Calculer la partie réelle ou imaginaire, le module, un argument d'un nombre complexe

L'objectif des exercices est clair. En analysant le corrigé, on se demandera à quelle occasion je préfère passer par la forme algébrique, ou par la forme exponentielle : quand cette dernière est-elle plus pertinente ? Cela dépend aussi bien de la forme du nombre complexe que des informations que l'on cherche à obtenir.

Exercice 1. Calculer un argument de:

$$\frac{\sqrt{3}+i}{-1-i\sqrt{3}}.$$

Exercice 2. Calculer la partie réelle de :

$$\frac{5-3i}{-1+i}$$

Exercice 3. Calculer le module et la partie imaginaire de:

$$\frac{-5+9i\sqrt{3}}{4+3i}.$$

Exercice 4. Calculer le module et un argument de :

$$\frac{\sqrt{3}+i}{5i}.$$

Exercice 5. Calculer la partie réelle de :

$$\frac{4i}{\sqrt{3}-3i}.$$

Exercice 6. Calculer le module, la partie imaginaire et un argument de:

$$\frac{-2\sqrt{3}-2i}{1-i\sqrt{3}}.$$

Exercice 7. Calculer un argument et la partie réelle de :

$$\frac{-i}{-\sqrt{3}+i}$$
.

Exercice 8. Calculer le module, la partie imaginaire et la partie réelle de:

$$\frac{-\sqrt{3}-i}{13+i}.$$

Exercice 9. Calculer le module de:

$$\frac{-1 - i\sqrt{3}}{-1 + 2i}.$$

Exercice 10. Calculer le module et un argument de:

$$\frac{1}{\sqrt{3}+i}.$$

 \rightarrow page 11

 \rightarrow page 11

$$\rightarrow$$
 page 12

$$\rightarrow$$
 page 12

Exercice 11. Calculer le module de:

$$\frac{-1+4i}{1+9i\sqrt{3}}.$$

 \rightarrow page 13

 \rightarrow page 13

Exercice 12. Calculer le module, la partie imaginaire et la partie réelle de:

$$\frac{-1}{-1+i}.$$

Exercice 13. Calculer le module, la partie imaginaire et un argument de:

$$\rightarrow$$
 page 13

$$\frac{10\sqrt{2} + 10i\sqrt{2}}{-2 + 2i\sqrt{3}}$$

Exercice 14. Calculer la partie imaginaire et la partie réelle de :

$$\rightarrow$$
 page 14

$$\frac{-1+i}{10-2i}$$

Exercice 15. Calculer le module et un argument de:

$$\rightarrow$$
 page 14

$$\frac{-2}{3\sqrt{3}-3i}.$$

Exercice 16. Calculer un argument de:

$$\rightarrow$$
 page 14

$$\frac{2}{\sqrt{3}+i}$$
.

Exercice 17. Calculer le module, la partie imaginaire et un argument de:

$$\rightarrow$$
 page 14

$$\frac{2i}{-\sqrt{2}-i\sqrt{2}}.$$

Exercice 18. Calculer le module et la partie réelle de :

$$\rightarrow$$
 page 14

$$\frac{4+6i}{3\sqrt{3}+9i}.$$

Exercice 19. Calculer un argument et la partie réelle de:

$$\rightarrow$$
 page 15

$$\frac{5\sqrt{3}+5i}{i}$$
.

Exercice 20. Calculer la partie imaginaire de:

$$\rightarrow$$
 page 15

$$\frac{1+i}{\sqrt{3}-2i}$$
.

Exercice 21. Calculer la partie imaginaire de:

$$\rightarrow$$
 page 15

$$\frac{i}{-1+8i\sqrt{3}}.$$

Exercice 22. Calculer le module et la partie réelle de :

$$\frac{-2\sqrt{3}+i}{-i}.$$

Exercice 23. Calculer le module de:

$$\frac{3 - 8i\sqrt{3}}{-1 + 2i}.$$

 \rightarrow page 16

 \rightarrow page 15

Exercice 24. Calculer la partie réelle de :

$$\frac{-3-i}{3i}$$
.

 \rightarrow page 16

Exercice 25. Calculer la partie imaginaire et la partie réelle de :

$$\frac{-2+i}{2-i\sqrt{3}}.$$

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 16

Exercice 26. Calculer la partie imaginaire de:

$$\frac{2i}{9+i}.$$

Exercice 27. Calculer le module, un argument et la partie réelle de :

$$\frac{\sqrt{3}+i}{-2\sqrt{3}+2i}.$$

Exercice 28. Calculer le module de :

$$\frac{1+2i}{1-7i}.$$

 \rightarrow page 17

Exercice 29. Calculer la partie réelle de :

$$\frac{-1+3i}{-13-6i\sqrt{3}}.$$

 \rightarrow page 17

Exercice 30. Calculer le module, un argument et la partie réelle de :

$$\frac{2\sqrt{2}+2i\sqrt{2}}{2\sqrt{2}-2i\sqrt{2}}$$

 \rightarrow page 17

Exercice 31. Calculer la partie réelle de :

$$\frac{-2+i}{-8-i}.$$

 \rightarrow page 17

Exercice 32. Calculer le module, la partie imaginaire, un argument et la partie réelle de :

 \rightarrow page 18

$$\frac{\sqrt{3}-i}{302-302i\sqrt{3}}.$$

Exercice 33. Calculer la partie imaginaire et un argument de:

$$\frac{2\sqrt{3}+2i}{i}.$$

Exercice 34. Calculer le module de:

$$\frac{7\sqrt{3} + 96i}{1 - 12i}$$
.

 \rightarrow page 18

Exercice 35. Calculer le module, la partie imaginaire, un argument et la partie réelle de :

e, un argument et la partie réelle de :
$$\rightarrow$$
 page 18

$$\frac{2\sqrt{3}+2i}{3+3i\sqrt{3}}.$$

Exercice 36. Calculer la partie imaginaire et la partie réelle de:

$$\rightarrow$$
 page 18

$$\frac{1+i}{5\sqrt{3}+i}.$$

Exercice 37. Calculer la partie imaginaire, un argument et la partie réelle de :

$$\rightarrow$$
 page 19

$$\frac{-1}{2\sqrt{2}-2i\sqrt{2}}.$$

Exercice 38. Calculer le module et la partie réelle de :

$$\rightarrow$$
 page 19

$$\frac{-3-5i}{-10\sqrt{3}+i}.$$

Exercice 39. Calculer la partie imaginaire, un argument et la partie réelle de:

$$\rightarrow$$
 page 19

$$\frac{-\sqrt{3}+i}{-\sqrt{2}-i\sqrt{2}}.$$

Exercice 40. Calculer le module, un argument et la partie réelle de :

$$\rightarrow$$
 page 20

$$\frac{-1}{-2\sqrt{3}+2i}.$$

Exercice 41. Calculer le module et la partie réelle de :

$$\rightarrow$$
 page 20

$$\frac{1+i}{1+5i}.$$

Exercice 42. Calculer la partie imaginaire, un argument et la partie réelle de:

$$\rightarrow$$
 page 20

$$\frac{2}{-6\sqrt{3}-6i}.$$

Exercice 43. Calculer la partie réelle de :

$$\rightarrow$$
 page 20

$$\frac{11i}{6+i\sqrt{3}}.$$

Exercice 44. Calculer le module, la partie imaginaire et la partie réelle de:

$$\frac{1+4i}{1+2i}.$$

Exercice 45. Calculer un argument de:

$$ightarrow$$
 page 21

$$\frac{26\sqrt{3} + 26i}{\sqrt{2} + i\sqrt{2}}.$$

Exercice 46. Calculer le module de:

$$\frac{-1+3i\sqrt{3}}{-i\sqrt{3}}.$$

$$\rightarrow$$
 page 21

 \rightarrow page 21

 \rightarrow page 21

 \rightarrow page 21

Exercice 47. Calculer le module, un argument et la partie réelle de:

$$\frac{i}{\sqrt{2}+i\sqrt{2}}.$$

Exercice 48. Calculer le module et la partie imaginaire de:

$$\frac{-1-i}{1-i}.$$

Exercice 49. Calculer la partie imaginaire de:

$$\frac{2-3i\sqrt{3}}{6-4i}.$$

 \rightarrow page 22

 \rightarrow page 22

Exercice 50. Calculer le module et la partie imaginaire de:

$$\frac{-15i\sqrt{3}}{2-i}.$$

Exercice 51. Calculer le module de:

$$\frac{-11+9i\sqrt{3}}{-2\sqrt{3}+i}$$
.

 \rightarrow page 22

Exercice 52. Calculer la partie imaginaire et la partie réelle de:

partie réelle de :
$$\rightarrow$$
 page 22

$$\frac{-1+i\sqrt{3}}{4\sqrt{3}-i}.$$

Exercice 53. Calculer la partie imaginaire de:

$$\rightarrow$$
 page 23

$$\frac{-\sqrt{3}+i}{2\sqrt{3}+5i}.$$

Exercice 54. Calculer un argument et la partie réelle de :

$$\rightarrow$$
 page 23

$$\frac{1}{-2-2i\sqrt{3}}.$$

Exercice 55. Calculer la partie imaginaire et la partie réelle de:

$$\frac{4 - 8i\sqrt{3}}{-3 + i\sqrt{3}}.$$

Exercice 56. Calculer le module de:

$$\frac{11 - i\sqrt{3}}{\sqrt{3} + i}.$$

Exercice 57. Calculer le module et la partie réelle de :

$$\frac{1}{1 - 7i\sqrt{3}}.$$

Exercice 58. Calculer le module et la partie imaginaire de:

$$\frac{-\sqrt{3}+i}{3+2i}.$$

Exercice 59. Calculer le module et un argument de:

$$\frac{-\sqrt{2}+i\sqrt{2}}{\sqrt{3}+i}.$$

Exercice 60. Calculer le module, la partie imaginaire et la partie réelle de:

$$\frac{-3+i}{-26-i\sqrt{3}}.$$

Exercice 61. Calculer la partie imaginaire, un argument et la partie réelle de:

$$\frac{9i}{-22\sqrt{3}-22i}.$$

Exercice 62. Calculer la partie réelle de :

$$\frac{-1}{-\sqrt{3}+2i}.$$

Exercice 63. Calculer le module et un argument de :

$$\frac{-24\sqrt{3}+24i}{-4-4i\sqrt{3}}$$
.

Exercice 64. Calculer le module, la partie imaginaire et la partie réelle de:

$$\frac{-12i}{-7+2i\sqrt{3}}.$$

Exercice 65. Calculer la partie imaginaire, un argument et la partie réelle de:

 \rightarrow page 26

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 25

 \rightarrow page 25

 \rightarrow page 25

$$\frac{1}{5+5i\sqrt{3}}.$$

Exercice 66. Calculer la partie imaginaire et la partie réelle de:

 \rightarrow page 26

$$\frac{-1+2i\sqrt{3}}{\sqrt{3}-i}.$$

Exercice 67. Calculer le module et un argument de:

 \rightarrow page 26

$$\frac{\sqrt{2}-i\sqrt{2}}{i}.$$

Exercice 68. Calculer le module et la partie imaginaire de:

 \rightarrow page 26

$$\frac{-24i}{1-i}.$$

Exercice 69. Calculer la partie imaginaire, un argument et la partie réelle de:

 \rightarrow page 26

$$\frac{-\sqrt{2}-i\sqrt{2}}{4\sqrt{2}-4i\sqrt{2}}.$$

Exercice 70. Calculer le module, la partie imaginaire et la partie réelle de:

 \rightarrow page 27

$$\frac{-1-3i}{1-i\sqrt{3}}.$$

Exercice 71. Calculer le module et un argument de :

 \rightarrow page 27

$$\frac{37\sqrt{2} + 37i\sqrt{2}}{-2i}.$$

Exercice 72. Calculer le module et la partie réelle de :

 \rightarrow page 27

$$\frac{-i}{-2\sqrt{3}+i}.$$

Exercice 73. Calculer la partie imaginaire et un argument de:

 \rightarrow page 27

$$\frac{-2}{-\sqrt{2}+i\sqrt{2}}.$$

Exercice 74. Calculer un argument et la partie réelle de :

 \rightarrow page 27

$$\frac{\sqrt{2}-i\sqrt{2}}{\sqrt{3}-i}.$$

Exercice 75. Calculer le module, la partie imaginaire, un argument et la partie réelle de :

$$\frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}}.$$

Exercice 76. Calculer la partie imaginaire et la partie réelle de :

 \rightarrow page 28

$$\frac{-2i}{-1+225i\sqrt{3}}.$$

Exercice 77. Calculer le module et la partie imaginaire de:

 \rightarrow page 29

$$\frac{-3+4i\sqrt{3}}{-\sqrt{3}-i}.$$

Exercice 78. Calculer la partie imaginaire, un argument et la partie réelle de:

 \rightarrow page 29

$$\frac{-52\sqrt{2} + 52i\sqrt{2}}{-1 - i\sqrt{3}}.$$

Exercice 79. Calculer la partie imaginaire et un argument de:

 \rightarrow page 29

$$\frac{-6}{2\sqrt{2}-2i\sqrt{2}}.$$

Exercice 80. Calculer le module et la partie réelle de :

 \rightarrow page 30

$$\frac{2+i\sqrt{3}}{1-19i}.$$

Exercice 81. Calculer la partie imaginaire et la partie réelle de:

 \rightarrow page 30

$$\frac{-\sqrt{3}-3i}{1+5i}.$$

Exercice 82. Calculer le module, la partie imaginaire et un argument de:

 \rightarrow page 30

$$\frac{\sqrt{3}-i}{i}$$
.

