Отчёт по лабораторной работе №6

Дисциплина: Архитектура компьютера

Аветисян Алина Эдуардовна НММбд-01-23

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
	2.0.1 Ответы на вопросы	12
3	Выполнение заданий для самостоятельной работы	14
4	Выводы	16

Список иллюстраций

2. 1	перехожу в созданный каталог с помощью утилиты са. С помощью	
	утилиты touch создаю файл lab6-1.asm	6
2.2	Копирование in_out.asm	6
2.3	Открываю файл lab6-1.asm с помощью текстового редактора nano.	6
2.4	Запуск исполняемого файла	7
2.5	Редактирование файла	7
2.6	Создание файла	7
2.7	Редактирование файла	8
2.8	Запуск исполняемого файла	8
2.9	Редактирование файла	8
2.10	Запуск исполняемого файла	ç
2.11	Редактирование файла	9
2.12	Запуск исполняемого файла	9
2.13	Создание файла	9
2.14	Редактирование файла	10
2.15	Запуск исполняемого файла	10
2.16	Изменение программы	11
2.17	Запуск исполняемого файла	11
2.18	Создание файла	11
2.19	Редактирование файла	12
2.20	Запуск исполняемого файла	12
3.1	Создание файла	14
3.2	Написание программы	14
3.3	Запуск исполняемого файла	15
3.4	Запуск исполняемого файла.	15

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоение арифметических инструкций языка ассемблера NASM.

2 Выполнение лабораторной работы

С помощью утилиты mkdir создаю директорию, в которой буду создавать файлы с программами для лабораторной работы $N^{o}6$.

```
aeavetisyan@user-N73SV:-$ mkdir ~/work/arch-pc/lab06
aeavetisyan@user-N73SV:-$ cd ~/work/arch-pc/lab06
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ touch lab6-1.asm
```

Рис. 2.1: Перехожу в созданный каталог с помощью утилиты cd. С помощью утилиты touch создаю файл lab6-1.asm.

Копирую в текущий каталог файл in_out.asm с помощью утилиты ср, т.к. он будет использоваться в других программах.

```
aeavetisyan@user-N735V:~/work/arch-pc/lab06$ cp ~/Загрузки/in_out.asm in_out.asm
```

Рис. 2.2: Копирование in out.asm.

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax.

```
GNU nano 6.2 /home/aeavetisyan/work/arch-pc/lab06/lab6-1.asm
Minclude 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintlF
call quit
```

Рис. 2.3: Открываю файл lab6-1.asm с помощью текстового редактора nano.

Создаю исполняемый файл программы и запускаю его. Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-1 j aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ]
```

Рис. 2.4: Запуск исполняемого файла.

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4.

```
GNU nano 6.2 /home/aeavetisyan/work/arch-pc/lab06/lab6-1.asm *
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL_start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 2.5: Редактирование файла.

Создаю новый исполняемый файл программы и запускаю его. Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-1
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$
```

{#fig:001

width=70%

Создаю новый файл lab6-2.asm с помощью утилиты touch.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/lab6-2.asm
```

Рис. 2.6: Создание файла.

Ввожу в файл текст другой программы для вывода значения регистра еах.

```
GNU nano 6.2 /home/aeavetisyan/work/arch-pc/lab06/lab6-2.asm *
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 2.7: Редактирование файла.

Создаю и запускаю исполняемый файл lab6-2.asm. Теперь выводится число 106, пото- му что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4".

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-2
106
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ []
```

Рис. 2.8: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4.

```
GNU nano 6.2 /home/aeavetisyan/work/arch-pc/lab06/lab6-2.asm *
%include 'in_out.asm'
SECTION .text
GLOBAL _start
__start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 2.9: Редактирование файла.

Создаю и запускаю новый исполняемый файл. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-2
10
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ [
```

Рис. 2.10: Запуск исполняемого файла.

Заменяю в тексте программы функцию iprintLF на iprint.

```
GNU nano 6.2 /home/aeavetisyan/work/arch-pc/lab06/lab6-2.asm *
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 2.11: Редактирование файла.

Создаю и запускаю новый исполняемый файл. Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-2
10aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ []
```

Рис. 2.12: Запуск исполняемого файла.

Создаю файл lab6-3.asm с помощью утилиты touch.

```
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/lab6-3.asm
```

Рис. 2.13: Создание файла.

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3.

Рис. 2.14: Редактирование файла.

