

Qu'est-ce que réduire un endomorphisme?

Soit E un espace vectoriel de dimension finie sur un corps K et f un endomorphisme de E. Si on se place dans une base de E, on peut représenter f par une matrice. Le but de ce chapitre est de trouver une base de E telle que la matrice représentant f dans cette base soit la plus "simple" possible (on prend la même base pour E ensemble de départ que pour E ensemble d'arrivée).

0.1 Définition 1

- On dit que f est diagonalisable s'il existe une base $\{e_i\}$ de E telle que :

$$M(f)_{e_i} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$
 (1)

- On dit que f est triangularisable (ou trigonalisable) s'il existe une base $\{e_i\}$ de E telle que :

$$M(f)_{e_i} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$
 (2)

ou bien

$$M(f)_{e_i} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} & a_{nn} \end{bmatrix}$$
(3)

Dans toute la suite, on suppose que E est un espace vectoriel de dimension finie sur un corps K.

1 Vecteurs propres - Valeurs propres

1.1 Vecteurs propres

Définition 2 – Soit $f \in \mathcal{L}(E)$. Un vecteur $u \in E$ est un vecteur propre de f si :

1) u est non nul, 2) Il existe $\lambda \in K$ tel que $f(u) = \lambda u$.

Le scalaire λ est appelé valeur propre associée à u.

Remarque - Si u est vecteur propre de f, alors, par linéarité de f, αu est vecteur propre de f pour tout $\alpha \neq 0$.

1.2 Théorème 3

L'endomorphisme f de E est diagonalisable si et seulement s'il existe une base de E formée de vecteurs propres de f.

2 Polynôme caractéristique

Remarque - Si f est diagonalisable, les termes qui apparaissent sur la diagonale de la matrice représentant f dans une base de vecteurs propres sont les valeurs propres associées.

2.1 Polynôme caractéristique

Soit λ une valeur propre de f. L'endomorphisme $f - \lambda Id$ n'est alors pas injectif puisqu'il existe $u \neq 0$ tel que $f(u) = \lambda u$. Comme on est en dimension finie, c'est équivalent à sa non-bijectivité, donc à ce que le déterminant de $f - \lambda Id$ soit nul.

Proposition 4 – Les valeurs propres de f sont les racines du polynôme

$$P_f(\lambda) = \det(f - \lambda Id).$$

 $P_f(\lambda)$ est un polynôme de degré n, appelé polynôme caractéristique de f.

Remarque - Si A et B sont deux matrices représentant un même endomorphisme f dans deux bases distinctes, alors elles sont semblables donc

$$\det(A - \lambda I) = \det(B - \lambda I).$$

On appelle également polynôme caractéristique de la matrice A le polynôme $\det(A - \lambda I_n)$.

Définition 5 – On dit qu'une valeur propre de f est de multiplicité α si elle est racine d'ordre α du polynôme caractéristique de f.

Une fois déterminées les valeurs propres, on détermine l'espace des vecteurs propres associés à chacune de ces valeurs en résolvant le système linéaire

$$(A - \lambda Id)(u) = 0$$

où A est la matrice de f dans une certaine base.

Définition 6 – L'ensemble des valeurs propres d'un endomorphisme f est appelé le spectre de f.

Proposition 7 – Soit $A \in M_n(K)$. Le polynôme caractéristique de A est de degré n et, plus précisément, on a :

$$\det(A - \lambda I_n) = (-1)^n \lambda^n + \sum_{i=0}^{n-1} a_i \lambda^i$$

avec $a_0 = \det(A)$ et $a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$.

3 Caractérisation des endomorphismes diagonalisables

Proposition 8 – Soit $\lambda \in K$. On note :

$$E_{\lambda} = \ker(f - \lambda Id) = \{x \in E \mid f(x) = \lambda x\}.$$

 E_{λ} est un sous-espace vectoriel de E, appelé espace propre associé à λ . L'espace E_{λ} est stable par f.

