

Introdução à Investigação Operacional

1º Teste - 30 de outubro de 2019

Duração: 90 minutos

Justifique convenientemente as suas respostas.

Responda a este grupo no Caderno de Teste e numere a Folha com o nº 4

4

Numa fábrica existem 3 máquinas diferentes que podem ser usadas no fabrico de um pesticida. Cada máquina pode trabalhar com uma velocidade baixa, média ou alta(*). Quanto maior for a velocidade, maior é a produtividade da máquina, ainda que o custo de funcionamento também seja superior devido ao maior consumo de energia.

(*) Por limitações técnicas a máquina 2 não pode trabalhar a alta velocidade.

Os custos de funcionamento de cada máquina (em unidades monetárias (u.m.)) e a sua capacidade de produção (em kg) dependem da sua velocidade e encontram-se registados na tabela seguinte:

Máquina	Velocidade	Custo de funcionamento diário (u.m.)	Capacidade de produção diária (kg)
	Baixa	80	110
1	Média	100	180
	Alta	130	190
2	Baixa	10	50
2	Média	30	80
	Baixa	40	20
3	Média	60	40
	Alta	70	50

Por outro lado, é necessário assegurar que a quantidade de pesticida produzida diariamente não seja inferior a 180 kg/dia.

Sabe-se ainda que se a máquina 2 funcionar, a máquina 3 deverá funcionar também.

a) Sabendo que se pretende determinar o modo de funcionamento das máquinas de forma a ser minimizado o custo total diário de funcionamento, formule este problema como um modelo de Programação Linear que poderá incluir variáveis inteiras e/ou binárias.

(2.0)

b) Adicionalmente sabe-se que as máquinas em funcionamento não podem estar todas reguladas para funcionar à mesma velocidade.

Indique, de forma clara, que alterações seria necessário introduzir em **a)** de modo a contemplar esta exigência utilizando Programação Linear.

(1.0)

O grupo II terá de ser respondido exclusivamente na Folha de Resposta!

Ш

Considere o problema de Programação Linear Q

Max G =
$$2x + 3y + z$$

sujeito a: $x + y + 5z \le 15$
 $-x + 3y - z \ge 10$
 $x - y \ge 2$
 $x, y, z \ge 0$

a) Sabe-se que a solução ótima de Q é (x*, y*, z*) = (8.5, 6.5, 0). Recorrendo à formulação matricial do Simplex escreva o quadro ótimo do Simplex.

(1.5)

$$\begin{bmatrix} 1 & 1 & 5 \\ -1 & 3 & -1 \\ 1 & -1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1/12 & 5/12 & 4/3 \\ 1/12 & 5/12 & 1/3 \\ 1/6 & -1/6 & -1/3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ -1 & 3 & 0 \\ 1 & -1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1/2 & 3/2 \\ 0 & 1/2 & 1/2 \\ 1 & -1 & -2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 3 & -1 \\ 1 & -1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/2 & 0 & -1/2 \\ 1 & -1 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 3/4 & -1/4 & 0 \\ 1/4 & 1/4 & 0 \\ 1/2 & -1/2 & -1 \end{bmatrix}$$

b) Admita que depois de se ter resolvido o problema Q, se tinha constatado um lapso: o termo independente da 1ª restrição não era 15, mas 1,5. Comente <u>cuidadosamente</u> a afirmação: "Com esta alteração, constataríamos que a anterior base ótima deixaria de ser admissível, pelo que precisaríamos de utilizar o Algoritmo Simplex Dual, que nos conduziria à solução ótima numa única iteração".

(1.0)

O grupo IV terá de ser respondido exclusivamente na Folha de Resposta!

INTRODUÇÃO À INVESTIGAÇÃO OPERACIONAL

1º Teste

30 de outubro de 2019

Nome:	N٥	Curso	
		 _	

II

O Grupo II deverá ser respondido EXCLUSIVAMENTE nesta Folha de Resposta!

Considere o problema de Programação Linear P, cuja região admissível se começou a esboçar:

Min F =
$$3 \times - Y$$

Sujeito a $-X + Y \le 4$
 $X + 3Y \ge 6$
 $3 \times + Y \le 24$
 $X, Y \ge 0$

Selecione com X as AFIRMAÇÕES VERDADEIRAS. A indicação de afirmações Falsas será penalizada.

