Statistics Lecture

Claudio Ortelli ¹

¹Finance Institute USI

Advanced Learning and Research Institute, 2012

Random Experiment

Definition

A random experiment is an experiment whose outcome can not predicted with certainty.

Examples

- Observing if a system component is functioning properly or has failed at a given point in time in the future.
- Determining the execution time of a program.
- Determining the response time of a server request.

Definition

The result of the experiment is called the outcome of the experiment. The totality of the possible outcomes of a random experiment is called the sample space of the experiment and it will be donoted by the letter S.

Sample space

- The definition of the sample space *S* is determined by the experiment and the purpose for which the experiment is carried out. When observing the status of two components of a running system, it may be sufficient to know if zero, one or two components have failed without having to exactly identify which component has failed.
- We classify the sample spaces w.r.t. the number of elements they contain.
 - *Finite sample* space: the set of possible outcomes of the experiment is finite;
 - Countably infinite sample space: the outcomes of the experiment are in a one-to-one relationship with \mathbb{N} ;
 - Otherwise the sample space is called *uncountable* or *nondenumerable*.
- A finite or countably finite sample space is called a *discrete* sample space. *Continuous* sample spaces, such as all the points on a line or interval are examples of uncountables sample spaces.

Definition

Given a random experiment and the corresponding sample space S, a collection of certain outcomes is called an event E. E is a subset of the sample space $E \subset S$. Equivalently, any statement of conditions identifying E is called an event.

Example

In the random experiment "Toss of a die", we define the sample space $S = \{1, ..., 6\}$. The event $E = \{\text{The outcome is an even number}\}$ is equivalent to $E = \{2, 4, 6\}$.

Definition

Given a random experiment with sample space S we call a single performance of the experiment a *trial*.

Basic Set Operations

Sequential sample space

Figure 1.8. Tree diagram of a sequential sample space

The set of all leaves of the tree is the sample space of interest.

Two-dimensional sample space

Figure 1.9. A two-dimensional sample space

- A :={"the system has exactly one non-defective component"}
- B := {"the system has exactly three non-defective components"}
- C :={"the first subsystem has more non-defective components than the second subsystem"}

- Let E be an event of S and let denote the outcome of a specific trial by s. If $s \in E$ we then say that the event E has *occured*. Only one outcome $s \in S$ can occur on any trial. However, every event including s will occur.
- Let E, E_1 and E_2 be events. We define the event \bar{E} to be the complement of E, i.e. $\bar{E} = \{ s \in S \mid s \notin E \}$.
- Let E_1 and E_2 be two events. We define the event
 - $E_1 \cup E_2 := \{ s \in S \mid s \in E_1 \text{ or } s \in E_2 \}$ the union of E_1 and E_2 .
 - $E_1 \cap E_2 := \{ s \in S \mid s \in E_1 \text{ and } s \in E_2 \}$ the intersection of E_1 with E_2 .
 - $E_1 \setminus E_2 := \{ s \in S \mid s \in E_1 \text{ and } s \notin E_2 \}$ the difference of E_1 and E_2 .
- If $E_1 \cap E_2 = \emptyset$ we say that the two events E_1 and E_2 are mutually exclusive or disjoint.
- We denote by |E| the cardinality of E, i.e. the number of elements (outcomes) in E.

Algebra of events

Definition

Let S denotes the sample space of a given experiment and \mathscr{F} a collection of events. We say that \mathscr{F} is an *algebra* over S if the following two conditions are fulfilled:

- **1** S must be an element of \mathcal{F} , i.e. $S \in \mathcal{F}$.
- ② If $E_1 \in \mathcal{F}$, $E_2 \in \mathcal{F}$, the sets $E_1 \cup E_2$, $E_1 \cap E_2$ must also belong to \mathcal{F} .

Interpretation: an algebra \mathscr{F} over S is a family of subsets of S which is closed with respect to the three binary operators \cup , \cap and \setminus . *Remark*: condition 3 of the previous definition can be replaced by the following equivalent condition:

• 3^{bis} If $E \in \mathscr{F}$ then $\overline{E} \in \mathscr{F}$.

Example

- a) The collection given by $\mathscr{F} = \{S, \emptyset\}$ is an algebra (the so called *trivial* algebra over S).
- b) The collection $\mathscr{F} = \{E, \overline{E}, S, \emptyset\}$ is the algebra generated by $E \subset S$.
- c) The power set of S, denoted by $\mathcal{P}(S)$, is defined to be the collection consisting of all subsets of S (including the empty set \emptyset).

Exercise

- Show by mathematical induction that if S is a finite set with |S| = n elements, then the power set of S contains $|\mathcal{P}(S)| = 2^n$ elements.
- 2 Show that condition 3^{bis} is equivalent to condition 3.
- **3** Given $S = \{1, 2, 3, 4, 5, 6\}$ construct at least two different algebras on S.
- Oe Morgan's law. Let A and B two events. Show that

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \text{ and } \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Exercise

• De Morgan's law. Let I be a non empty, possibly uncountable set and A_i , $i \in I$ a family of sets indexed by I. Show that

$$\overline{\bigcup_{i\in I} A_i} = \bigcap_{i\in I} \overline{A}_i \text{ and } \overline{\bigcap_{i\in I} A_i} = \bigcup_{i\in I} \overline{A}_i.$$

Definition

The indicator of the set $A \subseteq S$ is the function on S given by

$$1_{\mathcal{A}}(s) = \begin{cases} 1 & \text{if } s \in \mathcal{A} \\ 0 & \text{if } s \notin \mathcal{A}. \end{cases}$$

Interpretation: the function 1_A "indicates" wheter A occurs.

