

DAF 2010_R

CARTE TEHNICA

UZ INTERN

1986

DDDDDD	AAAAA	FFFFFF	2222	0000	11	0000	RRRRRR
DDDDDD	AAAAAA	FFFFF	222222	000000	111	000000	RR RR
DD DD	AA AA	FF	22 22	00 00	1111	00 00	RR RR
DD DD	AA AA	FF	22	00 00	11	00 00	RR RR
DD DD	AAAAAA	FFFFF	22	00 00	11	00 00	RR RR
DD DD	AAAAAA	FFFFF	22	00 00	11	00 00	RRRRRR
DD DD	AA AA	FF	22	00 00	11	00 00	RRRR
DD DD	AA AA	FF	22	00 00	11	00 00	RR RR
DDDDDD	AA AA	FF	222222	000000	11	000000	RR RR
DDDDDD	AA AA	FF	222222	0000	11	0000	RR RR

M A N U A L D E U T I L I Z A R E
M A N U A L D E F U N C T I O N A R E

CUPRINS
PARTEA I MANUAL DE UTILIZARE

1. PREZENTARE GENERALA	4
1.1. INTRODUCERE.....	4
1.2. STRUCTURA TERMINALULUI	4
1.2.1. TASTATURA	4
1.2.2. COMUNICATIA CU CALCULATORUL.....	6
1.3. INTERFATA CU IMPRIMANTA	6
2. FUNCTIILE TERMINALULUI	8
2.1. INTRODUCERE .. .	8
2.1.1. REGIMURILE DE LUCRU	8
2.1.1.1. REGIMUL ON/OFF LINE	8
2.1.1.2. REGIM PROTEJAT/NEPROTEJAT	8
2.1.1.3. REGIM DEFILARE/PAGINA	8
2.1.2. FUNCTIILE TERMINALULUI	9
2.2. FUNCTII DE EDITARE .. .	9
2.2.1. AFISARE CARACTER .. .	10
2.2.2. LINE FEED .. .	10
2.2.3. RETURN .. .	11
2.2.4. NEW LINE .. .	11
2.2.5. LINE SKIP .. .	11
2.2.6. SUS .. .	11
2.2.7. JOS .. .	11
2.2.8. AVANS .. .	11
2.2.9. INAPOI .. .	12
2.2.10. BACK SPACE .. .	12
2.2.11. HOME .. .	12
2.2.12. INSERARE CARACTER .. .	12
2.2.13. ELIMINA CARACTER .. .	12
2.2.14. INSERARE LINIE .. .	12
2.2.15. ELIMINA LINIE .. .	12
2.2.16. STERGE CARACTER .. .	13
2.2.17. STERGE LINIA .. .	13
2.2.18. STERGE PAGINA .. .	13
2.2.19. STERGE ECRAN .. .	13
2.2.20. STERGERE GENERALA .. .	13
2.2.21. ADRESARE CURSOR .. .	13
2.2.22. TABULATORII .. .	14
2.2.23. TASTE MULTICOD .. .	15
2.2.24. GENERATORUL DE CARACTERE PROGRAMABIL ..	17
2.3. FUNCTII DE COMANDA A TRANSFERULUI DE INFORMATII .. .	19
2.3.1. TRANSFER LA CALCULATOR .. .	19
2.3.2. TRANSFERUL LA IMPRIMANTA .. .	21
2.4. FUNCTII DE COMANDA A STARII TERMINALULUI ..	21
2.4.1. MODIFICAREA PARAMETRILOR DE COMUNICATIE.	21
2.4.2. MODIFICAREA PARAMETRILOR DE LUCRU .. .	23
2.4.3. MODIFICAREA PARAMETRILOR AFISARII SI TRANSFERULUI LA IMPRIMANTA .. .	25
2.4.4. SALVAREA SI REFACEREA INTREGULUI SET DE PARAMETRI .. .	26
2.4.5. COMUTAREA IN REGIM ON LINE .. .	27
2.4.6. COMUTAREA IN REGIM OFF LINE .. .	27

2.4.7. SCHIMBAREA CONDIITIILOR DE AFISARE ALE CARACTERELOR	27
2.4.8. INHIBAREA TASTATURII	28
2.4.9. ACTIVAREA TASTATURII	29
2.4.10. ACCES ZONA PROTEJATA	29
2.4.11. TRANSMITEREA OPTIUNILOR	29
2.4.12. TRANSMITEREA STARII TERMINALULUI	29
3. COMUNICATIA CU CALCULATORUL	31
3.1. INTRODUCERE	31
3.2. COMUNICATIA SERIALA	31
3.2.1. MODUL ASINCRON	31
3.2.1.1. MODUL CARACTER	31
3.2.1.2. MODUL BLOC	31
3.2.1.3. LUCRUL LA VITEZE MARI	32
3.2.2. MODUL SINCRON	32
3.2.2.1 PROTOCOLUL TMH-VU	32
3.2.2.2. CONEXIUNEA MULTIPUNCT SI STABILIREA ADRESELOR	40
4. INSTRUCTIUNI DE INSTALARE ,EXPLOATARE, INTRETINERE	41
4.1. INSTALARE	41
4.2. EXPLOATARE	41
4.3. INTRETINERE	42

PARTEA II-a MANUAL DE FUNCTIONARE

5. BLOCUL LOGIC.....	43
5.1. UNITATEA DE COMANDA	43
5.2. TASTATURA.....	44
5.3. LISTA DE COMENZI 2010R	45
5.4. LISTA DE SEMNALE LOGICE 2010R	49
6. SURSA DE ALIMENTARE	50
6.1. GENERALITATI	50
6.2. DESCRIEREA FUNCTIONALA A BLOCURILOR	51
7. MONITORUL T.V.	55
7.1. GENERALITATI	55
7.2. CARACTERISTICI ELECTRICE	55
7.3. DESCRIERE FUNCTIONALA	55
7.3.1. SCHEMA BLOC	55
7.3.2. DESCRIEREA BLOCURILOR FUNCTIONALE	56
ANEXE	60

MANUAL DE UTILIZARE DAF 2010R

PARTEA I - MANUAL DE UTILIZARE

PREZENTARE GENERALA

1.1. Introducere

Display-ul DAF2010R este un terminal alfanumeric, semigrafic, construit pe structura cu microprocesor care ,sub controlul firmware rezident intr-o memorie PROM, permite: introducerea, prelucrarea, transmiterea si receptionarea informatiilor.

DAF2010R este capabil sa lucreze independent sau sub comanda unui calculator la care se leaga direct sau prin modem, ca terminal de tip ASCII; schimbul de date se face asincron sau optional sincron in protocol TMM-VU.

Posibilitatile semigrafice sint date de un set de 128 de caractere programabile de catre utilizator. Aceste caractere li se asociaza un cod ASCII si ele pot fi afisate ca si caracterele standard.

Parametrii de comunicatie si functionare pot fi programati fie de la tastatura terminalului fie prin comenzi primite pe canalul de comunicatie.

Terminalul DAF 2010R a fost proiectat pentru a inlocui terminalul DAF 2010 , pastrind functiile acestuia si incluzind facilitati suplimentare (cursor bloc, defilare umana , contrast reglabil de la tastatura,memorie nevolatila de parametri,mod transparent cu imprimanta) ce vor fi descrise in detaliu in prezentul manual. Programele implementate pe DAF 2010 pot fi utilizate si pe DAF 2010R .

1.2. Structura terminalului

In figura 1.1 este data schema bloc a terminalului. Partile principale , independente din punct de vedere mecanic si electric, sint: tastatura ,monitorul cu tub catodic, blocul principal si sursa.

1.2.1 Tastatura

Se foloseste o tastatura speciala cu 101 taste si 5 LED-uri. Unul din LED-uri este linge tasta CAPS si indica pozitia acestei taste.Celelalte 4 LED-uri sint grupate in partea de sus in stinga tastaturii si atunci cind sunt aprinse, au urmatoarea semnificatie(de la stinga la dreapta):

MANUAL DE UTILIZARE DAF 2010R

-mod transparent(AUTO COPY)
-tastatura operatională (OPER)
-display-ul este conectat la calculator(ON LINE)
-linia de comunicatie cu calculatorul este valida(READY)

Daca se tine apasata o tasta mai mult timp se trimite codul respectiv cu o frecventa de 12Hz.Cind tastatura nu este operatională apasarea tastelor nu mai are nici un efect. Blocarea tastaturii se poate produce in una din situatiile urmatoare:

-s-a umplut buffer-ul de tastatura .In acest buffer se pastreaza codurile tastelor in ordinea in care au fost apasate.Deblocarea o face firmware-ul dupa prelucrarea unui caracter din buffer.

-calculatorul a transmis o comanda de blocare a tastaturii. Deblocarea o face calculatorul prin functia de deblocare a tastaturii.Situatia aceasta apare in comunicatia mod bloc,intrebare - raspuns.

Cele 101 taste sunt grupate in 3 blocuri: alfanumeric , numeric si functii (fig. 1.2.). Codurile transmise de tastele din grupul alfanumeric sunt afectate de tastele SHIFT, CAPS si CTRL.

Tastele CAPS si SHIFT actioneaza astfel:

CAPS	SHIFT	Taste literale	Taste cu dubla insriptionare	Taste multicod
nu	nu	litere mici	caracter de jos	PF1-PF8
da	nu	litere mari	caracter de jos	PF1-PF8
nu	da	litere mari	caracter de sus	PF9-PF16
da	da	litere mari	caracter de sus	PF9-PF16

Cu CTRL actionat simultan cu apasarea tastei SHIFT (CAPS inactiv)se obtin semnele de tabel si literele specifice limbii romane indicate in fig. 1.3.

Daca se actioneaza tasta CTRL simultan cu alta tasta (fara a se actiona SHIFT) se obtin caracterele speciale de comunicatie (codurile 00...1FH). Pentru obtinerea codurilor intre 00 si 1A se apasa CTRL simultan cu tasta corespunzatoare cu cod intre 40...5A (astfel NUL se obtine din CTRL/@ , SOH din CTRL/A ,BS din CTRL/H, DLE din CTRL/P ,SUB din CTRL/Z etc:) . Codurile intre 1B si 1F se obtin astfel:

ESC (1BH) ESC sau CTRL/{
FS (1CH) CTRL/,
GS (1DH) CTRL/}
RS (1EH) CTRL/:
US (1FH) CTRL/;

In anexa 9 sunt date toate combinatiile care pot fi realizate impreuna cu caracterele afisate.

Tastele programabile multicod sunt taste speciale care permit utilizatorului sa afiseze mai multe caractere prin transmiterea unui singur cod(de la tastatura sau calculator)- codul tastei multicod respective.

Fiecare tasta multicod poate programa cel mult 30 de coduri.In programarea unei taste multicod PFj poate aparea codul unei tastei PFj, numai daca j>i. Un cod care se repeta consecutiv de cel mult 256 de ori, este descris in tasta multicod

MANUAL DE UTILIZARE DAF 2010R

prin 3 octeti.

Observatii :

1) Tastatura produsului DAF2010R este compatibila din punct de vedere electric cu tastatura DAF 2010 . Se poate deci utiliza tastatura DAF 2010 tinind seama ca aceasta foloseste tasta SHIFT LOCK in loc de CAPS (vezi manual DAF 2010), iar ledul AUTO COPY este inscriptionat POWER ON .

2) Diferitele variante de tastatura existente pot avea inscriptionate diferit anumite taste . Urmatoarele inscriptionari sint echivalente :

BREAK si BRK
CHG , SET si SEL
VI si VIDEO
BL si BLINK
UND si SUB
RUB OUT si DEL
NEW LINE si LF
RETURN si CR
PRINT si COPY

1.2.2. COMUNICATIA CU CALCULATORUL

In varianta standard legatura cu calculatorul se face prin interfata seriala asincrona , cu vitezele de 110bauds(format 8/11 sau 7/10),150,300,600,1200,2400,4800,9600 bauds(format 8/10 sau 7/9).

Optional, DAF2010R poate fi prevazut cu procedura de comunicatie sincrona TMM-VU , cu interfata pentru conexiune multipunct.Intr-o retea multipunct se pot lega pina la 16 echipamente DAF2010R, selectabile prin adrese prestabilite. Intregul lant necesita o singura linie de comunicatie.Viteza de transmisie este adaptabila liniei de comunicatie si poate ajunge la 9600 bauds.In cazul conectarii directe la cuploul sincron al calculatorului primul echipament din lant poate furniza prin strapare un tact de 2400, 4800 sau 9600 Hz .

Interfata de comunicatie este de tip CCITT V24(RS 232C).Codul folosit este ASCII cu paritate selectabila de la tastatura sau stabilita automat conform protocolului de comunicatie (impar pentru TMM-VU).

1.3. INTERFATA CU IMPRIMANTA

Interfata cu imprimanta permite cuplarea mai multor tipuri de imprimante seriale sau paralele.Ele sunt codificate astfel:

- 1/ imprimanta seriala
- 2/ RCD 9334 (9335) paralela
- 3/ DZM
- 4/ ROBOTRON 1152
- 5/ ROBOTRON 1156
- 6/ ROBOTRON 1157
- 7/ D180

Tipul imprimantei se poate selecta de catre operator el facind parte din parametrii terminalului.

Imprimanta se poate folosi in doua moduri:

- copiere a unei zone de ecran

MANUAL DE UTILIZARE DAF 2010R

-mod de lucru transparent (AUTO COPY) in care dialogul intre calculator si display apare si la imprimanta.

In modul transparent se pot trimite catre imprimanta toate codurile (mod "trece tot") sau numai cele tiparibile (mod "trece caracter"). In modul transparent "trece caracter" se pot tipari in format de 80 caractere pe linie sau in formatul maxim permis de imprimanta (de obicei 132).

Pentru imprimantele paralele se poate stabili polaritatea semnalelor STROB si BUSY cu ajutorul comutatoarelor aflate pe placa de interfata. Utilizarea acestora este necesara doar in cazul schimbarii la imprimanta a polaritatii normale.

In cazul imprimantei seriale trebuie avut in vedere ca aceasta sa utilizeze protocolul XON/XOFF (altfel acest tip de imprimante nu se poate folosi decit la viteze mici de comunicatie).

Parametrii de comunicatie cu imprimanta seriala (viteza, paritate ,numar de biti) sint aceeasi cu cei selectati pentru comunicatia cu calculatorul.

MANUAL DE UTILIZARE DAF 2010R

2. FUNCTIILE TERMINALULUI

2.1 INTRODUCERE

In acest capitol sint descrise regimurile de lucru ale terminalului, functiile display-ului, modul de initiere si executie atit de la tastatura cit si de la calculator. De asemenea se definesc o serie de notiuni folosite in descrierea functiilor.

2.1.1 Regimurile de lucru

Modul de executie a functiilor depinde de regimurile de lucru in care se afla terminalul. Aceste regimuri pot fi stabilite de operator sau de la calculator ,cu ajutorul unor functii specifice.

2.1.1.1.Regimul ON/OFF LINE

Acest regim poate fi stabilit doar de operator. Prezenta regimului ON LINE este semnalizata operatorului prin aprinderea indicatorului luminos <<ON LINE>> de pe tastatura. In acest caz la stabilirea efectiva a legaturii (indicatorul <<READY>> aprins) intre terminal si calculator pot avea loc transferuri de informatii. Comunicatia cu calculatorul poate fi de tip asincron sau sincron. In cazul legaturii de tip asincron terminalul poate lucra in urmatoarele moduri:

-mod caracter fara ecou (half)-la apasarea unei taste se executa functia respectiva,iar codul este transmis pe linia de comunicatie .

-mod caracter cu ecou (full)-la apasarea unei taste nu se afiseaza nimic pe ecran, dar codul corespunzator se transmite pe linia de comunicatie.

-mod bloc-transmiterea la calculator se face la comanda operatorului .Se transmite un bloc de date delimitate de operator (vezi functiile START MESAJ si SEND).

-mod linie-se executa la fel ca in modul bloc, blocul de date fiind implicit linia pe care se afla cursorul.

In sincron pot exista modurile bloc si linie.

2.1.1.2.Regim PROTEJAT/NEPROTEJAT

In regim PROTEJAT terminalul nu permite modificarea unor zone numite protejate. Stabilirea regimului protejat/neprotejat si a zonelor neprotejate se poate face atit de operator cit si de la calculator.

2.1.1.3.Regim DEFILARE/PAGINA (SCROLL/PAGE)

Acest regim se refera la modul de lucru cu imaginea de pe ecran.In regimul PAGINA ecranul este considerat o pagina de dimensiuni fixe (24linii*80 caractere).

Prezenta regimului PROTEJAT fixeaza automat regimul PAGINA.

MANUAL DE UTILIZARE DAF 2010R

In regimul DEFILARE la completarea liniei de jos a ecranului continutul acestuia este deplasat in sus simulindu-se avansul hirtiei la masina de scris.

Regimul DEFILARE se poate realiza in doua moduri:

-defilare rind (JUMP SCROLL)

-defilare umana (SMOOTH SCROLL)

Defilarea rind se face cu o viteza de 50 rinduri/sec.

