Фазовая намотка числовой прямой, фазовая плоскость и двойное решето

Короткие определения, простые леммы и заготовки рисунков

Автор: Горюшкин Сергей Владимирович zz.vexel@gmail.com

23 августа 2025 г.

Аннотация

Документ даёт максимально простое описание фазовой намотки: как каждое целое число получает координаты уровень + высота, как разворачивается цилиндр в плоскость, что такое минимальный треугольник формата $A_0 + B_0 = C_0$, и как формулируется двойное решето для $6k \pm 1$. Предназначен для вставки готовых рисунков: цилиндр, фазовая плоскость, решето.

Содержание

1 Намотка: как число n получает координаты

Фиксируем модуль $m \in \mathbb{Z}_{\geq 1}$. **Наматываем** числовую прямую на цилиндр так, что каждые m шагов по оси попадаем на тот же угол.

Определение 1.1 (Координаты числа при намотке). Для $n \in \mathbb{Z}$ определим

уровень (фаза):
$$v(n):=n \bmod m \in \{0,1,\ldots,m-1\},$$
 высота (номер витка): $h(n):=\left\lfloor \frac{n}{m} \right\rfloor \in \mathbb{Z}.$

На цилиндре фаза v отображается в угол $\theta = \frac{2\pi}{m}v$, а высота h-в осевую координату. При развёртке цилиндра в плоскость точке n сопоставляется пара $(h(n), v(n)) \in \mathbb{Z} \times \{0, \ldots, m-1\}$.

Замечание 1.2. Говорим: "число n лежит на уровне v и на высоте h". При увеличении n на m уровень не меняется, а высота растёт на 1.

Рис. 1: Фазовая намотка числовой прямой на цилиндр (m=6). Числа с одинаковым остатком лежат на одной образующей.

2 Фазовая плоскость (развёртка цилиндра)

Разворачиваем цилиндр вдоль образующей: получаем фазовую плоскость с прямоугольными координатами (h,v), где $h\in\mathbb{Z}$ (высота) и $v\in\{0,\ldots,m-1\}$ (уровень), периодически повторяющийся по v с периодом m.

Утверждение 2.1 (Точка \to прямая уровня). Множесство $\{n \in \mathbb{Z} : v(n) = r\}$ при развёртке образует горизонтальную прямую уровня v = r. Все уровни $v = 0, 1, \ldots, m-1$ — параллельны.

Утверждение 2.2 (Повороты/степени по фазе). Если считать фазу как угол $\theta = \frac{2\pi}{m}v$, то операция "n-я степень" действует по фазе как умножение: $v \mapsto (n \cdot v) \mod m$. На плоскости это замена уровня v на $nv \mod m$.

Рис. 2: Фазовая плоскость: развёртка цилиндра. Горизонтальные линии соответствуют фиксированным фазам (остаткам по модулю m).

Определение 2.3 (Минимальный треугольник; якорная версия). Пусть фиксирован модуль $m \ge 1$ и остатки $(A_0, B_0, C_0) \in \{0, \dots, m-1\}^3$ удовлетворяют $A_0 + B_0 \equiv C_0 \pmod{m}$. Якорным семейством (с якорем A) называем множество решений

$$S_{A_0} := \{ (A, B, C) : A = A_0, B = B_0 + km, C = C_0 + km, k \in \mathbb{Z} \}.$$

Интуитивно: A фиксирован как «фазовый якорь», а (B,C) поднимаются синхронно на один виток.

Лемма 2.4 (Эквивалентность с полной решёточной параметризацией). *Полная параметризация решений*

$$A = A_0 + mx$$
, $B = B_0 + my$, $C = C_0 + m(x + y)$ $(x, y \in \mathbb{Z})$

содержит якорное семейство как срез $x=0,\ y=k$. Наоборот, любое решение с $A\equiv A_0\pmod m$ можно свести к якорной форме: выбрав x из равенства $A=A_0+mx$ и положив k=y, получаем $(A,B,C)\in \mathcal{S}_{A_0}$ после вычитания mx из B и C.

Замечание 2.5 (Пример при m=6). Для минимального треугольника $(A_0,B_0,C_0)=(1,2,3)$ якорное семейство по A:

$$(1, 2+6k, 3+6k), k \in \mathbb{Z},$$

что эквивалентно общей формуле при x = 0, y = k. Аналогично можно якорить B или $C: (A, B, C) = (A_0 + km, B_0, C_0 + km)$ или $(A_0 + km, B_0 + km, C_0)$.

3 Двойное решето для $6k\pm1$

Фиксируем $z \geq 5$, множество простых $\mathcal{P}(z) = \{p: 5 \leq p \leq z\}$, и $M = \prod_{p \in \mathcal{P}(z)} p$. Для $p \in \mathcal{P}(z)$ пусть $t_p \equiv 6^{-1} \pmod{p}$.

