Fundamentos de Sistemas de Operação

Gestão de Memória MV por Paginação a pedido:

A tabela de páginas

Paginação no x86 (1)

- Alguns números que dão que pensar
 - Dimensão do EE: $2^{32} = 4G$ (bytes)
 - Dimensão de uma página: 2¹² = 4 KB
 - Logo, número de entradas na tabela de páginas (PTEs)
 - #PTEs = $2^{32} / 2^{12} = 2^{20} = 1M PTEs$
- □ Uma PTE (Page Table Entry) no x86: (TPC identifique alguns dos bits)

Figure 18.5: **An x86 Page Table Entry (PTE)**

Dimensão PTE = 32 bits = 4 Bytes

Dimensão da Tabela de Páginas: 4B x 1M PTEs = 4 MB

100 processos a correr → 400 MBs só de PTs

Paginação no x86 (2)

Uma PTE (Page Table Entry) no x86:

31	1 (30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										PF	-N													മ	PAT	D	Α	PCD	PWT	N/S	R/W	Д

Figure 18.5: **An x86 Page Table Entry (PTE)**

- Bits (referem a página...):
 - P: Está Presente (/ausente) em RAM
 - R/W: Pode ser R(lida+executada) ou W(escrita+lida)
 - U/S: Só pode ser acedida em Supervisor (U= em qualquer)
 - D: Dirty, foi modificada
 - Note-se a combinação de permissões: R → rx e W → rw

Tabela de Páginas do x86 (fictícia)

O PTBR (Page Table Base Register) é um reg. do CPU que aponta para o início da Tabela de Páginas do processo. É guardado no PCB.

No Intel CR3=PTBR

1 M entradas

A PT é guardada em RAM, logo é guardada em frames Neste exemplo, a PT está guardada nas frames 201 a 204 (daí PTBR = 201)

Linear Page Table													
PTE	PTBR 201 —												
		valid	prot	PFN									
		1	rx rx	12 13	01								
		1	rx	13	PFN 204 PFN 203 RFN 202 PFN 201								
		0	-	-	F								
		1	rw	100	<u> </u>								
		0	-	-	02								
		0	-	-	2 /								
		0	-	-	<u>£</u> /								
		0	-	-	<u></u>								
		0	-	-	33								
		0	-	-	2								
		0	-	-									
		0	-	-									
		0	-	-	94								
		0	_	_	5								
		1	rw	86 15	H								
		1	rw	15	Ь								

Cada frame só tem espaço para 4 PTEs. O EE deste exemplo é 16 x 4KB (assumindo que 1 página=4KB)

Mas... muitas são inválidas ("buracos" no EE)

Para quê gastar espaço com elas???

Esta forma de Page Table é designada linear – é simplesmente um vector

Outubro, 2019

Unix Windows NT

A partir do endereço virtual, obtém-se o endereço físico

Fonte: US Naval Academy

TPs: como reduzir o tamanho?

Netware MacOS

Windows NT

Neste exemplo, a PT está guardada nas frames 201 e 204.

Como as entradas 2 e 3 são inválidas, não se gastou espaço para elas

A frame 200 não tem dados da PT (não tem PTEs) mas sim apontadores para as frames. É uma directoria.

Dos 16x4KB de EE apenas 5 páginas (12,13,100,86 e 15) são válidas.

Neste exemplo, a PT tem 2 níveis...

A partir do endereço virtual, obtém-se o endereço físico, mas

Entrada da PTD = PTBR + 10 MSB da página

1º end Indirecto = [Entrada da PTD] + 10 LSB da página

Frame = [1º endereço Indirecto]

Fonte: **US Naval Academy**

Tradução de endereços

Se a tradução V2P fosse em software, seria...

Lentoooooo!

~100ns

TLB é parte da MMU...

These are typical performance levels of a TLB:

size: 4,096 entries

hit time: 0.5 – 1 clock cycle

miss penalty: 10 – 100 clock

cycles

miss rate: 0.01 – 1% typical, 20%–40% for bad apps or sparse/graph applications)

Fonte: Wikipedia

Tradução V2P com TLB: penalizações

- TLB funciona bem se...
 - É uma cache, logo o processo tem de exibir localidade de referência
- TLB funciona "mal" se
 - Há comutação de processos: ao novo processo não servem as traduções cached do outro (as PFNs são outras)
- Uma solução?
 - Reduzir o nº de páginas = aumentar o tamanho da página
 - Linux: HugePages: 1MB a 1GB!!!