Pattern Recognition and Neural Networks Writer Identification System

Mohamed Shawky Zaky AbdelAal Sabae

Section: 2, BN:15

mohamed.sabae99@eng-st.cu.edu.eg
 Mohamed Ahmed Mohamed Ahmed

Section: 2, BN: 10

mohamed.dardir98@eng-st.cu.edu.eg

Remonda Talaat Eskarous

Section:1,BN:19

remonda.bastawres99@eng-st.cu.edu.eg

Mohamed Ramzy Helmy Ibrahim

Section:2,BN:13

mohamed.ibrahim98@eng-st.cu.edu.eg

Abstract—In this work, we present our work pipeline for writer identification from handwriting. Our system uses LBP texture descriptors along with SVM classifier on form-level of IAM Handwriting Database. The system, also, uses form preprocessing techniques to extract separate lines from a single form. The combination of these techniques enables us to achieve up to 93.5% accuracy on the complete dataset and an accuracy between 98.9% to 100% with sampled test. The system can maintain fast execution, while achieving such high accuracy. Furthermore, we compare our approach to other different approaches to illustrate its advantages.

I. INTRODUCTION

Writer identification from handwriting is a challenging problem. Historically, experts with domain knowledge were required to tackle such tricky problem. However, with the rise of AI and machine learning techniques, systems can be built to solve the handwriting identification problem. In machine learning systems, the choice of good features and robust classifiers is the core challenge. For such problem, domainbased features can be used such as codebooks and grapheme signatures. However, with the evolution of general purpose texture descriptors like local binary pattern and local phase quantization, it turns out that these features can perform even better in most cases. For this reason, we decided to adopt the fast and well-known local binary pattern texture descriptor, inspired by [1]. We, also, considered multiple classifiers and decided on support vector machine classifier, which is the best in our case.

II. APPROACH

In this section , we discuss the overall system pipeline. The exact details of each module is discussed in subsequent sections.

Our system can be divided into 3 main modules, shown as follows:

- **Preprocessor:** this module takes the *complete form* image as an input, performs *denoise* and *extracts the written parts* only. Then, it *segment out* each written lines in the document.
- **Feature Extractor**: this module takes each line extracted by the *preprocessor* and perform *local binary*

- pattern texture descriptor on it and calculates the normalized LBP histogram.
- Classifier: this module contains the training and inference of SVM classifier. The training is done on each line as separate train sample, while inference is done on each line separately and then a majority vote is taken.

III. PREPROCESSING MODULE

IV. FEATURE EXTRACTION MODULE

V. CLASSIFICATION MODULE

VI. PERFORMANCE ANALYSIS

Classifier	100 test samples	1000 test samples
Support Vector Machine	100%	99.7%
K-Nearest Neighbors	99%	99.4%
Random Forest	99%	99.6%
Logistic Regression	100%	99.5%
Naive Bayes	100%	98.9%

TABLE I: Comparison between accuracies of different classifiers using LBP feature and different sample size.

VII. OTHER APPROACHES VIII. WORKLOAD DISTRIBUTION IX. CONCLUSION AND FUTURE WORK

REFERENCES

- [1] Writer identification using texture features: A comparative study.
- [2] Text independent writer recognition using redundant writing patterns with contour-based orientation and curvature features.
- [3] An improved online writer identification framework using codebook descriptors.