predictor lr

March 12, 2024

[14]: import numpy as np

```
import pandas as pd
      from sklearn.model_selection import train_test_split
      from sklearn.linear model import LinearRegression
      from sklearn.metrics import mean_squared_error
      import matplotlib.pyplot as plt
      import seaborn as sns
[15]: def load_dataset(file_path):
          """Load the dataset from a CSV file"""
          return pd.read_csv(file_path)
[16]: def preprocess_data(data):
          """Preprocess the dataset by handling missing values"""
          # Fill missing values with the mean of the respective column
          data = data.fillna(data.mean())
          return data
[17]: def explore_dataset(data):
          """Display the first few rows and information of the dataset"""
          print("First few rows of the dataset:")
          print(data.head())
          print("\nDataset information:")
          print(data.info())
[18]: def visualize_data(data):
          """Visualize the data"""
          # Pairplot to visualize relationships between features
          sns.pairplot(data, x_vars=data.columns[:-1], y_vars=['medv'],
       ⇔kind='scatter')
          plt.title("Pairplot of Features vs. Target")
          plt.show()
          # Heatmap to visualize correlations between features
          plt.figure(figsize=(12, 8))
          sns.heatmap(data.corr(), annot=True, cmap='coolwarm', linewidths=0.5)
          plt.title("Correlation Heatmap")
          plt.show()
```

```
[19]: def split_data(data):
          """Split the dataset into features (X) and target (y)"""
          X = data.drop('medv', axis=1)
          y = data['medv']
          return X, y
[20]: def train_model(X_train, y_train):
          """Train a linear regression model"""
          model = LinearRegression()
          model.fit(X_train, y_train)
          return model
[21]: def evaluate_model(model, X_test, y_test):
          """Evaluate the trained model"""
          y_pred = model.predict(X_test)
          mse = mean_squared_error(y_test, y_pred)
          print("Mean Squared Error:", mse)
[22]: def visualize_predictions(y_test, y_pred):
          """Visualize the actual vs. predicted prices"""
          plt.figure(figsize=(10, 6))
          plt.scatter(y_test, y_pred, color='blue')
          plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()],__
       →linestyle='--', color='red')
          plt.xlabel("Actual Price")
          plt.ylabel("Predicted Price")
          plt.title("Actual vs. Predicted Prices")
          plt.show()
[23]: def predict_new_house_price(model, new_house_features):
          """Predict the price of a new house"""
          predicted_price = model.predict(new_house_features)
          formatted_price = "${:,.2f}".format(predicted_price[0])
          print("Predicted Price of the House:", formatted_price)
[24]: def main():
          # Load the dataset
          file_path = 'dataset/BostonHousing.csv'
          boston = load_dataset(file_path)
          # Preprocess the dataset
          boston = preprocess_data(boston)
          # Explore the dataset
          explore_dataset(boston)
          visualize_data(boston)
```

```
# Split the data into training and testing sets
         X, y = split_data(boston)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
      →random_state=42)
         # Train the linear regression model
         model = train_model(X_train, y_train)
         # Evaluate the model
         evaluate_model(model, X_test, y_test)
         # Make predictions
         y_pred = model.predict(X_test)
         visualize_predictions(y_test, y_pred)
         # Predict the price of a new house
         new_house_features = np.array([[0.00632, 18, 2.31, 0, 0.538, 6.575, 65.2, 4.
      \rightarrow09, 1, 296, 15.3, 396.9, 4.98]])
         predict_new_house_price(model, new_house_features)
[25]: if __name__ == "__main__":
         # Hide warning concerning feature names
         import warnings
         warnings.filterwarnings("ignore", message="X does not have valid feature⊔
      →names, but LinearRegression was fitted with feature names")
         main()
     First few rows of the dataset:
           crim
                  zn indus chas
                                                          dis rad tax ptratio \
                                     nox
                                                  age
                                             rm
     0 0.00632 18.0
                       2.31
                                0 0.538 6.575 65.2 4.0900
                                                                1
                                                                   296
                                                                           15.3
     1 0.02731
                       7.07
                 0.0
                                0 0.469 6.421 78.9 4.9671
                                                                2 242
                                                                           17.8
                       7.07
                                                                2 242
     2 0.02729
                 0.0
                                0 0.469 7.185 61.1 4.9671
                                                                           17.8
                                0 0.458 6.998 45.8 6.0622
     3 0.03237
                       2.18
                                                                3 222
                 0.0
                                                                           18.7
     4 0.06905
                                0 0.458 7.147 54.2 6.0622
                 0.0
                       2.18
                                                                3 222
                                                                           18.7
            b 1stat medv
               4.98 24.0
     0 396.90
     1 396.90 9.14 21.6
     2 392.83 4.03 34.7
               2.94 33.4
     3 394.63
     4 396.90 5.33 36.2
     Dataset information:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 506 entries, 0 to 505
     Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype			
0	crim	506 non-null	float64			
1	zn	506 non-null	float64			
2	indus	506 non-null	float64			
3	chas	506 non-null	int64			
4	nox	506 non-null	float64			
5	rm	506 non-null	float64			
6	age	506 non-null	float64			
7	dis	506 non-null	float64			
8	rad	506 non-null	int64			
9	tax	506 non-null	int64			
10	ptratio	506 non-null	float64			
11	b	506 non-null	float64			
12	lstat	506 non-null	float64			
13	medv	506 non-null	float64			

dtypes: float64(11), int64(3)

memory usage: 55.5 KB

None

						Corr	elation	n Heati	map							1.0
crim -	1	-0.2	0.41	-0.056	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39		LU
zn -	-0.2	1	-0.53	-0.043	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36	-	0.8
indus -	0.41	-0.53	1	0.063	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48		
chas -	-0.056	-0.043	0.063	1	0.091	0.091	0.087	-0.099	-0.0074	-0.036	-0.12	0.049	-0.054	0.18	-	0.6
nox -	0.42	-0.52	0.76	0.091	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43	- (0.4
rm -	-0.22	0.31	-0.39	0.091	-0.3	1	-0.24	0.2	-0.21	-0.29	-0.36	0.13	-0.61	0.7		
age -	0.35	-0.57	0.64	0.087	0.73	-0.24	1	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38	- (0.2
dis -	-0.38	0.66	-0.71	-0.099	-0.77	0.2	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25		0.0
rad -	0.63	-0.31	0.6	-0.0074	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38	-	0.0
tax -	0.58	-0.31	0.72	-0.036	0.67	-0.29	0.51	-0.53	0.91	1	0.46	-0.44	0.54	-0.47		-0.2
ptratio -	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51		
b -	-0.39	0.18	-0.36	0.049	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1	-0.37	0.33		-0.4
lstat -	0.46	-0.41	0.6	-0.054		-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74		-0.6
medv -	-0.39	0.36	-0.48	0.18	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1		
	crim	zn	indus	chas	nox	m	age	dis	rad	tax	ptratio	b	Istat	medv		

Mean Squared Error: 24.40482518814633

Predicted Price of the House: \$29.94

[]: