sammenlikning gnss

August 28, 2024

0.0.1 Sammenlikning av GNSS data fra ulike mottakere

Laster inn data fra de ulike mottakerene (har et script som lager array fra kml filer). Data fra arduino-enheten filtreres til å kun inneholde koordinater fra når den faktisk lå på referansepunktet.

```
# Laster først inn et script som er utformet til lage array fra datasettene

rtk_arr = extract_coordinates_kml_RTK(
        'dataset/sammenlikning_gnss/RTK_gnss_mottaker.kml'
    )

mobil_arr = extract_coordinates_kml_mobil(
        'dataset/sammenlikning_gnss/mobiltelefon_gnss_motaker.kml'
    )

arduino_arr = extract_coordinates_kml_arduino(
        'dataset/sammenlikning_gnss/arduino_gnss_mottaker.kml'
    )

# Korrigerer arduino array for veldig missvisende førstepunkter
# (kom anntakelig fra merging av filer,
# samt at enhetene bruker tid på å instille seg)

arduino_arr = arduino_arr[60:]

mobil_arr = mobil_arr[60:]
```

Lager en funksjon som konverterer lengde- og breddegrad til UTM32 formatet. Slik at vi får standardavvik i meter.

```
[]: import pyproj

def convert_to_utm32(coord_pairs):
    # Define the UTM32 (Zone 32N) projection
    utm_proj = pyproj.Proj(proj='utm', zone=32, ellps='WGS84', south=False)

# Convert the coordinates and return the combined UTM coordinates
    return list(zip(*utm_proj(*zip(*coord_pairs))))
```

Ønsker så å plotte data for oversikt. Har laget eget script for dette.

```
[]: %run coordinates_scatterplot.py
     plot_multiple_coordinates(
         convert_to_utm32(mobil_arr),
         convert_to_utm32(arduino_arr),
         convert_to_utm32(rtk_arr),
         labels=[
             'Samsung Galaxy S22 (GPS Logger app)',
             'Arduino MKR100 med GPS shield',
             'RTK mobilstasjon'
         ],
         colors=[
             'orange',
             'grey',
             'red'
         ]
     )
```


Ønsker så å lage en tabell over ulike verdier knyttet til målingene

```
[]: import numpy as np
import pandas as pd

data = {
```

```
'RTK': convert_to_utm32(rtk_arr),
    'Mobiltelefon': convert_to_utm32(mobil_arr),
    'Arduino-enhet': convert_to_utm32(arduino_arr),
}
# Signifikante tall for hver målemetode (i henhold til nøyaktighet i fil)
# Disse verdiene er funnet ved hvor nøyaktige koordinatene er i filen
# Og hvor mange meter nøyaktigheten i lengde-og breddegrader tilsvarer
# Feks ved 8 desimalpunkter i koordinatet,
# så målingens nøyaktighet på milimeternivå
precision_dict = {
    'RTK': 3,
    'Mobiltelefon': 3,
    'Arduino-enhet': 2
}
# Finner gjennomsnittskoordinat og standardavvik
def analyze_coordinates(arr, method=''):
   arr_mean = np.mean(arr, axis=0)
   arr_std = np.std(arr, axis=0)
   arr size = len(arr)
   return [method, arr_size, arr_mean, arr_std]
# Funksjon for å finne avrunde avledede enheter til rette sifnifikant tall
def adjust_significant_figures(value, precision):
   if isinstance(value, list):
       return [round(v, precision) for v in value]
   return round(value, precision)
# Lager en dataframe og skriver en csv fil
def create_dataframe(coord_dict):
   data list = []
   for method, arr in coord_dict.items():
        _, arr_size, arr_mean, arr_std = analyze_coordinates(arr, method)
       row = [method, arr_size, arr_mean.tolist(), arr_std.tolist()]
       data_list.append(row)
   df = pd.DataFrame(data_list, columns=[
                      'Metode', 'Antall punkter', 'Gjennomsnitt [m]',
 # Anvender signifikante tall funksjonen
   df['Gjennomsnitt [m]'] = df.apply(lambda row: adjust_significant_figures(
        row['Gjennomsnitt [m]'], precision_dict[row['Metode']]), axis=1)
   df['Standardavvik [m]'] = df.apply(lambda row: adjust_significant_figures(
       row['Standardavvik [m]'], precision_dict[row['Metode']]), axis=1)
```

```
# Skriver til fil
df.to_csv('dataset/coordinates_analysis.csv', index=False)
return df
display(create_dataframe(data))
```

	Metode	Antall punkter	Gjennomsnitt [m]	Standardavvik [m]
0	RTK	7	[600011.179, 6615540.58]	[0.006, 0.015]
1	Mobiltelefon	273	[600011.881, 6615540.661]	[0.157, 0.134]
2	Arduino-enhet	194	[600010.98, 6615540.74]	[0.37, 0.63]

Plotter så de ønskede verdiene ved bruk av et plottescript som lastes inn:

```
[]: %run plot_with_errorbars.py
plot_coordinates_with_error_bars(create_dataframe(data))
```

