

EL TEOREMA DE RADON-NIKODYM

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 28) 15.MAYO.2023

Medidas Singulares y Continuas

Definición

Sea (X, \mathcal{A}) un espacio mesurable y sean $\mu_1, \mu_2 : \mathcal{A} \to \overline{\mathbb{R}}$ medidas positivas. Diremos que μ_1 y μ_2 son **mutuamente singulares** si existen conjuntos mesurable y complementarios $A, B \in \mathcal{A}$ con $X = A \cup B$, y tales que $\mu_1(A) = O = \mu_2(B)$.

Para medidas con signo, ν_1 y ν_2 son **mutuamente singulares** si $|\nu_1|$ y $|\nu_2|$ son mutuamente singulares.

Notación: $\mu_1 \perp \mu_2$.

Definición

Sea (X,\mathcal{A}) un espacio mesurable y sean $\mu_1,\mu_2:\mathcal{A}\to\overline{\mathbb{R}}$ medidas positivas. Diremos que μ_2 es **absolutamente continua** respecto de μ_1 si $\mu_1(E)=0 \Rightarrow \mu_2(E)=0$. Para medidas con signo, ν_2 es **absolutamente continua** respecto de ν_1 si ν_2 es absolutamente continua respecto de $|\nu_1|$.

Notación: $\mu_1 \ll \mu_2$.

Medidas Singulares y Continuas

Proposición

Sean (X, A) un espacio mesurable, y sean $\nu, \nu_1, \nu_2 : A \to \overline{\mathbb{R}}$ medidas con signo. Entonces

- a) $\nu_1 \perp \nu_2 \Rightarrow \nu_2 \perp \nu_1$.
- b) $\nu_1 \perp \nu \ y \ \nu_2 \perp \nu \Rightarrow \nu_1 + \nu_2 \perp \nu$.
- C) $\nu_2 \ll \nu_1 \Leftrightarrow |\nu_2| \ll \nu_1 \Leftrightarrow |\nu_2| \ll |\nu_1| \Leftrightarrow \nu_2^+, \nu_2^- \ll \nu_1$.
- d) Si $\nu_2 \ll \nu$ y $\nu \perp \nu_1 \Rightarrow \nu_2 \perp \nu_1$.
- e) Si $\nu_1 \ll \nu$ y $\nu_1 \perp \nu$, entonces $\nu_1 \equiv$ 0.

Prueba: Ejercicio!

Ejemplo

Ejemplo: Sean X = [0,1], $A = \mathcal{B}([0,1])$, y consideremos las medidas $\mu = \lambda^1$, y la medida $\nu = \delta_{1/2}$ concentrada en $\mathbf{x} = \frac{1}{2}$.

Recordemos que $\delta_{1/2}(E) = \begin{cases} \mathsf{O}, & \frac{1}{2} \notin E; \\ \mathsf{1}, & \frac{1}{2} \in E. \end{cases} \qquad E \in \mathcal{A}.$

Tomando $A = \{\frac{1}{2}\}$ y $B = [0, 1] - \{\frac{1}{2}\}$, tenemos que

$$\mu(A) = \lambda^{1}(A) = 0, \quad y \quad \nu(B) = \delta_{1/2}(B) = 0.$$

Entonces, $\mu \perp \nu$.

Ejemplo

Ejemplo: Si tenemos una medida positiva μ definida en (X, A) y una función $f: X \to \overline{\mathbb{R}}$ positiva y μ -integrable, definiendo

$$\nu(\mathsf{A}) = \int_{\mathsf{A}} f \, \mathsf{d}\mu$$

obtenemos una medida ν en la misma σ -álgebra \mathcal{A} . Observe que

$$\nu(A) = \int_A f \, d\mu \le \int_A \sup_{\mathbf{x} \in A} f(\mathbf{x}) \, d\mu = \sup_{\mathbf{x} \in A} f(\mathbf{x}) \int_A d\mu = \sup_{\mathbf{x} \in A} f(\mathbf{x}) \cdot \mu(A).$$

Luego, si $\mu(A) = o$, entonces $\nu(A) = o$, de modo que $\nu \ll \mu$.

Este ejemplo es muy importante. Bajo condiciones muy generales el recíproco también es cierto. En consecuencia este es el único método de generar medidas con signo absolutamente eontinuas con respecto a una medida dada: Teorema de L. J. Radón y O. Nikodym (1930).

