Data analysis pipelines Big data and data representation

Digital Technology B. Pernici

© 2024-25 Barbara Pernici

1

1

Quiz

Link: https://forms.office.com/e/jTNpH3gVNH

Topics covered: Python, SQL and Data Quality until Lecture 9.

The quiz can be taken online by connecting to the MS Forms at the given time, 10 minutes to complete it (self timing, the form must be submitted before the 10 minutes expire). Polimi credentials must be used to access the form (try connecting with the link before the quiz starts to verify access). The quiz is closed books.

© 2024-25 Barbara Pernici

2

Material

- Chapter 4 of Handbook
- Chapter 5 of Handbook
- Colab

https://colab.research.google.com/drive/1ppx5TOF0wUhyKlq5SUtauFoIC25ARTc7?usp=sharing

Datasets

 $\frac{https://www.dropbox.com/sh/ww92mqe6fp0vrfo/AABVDAOIHugWHM}{se-8GmPq6Na?dl=0}$

© 2024-25 Barbara Pernici

2

2

Goals and technological aspects

- Data analysis pipelines
- Data sources and Big Data
- Data warehouses

© 2024-25 Barbara Pernici

4

Pipelines

© 2024-25 Barbara Pernici

5

5

Pipelines – where?

- Datawarehouses
- Data science
- Machine learning

© 2024-25 Barbara Pernici

7

7

Sources of data

- Traditional data sources
- Big data
- Source selection

© 2024-25 Barbara Pernici

11

11

Sources of data

Internal sources

From OLTP

Variable structures Quantity Texts

• External sources

© 2024-25 Barbara Pernici

12

Use cases

https://www.oracle.com/a/ocom/docs/top-22-use-cases-for-big-data.pdf

© 2024-25 Barbara Pernici

15

15

Manufacturing

- · Predictive maintenance
- Operational efficiency
- Production optimization

Challenges

- Companies must integrate data coming from different formats and identify the signals that will lead to optimizing maintenance.
- balance the data volume with the growing **number of sources**, users, and applications
- analyze their production equipment data, material use, and other factors.
 Combining the different kinds of data can pose a challenge.

https://www.oracle.com/a/ocom/docs/top-22-use-cases-for-big-data.pdf © 2024-25 Barbara Pernici

Big Data

Volume

Scale of Data

...40 zettabytes of data will be created by 2020, an increase of 300 times from 2005...

Variety

Different forms of data

...sensors, videos, databases, posts, tweets...

Velocity

Analysis of streaming data

...e.g., sensors collect numerous data that have to be analyzed...

Veracity

Uncertainty of data

..1 in 3 business leaders don't trust the information they use to make decisions...

http://www-01.ibm.com/software/data/bigdata/

© 2024-25 Barbara Pernici

17

The Challenge of Big Data

- Big data
 - Massive sets of unstructured/semi-structured data from web traffic, social media, sensors, and so on
- Volumes too great for typical DBMS
 - Terabytes 10¹², Petabytes 10¹⁵, Exabytes of data 10¹⁸, Zettabyte 10²¹
- Can reveal more patterns, relationships and anomalies
- Requires new tools and technologies to manage and analyze

© 2024-25 Barbara Pernici

19

19

Big data: Velocity

From data to be queried on demand to dynamic data to be analyzed in real time (Data streaming)

- "Sometimes 2 minutes is too late. For time-sensitive processes such as catching fraud, big data must be used as it streams into your enterprise in order to maximize its value.
- •Scrutinize 5 million trade events created each day to identify potential fraud
- •Analyze 500 million daily call detail records in realtime to predict customer churn faster "

[https://www-01.ibm.com/software/in/data/bigdata/]

© 2024-25 Barbara Pernici

27

Big data Vs

- Volume
- Variety
- Velocity

Many other Vs

Veracity

© 2024-25 Barbara Pernici

28

28

Veracity • Network problems • Erroneous data inputs • Not skilled operators • Unreliable sensors • Measuring errors • Opinions • Faulty image recognition • Untrusted sources DATA UNCERTAINTY © 2024-25 Barbara Pernici

Big data and data quality

Big Data analysis allows to understand customer needs, improve service quality, and predict and prevent risks.

High quality data are the precondition for guaranteeing the quality of the results of Big Data analysis.

Big Data tried to overcome **Data Quality issues with Data Quantity. But quality is still** an issue.

Cai, Li, and Yangyong Zhu. "The challenges of data quality and data quality assessment in the big data era." *Data Science Journal* 14 (2015).

30

Big data challenges

Diversity of data sources (Variety)

- Abundant data types internal + external data sources
- Complex data structures structured, semi-structured, IoT
- Difficult data integration ETL and traditional approaches useless due to data volume and velocity

Tremendous data volume (Volume)

 Data quality profiling and assessment (collection, cleaning, and integration) is difficult to execute in a reasonable amount of time.

Timeliness of data is very short (Velocity)

 Data is updated continuously. If data is not collected and analysed in real time, information becomes outdated and invalid.

