Exercice 1.

- 1. Le type de la variable poids; quantitaive continue.
- 2. On va commencer par ordonner la série; 2,60-2,61-2,62-2,64-2,64-2,65-2,66-2,67-2,69-2,72-2,75-2,76-2,76-2,78-2,83-2,84-2,86-2,88.

Classes	n_i	$ f_i $	p_i
[2,60;2,65[5	0,28	28%
[2,65;2,70[4	0,22	21%
[2,70;2,75[1	0,06	6%
[2,75;2,80[4	0,22	22%
[2, 80; 2, 85[2	0,11	11%
[2, 85; 2, 90[2	0,11	11%
Total	18	1	100%

Les formules: La fréquence $f_i = \frac{n_i}{n}$ et le pourcentage $p_i = f_i \times 100$. 3. La présentation graphique est ; l'histogramme

Exercice 2.

- La population étudiée ; 50 étudiants de la faculté des Mathématiques et Informatique.
- Le caractère ; le groupe sanguin
- La nature de caractère ; qualitative nominale
- Les modalités de caractère ; A, B, AB, O

2. Le tableau;

Groupe sanguin	n_i	f_i	p_i
A	8	0,16	16%
В	5	0,1	1%
AB	15	0,3	3%
О	22	0,44	44%
Total	50	1	100%

3. Diagramme circulaire ou diagramme en bande

Diagramme circulaire; on va calculer

$$\alpha_1 = 360.f_i \Longrightarrow \alpha_1 = 360.f_1 = 360.0, 16 = 57, 6^{\circ}$$

$$\alpha_2 = 360. f_i \Longrightarrow \alpha_2 = 360. f_2 = 360.0, 1 = 36^{\circ}$$

$$\alpha_3 = 360.f_i \Longrightarrow \alpha_3 = 360.f_3 = 360.0, 3 = 108^{\circ}$$

$$\underline{\alpha_4} = 360.f_i \Longrightarrow \underline{\alpha_4} = 360.f_4 = 360.0, 44 = 158, 4^{\circ}$$

Exercice 3.

1. La population étudiée ; des femmes de 50 à 60 ans

Le caractère ; nombres d'enfants nés vivants La nature de caractère ; quantitative discrète Les modalités de caractère ; 0, 1, 2, 3, 4, 5.

2. Le tableau

Nombre d'enfants	n_i	f_i	p_i	$n_i^{c/}$	$n_i^{c\searrow}$
0	18	0,18	18%	18	100
1	20	0,2	2%	38	82
2	36	0,36	36%	74	62
3	12	0,12	12%	86	26
4	8	0,08	8%	94	14
5	6	0,06	6%	100	6
Total	100	1	100%	-	-

3. La présentation graphique est ; Diagramme en Barre.

Exercice 4.

1. La population : 94 élevés d'une école

Le caractère : nombre de caries dentaires d'un élevé

La nature : quantitatif discret

2. Le tableau

x_i	$\mid n_i \mid$	n_i^{c}	$\mid n_i^{c \searrow} \mid$	$n_i x_i$	$n_i x_i^2$
1	24	24	94	24	24
2	28	52	70	56	112
3	16	68	42	48	114
4	18	86	26	72	288
5	8	94	8	40	200
Total	94	-	-	240	768

La présentation graphique est ; Diagramme en Barre.

3. Le mode; Mo = 2

La médiane;

$$n = 94 \; (paire) \rightarrow Me = \frac{X\frac{n}{2} + X\frac{n}{2} + 1}{2} = \frac{x_{47} + x_{48}}{2} = \frac{2+2}{2} = 2$$

$$Q_1: \frac{n}{4} = \frac{94}{4} = 23, 5 \approx 24 \Rightarrow Q_1 = x_{24} = 1$$

$$Q_2: \frac{n}{2} = \frac{94}{2} = 47 \Rightarrow Me = Q_2 = x_{47} = 2$$

$$Q_3: \frac{3n}{4} = \frac{94}{4} = 70, 5 \approx 71 \Rightarrow Q_3 = x_{71} = 4$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \frac{240}{94} = 2,55$$

4. La moyenne :
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \frac{240}{94} = 2,55$$
 La variance:
$$V(X) = \sigma_X^2 = \frac{1}{n} \sum_{n=1}^{n} n_i x_i^2 - \overline{X}^2 = \frac{1}{94} \left(768\right) - \left(2,55\right)^2 = 1,667$$

L'écart type:

$$\sigma_{X} = \sqrt{V\left(X\right)} = \sqrt{\frac{1}{n} \sum_{n=1}^{n} n_{i} x_{i}^{2} - \overline{X}^{2}} = \sqrt{1,667} = 1,291$$

Exercice 5.

1. La population: 100 adultes.

Le caractère : la taille.

La nature : quantitatif continu

2. Le tableau

2. De tubleau						
Les classes	x_i	n_i	$\mid n_i^{c \nearrow} \mid$	$n_i^{c\searrow}$	$n_i x_i$	$n_i x_i^2$
[165; 170[167,5	8	8	100	1340	224450
[170; 175[172,5	15	23	92	2587,5	446343,75
[175; 180[177,5	35	58	77	6212,5	1102718,75
[180; 185[182,5	20	78	42	3650	666125
[185; 190[187,5	15	93	22	2812,5	527343,75
[190; 195[192,5	6	99	7	1155	222337,5
[195; 200[197,5	1	1	1	197,5	39006,25
Total	-	100	-	-	17955	3228325

La présentation graphique est ; l'histogramme

3. La classe modale; [175, 180]

Le mode;

$$Mo = a_i + \frac{d_1}{d_1 + d_2} a$$

 $d_1 = 35 - 15 = 20$
 $d_2 = 35 - 20 = 15$

$$d_1 = 35 - 15 = 20$$

$$d_2 = 35 - 20 = 15$$

$$\overline{Mo} = 175 + \frac{20}{35} \ 5 = 177,857142$$

La médiane

$$\frac{n}{2} = 50 \Longrightarrow Me \in [175; 180[$$

$$Me = a_i + \frac{\frac{n}{2} - n_{i-1}^{c/2}}{n_i} \ a = 175 + \frac{50 - 23}{35} \ 5 = 178,857142$$

Les qartiles

$$Q_1: \frac{n}{4} = 25 \Longrightarrow Q_1 \in [175; 180[\Longrightarrow Q_1 = a_i + \frac{\frac{n}{4} - n_{i-1}^c}{n_i} \ a = 175 + \frac{25 - 23}{35} \ 5 = 175, 285714$$

175, 285714
$$Q_2: \frac{n}{2} = 50 \implies Q_2 \in [175; 180[\implies Q_2 = Me = a_i + \frac{\frac{n}{2} - n_{i-1}^{e^{\nearrow}}}{n_i} \ a = 178, 857142$$

$$Q_3: \frac{3n}{4} = 75 \Longrightarrow Q_3 \in [180; 185[\Longrightarrow Q_3 = a_i + \frac{\frac{3n}{4} - n_{i-1}^{c}}{n_i} \ a = 180 + \frac{75 - 58}{20} \ 5 = 184, 25$$

4. La moyenne;
$$\overline{X} = \frac{1}{n} \sum_{i=1}^k n_i x_i = \frac{17955}{100} = 179,55$$
 L'écart type:

$$\sigma_X = \sqrt{V(X)} = \sqrt{\frac{1}{n} \sum_{n=1}^{n} n_i x_i^2 - \overline{X}^2} = \sqrt{\frac{1}{100} (3228325) - (179, 55)^2} =$$

6.7117434