Azure data factory project.

Contents

Αzι	ıre	data factory project	1
:	1.	Introduction	3
:	1.1	Project overview:	3
2.	So	olution Architecture	4
3.	D	Pata ingestion	4
3	3.1	Data ingestion with Azure blob storage	5
	St	tep 1 - Copy activity overview	5
	St	tep 2 - Linked service	6
	St	tep 3 - Blob data set (source)	7
	St	tep 4 - Data Lake data set (sink)	8
	St	tep 5 - Creating an ingestion pipeline	9
	St	tep 6 - Trigger (ingestion) pipeline	10
3	3.2	Data ingestion from HTTP	11
	St	tep 0 - Overview copy activity from HTTP	11
	St	tep 1 - Created linked services	11
	St	tep 1 - Create data set (http - source)	12
	St	tep 2 - Create data set (DL sink)	13
	St	tep 3 - Create pipeline for data ingestion	14
	St	tep 4 - Create trigger for pipeline	15
	St	tep 6 - Ecdc file list data set	15
4.	D	Pata transformation	16
4	4.1	Data flow	16
	St	tep 0 – Overview transformation in data flow	16
	(1	1) Step 1 - Create transformations with data flow	17
	(1	1) Step 2 - Create data set for processed data	17
	(1	1) Step 3 — Create pipeline	18
	(2	2) Step 4 - Create transformations with data flow	19
	St	tep 5 - Create data set for processed data (daily)	19
	St	tep 6 - Create data set for processed data (weekly)	20
	St	tep 7 - Create pipeline	20
4	1.2	Databricks	22
	C1	ten 0 - Datahricks overview	22

	Step 1 – Mount cluster 1 / 2	22
	Step 1 – Mount cluster 2 / 2	23
	Step 2 – transform data 1 / 2	24
	Step 2 – transform data 2 / 2	25
	Step 4 – Create pipeline	26
5.	Load into database	26
	Step 1 – Create SQL script	27
	Step 2 – Create linked service	28
	Step 3 - Create sink dataset	29
	Step 4 – Create pipeline	30
	Step 5 – Create pipeline hospital admission data	31
	Step 6 - Create pipeline testing data	32
6.	Data orchestration – Making pipelines production ready	33
	Step 1 – Build pipeline	33
	Step 2 – Create trigger	34
7.	Data reporting	35
	Step 0 – Reporting overview in Power BI	35
	Step 1 – Create report 1 / 2	35
	Step 1 – Create report 2 / 2	36
8.	CI / CD	37
	Step 0 – CI / CD overview	37
	Step 0 – Git configuration within DevOps option 1	38
	Step 0 – Git configuration within DevOps option 2	38
	Step 1 – Create git repo	39
	Step 2 – Create Tools for azure (DEV)	40
	Step 2 – Create Tools for azure (TEST)	40
	Step 2 – Create Tools for azure (PROD)	41
	Step 3 - Create release pipeline option 1	41
	Step 4 – Create build pipeline option 2 – 1 / 2	42
	Step 5 – Create release pipeline option 2	43

1. Introduction

In this project we will be building a data platform for reporting and prediction of the covid-19 outbreak.

- Data sources: European Center for Disease prevention and Control (Eurostat)
- Data flows: azure data factory
- Data transformation: HDInsight and databricks
- Ingestion of transformed data: Data Lake
- Necessary data for reporting the data trends: SQL Data warehouse
- We will orchestrate all of these pipelines using Azure data factory.

1.1 Project overview:

Our build data lake:

Data Lake to be built with the following data, to aid Data Scientists to predict the spread of the virus/mortality

- Confirmed cases
- Mortality
- Hospitalization/ ICU Cases
- Testing Numbers
- Country's population by age group

Our build data warehouse:

Data Warehouse to be built with the following data

- Confirmed cases
- Mortality
- Hospitalization/ ICU Cases
- Testing Numbers

The data sources:

ECDC website:

- Confirmed cases
- Mortality
- Hospitalization / ICU Cases
- Testing Numbers

Eurostat Website:

• Population by age

2. Solution Architecture

3. Data ingestion

Overview

Worked with:

