Contents

Finite-State Machines

1

Finite-State Machines

A finite-state recognising machine is described by:

- A finite set of states
- A finite set of input symbols
- A transition function **a** which assigns a new state to every combination of state and input

Design a finite state machine to check an input sequence of 1's & 0's for odd parity

- What is parity?
 - Number of 1's in a string
- What is the parity of an empty string?
 - Empty string is 0
 - -0 is an even number
- states: {even, odd}
- inputs: {0, 1}
- Transitions
 - $-\delta$ (even, 0) => even
 - $-\delta$ (even, 1) => odd
 - $-\delta(\text{odd, 0}) \Rightarrow \text{odd}$
 - $-\delta(\text{odd, 1})$ => even
- accepting states: {odd}
- starting state: {even}

Transition Table

	0	1		
even	even	odd	0	Rejecting State
odd	odd	even	1	Accepting State

• Example:

- 1011

even
$$(1)$$
 -> odd (0) -> odd (1) -> even (1) -> odd

Transition Diagram

Starting State -> (even) -(1)-> ((odd))
$$-(0)\hat{} -(1)- -(0)\hat{}$$

Only useful when debugging sequences

Design a FSM to check an input sequence of 0's and 1's to verify that the 1's occur in pairs $\frac{1}{2}$

- String of 0's accepted
- states: {waiting_pair, not_pair, pair}
- inputs: {0, 1}
- Transitions
 - δ (pair, 0) -> pair
 - $-\delta$ (pair, 1) -> waiting_pair
 - δ (waiting_pair, 0) -> not_pair
 - δ (waiting_pair, 1) -> pair
 - $\delta({\tt not_pair},$ 0) -> ${\tt not_pair}$
 - $\delta({\tt not_pair},$ 1) -> ${\tt not_pair}$
- accepting states: {pair}
- starting state: {pair}

Transition Table

	0	1		
pair	pair	waiting_pair	0	Rejecting State
waiting_pair	${\rm not}_{\rm pair}$	pair	1	Accepting State
not_pair	not_pair	not_pair	0	Rejecting State

	0	1	-1
No Ones	No Ones	One One	"Yes"
One One	Error	No Ones	"No"
Error	Error	Error	"No"

Processing Machine

	0	1	-1
No Ones	No Ones	One One	"Yes"
One One	"No"	No Ones	"No"

Behaviour we want for the lexical analyser

What is the difference between these two FSM |~|0|1|~|~|-|-|~|~|S|S|S|0|

• Recognises {} or \emptyset , i.e. nothing

- Recognises ε , i.e. null/empty string
- $\bullet\,$ Any FSM whose starting state is an accepting state recognises the null string

Design a FSM to recognise any valid sequence that can follow the keyword Integer in Fortran

INTEGER X(5, I, 2), Y

	X	(5	,	Ι	,	2)	,	Y
1	2	3	4	5	6	5	4	7	8	2

- 2. Name of ident to be made integer
- 3. Left parenthesis
- 4. Constant specifying a dimension
- 5. Comma separating dimensions
- $6.\ \,$ Variable identifier specifying an adjustable dimension
- 7. Right parenthesis
- 8. Comma seperating items to be made integer
- $input \ alphabtet = \{V, C, ', ', (,)\}$
 - V = Variable Identifier
 - C = Constant
 - Two finite state machines
 - * One recognising the variable identifiers
 - * One recognising the constants
- states = {1, 2, 3, 4, 5, 6, 7, 8, E}
- $starting\ state = 1$
- $accepting\ states = \{2, 7\}$

Transition Table

	V	С	,	()	
1	2					0
2			8 3		1	
3	6	4				0
4			5		7	0
5	6	4				0
6			5		7	0
7			8			1
8	2					0
\mathbf{E}						0

Remove extraneous states

- {1, 2, 8, 3, 6, 4, 5, 7, E}
- Partition states {1, 2, 3, 4, 5, 6, 7, 8}
 - $P0: \{2, 7\}, \{1, 3, 4, 5, 6, 8, E\}$
 - $P1: \{2, 7\}, \{1, 8\}, \{3, 4, 5, 6, E\}$

```
- P2: {2, 7}, {1, 8}, {4, 6}, {3, 5, E}
- P3: {2, 7}, {1, 8}, {4, 6}, {3, 5} {E}
- P4: {2}, {7}, {1, 8}, {4, 6}, {3, 5} {E}
```

- {1, 8} A
- {3, 5} B
- {4, 6} C

	V	С	,	()	
A	2					0
2			A	В		1
В	\mathbf{C}	\mathbf{C}				0
\mathbf{C}			В		7	0
7			A			1
Е						0

Use a transliterator to reduce the size of the input alphabet

Source statements -> |Transliterator| -(Character Tokens)> |Lexical Analyser| -(Lexical Tokens)>

- Character Tokens (Class, Value)
 - (digit, '7') (letter, 'Z') (sign '+')