Electronic States of In₃Sb₂, In₂Sb₃, and Their Positive Ions

Ping Yi Feng^{†,‡} and K. Balasubramanian*,‡

State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, People's Republic of China, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604

Received: June 22, 1998; In Final Form: August 14, 1998

Complete active-space multiconfiguration self-consistent field (CASSCF) followed by multireference singles + doubles configuration interaction (MRSDCI) calculations are carried out on the low-lying electronic states of In_3Sb_2 , In_2Sb_3 , $In_3Sb_2^+$, and $In_2Sb_3^+$. Among 8 electronic states of In_3Sb_2 considered here, 2 Jahn—Teller-distorted electronic states, 2B_1 and 2A_1 ($C_{2\nu}$), and the undistorted ${}^2E''$ and ${}^2E'$ (D_{3h}) electronic states with trigonal bipyramid geometry are close in energy. Among 5 electronic states of In_2Sb_3 , a distorted edge-capped tetrahedral structure 2B_1 ($C_{2\nu}$) and an undistorted ${}^2A_2''$ (D_{3h}) are nearly degenerate. The ground states of the $In_3Sb_2^+$ and $In_2Sb_3^+$ ions are undistorted ${}^1A_1'$ (D_{3h}) and ${}^3A_2'$ (D_{3h}) states with trigonal bipyramid geometries. The singlet (${}^1A_1'$)—triplet (${}^3A_2'$) and singlet (${}^1A_1'$)—singlet (${}^1A_2'$) energy separations of the $In_3Sb_2^+$ ion are computed as 0.15 and 1.02 eV, respectively. The atomization and adiabatic ionization potentials, together with dipole moments and other properties for the electronic states of In_3Sb_2 and In_2Sb_3 , are calculated and discussed. On the basis of our computed results, we also predict the ground states of $In_3Sb_2^-$ and $In_2Sb_3^-$ anions and the electron affinities of these species.

Introduction

The electronic spectroscopic, geometric, and electronic structures of mixed III-V group and other semiconductor clusters have been the topics of many investigations in recent years. 1-19 The recent proliferation of experimental studies has been made possible by the advent of several experimental techniques to generate these clusters, such as the supersonic jet expansion technique and the matrix isolation method. A motivation for such studies is that the III-V semiconductors are used in the fabrication of fast microelectronic devices. A systematic investigation of the electronic properties of the clusters could reveal how the electronic properties, geometric structures, and spectroscopic systems evolve as a function of the cluster size. Theoretical and experimental studies of clusters could provide significant insight into the properties of clusters as a function of their size and indicate the nature of low-lying electronic states of these species. There is considerable interest in learning how the properties of these clusters evolve from the cluster limit to the bulk.

Early interest in the III-V clusters arose from a pioneering work of Smalley and co-workers 1 on Ga_xAs_y , who showed that whereas the relative abundance of larger clusters followed a binomial distribution, the abundance of the smaller clusters deviated strongly from the anticipated binomial distribution. This distribution pattern has now been explained by several theoretical studies focused on the geometries and energy separations of the low-lying electronic states of these species. $^{13-19}$

Although many of the III-V clusters have been generated in various size distributions, spectroscopic studies on these species are relatively scarce. Mandich co-workers, ¹¹ using resonant one-color and two-color photodissociation spectros-

copy, studied the stoichiometric and nonstoichiometric neutral In_xP_y clusters with x+y varying from 5 to 14 atoms. They found an optical-gap-like absorption feature at the blue end of the spectra, especially for clusters with even numbers of atoms. This feature was found to be cluster-size dependent. Furthermore, odd-numbered clusters exhibited stronger and more-varied absorptions than did the even-numbered clusters. In addition, the even-numbered clusters had larger dissociation energies than the odd-numbered clusters. Thus these authors speculated that the even-numbered clusters probably have closed-shell ground states

Weltner and co-workers¹² obtained the electron spin resonance (ESR) spectra and the hyperfine interaction of the analogous Ga_2As_3 cluster. This was accomplished by laser-heating of GaAs crystals followed by aggregation at a relatively high pressure of Ar or Kr before condensation of the matrixes at 4 K. The hyperfine structure revealed that the cluster is in a $S = \frac{1}{2}$ (doublet) state with a trigonal bipyramid structure.

Neumark and co-workers^{6–10} studied the negative-ion photodetachment spectra of semiconductor cluster anions, particularly $In_xP_y^-$ cluster anions of various sizes. Arnold and Neumark⁸ undertook a detailed spectroscopic study of the trimer clusters of the formulas In_2P and InP_2 . For even-numbered In_xP_y clusters, Xu et al.⁹ found an electronic gap in the spectra. These studies utilized two different spectroscopic techniques, namely, anion photoelectron spectroscopy, and anion threshold photodetachment spectroscopy, which yields zero electron kinetic energy (ZEKE) spectra, and has produced a wealth of information on the low-lying electronic states of small In_xP_y clusters and their electron affinities.

Theoretical studies of III—V semiconductor clusters have used a variety of ab initio techniques, $^{2,13-20}$ including computations on the electronic states of Ga_xAs_y clusters and, more recently, $Ga_xP_y^{19}$ (x+y=5) and $In_xP_y^{20}$ (x+y=5) clusters. There have been no comparable theoretical studies on In_xSb_y clusters,

^{*} Corresponding author: fax, 602-965-2747; e-mail, KBalu@asu.edu.

[†] Shanghai Institute of Metallurgy.

[‡] Arizona State University.

which are considerably more difficult to work with, given both the large number of electrons on In and Sb and the large relativistic effects^{21,22} for the heavier Sb atoms.

The objective of this study is the first large-scale investigation of very heavy 5-atom III—V clusters, namely, In₃Sb₂, In₂Sb₃, In₃Sb₂⁺, and In₂Sb₃⁺. We used relativistic complete active-space multiconfiguration self-consistent field (CASSCF) followed by multireference singles + doubles configuration interaction (MRSDCI) techniques to study the low-lying electronic states of not only neutral In₃Sb₂ and In₂Sb₃ but also In₃Sb₂⁺ and In₂Sb₃⁺ ions. We have considered geometric optimization of several electronic states with different geometries. We have also computed the atomization energies, the adiabatic ionization energies, and the dipole moments of these clusters.

Method of Investigation

We used relativistic effective core potentials (RECPs) that retained the outer 5s²5p³ and 5s²5p¹ shells for Sb and In, respectively, replacing any remaining core electrons by RECPs. The basic theoretical techniques for treating electron correlation effects and the orbitals in the current study for In₃Sb₂ and In₂Sb₃ are similar to the one we used in an earlier study on isovalent In₃P₂ and In₂P₃ clusters.²⁰ However, in the present study several electronic states of the positive ions of these clusters have been considered and other properties of the neutral clusters also are computed. The current description will contain only the main aspects of our calculations. A CASSCF method was used to generate the orbitals for higher-order MRSDCI computations. The RECPs and the valence Gaussian basis sets were taken from the work of Lajohn et al.²³ These basis sets were augmented with one set of 3d polarization functions on both In and Sb with exponents 0.2129 and 0.1305, respectively, as obtained from previous studies on other smaller clusters containing In and Sb.^{24,25}

In our previous study²⁰ on the electronic states of In₃P₂ and In_2P_3 , two distorted states in $C_{2\nu}$ symmetry were obtained. Thus we started with geometric optimization for the low-lying electronic states of In₃Sb₂ and In₂Sb₃, using the quasi-Newton-Raphson procedure within the CASSCF level of theory. For this purpose we used the GAMESS²⁶ package of molecular computational codes to generate optimized geometry in $C_{2\nu}$ symmetry. Two electronic states, ²A₁ and ²B₁, were found to have distorted edge-capped tetrahedral structures with $C_{2\nu}$ symmetry for In₃Sb₂ and In₂Sb₃. The geometries of all possible low-lying doublet and quartet electronic states for In₃Sb₂ and doublet states of In_2Sb_3 in D_{3h} symmetry were also consequently optimized. With In₃P₂ and In₂P₃, we would expect an electronic of E' or E' symmetry to undergo Jahn-Teller distortion. Thus the electronic states in distorted trigonal bipyramid structures (C_{2v}) of In₃Sb₂ and In₂Sb₃ are due to Jahn-Teller distortion from the ideal D_{3h} structures.

In the CASSCF calculations we kept the 5's orbitals of In and Sb atoms inactive; that is, excitations were not allowed in the CASSCF calculations, although these orbitals were allowed to relax at the CASSCF stage as a function of geometry. Excitations from these s orbital electrons were included at the subsequent MRSDCI computations. The CASSCF wave function that included i a₁, j b₂, k b₁, and l a₂ orbitals in the complete active space is labeled ijkl-CAS. From the results of comparison, we adopted 3331-CAS for In₃Sb₂ and 4221-CAS for In₂Sb₃ to keep the number of configurations at the CASSCF level from being too large.

The MRSDCI computations included as reference configurations all the configurations in the CASSCF with coefficients

TABLE 1: Geometries and Energy Separations for the Electronic States of In_3Sb_2 and In_2Sb_3 , $C_{2\nu}$ Structure^a

			sta	state			
system		unit	$^{2}B_{1}$	${}^{2}A_{1}$			
In ₃ Sb ₂	In ₂ -In ₁ -In ₃	deg	73.8	69.3			
	$Sb_1-In_1-Sb_2$	deg	53.3	69.5			
	$Sb_1-In_2-Sb_2$	deg	55.3	61.4			
	In_1-In_2	Å Å	4.428	4.227			
	In_2-In_3	Å	5.315	4.805			
	In_1-Sb_1	Å Å	3.203	2.789			
	In_2-Sb_1		3.096	3.115			
	Sb_1-Sb_2	Å	2.871	3.179			
	E (CAS)	eV	0.0	0.28			
	E (MRSDCI)	eV	0.0	0.19			
	E (MRSDCI+Q)	eV	0.0	0.29			
In_2Sb_3	$Sb_2-Sb_1-Sb_3$	deg	60.8	64.7			
	$In_1-Sb_1-In_2$	deg	87.6	124.3			
	$In_1-Sb_2-In_2$	deg	122.4	113.1			
	Sb_1-Sb_2	Å	2.886	2.887			
	Sb_2-Sb_3	Å	2.921	3.090			
	Sb_1-In_1	Å Å	3.961	3.130			
	Sb_2-In_1		3.128	3.316			
	In_1-In_2	Å	5.482	5.534			
	E (CAS)	eV	0.0	1.39			
	E (MRSDCI)	eV	0.0	1.29			
	E (MRSDCI+Q)	eV	0.1	1.27			

^a The labels of all atoms are defined in Figure 1.

>0.07. All possible single and double excitations of all valence electrons (including from 5s) were included in the MRSDCI. Furthermore, the multireference Davidson correction to the MRSDCI energy was calculated, and the resulting energy separations were labeled as MRSDCI+Q, which is considered to be a full-configuration interaction (CI) estimate.

The electronic states of the $\rm In_3Sb_2^+$ and $\rm In_2Sb_3^+$ ions were considered with the objective of computing not only the adiabatic ionization energies but also the low-lying electronic states of the positive ions. Such information would be of vital use in photoionization studies of the neutral species. Three low-lying electronic states of $\rm In_3Sb_2^+$, and four low-lying electronic states of $\rm In_2Sb_3^+$ were computed. The singlet—triplet and singlet—singlet energy separations of the positive ions were also computed. In addition we computed as supermolecular calculations the atomization energies to dissociate $\rm In_3Sb_2$ and $\rm In_2Sb_3$ into indium ($\rm ^2P$) and antimony atoms ($\rm ^4S$).

The MCSCF/MRSDCI calculations were made by using a version of ALCHEMY II codes²⁷ is modified by one of us (K.B.)²⁸ to include RECPs.

Results and Discussions

Electronic States of In_3Sb_2 and $In_3Sb_2^+$. Table 1 shows the equilibrium geometries and energy separations together with dipole moments for the two electronic states 2B_1 and 2A_1 of In_3Sb_2 exhibiting $C_{2\nu}$ symmetry. Figure 1 illustrates the actual geometries of the various structures obtained here for In_3Sb_2 . The 2B_1 state in Table 1 exhibits an edge-capped tetrahedral geometry shown in Figure 1, whereas the 2A_1 state exhibits a distorted trigonal bipyramidal geometry, also shown in Figure 1, for the $C_{2\nu}$ trigonal bipyramid geometry. Both of these structures can be envisaged as derivatives of the D_{3h} trigonal bipyramid form arising from Jahn–Teller distortion. At the highest MRSDCI and MRSDCI+Q levels of theory, as seen from Table 1, the 2B_1 state prevails as the ground state of In_3Sb_2 , whereas the 2A_1 state is 0.19 and 0.29 eV higher than 2B_1 by these two levels of theory, respectively.

Table 2 displays the equilibrium geometries and energy separations of the undistorted D_{3h} electronic states with trigonal

Figure 1. Geometries of the electronic states of In_3Sb_2 and In_2Sb_3 in D_{3h} and C_{2h} structures.

TABLE 2: Geometries and Energy Separations for Electronic States of In₃Sb₂ and In₂Sb₃^a

		Sv 1										
	state			CASS	CF		MRSDCI					
system	C_{2v}	D_{3h}	In-In (Å)	In-Sb (Å)	Sb-Sb (Å)	E (eV)	In-In (Å)	In-Sb (Å)	Sb-Sb (Å)	E (eV)		
In ₃ Sb ₂	² B ₁ , ² A ₂	² E"	4.850	3.150	2.886	0.07	4.800	3.100	2.778	0.005(0.13)		
	${}^{2}A_{1}$, ${}^{2}B_{2}$	$^{2}E'$	4.444	3.020	3.186	0.51	4.429	3.006	3.161	0.29(0.26)		
	4A_2	${}^{4}A_{1}^{"}$	3.912	3.005	3.964	1.47	3.839	2.952	3.900	1.08(1.02)		
	$^4\mathrm{B}_2$	$^{4}\text{A}_{2}'$	3.317	2.939	4.459	1.68	3.287	2.911	4.415	1.11(1.14)		
	${}^{4}A_{1}$	⁴ E′	4.257	3.140	3.908	1.76	4.185	3.084	3.833	1.70(1.73)		
	$^{4}\mathrm{B}_{1}$	4E''	3.708	3.134	4.578	1.90	3.596	3.026	4.403	8.25(8.40)		
	$In_3(^4A_2) + 2Sb(^4S)$					8.09				10.12(10.42)		
	$3In(^{2}P) + 2Sb(^{4}S)$					9.35						
$In_3Sb_2^+$	${}^{1}A_{1}$	$^{1}A_{1}'$	4.800	3.100	2.778	6.00	4.800	3.100	2.778	6.31(6.48)		
	${}^{3}B_{1}$	${}^{3}A_{2}''$	4.800	3.100	2.778	6.39	4.800	3.100	2.778	6.47(6.63)		
	${}^{1}B_{1}$	$^{1}A_{2}^{"}$	4.800	3.100	2.778	7.49	4.800	3.100	2.778	7.42(7.50)		
In_2Sb_3	C_{2v}	D_{3h}	Sb-Sb (Å)	In-Sb (Å)	In-In (Å)	E (eV)	Sb-Sb (Å)	In-Sb (Å)	In-In (Å)	E (eV)		
	$^{2}\mathrm{B}_{1}$	${}^{2}A_{2}''$	2.984	2.988	4.883	0.41	2.975	2.985	4.883	0.11(0.00)		
	${}^{2}\mathrm{B}_{1}$, ${}^{2}\mathrm{A}_{2}$	$^{2}E^{\prime\prime}$	2.891	3.279	5.645	0.34	2.886	3.246	5.571	0.24(0.19)		
	${}^{2}A_{1}$, ${}^{2}B_{2}$	${}^{2}E'$	2.953	3.257	5.550	1.49	2.949	3.232	5.494	1.36(1.31)		
	$Sb_3(^2A_2) + 2In(^2P)$					6.50				6.35(5.84)		
	$3Sb(^4S) + 2In(^2P)$					9.04				9.18(8.85)		
$In_2Sb_3^+$	$^{3}\mathrm{B}_{2}$	$^{3}A_{2}'$	2.886	3.246	5.571	6.13	2.886	3.246	5.571	6.39(6.40)		
	${}^{1}A_{1}$	${}^{1}E'$	2.886	3.246	5.571	6.40	2.886	3.246	5.571	6.76(6.70)		
	${}^{3}B_{1}$	$^{3}A_{2}^{\prime\prime}$	2.886	3.246	5.571	7.54	2.886	3.246	5.571	7.67(7.61)		
	${}^{1}B_{1}$	${}^{1}A_{2}''$	2.886	3.246	5.571	7.71	2.886	3.246	5.571	7.85(7.78)		

^a All energies are relative to the zero energy in Table 1 except the MRSDCI+Q energies (in parentheses) of In₂Sb₃.

bipyramid equilibrium geometries. As seen from Table 2, the first two low-lying electronic states of In₃Sb₂, namely, ²E" and ²E' states undergo Jahn-Teller distortion. The ²B₁ state with the edge-capped tetrahedron geometry Table 1 is one of the Jahn-Teller components of the ²E" state. However, this state is only 0.05-0.13 eV above the distorted form, which suggests that the Jahn-Teller stabilization energy is very small. This picture seems to imply that, on the basis of a very small Jahn-Teller stabilization energy, the In₃Sb₂ cluster would be floppy. On the other hand, the spin-orbit effects are nonnegligible for the antimony atom and thus the ${}^{2}E''$ state would split into $E_{3/2}$ and $E_{1/2}$ spin-orbit components. We estimate the spin-orbit splitting between these two states to be 0.15 eV, based on smallscale relativistic configuration interaction (RCI) computations. Thus the spin-orbit splitting is more than the Jahn-Teller stabilization and so, by virtue of spin-orbit coupling, the ²E" state of In_3Sb_2 would become a rigid D_{3h} structure.

