- 13 Topology of  $\mathbb{R}$  I
- **14** Topology of ℝ II

- **15** Topology of  $\mathbb{R}$  III
- **16** Topology of  $\mathbb{R}$  IV



# Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

# Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 13 Topology of  $\mathbb R$  I Monday 4 February 2019

### Announcements

Assignment 3 was posted on Saturday. Due Friday 15 Feb 2019 at 1:25pm. IMPORTANT CHANGE:

- For the remainder of the term, assignments must be submitted electronically, not as a hardcopy.
- You should have received a link for Assignment 3 via e-mail from crowdmark. If you have not received such an e-mail, please e-mail earn@math.mcmaster.ca.
- If you write your solutions by hand, you will need to scan or photograph them to submit them via the online system.
- If you use LATEX to create a pdf file, you will need to separate your solutions for each question.
- Marked assignments will be available online, rather than being returned in tutorial.
- Today: "How big is  $\mathbb{R}$ ?" (see last few slides for Lecture 12) and intro to "Topology of  $\mathbb{R}$ "

# Topology of $\mathbb R$

### Intervals



Open interval:

$$(a, b) = \{x : a < x < b\}$$

Closed interval:

$$[c,d] = \{x : c \le x \le d\}$$

Half-open interval:

$$(e, f] = \{x : e < x \le f\}$$

## Interior point



### Definition (Interior point)

If  $E \subseteq \mathbb{R}$  then x is an **interior point** of E if x lies in an open interval that is contained in E, *i.e.*,  $\exists c > 0$  such that  $(x - c, x + c) \subset E$ .

# Interior point examples

| Set E                                        | Interior points?                 |
|----------------------------------------------|----------------------------------|
| (-1,1)                                       | Every point                      |
| [0, 1]                                       | Every point except the endpoints |
| $\mathbb{N}$                                 | ∄                                |
| $\mathbb{R}$                                 | Every point                      |
| $\mathbb{Q}$                                 | ∄                                |
| $(-1,1) \cup [0,1]$                          | Every point except 1             |
| $\left(-1,1\right)\setminus\{\tfrac{1}{2}\}$ | Every point                      |

# Neighbourhood



### Definition (Neighbourhood)

A **neighbourhood** of a point  $x \in \mathbb{R}$  is an open interval containing x.

# Deleted neighbourhood



### Definition (Deleted neighbourhood)

A **deleted neighbourhood** of a point  $x \in \mathbb{R}$  is a set formed by removing x from a neighbourhood of x.

$$(a,b)\setminus\{x\}$$

## Isolated point



$$E = (a_1, b_1) \cup [a_2, b_2) \cup \{x\}$$

### Definition (Isolated point)

If  $x \in E \subseteq \mathbb{R}$  then x is an **isolated point** of E if there is a neighbourhood of x for which the only point in E is x itself, *i.e.*,  $\exists c > 0$  such that  $(x - c, x + c) \cap E = \{x\}$ .

# Isolated point examples

| Set E                                         | Isolated points? |  |  |  |
|-----------------------------------------------|------------------|--|--|--|
| (-1,1)                                        | ∄                |  |  |  |
| [0, 1]                                        | ∄                |  |  |  |
| $\mathbb{N}$                                  | Every point      |  |  |  |
| $\mathbb{R}$                                  | ∄                |  |  |  |
| $\mathbb Q$                                   | ∄                |  |  |  |
| $(-1,1) \cup [0,1]$                           | ∄                |  |  |  |
| $\left(-1,1\right)\setminus \{\tfrac{1}{2}\}$ | ∄                |  |  |  |

# Accumulation point



### Definition (Accumulation Point or Limit Point)

If  $E \subseteq \mathbb{R}$  then x is an accumulation point or limit point of E if every neighbourhood of x contains infinitely many points of E,

i.e., 
$$\forall c > 0$$
  $(x - c, x + c) \cap (E \setminus \{x\}) \neq \emptyset$ .