Exercice 83. Calculer la partie imaginaire de:

 \rightarrow page 30

$$\frac{-2\sqrt{3}+2i}{1-2i\sqrt{3}}.$$

Exercice 84. Calculer le module, la partie imaginaire, un argument et la partie réelle de:

 \rightarrow page 31

$$\frac{3}{\sqrt{2} - i\sqrt{2}}.$$

Exercice 85. Calculer le module, la partie imaginaire et un argument de:

$$\frac{1}{\sqrt{2}+i\sqrt{2}}.$$

Exercice 86. Calculer le module de:

$$\frac{-1-i}{2-6i}.$$

 \rightarrow page 31

Exercice 87. Calculer la partie imaginaire et la partie réelle de:

$$\frac{1-2i\sqrt{3}}{1+3i}.$$

 \rightarrow page 31

Exercice 88. Calculer la partie imaginaire, un argument et la partie réelle de :

$$\rightarrow$$
 page 31

$$\frac{\sqrt{2}+i\sqrt{2}}{-2\sqrt{3}+2i}.$$

Exercice 89. Calculer la partie imaginaire, un argument et la partie réelle de:

 \rightarrow page 32

$$\frac{\sqrt{3}-i}{i}$$
.

Exercice 90. Calculer le module, la partie imaginaire et un argument de:

 \rightarrow page 32

$$\frac{-4\sqrt{3}+4i}{2\sqrt{2}-2i\sqrt{2}}.$$

Exercice 91. Calculer le module, un argument et la partie réelle de :

 \rightarrow page 33

$$\frac{-2 + 2i\sqrt{3}}{-13 - 13i\sqrt{3}}.$$

Exercice 92. Calculer la partie imaginaire et la partie réelle de:

 \rightarrow page 33

$$\frac{-4 - i\sqrt{3}}{1 - i\sqrt{3}}.$$

Exercice 93. Calculer la partie imaginaire et un argument de:

 \rightarrow page 33

$$\frac{-3\sqrt{2}+3i\sqrt{2}}{2\sqrt{3}+2i}.$$

Exercice 94. Calculer un argument et la partie réelle de:

 \rightarrow page 33

$$\frac{\sqrt{3}-i}{i}$$
.

Exercice 95. Calculer le module et un argument de :

$$\frac{-1}{\sqrt{2}+i\sqrt{2}}.$$

Exercice 96. Calculer le module, la partie imaginaire et un argument de:

 \rightarrow page 34

$$\frac{-1 + i\sqrt{3}}{-17\sqrt{2} - 17i\sqrt{2}}.$$

Exercice 97. Calculer la partie imaginaire de:

 \rightarrow page 34

$$\frac{2+i}{-i\sqrt{3}}.$$

Exercice 98. Calculer un argument de:

 \rightarrow page 34

$$\frac{-\sqrt{2} + i\sqrt{2}}{-\sqrt{2} - i\sqrt{2}}.$$

Exercice 99. Calculer le module de:

$$\frac{7-i}{-1+i}.$$

 \rightarrow page 35

Exercice 100. Calculer le module, un argument et la partie réelle de:

$$\frac{6\sqrt{3}-6i}{\sqrt{3}+i}.$$

Corrigé 1. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $\sqrt{3} + i = 2e^{\frac{1}{6}i\pi}$, et : $-1 - i\sqrt{3} = 2e^{-\frac{2}{3}i\pi}$. Donc :

 \leftarrow page 1

$$\frac{\sqrt{3}+i}{-1-i\sqrt{3}} = \frac{2e^{\frac{1}{6}i\pi}}{2e^{-\frac{2}{3}i\pi}} = 1e^{-\frac{7}{6}i\pi} = 1e^{\frac{5}{6}i\pi}.$$

On en déduit:

$$\operatorname{Arg}\left(\frac{\sqrt{3}+i}{-1-i\sqrt{3}}\right) \equiv \frac{5}{6} \pi \bmod 2\pi.$$

Corrigé 2. On a: $\forall z \in \mathbb{C}$, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$. Ici, cela donne:

 \leftarrow page 1

$$\operatorname{Re}\left(\frac{5-3i}{-1+i}\right) = \frac{1}{2} \left(\frac{5-3i}{-1+i} + \frac{3i+5}{-1-i}\right)$$

$$= \frac{1}{2} \frac{(5-3i)(-1-i) + (3i+5)(-1+i)}{|-1+i|^2}$$

$$= \frac{1}{2} \frac{-16}{2}$$

$$= -4,$$

d'où le résultat:

$$\operatorname{Re}\left(\frac{5-3i}{-1+i}\right) = -4.$$

Corrigé 3. Multiplions le numérateur et le dénominateur par le conjugué de 4 + 3i. On obtient :

 \leftarrow page 1

$$\begin{split} \frac{-5+9i\sqrt{3}}{4+3i} &= \frac{(-5+9i\sqrt{3})(4-3i)}{|4+3i|^2} \\ &= \frac{(36i+27)\sqrt{3}+15i-20}{25} \\ &= \left(\frac{36}{25}i + \frac{27}{25}\right)\sqrt{3} + \frac{3}{5}i - \frac{4}{5}. \end{split}$$

On en déduit :

$$\operatorname{Im}\left(\frac{-5+9i\sqrt{3}}{4+3i}\right) = \frac{36}{25}\sqrt{3} + \frac{3}{5}, \quad \left|\frac{-5+9i\sqrt{3}}{4+3i}\right| = \frac{2}{5}\sqrt{67}.$$

Corrigé 4. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement:

 \leftarrow page 1

$$\frac{\sqrt{3}+i}{5i} = -\frac{1}{5}i\left(\sqrt{3}+i\right) = -\frac{1}{5}i\sqrt{3} + \frac{1}{5} = \frac{2}{5}\left(-\frac{1}{2}i\sqrt{3} + \frac{1}{2}\right) = \frac{2}{5}e^{-\frac{1}{3}i\pi}$$

et on en déduit:

$$\left| \frac{\sqrt{3}+i}{5i} \right| = \frac{2}{5}, \quad \operatorname{Arg}\left(\frac{\sqrt{3}+i}{5i} \right) \equiv -\frac{1}{3} \pi \mod 2\pi.$$

Corrigé 5. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $4i = 4e^{\frac{1}{2}i\pi}$, et : $\sqrt{3} - 3i = 2\sqrt{3}e^{-\frac{1}{3}i\pi}$. Donc :

$$\frac{4i}{\sqrt{3}-3i} = \frac{4e^{\frac{1}{2}i\pi}}{2\sqrt{3}e^{-\frac{1}{3}i\pi}} = 2\sqrt{\frac{1}{3}}e^{\frac{5}{6}i\pi} = \frac{1}{3}i\sqrt{3}-1.$$

On en déduit :

$$\operatorname{Re}\left(\frac{4i}{\sqrt{3}-3i}\right) = -1.$$

Corrigé 6. Remarquons que l'on a tout simplement : $-2\sqrt{3} - 2i = -2i\left(1 - i\sqrt{3}\right)$. On en déduit :

 \leftarrow page 1

$$\frac{-2\sqrt{3} - 2i}{1 - i\sqrt{3}} = -2i.$$

On a donc immédiatement :

$$\operatorname{Im}\left(\frac{-2\sqrt{3}-2i}{1-i\sqrt{3}}\right) = -2, \quad \left|\frac{-2\sqrt{3}-2i}{1-i\sqrt{3}}\right| = 2,$$
$$\operatorname{Arg}\left(\frac{-2\sqrt{3}-2i}{1-i\sqrt{3}}\right) \equiv -\frac{1}{2}\pi \bmod 2\pi.$$

Corrigé 7. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $-i = e^{-\frac{1}{2}i\pi}$, et : $-\sqrt{3} + i = 2e^{\frac{5}{6}i\pi}$. Donc :

 \leftarrow page 1

$$\frac{-i}{-\sqrt{3}+i} = \frac{e^{-\frac{1}{2}i\pi}}{2e^{\frac{5}{6}i\pi}} = \frac{1}{2}e^{-\frac{4}{3}i\pi} = \frac{1}{2}e^{\frac{2}{3}i\pi} = \frac{1}{4}i\sqrt{3} - \frac{1}{4}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-i}{-\sqrt{3}+i}\right) = -\frac{1}{4}, \quad \operatorname{Arg}\left(\frac{-i}{-\sqrt{3}+i}\right) \equiv \frac{2}{3}\pi \mod 2\pi.$$

Corrigé 8. Multiplions le numérateur et le dénominateur par le conjugué de 13 + i. On obtient :

 \leftarrow page 1

$$\frac{-\sqrt{3}-i}{13+i} = \frac{(-\sqrt{3}-i)(13-i)}{|13+i|^2}$$
$$= \frac{(i-13)\sqrt{3}-13i-1}{170}$$
$$= \left(\frac{1}{170}i - \frac{13}{170}\right)\sqrt{3} - \frac{13}{170}i - \frac{1}{170}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-\sqrt{3}-i}{13+i}\right) = -\frac{13}{170}\sqrt{3} - \frac{1}{170}, \quad \operatorname{Im}\left(\frac{-\sqrt{3}-i}{13+i}\right) = \frac{1}{170}\sqrt{3} - \frac{13}{170}, \quad \left|\frac{-\sqrt{3}-i}{13+i}\right| = \sqrt{\frac{2}{85}}.$$

Corrigé 9. Comme le module est multiplicatif, on a directement :

 \leftarrow page 1

$$\left| \frac{-1 - i\sqrt{3}}{-1 + 2i} \right| = \frac{\left| -1 - i\sqrt{3} \right|}{\left| -1 + 2i \right|} = \frac{\sqrt{4}}{\sqrt{5}},$$

et donc:

$$\left| \frac{-1 - i\sqrt{3}}{-1 + 2i} \right| = 2\sqrt{\frac{1}{5}}.$$

Corrigé 10. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis

sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $\sqrt{3} + i = 2e^{\frac{1}{6}i\pi}$. Donc:

$$\frac{1}{\sqrt{3}+i} = \frac{1}{2e^{\frac{1}{6}i\pi}} = \frac{1}{2}e^{\frac{11}{6}i\pi} = \frac{1}{2}e^{-\frac{1}{6}i\pi}.$$

On en déduit:

$$\left| \frac{1}{\sqrt{3}+i} \right| = \frac{1}{2}, \quad \operatorname{Arg}\left(\frac{1}{\sqrt{3}+i}\right) \equiv -\frac{1}{6}\pi \mod 2\pi.$$

Corrigé 11. Comme le module est multiplicatif, on a directement :

 \leftarrow page 2

$$\left| \frac{-1+4i}{1+9i\sqrt{3}} \right| = \frac{|-1+4i|}{\left| 1+9i\sqrt{3} \right|} = \frac{\sqrt{17}}{\sqrt{244}},$$

et donc:

$$\left| \frac{-1+4i}{1+9i\sqrt{3}} \right| = \frac{1}{2}\sqrt{\frac{17}{61}}.$$

Corrigé 12. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-1 = e^{i\pi}$, et: $-1 + i = \sqrt{2}e^{\frac{3}{4}i\pi}$. Donc:

 \leftarrow page 2

$$\frac{-1}{-1+i} = \frac{e^{i\pi}}{\sqrt{2}e^{\frac{3}{4}i\pi}} = \sqrt{\frac{1}{2}}e^{\frac{1}{4}i\pi} = \frac{1}{2}i + \frac{1}{2}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-1}{-1+i}\right) = \frac{1}{2}, \quad \operatorname{Im}\left(\frac{-1}{-1+i}\right) = \frac{1}{2}, \quad \left|\frac{-1}{-1+i}\right| = \sqrt{\frac{1}{2}}.$$

Corrigé 13. Multiplions le numérateur et le dénominateur par le conjugué de $-2+2i\sqrt{3}$. On obtient : \leftarrow page 2

$$\begin{split} \frac{10\sqrt{2}+10i\sqrt{2}}{-2+2i\sqrt{3}} &= \frac{(10\sqrt{2}+10i\sqrt{2})(-2-2i\sqrt{3})}{\left|-2+2i\sqrt{3}\right|^2} \\ &= \frac{-\left(20i-20\right)\sqrt{3}\sqrt{2}-\left(20i+20\right)\sqrt{2}}{16} \\ &= -\left(\frac{5}{4}i-\frac{5}{4}\right)\sqrt{3}\sqrt{2}-\left(\frac{5}{4}i+\frac{5}{4}\right)\sqrt{2}. \end{split}$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet: $10\sqrt{2} + 10i\sqrt{2} = 20e^{\frac{1}{4}i\pi}$, et: $-2 + 2i\sqrt{3} = 4e^{\frac{2}{3}i\pi}$. Donc:

$$\frac{10\sqrt{2} + 10i\sqrt{2}}{-2 + 2i\sqrt{3}} = \frac{20e^{\frac{1}{4}i\pi}}{4e^{\frac{2}{3}i\pi}} = 5e^{-\frac{5}{12}i\pi}.$$