On the basis of the computed energy separations of the excited electronic states in Table 2, and the fact that In₃Sb₂ could retain its ideal trigonal bipyramid D_{3h} structure, we predict several spectroscopic systems. As seen from Table 2, for In₃Sb₂ we compute several spectroscopic systems in the 1.02-1.73 eV region. Although the excited states are of quartet spin multiplicities, in contrast with the doublet ground states, given the

spin-orbit coupling of Sb and In, we expect these electronic transitions to have nonnegligible intensities and thus these states should be observable in the spectra. Note that spectroscopic transitions are feasible from both ²E" and ²E' states. Furthermore, in the presence of spin-orbit coupling, the quartet and doublet electronic states would be split and mixed. For example, the ${}^4A_1{}^{\prime\prime}$ state in Table 2 would be split into $E_{3/2}$ and $E_{5/2}$ states, whereas the ${}^4A_2{}'$ state correlates into $E_{3/2}$ and $E_{5/2}$ states. The $^4E^{\prime\prime}$ and $^4E^{\prime}$ states yield (2 $E_{1/2}$ + $E_{5/2}$ + $E_{3/2}$) and (E $_{1/2}$ + 2 $E_{5/2} + E_{3/2}$), respectively. Consequently, the spin-orbit coupling could mix all states that have the same double-groupirreducible representation. Thus the spectra are likely to be perturbed by such spin-orbit mixing between different states in the D_{3h} group that have the same symmetry in the double group.

The $In_3Sb_2^+(D_{3h})$ ion exhibits three low-lying electronic states, namely, ¹A₁', ³A₂" and ¹A₂", as seen from Table 2. The closed-shell ground state of $In_3Sb_2^+(D_{3h})$ can be justified on the basis of the low-lying states of the neutral In₃Sb₂, which are ²E" and ²E' states. Thus removal of an electron from the open-shell e" or e' orbital in these two states would yield the same closed-shell electronic configuration, resulting in a ¹A₁' state for the In₃Sb₂⁺ ion. Consequently, the positive ion would not undergo Jahn-Teller distortion but would retain its ideal D_{3h} structure. As seen from Table 2, the adiabatic ionization energy of In_3Sb_2 is 6.31 and 6.48 eV at the MRSDCI and MRSDCI + Q levels, respectively. Although we kept the geometry of the positive ion fixed at the neutral $^2E''$ geometry, we do not expect geometry relaxation to make a significant impact on the computed ionization energy, which should remain in a D_{3h} structure.

The excited electronic states of $In_3Sb_2^+$ can be visualized in $C_{2\nu}$ symmetry as arising from the removal of the highest-occupied a_1 electron of the neutral 2B_1 state, which would lead to 3B_1 and 1B_1 states in $C_{2\nu}$ symmetry. In D_{3h} symmetry, these states correspond to ${}^3A_2''$ and ${}^1A_2''$ states. In $C_{2\nu}$ symmetry, these states are analogous to the SbH_2^+ ion, 29 which exhibits a 1A_1 ground state and 3B_1 and 1B_1 excited states. As seen from Table 2, the X^1A_1' to ${}^3A_2''$ energy separations are 0.16 and 0.15 eV at the MRSDCI and MRSDCI + Q levels, respectively. The X^1A_1' to ${}^1A_2''$ energy separations are 1.11 and 1.02 eV at these two levels of theory, respectively. Note that these energy separations are small and would change if the geometries of the electronic states were to be fully optimized.

Although we did not compute the properties of the electronic states of the In₃Sb₂⁻ anion, we can, on the basis of our computed properties of the neutral In₃Sb₂ cluster and a previous computational study²⁵ on InSb⁻ anion, make a few predictions about In₃Sb₂⁻. Hotop and Lineberger³⁰ have listed the electron affinities (EA) of In and Sb atoms as 0.32 and 1 eV, respectively. Consequently, the two Sb atoms would primarily share the attached electron to In₃Sb₂. Attachment of an electron to the ²E" or ²E' state of In₃Sb₂ would result in a closed-shell ¹A₁' state for $In_3Sb_2^-$ with a regular trigonal bipyramid (D_{3h}) geometry. A previous theoretical study25 yielded the secondorder CI EA for InSb as 1.39 eV. Consequently, we estimate that a closed-shell ${}^{1}A_{1}{}'$ state for $In_{3}Sb_{2}{}^{-}$ should be at least 2.8 eV less than that for the neutral In₃Sb₂. This estimate is based on the fact that the negative charge will be mostly on the axial Sb atoms and that the dissociation energy of InSb⁻ is 2.7 eV. Xu et al.⁹ obtained an EA of 2.07 eV for In₃P₂. Using this EA for $EA(In_3P_2)$, EA(Sb) = 1 eV, and EA(P) = 0.7465 eV, we estimate the EA(In₃Sb₂) to be 2.8 eV, in good agreement with the above estimate.

The nature of bonding in the electronic states can be understood through an analysis of the principal configurations, the composition of the orbitals, and the Mulliken populations. In addition, the dipole moments are computed and compared for the analysis of the ionicities of the bonds. Table 3 shows the principal configurations in the MRSDCI wave functions of the electronic states of In_3Sb_2 . For the electronic states of In_3Sb_2 in $C_{2\nu}$ symmetry, the $(1a_1^22a_1^23a_1^24a_1^21b_2^22b_2^21b_1^21a_2^2)$ portion of the configuration is common for 2B_1 and 2A_1 . Likewise, all the electronic states with D_{3h} structure have $(1a_1'^22a_1'^21a_2'^21e'^4)$ in common. We describe the composition of the various molecular orbitals (MOs) in terms of the D_{3h} representation and then correlate the different MOs to $C_{2\nu}$.

The $1a_1'$ orbital $(1a_1$ in $C_{2\nu})$ is composed of Sb_1 (s) + Sb_2 (s), whereas the $2a_1'$ orbital $(2a_1$ in $C_{2\nu})$ is made of In_1 (s) + In_2 (s) + In_3 (s). The $3a_1'$ orbital $(4a_1$ in $C_{2\nu})$ is a bonding orbital with Sb_1 (s) + Sb_2 (s) and Sb_1 (p_x) + Sb_2 (p_x). The $1a_2''$ and $2a_2''$ orbitals $(1b_1$ and $3b_1$ in $C_{2\nu}$) are composed of Sb_1 (s) - Sb_2 (s) and Sb_1 (p_x) + Sb_2 (p_x), respectively, both of which are perpendicular to the In_3 plane; the two Sb atoms furnish p orbitals overlapping with opposite lobes along the x-axis. The two degenerate components of the 1e' orbital $(3a_1$ and $1b_2$ in $C_{2\nu}$) are linear combinations of 2 In_1 (s) - $[In_2$ (s) + In_3 (s)] and In_2 (s) - In_3 (s), respectively. The two

TABLE 3: Leading Configurations of Electronic States of In_3Sb_2 , In_2Sb_3 , and Their Ions

	state	e					
system	C_{2v} D_{3h}		coefficient	configuratio			
In ₃ Sb ₂				5a ₁	$2b_2$	2b ₁	1a ₂
	$^{2}B_{1}$		0.891	2	2	1	2
	${}^{2}A_{1}$		0.890	1	2	2 2e'	2
				$3a_1'$	$2a_2^{\prime\prime}$	2e'	1e''
	${}^{2}B_{1}$, ${}^{2}A_{2}$	$^{2}E^{\prime\prime}$	0.886	2	0	4	3
	${}^{2}A_{1}$, ${}^{2}B_{2}$	$^{2}E'$	0.886	2 2	0	3	4
	4A_2	$^{4}A_{1}^{\prime\prime}$	0.890		1	2	4
	$^4\mathrm{B}_2$	$^{4}A_{2}'$	0.900	1	2	2 3	4
	${}^{4}A_{1}$	4E'	0.886	2 2	1		3
	4B_1	4E''	0.894	2	2	2	3
$In_3Sb_2^+$	${}^{1}A_{1}$	$^{1}A_{1}'$	0.839	2 2	0	4	2
	$^{3}B_{1}$	$^{3}A_{2}^{\prime\prime}$	0.899	2	0	3	3
	$^{1}B_{1}$	$^{1}A_{2}^{\prime\prime}$	0.892	2	0	3	3
In_2Sb_3				$5a_1$	$2b_2$	$3b_1$	$1a_2$
	$^{2}B_{1}$		0.886	2	2	1	2
	${}^{2}A_{1}$		0.892	1	2	2	2
				$3a_1'$	$2a_2''$	2e′	1e''
	$^{2}B_{1}$	$^{2}A_{2}^{\prime\prime}$	0.882	2	1	4	4
	${}^{2}B_{1}$, ${}^{2}A_{2}$	$^{2}E^{\prime\prime}$	0.885	2	2	4	3
	${}^{2}A_{1}$, ${}^{2}B_{2}$	$^{2}E'$	0.890	2 2	2	3	4
$In_2Sb_3^+$	$^{3}B_{2}$	$^{3}A_{2}'$	0.890		2	4	2
	${}^{1}A_{1}$	¹ E'	0.895	2	2	4	2
	${}^{3}B_{1}$	$^{3}A_{2}^{\prime\prime}$	0.847	2	2 2	3	3
	$^{1}B_{1}$	${}^{1}A_{2}^{"}$	0.805	2	2	3	3

^a The $1a_1^2$ $2a_1^2$ $3a_1^2$ $4a_1^2$ $1b_2^2$ $1b_1^2$ configuration part for In_3Sb_2 (or $1a_1^2$ $2a_1^2$ $3a_1^2$ $4a_1^2$ $1b_2^2$ $1b_1^2$ $2b_1^2$ for In_2Sb_3) in $C_{2\nu}$ structure is same for all states. Likewise, the $1a'_1^2$ $2a'_1^2$ $1a''_2^2$ $1e'^4$ portion of the configuration for D_{3h} structure is common to all states of In_3Sb_2 and In_2Sb_3 .

components of the 2e' orbital $(5a_1 \text{ and } 2b_2 \text{ in } C_{2v})$ are composed of 2 In_1 (s) $- [\text{In}_2$ (s) $+ \text{In}_3$ (s)] $+ \text{Sb}_1$ (py) $+ \text{Sb}_2$ (py) and $[\text{In}_2$ (s) $- \text{In}_3$ (s)] $+ [\text{Sb}_1$ (pz) $+ \text{Sb}_2$ (pz)], respectively. The two components of the 1e" orbital $(2b_1 \text{ and } 1a_2 \text{ in } C_{2v})$ consist of $[\text{In}_2$ (px) $- \text{In}_3$ (px) $+ \text{Sb}_1$ (pz) $- \text{Sb}_2$ (pz) and $[\text{In}_1$ (px) $+ [\text{Sb}_1$ (py) $- \text{Sb}_2$ (py)], respectively.

The geometry parameters present an interesting relationship between the various states. The bond lengths between the In atoms that form an equilateral triangle base for the ²E" state are 4.80 Å at the MRSDCI level. These distances are quite close to the corresponding averaged In₁-In₂ and In₂-In₃ bond distances in the distorted ${}^{2}B_{1}$ state (C_{2v}), namely, 4.872 Å. However, the actual In-In bond lengths differ. On the other hand, the In-Sb bond lengths for the ²E" state are 3.10 Å, which is quite close to the In-Sb bond distances of 3.15 Å in the distorted ${}^{2}B_{1}$ state ($C_{2\nu}$). Likewise, the Sb-Sb bond distances in the two states are 2.778 and 2.871 Å, respectively. These features suggest that Jahn-Teller distortion primarily moves the In atoms from their ideal equilateral triangular locations in In₃Sb₂. Likewise, in the ²E' state, the In-In, In-Sb, and Sb-Sb bond distances are 4.429, 3.006 and 3.161 Å, respectively, close to the corresponding averaged bond lengths of 4.516, 2.952, and 3.179 Å in the ²A₁ distorted trigonal pyramid structure of In₃Sb₂.

The bond angles of the two distorted C_{2v} structures may also be compared. For example, the Sb₁-In₁-Sb₂ and Sb₁-In₂-Sb₂ bond angles are 53.3° and 55°, respectively, for the 2B_1 state. These bond angles are considerably smaller than the corresponding values of 69.3° and 61.4° for 2A_1 , implying that the Sb-Sb bonding in 2B_1 is stronger than that in 2A_1 . This is consistent with the Sb-Sb bond length in the 2B_1 state of 2.871 Å, which is shorter than the 3.179 Å for 2A_1 . However, the In₁-Sb₁ bond length in 2B_1 (3.203 Å) is longer than that of 2A_1 (2.789 Å). The In₁-In₂ and In₂-In₃ bond lengths in 2B_1

TABLE 4: Mulliken Population Analyses for the Low-Lying Electronic States of In₃Sb₂, In₂Sb₃, and Their Ions

						gross population								
	state		total			In1			In2			Sb		
system	C_{2v}	D_{3h}	In1	In2	Sb	S	p	d	S	p	d	S	p	d
In ₃ Sb ₂	$^{2}B_{1}$		2.520	2.548	5.692	1.876	0.617	0.027	1.862	0.656	0.031	1.942	3.576	0.173
	${}^{2}A_{1}$		2.564	2.541	5.677	1.437	1.093	0.034	1.864	0.649	0.029	1.937	3.594	0.146
	${}^{2}B_{1}$, ${}^{2}A_{2}$	$^{2}E^{\prime\prime}$	2.536		5.696	1.866	0.639	0.031				1.907	3.601	0.189
	${}^{2}A_{1}$, ${}^{2}B_{2}$	$^{2}E'$	2.558		5.662	1.771	0.758	0.030				1.935	3.577	0.150
	${}^{4}A_{2}$	${}^{4}A_{1}''$	2.604		5.593	1.711	0.864	0.029				1.921	3.533	0.139
	$^4\mathrm{B}_2$	$^{4}A_{2}'$	2.587		5.619	1.470	1.087	0.031				1.960	3.490	0.169
	${}^{4}A_{1}$	4E'	2.588		5.618	1.842	0.716	0.030				1.927	3.558	0.133
	$^4\mathrm{B}_1$	4E''	2.609		5.586	1.792	0.788	0.029				1.957	3.495	0.132
$In_3Sb_2^+$	${}^{1}A_{1}$	$^{1}A_{1}'$	2.385		5.421	1.918	0.439	0.028				1.963	3.344	0.114
	$^{3}\mathbf{B}_{1}$	$^{3}A_{2}^{\prime\prime}$	2.358		5.463	1.861	0.471	0.026				1.971	3.390	0.102
	$^{1}\mathrm{B}_{1}$	$^{1}A_{2}^{\prime\prime}$	2.366		5.451	1.781	0.556	0.028				1.968	3.363	0.120
				total		Sb1			Sb2		In			
			Sb1	Sb2	In	s	p	d	s	p	d	s	p	d
In ₂ Sb ₃	2 B ₁		5.067	5.487	2.479	2.019	2.954	0.095	1.914	3.393	0.181	1.886	0.582	0.011
	${}^{2}A_{1}$		5.449	5.310	2.465	1.987	3.289	0.173	1.997	3.155	0.158	1.866	0.585	0.016
	$^{2}B_{1}$	$^{2}A_{2}$	5.380		2.430	2.000	3.200	0.181				1.563	0.836	0.030
	${}^{2}A_{2}$, ${}^{2}B_{1}$	$^{2}E^{\prime\prime}$	5.364		2.453	2.016	3.190	0.159				1.867	0.573	0.013
	${}^{2}A_{1}$, ${}^{2}B_{2}$	$^{2}E'$	5.357		2.464	1.978	3.192	0.188				1.862	0.587	0.015
$In_2Sb_3^+$	$^{3}\mathbf{B}_{2}$	$^{3}A_{2}'$	5.129		2.306	2.006	2.955	0.168				1.916	0.379	0.011
	${}^{1}A_{1}$	$^{1}E'$	5.134		2.299	2.010	2.963	0.159				1.897	0.390	0.012
	$^{3}\mathbf{B}_{1}$	$^{3}A_{2}^{\prime\prime}$	5.113		2.330	2.006	2.944	0.164				1.911	0.406	0.014
	${}^{1}B_{1}$	${}^{1}A_{2}''$	5.116		2.326	2.009	2.946	0.160				1.905	0.408	0.014

are 4.428 and 5.315 Å, respectively, both of which are longer than the corresponding bonds of ${}^{2}A_{1}$ (4.227 and 4.805 Å). The $In_2-In_1-In_3$ bond angle for the 2B_1 state (73.8°) is similar to the In₂-In₁-In₃ bond angle of 75.2° for the ⁴A₂ ground state in our previous study on In₃.³¹. But the In₂-In₁ bond length in the ⁴A₂ ground state for In₃ is only 2.97 Å, which is much shorter than that in In₃Sb₂. This is evidently a consequence of bonding interaction between the In and Sb atoms in the ²B₁ ground state of In₃Sb₂ which leads to weaker bonding between the 3 In atoms in In₃Sb₂. We conclude that the interactions between In and Sb atoms and among the Sb atoms themselves play a more-decisive role in the formation of bonds of the electronic states of In₃Sb₂. This is also consistent with the fact that the ²B₁ state, which exhibits enhanced Sb-Sb bonding, is more stable than ${}^{2}A_{1}$.

As shown in Table 2, the ²E" state is the lowest among the 6 electronic states of In_3Sb_2 in D_{3h} symmetry, whereas the ${}^2E'$ state is immediately above the ²E" state and all the quartet states are considerably well separated from the ²E" state. The lowest electronic state ${}^{2}E''(D_{3h})$ has the shortest Sb-Sb bond length (2.778 Å at the MRSDCI level) among all low-lying electronic states in D_{3h} symmetry. The Sb-Sb bond lengths in the quartet states are all >3.90 Å though they exhibit relatively contracted In-In and In-Sb bond lengths in comparison with those of the ${}^{2}E''$ state.

As evidenced from Table 3, the primary difference between the ²B₁ and ²A₁ states lies in the occupations of 5a₁ and 2b₁. The 5a₁ orbital, the composition of which was described before, is a bonding orbital, it is doubly occupied in the ²B₁ state but singly occupied in the ²A₁ state. On the other hand, the 2b₁ orbital is singly occupied in the ²B₁ state but fully (doubly) occupied in the ${}^{2}A_{1}$ state.

