The Memorial Explorer

Current developments for under-ice research
Peter King

Ron Lewis, Darrell Mouland, Dan Walker, Polly Alexander, Neil Bose, and Anthony Worby

Outline

Overview

- MERLIN
- AUV
- Motivation

CATCHY

- Project Cornerstone
- Design
- Testing
- Deployment

Future

- REALM
- Antarctic

Overview: MERLIN

- Marine Environmental Lab for Intelligent Vehicles
 - The lab is a node in Memorial University's CREAIT Network.
 - The mandate of the Network is to facilitate accessibility of higher value institutional research assets and promote new research partnerships.

Overview: AUV

• International Submarine Engineering (ISE) Explorer

Overview: Motivation

- Development of AUV platform for under-ice research
 - Logistical and operational
 - Platform and equipment
 - Safety and risk mitigation
 - Mission control and situational awareness

CATCHY

Canadian AUV Through-ice Capture and Hold System

- Designed in support of Canada's AUV survey missions for the upcoming UNCLOS bid
 - Project CORNERSTONE
- AUVs will map bathymetry under-ice to determine extent of continental shelf

- Scenario
 - Launch from base camp
 - AUV sized hole
 - Docking at remote site
 - non-retrieval
 - data upload
 - INU alignment
 - battery charging
 - Several remote dockings to extend under-ice time
 - Recovery at base camp

- Constraints
 - Deployable through 60 cm² hole
 - Adaptable
 - Ice thickness
 - Currents
 - Portable
 - Helicopter
 - Skidoo
 - Robust (Simple)
 - ROV assisted

- Features
 - Capture of AUV at end of mission
 - Secure retention of AUV
 - Full rotation of AUV
 - INU Alignment
 - Support under-ice charging and data upload
 - Release of AUV for next mission

- Cradle
 - keyed to AUV lifting lug
 - Curved surface allows alignment of AUV
- Topside secures to ice
 - Mountable capstan
- Shaft consists of individual sections
 - Expandable by 1m lengths

- Operation
 - AUV lies under ice
 - Line passed through shaft is brought to AUV by ROV
 - Line returned to hole by ROV
 - Line passed back through shaft
 - AUV ballasted heavy
 - Tension applied to pull AUV into basket

CATCHY: Testing

- Testing Marine Institute Flume Tank
 - Functionality
 - Retention
 - Rotation
 - Capture
 - Release
 - Currents
 - o to 1 m/s
 - o to 90°

CATCHY: Testing

• Results – Marine Institute Flume Tank

TABLE I MI test results	
Test	Successful Currents (m/s)
Retention nose-in	0.0 to 1.0
Retention broadside	0.0 to 1.0
Rotation	0.0 to 1.0
Capture nose-in	0.0 to 1.0
Capture broadside	0.0 to 0.2
Release nose-in	0.0 to 1.0
Release broadside	0.0 to 1.0

- On Ice Field Trials
 - Spring 2009
- Alert, Nunavut
 - Base camp setup
 - Template to mimic remote camp
 - Full capture operations
 - ROV assisted
 - INU alignment
 - In AUV

- Ice Trials Results
- Capture
 - Assembly to capture successful
 - ROV in loop
 - Sufficient feedback and line management
 - Procedure works

- Ice Trials Results
- INU Alignment
 - Controlled Rotation of AUV
 - Data indicates
 success for In AUV
 alignment at high
 latitude
 - 82.3N

- AIF awarded for *Responsive AUV Localization and Mapping* project
- 4 year, \$4M project
 - \$2.1M from ACOA
 - \$1.9M contributions

Atlantic Canada Opportunities Agency Agence de promotion économique du Canada atlantique

- Qualitative Navigation
 - Vehicle navigation through an environment without the need for a single global coordinate system for landmarks
 - Under-ice return home capability
 - AUV position corrected relative to previously traversed path
 - Feature recognition
 - Real time sonar image registration and recognition
 - Relative path position from previously seen landmarks
 - Non-specific target based

- Emergency AUV localization specifically designed for robustness in harsh environment operations
 - Utilizes one way signal transfer to increase likelihood of success
 - Novel localization algorithm to be implemented real time for a complete, mobile solution

- Mobile Surface Control Computer
 - Existing surface unit is large and immobile
 - Not practical for remote or on-ice
 - Need for fully portable solution
 - Communication with AUV
 - Acoustics
 - Radio
 - Battery operation
 - or alternate power
 - Run ISE SCC software
 - Replaces 19" rack system

Future: Antarctic

Australian Maritime College, UTAS

Australian Antarctic Division

Commonwealth
Scientific and Industrial
Research Organization

Future: Antarctic

- Explorer AUV to be used to research the role of Antarctic sea-ice in climate change
 - Quantify size and shape of pressure ridge-keels
 - Improve understanding of links between sea-ice and ice algae and krill
 - Develop ice thickness mapping capabilities

Future: Antarctic

- Under-ice sounding important data collection tool
- Developments are needed for greater acceptance of AUV technology for scientific missions
 - Adaptive mission planning
 - Situational awareness
 - Fault detection and diagnosis

Discussion

- Many challenges still exist for AUV operations in remote ice-covered regions
- Developments in mission control are important for increased AUV use
- AUV offer many opportunities for science, especially when it comes to under-ice research

Discussion

• Questions?

IOT AUV Workshop 2010 - October, 2010