In modul defilare umana deplasarea imaginii se face continuu existind si posibilitatea de a selecta viteza de defilare lenta sau rapida (SLOW/FAST). Defilarea umana lenta se face cu cca. 4 rinduri/sec., iar cea rapida cu cca. 8 rinduri/sec.

2.1.2. FUNCTIILE TERMINALULUI

Pentru descrierea functiilor este necesara definirea unor notiuni.

Ecranul terminalului este impartit in 24 de linii si 80 de coloane.

-pozitia curenta-este pozitia indicata de cursor

-pozitia urmatoare- este prima pozitie neprotejata care urmeaza celei curente.Daca cursorul se afla la sfirsitul unei linii atunci pozitia urmatoare este inceputul liniei urmatoare. Linia urmatoare liniei 24 este linia 1.

-inceput de ecran-este pozitia din linia 1 coloana 1

-sfirsit de ecran-este pozitia din linia 24 coloana 80

-inceput de linie-este pozitia de pe coloana 1 a unei linii

-sfirsit de linie-este pozitia de pe coloana 80 a unei linii

-pozitia initiala este pe linia 1 coloana 1

-zone marcate -sunt zone afisate cu una din conditiile de marcare selectate in functia de programare a regimului de lucru, sau cu combinatii ale acestora.

Initierea functiilor terminalului se poate face:

-numai de la tastatura

-numai de la calculator

-atit de tastatura cit si de la calculator.

Initierea unei functii a terminalului se face prin:

-un cod

-o secventa de coduri precedate de ESC

-o secventa de coduri precedate de DC4

Dupa utilizarea lor ,functiile se impart in urmatoarele grupe:

-functii de editare

-functii de comanda a starii terminalului

-functii de comanda a transferului de informatii.

2.2. FUNCTII DE EDITARE

Functiile din aceasta grupa realizeaza controlul pozitiei cursorului afisarea caracterelor si modificarea textului aflat pe ecran.

MANUAL DE UTILIZARE DAF 2010R

2.2.1. AFISARE CARACTERE

Semnele afisate de terminal fac parte din setul standard de caractere sau din setul de caractere programabile, fiecare set continind 128 de semne.

Setul de caractere standard, pe lîngă semnele obisnuite (cifre, litere, semne de punctuație) mai conține 24 de semne pentru construirea de tabele, literele specifice limbii române (â,ă,i,s,t) și 3 semne cu utilizare în cadrul funcțiilor. Prezentarea setului de caractere standard se face în anexa 9.

Setul de caractere programabile cuprinde 128 de semne care pot fi construite de la tastatura sau de la calculator.

Funcția <<Afisare caracter>> realizează afisarea în poziția curentă a caracterului corespunzător și mutarea cursorului în poziția următoare. În regimul defilare, dacă cursorul se află la sfîrșitul ecranului, după afisare are loc o defilare. Modul în care se afisează caracterul depinde de starea terminalului (condițiile de afisare).

a/ De la tastatura

Caracterul afisat la tastarea unei taste depinde de regimul tastaturii (cu/fără CAPS, cu/fără SHIFT, cu/fără CTRL) și tastă apasată.

Exemple:

CAPS	SHIFT	CTRL	Tasta	Simbol
nu	nu	nu	A	a
nu	nu	da	A	neafisabil
nu	da	nu	A	A
nu	da	da	A	■■
da	nu	nu	A	A
da	nu	da	A	neafisabil
da	da	nu	A	A
da	da	da	A	neafisabil

b/ De la calculator

La transmisierea unui cod hexa între 20 și 7E se afisează caracterul corespunzător conform codului ASCII. Celelalte semne se afisează în urma unei secvențe de două coduri: DC4 și un caracter cu cod hexa în gama 20-3F sau 7F (vezi anexa 1).

2.2.2. LINE FEED

a/ De la tastatura (LF) sau (NEW LINE)

- în regim ON LINE și modul CHARACTER cursorul este mutat pe linia următoare și se transmite la calculator codul LF,

- în regim OFF LINE sau în regim ON LINE mod BLOC se executa funcția de NEW LINE (vezi 2.2.4)

b/ De la calculator LF (OAH)

- cursorul este mutat pe linia următoare (cu executia defilarii, dacă este cazul).

MANUAL DE UTILIZARE DAF 2010R

2.2.3. RETURN

a/ De la tastatura (CR) sau (RETURN)

- in regimul ON LINE modul CARACTER cursorul este mutat la inceputul liniei curente.

- in regim OFF LINE sau in regim ON LINE mod BLOC se executa functia de LINE SKIP(vezi 2.2.5). Cursorul este mutat la incepătul liniei urmatoare (cu executarea unei defilarari, daca este cazul).

b/ De la calculator CR (ODH)

-cursorul este mutat la inceputul liniei curente

2.2.4. NEW LINE

a/ De la tastatura (LF) sau (NEW LINE)

-se executa numai in OFF LINE sau modul BLOC .Se sterg caracterele de la pozitia curenta pina la prima zona protejata sau pina la sfirsitul liniei.Se afiseaza pe pozitia curenta simbolul ↴ .Cursorul este mutat la inceputul liniei urmatoare cu executarea defilarii.In ON LINE modul CARACTER se executa LINE FEED.

b/ De la calculator ESC J (1BH 4AH)

-se sterg caracterele de pe pozitia curenta pina la prima zona protejata sau pina la sfirsitul liniei.Se afiseaza pe pozitia curenta simbolul ↴ .Cursorul este mutat la inceputul liniei urmatoare.

2.2.5. LINE SKIP

Cursorul se pozitioneaza la inceputul liniei urmatoare.

a/ De la tastatura (CR) sau (RETURN)

-se executa numai in regim OFF LINE sau modul BLOC.

b/ De la calculator ESC S (1BH 53H)

2.2.6. SUS

Cursorul se deplaseaza in sus pina la prima pozitie neprotejata. De pe linia 1 se muta pe linia 24.

a/ De la tastatura (↑)

b/ De la calculator ESC Q (1BH 51H)

2.2.7. JOS

Cursorul se deplaseaza in jos pina la prima pozitie neprotejata. De pe linia 24 se muta pe linia 1.

a/ De la tastatura (↓)

b/ De la calculator ESC K (1BH 4BH)

2.2.8. AVANS

Deplaseaza cursorul pe pozitia urmatoare.

MANUAL DE UTILIZARE DAF 2010R

- a/De la tastatura (\rightarrow)
- b/De la calculator ESC _ (1BH 5FH)

2.2.9. INAPOI

Deplaseaza cursorul pe pozitia precedenta.

- a/De la tastatura (\leftarrow)
- b/De la calculator ESC H (1BH 48H)

2.2.10. BACK SPACE

Deplaseaza cursorul pe pozitia precedenta.

- a/De la tastatura CTRL/H
- b/De la calculator BS (08H)

2.2.11. HOME

Muta cursorul pe pozitia initiala.

- a/De la tastatura (HOME)
- b/De la calculator ESC L (1BH 4CH)

2.2.12. INSERARE CARACTER

Caracterele aflate intre pozitia cursorului si sfirsitul liniei sau pina la prima zona protejata din cadrul liniei curente se deplaseaza cu o pozitie la dreapta ,ultimul caracter pierzindu-se, iar pe pozitia cursorului se afiseaza blanc.

- a/De la tastatura (INS CHAR)
- b/De la calculator ESC U (1BH 55H)

2.2.13. ELIMINA CARACTER

Caracterele aflate dupa cursor pina la sfirsitul liniei sau pina la prima zona protejata din cadrul liniei curente se deplaseaza cu o pozitie la stanga, iar caracterul de pe pozitia cursorului se pierde.

- a/De la tastatura (DEL CHAR)
- b/De la calculator ESC V (1BH 56H)

2.2.14. INSERARE LINIE

In regim PAGINA (DEFILARE) liniile cuprinse intre cursor si sfirsitul (inceputul) ecranului se deplaseaza in jos (sus).Ultima (prima) linie se pierde. Cursorul se pozitioneaza la inceputul liniei eliberate.Functia se executa doar in regim NEPROTEJAT.

- a/De la tastatura (INS LINE)
- b/De la calculator ESC M (1BH 4DH)

2.2.15. ELIMINA LINIA

In regim PAGINA (DEFILARE) liniile cuprinse intre cursor si sfirsitul (inceputul) ecranului se deplaseaza in sus (jos).Linia curenta se pierde. Cursorul se pozitioneaza la inceputul liniei. Functia se executa doar in regim NEPROTEJAT.

MANUAL DE UTILIZARE DAF 2010R

- a/De la tastatura (DEL LINE)
- b/De la calculator ESC J (1BH 5DH)

2.2.16. STERGE CARACTER

Se sterge primul caracter neprotejat aflat in stinga cursorului .Conditia de afisare a blancului nou introdus ramine cea a caracterului sters , indiferent de starea terminalului.

- a/De la tastatura (RUB OUT) sau (DEL)
- b/De la calculator DEL (7FH)

2.2.17. STERGE LINIA

Se sterg caracterele aflate intre cursor si sfirsitul liniei sau prima pozitie neprotejata .Cursorul ramine pe loc.

- a/De la tastatura (ERASE LINE)
- b/De la calculator ESC Y (1BH 59H)

2.2.18. STERGE PAGINA

Se sterg zonele neprotejate aflate intre cursor si sfirsitul ecranului Cursorul ramine pe loc.

- a/De la tastatura (ERASE TO END)
- b/De la calculator ESC W (1BH 57H)

2.2.19. STERGE ECRAN

Se sterg zonele neprotejate de pe tot ecranul ,iar cursorul se muta in pozitia initiala.

- a/De la tastatura (ERASE)
- b/De la calculator ESC X (1BH 58H)

2.2.20. STERGERE GENERALA

Se sterg atit zonele neprotejate cit si cele protejate de pe intreg ecranul.Cursorul se muta in pozitia initiala.

- a/De la tastatura (CLEAR).Se executa doar in regim OFF LINE
- b/De la calculator ESC Z (1BH 5AH)

2.2.21. ADRESARE CURSOR

- b/De la calculator DC2 (12H)

DC2 este urmat de doua coduri care precizeaza coordonatele X (coloana) respectiv Y(linia) unde se va pozitiona cursorul.Primul cod care indica coordonata X este cuprins intre 20H si 6FH inclusiv si reprezinta coloanele de la 1 la 80.Daca este intre 6FH si 7FH inclusiv,atunci cursorul se va pozitiona pe coloanele de la 1 pina la 16.

Al doilea cod care indica coordonata Y este cuprins intre 20H si 37H inclusiv si reprezinta liniile de la 1 la 24.Daca este mai mare decit 37H, atunci codul luat modulo 24 va reprezenta liniile de la 1 la 24. Nici unul din cele doua coduri nu poate fi mai mic decit 20H (in acest caz secenta DC2 este inactiva).

MANUAL DE UTILIZARE DAF 2010R

2.2.22. TABULATORII

Tabulatorii se pot defini in doua moduri:

- implicit -este pozitia care urmeaza dupa sfirsitul unei zone marcate
- explicit -prin programarea lui de catre operator sau calculator.

Selectia modului de definire a tabulatorilor se face prin functia de programare a regimului de lucru.

UTILIZAREA TABULATORILOR

TABULARE

Muta cursorul de pozitia urmatorului tabulator sau pe pozitia initiala daca nu exista nici un tabulator pina la sfirsitul ecranului. In defilare explicita se poate executa o defilare daca este cazul.

- a/De la tastatura (TAB)
- b/De la calculator HT(09H) sau ESC I (1BH 49H)

TABULARE INAPOI

Muta cursorul inapoi pe pozitia primului tabulator aflat in stanga pozitiei curente sau pe pozitia initiala daca nu exista nici un tabulator pina la inceputul ecranului.

- a/De la tastatura (BACK TAB)
- b/De la calculator VT (OBH)

PROGRAMAREA TABULATORILOR

Tabulatorii expliciti se refera la o linie si deci toate liniile au aceiasi tabulatori. Se pot pozitiona pina la 80 de tabulatori, cite unul pentru fiecare pozitie de pe linie. La inceputul liniei exista intotdeauna un tabulator indiferent de programarea facuta.

- a/De la tastatura (ESC B)

Pentru vizualizarea pozitiei tabulatorilor expliciti sau stergerea ori adaugarea tabulatorilor utilizatorul va utiliza secenta ESC B .Se salveaza prima linie de pe ecran, iar in locul ei apare urmatoarea linie:

T234567891...789

Pozitiile tabulatorilor sunt indicate prin afisarea pe video invers a caracterelor de pe primul rind. Stergerea (pozitionarea) unui tabulator se face mutindu-se cursorul in locul dorit si apasind pe tasta blanc(asterisc). Incheierea secentei de programare se face cu tasta CR, dupa care reappeare pe prima linie textul initial.

Cu ajutorul tastei ERASE LINE se sterg toti tabulatorii.

Pentru abandonarea programarii facute in secenta curenta se utilizeaza tasta ESC.In acest caz se incheie programarea fara memorarea noilor tabulatori.

- b/De la calculator

Pentru programarea tabulatorilor de la calculator exista doua functii:

MANUAL DE UTILIZARE DAF 2010R

-TAB SET (ESC A)-se pune un tabulator explicit pe pozitia pe care se afla cursorul.

-TAB CLEAR (ESC B)-se sterg toti tabulatorii.

Observatie :

La pornire displayul initializeaza tabulatori expliciti la fiecare 8 coloane (coloanele 1,9,17,...,73). In caz ca se doreste programarea altor tabulatori trebuie stersi in prealabil cei initiali .

2.2.23.TASTE MULTICOD

Terminalul are 16 taste multicod PF1-PF16 . Fiecarei taste i se poate atasa un sir de 30 de caractere. Tastele multicod pot fi folosite pentru afisarea unor cuvinte sau texte mai des utilizate,pentru crearea de comenzi noi,s.a.m.d.

PROGRAMAREA TASTELOR MULTICOD

La pornirea sau initializarea terminalului tastele multicod nu sunt programate.

a/De la tastatura (ESC PFi)

Se poate initia doar in OFF LINE sau ON LINE mod BLOC cu secenta ESC PF1-PF8. Folosind tasta SHIFT se extinde numarul pina la 16 (astfel PF9 se obtine prin apasare PF1 simultan cu SHIFT) . Primul rind este salvat, iar in locul lui apare textul:

SOFT KEY n

unde n reprezinta numarul de ordine al tastei multicod.

La prima tastare reapare pe primul rind textul initial, iar cursorul se muta pe pozitia pe care se gasea inaintea trimiterii functiei.Codul corespunzator se memoreaza.In continuare la fiecare apasare a unei taste se emite un semnal sonor care avertizeaza operatorul ca se afla in secenta de programare, iar codul respectiv se memoreaza.Abandonarea programarii in curs se poate face cu secenta de taste ESC (PF1-PF8).

Numarul maxim de coduri distincte care se pot memora este de 30.Daca insa unul din coduri se repeta de mai multe ori consecutiv atunci toata succesiunea va ocupa echivalentul a 3 coduri. Numarul maxim de repetari este de 256.

Intr-o tasta multicod se pot memora caractere si toate functiile initiate printr-o secenta de taste.

Incheierea programarii are loc la depasirea numarului maxim de coduri ce pot fi memorate sau la apasarea pe o tasta multicod cu numarul de ordine mai mic sau egal cu cel al tastei care se programeaza.

b/De la calculator ESC ` (1BH 60H)

Programarea unei taste mulicod se face utilizind secenta:
ESC`DC4 PFx c1...cn

unde

ESC` este comanda de programare

DC4 PFx defineste tasta care se programeaza

cu PFx = ` pentru programarea lui PF1

a pentru programarea lui PF2

b pentru programarea lui PF3

MANUAL DE UTILIZARE DAF 2010R

c pentru programarea lui PF4
d pentru programarea lui PF5
e pentru programarea lui PF6
f pentru programarea lui PF7
g pentru programarea lui PF8
h pentru programarea lui PF9
i pentru programarea lui PF10
j pentru programarea lui PF11
k pentru programarea lui PF12
l pentru programarea lui PF13
m pentru programarea lui PF14
n pentru programarea lui PF15
o pentru programarea lui PF16

c1...cn sunt coduri care definesc sirul de caractere care va fi memorat in tasta multicod. Aceste coduri reprezinta caractere de afisat sau functii ce pot fi initiate de la tastatura.

Programarea se termina fie la depasirea numarului de 30 de coduri care pot fi memorate, fie cu o alta tasta multicod cu un numar de ordine mai mic sau egal cu cea care se programaeaza. Deci, DC4` (PF1) termina programarea oricarei taste multicod.

Caracterele de comanda DC4,ESC nu se memoreaza. Ele indica ca urmatorul cod desemneaza o functie.