Démonstration

 E_{λ} est le noyau d'un endomorphisme, donc c'est un sous-espace vectoriel de l'ensemble de départ de cet endomorphisme.

Montrons qu'il est stable par f. Soit $x \in E_{\lambda}$, alors $f(x) = \lambda x$. Donc :

$$f(f(x)) = f(\lambda x) = \lambda f(x).$$

On a montré que $f(x) \in E_{\lambda}$, ce qui prouve que E_{λ} est stable par f.

Remarque:

- Si λ n'est pas valeur propre, alors $E_{\lambda} = \{0\}$.
- Si λ est valeur propre, alors dim $E_{\lambda} \geq 1$.

Proposition 9 – Soient $\lambda_1, \ldots, \lambda_p$ des scalaires distincts deux à deux. Alors les sousespaces propres $E_{\lambda_1}, \ldots, E_{\lambda_p}$ sont en somme directe.

Démonstration

On prouve le résultat par récurrence sur p. Si p=1, il n'y a rien à montrer. Supposons que les espaces $E_{\lambda_1}, \ldots, E_{\lambda_p}$ soient en somme directe et montrons que les espaces $E_{\lambda_1}, \ldots, E_{\lambda_p}, E_{\lambda_{p+1}}$ sont aussi en somme directe.

Pour cela, il suffit de montrer que :

$$(E_{\lambda_1} + \dots + E_{\lambda_n}) \cap E_{\lambda_{n+1}} = \{0\}.$$

Soit $x \in (E_{\lambda_1} + \dots + E_{\lambda_p}) \cap E_{\lambda_{p+1}}$. On a $f(x) = \lambda_{p+1}x$ car $x \in E_{\lambda_{p+1}}$. Comme $x \in E_{\lambda_1} + \dots + E_{\lambda_p}$, il existe $x_1 \in E_{\lambda_1}, \dots, x_p \in E_{\lambda_p}$ tels que :

$$x = x_1 + \cdots + x_n$$
.

On a donc également :

$$f(x) = \lambda_1 x_1 + \dots + \lambda_p x_p.$$

En soustrayant ces deux équations:

$$0 = (\lambda_1 - \lambda_{p+1})x_1 + \dots + (\lambda_p - \lambda_{p+1})x_p.$$

Les espaces $E_{\lambda_1}, \ldots, E_{\lambda_p}$ étant en somme directe, on en déduit que :

$$\forall k \in \{1, \dots, p\}, \quad (\lambda_k - \lambda_{p+1}) x_k = 0.$$

Or, les λ_i sont distincts deux à deux, donc $x_k = 0$ pour tout k, ce qui implique x = 0.

Corollaire 10 – L'endomorphisme f est diagonalisable si et seulement si E est somme directe de ses sous-espaces propres.

Si on note $\lambda_1, \ldots, \lambda_p$ les valeurs propres deux à deux distinctes de f, on a :

Corollaire 11 – L'endomorphisme f est diagonalisable si et seulement si :

$$\dim E = \dim E_{\lambda_1} + \dots + \dim E_{\lambda_n}.$$

Proposition 12 – Soit $f \in \mathcal{L}(E)$ et λ une valeur propre de multiplicité α . Alors :

$$\dim E_{\lambda} < \alpha$$
.

Démonstration

Supposons dim $E_{\lambda} \geq \alpha + 1$. Soient $u_1, \ldots, u_{\alpha+1}$ des vecteurs propres linéairement indépendants de E_{λ} . Complétons cette famille en une base \mathcal{B} de E. La matrice de f dans \mathcal{B} est de la forme :

$$M(f)_{\mathcal{B}} = \begin{pmatrix} \lambda & 0 & \cdots & A \\ 0 & \lambda & \cdots & B \end{pmatrix}$$

D'où:

$$P_f(X) = \det \begin{pmatrix} (\lambda - X)I_{\alpha+1} & 0 \\ 0 & B - XI_{n-\alpha-1} \end{pmatrix}.$$

Ainsi,

$$P_f(X) = (\lambda - X)^{\alpha+1} \det(B - X I_{n-\alpha-1}).$$

Cela signifie que λ serait une valeur propre de multiplicité strictement supérieure à α , ce qui est absurde.

