Analysis of employees retirement age of company

Introduction

This project uses the Python Polars package to analyze the quantitative data of company A's former employees, providing a comprehensive analysis of the average age, standard deviation, and other metrics.

The data was sourced from the following GitHub repository: https://github.com/nogibjj/Mini_PJT_3_Polar_ISL/blob/main/HR.csv"

- From the available variables, I specifically focused on the "Age" at retirement.
- Calcuated mean, median, standard Deviation and so on

Descriptive Statistics

```
In [10]: import polars as pl
import matplotlib.pyplot as plt

# Load dataset using Polars
ppl = pl.read_csv("HR.csv")

# header
ppl.head()
print(ppl.head())
```

shape: (5, 35)

Age i64	Attrition str	BusinessTr avel str	DailyRate i64	 YearsAtCom pany i64	YearsInCur rentRole i64	YearsSince LastPromot ion i64	YearsWithC urrManager i64
41	Yes	Travel_Rar ely	1102	 6	4	0	5
49	No	Travel_Fre quently	279	 10	7	1	7
37	Yes	Travel_Rar ely	1373	 0	0	0	0
33	No	Travel_Fre quently	1392	 8	7	3	0
27	No	Travel_Rar ely	591	 2	2	2	2

```
In [11]: # Summary stat
full_desc = ppl.describe()
print(full_desc)
```

shape: (9, 36)

statistic str	Age f64	Attrition str	BusinessT ravel str	•••	YearsAtCo mpany f64	YearsInCu rrentRole f64	YearsSinc eLastProm otion f64	YearsWith CurrManag er f64
count null_coun t mean std min 25% 50% 75% max	1470.0 0.0 36.92381 9.135373 18.0 30.0 36.0 43.0 60.0	1470 0 null null No null null yes	1470 0 null null Non-Trave l null null null rull Travel_Ra rely		1470.0 0.0 7.008163 6.126525 0.0 3.0 5.0 9.0 40.0	1470.0 0.0 4.229252 3.623137 0.0 2.0 3.0 7.0 18.0	1470.0 0.0 2.187755 3.22243 0.0 0.0 1.0 3.0 15.0	1470.0 0.0 4.123129 3.568136 0.0 2.0 3.0 7.0 17.0

Data Visialization

```
In [2]: import polars as pl
        import matplotlib.pyplot as plt
        # Load dataset using Polars
        ppl = pl.read_csv("HR.csv")
        # Calculate statistics for Age
        full_desc = ppl.describe()
        age_mean = ppl.select(pl.col("Age").mean()).item()
        age_median = ppl.select(pl.col("Age").median()).item()
        age_std = ppl.select(pl.col("Age").std()).item()
        # Convert Polars dataframe to a list for plotting
        ages = ppl.select("Age").to_series().to_list()
        # Plot histogram for Age
        plt.figure(figsize=(8, 6))
        plt.hist(ages, bins=10, edgecolor="black")
        plt.title("Average retirement age of company A")
        plt.xlabel("Age")
        plt.ylabel("Frequency")
        plt.show()
```

