Ejercicios de la sección 5.6 Cambios de Base en un espacio vectorial

(Ejercicios para hacer en clase: 2, 4, 6, 13, 15, 17.) (Ejercicios con solución o indicaciones: 1, 3, 5, 11, 12, 14, 16, 18.)

- ▶1. Sean $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ y $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ bases de un es- ▶11. pacio vectorial V, y supongamos que $\mathbf{b}_1 = 6\mathbf{c}_1 - 2\mathbf{c}_2$ y $\mathbf{b}_2 = 9\mathbf{c}_1 - 4\mathbf{c}_2.$
 - (a) Halla la matriz de cambio de base de \mathcal{B} a \mathcal{C} .
 - (b) Halla $[\mathbf{x}]_{\mathcal{C}}$ para $\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2$. (Usa el apartado
- ▶2. Sean $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ y $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ bases de un espacio vectorial V, y supongamos que $\mathbf{b}_1 = -\mathbf{c}_1 + 4\mathbf{c}_2$ y $\mathbf{b}_2 = 5\mathbf{c}_1 - 3\mathbf{c}_2.$
 - (a) Halla la matriz de cambio de base de \mathcal{B} a \mathcal{C} .
 - (b) Halla $[x]_C$ para $x = 5b_1 + 3b_2$.
- ▶3. Sean $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2\}$ y $\mathcal{W} = \{\mathbf{w}_1, \mathbf{w}_2\}$ bases de V, y sea Puna matriz cuyas columnas son los vectores de coordenadas $[\mathbf{u}_1]_{\mathcal{W}}$ y $[\mathbf{u}_2]_{\mathcal{W}}$. ¿Cuál de las siguientes ecuaciones es satisfecha por P para todo x en V?
 - (i) $[\mathbf{x}]_{\mathcal{U}} = P \cdot [\mathbf{x}]_{\mathcal{W}}$; (ii) $[\mathbf{x}]_{\mathcal{W}} = P \cdot [\mathbf{x}]_{\mathcal{U}}$.
- ▶4. Sean $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ y $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ bases de V, y sea $P = [[\mathbf{d}_1]_{\mathcal{A}} \ [\mathbf{d}_2]_{\mathcal{A}} \ [\mathbf{d}_3]_{\mathcal{A}}]$. ¿Cuál de las siguientes ecuaciones es satisfecha por P para todo \mathbf{x} en V?
 - (i) $[\mathbf{x}]_{\mathcal{A}} = P \cdot [\mathbf{x}]_{\mathcal{D}};$ $(ii)[\mathbf{x}]_{\mathcal{D}} = P \cdot [\mathbf{x}]_{\mathcal{A}}.$
- ▶5. Sean $\mathcal{A} = \{a_1, a_2, a_3\}$ y $\mathcal{B} = \{b_1, b_2, b_3\}$ bases para un espacio vectorial V, y supongamos que $a_1 = 4b_1 b_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$, y $\mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3$.
 - (a) Halla la matriz de cambio de coordenadas de ${\cal A}$ a \mathcal{B} .
 - (b) Halla $[x]_{B}$ para $x = 3a_1 + 4a_2 + a_3$.
- ▶6. Sean $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ y $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ bases para un espacio vectorial V, y supongamos que $\mathbf{f}_1 = 2\mathbf{d}_1 - \mathbf{d}_2 + \mathbf{d}_3$, $\mathbf{f}_2 = 3\mathbf{d}_2 + \mathbf{d}_3$, y $\mathbf{f}_3 = -3\mathbf{d}_1 + 2\mathbf{d}_3$.
 - (a) Halla la matriz de cambio de coordenadas de ${\mathcal F}$ a
 - (b) Halla $[\mathbf{x}]_{\mathcal{D}}$ para $\mathbf{x} = \mathbf{f}_1 2\mathbf{f}_2 + 2\mathbf{f}_3$.

