Lösungsvorschlag zur 3. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 3-1 (Grenzwerte; 4 Punkte) Berechnen Sie die folgende Grenzwerte.

a)
$$\lim_{x\to 4} \frac{x^3-4x}{\sqrt{x}} = 24$$

b)
$$\lim_{x\to 2} \frac{x^2 + 5x - 14}{x^2 - 2x} = \lim_{x\to 2} \frac{(x-2)(x+7)}{x(x-2)} = \lim_{x\to 2} \frac{x+7}{x} = \frac{9}{2}$$

Hinweis: Wenn ein Polynom p eine Nullstelle x_0 hat, dann kann man $(x - x_0)$ ausklammern, d.h. man kann p als $(x - x_0) \cdot q$ für ein Polynom q schreiben.

c)
$$\lim_{x\to 5} \frac{x-\sqrt{4x+5}}{5-x}$$

Lösungsskizze

$$\lim_{x \to 5} \frac{x - \sqrt{4x + 5}}{5 - x} = \lim_{x \to 5} \frac{x - \sqrt{4x + 5}}{5 - x}$$

$$= \lim_{x \to 5} \frac{(x - \sqrt{4x + 5})(x + \sqrt{4x + 5})}{(5 - x)(x + \sqrt{4x + 5})}$$

$$= \lim_{x \to 5} \frac{x^2 - 4x - 5}{(-1)(x - 5)(x + \sqrt{4x + 5})}$$

$$= \lim_{x \to 5} \frac{(x - 5)(x + 1)}{(-1)(x - 5)(x + \sqrt{4x + 5})}$$

$$= \lim_{x \to 5} \frac{x + 1}{(-1)(x + \sqrt{4x + 5})}$$

$$= \frac{6}{-10} = -0.6$$

Hinweis: Die Gleichung $(x-y)(x+y) = x^2 - y^2$ kann hilfreich sein, um den Zähler zu vereinfachen.

Aufgabe 3-2 (Logarithmengesetz) Beweisen Sie die Formel $\log_x y = \frac{\ln y}{\ln x}$ unter Zuhilfenahme der Rechenregeln für Logarithmen und Potenzen.

Lösungsskizze

Nach Definition von $\log_x y$ als Umkehrfunktion von x^y gilt

$$x^{\log_x y} = y.$$

Wir haben auch

$$x^{\frac{\ln y}{\ln x}} = e^{\ln(x) \cdot \frac{\ln y}{\ln x}} = e^{\ln y} = y.$$

nach den Rechenregeln für Logarithmen. Also gilt $x^{\log_x y} = x^{\frac{\ln y}{\ln x}}$. Durch Anwendung von $\log_x x$ auf beiden Seiten folgt die gewünschte Gleichung.

Aufgabe 3-3 (Rechnen mit Logarithmen) Vereinfachen Sie mithilfe der in der Vorlesung behandelten Rechenregeln folgende Ausdrück soweit wie möglich:

a)
$$\ln x^2 - \ln x = \ln x$$

c)
$$\log 1 - 2(\log 2 + \log 8) = -\log 256$$

b)
$$\ln x^3 - 6 \ln x + \ln(6x^4 + 3x^3)$$

= $\ln(6x+3)$ d) $\frac{\log(\sqrt{a})^3}{0.5 \log a} \cdot \log a^{-1} = -3 \cdot \log a$

d)
$$\frac{\log(\sqrt{a})^3}{0.5 \log a} \cdot \log a^{-1} = -3 \cdot \log a$$

Dabei ist $\log x := \log_{10} x$ und $\ln x := \log_e x$.

Aufgabe 3-4 (Exponentialfunktion; 4 Punkte) Lösen Sie folgende Gleichungen nach x auf:

a)
$$e^{-0.3x} = 2$$

 $x = -10 \ln 3$

$$e^{2\ln x} = x = 2$$

c)
$$e^{\sqrt{x}} = y^2$$

a)
$$e^{-0.3x} = 27$$
 b) $e^{2 \ln x} = 4$ c) $e^{\sqrt{x}} = y^2$ d) $e^x = e^{y^2} \cdot e^{2y+1}$ $x = -10 \ln 3$ $x = 2$ $x = 4(\ln y)^2$

Aufgabe 3-5 (Grenzwerte; 4 Punkte)

a) Angenommen $\lim_{n\to\infty}\left|\frac{f(n)}{g(n)}\right|<\infty$. Zeigen Sie, dass eine Zahl C>0 mit folgender Eigenschaft existiert: Es gibt ein N, so dass $|f(n)| < C \cdot |g(n)|$ für alle n > N gilt.

Lösungsskizze

Schreibe a für $\lim_{n\to\infty} \left| \frac{f(n)}{g(n)} \right|$. Wir haben $a\geq 0$ (siehe Aufgabe 2-1).

Die Grenzwertdefinition besagt: Für alle $\varepsilon>0$ gibt es N, so dass $\left|\left|\frac{f(n)}{g(n)}\right|-a\right|<\varepsilon$ für alle n>N gilt. Die Ungleichung ist äquivalent zu $a-\varepsilon<\left|\frac{f(n)}{g(n)}\right|< a+\varepsilon.$ Die rechte Ungleichung liefert $|f(n)| < (a + \varepsilon) \cdot |g(n)|$ durch Multiplikation mit |g(n)|. Insgesamt wissen wir also: Für alle $\varepsilon > 0$ gibt es ein N, so dass $|f(n)| < (a + \varepsilon) \cdot |g(n)|$ für alle n > N.

Wir können für C also $a + \varepsilon$ für jedes beliebige $\varepsilon > 0$ wählen.

b) Geben Sie für $f(n)=n^2$ und $g(n)=e^n$ ein konkretes C>0 mit der Eigenschaft aus a) an. Begründen Sie.

Lösungsskizze

Es gilt $e^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ge \frac{n^3}{3!}$. Nimmt man das Reziproke folgt daraus $\frac{1}{e^n} \le \frac{3!}{n^3}$. Daraus folgt $\frac{n^2}{e^n} \le \frac{n^2 \cdot 3!}{n^3} = \frac{3!}{n}$. Wenn wir also C := 6 wählen, dann gilt $\frac{3!}{n} < C$ für alle n > 2.

Wir haben also $n^2 \le \frac{3!}{n} \cdot e^n \le C \cdot e^n$ für alle n>2 gezeigt, was der Eigenschaft aus a) entspricht.

Abgabe: Sie können Ihre Lösung bis zum Freitag, den 24.11. um 10 Uhr über UniWorX abgeben. Es werden Dateien im txt-Format (reiner Text) oder im pdf-Format akzeptiert.