La programare se mai pot utiliza functia ESC~n2n1 unde n1 si n2 sunt coduri cuprinse intre 30H si 3FH. Aceste functii semnifica repetarea codului precedent sau a sechetei (ESC sau DC4) precedente. Numarul de repetitii se obtine asamblind ultimii 4 biti mai putin semnificativi din n1 si n2. Comanda de repetare ocupa in tasta multicod echivalentul a 2 caractere.

Exemplu: Secheta

ESC` DC4 e A ESC~;1DC4`

semnifica memorarea in tasta PF6 a caracterului A de 28 de ori. Numarul de repetitii in reprezentarea hexazecimala se obtine din reprezentarea hexa a celor doua caractere receptionate:

1 = 31H pentru partea cea mai semnificativa (n1)
; = 3BH pentru partea cea mai putin semnificativa (n2)
Prin asamblarea ultimilor 4 biti se obtine 1BH (27 zecimal) la care se aduna 1 rezultind 28 caractere A .

UTILIZAREA TASTELOR MULTICOD

a/De la tastatura (PFi)

Operatorul poate utiliza o tasta multicod apasind pe una din tastele PF1 - PF8. Fara SHIFT sunt tastele PF1 - PF8 iar cu SHIFT sunt tastele PF9 - PF16. In regim ON LINE modul CARACTER la utilizarea unei taste caracterele memorate in ea se trimit la calculator ca si in cazul in care ele ar fi tastate succesiv de operator.

b/De la calculator (DC4` - DC4o)

Initierea unei taste multicod de la calculator se face la

MANUAL DE UTILIZARE DAF 2010R

receptia unei sevente DC4 PFx.

TRANSFERUL LA CALCULATOR AL TASTELOR MULTICOD

La receptia sevantei ESC R terminalul emite:

ESC` DC4` c₁₁ c₁₂ ... c_{1n₁} DC4`
ESC` DC4a c₂₁ c₂₂ ... c_{2n₂} DC4a
.....
.....

ESC` DC4o c₁₆₁ c₁₆₂...c_{16n₁₆} DC4`

unde:

-ESC` - indica calculatorului inceputul transmisiei continutului tastelor multicod.

- fiecare linie corespunde unei taste multicod

-DC4`, DC4a,...DC4o sunt denumirile tastelor multicod

-c_{i1}...c_{in_i} sint codurile continute in tasta numarul i si semnificatia lor este cea de la programare.

2.2.24. GENERATORUL DE CARACTERE PROGRAMABIL

Generatorul de caractere programabil cuprinde 128 de semne care pot fi construite (programate) de la tastatura sau de la calculator. Fiecare caracter din setul standard de caractere ii corespunde un caracter din setul de caractere programabile.

PROGRAMAREA GENERATORULUI

Un caracter este construit intr-o matrice de puncte de 12 linii * 6 coloane. A programa un caracter inseamna a avea posibilitatea de a aprinde sau stinge orice punct din matricea caracterului.

a/ De la tastatura (ESC G)

Dupa initierea functiei primul rind este salvat si in locul lui apare urmatorul text:

CHARACTER	NV	RV	LINE	1	2	3	4	5	6
-----------	----	----	------	---	---	---	---	---	---

Prin incadrare s-au reprezentat zonele afisate cu video invers. Cursorul se pozitioneaza dupa textul CHARACTER.

Se tasteaza corespondentul din generatorul standard care urmeaza sa fie programat. Dupa CHARACTER se afiseaza caracterul din setul standard, iar dupa N.V. si R.V. reprezentarea grafica actuala a caracterului de programat afisat pe video normal respectiv pe video invers. Dupa LINE se afiseaza numarul liniei curente (cea care se poate programa). Asteriscurile sau blancurile de dupa cifrele 1,2,...6 indica faptul ca punctele respective din linia curenta sunt aprinse sau stinse.

Pentru stergerea liniei curente se foloseste tasta ERASE LINE iar pentru intreaga matrice ERASE. Programarea liniei se face prin tastarea cifrelor 1,2,...6 indicind astfel pozitia prin care se doreste ca punctele sa fie aprinse. Schimbarea liniei curente se face cu tastele ↑, ↓.

MANUAL DE UTILIZARE DAF 2010R

Incheierea secontei de programare se face cu tasta CR, dupa care reapare pe primul rind textul initial, iar cursorul se muta pe pozitia pe care se gasea inaintea functiei.

b/ De la calculator ESC g (1BH 67H)

Pentru programarea de la calculator se receptioneaza secenta:

ESC g <car> <linia 1>...<linia 12>
unde

ESC g este comanda de programare

<car> este codul corespunzator caracterului care se programeaza.

<linia i> sunt caracterele care dau continutul celor 12 linii din matrice. Ele au urmatoarea structura:

| 0 | 1 | X | X | X | X | X | X |

Exemplu:

Pentru a atribui caracterului A simbolul din fig.2.2. calculatorul emite urmatoarea secenta:

ESC g A @ D N _ D D D D D D e e

| : :
comanda caracter

	1	2	3	4	5	6	
1							@
2			X				D
3		X	X	X	X		N
4	X	X	X	X	X		_
5			X				D
6			X				D
7			X				D
8			X				D
9			X				D
10			X				D
11							e
12							e

Exemplu programare caracter
Fig.2.2.

TRANSFERUL LA CALCULATOR AL GENERATORULUI PROGRAMABIL

La receptia secondei ESC P terminalul emite:

ESC g <car 1> <linia 1> <linia 2>...<linia 12>

ESC g <car 2> <linia 1> <linia 2>...<linia 12>

.....

ESC g <car 128> <linia 1> <linia 2>...<linia 12>

unde :

ESC g -este comanda de programare a unui caracter

MANUAL DE UTILIZARE DAF 2010R

<car i> -desemneaza un caracter programat; <car i> poate fi un

caracter D - ~ sau o secventa DC4 & ...DC4? sau DC4 DEL

<linia J> -este un cod cuprins intre 40H si 7FH ,care reprezinta programarea punctelor aflate pe linia J a caracterului <car i>.

Aceasta secventa este astfel conceputa incit la receptia ei de catre un alt terminal DAF 2010R (DAF 2010) are loc programarea caracterelor acestuia.

Prin urmare are loc transferul de la un terminal la altul a intregului set de caractere programabile.

2.3. FUNCTII DE COMANDA A TRANSFERULUI DE INFORMATII

Dupa modul de realizare si dupa formatul datelor exista 2 moduri de transfer:

- transfer la calculator
- transfer la imprimanta

2.3.1. TRANSFER LA CALCULATOR

START MESAJ

Pe pozitia curenta se afiseaza simbolul ► , iar cursorul se deplaseaza pe pozitia urmatoare.Acest simbol serveste ca indicator de inceput de bloc de date..

- a/De la tastatura (START)
- b/De la calculator ESC \ (1BH 5CH)

TRANSMITE

Aceasta functie comanda inceperea transferului de date spre calculator si se executa doar in regim ON LINE si in modul BLOC. Modul de transmisie poate fi BLOC sau LINIE.

Pe pozitia curenta se afiseaza simbolul ● .Dupa transmisie in locul simbolului ● se afiseaza caracterul existent anterior comenzii.

Transmisia datelor se face incepind de la primul simbol ► care precede cursorul sau daca nu exista de la inceputul ecranului.

Nu se transmit la calculator:

-caracterele aflate intre simbolul ► afisat pe video normal si sfirsitul liniei.

-caracterele afisate cu toate conditiile marcate daca terminalul este in regim PROTEJAT.

Inaintea unui caracter afisat cu alte conditii de afisare decit precedentul se transmite:

a/DC4 X

X este un caracter care indica conditiile de afisare cu care vor fi afisate caracterele urmatoare si are structura:

MANUAL DE UTILIZARE DAF 2010R

7	6	5	4	3	2	1	0
-----	-----	-----	-----	-----	-----	-----	-----
: 0 : 1 : 0 : 0 : x : x : x : x :							
-----	-----	-----	-----	-----	-----	-----	-----
	:	:	:	:	:	:	
	:	:	:	:			
	:	:	:				

-----caracter programabil
-----clipitor
-----subliniat
-----video invers

b/ESC N (START FIELD)

daca zona ce urmeaza se afiseaza cu toate conditiile marcate, iar terminalul se afla in regim NEPROTEJAT.

c/ESC O (END FIELD)

dupa terminarea zonei afisate cu toate conditiile marcate, iar terminalul se afla in regim NEPROTEJAT.

La sfirsitul mesajului se transmite ETX.

Exemplu 1

Sa presupunem ca pe ecran este afisat urmatorul text:

þ þ þ PRODUS : þ þ DAF þ 2010 þ ↵ þ ...þ

CARACTERISTICI þ TEHNICE

Se mai presupune ca terminalul se afla in regim NEPROTEJAT avind mărcate conditiile video invers si subliniat . Dupa apasarea tastei SEND se transmite la calculator:

þ þ ESC N PRODUS : ESC O DC4 @ þ þ DC4 D DAF þ DC4 @ 2010 þ ESC J
DC4 H CARACTERISTICI DC4 @ þ TEHNICE ETX

Exemplu 2

Sa presupunem ca ne aflam in aceeasi situatie ca la exemplul precedent singura deosebire fiind aceea ca terminalul este in regim PROTEJAT.La apasarea tastei SEND se emite:

þ þ DC4 D þ DAF þ DC4 @ 2010 þ ESC J DC4 H CARACTERISTICI DC4 @
TEHNICE ETX

b/De la calculator (DC1)

Aceasta functie are ca efect transmiterea la calculator a unui ecran intreg. La sfirsitul ecranului se afiseaza simbolul █. Dupa terminarea transmisiei in locul simbolului █ se afiseaza caracterul anterior comenzii.

Datele se transmit la fel ca la punctul a/ singura diferenta fiind faptul ca se transmit si zonele protejate.

Observatie :

Toate functiile de transmisie (ecran , stare,taste multicod, generator programabil) emit inaintea mesajului util 4 caractere NUL , necesare comutarii emisie-receptie . Acestea trebuie deci ignorete .

MANUAL DE UTILIZARE DAF 2010R

2.3.2. TRANSFERUL LA IMPRIMANTA

Possibilitatile de utilizare a imprimantei sunt:

- tiparirea unei zone a ecranului (unei linii)
- modul transparent

Modul transparent (descriis la 1.3.) se foloseste numai in regim ON LINE mod CARACTER . Comutarea modului transparent/ne-transparent se face prin actionarea tastei PRINT (COPY) si este indicata de ledul AUTO COPY .

In orice alt regim (in afara de ON LINE CARACTER) actionarea tastei PRINT produce tiparirea ecranului (sau a unei linii in regim LINIE) . Tiparirea in acest caz se face astfel :

-caracterele care fac parte din setul de caractere programabile se imprima pe listing ca spatii. Se respecta in felul acesta structura textului, iar in al doilea rind se pot completa manual aceste spatii cu semnele dorite.

-caracterele din setul de semne destinate construirii de tabele sint inlocuite pe listing cu caracterul asterisc. In felul acesta tabelul construit pe ecran cu ajutorul acestor caractere poate fi transferat pe listing , bineinteleas intr-o forma simplificata.

De la calculator se pot folosi sevantele :

- | | |
|-------|---|
| ESC C | - copiere de ecran (linie) |
| ESC m | - intrare in mod transparent "trece tot" |
| ESC n | - iesire din mod transparent |
| ESC o | - intrare in mod transparent "trece caracter" |

Observatie :

In cazul utilizarii modului transparent terminalul asteapta cca. 60 s. raspunsul imprimantei .In cazul in care imprimanta seriala nu trimite XON la cel mult 60 s de la trimiterea XOFF sau imprimanta paralela nu ridica BUSY dupa 60s , seiese din regimul transparent.

2.4. FUNCTII DE COMANDA A STARII TERMINALULUI

Prin starea terminalului se intreag o serie de parametri ai caror valori determina modul de executie a functiilor.In acest capitol se arata modul in care pot fi vizualizati si modificati acesti parametri.

2.4.1. MODIFICAREA PARAMETRILOR DE COMUNICATIE

a/ De la tastatura (ESC C)

Se initiaza cu seventa ESC C

Functia se executa in regim OFF LINE, iar in regimul ON LINE doar daca este apelata o tasta multicod.

Dupa apasarea tastelor ESC C primul rind este salvat, iar in locul lui apare textul:

ASYN/SYN

BD.RATE

CHAR/BLOCK

FULL/HALF

EVEN

ODD

LINE

MANUAL DE UTILIZARE DAF 2010R

daca terminalul este in mod asincron , sau :

Pentru cazul cind terminalul este in mod sincron.

Semnificatia cuvintelor cheie este urmatoarea :

ASYN { * transmisia si receptia la/de la calculator se face
in mod asincron
b transmisia si receptia la/de la calculator se face
in mod sincron

BD.RATE { 110 biti/s
150 biti/s
300 biti/s
600 biti/s
1200 biti/s
2400 biti/s
4800 biti/s
9600 biti/s

Viteza de transmisie si receptie este definita doar in modul asincron . Pentru schimbarea vitezei se pozitioneaza cursorul dupa cuvantul cheie BD.RATE in pozitia neprotejata , dupa care cu ajutorul tastelor + si - se realizeaza cresterea sau scaderea vitezei de emisie/receptie . Indiferent daca terminalul este in mod sincron sau asincron viteza de comunicatie trebuie stabilita pentru imprimanta seriala.

CHAR/BLOCK { * terminalul este in mod asincron , mod caracter
b terminalul este in regim asincron , mod bloc

Observatie :

In cazul in care s-a selectat modul bloc , in locul textului FULL/HALF apare textul 'LINE' .

FULL/HALF { * la fiecare tastare codul corespunzator este transmis spre calculator fara insa a fi afisat pe ecran (cu ecou)
b la fiecare tastare codul corespunzator este afisat si trimis spre calculator (fara ecou)

Observatie :

Acest parametru este operational doar in regim asincron,mod caracter .

LINE { * terminalul este in regim asincron , mod linie
b terminalul este in regim asincron , mod bloc

MANUAL DE UTILIZARE DAF 2010R

EVEN si ODD	b b	7 biti fara paritate
	b *	7 biti paritate impara
	* b	7 biti paritate para
	* *	8 biti fara paritate

STATION nnnn **DEVICE** -adresele de statie si periferic
reprezentate hexazecimal intre 00 - 1F.

Incheierea comenzii se face cu tasta CR ,iar abandonarea se face cu tasta ESC ,parametrii raminind nemodificati.Ca urmare reapare pe primul rind textul initial , iar cursorul se pozitioneaza pe pozitia pe care se gasea anterior comenzi .

b) de la calculator cu ESC r nu pot fi modificati decit parametri CHAR/BLOCK si FULL/HALF (vezi 2.4.2.b.)

2.4.2. MODIFICAREA PARAMETRILOR DE LUCRU

a/De la tastatura ESC R
Se initiaza cu secenta ESC R.
Se utilizeaza tastele *, b , → , ←
Dupa apasarea tastelor ESC R primul rind este salvat iar in
locul lui apare textul:

Semnificatia cuvintelor cheie este urmatoarea :

PR.FIELD { * terminalul este in regim protejat
 | b terminalul este in regim neprotejat

FIELD Zonele afisate cu una din conditiile de afisare
B (clipitor) , U (subliniat) , RV (videoinvers)
selectate cu * devin zone marcate .

SCROLL/PAGE { * terminalul este in regim defilare
 b terminalul este in regim pagina

MANUAL DE UTILIZARE DAF 2010R

Observatie :

Selectarea regimului protejat inhiba regimul de defilare si definirea explicita a tabulatorilor .

PROG.TAB

- * functia TAB si BACK TAB se executa in functie de pozitionarea tabulatorilor definiti explicit in functia de programare a tabulatorilor
- b functia TAB si BACK TAB se executa in functie de tabulatorii impliciti

K.L.

- * in regim ON LINE dupa transmiterea unui bloc de date la calculator , tastatura este inhibata pina la receptionarea comenzii de activare tastatura de la calculator (mod intrebare-raspuns)
- b tastatura nu este inhibata dupa transmiterea unui bloc de date

In regim OFF LINE nu se executa comanda de inhibare a tasturii .

