# Media to 3D

### Описание задачи

- Реализовать сервис, который из текстового описания объекта генерирует его 3D представление (mesh)
- Реализовать сервис, которые способен восстановить 3D представление объекта из видео или фото.
- Результатом работы сервиса сделать видео или 3D Mesh (по выбору пользователя)

### Краткий результат EDA

Восстановление 3D сцен по фотографиям или видео далеко не новая тема. Существует много классических подходов среди которых:

- Structure-from-motion
- Structured light
- Lidars, Radars
- И менее классческий NERF

# Structure-from-motion (Sfm)



#### Приемущества

• Точная реконструкция

#### Недостатки:

• Качество 3D-модели сильно зависит от количества и качества исходных изображений

# Structured light



#### Приемущества:

 Высокая точность и детализация для фиксированных и контролируемых сцен.

#### Недостатки:

- Сложное оборудование
- Требует точной калибровки
- Нельзя попросить пользователей сделать подобные кадры

### **Lidars and Radars**



#### Приемущества:

• Точная реконструкция

#### Недостатки:

- Дорогое оборудование
- Отклонение от задачи, так как мы планируем работать только с фотографиями или видео

# Neural Radiance Fields (NERF)



### Neural Radiance Fields (NERF)

$$(x,y,z,\theta,\phi) \to \mathbb{R} \to (RGB\sigma)$$

$$F_{\Theta}$$

# Neural Radiance Fields (NERF)



$$w_i = T_i(1 - \exp(-\sigma_i \delta_i))$$
.  $\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i(1 - \exp(-\sigma_i \delta_i))\mathbf{c}_i$ , where  $T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$ 

# Blend of Sfm and NeRF (From NeRF paper)

В результате было решено двигаться с Sfm и Nerf-ом. Sfm будет служить для оценки позиций камеры а Nerf будет учиться рендерить объект с вычисленных позиций

- В качестве Sfm был использован colmap: <u>https://colmap.github.io/install.html</u>
- NeRF был реализован мной (подглядывая куда только можно)

### Сбор данных

- Данные будут приходить в виде фотографий или видео от пользователя.
- Из видео будет извлечено N кадров.
- Полученные фотографии пройдут sfm процессинг для оценки позиций камер
- Полученный позиции камер вместе с фотографиями будут использованы как входные данные в Nerf
- Также для валидации работы сети, был взят общедоступный датасет с синтетическими данными из статьи: https://www.matthewtancik.com/nerf

### Технические детали

- Модель реализована с помощью pytorch
- Метрика качества psnr (Peak Signal To Noise Ratio)
- Обучение модели производилось с помощью lightning
- Оптимизатор Adam c Ir=5e-3, betas=(0.9, 0.999)

### Что получилось

- Получились генерации на синтетических данных
- Получилось организовать полный конвейер обучения на реальных данных и возвращение видео пользователю.
- Реализованы чекпоинты, обучение производится на видеокарте
- Создан телеграм бот для работы с моделью
- Бот контейнизирован в docker container
- pre-commit, argparse

### Что не получилось, что не доделал

- Сгенерировать качественное видео из реальных данных
- Сгенерировать Mesh
- Реализовать Fine model в Nerf

### Reference

- https://arxiv.org/pdf/2003.08934
- https://github.com/google-research/multinerf
- https://github.com/bmild/nerf
- https://github.com/yenchenlin/nerf-pytorch
- https://docs.nerf.studio/
- https://github.com/Professor322/media-to-3d (Эта курсовая)