Théorème 13 – Soit f un endomorphisme d'un espace vectoriel E de dimension finie. L'endomorphisme f est diagonalisable si et seulement si les deux conditions suivantes sont vérifiées :

- E est somme directe de ses sous-espaces propres.
- Pour chaque valeur propre λ de f de multiplicité α , on a dim $E_{\lambda} = \alpha$.

Théorème 13 (suite) – Soit f un endomorphisme d'un espace vectoriel E de dimension finie. L'endomorphisme f est diagonalisable si et seulement si les deux conditions suivantes sont vérifiées :

1. $P_f(X)$ est scindé dans K, ce qui signifie que :

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \dots (X - \lambda_p)^{\alpha_p}$$

avec $\lambda_1, \ldots, \lambda_p$ des scalaires et $\alpha_1 + \cdots + \alpha_p = n$.

2. Pour chaque valeur propre λ de multiplicité α , on a dim $E_{\lambda} = \alpha$.

Corollaire 14 – Soit f un endomorphisme d'un espace vectoriel de dimension n. Si f admet n valeurs propres distinctes deux à deux, alors f est diagonalisable.

4 Applications de la diagonalisation

4.1 Calcul de la puissance d'une matrice

Si A est diagonalisable, il existe $P \in GL_n(K)$ telle que $P^{-1}AP = D$ soit diagonale. Alors :

$$A = PDP^{-1}$$

et

$$A^k = PD^kP^{-1}, \quad \forall k \in \mathbb{N}.$$

La matrice A est inversible si, et seulement si, D est inversible, et dans ce cas :

$$A^{-1} = PD^{-1}P^{-1}.$$

La formule précédente se généralise alors à $k \in \mathbb{Z}$.

Remarque: Si A est la matrice d'un endomorphisme f dans la base \mathcal{B}_0 , alors P est la matrice de passage de la base \mathcal{B}_0 à une base \mathcal{B} de vecteurs propres de A. La matrice P est obtenue en mettant les coordonnées dans la base \mathcal{B}_0 des vecteurs propres de A en colonnes. (L'ordre des vecteurs propres dans la base \mathcal{B} détermine l'ordre des valeurs sur la diagonale de D, et réciproquement.)

4.2 Suites récurrentes linéaires

Soient a et b deux réels donnés non simultanément nuls. Une suite récurrente linéaire d'ordre 2 vérifie la relation :

$$u_n = au_{n-1} + bu_{n-2}$$
, u_0 et u_1 donnés.

Matriciellement, ceci s'écrit :

$$\begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}.$$

On est donc ramené à un calcul de puissance de matrice.

Soit $(a_0, a_1, \dots, a_{k-1})$ k réels donnés non tous nuls. Une suite récurrente linéaire d'ordre k vérifie la relation :

$$u_{n+k} = \sum_{i=0}^{k-1} a_i u_{n+i}, \quad \{u_0, \dots, u_{k-1}\}$$
 donnés.

Cette égalité s'écrit sous forme matricielle, ce qui nous ramène encore à un calcul de puissance de matrice d'ordre k.

4.3 Systèmes de suites récurrentes

Illustrons cela par un exemple : Déterminer les trois suites (u_n) , (v_n) et (w_n) définies par $u_0 = 1$, $v_0 = w_0 = 0$ et :

$$\begin{cases} u_{n+1} = 2u_n + 4w_n, \\ v_{n+1} = 3u_n - 4v_n + 12w_n, \\ w_{n+1} = u_n - 2v_n + 5w_n. \end{cases}$$

4.4 Systèmes de suites récurrentes

Posons $X_n = {}^t(u_n, v_n, w_n)$, alors $X_0 = {}^t(1, 0, 0)$. On pose :

$$A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$$

Le système s'écrit alors $X_{n+1} = AX_n$, d'où, par récurrence :

$$X_n = A^n X_0$$
.

