ILLINOIS DATA SCIENCE CLUB

Heart Disease Classification DATA DIVE

By Team CWMDSJ

Table of contents

Problem Identification 01

ldk

Collecting Data 🛛 🔁

Processing Data 03

ldk

Idk

Modeling Data 04

idk

Data Analysis 📙 5

Problem Identification

- Why heart disease?
 - The leading cause of death for both men and women in U.S.
 - o Is heart disease preventable?
 - To solve the questions? We should know:
 - What features are correlated with heart disease?
 - How to classify the features that are correlated with heart disease?

Collecting Data

- Dataset from UC Irvine
 - Cleveland Database
- 14 Columns (more detail on next slide)
 - 13 possible explanatory variables
 - o 1 response variable (num)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num
0	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0
1	67	1	4	160	286	0	2	108	1	1.5	2	3	3	2
2	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1
3	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0
4	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0
5	56	1	2	120	236	0	0	178	0	0.8	1	0	3	0
6	62	0	4	140	268	0	2	160	0	3.6	3	2	3	3
7	57	0	4	120	354	0	0	163	1	0.6	1	0	3	0
8	63	1	4	130	254	0	2	147	0	1.4	2	1	7	2
9	53	1	4	140	203	1	2	155	1	3.1	3	0	7	1

Column Descriptions

- Age age in years
- Sex (1 = male; 0 = female)
- CP chest pain type
- Trestbps resting blood pressure (in mm Hg on admission to the hospital)
- Chol serum cholesterol in mg/dl
- FBS (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- Restecg resting electrocardiographic results
- Thalach maximum heart rate achieved.
- Exang exercise induced angina (1 = yes; 0 = no)
- Oldpeak ST depression induced by exercise relative to rest
- Slope the slope of the peak exercise ST segment
- Ca number of major vessels (0-3) colored by fluoroscopy
- Thal 1 = normal; 2 = fixed defect; 3 = reversible defect
- Num artery diameter (0-4)

Data Cleaning

Our data was uncleaned

- Our data type was in the wrong format for the model
- We needed to get rid of categories showing little correlation
- We wanted a clear target yes or no (1 or 0)

ValueError: could not convert string to float: '?'

Fixed Using SQLDF

```
# Replace '?' with NULL
query = """
SELECT
    CASE WHEN num = '?' THEN NULL ELSE num END as new_num
    dataset
dataset = cleaning(query)
# Drop rows with NULL values
SELECT
    dataset
WHERE
    new_num IS NOT NULL
dataset = cleaning(query)
# Convert 'num' column to binary format
query = """
SELECT
    CASE WHEN new_num > 0 THEN 1 ELSE 0 END as final_num
    dataset
dataset = cleaning(query)
```

Machine Learning Model

- The MLP we use has two hidden layers, with 32 neurons in the first layer and 16 neurons in the second layer.
- The activation function for the neurons is ReLU (Rectified Linear Unit), and the optimizer used for training the network is Adam.
- The model determines the weights of each layer based on previous iterations of epoch training.

Exploratory Data Analysis

Question: Which categories show the highest correlation with the classification.

Approach: Visualize each category via a box plot.

^{**}num on the y axis is the target variable, showing severity of heart disease (0 being none, 4 being fatal)

Feature Analysis & Statistical Analysis

- Another tool we used to determine correlation between target and features was a correlation matrix
- Using this we could tell columns that are strongly correlated based on the heat map
- By removing features with little correlation, we were able to increase our accuracy by ~10%

Project Takeaway

- Utilized Python libraries such as Pandas, NumPy, Matplotlib, and Seaborn for data preprocessing, cleaning, and visualization in a heart disease classification project built off a Kaggle available dataset
- Conducted data manipulation with SQLDF, handling missing values and transforming categorical variables into binary
- Leveraged Scikit-learn to implement a Neural Network model, achieving a 95% accuracy rate in heart disease prediction