Journal Report 8 10/28/19-11/11/19 Bryan Lu Computer Systems Research Lab Period 2, White

Daily Log

Monday, October 28

Began sketching out what different cases of objects should return for the dependency tree distance method, and sketched out implementations.

Tuesday, October 29

I coded the method, neglecting the sign of the output (will be taken to be positive whenever possible).

Thursday, October 31

Presentations.

Wednesday, November 7

I finished the dependency tree distance method and began researching the scikit library and the logistic learning method.

Thursday, November 8

I realized I had a shortage of triangular geometry test cases (the easiest possible cases to train on), and I started assembling test cases.

Timeline

Date	Goal	Met
10/21	Complete the extraction of all the	Almost – I have found all of the neces-
	necessary features of the sentences	sary features except for "dependency
	needed as input data.	tree distance."
10/28	Begin writing code to create a log-	Yes, I have all of the features I need
	linear classifier using scikit, and fi-	per sentence.
	nalize the inputs needed for the algo-	
	rithm.	
11/4	Create the log-linear classi-	I've started, but I've realized this is a
	fier/learning algorithm and the	rather ambitious task because I still
	training data, and begin testing.	need to finish creating my training
		data.
11/11	Complete a set of about 40 problems	N/A
	to serve as my training data set, with	
	the correct relations.	
11/18	Begin testing, tweaking previous	N/A
	steps as needed and adding more	
	cases if needed.	

Reflection

The past two weeks have been fairly interrupted, with presentations and the end of the quarter, but I tried to keep progressing as much as I could. I may have fallen a week or two behind schedule at this point, but I hope I can make up the time later.

I faced a decent amount of uncertainty when coding the dependency tree distance method. In the end, I decided to enact the following scheme that seemed to be fairly reasonable, restricting the distances to reals between 0 and 3:

- a) If both of the objects passed are explicit, i.e. ABC (a triangle) or AB (a segment), then report the difference in length between the strings, scaled arbitrarily by 0.1.
- b) If one of the objects is explicit and the other is an abstract concept, i.e. *ABC* vs. "circle,", I gave this a distance of 3 by default.
- c) If both are abstract concepts, check if both represent "closed" shapes, i.e. circles, triangles, polygons.
 - i) If only one does, return a distance of 2.
 - ii) Else, check how many relations/objects that are both associated with them. Return 1.5 minus the amount of overlapping relations/objects times 0.1.

I'm not sure how well this will work, but I can always adjust it later.

I've also realized I need more test cases for training, especially with regards to triangular geometry problems like the following, for which it's really easy to create the correct relations for:

Let Gamma be the circumcircle of acute triangle ABC. Points D and E are on segments AB and AC respectively such that AD = AE. The perpendicular bisectors of BD and CE intersect minor arcs AB and AC of Gamma at points F and G respectively. Prove that lines DE and FG are either parallel or they are the same line.

I think I will need to select a decent number of these to use for training my model, which I will do in the next week.