22-23-1 学期高等数学 A1 期末练习卷

一. 选择题

1. 下列各对函数中,表示同一个函数的是().

(A)
$$y = |x| \text{ fit } y = \sqrt{x^2}$$
 (B) $y = \ln(x^2) \text{ fit } y = 2\ln x$

(B)
$$y = \ln(x^2) \text{ ftl } y = 2 \ln x$$

(C)
$$y = \sqrt{1 - \cos^2 x}$$
 $\not= \lim y = \sin x$ (D) $y = \frac{x^2 - 1}{x + 1} \not= \lim y = x - 1$

2. $\forall f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}}, x > 0, & \text{if } y \neq 0 \end{cases}$ $\text{ if } y \neq 0$ $\text{ i$

- (A) 极限不存在(B) 极限存在但不连续(C) 连续但不可导(D) 可导

3. 若 x_0 为函数y = f(x)的极值点,则下列命题中正确的是().

(A)
$$f'(x_0) = 0$$

(A)
$$f'(x_0) = 0$$
 (B) $f'(x_0) \neq 0$

(C)
$$f'(x_0)$$
 不存在

(C)
$$f'(x_0)$$
 不存在 (D) $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在

4. 当 $x \rightarrow 0^+$ 时,下列哪一个无穷小与 x^3 同阶().

(A)
$$\sqrt{x^5} + \sqrt{x}$$

(B)
$$x^3 + 0.01x$$

(A)
$$\sqrt{x^5} + \sqrt{x}$$
 (B) $x^3 + 0.01x$ (C) $\sqrt{1 + x^3} - 1$ (D) $\sqrt{\sin x}$

(D)
$$\sqrt{\sin x}$$

5. 若 $\int f(x)dx = F(x) + C$, 则 $\int f(2x+1)dx = ($).

(A)
$$2F(2x+1)+C$$

(A)
$$2F(2x+1)+C$$
 (B) $\frac{1}{2}F(2x+1)+C$

(C)
$$\frac{1}{2}F(x)+C$$
 (D) $2F(x)+C$

(D)
$$2F(x)+C$$

$$I_3 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 - \cos^4 x) dx$$
, \mathbb{M} ().

(A)
$$I_2 < I_3 < I$$

(B)
$$I_3 < I_1 < I_2$$

$$\text{(A)} \quad I_2 < I_3 < I_1 \quad \text{(B)} \quad I_3 < I_1 < I_2 \quad \text{(C)} \quad I_2 < I_1 < I_3 \quad \text{(D)} \quad I_1 < I_3 < I_2$$

(D)
$$I_1 < I_3 < I_3$$

7.

8.	下列说法正确的是()。 (A)收敛数列必有界,发散数列必无界 (B)若点 x_0 是函数的驻点,则点 x_0 一定是该函数的极值点 (C)若函数 $y = f(x)$ 在点 x_0 处可导,则函数必在此点连续 (D)若数列 $\{a_nb_n\}$ 收敛,则 $\{a_n\}$ 和 $\{b_n\}$ 或者同时收敛,或者同时发散
9.	当 $x \to 0$ 时, $\cos x - 1$ 与 $\frac{x^2}{2}$ 是()。
	(A) 低阶无穷小量 (B) 同阶但不是等价无穷小量
	(C) 等价无穷小量 (D) 高阶无穷小量
10.	设函数 $f(x) = x \sin x$,则 $f'\left(\frac{\pi}{2}\right)$ 等于()。
	(A) $\frac{1}{2}$ (B) 1 (C) -1 (D) $\frac{\pi}{2}$
11.	设 $f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ 则 $f(x)$ 在 $x = 0$ 处 () 。
	(A) 不连续 (B) 连续但不可导
12.	(C) 可导但不连续 (D) 连续且可导 二阶常微分方程 $y'' - 3y' + 2y = 0$ 通解的形式正确的是()。
	(A) $y = c_1 e^{-t} + c_2 e^{-2t}$ (B) $y = c_1 e^{t} + c_2 e^{-2t}$
	(C) $y = c_1 e^t + c_2 e^{2t}$ (D) $y = c_1 e^{-t} + c_2 e^{2t}$
13.	设 $I_1 = \int_0^{\frac{\pi}{2}} x dx$, $I_2 = \int_0^{\frac{\pi}{2}} \sin x dx$, 则下列关系正确的是()。
	(A) $I_1 > I_2$ (B) 不确定 (C) $I_1 < I_2$ (D) $I_1 = I_2$
14.	
15.	函数 $f(x)$ 在点 x_0 处可导是函数 $f(x)$ 在点 x_0 处可微的().
	(A) 充分非必要条件 (B) 必要非充分条件
	(C) 充分必要条件 (D) 既非充分也非必要条件
16.	设 $f(x) = 2x \ln(1-x), g(x) = \arcsin x^2,$ 则当 $x \to 0$ 时, $f(x)$ 是 $g(x)$ 的().
	(A) 等价无穷小 (B) 同阶但非等价无穷小
	(C) 高阶无穷小 (D) 低阶无穷小
17.	函数 $f(x) = \ln(1+x)$ 的 n 阶麦克劳林公式中 x^3 项的系数为().
	(A) $\frac{1}{3}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3!}$ (D) $-\frac{1}{3!}$

