Probabilités C.Hassenforder

CHAPITRE 6

COUPLES ALEATOIRES DISCRETS

I- GENERALITES

Soient X et Y deux v.a.r. discrètes, définies sur un même espace probabilisé (Ω, \mathcal{A}, P) . On pose $X(\Omega) = \{x_i \; ; \; i \in \mathbb{N}\}$ et $Y(\Omega) = \{y_j \; ; \; j \in \mathbb{N}\}$.

1- Loi de probabilité d'un couple (X, Y).

D1: On appelle loi de probabilité du couple (X,Y) l'ensemble des triplets (x_i,y_i,p_{ij}) avec

$$p_{ij} = P([X = x_i] \cap [Y = y_j])$$
 pour $i \in \mathbb{N}$ et $j \in \mathbb{N}$.

2- Lois marginales.

D2: Les v.a.r. X et Y sont appelées v.a.r. marginales du couple (X,Y); les lois des v.a.r. X et Y sont appelées lois marginales du couple (X,\overline{Y}) .

On pose
$$p_{i.} = \sum_{j} p_{ij}$$
 et $p_{.j} = \sum_{i} p_{ij}$.

TH1: La loi de X est définie par l'ensemble des couples $(x_i, p_{i.})$ pour $i \in \mathbb{N}$ et la loi de Y est définie par l'ensemble des couples $(y_i, p_{.j})$ pour $j \in \mathbb{N}$.

3- Lois conditionnelles.

Si $p_{i.} \neq 0$, la loi conditionnelle de Y sachant $[X = x_i]$ est définie par l'ensemble des couples $\left(y_j, \frac{p_{ij}}{p_{i.}}\right)$, pour $j \in \mathbb{N}$. On peut de même définir la loi conditionnelle de X sachant $[Y = y_j]$.

4- Indépendance de deux v.a.r. discrètes.

D3: Deux v.a.r. discrètes X et Y sont dites indépendantes si, pour tout $(i, j) \in \mathbb{N}^2$, on a :

$$P([X = x_i] \cap [Y = y_j]) = P([X = x_i])P([Y = y_j])$$
 (c'est-à-dire $p_{ij} = p_{i.}p_{.j}$).

Propriété (admise) : Les v.a.r. X et Y sont indépendantes si et seulement si, pour toutes fonctions numériques f et g, les v.a.r. f(X) et g(Y) sont indépendantes.

5- Somme de deux v.a.r. discrètes.

TH2: Soient
$$X$$
 et Y deux v.a.r. discrètes et soit $Z = X + Y$.
Pour $z \in Z(\Omega)$, on pose $I_z = \{(i,j) \in \mathbb{N}^2 \; ; \; x_i + y_j = z\}$; alors $P([Z=z]) = \sum_{(i,j) \in I_z} p_{ij}$.

CHAPITRE 6 Résumé du cours

Cas particulier important si X et Y sont indépendantes et à valeurs dans $\mathbb{I}\mathbb{N}$:

TH3: Si X et Y sont indépendantes à valeurs dans \mathbb{IN} , de fonctions génératrices respectives G_X et G_Y , alors $P([X+Y=n]) = \sum_{i+j=n} p_{i.}p_{.j}$ et $G_{X+Y}(t) = G_X(t)G_Y(t)$ pour tout $t \in [0,1]$.

Application:

Si X et Y sont deux v.a.r. indépendantes :

- 1) si X suit la loi binomiale $\mathcal{B}(n,p)$ et Y la loi $\mathcal{B}(m,p)$, alors X+Y suit la loi $\mathcal{B}(n+m,p)$;
- 2) si X suit la loi de Poisson $\mathcal{P}(\lambda)$ et Y la loi $\mathcal{P}(\mu)$, alors X + Y suit la loi $\mathcal{P}(\lambda + \mu)$.

II- OPERATEURS CLASSIQUES.

1- Espérance.

