IR-Miniatur-Reflexlichttaster MRL601

zur Abtastung von Reflektoren im Bereich von 1 - 30 mm, mit Schnellbefestigung

IR-Reflexlichttaster MRL601 Best.Nr. 182230

MRL 601

Relativer
Fotostrom
in Abhängigkeit vom
Reflektorabstand:

Arbeitsbereich:

- 1 möglichst meiden
- 2 Abtastung von Markierungen möglich
- 3 nur für die Abtastung großflächiger, guter Reflektoren

Fototransistor						
UCE	32	V				
/c	50	mA				
P tot	100	$mW (T_{U} = 25 ^{\circ}C)$				

MRL 601

Miniatur - Reflexlichtschranke

Einbaumaße: 9,5 x 4,5 x 15 mm

Fenstermaße: 11 x 5,5 mm

Sender und Empfänger leicht auswechselbar

Mit dieser MRL 601 ist es gelungen ein Abtastelement zu schaffen, welches es ermöglicht auf kurze Entfernung (1 - 30 mm) ein Höchstmaß an Auflösung zu erreichen. Mit der MRL 601 können auch aufgrund ihrer guten optischen Eigenschaften, Flächen mit mittlerer Reflexion sicher erfaßt werden, ohne dabei ein Übermaß an Fremdlichtempfindlichkeit zu bekommen. Die MRL 601 ist mit einer Infrarotlicht-Diode (unsichtbares Licht) als Sender, und einem Fototransistor als Empfänger, bestückt. Aufgrund ihrer besonders guten optischen Eigenschaften und besonders unauffälligen Einbaumöglichkeit sowie der kleinen Dimensionen, kann diese Lichtschranke sowohl in der Feinwerkstechnik, als auch im Modellbau u.d.g. eingesetzt werden. Es können auch mehrere MRL 601 aneinander gereiht werden. Ein Überkoppeln von einer MRL 601 zur anderen, ist durch die besondere Optik ausgeschlossen.

MRL 601 Sender-u. Empfänger-Daten

LD 261 Kenndaten (T_U =25°C) Sender

Wellenlänge der Strahlung bei Imax	λpeak	1 950	l nm
Spektrale Bandbreite bei 50% von Imax	Δλ	±20	nm
Schaltzeiten			
$(I_e \text{ von } 10\% \text{ auf } 90\%; I_F = 50 \text{ mA})$	t_r ; t_f	1	μs
Kapazität bei $U_R = 0 \text{ V}$	C _o	60	pF
Durchlaßspannung ($I_F = 50 \text{ mA}$)	UF	1,25 (≤ 1,6)	↓ V
Durchbruchspannung ($I_R = 100 \mu A$)	U_{BR}	30 (≥ 4)	V
Sperrstrom ($U_R = 3 \text{ V}$)	I_{R}	0,01 (≤10)	μΑ
Temperaturkoeffizient von I _e bzw. Φ _e	TK	-0.55	%/K
Temperaturkoeffizient von U _F	TK	-1.5	mV/K
Temperaturkoeffizient von λ _{peak}	TK	0.3	nm/K
Halbwertzeit der Strahlstärke	:	•	1
(typ) für $I_F = 50 \text{ mA}$		105	h

BPX 81	Kenndaten ($T_U = 25^{\circ}C$)	Empfänger	・ 予えた。・ 本本・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
Kollektor-	Emitter-Reststrom		**************************************	
$(U_{CE} = 25 \text{ V}; E = 0)$		I_{CEO}	25 (≤ 200)	nA
Kollektor-Emitter-Sättigungsspannung]
$(I_c = 0.25 \text{ mA}; E_v = 1000 \text{ lx})$		U_{CEsat}	0,2	V
Spektraler Bereich der Fotoempfindlichkeit				
$(S \ge 0.1 S_{\text{max}})$		λ	440 bis 1070	nm
Wellenlänge der max. Fotoempfindlichkeit		ÀS max	850	nm
Anstiegszeit von 10% auf 90% des Endwertes		tes	1	
Abfallzeit von 90% auf 10% des				1
Anfangswertes $(R_L = 1 \text{ k}\Omega)^1$		tr; tr	5 (≦ 10)	μs
Kapazität				
$(U_{CE} = 0)$	f = 1 MHz; E = 0	CCE	6	рF

MRL 601 Die wichtigsten Daten

Relativer Fotostrom in Abhängigkeit vom Reflektorabstand

Arbeitsbereiche:

- 1 möglichst meiden
- 2 Abtastung von Markierungen möglich
- 3 nur für die Abtastung großflächiger, guter Reflektoren

Figure 1. Directional characteristic $S_{\mbox{\scriptsize REL}} = f(\phi)$

Figure 2. Relative spectral sensitivity

Figure 4. Total power dissipation

Figure 3. Photocurrent I_{PCE} =f(E_e), V_{CE} =5V

Figure 5. Photocurrent

Techn. Daten Phototransistor MRL601

Figure 6. Collector emitter capacitance C_{CE} =f(V_{CE}), f=1 MHz, E=0

SILICON NPN PHOTOTRANSISTOR

MRL 601

Relative spectral sensitivity $S_{REL} {=} f(\lambda)$

Photocurrent

Directional characteristic

 $S_{REL}=f(\phi)$

Total power dissipation $P_{TOT} = f(T_A)$

Photocurrent $I_{PCE}/I_{PCE25} = f(T_A)$, V_{CE}≈5 V

Collector emitter capacitance C_{CE}=f(V_{CE}), f=1 MHz, E=0

Dark current I_{CEO} =f(T_A), V_{CE} =25 V, E=0

INFRARED EMITTER DIODES

MRL 601

Relative spectral emission $I_{REI} = f(\lambda)$

Radiant Intensity I_E/I_{E50mA} = $f(I_F)$ Single pulse, τ = 20 μ s

Radiation characteristic I_{REL}=f(φ)

Maximum permissible forward current I_F=f(T_A)

Forward current | F=f(VF)

Permissible pulse handling capability $I_F = f(\tau)$, $T_C = 25$ °C duty cycle D=Parameter

