

¿Qué el alcohol no afecta la conducción?

Revisión científica de los efectos del alcohol en las habilidades para conducir

ÚSALA

Imágenes del accidente que dejó una persona muerta y cinco heridas al norte de Bogotá

"Estado del arte sobre legislación mundial relacionada con el consumo y niveles de alcohol y su relación con la conducción y accidentalidad vial. Metanálisis y Revisión de la literatura sobre los efectos y manifestaciones del alcohol según grado de ingesta".

Agosto 24 del 2010

- Carlos Gómez Restrepo, MD, Psiquiatra, MSc Epidemiología Clínica,
 Especialista en Psiquiatría de Enlace y Psicoanálisis Coordinador del Estudio
- Martin Rondón Sepúlveda, Estadístico, MSc Bioestadística
- Álvaro Ruiz Morales, MD, Médico Internista, MSc Epidemiología Clínica
- Felipe Macías, MD, MSc Salud Pública
- Carlos Fabián Flórez Valero, Ingeniero Civil, Especialista en Ingeniería de Transportes.
- Juan Manuel Lozano León, MD, Pediatra, MSc Epidemiología Clínica
- Javier A. Hernández López, Abogado, Especialista en Gestión Pública e Instituciones Administrativas.
- **Leonardo A. Quintana Jiménez,** Ingeniero Industrial. Director de Centro de Estudio de Ergonomía. PUJ.
- Andrea Padilla M, Abogada, Cand. Doctorado Ciencias Jurídicas

Grupos

1. <u>Marco General:</u>
 Facultad de Ingeniería.

- 2. Revisión de la <u>Literatura</u>: Facultad de Medicina, Dpto. Epidemiología Clínica y Bioestadística.
- 3. <u>Metaanálisis</u>:

 Facultad de Medicina,
 Dpto. Epidemiología
 Clínica y Bioestadística.
- 4. <u>Legislación</u>: Equipo Dr. Hernández con la supervisión de Facultad de Ciencias Jurídicas.

Marco general

- Introducción
- Definiciones: Alcoholemia(BAC) y Embriaguez
- Revision sistemática
- Legislación Normatividad en Colombia
- Metaanálisis
- Recomendaciones

Blood Alcohol Concentration – BAC Concentración sanguínea de alcohol

El **BAC** está definido técnicamente como la concentración de gramos de alcohol por cada 100 mililitros de sangre, o su equivalente en gramos de alcohol presentes en 210 litros de aliento (aire exhalado).

National Highway Traffic Safety Administration (2008). Highway Safety Act of 1966, Revision June 2008. **Section 164 Legislation**.

Revisión De La Literatura

 En 1936, Noruega fue el primer país en introducir una norma que "estipulaba como ofensa" el conducir con niveles de alcohol en sangre superiores a un límite determinado y cuya infracción suponía consecuencias administrativas o incluso penales.

Número de tragos y BAC

Hombre: 77 Kg

Mujer: 62 Kg

Número de Tragos y BAC Consumidos en 2 horas

Hombre: 77 Kg

Mujer: 62 Kg

Promedio de Concentración de Alcohol en Sangre (BAC) luego del consumo de diferentes niveles de Alcohol. En este diagrama, 1 trago equivale a 0.54 oz de Alcohol: esta es la cantidad aproximada encontrada en una medida de trago, una lata de cerveza o una copa de vino.

🕎 = Un Trago; Kg=Kilogramo; Oz: Onzal

Hingson, R.W., T. Heeren, and M.R. Winter. Preventing impaired driving. Alcohol Res Health 1999; 23(1): p. 31-39

No se ha encontrado un límite BAC por debajo del cual no haya alteración en la capacidad de conducción, y tampoco se ha identificado una población que esté protegida del efecto del alcohol.

Ogden, E.J.D. and H. Moskowitz, *Effects of alcohol and other drugs on driver performance*. Traffic Injury Prevention, 2004. 5(3): p. 185-198.

Cualquier aumento de BAC por encima de **cero** está relacionado con alteraciones en atención dividida, funciones visuales y habilidades de conducción

Krüger, 1993 Kruger, H. (1993) Effects of low alcohol dosages: A review of the literature. In Alcohol, Drugs and Traffic Safety—T092: Proceedings of the 12th International Conference on Alcohol, Drugs and Traffic Safety, Cologne, September 28–October 2, 1992,

Por cada aumento de 0.02% en BAC se duplica el riesgo de verse comprometido en un accidente fatal.

Zador P. Alcohol-related relative risk of fatal driver injuries in relation to driver age and sex. *J Stud Alcohol* 1991;**53**:301–10

La probabilidad de morir en un accidente de tránsito según BAC del conductor es clara y significativa:

- 1.55 para un conductor hombre menor de 20 años si BAC entre 0.01 y
 0.019 %
- 4.64 si BAC entre 0.020 y 0.049 %
- 17.32 con BAC entre 0.05 y 0.079 %

Hingson, R. and Winter, M. (2003) Epidemiology and consequences of drinking and driving. Alcohol Research and Health 27, 63–78).

FONDO DE PREVENCIÓN VIAL

Revisión Sistemática

- Es más probable que los accidentes fatales relacionados con alcohol estén también asociados con exceso de velocidad (NHTSA, 2005)
- La probabilidad de uso del cinturón de seguridad decrece con el aumento de BAC

Heng, K., et al., Moderate alcohol intake and motor vehicle crashes: the conflict between health advantage and at-risk use. Alcohol Alcohol, 2006. 41(4): p. 451-454.

Tolerancia Cero

Proporción de Accidentes Fatales en Adolescentes que involucran un vehículo y ocurren en la noche antes y después de la ley de cero-tolerancia para jóvenes. Los investigadores compararon los Estados que presentan leyes que hacen ilegal conducir con cualquier nivel de BAC positivo a menores de edad (i.e., Estados Cero-Tolerancia) con Estados que no han aprobado dicha legislación (i.e., Comparación Estados). Durante el periodo del estudio, la proporción de Accidentes Fatales en Adolescentes incrementó levemente en "Comparación Estados" pero disminuyó en los "Estados Cero-Tolerancia", indicando que esta ley reduce la ocurrencia de este tipo de accidentes.

Fuente: Hingson, Heeren and Winter 1994.

Hingson, R.W., T. Heeren, and M.R. Winter, Preventing impaired driving. Alcohol Res Health, 1999. 23(1): p. 31-39).

