Um modelo para a COVID-19

Daniel Girardi e Marcelo D'allangol

Abril de 2020

1 Modelo

Vamos utilizar um modelo determinístico baseado em 10 compartimentos e com variáveis em valores absolutos. Ou seja, o tamanho da população e número de infectados terão valores absolutos. Essa opção visa a comparação direta entre os valores obtidos pelo modelo com os dados oriundos dos órgãos de saúde.

1.1 Saudáveis (S)

A fração δ de *Saudáveis* (aqueles que não estão seguindo a quarentena rigorosamente) podem ser contaminados pelos *Infectados* (I) e *Infectados Graves* (I_a). Neste caso, eles tornan-se *Expostos*.

$$\frac{dS}{dt} = -S\delta(\alpha_i I + \alpha_{ig} I_g) \tag{1}$$

Figure 1: Diagrama da equação dos Saudáveis.

1.2 Expostos (E)

Os *Expostos* aumentam conforme há a contaminação dos *Saudáveis* e com o tempo evoluem a uma taxa β para o estado *Infectado*.

$$\frac{dE}{dt} = S(\alpha_i I + \alpha_{ig} I_g) - \beta E \tag{2}$$

Figure 2: Diagrama da equação dos Expostos.

1.3 Infectados (I)

Esses são os que eram *Expostos*, mas evoluíram para o estado ativo da doença. **Por definição**, estes são os indivíduos que podem contaminar indivíduos saudáveis, não são apenas os que foram testados como positivo para COVID. Estes podem evoluir a uma taxa λ_I para curados ou evoluir a uma taxa ζ para *Infectados no estado Grave*.

Figure 3: Diagrama da equação dos Infectados.

1.4 Infectados Graves (I_G)

São os que manifestaram o quadro grave e que necessitam de internação hospitalar. Contudo, os hospitais possuem uma capacidade de postos de internação que são definidos pelo número de leitos comuns (κ_L) mais o número de leitos de UTI (κ_U). Portanto, uma parcela γ destes, irão procurar os hospitais mas só serão recebidos de acordo com a disponibilidade de leitos (1 – $\frac{H_l+H_u+H_{lg}+H_{lv}}{\kappa_l+\kappa_u}$). Se a soma te todos os hospitalizados $H_l+H_u+H_{lv}+H_{lg}$ (leito comum, UTI, leito comum com ventilação mecânica e leito comum em estado grave) for igual a capacidade total dos hospitais $\kappa_l+\kappa_u$, então esse indivíduo continuará no estado I_G . Neste estado, os indivíduos morrem a uma taxa μ_{ig} e se curam a uma taxa λ_{ig} . Do ponto de vista médico, sabe-se que μ_{ig} é a maior taxa de morte e λ_{ig} a menor taxa de cura.

$$\frac{dI_G}{dt} = \zeta I - \left(1 - \frac{H_l + H_u + H_{lg} + H_{lv}}{\kappa_l + \kappa_u}\right) \gamma I_G - \lambda_{ig} I_G - \mu_{ig} I_G \tag{4}$$

1.5 Hospitalizados em Leito Comum (H_l)

Uma vez hospitalizado, o indivíduo vai para um leito comum e dentro do hospital ele pode seguir alguns caminhos a depender da evolução da doença. Alguns pacientes se curam a uma taxa λ_{hl} .

Figure 4: Diagrama da equação dos Infectados Graves.

Outros pacientes irão evoluir para um estado grave, necessitando da internação em UTI. A taxa de agravamento do paciente é ν_u . Além disso, todos os pacientes em estado mais graves não se curam automaticamente. Antes de saírem do hospital esses pacientes retornam para o leito comum. Assim, o número de hospitalizados em leito comum, recebe os indivíduos que estavam hospitalizados em nível mais graves a taxas λ .

$$\frac{dH_l}{dt} = \left(1 - \frac{H_l + H_u + H_{lg}}{\kappa_l + \kappa_u}\right) \gamma I_g - \lambda_{hl} H_l - \nu_u H_l + \lambda_{hu} H_u + \lambda_{lg} H_{lg} + \lambda_{lv} H_{lv}$$
(5)

Figure 5: Diagrama da equação dos Hospitalizados em Leito Comum.

1.6 Hospitalizados em Leito de UTI (H_u)

Os leitos de UTI são para aqueles que estiveram em leito comum, mas houve o agravamento da situação. A taxa de agravamento do leito comum para o estado grave é ν_u . Contudo, apenas uma fração desses pacientes podem ser recebidos pela UTI. Essa fração é definida pela capacidade de leitos na UTI κ_u . Não havendo leitos na UTI, estes são direcionados para os níveis mais críticos (Leitos comuns com ventilador mecânico H_{lv} ou apenas leitos comuns com pacientes em estado grave H_{lg}). Além disso, o indivíduo pode melhorar, voltando ao leito comum, com taxa λ_{hu} ou morrer com taxa μ_{hu} .

$$\frac{dH_u}{dt} = \nu_u H_l (1 - \frac{H_u}{\kappa_u}) - \lambda_{hu} H_u - \mu_{hu} H_u \tag{6}$$

Figure 6: Diagrama da equação dos Hospitalizados em Estado Grave.