En los ejercicios 7 a 10, sean $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ y $\mathcal{C} =$ $\{c_1, c_2\}$ bases para \mathbb{R}^2 . En cada ejercicio, halla la matriz de cambio de coordenadas (o cambio de base) de \mathcal{B} a \mathcal{C} y la matriz de cambio de coordenadas de C a B.

7.
$$\mathbf{b}_1 = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$, $\mathbf{c}_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\mathbf{c}_2 = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$

8.
$$\mathbf{b}_1 = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\mathbf{c}_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $\mathbf{c}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

9.
$$\mathbf{b}_1=\begin{pmatrix} -6\\-1 \end{pmatrix}$$
 , $\mathbf{b}_2=\begin{pmatrix} 2\\0 \end{pmatrix}$, $\mathbf{c}_1=\begin{pmatrix} 2\\-1 \end{pmatrix}$, $\mathbf{c}_2=\begin{pmatrix} 6\\-2 \end{pmatrix}$

10.
$$\mathbf{b}_1=\begin{pmatrix}7\\-2\end{pmatrix}$$
, $\mathbf{b}_2=\begin{pmatrix}2\\-1\end{pmatrix}$, $\mathbf{c}_1=\begin{pmatrix}4\\1\end{pmatrix}$, $\mathbf{c}_2=\begin{pmatrix}5\\2\end{pmatrix}$

En el ejercicio 11, \mathcal{B} y \mathcal{C} son bases de un espacio vectorial V. Indica para cada enunciado si es verdadero o falso. Justifica tus respuestas.

- - (a) Las columnas de la matriz de cambio de coordenadas $P_{\mathcal{C} \leftarrow \mathcal{B}}$ son vectores de $\mathcal{B}\text{-coordenadas}$ de los
 - (b) Si $V = \mathbf{R}^n$ y \mathcal{C} es la base canónica de \mathbf{R}^n , entonces $P_{\mathcal{C} \leftarrow \mathcal{B}}$ es la matriz de la función de coordenadas
 - (c) Las columnas de $P_{\mathcal{C} \leftarrow \mathcal{B}}$ son linealmente independientes.
 - (d) Si $V = \mathbb{R}^2$, $\mathcal{B} = \{b_1, b_2\}$, y $\mathcal{C} = \{c_1, c_2\}$, entonces la forma escalonada reducida de la matriz $[\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{b}_1 \ \mathbf{b}_2]$ es una matriz $[I \ P]$ donde P tiene la propiedad $[\mathbf{x}]_{\mathcal{B}} = P[\mathbf{x}]_{\mathcal{C}}$ para todo \mathbf{x} en V.

Los ejercicios 12 y 13 sirven para demostrar que la matriz de cambio de coordenadas es única y que sus columnas son las coordenadas de los vectores de la base vieja relativos a la nueva. $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ y \mathcal{C} son dos bases de un espacio vectorial V. Completa la demostración para cada paso escribiendo lo que sea adecuado en el espacio indicado.

- - (a) Dado un vector v en V, sabemos que exisien números x_1, \ldots, x_n tales que

$$\mathbf{v} = x_1 \, \mathbf{b}_1 + x_2 \, \mathbf{b}_2 + \cdots + x_n \, \mathbf{b}_n$$

porque_

(b) Si aplicamos la función de coordenadas $\mathbf{x}\mapsto [\mathbf{x}]_{\mathcal{C}}$ a

$$[\mathbf{v}]_{\mathcal{C}} = x_1[\mathbf{b}_1]_{\mathcal{C}} + x_2[\mathbf{b}_2]_{\mathcal{C}} + \dots + x_n[\mathbf{b}_n]_{\mathcal{C}}$$
 porque