- Se estimó que 1 de cada 120 Km, que son conducidos en EE.UU., se hace con niveles BAC > 1.
- 1 de cada 7 Km son conducidos con niveles BAC > 1 en las noches de los fines de semana.
- El costo estimado por cada Km conducido bajo BAC >0.08 fue de \$3.40 comparado contra \$0.07 por Km conducido bajo BAC = 0

Miller, T.R., R.S. Spicer, and D.T. Levy, How intoxicated are drivers in the United States? Estimating the extent, risks and costs per kilometer of driving by blood alcohol level. Accid Anal Prev, 1999. 31(5): p. 515-523.

Embriaguez

Resolución 000414 del 27 de Agosto de 2002 - examen de embriaguez y alcoholemia

- Resultados menores a 40 mg de etanol/100 ml de sangre total, se interpretan como estado de embriaguez negativo.
- 40 y 99 mg de etanol/100 ml de sangre total, corresponden al primer grado de embriaguez.
- 100 y 149 mg de etanol/100 ml de sangre total, corresponden al segundo grado de embriaguez.
- Mayores o iguales a 150 mg de etanol/100 ml de sangre total, corresponden al tercer grado de embriaguez.

Legislación

- Bases de datos EbscoHost, Annual Reviews, Wilson Web, ProQuest, Lexis Nexis, Redalyc, Latindex, Springer Link, PubMed, Data Legis, Legis News y Metabuscador General.
- Igualmente se acudió a los sitios web
- Se enviaron a las embajadas de 38 Países,
 (Embajadas de España, Suiza y Ecuador

- Analiza la legislación de:
 - 5 Estados de los Estados Unidos de América,
 - 7 países de Sur América
 - 10 países de Europa
 - 2 de África
 - 2 de Asia y Australia.

Contenido

1. Límites por país y región

2. Sanciones por país y región

3. Evolución legislativa de los límites permitidos de alcohol en la sangre

Legislación

	-	PRE	VENIR ES V		
SUR AMERICA					
ESTADO .	LIMITE GENERAL	LIMITES ESPECIALES Y OBSERVACIONES			
		Existen grados de embriaguez de conformidad con Resolución expedida por			
Colombia	> 0.4	Medicina Legal	2002		
	> o = 0.3 gr/lt o 0.3 mg/lt				
Ecuador	2 0 - 013 ELVICO 013 IIIEVIC	No se plasman límites especiales	2009		
Argentina	>500 mgr/lt	200 mgr/lt para motocicletas o ciclomotores	1994		
Chile	>0.5gr/lt	Se establecen rangos para efectos de las sanciones	ND		
Bolivia	>0.7gr/lt	Esto de acuerdo con proyecto de Ley del 18 de julio de 2009	2009		
Peru	>0.5 gr/lt	Se establecen rangos para efectos de las sanciones	2009		
Brasil	0.0	Competencia Federal - aplica en la totalidad de Estados	2008		

EUROPA				
ESTADO	LIMITE GENERAL	LIMITES ESPECIALES Y OBSERVACIONES	AÑO	
		Para conductores de servicio público, carga, escolar y menores es de 0.3gr/lt en		
	0.5 gr/lt en sangre y	sangre y 0.15 mgr/lt en aire espirado, al igual que para conductores durante los 2		
España	0.25mg/It en aire espirado	años subsiguientes a la obtención de su licencia (conductores noveles).	2007	
	> o = 80mgr/100mlt en			
	sangre, 35 mgr/100mlt en			
nglaterra	aire espirado o			
	107mgr/100mlt en orina			
		No se plasman límites especiales	2006	
	> o = 80mgr/100mlt en			
	sangre, 35 mgr/100mlt en			
	aire espirado o			
	107mgr/100mlt en orina			
Irlanda		No se plasman límites especiales	1994	
Italia	> 0.5gr/lt	Se establecen rangos para efectos de las sanciones	ND	
Francia	>0.5gr/lt	Se establecen rangos para efectos de las sanciones	1995	
	>0.5 gr/lt o 0.25mgr/lt en			
Finlandia	aire espirado	Limite para la población general, no hay diferencia	1994	
	>0.5 gr/lt o 0.25mgr/lt en			
Holanda	aire espirado	Limite para la población general, no hay diferencia	1994	
Portugal	> 0.5gr/lt	No disponible	1998	
Suecia	> 0.2gr/lt	Vienen disminuyendo en su legislación a partir de 1941	1990	
Dinamarca	>0.5gr/lt	Limite para la población general, no hay diferencia	1998	

ESTADOS UNIDOS DE NORTEAMERICA					
ESTADO	LIMITE GENERAL	LIMITES ESPECIALES	SANCIONES		
Alabama	> o = 0.8	> o = 0.2 para menores de 21 años y conductores de buses escolares y guarderías.	Suspensión licencia 1ª=90 días, 2ª=1año, 3ª y 4ª=3años y5ª=5años Prisión y multas: 1ª us\$600 a \$2100 prisión < 1año, 2ª= us\$1100 a 5100, 3ª= us\$2100 a 10100 prisión mínima 60 días < a 1 año, 4ª=us\$4100 a 10100 prisión de 1 a 10 años		
Florida	> o = 0.8	> o = 0.2 para menores de 21 años	Suspensión licencia 1ª= hasta 6 meses, mínima 30 días, 2ª=1año Multas y Prisión 1ª=us\$250 a 500 prisión hasta 6 meses, 2ª=us\$500 a 100 prisión hasta 9 meses, 3ª=us\$1000 a 2500, prisión hasta 12 meses, 4ª=us\$1000 a 5000 prisión hasta 5 años, cuando exista homicidio no culposo la pena podrá ser de hasta 15 años y multa hasta us\$15000		
California	> o = 0.8	> o = 0.2 para menores de 21 años	Suspensión licencia: 1ª=6meses subsiguientes =1 año Conductores ven comerciales: 1ª=1año materiales peligrosos=3 años, reincidencia cancelación definitiva Prisión y multa: 1ª=us\$390 a 1000, prisión de 96 horas a 6 meses (sino presente antecedentes) 1ª con antecedentes= us\$390 a 1000 prisión de 90 días a un año, 2ª=us\$390 a 1000, prisión de 120 días a 1 año; 3ª o más = prisión de 180 días a 3 años Con heridos: 1ª=90 días a un año(sino presenta antecedentes), 1ª con antecedente=120 días a 1 años, 2ª o + = prisión de 2 a 4 años multa de us\$1015 a 5000 La pena puede aumentar en 1 año por cada herido, con un máximo de 3 heridos.		

