24 10mg/ml of Pluronic A and 45 μ g/ml of pEVP-Br. These amounts were calculated
26 to provide a ratio of polycation basic groups to plasmid phosphate groups of about
28 10. The ratio of Pluronic A to DNA was about 10⁴. This stock preparation was
30 filter sterilized and a portion was diluted ten fold with serum-free Dulbecco's
32 Modified Eagle's Medium ("DMEM"), so that the concentration of p β -Gal was 1
34 μ g/ml. This solution was the "Pluronic A transfecting medium."

20 The NIH 3T3 cells were grown in monolayer culture at 37°C under 5% CO₂,
22 using a DMEM medium containing 2 mM glutamine and 10% fetal calf serum
24 ("FCS"). Cells were grown in monolayer culture were scraped and prepared for
26 the transaction process by washing three times with fresh medium.

28 Aliquots of washed cells that were to be transformed by the method of the
30 invention were suspended at a concentration of 10⁶ cells/ml in Pluronic A
32 transfecting medium. The suspended cells were incubated for 2 hours at 37°C
34 and under 5% CO₂. The cells were then washed with fresh medium and re-plated.

28 Aliquots of cells that were to be transfected by calcium phosphate
30 precipitation were transfected as recommended by Promega of Madison,
32 Wisconsin, in their manuscript *Profection Mammalian Transfection Systems*,

2 Technical Manual, 1990. Specifically, p β -Gal was mixed with 0.25M CaCl₂. The
mixture was mixed with an equal volume of 2x HBS (Hanks Buffer Salt, available
4 from GIBCO, Grand Island, NY) to create a mixture containing 1 μ g/mL p β -Gal.
The opaque mixture was incubated at room temperature for 10 minutes and then
6 applied to the cells. The suspended cells were incubated for 2 hours at 37°C and
under 5% CO₂. The cells were then washed with fresh medium and re-plated.

8 The repeated cells were incubated for 48 hours in DMEM medium containing
10 10% FCS. During the incubation, the medium was replaced with fresh medium at
16 hours. After the 48 hour incubation, the cells for each incubation were
10 collected by scrapping, washed with PBS, and resuspended in 100 μ l of 0.2 M
12 Tris-HCL (pH 7.4). The cells were lysed with several freeze/thaw cycles, and
centrifuged at an excess of 6,000 x/g. 50 μ l of supernatant was removed from
14 each lysate tube and mixed with 50 μ l of a solution of 0.1 mM 4-methyl-
umbelliferril- β -D-galactopyranoside (the substrate), 0.1 M sodium phosphate (pH
16 7.4). Each mixture was incubated for 20 min. at 37°C to allow any β -
galactosidase present to act on the substrate. 50 μ l of 0.4 M glycine, pH 10.5,
18 was added to terminate the β -galactosidase reaction. β -galactosidase activity was
indicated by the presence of methylumbelliferon, which can be measured by
20 fluorescence spectroscopy (λ_{ex} = 365 nm, λ = 450 nm). The results were as
follows:

22

Treatment	Relative Enzyme Activity \pm SEM (n = 4)
Pluronic A	320 \pm 42
Calcium Phosphate Precipitation	17 \pm 5

24

Example 2Transfection Efficiencies

2 In these experiments, transfection efficiencies with MDCK cells (derived from
4 canine kidney) were examined. As above, p β -Gal was the indicator
6 polynucleotide. The polycation component of the polynucleotide comprised a
8 copolymer of N-ethyl-4-vinylpyridinium bromide and N-cetyl-4-vinylpyridinium
10 bromide, the monomers incorporated in a molar ratio of 97:3, respectively
12 (hereinafter "pEVP-co-pCVP-Br"). The block copolymer comprised a triblock
copolymer of formula (XIV) wherein x+z was 18, and y was 23 (hereinafter
"Pluronic B"). A Pluronic B transfecting solution of 1 μ g/ml p β -Gal, 3 μ g/ml PEVP-
co-pCVP-Br, and 1% (w/v) Pluronic B was prepared in Example 1. The ratio of
polycation basic groups to nucleotide Phosphates was about 7. The weight ratio
of Pluronic B to p β -Gal was about 5×10^3 .

MDCK cells were plated at 8-10⁵ cells per plate onto 90 mm plates and
incubated overnight under serum-containing growth medium. The serum
containing medium was then replaced with serum-free medium, and the cells were
incubated at 37°C, under 5% CO₂ for 24 hours. For the cells to be treated with
polynucleotide complex, the medium was then replaced with 5 ml Pluronic B
transfecting solution. The cells were incubated, with gentle rocking, at 37°C,
under 5% CO₂. In control experiments, cells were transfected with polynucleotide
complex, the medium was then replaced with 5 ml Pluronic B transfecting solution.
The cells were incubated, with gentle rocking, at 37°C, under 5% CO₂, for 2 hours.
In control experiments, cells were transfected using the calcium phosphate
procedure as described above (except that plated cells, not suspended cells, were
transfected).

After treatment with Pluronic B transfecting solution or calcium phosphate, the
cells were washed 5-6 times with fresh medium. They were then incubated in
DMEM containing 10% FCS for 48 hours at 37°C, under 5% CO₂. After the first
16 hours of this incubation, the medium was replaced. After the incubation, the
cells were washed with PBS, released from their plates by trypsinization, and

2 again washed with PBS. β -Galactosidase was measured as described for
 Example 1. The results were as follows:

Treatment	Relative β -galactosidase activity \pm SEM (n = 4)
Pluronic B	910 \pm 45
Calcium Phosphate Precipitation	81 \pm 17

4

6

Example 3
Transfection Experiments

In these experiments, transfection efficiencies with Chinese hamster ovary
 (CHO) cells were examined. The polynucleotic component of the polynucleotic
 complex was p β -Gal. The polycation component comprised pEVPBr. The block
 copolymer comprised an octablock copolymer formula (XVII), wherein i was equal
 to 10 and j was equal to 12 (hereinafter "Pluronic C" available from BASF). A
 Pluronic C transfecting solution of 1 μ g/ml p β -Gal, 4 μ g/ml pEVP-Br, and 1% (w/v)
 Pluronic C was prepared as in Example 1. The ratio of basic groups to nucleotide
 phosphates was 10. The weight ratio of Pluronic C to p β -Gal was 10³. The
 transfection protocol was the same as that used in Example 2. The results were
 as follows:

Treatment	Relative β -galactosidase activity \pm SEM (n = 4)
Pluronic B	910 \pm 45
Calcium Phosphate Precipitation	81 \pm 17

18

2

Example 4
Bacterial Transformation

4 In these experiments, transformation efficiencies using the MC5 strain of
 6 *Bacillus subtilis* were examined. The polynucleotide component of the
 8 polynucleotide complex was plasmid pBC16, a plasmid encoding tetracycline
 10 resistance. A block copolymer according to formula (VI) was used. In particular,
 12 the block copolymer was a poly(oxyethylene)-poly((N-ethyl-4-vinylpyridinium
 14 bromide) of formula (XXI), wherein i was 44, and j was 20. A stock solution of
 16 second embodiment polynucleotide complex was prepared consistent with the
 18 transfection solutions described above. The ratio of copolymer basic groups to
 DNA phosphates in the solution was 0.2. Bacteria were suspended in Spizizen 11,
 a transformation media (see, Spizizen, F.N.A.S., U.S.A. 44:1072 (1958)), and
 aliquots of cells were incubated in varying concentrations of either polynucleotide
 complex or free pBC16. The cells were incubated with complex or free DNA for
 one hour at 37°C. Following the incubation, the cells were plated onto agar media
 containing 10 mg/ml tetracycline. The results, measured by the number of
 tetracycline-resistant colonies produced under each of the experimental
 conditions, were as follows:

20

DNA concentration (ng/ml)	Transformation (10^6 clones/ng DNA)	
	Polynucleotide Complex	Free Polynucleotide
5	300 (± 15)	0
10	450 (± 22)	3 (± 1)
20	400 (± 26)	3 (± 4)
50	220 (± 17)	20 (± 5)

2

Example 5
Protection from Nuclease

4 For this example, a complex of plasmid pTZ19 and a diblock copolymer of
 6 formula (XXI) (poly(oxyethylene)-poly((N-ethyl-4vinylpyridinium bromide), wherein
 8 i was 44 and j was 20) was formed. The solution of polynucleotide complex
 10 dissolved in PBS contained about 4 µg/ml of plasmid and 20µg/ml of diblock
 12 copolymer. These amounts resulted in a ratio of base groups in the polycation
 14 block to DNA phosphate groups of 5. For control incubations, an equivalent
Biopolymers, 31:1437-1443 (1991). The results were as follows:

Time of Incubation	Circular DNA (% of initial)	
	Complex	Free DNA
0	100	100
5	100	20.
10	100	8
30	100	4
60	100	1
180	100	0
600	100	0

16

Example 6
Oligonucleotide Stabilization

18 For this example, a complex containing an oligonucleotide complementary to
 20 the transcription initiation site of the HIV-1 tat gene ("anti-tat", comprising
 22 GGCTCCATTCTTGCTC) was prepared using the diblock copolymer of formula
 (XIX) (polyoxyethylene-poly(L-alanine-L-lysine), wherein i is 44 and j is 8). The
 oligonucleotide complex was prepared in PBS Buffer (pH 7.0) at a concentration

2 of 0.75 OD₂₆₀/μl oligonucleotide. The ratio of polycation imino and amino groups
 4 to polynucleotide phosphate groups was about 50. The mixture was incubated for
 6 one hour at room temperature to allow for the formation of the complex. Then, the
 8 complex was purified by gel filtration chromatography on Sephadex G-25 using
 10 0.05 M NaCl as the eluent. The resulting solution of complex exhibited a
 12 concentration of 0.11 OD₂₆₀/μl of oligonucleotide. A comparable solution of
 14 uncomplex oligonucleotide was prepared. An aliquot of murine blood plasma (10
 16 μl) was mixed with an equal volume of oligonucleotide complex solution or a
 18 solution of free oligonucleotide. Samples were incubated at 37°C for various time
 periods. To stop the reaction of the oligonucleotides with enzymes in the plasma,
 the samples were diluted with water and extracted with a water-saturated mixture
 of phenol:chloroform (1:1). The aqueous phase of the extraction was isolated,
 and the oligonucleotide therein was precipitated with 3% lithium Perchlorate. The
 precipitate was washed with acetone, and then dissolved in 100 μl of water. The
 presence of undergraded oligonucleotide was determined by high performance
 liquid chromatography using a C₁₈-Silasorb column (4x90mm, Gilson, France) and
 a gradient of acetonitrile in 0.05 M triethyl-ammoniumacetate (pH 7.0) as the
 eluent. The results were as follows:

Time of Incubation	Undergraded oligonucleotide (%)	
	Complex	Free Oligo
0	100	100
3 hours	88	28
6 hours	70	17
24 hours	36	0

20 **Example 7**
Oligonucleotide Stabilization
 22 This example examined the stability of the oligonucleotide described in
 Example 6, when complexed with a diblock copolymer of formula (XX)

2 (polyoxyethylene-poly-propyleneimine/butyleneimine, wherein i is 44 and j is 4-8)
 was examined. The same methodologies that were applied in Example 6 were
 4 applied for this example, except that the oligonucleotide concentration was about
 0.13 OD₂₆₀/μl. The results were as follows:

6

Time of Incubation	Undergraded oligonucleotide (%)	
	Complex	Free Oligo
0	100	100
3 hours	70	28
6 hours	57	17
24 hours	28	0

8

Example 8
Antisense Cell Incorporation Efficiencies

10 This experiment examined the effectiveness of "anti-MDR", an antisense
 molecule comprising a 17-chain oligonucleotide of sequence
 12 CCTTCAAGATCCATCCC complementary to positions 422-438 of the mRNA
 encoding the MDR1 gene product, in reversing multi-drug resistance in SKVLB
 14 cells. SKVLB cells are multi-drug resistant cells derived from a ovarian cancer cell
 line. The MDR1 gene has been identified as responsible for the multi-drug
 16 resistance in SKVLB cells. Endicott and Ling, *Ann. Rev. Biochem.*, 58:137 (1989).
 In particular, the efficiency of the anti-MDR oligonucleotide in the polynucleotide
 18 complex of the invention and when in the free state was compared. As controls,
 the free and completed form of the anti-tat oligonucleotide described above were
 20 also used. The polynucleotide complexes were formed with the diblock copolymer
 of formula (XX) (polyoxyethylenepolypropyleneimine/butyleneimine, where i was
 22 44 and j was 9-10). The complexes were prepared by the procedures described

2 in Example 6. The oligonucleotide concentration in the complex or in the free state
was 0.17 OD₂₆₀/μl. The copolymer was present in the concentration sufficient to
4 define a ratio of polycation block imino and amino groups to oligonucleotide
phosphate groups of 10.

6 The SKVLB cells were incubated for 3 days at 37°C under 5% CO₂ in the
presence of free or completed oligonucleotide (at a concentration of 20μM based
8 on oligonucleotide content). Fresh media including free or completed
oligonucleotide was added every 12 hours.

10 The daunomycin cytotoxicity (IC_{50}) with respect to the cells treated as
described above was measured using the method of Alley et. al., *Cancer Res.*,
12 48:589-601. The results were as follows:

Treatment of Cells	Daunomycin IC ₅₀ (ng/ml) (n = 4)
Control (untreated cells)	8.0
Anti-MDR Complex	0.3
Anti-tat Complex	8.2
Free Anti-MDR	2.1
Free Anti-tat	7.9

Example 9
Antisense Oligonucleotide Designed to Inhibit Herpes Virus

16 This experiment used a 12-chain oligonucleotide, which had been covalently
modified at its 5' end with undecylphosphate substituent and at its 3' end with a
18 acridine group, was used. This oligonucleotide modification has been described
by Cho-Chung et. al., *Biochemistry Int.*, 25:767-773 (1991). The oligonucleotide
20 sequence utilized, CGTTCCCTCCTGU, was complementary to the splicing site at
983-994 of the Herpes Simplex Virus 1 ("HSV-1"). As a control, an equivalently
22 modified sequence (AGCAAAAGCAGG) complementary to the RNA produced by
influenza virus was utilized. The oligonucleotides were applied to HSV-1 infected
24 cells in either the complexed or the free state. When a complex was utilized, the

2 complex was formed with the diblock copolymer of formula (XIX)
 4 (polyoxyethylene-poly(L-alanine-L-lysine), wherein i was equal to 44 and j was
 4 equal to 8). Oligonucleotide complexes were formed as described in Example 6.

