Solution

Section 3.2 – Angle and Orthogonality in Inner Product Spaces

Exercise

Which of the following form orthonormal sets?

a)
$$(1, 0), (0, 2)$$
 in \mathbb{R}^2

b)
$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

c)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

d)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \text{ in } \mathbb{R}^3$$

e)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \text{ in } \mathbb{R}^3$$

$$f$$
) $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ in \mathbb{R}^3

Solution

a)
$$(1, 0) \cdot (0, 2) = 1(0) + 0(2)$$

= 0

They are *orthonormal* sets

b)
$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= 0$$

They are orthonormal sets

c)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \left(-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}} + \left(-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}}$$
$$= -\frac{1}{2} - \frac{1}{2}$$
$$= -1 \neq 0$$

They are *not orthonormal* sets

d)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \left(-\frac{1}{\sqrt{2}} \right) + 0 + \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{3}} \right) \frac{1}{\sqrt{2}}$$

$$= -\frac{1}{2} \frac{1}{\sqrt{3}} - \frac{1}{2} \frac{1}{\sqrt{3}}$$

$$= -\frac{1}{\sqrt{3}} \neq 0$$

They are *not orthonormal* sets

e)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

$$= \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \left(-\frac{2}{3}\right) \cdot \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \left(-\frac{2}{3}\right) \cdot \frac{2}{3}$$

$$= \frac{4}{27} - \frac{4}{27} - \frac{4}{27}$$

$$= -\frac{4}{27} \neq 0$$

They are not orthonormal sets

$$\mathcal{D} \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}} \right) \cdot \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right) = \frac{1}{\sqrt{6}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}} \left(-\frac{1}{\sqrt{2}} \right) + 0$$

$$= 0$$

They are *orthonormal* sets

Exercise

Find the cosine of the angle between \vec{u} and \vec{v} .

a)
$$\vec{u} = (1, -3), \quad \vec{v} = (2, 4)$$

e)
$$\vec{u} = (1, 0, 1, 0), \quad \vec{v} = (-3, -3, -3, -3)$$

b)
$$\vec{u} = (-1, 0), \quad \vec{v} = (3, 8)$$

$$\vec{y}$$
 $\vec{u} = (2, 1, 7, -1), \quad \vec{v} = (4, 0, 0, 0)$

c)
$$\vec{u} = (-1, 5, 2), \quad \vec{v} = (2, 4, -9)$$

g)
$$\vec{u} = (1, 3, -5, 4), \quad \vec{v} = (2, -4, 4, 1)$$

d)
$$\vec{u} = (4, 1, 8), \quad \vec{v} = (1, 0, -3)$$

h)
$$\vec{u} = (1, 2, 3, 4), \quad \vec{v} = (-1, -2, -3, -4)$$

a)
$$\vec{u} = (1, -3), \quad \vec{v} = (2, 4)$$

$$\|\vec{u}\| = \sqrt{1^2 + (-3)^2}$$

$$= \sqrt{10} \quad |$$

$$\|\vec{v}\| = \sqrt{2^2 + 4^2}$$

$$= \sqrt{20} \quad |$$

$$\langle \vec{u}, \vec{v} \rangle = 1(2) + (-3)(4)$$

= -10

$$\cos \theta = \frac{-10}{\sqrt{10} \sqrt{20}}$$
$$= -\frac{10}{\sqrt{200}}$$
$$= -\frac{1}{\sqrt{2}}$$

$$\cos \theta = \frac{\left\langle \vec{u}, \vec{v} \right\rangle}{\|\vec{u}\| \|\vec{v}\|}$$

b)
$$\vec{u} = (-1, 0); \vec{v} = (3, 8)$$

$$\|\vec{u}\| = \sqrt{(-1)^2 + 0^2}$$
= 1

$$\|\vec{v}\| = \sqrt{3^2 + 8^2}$$
$$= \sqrt{73} \mid$$

$$\langle \vec{u}, \vec{v} \rangle = (-1)(3) + (0)(8)$$

= -3 |

$$\cos \theta = \frac{-3}{1\sqrt{73}}$$
$$= -\frac{3}{\sqrt{73}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

c)
$$\vec{u} = (-1, 5, 2); \vec{v} = (2, 4, -9)$$

$$\|\vec{u}\| = \sqrt{(-1)^2 + 5^2 + 2^2}$$

= $\sqrt{30}$

$$\|\vec{v}\| = \sqrt{2^2 + 4^2 + (-9)^2}$$
$$= \sqrt{101} \mid$$

$$\langle \vec{u}, \vec{v} \rangle = (-1)(2) + (5)(4) + (2)(-9)$$

= 0

$$\cos \theta = 0$$

$$\cos \theta = \frac{\left\langle \vec{u}, \vec{v} \right\rangle}{\|\vec{u}\| \|\vec{v}\|}$$

d)
$$\vec{u} = (4, 1, 8); \quad \vec{v} = (1, 0, -3)$$

$$\|\vec{u}\| = \sqrt{4^2 + 1^2 + 8^2}$$

$$\frac{=9}{\|\vec{v}\|} = \sqrt{1+0+9}$$

$$=\sqrt{10}$$

$$\langle \vec{u}, \vec{v} \rangle = (4)(1)+(1)(0)+(8)(-3)$$

$$=-20$$

$$\cos \theta = -\frac{20}{9\sqrt{10}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

e)
$$\vec{u} = (1, 0, 1, 0); \quad \vec{v} = (-3, -3, -3, -3)$$

$$\|\vec{u}\| = \sqrt{2}$$

$$\|\vec{v}\| = \sqrt{9+9+9+9}$$
$$= 12 \mid$$

$$\langle \vec{u}, \vec{v} \rangle = -3 + 0 - 3 + 0$$

= -6

$$\cos \theta = \frac{-6}{12\sqrt{2}}$$
$$= -\frac{1}{2\sqrt{2}}$$

$$\cos \theta = \frac{\left\langle \vec{u}, \vec{v} \right\rangle}{\left\| \vec{u} \right\| \left\| \vec{v} \right\|}$$