Evolución Legislativa de los Límites

Países con cero tolerancia: Arabia Saudita, Bangladesh, Brasil, Emiratos Árabes Unidos y Eslovaquia, República Checa

Sanciones

- En el tema de sanciones, se observa que la mayoría de las Legislaciones plasman sanciones administrativas, y sanciones penales, las cuales en términos generales consisten en multas, suspensión de la licencia de conducción, arresto y prisión.
- En muy pocas legislaciones los cuerpos normativos de sanciones (administrativas y penales) se encuentran unificadas
- En varios de los países analizados se observa que existe una normatividad que baja la tolerancia para conductores específicos (transporte público, transporte escolar, menores de edad, etc.) con el fin de proteger grupos específicos de la población.

FONDO DE PREVENCIÓN VIAL

Revisión de la Literatura Moskowitz (Simuladores)

Moskowitz Revisión de la Literatura-Simuladores

TABLE 1 BEHAVIORAL AREAS AND TASKS, BY ARTICLES AND BAC LEVELS

Domain	Tasks		Number of BAC Levels
Aftereffects	Testing measured residual alcohol effects on a drinker's performance following a drinking session and the drinker's return to zero BAC. Various tasks from all other domains were used.		25
Cognitive Tasks	Digit-symbol substitution, mathematical and verbal reasoning, memory, pattern recognition, visual backward masking, card sorting.		145
Critical Flicker Fusion	Determination of the lowest frequency at which a flickering on-off light appears to be constant.	7	18
Divided Attention	Simultaneous performance of two or more tasks such as tracking, visual search, number monitoring, and detection of auditory stimuli.	18	52
Driving Skills	Actual driving, simulated driving, simulated flight, motorcycle simulator.	25	50
Perception	Detection of visual and/or auditory stimuli, time estimation, traffic hazard perception, anticipation time.	12	35
Psychomotor tasks	Finger tapping, body balance, hand steadiness, drill press operation, assembly of electronic parts.	18	57
Reaction time - Choice	Choice reaction time, choice reaction time with auditory distraction.	15	37
Reaction time - Simple	Single known stimulus with a single response.	5	20
Tracking	Pursuit tracking, compensatory tracking, critical tracking.	11	23
Vigilance	Vigilance.	9	18
Visual Functions	Contrast sensitivity, depth perception, smooth pursuit, saccadic peak velocity, saccadic latency, saccadic inaccuracy, nystagmus, etc.	19	63
Drowsiness	Multiple sleep latency test, repeated test of sustained wakefulness.	6	13
Total		112	556

Ejemplo tiempo de reacciónsimuladores

DOMINIO	CONSTRUCTO	TAREAS	BAC	DETERIORO	AÑO	AUTOR
		Detección de peligro y Respuesta ante la aparición de una señal visual.	0.05	Si	2005	Leung et al.
		Detección de peligro y Respuesta ante la aparición de una señal visual.	0.06	Si	2005	Leung et al.
	Tiempo de reacción de respuesta dado por un	Tiempo de reacción	0.1	Si	2007	Yung-Ching Liu et al.
Tiempo de Reacción	único estímulo conocido. Elección del tiempo de reacción dependiendo de	Tiempo de reacción con deprivación de sueño	0.03-0.04	Si	2007	Tracy et al.
	diferentes variables	Tiempo de reacción	0.49	Si	2000	Vanakoski et al.
		Tiempo de reacción	0.98	Si	2000	Vanakoski et al.
		Elección de tiempo de reacción.	0.09	Si	1999	Liguori et al.
		Elección de tiempo de reacción.	0.05	No	1999	Liguori et al.
		Tiempo de reacción de freno.	0.05	Si	1999	Liguori et al.
		Tiempo de reacción de freno.	0.025-0.035	No	2007	Vakulin et al.
		Tiempo de reacción ante vehículo bloqueando.	0.1	Si	2000	Weiler et al.
		Tiempo de reacción mixto	0.05-0.09	Si	1999	Mattila et al.
		Tiempo de reacción al frenar	0.06	NO	2003	Scott E. Burian et al.

Ejemplo habilidad conducir y seguimiento

DOMINIO	CONSTRUCTO	TAREAS	BAC	DETERIORO	AÑO	AUTOR
	90030000000000000000000000000000000000	Pasar a carril de desviación	0.04	Si	2008	Marczinski et al.
			Pasar a carril de desviación	0.08	Si	2008
		Accidentalidad	0.04	Si	2008	Marczinski et al.
		Control de Velocidad	0.08	Si	1999	Warren et al.
		Giro a la izquierda	0.08	Si	1999	Warren et al.
		Velocidad en frenado	0.08	Si	1999	Warren et al.
	Conjunto de habilidades necesarias para llevar a cabo un	Respuesta ante señal de pare	0.08	Si	1999	Warren et al.
Habilidades		Adelantar vehículo en recta	0.07	No	2008	Rakauskas et al.
Conducción Y	adecuado desempeño durante la conducción.	Accidentalidad	0.025-0.035	Si	2007	Vakulin et al.
Seguimiento	Ejercicios de seguimiento, seguimiento compensatorio y seguimiento crítico	Variabilidad en la posición del carril	0.07	Si	2008	Rakauskas et al.
		Control de dirección	0.07	Si	2008	Rakauskas et al.
		Control de dirección	0.035	Si	2007	Vakulin et al.
		Control de dirección	0.08	Si	2008	Weafer et al.
		Control de dirección	0.04-0.05-0.06-0.07	No	2008	Weafer et al.
		Velocidad constante	0.08	Si	2008	Weafer et al.
		Posición del volante y	0.07	No	2008	Rakauskas et al.
		actividad de pedal durante el seguimiento de un vehículo.				
		Mantenimiento en línea recta (centrado)	0.07	No	2008	Rakauskas et al.