On est ainsi ramené au calcul de A^n .

4.5 Systèmes différentiels à coefficients constants

On veut résoudre le système différentiel :

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ \frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n \end{cases}$$

avec $a_{ij} \in \mathbb{R}$ et $x_i : \mathbb{R} \to \mathbb{R}$ dérivables.

On pose $A=(a_{ij})_{1\leq i,j\leq n}$ et $X={}^t(x_1,\ldots,x_n)$, alors le système s'écrit sous forme matricielle :

$$\frac{dX}{dt} = AX.$$

Supposons A diagonalisable. Il existe alors une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$. Si on pose $X' = P^{-1}X$, le système devient :

$$\frac{dX'}{dt} = DX',$$

système qui s'intègre facilement car D est diagonale.

5 Trigonalisation

Définition 15 – Une matrice $A \in M_n(K)$ est dite **triangulaire supérieure** (respectivement **triangulaire inférieure**) si elle est de la forme :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

(resp.

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

).

Remarque – Toute matrice triangulaire supérieure est semblable à une matrice triangulaire inférieure. En effet, soit A une matrice triangulaire supérieure et soit f l'endomorphisme de \mathbb{K}^n représenté par A dans la base canonique (e_1, \ldots, e_n) de \mathbb{K}^n . Alors, f est représenté par une matrice triangulaire inférieure dans la base (e_n, \ldots, e_1) .

Théorème 16 – Un endomorphisme est triangularisable sur K si et seulement si son polynôme caractéristique est scindé dans K.

Démonstration : Si l'endomorphisme f est triangularisable, alors il existe une base telle que la matrice de f dans cette base soit triangulaire supérieure. On a alors :

$$P_f(\lambda) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ 0 & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} - \lambda \end{pmatrix} = \prod_{i=1}^n (a_{ii} - \lambda).$$

Donc $P_f(X)$ est scindé. De plus, les éléments diagonaux de la matrice triangulaire sont les valeurs propres de f.

Réciproquement, supposons que le polynôme caractéristique de f soit scindé et montrons par récurrence que f est triangularisable. Pour n=1, il n'y a rien à montrer. Supposons le résultat vrai à l'ordre n-1. Puisque $P_f(\lambda)$ est scindé, il admet au moins une racine $\lambda \in K$. Soit u_1 un vecteur propre associé. On complète $\{u_1\}$ en une base $\{u_1, \ldots, u_n\}$ de E.

On a alors:

$$M(f) = \begin{pmatrix} a & b_2 & \cdots & b_n \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$$

On a $P_f(\lambda) = (a - \lambda) \det(B - \lambda I_{n-1}) = (a - \lambda) P_g(\lambda)$ où g est l'endomorphisme représenté par la matrice B dans la base (u_2, \ldots, u_n) .

Comme $P_f(\lambda)$ est scindé, $P_g(\lambda)$ l'est aussi et, d'après l'hypothèse de récurrence, la matrice B est triangularisable. Il existe donc une base (v_2, \ldots, v_n) de $\text{Vect}\{u_2, \ldots, u_n\}$ telle que la matrice de q dans cette base soit triangulaire supérieure.

Ainsi, dans la base $\{u_1, v_2, \dots, v_n\}$, la matrice de f est triangulaire supérieure.

Corollaire 17 – Toute matrice de $M_n(\mathbb{C})$ est semblable à une matrice triangulaire supérieure de $M_n(\mathbb{C})$.

Démonstration : Un polynôme de $\mathbb{C}[X]$ est scindé dans \mathbb{C} .

Remarque – Si la matrice A est triangularisable, les éléments diagonaux de la matrice triangulaire semblable à A sont les valeurs propres de A.

