Lecture 6: Representations

Filipp Furche

Chem 150/250 Fall 2023

10/13/2023

http://ffgroup.chem.uci.edu

Definition

• A representation is a map $\Gamma:\mathcal{G}\to a$ from a group \mathcal{G} onto an operator algebra A s. t.

$$\mathbf{P}(a) \cdot \mathbf{P}(b) = \mathbf{P}(a \cdot b)$$

$$\forall a, b \in \mathcal{G}, \forall P(a), P(b) \in A.$$

- The domain of A is called "representation space" S, i.e., $A = S \otimes S$. If it has finite dimension n, each operator corresponds to an $n \times n$ matrix.
- Symmetry operations are represented by orthogonal/unitary operators with determinant +1 (C_n , E) or -1 (S_n , σ).

Determining Representation Matrices

- 1. Choose a convenient orthonormal basis $\{e_i\}$ of S.
- 2. For each element $a \in \mathcal{G}$, construct the representation matrix element

$$P_{ij}(a) = (\mathbf{e}_i | \mathbf{P}(a)\mathbf{e}_j)$$

by considering the action of P(a) on each basis vector e_j .

3. You may check your result by verifying that each representation matrix is unitary and has determinant ± 1 .

Example: C_{2v} , Γ_r

The representation Γ_r ("polar vector representation") of $C_{2\nu}$ is spanned by the unit vectors $\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z$. Determine the representation matrices.

- $C_{2v} = \{E, C_2, \sigma_v, \sigma'_v\}$
- Representation matrices:

$$\begin{split} \Gamma_{\mathbf{r}} &= \left\{ \mathbf{P}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{P}(C_2) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \mathbf{P}(\sigma_v) &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{P}(\sigma_v') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \end{split}$$

Characters

• The character of a group element a in a representation Γ is

$$\chi_{\Gamma}(a) = \operatorname{tr} \left\{ \mathbf{P}(a) \right\} = \langle \mathbf{P}(a) \rangle = \sum_{i=1}^{n} P_{ii}(a).$$

• Example: C_{2ν}, Γ_r

 Characters are convenient, but often not sufficient (e.g. for non-Abelian symmetry)