Vers l'avantage quantique ? Étude mathématique du Boson Random Sampling

Victor Niaussat

Équipe Projet INRIA PARADYSE Lille - Lab. P.Painleve CNRS Encadrant: Stephan De Bièvre

Victor Niaussat Vers l'avantage quantique ?

- Introduction
- 6 Formalisme mathématique de l'optique quantique
- 6 Modèle de l'interféromètre et Boson Random Sampling
- 4 Complexité algorithmique
- 5 Théorème d'Aaronson & Arkhipov
- 6 Conclusion

Victor Niaussat Vers l'avantage quantique ? 16 mars 2023

- Introduction
- Formalisme mathématique de l'optique quantique
- Modèle de l'interféromètre et Boson Random Sampling
- Complexité algorithmique
- Théorème d'Aaronson & Arkhipov
- Conclusion

◆ロト→同ト→ミト→ミト 三日 かりぐ

ormalisme mathématique de l'optique quantique de l'interféromètre et Boson Random Sampling Complexité algorithmique O000 Théorème d'Aaronso O000 O000 Théorème d'Aaronso O000

Introduction

Nous sommes partis de l'article de Hangleiter and Eisert 2022 : *Computational advantage of quantum random sampling*.

L'avantage quantique est le fait de résoudre un problème irréalisable pour un ordinateur classique avec un ordinateur quantique.

L'article nous présente différents problèmes qui pourraient atteindre l'avantage quantique dont le Boson Random Sampling

Est-ce que le Boson Random Sampling pourrait atteindre un avantage quantique?

- Introduction
- Pormalisme mathématique de l'optique quantique
- Modèle de l'interféromètre et Boson Random Sampling
- Complexité algorithmique
- Théorème d'Aaronson & Arkhipov
- Conclusion

Victor Niaussat Vers l'avantage quantique ? 16 mars 202

Décrire *n* photons avec un espace de Fock

État de Fock: n nombre de photons, m nombre de modes, s_i nombre de photons dans le mode i

$$|S\rangle = |s_1 \dots s_m\rangle$$

Ensemble des tuples avec *n* photons et *m* modes optiques:

$$\Phi_{m,n} = \{S = (s_1, s_2, \dots, s_m) : \sum_{i=1}^m s_i = n\}$$

 $\{|S\rangle, S=(s_1,s_2,\ldots,s_m)\in\Phi_{m,n}\}$ forme une base de l'espace de Fock.

Superposition quantique, mesure et règle de Born

Principe de superposition: un même état quantique peut posséder plusieurs valeurs pour une certaine quantité physique observable.

$$|\psi
angle = \sum_{\mathcal{S} \in \Phi_{m,n}} lpha_{\mathcal{S}} |\mathcal{S}
angle$$

Mesure: Mesurer le nombre de photons dans $|\psi\rangle\sim$ Mesurer aléatoirement $|R\rangle$ dans la combinaison linéaire :

$$|\psi
angle = \sum_{S\in\Phi_{m,n}} lpha_S |S
angle \xrightarrow{\mathsf{mesure}} |R
angle \in \Phi_{\mathit{m,n}}$$

Règle de Born: La probabilité pour que le résultat de la mesure du nombre de photons dans chaque mode soit $R = (r_1, r_2, \dots, r_m)$ est :

$$p_{\psi}(R) = |\langle R|\psi\rangle| = |\alpha_R|^2$$

centralelille

Victor Niaussat Vers l'avantage quantique ? 16 mars 2023 7

Opérateur d'échelle

Opérateur d'annihilation et de création:

$$egin{aligned} a_i & |s_1 \dots s_n
angle & = & \sqrt{s_i} & |s_1 \dots s_i - 1 \dots s_n
angle \\ a_i^\dagger & |s_1 \dots s_n
angle & = & \sqrt{s_i + 1} & |s_1 \dots s_i + 1 \dots s_n
angle \end{aligned}$$