6 Le théorème de Cayley-Hamilton

Soit E un espace vectoriel sur K et soit $P \in K[X]$:

$$P(X) = a_m X^m + a_{m-1} X^{m-1} + \dots + a_1 X + a_0.$$

Si $f \in \mathcal{L}(E)$, on note P(f) l'endomorphisme de E défini par :

$$P(f) = a_m f^m + a_{m-1} f^{m-1} + \dots + a_1 f + a_0 \text{Id}$$

où
$$f^k = \underbrace{f \circ \cdots \circ f}_{h \text{ fried}}$$
.

Définition 18 – Soit $f \in \mathcal{L}(E)$. Un polynôme $P(x) \in K[X]$ est dit **annulateur** de f si P(f) = 0.

Proposition 19 – Soit P(X) un polynôme annulateur de f. Alors les valeurs propres de f sont des racines de P.

Démonstration: Si λ est une valeur propre de f, il existe un vecteur $u \neq 0$ tel que $f(u) = \lambda u$. On a alors $f^k(u) = \lambda^k u$ pour tout entier k. On en déduit que :

$$P(f)(u) = 0 = P(\lambda)u$$

donc $P(\lambda) = 0$ car $u \neq 0$.

Remarque – Un endomorphisme qui vérifie P(f) = 0 ne peut avoir pour valeurs propres que les racines de P. Cependant, toutes les racines de P ne sont pas forcément des valeurs propres de f.

Théorème 20 – Théorème de Cayley-Hamilton Soient $f \in \mathcal{L}(E)$ et $P_f(X)$ son polynôme caractéristique. On a :

$$P_f(f) = 0.$$

Démonstration : On se place dans la clôture algébrique de K (ici, il s'agit de \mathbb{C} car K est supposé être un sous-corps de \mathbb{C}). Dans ce cas, l'endomorphisme f est triangularisable donc son polynôme caractéristique est scindé :

$$P_f(X) = (\lambda_1 - X)(\lambda_2 - X) \dots (\lambda_n - X).$$

Si on note $\{e_1, \ldots, e_n\}$ la base de E dans laquelle la matrice représentant f est triangulaire, on a $(\lambda_1 \operatorname{Id} - f)(e_1) = 0$. On montre alors par récurrence que, pour tout $i \in \{1, \ldots, n\}$, pour tout $j \in \{1, \ldots, i\}$,

$$(\lambda_1 \mathrm{Id} - f) \circ \cdots \circ (\lambda_i \mathrm{Id} - f)(e_j) = 0$$

car les $(\lambda_k \operatorname{Id} - f)$ commutent entre eux. On en déduit que $P_f(f) = 0$.

7 Théorème de Décomposition des Noyaux

Soient E un espace vectoriel de dimension finie sur un corps K et f un endomorphisme de E.

Théorème 21 – Soient P_1, \ldots, P_q des polynômes de K[X] premiers entre eux deux à deux. On pose $P = P_1 \times \cdots \times P_q$. Alors, on a :

$$\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_q(f).$$

Démonstration : Par récurrence sur q.

Si q=2, P_1 et P_2 sont premiers entre eux, donc, d'après le théorème de Bézout, il existe deux polynômes U et V de K[X] tels que :

$$UP_1 + VP_2 = 1$$
, d'où $UP_1(f) + VP_2(f) = Id$.

Soit $x \in \text{Ker } P(f)$, on a :

$$x = UP_1(f)(x) + VP_2(f)(x).$$

Posons $y = UP_1(f)(x)$ et $z = VP_2(x)$. On a :

$$P_2(f)y = P_2UP_1(f)(x) = UP_1P_2(f)(x) = 0$$

car $x \in \text{Ker } P$ et les endomorphismes $P_1(f)$ et U(f) commutent. On en déduit que $y \in \text{Ker } P_1$. On montre de même que $z \in \text{Ker } P_2$, d'où :

$$\operatorname{Ker} P = \operatorname{Ker} P_1 + \operatorname{Ker} P_2$$
.

