

Numerical Analysis Gauss-Quadrature Integration Formula

목 차

- 1 Introduction to Gauss-Quadrature Integration Formula
- 2 Standard Form for Gauss-Quadrature Integration Formula
- 3 Derivation of Gauss-Quadrature Integration Formula
- **Example Applications**
- 5 Appendix: Table for Gauss-Quadrature Integration Formula

Introduction to Gauss-Quadrature Integration Formula

Lecture Note for Numerical Analysis- Gauss Quadrature Formula

1. Concept of Gauss Quadrature

- O <u>Gauss quadrature</u> implements a strategy of positioning any two points on a curve to define a straight line that would balance the positive and negative errors.
- O Hence the area evaluated under this straight line provides an improved estimate of the integral.

Standard Form for Gauss-Quadrature Integration Formula

2. Standard Form of Integration for Gauss Quadrature Application

O Gauss quadrature can be standardized by using the integration interval of

$$x \in [-1, 1]$$

to calculate

$$I = \int_{x_0}^{x_f} f(x) dx, \quad x \in [x_0, x_f]$$

OAffine Transformation

$$t = \frac{2}{x_f - x_0} x - \frac{x_f + x_0}{x_f - x_0}, \quad t \in [-1, 1]$$

Using Affine transformation we can redefine above integration as

$$dt = \frac{2}{x_f - x_0} dx \to dx = \frac{x_f - x_0}{2} dt$$

$$I = \int_{x_0}^{x_f} f(x) dx = \frac{x_f - x_0}{2} \int_{-1}^{1} f\left(\frac{x_f - x_0}{2}t + \frac{x_f + x_0}{2}\right) dt = \frac{x_f - x_0}{2} \int_{-1}^{1} g(t) dt$$

Derivation of Gauss-Quadrature Integration Formula

3. Derivation of Gauss Quadrature Formula

O If we use the standard form, the integration can be estimated by integrating the following form

$$I = \int_{-1}^{1} f(x) dx$$

O General form of n-point Gauss Quadrature Formula

$$I = \int_{-1}^{1} f(x)dx$$

$$\approx w_0 f(x_0) + w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3) + w_4 f(x_4) + \dots + w_{n-1} f(x_{n-1})$$

where

$$x_j$$
, $j = 0,1,2,\dots, n-1$: Gauss Quadrature points

$$w_j$$
, $j = 0,1,2,\dots,n-1$: Gauss Quadrature weights

 $x_i's, w_i's$ should be determined to balance the positive and negative errors

Derivation of Gauss-Quadrature Integration Formula

(3-1) Two-point Gauss quadrature formula to exactly integrate $I = \int_{-1}^{1} f(x) dx$ with $f(x) = 1, x, x^2, x^3$

$$I = w_{0}f(x_{0}) + w_{1}f(x_{1})$$

$$f(x) = 1 \rightarrow w_{0}f(x_{0}) + w_{1}f(x_{1}) = w_{0} + w_{1} = \int_{-1}^{1}1dx = 2$$

$$f(x) = x \rightarrow w_{0}f(x_{0}) + w_{1}f(x_{1}) = w_{0}x_{0} + w_{1}x_{1} = \int_{-1}^{1}xdx = 0$$

$$f(x) = x^{2} \rightarrow w_{0}f(x_{0}) + w_{1}f(x_{1}) = w_{0}x_{0}^{2} + w_{1}x_{1}^{2} = \int_{-1}^{1}x^{2}dx = \frac{2}{3}$$

$$f(x) = x^{3} \rightarrow w_{0}f(x_{0}) + w_{1}f(x_{1}) = w_{0}x_{0}^{3} + w_{1}x_{1}^{3} = \int_{-1}^{1}x^{3}dx = 0$$

$$w_{0}x_{0}^{2} + w_{1}x_{1}^{2} = \frac{2}{3}$$

$$w_{0}x_{0}^{3} = -w_{1}x_{1}^{3}$$

From the 2nd and 4th equations:
$$x_0^2 = x_1^2 \rightarrow x_0 = -x_1$$

From the 2nd equation:
$$w_0 x_0 + w_1 x_1 = w_0 x_0 - w_1 x_0 = x_0 (w_0 - w_1) = 0 \rightarrow w_0 = w_1$$
 since $x_0 \neq 0$