#### Notes:

- It is possible but not necessary that  $x \in E$ .
- The shorthand condition is equivalent to saying that every deleted neighbourhood of x contains at least one point of E.

# Accumulation point examples

| Set E                                               | Accumulation points? |
|-----------------------------------------------------|----------------------|
| (-1, 1)                                             |                      |
| [0, 1]                                              |                      |
| $\mathbb{N}$                                        |                      |
| $\mathbb{R}$                                        |                      |
| Q                                                   |                      |
| $(-1,1) \cup [0,1]$                                 |                      |
| $\left(-1,1 ight)\setminus\left\{rac{1}{2} ight\}$ |                      |
| $\left\{1-rac{1}{n}:n\in\mathbb{N} ight\}$         |                      |



# Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

# Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 14 Topology of  $\mathbb R$  II Friday 8 February 2019

### Announcements

- Assignment 3 was posted on Saturday.
   Due Friday 15 Feb 2019 at 1:25pm
   via crowdmark
- Math 3A03 Test #1
   Monday 4 March 2019 at 7:00pm in MDCL 1110

# Accumulation point examples

| Set E                                        | Accumulation points? |  |  |  |
|----------------------------------------------|----------------------|--|--|--|
| (-1,1)                                       | [-1,1]               |  |  |  |
| [0, 1]                                       | [0, 1]               |  |  |  |
| $\mathbb{N}$                                 | ∄                    |  |  |  |
| $\mathbb{R}$                                 | $\mathbb{R}$         |  |  |  |
| $\mathbb{Q}$                                 | $\mathbb{R}$         |  |  |  |
| $(-1,1) \cup [0,1]$                          | [-1,1]               |  |  |  |
| $(-1,1)\setminus\{rac{1}{2}\}$              | [-1,1]               |  |  |  |
| $\left\{1-rac{1}{n}:n\in\mathbb{N}\right\}$ | {1}                  |  |  |  |

# Boundary point



### Definition (Boundary Point)

If  $E \subseteq \mathbb{R}$  then x is a **boundary point** of E if every neighbourhood of x contains at least one point of E and at least one point not in E. *i.e.*.

$$\forall c > 0$$
  $(x - c, x + c) \cap E \neq \emptyset$   
  $\wedge (x - c, x + c) \cap (\mathbb{R} \setminus E) \neq \emptyset$ .

*Note:* It is possible but not necessary that  $x \in E$ .

### Definition (Boundary)

If  $E \subseteq \mathbb{R}$  then the **boundary** of E, denoted  $\partial E$ , is the set of all boundary points of E.

# Boundary point examples

| Set E                                         | Boundary points?                                       |  |  |  |
|-----------------------------------------------|--------------------------------------------------------|--|--|--|
| (-1, 1)                                       | $\{-1,1\}$                                             |  |  |  |
| [0, 1]                                        | {0,1}                                                  |  |  |  |
| $\mathbb{N}$                                  | N                                                      |  |  |  |
| $\mathbb{R}$                                  | ∄                                                      |  |  |  |
| $\mathbb Q$                                   | $\mathbb{R}$                                           |  |  |  |
| $(-1,1) \cup [0,1]$                           | $\{-1,1\}$                                             |  |  |  |
| $(-1,1)\setminus\{\tfrac{1}{2}\}$             | $\{-1, \frac{1}{2}, 1\}$                               |  |  |  |
| $\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$ | $\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}\cup\{1\}$ |  |  |  |

### Closed set



### Definition (Closed set)

A set  $E \subseteq \mathbb{R}$  is **closed** if it contains all of its accumulation points.

### Definition (Closure of a set)

If  $E \subseteq \mathbb{R}$  and E' is the set of accumulation points of E then  $\overline{E} = E \cup E'$  is the **closure** of E.

<u>Note</u>: If the set E has no accumulation points, then E is closed because there are no accumulation points to check.

### Open set



### Definition (Open set)

A set  $E \subseteq \mathbb{R}$  is **open** if every point of E is an interior point.

