Criptografia por Chave Pública Algoritmo RSA

Ron Rivest, Adi Shamir e Len Adleman

Blocos com valores binários menores que **n** Tamanho do Bloco é k bits, onde $2^k < \mathbf{n} \le 2^{k+1}$

Plano

$$KU = \{e,n\}$$
$$KR = \{d,n\}$$

Requisitos do Algoritmo

- É possível encontrar e, d, n tal que $M^{ed} = M \mod n$ para todo M < n
- É relativamente fácil calcular M^e e C^d para todos os valores de M < n
- É improvável determinar d dado e, n

Detalhes Matemáticos

Dados **p** e **q** primos, **n** e **m** inteiros tal que **n** = **pq**, **0** < **m** < **n** e um **k** arbitrário

 $m^{k\phi(n)+1} = m^{k(p-1)(q-1)+1} \equiv m \mod n$ (Eq. 7.8 - Corolário do Teor. Euler)

φ(n) é a função totiente de Euler
Número de Inteiros Positivos menor do que n e relativamente primos a n

 $\bullet \phi(pq) = (p-1)(q-1)$

 $M^{ed} = M \mod n$ $ed = k \phi(n) + 1$ $ed \equiv 1 \mod \phi(n)$ $d \equiv e^{-1} \mod \phi(n)$

Relativamente primos a $\phi(n)$

Geração da Chave

Selecione **p**, **q p** e **q** primos

Calcular $\mathbf{n} = \mathbf{p} \times \mathbf{q}$

Calcular $\phi(n) = (p-1)(q-1)$

Selectionar e inteiro $gcd(\phi(n),e) = 1; 1 < e < \phi(n)$

Calcular **d** $\mathbf{d} = \mathbf{e}^{-1} \mod \phi(\mathbf{n})$

Chave Pública KU={e,n}
Chave Privada KR={d,n}

Algoritmo RSA

Cifrar

Texto Plano: M < n

Texto Cifrado: $C = M^e \pmod{n}$

Decifrar

Texto Plano: C

Texto Cifrado: $M = C^d \pmod{n}$

Prof. Ricardo Felipe Custódio, D.Sc. INE-CTC-UFSC

Exemplo

- Selecionar dois números primos: p = 7 e q = 17
- Calcular $n = pq = 7 \times 17 = 119$
- Calcular $\phi(n) = (p-1)(q-1) = 96$
- Selecionar e tal que e é relativamente primo a φ(n) e menor que φ(n); e = 5
- Determinar d tal que de = $1 \mod 96$ e d < 96; d = 77, pois $77 \times 5 = 385 = 4 \times 96 + 1$
- $KU = \{5,119\}$ e $KR = \{77,119\}$

Continuação do Exemplo

Prof. Ricardo Felipe Custódio, D.Sc. INE-CTC-UFSC

Aspectos Computacionais E/D

 $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

Seja
$$\mathbf{m} = \mathbf{b_k b_{k-1} ... b_0}$$

$$m = \sum_{b_i \neq 0} 2^i$$

$$a^m = a^{\sum_{b_i \neq 0}^{\sum_{i \neq 0} 2^i}} = \prod_{b_i \neq 0} a^{2^i}$$

$$a^m \bmod n = \left[\prod_{b_i \neq 0} a^{2^i}\right] \bmod n = \prod_{b_i \neq 0} a^{2^i} \bmod n$$

```
d = 1
para i = k passo -1 até 0 faça
d = (d x d) \mod n
se b_i = 1 então
d = (d x a) \mod n
fim se
fim para
retorna d
```

 $d = a^b \mod n$

[CORM 90]

Aspectos Computacionais Chaves

- Determinar dois primos **p** e **q**
 - n = pq 'e conhecido
 - r randômico ($\approx 2^{200} \rightarrow \text{tentativas} = \ln(2^{200})/2 = 70$
 - a < r randômico
 - Testa r para primalidade
 - Se r passa em vários testes, aceita-se r
- Selecionar e ou d e calcular o outro
 - Algoritmo Extendido de Euclides

Segurança do RSA

- Força Bruta
- Ataques Matemáticos
 - Fatorar Números Primos
 - Determinar $\phi(n)$ diretamente
 - Determinar d diretamente
- Ataques temporais

Fatoração

Número de	Aproximado	Data N	IIPS - Ano	Algoritmo
dígitos Dec.	de bits			
100	332	04/1991	7	sieve quadrático
110	365	04/1992	75	sieve quadrático
120	398	06/1993	830	sieve quadrático
129	428	04/1994	5000	sieve quadrático
130	431	04/1996	500	No. de campo
				sieve generalizado

Pentium 200 MHz = 50 MIPS

MIPS ano para fatorar

Prof. Ricardo Felipe Custódio, D.Sc. INE-CTC-UFSC