Healthy Habits and Inequality

Dante Amengual* Jesús Bueren° Josep Pijoan-Mas[□]

*CEMFI

°EUI

CEMFI, CEPR

Very preliminary

Introduction

- Large body of research documenting economic inequality (wealth, consumption, income, wages)
- Growing interest in inequality in health outcomes
- Three important features of inequality in health outcomes
 - Inequality in health outcomes is large
 - It has an important socio-economic gradient
 - Much remains beyond the observed socio-economic gradient
- Economics research on health inequality typically focuses on its socio-economic gradient
 - → We will look at inequality in health outcomes more broadly

Inequality in lifespans

Table 1: Life expectancy and lifespan SD at age 25, year 2000

	White		Black		
	Females	Males	Females	Males	
Life Expectancy	55.8	51.1	51.6	45.3	
Lifespan SD	13.0	13.9	15.3	15.6	

Notes: Statistics reported from Sasson (Demography 2016).

Source: Death counts from U.S. Multiple Cause of Death and population from IPUMS

Inequality in lifespans

Table 1: Life expectancy and lifespan SD at age 25, year 2000

	White		Black		
	Females	Males	Females	Males	
Life Expectancy	55.8	51.1	51.6	45.3	
0-11	51.5	45.2	49.5	42.2	
12	55.6	50.0	50.4	43.9	
13-15	56.0	52.3	51.6	48.6	
16+	58.7	54.9	54.5	50.4	
Lifespan SD	13.0	13.9	15.3	15.6	

Notes: Statistics reported from Sasson (Demography 2016).

Source: Death counts from U.S. Multiple Cause of Death and population from IPUMS

Inequality in lifespans

Table 1: Life expectancy and lifespan SD at age 25, year 2000

	White		Black		
	Females	Males	Females	Males	
Life Expectancy	55.8	51.1	51.6	45.3	
0-11	51.5	45.2	49.5	42.2	
12	55.6	50.0	50.4	43.9	
13-15	56.0	52.3	51.6	48.6	
16+	58.7	54.9	54.5	50.4	
Lifespan SD	13.0	13.9	15.3	15.6	
0-11	16.1	16.5	17.6	17.2	
12	13.3	14.6	14.9	15.2	
13-15	12.4	13.4	14.1	15.0	
16+	11.9	12.2	14.0	14.3	

Notes: Statistics reported from Sasson (Demography 2016).

Source: Death counts from U.S. Multiple Cause of Death and population from IPUMS

Objectives

- Two main questions
 - What are the reasons behind health inequality?
 - How does health inequality connect with economic inequality?
- We conjecture that heterogeneity in <u>healthy habits</u> / <u>lifestyle</u> is an important driver of health inequality
 - Smoking, regular exercise, or healthy diet linked to better health outcomes
 Zaninotto, Head, Steptoe (2020); Li et al (2018)
 - Free access to medical care does not seem to matter much Aron-Dine, Einav, Finkelestein (JEP 2013); Finkelstein et al (NEJM 2016)

Objectives

- We seek to
 - Measure lifestyles and quantify its effects on health dynamics
 - Understand the determinants of different lifestyles
 - Make a connection between health and economic inequality
 - Quantify the economic costs of unhealthy lifestyles

What we do

1. Data

- We identify patterns in health behavior (preventive tests, substance abuse, obesity) driving health dynamics in both HRS and PSID
- We find that
 - Health behavior is well represented by three (unobserved) healthy habits types: protective, detrimental, and harmful
 - Large LE gradient: 12 years difference between protective and harmful
 - Healthy habits are correlated w/ education but carry independent information
 - Healthy habit gradient of similar size within education groups
 - Harmful types much more frequent among the less educated
 - Healthy habits explain 1/3 of the education gradient in life expectancy
 - Individuals holding harmful health behaviors tend to accumulate less wealth
 - And this is true within education groups

What we do

2 Model

- We build a life-cycle heterogeneous agents model with idiosyncratic labor market and health risks
 - Individuals differ in health habits and education as well as wealth and health
 - Health dynamics driven by previous estimates
 - Education and healthy habit choices taken together early in life
- Estimate the model
 - → Understand sources of heterogeneity across individuals
- Counterfactuals
 - → Understand role of healthy habits on economic inequality

