- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant.
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant.
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant.
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant.
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

- We know all town locations, the roads and distances between them.
- We know the number of people living in each towns, and we can estimate from past data the average number of trips a person will do yearly to a disposal plant.
- We know the cost to build a plant at a particular location.
- We know the average cost of travel.
- Rationality: everybody will go to the nearest plant.
- The county would like to minimize the total cost of building the plants and the expected cost of travel to the plants over a 20 year period.

Map of County

Town	# People	Plant Cost
A	150,000	\$2,000,000
В	200,000	\$1,600,000
\mathbf{C}	160,000	\$1,200,000
D	80,000	\$4,000,000
\mathbf{E}	45,000	\$3,500,000

- Average number of trips a person makes to a plant in a year: n = 2
- Average cost of driving a mile: c = 0.2

SETS:

• Set of locations (towns): L

PARAMETERS

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- \bullet Time horizon: T (years)
- \bullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- \bullet Time horizon: T (years)
- \bullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- \bullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- ullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- ullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- ullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- \bullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- ullet Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS:

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS:

SETS:

• Set of locations (towns): L

PARAMETERS:

- Population: $p\{L\}$ (person)
- Plant building cost: $b\{L\}$ (\$)
- Trips: n (trips/person*year)
- Unit cost of travel: c (\$/mile)
- Time horizon: T (years)
- Total personal cost of NOT RECYCLING at all: M (\$)

DERIVED PARAMETERS:

DECISION VARIABLES:

• To build or not to build: $x\{L\}$, binary

$$x_{\ell} = \begin{cases} 1 & \text{if we build a plant} \\ 0 & \text{if we do not build a plant} \end{cases}$$
 at location $\ell \in I$

DECISION VARIABLES:

• To build or not to build: $x\{L\}$, binary

$$x_{\ell} = \begin{cases} 1 & \text{if we build a plant} \\ 0 & \text{if we do not build a plant} \end{cases}$$
 at location $\ell \in L$

• Expected number of total trips to a recycling plant from town $\ell \in L$:

$$n*p[\ell]*T$$

• Expected total mileage cost for citizens of town $\ell \in L$:

$$n * p[\ell] * T * c$$

• Total miles of trips to a recycling plant from town $\ell \in L$:

$$\sum_{k \in L} d[\ell, k] * \left(x_k * \prod_{\substack{j \in L \\ d[\ell,j] < d[\ell,k]}} (1 - x_j) \right)$$

$$M * \prod_{\ell \in L} (1 - x_{\ell})$$

• Expected number of total trips to a recycling plant from town $\ell \in L$:

$$n*p[\ell]*T$$

• Expected total mileage cost for citizens of town $\ell \in L$:

$$n*p[\ell]*T*c$$

• Total miles of trips to a recycling plant from town $\ell \in L$:

$$\sum_{k \in L} d[\ell, k] * \left(x_k * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_j) \right)$$

$$M * \prod_{\ell \in I} (1 - x_{\ell})$$

• Expected number of total trips to a recycling plant from town $\ell \in L$:

$$n*p[\ell]*T$$

• Expected total mileage cost for citizens of town $\ell \in L$:

$$n*p[\ell]*T*c$$

• Total miles of trips to a recycling plant from town $\ell \in L$:

$$\sum_{k \in L} d[\ell, k] * \left(x_k * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_j) \right)$$

$$M * \prod_{\ell \in I_{\ell}} (1 - x_{\ell})$$

• Expected number of total trips to a recycling plant from town $\ell \in L$:

$$n*p[\ell]*T$$

• Expected total mileage cost for citizens of town $\ell \in L$:

$$n*p[\ell]*T*c$$

• Total miles of trips to a recycling plant from town $\ell \in L$:

$$\sum_{k \in L} d[\ell, k] * \left(x_k * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_j) \right)$$

$$M * \prod_{\ell \in I} (1 - x_{\ell})$$

Model Objective

INVESTMENT COST:

$$\sum_{\ell \in L} b[\ell] * x_{\ell}$$

LONG TERM SOCIAL COST for $\ell \in L$:

$$\left(n*p[\ell]*T)*c*\sum_{k\in L}d[\ell,k]*\left(x_k*\prod_{\substack{j\in L\\d[\ell,j]< d[\ell,k]}}(1-x_j)\right)$$

No distance ties here!