(c) Esta ecuación puede escribirse en la forma

$$[\mathbf{v}]_{\mathcal{C}} = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \ \cdots \ [\mathbf{b}_n]_{\mathcal{C}}] \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix}$$
 (1)

por la definición de _

- (d) Esto muestra que para cada v en V, la matriz $P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} & \cdots & [\mathbf{b}_n]_{\mathcal{C}} \end{bmatrix}$ cumple $[\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot [\mathbf{v}]_{\mathcal{B}}$ (transforma las coordenadas de \mathcal{B} a \mathcal{C}) porque el vector en el miembro de la derecha de la ecuación (1) es
- ▶13. Supongamos que *Q* es cualquier matriz que transforma las coordenadas de \mathcal{B} a \mathcal{C} , es decir que cumple:

para cada
$$\mathbf{v}$$
 en V , $[\mathbf{v}]_{\mathcal{C}} = Q \cdot [\mathbf{v}]_{\mathcal{B}}$ (2)

- (a) Si ponemos \mathbf{b}_1 en lugar de \mathbf{v} en la ecuación (2), entonces la ecuación que resulta muestra que $[\mathbf{b}_1]_{\mathcal{C}}$ es la primera columna de Q porque
- (b) De manera similar, para k = 2, ..., n, la késima columna de Q es ___ ____ porque
- (c) Esto muestra que la matriz

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \ \cdots \ [\mathbf{b}_n]_{\mathcal{C}}]$$

es la única que satisface la ecuación (2).

▶14. Considera la matriz

$$P = \begin{pmatrix} 1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1 \end{pmatrix}$$

y los vectores

$$\mathbf{v}_1 = \begin{pmatrix} -2\\2\\3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -8\\5\\2 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -7\\2\\6 \end{pmatrix}.$$

- (a) Halla una base $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ de \mathbf{R}^3 tal que P sea la matriz de cambio de coordenadas de $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ a la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- *Pista:* ¿Qué representan las columnas de $P_{\mathcal{C} \leftarrow \mathcal{B}}$?
- (b) Halla una base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ de \mathbf{R}^3 tal que P sea la matriz de cambio de coordenadas de $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a la base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

En los ejercicios 15 a 18 $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ y $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ son dos bases de un espacio vectorial V tales que $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$, $\mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3$ y $T: V \to V$ es la aplicación lineal definida por: $T(\mathbf{a}_1) = -\mathbf{a}_2$, $T(\mathbf{a}_2) = \mathbf{a}_1 + \mathbf{a}_3$, $T(\mathbf{a}_3) = \mathbf{a}_1 - \mathbf{a}_3$.

- ▶15. Halla la matriz $P_{\mathcal{B}\leftarrow\mathcal{A}}$ de cambio de base de \mathcal{A} a \mathcal{B} .
- ▶16. Halla la matriz $[T]_{\mathcal{A}}$ de T relativa a la base \mathcal{A} y la matriz $[T]_{\mathcal{B}}$ relativa a la base \mathcal{B} .
- ▶17. Halla las \mathcal{B} -coordenadas del vector $\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3$.
- ▶18. Calcula, para el vector **x** del ejercicio anterior, $[T(\mathbf{x})]_{\mathcal{A}}$ y $[T(\mathbf{x})]_{\mathcal{B}}$.

Pistas y soluciones de ejercicios seleccionados de la sección 5.6

1. (a)
$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} \end{bmatrix} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix}$$
. (b) $[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$.

3. (ii)
$$[\mathbf{x}]_{\mathcal{W}} = P \cdot [\mathbf{x}]_{\mathcal{U}}$$
. (Porque $P = [[\mathbf{u}_1]_{\mathcal{W}} [\mathbf{u}_2]_{\mathcal{W}}] = P_{\mathcal{W} \leftarrow \mathcal{U}}$.)

5. (a)
$$P_{\mathcal{B}\leftarrow\mathcal{A}}=\left[\begin{bmatrix}\mathbf{a}_1\end{bmatrix}_{\mathcal{B}}&[\mathbf{a}_2]_{\mathcal{B}}&[\mathbf{a}_3]_{\mathcal{B}}\end{bmatrix}=\begin{pmatrix}4&-1&0\\-1&1&1\\0&1&-2\end{pmatrix}$$
. (b) $\begin{bmatrix}\mathbf{x}\end{bmatrix}_{\mathcal{B}}=P_{\mathcal{B}\leftarrow\mathcal{A}}\begin{bmatrix}\mathbf{x}\end{bmatrix}_{\mathcal{A}}=$

11. (a) Es al revés: Las columnas de $P_{\mathcal{C} \leftarrow \mathcal{B}}$ son vectores de \mathcal{C} -coordenadas de los vectores en \mathcal{B} , (b) Es al revés: $P_{\mathcal{C} \leftarrow \mathcal{B}}$ transforma las \mathcal{B} -coordenadas de un vector \mathbf{x} en sus \mathcal{C} -coordenadas (que son el propio \mathbf{x}), (c) Es la matriz de una aplicación lineal inversible, (d) Es al revés: P tiene la propiedad $P[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$.

12.

- (a) ... porque la base \mathcal{B} genera V.
- (b) ... porque la función de coordenadas es lineal.
- (c) ... por la definición de producto matriz por vector.
- (d) ... porque el vector en el miembro de la derecha de la ecuación (1) es el vector de \mathcal{B} -coordenadas de \mathbf{v} .

14. (a) Las columnas de P han de ser los vectores de coordenadas respecto a la base $\{\mathbf{v_1},\mathbf{v_2},\mathbf{v_3}\}$ de los vectores $\mathbf{u_1}$, $\mathbf{u_2}$ y $\mathbf{u_3}$. La primera columna de P son las coordenadas de $\mathbf{u_1}$, luego $\mathbf{u_1} = \mathbf{v_1} - 3\mathbf{v_2} + 4\mathbf{v_3} = \begin{pmatrix} -6 \\ -5 \\ 21 \end{pmatrix}$. De forma análoga $\mathbf{u_2} = \begin{pmatrix} -6 \\ -9 \\ 32 \end{pmatrix}$ y $\mathbf{u_3} = \begin{pmatrix} -5 \\ 0 \\ 3 \end{pmatrix}$. Otra forma de hacerlo es calculando la matriz $[\mathbf{u_1} \ \mathbf{u_2} \ \mathbf{u_3}] = [\mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3}] P$. (b) $[\mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3}] = [\mathbf{w_1} \ \mathbf{w_2} \ \mathbf{w_3}] P$, luego $[\mathbf{w_1} \ \mathbf{w_2} \ \mathbf{w_3}] = [\mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3}] P^{-1} = \begin{pmatrix} 28 & 38 & 21 \\ -9 & -13 & -7 \\ -3 & 2 & 3 \end{pmatrix}$.

$$\begin{aligned} \mathbf{16.} \ [T]_{\mathcal{A}} &= \left[\ [T(\mathbf{a}_1)]_{\mathcal{A}} \ \ [T(\mathbf{a}_2)]_{\mathcal{A}} \ \ [T(\mathbf{a}_3)]_{\mathcal{A}} \ \right] = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}. \\ [T]_{\mathcal{B}} &= P_{\mathcal{B} \leftarrow \mathcal{A}} [T]_{\mathcal{A}} P_{\mathcal{B} \leftarrow \mathcal{A}}^{-1} \\ &= \begin{pmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}^{-1} = \\ \frac{1}{2} \begin{pmatrix} 3 & 10 & 1 \\ -1 & -2 & 1 \\ -1 & -2 & -3 \end{pmatrix}. \end{aligned}$$

18.
$$[T(\mathbf{x})]_{\mathcal{A}} = [T]_{\mathcal{A}}[\mathbf{x}]_{\mathcal{A}} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ -3 \\ 3 \end{pmatrix}.$$
 $[T(\mathbf{x})]_{\mathcal{B}} = P_{\mathcal{B} \leftarrow \mathcal{A}}[T(\mathbf{x})]_{\mathcal{A}} = \begin{pmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 5 \\ -3 \\ 3 \end{pmatrix} = \begin{pmatrix} 23 \\ -5 \\ -9 \end{pmatrix}.$