ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия»

УТВЕРЖДАЮ

Академический руководитель

СОГЛАСОВАНО

Научный руководитель,

	канд. техн. наук, доцент департамента программной инженерии факультета компьютерных наук	образовательной программы «Программная инженерия» профессор департамента программной инженерии, канд. техн. наук
	«25»092021 г.	В. В. Шилов «» 2021 г.
Подп. и дата	ПРОГРАММА МОДЕЛИРОВАНИЯ РАСПЕ КЛЕТОЧНЫХ Пояснителы	РОСТРАНЕНИЯ ПОЖАРА С ПОМОЩЬЮ АВТОМАТОВ
Инв. № дубл.	ЛИСТ УТВЕ RU.17701729.05.0	
Взам. инв. №		Исполнитель студент группы БПИ196 / М. И. Филиппова/
Подп. и дата		«25»09 2021 г.
Инв. № подл		

Москва 2021

УТВЕРЖДЕН RU.17701729.05.06-01 81 01-1-ЛУ

ПРОГРАММА МОДЕЛИРОВАНИЯ РАСПРОСТРАНЕНИЯ ПОЖАРА С ПОМОЩЬЮ КЛЕТОЧНЫХ АВТОМАТОВ

Пояснительная записка

RU.17701729.05.06-01 81 01-1

Листов 60

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл	

Москва 2021

СОДЕРЖАНИЕ

1.

ВВЕДЕНИЕ......4

1.	1 Наименование программ	ы			
1.	2 Документы, на основани	и которых ведетс	я разработка про	граммы	
2.	назначение и область	применения			
2.	1. Назначение программы				5
	2.1.1. Функциональное назна	чение			5
	2.1.2. Эксплуатационное назн	ачение			5
2.	2. Краткая характеристика об	бласти применени	ія	•••••	
3.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИО	СТИКИ			6
3.	1. Постановка задачи на разра	аботку программі	ы		6
3.	2. Описание применяемых ма	тематических ме	годов		6
	3.2.1 Клеточные автоматы				6
	3.2.2 Модель распространени	я пожара			6
	3.2.2.1 Модель лес – лес				
	3.2.2.2 Модель распространен	ия город - город			9
	3.2.2.3 Модель распространен	ия лес – город			10
	3.2.2.4 Модель распространен	ия город – лес			10
3.	3. Описание алгоритма и фун				
	3.3.1 Подсистема модели				
	3.3.1.1 Алгоритм работы подс	системы			13
	3.3.1.2 Алгоритм предобработ	гки входных данн	ых		14
	3.3.1.3 Алгоритм слияния мет				
	3.3.1.4 Алгоритм инициализа	_			
	3.3.1.5 Алгоритм инициализа	 ции городской те	- рритории		18
	3.3.1.6 Алгоритм работы моде	ели лес-лес			19
	3.3.1.7 Алгоритм расчета мак	симальной скоро	сти распростране	ения пожара	20
	3.3.1.8 Алгоритм работы моде	ели лес – город			21
	3.3.1.9 Алгоритм работы модо	- ели город — город			22
	3.3.1.10 Алгоритм работы мод	•			
	3.3.2 Подсистема визуализаці	•			
	Изм.	Лист	№ докум.	Подп.	Дата
RU	J.17701729.04.13-01 81 01-1				
	Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

3	3.3.2.1 Алгоритм функционирования подсистемы визуализации	27
3	3.3.2.2 Алгоритм добавления растрового слоя	28
3	3.3.2.3 Алгоритм добавления векторного слоя	29
3	3.3.2.4 Алгоритм работы с моделью	30
3	3.3.3 Особенности подсистем	31
3.4.	. Возможные взаимодействия программы с другими программами	31
3.5.	. Описание и обоснование выбора метода организации входных и выходных данных	32
3	3.5.1. Описание метода организации входных и выходных данных	32
3	3.5.1.1 Компонента модели	32
3	3.5.1.2 Компонента визуализации	35
3	3.5.2. Обоснование выбора метода организации входных и выходных данных	35
3.6	Работа модели на примере пожара Гетти	35
3	3.6.1 События пожара Гетти	35
3	3.6.2 Данные пожара Гетти	36
3.7	Описание и обоснование выбора состава технических и программных средств	38
4. (ЭЖИДАЕМЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ	40
4.1.	. Предполагаемая потребность	40
	. Экономические преимущества разработки по сравнению с отечественными и зарубежными	
_	разцами или аналогами	
	ИСТОЧНИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ РАЗРАБОТКЕ	
	ЛОЖЕНИЕ 1	
	ЛОЖЕНИЕ 2	
	ЛОЖЕНИЕ 3	
	ЛОЖЕНИЕ 4	
	ЛОЖЕНИЕ 5	
ЛИСТ	РЕГИСТРАЦИИ ИЗМЕНЕНИЙ	60

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

1. ВВЕДЕНИЕ

1.1 Наименование программы

Название программы: «Программа моделирования распространения пожара с помощью клеточных автоматов» («Program for Modelling Fire Spread using Cellular Automata»).

1.2 Документы, на основании которых ведется разработка программы

Программа выполняется в рамках темы курсового проекта — «Программа моделирования распространения пожара с помощью клеточных автоматов» согласно учебному плану подготовки бакалавров по направлению 09.03.04 «Программная инженерия».

Основанием для разработки является учебный план подготовки бакалавров по направлению 09.03.04 «Программная инженерия» и утверждение академическим руководителем тема курсового проекта.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

2.1. Назначение программы

2.1.1. Функциональное назначение

Основное назначение программы заключается в моделировании распространения пожара с использованием клеточных автоматов с учетом пространственно-географических и метеорологических параметров. На основании начальной территории возгорания, погодных условий, особенностях рельефа и растительного состава исследуемой местности программа прогнозирует, какова область поражения пожаром в момент времени, больший начального. Помимо этого, программа визуализирует распространение пожара, а также позволяет сравнить реальный результат – в случае исторических пожаров – со смоделированным. Также, программа обеспечивает возможность визуализации входных пространственно-географических данных.

2.1.2. Эксплуатационное назначение

Программа может быть использована при наблюдении за развитием пожарного фронта. Прогнозирование эволюции пожара может быть полезным в случае разработки стратегии принятия действий по борьбе с пожаром, а также при расчете территорий, с которых следует эвакуировать население. Программа может быть полезна при планировании организации землепользования, при проведении научных экспериментов и обучении пожарных бригад.