LONG TERM SOCIAL COST of NOT RECYCLING

$$M * \left(\sum_{\ell \in L} p[\ell]\right) * \prod_{\ell \in L} (1 - x_{\ell})$$

Model Objective

INVESTMENT COST:

$$\sum_{\ell \in L} b[\ell] * x_{\ell}$$

LONG TERM SOCIAL COST for $\ell \in L$:

$$(n * p[\ell] * T) * c * \sum_{k \in L} d[\ell, k] * \left(x_k * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_j) \right)$$

No distance ties here!

LONG TERM SOCIAL COST of NOT RECYCLING

$$M * \left(\sum_{\ell \in L} p[\ell]\right) * \prod_{\ell \in L} (1 - x_{\ell})$$

Model Objective

INVESTMENT COST:

$$\sum_{\ell \in L} b[\ell] * x_\ell$$

LONG TERM SOCIAL COST for $\ell \in L$:

$$(n * p[\ell] * T) * c * \sum_{k \in L} d[\ell, k] * \left(x_k * \prod_{\substack{j \in L \\ d[\ell,j] < d[\ell,k]}} (1 - x_j) \right)$$

No distance ties here!

LONG TERM SOCIAL COST of NOT RECYCLING:

$$M * \left(\sum_{\ell \in L} p[\ell]\right) * \prod_{\ell \in L} (1 - x_{\ell})$$

Unconstrained Nonlinear Binary Model

OBJECTIVE FUNCTION:

$$\begin{aligned} & \min & & \sum_{\ell \in L} b[\ell] * x_{\ell} \\ & & + \sum_{\ell \in L} (n * p[\ell] * T) * c * \sum_{k \in L} d[\ell, k] * \left(x_{k} * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_{j}) \right) \\ & & + M * \left(\sum_{\ell \in L} p[\ell] \right) * \prod_{\ell \in L} (1 - x_{\ell}) \end{aligned}$$

CONSTRAINTS

$$x \in \{0, 1\}^L$$

Unconstrained Nonlinear Binary Model

OBJECTIVE FUNCTION:

$$\begin{aligned} & \min & & \sum_{\ell \in L} b[\ell] * x_{\ell} \\ & & + \sum_{\ell \in L} (n * p[\ell] * T) * c * \sum_{k \in L} d[\ell, k] * \left(x_{k} * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_{j}) \right) \\ & & + M * \left(\sum_{\ell \in L} p[\ell] \right) * \prod_{\ell \in L} (1 - x_{\ell}) \end{aligned}$$

CONSTRAINTS:

$$x \in \{0, 1\}^L$$

Unconstrained Nonlinear Binary Model Simpl'r

OBJECTIVE FUNCTION:

$$\begin{aligned} & \min & & \sum_{\ell \in L} b[\ell] * x_{\ell} \\ & & + n * T * c * \sum_{\ell \in L} p[\ell] * \sum_{k \in L} d[\ell, k] * \left(x_{k} * \prod_{\substack{j \in L \\ d[\ell, j] < d[\ell, k]}} (1 - x_{j}) \right) \\ & & + M * \left(\sum_{\ell \in L} p[\ell] \right) * \prod_{\ell \in L} (1 - x_{\ell}) \end{aligned}$$

CONSTRAINTS:

$$x \in \{0, 1\}^L$$

Linearization

We introduce new binary variables in place of the nonlinear products of variables and their complements. Namely, we introduce

$$\begin{array}{lll} z_{k,\ell} &=& x_k * \prod_{\substack{j \in L \\ d[\ell,j] < d[\ell,k]}} (1-x_j) & \forall k,\ell \in L, \text{ and} \\ z_L &=& \prod_{\ell \in L} (1-x_\ell) \end{array}$$

Standard Linearization

• For $k, \ell \in L$ we have $z_{k,\ell} = x_k * \prod_{\substack{j \in L \\ d[\ell,j] < d[\ell,k]}} (1-x_j)$ if and only if $x \in \{0,1\}^L$ and the following inequalities hold

$$\begin{array}{ll} z_{k,\ell} & \leq x_k, \\ z_{k,\ell} & \leq 1 - x_j \qquad \forall j \in L \ s.t. \ d[\ell,j] < d[\ell,k], \\ z_{k,\ell} & \geq 0, \\ z_{k,\ell} & \geq x_k - \sum_{\substack{j \in L \\ d[\ell,i] < d[\ell,k]}} x_j. \end{array}$$

