1. Permutations and combinations

There are $n! = \prod_{i=1}^{n} i = 1.2.3.4...n$ permutations of n objects.

There are $\binom{n}{k} = n!/(k!(n-k)!)$ ways of choosing a given k objects from n.

2. Joint and conditional probabilities

If C and D are any events: $P(C \cup D) = P(C) + P(D) - P(C \cap D)$.

The conditional probability of C given D is $P(C \mid D) = P(C \cap D) / P(D)$.

C and D are independent if $P(C \cap D) = P(C).P(D)$.

3. Laws and theorems

Suppose E_1, \ldots, E_k is a partition of Ω . That is $E_i \cap E_j$ is empty, and $E_1 \cup E_2 \cup \ldots \cup E_k = \Omega$. The law of total probability states that: $P(D) = \sum_{j=1}^{k} P(D \cap E_j) = \sum_{j=1}^{k} P(D \mid E_j) P(E_j)$

Bayes' Theorem states that: $P(E_i \mid D) = P(D \mid E_i) P(E_i)/P(D)$

4. Random variables and distributions

discrete (mass)

continuous (density)

pmf: $P(X = x) = p_X(x)$ pdf: $f_X(x)$ Probability mass/density function all x with $p_X(x) > 0$ $-\infty < x < \infty$ defined for $\sum_{x \in B} p_X(x)$ $\int_{x \in B} f_X(x) dx$ Probability $P(X \in B)$

 $\sum_{x \in B} p_X(x) \qquad \qquad \int_{x \in B} f_X(x) dx$ $F_X(x) = \sum_{y \le x} p_X(y) \qquad F_X(x) = \int_{-\infty}^x f_X(y) dy$ Cumulative distrib. func. CDF, P(X < x)

5. Standard distributions:

$$p_X$$
 or f_X

values

Discrete

(a) Binomial;
$$B(n,p)$$
; $P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$ $x = 0, 1, 2, ..., n$

index n, parameter p;

(b) Hypergeometric
$$(N, k, n)$$
; $P(X = x) = {k \choose x} {N-k \choose n-x} / {N \choose n}$ $x = \min(0, k+n-N), ..., \max(n, k)$

(c) Poisson with parameter
$$\mu$$
,
$$P(X=x) = \exp(-\mu)\mu^x/x! \qquad x=0,1,2,3,4....$$
 $\mathcal{P}o(\mu)$

(d) Geometric
$$Geom(p)$$

$$P(X=x) \ = \ (1-p)^{x-1}p \qquad \qquad x=1,2,.$$

Continuous

(e) Uniform
$$U(a,b)$$
; $f_X(x) = 1/(b-a)$ $a < x < b$ on interval (a,b)

(f) Exponential rate
$$\lambda$$
; $\mathcal{E}(\lambda)$ $f_X(x) = \lambda \exp(-\lambda x)$ $x > 0$