ordinal-toolkit

File: C:\Users\Moses\math_ops\OperatorKernelO6\core_docs\ordinal-toolkit.md

Type: markdown

Generated: 2025-08-05 04:02:03

Size: 14080 characters

Overview

ordinal-op-toolkit

Document Content

ordinal-toolkit.md — OperatorKernel O6

Version 2025-07-29 — authoritative, no placeholders; aligns with AGENT.md (same date)

0 Scope

This toolkit consolidates **all ordinal facts, imports, name-prefix rules, and \mu-measure patterns** required by the OperatorKernelO6 meta proofs (SN, confluence, arithmetic). It is the single source of truth for ordinal API usage and module locations. If a symbol is not listed here (or in AGENT.md §8), carefully evaluate the guidelines for using **out of documents** lemm and tactics.

1 Import & Library Audit (authoritative)

> Use exactly these modules; the right-hand column clarifies *what is found where*. Generic ordered-monoid lemmas must **not** be used for ordinal multiplication unless explicitly noted.

WF/Acc | Init.WF | WellFounded , Acc , InvImage.wf , Subrelation.wf || Prod lex orders | Mathlib.Data.Prod.Lex |

Prod.Lex for lexicographic measures || Ordinal basics | Mathlib.SetTheory.Ordinal.Basic | omega@_pos , one_lt_omega@ ,

lt_omega@ , nat_lt_omega@ || Ordinal arithmetic | Mathlib.SetTheory.Ordinal.Arithmetic | Ordinal.add_ , Ordinal.mul_
Ordinal.mul_lt_mul_of_pos_left , Ordinal.mul_le_mul_iff_left , primed mul_le_mul_left' / mul_le_mul_right' ,

le_mul_right || Ordinal exponentiation | Mathlib.SetTheory.Ordinal.Exponential | opow , opow_add ,

Ordinal.opow_le_opow_right , isNormal_opow || Successor helpers | Mathlib.Algebra.Order.SuccPred |

Order.lt_add_one_iff , Order.add_one_le_of_lt || N-casts (order bridges) | Mathlib.Data.Nat.Cast.Order.Basic |

Nat.cast_le , Nat.cast_lt || Tactics | Mathlib.Tactic.Linarith , Mathlib.Tactic.Ring | linarith , ring (both

whitelisted) || Generic monoid inequality | Mathlib.Algebra.Order.Monoid.Defs | Generic mul_le_mul_left — do not us

it for ordinal products.|

Qualification rule (must appear verbatim at call-sites):

- **Exponent** (≤-mono): call Ordinal.opow_le_opow_right (never the bare name).
 - **Exponent (<-mono at base ω):** use the **local** theorem opow_lt_opow_right defined in §2.4 (since upstream removed Ordinal.opow_lt_opow_right).
 - Products: prefer Ordinal.mul_lt_mul_of_pos_left and Ordinal.mul_le_mul_iff_left (or mul le mul left' / mul le mul right') these are the ordinal APIs.
 - Successor bridge: call Order.lt_add_one_iff / Order.add_one_le_of_lt with the Order. prefix.

2 Toolkit Lemma Catalogue (names, signatures, modules)

> All entries compile under Mathlib 4 (≥ v4.8) + this project's local bridges. Nothing here is hypothetical.

2.1 Basics & Positivity

```
- omega0_pos : 0 < omega0 — module: SetTheory.Ordinal.Basic
```

- one_lt_omega0 : 1 < omega0 module: SetTheory.Ordinal.Basic
- lt_omega0 : o < omega0 ↔ ∃ n : N, o = n module: SetTheory.Ordinal.Basic
- nat_lt_omega0 : ∀ n : N, (n : Ordinal) < omega0 module: SetTheory.Ordinal.Basic

2.2 Addition & Successor

```
- add_lt_add_left: a < b \rightarrow c + a < c + b — module: SetTheory.Ordinal.Arithmetic
```

- add_lt_add_right : a < b → a + c < b + c module: SetTheory.Ordinal.Arithmetic
- $add_le_add_left: a \le b \rightarrow c + a \le c + b module: SetTheory.Ordinal.Arithmetic$
- add_le_add_right : $a \le b \rightarrow a + c \le b + c$ module: SetTheory.Ordinal.Arithmetic
- Order.lt_add_one_iff : x < y + 1 ↔ x ≤ y module: Algebra.Order.SuccPred
- Order.add_one_le_of_lt : $x < y \rightarrow x + 1 \le y$ module: Algebra.Order.SuccPred

Absorption on infinite right addends

```
- Ordinal.one_add_of_omega_le : omega0 ≤ p → (1 : Ordinal) + p = p
```

