Symmetrische Gruppen

Kathlén Kohn - Matrikelnummer 6582356

5. Juni 2012

Sei im Folgenden $A := \mathbb{C}[S_n]$ die Gruppenalgebra von S_n über \mathbb{C} .

Def. 1: Eine Partition von $n \in \mathbb{N}$ ist ein Tupel $\lambda := (\lambda_1, \dots, \lambda_k)$ mit $\lambda_1, \dots, \lambda_k \in \mathbb{N}, \lambda_1 \geq \dots \geq \lambda_k \geq 1$ und $n = \lambda_1 + \dots + \lambda_k$.

Bsp. 1: Partitionen für n = 3: (3), (2, 1), (1, 1, 1)

Bem.: Partitionen können lexikografisch geordnet werden: Seien $\lambda = (\lambda_1, \dots, \lambda_k)$ und $\mu = (\mu_1, \dots, \mu_l)$ Partitionen von $n \in \mathbb{N}$. $\lambda > \mu \Leftrightarrow \exists j \in \{1, \dots, \min\{k, l\}\} : \lambda_j > \mu_j, \lambda_i = \mu_i \, \forall i \in \{1, \dots, j-1\}$

Def. 2: Das Young-Diagramm zu einer Partition $\lambda = (\lambda_1, \dots, \lambda_k)$ hat k linksbündige Zeilen mit λ_i Boxen in der i-ten Zeile.

Bsp. 2: Young-Diagramm zu (2, 2, 1):

Def. 3: Ein Tableau T zu einem Young-Diagramm ist eine Nummerierung der Boxen mit den Zahlen $1, \ldots, n$. T(i, j) bezeichne den Eintrag an Position (i, j).

Bsp. 3: Tableaus zu obigem Young-Diagramm:

	1	2		1	3
	3	4		2	5
	5		•	4	
(:	a) <i>T</i>	1		(b) <i>T</i>	$\frac{7}{2}$

Def. 4: Sei $g \in S_n$ und T ein Tableau. Definiere Tableau gT durch: $T(i,j) = \alpha \Leftrightarrow gT(i,j) = g(\alpha)$.

Bsp. 4: $T_2 = (1)(23)(45)T_1$

Def. 5: $P_T := \{g \in S_n \mid g \text{ permutiert nur innerhalb der Zeilen von } T\}$ ist die Untergruppe der Zeilenpermutationen.

 $Q_T := \{g \in S_n \mid g \text{ permutiert nur innerhalb der Spalten von } T\}$ ist die Untergruppe der Spaltenpermutationen.

Bsp. 5:
$$P_{T_2} = \{(1), (1,3), (2,5), (1,3)(2,5)\},\ Q_{T_2} = \{(1), (1,2), (1,4), (2,4), (1,2,4), (1,4,2), (3,5), (3,5)(1,2), (3,5)(1,4), (3,5)(2,4), (3,5)(1,2,4), (3,5)(1,4,2)\}$$

Def. 6: Definiere $a_T := \sum_{p \in P_T} p \in A$, $b_T := \sum_{q \in Q_T} \operatorname{sgn}(q) q \in A$ und $c_T := a_T b_T \in A$. c_T wird als Young-Symmetrierer bezeichnet

Theorem

Das Modul $Ac_T = \{a \cdot c_T \mid a \in A\}$ ist eine irreduzible Darstellung von S_n . Darstellungen, die durch verschiedene Tableaus mit gleichem Diagramm erhalten werden, sind isomorph, aber nicht Darstellungen, die durch Tableaus verschiedener Diagramme erhalten werden. Alle irreduziblen Darstellungen können so erhalten werden.

