Signal Processing

Chaya Hiruncharoenvate

tinyurl.com/ ipstSignalProcessing

Current:

Senior Officer Data Modeling and Analytics Team SEC Thailand (สำนักงาน กลต)

Previous:

Faculty of Informatics, Mahasarakham University
PhD in CS, Georgia Institute of Technology
MS in IT + BS in CS, Carnegie Mellon University

BODYJAM, BODYSTEP Instructor Mo-Mo Paradise & Sushiro Loyalist Cat Kidnapper

tinyurl.com/ ipstSignalProcessing

Agenda

- What are signals?
- Signal Data Visualization
- Preprocessing & Filtering Techniques
- Lab (x2)

What are signals?

Signals

- Information that varies over time/space
- Examples
 - Audio wave
 - Temperature readings
 - Financial market data
 - Other?

Time-series Data

- Subset of signals
- Measurements recorded at successive points in time
- Analog (continuous) or Digital (discrete)

Continuous VS Discrete

Continuous

- Measured and recorded over a continuous range
- Analog signals
 - Sound waves
 - Temperature measurements (analog thermometers)

Discrete

- Recorded at specific, distinct points
- Digital signals
 - IoT measurements
 - Financial market data
- More common

ANALOG VS DIGITAL SIGNAL

ANALOG

DIGITAL

Why Signal Processing in Data Science?

- Raw signal data is difficult to interpret
 - Raw sound wave. How can we make sense of it?

Why Signal Processing in Data Science?

- Raw signal data is difficult to interpret
- Extract valuable insights from raw data
 - May be hard to see at first glance
- This information then be used to
 - Make decisions
 - Identify opportunities
 - Solve problems

Signal Processing as Data Preprocessing

- Real-world data is often noisy
- Remove unwanted disturbances, outliers using Signal Processing
- Resulting in a cleaner and more reliable dataset
- Clean data -> Accurate modeling, predictions
- Signal Processing is a core for
 - Time-series forecasting
 - Anomaly detection
 - Image and speech recognition

Signal Data Visualization

Importance of visualizations

- Signals are best understood through visuals
- A few plots are generally used
 - Line plots
 - Box plots

Line plot

- X-axis: sequential metric (time/sample number/meters/lot number)
- Y-axis: signal value
- Provide understandings for trends and fluctuations

Audio waveform

- Specific type of line plot
- Visualizing sound
- X-axis: Amplitude (loudness)
- Y-axis: time sample

Box plot

- Show several statistics for each time sample
 - o "Min"
 - 1st quartile
 - Median
 - 3rd quartile
 - o "Max"
 - Outliers

introduction to data analysis: Box Plot

Different parts of boxplot

© Byjus.com

Candlestick plot

- Special type of box plot to visualize financial market data
- Each box shows
 - Opening price
 - Closing price
 - Highest price
 - Lowest price
 - Closing price > Opening price? (color)

Bullish candlestick

Bearish candlestick

Preprocessing & Filtering Techniques

Preprocessing & Filtering Techniques

- Dealing with irregular or missing data
- Handling noise and outliers

Dealing with Irregular or Missing Data

Dealing with Irregular or Missing Data

- What to do when sampling intervals are irregular?
- How do we handle missing data points?

Interpolation

- Technique for handling missing data
- "Estimate" the value of the missing data point
- Common techniques
 - Linear interpolation
 - Spline interpolation
 - Time-based interpolation

Resampling

- Technique used to standardize the intervals of the data
- Can be
 - Upsampling increase the frequency of data points
 - Downsampling decrease the frequency of data points

Handling Noise and Outliers

Handling Noise and Outliers

- Noise = random fluctuations in the data
- Outliers = points that significantly deviate from the overall patterns
- Handle by
 - Data truncation capping extreme values at a certain threshold
 - Treat outliers separately
 - Smoothing

Data Smoothing

- Reduce the impact of random fluctuations
- Help reveal long-term trends while suppressing short term noise
- Methods
 - Rolling windows and moving averages
 - o Low-pass, High-pass, Band-pass filters

Rolling window

• Compute a specific statistics (mean, sd, etc) over a sliding window of data points

Moving average

• An application of rolling windows – using mean as the statistic to compute

Low-pass filter

- Filter that allow low-frequency signals to pass while "attenuating" higher frequency components
- Useful for removing nose and retain slow-changing trends
- Moving average is a type of low-pass filter

High-pass filter

- Permit higher-frequency signal to pass
- Filter out low-frequency components
- Highlight short-duration events or sudden changes in the time series

Band-pass filter

- Allow signals with specific frequency band to pass while blocking others
- Useful for application where specific frequency ranges contain relevant information
 - Audio processing extract frequency corresponding to human speech

Questions?