6 African marmoset kidney cells ("Vero" cells) were infected with HSV-1 virus
 8 (strain L2, obtained from the Museum of Virus Strains, D.I. Ivanovskii, *Inst. of*
Virol., Russian Federation), as described by Vinogradov et al., *BBRC*, 203:959
 10 (1994). The infected cells were washed with PBS. After washing, fresh RPMI-L
 12 640 media containing 10% of fetal calf serum and free or complex oligonucleotide
 14 was added to the cell. The cells were then incubated at 37°C under 5% CO₂ for
 24 hours. The HSV-1 infectivity of the of the cell media was then determined
 using the patch production method described by *Virology, A Practical Approach*,
 Mahy, Ed., IRL Press, Washington, D.C., 1985. The results, utilizing varying
 concentrations of oligonucleotide, were as follows:

Oligo Conc. Treatment	HSV-1 Infectious Titre (CPE ₅₀ /ml) (n=7)		
	0.2 μM	1.0 μM	5.0 μM
Control (untreated infected cells)	1.0 (±0.5) x 10 ⁶	1.0 (±0.5) x 10 ⁶	1.0 (±0.5) x 10 ⁶
Anti-HSV complex	1.4 (±0.2) x 10 ²	0.5 (±0.3) x 10 ²	0
Anti-influenza complex	1.0 (±0.6) x 10 ⁶	0.7 (±0.1) x 10 ⁶	0.8 (±0.2) x 10 ⁶
Free Anti-HSV	0.9 (±0.4) x 10 ⁵	2.3 (±0.7) x 10 ³	1.6 (±0.4) x 10 ²
Free Anti- Influenza	1.1 (±0.4) x 10 ⁶	0.9 (±0.2) x 10 ⁶	0.6 (±0.3) x 10 ⁶

16 Example 10
 18 Antisense Oligonucleotide Designed to Inhibit Herpes Virus

20 Unless otherwise noted, this example utilized the same procedures as were
 22 utilized in Example 9. The cells utilized were BHK cells, a Chinese hamster
 kidney cell line. When the complexed form of the oligonucleotides was used, the
 complex was formed with the diblock copolymer of formula (XVII)
 (polyoxyethylene-poly-L-lysine, wherein i was 44 and j was 30), using the

2 procedure described in Example 6. The concentration of the stock solution of
 4 complex was 0.09 OD₂₆₀/μl. The ratio of polycation block imino and amino groups
 6 to oligonucleotide phosphates was 10. The oligonucleotides, in complexed or free
 form, were applied to the cells at a concentration of 3.0 μM. The results were as
 follows:

Treatment of cells	HSV-1 infectious titre (CPE ₅₀ /ml) n = 7
Control (untreated infected cells)	10(±3)x10 ³
Anti-HSV complex	8(±6)
Anti-influenza complex	13(±4)x10 ³
Free Anti-HSV	50(±14)x10 ²
Free Anti-influenza	9(±2)x10 ³

8 Example 11
 10 In Vivo Inhibition of HSV

12 Polynucleotide complexes between the block copolymer of formula (XVII)
 14 (polyoxyethylene-poly-L-lysine, wherein i was 44 and j was 30) and the Anti-HSV
 16 and Anti-Influenza oligonucleotides were formed using the methods outlined in
 18 Example 9. The concentration of the stock solutions of complexes was 0.9
 20 OD₂₆₀/μl. The ratio of polycation block imino and amino groups to oligonucleotide
 22 phosphates was 10.

24 Inbred white mice (body weight 6-7g) were infected with HSV-1 (strain CI from
Belorussian Res. Inst. of Epidemiol. & Microbiol., Minsk) by intraperitoneal
 26 injection of 30 μl of a virus suspension (titre: 10⁻⁷ LD₅₀/ml).

28 Either Anti-HSV complex, Anti-influenza complex, free Anti-HSV or free Anti-
 30 Influenza were injected (10 μl) into the tail vein of a given mouse at each of 2, 12,
 32 24, 48, or 72 hours post-infection. The results were as follows:

2

Treatment	Animals Survived/No. of Animals in group			% Survival
	Exp. 1	Exp. 2	Exp. 3	
Control (infected mice)	1/9	1/10	2/10	13.7
Anti-HSV complex	8/9	6/10	7/10	73.0
Anti-influenza complex	2/10	0/10	1/10	10.0
Free Anti-HSV	1/10	1/10	0/10	7.0
Free Anti-influenza	0/9	1/10	0/10	7.0

4

Example 12
Plasma Life of Polynucleotide Complex

6 A³²P-labelled 17-mer (GGCTCCATTCTTGCTC) complementary to the
 transcription initiation site of the HIV-1 tat gene was utilized in this example. The
 8 oligonucleotide was modified at its 5'-end with cholesterol as described by
 Boutorin et al., *Bioconjugate Chemistry*, 2: 350-356 (1990). A polynucleotide
 10 conjugate of the oligonucleotide was formed with the block copolymer of formula
 (XX) polyoxyethylene-poly (propyleneimine/butyleneimine), wherein i was 44 and j
 12 was 9 to 10). The concentration of the stock solution (dissolved in PBS) of
 complex was 0.18 OD₂₆₀/μl. The ratio of polycation block imino and amino groups
 14 to oligonucleotide phosphates was 50.

Male C57/Bl/6 mice (weight: 20-24 g; obtained from the Russian Research
 16 Center of Molecular Diagnostics and Therapy, Moscow) received 50 μl
 intravenous injections of Anti-HIV conjugate or free Anti-HIV, at 0.18 OD₂₆₀/μl
 18 dissolved in PBS. At defined times after the injections, blood sample were taken
 from the tail vein and the animals were sacrificed. The amount of radioactive
 20 material in blood or tissue sample was determined by liquid scintillation counting
 (after appropriate solubilizations). The results were as follows:

22

2

Time after injection (min)	Plasma levels (% of injected dose)		Liver levels (% of injected dose)	Liver levels (% of injected dose)
	Anti-HIV Conjugate	Free Anti-HIV	Prep. A	Prep. B
0	100	100	0	0
5	95	58	3	7
10	91	40	5	19
15	84	33	7	26
20	79	27	9	30
30	75	20	10	35

4

Example 13
Cationic Block Copolymer Synthesis

6 1,4-dibromobutane (5.4 g, 25 mmoles, from Aldrich Co., Milwaukee, WI) was
 8 added to a solution of N-(3-aminopropyl)-1,3-propanediamine (6.55g, 50 mmoles,
 10 from Aldrich Co.) dissolved in 100 ml of 1,4-dioxane. This reaction mixture was
 12 stirred at 20°C for 16 h. The product of this reaction spontaneously precipitates
 14 from solution as the hydrobromide salt. This precipitated first intermediate was
 16 collected and twice dried by rota-evaporation from a solution of 10% triethylamine
 in methanol. This evaporation procedure was effective to remove substantial
 amounts of the bromide salt. The first intermediate was dissolved in 50 ml of 1,4-
 dioxane and reacted with 2.7g (12.5 mmoles) of 1,4-dibromobutane. Again, the
 reaction proceeded for 16 h at 20°C, and the resulting second intermediate was
 recovered and dried as above.

18 The second intermediate was neutralized with acetic acid to a pH of 7-8 and
 purified by gel filtration on Sephadex G-25, using an aqueous eluent. Three major
 polymeine fractions were obtained, having apparent molecular weights of 1060,
 20 700 and 500, respectively.

2 Poly(oxyethyleneglycol) (1.5g, M.W. 1500, from Fluka) was dissolved in 8 ml
4 of 1,4-dioxane and reacted with 0.17 g (1 mmole) of N,N'-carbonylimidazole
6 (Aldrich Co.) at 20°C for 3 h. The reaction mixture was divided into two parts.
8 Each part was mixed with 4 ml of a 10% (w/v) solution of either the 1060 or 700
MW polyimine fraction, which solution further contained 0.01 N NaOH. The
mixture was stirred for 16 h at 20°C. From this mixture, block copolymers of
formula (XX) and various MW ranges were isolated by gel filtration.

10 Example 14
10 Cationic Block Copolymer Synthesis

12 0.5 g of a succinimidyl carbonate of methoxy-PEG (MW 5000, Shearwater
14 Polymers, Inc., USA) was dissolved in 1,4-dioxane. This dioxane solution was
added to an aqueous solution containing 0.2 g of the 1060 MW polyimine polymer
described above, which aqueous solution further included 0.01 N NaOH. This
reaction mixture was stirred at 20°C for 16 h. A polymer of formula (XXII) was
isolated from the reaction by gel filtration.

18 Example 15
18 Cationic Block Copolymer Synthesis

20 1.5 g of poly(oxyethyleneglylol) (MW 8000, Fluka) were dissolved in 8 ml of
22 1,4-dioxane. 0.34 g (2 mmole) of N,N'-carbonylimidazole (Aldrich Co.) were added
to the solution and reacted for 3 h at 20°C. 8 ml of an aqueous solution containing
0.01 N NaOH and 15% (w/v) of the 500 MW polyimine polymer described above in
Example 13 was then added to the first reaction mixture. The resulting mixture
was reacted for 16 h at 20°C with stirring. A polymer of formula (XXIII) was
isolated from the second reaction mixture by gel filtration.

26 Example 16
26 Conjugate Synthesis with Oligonucleotide

28 A 12-mer oligonucleotide, 5'-CGTTCCTCCTGU ("Oligo A") complimentary to
the splicing site (positions 983-994 on the viral genome) of the early mRNA of type
30 1 Herpes Simplex Virus ("HSV-1"), was synthesized using a 380B-02 DNA-
synthesizer (Applied Biosystems, CA). The synthesizer used phosphoramidite

2 chemistry and an 8 min. synthesis cycle. Cycle conditions and preparation of the
3 crude product were done as recommended by Applied Biosystems. The crude
4 Oligo A obtained from the synthesis was precipitated from a 1 M LiCl solution (0.5
ml) with acetone (2 ml). The precipitate was dissolved in triethylammonium
5 acetate buffer and purified by reverse-phase high performance liquid
6 chromatography on a Silasorb C18 column (9X250 mm, Gilson, France)
7 developed with an acetonitrile gradient in a 20 mM TEAA buffer (pH 8.5).

The 3'-terminal of the purified Oligo A was oxidized with periodate to create an aldehyde and conjugated by reductive alkylation with a hexamethylene-diamine linker, creating an amine derivative. See Che-Chung *et al.*, *Biochem. Internat.*, 25:767 (1991); Vinogradov *et al.*, *BBRC*, 203:959 (1994). "Pluronic A", a block copolymer of formula (XIV)($x=25$, $y=38$, $z=25$) was similarly oxidized to create terminal aldehydes. The amine derivative (1 mg) was dissolved in 100 μ l of 0.1 M borate buffer (pH 9.0) and mixed with 2 mg of the Pluronic A derivative. 1.5 mg of sodium cyanoborohydride was added to the mixture to reduce the Schiff's bases formed between the amine and aldehyde groups. This reaction was allowed to proceed for 12 hours at 4°C. The polymeric product of this reaction was isolated by gel filtration chromatography on Sephadex LH-20, utilizing 90% aqueous isopropanol as the eluent. The conjugate so obtained is referred to hereinafter as "Oligo A Conjugate."

Example 17

The Effect of Oligo A Conjugate on Virus Production

24 Oligo A and Oligo A Conjugate were separately dissolved in RPMI 1640
medium (ICN Biomedicals Inc., Costa Mesa, CA) to a final concentration of 0.2
26 mM (based on oligonucleotide absorbance). These stock solutions were then
filtered through 0.22 µm filters to remove any possible bacterial or fungal
28 contamination.

2 Monolayers of Vero cells were incubated for 1 hour at 37°C in serum-free
 4 RPMI 1640 together with various concentrations of Oligo A or Oligo A Conjugate.
 6 The monolayers, while still exposed to oligonucleotides, were then infected with 1
 8 plaque forming unit per cultured cell of HSV-1, strain L2 (from the Museum of
 10 Virus Strains of the D.I. Ivanovskii Institute of Virology, Russian Academy of
 12 Sciences, Russian Federation). This infection method has been described by
 Vinogradov *et al.*, BBRC, 203:959 (1994). After 8 hours of exposure to virus and
 oligonucleotides, the medium on the cells was replaced with fresh medium
 containing 10% FCS. Medium from the cells was collected at 22 and 39 hours
 after the ineffective incubation, and the virus titer in the collected medium was
 determined as described in *Virology, A Practical Approach*, Mahy, Ed., IRL Press,
 Oxford Univ. Press, Washington, D.C. (1985). The results were as follows:

Sample concentration (mM)	Oligonucleotide concentration (μ M)	Infectious Titer of HSV-1 (PFU/ml)	
		22 hours post infection	39 hours post infection
Control (cells without oligonucleotides)	0	5x10 ⁶	1x10 ⁷
Oligo A	10	3x10 ⁶	5x10 ⁶
	5	5x10 ⁶	1x10 ⁷
	2	5x10 ⁶	1x10 ⁷
	1	5x10 ⁶	1x10 ⁷
Oligo A Conjugate	10	0	0
	5	0	5x10 ²
	2	1x10 ³	7x10 ³
	1	5x10 ⁴	3x10 ⁶

2

Example 18
Synthesis of a Phosphonate Monomer

4 40 mmoles of butanediol-1,3 (Merck) dissolved in 50 ml of anhydrous pyridine
6 (Aldrich) were reacted with 20 mmoles 4,4'-dimethoxytritylchloride (Sigma) for 1.5
8 hours at 20°C. The reaction was monitored using thin layer chromatography on
10 the silicagel plates (Merck) developed with a chloroform:methanol (95:5). The Rf
12 of the product was 0.6. The reaction mixture was added to 200 ml of an 8%
14 aqueous solution of the sodium bicarbonate and the product extracted with
16 chloroform. The chloroform extract was evaporated in vacuum and the resulting
18 oily first intermediate was used in the next stage of the synthesis.