2.2. Краткая характеристика области применения

Предназначение программы в моделировании развития природных пожаров, в том числе и при возможном распространении их на городские территории. Благодаря визуализации территории распространения, возможно оценить степень распространения на определенной территории. Помимо упрощающим этого, программа может являться инструментом, управление контролируемого пожара в аграрных целях и при решении вопросов землепользования. Программа также может быть использована при исследовании пожаров в научных целях.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1. Постановка задачи на разработку программы

Исходя из необходимого к реализации функционала можно выделить задачи, которые должна решать программа:

- обеспечить корректную работу с данными с географической привязкой,
- обеспечить возможность взаимодействия с моделью распространения,
- моделировать распространение пожара по заданным параметрам,
- визуализировать результат моделирования на карте,
- визуализировать входные растровые и векторные спутниковые данные по запросу пользователя.

3.2. Описание применяемых математических методов

3.2.1 Клеточные автоматы

Клеточные автоматы — дискретные динамические системы, в которых пространство представляется равномерной сеткой, каждая ячейка (клетка) которой характеризуется определенным состоянием из конечного множества возможных [1]. На каждом дискретном шаге времени клетка вычисляет свое новое состояние, основываясь на правилах перехода, зависящих от состояний ее близких соседей. Клеточные автоматы широко используются при составлении моделей в естественных науках, комбинаторной математике, теории вычислимости и микромеханике. Одними из наиболее известных клеточных автоматов является игра Дж. Конвея «Жизнь», автомат фон Неймана и Wireworld Б.Сильвермана.

3.2.2 Модель распространения пожара

Модель распространения пожара представляет собой совокупность четырех моделей, различающихся по типу переходов сред распространения. Обозначим их как модели лес-лес, городгород, лес-город и город-лес.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.2.2.1 Модель лес – лес

Исследуемая территория распространения пожара представляется в виде двумерной матрицы, состоящей из одинаковых квадратных ячеек. Пожар от каждой клетки может распространяться в 8 различных направлениях (по числу соседей в окрестности Мура).

Рисунок 1. Возможные направления распространения пожара

Скорость распространения огня с одной ячейки на другую рассчитывается следующим образом [6]:

$$R = R_0 \cdot K_w \cdot K_s \cdot K_f, \tag{1}$$

Скорость распространения огня зависит от следующих параметров:

- $R_0 = 0.03 \cdot T + 0.05 \cdot V + 0.01 \cdot (100 RH) 0.3$ начальная скорость распространения пожара, которая зависит от температуры $T(^{\circ}C)$, скорости ветра $V(_{\rm M}/_{\rm C})$, влажности воздуха RH (%);
- K_f параметр, характеризующий тип топлива,
- K_w влияние ветра,
- K_s влияние рельефа территории.

Влияние ветра рассчитывается по следующей формуле:

$$K_w = e^{0.1783 \cdot V \cdot \cos(\theta - \alpha)},\tag{2}$$

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

где V — скорость ветра, θ — направление ветра, α — расположение ячейки, на которую распространяется огонь, относительно ячейки-источника.

Влияние рельефа территории определяется следующим образом:

$$K_s = e^{3.533 \cdot [tg(\Phi|\cos\theta|)]^{1.2}},\tag{3}$$

где Φ – уклон территории, θ – направление ветра.

Каждая ячейка может иметь одно из 5 возможных состояний:

Состояние	Описание		
$S_F 0$	ячейка без пожара на территории		
$S_F 1$	ячейка загорелась, но пожар от нее не может		
	распространяться на соседние ячейки		
$S_F 2$	ячейка горит и может поджечь соседние ячейки		
S_F3	пожар в ячейке начинает затихать и не может		
распространяться на соседние клетки			
S_F4	сгоревшая ячейка		

Таблица 1. Описание возможных состояний ячеек

Правила изменений состояния ячеек:

• Переход $S_F 0 \rightarrow S_F 1$:

Если одна из соседних ячеек имеет состояние S_F2 , то состояние ячейки (i,j) определяется как:

$$C_{i,j}^{t+\Delta t} = C_{i,j}^{t} + \frac{\left(R_{i-1,j-1}^{t} + R_{i+1,j-1}^{t} + R_{i-1,j+1}^{t} + R_{i+1,j+1}^{t}\right)\Delta t}{\sqrt{2}L} + \frac{\left(R_{i,j-1}^{t} + R_{i+1,j}^{t} + R_{i+1,j}^{t} + R_{i,j+1}^{t}\right)\Delta t}{L}, \Delta t = k\frac{L}{R_{max}}$$

$$C_{\text{TATYC}}(i,j) = \begin{cases} S_{F}0, C_{i,j}^{t} < 1.0 \\ S_{F}1, C_{i,j}^{t} \ge 1.0 \end{cases}$$
(5)

• Переход $S_F 1 \rightarrow S_F 2$:

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Изменение состояния осуществляется за промежуток времени:

$$\Delta t_1 = \frac{L}{\sqrt{\pi} R_{IN}},\tag{6}$$

Скорость внутреннего распространения огня R_{IN} рассчитывается по формуле (1), причем вектор скорости распространения огня внутри ячейки имеет то же направление, что и направление ветра в этой ячейке.

• Переходы $S_F2 \to S_F3$ и $S_F3 \to S_F4$ происходят за промежуток времени Δt , рассчитанного при переходе $S_F0 \to S_F1$ (4).

3.2.2.2 Модель распространения город - город

Городская территория разбивается на однородные ячейки квадратной формы, каждая из которых может иметь одно из 6 состояний (Таблица 2).

Состояние	Описание
$S_F 0$	ячейка без пожара на территории
$S_F 1$	ячейка загорелась, но пожар от нее не может
	распространяться на ячейки
$S_F 2$	пожар в ячейке развивается, но не может распространиться
	на ячейки
S_F3	пожар внутри здания, возможно слабое распространение на
	ячейки
S_F4	здание горит полностью, огонь активно распространяется на
	ячейки
S_F 5	здание сгорело

Таблица 2. Состояния ячейки на территории города

Пусть клетка m имеет состояние S_F3 или S_F4 , тогда он может распространить пожар на ячейки, полностью или частично попадающие в эллипс (формулы эллипса) с вероятностью P_{mn} [5].

Эллиптическая область возможного распространения пожара рассчитывается по следующим формулам:

$$a = \frac{3}{5}v + 3 + \frac{d}{2}, b = -\frac{2}{15}v + 3 + \frac{d}{2}, c = -\frac{1}{15}v + 3 + \frac{d}{2},$$
 (7)

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

где a — сумма большей полуоси и фокального расстояния, b — фокальный параметр эллипса, c — разность большей полуоси и фокального расстояния, d — сторона клетки(м), v — скорость ветра (м/c).

Вероятность распространения пожара P_{mn} рассчитывается по формуле (8).

$$P_{mn} = P_{Tn} \cdot P_W \cdot P_{Sn} \cdot P_{Amn}, \tag{8}$$

где P_{Tn} – влияние материала зданий, P_W - влияние погодных условий, P_{Sn} — влияние статуса клетки $m,\ P_{Amn}$ — площадь здания, попадающая под влияние области распространения пожара.

В случае, когда ячейка расположена в области влияния нескольких ячеек, общая вероятность возгорания вычисляется согласно формуле (9).

$$I_n = 1 - \prod_{i=0}^{MN} (1 - P_{mM_i n}) \tag{9}$$

Временные промежутки, требующиеся для перехода из одного состояния в другое определены в [5].

3.2.2.3 Модель распространения лес – город.

Распространение пожара от лесной клетки на городскую аналогично модели город – город. Разница заключается в определении территории влияния пожара.

$$a = \left(\frac{3}{5}v + 3\right)K + \frac{d}{2}, b = -\frac{2}{15}v + 3 + \frac{d}{2}, c = -\frac{1}{15}v + 3 + \frac{d}{2}$$
 (10)

где v — скорость ветра, d — сторона клетки, a, b, c — параметры эллипса,K — константа, K = 3, если максимальная скорость распространения огня в лесной ячейке меньше 13.1 м/мин, иначе K = 4.5.

3.2.2.4 Модель распространения город – лес.

Распространение пожара от ячейки города на ячейку леса аналогично принципу работы модели город – город.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.3. Описание алгоритма и функционирования программы

Программа состоит их двух частей – подсистема модели и подсистема визуализации данных. Ниже представлена диаграмма вариантов использования программы (рис. 2).

Рисунок 2. Диаграмма прецедентов

3.3.1 Подсистема модели

Структура подсистемы состоит из 3 основных пакетов – forest, urban и input (рис. 3). В пакете input расположен класс, описывающий входные данные модели (рис. 6). В пакете urban – классы, описывающие территорию города и модели распространения пожара город – город, город – лес (рис. 4). В пакете forest – классы, описывающие лесную территорию и модели распространения лес – лес, лес – город (рис. 4).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 3. Диаграмма классов модели распространения пожара

Рисунок 4. Диаграмма классов пакета urban

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 5. Диаграмма классов пакета urban

Рисунок 6. Диаграмма классов пакета input

3.3.1.1 Алгоритм работы подсистемы

Ниже приведен алгоритм работы подсистемы модели (рис. 7).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 7. Работа подсистемы модели

3.3.1.2 Алгоритм предобработки входных данных

Ниже приведен алгоритм предобработки входных данных (рис. 8).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 8. Предобработка входных данных

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.3.1.3 Алгоритм слияния метеорологических данных

Ниже приведен алгоритм слияния метеорологических данных (рис. 9).

Рисунок 9. Слияние метеорологических данных

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.3.1.4 Алгоритм инициализации лесной территории

Ниже приведен инициализации лесной территории (рис. 10).

Рисунок 10. Инициализация лесной территории

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.3.1.5 Алгоритм инициализации городской территории

Ниже приведен алгоритм инициализации городской территории (рис. 11).

Рисунок 11. Инициализация городской территории

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.3.1.6 Алгоритм работы модели лес-лес

Ниже представлен алгоритм работы модели лес – лес (рис. 12).

Рисунок 12. Работа модели лес – лес

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.3.1.7 Алгоритм расчета максимальной скорости распространения пожара

Ниже представлен псевдокод расчета максимальной скорости распространения пожара для каждой клетки. Суть алгоритма заключается в расчете скоростей распространения пожара от соседних ячеек и выбора максимального значения из них, на основе которого рассчитывается период возгорания ячейки.

calculateMaxSpreadRate(C)

Вход: массив лесных клеток C.

Выход: массив лесных клеток C с определенными значениями максимальной скорости распространения пожара и периодом возгорания.

```
FOR каждая ячейка c \in C

IF c.spreadRates = null

THEN c.spreadRates \coloneqq new\ double[8]

ENDIF

FOR k \in [0;7]

c.spreadRates[k] \coloneqq calculateSpreadRate(i)

ENDFOR

c.maxSpreadRate = max(c.spreadRates)

IF c.maxSpreadRate > 0

c.firePeriod \coloneqq 0.125 \times c.side / c.maxSpreadRate

ENDIF

ENDFOR
```

Расчет скорости распространения пожара от соседней ячейки на центральную происходит следующим образом. Рассчитывается коэффициент влияния ветра, при этом направление ветра проецируется на направление распространения огня от соседней ячейки к центральной. Затем рассчитывается коэффициент влияния уклона территории с учетом направления ветра. Произведение коэффициентов определяет скорость распространения пожара.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

calculateSpreadRate(c, i)

Вход: ячейка c с определенными в ней скоростью ветра v, направлением ветра ang, уклоном территории sl, типом топлива f и скоростью распространения пожара по умолчанию r, номер соседней ячейки i (нумерация ячеек происходит по часовой стрелке, начиная c северной).

Выход: скорость распространения пожара в ячейке c от i-ого соседа.

```
CASE i -
```

```
0: w := \exp(0.1783 \times c.v \times \cos(c.ang - 180))
1: w := \exp(0.1783 \times c.v \times \cos(c.ang - 135))
2: w := \exp(0.1783 \times c.v \times \cos(c.ang - 90))
3: w := \exp(0.1783 \times c.v \times \cos(c.ang - 225))
4: w := \exp(0.1783 \times c.v \times \cos(c.ang))
5: w := \exp(0.1783 \times c.v \times \cos(c.ang + 45))
6: w := \exp(0.1783 \times c.v \times \cos(c.ang + 90))
7: w := \exp(0.1783 \times c.v \times \cos(c.ang + 225))
ENDCASE
s := \exp(3^{(c.sl \times |\cos(c.ang)|)^{(c.sl \times |\cos(
```

3.3.1.8 Алгоритм работы модели лес – город

Ниже приведен код распространения пожара по модели лес — город. Суть алгоритма заключается в том, что для каждой ячейки леса c рассчитывается территория влияния, характеризуемая параметрами a, b, c, которые, в свою очередь, зависят от направления и скорости ветра в данной ячейке леса. Затем, если клетка города пересекает территорию влияния лесной клетки, или расположена в ней, то рассчитывается вероятность возгорания этой ячейки. Так как ячейка может находиться под влиянием нескольких клеток леса, то новая вероятность добавляется к общей вероятности возгорания.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

forestUrbanFireSpread(U,C)

Вход: массив лесных клеток C и городских клеток U размера $width \times length$. Каждая городская клетка u содержит значение материала здания material, погоды weather, вероятность возгорания ignition. Каждая лесная клетка характеризуется значением скорости ветра v, стороной side, максимальной скоростью распространения пожара maxSpreadRate, расположением в массиве C — координатами i и j.

Выход: массив городских клеток U обновленными вероятностями возгорания.

```
FOR каждая ячейка c \in C
       IF c.state = DEVELOPING
              IF c.maxSpreadRate < 13.1 THEN
                     k \coloneqq 3
              ELSE k := 4.5
              ENDIF
              a := (3 \times c. v / 5 + 3) \times k + c. side / 2
              b := -2 \times c.v / 15 + 3 + c.side / 2
                          c := -1 \times c. v / 15 + 3 + c. side / 2
              influence := Ellipse(a, b, c)
              FOR l: c. i - a до c. i + a
                     FOR m: c.j - a до c.j + a
                            IF (U[1][m].state = UNBURNED and U[1][m] περεсεκαετ influence)
                            THEN
                                              ign := U[l][m].material \times U[l][m].weather \times
                                                         S(U[l][m] \cap influence) / S(U[l][m])
                                   IF k = 3
                                          ign = ign \times 0.4
                                   ENDIF
                            U[l][m]. ignition = U[l][m]. ignition \times (1 - ign)
                            ENDIF
                     ENDFOR
              ENDFOR
       ENDIF
ENDFOR
```

3.3.1.9 Алгоритм работы модели город – город

Ниже представлен алгоритм работы модели город- город (рис. 13).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 13. Работа модели город – город

3.3.1.10 Алгоритм работы модели город – лес

Ниже приведен алгоритм работы модели город – лес (рис. 14).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 14. Работа модели город - лес

3.3.2 Подсистема визуализации данных

Подсистема визуализации данных представляет собой оконное приложение, состоящее из главного окна (рис. 15) и нескольких дополнительных, предназначенных для ввода данных о слоях (рис. 16) и работы модели (рис. 17). Главное окно содержит необходимую систему меню и

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

интерактивную карту, на которой отображаются добавленные пользователем слои (рис. 18). Так же есть возможность отобразить на главном окне список доступных слоев, чтобы работать с ними (скрывать, удалять, делать видимыми). При моделировании, в случае успешного завершения этого процесса, на карте автоматически отображается слой результата (рис. 19).

Рисунок 15. Интерфейс главного окна программы

Рисунок 16. Интерфейс диалоговых окон добавления слоя

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Настройки модели				?	×
Путь к данным рельефа					
				Откры	ІТЬ
Путь к данным топлива				,	
				Откры	ΙΤЬ
Путь к данным кодов топливн	ной модели				
				Откры	ІТЬ
Туть к метеорологическим да	нным				
				Откры	ІТЬ
Туть к данным территории на	чального в	озгорания			
				Откры	ІТЬ
Путь к данным о строениях					
				O	_
				Откры	ІТЬ
Начало моделирования		01.01.2000 00:	00		•
Конец моделирования		01.01.2000 00:	00		•
Сторона клетки, м.		30 🗘			
Шаг изменения погоды, мин		60 🗘			
Материал зданий		Дерево ∨			
Границы N	0,00	•	Е	0,00	A
S	0,00	-	W	0,00	+
Название слоя результата					
		Ha	чать мо,	делирова	ние

Рисунок 17. Интерфейс диалогового окна настроек модели

Рисунок 18. Интерфейс главного окна после добавления слоя и при отображении списка слоев

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 19. Вид главного окна после успешного окончания работы модели

3.3.2.1 Алгоритм функционирования подсистемы визуализации

Ниже представлен алгоритм функционирования подсистемы визуализации (рис. 20).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 20. Функционирование подсистемы визуализации

3.3.2.2 Алгоритм добавления растрового слоя

Ниже представлен алгоритм добавления растрового слоя (рис. 21).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 21. Добавление растрового слоя

3.3.2.3 Алгоритм добавления векторного слоя

Ниже представлен алгоритм добавления векторного слоя (рис. 22).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 22. Добавление векторного слоя

3.3.2.4 Алгоритм работы с моделью

Ниже представлен алгоритм работы с моделью через подсистему визуализации (рис. 23).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 23. Работа с моделью

3.3.3 Особенности подсистем

Следует отметить следующие особенности реализации подсистем:

- моделирование происходит с дискретным временем в шаг в 90 секунд,
- при изменении погодных условий выводится статистика состояний лесных и городских ячеек,
- при изменении погодных условий сохраняется файл с результатом распространения пожара на данный момент времени.

3.4. Возможные взаимодействия программы с другими программами

Для использования и реализации функционала программы необходим установленный на компьютере Python интерпретатор и библиотека GDAL. GDAL – библиотека для работы с растровыми и векторными геопространственными форматами. Эта библиотека предоставляет

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

единую абстрактную модель данных для всех поддерживаемых ей форматов. Она используется в таких известных геоинформационных системах как QGIS, GRASS, Google Earth и другие.

3.5. Описание и обоснование выбора метода организации входных и выходных данных

3.5.1. Описание метода организации входных и выходных данных

3.5.1.1 Компонента модели

Модель предполагает использование следующих входных данных:

• Данные о высотах территории – растровые данные формата GeoTIFF или ASC, покрывающие территорию моделирования (рис. 24). Каждый пиксель содержит значение высоты определенной области территории, разрешение может быть как в градусах, так и в метрах.

Рисунок 24. Вид данных о высотах территории

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

• Данные о топливе территории – растровые данные формата GeoTIFF или ASC, покрывающие территорию моделирования. Каждый пиксель содержит значение кода топлива в топливной модели, разрешение возможно как в метрах, так и в градусах (рис. 25).

Рисунок 25. Вид данных о топливе территории

- Данные о кодах топливной модели текстовый CSV файл, в котором каждому коду топлива ставится в соответствии тип растительности Первая строка содержит заголовки столбцов данных Тип растительности содержится в столбце "EVT_LF", может иметь следующие значения: "Tree", "Shrub", "Herb", "Sparse", "Agriculture" согласно классификации наземных экологических систем, разработанной NatureServe в 2016 [3].
- Данные о начальном участке возгорания векторный .SHP файл, содержащий объекты типа wkbPoint или wkbPolygon, находящиеся на территории моделирования.
- Данные о погоде текстовый CSV файл, где для каждой временной точки указаны имена файлов, содержащие метеорологические данные для данной временной точки в следующем

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

порядке — данные о скорости ветра, данные о направлении ветра, данные о температуре, данные об относительной влажности воздуха (рис. 26). Следует заметить, что эти данные должны находиться в той же директории, что файл данных о погоде. Метеорологические данные представляют собой растровые данные формата GeoTIFF или ASC. Значение пикселя для данных о скорости ветра — скорость ветра в м/с; для данных о направлении ветра — направление, откуда дует ветер, в градусах; для данных о температуре — температура в градусах Цельсия; для данных об относительной влажности воздуха — относительная влажности воздуха в процентах.

|"2019.10.28 01:00", "wind_2019_10_28_01_00_vel.tif", "wind_2019_10_28_01_00_ang.tif", "temp_2019_10_28_01_00.tif", "hum_2019_10_28_01_00.tif"
Рисунок 26. Вид строки файла данных о погоде

Результатом работы модели является GeoTIFF файл, отображающий состояния ячеек на момент завершения работы модели (рис. 27).

Рисунок 27. Вид результата моделирования

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

3.5.1.2 Компонента визуализации

При добавлении растрового слоя требуется указать название слоя, путь к растровому файлу одного из форматов .tif, .png, .jpg и координаты границ изображения.

При добавлении векторного слоя требуется указать название слоя, путь к векторному файлу одного из форматов .shp, .geojson.

3.5.2. Обоснование выбора метода организации входных и выходных данных

Формат GeoTIFF – формат представления растровых данных в формате TIFF, сопровожденном метаданными, содержащими информацию о географической привязке. Файл такого формата может хранить широкий спектр информации, предполагающей использование как географических, так и спроектированных системы координат.

Формат Shapefile — векторный формат географических файлов, позволяющий хранить различные типы геометрических объектов. Данный формат, как и GeoTIFF являются одними из наиболее распространенных форматов геоданных, данные такого формата наиболее доступны и удобны в программном использовании.

Формат GeoJSON – открытый формат, служащий для хранения географических структур данных, поддерживающийся множеством картографических программных объектов.

Формат текстовых данных CSV легко читаем оператором, доступен и понятен для создания и редактирования, а также удобен в программном использовании. Форматы .PNG, .JPG, используемые при визуализации растрового слоя на карте обусловлены их свойствами отображения на веб-страницах.

3.6 Работа модели на примере пожара Гетти

3.6.1 События пожара Гетти

Пожар Гетти произошел в 2019 году в квартале Брентвунд, Лос-Анджелес, Калифорния. Согласно отчетам пожарной части Лос-Анджелеса [5], первое сообщение о пожаре появилось в 8:00 28 октября. Причиной пожара послужила сломанная ветка, упавшая на линию электропередачи. Под влиянием ветров Санта-Аны огонь со скоростью, превышающей 50 миль в час, распространился

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

вдоль автострады 405 и пошел на запад. Активные меры по тушению пожара были приняты с 9:00 28 октября. 29 октября ситуация усугубилась погодными условиями, не благоприятствующими тушению пожара: сильными, до 70 миль в час, порывами ветра и низкой влажностью. С 31 октября погода стала более благоприятной для пожаротушения, 5 ноября пожар был полностью потушен. Площадь территории, пострадавшей от пожара, составила 301 га.

3.6.2 Данные пожара Гетти

Входные данные высот территории и типов топлива были взяты с LANDFIRE [7] — совместной программы Министерства сельского хозяйства США, Министерства внутренних дел США и программ управления пожарами, предоставляющей в свободном доступе геопродукты, описывающие территории США и близлежащих островов.

Метеорологические данные (скорости и направления ветра, температуры, влажности воздуха) взяты с набора данных ERA5 [2], предоставляющего почасовые оценки большого числа атмосферных, наземных и океанических климатических переменных.

Территория поражения пожаром взята с Wildland Fire Open Data [9] – проект WFIGS, предоставляющий расположение и периметры как современных, так и исторических пожаров на территории США.

3.6.3 Выходные данные

По истечении интервала изменения погоды программа выводит состояние территории на данный момент времени. На рис. 28 представлен процесс распространения пожара с интервалом в 1 час.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Рисунок 28. Выходные данные работы модели, интервал между данными в один час

3.6.4 Сравнение результатов работы программы с моделью FARSITE

FARSITE — известная двумерная модель распространения огня, объединяющая существующие модели распространения разных видов пожаров (низовой, верховой, с точечными источниками пожара из легковоспламеняющихся подвижных частиц), а также модель влажности топлива. Модель предполагает, что при однородных условиях распространение огня имеет форму эллипса.

Модель	Совпадающая	Несовпадающая
	территория, га	территория, га
FARSITE	211.13	153.4337
Разработанная модель	194,92	95,6881

Таблица 3. Сравнение результатов работы моделей с реальными данными о периметре пожара

Разница в результатах работы моделей (Таблица 3) обусловлена разными входными метеорологическими данными и используемыми топливными моделями. Кроме того, FARSITE генерирует общую площадь поражения пожаром, без внутренних пустот, причиной которой могут

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

быть, например, водоемы. Реальные данные о периметре пожара также включают в себя только внешний периметр, не включающий в себя участки, в которых пожар не распространяется.

Рисунок 29. Сравнение результатов работы моделей с реальным периметром пожара. a) сравнение с разработанной моделью, б) сравнение с FARSITE

3.7 Описание и обоснование выбора состава технических и программных средств

Минимальный состав технических средств для надежной и бесперебойной работы программы:

- Персональный компьютер с 32-разрядным или 64-разрядным процессором с тактовой частотой 1 ГГц или выше;
- 500 МБ или больше оперативной памяти (ОЗУ);
- 800 МБ или больше свободного места на жестком диске;
- Клавиатура и мышь;
- Стабильное подключение к сети Интернет.

Состав программных средств:

• Операционная система Microsoft Windows 7 или выше;

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

- Java 16.0.2 или выше;
- Java библиотека GDAL 3.3.0 или выше;
- Python 3.8 или выше;
- Python библиотеки GDAL 3.3.0 или выше, PyQt5 5.15.4 или выше, pyshp 2.1.3 или выше, geojson 2.5.0 или выше, Shapely 1.7.1 или выше.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

4. ОЖИДАЕМЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

4.1. Предполагаемая потребность

Программа может быть востребована при принятии решения о сценарии пожаротушения и мер эвакуации, в аграрной сфере – при управлении контролируемого пожара и решении вопросов землепользования. Программа может быть использована в качестве компоненты симуляторов при обучении пожарных бригад, а также в научных целях.

4.2. Экономические преимущества разработки по сравнению с отечественными и зарубежными образцами или аналогами

В рамках данной работы расчет экономических показателей не предусмотрен.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

5. ИСТОЧНИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ РАЗРАБОТКЕ

- 1. Тоффоли Т., Марголус Н. Машины клеточных автоматов, М.: «Мир», 1991.
- 2. ECMWF Reanalysis v5 (ERA5) [Электронный ресурс] / ECMWF. Режим доступа: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, свободный. (дата обращения: 21.07.2021).
- 3. Existing Vegetation Type [Электронный ресурс]. Режим доступа: https://landfire.gov/evt.php, свободный. (дата обращения: 21.08.2021).
- 4. Finney, M. A. FARSITE, Fire Area Simulator model development and evaluation. / M.A. Finney // [Электронный ресурс]: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1998. Режим доступа: https://www.fs.fed.us/rm/pubs/rmrs_rp004.pdf, свободный. (дата обращения: 21.07.2021).
- 5. Getty Fire [Электронный ресурс] / Los Angeles Fire Department. Режим доступа: https://www.lafd.org/news/getty-fire, свободный. (дата обращения: 21.07.2021).
- 6. Jiang W. Modelling of wildland-urban interface fire spread with the heterogeneous cellular automata model/ W. Jiang, F. Wang, L. Fang, X. Zheng, X. Qiao, Z. Li, Q. Meng // Environment Modelling and Software 2021 vol.135 104895.
- 7. LANDFIRE [Электронный ресурс]. Режим доступа: https://landfire.gov/, свободный. (дата обращения: 21.07.2021).
- 8. Mao, X. The influence of wind and relief on the speed of the forest fire spreading / X. Mao // Journal of Applied Meteorological Science -1993 vol.4 C. 100 104.
- 9. Wildland Fire Open Data [Электронный ресурс] / National Interagency Fire Center. Режим доступа: https://data-nifc.opendata.arcgis.com/, свободный. (дата обращения: 21.07.2021).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

ПРИЛОЖЕНИЕ 1

ТЕРМИНОЛОГИЯ

Ниже приведен список необходимых для ознакомления терминов:

Клеточный автомат - набор клеток, образующих некоторую периодическую сетку с заданными правилами перехода, определяющими состояние клетки в следующий момент времени через состояние клеток, находящимися от нее на расстоянии не больше некоторого, в текущий момент времени. Как правило, рассматриваются автоматы, где состояние определяется самой клеткой и ближайшими соседями

Окрестность Мура ячейки - совокупность ячеек в сетке, имеющих общую вершину с данной ячейкой. Окрестность Мура порядка г в двумерном случае представляет собой квадрат со стороной 2r+1

Универсальная поперечная проекция Меркатора (UTM) - это система картографических проекций, в которой поверхность Земли разделена на 60 вытянутых в меридиональном направлении зон шириной 6 градусов. Каждая из этих зон имеет свой центральный меридиан и проецируется по отдельности в поперечной проекции Меркатора

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

приложение 2

Таблица 4— Описание классов подсистемы модели

Класс	Назначение
InputData	класс, содержащий пути к входных данным и
	заданные параметры моделирования
ForestArea	класс, представляющий собой лесную
	территорию – решетку клеток ForestCell
ForestCell	класс, представляющий собой лесную ячейку
GlobalFire	класс, представляющий собой общую – лесную и
	городскую территорию моделирования
Main	класс запуска модели
Urban Area	класс городской территории – решетка клеток
	UrbanCell
UrbanCell	класс ячейки города

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

приложение 3

Таблица 3.1. - Описание полей класса InputData

	Поля				
Имя	Модификатор доступа	Тип	Назначение		
side	package-private	int	Хранит значение стороны ячейки		
ignition	package-private	String	хранит путь к файлу с данными о периметре начального возгорания		
fuel	package-private	String	хранит путь к данным о топливном содержании ячеек		
fuelCodes	package-private	String	хранит путь к данным о кодах топливной модели		
elevation	package-private	String	хранит путь к данным о высотах местности		
buildingsPath	package-private	String	хранит путь к данным о расположении строений		
weatherPeriod	package-private	int	содержит значение интервала изменения погоды		
houseMaterial	package-private	double	содержит вес материала домов		
startPoint	package-private	Geometry	содержит координатную точку левого верхнего края территории моделирования		
endPoint	package-private	Geometry	содержит координатную точку правого нижнего края территории моделирования		
start	private	LocalDateTime	хранит время начала моделирования		
finish	private	LocalDateTime	хранит время окончания моделирования		

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Таблица 3.2. – Описание методов класса InputData

		Метод	Ы	
Имя	Модифика тор доступа	Тип данных	Аргум енты	Назначение
getSide	public	int	-	обеспечивает доступ к пути к файлу с данными о периметре начального возгорания
getIgnition	public	String	-	обеспечивает доступ к пути к данным о топливном содержании ячеек
getFuel	public	String	-	обеспечивает доступ к пути к данным о кодах топливной модели
getFuelCodes	public	String	-	обеспечивает доступ к пути к данным о высотах местности
getElevation	public	String	-	обеспечивает доступ к пути к данным о расположении строений
getBuildingsPath	public	String	-	обеспечивает доступ к значению интервала изменения погоды
getWeatherPeriod	public	int	-	обеспечивает доступ к весу материала домов
getHouseMaterial	public	double	-	обеспечивает доступ к координатную точке левого верхнего края территории моделирования
getStartPoint	public	Geometry	-	обеспечивает доступ к координатную точке правого нижнего края территории моделирования
getEndPoint	public	Geometry	-	обеспечивает доступ к времени начала моделирования
getStart	public	LocalDateTime	-	обеспечивает доступ к времени окончания моделирования
getFinish	public	LocalDateTime	-	обеспечивает доступ к пути к файлу с данными о периметре начального возгорания

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Таблица 3.3. - Описание полей класса ForestArea

	Поля						
Имя	Модификатор доступа	Тип	Назначение				
side	package-private	int	Указывает на значение стороны ячейки				
inputData	package-private	InputData	Хранит входные данные и параметры моделирования				
ignitoinRasterPath	package-private	String	Хранит путь к растрированным данным начального периметра возгорания				
currentDate	package-private	LocalDateTime	Хранит текущее время				
states	package-private	ForestStates[][]	Хранит состояния ячеек				
cells	package-private	ForestCells[][]	Хранит ячейки леса				
spatialReferenceUTM	package-private	SpatialReference	Хранит UTM проекцию территории				

Таблица 3.4. – Описание методов класса ForestArea

			Методы	
Имя	Модифика тор доступа	Тип данн ых	Аргументы	Назначение
setSpreadRaters	ptivate	void	-	Иинциализирует значения скорости распространения пожара
defineArea	private	void	InputData inputData	Инициализирует ячейки лесной территории
setIgnition	private	void	String path	Определяет горящие лесные клетки на момент начала моделирования
rasterizeIgnition	private	void	String	Растрирует полигон территории начального пожара
defineNeighbours	private	void	-	Определяет ячейки окрестности Мура для каждой лесной ячейки
propagate	public	void	double minutesLeft,	Моделирует один шаг модели лес - лес

