Introduction to Network Analysis Workshop

Basak Taraktas

Bogazici University

March 4, 2024

Northwestwern University

Graph theory

Graph theory

Figure: Euler

Seven Bridges of Konigsberg Problem

Figure: Bridges of Konigsberg

 $https://en.wikipedia.org/wiki/Seven_Bridges_of_K\%C3\%\\B6nigsberg$

Why care about the bridge problem in social sciences?

- Structure of relationships (power, hierarchy, institutional structure...)
- Devising a strategy to navigate the institutional structure
- Network effects (homophily, transitivity, diffusion, cascade...)

Dynamics of political polarization (2007) ¹

The first paradox is the simultaneous absence and presence of attitude polarization; the fact that global attitude polarization is relatively rare, even though pundits describe it as common.

The second paradox is the simultaneous presence and absence of social polarization; the fact that while individuals experience attitude homogeneity in their interpersonal networks, their networks are characterized by attitude heterogeneity.

¹Delia Baldassarri and Peter Bearman, Dynamics of Political Polarization, American Sociological Review 72, no. 5 (2007): 784–811.

Dynamics of Political Polarization

What is the underlying mechanism?

"In general, people interact with people who are similar to them. There are strong pressures toward *homophily* in social relations."

"At the same time, it happens that (...) Democrats know Republicans and rich people fall in love with not-so-wealthy ones. (...) People are also in touch with people different from them." (heterophily (Baldassarri & Bearman, 2007))

The Snowball effect

https://one.npr.org/i/972648402:972648404

Modeling in social sciences

What are networks?

Statistical analysis

- Large samples
- Unit homogeneity
- Statistical independence

- A few or n individuals

Modeling in social sciences

Statistical analysis

- Large samples
- Unit homogeneity
- Statistical independence

Game theory

- Interdependent decision making
- A few or n individuals

What about network analysis?

Network analysis studies *interdependencies* –relational data capturing relationships and flows between entities, which can be people, groups, organizations, etc.

Network analysis encompasses both empirical studies based on real-world data and theoretical inquiries with abstract network models.

Assumptions of network analysis

- Embeddedness: the environment structures behavior, preferences, beliefs, and perceptions. The environment, in turn, is structured by actors and patterns of relationships
- **Interdependence:** one's behavior is affected by the behavior of those who are in one's entourage (e.g., taking up smoking, logic of appropriateness...)
- \Rightarrow Network analysis studies dynamic behavioral data!

What are networks?

An informal definition

"A network is a collection of points joined together in pairs by lines." (Newman, 2010).

The formal definition

$$G = (V, E)$$

where G represents a graph (network), V a set of vertices and E edges between vertices with

$$V = \{v_1, v_2, \dots, v_n\}$$

Graph theory

What are networks?

An informal definition

"A network is a collection of points joined together in pairs by lines." (Newman, 2010).

The formal definition

$$G = (V, E)$$

where G represents a graph (network), V a set of vertices and E edges between vertices with

$$V = \{v_1, v_2, \dots, v_n\}$$

Network elements

- Nodes (vertex): entities
- Edges (ties): relationships
 - Directed
 - Undirected

Figure: (Elliott et al., 2014)

Focus of your research

Network evolution

Networks as persuasion

Networks as art

Questions of network analysis

Network as DV

How does a particular *structure of relationship* come about and evolve? (e.g., segregation, cooperation, coalition formation)

Network as IV

What *role* do networks play in the observed outcome? (e.g., socialization, quitting smoking, finding jobs)

Figure: (Elliott et al., 2014)

- Unit of analysis: dyads, triads, subgroups of networks, or an entire network
- Data: observational data, archives...
- Data size: moderate (e.g., classroom), large (e.g., CTA stops in Chicago), big data (e.g., social media)
- Data format: adjacency matrices

