(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-228177

(43)公開日 平成11年(1999)8月24日

(51) Int.Cl.⁶ C 0 3 C 8/14 識別記号

F I C 0 3 C 8/14

審査請求 未請求 請求項の数5 OL (全 8 頁)

(21)出願番号	特願平 10-25297	(71)出願人	
(22)出顧日	平成10年(1998) 2月6日		奥野製薬工業株式会社 大阪府大阪市中央区道修町4丁目7番10号
		(72)発明者	産一 盛裕 大阪府大阪市城東区放出西2丁目1番25号 奥野製薬工業株式会社第2工場内
		(72)発明者	山下 芳文 大阪府大阪市城東区放出西2丁目1番25号 奥野製薬工業株式会社第2工場内
		(72)発明者	與野 晴彦 大阪府大阪市中央区道修町4丁目7番10号 奥野製薬工業株式会社内
		(74)代理人	弁理士 三枝 英二 (外10名)

(54) 【発明の名称】 セラミックカラー組成物

(57)【要約】

【課題】セラミックカラー本来の光遮蔽性を損なうことなく、その施工による自動車窓用板ガラスの強度劣化を抑制できる薄膜を実現するセラミックカラー組成物を提供。

【解決手段】黒色系低融点ガラス粉末70~99重量%及び無機顔料1~30重量%からなる固形分粉末と、該粉末100重量部に対して35~100重量部の有機ヴィヒクルとを配合したことを特徴とするセラミックカラー組成物。

【特許請求の範囲】

【請求項1】黒色系低融点ガラス粉末70~99重量%及び無機顔料1~30重量%からなる固形分粉末と、該粉末100重量部に対して35~100重量部の有機ヴィヒクルとを含有することを特徴とするセラミックカラー組成物。

【請求項2】黒色系低融点ガラス粉末が、ガラス成分としてCuO、CoO、MnO、Cr2O3、Fe2O3、Ni2O3、Co3O4及びFeSより選ばれる少なくとも1種の着色成分を1~20重量%含むものである請求項1に記載のセラミックカラー組成物。

【請求項3】有機ヴィヒクルが、樹脂成分10~50重量%を溶剤50~90重量%に溶解したものである請求項1又は2に記載のセラミックカラー組成物。

【請求項4】自動車窓用板ガラスに適用される請求項1 ~3のいずれかに記載のセラミックカラー組成物。

【請求項5】請求項1~3のいずれかに記載のセラミックカラー組成物を適用して彩色された自動車窓ガラス。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば自動車窓用 板ガラスに適用されるセラミックカラー組成物、特に薄 板化された上記窓用板ガラスに適用されるセラミックカ ラー組成物に関する。

[0002]

【従来の技術】自動車窓ガラス、例えばリアー窓ガラスには、その曲げ、強化加工時に、ボディサイド周辺部分に、低融点ガラス粉末を利用したセラミックカラーが内面側より焼付けられる。これは、自動車ボディとガラスとを接合した有機接着剤の紫外線による劣化防止、該接 30 着剤のはみだし部分の隠ぺい、得られる窓ガラスの意匠性等を目的としている。

【0003】従来より、このセラミックカラーは、あらかじめ所定の形状に切り出されたフラットな板ガラス周辺に、スクリーン印刷等で塗布され、仮乾燥後、板ガラスの加熱による曲げ加工及び強化加工と同時に焼付けられている。また、従来、上記焼付け工程の歩留り改善や、低融点ガラス中に含有される鉛成分の無鉛化のために、銀ペーストとの複合印刷及びその焼成時の不具合を解消するためのセラミックカラー組成の改良も種々提案されている。

【0004】かかるセラミックカラー組成物としては、従来、用いる低融点ガラス粉末の組成に関係なく、低融点ガラス粉末55~70重量%及び無機顔料30~45重量%とできるだけ無機顔料を多くした固形分粉末と、該固形分粉末100重量部に対して20~30重量部の有機ヴィヒクルとを含有する、固形分粉末量のリッチなものが専ら使用されている。また、該組成物の印刷時には、100~200メッシュの粗いスクリーンが使用されてきている。これらは、セラミックカラーを自動車窓

