Suites et Séries –
$$TD_5$$

Exercice 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par :

$$(u_0, u_1) \in \mathbb{R}^2$$
 et $\forall n \in \mathbb{N}$, $u_{n+2} + \frac{1}{2}u_{n+1} + \frac{1}{4}u_n = 0$.

Exprimer u_n en fonction de n pour tout $n \in \mathbb{N}$.

Exercice 2

Quelle est la nature de la suite de terme général $\left(2\sin\left(\frac{1}{n}\right) + \frac{3}{4}\cos(n)\right)^n$?

Exercice 3

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2 + 1}{2} \end{cases}$$

Étudier le comportement de $(u_n)_{n\in\mathbb{N}}$ en fonction de la valeur de u_0 .

Exercice 4

Étudier la suite $u = (u_n)_{n \in \mathbb{N}}$ telle que $u_0 > 0$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{1 + u_n}.$$

Exercice 5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que les sous-suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ sont convergentes. Montrer que $(u_n)_{n\in\mathbb{N}}$ est convergente.

Exercice 6

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ est de Cauchy si elle vérifie la propriété suivante :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall m \geqslant N, \forall n \geqslant N, |u_n - u_m| \leqslant \varepsilon.$$

- 1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite convergente. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.
- 2. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite de Cauchy. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. La suite de terme général $u_n = \sum_{k=1}^n \frac{1}{k}$ est-elle convergente? Si oui, déterminer sa limite.

Exercice 7

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée telle que :

$$u_n + \frac{1}{2}u_{2n} \underset{n \to +\infty}{\longrightarrow} 0.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée et $\lambda\in\mathbb{R}$ telle que : $u_n+\frac{1}{2}u_{2n}\underset{n\to+\infty}{\longrightarrow}\lambda$. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 8

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$, définie pour tout $x \in \mathbb{R}$ par :

$$f(x) = \frac{x}{x^2 + 1}.$$

Soit la suite réelle $(u_n)_{n\in\mathbb{N}}$, définie par récurrence par :

$$u_0 \in [-1, 1]$$
, et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$

- 1. (a) Montrer que, pour tout $n \in \mathbb{N}$, $u_n \in [-1, 1]$.
 - (b) Étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.
 - (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ est convergente puis déterminer sa limite.
- 2. On suppose que $u_0 > 0$ et on admet que pour tout $n \in \mathbb{N}$, $u_n > 0$. On définit pour $n \in \mathbb{N}$:

$$v_n = \frac{1}{(u_n)^2}$$

- (a) Calculer $\lim_{n \to +\infty} (v_{n+1} v_n)$.
- (b) En déduire un équivalent simple de u_n quand $n \to +\infty$.

Exercice 9

Soit $A \in \mathbb{R}$ et f la fonction définie sur \mathbb{R} par : $f: x \mapsto x^2 + A$. On note $(u_n)_{n \in \mathbb{N}}$ la suite récurrente définie par :

$$u_0 = 0$$
 ; $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

- 1. Donner le tableau de variations de f, ainsi que le tableau de signe de $x \mapsto f(x) x$ en fonction de A.
- 2. On suppose dans cette question que $A \ge 0$.
 - (a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (b) Montrer que si $A > \frac{1}{4}$ alors $(u_n)_{n \in \mathbb{N}}$ tend vers $+\infty$.
 - (c) Montrer que si $A \in \left[0, \frac{1}{4}\right]$ alors $(u_n)_{n \in \mathbb{N}}$ est convergente. Donner sa limite.
- 3. On suppose dans cette question que $A \in]-1,0[$.
 - (a) Montrer que [A, 0] est stable par f.

- (b) Montrer que $(u_{2n})_{n\in\mathbb{N}}$ est décroissante et converge vers une limite a, et que $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante et converge vers une limite b.
- (c) Montrer que pour tout nombre réel x:

$$f \circ f(x) - x = (x^2 - x + A)(x^2 + x + A + 1)$$

(d) Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.