SS1 Geography

Week 3: Earth's Revolution (Detailed)

Lesson Objectives

By the end of this lesson, students should be able to:

- Define what Earth's revolution means.
- Describe the path and duration of Earth's revolution around the Sun.
- Explain the effects of Earth's revolution on seasons, the length of the year, day/night variations, equinoxes, and solstices.

1. What is Earth's Revolution?

- Earth's revolution is the movement of the Earth as it travels around the Sun.
- This movement follows an elliptical (oval-shaped) orbit, not a perfect circle.
- The Earth completes one full revolution in approximately **365 days and 6 hours** (365% days). This period is called a **solar year**.
- Because of the extra 6 hours each year, every **four years**, an additional day is added to the calendar called a **leap year** (February 29).

2. Effects of Earth's Revolution

a) Seasons of the Year

- The Earth's axis is tilted at about **23.5 degrees** relative to its orbit. This tilt, combined with revolution, causes different parts of Earth to receive varying amounts of sunlight throughout the year, leading to seasons.
- When the Northern Hemisphere tilts towards the Sun, it experiences **summer**, while the Southern Hemisphere experiences **winter**, and vice versa.
- There are **four seasons** in most regions:
 - Spring
 - Summer

- Autumn (Fall)
- Winter

Example:

In Nigeria (near the equator), seasons are less marked compared to places like Europe or North America. They mainly experience wet and dry seasons due to their location.

b) Year Length and Leap Year

- One revolution defines a year. Since it takes 365¼ days, the extra quarter day accumulates to an extra day every four years.
- This is why the calendar adds February 29 in a leap year to keep time accurate.

c) Variation in Day and Night Length

- During revolution, the tilt causes days to be longer in one hemisphere and shorter in the other, depending on the time of the year.
- Near the equator, day and night lengths stay almost equal all year round.
- At the poles, the Sun can stay above or below the horizon for months, causing
 phenomena such as the Midnight Sun (continuous daylight) or Polar Night (continuous
 darkness).

d) Equinoxes

- Occur twice a year when the Sun is directly over the equator.
- During equinoxes, day and night are approximately equal in length everywhere on Earth.
- Dates: March 21 (vernal equinox) and September 23 (autumnal equinox).

e) Solstices

- Occur twice a year when the Sun reaches its highest or lowest point relative to the equator.
- They mark the longest and shortest days of the year.

Dates:

- June 21 Summer solstice (longest day in the Northern Hemisphere)
- December 22 Winter solstice (shortest day in the Northern Hemisphere)

3. Illustrations and Examples

- Diagram of Earth's orbit showing positions during equinoxes and solstices.
- Chart showing seasonal changes in day length at various latitudes.
- **Examples of how seasons affect farming**: planting and harvesting depend on season length and weather conditions.

4. Summary Table

Effect	Explanation	Example
Seasons	Caused by tilt and revolution; sunlight varies	Summer in June in Nigeria
Leap Year	Extra ¼ day accumulates every 4 years	Feb 29 added every 4 years
Day/Night Variation	Days longer in summer, shorter in winter	16-hour days in Norway summer
Equinox	Day = Night; Sun over equator	March 21 and Sept 23
Solstice	Longest/shortest days; Sun over Tropics of Cancer/Capricorn	June 21 and Dec 22