• Ordinal.nat_add_of_omega_le : omega $0 \le p \rightarrow (n : Ordinal) + p = p$

traffic-ligh

| Colour | Rule of thumb | Examples |

```
|------| Green | Ordinal-specific or left-monotone lemmas | add_lt_add_left , mul_lt_mul_of_pos_left , le_mul_right , opow_mul_lt_of_exp_lt || Amber | Generic lemmas that satisfy the 4-point rule | mul_le_mul_left' , add_lt_add_of_lt_of_le || Red | Breaks rule 2 (needs right-strict mono / commutativity) | add_lt_add_right , mul_lt_mul_of_pos_right |
```

2.3 Multiplication (Ordinal-specific)

```
- Ordinal.mul_lt_mul_of_pos_left : a < b \rightarrow 0 < c \rightarrow c a < c b
```

• Ordinal.mul_le_mul_iff_left : c a ≤ c b ↔ a ≤ b

- Primed monotone helpers: mul_le_mul_left', mul_le_mul_right' (convenient rewriting forms).
- le_mul_right : $0 < b \rightarrow a \le b * a$.
- opow_mul_lt_of_exp_lt : $\beta < \alpha \rightarrow \emptyset < \gamma \rightarrow \text{omega0 } ^ \beta \gamma < \text{omega0 } ^ \alpha$ module:* SetTheory.Ordinal.Exponential absorbs any positive right factor.
- > **Note:** mul_le_mul_left without a trailing apostrophe comes from Algebra.Order.Monoid.Defs and is **generic** (ordered monoids). Do **not** use it to reason about ordinal multiplication.
- > Q: "library_search EXAMPLE SUGGESTED le_mul_of_le_mul_left'. Can I use it?" (IT CAN APPLY TO ANY MODULE YOU BELIEVE WILL HELP)
- 1. Check axioms \rightarrow none found. 2. It uses only OrderedRing , which Ordinal instantiates. 3. Import adds 17 decls. \square 4. Proof is kernel-checked, no meta. Append one line to toolkit with a brief description/justification sentence and commit.

2.4 Exponentiation (ω-powers & normality)

- opow_add : a ^ (b + c) = a ^ b * a ^ c split exponents.
- opow_pos : 0 < a → 0 < a ^ b positivity of powers.
- Ordinal.opow_le_opow_right : 0 < a → b ≤ c → a ^ b ≤ a ^ c use fully-qualified.

Local strict-mono for ω -powers (replacement for deprecated upstream lemma):

```
/-- Strict-mono of \omega-powers in the exponent (base omega0 ). --/
```

```
@[simp] theorem opow_lt_opow_right {b c : Ordinal} (h : b < c) : omega0 ^ b < omega0 ^ c := by simpa using ((Ordinal.isNormal_opow (a := omega0) one_lt_omega0).strictMono h)
```

Why this is correct: isNormal_opow states that, for a > 1, the map $b \mapsto a \wedge b$ is normal (continuous, strictly increasing). With a := omega0 and one_lt_omega0 , strictMono yields exactly < from < in the exponent, which is what we need in μ -decrea proofs.

2.5 Cast bridges (N ↔ Ordinal)

```
@[simp] theorem natCast_le {m n : N} : ((m : Ordinal) \leq (n : Ordinal)) \leftrightarrow m \leq n := Nat.cast_le @[simp] theorem natCast_lt {m n : N} : ((m : Ordinal) < (n : Ordinal)) \leftrightarrow m < n := Nat.cast_lt
```

2.6 Finite vs. infinite split helper

```
theorem eq_nat_or_omega0_le (p : Ordinal) : (∃ n : N, p = n) V omega0 ≤ p := by classical cases lt_or_ge p omega0 with | inl h => rcases (lt_omega0).1 h with □n, rfl□; exact Or.inl □n, rfl□ | inr h => exact Or.inr h
```

Absorption shorthands

```
theorem one_left_add_absorb \{p: Ordinal\}\ (h: omega0 \le p): (1: Ordinal) + p = p := by simpa using (Ordinal.one_add_of_omega_le <math>(p:=p)\ h) theorem nat_left_add_absorb \{n: N\}\ \{p: Ordinal\}\ (h: omega0 \le p): (n: Ordinal) + p = p := by simpa using (Ordinal.nat_add_of_omega_le <math>(p:=p)\ (n:=n)\ h)
```

2.7 Two-sided product monotonicity (derived helper)

```
/-- Two-sided monotonicity of (*) for ordinals, built from one-sided lemmas. -/ theorem ord_mul_le_mul {a b c d : Ordinal} (h_1 : a \le c) (h_2 : b \le d) : a b \le c d := by have h_1' : a b \le c b := by simpa using (mul_le_mul_right' h_1 b) have h_2' : c b \le c d := by simpa using (mul_le_mul_left' h_2 c) exact le_trans h_1' h_2'
```

3 μ-Measure Playbook (used across all rule proofs)

Goal form: for each kernel rule Step t u , show mu u < mu t . Typical shape reduces to chains like

```
\omega^{\kappa} * (x + 1) \leq \omega^{\kappa} (x + \kappa')
```

Standard ladder (repeatable):

