Exam 03-Control Engineering

Monday, 10. February 2020 16:40

4)

a)

$$k_1$$
 k_2
 k_3
 k_4
 k_5
 k_6
 $k_1 = k_2 = 1$
 k_1
 k_2
 k_4
 k_5
 k_6
 $k_1 = k_2 = 1$
 k_1
 k_2
 k_3
 k_4
 k_5
 k_6
 k_6
 k_7
 k_8
 k_8
 k_8
 k_8
 k_8
 k_9
 k_9

a)
$$K = 4$$

$$\frac{1}{T_1} = 0.5 \text{ sec}^{-1} \Rightarrow T_1 = 2 \text{ sec}$$

$$T_1$$

b) At
$$w = \frac{1}{T_2}$$
, $\phi_2(jw) = -90^\circ$
 Now , $\phi_p = \phi$, $+ \phi_2$.
 $\phi_2 = -90^\circ = \Rightarrow \phi_p = \phi$, -90°
i.e. $90 = \phi_1 - \phi_p$
8) $90 = \phi_T - \phi_p$
As, measure this definence at Book plot, that roould be $w = 1 = 2$ sec $\frac{T_2}{T_2} = 0.5$ sec

Now from Go using
$$K_c = 1$$
 we have,

Value of $A_R = 1$

For
$$G_{0} = 1$$

Using scale,

 $\frac{29}{27} \text{ units} = \frac{\log 10 - \log 1}{\log x - \log 0.1}$

=) $\log_{10} x = \frac{29}{29}$
 $\log_{10} x = \frac{29}{29}$

Now, for Ap to be, Ap= 3 we should have. $G_c(\omega_{\pi}) = \frac{1}{3}$

$$k_{c} = \frac{1}{0.672} \times \frac{1}{3}$$

$$k_{c} = 0.496$$

3.
$$\ddot{Y} = U^3 - \ddot{Y}(Y+2) - 2 \sin \dot{Y} - Y^2 U$$

= $\int (U, Y, \dot{Y}, \ddot{Y})$

Operaly point
$$P_0 = (V_0, Y_0, \dot{Y}_0, \dot{Y}_0, \dot{Y}_0)$$

= $(K, K, 0, 0)$
also, $\ddot{K} = 0$

Now,

$$\ddot{y} = \frac{\partial f}{\partial u} \left| U + \frac{\partial f}{\partial \dot{y}} \right|_{P_0} \frac{1}{2} \left| \frac{\partial f}{\partial \dot{y}} \right|_{P_0} \frac{\dot{y} + \partial f}{\partial \dot{y}} \left| \frac{\dot{y}}{\partial \dot{y}} \right|_{P_0}$$

$$= (3 \kappa^2 - \kappa^2) U + (0 - 2 \kappa^2) \gamma + (-2) \dot{y} - (\kappa + 2) \dot{y}$$

b)
$$\frac{\ddot{y} + (k+2)\ddot{y} + 2\ddot{y} + y(2k^2)}{3} = (2k^2)U$$

 $\frac{\dot{y}(3)}{3} = \frac{2k^2}{3^3 + (k+2)^3 + 2^3 + (2k^2)}$

For linear system to be stable.

$$\frac{\text{ceard}^m 1}{K > -2}$$

$$\left| \begin{array}{cc} K+2 & 2K^2 \\ \end{array} \right| > 0$$

because canonical form is followey. $\dot{x} = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ In our case $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ canonical

b.
$$|8I-A| = 0 \qquad \text{charceluster eq}^{n}$$

$$|8I-A| = 0 \qquad \text{charceluster eq}^{n}$$

$$|4S = -1| = 0$$

$$|4S = 24 + 28 + 5 = 0$$

$$|8I-A| = 0 \qquad \text{charceluster eq}^{n}$$

$$S_{p_1} = -1 - i2$$
 $S_{p_2} = -1 + i2$

for, Darping contical, $\lambda = 1$ i.e angle=45

i poles lie outside region of sufficient

dampen value: Damping is not sufficiently good.

Figure 1: Poles of the system for task b).

*C)
$$8\rho_1 = -1$$
 $8\rho_2 = -3$
:. Characlesistic eq n
 $(8+1)(8+3) = 0$
 $8^2 + 48 + 3 = 0$

Now, Characlustic eg,
$$|SI - A_k| = 0$$

$$A_k = A - BK$$

$$= \begin{pmatrix} 0 & 1 \\ -S - 2 \end{pmatrix} - \begin{pmatrix} k, & k_2 \\ k_1 & k_2 \end{pmatrix}$$

$$= \begin{pmatrix} -k, & 1-k_2 \\ -S-k, & -2-k_2 \end{pmatrix}$$

Now,

$$\begin{bmatrix} 8 & 1 - A_{k} \end{bmatrix} = 0$$

 $\begin{bmatrix} 8 + k, & k_{2} - 1 & \\ k, + 5 & 8 + 2 + k_{2} \end{bmatrix} = 0$

$$s^{2} + s(k, + k_{2} + 2) + k_{1}(2 + k_{2}) - (k_{2} - 1)(k_{1} + 6) = 0$$

 $s^{2} + s(k_{1} + k_{2} + 2) + 2k_{1} + k_{2}k_{2} - k_{1}k_{2} + k_{1} - 5k_{2} + 5 = 0$