Maskinlæring

Even Marius Nordhagen

Universitet i Oslo evenmn@fys.uio.no

9. mars 2020

- This is an example presentation about quantum mechanics
- The front frame is generated using frontframe
- Note also that the notes can be turned on and off in the first line of this file

Oversikt

- Motivasjon
- ▶ Teorien bak
- ► Implementasjon
- ▶ Dere skal implementere et nevralt nettverk

└─Oversikt

Medizospin
 Torden hak
 Professorance
 Torden data insplanentine et accords neutronik

Date dad insplanentine et accords neutronik

Oversikt

Dette er planen for dagen

Motivasjon

Regresjon

Regresjon er en enkel form for maskinlæring

Konsept dere kanskje er kjente med

Bildeanalyse

Kjenne igjen hva som er på et bilde og hvor objektene befinner seg

☐ Bildeanalyse

kfkffk

Generative modeller

└─Generative modeller

Generative modeller

➤ Stemmegjenkjenning
 ➤ Taktikkopill
 ➤ Autonom teknologi

Andre eksempler

- Stemmegjenkjenning
- ► Taktikkspill
- ► Autonom teknologi

Nevrale nettverk

2020-03-09

└─Hva er et nevralt nettverk?

➤ Inspirer ar biologi og hjernelonkning

Hya er et nevralt nettverk?

▶ Inspirert av biologi og hjerneforskning

Basert på studier av hvordan hjernen lærer

Hya er et nevralt nettverk?

- Inspirert av biologi og hjerneforskning
- ightharpoonup Fleksible funksjoner ightarrow mange parametere

Feedforward er det viktigste nevrale nettverket, og det som ofte brukes til å illustrere et nevralt nettverk. Ved å justere parameterne i et feedforward nettverk, kan man tilpasse enhver kontinuerlig funksjon.

Inspirert av biologi og hjernelsoskning
 Firkeble funksjoner → mange parametere
 Foedforward nettverk kan representere enhver funksjon

Hya er et nevralt nettverk?

- ▶ Inspirert av biologi og hjerneforskning
- ► Fleksible funksjoner → mange parametere
- ▶ Feedforward nettverk kan representere enhver funksjon

Feedforward er det viktigste nevrale nettverket, og det som ofte brukes til å illustrere et nevralt nettverk. Ved å justere parameterne i et feedforward nettverk, kan man tilpasse enhver kontinuerlig funksjon.

Fase: Fremover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Fase: Fremover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Fase: Fremover

2020-03-09

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Fase: Fremover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Aktiveringsfunksjon

En aktiveringsfunksjon brukes for å *aktivere* inputen til hvert lag. Rectified Linear Unit (ReLU) er en vanlig funksjon:

2020-03-09

Nevrall nettverk: Feedforward

Nevrallt nettverk: Feedforward

$$C = \frac{1}{2} (y - \tilde{y})^2$$

anye bruda kostlunkojan se rainose kwadentose metode: $C = \frac{1}{2} (y - \hat{y})^2$

Nevralt nettverk: Feedforward

Feilen defineres av en kostfunksjon. Det er mange typer kostfunksjoner.

Fase: Bakover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Fase: Bakover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Fase: Bakover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Fase: Bakover

└─Nevralt nettverk: Feedforward

Nevralt nettverk: Feedforward

Nevralt nettverk for snake

Treningsdata for nettverket

Nettverket trenger informasjon for å avgjøre hvilken vei slangen skal bevege seg. Det vi velger å sende inn er:

Treningsdata for nettverket

Nettverket trenger informasjon for å avgjøre hvilken vei slangen skal bevege seg. Det vi velger å sende inn er:

- ▶ I hvilken retning er maten?
- ► Hva befinner seg foran slangen?
- ▶ Hvilken vei valgte slangen gå i den situasjonen?
- ► En evaluering av valget

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

☐ Treningsdata for nettverket

Treningsdata for nettverket

Evaluering

Vi implementerer noen veldig enkle regler for å evaluere en avgjørelse:

- ► Dårlig (-1)
- ► Middels (0)
- ▶ Bra (+1)

Det som kjennetegner en dårlig avgjørelse er at slangen kræsjer. Det som kjennetegner en god avgjørelse, er at den nærmer seg maten. Alt annet er middels.

2020-03-09

Treningsdata for nettverket

Vi sal-dermed fines autonden mellem dange og met for å fines ut om slangen nummer og mellen.

Treningsdata for nettverket

Vi må dermed finne avstanden mellom slange og mat for å finne ut om slangen nærmer seg maten.

Avstand til mat

2020-03-09

Nevralt nettverk i Pytorch

Ved hjelp av Anaconda:
comda install pytrevih terchvision -c pyterch

Chorolis const installanismenskyder https://orwach.com/

Nevralt nettverk i Pytorch

Ved hjelp av Anaconda:

conda install pytorch torchvision -c pytorch

Oversikt over installasjonsmethoder: https://pytorch.org/

Installasjon

Nevralt nettverk i Pytorch

Bestemme arkitektur

I Pytorch kan man lage en liste med moduler som spesifiserer arkitekturen til det nevrale nettverket.

Start med å importere torch:

import torch
import torch.nn as nn

Definer skjult lag med 25 noder og 5 noder til venstre:

modul1 = nn.Linear(5, 25)

Definer aktiveringsfunksjon (ReLU):

modul2 = nn.ReLU()

2020-03-09

└─Nevralt nettverk i Pytorch

Nevralt nettverk i Pytorch Bestemme arkitektur

nevale networket.

Start med 3 importers turck:

Separt torch as as as

nodul1 = un.Linear(5, 25)

Definer aktiveringelunksjon (ReLU):

Nevralt nettverk i Pytorch

Bestemme arkitektur


```
modules = []
modules.append(nn.Linear(3, 5))
modules.append(nn.ReLU())
modules.append(nn.Linear(5, 5))
modules.append(nn.ReLU())
modules.append(nn.Linear(5, 2))
model = nn.Sequential(*modules)
```


└─Nevralt nettverk i Pytorch

