11. Логический вывод. Определение поискового дерева, правила его расширения. Лемма о поисковых последовательностях

Билет 6, 20

Логический вывод — это рассуждение, в ходе которого осуществляется переход от исходного суждения (высказывания, формулы) с помощью логических правил к заключению — новому суждению (формуле). Поисковое дерево — дерево доказывающее логическое следование $\Gamma \Rightarrow A$ или приводящее контрмодель.

Правила расширения дерева:

- 1. Дерево, состоящее из одного узла, помеченного формулой ¬А, является поисковым деревом с корнем ¬А. Единственный узел этого дерева считаем неиспользованным.
- 2. Если в дереве есть неиспользованный узел v, которому приписана формула, являющаяся посылкой одного из правил вывода, то с помощью этого правила каждая неблокированная ветвь W, проходящая через узел y, расширяется следующим образом:
 - а. если правило разветвляющее, то из концевого узла ветви W проводятся две дуги, оканчивающиеся новыми вершинами, которым приписываются формулы-заключения данного правила
 - b. если правило, соответствующее узлу v, не разветвляющее, то к концевому узлу ветви W присоединяются последовательно один к другому новые узлы, помеченные формулами-заключениями.
 - с. Уточнения требуют случаи применения правил ∀ и ∃ поскольку они связаны с выбором параметра а. Используя правило ∀, в качестве а выбирается параметр с наименьшим номером, не входящий в список исключений в посылке данного правила. При использовании правила ∃ выбирается параметр с наименьшим номером, не встречающийся в расширяемой ветви, в том числе и в списке а. После расширения дерева считаем узел v использованным, а вновь построенные узлы неиспользованными.
- 3. Дерево также можно расширить, добавляя к концевым узлам неблокированных ветвей новый узел, помеченный очередной формулой из множества Γ или формулой вида $[A \lor \neg A]$, и считать его неиспользованным.

Лемма. О поисковых последовательностях

Пусть T_1, T_2, \dots является последовательностью поисковых деревьев для утверждения $\Gamma \Rightarrow A$ и D_i — множество параметров, используемых в дереве $T_i, i=1,2,\dots$. Если существует интерпретация I сигнатуры σ на универсуме U, в которой истинны все формулы из множества Γ и формула $\neg A$, то для каждого $i=1,2,\dots$ существует интерпретация I_i сигнатуры $\sigma \cup D_i$, являющаяся расширением I, такая, что в T_i есть ветвь, все формулы которой истинны в интерпретации I_i .

Доказательство.

Для i=1 утверждение леммы очевидно. Пусть существует интерпретация I_{i-1} сигнатуры $\sigma \cup D_{i-1}$, являющаяся расширением интерпретации I, такая, что в T_{i-1} есть ветвь W, все формулы которой истинны в I_{i-1} , и пусть дерево T_i получено из T_{i-1} применением некоторого правила вывода к узлу v.

Если $v \notin W$, то ветвь W будет искомой ветвью и в дереве T_i . При этом интерпретация символов из множества D_i D_{i-1} , если такие есть, может быть произвольной.

Пусть теперь $v \in W$. Если v имеет вид $\forall (x|\alpha)C$, и $D_i = D_{i-1}$, то формулы, присоединяемые к концевой вершине ветви в соответствии с правилом вывода, будут истинны в интерпретации $I_i = I_{i-1}$. Если же D_i получено из D_{i-1} добавлением нового параметра a_v , то берем в качестве $a_v^{(I)}$ произвольный элемент из U, тогда присоединяемые к W формулы $C_x[a_v]$ и $(\forall x|\alpha,a_v)C$ будут истинными в полученной интерпретации I_i .

Пусть теперь v имеет вид $(\exists x | \alpha)C$ и при этом D_i получено из D_{i-1} добавлением параметра a_v . Поскольку формула $(\exists x | \alpha)C$ истинна в интерпретации I_{i-1} , то существует интерпретация I', совпадающая с I_{i-1} всюду, кроме возможно переменной x, такая, что $C^{(I')} = 1$. Положим $a_v^{(I)} = x^{(I')}$, и тогда присоединяемая к W формула $C_x[a_v]$ будет истинной в I_i .