Logique

(une semaine)

(du lundi 23 octobre 2017 au vendredi 27 octobre 2017)

Exercice 1

Soit f une fonction de $\mathbb R$ dans $\mathbb R$. Traduire en termes de quantificateurs les assertions suivantes :

- 1. f est bornée.
- 2. f ne s'annule jamais.
- 3. f est périodique.
- 4. f est croissante.
- 5. f n'est pas la fonction nulle.

Exercice 2

- 1. Écrire la négation des assertions suivantes :
 - a. $\forall (a,b) \in \mathbb{R}^2 \ [a < b \Longrightarrow (\exists x \in \mathbb{Q} \ a < x < b)].$
 - b. $\exists \ell \in \mathbb{R} \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad \left(n \geqslant N \Longrightarrow \left| u_n \ell \right| < \varepsilon \right).$
 - $\mathbf{c}. \ \forall (x,y,a) \in \mathbb{R}^3 \ \left[(x < a \text{ et } y < a) \Longrightarrow \exists z \in \mathbb{R} \ \left(z < a \text{ et } x \neq z \text{ et } y \neq z \right) \right].$
- 2. Écrire la négation des phrases suivantes, sachant que le terme « certains » signifie ici « au moins un ».
 - a. « Si l'hiver n'est pas trop rude, je ferai des économies d'énergie ».
 - b. « Théo se joint à nous si et seulement si je sors de chez moi ».
 - c. « Certains étudiants s'endorment en cours de maths! »
 - d. « Certains étudiants n'auront pas la moyenne au contrôle de maths ».
 - e. « Aucune piste criminelle n'est écartée ».
 - f. « Tous les étudiants de province devront suivre le cycle ingénieur à Paris Sud ».

Exercice 3

1. Montrer que pour tout $n \ge 1$,

$$1^3 + 3^3 + \dots + (2n-1)^3 = 2n^4 - n^2$$

2. Montrer que pour tout $n \geqslant 4$,

$$n! > 2^n$$

3. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} k.k! = (n+1)! - 1$$

Exercice 4

Préciser (via un graphe dans les cas favorables et via un contre-exemple dans les cas défavorables)

si l'application $f: \left\{ egin{array}{ll} E & \longrightarrow F \\ x & \longmapsto x^2 \end{array}
ight.$ est injective et/ou surjective dans les cas sulvants :

1.
$$E = F = \mathbb{N}$$
.

2.
$$E = \mathbb{Z}$$
 et $F = \mathbb{N}$.

3.
$$E = \mathbb{R}$$
 et $F = \mathbb{R}_+$

4.
$$E = F = \mathbb{R}_+$$
.

Exercice 5

Soient E, F, G trois ensembles, $f: E \longrightarrow F$ et $g: F \longrightarrow G$

- 1. On suppose que f et g sont injectives. Montrer que g o f est injective.
- 2. On suppose que f et g sont surjectives. Montrer que g o f est surjective.
- 3. Montrer que $g \circ f$ injective $\Longrightarrow f$ injective.
- 4. Montrer que $g \circ f$ surjective $\Longrightarrow g$ surjective.