International Mathematical Olympiad Training Camp 2007

Day 1

- 1 Show that in a non-equilateral triangle, the following statements are equivalent: (a) The angles of the triangle are in arithmetic progression. (b) The common tangent to the Ninepoint circle and the Incircle is parallel to the Euler Line.
- 2 Prove that the equation $\frac{x^7-1}{x-1} = y^5 1$ doesn't have integer solutions!
- 3 Let \mathbb{X} be the set of all bijective functions from the set $S = \{1, 2, \dots, n\}$ to itself. For each $f \in \mathbb{X}$, define

$$T_f(j) = \begin{cases} 1, & \text{if } f^{(12)}(j) = j, \\ 0, & \text{otherwise} \end{cases}$$

Determine $\sum_{f \in \mathbb{X}} \sum_{j=1}^n T_f(j)$. (Here $f^{(k)}(x) = f(f^{(k-1)}(x))$ for all $k \geq 2$.)

International Mathematical Olympiad Training Camp 2007

Day 2

1 Let ABC be a trapezoid with parallel sides AB > CD. Points K and L lie on the line segments AB and CD, respectively, so that $\frac{AK}{KB} = \frac{DL}{LC}$. Suppose that there are points P and Q on the line segment KL satisfying $\angle APB = \angle BCD$ and $\angle CQD = \angle ABC$. Prove that the points P, Q, B and C are concyclic.

Proposed by Vyacheslev Yasinskiy, Ukraine

2 Let a, b, c be non-negative real numbers such that $a+b \le c+1, b+c \le a+1$ and $c+a \le b+1$. Show that

$$a^2 + b^2 + c^2 \le 2abc + 1.$$

Given a finite string S of symbols X and O, we denote $\Delta(s)$ as the number of X's in S minus the number of O's (For example, $\Delta(XOOXOOX) = -1$). We call a string S balanced if every sub-string T of (consecutive symbols) S has the property $-1 \leq \Delta(T) \leq 2$. (Thus XOOXOOX is not balanced, since it contains the sub-string OOXOO whose Δ value is -3. Find, with proof, the number of balanced strings of length n.

International Mathematical Olympiad Training Camp

2007

Day 3

1 a_0, a_1, a_2, \dots is a sequence of real numbers such that

$$a_{n+1} = [a_n] \cdot \{a_n\}$$

prove that exist j such that for every $i \geq j$ we have $a_{i+2} = a_i$.

Proposed by Harmel Nestra, Estionia

Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let a(P) be the number of vertices of P, and let b(P) be the number of points of S which are outside P. A line segment, a point, and the empty set are considered as convex polygons of 2, 1, and 0 vertices respectively. Prove that for every real number x:

 $\sum_{P} x^{a(P)} (1-x)^{b(P)} = 1$, where the sum is taken over all convex polygons with vertices in S. Alternative formulation:

Let M be a finite point set in the plane and no three points are collinear. A subset A of M will be called round if its elements is the set of vertices of a convex A-gon V(A). For each round subset let r(A) be the number of points from M which are exterior from the convex A-gon V(A). Subsets with 0,1 and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset A of M construct the polynomial

$$P_A(x) = x^{|A|} (1-x)^{r(A)}.$$

Show that the sum of polynomials for all round subsets is exactly the polynomial P(x) = 1.

Proposed by Federico Ardila, Colombia

International Mathematical Olympiad Training Camp 2007

Day 4

- [1] Circles w_1 and w_2 with centres O_1 and O_2 are externally tangent at point D and internally tangent to a circle w at points E and F respectively. Line t is the common tangent of w_1 and w_2 at D. Let AB be the diameter of w perpendicular to t, so that A, E, O_1 are on the same side of t. Prove that lines AO_1 , BO_2 , EF and t are concurrent.
- [2] Find all integer solutions (x, y) of the equation $y^2 = x^3 p^2 x$, where p is a prime such that $p \equiv 3 \mod 4$.
- 3 Find all function(s) $f: \mathbb{R} \to \mathbb{R}$ satisfying the equation

$$f(x+y) + f(x)f(y) = (1+y)f(x) + (1+x)f(y) + f(xy);$$

For all $x, y \in \mathbb{R}$.