$$\vec{p}$$
 $\vec{u} = (2, 1, 7, -1); \vec{v} = (4, 0, 0, 0)$

$$\|\vec{u}\| = \sqrt{2^2 + 1^2 + 7^2 + (-1)^2}$$

= $\sqrt{55}$

$$\|\vec{v}\| = \sqrt{4^2 + 0}$$

$$\langle \vec{u}, \vec{v} \rangle = (2)(4) + (1)(0) + (7)(0) + (-1)(0)$$

= 8 |

$$\cos \theta = \frac{8}{4\sqrt{55}}$$

$$= \frac{2}{\sqrt{55}}$$

$$= \frac{2}{\sqrt{55}}$$

g)
$$\vec{u} = (1, 3, -5, 4), \quad \vec{v} = (2, -4, 4, 1)$$

$$\|\vec{u}\| = \sqrt{1 + 9 + 25 + 16}$$

h)
$$\vec{u} = (1, 2, 3, 4), \quad \vec{v} = (-1, -2, -3, -4)$$

$$\|\vec{u}\| = \sqrt{1 + 4 + 9 + 16}$$

$$= \sqrt{30}$$

$$\|\vec{v}\| = \sqrt{1 + 4 + 9 + 16}$$

$$= \sqrt{30}$$

$$\langle \vec{u}, \vec{v} \rangle = -1 - 4 - 9 - 16$$

$$= -30$$

$$\cos \theta = \frac{-30}{\sqrt{30}\sqrt{30}}$$

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

Find the cosine of the angle between A and B.

a)
$$A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & -2 & 7 \\ 6 & -3 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & -4 \end{pmatrix}$

a)
$$A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$
 $||A|| = \sqrt{\langle A, A \rangle}$
 $= \sqrt{2^2 + 6^2 + 1^2 + (-3)^2}$
 $= \sqrt{50}$

$$= 5\sqrt{2}$$

$$\|B\| = \sqrt{\langle B, B \rangle}$$

$$= \sqrt{9 + 4 + 1 + 0}$$

$$= \sqrt{14}$$

$$\langle A, B \rangle = 2(3) + 6(2) + 1(1) + (-3)(0)$$

$$= 19$$

$$\cos \theta = \frac{19}{5\sqrt{2}\sqrt{14}}$$

$$= \frac{19}{10\sqrt{7}}$$

$$\cos \theta = \frac{19}{10\sqrt{7}}$$

b)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$

$$\|A\| = \sqrt{\langle A, A \rangle}$$

$$= \sqrt{2^2 + 4^2 + (-1)^2 + 3^2}$$

$$= \sqrt{30}$$

$$\|B\| = \sqrt{\langle B, B \rangle}$$

$$= \sqrt{(-3)^2 + 1^2 + 4^2 + 2^2}$$

$$= \sqrt{30}$$

$$\langle A, B \rangle = 2(-3) + 4(1) + (-1)(4) + 3(2)$$

$$= 0$$

$$\cos \theta = \frac{0}{30}$$

$$\cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

=0

c)
$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
 $||A|| = \sqrt{81 + 64 + 49 + 36 + 25 + 16}$ $||A|| = \sqrt{\langle A, A \rangle}$
 $= \sqrt{271}$ $||B|| = \sqrt{1 + 4 + 9 + 16 + 25 + 36}$ $||B|| = \sqrt{\langle B, B \rangle}$
 $= \sqrt{91}$ $||B|| = \sqrt{1 + 4 + 9 + 16 + 25 + 36}$ $||B|| = \sqrt{\langle B, B \rangle}$

$$\langle A, B \rangle = 9 + 16 + 21 + 24 + 25 + 24$$

$$= 119 \rfloor$$

$$\cos \theta = \frac{119}{\sqrt{271}\sqrt{91}} \qquad \cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

$$d) \quad A = \begin{pmatrix} 1 & -2 & 7 \\ 6 & -3 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & -4 \end{pmatrix}$$

$$\|A\| = \sqrt{1^2 + (-2)^2 + 7^2 + 6^2 + (-3)^2 + 4^2} \qquad \|A\| = \sqrt{\langle A, A \rangle}$$

$$= \sqrt{115} \rfloor$$

$$\|B\| = \sqrt{1^2 + (-2)^2 + 3^2 + 6^2 + 5^2 + (-4)^2} \qquad \|B\| = \sqrt{\langle B, B \rangle}$$

$$= \sqrt{91} \rfloor$$

$$\langle A, B \rangle = 1 + 4 + 21 + 36 - 15 - 16$$

$$= 31 \rfloor$$

$$\cos \theta = \frac{31}{\sqrt{115}\sqrt{91}} \qquad \cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

Determine whether the given vectors are orthogonal with respect to the Euclidean inner product.

a)
$$\vec{u} = (-1, 3, 2), \quad \vec{v} = (4, 2, -1)$$

a)
$$\vec{u} = (-1, 3, 2), \quad \vec{v} = (4, 2, -1)$$

b) $\vec{u} = (a, b), \quad \vec{v} = (-b, a)$
d) $\vec{u} = (-4, 6, -10, 1), \quad \vec{v} = (2, 1, -2, 9)$
e) $\vec{u} = (-4, 6, -10, 1), \quad \vec{v} = (2, 1, -2, 9)$

b)
$$\vec{u} = (a, b), \quad \vec{v} = (-b, a)$$

e)
$$\vec{u} = (-4, 6, -10, 1), \vec{v} = (2, 1, -2, 9)$$

c)
$$\vec{u} = (-2, -2, -2), \vec{v} = (1, 1, 1)$$

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (-1)(4) + 3(2) + 2(-1)$$

= 0

Therefore, the given vectors are orthogonal.