- Cochrane Grupos de Drogas y Alcohol,
- Registro de ensayos clínicos;
- La biblioteca Cochrane, que incluye el Cochrane Central Register of Controlled Trials;
- MEDLINE (Enero 1966 a 2009);
- EMBASE Drugs and Pharmacology (Enero 1988 a 2009);
- PsycInfo (1985 a 2009);
- Nursing ProQuest;
- SciELO;
- Redalyc y
- Lilacs

- Cochrane Grupos de Drogas y Alcohol,
- Registro de ensayos clínicos;
- La Biblioteca Cochrane, que incluye el Cochrane Central Register of Controlled Trials;
- MEDLINE (Enero 1966 a 2009);
- EMBASE Drugs and Pharmacology (Enero 1988 a 2009);
- PsycInfo (1985 a 2009);
- Nursing ProQuest;
- SciELO;
- Redalyc y
- Lilacs

Metaanálisis

Temas simuladores

- Somnolencia
- Tiempo de Reacción
- Accidentes
- Desviación de la línea

- Atención dividida
- Efectos residuales
- Critical flicker fusion
- Funciones cognitivas
- Funciones visuales
- Habilidades para conducir y seguimiento (Desv. Linea – Accidentes)

- Habilidades psicomotoras
- Percepción
- Somnolencia
- Tiempo de reacción
- Vigilancia
- Velocidad

Definición de variables

Variable	Definición
Somnolencia	Nivel de alertamiento (somnolencia) medida por alguna de las siguientes escalas: Stanford, Epworth, BAES, visual
	análoga, subjetiva de sueño o Karolinska.
Tiempo de Reacción	Tiempo de respuesta dado por un único estímulo conocido.
	Elección del tiempo de respuesta dependiendo de diferentes
	variables, por ejemplo: tiempo de respuesta frente a
	vehículos en la vía, frente a señal de continuar, detenerse, la
	luz roja, estímulo visual.
Accidentes	Descarrilamiento (cuando el capo del vehículo cruce el
	borde lateral de la vía), colisión (si el vehículo permanece
	descarrilado más de 15 segundos de la vía, si el vehículo
	entra en contacto con otro vehículo.
Desviación de la línea	Posición media del sujeto en la línea, excluyendo accidentes.
	La variación en la línea de posición en promedio fue de
	40mseg.

Interpretación valores

Los resultados se expresaron como diferencias estandarizadas de promedios (SMD : standarized mean difference) que se interpreta de acuerdo con Cohen, 1988 como :

Alrededor de:

0,2 : representa un pequeño efecto

0,5 : representa un efecto moderado

0,8: representa un efecto alto

En general:

0,2 a 0,39 representa un efecto pequeño

0,4 a 0,7 se consideran moderados

0,71 o mayores se consideran altos.

Diferencia estandarizada de medias para FONDO D somnolencia todas las escalas

			- 1	Diferencia Std. de Medi	as Diferencia Std. de Medias
Estudio o subgrupo	Diferencia Media Std.	ES	Peso	IV, Corregido, 95% IC	IV, Corregido, 95% IC
107	0.84	0.43	4.5%	0.84 [-0.00, 1.68]	-
14	1.02	0.31	8.6%	1.02 [0.41, 1.63]	
14b	0.77	0.26	12.2%	0.77 [0.26, 1.28]	
15	1.84	0.4	5.2%	1.84 [1.06, 2.62]	
15b	1.99	0.41	4.9%	1.99 [1.19, 2.79]	
16	1.12	0.32	8.1%	1.12 [0.49, 1.75]	
163	1.3	0.36	6.4%	1.30 [0.59, 2.01]	_ -
163b	1.25	0.35	6.8%	1.25 [0.56, 1.94]	
17	2.25	0.41	4.9%	2.25 [1.45, 3.05]	
23	0.02	0.41	4.9%	0.02 [-0.78, 0.82]	-
24	0.02	0.5	3.3%	0.02 [-0.96, 1.00]	- + -
261	0.58	0.32	8.1%	0.58 [-0.05, 1.21]	-
264	0.93	0.5	3.3%	0.93 [-0.05, 1.91]	-
264b	1.06	0.51	3.2%	1.06 [0.06, 2.06]	
274	0.77	0.23	15.6%	0.77 [0.32, 1.22]	
Total (95% CI)			100.0%	1.01 [0.84, 1.19]	•
Heterogeneidad: Chi ² =	: 34.09, df = 14 (P = 0.002); I	² = 59%)		
Test de Efecto global: 2	Z = 11.16 (P < 0.00001)				-4 -2 0 2 4 MENOR MENOR
-	. ,				MENOR MENOR SOMNOLENCIA SOMNOLENCIA
					CON ALCOHOL SIN ALCOHOL

Diferencia estandarizada de medias para somnolencia todas las escalas según BAC

Estudio o Subgrupo	Diferencia Std. Medias	ES	Total Experimental	Total Contro		Diferencia Std. de Medias IV, Corregido, 95% IC	Diferencia Std. de Medias IV, Corregido, 95% IC
7.3.2 BAC < 0.05			•				
14	1.02	0.31	23	23	8.6%	1.02 [0.41, 1.63]	_ -
14b	0.77	0.26	30	30	12.2%	0.77 [0.26, 1.28]	
17	2.25	0.41	20	20	4.9%	2.25 [1.45, 3.05]	
23	0.02	0.41	12	12	4.9%	0.02 [-0.78, 0.82]	
24	0.02	0.5	8	8	3.3%	0.02 [-0.96, 1.00]	
261	0.58	0.32		21	8.1%	0.58 [-0.05, 1.21]	<u> </u>
Subtotal (IC 95%)			114	114	42.1%	0.81 [0.54, 1.09]	◆
•	² = 19.54, df = 5 (P = 0.00 l: Z = 5.78 (P < 0.00001)	∠); I² :	= /4%				
7.3.3 BAC >= 0.05							
107	0.84	0.43	12	12	4.5%	0.84 [-0.00, 1.68]	
15	1.84	0.4	18	18	5.2%	1.84 [1.06, 2.62]	
15b	1.99	0.41	18	18	4.9%	1.99 [1.19, 2.79]	
16	1.12	0.32	22	22	8.1%	1.12 [0.49, 1.75]	
163	1.3	0.36	16	24	6.4%	1.30 [0.59, 2.01]	
163b	1.25	0.35	16	24	6.8%	1.25 [0.56, 1.94]	
264	0.93	0.5	9	9	3.3%	0.93 [-0.05, 1.91]	
264b	1.06	0.51	9	9	3.2%	1.06 [0.06, 2.06]	-
274	0.77	0.23		40	15.6%	0.77 [0.32, 1.22]	
Subtotal (IC 95%)			160	176	57.9%	1.16 [0.93, 1.40]	▼
•	2 = 10.90, df = 8 (P = 0.21); I ² =	27%				
Test de Efecto globa	I: $Z = 9.73 (P < 0.00001)$						
Total (95% CI)			274	290	100.0%	1.01 [0.84, 1.19]	•
,	2 = 34.09, df = 14 (P = 0.0	02)-1			, , •	├	- + - +
	I: Z = 11.16 (P < 0.00001)	~ <i>_</i> /, I	30 /0			-4	-2 0 <u>2</u>
	s de subgrupo: $Chi^2 = 3.65$. df =	$1 (P = 0.06) I^2$	= 72.6%			MENOR MENOR
		,	. (. =. 5 70			NOLENCIA SOMNOLENCI
						CON	ALCOHOL SIN ALCOHOL