20 12 mmoles of first intermediate were dissolved in 30 ml of anhydrous 1,4-dioxane, containing 3.14 ml (18 mmoles) of diisopropylethylamine (Aldrich). 18
22 14 mmoles of salicylchlorophosphite (Sigma) dissolved in 10 ml of anhydrous 1,4-dioxane were added to the diisopropylethylamine solution in small portions under
24 an inert, argon atmosphere. The reaction mixture was incubated during 1 hour at
26 20°C. The reaction was monitored by the thin layer chromatography as described
above. The Rf of the product was 0.05. 10 mls of water were added to the reaction mixture. After 30 min., the solvent was evaporated. The product was dissolved in 100 ml of chloroform and the solution obtained was washed stepwise with (1) 100 ml of 8% aqueous solution of the sodium bicarbonate, (2) 100 ml of 0.2 M triethylammoniumacetate solution (pH 7.2), and (3) 100 ml of water. The organic solvent was evaporated and the oily remainder, containing the phosphonate monomer was purified by chromatography on silicagel column, using stepwise gradient of (1) chloroform, (2) 3% methanol in chloroform and (3) 6% methanol in chloroform. The yield of the monomer was 4.1 g (=7.3 mmol, 63%).

The product, having structure:

28

2

wherein DMT represents a dimethoxytrityl group, can be termed "Phosphonate Monomer A."

6

Example 19
Synthesis of Polycation BDP

A 0.05 M solution of the phosphonate Monomer A in anhydrous pyridine:acetonitrile mixture (1:1) was placed in the position 6 of the DNA-synthesator (model 380-B02, Applied Biosystems, CA). A 2% solution of adamantoilchloride (Sigma) in the mixture acetonitrile:pyridine (95:5) was used as a condensing agent. The synthesis was conducted using the program modified for an H-phosphonate cycle (Sinha and Striepeke, *Oligonucleotides and Analogues: A Practical Approach*, Eckstein Ed. IRL Press, Oxford, p.185 (1991)) and the DMT-group was preserved after the synthesis was complete. Adenosine (4 µmoles) immobilized on a standard CPG-500 solid support was used as a first unit during the polymer synthesis (Vinogradov et al. *BBRC*, 203, 959 (1994)). The synthesizer was programmed to add Phosphonate Monomer A repeating units to the adenosine monomer. Following all synthesis steps, the H-phosphonate groups on the immobilized substrate were oxidized with the solution of 104 mg of hexamethylenediamine (Sigma) in 0.6 ml of a mixture of anhydrous pyridine:CCl₄ (5:1) applied for 15 min. at 20°C, then the carrier was washed with the pyridine:acetonitrile mixture (1:1).

Deblocking and cap removal was achieved by ammonolysis (*Oligonucleotides and Analogues: A Practical Approach*, Eckstein Ed. IRL Press, Oxford, 1991).

2 The product was purified by HPLC using Silasorb C., column (9X250 mm. Gilson,
4 France) in the acetonitrile gradient (0-80%). The peak, containing
6 dimethoxytritylated-product was collected, the solvent was evaporated and the
8 remainder was treated with 80% acetic acid (20 min). The acetic acid was
evaporated and the polycation was purified again by HPLC. The yield of the 15-
mer (counted in terms of Phosphonate Monomer A) is 50% (2.2 μ moles). This
created a polymer according to formula A. The polymer will be termed hereinafter
“BDP.”

10 Example 20
11 Solid Phase Synthesis of the Diblock Copolymer Polyoxyethylene-BDP
12 Dimethoxytrityl-polyethyleneoxide-H-phosphonate was synthesized as
13 described in Example 18 using polyethyleneglycol (1500 M.W. from Fluka) instead
14 of butanediol-1,3. The BDP polycation was synthesized as described in Example
15 19, except that, at the last stage of the chain growth, dimethoxytrityl-
16 polyethyleneoxide-H-phosphonate was introduced as the last building block. The
17 H-phosphonate groups of the block copolymer were oxidized as described in
18 Example 19 using tetramethylenediamine (Sigma) instead of
19 hexamethylenediamine, resulting in the formation of phosphonamide bonds
20 between the diamines and the backbone phosphates.

21 Example 21
22 Solid Phase Synthesis of the Oligonucleotide-BDP Diblock Copolymer

23 A diblock copolymer comprising 12-mer oligonucleotide, 5'-GGTCCTCCGU
24 (Oligo A, complementary to the splicing site of the early mRNA of type 1 Herpes
25 Simplex Virus (HSV-1), Vinogradov et al., BBRC, 203:959 (1994)) and the BDP
26 polymer was synthesized in DNA synthesator. First the BDP polymer was
27 synthesized as described in Example 19, except that it was not removed from the
28 support. Then the oligonucleotide chain was synthesized step-wise onto BDP
29 polycationic polymer linked to the solid state support using the standard
30 phosphoroamidite chemistry as described by Vinogradov et al. BBRC, 203, 959

2 (1994). The H-phosphonate groups of the diblock copolymer were oxidized as
 described in Example 19 using tetamethylenediamine (Sigma) instead of
 4 hexamethylenediamine.

6 Example 22
Effect of Oligonucleotide-BDP Diblock Copolymer on Viral Growth

The experiment was performed exactly as described in Example 17 except
 8 that (1) the oligonucleotide-BDP copolymer of Example 21 was used and (2) a
 single concentration of oligonucleotide-BDP copolymer (conjugate) was used
 10 (4.4M).

Sample	Virus titre after 39 hours
Control (without oligonucleotide)	500 x 10 ⁴
Nonmodified Oligo A	500 x 10 ⁴
Diblock	5 x 10 ⁴

12 Example 23
Synthesis of Branched Polyimine Polycation

14 A. The polyimine polycation ("polyspermine") was obtained by stepwise
 polycondensation of N-(3-aminopropyl)-1,3-propanediamine and 1,4-
 16 dibromobutane as described in Example 13 and used without conjugating to
 poly(ethylene glycol).

18 B. The polyimine polycation synthesized in A was modified by dansyl chloride
 to obtain a fluorescent dansyl-labeled substance, purified by thin layer
 20 chromatography and a major component of the mixture (over 75% in most
 batches) was analyzed by electrospray mass-spectrometry in positive charge
 22 mode. The results were compared with mass-spectra obtained for the N-(3-
 aminopropyl)-1,3-propanediamine modified with dansyl chloride. Dansyl-labeled
 24 N-(3-aminopropyl)-1,3-propanediamine gave a four-modal peak at M+1, M+2,
 M+3, and M+4 (667.6, 668.5, 669.6, and 670.5). In the spectrum of the
 26 polycondensation products there were observed two types of polymodal peaks: M

2 and M+54. For M-peaks two distinct groups were observed, with M/2H⁺ and
M/H⁺, equal to 598.5 and 1195.6 respectively. This molecular mass was very
4 close to a linear polycation with 12 nitrogen atoms (1221). M+54 peaks at 1249.8
and 652.5 correspond to a polycation with CH₂CH₂CH₂CH₂ cross-links.

6 C. 1H-NMR spectra were obtained for the samples of the polyimine
polycation synthesized in A and dissolved in DMSO. Three groups of signals
8 were observed at 1.40-1.80 ppm (Ha), 1.80-2.20 ppm (Hb), and 2.35-2.80 ppm
(Hc). Ha related to CH₂CH₂CH₂CH₂ protons, Hb related to CH₂CH₂CH₂ protons,
10 Hc related to -NHCH₂ and protons. Integration of resonance signals for these
12 three groups gave a ratio Ha:Hb:Hc equal to 1.00:0.75:1.20. The theoretical ratio
for linear polycations with 12 nitrogen atoms is 1.00:1.33:3.67. Increase in Hb:Ha
14 and Hc:Ha ratios suggested presence of branched structures with a mixture of
primary, secondary and tertiary amines.

D. The concentration of primary amino groups in the polyimine polycation
16 synthesized in A was determined by fluorescamine method as described by
Weigle et al., J. Amer. Chem. Soc., 94:5927 (1972). The total amount of
18 primary, secondary, and tertiary amino groups in the polycondensation product
was determined using potentiometric titration. The ratio of the total amount of
20 primary, secondary, and tertiary amino groups to the amount primary amino
groups equals 2.7. Given the molecular masses of the condensation product
22 determined using mass-spectrometry the result of this experiment suggests
considerable branching, i.e. the presence of tertiary amines.

24 Example 24
 Synthesis of Linear Polyimine Polycation

26 Linear polycations of polyimine type are synthesized by condensation of a
diaminoalkyl and bis-aldehyde in the presence of sodium cyanoborohydride using
28 a modified reductive amination procedure described by Aziz et al., J. Pharmac.
Exper. Therapeutics, 274:181 (1995). 0.33g of malonaldehyde bis(dimethyl

2 acetal) was added in 10 ml of 0.5 N HCl and stirred for 1 hour at 20°C to obtain
3 free bis-aldehyde. 1.27g of N,N'-bis[3-aminopropyl]-1,4-butanediamine was
4 added to this solution and pH was adjusted to 5.0. The mixture was allowed to
5 stay for 1h at 37°C, then 1.27g of N,N'-bis[3-aminopropyl]-1,4-butanediamine was
6 added to it and pH was adjusted to 7.0 using sodium carbonate solution. The
7 reaction mixture was treated with 0.26g of sodium cyanoborohydride and left for
8 additional 1 h at 37°C. The final slightly yellow solution was desalted by gel
9 permeation chromatography on the Sephadex G-25 column in 10% methanol and
10 first high-molecular weight fractions revealing primary aminogroups in ninhydrine
test were freeze-dried. This yielded 0.43g of the following polyimine polycation:

Example 25

Synthesis of Cationic Block Copolymer

16 1.5g of poly(ethylene glycol), methyl ester, mw. 5000 Mw. (Sigma) was
17 activated by 0.25 g of 1,1'-carbonyldiimidazole in 10 ml of anhydrous acetonitrile
18 for 3 hrs at room temperature. The solvent was evaporated *in vacuo*, the residue
19 redissolved in water and dialyzed through Membra-Cel MD-25-03.5 membrane
20 with cutoff 3500 Da against water. Desalting solution was concentrated *in vacuo*
21 and used in a reaction with 2-fold excess of poly-L-lysine, Mw. 4000, in methanol-
22 water solution for 16-24 hrs at room temperature. The conjugate obtained was
23 purified by gel-permeation column chromatography on Sephadex-50 (fine)
24 (Pharmacia) in water and then by reverse phase chromatography on semi-
25 preparative column (Vydac C18 5u ,10 mm x 25 cm) in acetonitrile concentration
26 gradient. The yield was 70%. Content of aminogroups was measured by
27 fluorescamine method and total nitrogen content was determined by elemental
28 analysis to assess the purity of the conjugates. Usually it was about 75-90%
29 based on graviometry.

2

Example 26
Synthesis of Cationic Block Copolymer

4 Following the procedure of Example 25 but substituting the 2-fold excess of
poly-L-lysine by the same excess of polyethyleneimine,

Mw. 2000 (Aldrich Co.), 0.4g of the following cationic diblock copolymer is
8 obtained:

10

Example 27
Synthesis of Grafted Copolymer

12 A. 24g (3 mmol) of poly(ethylene glycol), mw 8000 (Aldrich Co.) were dried by
co-evaporation with anhydrous pyridine *in vacuo* and dissolved in 50 ml of
14 anhydrous acetonitrile. Then 0.51g (1.5 mmol) of 4,4'-dimethoxytrityl chloride in 30
ml of anhydrous pyridine was added to this solution dropwise under continuous
16 stirring during 30 min. The mixture was allowed to stand for additional 2 h at room
temperature, then the solvents were evaporated *in vacuo*. The residue was
18 dissolved in 50 ml of dichloromethane, extracted with 5% sodium bicarbonate (2 x
30 ml), and applied on the Silicagel column (3x45 cm, 40-60 μm). Stepwise
20 elution with dichloromethane-methanol solutions separated a slightly yellow mono-
4,4'-dimethoxytrityl-derivative of poly(ethylene glycol) with an yield about 75-85%.
22 The side product of the reaction (10-15 % yield) was the bis-4,4'-dimethoxytrityl-
derivative of poly(ethylene glycol).

24 B. 1.5g of mono-4,4'-dimethoxytrityl-derivative of poly(ethylene glycol)
obtained in A was activated by 0.25g of 1,1'-carbonyldiimidazole in 10 ml of
26 anhydrous acetonitrile for 3 hrs at room temperature. The solvent was evaporated
in vacuo, the residue redissolved in water and dialyzed through Membra-Cel MD-
28 25-03.5 membrane with cutoff 3500 Da against water. Desalted solution was
concentrated *in vacuo* and then reacted with poly-L-lysine, Mw. 19000 in
30 methanol-water solution for 24 h at room temperature at a molar ratio of

2 poly(ethylene glycol) to free aminogroups of poly-L-lysine 0.7:1.0. The conjugate
3 obtained was purified by gel-permeation column chromatography on Sephadex-50
4 (fine) (Pharmacia) in water and then by reverse phase chromatography on semi-
5 preparative column (Vydac C18 5u ,10 mmx25 cm) in acetonitrile concentration
6 gradient. This yields a grafted polylysine copolymer at 35% yield in which 50% of
7 free aminogroups are substituted with poly(ethylene glycol) as determined by
8 fluorescamine method.

Example 28 Synthesis of Grafted Copolymer

A. 24g (3 mmol) of poly(ethylene glycol), mw 8000 (Aldrich Co.) were dried by co-evaporation with anhydrous pyridine *in vacuo* and dissolved in 50 ml of anhydrous acetonitrile. Then 0.51g (1.5 mmol) of 4,4'-dimethoxytrityl chloride in 30 ml of anhydrous pyridine was added to this solution dropwise under continuous stirring during 30 min. The mixture was allowed to stand for additional 2 h at room temperature, then the solvents were evaporated *in vacuo*. The residue was dissolved in 50 ml of dichloromethane, extracted with 5% sodium bicarbonate (2x30 ml), and applied on the Silicagel column (3x45 cm, 40-60 µm). Stepwise elution with dichloromethane-methanol solutions separated a slightly yellow mono-4,4'-dimethoxytrityl-derivative of poly(ethylene glycol) with an yield about 75-85%. The side product of the reaction (10-15 % yield) was the bis-4,4'-dimethoxytrityl-derivative of poly(ethylene glycol).

