別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 8月29日

出 願 番 Application Number:

特願2002-251812

[ST. 10/C]:

[JP2002-251812]

pplicant(s):

JSR株式会社

BEST AVAILABLE COPY

2003年 9月12日

特許庁長官 Commissioner, Japan Patent Office

CERTIFIED COPY OF PRIORITY DOCUMENT

> 出証番号 出証特200つ

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application:

August 29, 2002

Application Number:

2002-251812

[ST.10/C]:

JP2002-251812

Applicant(s):

JSR Corporation

September 12, 2003

Commissioner, Patent Office

Yasuo IMAI

2002-251812

[Document Name] APPLICATION FOR PATENT

[Preference Number] 10118230-0

[Submitted to] Commissioner, Patent Office

[International Patent Classification] C08L 33/08

C08L 33/10

[Inventor]

[Address] c/o JSR Corporation

2-11-24, Tsukiji, Chuo-ku, Tokyo

[Name] Motoyuki SHIMA

[Inventor]

[Address] c/o JSR Corporation

2-11-24, Tsukiji, Chuo-ku, Tokyo

[Name] Hiroyuki ISHII

[Inventor]

.[Address] c/o JSR Corporation

2-11-24, Tsukiji, Chuo-ku, Tokyo

[Name] Masafumi YUMAMOTO

[Inventor]

[Address] c/o JSR Corporation

2-11-24, Tsukiji, Chuo-ku, Tokyo

[Name] Daichi MATSUDA

[Inventor]

[Address] c/o JSR Corporation

2-11-24, Tsukiji, Chuo-ku, Tokyo

[Name] Atsushi NAKAMURA

2002-251812

[Applicant for Patent]

[Identification No.]

[Address] 2-11-24, Tsukiji, Chuo-ku, Tokyo

000004178

[Name] JSR Corporation

[Agent]

[Identification No.] 100084308

[Address] 3-6, Kandaogawa-cho, Chiyodaku,

Tokyo

[Patent Attorney]

[Name] Shuji IWAMITANI

[Telephone No.] 03-3219-6741

[Designation of Fees]

[Advanced Payment Registration Number] 043579

[Amount Paid] 21,000 Yen

[List of Appended Documents]

[Document Name] Specification 1

[Document Name] Abstract 1

[General Power of Attorney No.] 9102502

[Proof Requirement] Requested

HISTORICAL INFORMATION ON APPLICANT

Identification No.

[000004178]

1. Date of Alteration

[Reason for Alteration]

Address:

Name:

December 10, 1997

Alteration of Name

2-11-24, Tsukiji, Chuo-ku, Tokyo

JSR Corporation

2. Date of Alteration

[Reason for Alteration]

Address:

Name:

May 6, 2003

Alteration of Address

5-6-10, Tsukiji, Chuo-ku, Tokyo

JSR Corporation

3. Date of Alteration

[Reason for Alteration]

Address:

Name:

September 1, 2003

Alteration of Name

5-6-10, Tsukiji, Chuo-ku, Tokyo

JSR Corporation

【書類名】 特許願

【整理番号】 10118230-0

【あて先】 特許庁長官殿

【国際特許分類】 C08L 33/08

C08L 33/10

【発明者】

【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 島 基之

【発明者】

【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 石井 寛之

【発明者】

【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 山本 將史

【発明者】

【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 松田 大一

【発明者】

【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアー

ル株式会社内

【氏名】 中村 敦

【特許出願人】

【識別番号】 000004178

【住所又は居所】 東京都中央区築地二丁目11番24号

【氏名又は名称】 ジェイエスアール株式会社

【代理人】

【識別番号】 100084308

【住所又は居所】 東京都千代田区神田小川町3-6 日本分譲住宅会館ビ

ル 岩見谷国際特許事務所

【弁理士】

【氏名又は名称】 岩見谷 周志

【電話番号】

03-3219-6741

【手数料の表示】

【予納台帳番号】 043579

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9102502

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 感放射線性樹脂組成物

【特許請求の範囲】

【請求項1】 (A) 下記一般式(1) \sim (6) で表される繰返し単位群から選ばれる少なくとも2種類の繰り返し単位を有し、それら繰返し単位の各々の含有量が $1\sim49$ mol%であり、かつそれら繰返し単位の合計含有量が $5\sim7$ 0 mol%であり、さらに酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の樹脂、および

(B) 感放射線性酸発生剤

を含有することを特徴とする感放射線性樹脂組成物。

【化1】

 $[-般式(1)\sim(6)$ の各式において、 R^1 は水素原子またはメチル基を示し、 R^2 はメチル基またはエチル基を示し、 R^2 が複数存在する場合には、それらは同一でも異なっていてもよい。]

【請求項2】 (B) 感放射線性酸発生剤が、下記式 (7) で表される化合

物である、請求項1記載の感放射線性樹脂組成物。

【化2】

$$R^{3}(R^{4})_{n}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

〔一般式(7)において、 R^3 は水素原子、水酸基、炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基、炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルコキシル基、炭素原子数 $2\sim11$ の直鎖状もしくは分岐状のアルコキシカルボニル基を示し、 R^4 は炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基を示し、 R^5 は独立に炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基、置換されていてもよいフェニル基または置換基されていてもよいナフチル基を示すか、あるいは2個の R^5 が互いに結合して炭素原子数 $2\sim10$ の2 価の基を形成しており、該2 価の基は置換されていてもよく、1 は $1\sim10$ 0の整数である)で表されるアニオンを示し、1 は $1\sim10$ 0の整数である。〕

【請求項3】 (A) 樹脂および(B) 感放射線性酸発生剤が、プロピレングリコールモノメチルエーテルアセテート、2ーヘプタノンおよびシクロヘキサノンから選ばれる少なくとも一種を含有する溶剤に溶解されてなる、請求項1記載の感放射線性樹脂組成物。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、KrFエキシマレーザーあるいはArFエキシマレーザーに代表さ

れる遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線の如き各種の放射線を使用する微細加工に有用な化学増幅型レジストとして好適に使用することができる感放射線性樹脂組成物に関する。

[0002]

【従来の技術】

集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、最近では 0.20 μ m以下のレベルでの微細加工が可能なリソグラフィー技術が必要とされている。

しかし、従来のリソグラフィープロセスでは、一般に放射線としてi線等の近紫外線が用いられているが、この近紫外線では、サブクオーターミクロンレベルの微細加工が極めて困難であると言われている。

そこで、 0.20μ m以下のレベルでの微細加工を可能とするために、より波長の短い放射線の利用が検討されている。このような短波長の放射線としては、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、X線、電子線等を挙げることができるが、これらのうち、特にKrFエキシマレーザー(波長248nm)あるいはArFエキシマレーザー(波長193nm)が注目されている。

[0003]

このようなエキシマレーザーによる照射に適したレジストとして、酸解離性官能基を有する成分と放射線の照射(以下、「露光」という。)により酸を発生する成分(以下、「酸発生剤」という。)とによる化学増幅効果を利用したレジスト(以下、「化学増幅型レジスト」という。)が数多く提案されている。

化学増幅型レジストとしては、例えば、特公平2-27660号公報には、カルボン酸のtーブチルエステル基またはフェノールのtーブチルカーボナート基を有する重合体と酸発生剤とを含有するレジストが提案されている。このレジストは、露光により発生した酸の作用により、重合体中に存在するtーブトキシカルボニル基あるいはtーブチルカーボナート基が解離して、該重合体がカルボキシル基あるいはフェノール性水酸基からなる酸性基を有するようになり、その結果、レジスト被膜の露光領域がアルカリ現像液に易溶性となる現象を利用したも

のである。

[0004]

ところで、従来の化学増幅型レジストの多くは、フェノール系樹脂をベースにするものであるが、このような樹脂の場合、放射線として遠紫外線を使用すると、樹脂中の芳香族環に起因して遠紫外線が吸収されるため、露光された遠紫外線がレジスト被膜の下層部まで十分に到達できないという欠点があり、そのため露光量がレジスト被膜の上層部では多く、下層部では少なくなり、現像後のレジストパターンのパターンプロファイルが上部で細く下部にいくほど太い台形状になってしまい、十分な解像度が得られないなどの問題があった。その上、現像後のパターンプロファイルが台形状となった場合、次の工程、即ちエッチングやイオンの打ち込みなどを行う際に、所望の寸法精度が達成できず、問題となっていた。しかも、パターンプロファイル上部の辺と側壁とがほぼ直角になる矩形状でないと、ドライエッチングによるレジストの消失速度が速くなってしまい、エッチング条件の制御が困難になる問題もあった。

[0005]

一方、レジストのパターンプロファイルは、レジスト被膜の放射線透過率を高めることにより改善することができる。例えば、ポリメチルメタクリレートに代表される(メタ)アクリレート系樹脂は、遠紫外線に対しても透明性が高く、放射線透過率の観点から非常に好ましい樹脂であり、例えば特開平4-226461号公報には、メタクリレート系樹脂を使用した化学増幅型レジストが提案されている。 しかしながら、この組成物は、微細加工性能の点では優れているものの、芳香族環をもたないため、ドライエッチング耐性が低いという欠点があり、この場合も高精度のエッチング加工を行うことが困難であり、放射線に対する透明性とドライエッチング耐性とを兼ね備えたものとは言えない。

[0006]

また、化学増幅型レジストについて、放射線に対する透明性を損なわないで、 ドライエッチング耐性を改善する方策の一つとして、レジスト中の樹脂成分に、 芳香族環に代えて脂肪族環を導入する方法が知られており、例えば特開平7-2 34511号公報には、脂肪族環を有する(メタ)アクリレート系樹脂を使用し た化学増幅型レジストが提案されている。

しかしながら、このレジストでは、樹脂成分が有する酸解離性官能基として、 従来の酸により比較的解離し易い基(例えば、テトラヒドロピラニル基等のアセタール系官能基)や酸により比較的解離し難い基(例えば、tーブチルエステル 基、tーブチルカーボネート基等のtーブチル系官能基)が用いられており、前 者の酸解離性官能基を有する樹脂成分の場合、レジストの基本物性、特に感度や パターンプロファイルは良好であるが、組成物としての保存安定性に難点があり、 また後者の酸解離性官能基を有する樹脂成分では、逆に保存安定性は良好であるが、レジストの基本物性、特に感度やパターンプロファイルが損なわれるという欠点がある。さらに、このレジスト中の樹脂成分には脂肪族環が導入されているため、樹脂自体の疎水性が非常に高くなり、基板に対する接着が不十分になる という問題があった。

また、化学増幅型レジストを用いてレジストパターンを形成する際には、酸解離性官能基の解離を促進するため、通常露光後に加熱処理されるが、普通、その加熱温度が変化するとレジストパターンの線幅もある程度変動するのが避けられない。しかし、近年における集積回路素子の微細化を反映して、露光後の加熱温度の変化に対しても線幅の変動(即ち温度依存性)が小さいレジストの開発も強く求められるようになってきた。