From the 1st equation:
$$2w_0 = 2 \rightarrow \boxed{w_0 = w_1 = 1}$$

From the 3rd equation:
$$w_0 x_0^2 + w_1 x_1^2 = \frac{2}{3} \rightarrow 2x_0^2 = \frac{2}{3} \rightarrow \begin{vmatrix} x_0 = -\frac{1}{\sqrt{3}} = -0.5773503 \cdots \\ x_1 = \frac{1}{\sqrt{3}} = 0.5773503 \cdots \end{vmatrix}$$

Therefore the integration formula becomes:
$$I = w_0 f(x_0) + w_1 f(x_1) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

Derivation of Gauss-Quadrature Integration Formula

(3-2) Performance of two-point Gauss quadrature formula

- (a) 2^{nd} order polynomial function: $f(x) = a + bx + cx^2$
 - Exact integration of $I = \int_{-1}^{1} f(x)dx \rightarrow I = \int_{-1}^{1} (a+bx+cx^2)dx = 2a + \frac{2}{3}c$
 - Gauss Quadrature formula results in the same value

$$I = w_0 f(x_0) + w_1 f(x_1) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) = \left(a - b\frac{1}{\sqrt{3}} + c\frac{1}{3}\right) + \left(a + b\frac{1}{\sqrt{3}} + c\frac{1}{3}\right) = 2a + \frac{2}{3}c$$

- (b) 3^{rd} order polynomial function: $f(x) = a + bx + cx^2 + dx^3$
 - Exact integration: $I = \int_{-1}^{1} (a + bx + cx^2 + dx^3) dx = 2a + \frac{2}{3}c$
 - Gauss Quadrature formula results in the same value

$$I = w_0 f(x_0) + w_1 f(x_1)$$

$$= f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) = \left(a - b\frac{1}{\sqrt{3}} + c\frac{1}{3} - d\frac{1}{3\sqrt{3}}\right) + \left(a + b\frac{1}{\sqrt{3}} + c\frac{1}{3} + d\frac{1}{3\sqrt{3}}\right) = 2a + \frac{2}{3}c$$

- (c) 4th order polynomial function: $f(x) = a + bx + cx^2 + dx^3 + ex^4$
 - Exact integration: $I = \int_{-1}^{1} (a + bx + cx^2 + dx^3 + ex^4) dx = 2a + \frac{2}{3}c + \frac{2}{5}e$
 - Gauss Quadrature formula generates some error

$$I = w_0 f(x_0) + w_1 f(x_1) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

$$= \left(a - b\frac{1}{\sqrt{3}} + c\frac{1}{3} - d\frac{1}{3\sqrt{3}} + e\frac{1}{9}\right) + \left(a + b\frac{1}{\sqrt{3}} + c\frac{1}{3} + d\frac{1}{3\sqrt{3}} + e\frac{1}{9}\right) = 2a + \frac{2}{3}c + \frac{2}{9}e$$

4. Application of Gauss Quadrature Formula

O Given

- Number of Gauss Quadrature Point: n

- Data for Gauss Quadrature Point

(a) Arguments : τ_i , $j = 1, 2, \dots, n$ $(\tau_i \in (-1, 1))$

(b) Weights : w_i , $j = 1, 2, \dots, n$

- Function and the integration interval: $I = \int_{x_0}^{x_f} f(x) dx, \quad x \in [x_0, x_f]$

O Transform using the affine transformation to get the standard form

$$d\tau = \frac{2}{x_f - x_0} dx \to dx = \frac{x_f - x_0}{2} d\tau$$

$$I = \int_{x_0}^{x_f} f(x) dx = \frac{x_f - x_0}{2} \int_{-1}^{1} f\left(\frac{x_f - x_0}{2}\tau + \frac{x_f + x_0}{2}\right) d\tau$$

$$= \frac{x_f - x_0}{2} \int_{-1}^{1} g(\tau) d\tau = \frac{x_f - x_0}{2} \widetilde{I} \leftarrow \widetilde{I} = \int_{-1}^{1} g(\tau) d\tau$$

O Integration Formula

$$\widetilde{I} = \int_{-1}^{1} g(\tau) d\tau = \sum_{j=1}^{n} w_{j} g(\tau_{j})$$

$$I = \left(\frac{x_{f} - x_{0}}{2}\right) \widetilde{I} = \left(\frac{x_{f} - x_{0}}{2}\right) \sum_{j=1}^{n} w_{j} g(\tau_{j}) = \left(\frac{x_{f} - x_{0}}{2}\right) \sum_{j=1}^{n} w_{j} f\left(\frac{x_{f} - x_{0}}{2}\tau_{j} + \frac{x_{f} + x_{0}}{2}\right)$$

