CONTENTS

ABSTRACT	Ι
ACRONYMS	II
LIST OF FIGURES	III-IV
CHAPTER - 1 INTRODUCTION	1-3
1.1 Introduction	1
1.2 Motivation	3
1.3 Objectives	3
1.4 Organization of Thesis	3
CHAPTER - 2 LITERATURE SURVEY	4-5
CHAPTER – 3 A PARTIALLY STATIC HIGH FREQ 18T HYBRID OPO FLOP DESIGN FOR LOW POWER APLLICATION	LOGICAL FLIP 6-10
3.1 Introduction	6
3.1.1 Flip-Flop	6
3.1.2 Timing And Delay Definitions Of Flip Flops	7
3.1.3 Propagation Delay	7
3.1.4 Energy Metrics	9
CHAPTER - 4 EXISTING AND IMPLEMENTED AND PROPOSED SYS	TEM 11-31
4.1 Existing	11
4.1.1 Transmission Gate Logic	11
4.1.2 Procedure	14
4.1.3 Advantages	18
4.1.4 Dis-Advantages	18
4.2 Implemented	18
4.2.1 Block Diagram For Proposed Design	20

4.2.2 Design Derivation	20
4.2.3 Verification Of The Data Latching Process	25
4.3 Proposed System	28
4.3.1 Procedure	29
4.3.2 Flowchart Algorithm	31
CHAPTER - 5 TANNER TOOL	32-53
5.1 Simulation Tool	32
5.1.1 T-Spice	33
5.2 Tool And Hardware Requirements	35
5.2.1 Symbol For Inverter	39
5.2.2 How To Add A Little Spice To Design Circuit	44
5.2.3 Creating Curve For Pmos Of V-I Characteristics	48
5.2.4 Smartspice Plots	51
CHAPTER 6 RESULT AND ADVANTAGES	54-56
6.1 Result	54
6.2 Netlist Details Of The Circuit	56
6.3 Advantages	56
6.4 Applications	56
CHAPTER 7 CONCLUSION AND FUTURE SCOPE	57-58
Appendix	
References	59

ABSTRACT

The digital electronics landscape has been transformed by the introduction of an ultra-low power true 1 φ clocking flip-flop, utilizing a mere eighteen transistors. This flip-flop, a synchronous bi stable element, is pivotal in digital systems as it stores single-bit information. The design of this Master Slave (MS) type architecture employs topological, logical, and adaptive coupling techniques. These techniques ensure the minimum number of transistors are used, thereby reducing complexity and power consumption. The design comprises of complementary pass transistor logic and static complementary MOS logic, a combination that offers low power and low delay, thereby speeding up the flip-flops. The proposed circuit was implemented using Cadence Virtuoso, a leading tool in the design and simulation of electronic systems. It was then compared with five other reported logic structures of flip-flops. The results were astounding. The proposed hybrid logic architecture showed the highest percentage improvement in terms of power, a whopping 49.73%, as compared to LRFF. In addition to power efficiency, the proposed design also improved the delay and energy efficiency (EDP). The Monte Carlo simulation, performed for C to Q Delay for 20K samples, further validated these improvements. One of the key innovations in this design is the reduction in the number of PMOS transistors. This reduction significantly decreases the total area of the proposed flip-flop by a minimum of 9.49% in comparison to state-of-the-art work. This compact design does not compromise on performance. The proposed circuit can work properly within a frequency range up to 1 GHz. The proposed design was also compared with the reported 18T TSPC flip-flop. The results further underscored the superiority of the proposed design in terms of power efficiency, delay, and area.

ACRONYMS

This thesis document uses the following set of Acronyms

PDP - power delay product

VHSIC - Very High Speed Integrated Circuits

VHDL – Hardware description language

TGFF – Transmission gate flip-flop

TSPC – True Single Phase Clocked

CPL – Constant power load

PDPCQ - Process decision Program chart

PDP – Process Design Package

SPICE – Software Process Improvement and Capability Determination `

DCR – Document change request

BSIM – Berkeley Short – channel Model

NQS – Non Quasi static

VTC – Voltage transformer characteristic

LIST OF FIGURES

Figure 3.1:	propagation delay
Figure 3.2:	Erroneous Output due to Power Supply Noise
Figure 3.3:	Energy Consumption vs. Data Activity
Figure 4.1:	Principle diagram of a transmission gate
Figure 4.2:	Master Slave type TGFF
Figure 4.3:	Conventional SRFF designs
Figure 4.4:	AC Flipflop design
Figure 4.5:	Circuit diagram of 21- transistor using reduction schemes
Figure 4.6:	Simulation Wave forms for 21-Transistors
Figure 4.7:	Power Consumption for 21 transistors
Figure 4.8:	Logic structure
Figure 4.9:	Block Diagram for Proposed Design
Figure 4.10:	Circuit optimization
Figure 4.11:	CPL Structure
Figure 4.12:	NAND Gate
Figure 4.13:	NOR Gate
Figure 4.14:	NAND and NOR gates using CMOS
Figure 4.15:	New discharging from n7 and n8 to ground
Figure 4.16:	Circuit Diagram for 19 transistors
Figure 4.17:	Data latching process when ck=0, data=0
Figure 4.18:	Data latching process when ck=1, data=0
Figure 4.19:	Data latching process when ck=0, data=1
Figure 4.20:	Data latching process when ck=1, data=1
Figure 4.21:	Proposed Flip-Flop design

Figure 4.22: Flowchart for design process

Figure 6.1: Circuit connection of Master- slave D-FF using TCFF technique

Figure 6.2: Simulation wave forms low power 18T true 1-phase clk using reduction schemes

Figure 6.3: Power Consumption