정보처리 실기 포인트정리

서브넷 마스크 Net ID. HOST ID

255.	255.	255.	255
A클래스	B클래스	C클래스	D클래스
옥텟	옥텟	옥텟	옥텟
255.0.0.0	A클래스 표준	네트워크 서브닝	힌마스크
255.255.0.0	B클래스 표준	네트워크 서브닝	트스 미넷
255.255.255.0	C클래스 표준	네트워크 서브넛	힌마스크

CIDR(사이다) 표기법: 인터넷 주소 할당 방식, /숫자만큼 앞 비트가 1로 구성, (각 옥텟 8비트 /1~32)

클래스A 기본 서브넷 마스크	/8
클래스B 기본 서브넷 마스크	/16
클래스C 기본 서브넷 마스크	/24

192.168.0.1/25가 의미하는 서브넷 마스크 값: 8.8.8.0(C클래스) + 10000000(®) , 255.255.255.128 203.76.25.1/26에 해당하는 서브넷 마스크 값: 8.8.8.0(C클래스) + 11000000(®) , 255,255,255,192(125+64)

네트워크를 n개의 서브넷으로 나누기, 비트 앞에서부터 하나씩 0, 1로 나눔

비트	경우의 수	최대 네트워크 수	서브넷 마스크 값(비트->10진수)
10000000	2 ¹	2	255.255.255. <u>128</u>
11000000	2 ²	4	255.255.255. <u>192</u>
11100000	2 ³	8	255.255.255. <u>224</u>
11110000	2 ⁴	16	255.255.255. <u>240</u>
11111000	2 ⁵	32	255.255.255. <u>248</u>
11111100	2^6	64	255.255.255. <u>252</u>
11111110	2 ⁷	128	255.255.255. <u>254</u>

26개의 서브넷으로 나눌 경우 => 16<26<32 (32개에 26개가 들어감) => 11111000 => 255.255.255.248

윈도우 10, home과 pro

	Windows 10 HOME	PRO
보안성	_	BitLocker(암호화)
	_	WIP(Windows Information Protection)
원격제어	받는 것만 지원	원격 지원 및 <u>제어</u> 또한 가능
H/W	CPU소켓 1개, 128GB	CPU소켓 2개, 2TB

print 개행 정리

	printf("")	개행X
	printf("%d₩n", var)	개행
JAVA	printf("")	개행X
JAVA	println("")	구문 출력 이후 개행
Duthon	print("")	자동 개행 (end의 default="\n")
Python	print("", end="")	개행 설정가능

형상관리SCM 도구 종류

CVS	Concurrent Version System // 가장 오래된 형상관리 도구(1990) 중 하나로, 서버는 단순한 명령 구조를 가진 장점이 있고, <u>텍스트 기반 코드만 지원</u> 하는 단점이 있다.
SVN	Subversion // CVS의 단점을 보완, <u>GUI도구 존재</u> 하고 <u>압축</u> 을 통해 서버의 공간을 절약한다.
Git	<u>리눅스</u> 커널 개발을 위해 만들어짐. // CVS와 SVN의 단점을 모두 보완하는 장점이 있고 중앙 집중형이 아닌 <u>분산형 방식</u> 으로 스스로 저장공간이 필요하다.

윈도우즈 단축키

윈도우 탐색기 실행	explorer	Win+E
윈도우 실행창 실행	run	Win+R
바탕화면 표시	desktop	Win+D
사용자 전환 / 윈도우 잠금	Logout	Win+L
윈도우 알림 센터	Alert	Win+A
열려 있는 창 최소화	Minimal	Win+M
윈도우 검색창 실행	Search	Win+S
윈도우 시스템 관리 메뉴	X	Win+X
윈도우 설정 실행	Config의 I	Win+
시스템 구성요소	잠깐만~	Win+Pause
최소화된 창 복원	un Minimal	Win+Shift+M
윈도우 캡쳐	Screenshot	Win+Shift+S

Unix 명령어

프로세스 종료	kill
실행 중 프로세스	ps
디렉토리 경로 표시	pwd
네트워크 상태 점검	ping
접속해 있는 사용자	who

릴레이션 키(유일성 최소성)

	유일성	최소성	설명	
후보키	0	0	키의 후보들	
기본키	0	0	사용할 PRIMARY키 (not null, distinct) 당선!	
슈퍼키	0	Х	각 행을 유일하게 식별, 유일성만 만족하면 슈퍼키가 될 수 있다.	
대체키	0 0		후보키 – 기본키 = 대체키(나머지), =기본 키로 선택되지 못한 후보키	
외래키	-		다른 테이블의 기본 키	

테스트 목적에 따른 테스트 종류

회복	Recovery	시스템 실패를 유도, 정상적 복귀 여부를 테스트
보안	Security	불법 소프트웨어 접근하지 못하도록, 소스코드 보안 결함을 미리 점검
강도	Stress	과다한 정보량을 입력, 과부하 시에도 정상적으로 작동하는 지 검증
성능	Performance	응답 시간, 처리량, 반응 속도 등을 측정하는 기법
구조	Structure	<u>내부 논리 흐름</u> 에 따라 테스트 케이스를 작성, 결함을 발견하는 기법
회귀	Regression	변경 또는 수정된 코드에서 새로운 결함 여부를 평가
병행	Parallel	변경된 시스템과 기존 시스템에 동일한 자료를 입력, 결과를 비교한다.

