Today's announcements:

MP7 available, due 4/30, 11:59p. EC due 4/19. Code Challenge #4, 4/17, 9p, Siebel 0224.

This image reminds us of a	,		
which is one way we can impler	nent ADT		,
whose functions include	and	,	
whose running times are	<u> </u>		
This structure can be built in tim	ie .		

Running time?

Why do we need another sorting algorithm?

An example:

Let R be an equivalence relation on the set of students in this room, where $(s,t) \in R$ if s and t have the same favorite among {AB, FN, DJ, ZH, _____}.

Notation from math: $[__]_R = \{x : xR __\}$

One big goal for us: Given s and t we want to determine if sRt.

A Disjoint Sets example:

Let R be an equivalence relation on the set of students in this room, where $(s,t) \in R$ if s and t have the same favorite among {AB, FN, DJ, ZH, ____}.

7

- 1. Find(4)
- 2. Find(4) == Find(8)
- 3. If (!(Find(7)==Find(2))) then Union(Find(7),Find(2))

Disjoint Sets ADT

We will implement a data structure in support of "Disjoint Sets":

- Maintains a collection $S = \{s_0, s_1, \dots s_k\}$ of disjoint sets.
- Each set has a representative member.
- Supports functions: void MakeSet(const T & k);

void Union(const T & k1, const T & k2);

T & Find(const T & k);

A first data structure for Disjoint Sets:

Find:

Union:

A better data structure for Disjoint Sets: UpTrees

- if array value is -1, then we've found a root, o/w value is index of parent.
- x and y are in the same tree iff they are in the same set.

0	1	2	3

0	1	2	თ

0	1	2	3

A Disjoint Sets example:

Let R be an equivalence relation on the set of students in this room, where $(s,t) \in R$ if s and t have the same favorite among {AB, FN, DJ, ZH, PvZ}.

0	1	2	3	4	5	6	7	8	9
4	8	5	6	-1	-1	-1	-1	4	5

- 1. Find(4)
- 2. Find(4) == Find(8)
- 3. If (!(Find(7)==Find(2))) then Union(Find(7),Find(2))

A better data structure for Disjoint Sets:

```
int DS::Find(int i) {
   if (s[i] < 0) return i;
   else return Find(s[i]);
}</pre>
```

Running time depends on ______.

Worst case?

What's an ideal tree?

```
void DS::Union(int root1, int root2) {
    _____;
}
```

something to consider...

Smart unions:

Union by height:

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Union by size:

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Keeps overall height of tree as small as possible.

Increases distance to root for fewest nodes.

Both of these schemes for Union guarantee the height of the tree is ______.

Smart unions:

```
int DS::Find(int i) {
   if (s[i] < 0) return i;
   else return Find(s[i]);
}</pre>
```

```
void DS::UnionBySize(int root1, int root2) {
  int newSize = s[root1]+s[root2];
  if (isBigger(root1,root2)) {
    s[root2]= root1;
    s[root1]= newSize;
  }
  else {
    s[root1] = root2;
    s[root2]= newSize;
  }
}
```