[0007]

さらに、化学増幅型レジストにおいては、酸発生剤がレジストとしての機能に大きな影響を及ぼすことが知られており、今日では、露光による酸発生の量子収率が高く、高感度であるなどの理由から、オニウム塩化合物が化学増幅レジストの酸発生剤として広く使用されている。

前記オニウム塩化合物としては、例えば、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムナフタレンスルホネート、シクロヘキシルメチル(2ーオキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート等が使用されているが、これらの従来のオニウム塩化合物は、一般に感度の点で満足できず、また感度が比較的高い場合でも、解像度、パターンプロファイル等

を総合したレジスト性能の点で未だ十分とは言えない。

このような状況の下、集積回路素子における微細化の進行に対応しうる技術開発の観点から、遠紫外線に代表される短波長の放射線に適応可能で、放射線に対する透明性が高く、かつ感度、解像度、パターンプロファイル等のレジストとしての基本物性に優れた化学増幅型レジストが強く求められている。

[0008]

【発明が解決しようとする課題】

本発明の課題は、放射線に対する透明性が高く、感度、解像度、ドライエッチング耐性、パターンプロファイル等のレジストとしての基本物性に優れる化学増幅型レジストとして有用な感放射線性樹脂組成物を提供することにある。

[0009]

【課題を解決するための手段】

本発明によると、前記課題は、

- (A) 下記一般式 (1) \sim (6) で表される繰返し単位群から選ばれる少なくとも2種類の繰り返し単位を有し、それら繰返し単位の各々の含有量が $1\sim49\,\mathrm{m}$ o 1%であり、かつそれら繰返し単位の合計含有量が $5\sim50\,\mathrm{m}$ o 1%であり、さらに酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の樹脂、および
 - (B) 感放射線性酸発生剤

を含有することを特徴とする感放射線性樹脂組成物により解決することができる

[0010]

【化3】

〔一般式(1)~(6)の各式において、 R^1 は水素原子またはメチル基を示し、 R^2 はメチル基またはエチル基を示し、 R^2 が複数存在する場合には、それらは同一でも異なっていてもよい。〕

[0011]

【発明の実施の形態】

以下、本発明を詳細に説明する。

- (A) 成分-

本発明における(A)成分は、前記一般式(1)~(6)で表される繰返し単位群から選ばれる少なくとも2種の繰り返し単位を有する重合体からなり、それらの繰返し単位が各々重合体を構成する構造単位全体に対して $1\sim49\,\mathrm{mo}\,1\%$ 存在し、かつそれら繰返し単位の合計量が $5\sim70\,\mathrm{mo}\,1\%$ であり、さらに酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の樹脂(以下、「樹脂(A)」という。)である。

ここでいう「アルカリ不溶性またはアルカリ難溶性」とは、樹脂(A)を含有

する感放射線性樹脂組成物から形成されたレジスト被膜からレジストパターンを 形成する際に採用されるアルカリ現像条件(好ましくはpHが8~14のアルカ リ水溶液、さらに好ましくはpHが9~14のアルカリ水溶液で現像する条件) 下で、当該レジスト被膜の代わりに樹脂(A)のみを用いた被膜を現像した場合 に、当該被膜の初期膜厚の50%以上が現像後に残存する性質を意味する。「ア ルカリ易溶性」とは、同様の処理で被膜が溶解して初期膜厚の50%以上が失わ れる性質を意味する。

[0012]

以下、一般式(1)、一般式(2)、一般式(3)、一般式(4)、一般式(5) および一般式(6)で表される繰返し単位をそれぞれ繰返し単位(1)、繰返し単位(2)、繰返し単位(3)、繰返し単位(4)、繰返し単位(5) および繰返し単位(6)という。

繰返し単位(1)~繰返し単位(6)は、それぞれ、下記一般式(1m)~(6m)で表される単量体に由来する。

【化4】

 $[-般式(1m) \sim (6m)$ の各式において、 R^1 および R^2 は一般式(1) \sim (6) に関して定義のとおりである。]

これらは一種単独でも二種以上組合せても使用することができる。

樹脂(A)は、繰返し単位(1)~(6)以外の繰返し単位(以下、「他の繰返し単位」という。)を有することもできる。

他の繰返し単位を与える重合性不飽和単量体としては、例えば、

(メタ) アクリル酸ノルボルニル、(メタ) アクリル酸イソボルニル、(メタ) アクリル酸トリシクロデカニル、(メタ) アクリル酸テトラシクロデカニル、(メタ) アクリル酸ジシクロペンテニル、(メタ) アクリル酸アダマンチル、3ーヒドロキシー1ーアダマンチル、(メタ) アクリル酸アダマンチルメチル等の有橋式炭化水素骨格を有する(メタ) アクリル酸エステル類;

(メタ) アクリル酸カルボキシノルボルニル、(メタ) アクリル酸カルボキシト リシクロデカニル、(メタ) アクリル酸カルボキシテトラシクロデカニル等の不 飽和カルボン酸の有橋式炭化水素骨格を有するカルボキシル基含有エステル類;

[0013]

(メタ) アクリル酸メチル、(メタ) アクリル酸エチル、(メタ) アクリル酸 n ープロピル、(メタ) アクリル酸 n ーブチル、(メタ) アクリル酸 2 ーメチルプロピル、(メタ) アクリル酸 1 ーメチルプロピル、(メタ) アクリル酸 t ーブチル、(メタ) アクリル酸 2 ーヒドロキシエチル、(メタ) アクリル酸 2 ーヒドロキシプロピル、(メタ) アクリル酸 3 ーヒドロキシプロピル、(メタ) アクリル酸シクロプロピル、(メタ) アクリル酸シクロペンチル、(メタ) アクリル酸シクロペンチル、(メタ) アクリル酸シクロペキシル、(メタ) アクリル酸 4 ーメトキシシクロヘキシル、(メタ) アクリル酸 2 ーシクロペンチルオキシカルボニルエチル、(メタ) アクリル酸 2 ーシクロヘキシルオキシカルボニルエチル、(メタ) アクリル酸 2 ー (4 ーメトキシシクロヘキシル) オキシカルボニルエチル等の有橋式炭化水素骨格をもたない (メタ) アクリル酸エステル類:

[0014]

 α ーヒドロキシメチルアクリル酸メチル、 α ーヒドロキシメチルアクリル酸エチ

ル、 α ーヒドロキシメチルアクリル酸 n ープロピル、 α ーヒドロキシメチルアクリル酸 n ーブチル等の α ーヒドロキシメチルアクリル酸エステル類;

(メタ) アクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、マレインニトリル、フマロニトリル、メサコンニトリル、シトラコンニトリル、イタコンニトリル等の不飽和ニトリル化合物;

(メタ) アクリルアミド、N, N-ジメチル (メタ) アクリルアミド、クロトンアミド、マレインアミド、フマルアミド、メサコンアミド、シトラコンアミド、イタコンアミド等の不飽和アミド化合物;

N-(メタ) アクリロイルモルホリン、N-ビニルー $\epsilon-$ カプロラクタム、N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の他の含窒素ビニル化合物;

(メタ) アクリル酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸等の不飽和カルボン酸(無水物)類;

(メタ) アクリル酸 2 ーカルボキシエチル、(メタ) アクリル酸 2 ーカルボキシプロピル、(メタ) アクリル酸 3 ーカルボキシプロピル、(メタ) アクリル酸 4 ーカルボキシブチル、(メタ) アクリル酸 4 ーカルボキシウロヘキシル等の不飽和カルボン酸の有橋式炭化水素骨格をもたないカルボキシル基含有エステル類:

[0015]

[0016]

ン、 α -エトキシカルボニル- β - (メ β) アクリロイルオキシ<math>- γ -ブチロラ クトン、 $\alpha - n - プロポキシカルボニル-β-(メタ)$ アクリロイルオキシ- γ ーブチロラクトン、α-i-プロポキシカルボニル-β-(メタ)アクリロイル オキシー γ ーブチロラクトン、 α ー n ーブトキシカルボニルー β ー (メタ) アク リロイルオキシー γ -ブチロラクトン、 α - (2-メチルプロポキシ) カルボニ ルー β ー (メタ) アクリロイルオキシー γ ーブチロラクトン、 α ー (1-メチル プロポキシ) カルボニルーβー (メタ) アクリロイルオキシーγーブチロラクト ン、 $\alpha - t - \overline{y}$ トキシカルボニル $-\beta - (メタ)$ アクリロイルオキシ $-\gamma - \overline{y}$ チ ロラクトン、 α -シクロヘキシルオキシカルボニル $-\beta$ - (メタ) アクリロイル オキシー γ ーブチロラクトン、 α - (4 - t - ブチルシクロヘキシルオキシ) カ ルボニル-β - (メタ) アクリロイルオキシ-γ -ブチロラクトン、α -フェノ キシカルボニルーβー(メタ)アクリロイルオキシー γ ーブチロラクトン、 α ー (1-x)キシエトキシ)カルボニルー β ー(メタ)アクリロイルオキシー γ ー ブチロラクトン、 α - (1-シクロヘキシルオキシエトキシ) カルボニル<math>- β -(メタ) アクリロイルオキシー γ ーブチロラクトン、 α ー t ーブトキシカルボニ ルメトキシカルボニルーβー(メタ)アクリロイルオキシーγーブチロラクトン

、 α -テトラヒドロフラニルオキシカルボニル- β - (メタ) アクリロイルオキシー γ -ブチロラクトン、 α -テトラヒドロピラニルオキシカルボニル- β - (メタ) アクリロイルオキシー γ -ブチロラクトン

等の酸解離性基を有する(メタ)アクリロイルオキシラクトン化合物;

[0017]

等の酸解離性基をもたない (メタ) アクリロイルオキシラクトン化合物 等の単官能性単量体や、

[0018]

1, 2-アダマンタンジオールジ(メタ)アクリレート、1, 3-アダマンタンジオールジ(メタ)アクリレート、1, 4-アダマンタンジオールジ(メタ)アクリレート、トリシクロデカニルジメチロールジ(メタ)アクリレート等の有橋式炭化水素骨格を有する多官能性単量体;

[0019]

メチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1, 6 - \wedge + + \wedge + \wedge

ルジ (メタ) アクリレート、1,8-オクタンジオールジ (メタ) アクリレート、1,9-ノナンジオールジ (メタ) アクリレート、1,4-ビス (2-ヒドロキシプロピル) ベンゼンジ (メタ) アクリレート、1,3-ビス (2-ヒドロキシプロピル) ベンゼンジ (メタ) アクリレート等の有橋式炭化水素骨格をもたない多官能性単量体

等の多官能性単量体を挙げることができる。

[0020]

これらの他の繰り返し単位を与える重合性不飽和単量体のうち、有橋式炭化水 素骨格を有する(メタ)アクリル酸エステル類 等が好ましい。

樹脂(A)において、他の繰り返し単位は、一種単独でも2種以上組み合わさっても存在することができる。

[0021]

