基础物理实验原始数据记录

实验名称					材料的]磁滞回线	地点	数学核	<u> </u>	
学生姓名_	陈苏		学号_	202	2K80	09906009_分班分组座	号 <u>1-</u>	03-5号	(例:	1-04-5 号)
实验日期_	2023	年_	12 月	4	日	成绩评定		炎师签字		

第一部分: 用示波器观测动态磁滞回线

1. 观测样品 1(铁氧体)的饱和动态磁滞回线(存储数据,在实验报告上精确计算) (1) 测量频率 f =100 Hz 时的饱和磁滞回线。取 R_1 =2.0 Ω , R_2 =50 k Ω , C =10.0 μ F。

表 1. 饱和磁滞回线(竖直方向成对测量)

B	点 1	点 2
(注:-Hs)		(注:-Bs)
(注:Hs)		(注:Bs)
Br		
Нс		

表 2. 饱和磁滞回线(水平方向成对测量)

H B	点 1	点 2
(注:-Bs)		(注:-Hs)

(注:Bs)	(注:Hs)
Br	
Нс	

(2) 固定信号源幅度,观测并记录饱和磁滞回线随频率的变化规律。

变化规律:

为什么?(课后报告里回答)

保持 R₁, R₂C 不变, 测量并比较 f=95 Hz 和 150 Hz 时的 B_r和 H_c

	95Hz	150Hz
Br		
Нс		

(3)在频率 f=50~Hz 下,比较不同积分常量取值对李萨如图的影响。固定励磁电流幅度 $I_m=0.1~A$, $R_1=2.0\Omega$,改变积分常量 R_2C 。调节分别为 0.01~s、0.05~s、0.5~s,课上观察并粗略画出不同积分常量下李萨如图形的示意图。<u>思考为什么积分常量会影响李萨如图形的形状?积分常量是否会影响真实的</u>磁滞回线的形状?(课后报告里回答)

2. 测量样品 1 (铁氧体) 的动态磁滞回线

(1) 在 f=100 Hz 时,取 $R_1=2.0$ Ω, $R_2=50$ kΩ,C=10.0 μF。测量 20 个顶点。课后绘制动态磁化曲线。计算振幅磁导率 μm, 并绘制其随 Hm 的变化曲线,进而确定起始磁导率。(**注: 要绘制两条曲线:** 动态磁化曲线和 μm-Hm 曲线,有同学会忘记绘制磁化曲线)

	1	2	3	4	5	6	7	8	9	10
H _m										
B _m										
	11	12	13	14	15	16	17	18	19	20
H_{m}										
B_{m}										

注:关于20个点的分配,前面点可以适当分配多一些,密集些测量,后面可以少一些。

3. 观察不同频率下样品 2 (硅钢)的动态磁滞回线

参数调至 R_1 =2.0 Ω , R_2 =50 $k\Omega$, C=10.0 μ F。在给定交变磁场幅度 H_m =400 A/m 下,测量三种频率 下的 B_m , B_r , H_c

	20Hz	40Hz	60Hz
$\mathbf{B}_{\mathbf{m}}$			

B _r		
H _c		

4. 测量样品 1 (铁氧体) 在不同直流偏置磁场下的可逆磁导率

取 f=100 Hz。电路参数设置为: R_1 =2.0 Ω , R_2 =20 k Ω , C=2.0 μ F。直流偏置磁场从 0 到 H_s 单调增加(一定缓慢增加)。测量 10 组回线小线段的斜率。课后把电流换算成磁场强度,并绘制可逆磁导率随外场强度的变化曲线 μ i-H。

	1	2	3	4	5	6	7	8	9	10
电流										
端点坐标 H1										
端点坐标 B1										
三象限端点 H3(备用)										
三象限端点 B3(备用)										

第二部分: 用霍尔传感器测量铁磁材料 (准) 静态磁滞回线

1、测量样品的起始磁化曲线。

将霍尔传感器置于磁场均匀区的中央。取 20 个采样点,测量样品的起始磁化曲线。**实验中记录** I **和 B,课后通过计算,在实验报告中补充 H 和修正 H 的数值,并利用 B 和修正后的 H 绘图。**其中利用 讲义公式(3)来计算 H,利用公式(7)来对 H 进行修正。

I	В	Н	修正 H	I	В	Н	修正 H (A/m)
(mA)	(mT)	(A/m)	(A/m)	(mA)	(mT)	(A/m)	(A/m)

2、测量模具钢的磁滞回线

对样品进行磁训练后,磁化线圈的电流从饱和电流 I_m 开始逐步减小到 0,然后将电流反向,电流 又从 0 增加到- I_m ,重复上述过程,再回到 I_m 。每隔 50mA 测一组 (I_i, B_i) 值。**实验中记录 I 和 B,课** 后通过计算,在实验报告中补充 H 和修正 H 的数值,并利用 B 和修正后的 H 绘图。H 和修正 H 的计算 方法同上。

I (mA)	B (mT)	H (A/m)	修正 H (A/m)	I (mA)	B (mT)	H (A/m)	修正 H (A/m)
(mA)	(m1)	(A/m)	(A/M)	(mA)	(mT)	(A/m)	(A/III)
	<u> </u>	1	<u>I</u>	<u> </u>	1	I .	ı