Convolutional neural networks

Outline

Building blocks

- Convolutional layers and backprop rules
- Pooling layers and nonlinearities

• Architectures:

- 2012: AlexNet
- 2013: ZFNet
- 2014: VGGNet, GoogLeNet
- 2015: ResNet
- 2016: ResNeXt, DenseNet
- etc.

This Class

Neural Network and Image

- Dimensionality
- Local relationship

Convolutional Neural Network (CNN)

- Convolution Layer
- Non-linearity Layer
- Pooling Layer
- Fully Connected Layer
- Classification Layer

ImageNet Challenge

- Progress
- Human Level Performance

Neural Networks

Source: http://cs231n.github.io

How to apply NN over Image?

output layer

Problems ?

Problems:

High dimensionality

Local relationship

Problems:

High dimensionality

Local relationship

Solution ?

Problems:

High dimensionality

Local relationship

Solution:

Convolutional Neural Network

Convolutional Neural Networks

```
Also known as
```

CNN,

ConvNet,

DCN

CNN = a multi-layer neural network with

- 1. Local connectivity
- 2. Weight sharing

CNN: Local Connectivity

Hidden layer

Input layer

Local connectivity

Global connectivity

input units (neurons): 7

hidden units: 3

CNN: Local Connectivity

Hidden layer

Input layer

Local connectivity

Global connectivity

input units (neurons): 7

hidden units: 3

Number of parameters

- Global connectivity: ?
- Local connectivity: ?

CNN: Local Connectivity

Hidden layer

Input layer

Local connectivity

Global connectivity

input units (neurons): 7

hidden units: 3

Number of parameters

Global connectivity: 3 x 7 = 21

Local connectivity: 3 x 3 = 9

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

input units (neurons): 7

hidden units: 3

With weight sharing

CNN: Weight Sharing

Hidden layer

Input layer

With weight sharing

Without weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: ?
 - With weight sharing : ?

CNN: Weight Sharing

Hidden layer

Input layer

With weight sharing

Without weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: $3 \times 3 = 9$
 - With weight sharing: $3 \times 1 = 3$

Convolutional Neural Networks

Layers used to build ConvNets

Input Layer (Input image)

Convolutional Layer

Non-linearity Layer (such as Sigmoid, Tanh, ReLU, PReLU, ELU, Swish, etc.)

Pooling Layer (such as Max Pooling, Average Pooling, etc.)

Fully-Connected Layer

Classification Layer (Softmax, etc.)

-> preserve spatial structure

32×32×3 Image

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Handling multiple input channels

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Handling multiple output maps

Handling multiple output maps

Handling multiple output maps

Convolution and traditional feature extraction

bank of *K* filters

image

K feature maps

feature map

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Convolutional Layer

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Multilayer Convolution

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Any Convolution Layer

Local connectivity

Weight sharing

Handling multiple input channels

Handling multiple output maps

7×7 input (spatially) assume 3×3 filter

7

7×7 input (spatially) assume 3×3 filter

7

7×7 input (spatially) assume 3×3 filter

7

7×7 input (spatially) assume 3×3 filter

7

7×7 input (spatially) assume 3×3 filter applied with stride 2

7

7×7 input (spatially) assume 3×3 filter applied with stride 2

7×7 input (spatially) assume 3×3 filter applied with stride 2

3×3 output

7

7×7 input (spatially) assume 3×3 filter applied with stride 3

7

	_		

7×7 input (spatially) assume 3×3 filter applied with stride 3

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

N

Output size (N - F) / stride + 1

N e.g. N = 7, F = 3
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

In practice: common to zero pad

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g. input 7×7 (spatially)3×3 filter, applied with stride 1pad with 1 pixel border

What is the output dimension?

In practice: common to zero pad

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g. input 7×7 (spatially)3×3 filter, applied with stride 1pad with 1 pixel border

7×7 Output

In practice: common to zero pad

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g. input 7×7 (spatially)3×3 filter, applied with stride 1pad with 1 pixel border

7×7 Output

in general, common to see CONV layers with stride 1, filters of size F×F, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g.

 $F = 3 \Rightarrow zero pad with 1$

 $F = 5 \Rightarrow zero pad with 2$

 $F = 7 \Rightarrow zero pad with 3$

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

$$5*5*3 + 1 = 76$$
 params (+1 for bias)

Summary. To summarize, the Conv Layer:

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - \circ their spatial extent F ,
 - \circ the stride S,
 - \circ the amount of zero padding P.
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.

Source: cs231n, Stanford University

Convolution as feature extraction

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Source: cs231n, Stanford University

Efficient implementation of convolutions

Reshape all image neighborhoods into columns (im2col operation), do matrix-vector multiplication