Lema

Sea (X,\mathcal{A}) un espacio de medida y $\nu,\mu:\mathcal{A}\to\mathbb{R}$ medidas finitas tales que $\nu\ll\mu$, con $\nu\neq$ 0. Entonces, existen $\varepsilon>$ 0 y A $\in\mathcal{A}$, con $\mu(A)>$ 0, tales que con A es positivo para la medida con signo $\nu-\varepsilon\mu$.

Prueba: Para cada $n \ge 1$, sea $(A_n \mid B_n)$ una descomposición de Hahn para la medida $\nu - \frac{1}{n}\mu$. Considere $A_0 = \bigcup_{n \ge 1} A_n$ y $B_0 = \bigcap_{n \ge 1} B_n$.

Como $B_0 \subseteq B_n$, entonces B es negativo para $\nu \frac{1}{n} \mu$, $\forall n \ge 1$. Luego

$$0 \le \nu(B_0) \le \frac{1}{n} \mu(B_0), \ \forall n \ge 1.$$

Esto muestra que $\nu(B_0)=0$, y portanto $\nu(A_0)>0$ (ya que $\nu\neq 0$). Como $\nu\ll\mu$, entonces $\mu(A_0)>0$. Así, existe $n_0\in\mathbb{N}$ tal que $\mu(A_{n_0})>0$.

Tomamos
$$\varepsilon = \frac{1}{n_0}$$
 y $A = A_{n_0}$.

Teorema (Radón-Nikodym)

Sea (X,\mathcal{A}) un espacio mesurable, $\mu:\mathcal{A}\to\overline{\mathbb{R}}$ una medida σ -finita, y nu $:\mathcal{A}\to\overline{\mathbb{R}}$ una medida con signo σ -finita, tal que $\nu\ll\mu$. Entonces, existe una función μ -mesurable $f:X\to\mathbb{R}$ que satisface

$$u(\mathsf{E}) = \int_{\mathsf{E}} f \, \mathsf{d} \mu, \qquad \mathsf{para todo} \ \mathsf{E} \in \mathcal{A}.$$

Además, si existe otra función $g: X \to \mathbb{R}$ tal que $\nu(E) = \int_E g \, d\mu$, para todo $E \in \mathcal{A}$, entonces $f = g \ \mu$ -c.t.p.

Prueba: Caso 1: μ y ν son medidas finitas. Sean

$$\mathcal{K} = \left\{ f \in L^1_{\overline{\mathbb{R}}}(\mu): \ \int_{\mathsf{E}} f \, \mathsf{d}\mu \leq \nu(\mathsf{E}), \ orall \mathsf{E} \in \mathcal{A}
ight\}, \qquad lpha = \sup \Big\{ \int f \, \mathsf{d}\mu: \ f \in \mathcal{K} \Big\}.$$

Observe que $\alpha \leq \nu(X) < +\infty$.

Si $f_1, f_2 \in \mathcal{K}$, entonces $\max\{f_1, f_2\} \in \mathcal{K}$, pues si para $E \in \mathcal{A}$ denotamos por $E_1 = \{\mathbf{x} \in E: f_1(\mathbf{x}) > f_2(\mathbf{x})\}$ y $E_2 = \{\mathbf{x} \in E: f_1(\mathbf{x}) \leq f_2(\mathbf{x})\}$, entonces $E = E_1 \cup E_2$ y $\int_E \max\{f_1, f_2\} \, d\mu = \int_{E_1} f_1 \, d\mu + \int_{E_2} f_2 \, d\mu \leq \nu(E_1) + \nu(E_2) = \nu(E).$

Sea $\{f_n\}_{n\geq 1}$ una secuencia de funciones en \mathcal{K} , y sea $f_0=\sup_n f_n$. Entonces, $f_0\in\mathcal{K}$, pues si $g_n=\max\{f_1,\ldots,f_n\}$, por el argumento del párrafo anterior e inducción obtenemos que $g\in\mathcal{K}$. Como $g_n\nearrow f_0$, del Teorema de Convergencia Monótona tenemos que

$$\int_{E} f_{\mathsf{O}} \, \mathsf{d} \mu = \lim_{\mathsf{n}=\mathsf{1}} \int_{E} g_{\mathsf{n}} \, \mathsf{d} \mu \leq \nu(\mathsf{E}).$$

Lo anterior prueba simultáneamente $f_o \in L^1_{\overline{\mathbb{D}}}(\mu)$ y que $f_o \in \mathcal{K}$.

Ahora hallamos una secuencia $\{f_n\}_{n\geq 1}$ tal que $\int f_n d\mu \to \alpha$.