Лемма 3.1 (Двойное решето). Множество индексов

$$S(z) = \{ k \in \mathbb{Z} : \forall p \in \mathcal{P}(z) \mid k \not\equiv \pm t_p \pmod{p} \}$$

имеет период М и в одном периоде содержит ровно

$$\varphi_2(M) = \prod_{p \in \mathcal{P}(z)} (p-2)$$

разрешённых классов. Каждому разрешённому классу $k \equiv r \pmod M$ соответствует двойная прогрессия $6(r+jM)\pm 1$ без делителей $\leq z$.

Рис. 3: Двойное решето для m=30. Красные точки показывают вероятного простого.

Замечание 3.2 (Пояснение к рисунку двойного решета). *На рисунке изображены два ситовых слоя:*

- **nesoe** pewemo 5k (запреты по простому p = 5),
- npasoe pewemo 7k (запреты по простому p=7).

Они даны в виде наклонных прямых, которые образуют перекрёстную решётку на фазовой плоскости.

Вдоль нулевой оси (вертикаль 6k) вниз идут каналы $6k \pm 1$. По обе стороны от неё нанесены красные точки — кандидаты на простые. До момента пересечения $5 \cdot 7 = 35$ все эти точки являются потенциально простыми:

$$11, 13, 17, 19, 23, 29, \dots$$

Некоторые из них будут выбиваться последующими решётами (по большим простым). Характерные места:

- на левом канале (через v=5) видно последовательность $11, 13, 19, \ldots$, но в точке 25 срабатывает решето 5k;
- на правом канале (через v=1) идут 11,17,23,29, а затем в точке 35 срабатывает двойное пересечение $pew\ddot{e}m\ 5k\ u\ 7k$.

Таким образом рисунок демонстрирует: каждый красный маркер — это «живое место» ситовой решётки, пока его не исключит одно из следующих простых.

4 Гипотеза щита

Определение (щитового окна). Пусть p < q - cocedние простые числа. Определим *щитовым окном* интервал

$$W(p) := (p^2, q^2).$$

Внутри W(p) сито на каналах $6k \pm 1$ действует только ограничениями от простых $\leq p$; следующий простой q «включается» лишь на правой границе q^2 .

Наблюдение (пример $p=5,\ q=7$). В окне W(5)=(25,49) на каналах $6k\pm 1$ остаются простые

в частности появляется *пара близнецов* 29,31. Здесь новые ситовые ограничения начинают работать только с числа $49=7^2$.

Формулировка (гипотеза щита). Если в некотором щитовом окне $W(p) = (p^2, q^2)$ существует пара близнецов (u, u+2), то пары близнецов существуют и в бесконечно многих последующих окнах W(p') при $p' \to \infty$.

Индуктивная эвристика. Структура запретов в W(p) описывается периодом

$$M(p) = \prod_{5 \le r \le p} r$$

по китайской теореме об остатках. Наличие пары близнецов означает, что в этом слове из «живых» и «дыр» есть два соседних разрешённых места. При переходе к следующему окну W(p') этот шаблон поднимается по модулю M(p) (и его расширениям). Таким образом, если пара близнецов появилась в одном щитовом окне, то по индукции она будет появляться и в последующих окнах, сохраняясь в бесконечной последовательности.

5 Провал радикала: что это и как он ограничен

Лемма 5.1 (Провал радикала: общий vs якорный режим). Пусть $m \geq 1, A_0 + B_0 \equiv C_0 \pmod{m} u$

$$A = A_0 + mx$$
, $B = B_0 + my$, $C = C_0 + m(x + y)$.

Обозначим $C_0' = \operatorname{rad}(\operatorname{gcd}(A_0, B_0)\operatorname{gcd}(A_0, C_0)\operatorname{gcd}(B_0, C_0))$ и $C_m = \operatorname{rad}(m)$. Тогда

$$\Delta(A,B,C) = \frac{\operatorname{rad}(A)\operatorname{rad}(B)\operatorname{rad}(C)}{\operatorname{rad}(ABC)} \leq \begin{cases} C_0'\,C_m^2, & \textit{общий случай}, \\ C_0'\,C_m, & \textit{якорный режим (якорим A; } x=0, \, B=B_0+my, \, C=0, \, C$$

Замечание 5.2 (Уточнение якорного режима). В якорном режиме вклад простых $p \mid m$ зависит только от остатков A_0, B_0, C_0 . Если дополнительно $\gcd(A_0, m) = 1$, то для всех $p \mid m$ имеем $k_p \leq 1$ и

$$\Delta(A, B, C) < C'_0$$

Вообще всегда справедлива более тонкая оценка

$$\Delta(A, B, C) \leq C_0' \operatorname{rad}(\operatorname{gcd}(A_0, m)),$$

а грубая линейная $C_0'C_m$ удобна как универсальная «короткая» граница.

Замечание 5.3 (Коэффициент качества). Введём коэффициент качества класса

$$\kappa_{\text{gen}}(m) := \text{rad}(m)^2, \qquad \kappa_{\text{anc}}(A_0; m) := \text{rad}(m) \quad (unu moньше \, \text{rad}(\text{gcd}(A_0, m))).$$

Тогда $\Delta \leq C_0' \, \kappa$, и чем меньше κ , тем «чище» тройка по смыслу ABC: якорение и взаимная простота A_0 с m минимизируют провал радикала.

