Finite Element Analysis of Flat Slab with Calcpad

Using Bogner-Fox-Schmit (BFS) plate element [1]

Input data

Span lengths

$$\vec{a} = hp([3.6; 4.2; 4.2; 3.6]) = [3.6 \ 4.2 \ 4.2 \ 3.6] \text{ m}, \qquad \vec{b} = hp([3; 3.6; 3]) = [3 \ 3.6 \ 3] \text{ m}$$

Number of axes -
$$n_{sa} = len(\vec{a}) + 1 = 5$$
,

$$n_{sb} = \operatorname{len}(\vec{b}) + 1 = 4$$

Axis coordinates - $\vec{x}_s = [0 \ 3.6 \ 7.8 \ 12 \ 15.6]$ m,

 $\vec{y}_s = [0 \ 3 \ 6.6 \ 9.6] \text{ m}$

Slab dimensions - $l_a = \vec{x}_{s} = 15.6$ m, $l_b = \vec{y}_{s} = 9.6$ m

Thickness - t = 0.2 m

Load - $q = 10 \text{ kN/m}^2$

Modulus of elasticity - E = 35000 MPa

Poisson's ratio - $\nu = 0.2$

Finite element mesh

We will use BFS rectangular finite element with $n_{DOFs} = 16$

Element dimensions - $a_1 = 0.6 \text{ m}$, $b_1 = 0.6 \text{ m}$

Number of elements and joints along a and b

$$\vec{n}_a = \text{ceiling}\left(\frac{\vec{a}}{a_1}\right) = [6 \ 7 \ 7 \ 6], \ n_{ea} = \text{sum}(\vec{n}_a) = 26, \ n_{ja} = n_{ea} + 1 = 27$$

$$\vec{n}_b = \text{ceiling}\left(\frac{\vec{b}}{b_1}\right) = [5 \ 6 \ 5], \ n_{eb} = \text{sum}(\vec{n}_b) = 16, \ n_{jb} = n_{eb} + 1 = 17$$

Total number of elements - $n_e = n_{ea} \cdot n_{eb} = 416$

Total number of joints - $n_i = n_{ja} \cdot n_{jb} = 459$

Supported joints count - $n_s = n_{sa} \cdot n_{sb} = 20$

Joint coordinates

 $\vec{x}_j = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \dots \ 15.6] \ \mathsf{m} \ , \ \vec{y}_j = [0 \ 0.6 \ 1.2 \ 1.8 \ 2.4 \ 3 \ 3.6 \ 4.2 \ 4.8 \ 5.4 \ \dots \ 9.6] \ \mathsf{m}$

Numbers of joints at elements' corners

$$\mathbf{transp}(e_j) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots & 441 \\ 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & \cdots & 458 \\ 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & \cdots & 459 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \cdots & 442 \end{bmatrix}$$

Supported joints - $\vec{s}_i = [1 \ 6 \ 12 \ 17 \ 103 \ 108 \ 114 \ 119 \ 222 \ 227 \ \dots \ 459]$

Joints for element $e - j_e(e) = row(e_i; e)$

6	17	34	51	68	85	102	1 19	136	153	170	187	204	221	238	255	272	289	306	323	340	357	374	391	408	425	442	459
Ĭ	16 16	32 33	48 50	64 67	80 84	96 101	1 12 1 18	128 135	144 152	160 169	176 186	192 203	208 220	224 237	240 254	256 271	272 288	288 305	304 322	320 339	336 356	352 373	368 390	384 407	400 424	416 441	458
İ	15	31	47	63	79	95	111	127	143	159	175	191	207	223	239	255	271	287	308	319	335	351	367	383	399	415	1430
ł	15	32	49	66	83	100	1 17	134	151	168	185	202	219	236	253	270	287	304	321	3 38	355	372	389	406	423		457
	14 14	30 31	46 48	62 65	78 82	94 99	1 10 1 16	126 133	142 150	158 167	174 184	190 201	206 218	2 <i>2</i> 2 2 <i>3</i> 5	238 252	254 269	270 286	286 303	302 320	3 18 3 37	334 354	350 371	366 388	382 405	398 422	414 439	456
	13 13	29 30	45 47	61 64	77 81	93 98	109 115	125 132	141 149	157 166	173 183	189 200	205 217	221 234	237 251	253 268	269 285	285 302	301 319	3 17 3 36	333 353	349 370	365 387	381 404	397 421	413 438	455
İ	12	28	44	60	76	92	108	124	140	156	172	188	204	220	236	252	268	284	300	3 16	332	348	364	380	396	412	
C	12	29	46	63	80	97	1 14	131	148	165	182	199	216	233	250	267	284	301	3 18	3 35	352	369	386	403	420	437	454
	11 11	27 28	43 45	59 62	75 79	91 96	107 113	123 130	139 147	155 164	171 181	187 198	203 215	219 232	235 249	251 266	267 283	283 300	299 317	3 15 3 34	331 351	347 368	363 385	379 402	395 419	411 436	453
Ĭ	10	26	42	58	74	90	106	122	138	154	170	186	202	218	234	250	266	282	298	3 14	330	346	362	378	394	410	
•	10 9	27 25	44	61 57	78 73	95 89	112	129 121	146 137	163 153	180 169	197 185	214	231	248	265 249	282	299 281	316 297	333 313	350 329	367 345	384 361	401 377	418 393	435	452
	9	26	43	60	77	94	111	128	145	162	179	196	213	230	247	264	281	298	3 15	332	349	366	383	400	417	434	451
I	8	24	40	56	72	88	104	120	136	152	168	184	200	216	232	248	264	280	296	3 12	328	344	360	376	392	408	
•	8 7	25 23	42 39	59 55	76 71	93 87	110	127 119	144	161 151	178 167	195 183	212 199	2 <i>2</i> 9 215	246	263 247	280	297 279	314 295	331 311	348 327	365 343	382 359	399 375	416 391	433 407	450
I	7	24	41	58	75	92	109	126	143	160	177	194	211	228	245	262	279	296	313	330	347	364	381	398	415	432	449
	6	22 23	38 40	54 57	70 74	86 91	102 108	1 18 1 25	134 142	150 159	166 176	182 193	198 210	214 227	230 244	246 261	262 278	278 295	294 312	3 10 3 29	326 346	342 363	358 380	374 397	390 414	406 431	1 10
•	5	21	37	53	69	85	101	117	133	149	165	181	197	213	229	245	261	277	293	309	325	341	357	373	389	405	440
ļ	5	22	39	56	73	90	107	124	141	158	175	192	209	226	243	260	277	294	311	328	345	362	379	396	413	430	447
	4 4	20 21	36 38	52 55	68 72	84 89	100 106	1 16 1 23	132 140	148 157	164 174	180 191	196 208	212 225	228 242	244 259	260 276	276 293	292 310	308 327	324 344	340 361	356 378	372 395	388 412	404 429	446
i	3	19	35	51	67	83	99	1 15	131	147	163	179	195	211	227	243	259	275	291	307	323	3 39	3 55	371	387	403	
	3	20	37	54	71	88	105	122	139	156	173	190	207	224	241	258	275	292	309	326	343	360	377	394	411	428	445
	2 2	18 19	34 36	50 53	66 70	82 87	98 104	1 14 1 21	130 138	146 155	162 172	178 189	194 206	210 223	226 240	242 257	258 274	274 291	290 308	306 325	322 342	338 359	354 376	370 393	386 410	402 427	444
Ĭ	1	17	33	49	65	81	97	1 13	129	145	161	177	193	209	225	241	257	273	289	305	321	3 37	353	369	385	401	
6	1	18	35	52	69	86	103	120	137	154	171	188	205	222	239	256	273	290	307	324	341	358	375	392	409	426	44 3

