

5.° TESTE DE MATEMÁTICA A – 10.° 20

(2021/2022)

3.º Período

26/05/2022

Duração: 90 minutos

Nome:

N.º:

Classificação:

O professor:

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta todos os cálculos que tiveres de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresenta sempre o valor exato.

- 1. Considera, num referencial o.n. xOy, a reta r definida pela equação reduzida y = 5x 1. Qual das seguintes pode ser uma equação vetorial da reta r?
 - **(A)** $(x, y) = (0, -1) + k(2, 10), k \in \mathbb{R}$
- **(B)** $(x, y) = (-1, 0) + k(2, 10), k \in \mathbb{R}$
- **(C)** $(x, y) = (0, -1) + k(-5, -1), k \in \mathbb{R}$
 - **(D)** $(x, y) = (-1, 0) + k(-5, -1), k \in \mathbb{R}$
- **2.** Na figura junta, está representado, num referencial o.n. Oxyz, um paralelepípedo retângulo [ABCDEFGH].

Sabe-se que:

- o vértice A pertence ao eixo Ox;
- o vértice B pertence ao eixo Ov;
- AB = (-4,6,0);
- as coordenadas do vértice G são (6,10,13).

Determina a equação reduzida da superfície esférica de centro no ponto F e de raio \overline{AB} .

Adaptado do Exame Nacional de Matemática A, 1.ª fase de 2021

3. O preço p, em euros, de um estacionamento para automóveis no centro da cidade é dado, após t minutos, pela função definida por

$$p(t) = \begin{cases} 0.04t & \text{se } 0 \le t < 30 \\ 0.0008t^2 - 0.048t + 1.92 & \text{se } 30 \le t \le 80 \end{cases}$$

- **3.1.** Num certo dia, a Isadora deixou o automóvel no estacionamento durante uma hora e quinze minutos. Quanto pagou ela pelo estacionamento?
 - **(A)** 2,05 €
- **(B)** 2,82 €
- **(C)** 2,99 €
- **(D)** 3,11 €
- **3.2.** Num outro dia, a Isadora pagou 1 euro para deixar o automóvel no estacionamento menos de meia hora. Quantos minutos esteve o automóvel da Isadora no estacionamento?

4. Na figura ao lado, estão representadas, em referencial o.n. xOy, duas parábolas geometricamente iguais, que são os gráficos de duas funções quadráticas, $f \in g$.

Tal como sugere a figura:

- \bullet o vértice da parábola de f tem abcissa negativa e ordenada igual a 2;
- ullet o vértice da parábola de g tem abcissa simétrica da de f e ordenada nula.

Qual das expressões seguintes define a função g ?

(B)
$$-f(x)-2$$

(C)
$$f(-x)+2$$

(D)
$$-f(x)+2$$

- **5.** Dado um número real positivo a, seja h a função quadrática definida por $h(x) = x^2 + 3\sqrt{a}x + a + 6$.
 - **5.1.** Sabendo que h tem um mínimo absoluto igual a 1, qual é o maior número inteiro possível para a?
 - (A) 4

(B) 5

- **(C)** 6
- **(D)** 7

- **5.2.** Consider agora a = 4.
 - **5.2.1.** Qual é o valor de $(h \circ h)(-4)$?

(A)
$$-10$$

(B)
$$-12$$

- **5.2.2.** Determina a abcissa do vértice da parábola (gráfico de h) e indica os intervalos de monotonia de h e a equação do eixo de simetria do seu gráfico.
- **5.2.3.** Estuda a paridade da função h.

6. Resolve, em \mathbb{R} , as inequações seguintes.

6.1.
$$6-x^2 < \frac{5x}{2}$$

6.2.
$$|2x-1| \ge |2x+3|$$

6.3.
$$|3x+4| \le 7$$

- **7.** Considera o polinómio $P(x) = kx^4 + 3x^2 x + 5$, sendo k um número real.
 - **7.1.** Determina o valor de k de modo que P(x) seja divisível por x-2.
 - **7.2.** Supondo que k=2, determina o quociente e o resto da divisão inteira de P(x) pelo polinómio:
 - **7.2.1.** $1-x^2$, utilizando a divisão inteira de polinómios;
 - **7.2.2.** x-1, utilizando a regra de Ruffini.
 - **7.3.** Fazendo k = -1, podemos ter a função g, de domínio \mathbb{R} , definida por $g(x) = -x^4 + 3x^2 x + 5$.

Recorrendo às capacidades gráficas da calculadora, determina o contradomínio da função $\it g$.

Na tua resposta:

- reproduz, num referencial, o gráfico da função que visualizares na calculadora (sugere-se a utilização da janela de visualização em que $x \in [-3,3]$ e $y \in [-2,10]$);
- apresenta as coordenadas dos pontos relevantes com duas casas decimais.
- **8.** Considera o polinómio $Q(x) = ax^3 2bx + 7$, sendo a, e b números reais. Sabe-se que:
 - Q(x) é divisível por (x+1);
 - o resto da divisão de Q(x) por (x+2) é igual a 7.

Determina os valores de $a \in b$.

FIM

COTAÇÕES

	Item																
	Cotação (em pontos)																
1.	2.	3.1.	3.2.	4.	5.1.	5.2.1.	5.2.2.	5.2.3.	6.1.	6.2.	6.3.	7.1.	7.2.1.	7.2.2.	7.3.	8.	
8	14	8	10	8	8	8	14	14	14	14	14	10	14	14	14	14	200