Exercise

Prove the following equalities:

$$1_{A \cup B} = \max\{1_A, 1_B\}$$
; $1_{A \cap B} = \min\{1_A, 1_B\} = 1_A 1_B$
 $1_{\overline{A}} = 1 - 1_A$; $1_{A \triangle B} = |1_A - 1_B|$

 σ -Algebra of events

Definition

Let S denotes the sample space of a given experiment and \mathscr{G} a collection of events. We say that \mathscr{G} is a σ -algebra over S if

- \bullet \circ \circ is an algebra over \circ .
- If $E_n \in \mathcal{G}$, n = 1, 2, ..., then

$$\bigcup_{n=1}^{\infty} E_n \in \mathscr{G}.$$

Interpretation: a σ -algebra \mathcal{G} over S is a family of subsets of S which is closed with respect to

- the difference operator \ (or, equivalently, complementation),
- the *countable* union and intersection of its elements.

Algebra and σ -Algebra generation

Theorem

Let $\mathscr E$ be a collection of subsets of S. Then there are a smallest algebra $\alpha(\mathscr E)$ and a smallest σ -algebra $\sigma(\mathscr E)$ containing all the sets that are in $\mathscr E$.

Proof.

 $\mathscr{P}(S)$ is a σ -algebra on S. Therefore it exists at least one σ -algebra and one algebra containing \mathscr{E} . We define $\alpha(\mathscr{E})$ (or $\sigma(\mathscr{E})$) to consist of all sets that belong to every algebra (or σ -algebra) containing \mathscr{E} . It is easy to verify that this system is an algebra (or σ -algebra) and indeed the smallest.

Algebra and $\sigma-$ Algebra generation

Examples

① Let \mathscr{C} be the family of open intervals on the real line, i.e.

$$\mathscr{C} := \{(a,b) \mid a,b \in \mathbb{R} \text{ and } a < b\}.$$

 $\mathscr{B}(\mathbb{R}) := \sigma(\mathscr{C})$ is called the Borel sigma algebra over \mathbb{R} .

2 Let $f: S \to \mathbb{R}$ be a real valued function. The family of preimages:

$$\{f^{-1}(B): B \in \mathscr{B}(\mathbb{R})\}$$

is a σ -algebra on S, the σ -algebra generated by f [denoted $\sigma(f)$].

Measurable space

Definition

The pair (S, \mathcal{G}) where S is the sample space and \mathcal{G} a σ -algebra on S is called a measurable space and the elements of \mathcal{G} are called events.

Remark: a subset A of the sample space S is an event if and only if $A \in \mathcal{G}$.

Example

Suppose we toss a die once. We choose $S = \{1,2,3,4,5,6\}$ and $\mathcal{G} := \{S,\emptyset,\{1,2,3\},\{4,5,6\}\}$. The subset $A = \{2,4,6\}$ of S is *not* an event of \mathcal{G} . Let define the sigma algebra $\mathcal{H} := \sigma(\{\{1,2,3\},A\})$ and the new measurable space (S,\mathcal{H}) . $A \in \mathcal{H}$ so that A is now an event.

Exercise

Complete the sigma algebra \mathcal{H} by enumerating its elements.

Definition

Let (S, \mathcal{H}) be a measurable space. A probability measure or probability law is a positive real-valued function $P : \mathcal{H} \to [0,1]$ such that the following axioms hold

- P(S) = 1.
- **②** For every sequence $\{E_n\}_{n\in\mathbb{N}}$ of pairwise disjoint events $(E_i \cap E_j = \emptyset, \forall i \neq j)$ it must hold

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

Remark: a probability law is a function defined on a sigma algebra. The *arguments* of P are *events*, i.e. *subsets* of S and *elements* of \mathcal{H} .

A probability law has many useful relations, see Trivedi pp. 15-16.

Example

Probability of union of events.

If $A_1, A_2, \dots A_n$ are any events, then

$$\begin{split} P(\bigcup_{i=1}^{n} A_i) &= P(A_1 \cup A_2 \cup \dots \cup A_n) \\ &= \sum_{i} P(A_i) - \sum_{1 \leq i < j \leq n} P(A_i \cap A_j) \\ &+ \sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k) + \dots \\ &+ (-1)^{n-1} P(A_1 \cap A_2 \cap \dots \cap A_n), \end{split}$$

where the successive sums are over all possible events, pairs of events, triples of events, and so on.

$$P(\bigcup_{i=1}^{n} A_{i}) = P(A_{1}) + P(\overline{A}_{1} \cap A_{2}) + P(\overline{A}_{1} \cap \overline{A}_{2} \cap A_{3}) + \cdots + P(\overline{A}_{1} \cap \overline{A}_{2} \cap \cdots \cap \overline{A}_{n-1} \cap A_{n}).$$

$$(1.4)$$

Exercise

Using the properties of P prove equality 1.4

Probability Law