On en déduit :

$$\operatorname{Im}\left(\frac{10\sqrt{2} + 10i\sqrt{2}}{-2 + 2i\sqrt{3}}\right) = -\frac{5}{4}\sqrt{3}\sqrt{2} - \frac{5}{4}\sqrt{2}, \quad \left|\frac{10\sqrt{2} + 10i\sqrt{2}}{-2 + 2i\sqrt{3}}\right| = 5,$$
$$\operatorname{Arg}\left(\frac{10\sqrt{2} + 10i\sqrt{2}}{-2 + 2i\sqrt{3}}\right) \equiv -\frac{5}{12}\pi \bmod 2\pi.$$

Corrigé 14. Multiplions le numérateur et le dénominateur par le conjugué de 10 - 2i. On obtient :

 \leftarrow page 2

$$\frac{-1+i}{10-2i} = \frac{(-1+i)(10+2i)}{|10-2i|^2}$$
$$= \frac{8i-12}{104}$$
$$= \frac{1}{13}i - \frac{3}{26}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-1+i}{10-2i}\right) = -\frac{3}{26}, \quad \operatorname{Im}\left(\frac{-1+i}{10-2i}\right) = \frac{1}{13}.$$

Corrigé 15. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-2 = 2e^{i\pi}$, et: $3\sqrt{3} - 3i = 6e^{-\frac{1}{6}i\pi}$. Donc:

 \leftarrow page 2

$$\frac{-2}{3\sqrt{3}-3i} = \frac{2e^{i\pi}}{6e^{-\frac{1}{6}i\pi}} = \frac{1}{3}e^{\frac{7}{6}i\pi} = \frac{1}{3}e^{-\frac{5}{6}i\pi}.$$

On en déduit :

$$\left| \frac{-2}{3\sqrt{3} - 3i} \right| = \frac{1}{3}, \quad \operatorname{Arg}\left(\frac{-2}{3\sqrt{3} - 3i} \right) \equiv -\frac{5}{6} \pi \mod 2\pi.$$

Corrigé 16. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $\sqrt{3} + i = 2e^{\frac{1}{6}i\pi}$. Donc :

 \leftarrow page 2

$$\frac{2}{\sqrt{3}+i} = \frac{2}{2e^{\frac{1}{6}i\,\pi}} = 1e^{\frac{11}{6}i\,\pi} = 1e^{-\frac{1}{6}i\,\pi}.$$

On en déduit :

$$\operatorname{Arg}\left(\frac{2}{\sqrt{3}+i}\right) \equiv -\frac{1}{6} \operatorname{\pi} \bmod 2\pi.$$

Corrigé 17. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $2i=2e^{\frac{1}{2}i\pi}$, et : $-\sqrt{2}-i\sqrt{2}=2e^{-\frac{3}{4}i\pi}$. Donc :

 \leftarrow page 2

$$\frac{2i}{-\sqrt{2}-i\sqrt{2}} = \frac{2e^{\frac{1}{2}i\pi}}{2e^{-\frac{3}{4}i\pi}} = 1e^{\frac{5}{4}i\pi} = 1e^{-\frac{3}{4}i\pi} = -\left(\frac{1}{2}i + \frac{1}{2}\right)\sqrt{2}.$$

On en déduit :

$$\begin{split} \operatorname{Im}\left(\frac{2i}{-\sqrt{2}-i\sqrt{2}}\right) &= -\frac{1}{2}\sqrt{2}, \quad \left|\frac{2i}{-\sqrt{2}-i\sqrt{2}}\right| = 1, \\ \operatorname{Arg}\left(\frac{2i}{-\sqrt{2}-i\sqrt{2}}\right) &\equiv -\frac{3}{4}\pi \bmod 2\pi. \end{split}$$

Corrigé 18. Multiplions le numérateur et le dénominateur par le conjugué de $3\sqrt{3} + 9i$. On obtient :

$$\frac{4+6i}{3\sqrt{3}+9i} = \frac{(4+6i)(3\sqrt{3}-9i)}{\left|3\sqrt{3}+9i\right|^2}$$
$$= \frac{(18i+12)\sqrt{3}-36i+54}{108}$$
$$= \left(\frac{1}{6}i+\frac{1}{9}\right)\sqrt{3}-\frac{1}{3}i+\frac{1}{2}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{4+6i}{3\sqrt{3}+9i}\right) = \frac{1}{9}\sqrt{3} + \frac{1}{2}, \quad \left|\frac{4+6i}{3\sqrt{3}+9i}\right| = \frac{1}{3}\sqrt{\frac{13}{3}}.$$

Corrigé 19. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 2

$$\frac{5\sqrt{3}+5i}{i} = -i\left(5\sqrt{3}+5i\right) = -5i\sqrt{3}+5 = 10\left(-\frac{1}{2}i\sqrt{3}+\frac{1}{2}\right) = 10e^{-\frac{1}{3}i\,\pi}$$

et on en déduit:

$$\operatorname{Re}\left(\frac{5\sqrt{3}+5i}{i}\right) = 5, \quad \operatorname{Arg}\left(\frac{5\sqrt{3}+5i}{i}\right) \equiv -\frac{1}{3}\pi \mod 2\pi.$$

Corrigé 20. On a : $\forall z \in \mathbb{C}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$. Ici, cela donne :

 \leftarrow page 2

$$\operatorname{Im}\left(\frac{1+i}{\sqrt{3}-2i}\right) = \frac{1}{2i} \left(\frac{1+i}{\sqrt{3}-2i} - \frac{-i+1}{\sqrt{3}+2i}\right)$$

$$= \frac{1}{2i} \frac{(1+i)(\sqrt{3}+2i) - (-i+1)(\sqrt{3}-2i)}{\left|\sqrt{3}-2i\right|^2}$$

$$= \frac{1}{2i} \frac{2i\sqrt{3}+4i}{7}$$

$$= \frac{1}{7}\sqrt{3} + \frac{2}{7},$$

d'où le résultat:

$$\operatorname{Im}\left(\frac{1+i}{\sqrt{3}-2i}\right) = \frac{1}{7}\sqrt{3} + \frac{2}{7}.$$

Corrigé 21. On a : $\forall z \in \mathbb{C}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$. Ici, cela donne :

 \leftarrow page 2

$$\operatorname{Im}\left(\frac{i}{-1+8i\sqrt{3}}\right) = \frac{1}{2i} \left(\frac{i}{-1+8i\sqrt{3}} - \frac{-i}{-1-8i\sqrt{3}}\right)$$

$$= \frac{1}{2i} \frac{(i)(-1-8i\sqrt{3}) - (-i)(-1+8i\sqrt{3})}{\left|-1+8i\sqrt{3}\right|^2}$$

$$= \frac{1}{2i} \frac{-2i}{193}$$

$$= -\frac{1}{193},$$

d'où le résultat :

$$\operatorname{Im}\left(\frac{i}{-1+8i\sqrt{3}}\right) = -\frac{1}{193}.$$

Corrigé 22. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 3

$$\frac{-2\sqrt{3}+i}{-i} = i\left(-2\sqrt{3}+i\right) = -2i\sqrt{3}-1$$

et on en déduit:

$$\operatorname{Re}\left(\frac{-2\sqrt{3}+i}{-i}\right) = -1, \quad \left|\frac{-2\sqrt{3}+i}{-i}\right| = \sqrt{13}.$$

Corrigé 23. Comme le module est multiplicatif, on a directement :

 \leftarrow page 3

$$\left| \frac{3 - 8i\sqrt{3}}{-1 + 2i} \right| = \frac{\left| 3 - 8i\sqrt{3} \right|}{\left| -1 + 2i \right|} = \frac{\sqrt{201}}{\sqrt{5}},$$

et donc:

$$\left| \frac{3 - 8i\sqrt{3}}{-1 + 2i} \right| = \sqrt{\frac{201}{5}}.$$

Corrigé 24. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 3

$$\frac{-3-i}{3i} = -\frac{1}{3}i(-3-i) = i - \frac{1}{3}$$

et on en déduit:

$$\operatorname{Re}\left(\frac{-3-i}{3i}\right) = -\frac{1}{3}.$$

Corrigé 25. Multiplions le numérateur et le dénominateur par le conjugué de $2-i\sqrt{3}$. On obtient :

 \leftarrow page 3

$$\frac{-2+i}{2-i\sqrt{3}} = \frac{(-2+i)(2+i\sqrt{3})}{\left|2-i\sqrt{3}\right|^2}$$
$$= \frac{-(2i+1)\sqrt{3}+2i-4}{7}$$
$$= -\left(\frac{2}{7}i+\frac{1}{7}\right)\sqrt{3}+\frac{2}{7}i-\frac{4}{7}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-2+i}{2-i\sqrt{3}}\right) = -\frac{1}{7}\sqrt{3} - \frac{4}{7}, \quad \operatorname{Im}\left(\frac{-2+i}{2-i\sqrt{3}}\right) = -\frac{2}{7}\sqrt{3} + \frac{2}{7}.$$

Corrigé 26. On a : $\forall z \in \mathbb{C}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$. Ici, cela donne :

 \leftarrow page 3

$$\operatorname{Im}\left(\frac{2i}{9+i}\right) = \frac{1}{2i} \left(\frac{2i}{9+i} - \frac{-2i}{9-i}\right)$$

$$= \frac{1}{2i} \frac{(2i)(9-i) - (-2i)(9+i)}{|9+i|^2}$$

$$= \frac{1}{2i} \frac{36i}{82}$$

$$= \frac{9}{41},$$

d'où le résultat:

$$\operatorname{Im}\left(\frac{2i}{9+i}\right) = \frac{9}{41}.$$

Corrigé 27. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $\sqrt{3} + i = 2e^{\frac{1}{6}i\pi}$, et: $-2\sqrt{3} + 2i = 4e^{\frac{5}{6}i\pi}$. Donc:

$$\frac{\sqrt{3}+i}{-2\sqrt{3}+2i} = \frac{2e^{\frac{1}{6}i\,\pi}}{4e^{\frac{5}{6}i\,\pi}} = \frac{1}{2}e^{-\frac{2}{3}i\,\pi} = -\frac{1}{4}i\,\sqrt{3} - \frac{1}{4}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{\sqrt{3}+i}{-2\sqrt{3}+2i}\right) = -\frac{1}{4}, \quad \left|\frac{\sqrt{3}+i}{-2\sqrt{3}+2i}\right| = \frac{1}{2},$$
$$\operatorname{Arg}\left(\frac{\sqrt{3}+i}{-2\sqrt{3}+2i}\right) \equiv -\frac{2}{3}\pi \bmod 2\pi.$$

Corrigé 28. Comme le module est multiplicatif, on a directement :

 \leftarrow page 3

$$\left| \frac{1+2i}{1-7i} \right| = \frac{|1+2i|}{|1-7i|} = \frac{\sqrt{5}}{\sqrt{50}}.$$

et donc:

$$\left| \frac{1+2i}{1-7i} \right| = \sqrt{\frac{1}{10}}.$$

Corrigé 29. On a : $\forall z \in \mathbb{C}$, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$. Ici, cela donne :

 \leftarrow page 3

$$\operatorname{Re}\left(\frac{-1+3i}{-13-6i\sqrt{3}}\right) = \frac{1}{2} \left(\frac{-1+3i}{-13-6i\sqrt{3}} + \frac{-3i-1}{-13+6i\sqrt{3}}\right)$$

$$= \frac{1}{2} \frac{(-1+3i)(-13+6i\sqrt{3}) + (-3i-1)(-13-6i\sqrt{3})}{\left|-13-6i\sqrt{3}\right|^2}$$

$$= \frac{1}{2} \frac{-36\sqrt{3}+26}{277}$$

$$= -\frac{18}{277} \sqrt{3} + \frac{13}{277},$$

d'où le résultat:

$$\operatorname{Re}\left(\frac{-1+3i}{-13-6i\sqrt{3}}\right) = -\frac{18}{277}\sqrt{3} + \frac{13}{277}$$

Corrigé 30. Remarquons que l'on a tout simplement : $2\sqrt{2} + 2i\sqrt{2} = i\left(2\sqrt{2} - 2i\sqrt{2}\right)$. On en déduit : \leftarrow page 3

$$\frac{2\sqrt{2} + 2i\sqrt{2}}{2\sqrt{2} - 2i\sqrt{2}} = i.$$

On a donc immédiatement:

$$\operatorname{Re}\left(\frac{2\sqrt{2}+2i\sqrt{2}}{2\sqrt{2}-2i\sqrt{2}}\right) = 0, \quad \left|\frac{2\sqrt{2}+2i\sqrt{2}}{2\sqrt{2}-2i\sqrt{2}}\right| = 1,$$
$$\operatorname{Arg}\left(\frac{2\sqrt{2}+2i\sqrt{2}}{2\sqrt{2}-2i\sqrt{2}}\right) \equiv \frac{1}{2}\pi \bmod 2\pi.$$