For the electronic states with the D_{3h} structure, the main distinction between the ²E" and ²E' states is in the electron occupancies for 2e' and 1e". All the quartet states have even fewer electrons in the 2e' orbital than does ²E'. The 2a₂" orbital, which is perpendicular to the In₃ plane with 2 Sb atoms furnishing p orbitals with opposite lobes along the x axis, is thus antibonding with respect to Sb atoms. Thus ²E" and ²E' have no occupied 2a2" orbital, but this orbital is singly occupied in the ⁴A₁" and ⁴E' states and doubly occupied in the ⁴A₂' and ⁴E" states. The 3a₁' orbital is doubly occupied by all of the electronic states except ⁴A₂'. From the above description, it is understandable that, with more occupations in the bonding orbitals, the ²E" state becomes the lowest state of In₃Sb₂. A similar argument would explain the fact that the ²E' state is immediately above ²E", whereas all quartet states are much higher than the ²E" state.

Table 4 shows the Mulliken populations of the electronic states of In₃Sb₂. As seen there, the gross populations of In are between 2.358 and 2.609 for all of the states considered here, whereas the total Sb populations are 5.421–5.696, uniformly larger than the atomic Sb populations for all of the electronic states. The s populations on Sb atoms in all the states are ≈ 2.0 , suggesting relative inertness of the Sb 5s2 shell in the bond formation. This is attributed to the relativistic mass-velocity contraction of the 5s orbital of the Sb atoms.^{21,22} The excess population of 0.421-0.696 on the 5p orbital of the Sb atoms is a consequence of charge transfer from the In atoms to Sb, leading to ionic In⁺Sb⁻ bonding in In₃Sb₂.

As shown in Table 1, the ${}^{2}B_{1}$ ($C_{2\nu}$) state of In₃Sb₂ exhibits a positive dipole moment of 1.22 D (the positive polarity means the positive charge is on In₁ and the negative charges are on In₂ and In₃), whereas the ${}^{2}A_{1}$ (C_{2v}) state exhibits a negative dipole moment value of -0.62 D. This fully agrees with the Mulliken population distributions. As seen from Table 4, the gross population of In_1 (2.520) for the 2B_1 ($C_{2\nu}$) state is smaller than the gross populations of In₂ or In₃ (2.548). This unequal charge distribution leads to a positive dipole moment for ²B₁. In contrast, the total population of In_1 in the 2A_1 (C_{2v}) state is 2.564, which is larger than the 2.541 on In₂ or In₃ and thus results in a negative dipole moment for ²A₁. All the electronic states in the D_{3h} structure would exhibit zero dipole moments because of the undistorted geometries.

As also seen in Table 4, the ${}^{2}B_{1}$ state $(C_{2\nu})$ of $In_{3}Sb_{2}$ is composed of In_1 (s^{1.876}p^{0.617}), In_2 (s^{1.862}p^{0.656}), and Sb (s^{1.942}p^{3.576})

Mulliken populations, (we have omitted the d population because it is <0.19). The corresponding populations for the ${}^{2}A_{1}$ state are In₁ (s^{1.437}p^{1.093}), In₂ (s^{1.864}p^{0.649}), and Sb (s^{1.937}p^{3.594}). The primary difference in the populations between these two states rests with the s and p populations on the In_1 atom. As discussed earlier, the primary difference between the two states lies in the occupations and compositions of the 5a₁ and 2b₁ orbitals. The 5a₁ orbital, which has considerable In₁(s) character, is fully occupied in ²B₁, resulting in a larger s population of 1.876 on In₁; in ²A₁, however, the 5a₁ orbital is singly occupied, leading to a smaller s population of 1.437 on In₁. The 2b₁ orbital, which contains $In_1(p_x)$, $Sb_1(p_y)$, and $Sb_2(p_y)$ contributions, is singly occupied in ²B₁ and doubly occupied in ${}^{2}A_{1}$. The full occupation of $2b_{1}$ consequently increases the p population on In for ${}^{2}A_{1}$, which is 1.093, whereas the p population on In_1 for 2B_1 is only 0.617. Similarly, the compositions of the 2e' and 1e" orbitals and the electron occupation numbers lead to larger s populations and smaller p populations on the In atoms in the ${}^{2}E''$ state (D_{3h}) in comparison with the corresponding populations in ${}^{2}E'$.

To elicit more information on the observable properties of the clusters considered here, we computed the atomization energy and adiabatic ionization energies for In₃Sb₂, obtaining the results shown in Tables 2–4. As seen from Table 2, the dissociation energy for

$$In_3Sb_2 \rightarrow In_3 (^4A_2) + 2Sb (^4S)$$

is computed as 8.25 eV at the MRSDCI level by use of the previously computed ground state of $\rm In_3(^4A_2).^{31}$ We also computed the atomization energy needed to separate $\rm In_3$ into 3 In atoms (^2P) as 1.87 eV at the MRSDCI level. Combining these two values, we computed the atomization energy of $\rm In_3Sb_2$ that would yield 3 separated In atoms and 2 Sb atoms as 10.12 eV. These values support our conclusion that the bonding interactions between the 2 Sb atoms and the $\rm In-Sb$ bonds play a more important role than the $\rm In-In$ bonds in $\rm In_3Sb_2$.

A critical comparison of the Mulliken populations of the neutral cluster and the positive ion reveals that the ionization particularly causes depletion of the charge density on the 5p orbitals rather than the 5s orbitals of In and Sb, which is consistent with the nature of the 1e'' orbital. Thus removal of a 1e'' electron decreases the p populations of In and Sb.

As seen from Table 2, the energy separations of the electronic states of In_3Sb_2 are very sensitive to higher-order electron correlation effects. At the CASSCF level, the 2A_1 ($C_{2\nu}$) state is 0.28 eV higher than the 2B_1 ground state of In_3Sb_2 . The electron correlation effects seem to stabilize the 2A_1 state so that it is only 0.19 eV higher than the 2B_1 state at the MRSDCI level. Likewise, the undistorted $^2E'$ (D_{3h}) state is 0.51 eV above $^2E''$ at the CASSCF level, but this energy separation decreases to 0.29 eV at the MRSDCI level. The energy separations of the quartet states from $^2E''$ are 1.40–1.83 eV at the CASSCF level, whereas these values decrease to 1.06–1.65 eV at the MRSDCI level. Thus, higher-order electron correlation effects play a major role in determination of the energy separations.

Electronic States of In₂Sb₃ and In₂Sb₃⁺. The latter half of Table 1 presents the computed properties of two electronic states of In₂Sb₃, namely, 2B_1 (edge-capped tetrahedron) and 2A_1 (distorted trigonal bipyramid) with $C_{2\nu}$ symmetry, which are obtained from geometry-optimized calculations (their actual geometries shown in Figure 1). In contrast to In₃Sb₂, the 2B_1 state of In₂Sb₃ is lower than 2A_1 by 1.29 and 1.27 eV at the MRSDCI and MRSDCI + Q levels, respectively. However,

as we discuss below, there are D_{3h} states quite close to the distorted structures for In₂Sb₃.

As seen from Table 2, which shows the computed properties of the undistorted trigonal bipyramid (D_{3h}) states, the ${}^2A_2''$ state of In_2Sb_3 is only 0.11 eV higher than the edge-capped tetrahedral 2B_1 state at the MRSDCI level, whereas this state becomes the ground state, with the 2B_1 state being 0.1 eV higher. Evidently, we can expect the spin—orbit effects to stabilize the D_{3h} structure, and the ground state of In_2Sb_3 is thus predicted to be the ${}^2A_2''$ state with an undistorted trigonal bipyramid D_{3h} equilibrium geometry.

We calculated all doublet electronic states of In_2Sb_3 (D_{3h}) and their optimized geometries, which are shown in the second part of Table 2 with the energy separations. As manifested in Table 2, among all doublet electronic states in D_{3h} symmetry, the ${}^2A_2{}^{\prime\prime}$ is the lowest and ${}^2E^{\prime\prime}$ is 0.13 eV immediately above ²A₂", whereas ²E' is 1.25 eV higher than ²A₂" at the MRSDCI level. The ²A₂" state would not undergo Jahn-Teller distortion but ²E" would be subject to Jahn-Teller distortion. With Jahn-Teller stabilization, the ${}^{2}B_{1}$ (C_{2v}), which is a component of ${}^{2}E''$ becomes the ground state of In₂Sb₃ at the CASSCF level, but at the MRSDCI + Q level, ${}^{2}B_{1}$ becomes higher than the ${}^{2}A_{2}$ state(D_{3h}). Interestingly, although the ${}^{2}A_{2}^{"}$ state in D_{3h} symmetry has the shortest In-Sb and In-In bond lengths, the Sb-Sb bond lengths are longer among the three doublet electronic states, implying that the In-Sb bonds seem to have played a more influential role than the Sb-Sb interactions. This is consistent with the fact that, as the cluster becomes larger, the In-Sb bonds would dominate over the fewer Sb-Sb bonds.

The Jahn–Teller effect in In_2Sb_3 can be demonstrated by comparing the geometries of ${}^2B_1(C_{2\nu})$ and ${}^2E''(D_{3h})$. As seen in Table 1, the 3 Sb atoms in ${}^2B_1(C_{2\nu})$ form a nearly equilateral triangle (the actual apex angle is 60.8°). The average Sb–Sb bond length (2.904 Å) of ${}^2B_1(C_{2\nu})$ is very close to the Sb–Sb bond length (2.886 Å) of ${}^2E''$, suggesting little change to the 3 Sb atoms attributable to the Jahn–Teller distortion. However, the 2 In atoms move farther because of to the Jahn–Teller distortion, which results in elongated Sb₁–In₁ bonds (3.961 Å) and contracted Sb₂–In₁ bonds (3.128 Å).

The spin-orbit effects of the 3 Sb atoms could overcome the Jahn-Teller stabilization. Furthermore, at the highest level of theory (MRSDCI+Q), the ²A₂" is clearly the lowest state; and thus the In₂Sb₃ cluster is expected to have an ideal D_{3h} symmetry with a trigonal bipyramid equilibrium geometry. For In_2Sb_3 , we find the ${}^2E''$ and ${}^2E'$ excited states, which yield $(E_{1/2},$ $E_{3/2}$) and $(E_{3/2}, E_{5/2})$ spin-orbit substates, ²¹ respectively, while the ${}^{2}A_{2}$ " ground state becomes the $E_{1/2}$ state in the presence of spin-orbit coupling. Thus spectroscopic transitions from the $E_{1/2}$ ground state to $E_{1/2}$ and $E_{3/2}$ excited states of ${}^{2}E''$ and ${}^{2}E'$ (three transitions in all) should be allowed. As seen from Table 3, evidently the transition to the $E_{1/2}$ and $E_{3/2}$ spin-orbit states of the ²E" state would be considerably lower in energy than the $E_{3/2}$ spin-orbit state of the ${}^{2}E'$ state. The spin-orbit splitting between $E_{1/2}$ and $E_{3/2}$ excited electronic states is estimated to be 0.2 eV bonds.

In analogy to In_2Sb_3 , we can discuss the orbital compositions of the electronic states of In_3Sb_2 in D_{3h} (with the C_{2v} correlation in parentheses). The $1a_1'$ orbital $(1a_1 \text{ in } C_{2v})$ is a bonding combination of Sb_1 (s) + Sb_2 (s) + Sb_3 (s), whereas the $2a_1'$ orbital $(2a_1 \text{ in } C_{2v})$ is predominantly In_1 (s) + In_2 (s). The $3a_1'$ orbital $(4a_1 \text{ in } C_{2v})$ is a combination of Sb_1 (s) + Sb_2 (s) + Sb_3 (s) and Sb_2 (p_y) + Sb_3 (p_y). The $1a_2''$ orbital $(1b_1 \text{ in } C_{2v})$ is an antibonding combination of In_1 (s) - In_2 (s), and the $2a_2''$ orbital $(3b_1 \text{ in } C_{2v})$ is predominantly made up of $[In_1$ (s) - In_2 (s) +

 $In_1(p_x) + In_2(p_x)$ and $-[Sb_1(p_x) + Sb_2(p_x) + Sb_3(p_x)]$. The first part represents a repulsive interaction between the 2 In atoms, whereas the second part is a π -bonding interaction between the 3 Sb atoms. The 1e' orbital (3a₁ and 1b₂ in $C_{2\nu}$) is a linear combination of $2 \text{ Sb}_1(s) - [\text{Sb}_2(s) + \text{Sb}_3(s)]$ and $[Sb_2 (s) - Sb_3 (s)]$. The 2e' orbital $(5a_1 \text{ and } 2b_2 \text{ in } C_{2v})$ is composed of $2Sb_1$ (s) + Sb_1 (p_v) + $[Sb_2$ (p_z) - Sb_3 (p_z)] and $[Sb_1 (p_z) + Sb_2 (p_z) + Sb_3 (p_z)] - [Sb_2 (s) + Sb_3 (s)].$ The 1e" orbital (2b₁ and 1a₂ in C_{2v}) is made up of Sb₁ (p_x) – [Sb₂ $(p_x) + Sb_3(p_x)$ together with $[Sb_2(p_x) - Sb_3(p_x)]$, and thus contains an antibonding interaction between the 3 Sb atoms. All the electronic states in D_{3h} symmetry have $(1a_1'^2 2a_1'^2 1a_2''^2$ 1e'4) as a common core in their electronic configurations. The 2a2" orbital is doubly occupied in all states except 2A2". The ²E" state has 3 electrons in the 1e" orbital, whereas the ²E' state has three electrons in the 1e' orbital.

Table 3 exhibits the leading configurations in the MRSDCI wave functions of electronic states of In₂Sb₃. As shown, ²B₁ and ${}^{2}A_{1}$ (C_{2v}) have $(1a_{1}{}^{2}2a_{1}{}^{2}3a_{1}{}^{2}4a_{1}{}^{2}1b_{2}{}^{2}1b_{1}{}^{2}2b_{1}{}^{2}1a_{2}{}^{2})$ in common. The difference between the two states from the standpoint of electronic configuration is in the occupations of 5a₁ and 3b₁. The 5a₁ orbital (2e' orbital) is bonding between Sb₁ and Sb₂ (or Sb₃) but antibonding between Sb₂ and Sb₃. Since the 5a₁ orbital is doubly occupied in this state, it has shorter Sb₁-Sb₂ bonds (2.886 Å) along the sides and longer Sb₂-Sb₃ bonds (2.921 Å) along the base of the isosceles triangle. Meanwhile, described above, the 3b₁ orbital consists of a repulsive interactions along the sides of the isosceles triangle of Sb₃ and at the 2 In axial atoms perpendicular to the plane of Sb₃, thus leading to longer Sb-Sb and In-In bond. This explains the higher energy of ²A₁, which has doubly occupied 3b₁, than of to ${}^{2}\mathrm{B}_{1}(C_{2v})$, which has only 1 electron in $3\mathrm{b}_{1}$.

The 2a₂" orbital is doubly occupied in all states except ²A₂". This orbital contains a repulsive interaction between the 2 In atoms and a π -bonding interaction between the 3 Sb atoms. Hence ${}^{2}A_{2}''$ (D_{3h}), with only 1 electron occupied in $2a_{2}''$, has longer Sb-Sb bonds and shorter In-In and In-Sb bond.

The differences in the properties of ²E" and ²E' arise as a consequence of the occupancies of 2e' and 1e" orbitals. The 2e' orbital exhibits enhanced bonding between the 3 Sb atoms. The 1e" orbital, on the other hand, contains an antibonding interaction between the 3 Sb atoms. With a full occupation (4 electrons) for 2e' but less occupancy (3 electrons) for 1e", ²E" exhibits shorter Sb-Sb bonds with lower energy; the ²E' state exhibits an opposite trend.

Table 4 shows Mulliken population analyses for the electronic states of In₂Sb₃. Most of the population trends discussed before for In₃Sb₂ hold for In₂Sb₃. The populations suggest In⁺Sb⁻ polarity of bonds for all the electronic states of In₂Sb₃. The Sb (5p) populations are notably smaller than the corresponding values for In₃Sb₂. This is consistent with the fact that the charge transferred from In atoms to Sb atoms is shared by 3 Sb atoms in In₂Sb₃, whereas In₃Sb₂ the charge transfer from 3 In atoms is shared by only 2 In atoms. Thus the extent of charge transfer to each Sb atom is smaller in the case of In₂Sb₃.

As seen from Table 1, the ${}^{2}B_{1}$ ($C_{2\nu}$) state has a positive dipole moment; the ²A₁ state shows a negative one. For In₂Sb₃, the positive dipole moment means the positive charge is on Sb₁ and negative charges are on Sb2 and Sb3. The positive dipole moment of 1.11 D for ${}^{2}B_{1}$ ($C_{2\nu}$) comes from a different charge distribution on the antimony atoms, since the total population on Sb_1 (5.067) is smaller than those on Sb_2 and Sb_3 (5.487). However, the total population on Sb₁ for ${}^{2}A_{1}$ (5.449) is larger than those on Sb₂ and Sb₃ and thus gives a negative dipole moment of -0.45 D to ${}^{2}A_{1}$. All the electronic states in the D_{3h} form would have zero dipole moments because of the regular structure of that form.

As observed in Table 4, the s population on Sb₁ for ²B₁ in the C_{2v} form is larger than the corresponding population of ${}^{2}A_{1}$, whereas the p population on Sb₁ in ${}^{2}B_{1}$ is smaller than the corresponding population of ²A₁. This is fully consistent with the nature of the orbital. As pointed out earlier, the 5a₁ orbital has enhanced Sb₁ (s) participation and is doubly occupied in ²B₁. Certainly, this would lead to a larger s population of Sb₁ in ²B₁. However, because of the double occupancy of the 3b₁ orbital, which has enhanced 5p participation from Sb atoms, ²A₁ exhibits a larger 5p population on Sb. Likewise, the orbital analysis for the electronic states in D_{3h} considered before explains the larger 5s population on Sb atoms (2.016) in the ${}^{2}E''(D_{3h})$ state than that of the ${}^{2}E'(1.978)$, but the 5p population on Sb (3.190) in ${}^{2}E''$ is slightly smaller than that of ${}^{2}E'$ (3.192).