Health Dynamics and Health Behavior

The Data

- The HRS provides an unbalanced panel of individuals i=1,...,N followed for t=1,...,T periods
- Standard demographic information: gender (g), education (e), age (a_t)
- Wide array of information on health status and health behavior
 - Health state (h_t) : self-reported health (good/bad)
 - Health behavior (z_{mt}) :
 - 1 Preventive cancer tests (mammography / prostate check)
 - 2 Cholesterol test
 - 6 Flu shot
 - 4 Heavy drinking (3+ drinks on the day they drink)
 - 5 Smoking
 - 6 Obesity

Latent types

- We assume that observed health behavior (z_{mt}) is the result of some unobserved time-invariant latent factor (y)
 - The latent factor is represented by a few discrete groups $y \in \{y_1, y_2, ...\}$.
- We interpret the latent factor (y) as the <u>lifestyle</u> / <u>healthy habit</u> type
- We propose an econometric model exploiting both the cross-sectional and the time-series dimension of our data to
 - Allocate individuals to healthy habit types
 - Measure the importance of healthy habit types on health dynamics

Econometric Model

Overview

- We jointly estimate health dynamics and healthy habits types
 - By estimating types and transition jointly, we find the types that better represent both the observed behaviour and the health transitions (vs. k-means clustering on habits and then transitions)
- Conditional on the healthy habit type (y)
 - Health behaviours (z_{mt}) are iid, modelled through a probit
 - Health outcomes (h_t) are markovian, modelled through a nested probit
- Estimation by maximum likelihood
 - Gibbs sampling algorithm to reduce the complexity of the full likelihood into smaller simpler blocks.

Econometric Model

1. Healthy Habits

- We model the probability of individual i of reporting the m'th behaviour $(z_{mt} = 1)$ at time t as a probit model.
 - There is a latent variable (z_{mt}^*) that depends on type (y), age (a_t) , and an idiosyncratic shock (ϵ_t)

$$z_{mt}^* = \gamma_{0,m,y} + \gamma_{1,m,y} a_t + \gamma_{2,m,y} a_t^2 + \epsilon_t, \quad \epsilon_t \sim N(0,1)$$

Then,

$$\operatorname{\mathsf{Prob}} \big(z_{mt} = 1 \big) = \operatorname{\mathsf{Prob}} \big(z_{mt}^* > 0 \big) = \underbrace{\alpha_m(y, a_t)}_{\alpha_{mt}}$$

 Considering independence of health behaviour given type, the probability of observing a sequence of health behaviours z for an individual across time, is given by:

$$p(\boldsymbol{z}|\boldsymbol{\alpha},y) = \prod_{t=1}^{T} \prod_{m=1}^{M} \alpha_{mt}^{z_{mt}} (1 - \alpha_{mt})^{1-z_{mt}}$$

Econometric Model

2. Health Dynamics

- We model the probability of reporting some health $h' \in \{Good, Bad, Dead\}$ next period as a <u>nested probit model</u>
 - 1 First nest: Alive/Dead
 - 2 Second nest: Good/Bad cond on survival
 - There are latent variables $(h_{h,h'}^*)$ that depend on gender (g), education (e), type (y), health (h), age (a), and an idiosyncratic shock $(\epsilon_{h'})$

$$h_{h,h'}^* = f(a, s, e, y; \boldsymbol{\beta}_{h,h'}) + \epsilon_{h'}$$

with,

$$f(a, g, e, y; \boldsymbol{\beta}_{h'}) = \beta_{0,y,e,g,h,h'} + \beta_{1,y,e,g,h,h'}a + \beta_{2,y,e,g,h,h'}a^2$$

- Then,

$$\begin{split} &\operatorname{Prob}\left(h' = Dead\right) = \operatorname{Prob}\left(h_{h,h' = Dead}^* > h_{h,h' = Alive}^*\right) \\ &\operatorname{Prob}\left(h' = Good\right) = \operatorname{Prob}\left(h_{h,h' = Alive}^* > h_{h,h' = Dead}^*, \ h_{h,h' = Good}^* > h_{h,h' = Bad}^*\right) \end{split}$$

