Ifi

Aprendizagem 2024

Lab 5: Linear Regression

Practical exercises

	У1	y 2	output
<i>X</i> 1	1	1	1.4
<i>X</i> 2	2	1	0.5
Х3	1	3	2
<i>X</i> 4	3	3	2.5

Consider the following training data:

- a) Find the closed form solution for a linear regression. minimizing the sum of squared errors
- b) Predict the target value for $x_{new} = [2 \ 3]^T$
- c) Sketch the predicted three-dimensional hyperplane
- d) Compute the MSE and MAE produced by the linear regression
- e) Are there biases on the residuals against y1? And y2?
- f) Compute the closed form solution considering Ridge regularization term with $\lambda=0.2\,.$
- g) Compare the hyperplanes obtained using ordinary least squares and Ridge regression.
- h) Why is Lasso regression suggested for data spaces of higher dimensionality?

	У1	У2	output
<i>X</i> 1	1	1	1
Х2	2	1	1
Х3	1	3	0
<i>X</i> 4	3	3	0

Consider the following training data where *output* is an ordinal variable

- a) Find a linear regression using the closed form solution
- b) Assuming the output threshold $\theta = 0.5$, use the regression to classify $x_{new} = [2 \ 2.5]^T$

	У1	У2	output
<i>X</i> ₁	3	-1	2
<i>X</i> 2	4	2	1
Х3	2	2	1

Considering the following data to learn a model

$$z = w_1 x_1 + w_2 x_2 + \varepsilon$$
, where $\varepsilon \sim N(0.5)$

Compare:

- a) $w = \begin{bmatrix} w_1 w_2 \end{bmatrix}^T$ using the maximum likelihood approach
- b) w using the Bayesian approach, assuming

$$p(w) = N \left(w \lor u = \begin{bmatrix} 0.0 \end{bmatrix}, \sigma = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix} \right)$$

	У1	У 2	output
<i>X</i> ₁	-0.95	0.62	0
Х2	0.63	0.31	0
Х3	-0.12	-0.21	1
<i>X</i> 4	-0.24	-0.5	0
<i>X</i> 5	0.07	-0.42	1
<i>X</i> 6	0.03	0.91	0
<i>X</i> 7	0.05	0.09	1
<i>X</i> 8	-0.83	0.22	0

4. Identify a transformation to aid the linearly modelling of the following data points.

Sketch the predicted surface.

	input	output
<i>X</i> ₁	3	1.5
Х2	4	9.3
Х3	6	23.4
<i>X</i> 4	10	45.8
<i>X</i> 5	12	60.1

Consider logarithmic and quadratic transformations:

$$\varphi_1(x) = log(x), \varphi_2(x) = x^2$$

- a) Plot both of the closed form regressions.
- b) Which one minimizes the sum of squared errors on the original training data
- 6. Select the criteria that promotes a smoother regression model:
 - a) Applying Lasso and Ridge regularization to linear regression models
 - b) Increasing the depth of a decision tree regressor
 - c) Increasing the k of a kNN regressor
 - d) Parameterizing a kNN regressor with uniform weights instead of distance-based weights

Programming quest

7. Consider the *housing* dataset available at https://web.ist.utl.pt/~rmch/dscience/data/housing.arff and the *Regression* notebook available at the course's webpage.

Compare the determination coefficients of the non-regularized, Lasso and Ridge linear regression.