## Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

02 de abril de 2018





## Plano de Aula

- Pensamento
- 2 Introdução
  - O que é Teoria da Computação?
- Máquina de Turing





## Sumário

- Pensamento
- 2 Introdução
  - O que é Teoria da Computação?
- Máquina de Turing





## Pensamento







### Pensamento



#### Frase

Os limites do meu conhecimento são os limites do meu mundo.

### Quem?

Ludwig Wittgenstein (1889-1951) Filósofo austríaco.





## Sumário

- Pensamento
- 2 Introdução
  - O que é Teoria da Computação?
- Máquina de Turing





Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.





Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

São interligadas pela pergunta:

Quais são as capacidades e limitações fundamentais dos computadores?





#### Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?





#### Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

## Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?





#### Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

## Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

## Teoria da Complexidade

O que faz alguns problemas serem computacionalmente difíceis e outros fáceis?





## Sumário

- Pensamento
- 2 Introdução
  - O que é Teoria da Computação?
- Máquina de Turing





## Modelos Básicos Computacionais

### AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como  $(10 \cup 1)^*$ ;
- Fragilidades: não reconhecem linguagens como  $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$





## Modelos Básicos Computacionais

### AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como (10 ∪ 1)\*;
- Fragilidades: não reconhecem linguagens como  $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

#### GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como  $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como  $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$





## Modelos Básicos Computacionais

### AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como (10 ∪ 1)\*;
- Fragilidades: não reconhecem linguagens como  $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

#### GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como  $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como  $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.



• Modelo mais poderoso que GLCs e AFDs;





- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;





- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
  - faz tudo o que um computador real pode fazer;
  - 2 existem certos problemas que uma MT não pode resolver.











### Diferenças entre MT e AFDs

 Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;





### Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;





### Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;





#### Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.





### Construindo uma MT

Construir  $M_1$  que reconheça a linguagem

$$B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}.$$





### Descrição de $M_1$

 $M_1 =$  "Sobre a cadeia de entrada  $\omega$ :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.





```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
х 1 1 0 0 0 # 0 1 1 0 0 0 u ...
х 1 1 0 0 0 # x 1 1 0 0 0 u ...
   1000#x11000u...
х × 1 0 0 0 # x 1 1 0 0 0 u ...
x x x x x x # x x x x x
                       accept
```





Uma **máquina de Turing** é uma 7-upla  $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$ , de forma que  $Q, \Sigma, \Gamma$  são todos conjuntos finitos e

- Q é o conjunto de estados,
- $\bigcirc$   $\Sigma$  é o alfabeto de entrada sem o **símbolo branco**  $\sqcup$ ,
- ullet  $\Gamma$  é o alfabeto da fita, em que  $\sqcup \in \Gamma$  e  $\Sigma \subseteq \Gamma$ ,
- $oldsymbol{0}$   $\delta: Q \times \Gamma o Q \times \Gamma \times \{E,D\}$  é a função de transição,
- $oldsymbol{0} q_0 \in Q$  é o estado inicial,
- $oldsymbol{0}$   $q_{aceita} \in Q$  é o estado de aceitação, e
- **0**  $q_{rejeita} \in Q$  é o estado de rejeição, em que  $q_{rejeita} 
  eq q_{aceita}$





## Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

02 de abril de 2018