Beweis:

- 1. Beh.: $P_T \cap Q_T = \{(1)\}$ Bew.: Sei $g \in P_T \cap Q_T$. $\Rightarrow g$ bewegt kein Element aus dessen Zeile und Spalte. $\Rightarrow q = (1)$
- 2. Beh.: $pq \neq p'q' \, \forall p, p' \in P_T \, \forall q, q' \in Q_T \text{ mit } p \neq p', q \neq q'$ Bew.: Angenommen $\exists p, p' \in P_T \exists q, q' \in Q_T : p \neq p', q \neq q', pq = p'q'$ $\Rightarrow p'^{-1}p = q'q^{-1} \in P_T \cap Q_T$ $\Rightarrow_{1. \text{ Beh. }} p'^{-1}p = q'q^{-1} = (1)$ $\Rightarrow p = p', q = q'$

Daraus folgt: $c_T \neq 0$

- 3. Beh.: $\forall p \in P_T \ \forall q \in Q_T : pa_T = a_T p = a_T, (\operatorname{sgn}(q)q)b_T = b_T(\operatorname{sgn}(q)q) = b_T, pc_T(\operatorname{sgn}(q)q) = c$ Bew.: Seien $p \in P_T, q \in Q_T$.
 - $\varphi_p: P_T \to P_T, g \mapsto pg$ ist bijektiv, denn angenommen sie wäre nicht injektiv:

Dann
$$\exists g, g' \in P_T : g \neq g', \varphi_p(g) = \varphi_p(g')$$

$$\Rightarrow pg = pg' \Rightarrow g = g'$$

$$\Rightarrow pa_T = p \sum_{g \in P_T} g = \sum_{g \in P_T} pg = \sum_{g \in P_T} g = a_T$$

Also ist φ_p injektiv und damit auch surjektiv. $\Rightarrow pa_T = p \sum_{g \in P_T} g = \sum_{g \in P_T} pg = \sum_{g \in P_T} g = a_T$ $\varphi_q : Q_T \to Q_T, g \mapsto (\operatorname{sgn}(q)q)g \text{ ist bijektiv, denn angenommen sie wäre nicht injektiv:}$

Dann
$$\exists g, g' \in Q_T : g \neq g', \varphi_g(g) = \varphi_g(g')$$

$$\Rightarrow (\operatorname{sgn}(q)q)g = (\operatorname{sgn}(q)q)g' \Rightarrow qg = qg' \Rightarrow g = g$$

Dann
$$\exists g, g' \in Q_T : g \neq g', \varphi_q(g) = \varphi_q(g')$$

 $\Rightarrow (\operatorname{sgn}(q)q)g = (\operatorname{sgn}(q)q)g' \Rightarrow qg = qg' \Rightarrow g = g'$
Also ist φ_q injektiv und damit auch surjektiv.
 $\Rightarrow (\operatorname{sgn}(q)q)b_T = (\operatorname{sgn}(q)q) \sum_{g \in Q_T} g = \sum_{g \in Q_T} (\operatorname{sgn}(q)q)g = \sum_{g \in Q_T} g = b_T$
Analog: $a_T p = a_T, b_T(\operatorname{sgn}(q)q) = b_T$

$$\Rightarrow pc_T(\operatorname{sgn}(q)q) = pa_Tb_T(\operatorname{sgn}(q)q) = a_Tb_T = c_T$$

4. Beh.: Seien $g, h \in S_n, T' := gT$. Aus T(i,j) = hT(i',j') folgt $T'(i,j) = ghg^{-1}T'(i',j')$. Bsp.: $g = (135), h = (132)(45) \Rightarrow ghg^{-1} = (14)(235)$

1	3	3	5	3	2	5	2
2	5	2	1	1	4	3	4
4		4		5		1	

(c)
$$T$$
 (d) T' (e) hT (f) $ghg^{-1}T'$

Bew.:
$$\alpha := T(i,j) = hT(i',j'), \beta := T(i',j')$$

 $\Rightarrow h(\beta) = \alpha, g(\alpha) = T'(i,j), g(\beta) = T'(i',j')$
 $\Rightarrow ghg^{-1}T'(i',j') = ghg^{-1}g(\beta) = gh(\beta) = g(\alpha) = T'(i,j)$

5. Beh.:
$$\forall g \in S_n : P_{gT} = gP_Tg^{-1}, Q_{gT} = gQ_Tg^{-1}, c_{gT} = gc_Tg^{-1}$$

Bew.: Sei $p \in P_T, g \in S_n$.
 $\Rightarrow T(i,j) = pT(i,j')$
 $\Rightarrow_{4. \text{ Beh.}} gT(i,j) = gpg^{-1}gT(i,j')$
 $\Rightarrow T(i,j) = g^{-1}gT(i,j) = g^{-1}gpg^{-1}gT(i,j') = pT(i,j')$