用板ガラスに適用する最も主要な目的である光遮蔽性の アップを意図したものである。即ち、従来のセラミック カラーは、その無機顔料濃度のアップによって遮蔽力を アップし、また有機ヴィヒクル分の減少及び粗いスクリ

2

ーンメッシュ使用による焼成後の膜厚増大(通常膜厚: 12~20μm程度)によって、更に遮蔽力のアップを図っている。

【0005】しかしながら、上記のような従来のセラミックカラーの組成及びその適用技術は、これを焼付けられた板ガラスの非塗膜面よりの衝撃に対する強度面を考慮すれば、当業界の要望に逆行するものである。即ち、セラミックカラーを焼付けたガラス板の非塗膜面よりの衝撃強度は、セラミックカラーを適用しない場合に比して、50~60%も減少する。セラミックカラーの膜厚増大や無機顔料の増加と、上記強度低下とが相関することは、既に当業界において熟知されている。

【0006】従来、上記セラミックカラー塗布、焼付けによる衝撃強度劣化の弊害は、リアー窓ガラスに使用する板ガラスの板厚を3mm以上(例えば3.1 mm、3.5 mm、4.0 mm等)と比較的厚くして、この板ガラスの板厚でカバーしてきたのが現状である。

【0007】しかるに最近、電気自動車に代表されるように、車体重量を減少させようとする動きの中で、当然に窓用板ガラスもその薄板化を求められ、リアー窓ガラスにおいても2.5mmの板厚が採用されはじめている。かかる現状においては、該板ガラスの強度の維持、向上が重要な課題となってきており、そのためには、加熱強化工程の改良も必要ではあるが、セラミックカラーの焼付けによる板ガラスの強度劣化の防止が非常に重要な課題となってきている。特に、この強度劣化は、例えば板ガラスを自動車ボディに接着する圧着工程での板ガラスの破壊、板ガラス周囲に予めウレタン樹脂や塩化ビニール樹脂を射出成形してモールドを作成するエンキャップ工程での破壊、市場にでてから遭遇する種々の衝撃による破壊等に対する自動車窓用板ガラスの重大な問題である。

[0008]

【発明が解決しようとする課題】本発明の目的は、以上のように、自動車窓用板ガラスの板厚が薄くなっていく傾向の中で、強度低下の面より、対応できなくなってきている従来のセラミックカラー組成物の欠点を解決して、上記板ガラスの板厚が3mm以下となっても、特にセラミックカラーを4~10μm程度の薄膜とすることによって、該セラミックカラーに起因する強度低下を最低限に抑えることができ、しかもその本来の目的である光遮蔽性は低下させない、改良されたセラミックカラー組成物を提供することにある。

ものが専ら使用されている。また、該組成物の印刷時に 【0009】本発明者は、上記目的を達成するために、は、100~200メッシュの粗いスクリーンが使用さ 低融点ガラス粉末自体に光遮蔽のための着色を施すといれてきている。これらは、セラミックカラーを自動車窓 50 う新しい着想から、鋭意研究を重ねた結果、下記特定の

3

黒色系低融点ガラス粉末を利用し、これと無機顔料との 所定割合混合物と有機ヴィヒクルとを特定割合で配合す るときには、上記目的に合致する強度及び光遮蔽性を共 に満足する新しいセラミックカラー組成物が得られるこ とを見出した。本発明はかかる知見に基づいて完成され たものである。

[0010]

【課題を解決するための手段】即ち、本発明によれば、 黒色系低融点ガラス粉末70~99重量%及び無機顔料 1~30重量%からなる固形分粉末と、該粉末100重 10 量部に対して35~100重量部の有機ヴィヒクルとを 含有することを特徴とするセラミックカラー組成物が提 供される。

