

Unit 2- SQL

Subject Code: 303105203

Prof. S.W.Thakare

Assistant Professor,

Computer science & Engineering

CHAPTER-2

SQL

Structured Query Language(SQL)

- SQL stands for Structured Query Language
- SQL lets you access and manipulate databases
- SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of the International Organization for Standardization (ISO) in 1987

What Can SQL do?

- SQL can execute queries against a database
- SQL can retrieve data from a database
- SQL can insert records in a database
- SQL can update records in a database
- SQL can delete records from a database
- SQL can create new databases
- SQL can create new tables in a database
- SQL can create stored procedures in a database
- SQL can create views in a database
- SQL can set permissions on tables, procedures, and views

SQL Commands

 SQL commands are instructions. It is used to communicate with the database. It is also used to perform specific tasks, functions, and queries of data.

Figure: 1.24 SQL Commands

(Image Source

Data Definition Language (DDL)

- DDL changes the structure of the table like creating a table, deleting a table, altering a table, etc.
- All the command of DDL are auto-committed that means it permanently save all the changes in the database.
- Here are some commands that come under DDL:
- 1. CREATE
- 2. ALTER
- 3. DROP
- 4. TRUNCATE

- 1. CREATE It is used to create a new table in the database.
- Syntax:
- CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]);
- Example:
- CREATE TABLE EMPLOYEE(Name VARCHAR2(20), Email VARCHAR2(100), DOB DATE);

- **2. DROP:** It is used to delete both the structure and record stored in the table.
- Syntax
- DROP TABLE ;
- Example
- DROP TABLE EMPLOYEE;

- **3. ALTER:** It is used to alter the structure of the database. This change could be either to modify the characteristics of an existing attribute or probably to add a new attribute.
- Syntax:
- To add a new column in the table
- ALTER TABLE table_name ADD column_name COLUMN-definition;
- To modify existing column in the table:
- ALTER TABLE MODIFY(COLUMN DEFINITION....);
- EXAMPLE:
- ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHAR2(20));
- ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20));

- **4. TRUNCATE:** It is used to delete all the rows from the table and free the space containing the table.
- Syntax:
- TRUNCATE TABLE table_name;
- Example:
- TRUNCATE TABLE EMPLOYEE;

Data Manipulation Language (DML)

- DML commands are used to modify the database. It is responsible for all form of changes in the database.
- The command of DML is not auto-committed that means it can't permanently save all the changes in the database. They can be rollback.
- Here are some commands that come under DML:
- 1. INSERT
- 2. UPDATE
- 3. DELETE

Data Manipulation Language (DML Commands)

- 1. INSERT: The INSERT statement is a SQL query. It is used to insert data into the row of a table.
- Syntax:
- INSERT INTO TABLE_NAME (col1, col2, col3,.... col N)
 VALUES (value1, value2, value3, valueN);
 Or
 INSERT INTO TABLE_NAME
 VALUES (value1, value2, value3, valueN);
- For example:
- INSERT INTO BOOK (Author, Subject) VALUES ("Shital", "DBMS");

Data Manipulation Language (DML Commands)

- 2. **UPDATE:** This command is used to update or modify the value of a column in the table.
- Syntax:
- UPDATE table_name SET [column_name1= value1,...column_nameN = value
 N] [WHERE CONDITION]
- For example:
- UPDATE students SET User_Name = 'Shital WHERE Student_Id = '3'

Data Manipulation Language (DML Commands)

- **3. DELETE:** It is used to remove one or more row from a table.
- Syntax:
- DELETE FROM table_name [WHERE condition];
- For example:
- DELETE FROM Book WHERE Author="Shital";

Data Control Language(DCL)

- DCL commands are used to grant and take back authority from any database user.
- Here are some commands that come under DCL:
- 1. Grant
- 2. Revoke

Data Control Language(DCL Commands)

- **1. Grant:** It is used to give user access privileges to a database.
- Example
- GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;
- **2. Revoke:** It is used to take back permissions from the user.
- Example
- REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

Transaction Control Language (TCL)

- TCL commands can only use with DML commands like INSERT, DELETE and UPDATE only.
- These operations are automatically committed in the database that's why they cannot be used while creating tables or dropping them.
- Here are some commands that come under TCL:
- 1. COMMIT
- 2. ROLLBACK
- 3. SAVEPOINT

Transaction Control Language (TCL Commands)

- **1. Commit:** Commit command is used to save all the transactions to the database.
- Syntax:-COMMIT;
- Example:
- DELETE FROM CUSTOMERS WHERE AGE = 25;
- COMMIT;

Transaction Control Language (TCL Commands)

- **2. Rollback:** Rollback command is used to undo transactions that have not already been saved to the database.
- Syntax:-ROLLBACK;
- Example:
- DELETE FROM CUSTOMERS WHERE AGE = 25;
- ROLLBACK;

Transaction Control Language (TCL Commands)

- **3. SAVEPOINT:** It is used to roll the transaction back to a certain point without rolling back the entire transaction.
- Syntax:-SAVEPOINT SAVEPOINT_NAME;

Domain Types in SQL

Domain Types in SQL

- **char(n).** Fixed length character string, with user-specified length *n*.
- **varchar(n).** Variable length character strings, with user-specified maximum length n.
- int. Integer (a finite subset of the integers that is machine-dependent).
- **smallint.** Small integer (a machine-dependent subset of the integer domain type).
- **numeric(p,d).** Fixed point number, with user-specified precision of *p* digits, with *d* digits to the right of decimal point. (ex., **numeric**(3,1), allows 44.5 to be stores exactly, but not 444.5 or 0.32)
- **real, double precision.** Floating point and double-precision floating point numbers, with machine-dependent precision.
- **float(n).** Floating point number, with user-specified precision of at least *n* digits.