Soit maintenant $x \in \text{Ker } P_1 \cap \text{Ker } P_2$. Comme $x = UP_1(f)(x) + VP_2(f)(x)$, on a trivialement :

$$x = 0$$
.

On a donc montré que :

$$\operatorname{Ker} P = \operatorname{Ker} P_1 \oplus \operatorname{Ker} P_2$$
.

Supposons le résultat vrai à l'ordre q-1 et soient P_1, \ldots, P_q des polynômes premiers entre eux deux à deux. Le polynôme P_1 est alors premier avec le produit $P_2 \times \cdots \times P_q$, donc, d'après ce qui précède, :

$$\operatorname{Ker} P = \operatorname{Ker} P_1 \oplus \operatorname{Ker} (P_2 \times \cdots \times P_a).$$

On applique alors l'hypothèse de récurrence à $P_2 \times \cdots \times P_q$, ce qui prouve le résultat.

Remarque – Si P(f)=0 et si $P=P_1\times\cdots\times P_q$ où les polynômes P_1,\ldots,P_q sont premiers entre eux deux à deux, alors :

$$E = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_q(f).$$

8 Théorème de Diagonalisation

Théorème 22 – Soit E un espace vectoriel de dimension finie sur un corps K. Un endomorphisme f de E est diagonalisable si et seulement si il existe un polynôme scindé sur K, n'ayant que des racines simples et annulant f.

Démonstration : La condition est suffisante d'après le théorème précédent. Supposons f diagonalisable, alors il existe une base $\{e_1, \ldots, e_n\}$ de E de vecteurs propres de f. Si $\lambda_1, \ldots, \lambda_p$ sont les valeurs propres deux à deux distinctes, il est clair que le polynôme :

$$P(X) = (X - \lambda_1) \times \cdots \times (X - \lambda_p)$$

vérifie $P(f)(e_i) = 0$ pour tout $i \in \{1, ..., n\}$. Comme les e_i forment une base de E, on en déduit que :

$$P(f) = 0.$$

9 Polynôme Minimal

Soit f un endomorphisme d'un espace vectoriel E de dimension finie sur un corps K. L'ensemble I_f des polynômes P de K[X] tels que P(f) = 0 est un idéal de K[X]. Comme K[X] est un anneau principal, il existe un polynôme μ engendrant I_f . De plus, ce polynôme est unique si on le suppose unitaire (c'est-à-dire de coefficient dominant égal à 1).

Définition 23 – On appelle **polynôme minimal** de f l'unique polynôme unitaire qui engendre I_f .

Remarque – Comme $\mathcal{L}(E)$ est de dimension finie, la famille $(\mathrm{Id}, f, \ldots, f^{n-1})$ où $\dim E = n$ est liée. Il existe donc une combinaison linéaire non triviale de ses éléments qui est nulle. On en déduit que $I_f \neq \{0\}$ et donc $1 \leq \deg \mu$. Corollaire 24 – Le polynôme minimal de f est un diviseur du polynôme caractéristique de f.

Proposition 25 – Les racines du polynôme caractéristique d'un endomorphisme f sont exactement les racines de son polynôme minimal.

Démonstration : Il est clair que les racines du polynôme minimal sont des racines du polynôme caractéristique. Réciproquement, soit λ une racine de P_f . Il existe alors $v \neq 0$ tel que :

$$(f - \lambda \operatorname{Id})(v) = 0.$$

Posons $\mu_f(X) = X^p + a_{p-1}X^{p-1} + \dots + a_1X + a_0$. Puisque $\mu_f(f) = 0$, on a :

$$f^{p}(v) + a_{p-1}f^{p-1}(v) + \dots + a_{1}f(v) + a_{0}v = 0.$$

En utilisant que $f^r(v) = \lambda^r v$, on obtient :

$$\mu_f(\lambda) = 0 \quad \text{car} \quad v \neq 0.$$

Théorème 26 – Un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé et a toutes ses racines simples.