【0011】特に、本発明によれば、黒色系低融点ガラ ス粉末が、ガラス成分としてCuO、CoO、MnO、 Cr2O3、Fe2O3、Ni2O3、Co3O4及びFeSよ り選ばれる少なくとも1種の着色成分を1~20重量% 含むものである上記セラミックカラー組成物、有機ヴィ **ヒクルが、樹脂成分10~50重量%を溶剤50~90** 重量%に溶解したものである上記セラミックカラー組成 20 ZnO-SiO2-B2O3系ガラス: 物及び自動車窓用板ガラスに適用される上記セラミック カラー組成物、並びに上記セラミックカラー組成物を適 用して彩色された自動車窓ガラスが提供される。

【0012】本発明セラミックカラー組成物の利用によ れば、セラミックカラー焼付け膜を必然的に薄膜化で き、かつ無機顔料濃度を少なくしても所望の光遮蔽性を 保持できる。上記セラミックカラーの薄膜化によれば、 セラミックカラー焼付けに起因する板ガラスの強度劣化 を抑制できる。これは板ガラスの板厚を薄くできること を意味しており、斯界の要望に合致するものである。 [0013]

【発明の実施の形態】本発明セラミックカラー組成物に 用いられる黒色系低融点ガラス粉末は、より好ましく は、通常の低融点ガラス粉末に、ガラス成分としてCu O, CoO, MnO, Cr₂O₃, Fe₂O₃, Ni₂O₃, Co₃O₄及びFeSより選ばれる少なくとも1種の酸化 物を着色成分として1~20重量%含有させたものであ ることができる。

【0014】ここで、母ガラスとしての低融点ガラス は、従来よりこの種セラミックカラーに汎用されている 各種のもののいずれでもよい。その例としては、例えば PbO、Si2O及びB2O3を主成分とする硼珪酸鉛ガ ラス、Bi₂O₃、SiO₂及びB₂O₃を主成分とする硼 珪酸ビスマスガラス、ZnO、SiO2及びB2O3を主 成分とする硼珪酸亜鉛ガラス等を例示できる。

【 0 0 1 5 】 好ましい上記母ガラスの組成の 1 例は、以 下に示す通りである。

【0016】PbO−SiО₂−B₂O₃*系ガラス*:

PbO 40~65重量%

SiO2 $25 \sim 40$

```
B 2 O<sub>3</sub>
             0 \sim 15
TiO2
             0 \sim 20
Z r O_2
             0\sim 5
A 1 2 O3
             0\sim 5
ZnO
             0 \sim 10
             0\sim 5
Li2O
Na_2O
             0 \sim 5
K_2O
             0\sim 5
             0\sim 5
```

Bi₂O₃-SiO₂-B₂O₃系ガラス:

40~75重量% B i 2 O3 $15 \sim 45$ SiO_2 B₂O₃ $1 \sim 1.5$ ZrO2 $1 \sim 1.5$ TiO2 $0 \sim 5$ L i 2 O $0 \sim 5$ Na₂O $0\sim 5$ K_2O 0~ 5 F $0 \sim 5$

SiO2 35~50重量% B2O3 1~ 9 Z n O $20 \sim 40$ TiO2 $1 \sim 1.0$ Li2O $1 \sim 10$ Na2O $1 \sim 1.0$ K_2O $0 \sim 10$ $0\sim 5$ ZrO_2 0~ 5 V_2O_5 $0\sim 5$ 30 F

> 上記母ガラスは、母ガラス単独で板ガラスに融着する温 度が500~650℃の範囲にあるもの、線膨張係数が 50~85×10⁻⁷の範囲にあるものが好適である。該 母ガラスは板ガラスに焼付ける温度範囲550~700 ℃で結晶化するものであっても、非晶質のものでもどち らでもよい。特に、炉内でプレス、真空吸引成形、炉外 でプレス成形される板ガラスに適用する時は、結晶化す る母ガラスが離型性の面で好適である。また、該母ガラ スは、耐酸性に優れるものであるのが好ましい。

【0017】本発明に利用する前記黒色系低融点ガラス 粉末は、無色の低融点ガラスを粉末として、それに前記 所定の着色成分としての酸化物、硫化物粉末を添加混合 したものではなく、ガラスバッチ成分として前記所定の 着色成分を加えて、1000℃以上で溶融して得られる 着色ガラスを粉末化したものであることが重要である。 【0018】ここで、母ガラスに含有させる着色ガラス 成分は、CuO、CoO、MnO、Cr2O3、Fe 2O3、Ni2O3、Co3O4及びFeSより選ばれるのが 好ましく、該着色成分は、酸化物の場合、上記2種以上 50 の組合わせによって黒色となる。好ましい組合せ例とし

ては、CuO-Cr2O3、CuO-MnO-Cr2O3、C $r_{\,2}\,O_{3}\text{-F}\,e_{\,2}\,O_{3}$, C o O-C $r_{\,2}\,O_{3}\text{-F}\,e_{\,2}\,O_{3}$, M n O-Cr₂O₃-Fe₂O₃-Co₃O₄, MnO-Cr₂O₃-Fe₂ O3-Ni2O3-Co3O4、Cr2O3-Co3O4等が挙げら れる。上記Cr2O3を含む場合はこれが多い程緑味のあ る黒色の低融点ガラス粉末を得ることができる。Fez ○3を含む場合はこれが多い程褐色味のある黒色に、ま たCoOやCuOを含むものではこれらが多い程青味の ある黒色に着色された黒色低融点ガラス粉末を得ること ができる。本発明における黒色系低融点ガラス粉末に は、これらの緑色味、褐色味、青色味等の色調を有する 彩色された黒色系低融点ガラス粉末が全て包含される。 【0019】硫化物であるFeSについては、単独又は 前記黒色系着色酸化物成分と任意の割合で混合すること

ができる。

【0020】本発明に利用する黒色系低融点ガラス粉末 は、これに用いる母ガラスの種類や溶融条件によってそ の色調が変化するので、所望の黒色系及びこれによる遮 光性を考慮して、用いる母ガラスと着色ガラス成分との 組合わせ及び比率を決定するのが好ましく、特に着色ガ 20 ラス成分の使用量は1~20重量%の範囲から選ばれる のが好ましい。該着色ガラス成分が1重量%をあまりに 下回る場合は、得られる黒色系低融点ガラス粉末を用い たセラミックカラーの印刷、焼成時に、たとえ無機顔料 として黒色顔料を最大の30重量%配合しても、尚、光 遮蔽性が不足する不利がある。逆に、着色ガラス成分を 20重量%を越えてあまりに多量に利用すると、得られ る黒色系低融点ガラス粉末は、その高温時における粘度 が上昇しすぎて、板ガラスに所望の低温で焼付けること 5~15重量%の範囲から選ばれるのがよい。

【0021】以下、黒色系低融点ガラス粉末の調製法に つき詳述すれば、これは、一般には母ガラス成分80~ 99重量%及び着色ガラス成分1~20重量%となる原 料を混合して、バッチ組成を得、このバッチを1000 ℃以上、通常1100~1300℃程度にて溶融し、溶 融物を水中にて急冷し、得られるガラスを湿式又は乾式 にて例えばボールミルを使用して粉砕することにより得 られる。かくして得られる黒色系低融点ガラス粉末の粒 径は、通常O. 1~20µm程度、好ましくはO. 5~ 40 10μm程度であるのが適切である。

【0022】本発明セラミックカラー組成物は、上記の 如くして得られる着色隠ぺい能を持たせた黒色系低融点 ガラス粉末70~99重量%と補助着色隠ぺい材として の無機顔料1~30重量とからなる固形分粉末100重 量部と有機ヴィヒクル35~100重量部とを含有する ことが重要である。