Corrigé 31. On a : $\forall z \in \mathbb{C}$, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$. Ici, cela donne :

$$\operatorname{Re}\left(\frac{-2+i}{-8-i}\right) = \frac{1}{2} \left(\frac{-2+i}{-8-i} + \frac{-i-2}{-8+i}\right)$$

$$= \frac{1}{2} \frac{(-2+i)(-8+i) + (-i-2)(-8-i)}{|-8-i|^2}$$

$$= \frac{1}{2} \frac{30}{65}$$

$$= \frac{3}{13},$$

d'où le résultat:

$$\operatorname{Re}\left(\frac{-2+i}{-8-i}\right) = \frac{3}{13}.$$

Corrigé 32. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $\sqrt{3} - i = 2e^{-\frac{1}{6}i\pi}$, et: $302 - 302i\sqrt{3} = 604e^{-\frac{1}{3}i\pi}$. Donc:

 \leftarrow page 3

$$\frac{\sqrt{3}-i}{302-302i\sqrt{3}} = \frac{2e^{-\frac{1}{6}i\pi}}{604e^{-\frac{1}{3}i\pi}} = \frac{1}{302}e^{\frac{1}{6}i\pi} = \frac{1}{604}\sqrt{3} + \frac{1}{604}i.$$

On en déduit:

$$\operatorname{Re}\left(\frac{\sqrt{3} - i}{302 - 302i\sqrt{3}}\right) = \frac{1}{604}\sqrt{3}, \quad \operatorname{Im}\left(\frac{\sqrt{3} - i}{302 - 302i\sqrt{3}}\right) = \frac{1}{604}, \quad \left|\frac{\sqrt{3} - i}{302 - 302i\sqrt{3}}\right| = \frac{1}{302},$$

$$\operatorname{Arg}\left(\frac{\sqrt{3} - i}{302 - 302i\sqrt{3}}\right) \equiv \frac{1}{6}\pi \mod 2\pi.$$

Corrigé 33. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 3

$$\frac{2\sqrt{3}+2i}{i} = -i\left(2\sqrt{3}+2i\right) = -2i\sqrt{3}+2 = 4\left(-\frac{1}{2}i\sqrt{3}+\frac{1}{2}\right) = 4e^{\frac{5}{3}i\pi}$$

et on en déduit:

$$\operatorname{Im}\left(\frac{2\sqrt{3}+2i}{i}\right) = -2\sqrt{3}, \quad \operatorname{Arg}\left(\frac{2\sqrt{3}+2i}{i}\right) \equiv -\frac{1}{3}\pi \bmod 2\pi.$$

Corrigé 34. Comme le module est multiplicatif, on a directement :

 \leftarrow page 4

$$\left| \frac{7\sqrt{3} + 96i}{1 - 12i} \right| = \frac{\left| 7\sqrt{3} + 96i \right|}{\left| 1 - 12i \right|} = \frac{\sqrt{9363}}{\sqrt{145}},$$

et donc:

$$\left| \frac{7\sqrt{3} + 96i}{1 - 12i} \right| = \sqrt{\frac{9363}{145}}.$$

Corrigé 35. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $2\sqrt{3} + 2i = 4e^{\frac{1}{6}i\pi}$, et : $3 + 3i\sqrt{3} = 6e^{\frac{1}{3}i\pi}$. Donc :

 \leftarrow page 4

$$\frac{2\sqrt{3}+2i}{3+3i\sqrt{3}} = \frac{4e^{\frac{1}{6}i\pi}}{6e^{\frac{1}{3}i\pi}} = \frac{2}{3}e^{-\frac{13}{6}i\pi} = \frac{2}{3}e^{-\frac{1}{6}i\pi} = \frac{1}{3}\sqrt{3} - \frac{1}{3}i.$$

On en déduit :

$$\operatorname{Re}\left(\frac{2\sqrt{3}+2i}{3+3i\sqrt{3}}\right) = \frac{1}{3}\sqrt{3}, \quad \operatorname{Im}\left(\frac{2\sqrt{3}+2i}{3+3i\sqrt{3}}\right) = -\frac{1}{3}, \quad \left|\frac{2\sqrt{3}+2i}{3+3i\sqrt{3}}\right| = \frac{2}{3},$$
$$\operatorname{Arg}\left(\frac{2\sqrt{3}+2i}{3+3i\sqrt{3}}\right) \equiv -\frac{1}{6}\pi \bmod 2\pi.$$

Corrigé 36. Multiplions le numérateur et le dénominateur par le conjugué de $5\sqrt{3} + i$. On obtient :

 \leftarrow page 4

$$\frac{1+i}{5\sqrt{3}+i} = \frac{(1+i)(5\sqrt{3}-i)}{\left|5\sqrt{3}+i\right|^2}$$
$$= \frac{(5i+5)\sqrt{3}-i+1}{76}$$
$$= \left(\frac{5}{76}i+\frac{5}{76}\right)\sqrt{3}-\frac{1}{76}i+\frac{1}{76}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{1+i}{5\sqrt{3}+i}\right) = \frac{5}{76}\sqrt{3} + \frac{1}{76}, \quad \operatorname{Im}\left(\frac{1+i}{5\sqrt{3}+i}\right) = \frac{5}{76}\sqrt{3} - \frac{1}{76}.$$

Corrigé 37. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-1 = e^{i\pi}$, et: $2\sqrt{2} - 2i\sqrt{2} = 4e^{-\frac{1}{4}i\pi}$. Donc:

$$\frac{-1}{2\sqrt{2}-2i\sqrt{2}} = \frac{e^{i\pi}}{4e^{-\frac{1}{4}i\pi}} = \frac{1}{4}e^{-\frac{3}{4}i\pi} = -\left(\frac{1}{8}i + \frac{1}{8}\right)\sqrt{2}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-1}{2\sqrt{2}-2i\sqrt{2}}\right) = -\frac{1}{8}\sqrt{2}, \quad \operatorname{Im}\left(\frac{-1}{2\sqrt{2}-2i\sqrt{2}}\right) = -\frac{1}{8}\sqrt{2},$$

$$\operatorname{Arg}\left(\frac{-1}{2\sqrt{2}-2i\sqrt{2}}\right) \equiv -\frac{3}{4}\pi \bmod 2\pi.$$

Corrigé 38. Multiplions le numérateur et le dénominateur par le conjugué de $-10\sqrt{3}+i$. On obtient : \leftarrow page 4

$$\frac{-3-5i}{-10\sqrt{3}+i} = \frac{(-3-5i)(-10\sqrt{3}-i)}{\left|-10\sqrt{3}+i\right|^2}$$
$$= \frac{(50i+30)\sqrt{3}+3i-5}{301}$$
$$= \left(\frac{50}{301}i + \frac{30}{301}\right)\sqrt{3} + \frac{3}{301}i - \frac{5}{301}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-3-5i}{-10\sqrt{3}+i}\right) = \frac{30}{301}\sqrt{3} - \frac{5}{301}, \quad \left|\frac{-3-5i}{-10\sqrt{3}+i}\right| = \sqrt{\frac{34}{301}}.$$

Corrigé 39. Multiplions le numérateur et le dénominateur par le conjugué de $-\sqrt{2}-i\sqrt{2}$. On obtient : \leftarrow page 4

$$\frac{-\sqrt{3}+i}{-\sqrt{2}-i\sqrt{2}} = \frac{(-\sqrt{3}+i)(-\sqrt{2}+i\sqrt{2})}{\left|-\sqrt{2}-i\sqrt{2}\right|^2}$$
$$= \frac{-(i-1)\sqrt{3}\sqrt{2}-(i+1)\sqrt{2}}{4}$$
$$= -\left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{3}\sqrt{2} - \left(\frac{1}{4}i + \frac{1}{4}\right)\sqrt{2}.$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet : $-\sqrt{3}+i=2e^{\frac{5}{6}i\pi}$, et : $-\sqrt{2}-i\sqrt{2}=2e^{-\frac{3}{4}i\pi}$. Donc :

$$\frac{-\sqrt{3}+i}{-\sqrt{2}-i\sqrt{2}} = \frac{2e^{\frac{5}{6}i\pi}}{2e^{-\frac{3}{4}i\pi}} = 1e^{\frac{19}{12}i\pi} = 1e^{-\frac{5}{12}i\pi}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-\sqrt{3}+i}{-\sqrt{2}-i\sqrt{2}}\right) = \frac{1}{4}\sqrt{3}\sqrt{2} - \frac{1}{4}\sqrt{2}, \quad \operatorname{Im}\left(\frac{-\sqrt{3}+i}{-\sqrt{2}-i\sqrt{2}}\right) = -\frac{1}{4}\sqrt{3}\sqrt{2} - \frac{1}{4}\sqrt{2},$$
$$\operatorname{Arg}\left(\frac{-\sqrt{3}+i}{-\sqrt{2}-i\sqrt{2}}\right) \equiv -\frac{5}{12}\pi \bmod 2\pi.$$

Corrigé 40. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-1 = e^{i\pi}$, et: $-2\sqrt{3} + 2i = 4e^{\frac{5}{6}i\pi}$. Donc:

 \leftarrow page 4

$$\frac{-1}{-2\sqrt{3}+2i} = \frac{e^{i\pi}}{4e^{\frac{5}{6}i\pi}} = \frac{1}{4}e^{\frac{1}{6}i\pi} = \frac{1}{8}\sqrt{3} + \frac{1}{8}i.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-1}{-2\sqrt{3}+2i}\right) = \frac{1}{8}\sqrt{3}, \quad \left|\frac{-1}{-2\sqrt{3}+2i}\right| = \frac{1}{4},$$
$$\operatorname{Arg}\left(\frac{-1}{-2\sqrt{3}+2i}\right) \equiv \frac{1}{6}\pi \mod 2\pi.$$

Corrigé 41. Multiplions le numérateur et le dénominateur par le conjugué de 1 + 5i. On obtient :

 \leftarrow page 4

$$\frac{1+i}{1+5i} = \frac{(1+i)(1-5i)}{|1+5i|^2}$$
$$= \frac{-4i+6}{26}$$
$$= -\frac{2}{13}i + \frac{3}{13}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{1+i}{1+5i}\right) = \frac{3}{13}, \quad \left|\frac{1+i}{1+5i}\right| = \sqrt{\frac{1}{13}}.$$

Corrigé 42. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $-6\sqrt{3} - 6i = 12e^{-\frac{5}{6}i\pi}$. Donc :

 \leftarrow page 4

$$\frac{2}{-6\sqrt{3}-6i} = \frac{2}{12e^{-\frac{5}{6}i\pi}} = \frac{1}{6}e^{\frac{5}{6}i\pi} = -\frac{1}{12}\sqrt{3} + \frac{1}{12}i.$$

On en déduit:

$$\operatorname{Re}\left(\frac{2}{-6\sqrt{3}-6i}\right) = -\frac{1}{12}\sqrt{3}, \quad \operatorname{Im}\left(\frac{2}{-6\sqrt{3}-6i}\right) = \frac{1}{12},$$
$$\operatorname{Arg}\left(\frac{2}{-6\sqrt{3}-6i}\right) \equiv \frac{5}{6}\pi \mod 2\pi.$$

Corrigé 43. On a : $\forall z \in \mathbb{C}$, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$. Ici, cela donne :

← page 4

$$\operatorname{Re}\left(\frac{11i}{6+i\sqrt{3}}\right) = \frac{1}{2} \left(\frac{11i}{6+i\sqrt{3}} + \frac{-11i}{6-i\sqrt{3}}\right)$$

$$= \frac{1}{2} \frac{(11i)(6-i\sqrt{3}) + (-11i)(6+i\sqrt{3})}{\left|6+i\sqrt{3}\right|^2}$$

$$= \frac{1}{2} \frac{22\sqrt{3}}{39}$$

$$= \frac{11}{39} \sqrt{3},$$

d'où le résultat:

$$\operatorname{Re}\left(\frac{11i}{6+i\sqrt{3}}\right) = \frac{11}{39}\sqrt{3}.$$

Corrigé 44. Multiplions le numérateur et le dénominateur par le conjugué de 1 + 2i. On obtient :

 \leftarrow page 5

$$\frac{1+4i}{1+2i} = \frac{(1+4i)(1-2i)}{|1+2i|^2}$$
$$= \frac{2i+9}{5}$$
$$= \frac{2}{5}i + \frac{9}{5}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{1+4i}{1+2i}\right) = \frac{9}{5}, \quad \operatorname{Im}\left(\frac{1+4i}{1+2i}\right) = \frac{2}{5}, \quad \left|\frac{1+4i}{1+2i}\right| = \sqrt{\frac{17}{5}}.$$

Corrigé 45. Multiplions le numérateur et le dénominateur par le conjugué de $\sqrt{2} + i\sqrt{2}$. On obtient : \leftarrow

$$\begin{split} \frac{26\sqrt{3} + 26i}{\sqrt{2} + i\sqrt{2}} &= \frac{(26\sqrt{3} + 26i)(\sqrt{2} - i\sqrt{2})}{\left|\sqrt{2} + i\sqrt{2}\right|^2} \\ &= \frac{-(26i - 26)\sqrt{3}\sqrt{2} + (26i + 26)\sqrt{2}}{4} \\ &= -\left(\frac{13}{2}i - \frac{13}{2}\right)\sqrt{3}\sqrt{2} + \left(\frac{13}{2}i + \frac{13}{2}\right)\sqrt{2}. \end{split}$$

On en déduit:

$$\operatorname{Arg}\left(\frac{26\sqrt{3} + 26i}{\sqrt{2} + i\sqrt{2}}\right) \equiv -\frac{1}{12} \pi \mod 2\pi.$$

Corrigé 46. Comme le module est multiplicatif, on a directement :

 \leftarrow page 5

$$\left| \frac{-1+3i\sqrt{3}}{-i\sqrt{3}} \right| = \frac{\left| -1+3i\sqrt{3} \right|}{\left| -i\sqrt{3} \right|} = \frac{\sqrt{28}}{\sqrt{3}},$$

et donc:

$$\left| \frac{-1 + 3i\sqrt{3}}{-i\sqrt{3}} \right| = 2\sqrt{\frac{7}{3}}.$$

Corrigé 47. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $i = e^{\frac{1}{2}i\pi}$, et: $\sqrt{2} + i\sqrt{2} = 2e^{\frac{1}{4}i\pi}$. Donc:

 \leftarrow page 5

$$\frac{i}{\sqrt{2}+i\sqrt{2}} = \frac{e^{\frac{1}{2}i\pi}}{2e^{\frac{1}{4}i\pi}} = \frac{1}{2}e^{-\frac{7}{4}i\pi} = \frac{1}{2}e^{\frac{1}{4}i\pi} = \left(\frac{1}{4}i + \frac{1}{4}\right)\sqrt{2}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{i}{\sqrt{2}+i\sqrt{2}}\right) = \frac{1}{4}\sqrt{2}, \quad \left|\frac{i}{\sqrt{2}+i\sqrt{2}}\right| = \frac{1}{2},$$
$$\operatorname{Arg}\left(\frac{i}{\sqrt{2}+i\sqrt{2}}\right) \equiv \frac{1}{4}\pi \bmod 2\pi.$$

Corrigé 48. Remarquons que l'on a tout simplement : -1 - i = -i(1 - i). On en déduit :

$$\frac{-1-i}{1-i} = -i.$$

On a donc immédiatement:

$$\operatorname{Im}\left(\frac{-1-i}{1-i}\right) = -1, \quad \left|\frac{-1-i}{1-i}\right| = 1.$$

Corrigé 49. On a : $\forall z \in \mathbb{C}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$. Ici, cela donne :

 \leftarrow page 5

$$\operatorname{Im}\left(\frac{2-3i\sqrt{3}}{6-4i}\right) = \frac{1}{2i} \left(\frac{2-3i\sqrt{3}}{6-4i} - \frac{3i\sqrt{3}+2}{6+4i}\right)$$

$$= \frac{1}{2i} \frac{(2-3i\sqrt{3})(6+4i) - (3i\sqrt{3}+2)(6-4i)}{|6-4i|^2}$$

$$= \frac{1}{2i} \frac{-36i\sqrt{3}+16i}{52}$$

$$= -\frac{9}{26}\sqrt{3} + \frac{2}{13},$$

d'où le résultat:

$$\operatorname{Im}\left(\frac{2-3i\sqrt{3}}{6-4i}\right) = -\frac{9}{26}\sqrt{3} + \frac{2}{13}.$$

Corrigé 50. Multiplions le numérateur et le dénominateur par le conjugué de 2-i. On obtient :

 \leftarrow page 5

$$\frac{-15i\sqrt{3}}{2-i} = \frac{(-15i\sqrt{3})(2+i)}{|2-i|^2}$$
$$= \frac{-(30i-15)\sqrt{3}}{5}$$
$$= -(6i-3)\sqrt{3}.$$

On en déduit:

$$\operatorname{Im}\left(\frac{-15i\sqrt{3}}{2-i}\right) = -6\sqrt{3}, \quad \left|\frac{-15i\sqrt{3}}{2-i}\right| = 3\sqrt{15}.$$

Corrigé 51. Comme le module est multiplicatif, on a directement :

 \leftarrow page 5

$$\left| \frac{-11 + 9i\sqrt{3}}{-2\sqrt{3} + i} \right| = \frac{\left| -11 + 9i\sqrt{3} \right|}{\left| -2\sqrt{3} + i \right|} = \frac{\sqrt{364}}{\sqrt{13}},$$

et donc:

$$\left| \frac{-11 + 9i\sqrt{3}}{-2\sqrt{3} + i} \right| = 2\sqrt{7}.$$

Corrigé 52. Multiplions le numérateur et le dénominateur par le conjugué de $4\sqrt{3}-i$. On obtient :

$$\frac{-1+i\sqrt{3}}{4\sqrt{3}-i} = \frac{(-1+i\sqrt{3})(4\sqrt{3}+i)}{\left|4\sqrt{3}-i\right|^2}$$
$$= \frac{-5\sqrt{3}+11i}{49}$$
$$= -\frac{5}{49}\sqrt{3} + \frac{11}{49}i.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-1+i\sqrt{3}}{4\sqrt{3}-i}\right) = -\frac{5}{49}\sqrt{3}, \quad \operatorname{Im}\left(\frac{-1+i\sqrt{3}}{4\sqrt{3}-i}\right) = \frac{11}{49}.$$

Corrigé 53. On a : $\forall z \in \mathbb{C}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$. Ici, cela donne :

 \leftarrow page 5

$$\operatorname{Im}\left(\frac{-\sqrt{3}+i}{2\sqrt{3}+5i}\right) = \frac{1}{2i} \left(\frac{-\sqrt{3}+i}{2\sqrt{3}+5i} - \frac{-\sqrt{3}-i}{2\sqrt{3}-5i}\right)$$

$$= \frac{1}{2i} \frac{(-\sqrt{3}+i)(2\sqrt{3}-5i) - (-\sqrt{3}-i)(2\sqrt{3}+5i)}{\left|2\sqrt{3}+5i\right|^2}$$

$$= \frac{1}{2i} \frac{14i\sqrt{3}}{37}$$

$$= \frac{7}{37}\sqrt{3},$$

d'où le résultat:

$$\operatorname{Im}\left(\frac{-\sqrt{3}+i}{2\sqrt{3}+5i}\right) = \frac{7}{37}\sqrt{3}.$$

Corrigé 54. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-2 - 2i\sqrt{3} = 4e^{-\frac{2}{3}i\pi}$. Donc:

 \leftarrow page 5

$$\frac{1}{-2 - 2i\sqrt{3}} = \frac{1}{4e^{-\frac{2}{3}i\pi}} = \frac{1}{4}e^{-\frac{4}{3}i\pi} = \frac{1}{4}e^{\frac{2}{3}i\pi} = \frac{1}{8}i\sqrt{3} - \frac{1}{8}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{1}{-2-2i\sqrt{3}}\right) = -\frac{1}{8}, \quad \operatorname{Arg}\left(\frac{1}{-2-2i\sqrt{3}}\right) \equiv \frac{2}{3}\pi \mod 2\pi.$$

Corrigé 55. Multiplions le numérateur et le dénominateur par le conjugué de $-3 + i\sqrt{3}$. On obtient : \leftarrow page 6

$$\frac{4 - 8i\sqrt{3}}{-3 + i\sqrt{3}} = \frac{(4 - 8i\sqrt{3})(-3 - i\sqrt{3})}{\left|-3 + i\sqrt{3}\right|^2}$$
$$= \frac{20i\sqrt{3} - 36}{12}$$
$$= \frac{5}{3}i\sqrt{3} - 3.$$

On en déduit:

$$\operatorname{Re}\left(\frac{4-8i\sqrt{3}}{-3+i\sqrt{3}}\right) = -3, \quad \operatorname{Im}\left(\frac{4-8i\sqrt{3}}{-3+i\sqrt{3}}\right) = \frac{5}{3}\sqrt{3}.$$

Corrigé 56. Comme le module est multiplicatif, on a directement :

← page 6

$$\left| \frac{11 - i\sqrt{3}}{\sqrt{3} + i} \right| = \frac{\left| 11 - i\sqrt{3} \right|}{\left| \sqrt{3} + i \right|} = \frac{\sqrt{124}}{\sqrt{4}},$$

et donc:

$$\left| \frac{11 - i\sqrt{3}}{\sqrt{3} + i} \right| = \sqrt{31}.$$

Corrigé 57. Multiplions le numérateur et le dénominateur par le conjugué de $1 - 7i\sqrt{3}$. On obtient :

 \leftarrow page 6

$$\frac{1}{1 - 7i\sqrt{3}} = \frac{(1)(1 + 7i\sqrt{3})}{\left|1 - 7i\sqrt{3}\right|^2}$$
$$= \frac{7i\sqrt{3} + 1}{148}$$
$$= \frac{7}{148}i\sqrt{3} + \frac{1}{148}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{1}{1-7i\sqrt{3}}\right) = \frac{1}{148}, \quad \left|\frac{1}{1-7i\sqrt{3}}\right| = \frac{1}{2}\sqrt{\frac{1}{37}}.$$

Corrigé 58. Multiplions le numérateur et le dénominateur par le conjugué de 3 + 2i. On obtient :

 \leftarrow page 6

$$\frac{-\sqrt{3}+i}{3+2i} = \frac{(-\sqrt{3}+i)(3-2i)}{|3+2i|^2}$$
$$= \frac{(2i-3)\sqrt{3}+3i+2}{13}$$
$$= \left(\frac{2}{13}i - \frac{3}{13}\right)\sqrt{3} + \frac{3}{13}i + \frac{2}{13}.$$

On en déduit :

$$\operatorname{Im}\left(\frac{-\sqrt{3}+i}{3+2i}\right) = \frac{2}{13}\sqrt{3} + \frac{3}{13}, \quad \left|\frac{-\sqrt{3}+i}{3+2i}\right| = 2\sqrt{\frac{1}{13}}.$$

Corrigé 59. Multiplions le numérateur et le dénominateur par le conjugué de $\sqrt{3}+i$. On obtient :

 \leftarrow page 6

$$\frac{-\sqrt{2} + i\sqrt{2}}{\sqrt{3} + i} = \frac{(-\sqrt{2} + i\sqrt{2})(\sqrt{3} - i)}{\left|\sqrt{3} + i\right|^2}$$
$$= \frac{(i - 1)\sqrt{3}\sqrt{2} + (i + 1)\sqrt{2}}{4}$$
$$= \left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{3}\sqrt{2} + \left(\frac{1}{4}i + \frac{1}{4}\right)\sqrt{2}.$$

On en déduit:

$$\left| \frac{-\sqrt{2} + i\sqrt{2}}{\sqrt{3} + i} \right| = 1, \quad \operatorname{Arg}\left(\frac{-\sqrt{2} + i\sqrt{2}}{\sqrt{3} + i}\right) \equiv \frac{7}{12} \pi \bmod 2\pi.$$

Corrigé 60. Multiplions le numérateur et le dénominateur par le conjugué de $-26-i\sqrt{3}$. On obtient : \leftarrow page 6

$$\frac{-3+i}{-26-i\sqrt{3}} = \frac{(-3+i)(-26+i\sqrt{3})}{\left|-26-i\sqrt{3}\right|^2}$$
$$= \frac{-(3i+1)\sqrt{3}-26i+78}{679}$$
$$= -\left(\frac{3}{679}i + \frac{1}{679}\right)\sqrt{3} - \frac{26}{679}i + \frac{78}{679}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-3+i}{-26-i\sqrt{3}}\right) = -\frac{1}{679}\sqrt{3} + \frac{78}{679}, \quad \operatorname{Im}\left(\frac{-3+i}{-26-i\sqrt{3}}\right) = -\frac{3}{679}\sqrt{3} - \frac{26}{679}, \quad \left|\frac{-3+i}{-26-i\sqrt{3}}\right| = \sqrt{\frac{10}{679}}.$$

Corrigé 61. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $9i = 9e^{\frac{1}{2}i\pi}$, et : $-22\sqrt{3} - 22i = 44e^{-\frac{5}{6}i\pi}$. Donc :

 \leftarrow page 6

$$\frac{9i}{-22\sqrt{3}-22i} = \frac{9e^{\frac{1}{2}i\pi}}{44e^{-\frac{5}{6}i\pi}} = \frac{9}{44}e^{-\frac{2}{3}i\pi} = -\frac{9}{88}i\sqrt{3} - \frac{9}{88}.$$

On en déduit:

Re
$$\left(\frac{9i}{-22\sqrt{3}-22i}\right) = -\frac{9}{88}$$
, Im $\left(\frac{9i}{-22\sqrt{3}-22i}\right) = -\frac{9}{88}\sqrt{3}$,
Arg $\left(\frac{9i}{-22\sqrt{3}-22i}\right) \equiv -\frac{2}{3}\pi \mod 2\pi$.

Corrigé 62. On a : $\forall z \in \mathbb{C}$, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$. Ici, cela donne :

 \leftarrow page 6

$$\operatorname{Re}\left(\frac{-1}{-\sqrt{3}+2i}\right) = \frac{1}{2} \left(\frac{-1}{-\sqrt{3}+2i} + \frac{-1}{-\sqrt{3}-2i}\right)$$

$$= \frac{1}{2} \frac{(-1)(-\sqrt{3}-2i) + (-1)(-\sqrt{3}+2i)}{\left|-\sqrt{3}+2i\right|^2}$$

$$= \frac{1}{2} \frac{2\sqrt{3}}{7}$$

$$= \frac{1}{7} \sqrt{3},$$

d'où le résultat:

$$\operatorname{Re}\left(\frac{-1}{-\sqrt{3}+2i}\right) = \frac{1}{7}\sqrt{3}.$$

Corrigé 63. Remarquons que l'on a tout simplement : $-24\sqrt{3}+24i=-6i\left(-4-4i\sqrt{3}\right)$. On en déduit :

$$\frac{-24\sqrt{3} + 24i}{-4 - 4i\sqrt{3}} = -6i.$$

On a donc immédiatement:

$$\left| \frac{-24\sqrt{3} + 24i}{-4 - 4i\sqrt{3}} \right| = 6, \quad \operatorname{Arg}\left(\frac{-24\sqrt{3} + 24i}{-4 - 4i\sqrt{3}} \right) \equiv -\frac{1}{2} \pi \mod 2\pi.$$

Corrigé 64. Multiplions le numérateur et le dénominateur par le conjugué de $-7 + 2i\sqrt{3}$. On obtient : \leftarrow page 6

$$\frac{-12i}{-7 + 2i\sqrt{3}} = \frac{(-12i)(-7 - 2i\sqrt{3})}{\left|-7 + 2i\sqrt{3}\right|^2}$$
$$= \frac{-24\sqrt{3} + 84i}{61}$$
$$= -\frac{24}{61}\sqrt{3} + \frac{84}{61}i.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-12i}{-7+2i\sqrt{3}}\right) = -\frac{24}{61}\sqrt{3}, \quad \operatorname{Im}\left(\frac{-12i}{-7+2i\sqrt{3}}\right) = \frac{84}{61}, \quad \left|\frac{-12i}{-7+2i\sqrt{3}}\right| = 12\sqrt{\frac{1}{61}}.$$

Corrigé 65. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $5+5i\sqrt{3}=10e^{\frac{1}{3}i\pi}$. Donc :

 \leftarrow page 6

$$\frac{1}{5+5i\sqrt{3}} = \frac{1}{10e^{\frac{1}{3}i\pi}} = \frac{1}{10}e^{-\frac{1}{3}i\pi} = -\frac{1}{20}i\sqrt{3} + \frac{1}{20}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{1}{5+5i\sqrt{3}}\right) = \frac{1}{20}, \quad \operatorname{Im}\left(\frac{1}{5+5i\sqrt{3}}\right) = -\frac{1}{20}\sqrt{3},$$
$$\operatorname{Arg}\left(\frac{1}{5+5i\sqrt{3}}\right) \equiv -\frac{1}{3}\pi \bmod 2\pi.$$

Corrigé 66. Multiplions le numérateur et le dénominateur par le conjugué de $\sqrt{3} - i$. On obtient :

 $\leftarrow \text{page } 7$

$$\frac{-1+2i\sqrt{3}}{\sqrt{3}-i} = \frac{(-1+2i\sqrt{3})(\sqrt{3}+i)}{\left|\sqrt{3}-i\right|^2}$$
$$= \frac{-3\sqrt{3}+5i}{4}$$
$$= -\frac{3}{4}\sqrt{3}+\frac{5}{4}i.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-1+2i\sqrt{3}}{\sqrt{3}-i}\right) = -\frac{3}{4}\sqrt{3}, \quad \operatorname{Im}\left(\frac{-1+2i\sqrt{3}}{\sqrt{3}-i}\right) = \frac{5}{4}.$$

Corrigé 67. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 7

$$\frac{\sqrt{2}-i\sqrt{2}}{i} = -i\left(\sqrt{2}-i\sqrt{2}\right) = -\left(i+1\right)\,\sqrt{2} = 2\left(-\left(\frac{1}{2}i+\frac{1}{2}\right)\,\sqrt{2}\right) = 2e^{-\frac{3}{4}i\,\pi}$$

et on en déduit:

$$\left| \frac{\sqrt{2} - i\sqrt{2}}{i} \right| = 2$$
, $\operatorname{Arg}\left(\frac{\sqrt{2} - i\sqrt{2}}{i}\right) \equiv -\frac{3}{4}\pi \mod 2\pi$.

Corrigé 68. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-24i = 24e^{-\frac{1}{2}i\pi}$, et: $1 - i = \sqrt{2}e^{-\frac{1}{4}i\pi}$. Donc:

 \leftarrow page 7

$$\frac{-24i}{1-i} = \frac{24e^{-\frac{1}{2}i\pi}}{\sqrt{2}e^{-\frac{1}{4}i\pi}} = 12\sqrt{2}e^{-\frac{1}{4}i\pi} = -12i + 12.$$

On en déduit :

$$\operatorname{Im}\left(\frac{-24i}{1-i}\right) = -12, \quad \left|\frac{-24i}{1-i}\right| = 12\sqrt{2}.$$

Corrigé 69. Remarquons que l'on a tout simplement: $-\sqrt{2} - i\sqrt{2} = -\frac{1}{4}i\left(4\sqrt{2} - 4i\sqrt{2}\right)$. On en \leftarrow page 7 déduit:

$$\frac{-\sqrt{2} - i\sqrt{2}}{4\sqrt{2} - 4i\sqrt{2}} = -\frac{1}{4}i.$$

On a donc immédiatement:

$$\operatorname{Re}\left(\frac{-\sqrt{2}-i\sqrt{2}}{4\sqrt{2}-4i\sqrt{2}}\right) = 0, \quad \operatorname{Im}\left(\frac{-\sqrt{2}-i\sqrt{2}}{4\sqrt{2}-4i\sqrt{2}}\right) = -\frac{1}{4},$$

$$\operatorname{Arg}\left(\frac{-\sqrt{2}-i\sqrt{2}}{4\sqrt{2}-4i\sqrt{2}}\right) \equiv -\frac{1}{2}\pi \bmod 2\pi.$$

Corrigé 70. Multiplions le numérateur et le dénominateur par le conjugué de $1-i\sqrt{3}$. On obtient :

 \leftarrow page 7

$$\begin{aligned} \frac{-1-3i}{1-i\sqrt{3}} &= \frac{(-1-3i)(1+i\sqrt{3})}{\left|1-i\sqrt{3}\right|^2} \\ &= \frac{-(i-3)\sqrt{3}-3i-1}{4} \\ &= -\left(\frac{1}{4}i-\frac{3}{4}\right)\sqrt{3}-\frac{3}{4}i-\frac{1}{4} \end{aligned}$$

On en déduit :

$$\operatorname{Re}\left(\frac{-1-3i}{1-i\sqrt{3}}\right) = \frac{3}{4}\sqrt{3} - \frac{1}{4}, \quad \operatorname{Im}\left(\frac{-1-3i}{1-i\sqrt{3}}\right) = -\frac{1}{4}\sqrt{3} - \frac{3}{4}, \quad \left|\frac{-1-3i}{1-i\sqrt{3}}\right| = \sqrt{\frac{5}{2}}.$$

Corrigé 71. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 7

$$\frac{37\sqrt{2}+37i\sqrt{2}}{-2i} = \frac{1}{2}i\left(37\sqrt{2}+37i\sqrt{2}\right) = \left(\frac{37}{2}i-\frac{37}{2}\right)\sqrt{2} = 37\left(\left(\frac{1}{2}i-\frac{1}{2}\right)\sqrt{2}\right) = 37e^{\frac{3}{4}i\pi}$$

et on en déduit:

$$\left| \frac{37\sqrt{2} + 37i\sqrt{2}}{-2i} \right| = 37, \quad \operatorname{Arg}\left(\frac{37\sqrt{2} + 37i\sqrt{2}}{-2i} \right) \equiv \frac{3}{4} \pi \mod 2\pi.$$

Corrigé 72. Multiplions le numérateur et le dénominateur par le conjugué de $-2\sqrt{3}+i$. On obtient : \leftarrow page 7

$$\frac{-i}{-2\sqrt{3}+i} = \frac{(-i)(-2\sqrt{3}-i)}{\left|-2\sqrt{3}+i\right|^2}$$
$$= \frac{2i\sqrt{3}-1}{13}$$
$$= \frac{2}{13}i\sqrt{3} - \frac{1}{13}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-i}{-2\sqrt{3}+i}\right) = -\frac{1}{13}, \quad \left|\frac{-i}{-2\sqrt{3}+i}\right| = \sqrt{\frac{1}{13}}.$$

Corrigé 73. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $-2 = 2e^{i\pi}$, et : $-\sqrt{2} + i\sqrt{2} = 2e^{\frac{3}{4}i\pi}$. Donc :

$$\frac{-2}{-\sqrt{2}+i\sqrt{2}} = \frac{2e^{i\pi}}{2e^{\frac{3}{4}i\pi}} = 1e^{\frac{1}{4}i\pi} = \left(\frac{1}{2}i + \frac{1}{2}\right)\sqrt{2}.$$

On en déduit:

$$\operatorname{Im}\left(\frac{-2}{-\sqrt{2}+i\sqrt{2}}\right) = \frac{1}{2}\sqrt{2}, \quad \operatorname{Arg}\left(\frac{-2}{-\sqrt{2}+i\sqrt{2}}\right) \equiv \frac{1}{4}\pi \bmod 2\pi.$$

Corrigé 74. Multiplions le numérateur et le dénominateur par le conjugué de $\sqrt{3}-i$. On obtient :

$$\frac{\sqrt{2} - i\sqrt{2}}{\sqrt{3} - i} = \frac{(\sqrt{2} - i\sqrt{2})(\sqrt{3} + i)}{\left|\sqrt{3} - i\right|^2}$$
$$= \frac{-(i - 1)\sqrt{3}\sqrt{2} + (i + 1)\sqrt{2}}{4}$$
$$= -\left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{3}\sqrt{2} + \left(\frac{1}{4}i + \frac{1}{4}\right)\sqrt{2}.$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet : $\sqrt{2} - i\sqrt{2} = 2e^{-\frac{1}{4}i\pi}$, et : $\sqrt{3} - i = 2e^{-\frac{1}{6}i\pi}$. Donc :

$$\frac{\sqrt{2} - i\sqrt{2}}{\sqrt{3} - i} = \frac{2e^{-\frac{1}{4}i\pi}}{2e^{-\frac{1}{6}i\pi}} = 1e^{-\frac{1}{12}i\pi}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{\sqrt{2}-i\sqrt{2}}{\sqrt{3}-i}\right) = \frac{1}{4}\sqrt{3}\sqrt{2} + \frac{1}{4}\sqrt{2}, \quad \operatorname{Arg}\left(\frac{\sqrt{2}-i\sqrt{2}}{\sqrt{3}-i}\right) \equiv -\frac{1}{12}\pi \bmod 2\pi.$$

Corrigé 75. Multiplions le numérateur et le dénominateur par le conjugué de $\sqrt{2} + i\sqrt{2}$. On obtient : \leftarrow p

$$\begin{split} \frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}} &= \frac{(\sqrt{3}+i)(\sqrt{2}-i\sqrt{2})}{\left|\sqrt{2}+i\sqrt{2}\right|^2} \\ &= \frac{-(i-1)\sqrt{3}\sqrt{2}+(i+1)\sqrt{2}}{4} \\ &= -\left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{3}\sqrt{2} + \left(\frac{1}{4}i + \frac{1}{4}\right)\sqrt{2}. \end{split}$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet : $\sqrt{3} + i = 2e^{\frac{1}{6}i\pi}$, et : $\sqrt{2} + i\sqrt{2} = 2e^{\frac{1}{4}i\pi}$. Donc :

$$\frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}} = \frac{2e^{\frac{1}{6}i\pi}}{2e^{\frac{1}{4}i\pi}} = 1e^{-\frac{1}{12}i\pi}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}}\right) = \frac{1}{4}\sqrt{3}\sqrt{2} + \frac{1}{4}\sqrt{2}, \quad \operatorname{Im}\left(\frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}}\right) = -\frac{1}{4}\sqrt{3}\sqrt{2} + \frac{1}{4}\sqrt{2}, \quad \left|\frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}}\right| = 1,$$

$$\operatorname{Arg}\left(\frac{\sqrt{3}+i}{\sqrt{2}+i\sqrt{2}}\right) \equiv -\frac{1}{12}\pi \bmod 2\pi.$$