Finite element formulation

Shape functions

Along dimension a

Base functions

$$\Phi_{1a}(\xi) = 1 - \xi^2 \cdot (3 - 2 \cdot \xi)$$

$$\Phi_{2a}(\xi) = \xi \cdot a_1 \cdot \left(1 - \xi \cdot (2 - \xi)\right)$$

$$\Phi_{3a}(\xi) = \xi^2 \cdot (3 - 2 \cdot \xi)$$

$$\Phi_{4a}(\xi) = \xi^2 \cdot a_1 \cdot (-1 + \xi)$$

First derivatives

$$\Phi'_{1a}(\xi) = -6 \cdot \frac{\xi}{a_1} \cdot (1 - \xi)$$

$$\Phi'_{2a}(\xi) = 1 - \xi \cdot (4 - 3 \cdot \xi)$$

$$\Phi'_{3a}(\xi) = 6 \cdot \frac{\xi}{a_1} \cdot (1 - \xi)$$

$$\Phi'_{4a}(\xi) = -\xi \cdot (2 - 3 \cdot \xi)$$

Second derivatives

$$\Phi_{1a}(\xi) = 1 - \xi^2 \cdot (3 - 2 \cdot \xi) \qquad \qquad \Phi'_{1a}(\xi) = -6 \cdot \frac{\xi}{a_1} \cdot (1 - \xi) \qquad \qquad \Phi''_{1a}(\xi) = -\frac{6}{a_1^2} \cdot (1 - 2 \cdot \xi)$$

$$\Phi'_{2a}(\xi) = 1 - \xi \cdot (4 - 3 \cdot \xi)$$
 $\Phi''_{2a}(\xi) = -\frac{2}{a_1} \cdot (2 - 3 \cdot \xi)$

$$\Phi'_{3a}(\xi) = 6 \cdot \frac{\xi}{a_1} \cdot (1 - \xi) \qquad \Phi''_{3a}(\xi) = \frac{a_1}{a_1^2} \cdot (1 - 2 \cdot \xi)$$

$$\Phi'_{4a}(\xi) = -\xi \cdot (2 - 3 \cdot \xi)$$

$$\Phi''_{4a}(\xi) = -\frac{2}{a_1} \cdot (1 - 3 \cdot \xi)$$

Along dimension b

Base functions

$$\Phi_{1b}(\eta) = 1 - \eta^2 \cdot (3 - 2 \cdot \eta)$$

$$\Phi_{2b}(\eta) = \eta \cdot b_1 \cdot (1 - \eta \cdot (2 - \eta))$$

$$\Phi_{3b}(\eta) = \eta^2 \cdot (3 - 2 \cdot \eta)$$

$$\Phi_{4b}(\eta) = \eta^2 \cdot b_1 \cdot (-1 + \eta)$$

For vertical displacements

$$N_{1,w}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{1b}(\eta)$$

$$N_{2,w}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{1b}(\eta)$$

$$N_{3,w}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{3b}(\eta)$$

$$N_{4,w}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{3b}(\eta)$$

For twist ψ

$$N_{1,\psi}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{2,\psi}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{3,\psi}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{4b}(\eta)$$

$$N_{4,1b}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{4b}(\eta)$$

$N_{1,w}$ shape function plot

First derivatives

$$\Phi'_{1b}(\eta) = -6 \cdot \frac{\eta}{b_1} \cdot (1 - \eta)$$

$$\Phi'_{2b}(\eta) = 1 - \eta \cdot (4 - 3 \cdot \eta)$$

$$\Phi'_{3b}(\eta) = 6 \cdot \frac{\eta}{b_1} \cdot (1 - \eta)$$

$$\Phi'_{4b}(\eta) = -\eta \cdot (2 - 3 \cdot \eta)$$

For rotations ϑ_{x}

$$N_{1,\theta_{\nu}}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{1b}(\eta) \qquad N_{1,\theta_{\nu}}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{2,\theta_x}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{1b}(\eta)$$

$$N_{3,\theta_x}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{3b}(\eta)$$

$$N_{4,\theta_x}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{3b}(\eta)$$