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

		1	T	,
			double step,	
			LocalDateTime	
			localDateTime	
printStatistics	public	void	-	Выводит статистику состояний на
1	1			данный момент времени
				•
updateStates	public	void	-	Обновляет состояния ячеек
setFuel	public	void	String path, String	Инициализирует тип топлива в
3012 001	Puene	, 010	fuelCodes	ячейках
readFuelCodes	private	Map<	String fuelCodes,	Считывает значения кодов
		Intege	Map <string,< td=""><td>топливной модели и</td></string,<>	топливной модели и
		r,	Double>	сопоставляемый им тип топлива
		Intege	fuelTypesTransiti	
		r>	on	
setWeatherData	public	void	String	Инициализирует значение
	1		weatherDataPath	метеорологических характеристик
				в каждой ячейке
generatePaths	private	String	String path, String	Генерирует пути временных
			name	файлов
setElevation	public	void	String path	Инициализирует данные о высотах
SCILIC VALION	paone	Void	String path	в ячейках
				B A TORRUA
setSlopes	private	void	-	Рассчитывает значение уклона в
				каждой ячейке
changeResolutionA	private	Datas	Dataset dataset,	Изменяет разрешение и
ndBorders	private	et	String path	географические границы данных
nabolacis		Cl	затив раш теографические границы данны	
changeProjection	private	Datas	Dataset dataset,	Изменяет проекцию данных
		et	String path	
propagateInUrban	public	void	UrbanCell[][]	Реализация модели лес - город
	_		urbanCells	
				ı

Таблица 3.5. - Описание полей класса ForestCell

Поля						
Имя	Модификатор доступа	Тип	Назначение			
geometry	package private	String	Хранит описании геометрии ячейки в формате WKT			
state	package private	ForestStates	Хранит состояние ячейки			

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

innerFireTime	package private	double	Период внутреннего горения ячейки
maxSpreadRate	package private	double	Максимальная скорость распространения пожара
firePeriod	package private	double	Период распространения пожара
fuel	package private	double	Значение типа топлива в ячейки
windVelocity	package private	double	Значение скорости ветра в ячейке
windDirection	package private	double	Значение направления вета в ячейке
height	package private	double	Значение высоты в ячейке
spreadRateDefault	package private	double	Значение скорости распространения пожара по умолчанию
neighbours	package private	ForestCell[][]	Окрестность Мура для данной ячейки
slope	package private	double	Уклон территории в ячейке
spreadRates	package private	double[]	Значение скоростей распространения пожара под влиянием соседних ячеек
side	package private	int	Сторона ячейки
ignitedByUrban	package private	boolean	Подожжена ли ячейка городской ячейкой

Таблица 3.6. – Описание методов класса ForestCell

Методы					
Имя	Модифика тор доступа	Тип данных	Аргументы	Назначение	
isIgnitedByUrban	public	boolean	-	Показывает, была ли ячейка подожжена городской ячейкой	

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

getGeometry	public	String	-	Возвращает геометрические характеристики ячейки
calculateGeometry	private	Geometry	double x, double y	Рассчитывает геометрические характеристики ячейки
getState	public	ForestStates	-	Обеспечивают
setState	public	void	ForestStates state	корректную работу
getMaxSpreadRate	public	double	-	с полями ячейки
getFirePeriod	public	double	-	
setFuel	public	void	double fuel	
setWindVelocity	public	void	double windVelocity	
setWindDirection	public	void	double windDirection	
getWindVelocity	public	double	-	
setHeight	public	void	double height	
getSpreadRates	public	double[]	-	
setNeighbours	public	void	Forestcell[][] neighbours	
setSide	public	void	int side	
getHeight	public	double	-	
initSlope	public	void	-	Рассчитывает уклон территории в ячейке
changeDefaultSpre adRate	public	void	double temperature, double windVelocity, double humidity	Изменяет значение скорости распространения пожара по умолчанию
initSpreadRates	public	void	-	Рассчитывает скорость распространения пожара от каждой ячейки окрестности Мура
calculateSpreadRat es	private	double	int i	Рассчитывает скорость распространения пожара для определенной

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

				ячейки из окрестности Мура
calculate InternalSpreadRate	public	double	-	Рассчитывает скорость внутреннего распространения пожара
fireSpreadOnUrban	public	void	UrbanCell[][] urbanCells, int i, int j, int width, int length	Реализация распространения пожара от лесной ячейки на городскую
rotatedCoords	private	double[]	double pointX, double pointY, double originX, double originY, double angle	Поворот координат на определенный угол
becomeIgnited	public	void	-	Определяет, что ячейка зажглась от городской ячейки
makeIgnitedByUrb anDefault	public	void	-	Возвращает параметру значение по усмолчанию

Таблица 3.7. - Описание полей класса GlobalFire

Поля					
Имя	Модификатор доступа		Тип	Назн	начение
inputData	pac	kage private	InputData	-	дные данные и моделирования
forest	pac	kage private	ForestArea	Хранит лесн	ую территорию
urban	package private		UrbanArea	_	городскую иторию
spatialReferenceUTM	package private		SpatialReference	е Хранит U	ГМ проекцию
side	pac	kage private	int	Содержит с	торону ячейки
length	pac	kage private	int	Длина т	серритории
width	package private		int	Ширина	территории
	<u> </u>				
Изм.	Изм. Лист		№ докум.	Подп.	Дата
RU.17701729.04.13-01 8	31 01-1				
Инв. № подл.		Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и

дата

currentDateTime	package private	LocalDateTime	Хранит текущее значение
			времени

Таблица 3.8. – Описание методов класса GlobalFire

		N	Летоды	
Имя	Модифика тор доступа	Тип данных	Аргументы	Назначение
setWeather	private	void	String weather, int number	Считывает погодные данные
mergeWeatherData	private	String	String dir, String[] record	Объединяет метеорологические данные в один файл
addBandToWeateh rDataset	private	void	String name, Dataset dataset, String projectedName, int bandName	Добавляет слой метеорологических данных в общий файл
changeResolutionA ndBorders	private	Dataset	Dataset dataset, String path	Изменяет разрешение и географические границы данных
propagate	public	void	-	Распространение огня на городской и лесной территории
presentResult	private	void	-	Сохраняет результат моделирования
initSpatialReferenc e	private	void	-	Определяет UTM проекцию по координатам территории
defineAreaSize	private	void	-	Определяет размер территории в ячейках

Таблица 3.9. - Описание полей класса Маіп

Поля							
Имя	Модификатор Тип Назначение						
	доступа						

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Таблица 3.10. – Описание методов класса Маіп

	Методы				
Имя	Модифика тор доступа	Тип данных	Аргум енты	Назначение	
main	public	void	String[] args	Запуск моделирования	

Таблица 3.11. - Описание полей класса UrbanArea

	Поля						
Имя	Модификатор доступа	Тип	Назначение				
width	package private	int	Ширина территории				
length	package private	int	Длина территории				
side	package private	int	Сторона ячейки				
inputData	package private	InputData	Входные данные и параметры моделирования				
areaVectorPath	package private	String	Путь к векторным данным расположения зданий				
areaRasterPath	package private	String	Путь к растеризованным данным расположения зданий				
urbanCells	package private	UrbanCell[][]	Ячейки городской территории				
states	package private	UrbanStates	Состояния ячеек городской территории				
random	package private	Random	Генератор случайных чисел				