비트연산자 (AND OR XOR)

비트	연산	식	값		설명
&	비트 AND	0101 & 0011	0001	둘 다	true
	비트 OR	0101 0011	0111	둘 중	하나 true
٨	비트 XOR	0101 ^ 0011	0110	두 값	다름 = true
~	(단항)비트반전	~ 0101	1010	보수인	면산, NOT
< <	비트 왼쪽 시프트	0101 0011 << 1	1010	0110	빈칸은 0으로 채워짐(1 시프트에 정수 2배)
>>	비트 오른쪽 시프트	0101 0011 >> 1	0010	1001	양수일 때 빈칸 0, 음수는 CPU에 따라 다름(시험x)

접근통제 Access Control

			DAC	Discretionary	주체-객체 접근 권한에 따라 접근 통제
			A	Access Control	권한자는 권한을 이양할 수 있음(넘겨줌)
			NAAC	Mandatory	보안 등급 기간
접근통제	경제역 법단경	5/11	MAC	Access Control	모든 주체, 객체에 대해 일정함
정책	역할 기반 접	그토데	RBAC	Role Based	DAC와 MAC의 단점 보완
	적절 기반 집	근공세	RDAC	Access Control	역할별로 권한 부여
			ADAC	Attribute Based	객체, 주체의 속성에 따른 통제
	속성 기반 접근통제		ABAC	Access Control	접근 시간 등 접근 환경 고려
	W 7 7 7 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8		BLP, Bell-LaPadula		미 국방부, <u>기밀성O</u> / 군사적 목적 충족, 최초 모델
	벨-라파둘라	기밀성 O	Confidentiality Model		No read up / Not write down
되그트레	utut	무경서 ㅇ			BLP단점 보완 무결성 모델 / 기밀성X
접근통제	비바	기밀성 X	BIBA		No write up / No read down
모델	크라 이스	무결성↑	Claula M	l	사이 하거 저하 보배스저 바지 / 기미서나디 ㅁ겨서
	클락-윌슨	기밀성↓	Clark-Wi	ison	<u>상업 환경</u> 적합, 불법수정 방지 / <u>기밀성보다 무결성</u>
	만리장성		Chinese	Wall	<u>직무 분리</u> 와 이해상충, 정보흐름 모델 기반
	ACL, Access Control List		주체-객체별 권	l한 <u>나열</u> 함 /접근통제 목록	
접근통제	((anahility list			주체를 기준으	로 접근허가 목록 /가능 목록
매커니즘	- ,	,			
	SL, Security <u>Label</u>		객체에 부여된 <u>보안</u> <u>속성 집합</u> /보안 라벨		

#DB 트랜잭션, 되돌리기!

Undo	트랜잭션을 이전 상태로 되돌린다. 작업 롤백, <u>일관성 복구</u> , <u>연산 취소</u> , 반대로 진행				
Redo	트랜잭션의 수정을 재반영, <u>그대로 재실행, DB 복구 작업</u>				
Rollback	하나의 트랜잭션 처리가 <u>비정상적으로 종료, 원자성</u> 이 깨진 경우 시작상태로 롤백				

#파이썬 리스트

append	마지막 요소 다음에 append (==push)
рор	마지막 요소를 삭제하고 값 반환
extend	리스트 확장, 다수의 요소 추가
reverse	현재의 리스트 역순 뒤집음
insert	insert(0, 0) 0의 위치에 0 추가
del	del a[0] <- 인덱스 0번째 삭제
remove	a.remove(값) <- 해당 값 삭제
copy, a[:]	리스트 복사
[::-1]	리스트 역순
[::2]	건너뛰기, [::1]은 그대로
a[0:2]	0부터 2전까지 slice // [-4:-2]됨 [-2:0]안됨

a = [1, 2, 3] b = [4, 5]c = a+b

삽입	append	a.append(b)	[1, 2, 3, [4, 5]]			
ВВ	extend	a.extend(b)	[1, 2, 3, 4, 5]			
삭제	del	del c[0]	[2, 3, 4, 5]			
7/11	remove	c.remove(1)	[2, 3, 4, 3]			
역순	reverse	c.reverse()	[5, 4, 3, 2, 1]			
	[::-1]	c=c[::-1]	[3, 4, 3, 2, 1]			
복사	сору	c.copy(a)	[1, 2, 3]			
7/1	[:]	c=a[:]	[1, 2, 3]			

