Univariate kansvariabelen

Sandra Van Aert

13 oktober 2011

Definitie

- kansvariabele
 - = stochastische variabele
 - = toevalsvariabele
- definitie: X(ω)
 functie die reëel getal associeert met elke uitkomst van een experiment
- voorbeeld 1: testen van een product
 - defect of niet-defect
 - X(defect) = 0 en X(niet-defect) = 1
- voorbeeld 2: nawegen van flessen in een vulproces
 - elke meting is reëel getal zodat $X(\omega) = \omega$

Notatie

kansvariabele → hoofdletter

```
X(\omega)

X

Y, Z, X_1, X_2, \dots

= functies
```

► realisatie van kansvariabele → kleine letter

P(X = x) P(X < x)

$$P(x < 10)$$
 NIET $P(X < 10)$ WEL

- experiment = opgooien 2 dobbelstenen
- 36 mogelijke uitkomsten ω_{ij}

```
(1,1) (1,2) ... (1,6) (2,1) (2,2) ... (2,6) \vdots \vdots \ddots \vdots (6,1) (6,2) ... (6,6)
```

- mogelijke kansvariabelen
 - ► X = som aantal ogen $X(\omega_{13}) = 4 = X(\omega_{22}) = X(\omega_{31})$
 - Y = absolute waarde verschil aantal ogen $Y(\omega_{13}) = 2 = Y(\omega_{31}) = Y(\omega_{24}) = \dots$

Kansen

- experiment: gooien 2 dobbelstenen
- \rightarrow X = som aantal ogen
- ▶ P(X = 7)

=
$$P((1,6) \text{ gegooid of } (2,5) \text{ gegooid of } (3,4) \text{ gegooid of } (4,3) \text{ gegooid of } (5,2) \text{ gegooid of } (6,1) \text{ gegooid})$$

=
$$P((1,6) \text{ gegooid}) + P((2,5) \text{ gegooid}) + \dots$$

+ $P((6,1) \text{ gegooid})$

$$= \frac{1}{36} + \frac{1}{36} + \dots + \frac{1}{36}$$

$$=\frac{6}{36}=\frac{1}{6}$$

Discrete kansvariabele

$$x$$
 2
 3
 4
 5
 6
 7
 $...$
 12
 $P(X = x)$
 $1/36$
 $2/36$
 $3/36$
 $4/36$
 $5/36$
 $6/36$
 $...$
 $1/36$

kansverdeling
$$p_X(x) = P(X = x)$$

▶
$$p_X(x) \ge 0$$

$$\sum_{i=1}^{k} p_X(x_i) = 1$$

merk op: soms $k \rightarrow \infty$

Kansverdeling grafisch

$$P(X = x)$$

(Cumulatieve) verdelingsfunctie

$$x$$
 2
 3
 4
 5
 6
 7
 ...
 12

 $P(X \le x)$
 1/36
 3/36
 6/36
 10/36
 15/36
 21/36
 ...
 1

cumulatieve verdelingsfunctie $F_X(x) = P(X \le x)$

$$F_X(x) = P(X \le x)$$

$$F_X(x) = \sum_{x_i < x} p_X(x_i), \quad \forall x$$

- niet dalend
- $F_X(-\infty)=0$
- $F_X(+\infty)=1$

Verdelingsfunctie grafisch

$$P(X \le x)$$

Histogram met relatieve frequenties

Histogram met relatieve frequenties

Histogram met relatieve frequenties

Kansdichtheid

Kansdichtheid

- ▶ a.h.w. polygoon
- functie $f_X(x)$

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{+\infty} f_X(x) \, dx = 1$$

Kansdichtheid

▶ voorbeeld: $P(0 \le X \le 2)$

Kansen

▶ kans = oppervlakte onder curve $f_X(x)$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, dx$$

speciaal geval

$$P(X = a) = P(a \le X \le a) = \int_{a}^{a} f_X(x) dx = 0$$

Continu versus discreet

- kansdichtheid i.p.v. kansverdeling
- $f_X(x)$ i.p.v. $p_X(x)$
- $f_X(x) \ge 0 \leftrightarrow p_X(x) \ge 0$

$$\int_{-\infty}^{+\infty} f_X(x) \, dx = 1 \leftrightarrow \sum_{i=1}^k p_X(x_i) = 1$$

