PROJECT OF AI FOR CYBERSECURITY

Giacomo Maldarella

Table of Content

Goal and specifics

Data Acquisition

Data Exploration

Preprocessing

Processing

Result Summary

Acknowledgments

Goal and specifics

Goal: Develop a machine learning model to **predict salaries** in the cybersecurity industry based on various features, enhancing accuracy and identifying key factors influencing salary variations.

Specifications:

1. Data Exploration

Visualize numerical and categorical features Analyze relationships between features and salary Explore trends over time and regional disparities

2. Data Preprocessing

Data cleaning: remove duplicates, handle missing values Encoding: OneHotEncoder and OrdinalEncoder Scaling: Standard scaling for numerical features Outlier detection: Apply log transformation to target

3. Model Development and Validation

Models used:

Linear Regression Random Forest XGBoost

4. Feature selection using:

Recursive Feature Elimination (RFE)

5. Explainable Artificial Intelligence

SHAP (SHapley Additive Explanations) **LIME** (Local Interpretable Model-agnostic Explanations)

Key Metric Goals:

Evaluate models using **K-Fold Cross Validation** Focus on improving:

Mean Absolute Error (MAE)

Root Mean Squared Error (RMSE)

R-Squared (R²)

Hyperparameter tuning with RandomSearchCV

Data Acquisition

Dataset

						salaries					
1	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
2	2024	МІ	FT	Security Consultant	211000	USD	211000	US	0	US	М
3	2024	МІ	FT	Security Consultant	142000	USD	142000	US	0	US	М
4	2024	МІ	FT	Security Consultant	64417	GBP	80521	GB	0	GB	М
5	2024	МІ	FT	Security Consultant	52584	GBP	65730	GB	0	GB	М
6	2024	МІ	FT	Consultant	188400	USD	188400	US	0	US	М
7	2024	МІ	FT	Consultant	125600	USD	125600	US	0	US	М
8	2024	МІ	FT	Manager	246400	USD	246400	US	0	US	М
9	2024	МІ	FT	Manager	117300	USD	117300	US	0	US	М
10	2024	МІ	FT	Security Engineer	200200	USD	200200	US	0	US	М
					••	•					
22600	2020	SE	FT	Information Security Officer	35000	USD	35000	AR	100	AR	L
22601	2021	EN	FT	Application Security Engineer	65000	USD	65000	US	100	US	L
22602	2020	SE	FT	Information Security Specialist	170000	USD	170000	US	100	US	L
22603	2021	SE	FT	Application Security Engineer	135000	USD	135000	US	100	US	L
22604	2021	EN	FT	Cyber Security Analyst	100000	USD	100000	US	50	US	М
22605	2020	МІ	FT	Ethical Hacker	356000	GBP	456621	GB	100	GB	L
22606	2020	МІ	FT	Cyber Security Analyst	140000	AUD	96422	AU	50	AU	М
22607	2021	SE	FT	Information Security Manager	60000	GBP	82528	GB	50	GB	L
22608	2021	SE	FT	Penetration Testing Engineer	126000	USD	126000	US	100	US	L
22609	2021	МІ	FT	Information Security Analyst	42000	GBP	57769	GB	100	GB	L
22610	2021	MI	FT	Threat Intelligence Analyst	66310	USD	66310	US	0	US	L

Platform: Kaggle

Reason for Choosing This Dataset:

The dataset provides insights into the evolving landscape of cybersecurity roles, highlighting salary disparities based on experience, location, and job titles.

Dataset Description:

The dataset contains over **20,000 records** from various countries, with a strong prevalence of data from the United States.

It spans from **2020 to 2024**, making it highly recent and relevant to current industry trends.

The data includes both **continuous** and **categorical variables**.

Data Exploration

Objective:

Understand the dataset through visual and statistical analysis to identify patterns, correlations, and key insights that may influence salary predictions.

1. Visualizing Numerical Features

2. Visualizing Categorical Features

- 3. Relationship Between Categorical Features and Salary
- 4. Relationship Between Numerical Features and Salary
- 5. Salary Trends Over Time

Data Exploration

6. Average Salary for Different Cybersecurity Roles

7. Regional Salary Disparity

8. Remote work and salary

Data Preprocessing – Data Cleaning

Objective:

Ensure data quality by addressing duplicates, missing values, and high-cardinality features to improve model performance.

Duplicates Removal

Checking for Duplicates...

Number of duplicate rows: 9333

Duplicate rows removed.

Identified and removed duplicate records to ensure unique observations.

Handling Missing Values:

Missing values were imputed or dropped depending on their relevance to the analysis.

Reducing High Cardinality in Categorical Features:

- 1. For categorical columns with numerous unique values (e.g., employee_residence), only the top 4 most frequent categories were retained.
- 2. All remaining categories were grouped under "Other" to simplify the dataset and prevent overfitting.