### Definition (Interior of a set)

If  $E \subseteq \mathbb{R}$  then the **interior** of E, denoted  $E^{\circ}$  or  $E^{\circ}$ , is the set of all interior points of E.

# Examples

| Set E                                               | Closed? | Open? | Ē              | E°           | $\partial E$             |
|-----------------------------------------------------|---------|-------|----------------|--------------|--------------------------|
| (-1,1)                                              | NO      | YES   | [-1, 1]        | Ε            | $\{-1, 1\}$              |
| [0, 1]                                              | YES     | NO    | E              | (0,1)        | {0,1}                    |
| N                                                   | YES     | NO    | N              | Ø            | N                        |
| $\mathbb{R}$                                        | YES     | YES   | $\mathbb{R}$   | $\mathbb{R}$ | Ø                        |
| Ø                                                   | YES     | YES   | Ø              | Ø            | Ø                        |
| Q                                                   | NO      | NO    | $\mathbb{R}$   | Ø            | $\mathbb{R}$             |
| $(-1,1) \cup [0,1]$                                 | NO      | NO    | [-1, 1]        | (-1,1)       | $\{-1, 1\}$              |
| $\left(-1,1 ight)\setminus\left\{rac{1}{2} ight\}$ | NO      | YES   | [-1,1]         | Ε            | $\{-1, \frac{1}{2}, 1\}$ |
| $\left\{1-rac{1}{n}:n\in\mathbb{N}\right\}$        | NO      | NO    | $E \cup \{1\}$ | Ø            | $E \cup \{1\}$           |



# Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

# Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 15 Topology of  $\mathbb R$  III Monday 11 February 2019

### Announcements

- Assignment 3 is Due Friday 15 Feb 2019 at 1:25pm via crowdmark
- Math 3A03 Test #1 Monday 4 March 2019 at 7:00pm in MDCL 1110 (room is booked for 90 minutes; you should not feel rushed)

# Concepts covered recently

- Countable set
- Interval
- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point
- Accumulation point

- Boundary point
- Boundary
- Closed set
- Closure
- Open set
- Interior

# Component intervals of open sets

What does the most general open set look like?

### Theorem (Component intervals)

If G is an open subset of  $\mathbb{R}$  and  $G \neq \emptyset$  then there is a unique (possibly finite) sequence of disjoint open intervals  $\{(a_n, b_n)\}$  such that

$$G=(a_1,b_1)\cup(a_2,b_2)\cup\cdots\cup(a_n,b_n)\cup\cdots,$$
 i.e.,  $G=\bigcup_{n=1}^{\infty}(a_n,b_n)$  .

The open intervals  $(a_n, b_n)$  are said to be the **component** intervals of G.

(Textbook (TBB) Theorem 4.15, p. 231)

# Component intervals of open sets

Main ideas of proof of component intervals theorem:

- lacksquare  $x \in G \implies x$  is an interior point of  $G \implies$ 
  - some neighbourhood of x is contained in G, i.e.,  $\exists c > 0$  such that  $(x c, x + c) \subseteq G$
  - $\exists$  a <u>largest</u> neighbourhood of x that is contained in G: this "component of G" is  $I_x = (\alpha, \beta)$ , where

$$\alpha = \inf\{a : (a, x] \subset G\}, \qquad \beta = \sup\{b : [x, b) \subset G\}$$

- $I_x$  contains a rational number, i.e.,  $\exists r \in I_x \cap \mathbb{Q}$
- ... We can index all the intervals  $I_x$  by <u>rational</u> numbers
- ∴ There are most countably many intervals that make up G (i.e., G is the union of a sequence of intervals)
- We can choose a <u>disjoint</u> subsequence of these intervals whose union is all of *G* (see proof in textbook for details).

# Open vs. Closed Sets

#### Definition (Complement of a set of real numbers)

If  $E \subseteq \mathbb{R}$  then the **complement** of E is the set

$$E^{c} = \{x \in \mathbb{R} : x \notin E\}.$$

#### Theorem (Open vs. Closed)

If  $E \subseteq \mathbb{R}$  then E is open iff  $E^c$  is closed.