Second derivatives

$$\Phi'_{1b}(\eta) = -6 \cdot \frac{\eta}{b_1} \cdot (1 - \eta)$$

$$\Phi''_{1b}(\eta) = -\frac{6}{b_1^2} \cdot (1 - 2 \cdot \eta)$$

$$\Phi'_{2b}(\eta) = 1 - \eta \cdot (4 - 3 \cdot \eta)$$
 $\Phi''_{2b}(\eta) = -\frac{2}{b_1} \cdot (2 - 3 \cdot \eta)$

$$\Phi'_{3b}(\eta) = 6 \cdot \frac{\eta}{b_1} \cdot (1 - \eta)$$

$$\Phi''_{3b}(\eta) = \frac{6}{b_1^2} \cdot (1 - 2 \cdot \eta)$$

$$\Phi'_{4b}(\eta) = -\eta \cdot (2 - 3 \cdot \eta)$$

$$\Phi''_{4b}(\eta) = -\frac{2}{b_1} \cdot (1 - 3 \cdot \eta)$$

For rotations ϑ_{v}

$$N_{1,\theta_{\nu}}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{2,\theta_x}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{1b}(\eta) \qquad N_{2,\theta_y}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{3,\theta_x}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{3b}(\eta) \qquad N_{3,\theta_y}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{4b}(\eta)$$

$$N_{4,\theta_x}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{3b}(\eta) \qquad N_{4,\theta_y}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{4b}(\eta)$$

$N_{1,\theta x}$ shape function plot

Shape functions vector
$$N(i; \xi; \eta) = \text{take} \begin{pmatrix} i; \ N_{1,w}(\xi; \eta); N_{1,\theta_x}(\xi; \eta); N_{1,\theta_\gamma}(\xi; \eta); N_{1,\psi}(\xi; \eta); \\ N_{2,w}(\xi; \eta); N_{2,\theta_x}(\xi; \eta); N_{2,\theta_\gamma}(\xi; \eta); N_{2,\psi}(\xi; \eta); \\ N_{3,w}(\xi; \eta); N_{3,\theta_x}(\xi; \eta); N_{3,\theta_\gamma}(\xi; \eta); N_{3,\psi}(\xi; \eta); \\ N_{4,w}(\xi; \eta); N_{4,\theta_x}(\xi; \eta); N_{4,\theta_\gamma}(\xi; \eta); N_{4,\psi}(\xi; \eta) \end{pmatrix}$$

Constitutive matrix (stress - strain relationship)

$$D = \frac{E \cdot t^3}{12 \cdot (1 - v^2)} \cdot \mathbf{hp} \left(\begin{bmatrix} 1; v; 0 \mid v; 1; 0 \mid 0; 0; \frac{1 - v}{2} \end{bmatrix} \right) = \begin{bmatrix} 24.31 & 4.86 & 0 \\ 4.86 & 24.31 & 0 \\ 0 & 0 & 9.72 \end{bmatrix} \text{kNm}$$

Strain-displacement matrix

$$\begin{split} B_{1}(j;\xi,\eta) &= \mathsf{take} \big(j; \Phi''_{1a}(\xi) \cdot \Phi_{1b}(\eta); \Phi''_{2a}(\xi) \cdot \Phi_{1b}(\eta); \Phi''_{1a}(\xi) \cdot \Phi_{2b}(\eta); \Phi''_{2a}(\xi) \cdot \Phi_{2b}(\eta); \Phi''_{3a}(\xi) \\ & \cdot \Phi_{1b}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{1b}(\eta); \Phi''_{3a}(\xi) \cdot \Phi_{2b}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{2b}(\eta); \Phi''_{3a}(\xi) \\ & \cdot \Phi_{3b}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{3b}(\eta); \Phi''_{3a}(\xi) \cdot \Phi_{4b}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{4b}(\eta); \Phi''_{1a}(\xi) \\ & \cdot \Phi_{3b}(\eta); \Phi''_{2a}(\xi) \cdot \Phi_{3b}(\eta); \Phi''_{1a}(\xi) \cdot \Phi_{4b}(\eta); \Phi''_{2a}(\xi) \cdot \Phi_{4b}(\eta) \big) \\ B_{2}(j; \xi; \eta) &= \mathsf{take} \big(j; \Phi_{1a}(\xi) \cdot \Phi''_{1b}(\eta); \Phi_{2a}(\xi) \cdot \Phi''_{1b}(\eta); \Phi_{1a}(\xi) \cdot \Phi''_{2b}(\eta); \Phi_{2a}(\xi) \cdot \Phi''_{2b}(\eta); \Phi_{3a}(\xi) \\ & \cdot \Phi''_{1b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{1b}(\eta); \Phi_{3a}(\xi) \cdot \Phi''_{2b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{2b}(\eta); \Phi_{3a}(\xi) \\ & \cdot \Phi''_{3b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{3b}(\eta); \Phi_{3a}(\xi) \cdot \Phi''_{4b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{4b}(\eta); \Phi_{1a}(\xi) \\ & \cdot \Phi''_{3b}(\eta); \Phi_{2a}(\xi) \cdot \Phi''_{3b}(\eta); \Phi_{1a}(\xi) \cdot \Phi''_{4b}(\eta); \Phi_{2a}(\xi) \cdot \Phi''_{4b}(\eta) \big) \\ B_{3}(j; \xi; \eta) &= 2 \\ & \cdot \mathsf{take} \big(j; \Phi'_{1a}(\xi) \cdot \Phi'_{1b}(\eta); \Phi'_{2a}(\xi) \cdot \Phi'_{1b}(\eta); \Phi'_{1a}(\xi) \cdot \Phi'_{2b}(\eta); \Phi'_{2a}(\xi) \\ & \cdot \Phi'_{2b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{1b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{1b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{2b}(\eta); \Phi'_{4a}(\xi) \\ & \cdot \Phi'_{2b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{4b}(\eta); \Phi'_{4a}(\xi) \\ & \cdot \Phi'_{2b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{4b}(\eta); \Phi'_{4a}(\xi) \\ & \cdot \Phi'_{4b}(\eta); \Phi'_{1a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{4b}(\eta); \Phi'_{4a}(\xi) \\ & \cdot \Phi'_{4b}(\eta); \Phi'_{1a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{4b}(\eta); \Phi'_{2a}(\xi) \cdot \Phi'_{4b}(\eta) \big) \\ \end{split}$$

