L	ectur	e 17	Sherali-A	tdams	cont.			Oct	29
_		ax-S t: Cn	AT IF formula s ×1,	λ F:	= C, n	C2 N	1 Cm c	00 0	
(joal	: Fi	ind assign	ment claus	x e 80 ses.	,13° m	aximîzir	ng the	
to	r cla	ause	C = V x	jet	x; le-	t C	= 2 x;	+ 2 (1 jet	(j×-1
	× 2 i=	- C °	Linear Pi	ogram	ma	LP F x Z (i=1	Relaxat C°	ion	
£. 2	_ (~ C; > (: i \ ;	=1m	5.+	- ~	° > C°	A!	=1m
		= x'j =		-1···n		0 =	1≥ j×	Ąj:	=1v
		< c; <		:1m		0 =	$C_i \leq I$	A!:	=1m
	×ċ'n	c; ∈ 7	Ž			×57 €	° C Z		
		\uparrow				1			
			Max-SAT to solve			exac	represe tly be solve		

Today we focus on finding the integral hull using the SA hierarchy. Prelims

ex) C >

• If $\overrightarrow{y_1}, \cdots, \overrightarrow{y_m} \in \mathbb{R}^n$ then a convex combination of the yis is any point of the form Σ α; ÿ; α; >0, Σ α; =1

o If CCR then conv(e) SR is all convex combos of points in e.

e red points

conv(e) blue points

· We're given polytope PC [0,1]" i.e. the constraints O=x;=1 are in P. . We want to describe $hull_{\mathbb{Z}}(P)$. · Since $P \subseteq [0,1]$, every point in hull_(P) can be written as $d \in hull_{\mathbb{Z}}(P) \implies d = \sum_{x \in \{0,1\}^n} \lambda_x x, \lambda_x \ge 0$ · Equivalently: & chull Z(P) represents a probability distribution of XEPn {0,13" • For each of let $\mu^{(d)}: \{0,1\}^n \rightarrow \mathbb{R}$ s.t. so $\mu^{(\alpha)}(x) = x$ so $\mu^{(\alpha)}$ is a prob. dist. over $\{0,1\}^n \cap P$ Observation If cre can test if LER represents a valid prob. dist. over Pn 20,13° then Le hull Z(P)! So: how do we test if a represents a probability distribution? $\mu: \{0,1\}^n \rightarrow \mathbb{R}$ $\mu(x) \geq 0$ and $\Sigma \mu(x) = 1$

Sufficient to show µ is dist over {0,137. We modify this by adding more tests to verify that we are in P. Not for EO,13° OP Specific: Test the marginal distributions of M. If SC[n] then µs: {0,15° → R is defined by $\mu_s(\alpha) := \sum_{x \in \{0,1\}^n} \mu(x)$. XNS =d Cif µ is a real prob. dist then Ms (d) = Pr [ties: x;=d;]) Lemma $\mu: 20,15^n \rightarrow \mathbb{R}$ is a prob. dist on $20,15^n$ 45CT C[n], 4xe 80,13 (1) $\mu_s(a) = \sum_{\beta \in S_0, \Im} \mu_T(\beta)$ marginals agree Brs = X (2) µ5(d) >0 non-regativity normalizing explains (3) $\mu_{0} = 1$

(E) Define
$$\Pr\left[x=y\right] := \mu(y)$$

(3)

(1)

 $1 = \mu_{\mathcal{D}} = \sum_{x \in 20,15^n} \mu(x)$

Answer: Where do non-regative juntas come from?

 $y \in \{0,13^s\}$, let $S = Tull$ so that

 $Y^i = \{0\}$

Pr $\left[x\}_{x = y} = \Pr\left[T \times_i T (1-x_i) = 1\right]$
 $x \sim \mu$

Non-regative juntas are random variables that describe the marginals of probability distributions over hull $_{z}(P)$.

This lemma is going to give a (somewhat crazy)

LP for $\left[0,17\right]$.

For each $S \subseteq [n]$ let $y_s \in \mathbb{R}$ be a variable for S .

Intuitively: $y_s = \mu_s(1) = \Pr\left[x_i = 1 \text{ vies}\right]$
 μ ies

Pf (=>) Easy

Define an LP on
$$\{y_s\}$$
 $\{S \subseteq \{n\}\}$ $\{y_s\}$ with constraints $\{a\}$ $\{y_s\}$ $\{a\}$ $\{$

How to include constraints from P? Write P as $\begin{cases}
a_1 \cdot x \leq b_1 \\
a_2 \cdot x \leq b_2
\end{cases}$ $0 \leq x \leq 1$ Let Q = \{b, -a, x >0, \cdots, bm-amx >0\} \\ 2 | >0\} Defn The degree -d Sherali-Adams tightening of Q is obtained by the following two steps (1) For each inequality 9; >0 in a add 5s, t 9; 20 = 5s, t = TT x; TT (1-x;) to Q where |SUT| =d, SnT=0 (2) For every inequality pizo created in the last step, linearize pi by - Replace each x; term with x; - For every monomial TT x;, replace it with ys. Lemma (Next class) The degree - n Sherali-Adams tightening is exactly hull Z(P).

exj Max-SAT

Let
$$F = (x_1 \vee x_2) \wedge (x_1 \vee \overline{x_2}) \wedge (\overline{x_1})$$

2P Relaxation

Constraints: $x_1 + x_2 \gg x_3$
 $x_1 + (1-x_2) \gg x_4$
 $(1-x_1) \gg x_5$

The degree-2 SA tightening would add

 $y_{ii3} \gg 0$ $(1-y_{ii3}) \gg 0$ $\forall i,j$ $i \neq j$
 $y_i(1-y_j) \gg 0$ $y_i y_j \gg 0$
 $y_i'' - y_{ii,j} \gg 0$ $y_i y_j \gg 0$
 $y_i'' - y_{ii,j} \gg 0$ $y_{ii} y_j \gg 0$

Then, we multiply each constraint in the LP by a non-reg junta and linearize

ex) $x_1 + x_2 \gg x_4 \longrightarrow x_i' (x_1 + x_2 - x_4) \gg 0$
 $(1-x_i') (x_1 + x_2 - x_4) \gg 0$
 $i \neq j$
 $x_i' \times j (x_1 + x_2 - x_4) \gg 0$
 $i \neq j$
 $x_i' \times j (x_1 + x_2 - x_4) \gg 0$
 $(1-x_i') (1-x_j') (x_1 + x_2 - x_4) \gg 0$

$$v m \begin{pmatrix} v \\ -d \end{pmatrix} = m n o (d)$$