Weak compactness of probability measures

J. Müller

University of Warwick

September 13, 2018

- Motivation
- Building a framework
- Measures as dual spaces
- 4 Weak topologies on the space of probability measures

- Motivation

- Building a framework

Let (X, \mathcal{A}) be a measurable space and let $\mu: \mathcal{A} \to \mathbb{R}$. Then we say μ is

(i) finitely additive if we have

$$\mu\Big(\bigcup_{k=1}^{N} A_k\Big) = \sum_{k=1}^{N} \mu(A_k)$$

for all finite collection of measurable disjoint sets $A_k \in \mathcal{A}$,

Let (X, \mathcal{A}) be a measurable space and let $\mu: \mathcal{A} \to \mathbb{R}$. Then we say μ is

(i) finitely additive if we have

$$\mu\Big(\bigcup_{k=1}^{N} A_k\Big) = \sum_{k=1}^{N} \mu(A_k)$$

for all finite collection of measurable disjoint sets $A_k \in \mathcal{A}$,

countably additive if the above holds for countable collections of (ii)measurable disjoint sets,

Let (X, \mathcal{A}) be a measurable space and let $\mu: \mathcal{A} \to \mathbb{R}$. Then we say μ is

(i) finitely additive if we have

$$\mu\Big(\bigcup_{k=1}^{N} A_k\Big) = \sum_{k=1}^{N} \mu(A_k)$$

for all finite collection of measurable disjoint sets $A_k \in \mathcal{A}$,

- countably additive if the above holds for countable collections of measurable disjoint sets,
- (iii) of bounded variation or shortly bounded if we have

$$\|\mu\|_{BV} := \sup_{\mathcal{E}} \sum_{E \in \mathcal{E}} |\mu(E)| < \infty$$

where \mathcal{E} is any finite families of disjoint measurable sets,

Let (X, \mathcal{A}) be a measurable space and let $\mu: \mathcal{A} \to \mathbb{R}$. Then we say μ is

(i) finitely additive if we have

$$\mu\Big(\bigcup_{k=1}^{N} A_k\Big) = \sum_{k=1}^{N} \mu(A_k)$$

for all finite collection of measurable disjoint sets $A_k \in \mathcal{A}$,

- countably additive if the above holds for countable collections of measurable disjoint sets,
- (iii) of bounded variation or shortly bounded if we have

$$\|\mu\|_{BV} := \sup_{\mathcal{E}} \sum_{E \in \mathcal{E}} |\mu(E)| < \infty$$

where \mathcal{E} is any finite families of disjoint measurable sets,

(iv) positive if $\mu(\mathcal{A}) \subseteq \mathbb{R}_+$.

Let (X, \mathcal{A}) be a measurable space and let $\mu: \mathcal{A} \to \mathbb{R}$. Then we say μ is

(i) finitely additive if we have

$$\mu\Big(\bigcup_{k=1}^{N} A_k\Big) = \sum_{k=1}^{N} \mu(A_k)$$

for all finite collection of measurable disjoint sets $A_k \in \mathcal{A}$,

- countably additive if the above holds for countable collections of measurable disjoint sets,
- (iii) of bounded variation or shortly bounded if we have

$$\|\mu\|_{BV} := \sup_{\mathcal{E}} \sum_{E \in \mathcal{E}} |\mu(E)| < \infty$$

where \mathcal{E} is any finite families of disjoint measurable sets,

(iv) positive if $\mu(A) \subseteq \mathbb{R}_+$.

Denote the space of bounded and finitely additive measures by ba(A)and the space of bounded and countably additive measures by ca(A)

Theorem (Hahn-Jordan decomposition)

For every signed measure $\mu \in ba(A)$ there are two positive measures $\mu_+, \mu_- \in ba(A)$ such that $\mu = \mu_+ - \mu_-$. If μ is countably additive then μ_+ and μ_- can be chosen to be countably additive as well.

Theorem (Hahn-Jordan decomposition)

For every signed measure $\mu \in ba(A)$ there are two positive measures $\mu_+, \mu_- \in ba(\mathcal{A})$ such that $\mu = \mu_+ - \mu_-$. If μ is countably additive then μ_+ and μ_- can be chosen to be countably additive as well.

Proof.

(i) For $A \in \mathcal{A}$ set $\mu_+(A) := \sup \{ \mu(B) \mid B \in \mathcal{A}, B \subseteq A \}$.

Theorem (Hahn-Jordan decomposition)

For every signed measure $\mu \in ba(A)$ there are two positive measures $\mu_+, \mu_- \in ba(A)$ such that $\mu = \mu_+ - \mu_-$. If μ is countably additive then μ_+ and μ_- can be chosen to be countably additive as well.

- (i) For $A \in \mathcal{A}$ set $\mu_+(A) := \sup \{ \mu(B) \mid B \in \mathcal{A}, B \subseteq A \}$.
- (ii) It is clear that μ_+ is positive as we have $\mu_+(A) \ge \mu(\emptyset) = 0$ and it can easily be checked that it is finitely additive.