Relation de commutation:

$$\begin{bmatrix} a_i, a_j^{\dagger} \end{bmatrix} = a_i a_j^{\dagger} - a_j^{\dagger} a_i = \delta_{ij}$$
$$\begin{bmatrix} a_i^{\dagger}, a_j^{\dagger} \end{bmatrix} = \begin{bmatrix} a_i, a_j \end{bmatrix} = 0$$

Tout état $|S\rangle$ peut être écrit avec les opérateurs de création:

$$|s_1,\ldots,s_m\rangle=\prod_{i=1}^mrac{\left(a_i^\dagger\right)^{s_i}}{\sqrt{s_i!}}\,|0,\ldots,0
angle$$

Évolution dans le temps d'un état ou d'un opérateur

Représentation de Schrödinger

L'état $|\psi_t\rangle$ évolue selon l'équation de Schrödinger:

$$i\hbar \frac{d}{dt} |\psi_t\rangle = H |\psi_t\rangle$$
 avec $|\psi_0\rangle = |\varphi\rangle$

La solution de cette équation est:

$$|\psi_t
angle = \exp\!\left(-rac{i\!H\!t}{\hbar}
ight)|arphi
angle = \mathit{G}_t\left|arphi
ight
angle$$

Opérateur d'évolution: G_t unitaire

Représentation d'Heisenberg

La valeur moyenne d'un opérateur A

$$\langle A \rangle_{\psi_t} = \langle \psi_t | A | \psi_t \rangle = \langle \varphi | G_{-t} A G_t | \varphi \rangle$$

Un opérateur *A* évolue avec le temps:

$$A \longrightarrow G_{-t}AG_t$$

L'opérateur évolue selon l'équation de Heisenberg:

$$\frac{dA}{dt} = \frac{1}{i\hbar} [H, A]$$

- Formalisme mathématique de l'optique quantique
- Modèle de l'interféromètre et Boson Random Sampling

Soit U une matrice unitaire de taille $m \times m$. L'interféromètre réalise une transformation linéaire de l'opérateur de création:

$$b_j^\dagger := \sum_{i=1}^m U_{ji} a_i^\dagger$$

Pour un état $|\psi_{in}\rangle$ d'entrée, on obtient un état de sortie $|\psi_{out}\rangle$ avec un opérateur unitaire $\varphi(U)$ relié à Uqui agit sur les états :

$$|\psi_{\text{out}}\rangle=arphi(\textit{U})\,|\psi_{\text{in}}
angle$$

Probabilité de sortie

La probabilité de mesurer $|T\rangle = |t_1t_2...t_m\rangle$ avec une entrée $|S\rangle = |s_1s_2...s_m\rangle$ dans la transformation unitaire $\varphi(U)$ a été démontré pour la première fois par Sheel :

Lemme (Scheel 2004)

$$P_{\mathcal{U}}(S,T) = \left| \left\langle T \right| \varphi(\mathcal{U}) \left| S \right\rangle \right|^2 = \frac{\left| \mathsf{Perm}(\mathcal{U}_{S,T}) \right|^2}{\prod_{i=1}^m \left(s_i ! \right) \prod_{i=1}^m \left(t_i ! \right)}$$

$$\mathsf{Perm}(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n \mathsf{x}_{i,\sigma(i)}.$$

Physique de l'interféromètre

L'interféromètre est ici un réseau d'éléments optiques les plus simples qui sont les déphaseurs (phase-shifters) et les séparateurs de faisceaux (beamsplitters):

Figure: Beamsplitter

Figure: Circuit linéaire optique

Victor Niaussat

Système de l'interféromètre

Théorème (Reck et al. 1994)

U une matrice unitaire de taille $m \times m$. On peut réaliser un circuit linéaire optique représentant cette matrice U avec $O(m^2)$ beamsplitters et phase-shifters.

- Une source de photon
- Des beamsplitters et des phase-shifters
- Un détecteur de photon

Victor Niaussat

Analogie avec le Galton Board

On peut voir le Boson random sampling comme une planche de Galton:

- Les boules sont des photons
- Les clous sont des beamsplitters et phase-shifters
- L'ensemble des clous est la matrice U unitaire
- La loi normale est la densité de probabilité avec les permanents

Intérêt du Boson random sampling : vers l'avantage quantique ?