b)
$$\langle \vec{u}, \vec{v} \rangle = a(-b) + b(a)$$

$$= 0 \mid$$

Therefore, the given vectors are orthogonal.

c)
$$\langle \vec{u}, \vec{v} \rangle = (-2)(1) + (-2)(1) + (-2)(1)$$

= -6 |

Therefore, the given vectors are *not* orthogonal.

d)
$$\langle \langle \vec{u}, \vec{v} \rangle \rangle = (-4)(2) + (6)(1) + (-10)(-2) + (1)(9)$$

= $\frac{27}{4} \neq 0$

Therefore, the given vectors are *not* orthogonal.

e)
$$\|\vec{u}\| = \sqrt{(-4)^2 + 6^2 + (-10)^2 + 1^2}$$

 $= \sqrt{153}$
 $= 3\sqrt{17}$ $\Big\|\vec{v}\| = \sqrt{2^2 + 1^2 + (-2)^2 + 9^2}$
 $= \sqrt{90}$
 $= 3\sqrt{10}$ $\Big\|\vec{v}\| = \sqrt{2^2 + 1^2 + (-2)^2 + 9^2}$
 $= \sqrt{90}$
 $= 27\sqrt{10}$ $\Big\|\vec{v}\| = \sqrt{27}$ $\Big\|\vec{v}\| = \sqrt$

The vectors \vec{u} and \vec{v} are **not** orthogonal with respect to the Euclidean

Exercise

Do there exist scalars k and l such that the vectors $\vec{u} = (2, k, 6)$, $\vec{v} = (l, 5, 3)$, and $\vec{w} = (1, 2, 3)$ are mutually orthogonal with respect to the Euclidean inner product?

$$\langle \vec{u}, \vec{w} \rangle = (2)(1) + (k)(2) + (6)(3)$$

 $= 20 + 2k = 0$
 $\Rightarrow \underline{k} = -10$
 $\langle \vec{v}, \vec{w} \rangle = (l)(1) + (5)(2) + (3)(3)$
 $= l + 19 = 0$
 $\Rightarrow \underline{l} = -19$
 $\langle \vec{u}, \vec{v} \rangle = (2)(l) + (k)(5) + (6)(3)$
 $= 2l + 5k + 18 = 0$

$$2(-19) + 5(-10) + 18 = -70 \neq 0$$

Thus, there are no scalars such that the vectors are mutually orthogonal.

Exercise

Let \mathbb{R}^3 have the Euclidean inner product. For which values of k are \vec{u} and \vec{v} orthogonal?

a)
$$\vec{u} = (2, 1, 3), \quad \vec{v} = (1, 7, k)$$

b)
$$\vec{u} = (k, k, 1), \quad \vec{v} = (k, 5, 6)$$

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (2)(1) + (1)(7) + (3)(k)$$

= $9 + 3k = 0$

 \vec{u} and \vec{v} are orthogonal for $\underline{k = -3}$

b)
$$\langle \vec{u}, \vec{v} \rangle = (k)(k) + (k)(5) + (1)(6)$$

= $k^2 + 5k + 6 = 0$

 \vec{u} and \vec{v} are orthogonal for k = -2, -3

Exercise

Let V be an inner product space. Show that if \vec{u} and \vec{v} are orthogonal unit vectors in V, then $\|\vec{u} - \vec{v}\| = \sqrt{2}$

Solution

$$\begin{aligned} \left\| \vec{u} - \vec{v} \right\|^2 &= \left\langle \vec{u} - \vec{v}, \ \vec{u} - \vec{v} \right\rangle \\ &= \left\langle \vec{u}, \ \vec{u} - \vec{v} \right\rangle - \left\langle \vec{v}, \ \vec{u} - \vec{v} \right\rangle \\ &= \left\langle \vec{u}, \ \vec{u} \right\rangle - \left\langle \vec{u}, \ \vec{v} \right\rangle - \left\langle \vec{u}, \ \vec{v} \right\rangle + \left\langle \vec{v}, \ \vec{v} \right\rangle \\ &= \left\| \vec{u} \right\|^2 - 0 - 0 + \left\| \vec{v} \right\|^2 \\ &= 1 + 1 \\ &= 2 \end{aligned}$$

since \vec{u} and \vec{v} are orthogonal unit vectors

Thus $\|\vec{u} - \vec{v}\| = \sqrt{2}$

Let **S** be a subspace of \mathbb{R}^n . Explain what $\left(\mathbf{S}^{\perp}\right)^{\perp} = \mathbf{S}$ means and why it is true.

Solution

 $(S^{\perp})^{\perp}$ is the orthogonal complement of, S^{\perp} , which is itself the orthogonal complement of S, so $(S^{\perp})^{\perp} = S$ means that S is the orthogonal of its orthogonal complement.

We need to show that S is contained in $(S^{\perp})^{\perp}$ and, conversely, that $(S^{\perp})^{\perp}$ is contained in S to be true.

- i. Suppose $\vec{v} \in S^{\perp}$ and $\vec{w} \in S^{\perp}$. Then $\langle \vec{v}, \vec{w} \rangle = 0$ by definition of S^{\perp} . Thus, S is certainly contained is $\left(S^{\perp}\right)^{\perp}$ (which consists of all vectors in \mathbb{R}^n which are orthogonal to S^{\perp}).
- ii. Suppose $\vec{v} \in \left(\boldsymbol{S}^{\perp} \right)^{\perp}$ (means \vec{v} is orthogonal to all vectors in \boldsymbol{S}^{\perp}); then we need to show that $\vec{v} \in \boldsymbol{S}$.

