HW3 solution¹ - Phys487 Spring 2015

Problem 5.18 (6 points)

(a) The general solution is $\psi = A \sin kx + B \cos kx$. From Griffiths 5.63 we have $A \sin ka = (e^{iKa} - \cos ka)B$. Therefore,

$$\psi = A \sin kx + \frac{A \sin ka}{e^{iKa} - \cos ka} \cos kx$$

$$= \frac{A}{e^{iKa} - \cos ka} \left[e^{iKa} \sin kx - \sin kx \cos ka + \cos kx \sin ka \right]$$

$$= C \left[\sin kx + e^{-iKa} \sin k(a - x) \right],$$

where $C = Ae^{iKa}/(e^{iKa} - \cos ka)$.

(b) If $z = ka = j\pi$, then $\sin ka = 0$ and Griffiths 5.64 implies that $\cos Ka = \cos ka = (-1)^j$. Therefore, $\sin Ka = 0$ and $e^{iKa} = \cos Ka + i\sin Ka = (-1)^j$. Using this in 5.62 gives

$$kA - (-1)^{j}k \left[A(-1)^{j} - 0\right] = \frac{2m\alpha}{\hbar^{2}}B$$

Therefore B=0 and $\psi=A\sin kx$, this is, ψ is zero at each delta spike.

Problem 5.20 (6 points)

The positive-energy solution is the same:

$$\cos Ka = \cos ka + \frac{m\alpha}{\hbar^2 k} \sin ka \tag{1}$$

with $\alpha < 0, k = \sqrt{2mE}/\hbar, E > 0$ and $K = 2\pi n/Na$ (with n integer).

For the negative-energy solution, the wavevector is now defined as $\tilde{k} = \sqrt{-2mE}/\hbar$, since E < 0 and \tilde{k} has to be real. Notice that $\tilde{k} = ik \Rightarrow k = -i\tilde{k}$. Then, we can substitute k into Eq. (1)

$$\cos Ka = \cos(-i\tilde{k}a) + \frac{m\alpha}{\hbar^2(-i\tilde{k})}\sin(-i\tilde{k}a)$$

$$= \cosh \tilde{k}a + \frac{m\alpha}{\hbar^2\tilde{k}}\sinh \tilde{k}a$$
(2)

where we have used that $\cos(ix) = \cosh x$ and $\sin(ix) = i \sinh x$.

In order to plot Eqs. (1) and (2) together, we define z = ka > 0 for the positive-energy solution, $\cos ka + \beta \sin z/z$, and $z = -\tilde{k}a < 0$ for the negative-energy solution, $\cosh z + \beta \sinh z/z$. Therefore

¹Grader: David Chen, dchen30@illinois.edu

The first band is partly positive and partly negative and contains N states because $\cos Ka = \cos 2\pi n/N$.

Problem 5.25 (3 points)

- For N=1, the ball can go in any of the d baskets, so d ways.
- For N = 2, d + d(d-1)/2 = d(d+1)/2 ways, because
 - 2 balls in the same basket: d
 - First ball in any of the d baskets; second ball in any of the d-1 baskets left. Balls are indistinguishable, then we divide by 2. So, d(d-1)/2 ways.
- For N = 3, d + d(d-1) + d(d-1)(d-2)/3! = d(d+1)(d+2)/3!, because
 - 3 balls in the same basket: d
 - -2 in one basket, 1 in another: d(d-1)
 - each ball in a different basket: d(d-1)(d-2)/3!
- For N = 4, d(d+1)(d+2)(d+3)/4!, because
 - 4 balls in the same basket: d
 - -3 in one, 1 in another: d(d-1)
 - -2 in one, 2 in another: d(d-1)/2
 - 2 in one, 1 each in another: d(d-1)(d-2)/2
 - each ball in a different basket: d(d-1)(d-2)(d-3)/4!

The general formula seems to be $\binom{d+N-1}{N}$. The validity of this formula has to be proved by induction. However, the problem was graded up to this point.

Problem 5.29 (12 points)

- (a) The Bose-Einstein distribution $1/(e^{(\epsilon-\mu)/k_BT}-1)>0$ has to be positive. Therefore $e^{(\epsilon-\mu)/k_BT}>1$ and then $\epsilon>\mu$ for all allowed energies ϵ .
- (b) The ground energy of a free particle is (approximately) zero. Therefore, part (a) implies that $\mu \leq 0$. Griffiths 5.108 is

$$\frac{N}{V} = \frac{1}{2\pi^2} \int_0^\infty \frac{k^2}{e^{(\hbar^2 k^2/2m - \mu)/k_B T} - 1} dk.$$

In order to hold N/V constant as T decreases, $\hbar^2 k^2/2m - \mu$ must also decrease, which implies that μ must increase (up to zero, since $\mu \leq 0$).

