Linear Algebra Tutorial 7

2023.11.21

homework

• P_n 所有次数 $\leq n$ 的多项式的集合

$$P_n = \{p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n : a_1, \cdots, a_n \in \mathbb{R}\}$$

matrix has no Binomial Theorem

e.g.
$$(A+B)^2 = A^2 + AB + BA + B^2$$

AB may not equal to BA!!!

- about \vec{v} and \mathbf{v}
- a small tip for hw7

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

$$\cos(2lpha)=\cos^2lpha-\sin^2lpha=2\cos^2lpha-1=1-2\sin^2lpha$$

homework

• for the problem E:

集

Problem E(6 Points). 对每个给定的 $x \in \mathbb{R}^n$ 与 $b \in \mathbb{R}^m$,考虑以下 $M_{m \times n}$ 里的子

$$W_{\boldsymbol{x},\boldsymbol{b}} = \{ A \in M_{m \times n} : A\boldsymbol{x} = \boldsymbol{b} \}.$$

找出所有能够使得集合 $W_{x,b}$ 成为 $M_{m\times n}$ 里的子空间的向量x与b。

$$A\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$$

midterm review 期中复习

- 考试时间: 2023.12.6 星期三 8:15~9:55
- 考试地点: 教学中心202
- 考试内容: 第一章到第四章的4.8节(包含)
- 期中考试占总成绩 30%!
- 试卷为全英文, 不涉及数学的问题可以找监考人员翻译
- 作答中英文均可

欢迎大家有问题随时在群里/私聊提问, 尽量不要拖延问题 尽早复习, 不要等到考前一天才开始复习 start early!!!

一些要强调的事情

- iff ⇔ if and only if ⇔ 当且仅当,
 ⇒ 充分性, ⇐ 必要性, 都要证
 或者全程使用⇔等价表述
- free variables

eg.
$$x_3=s, x_4=r$$
 $s,r\in {f R}!$

- consistent 有解的
- inconsistent 无解的
- trival solution 平凡解(无解)
- the symbol [] and ||[] for matrix, || for determinant

一些要强调的事情

• 注意公式不要记错了

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$$
 不要忘记根号

$$\circ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
 分母不要忘记开方

$$\circ proj_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{v}\|^2}\mathbf{v}$$
 分母不要忘记平方,公式背不过的话可以自己考场推一下

$$A = egin{bmatrix} 1 & 0 & 1 \ 0 & 2 & 0 \ -2 & 0 & 1 \end{bmatrix}$$

- A + I = ?, A I = ? 注意 I 是单位矩阵,只有对角线上的元素为 1!!!
- P_n 所有次数 $\leq n$ 的多项式的集合 $P_n = \{p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_1, \dots, a_n \in \mathbb{R}\}$

一些要强调的事情

- 行列式交换两行后,记得要有一个负号
- 关于叉乘

$$\mathbf{u} imes \mathbf{v} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{bmatrix} = (u_2v_3 - u_3v_2, -(u_1v_3 - u_3v_1), u_1v_2 - u_2v_1)$$

注意中间有个负号(原因: a_{12} 的代数余子式的符号是 $(-1)^{1+2}$)

• 行列式按行/列的展开时:

$$|A| = \sum_{i=1}^n a_{ij} C_{ij}$$

注意 C_{ij} 是 a_{ij} 的代数余子式,有一个 $(-1)^{i+j}$!!!

• 矩阵没有二项式定理 e.g. $(A+B)^2=A^2+AB+BA+B^2$

review list 复习清单

- chapter1 线性方程组
 - 矩阵
 - 高斯消元
 - 矩阵求逆
- chapter2 行列式
- chapter3 欧氏空间
- chapter4 向量空间
 - 子空间
 - 线性相关、线性无关
 - 基、维数、基变换
 - 行空间、 列空间、 零空间
 - 矩阵的秩、零度、 矩阵基本空间

the dimension of a vector space

(defined in last tutorial)

V is a finite-dimensional vector space, $S=\{\mathbf{v}_1,\cdots,\mathbf{v}_r\}$ is a subset of V

- S is linearly independent
- V = span(S)

then we call S a basis of V the number of vectors in S is the dimension of V, denoted as $\dim(V)$

coordinate

$$S=\{\mathbf{v}_1,\cdots,\mathbf{v}_n\}\subset\mathbb{R}^n$$
 is a basis of \mathbb{R}^n $orall \mathbf{v}\in V$, $\exists c_1,\cdots,c_n\in\mathbb{R}$ s.t. $\mathbf{v}=c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n$

coordinate vector of ${\bf v}$ relative to S

$$(\mathbf{v})_S=(c_1,\cdots,c_n)$$

the coordinate is actually the coefficient of the linear combination

the dimension of a vector space

The dimension of V is the number of vectors in any basis of V

- $\dim(\mathbb{R}^n) = n$
- $\dim(P_n) = n + 1$
- $ullet \ \dim(M_{m imes n}) = \dim(\mathbb{R}^{mn}) = mn$
- for zero space $\dim(\{\mathbf{0}\}) = 0$

dimension and basis

$$S = \{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$$

- ullet W=span(S), then S is a basis of W
- ullet if S is a linear independent set $\dim(W)=\dim(span(S))=|S|=n$

dimension and basis

 $S = \{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ be the basis of V

- notice that S is a independent set
- if m>n, then $M=\{\mathbf{w}_1,\cdots,\mathbf{w}_m\}$ must be a **linear dependent** set
- ullet if m < n, then $M = \{ \mathbf{w}_1, \cdots, \mathbf{w}_m \}$ must **not span** V
- ullet If $S=\{\mathbf{v}_1,\cdots,\mathbf{v}_n\}$, $M=\{\mathbf{w}_1,\cdots,\mathbf{w}_m\}$ are basis of V, then n=m