Таблица 3.12. – Описание методов класса UrbanArea

Методы				
Имя	Модифика тор доступа	Тип данных	Аргументы	Назначение
initUrbanCells	private	void	-	Инициализация ячеек территории

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

rasterizeBuildingM ap	private	void	-	Растреизирует векторные данные расположения зданий
propagate	public	void	double step	Моделирует распространение огня по модели город - город
rotatedCoords	private	double[]	double pointX, double pointY, double originX, double originY, double angle	Поворачивает координаты объекта на некоторый угол
extractBuildings	private	void	InputData inputData, SpatialReferen ce spatialReferen ceUTM	Выделяет из .OSM файла данные о расположении зданий и сохраняет их во временный SHP файл
propagateInForest	public	void	ForestCell[][] cells	Рапсростраение пожара от городской территории на лесную
updateStates	public	void	-	Обновление состояний ячеек города
printUrbanStatistic s	public	void	-	Вывод статистики состояний ячеек на определенный момент времени
setWeatherData	public	void	String weatherDataPa th	Определяет погодные условия в ячейках
generatePaths	private	String[]	String path, String name	Генерирует пути временных файлов
changeResolutionA ndBorders	private	Dataset	Dataset dataset, String path	Изменяет разрешение и географические границы данных

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

changeProjection	private	Dataset	Dataset	Изменяет проекцию данных
			dataset, String	
			path	
			_	

Таблица 3.13. - Описание полей класса UrbanCell

Поля			
Имя	Модификатор доступа	Тип	Назначение
weather	package private	double	Описывает погодные условия
geometry	package private	String	Описывает геогеометричсекие характеристики ячейки в формате WKT
windVelocity	package private	double	Описывает скорость ветра
windAngle	package private	double	Описывает направление ветра
state	package private	UrbanStates	Состояние ячейки
side	package private	double	Сторона ячейки
ignitionProbabaility	package private	double	Вероятность загореться
innerTime	package private	double	Время внутреннего грения

Таблица 3.14. – Описание методов класса UrbanCell

Методы					
Имя	Модифика тор доступа	Тип данных	Аргументы	Назначение	
calculateGeometry	private	Geometry	double x, double y	Рассчитывает геомтеричсекие характеристики ячейки	
fireSpreadOnUrban	public	void	double step, UrbanStates[][] states,	Распространение огня между клетками города	

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

			random rand, int i, int	
developIgnition	public	void	double step, UrbanStates[][] sates, Random rand, int i, int j	Развитие пожара после поджога ячейки для состояния IGNITION
developFlashover	public	void	double step, UrbanStates[][] states, Random rand, int i, int	Развитие пожара в ячейке в состоянии FLASHOVER
fireSpreadOnForest	public	void	ForestCell[][] cells, int i, int j, int width, int length	Распространение пожара от городской клетки на лесную
addIgnitionProbabi lity	public	void	double v	Добавляет к вероятности ячейки загореться вероятность, обусловленную влиянием определенной ячейки

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата
				дата

приложение 4

Таблица 4.1. – Описание классов подсистемы визуализации

Класс	Назначение
Application	Класс запуска приложения
UIWindows	Класс главного окна приложения
UIElement	Класс, представляющий окно приложения
AddLayerWindow	Класс окна добавления слоя
ModelSttingsWindow	Класс окна настройки модели
MapView	Класс работы с картой
Layer	Класс слоя
RasterLayer	Класс растрового слоя
VectorLayer	Класс векторного слоя

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

приложение 5

Таблица 5.1. – Описание методов класса Application

Методы					
Имя	Модификатор доступа	Тип значения	Аргументы	Назначение	
run			-	запуск приложения	

Таблица 5.2. – Описание методов класса UIWindow

Название	Аргументы	Назначение
initialize_menubar		Инициализирует компоненты меню
show_layer_context_menu	QPoint	Отображает контекстное меню для списка слоев и обеспечивает работу с ним
show_add_raster_layer_window		Отображает окно добавления растрового слоя
show_add_vector_layer_window		Отображает окно добавления векторного слоя
show_launch_model_window		Отображает окно настроек моделирования
update_layers_list		Обновляет список слоев
show_layer_list		Отображает слои приложения
show_message	String, String, QIcon	Задает текст и вид всплывающих сообщений
hide_layers		Скрывает список доступных слоев
remove_layer		Удалят слой

Таблица 5.3. – Описание методов класса UIElement

Название	Аргументы	Назначение

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

Таблица 5.4. – Описание методов класса AddLayerWindow

Название	Аргументы	Назначение
initialize		Инициализация действий при нажатии кнопок
open_vector_file		Выбор векторного файла
open_raster_file		Выбор растрового файла
show		Инициализация полей окна значениями по умолчанию
hide		Скрыть окно
add_raster_layer		Добавление растрового слоя
add_vector_layer		Добавление векторного слоя

Таблица 5.4. – Описание методов класса ModelSettingWindow

Название	Аргументы	Назначение
initialize		Инициализация действий при нажатии кнопок
show		Инициализация полей окна значениями по умолчанию
open_text_file		Выбор текстового файла
open_raster_file		Выбор растрового файла
open_osm_file		Выбор векторного файла
jarWrapper	*args	Запуск кода модели
launch_model		Запуск модели и отображение результата моделирования
hide		Скрыть окно

Таблица 5.5. – Описание методов класса MapView

Название	Аргументы	Назначение
has_layer	String, Layer	Проверяет, есть ли в списке слоев слой с данным названием

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

add_raster_layer	String, double[] double[]	Добавить растровый слой на карту
add_vector_layer	String, String	Добавить векторный слой на карту
check_layer_name	String	Проверяет корректность названия слоя
set_visible	String, boolean	Сделать слой видимым
bring_to_back	String	Поместить слой назад
bring_to_front	String	Поместить слой вперед

Таблица 5.6. – Описание методов класса Layer

Название	Аргументы	Назначение

Таблица 5.7. – Описание методов класса RasterLayer

Название	Аргументы	Назначение

Таблица 5.8. – Описание методов класса VectorLayer

Наз	вание	Аргументы	Назначение

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Изм.	Но	мера лис	тов (ст	раниц)	Всего	$N_{\underline{0}}$	Входящий №	Подпись	Дата
	измене	заменен	новых	аннулиров			сопроводитель		
	нных	ных		анных	(страниц)		ного		
					В		документа и		
					документе		дата		

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.13-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и
				дата