$$B(j;\xi;\eta) = \mathbf{hp}([B_1(j;\xi;\eta); B_2(j;\xi;\eta); B_3(j;\xi;\eta)])$$

The coefficients of the stiffness matrix will be calculated by using the equation

$$K_{e,ij} = a_1 \cdot b_1 \cdot \int_0^1 \int_0^1 B_i(\xi;\eta)^T \cdot D \cdot B_j(\xi;\eta) d\xi d\eta$$

Element stiffness matrix - numerical evaluation

$$BTDB_e(i;j;\xi;\eta) = transp(B(i;\xi;\eta)) \cdot D \cdot B(j;\xi;\eta)$$

$$K_e(i;j) = a_1 \cdot b_1 \cdot \int_0^1 \int_0^1 BTDB_e(i;j;\xi;\eta) d\eta d\xi$$

$$Repeat \left\{Repeat \left\{K_{e_{.i,j}} = K_e(i;j); j = i...n\right\}; i = 1...n\right\}$$

Element load vector

$$F_{e,i} = a_1 \cdot b_1 \cdot \int_0^1 \int_0^1 N_i(\xi; \eta)^T \cdot q \ d\xi \ d\eta$$

 $\vec{F}_e = [0.9 \ 0.09 \ 0.09 \ 0.009 \ 0.9 \ -0.09 \ 0.09 \ -0.009 \ 0.9 \ -0.09 \ \dots \ -0.009] \, \mathrm{kN}$

Solution

Global stiffness matrix

Global load vector

 $\vec{F} = [0.9 \ 0.09 \ 0.09 \ 0.009 \ 1.8 \ 0.18 \ 0 \ 1.8 \ 0.18 \ \dots \ 0.009] \text{ kN}$

Solution of the system of equations

 $\vec{Z} = \text{slsolve}(K; \vec{F}) = [0 \ 0.552 \ 0.383 \ -0.416 \ 0.203 \ 0.373 \ 0.265 \ -0.194 \ 0.299 \ 0.309 \ \dots \ -0.416] \text{ mm}$

Results

Joint displacements – transp(W_z) =

Bending moments

$$Z_{j}(j) = \operatorname{slice}(\vec{Z}; k_{1} \cdot (j-1) + 1; k_{1} \cdot j)$$

$$Z_{e}(e) = \operatorname{hp}\left(\left[Z_{j}\left(e_{j_{.e,1}}\right); Z_{j}\left(e_{j_{.e,2}}\right); Z_{j}\left(e_{j_{.e,3}}\right); Z_{j}\left(e_{j_{.e,4}}\right)\right]\right)$$

Average bending moments at joints, kNm/m

$$M_j = \begin{bmatrix} 1.5 & 0.31 & 0.22 & 0.156 & 0.157 & 0.998 & 0.156 & 0.152 & 0.194 & 0.152 & \cdots & 1.5 \\ 1.57 & 7.81 & 9.34 & 7.67 & 3.33 & -28.36 & 3.15 & 7.32 & 8.9 & 7.32 & \cdots & 1.57 \\ 8.09 & 3.77 & 0.486 & -2.48 & -4.46 & 0.155 & 4.78 & 2.84 & 1.19 \times 10^{-8} & -2.84 & \cdots & 8.09 \end{bmatrix}$$