Domain Types in SQL

An SQL relation is defined using the create table command:

```
create table r (A_1 D_1, A_2 D_2, ..., A_n D_n, (integrity-constraint<sub>1</sub>), ..., (integrity-constraint<sub>k</sub>))
```

- r is the name of the relation
- each A_i is an attribute name in the schema of relation r
- D_i is the data type of values in the domain of attribute A_i
- Example:

```
create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))
```


Update Table in SQL

Updates to tables

- Insert
 - insert into instructor values ('10211', 'Smith', 'Biology', 66000);
- Delete
 - Remove all tuples from the student relation
 - delete from student
- Drop Table
 - drop table r
- Alter
 - alter table r add A D
 - where A is the name of the attribute to be added to relation r and D is the domain of A.
 - All exiting tuples in the relation are assigned null as the value for the new attribute.
 - alter table r drop A
 - where A is the name of an attribute of relation r
 - Dropping of attributes not supported by many databases.

Basic Query Structure

A typical SQL query has the form:

select $A_1, A_2, ..., A_n$ from $r_1, r_2, ..., r_m$ where P

- A_i represents an attribute
- \bullet R_i represents a relation
- P is a predicate.
- The result of an SQL query is a relation.

The select Clause

- The select clause lists the attributes desired in the result of a query
 - corresponds to the projection operation of the relational algebra
- Example: find the names of all instructors:

select name

from instructor

- NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)
 - E.g., $Name \equiv NAME \equiv name$
 - Some people use upper case wherever we use bold font.

- SQL allows duplicates in relations as well as in query results.
- To force the elimination of duplicates, insert the keyword distinct after select.
- Find the department names of all instructors, and remove duplicates

select distinct dept_name from instructor

The keyword all specifies that duplicates should not be removed.

select all dept_name from instructor

An asterisk in the select clause denotes "all attributes"

select *
from instructor

An attribute can be a literal with no from clause

select '437'

- Results is a table with one column and a single row with value "437"
- Can give the column a name using:

select '437' as FOO

An attribute can be a literal with from clause

select 'A' from instructor

 Result is a table with one column and N rows (number of tuples in the instructors table), each row with value "A"

- The select clause can contain arithmetic expressions involving the operation,
 +, -, *, and /, and operating on constants or attributes of tuples.
 - The query:

select ID, name, salary/12 from instructor

would return a relation that is the same as the *instructor* relation, except that the value of the attribute *salary* is divided by 12.

Can rename "salary/12" using the as clause:

select ID, name, salary/12 as monthly_salary

The where Clause

- The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.
- To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = 'Comp. Sci.'

- Comparison results can be combined using the logical connectives and, or, and not
 - To find all instructors in Comp. Sci. dept with salary > 80000

The from Clause

- The from clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- Find the Cartesian product instructor X teaches

select *
from instructor, teaches

- generates every possible instructor teaches pair, with all attributes from both relations.
- For common attributes (e.g., *ID*), the attributes in the resulting table are renamed using the relation name (e.g., *instructor.ID*)
- Cartesian product not very useful directly, but useful combined with whereclause condition (selection operation in relational algebra).

Modification of the Database

- Deletion of tuples from a given relation.
- Insertion of new tuples into a given relation
- Updating of values in some tuples in a given relation

Insertion

Add a new tuple to course

insert into course
 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

or equivalently

insert into course (course_id, title, dept_name, credits)
 values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

Add a new tuple to student with tot_creds set to null

insert into student
 values ('3003', 'Green', 'Finance', null);

Deletion

Delete all instructors

delete from instructor

- Delete all instructors from the Finance department delete from instructor where dept_name='Finance';
- Delete all tuples in the instructor relation for those instructors associated with a department located in the Watson building.

Updates

- Increase salaries of instructors whose salary is over \$100,000 by 3%, and all others by a 5%
 - Write two update statements:

```
update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;</pre>
```

- The order is important
- Can be done better using the case statement (next slide)

References

- [1] Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System Concepts, McGraw-Hill Education (Asia), Seventh Edition, 2019.
- [2] C. J. Date, A. Kannan and S. Swamynathan, An Introduction to Database Systems, Pearson Education, Eighth Edition, 2009.
- [3] Database Management Systems, CSE, DIET, https://www.darshan.ac.in/DIET/CE/GTU-Computer-Engineering-Study-Material
- [4] Database management systems by Raghu Ramakrishnan and Johannes Gehrke http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [5] Database management system tutorial, https://www.tutorialspoint.com/dbms/index.htm

DIGITAL LEARNING CONTENT

Parul[®] University

www.paruluniversity.ac.in