O Weights and function arguments x in Gauss Quadrature for the different number of quadrature points

Points n	Weighting Factors W_j	Function Arguments τ_j
2	$W_1 = 1.0000000000$	$\tau_1 = -0.577350269$
	$w_2 = 1.0000000000$	$\tau_2 = 0.577350269$
		0.771706660
3	$w_1 = 0.555555556$	$\tau_1 = -0.774596669$
	$w_2 = 0.888888889$	$\tau_2 = 0.000000000$
	$w_3 = 0.555555556$	$\tau_3 = 0.774596669$
4	$w_1 = 0.347854845$	$\tau_1 = -0.861136312$
	$w_2 = 0.652145155$	$\tau_2 = -0.339981044$
	$w_3 = 0.652145155$	$\tau_3 = 0.339981044$
	$w_4 = 0.347854845$	$\tau_4 = 0.861136312$
5	$w_1 = 0.236926885$	$\tau_1 = -0.906179846$
	$w_2 = 0.478628670$	$\tau_2 = -0.538469310$
	$w_3 = 0.568888889$	$\tau_3 = 0.000000000$
	$w_4 = 0.478628670$	$\tau_4 = 0.538469310$
	$w_5 = 0.236926885$	$\tau_5 = 0.906179846$

Example 1]

O Given for n=3

$$I = \int_0^5 f(x)dx, \quad x \in [0, 5]$$
$$f(x) = 3x^2 + 2x$$

Points n	Weighting Factors W_j	Function Arguments τ_j
	$w_1 = 0.555555556$	$\tau_1 = -0.774596669$
3	$w_2 = 0.888888889$	$\tau_2 = 0.0000000000$
	$w_3 = 0.555555556$	$\tau_3 = 0.774596669$

⇒ Exact Integration
$$I = \int_0^5 (3x^2 + 2x) dx = (x^3 + x^2)_0^5 = 5^3 + 5^2 = 150.0$$

O Solution using Gauss-Quadrature Formula

$$I = 2.5 \sum_{j=1}^{n} w_j f(2.5\tau_j + 2.5) \leftarrow \frac{x_f - x_0}{2} = 2.5, \quad \frac{x_f + x_0}{2} = 2.5$$
$$= 2.5 [w_1 f(2.5\tau_1 + 2.5) + w_2 f(2.5\tau_2 + 2.5) + w_3 f(2.5\tau_3 + 2.5)]$$

$$\begin{aligned} x_1 &= 2.5\tau_1 + 2.5 = -2.5 \times 0.774596669 + 2.5 = 0.56350833 \\ x_2 &= 2.5\tau_2 + 2.5 = 2.5 \times 0.0 + 2.5 \\ x_3 &= 2.5\tau_3 + 2.5 = 2.5 \times 0.774596669 + 2.5 = 4.436491672 \\ f_1 &= f(0.56350833) = (3x^2 + 2x)\Big|_{x=0.56350833} = 2.079641560 \\ f_2 &= f(2.5) \\ &= (3x^2 + 2x)\Big|_{x=2.5} \\ &= 23.75 \\ f_3 &= f(4.436491672) = (3x^2 + 2x)\Big|_{x=4.436491672} = 67.920358425 \\ I &= 2.5(0.5555555556f_1 + 0.8888888889f_2 + 0.5555555556f_3) = 150.0 \end{aligned}$$

5. Pseudo code for the Gauss Quadrature

```
Program main
 % Input
               =3;
     xmin
               = 0.0;
              = 5.0;
      xmax
     dx plus = 0.5*(xmax+xmin);
     dx minus= 0.5*(xmax-xmin);
 % Guass quadrature nodes and weights
      call gauss node(n,tau,w);
 % Integration using Guass quadrature formula
      gauss integral
                       = 0.0;
      do j=1, n
          x = dx minus*tau(j)+dx plus;
          call f(x,y);
          gauss integral = gauss integral + w(j)*y;
      gauss integral = dx minus*guass integral;
end program main
```


end function f

Example Applications of Gauss-Quadrature Integration Formula

```
function gauss node(n,tau,w)
     if n=2, then
               w_1 = 1.0000000000, w_2 = 1.0000000000
               \tau_1 = -0.577350269, \tau_2 = 0.577350269
     else if n=3, then
               w_1 = 0.555555556, w_2 = 0.888888889, w_3 = 0.555555556
               \tau_1 = -0.774596669, \tau_2 = 0.0000000000, \tau_3 = 0.774596669
     else if n=4, then
               w_1 = 0.347854845, w_2 = 0.652145155, w_3 = 0.652145155, w_4 = 0.347854845
               \tau_1 = -0.861136312, \tau_2 = -0.339981044, \tau_3 = 0.339981044, \tau_4 = 0.861136312
      else
               print*, 'node number n exceeds the maximum allowed node number= 4.'
               print*, 'Please add the node information (Gauss quadrature points and weights'
     end if
end function gauss node
function f(x,y);% Function to be integrated, which should be specified by the user
     y=3.0*x*x*x+2.0*x;
```


Appendix: Table for Gauss-Quadrature Integration Formula

Appendix: Table for Gauss Quadrature Nodes and Weights

N	No Node weight	N	No Node weight
1	1 0.00000000000E+00 .2000000000E+01	2	1577350269190E+00 .100000000000E+01 2 0.577350269190E+00 .10000000000E+01
3	1774596669241E+00 0.55555555556E+00 2 0.00000000000E+00 0.8888888889E+00 3 0.774596669241E+00 0.5555555556E+00	4	1861136311594E+00 .347854845137E+00 2339981043585E+00 .652145154863E+00 3 0.339981043585E+00 .652145154863E+00 4 0.861136311594E+00 .347854845137E+00
5	1 906179845939E+00 0.236926885056E+00 2 538469310106E+00 0.478628670499E+00 3 0.00000000000E+00 0.56888888889E+00 4 0.538469310106E+00 0.478628670499E+00 5 0.906179845939E+00 0.236926885056E+00	6	1932469514203E+00 0.171324492379E+00 2661209386466E+00 0.360761573048E+00 3238619186083E+00 0.467913934573E+00 4 0.238619186083E+00 0.467913934573E+00 5 0.661209386466E+00 0.360761573048E+00
7	1 949107912343E+00 0.129484966169E+00 2 741531185599E+00 0.279705391489E+00 3 405845151377E+00 0.381830050505E+00 4 0.00000000000E+00 0.417959183673E+00 5 0.405845151377E+00 0.381830050505E+00 6 0.741531185599E+00 0.279705391489E+00 7 0.949107912343E+00 0.129484966169E+00	8	6 0.932469514203E+00 0.171324492379E+00 1960289856498E+00 0.101228536290E+00 2796666477414E+00 0.222381034453E+00 3525532409916E+00 0.313706645878E+00 4183434642496E+00 0.362683783378E+00 5 0.183434642496E+00 0.362683783378E+00 6 0.525532409916E+00 0.313706645878E+00 7 0.796666477414E+00 0.222381034453E+00
9	1968160239508E+00	10	8 0.960289856498E+00 0.101228536290E+00 1973906528517E+00 0.666713443087E-01 2865063366689E+00 0.149451349151E+00 3679409568299E+00 0.219086362516E+00 4433395394129E+00 0.269266719310E+00 5148874338982E+00 0.295524224715E+00 6 0.148874338982E+00 0.295524224715E+00 7 0.433395394129E+00 0.269266719310E+00 8 0.679409568299E+00 0.219086362516E+00 9 0.865063366689E+00 0.149451349151E+00

Appendix: Table for Gauss-Quadrature Integration Formula

	1978228658146E+00 0.556685671162E-01		1981560634247E+00 0.471753363865E-01
	2887062599768E+00 0.125580369465E+00	10	2904117256370E+00 0.106939325995E+00
11	3730152005574E+00 0.186290210928E+00	12	3769902674194E+00 0.160078328543E+00
11	4519096129207E+00 0.233193764592E+00		4587317954287E+00 0.203167426723E+00
	5269543155952E+00 0.262804544510E+00		5367831498998E+00 0.233492536538E+00
	6 0.00000000000E+00 0.272925086778E+00		6125233408511E+00 0.249147045813E+00
	7 0.269543155952E+00 0.262804544510E+00		7 0.125233408511E+00 0.249147045813E+00
	8 0.519096129207E+00 0.233193764592E+00		8 0.367831498998E+00 0.233492536538E+00
	9 0.730152005574E+00 0.186290210928E+00		9 0.587317954287E+00 0.203167426723E+00
	10 0.887062599768E+00 0.125580369465E+00		10 0.769902674194E+00 0.160078328543E+00
	11 0.978228658146E+00 0.556685671162E-01		11 0.904117256370E+00 0.106939325995E+00
			12 0.981560634247E+00 0.471753363865E-01

End of Lecture