(c) Under the change of variables $x = \hbar^2 k^2 / 2mk_B T$, the equation in part (b) with $\mu = 0$ becomes

$$\frac{N}{V} = \frac{1}{4\pi^2} \left(\frac{2mk_BT}{\hbar^2}\right)^{3/2} \Gamma(3/2)\zeta(3/2)$$

where we have used $\int_0^\infty x^{1/2}/(e^x-1)dx = \Gamma(3/2)\zeta(3/2)$. Using that $\Gamma(3/2) = \sqrt{\pi}/2$ and $\zeta(3/2) \approx 2.6$, we conclude that

$$T_c = \frac{2\pi\hbar^2}{mk_B} \left(\frac{N}{2.6V}\right)^{2/3}$$
(d)
$$\frac{N}{V} = \frac{\text{mass/volume}}{\text{mass/atom}} = \frac{0.15 \cdot 10^3 \text{ kg/m}^3}{4(1.67 \cdot 10^{-27} \text{ kg})} = 2.2 \cdot 10^{28} \text{ m}^{-3}$$

$$T_c = \frac{2\pi (1.05 \cdot 10^{-34} \text{ J} \cdot s)^2}{4(1.67 \cdot 10^{-27} \text{ kg})(1.38 \cdot 10^{-23} \text{ J/K})} \left(\frac{2.2 \cdot 10^{28}}{2.61 \text{ m}^3}\right)^{2/3} = 3.1 \text{ K}$$

Problem 5.33 (3 points)

- (a) Each particle has 3 possible states, therefore, there are $3 \times 3 \times 3 = 27$ different three-particle states.
- (b) There are 10 possible combinations: aaa, bbb, ccc, aab, aac, bba, bbc, cca, ccb, abc.
- (c) Only one state is allowed: abc.

Problem 5.37 (9 points)

(a) The energy of a 1D harmonic oscillator is $\epsilon_{1D} = \hbar\omega(n+1/2)$. In 3D, the problem is separable in each coordinate, then the total energy is $\epsilon_{3D} = \hbar\omega(n_x + n_y + n_z + 3/2)$.

The total particle number is given by

$$N = \sum_{n_x, n_y, n_z = 0}^{\infty} e^{-(\epsilon_{3D} - \mu)/k_B T} = e^{(\mu - 3\hbar\omega/2)/k_B T} \left(\sum_{n}^{\infty} e^{-n\hbar\omega/k_B T}\right)^3 = e^{(\mu - 3\hbar\omega/2)/k_B T} \left(\frac{1}{1 - e^{-\hbar\omega/k_B T}}\right)^3$$

Therefore, $\mu = k_B T [\ln N + 3\hbar\omega/(2k_B T) + 3\ln(1 - e^{-\hbar\omega/k_B T})]$

The total energy is given by

$$E = \sum_{n_x, n_y, n_z = 0}^{\infty} \epsilon_{3D} e^{-(\epsilon_{3D} - \mu)/k_B T}$$

$$= \hbar \omega e^{(\mu - 3\hbar \omega/2)/k_B T} \sum_{n_x, n_y, n_z = 0}^{\infty} (n_x + n_y + n_z + 3/2) x^{n_x + n_y + n_z}$$

where $x=e^{-\hbar\omega/k_BT}$. The sum was evaluated using Mathematica: Sum[(nx + ny + nz + 3/2) x \wedge (nx + ny + nz), {nx, 0, ∞ }, {ny, 0, ∞ }, {nz, 0, ∞ }].

Then, using that $N = e^{(\mu - 3\hbar\omega/2)/k_BT}(1-x)^{-3}$, we conclude that $E = \frac{3}{2}N\hbar\omega\frac{1+e^{-\hbar\omega/k_BT}}{1-e^{-\hbar\omega/k_BT}}$.

- (b) When $k_BT \ll \hbar\omega$ (low temperature), $e^{-\hbar\omega/k_BT} \approx 0$, and therefore, $E \approx \frac{3}{2}N\hbar\omega$. This result corresponds to $n_x, n_y, n_z \approx 0$ for all particles.
- (c) When $k_BT \gg \hbar \omega$ (high temperature), we expand $e^{-\hbar \omega/k_BT} \approx 1 \hbar \omega/k_BT$, and therefore, $E \approx 3Nk_BT$. This result agrees with the equipartition theorem for a classical gas: each degree of freedom contributes with $k_BT/2$. In this case, there are 6 degrees of freedom (3 kinetic and 3 potential) and N particles.

Problem 2 (3 points)

The hamiltonian is

$$H = -\sum_{n} \left[t_1 |n\rangle\langle n+1| + t_2 |n\rangle\langle n+2| \right] + \text{h.c.}$$

Using $|n\rangle = \sum_{k} e^{ikna} |k\rangle$, the hamiltonian becomes

$$H = -\sum_{n,k,k'} e^{i(k-k')na} \left[t_1 e^{-ik'a} + t_2 e^{-i2k'a} \right] |k\rangle\langle k'| + \text{h.c.}$$

but $\sum_{n} e^{i(k-k')na} = \delta_{k,k'}$, then

$$H = -\sum_{k} \left[t_1 e^{-ika} + t_2 e^{-i2ka} \right] |k\rangle\langle k| + \text{h.c.}$$
$$= -\sum_{k} \left[2t_1 \cos(ka) + 2t_2 \cos(2ka) \right] |k\rangle\langle k|$$

Figure 1: $t_1 = 5$ and $t_2 = 2$