WHAT IS CLAIMED IS:

1	1.	An automated system that monitors work-in-process ("WIP") in a manufacturing facility
2		comprising:
3		a software object that determines when an evaluation cycle should be invoked; and
4		a recommendation wakeup listener object that performs the evaluation cycle, the
5		recommendation wakeup listener object further including:
6		a software object that identifies a bottleneck workstation;
7		a software object that calculates a WIP value representing the amount of work
8		approaching the bottleneck workstation;
9		a software object that determines whether the WIP value is projected to fall below a
10		control limit during an evaluation period; and
11		a software object that recommends, if the WIP value is projected to fall below the
12		control limit during the evaluation period, that a selected amount of additional
13		work be released into the manufacturing line.
1		2. The automated system recited in Claim 1, wherein the work approaching the
2		bottleneck workstation comprises one or more product types.
1		3. The automated system recited in Claim1, wherein the additional work comprises
2		one or more product types.
1		4. The automated system recited in Claim 1 further comprises:
2		a software object that selects one or more product types for the selected amount of
3		additional work.
1		5. An automated system that controls work-in-process ("WIP") in a manufacturing
2		facility, comprising:
3		a software object that determines when an evaluation cycle should be invoked; and
4		a recommendation wakeup listener object that performs the evaluation cycle, the
5		recommendation wakeup listener object further including:
6		an object that identifies a plurality of bottleneck workstations;

1

/	an object that calculates a wife value for each of the pluranty of bothereck
8	workstations, wherein each of the WIP values represents the amount of work
9	approaching the corresponding bottleneck workstation;
10	an object that determines, for each WIP value, whether the WIP value is projected to
11	fall below a control limit during an evaluation period; and
12	an object that recommends, if any of the WIP values are projected to fall below the
13	control limit during the evaluation period, that a selected amount of additional
14	work be released into the manufacturing line.
1	6. The automated system recited in Claim 4, wherein the additional work comprises
2	one or more product types.
1	7. The automated system recited in Claim 4, wherein the work approaching the
2	corresponding bottleneck workstation comprises one or more product types.
1	8. A method of controlling work-in-process ("WIP"), comprising:
2	providing a software object that determines when an evaluation cycle should be
3	invoked; and
4	providing a recommendation wakeup listener object that performs the evaluation
5	cycle, the providing recommendation wakeup listener object further includes:
6	providing a software object that identifies a bottleneck workstation;
7	providing a software object that calculates a WIP value representing the amount of
8	work approaching the bottleneck workstation;
9	providing a software object that determines whether the WIP value is projected to fall
10	below a control limit during an evaluation period; and
11	providing a software object that recommends, if the WIP value is projected to fall
12	below the control limit during the evaluation period, that a selected amount of
13	additional work be released into the manufacturing line.
1	9. The method recited in Claim 8 further comprises:
2	providing a software object to select one or more product types for the selected
3	amount of additional work.

514204 v4 Client Reference: TT3418

10. The method recited in Claim 8, wherein:

n Bilder ad Billia

234

1 2

3 4

5

6

1

2

3 4

5

1

5

6

7

8

providing a software object to identify a bottleneck workstation further comprises
employing a software object to identify one or more of a plurality of
bottleneck workstations.

11. The method recited in Claim 8, wherein:

providing a software object to calculate a WIP value representing the amount of work approaching the bottleneck workstation further comprises employing a software object to calculate a WIP value for each of a plurality of bottleneck workstations, wherein each of the WIP values represents work approaching the corresponding bottleneck workstation.

12. The method recited in Claim 8 wherein:

providing a software object to determine whether the WIP value is projected to fall below a control limit during an evaluation period further comprises employing a software object to determine whether any of a plurality of WIP values is projected to fall below the control limit during the evaluation period.

13. The method recited in Claim 8, wherein:

providing a software object to recommend, if the WIP value is projected to fall below the control limit during the evaluation period, that a selected amount of additional work be selected for the bottleneck workstation further comprises employing a software object to recommend, if the WIP value associated with each of a plurality of bottleneck workstations is projected to fall below the control limit during the evaluation period, that a selected amount of additional work be released into the manufacturing line.