 Let assume $\left\{ \vec{u}_1, \, \vec{u}_2, \, ..., \, \vec{u}_p \right\}$ be a basis for \boldsymbol{S} and let $\left\{ \vec{w}_1, \, \vec{w}_2, \, ..., \, \vec{w}_q \right\}$ be a basis for \boldsymbol{S}^{\perp} . If $\vec{v} \notin \boldsymbol{S}$, then $\left\{ \vec{u}_1, \, \vec{u}_2, \, ..., \, \vec{u}_p, \, \vec{v} \right\}$ is linearly independent set. Since each vector ifs that set is orthogonal to all of \boldsymbol{S}^{\perp} , the set $\left\{ \vec{u}_1, \, \vec{u}_2, \, ..., \, \vec{u}_p, \, \vec{v}, \, \vec{w}_1, \, \vec{w}_2, \, ..., \, \vec{w}_q \right\}$ is linearly independent. Since there are p+q+1 vectors in this set, this means that $p+q+1 \leq n \iff p+q \leq n-1$. On the other hand, If A is the matrix whose i^{th} row is \vec{u}_i^T , then the row space of A is \boldsymbol{S} and the nullspace of A is \boldsymbol{S}^{\perp} .

Since **S** is *p*-dimensional, the rank of *A* is *p*, meaning that the dimension of nul(A) = S^{\perp} is q = n - p. Therefore,

$$p+q=p+(n-p)=n$$

Which contradict the fact that $p+q \le n-1$. From this, we see that, if $\vec{v} \in (S^{\perp})^{\perp}$, it must be the case that $\vec{v} \in S$.

The methane molecule CH_4 is arranged as if the carbon atom were at the center of a regular tetrahedron with four hydrogen atoms at the vertices. If vertices are placed at (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) - (note) that all six edges have length $\sqrt{2}$, so the tetrahedron is regular). What is the cosine of the angle between the rays going from the center $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ to the vertices?

Solution

Let \vec{v} be the vector of the segment (1, 0, 1) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{2} \\ \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

Let be the vector of the segment (0, 1, 1) and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

$$\vec{v} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

 $\theta\approx 109.47^{\circ}$

We have:

$$\cos \theta = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \|\vec{w}\|}$$

$$= \frac{\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) \cdot \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)}{\sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}}}$$

$$= \frac{-\frac{1}{4}}{\frac{3}{4}}$$

$$= -\frac{1}{3}$$

Exercise

Determine if the given vectors are orthogonal.

$$\vec{x}_1 = (1, 0, 1, 0), \quad \vec{x}_2 = (0, 1, 0, 1), \quad \vec{x}_3 = (1, 0, -1, 0), \quad \vec{x}_4 = (1, 1, -1, -1)$$

$$\vec{x}_{1} \cdot \vec{x}_{2} = (1, 0, 1, 0) \cdot (0, 1, 0, 1)$$

$$= 0$$

$$\vec{x}_{1} \cdot \vec{x}_{3} = (1, 0, 1, 0) \cdot (1, 0, -1, 0)$$

$$= 1 - 1$$

$$= 0$$

$$\vec{x}_{1} \cdot \vec{x}_{4} = (1, 0, 1, 0) \cdot (1, 1, -1, -1)$$

$$= 1 - 1$$

$$= 0$$

$$\vec{x}_{2} \cdot \vec{x}_{3} = (0, 1, 0, 1) \cdot (1, 0, -1, 0)$$

$$= 0$$

$$\vec{x}_{2} \cdot \vec{x}_{4} = (0, 1, 0, 1) \cdot (1, 1, -1, -1)$$

$$= 1 - 1$$

The given vectors are orthogonal.

Exercise

Which of the following sets of vectors are orthogonal with respect to the Euclidean inner

a)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$
 $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

Solution

a)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{6}} + 0 - \frac{1}{\sqrt{6}}$$

$$= 0$$

$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = -\frac{1}{2} + 0 + \frac{1}{2}$$

$$= 0$$

$$\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{6}} + 0 - \frac{1}{\sqrt{6}}$$

$$= -\frac{2}{\sqrt{6}} \neq 0$$

Therefore, the given vectors are *not* orthogonal.

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) = \frac{4}{9} - \frac{2}{9} - \frac{2}{9}$$

$$= 0 \rfloor$$

$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = \frac{2}{9} - \frac{4}{9} + \frac{2}{9}$$

$$= 0 \rfloor$$

$$\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \cdot \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = \frac{2}{9} + \frac{2}{9} - \frac{4}{9}$$

$$= 0 \rfloor$$

Therefore, the given vectors are orthogonal.

Consider vectors $\vec{u} = (2, 3, 5)$ $\vec{v} = (1, -4, 3)$ in \mathbb{R}^3

- a) $\langle \vec{u}, \vec{v} \rangle$ b) $\|\vec{u}\|$
- $c) \quad \|\vec{v}\|$
- d) Cosine between \vec{u} and \vec{v}

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (2, 3, 5) \cdot (1, -4, 3)$$

= 2-12+15
= 5

- **b)** $\|\vec{u}\| = \sqrt{4+9+25}$ $=\sqrt{38}$
- c) $\vec{v} = \sqrt{1+16+9}$ $=\sqrt{26}$
- d) $\cos \theta = \frac{5}{\sqrt{38}\sqrt{26}}$ $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

Exercise

Consider vectors $\vec{u} = (1, 1, 1)$ $\vec{v} = (1, 2, -3)$ in \mathbb{R}^3

- a) $\langle \vec{u}, \vec{v} \rangle$ b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine θ between \vec{u} and \vec{v}

Solution

a)
$$\langle \vec{u}, \vec{v} \rangle = (1, 1, 1) \cdot (1, 2, -3)$$

= 1 + 2 - 3
= 0

- **b)** $\|\vec{u}\| = \sqrt{1+1+1}$
- c) $\|\vec{v}\| = \sqrt{1+4+9}$ $=\sqrt{14}$
- d) $\cos \theta = 0$

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

 \vec{u} and \vec{v} are orthogonal vectors.