BAC menor 0.05

ERSIDAD IAVERIANA		S	td. Mean Difference	Std. Mean Difference
	d. Mean Difference SE	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
7.5.2 STANFORD				
14	1.02 0.31	20.5%	1.02 [0.41, 1.63]	-
17 Subtotal (95% CI)	2.25 0.41	11.7% 32.2 %	2.25 [1.45, 3.05] 1.47 [0.98, 1.95]	
Heterogeneity: Chi² = 5.73, c	Nf _ 1 (D _ 0 02) · 12 _ 020/	32.2 /0	1.47 [0.90, 1.93]	
Fest for overall effect: $Z =$	· · · · · · · · · · · · · · · · · · ·			
7.5.3 VAS				
l 4b Subtotal (95% CI)	0.77 0.26	29.1% 29.1 %	0.77 [0.26, 1.28] 0.77 [0.26, 1.28]	
, ,	lo.	29.1%	0.77 [0.20, 1.20]	
Heterogeneity: Not applicabl Fest for overall effect: Z =				
restroi overali errect. Z =	2.30 (i = 0.003)			
7.5.5 SUBJECTIVE SLEE	EPNESS			
261 Subtatal (05% CI)	0.58 0.32		0.58 [-0.05, 1.21]	
Subtotal (95% CI)		19.2%	0.58 [-0.05, 1.21]	
Heterogeneity: Not applications Test for overall effect: Z = 1.3				
7.5.6 KAROLINSKA				
23	0.02 0.41	11.7%	0.02 [-0.78, 0.82]	+
24 Subtatal (05% CI)	0.02 0.5	7.9%	0.02 [-0.96, 1.00]	
Subtotal (95% CI)	Nf _ 1 (D _ 1 00) 12 _ 00/	19.6%	0.02 [-0.60, 0.64]	
Heterogeneity: Chi² = 0.00, c Test for overall effect: Z =	,			
i est foi overall effect. Z =	$0.00 (\Gamma = 0.90)$			
Total (95% CI)		100.0%	0.81 [0.54, 1.09]	•
	54 , df = 5 (P = 0.002); I^2 =	74%		-4 -2 0 2
Test for overall effect: $Z = 5$.	,			MENOR SOMNOLENCIA MENOR SOMNOLENC
Test for subgroup difference	s: $Chi^2 = 13.82$, $df = 3$ (P = 0	$.003$), $I^2 = 78$	3.3%	CON ALCOHOL SIN ALCOHOL

BAC mayor o igual 0.05

277	A 372 A					
PON	The second secon				Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Std. Mean Difference	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
	7.6.2 STANFORD					
	15	1.84	0.4	8.9%	1.84 [1.06, 2.62]	
	15b	1.99	0.41	8.5%	1.99 [1.19, 2.79]	
	16 Subtotal (95% CI)	1.12	0.32	14.0% 31.4%	1.12 [0.49, 1.75] 1.56 [1.14, 1.98]	•
	Heterogeneity: $Chi^2 = 3.48$, Test for overall effect: $Z = 7$	df = 2 (P = 0.18); I ² = 43% 7.31 (P < 0.00001)				
	7.6.3 VAS					
	264	0.93	0.5	5.7%	0.93 [-0.05, 1.91]	-
	264b	1.06	0.51	5.5%	1.06 [0.06, 2.06]	
	274 Subtotal (95% CI)	0.77	0.23	27.0% 38.2%	0.77 [0.32, 1.22] 0.84 [0.46, 1.21]	
	Heterogeneity: $Chi^2 = 0.31$, Test for overall effect: $Z = 4$	•				
	7.6.4 BAES					
	163	1.3	0.36	11.0%	1.30 [0.59, 2.01]	
	163b Subtotal (95% CI)	1.25	0.35	11.7% 22.7%	1.25 [0.56, 1.94] 1.27 [0.78, 1.77]	•
	Heterogeneity: $Chi^2 = 0.01$, Test for overall effect: $Z = 5$					
	7.6.6 KAROLINSKA					
	107	0.84	0.43	7.7%	0.84 [-0.00, 1.68]	
	Subtotal (95% CI)			7.7%	0.84 [-0.00, 1.68]	
	Heterogeneity: Not applical Test for overall effect: Z = 1					
	Total (95% CI)			100.0%	1.16 [0.93, 1.40]	•
	Heterogeneity: Chi ² = 10.90	0, df = 8 (P = 0.21); $I^2 = 27\%$			·	
	Test for overall effect: $Z = 9$			= 57.7%		-4 -2 0 2 4 MENOR SOMNOLENCIA MENOR SOMNOLENCIA CON ALCOHOL SIN ALCOHOL

