

RAJARATA UNIVERSITY OF SEL LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree Second year – Semester I Examination – September / October 2013

PHY 2101 - THERMODYNAMICS AND RADIATION

Answer two questions only	inga don e Manadadi	Time: 1 hour	
Universal gas constant (R)	eni nomo Selator	8.334 J K ⁻¹ mol ⁻¹	15- 18

The use of a non-programmable electronic calculator is permitted.

1)

- a) Write down the zeroth law and the first law of thermodynamics.
- b) Prove that the work done on the system of a fixed gas mass is given by -pdv for a small volume change dv, where "p" is the pressure and "v" is the volume.
- c) Prove that the work done on a system consisting of ideal gas in a isothermal, and reversible expansion is given by; (a) $W = nRT \ln(V_1/V_2)$ and
 - (b) $W = nRT \ln (P_2/P_1)$. The symbols have their usual meanings.
- d) One mole of an ideal gas having pressure, P_1 , and volume, V_1 , is compressed reversibly and isothermally till the pressure is doubled. Calculate;
 - i) the work done on the system,
 - ii) the internal energy change and
 - iii) the heat input to the system.

2)

- a) Write down the second law of thermodynamics.
 - i) Prove that for an adiabatic and reversible process; $PV^{\gamma} = \text{constant}$, where $\frac{c_{\rho}}{c_{\nu}} = \gamma$, c_{ρ} is the molar heat capacity at constant pressure, c_{ν} is the molar heat capacity at constant volume.
 - ii) Prove that $c_p c_v = R$ for an ideal gas.
- 3) What is it meant by perfect black body?
 - a) Define absorptive power and emissive power of black body radiation.
 - b) Write down the Kirchoff's law for the black body radiation and prove it.
 - c) Write down Stefan-Boltzman law for the black body radiation.
 - d) An iron furnace radiates 2 x10⁻⁵ J h⁻¹ through an opening of cross-section 1 cm². If the relative emittance of the furnace is 0.8, calculate the temperature of the furnace. (Stefan's constant, $\sigma = 5.67 \text{X} 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$)

End