Consider vectors $\vec{u} = (1, 2, 5)$ $\vec{v} = (2, -3, 5)$ $\vec{w} = (4, 2, -3)$ in \mathbb{R}^3

- a) $\langle \vec{u}, \vec{v} \rangle$
- d) $\|\vec{u}\|$
- g) Cosine α between \vec{u} and \vec{v}

- b) $\langle \vec{u}, \vec{w} \rangle$
- e) $||\vec{v}||$
- h) Cosine β between \vec{u} and \vec{w}

- c) $\langle \vec{v}, \vec{w} \rangle$
- f) $\|\vec{w}\|$
- i) Cosine θ between \vec{v} and \vec{w}
- $j) \quad \left(\vec{u} + \vec{v}\right) \bullet \vec{w}$

a)
$$\langle \vec{u}, \vec{v} \rangle = (1, 2, 5) \cdot (2, -3, 5)$$

= 2 - 6 + 25
= 21

b)
$$\langle \vec{u}, \vec{w} \rangle = (1, 2, 5) \cdot (4, 2, -3)$$

= $4 + 4 - 15$
= -7

c)
$$\langle \vec{v}, \vec{w} \rangle = (2, -3, 5) \cdot (4, 2, -3)$$

= 8 - 6 - 15
= -13

d)
$$\|\vec{u}\| = \sqrt{1 + 4 + 25}$$

= $\sqrt{30}$

e)
$$\|\vec{v}\| = \sqrt{4+9+25}$$

= $\sqrt{38}$

$$||\vec{w}|| = \sqrt{16 + 4 + 9}$$

$$= \sqrt{29} |$$

g)
$$\cos \alpha = \frac{21}{\sqrt{30}\sqrt{38}}$$
 $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

h)
$$\cos \beta = \frac{-7}{\sqrt{30}\sqrt{29}}$$
 $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

i)
$$\cos \theta = \frac{-13}{\sqrt{38}\sqrt{29}}$$
 $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

j)
$$(\vec{u} + \vec{v}) \cdot \vec{w} = [(1, 2, 5) + (2, -3, 5)] \cdot (4, 2, -3)$$

= $(3, -1, 10) \cdot (4, 2, -3)$
= $12 - 2 - 30$
= -20

Consider polynomial f(t) = 3t - 5; $g(t) = t^2$ in $\mathbb{P}(t)$

a) $\langle f, g \rangle$ b) ||f||

d) Cosine between f and g

Solution

a)
$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

$$= \int_0^1 (3t - 5)t^2 dt$$

$$= \int_0^1 (3t^3 - 5t^2) dt$$

$$= \frac{3}{4}t^4 - \frac{5}{3}t^3 \Big|_0^1$$

$$= \frac{3}{4} - \frac{5}{3}$$

$$= -\frac{11}{12} \Big|$$

b)
$$\langle f, f \rangle = \int_0^1 f(t) f(t) dt$$

$$= \int_0^1 (3t - 5)^2 dt$$

$$= \frac{1}{3} \int_0^1 (3t - 5)^2 d(3t - 5)$$

$$= \frac{1}{9} (3t - 5)^3 \Big|_0^1$$

$$= \frac{1}{9} (8 - 125)$$

$$= 13 \rfloor$$

$$\|f\| = \sqrt{|\langle f, f \rangle|}$$

$$= \sqrt{13} \rfloor$$

c) $\langle g, g \rangle = \int_0^1 g(t)g(t)dt$

$$= \int_{0}^{1} t^{4} dt$$

$$= \frac{1}{5} t^{5} \Big|_{0}^{1}$$

$$= \frac{1}{5} \Big|$$

$$\|g\| = \sqrt{|\langle g, g \rangle|}$$

$$= \frac{1}{\sqrt{5}} \Big|_{0}^{1}$$

d)
$$\cos \theta = \frac{-\frac{11}{12}}{\sqrt{13}\frac{\sqrt{5}}{5}}$$

$$= \frac{-55}{12\sqrt{65}}$$

$$\cos\theta = \frac{f \cdot g}{\|f\| \|g\|}$$

Consider polynomial f(t) = t+2; g(t) = 3t-2; $h(t) = t^2 - 2t - 3$ in $\mathbb{P}(t)$

- a) $\langle f, g \rangle$
- g) Cosine α between f and g
- b) $\langle f, h \rangle$ e) $\|g\|$
- h) Cosine β between f and h

- c) $\langle g, h \rangle$
- i) Cosine θ between g and h

a)
$$\langle f, g \rangle = \int_0^1 (t+2)(3t-2)dt$$

$$= \int_0^1 (3t^2 + 4t - 4)dt$$

$$= t^3 + 2t^2 - 4t \Big|_0^1$$

$$= 1 + 2 - 4$$

$$= -1$$

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$

b)
$$\langle f, h \rangle = \int_0^1 (t+2)(t^2-2t-3)dt$$

$$\langle f, h \rangle = \int_0^1 f(t)h(t)dt$$

$$= \int_{0}^{1} \left(t^{3} - 7t - 6\right) dt$$

$$= \frac{1}{4}t^{4} - \frac{7}{2}t^{2} - 6t \Big|_{0}^{1}$$

$$= \frac{1}{4} - \frac{7}{2} - 6$$

$$= -\frac{37}{4}$$

c)
$$\langle g, h \rangle = \int_0^1 (3t - 2) (t^2 - 2t - 3) dt$$

$$= \int_0^1 (3t^3 - 8t^2 - 5t + 6) dt$$

$$= \frac{3}{4}t^4 - \frac{8}{3}t^3 - \frac{5}{2}t^2 + 6t \Big|_0^1$$

$$= \frac{3}{4} - \frac{8}{3} - \frac{5}{2}t + 6$$

$$= \frac{9}{4}$$

$$d) \langle f, f \rangle = \int_0^1 (t+2)^2 dt$$

$$= \frac{1}{3} (t+2)^3 \Big|_0^1$$

$$= \frac{1}{3} (27-8)$$

$$= \frac{19}{3}$$

$$||f|| = \sqrt{|\langle f, f \rangle|}$$

 $=\sqrt{\frac{19}{3}}$

e)
$$\langle g, g \rangle = \int_0^1 (3t - 2)^2 dt$$

$$= \frac{1}{3} \int_0^1 (3t - 2)^2 d(3t - 2)$$

$$= \frac{1}{9} (3t - 2)^3 \Big|_0^1$$

$$\langle f, h \rangle = \int_0^1 g(t)h(t)dt$$

$$\langle f, f \rangle = \int_0^1 f(t) f(t) dt$$

$$\langle g, g \rangle = \int_0^1 g(t)g(t)dt$$

$$= \frac{1}{9}(1+8)$$

$$= 1$$

$$\|g\| = \sqrt{|\langle g, g \rangle|}$$

$$= 1$$

$$f) \quad \langle g, g \rangle = \int_0^1 (t^2 - 2t - 3)^2 dt \qquad \langle h, h \rangle = \int_0^1 h(t)h(t)dt$$

