Формулы молекулярной физики			
Количество вещества	$\mathbf{v} = \frac{m}{M} = \frac{N}{N_A}$	 v – количество вещества m — масса вещества M — молярная масса вещества N — число молекул N_A = 6,02·10²³ моль — число Авогадро 	
Масса одной частицы вещества	$\mathbf{m}_{\theta} = \frac{\mathbf{m}}{\mathbf{N}} = \frac{M}{N_A}$	 m — масса вещества M — молярная масса вещества N — число молекул N_A = 6,02·10²³ моль — число Авогадро 	
Основное уравнение молекулярно-кинетической теории идеального газа	$\mathbf{p} = \frac{1}{3}\mathbf{m}_0\mathbf{n}\mathbf{v}_{\kappa\theta}^2$	p - давление газа n - концентрация его молекул m_{θ} - масса одной молекулы ν_{κ_B} - средняя квадратичная скорость	
Следствия из основного уравнения МКТ	$v_{KB} = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3RT}{M}}$	 V_{кв} - средняя квадратичная скорость k = 1,38⋅10-23 Дж/К - постоянная Больцмана T - абсолютная температура R = 8,31 Дж/(моль⋅К) - универсальная газовая постоянная M - молярная масса m₀ - масса одной частицы вещества 	
Связь объема, массы и плотности	m = ρV	V – объемm – массар – плотность вещества	
Концентрация	n = N/V	N — число молекулn – концентрацияV – объем	
Закон трех постоянных	$kN_A = R$	k = 1,38·10 ⁻²³ Дж/К – постоянная Больцмана R = 8,31 Дж/(моль·К) – универсальная газовая постоянная N _A = 6,02·10 ²³ моль — число Авогадро	
Средняя кинетическая энергия поступающего газа	$\varepsilon = \frac{3}{2}kT$	E - кинетическая энергия поступающего газа k = 1,38·10 ⁻²³ Дж/К – постоянная Больцмана Т – абсолютная температура	
Следствия из МКТ	p = nkT pV = NkT	 р - давление газа п - концентрация его молекул Т - абсолютная температура k = 1,38·10⁻²³ Дж/К - постоянная Больцмана V - объем N — число молекул 	

Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева	pV = νRT	 Т – абсолютная температура р - давление газа V – объем R = 8,31 Дж/(моль·К) – универсальная газовая постоянная v – количество вещества
Тепловое расширение жидкостей	$V = V_0(1 + \gamma t)$	V_0 – объем жидкости при 0°C V – при температуре t γ – коэффициент объемного расширения жидкости
Расширение твердых тел	$I = I_0(1 + \alpha t)$ $S = S_0(1 + 2\alpha t)$ $V = V_0(1 + 3\alpha t)$	I_0 , S_0 , V_0 – соответственно длина, площадь поверхности и объем тела при 0° С α – коэффициент линейного расширения тела