

Introduction to Artificial Intelligence

Jaderick P. Pabico

Institute of Computer Science, College of Arts and Sciences University of the Philippines Los Baños, College 4031, Laguna

CMSC 170 – Introduction to Al 2nd Semester 2009-2010

Fuzzy Logic System

 Fuzzy sets provide means to model the uncertainty associated with vagueness, imprecision and lack of information regading a problem

- How do we do operations in classical sets?
- Example $X = \{1, 2, 3, 4\}$
- What are X's
 - cardinal number?
 - power set?
 - cardinality of power set?

What are these blabbers all about?

- How do we do operations in classical sets?
- Example $X = \{1, 2, 3, 4\}$
- What are X's
 - cardinal number?
 - power set?
 - cardinality of power set?

What are these blabbers all about?

- cardinal number?
 - Number of elements in X
 - The number of elements in $X = \{1, 2, 3, 4\}$ is 4
 - Thus the cardinality N_x of X is 4

Cardinal is just one step below a Pope!

The cardinality of the set of cardinals in the picture is three!

- Power set?
 - All possible sets of X
 - {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
- Cardinality of Power Set of X?
 - $_{-}$ 2 raised to $N_{_{\rm X}}$
 - Thus, $2^4 = 16$

- Classical set operation: Union
 - $-A \cup B$
 - Similar to Logical Or

- Classical set operation: Intersection
 - $-A \cap B$
 - Similar to Logical And

- Classical set operation: Complement
 - ¬**A**
 - Similar to <u>Logical Not</u>

- Classical set operation: Difference
 - A | B
 - Elements that are simultaneously in *A* but not in *B*

- Classical set property:
 - Commutativity

•
$$A \cup B = B \cup A$$

•
$$A \cap B = B \cap A$$

Associativity

•
$$A \cup (B \cup C) = (A \cup B) \cup C$$

•
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributivity

•
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

•
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- Classical set property:
 - Idempotency

•
$$A \cup A = A$$

•
$$A \cap A = A$$

Identity

•
$$A \cup \{\} = A$$

•
$$A \cap U = A$$

•
$$A \cap \{\} = \{\}$$

•
$$A \cup U = U$$

- Transitivity
 - If $A \subseteq B \subseteq C$, then $A \subseteq C$

These are all very elementary!

- Classical set property:
 - Excluded Middle Law

•
$$A \cup \neg A = U$$

Contradiction Law

•
$$A \cap \neg A = \{\}$$

De Morgan's Law

•
$$\neg (A \cap B) = \neg A \cup \neg B$$

•
$$\neg (A \cup B) = \neg A \cap \neg B$$

Don't need to go to law school do learn this!