$$= \int_0^1 (t^4 - 4t^3 - 2t^2 + 12t + 9)dt$$

$$= \left(\frac{1}{5}t^5 - t^4 - \frac{2}{3}t^3 + 6t^2 + 9t\right)\Big|_0^1$$

$$= \frac{1}{5} - 1 - \frac{2}{3} + 6 + 9$$

$$= \frac{203}{15}$$

$$\|h\| = \sqrt{|\langle h, h \rangle|}$$

$$= \sqrt{\frac{203}{15}}$$

g)
$$\cos \alpha = \frac{-1}{\sqrt{\frac{19}{3}}}$$
 $\cos \alpha = \frac{f \cdot g}{\|f\| \|g\|}$ $= -\sqrt{\frac{3}{19}}$

h)
$$\cos \beta = -\frac{37}{4} \frac{1}{\sqrt{\frac{19}{3}} \sqrt{\frac{203}{15}}}$$
 $\cos \beta = \frac{f \cdot g}{\|f\| \|g\|}$ $= -\frac{111}{4} \sqrt{\frac{5}{3,857}}$

i)
$$\cos \theta = \frac{9}{4} \frac{1}{\sqrt{\frac{203}{15}}}$$
 $\cos \theta = \frac{f \cdot g}{\|f\| \|g\|}$ $= \frac{9}{4} \sqrt{\frac{15}{203}}$

Suppose $\langle \vec{u}, \vec{v} \rangle = 3 + 2i$ in a complex inner product space V. Find:

a)
$$\langle (2-4i)\vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u}, (4+3i)\vec{v} \rangle$$

a)
$$\langle (2-4i)\vec{u}, \vec{v} \rangle$$
 b) $\langle \vec{u}, (4+3i)\vec{v} \rangle$ c) $\langle (3-6i)\vec{u}, (5-2i)\vec{v} \rangle$ d) $\|\vec{u}, \vec{v}\|$

d)
$$\|\vec{u}, \vec{v}\|$$

Solution

a)
$$\langle (2-4i)\vec{u}, \vec{v} \rangle = (2-4i)\langle \vec{u}, \vec{v} \rangle$$

= $(2-4i)(3+2i)$
= $6+4i-12i+8$
= $14-8i$

b)
$$\langle \vec{u}, (4+3i)\vec{v} \rangle = (4+3i)\langle \vec{u}, \vec{v} \rangle$$

= $(4+3i)(3+2i)$
= $12+8i+9i-6$
= $14-8i$

c)
$$\langle (3-6i)\vec{u}, (5-2i)\vec{v} \rangle = (3-6i)(5-2i)\langle \vec{u}, \vec{v} \rangle$$

 $= (15-36i-12)(3+2i)$
 $= (3-36i)(3+2i)$
 $= 9-102i+72$
 $= 81-102i$

d)
$$\|\vec{u}, \vec{v}\| = \sqrt{\langle \vec{u}, \vec{v} \rangle}$$

 $= \sqrt{9+4}$
 $= \sqrt{13}$

Exercise

Find the Fourier coefficient c and the projection $c\vec{v}$ of $\vec{u} = (3+4i, 2-3i)$ along $\vec{v} = (5+i, 2i)$ in \mathbb{C}^2

$$c = \frac{(3+4i)(\overline{5+i}) + (2-3i)(\overline{2i})}{5^2 + 1^2 + 2^2}$$

$$= \frac{(3+4i)(5-i) + (2-3i)(-2i)}{25+1+4}$$

$$= \frac{15+17i + 4 - 4i - 6}{30}$$

$$= \frac{13+13i}{30}$$

$$=\frac{13}{30}+\frac{13}{30}i$$

$$proj(\vec{u}, \vec{v}) = c\vec{v}$$

$$= \left(\frac{13}{30} + \frac{13}{30}i\right)(5+i, 2i)$$

$$= \left(\frac{13}{6} + \frac{13}{6}i + \frac{13}{30}i - \frac{13}{30}, \frac{13}{15}i - \frac{13}{15}\right)$$

$$= \left(\frac{52}{30} + \frac{78}{30}i, -\frac{13}{15} + \frac{13}{15}i\right)$$

$$= \left(\frac{26}{15} + \frac{39}{30}i, -\frac{13}{15} + \frac{13}{15}i\right)$$

Suppose $\vec{v} = (1, 3, 5, 7)$. Find the projection of \vec{v} onto \vec{W} or find $\vec{w} \in \vec{W}$ that minimizes $||\vec{v} - \vec{w}||$, where \vec{W} is the subspace of \mathbb{R}^4 spanned by:

a)
$$\vec{u}_1 = (1, 1, 1, 1)$$
 and $\vec{u}_2 = (1, -3, 4, -2)$

b)
$$\vec{v}_1 = (1, 1, 1, 1)$$
 and $\vec{v}_2 = (1, 2, 3, 2)$

Solution

a)
$$\vec{u}_1 \cdot \vec{u}_2 = (1, 1, 1, 1) \cdot (1, -3, 4, -2)$$

= 1-3+4-2
= 0

Therefore, \vec{u}_1 and \vec{u}_2 are orthogonal.