Propriétés:

- 1) Si X et Y possèdent une espérance, alors $\mathbb{E}(X+Y)$ existe et $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.
- 2) Si X et Y possèdent un moment d'ordre 2, alors $\mathbb{E}(XY)$ existe.

TH4: Soit f une application de \mathbb{R}^2 dans \mathbb{R} , telle que f(X,Y) admette une espérance. Alors :

$$\mathbb{E}(f(X,Y)) = \sum_{i,j} f(x_i, y_j) P([X = x_i] \cap [Y = y_j]) = \sum_{i,j} f(x_i, y_j) p_{ij}.$$

Propriété : Si X et Y sont indépendantes, alors $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Remarque : La réciproque est en général fausse.

2- Variance et covariance.

 $\mathbf{D4}$: Si X et Y sont d'ordre 2, on appelle :

- 1) <u>covariance</u> de X et de Y, le réel cov(X,Y) défini par $cov(X,Y) = \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y)))$;
- 2) coefficient de corrélation linéaire de X et de Y, le réel $\rho(X,Y)$ défini par $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)}$;
- 3) matrice de covariance de X et de Y, la matrice $\Gamma(X,Y)$ définie par :

$$\Gamma(X,Y) = \left(\begin{array}{cc} \operatorname{var}(X) & \operatorname{cov}(X,Y) \\ \operatorname{cov}(Y,X) & \operatorname{var}(Y) \end{array} \right) = \left(\begin{array}{cc} \operatorname{cov}(X,X) & \operatorname{cov}(X,Y) \\ \operatorname{cov}(Y,X) & \operatorname{cov}(Y,Y) \end{array} \right).$$

Propriétés:

- 1)i) $cov(X, Y) = cov(Y, X) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$;
- 1)ii) var(X + Y) = var(X) + var(Y) + 2cov(X, Y);
- 1)iii) si X et Y sont indépendantes, alors cov(X,Y) = 0 et var(X+Y) = var(X) + var(Y);
- 1)iv) cov(aX + b, cY + d) = ac cov(X, Y).
- **2)** $\rho(X,Y) \in [-1,1]$ et $\rho(aX+b,cY+d) = \frac{ac}{|ac|}\rho(X,Y)$.
- 3) $\Gamma(X,Y)$ est une matrice réelle symétrique et, pour tout $(u,v) \in \mathbb{R}^2$, $(u,v)\Gamma(X,Y) \begin{pmatrix} u \\ v \end{pmatrix} \geq 0$.

Probabilités C.Hassenforder

Exercices chapitre 6

Couples aléatoires discrets

183. * On lance 2 dés. On appelle X la v.a.r. égale qu résultat du premier dé et Y la v.a.r. égale à la valeur maximale obtenue.

Déterminer la loi du couple (X, Y) et en déduire la loi de Y.

184. ** On lance 2 dés. Soit T la somme des points obtenus, X le reste de la division de T par 2 et Y le reste de la division de T par 5.

- (a) Donner la loi conjointe de (X, Y).
- (b) Donner les lois marginales de X et de Y.
- (c) Les v.a.r. X et Y sont-elles indépendantes?

185. ** On considère n boîtes numérotées de 1 à n. La boîte k contient k boules numérotées de 1 à k. On choisit au hasard une boîte, puis une boule dans cette boîte. On note X le numéro de la boîte et Y le numéro de la boule.

- (a) Déterminer la loi du couple (X, Y), la loi de Y et $\mathbb{E}(Y)$.
- (b) Calculer P([X = Y]).

186. ** Soit (X, Y) un couple de v.a.r. à valeurs dans \mathbb{N}^2 tel que:

$$P([X=j]\cap [Y=k]) = \frac{(j+k)\lambda^{j+k}}{e\; j!\; k!}$$

- (a) Déterminer λ puis trouver les lois de X et de Y. Les v.a.r. X et Y sont-elles indépendantes?
- (b) Calculer $\mathbb{E}(2^{X+Y})$.