- Unit of analysis: dyads, triads, subgroups of networks, or an entire network
- Data: observational data, archives...
- Data size: moderate (e.g., classroom), large (e.g., CTA stops in Chicago), big data (e.g., social media)
- Data format: adjacency matrices

- Unit of analysis: dyads, triads, subgroups of networks, or an entire network
- **Data:** observational data, archives...
- Data size: moderate (e.g., classroom), large (e.g., CTA stops in Chicago), big data (e.g., social media)
- Data format: adjacency matrices

- Unit of analysis: dyads, triads, subgroups of networks, or an entire network
- Data: observational data, archives...
- Data size: moderate (e.g., classroom), large (e.g., CTA stops in Chicago), big data (e.g., social media)
- Data format: adjacency matrices

What does relational data look like?

What does relational data look like?

Adjacency Matrix Friendship

	Ed	Sue	Jim	Bob
Ed	-	1	0	0
Sue	0	-	1	1
Jim	0	0	-	0
Bob	1	0	0	

The adjacency matrix is an algebraic representation of the graph structure.

Network of n nodes as an $n \times n$ matrix

$$A = [A_{ij}]$$

where

$$A_{ij} = \begin{cases} 1 & \text{if node } i \text{ is connected to node } j; \\ 0 & \text{otherwise} \end{cases}$$

Let's build a network

https:

//github.com/enaline/northwestern-network-analysis-workshop

Degree & average degree

Degree

Graph theory

The number of edges incident upon a node.

- Undirected network: degree = number of connections a node has
- Directed network: in-degree= number of incoming edges & out-degree= number of outgoing edges

Average degree

Sum of all degrees / Total number of vertices

$$\bar{k} = \frac{\sum_{i=1}^{n} k_i}{n}$$

with k representing degree

Density

Density

The ratio of observed edges to all possible edges. Often used to make an argument about power and patterns of connections. A density score close to 0 implies a sparse network.

Undirected graphs

$$density = \frac{2m}{n(n-1)}$$

Directed graphs

$$density = \frac{m}{n(n-1)}$$

Basic node-level metrics

Degree centrality

Centrality is calculated based on the degree of a node.

Number of edges connected to the node Degree centrality = Total number of nodes -1

 \Rightarrow Measure of prestige and prominence.

Centrality (cont'd)

Eigenvector centrality

Centrality is defined by the number of important neighbors a node has. \Rightarrow Great for undirected networks!

$$x_i = \frac{1}{\lambda} \sum_{k} a_{k,i} \, x_k$$

where λ is the eigenvector with the largest eigenvalue

Centrality

Figure 7.4: An undireced graph with degree centrality indicated by node color.

Centrality (cont'd)

degree centrality

Mag N	lag	Mag	Red	Blue	Gray	Tan															
6	6	6	3	3	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

eigenvector centrality

 Mag Mag Mag Red
 Blue Gray
 Tan
 Tan

Betweenness centrality

The extent to which a vertex lies on paths between other vertices. \Leftrightarrow fraction of the total number of geodesic paths between two nodes. Bridging (e.g., Brokers)!

Betweenness centrality(v) =
$$\sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where:

- v is a vertex in the graph,
- σ_{st} is the total number of shortest paths from node s to node t,
- $\sigma_{st}(v)$ is the number of those paths that pass through vertex v.

References I

- Baldassarri, D., & Bearman, P. (2007). Dynamics of political polarization. American Sociological Review, 72(5), 784–811. https://doi.org/10.1177/000312240707200507
- Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. American Economic Review, 104(10), 3115-53.https://doi.org/10.1257/aer.104.10.3115
- Jackson, M. (2009). Networks and economic behavior. Annual Review of Economics, 1, 489–513. https: //doi.org/10.1146/annurev.economics.050708.143238
- Newman, M. E. J. (2010). Networks: An introduction. Oxford Univ. Press.

THANK YOU FOR LISTENING!

Contact information

Basak TARAKTAS

basak.taraktas@boun.edu.tr basakt@sas.upenn.edu https://basaktaraktas.com