

Lista de exercícios

Prof. Jonathan C. Teixeira

Exercício 1.1 - Determine as componentes em relação aos eixos x e y das forças \vec{F}_1 , \vec{F}_2 e \vec{F}_3 . [Resposta: $F_{1,x}$ = 491 N, $F_{1,y}$ = 344 N, $F_{2,x}$ = -400 N, $F_{2,y}$ = 300 N, $F_{3,x}$ = 358 N, $F_{3,y}$ = -716 N]

Exercício 1.2 - Determine o vetor resultante \vec{r} em coordenadas polares das duas forças ilustradas as seguir. [Resposta: $\vec{r}=821 \pm -83^{\circ}$]

Exercício 1.3 - Determine a magnitude da força resultante e sua direção no sentido anti-horário, a partir do eixo x positivo. [Resposta: \vec{r} = 413 N; θ = 24.2°]

Exercício 1.4 – Uma força vertival de 50 N atua sobre o ponto A, como ilustrado na figura abaixo. Determine a magnitude da duas componentes da força ao longo de AB e AC. [Resposta: P_{AB} = 44.82 N; P_{AC} = 36.6 N]

Exercício 1.5 - Determine as componentes x, y e z das forças de (a) 750 N e (b) 900 N. [Resposta: (a) 390 N, 614 N, 181.8 N; (b) –130.1 N, 816 N, 357 N]

Exercício 1.6 - Determine a magnitude e os ângulos diretores da força resultante. [Resposta: $|\vec{r}|$ = 485.30 N; α = 104°, β =15.1°; γ = 83.3°]

Exercício 1.7 - Determine os ângulos formados entre $\vec{P} = \{-160\hat{\imath} + 40\hat{\jmath} + 60\hat{k}\}$ N, na extremidade da haste, e (a) o eixo x positivo e (b) o plano (x, z). [Resposta: (a) $\theta x = 155.7^{\circ}$, (b) $\theta xz = 13.17^{\circ}$]

Exercício 1.8 - Se a força resultante dos dois rebocadores tiver de ser direcionada para o eixo x positivo, e F_B tiver a mínima intensidade, determine as intensidades de F_R e F_B e o ângulo θ . [Resposta: θ = 90°, F_B = 1 kN, F_R = 1,73 kN]

Sharma-Engineering-mechanics-Ex.11

Exercício 1.9 - Uma viga de aço deve ser içada usando duas correntes, conforme mostrado na figura abaixo. Se a força resultante for de 1200 N na direção vertical ascendente, determine os módulos de P_1 e P_2 atuando em cada corrente e o ângulo θ de P_2 de modo que o módulo de P_2 seja mínimo. [Resposta: $P_1 = 1039.23$ N, $P_2 = 600$ N, $\theta = 60^\circ$]

Hibbeler, 2.77

Exercício 1.10 - Os cabos conectados ao olhal estão sujeitos às três forças mostradas na figura. Expresse cada força na forma de vetor cartesiano e determine a intensidade e os ângulos diretores coordenados da força resultante. [Resposta: $F_1 = \{225j + 268k\}N, F_2 = \{70,7i + 50,0j - 50,0k\}N, F_3 = \{125i - 177j + 125k\}N, F_R = 407 N \theta_x = 61,3° \theta_y = 76° \theta_z = 32,5°]$

Exercício 1.11 - Dois cabos são usados para segurar a lança do gancho na posição e sustentar a carga de 1500 N. Se a força resultante é direcionada ao longo da lança de A para O, determine os valores de x e z para as coordenadas do ponto C e a intensidade da força resultante. Considere $F_B = 1610$ N e $F_C = 2400$ N. [Resposta: x = 1,248 m, z = 2,197 $m, F_R = 3591,85$ N]

Exercício 1.12 - Determine a magnitude das componentes do vetor **F** atuando ao longo e perpendicular à linha AO. [Resposta: $\theta = 33,2^\circ$; $F_{AO} = 46,9kN$; $F_{1.AO} = 30,7kN$]

Exercício 1.13 - Determine as intensidades das componentes de F = 600 N que atuam ao longo e perpendicularmente ao segmento DE do encanamento. [Resposta: $F_{\parallel,ED} = 334N$; $F_{\perp,ED} = 498N$]

Exercício 1.14 - Três forças são aplicadas com cabos ao bloco de ancoragem mostrado na Figura abaixo. Determine: (a) O módulo e os cosenos diretores da resultante, F_R , das três forças. (b) O módulo da componente da força F_1 ao longo da linha de ação da força F_2 . (c) O ângulo a entre as forças F_1 e F_3 . [Resposta: (a) $F_R = 1158.80N$; $\cos(\theta_x) = 0,7067$; $\cos(\theta_y) = -0,2837$; $\cos(\theta_z) = 0,6481$; (b) 50,9N (c) $\alpha = 64,3^\circ$]

