Optymalizacja – pojęcie i zastosowania

Bernard Pokorski

30.11.2023

Plan prezentacji

- Definicje
- Zastosowanie optymalizacji
- 3 Podejścia w rozwiązywaniu problemów
- 4 Alogrytmy optymalizacyjne

Pomocnicze definicje

Ekstremum funkcji

Nazywamy minimum lub maksimum funkcji.

- Ekstremum lokalne dotyczy pewnego otoczenia punktu (przedziału otwartego)
- Ekstremum globalne największa lub najmniejsza wartość funkcji w całej jej dziedzinie.

Pola

- Pole skalarne przypisanie każdemu punktowi w przestrzeni fizycznej lub w przestrzeni abstrakcyjnej pewnej wielkości skalarnej, czyli liczby.
- Pole wektorowe funkcja, która każdemu punktowi przestrzeni przyporządkowuje pewną wielkość wektorową.

Pomocnicze definicje

<u>Gradi</u>ent

Gradient (∇) To pole wektorowe wskazujące kierunek i szybkość wzrostu danego pola skalarnego w określonym punkcie, gdzie moduł (długość) każdego wektora jest równy szybkości wzrostu pola skalarnego w kierunku jego największej wartości.

Co to jest optymalizacja?

Definicja

Optymalizacja to proces znajdowania **najlepszego** rozwiązania spośród zestawu możliwych rozwiązań dla danego problemu. Może to obejmować minimalizację lub maksymalizację pewnej funkcji celu przy uwzględnieniu ograniczeń.

Przykład: Rozważmy problem minimalizacji kosztów transportu. Mając dane różne środki transportu i odległości między lokalizacjami, celem jest znalezienie najtańszego sposobu przewiezienia towarów z jednego punktu do drugiego.

Przykład 1

Zadanie liniowe z ograniczeniami

- Problem alokacji zasobów: Jak zoptymalizować alokację budżetu na różne projekty przy określonych ograniczeniach finansowych?
- Planowanie produkcji: Jak zoptymalizować produkcję różnych produktów w fabryce przy ograniczonych zasobach surowców i czasie pracy?
- Zrównoważony transport: Jak zoptymalizować trasę dostaw towarów przy minimalnych kosztach transportu?

Przykład 2

Zadanie kwadratowe z ograniczeniami

- Projektowanie struktury: Jak zoptymalizować kształt mostu, tak aby zużycie materiałów było minimalne przy zachowaniu określonych kryteriów wytrzymałościowych?
- Problemy regresji: W przypadku analizy danych, jak znaleźć krzywą dopasowującą się najlepiej do punktów danych?

Przykład 3

Zadanie nieliniowe z ograniczeniami

- Optymalizacja marketingowa: Jak zoptymalizować strategię marketingową, uwzględniając różne czynniki wpływające na rynek?
- Projektowanie systemów energetycznych: Jak zoptymalizować układ energetyczny w mieście, biorąc pod uwagę różne źródła energii, popyt i ograniczenia?

Przykład 4

Zadanie liniowe całkowitoliczbowe z ograniczeniami

- Problem plecakowy: Jak wybrać zestaw przedmiotów o różnych wagach i wartościach, aby ich suma w plecaku nie przekroczyła określonej wartości?
- Planowanie tras: Jak zoptymalizować trasę dostawy w mieście, biorąc pod uwagę ograniczenia czasowe i liczbowe pojazdów?

Przykład 5

Zadanie nieliniowe bez ograniczeń

- Funkcje celu w analizie numerycznej: Jak znaleźć maksimum lub minimum funkcji bez jakichkolwiek ograniczeń, co ma zastosowanie w naukach ścisłych?
- Optymalizacja procesów przetwarzania danych: Jak zoptymalizować algorytmy przetwarzania danych w celu zmaksymalizowania wydajności?

Podejście zachłanne a ewolucyjne/dynamiczne

Podejście zachłanne

To podejście polega na podejmowaniu lokalnie optymalnych decyzji na każdym kroku, w nadziei osiągnięcia globalnej optymalizacji. Algorytm podejmuje najlepsze dostępne rozwiązanie w danym momencie, nie analizując całego zbioru możliwości. Przykładem jest algorytm Dijkstry do znajdowania najkrótszej ścieżki w grafie.

Podejście dynamiczne/ewolucyjne

Metoda dynamiczna polega na rozwiązywaniu problemów przez podział na mniejsze podproblemy, rozwiązywanie ich i wykorzystywanie uzyskanych wyników do rozwiązania głównego problemu.

Podejście zachłanne a ewolucyjne/dynamiczne

Przykład:

Problem plecakowy to klasyczny problem optymalizacyjny, gdzie próbujemy wybrać zestaw przedmiotów o różnych wagach i wartościach, aby ich suma wag nie przekroczyła określonej pojemności plecaka, a suma wartości była jak największa.

Tabela: Tabela przedmiotów, wag i wartości

Przedmiot	Waga	Wartość
А	5	10
В	8	14
C	3	7
D	4	8

Podejście zachłanne a dynamiczne

Podejście zachłanne

Rozwiązanie zachłanne mogłoby polegać na wyborze przedmiotu o największym stosunku wartości do wagi. W tym przypadku, można zastosować algorytm, który wybiera przedmioty według wartości na wagę, co prowadzi do wyboru przedmiotu A (10 wartości przy wadze 5) jako pierwszego.

Załóżmy, że zaczynamy z przedmiotem A o wartości 10 i wadze 5. Następnie wybieramy kolejny przedmiot o najwyższym stosunku wartości do wagi spośród pozostałych, co jest algorytmem zachłannym. W tym przypadku, kolejnym wyborem byłby przedmiot C o wartości 7 i wadze 3. Całkowita wartość wynosi 17, a waga 8, co mieści się w pojemności plecaka.

Podejście zachłanne a dynamiczne

Podejście dynamiczne

Algorytm programowania dynamicznego do rozwiązania problemu plecakowego opiera się na podejściu bottom-up, rozwiązując najpierw mniejsze podproblemy i wykorzystując je do rozwiązania całego problemu. W przypadku problemu plecakowego, algorytm dynamiczny tworzy tablicę, gdzie komórki przechowują maksymalną wartość, jaką można uzyskać dla określonej pojemności plecaka i dla różnych kombinacji przedmiotów. Wartości te są obliczane iteracyjnie, wykorzystując wcześniej obliczone wartości dla mniejszych pojemności plecaka i mniejszych zbiorów przedmiotów.

Algorytmy optymalizacyjne

Algorytmy ewolucyjne

Algorytm genetyczny Inspirowane procesami ewolucji biologicznej, wykorzystują selekcję naturalną, krzyżowanie i mutacje, aby generować nowe rozwiązania.

Algorytm metaheurystyczne

Algorytm roju (PSO) Inspirujące się zachowaniami roju zwierząt do znalezienia optymalnego rozwiązania poprzez interakcje między "cząstkami".

Sieci neuronowe

Sieci neuronowe nie są algorytmami optymalizacyjnym!

Podczas procesu uczenia sieci neuronowych algorytm optymalizacji jest używany do dostosowania wag połączeń między neuronami w sieci, tak aby zminimalizować funkcję kosztu

Algorytmy optymalizacyjne w sieciach neuronowych

Algorytmy gradientowe

Gradient to wektor zawierający pochodne cząstkowe funkcji celu względem każdego z parametrów modelu. Ogólna idea algorytmów gradientowych opiera się na iteracyjnym aktualizowaniu parametrów modelu w kierunku przeciwnym do gradientu funkcji celu.