21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 5 - Saturday October 8, 2011. Due Friday October 14

Exercise 29: Let G be any *simple* group of order 168; let n_p be the number of Sylow p-subgroups of G (for p = 2, 3, 7).

- a) Show that $n_2 \in \{7, 21\}, n_3 \in \{7, 28\}, \text{ and } n_7 = 8.$
- b) If H is a Sylow-7 subgroup of G, show that its normalizer $N = N_G(H)$ contains seven subgroups of order 3, and that $n_3 = 28$.

Exercise 30: Notation of Exercise 29.

For K a Sylow-2 subgroup of G, let $P = N_G(P)$ be its normalizer. Find how many Sylow-3 subgroups P has, and show that $n_2 = 21$, and P = K.

Exercise 31: Show that a ring R, not necessarily unital, which satisfies $r^2 = r$ for all $r \in R$ is necessarily commutative.

Exercise 32: An element r of a ring R is said to be nilpotent if $r^n = 0$ for some $n \ge 1$.

- i) If R is a *commutative* ring, show that if a and b are nilpotent then a + b is nilpotent. Show that this result may be false if R is not commutative.
- ii) If R is a commutative ring, show that if a is nilpotent and $r \in R$ then ar is nilpotent. Show that this result may be false if R is not commutative.

Exercise 33: Show that the subset J of $\mathbb{Z}[x]$ of all polynomials $a_0 + a_1x + \dots$ (with integer coefficients) such that $a_0 = 0 \pmod{6}$ and $a_1 = 0 \pmod{3}$ is an ideal, and deduce that $\mathbb{Z}[x]$ is not a Principal Ideal Domain.

Exercise 34: Let R be a (non necessarily commutative) ring and for $n \geq 1$ let $\mathcal{M}_n(R)$ be the ring of $n \times n$ matrices with entries in R. Let \mathcal{J} be a two-sided ideal of $\mathcal{M}_n(R)$, and let J be the subset of elements of R which appear as the entry in row 1 – column 1 of some matrix belonging to \mathcal{J} ; show that J is a two-sided ideal of R and that \mathcal{J} is the set of all $n \times n$ matrices with entries in J.

Exercise 35: For J an ideal in a *commutative* ring R, one defines $Rad(J) = \{r \in R \mid r^n \in J \text{ for some } n \geq 1\}$.

- i) Show that Rad(J) is an ideal, and that Rad(Rad(J)) = Rad(J).
- ii) If J_1, \ldots, J_m are ideals of R (and $m \geq 2$), show that $Rad(J_1 \cdots J_m) = Rad(\bigcap_{i=1}^m J_i) = \bigcap_{i=1}^m Rad(J_i)$, where $J_1 \cdots J_m$ denotes the ideal generated by products of the form $a_1 \cdots a_m$ with $a_i \in J_i$ for $i = 1, \ldots, m$, i.e. finite sums of such products.