Exercício 1.15 - A junção abaixo está sujeita a forças de quatro membros. O membro OA está localizado no plano xy e o membro OB, no plano yz. Determine as forças requeridas para o equilíbrio estático da junção. [Resposta: : $F_1 = 0$; $F_2 = 311$ N; $F_3 = 328$ N]

Exercício 1.16 - Determine o máximo peso do motor que pode ser suportado sem que exceda a tração de 450 N na corrente AB e 480 N na corrente AC. [Resposta: P = 240 N]

Exercício 1.17 - Cada corda pode admitir uma tração máxima de 500 N. Determine a maior massa do tubo que pode ser suportada. [Resposta: : m = 26, kg]

Exercício 1.18 - Determinar a força em cada cabo de forma que uma máquina de 8 toneladas seja mantida suspensa.. [Resposta: $F_{AB} = F_{AC} = 16,6kN,F_{AD} = 55,2kN$]

Exercício 1.19 – Calcular a tensão em cada cabo de forma que o sistema suporte um bloco de 100kg (ADOTAR aceleração da gravidade de 9,81 m/s²) em equilíbrio. [Resposta: : $F_{AB} = F_{AC} = 1,96kN, F_{AD} = 2,94kN$]

Exercício 1.20 - Dado o sistema de suspensão de rede de pesca, calcular as forças compressivas nas

barras AB e CB e a força de tração no cabo BD, considerando que a rede pesa 200 kg (ADOTAR aceleração da gravidade de 9,81 m/s²) em equilíbrio. [Resposta: : $F_{AB} = F_{CB} = 2,52kN$; $F_{BD} = 3,64kN$]

Exercício 1.21 - Determine o alongamento em cada mola para o equilíbrio da bloco de 2kg. As molas são mostradas na posição de equilíbrio.. [Resposta: : $x_{AD} = 0,4905 \, m, x_{AC} = 0,793 \, m, x_{AD} = 0,467 \, m$]

Exercício 1.22 - Determine a magnitude dso momento resultante produzido pelas forças em relação ao ponto O.. [Resposta: : $\circlearrowleft + (M_R)_O = 1254 \ N \cdot m$]

Exercício 1.23 - Determine o momento produzido pela força em relação ao ponto B. [Resposta: : $\vec{M}_B = \{10.6\vec{i} + 13.1\vec{j} + 29.2\vec{k}\} N \cdot m$]

Exercício 1.23 - A magnitude da força vertical \mathbf{W} é 160 N. Os cossenos diretores do vetor de posição de A para B são $\cos\theta_x$ = 0,500, $\cos\theta_y$ = 0,866 e $\cos\theta_z$ =0, e os cossenos diretores do vetor de posição de B para C são $\cos\theta_x$ =0,707, $\cos\theta_y$ =0,619 e $\cos\theta_z$ =0,342. O ponto G é o ponto médio da linha de B a C. Determine o momento exercido pelo braço robótico em A para sustentar o peso \overrightarrow{W} . [Resposta: : \overrightarrow{M}_A = $\{-16,4\overrightarrow{\iota}-82\overrightarrow{k}\}$ $N\cdot m$]

Exercício 1.24 - Determine a magnitude do momento binário atuando na viga. [Resposta: : \mho $M_0=36,7~N\cdot m$]

Exercício 1.25 - A roda está sujeita a dois binários. Determine as forças F que os mancais exercem no eixo AB de tal maneira que o momento binário resultante sejanulo. [. [Resposta: : F = 625 N]

Exercício 1.26 - Determine a magnitude e a direção do binário resultante em termos dos vetores cartesianos unitários. [Resposta: $|\vec{M}_R| = 2,23 \ N.m; \ \vec{M}_R = \{1,559\vec{\jmath} - 1,600\vec{k}\}N.m]$

Exercício 1.27 - Determine a distância d entre A e B, de modo que o momento de binário resultante tenha uma intensidade de = 20 N.m. [Resposta: : d = 0.3421m]

Exercício 1.28 - Determine as forças F_1 , F_2 , e F_3 para que o sistema esteja em equilíbrio. [Resposta: : d=0.3421m]

Exercício 1.29 - A estrutura ACD é articulada em A e D e é sustentada por um cabo que passa por um anel em B e está preso a ganchos em G e H. Sabendo que a tração no cabo é 450 N, determine o momento em relação à diagonal AD da força exercida na estrutura pela tração BH do cabo. [Resposta:: $M_{AD} = -90N.m$]

Exercício 1.30 - Os torques de entrada e saída de uma caixa de engrenagens são mostrados na Figura abaixo. Determine o módulo e os ângulos diretores do torque resultante T.