Metaanálisis – Tiempo Reacción

CORPORACIÓN

Diferencia estandarizada de medias para todos los FONDO DE PREV desenlaces

0	0.114 5.4	0.5	CON ALCOHOLSIN	N ALCOP	IOL	d. Mean Difference	Std. Mean Difference
Study	Std. Mean Difference AL TIEMPO DE REACCIO	SE	Total	I otal	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
			40	40	5.7 0/	4 0 4 50 07 4 741	
108a	1.04	0.3394	19	19	5.7%	1.04 [0.37, 1.71]	
108b	2.09	0.3982	19	19	4.1%	2.09 [1.31, 2.87]	<u></u> _
148a	1.19	0.355	18	18	5.2%	1.19 [0.49, 1.89]	
148b	2.61	0.4479	18	18	3.3%	2.61 [1.73, 3.49]	<u> </u>
148c	0.38	0.3289	18	18	6.1%	0.38 [-0.26, 1.02]	
148d	1.54	0.3731	18	18	4.7%	1.54 [0.81, 2.27]	
155a	0.001	0.4727	8	8	2.9%	0.00 [-0.93, 0.93]	T
155b	1.41	0.53	8	8	2.3%	1.41 [0.37, 2.45]	<u> </u>
155c	1.5	0.54	8	8	2.2%	1.50 [0.44, 2.56]	
155d	0.8	0.49	8	8	2.7%	0.80 [-0.16, 1.76]	
155e	1.84	0.56	8	8	2.1%	1.84 [0.74, 2.94]	
155f	2.62	0.64	8	8	1.6%	2.62 [1.37, 3.87]	
17	0.86	0.3244	20	20	6.2%	0.86 [0.22, 1.50]	
221a	0	0.2591	29	29	9.8%	0.00 [-0.51, 0.51]	- -
221d	0.19	0.2597	29	29	9.7%	0.19 [-0.32, 0.70]	 -
264a	1.2	0.46	9	9	3.1%	1.20 [0.30, 2.10]	
264b	1.17	0.46	9	9	3.1%	1.17 [0.27, 2.07]	
264c	1.48	0.51	9	9	2.5%	1.48 [0.48, 2.48]	
264d	0.93	0.47	9	9	3.0%	0.93 [0.01, 1.85]	-
274	1.08	0.24	40	40	11.4%	1.08 [0.61, 1.55]	_
73	0.16	0.3676	14	14	4.8%	0.16 [-0.56, 0.88]	
89	1.29	0.4361	12	12	3.4%	1.29 [0.44, 2.14]	
Subtotal (9			338	338	100.0%	0.94 [0.78, 1.10]	◆
Heterogene	eity: $Chi^2 = 72.41$, $df = 21$	(P < 0.000	001); I ² = 71%				
•	erall effect: Z = 11.64 (P <	`	, .				
Total (95%	CI)		338	338	100.0%	0.94 [0.78, 1.10]	•
•	eity: Chi ² = 72.41, df = 21	(P < 0.000	001)· I² = 71%			· · ·	-2 0 2
	erall effect: Z = 11.64 (P <					-4	-2 0 2
	ogroup differences: Not ap	,				MEJO	
1 COL TOT SUL	ogroup directions. Not ap	Piloabie				CON AL	COHOL SIN ALCOHOL

Metaanálisis – Tiempo Reacción

Según nivel de BAC

			CON ALCOHOL	SIN ALCOHOL		Std. Mean Difference	Std. Mean Difference	3
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
6.1.2 BAC < 0.05								
108a		0.3394	19	19	5.7%	1.04 [0.37, 1.71]		_
17		0.3244	20	20	6.2%	0.86 [0.22, 1.50]	1	•
221a		0.2591	29	29	9.8%	0.00 [-0.51, 0.51]	_ _	
221d Subtotal (95% CI)	0.19	0.2597	29 97	29 97	9.7% 31.4%	0.19 [-0.32, 0.70] 0.42 [0.13, 0.70]	•	
Heterogeneity: Chi ² = 8 Test for overall effect: 3	8.59, df = 3 (P = 0.04); $I^2 = 0.004$; $I^2 = 0.004$	65%						
6.1.3 BAC >= 0.05								
108b	2.09	0.3982	19	19	4.1%	2.09 [1.31, 2.87]	-	
148a	1.19	0.355	18	18	5.2%	1.19 [0.49, 1.89]		
148b	2.61	0.4479	18	18	3.3%	2.61 [1.73, 3.49]		-
148c	0.38	0.3289	18	18	6.1%	0.38 [-0.26, 1.02]	 	
148d	1.54	0.3731	18	18	4.7%	1.54 [0.81, 2.27]	-	
155a	0.001	0.4727	8	8	2.9%	0.00 [-0.93, 0.93]	- + -	
155b	1.41	0.53	8	8	2.3%	1.41 [0.37, 2.45]		
155c	1.5	0.54	8	8	2.2%	1.50 [0.44, 2.56]		
155d	0.8	0.49	8	8	2.7%	0.80 [-0.16, 1.76]	 -	_
155e	1.84	0.56	8	8	2.1%	1.84 [0.74, 2.94]		
155f	2.62	0.64	8	8	1.6%	2.62 [1.37, 3.87]	- I -	-
264a	1.2	0.46	9	9	3.1%	1.20 [0.30, 2.10]		
264b	1.17	0.46	9	9	3.1%	1.17 [0.27, 2.07]		
264c	1.48	0.51	9	9	2.5%	1.48 [0.48, 2.48]		
264d	0.93	0.47	9	9	3.0%	0.93 [0.01, 1.85]	 -	_
274	1.08	0.24	40	40	11.4%	1.08 [0.61, 1.55]		-
73	0.16	0.3676	14	14	4.8%	0.16 [-0.56, 0.88]		
89	1.29	0.4361	12	12	3.4%	1.29 [0.44, 2.14]		
Subtotal (95% CI)			241	241	68.6%	1.18 [0.99, 1.37]	◆	
Heterogeneity: Chi ² = 4	44.64, df = 17 (P = 0.0003);	$l^2 = 62\%$)					
	Z = 12.09 (P < 0.00001)							
Total (95% CI)			338	338	100.0%	0.94 [0.78, 1.10]	•	
Heterogeneity: Chi2 = 7	72.41, df = 21 (P < 0.00001); $I^2 = 71^\circ$	%			F	4 2 0	
Test for overall effect:	Z = 11.64 (P < 0.00001)					-	-2 0	2
Test for subgroup diffe	erences: $Chi^2 = 19.18$, $df = 1$	(P < 0.0)	001), $I^2 = 94.8\%$					EJOR TR N ALCOHO