AUTOLF

- * in regim ON LINE mod caracter functia retur de car (CR) produce si salt la linie noua (LF).
- b in regim ON LINE mod caracter functia CR muta cursorul la inceputul rindului curent

Comanda se incheie cu CR sau se abandoneaza cu ESC .

b/De la calculator ESC r (1BH 72H)

Modificarea regimurilor de lucru se face cu secenta:

ESC r <car 1 > <car 2 >

unde

<car 1 > si <car 2 > sunt doua caractere care au urmatoarea structura:

7 6 5 4 3 2 1 0

<car 1 > : 0 : 0 : 1 : x : x : x : x : x : 1

| | | | |
| | | | | -----protejat
| | | | | -----clipitor
| | | | | -----subliniat
| | | | | -----video invers
| | | | | -----defilare

Clipitor, subliniat si videoinvers se refera la conditii de marcaj

MANUAL DE UTILIZARE DAF 2010R

	7	6	5	4	3	2	1	0	
<car 2>	1	0	1	1	1	x	x	x	x

-----tabulare' explicita
-----intrebare-raspuns
-----caracter
-----ecou

2.4.3. MODIFICAREA PARAMETRILOR AFISARII SI TRANSFERULUI

LA IMPRIMANTA

a) De la tastatura

Se initiaza cu secenta ESC D

Dupa executarea comenzii , primul rind este salvat si in locul lui apare textul :

CURSOR SCROLL JUMP/SMOOTH FAST/SLOW AC ALL/CHAR 80/132 AC NO D BE. B

Semnificatia cuvintelor cheie din textul afisat este:

CURSOR { * cursorul se afiseaza ca un bloc clipitor
 { b cursorul se afiseaza subliniat clipitor

SCROLL JUMP/SMOOTH { * defilare rind
t defilare umana

FAST/SLOW { * defilare umana rapida
 b defilare umana lenta

AC ALL/CHAR {

- * cind este selectat modul transparent cu imprimanta toate caracterele se trimit la imprimanta (vezi 1.3."trece tot")
- b cind este selectat modul transparent cu imprimanta se trimit la imprimanta numai caracterele tiparibile , CR , LF (vezi 1.3."trece caracter")

MANUAL DE UTILIZARE DAF 2010R

80/132

- { * cind este selectat modul transparent
"trece caracter " tiparire in format 80
caractere/rind
b cind este selectat modul transparent
"trece caracter " tiparire in format
maxim al imprimantei

AC No

- { ↑ n = n + 1
↓ n = n - 1

unde n reprezinta tipul de imprimanta cf. codificarii de la 1.3

BR. n

- { ↑ creste contrast n=n+1 (n<16)
↓ scade contrast n=n-1 (n>1) .

unde n=1..16 reprezentind un nivel de contrast.

Comanda nu se executa in ON LINE , mod caracter .

Comanda se incheie cu CR sau se abandoneaza cu ESC .

2.4.4. SALVAREA SI REFACEREA INTREGULUI SET DE PARAMETRI

DAF 2010R nu are comutatori de stabilire a parametrilor.Ei pot fi modificati fiecare in parte folosind comenzile ESC C , ESC R sau ESC D descrise mai sus , sau global folosind o memorie nevolatila.

Memoria nevolatila poate contine max. 341 seturi de parametri. La pornire DAF2010R se initializeaza cu ultimul set de parametri salvat .Salvarea sau selectarea unui alt set de parametri se face numai in regimul OFF LINE astfel:

-Se tasteaza ESC E .

Dupa executarea comenzii ESC E se salveaza primele 4 rinduri si in locul lor apare urmatorul text :

Pe rindul 1 apare :

CURRENT PARAMETER SET nnn

unde nnn reprezinta numarul ultimului set de parametri din memoria nevolatila care este identic cu setul curent (se afiseaza *** daca setul curent nu a fost gasit in memoria nevolatila.

- pe liniile 2,3,4 sint indicati parametri actuali reprezentati ca la comenzile ESC C ,ESC R, ESC D.

In continuare se pot folosi urmatoarele comenzi :

- ↑ se selecteaza setul nnn+1 daca exista
- ↓ se selecteaza setul nnn-1 daca exista
- 3 cifre zecimale reprezentind un numar intre 001 si numarul de seturi salvate , selecteaza explicit un set

MANUAL DE UTILIZARE DAF 2010R

Modificarea numarului setului produce reafisarea parametrilor pe liniile 2,3,4 .

La comanda S se salveaza in memoria nevolatila setul curent. Se afiseaza apoi mesajul:

- SAVED indica salvare corecta
- SAVE ERROR indica salvare incorecta
- NO SAVE memoria nevolatila este plina

Functia se incheie cu CR (cu parametri selectati curent) sau cu ESC (cu parametri selectati anterior comenzii ESC E)

Observatii :

1/ In cazul in care memoria nevolatila lipseste sau nu s-a efectuat nici o salvare , DAF2010R se initializeaza cu urmatorul set de parametri de firma :

- ASINCRON, CARACTER, ECOU, 2400bds, 8 biti ,fara paritate
- NEPROTEJAT, conditie de marcare VIDEOINVERS, DEFILARE , tabulatori expliciti, fara AUTOLF.

-Cursor bloc, defilare umana rapida ,tip de transparenta "trece tot" ,imprimanta seriala, nivel de contrast 16.

2/ Un set de parametrii avind selectat regimul sincron contine si parametrii comunicatiei asincrone (viteza si paritate) care sunt folositi pentru imprimanta seriala.

3/ In cazul in care memoria nevolatila este plina ea poate fi inlocuita sau stearsa de catre specialisti.

2.4.5.COMUTAREA IN REGIM ON LINE

a/De la tastatura (BRK) sau (BREAK)

Se apasa pe tasta BRK. Daca terminalul era in regim OFF LINE atunci intra in regim ON LINE ,altfel se emite pe linie un semnal <<long space>>.

2.4.6.COMUTAREA IN REGIM OFF LINE

a/De al tastatura (RESET)

Se apasa pe tasta RESET.Terminaul trece in regim OFF LINE. Daca se apasa simultan CTRL si RESET se produce initializarea display-ului.

2.4.7.SCHIMBAREA CONDITIILOR DE AFISARE ALE CARACTERELOR

Conditiiile de afisare definesc modul in care se vizualizeaza caracterele introduse de la tastatura sau calculator.Atit pentru setul standard de caractere , cit si pentru cel programabil exista 3 conditii de afisare:

MANUAL DE UTILIZARE DAF 2010R

=video invers

-subliniat

-client or

Caracterele pot fi vizualizate cu una din conditiile de afisare sau cu orice combinatie posibila intre acestea.

a/De la tastatura

Schimbarea de la tastatura a conditiilor de afisare se face apasind pe una din tastele:

-VIDEO sau VI -pentru video invers

-UND sau SUB -pentru subliniat

-BL sau BLINK -pentru clipitor

Schimbarea setului de caractere se face cu tasta SET (CHG sau SEL).

b/De la calculator

Schimbarea de la calculator a conditiilor de afisare se face cu secenta:

DC4 <cond>

unde:

<cond> este un caracter care fixeaza noile conditii de afisare si noul set de caractere si are urmatoarea structura:

	7	6	5	4	3	2	1	0
<cond>	0	1	0	0	x	1	x	x

| | | |
| | | | ---set de car. programabile
| | | | -----clipitor
| | | | -----subliniat
| | | | -----video invers

Alta posibilitate de schimbare de la calculator a conditiilor de afisare este aceea de a utiliza functiile INCEPUT DE CIMP si SFIRSAT DE CIMP. Prin cimp in acest caz se inteleaga o zona afisata cu toate conditiile marcate, zona care in regim ONLINE ,PROTEJAT nu se va transmite la calculator.

INCEPUT DE CIMP

b/De la calculator ESC N (1BH 4EH)

Dupa receptia secentei ESC N caracterele se afiseaza cu conditiile de marcare selectate in starea terminalului .

SFIRSIȚ DE CIMP

b/Re la calculator ESC 0 (1BH 4EH)

Se revine la modul de afisare dinaintea secentei ESC N.

2.4.8. INHIBAREA TASTATURII

b/De la calculator ESC ^ (1BH 5EH)

In urma receptionarii de la calculator a sechantei ESC ^ se stinge indicatorul luminos OPER iar tastatura se blocheaza. Din

MANUAL DE UTILIZARE DAF 2010R

acest moment apasarea pe o tasta nu are nici un efect.

2.4.9. ACTIVAREA TASTATURII

b/De la calculator ESC F (1BH 46H)

In urma receptionarii de la calculator a secentei ESC F tastatura se activeaza si se aprinde indicatorul luminos OPER.

2.4.10. ACCES ZONA PROTEJATA

b/De la calculator ESC T (1BH 54H)

Aceasta functie se executa doar in regimul SINCRON. Dupa receptionarea intr-un bloc de date a secentei ESC T pina la sfarsitul blocului calculatorul poate pozitiona cursorul si in zonele protejate, de asemenea poate crea noi zone protejate.

2.4.11. TRANSMITEREA OPTIUNILOR

b/De la calculator ESC { (1BH 7BH)

Calculatorul poate cere terminalului optiunile acestuia prin secenta ESC {. Raspunsul terminalului are urmatoarea structura.

ESC { 0 0 <car3> 4 ETX
unde

<car 3> are structura :

7 6 5 4 3 2 1 0

| 0 | 0 | 1 | 1 | 0 | x | 1 | 1 |

-----optiune sincron prezenta

2.4.12. TRANSMITEREA STARII TERMINALULUI

b/De la calculator ESC [(1BH 5BH)

Prin receptionarea secentei ESC [emise de calculator terminalul va transmite calculatorului un sir de caractere ASCII care cuprind parametrii de stare ai terminalului .Sirul emis are urmatoarea structura:

ESC [<car 1> <car 2> <car 3> <car 4> <car 5> <car 6> ETX
unde

<car 1> reprezinta pozitia X a cursorului

X = 01 car 1 =21H

02 22H

.....

80 70H

<car 2> reprezinta pozitia Y a cursorului

Y = 01 car 2 =21H

02 22H

.....

24 38H

MANUAL DE UTILIZARE DAF 2010R

<car 3> reprezinta conditiile de afisare ale caracterelor

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
: 0	: 0	: 1	: 1	: x	: x	: x	: x

--set de car. programabile
-----clipitor
-----subliniat
-----video invers

<car 4> reprezinta regimurile de lucru

----- protejat
----- clipitor --- conditii
----- subliniat !- de
----- video invers --- marcaj

<car 5> reprezinta regimurile de lucru

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
1	0	1	0	1	1	x	x	x	x

-----defilare
-----tabulare explicita
-----intrebare-raspuns
-----AUTO LF

<car 6> reprezinta parametrii de comunicatie

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
1	0	1	1	0	0	x	x

```
\ /  
|   |- 00 -bloc  
|---|- 10 -linie  
     |- 01 -caracter cu ecou  
     |- 11 -caracter cu ecou
```

MANUAL DE UTILIZARE DAF 2010R

3.COMUNICATIA CU CALCULATORUL

3.1.Introducere

Acest capitol descrie posibilitatile terminalului DAF2010R de cuplare la calculator,stabilirea parametrilor liniei de comunicatie,modurile de lucru, precum si protocolul de comunicatie.

3.2.Comunicatia seriala

Intr-o transmisie seriala bitii ce compun un caracter al mesajului de date sint trimisi pe acelasi fir unul dupa altul.Exista doua moduri in care se realizeaza o transmisie seriala:

- asincron
- sincron

3.2.1.MODUL ASINCRON

DAF 2010R lucreaza in cod ASCII ,deci cu un numar de 7 biti pentru fiecare caracter cu viteza selectabila intre 110,150,300,600,1200,2400,4800,9600 bauds cu un bit de STOP pentru toate vitezele exceptind 110 bauds unde se folosesc implicit 2 biti de STOP.Existenta bitului de paritate ,ignorarea lui (chiar daca exista) precum si stabilirea unui anumit fel de paritate (par sau impar) sint de asemenea selectabile.

In mod asincron DAF 2010R lucreaza cu linia de comunicatie in regim FULL-DUPLEX , receptia si emisia putind avea loc simultan.Exista doua moduri de realizare a transmisiei informatiei pe linia de comunicatie: modul CARACTER si modul BLOC care pot fi selectate prin secenta de programare a starii terminalului.

3.2.1.1.Modul CARACTER

Dupa selectarea acestui mod de lucru terminalul transmite pe linia de comunicatie la fiecare tasta caracterul corespunzator. Daca este selectat modul de lucru CARACTER fara ECOU ,caracterul transmis este si afisat pe ecranul terminalului.

Daca este selectat modul CARACTER cu ECOU , nu se afiseaza caracterul transmis decit la returnarea lui de catre calculator.

3.2.1.2.Modul BLOC

Dupa selectarea modului BLOC ,caracterele nu se transmit la calculator decit la initiativa operatorului la actionarea tastei SEND ,care determina transmiterea unui bloc intreg la calculator. Se transmite un bloc intre caracterul START MESAJ (sau implicit inceput ecran) si pozitia curenta a cursorului.

Prin selectarea modului de lucru BLOC LINIE blocul transmis la apasarea tastei SEND va fi linia pe care se afla in acest moment cursorul . Orice bloc transmis este incheiat cu caracterul ETX.

MANUAL DE UTILIZARE DAF 2010R

3.2.1.3. Lucrul la viteze mari (in mod asincron)

Caracterele transmise terminalului DAF 2010R sunt receptionate intr-un buffer, de unde sunt apoi citite si prelucrate. Lucrul la viteze mari (4800, 9600), folosirea defilarii umane sau modul TRANSPARENT cu imprimanta pot determina in cazul unor mesaje mai lungi umplerea buffer-ului si pierderea unor caractere.

Pentru a evita aceasta situatie DAR 2010R foloseste procedura XON-XOFF.

Astfel inainte de umplerea buffer-ului terminalul transmite calculatorului un caracter DC3 (cod 13H - XOFF) cerind intreruperea momentana a fluxului de caractere. Dupa prelucrarea caracterelor terminalul anunta ca poate fi reluat fluxul de date prin transmiterea unui caracter DC1 (cod 11H -XON).

Daca implementarea acestei proceduri in sistemul de calcul ridica probleme se recomanda inserarea in cadrul mesajelor a unor caractere de temporizare (filler) NUL(cod 00).

Observatie :

DAF 2010R asigura corelarea mecanismului XON-XOFF descris mai sus cu tastarea CTRL/S si CTRL/Q care emit codurile DC3 respectiv DC1. In cazul in care se actioneaza aceste taste in alt scop , se recomanda ca inaintea inceperii unei listari la terminal cu viteza mare sa se tasteze CTRL/Q, altfel existind posibilitatea opririi listarii in asteptarea tastarii lui CTRL/Q.

3.2.2. MODUL SINCRON

In modul sincron receptorul si emitorul realizeaza sincronizarea lucrind amindoua pe acelasi tact.

Pentru a delimita inceputul caracterelor unui bloc de date , se foloseste un caracter numit caracter de sincronizare. Emisorul va transmite inaintea oricarui mesaj acest caracter iar receptorul va incepe receptia dupa ce va recunoaste pe linia de date succesiunea bitilor caracterului de sincronizare.

Schimbul de mesaje intre calculator si terminal in mod sincron se supune unor reguli comune , aceste reguli constituie protocolul de comunicatie.

DAF 2010R lucreaza in mod sincron conform protocolului de comunicatie TMM-VU. Legatura cu calculatorul este de tip HALF DUPLEX , deci terminalul poate emite si receptiona, dar nu in acelasi timp..

3.2.2.1. Protocolul TMM-VU

Protocolul TMM-VU utilizeaza mesaje formate din caractere cu paritate impara .Paritatea este calculata si adaugata la emisia cuvintului si verificata la receptia lui.Mesajul este format din cuvintele cu paritate impara ale blocului de date transmis,la care se adauga un caracter de control al blocului (BCC) . Caracterul de control al blocului(BCC) reprezinta paritatea longitudinala a blocului de mesaj. Caracterul BCC are paritate impara.

MANUAL DE UTILIZARE DAF 2010R

Coduri functionale:

-SYN(16H) - SYNchronous idle

Protocolul TMM-VU utilizeaza pentru sincronizare caracterul SYN.Orice sevenita trebuie sa inceapa prin emiterea unei succesiuni de caractere de sincronizare .Inainte de acceptarea unei transmisii trebuie sa se recunoasca doua caractere de sincronizare consecutive. Se transmit de obicei 7 caractere de sincronizare la inceputul unui mesaj si caracterul SYN poate sa apara oriunde in mesaj pentru mentionarea sincronizarii.

-SOH(01H) - Start of Heading

Indica inceputul unui mesaj. Calcularea caracterului BCC incepe cu primul caracter ce urmeaza lui SOH.

-STX(02H) - Start of Text

Separa inceputul unui mesaj de zona de date.

-ETX(03H) - End of Text

Indica sfarsitul unei zone de date .In orice mesaj ETX este urmat de caracterul BCC.

-EOT(04H) - End of Transmition

Indica sfarsitul unei transmisii.O caracteristica a protocolui TMM-VU este folosirea codului EOT inaintea unei sevente de initializare a unei transmisii.

-ENQ(05H) - ENquiry

Este utilizat pentru a indica o sevenita de polling. Este ultimul caracter dintr-un mesaj de polling.

-ACK(06H) - ACKnowledge

Este folosit atit de terminal cit si de calculator pentru a indica receptia corecta a unui bloc de date .

-NAK(15H) - Negative Acknowledge

Este folosit atit de terminal cit si de calculator pentru a indica receptia eronata a unui bloc de date .

-DLE(10H) - Data Link Escape

Calculatorul transmite acest cod urmat de ACK pentru a indica o cerere de intrerupere intr-o sevenita de polling general.

DLE ACK indica terminalului ca ultimul mesaj de date a fost receptionat corect si nu mai doreste transmiterea unui alt mesaj in acest moment.

