OPTIMAL BOUNDS FOR OPEN ADDRESSING WITHOUT REORDERING

MARTIN FARACH-COLTON , ANDREW KRAPIVIN , WILLIAM KUSZMAUL

Presented by - Amit Roy

March 27, 2025

Hashing

Collision Resoutions

- Chaining Each slot points to pointer to a linked list which stores the keys
- Open Addressing All elements occupy the hash table itself

Definitions

Probe Complexity

The number of slots in the array

Results

- Greedy
 - Worst-case expected probe complexity $\mathcal{O}(\log^2 \delta^{-1})$
 - ▶ High-probability worst-case probe complexity $\mathcal{O}(\log^2 \delta^{-1} + \log \log n)$
 - * Matching lower bound

- Non-Greedy
 - Amortized probe complexity O(1)
 - ▶ Worst-case expected probe complexity $\mathcal{O}(\log \delta^{-1})$
 - Matching lower bound

Theorem - Non-greedy Open-Addressing

Let $n \in \mathbb{N}$ and $\delta \in (0,1)$ be parameters such that $\delta > \mathcal{O}(1/n)$. There exists an open-addressing hash table that supports $n - \lfloor \delta n \rfloor$ insertions in an array of size n, that does not reorder items after they are inserted, and that offers

- ullet amortized expected probe complexity O(1)
- worst-case expected probe complexity $\mathcal{O}(\log \delta^{-1})$, and
- worst-case expected insertion time $\mathcal{O}(\log \delta^{-1})$.

Theorem - Greedy Open-Addressing

Let $n \in \mathbb{N}$ and $\delta \in (0,1)$ be parameters such that $\delta > \mathcal{O}(1/n^{o(1)})$. There exists a greedy open-addressing strategy that supports $n - \lfloor \delta n \rfloor$ insertions that has

- worst-case expected probe complexity (and insertion time) $\mathcal{O}(\log^2 \delta^{-1})$
- worst-case probe complexity over all insertions $\mathcal{O}(\log^2 \delta^{-1} + \log \log n)$, with prob 1 1/poly(n),
- amortized expected probe complexity $\mathcal{O}(\log \delta^{-1})$

Funnel Hashing

Lemma

For a given $i \in \alpha$, we have with probability $1 - \frac{1}{n^{\omega(1)}}$ that, after $2|A_i|$ insertion attempts have been made in A_i , fewer than $\frac{\delta}{64}|A_i|$ slots in A_i remain unfilled.

Lemma

The number of keys inserted into $A_{\alpha+1}$ is fewer than $\frac{\delta}{8}n$, with probability $1-\frac{1}{n^{\omega(1)}}$.

Lemma: Power of two choices

If m balls are placed into n bins by choosing two bins uniformly at random for each ball and placing the ball into the emptier of the two bins, then the maximum load of any bin is $m/n + \log\log n + \mathcal{O}(1)$ with high probability in n.

Algorithm for special array $A_{\alpha+1}$

- **1** Split $A_{\alpha+1}$ into two subarrays B and C of equal size.
- ② First, try to insert in B. Upon failure insert into C (insertion to C is guaranteed to succeed with high probability)
- C is implemented as a two-choice table with buckets of size 2 log log n.

Probe Complexity of $A_{\alpha+1}$

Complexity of inserting into B -

- **1** B has size $A_{\alpha+1}/2 \ge \delta n/4$, so load factor never exceeds 1/2.
- ② Each insertion makes $\log \log n$, each of which has success probability of 1/2.
- ullet Thus, expected number of probles is $\mathcal{O}(1)$
- **9** Probability that insertion fails after all attempts is $1/2^{\log \log n} \le 1/\log n$.

Probe Complexity of $A_{\alpha+1}$

Complexity of inserting into C -

- Recall, C is implemented as a two choice table with buckets of size 2 log log n
- From Lemma we have that, with high probability, no bucket in C overflows.
- **3** Expected time of each insertion in C is at most o(1).

Algorithm

1: **Input:** $n \ge 0$ 2: **Output:** $y = x^n$ 3: $y \leftarrow 1$ 4: $X \leftarrow x$ 5: $N \leftarrow n$ 6: while $N \neq 0$ do **if** N is even **then** $X \leftarrow X \times X$ $N \leftarrow \frac{N}{2}$ 9: 10: else $y \leftarrow y \times X$ 11: $N \leftarrow N - 1$ 12: end if 13:

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩€

14: end while

List of Publications

• Amit Roy and Jayalal Sarma. On Alternation, VC-dimension and k-fold Union of Sets. Proceedings in 11th European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB 2021), Sep 6-10, 2021, Barcelona

THOUGHTS AND QUESTIONS?

THANKS