3

1

WHAT IS CLAIMED IS:

1	1.	A method of determining a potential at a surface of a sample, the method
2	comprising:	
3		immersing the sample in a polar solution so as to form a potential gradient
4	at the surface;	
5		positioning a tip of a probe of a scanning probe microscope in the solution
6	a perpendicula	r distance from the surface; and
7		measuring a potential of the probe.
1	2.	The method of Claim 1, further comprising the step of providing relative
2	scanning move	ement between the sample and the probe.
1	3.	The method of Claim 2 further comprising the step of generating a
2	feedback signa	l based on the potential.
1	4.	The method of Claim 3, further comprising the step of moving the tip
2	generally ortho	gonal to the surface in response to the feedback signal so as to maintain a

The method of Claim 4, further including the step of recording an X-Y scan position associated with the feedback signal so as to facilitate generation of a topography map of the surface of the sample.

generally constant separation between the two.

- 1 6. The method of Claim 1, wherein the potential is a potential difference between the probe and a reference.
 - 7. The method of Claim 6, wherein the reference is the sample.

- 1 8. The method of Claim 1, further including the step of moving the tip 2 relative to the surface so as to keep the potential difference therebetween generally 3 constant.
- 1 9. The method of Claim 1, further including the step of controlling a potential associated with the sample.
- 1 10. The method of Claim 1, further including the step of controlling a current 2 through the sample.
- 1 11. The method of Claim 1, further including the steps of:
 2 moving the tip substantially perpendicularly to the surface; and
 3 measuring the potential difference between the tip and the sample during
 4 said moving step.
- 1 12. The method of Claim 11, wherein said moving step is performed at a particular X-Y position of the surface of the sample.
- 1 13. The method of Claim 1, wherein the sample is one of a conductive material and a semi-conductive material.
- 1 14. The method of Claim 1, wherein the polar solution is one of an aqueous 2 solution and a non-aqueous solution.
- 1 15. The method of Claim 1, wherein the polar solution is electrolytic.
- 1 16. The method of Claim 1, wherein the polar solution is a pure liquid.
- 1 17. The method of Claim 1, wherein the potential gradient is formed by an 2 electrical double layer.

1	18.	The method of Claim 1, further comprising the step of altering the ionic	
2	concentration of the polar solution.		
1	19.	The method of Claim 1, wherein the controlling step includes operating in	
2	an open circuit condition.		
1	20.	The method of Claim 1, further comprising the step of providing relative	
2	scanning movement between the sample and the probe while maintaining a separation		
3	between the tip and the surface generally constant.		
1	21.	A method of characterizing a sample surface, the method comprising:	
2		determining, with a probe of a scanning probe microscope operating in an	
3	SEPM mode, a potential across a potential gradient formed at the sample surface; and		
4		characterizing the sample with the probe of the scanning probe microscope	
5	operating in an STM mode.		
1	22.	The method of Claim 21, wherein the potential gradient is formed by an	
2	electrical double layer.		

- 1 23. The method of Claim 21, further comprising the step of scanning the sample surface with the probe.
 - 24. The method of Claim 21, further comprising the steps of:
 repeating said determining and characterizing steps for a plurality of
 points on the sample during said scanning step;
 generating an SEPM image based on said determining step;
 generating an SPM image based on said characterizing step; and
 comparing the SEPM and SPM image.

1

2

1	25.	The method of Claim 24, wherein said comparing step includes
2	subtracting th	e STM image from the SEPM image so as to generate a charge distribution
3	image.	

- 26. A scanning electrochemical potential microscope (SEPM) comprising:
 a sample support that accommodates a sample immersed in a polar
 solution, wherein a potential gradient is formed at a surface of the sample;
 a probe having a tip including a distal end disposed a perpendicular
 distance from the surface; and
 a potential measuring device electrically coupled to said tip that measures
 a potential across said potential gradient.
- The SEPM of Claim 26, further comprising a scanning actuator that provides relative scanning movement between said probe and said sample.
- 1 28. The SEPM of Claim 26, wherein said scanning actuator is a piezoelectric 2 actuator.
 - 29. The SEPM of Claim 26, further comprising a feedback circuit that generates a feedback signal based on said potential.
- 1 30. The SEPM of Claim 29, further comprising a Z-actuator that translates the Z-position of said tip in response to said feedback signal.
- 1 31. The SEPM of Claim 26, further comprising a Z-actuator that translates the Z-position of the tip in a spectroscopic mode.
- 1 32. The SEPM of Claim 26, further comprising a tuning device that modifies a sample potential at the sample surface.
- 1 33. The SEPM of Claim 32, wherein said tuning device is a bi-potentiostat.

- 1 34. The SEPM of Claim 26, wherein the polar solution has an associated ionic concentration, and said potential gradient is formed by an electrical double layer.
- 1 35. The SEPM of Claim 34, wherein said ionic concentration can be modified 2 to tune the operation of the SEPM.