(Textbook (TBB) Theorem 4.16)

# Open vs. Closed Sets

#### Theorem (Properties of open sets of real numbers)

- **1** The sets  $\mathbb{R}$  and  $\varnothing$  are open.
- 2 Any intersection of a finite number of open sets is open.
- 3 Any union of an arbitrary collection of open sets is open.
- 4 The complement of an open set is closed.

(Textbook (TBB) Theorem 4.17)

#### Theorem (Properties of closed sets of real numbers)

- 1 The sets  $\mathbb{R}$  and  $\emptyset$  are closed.
- 2 Any union of a finite number of closed sets is closed.
- 3 Any intersection of an arbitrary collection of closed sets is closed.
- 4 The complement of a closed set is open.

(Textbook (TBB) Theorem 4.18)

### Definition (Bounded function)

A real-valued function f is **bounded** on the set E if there exists M > 0 such that  $|f(x)| \le M$  for all  $x \in E$ .

(i.e., the function f is bounded on E iff  $\{f(x): x \in E\}$  is a bounded set.)

**Note**: This is a **global** property because there is a single bound **M** associated with the entire set **E**.

#### Example

The function  $f(x) = 1/(1+x^2)$  is bounded on  $\mathbb{R}$ . *e.g.*, M = 1.



Instructor: David Earn



f(x) = 1/x is <u>not</u> bounded on the interval E = (0, 1).



f(x) = 1/x is **locally bounded** on the interval E = (0,1), i.e.,  $\forall x \in E$ ,  $\exists \delta_x, M_x > 0$   $\mid f(t) \mid \leq M_x \ \forall t \in (x - \delta_x, x + \delta_x)$ .

### Definition (Locally bounded at a point)

A real-valued function f is **locally bounded** at the point x if there is a neighbourhood of x in which f is bounded, *i.e.*, there exists  $\delta_x > 0$  and  $M_x > 0$  such that  $|f(t)| \leq M_x$  for all  $t \in (x - \delta_x, x + \delta_x)$ .

#### Definition (Locally bounded on a set)

A real-valued function f is **locally bounded** on the set E if f is locally bounded at each point  $x \in E$ .

<u>Note</u>: The size of the neighbourhood  $(\delta_x)$  and the local bound  $(M_x)$  depend on the point x.

#### Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0,1) but is <u>not locally bounded</u> on (0,1).

(solution on board)

### Example (Function that is a mess near 0)

Give an example of a function f(x) that is defined everywhere, yet in any neighbourhood of the origin there are infinitely many points at which f is <u>not locally bounded</u>.

(solution on board)

Extra Challenge Problem: Is there a function  $f : \mathbb{R} \to \mathbb{R}$  that is <u>not</u> locally bounded <u>anywhere</u>?



# Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

# Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 16 Topology of  $\mathbb R$  IV Wednesday 13 February 2019

### Announcements

- Assignment 3 is Due Friday 15 Feb 2019 at 1:25pm via crowdmark
- Math 3A03 Test #1 Monday 4 March 2019 at 7:00pm in MDCL 1110 (room is booked for 90 minutes; you should not feel rushed)

#### Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0,1) but is <u>not</u> locally bounded on (0,1).

(solution on board)

### Example (Function that is a mess near 0)

Give an example of a function f(x) that is defined everywhere, yet in any neighbourhood of the origin there are infinitely many points at which f is <u>not locally bounded</u>.

(solution on board)

Extra Challenge Problem: Is there a function  $f : \mathbb{R} \to \mathbb{R}$  that is <u>not</u> locally bounded anywhere?

- What condition(s) rule out such pathological behaviour?
- When does a property holding locally (near any given point in a set) imply that it holds globally (for the set as a whole)?
- For example: What condition(s) must a set  $E \subseteq \mathbb{R}$  satisfy in order that a function f that is locally bounded on E is necessarily bounded on E?
- We will see that the condition we are seeking is that the set E must be "compact" ...

