Welcome

1/28/17

Efficiency of Different Algorithms over Sparse Matrices

Muhammad Mohebujjaman Graduate Student Clemson University

Outline

- Motivation
- Objectives
- Sparse Matrix
- Representation of Sparse Matrix
- Performance of Different Algorithms

Motivation

- *The large matrices that arise in real-world problems are often sparse.
- Several algorithms for solving system of equations.
- Different algorithms have different efficiencies.

Objectives

- To count the number of iteration needs to converge
- To compare the efficiency of different algorithms

Sparse Matrices

- Sparse many elements are zero.
- Dense few elements are zero.

Structured Sparse Matrices

- Diagonal
- Tri-diagonal
- Lower triangular

- May be mapped into a 1D array
- Mapping function can be used to locate an element

Unstructured Sparse Matrices

Airline flight matrix.

- Airports are numbered 1 through n
- flight(i,j) = list of nonstop flights from airport i to airport j.

Web page matrix.

- Web pages are numbered 1 through n
- web(i,j) = number of links from page i to page j

Representation of Unstructured Sparse Matrices

MATLAB provides a sparse function of the form

```
matrix = sparse ( i, j, s, m, n, nz_max )
```

- i = the row indices of the nonzero elements;
- j = the column indices of the nonzero elements;
- \diamond s = the values of the nonzero elements;
- * m = the number of rows in the matrix;
- n = the number of columns in the matrix;
- nz_max is the maximum number of nonzero elements in the

matrix

Representation of Unstructured Sparse Matrices

 $A = \begin{pmatrix} 11 & 12 & 0 & 0 & 15 \\ 0 & 22 & 23 & 0 & 0 \\ 31 & 0 & 33 & 34 & 35 \end{pmatrix}$ m = 3, n = 5, nz_max = 9; $i = [1 \ 1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 3]$ $j = [1 \ 2 \ 5 \ 2 \ 3 \ 1 \ 3 \ 4 \ 5]$ $s = [11 \ 12 \ 15 \ 22 \ 23 \ 31 \ 33 \ 34 \ 35],$ a = sparse (i, j, s, m, n, nz_max)

Examples of Sparse Matrices

A Barrier Hessian Matrix

A Matrix From Financial Portfolio Optimization

Examples of Sparse Matrices

01/28/17

http://www.cise.ufl.edu/~davis/matrices.html

The Sparse Matrix

Dimension: 2910 × 2910 NNZ: 174296

MATLAB Command

- * [X,FLAG, RELRES, ITER]=gmres (A, B, RESTART, TOL, MAXIT, M)
- ❖ [X,FLAG, RELRES, ITER]=Y(A, B, TOL, MAXIT, M)
- ❖ Y for cgs, pcg, bicgstab.
- ❖ FLAG = 0, convergent to the desire TOL within MAXIT.
- ❖ FLAG=1, iterated MAXIT times, did not converge.
- ❖ FLAG=2, preconditioner M was ill-conditioned.
- ❖ FLAG=3, stagnated.
- ❖ FLAG=4, one of the scalar quantities calculated during the method Y became too small or too large to continue computing.

Efficiency of Algorithms

	GMRES		CGS	
	Preconditioned	Without Preconditioned	Preconditioned	Without Preconditioned
FLAG	0	0	3	4
ITER	6510	37007	2070	2
RELRES	9.943e-07	1.000e-6	3.0126e-04	0.231

01/28/17

Efficiency of Algorithms

	P	CG	BICGSTAB	
	Preconditioned	Without Preconditioned	Preconditioned	Without Preconditioned
FLAG	0	0	0	0
ITER	887	3470	1266.5	8061.5
RELRES	9.8646e-07	9.7e-07	1.55e-07	8.48e-07

Conclusion

- *The Preconditioned Conjugate Gradient Method gives the better result.
- ❖If the matrix is not in symmetric positive definite, then this method may not works.
- For unsymmetric matrix, GMRES provides the better result.

Thank You