Digital Modulation

Amplitude Shift Keying, Frequency Shift Keying

Sihat Afnan Farhana Khan

Department of Computer Science & Engineering Bangladesh University of Engineering and Technology

June, 2021

Introduction

- Digital Communication
 - Noise Immunity
 - Economic \rightarrow Profitable
 - Viability of distortionless regenerative repeaters
- But ... digital signals cannot be directly transmitted
- Solution?

2/19

Introduction

- Digital Communication
 - Noise Immunity
 - Economic \rightarrow Profitable
 - Viability of distortionless regenerative repeaters
- But ... digital signals cannot be directly transmitted
- Solution?

Digital Modulation

Digital Modulation

- Encoding Digital information
- $\bullet \ \ \mathsf{Modifying} \ \mathsf{carrier} \ \mathsf{wave} \to \mathsf{Amplitude}, \ \mathsf{Frequency}, \ \mathsf{Phase}$

ullet Methods of Digital Modulation o ${\sf ASK}$, ${\sf FSK}$, ${\sf PSK}$, ${\sf BPSK}$ etc.

Digital Modulation

- Digital Modulation
 - Encoding Digital information
 - $\bullet \ \ \mathsf{Modifying} \ \mathsf{carrier} \ \mathsf{wave} \to \mathsf{Amplitude}, \ \mathsf{Frequency}, \ \mathsf{Phase}$

ullet Methods of Digital Modulation o **ASK**, **FSK**, PSK, BPSK etc.

Amplitude Shift Keying

- Simplest
- Carrier wave
 - Analog
 - High frequency
- ullet A digital signal o changes amplitude of carrier

Amplitude Shift Keying

- Simplest
- Carrier wave
 - Analog
 - High frequency
- ullet A digital signal o changes amplitude of carrier

Amplitude Shift Keying

- Simplest
- Carrier wave
 - Analog
 - High frequency
- ullet A digital signal o changes amplitude of carrier

Figure: Binary signal modulation with ASK

Figure: Multilevel signal modulation with ASK

Demodulation of ASK

Coherent Detection

Demodulation of ASK

Coherent Detection

- Synchronous
- Using Oscillator

Demodulation of ASK

Coherent Detection

- Synchronous
- Using Oscillator
- Efficient

Demodulation of ASK

Coherent Detection

- Synchronous
- Using Oscillator
- Efficient
- Costly

7/19

Demodulation of ASK

Demodulation of ASK

- Asynchronous
- Using Envelope detector

Demodulation of ASK

- Asynchronous
- Using Envelope detector
- Less costly

Demodulation of ASK

- Asynchronous
- Using Envelope detector
- Less costly
- Poor performance with less SNR

Applications

- Applications
 - Broadcasting digital signal

Applications

- Broadcasting digital signal
- In optical fiber communication for LASER intensity modulation

Applications

- Broadcasting digital signal
- In optical fiber communication for LASER intensity modulation
- Transmit Morse codes

Discrete variation of carrier signal frequency.

- ② Different from the continuous variation of carrier signal frequency in analog FM modulation.
- Number of discrete frequencies can be
 - two : Binary FSK or BFSK
 - More than two: M-ary FSK

Discrete variation of carrier signal frequency.

- ② Different from the continuous variation of carrier signal frequency in analog FM modulation.
- Number of discrete frequencies can be
 - two : Binary FSK or BFSK
 - More than two: M-ary FSK

Discrete variation of carrier signal frequency.

- Oifferent from the continuous variation of carrier signal frequency in analog FM modulation.
- Number of discrete frequencies can be
 - two : Binary FSK or BFSK
 - ullet More than two : M-ary FSK

BFSK

- Two frequencies: Mark and Space
- ② Same amount of deviation from the carrier frequency f_c

BFSK

Carrier amplitude doesn't change(only frequency)

Simplifies the amplifier design and selection

BFSK

Carrier amplitude doesn't change(only frequency)

Simplifies the amplifier design and selection

Tone Spacing

- How far apart should the mark an space be?
 - Too close InterSymbol interference(ISI)

• Too far - Excessive Bandwith

Minimum FSK Bandwith

- Function of
 - Frequency Deviation (F_d)
 - Bit Rate(F_b)

② But how far apart the tone should be?

Minimum FSK Bandwith

- Function of
 - Frequency Deviation (F_d)
 - Bit Rate(F_b)

But how far apart the tone should be?

- 1 Tones should be as close as possible without creating ISI.
- 2 Modulation Index

$$h = \frac{2*F_d}{F_b}$$

- \odot Optimal detetction occurs when h \geq 3
- Why MSK needs less bandwith than BFSK for a given bit rate?

- 1 Tones should be as close as possible without creating ISI.
- Modulation Index

$$h = \frac{2*F_d}{F_b}$$

- \odot Optimal detetction occurs when h \geq 3
- Why MSK needs less bandwith than BFSK for a given bit rate?

- Tones should be as close as possible without creating ISI.
- Modulation Index

$$h = \frac{2*F_d}{F_b}$$

- **3** Optimal detetction occurs when $h \ge 1$

- Tones should be as close as possible without creating ISI.
- Modulation Index

$$h = \frac{2*F_d}{F_b}$$

- **3** Optimal detetction occurs when $h \ge 1$
- Why MSK needs less bandwith than BFSK for a given bit rate?

MFSK

More than two frequencies

- Each MFSK tone corresponds to log₂ M bits
- BFSK Formulas are applicable for MFSK too.

MFSK

More than two frequencies

- f 2 Each MFSK tone corresponds to $\log_2 M$ bits
- BFSK Formulas are applicable for MFSK too.

MFSK

More than two frequencies

- ② Each MFSK tone corresponds to $log_2 M$ bits
- BFSK Formulas are applicable for MFSK too.

Application of FSK

- Digital Radio Technology
- Oata Collection and Remote Controls

The End

Thank You Any Question?