1.7 Hospitalizados em Leito comum com Ventilador Mecânico (H_{lv})

Aqueles que tinham que ir para a UTI, mas não conseguiram por falta de leitos, irão para os leitos que possuírem ventiladores mecânicos, até a capacidade de ventiladores mecânicos disponíveis, além dos da UTI (κ_v). O termo para essa taxa é: $\nu_u H_l \frac{H_u}{\kappa_u} (1 - \frac{H_{lv}}{\kappa_v})$. Além disso, os indivíduos melhoram a uma taxa λ_{lv} e morrem a taxas μ_{lv} . Novamente, da prática médica, as taxas de melhoras desses indivíduos são menores dos que estão na UTI.

$$\frac{dH_{lv}}{dt} = \nu_u H_l \frac{H_u}{\kappa_u} \left(1 - \frac{H_{lv}}{\kappa_v}\right) - \lambda_{lv} H_{lv} - \mu_{lv} H_{lv} \tag{7}$$

1.8 Hospitalizados em Leito comum em estado grave (H_{lg})

Os que não conseguirem ventilador mecânico no leito, ficam em estado grave em um leito comum. Não há necessidade de definir uma capacidade de leitos pois o indivíduo nesse estado já teve seu leito reservado. Além disso, melhoram com uma taxa λ_{lg} e morrem a taxa μ_{lg} .

$$\frac{dH_{lg}}{dt} = \nu_u H_l \frac{H_{lv}}{\kappa_v} \frac{H_u}{\kappa_u} - \lambda_{lg} H_{lg} - \mu_{lg} H_{lg}$$
(8)

1.9 Mortos (M) e Curados (C)

Neste modelo, só morrem aqueles que estão em Infectados Graves e os que estão nos hospitais em estados mais graves. Atribuímos que aqueles que estão em leito comum, não morrem. Precisam agravar o caso antes de morrer.

$$\frac{dM}{dt} = \mu_{ig}I_g + \mu_{hl}H_l + \mu_{hu}H_u + \mu_{lv}H_{lv} + \mu_{lg}H_{lg}$$
(9)

Os curados são aqueles que se recuperaram da doença e, enquanto não houver dados contrários, não podem mais ser reinfectados pelo vírus.

$$\frac{dC}{dt} = \lambda_i I + \lambda_{ig} I_g + \lambda_{hl} H_l \tag{10}$$

1.10 As variáveis do modelo

Figure 7: Visão geral dos caminhos para a COVID-19

Símbolo	Definição	Valor Padrão	Referência
δ	Percentual da população que não está seguindo a quar-		
	entena		
α_i	Taxa de transmissão entre os infectados e saudáveis	3/14 Cada I contam-	
		ina 3 S	
α_{ig}	Taxa de transmissão entre os infectados graves e		
	saudáveis		
β	Taxa de conversão dos Expostos em Infectados (ativos)	1/14	
λ_I	Taxa de Cura do indivíduo Infectado		
ζ	Taxa de evolução dos infectados para o estado grave		
γ	Percentual dos que estão em estado grave e procuram		
	o hospital		
λ_{ig}	Taxa de Cura do indivíduo Infectado grave		
μ_{ig}	Taxa de morte do indivíduo Infectado grave		
λ_{hl}	Taxa de Cura do indivíduo hospitalizado em leito co-		
	mum		
λ_{hu}	Taxa de melhora do indivíduo hospitalizado na UTI		
μ_{hu}	Taxa de morte do indivíduo hospitalizado na UTI		
λ_{lg}	Taxa de melhora do indivíduo hospitalizado em leito		
	comum e no estado grave		
μ_{lg}	Taxa de morte do indivíduo hospitalizado em leito co-		
	mum e no estado grave		
λ_{lv}	Taxa de melhora do indivíduo hospitalizado em leito		
	comum e com ventilador mecânico		
μ_{lv}	Taxa de morte do indivíduo hospitalizado em leito co-		
	mum e com ventilador mecânico		
νu	Taxa de agravamento do indivíduo hospitalizado em		
	leito comum		
κ_u	número de leitos de UTI		
κ_l	número de leitos comuns		
κ_v	número de ventiladores disponíveis além dos utiliza-		
	dos nas UTIs		

Table 1: Variáveis do modelo