V=6 E=10 In MST we will have V-1 edges

Kruskals Algorithm

Source	Destination	Cost
0	1	1
1 2	3	1 1
2	4	1 1
0	2	2
 ▶ 2	3	2
→ 3	4	2
 ▶ 1	2	3
 1	4	3
4	5	2 2 2 3 3 3
► 3	5	4

Edges = V-1 = 5 Minimum cost= 1+1+1+2+3 = 8

Time Complexity

O (E Log (E) + E Log (V))

Complexity for sorting all edges

Sorting

To check cycle we will use DSUF disjoint set union find algo, it takes O (log(V)) for each edge.And in worst case we will compute for all edges