RJS McDonald

MATH 118

Groups 1.2.12 Show that $\mathbf{u}=(2,3)$ and $\mathbf{v}=(-3,2)$ meet at right angles. Hint: we've already seen that (a,b) lives on the line ay=bx

 $y = -\frac{2}{3} \times$

び lives on Y= 曼x

(a,b), (-b,a)

 $\langle a,b \rangle \cdot \langle -b,a \rangle = -ab + ab = 0$ $\langle a,b \rangle \cdot \langle -kb,ka \rangle$

4- 6 X

= Kab - Kab = 0

Groups 1.2.14 Find a nonzero vector in \mathbb{R}^3 that is orthogonal to $\mathbf{u} = (1, 2, 3)$.

Let
$$(x_1, x_2, x_3)$$

be perpendicular to $(1, 2, 3)$
 $(1, 2, 3) \cdot (x_1, x_2, x_3) = 0$
 $(1, 2, 3) \cdot (x_1, x_2, x_3) = 0$
 $(1, 2, 3) \cdot (x_1, x_2, x_3) = 0$
 $(1, 1, -1)$
 $(2, -1, 0)$

Question 1.2.16 What does this tell us about the sign of the dot product $\mathbf{u} \cdot \mathbf{v}$?

1.3 Matrices

1.3. Key Ideas

- $\bullet\,$ linear equations and vector equations
- $\bullet\,$ solving simple systems of equations
- matrices
- Matrix times vector: $A\mathbf{x} = \text{linear combination of the columns of } A \text{ with } x_i \text{ as weights.}$

1.3.1 Linear equations

Example 1.3.1 Suppose we are buying and selling candy, again. Remember, gum costs \$1.00 for a pack, chocolate is \$0.75 a bar, and hard candies are \$1.50 for a roll. Suppose

- Monday, we sell 10 packs of gum and 20 chocolate bars and buy 10 rolls of hard candy,
- Tuesday, we buy 10 packs of gum, sell 10 chocolate bars, and buy/sell no hard candies,
- Wednesday, we buy/sell no packs of gum, buy 4 chocolate bars, and buy/sell no hard candies.

What is our net profit?

On
$$q_{0}$$
?...

 $\begin{cases} 1.00 \\ 0.75 \\ 1.50 \end{cases}$
 $\begin{cases} 10 \\ 0.75 \\ 10 \end{cases}$
 $\begin{cases} 10 \\ 0.75$

RJS McDonald $\mathrm{MATH}\ 118$

Example 1.3.4 Which of the following are linear equations?

1.
$$4x_1 - 5x_2 + 2 = x_1$$

2.
$$x_2 = 2(\sqrt{6} - x_1) + x_3$$
 +2x, + $x_2 - x_3 = 2\sqrt{6}$
3. $4x_1 - 5x - x_1x_2$

3.
$$4x_1 - 5x - x_1x_2$$

Example 1.3.6 Is (5,6.5,3) in the solution set (the set of all solutions) of the system

$$2x_{1} - x_{2} + 1.5x_{3} = 8$$

$$x_{1} - 4x_{3} = -7$$
1.e. is $(5, 6.5, 3)$ in both
lines $(1-e. \text{ in intersection})$

$$2(5) = 6.5 + 1.5(3) \stackrel{?}{=} 8$$

$$5 - 4(3) \stackrel{?}{=} -7$$

Example 1.3.9 What are the solution sets of the following systems?

Example 1.3.10 What is the solution set of the following system? If we fix b_1, b_2, b_3 , how many solutions will it have?

Example 1.3.11 How can we interpret solutions to systems of equations with three variables geometrically?

1.3.2 Matrices

$$= 1.00 (10) + 0.75(70) + 1.50(-10)$$

$$1.00 (0) + 0.75(10) + 1.50(0)$$

$$1.00 (0) + 0.75(4) + 1.50(0)$$

$$= 1.00 \begin{bmatrix} 10 \\ 0 \end{bmatrix} + 0.75 \begin{bmatrix} 70 \\ 10 \end{bmatrix} + 1.50 \begin{bmatrix} -10 \\ 0 \end{bmatrix}$$

Example 1.3.15 Compute the product $A\mathbf{x}$ where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

1.3.3 Linear equations and matrices

Example 1.3.17 Compute the product $A\mathbf{x}$ where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Example 1.3.18 What if $A\mathbf{x} = \mathbf{b}$ where A and \mathbf{b} are given, but \mathbf{x} is unknown? How could we find \mathbf{x} if we're told

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Example 1.3.19 What is x if

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Chapter 2

Solving Linear Equations

2.1 Vectors and linear equations

2.1. Key Ideas

- $\bullet\,$ systems of equations can have no, one, or many solutions
- ullet a system of equations with at least one solution is called consistent
- systems can be solved using back substitution

RJS McDonald $\mathrm{MATH}\ 118$

Example 2.1.1 How many solutions do each of the following systems have?