【0023】ここで、無機顔料としては、従来より使用 されているものと同様のものを使用することができる。 該無機顔料には、例えばCuO、CrュOョ、CoO、M 50 基づいて、得られるセラミックカラー組成物の印刷時の

nO、Fe2O3等及び之等の組合せ、好ましくは上記各 酸化物より選ばれる2種以上の組合せであって、黒色系 を呈するものが包含される。

6

【0024】本発明における上記無機顔料の使用は、従 来のセラミックカラー組成物とは異なって、あくまでも 黒色系低融点ガラス粉末の光遮蔽性に対する補助を目的 としている。即ち、本発明では、黒色系低融点ガラス粉 末のみではなお不充分な光遮蔽性を充分なものとするた めに上記無機顔料を使用する。該無機顔料は、これを配 10 合して得られる本発明組成物を焼付けられた板ガラスの 強度を考慮すると、少ない程好ましい。通常、固形分粉 末重量の1重量%程度で充分に上記遮光性補助効果を奏 し得る。好ましい添加量は、約5~20重量%の範囲と される。

【0025】本発明セラミックカラー組成物は、その固 形分粉末として上記黒色系低融点ガラス粉末及び無機顔 料を用いる限り、それら以外にも必要に応じて更に次の ような公知の各種の粉末を適宜添加配合することができ る。

【0026】即ち、得られるセラミックカラー膜を黒色 系以外の色調に調節したい場合は、黒色を基調にして、 白色、青色、褐色等の他の無機顔料を加えることができ る。また、融着温度の調節のために、アルミナ、シリ カ、ジルコニア等の無機フィラーや、線膨張係数の調整 のために、低膨張化粉末、例えばβ-ユークリプトタイ ト、 β -スポジューメン、コージェライト、溶融シリカ 等が添加できる。

【0027】本発明組成物を構成する有機ヴィヒクルと しては、易燃焼性の樹脂10~50重量%を溶剤50~ が困難となる。着色ガラス成分の好適な使用量は、通常 30 90重量%に溶解したものを使用できる。ここで、有機 ヴィヒクルの原料は、特に従来のそれと異なることな く、各種の樹脂及びその溶剤を使用できる。該溶剤とし ては、例えばパインオイル、αーターピネオール、ブチ ルカルビトール、ブチルカルビトールアセテート、プロ ピレングライコール等が使用できる。樹脂としては、例 えばセルロース樹脂、アクリル樹脂、メタアクリル樹 脂、ブチラール樹脂、ビニールピロリドン樹脂等の熱分 解性のよい樹脂が好ましく使用できる。また、本発明で は、溶剤を使用した熱乾燥型有機ヴィヒクルの代わり に、紫外線硬化型モノマー中に紫外線硬化するアクリレ ート又はメタアクリレートのオリゴマー、ポリマー及び 光重合開始剤を溶解した有機ヴィヒクルも同様に使用で

> 【0028】上記有機ヴィヒクルは、固形分粉末100 重量部に対して35~100重量部の範囲で配合され、 これによって焼成後のセラミックカラーの薄膜化を充分 に達成することができる。

【0029】本発明によれば、上記所定濃度の樹脂の溶 剤溶液の所定量を有機ヴィヒクルとして利用することに

きる。

良好な印刷適性の保持をはかり得る。即ち、従来のこの 種セラミックカラー組成物には、特に光遮蔽性の観点か ら、できるだけ少ない量の有機ヴィヒクルが用いられて おり、しかも該ヴイヒクル中の樹脂濃度も低くされてい たが、かかる有機ヴィヒクルを適用すると、得られるペ ーストの粘度はスクリーン印刷には適さない程度に低粘 度になる不利があった。これに対して本発明では、スク リーン印刷に好適なペーストの粘度を得ることができ、 しかもセラミックカラーの薄膜化を実現できるのであ

