# Introduction to Deep Learning

Bazyli Polednia 2020



## Plan for today

Total: 1h





#### Resources

- MIT 6.S191 Introduction to Deep Learning
- "Deep Learning with Python" Francois Chollet
- Stanford CS230 Deep Learning
- <u>Tensorflow Tutorials</u>
- Kaggle Competitions



## Deep Learning – what it actually is?





**Artificial Intelligence** – uses various algorithms to mimic human behaviour. Usually consists of handcrafted rules – such paradigm is called symbolic AI

**Machine Learning** – instead of following explicit rules provided by programmer, programs learn them by analysing already exisiting answers to given data



**Deep Learning** – branch of machine learning using neural networks to recognise patterns in data







## Deep Learning Boom in recent years

#### 1. Hardware and software

- Introduction of TPUs and more powerful GPUs
- Parallelization of computations
- Programming interfaces e.g. Nvidia CUDA
- Deep Learning libraries and toolkits e.g. Tensorflow, PyTorch, Keras

#### 2. Datasets and benchmarks

- "Big Data"
- Exponential growth of hardware storage
- Public datasets e.g. ImageNet, Kaggle competitions

#### 3. Algorithmic advances

- New activation functions
- New optimizers
- Batch optimalization
- ..













## Perceptron



## How is a perceptron built?







## How is a perceptron built – activation function







#### Activation function — what is it?

- Non-linear function
- Transforms linear operations (dot product and addition) of weighted inputs and bias
- Introduces non-linearity to the output

#### **Common examples**



ReLU (Rectified Linear Unit)









## Activation function – why is it used?



Without non-linear activation function, the perceptron could only learn linear transformations and would only produce linear outputs – which almost never exist in real life



## Neural network



## Simplified perceptron notation





## Let's connect two perceptrons to the same inputs



Dense layer



## Let's connect two perceptrons to the same inputs



$$z_1 = w_{0,1} + \sum_{j=1}^n x_j \ w_{j,1}$$

$$\hat{y}_1 = g(z_1)$$



## Single Layer Neural Network





## Single Layer Neural Network



$$z_1 = w_{0,1}^{(1)} + \sum_{j=1}^{n} x_j \, w_{j,1}^{(1)}$$



## Single Layer Neural Network



$$\hat{y}_1 = g \left( w_{0,1}^{(2)} + \sum_{j=1}^m g(z_j) w_{j,1}^{(2)} \right)$$



## Example problem

Does the patient have a heart disease?





## Example problem

Does the patient have a heart disease?







## Example problem

Does the patient have a heart disease?





## Training the network



#### Loss function



Loss function measures how much our predictions differ from actual results



### Loss function



Loss function measures how much our predictions differ from actual results



## Empirical loss



Empirical loss measures loss over the whole dataset, calculating the average of losses for each input



**Problem:** minimize loss over weight w

























## **Gradient Descent**



Image source: "On Why Gradient Descent is Even Needed" Daniel Burkhardt Derigo



#### **Gradient Descent**

- 1. Initialize random weights
- 2. Loop until convergence:
  - Compute loss function gradient:  $\frac{\partial J(W)}{\partial W}$
  - Update weights based on gradient:  $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$   $\eta$  learning rate

**Problem:** compute loss function gradient  $\frac{\partial J(W)}{\partial W}$ 



$$\frac{\partial J(\mathbf{W})}{\partial w^{(1)}}$$
 ?  $\frac{\partial J(\mathbf{W})}{\partial w^{(2)}}$ 

Chain rule



**Problem:** compute loss function gradient  $\frac{\partial f(W)}{\partial W}$ 



$$\frac{\partial J(\boldsymbol{W})}{\partial w^{(2)}} = \frac{1}{2}$$

**Problem:** compute loss function gradient  $\frac{\partial J(W)}{\partial W}$ 



$$\frac{\partial J(\mathbf{W})}{\partial w^{(2)}} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w^{(2)}}$$

**Problem:** compute loss function gradient  $\frac{\partial f(W)}{\partial W}$ 



$$\frac{\partial J(\mathbf{W})}{\partial w^{(2)}} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w^{(2)}}$$
$$\frac{\partial J(\mathbf{W})}{\partial w^{(1)}} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z} * \frac{\partial z}{\partial w^{(1)}}$$

# What can we use Deep Learning for?



## Clinical diagnosis







"International evaluation of an Al system for breast cancer screening" S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin 2020



## Real-time object detection



Image source: Detect-Me



# Image alteration





## Image alteration





## And much more...



## Questions?



## Thank you for attention