Observe que

$$f_0 = \sup_{n \geq 1} f_n \in \mathcal{K}, \qquad \mathsf{y} \qquad \int f_0 \, \mathsf{d}\mu = \alpha.$$

Como $f_0 \in L^1_{\mathbb{R}}(\mu)$, es posible hallar $f \in \mathcal{M}^+(\mathcal{A})$ tal que $f = f_0 \mu$ -c.t.p. por lo que también tendremos $f \in \mathcal{K}$ y $\int f d\mu = \alpha$.

Se probará que $\nu(E)=\int_E f\,d\mu$, para todo $E\in\mathcal{A}$ o bien que la medida $\nu_o(E)=\nu(E)-\int_E f\,d\mu$ es idénticamente cero. Si este no es el caso, se sigue del lema anterior que existen $\varepsilon>0$ y $A\in\mathcal{A}$ tales que A es positivo para $\nu_0-\varepsilon\mu$ y $\mu(A)>0$, y

$$\varepsilon \mu(E \cap A) \leq \nu_{o}(E \cap A) = \nu(E \cap A) - \int_{E \cap A} f \, d\mu.$$

Sea g=f+arepsilon1_A. Entonces, $g\in\mathcal{K}$, ya que para todo $E\in\mathcal{A}$ vale

$$\int_{E} g \, d\mu = \int_{f} d\mu + \varepsilon \, \mu(E \cap A) \leq \int_{E-(E \cap A)} f \, d\mu + \nu(E \cap A) \leq \nu(E).$$

para todo $E \in \mathcal{A}$. Pero $\int g \, d\mu = \alpha + \varepsilon \, \mu(A) > \alpha$. Lo cual contradice la definición de α y acaba la prueba de existencia en este caso.

Si $h \in \mathcal{M}^+(\mathcal{A})$ es otra función tal que $\nu(E) = \int_E h \, d\mu$, $\forall E \in \mathcal{A}$, entonces $\int_E (f - h) \, d\mu = 0$ para todo $E \in \mathcal{A}$, y portanto, $f = h \, \mu$ -c.t.p.

<u>Caso 2</u>: μ (*X*) < +∞ y | ν |(*X*) < +∞.

Por la propiedad (e), la condición $\nu \ll \mu$ equivale a la simultánea validez de $\nu^{\rm v} \ll \mu$ y $\nu^- \ll \mu$. Del caso 1, existen $f_1, f_2 \in \mathcal{M}^+(\mathcal{A})$ tales que

$$u^+(E) = \int_E f_1 \, d\mu, \qquad
u^-(E) = \int_E f_2 \, d\mu, \qquad \text{para todo } E \in \mathcal{A}.$$

De ahí, $f = f_1 - f_2 \in \mathcal{M}(\mathcal{A})$ satisface las condiciones del Teorema, y es única μ -c.t.p.

Caso 3: Caso general, $\mu(X) \leq +\infty$ y $|\nu|(X) \leq +\infty$.

Hallamos una secuencia $\{A_n\}_{n\geq 1}$ de conjuntos mesurables disjuntos en $\mathcal A$ tales que

$$A = \bigcup_{n \geq 1} A_n, \qquad \mu(A_n) < \infty, \ |\nu|(A_n), \ \forall n \geq 1.$$

Denotamos por $\mu_n, \nu_n^+, \nu_n^- : A_n \cap \mathcal{A} \to \mathbb{R}$ a las restricciones de μ, ν^+, ν^- determinadas por A_n . Como $\nu_n^+ \ll \mu_n$ y $\nu_n^+ \ll \mu_n$, se tiene del caso 2 que existen secuencias $\{f_n^{(1)}\}_{\geq 1}$ y $\{f_n^{(2)}\}_{\geq 1}$, con $f_n^{(i)} \in \mathcal{M}^+(A_n \cap \mathcal{A})$ tales que

$$u_n^+(E) = \int_E f_n^{(1)} d\mu_n \qquad y \qquad \nu_n^-(E) = \int_E f_n^{(2)} d\mu_n.$$