樹脂(A)において、繰り返し単位(1)~(6)からなる群から選ばれた少なくとも2種以上の繰返し単位の含有率は、樹脂を構成する重合体中の全繰り返し単位に対して、各々、1~49mol%、好ましくは3~40mol%であり、それらの合計が5~70mol%となることが好ましい。この場合、繰り返し単位(1)~(4)群から選ばれた繰返し単位の含有率の合計が5モル%未満では、レジストの現像時のコントラストが得られないと共に、解像度が劣化し、現像欠陥の一因となる傾向があり、一方70モル%を超えると、現像液に対するコントラストは向上するが、現像性の低下および感度が著しく劣化する傾向がある

さらに、他の繰り返し単位の含有率は、全繰り返し単位に対して、通常、95 モル%以下、好ましくは80モル%以下である。

[0022]

繰り返し単位(1)~(6)群から選ばれた繰返し単位の好ましい組合せとしては、繰り返し単位(1)($R^1:-CH_3$ 、 $R^2:-CH_3$)と繰り返し単位(1)($R^1:-CH_3$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-CH_3$ 、 $R^2:-CH_3$)と繰り返し単位(2)($R^1:-CH_3$ 、R

 2 : $^-$ CH $_3$) の組合せ、繰り返し単位(1)($^-$ R $_3$: $^-$ CH $_3$ 、 $^-$ R $_3$: $^-$ CH $_3$)と繰り返し単位(2)($^-$ R $_3$: $^-$ CH $_3$ 、 $^-$ R $_3$: $^-$ CH $_3$ $^-$ R $_3$:

繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(2)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)の組合せ、繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(2)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)の組合せ、繰り返し単位(3)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(3)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(3)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(5)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(5)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)と繰り返し単位(1)(R^1 : $-CH_3$ 、 R^2 : $-C_1H_5$ 0)と繰り返し単位(1)(R^1 : $-CH_3$ 0)の組合せ、繰り返し単位(1)(R^1 : $-CH_3$ 1)の組合せ、繰り返し単位(6)(R^1 : $-CH_3$ 1)の組合せ、

繰り返し単位(2)(R 1 : $^-$ C $^+$ B 3 、R 2 : $^-$ C $^+$ B 3 と繰り返し単位(4)(R 1 : $^-$ C $^+$ B 3 、R 2 : $^-$ C $^+$ B 3 と繰り返し単位(4)(R 1 : $^-$ C $^+$ B 3 、R 2 : $^-$ C

 $_2$ H $_5$) の組合せ、繰り返し単位(2)(R 1 : $_-$ C H $_3$ 、R 2 : $_-$ C H $_3$) と繰り返し単位(5)(R 1 : $_-$ C H $_3$ 、R 2 : $_-$ C H $_3$) の組合せ、繰り返し単位(2)(R 1 : $_-$ C H $_3$ 、R 2 : $_-$ C H $_3$) と繰り返し単位(6)(R 1 : $_-$ C H $_3$ 、R 2 : $_-$ C H $_3$) の組合せ、

繰り返し単位(3)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)と繰り返し単位(4)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)の組合せ、繰り返し単位(3)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)と繰り返し単位(4)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)と繰り返し単位(3)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)と繰り返し単位(5)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)の組合せ、繰り返し単位(3)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)と繰り返し単位(6)(R 1 : -CH $_3$ 、R 2 : -CH $_3$)の組合せ、

繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)と繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)の組合せ、繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)と繰り返し単位(5)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)の組合せ、繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)と繰り返し単位(6)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)の組合せ、繰り返し単位(5)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)の組合せ、繰り返し単位(5)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)の組合せ、繰り返し単位(4)(R^1 : $-CH_3$ 、 R^2 : $-CH_3$)の組合せ、繰り返し単位(4)(R^1 : $-CH_3$ 、 $-C_2H_5$)と繰り返し単位(6)(R^1 : $-CH_3$ 、 $-C_2H_5$)と繰り返し単位(6)(R^1 : $-CH_3$ 、 $-CH_3$)の組合せ、

繰り返し単位(5) (R 1 : - C 1 3 、 R 2 : - C 1 3) と繰り返し単位(6) (R 1 : - C 1 3 、 R 2 : - C 1 3) の組合せ、

繰り返し単位(1)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(1)(R^1 : -H、 R^2 : $-C_2H_5$)の組合せ、繰り返し単位(1)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(2)(R^1 : -H、 R^2 : $-CH_3$)の組合せ、繰り返し単位(1)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(2)(R^1 : -H、 R^2 : $-C_2H_5$)の組合せ、繰り返し単位(1)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(3)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(3)

 $(R^1:-H,R^2:-C_2H_5)$ の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)と繰り返し単位(4)($R^1:-H,R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H,R^2:-CH_3$)と繰り返し単位(4)($R^1:-H,R^2:-C_2H_5$)の組合せ、繰り返し単位(1)($R^1:-H,R^2:-CH_3$)と繰り返し単位(5)($R^1:-H,R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H,R^2:-CH_3$)の組合せ、繰り返し単位(6)($R^1:-H,R^2:-CH_3$)の組合せ、

繰り返し単位(1)($R^1:-H$ 、 $R^2:-C_2H_5$)と繰り返し単位(2)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-C_2H_5$)と繰り返し単位(2)($R^1:-H$ 、 $R^2:-C_2H_5$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-C_2H_5$)と繰り返し単位(3)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、

繰り返し単位(2)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(4)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(2)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(4)(R 1 : $^-$ H、R 2 : $^-$ CC 2 H $_3$)の組合せ、繰り返し単位(2)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(5)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(2)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ

繰り返し単位(3) $(R^1:-H,R^2:-CH_3)$ と繰り返し単位(4) $(R^1:-H,R^2:-CH_3)$ の組合せ、繰り返し単位(3) $(R^1:-H,R^2)$

 $:-CH_3)$ と繰り返し単位(4)($R^1:-H$ 、 $R^2:-C_2H_5$)の組合せ、繰り返し単位(3)($R^1:-H$ 、 $R^2:-CH_3$)と繰り返し単位(5)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(3)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、

繰り返し単位(4)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(4)(R^1 : -H、 R^2 : $-C_2H_5$)の組合せ、繰り返し単位(4)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(5)(R^1 : -H、 R^2 : $-CH_3$)の組合せ、繰り返し単位(4)(R^1 : -H、 R^2 : $-CH_3$)と繰り返し単位(6)(R^1 : -H、 R^2 : $-CH_3$)の組合せ、繰り返し単位(4)(R^1 : -H、 R^2 : $-CH_3$)の組合せ、繰り返し単位(5)(R^1 : -H、 R^2 : $-CH_3$)の組合せ、繰り返し単位(4)(R^1 : -H、 R^2 : $-CH_3$)の組合け、繰り返し単位(4)(R^1 : -H、 $-C_2H_5$)と繰り返し単位(6)(R^1 : -H、 $-C_2H_5$)と繰り返し単位(6)(R^1 : -H0、 $-C_2H_5$)の組合せ、

繰り返し単位(5)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せが挙げられる。

これらの中で特に好ましい組合せとしては、繰り返し単位(1)(R 1 :-C 1 H 3 、R 2 :-C 1 H 3 、R 3 :-C 1 H 3 、の組合せ、繰り返し単位(1)(R 1 :-C 1 H 3 、R 2 :-C 1 H 3 、R 3 :-C 1 H 3 0、P 3 :-C 1 H 3 0 P 3 1 P 3 2 P 3 3 P 3 4 P 3 5 P 3 5 P 3 6 P 3 7 P 3 8 P 3 8 P 3 9 P 3

繰り返し単位(1)(R 1 : $^-$ C $^+$ B $^-$ C $^-$ B $^-$

 $-C_2H_5$)の組合せ、繰り返し単位(1)($R^1:-CH_3$ 、 $R^2:-C_2H_5$)と繰り返し単位(5)($R^1:-CH_3$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-CH_3$ 、 $R^2:-C_2H_5$)と繰り返し単位(6)($R^1:-CH_3$ 、 $R^2:-CH_3$)の組合せ、

繰り返し単位(2)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)と繰り返し単位(5)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(2)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)と繰り返し単位(6)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、

繰り返し単位(3)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)と繰り返し単位(5)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(6)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、

繰り返し単位(4)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)と繰り返し単位(5)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)と繰り返し単位(6)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ C $_2$ H $_5$)と繰り返し単位(5)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ CH $_3$ 、 $^-$ C $_2$ H $_5$)と繰り返し単位(6)(R 1 : $^-$ CH $_3$ 、R 2 : $^-$ CH $_3$)の組合せ、

繰り返し単位 (5) (R 1 : -CH $_3$ 、R 2 : -CH $_3$) と繰り返し単位 (6) (R 1 : -CH $_3$ 、R 2 : -CH $_3$) の組合せ、

繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)と繰り返し単位(1)($R^1:-H$ 、 $R^2:-C_2H_5$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、 $R^1:-H$ 、 $R^2:-C_2H_5$)の組合せ、繰り返し単位(1)($R^1:-H$ 、 $R^2:-CH_3$)と繰り返し単位(4)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、繰り返し単位(1)($R^1:-H$ 、

 $R^2:-CH_3$)と繰り返し単位(6)($R^1:-H$ 、 $R^2:-CH_3$)の組合せ、

繰り返し単位(1)(R 1 : -H、R 2 : $-C_2H_5$)と繰り返し単位(2)(R 1 : -H、R 2 : $-CH_3$)の組合せ、繰り返し単位(1)(R 1 : -H、R 2 : $-C_2H_5$)と繰り返し単位(3)(R 1 : -H、R 2 : $-C_2H_5$)の組合せ、繰り返し単位(1)(R 1 : -H、R 2 : $-C_2H_5$)と繰り返し単位(5)(R 1 : -H、R 2 : $-CH_3$)の組合せ、繰り返し単位(1)(R 1 : -H、R 2 : $-CH_3$)の組合せ、

繰り返し単位(2)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(5)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(2)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(3)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)と繰り返し単位(5)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(3)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(3)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(5)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(4)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せ、繰り返し単位(6)(R 1 : $^-$ H、R 2 : $^-$ CH $_3$)の組合せが挙げられる。

[0023]

樹脂(A)のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」という。)は、通常、3,000~30,000、好ましくは5,000~30,000、さらに好ましくは5,000~20,000である。この場合、樹脂(A)のMwが3,000未満では、レジストとしたときの耐熱性が低下する傾向があり、一方30,000を超え

ると、レジストとしたときの現像性が低下する傾向がある。

また、樹脂(A)のMwとゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、通常、1~5、好ましくは1~3である。

[0024]

樹脂(A)は、例えば、所望の分子組成を構成する各繰り返し単位に対応する 重合性不飽和単量体を、ヒドロパーオキシド類、ジアルキルパーオキシド類、ジ アシルパーオキシド類、アゾ化合物等のラジカル重合開始剤を使用し、必要に応 じて連鎖移動剤の存在下、適当な溶媒中で重合することにより製造することがで きる。

