

Real time detect motorcycle rider non-wearing helmets on the road.

Presented by

นาย สิรภัทร วงศ์พัฒน์เสวก นาย รัชตไพบูลย์ อ่ำขวัญยืน นาย ศิริศาสตร์ ศรีงาม

CONTENTS

1 Introduction

2 Objective

Method of operation

Research results

Introduction

Introduction

- Motorcycle riders
- Helmet detection
- Real-time detection
- Maintain safety and reduce road accidents

2

Objective

Objective

To apply artificial intelligence and analyze it in Detecting drivers who are not wearing a helmet

To increase efficiency in detecting helmets.

To study about object detection

To maintain safety and reduce road accidents

Select the original image to be used for detection.

2 Creating a data set for operations

3

Select a model from the YOLOv5 architecture.

2. Select a Model

Select a pretrained model to start training from. Here we select YOLOv5s, the second-smallest and fastest model available. See our README table for a full comparison of all models.

YOLOv5n

4 MB_{FP16} 6.3 ms_{V100} 28.4 mAP_{COCO}

Small YOLOv5s

14 MB_{FP16} 6.4 ms_{V100} 37.2 mAP_{COCO}

Medium YOLOv5m

41 MB_{FP16} 8.2 ms_{V100} 45.2 mAP_{COCO}

YOLOv5I

89 MB_{FP16} 10.1 ms_{V100} 48.8 mAP_{COCO}

XLarge YOLOv5x

166 MB_{FP16} 12.1 ms_{V100} 50.7 mAP_{COCO}

4 Clone the model from Github

5 Create yml file in folder yolov5

6 Trend model

7 files obtained from training to continue

Trend Detect data from models that have been learned

4

Research results

Research results

Separation
between helmet
wearers and nonhelmet wearers.

2

Accuracy of inspection

3

Object detection errors

4

Adding more datasets and training models