1 Interpolace funkcí

1.1 Obecná interpolace a Vandermondova matice

Mějme funkci f zadanou v bodech x_0 až x_n . Chceme tuto funkci interpolovat v bodech x_i pomocí funkcí z nějakého prostoru X (například polynomů stupně nejvýše n, tj. $X = P_n$). To znamená nalézt funkci F v X, která se s f shoduje v bodech.

Aby úloha měla jednoznačné řešení, dimenze X se musí rovnat počtu bodů interpolace.

Jak postupujeme? Zvolíme nějakou bázi prostoru X, bázové funkce označíme p_0 až p_n . Nyní $F = \sum_{i=0}^n \alpha_i p_i$.

Sestavíme soustavu rovnic pro neznámé koeficienty α_i . Dostáváme zobecněnou Vandermondovu matici

$$\begin{pmatrix} p_0(x_0) & p_1(x_0) & p_2(x_0) & \dots & p_n(x_0) \\ p_0(x_1) & p_1(x_1) & p_2(x_1) & \dots & p_n(x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_0(x_n) & p_1(x_n) & p_2(x_n) & \dots & p_n(x_n) \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix} . \tag{1}$$

Vyřešením této soustavy získáme žádanou funkci F.

Pro $X = P_n$ a bázi $\{1, x, x^2, \dots, x^n\}$ dostáváme známou matici

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}. \tag{2}$$

Její číslo podmíněnosti prudce roste se zvětšujícím se n.

Zřejmě báze $\{1, x, x^2, \dots, x^n\}$ není vhodná. Dovedli bychom sestavit vhodnější bázi? Co musí funkce p_i splňovat, aby Vandermondova matice byla co nejjednodušší možná?

1.2 Lagrangeova interpolace

Budeme nyní pro interpolaci používat lagrange
ovské bázové funkce l_i . Jde o polynomy stupně nejvýš
en, splňující vztah

$$l_i(x_i) = \delta_{ii},\tag{3}$$

kde δ_{ij} je Kroneckerova delta. Potom Lagrangeův interpolační polynom je dán vztahem

$$L_n(x) = \sum_{i=0}^n f(x_i)l_i(x).$$

Úloha 1. Vymyslete, jak sestavit Lagrangeovy bázové funkce l_i pro body $x_0 = 0$, $x_1 = 1$ a $x_2 = 3$. [Hint: Jednotlivé bázové funkce l_i si nejprve nakreslete. Jaký je stupeň těchto polynomů?] [Hint: Polynomy je možné samozřejmě určit řešením soustavy 3 rovnic, ale vyhněte se tomu.]

 $\mathring{R}e\check{s}en\acute{i}$. Polynomy l_i získáme tak, že vezmeme polynom se správnými kořeny, který vydělíme jeho funkční hodnotou v bodě, kde má být hodnota $l_i(x_i)=1$.

Postupně tak získáme jednotlivé $l_i(x)$:

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 1)(x - 3)}{(0 - 1)(0 - 3)} = \frac{1}{3}(x^2 - 4x + 3),$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 0)(x - 3)}{(1 - 0)(1 - 3)} = -\frac{1}{2}(x^2 - 3x),$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 0)(x - 1)}{(3 - 0)(3 - 1)} = \frac{1}{6}(x^2 - x).$$

Úloha 2. S využitím výsledku předchozí úlohy sestavte Lagrangeův interpolační polynom L_2 pro funkci f, která je daná tabulkou svých hodnot a vypočtěte přibližnou hodnotu funkce f v bodě 2, tj. $L_2(2) \approx f(2)$.