B. 1.5g of mono-4,4'-dimethoxytrityl-derivative of poly(ethylene glycol) obtained in A was activated by 0.25g of 1,1'-carbonyldiimidazole in 10 ml of anhydrous acetonitrile for 3 hrs at room temperature. The solvent was evaporated *in vacuo*, the residue redissolved in water and dialyzed through Membra-Cel MD-25-03.5 membrane with cutoff 3500 Da against water. Desalted solution was concentrated *in vacuo* and then reacted with polyethyleneimine, Mw. 25,000 in methanol-water solution for 24 h at room temperature at a molar ratio of

2 poly(ethylene glycol) to free aminogroups of polyethylenimine 0.7:1.0. The
4 conjugate obtained was purified by gel-permeation column chromatography on
6 Sephadex-50 (fine) (Pharmacia) in water and then by reverse phase
8 chromatography on semi-preparative column (Vydac C185 µm, 10 mm x 25 cm) in
acetonitrile concentration gradient. This yields a grafted polyethylenimine block
copolymer at 85% in which 45 % of free aminogroups are substituted with
poly(ethylene glycol) as determined by fluorescamine method as described by
Weigle et al. (*J. Amer. Chem. Soc.*, 1972, **94**:5927).

10 Example 29
12 Synthesis of Grafted Copolymer

14 Following the procedure of Example 28 but using a molar ratio of activated
16 poly(ethylene glycol) to free aminogroups of polyethylenimine 0.3:1.0, there is
obtained in 80% yield a grafted polyethylenimine copolymer in which 24% of free
aminogroups are substituted with poly(ethylene glycol).

18 Example 30
20 Synthesis of Cationic Block Copolymer

22 Following the procedure of Example 26 but substituting 6.0g of
24 polyethyleneglycol, mw 20,000 for the excess of polyethylene glycol, mw 5,000
there is obtained 6.0g of the cationic block copolymer:

26 Example 31
28 Synthesis of Cationic Block Copolymer

30 A. Following the procedure of Example 26 but substituting 1.5g of
polyethyleneglycol, Mw. 5,000 by 2.4g of polyethyleneglycol, Mw. 5,000 (Aldrich
Co.) there is obtained 1.2g of the cationic block copolymer containing
polyethylenimine and polyethyleneglycol chain segments.

32 B. The molecular mass of this block-copolymer was determined by static light
scattering method using DAWN multi-angle laser photometer (Wyatt Technology,
34 Santa Barbara, CA) which operated at 15 angles and equipped with He-Ne laser
(632.8 nm). The samples of the block copolymer were dialyzed through

2 membrane with cutoff 3,500 Da against 4.5×10^{-3} g/ml NaCl and then filtered
4 directly into flow cell used for light scattering experiments. Weigh-average
6 molecular mass was calculated on the base of four measurements. Cell constant
8 was determined by calibration with different concentrations of NaCl. Specific
refractive index increment ($\Delta n/dc$) was measured using Wyatt/Optilab 903
interferometric refractometer at 632.8 nm. The molecular mass of the sample
obtained was 16,000, suggesting that this polymer contained approximately one
polyethyleneimine segment and two polyethyleneglycol segments.

10 C. The number of the primary aminogroups in the synthesized sample of the
copolymer was determined using a modified procedure described by Weigle et
12 al. (*J. Amer. Chem. Soc.*, 1972, **94**:5927). To 1.5 ml of a sample in 20 mM
14 sodium borate, pH 9.5 (aminogroups concentration up to 100 μM) 0.25 ml of
fluorescamine solution (0.024%, Sigma) in acetone was added and vortexed for 5
16 min. The measurements have been made on Shimadzu spectrofluorometer at
excitation wavelength 384 nm and at 430 to 510 nm emission wavelength range.
Extinction coefficient at emission 475 nm was determined as equal to $1.58 \times 10^6 \text{ M}^{-1}$
18 ¹. The specific amount of primary aminogroups was 0.69 mmol/g.

20 Example 32
22 Synthesis of Grafted Copolymer

24 Following the procedure of Example 28 but substituting 24 g of
poly(ethylene glycol) by the same amount of Pluronic L61 (BASF Co.) and using
26 a molar ratio of activated Pluronic L61 to free aminogroups of polyethyleneimine
0.3:1.0, there is obtained in 22% yield a grafted polyethyleneimine copolymer in
which 8% of free aminogroups are substituted with Pluronic L61.

28 Example 33
29 Synthesis of Grafted Copolymer

30 Following the procedure of Example 28 but substituting 24g of poly(ethylene
glycol), by the same amount of Pluronic P85 and using a molar ratio of activated

2 Pluronic P85 to free aminogroups of polyethyleneimine 0.3:1.0 there is obtained in
70% yield a grafted polyethyleneimine copolymer in which 11% of free
4 aminogroups of polyethyleneimine are substituted with Pluronic P85.

6 Example 34

Synthesis of Grafted Copolymer

8 Following the procedure of Example 28 but substituting 24g of poly(ethylene
glycol), by the same amount of Pluronic P123 (BASF Co.) and using a molar ratio
of activated Pluronic P123 to free aminogroups of polyethyleneimine 0.3:1.0 there
10 is obtained in 30% yield a grafted polylysine copolymer in which 9% of free
aminogroups are substituted with Pluronic P123.

12 Example 35

Synthesis of Grafted Copolymer

14 Following the procedure of Example 28 but substituting 24g of poly(ethylene
glycol), by the same amount of Pluronic F38 (BASF Co.) and using a molar ratio of
16 activated Pluronic F38 to free aminogroups of polyethyleneimine 0.3:1.0 there is
obtained in 40% yield a grafted polylysine copolymer in which 9% of free
18 aminogroups are substituted with Pluronic F38.

20 Example 36

Synthesis of Multi-Grafted Copolymer

22 Following the procedure of Example 28 but substituting polyethyleneimine by
polyethyleneimine modified with Pluronic L123 (BASF Co.) obtained in Example
35 and using a molar ratio of activated poly(ethylene glycol) to free aminogroups
24 of modified polyethyleneimine 0.4:1.0 there is obtained in 20% yield a grafted
polyethyleneimine copolymer in which 9% of free aminogroups are substituted
26 with Pluronic L123 and 30% of groups are substituted with poly(ethylene glycol).

28 Example 37

Complex with Oligonucleotide

A. Model phosphorothioate oligodeoxyribonucleotide PS-dT20 was
30 synthesized using ABI 291 DNA Synthesizer (Applied Biosystems, San Diego,
CA) following the standard protocols. After ammonia deprotection the

2 oligonucleotide was twice precipitated by ethanol and then used without purification.

4 B. The complex formed between the PS-dT20 and polyethyleneimine-
5 poly(ethylene glycol) block copolymer obtained in Example 28 was obtained by
6 mixing the aqueous solutions of these polymers in 10 mM phosphate buffer, pH
7 7.4 so that the ratio of the primary amino groups of the block copolymer to the
8 phosphate charges of the PS-dT20 was 1.0. All solutions were prepared using
9 double distilled water and were filtered repeatedly through the Millipore membrane
10 with pore size 0.22 μ M.

C. The electrophoretic mobility (EPM) and the size of the particles of the complex synthesized in B were determined. The EPM measurements were performed at 25°C with an electrical field strength of 15-18 V/cm using "ZetaPlus" Zeta Potential Analyzer (Brookhaven Instrument Co.) with 15 mV solid state laser operated at a laser wavelength of 635 nm. The zeta-potential of the particles was calculated from the EPM values using the Smoluchowski equation. Effective hydrodynamic diameter was measured by photon correlation spectroscopy using the same instrument equipped with the Multi Angle Option. The sizing measurements were performed at 25°C at an angle of 90°. The zeta potential of this sample was close to zero, suggesting that particles were electroneutral. The average diameter of the particles was 35 nm.

Example 38
Stability Against Nuclease Digestion

24 100 µg of the complex formed between the PS-dT20 and polyethyleneimine-
poly(ethylene glycol) block copolymer obtained in Example 39 was treated by 1
26 mg of snake venom phosphodiesterase (Phosphodiesterase I from *Crotalus*
adamanteus, 0.024 units/mg, Sigma) for 2 and 18 hrs at 37°C. Reaction mixtures
28 were analyzed by gel permeation HPLC for digested PS-dT20. The digestion of
the PS-dT20 in this complex was less than 5%. In contrast, free PS-dT20 treated

2 with the same concentration of enzyme for the same time interval was digested completely.

Example 39

Example 3 Accumulation of Oligonucleotide in Caco-2 Monolayers

6 A. A 5'-aminohexyl PS-dT20 oligonucleotide was synthesized using ABI 291
DNA Synthesizer (Applied Biosystems, San Diego, CA) following the standard
8 protocols. After ammonia deprotection the oligonucleotide was twice precipitated
by ethanol and then used without purification. 5'-Aminohexyl PS-dT20 was
10 labeled by reaction with fluorescein isothiocyanate (Sigma) following the
manufacturer protocol. Fluorescein-labeled PS-ODN was separated from
12 unreacted fluorophore using a Pharmacia PD-10 size exclusion.

B. The complex formed between the fluorescein-labeled PS-dT20 and polyethyleneimine-poly(ethylene glycol) block copolymer was synthesized as described in Example 37 but using fluorescein-labeled PS-dT20 instead of PS-dT20.

C. Caco-2 cells, originating from a human colorectal carcinoma (Fogh *et al.* J. Natl. Cancer Inst., 59:221-226, 1977) were kindly provided by R.T. Borchardt (The University of Kansas, Lawrence, Kansas). The cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM), containing 10% heat-inactivated fetal bovine serum (FBS), 1% non-essential amino acids, benzylpenicillin (100 µ/ml) and streptomycin (10 µg/ml), in an atmosphere of 90% air and 10% CO₂ as described by Artursson (*J. Pharm. Sci.*, 79:476-482, 1990). All tissue culture media were obtained from Gibco Life Technologies, Inc. (Grand Island, NY). The cells were grown on collagen coated polycarbonate filter chamber inserts (Transwell, Costar Brand Tissue Culture Products, Contd.; pore size 0.4 µm; diameter 24.5 mm). 250,000 cells were added to each insert and cells of passage number 32-45 were used. The cells were fed every second day and were allowed

- 2 to grow and differentiate for up to 14 days before the monolayers were used in the
 following absorption experiments.
- 4 D. Caco-2 cell monolayers were preincubated for 30 min. at 37° C with assay
 buffer, containing sodium chloride (122 mM), sodium bicarbonate (25 mM),
 6 glucose (10 mM), HEPES (10 mM), potassium chloride (3mM), magnesium
 sulfate (1.2 mM), calcium chloride (1.4 mM) and potassium phosphate dibasic (0.4
 8 mM). After this, the assay buffer was removed and the cells were exposed to 50
 μM fluorescein-labeled PS-ODN or its complex in the assay buffer for 90 min. at
 10 37°C. After that the dye solutions were removed and cell monolayers were
 washed three times with ice-cold PBS. Cells were then solubilized in 1.0% Triton
 12 X-100 and aliquots (25 μl) were removed for determination of cellular fluorescence
 using a Shimadzu RF5000 spectrofluorometer at $\lambda_{\text{ex}} = 488 \text{ nm}$, $\lambda_{\text{em}} = 520 \text{ nm}$.
 14 Samples were also taken for protein determination using the Pierce BCA method.

The amounts of fluorescein-labeled PS-dT20 absorbed by the cells was as
 16 follows:

Sample	Cellular accumulation of oligonucleotide, nmol/mg protein
Free fluorescein-labeled PS-dT20	0.14 ± 0.03
The complex	0.5 ± 0.01

18 This demonstrates that incorporation of polynucleotide in the complex with the
 block copolymer increases cellular accumulation of polynucleotide by more than 3-
 20 times.

22 Example 40
Transport of Oligonucleotide Across Caco-2 Monolayers

- A. The filter-grown Caco-2 monolayers were used for oligonucleotide
 24 permeability studies after complete maturation, i.e., as from day 14 after plating.
 Filters were gently detached from the wells and placed in Side-Bi-Side diffusion

2 cells from Crown Bio. Scientific, Inc. (Somerville, NJ) maintained at $37^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$.
 4 This system is used as an *in vitro* model of human intestinal epithelium to evaluate
 6 oral bioavailability of drugs (Pauletti *et al.*, *Pharm. Res.*, 14:11-17 (1977). Cell
 8 monolayers were preincubated for 30 minutes at 37° C with the assay buffer,
 10 containing 10% heat-inactivated fetal bovine serum (FBS), 1% non-essential
 12 amino acids, benzylpenicillin ($100 \mu\text{g/ml}$) and streptomycin ($10 \mu\text{g/ml}$), added to
 14 both donor and receptor chambers (3 ml). After preincubation, the assay buffer in
 16 the receptor container was replaced by the fresh one, while the assay buffer in the
 18 donor container was replaced by $50 \mu\text{M}$ fluorescein-labeled PS-ODN or its
 20 complex in the assay buffer. To account for the integrity of the monolayers the
 22 R123 solutions in the donor container also contained H^3 -labeled manitol, a
 24 paracellular marker (Dawson, *J. Membrane Biol.*, 77:213-233 (1977) obtained
 from DuPont Corp. (Boston, MA). At 120 min., the solutions in the receptor
 chamber were removed for determination of fluorescein-labeled PS-ODN using a
 Shimadzu RF5000 fluorescent spectrophotometer ($\lambda_{\text{ex}} = 488 \text{ nm}$, $\lambda_{\text{em}} = 520 \text{ nm}$)
 and H^3 -manitol determination using a liquid scintillation counter (Hewlett Packard
 Instruments). Immediately after collecting the solutions in the receptor chamber 3
 ml of fresh assay buffer was added to this chamber. The transport of fluorescein-
 labeled PS-ODN (or manitol) across Caco-2 cell monolayers was expressed as a
 percentage of the total fluorescein-labeled PS-ODN (or manitol) accumulated in
 the receptor chamber to the initial amounts of fluorescein-labeled PS-ODN (or
 manitol) in the donor chamber. A minimum of three different membranes was
 studied for each drug composition at multiple time points for each membrane. The
 results were as follows:

Sample	PS-dT20 transport, %	Manitol transport, %
Free fluorescein-labeled PS-dT20	0.001 ± 0.0005	4.0 ± 0.1
The complex	0.075 ± 0.005	4.2 ± 0.02

2

This demonstrates that incorporation of polynucleotide in the complex with the
4 block copolymer increases transport of this polynucleotide across Caco-2
monolayers by more than 7-times while the transport of paracellular marker is not
6 affected.

8 **Example 41**
In vitro transfection of plasmid DNA with various block copolymers-based
formulations

10 These experiments are performed in Cos-7 cells and carried out as follows;
Cos-7 cells are used and are seeded at 7×10^5 per well in 12-well plate (Costar)
12 and allowed to rest 24 hours before transfection (confluently at 70%). Three μg of
pGL3-Luc SV40 is formulated with the different polymers at various N/P ratios.
14 The transfection mixture is prepared as follows; to an eppendorf tube containing
100 μl of DMEM supplemented with 1% Hepes the following is added; 30 μl of
16 DNA at 0.1mg/ml, 35 μl of polymer to be tested at various concentrations to get a
variety of N/P ratios. The transfection mixture is allowed to incubate 5 minutes
18 before completing to 1ml with complete DMEM (10% FBS, 1% Hepes, 1%
penicillin-streptomycin). Five hundred μl of the transfection mixture is added per
20 well. Following a 4-hours transfection at 37°C and under a 5% CO₂ atmosphere,
the cells are rinsed with PBS and allowed to rest overnight in 1ml of complete
22 DMEM before being harvested to perform the luciferase assay according to
Promega Corporation's recommendation. Briefly, the cells are lysed on ice for 30
24 minutes and then centrifuged at 13,000g for 2 minutes. The supernatents are
kept and analyzed for luciferase activity. The assay is performed as follows: 20 μl
26 of supernatent is added to luminometric tubes containing 100 μl of luciferase
substrate. Light emission is measured with a luminometer (Berthold) for a period
28 of 5 seconds. The data is reported in relative light units per second and
normalized for proteins with the BiCinchoninic Acid assay kit (Sigma). The results
30 show that pluronic P123 conjugated to PEI improves transfection of CMV-Luc

2 compared to PEI alone suggesting that the block copolymer moiety is
3 advantageous for a better transfection. Note that P123 alone does not transfect
4 cells and is totally inefficient like CMV-Luc alone. This observation is in contrast to
5 the data shown in example 44 where P123 is used to improve gene expression in
6 muscle.

Transfection mixture	Luciferase signal (RLU/s/ug proteins)
CMV-Luc alone	15 ± 4
CMV-Luc + P123-PEI/P123	1789456 ± 45789
CMV-Luc + P123	26 ± 6
CMV-Luc + PEI	678543 ± 32591

Example 42 Block copolymers as biological-modifiers of DNA biodistribution

10 CMV-Luc (50 μ g) or oligonucleotides (100 μ g) are resuspended in a volume of
200ul containing various block copolymers-based formulations and injected i.v.
12 into C57Bl/6 (6-8 week-old) female mice. Twenty-four hours following the injection
the mice are sacrificed to harvest various organs in which luciferase activity is
14 measured or in which oligonucleotide accumulation is determined. For plasmid
DNA, all major organs are rapidly homogenized with a tissue grinder (Kontes
16 Glass Co.) in cell lysis buffer (Promega Corporation) supplemented with protease
inhibitors. The extraction mixture is kept on ice for 30 minutes and then
18 centrifuged at a maximum speed for 2 minutes. The supernatents are kept and
analyzed for luciferase activity. The assay is done as follows: 20 μ l of supernatent
20 is added to luminometric tubes containing 100 μ l of luciferase substrate (Promega
Corporation). Light emission is measured with a luminometer (Berthold) for a
22 period of 5 seconds. The data is reported in pg of luciferase per mg of proteins.
For oligonucleotides, the major organs are extracted twice with phenol:chloroform
24 and precipitated with ethanol before quantification. The results show that with
conventional liposomal formulation and PEI that gene expression is concentrated

2 in the lungs which is a factor known to increase risks of pulmonary embolism.
 4 However, gene expression is redirected to liver when formulated with PEI
 6 conjugated to a hydrophobic block copolymer such as P123. In addition, when
 8 P123 is used alone, gene expression in various organs is very low except in
 10 muscle tissue. For oligonucleotides, the accumulation is observed in kidneys
 when a hydrophobic carrier (PEI conjugated to PEG) is used and is redirected to
 liver when a hydrophobic carrier (P85-PEI/P85) is used. Various and a multitude
 of mixture of block polymers can be prepared to give a wide range of hydrophobic
 and hydrophylic balances that can redirect gene expression and oligonucleotides
 accumulation in various regions of the body.

12

Transfection mixture	Organs with the highest luciferase signal or with the highest accumulation of oligonucleotides
CMV-Luc alone	none
CMV-Luc + P123-PEI/P123	Liver
CMV-Luc + P123	Muscle
CMV-Luc + PEI	Lungs
CMV-Luc + Liposome (Dotap-chol)	Lungs
Oligo alone	Lungs and Liver
Oligo + PEI conjugated to PEG	Kidneys
Oligo + P85-PEI/P85	Liver

14

Example 43
Intramuscular transfection with block copolymers

16 In this experiment, block copolymers are used to improve gene expression in
 18 muscle (*tibialis anterior*) of C57Bl/6 (6-7 week-old) female mice kept by groups of
 20 4 and fed *ad libidum*. Five µg of CMV-driven plasmid DNA encoding for luciferase
 is formulated with block copolymers and injected i.m. into the *tibialis anterior*
 muscle. Before each intramuscular injection, the mice are anesthetized with a
 mixed solution of ketamine and xylazine. Mice are sacrificed 5 days following the

2 i.m. injection and each injected muscle is dissected and rapidly homogenized with
 4 a tissue grinder (Kontes Glass Co.) in cell lysis buffer (Promega Corporation)
 6 supplemented with protease inhibitors. The extraction mixture is kept on ice for 30
 8 minutes and then centrifuged at a maximum speed for 2 minutes. The
 10 supernatants are kept and analyzed for luciferase activity. The assay is done as
 12 follows: 20 µl of supernatant is added to luminometric tubes containing 100 µl of
 14 luciferase substrate (Promega Corporation). Light emission is measured with a
 16 luminometer (Berthold) for a period of 5 seconds. The data is reported in relative
 light units per second per *tibialis anterior*. As shown in the table below, block
 18 copolymers improve gene expression measured after 5 days post-injection. The
 20 use of a cationic reagent does not improve but inhibited gene expression. The
 22 reason of this improvement may lie in the block copolymer's property of changing
 24 the surface tension of muscle cells and thus increasing the uptake of plasmid DNA
 in myotubes.

Treatment applied to tibialis anterior (TA)	Relative light units/second/TA	Fold-increase
Naked DNA (n = 26)	31104 ± 1404	-
Block copolymer formulated DNA (n = 18)	205448 ± 17950	6.6 x
Cationic reagents (n = 4)	15 ± 3	-

16

18 Example 44
Concentration of block copolymers improving gene expression in muscle

20 These experiments are carried out like in example 43 except that the
 22 concentration of block copolymers used for the *i.m.* injection is titrated. The
 24 concentrations of block copolymers used to perform intramuscular delivery of
 plasmid DNA are low. The concentrations of block copolymers used for
 intramuscular injection do not form gels. The solutions of block polymers consist
 in micelles and unimers of block polymers. The concentrations improving
 intramuscular gene expression are lower than 0.1% as shown below with the

- 2 arrow. This concentration is about 100 times lower than the Maximal Tolerable
 Dose when the same block copolymers are injected I.V. Also, some combination
 4 of block copolymers can even improve further gene expression.

PLURONIC P123

P123 (%)	RLU/s/T.A. muscle
0	31005 ± 5619
0.0007	6052 ± 1778
0.007	100499 ± 30455
0.07	⇒ 130113 ± 46871
0.7	5368 ± 1505
7	160 ± 23

6

COMBINATION OF PLURONIC F127/L61

F127/L61 (%)	RLU/s/T.A. muscle
0	62565 ± 7569
0.01	⇒ 564397 ± 53813
0.05	500 584 ± 40491
0.1	299 050 ± 29592

8

10 Example 45
Prolongation of gene expression with block copolymers

In this experiment, plasmid DNA encoding for luciferase is formulated with
 12 block copolymers like in example 43 except that the muscles are harvested after
 48 hours and 2 weeks. As shown in the table below gene expression is prolonged
 14 with block copolymers.

	After 48 hours (RLU/s/T.A. muscle)	After 2 weeks (RLU/s/T.A. muscle)
Naked DNA (n=6)	17143 ± 2886	1389 ± 405
Block copolymer formulated DNA (n = 18)	54377 ± 12486	20121 ± 7934

2

Example 46Kinetics of gene expression in muscle with block copolymers

The kinetic experiments are prepared in conditions like that described in example 43 except that the muscles are harvested at day 1, 2, 3, 4, and 7. As shown in the table below gene expression starts earlier with block copolymers and remained the same over a period of 7 days.

Day	Naked DNA (RLU/s/T.A. muscle)	DNA formulated with block copolymers (RLU/s/T.A. muscle)
1	93419 ± 10835	526902 ± 39724
2	141705 ± 8293	722485 ± 43789
3	59663 ± 5558	311470 ± 20066
4	786200 ± 77419	1295196 ± 82725
7	168350 ± 11103	1202503 ± 108929

Example 47Cross-species comparison of intramuscular gene expression

Block copolymers are used to formulate plasmid DNA like in example 43 but injected to 2 different species, mice and rats. Tibialis anterior of 6-8 weeks old mice and 3 months old rats are harvested 48 hours following the intramuscular injection. Two assumptions can be drawn from the table shown below; (1) block copolymers can be applied to more than one species and likely to be applicable to other species like humans, and (2) block copolymers promote gene expression in older animal suggesting that block copolymers are likely to facilitate the transfection of mature myofibers.

	6-8 week old mice (RLU/s/T.A. muscle)	3 month old rats (RLU/s/T.A. muscle)
Naked DNA	17143 ± 2886	2749 ± 839
Block copolymer-formulated DNA	54377 ± 12486	70504 ± 8483

2

Example 47A
Conjugation of PLURONIC® F127 and spermine

4 PLURONIC® F127 conjugated to spermine is obtained by following the
 6 procedure of example 28 but substituting 24g of poly (ethylene glycol) by the
 8 same amount of PLURONIC® F127 (BASF Co.) and substituting
 10 polyethyleneimine, M.W. 25,000 by spermine (Sigma-Aldrich, St-Louis) and using
 12 molar excess of 10 g of spermine per 10 g of poly (ethylene glycol) activated by
 14 1,1'-carbonyldiimidazole. This method produced 15 g of spermine conjugated
 16 PLURONIC® F127.

12

Example 47B
Intramuscular transfection with block copolymer conjugated to spermine

14 In this example PLURONIC® F127 was conjugated to spermine as
 16 described in example 47A and used to transfect plasmid DNA into the *tibialis*
 18 *anterior* of 6-8 weeks old C57Bl/6 mice. Mice were kept by groups of 5 and fed *ad*
libidum. Five ug of CMV-driven plasmid DNA encoding luciferase is formulated
 20 with F127 conjugated to spermine and injected into the *tibialis anterior* muscles.
 22 The rest of the protocol is as in Example 43. The data are shown in the table
 24 below. The data demonstrate that spermine conjugated to F127 and formulated
 26 with DNA increase transgene expression compared to naked DNA.

Treatment applied to tibialis anterior (TA)	Relative light units/second/TA	Fold-increase
Naked DNA (n=6)	292825 ± 32596	-
F127-spermine 0.02% (n=6)	2217817 ± 109632	7.6 x

24

Example 47
Intramuscular transfection using block copolymer mixed with spermine

26 In this example PLURONIC® F127 was mixed to spermine and used to
 28 transfect plasmid DNA into the *tibialis anterior* of 6-8 weeks old C57Bl/6 mice.

2 Mice were kept by groups of 5 and fed *ad libidum*. Five ug of CMV-driven plasmid
 DNA encoding luciferase is formulated with F127 mixed to spermine and injected
 4 into the *tibialis anterior* muscles. The rest of the protocol is as in Example 43.
 The data are shown in the table below. The data demonstrate that spermine
 6 mixed with Pluronic block copolymer increases the rate of transfection.

Treatment applied to <i>tibialis anterior</i> (TA)	Relative light units/second/TA	Fold-increase
Naked DNA (n=6)	949966 ± 56286	-
F127 (0.02%) + spermine (2:1 molar ratio) (n=6)	1936409 ± 78265	2.0 x

Example 48

8 Treatment of ischemic tissues with block copolymers

Ten days after ischemia is induced in one rabbit hindlimb, 500 µg of
 10 phVEGF165 (or any other DNA plasmid encoding for growth factors known to
 promote formation of collateral blood vessels such as basic FGF) is formulated
 12 with 0.1% w/v of block copolymers is injected I.M. into the ischemic hindlimb
 muscles (Tsurumi Y. et al., *Circulation*, 94:12, 3281-90 (1996)). Thirty days later,
 14 an angiography is performed to recognize collateral vessels and histology
 analyses are carried out to identify capillaries. Ischemic skeletal muscle
 16 represents a promising target for gene therapy with naked plasmid DNA
 formulated with block copolymers. I.M. transfection of genes encoding angiogenic
 18 cytokines, particularly those that are naturally secreted by intact cells, may
 constitute an alternative treatment strategy for patients with extensive peripheral
 20 vascular disease.

Example 49

22 Block copolymers used for gene-based vaccination

Block copolymers could be used to raise any humoral and cellular immune
 24 response against various antigens associated with diseases (cancer, viral
 infection, etc.). The following example focuses but not limited to HIV. A block
 26 copolymer formulation containing a plasmid DNA construct consisting in gp120

2 gene of HIV, driven by a cytomegalovirus (CMV) promoter is prepared. A volume
4 of 50 µl of a block copolymer formulation is prepared containing 5 µg of gp120
6 plasmid DNA and 0.01% of block copolymer is injected into the *tibialis anterior*
8 muscle. At about 2 weeks after injection, the muscle is removed from the injection
10 site, and prepared as a cell lysate according to the procedures of example 41 to
12 detect the presence of gp120 by means of ELISA kits (Abbot Labs, Chicago, IL).
14 The ability of gp120 antibody present in serum of the plasmid DNA vaccinated
16 mice to protect against HIV infection is determined by a HT4-6C plaque reduction
18 assay, as follows: HT4-6C cells (CD4⁺ HeLa cells) are grown in culture in RPMI
20 media (BRL, Gaithersburg, Md.). The group of cells is then divided into batches.
Some of the batches are infected with HIV by adding approximately 10⁵ to 10⁶
infectious units of HIV to approximately 10⁷ HT4-6C cells. Other batches are
tested for the protective effect of gp120 immune serum against HIV infection by
adding both the HIV and approximately 50 µl of serum from a mouse vaccinated
with gp120 plasmid DNA. After 3 days of incubation, the cells of all batches are
washed, fixed and stained with crystal violet, and the number of plaques counted.
The protective effect of gp120 immune serum is determined as the reduction in
the number of plaques in the batches of cells treated with both gp120 plasmid
DNA-vaccinated mouse serum and HIV compared to the number in batches
treated with HIV alone.

