Havel-Hakimi

Havel-Hakimi

- is an algorithm in graph theory solving the graph realization problem
- Given a finite list of nonnegative integers in non-increasing order, is there a simple graph such that its degree sequence is exactly this list?
- The degree sequence is a list of numbers in non-increasing order indicating the number of edges incident to each vertex in the graph
- If a simple graph exists for exactly the given degree sequence, the list of integers is called graphic

A graphical sequence may be degree sequence of more than one graph

• Ex: 3,3,2,2,1,1

Degree Sequence

A signence di, dz. dn of non-negative integres is called a degree sequence of a graph 6 y the restices of 6 can be labelled 12, 12, ... In 5 deg (12) = de for all t=1,2,...n.

Graphical

8: <5,5,5,5,2,2,27

$$S_1: \langle 5, 5, 5, 2, 2, 2 \rangle$$

$$S_2: \langle *, 4, 4, 4, 1, 1, 1, 2 \rangle$$

$$S_{3}^{\prime}: \langle *, *, 3, 3, 1, 1, 0 \rangle$$

Havel Hakimi Theorem

A degree sequence $S = d_1 \ge d_2 \ge d_3 \ge \dots \ge d_n$, where $n \ge 2$ and $d_1 \le n-1$ and $d_1 \ge 1$, is graphic if and only if the reduced sequence $S' = \{ +, d_2 - 1, d_3 - 1, \dots, d_{j+1}, d_{j+2}, \dots, d_n \}$ is graphic.

 $/S: d_1, d_2...d_n$ $n 7/2 d_1 \ge 1 d_1 \le n-1$ $S_1: d_2-1, d_3-1, ...d_{d_1+1}, d_{d_1+2}, ...d_n$

Osuppose S, is graphical, f a graph G_1 of older g-1 with deg seq S Hence, label $V(g_1)$ as v_2 , v_3 , v_4 . v_5 . v_6 v_6 v_6 v_7 v_8 v_8 v_8 v_8 v_9 $v_$

Adding v_i and its edges to G_{ij} , we can obtain is which is Graphical.

edges $\Rightarrow v_i v_i$, $\forall i$ from 2 to d_i+1 $deg(v_i) = d_i$

Claim: 10, is adjaient to restices having degrees da, da, ... dd,+1

The sum of the degrees of the vertices adjacent to v_1 is maximum

Thus, the graph G-v₁ has the degree sequence

$$S_1: d_{3}-1, d_{3}-1, \dots d_{d_{1}+1}, d_{d_{1}+2}, \dots d_{n}$$