Řešení. Lagrangeův interpolační polynom je dán vztahem

$$L_n(x) = \sum_{i=0}^n f(x_i)l_i(x), \text{ kde } l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

Celkem tedy dostaneme

$$L_2(x) = \frac{1}{3}(x^2 - 4x + 3) - \frac{2}{2}(x^2 - 3x) + \frac{2}{6}(x^2 - x) = -\frac{1}{3}x^2 + \frac{4}{3}x + 1$$

$$a L_2(2) = \frac{7}{3}.$$

1.2.1 Chyba Lagrangeovy interpolace

Jak velký může být rozdíl mezi $L_n(x)$ a f(x) v obecném bodě $x \in [a, b]$, mimo interpolačních uzlů? Odpověď dává věta z přednášky:

Věta 1. Nechť $f \in C^{n+1}([a,b])$ a $x_i \in [a,b]$, i = 0, ..., n. Nechť L_n je interpolační polynom, tj. $L_n(x_i) = f(x_i)$, i = 0, ..., n. Pak pro každý $x \in [a,b]$ platí

$$f(x) - L_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i), \quad \text{pro nějaké} \quad \xi_x \in [a, b].$$
 (4)

Větu lze prakticky používat jen v tom případě, známe-li horní odhad $f^{(n+1)}$ na celém intervalu [a,b].

Úloha 3. Spočtěte Lagrangeovu interpolaci funkce $f(x) = \cos^2(x)$ v bodech $x_0 = 0$, $x_1 = \frac{\pi}{2}$.

Odhadněte chybu interpolace použitím formulky z předchozí věty. V jakém bodě na intervalu $[0, \frac{\pi}{2}]$ je tento odhad nejvyšší?

 $Ur\check{c}ete\ odhad\ a\ skute\check{c}nou\ chybu\ interpolace\ v\ bod\check{e}\ \frac{\pi}{4}.$

[Hint:
$$f''(x) = -2\cos(2x)$$
.]

Řešení. Lagrangeova interpolace má tvar

$$L_1(x) = f(x_0)l_0(x) + f(x_1)l_1(x) = f(0)\frac{x - \frac{\pi}{2}}{0 - \frac{\pi}{2}} + f\left(\frac{\pi}{2}\right)\frac{x - 0}{\frac{\pi}{2} - 0} = -\frac{2}{\pi}\left(x - \frac{\pi}{2}\right).$$

Odhadneme druhou derivaci: $|f''(x)| = |-2\cos(2x)| \le 2$ pro $x \in [0, \pi/2]$. Dosazením do (4) dostaneme

$$|f(x) - L(x)| \le \frac{1}{2!} 2 \left| (x - 0)(x - \frac{\pi}{2}) \right| = \left| (x - 0)(x - \frac{\pi}{2}) \right|.$$

Na intervalu $[0, \frac{\pi}{2}]$ nabývá odhad maximální hodnotu pro $x = \frac{\pi}{4}$. Platí:

$$|f(x) - L_1(x)| \le \left(\frac{\pi}{4}\right)^2 \approx 0.6169.$$

Skutečná chyba v bodě $x = \frac{\pi}{4}$ je

$$\left|\cos^2\left(\frac{\pi}{4}\right) - L_1\left(\frac{\pi}{4}\right)\right| = 0.$$

1.3 Chebyshevovy body

V případě Lagrangeovy interpolace na ekvidistantních uzlech může docházet k velkým oscilacím na kraji uvažovaného intervalu. Tomuto nepříznivému jevu můžeme zabránit použitím tzv. $Chebyshevových\ bodů$, které jsou na intervalu [-1,1] definované jako

$$x_j = \cos\left(\frac{(2j+1)\pi}{2n+2}\right), \quad j = 0, \dots, n,$$

tj. jako kořeny Chebyshevova polynomu T_{n+1} .

Chebyshevovy body jsou více soustředěny ke kraji intervalu [-1,1]. Pokud chceme pracovat na obecném intervalu [a,b], stačí použitím lineární transformace uzly x_j , $j=0,\ldots,n$ přetransformovat, jak jsme si ukázali na minulém cvičení.

1.4 Kubický interpolační spline

Jiný přístup k interpolaci je po částech polynomiální interpolace. Funkci f budeme interpolovat pomocí kubických polynomů tak, aby pro výslednou interpolaci S platilo:

- $f(x_i) = S(x_i)$,
- S ie třídy C^2 .
- S je "přirozený", tedy $S''(x_0) = S''(x_n) = 0$.

