

Universidade Federal de Santa Catarina

Centro Tecnológico

Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação

Sistemas Digitais

INE 5406

Aula 11-P

Descrição em VHDL, síntese e simulação de um sistema digital completo contendo bloco de memória.

Est. Doc. André Bräscher & Luiz H. Cancellier

Prof. José Luís Güntzel j.guntzel@ufsc.br

Estrutura Genérica das Memórias (ROM, RAM etc)

Organização externa

Slide 11P.3

Blocos de Memória – Cyclone II

Característica	Blocos M4K
Performance máxima	250 MHz
Total de bits RAM (incluindo bits de paridade)	4.608
Configurações	4K ×1 2K ×2 1K ×4 512 ×8 512 ×9 256 ×16 256 ×18 128 ×32 128 ×36

Fonte: Cyclone II Device Handbook, Vol 1. Altera Corporation. February, 2008.

Exemplo I - Problema

- Instanciar no Quartus II uma memória de 8 palavras, de 8 bits cada, inicializando-a com valores pré-determinados.
- Ler sequencialmente os dados contidos em cada endereço, armazenando-os num registrador. Este registrador deverá estar ligado à uma porta de saída.

Exemplo I – Arquitetura

Exemplo I – Arquitetura

Exemplo I - Resolução

- 1. Criar novo projeto no Quartus II:
 - Nome do projeto: "memram01";
- 2. Baixar do Moodle os arquivos (adicioná-los ao projeto!):
 - "memram01.vhd";
 - "contnb.vhd";
- 3. Criar arquivo de inicialização de memória;
 - (próximos slides!);
- 4. Instanciar RAM no Quartus II;
 - (próximos slides!);

Instanciando RAM no Quartus II

- 3. Arquivo de inicialização da RAM
- a) File \rightarrow New \rightarrow Other files \rightarrow Memory Initialization File
- b) Especificar o número de palavras e tamanho de cada palavra.

4. Instanciando RAM no Quartus II

- a) Tools → MegaWizard Plug-In Manager
- b) Create a new custom megafunction variation

4. Instanciando RAM no Quartus II

4. Instanciando RAM no Quartus II

d. Configurando RAM (I)

4. Instanciando RAM no Quartus II

e. Configurando RAM (II)

4. Instanciando RAM no Quartus II

f. Configurando RAM (III)

4. Instanciando RAM no Quartus II

g. Criando arquivos

... Finish! Basta adicionar ram1port.vhd no projeto.

Exemplo I - Resolução

- 1. Instanciando RAM
- a) Adicionar (APENAS) ram1port.vhd no projeto
 - Copiar declaração do component em ram1port.cmp
 - Instanciar adaptando o template em ram1port_inst.vhd

```
COMPONENT ram1port
PORT
(
    aclr : IN STD_LOGIC;
    address: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
    clken : IN STD_LOGIC;
    clock : IN STD_LOGIC;
    data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
    wren : IN STD_LOGIC;
    q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END COMPONENT;
```

```
ram1port_inst : ram1port PORT MAP (
    aclr => aclr_sig,
    address => address_sig,
    clken => clken_sig,
    clock => clock_sig,
    data => data_sig,
    wren => wren_sig,
    q => q_sig
);
```

Exemplo I - Simulação

- 1. Baixar arquivo de estímulos do Moodle:
 - "stimulus.do"

Experimento I

Estenda o exemplo I da seguinte forma:

- Faça a leitura sequencial dos dados contidos em cada endereço da memória, como no Exemplo I.
- Armazene em cada endereço (também sequencialmente) o valor correspondente ao seu índice.
 - Exemplo: o endereço 2 da memória armazenará o valor 2.
- Faça outra leitura sequencial e verifique os resultados.

Criar signal e modificar o **Experimento I – Arquitetura** processo sensível à address para converter address para std_logic_vector de 8 bits data_in carga_reg d address Memória reg_cont 8x8 (contador) 0 $\overline{\mathbf{d}}$ dbg_cont mem en reg_q wr_en data out

INE/CTC/UFSC Sistemas Digitais - semestre 2017/1

Slide 11P.19

Est. Doc André Bräscher & Luiz H. Cancellier Prof. José Luís Güntzel