► $f_X(x)$ soms ≥ 1 \leftrightarrow $p_X(x)$ nooit > 1

Cumulatieve verdelingsfunctie

voor elk reëel getal x $P(X \le x)$ $= P(-\infty < X \le x)$ $= \int_{-\infty}^{x} f_X(x) dx = \int_{-\infty}^{x} f_X(y) dy$ $= F_X(x) \quad \text{(cumulatieve verdelings functie)}$

Cumulatieve verdelingsfunctie grafisch

Kansen en verdelingsfunctie

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, dx$$

of

$$P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Opmerking

$$F_X(x)$$

$$= P(-\infty < X \le x)$$

$$= \int_{-\infty}^{x} f_X(y) \, dy$$

► $f_X(x)$ kan afgeleid worden uit $F_X(x)$ $f_X(x)$ $= \frac{d}{dx} F_X(x)$

Kengetallen

Sandra Van Aert

13 oktober 2011

Rekenkundig gemiddelde

rekenkundig gemiddelde bij gegroepeerde gegevens:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_i x_i = \frac{1}{n} (f_1 x_1 + f_2 x_2 + \dots + f_n x_n)$$

voorbeeld:

Aantal no-shows	0	1	2	3	4	5	6
Frequentie	11	38	32	9	6	3	1
Rel. frequentie	11%	38%	32%	9%	6%	3%	1%

$$\overline{x} = \frac{1}{100} (11 \times 0 + 38 \times 1 + 32 \times 2 + 9 \times 3 + 6 \times 4 + 3 \times 5 + 1 \times 6)$$

$$= 1.74$$

Verwachte waarde of gemiddelde

$$\mu_X = E(X)$$

• discreet: $\sum_{i=1}^{k} x_i p_X(x_i)$ analoog aan steekproefgemiddelde gegroepeerde gegevens (hoofdstuk 3)

 $continu: \int_{-\infty}^{+\infty} x f_X(x) \, dx$

- meerkeuzevragen
- 4 antwoordmogelijkheden
- ▶ slechts 1 van de 4 is juist
- puntenverdeling:
 - ▶ juist antwoord: +1
 - ► fout antwoord: -1/3
 - geen antwoord: 0
- heb je er belang bij te gokken als je geen enkel antwoord kunt uitsluiten?
- heb je er belang bij te gokken als je één antwoord kunt uitsluiten?

Kansverdeling bij gokken:

Antwoord	1	2	3	4
Kans	1/4	1/4	1/4	1/4

$$E(\text{punten}) = 1\frac{1}{4} - \frac{1}{3}\frac{1}{4} - \frac{1}{3}\frac{1}{4} - \frac{1}{3}\frac{1}{4} = 0$$

Kansverdeling bij 1 eliminatie:

Antwoord	1	2	3	4
Kans	1/3	1/3	1/3	0

$$E(\text{punten}) = 1\frac{1}{3} - \frac{1}{3}\frac{1}{3} - \frac{1}{3}\frac{1}{3} = \frac{1}{9}$$

Verwachte waarde van functie Y = g(X)

algemeen

- discreet: $\mu_Y = E(Y) = \sum_{i=1}^k g(x_i) p_X(x_i)$
- $continu: \mu_Y = E(Y) = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$

lineaire functie
$$Y = aX + b$$

$$\mu_Y = a\mu_X + b$$

$$E(Y) = E(aX + b)$$

$$= \int_{-\infty}^{+\infty} (ax + b) f_X(x) dx$$

$$= a \int_{-\infty}^{+\infty} x f_X(x) dx + b \int_{-\infty}^{+\infty} f_X(x) dx$$

$$= a\mu_X + b$$

Steekproefvariantie

steekproefvariantie bij gegroepeerde gegevens:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i}(x_{i} - \overline{x})^{2}$$

voorbeeld:

Aantal no-shows	0	1	2	3	4	5	6
Frequentie	11	38	32	9	6	3	1
Rel. frequentie	11%	38%	32%	9%	6%	3%	1%

$$s^2 = \frac{1}{99}(11 \times (0 - 1.74)^2 + 38 \times (1 - 1.74)^2 + \dots + 1 \times (6 - 1.74)^2) = 1.53$$

Variantie

 σ_X^2 of var(X) = verwachte waarde van $Y = g(X) = (X - \mu_X)^2$

discreet: $\sigma_X^2 = \sum_{i=1}^k g(x_i) p_X(x_i)$ $= \sum_{i=1}^k (x_i - \mu_X)^2 p_X(x_i)$

Continu:
$$\sigma_X^2 = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$
$$= \int_{-\infty}^{+\infty} (x - \mu_X)^2 f_X(x) dx$$