前記重合に使用される溶媒としては、例えば、n-ペンタン、n-へキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;酢酸エチル、酢酸<math>n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーエル類等を挙げることができる。これらの溶媒は、一種単独でまたは2種以上を混合しても使用することができる。

また、前記重合における反応温度は、通常、 $40\sim120$ $\mathbb C$ 、好ましくは $50\sim90$ $\mathbb C$ であり、反応時間は、通常、 $1\sim48$ 時間、好ましくは $1\sim24$ 時間である。

なお、樹脂(A)は、ハロゲン、金属等の不純物が少ないほど好ましく、それにより、レジストとしたときの感度、解像度、プロセス安定性、パターンプロファイル等をさらに改善することができる。樹脂(A)の精製法としては、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組み合わせ等を挙げることができる。

本発明において、樹脂(A)は、一種単独でまたは2種以上を混合しても使用

することができる。

[0025]

- (B) 成分-

本発明における(B)成分は、露光により酸を発生する感放射線性酸発生剤(以下、「酸発生剤(B) | という。)からなる。

酸発生剤(B)は、露光により発生した酸の作用によって、樹脂(A)中に存在する酸解離性基を解離させ、その結果レジスト被膜の露光部がアルカリ現像液に易溶性となり、ポジ型のレジストパターンを形成する作用を有するものである

本発明における酸発生剤(B)としては、下記一般式(7)で表される化合物 (以下、「酸発生剤(B*)」という。)を含むものが好ましい。

[0026]

【化5】

$$R^{3}(R^{4})_{n}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

[0027]

[-般式(7)において、 R^3 は水素原子、水酸基、炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基、炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルコキシカルボニル基を示し、 R^4 は炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基を示し、 R^5 は独立に炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基を示し、 R^5 は独立に炭素原子数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基、置換されていてもよいフェニル基または置換基されていてもよいナフチル基を示すか、あるいは2個の R^5 が互いに結合して炭素原子数 $2\sim10$ の2価の基を形成しており、該2価の基は置換されていてもよく、kは $0\sim2$ の整

数であり、 X^- は式: R^6 C_n $F_{2n+1}SO_3$ $^-$ (式中、 R^6 は、フッ素原子または置換されていてもよい炭素原子数 $1\sim12$ の炭化水素基を示し、n は $1\sim10$ の整数である)で表されるアニオンを示し、mは $0\sim10$ の整数である。〕

[0028]

一般式 (7) において、 R^3 、 R^4 および R^5 の炭素原子数 $1\sim 10$ の直鎖状もしくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ペプチル基、n-ペナル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-パール基、n-パーデシル基等を挙げることができる。

これらのアルキル基のうち、メチル基、エチル基、n-ブチル基、t-ブチル 基等が好ましい。

[0029]

また、 R^3 の炭素原子数 $1\sim 10$ の直鎖状もしくは分岐状のアルコキシル基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ペンチルオキシ基、n-ペンチルオキシ基、n-オクチルオキシ基、n-イニルオキシ基、n-オクチルオキシ基等を挙げることができる。

これらのアルコキシル基のうち、メトキシ基、エトキシ基、 n - ブトキシ基等が好ましい。

[0030]

また、 R^3 の炭素原子数 $2 \sim 1$ 1 の直鎖状もしくは分岐状のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n ープロポキシカルボニル基、i ープロポキシカルボニル基、n ーブトキシカルボニル基、i ープロポキシカルボニル基、i ーブトキシカルボニル基、i ーメチルプロポキシカルボニル基、i ーズチルプロポキシカルボニルルボニル基、i ーズナルオキシカルボニル基、i ーズナルオキシカルボニル基、i ーズナルオキシカルボニル基、i ーズナルオキシカルボニル基、i ーズナルオキシカルボニル基、i ーズナルオキシカルボニル基、i ーズナルオキシ

カルボニル基、n-オクチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、n-プシルオキシカルボニル基等を挙げることができる。

これらのアルコキシカルボニル基のうち、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基等が好ましい。

[0031]

一般式(7)における R^3 としては、水素原子、水酸基、メトキシ基、エトキシ基、n-ブトキシ基等が好ましい。

[0032]

また、一般式(7)における R 4 としては、メチル基、エチル基、 t ーブチル基等が好ましい。

また、mとしては、0~2が好ましい。

[0033]

一般式(7)において、R⁵ の置換されていてもよいフェニル基としては、例えば、フェニル基、oートリル基、mートリル基、pートリル基、2,3ージメチルフェニル基、2,4ージメチルフェニル基、2,5ージメチルフェニル基、2,6ージメチルフェニル基、3,4ージメチルフェニル基、3,5ージメチルフェニル基、2,4,6ートリメチルフェニル基、4ーエチルフェニル基等のフェニル基または炭素原子数1~10の直鎖状、分岐状もしくは環状のアルキル基で置換されたフェニル基;これらのフェニル基またはアルキル置換フェニル基を、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニルオキシ基等の少なくとも一種の基1個以上で置換した基等を挙げることができる。

[0034]

フェニル基およびアルキル置換フェニル基に対する置換基のうち、前記アルコキシル基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基、シクロペンチルオキシ基、シクロペキシルオキシ基等の炭素原子数 $1\sim20$ の直鎖状、分岐状もしくは環状のアルコキシル基等を挙げる

ことができる。

[0035]

また、前記アルコキシアルキル基としては、例えば、メトキシメチル基、エトキシメチル基、1-メトキシエチル基、2-メトキシエチル基、1-エトキシエチル基、2-エトキシエチル基等の炭素原子数2~21の直鎖状、分岐状もしくは環状のアルコキシアルキル基等を挙げることができる。

[0036]

また、前記アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i-プロポキシカルボニル基、n-プトキシカルボニル基、2-メチルプロポキシカルボニル基、1-メチルプロポキシカルボニル基、t-ブトキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等の炭素原子数 2-21の直鎖状、分岐状もしくは環状のアルコキシカルボニル基等を挙げることができる。

[0037]

また、前記アルコキシカルボニルオキシ基としては、例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n-プロポキシカルボニルオキシ基、i-プロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基、t-ブトキシカルボニルオキシ基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等の炭素原子数2~21の直鎖状、分岐状もしくは環状のアルコキシカルボニルオキシ基等を挙げることができる。

[0038]

一般式 (7) における R 5 の置換されていてもよいフェニル基としては、フェニル基、4-メトキシフェニル基、4-t-ブトキシフェニル基等が好ましい

[0039]

また、 R^{5} の置換されていてもよいナフチル基としては、例えば、1-ナフチル基、2-メチル-1-ナフチル基、3-メチル-1-ナフチル基、4-メチル-1-ナフチル基、5-メチル-1-ナフチル

基、6-メチル-1-ナフチル基、7-メチル-1-ナフチル基、8-メチルー1ーナフチル基、2,3-ジメチル-1ーナフチル基、2,4-ジメチル-1ーナフチル基、2,6-ジメチル-1ーナフチル基、2,6-ジメチル-1ーナフチル基、2,6-ジメチル-1ーナフチル基、3,6-ジメチル-1ーナフチル基、3,5-ジメチル-1ーナフチル基、3,6-ジメチル-1ーナフチル基、3,7-ジメチル-1ーナフチル基、3,8-ジメチル-1ーナフチル基、4,5-ジメチル-1ーナフチル基、5,8-ジメチル-1ーナフチル基、4,5-ジメチル-1ーナフチル基、1ーメチル-2ーナフチル基、4ーエチル-1ーナフチル基、1ーメチル-2ーナフチル基または炭素原子数1~10の直鎖状、分岐状もしくは環状のアルキル基で置換されたナフチル基;これらのナフチル基またはアルキル置換ナフチル基を、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシカルボニル基、アルコキシカルボニル基、アルコキシカルボニルオキシ基等の少なくとも1種の基1個以上で置換した基等を挙げることができる。

[0040]

上記置換基であるアルコキシル基、アルコキシアルキル基、アルコキシカルボニル基およびアルコキシカルボニルオキシ基としては、例えば、前記フェニル基およびアルキル置換フェニル基について例示した基を挙げることができる。

一般式(5) における R^5 の置換されていてもよいナフチル基としては、1 ーナフチル基、1-(4-x)キシナフチル)基、1-(4-x)キシナフチル)基等が好ましい。

[0041]

また、2個の R^5 が互いに結合して形成した炭素原子数 $2\sim10$ の2 価の基としては、式(7)中の硫黄原子と共に5 員または6 員の環、特に好ましくは5 員の環(即ち、テトラヒドロチオフェン環)を形成する基が望ましい。

また、前記2価の基に対する置換基としては、例えば、前記フェニル基および アルキル置換フェニル基に対する置換基として例示したヒドロキシル基、カルボ キシル基、シアノ基、ニトロ基、アルコキシル基、アルコキアルキル基、アルコ キシカルボニル基、アルコキシカルボニルオキシ基等を挙げることができる。

[0042]

一般式(7)におけるR⁵としては、メチル基、エチル基、フェニル基、4 ーメトキシフェニル基、1ーナフチル基、2個のR⁵が互いに結合して硫黄原 子と共にテトラヒドロチオフェン環構造を形成する2価の基等が好ましい。

[0043]

一般式(7)の X^- で表される R^6 C_n F_{2n+1} SO_3 $^ P_{-1}$ P_{-1} P_{-1} P

[0044]

酸発生剤(B)の具体例としては、

トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオローn-ブタンスルホネート、トリフェニルスルホニウムパーフルオローn-オクタンスルホネート、トリt-ブチルフェニルスルホニウムトリフルオロメタンスルホネート、トリt-ブチルフェニルスルホニウムノナフルオローn-ブタンスルホネート、トリt-ブチルフェニルスルホニウムパーフルオローn-ブタンスルホネート、4-シクロヘキシルフェニルージフェニルスルホニウムトリフルオロメタンスルホネート、4-シクロヘキシルフェニルージフェニルスルホニウムノナフルオローn-ブタンスルホネート、4-シクロヘキシルフェニルージフェニルスルホニウムパーフルオローn-オクタンスルホネート、1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、1

ーナフチルジメチルスルホニウムノナフルオローnーブタンスルホネート、1ーナフチルジメチルスルホニウムパーフルオローnーオクタンスルホネート、1ーナフチルジエチルスルホニウムトリフルオロメタンスルホネート、1ーナフチルジエチルスルホニウムノナフルオローnーブタンスルホネート、1ーナフチルジエチルスルホニウムパーフルオローnーオクタンスルホネート、

[0045]

