Laboratorul 4

1. Un număr natural aleatoriu N (mai mic decât 64) este generat conform unei rețele Bayes în care nodurile sunt variabile aleatoare B_i care indică valoarea bitului de pe poziția $i, i = \overline{1,6}$, în reprezentarea binară a numărului N (numerotarea pozițiilor biților se face de la dreapta la stânga), cu următoarele probabilități:

B_1	$P(B_1 = \dots)$ 0.8	
1		
0	0,2	

B_2	$P(B_2 = B_1 = 1)$	$P(B_2 = B_1 = 0)$
1	0,9	0,6
0	0,1	0,4

B_3	$P(B_3 = \dots B_2 = 1, B_1 = 1)$	$P(B_3 = \dots B_2 = 1, B_1 = 0)$	$P(B_3 = \dots B_2 = 0, B_1 = 1)$	$P(B_3 = \dots B_2 = 0, B_1 = 0)$
1	0,6	0,2	0,9	0,4
0	0,4	0,8	0,1	0,6

B_4	$P(B_4 = B_3 = 1)$	$P(B_4 = B_3 = 0)$
1	0,3	$0,\!5$
0	0,7	0,5

B_5	$P(B_5 = B_3 = 1)$	$P(B_5 = B_3 = 0)$
1	0,5	0,8
0	0,5	0,2

B_6	$P(B_6 = \dots B_5 = 1, B_4 = 1)$	$P(B_6 = \dots B_5 = 1, B_4 = 0)$	$P(B_6 = \dots B_5 = 0, B_4 = 1)$	$P(B_6 = \dots B_5 = 0, B_4 = 0)$
1	0,5	0,3	$0,\!8$	$0,\!5$
0	0,5	0,7	0,2	0,5

- a) Simulați de $n \in \{1000, 2000, 3000\}$ ori valoarea numărului N. Afișați o histogramă a valorilor obținute.
 - b) Comparați rezultatele obținute cu cele teoretice pentru o valoare particulară a lui N. Exemplu:

$$P(N = 23) = P(B_6 = 0, B_5 = 1, B_4 = 0, B_3 = 1, B_2 = 1, B_1 = 1)$$

$$= P(B_6 = 0|B_5 = 1, B_4 = 0) \cdot P(B_5 = 1|B_3 = 1) \cdot P(B_4 = 0|B_3 = 1)$$

$$\cdot P(B_3 = 1|B_2 = 1, B_1 = 1) \cdot P(B_2 = 1|B_1 = 1) \cdot P(B_1 = 1)$$

$$= 0.7 \cdot 0.5 \cdot 0.7 \cdot 0.6 \cdot 0.9 \cdot 0.8 = 0.10584.$$

2. Un punct material se deplasează pe axa reală dintr-un nod spre un nod vecin, la fiecare pas, cu probabilitatea $p \in (0,1)$ la dreapta și cu probabilitea 1-p la stânga. Nodurile sunt centrate în numerele întregi, iar nodul inițial este 0:

- a) Simulați o astfel de deplasare cu $k \in \mathbb{N}^*$ pași, cu probabilitatea $p \in (0,1)$, și returnați pozițiile curente la fiecare pas.
- b) Simulați de $m \in \mathbb{N}^*$ ori o astfel de deplasare cu $k \in \mathbb{N}^*$ pași, cu probabilitatea $p \in (0,1)$, și afișați histograma pozițiilor finale.
- c) (Bonus) Estimați valoarea medie a numărului de pași succesivi la dreapta înaintea primului pas la stânga sau sfârșitului deplasării.

Temă: Rezolvați problema 2, a), b), pentru o deplasare pe un cerc cu $n \in \mathbb{N}^*$ noduri:

