ESEMPIO DI BASE $M(2,2,\mathbb{R})$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Onemo he $\begin{pmatrix} 40 \\ 00 \end{pmatrix}$, $\begin{pmatrix} 01 \\ 00 \end{pmatrix}$, $\begin{pmatrix} 00 \\ 10 \end{pmatrix}$, $\begin{pmatrix} 00 \\ 01 \end{pmatrix}$ SONO una Bone de M(Z,Z,IR) INFATTI · GENERANO a(10)+b(01)+c(00)+d(00)=(ab). SONO LIN INDIP Infatti se vale $a_1 \begin{pmatrix} 10 \\ 00 \end{pmatrix} + a_2 \begin{pmatrix} 04 \\ 00 \end{pmatrix} + a_3 \begin{pmatrix} 00 \\ 10 \end{pmatrix} + a_4 \begin{pmatrix} 00 \\ 01 \end{pmatrix} = \begin{pmatrix} 00 \\ 00 \end{pmatrix}$ a1=a2=a3=a4=0

A COSA SERVONO LE BASI!

Projervione. Lia V op. rett e suiver V_1, V_2, V_n brace di V.

ve V ni Allara orgni nettore avine IN MODO UNICO came V₁, V_z, , V_n: combinarione lineare di V= 11 17 + 12 12+ + 1n 1n con 24, 22, ---, 22 UNICI. DIM Va dimostrata l'unicità. Suppositions che ori possa somere mohe V= N1 V7+ N2 V2+ + Pm Vm lungme $+\lambda_{m}\nabla_{m}=\mu_{1}\nabla_{7}++\mu_{m}\nabla_{m}$ 7777 $(\lambda_{1}-\mu_{1})\nu_{1}+(\lambda_{2}-\mu_{2})\nu_{2}+(\lambda_{m}-\mu_{m})\nu_{m}=($ Ma V1, V2, , Vn è bone, allena

questo =>
$$\lambda_1 - \mu_1 = 0$$

$$\lambda_2 - \mu_2 = 0$$

$$\lambda_{m} - \mu_{m} = 0$$
Case $\lambda_{1} = \mu_{1}, \lambda_{2} = \mu_{2},$

F1950 um lose

V ~ 1,1,1,1m

 $\frac{1}{1} \int_{M} dx = \frac{1}{1} \int_{M} dx$

E SEM PIO

$$Q_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $Q_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ BASE

$$V_{4} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $V_{z} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
Charping!

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 6 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = Z \begin{pmatrix} 1 \\ 1 \end{pmatrix} -1 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\uparrow \quad \forall z$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ -1 \end{pmatrix} \forall \tau_1, \forall z$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = Z \begin{pmatrix} 0 \\ 1 \end{pmatrix} = Z$$

NOTAZIONE

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -7 \end{pmatrix} V_{1}V_{2}$$

DIMENSIONE

Zeorema Due bosi delle sters V sq. vett contengons la stesse numero M di elementi_

Lemma Lia V 7. rellouire.

· V₁, V₂, , V_m Vellavi che generana

· W1,) Wm LIN INDIP

Allara anche W1,, Wn generans V.

(M

 $V = Lyon (v_{71}, v_m)$

Allora en partidare

 $W_1 = \lambda_1 v_1 + + \lambda_m v_m$

Non possone done dista = = /n =0 O, V_z , V_m $a_4 O + a_7 \sqrt{27} + a_n \sqrt{n} = O$

Allona une dei li, DICIAMO 14, ē 40

Posse ounere

 $\sqrt{1 - \frac{1}{\lambda_1}} = \frac{1}{\lambda_1} = \frac{1}{\lambda_2} = \frac{1}{\lambda_2} = \frac{1}{\lambda_1} = \frac{1}{\lambda_1}$

la questo deduce rubito Gen (V1), Vn) = $= \frac{1}{2} \left(\frac{1}{2} \right) \sqrt{2}$

Y1V7+ Y2V2+ + YmVm=

TI WY FAZ VZ Am Vm

Proseguendo con

$$V = Sym (V_{11}, V_m) = Sym (W_{11}V_{21}, V_m) =$$
ANALOGAMENTE

ANALOGAMENTE

Lon (W1, W2, Vz, Vn)

$$W_2 = b_1 w_4 + b_7 v_2 + b_m v_m$$

$$b_2 = b_3 = -b_n = 0$$
? NO

allera une du bi chième b2 2 70.