Results: Healthy Habits

Figure 1: Probability of having a health habit by health behavior type as individuals age

Males

Table 2: Expected duration of each health state at age 25 across behavior types

Health Behavior	Fraction	Life Expectancy	=	Good Health	+	Bad Health
		Men: Dropo	uts			
Protective	31.2	49.4		34.9		14.4
Detrimental	35.2	48.0		33.7		14.2
Harmful	33.6	38.9		25.7		13.2
Average	-	45.2		31.3		13.9
Men: High-school						
Protective	40.3	54.8		51.2		3.6
Detrimental	33.8	52.1		48.4		3.8
Harmful	25.9	43.5		38.6		4.9
Average	-	50.3		46.2		4.1
Men: College						
Protective	58.9	58.2		56.5		1.7
Detrimental	30.6	54.2		52.4		1.8
Harmful	10.5	45.2		41.6		3.5
Average	-	53.8		51.5		2.3

Females

Table 3: Expected duration of each health state at age 25 across behavior types

Health Behavior	Fraction	Life Expectancy	=	Good Health	+	Bad Health	
	Women: Dropouts						
Protective	31.9	53.2		38.8		14.4	
Detrimental	42.1	50.4		28.2		22.2	
Harmful	26.0	41.7		23.7		18.1	
	20.0					-	
Average	-	47.7		29.7		18.0	
	Women: High-school						
Protective	45.7	58.3		54.5		3.8	
Detrimental	33.1	54.6		48.9		5.8	
Harmful	21.2	47.0		39.6		7.4	
Average	-	53.8		48.4		5.4	
Women: College							
Protective	59.1	61.4		59.8		1.7	
Detrimental	31.1	57.0		54.2		2.8	
Harmful	9.8	49.2		43.8		5.4	
Average	-	57.2		54.2		2.9	

- More educated individuals tend to adopt healthier habits.
 - The probability that a college male has a harmful health behavior is 3 times smaller that a dropout.
- If dropout males had the same proportion of health behavior types than college males, their life expectancy would increase by 2.6 extra years.
 - This corresponds to 31% of the observed difference in life-expectancy at age
 25 between college graduates males and high-school dropouts males.
- If dropout females had the same proportion of health behavior types than college females, their life expectancy would increase by 3.6 extra years.
 - This corresponds to 38% of the observed difference in life-expectancy at age
 25 between college graduates females and high-school dropouts females.
- To which extent can the observed correlation be explained by differences in preferences for education and/or health behaviors?

Types and economic outcomes

Asset Accumulation (males)

Figure 2: Median Assets across Health Behavior types in Thousand of Dollars (dotted line: protective; solid line: detrimental; dash line: harmful)

- Conditional on education, individuals with healthier habits tend to accumulate more wealth.
- Differences in wealth holdings across individuals of different health behavior types but same education category can be driven by:
 - Higher survival rates.
 - Less frequent unhealthy states: higher wages & lower medical expenses.
 - Unobserved heterogeneity shaping both saving behavior and healthy habits

The Model

Timing

- We follow closely De Nardi et al. (WP)
- A model period is one year.
- Each individuals lives at most T periods.
- During the first R-1 periods of life an individual chooses whether to work or not.
- At age R all individuals retire.

The Model

Health

- At age t, agent's i health $h_{i,t}$ can be either good $(h_{i,t}=1)$ or bad $(h_{i,t}=0)$
- Individual's health behavior type y_i can be protective $(y_i = 1)$ or detrimental $(y_i = 1)$
- Health evolves according to the process defined in the empirical section.