Also:
$$p \in P_T$$
 gdw. $gpg^{-1} \in P_{gT}$

$$\Rightarrow P_{gT} = gP_Tg^{-1}$$

$$\Rightarrow P_{gT} = gP_Tg^{-1}$$
Analog: $Q_{gT} = gQ_Tg^{-1}$

$$\Rightarrow c_{gT} = a_{gT}b_{gT} = \left(\sum_{p \in P_{gT}} p\right) \left(\sum_{q \in Q_{gT}} \operatorname{sgn}(q)q\right) = \sum_{p \in P_{gT}, q \in Q_{gT}} \operatorname{sgn}(q)pq = \sum_{p \in P_{T}, q \in Q_{T}} \operatorname{sgn}(q)gpg^{-1}gqg^{-1}$$

$$= g\left(\sum_{p \in P_{T}, q \in Q_{T}} \operatorname{sgn}(q)pq\right)g^{-1} = g\left(\sum_{p \in P_{T}} p\right) \left(\sum_{q \in Q_{T}} \operatorname{sgn}(q)q\right)g^{-1} = ga_{T}b_{T}g^{-1} = gc_{T}g^{-1}$$

6. Beh.:
$$\forall g \in S_n : Ac_T \cong Ac_{gT}$$

Bew.: Mit 5. Beh. folgt:
$$Ac_{gT} = Agc_Tg^{-1} = Ac_Tg^{-1} \cong Ac_T$$
, da $\varphi: Ac_T \to Ac_{gT}, x \mapsto xg^{-1}$ bijektiv ist.

da
$$\varphi: Ac_T \to Ac_{gT}, x \mapsto xg^{-1}$$
 bijektiv ist.

Sei
$$y \in Ac_{gT}$$
. Setze $x := yg \in Ac_T$. $\Rightarrow \varphi(x) = xg^{-1} = ygg^{-1} = y$. $\Rightarrow \varphi$ ist surjektiv.

7. Beh.:
$$\forall g \in S_n : g \notin P_TQ_T \Rightarrow$$
 Es gibt zwei verschiedene Zahlen in derselben Zeile in T und in derselben Spalte in gT .

$$\Rightarrow$$
 Alle Zahlen der 1. Spalte von gT sind in verschiedenen Zeilen in T .

$$\Rightarrow \exists p_1 \in P_T$$
: alle diese Zahlen sind 1. Spalte von p_1T .

Vorgehen wiederholen
$$\Rightarrow \exists p \in P_T$$
: Spalten von gT und pT enthalten die gleichen Zahlen

$$\Rightarrow \exists q' \in Q_{pT} : gT = q'pT$$

$$\Rightarrow_{5. \text{ Beh.}} \exists q \in Q_T : q' = pqp^{-1}$$

$$\Rightarrow gT = pqp^{-1}pT = pqT$$

$$\Rightarrow g = pq$$

8. Beh.: Seien
$$\lambda = (\lambda_1, \dots, \lambda_k)$$
 und $\mu = (\mu_1, \dots, \mu_l)$ Partitionen von $n \in \mathbb{N}$ und T_λ bzw. T_μ zugehörige Tableaus. Aus $\lambda > \mu$ folgt $a_{T_\lambda} x b_{T_\mu} = 0 \, \forall x \in A$ und insbesondere $c_{T_\lambda} c_{T_\mu} = 0$.