Dialogul in protocolul TMM-VU se poate baza pe doua functii initiate pe calculator:polling si select. Acestea sunt definite de doua caractere:POL si SEL.

-POL (POLL)

Este un caracter transmis de calculator si indica initierea unui polling.Formatul general este :

MANUAL DE UTILIZARE DAF 2010R

	7	6	5	4	3	2	1	0
Paritate	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
impara								
Functia	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
Poll								
Adresa	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
terminal								

-SEL (SELECT)

Este un caracter transmis atit de calculator cit si de terminal. La transmiterea lui de catre calculator se initiaza functia SELECT. Formatul general este:

	7	6	5	4	3	2	1	0
Paritate	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
impara								
Functia	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
select								
Adresa	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
terminal								

Caracterele POL si SEL formeaza primul caracter special de control CL. El realizeaza o adresare la primul nivel (terminal). Adresarea la al doilea nivel (stacia) precum si specificarea tipului de polling sau select se face cu al doilea caracter special de control C2.

	7	6	5	4	3	2	1	0
Paritate	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
impara								
Adresa	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -
stacio								

pentru
Date, Select
polling specific
selectie
diagnosticata

0 0 1 0 0 0 0 0 pentru polling

1 0 1 1 1 1 1 1 aleator
 pentru polling
 general

-DC1 (DEVICE CONTROL 1)

Este folosit cu SEL pentru a specifica o selectie diagnosticata. El constituie data din cadrul mesajului.

MANUAL DE UTILIZARE DAF 2010R

Functia realizata este descrisa la 2.3.2.1.b

-BCC (Bloc Check Character) (XXH)

Este un caracter de control al paritatii longitudinale intr-un mesaj de date ,i.e. fiecare bit al sau reprezinta suma modulo 2 a tuturor bitilor de acelasi rang din cadrul mesajului. Paritatea este calculata incepand cu caracterul SEL ce urmeaza caracterului SOH pina la caracterul ETX inclusiv. Paritatea longitudinala este para, iar paritatea cuvintului BCC este impara.

-PAD (XX)

Este un caracter inserat la fiecare sfirsit de mesaj pentru a lasa timp pentru comutarea liniei. Terminalul transmite caracterul NUL pentru aceasta temporizare.

Tipuri de mesaje

Tipurile de mesaje transferate intre calculator si terminal precum si directia de transmisie sunt urmatoarele:

Fig. 3.8. Tipuri de mesaje

MESAJE DE POLLING

Mesajele de POLLING sunt folosite pentru a verifica daca una din statiile terminalelor are o cerere de transmisie. O cerere de transmisie este generata de o statie la initiativa operatorului prin actionarea tastei SEND sau la initiativa calculatorului printr-o comanda de transmisie in secventa de SELECT.

POLLING SPECIFIC

Mesajul de POLLING SPECIFIC este folosit de calculator pentru a verifica daca o statie specificata are cerere de emisie.

MANUAL DE UTILIZARE DAF 2010R

Daca aceasta cerere exista, terminalul respectiv emite un mesaj catre calculator, daca nu exista nici o cerere de emisie, terminalul trimite un mesaj EOT.

Formatul unui POLLING SPECIFIC:

Cod hexa	Descriere
16	SYN}
.	.
.	.
16	SYN}
04	EOT
XX	Pad
16	SYN}
.	.
.	.
16	SYN}
40-5F	POL-Functia polling si adresa terminalului
60-6F	C2-Functia polling specific si adresa statiei
05	ENQ
XX	Pad

POLLING ALEATOR

Calculatorul emite un mesaj de POLLING ALEATOR pentru a verifica existenta unei cereri de emisie la una din statiiile terminalului. Ca raspuns la acest mesaj terminalul transmite un singur mesaj, chiar daca mai multe statii au cerere de emisie. Adresa statiei emitente este continuta in cuvintul C2 din inceputul mesajului de date. Daca nici o cerere de emisie nu este activa la receptionarea unui mesaj de polling aleator, terminalul transmite un mesaj EOT.

Formatul unui POLLING ALEATOR:

Cod hexa	Descriere
16	SYN}
.	.
.	.
16	SYN}
04	EOT
XX	Pad
16	SYN}
.	.
.	.
16	SYN}
40-5F	POL-Functia Polling si adresa terminalului
20	C2-Functia Polling aleator
05	ENQ
XX	Pad

MANUAL DE UTILIZARE DAF 2010R

POLLING GENERAL

Calculatorul trimite un mesaj de POLLING GENERAL pentru a verifica daca exista cereri de emisie la statiile terminalului. Ca raspuns la acest mesaj terminalul transmite un mesaj sau EOT daca nu exista nici o cerere de emisie la nici una din statiile terminalui. Daca exista cereri de emisie se transmite la calculator mesajul primei statii care are cerere de emisie. Dupa receptionarea mesajului ACK de la calculator, terminalul transmite mesajul urmatoarei statii catre calculator. Ca raspuns la fiecare mesaj ACK transmis de calculator, mesajul urmatoarei statii este transmis pina cind nu mai exista statii cu cereri de emisie, caz in care terminalul transmite un mesaj EOT.

Calculatorul poate cere intreruperea secentei de POLLING GENERAL dupa receptionarea unui mesaj, transmitind terminalului un mesaj DLE ACK.

In orice secenta de polling dupa transmiterea unui mesaj de catre terminal acesta asteapta un raspuns de la calculator pentru acceptarea sau neacceptarea lui. Daca calculatorul nu a acceptat mesajul terminalului prin transmiterea unui mesaj NAK, terminalul retransmite calculatorului mesajul pina la acceptarea lui sau pina la receptionarea unui mesaj EOT ce determina deselectarea terminalului. Daca deselectarea s-a produs fara acceptarea mesajului, cererea de emisie ramane activa la statia respectiva. Operatorul poate dezactiva o cerere de emisie actionind tasta RESET si apoi BREAK.

Formatul unui POLLING GENERAL

Cod hexa	Descriere
16	SYN
.	.
.	.
16	SYN
04	EOT
XX	Pad
16	SYN
.	.
.	.
16	SYN
40-5F	POL-Functia polling si adresa terminalului
3F	C2-Functia de polling general
05	ENQ
XX	Pad

MESAJE DE SELECT

Mesajele de SELECT sunt mesaje de date sau comanda transmise de calculator catre o anumita statie a terminalului. Fiecare mesaj de SELECT poate sa contine un singur bloc de date.

Ca raspuns la un mesaj de SELECT terminalul raspunde cu unul din mesajele ACK, NAK sau EOT.

MANUAL DE UTILIZARE DAF 2010R

Un mesaj ACK indica calculatorului ca mesajul a fost receptionat corect.

Un mesaj NAK indica calculatorului ca mesajul a fost receptionat cu eroare de paritate in zona dintre al doilea SEL si caracterul BCC, inclusiv, exceptind ETX.

Un mesaj EOT indica calculatorului ca statia adresata nu exista, nu se poate selecta sau este ocupata.

Terminalul nu raspunde daca nu recunoaste codurile de control ale mesajului.

Formatul mesajului de SELECT

Cod hexa	Descriere
16	SYN]
.	.
.	.
16	SYN } 7
04	EOT
XX	Pad
16	SYN]
.	.
.	.
16	SYN } 7
60-7F	SEL-Functia SELECT si adresa terminalului
01,	SOH
60-7F	SEL-Functia SELECT ; incepe calcularea BCC
60-7F	C2 -Functia SELECT si adresa statiei
02	STX
XX	Date
:	! Bloc de date
XX	Data
03	ETX
XX	BCC
XX	Pad

MESAJUL ACK / NAK

Poate fi transmis atit de calculator cit si de terminal si indica faptul ca ultimul bloc de date transmis a fost/ nu a fost acceptat.

Cod hexa	Descriere
16	SYN]
.	.
.	.
16	SYN } 7
06/15	ACK/NAK
XX	Pad

MANUAL DE UTILIZARE DAF 2010R

MESAJUL EOT

Este transmis atit de terminal cit si de calculator si indica sfirsitul transmisiei : blocul de date deja emis este ultimul bloc al transmisiei. Receptionat de terminal mesajul EOT determina deselectarea terminalului.

MESAJUL DLE ACK

Este transmis de calculator pentru a indica intreruperea unei sechente de polling general cu acceptarea ultimului mesaj transmis de terminal.

Cod hexa	Descriere
16	SYN
.	.
.	.
16	SYN
10	DLE
06	ACK
XX	Pad

MESAJUL DE DATE

Mesajul de date este transmis de catre calculator, ca raspuns intr-o sechenta de polling si contine date de la statia cu cerere de emisie.

Forma mesajului este :

Cod hexa	Descriere
16	SYN
.	.
.	.
16	SYN
01	SOH
60-7F	SEL-Functia select si adresa terminalului
60-7F	Incepe calculul BCC
02	C2 -Adresa statiei ale carei
XX	date se transmit
:	STX
XX	Data
03	:
XX	Data
00	ETX
	BCC
	Pad

Continutul datelor transmise este in functie de comanda care a generat cererea de emisie.

MANUAL DE UTILIZARE DAF 2010R

3.2.2.2. CONEXIUNEA MULTIPUNCT SI STABILIREA ADRESELOR

Comunicatia multipunct consta in folosirea de catre mai multe echipamente a acelasi linii de comunicatie.

In mod sincron DAF 2010R poate lucra in conexiune multipunct de tip DAISY-CHAIN (inlantuita).

Fiecare echipament DAF 2010R conectat in legatura inlantuita este in acelasi timp si statie si terminal, aceasta insemnind ca fiecare echipament trebuie sa aiba adresele de terminal si statie distincte.

Pot exista pe aceeasi legatura inlantuita mai multe echipamente DAF 2010R, cu aceeasi adresa de terminal, dar cu adrese de statie diferite, precum si cu aceeasi adresa de statie dar cu adrese de terminal diferite.

Procedura TMM-VU se adreseaza pe o linie de comunicatie unui "terminal". Un "terminal" se constituie fizic pe o inlantuire, adica cu toate statiile sale (echipamente cu aceeasi adresa de terminal) pe aceeasi legatura inlantuita.

O legatura inlantuita poate insa sa constitue mai multe "terminale" (ex.: un grup de echipamente DAF 2010R cu adresa de "terminal" n si adresa de periferice diferite, un grup de echipamente DAF 2010R cu adresa de "terminal" m si adrese de periferice diferite, etc.).

Ordinea echipamentelor DAF 2010R in inlantuire este indiferenta cu urmatoarele observatii:

a/ In cadrul unui "terminal" prima statie din inlantuire este cea mai prioritara, iar ultima statie a terminalului este cea mai putin prioritara.

b/ In cazul legaturii directe la calculator, cind tactul de emisie/receptie extern este furnizat de un echipament DAF 2010R acesta trebuie sa fie primul din inlantuire, indiferent de adresa lui de statie sau "terminal" din care face parte.

MANUAL DE UTILIZARE DAF 2010R

4. INSTRUCTIUNI DE INSTALARE , EXPLOATARE , INTRETINERE

Pentru buna functionare a echipamentului beneficiarul trebuie sa respecte instructiunile de mai jos

4.1 INSTALARE

Dispozitivul se va instala intr-o incaperie in care trebuie sa existe conditiile normale de lucru :

- temperatura mediului ambiant : +5 - +40 grade C
- umiditatea relativa : 40 - 80 %
- mediu fara agenti corozivi sau activi si fara praf

Dispozitivul se racordeaza la reteaua de 220 V ,50 Hz . Se admite o variatie de tensiune de +10%/-15% , iar de frecventa de 1 Hz . Cuplarea la retea se va face prin intermediul unei prize cu impamintare .

In situatia in care dispozitivul a fost adus dintr-un mediu cu temperatura sub 0 grade C , inainte de conectare va fi lasat 30 minute pentru acomodare .

Cablurile de comunicatie cu calculatorul si cu imprimanta se conecteaza la conectorii aflati in spatele echipamentului dupa urmeaza :

- cablul de modem la conectorul V24
- cablul pentru legatura inlantuita la conectorul D.CH.
- cablul de imprimanta la conectorul PRT.

Descrierea cablurilor si conectorilor se face in anexe.

Observatie : Se recomanda ca pentru evitarea unor posibile defectari cablurile sa fie cuplate cu terminalul scos de sub tensiune.

La pornire DAF 2010R executa o secventa de autotest constind din verificarea memoriilor RAM si ROM. Eventualele erori se afiseaza pe ecran astfel :

- pe primul rind al ecranului eroare de RAM
- pe rindurile 2 la 5 se afiseaza erorile de ROM corespunzatoare memoriilor ROM 0 la 4

O eroare in memoria ROM necesara optiunii SINCRON este considerata drept absenta acestei optiuni.

Daca dupa pornire echipamentul se comporta abnormal (imagine proasta , nu se executa unele functii , etc.) se verifica montarea corecta a cablurilor de modem (eventual imprimanta) la conectorii de interfata , precum si montarea cablului tastaturii Daca echipamentul nu reactioneaza se va abandona lucrul , iar echipamentul va fi deconectat de la retea . Depanarea se va face doar de catre persoane autorizate .

4.2 EXPLOATARE

Pornirea/oprirea echipamentului DAF 2010R se face de la comutatorul aflat in partea din spate a aparatului.

MANUAL DE UTILIZARE DAF 2010R

Consumul maxim al echipamentului este 100 VA
Dupa pornirea echipamentului se asteapta cca. 30 sec.pentru incalzire dupa care pe ecran va aparea cursorul .

ATENTIE

Dupa oprirea aparatului nu este permisa o noua pornire decit dupa cca. 30 s.

4.3 INTREȚINERE

Dispozitivul de afisare alfanumeric DAF 2010R nu necesita o intretinere deosebita ,fiind un aparat electronic de uz general .

Totusi se impun o serie de masuri de protectie :

- deconectarea de la retea la oprirea lucrului
- stergerea prafului de pe carcasa cu o cirpa moale uscata
- stergerea ecranului cu o cirpa inmisiata in alcool
- depozitarea se va face in incaperi lipsite de praf, agenti corozivi si umezeala

PARTEA II-a MANUAL DE FUNCTIONARE

5. BLOCUL LOGIC

5.1 UNITATEA DE COMANDA

Este compusa din urmatoarele module :

- 1.Z80 CPU si circuitele aferente
- 2.Resursele ROM-RAM
- 3.Interfata seriala de comunicatie
- 4.Interfata de tastatura
- 5.Interfetele de imprimanta
- 6.Interfetele paralele optionale

1. Z80 CPU este comandat de un tact generat de un oscilator cu quart cu frecventa de 2,4576MHz.Semnalul RESET este generat la pornire de un circuit realizat cu un amplificator operational de tip LM 339.

Liniile A0-A11 ale magistralei de adrese sint intarite de circuitele open-collectoare de tip 74(LS)07.Liniile A12-A15 sint intarite de 1/2 8212 al carui strobe este iesirea nonMREQ a Z80 CPU(intarita cu o poarta open-collector).Cind nonMREQ este inactiv ("1") 8212 este transparent; la activarea lui nonMREQ iesirile sint inghetate,pastrind valoarea intrarilor din momentul frontului coboritor al lui nonMREQ.Memorarea celor mai semnificative patru ranguri de adresa este necesara deoarece Z80 CPU nu le mentine stabile pe toata perioada activa a lui nonMREQ in cadrul ciclurilor de operation code fetch.

Cealalta jumata a C.I.8212 este folosita pentru intarirea iesirilor de comanda ale Z80 CPU : nonM1 , nonRFSH si nonIORQ . Iesirile nonRD si nonWR sint intarite cu porti open-collector de tip 74(LS)07 .

Liniile magistralei de date sint intarite cu C.I.de tip 8216 ale caror intrari de comanda sint :

Pin 1 (nonCS) = non(AB7*IORQ) * nonMREQ

Pin 15 (nonDIEN) = RD .

Intrarea nonBUSACK , nefolosita , are o rezistenta de pull-up . Intrarea nonNMI este folosita doar pentru implementarea unui mecanism de pas cu pas (in monitorul de test) .

2. Firmware-ul are rezervat un spatiu de 16kB incepind de la adresa 0000H fiind prevazute repprom-uri de tip 2716 .

RAM-ul , realizat cu C.I. de tip 4116 , ocupa spatiul 8000H - BFFFH .

Spatiul 4000H - 7FFFH poate fi , optional , folosit pentru 16kB suplimentari de repprom sau 16kB de RAM .

3. Interfata de comunicatie seriala este realizata cu canalul A al lui Z80 S10,a carui adresa de baza este 08H: comenzile de scriere/ citire ale registrelor interne se dau la adresa 09H,iar scrierea /citirea datelor se face la adresa 08H. S10 este legat la magistrala neintarita de date a CPU ,iar in lantul de intreruperi are prioritatea a doua dupa CTC.Tactele de emisie / receptie ale canalului A sint furnizate de multiplexorul

DAF 2010-R MANUAL DE FUNCTIONARE

74157 pozitia 5C, astfel:

-in asincron tactele sunt identice si provin de la canalul doi al CTC (frecventa tactului este de 16 ori frecventa de comunicatie).

