CSE - 322 Computer Networks Sessional

NS2 Project Proposal

Name: Abdus Samee

ID: 1805021

Section: A1

DiffQ: Practical Differential Backlog Congestion Control for Wireless Networks

Link to the Paper

<u>DiffQ: Practical Differential Backlog</u>

<u>Congestion Control for Wireless Networks | IEEE Conference Publication | IEEE Xplore</u>

Authors: A.Warrier; S. Janakiraman; S. Ha; I. Rhee

Published In: IEEE INFOCOM 2009

PDF

Motivations

- Tackle the flow in the middle problem
 - An initial flow gets hindered at a node due to flows generated later on

- Ensures fairness by proper distribution of the throughput in all of the flows
 - Few flows get disproportionately large amount of bandwidth, many flows are starving

DiffQ Design

Maintain a queue for each destination whose packet a node forwards A node delivers a packet or inserts it in FIFO order into the queue of destination A node also keeps track of the sizes of the destination queues of its neighbouring nodes Queue is updated twice: if a node receives a packet or it overhears a reception

A queue differential is defined as: QDi(d) = |Qi(d)|-|Qj (d)| Qi(d) is destination queue of d at node i Set a priority based on this queue differential for the HOL packet of each destination queue Sender selects the HOL packet of highest priority and transmits it

Pseudocode

Source Rate Control()

- 1. F = Destination of flow originating at this node
- 2. qlen ←lQi(F)l;
- 3. if qlen > QUEUE THRESH
 - 4. rate = rate/ β ;
- 5. else
 - 6. rate = rate + α ;

Forwarder Algorithm()

- 1. $\triangle \leftarrow$ Number of priority levels supported by MAC;
- 2. D←Maximum per-dest queue size;
- 3. Flow Scheduling
- 4. F ←argmaxd QDi(d);
- 5. P ←HOL packet of Qi(F);
- 6. P.priority \leftarrow MAX(QDi(F) D Δ , 0); P.qlen
- **←**|Qi(F)|;
- 7. Transmit P;

- 8. On receiving packet P from local application
- 9. Encapsulate P with DiffQ header;
- 10. if P is the first packet
- 11. Create flow entry for P's destination;
- 12. F ← Destination of P;
- 13. Enqueue P into Qi(F);
- 14. On reception of packet P from node j
- 15. F ← Destination of P;
- 16. if F is this node
- 17. Decapsulate DiffQ Header;
- 18. Send it up to the application;
- 19. else
- 20. if No flow entry exists for F
- 21. Create flow entry for F;
- 22. if node j is the routing next-hop for F
- 23. $QDi(F) \leftarrow |Qi(F)| |Qj(F)|$;
- 24. else
- 25. Enqueue P into Qi(F);