Bending moments for the plate

Bending moments - M_x - transp(Mx) =

```
1.5
        8.5
              11.07
                     10.48
                             6.8
                                   0.884
                                          -31.24
                                                   0.302
                                                          5.64
                                                                 8.78
                                                                            1.5
 0.31
                                                                            0.31
        6.48
              9.43
                      8.88
                             4.92
                                    -2.7
                                           -10.24
                                                   -3.26
                                                           3.81
                                                                 7.25
 0.22
       5.78
              8.72
                      8.14
                             4.04
                                   -2.26
                                           -6.06
                                                   -2.82
                                                          2.93
                                                                 6.52
                                                                       •••
                                                                            0.22
                                           -7.99
0.156
       5.99
              9.13
                      8.49
                             4.06
                                   -3.26
                                                   -3.83
                                                          2.91
                                                                       • • •
                                                                           0.156
                                                                 6.8
0.157
       7.27
              10.37
                      9.56
                             4.97
                                   -5.27
                                           -16.12
                                                   -5.87
                                                           3.77
                                                                 7.71
                                                                           0.157
0.998
       9.04
              11.08
                     10.12
                             5.76
                                   -2.14
                                           -38.65
                                                   -2.75
                                                          4.52
                                                                           0.998
                                                                 8.19
                                                                                  kNm/m
       7.22
0.156
              10.28
                      9.44
                             4.85
                                   -5.36
                                           -16.18
                                                   -5.96
                                                           3.62
                                                                 7.56
                                                                           0.156
0.152
       5.87
               8.93
                      8.23
                             3.77
                                   -3.42
                                           -8.03
                                                   -4.01
                                                           2.59
                                                                 6.47
                                                                           0.152
0.194
       5.51
               8.38
                      7.69
                             3.47
                                   -2.49
                                           -5.74
                                                   -3.07
                                                           2.31
                                                                 5.98
                                                                           0.194
0.152
       5.87
               8.93
                      8.23
                             3.77
                                   -3.42
                                           -8.03
                                                   -4.01
                                                          2.59
                                                                 6.47
                                                                           0.152
                              :
                                                            :
                                                                  ÷
                :
                       :
                                             :
                                                                             ÷
L 1.5
                                                                            1.5
        8.5
              11.07
                     10.48
                             6.8
                                   0.884 -31.24
                                                   0.302 \quad 5.64 \quad 8.78 \quad \cdots
```


Bending moments M_y – transp(My) =

г 1.57	0.321	0.233	0.215	0.168	0.18	1.02	0.179	0.167	0.21	•••	1.57	
7.81	5.38	4.31	4.13	4.74	6.34	8.23	6.28	4.61	3.89	•••	7.81	
9.34	7.13	5.8	5.55	6.41	8.12	9.05	8.01	6.19	5.14	•••	9.34	
7.67	5.42	4.26	3.92	4.23	5.42	6.34	5.3	3.98	3.48	•••	7.67	
3.33	-0.328	0.54	0.406	-1.17	-3.41	-0.33	-3.53	-1.4	0.0996	•••	3.33	
-28.36	-7.04	-1.94	-1.65	-4.99	-13.64	-36.32	-13.77	-5.22	-1.86	•••	-28.36	kNm/m
3.15	-0.507	0.349	0.18	-1.46	-3.76	-0.723	-3.92	-1.77	-0.252	•••	3.15	KINIII
7.32	5.09	3.91	3.49	3.68	4.69	5.5	4.48	3.25	2.79	•••	7.32	
8.9	6.74	5.35	4.96	5.61	6.91	7.57	6.69	5.14	4.18	•••	8.9	
7.32	5.09	3.91	3.49	3.68	4.69	5.5	4.48	3.25	2.79	•••	7.32	
:	:	:	:	:	:	:	:	:	:	٠.	÷	
L _{1.57}	0.32	0.233	0.215	0.168	0.18	1.02	0.179	0.167	0.21	•••	1.57 -	

Bending moments M_{xy} – transp(Mxy) =

г 8.09	4.11	1.42	-0.946	-3.23	-4.78	0.0218	4.84	3.34	1.14	•••	-8.09	
3.77	2.57	0.983	-0.516	-2.06	-3.23	0.0582	3.35	2.21	0.731	•••	-3.77	
0.486	0.367	0.21	0.0857	-0.12	-0.314	0.0735	0.461	0.267	0.0568	•••	-0.486	
-2.48	-1.8	-0.601	0.617	1.75	2.09	0.0763	-1.95	-1.63	-0.581		2.48	
-4.46	-3.24	-0.898	0.683	2.37	4.52	0.0758	-4.38	-2.26	-0.682		4.46	
0.155	0.161	0.149	0.125	0.0964	0.078	0.0739	0.0699	0.0513	0.0211		-0.155	kNm/m
4.78	3.57	1.19	-0.451	-2.21	-4.4	0.0635	4.54	2.38	0.725	•••	-4.78	KINIII/III
2.84	2.13	0.868	-0.438	-1.68	-2.08	0.0378	2.17	1.8	0.63		-2.84	
0	0	0	0	0	0	0	0	0	0		-0	
-2.84	-2.13	-0.868	0.438	1.68	2.08	-0.0378	-2.17	-1.8	-0.63	•••	2.84	
:	:	:	:	:	:	:	:	:	:	٠.	÷	
L-8.09	-4.11	-1.42	0.946	3.23	4.78	-0.0218	-4.84	-3.34	-1.14	•••	8.09 -	

