

# <u>Lista de Exercícios 1 – Vetores</u>

- 1. Escreva um programa que leia ou gere um vetor de N elementos inteiros (N deve ser informado pelo usuário e o limite do vetor é 100) e passe o mesmo como parâmetro para uma função que retorne a soma de seus elementos.
- 2. Dado um vetor de n números reais, crie uma função que retorne o maior elemento do vetor, apresente o vetor.
- **3.** Dado um vetor de n números reais, crie uma função que retorne o menor elemento do vetor, apresente o vetor
- **4.** Escreva um programa que leia ou gere um vetor de N elementos inteiros. A seguir, crie uma função que receba esse vetor e conte quantos valores impares existem no vetor. Retorne a quantidade de impares.
- **5.** Leia um vetor DNA de caracteres para receber as letras A, T, C e G que representam as bases do DNA. Este vetor será responsável por representar uma fita de um gene de limite de 50 bases. Gere o vetor complementar ao vetor DNA e o apresente (Lembrando as bases complementares A=T C=G).
- **6.** Escreve um programa que sorteio, aleatoriamente, N números e armazene estes em um vetor. Em seguida, o usuário digita um número e seu programa em C deve acusar se o número digitado está no vetor ou não. Se estiver, diga a posição que está.
- **7.** Escreva um programa que leia ou gere dois **vetores** de N posições e faça a multiplicação dos elementos de mesmo índice, colocando o resultado em um terceiro vetor. Mostre o vetor resultante.
- **8.** Leia um vetor de caracteres (limite 100) utilizando a função gets(). Utilize a função strlen (Você deve incluir a biblioteca string.h) para obter a quantidade de elementos do vetor de caracteres. Escreva o vetor lido em ordem inversa.
- **9.** Receber um vetor de N posições do tipo inteiro verificar quantas vezes um dado valor informado pelo usuário se encontra no vetor. Apresente também todos elementos do vetor.
- **10.** Tentando descobrir se um dado era viciado, um dono de cassino honesto o lançou N vezes. Dados os n resultados dos lançamentos que devem ser armazenados em um vetor, determinar o número de ocorrências de cada face.
- **11.** Uma brincadeira que crianças adoram é se comunicar na *língua do P*, acrescentando *pê* antes de cada sílaba, como uma forma de código para dificultar que outras pessoas entendam a conversa (pê-va pê-mos pê-no pê-ci pê-ne pê-ma?). Jacy e Kátia adaptaram a língua do P para mensagens eletrônicas, acrescentando a letra P minúscula 'p' antes de cada letra das palavras de uma mensagem. Um exemplo de mensagem codificada e a respectiva mensagem decodificada é mostrada na figura abaixo.

| Mensagem codificada          | Mensagem decodificada |
|------------------------------|-----------------------|
| pVpapmpops papo pcpipnpepmpa | Vamos ao cinema       |

Sua tarefa é escrever um programa que decodifique uma mensagem escrita na língua do P eletrônica de Jacy e Kátia.



#### COMPUTAÇÃO PROF. MATHEUS FRANCO

**Entrada** A entrada consiste de uma única linha, contendo uma mensagem escrita na língua do P eletrônica de Jacy e Kátia.

Saída Seu programa deve produzir uma única linha, contendo a mensagem decodificada.

**Restrições** A mensagem contém apenas letras maiúsculas e minúsculas e espaços em branco. A mensagem tem entre 1 e 1000 caracteres. Não há dois espaços em branco consecutivos na mensagem.

### **Exemplos**

| Entrada pUpm pfpiplpmpe plpepgpapl | Saída<br>Um filme legal |
|------------------------------------|-------------------------|
| Entrada pA pppapppa pdpo pPpapppa  | Saída<br>A papa do Papa |

<u>Dicas</u>: Leia seu vetor de caracteres com a função gets, pegue o tamanho do mesmo utilizando a função strlen. Para cada posição verifique o caractere armazenado antes de apresenta-lo.

#### 12. Carnaval

O Carnaval é um feriado celebrado normalmente em fevereiro; em muitas cidades brasileiras, a principal atração são os desfiles de escolas de samba. As várias agremiações desfilam ao som de seus sambas-enredos e são julgadas pela liga das escolas de samba para determinar a campeã do Carnaval.

Cada agremiação é avaliada em vários quesitos; em cada quesito, cada escola recebe cinco notas que variam de 5,0 a 10,0. A nota final da escola em um dado quesito é a soma das três notas centrais recebidas pela escola, excluindo a maior e a menor das cinco notas.

Como existem muitas escolas de samba e muitos quesitos, o presidente da liga pediu que você escrevesse um programa que, dadas as notas da agremiação, calcula a sua nota final num dado quesito.

#### **Entrada**

A entrada contém uma única linha, contendo cinco números  $N_i$  (1  $\leq i \leq$  5), todos com uma casa decimal, indicando as notas recebidas pela agremiação em um dos quesitos.

#### Saída

Seu programa deve imprimir uma única linha, contendo um único número com exatamente uma casa decimal, a nota final da escola de samba no quesito considerado.

#### **Exemplos**

| Entrada             | Saída |
|---------------------|-------|
| 6.4 8.2 8.2 7.4 9.1 | 23.8  |
|                     |       |



## COMPUTAÇÃO PROF. MATHEUS FRANCO

| Entrada                | Saída |
|------------------------|-------|
| 10.0 10.0 5.0 5.0 10.0 | 25.0  |
|                        |       |