Démonstration: La condition est suffisante car $\mu_f(f) = 0$. Réciproquement, supposons que f soit diagonalisable et soit $B = (e_1, \ldots, e_n)$ une base de vecteurs propres correspondant à des valeurs propres $\lambda_1, \ldots, \lambda_n$. Supposons, au besoin en changeant la numérotation, que $\lambda_1, \ldots, \lambda_p$ soient distinctes deux à deux et représentent toutes les valeurs propres de f. Si $v \in B$, alors :

$$(f - \lambda_1 \operatorname{Id}) \circ \cdots \circ (f - \lambda_n \operatorname{Id}) v = 0.$$

Donc le polynôme $P(X) = (X - \lambda_1) \times \cdots \times (X - \lambda_p)$ est un polynôme annulateur de f. Comme $\mu_f(X)$ divise P(X) et que P(X) n'a que des racines simples, on en déduit que μ_f n'a que des racines simples.

10 Sous-espaces caractéristiques

Soit f un endomorphisme d'un espace vectoriel E de dimension finie n. On note $P_f(X)$ le polynôme caractéristique de f. On suppose que $P_f(X)$ est scindé et s'écrit :

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \dots (X - \lambda_p)^{\alpha_p},$$

où les λ_i sont distincts deux à deux.

Définition 27 – On appelle sous-espace caractéristique associé à la valeur propre λ_i le sous-espace vectoriel :

$$N_{\lambda_i} = \operatorname{Ker} \left((f - \lambda_i \operatorname{Id})^{\alpha_i} \right).$$

Proposition 28 – N_{λ_i} est stable par f.

Démonstration : Soit $x \in N_{\lambda_i}$. Montrons que $f(x) \in N_{\lambda_i}$. On a :

$$(f - \lambda_i \operatorname{Id})^{\alpha_i}(x) = 0.$$

Les endomorphismes f et $(f - \lambda_i Id)^{\alpha_i}$ commutent, donc :

$$(f - \lambda_i \operatorname{Id})^{\alpha_i}(f(x)) = f \circ (f - \lambda_i \operatorname{Id})^{\alpha_i}(x) = 0,$$

et on a prouvé que $f(x) \in \text{Ker}((f - \lambda_i \text{Id})^{\alpha_i})$.

Remarque – On a toujours $E = N_{\lambda_1} \oplus \cdots \oplus N_{\lambda_p}$ que f soit diagonalisable ou pas.

Théorème 29 – Réduction selon les sous-espaces caractéristiques.

Soit $f \in \mathcal{L}(E)$ telle que son polynôme caractéristique soit scindé sur K. Alors il existe une base $B = \{B_1, \ldots, B_p\}$ où B_i est une base de N_{λ_i} telle que : Soit $M(f)_B$ la matrice de f dans une base $B = \{e_1, e_2, \ldots, e_n\}$ de E. Nous avons la matrice suivante :

$$M(f)_{B} =$$

$$\begin{pmatrix} M_{\lambda_1} & * & \cdots & * & 0 \\ 0 & M_{\lambda_1} & * & \cdots & * \\ 0 & 0 & \ddots & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & M_{\lambda_1} \end{pmatrix}$$

avec chaque bloc M_{λ_i} défini par :

$$M_{\lambda_i} = \begin{pmatrix} \lambda_i & * & \cdots & * \\ 0 & \lambda_i & \cdots & * \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \cdots & \lambda_i \end{pmatrix}$$

est la matrice triangulaire supérieure de la restriction de f à N_{λ_i} dans la base B_i . C'est une matrice de $M_{\alpha_i}(K)$.

Démonstration: Elle se fait en plusieurs étapes. Remarquons d'abord que les espaces N_{λ_i} sont stables par f, donc il existe une base $B' = \{B'_1, \dots, B'_p\}$ de E où B'_i est une base de N_{λ_i} telle que la matrice de f soit diagonale par blocs, chaque bloc représentant la restriction f_i de f à N_{λ_i} . Notons M_{λ_i} un de ces blocs non nuls. Il reste à montrer que

 M_{λ_i} est triangularisable et que la diagonale de la matrice triangulaire obtenue ne contient que des λ_i .