### Compactness

Recall the Bolzano-Weierstrass theorem, which we proved when investigating sequences of real numbers:

#### Theorem (Bolzano-Weierstrass theorem for sequences)

Every bounded sequence in  $\mathbb R$  contains a convergent subsequence.

For any set of real numbers, we define:

### Definition (Bolzano-Weierstrass property)

A set  $E \subseteq \mathbb{R}$  is said to have the **Bolzano-Weierstrass property** iff any sequence of points chosen from E has a subsequence that converges to a point in E.

### Compactness

### Theorem (Bolzano-Weierstrass theorem for sets)

A set  $E \subseteq \mathbb{R}$  has the Bolzano-Weierstrass property iff E is closed and bounded.

(solution on board) (Textbook (TBB) Theorem 4.21, p. 241)

#### Notes:

- Why do we need both *closed* and *bounded*? Why didn't we need closed in the original version of the Bolzano-Weierstrass theorem (for sequences)?
  - Because we didn't require the limit of the convergent subsequence to be in the set!
- The Bolzano-Weierstrass theorem for sets implies that "If  $E \subseteq \mathbb{R}$  is bounded then its closure  $\overline{E}$  has the Bolzano-Weierstrass property".
  - The original Bolzano-Weierstrass theorem for sequences is a special case of this statement because any convergent sequence together with its limit is a closed set.

## Bijections

The terms **one-to-one** (injective), **onto** (surjective), and **one-to-one correspondence** (bijection) are giving some students trouble.

(Recall, we used bijection in our definition of countable.)

#### Let's take a step back and recall:

- When we define a **function**, we need three things:
  - the **domain**, *i.e.*, the set to which the function is applied;
  - the codomain, i.e., the target set where the values of the function lie;
  - a rule for taking elements of the domain into the codomain.
- If we write  $f: A \rightarrow B$  then A is the <u>domain</u> and B is the codomain.
- The range of a function is the subset of the codomain consisting of all values of the function applied to the domain.

## **Bijections**

### Example

Let  $f(x) = x^2$ ,  $x \in \mathbb{R}$ .

- Is f onto  $\mathbb{R}$ ?
- Is f one-to-one on  $\mathbb{R}$ ? On any interval?
- Is f a <u>bijection</u>?

### Example

- Find a bijection between  $[0, \infty)$  to  $[1, \infty)$ .
- Find a different bijection between  $[0,\infty)$  to  $[1,\infty)$ .

### Extra Challenge Problem:

Construct a bijection between [0,1] and (0,1).

## Compactness

### Definition (Open Cover)

Let  $E \subseteq \mathbb{R}$  and let  $\mathcal{U}$  be a family of open intervals. If for every  $x \in E$  there exists at least one interval  $U \in \mathcal{U}$  such that  $x \in U$ , i.e.,

$$E\subseteq\bigcup\{U:U\in\mathcal{U}\}\,,$$

then  $\mathcal{U}$  is called an **open cover** of E.

#### Example (Open covers of $\mathbb{N}$ )

Give examples of open covers of  $\mathbb{N}$ .

- $\mathcal{U} = \left\{ \left( n \frac{1}{2}, n + \frac{1}{2} \right) : n = 1, 2, \ldots \right\}$
- $U = \{(0, \infty)\}$
- $U = \{(0, \infty), \mathbb{R}, (\pi, 27)\}$

# Compactness

# Example (Open covers of $\{\frac{1}{n}: n \in \mathbb{N}\}$ )

- $U = \{(0,1), (0,2), \mathbb{R}, (\pi,27)\}$
- $U = \{(0,2)\}$

### Example (Open covers of [0, 1])

- $U = \{(-2,2)\}$
- $\mathcal{U} = \{(-\frac{1}{2}, \frac{1}{2}), (0, 2)\}$
- $\blacksquare \ \mathcal{U} = \left\{ \left(\frac{1}{n}, 2\right) : n = 1, 2, \ldots \right\} \cup \left\{ \left(-\frac{1}{2}, \frac{1}{2}\right) \right\}$