Катеты a, b треугольника связаны c его гипотенузой c формулой $c^2 = a^2 + b^2$ (теорема Пифагора).

Из теоремы Ферма следует, что уравнение

$$x^{4357} + y^{4357} = z^{4357}$$

не имеет решений в натуральных числах.

Обозначение R^i_{jkl} для тензора кривизны было введено еще Эйнштейном.(Если у одной буквы есть как верхние, так и нижние индексы, то можно указать их в произвольном порядке.)

Можно также написать R_{ikl}^{i} , хотя не всем это нравится.

Неравенство $x+1/x \ge 2$ выполнено для всех x>0. $\pi \approx 3.14$

$$\frac{(a+b)^2}{4} - \frac{(a-b)^2}{4} = ab$$

$$\frac{1}{2} + \frac{x}{2} = \frac{1+x}{2}$$

$$1 + \left(\frac{1}{1-x^2}\right)^3$$

По общепринятому соглашению, $\sqrt[3]{x^3} = x$, но $\sqrt{x^2} = |x|$.

$$1 + \left(\frac{1}{1 - x^2}\right)^3$$

 $M=\{x\in A\,|\, x>0\}$ $e=\lim_{n\to\infty}\left(1+\frac{1}{n}
ight)^n$ f:X o Y Легко видеть, что $23^{1993}\equiv 1(mod11)$

$$a^{p-1} \equiv 1 \mod p$$
 $a^{p-1} \equiv 1 \ (p)$ $f_*(x) = f(x) \mod G$

$$\sum_{i=1}^{n} n^2 = \frac{n(n+1)(2n+1)}{6}$$

Тот факт, что $\sum_{i=1}^{n}(2n-1)=n^2$, следует из формулы для суммы арифметической прогрессии.

 $\overline{\lim}_{n\to\infty} \ a_n = \inf_n \sup_{m\geq n} \ a_m$

$$\digamma_x = \lim_{\to} U_{\ni x} \digamma(U)$$

$$\int_0^1 x^2 dx = 1/3$$

$$\int_0^1 x^2 dx = 1/3$$

$$\prod_{i=1}^n i = n!$$

В школьных учебниках геометрии встречаются такие формулы, как AB||CD.

В университетских учебниках анализа часто пишут, что $||A|| = \sup(|Ax|/|x|)$.