Определение моментов инерции твердых тел с помощью трифилярного подвеса. (1.2.3)

Балдин Виктор Б01-303

30 октября 2023

1 Введение

Цели работы: измерение момента инерции тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Оборудование: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

2 Теоретические сведения

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции твердого тела относительно неподвижной оси вращения вычисляется по формуле:

$$I = \int r^2 dm$$

Здесь r — расстояние элемента массы тела dm от оси вращения. Интегрирование проводится по всей массе тела m.

Если пренебречь потерями энергии на трение о воздух и крепление нитей, то уравнение сохранения энергии при колебаниях можно записать следующим образом:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E \tag{1}$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней платформы O' при равновесии ($\varphi=0$), z — координата той же точки при некотором угле поворота φ . Правый член в левой части уравнения — кинетическая энергия вращения, второй член — потенциальная энергия в поле тяжести, E — полная энергия системы (платформы с телом).

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. 1. Координаты верхнего конца одной из нитей подвеса точки C в этой системе – (r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C'' равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^{2} = L^{2} - R^{2} - r^{2} + 2Rr\cos\phi \approx z_{0}^{2} - 2Rr(1 - \cos\phi) \approx z_{0}^{2} - Rr\phi^{2}$$
$$z = \sqrt{z_{0}^{2} - Rr\phi^{2}} \approx z_{0} - \frac{Rr\phi^{2}}{2z_{0}}$$

Подставляя z в уравнение (1), получаем:

$$\frac{1}{2}I\dot{\varphi^2} + mg\frac{Rr}{2z_0}\varphi^2 = E$$

Дифференцируя по времени и сокращая на $\dot{\varphi}$, находим уравнение крутильных колебаний системы:

$$I\ddot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = 0$$

Производная по времени от E равна нулю, так как потерями на трение, как уже было сказано выше, пренебрегаем.

Решение этого уравнения имеет вид:

$$\varphi = \varphi_0 \sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right)$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период крутильных колебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2$$

3 Методика измерений

Рис. 1: Физический маятник

Для наших целей удобно использовать устройство, показанное на Рис. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположенных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебаний. После того, как нижняя платформа P' оказывается повернутой на угол φ относительно верхней платформы P возникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные колебания.

где $k=\frac{gRr}{4\pi^2z_0}$ — величина, постоянная для данной установки.

4 Оборудование

Трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

5 Результаты измерений и обработка данных

- 1. Проверим исправность установки.
- 2. Измерим параметры установки:

$$z_0 = (213.6 \pm 0.5) \; {
m cm}$$
 $R = (114.6 \pm 0.5) \; {
m mm}$ $r = (30.2 \pm 0.3) \; {
m mm}$ $m = (1066.8 \pm 0.5) \; {
m r}$

3. Вычислим *k*:

$$k = \frac{gRr}{4\pi^2 z_0} = 4.43 \cdot 10^{-4} \text{ кг} \cdot \text{м}$$
 $\varepsilon_k = \varepsilon_R + \varepsilon_r + \varepsilon_{z_0} = 0.02$ $k = (4.43 \pm 0.09) \cdot 10^{-4} \text{ кг} \cdot \text{м}$

4. Вычислим момент инерции пустой платформы.

$$I = \frac{mR^2}{2} = 7.264 \cdot 10^{-3} \; \mathrm{K}\Gamma \cdot \mathrm{M}$$
 $arepsilon_I = 2arepsilon_R + arepsilon_m = 0.01$ $I = (7.264 \pm 0.073) \cdot 10^{-3} \; \mathrm{K}\Gamma \cdot \mathrm{M}$

5. Перейдем к измерению моментов инерции данных нам тел. Для кольца получим:

t, c	T, c	$I_t + I, 10^{-3} \text{ kg·m}^2$	$I_t, 10^{-3}, \text{кг·м}^2$
126.08	4.203	12.97	5.15
125.94	4.198	12.94	5.12
126.55	4.218	13.06	5.25

По итогу получим $I_{\text{кол}} = (5.17 \pm 0.08) \cdot 10^{-3} \ \text{kr} \cdot \text{m}^2.$

6. Сделаем все то же самое для диска с параметрами

$$m = (580.6 \pm 0.5)$$
 г $r = (5.75 \pm 0.01)$ см

Из этих данных получаем

Теоретически получаем

$$I = mr^2 = (1.920 \pm 0.007) \cdot 10^{-3} \; \mathrm{kr} \cdot \mathrm{m}^2$$

3

Как видим в пределах погрешности теория соответствует эксперименту.