-in sincron tactul de receptie provine de la pinul 17 al conectorului de modem ,iar tactul de emisie de la pinul 15. Frecventa tactului este egala in acest caz cu frecventa de comunicatie. Selectia multiplexorului se realizeaza cu iesirea nonDTR a canalului B al lui SIO.

In sincron echipamentul este prevazut sa functioneze in daisy-chain fapt pentru care pe placa exista suport hard pentru acest tip de legatura.Conectorul de daisy-chain (cannon 25 contacte tata) se leaga printre-un cablu modem la conectorul de modem al display-ului din lant.

Datorita unor limitari tehnologice , lantul se realizeaza prin intermediul unui dispozitiv suplimentar ce contine releele ce permit realizarea continuitatii lantului si in cazul in care unul din echipamente este nealimentat. Explicatiile de fata se refera la legatura logica si nu fac apel la acest dispozitiv.

4.Interfata de tastatura este paralela ,bidirectionala pe 8 biti, realizata cu doua buffer-e tri-state de tip 8216 poz. 2G si 3G. citirea datelor de la tastatura se face la adresa 8XH, comanda becurilor la 80H si a difuzorului la 81H.

Tastatura este tratata pe intreruperi , intreruperea fiind generata de frontul cazator al semnalului nonSTB provenit de la tastatura (legat la intrarea nonSYNC a canalului B al SIO).

5.Interfata seriala de imprimanta este realizata cu canalul B al lui SIO . Tactul de emisie/receptie provine de la canalul doi al CTC, deci in asincron este identic cu tactul de comunicatie.Interfata este bidirectionala permitind implementarea in firmware a mecanismului XON / XOFF in dialogul cu imprimanta.

Interfata paralela de imprimanta este unidirectionala pe 8 bits, realizata cu canalul A al 8255 si liniile 7 (pentru generarea comenzii de imprimare) si 3 (pentru testarea semnalului de acknowledge al imprimantei) ale canalului C al 8255.

6.Interfetele paralele optionale sunt realizate cu portul B al 8255 si buffer-ele tri-state de tip 8216 poz. 1D si 1C.Functionarea in intrare/iesire a acestor doua interfete se poate realiza doar succesiv prin programarea canalului B in intrare respectiv iesire si activarea corespunzatoare a bufferelor tri-state cu liniile 5 si 6 ale portului C , liniile ce activeaza si semnalele de hand-shake adevarate.

5.2 TASTATURA

Este de tip paralel,bidirectional si are urmatoarele functii:

- identifica tasta apasata si genereaza codul corespunzator
- genereaza semnalul nonSTB

- auto-repeat, la apasarea unei taste mai mult de 0,5s

- afiseaza pe 4 led-uri informatia de stare transmisa de UC si genereaza , la o anumita comanda a acestuia ,un semnal sonor(bell)

1.Tastatura are 101 taste Hall .Dintre acestea 5 sunt folosite pentru CTRL (2) ,SHIFT (2) si CAPS (1).Celelalte 96 de

DAF 2010-R MANUAL DE FUNCTIONARE

taste sint organizate intr-o matrice de 6 linii*16 coloane. Scanarea se face succesiv pe cele 16 coloane (prin alimentarile tastelor). La apasarea unei taste scanarea se opreste cind linia si coloana de scanare sint identice cu ale tastei apasate. In acel moment iesirea multiplexorului 74150 devine "1", scanarea se opreste si se activeaza nonSTB. Starea numaratorului de scanare reprezinta adresa locatiei din PROM ce contine codul tastei apasate.

2. In cazul in care o tasta este apasata mai mult de 0,5s se intra in regim de auto-repeat , activindu-se nonSTB cu o frecventa de 12Hz.

Citirea de catre UC a codului tastei apasate se face la activarea semnalului nonRD tast , eveniment ce are ca efect si dezactivarea semnalului nonSTB.

3.La receptionarea unei comenzi de aprindere a becurilor - prin activarea nonWR tast , cu SEL = "0" - DTO-DT3 sunt memorate intr-un registru 7495 ale carui iesiri intarite comanda ledurile.

La activarea nonWR tast , cu SEL = "1" , se emite un semnal sonor prin difuzor (bell).

4.Tastele CAPS (LOCK) , SHIFT si CTRL multiplica numarul de coduri generate de cele 96 de taste'. Starea actuala a functiei CAPS este memorata de un bistabil de tip T , a carui iesire intarita comanda un led aflat in apropierea tastei CAPS.

La apasarea simultana a tastelor CTRL si RESET se genereaza codul FFH, care are ca efect initializarea echipamentului.

5.3 LISTA COMENZI 2010R

5.3.1. Memoria : ROM 16k in spatiul 0000-3FFFF
RAM 16k in spatiul 8000-BFFFF.

Optional mai pot exista :

ROM 16k 4000-7FFFF , sau
RAM 16k 4000-7FFFF .

Pentru punerea la punct a primului model e recomandabila urmatoarea configuratie :

ROM 2k - monitor , 0000-7FFFF
RAM 16k , 8k programe 4000-7FFFF si 8k WRAM
8000-BFFFF.

5.3.2. Memoria de regenerare :

Mem. de caractere E000-EFFFF

Mem. de atribute D000-DFFFF.

Memoria de caractere trebuie privita ca 32 zone de 128 ko.

Din acestea sint folosite ultimele 25 , de la : E380-EFFFF. In cadrul fiecarei zone de 128 octeti sint folositi doar 80 de octeti , intre 15H si 64H , de ex : E395-E3E4H , etc.

In acelasi mod este tratata si memoria de atribute , la care , pentru respectarea compatibilitatii cu vechea structura :

D0-blinking

D1-subliniat

D2- video invers

DAF 2010-R MANUAL DE FUNCTIONARE

D3-invizibil .

Ratiunea folosirii a 25 de rinduri este realizarea operatiei de defilare umana . In defilare rind , informatia este depozitata initial in rindurile 1-24 , 25 fiind sters ; la prima defilare , informatia se afla pe rindurile 2-25 , rindul 1 fiind sters s.a.m.d. In cazul defilariei umane , se afiseaza - incomplet - informatia de pe 25 de rinduri de caractere .

Mecanismul de accesare de catre procesor a memoriei de atribute este putin modificat fata de vechea structura , astfel :

-există un registru - de 8 bits - din care se folosesc pentru scrierea in AMEM doar D0-D3 , a carui incarcare se face :

- a) la citirea unei locatii din CHMEM
- b) la citirea unei locatii din AMEM
- c) la scrierea la o adresa CXXXH.

Deci pentru scrierea unei configuratii de atribute de afisare la adresa DXXX , configuratie diferita de cea aflata in acel moment in SATR , se incarca intii noua configuratie in SATR prin scriere la adresa CXXXH si apoi se scrie la adresa DXXXH. Transferul din SATR in AMEM se face :

- a) la scrierea la adresa DXXXH , sau
- b) la scrierea la adresa EXXXH .

5.3.3. Generatorul de caractere

Se afla in spatiul de adrese F000-FFFFH . Fiecarui cod ASCII ii sunt rezervati 16 octeti , astfel incit imaginea caracterului A - 41H -se afla in spatiul F410-F41FH . Din cei 16 octeti sint folositi efectiv numai 12 si anume XX04-XX0FH . In general linia TV 0 a rindului este vida , deci cele 7 linii TV afectate unei imagini de 5 * 7 puncte se afla in zona XX05-XX0BH. Generatorul de caractere standard se incarca la initializare din firmware in spatiul F000-F7FFH . Generatorul programabil se incarca in spatiul F800-FFFFH . Generatorul de caractere este o memorie write-only , motiv pentru care imaginea generatorului programabil trebuie memorata in WRAM .

5.3.4. RAM-ul nevolatil

Este simulat cu un repprom 2716 . El se afla in spatiul C000-C7FFH . Citirea din acest repprom se face la o adresa din spatiul mai sus mentionat , cu activarea in prealabil a semnalelor NVR0E si NVRCS - ambele semnale active in '0'. Pozitionarea acestor 2 linii se face cu comanda OUT C2H :

- NVR0E cu D1
- NVRCS cu D2 .

Trebuie avut in vedere ca intrarile de date ale AMEM , iesirile SATR si liniile D0-D7 ale RAM-ului nevolatil sunt legate impreuna si ca semnalul NVR0E activeaza pe '0' iesirile reppromului , iar pe '1' iesirile SATR . La power-on NVR0E si NVRCS sunt puse pe '0' . Pentru programarea (arderea) repprom-ului trebuie comandata linia BVC - D3 pe comanda OUT C2H - linie ce este activa in '1' , iar la power-on este pusa in '0' . Datele ce trebuie 'arse' sunt furnizate de SATR , al carui continut trebuie restaurat dupa ardere in vederea unei scrieri ulterioare in AMEM.

5.3.5 Comenzi ale procesorului catre VC .

5.3.5.1 Defilarea . Exista un singur tip de defilare - cu o linie TV - ceea ce presupune incrementarea SLC . Incrementarea cu o linie TV se face prin OUT C1H , continutul A fiind indiferent .

DAF 2010-R MANUAL DE FUNCTIONARE

Aceste operatii au loc pe o portiune a cursei inverse cadre de durata 2 rinduri de caractere al carei inceput este semnalat de o intrerupere a carei manipulare va fi explicata mai tarziu .

Dupa power-on numaratoarele de defilare pornesc dintr-o stare necunoscuta si pentru a asigura sincronismul lor cu numaratoarele de baleaj , la prima intrerupere de sfarsit de cadru , procesorul trebuie sa le initializeze . Aceasta presupune un OUT COH urmat de 11 comenzi OUT C1H : In urma acestor operatii , primul rind de pe ecran are informatia stocata in zona E415 - E464H

5.3.5.2 Blinking si controlul cursorului . Frecventa de blinking trebuie furnizata de procesor prin manipularea liniei BLKC cu instructiunea OUT C2H , bit-ul DO . BLKC are ca efect stingerea afisarii pe timpul cit este activ - '1' .

Cursorul nu este sustinut hard , si trebuie afisat ca un bloc video-invers (subliniat) clipitor cu o frecventa diferita de aceea a liniei BLKC .

5.3.5.3 Controlul contrastului . Se face prin comanda OUT C3H , nivelul de contrast fiind stabilit de D0-D2H .

Bit-ul D3 manipulat de OUT C3H determina numarul de linii afisate : '0' - 24 rinduri a 12 linii TV , '1' - 25 rinduri a 11 linii TV .

5.3.6. TASTATURA

Interfata ei este bidirectionala , citirea facindu-se cu INP AXH , comanda becurilor cu OUT AOH , iar bell cu OUT A1H . STROB-ul tastaturii genereaza intrerupere prin intrarea SYNC a canalului B al SIO cu adresa de baza 08H .

5.3.7. CTC

Adresa de baza este OOH . In lantul de intreruperi , CTC-ul ocupa pozitia cea mai prioritara . Doua canale au asignari speciale : canalul 2 , care da frecventa de comunicatie (atit interfetei de modem cit si interfetei seriale de imprimanta) si canalul 3 a carui menire este de a genera intrerupere catre CPU , intrerupere generata prin comanda cu un front negativ a intrarii TRG3 . Semnalul de comanda se numeste SCRN si este generat de VC . Tactul pe care-l primesc canalele 0-2 este de 2,4576 MHz (9600 * 16 * 16) .

5.3.8. INTERFATA DE IMPRIMANTA

Este realizata in 2 variante :

-seriala , canalul B al SIO cu adresa de baza 08H ; de mentionat ca interfata este bidirectionala - pentru a beneficia de protocolul X/ON-X/OFF la transmisii de viteza mare -si intrarea CTS a canalului B primeste semnalul imprimanta operabila - activ '0'-in mod normal DTR al imprimantei ; linia DTR a canalului B are o asignare speciala si anume comanda multiplexorului ce furnizeaza tactul de comunicatie interfetei de modem , astfel : DTR activ ('0') in asincron , DTR inactiv in sincron .

-paralela , realizata cu un PIO INTEL - cod 8255 - a carui adresa de baza este 40H , datele fiind emise pe portul A al PIO . PIO este folosit cu portul A iesire si portul C jumatarea superioara iesire , iar jumatarea inferioara intrare . Strob-ul de date este furnizat de PC7 , iar PC3 primeste un semnal a carui expresie este : IOP * ACK , unde IOP este imprimanta operabila , iar ACK este acknowledge-ul (busy-ul) imprimantei . PC3 este

DAF 2010-R MANUAL DE FUNCTIONARE

activ in '1'.

5.3.9. INTERFATA DE MODEM

Este realizata cu canalul A al SIO cu adresa de baza 08H . RTS posterior se citeste prin PC2 al PIO . De mentionat absenta semnalului DSR dar posibilitatea de citire a CTS prin intermediul SIO

Canalul A trebuie programat sa divizeze in asincron T & R Clk la 1 pentru viteza de 19200 bds. si la 16 pentru celelalte vitezze .

5.3.10. INTERFETE OPTIONALE

5.3.10.1 INTERFATA SERIALA DE TASTATURA

Este realizata cu un SIO - cu adresa de baza 10H - canalul B Viteza de comunicatie este fixa , generata prin divizarea tactului CPU , iar canalul B trebuie sa divizeze $T \times R \times C$ la 64 . Comunicatia cu tastatura se face printre-o interfata de tip VT100 Se intenioneaza folosirea ei la un produs compatibil VT100 .

5.3.10.2 INTERFATA PARALELA BIDIRECTIONALA

Este realizata prin portul B al PIO , intarit cu drive-re 8216 Pentru citire , portul B se programeaza in intrare , comanda de citire se face prin programarea in 0 a liniei PC5 si reprogramarea , la momentul potrivit , in 1 , achitarea se testeaza pe linia PC0 , iar PC6 si PC5 trebuie programate in 0 . La scriere , PC6 = 0 , PC5 = 1 , comanda de scriere se da prin PC4 si achitarea se testeaza prin aceeasi linie PC0 . In cazul in care nu se lucreaza cu aceste interfete , e preferabil ca PC6 = 1

5.4.LISTA DE SEMNALE LOGICE 2010R

PCLK - Point Clock, semnal periodic cu factor de umplere de 1/2, cu perioada de aprox. 89 ns.

CCLK i - Counter Clock i, semnale cu frecventa de caracter, factor de umplere de 1/2, perioada de aprox. 537 ns., de-calate intre ele cu durata de un punct.

STCE - Scan Time Chip Enable, semnal cu factor de umplere de 3/4, ce intra in formarea semnalelor de selectie ale memoriei de regenerare si generatorului de caractere pe timpul scanarii acestora de catre Video Controller.

CC i - Character Counter output i, iesirile numaratorului de caractere modulo 107.

CCTC - Character Counter Terminal Count , semnal cu perioada liniei TV.

FVSP - Field Video Suppression , stingeri cadre.

MUXS - MultipleXor Select , comanda multiplexoarelor de adresa ale memoriei de regenerare si generatorului de caractere , adrese ce provin de la VC (MUXS=1), sau de la micro-procesor (MUXS=0).

VSP - Video Suppression , stingeri linii si cadre .

PAE i - Processor Access Enable i .

HS - Horizontal Synchronization .

LC i - Line Counter i , iesirile numaratorului de linii ale cadrului .

DAF 2010-R MANUAL DE FUNCTIONARE

LCPE - Line Counter Parallel Enable .
SCDN - Scrolling Counters Do Nothing mode , oprirea
comenzilor VC asupra numaratoarelor de defilare pe timpul cursei
inverse cadre , perioada in care are acces procesorul .

FS - Field Synchronization sincronizarea
oscillatorului .

VS - Vertical Synchronization .
SCCE - Scrolling Counters Count Enable .
SCL - Scrolling Counters Load cmd .
SCIN - Scrolling Counters INcrement cmd .
SCC - Scrolling Counters Clock .
SLC i - Scrolling Line Counter output i .
SRC i - Scrolling Row Counter output i .
AB i - Address Bus i .
VCA i - Video Controller Address i .
CH i - Character memory output i :
VCID i - Video Controller Input Data i .
A i - Attribute memory output i .
AI i - Attribute memory Input data i .
CHCS - Character memory Chip Select .
ACS - Attribute memory Chip Select .
CHWR - Character memory WRite cmd .
AWR - Attribute memory WRite cmd .

CHR i - Character Register output i .
ATR i - ATtribute Register output i :
DB i - Data Bus i .
PAC - Processor ACcess .
WAIT - processor WAIT cmd .
NVRR - Non Volatile Ram Read .
SARW - Secondary Attribute Register Write .
ATR - ATtribute Read .
ATWR - ATtribute WRite .
CHR - Character RRead .
GWR - Generator WRite .
GCS - Generator Chip Select ..
GA i - character Generator Address i .
CHG i - Character Generato# output i .
VCPW - Video Controller Parameters Write .
COWR - COntrast value WRite .
BLKC - BLinking Clock .
NVROE - Non Volatile Ram Output Enable cmd .
NVRCS - Non Volatile Ram Chip Select .
BVC - Burning Voltage Control .
UND - UNDERline .
BLK - BLINKing .
VIDEO - the hard to reach purpose of this damned VC .