Bew.: Es gibt zwei verschiedenen Zahlen α und β in derselben Zeile von T_{λ} und in derselben Spalte von T_{μ} . Ansonsten stünden die λ_1 Zahlen aus der 1. Zeile von T_{λ} in verschiedenen Spalten von T_{μ} . $\Rightarrow \lambda_1 = \mu_1$ und $\exists q \in Q_{T_\mu} : 1$. Zeilen von qT_μ und T_λ haben die gleichen Zahlen

Vorgehen wiederholen
$$\Rightarrow \lambda_2 = \mu_2, \dots$$

Setze
$$t := (\alpha \beta) \in S_n \Rightarrow t \in P_{T_\lambda}, t \in Q_{T_\mu}$$

Setze
$$t := (\alpha \beta) \in S_n \Rightarrow t \in P_{T_\lambda}, t \in Q_{T_\mu}$$

 $\Rightarrow_{3. \text{ Beh. }} a_{T_\lambda} b_{T_\mu} = (a_{T_\lambda} t)(t b_{T_\mu}) = a_{T_\lambda} (-b_{T_\mu}) = -a_{T_\lambda} b_{T_\mu}$

$$\Rightarrow a_{T_{\lambda}}b_{T_{\mu}}=0$$

$$\forall g \in S_n : b_{gT_{\mu}} = \sum_{q \in Q_{gT_{\mu}}} \operatorname{sgn}(q)q = \sum_{q \in Q_{T_{\mu}}} \operatorname{sgn}(q)gqg^{-1} = g\left(\sum_{q \in Q_{T_{\mu}}} \operatorname{sgn}(q)q\right)g^{-1} = gb_{T_{\mu}}g^{-1}$$

$$\Rightarrow a_{T_{\lambda}}gb_{T_{\mu}}g^{-1} = a_{T_{\lambda}}b_{gT_{\mu}} = 0 \,\forall g \in S_n$$

$$\Rightarrow a_{T_{\lambda}}gb_{T_{\mu}}g^{-1} = a_{T_{\lambda}}b_{gT_{\mu}} = 0 \forall g \in S_{n}$$

$$\Rightarrow \text{Für } x = \sum_{g \in S_{n}} \alpha_{g}g \in A \text{ mit } \alpha_{g} \in \mathbb{C} \text{ gilt: } a_{T_{\lambda}}\alpha_{g}gb_{T_{\mu}} = a_{T_{\lambda}}\alpha_{g}gb_{T_{\mu}}g^{-1}g = (a_{T_{\lambda}}gb_{T_{\mu}}g^{-1})(\alpha_{g}g) = 0$$

$$\Rightarrow a_{T_{\lambda}}xb_{T_{\mu}} = a_{T_{\lambda}}\left(\sum_{g \in S_n} \alpha_g g\right)b_{T_{\mu}} = \sum_{g \in S_n} a_{T_{\lambda}}\alpha_g gb_{T_{\mu}} = 0$$

$$\Rightarrow c_{T_{\lambda}}c_{T_{\mu}} = a_{T_{\lambda}}(b_{T_{\lambda}}a_{T_{\mu}})b_{T_{\mu}} = 0$$

9. Beh.: Sei
$$x \in A$$
, so dass $px(\operatorname{sgn}(q)q) = x \, \forall p \in P_T \, \forall q \in Q_T$. Dann $\exists \gamma \in \mathbb{C} : x = \gamma c_T$

Bew.: Sei
$$x = \sum_{g \in S} \alpha_g g, \alpha_g \in \mathbb{C}$$

9. Beh.: Sei
$$x \in A$$
, so dass $px(\operatorname{sgn}(q)q) = x \, \forall p \in P_T \, \forall q \in Q_T$. Dann $\exists \gamma \in \mathbb{C} : x = \gamma c_T$. Bew.: Sei $x = \sum_{g \in S_n} \alpha_g g, \alpha_g \in \mathbb{C}$.

$$\Rightarrow x = \operatorname{sgn}(q) p^{-1} x q^{-1} = \operatorname{sgn}(q) \sum_{g \in S_n} \alpha_g (p^{-1} g q^{-1}) = \operatorname{sgn}(q) \sum_{h \in S_n} \alpha_{phq} h \, \forall p \in P_T \, \forall q \in Q_T,$$

da
$$\varphi: S_n \to S_n, g \mapsto p^{-1}gq^{-1}$$
 bijektiv (Bew. wie bei 3. Beh.)

