Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет ПИиКТ

ОТЧЁТ

По лабораторной работе №3

По предмету: Компьютерные сети

Вариант 1

Студент:

Андрейченко Леонид Вадимович

Группа Р33301

Преподаватель:

Алиев Тауфик Измайлович

Цель работы

Изучение принципов настройки и функционирования компьютерных сетей, представляющих собой несколько подсетей, связанных с помощью маршрутизаторов, процессов автоматического распределения сетевых адресов, принципов статической маршрутизации и динамической маршрутизации, а также передачи данных на основе протоколов UDP и TCP.

Этап 1 Сеть с одним маршрутизатором

Таблица маршрутизации

Таблица маршрутизации - таблица, хранящаяся на маршрутизаторе или сетевом компьютере, которая описывает соответствие между адресами назначения и интерфейсами, через которые следует отправить пакет данных до следующего маршрутизатора. Каждая запись имеет поля:

- Адрес назначения адрес сети или узла назначения, либо указание, что маршрут является маршрутом по умолчанию
- Маска

- Шлюз обозначающий адрес маршрутизатора в сети, на который необходимо отправить пакет, следующий до указанного адреса назначения
- Интерфейс интерфейс, через который доступен шлюз
- Метрика числовой показатель, задающий предпочтительность маршрута. Чем меньше число, тем более предпочтителен маршрут
- Источник статический, получен при запросе

	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	135.10.0.0	255.255.0.0	135.10.12.25	135.10.12.25	0	Подключена
2	135.11.0.0	255.255.0.0	135.11.12.20	135.11.12.20	0	Подключена
3	135.12.0.0	255.255.0.0	135.12.12.20	135.12.12.20	0	Подключена

Таблица содержит только записи, динамически-сгенерированные на основе подключений с узлом каждой сети

Передача данных по UDP

Порядок отправки пакетов для UDP:

- Если неизвестен MAC-адрес маршрутизатора, то отправляется ARP-запрос, для получения необходимой информации
- UDP пакеты, в которых MAC-получателя установлен в MAC-адрес маршрутизатора
- После прохождения маршрутизатора МАС-адрес отправителя заменяется на МАС-адрес выходного порта маршрутизатора, а МАС-адрес получателя заменяется на МАС-адрес получателя конкретного устройства

Передача данных по ТСР

Порядок отправки пакетов для ТСР:

- Если нет МАС-адреса маршрутизатора в ARP-таблице, то шлется ARP-запрос
- Стандартный принцип отправки ТСР:
 - 1. Отправитель шлёт TCP-сегмент с установленными SYN и ISN для установки соединения
 - 2. Получатель шлёт TCP-сегмент с установленными SYN, ACK и ISN, подтверждающий соединение
 - 3. Отправитель шлёт TCP-сегмент с установленным ACK, ISN = 0
- Отправляется 10 TCP-сегментов с payload без флагов, но с ISN = +
- Обмен идет с шириной окна 10, так что после 10 сегментов получатель подтверждает передачу TCPсегментом с ISN=0, ACK
- Последний пакет от отправителя помечается флагом FIN vi. MAC-адреса устанавливаются аналогично при передаче по UDP

Этап 2 Сеть с двумя маршрутизаторами

Таблицы маршрутизации

	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	135.10.0.0	255.255.0.0	135.12.12.20	135.12.12.21	0	Статическая
2	135.11.0.0	255.255.0.0	135.11.12.20	135.11.12.20	0	Подключена
3	135.12.0.0	255.255.0.0	135.12.12.21	135.12.12.21	0	Подключена

	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	135.10.0.0	255.255.0.0	135.10.12.25	135.10.12.25	0	Подключена
2	135.11.0.0	255.255.0.0	135.12.12.21	135.12.12.20	0	Статическая
3	135.12.0.0	255.255.0.0	135.12.12.20	135.12.12.20	0	Подключена

Так как в данной сети маршрутизаторы разделены внутренней сетью, то пришлось в каждый из них добавить статическую запись, чтобы они знали друг о друге.

Передача данных аналогична предыдущему пункту.

Этап 3 Сеть с тремя маршрутизаторами В5

Таблица сравнения всех видов топологий:

Вариант сети	Достоинства	Недостатки
В3	У каждой сети существует один альтернативный путь Легче всего настроить оборудование	Мало альтернативных путей ARP-таблицы маршрутизаторов содержат данные о компьютерах сети 1 и сети 2
В4	У каждой сети существует по 2 альтернативных маршрута АRP-таблицы маршрутизаторов содержит только данные о компьютерах своей сети и соседних маршрутизаторов	Трудно настроить оборудование
В5	У каждой сети существует по крайней мере 4 альтернативных маршрута Сеть 2 и 3 могут совершать обмен без использования маршрутизатора	Еще трудней, чем в В4 настроить оборудование

B6

У каждой сети существует по крайней мере 4 альтернативных маршрута

Сложнее всего настроить оборудование Мш3 является узким местом

Были добавлены статические пути. Так, из маршрутизатора 1 были прописаны пути в маршрутизаторы 2 и 3, а в маршрутизаторы 2 и 3 были добавлены пути в маршрутизатор 1. В качестве варианта на сеть с тремя маршрутизаторами был выбран вариант 5. В качестве недостатка такой топологии я выявил возможность бесконечного цикличного следования пакетов по кругу. Такая ситуация возможна при отправке данных из Сети 1 в Сети 2 или 3. Говоря конкретнее, сначала пакет корректно проходит маршрутизаторы и попадает в коммутатор Сети 2, и если этот коммутатор не имеет записи об адресе конечного узла, то он отправит пакет еще и в Сеть 3. А из Сети 3 данные снова попадают к маршрутизаторам, и цикл повторяется, пока не истечет срок годности данных и они не удалятся в каком-нибудь из узлов.

Настройка динамической маршрутизации по протоколу RIP

При включении симуляции маршрутизаторы начали обмениваться RIP пакетами

послал 10.0.1.4 >> 10.255.255.255 Тип: RIP
получил 10.0.1.2 >> 10.255.255.255 Тип: RIP
получил 10.0.1.2 >> 10.255.255.255 Тип: RIP
послал 10.0.1.4 >> 10.255.255.255 Тип: RIP
получил 10.0.1.2 >> 10.255.255.255 Тип: RIP
получил 10.0.1.2 >> 10.255.255.255 Тип: RIP
послал 10.0.1.4 >> 10.255.255.255 Тип: RIP

Данный протокол имеет ряд недостатков

- 1) медленная стабилизация оптимальных маршрутов
- 2) большая загрузка сети, связано с периодичностью передачи широковещательных пакетов, содержащих таблицы "вектор-длина", даже если нет никаких изменений, большим объёмом этих таблиц, который пропорционален числу подсетей, входящих в сеть.

Можно заметить, что в таблице маршрутизации появились записи от других маршрутизаторов. В соответствии с удаленностью, были выставлены метрики. Кроме того, периодичность отправки пакетов по протоколу RIP составляет 30 секунд.

Удаление коммутатора сети привело к удалению записи маршрута до этой сети в маршрутизаторе. В результате удаления коммутатора сеть стала недоступна.

Настройка автоматического получения сетевых настроек по протоколу DHCP

По итогам тестирования, как с TCP, так и UDP соединением сеть работает корректно, выданные IP адреса соответствуют заданным требованиям, повторений в сети нет.

Выводы

Во время выполнения лабораторной работы мы настроили маршрутизаторы и РС при статических IP - адресах и статической маршрутизации. Мы изучили работу протоколов DHCP и RIP и использовали их для изменения конфигурации сети.