Element stiffness matrix calculation by analytical expressions (faster)

$$\alpha = \frac{b_1}{a_1} = 1$$

$$K_{e_{1,1}} = \frac{156}{35} \cdot \left(\frac{\alpha}{a_1^2} + \frac{1}{\alpha \cdot b_1^2}\right) + \frac{72}{25 \cdot A_1} = 32.76$$

$$K_{e_{5.5}} = K_{e_{1.1}}$$
 , $K_{e_{9.9}} = K_{e_{1.1}}$, $K_{e_{13.13}} = K_{e_{1.1}}$

$$K_{e_{1,2}} = \frac{2}{35} \cdot \left(\frac{39 \cdot \alpha}{a_1} + \frac{11}{\alpha^2 \cdot b_1}\right) + \frac{30 \cdot \nu + 6}{25 \cdot b_1} = 5.56$$

$$K_{e_{5,6}} = -K_{e_{1,2}}$$
 , $K_{e_{9,10}} = -K_{e_{1,2}}$, $K_{e_{13,14}} = K_{e_{1,2}}$

$$K_{e_{1,3}} = \frac{2}{35} \cdot \left(\frac{11 \cdot \alpha^2}{a_1} + \frac{39}{\alpha \cdot b_1}\right) + \frac{30 \cdot \nu + 6}{25 \cdot a_1} = 5.56$$

$$K_{e_{5,7}} = K_{e_{1,3}} \; , \; K_{e_{9,11}} = -K_{e_{1,3}} \; , \; K_{e_{13,15}} = -K_{e_{1,3}}$$

$$K_{e_{1,4}} = \frac{11}{35} \cdot \left(\alpha^2 + \frac{1}{\alpha^2}\right) + \frac{10 \cdot \nu + 1}{50} = 0.689$$

$$K_{e_{5,8}} = -K_{e_{1,4}}$$
 , $K_{e_{9,12}} = K_{e_{1,4}}$, $K_{e_{13,16}} = -K_{e_{1,4}}$

$$K_{e_{1,5}} = \frac{2}{35} \cdot \left(\frac{27}{\alpha \cdot b_1^2} - \frac{78 \cdot \alpha}{a_1^2}\right) - \frac{72}{25 \cdot A_1} = -16.1$$

$$K_{e_{9,13}} = K_{e_{1,5}}$$

$$K_{e_{1,6}} = \frac{13}{35} \cdot \left(\frac{6 \cdot \alpha}{a_1} - \frac{1}{\alpha^2 \cdot b_1} \right) + \frac{6}{25 \cdot b_1} = 3.5$$

$$K_{e_{2,5}} = -K_{e_{1,6}}$$
 , $K_{e_{9,14}} = -K_{e_{1,6}}$, $K_{e_{10,13}} = K_{e_{1,6}}$

$$K_{e_{1,7}} = \frac{1}{35} \cdot \left(\frac{27}{\alpha \cdot b_1} - \frac{22 \cdot \alpha^2}{a_1}\right) - \frac{30 \cdot \nu + 6}{25 \cdot a_1} = -0.562$$

$$K_{e_{3,5}} = K_{e_{1,7}}$$
 , $K_{e_{9,15}} = -K_{e_{1,7}}$, $K_{e_{11,13}} = -K_{e_{1,7}}$

$$K_{e_{2,4}} = \frac{2}{35} \cdot \left(\frac{11 \cdot \alpha \cdot b_1}{3} + \frac{a_1}{\alpha^2}\right) + \frac{2 \cdot a_1 \cdot (5 \cdot \nu + 1)}{75} = 0.192$$

$$K_{e_{6,8}} = K_{e_{2,4}} \,, \ K_{e_{10,12}} = -K_{e_{2,4}} \,, \ K_{e_{14,16}} = -K_{e_{2,4}}$$

$$K_{e_{2,6}} = \frac{1}{35} \cdot \left(26 \cdot \alpha - \frac{3}{\alpha^3}\right) - \frac{2}{25 \cdot \alpha} = 0.577$$

$$K_{e_{10,14}} = K_{e_{2,6}}$$

$$K_{e_{2,8}} = \frac{1}{35} \cdot \left(\frac{11 \cdot \alpha \cdot b_1}{3} - \frac{3 \cdot a_1}{2 \cdot \alpha^2} \right) - \frac{a_1 \cdot (5 \cdot \nu + 1)}{150} = 0.0291$$

$$K_{e_{4,6}} = K_{e_{2,8}}$$
 , $K_{e_{10,16}} = -K_{e_{2,8}}$, $K_{e_{12,14}} = -K_{e_{2,8}}$

$$K_{e_{2,10}} = \frac{3}{35} \cdot \left(\frac{1}{\alpha^3} + 3 \cdot \alpha\right) + \frac{2}{25 \cdot \alpha} = 0.423$$

$$K_{e_{6,14}} = K_{e_{2,10}}$$

$$K_{e_{2,12}} = -\frac{1}{70} \cdot \left(\frac{3 \cdot a_1}{\alpha^2} + \frac{13 \cdot \alpha \cdot b_1}{3}\right) - \frac{a_1}{150} = -0.0669$$

$$K_{e_{4,10}} = -K_{e_{2,12}}$$
 , $K_{e_{6,16}} = K_{e_{2,12}}$, $K_{e_{8,14}} = -K_{e_{2,12}}$

$$K_{e_{2,14}} = \frac{2}{35} \cdot \left(9 \cdot \alpha - \frac{2}{\alpha^3}\right) - \frac{8}{25 \cdot \alpha} = 0.08$$

$$K_{e_{6,10}} = K_{e_{2,14}}$$

$$K_{e_{2,15}} = \frac{1}{35} \cdot \left(\frac{11}{\alpha^2} - \frac{13 \cdot \alpha^2}{2}\right) + \frac{5 \cdot \nu + 1}{50} = 0.169$$

$$K_{e_{3,14}} = -K_{e_{2,15}}$$
 , $K_{e_{6,11}} = -K_{e_{2,15}}$, $K_{e_{7,10}} = K_{e_{2,15}}$

$$K_{e_{1,14}} = \frac{1}{35} \cdot \left(\frac{27 \cdot \alpha}{a_1} - \frac{22}{\alpha^2 \cdot b_1}\right) - \frac{30 \cdot \nu + 6}{25 \cdot b_1} = -0.562$$