Eigenschap

$$\begin{split} \sigma_X^2 &= E(Y) = E\left[(X - \mu_X)^2 \right] \\ &= E(X^2 - 2\mu_X X + \mu_X^2) \\ &= E(X^2) - 2\mu_X E(X) + \mu_X^2 \\ &= E(X^2) - 2\mu_X^2 + \mu_X^2 \\ &= E(X^2) - \mu_X^2 \end{split}$$

Variantie lineaire functie Y = aX + b

$$\sigma_Y^2 = E[(Y - \mu_Y)^2]$$

$$= E[(aX + b - a\mu_X - b)^2]$$

$$= E[(aX - a\mu_X)^2]$$

$$= E[a^2(X - \mu_X)^2]$$

$$= a^2 E[(X - \mu_X)^2]$$

$$= a^2 \sigma_X^2$$

Nog meer begrippen

standaarddeviatie

$$\sigma_X = +\sqrt{\sigma_X^2}$$

gestandaardiseerde kansvariabele

$$Z = \frac{X - \mu_X}{\sigma_X}$$

$$E(Z) = 0 \text{ en } \sigma_Z^2 = \text{var}(Z) = 1$$

modus

$$p_X(x)$$
 of $f_X(x)$ maximaal

Mediaan $\gamma_{0.5}$

discreet

(1)
$$P(X \le \gamma_{0.5}) \ge \frac{1}{2}$$

(2) $P(X \ge \gamma_{0.5}) \ge \frac{1}{2}$

(2)
$$P(X \ge \gamma_{0.5}) \ge \frac{1}{2}$$

continu

$$\frac{1}{2} = \int_{-\infty}^{\gamma_{0.5}} f_X(x) \, dx = \int_{\gamma_{0.5}}^{+\infty} f_X(x) \, dx$$

(100 × p)de percentiel γ_p

► continu

(1)
$$p = \int_{-\infty}^{\gamma_p} f_X(x) dx$$
(2)
$$1 - p = \int_{\gamma_p}^{+\infty} f_X(x) dx$$

- $\gamma_{0.25}$ = eerste kwartiel
- $\gamma_{0.5}$ = tweede kwartiel = mediaan
- $\gamma_{0.75}$ = derde kwartiel

Scheefheid

Pearsons populatiescheefheidscoëfficiënt

$$SP^{pop} = \frac{3(\mu_X - \gamma_{0.5})}{\sigma_X}$$

- ► $-3 \le S_P \le +3$
- symmetrische verdeling : $SP^{pop} = 0$
- rechtsscheve verdeling : $SP^{pop} > 0$
- ▶ linksscheve verdeling : $SP^{pop} < 0$

Scheefheid

scheefheidscoëfficiënt

$$scheefheidscoëfficiënt = \frac{E[(X - \mu_X)^3]}{\sigma_X^3}$$

- symmetrische verdeling : $scheefheidsco\"{e}ffici\"{e}nt = 0$
- rechtsscheve verdeling : scheefheidscoëfficiënt > 0
- ► linksscheve verdeling : scheefheidscoëfficiënt < 0

Discrete kansverdelingen

Sandra Van Aert

13 oktober 2011

Uniforme kansverdeling

alle mogelijke uitkomsten hebben evenveel kans

voorbeeld

- \rightarrow X = aantal ogen gegooid met 1 dobbelsteen
- ▶ 6 mogelijkheden

$$p_X(x) = \frac{1}{6}, \quad x = 1, 2, ..., 6$$

Algemeen

- stel X neemt gehele waarden aan 1, 2, ..., N
- kansverdeling:

$$p_X(n) = \frac{1}{N}, \qquad n = 1, \dots, N$$

cumulatieve verdelingsfunctie:

$$F_X(n) = P(X \le n) = \sum_{i=1}^n \frac{1}{N} = \frac{n}{N}, \qquad n = 1, ..., N$$

$$P(X = n)$$

uniforme kansverdeling met N = 8

$$P(X \le n)$$

cumulatieve verdelingsfunctie met N = 8

Bernoulli verdeling

kansvariabele kan waarde 0 of 1 aannemen

$$X \rightarrow 1$$
 met kans π
 $X \rightarrow 0$ met kans $1 - \pi$

$$p_X(x; \pi) = \pi^x (1 - \pi)^{1 - x}, \quad x = 0, 1$$

 π is parameter van Bernoullifamilie ($0 \le \pi \le 1$)