Missing standard for Data Quality (Veracity)

 Standards have been proposed for DQ of traditional data sources but not for big data.

Cai, Li, and Yangyong Zhu. "The challenges of data quality and data quality assessment in the big data era." Data Science Journal 14 (2015).

Source selection

Selection criteria

- · Accessibility (internal, external), licensing
- · Quality of data
 - Accuracy
 - Completeness
 - Timeliness (real-time updates)
- Availability of metadata, simplicity of integration
- · Reputation of source
 - Reuse
 - · Data ecosystems
- Cost

© 2024-25 Barbara Pernici

32

32

DATA WITH VARIABLE STRUCTURES Storage and interchange

Digital Technology B. Pernici

© 2024-25 Barbara Pernici

Goals and technological aspects

- Semi-structured information, irregular structures
- Data formats
- Geographical data

© 2024-25 Barbara Pernici

34

34

Structured data and unstructured data

Structured data

- Regular data structure common to all available information of the same type
- Composed of structured elements
- Tabular format, csv files

Unstructured data

- Free text
- Irregular structures
- Other types of data (images)

Semi-structured data

© 2024-25 Barbara Pernici

Problems to be addressed

- Multiple values for an attribute
- Hierarchical structures
- Variable structures
- "labels"
- Interoperability
- · Data and metadata

© 2024-25 Barbara Pernici

36

36

Document formats - infrastructure level

- In all cases:
 - Schema
 - Data structured according to schema
- Uses
 - In noSQL databases
 - Interchange format

© 2024-25 Barbara Pernici

41

Document formats - infrastructure level

- Schema
- Data structured according to schema
- JSON JavaScript Object Notation
- geoJSON

© 2024-25 Barbara Pernici

42

42

JSON – pairs name: value

```
• pairs
```

"name": "value"

Separated by commas

```
"name1": "value1",
"name2": "value2"
```

• **Nesting** through parentheses (hierarchical structures)

{ }

objects: collections of name-value pairs

- Lists in square brackets (multiple values)
- [{"name1":"value11"}, {"name1":"value12"}, {"name1":"value13"}]

© 2024-25 Barbara Pernici

Import/export json files

import json

json.read()
json.dump()

JSON OBJECT	PYTHON OBJECT
object	dict
array	list
string	str
null	None
number (int)	int
number (real)	float
true	True
false	False

© 2024-25 Barbara Pernici

46

46

Examples in colab

- Using JSON data
 - From JSON strings to dataframes
 - Colab

https://colab.research.google.com/drive/1ppx5TOF0wUhyKlq5SUtauFolC25ARTc7?usp=sharing

Datasets

https://www.dropbox.com/sh/ww92mqe6fp0vrfo/AABVDAOIHugWHMse-8GmPq6Na?dl=0

• Prettyprint JSON code

https://jsonformatter.org/json-pretty-print/

© 2024-25 Barbara Pernici

47

Geojson

 GeoJSON is a format for encoding a variety of geographic data structures.

48

Geojson

GeoJSON supports the following

Geometry types:

Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon.

Geometric objects with additional properties are **Feature objects**. Sets of features are contained by FeatureCollection objects.

© 2024-25 Barbara Pernici

geoJSON tools

- https://www.openstreetmap.org/#map=5/42.088/12.564
- https://nominatim.openstreetmap.org/ui/search.html
- https://nominatim.openstreetmap.org/search?q=cathedral,Milan&fo rmat=geojson
- http://geojson.io/#map=18/45.46390/9.19077

© 2024-25 Barbara Pernici

50

50

To try how data are collected and displayed From Copernicus Emergency service mapping

- Open https://emergency.copernicus.eu/mapping/list-of-activations-rapid
- Select an event
- Download the data
- In the folder you find json files (geoJSON)
- Open one and copy the content into

https://geojson.io/

(in the right box, selecting JSON as source)

• Explore different views (standard, satellite, OSM)

© 2024-25 Barbara Pernici

Non-relational (Not-only relational) Databases

- Not-only relational databases: "NoSQL"
 - · More flexible data model
 - Data sets stored across distributed machines
 - · Easier to scale
 - · Handle large volumes of unstructured and structured data
- Many relational DBMS have NoSQL extensions
 - Eg Postgres

© 2024-25 Barbara Pernici

52

52

Storing non relational data

- JSON or JSON-like documents DBMS
 - PostgresSQL extensions
 - MongoDB
 - · CouchDB, with emphasis on replication
 - Time series DBMS
 - · PostgresSQL extensions
 - Graphite

Big companies such as **Booking.com**, **Reddit and GitHub** use it on a daily basis to be able to easily detect **outage** on their architecture.

© 2024-25 Barbara Pernici

Recap

- Representation of data at conceptual, logical, physical level
- Non-relational structures and formats
 - JSON
 - geoJSON
- Database technology
 - Relational
 - NoSQL

© 2024-25 Barbara Pernici

55