MECH3750 - Tutorial 4 (week 5)

Question 1.

Show that:

$$\overline{\exp(iy)} = \exp(-iy)$$

$$\sin y = \frac{e^{iy} - e^{-iy}}{2i}$$

$$\cos y = \frac{e^{iy} + e^{-iy}}{2}$$

Question 2.

Using the complex inner product defined as:

$$(u,v) = \sum_{i=0}^{4} \overline{u_i} v_i$$

consider the vectors:

$$q_n^{(k)} = \exp\left(ik\frac{2\pi n}{M}\right) \quad n = 0, 1, 2, 3$$

- (a) Write $q^{(k)}$ explicitly for k = 0, 1, 2, 3.
- (b) Use the inner product to find $||q^{(k)}||$ for k = 0, 1, 2, 3.
- (c) Verify: $(q^{(0)},q^{(1)})=0$; $(q^{(2)},q^{(3)})=0;$ $(q^{(0)},q^{(2)})=0$

Question 3.

In our interpretation of the DFT, the values a_{p_k} represent the coefficients of the vector:

$$p_n^{(k)} = \frac{1}{N} \exp\left(i\frac{2\pi nk}{N}\right)$$

in the signal f_n for k = 0, 1, ..., N - 1.

Verify that $p_n^{(N-1)} = p_n^{(-1)}$ and also $p_n^{(N-m)} = p_n^{(-m)}$. This is important for interpreting the values of the DFT for large k.

Question 4.

Find the DFT of:

(a)
$$\mathbf{f} = (1, 2, 0, 1)$$

(b)
$$\mathbf{f} = (1, 1, ..., 1)$$
, for $N = 8$

Question 5.

Show that the DFT of: $\mathbf{f} = (f_0, f_1, \dots, f_7)$ for:

$$f_n = \sin \frac{2\pi n}{8}$$

Is given by (0, A, 0, 0, 0, 0, B), and determine A, B. You may use the orthogonality properties of $p_n^{(k)}$.

Question 6.

The DFT of a signal \boldsymbol{f} is: (8, 4-8i, 2, -i, 0, i, 2, 4+8i)

Determine the original signal f.

Hint: Use the property that $p_n^{N-m} = p_n^{-m}$