Corrigé 76. Multiplions le numérateur et le dénominateur par le conjugué de $-1+225i\sqrt{3}$. On obtient : \leftarrow pa

$$\frac{-2i}{-1 + 225i\sqrt{3}} = \frac{(-2i)(-1 - 225i\sqrt{3})}{\left|-1 + 225i\sqrt{3}\right|^2}$$
$$= \frac{-450\sqrt{3} + 2i}{151876}$$
$$= -\frac{225}{75938}\sqrt{3} + \frac{1}{75938}i.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-2i}{-1+225i\sqrt{3}}\right) = -\frac{225}{75938}\sqrt{3}, \quad \operatorname{Im}\left(\frac{-2i}{-1+225i\sqrt{3}}\right) = \frac{1}{75938}.$$

Corrigé 77. Multiplions le numérateur et le dénominateur par le conjugué de $-\sqrt{3}-i$. On obtient : \leftarrow page 8

$$\begin{split} \frac{-3+4i\sqrt{3}}{-\sqrt{3}-i} &= \frac{(-3+4i\sqrt{3})(-\sqrt{3}+i)}{\left|-\sqrt{3}-i\right|^2} \\ &= \frac{-\sqrt{3}-15i}{4} \\ &= -\frac{1}{4}\sqrt{3} - \frac{15}{4}i. \end{split}$$

On en déduit :

$$\operatorname{Im}\left(\frac{-3+4i\sqrt{3}}{-\sqrt{3}-i}\right) = -\frac{15}{4}, \quad \left|\frac{-3+4i\sqrt{3}}{-\sqrt{3}-i}\right| = \frac{1}{2}\sqrt{57}.$$

Corrigé 78. Multiplions le numérateur et le dénominateur par le conjugué de $-1 - i\sqrt{3}$. On obtient : \leftarrow page 8

$$\frac{-52\sqrt{2} + 52i\sqrt{2}}{-1 - i\sqrt{3}} = \frac{(-52\sqrt{2} + 52i\sqrt{2})(-1 + i\sqrt{3})}{\left|-1 - i\sqrt{3}\right|^2}$$
$$= \frac{-(52i + 52)\sqrt{3}\sqrt{2} - (52i - 52)\sqrt{2}}{4}$$
$$= -(13i + 13)\sqrt{3}\sqrt{2} - (13i - 13)\sqrt{2}.$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet : $-52\sqrt{2} + 52i\sqrt{2} = 104e^{\frac{3}{4}i\pi}$, et : $-1 - i\sqrt{3} = 2e^{-\frac{2}{3}i\pi}$. Donc :

$$\frac{-52\sqrt{2} + 52i\sqrt{2}}{-1 - i\sqrt{3}} = \frac{104e^{\frac{3}{4}i\pi}}{2e^{-\frac{2}{3}i\pi}} = 52e^{\frac{17}{12}i\pi} = 52e^{-\frac{7}{12}i\pi}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-52\sqrt{2} + 52i\sqrt{2}}{-1 - i\sqrt{3}}\right) = -13\sqrt{3}\sqrt{2} + 13\sqrt{2}, \quad \operatorname{Im}\left(\frac{-52\sqrt{2} + 52i\sqrt{2}}{-1 - i\sqrt{3}}\right) = -13\sqrt{3}\sqrt{2} - 13\sqrt{2},$$

$$\operatorname{Arg}\left(\frac{-52\sqrt{2} + 52i\sqrt{2}}{-1 - i\sqrt{3}}\right) \equiv -\frac{7}{12}\pi \mod 2\pi.$$

Corrigé 79. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $-6 = 6e^{i\pi}$, et : $2\sqrt{2} - 2i\sqrt{2} = 4e^{-\frac{1}{4}i\pi}$. Donc :

\ page 0

$$\frac{-6}{2\sqrt{2}-2i\sqrt{2}} = \frac{6e^{i\,\pi}}{4e^{-\frac{1}{4}i\,\pi}} = \frac{3}{2}e^{\frac{5}{4}i\,\pi} = \frac{3}{2}e^{-\frac{3}{4}i\,\pi} = -\left(\frac{3}{4}i+\frac{3}{4}\right)\,\sqrt{2}.$$

On en déduit :

$$\operatorname{Im}\left(\frac{-6}{2\sqrt{2}-2i\sqrt{2}}\right)=-\frac{3}{4}\sqrt{2},\quad \operatorname{Arg}\left(\frac{-6}{2\sqrt{2}-2i\sqrt{2}}\right)\equiv-\frac{3}{4}\operatorname{mod}\,2\pi.$$

Corrigé 80. Multiplions le numérateur et le dénominateur par le conjugué de 1-19i. On obtient :

 \leftarrow page 8

$$\begin{split} \frac{2+i\sqrt{3}}{1-19i} &= \frac{(2+i\sqrt{3})(1+19i)}{|1-19i|^2} \\ &= \frac{(i-19)\sqrt{3}+38i+2}{362} \\ &= \left(\frac{1}{362}i - \frac{19}{362}\right)\sqrt{3} + \frac{19}{181}i + \frac{1}{181}. \end{split}$$

On en déduit :

$$\operatorname{Re}\left(\frac{2+i\sqrt{3}}{1-19i}\right) = -\frac{19}{362}\sqrt{3} + \frac{1}{181}, \quad \left|\frac{2+i\sqrt{3}}{1-19i}\right| = \sqrt{\frac{7}{362}}.$$

Corrigé 81. Multiplions le numérateur et le dénominateur par le conjugué de 1 + 5i. On obtient :

 \leftarrow page 8

$$\frac{-\sqrt{3} - 3i}{1 + 5i} = \frac{(-\sqrt{3} - 3i)(1 - 5i)}{|1 + 5i|^2}$$
$$= \frac{(5i - 1)\sqrt{3} - 3i - 15}{26}$$
$$= \left(\frac{5}{26}i - \frac{1}{26}\right)\sqrt{3} - \frac{3}{26}i - \frac{15}{26}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-\sqrt{3}-3i}{1+5i}\right) = -\frac{1}{26}\sqrt{3} - \frac{15}{26}, \quad \operatorname{Im}\left(\frac{-\sqrt{3}-3i}{1+5i}\right) = \frac{5}{26}\sqrt{3} - \frac{3}{26}.$$

Corrigé 82. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 8

$$\frac{\sqrt{3}-i}{i} = -i\left(\sqrt{3}-i\right) = -i\sqrt{3}-1 = 2\left(-\frac{1}{2}i\sqrt{3}-\frac{1}{2}\right) = 2e^{-\frac{2}{3}i\pi}$$

et on en déduit:

$$\operatorname{Im}\left(\frac{\sqrt{3}-i}{i}\right) = -\sqrt{3}, \quad \left|\frac{\sqrt{3}-i}{i}\right| = 2,$$
$$\operatorname{Arg}\left(\frac{\sqrt{3}-i}{i}\right) \equiv -\frac{2}{3}\pi \bmod 2\pi.$$

Corrigé 83. On a : $\forall z \in \mathbb{C}$, $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$. Ici, cela donne :

 \leftarrow page 8

$$\operatorname{Im}\left(\frac{-2\sqrt{3}+2i}{1-2i\sqrt{3}}\right) = \frac{1}{2i}\left(\frac{-2\sqrt{3}+2i}{1-2i\sqrt{3}} - \frac{-2\sqrt{3}-2i}{1+2i\sqrt{3}}\right)$$

$$= \frac{1}{2i}\frac{(-2\sqrt{3}+2i)(1+2i\sqrt{3}) - (-2\sqrt{3}-2i)(1-2i\sqrt{3})}{\left|1-2i\sqrt{3}\right|^2}$$

$$= \frac{1}{2i}\frac{-20i}{13}$$

$$= -\frac{10}{13},$$

d'où le résultat:

$$\operatorname{Im}\left(\frac{-2\sqrt{3} + 2i}{1 - 2i\sqrt{3}}\right) = -\frac{10}{13}.$$

Corrigé 84. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet : $\sqrt{2} - i\sqrt{2} = 2e^{-\frac{1}{4}i\pi}$. Donc :

 \leftarrow page 8

$$\frac{3}{\sqrt{2} - i\sqrt{2}} = \frac{3}{2e^{-\frac{1}{4}i\pi}} = \frac{3}{2}e^{\frac{1}{4}i\pi} = \left(\frac{3}{4}i + \frac{3}{4}\right)\sqrt{2}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{3}{\sqrt{2}-i\sqrt{2}}\right) = \frac{3}{4}\sqrt{2}, \quad \operatorname{Im}\left(\frac{3}{\sqrt{2}-i\sqrt{2}}\right) = \frac{3}{4}\sqrt{2}, \quad \left|\frac{3}{\sqrt{2}-i\sqrt{2}}\right| = \frac{3}{2},$$
$$\operatorname{Arg}\left(\frac{3}{\sqrt{2}-i\sqrt{2}}\right) \equiv \frac{1}{4}\pi \bmod 2\pi.$$

Corrigé 85. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $\sqrt{2} + i\sqrt{2} = 2e^{\frac{1}{4}i\pi}$. Donc:

 \leftarrow page 8

$$\frac{1}{\sqrt{2}+i\sqrt{2}} = \frac{1}{2e^{\frac{1}{4}i\pi}} = \frac{1}{2}e^{-\frac{1}{4}i\pi} = -\left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{2}.$$

On en déduit :

$$\operatorname{Im}\left(\frac{1}{\sqrt{2}+i\sqrt{2}}\right) = -\frac{1}{4}\sqrt{2}, \quad \left|\frac{1}{\sqrt{2}+i\sqrt{2}}\right| = \frac{1}{2},$$
$$\operatorname{Arg}\left(\frac{1}{\sqrt{2}+i\sqrt{2}}\right) \equiv -\frac{1}{4}\pi \bmod 2\pi.$$

Corrigé 86. Comme le module est multiplicatif, on a directement :

 \leftarrow page 9

$$\left| \frac{-1-i}{2-6i} \right| = \frac{|-1-i|}{|2-6i|} = \frac{\sqrt{2}}{\sqrt{40}},$$

et donc:

$$\left| \frac{-1-i}{2-6i} \right| = \frac{1}{2} \sqrt{\frac{1}{5}}.$$

Corrigé 87. Multiplions le numérateur et le dénominateur par le conjugué de 1 + 3i. On obtient :

 \leftarrow page 9

$$\frac{1-2i\sqrt{3}}{1+3i} = \frac{(1-2i\sqrt{3})(1-3i)}{|1+3i|^2}$$
$$= \frac{-(2i+6)\sqrt{3}-3i+1}{10}$$
$$= -\left(\frac{1}{5}i+\frac{3}{5}\right)\sqrt{3}-\frac{3}{10}i+\frac{1}{10}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{1-2i\sqrt{3}}{1+3i}\right) = -\frac{3}{5}\sqrt{3} + \frac{1}{10}, \quad \operatorname{Im}\left(\frac{1-2i\sqrt{3}}{1+3i}\right) = -\frac{1}{5}\sqrt{3} - \frac{3}{10}.$$

Corrigé 88. Multiplions le numérateur et le dénominateur par le conjugué de $-2\sqrt{3}+2i$. On obtient :

- page 9

$$\frac{\sqrt{2} + i\sqrt{2}}{-2\sqrt{3} + 2i} = \frac{(\sqrt{2} + i\sqrt{2})(-2\sqrt{3} - 2i)}{\left|-2\sqrt{3} + 2i\right|^2}$$
$$= \frac{-(2i + 2)\sqrt{3}\sqrt{2} - (2i - 2)\sqrt{2}}{16}$$
$$= -\left(\frac{1}{8}i + \frac{1}{8}\right)\sqrt{3}\sqrt{2} - \left(\frac{1}{8}i - \frac{1}{8}\right)\sqrt{2}.$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet : $\sqrt{2}+i\sqrt{2}=2e^{\frac{1}{4}i\pi}$, et : $-2\sqrt{3}+2i=$ $4e^{\frac{5}{6}i\pi}$. Donc:

$$\frac{\sqrt{2} + i\sqrt{2}}{-2\sqrt{3} + 2i} = \frac{2e^{\frac{1}{4}i\pi}}{4e^{\frac{5}{6}i\pi}} = \frac{1}{2}e^{-\frac{7}{12}i\pi}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{\sqrt{2} + i\sqrt{2}}{-2\sqrt{3} + 2i}\right) = -\frac{1}{8}\sqrt{3}\sqrt{2} + \frac{1}{8}\sqrt{2}, \quad \operatorname{Im}\left(\frac{\sqrt{2} + i\sqrt{2}}{-2\sqrt{3} + 2i}\right) = -\frac{1}{8}\sqrt{3}\sqrt{2} - \frac{1}{8}\sqrt{2},$$

$$\operatorname{Arg}\left(\frac{\sqrt{2} + i\sqrt{2}}{-2\sqrt{3} + 2i}\right) \equiv -\frac{7}{12}\pi \operatorname{mod} 2\pi.$$