Создаю исполняемый файл и запускаю его.

```
aeavetisyan@user-N73SV:-/work/arch-pc/lab06$ nasm -f elf lab6-3.asm aeavetisyan@user-N73SV:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o aeavetisyan@user-N73SV:-/work/arch-pc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
aeavetisyan@user-N73SV:-/work/arch-pc/lab06$
```

Рис. 2.15: Запуск исполняемого файла.

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4*6+2)/5.

```
GNU nano 6.2 //home/aeavetisyan/work/arch-pc/lab06/lab6-3.asm
;; Программа вычисления выражения
;; Программа вычисления выражения
;; Плограмма вычисления выражения
section .data
div: DB 'Peзультат: ',0
rem: DB 'Octatok ot деления: ',0
section .text
GLOBAL _start
_start:
;---- Вычисление выражения
mov eax,4; EAX=4
mov ebx,6; EBX=6
mul ebx; EAX=EAX*EBX
add eax,2; EAX=EAX*EBX
add eax,2; EAX=EAX*E

div ebx; EAX=EAX*5, EDX=octatok ot деления
mov edi,eax; запись результата вычисления в 'edi'
;---- Вывод результата ва укран
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edt; вызов подпрограммы печати
call iprintLF; из 'edi' в виде символов
mov eax,rem; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,edx; вызов подпрограммы печати
call iprintLF; из 'edi' в виде символов
call iprintLF; из 'edi' в виде символов
call iprintLF; из 'edx' (остаток) в виде символов
call iprintLF; из 'edx' (остаток) в виде символов
call iprintLF; из 'edx' (остаток) в виде символов
call quit; вызов подпрограммы завершения
```

Рис. 2.16: Изменение программы.

Создаю и запускаю новый исполняемый файл.

```
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$
```

Рис. 2.17: Запуск исполняемого файла.

Создаю файл variant.asm с помощью утилиты touch.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab00$ touch ~/work/arch-pc/lab06/variant.asm
```

Рис. 2.18: Создание файла.

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета.

Рис. 2.19: Редактирование файла.

Создаю и запускаю исполняемый файл. Ввожу номер своего студенческого билета с клавиатуры, программа вывела, что мой вариант 15.

```
aeavetisyan@user-N73SV:~/work/arch-pc/lab0e$ nasm -f elf variant.asm
aeavetisyan@user-N73SV:~/work/arch-pc/lab0e$ ld -m elf_i386 -o variant variant.o
aeavetisyan@user-N73SV:~/work/arch-pc/lab0e$ ./variant
Введите № студенческого билета:
1132236074
Ваш вариант: 15
aeavetisyan@user-N73SV:~/work/arch-pc/lab0e$ □
```

Рис. 2.20: Запуск исполняемого файла.

2.0.1 Ответы на вопросы.

- 1. За вывод сообщения "Ваш вариант" отвечают строки кода: mov eax, rem call sprint.
- 2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки ки x в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры.

- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax.
- 4. За вычисления варианта отвечают строки: xor edx,edx; обнуление edx для корректной работы div mov ebx,20; ebx = 20 div ebx; eax = eax/20, edx остаток от деления inc edx; edx = edx + 1.
- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx.
- 6. Инструкция inc edx увеличивает значение регистра edx на 1.
- 7. За вывод на экран результатов вычислений отвечают строки: mov eax,edx call iprintLF.

3 Выполнение заданий для самостоятельной работы

Создаю файл lab6-4.asm с помощью утилиты touch.

```
aeavettsyan@user-N73SV:-/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/lab6-4.asm
aeavettsyan@user-N73SV:-/work/arch-pc/lab06$ []
```

Рис. 3.1: Создание файла.

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения $f(x) = (5 + \mbox{\em M})^2 - 3$. Это выражение было под вариантом 15.

Рис. 3.2: Написание программы.

Создаю и запускаю исполняемый файл. При вводе значения 5, вывод 97.

```
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ ld -m elf_1386 -o lab6-4 lab6-4.o
aeavettsyan@user-N73SV:~/work/arch-pc/lab06$ ./lab6-4
Введите значение переменной х: 5
Результат: 97aeavettsyan@user-N73SV:~/work/arch-pc/lab06$
```

Рис. 3.3: Запуск исполняемого файла.

Провожу еще один запуск исполняемого файла для проверки работы программы с другим значением на входе. Программа отработала верно. При вводе значения 1, вывод 33.

```
Peзультат: 97aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm aeavetisyan@user-N73SV:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o aeavetisyan@user-N73SV:-/work/arch-pc/lab06$ ./lab6-4
Введите эначение переменной х: 1
Результат: 33aeavetisyan@user-N73SV:~/work/arch-pc/lab06$ []
```

Рис. 3.4: Запуск исполняемого файла.

4 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.