1.5 Porovnání metod na interpolaci funkcí

Budeme používat připravený skript interpolace.m. Skripty používají funkci lagrangebary.m¹ na hledání Lagrangeových polynomů a Matlabovskou funkci spline na výpočet interpolace pomocí kubického splinu.

Výstupem jsou čtyři grafy. V prvním grafu nalezneme Lagrangeovu intepolaci na ekvidistantních uzlech, ve druhém Lagrangeovu intepolaci na Chebyshevových bodech a ve třetím interpolaci pomocí kubického splinu. Černá přerušovaná čára reprezentuje přesné řešení. Poslední graf zobrazuje chybu interpolace se skutečným řešením ve všech třech případech.

Ve skriptech lze volit interpolovanou funkci (funkce z Úlohy 4 jsou připraveny) a počet uzlů k.

 $^{^1}$ Funkce lagrangebary.m používá pokročilejší techniku vyhodnocování Lagrangeových interpolantů, tedy $druhou\ barycentrickou\ formuli$. Ta má totiž lepší numerickou stabilitu oproti naivnímu vyhodnocení. Není to ale pro nás podstatné, pouze funkci používáme ze skriptu interpolace.m.

Úloha 4. Porovnejte Lagrangeovu interpolaci na ekvidistantních uzlech, Lagrangeovu interpolaci pomocí Chebyshevových bodů a interpolaci kubickým splinem v závislosti na počtu uzlů postupně pro tři různé funkce

$$f(x) = \sin(3x),$$

$$g(x) = |x|,$$

$$h(x) = \operatorname{sign}(x),$$

 $na\ intervalu\ [-1,1].$

- (i) Začněme s funkcí f. Zkuste si vykreslit interpolaci s 5, 10, 25, 30 a 40 uzly. Porovnávejte velikost chyby jednotlivých interpolací. Lze říci, že se zvyšujícím se počtem uzlů dostáváme přesnější interpolaci?
- (ii) Dále zkoumejme funkci g. Napřed použijme 5 a 6 uzlů. Jak se liší aproximace na okolí bodu 0 na základě parity počtu uzlů? Jak se bude interpolace chovat, pokud zvolíme více uzlů, například 10, 15, 20 a nebo 40 uzlů?
- (iii) Nakonec budeme interpolovat nespojitou funkci h. Opět použijme 5 a 6 uzlů. Liší se aproximace na okolí bodu 0 na základě parity počtu uzlů? Pokud ano, tak pro kterou interpolaci a čím to je způsobeno? Zkuste i nyní použít více uzlů, například 10, 15 a 20. Dojde někdy k dostatečnému zpřesnění řešení?

Řešení.

- (i) Interpolace v Chebyshevových uzlech netrpí Rungeho jevem, lze jít do tisíců bodů. Na druhou stranu interpolace v ekvidistantních uzlech začíná zlobit mezi 40 a 50 uzly; zaokrouhlovací chyby se kumulují.
- (ii) Parita ovlivňuje aproximaci vrcholu a toho, zda aproximujeme přímo bod 0. Interpolace v ekvidistatních bodech začíná mezi 10 a 15 trpět Rungeho jevem; interpolant je u hranice naprosto nepoužitelný. Chebyshevovy uzly fungují výtečně.
- (iii) Parita se projeví pouze u Lagrangeovy interpolace pomocí Chebyshevových bodů. Pokud je počet uzlů lichý, nevyjde vlivem zaokrouhlovaní prostřední Chebyshevův bod přesně 0, takže hodnotu h v tomto bodě (okolo nespojitosti!) nelze předvídat. Intepolace v ekvidistatních bodech trpí Rungeho jevem u hranice. Chebyshevovy body (a poněkud méně spline) trpí Gibbsovým jevem, tedy oscilací okolo nespojitosti h v x = 0.