Statistics lecture 1

This lecture is created and assembled by "Sulaiman Ahmed". Do not share without proper credit.

Email: sulaimanahmed013@gmail.com

Website: sulaimanahmed013.wixsite.com/my-site

LinkedIn: linkedin.com/in/sulaimanahmed

1. Statistics and Its Applications

Statistics is a field that deals with:

- · Collection of data
- Organization of data
- · Analysis of data
- · Interpretation of data
- · Presentation of data

The ultimate goal of statistics is to enable effective decision-making based on data analysis.

Example: Online Shopping Age Data

Consider an age feature for online shopping:

24, 27, 14, 13, 28, 29, 31, 32

With this data, we can calculate:

- Mean age: The average age of the customers.
- Median age: The middle value when the ages are ordered.
- · Distribution of age: Understanding how ages are spread out across the dataset.

We can also create visualizations such as:

- Histograms: To see the frequency distribution of ages.
- Probability Density Function (PDF): To understand the likelihood of different age ranges.
- Cumulative Density Function (CDF): To understand the cumulative probability up to a certain age.

Applications of Statistics

Statistics is widely used in various fields. Some key applications include:

1. Machine Learning and Data Science: Used for model building, validation, and prediction.

- Example: Predicting housing prices based on historical data.
- 2. Data Analysis: Helps in extracting insights from data.
 - Example: Analyzing customer feedback to improve products.
- 3. Business Intelligence and Analytics: Assists in making informed business decisions.
 - Example: Determining the best marketing strategy based on sales data.
- 4. Risk Analysis: Used in finance and insurance to assess risks.
 - Example: Calculating the risk of loan defaults.
- 5. Everyday life decisions: Helps in making informed personal decisions.
 - Example: Analyzing budget and expenses to manage finances.
- 6. Medical research (e.g., vaccine trials): Used to validate the effectiveness and safety of treatments.
 - Example: Determining the efficacy of a new drug through clinical trials.

2. Types of Statistics

There are two main types of statistics:

2.1 Descriptive Statistics

Descriptive statistics involves organizing and summarizing data. It provides simple summaries and visualizations of the data.

Techniques include:

1. Measure of Central Tendency

- . Mean: The average value.
- Median: The middle value when data is sorted.
- Mode: The most frequently occurring value.
- 2. Measure of Dispersion
 - Variance: Measures how far data points are from the mean.
 - Standard Deviation: The square root of the variance, representing the average distance from the mean.

Examples of Descriptive Statistics

- Suppose we have a dataset of exam scores: 85, 88, 92, 91, 87, 90, 89
 - Mean: (85 + 88 + 92 + 91 + 87 + 90 + 89) / 7 = 88.86
 - o Median: The middle value is 89.
 - Mode: There is no mode as no value repeats.
 - Variance and Standard Deviation: These would be calculated to understand the spread of scores.

Real-life Usage

- Sports: Analyzing player performance data to improve strategies.
- Education: Summarizing student test scores to evaluate teaching effectiveness.
- Healthcare: Summarizing patient data to track disease outbreaks.

2.2 Inferential Statistics

Inferential statistics involves making conclusions or inferences about a population based on a sample of data. It allows us to make predictions and generalizations.

Techniques include:

- Z-test: Used to determine if there is a significant difference between sample and population means.
- T-test: Used to compare the means of two groups.
- Chi-square test: Used to examine the association between categorical variables.

Examples of Inferential Statistics

- Medical Trials: Testing the effectiveness of a new drug by experimenting on a sample group and inferring the results to the broader population.
- . Market Research: Using a sample survey to infer the preferences of the entire market.
- Manufacturing: Quality control using sample inspections to infer the quality of the entire production.

Real-life Usage

- Politics: Predicting election outcomes based on exit polls.
- Public Health: Estimating the spread of diseases using sample data.
- Economics: Making economic forecasts based on sample data from surveys.

3. Population vs Sample Data

Population

- · Represents the entire group being studied.
- Denoted by capital N.
- Example: All 100,000 people on an island.

Sample

- A subset of the population.
- · Denoted by lowercase n.
- Example: 10,000 people selected from the island population.

Importance of Sampling

Sampling is used when it's impractical or impossible to study the entire population. It helps in:

- · Reducing costs and time.
- · Making studies feasible.
- Providing results that can be generalized to the population if the sample is representative.

Example

• Exit Polls: During elections, pollsters use samples to predict the outcome of the entire election.

Real-life Usage

- Market Research: Conducting surveys with a sample to understand consumer preferences.
- Healthcare: Clinical trials conducted on a sample of patients to infer the effects on the entire population.
- Environmental Studies: Sampling water from different locations to assess overall pollution levels.