Metaanálisis – Tiempo Reacción

BAC menor 0.05

				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
8.1.1 TIEMPO DE REACCION	DE FRENADO				
17	0.86	0.3244	19.8%	0.86 [0.22, 1.50]	
Subtotal (95% CI)			19.8%	0.86 [0.22, 1.50]	
Heterogeneity: Not applicable					
Test for overall effect: $Z = 2.65$	(P = 0.008)				
8.1.3 TIEMPO DE REACCION	A ESTIMULO VISUAL				
108a	1.04	0.3394	18.1%	1.04 [0.37, 1.71]	
Subtotal (95% CI)			18.1%	1.04 [0.37, 1.71]	
Heterogeneity: Not applicable					
Test for overall effect: $Z = 3.06$	(P = 0.002)				
8.1.5 TIEMPO DE REACCION	: DOBLE TAREA				
221a	0	0.2591	31.1%	0.00 [-0.51, 0.51]	
Subtotal (95% CI)			31.1%	0.00 [-0.51, 0.51]	•
Heterogeneity: Not applicable					
Test for overall effect: $Z = 0.00$	(P = 1.00)				
8.1.6 TIEMPO DE REACCION	: TAREA DE VIGILANCIA PSI	COMOTOR	A		
221d	0.19	0.2597	31.0%	0.19 [-0.32, 0.70]	-
Subtotal (95% CI)			31.0%	0.19 [-0.32, 0.70]	
Heterogeneity: Not applicable					
Test for overall effect: $Z = 0.73$	(P = 0.46)				
Total (95% CI)			100.0%	0.42 [0.13, 0.70]	•
Heterogeneity: Chi ² = 8.59, df =	= 3 (P = 0.04); I ² = 65%				
Test for overall effect: $Z = 2.89$, , , , , , , , , , , , , , , , , , , ,				-4 -2 0 2 4 MEJOR TR CON ALCOHOL MEJOR TR SIN ALCOHOL
Test for subgroup differences:	,	2 - 65 1%			INIEJOK I K CON ALCOHOL INIEJOK I K SIN ALCOHOL

Metaanálisis- Accidentes

Diferencia estandarizada de medias de Choques para todos los desenlaces

		CON AL	COHOL	SIN ALCOH	OL Sto	d. Mean Differenc	e Std. Mean Difference
Study	Std. Mean Difference	SE	Total	Total	Weight	IV, Fixed, 95% C	CI IV, Fixed, 95% CI
93	0.33	0.32	20	20	7.1%	0.33 [-0.30, 0.96] -
89	1.45	0.46	12	12	3.5%	1.45 [0.55, 2.35]	_ -
274	0.72	0.49	9	9	3.0%	0.72 [-0.24, 1.68] •
221	0.23	0.28	26	26	9.3%	0.23 [-0.32, 0.78] -
21	0.47	0.23	40	39	13.8%	0.47 [0.02, 0.92]	-
203d	0.13	0.38	14	14	5.1%	0.13 [-0.61, 0.87] -
203c	0.06	0.38	14	14	5.1%	0.06 [-0.68, 0.80] 🕂
203b	0.33	0.38	14	14	5.1%	0.33 [-0.41, 1.07] •
203a	0.12	0.38	14	14	5.1%	0.12 [-0.62, 0.86] -
18	0.16	0.32	20	20	7.1%	0.16 [-0.47, 0.79] -
17	0.57	0.32	20	20	7.1%	0.57 [-0.06, 1.20]
163b	0.75	0.37	16	16	5.3%	0.75 [0.02, 1.48]	
163a	0.43	0.329	24	24	6.7%	0.43 [-0.21, 1.07] • -
16	1	0.34	18	22	6.3%	1.00 [0.33, 1.67]	
15b	1.45	0.38	18	18	5.1%	1.45 [0.71, 2.19]	
15a	1.37	0.37	18	18	5.3%	1.37 [0.64, 2.10]	
Total (95% (CI)		297	30	0 100.0%	0.54 [0.38, 0.71]	♦
Heterogene	ity: $Chi^2 = 24.53$, $df = 1$	5 (P = 0.06)	$I^2 = 39^\circ$	%			
•	rall effect: Z = 6.37 (P	` '					-4 -2 0 2 4 MENOR ACCIDENT. CON ALCOHOL SIN ALCOHOL