$$\begin{split} c_1 &= \frac{\left<\vec{v}, \; \vec{u}_1\right>}{\left<\vec{u}_1, \; \vec{u}_1\right>} \\ &= \frac{\left(1, \; 3, \; 5, \; 7\right) \cdot \left(1, \; 1, \; 1, \; 1\right)}{\left\|\left(1, \; 1, \; 1, \; 1\right)\right\|^2} \\ &= \frac{1 + 3 + 5 + 7}{1 + 1 + 1 + 1} \\ &= \frac{16}{4} \\ &= 4 \; \middle\rfloor \\ c_2 &= \frac{\left<\vec{v}, \; \vec{u}_2\right>}{\left<\vec{u}_2, \; \vec{u}_2\right>} \end{split}$$

$$= \frac{(1, 3, 5, 7) \cdot (1, -3, 4, -2)}{\|(1, -3, 4, -2)\|^2}$$

$$= \frac{1 - 9 + 20 - 14}{1 + 9 + 16 + 4}$$

$$= \frac{-2}{30}$$

$$= \frac{1}{15}$$

$$w = proj(\vec{v}, W)$$

$$= c_1 \vec{u}_1 + c_2 \vec{u}_2$$

$$= 4(1, 1, 1, 1) + \frac{1}{15}(1, -3, 4, -2)$$

$$= \left(\frac{59}{15}, \frac{63}{5}, \frac{56}{15}, \frac{62}{15}\right)$$

b)
$$\vec{v}_1 \cdot \vec{v}_2 = (1, 1, 1, 1) \cdot (1, 2, 3, 2)$$

= 1 + 2 + 3 + 2
= 8 \neq 0|

Therefore, \vec{v}_1 and \vec{v}_2 are not orthogonal.

Applying Gram-Schmidt algorithm

$$\vec{w}_1 = \vec{v}_1 = (1, 1, 1, 1)$$

$$\begin{split} \vec{w}_2 &= (1, \, 2, \, 3, \, 2) - \frac{(1, \, 2, \, 3, \, 2) \cdot (1, \, 1, \, 1, \, 1)}{4} (1, \, 1, \, 1, \, 1) \\ &= (1, \, 2, \, 3, \, 2) - 2(1, \, 1, \, 1, \, 1) \\ &= (-1, \, 0, \, 1, \, 0) \mid \\ c_1 &= \frac{(1, \, 3, \, 5, \, 7) \cdot (1, \, 1, \, 1, \, 1)}{\|(1, \, 1, \, 1, \, 1)\|^2} \\ &= \frac{1+3+5+7}{1+1+1+1} \\ &= \frac{16}{4} \\ &= 4 \mid \\ c_2 &= \frac{(1, \, 3, \, 5, \, 7) \cdot (-1, \, 0, \, 1, \, 0)}{\|(-1, \, 0, \, 1, \, 0)\|^2} \\ \end{split}$$

$$= \frac{-1+0+5+0}{2}$$

$$= -3 \mid$$

$$w = proj(\vec{v}, W)$$

$$= c_1 \vec{w}_1 + c_2 \vec{w}_2$$

$$= 4(1, 1, 1, 1) - 3(-1, 0, 1, 0)$$

$$= (7, 4, 1, 4) \mid$$

Suppose $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is an orthogonal set of vectors. Prove that (*Pythagoras*)

$$\|\vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n\|^2 = \|\vec{u}_1\|^2 + \|\vec{u}_2\|^2 + \dots + \|\vec{u}_n\|^2$$

Solution

$$\begin{split} \left\| \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n \right\|^2 &= \left\langle \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n, \ \vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n \right\rangle \\ &= \left\langle \vec{u}_1, \ \vec{u}_1 \right\rangle + \left\langle \vec{u}_2, \ \vec{u}_2 \right\rangle + \dots + \left\langle \vec{u}_n, \ \vec{u}_n \right\rangle \\ &= \left\| \vec{u}_1 \right\|^2 + \left\| \vec{u}_2 \right\|^2 + \dots + \left\| \vec{u}_n \right\|^2 \end{split}$$

Exercise

Suppose A is an orthogonal matrix. Show that $\langle \vec{u}A, \vec{v}A \rangle = \langle \vec{u}, \vec{v} \rangle$ for any $\vec{u}, \vec{v} \in V$

Solution

A is an orthogonal matrix $\Rightarrow AA^T = I$

And
$$\langle \vec{u}, \vec{v} \rangle = \vec{u}^T \vec{v}$$

 $\langle \vec{u}A, \vec{v}A \rangle = (A\vec{u})^T (A\vec{v})$

$$= \vec{u}^T (A^T A) \vec{v}$$
$$= \vec{u}^T I \vec{v}$$

$$=\vec{u}^T\vec{v}$$

$$=\langle \vec{u}, \vec{v} \rangle$$
 \checkmark

Suppose A is an orthogonal matrix. Show that $\|\vec{u}A\| = \|\vec{u}\|$ for every $\vec{u} \in V$