DAF 2010-R MANUAL DE FUNCTIONARE

6. SURSA

6.1 GENERALITATI

Sursa echipamentului DAF 2010-R poate debita urmatoarele perechi de tensiune/curent :

- +5v/6A
- +12v/2A
- +12v/0,5A
- -12v/0,3A
- +40v/0,05A

Toate sursele sunt protejate la supracurent sau scurtcircuit iar sursa de +5v este protejata la supratensiune. Avindu-se in vedere puterea utila debitata care este de 60w si volumul relativ redus avut la dispozitie, s-a optat pentru o sursa in comutatie de la retea cu un randament de aprox. 70%.

Sursa in comutatie asigura tensiunile amintite mai sus, mai putin tensiunea negativa de -12v, ce este data de o sursa liniara alimentata de un transformator de 6w. Acelasi transformator asigura si tensiunea auxiliara necesara alimentarii CI B 260 D.

Schema bloc a sursei este urmatoarea:

6.2. DESCRIEREA FUNCTIONALA A BLOCURILOR

- a) Blocul de filtraj asigura atit echipamentul cit si reteaua impotriva influentelor si perturbatiilor reciproce.
 - b) Transformatorul asigura tensiunile de intrare in blocul de redresare si filtrare atit pentru alimentarea circuitului de comanda cit si pentru sursa auxiliara negativa de -12v.
 - c) Tinind cont de curentii de intrare redresarea s-a facut cu doua puncti 1PM1 ; filtrarea pentru partea de circuit de comanda cu un condensator de 1000 uF/16v iar pentru partea de sursa negativa cu un condensator de 330 uF/40v.
 - d) Etajul de controler care ataca driverul are la baza CI B 260 D .
Rolul componentelor acestui etaj este urmatorul : grupul R2 ,C6 asigura un filtraj suplimentar al sursei de alimentare a cipului; R3, R4, C8 stabilesc max si slowstart, cu max=factorul de umplere maxim al sursei . R5, R50, R51 ,C7 sunt elemente ale buclei de reactie ce determina acuratetea tensiunii de iesire, precum si raspunsul la variatii rapide de sarcina. Grupul R6 ,C9 stabileste frecventa de oscilatie a sursei . (1)
 - e) Etajul de protectie la supracurent se bazeaza pe un transformator de curent TR1 ,care transforma variatia curentului de colector al tranzistorului T4 intr-o tensiune ce este redresa ta pe dioda D1 si apoi aplicata prin intermediul semireglabilului R8 in baza tranzistoorului T1, tranzistor lucrind in regim blocat - saturat .Colectorul lui T1 este legat la intrarile 9-10 ale CI realizind protectia la supracurent a CI. Valoarea curentului la care sursa intra in protectie se stabileste din semireglabilul R8.
 - f) Protectia la supratensiune este realizata de un etaj clasic cu tranzistor pentru o tensiune ce depaseste valoarea de 5,6v .Acest prag este dat de valoarea zenerului D22 din baza tranzistorului T15 ce se deschide la o tensiune ce depaseste valoarea de 5,6v. Blocarea circuitului de comanda CTRL se face pe aceeasi pini 9-10 prin intermediul tranzistorului T1.
 - g) Rolul blocului driver este de a asigura in baza lui T4 un semnal, de asa natura incit ,tranzistorul sa lucreze in regim blocat-saturat cu treceri minime prin regimul activ-normal concretizate prin pierderi minime in tranzistor. Pentru a satisface acest deziderat in baza tranzistorului trebuie injectat un curent corespunzator, iar pentru blocarea sa trebuie extra sa rapid sarcina stocata in baza.
- Fizic aceasta se realizeaza cu ajutorul unui transformator driver TR3 ce are in primar un generator de curent comandat alcătuit din T2,T3,D4,R10.
- Grupul C13,D5,R12,C14, asigura controlul formei de unda in primar.
- Grupul D6,D7,D8,C15,R13,R14,L1, asigura durata si amplitudinea curentului ce se extrage din baza T4.
- Grupul R44,D16,D17,C22, asigura controlul formei de unda in colectorul tranzistorului T4 astfel incit pierderile sa fie minime.
- h) Redresarea si filtrarea pe partea de forta sint realizate cu ajutorul unei puncti 3PM4 si a unui condensator electrolitic de 150 F/350v. Tensiunea astfel obtinuta de 220 2v este aplicata , prin primarul transformatorului chopper,

DAF 2010-R MANUAL DE FUNCTIONARE

colectorului tranzistorului final T4.

i) Convertorul DC-DC este prezentat schematic in fig.6.1. Modul in care se face transferul de energie din primarul in secundarul traf. chopper se explica prin functionarea tranzistorului T4.

DAF 2010-R MANUAL DE FUNCTIONARE

Cind tranzistorul de comutatie este in conductie , dioda rapida D20 conduce si energia este pe de o parte stocata in inductivitatea L iar pe de alta parte debitata pe sarcina. Cind T4 este blocat, tensiunea pe primarul transformatorului isi schimba sensul, iar dioda D20 este blocata. Acum dioda de recuperare D21 este in conductie , iar inductivitatea L cedeaza energia acumulata, curentul din inductivitate scazind dupa o lege liniara. Capacitatea C2 redice tensiunea ondulatorie datorata comutatiei tranzistorului. Dioda D18 are rolul de a asigura continuitatea surgerii curentului de magnetizare pina in momentul in care T4 este blocat (energia magnetica este cedata sursei).

j) Redresarea si filtrarea se face cu ajutorul C25, C27, D20, D21, D24, D25, diodele folosite fiind diode rapide. Condensatorii folositi pentru filtraj sunt de 3 2000 F/16v pusi in paralel pentru a oferi o inductivitate si o rezistivitate serie parazita mica fata de cazul folosirii unui singur condensator.

k) Sursele liniare de +/- 12v sunt realizate cu scheme identice cu tranzistoare complementare. Schema de principiu pentru sursa de + 12v este urmatoarea :

Unde :

$$U_{be3} = U_a - (U_o - U_z)$$

$$U_a = \frac{U_o - U_d}{R_7 + R_8 + R_9}$$

deci :

$$U_{be3} = U_z + K U_d + K U_o$$

DAF 2010-R MANUAL DE FUNCTIONARE

cu

R7

$$K = \frac{R7}{R7 + R8 + R9}$$

Din relatia de mai sus rezulta ca ,daca U_o creste, U_{BE3} scade, deci I_{C3}, I_{C2}, I_{C1} scad , deci U_o scade rezultind si functia de stabilizare a tensiunii de iesire. Daca I_o creste peste o valoare $I_{o\max}$ determinata de R_2 si R_3 caracteristica de iesire $U_o=f(I_o)$ se rabate conform figurii de mai jos, in care sunt de remarcat :

- a. curentul maxim ce nu poate fi depasit de sursa, dat de blocarea diodei zenner;
- b. pragul $U_o=0,7V$ sub care curentul de scurtcircuit este dat de relatia:

$$I_{SC} = \frac{U_i}{R_1}$$

Reglajul tensiunilor de iesire pentru sursele de $\pm 12V$ se face din semireglabiliti R_{24}, R_{33}, R_{42} .

Tensiunea de $+40V$ este data de o sursa de tip paralel protejata implicit la scurtcircuit la iesire.

Bibliografie

(1) Circuit integrat pentru surse in comutatie TDA 1060

DAF 2010 R MANUAL DE FUNCTIONARE

7. MONITORUL T.V.

7.1. GENERALITATI

Monitorul TV asigura afisarea datelor pe un tub catodic cu diagonala ecranului de 31 cm si unghi de deflexie de 110 grade.

Subansamblul cuprinde circuitele de baleaj, amplificatorul video precum si cele auxiliare necesare alimentarii tubului cinescop.

Electronica subansamblului este organizata pe doua placi de circuit imprimat si anume :

- placa de baleaj si tensiuni auxiliare montata prin doua suporturi de masca tubului cinescop

- placa amplificatorului video montata direct pe gital tubului cinescop pentru a minimiza capacitatatile parazite

Atit interconectarea placilor monitorului cit si conectarea acestora cu blocul logic si sursa de alimentare se face prin cabluri prevazute cu conectori.

7.2. CARACTERISTICI ELECTRICE

- frecventa linii : 15625 Hz
- frecventa cadre : 50 Hz
- cursa inversa linii: 1lus +1lus, -1us
- cursa inversa cadre: 1ms +0,1ms , -0,1ms
- banda de trecere a amplificatorului video:
20 Hz - 17 MHz +3dB, -3dB
- distorsiuni de geometrie: max. 2%
- distorsiuni de liniaritate:
 - pe orizontala : max. +10%, -10%
 - pe verticala : max. + 5%, - 5%
- dimensiunile imaginii:
 - pe orizontala : 210 mm +5 mm, -5 mm
 - pe verticala : 145 mm +5 mm, -5 mm
- tensiuni de alimentare :
 - +12V +/- 0,5 V
 - +40V +/- 1 V
- curent absorbit :
 - max 1,6 A pe sursa de +12 V
 - max 50 mA pe sursa de +40 V

7.3. DESCRIERE FUNCTIONALA

7.3.1. SCHEMA BLOC

Monitorul este alcătuit din patru blocuri functionale :

a) Amplificatorul video

Asigura amplificarea semnalului video de la nivelul TTL generat de blocul logic la un nivel de 25 - 30 V necesar atacului catodului tubului cinescop.

DAF 2010 R MANUAL DE FUNCTIONARE

b) Baleiaj vertical

Etajul genereaza un curent in dinte de fierastrau prin bobinele de deflexie pe verticala necesar devierii fascicolului de electroni. Frecventa semnalului dinte de fierastrau este de 50 Hz generata de un oscilator care este sincronizat de semnalul sincro V generat de blocul logic.

c) Baleiaj orizontal

Etajul genereaza un semnal in dinte de fierastrau prin bobinele de deflexie pe orizontala necesar devierii fascicolului de electroni. Frecventa semnalului dinte de fierastrau este de 15625 Hz si se obtine direct din semnalul sincro H generat de blocul logic.

d) FIT si tensiuni auxiliare

Foarte inalta tensiune (FIT) se obtine din blocul de baleiaj orizontal printr-o bobina montata pe transformatorul final de linii.

Tensiunile auxiliare necesare alimentarii tubului cinescop se obtin prin infasurari separate din secundarul transformatorului final de linii.

7.3.2. DESCRIEREA BLOCURILOR FUNCTIONALE

a) Amplificatorul video

Semnalul video generat de blocul logic se aplica amplificatorului video printr-un cablu cu impedanta de 75 de ohmi. Primul etaj este un repetor pe emitor realizat cu tranzistorul Q301 tip 2N2369 care amplifica in curent semnalul video. Dupa aceasta se aplica etajului final realizat tranzistoarele Q302 (2N3866) si Q303 (BF458) montate in cascoda. Tranzistorul Q303 are baza conectata la un potential fix obtinut cu D301 de 6,2V iar semnalul video se aplica in emitor prin Q302. Acest tip de montaj asigura o amplificare mare in tensiune cu o banda de trecere ridicata.

Rezistenta din emitorul tranzistorului Q302 limiteaza curentul prin tranzistoarele finale iar bobina din colectorul lui Q303 imbunatatesta fronturile de comutatie. Rezistenta serie cu catodul tubului cinescop este o protectie a etajului final la descarcările din interiorul tubului cinescop.

b) Blocul de baleiaj cadre

Modulul de baleiaj vertical este realizat cu tranzistoare intr-o structura care cuprinde etajul de intrare si amplificare a impulsurilor de sincronizare (Q403), oscilatorul (Q401, Q402) si etajul final format din etajul de intrare (Q404, Q405), pilot (Q406) si etaj de putere in clasa AB cu Q407, Q408 complementari.

Tensiunea in dinte de fierastrau necesara atacului etajului

DAF 2010 R MANUAL DE FUNCTIONARE

final, se obtine prin incarcarea/descarcarea condensatorilor C404 si C405 conectati in serie. Incarcarea se face lent, cu o constanta de timp mare dictata de R408 serie cu R409 de valori mari, 1 Mohm respectiv 2,2 Mohmi.

Din semireglabilul R409 se poate ajusta amplitudinea dintre lui de fierastrau aplicat etajului final prin C406, realizindu-se astfel reglajul dimensiunii verticale a imaginii. Descarcarea rapida se realizeaza cu ajutorul impulsurilor de scurta durata generate de oscilator prin dioda D401 .

Functionarea oscilatorului are la baza procesul de incarcare/descarcare a condensatorului C401 de 0,47 uF, care impreuna cu rezistenta R403 dicteaza valoarea frecventei de oscilatie libera, care este de aprox. 50Hz.

Impulsurile de sincronizare, generate de blocul logic sunt aplicate prin C403 in baza tranzistorului Q403. Aparitia unui impuls pozitiv in baza lui Q403 implica aparitia aceliasi impuls negativ amplificat in colectorul acestuia, respectiv colectorul lui Q402 .

Descarcarea condensatorului C401 are loc cu o constanta de timp mare (>20ms) prin R403 (910 Kohm) si R406 (1 Kohm) neglijabila in comparatie cu R403.

Etajul de intrare in amplificator prezinta impedanta mare de intrare in baza tranzistorului Q404 unde se aplica prin C406 dintele de fierastrau format pe C404 serie cu C405. Tranzistorul pilot Q406 este compensat baza-colector cu C408 impotriva aparitiei de oscilatii nedorite.

Prepolarizarea tranzistorilor finali complementari se face intr-o conexiune bootstrap cu C410, R418, R419, R420, obtinandu-se astfel o impedanta mai mare de intrare.

Reglajul de liniaritate se realizeaza cu ajutorul semireglabilului R414 prin care tensiunea mica de aprox. 1 Vvv culeasa de pe rezistenta R414, este aplicata in punctul de conexiune C404, C405 unde se insumeaza cu tensiunea dintre de fierastrau de la intrarea etajului final. Ajustarea lui R414 care controleaza reactia descrisa mai sus, conduce la obtinerea liniaritatii optime.

Grupul C411, R423 are rolul de a amortiza oscilatiile care ar putea apare pe bobinele de deflexie verticala.

c) Blocul de baleiaj orizontal

Semnalul sincro H generat de blocul logic se aplica unui etaj driver realizat cu tranzistorul Q201 (BD 135). Acest tranzistor lucreaza in regim de comutatie si are ca sarcina transformatorul driver T201 cu un raport de transformare 4:1 coboritor in tensiune. In colectorul lui Q201 se obtin impulsuri cu amplitudinea de cca. 16Vvv, deci in secundar cca. 4Vvv.

Functionarea driver-ului a fost astfel aleasa incit sa lucreze in contratimp cu tranzistorul final Q202 (cind unul este saturat celalalt este blocat) pentru a nu mari excesiv curentul de virf absorbit din sursa de alimentare.

Rezistenta R201 limiteaza curentul de baza al lui Q201, iar R203 cu C202 amortizeaza supratensiunile datorate autoinductiei din colectorul lui Q201 generate de sacina inductiva .

Urmeaza etajul final realizat cu un tranzistor (Q202) de

DAF 2010 R MANUAL DE FUNCTIONARE

comutatie cu tensiune de strapungere mare (mai mare de 300V) tip BU606 , BUR608 cu sau fara dioda interna.

Ei lucreaza ca un comutator in paralel pe un circuit oscilant paralel format din condensatorul de acord C205 si bobinele de deflexie lini. Este comandat in baza cu un impuls de cca.4Vvv obtinut din secundarul transformatorul T201. Currentul de baza este limitat de R205. La blocare impulsul are valori negative pentru a micsora timpul de stocare a sarcinilor din baza lui Q202, deci timpul de intrare in blocare.

Condensatorul C204 se incarca la tensiunea de 26V si serveste practic ca o sursa de alimentare astfel: dioda D201 conduce in timpul cursei directe , iar pe timpul cursei inverse pe catod apare un puls pozitiv de tensiune mare care o blocheaza. Energia din condensatorul C205 nu mai poate curge inspre sursa de alimentare prin D201 si incarca condensatorul C204 la o tensiune continua recuperata . Aceasta tensiune este proportionala cu raportul de transformare dintre n14 si n13. Deci prin acest tip de montaj (recuperare serie)se obtine o alimentare de 26V folosind totusi o sursa de 12V.

Alimentarea in c.c. se face prin primarul transformatorului de linii T202. Pentru ca el sa nu sunteze inductanta bobinelor de deflexie , inductanta lui se alege de 10 ori mai mare . Este necesar acest tip de alimentare ca prin bobinele de deflexie sa nu treaca curent continuu , ceea ce ar produce o deplasare a imaginii.