Metaanálisis- Accidentes

De acuerdo con BAC

De acuerdo a desenlace – Choque y Salida Vía

Study or Subgroup	Std. Mean Difference		N ALCOHOL SIN A Total		Weight	td. Mean Difference IV, Fixed, 95% CI	Std. Mean Difference IV, Fixed, 95% CI
	ones, accidentes o go		Total	IOlai	weight	1V, 1 1Xeu, 95 /6 CI	1V, 1 1xeu, 95 /6 Cl
3	0.33	0.32	20	20	7.1%	0.33 [-0.30, 0.96]	
74	0.72	0.49	9	9	3.0%	0.72 [-0.24, 1.68]	 -
1	0.47	0.43	40	39	13.8%	0.47 [0.02, 0.92]	
03d	0.13	0.38	14	14	5.1%	0.13 [-0.61, 0.87]	
03c	0.06	0.38	14	14	5.1%	0.06 [-0.68, 0.80]	_
03b	0.33	0.38	14	14	5.1%	0.33 [-0.41, 1.07]	
03a	0.12	0.38	14	14	5.1%	0.12 [-0.62, 0.86]	
8	0.16	0.32	20	20	7.1%	0.16 [-0.47, 0.79]	- - -
7	0.57	0.32	20	20	7.1%	0.57 [-0.06, 1.20]	
163b	0.75	0.37	16	16	5.3%	0.75 [0.02, 1.48]	
163a		0.329	24	24	6.7%	0.43 [-0.21, 1.07]	 -
Subtotal (95% CI)	0.10	0.020	205	204	70.5%	0.37 [0.17, 0.57]	
	4.13, df = 10 (P = 0.94) Z = 3.67 (P = 0.0002)	$ I^2 = 0\%$					
Test for overall effect:	Z = 3.67 (P = 0.0002)	$I^2 = 0\%$					
est for overall effect:	Z = 3.67 (P = 0.0002)	; I ² = 0% 0.46	12	12	3.5%	1.45 [0.55, 2.35]	
Test for overall effect: I.1.2 Salida de la vía 39	Z = 3.67 (P = 0.0002) 1.45	0.46	12 26	12 26	3.5% 9.3%	1.45 [0.55, 2.35] 0.23 [-0.32, 0.78]	
Test for overall effect: 1.1.2 Salida de la vía 39 221	Z = 3.67 (P = 0.0002)		12 26 18	12 26 22	9.3%	0.23 [-0.32, 0.78]	
	Z = 3.67 (P = 0.0002) 1.45	0.46 0.28	26	26		0.23 [-0.32, 0.78] 1.00 [0.33, 1.67]	
Test for overall effect: 4.1.2 Salida de la vía 39 221 16 15b	Z = 3.67 (P = 0.0002) 1.45 0.23 1	0.46 0.28 0.34 0.38	26 18	26 22	9.3% 6.3%	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67] 1.45 [0.71, 2.19]	——————————————————————————————————————
Test for overall effect: 4.1.2 Salida de la vía 39 221 16	Z = 3.67 (P = 0.0002) 1.45 0.23 1 1.45	0.46 0.28 0.34 0.38	26 18 18	26 22 18	9.3% 6.3% 5.1%	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67]	——————————————————————————————————————
Test for overall effect: 4.1.2 Salida de la vía 39 221 16 15b 15a Subtotal (95% CI)	Z = 3.67 (P = 0.0002) 1.45 0.23 1 1.45	0.46 0.28 0.34 0.38 0.37	26 18 18 18	26 22 18 18	9.3% 6.3% 5.1% 5.3%	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67] 1.45 [0.71, 2.19] 1.37 [0.64, 2.10]	——————————————————————————————————————
Test for overall effect: 4.1.2 Salida de la vía 39 221 16 15b 15a Subtotal (95% CI) Heterogeneity: Chi² =	2 = 3.67 (P = 0.0002) 1.45 0.23 1 1.45 1.37	0.46 0.28 0.34 0.38 0.37	26 18 18 18	26 22 18 18	9.3% 6.3% 5.1% 5.3%	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67] 1.45 [0.71, 2.19] 1.37 [0.64, 2.10]	——————————————————————————————————————
Test for overall effect: 4.1.2 Salida de la vía 39 221 16 15b 15a Subtotal (95% CI) Heterogeneity: Chi² =	Z = 3.67 (P = 0.0002) 1.45 0.23 1 1.45 1.37 10.83, df = 4 (P = 0.03)	0.46 0.28 0.34 0.38 0.37	26 18 18 18	26 22 18 18 96	9.3% 6.3% 5.1% 5.3%	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67] 1.45 [0.71, 2.19] 1.37 [0.64, 2.10]	
Test for overall effect: 4.1.2 Salida de la vía 39 221 16 15b 15a Subtotal (95% CI) Heterogeneity: Chi² = Test for overall effect: Total (95% CI)	Z = 3.67 (P = 0.0002) 1.45 0.23 1 1.45 1.37 10.83, df = 4 (P = 0.03)	0.46 0.28 0.34 0.38 0.37 ; ² = 63%	26 18 18 18 92	26 22 18 18 96	9.3% 6.3% 5.1% 5.3% 29.5 %	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67] 1.45 [0.71, 2.19] 1.37 [0.64, 2.10] 0.95 [0.65, 1.26]	—
Test for overall effect: 4.1.2 Salida de la vía 39 221 16 15b 15a Subtotal (95% CI) Heterogeneity: Chi² = Test for overall effect: Total (95% CI) Heterogeneity: Chi² =	Z = 3.67 (P = 0.0002) 1.45 0.23 1 1.45 1.37 10.83, df = 4 (P = 0.03) Z = 6.06 (P < 0.00001)	0.46 0.28 0.34 0.38 0.37 ; ² = 63%	26 18 18 18 92	26 22 18 18 96	9.3% 6.3% 5.1% 5.3% 29.5 %	0.23 [-0.32, 0.78] 1.00 [0.33, 1.67] 1.45 [0.71, 2.19] 1.37 [0.64, 2.10] 0.95 [0.65, 1.26]	-2 0 2 OR ACCIDENT. MENOR ACCIDENT

Metaanálisis- Desviación línea

Metaanálisis- Desviación línea

	CON	ALCOHOL		SIN A	ALCOHOL	-	Di	iferencia Estandarizada de	Medias	Diferencia Est	andarizada d	e Medias
Estudio o Subgrupo	Promedio	SD.	Total	Promedi	io SD	Total	Peso	IV, Corregido, IC 95%		IV, Corregio	o, IC 95%	
1.2.3 DESVIACIÓN DE	LA DIRECC	IÓN										
17	92.9	33.1	20	82	36.2	20	6.6%	0.31 [-0.32, 0.93]		_	-	
205a	0.67	0.0759	23	0.6	0.0935	21	6.8%	0.81 [0.19, 1.43]				
274	0.512	0.0284	40	0.495	0.0268	40	12.8%	0.61 [0.16, 1.06]				
Subtotal (95% CI)			83			81	26.2%	0.59 [0.27, 0.90]			lack	
Heterogeneidad: Chi² =	1.28, df = 2	(P = 0.53);	$I^2 = 0\%$									
Test de Efecto global: Z	= 3.66 (P =	0.0003)										
1.2.4 DESVIACIÓN DEN	ITRO DE LA	LINEA										
108a	45.74	9.4739	19	44.26	8.6511	19	6.4%	0.16 [-0.48, 0.80]		_		
108b	62.59	14.0107	19	44.26	8.6511	19	4.8%	1.54 [0.81, 2.27]				
163a	1.7	0.8	24	1.3	0.3	24	7.6%	0.65 [0.07, 1.23]				
163b	1.9	0.9	16	1.2	0.4	16	4.7%	0.98 [0.24, 1.72]				
205b	0.17	0.0196	23	0.15	0.021	21	6.5%	0.97 [0.34, 1.60]				
221	6.7	1.5	26	6.3	1.1	26	8.6%	0.30 [-0.25, 0.85]		_		
273	1.7	8.0	23	1.3	0.4	23	7.3%	0.62 [0.03, 1.21]				
3	6.2	1.17	34	5.5	1.17	34	10.9%	0.59 [0.11, 1.08]				
73	1.08	0.46	14	0.91	0.39	14	4.6%	0.39 [-0.36, 1.14]			-	
93	0.2748	0.1127	20	0.0265	0.051	20	3.2%	2.78 [1.89, 3.67]				-
94	1.24	0.3	30	0.99	0.22	30	9.0%	0.94 [0.40, 1.47]				
Subtotal (IC 95%)			248			246	73.8%	0.78 [0.59, 0.96]			lack	
Heterogeneidad: Chi ² =	33.14, df = 1	10 (P = 0.0	003); I² :	= 70%								
Test de Efecto global: Z	= 8.12 (P <	0.00001)										
Total (IC 95%)			331			327	100.0%	0.73 [0.56, 0.89]			♦	
Heterogeneidad: Chi ² =	35.46, df = 1	13 (P = 0.0	007); I² :	= 63%						-	<u> </u>	-
Test de Efecto global Z	= 8.85 (P < 0	0.00001)							-4 MENOR DE	_) 2 MENOR DES	4

Recomendación primordial FONDO DE PR

Impedir el consumo de alcohol previo a la conducción de vehículos automotores entendiendo que **su consumo en cualquier cantidad**, modifica las habilidades del conductor y puede causar mayor accidentalidad.

GRACIAS