Si $E \in A_n \cap \mathcal{A}$, definimos $f^{(i)}: X \to \mathbb{R}$ por $f^{(i)}(\mathbf{x}) = f_n^{(i)}(\mathbf{x})$ si $\mathbf{x} \in_n$. Así, $f^{(i)} \in \mathcal{M}^+(\mathcal{A})$, y si $E \in \mathcal{A}$, por el Teorema de Convergencia Monótona tenemos

$$\begin{split} \nu^{+}(E) &= \sum_{n \geq 1} \nu^{+}(E \cap A_{n}) = \sum_{n \geq 1} \int_{E \cap A_{n}} f_{n}^{(1)} d\mu_{n} = \sum_{n \geq 1} \int_{E \cap A_{n}} f^{(1)} d\mu = \lim_{n \to \infty} \left(\int_{E} f^{(1)} d\mu \right) = \int_{E} f^{(1)} d\mu; \\ \nu^{-}(E) &= \sum_{n \geq 1} \nu^{-}(E \cap A_{n}) = \sum_{n \geq 1} \int_{E \cap A_{n}} f_{n}^{(2)} d\mu_{n} = \sum_{n \geq 1} \int_{E \cap A_{n}} f^{(2)} d\mu = \lim_{n \to \infty} \left(\int_{E} f^{(2)} d\mu \right) = \int_{E} f^{(2)} d\mu. \end{split}$$

para todo $E \in \mathcal{A}$. Haciendo $f = f^{(1)} - f^{(2)} \in \mathcal{M}(\mathcal{A})$, se comprueba que f satisface las condiciones del teorema, y la unicidad μ -c.t.p. \square

Obs!:

- El teorema de Radón-Nikodym permanece válido aún si μ es una medida convsigno, ya que si $(A \mid B)$ es una descomposición de Hahn para μ , podemos aplicar los casos ya probados a las restricciones ν y μ^+ en A, y ν y μ^- en B.
- El teorema permanece válido si ν no es σ -finita. Sin embargo, éste falla si μ no es σ -finita aunque ν sea finita.

Existen otras pruebas del de Radón-Nikodym. Por ejemplo

- la demostración de P. von Neumann que aparece en Royden, H. L. y Fitzpatrick, P. M. (2010). *Real Analysis*, 4a ed., pp. 242-243. Esta contiene una muy buena prueba en el caso que ν no es σ -finita.
- la prueba que aparece en Stein, E. M. y Shakarchi, R. (2005). *Real analysis: measure theory, integration, and Hilbert spaces*, pp. 187-189, y que es esencialmente la prueba original de O. Nikodym.

Definición

Sea (X, \mathcal{A}) un espacio mesurable, $\mu : \mathcal{A} \to \overline{\mathbb{R}}$ una medida σ -finita y $\nu : \mathcal{A} \to \overline{\mathbb{R}}$ una medida con signo σ -finita tales que $\nu \ll \mu$. La única función función $f \in \mathcal{M}(\mathcal{A})$ que satisface

$$u(\mathsf{E}) = \int_{\mathsf{E}} f \, \mathsf{d}\mu, \qquad \mathsf{para todo} \; \mathsf{E} \in \mathcal{A},$$

se llama la **derivada de Radón-Nikodym** de ν con respecto de μ .

Notación:
$$f=rac{d
u}{d\mu}$$
 .

Proposición (Propiedades)

1) Si $\nu_1 \ll \mu$ y $\nu_2 \ll \mu$, entonces

$$u_1 \pm \mu_2 \ll \mu$$
 y
 $\frac{d(\nu_1 \pm \nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} \pm \frac{d\nu_2}{d\mu}.$

2) Si $\rho \ll \nu$ y $\nu \ll \mu$, entonces

$$\rho \ll \mu$$
 y $\frac{d\rho}{d\mu} = \frac{d\rho}{d\nu} \cdot \frac{d\nu}{d\mu}.$

3) Si ν y μ son **equivalentes** (esto es, $\nu \ll \mu$ y $\mu \ll \nu$), entonces

$$\nu(\{\mathbf{x} \in X : \frac{d\nu}{d\mu}(\mathbf{x}) = 0\}) = 0$$
 y $\frac{d\mu}{d\nu} = \left(\frac{d\nu}{d\mu}\right)^{-1}$.

Descomposición de Lebesgue

Teorema (Teorema de Descomposición de Lebesgue)

Sean (X, \mathcal{A}) un espacio mesurable, y $\mu, \nu : \mathcal{A} \to \overline{\mathbb{R}}$ dos medidas σ -finitas. Entonces, existen dos únicas medidas σ -finitas $\nu_0, \nu_1 : \mathcal{A} \to \overline{\mathbb{R}}$ tales que

i)
$$\nu = \nu_0 + \nu_1$$

ii)
$$\nu_0 \perp \mu \ y \ \nu_1 \ll \mu$$
.

Prueba: Pendiente.