La principale raison de l'intérêt croissant pour le Boson random sampling est qu'on pense fortement qu'il permet de faire un avantage quantique.

Théorème

L'approximation du permanent $|Perm(X)|^2$ est un problème #P-difficile.

Théorème (Aaronson and Arkhipov 2013)

Le problème exact du Boson Random Sampling n'est pas efficacement solvable par un ordinateur classique, à moins que $P^{\#P} = BPP^{NP}$ et que la hiérarchie polynomiale s'effondre au troisième niveau.

" Simuler classiquement et efficacement le Boson random sampling \longrightarrow c'est comme si P=NP"

- Formalisme mathématique de l'optique quantique
- Modèle de l'interféromètre et Boson Random Sampling
- Complexité algorithmique

Complexité P et NP

Definition (P)

Un langage $L \subset \{0,1\}$ * est dans la classe P s'il existe un algorithme classique \mathcal{A} qui, étant donné $x \in \{0,1\}$ * en entrée, décide si $x \in L$ en temps d'exécution polynomial en |x|:

$$x \in L \iff \mathcal{A}(x) = 1$$

Definition (NP)

Un langage $L \subset \{0,1\}^*$ est dans la classe *NP* s'il existe un polynôme $p : \mathbb{N} \to \mathbb{N}$ et un algorithme classique en temps polynomial \mathcal{V} (appelé le vérificateur de L) tel que pour tout $x \in \{0,1\}^*$,

$$x \in L \iff \exists y \in \{0,1\}^{p(|x|)} : \mathcal{V}(x,y) = 1$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ めなべ

Victor Niaussat Vers l'avantage quantique ?

Definition (Hiérarchie polynomiale)

La hiérarchie polynomiale est l'ensemble des classes $(\Sigma_i^P)_{i\in\mathbb{N}}$ tel que :

$$\Sigma_0^P = P$$

$$orall i \in \mathbb{N}^*, oldsymbol{\Sigma}_{i+1}^P = oldsymbol{NP}^{oldsymbol{\Sigma}_i^P}$$

On sait qu'une égalité entre classes d'un même niveau ou de niveaux consécutifs dans la hiérarchie impliquerait un " effondrement" de la hiérarchie à ce niveau.

$$\begin{array}{c} PH \\ \hline \\ \infty \\ \vdots \\ \Sigma_2 = NP^{NP} \\ \\ \uparrow \\ \Sigma_1 = NP \\ \\ \uparrow \\ \Sigma_0 = P \end{array}$$

Complexité #P

Definition

La classe de fonctions #P est la classe de toutes les fonctions $f: \{0,1\}^* \longrightarrow \mathbb{N}$ pour lesquelles il existe un algorithme classique en temps polynomial \mathcal{A} et un polynôme $p: \mathbb{N} \longrightarrow \mathbb{N}$ tel que

$$f(x) = Card(\{y \in \{0,1\}^{p(|x|)} : A(x,y) = 1\})$$

Théorème (Théorème de Toda (1991))

$$igcup_{i\in\mathbb{N}} \Sigma_i^P = PH \subset P^{\#P}$$

Stratégie: Montrer que si le BRS est possible, alors on trouve une égalité entre un niveau de la hiérarchie polynomiale et la classe $P^{\#P}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ めなべ

- Formalisme mathématique de l'optique quantique
- Modèle de l'interféromètre et Boson Random Sampling
- Théorème d'Aaronson & Arkhipov

Théorème d'Aaronson & Arkhipov

Théorème (Aaronson & Arkhipov (2011))

Le problème exact du Boson Random Sampling n'est pas efficacement solvable par un ordinateur classique, à moins que $P^{\#P} = BPP^{NP}$ et que la hiérarchie polynomiale s'effondre au troisième niveau.