Corrigé 89. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 9

$$\frac{\sqrt{3}-i}{i} = -i\left(\sqrt{3}-i\right) = -i\sqrt{3}-1 = 2\left(-\frac{1}{2}i\sqrt{3}-\frac{1}{2}\right) = 2e^{-\frac{2}{3}i\pi}$$

et on en déduit:

$$\operatorname{Re}\left(\frac{\sqrt{3}-i}{i}\right) = -1, \quad \operatorname{Im}\left(\frac{\sqrt{3}-i}{i}\right) = -\sqrt{3},$$

$$\operatorname{Arg}\left(\frac{\sqrt{3}-i}{i}\right) \equiv -\frac{2}{3}\pi \mod 2\pi.$$

Corrigé 90. Multiplions le numérateur et le dénominateur par le conjugué de $2\sqrt{2}-2i\sqrt{2}$. On obtient : \leftarrow page 9

$$\begin{split} \frac{-4\sqrt{3}+4i}{2\sqrt{2}-2i\sqrt{2}} &= \frac{(-4\sqrt{3}+4i)(2\sqrt{2}+2i\sqrt{2})}{\left|2\sqrt{2}-2i\sqrt{2}\right|^2} \\ &= \frac{-\left(8i+8\right)\sqrt{3}\sqrt{2}+\left(8i-8\right)\sqrt{2}}{16} \\ &= -\left(\frac{1}{2}i+\frac{1}{2}\right)\sqrt{3}\sqrt{2}+\left(\frac{1}{2}i-\frac{1}{2}\right)\sqrt{2}. \end{split}$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet: $-4\sqrt{3} + 4i = 8e^{\frac{5}{6}i\pi}$, et: $2\sqrt{2}$ $2i\sqrt{2} = 4e^{-\frac{1}{4}i\pi}$. Donc:

$$\frac{-4\sqrt{3}+4i}{2\sqrt{2}-2i\sqrt{2}} = \frac{8e^{\frac{5}{6}i\pi}}{4e^{-\frac{1}{4}i\pi}} = 2e^{\frac{13}{12}i\pi} = 2e^{-\frac{11}{12}i\pi}.$$

On en déduit :

$$\operatorname{Im}\left(\frac{-4\sqrt{3}+4i}{2\sqrt{2}-2i\sqrt{2}}\right) = -\frac{1}{2}\sqrt{3}\sqrt{2} + \frac{1}{2}\sqrt{2}, \quad \left|\frac{-4\sqrt{3}+4i}{2\sqrt{2}-2i\sqrt{2}}\right| = 2,$$

$$\operatorname{Arg}\left(\frac{-4\sqrt{3}+4i}{2\sqrt{2}-2i\sqrt{2}}\right) \equiv -\frac{11}{12}\pi \bmod 2\pi.$$

Corrigé 91. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-2 + 2i\sqrt{3} = 4e^{\frac{2}{3}i\pi}$, et: $-13 - 13i\sqrt{3} = 26e^{-\frac{2}{3}i\pi}$. Donc:

 \leftarrow page 9

$$\frac{-2+2i\sqrt{3}}{-13-13i\sqrt{3}} = \frac{4e^{\frac{2}{3}i\pi}}{26e^{-\frac{2}{3}i\pi}} = \frac{2}{13}e^{\frac{4}{3}i\pi} = \frac{2}{13}e^{-\frac{2}{3}i\pi} = -\frac{1}{13}i\sqrt{3} - \frac{1}{13}.$$

On en déduit :

$$\operatorname{Re}\left(\frac{-2+2i\sqrt{3}}{-13-13i\sqrt{3}}\right) = -\frac{1}{13}, \quad \left|\frac{-2+2i\sqrt{3}}{-13-13i\sqrt{3}}\right| = \frac{2}{13},$$
$$\operatorname{Arg}\left(\frac{-2+2i\sqrt{3}}{-13-13i\sqrt{3}}\right) \equiv -\frac{2}{3}\pi \mod 2\pi.$$

Corrigé 92. Multiplions le numérateur et le dénominateur par le conjugué de $1 - i\sqrt{3}$. On obtient :

 \leftarrow page 9

$$\frac{-4 - i\sqrt{3}}{1 - i\sqrt{3}} = \frac{(-4 - i\sqrt{3})(1 + i\sqrt{3})}{\left|1 - i\sqrt{3}\right|^2}$$
$$= \frac{-5i\sqrt{3} - 1}{4}$$
$$= -\frac{5}{4}i\sqrt{3} - \frac{1}{4}.$$

On en déduit:

$$\operatorname{Re}\left(\frac{-4-i\sqrt{3}}{1-i\sqrt{3}}\right) = -\frac{1}{4}, \quad \operatorname{Im}\left(\frac{-4-i\sqrt{3}}{1-i\sqrt{3}}\right) = -\frac{5}{4}\sqrt{3}.$$

Corrigé 93. Multiplions le numérateur et le dénominateur par le conjugué de $2\sqrt{3} + 2i$. On obtient :

← page 9

$$\begin{split} \frac{-3\sqrt{2}+3i\sqrt{2}}{2\sqrt{3}+2i} &= \frac{(-3\sqrt{2}+3i\sqrt{2})(2\sqrt{3}-2i)}{\left|2\sqrt{3}+2i\right|^2} \\ &= \frac{(6i-6)\sqrt{3}\sqrt{2}+(6i+6)\sqrt{2}}{16} \\ &= \left(\frac{3}{8}i-\frac{3}{8}\right)\sqrt{3}\sqrt{2}+\left(\frac{3}{8}i+\frac{3}{8}\right)\sqrt{2}. \end{split}$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet: $-3\sqrt{2} + 3i\sqrt{2} = 6e^{\frac{3}{4}i\pi}$, et: $2\sqrt{3} + 2i = 4e^{\frac{1}{6}i\pi}$. Donc:

$$\frac{-3\sqrt{2}+3i\sqrt{2}}{2\sqrt{3}+2i}=\frac{6e^{\frac{3}{4}i\,\pi}}{4e^{\frac{1}{6}i\,\pi}}=\frac{3}{2}e^{\frac{7}{12}i\,\pi}.$$

On en déduit :

$$\operatorname{Im}\left(\frac{-3\sqrt{2}+3i\sqrt{2}}{2\sqrt{3}+2i}\right) = \frac{3}{8}\sqrt{3}\sqrt{2} + \frac{3}{8}\sqrt{2}, \quad \operatorname{Arg}\left(\frac{-3\sqrt{2}+3i\sqrt{2}}{2\sqrt{3}+2i}\right) \equiv \frac{7}{12}\pi \bmod 2\pi.$$

Corrigé 94. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

$$\frac{\sqrt{3}-i}{i} = -i\left(\sqrt{3}-i\right) = -i\sqrt{3}-1 = 2\left(-\frac{1}{2}i\sqrt{3}-\frac{1}{2}\right) = 2e^{-\frac{2}{3}i\pi}$$

et on en déduit:

$$\operatorname{Re}\left(\frac{\sqrt{3}-i}{i}\right) = -1, \quad \operatorname{Arg}\left(\frac{\sqrt{3}-i}{i}\right) \equiv -\frac{2}{3} \, \pi \, \operatorname{mod} \, 2\pi.$$

Corrigé 95. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $-1 = e^{i\pi}$, et: $\sqrt{2} + i\sqrt{2} = 2e^{\frac{1}{4}i\pi}$. Donc:

 \leftarrow page 9

$$\frac{-1}{\sqrt{2}+i\sqrt{2}} = \frac{e^{i\pi}}{2e^{\frac{1}{4}i\pi}} = \frac{1}{2}e^{\frac{3}{4}i\pi}.$$

On en déduit:

$$\left|\frac{-1}{\sqrt{2}+i\sqrt{2}}\right| = \frac{1}{2}, \quad \operatorname{Arg}\left(\frac{-1}{\sqrt{2}+i\sqrt{2}}\right) \equiv \frac{3}{4} \, \pi \, \operatorname{mod} \, 2\pi.$$

Corrigé 96. Multiplions le numérateur et le dénominateur par le conjugué de $-17\sqrt{2} - 17i\sqrt{2}$. On \leftarrow page 10 obtient :

$$\frac{-1+i\sqrt{3}}{-17\sqrt{2}-17i\sqrt{2}} = \frac{(-1+i\sqrt{3})(-17\sqrt{2}+17i\sqrt{2})}{\left|-17\sqrt{2}-17i\sqrt{2}\right|^2}$$
$$= \frac{-(17i+17)\sqrt{3}\sqrt{2}-(17i-17)\sqrt{2}}{1156}$$
$$= -\left(\frac{1}{68}i+\frac{1}{68}\right)\sqrt{3}\sqrt{2}-\left(\frac{1}{68}i-\frac{1}{68}\right)\sqrt{2}.$$

Cette expression permet d'en déduire à peu de frais la partie réelle et la partie imaginaire, mais elle n'est pas forcément très pratique pour obtenir le module, et en aucun cas elle ne permet de reconnaître un argument usuel. Pour y parvenir, remarquons que le numérateur et le dénominateur de notre expression initiale se mettent aisément sous forme exponentielle. On a en effet : $-1 + i\sqrt{3} = 2e^{\frac{2}{3}i\pi}$, et : $-17\sqrt{2} - 17i\sqrt{2} = 34e^{-\frac{3}{4}i\pi}$. Donc :

$$\frac{-1+i\sqrt{3}}{-17\sqrt{2}-17i\sqrt{2}} = \frac{2e^{\frac{2}{3}i\pi}}{34e^{-\frac{3}{4}i\pi}} = \frac{1}{17}e^{-\frac{7}{12}i\pi}.$$

On en déduit:

$$\operatorname{Im}\left(\frac{-1+i\sqrt{3}}{-17\sqrt{2}-17i\sqrt{2}}\right) = -\frac{1}{68}\sqrt{3}\sqrt{2} - \frac{1}{68}\sqrt{2}, \quad \left|\frac{-1+i\sqrt{3}}{-17\sqrt{2}-17i\sqrt{2}}\right| = \frac{1}{17},$$
$$\operatorname{Arg}\left(\frac{-1+i\sqrt{3}}{-17\sqrt{2}-17i\sqrt{2}}\right) \equiv -\frac{7}{12}\pi \bmod 2\pi.$$

Corrigé 97. En utilisant le fait que $\frac{1}{i} = -i$, on a tout simplement :

 \leftarrow page 10

$$\frac{2+i}{-i\sqrt{3}} = \frac{1}{3}i\sqrt{3}\left(2+i\right) = \left(\frac{2}{3}i - \frac{1}{3}\right)\sqrt{3}$$

et on en déduit:

$$\operatorname{Im}\left(\frac{2+i}{-i\sqrt{3}}\right) = \frac{2}{3}\sqrt{3}.$$

Corrigé 98. Remarquons que l'on a tout simplement : $-\sqrt{2} + i\sqrt{2} = -i\left(-\sqrt{2} - i\sqrt{2}\right)$. On en déduit : \leftarrow page 10

$$\frac{-\sqrt{2}+i\sqrt{2}}{-\sqrt{2}-i\sqrt{2}} = -i.$$

On a donc immédiatement :

$$\operatorname{Arg}\left(\frac{-\sqrt{2}+i\sqrt{2}}{-\sqrt{2}-i\sqrt{2}}\right) \equiv -\frac{1}{2} \pi \bmod 2\pi.$$

Corrigé 99. Comme le module est multiplicatif, on a directement :

 $\leftarrow \text{page } 10$

$$\left| \frac{7-i}{-1+i} \right| = \frac{|7-i|}{|-1+i|} = \frac{\sqrt{50}}{\sqrt{2}},$$

et donc:

$$\left| \frac{7-i}{-1+i} \right| = 5.$$

Corrigé 100. Il est plus facile de simplifier un quotient de nombres complexes lorsqu'ils sont mis sous forme exponentielle (grâce aux propriétés mirifiques de cette fonction). Or ici on sait le faire explicitement à peu de frais. On a en effet: $6\sqrt{3} - 6i = 12e^{-\frac{1}{6}i\pi}$, et: $\sqrt{3} + i = 2e^{\frac{1}{6}i\pi}$. Donc:

 \leftarrow page 10

$$\frac{6\sqrt{3} - 6i}{\sqrt{3} + i} = \frac{12e^{-\frac{1}{6}i\pi}}{2e^{\frac{1}{6}i\pi}} = 6e^{-\frac{1}{3}i\pi} = -3i\sqrt{3} + 3.$$

On en déduit:

Re
$$\left(\frac{6\sqrt{3} - 6i}{\sqrt{3} + i}\right) = 3$$
, $\left|\frac{6\sqrt{3} - 6i}{\sqrt{3} + i}\right| = 6$,

$$\operatorname{Arg}\left(\frac{6\sqrt{3}-6i}{\sqrt{3}+i}\right) \equiv -\frac{1}{3}\pi \bmod 2\pi.$$