Working Age

- Working agents are heterogeneous with respect to:
 - discount factor (β)
 - education (e)
 - health behavior (y)
 - cash-on-hand (x_t)
 - health status (h_t)
 - persistent shock to earnings (ζ_t)
 - persistent shock to medical expenses (ξ_t)

Working Age

• Worker's problem can be written as:

$$V_{t}^{\beta,e,y}(x,h,\xi,\zeta) = \max_{c,k'} \left\{ u(c) + \beta s_{t}^{e,y}(h) \sum_{h'} \Gamma_{t}^{e,y}(h) \mathbb{E}_{\xi,\zeta} \left[V_{t+1}^{\beta,e,y}(x',h',\xi',\zeta') \right] + \beta \left(1 - s_{t}^{e,y}(h) \right) v(k') \right\}$$

subject to

$$k' = \mathbb{1}_{x > \underline{c}}(x - c)$$

$$x' = (1 + r) k' + w_t^e(\zeta', h') - m_t(\xi', h') + T(\underline{c})$$

$$T(\underline{c}) = \max\{0, \underline{c} - (1 + r) k' - lw_t^e(\zeta', h') + m_t(\xi', h')\}$$

$$\xi' = \rho_{\xi} \xi + \epsilon_{\xi}, \quad \epsilon_{\xi} \sim N(0, \sigma_{\xi})$$

$$\zeta' = \rho_{\zeta} \zeta + \epsilon_{\zeta}, \quad \epsilon_{\zeta} \sim N(0, \sigma_{\zeta})$$

Retirement

- Retired agents are heterogeneous with respect to:
 - discount factor (β)
 - education (e)
 - health behavior (y)
 - pension (ss)
 - wealth net of medical expenses (x_t)
 - health status (h_t)
 - persistent shock to medical expenses (ξ_t)
- Pension is determined from last persistent shock, education, and health behavior type.

Retirement

Retiree's problem can be written as:

$$\begin{split} V_{t}^{\beta,e,y,ss}(x,h,\xi) &= \max_{c,k'} \left\{ u(c) + \beta s_{t}^{e,y}(h) \sum_{h'} \Gamma_{t}^{e,y}(h) \ \mathbb{E}_{\xi} \left[V_{t+1}^{\beta,e,y.ss}(x',h',\xi') \right] \right. \\ &+ \beta \left(1 - s_{t}^{e,y}(h) \right) v(k') \Big\} \end{split}$$

subject to

$$k' = \mathbb{1}_{x > \underline{c}}(x - c)$$

$$x' = (1 + r) k' + ss - m_t(\xi', h') + T(\underline{c})$$

$$T(\underline{c}) = \max\{0, \underline{c} - (1 + r) k' - ss + m_t(\xi', h')\}$$

$$\xi' = \rho_{\xi} \xi + \epsilon_{\xi}, \quad \epsilon_{\xi} \sim N(0, \sigma_{\xi})$$

Formulation 1

- When young, individuals make once-and-for-all choices of:
 - Education $e \in \{e_1, e_2, e_3\}$
 - Lifestyle $y \in \{y_g, y_b\}$
- Individuals differ in
 - Discount factor $\beta \in \{\beta_i, \beta_2, ..., \beta_N\}$
 - Utility cost of studying $\theta \in \mathbb{R}_{++}$
 - Utility cost of good lifestyle $\eta \in \mathbb{R}_{++}$
 - They are potentially correlated:

$$(\log \theta, \log \eta) \sim N[\mu(\beta), \Sigma(\beta)]$$

- \rightarrow This gives 5 free parameters per β type
- Higher education and better lifestyle provide
 - Higher lifetime utility $V^{\beta,e,y}\left(\right)$
 - Higher flow utility cost $C^{\theta,\eta}(e,y)$

Formulation 1

Individuals chose the option with highest payoff

$$max_{e,y} \left\{ -C^{\theta,\eta}(e,y) + \beta \left[V_0^{\beta,e,y}(x_0,h_0,\zeta_0,\xi_0) \right] \right\}$$

With the cost function.

$$C^{\theta,\eta}\left(e,y\right) = \mathbb{I}_{e=e_{2}}\theta + \mathbb{I}_{e=e_{3}}\bar{\theta}\left(\beta\right)\theta + \mathbb{I}_{y=y_{g}}\eta$$

- With the extra parameter $\bar{\theta}(\beta)$ we have 6 parameters (per β type)
- And we have 5 statistics from the data (per β type): the frequency of people in each of the 6 states, which needs to add up to one
- Something should be normalized, like the mean of θ or η ?
- Then, the model-implied probability of each state can be obtained through the properties of the normal distribution and a NLES can be used to recover the parameters