【0030】セラミックカラーの薄膜化は、一般には、 使用するスクリーンのメッシュを細かくすることにより 達成できるが、300メッシュ以上のハイメッシュを使 用すると、低融点ガラス粉末粒子による目詰まりが発生 しやすく、ピンホールの原因となる不利がある。また、 印刷条件によっては部分的に厚膜化される可能性もあ り、このスクリーンメッシュの選択による薄膜化はあま り有利なものとはいえない。

【0031】これに対して、最も確実な薄膜化の方法 は、固形分粉末と有機ヴィヒクルとの比を有機ヴィヒク ルリッチにすることである。これによると、塗布時にた とえ厚膜であっても焼成時、有機ヴィヒクルは分解逸散 するので、焼成後のセラミックカラーの膜厚はうすくな り、所望の薄膜化を達成できる。

【0032】即ち、本発明では固形分粉末100重量部 に対する有機ヴィヒクル量を35~100重量部とした ことに基づいて、例えば180メッシュテトロンスクリ ーンを用いて印刷した時、焼成後の膜厚を4~10μm とすることができ、顕著な薄膜化を図り得る(従来の有 Oμmである)。しかるに、固形分粉末100重量部に 対して35重量部未満の有機ヴィヒクルの使用では、上 記薄膜化を達成できず、結果的に板ガラスの強度向上に もつながらない。逆に、100重量部以上の有機ヴィヒ クルの使用は、黒色系低融点ガラス粉末を用いたとして も、必要な光遮蔽効果を得ることはできない欠点があ

【0033】本発明セラミックカラー組成物は、通常、 前述した所定量の黒色系低融点ガラス粉末と無機顔料と の混合粉末(固形分粉末)と有機ヴィヒクルとを利用し て、公知の各種の方法に従い、セラミックカラーとして 適用できる各種の形態に調製することができる。例え ば、好ましくは各成分を混練りして、スクリーン印刷に 好適なペースト状形態に調製される。より詳しくは、黒 色系低融点ガラス粉末及び無機顔料更に必要に応じて各 種の添加剤を予め混合して固形分粉末を調製し、これを 別個に用意した所定量の有機ヴィヒクルを入れたバタフ ライミキサー中に徐々に加えて撹拌混合し、得られるペ ーストをさらに三本ロールにて混練りし、有機ヴィヒク ル中の固形分粉末の分散を充分なものとすることによ

り、所望のペースト状物を得ることができる。かくして 得られるペースト状物の粘度は、一般に150~100 0ポイズ程度であるのがよい。尚、粘度が500ポイズ 以上のペーストが得られる場合、これは更に有機ヴィヒ クルに使用した溶剤を添加して、その粘度を低下させる

8

こともできる。 [0034]

【実施例】以下、本発明を更に詳しく説明するため実施 例を挙げる。

10 [0035]

【実施例及び比較例】(1)黒色系低融点ガラス粉末の

表1、2及び3に示す低融点ガラス組成となる量のバッ チ原料混合物を1200~1250℃の温度範囲で溶融 した。溶融ガラスを水中で急冷してポプコーン状ガラス を得た。このガラスをボールミル中、セラミックボール を用いて水湿式粉砕し、得られたスラリーを乾燥、粉砕 して、本発明に用いる各黒色系低融点ガラス粉末を調製 した。得られた各粉末は、その平均粒径(D50)を3. 20 0~5.0µmの範囲に調整した。

【0036】(2)セラミックカラー組成物の調製 無機顔料(黒色)としては、すべてアサヒ化成工業 (株) 製#3700 (CuO、Cr₂O₃及びMnO) を 使用した。

