Pflichtenheft

Wetterstation mit Solar Energie

Windisch, 12. Oktober 2018

Hochschule für Technik - FHNW

Studiengang Elektro- und Informationstechnik

Autor Mischa Knupfer, Andres Minder

Betreuer Prof. Dr. Taoufik Nouri

Auftraggeber Prof. Dr. Taoufik Nouri

Version 1.0

Inhaltsverzeichnis

1	Ziele P5/P6						
2 Grundkonzept							
	2.1 Micro Controller Unit (MCU)	. 3					
	2.2 Sensoren	. 4					
	2.3 Kommunikationsmodul	. 5					
	2.4 Datenspeicherung	. 6					
	2.5 RTC	. 7					
	2.6 Speisung	. 8					
3	Verifikationskonzept	9					
4	Zeitplan Projektverlauf						
5	Budgetplanung	11					
6	Risikoanalyse	12					
7	Kommunikation	13					
${f A}$	Auftragsbeschreibung	14					

1 Ziele P5/P6

In diesem Abschnitt werden die Muss- und Wunschziele von P5 und P6 tabellarisch dargestellt. Die Ziele von P6 werden erst zu Beginn des P6 näher definiert und nachgetragen.

Tabelle 1.1: Ziele P5

	Ziel	Messbereiche	Genauigkeiten	Einheiten				
Mussziele P5								
Sensoren	Lufttemperaturmessung	[-20;30]	± 0.5	C				
		[30;100]	± 1	С				
	Rel. Luftfeuchtigkeitsmessung	[0;50]	± 3	%				
		[50;80]	± 2	%				
		[80;100]	± 3	%				
	Luftdruckmessung	[0;1000]	± 2	mBar				
	Windgeschwindigkeitsmessung	[0,5;11]	± 1	m/s				
Datenspeicherung	Datenabfrage via PuTTY	≥ 9600		Bd/s				
RTC	Implementation	Echtzeit	± 1	s/Jahr				
Wunschziele P5								
Sensoren	Windrichtungsmessung	[0;360]	± 20	° Winkelmass				
	Niederschlagsart	Regen	100	%				
		Hagel	100	%				
		Schnee	100	%				
	Niederschlagsmenge	Wasser	± 100	$\mathrm{mL/m^2}$				

Tabelle 1.2: Ziele P6

	Ziel	Messbereiche	Genauigkeiten	Einheiten			
Mussziele P6							
Speisung	Akkukapazität						
	Ladeschaltung Akku						
	Ladeschaltung Photovoltaik						
Kommunikationsmodul	GPS						
	Mobilfunk (SMS)						
Wunschziele P6							
Kommunikationsmodul	Mobilfunk (Website)						
Speisung	Netzadapter						

2 GRUNDKONZEPT

2 Grundkonzept

 ${\bf Abbildung~2.1:~Grundkonzept}$

3

2.1 Micro Controller Unit (MCU)

4 2 GRUNDKONZEPT

2.2 Sensoren

Abbildung 2.2: Sensoren

Sensoraufbau

Abbildung 2.3: Sensoraufbau

2.3 Kommunikationsmodul

 ${\bf Abbildung~2.4:}~{\rm Kommunikations modul}$

6 2 GRUNDKONZEPT

2.4 Datenspeicherung

2.5 RTC 7

2.5 RTC

8 2 GRUNDKONZEPT

2.6 Speisung

Abbildung 2.5: Energieversorgung

3 Verifikationskonzept

4 Zeitplan Projektverlauf

Wie das Projekt verläuft, wird in einer übersichtlichen Tabelle dargestellt. Es werden die unterschiedlichen Arbeitspakete darin aufgezeigt, sowie deren Terminierung über die Projektzeiträume $5\ \&\ 6$.

5 Budgetplanung

In einer übersichtlichen Tabelle werden die benötigten Budgets für die unterschiedlichen Gesamtkonzepte aufgeführt. Somit sind die wichtigsten Zahlen zusammengetragen und es bietet sich ein Überblick über die garantiert, anfallenden Kosten.

12 6 RISIKOANALYSE

6 Risikoanalyse

In einem Projekt können immer wieder Probleme auftreten. In diesem Kapitel wird sich mit diesem Thema auseinandergesetzt und gezeigt, mit welchen Methoden auf die unterschiedlichen Eventualitäten reagiert werden kann.

Risiken			Massnahmen
Nr.	Kategorien	Identifikation	
1	Student	Ausfall wegen Krankheit	Keine spezielle Massnahme
2		Studiumsabbruch	Niemand hat dies vor
3		Konflikte im Team	Klare Kommunikation
4		Fachliche Überforderung	Hilfe suchen bei Dozenten
5		Terminliche Überforderung	Vorausschauende Zeitplanung
6	Daten	Notebook kaputt	Backup, Ersatznotebook
7		versehentliches löschen	Backup
8	Sonstiges	Teile werden nicht geliefert	Woanders bestellen/Express Lieferung
9	1	Kein eigener Arbeitsplatz	Platz im Studentenlabor

Tabelle 6.1: Risiken und Massnahmen

Abbildung 6.1: Heat Map

7 Kommunikation

Wichtig innerhalb eines Projektes ist die Kommunikation im Team, sowie zwischen dem Team, Auftraggeber und Berater. Diese werden in diesem Kapitel festgelegt, um auch Missverständnisse zu umgehen.

A Auftragsbeschreibung

Ausschreibung Studierendenprojekt P5/P6 Studiengang Elektro- und Informationstechnik

Titel:

Wetterstation mit Solar Energie

Betreuer:

Prof. Dr. Taoufik Nouri (Institut für Mobile und Verteilte Systeme)

Auftraggeber:

Prof. Dr. Taoufik Nouri (Institut für Mobile und Verteilte Systeme)

Aufgabenbeschreibung:

Ausgangslage:

Wetterstation sind viele verlangt besonders im Gebiete ohne Strom. Wir schlagen solche Möglichkeit zu realisieren.

Zielsetzung:

- 1. Diese Wetterstation misst Regen, Wind- Geschwindigkeit, -Richtung, Temperatur, Sonnenlicht, Feuchtigkeit, Zeit usw.
- 2. Sie ist dotiert mit verschiedener Kommunikation Module wie GPS, SIM Karte.
- 3. Sie ist fern abfragbar durch Handy
- 4. Sie speichert regelmässig die verschiedenen Parameter (Journal).
- 5. Sie ist komplett automatisiert z.B. Regenwasser wird automatisch ausgeleert.

Schlüsselwörter: Energie, Mikrokontroller, Programmierung, Elektronik

Version: 2018-06-09 Seite 1