- Copy Activity
- Linked Services
- Datasets
- Validation Activity
- If Condition Activity
- Get Metadata Activity
- Web Activity
- Delete Activity
- Trigger

3.1 Data ingestion with Azure blob storage

Step 1 - Copy activity overview

Step 2 - Linked service

Step 3 - Blob data set (source)

Step 4 - Data Lake data set (sink)

Step 5 - Creating an ingestion pipeline

Step 6 - Trigger (ingestion) pipeline

3.2 Data ingestion from HTTP

Step 0 - Overview copy activity from HTTP

Step 1 - Created linked services

Step 1 - Create data set (http - source)

Step 2 - Create data set (DL sink)

Step 3 - Create pipeline for data ingestion

Step 4 - Create trigger for pipeline

Step 6 - Ecdc file list data set

4. Data transformation

4.1 Data flow

Step 0 – Overview transformation in data flow

(1) Steps taken:

- Source Transformation
- Filter Transformation
- Select Transformation
- Pivot Transformation
- Lookup Transformation
- Sink Transformation
- Create Pipeline

(2) Steps taken:

- Source Transformation
- Select Transformation
- Lookup Transformation
- Pivot Transformation
- Sink Transformation
- Conditional Split Transformation
- Derived Column Transformation
- Aggregate Transformation
- Sort Transformation
- Join Transformation
- Select Transformation
- Create Pipeline

(1) Step 1 - Create transformations with data flow

(1) Step 2 - Create data set for processed data

(1) Step 3 – Create pipeline

18

(2) Step 4 - Create transformations with data flow

Step 5 - Create data set for processed data (daily)

Step 6 - Create data set for processed data (weekly)

4.2 Databricks

Step 0 - Databricks overview

Steps taken:

- Create Databricks Service
- Create Databricks Cluster
- Mount Storage Accounts
- Transformation requirements
- Creating Pipeline

Step 1 – Mount cluster 1 / 2

Step 1 – Mount cluster 2 / 2

Step 2 – transform data 1 / 2

Step 2 – transform data 2 / 2

Step 3 – Create linked service

Step 4 – Create pipeline

5. Load into database

Step 0 – Overview SQL database

Steps taken:

- Copy Cases & Deaths data
- Copy Hospital Admissions data
- Copy testing data

Step 1 – Create SQL script

```
CREATE SCHEMA covid_reporting
CREATE TABLE covid_reporting.cases_and_deaths
                            VARCHAR(100),
    country
   country_code_2_digit VARCHAR(2),
  country_code_3_digit VARCHAR(3),
   cases_count
   cases_count
deaths_count
reported_date
                           DATE,
VARCHAR(500)
    source
CREATE TABLE covid_reporting.hospital_admissions_daily
                           VARCHAR(100),
country VARCHAR(2), country_code_2_digit VARCHAR(2),
 country_code_3_digit VARCHAR(3),
 population
                    BIGIN
DATE,
   reported_date
   hospital_occupancy_count BIGINT,
   icu_occupancy_count BIGINT,
source VARCHAR(500)
CREATE TABLE covid_reporting.testing
                           VARCHAR(100),
   country_code_2_digit
 country_code_3_digit VARCHAR(3),
 year_week
week_start_date
   week_end_date
   new_cases
   tests_done
                            VARCHAR (500)
    testing_data_source
```

Step 2 – Create linked service

Step 3 - Create sink dataset

Step 4 – Create pipeline

Step 5 – Create pipeline hospital admission data

Step 6 - Create pipeline testing data

6. Data orchestration – Making pipelines production ready

Step 1 – Build pipeline

Step 2 – Create trigger

Edit trigger

7. Data reporting

Step 0 – Reporting overview in Power BI

Step 1 – Create report 1 / 2

Covid-19 Cases EU/EEA & UK

8. CI / CD

Step 0 – CI / CD overview

Step 0 – Git configuration within DevOps option 1

Step 0 – Git configuration within DevOps option 2

Step 1 – Create git repo

Step 2 – Create Tools for azure (DEV)

Step 2 – Create Tools for azure (TEST)

Step 2 – Create Tools for azure (PROD)

Step 3 - Create release pipeline option 1

Step 5 – Create release pipeline option 2