22 Example 50

24 Functional Expression of Dystrophin in Dystrophic Mouse Muscle in Vivo

26 A plasmid containing the dystrophin gene under control of the Rous Sarcoma
virus promoter is prepared from the Xp21 plasmid containing the complete
dystrophin coding region and the SV40 poly. 200 µg of the plasmid in 100 µl of
Dystrophin abnormalities of Duchenne's/Becher Muscular 0.1% block copolymers
solution is injected into the quadriceps the mutant mouse strain lacking the
dystrophin gene product (MDX mouse; Jackson labs). Expression of functional

2 dystrophin is monitored 7 days post injection by immunohistochemistry according
3 to the procedures described by Watkins *et al.* and using the same anti-dystrophin
4 antibody (anti-60 kd antibody with a fluorescent secondary antibody). Functional
5 expression of the dystrophin gene product in the dystrophic mice is detected by
6 comparing the pattern of fluorescence observed in cross-sections of quadriceps
7 muscle from injected animals, with the fluorescence pattern observed in normal
8 animals. Watkins S. C., Hoffman E. P., Slayter H. S., Kinkel L. M.,
9 Immunoelectron microscopic localization of dystrophin in myofibres, *Nature*, June
10 30, 1988; 333 (6176:863-6). Normal dystrophin expression is localized underneath
11 the plasma membrane of the muscle fiber, so that a cross section of the
12 quadriceps muscle give a fluorescence pattern encircling the cell. In addition
13 dystrophin expression is quantitated by Western blot analysis using the affinity
14 purified anti-60kd antibody.

Example 51

A Combination of Block Copolymers Improves Gene Expression Following Intradermal Administration

In this experiment, block copolymers are used to improve gene expression in the skin of C57B1/57 (6-7 week-old) female mice kept by groups of 5 and fed ad libidum. Five ug of plasmid pCMV-Luc was formulated with 50 ul of a solution containing a combination of the block copolymers PLURONIC® F127/L61. Plasmid pCMV-Luc was a gift from Dr. Albert Descoteaux from the University of Quebec, INRS-IAF. The block copolymers were in a w:w ratio of 8:1 (F127:L61) at a final concentration of 0.01%W:V. The formulation was injected at the tail base of at least 5 C57Bl/57 mice. Seven days later the skin and tissue surrounding the injection site was collected and extracted to monitor the luciferase activity as in Example 42. Luciferase activity was measured as described in Example 42. The following data were obtained and activity levels were compared to those of control mice that received only naked DNA in saline.

2 The results demonstrate that plasmid DNA formulated with a combination of
block_copolymers exhibited 20-fold higher levels of Luciferase gene expression
4 than DNA administered without the block copolymer.

Example 52

A Combination of Block Copolymers Improves the Humoral Immune Response to DNA Compositions Injected Intradermally

8 In this experiment, block copolymers are used to improve the humoral
immune response to the protein encoded by a DNA molecule injected
10 intradermally into C57Bl/57 mice (6-7 week-old) female mice kept by groups of 5
and fed *ad libidum*. The C57B1/57 mice were injected *intradermally* with 5 ug of
12 pCMV-Bgal (encoding the β-galactosidase protein) with or without a combination
of block copolymers of PLURONIC® F127/L61. The formulation was prepared as
14 described in Example 51. Blood samples were collected 2 and 4 weeks after
injection to monitor the humoral immune response specific to β-galactosidase.
16 The detection of specific anti-β-galactosidase antibodies was determined by
means of an ELISA.

18 The ELISA was performed by allowing the adsorption of β -galactosidase in
96-well plates overnight. Before the addition of a series of diluted sera, the plates
20 were blocked for 2 hours with PBS-BSA 1%. Following an incubation of 1 hour,
the sera were discarded, the plates rinsed twice with PBS-Tween 0.01% and the
22 secondary antibodies (anti-mouse IgG conjugated to horse raddish peroxidase)
added to the plate. Prior to the addition of the ABTS substrate, the plate was
24 rinsed twice with PBS-TWEEN® 0.01%.

The data are expressed as the percentage of mice responding to the antigen and the average titers of the responding mice. None of the mice injected with non-formulated pCMV-Bgal responded to the antigen. However, 2 and 4 weeks after inoculation, 33 % and 66%, respectively, of the mice injected with pCMV-Bgal formulated with a combination of block copolymers responded. This

example demonstrates that block copolymers enhance the immune response to a protein encoded by a plasmid.

Formulation	Percentage of responders(Average titers)	
	2 weeks	4 weeks
PCMV-Bgal	0	0
PCMV-Bgal + PLURONIC® F127/L61	33(1:2000)	66(1:2000)

Example 53

**A Combination of Block Copolymers Improved the Humoral Immune Response
Against a Protective Surface Antigen (ORF5) of the Porcine Reproductive and
Respiratory Syndrome Virus (PRRSV)**

8 In this experiment, the plasmid pCMV-ORF5 formulated with a combination
of block copolymers and injected intradermally improved the immune response to
10 the encoded protein. Balb/C mice (6-7 week-old) and kept in groups of 4 were
injected *intradermally* with 5 ug of the plasmid pCMV-ORF5 (encoding the GP5
12 protein) with or without a combination of block copolymers. The formulation was
prepared as described in Example 51. Blood samples were collected 3 and 5
14 weeks after inoculation to monitor the humoral immune response specific to GP5.
A booster inoculation was given after the first 3 week blood collection.

16 The results demonstrate that mice injected with pCMV-ORF5 formulated
with a combination of block copolymers developed a stronger humoral immune
18 response than mice that received the plasmid DNA alone as shown by the
increased average titer of anti-GP5 antibodies.

Formulation	Average titers post-immunization	
	3 weeks	5 weeks
pCMV-ORF5 alone	0	1:100
pCMV-ORF5 + PLURONIC® F127/L61	1:80	1:600

2

Example 54

4

A Single Block Copolymer Improves the Humoral Immune Response
to DNA Compositions Administered Intradermally

In this experiment, C57Bl/57 mice (6-8 week old and 6 mice per sample set) were injected *intradermally* with 5 or 50 ug of pCMV-Bgal with and without PLURONIC® 85 at a final concentrations of 0.1% or 0.01. Blood samples were collected 2 and 4 weeks after inoculation to monitor the humoral immune response specific to β -galactosidase. The detection of specific anti- β -galactosidase antibodies was determined by an ELISA as in Example 52.

The data are expressed as the percentage of mice responding to β -galactosidase and the average titers of the anti- β -galactosidase antibodies in the responding mice. The results demonstrate that fewer mice injected with the non-formulated pCMV-Bgal showed a response to the β -galactosidase than those mice injected with pCMV-Bgal formulated with PLURONIC®_P85. This difference occurred in mice receiving either concentration of plasmid DNA. Also, the titers were higher in the mice injected with pCMV-Bgal formulated with PLURONIC®P85 than the mice that received the non-formulated pCMV-Bgal. A weaker response with PLURONIC P85 at a concentration of 0.1% is likely due to lower gene expression. P85 at 0.01% is a more optimal concentration that appears to give higher gene expression leading to the better immune responses.

pCMV-Bgal DNA 5 μ g						
	2 weeks			4 weeks		
	DNA alone	P85 0.01%	P85 0.1%	DNA alone	P85 0.01%	P85 0.1%
Responding mice (%)	16	66	0	50	100	33
Average Titer of responding mice	1:2000	1:3000	0	1:2800	1:1600 0	1:1000

22

pCMV-Bgal DNA 50µg						
	2 weeks			4 weeks		
	DNA alone	P85 0,01%	P85 0,1%	DNA alone	P85 0,01%	P850,1 %
Responding mice (%)	33	66	100	33	66	100
Average Titer of responding mice	1:1000	1:4000	1:1250	1:8000	>1:16000	>1:16000

Example 55

A Single Block Copolymer Improves the Humoral Immune Response to DNA Compositions Administered Intramuscularly

In this experiment, C57B1/ mice showed an improved immune response following intramuscular injection with a DNA composition. C57Bl/57 (6-7 week-old) female mice were injected *intramuscularly* with 5 and 50 ug of pCMV-Bgal with and without PLURONIC®85. Six mice were injected with each sample formulation. The formulation was prepared as described in Example 51. Blood samples were collected 2 and 4 weeks after inoculation to monitor the humoral immune response specific to β -galactosidase. The detection of specific anti- β -galactosidase antibodies was determined by means of an ELISA as described in Example 52.

14 The data are expressed as the percentage of mice responding to the
15 antigen and the average titers of the responding mice. The data demonstrate that
16 after 2 weeks, none of the mice injected with 5 ug of pCMV-Bgal alone showed an
17 immune response. However, all mouse injected with pCMV-Bgal formulated with
18 PLURONIC®85 showed an immune response. The anti- β -galactosidase antibody
19 titers of mice injected with pCMV-Bgal formulated with PLURONIC®85 were
20 always higher than the mice injected with pCMV-Bgal alone.

pCMV-Bgal DNA 5 µg						
	2 weeks			4 weeks		
	DNA alone	P85 0.01%	P85 0.1%	DNA alone	P85 0.01%	P85 0.1%
Responding mice	0	100	33	100	100	100

(%)						
Average Titer of responding mice	0	1:1500	1:1000	1:4000	>1:160 00	>1:160 00

2

pCMV-Bgal DNA 50µg						
	2 weeks			4 weeks		
	DNA alone	P85 0.01%	P85 0.1%	DNA alone	P85 0.01%	P85 0.1%
Responding mice (%)	100	100	100	100	100	100
Average Titer of responding mice	1:2000	1:9000	1:7000	1:4000	>1:160 00	>1:160 00

Example 564 A Combination of Block Copolymers Improved the Humoral Immune Response to DNA Compositions Administered Intramuscularly

6 In this experiment, block copolymers are used to improve the humoral immune response in muscle (*tibialis anterior*) of C57B1/57 (6-7 week-old) female
 8 mice kept in groups of 7. C57B1/57 mice were injected *intramuscularly* with 5 or 50 ug of pCMV-Bgal with or without a combination of block copolymers. The
 10 formulation was prepared as described in Example 51. Blood samples were collected after 2 and 4 weeks to monitor the humoral immune response specific to
 12 β -galactosidase. The detection of specific antibodies was determined by means of an ELISA as described in Example 52.

14 The data are expressed as the percentage of mice responding to the antigen and the average titers of responding mice. The data demonstrate that
 16 when mice receive the DNA formulated with the block copolymers: (1) an additional injection or booster is not needed; (2) that less DNA is required to
 18 immunize the mice; and (3) the time to develop the immune response is shorter.

Formulation5 ug DNA	Percentage of responders(Average titers)	
	2 weeks	4 weeks
PCMV-Bgal	16(1:333)	83(1:2000)
pCMV-B-gal + PLURONIC® F127/L61	100(1:2000)	100(1:4000)

2

Formulation50 ug DNA	Percentage of responders(Average titers)	
	2 weeks	4 weeks
PCMV-Bgal	33(1:666)	100(1:4000)
pCMV-B-gal + PLURONIC® F127/L61	100(1:3000)	100(1:4000)

4

Example 57

5 A Combination of Block Copolymers Improves the Humoral Immune Response to
 6 a Protective Surface Antigen of the PRRSV Virus in Pigs and Mice
 7 Pigs and Balb/C, CD1 mice (at least 5 animals and all female) were
 8 injected *intradermally* with an adenovirus containing the ORF5 gene of the
 9 PRRSV virus (encoding the GP5 protein) with or without a combination of block
 10 copolymers (PLURONIC®_F127/L61) on days 0 and 21. The formulation was
 11 prepared as described in Example 51. Fifty days later the animals were
 12 challenged with the PRRSV virus. Blood samples were collected at 7 days post-
 13 challenge to monitor the humoral immune response specific to GP5.

14 The results demonstrated that only the animals that received the
 15 adenovirus formulated with PLURONIC® F127/L61 developed an immunological
 16 memory as demonstrated by Western-blot against GP5.