4. Measure of Central Tendency

4.1 Mean (Average)

The mean is the sum of all data points divided by the number of points. It gives an overall average.

For a population:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

 $\mu = N \Sigma i = 1N xi$

For a sample:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

 $x^- = n\sum_{i=1}^{n} n_i x_i$

Where:

- μμ is the population mean.
- $\bar{x}x^-$ is the sample mean.
- x_ixi are individual data points.
- NN is the population size.
- nn is the sample size.

Example

Consider the dataset: 5, 10, 15, 20, 25.

- Population Mean: $\mu = \frac{5+10+15+20+25}{5} = 15\mu = 55+10+15+20+25 = 15$
- Sample Mean (if we consider the sample 5, 10, 15): $\bar{x} = \frac{5+10+15}{3} = 10x^- = 35+10+15 = 10$

Real-life Usage

- Business: Calculating the average sales per month to inform inventory decisions.
- Education: Determining the average score of students to assess overall performance.
- Healthcare: Finding the average heart rate in a study to draw health conclusions.

4.2 Median

The median is the middle value when the data is arranged in order. If the number of observations is even, it is the average of the two middle numbers.

Example

```
For the dataset 4, 8, 15, 16, 23:
Median: 15 (middle value)
For the dataset 4, 8, 15, 16, 23, 42:
Median: (15 + 16) / 2 = 15.5
```

Real-life Usage

- Income Data: Median income is often used instead of mean income to avoid skewing by extremely high values.
- Real Estate: Median home prices are used to understand the market without the influence of extreme values.
- Healthcare: Median survival times in clinical trials to provide a clearer picture of typical outcomes.

4.3 Mode

The mode is the value that appears most frequently in the dataset. There can be more than one mode if multiple values have the same highest frequency.

Example

```
For the dataset 1, 2, 2, 3, 4:Mode: 2For the dataset 1, 1, 2, 2, 3:Mode: 1 and 2 (bimodal)
```

Real-life Usage

- Retail: Determining the most sold product in a store.
- Education: Identifying the most common grade received by students.
- Healthcare: Finding the most common symptom in a patient group.

5. Measure of Dispersion

5.1 Variance

Variance measures the spread of data points around the mean. It is the average of the squared differences from the mean.

For a population:

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

$$\sigma 2 = N \sum_{i=1}^{n} N (x_i - \mu) 2$$

For a sample:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$s2 = n - 1\sum_{i=1}^{n} n(x_i - x_i)^2$$

Where:

- $\sigma^2 \sigma 2$ is the population variance.
- s^2 s2 is the sample variance.

Example

Consider the dataset 2, 4, 4, 4, 5, 5, 7, 9:

- Mean $(\bar{x}x^{-}) = 5$
- Population Variance $(\sigma^2\sigma^2) = \frac{(2-5)^2 + (4-5)^2 + (4-5)^2 + (4-5)^2 + (5-5)^2 + (5-5)^2 + (5-5)^2 + (7-5)^2 + (9-5)^2}{8} = 48(2-5)2 + (4-5)2 + (4-5)2 + (4-5)2 + (5-5)2 + (5-5)2 + (7-5)2 + (9-5)2 = 4$ Sample Variance $(s^2s^2) = \frac{(2-5)^2 + (4-5)^2 + (4-5)^2 + (4-5)^2 + (4-5)^2 + (5-5)^$

Real-life Usage

- Finance: Calculating variance in investment returns to assess risk.
- Manufacturing: Measuring variance in product weights to maintain quality control.
- Healthcare: Analyzing variance in patient response times to treatments.

5.2 Standard Deviation

Standard deviation is the square root of the variance and provides a measure of the average distance between each data point and the mean.

For a population:

$$\sigma = \sqrt{\sigma^2}$$

For a sample:

$$s = \sqrt{s^2}$$

Example

Using the previous dataset 2, 4, 4, 4, 5, 5, 7, 9:

• Population Standard Deviation ($\sigma\sigma$) = $\sqrt{4}$ = 2 4

= 2

• Sample Standard Deviation (ss) = $\sqrt{4.57} \approx 2.14 + 4.57$

v ≈ 2.14

Real-life Usage

• Finance: Assessing the volatility of stock prices.

• **Education**: Understanding the spread of test scores among students.

• Healthcare: Evaluating the consistency of medical test results.

This lecture is created and assembled by "Sulaiman Ahmed". Do not share without proper credit.

Email: sulaimanahmed013@gmail.com

Website: sulaimanahmed013.wixsite.com/my-site

LinkedIn: linkedin.com/in/sulaimanahmed