PROBLÈME 2

Notations et définitions

- \mathbb{N} désigne l'ensemble des entiers naturels et \mathbb{R} celui des nombres réels.
- Si X est une variable aléatoire admettant une espérance, on note $\mathbf{E}(X)$ cette espérance.

Soit $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé. Soit X une variable aléatoire discrète sur $(\Omega, \mathcal{A}, \mathbf{P})$ à valeurs dans [-1, 1]. On considère dans ce problème une suite $(X_i)_{i \in \mathbb{N}^*}$ de variables aléatoires discrètes sur $(\Omega, \mathcal{A}, \mathbf{P})$, mutuellement indépendantes et de même loi que X. Pour tout $n \in \mathbb{N}^*$, on note

$$S_n = \frac{X_1 + \dots + X_n}{n}.$$

Objectif

Montrer que si la variable aléatoire X est centrée, $(\mathbf{E}(X) = 0)$, alors la suite $(S_n)_{n \ge 1}$ converge presque sûrement vers la constante 0. Il s'agit d'un cas particulier de la loi forte des grands nombres.

 ${f Q31.}$ On ne suppose pas X centrée dans cette question. Montrer que X admet une espérance.

On suppose désormais que X est centrée.

- Q32. Énoncer et démontrer l'inégalité de Markov pour une variable aléatoire finie Y sur $(\Omega, \mathcal{A}, \mathbf{P})$. Montrer que ce résultat est encore vrai lorsque Y est une variable aléatoire discrète non nécessairement finie
- **Q33.** En déduire que, pour tout $\alpha > 0$:

$$\mathbf{P}(|X| \geqslant \alpha) \leqslant \frac{\mathbf{E}(|X|)}{\alpha}.$$

Q34. Montrer que, pour tout t > 0, pour tout $\varepsilon > 0$ et pour tout $n \in \mathbb{N}^*$, on a

$$\mathbf{P}\left(S_{n} \geqslant \varepsilon\right) = \mathbf{P}\left(e^{tnS_{n}} \geqslant e^{tn\varepsilon}\right) \leqslant \frac{\left(\mathbf{E}\left(e^{tX}\right)\right)^{n}}{e^{tn\varepsilon}}.$$

Majoration de $E(e^{tX})$.

Q35. Soit a > 1. On considère la fonction g_a définie par

$$\forall x \in \mathbb{R}, \ g_a(x) = \frac{1-a}{2}a^{-1} + \frac{1+x}{2}a - a^x.$$

Montrer que la fonction g_a est dérivable sur \mathbb{R} et que la fonction g_a' est décroissante sur \mathbb{R} . En déduire, en remarquant que $g_a(-1) = g_a(1) = 0$, que, pour tout $x \in [-1,1]$, $g_a(x) \ge 0$.

Q36. En déduire que

$$\forall t > 0, \ \forall x \in [-1, 1], \ e^{tx} \leqslant \frac{1 - x}{2} e^{-t} + \frac{1 + x}{2} e^{t}.$$

Q37. En déduire que

$$\forall t > 0, \ \mathbf{E}\left(e^{tX}\right) \leqslant \mathrm{ch}t.$$

Q38. Montrer que

$$\forall k \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ \frac{t^{2k}}{(2k)!} \leqslant \frac{1}{k!} \left(\frac{t^2}{2}\right)^k.$$

En déduire que

$$\forall t > 0, \ \mathbf{E}\left(\mathbf{e}^{tX}\right) \leqslant \mathbf{e}^{t^2/2}.$$

Majoration de $P(|S_n| \ge \varepsilon)$

Dans ce paragraphe, on considère un entier $n \in \mathbb{N}^*$ et un réel $\varepsilon > 0$.

Q39. Montrer que la fonction $\mathbb{R} \ni t \longmapsto e^{-nt\varepsilon + nt^2/2}$ atteint un minimum en un point que l'on précisera.

Q40. En déduire que $\mathbf{P}(S_n \geqslant \varepsilon) \leqslant e^{-n\varepsilon^2/2}$, puis que

$$\mathbf{P}(|S_n| \geqslant \varepsilon) \leqslant 2e^{-n\varepsilon^2/2}$$
.

Conclusion

Q41. Montrer que, pour tout réel $\varepsilon > 0$, la série de terme général $\mathbf{P}(|S_n| > \varepsilon)$ converge.

Q42. On fixe un réel $\varepsilon > 0$. On note, pour tout $n \in \mathbb{N}^*$:

$$B_n(\varepsilon) = \bigcup_{m \geqslant n} \{ \omega \in \Omega ; |S_m(\omega)| > \varepsilon \}.$$

Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $\varepsilon > 0$, $B_n(\varepsilon)$ est un événement est que $\mathbf{P}\left(\bigcap_{n \in \mathbb{N}^*} B_n(\varepsilon)\right) = 0$. **Q43.** Pour tout $k \in \mathbb{N}^*$, posons

$$\Omega_k = \left\{ \omega \in \Omega \; ; \; \exists n \in \mathbb{N}^*, \; \forall m \geqslant n, \; |S_m(\omega)| \leqslant \frac{1}{k} \right\}.$$

Montrer que, pour tout $k \in \mathbb{N}^*$, Ω_k est un événement.

Écrire l'ensemble $A = \{\omega \in \Omega ; \lim_{n \to \infty} S_n(\omega) = 0\}$ à l'aide des événements $\Omega_k, k \in \mathbb{N}^*$. En déduire que A est un événement.

Q44. Déduire des questions précédentes que P(A) = 1.

EXERCICE 1