17 Example 58
 18 Solution Behavior of Poly(oxyethylene)-Poly(oxypropylene) Block Copolymers

19 Poly(oxyethylene)-poly(oxypropylene) block copolymers were dissolved in
 20 the phosphate-buffered saline, 10µM, pH 7.4 (PBS) or in 2.5% solution of bovine
 21 serum albumin (BSA) in PBS at the concentrations shown below, and the mixtures

- 2 incubated for at least one hour at 22.5°C or 37°C. The effective diameters of the aggregates formed in these systems were then measured by quasielastic light
 4 scattering method as described by Kabanov *et al.*, *Macromolecules* 28:2303-2314
 (1995). The results were as follows:

6

Copolymer	Conc., %	T, °C	Effective diameter, nm		Comments
			-BSA	+BSA	
Pluronic L61	0.05	22.5	ND	10.6	
	0.1	22.5	ND	23.4	
	0.25	22.5	ND	48.8	
	0.5	22.5	ND	138.3	
	0.005	37	ND	138	
Pluronic L61	0.006	37	ND	-	
	0.008	37	336	-	
	0.01	37	455	120	
	0.025	37	960	(*)	
	0.04	37		(*)	
	0.05	37	1265	(*)	
	0.075	37	1120	(*)	
	0.1	37	LPS	LPS	
	0.25	37	LPS	LPS	
Pluronic L81	0.04	22.5	-	13.8	
	0.1	22.5	ND	20.6	
	0.25	22.5	ND	379	Very cloudy solution with BSA
	0.5	22.5	935	-	Very cloudy Solutions
	0.01	37	-	266	
	0.04	37	1004	(*)	
	0.06	37	(*)	(*)	

Copolymer	Conc., %	T, °C	Effective diameter, nm		Comments
			-BSA	+BSA	
			(*)	(*)	
Pluronic L121	0.08	37	(*)	(*)	
	22.5	0.01	-	541.5	
Pluronic F44	22.5	0.05	-	330	
	22.5	0.5	ND	12.9	
	22.5	1.0	ND	11.7	
	22.5	2.25	ND	14.2	
	22.5	4.5	ND	28.7	
	22.5	7.5	ND	-	
	22.5	10.0	ND	105	
	37	0.5	ND	84.4	
	37	1.0	ND	97.1	
	37	2.25	ND	137	
	37	5.0	ND	68.1	
	37	7.5	ND		
	37	10.0	12.3	69.4	
Pluronic L64	0.5	22.5	ND	10.8	
	1.0	22.5	ND	12	
	5.0	22.5	ND	21.6	Opalescence and small fraction of aggregates (85 nm) with BSA
	0.1	37	ND	36.2	
	0.5	37	240	192.5	Slightly cloudy solution without BSA and very cloudy solution with BSA
	1.0	37	16.6	11.6	
	5.0	37	13.1	11.3	
Pluronic P85	22.5	0.5	ND	-	
	22.5	1.0	ND	12.9	
	22.5	5.0	ND	18.7	

Copolymer	Conc., %	T, °C	Effective diameter, nm		Comments
			-BSA	+BSA	
	37	0.5	13.9	-	
	37	1.0	12.6	79.6	
	37	5.0	12.8	109	
Pluronic F108	37	2.0	-	22.8	-
Pluronic F127	37	1.0	-	23.2	-
	37	2.0	-	21.5	-
Tetronic T1307	22.5	2.0	-	ND	-
	37	0.5	-	16.7	-
	37	1.0	-	17.1	-
	37	2.0	-	16.6	37.4

2 "ND": Non Detectable

“LPS”: Liquid Phase Separation.

4 (*) Turbidity too high for light scattering measurements.

These results suggest that (1) hydrophobic poly(ethyleneoxide)-
 6 poly(propyleneoxide) block copolymers with propylene oxide content not less than
 50% (w/v) reveal tendency for aggregation in aqueous solutions at physiological
 8 temperature, (2) aggregation and phase separation of these copolymers is
 significantly enhanced in the presence of serum proteins.

Example 59

Effects of Hydrophilic Pluronic Copolymers on Solution Behavior of Hydrophobic Pluronic Copolymers

The same procedure as in Example 58, but substituting a mixture of two different poly(ethylene oxide)-poly(propylene oxide) block copolymers for the single copolymer. The results were as follows:

First Copolymer (conc. %)	Second conc., %	T, °C	Effective diameter, nm	
			-BSA	+BSA
Pluronic L121	Pluronic F127(0.5)	22.5	116.4	
	Pluronic F127(1.0)	22.5	113.9	
	Pluronic F127(5.0)	22.5	313.2	
	Pluronic F127(0.5)	37	88.7	
Pluronic L121(0.1)	Pluronic F127(1.0)	37	77.1	
	Pluronic F127(2.0)	37	177	
	Pluronic F127(5.0)	37	262	
Pluronic L61(0.1)	Pluronic F127(0.5)	37	26.7	23.8
	Pluronic F127(1.0)	37	23.6	12.9
	Pluronic F127(2.0)	37	21.6	13.8
Pluronic L61(0.125)	Pluronic F127(1.0)	37	24.7	53
	Pluronic F127(2.0)	37	22.3	-
Pluronic L61 (0.25)	Pluronic F127(0.5)	37	(*)	-
	Pluronic F127(1.0)	37	(*)	-
	Pluronic F127(2.0)	37	22.4	15.0
Pluronic L61(0.25)	Pluronic F108(2.0)	37	840	-
Pluronic L61(0.1)	Tetronic T1307(1.0)	37	(*)	-
	Tetronic T1307(1.5)	37	915.4	-

First Copolymer (conc. %)	Second conc., %	T, °C	Effective diameter, nm	
			-BSA	+BSA
	Tetronic T1307(2.0)	37	16.3	624.8
Pluronic L61(0.15)	Tetronic T1307(2.0)	37	387.4	-
Pluronic L61(0.2)		37	520	-
Pluronic L61(0.25)		37	735.3	-
Pluronic L61(0.1)	Tetronic T1307(2.5)	37	-	522.3
	Tetronic T1307(3.0)	37		225
	Tetronic T1107(2.0)	37	(*)	

2 "ND": Non-Detectable.

(*) Turbidity too high for light scattering measurements.

4 These results suggest that, (1) hydrophilic poly(oxyethylene)-
 6 poly(oxypropylene) block copolymers with ethylene oxide content more than 50%
 8 (w/v) prevent aggregation of hydrophobic hydrophilic Poly(oxyethylene)-
 10 poly(oxypropylene) block copolymers with propylene oxide content not less than
 12 50% (w/v) at physiological temperatures; (2) hydrophilic poly(oxyethylene)-
 14 poly(oxypropylene) block copolymers with ethylene oxide content more than 50%
 (w/v) prevent aggregation of hydrophobic hydrophilic poly(oxyethylene)-
 poly(oxypropylene) block copolymers with propylene oxide content not less than
 50% in the presence of serum proteins. These data also show that when a
 mixture of block copolymers is used hydrophilic block copolymer with ethylene
 oxide content of 70% or more is preferred, and PLURONIC®F127 is particularly
 preferred.

2

Example 60Isolation of the Infiltrating Cells From Muscle Injected With pCMV- β gal/PLURONIC F127/PLURONIC L61.

C57/B1/6 mice were injected i.m. with 50 μ g of pCMV- β gal in 50 μ l of saline or 50 μ g of pCMV/bgal in 50 μ l of the solution containing a mixture of PLURONIC F127 and PLURONIC L61. The mixture of PLURONIC F127 and PLURONIC L61 was prepared as described in Example 51 at the block copolymer w:w ratio of 8:1 (F127:L61). Five days following the injection, muscles were either frozen in order to be sliced to perform a histoimmunochemistry study or harvested to isolate mechanically infiltrating cells. Muscle sections were then stained with x-gal and hematoxilin-eosin to locate and evaluate the extent of gene expression and the amount of infiltrating cells. The results demonstrated that muscles injected with pCMV- β gal/PLURONIC F127/PLURONIC L61 had 10 times higher x-gal staining, a proportionally more infiltrating leukocytes was found in the transgene expression areas of the tissue in the case of formulated DNA compared to naked pCMV- β gal. The muscle sections were then used to perform an immunohistochemistry analysis in order to determine the cell type infiltrating leukocytes the muscle following the injection. In addition, the infiltrating cells were extracted from the muscles to perform flow cytometry studies. Antibodies against CD3, CD4, CD8 and CD11a molecular markers were chosen to determine if the isolated cells were T-cells, antibody against B220 molecule was chosen to determine if the cells were B-cells; antibody against NK1.1 molecule were used to determine if the cells were natural killer cells, antibody against Gr-1 marker were used to determine if the cells were infiltrating neutrophils, and antibody against Mac-1 molecule were used to determine if the cells were macrophages. The results of these studies revealed that the majority of the isolated cells did not express any of the marker antigens tested. The only known infiltrating cells that do not express the above surface markers (see results below) are immature dendritic cells.

30

2 Phenotyping of the infiltrating cells in muscle injected with pCMV-
 βgal/PLURONIC F127/PLURONIC L61.

4

Surface markers	Immunohisto chemistry Results (% of stained cells)	Flow Cytometry Results(% of stained cells)	Positive control in flow cytometry (% of stained splenocytes)
CD3	N.D.	1.2	41
CD4	0	0	22
CD8	0	0	12
CD11a	N.D.	3	98
GR-1	0	1.5	2
Mac-1	N.D.	3	92
NK1.1	N.D.	2	4
B220	N.D.	0	56

6

Example 61
Phenotype Identification of the Infiltrating Cells

8 Cells from the muscles of mice injected with PLURONIC F127/PLURONIC
 L61 alone, pCMVβgal, pCMVβgal/PLURONIC F127/PLURONIC L61, pCMV
 10 (empty vector) and empty vector/PLURONIC F127/PLURONIC L61 were isolated
 and cultured in conditions favoring the growth of dendritic cells. More specifically,
 12 the equal amounts of cells from the above groups were plated in a 96-well plate.
 After 7 days under constant stimulation with GM-CSF (growth factor known to
 14 activate the differentiation of DCs), GM-CSF + IL-4 and LPS (also known to be a
 stimulant of DCs), only cells isolated from the muscles injected with
 16 pCMVβgal/PLURONIC F127/PLURONIC L61 were growing and exhibiting
 dendrites (spikes and veils) (see results below).

2

Cell Growth Following a 7-Day Stimulation.

	GM-CSF (confluence after 12 days)	LPS (confluence after 12 days)	GM-CSF + IL-4 (confluence after 12 days)
PLURONIC F127/PLURONIC L61	-	-	-
pCMV β gal	-	-	-
pCMV β gal/PLURONI C F127/PLURONIC L61	50%	20%	90%
empty vector		-	-
empty vector/PLURONIC F127/PLURONIC L61	-	-	10%

4

Example 62Promoter Dependence Effect of PLURONIC F127/PLURONIC L61

6 In this experiment, PLURONIC F127/PLURONIC L61 was used to test its
 8 effect on gene expression (transcription) in muscle (*tibialis anterior*) of C57B1/6
 10 (6-7 week-old) female mice kept by groups of 4 and fed *ad libidum*. Five μ g of
 12 CMV-, 5V40-, AP-1, NF- κ B-driven plasmid DNAs encoding for luciferase are
 14 formulated with and without PLURONIC F127/PLURONIC L61 and injected
 16 intramuscularly into the *tibialis anterior* muscle. Before each injection, the mice
 18 are anesthetized with a mixed solution of ketamine and xylazine. Mice are
 20 sacrificed 5 days following the injection and each injected muscle is dissected and
 rapidly homogenized with a polytron in cell lysis buffer (Promega Corporation)
 supplemented with protease inhibitors. The extracts are kept on ice for 30 minutes
 and then centrifuged at a maximum speed for 2 minutes. The supernatants are
 kept and analyzed for luciferase activity. The assay is done as follows: 20 μ l of
 supernatent is added to luminometric tubes containing 100 μ l of luciferase
 substrate (Promega Corporation). Light emission is measured with a luminometer
 (Berthold) for a period of 5 seconds. The data is initially in relative light units per
 second per *tibialis anterior* but then reported in percentage of increase over naked

2 DNA. As shown in the table below, PLURONIC F127/PLURONIC L61 has a promoter dependence leading to differential transcription.

4

Conditions	% of increase over naked DNA
pCMV-Luc in saline	100
pCMV-Luc in PLURONIC F127/PLURONIC L61 @ 0.01% w/v	1000
pSV4O-Luc in saline	100
pSV4O-Luc in PLURONIC F127/PLURONIC L61 @ 0.01% w/v	250
pNF-kB-Luc in saline	100
pNF-kB-Luc in PLURONIC F127/PLURONIC L61 @ 0.01% w/v	700
pAP-1-Luc in saline	100
pAP-1-Luc in PLURONIC F127/PLURONIC L61 @ 0.01% w/v	90

Example 63

6 PLURONIC F127/PLURONIC L61 Increases Antigen Uptake in Infiltrating Cells (Dendritic Cells)

8 The *tibialis anterior* muscles were harvested 5 days post-injection (50µg/muscle), dissected out, and minced by mechanical force in 2 ml of complete
 10 RPMI. The suspension of small pieces of muscles was stirred with a magnetic bar for 10 minutes to extract the infiltrating cells. The extracted cells were recovered
 12 by filtering them through a funnel with a sterile glass wool plug. The remaining pieces of muscles were extracted 2 more times by adding 2 ml of complete
 14 medium and by repeating the above procedure. The cells suspensions were pooled and centrifuged for 10 minutes at 1200 rpm at 4°C. The cell pellet was
 16 resuspended in order to get a cell density of 1×10^8 cells per eppendorf tube. The cells are then extracted in lysis buffer for 30 minutes and then centrifuged at a
 18 maximum speed for 2 minutes. The supernatents are kept and analyzed for luciferase activity. The assay is done as follows: 20 µl of supernatent are added to
 20 luminometric tubes containing 100 µl of luciferase substrate (Promega

2 Corporation). Light emission is measured with a luminometer (Berthold) for a
 period of 5 seconds. The data is reported in relative light units per second per
 4 *tibialis anterior.*

Samples	RLU/s per 1 x 10 ⁶ cells
DC isolated from muscles injected with CMV-Luc in saline	272±50
DC isolated from muscles injected with pCMV-Luc formulated with PLURONIC F127/PLURONIC L61 @0.01 w/v	3155±360

6 There will be various modifications, improvements, and applications of the
 disclosed invention that will be apparent to those of skill in the art, and the present
 8 application is intended to cover such embodiments. Although the present
 invention has been described in the context of certain preferred embodiments, it is
 10 intended that the full scope of these be measured by reference to the scope of the
 following claims.

12 The disclosures of various publications, patents and patent applications that
 are cited herein are incorporated by reference in their entireties.

14

WHAT IS CLAIMED IS:

- 16 1. Composition for inducing activation of dendritic cells comprising a
 polynucleotide, viral vector, or polynucleotide derivative thereof and at
 18 least one polyoxyethylene-polyoxypropylene block copolymer.
- 20 2. The composition of claim 1 further comprising a polycation.
- 22 3. The composition of claim 2 wherein the polycation is a polyamine polymer.

2

4. The composition of claim 2 wherein the polycation is an oligoamine or an
4 oligoamine conjugate.

6

5. The composition of claim 1 wherein there is a mixture of block copolymers.

8

6. The composition of claim 5 wherein the block copolymers comprise a
mixture wherein at least one block copolymer with oxyethylene content of
10 50% or less, and at least one block copolymer with oxyethylene content of
50% or more.

12

7. The composition of claim 5 6 wherein the block copolymers comprise a
14 mixture a first block copolymer component having an oxyethylene content
of 50% or less, and a second block copolymer component having an
16 oxyethylene content of 50% or more wherein the weight ratio of said
second block copolymer to said first block copolymer is at least 2:1.