1. Assert base positivity: have $\omega pos: 0 < omega0 := omega0 pos. 2$. Lift inequalities through exponents: use Ordinal.opow_le_opow_right $\omega pos h$ for \le , and the local opow_lt_opow_right for <. 3. Split exponents/products: rw [opow_add] to turn exponent sums into products so product monotonicity applies cleanly. 4. Move (\le) across products: use Ordinal.mul_le_mul_iff_left , mul_le_mul_left' , mul_le_mul_right' ; for < use Ordinal.mul_lt_mul_of_pos_left wire a positive left factor. 5. Absorb finite addends: once omega0 \le p , rewrite (n:Ordinal) + p = p (or 1 + p = p). 6. Bridge successor: convert x < y + 1 \leftrightarrow x \le y via Order.lt_add_one_iff; introduce x + 1 \le y via Order.add_one_le_of_lt when chaining. 7. Clean arithmetic noise: simp for associativity/neutral elements; ring or linarith only for integer-arithmetic side-conditions (both tactics are whitelisted).

Critical correction for $rec\Delta$ b s n (μ -rules):

Do **not** try to relate $mu \ s$ and $mu \ (delta \ n)$. They are **independent parameters**; the inequality $mu \ s \le mu \ (delta \ n)$ is **false in general**. A simple counterexample (compiles in this codebase):

Structure μ -decrease proofs without assuming any structural relation between s and n beyond what the rule's right-hand side entails.

4 Order.succ vs + 1 (bridge & hygiene)

Lean will often rewrite p + 1 to Order.succ p in goals. Work with the Order lemmas:

```
- Order.lt_add_one_iff : x < y + 1 \leftrightarrow x \le y
```

• Order.add_one_le_of_lt : $x < y \rightarrow x + 1 \le y$

Keep the Order. prefix to avoid name resolution issues. Avoid inventing succ_eq_add_one —rely on these bridges instead

5 Do-Not-Use / Deprecated in this project

- Generic mul_le_mul_left (from Algebra.Order.Monoid.Defs) on ordinal goals. Use Ordinal.mul_* APIs instead.
- Old paths Mathlib.Data.Ordinal. replaced by Mathlib.SetTheory.Ordinal. .
- Ordinal.opow_lt_opow_right (upstream removed). Use the local opow_lt_opow_right defined in §2.4.
- le_of_not_lt (deprecated) use le_of_not_gt .

6 Minimal import prelude (copy-paste)

```
import Init.WF
```

import Mathlib.Data.Prod.Lex import Mathlib.SetTheory.Ordinal.Basic import Mathlib.SetTheory.Ordinal.Arithmeti import Mathlib.SetTheory.Ordinal.Exponential import Mathlib.Algebra.Order.SuccPred import Mathlib.Data.Nat.Cast.Order.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.Ring open Ordinal

7 Ready-made snippets

Nat-sized measure (optional helper):

```
@[simp] def size : Trace → Nat
| void => 1
| delta t => size t + 1
| integrate t => size t + 1
| merge a b => size a + size b + 1
| recΔ b s n => size b + size s + size n + 1
| eqW a b => size a + size b + 1
theorem step_size_decrease {t u : Trace} (h : Step t u) : size u < size t := by cases h <;> simp [size]; linarith
```

WF via ordinal μ :

```
def StepRev : Trace → Trace → Prop := fun a b ⇒ Step b a

theorem strong_normalization_forward
  (dec : ∀ {a b}, Step a b → mu b < mu a) : WellFounded (StepRev Step) := by
  have wfµ : WellFounded (fun x y : Trace ⇒ mu x < mu y) := InvImage.wf (f := mu) Ordinal.lt_wf
  have sub : Subrelation (StepRev Step) (fun x y ⇒ mu x < mu y) := by intro x y h; exact dec h
  exact Subrelation.wf sub wfµ</pre>
```

8 Cross-file consistency notes

- This toolkit and **AGENT.md** (2025-07-29) are **synchronized**: imports, prefixes, do-not-use list, and the μ -rule correction are identical. If you edit one, mirror the change here.

• Cite lemma modules explicitly in comments or nearby text in code reviews to prevent regressions (e.g., "Ordinal.mul_lt_mul_of_pos_left — from SetTheory.Ordinal.Arithmetic ").

9 Checklist (before sending a PR)

- [] Imports \subseteq §6, no stray module paths.
- [] All exponent/product/ +1 lemmas called with **qualified** names as in §1.
- [] μ -proofs avoid any relation between $\,\mu$ s and $\,\mu$ (δ n) in rec Δ b s n .
- [] Tactics limited to simp , linarith , ring .
- [] No generic mul_le_mul_left on ordinal goals; use Ordinal.mul_* API.
- [] SN proof provides μ -decrease on all 8 rules; WF via InvImage.wf.
- [] Normalize-join confluence skeleton compiles (normalize , to_norm , norm_nf , nfp).

End of file.