ENEL 476 Assignment #1 Due Wed Feb 7 at 5 pm

Question 1

The loop shown below moves from an area of zero external magnetic flux density (y<0) into an external magnetic flux density (y>0). In the region y>0, the flux density is described by:

$$B=-0.3a_z \text{ Wb/m}^2$$

The loop moves with velocity of $2\mathbf{a}_y$ cm/s and the location of the right side of the loop at t=0 is y=0.

- a) Find the total magnetic flux (ϕ) passing through the surface of the loop.
- b) Find the induced EMF.
- c) Find the induced current flowing in the loop and explain how the induced current satisfies Lenz's law.
- d) The external flux density in the region y>0 changes to:

$$B=-0.3\cos(2\pi x 10^3 t)a_z$$
 Wb/m²

How does the induced EMF change?

Question 2

a) An electric field is given by:

$$E(y,t)=40 \cos(2\pi x 10^6 t - \beta y) \mathbf{a}_x \text{ mV/m}$$

The field is in a dielectric material with ε_r =2.4 (μ_r =1, σ =0). Assume a source-free region.

- a) Find the associated displacement current density (\mathbf{J}_d) .
- b) Find the associated magnetic field, $\mathbf{H}(y,t)$.
- c) Find β.