187. * Soient X et Y deux v.a.r. indépendantes vérifiant, pour tout $n \in \mathbb{N}$:

$$P([X = n]) = P([Y = n]) = \frac{1 + a^n}{4(n!)}$$

- (a) Déterminer a, calculer $\mathbb{E}(X)$ et V(X).
- (b) Déterminer la loi de S = X + Y.

188. * On pose, pour tout $(m,n) \in \mathbb{N}^2$, $p_{n,m} = \frac{e^{-1}}{2^{m+1} n!}$.

- (a) Montrer que l'on peut définir ainsi la loi d'un couple (X,Y).
- (b) Déterminer les lois marginales. Les v.a.r. X et Y sont-elles indépendantes?
- (c) Calculer l'espérance et la variance de X et de Y.

189. * On pose, pour tout $(m,n) \in \mathbb{N}^{*2}$, $p_{n,m} = \frac{1}{2^{n-1}3^m}$.

- (a) Montrer que $(p_{n,m})_{(n,m)\in\mathbb{N}^{*2}}$ définit une probabilité Π .
- (b) Déterminer les lois marginales d'un couple (X,Y) de v.a.r. admettant Π comme probabilité.
- (c) Identifier la loi de X (resp. la loi de Y) et donner la valeur de $\mathbb{E}(X)$ et de V(X). (resp. de $\mathbb{E}(Y)$ et de V(Y)).

CHAPITRE 6 Exercices

190. ** Soient X et Y deux v.a.r. indépendantes de lois respectives binomiales $\mathcal{B}(n,1/2)$ et $\mathcal{B}(m,1/2)$. Calculer P([X=Y]).

- 191. ** Soient X et Y deux v.a.r. indépendantes de même loi géométrique $\mathcal{G}(p)$.
- (a) Déterminer la loi de Z = X/Y.
- (b) Calculer $\mathbb{E}(Z)$ et montrer que $\mathbb{E}(Z) > 1$.
- 192. ** Une urne contient n boules noires indiscernables et 2 boules rouges numérotées 1 et 2. L'expérience consiste à tirer n+2 fois une boule sans remise. On note:
- N_1 la v.a.r. égale au rang de tirage de la première boule rouge;
- N_2 la v.a.r. égale au rang de tirage de la deuxième boule rouge;
- R_1 la v.a.r. égale au rang de tirage de la boule rouge numéro 1;
- R_2 la v.a.r. égale au rang de tirage de la boule rouge numéro 2.
- (a) Trouver la loi du couple (R_1, R_2) . En déduire les lois des v.a.r. R_1 et R_2 .
- (b) Trouver la loi du couple (N_1, N_2) . En déduire les lois des v.a.r. N_1 et $N_2 N_1$, puis les espérances $\mathbb{E}(N_1)$ et $\mathbb{E}(N_2)$.
- 193. * Soient X et Y deux v.a.r. indépendantes. Trouver la loi conditionnelle de X sachant [X+Y=k] dans les deux cas suivants:
- (a) X suit la loi binomiale $\mathcal{B}(n,p)$ et Y suit la loi binomiale $\mathcal{B}(m,p)$;
- (b) X suit la loi de Poisson $\mathcal{P}(\lambda)$ et Y suit la loi de Poisson $\mathcal{P}(\mu)$.
- 194. ** Soit X une v.a.r. de loi binomiale $\mathcal{B}(n,p)$ et Y une v.a.r. à valeurs dans \mathbb{N} telle que la loi conditionnelle de Y sachant [X=k] est la loi binomiale $\mathcal{B}(k,p')$. Déterminer la loi de Y.
- 195. ** Soient X et Y deux v.a.r. à valeurs dans IN telles que la loi conditionnelle de X sachant (Y = n) est l'équiprobabilité sur [0, n].
- (a) Exprimer la loi du couple (X, Y) en fonction de la loi de Y;
- (b) Montrer que $P([X \le Y]) = 1$.
- (c) Soit $a \in]0,1[$. On suppose que $P([Y=n])=(1-a)^2$ (n+1) a^n . Déterminer la loi de X, puis celle de Y-X.
- **196.** ** Soit $(a, b, c) \in]0, 1[^3$ vérifiant a + b + c = 1 et soit $(\alpha, \beta) \in]0, 1[^2$ vérifiant $\alpha + \beta = 1$. On pose $p_{0,0} = \alpha + \beta a$ et pour $(n, m) \neq (0, 0), p_{n,m} = \beta a C_{n+m}^n b^n c^m$.
- (a) Vérifier que $(p_{n,m})_{(n,m)\in\mathbb{N}^2}$ définit la loi de probabilité d'un couple (X,Y).
- (b) Déterminer les lois marginales de X et de Y, les espérances et variances de X et de Y.
- (c) Déterminer la loi conditionnelle de Y sachant [X = 0], puis sachant [X = n].
 - 197. * Soient X et Y deux v.a.r. indépendantes de même loi de Bernoulli $\mathcal{B}(p)$.
- (a) Quelle est la loi de X + Y? de X Y?
- (b) Les v.a.r. X + Y et X Y peuvent-elles être indépendantes?
- 198. * Soient X et Y deux v.a.r. de loi de Bernoulli. Montrer que cov(X,Y) = 0 si et seulement si X et Y sont indépendantes.

Probabilités C.Hassenforder

199. ** Soient X et Y deux v.a.r. d'ordre 2. On pose S = X + Y et D = X - Y.

- (a) Montrer que si S et D sont indépendantes, alors V(S) = V(D).
- (b) On suppose que X et Y sont indépendantes de même loi, l'équiprobabilité sur [1,3].
 - (α) Montrer que V(X) = V(Y).
 - (β) Déterminer les lois de S et D. Les v.a.r. S et D sont-elles indépendantes?
- **200.** *** Soient $X_0, X_1, ..., X_{2n-1}, 2n$ v.a.r. indépendantes de même loi de Bernoulli $\mathcal{B}(1/2)$. On pose, pour $0 \le m \le n-1, Y_m = X_{2m} + X_{2m+1}$ et pour k=0,1,2, on désigne par N_k le nombre de v.a.r. Y_m égales à k.
- (a) Déterminer la loi de N_0 .
- (b) Déterminer la loi du couple (N_0, N_2) .
- **201.** *** Soit (X_n) une suite de v.a.r. indépendantes de même loi de Bernoulli $\mathcal{B}(p)$ et soit $Y_n = X_n \ X_{n+1}$. On pose $S_n = \sum_{i=1}^n X_i$ et $T_n = \sum_{i=1}^n Y_i$. Calculer $\mathbb{E}(S_n)$, $\mathbb{E}(T_n)$, $V(S_n)$, $V(T_n)$ et $\mathrm{cov}(S_n, T_n)$.
- **202.** ** Soit (X_n) une suite de v.a.r. indépendantes qui vérifient $P([X_n=-1])=P([X_n=1])=1/2$. On définit une suite (Y_n) par $Y_1=X_1$ et $Y_n=\alpha Y_{n-1}+X_n$.
- (a) Exprimer Y_n en fonction de $X_1, X_2,..., X_n$.
- (b) Calculer $\mathbb{E}(Y_n)$, $V(Y_n)$ puis $\text{cov}(Y_n, Y_{n+m})$.
- **203.** * Soit X une v.a.r. suivant la loi de Bernoulli $\mathcal{B}(p)$ et Y une v.a.r. suivant la loi de Poisson $\mathcal{P}(\lambda)$. On suppose les v.a.r. X et Y indépendantes et on pose Z = XY.
- (a) Calculer $\mathbb{E}(Z)$.
- (b) Déterminer la loi de Z, puis calculer sa variance.
- **204.** *** Soient $X_1, X_2,..., X_n, n$ v.a.r. discrètes indépendantes de même loi, à valeurs dans [1, k]. On pose, pour tout $j \in [1, k], p_j = P([X_i = j])$.