 $\frac{\partial e}{\partial w_{ij}}$

$$\frac{\partial e}{\partial w_{ij}} = \frac{\partial e}{\partial z} \frac{\partial z}{\partial w_{ij}} = \sum_{k,l} \frac{\partial e}{\partial z_{kl}} \frac{\partial z_{kl}}{\partial w_{ij}}$$

$$z_{kl} = \sum_{i,j=-f}^{f} w_{ij} x_{k+i,l+j}$$

$$\frac{\partial z_{kl}}{\partial w_{ij}} = \chi_{k+i, \, l+j}$$

 $z_{kl} = \sum_{i,j=-f}^{f} w_{ij} x_{k+i,\,l+j}$ For simplicity, assume filter indices go from -f to f

$$\frac{\partial e}{\partial w_{ij}} = \frac{\partial e}{\partial z} \frac{\partial z}{\partial w_{ij}} = \sum_{k,l} \frac{\partial e}{\partial z_{kl}} \frac{\partial z_{kl}}{\partial w_{ij}} = \sum_{k,l} \frac{\partial e}{\partial z_{kl}} \frac{\partial z_{kl}}{\partial z_{kl}} x_{k+i,l+j}$$

$$z_{kl} = \sum_{i,j=-f}^{f} w_{ij} x_{k+i,l+j}$$

 $z_{kl} = \sum_{i,j=-f}^{f} w_{ij} x_{k+i,\,l+j}$ For simplicity, assume filter indices go from -f to f

$$\frac{\partial z_{kl}}{\partial w_{ij}} = \chi_{k+i, \, l+j}$$

 χ W

$$\frac{\partial e}{\partial w_{ij}} = \sum_{k,l} \frac{\partial e}{\partial z_{kl}} x_{k+i,\,l+j}$$

 $\frac{\partial e}{\partial x_{kl}}$

$$\frac{\partial e}{\partial x_{kl}} = \frac{\partial e}{\partial z} \frac{\partial z}{x_{kl}} = \sum_{m,n} \frac{\partial e}{\partial z_{mn}} \frac{\partial z_{mn}}{\partial x_{kl}}$$

$$\frac{\partial e}{\partial x_{kl}} = \frac{\partial e}{\partial z} \frac{\partial z}{x_{kl}} = \sum_{m,n} \frac{\partial e}{\partial z_{mn}} \frac{\partial z_{mn}}{\partial x_{kl}} = \sum_{i,j} \frac{\partial e}{\partial z_{k+i,l+j}} \frac{\partial z_{k+i,l+j}}{\partial x_{kl}}$$

$$\frac{\partial e}{\partial x_{kl}} = \sum_{i,j} \frac{\partial e}{\partial z_{k+i,l+j}} \frac{\partial z_{k+i,l+j}}{\partial x_{kl}}$$

$$\frac{\partial z_{k+i,l+j}}{\partial x_{kl}} = w_{-i,-j}$$

$$\frac{\partial e}{\partial x_{kl}} = \sum_{i,j} \frac{\partial e}{\partial z_{k+i,l+j}} \frac{\partial z_{k+i,l+j}}{\partial x_{kl}} = \sum_{i,j} \frac{\partial e}{\partial z_{k+i,l+j}} w_{-i,-j}$$

$$\frac{\partial z_{k+i,l+j}}{\partial x_{kl}} = w_{-i,-j}$$

$$\frac{\partial e}{\partial x_{kl}} = \sum_{i,j} \frac{\partial e}{\partial z_{k+i,l+j}} w_{-i,-j}$$

Backpropagation for convolutional layer

$$\frac{\partial e}{\partial x_{kl}} = \sum_{i,j} \frac{\partial e}{\partial z_{k+i,l+j}} w_{-i,-j}$$

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Max Pooling

max pool with 2x2 filters and stride 2

Backward pass: upstream gradient is passed back only to the unit with max value

Pooling Layer

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires two hyperparameters:
 - \circ their spatial extent F,
 - \circ the stride S,
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_0 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$\circ D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Source: cs231n, Stanford University

Fully Connected Layer

- Connect every neuron in one layer to every neuron in another layer
- Same as the traditional multi-layer perceptron neural network

Image Source: machinethink.net

Fully Connected Layer

- Connect every neuron in one layer to every neuron in another layer
- Same as the traditional multi-layer perceptron neural network

No. of Neurons (Last FC) = No. of classes

Image Source: machinethink.net

Non-linearity Layer

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

ReLU

$$\max(0,x)$$

Leaky ReLU

$$\max(0.1x, x)$$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Classification/Loss Layer

SVM Classifier
SVM Loss/Hinge Loss/Max-margin Loss

Softmax Classifier
Softmax Loss/Cross-entropy Loss

A typical CNN structure

Source: R. Fergus, Y. LeCun

Leaky ReLU max(0.1x, x)

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Source: R. Fergus, Y. LeCun

Source: Stanford 231n

Source: R. Fergus, Y. LeCun

ImageNet Challenge

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon MTurk
- Challenge: 1.2 million training images, 1000 classes

ImageNet Challenge

- Mages, 20k classes
 - Images gathered from Internet
 - uman labels via Amazon MTurk
 - Challenge 1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Progress on ImageNet Challenge

Progress on ImageNet Challenge

Best Non-ConvNet in 2012: 26.2%

Things to remember

Neural network and Image

 Neuroscience, Perceptron, Problems due to High Dimensionality and Local Relationship

Convolutional neural network (CNN)

- Convolution Layer,
- Nonlinearity Layer,
- Pooling Layer,
- Fully Connected Layer,
- Loss/Classification Layer

Progress on ImageNet challenge

Latest SENet, Winner 2017

Acknowledgement

Thanks to the following courses and corresponding researchers for making their teaching/research material online

- Deep Learning, Stanford University
- Introduction to Deep Learning, University of Illinois at Urbana-Champaign
- Introduction to Deep Learning, Carnegie Mellon University
- Convolutional Neural Networks for Visual Recognition, Stanford University
- Natural Language Processing with Deep Learning, Stanford University
- And Many More

Next Classes

Training Aspects of CNN

Activation Functions

Dataset Preparation

Data Preprocessing

Weight Initialization

Optimization Methods

Learning Rate

Transfer Learning

Generalization