Among all the states, ²A₂" of In₂Sb₃ in D_{3h} symmetry has the smallest 5s population on In. As learned before, the 2a2' orbital is mainly $[\operatorname{In}_1(s) - \operatorname{In}_2(s) + \operatorname{In}_1(p_x) + \operatorname{In}_2(p_x)]$, which includes a contribution from the 5s of the indium atoms. The 2a₂" orbital is fully occupied by all the states except ²A₂".

In computing the atomization energy and the adiabatic ionization energies for In₂Sb₃, we found the dissociation energy for the process

$$In_2Sb_3(^2E'') \rightarrow Sb_3(^2A_2) + 2In(^2P)$$

to be 6.35 eV. Combining this with the atomization energy of Sb₃ to yield 3 Sb (⁴S) atoms, we obtained the atomization energy of In₂Sb₃ as 9.18 eV at the MRSDCI level. Previous theoretical studies on In232 and Sb333 revealed that the theoretical dissociation energy for In2 was in good agreement with the experimental value, but for Sb₂ the calculated D_e was $\sim 30\%$ smaller than the experimental value. Consequently, we expect the actual atomization energy for In₂Sb₃ to be larger than 9.18 eV.

Table 2 shows the energy separations of four electronic states of In₂Sb₃⁺. Table 3 presents the leading configurations for the electronic states of In₂Sb₃⁺. As shown in these tables, the calculated energy to remove a 1e" highest occupied molecular orbital electron from ²E" of the neutral In₂Sb₃ is 6.39 eV with three possible electronic states, ³A₂', ¹E', and ¹A₁', formed as a result of the ionization process. However, the ¹A₁' state is decisively higher, being the second root of the computation in C_{2n} symmetry. Greater energy would be needed to remove an electron from 2e' of the ²E" ground state of In₂Sb₃ to lead to two excited electronic states, namely, ³A₂" and ¹A₂". From the Mulliken population analyses shown in Table 4, there is a significant decrease in the 5p populations of the Sb atoms caused by the ionization because the removed electron comes from 1e" or 2e', depending on the electronic states of the positive ion. both of which have Sb (5p) as their main components. Thus, charge depletion of 5p of Sb atoms occurs in all the electronic states of In₂Sb₃⁺.

The ground state of the In₂Sb₃⁻ anion and the electron affinity of In₂Sb₃ can be estimated. First the ground state of the In₂Sb₃ anion is predicted to be ¹A₁' with regular trigonal bipyramid with D_{3h} symmetry. We expect EA(In₂Sb₃) to exceed EA-(In₃Sb₂) primarily because the electron density can be shared by 3 Sb atoms, all of which have greater EA than In. Using the ratio of EA(In₃P₂) and EA(In₂P₃) obtained by Xu et al.,⁹ who used anion photoelectron spectroscopy, we estimate the EA(In₂Sb₃) to be >3.7 eV.

Comparison of In₃Sb₂ and In₂Sb₃

Let us compare our computational results for In_2Sb_3 and In_3Sb_2 . From Table 1, the $In_1-Sb-In_2$ angles for most of the electronic states of In_2Sb_3 become obtuse, which means that the 2 In atoms in In_2Sb_3 are widely separated. The $In_1-Sb_1-In_2$ and $In_1-Sb_2-In_2$ bond angles for the 2B_1 ground state of In_2Sb_3 are 87.6° and 122.4°, respectively. Evidently, the bonding between the 2 In atoms in In_2Sb_3 is very weak in contrast to In_3Sb_2 , which has relatively shorter In-In bond.

A critical comparison of the Sb–Sb bond lengths in the ground states of In_2Sb_3 and In_3Sb_2 reveals that both Sb_1-Sb_2 (2.886 Å) and Sb_1-Sb_2 (2.921 Å) in the 2B_1 state of In_2Sb_3 are longer than the Sb_1-Sb_2 bond (2.871 Å) in 2B_1 for In_3Sb_2 , even though there are more antimony atoms in In_2Sb_3 . This reveals that the Sb–Sb interaction and not the In-Sb and In-In interactions, predominantly governs the properties of In_3Sb_2 . The stronger Sb–Sb bonds result in very acute $Sb_1-In_1-Sb_2$ and $Sb_1-In_2-Sb_2$ bond angles (53.3° and 55.3°, respectively) in the ground state of In_3Sb_2 . In In_2Sb_3 , however, the In-Sb interactions become considerably more influential for the energy and other properties in comparison with Sb-Sb and In-In bonds. This is consistent with the longer Sb-Sb and shorter In-Sb bonds for the $^2A_2''$ state of In_2Sb_3 .

The stronger Sb—Sb interaction results in enhanced dissociation energy of In_3Sb_2 into In_3 (4A_2) and 2 Sb (4S), (that is, 8.25 eV, whereas the corresponding dissociation energy of In_2Sb_3 into 2 $In(^2P)$ + Sb $_3$ is 6.35 eV. Although the final atomization energy of In_3Sb_2 (10.12 eV) is slightly greater than that of In_2Sb_3 (9.18 eV), the latter value is probably less accurate since the technique underestimates the atomization energy of Sb $_3$. We conclude that the stabilities of In_3Sb_2 and In_2Sb_3 are quite comparable.

Although the relativistic mass-velocity stabilization of the 5s² shell of the antimony atom was seen for all the electronic states of In₃Sb₂ and In₂Sb₃, there is slight difference between In₃Sb₂ and In₂Sb₃. The s populations of Sb in In₂Sb₃ are slightly larger than the corresponding values in In₃Sb₂, whereas the p populations of Sb in In₂Sb₃ are uniformly smaller than the corresponding values in In₃Sb₂, which suggests that the relativistic mass-velocity effect in In₂Sb₃ is greater than that in In₃Sb₂, as anticipated by there being more Sb atoms in In₂Sb₃. This is further supported by the fact that the relative ordering of the excited states of In₂Sb₃ changes at a higher level of theory, whereas the relative ordering of the electronic states of In₃Sb₂ does not change. This is consistent with the fact that the electron correlation effects in Sb are more than in In, so In₂Sb₃ is more influenced by electron correlation then is In₃Sb₂.

Comparison of In₃Sb₂ and In₃P₂

Given that we had previously studied²⁰ the electronic states of a lighter analogue, In_3P_2 , we considered that a comparison of the two species might be interesting. Both of these species have two closely spaced low-lying electronic states, $^2E''$ and $^2E'$, in D_{3h} symmetry and all the quartet states are well above the lowest $^2E''$ state. Because of the increase in the atomic size as the atomic number increases within a group, we expected that the P_1 -In- P_2 angle would be more acute and the In-P and P-P bond lengths of In_3P_2 shorter than to the corresponding bond angle and bond lengths in In_3Sb_2 . For example, as a result of the shorter P_1 - P_2 bond (2.204 Å) in the 2B_1 state of In_3P_2 , the P_1 -In₁- P_2 and P_1 -In₂- P_2 bond angles are 45.2° and 47.2°, respectively.

Other notable differences exist between the two clusters. The ${}^{2}\text{E}'$ and ${}^{4}\text{A}_{1}'$ and ${}^{4}\text{E}''$ (D_{3h}) states in In₃P₂ are 0.40, 1.24, and

2.37 eV, respectively, greater than the ²E" state, respectively. In general, 6 electronic states in In₃P₂ are more openly spaced than in In₃Sb₂, mainly because the *J*-weighted ⁴S-²D separation³⁴ for Sb is 9317 cm⁻¹, whereas the corresponding separation for P is 11 371 cm⁻¹. The Mulliken population distribution reveals other differences between the In₃P₂ and In₃Sb₂ clusters. The gross s population of Sb is almost 2.0, suggesting the inertness of the 5s² shell of the antimony atom, whereas the 3s² shell of the phosphorus atom is not inert (in In₃P₂ the s populations of P for the electronic states are between 1.876 and 1.905). This is consistent with considerably larger relativistic effects for Sb compared with P. The fact that only 5p orbitals of Sb participate in the bonding of In₃Sb₂ has substantial impact in the binding energies and other properties of the In₃Sb₂ cluster. All bond lengths of the electronic states of In₃P₂ are generally much shorter than the corresponding bond lengths in In₃Sb₂. For example, although the In₂-In₁-In₃ bond angles in the ²B₁ state of In₃P₂ (73.6°) and In₃Sb₂ (73.8°) are nearly the same, the In₁-In₂ and In₂-In₃ bond distances of In₃P₂ are 4.081 and 4.890 Å, respectively—much shorter than the corresponding values of In₃Sb₂ (4.428 and 5.315 Å, respectively). This suggests stronger In-In bonding interactions in In₃P₂, which, combined with the greater bond dissociation energy for the P-P bond, leads to the atomization energy of In₃P₂ being greater than that for In₃Sb₂.