Theorem (Hahn-Jordan decomposition)

For every signed measure $\mu \in ba(A)$ there are two positive measures $\mu_+, \mu_- \in ba(A)$ such that $\mu = \mu_+ - \mu_-$. If μ is countably additive then μ_+ and μ_- can be chosen to be countably additive as well.

- (i) For $A \in \mathcal{A}$ set $\mu_+(A) := \sup \{ \mu(B) \mid B \in \mathcal{A}, B \subseteq A \}$.
- (ii) It is clear that μ_+ is positive as we have $\mu_+(A) \ge \mu(\emptyset) = 0$ and it can easily be checked that it is finitely additive.
- (iii) Choose now $\mu_{-} := \mu_{+} \mu$ to obtain the desired decomposition.

Theorem (Hahn-Jordan decomposition)

For every signed measure $\mu \in ba(A)$ there are two positive measures $\mu_+, \mu_- \in ba(\mathcal{A})$ such that $\mu = \mu_+ - \mu_-$. If μ is countably additive then μ_+ and μ_- can be chosen to be countably additive as well.

- (i) For $A \in \mathcal{A}$ set $\mu_+(A) := \sup \{ \mu(B) \mid B \in \mathcal{A}, B \subseteq A \}$.
- (ii) It is clear that μ_+ is positive as we have $\mu_+(A) \ge \mu(\emptyset) = 0$ and it can easily be checked that it is finitely additive.
- (iii) Choose now $\mu_{-} := \mu_{+} \mu$ to obtain the desired decomposition.
- (iv) Use dominated convergence to show that μ_+ is countably additive if μ is.

Integration with respect to a signed measure

Theorem (Integral)

For every signed measure $\mu \in ba(A)$ there is a unique linear and continuous mapping

$$\int \mathrm{d}\mu : L_b^0(\mathcal{A}) \to R$$

called the integral wrt to μ such that we have

$$\int \sum_{k=1}^{N} \alpha_i \, \chi_{A_i} \, \mathrm{d}\mu := \sum_{k=1}^{N} \alpha_i \, \mu(A_i)$$

for all simple functions. Further we have

$$\left\| \int \mathrm{d}\mu \right\|_{L^0(A)'} \le \|\mu\|_{BV}.$$

- Measures as dual spaces

Characterisation of measures as a dual space

Theorem (Measures as duals)

With the above notations the linear mapping

$$I: ba(\mathcal{A}) \to L_b^0(\mathcal{A})^*, \quad \mu \mapsto I\mu := \left(f \mapsto \int f \,\mathrm{d}\mu\right)$$

is an algebraic isomorphism and we have $||I\mu||_{L^0_b(\mathcal{A})^*} = ||\mu||_{BV}$.

Further the inverse I^{-1} is given by

$$F \mapsto (A \mapsto F(\chi_A)).$$

For a measure $\mu \in ba(A)$ the following three statements are equivalent:

- (i) μ is countably additive.
- (ii) Iµ fulfills the monotone convergence theorem.
- (iii) $I\mu$ fulfills the dominated convergence theorem.

Consequences

Corollary

The quantity $\|\cdot\|_{RV}$ is a norm and ba(A) is complete with respect to it. The space of countably additive signed measures is a Banach space with respect to the norm of total variation.

Consequences

Corollary

The quantity $\|\cdot\|_{RV}$ is a norm and ba(A) is complete with respect to it. The space of countably additive signed measures is a Banach space with respect to the norm of total variation.

Proof.

The first statement is an immediate consequence of the previous theorem.

Consequences

Corollary

The quantity $\|\cdot\|_{BV}$ is a norm and ba(A) is complete with respect to it. The space of countably additive signed measures is a Banach space with respect to the norm of total variation.

- The first statement is an immediate consequence of the previous theorem.
- (ii) For the second one, show that strong limits of countably additive signed measures satisfy the dominated convergence theorem.

Characterisation of $L^{\infty}(\mu)^*$ and further duals

Theorem (Dual of $L^{\infty}(\mu)^*$)

Let $\mu \in ba(A)$ and let $ba(\mu) \subseteq ba(A)$ be the subspace of measure that are absolutely continuous wrt μ . Then we have

$$ba(\mu) \cong L^{\infty}(\mu)^*$$

isometrically in the canonical way.

Characterisation of $L^{\infty}(\mu)^*$ and further duals

Theorem (Dual of $L^{\infty}(\mu)^*$)

Let $\mu \in ba(A)$ and let $ba(\mu) \subseteq ba(A)$ be the subspace of measure that are absolutely continuous wrt μ . Then we have

$$ba(\mu) \cong L^{\infty}(\mu)^*$$

isometrically in the canonical way.

Proof.

Use the surjection

$$\iota: L_b^0(\mathcal{A}) \to L^\infty(\mu), \quad f \mapsto [f]_\mu$$

and the property $\iota(B_1) = B_1$.

- 4 Weak topologies on the space of probability measures