18

8. The composition of claim 6 wherein the block copolymers comprise a
20 mixture a first block copolymer component having an oxyethylene content
of 50% or less, and a second block copolymer component having an
22 oxyethylene content of 50% or more wherein the weight ratio of said
second block copolymer to said first block copolymer is at least 5:1.

24

9. The composition of claim 5 wherein the copolymers comprise a mixture
26 wherein at least one block copolymer has an oxyethylene content of 70%
or more and at least one block copolymer has an oxyethylene content of
28 50% or less.

- 2 10. The composition of claim 5 wherein N, according to the following
 expression, is from about 0.2 to about 9.0 and preferably from about 0.25
 4 to about 1.5:

$$N = 1.32 \cdot \left[\frac{H_1 \cdot m_1}{(L_1) \cdot (m_1 + m_2)} + \frac{H_2 \cdot m_2}{(L_2) \cdot (m_1 + m_2)} \right]$$

6 in which H_1 and H_2 are the number of oxypropylene units in the
 8 first and second block copolymers, respectively; L_1 is the number of
 10 oxyethylene units in the first block copolymer; L_2 is the number of
 12 oxyethylene units in the second block copolymer; m_1 is the weight
 proportion in the first block-copolymer; and m_2 is the weight proportion
 in the second block copolymer.

- 14 11. The composition of claim 5 wherein the mixture comprises the block
 copolymer PLURONIC® F127.

- 16 12. The composition of claim 1, wherein at least one of the block copolymers
 has the formula:

18

2

4 in which x , y , z , i , and j have values from about 2 to about 400, and
 6 wherein for each R^1 , R^2 pair, one is hydrogen and the other is a methyl
 group.

13. The composition of claim 1 wherein at least one of the block copolymers
 8 has the formula:

2 in which x , y , z , i , and j have values from about 2 to about 400,
4 and for each R^1 , R^2 pair, one is hydrogen and the other is a methyl
group.

6 14. The composition of claim 1 wherein the block copolymer comprises at least
PLURONIC F127 and L61.

8 15. The composition of claim 14 wherein the ratio of PLURONIC F127:L61 is
10 8:1.

12 16. The composition of claim 14 wherein PLURONIC F127 is in the amount of
about 2%w/v and PLURONIC L61 is in the amount of about 0.025% w/v.

14 17. The composition of claim 1 wherein said block copolymer is present in
16 amounts insufficient for gel formation.

18 18. A composition for inducing the activation of dendritic cells comprising a
20 polynucleotide or derivative thereof and at least one polyoxyethylene-
polyoxypropylene block copolymer, wherein the block copolymer is present
at a concentration below about 15% wt/vol.

22 19. The composition of claim 18 wherein the block copolymer concentration is
24 below about 10%.

26 20. The composition of claim 18 wherein the block copolymer concentration is
below about 5%.

28

- 2 21. A composition for inducing the activation of dendritic cells comprising a
4 polynucleotide or derivative thereof and at least one polyoxyethylene-
 polyoxypropylene block copolymer, wherein the composition forms a
molecular solution or colloidal dispersion.
- 6
- 8 22. The composition of claim 21 wherein the colloidal dispersion is a
 suspension, emulsion, microemulsion, micelle, polymer complex, or other
 type of molecular aggregate.
- 10
- 12 23. The composition of claim 21 wherein the colloidal dispersion comprises
 molecular species that are less than about 300 nm.
- 14
- 16 24. The composition of claim 21 wherein the colloidal dispersion comprises
 molecular species that are less than about 100 nm.
- 18
- 20 25. The composition of claim 21 wherein the colloidal dispersion comprises
 molecular species that are less than about 50 nm.
- 22
- 24 26. The composition of claim 1 wherein the polynucleotide is RNA, DNA,
 plasmid DNA, virus, or viral vector.
- 26
- 28 27. The composition of claim 1 wherein the polynucleotide encodes a secreted
 or non-secreted protein, vaccine or antigen.
- 30 28. The composition of claim 1 comprising a gene expressing a secreted or
 non-secreted protein, vaccine or antigen and at least one gene expressing
 an adjuvant molecule operable to activate antigen presenting cells and
 induce immune response for enhanced antigen presentation.

- 2 29. A method of inducing activation of dendritic cells comprising administering
4 a composition comprising a polynucleotide or derivative thereof and at
least one polyoxyethylene-polyoxypropylene block copolymer.
- 6 30. The method of claim 30 wherein the block copolymers comprise at least
PLURONIC F127 and L61.
- 8
- 10 31. The method of claim 30 wherein the block copolymer is present in amounts
insufficient for gel formation.
- 12 32. A method of inducing activation of dendritic cells comprising administering a
14 composition comprising a polynucleotide or derivative thereof and at least
one polyoxyethylene-polyoxypropylene block copolymer, wherein the
composition forms a molecular solution or colloidal dispersion.
- 16
- 18 33. The method of claim 32 wherein the block copolymers are PLURONIC
F127 and L61.
- 20 34. A method of increasing the immune response of an animal comprising
administering the composition according to claim 1.
- 22
- 24 35. The method of claim 34 wherein the block copolymers comprise at least
PLURONIC F127 and L61.
- 26 36. The method of claim 34 wherein the composition is administered orally,
topically, rectally, vaginally, parenterally, intramuscularly, intradermally,
subcutaneously, intraperitoneally, or intravenously.

- 2 37. A method of increasing the immune response of an animal comprising
 intramuscularly administering the composition according to claim 1.
- 4
- 6 38. The method of claim 37 wherein the block copolymers comprise at least
 PLURONIC F127 and L61.
- 8 39. The method of claim 37 wherein said composition is administered to at
 least one of smooth, skeletal, and cardiac muscles.
- 10 40. A method of increasing the immune response of an animal comprising
 intradermally administering the composition according to claim 1.
- 12
- 14 41. A composition for inducing the activation of dendritic cells comprising at least
 one polyoxyethylene-polyoxypropylene block copolymer.
- 16 42. The composition of claim 41 further comprising a polycation.
- 18 43. The composition of claim 42 wherein the polycation is a polyamine polymer.
- 20 44. The composition of claim 41 wherein the polycation is an oligoamine or an
 oligoamine conjugate.
- 22
- 24 45. The composition of claim 41 wherein there is a mixture of block
 copolymers.
- 26 46. The composition of claim 45 wherein the block copolymers comprise a
 mixture wherein at least one block copolymer with oxyethylene content of
 50% or less, and at least one block copolymer with oxyethylene content of
 50% or more.
- 30

- 2 47. The composition of claim 46 wherein the ratio by weight of the block
copolymer with oxyethylene content of 50% or less to the block copolymer
4 with oxyethylene content of 50% or more is 1:2.
- 6 48. The composition of claim 46 wherein the ratio by weight of the block
copolymer with oxyethylene content of 50% or less to the block copolymer
8 with oxyethylene content of 50% or more is 1:5.
- 10 49. The composition of claim 45 wherein the copolymers comprise a mixture
wherein at least one block copolymer with oxyethylene content of 70% or
12 more and at least one block copolymer with oxyethylene content of 50% or
less.
- 14
- 16 50. The composition of claim 45 wherein N, according to the following
expression, is from about 0.2 to about 9.0 and preferably from about 0.25
to about 1.5:

$$N = 1.32 \cdot \left[\frac{H_1 \cdot m_1}{(L_1) \cdot (m_1 + m_2)} + \frac{H_2 \cdot m_2}{(L_2) \cdot (m_1 + m_2)} \right]$$

18 in which H_1 and H_2 are the number of oxypropylene units in the first and
20 second block copolymers, respectively; L_1 is the number of oxyethylene
units in the first block copolymer; L_2 is the number of oxyethylene units in
22 the second block copolymer; m_1 is the weight proportion in the first block-
copolymer; and m_2 is the weight proportion in the second block copolymer.

- 24
- 26 51. The composition of claim 45 wherein the mixture comprises the block
copolymer PLURONIC® F127.

2

52. The composition of claim 41, wherein at least one of the block copolymers
4 has the formula:

6

in which x , y , z , i , and j have values from about 2 to about 400, and wherein for each R^1 , R^2 pair, one is hydrogen and the other is a methyl group.

10

- 2 53. The composition of claim 41 wherein at least one of the block copolymers
has the formula:

4

in which x , y , z , i , and j have values from about 2 to about 400, and
for each R^1 , R^2 pair, one is hydrogen and the other is a methyl group.

- 8 54. The composition of claim 41 wherein the block copolymer comprises at
least PLURONIC F127 and L61.

- 10 55. The composition of claim 40 wherein the block copolymer is present in
12 amounts insufficient for gel formation.

- 14 56. A composition for inducing the activation of dendritic cells comprising at
least one polyoxyethylene-polyoxypropylene block copolymer, wherein the
16 composition forms a molecular solution or colloidal dispersion.

- 2 57. The composition of claim 56 wherein the colloidal dispersion is a
suspension, emulsion, microemulsion, micelle, polymer complex, or other
4 type of molecular aggregate.
- 6 58. The composition of claim 56 wherein the colloidal dispersion comprises
molecular species that are less than about 300 nm.
8
- 10 59. The composition of claim 56 wherein the colloidal dispersion comprises
molecular species that are less than about 100 nm.
- 12 60. The composition of claim 56 wherein the colloidal dispersion comprises
molecular species that are less than about 50 nm.
14
- 16 61. A composition for inducing activation of dendritic cells comprising a
polynucleotide or derivative thereof and at least one polycationic polymer
having a plurality of cationic repeating units.
18
- 20 62. A polynucleotide composition according to Claim 61 wherein said
polycationic polymer is a cationic homopolymer, copolymer or block
copolymers comprising one or more of the following fragments:
22 (a) at least one aminoalkylene monomer selected from a group
consisting of:
24 (i) a tertiary amine monomer of the formula

28 and,

2 (ii) a secondary amine monomer of the formula

4

each of R¹, R⁴, R⁵, R⁶ and R⁸ taken independently of each other is hydrogen, alkyl of 2 to 8 carbon atoms, another A monomer, or another B monomer;

each of R², R³ and R⁷, taken independently of each other, is a straight or branched alkanediyl of the formula -(C_zH_{2z})- wherein z has a value of from 2 to 8;

(b) cationic amino acids;

14 (c) (-OPO(NH-R⁹-NR¹⁰R¹¹R¹²)O-R⁸-) in which R⁹ is a straight chain
16 aliphatic group of from 1-12 carbon atoms and R⁸ is -(CH₂)_n-CH(R¹³)-
where n is an integer from 0 to 5, R¹⁰, R¹¹ and R¹² are independently hydrogen or alkyl of 1 to 4 carbon atoms and R¹³ is a hydrogen,
18 cycloalkyl having 3-8 carbon atoms. or alkyl of 1-2 carbon atoms; and
(d) vinylpyridine or a derivative thereof.

20

22 63. A composition according to claim 62 comprising a polynucleotide and a
polymer of a plurality of segments, wherein the polymers comprise at
least one polycationic segment which is cationic homopolymer,
24 copolymer, or block copolymer, or quaternary salt thereof; and either,

(a) at least one straight or branched chain polyether segment of from 5 to about 400 monomer units which polyether segment is:

28 (i) a homopolymer of at least one alkyleneoxy monomer $-\text{OC}_n\text{H}_{2n}-$
in which n has a value from 2 to 3; or.

- 2 (ii) a copolymer or block copolymer of said first alkyleneoxy
4 monomer and a second different alkyleneoxy monomer
-OC_mH_{2m}-, in which n has a value from 2 to 3 and m has a value
from 2 to 4 or,
- 6 (b) a homopolymer or copolymer of at least one monomer from a group
8 consisting of acrylamide, glycerol, vinyl alcohol, vinyl pyrrolidine,
 vinylpyridine-N-oxide, oxazoline, morpholine acrylamide, and derivatives
 thereof.
- 10
- 12 64. A composition according to claim 63 wherein said first alkyleneoxy
 monomer is ethyleneoxy (-OCH₂CH₂-) and said second alkyleneoxy
 monomer is propyleneoxy (-OCH(CH₃)CH₂-).
- 14
- 16 65. A composition of claim 63 wherein the polycationic polymer, at
 physiological pH, comprise at least six cationic groups.
- 18
- 20 66. A polynucleotide composition according to claim 63 wherein the
 polycationic polymer, at physiological pH, contain a plurality of cationic
 groups separated by about 3Å to about 12Å.
- 22
- 24 67. A polynucleotide composition according to claim 63 wherein each of
 said polyether segments has from about 5 to about 80 monomeric units
 and said polycationic segment is a homopolymer, copolymer or block
 copolymer of from 2 to about 180 of the same or different monomeric
 units of the formula -NH-R°- in which R° is a straight chain aliphatic
 group of 2 to 6 carbon atoms which may be optionally substituted.
- 26
- 28

- 2 68. A composition according to claim 69 wherein the polycationic polymer is
covalently linked with at least one nonionic polymer segment.
- 4
- 6 69. A method of inducing activation of dendritic cells comprising administering
a composition comprising a polynucleotide or derivative thereof and at
least one polyoxyethylene-polyoxypropylene block copolymer.
- 8
- 10 70. A method of inducing the activation of dendritic cells comprising
administering a composition comprising at least one polyoxyethylene-
polyoxypropylene block copolymer, wherein the block copolymer is present
in amounts insufficient for gel formation.
- 14 71. The method of claim 70 wherein the block copolymers comprise at least
PLURONIC F127 and L61.
- 16
- 18 72. A method of inducing activation of dentritic cells comprising administering
a composition comprising at least one polyoxyethylene-polyoxypropylene
block copolymer, wherein the composition forms a molecular solution or
colloidal dispersion.
- 22 73. The method of claim 72 wherein the block copolymers are PLURONIC
F127 and L61.
- 24
- 26 74. A method of increasing the immune response of an animal comprising
administering the composition according to claim 72.
- 28
- 30 75. The method of claim 72 wherein the composition is administered orally,
topically, rectally, vaginally, parenterally, intramuscularly, intradermally,
subcutaneously, intraperitoneally, or intravenously.

2

76. The method of claim 72 wherein said composition is administered to at
4 least one of smooth, skeletal, and cardiac muscles.

6

77. A method of improving the immune response of an animal comprising
intradermally administering the composition according to claim 34.

8