Although the spectroscopic study of the In₃Sb₂ cluster apparently remains to be made, negative ion photoelectron spectroscopic studies of mixed phosphide clusters have been done.6-10 Mandich and co-workers11 carried out a photodissociation spectroscopic study of indium phosphide clusters composed of 5 to 14 atoms, and Xu et al.⁹ obtained the electron affinities of small $In_x P_y$ clusters (x,y = 1-4) by using anion photoelectron spectroscopy. Both the ground and excited states of the neutral species have been observed. In particular, the photoelectron spectrum of In₃P₂⁻ shows two peaks very close to each other, consistent with the two nearly degenerate electronic states obtained for In₃P₂. This seems to be in accord with the two nearly degenerate low-lying electronic states of In₃Sb₂, the energy separation between these two states being only 0.13 eV at the MRSDCI+O level of theory. Thus In₃P₂ and In₃Sb₂ are analogous in some ways, but differ in others, as noted above.

Comparison of In₂Sb₃ and In₂P₃

There are many similarities between the In₂P₃, In₂Sb₃ pairs and the In_3P_2 , In_3Sb_2 pairs. Both possess the ${}^2E''$ and ${}^2E'(D_{3h})$ electronic states, which are well separated and undergo Jahn-Teller distortion to yield ${}^{2}B_{1}$ and ${}^{2}A_{1}$ states in $C_{2\nu}$ symmetry. Because of the strong interaction among the 3 P atoms and weaker bonding between the 2 In atoms, the In₁-P-In₂ bond angles are almost obtuse. The $In_1-P_1-In_2$ and $In_1-P_2-In_2$ bond angles for the ²B₁ state of In₂P₃ are 95.1° and 128.3°, respectively. The most striking difference between In₂P₃ and In₂Sb₃ is in the ordering of states. The lowest state of In₂P₃ in the D_{3h} structure is ${}^{2}E''$, while ${}^{2}A_{2}''$ and ${}^{2}E'$ are 0.40 and 1.72 eV, respectively, above the ²E" state at the MRSDCI level. Although this ordering is maintained at all levels of the theory for In₂P₃, larger electron correlation effects in In₂Sb₃ change the order of the ${}^{2}A_{2}''$ state relative to ${}^{2}E'$. Moreover, the energy separations in In₂Sb₃ are generally smaller than those in In₂P₃. As mentioned before, this is due to the small J-weighted ⁴S⁻²D separation.

From the Mulliken population analysis, we inferred that the s populations of P are 1.867–1.905, indicating the involvement

of 3s orbitals of P in the bonding of In₂P₃, whereas the gross *s* population of Sb is almost 2.0, implying the inertness of the 5s² shell of the antimony atoms, which is attributed to the mass-velocity relativistic effect. Thus both the P-P and In-P bonds in In₂P₃ would be stronger than the Sb-Sb and In-Sb bonds in In₂Sb₃. Accordingly, the atomization energy of In₂P₃ is greater than in In₂Sb₃ because of the stronger P-P and In-P bonds in In₂P₃.

Van Zee et al.¹² investigated the matrix-isolated ESR spectra of Ga_2As_3 in Ar and Kr matrixes. Comparing their results with those for the isovalent In_2Sb_3 computed here is of interest. The matrix ESR spectra suggested that Ga_2As_3 is in a doublet spin state with a hyperfine structure consistent with 3 equivalent As atoms arranged in a regular trigonal bipyramidal structure. This is in accord with our picture for In_2Sb_3 at the MRSDCI+Q level of theory, which predicts the lowest state to be $^2A_2''$ with an ideal D_{3h} structure. However, their findings differ from ours for In_2P_3 , which exhibits a 2B_1 ground state in a distorted trigonal bipyramidal form in $C_{2\nu}$ symmetry, even though the D_{3h} state is quite close in energy. Thus, we expect there is some similarity between Ga_2As_3 and In_2Sb_3 , but In_2P_3 differs from Ga_2As_3 in this aspect.

The observed spectrum of Xu et al.⁹ for $In_2P_3^-$ exhibits two closely spaced peaks, which may correlate with $^2E''$ and $^2A_2''$. We have found that the lowest state of In_2Sb_3 in D_{3h} structure is $^2A_2''$, but $^2E''$ is only 0.13 eV above $^2A_2''$ at the MRSDCI level. Thus the picture for In_2P_3 is probably similar to In_2Sb_3 .

Acknowledgment. This research was supported by the US National Science Foundation.

References and Notes

- (1) O'Brien, S. C.; Liu, Y.; Zhang, Q. L.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Smalley, R. E. *J. Chem. Phys.* 1986, 84, 4074. Liu, Y.; Zhang, Q. L.; Tittel, F. K.; Curl, R. F.; Smalley, R. E. *J. Chem. Phys.* 1986, 85, 7434.
- (2) Wang, L.; Chibante, L. P. F.; Tittel, F. K.; Curl, R. F.; Smalley, R. E. *Chem. Phys. Lett.* **1990**, *172*, 335. Lou, L.; Wang, L.; Chibante, P. F.; Laaksonen, R. T.; Nordlander, P. *J. Chem. Phys.* **1991**, *94*, 8015. Lou, L.; Nordlander, P.; Smalley, R. E. *J. Chem. Phys.* **1992**, *97*, 1858.
- (3) Jin, C.; Taylor, K.; Conciecao, J.; Smalley, R. E. Chem. Phys. Lett. 1990, 175, 17.
- (4) Lemire, G. W.; Bishea, G. A.; Heidecke, S. A.; Morse, M. D. J. Chem. Phys. 1990, 92, 121.
- (5) Lou, L.; Wang, L.; Chibante, L. P. F.; Laaksonen, R. T.; Nordlander, P.; Smalley, R. E. J. Chem. Phys. 1991, 94, 8015.

- (6) Arnold, C. C.; Neumark, D. M. J. Chem. Phys. 1994, 99, 3353.
- (7) Arnold, C. C.; Neumark, D. M. J. Chem. Phys. 1994, 100, 1797.
- (8) Arnold, C. C.; Neumark, D. M. Can. J. Phys. 1994, 72, 1322.
- (9) Xu, D.; deBeer, E.; Arnold, D. W.; Neumark, D. M. J. Chem. Phys. 1994, 101, 5406.
- (10) Burton, G. R.; Xu, D.; Arnold, C. C.; Neumark, D. M. J. Chem. Phys. 1996, 104, 2757.
- (11) Kolenbrander, K. D.; Mandich, M. L. J. Chem. Phys. 1990, 92,
 4759. Rinnen, K.-D.; Kolenbrander, K. D.; DeSantolo, A. M.; Mandich,
 M. L. J. Chem. Phys. 1992, 96, 4088.
- (12) VanZee, R. J.; Li, S.; Weltner, W., Jr. J. Chem. Phys. 1993, 98. 4335.
 - (13) Balasubramanian, K. Chem. Phys. Lett. 1988, 150, 71.
- (14) Balasubramanian, K. Chem. Rev. 1990, 90, 93; Chem. Rev. 1989, 89, 1801; J. Phys. Chem. 1986, 85, 3401; J. Chem. Phys. 1987, 87, 3518.
- (15) Al-Laham, M. A.; Raghavachari, K. Chem. Phys. Lett. 1991, 187,
- (16) Meier, U.; Peyerimhoff, S. D.; Grien, F. Chem. Phys. 1991, 150, 331.
- (17) Grev, R. S.; Schaefer, H. F., III Chem. Phys. Lett. **1987**, 135, 287. Raghavachari, K.; Rohlfing, C. M. J. Chem. Phys. **1988**, 89, 2219.
- (18) Liao, M. Z.; Dai, D.; Balasubramanian, K. Chem. Phys. Lett. 1995, 239, 124.
- (19) Feng, P. Y.; Balasubramanian, K. Chem. Phys. Lett. 1997, 265, 547.
- (20) Feng, P. Y.; Balasubramanian, K. Chem. Phys. Lett. 1998, 283, 167.
- (21) Balasubramanian, K. Relativistic effects in chemistry: Part A. Theory & techniques; Wiley-Interscience: New York, 1997; p 301.
- (22) Balasubramanian, K. *Relativistic effects in chemistry: Part B. Applications to molecules & clusters*; Wiley-Interscience: New York, 1997; p 527.
- (23) Lajohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.; Ermler, W. C. J. Chem. Phys. 1987, 87, 2812.
 - (24) Balasubramanian, K. J. Chem. Phys. 1990, 93, 507.
 - (25) Das, K. K.; Balasubramanian, K. J. Chem. Phys. 1991, 94, 6420.
- (26) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gorden, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comput. Chem.* **1993**, *14*, 1347.
- (27) The major authors of ALHEMY II are Liu, B.; Lensfield, B.; Yoshimine, M.
 - (28) Balasubramanian, K. Chem. Phys. Lett. 1986, 127, 324.
 - (29) Balasubramanian, K. J. Chem. Phys. 1989, 91, 2443.
- (30) Hotop, H.; Lineberger, W. C. J. Phys. Chem. Ref. Data 1985, 14, 731.
 - (31) Feng, P. Y.; Balasubramanian, K. Chem. Phys. 1989, 138, 89.
 - (32) Balasubramanian, K.; Li, J. Q. Chem. Phys. 1989, 88, 4979.
- (33) Balasubramanian, K.; Sumathi, K.; Dai, D. J. Chem. Phys. 1991, 95, 3494.
- (34) Moore, C. E. *Tables of atomic energy levels*; US National Institute of Standards and Technology: Gaithersburg, MD, 1971, Vol. I—III, Circular