Separarea bobinei de deflexie pe orizontala in c.c. se face cu C 206 paralel cu C207 care au doua functii:

- corectia in "S" a formei de dinte de fierastrau a curentului de deflexie , necesara pentru a nu avea deformari ale imaginii datorate polaritatii ecranului tubului cinescop. Corectia se realizeaza prin suprapunerea unui curent sinusoidal peste curentul liniar . Aceasta deformare sinusoidala este provocata de C206 paralel cu C207 , serie cu bobinele de deflexie pe orizontala.

- rezervor de energie ,in faza de incepere a cursei directe energia acumulata in circuitul oscilant este restituita sursei de alimentare prin dioda conectata in paralel pe tranzistorul Q202 (recuperare paralela). Grupul C206 paralel cu C207 este conectat serie cu bobina de deflexie pe orizontala si are o valoare destul de mare in comparatie cu C 205 . Paralel cu grupul C206, C207 si bobina de deflexie pe orizontala este condensatorul de acord C205 care se incarca in timpul primei jumatati a cursei inverse la o tensiune de 8 ori mai mare decit sursa de alimentare , preluind toata energia .In a doua jumitate a cursei inverse curentul curge din C205 spre C206 paralel cu C207 care primesc cea mai mare parte din energie si se incarca la tensiunea sursei de alimentare. La inceputul cursei directe C206 paralel cu C207 cedeaza energia in bobina de deflexie pe orizontala prin dioda de recuperare paralela.

Tot in serie cu bobina de deflexie pe orizontala se gaseste bobina de liniaritate care compenseaza rezistentele de pierderi ale etajului final:

- rezistenta de saturatie a tranzistorului final
- rezistenta ohmica a bobinei de deflexie pe orizontala
- rezistenta interna a sursei de alimentare

DAF 2010 R MANUAL DE FUNCTIONARE

Aceasta compensare se face prin modificarea saturatiei unui miez magnetic la diferite valori ale curentului de deflexie.

d) FIT si tensiunile auxiliare

Foarte inalta tensiune necesara accelerarii electronilor din tubul cinescop se obtine de pe transformatorul de linii printre infasurare speciala, Numarul de spire al acestui infasurari este de cca. 2000 spire rezultind ca s-ar obtine un FIT de cca. 8KV, dar datorita acordului bobinei de FIT pe armonica a 3-a (45 KHz) se obtine o crestere a acesteia cu cca. 40%

Aceasta tensiune este redresata cu ajutorul diodei de inalta tensiune TV 18 iar apoi filtrata de capacitatea dintre anodul tubului cinescop si stratul de advadag depus pe acesta.

Tensiunile auxiliare necesare tubului cinescop sint urmatoarele:

- Tensiunea de accelerare ; se aplica pe pinul 6 al tubului cinescop pe grila 3 de accelerare . Aceasta tensiune se obtine de pe transformatorul de linii , unde sunt immpulsuri pozitive cu amplitudinea de cca. 400V , redresate de dioda D 203 si filtrat de C208. Rezistenta R207 limiteaza curentul prin dioda la incarcarea condensatorului C 208.

- Tensiunea de focalizare ; se aplica pe pinul 7 al tubului cinescop , pe grila 2 de focalizare. Aceasta tensiune este aceeasi cu tensiunea de accelerare divizata de R 209 la o valoare necesara unei focalizari optime.

- Tensiunea de luminozitate ; se aplica grilei de comanda a tubului cimescop (pinul 5) si este formata din tensiunea de accelerare si o tensiune negativa de cca. 250V obtinuta de pe transformatorul de linii redresata de D 204 si filtrata de C209. Acest mod de conectare asigura si blocarea fascicolului de electroni din tubul cinescop la deconectarea de la retea si anume : la deconectare C209 se descarca prin R210 , R211 , R212 si D205 pina la valoarea Zenner-ului D205 de 130V cind acesta nu mai este polarizat direct . Din acest moment tensiunea pe grila de comanda ramane la un potential de -130V (C 209 nu mai are rezistor de descarcare).

ANEXA 2

**LISTA SEMNALELOR PREZENTE LA CONECTORUL DE INTERFATA
PENTRU COMUNICATII MODEM (V24)**

(conector tip RACK de 25 contacte, priza)

Pin	Denumire	Semnificatie	Sens	2010R-MODEM
1	GROUND	masa mecanica		
2	ED	emisie date	----- -->	
3	RD	receptie date	<-- -----	
4	RTS	request to send	----- -->	
5	CTS	clear to send	<-- -----	
6	DSR	data set ready	<-- -----	
7	GND	masa electrica		
8	DCD	data carrier detected	<-- -----	
9	-			
10	-			
11	-			
12	-			
13	-			
14	-			
15	TC(sincron)	tact emisie	<-- -----	
16	-			
17	RC(sincron)	tact receptie	<-- -----	
18	-			
19	-			
20	DTR	data terminal ready	----- -->	
21	-			
22	-			
23				
24	TC1(sincron)	tact emisie	----- -->	
25	RC1(sincron)	tact receptie	----- -->	

ANEXA 3**LISTA SEMNALELOR PREZENTE LA CONECTORUL DE INTERFATA
PENTRU CONEXIUNE MULTIPUNCT (D. CH.)**

(conector tip RACK de 25 contacte, priza)

Pin	Denumire	Semnificatie	Sens	2010R-MODEM 201
1	GROUND	masa mecanica		
2	ED	emisie date	----- -->	
3	RD	receptie date	<-- -----	
4	RTS	request to send	----- -->	
5	CTS	clear to send	<-- -----	
6	DSR	data set ready	<-- -----	
7	GND	masa electrica		
8	DCD	data carrier detected	<-- -----	
9	-			
10	-	+5V		
11	-	+5V		
12	-			
13	-	-12V		
14	-			
15	TC	tact emisie	<-- -----	
16	-			
17	RC	tact receptie	<-- -----	
18	-			
19	-			
20	DTR	data terminal ready	----- -->	
21	-	+12V		
22	-	+12V		
23	-			
24	-			
25	-	-12V		

ANEXA 4

**LISTA SEMNALELOR PREZENTE LA CONECTORUL DE INTERFATA
PENTRU IMPRIMANTA (PRT.)**

(conector tip RACK de 25 contacte, priza)

Pin	Denumire	Semnificatie	Sens 2010R-IMP
1	GROUND	masa mecanica	
2	RDx	receptie date	----- -->
3	EDx	emisie date	<-- -----
4	-		
5	-		
6	-		
7	GND	masa electrica	
8	-		
9	D2IP	bit 2 date	----- -->
10	D0IP	bit 0 date	----- -->
11	D3IP	bit 3 date	----- -->
12	D1IP	bit 1 date	----- -->
13	D7IP	bit 7 date	----- -->
14	D4IP	bit 4 date	----- -->
15	-		
16	BUSY IP (ACK)		<-- -----
17	-		
18	-		
19	STROB IP	comanda imprimare	----- -->
20	DTR	data terminal ready	<-- -----
21	-		
22	D6IP	bit 6 date	----- -->
23	D5IP	bit 5 date	----- -->
24	-		
25	-		

NOTA:

Semnalele notate cu x sunt necesare pentru imprimanta seriala, iar cele notate cu IP pentru imprimanta paralela.

ANEXA 5

**LISTA SEMNALELOR PREZENTE LA CONECTORUL DE INTERFATA
PENTRU TASTATURA (KBD.)**

(conector tip RACK de 15 contacte, priza)

Pin	Denumire	Semnificatie	Sens 2010R-T
1	SHIFT		<-- -----
2	D1	bit 1 date	<-- -----
3	D3	bit 3 date	<-- -----
4	D5	bit 5 date	<-- -----
5	D7	bit 7 date	<-- -----
6	WR	comanda scriere tas.	----- -->
7	GND	masa electrica	
8	+5V		
9	DO	bit 0 date	<-- -----
10	D2	bit 2 date	<-- -----
11	D4	bit 4 date	<-- -----
12	D6	bit 6 date	<-- -----
13	READ	comanda citire	----- -->
14	SEL	selectie:alarma/leduri	<-- -----
15	STB	strob de date de la tas.	<-- -----

ANEXA 6

REALIZAREA LEGATURII IN CABLUL DE CONECTARE LA MODEM

CONECTOR FISA 25 CONTACTE	LEGATURA	CONECTOR FISA 25 CONTACTE
--------------------------------------	-----------------	--------------------------------------

1	- - - - -	1
2	- - - - -	2
3	- - - - -	3
4	- - - - -	4
5	- - - - -	5
6	- - - - -	6
7	- - - - -	7
8	- - - - -	8
.	- - - - -	.
.	- - - - -	.
15	- - - - -	15
16	- - - - -	16
17	- - - - -	17
.	- - - - -	.
.	- - - - -	.
20	- - - - -	20
.	- - - - -	.
.	- - - - -	.
24	- - - - -	24
25	- - - - -	25

ANEXA 7

**REALIZAREA LEGATURILOR IN CABLUL ADAPTOR
PENTRU LEGATURA DIRECTA LA CALCULATOR**

CONECTOR FISA 25 CONTACTE	LEGATURA	CONECTOR PRIZA 25 CONTACTE
1 - - -	----- 1	
2 - - -	\ / ----- 2	
3 - - -	/ \ ----- 3	
4 - - -		- - 4
5 - - -		- - 5
6 - - -		- - 6
7 - - -		- - 7
8 - - -		- - 8
.		
.		
.		
15 - - -	----- 15	
16 - - -		16
17 - - -		- - 17
.		
.		
.		
20 - - -		- - 20
.		
.		
.		
24 - - -		- - 24
25 - - -		25

ANEXA 8

**REALIZAREA LEGATURILOR IN CABLUL ADAPTOR
PENTRU LEGATURA MULTIPUNCT**

(daisy-chain)

**CONECTOR FISA
25 CONTACTE**

LEGATURA

**CONECTOR FISA
25 CONTACTE**

1	- - - - -	1
2	- - - - -	2
3	- - - - -	3
4	- - - - -	4
5	- - - - -	5
6	- - - - -	6
7	- - - - -	7
8	- - - - -	8
.	- - - - -	.
.	- - - - -	.
15	- - - - -	15
16	- - - - -	16
17	- - - - -	17
.	- - - - -	.
.	- - - - -	.
20	- - - - -	20
.	- - - - -	.
.	- - - - -	.
24	- - - - -	24
25	- - - - -	25

Fig.11 Schema bloc DAF 2010 R

AUTO
COPY OPER ON LINE READY
O O O O

RESET	BREAK	SET	BL	UND	VI	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	ERASE TO END
-	1	2	"	#	3	4	%	&	5	6	7	8	9	RUB OUT
O	ESC	Q	W	E	R	T	Y	U	I	O	P	{	}	LF
CAPS	@	A	S	D	F	G	H	J	K	L	+	:	*	CR
	SHIFT	Z	X	C	V	B	N	M	<	>	?	SHIFT	DEL CHAR	INS LINE ↑
	CTRL													→ HOME →
														INS LINE ↓

Fig.12 TASTATURA DAF 2010 R

Fig.13 Tastele folosite cu CTRL și semnele ce se pot obține.

ANEXA 1

SEQUENTE ESC SEQUENTE DC4

	0	1	2	3	4	5	6	7	2	3	4	5	6	7
0	NULL	REF	0	0 @ P	P	⑥	⑦	⑧	⑨	⑩	⑪	⑫	⑬	⑭
1	SOH	ACI	! 1 A Q Q 2	TRBJET	A	Q	Q	Q	T	T	T	T	T	T
2	STX	DC2	" 2 0 R 6 /	CLEAR	⑤	⑥	⑦	⑧	⑨	⑩	⑪	⑫	⑬	⑭
3	ETX	DC3	# 3 C S C S	PRINT	C	J	J	J	②	③	④	⑤	⑥	⑦
4	EDT	DC4	\$ 4 0 T d t	ZONA	①	D	D	D	⑧	⑨	⑩	⑪	⑫	⑬
5	ENQ	NAK	% 5 E U e u	ARQETATA	E	C	C	C	⑤	⑥	⑦	⑧	⑨	⑩
6	ACK	SYN	& 6 F V f V	ACTIVEZZA	F	V	V	V	③	④	⑤	⑥	⑦	⑧
7	BEL	EFB	, 7 G W g w	TRATTATURA	G	W	W	W	⑨	⑩	⑪	⑫	⑬	⑭
8	CAN	(8 H X h x	CHARACTER	G	STERGE	STERGE	STERGE	④	⑤	⑥	⑦	⑧	⑨
9	HT	EM) 9 I Y i Y	SEL	H	X	X	X	⑩	⑪	⑫	⑬	⑭	⑯
A	LFC	32B	* : \ Z \ J \ Z	NEW LINE	I	SELECTIV	SELECTIV	SELECTIV	⑥	⑦	⑧	⑨	⑩	⑪
B	VT	ESC	+ ; K [\ K {	SCREEN	J	STERGE	STERGE	STERGE	②	③	④	⑤	⑥	⑦
C	FF	FF	, < L \ L !	HOME	K	TRANS	TRANS	TRANS	⑦	⑧	⑨	⑩	⑪	⑫
D	CR	GS	- = M] m }	INCREAZA LINE	L	START	NEUTR	NEUTR	①	②	③	④	⑤	⑥
E	SO	RS	. > N \ n ~	ELIMINAZA LINE	M	ELIMINAZA LINE	ELIMINAZA LINE	ELIMINAZA LINE	⑩	⑪	⑫	⑬	⑭	⑯
F	SI	US	/ ? 0 - 0	DE CINTA	N	INCERUT N DE CINTA	INCERUT N DE CINTA	INCERUT N DE CINTA	③	④	⑤	⑥	⑦	⑧

Afisare Schimbarea
caracterelor

Afisare caractere

Anexa 9

TASTĀ C SH 							
TASTĀ C SH 							
TASTĀ C SH 							
TASTĀ C SH 							

Anexa 9

COD 5 TASTĀ	COD ! TASTĀ	COD " TASTĀ	COD # TASTĀ	COD \$" TASTĀ	COD % TASTĀ	COD & TASTĀ	COD ' TASTĀ
COD (TASTĀ	COD) TASTĀ	COD * TASTĀ	COD + TASTĀ	COD , TASTĀ	COD - TASTĀ	COD . TASTĀ	COD / TASTĀ
COD 8 TASTĀ	COD 9 TASTĀ	COD : TASTĀ	COD ; TASTĀ	COD < TASTĀ	COD = TASTĀ	COD > TASTĀ	COD ? TASTĀ
COD 0 TASTĀ	COD 1 TASTĀ	COD 2 TASTĀ	COD 3 TASTĀ	COD 4 TASTĀ	COD 5 TASTĀ	COD 6 TASTĀ	COD 7 TASTĀ
TASTĀ	TASTĀ						

Anexa 9

Anexa 9

OSCILATOR SINCRON CU RETEA

REFRESH COUNTERS
VIDEO CONTROLLER

89

VIDEO CONTROLLER SCROLLING COUNTERS

Character Memory

Attribute Memory

VIDEO CONTROLLER
REFRESH MEMORY ARBITER

VIDEO CONTROLLER
CHARACTER GENERATOR

VIDEO OUTPUT
NON VOLATILE RAM
VIDEO CONTROLLER

MICROPROCESORUL Z80

INTERFAȚĂ IMPRIMANTĂ PARALELĂ SI INTERFAȚĂ BIDIRECTIONALĂ OPTIONALĂ

BLOCUL SELECTIE ROM

8 Ci 2716

MEMORIILE E EPROM

8 C.i. 2716

MEMORII EPROM (OPTIONAL)

INTERFAȚĂ MEMORIE DINAMICĂ

8 C.I. 6.976

4116 8 C.I. 4116

4116

4116

RAM DINAMIC

INTERFATĂ SERIALĂ I

72 Imprimantā

INTERFATĂ SERIALĂ II

AUTO OPER ON LINE READY
copy ○ ○ ○

RESET	BK	SET	BL	UND	VIDEO	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8
—	1	2	#	\$	%	&	')	‘	’	=	‘	RUB OUT
○	ESC	Q	W	E	R	T	Y	U	I	O	P	{]
CAPS	①	A	S	D	F	G	H	J	K	L	:	*	CR (2x1)
	SHIFT	Z	X	C	V	B	N	M	,	>	?	/	SHIFT (1/2 x 1)
	CTRL												φ

STRT PRINT SEND	
7	8
9	

CLEAR ERASE ERASE	
7	8
9	

4	5	6
1	2	3
2	3	4
3	4	5
4	5	6

TAB ERASE LINE TAB	
7	8
9	

10	8	6
0	0	0
1	1	1
2	0	2
3	0	1
4	1	1
5	0	0
6	0	0
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	1	1
7	5	5
8	6	6
9	7	7
0	0	0
1	1	1
2	0	0
3		

SCHEMĂ ELECTRICĂ II TASTATURĂ

SCHEMA ELECTRICĂ I TASTURĂ

SURSA

Schema bloc

Forme de undă etaj baleaj de linii

25

A

B

C

D

E

F

G

H

I

J

Forme de undă, baleaj cadre cu tranzistoare

I.P."Filaret" Atel.III Dinu Vintilă nr.4
Cda. 209/1986