Soit X la v.a.r. égale au nombre de v.a.r. X_i telles que $X_i = 1$ et Y la v.a.r. égale au nombre de v.a.r. X_i telles que $X_i = 2$.

Calculer le coefficient de corrélation $\rho(X,Y)$.

- **205.** ** Soient X et Y deux v.a.r. discrètes telles que $\mathbb{E}(X) = \mathbb{E}(Y) = m$; $V(X) = \sigma_1^2$; $V(Y) = \sigma_2^2$; $V(Y) = \sigma_2^2$; $V(Y) = \mu$ et $V(X Y) \neq 0$. On pose Z = aX + bY. Déterminer A et A pour que A pour que A et A pour que A pour que
- **206.** ** On considère 3 urnes contenant chacune n boules numérotées de 1 à n. On tire une boule dans chaque urne. Les v.a.r. X, Y et Z représentent les 3 numéros tirés.
- (a) Calculer P([Z = X + Y]).
- (b) Déterminer cov(X, Y).
- **207.** ** Soient X et Y deux v.a.r. indépendantes à valeurs dans \mathbb{N} , X suivant la loi géométrique $\mathcal{G}(p)$. Soit Z la v.a.r. telle que Z = X Y si X > Y et Z = 0 sinon.
- Exprimer la loi de Z en fonction de celle de Y et montrer qu'elle ne dépend que de $\alpha = \mathbb{E}((1-p)^Y)$.
- **208.** ** Soient X et Y deux v.a.r. indépendantes, X suivant la loi géométrique $\mathcal{G}(p)$ et Y suivant la loi de Poisson $\mathcal{P}(\lambda)$. Soit Z la v.a.r. telle que Z=0 si X=0 et Z=Y si X=1. Calculer la loi de Z, $g_Z(t)$, $\mathrm{IE}(Z)$, V(Z) et P([X=1]/[Z=0]).

CHAPITRE 6 Exercices

209. ** Soient X_1 et X_2 deux v.a.r. indépendantes de même loi telles que, pour $k \in \mathbb{N}, P([X_1 = k]) = P([X_2 = k]) = \frac{1}{2^{k+1}}$.

Déterminer, à l'aide de la fonction de répartition, la loi de $X = \sup(X_1, X_2)$ et calculer $\mathbb{E}(X)$.

- **210.** ** Soit X une v.a.r. suivant la loi géométrique $\mathcal{G}(p)$ et soit $n \in \mathbb{N}$.
- (a) Déterminer les lois suivies par les v.a.r. $Y = \max(n, X)$ et $Z = \min(n, X)$.
- (b) Soit T une v.a.r. indépendante de X suivant aussi la loi géométrique $\mathcal{G}(p)$. Déterminer les lois suivies par X+T, $\max(X,T)$ et $\min(X,T)$.
 - **211.** ** Soient X et Y deux v.a.r. indépendantes de même loi, à valeurs dans \mathbb{N} .
- (a) On suppose que, pour tout $n \in \mathbb{N}$, $P([X=n]) = P([Y=n]) = pq^n$ où $p \in]0,1[$ et q=1-p. Montrer qu'alors les v.a.r. $V = \inf(X,Y)$ et W = X Y sont indépendantes.
- (b) Réciproquement, on suppose que, pour tout $n \in \mathbb{N}$, $P([X = n]) \neq 0$ et que les v.a.r. $V = \inf(X, Y)$ et W = X Y sont indépendantes. Déterminer les lois de X et de Y en fonction de $r = \frac{P([W=1])}{P([W=0])}$. (on calculera de deux façons différentes le rapport $\frac{P([X=n+1]\cap [Y=n])}{P([X=n]\cap [Y=n])}$ pour $n \in \mathbb{N}$).