No	N	t, c	Т, с
1	10	39.254	3.9254
2	10	39.221	3.9221
3	10	39.203	3.9203
4	10	39.189	3.9189

No	N	t, c	Т, с
1	10	39.750	3.9750
2	10	39.873	3.9873
3	10	39.964	3.9964
4	10	39.773	3.9773

Когда оба тела на платформе.

$$T = (3.984 \pm 0.006) \text{ c}$$

$$I_{\text{пф+общ}} = (16.4 \pm 0.3) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$I_{\text{общ}} = (8.7 \pm 0.4) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

$$I_{\text{диск}} + I_{\text{кол}} = (8.8 \pm 0.6) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

7. Теперь исследуем зависимость момента инерции двух полукругов от расстояния между ними:

Рис. 2: Схема расположения грузов на платформе трифилярного подвеса.

Перейдем к определению зависимости момента инерции системы двух тел от их взаимного расположения. Для этого, располагая грузы как показано на рис. 2, получим зависимость периода от расстояния. Затем, определим зависимость $I(h^2)$

Полученные результаты измерений занесем в таблицы 1,2 соответсвенно. Основывыаясь на результатах таблицы 2, построим график зависимости $I(h^2)$. (Рис. 3)

№ изм.	Т, с	h, cm	№ изм.	Т, с	h, cm
1	3,122	0	8	3,399	3,5
2	3,127	0,5	9	3,472	4,0
3	3,146	1,0	10	3,568	4,5
4	3,167	1,5	11	3,662	5,0
5	3,207	2,0	12	3,753	5,5
6	3,255	2,5	13	3,886	6,0
7	3,325	3,0	14	4,002	6,5

Таблица 1: Зависимость Периода колебаний от расстояния между дисками.

№ изм.	I, $kgm^2 * 10^{-3}$	h, cm	№ изм.	I, $kgm^2 * 10^{-3}$	h, cm
1	1,678	0	8	1,827	3,5
2	1,681	0,5	9	1,866	4,0
3	1,691	1,0	10	1,918	4,5
4	1,702	1,5	11	1,968	5,0
5	1,724	2,0	12	2,017	5,5
6	1,750	2,5	13	2,089	6,0
7	1,787	3,0	14	2,151	6,5

Таблица 2: Зависимость Момента инерции от расстояния между дисками.

Рис. 3: График зависимости $I(h^2)$

Видно, что данная зависимость весьма хорошо аппроксимируется прямой, что согласуется с теоретическими данными.

6 Обсуждение результатов

1. В результате работы были измерены моменты инерции предоставленных тел.

- 2. Были посчитаны теоретические моменты инерции и проведено сравнение их с экспериментальными результатами. Обнаружено совпадение в пределах погрешности. Таким образом, доказана состоятельность метода трифилярного подвеса для экспериментального определения моментов инерции различных тел.
- 3. Получена экспериментальная зависимость момента инерции системы из двух полукругов от расстояния между их центрами инерции. Линеаризованная зависимость $I(h^2)$ действительно неплохо аппроксимируется прямой, что очень хорошо согласуется с теорией.
- 4. Проверена аддитивность момента инерции системы нескольких тел.

7 Вывод

Их проделанной работы можно заключить, что установка на основе трифилярного подвеса хорошо подходит для определения моментов инерции тел. Зачастую аналитическое вычисление моментов инерции может представлять определенные трудности, особенно в случае сложной и неправильной формы тела. В таких случаях приходится прибегать к экспериментальным способам, а значит, и считаться с их погрешностями. Как показала практика, опробованный в данной работе метод имеет неплохую точность, следовательно, его можно рекомендовать для использования в этих целях.