Standard Linearization

• We have $z_L = \prod_{j \in L} (1 - x_j)$ if and only if $x \in \{0, 1\}^L$ and the following inequalities hold

$$\begin{array}{ll} z_L & \leq 1-x_j & \forall j \in L, \\ z_L & \geq 0, \\ z_L & \geq 1-\sum_{j \in L} x_j. \end{array}$$

General Principle of Standard Linearization

- Both of the previous equivalences are special cases of a more general rule.
- Assume $X_1, ..., X_m$ are binary variables, $\bar{X}_j = 1 X_j$ for j = 1, ..., m, and that $S \subseteq \{X_1, ..., X_m, \bar{X}_1, ..., \bar{X}_m\}$.
- Then we have

$$Z = \prod_{u \in S} u$$

if and only if $X \in \{0,1\}^m$, and the following inequalities hold:

$$Z \leq u$$
 $\forall u \in S,$
 $Z \geq 0,$
 $Z \geq 1 - |S| + \sum u.$

General Principle of Standard Linearization

- Both of the previous equivalences are special cases of a more general rule.
- Assume $X_1, ..., X_m$ are binary variables, $\bar{X}_j = 1 X_j$ for j = 1, ..., m, and that $S \subseteq \{X_1, ..., X_m, \bar{X}_1, ..., \bar{X}_m\}$.
- Then we have

$$Z = \prod_{u \in S} u$$

if and only if $X \in \{0,1\}^m$, and the following inequalities hold:

$$Z \leq u \qquad \forall u \in S,$$

 $Z \geq 0,$
 $Z \geq 1 - |S| + \sum_{s} u.$

General Principle of Standard Linearization

- Both of the previous equivalences are special cases of a more general rule.
- Assume $X_1, ..., X_m$ are binary variables, $\bar{X}_j = 1 X_j$ for j = 1, ..., m, and that $S \subseteq \{X_1, ..., X_m, \bar{X}_1, ..., \bar{X}_m\}$.
- Then we have

$$Z = \prod_{u \in S} u$$

if and only if $X \in \{0,1\}^m$, and the following inequalities hold:

$$\begin{array}{ll} Z & \leq u & \forall u \in S, \\ Z & \geq 0, \\ Z & \geq 1 - |S| + \sum u. \end{array}$$

A MILP model of Uncapacitated Plant Location

$$\begin{aligned} & \min & & \sum_{\ell \in L} b[\ell] * x_{\ell} + n * T * c * \sum_{\ell \in L} p[\ell] * \sum_{k \in L} d[\ell, k] * z_{k,\ell} + M * \left(\sum_{\ell \in L} p[\ell] \right) * z_{L} \\ & z_{k,\ell} & \leq x_{k} & \forall k, \ell \in L, \\ & z_{k,\ell} & \leq 1 - x_{j} & \forall j, k, \ell \in L \ s.t. \ d[\ell, j] < d[\ell, k], \\ & z_{k,\ell} & \geq 0 & \forall k, \ell \in L, \\ & z_{k,\ell} & \geq x_{k} - \sum_{\substack{j \in L \\ d[\ell,j] < d[\ell,k]}} x_{j} & \forall k, \ell \in L, \\ & z_{L} & \leq 1 - x_{j} & \forall k, \ell \in L, \\ & z_{L} & \geq 0, \\ & z_{L} & \geq 1 - \sum_{j \in L} x_{j}, \\ & x_{\ell} & \in \{0,1\} & \forall \ell \in L. \end{aligned}$$

SIRS Survey

Perhaps I forgot to mention

PLEASE fill out the SIRS survey!

I really appreciate your feedback ...