$$K_{e_{2,13}} = K_{e_{1,14}} \,, \ K_{e_{5,10}} = -K_{e_{1,14}} \,, \ K_{e_{6,9}} = -K_{e_{1,14}} \,$$

$$K_{e_{1,15}} = \frac{13}{35} \cdot \left(\frac{6}{\alpha \cdot b_1} - \frac{\alpha^2}{a_1}\right) + \frac{6}{25 \cdot a_1} = 3.5$$

$$K_{e_{3,13}} = {}^{\mbox{-}}\!K_{e_{1,15}} \,,\; K_{e_{5,11}} = K_{e_{1,15}} \,,\; K_{e_{7,9}} = {}^{\mbox{-}}\!K_{e_{1,15}}$$

$$K_{e_{1,16}} = \frac{1}{35} \cdot \left(\frac{11}{\alpha^2} - \frac{13 \cdot \alpha^2}{2}\right) + \frac{5 \cdot \nu + 1}{50} = 0.169$$

$$K_{e_{4,13}} = -K_{e_{1,16}}$$
 , $K_{e_{8,9}} = K_{e_{1,16}}$, $K_{e_{5,12}} = -K_{e_{1,16}}$

$$K_{e_{2,2}} = \frac{4}{35} \cdot \left(13 \cdot \alpha + \frac{1}{\alpha^3}\right) + \frac{8}{25 \cdot \alpha} = 1.92$$

$$K_{e_{\,6,6}} = K_{e_{\,2,2}}\,,\; K_{e_{\,10,10}} = K_{e_{\,2,2}}\,,\; K_{e_{\,14,14}} = K_{e_{\,2,2}}\,$$

$$K_{e_{2,3}} = \frac{11}{35} \cdot \left(\alpha^2 + \frac{1}{\alpha^2}\right) + \frac{60 \cdot \nu + 1}{50} = 0.889$$

$$K_{e_{6,7}} = -K_{e_{2,3}}$$
 , $K_{e_{10,11}} = K_{e_{2,3}}$, $K_{e_{14,15}} = -K_{e_{2,3}}$

$$K_{e_{3,16}} = -\frac{1}{35} \cdot \left(\frac{3 \cdot \alpha^2 \cdot b_1}{2} - \frac{11 \cdot a_1}{3 \cdot \alpha} \right) - \frac{b_1 \cdot (5 \cdot \nu + 1)}{150} = 0.0291$$

$$K_{e_{4,15}} = K_{e_{3,16}}$$
 , $K_{e_{7,12}} = -K_{e_{3,16}}$, $K_{e_{8,11}} = -K_{e_{3,16}}$

$$K_{e_{4,4}} = \frac{4}{105} \cdot \left(\alpha \cdot b_1^2 + \frac{{a_1}^2}{\alpha}\right) + \frac{8 \cdot A_1}{225} = 0.0402$$

$$K_{e_{8,8}} = K_{e_{4,4}} \,, \; K_{e_{12,12}} = K_{e_{4,4}} \,, \; K_{e_{16,16}} = K_{e_{4,4}}$$

$$K_{e_{4,8}} = \frac{1}{35} \cdot \left(\frac{2 \cdot \alpha \cdot b_1^2}{3} - \frac{a_1^2}{\alpha}\right) - \frac{2 \cdot A_1}{225} = -0.00663$$

$$K_{e_{12.16}} = K_{e_{4.8}}$$

$$K_{e_{4,12}} = -\frac{1}{70} \cdot \left(\frac{a_1^2}{\alpha} + \alpha \cdot b_1^2\right) + \frac{A_1}{450} = -0.00949$$

$$K_{e_{8.16}} = K_{e_{4.12}}$$

$$K_{e_{4,16}} = \frac{1}{35} \cdot \left(\frac{2 \cdot a_1^2}{3 \cdot \alpha} - \alpha \cdot b_1^2 \right) - \frac{2 \cdot A_1}{225} = -0.00663$$

$$K_{e_{8,12}} = K_{e_{4,16}}$$

$$K_{e_{1,8}} = \frac{1}{35} \cdot \left(11 \cdot \alpha^2 - \frac{13}{2 \cdot \alpha^2} \right) + \frac{5 \cdot \nu + 1}{50} = 0.169$$

$$K_{e_{2,7}} = -K_{e_{1,8}}$$
 , $K_{e_{3,6}} = K_{e_{1,8}}$, $K_{e_{4,5}} = -K_{e_{1,8}}$, $K_{e_{9,16}} = K_{e_{1,8}}$

$$K_{e_{10,15}} = -K_{e_{1,8}}$$
 , $K_{e_{11,14}} = K_{e_{1,8}}$, $K_{e_{12,13}} = -K_{e_{1,8}}$

$$K_{e_{1,9}} = -\frac{54}{35} \cdot \left(\frac{\alpha}{a_1^2} + \frac{1}{\alpha \cdot b_1^2}\right) + \frac{72}{25 \cdot A_1} = -0.571$$

$$K_{e_{5,13}} = K_{e_{1,9}}$$

$$K_{e_{1,10}} = \frac{1}{35} \cdot \left(\frac{27 \cdot \alpha}{a_1} + \frac{13}{\alpha^2 \cdot b_1}\right) - \frac{6}{25 \cdot b_1} = 1.5$$

$$K_{e_{2,9}} = -K_{e_{1,10}}$$
 , $K_{e_{5,14}} = -K_{e_{1,10}}$, $K_{e_{6,13}} = K_{e_{1,10}}$