Kansen

$$P(X = 1) = ?$$

$$= p_X(1; \pi)$$

$$= \pi^1 (1 - \pi)^{1-1}$$

$$= \pi (1 - \pi)^0$$

$$= \pi$$

$$P(X = 0) = ?$$

$$= p_X(0; \pi)$$

$$= \pi^0 (1 - \pi)^{1-0}$$

$$= 1 - \pi$$

Kengetallen

$$\mu_{X} = E(X) = \sum_{i} x_{i} p_{X}(x_{i}; \pi)$$

$$= 1 \cdot p_{X}(1; \pi) + 0 \cdot p_{X}(0; \pi)$$

$$= 1 \cdot \pi + 0 \cdot (1 - \pi)$$

$$= \pi$$

$$\sigma_{X}^{2} = \text{var}(X) = \sum_{i} (x_{i} - \mu_{X})^{2} p_{X}(x_{i}; \pi)$$

$$= (1 - \pi)^{2} \cdot p_{X}(1; \pi) + (0 - \pi)^{2} \cdot p_{X}(0; \pi)$$

$$= (1 - \pi)^{2} \cdot \pi + \pi^{2} \cdot (1 - \pi)$$

$$= \pi(1 - \pi) [(1 - \pi) + \pi]$$

$$= \pi(1 - \pi)$$

Voorbeeld

- ► $X \rightarrow 1$ indien defect $X \rightarrow 0$ indien niet-defect
- ► $X \rightarrow 1$ indien geslaagd $X \rightarrow 0$ indien niet-geslaagd
- ► $X \rightarrow 1$ rode reukerwt $X \rightarrow 0$ witte reukerwt
- Bernoulli proces/experiment: kansproces waarbij één element uit een Bernoulli verdeling gegenereerd wordt; successen ("1") en falingen ("0")

Binomiale verdeling

- ▶ *n* opeenvolgende Bernoulli experimenten
- ▶ tel aantal successen X
- X: 0, 1, 2, ..., n
- alle Bernoulli experimenten zijn onafhankelijk en hebben parameter π

Afleiding kansverdeling

- wat is kans op 3 successen en 5 falingen bij n = 8?
- stel:

$$S, F, S, F, F, F, S, F,$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\pi \quad 1-\pi \quad \pi \quad 1-\pi \quad 1-\pi \quad 1-\pi \quad \pi \quad 1-\pi$$

vermenigvuldigingsregel: kans op deze volgorde =

$$\pi(1-\pi)\pi(1-\pi)(1-\pi)(1-\pi)\pi(1-\pi) = \pi^3(1-\pi)^5$$

Vervolg afleiding kansverdeling

• er zijn nog andere volgordes met 3 successen:

$$\frac{8!}{3!5!}$$
 volgordes met 3 successen

wegens de optelregel is de kans op 3 successen
 (en 5 falingen) bij n = 8 dan

$$\frac{8!}{3!5!}\pi^3(1-\pi)^5 = \binom{8}{3}\pi^3(1-\pi)^5$$

Definitie

kans op x successen:

$$P(X = x) = p_X(x; \pi, n)$$

$$= \frac{n!}{x! (n - x)!} \pi^x (1 - \pi)^{n - x}$$

$$= \binom{n}{x} \pi^x (1 - \pi)^{n - x}$$

- parameters: n en π
- kengetallen:

$$\mu_X = n\pi$$

$$\sigma_X^2 = n\pi (1 - \pi)$$

Kengetallen

$$\mu_{X} = E(X) = E(Y_{1} + Y_{2} + \dots + Y_{n})$$

$$= E(Y_{1}) + E(Y_{2}) + \dots + E(Y_{n})$$

$$= \pi + \pi + \dots + \pi$$

$$= n\pi$$

$$\sigma_{X}^{2} = \text{var}(X) = var(Y_{1} + Y_{2} + \dots + Y_{n})$$

$$= var(Y_{1}) + var(Y_{2}) + \dots + var(Y_{n})$$

$$= \pi(1 - \pi) + \pi(1 - \pi) + \dots + \pi(1 - \pi)$$

$$= n\pi(1 - \pi)$$

$$P(X = x)$$

kansverdeling met n = 8 en $\pi = 0.2$

$$P(X \le x)$$

cumulatieve verdelingsfunctie met n = 8 en $\pi = 0.2$

$$P(X = x)$$

kansverdeling met n = 8 en $\pi = 0.5$

$$P(X \le x)$$

cumulatieve verdelingsfunctie met n = 8 en $\pi = 0.5$

$$P(X = x)$$

kansverdeling met n = 8 en $\pi = 0.8$

$$P(X \le x)$$

cumulatieve verdelingsfunctie met n = 8 en $\pi = 0.8$

Voorbeeld

- $\pi = 0.10$ defectenratio
- ▶ n = 20 inspecties
- ► P(X = 2) = ?
- R: dbinom(2,20,0.1) Matlab: binopdf(2,20,0.1)
 - de waarde van x
 - ▶ de parameter n
 - de parameter π