$[0\ 0\ 4\ 6]$

 $1-(4-\nu r)$ ナフチル)ジメチルスルホニウムトリフルオロメタンスルホネート、 $1-(4-\nu r)$ ナフチル)ジメチルスルホニウムノナフルオロー $n-\nu r$ タンスルホネート、 $1-(4-\nu r)$ ナフチル)ジメチルスルホニウムパーフルオロー $n-\tau r$ クタンスルホネート、 $1-(4-\nu r)$ ナフチル)ジエチルスルホニウムトリフルオロメタンスルホネート、 $1-(4-\nu r)$ ナフチル)ジエチルスルホニウムノナフルオロー $n-\nu r$ クンスルホネート、 $1-(4-\nu r)$ ナフチル)ジエチルスルホニウムノナフルオロー $n-\nu r$ クシンスルホネート、 $1-(4-\nu r)$ ナフチル)ジエチルスルホニウムパーフルオロー $n-\nu r$

[0047]

1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウ ムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシ フェニル) テトラヒドロチオフェニウムノナフルオロー n ー ブタンスルホネート 、1-(3.5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニ ウムパーフルオローnーオクタンスルホネート、1-(4-メトキシナフチル) テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-メト キシナフチル) テトラヒドロチオフェニウムノナフルオローn-ブタンスルホネ ート、1-(4-メトキシナフチル)テトラヒドロチオフェニウムパーフルオロ ーn-オクタンスルホネート、1-(4-エトキシナフチル)テトラヒドロチオ フェニウムトリフルオロメタンスルホネート、1- (4-エトキシナフチル)テ トラヒドロチオフェニウムノナフルオローn-ブタンスルホネート、1- (4-エトキシナフチル) テトラヒドロチオフェニウムパーフルオロー n ーオクタンス ルホネート、1- (4-n-ブトキシナフチル) テトラヒドロチオフェニウムト リフルオロメタンスルホネート、1-(4-n-ブトキシナフチル)テトラヒド ロチオフェニウムノナフルオロー n ー ブタンスルホネート、1 ー (4 ー n ー ブト キシナフチル) テトラヒドロチオフェニウムパーフルオロー n ーオクタンスルホ ネート、等を挙げることができる。

[0048]

これらの酸発生剤(B)のうち、トリフェニルスルホニウムノナフルオローn ーブタンスルホネート、トリtーブチルフェニルスルホニウムノナフルオローn ーブタンスルホネート、4 ーシクロヘキシルフェニルージフェニルスルホニウム ノナフルオローn-ブタンスルホネート、トリフェニルスルホニウムパーフルオローn-オクタンスルホネート、1- (3, 5-ジメチルー4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオローn-ブタンスルホネート、1- (3, 5-ジメチルー4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオローn-オクタンスルホネート、1- (4-n-ブトキシナフチル)テトラヒドロチオフェニウムノナフルオローn-ブタンスルホネート、1- (4-n-ブトキシナフチル)テトラヒドロチオフェニウムパーフルオローn-オクタンスルホネート等が好ましい。

本発明において、酸発生剤 (B*) は、一種単独でもまたは2種以上を混合しても使用することができる。

[0049]

また、本発明においては、酸発生剤(B)として用いることができる酸発生剤(B*)以外の感放射線性酸発生剤(以下、「他の酸発生剤」という。)としては、例えば、酸発生剤(B*)以外のオニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等を挙げることができる。

これらの他の酸発生剤としては、下記のものを挙げることができる。

[0050]

オニウム塩化合物:

オニウム塩化合物としては、例えば、ヨードニウム塩、スルホニウム塩、ホス ホニウム塩、ジアゾニウム塩、ピリジニウム塩等を挙げることができる。

オニウム塩化合物の具体例としては、

iフェニルヨードニウムトリフルオロメタンスルホネート、iフェニルヨードニウムノナフルオローn-ブタンスルホネート、iフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(i0-ガチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(i0-ガチルフェニル)ヨードニウムノナフルオロ-i0-ブタンスルホネート、ビス(i0-ガチルフェニル)ヨードニウムノナフルオロ-i1-ブタンスルホネート、i1-ブチルフェニル)コードニウムパーフルオロ-i1-オクタンスルホネート、i1-ブタンスルホネート

ジシクロヘキシル・2-オキソシクロヘキシルスルホニウムトリフルオロメタン スルホネート、2-オキソシクロヘキシルジメチルスルホニウムトリフルオロメ タンスルホネート等を挙げることができる。

[0051]

ハロゲン含有化合物:

ハロゲン含有化合物としては、例えば、ハロアルキル基含有炭化水素化合物、 ハロアルキル基含有複素環式化合物等を挙げることができる。

ハロゲン含有化合物の具体例としては、フェニルビス(トリクロロメチル)-s-トリアジン、4-メトキシフェニルビス(トリクロロメチル)-s-トリアジン、1-ナフチルビス(トリクロロメチル)-s-トリアジン等の(トリクロロメチル)-s-トリアジン誘導体や、1, 1-ビス(4-クロロフェニル)-2, 2, 2-トリクロロエタン等を挙げることができる。

ジアゾケトン化合物:

ジアゾケトン化合物としては、例えば、1,3-ジケト-2-ジアゾ化合物、 ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができる。

ジアゾケトンの具体例としては、1, 2-tフトキノンジアジドー4-xルホニルクロリド、1, 2-tフトキノンジアジドー5-xルホニルクロリド、2, 3, 4, 4, 4, 2-tフトラヒドロキシベンゾフェノンの1, 2-tフトキノンジアジドー4-xルホン酸エステルまたは1, 2-tフトキノンジアジドー5-xルホン酸エステル、1, 1-tリス(4-tビロキシフェニル)エタンの1, 2-tフトキノンジアジドー4-xルホン酸エステルまたは1, 2-tフトキノンジアジドー5-xルホン酸エステルまたは1, 2-tフトキノンジアジドー5-xルホン酸エステル等を挙げることができる。

[0052]

スルホン化合物:

スルホン化合物としては、例えば、 β ーケトスルホン、 β ースルホニルスルホンや、これらの化合物の α ージアゾ化合物等を挙げることができる。

スルホン化合物の具体例としては、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス (フェニルスルホニル) メタン等を挙げることができ

る。

スルホン酸化合物:

スルホン酸化合物としては、例えば、アルキルスルホン酸エステル、アルキルスルホン酸イミド、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。

スルホン酸化合物の具体例としては、ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジルー9,10ージエトキシアントラセンー2ースルホネート、トリフルオロメタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2,3ージカルボジイミド、ノナフルオローローブタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2,3ージカルボジイミド、パーフルオローローオクタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2,3ージカルボジイミド、パーフルオローローオクタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2,3ージカルボジイミド、Nーヒドロキシスクシイミドトリフルオロメタンスルホネート、Nーヒドロキシスクシイミドノナフルオローローブタンスルホネート、1,8ーナフタレンジカルボン酸イミドノナフルオローローブタンスルホネート、1,8ーナフタレンジカルボン酸イミドパーフルオローローオクタンスルホネート等を挙げることができる。

[0053]

これらの他の酸発生剤のうち、

iフェニルヨードニウムトリフルオロメタンスルホネート、iフェニルヨードニウムノナフルオローn-ブタンスルホネート、iフェニルヨードニウムパーフルオローn-オクタンスルホネート、iス(i0 - i0 - i0 - i1 - i1 - i1 - i1 - i2 - i3 - i4 - i7 - i7 - i7 - i8 - i9 - i9 - i1 - i9 - i1 - i1 - i1 - i1 - i1 - i2 - i3 - i4 - i7 - i7 - i7 - i7 - i7 - i8 - i9 - i9 - i9 - i1 - i1 - i1 - i1 - i1 - i1 - i2 - i3 - i7 - i7 - i7 - i7 - i7 - i8 - i9 - i9 - i1 - i2 - i3 - i1 - i2 - i1 - i

シクロヘキシル・2 - オキソシクロヘキシル・メチルスルホニウムトリフルオロ メタンスルホネート、ジシクロヘキシル・2 - オキソシクロヘキシルスルホニウ ムトリフルオロメタンスルホネート、2 - オキソシクロヘキシルジメチルスルホ ニウムトリフルオロメタンスルホネート、

[0054]

トリフルオロメタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2, 3-ジカルボジイミド、ノナフルオローn-ブタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2, 3-ジカルボジイミド、パーフルオローn-オクタンスルホニルビシクロ[2.2.1]へプトー5ーエンー2, 3-ジカルボジイミド、Nーヒドロキシスクシイミドトリフルオロメタンスルホネート、Nーヒドロキシスクシイミドノナフルオローn-ブタンスルホネート、Nーヒドロキシスクシイミドパーフルオローn-オクタンスルホネート、1, 8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート

前記他の酸発生剤は、一種単独でもまたは2種以上を混合しても使用することができる。

酸発生剤(B)としては、酸発生剤(B*)が好ましく、酸発生剤(B*)と他の酸発生剤との併用も好ましい。他の酸発生剤を併用する場合、他の酸発生剤の使用割合は、酸発生剤(B*)と他の酸発生剤との合計に対して、通常、80重量%以下、好ましくは60重量%以下である。

[0055]

本発明において、酸発生剤(B)の合計使用量は、レジストとしての感度および現像性を確保する観点から、樹脂(A)100重量部に対して、通常、0.1~20重量部、好ましくは0.5~10重量部である。この場合、前記合計使用量が0.1重量部未満では、感度および現像性が低下する傾向があり、一方20重量部を超えると、放射線に対する透明性が低下して、矩形のレジストパターンを得られ難くなる傾向がある。

[0056]

ーその他の成分ー

本発明の感放射線性樹脂組成物には、必要に応じて、酸拡散制御剤、酸解離性 基を有する脂環式化合物、界面活性剤、増感剤等の各種の添加剤を配合すること ができる。 前記酸拡散制御剤は、露光により酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する作用を有する成分である。

このような酸拡散制御剤を配合することにより、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度がさらに向上するとともに、露光から露光後の加熱処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。

酸拡散制御剤としては、レジストパターンの形成工程中の露光や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。

このような含窒素有機化合物としては、例えば、下記一般式(8)

[14.6]

$$R^7$$
 R^7
 N
 R^7
 (8)

[一般式(8)において、各R⁷ は相互に独立に水素原子、置換もしくは非置換の直鎖状、分岐状もしくは環状のアルキル基、置換もしくは非置換のアリール基または置換もしくは非置換のアラルキル基を示す。]

[0058]

で表される化合物(以下、「含窒素化合物(イ)」という。)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(ロ)」という。)、窒素原子を3個以上有するポリアミノ化合物や重合体(以下、これらをまとめて「含窒素化合物(ハ)」という。)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等を挙げることができる。

[0059]