【0037】有機ヴィヒクルとしては、(A)高粘度タ イプとして、ダウケミカル社製エチルセルロースSTD -20の12重量%をパインオイル88重量%に溶解し て調製したものを使用した。このオイルの粘度(BL粘 度計3写ローター、12回転、25℃)は、10000 機ヴィヒクル20~35重量部の場合のそれは12~2~30~cps(センチポイズ)であった。また、(B)低粘度 タイプとして、エチルセルロースSTD-20の4重量 %をパインオイル96重量%に溶解して作成したものを 使用した。このものの粘度(同条件)は、2000cp s(センチポイズ)であった。

> 【0038】上記(1)で調製した黒色系低融点ガラス 粉末、無機顔料及び有機ヴィヒクルを、表1、2及び3 に示す各割合で使用して、予め自動乳鉢で混合後、三本 ロールにて分散し、セラミックカラーペースト組成物試 料を調製した。その粘度を各表に示す。

【0039】(3)セラミックカラー焼成板ガラスの作

上記(2)で調製した各セラミックカラー組成物試料 を、ガラスサイズ100mm×100mm、板厚2.5mmの 板ガラス(ソーダライムガラス)上に180メッシュテ トロンスクリーンを用いて90mm×90mmのパターンで スクリーン印刷した。次いで、150℃、10分間、仮 乾燥後、640~660℃に予め昇温したボックス炉に 5分投入し、取り出した後、自然放置で冷却して、セラ ミックカラー焼成板ガラス試料を作成した。

50 【0040】(4)セラミックカラー焼成板ガラスの性

能試験

焼成後のセラミックカラーの膜厚を、株式会社東京精密 社製サーフコム300Bを用いて測定した。また、光遮 蔽性については、有限会社東京電色社製TC-8600 Aを用いて可視光の透過率で求めた。尚、実際に自動車 窓ガラスに施工されて許容される透過率は、0.3%以 下である。これらはいずれも強度試験に供する前の上記 セラミックカラー焼成板ガラス試料を用いて測定した。 【0041】衝撃強度は、以下の方法により測定した。 ラー焼付け面を下にして板ガラスを設置し、受け台と同 一形状のもので上部より板ガラスをおさえて固定した。 上記板ガラス中央部に200gの鋼球を所定距離から自 然落下させ、板ガラスが破壊しなかった最大距離を測定 した。同一条件で作成した試料5枚で実施し、その平均*

9

*値を衝撃強度(落球強度、cm)とした。該値が高い程、 強度が高いといえる。

1.0

【0042】表1、表2及び表3に、それぞれ用いた母 ガラス ($PbO-Si_2O-B_2O_3$ 系、 Bi_2O_3-Si $O_2 - B_2 O_3$ 系及び $SiO_2 - B_2 O_3 - ZnO$ 系) 毎に、 各黒色系低融点ガラス粉末の組成と、これに配合した無 機顔料及び有機ヴィヒクル量、得られるペーストの粘 度、得られたセラミックカラー焼き付け膜厚さ、透過率 及び衝撃強度を示す。尚、実施例は、用いたガラス粉末 即ち、板ガラスの周辺部を受ける台上に、セラミックカ 10 の組成が本発明範囲内のものを示し、比較例は従来のこ の種セラミックカラー組成物に用いられるガラス粉末、 即ちガラス粉末の組成が本発明範囲外のものを示す。

[0043]

【表1】

	実施例 1	実施例2	実施例3	比較例1	比較例 2
PbO	35.9	49.0	46.1	43.8	49.0
SiOz	29.5	29.2	27.0	36.0	29.2
B ₂ O ₃	11.6	9. 2	8.7	14.1	9. 2
A 1 2 0 3	_	0.6	0.5	_	0.6
TiOz	2.5	1.0	0.9	3.0	1.0
ZrO:	_	2.0	1.8	_	2.0
ZnO	_	_	_	_	
Li ₂ O	0.8	_	_	1.0	_
Na ₂ O	1.0	_	_	1.2	_
K ₂ O	_	_	_	_	_
F	0.7	_	_	0.9	_
Сг2Оз	11.0	6.6	9.9		6.6
CuO	6.0	-	_		_
MnO	1.0	_	_	_	-
Fe ₂ O ₃		3.4	5.1	_	3.4
ガラス粉末	88	8 0	92	6.5	6 5
無機顏料	1 2	2 0	8	3 5	3 5
有機がったりル	40	4 5	4 5	30	26
有機が イヒクル種類	(A)	(A)	(A)	(B)	(B)
ペースト粘度(ps)	350	300	280	300	390
焼成膜厚(μm)	7	6	6	1 4	1 5
透過率(%)	0.15	0. 20	0. 28	0.10	0.00
落球強度(co)	2 5	28	3 0	15	1 3