$$K_{e_{1,11}} = \frac{1}{35} \cdot \left(\frac{13 \cdot \alpha^2}{a_1} + \frac{27}{\alpha \cdot b_1} \right) - \frac{6}{25 \cdot a_1} = 1.5$$

$$K_{e_{3,9}} = -K_{e_{1,11}}$$
 , $K_{e_{5,15}} = K_{e_{1,11}}$, $K_{e_{7,13}} = -K_{e_{1,11}}$

$$K_{e_{1,12}} = -\frac{13}{70} \cdot \left(\alpha^2 + \frac{1}{\alpha^2}\right) + \frac{1}{50} = -0.351$$

$$K_{e_{2,11}} = -K_{e_{1,12}}$$
 , $K_{e_{3,10}} = -K_{e_{1,12}}$, $K_{e_{4,9}} = K_{e_{1,12}}$, $K_{e_{5,16}} = -K_{e_{1,12}}$

$$K_{e_{6,15}} = K_{e_{1,12}}$$
 , $K_{e_{7,14}} = K_{e_{1,12}}$, $K_{e_{8,13}} = -K_{e_{1,12}}$

$$K_{e_{1,13}} = \frac{2}{35} \cdot \left(\frac{27 \cdot \alpha}{{a_1}^2} - \frac{78}{\alpha \cdot {b_1}^2}\right) - \frac{72}{25 \cdot A_1} = -16.1$$

$$K_{e_{5,9}} = K_{e_{1,13}}$$

$$K_{e_{2,16}} = \frac{1}{35} \cdot \left(\frac{2 \cdot a_1}{\alpha^2} - \frac{13 \cdot \alpha \cdot b_1}{3}\right) + \frac{2 \cdot a_1}{75} = -0.024$$

$$K_{e_{4,14}} = -K_{e_{2,16}}$$
 , $K_{e_{6,12}} = K_{e_{2,16}}$, $K_{e_{8,10}} = -K_{e_{2,16}}$

$$K_{e_{3,3}} = \frac{4}{35} \cdot \left(\alpha^3 + \frac{13}{\alpha}\right) + \frac{8 \cdot \alpha}{25} = 1.92$$

$$K_{e_{7,7}} = K_{e_{3,3}}$$
 , $K_{e_{11,11}} = K_{e_{3,3}}$, $K_{e_{15,15}} = K_{e_{3,3}}$

$$K_{e_{3,4}} = \frac{2}{35} \cdot \left(\alpha^2 \cdot b_1 + \frac{11 \cdot a_1}{3 \cdot \alpha}\right) + \frac{2 \cdot b_1 \cdot (5 \cdot \nu + 1)}{75} = 0.192$$

$$K_{e_{7,8}} = -K_{e_{3,4}}$$
 , $K_{e_{11,12}} = -K_{e_{3,4}}$, $K_{e_{15,16}} = K_{e_{3,4}}$

$$K_{e_{3,7}} = \frac{2}{35} \cdot \left(-2 \cdot \alpha^3 + \frac{9}{\alpha}\right) - \frac{8 \cdot \alpha}{25} = 0.08$$

$$K_{e_{11.15}} = K_{e_{3.7}}$$

$$K_{e_{3,8}} = \frac{1}{35} \cdot \left(2 \cdot \alpha^2 \cdot b_1 - \frac{13 \cdot a_1}{3 \cdot \alpha} \right) + \frac{2 \cdot b_1}{75} = -0.024$$

$$K_{e_{4,7}} = -K_{e_{3,8}}$$
 , $K_{e_{11,16}} = -K_{e_{3,8}}$, $K_{e_{12,15}} = K_{e_{3,8}}$

$$K_{e_{3,11}} = \frac{3}{35} \cdot \left(\alpha^3 + \frac{3}{\alpha}\right) + \frac{2 \cdot \alpha}{25} = 0.423$$

$$K_{e_{7,15}} = K_{e_{3,11}}$$

$$K_{e_{3,12}} = -\frac{1}{70} \cdot \left(3 \cdot \alpha^2 \cdot b_1 + \frac{13 \cdot a_1}{3 \cdot \alpha}\right) - \frac{b_1}{150} = -0.0669$$

$$K_{e_{4.11}} = -K_{e_{3.12}}$$
 , $K_{e_{7.16}} = -K_{e_{3.12}}$, $K_{e_{8.15}} = K_{e_{3.12}}$

$$K_{e_{3,15}} = \frac{1}{35} \cdot \left(\frac{26}{\alpha} - 3 \cdot \alpha^3\right) - \frac{2 \cdot \alpha}{25} = 0.577$$

$$K_{e_{7,11}} = K_{e_{3,15}}$$

Element stiffness matrix coefficients (above the main diagonal only)

Element load vector

$$\vec{F}_e = \frac{q \cdot A_1}{24} \cdot \left[6; a_1; b_1; \frac{A_1}{6}; 6; -a_1; b_1; \frac{-A_1}{6}; 6; -a_1; -b_1; \frac{A_1}{6}; 6; a_1; -b_1; \frac{-A_1}{6}\right] =$$

 $[0.9 \ 0.09 \ 0.09 \ 0.009 \ 0.9 \ -0.09 \ 0.09 \ -0.009 \ 0.9 \ -0.09 \ \dots \ -0.009]$ kN

The obtained element stiffness matrix and load vector are identical to the numerical formulation.

[1] Bogner, F. K., Fox, R. L., and Schmit, L. A. The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae, *Proceedings of the Conference on Matrix Methods in Structural Mechanics*, 397–444, 1965