Vervolg voorbeeld

- $\pi = 0.10$ defectenratio
- \rightarrow n = 20 inspecties
- ► P(X = 2) = ?
- rekentoestel:

$$P(X=2) = \frac{20!}{18!2!}(0.1)^2(0.9)^{18} = 0.2852$$

Vervolg voorbeeld

- ► $P(X \ge 3) = ?$
- $P(X \ge 3) = 1 P(X < 3) = 1 P(X \le 2)$
- R: "=1-pbinom(2,20,0.1) Matlab: "=1-binocdf(2,20,0.1)
- rekentoestel

$$P(X \ge 3) = 1 - P(X \le 2)$$

= 1 - P(X = 0) - P(X = 1) - P(X = 2)
= ...

Poissonverdeling

voorbeelden

- aantal defecten / lengte-eenheid
- aantal aardbevingen / tijdseenheid
- aantal bacteriën / volume-eenheid

voorwaarden Poisson proces

- gebeurtenissen komen niet in groep voor
- kans op gebeurtenis constant
- onafhankelijk in twee niet-overlappende intervallen

Poissonverdeling

- ► *X*: aantal keer dat een gebeurtenis voorkomt in een gegeven tijdsinterval
- tijdsinterval opsplitsen in zeer groot aantal (n) kleine deelintervallen
- ► *n* opeenvolgende Bernouilli experimenten
- X binomiaal verdeeld
- ▶ Poisson verdeling is limiet van de binomiaal verdeling $n \to \infty$, $\pi \to 0$ en $n\pi \to \lambda$

$$Poisson(\lambda) \approx bin(n, \pi)$$

Vergelijking Poisson en binomiale verdeling

	binomiale verdeling				Poisson
n	5	20	100	500	$\lambda = 1$
π	0.2	0.05	0.01	0.002	
P(X=0)	0.3277	0.3585	0.3660	0.3675	0.3679
P(X=1)	0.4096	0.3774	0.3697	0.3682	0.3679
P(X=2)	0.2048	0.1887	0.1849	0.1841	0.1839
P(X = 3)	0.0512	0.0596	0.0610	0.0613	0.0613
P(X=4)	0.0064	0.0133	0.0149	0.0153	0.0153

Definitie

$$p_X(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

parameter $\lambda > 0$

kengetallen:

$$E(X) = \lambda$$
$$var(X) = \lambda$$

$$P(X = x)$$

kansverdeling voor $\lambda = 3$

$$P(X \le x)$$

cumulatieve verdelingsfunctie voor $\lambda = 3$

Voorbeeld: Poisson familie

Voorbeeld

- telefooncentrale
- ▶ 30 oproepen per uur
- kans op geen enkele oproep in 3 minuten tijd?
- eerst λ bepalen:

30 oproepen per uur = 1.5 oproepen per 3 minuten

$$\Rightarrow \lambda = 1.5$$

 $P(X = 0) = p_X(0; 1.5) = ?$

Vervolg voorbeeld

rekentoestel:

$$P(X=0) = \frac{(1.5)^0 e^{-1.5}}{0!} = 0.223$$

- ► R: dpois(0,1.5) Matlab: poisspdf(0,1.5)
 - de waarde van x
 - de parameter λ

Vervolg voorbeeld

- ► kans op meer dan 5 oproepen in 5 minuten? ⇒ $\lambda = 2.5$
- $P(X > 5) = P(X \ge 6) = ?$
- ► $P(X \ge 6) = 1 P(X \le 5)$ R: 1 - ppois(5,2.5) Matlab: 1 - poisscdf(5,2.5)
- rekentoestel:

$$P(X \ge 6) = 1 - P(X = 0) - P(X = 1) - \dots - P(X = 5)$$
$$= 1 - \frac{(2.5)^{0} e^{-2.5}}{0!} - \dots - \frac{(2.5)^{5} e^{-2.5}}{5!}$$