- a) A solução ótima deste problema (X*, Y*) é igual a:
 - \square (0, 2)
- $\square (0,4) \qquad \square (8,0)$
- ☐ (5 , 9)
- b) Admita que o termo independente da 1^a restrição passa a ser α . Qual o valor mínimo de α de modo a que o problema de PL resultante tenha solução ótima?
 - 0

- 6

- 8

- 4
- c) Considere novamente o o conjunto das três restrições do enunciado acima. Se a função objetivo passar a ser **Min** G = 3 X + Y, o problema de PL resultante:
- \square não tem solução ótima finita; \square tem uma única solução ótima; \square tem infinitas soluções ótimas.
- PODE UTILIZAR O VERSO PARA RASCUNHO. NÃO SERÁ CORRIGIDO! (1.5)

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA Departamento de Matemática	INTRODUÇÃO À INVESTIGAÇÃO OPERACIONAL 1º Teste 30 de outubro de 2019
Nome:	Nº Curso

IV

O Grupo IV deverá ser respondido EXCLUSIVAMENTE nesta Folha de Resposta!

1 - Considere o Problema de Transportes, que se esquematiza no Quadro seguinte e a solução S:

Face às informações disponibilizadas, selecione com **X** as **AFIRMAÇÕES VERDADEIRAS**. A indicação de afirmações Falsas será penalizada.

☐ S é uma solução que garante a minimização do custo.
O valor ótimo de X _{F1 C} pode ser nulo.
O valor ótimo de X _{F1 C} só pode ser igual a 70.
O valor ótimo de X _{F1 C} não é 0 nem 70.
☐ Neste problema, o número de variáveis positivas numa solução ótima é sempre igual a 4.
Neste problema, o nú mero de variáveis positivas numa solução ótima pode ser igual a 5.
☐ <u>Neste</u> problema, o número de variáveis positivas numa solução ótima pode ser igual a 6.
(1.5)

Questão IV - 2 no verso!

IV - 2 - Considere o problema de Programação Linear R

M... F =
$$5x + 4y + 3z$$

sujeito a: $2x + 3y + z \le 100$
 $8x + y + 4z \le 350$
 $2x + y + z \ge 90$
 $x, y, z \ge 0$

Sabe-se que uma solução ótima de R é $(x^*, y^*, z^*) = (43.333, 3.333, 0)$ com $F^* = 230$.

Com vista à resolução do problema de Programação Linear Inteira, resultante de R a que se acrescenta a condição de integralidade das variáveis x, y e z, utilizando o Algoritmo Branch and Bound, ramificou-se R, acrescentando-lhe a restrição $\mathbf{x} \leq \mathbf{43}$ – designemos este novo problema por R1 - tendo-se obtido a solução ótima de R1: $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{z}^*) = (\mathbf{43.0}, \mathbf{3.333}, \mathbf{0.667})$ com $F_{R1}^* = 230.333$.

Em seguida, ramificou-se R1, acrescentando-se restrição $y \le 3$ – designemos este novo problema por R2 - tendo-se constatado que R2 era impossível.

Retomando R1, acrescentou-se restrição y – designemos este novo problema por R3.

Face às informações disponibilizadas, selecione com **X** as **AFIRMAÇÕES VERDADEIRAS**. A indicação de afirmações Falsas será penalizada.

☐ Pretende-se Maximizar a função objetivo F, do problema R.
Para obter R3 acrescentou-se a restrição y ≥ 3 .
☐ Se a solução ótima de R3 for inteira, o valor ótimo da função objetivo pode ser igual a 230.
☐ Se a solução ótima de R3 for inteira e o valor ótimo da função objetivo for igual a 231, pode remos estar perante a solução ótima do problema de PLI.
☐ A solução ótima do problema de PLI poderá corresponder a um valor ótimo da função objetivo igual a 230.
☐ Mesmo que a solução ótima de R3 seja inteira e o valor ótimo da sua função objetivo seja igual a 231, o problema R ainda deveria ser ramificado com a adição de uma restrição relativa a x com vista à resolução do problema de PLI.

(1.5) O grupo IV terá de ser respondido exclusivamente na Folha de Resposta!