DCM 크리스탈 냉각용 Cryo-cooler 국산화 개발

진행사항 (기계 장치 분석 및 진단) 보고

세부과제번호: 3.0000406.08

세부과제명: DCM 크리스탈 냉각용 크라이오 쿨러 제어기 국산화 개발

연구기간: 2024.12.01 ~ 2025.11.30

포앙가속기연구소

POHANG ACCELERATOR LABORATORY

모 형 욱

0

■ 업무 개요 (장치)

- (정상화) 3C Cryo-cooler 진단, 작동, 정상화
- (압력) LN2 순환을 위한 가압 및 압력강하, 펌프 유량 분석
- (온도) Sub-cooler Heater vessel (closed loop) DCM 냉각 시스템 분석
- (설계) 구조 및 연결방식 검토 및 prototype cryo-cooler 설계

■ Bruker Cryo-cooler 모델에 따른 구조 및 작동 확인

■ 주요 제어(밸브, 센서) 위치 및 기능

- Purging 경로 A
- Purge, V21, DCM, V17, sub-cooler purging
- i. Open V21
- ii. Open V17
- iii. Open V20 (optional)
- Purging 경로 B

- Purging 경로 B
- V11, V15, V19 purging
- i. Close V17
- ii. Open V11
- iii. Open V15
- iv. Open V19
- v. Close V20
- Purging 경로 C

■ Purging 경로 B

- Purging 경로 C
- V9, LN2 pump, V20 purging
- i. Close V15
- ii. Close V19
- iii. Close V11
- iv. Open V9
- v. Open V20

■ Cryo-cooler 내부 구조

■ Cryo-cooler 내/외부 diagram (기계)

- Purging 경로 A
- Purge, V21, DCM, V17, sub-cooler purging
- i. Open V21
- ii. Open V17
- iii. Open V20 (optional)
- Purging 경로 B

- Purging 경로 B
- V11, V15, V19 purging
- i. Close V17
- ii. Open V11
- iii. Open V15
- iv. Open V19
- v. Close V20
- Purging 경로 C

■ Purging 경로 B

- Purging 경로 C
- V9, LN2 pump, V20 purging
- i. Close V15
- ii. Close V19
- iii. Close V11
- iv. Open V9
- v. Open V20

■ 업무 일정 및 담당자 업무 (장치)

단계	업무내용	담당자	산 출물	2025											
장치파트				1	2	3	4	5	6	7	8	9	10	11	12
1. 기계 시스템 초기 분석 및 자료 수집														\perp	
	기존 기계 장치 매뉴얼 및 도면 수집	김호영					→"	Cryo-	-coole	r 정상	/화"	모	형욱 📮		
	Cryo-cooler 내부 구조 분석	모형욱						J. 70 J.			<u> </u>] 김종	호영 🗉		
	주요 구성 요소 (밸브, 펌프, 히터 베슬 등) 작동 원리 분석	모형욱	기계장치 분석 보고서									박종하 ====			
	(추가) Cryo-cooler 작동 및 진단	김호영	작동 및 진단 매뉴얼												
2. 냉각 및 유체 흐름 분석															
	(추가) LN₂ 순환을 위한 가압 및 압력강하 분석	모형욱													
	냉각 시스템 분석	모형욱	냉각 시스템 설계 보고서												
	히터 베슬과 Sub-Cooler 구조 및 연결 방식 검토	박종하	<u>밸브 및 배관 설계도</u>												
3. 밸브 및 펌프 작동 방식 검토															
	주요 밸브의 용도 및 작동 방식 문서화	모형욱													
	펌프 유량 및 주파수 설정 조건 분석	모형욱													
4. 시스템 도면 및 CAD 설계															
	기존 시스템의 주요 부품 및 도면화 작업	박종하	기계설계도면 (2D)			I									
	(추가) 기존 시스템 유동장 및 냉각 해석	모형욱													
	신규 설계에 필요한 수정 사항 도출	김호영	수정사항 문서화												
5. 신규 기계 장치 설계 초안 작성															
	신규 기계 장치 설계 초안 작성	박종하													
	유지보수 편리성을 고려한 설계 반영	김호영	개선 결과 보고서												
	(추가) 설계 최적화	모형욱													
6. 기계 시스템 통합															
	LN2 순환 및 냉각 시스템 통합 설계	모형욱	기계설계도면 (3D)												
	각 장치 간 연결 방식 검증	김호영													
7. 초기 프로토타입설계															
	초기 소형 프로토타입 설계	박종하	시제품 설계 도면												
	LN ₂ 순환 및 냉각 테스트 시뮬레이션	모형욱													
8. 완료															
	보고서, 도면, 프로그램 수합	모형욱	결과보고서												

■ 고장 분석

- Heater vessel에 LN₂ 충진 시 2bar 도달하지 않음
- Heater vessel 기준 압력 3 bar 변경 시 일시적으로 압력이 상승하다 하강
- Relief valve (safety valve) 작동
 - Expert mode에서 LT19 Auto on (V19 자동 열림), V19 작동 확인
 - 충진 중 PT3 (system) 및 pressure gauge 확인

2018-08-06 V19 작동 오류 → 컨트롤러 재부팅 후 V19 작동 → V19 작동이상

2018-08-31

LN₂ 충진 시 V19 옆 safety valve에서 LN₂ 누출 → safety valve 압력 조정

2018-18-28

LT19 Auto off 작동이상 →재부팅 후 expert mode 이용 close

2019-01-30 Safety (relief) valve 조정

2020-05-14

LT19 98%로 상승, V19 고장 판단하여 밸브 교체하였으나 해결불가능 LT19 sensor 교체 후 액체질소 양의 max / min을 센서리모컨으로 설정

■ 압력 테스트

6.1.1. Pressure control test of the closed loop

To control the pressure of the closed loop, bring the closed loop in the following conditions:

- Pump 40%
- Open V10 to 60%
- Open V11 to 100%
- Set the pressure control to 2 bar
- Fill the heater vessel to 30%
- · Wait for 12h to stabilize the system
- There should be no change in the PT3 reading on the display over a timeframe of 1h

The pressure control test should result in a pressure stability of ±10 mbar.

감사합니다.