Data Preprocessing - Encoding

Objective:

Convert categorical features into a numerical format suitable for machine learning models.

- **1.OneHotEncoder** Applied to features with a small number of unique values.
 - 1. Each unique category is represented as a binary column (0 or 1).
 - 2. Prevents losing valuable information from low-cardinality features without introducing bias.
- **2.OrdinalEncoder** Used for features with a logical order.
 - 1. This method assigns an integer to each category, preserving its rank or significance.
 - 2. helps manage high-cardinality features by avoiding an explosion of dimensions, keeping the dataset compact and manageable.

Data Preprocessing – Outlier detection and scaling

Objective:

Normalize the data to ensure models are not biased by extreme values and to bring numerical features to the same scale.

1. Outlier Detection (Log Transformation):

- 1. A log transformation was applied **only to the target variable** (salary_in_usd).
- 2. This helps reduce the skewness caused by extreme salary values, stabilizing model predictions.

2. Scaling Numerical Features:

- 1. StandardScaler was applied to work_year and remote_ratio.
- 2. These features have different ranges, and scaling ensures the model treats them equally during training.

Data Preprocessing – Pearson Correlation

Correlation Matrix for Numerical Features:

- A heatmap was generated to visualize correlations between numerical features.
- This helps identify relationships between independent variables.
- Correlation with Target (salary_in_usd):
 - A bar plot shows how each feature correlates with the target.
 - Positive correlations indicate features that increase with salary, while negative values suggest the opposite.
- Threshold for High Correlation:
 - Pairs of features with a correlation higher than **0.85** were flagged.
- Results:
- Features such as **salary_currency_USD** and **employee_residence_US** show the strongest positive correlation with salary_in_usd.
- No features had extreme correlations above the threshold, indicating no immediate need to drop significant columns.
- This analysis ensures model stability and avoids overfitting by reducing redundant data.

Data Processing

Overall processing

Linear Regression

Split dataset in $\leq 300 \text{K}$ and > 300 K Recursive Feature Elimination RandomSearch CV

Split dataset in $\leq 300 \text{K}$ and > 300 K RendomSearch CV

XAI

Data Processing – Linear Regression

Results Interpretation:

Visual Analysis (Scatter Plot):

- The red dashed line represents the ideal prediction (y = x).
- Most predictions cluster below the line, indicating the model tends to underestimate higher salaries.
- There are a few extreme outliers (salaries > 300k) poorly predicted by the model.

Performance Metrics (Bottom Panel):

- **MAE**: 44,758 USD (average error in salary prediction).
- RMSE: 61,631 USD (penalizes larger errors).
- R²: 0.11 (the model explains only **11% of variance**, indicating low performance).

Data Processing – Random Forest

1. General Trend:

1. The model captures some degree of salary variation, but not with high precision.

2. Deviations and Outliers:

- 1. For salaries above approximately \$300,000, predictions tend to flatten, suggesting **underestimation** of high salaries.
- 2. Outliers are present, particularly at higher salary ranges, where the model struggles to make accurate predictions.

3. Evaluation Metrics:

- 1. Mean Absolute Error (MAE): \$43,018
- 2. Root Mean Squared Error (RMSE): \$57,973
- 3. R² (R-Squared): 0.21 Indicates that only 21% of the variance in salaries is explained by the model. This is relatively low, showing room for improvement.

Data Processing – Random Forest split value

Results:

•Salaries ≤ \$300K:

- Model shows reasonable predictive capability with an R² of 0.22.
- Errors are distributed relatively consistently, but some underestimation is observed at higher salary levels.

•Salaries > \$300K:

- Model struggles significantly for high salaries, with an R² of -6.04.
- This suggests the need for more training data or different modeling approaches for extreme salaries.

Data Processing – Feature Selection

1. Random Forest Feature Importance

•How it Works:

Random Forest provides a built-in feature importance mechanism by calculating how much each feature decreases the impurity (Gini or variance).

•Results:

- The most important features were:
 - oe__job_title ohe__salary_currency_USDoe__experience_level
- Other factors, such as company size and location, had lower importance.

2. Permutation Importance

3. Recursive Feature Elimination (RFE)

•How it Works:

 RFE recursively removes the least important features by training the model iteratively. It continues until the desired number of features is selected.

•Results:

- The top 10 features selected through RFE align with the results of Feature Importance and Permutation Importance.
- This method reinforced the significance of job title, salary currency, and experience level.

