

ML & QUANT RESEARCHER

baykal@alum.mit.edu | baykalc.github.io | linkedin.com/in/cenkbaykal | Google Scholar

EDUCATION

Massachusetts Institute of Technology

Ph.D. IN COMPUTER SCIENCE (GPA: 5.00/5.00)

• Minor: Probability in High Dimension (Mathematics)

• Thesis: Sampling-based Algorithms for Fast and Deployable Al

· Advisor: Daniela Rus

Massachusetts Institute of Technology

S.M. IN COMPUTER SCIENCE (GPA: 4.91/5.00)

• Thesis: Algorithms for Persistent Autonomy and Surveillance

• Advisor: Daniela Rus

University of North Carolina at Chapel Hill

B.S. Computer Science with Highest Honors, B.A. Mathematics (GPA: 3.91/4.00)

· Graduated with Highest Distinction

• Thesis: Design Optimization Algorithms for Concentric Tube Robots

· Advisor: Ron Alterovitz

EXPERIENCE

Two Sigma New York City, NY

QUANTITATIVE RESEARCHER July 2024 - Present

- Design systematic alpha strategies that combine alternative data and market microstructure signals
- Build and maintain Python/pandas/NumPy research tooling to accelerate signal evaluation and backtesting
- · Partner with portfolio managers to translate promising research prototypes into production pilots
- · Advanced two production-pilot alpha strategies through signal review with double-digit annualized bps uplift in out-of-sample tests

Google Research Cambridge, MA

RESEARCH SCIENTIST

- Developed conditional computation algorithms for transformers that enabled up to 30% speedups on Large Language Models (LLMs)
- Designed data-efficient knowledge distillation strategies that led to improved transformer architectures with only 50% of teacher labeling cost
- Mentored scholars in Google CSRMP, supporting project design and research execution for students from historically marginalized groups
- Received the 2023 Google Research Tech Impact Award for leading "high-impact projects made sustainable by achieving tech excellence and great team dynamics"
- · Received a Google Spot Bonus for "critical contributions to the efficiency of compact Gemini models"

Massachusetts Institute of Technology

Cambridge, MA

January 2022 - June 2024

Post-poc

September 2021 - January 2022

· Worked on algorithms for privacy-aware and efficient Machine Learning

JP Morgan New York City, NY

Al Research Intern

May 2021 - September 2021

· Developed sampling-based algorithms with regret guarantees for large-scale graph neural network training

Massachusetts Institute of Technology

Cambridge, MA

Cambridge, MA

Cambridge, MA

Chapel Hill, NC

2015-2017

2011-2015

2017-2021

TEACHING ASSISTANT FOR ADVANCED ALGORITHMS (6.854J / 18.415J)

Fall 2019

- · Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments
- TA rating according to the official MIT subject evaluation report: 7.0/7.0

NC

EARLIER INDUSTRY & TEACHING EXPERIENCE

2012 - 2015

- · Shipped SQL Server compression optimizations and analytics tooling deployed across academic and enterprise users
- Led robotics and transportation research initiatives and created instructional content supporting UNC computer science programs

HONORS & AWARDS

2024	Google Spot Bonus, For critical contributions to the efficiency of compact Gemini models	Google
2023	Google Research Tech Impact Award, For contributions to ML efficiency techniques	Google
2023	NeurIPS Spotlight Paper, Alternating Updates for Efficient Transformers	NeurlPS
2021	Winner, MIT The Engine's Interval Program (one of two winning teams)	MIT
2021	Expert Reviewer, International Conference on Learning Representations	ICLR
2021	Expert Reviewer, International Conference on Machine Learning	ICML
2020	Expert Reviewer, International Conference on Learning Representations	ICLR
2020	Top 10% of Reviewers, Neural Information Processing Systems	NeurlPS
2017	RSS Best Paper Award, Robotics: Science and Systems Conference	RSS@MIT
2015	Carolina Research Scholar, University of North Carolina at Chapel Hill	UNC
2015	Finalist, CRA Outstanding Undergraduate Researcher Award	CRA
2014	Phi Beta Kappa, University of North Carolina at Chapel Hill	UNC
2014	Charles H. Dunham Scholarship, SAS-funded scholarship at UNC	UNC
2014	Dunlevie Honors Undergraduate Award, University of North Carolina at Chapel Hill	UNC
2014	Summer Undergraduate Research Fellowship, University of North Carolina at Chapel Hill	UNC
2012-2015	Honors Carolina, UNC Honors Program	UNC
2011-2015	Dean's List, University of North Carolina at Chapel Hill	UNC

SELECTED PUBLICATIONS

EFFICIENT TRANSFORMERS & DISTILLATION

Alternating Updates for Efficient Transformers (Spotlight) CENK BAYKAL, DYLAN CUTLER, NISHANTH DIKKALA, NIKHIL GHOSH, RINA PANIGRAHY, XIN WANG	NeurlPS 2023
SLAM: Student-label Mixing for Distillation with Unlabeled Examples Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, Cenk Baykal, Gaurav Menghani, Erik Vee	NeurlPS 2023
Robust Active Distillation Cenk Baykal, Khoa Trinh, Fotis Iliopoulos, Gaurav Menghani, Erik Vee	ICLR 2023
Weighted Distillation with Unlabeled Examples Vasilis Kontonis, Fotis Iliopoulos, Cenk Baykal, Gaurav Menghani, Khoa Trinh, Erik Vee	NeurlPS 2022
Model Compression & Pruning	
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, DANIELA RUS	SIAM SIMODS 2022
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, Daniela Rus	MLSys 2021
Provable Filter Pruning for Efficient Neural Networks Lucas Liebenwein*, Cenk Baykal*, Harry Lang, Dan Feldman, Daniela Rus	ICLR 2020

CORESETS & THEORY

Coresets for Support Vector Machines

Generalization Bounds	ICLR
Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Dan Feldman, Daniela Rus	2019
ROBOTICS	
Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guarantees	Robotics: Science and Systems
Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Sertac Karaman, Daniela Rus	2018
Asymptotically Optimal Design of Piecewise Cylindrical Robots using Motion Planning (Best Paper Award)	Robotics: Science and Systems
Cenk Baykal, Ron Alterovitz	2017

Data-Dependent Coresets for Compressing Neural Networks with Applications to