Comme $N_{\lambda_i} = \text{Ker}(f - \lambda_i \text{Id})^{\alpha_i}$, le polynôme $Q(X) = (X - \lambda_i)^{\alpha_i}$ est annulateur de f_i . Par conséquent, le polynôme minimal de f_i est du type :

$$\mu_{f_i}(X) = (X - \lambda_i)^{\beta_i} \text{ avec } 1 \le \beta_i \le \alpha_i.$$

Comme les racines de P_{f_i} sont exactement les racines de μ_{f_i} , on en déduit que le polynôme caractéristique de f_i est scindé, que M_{λ_i} est triangularisable et que sa diagonale est formée de termes tous égaux à λ_i .

11 Diagonalisation Simultanée

Soit E un espace vectoriel de dimension finie n sur un corps K. On considère deux endomorphismes f et g de E tels que :

- f et g soient diagonalisables,
- $--f \circ g = g \circ f.$

Proposition 30 – Il existe une base de E telle que les matrices représentatives dans cette base de f et g respectivement soient diagonales. On dit que f et g sont simultanément diagonalisables.

Démonstration : Raisonnons par récurrence sur n. Si n = 1, le résultat est trivialement vrai.

Supposons qu'il soit vrai sur tout espace de dimension inférieure ou égale à n-1. Soit E un espace vectoriel de dimension n et soit $\lambda_1, \ldots, \lambda_p$ les valeurs propres de f distinctes deux à deux. Si f est une homothétie, le résultat est vrai car toute base qui diagonalise g diagonalise f. Si f n'est pas une homothétie, E est somme directe de ses sous-espaces propres qui sont tous de dimensions strictement inférieures à n (car f n'est pas une homothétie). Soit E_{λ} un sous-espace propre de f. Montrons qu'il est stable par g. Soit $x \in E_{\lambda}$. On a :

$$(f - \lambda \operatorname{Id}) \circ g(x) = g \circ (f - \lambda \operatorname{Id})(x)$$
 car f et g commutent.

Soit $(f - \lambda \operatorname{Id})(x) = 0$. D'où $g(x) \in E_{\lambda}$. Il suffit alors d'appliquer l'hypothèse de récurrence à chacun des sous-espaces propres de f pour obtenir le résultat.

Decomposition de Dunford

11.1. Endomorphismes nilpotents

Définition 31 – Un endomorphisme f de E est dit nilpotent s'il existe un entier $p \neq 0$ tel que $f^p = 0$. On pose alors $n_0 = \min\{p \in \mathbb{N}^* \mid f^p = 0\}$. L'entier naturel n_0 est appelé indice de f

Proposition 32 – Soient deux endomorphismes nilpotents qui commutent, alors leur somme est nilpotente.

2024/2025

 $D\acute{e}monstration$: soient f et g deux endomorphismes nilpotents d'indices respectifs p et q. Comme f et g commutent, on peut utiliser la formule de Newton:

$$(f+g)^{p+q} = \sum_{i=0}^{p+q} {p+q \choose i} f^i g^{p+q-i}.$$

Dans chaque terme de la somme, on a soit $i \ge p$, soit $p + q - i \ge q$, donc soit $f^i = 0$, soit $g^{p+q-i} = 0$. On en déduit que f + g est nilpotent.

Soit E un espace vectoriel de dimension finie n sur un corps K.

11.2. Décomposition de Dunford

Théorème 33 – Soit $f \in L(E)$. On suppose que son polynôme caractéristique $P_f(X)$ est scindé. Alors f s'écrit de manière unique

$$f = d + n$$

où d est un endomorphisme diagonalisable de E et n un endomorphisme nilpotent de E tels que $d \circ n = n \circ d$. De plus, d et n sont des polynômes en f à coefficients dans K.