Data Processing – RandomSearch CV

Hyperparameters Explained:

- **1.n_estimators** Number of trees in the forest.
 - 1. Values tested: [100, 200, 300, 400]
 - 2. Best Value: 300
- **2.max_depth** Maximum depth of the individual decision trees. (Prevent overfitting)
 - 1. Values tested: [10, 20, 30, 50, None]
 - 2. Best Value: 30
- **3.min_samples_split** Minimum number of samples required to split an internal node.
 - 1. Values tested: [2, 5, 10]
 - 2. Best Value: 2 (aggressive splits to prevent underfitting)
- **4.min_samples_leaf** Minimum number of samples required to be in a leaf node.
 - 1. Values tested: [1, 2, 4]
 - 2. Best Value: 2
- 5.max features Number of features to consider for the best split.
 - 1. Values tested: [sqrt, log2]
 - **2. Best Value**: **sqrt** (uses the square root of the total features, balancing performance and speed)

Results After Tuning:

•MAE: 39,064 USD

•RMSE: 54,749 USD

•R²: 0.2996

Data Processing – XGBoost RandomSearch CV

[1] Reference

- **1.First Classifier**: Trained on the original data. Misclassified samples are assigned **higher weights**.
- **2.Second Classifier**: Focuses on **correcting the errors** from the first classifier. Misclassified points continue to receive more weight.
- **3.Iterative Process**: This continues until a **strong ensemble classifier is created** by aggregating all weak learners.
- **4.Final Model**: The ensemble classifier makes the **final decision**, **combining** the outputs of all classifiers.

Results After Tuning:

•MAE: 39,551 USD

•**RMSE**: **54,630** USD

•R²: 0.3026

Data Processing – XGBoost split value

The model was divided into two segments:

1.Salary ≤ 300k:

- 1. XGBRegressor without hyperparameter tuning.
- 2. Faster training and evaluation.

2.Salary > 300k:

- XGBRegressor with hyperparameter tuning using RandomizedSearchCV.
- 2. Aimed at addressing the higher variance in this segment.

•Lower Salary Range (≤ 300k):

• **MAE**: 34,043 USD

• **RMSE**: 43,651 USD

• R^2 : 0.35

 The model performs better for this segment, achieving higher R² and lower errors.

•Higher Salary Range (> 300k):

• **MAE**: 34,931 USD

RMSE: 54,747 USD

• **R**²: 0.41

Predictions for higher salaries show slightly higher errors and lower R², indicating challenges in modeling high-variance data.

Data Processing – XAI

•SHAP:

- **Experience Level, Job Title, and Currency (USD)** are the most influential features and explainable of the model.
- Higher **remote ratio** negatively impacts predictions.

•LIME:

- Provides feature contributions for individual predictions.
- Local interpretability shows **job title** and **currency** as critical for salary predictions.

Result Summary

	MAE	RMSE	R ²
Linear Regression	44,758	61,631	0.11
Random Forest	43,018	57,973	0.21
RFE	43,050	57.005	0.21
RF with RandomSearch CV	39,064	54,749	0.29
XGBoost with RandomSearch CV	39,551	54,630	0.3026

XGBoost	split	MAE	RMSE	R ²
without	≤300K	34,043	43,651	0.35
with	>300K	34,931	54,747	0.41

• The results show that **XGBoost with RandomSearchCV** outperforms other models with the **lowest MAE (39,551)** and **RMSE (54,630)**, achieving the **highest R² (0.3026)**.

Result Summary – T-test

Approach:

- 1. Conducted 5-fold cross-validation for each model.
- 2.Collected R² scores for each fold as the performance metric.
- 3. Applied paired t-test to compare the mean R² scores between models.

Comparison	P-value	Significant
Linear Regression vs Random Forest	0.0001	Yes
Linear Regression vs XGBoost	0.0002	Yes
0.0001	0.0024	Yes

Conclusion:

- •XGBoost is the top-performing model, with statistically significant improvements over both Random Forest and Linear Regression.
- •Random Forest also significantly outperforms Linear Regression, making it a strong alternative to XGBoost.

Model Performance Comparison with Baseline and Next step

```
RMSE score for train 47,002 USD/year, and for test 52,431 USD/year CPU times: user 2.88 s, sys: 460 ms, total: 3.34 s
Wall time: 1.4 s
```

RMSE baseline score for train 64,600 USD/year, and for test 65,261 USD/year

[2] Reference

Conclusion:

- •While the RMSE values may seem high, they are **reasonable** given the nature of the dataset and the task's complexity.
- •The model is **more effective** than the baseline, demonstrating a better generalization to unseen data.
- •Future improvements could involve:
 - Collecting additional features or external datasets.
 - Implementing advanced feature engineering or domain-specific knowledge to improve model explainability.

Thank you for the attention!

• Reference:

[1]: https://www.geeksforgeeks.org/xgboost/

[2]:https://www.kaggle.com/code/dima806/information

-security-salary-autoviz-catboost-shap

