DLCV-Fall-2020

Deepo1 Artificial Intelligence

Medical-Imaging

Team: dlcvta

Simple Baseline

Image Processong:

Read images by **Dataloader** with **train_test_split(0.2)** for **valid No** horizontal flip or rotation

Model:

ResNet18(pretrained = **true**) and add few **linear layers** with activation functions

HyperParam:

Epoch = ~20, Opt = Adam(lr = ~1e-6),

Batch_size = 48, Loss criterion =

BCEWithLogitsLoss with Pos_weights

which make imbalance T/F loss balanced

Model Checkpoint:

Take **sigmoid** from the valid's outputs to calculate **f2_score** and save the best

Model Score:

Validation accuracy = ~ 0.73 Testing accuracy = 0.71957

Improved Model

Model:

Take **ResNet18** from simple baseline as Feature Extractor, **LSTM** for **BILSTM** model * 2, and add some **linear layers** with few activation functions after the output

HyperParam:

sequence length = 10, hop size = 5, and the rest are same as previous

Model Score:

Validation accuracy = ~ 0.79 Testing accuracy = 0.75235

Present Work...

- Changing loss function from the present LSTM model
 - o ex. **AsymmetricLoss**.
 - Validation accuracy = <u>0.74547</u> (only CNN)
 - **Testing** accuracy = <u>**0.72315</u>** (only CNN)</u>
- Use 3D convolution neural network for the model

Reference

Ben-Baruch, Emanuel, et al. "Asymmetric Loss For Multi-Label Classification." arXiv preprint arXiv:2009.14119 (2020)
Li, Jianqiang, et al. "A multi-label classification model for full slice brain computerised tomography image." BMC bioinformatics 21.6 (2020): 1-18.