Solution

A is an orthogonal matrix

$$\Rightarrow AA^{T} = I \text{ and } \langle \vec{u}, \vec{u} \rangle = \vec{u}^{T} \vec{u}$$

$$\|\vec{u}A\|^{2} = \langle \vec{u}A, \vec{u}A \rangle$$

$$= (A\vec{u})^{T} (A\vec{u})$$

$$= \vec{u}^{T} (A^{T} A) \vec{u}$$

$$= \vec{u}^{T} I \vec{u}$$

$$= \vec{u}^{T} \vec{u}$$

$$= \langle \vec{u}, \vec{u} \rangle \checkmark$$

Exercise

Let V be an inner product space over $\mathbb R$ or $\mathbb C$. Show that

$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$

If and only if

$$||s\vec{u} + t\vec{v}|| = s||\vec{u}|| + t||\vec{v}||$$
 for all $s, t \ge 0$

Solution

Suppose that
$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$
. For $s, t \ge 0$

$$\|s\vec{u} + t\vec{v}\|^2 = s^2 \|\vec{u}\|^2 + t^2 \|\vec{v}\|^2 + 2st \, \vec{u}\vec{v}$$

$$\leq s^2 \|\vec{u}\|^2 + t^2 \|\vec{v}\|^2$$

$$\leq s \|\vec{u}\| + t \|\vec{v}\|$$

$$\|s\vec{u} + t\vec{v}\| \leq s \|\vec{u}\| + t \|\vec{v}\|$$

$$\|s\vec{u} + t\vec{v}\| = \|s\vec{u} + t\vec{u} - t\vec{u} + t\vec{v}\|$$

$$= \|t\vec{u} + t\vec{v} - t\vec{u} + s\vec{u}\|$$

$$= \|t(\vec{u} + \vec{v}) - (t - s)\vec{u}\|$$

 $\geq |t||\vec{u} + \vec{v}|| - (t - s)||\vec{u}||$

 $= t \|\vec{u}\| + \|\vec{v}\| - t \|\vec{u}\| + s \|\vec{u}\|$

$$\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$$

$$= t \|\vec{v}\| + s \|\vec{u}\|$$

$$\begin{cases} \|s\vec{u} + t\vec{v}\| \le s \|\vec{u}\| + t \|\vec{v}\| \\ & \text{and} \\ \|s\vec{u} + t\vec{v}\| \ge s \|\vec{u}\| + t \|\vec{v}\| \end{cases} \Rightarrow \|s\vec{u} + t\vec{v}\| = s \|\vec{u}\| + t \|\vec{v}\|$$

Let V be an inner product vector space over \mathbb{R} .

a) If e_1 , e_2 , e_3 are three vectors in V with pairwise product negative, that is,

$$\langle e_1, e_2 \rangle < 0, \quad i, j = 1, 2, 3, \quad i \neq j$$

Show that e_1 , e_2 , e_3 are linearly independent.

- b) Is it possible for three vectors on the xy-plane to have pairwise negative products?
- c) Does part (a) remain valid when the word "negative: is replaced with positive?
- d) Suppose \vec{u} , \vec{v} , and \vec{w} are three-unit vectors in the xy-plane. What are the maximum and minimum values that

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle$$

Can attain? And when?

Solution

a) Suppose that e_1 , e_2 , e_3 are linearly dependent.

Then, assume that $e_1^{}$, $e_2^{}$, $e_3^{}$ are unit vectors and that

$$e_3 = c_1 e_1 + c_2 e_2$$

Then

$$\begin{split} \left\langle e_1,\,e_3\right\rangle &= c_1 \left\langle e_1,\,e_1\right\rangle + c_2 \left\langle e_1,\,e_2\right\rangle & \left\langle e_1,\,e_1\right\rangle = 1 \\ &= c_1 + c_2 \left\langle e_1,\,e_2\right\rangle < 0 \\ c_1 &< -c_2 \left\langle e_1,\,e_2\right\rangle \\ \left\langle e_2,\,e_3\right\rangle &= c_1 \left\langle e_2,\,e_1\right\rangle + c_2 \left\langle e_2,\,e_2\right\rangle & \left\langle e_2,\,e_2\right\rangle = 1 \\ &= c_1 \left\langle e_2,\,e_1\right\rangle + c_2 < 0 \\ c_2 &< -c_1 \left\langle e_2,\,e_1\right\rangle \\ c_2 &< -c_1 \left\langle e_2,\,e_1\right\rangle \\ &< -\left(-c_2 \left\langle e_1,\,e_2\right\rangle\right) \left\langle e_2,\,e_1\right\rangle \end{split}$$

$$= c_{2} \left\langle e_{1}, e_{2} \right\rangle^{2} \qquad \left\langle e_{1}, e_{2} \right\rangle^{2} > 1$$

$$c_{2} < c_{2} \quad Contradiction$$

Therefore, e_1 , e_2 , e_3 are linearly independent.

- **b)** To have all three vectors on the *xy*-plane which is in 2 dimensional. Therefore, it is *impossible* for three to have pairwise negative products.
- *c*) No
- d) Given: \vec{u} , \vec{v} , and \vec{w} are three–unit vectors in the xy–plane and $|\langle \vec{u}, \vec{u} \rangle| = |\langle \vec{v}, \vec{v} \rangle| = |\langle \vec{w}, \vec{w} \rangle| = 1$

$$\cos \alpha_1 = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|} \rightarrow \cos \alpha_1 = \langle \vec{u}, \vec{v} \rangle$$

$$\cos\alpha_2 = \frac{\left\langle \vec{v}, \ \vec{w} \right\rangle}{\|\vec{v}\| \ \|\vec{w}\|} \ \to \ \cos\alpha_2 = \left\langle \vec{v}, \ \vec{w} \right\rangle$$

$$\cos \alpha_3 = \frac{\langle \vec{u}, \vec{w} \rangle}{\|\vec{u}\| \|\vec{w}\|} \rightarrow \cos \alpha_3 = \langle \vec{u}, \vec{w} \rangle$$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = \cos \alpha_1 + \cos \alpha_2 + \cos \alpha_3$$

Since $-1 \le \cos \theta \le 1$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = 1 + 1 + 1$$

$$= 3$$

Since the 3 vectors are unit vectors in the xy-plane and which it will divide the plane into a three equal angles $\alpha = \frac{2\pi}{3}$

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = \cos \frac{2\pi}{3} + \cos \frac{2\pi}{3} + \cos \frac{2\pi}{3}$$
$$= 3\cos \frac{2\pi}{3}$$
$$= 3\left(-\frac{1}{2}\right)$$
$$= -\frac{3}{2}$$

Therefore, the minimum $\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = -\frac{3}{2}$

The maximum: $\langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{u} \rangle = 3$