- Our main (primary) decision variables are x_{ℓ} , $\ell \in L$: "To build or not to build?"
- Implied (hidden) variables describe which plant is serving which community (remember: citizens are rational and travel to the nearest built plant).
- Introduce these hidden "decisions" $y\{L, L\} \in \{0, 1\}^{L \times L}$:

$$y_{k,\ell} = \begin{cases} 1 & \text{if citizens of township } \ell \text{ served by plant built at } k \\ 0 & \text{otherwise.} \end{cases}$$

- Our main (primary) decision variables are x_{ℓ} , $\ell \in L$: "To build or not to build?"
- Implied (hidden) variables describe which plant is serving which community (remember: citizens are rational and travel to the nearest built plant).
- Introduce these hidden "decisions" $y\{L, L\} \in \{0, 1\}^{L \times L}$:

$$y_{k,\ell} = \begin{cases} 1 & \text{if citizens of township } \ell \text{ served by plant built at } k \\ 0 & \text{otherwise.} \end{cases}$$

- Our main (primary) decision variables are x_{ℓ} , $\ell \in L$: "To build or not to build?"
- Implied (hidden) variables describe which plant is serving which community (remember: citizens are rational and travel to the nearest built plant).
- Introduce these hidden "decisions" $y\{L, L\} \in \{0, 1\}^{L \times L}$:

$$y_{k,\ell} = \begin{cases} 1 & \text{if citizens of township } \ell \text{ served by plant built at } k \\ 0 & \text{otherwise.} \end{cases}$$

• Everybody is served (NO "DO NOTHING" OPTION!):

$$\sum_{k \in L} y_{k,\ell} = 1 \quad \forall \ \ell \in L.$$

$$x_k \geq y_{k,\ell} \quad \forall \ k, \ell \in L.$$

- How to model rationality of citizens in terms of these variables?
- RATIONALITY of service:

$$x_j \leq 1 - y_{k,\ell} \quad \forall \ j, k, \ell \in L \ s.t. \ d[\ell, j] < d[\ell, k]$$

• Everybody is served (NO "DO NOTHING" OPTION!):

$$\sum_{k \in L} y_{k,\ell} = 1 \quad \forall \ \ell \in L.$$

$$x_k \geq y_{k,\ell} \quad \forall \ k, \ell \in L.$$

- How to model rationality of citizens in terms of these variables?
- RATIONALITY of service:

$$x_j \leq 1 - y_{k,\ell} \quad \forall j, k, \ell \in L \text{ s.t. } d[\ell, j] < d[\ell, k]$$

• Everybody is served (NO "DO NOTHING" OPTION!):

$$\sum_{k \in L} y_{k,\ell} = 1 \quad \forall \ \ell \in L.$$

$$x_k \geq y_{k,\ell} \quad \forall \ k, \ell \in L.$$

- How to model rationality of citizens in terms of these variables?
- RATIONALITY of service:

$$x_j \leq 1 - y_{k,\ell} \quad \forall j, k, \ell \in L \text{ s.t. } d[\ell, j] < d[\ell, k]$$

• Everybody is served (NO "DO NOTHING" OPTION!):

$$\sum_{k \in L} y_{k,\ell} = 1 \quad \forall \ \ell \in L.$$

$$x_k \geq y_{k,\ell} \quad \forall \ k, \ell \in L.$$

- How to model rationality of citizens in terms of these variables?
- **RATIONALITY** of service:

$$x_i \leq 1 - y_{k,\ell} \quad \forall j, k, \ell \in L \text{ s.t. } d[\ell, j] < d[\ell, k]$$

An ILP model of Uncapacitated Plant Location

$$\begin{aligned} & \min & & \sum_{\ell \in L} b[\ell] * x_{\ell} + n * T * c * \sum_{\ell \in L} p[\ell] * \sum_{k \in L} d[\ell, k] * y_{k,\ell} \\ & & \sum_{k \in L} y_{k,\ell} &= 1 & \forall \ell \in L, \\ & & x_{k} & \geq y_{k,\ell} & \forall k, \ell \in L, \\ & & x_{j} & \leq 1 - y_{k,\ell} & \forall j, k, \ell \in L \ s.t. \ d[\ell, j] < d[\ell, k], \\ & & x_{\ell} & \in \{0, 1\} & \forall \ell \in L, \\ & & y_{k,\ell} & \in \{0, 1\} & \forall k, \ell \in L. \end{aligned}$$

SIRS Survey

Did I mention that the SIRS survey is available? You can write anything you want about this course ...

PLEASE fill out the SIRS survey!

I really appreciate your feedback ...