				7
DIM TEO				
Lyganiams	che	V,	$, \sqrt{m}$	love de
l l				re oli V
l aufoniamo		<i>m</i> . ✓	DICIA	NO
U90 12 LE		M	tanolo	che
• 1	, V	n ge	nnane	
· W1	201101N21E	ME dei	50NO v., IN	CIN 01P
0 (= 1	Λ Λ Λ		• •	

per el CEMMA W1, Wn generanc V. Prende Wm+1 e dene volere

WMIT = ayWy+ +anWm

-9, Wy -9, Wy - 9, Wy +1-Wy = (Wy 1, Wz , Wy NON LIN INDIP ASSURDO.

ALGORITMI PER RICONOSCERE UNA BASE in 17

Le la dei reltoni v_1, v_2, v_m in

e postilinoce

Vi -> Vi + Ty Vy + 72 Vz + ~ + 74 Vitt
+ 7m Vm

Le ho dei nettrui V1, V2, V3 $V_3 \longrightarrow V_3 + 2V_1 - 4V_2 = V_3$ Lean (V1, V2, V3) = Lean (V1, V2, V3) 1 21 V1+02 V2+93 V3 977492 V2+93 (V3+74+ Opridon attentous by V74 bz Vz4 b3 V3

V3= V3- ZV1+4V2 D1V1+b2V2+b3(V3-2V1+4V2) APPARTIENE A

MORALE

Lyan $(v_1, v_2, v_n) = Lyan (v_1, v_2, v_n, v_n)$

olane $V_c = V_i + comb lineari$ degli altri

διηγονισπο di Voler calcha m

$$\mathbb{R}^{2}$$
 le GPAN($(\frac{1}{2}), (\frac{2}{14}), (\frac{-7}{14})$)

ALGORITMO

 $(\frac{1}{2}, \frac{7}{14}) \rightarrow (\frac{1}{2}, \frac{7}{14}) \rightarrow (\frac{1}{2}, \frac{7}{14})$
 $(\frac{1}{2}, \frac{7}{14}) \rightarrow (\frac{1}{2}, \frac{7}{14}) \rightarrow (\frac{1}{2$

$$= \begin{cases} 4 \text{ an } \left(\begin{pmatrix} 4 \\ 04 \end{pmatrix} \right), \begin{pmatrix} 0 \\ 4 \\ 01 \end{pmatrix}, \begin{pmatrix} 0 \\ 04 \\ 01 \end{pmatrix} \right)$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

ESERCIZIO In 174.

Colchare.

$$\mathcal{L}_{ram}\left(\begin{pmatrix} 1\\ 2\\ -2\\ -1 \end{pmatrix}, \begin{pmatrix} 1\\ 3\\ 7\\ -17 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix}, \begin{pmatrix} 0\\ 2\\ -9\\ 3 \end{pmatrix}\right) = W$$

ALGORMMO

$$\begin{pmatrix}
4 & 0 & 0 & 0 \\
2 & 4 & 0 & 0 \\
-2 & 9 & 30 & -23 \\
-1 & -10 & -30 & 23
\end{pmatrix}$$

Dungme

$$W = 2 \text{fram} \left(\begin{pmatrix} 1 \\ 2 \\ -2 \\ -1 \end{pmatrix} \right) \left(\begin{pmatrix} 0 \\ 1 \\ 9 \\ -10 \end{pmatrix} \right)$$

$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 9 \\ -10 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \quad SONO$$

LIN INDIP preshé SONO A SCALINI

e QUINDI SOND

BASE 01 W

		1	