1.

- 2. Demostrar que $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$ Sabemos que para $x \in R^n$ $|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$ Así $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$
- 3. Si $f \in L^1$ y $g \in L^{\infty}$, entonces

$$\int |fg| \le ||f||_1 \cdot ||g||_{\infty}$$

Por monotonía, tenemos:

$$|fg| = |f||g| \le |f| \cdot ||g||_{\infty}$$

$$\int |fg| \le \int |f| \cdot ||g||_{\infty} = ||f||_1 \cdot ||g||_{\infty}$$

4. (a) Demostrar la desigualdad de Minkowski para 0 .

Lema: Sea 0 y <math>q = 1 - p, entonces

$$\int |fg| \ge ||f||_p \cdot ||g||_q$$

Sean
$$\frac{1}{q} = 1 - \frac{1}{p} \Rightarrow q = \frac{p}{p-1} < 0$$

 $p' = \frac{1}{p}$ y $q' = 1 - q = -\frac{1}{p-1}$
Además $\frac{1}{p'} + \frac{1}{q'} = p + \frac{1}{1-q} = p + \frac{1}{1-\frac{p}{p-1}} = p - p + 1 = 1$
Así tenemos:

$$\int |f|^{p} = \int |fg|^{p} \cdot |g|^{-p} \le (\text{H\"{o}lder}) ||(|fg|^{p})||_{p'} \cdot ||(|g|^{-p})||_{q'}$$

$$= \left(\int (|fg|^{p})^{p'}\right)^{1/p'} \cdot \left(\int |g|^{-pq'}\right)^{1/q'}$$

$$= \left(\int |fg|\right)^{p} \cdot \left(\int |g|^{\frac{p}{p-1}}\right)^{1-p}$$

Así tenemos:

$$\Big(\int |f|^p\Big)\Big(\int |g|^q\Big)^{p-1} \leq \Big(\int |fg|\Big)^p$$

Sacando raíz p

$$\int |fg| \ge ||f||_p ||g||_q$$

Supongamos que si $f, g \in L^p$, entonces $(f+g) \in L^p$ Sea $q = \frac{p}{p-1}$, entonces $|f+g|^{p-1} \in L^p$ y

$$\left|\left||f+g|^{p-1}\right|\right|_q = \left(\int (|f+g|^{p-1})^q\right)^{1/q} = \left(\int |f+g|^p\right)^{(p-1)/p} = ||f+g||_p^{p-1}$$

Así tenemos que:

$$\begin{split} ||f+g||_p^p &= \int |f+g|^p = \int |f+g| \cdot |f+g|^{p-1} \\ &= \int (f+g) \cdot |f+g|^{p-1} \\ &= \int f|f+g|^{p-1} + \int g|f+g|^{p-1} \\ \text{Lema } \geq ||f||_p ||f+g||_p^{p-1} + ||g||_p ||f+g||_p^{p-1} \end{split}$$

Así tenemos:

$$||f + g||_p \ge ||f||_p + ||g||_q$$

Cumpliendose la igualdad si $||f + g||_p = 0$

(b) Demostrar que si $f \in L^p$, $g \in L^p$ entonces $f + g \in L^p$ para 0 . Tenemos que:

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|)^p \le (2\max\{|f(x)|, |g(x)|\})^p = 2^p \max\{|f(x)|^p, |g(x)|^p\} \le 2^p (|f(x)|^p + |g(x)|^p) \quad \Box$$

5. Sea E medible con medida finita y $1 \le p_1 \le p_2 \le \infty$. Entonces $L^{p_2} \subset L^{p_1}$. Más aún

$$||f||_{p_1} \le c||f||_{p_2}$$

para toda $f \in L^{p_2}$ con $c = (m(E))^{\frac{p_2-p_1}{p_1p_2}}$ si $p_2 < \infty$ y $c = (m(E))^{\frac{1}{p_1}}$ si $p_2 = \infty$. Caso 1: $p_2 < \infty$

Si $f \in L^{p_2}$, entonces $|f|^{p_1} \in L^{p_2/p_1}$ y

$$\left| \left| |f|^{p_1} \right| \right|_{p_2/p_1} = \left(\int |f|^{p_2} \right)^{p_1/p_2} = \left| |f| \right|_{p_2}^{p_1}$$

Por Hölder tenemos

$$||f||_{p_1}^{p_1} = \int_E |1 \cdot f|^{p_1} \le ||1_E||_{p_2/(p_2 - p_1)} ||f|^{p_1}||_{p_2/p_1} = (m(E))^{\frac{p_2 - p_1}{p_2}} ||f||_{p_2}^{p_1}$$

Así tenemos

$$||f||_{p_1} \le (m(E))^{\frac{p_2-p_1}{p_1p_2}} ||f||_{p_2}$$

Caso 2: $p_2 = \infty$

$$||f||_{p_1} = \left(\int_E |f|^{p_1}\right)^{1/p_1}$$
monotonia $\leq \left(\int_E 1 \cdot ||f||_{\infty}^{p_1}\right)^{1/p_1} = (m(E))^{\frac{1}{p_1}} ||f||_{\infty}$

6.

7.

- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.