Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022		
Team ID	PNT2022TMID11911		
Project Name	IOT Based Smart Crop Protection System for		
	Agriculture		
Maximum Marks	4 Marks		

Functional Requirements:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	Resource discovery	The specifications define the common services provided by the application service layer in IOT systems, referred to as common service functions. 'Discovery' is one of the defined CSFs which allow IOT entities to send discovery requests to search resources about applications and services.		
FR-2	Resource management	The resources considered in Table 1 include battery-time, memory usage, and other data related to application performance to make quality of service reliable. Although some parts of this requirement rely on its implementation of the 'Application and Service Layer Management' and 'Device Management' could probably support these requirements.		
FR-3	Data management	The 'Data Management and Repository' is responsible for providing data storage and management converting aggregated data into a specific format and preparing for further analytics such as semantic processing.		
FR-4	Event management	The 'Subscription and Notification' can manage subscription to the resources hosted in the platform, and can provide notification containing the changes on the resources to the address where the subscriber wants to receive them. Accordingly, application and services can acquire all the information about the proper events in real-time.		
FR-5	Code management	The 'Device Management' utilizes the already-existing technologies including broadband forum (BBF) TR-069, OMA-DM, LwM2M for managing device capabilities. Of course, code updating operations for IOT devices could be achieved with the help of management clients, servers, and adapters specifications.		

Non-functional Requirement:

FR No.	Non-Functional Requirement	Description			
NFR-1	Usability	The 'Device Management' allows the application			
		entities registered to a server platform to be easily			
		maintained through existing device management			
		technologies. Also, the Node.js-based			
		implementation enables the middleware			
		components to be updated or replaced accordingly			
		without any high-level of technical expertise.			
NFR-2	Security	Security is a very critical requirement in IOT			
		solutions and defines its security framework			
		including identification, authorization and			
		authentication. Our middleware platform can be			
		registered to the server (i.e., Mobius) as an			
		application entity. It can attempt to access a list of			
		authorized resources hosted by the server with its			
		server-generated unique identifier and privileges,			
		called access control policy. However,			
		authentication and other security components such			
		as certificates still remain incomplete.			
NFR-3	Reliability	we have not yet realized capabilities related to			
	,	Reliability, which allows platform-equipped devices			
		to adapt themselves according to short-term or			
		long-term changes in resource conditions,			
		application scenarios, and surrounding			
		environments, remaining our future work.			
NFR-4	Performance	This requirement belongs to a part of intelligence			
		for IOT devices, and the proposed IOT device			
		platform provides no analytic tools on data or			
		decision-making procedures depending on resource			
		conditions, for example, recommending the most			
		suitable (or currently available) one among multiple			
		IOT devices offering the same service, which is one			
		area of our future work.			
NFR-5	Availability	Availability could be achieved by ensuring some			
		level of fault-tolerance. The developed IOT platform			
		does not deal with all fault tolerance issues that			
		mainly occur in hardware interfaces. However, a			
		watchdog function is able to detect the failure of			
		middleware components interacting with hardware			
		interfaces, and restart or reconnect if needed.			
NFR-6	Scalability	An IOT platform needs to support rapidly growing			
		numbers of IOT devices and keep a certain level of			
		support. Although the scalability of an IOT platform			
		is crucial, it highly depends on implementation and			
		performance in IOT servers rather than connected			
		devices. Accordingly, in support of a well-designed -			
		based IOT server we can say that our middleware			
		platform may deliver some level of appropriate for			
		the given environment and applications.			