GEOMETRÍA MODERNA I

2019-1 (21 noviembre 2018)

EXAMEN PARCIAL 04

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Sean l y m un par de rectas paralelas distintas. Encontrar el punto medio de A y B para cualquier $\{A,B\}\subseteq l$ con el uso de solamente regla.
- 2. Demostrar que dado $\triangle ABC$ si $P \in \overline{BC}$, $Q \in \overline{CA}$, $R \in \overline{AB}$ tales que $\overline{AP} \cap \overline{BQ} \cap \overline{CR} = \{O\}$ y $\overline{QR} \cap \overline{BC} = \{D\}$, $\overline{RP} \cap \overline{CA} = \{E\}$ y $\overline{PQ} \cap \overline{AB} = \{F\}$ entonces D, E y F son colineales.
- 3. Demostrar que si $\zeta(I,r)$ es la circunferencia inscrita al $\triangle ABC$ y $\zeta(I,r)\cap \overline{BC}=\{P\}$, $\zeta(I,r)\cap \overline{CA}=\{Q\}$ y $\zeta(I,r)\cap \overline{AB}=\{R\}$ entonces \overline{AP} , \overline{BQ} y \overline{CR} son rectas concurrentes.
- 4. Sean $\triangle ABC$ y $\zeta(R,r)$ una circunferencia tal que $\zeta(R,r)\cap \overline{BC}=\{P,P'\}$, $\zeta(R,r)\cap \overline{CA}=\{Q,Q'\}$, $\zeta(R,r)\cap \overline{AB}=\{R,R'\}$. Si $\overline{AP}\cap \overline{BQ}\cap \overline{CR}\neq \emptyset$ entonces $\overline{AP'}\cap \overline{BQ'}\cap \overline{CR'}\neq \emptyset$
- 5. Sea $\zeta(O,r)$ una circunferencia y $\{A,B,C,D,E,F\}\subseteq \zeta(O,r)$ ordenados sobre ella (levógiramente o dextrógiramente). Demostrar que la intersección de los lados opuestos de hexágono ABCDEF inscrito en $\zeta(O,r)$ son tres puntos colineales. Sugerencia: Considerar a $\overline{AB}\cap \overline{CD}=\{P\}, \overline{CD}\cap \overline{EF}=\{Q\}$ y $\overline{EF}\cap \overline{AB}=\{R\}$.
- 6. Encontrar la recta que contiene a un punto P del plano y al punto de intersección de dos rectas dadas sin tener acceso al punto de intersección con el uso de solamente regla.

GEOMETRÍA MODERNA I

2019-1 (21 noviembre 2018)

EXAMEN PARCIAL 04

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Sean l y m un par de rectas paralelas distintas. Encontrar el punto medio de A y B para cualquier $\{A,B\}\subseteq l$ con el uso de solamente regla.
- 2. Demostrar que dado $\triangle ABC$ si $P \in \overline{BC}$, $Q \in \overline{CA}$, $R \in \overline{AB}$ tales que $\overline{AP} \cap \overline{BQ} \cap \overline{CR} = \{O\}$ y $\overline{QR} \cap \overline{BC} = \{D\}$, $\overline{RP} \cap \overline{CA} = \{E\}$ y $\overline{PQ} \cap \overline{AB} = \{F\}$ entonces D, E y F son colineales.
- 3. Demostrar que si $\zeta(I,r)$ es la circunferencia inscrita al $\triangle ABC$ y $\zeta(I,r)\cap \overline{BC}=\{P\}$, $\zeta(I,r)\cap \overline{CA}=\{Q\}$ y $\zeta(I,r)\cap \overline{AB}=\{R\}$ entonces \overline{AP} , \overline{BQ} y \overline{CR} son rectas concurrentes.
- 4. Sean $\triangle ABC$ y $\zeta(R,r)$ una circunferencia tal que $\zeta(R,r)\cap \overline{BC}=\{P,P'\}$, $\zeta(R,r)\cap \overline{CA}=\{Q,Q'\}$, $\zeta(R,r)\cap \overline{AB}=\{R,R'\}$. Si $\overline{AP}\cap \overline{BQ}\cap \overline{CR}\neq \emptyset$ entonces $\overline{AP'}\cap \overline{BQ'}\cap \overline{CR'}\neq \emptyset$
- 5. Sea $\zeta(O,r)$ una circunferencia y $\{A,B,C,D,E,F\}\subseteq \zeta(O,r)$ ordenados sobre ella (levógiramente o dextrógiramente). Demostrar que la intersección de los lados opuestos de hexágono ABCDEF inscrito en $\zeta(O,r)$ son tres puntos colineales. Sugerencia: Considerar a $\overline{AB}\cap \overline{CD}=\{P\}, \overline{CD}\cap \overline{EF}=\{Q\}$ y $\overline{EF}\cap \overline{AB}=\{R\}$.
- 6. Encontrar la recta que contiene a un punto P del plano y al punto de intersección de dos rectas dadas sin tener acceso al punto de intersección con el uso de solamente regla.