Computer Vision

Class 11

Raquel Frizera Vassallo

Summary

- Image Rectification
- 3D reconstruction from general stereo system through rectification

Image Rectification

General case

Usually the cameras are not disposed like a Rectified System.

General case

In such systems the epipolar lines are neither horizontal nor parallel.

$$z_2 \mathbf{u_2} = K_2 (R_{21} (z_1 K_1^{-1} \mathbf{u_1}) + \mathbf{t_{21}})$$

General case

We have seen that we can find correspondences by traversing the epipolar line.

- Lines are diagonal \rightarrow not ideal to compare pixel windows
- Images with different orientation also make it difficult

The solution to such problem is the image rectification.

The solution to such problem is the image rectification.

But, how to obtain the matrices T_1 and T_2 ?

1:
$$\vec{b} = \mathbf{O_2} - \mathbf{O_1}$$

2:
$$\vec{\mathbf{v}}_x = \frac{\vec{b}}{\|\vec{b}\|_2}$$

3:
$$\vec{\mathbf{v}}_y = \frac{\vec{z} \times \vec{\mathbf{v}}_x}{\|\vec{z} \times \vec{\mathbf{v}}_x\|_2}$$

4:
$$\vec{\mathbf{v}}_z = \frac{\vec{\mathbf{v}}_x \times \vec{\mathbf{v}}_y}{\|\vec{\mathbf{v}}_x \times \vec{\mathbf{v}}_y\|_2}$$

$$5: R_{R1} = \begin{bmatrix} \vec{\mathbf{v}}_x^{\mathrm{T}} \\ \vec{\mathbf{v}}_y^{\mathrm{T}} \\ \vec{\mathbf{v}}_z^{\mathrm{T}} \end{bmatrix}$$

$$T_1 = KR_{R1}K^{-1}$$
$$T_2 = KR_{R1}R_{12}K^{-1}$$

$$z_R \mathbf{u_{1R}} = z_1 T_1 \mathbf{u_1}$$

$$z_R \mathbf{u_{2R}} = z_2 T_2 \mathbf{u_2}$$

$$z_R \mathbf{u_{1R}} = z_1 \overline{T_1 \mathbf{u_1}}$$
$$z_R \mathbf{u_{2R}} = z_2 T_2 \mathbf{u_2}$$

$$\begin{bmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{bmatrix} = T_1 \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}$$

$$z_R \mathbf{u_{1R}} = z_1 T_1 \mathbf{u_1}$$

$$z_R \mathbf{u_{2R}} = z_2 T_2 \mathbf{u_2}$$

$$\begin{bmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{bmatrix} = T_1 \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} z_R u_{1R} \\ z_R v_{1R} \\ z_R \end{bmatrix} = \begin{bmatrix} z_1 \alpha_1 \\ z_1 \beta_1 \\ z_1 \gamma_1 \end{bmatrix}$$

$$z_R \neq z_1$$

$$z_R \mathbf{u_{1R}} = z_1 \overline{T_1 \mathbf{u_1}}$$

$$z_R \mathbf{u_{2R}} = z_2 T_2 \mathbf{u_2}$$

$$\begin{bmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{bmatrix} = T_1 \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} z_R u_{1R} \\ z_R v_{1R} \\ z_R \end{bmatrix} = \begin{bmatrix} z_1 \alpha_1 \\ z_1 \beta_1 \\ z_1 \gamma_1 \end{bmatrix}$$

$$z_R = \gamma_1 z_1$$

Rectification (advantages)

Advantages of image pair rectification are:

- fix the orientation of the windows;
- computational gain (less computational intensive).

Example 5

- Rectifying an image pair.

Rectification (good cases)

Rectification requires that the relative movement between the cameras is not predominantly foward.

Rectification (bad cases)

Rectification requires that the relative movement between the cameras is not predominantly foward.

Interesting things!

3D Cross eyed.

3D crosseyed tutorial: http://www.starosta.com/3dshowcase/ihelp.html.

Interesting things!

3D Cross eyed for the "spot the seven errors" game.

Source: https://renklisheyler.files.wordpress.com/2012/05/jfira.jpg?w=700.

Rectifying images and Reconstruction

Goal: find u_1 and u_2 , since $(u_1, u_2) \rightarrow z$.

Goal: find u_1 and u_2 , since $(u_1, u_2) \rightarrow z$.

Goal: find u_1 and u_2 , since $(u_1, u_2) \rightarrow z$.

1st Step: Image rectification

Stack each pixel coordinate horizontally:

Goal: find u_1 and u_2 , since $(u_1, u_2) \rightarrow z$.

1st Step: Image rectification

Stack each pixel coordinate horizontally:

- Compute T_1 and T_2 , then rectify the image pair (warp)

$$\mathbf{Z}_{R1} = \begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \dots & \gamma_{307.200} \end{bmatrix} \mathbf{Z}_1 = T_1(3,:) \mathbf{U}_1 \mathbf{Z}_1$$
$$\begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \dots & \gamma_{307.200} \end{bmatrix} = T_1(3,:) \mathbf{U}_1$$

Remember the relation between z_1 and z_{R1}

Goal: find u_1 and u_2 , since $(u_1, u_2) \rightarrow z$.

2nd Step: Find correspondences between I_1 and I_2

For each point in U_{R1} define the initial and final points in the epipolar lines of the second image to search for the correspondent points U_{R2}

$$U_{R2\,ini} = U_{R1} + \frac{bfs_x}{z_{ini}}$$

$$U_{R2\,final} = U_{R1} + \frac{bf\,s_x}{z_{final}}$$

- For each u_{R1} in U_{R1} find:

$$u_{\scriptscriptstyle R2} = \mathrm{matching}(u_{\scriptscriptstyle R2\mathrm{ini}}, u_{\scriptscriptstyle R2\mathrm{final}}, v_{\scriptscriptstyle 1}, I_{\scriptscriptstyle 1}, I_{\scriptscriptstyle 2})$$

- Then:

$$z_R = \frac{bfsx}{(u_{R1} - u_{R2})}$$
$$z_1 = \frac{z_R}{\gamma 1}$$

Goal: find u_1 and u_2 , since $(u_1, u_2) \rightarrow z$.

3rd Step: Recover the 3D points

For each pair u_{R1} and u_{R2} find z_{R2} :

$$z_R = \frac{bf s_x}{(u_{R1} - u_{R2})}$$

- Then:

$$z_1 = \frac{z_R}{\gamma 1} \qquad \qquad \mathbf{X}_1 = z_1 \ K^{-1} \mathbf{u}_1$$

Obtain original z_1 from z_R

Final scenario

Credits

- Andrea Fusiello. **Tutorial on rectification of stereo images.**http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO/tuto
 rial.html
- A. Fusiello, E. Trucco and A. Verri. **Epipolar rectification.** http://www.diegm.uniud.it/fusiello/demo/rect/