- 18. 关于函数 $f(x) = \ln(x^2 + 1)$ 的凹凸区间以及拐点叙述正确的是().

 - (A) 函数图像在[-1,1]上是凸的 (B) 函数图像在[0,+∞)上是凹的
 - (C) 拐点为(0,0)
- (D) 拐点为(±1,ln2)
- 19. 反常积分 $\int_{-1}^{1} \frac{dx}{x} = ($).

- (A) 0 (B) $\ln 2$ (C) 发散 (D) $-\ln 2$.
- 20. 通解为 $y = C_1 e^{3x} + C_2 e^{-x} x + \frac{1}{3}$ 的微分方程是 ().

 - (A) y'' + 2y' 3y = 3x + 1 (B) $y'' + 2y' 3y = (3x + 1)e^x$

 - (C) y'' 2y' 3y = 3x + 1 (D) $y'' 2y' 3y = (3x + 1)e^{2x}$
- 21. 心形线 $\rho = 2(1 + \cos \theta)$ 所围的图形面积为().
 - (A) $4 \int_{0}^{\pi} (1 + \cos \theta)^{2} d\theta$ (B) $8 \int_{0}^{\pi} (1 + \cos \theta)^{2} d\theta$

 - (c) $4\int_{0}^{2\pi} (1+\cos\theta)^{2}d\theta$ (D) $\int_{0}^{2\pi} (1+\cos\theta)^{2}d\theta$

二. 填空题

- 1. 函数 $f(x) = x \int_0^x \frac{1}{1+t} dt$ 在区间 $[0,+\infty)$ 上的单调性是 ______.
- $2. \quad \lim_{r \to \infty} \frac{x \sin x}{r} = \underline{\qquad}.$
- 已知 f(x) = x(x-1)(x-2)L(x-2019),则 f'(0) =3.
- 已知 $f(x) = \begin{cases} 1 + \ln(1+2x), & x \leq 0, \\ a + be^x, & x > 0 \end{cases}$ 在点 x = 0 处可导,

则 *a* =______ , *b* =______.

- 5. 曲线 $y = \frac{2}{3}x^{\frac{3}{2}}$ 在 $x \in [0,8]$ 的弧长 s =_____.
- 设 $\ln f(x) = \cos x$, 则 $\int \frac{f'(x)}{f(x)} dx = \underline{\hspace{1cm}}$

青春是用来奋斗的!

- 7. 瑕积分 $\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} dx$ ______.(选择收敛或发散)
- 8. 方程 $y'' + 10y' + 25y = 7xe^{-5x}$ 的特解形式为 ______.
- 9. $\int_{-1}^{1} x[x^5 + (e^x e^{-x})\sin x] dx = \underline{\qquad}_{\circ}$
- 10. 设 $f(x) = \begin{cases} \frac{\sin(x+1)}{x+1}, & x \neq -1, \\ 2k, & x = -1, \end{cases}$ 在点 x = -1 处连续,则 k =_____。
- 11. 已知 f'(3)=1,则 $\lim_{t\to 0} \frac{f(3+2t)-f(3-t)}{t} =$ _____。
- 12. 若反常积分 $\int_a^b \frac{1}{(x-a)^q} dx$, (q > 0) 是收敛的,则 q 的取值范围是_____。
- 13. 若 $x \in [-1,1]$,则 $\arcsin x + \arccos x =$ ____。
- 14. 若 $xy = e^{x+y}$ 确定隐函数 y = y(x),则 $dy = _____$ 。
- 15. 设 f(x) 的一个原函数为 $\frac{\ln x}{x}$,则 $\int f'(x)dx =$ _______。
- 16. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x\sqrt{1-x^2} + \cos^2 x) dx = \underline{\qquad}.$
- 18. 若 $\int f'(x)dx = 2x^2 + e^{3x} + C$, 且 f(0) = 2, 则 f(x) =______.
- 19. 曲线 $\begin{cases} x = \frac{1}{3}t^3 t \\ y = t^2 + 2 \end{cases}$ (0 \le t \le 3) 的弧长 s =______.
- 20. 若 $\int_0^x f(t)dt = \frac{1}{2}f(x)-1$, f(x)连续,则f(x) =______.
- 21. 微分方程 $y^{(4)} 2y''' + y'' = 0$ 的通解为______.