Plus/Minus Theorem

V is a vector space, $S \subset V$

• If S is an independent set, and $\mathbf{v} \in V, \mathbf{v} \notin S$, then $S \cup \{\mathbf{v}\}$ is also an independent set

proof by contradiction, suppose that $S \cup \{\mathbf{v}\}$ is linear dependent $\Rightarrow \mathbf{v} = span(S)$

• If $\mathbf{v} \in S$, and \mathbf{v} can be written as a linear combination of other vectors in S, then $span(S-\mathbf{v})=span(S)$

 $\mathbf{v} \in S$, WLOG, take $\mathbf{v} = v_1$, consider $\forall \mathbf{w} \in span(S)$, can be writen as linear combination of $\mathbf{v}_2, \cdots, \mathbf{v}_n$

coordinate

$$n \geq 1, \dim(V) = n, S = \{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$$
 is a basis of V

• 1. for any vector set $M=\{\mathbf{w}_1,\cdots,\mathbf{w}_r\}\subset V$ M is an independent set $\Leftrightarrow [\mathbf{v}_1]_S,\cdots,[\mathbf{v}_r]_S$ are independent set

proof: set $[\mathbf{v}_i]=(a_{i1},\cdots,a_{in})$, then $\mathbf{v}_i=a_{i1}\mathbf{v}_1+\cdots+a_{in}\mathbf{v}_n$

• 2. for vector set $M = \{\mathbf{w}_1, \cdots, \mathbf{w}_n\} \subset V$ M is the basis of $V \Leftrightarrow [\mathbf{v}_1]_S, \cdots, [\mathbf{v}_n]_S$ is the basis of \mathbb{R}^n $\Leftrightarrow [\mathbf{v}_1]_S, \cdots, [\mathbf{v}_n]_S$ is the standard basis of \mathbb{R}^n

from 1., we know that M is independent $\Rightarrow [\mathbf{v}_1]_S, \cdots, [\mathbf{v}_n]_S$ is independent, so we just need to prove that $span\{[\mathbf{w}_1]_S, \cdots, [\mathbf{w}_n]_S\} = \mathbb{R}^n$

example

例子: (2022年线性代数考试题)

Let $p_1(x) = 1 + 3x, p_2(x) = 2 + 4x, p_3(x) = -4x^2$ be three polynomials in P_2 .

- 1. Let $M = \{1, x, x^2\}$ be the standard basis of P_2 . Let $A = \begin{bmatrix} [p_1(x)]_M & [p_2(x)]_M & [p_3(x)]_M \end{bmatrix}$ be the matrix such that its columns are $[p_1(x)]_M$, $[p_2(x)]_M$ and $[p_3(x)]_M$. Compute the adjoint matrix of A.
- 2. Prove that $S = \{p_1(x), p_2(x), p_3(x)\}\$ is a basis of P_2 .

basis' theorem

V is a vector space, $\dim(V)=n$, $S=\{\mathbf{v}_1,\cdots,\mathbf{v}_m\}\subset V$

- span(S)=V, m>n, then we can delete some of the vectors in S to get a basis of V
- ullet if S is a linear independent set, m < n, then we can add some vectors to S to get a basis of V

basis' theorem

V is a vector space, $\dim(V) = n$, $W \subset V$ is a subspace.

- let $m = \dim(W)$, then $m \le n$
- W = V iff m = n

Change of basis

V is the vector space, B,B' are two bases of V

- $B = \{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$
- $B'=\{\mathbf{v}_1',\cdots,\mathbf{v}_n'\}$ If we have $(\mathbf{v})_B=(c_1,\cdots,c_n)$ how could we find $(\mathbf{v})_{B'}=(c_1',\cdots,c_n')$?

as we known that $[\mathbf{v}]_B, [\mathbf{v}]_{B'}$ has the unique expression

Change of basis

- transition matrix(过渡矩阵) P P is invertible, P^{-1} is called the transition matrix from B to B^\prime
- ullet transition matrix from B to B' $P_{B
 ightarrow B'}$ or $P_{B'\leftarrow B}$
- ullet transition matrix from B' to B $P_{B' o B}$ or $P_{B\leftarrow B'}$
- $P_{B\leftarrow B'}P_{B'\leftarrow B}=I$

notice that the defination of the transition matrix may be different with some of the Chinese textbooks!!

Change of basis

- ullet We can represent the transition matrix as $P_{B o B'}$ or $P_{B'\leftarrow B}$
- $\bullet \ [v]_{B'} = P_{B' \leftarrow B}[v]_B$
- ullet $[v]_B=P_{B\leftarrow B'}[v]_{B'}$
- ullet method to get the transition matrix $[B'|B] \Rightarrow [I|P_{B'\leftarrow B}]$

example of transition matrix

例子: 考虑 \mathbb{R}^3 的两组基底 $B = \{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ 与 $B' = \{ \mathbf{u}'_1, \mathbf{u}'_2, \mathbf{u}'_3 \}$:

$$oldsymbol{u}_1 = egin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, oldsymbol{u}_2 = egin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, oldsymbol{u}_3 = egin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix};$$

$$\mathbf{u}_1' = \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix}, \mathbf{u}_2' = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}, \mathbf{u}_3' = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}.$$

我们利用之前介绍的计算步骤求解转移矩阵 $P_{B'\leftarrow B}$ 。