含窒素化合物 (イ) としては、例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、シクロヘキ

シルアミン等のモノ(シクロ)アルキルアミン類;ジーn-ブチルアミン、ジーn-ペンチルアミン、ジーn-ヘキシルアミン、ジーn-ヘプチルアミン、ジーn-ヘナシルアミン、ジーn-インテルアミン、ジーn-インテルアミン、ジーn-ブラルアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン、 カリーn-ブラルアミン、 トリーn-ブラルアミン、 トリーn-ブチルアミン、 トリーn-ベプチルアミン、 トリーn-ベプチルアミン、 トリーn-ベプチルアミン、 トリーn-ベプチルアミン、 トリーn-ベプチルアミン、 トリーn-ベプチルアミン、 トリーn-ベアミン、 トリン、 メチルアミン スタロヘキシルアミン等のトリ(シクロ)アルキルアミン類; アニリン、 n-メチルアニリン、 n-ベアミン、 トリフェニルアミン、 トリフェニルアミン、 ナフチルアミン等の デ香族アミン類を挙げることができる。

[0060]

含窒素化合物(ロ)としては、例えば、エチレンジアミン、N, N, N', N' ーテトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4, 4' ージアミノジフェニルエーテル、4, 4' ージアミノジフェニルエーテル、4, 4' ージアミノベンゾフェノン、4, 4' ージアミノジフェニルアミン、2, 2ービス(4ーアミノフェニル)プロパン、2ー(3ーアミノフェニル)ー2ー(4ーアミノフェニル)プロパン、2ー(4ーアミノフェニル)ー2ー(3ーヒドロキシフェニル)プロパン、2ー(4ーアミノフェニル)ー2ー(4ーヒドロキシフェニル)プロパン、1, 4ービス [1-(4-アミノフェニル)-1-メチルエチル] ベンゼン、1, 3ービス [1-(4-アミノフェニル)-1-メチルエチル] ベンゼン、ビス(2ージメチルアミノエチル)エーテル、ビス(2ージエチルアミノエチル)エーテル

含窒素化合物(ハ)としては、例えば、ポリエチレンイミン、ポリアリルアミン、2-ジメチルアミノエチルアクリルアミドの重合体等を挙げることができる。

[0061]

前記アミド基含有化合物としては、例えば、N-t-ブトキシカルボニルジー

n-オクチルアミン、N-t-ブトキシカルボニルジーn-ノニルアミン、Nt-ブトキシカルボニルジーn-デシルアミン、N-t-ブトキシカルボニルジ シクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン 、Nーt-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N.N ージー t ーブトキシカルボニルー l ーアダマンチルアミン、N. Nージー t ーブ トキシカルボニルーN-メチルー1-アダマンチルアミン、N-t-ブトキシカ ルボニルー4, 4'ージアミノジフェニルメタン、N, N'ージーtーブトキシ カルボニルヘキサメチレンジアミン、N, N, N' N' ーテトラーt-ブトキシ カルボニルヘキサメチレンジアミン、N, N'ージーtーブトキシカルボニルー ジアミノオクタン、N.N'-ジーt-ブトキシカルボニルー1.9-ジアミノ ノナン、N, N' ージーt ーブトキシカルボニルー1, 10 ージアミノデカン、 $N, N' - \vec{y} - t - \vec{y} + \vec{$ N, N' -ジ-t-ブトキシカルボニル-4, 4' -ジアミノジフェニルメタン 、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニ ルー2-メチルベンズイミダゾール、N-t-ブトキシカルボニルー2-フェニ ルベンズイミダゾール等のN-t-ブトキシカルボニル基含有アミノ化合物のほ か、ホルムアミド、Nーメチルホルムアミド、N. Nージメチルホルムアミド、 アセトアミド、Nーメチルアセトアミド、N, Nージメチルアセトアミド、プロ ピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等を挙げるこ とができる。

[0062]

前記ウレア化合物としては、例えば、尿素、メチルウレア、1, 1-ジメチルウレア、1, $3-\widetilde{y}$ メチルウレア、1, 1, 3, $3-\overline{y}$ トリーx1, x2, x3, x3, x4, x5, x5, x5, x6, x7, x7, x8, x8, x8, x8, x8, x9, x

ピリジン、2-xチルピリジン、4-xチルピリジン、2-yェニルピリジン、4-y チルー4-y エコチン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4-y ドロキシキノリン、8-y キンサン、アクリジン等のピリジン類;ピペラジン、1-(2-y) アクリジン等のピッシン類のほか、ピラジン、ピラゾール、ピッダジン、キノザリン、プリン、ピロリジン、ピペリジン、3-y ペリジノー1, 2-y ロパンジオール、モルホリン、4-y チルモルホリン、1, 4-y チルピペラジン、1, 4-y チルピペラジン、1, 1, 1 カタン等を挙げることができる。

[0063]

これらの含窒素有機化合物のうち、含窒素化合物(イ)、アミド基含有化合物 、含窒素複素環化合物等が好ましい。

前記酸拡散制御剤は、一種単独でもまたは2種以上を混合しても使用することができる。

[0064]

また、前記酸解離性基を有する脂環式化合物は、ドライエッチング耐性、パターンプロファイル、基板との接着性等をさらに改善する作用を示す成分である。 このような脂環式化合物としては、例えば、

1-rダマンタンカルボン酸 t-rブチル、1-rダマンタンカルボン酸 t-r7トキシカルボニルメチル、1, 3-rダマンタンジカルボン酸ジー t-r7チル、1-r7 がマンタン酢酸 t-r7トキシカルボニルメチル、1, 3-r7 がマンタン酢酸ジー t-r7 が で アダマンタン誘導体類:

デオキシコール酸 t ーブチル、デオキシコール酸 t ーブトキシカルボニルメチル、デオキシコール酸 2 ーエトキシエチル、デオキシコール酸 2 ーシクロヘキシルオキシエチル、デオキシコール酸 3 ーオキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類:

リトコール酸 t ーブチル、リトコール酸 t ーブトキシカルボニルメチル、リトコール酸 2 ーエトキシエチル、リトコール酸 2 ーシクロヘキシルオキシエチル、リ

トコール酸3ーオキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類等を挙げることができる。

これらの脂環式化合物は、一種単独でもまたは2種以上を混合しても使用することができる。

[0065]

また、前記界面活性剤は、塗布性、ストリエーション、現像性等を改良する作用を示す成分である。

このような界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン nーオクチルフェニルエーテル、ポリオキシエチレン nーノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤のほか、以下商品名で、KP341 (信越化学工業 (株) 製)、ポリフローNo. 75,同No. 95 (共栄社化学(株)製)、エフトップEF301,同EF303,同EF352 (トーケムプロダクツ(株)製)、メガファックスF171,同F173 (大日本インキ化学工業(株)製)、フロラードFC430,同FC431 (住友スリーエム(株)製)、アサヒガードAG710,サーフロンS-382,同SC-101,同SC-102,同SC-103,同SC-104,同SC-105,同SC-106 (旭硝子(株)製)等を挙げることができる。

これらの界面活性剤は、一種単独でもまたは2種以上を混合しても使用することができる。

[0066]

また、前記増感剤は、放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(B)に伝達し、それにより酸の生成量を増加する作用を示すもので、感放射線性樹脂組成物のみかけの感度を向上させる効果を有する。

このような増感剤としては、アセトフェノン類、ベンゾフェノン類、ナフタレン類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等を挙げることができる。

これらの増感剤は、一種単独でもまたは2種以上を混合しても使用することができる。 また、染料あるいは顔料を配合することにより、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和でき、接着助剤を配合することにより、基板との接着性を改善することができる。

さらに、前記以外の添加剤としては、後述するアルカリ可溶性樹脂、酸解離性の保護基を有する低分子のアルカリ溶解性制御剤、ハレーション防止剤、保存安定化剤、消泡剤等を挙げることができる。

[0067]

一溶剤一

本発明の組成物を使用する際には通常上述した成分は溶剤に溶解される。

溶剤としては、プロピレングリコールモノメチルエーテルアセテート、2 - へ プタノンおよびシクロヘキサノンの群から選ばれる少なくとも1種(「溶剤(C)という」)が好ましい。

[0068]

溶剤としては上記の溶剤以外の溶剤(「他の溶剤」という)を使用することもできる。上記の溶剤とそれ以外の溶剤を混合して用いることもできる。

他の溶剤としては、例えば、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノー n ープロピルエーテルアセテート、プロピレングリコールモノー i ープロピルエーテルアセテート、プロピレングリコールモノー i ーブチルエーテルアセテート、プロピレングリコールモノー i ーブチルエーテルアセテート、プロピレングリコールモノー s e c ーブチルエーテルアセテート、プロピレングリコールモノー t ーブチルエーテルアセテングリコールモノアルキルエーテルアセテート類:

2ーブタノン、2ーペンタノン、3ーメチルー2ーブタノン、2ーヘキサノン、4ーメチルー2ーペンタノン、3ーメチルー2ーペンタノン、3,3ージメチルー2ーブタノン、2ーオクタノン等の直鎖状もしくは分岐状のケトン類;シクロペンタノン、3ーメチルシクロペンタノン、2ーメチルシクロヘキサノン

、2,6-ジメチルシクロヘキサノン、イソホロン等の環状のケトン類;

2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-

ヒドロキシプロピオン酸 n-プロピル、2-ヒドロキシプロピオン酸 i-プロピル、2-ヒドロキシプロピオン酸 n-ブチル、2-ヒドロキシプロピオン酸 i-ブチル、2-ヒドロキシプロピオン酸 s e c-ブチル、2-ヒドロキシプロピオン酸 t-ブチル等の2-ヒドロキシプロピオン酸アルキル類;

3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等の3-アルコキシプロピオン酸アルキル類のほか、

[0069]

nープロピルアルコール、iープロピルアルコール、nーブチルアルコール、t ・ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエー テル、エチレングリコールモノエチルエーテル、エチレングリコールモノー n -プロピルエーテル、エチレングリコールモノーn-ブチルエーテル、ジエチレン グリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチ レングリコールジーnープロピルエーテル、ジエチレングリコールジーnーブチ ルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリ コールモノエチルエーテルアセテート、エチレングリコールモノー n - プロピル エーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレング リコールモノエチルエーテル、プロピレングリコールモノーn-プロピルエーテ ル、トルエン、キシレン、2-ヒドロキシ-2-メチルプロピオン酸エチル、エ トキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシー3-メチル酪酸メ チル、3ーメトキシブチルアセテート、3ーメチルー3ーメトキシブチルアセテ ート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メト キシブチルブチレート、酢酸エチル、酢酸 n - プロピル、酢酸 n - ブチル、アセ ト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル、Nー メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトア ミド、ベンジルエチルエーテル、ジーn-ヘキシルエーテル、ジエチレングリコ ールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、カプロン 酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、酢 酸ベンジル、安息香酸エチル、しゅう酸ジエチル、マレイン酸ジエチル、γーブ チロラクトン、炭酸エチレン、炭酸プロピレン等を挙げることができる。

[0070]

これらの他の溶剤のうち、直鎖状もしくは分岐状のケトン類、環状のケトン類、プロピレングリコールモノアルキルエーテルアセテート類、2-ヒドロキシプロピオン酸アルキル類、3-アルコキシプロピオン酸アルキル類等が好ましい。

前記他の溶剤は、一種単独でもまたは2種以上を混合しても使用することができる。

[0071]

