Metody Numeryczne - Sprawozdanie 5

Piotr Moszkowicz 4 kwietnia 2019

Spis treści

1	$\mathbf{W}\mathbf{s}$	tęp Te	oretyczny	
	1.1	Wekto	or	
		1.1.1	Iloczyn tensorowy wektorów	
	1.2		rz	
		1.2.1	Macierz diagonalna	
		1.2.2	Macierz wstęgowa	
		1.2.3	Macierz trójdiagonalna	
2	Opis problemu			
3	Wyniki			
	3.1	Stabil	izowanie się wartości własnych w iteracji	
	3.2		zione przybliżenia wartości własnych	
	3.3	Macie	rz diagonalna D	

1 Wstęp Teoretyczny

Na piątych laboratoriach zajęliśmy się diagonalizacją macierzy z pomocą metody potęgowej.

1.1 Wektor

Wektor to obiekt matematyczny opisywany za pomocą jego długości, zwrotu oraz kierunku, wykorzystywany głównie w fizyce oraz matematyce. Notacja, z którą wykorzystujemy w obliczeniach matematycznych do zapisu wektora to notacja macierzowa, zilustrowana poniżej:

$$v = \begin{bmatrix} x & y & z \end{bmatrix} \tag{1}$$

Jest to trójelementowy wektor wierszowy.

1.1.1 Iloczyn tensorowy wektorów

W naszym przypadku będziemy korzystać z iloczynu tensorowego wektorów kolumnowego oraz wierszowego, więc w efekcie dostaniemy macierz o wymiarach $n \times n$, gdzie n to ilość elementów wektora.

$$v \otimes w = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_v \otimes \begin{bmatrix} 1, 0 \end{bmatrix}_w = \begin{bmatrix} 1 \cdot \begin{bmatrix} 1, 0 \end{bmatrix}_w \\ 0 \cdot \begin{bmatrix} 1, 0 \end{bmatrix}_w \end{bmatrix} = \begin{bmatrix} 1, 0 \\ 0, 0 \end{bmatrix}$$

1.2 Macierz

Macierz to tablica prostokątna, która zawiera liczby. Notacja w jakiej zapisujemy macierze widoczna jest poniżej:

$$A = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \tag{2}$$

Na powyższym przykładzie widnieje macierz kwadratowa (ilość kolumn jest równa ilości wierszy) o wymiarze 2. Wyróżniamy kilka rodzajów macierzy, poniżej te najważniejsze, które są istotne dla przebiegu ćwiczenia.

1.2.1 Macierz diagonalna

Macierz diagonalna to taka, która posiada wartości różne od zera jedynie na przekątnej (tzw. diagonali).

1.2.2 Macierz wstęgowa

Macierz wstęgowa to taka, której wszystkie elementy są zerowe poza diagonalą i w jej pobliżu. Mając daną macierz $n \times n$ jej elementy $a_{i,j}$ są niezerowe, gdy $i-k_1 \leqslant j \leqslant i+k_2$; gdzie $k_{1,2} \geqslant 0$ określają szerokość wstęgi.

1.2.3 Macierz trójdiagonalna

Macierz trójdiagonalna to taka, która posiada wartości różne od zera jedynie na diagonali, oraz pierwszej naddiagonali i pierwszej poddiagonali.

2 Opis problemu

Metoda składa się z dwóch etapów. Początkowo wyznaczamy własności własne macierzy z pomocą iteracyjnej metody potęgowej. Poniższy blok kodu realizuje rozwiązanie tegoż problemu:

```
for(int k = 0; k < n; k++) {
    std::array < double, 7> xk0 = {};
    xk0.fill(1.0);
    double lambda = 0;

for(int i = 0; i < IT_MAX; i++) {
        std::array < double, 7> xn = {};
        multiplyMatrixByVector(w, xk0, xn);
        lambda = multiplyScalar(xn, xk0) / multiplyScalar(xk0, xk0);
        divideVectorByScalar(xn, norm(xn), xk0);
}

refillWithTensorMultiply(w, lambda, xk0, wn);
    w = wn;
    fillMatrixColumn(X, xk0, k);
}
```

Po każdej iteracji zapisujemy wektory własne do macierz X, co jest pokazane w ostatniej linii kodu. Następnie wyznaczamy macierz diagonalną z poniższego wzoru:

$$D = X^T A X \tag{3}$$

3 Wyniki

3.1 Stabilizowanie się wartości własnych w iteracji

Na podstawie wyznaczania własności własnych można zauważyć, iż w większości przypadków wystarczy około 6-7 iteracji, aby wartości własne już od tej pory były stałe.

3.2 Znalezione przybliżenia wartości własnych

Na poniższym rysunku możemy odczytać znalezione przybliżenia wartości własnych. Na osi X znajduje się numer wartości własnej.

Rysunek 1: Wykres przybliżonych wartości własnych

3.3 Macierz diagonalna D

W wyniku naszych działań otrzymaliśmy macierz diagonalną D następującej postaci:

$$\begin{bmatrix} 3.59 & -1.18e - 13 & 2.25e - 15 & -2.77e - 17, & -2.12e - 15 & 1.66e - 16 & -2.84e - 16 \\ -1.18e - 13 & 0.284 & -6.25e - 06 & -2.28e - 12 & -3.81e - 09 & -6.93e - 18 & 2.08e - 17 \\ 2.16e - 15 & -6.25e - 06 & 0.122 & -8.92e - 07 & -0.000329 & -3.06e - 13 & 1.73e - 18 \\ 2.22e - 16 & -2.28e - 12 & -8.92e - 07 & 0.59 & -0.000296 & -3.69e - 14 & -9.19e - 17 \\ -2.22e - 15 & -3.81e - 09 & -0.000329 & -0.000296 & 0.0865 & -2.45e - 10 & -4.48e - 15 \\ 2.22e - 16 & -1.38e - 17, & -3.06e - 13 & -3.70e - 14 & -2.45e - 10 & 0.170 & -3.62e - 08 \\ -2.22e - 16 & 6.93e - 17 & -2.25e - 17 & 1.38e - 17, & -4.52e - 15 & -3.62e - 08 & 0.0981 \end{bmatrix}$$

Widać wyraźnie, że z pewną dokładnością otrzymaliśmy macierz diagonalną.