Formulation 2

- When young, individuals make once-and-for-all choices of:
 - Education $e \in \{e_1, e_2, e_3\}$
 - Lifestyle $y \in \{y_g, y_b\}$
- Individuals differ in
 - Discount factor $\beta \in \{\beta_i, \beta_2, ..., \beta_N\}$
- In addition, every individual draws a specific utility cost $\epsilon_{e,y}$ of pursuing each option
 - They are potentially correlated: $\epsilon_{e,y} \sim N[\mu(\beta), \Sigma(\beta)]$
 - \rightarrow This gives 6+21 free parameters per β type
- Higher education and better lifestyle provide
 - Higher lifetime utility $V^{\beta,e,y}()$
 - Higher flow utility cost $\epsilon_{e,y}$

Formulation 2

Individuals chose the option with highest payoff

$$max_{e,y} \left\{ -\epsilon_{e,y} + \beta \left[V_0^{\beta,e,y} (x_0, h_0, \zeta_0, \xi_0) \right] \right\}$$

- Again, the model-implied probability of each state can be obtained through the properties of the normal distribution
- However, we have 6+21 free parameters for the same 5 statistics. It seems
 that all the variance-covariance matrix is redundant and we identify only 5
 means (with a normalization of the sixth one)
- How this formulation captures "correlation" between choices? Well, if $\mu_{e_1,y_g} \mu_{e_1,y_b}$ is larger than $\mu_{e_3,y_g} \mu_{e_3,y_b}$ it means that good lifestyle is more costly for e_1 -educated than for e_3 -educated individuals

Formulation 3

- When young, individuals make once-and-for-all choices of:
 - Education $e \in \{e_1, e_2, e_3\}$
 - Lifestyle $y \in \{y_g, y_b\}$
- Individuals differ in
 - Discount factor $\beta \in \{\beta_i, \beta_2, ..., \beta_N\}$
- In addition, every individual draws a specific utility value $\epsilon_{e,y}$ of pursuing each option
 - These shocks are Type-I Extreme Value
- Higher education and better lifestyle provide
 - Higher lifetime utility $V^{\beta,e,y}$ ()
 - Higher flow utility cost $C\left(e,y\right)$
 - Higher flow utility $\epsilon_{e,y}$

Formulation 3

Individuals chose the option with highest payoff

$$\max_{e,y} \left\{ \underbrace{-C\left(e,y\right) + \beta \left[V_0^{\beta,e,y}\left(x_0,h_0,\zeta_0,\xi_0\right)\right]}_{W^{\beta}\left(e,y\right)} + \epsilon_{ey} \right\}$$

• With the cost function.

$$C\left(e,y\right) = c_{e,y}$$

This gives 6 parameters

• Then, the fraction of individuals of type β taking each choice is,

$$q(e_i, y_j | \beta) = \frac{exp[W^{\beta}(e_i, y_j)]}{\sum_{e, y} exp[W^{\beta}(e, y)]}$$

- These are 5 statistics to identify 5 parameters c_{ey} (with one nromalized to zero)
- How does the correalation between choices appear? As in formulation 2: if $c_{e_1,y_g}-c_{e_1,y_b}$ is larger than $c_{e_3,y_g}-c_{e_3,y_b}$ it means that good lifestyle is more costly for e_1 -educated than for e_3 -educated individuals

Comments 1

- It seems that the 3 formulations are equivalent, but I am not 100% sure
- Formulation 3 is very convenient analytically, the c_{ey} can be recovered w/o non-linear equation solver

Comments 2

- Heterogeneity in β alone will generate perfect correlation between of β , e, y:
 - → more patient households find it optimal to invest more in their future
- How do we create mixing of lifestyle, education, and wealth?
 - 1) Heterogeneity in either θ or η separates β from e and y, but generates perfect correlation between e and y:
 - → investments in education and lifestyle are strong complements (higher lifetime income means investing in health is more profitable and longer life expectancy means that investing in education is more profitable)
 - 2) Heterogeneity in both θ or η may help mix e and y
- If we allow for a flexible initial distribution of β, θ, η (with a free variance-covariance matrix), we may not need the extreme-value shocks
 - How tractable is a joint log-normal distribution?