#포인터변수

☞ (*ip+1) : 주소를 데이터형의 크기만큼 증가시켜 다음 주소를 잡음

#기본키 & 외래키 설정

기본키 설정: CONSTRAINT 조건 PRIMARY KEY(키)

외래키 설정: FOREIGN KEY(키) REFERENCES 테이블(이름) << references

프로토콜

OSI 7	TCP/IP	프로토콜								
응용		Т	telne		Tele Network File Transfer Protocol		원격 접속 파일전송			TCP/IP
계층		C	HTT		HyperText Transfer Protocol		웹			응용계층
표현	응용		POP		Post Office Protocol 3		일방향 메일, 다운			telnet
계층	계층		SMT	TP	Simple Mail Transfer Protocol					FTP
- "0		U D	DHC	CP	Dynamic Host Configuration Proto-	col	IP주소 동적 할당		TCD	
11114			SNM	ИP	Simple Network Management Prot	ocol			TCP 관련	HTTP
세션			DN:	IS	Domain Name Service		숫자로 된 IP주소를 문자형태로 변환		근단	
계층			RTF	Ρ	Real Time transfer Protocol		실시간 응성 동영상 송수신			POP
전송	전송	Т	TCP Transmission Control Protocol 연결형		형, 패킷 교환, 지연시간, 3-way HS			SMTP		
계층	계층	UDP Use		Use	r Datagram Protocol	비연	결성, 체크섬, 신뢰성 보장X, 저용량			DHCP
네트	인터넷 계층		IP	Inte	rnet Protocol Address	인터	넷 통신을 하기 위해 사용		UDP	SNMP
워크 워크 계층		IC	MP	Inte	rnet Control Message Protocol	<u>IP패</u>	<u>킷</u> 을 처리 시 발생 <u>에러</u> , 네트워크 진단		관련	
		Α	RP	Add	lress Resolution Protocol	IP->	MAC / 논리주소를 물리주소로			DNS
		R/	ARP	Rev	erse Address Resolution Protocol	MAC	C-> IP / 물리주소를 논리주소로			

네트워크

멀티 엑세스 네트워크 / BMA(Broadcast Multi-Access) / NBMA(Non-Broadcast Multi-Access) 인트라넷(기업내) <->엑스트라넷(기업간, 협력사)

데이터베이스

UNION: 중복 제거한 합집합 / UNION ALL: 중복 포함한 합집합 / MINUS: 차집합 / INTERSECT: 교집합관계 대수: 릴레이션을 처리하기 위한 연산의 집합 및 절차적 언어 SELECT DISTINCT \sim // CREATE VIEW \sim AS \sim

아키텍처

소프트웨어 아키텍처: 소프트웨어의 골격 구조 모듈화+추상화+단계적분해+정보은닉 시스템 아키텍처: 시스템의 구성과 원리 환경 설계, 모형, 정의 / 시스템에서 서비스를 제공하기 위한 아키텍처

	기출 풀기						
	2021 예상문제 16회(순)	70	비트연산자, 윈도우단축키, 형상관리도구				
PATH 정보처리 기능사	2021 예상문제 16회(매)	65	포인터연산자, 파이썬 리스트, 보안프로토콜 RAID, DB트랜잭션, 네트워크 공격유형				
	2021 예상문제 15회	60	멀티 엑세스 네트워크 / BMA(Broadcast Multi-Access) / NBMA(Non-Broadcast Multi-Access) fabs() =absolute, <math.h> // abs() =<stdlib.h> // rint() =round integer, Math.rint(2.66)은 3 인트라넷(기업내)<->엑스트라넷(기업간, 협력사) // ipconfig은 UNIX리눅스의 ifconfig(f임) // 접근성센터</stdlib.h></math.h>				
	2021 예상문제 14회	80	"SELECT DISTINCT", 아키텍처(소프트웨어/시스템), 관계대수(연산의집합/절차언어) 리소스 가상화(하드웨어가 아닌 네트워크 결합하거나 나누는 것, 가상화)				
	2021 4회	75	16진수 시프트, gets();, while문+for문 횟수 주의				
기능사 출제문제	2021 3회	85	프로세스(=실행프로그램, 비동기적 행위) / 세seg패pack프f비b 모든창최소화(=desktop), 프로토콜 외우기(계층별, UDP/TCP별)				
	2021 2회	60	속도(레지스터>캐시>메인>세컨), C언어(변수=/=예약어), UDP(비연결성, 체크섬) CREATE VIEW AS, 교착상태=비선점 // Strlen, // DHCP(TCP/IP주소부족)				
	2021 1회						