三. 计算题:

- 1. 计算不定积分 $\int x \ln(1+x^2) dx$.
- 2. 设y = f(x)由方程 $y = \ln(x + y)$ 所确定,求函数y = f(x)的一阶和二阶导数.

青春是用来奋斗的!

- 3. 求由参数方程 $\begin{cases} x = t^2 + 2t \\ y = \ln(t+1) \end{cases}$ 所表示的曲线 y = y(x) 在 x = 3 处的切线方程.
- 4. 求极限 $\lim_{x\to 0} \frac{\int_0^{x^2} (1-\cos\sqrt{t})dt}{x^4}$.
- 5. 求定积分 $\int_0^{\frac{1}{2}} \sqrt{1-x^2} dx.$
- 6. 求微分方程 $y'-y=e^{2x}$ 的通解.
- 7. 计算广义积分 $\int_{3}^{+\infty} \frac{1}{x\sqrt{x+1}} dx$.
- 8. 求极限 $\lim_{x\to 1} \left(\frac{x}{x-1} \frac{1}{\ln x} \right)$
- 9. 求极限 $\lim_{x\to 0} \frac{\int_0^x \ln(1+2t^2)dt}{x^3}$ 。
- 10. 求不定积分 $\int \arcsin x \, dx$.
- 11. 求不定积分 $\int \frac{1}{x^2 + 2x + 2} dx$.
- 12. 求定积分 $\int_0^1 e^{-\sqrt{x}} dx$.
- 14. 求常微分方程 $y' \frac{3}{x}y = x$ 的通解.
- 15. 设 $x y^2 + \sin(xy) = 0$, 求dy.
- 16. 计算 $\lim_{x\to 0} \frac{\int_0^{x^2} \sqrt{1+t^2} dt}{x^2}$.
- 17. 求由参数方程 $\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases}$ 所确定的函数的一阶和二阶导数.
- 18. 计算 $\int \frac{(1+\ln x)^{2021}}{x} dx$.
- 19. 计算 $\int_{1}^{\sqrt{3}} \frac{dx}{x^2 \sqrt{1+x^2}}$.

青春是用来奋斗的!

- 20. 讨论反常积分 $\int_0^{+\infty} e^{-ax} dx$ (其中 α 为常数) 的敛散性.
- 21. 求微分方程 $y' = \frac{x}{y} + \frac{y}{x}$ 满足条件 $y|_{x=1} = 2$ 的特解.

四. 应用题

- 1. 求函数 $f(x) = x^3 3x^2 9x + 5$ 在 [-2,4] 上的最大值和最小值。
- 2. 计算由曲线 $(x-1)^2 + y^2 = 1$ 所围成的平面图形
 - (1)绕x轴旋转而成的旋转体的体积V
 - (2) 绕y 轴旋转而成的旋转体的体积 V_2
- 3. 求由椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的图形绕x轴旋转一周所围成的旋转体(称为旋转椭球体)的体积。
- 4. 求曲线 $y = x^4 2x^3 + 1$ 的拐点以及凹凸区间。
- 5. 求由曲线 $y = 2x^2 (x \ge 0)$, y x = 1 及 y 轴所围成的平面图形绕 x 轴 旋转一周所成的旋转体的体积.
- 6. 求 $f(x) = \ln(x + \sqrt{1 + x^2}) x$, (x > 0) 的单调区间; 并估计积分 $\int_0^1 [\ln(x + \sqrt{1 + x^2}) - x] dx$ 的取值范围.

五. 证明题

- 1. $\forall b > a > 0$, $\forall i$: $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$.
- 2. 设 f(x)在 [1,2]上连续,在(1,2)内可导,f(1) = f(2) = 0, 证明: 存在 $\xi \in (1,2)$,使得 $\frac{f(\xi)}{\xi} = 2020 f'(\xi)$.
- 3. 设 f(x) 在 [0,1] 上连续可导,且 f(0) = 2f(1),证明 $\exists \xi \in (0,1)$,使得 $(\xi^2 + 1)f'(\xi) + 2\xi f(\xi) = 0$.