DSP_HW4

msh

April 2024

Exercise 1

已知序列 $x(n) = cos(n\pi/6)$, 其中 n=0,1,··· N-1, 而 N=12。(用 MAT-LAB 编程实现,提交完整源代码和运行结果。)

- (1) 求 x(n) 的 DTFT $X(e^{j\omega})$
- (2) 求 x(n) 的 DFT X(k)
- (3) 若在 x(n) 后补 N 个零得到 $x_1(n)$, 求 $x_1(n)$ 的 DFT $X_1(k)$ 。此题求解后,对正弦信号抽样及其 DFT 和 DTFT 之间的关系能总结出什么结论?

Exercise 2

信号 $x(n)=\{1,2,3,4\}$, 通过系统 $h(n)=\{4,3,2,1\},n=0,1,2,3$

- (1) 求系统的输出 y(n) = x(n) * h(n)
- (2) 试用循环卷积计算 y(n)
- (3) 简述通过 DFT 来计算 y(n) 的思路

Exercise 3

关于正弦信号抽样的实验研究。给定信号 $x(t)=\sin(2\pi f_0t), f_0=50Hz$,现对 x(t) 抽样,设抽样点数 N=16。我们知道正弦信号 x(t) 的频谱是在 $\pm f_0$ 处的 δ 函数,将 x(t) 抽样变成 x(n) 后,若抽样率及数据长度 N 取得合适,那么 x(n) 的 DFT 也应是在 $\pm 50Hz$ 处的 δ 函数。由 Parseval 定理,有

$$E_t = \sum_{n=0}^{N-1} x^2(n) = \frac{2}{N} |X_{50}|^2 = E_f$$

 X_{50} 表示 $\mathbf{x}(\mathbf{n})$ 的 DFT 在 50Hz 处的谱线,若上式不成立,说明有频谱泄露。

给定下述抽样频率: $(1)f_s=100Hz(2)f_s=150Hz(3)f_s=200Hz$. 试分别求出 x(n) 并计算其 x(k), 然后用 Parseval 定理研究其泄露情况,请观察得到的 x(n) 和 x(k), 总结对正弦信号抽样应掌握的原则。(用 MATLAB 编程验证题目要求,提交完整源代码和运行结果。)

Exercise 4

对 Exercise 3, 当取 $f_s=200Hz$,N=16 时,在抽样点后再补 N 个零得到 x'(n), 这时 x'(n) 是 32 点序列,求 x'(n) 的 DFTX'(k) 分析对正弦信号补零的影响.(用 MATLAB 编程验证题目要求,提交完整源代码和运行结果。)