חישוביות וסיבוכיות

תרגילים 11: NP שלמות

 $A \leq_P C$ אזי $B \leq_P C$ וגם $A \leq_P B$ אזי אם $A \in_P B$ אזי אזי $A \subseteq_P C$ אזי הוכיחו כי לכל

שאלה 3 קבעו אם הטענה הבאה נכונה, לא נכונה או שקולה לשאלה פתוחה: $L \in NP \backslash P -$ קיימת שפה רגולירת $L \in NP \backslash P -$

שאלה 5 קבעו אם הטענה הבאה נכונה, דא נכונה או שקולה לבעיה פתוחה. $A \leq_P B$ קשה, אזי קיימת רדוקציה $A \in_P B$ היא בעיה $A \in_P B$

תשובות

שאלה 1 הטענה שקולה לבעיה פתוחה:

 $.B = SAT \in NP$, $A = \Sigma^* \in NP$ נבחר

נגדיר את הבעיה

 $C' = A \backslash B = \{ w \in \Sigma^* \mid w \notin SAT \} = \overline{SAT} .$

 $.C' \leq_P C$ ע"י רדוקציה ע"י אז גם $C \in NP$ נראה כי אם נראה כי אז אז גו $C \in NP$

 $w \in \Sigma^*$ לכל f(w) = ww :פונקצית הרדוקציה

ניתן להראות כי

 $w \in C' \quad \Leftrightarrow \quad f(w) \in C \ .$

. ואו שאלה פתוחה. $C' = \overline{SAT} \in NP$ אזי אם $C \in NP$ ואו שאלה פתוחה.

 $w \in \Sigma^*$ לכל $w \in A \Leftrightarrow f(w) \in B$ שמקיימת $A \leq_P B$ לכל הרדוקצית הרדוקצית מהי

 $w \in \Sigma^*$ לכל $w \in B \Leftrightarrow f(w) \in C$ שמקיימת שמקיימת הרדוקציה הרדוקציה לכל פונקצית הרדוקציה

 $A \leq_P C$ נוכיח שקיימת רדוקציה

h פונקצית הרדוקציה

 $h(w) = g\left(f(w)
ight)$ נגדיר $w \in \Sigma^*$ לכל

נכונות הרדוקציה

 $.w \in A \Leftrightarrow h(w) \in C$ שלב 1. נוכיח כי

- $.h(w) = g\left(f(w)\right) \in C \Leftarrow f(w) \in B \Leftarrow w \in A$ אם •
- $.h(w) = g\left(f(w)\right) \notin C \Leftarrow f(w) \notin B \Leftarrow w \notin A$ אם •

שלב 2. נוכיח כי h חשיבה בזמן פולינומיאלי:

f את הפולינום של p_f את הפולינום

g את הפולינום של ב- נסמן ב-

: אזי לכל $w \in \Sigma^*$ חסום על אזי לכל און החישוב אין אמן אמן אזי לכל

$$p_f(|w|) + p_g(|f(w)|) \le p_f(|w|) + p_g(p_f(|w|)) = p_f(|w|) + (p_f \circ p_f)(|w|)$$

.|w| באודל פולינומיאלי באודל הרכבה את הרכבה את לכן ניתן לחשב לכן פולינומיאלי באודל פולינומיאלי הרכבה או הרכבה של שני פולינומים.

שאלה 3 הטענה לא נכונה.

P-לכל שייכת לכן אוטומט אוטומט קיים קייכת לכל שפה לכל

- . 1

שלמה. $A \notin NP$ הטענה לא נכונה. דוגמה נגדית: A בעייה NP קשה עבורה $A \notin NP$ ו- B היא שפה $A \in NP$ שלמה. ממשפט הרדוקציה, מכיוון ש- $B \in NP$ (כי B היא B שלמה) מתקיים ש- $A \in NP$ וו סתירה לבחירה של A.