(a)
$$x_1 - 2x_2 = -1$$
 (b) $x_1 - 2x_2 = -1$ (c) $x_1 - 2x_2 = -1$

$$x_1 - 2x_2 = -1$$
 (b) $x_1 - 2x_2 = -1$ (c) $-x_1 + 3x_2 = 3$ $-x_1 + 2x_2 = 3$

(c)
$$x_1 - 2x_2 = -1$$

 $2x_1 - 4x_2 = -2$

RJS McDonald $\mathrm{MATH}\ 118$

Example 2.1.3 Are the following system consistent?

(a)
$$x_1 - 2x_2 = -1$$

(a)
$$x_1 - 2x_2 = -1$$
 (b) $x_1 - 2x_2 = -1$ (c) $x_1 - 2x_2 = -1$ $-x_1 + 3x_2 = 3$ $2x_1 - 4x_2 = -2$

(c)
$$x_1 - 2x_2 \equiv -1$$

 $2x_1 - 4x_2 = -2$

Example 2.1.5 Determine if the following system of equations is consistent.

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 \qquad -5x_3 = 10$$

2.2 The idea of elimination

2.2. Key Ideas

- $\bullet\,$ A linear system becomes upper triangular after elimination.
- We subtract ℓ_{ij} times equation j from equation i to make the (i,j) entry zero, where

$$\ell_{ij} = \frac{(i,j) \text{ entry}}{\text{pivot in row } j}.$$

• The upper triangular system is solved by back substitution.

RJS McDonald $\mathrm{MATH}\ 118$

Example 2.2.1 In Section 1.3 we determined whether the following systems were consistent using geometric and substitution arguments. Is there an algebraic way to do this without substitution?

(a)
$$x_1 - 2x_2 = -1$$
 (b) $x_1 - 2x_2 = -1$ (c) $x_1 - 2x_2 = -1$ $-x_1 + 3x_2 = 3$ $-x_1 + 2x_2 = 3$ $2x_1 - 4x_2 = -2$

$$(b)$$
 x_1

$$xx_2 = -1$$

(c)
$$x_1 - 2x_2 = -$$

$$2x_1 - 4x_2 = -2$$

Example 2.2.3 Determine if the following system of equations is consistent without substitution

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 \qquad -5x_3 = 10$$

Example 2.2.4 Determine if the following system is consistent:

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$4x_1 - 6x_2 + 4x_3 = 1$$

2.3 Elimination using matrices

2.3. Key Ideas

- $\bullet\,$ we can record information about a system in a matrix
- \bullet we can use elementary row operations to reduce matrices
- row reduction algorithm and how to use it to solve a system of equations

Example 2.3.3 Solve the system

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

using a matrix.

Example 2.3.6 Determine if the following system is consistent:

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$4x_1 - 8x_2 + 12x_3 = 1$$

RJS McDonald $\mathrm{MATH}\ 118$

Example 2.3.8 Which of the following is in echelon form? Reduced echelon form?

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & 5/2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 2 & 12 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{array}\right]$$

$$\left[\begin{array}{cccc} 1 & 0 & 0 & -5 \\ 0 & 1 & 2 & 12 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Example 2.3.11 Label the pivot positions and pivot columns of the matrices above.

Example 2.3.12 Row reduce the matrix A to echelon form and locate pivot columns.

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Example 2.3.14 Apply elementary row operations to transform the following matrix into echelon form, and then reduced echelon form.

$$\begin{bmatrix}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{bmatrix}$$

Example 2.3.16 Find the general solution of a linear system whose augmented matrix can be reduced to the matrix below.

$$\left[\begin{array}{ccc|c} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Example 2.3.19 Find the general solution of a system whose augmented matrix is reduced to

Example 2.3.20 Determine the existence and uniqueness of the solutions to the system

$$3x_2 - 6x_3 + 6x_4 + 4x_5 = -5$$

$$3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9$$

$$3x_1 - 9x_2 + 12x_3 - 9x_4 + 6x_5 = 15$$

Using the theorem, and the rest of this section, we have the following procedure to find and describe all the solutions of a linear system.

2.4 Rules for matrix operations

2.4. Key Ideas

- The (i, j) entry of AB is the dot product of row i of A with column j of B.
- An $m \times n$ matrix times an $n \times p$ matrix gives an $m \times p$ matrix, and uses mnp separate multiplications.
- A(BC) = (AB)C, but $AB \neq BA$ in general

Example 2.4.3 Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -6 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 3 \\ 5 & -6 \end{bmatrix}$. Find $A + B$, $B + A$, and $A + C$.

Example 2.4.5 Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$. Find $2B$ and $A - 2B$.

Example 2.4.9 Compute AB and BA, when $A = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 5 & 1 \\ 2 & -8 & 3 \end{bmatrix}$.

Example 2.4.11 With A and B from Example 2.4.9, compute AB using the row-column rule.

Example 2.4.13 Let
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$, and $D = \begin{bmatrix} 3 & 9 \\ 2 & 6 \end{bmatrix}$.

- (a) Find AB and BA.
- (b) Find AC.
- (c) Find AD.

Example 2.4.16 Let
$$A = \begin{bmatrix} a & b & d \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \\ 6 & 2 \end{bmatrix}$, and $C = \begin{bmatrix} 5 & -2 & 1 & 3 \\ 3 & 1 & 2 & -6 \end{bmatrix}$.

Find A^T , B^T , and C^T .