溶剤として、溶剤(C)と他の溶剤との混合溶剤を使用する場合、他の溶剤の割合は、全溶剤に対して、通常、50重量%以下、好ましくは30重量%以下、 さらに好ましくは25重量%以下である。

また、本発明の感放射線性樹脂組成物における溶剤の使用量は、組成物中の全固形分濃度が、通常、 $5\sim70$ 重量%、好ましくは $10\sim25$ 重量%、さらに好ましくは $10\sim20$ 重量%となる量である。

本発明の感放射線性樹脂組成物は、樹脂(A)、酸発生剤(B)および添加剤 成分を溶剤に溶解して均一溶液としたのち、好ましくは、例えば孔径 $0.2 \mu m$ 程度のフィルターでろ過して使用される。

[0072]

ーレジストパターンの形成方法ー

本発明の感放射線性樹脂組成物は、特に化学増幅型レジストとして有用である。 。

前記化学増幅型レジストにおいては、露光により酸発生剤から発生した酸の作用によって、樹脂(A)中の酸解離性基が解離して、カルボキシル基を生じ、その結果、レジストの露光部のアルカリ現像液に対する溶解性が高くなり、該露光部がアルカリ現像液によって溶解、除去され、ポジ型のレジストパターンが得られる。

本発明の感放射線性樹脂組成物からレジストパターンを形成する際には、組成物溶液を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、例えば、シリコンウエハー、アルミニウムで被覆されたウエハー等の基板上に塗布す

ることにより、レジスト被膜を形成し、場合により予め加熱処理(以下、「PB」という。)を行ったのち、所定のレジストパターンを形成するように該レジスト被膜に露光する。その際に使用される放射線としては、使用される酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等を適宜選定して使用されるが、ArFエキシマレーザー(波長193nm)あるいはKrFエキシマレーザー(波長248nm)で代表される遠紫外線が好ましく、特にArFエキシマレーザー(波長193nm)が好ましい。

本発明においては、露光後に加熱処理(以下、「PEB」という。)を行うことが好ましい。このPEBにより、樹脂(A)中の酸解離性基の解離反応が円滑に進行する。PEBの加熱条件は、感放射線性樹脂組成物の配合組成によって変わるが、通常、 $30\sim200$ \mathbb{C} 、好ましくは $50\sim170$ \mathbb{C} である。

[0073]

本発明においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば特公平6-12452号公報等に開示されているように、使用される基板上に有機系あるいは無機系の反射防止膜を形成しておくこともでき、また環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5-188598号公報等に開示されているように、レジスト被膜上に保護膜を設けることもでき、あるいはこれらの技術を併用することもできる。

次いで、露光されたレジスト被膜を現像することにより、所定のレジストパタ ーンを形成する。

現像に使用される現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、nープロピルアミン、ジエチルアミン、ジーnープロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8ージアザビシクロー[5.4.0]-7ーウンデセン、1,5ージアザビシクロー[4.3.0]-5ーノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液が好ましい。

前記アルカリ性水溶液の濃度は、通常、10重量%以下である。この場合、ア

ルカリ性水溶液の濃度が10重量%を超えると、非露光部も現像液に溶解するお それがあり好ましくない。

[0074]

また、前記アルカリ性水溶液からなる現像液には、例えば有機溶媒を添加する こともできる。

前記有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルi-1ブチルケトン、シクロペンタノン、シクロヘキサノン、3-メチルシクロペンタノン、2, 6-ジメチルシクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、1-プロピルアルコール、1-プロピルアルコール、1-ブチルアルコール、1-ブチルアルコール、1-ブチルアルコール、1-ブチルアルコール、1-ブチルアルコール、1- オーヘキサンジオール、1- オーヘキサンジオール、1- オーヘキサンジオール、1- オーヘキサンジオール、1- ができる。

これらの有機溶媒は、一種単独でもまたは2種以上を混合しても使用することができる。

有機溶媒の使用量は、アルカリ性水溶液に対して、100容量%以下が好ましい。この場合、有機溶媒の使用量が100容量%を超えると、現像性が低下して、露光部の現像残りが多くなるおそれがある。

また、アルカリ性水溶液からなる現像液には、界面活性剤等を適量添加することもできる。

なお、アルカリ性水溶液からなる現像液で現像したのちは、一般に、水で洗浄 して乾燥する。

[0075]

【実施例】

以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。ここで、部は、特記しない限り重量基準である。

実施例および比較例における各測定・評価は、下記の要領で行った。

Mw:

東ソー (株) 製GPCカラム (G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量1. 0ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40 $^{\circ}$ の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー (GPC) により測定した。

放射線透過率:

組成物溶液を石英ガラス上にスピンコートにより塗布し、130℃に保持したホットプレート上で90秒間PBを行って形成した膜厚0.34μmのレジスト被膜について、波長193nmにおける吸光度から、放射線透過率を算出して、遠紫外線領域における透明性の尺度とした。

感度:

基板として表面に膜厚820点の ARC25(ブルワー・サイエンス(Brewer Science)社製)膜を形成したシリコーンウエハーを用い、組成物溶液を基板上にスピンコートにより塗布し、120℃に保持したホットプレート上で90秒間PBを行って形成した膜厚0.27μmのレジスト被膜に、(株)ニコン製ArFエキシマレーザー露光装置(レンズ開口数0.55、露光波長193nm)により、マスクパターンを介して露光した。その後、110℃に保持したホットプレート上で90秒間PEBを行ったのち、2.38重量%のテトラメチルアンモニウムヒドロキシド水溶液により、25℃で1分間現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。このとき、線幅0.16μmのライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度とした。

解像度:

最適露光量で解像される最小のレジストパターンの寸法を、解像度とした。 ドライエッチング耐性:

組成物溶液をシリコーンウエハー上にスピンコートにより塗布し、乾燥して形成した膜厚 0.5 μ mのレジスト被膜に対して、PMT社製ドライエッチング装置 (Pinnacle8000) を用い、エッチングガスをCF4 とし、ガス流量 75 s c

cm(1scsm=1atm、0 C におけるガス流量1cc C min)、圧力2. 5mTorr、出力2, 500 W の条件でドライエッチングを行って、エッチング速度を測定する。後述する比較例1 の組成物溶液から形成したレジスト被膜のエッチング速度を1. 0 として、これに対する相対エッチング速度を評価した。エッチング速度が小さいほど、ドライエッチング耐性に優れることを意味する。

パターンプロファイル:

線幅 0.16μ mのライン・アンド・スペースパターン(1L1S)の方形状断面の下辺寸法L1 と上下辺寸法L2 とを走査型電子顕微鏡により測定し、 $0.85 \le L2$ / $L1 \le 1$ を満足し、かつパターンプロファイルが裾を引いていない場合を、パターンプロファイルが"良好"であるとした。

[0076]

合成例1

一般式($1\,\mathrm{m}$)において $\mathrm{R}^{\,1}$: $-\mathrm{CH}_{\,3}$ 、 $\mathrm{R}^{\,2}$: $-\mathrm{CH}_{\,3}$ である化合物(化合物 a)を $2\,6$.4 $6\,\mathrm{g}$ ($2\,5$ モル%)、一般式($3\,\mathrm{m}$)において $\mathrm{R}^{\,1}$: $-\mathrm{CH}_{\,3}$ 、 $\mathrm{R}^{\,2}$: $-\mathrm{C}_{\,2}\,\mathrm{H}_{\,5}$ である化合物(化合物 b)を $1\,3$.3 $0\,\mathrm{g}$ ($1\,5$ モル%)、式(9):

【化7】

で表されるノルボルネンラクトンメタクリレート (化合物 c) を 6 0. 2 4 g (6 0 モル%) およびアゾビスイソ吉草酸メチル 6. 2 4 g を、2 ーブタノン 3 0 0 g に溶解して均一溶液としたモノマー溶液を準備した。また、2 ーブタノン 1

00gを投入した1000ミリリットル三口フラスコ内を30分間窒素でパージしたのち、フラスコ内を攪拌しながら80℃に加熱し、前記モノマー溶液を滴下漏斗を用いて、12ミリリットル/5分の速度で滴下した。滴下開始時を重合開始時点として、80℃で重合を5時間実施した。重合終了後、反応溶液を30℃以下に冷却して、メタノール2,000g中へ投入し、析出した白色粉末をろ別した。その後、白色粉末をメタノール400gと混合してスラリーとし攪拌する操作を2回繰り返して洗浄したのち、炉別し、50℃にて17時間乾燥して、白色粉末の樹脂(69g、収率69重量%)を得た。

この樹脂は、Mwが 6, 500であり、繰返し単位(1)(但し、 $R^1:-CH_3$ 、 $R^2:-CH_3$)、繰返し単位(3)(但し、 $R^1:-CH_3$ 、 $R^2:-C_2H_5$)、および式(10):

【化8】

$$\begin{array}{c}
CH_3 \\
CH_2 - C \\
C \longrightarrow O
\end{array}$$

$$C \longrightarrow O$$

で表される前記化合物 c に由来する繰り返し単位の含有率が 2 5. 1:14. 0:60.9 (モル%) の共重合体であった。この樹脂を樹脂 (A-1) とする。

[0077]

合成例2

一般式 (2 m) において R ¹: - C H ₃、 R ²: - C H ₃である化合物 (化合物 d) を 2 0. 5 3 g (2 5 モル%)、化合物 b を 1 4. 3 7 g (1 5 モル%)、化合物 c を 6 5. 1 0 g (6 0 モル%) およびアゾビスイソ吉草酸メチル 6. 7 4 g を、2 - ブタノン 3 0 0 g に溶解して均一溶液としたモノマー溶液を用いた以外は、合成例 1 と同様にして、白色粉末の樹脂 (7 3 g、収率 7 3 重量%)

を得た。

この樹脂は、Mwが7, 200であり、繰返し単位(2)(但し、 $R^1:-CH_3$ 、 $R^2:-CH_3$)、繰返し単位(3)(但し、 $R^1:-CH_3$ 、 $R^2:-C_2H_5$)および式(10)で表される繰り返し単位の含有率が24.8:14.5:60.7(モル%)の共重合体であった。この樹脂を樹脂(A-2)とする。

[0078]

合成例3

一般式(4 m)においてR 1 : -CH $_3$ 、R 2 : -CH $_3$ である化合物(化合物 $_6$)を25.56g(25モル%)、一般式(4 m)においてR 1 : -CH $_3$ 、R 2 : -C $_2$ H $_5$ である化合物(化合物 $_6$)を16.26g(15モル%)、化合物 $_6$ を58.18g(60モル%)およびアゾビスイソ吉草酸メチル6.02gを、2ーブタノン300gに溶解して均一溶液としたモノマー溶液を用いた以外は、合成例 $_6$ と同様にして、白色粉末の樹脂(78g、収率 $_6$ 78重量%)を得た。