Ce théorème semble compliqué mais il nous dit que si il existe un algorithme classique qui puisse simuler l'échantillonage aléatoire de Boson, alors c'est comme si P = NP.

Lier la probabilité d'acceptation au calcul du permanent

Théorème

L'approximation du permanent $|Perm(X)|^2$ est un problème #P-difficile.

Théorème (1983 Stockmeyers)

Soit une fonction $f: \{0,1\}^n \to \{0,1\}$ booléenne et $p = Pr_{x \in \{0,1\}^n}[f(x) = 1]$. $\forall c \le 1 + 1/poly(n)$, il existe un algorithme BPP^{NP} qui approxime p avec une erreur multiplicative c

Soit \mathcal{O} un algorithme randomisé \mathcal{O} réalisant le Boson random sampling

$$p_A = \Pr_r[\mathcal{O}(X, r) = 1_n]$$

= $\varepsilon^{2n} |\text{Perm}(X)|^2$

Il est donc possible d'approximer p_A d'un facteur multiplicatif g à l'aide d'un algorithme de classe $BPP^{NP^{\mathcal{O}}}$.

Victor Niaussat

Vers l'avantage quantique ?

16 mars 2023

Lier la probabilité d'acceptation au calcul du permanent

Théorème ((1983) Sipser, Gacs, Lautemann)

$$egin{aligned} extit{BPP} \subset \Sigma_2^P \Longrightarrow extit{BPP}^{NP} \subset (\Sigma_2^P)^{NP} = \Sigma_3^P \end{aligned}$$

(BRS + Théorème Stockmeyers) \implies Les problèmes d'approximation #P-difficile sont dans BPP^{NP}

(+ Théorème de Toda) \implies $PH \subset P^{\#P} \subset BPP^{NP}$

(+ Théorème de Sipser) \implies $PH = BPP^{NP} = \Sigma_3^P$

(+ Égalité à un niveau HP) \implies *PH* s'effondre à Σ_3^P

- Introduction
- Formalisme mathématique de l'optique quantique
- Modèle de l'interféromètre et Boson Random Sampling
- Complexité algorithmique
- Théorème d'Aaronson & Arkhipov
- **6** Conclusion

État du travail

Ce qui a été fait:

- Définir le formalisme mathématique de l'optique quantique
- Décrire l'interféromètre
- Décrire le modèle du Boson random sampling et son intérêt pour montrer l'avantage quantique
- Définir et démontrer la complexité des problèmes
- Montrer le théorème d'Aaronson et Arkhipov pour le problème du calcul exact

Le BRS demeure tout de même un défi à la fois expérimental et théorique car:

- Demande des ressources considérables
- Possède des interférences
- La validation expérimentale est trop complexe

References I

- Aaronson, Scott and Alex Arkhipov (Feb. 2013). "The Computational Complexity of Linear Optics". In: *Theory of Computing* 9. Number: 4 Publisher: Theory of Computing, pp. 143–252. DOI: 10.4086/toc.2013.v009a004. URL: https://theoryofcomputing.org/articles/v009a004/(visited on 11/12/2022).
- Hangleiter, Dominik and Jens Eisert (Nov. 2022). Computational advantage of quantum random sampling. arXiv:2206.04079 [cond-mat, physics:quant-ph]. DOI: 10.48550/arXiv.2206.04079. URL: http://arxiv.org/abs/2206.04079 (visited on 11/10/2022).
- Reck, Michael et al. (July 1994). "Experimental realization of any discrete unitary operator". en. In: Physical Review Letters 73.1, pp. 58–61. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.73.58. URL: https://link.aps.org/doi/10.1103/PhysRevLett.73.58 (visited on 11/17/2022).
- Scheel, Stefan (June 2004). *Permanents in linear optical networks*. arXiv:quant-ph/0406127. DOI: 10.48550/arXiv.quant-ph/0406127. URL: http://arxiv.org/abs/quant-ph/0406127 (visited on 11/23/2022).

Merci pour votre attention

