Bonpoc No 1

Метод простой итерации для решения нелинейного уравнения. Понятие сжимающего отображения

Пусть требуется решить нелинейное уравнение

$$f(x) = 0 \tag{1}$$

Приведем его к виду:

$$x = \varphi(x) \tag{2}$$

Зададим некоторое начальное приближение x_0 и подставим его в правую часть уравнения (2). Получим некоторое значение $x_1 = \varphi(x_0)$.

Подставим полученное значение x_I в правую часть уравнения (2). Проводя этот процесс бесконечно, получим некоторую последовательность.

Таким образом, общая формула простой итерации:

$$x_{k+1} = \varphi(x_k)$$
 $k \to \infty$

Если для данной последовательности существует предел, то он одновременно является и корнем уравнения (1).

Геометрическая интерпретация:

На первом и втором рисунках взаимное расположение графиков таково, что задача будет решена при произвольном начальном приближении x_0 . В третьем и четвертом

случаях задача решена не будет, так как независимо от выбора начального приближения итерационный процесс расходится.

Таким образом становится очевидной существенность проверки условия сходимости метода на начальном этапе решения задачи.

Теорема:

Пусть в некоторой \int окрестности корня x^* функция φ дифференцируема и удовлетворяет неравенству:

$$0 \le q < 1$$
 $|\varphi'(x)| \le q$, где q — малое число

Тогда независимо от выбора начального приближения x_0 из указанной \int окрестности итерационная последовательность не выходит из нее, и справедливо следующая оценка погрешности:

$$\left| x_n - x^* \right| \le q^n \left| x_0 - x^* \right|$$

Обычно для окончания итерационного процесса используется формула:

$$\left| x_i - x_{i-1} \right| \le \varepsilon$$

Сжимающее отображение.

Понятие сжимающего отображения позволяет решить вопрос о сходимости метода аналитически, не прибегая к геометрическому построению.

Рассмотрим некоторую функцию $\varphi(x)$, заданную на отрезке [a,b] и непрерывную на нем.

Каждой точке x_0 , принадлежащей отрезку [a,b], соответствует некоторое значение $y_0 = \varphi(x_0)$ на оси ординат. То есть $\varphi(x)$ задает отображение отрезка [a,b] на оси ординат.

Построим проекцию отрезка $[\varphi(a), \varphi(b)]$ на ось абсцисс относительно прямой y = x. Получим $[a_1, b_1]$.

Если отрезок $[a_1,b_1]$ является частью исходного отрезка[a,b], то функция $\varphi(x)$ отображает отрезок [a,b] в себя.

Произведем этот процесс несколько раз, в результате получим последовательность отрезков $[a,b],\ [a_1,b_1],\ [a_2,b_2].$

Если после каждого отображения исходный отрезок уменьшается в m paз, где m>1, то полученное отображение называется сжимающим.

Таким образом, условие сжатия можно сформулировать так:

Отображение $\varphi(x)$ является сжимающим на отрезке [a,b], если существует такое α , что $0<\alpha<1$, для которого выполняется, что для любых двух точек x_1,x_2 выполняется следующее условие:

$$|\varphi(x_1) - \varphi(x_2)| \le \alpha |x_1 - x_2|$$
 $\alpha = \frac{1}{m}$

Разделив обе части полученного неравенства на $|x_1 - x_2|$ и взяв предел от обоих частей данного неравенства, при $|x_1 - x_2| \to 0$ получим формулу:

$$|\varphi'(x)| < \alpha < 1$$

Доказывающую исходную теорему.

Таким образом, можно оценить сходимость функции $\varphi(x)$ для любой произвольной точки x_0 .

Bonpoc No 2

Декомпозиция отношений. Первая, вторая и третья нормальные формы

Отношение (*таблица*) находится в некоторой <u>нормальной форме</u>, если удовлетворяет заданному условию.

Отношение находится в первой нормальной форме тогда и только тогда, когда оно содержит только скалярные значения. Коддом были определены первая, вторая и третья НФ, вторая НФ более желательна, чем первая и т.д. Бойсом и Коддом переработана ЗНФ и в более строгом смысле названа нормальной формой Бойса-Кодда. Есть еще четвертая, определена Фейгином, а так же пятая — проективно-соединительная.

Процедура нормализации включает декомпозицию данного отношения на другие отношения. Декомпозиция должна быть обратимой. Она проводится с помощью теоремы Xesa:

Пусть $R\{A, B, C\}$ есть отношение, где A, B, C – атрибуты этого отношения. Если R удовлетворяет зависимости A->B, то R равно соединению его проекций $\{A, B\}$ и $\{B, C\}$.

- некоторая функциональная зависимость.

Пример:

Важную роль играет неприводимая слева функциональная зависимость, например ФЗ {код_детали, код_города, город} может быть записана без атрибута код_города, то есть {код_детали}->город. Последняя ФЗ является неприводимой слева.

Одна из целей проектирования БД – получение НФБК и форм более высокого порядка. Первая, вторая и третья НФ являются промежуточным результатом.

Отношение находится в $1 + \Phi$ тогда и только тогда, когда все используемые домены содержат только скалярные значения. (каждая ячейка содержит одно значение)

Отношение находится в $2H\Phi$ тогда и только тогда, когда оно находится в $1H\Phi$ и каждый не ключевой атрибут неприводимо зависит от первичного ключа. (устраняет столбцы, зависящие от части первичного ключа)

Отношение находится в $3H\Phi$ тогда и только тогда, когда оно находится в $2H\Phi$ и каждый не ключевой атрибут не транзитивно (то есть отсутствует какая-либо зависимость между столбцами не являющимися первичными ключами) зависит от первичного ключа.

Если в нашем примере, убрать связь между именем детали и количеством, ввести дополнительный независимый атрибут (DD) в качестве потенциального ключа, то получим НФБК.

D – деталь, P- поставщик.

Bonpoc No 3

Написать алгоритм вычисления определенного интеграла методом трапеций.

$$I = \int_{1}^{2} x^{3} \cos(x) dx$$

$$I = \int_{a}^{b} f(x) dx \Phi$$
ормула трапеций. Соединим N_{i-1} (x_{i-1} , f_{i-1})

и $N_i(x_i,\ f_i)$ на графике функции y=f(x). В результате получится трапеция. Заменим приближенно площадь элементарной криволинейной трапеции площадью построенной фигуры. Получим элементарную

квадратурную формулу трапеции: $I \approx \frac{h}{2}(f_{i-1}+f_i)$. Составная квадратурная формула трапеции будет представлять собой: $I \approx I_{np}^n = h \bigg[\frac{f_0}{2} + f_1 + f_2 + \ldots + f_{n-1} + \frac{f_n}{2} \bigg] = h \bigg[\frac{f_0 + f_n}{2} + \sum_{i=1}^n f_i \bigg] (5)$

Эта формула соответствует замене исходной фигуры ломанной линией, проходящей через точки $N_0,...,N_n$.

int a, b, n, s=0, h=0.001; n=(b-a)/h; for (i=1; i<=n; i++) s+=0.5*h*(f((i-1)*h) + f(i*h));