$$\Rightarrow \forall g \in S_n \, \forall p \in P_T \, \forall q \in Q_T : \alpha_{pgq} = \mathrm{sgn}(q)\alpha_g, \, \text{insbesondere} \, \, \alpha_{pq} = \mathrm{sgn}(q)\alpha_{(1)}$$

$$\Rightarrow$$
 Noch zu zeigen: Aus $g \notin P_T Q_T$ folgt $\alpha_g = 0$:

$$\Rightarrow_{7. \text{ Beh.}}$$
 Es gibt zwei verschiedene Zahlen α und β in derselben Spalte in T und in derselben Spalte in gT .

```
Setze t := (\alpha \beta) \in S_n \Rightarrow t \in P_T, t \in Q_{qT}
       \Rightarrow_{5. \text{ Beh.}} \exists q \in Q_T : t = gqg^{-1}
       \Rightarrow tg = gq \Rightarrow tgq^{-1} = g
       \Rightarrow \alpha_g = \operatorname{sgn}(q^{-1})\alpha_{tqq^{-1}} = -\alpha_g, da q = g^{-1}tg Transposition
       \Rightarrow \alpha_q = 0
10. Beh.: \exists \gamma \in \mathbb{C} \setminus \{0\} : c_T^2 = \gamma c_T
       Bew.: Seien p \in P_T, q \in Q_T.
       \Rightarrow_{3. \text{ Beh.}} pc_T^2 q = (pa_T)b_T a_T(b_T q) = a_T b_T a_T(\operatorname{sgn}(q)b_T) = \operatorname{sgn}(q)c_T^2
       \Rightarrow_{9. \text{ Beh.}} \exists \gamma \in \mathbb{C} : c_T^2 = \gamma c_T.
       Zeige: \gamma \neq 0:
       Sei \varphi: A \to A, x \mapsto xc_T.
       Betrachte Matrixdarstellung B zur C-Basis \{g_1 := (1), \dots, g_n!\}, g_i \in S_n \, \forall i = \{1, \dots, n!\}.
       Schreibe c_T = \alpha_1 g_1 + \dots mit \alpha_i \in \mathbb{C} \, \forall i = \{1, \dots, n!\}:
                   g_1c_T = c_T = \alpha_1g_1 + \dots
                                                        +\alpha_1g_2+\ldots
                   g_2c_T =
                                            *g_1
       \Rightarrow
       \Rightarrow \operatorname{tr}(B) = \alpha_1 n! = \operatorname{sgn}((1)) n! = n!
       Betrachte Matrixdarstellung B' zur \mathbb{C}-Basis \{v_1, \ldots, v_n\}, so dass \{v_1, \ldots, v_f\} \mathbb{C}-Basis von Ac_T ist.
       \forall x \in Ac_T : \exists y \in A : x = yc_T \Rightarrow xc_T = yc_T^2 = y\gamma c_T = \gamma x
                   v_1c_T =
                   v_{n!}c_T = \quad *+ \quad \dots + \quad *+ \quad 0
       \Rightarrow \operatorname{tr}(B') = \gamma f
       \exists C \in \mathbb{C}^{n! \times n!} : B' = C^{-1}BC
       \Rightarrow \gamma f = \operatorname{tr}(B') = \operatorname{tr}(C^{-1}BC) = \operatorname{tr}(C^{-1}CB) = \operatorname{tr}(B) = n!
       \Rightarrow \gamma = \frac{n!}{f} \neq 0
11. Beh.: Seien I, I' \subseteq A Module mit A = I \oplus I' und P := \{p : A \to I \mid p \text{ Projektion }\}. Dann gilt
       P \cong I.
       Bew.: Betrachte \varphi: I \to P, b \mapsto p_b mit p_b: A \to I, a \mapsto ab. Dann ist \varphi offensichtlich injektiv. Für
       die Surjektivität zeige, dass jedes p \in P von der Form p(a) = ab mit b \in I ist.
       Sei also p \in P. Setze b := p(1) \in I.
       \Rightarrow \forall a \in A : p(a) = p(a \cdot 1) = a \cdot p(1) = ab
12. Beh.: Ac_T ist eine irreduzible Darstellung von S_n.
       Bew.: Setze für I_1, I_2 \subseteq A : I_1I_2 := \{a \cdot b \mid a \in I_1, b \in I_2\}.
       Sei x \in c_T A c_T \Rightarrow \exists y \in A : x = c_T y c_T
       \Rightarrow_{3. \text{ Beh.}} \forall p \in P_T \, \forall q \in Q_T :
            pxq = pc_Tyc_Tq = (pa_T)b_Tya_T(b_Tq) = a_Tb_Tya_T(\operatorname{sgn}(q)b_T) = \operatorname{sgn}(q)c_Tyc_T = \operatorname{sgn}(q)x
       \Rightarrow_{9. \text{ Beh.}} \exists \gamma \in \mathbb{C} : x = \gamma c_T
       \Rightarrow c_T A c_T \subseteq \mathbb{C} c_T
       Sei I \subseteq Ac_T Unterdarstellung. \Rightarrow c_T I \subseteq c_T Ac_T \subseteq \mathbb{C}c_T
       Da \mathbb{C}c_T eindimensional, gibt es nur 2 Fälle:
        (a) c_T I = \mathbb{C} c_T
               \Rightarrow Ac_T = A\mathbb{C}c_T = Ac_T I \subseteq AI \subseteq I \Rightarrow I = Ac_T
               \Rightarrow I^2 = II \subset Ac_TI = \{0\} \Rightarrow_{11 \text{ Beh}} \forall b \in I : b = b^2 = 0 \Rightarrow I = \{0\}
13. Beh.: Seien \lambda = (\lambda_1, \dots, \lambda_k) und \mu = (\mu_1, \dots, \mu_l) Partitionen von n \in \mathbb{N} und T_\lambda bzw. T_\mu zugehörige
       Tableaus. Aus \lambda \neq \mu folgt Ac_{T_{\lambda}} \ncong Ac_{T_{\mu}}.
       Bew.: OBdA sei \lambda > \mu.
       \Rightarrow_{10.+8. \text{ Beh. }} c_{T_{\lambda}} A c_{T_{\lambda}} = \mathbb{C} c_{T_{\lambda}}, c_{T_{\lambda}} A c_{T_{\mu}} = a_{T_{\lambda}} b_{T_{\lambda}} A a_{T_{\mu}} b_{T_{\mu}} = 0
```

 $\Rightarrow Ac_{T_{\lambda}} \ncong Ac_{T_{\mu}}$

14. Beh.: Jede Konjugationsklasse in S_n entspricht genau einer Partition von n.

Bew.: Jede Permutation kann als Produkt von (paarweise disjunkten) Zykeln geschrieben werden.

Bsp.:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 1 & 2 \end{pmatrix} = (135)(26)(4)$$

Bsp.: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 1 & 2 \end{pmatrix} = (1\,3\,5)(2\,6)(4).$ Eine Konjugationsklasse von S_n ist die Menge aller Permutationen, die die gleiche Anzahl Zykel mit je gleicher Länge haben. Denn:

Sei $\sigma \in S_n$ mit Zykeldarstellung $\sigma = \sigma_1 \dots \sigma_k$.

$$\Rightarrow g\sigma g^{-1} = g\sigma_1 g^{-1} \dots g\sigma_k g^{-1}$$

 $\Rightarrow g\sigma g^{-1} = g\sigma_1 g^{-1} \dots g\sigma_k g^{-1}$ $\Rightarrow \text{Konjugation erhält Struktur in Zykeldarstellung}$

Außerdem: Aus einer Permutation können durch Konjugation alle Permutationen mit gleicher Struktur in der Zykeldarstellung erhalten werden.

Ordne nun der Konjugationsklasse von $\sigma = \sigma_1 \dots \sigma_k$ (mit absteigend nach der Länge sortierten Zykeln) die Partition $(|\sigma_1|, \ldots, |\sigma_k|)$ zu, wobei $|\sigma_j|$ die Länge von Zykel σ_j bezeichne $(\forall j \in \{1, \ldots, k\})$.

Fazit

Da die Anzahl der irreduziblen Darstellungen von S_n der Anzahl der Konjugationsklassen von S_n und damit der Anzahl der Partitionen von n entspricht und wir gesehen haben, dass zu jeder Partition genau eine irreduzible Darstellung gehört, ist das Theorem bewiesen.