[0044] 【表2】

1 1				
	実施例 4	実施例 5	実施例 6	比較例3
B i 2 O 3	57.0	5 4. 0	42.8	60.0
SiOz	22.7	21.6	33.7	24.0
B 2 O 3	7.6	7. 2	3.6	8.0
Z г O 2	2.9	2.7	2. 2	3.0
T i O 2	1.9	1.8	2.7	2.0
LizO	1.0	0.9	1.3	1.0
Na ₂ O	1.9	1.8	1.9	2.0
K20	_		1.8	_
F e 2 O a	_	_	4.5	-
Cr2O3	3.0	6.0	4.3	_
CuO	2.0	4.0	_	_
CoO	_	_	1. 2	
ガラス粉末	8 5	8 5	80	68
無機顏料	1 5	15	20	3 2
有機ヴィヒクル	3 5	45	50	3 0
有機グィヒクル種類	(A)	(A)	(A)	(B)
ペースト粘度(ps)	260	220	190	280
焼 成 膜 厚(μm)	9	7	6	1 3
透過率(%)	0. 19	0. 24	0. 18	0.03
落球強度 (cm)	19	2 1	2 0	10

【0045】 【表3】

10

20

13

1)					1
	実施例 7	実施例8	実施例 9	実施例10	比較例4
SiO2	37.4	36.9	37.4	37.4	44.0
ВиОз	5.1	7. 2	5. 1	5.1	6.0
Z n O	27.2	30.6	27.2	27.2	32.0
TiO2	4.2	6.3	4.2	4.2	5.0
Li ₂ O	3.4	3. 6	3. 4	3.4	4.0
Na ₂ O	3.4	2. 7	3.4	3.4	4.0
K _z O	_	0.9		_	_
ZrOz	2.6	_	2.6	2.6	3.0
V 2 O 5	_	1.8	_	_	
F	1.7	_	1.7	1.7	2.0
FerOs	6.8	7. 0	6.8	_	
C r 2O2	6.5		6.5	_	
CoO	1.7	_	1.7	_	_
MnO	_	1.8	_	_	
C 0 3 O 4	_	0.6	-	<u></u>	
FeS	_	_	_	15.0	_
ガラス粉末	8.5	8 0	8 5	8 5	68
無機顔料	1 5	2 0	1 5	1.5	3 2
有機がィヒクル	8.0	6 0	100	60	3 0
有機がよりル種類	(A)	(A)	(A)	(A)	(B)
ベースト粘度(ps)	210	250	190	250	300
焼 成 膜 厚(μm)	5	7	4	7	1 5
透過率(%)	0.18	0. 12	0. 30	0.10	0. 05
落球強度(cm)	2 2	2 0	2 4	1 9	1 1

【0046】上記各表より以下のことが明らかである。 【0047】即ち、用いた母ガラスの種類によって絶対 的な強度自体は異なるが、本発明セラミックカラー組成 物を適用して得られたセラミックカラー焼成板ガラス (実施例)は、従来のセラミックカラーを適用して得ら*

*れた同板ガラス(比較例)に比較して、焼成膜厚を4~7μmとかなり薄くしたことに基づいて、ほぼ2倍もの高強度を有しており、しかも透過率(光遮蔽性)は、実際の使用に満足できるものであることが明らかである。