- a) x = [3;0], y = [2;2], z = [-2;4]. Use a = 2, $a = \frac{1}{2}$ y = a = -2.
- **b)** x = [-5;5], y = [0;-4], z = [4;4]. Use $a = 2, a = \frac{1}{3}$ y $a = \frac{-3}{2}$.
- c) Su propia elección de x, y, z y/o a.
- 2. a) Elija algunos valores para n y m y genere tres matrices aleatorias de n x m, llamadas X, Y y Z. Genere dos escalares aleatorios a y b (por ejemplo, a = 2*rand(1)-1). Verifique todas las propiedades del espacio vectorial para estas matrices y escalares. Para demostrar A = B, compruebe que A B = 0; para la propiedad iii) decida cómo generar el idéntico aditivo para matrices de n x m. Repita para otros tres juegos de X, Y, Z, a y b (para las mismas n y m).
 - **b)** (Lápiz y papel) Pruebe las propiedades del espacio vectorial para \mathbb{M}_{mn} , las matrices de $n \times m$.
 - c) (Lápiz y papel) ¿Cuál es la diferencia entre los incisos a) y b)?

5.2 Subespacios vectoriales

Del ejemplo 5.1.1, se sabe que $\mathbb{R}^2 = \{(x, y): x \in \mathbb{R} \ y \ y \in \mathbb{R}\}$ es un espacio vectorial. En el ejemplo 5.1.4 se vio que $V = \{(x, y): y = mx\}$ también es un espacio vectorial. Adicionalmente, es evidente que $V \subset \mathbb{R}^2$. Esto es, \mathbb{R}^2 tiene un subconjunto que también es un espacio vectorial. De hecho, todos los espacios vectoriales tienen subconjuntos que también son espacios vectoriales. En esta sección se examinarán estos importantes subconjuntos.

Definición 5.2.1

Subespacios vectoriales

Se dice que H es un subespacio vectorial de V si H es un subconjunto no vacío de V, y H es un espacio vectorial, junto con las operaciones de suma entre vectores y multiplicación por un escalar definidas para V.

Se puede decir que el subespacio H hereda las operaciones del espacio vectorial "padre" V.

Existen múltiples ejemplos de subespacios en este capítulo; sin embargo, en primer lugar, se demostrará un resultado que hace relativamente sencillo determinar si un subconjunto de V es en realidad un subespacio de V.

Teorema 5.2.1 Subespacio vectorial

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Reglas de cerradura para ver si un subconjunto no vacío es un subespacio

- i) Si $x \in H$ y $y \in H$, entonces $x + y \in H$.
- ii) Si $x \in H$, entonces $\alpha x \in H$ para todo escalar α .