PROJET 6 - Catégoriser automatiquement des questions

Sommaire

- 1 Etude du besoin
 - 2 Analyse des données
 - 3 Préparation des données
 - 4 Approche non-supervisée
 - 5 Approche supervisée
 - 6 Comparaison des modèles
- 7 Déploiement d'une API

ÉTUDE DU BESOIN

1 – Étude du besoin

1 – Étude du besoin

```
SELECT
   p.Id as id,
   p.Body as doc,
   p.Title as title,
   p.Tags as tags,
   p.CreationDate as creation_date,
   -- some additionnal metrics
   p.Score as score,
   p.ViewCount as views,
   p.AnswerCount as answers,
   p.CommentCount as comments,
   p.FavoriteCount as favorites,
   p.LastActivityDate as last activity date
FROM posts p, PostTypes pt
WHERE p.PostTypeId = pt.Id
AND pt.Name = 'Question'
AND p.Tags IS NOT NULL
AND p.FavoriteCount > 0
AND p.Score > 0
AND p.CreationDate <= '01-01-2021' -- to
retrieve recent posts
```


ANALYSE DES DONNÉES

2 - Analyse des données

1.5 2.0 2.5 3.0 3.5 4.0 4.5

tags_cnt

4000 2000

2 - Analyse des données

PREPARATION DES DONNÉES

3 – Préparation des données

✓ Reduction des tags

Number of tags per document distribution after reduction

3 - Préparation des données

✓ Tokenisation

- Suppression des Stop Words
- Regex : (?u)\b\w\w+\b
- Normalisation des documents : Lemmatisation

3 - Préparation des données

✓ Vectorisation

	the	red	dog	cat	eats	food
1. the red dog \rightarrow	1	1	1	0	0	0
cat eats dog →	0	0	1	1	1	0
3. dog eats food→	0	0	1	0	1	1
 red cat eats → 	0	1	0	1	1	0

$$tfidf_{ij} = tf_{ij} \times log \frac{|D|}{|\{d_j: t_i \in d_j\}|}$$

 tf_{ij} : fréquence du terme t_i dans le document d_j

|D| : nombre total de documents dans le corpus $|\{d_j\colon t_i\in d_j\}|$: nombre de documents où le terme t_i apparait.

- Utilisation d'uni-grammes
- Fréquence min : 5
- Fréquence max : 75%

→ Le dictionnaire obtenu comporte 18104 mots

APPROCHE NON-SUPERVISÉE

4 – Approche non-supervisée

✓ NMF Topic modeling

4 – Approche non-supervisée

✓ Nuages de mots

4 – Approche non-supervisée

✓ Association tags/thèmes

 $C(tags, topics) = A(documents, tags)^{T} \times B(documents, topics)$

APPROCHE SUPERVISÉE

5 – Approche supervisée

- ✓ Classification multi-label
 - Méthodes testées : OneVsRest / ClassifierChain
 - Classifieurs binaires: LinearSVC, RandomForest, LogisticRegression
 - Optimisation des paramètres par GridSearch

COMPARAISON DES MODELES

6 – Comparaison des modèles

ovr = OneVsRest
cc = ClassifierChain
svc = LinearSVC
rf = RandomForest
lr = LogisticRegression
method1 = Approche
non-supervisée

DÉPLOIEMENT D'UNE API

7 – Déploiement d'une API

CONCLUSION

MERCI DE VOTRE ATTENTION

Avez vous des questions?