この樹脂は、Mwが 7, 6 0 0 であり、繰返し単位(4)(但し、 R^1 : -C H_3 、 R^2 : $-CH_3$)、繰返し単位(4)(但し、 R^1 : $-CH_3$ 、 R^2 : $-C_2H_5$)および式(1 0)で表される繰り返し単位の含有率が 2 4. 8: 1 4. 4: 60. 8(モル%)の共重合体であった。この樹脂を樹脂(A-3)とする。

[0079]

合成例4

化合物 a を 2 5. 0 3 g (2 5 モル%)、一般式 (1 m) において R ¹: - C H₃、 R ²: - C₂ H₅である化合物 (化合物 g) を 2 1. 2 3 g (2 0 モル%)、化合物 c を 2 8. 4 9 g (3 0 モル%)、下記式 (1 1)

【化9】

$$CH_3$$
 $CH_2 = C$
 $C = O$
 O
 O
 O
 O
 O
 O
 O

で表される3-ヒドロキシー1-アダマンチルメタクリレート(化合物 h) 25.25g(25モル%)およびアゾビスイソ吉草酸メチル6.00gを、2-ブタノン200gに溶解して均一溶液としたモノマー溶液を用いた以外は、合成例1と同様にして、白色粉末の樹脂(75g、収率75重量%)を得た。

この樹脂は、Mwが 7, 3 0 0 であり、繰返し単位(1)(但し、 $R^1:-C$ H_3 、 $R^2:-CH_3$)、繰返し単位(1)(但し、 $R^1:-CH_3$ 、 $R^2:-C_2H_5$)および下記式(1 2)

【化10】

$$\begin{array}{c}
CH_3 \\
CH_2 - C \\
C \longrightarrow O
\end{array}$$

$$C \longrightarrow O$$

$$O \longrightarrow OH$$

$$(12)$$

で表される繰り返し単位の含有率が25.1:14.0:60.9(モル%)の 共重合体であった。この樹脂を樹脂(A-4)とする。

[0080]

合成例 5

化合物 a を 3.8.59 g(3.8 モル%)、一般式(1 m)において R 1:-C H 3 、 R 2:-C 2 H 5 である化合物(化合物 g)を 1.6.14 g(1.5 モル%

)、化合物 c を 4 5. 2 7 g (4 7 モル%) およびアゾビスイソ吉草酸メチル 5 . 9 8 g を、2 ーブタノン 3 0 0 g に溶解して均一溶液としたモノマー溶液を用いた以外は、合成例 1 と同様にして、白色粉末の樹脂 (7 2 g、収率 7 2 重量%) を得た。

この樹脂は、Mwが7, 000であり、繰返し単位(1)(但し、 $R^1:-CH_3$ 、 $R^2:-CH_3$)、繰返し単位(1)(但し、 $R^1:-CH_3$ 、 $R^2:-C_2H_5$)、式(10)で表される繰り返し単位の含有率が37.1:13.0 : 49.9(モル%)の共重合体であった。この樹脂を樹脂(A-5)とする。

[0081]

合成例 6

化合物 a を 3.8.24g (3.8 モル%)、一般式 (5.m) において R 1:-C H 3、 R 2:-C H 3 である化合物(化合物 h)を 1.6.90g (1.5 モル%)、化合物 c 5.6 c 5

この樹脂は、Mwが7, 600であり、繰返し単位(1)(但し、 $R^1:-CH_3$ 、 $R^2:-CH_3$)、繰返し単位(5)(但し、 $R^1:-CH_3$ 、 $R^2:-CH_3$)、式(10)で表される繰り返し単位の含有率が37.5:15.1:47.4(モル%)の共重合体であった。この樹脂を樹脂(<math>A-6)とする。

[0082]

合成例 7

この樹脂は、Mwが7, 800であり、繰返し単位(1)(但し、 $R^1:-C$

[0083]

合成例8

一般式 (1 m) において R¹: -H、 R²: -C₂H₅である化合物 (化合物 j) を 16.07g (15モル%)、一般式 (6 m) において R¹: -H、 R²: -CH₃である化合物 (化合物 k) を 36.18g (38モル%)、化合物 cを 47.75g (47モル%) およびアゾビスイソ吉草酸メチル6.31gを、 2-ブタノン300gに溶解して均一溶液としたモノマー溶液を用いた以外は、合成例 1と同様にして、白色粉末の樹脂 (75g、収率 75重量%)を得た。

この樹脂は、Mwが7, 300であり、繰返し単位(1)(但し、 $R^1:-H$ 、 $R^2:-C_2H_5$)、繰返し単位(6)(但し、 $R^1:-H$ 、 $R^2:-CH_3$)、式(10)で表される繰り返し単位の含有率が13.9:37.2:48.9(モル%)の共重合体であった。この樹脂を樹脂(A-8)とする。

合成例9 (比較用)

化合物 a を 4 1. 2 8 g (4 0 モル%)、化合物 c を 5 8. 7 2 g (6 0 モル%) およびアゾビスイソ吉草酸メチル 6. 0 0 g を、2 ーブタノン 2 0 0 g に溶解して均一溶液としたモノマー溶液を用いた以外は、合成例 1 と同様にして、白色粉末の樹脂を得た(7 6 g、収率 7 6 重量%)。

この樹脂は、Mwが7, 500であり、繰返し単位(1)および式(8)で表される繰り返し単位の含有率が39.5:60.5(モル%)の共重合体であった。この樹脂を樹脂(R-1)とする。

[0084]

実施例1~9および比較例1

表 1 に示す成分からなる各組成物について、各種評価を行った。評価結果を表 2 に示す。表 1 において、樹脂(A-1)~(A-8)および(R-1)以外の成分 は以下の通りである。

[0085]

酸発生剤 (B)

 $B-1:4-n-\overline{\jmath}$ トキシー1-ナフチルテトラヒドロチオフェニウム ノナフルオロ-n $-\overline{\jmath}$ タンスルホネート

B-2:トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート

B-3:4-シクロヘキシルフェニルージフェニルスルホニウムノナフルオロ

-n-ブタンスルホネート

[0086]

酸拡散制御剤 (D)

D-1:N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール

D-1:3-ピロリジノ-1, 2-プロパンジオール

脂環式化合物(E)

E-1: デオキシコール酸 t ーブトキシカルボニルメチル 【0087】

溶剤 (C)

C-1:プロピレングリコールモノメチルエーテルアセテート

 $C-2:2- \gamma J$

C-3:シクロヘキサノン

[0088]

【表1】

	樹脂 (部)	酸発生剤 (B)(部)	酸拡散制御剤 (D)(部)	脂環式化合物 (E)(部)	溶剤 (C) (部)
実施例	A-1(94)	B-1(5)	D-1(0.20)	E-1(6)	C-1(650) C-2(200)
実施例	A-2(94)	B-1(5)	D-1(0.20)	E-1(6)	C-1(650) C-2(200)
実施例	A-3(94)	B-1(5)	D-1(0.20)	E-1(6)	C-1(650) C-2(200)
実施例	A-4(94)	B-1(5)	D-1(0.20)	E-1(6)	C-1(650) C-2(200)
実施例	A-5(94)	B-2(2) B-3(1)	D-2(0.25)	E-1(6)	C-1(650) C-3(200)
実施例	A-6(94)	B-2(2) B-3(1)	D-2(0.25)	E-1(6)	C-1(650) C-3(200)
実施例	A-7(94)	B-2(2) B-3(1)	D-2(0.25)	E-1(6)	C-1(650) C-3(200)
実施例	A-8(94)	B-2(2) B-3(1)	D-2(0.25)	E-1(6)	C-1(650) C-3(200)
実施例	A-9(94)	B-2(2) B-3(1)	D-2(0.25)	E-1(6)	C-1(650) C-3(200)
比較例	R-1(94)	B-1(5)	D-1(0.20)	E-1(6)	C-1(450) C-2(200)

[0089]

【表2】

	放射線透過率	感度	解像度	ドライェッチング	パターンプ
	(193nm, %)	(J/m2)	(μm)	耐性	ロファイル
実施例 1	7 5	130	0.13	0.8	良好
実施例 2	7 3	1 3 5	0.13	0. 7	良好
実施例3	7 4	140	0.13	0.8	良好
実施例 4	7 5	128	0.13	0.8	良好
実施例 5	7 6	137	0.13	0.8	良好
実施例 6	7 5	130	0.13	0.8	良好
実施例 7	7 5	127	0.13	0. 7	良好
実施例8	7 6	125	0.13	0.8	良好
実施例 9	7 4	140	0.13	0. 7	良好
比較例1	7 5	180	0.14	0.8	良好

【発明の効果】

本発明の感放射線性樹脂組成物は、活性光線、例えばKrFエキシマレーザー(波長248nm)あるいはArFエキシマレーザー(波長193nm)に代表される遠紫外線に感応する化学増幅型レジストとして有用であり、特に放射線に対する透明性が高く、高解像度であり、かつ感度、ドライエッチング耐性、パターンプロファイル等を含めたレジストとしての基本物性に優れるとともに、プロセスマージンおよびLERをバランスよく発現することができる。特定の樹脂、酸発生剤および溶剤を組み合わせることにより、優れて性能が発現され、また基板に対する接着性およびパターンの裾形状も良好となり、今後ますます微細化が進行すると予想される集積回路素子の製造に極めて好適に使用することができる

【書類名】

要約書

【要約】

【課題】

放射線に対する透明性が高く、感度、解像度、ドライエッチング耐性、パターンプロファイル等に優れ、化学増幅型レジストとして有用な感放射線性樹脂組成物を提供する。

【解決手段】

(A) 下記一般式(1)~(4)で表される繰返し単位群から選ばれる少なくとも2種類の繰り返し単位を有し、それら繰返し単位の各々の含有量が1~49mol%であり、かつそれら繰返し単位の合計含有量が5~50mol%であり、さらに酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の樹脂、および

(B) 感放射線性酸発生剤

を含有することを特徴とする感放射線性樹脂組成物。

【化1】

 $[-般式(1) \sim (4)$ の各式において、 R^1 は水素原子またはメチル基を示し、 R^2 はメチル基またはエチル基を示す。]

【選択図】 なし。

認定・付加情報

特許出願の番号 特願2002-251812

受付番号 50201290849

書類名 特許願

担当官 第六担当上席 0095

作成日 平成14年 8月30日

<認定情報・付加情報>

【提出日】 平成14年 8月29日

特願2002-251812

出願人履歴情報

識別番号

[000004178]

1. 変更年月日 [変更理由]

1997年12月10日

名称変更

住 所

東京都中央区築地2丁目11番24号

氏 名 ジェイエスアール株式会社

2. 変更年月日

2003年 5月 6日

[変更理由]

住所変更

住 所 氏 名 東京都中央区築地五丁目6番10号

ジェイエスアール株式会社

3. 変更年月日 [変更理由] 2003年 9月 1日

名称変更

住 所

東京都中央区築地五丁目6番10号

氏 名 J S R 株式会社