Идея доказательства. Пусть k_p — число из $\{0,1,2,3\}$, равное количеству компонент A,B,C, делящихся на простой p. Тогда вклад p в Δ равен p^{k_p-1} , откуда общий верхний предел $k_p-1\leq 2$ даёт $\operatorname{rad}(m)^2$. В якорном случае из $A_0+B_0\equiv C_0\pmod{p}$: если $p\nmid A_0$, то B_0 и C_0 не могут одновременно делиться на p ($k_p\leq 1$); если $p\mid A_0$ и класс минимален (не все три делятся на p), то $k_p\leq 2$, что даёт множитель не выше p. Если кроме того $\gcd(A_0,m)=1$, то для всех $p\mid m$ имеем $k_p\leq 1$ и вклад равен 1.

Рис. 4: Провал радикала Δ в якорном режиме: $A = A_0$ фиксирован, $(B, C) = (B_0 + my, C_0 + my)$. Резкие падения соответствуют появлению общего простого делителя, границы сверху соответствуют оценкам из леммы $(C'_0 C_m)$ или тоньше C'_0 rad $(\gcd(A_0, m))$.

Замечание 5.4 (Геометрия провала на графике). В якорном режиме А фиксирован, а $(B,C)=(B_0+my,\ C_0+my)$ сдвигаются синхронно. Поэтому соседние точки у дают почти совпадающие величины В и С (различаются на шаг т), а при попадании общего простого делителя в обе компоненты радикал $\operatorname{rad}(ABC)$ резко "схлопывается", что видно как скачок вниз у Δ на графике (провал).

6 TOR: двухфазная намотка и китайская теорема об остатках

Определение 6.1 (Двухфазная намотка и тор). Пусть $m_1, m_2 \in \mathbb{Z}_{\geq 1}$. Для $n \in \mathbb{Z}$ зададим две фазы

$$v_1(n) := n \mod m_1, \qquad v_2(n) := n \mod m_2.$$

Отображение

$$\Phi: \mathbb{Z} \to (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z}), \qquad \Phi(n) = (v_1(n), v_2(n))$$

— это двухфазная намотка на тор $S^1 \times S^1$ (комбинаторно — прямоугольная решётка остатков).

Утверждение 6.2 (Аналог КТО на торе). Если $gcd(m_1, m_2) = 1$, то для любых остатков $a \pmod{m_1}$, $b \pmod{m_2}$ существует единственный класс $n \pmod{M}$, $M = m_1 m_2$, такой что

$$n \equiv a \pmod{m_1}, \qquad n \equiv b \pmod{m_2}.$$

Эквивалентно: орбита $\{\Phi(n): n \in \mathbb{Z}\}$ проходит по всем клеткам решётки ровно один раз за период M. Если $g = \gcd(m_1, m_2) > 1$, орбита распадается на g циклов длины M/g.

Замечание 6.3 (Длинная развёртка (идея)). Разворачивая тор в прямоугольник $[0, m_1) \times [0, m_2)$, траектория $n \mapsto (v_1(n), v_2(n))$ визуализируется как прямая с рациональным наклоном, замыкающаяся с периодом M. Это геометрическая форма китайской теоремы об остатках.

Замечание 6.4 (Эллиптическая кривая на торе (набросок)). Наложив алгебраическое условие (например, $y^2 = x^3 + Ax + B$ на одной фазе) и сочетая его с второй фазой, получаем кривую на торе с выделенной «центральной» точкой — геометрическим образом точки на бесконечности. Этот пункт даёт направление для дальнейшего анализа и визуализаций.

Заключение

В работе построена геометрическая интерпретация числовой прямой через намотку на цилиндр и фазовую развёртку. Мы выделили минимальные треугольники как базовые шаблоны для троек A+B=C, а также показали, что операции сдвига и подъёма согласуются с векторными операциями на фазовой плоскости.

Далее введена sunomesa uuma: в каждом окне $(p^2,(p+1)^2)$ для соседних простых p < p+1 остаётся ненулевая конфигурация кандидатов на простые, и наличие пары близнецов в одном окне эвристически гарантирует их повторение в последующих окнах.

Мы уточнили понятие *провала радикала*: в общем случае он ограничен C'_0 $\mathrm{rad}(m)^2$, а в якорном режиме — C'_0 $\mathrm{rad}(m)$, что даёт простую эвристику оценки качества троек (A,B,C) в терминах гипотезы ABC.

Наконец, введён mop как геометрический аналог китайской теоремы об остатках: двухфазная намотка $n \mapsto (n \bmod m_1, n \bmod m_2)$ реализует структуру CRT на поверхности $S^1 \times S^1$. Это открывает путь к дальнейшим конструкциям (в частности, к эллиптическим кривым на торе). Таким образом, добавленные фрагменты (щит, провал радикала, тор) формируют целостную картину: геометрическая интерпретация даёт не только наглядность, но и комбинаторные эвристики для классических задач теории чисел.

Kонтакты автора: zz.vexel@gmail.com/ GitHub zzVex .