## Università degli studi di Catania Corso di laurea triennale in Fisica Prova scritta di Meccanica Analitica Appello del 02.09.2022

In un piano verticale  $\Pi$  sia dato un sistema di riferimento  $\{O, \vec{x}, \vec{y}\}$  (vedi figura) con  $\vec{y}$  verticale ascendente. Su  $\Pi$  si abbia un sistema materiale costituito da una circonferenza omogenea  $\gamma$  di massa M e raggio R vincolata ruotare attorno al suo centro, coincidente con l'origine O, e da una lamina quadrata omogenea  $\Gamma$  (vedi figura), sempre di massa M vertici A C B D e diagonale AB di lunghezza pari a 2 R, anch'essa vincolata a muoversi nel piano  $\Pi$ , con l'estremo A incernierato, sempre senza attrito, a muoversi sulla circonferenza  $\gamma$ . Oltre alla forza peso, sul sistema agisce la forza elastica

$$\{F=-k\,(G-O),\;G\}\qquad {\rm con}\quad k>0,$$

essendo G il baricentro della lamina  $\Gamma$ .

Supposto che il piano  $\Pi$  sia posto in rotazione uniforme con velocità angolare  $\omega$  attorno alla verticale y, ed utilizzando come coordinate Lagrangiane gli angoli,  $\vartheta$  che  $\overline{OA}$  forma con l'asse delle y negativa, e  $\psi$  che la diagonale  $\overline{AB}$  della lamina  $\Gamma$  forma con la verticale discendente passante per A, si chiede di determinare nel riferimento relativo:

- 1. Tutte le configurazioni di equilibrio relative, al variare dei parametri  $k,\,g,\,M,\,R$  ed  $\omega.$
- 2. La stabilitá ed instabilitá di tutte configurazioni di equilibrio in cui A e G si trovano sull'asse verticale y con le condizioni  $k=M\,\omega^2$  ed  $\frac{g}{2\,\omega^2\,R}\neq 1$ .
- 3. Le equazioni del moto, determinando gli eventuali integrali primi.
- 4. I moti in prima approssimazione, attorno alle configurazioni di equilibrio del sistema di cui al punto 2.

