Predicati e quantificatori

Prof. Rocco Zaccagnino 2022/2023

Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche

I singoli oggetti cui si riferiscono le proposizioni o le proprietà di tali oggetti enunciati nelle proposizioni non hanno identificazione nella logica proposizionale

Nella logica proposizionale ciascuna delle proposizioni deve essere ripetuta esaustivamente

Asserzioni devono essere ripetute per oggetti diversi

Esempio

Se Rocco è laureato in Informatica allora ha sostenuto l'esame di MMI

Traduzione:

Rocco è laureato in Informatica \rightarrow ha sostenuto l'esame di MMI

Assumendo di avere altri laureati:

Alfonso è laureato in Informatica \rightarrow ha sostenuto l'esame di MMI Nicola è laureato in Informatica \rightarrow ha sostenuto l'esame di MMI

.

Esempio

Rocco è laureato in Informatica \rightarrow ha sostenuto l'esame di MMI Alfonso è laureato in Informatica \rightarrow ha sostenuto l'esame di MMI Nicola è laureato in Informatica \rightarrow ha sostenuto l'esame di MMI

Problema: snellire la ripetizione esaustiva

Soluzione: costruire le proposizioni con le variabili

 \boldsymbol{x} è laureato in Informatica $\rightarrow \boldsymbol{x}$ ha sostenuto l'esame di MMI

Nella logica proposizionale ciascuna delle proposizioni deve essere ripetuta esaustivamente

IDEA: proprietà per gruppo di oggetti

Esempio

Tutti i laureati in Informatica devono aver sostenuto l'esame di MMI Qualche studente di Informatica non ha sostenuto l'esame di MMI

Problema: esprimere proprietà di gruppo

Soluzione: usare i *quantificatori*

- Universali: proprietà soddisfatta per tutti i membri del gruppo
- Esistenziali: proprietà soddisfatta per qualche membro del gruppo

Logica predicativa

Rimedia alle limitazioni della logica proposizionale:

- Modella in maniera esplicita gli oggetti e le loro proprietà (chiamate predicati)
- Permette di costruire asserzioni con variabili e quantificatori

Logica predicativa

Elementi fondamentali della logica predicativa:

costante: modella uno specifico oggetto

Esempi: Rocco, Potenza, 13,....

- variabile: rappresenta un oggetto di un tipo specificato
 - il tipo è definito stabilendo un universo del discorso
 - **Esempi:** x, y in essere **persone**, **studenti**, **numeri**,...
- predicato: rappresenta la proprietà o le relazioni tra gli oggetti
 - Esempio: x è più piccolo di 13

P = più piccolo di 13

x è più piccolo di 13

predicato

denotato con P(x)

Predicato: rappresenta la proprietà o le relazioni tra gli oggetti

- Un predicato P(x) assume un valore Vero o Falso in dipendenza del fatto che la proprietà P vale o meno per x
- La variabile x è un oggetto preso dall'universo del discorso

Esempio: predicato **Studenti(x)**, dove *universo del discorso*=**Persone**

- Studente(Giovanni)
 se Giovanni è uno studente
- Studente(Anna)
 se Anna è uno studente
- Studente(Nicola)
 F se Nicola non è uno studente

9

Predicati

Esempio: Sia P(x) un predicato che rappresenta l'asserzione:

x è un numero primo

Quali sono i valori di verità di:

• *P*(2)

• *P*(3)

• P(4)

• P(5)

• P(6)

• *P*(7)

Tutte le asserzioni P(2), P(3), P(4), P(5), P(6), P(7) sono proposizioni

Esempio: Sia **P(x)** un predicato che rappresenta l'asserzione:

x è un numero primo

Quali sono i valori di verità di:

•	P(2)	T
•	P(3)	T
•	P(4)	F

- P(5)
- P(6)
- P(7)
- P(x) è una proposizione? NO!

I predicati possono avere più **argomenti**, e quindi rappresentare la **relazione tra gli argomenti**

- Piu_vecchio(Rocco, Chiara)
 - denota l'asserzione Rocco è più vecchio di Chiara
 - È una proposizione perché è vera o falsa
- Piu_vecchio(x, y)
 - denota l'asserzione x è più vecchio di y
 - Non è una proposizione, ma la diventa dopo aver sostituto alle variabili x ed y i valori

I predicati possono avere più **argomenti**, e quindi rappresentare la **relazione tra gli argomenti**

Esempi:

Q(x, y) denota x+5>y

è una proposizione? NO

I predicati possono avere più **argomenti**, e quindi rappresentare la **relazione tra gli argomenti**

Esempi:

Q(x, y) denota x+5>y

è una proposizione? NO

Q(13, 20)

è una proposizione?

I predicati possono avere più **argomenti**, e quindi rappresentare la **relazione tra gli argomenti**

Q(x, y) denota $x+5 > y$	è una proposizione?	NO
Q(13, 20)	è una proposizione?	SI
Q(13, 20)	valore di verità?	F

I predicati possono avere più **argomenti**, e quindi rappresentare la **relazione tra gli argomenti**

Q(x, y) denota $x+5 > y$	è una proposizione?	NO
Q(13, 20)	è una proposizione?	SI
Q(13, 20)	valore di verità?	F
Q(13, 16)	valore di verità?	т

I predicati possono avere più **argomenti**, e quindi rappresentare la **relazione tra gli argomenti**

Q(x, y) denota $x+5 > y$	è una proposizione?	NO
Q(13, 20)	è una proposizione?	SI
Q(13, 20)	valore di verità?	F
Q(13, 16)	valore di verità?	T
Q(13, y)	è una proposizione?	NO

Asserzioni composte

I predicati composti sono ottenuti attraverso connettivi logici

- Studente(Rocco) ^ Studente(Chiara)
 - Traduzione: Sia Rocco che Chiara sono studenti
 - Proposizione: SI
- Città(Potenza) \(\time\) Fiume(Potenza)
 - Traduzione: Potenza è una città o un fiume
 - Proposizione: SI
- MMI(x) → Matricola(x)
 - Traduzione: Se x segue il corso di MMI allora x è una matricola
 - Proposizione: NO

La logica predicativa consente di fare asserzioni su gruppi di oggetti

Vengono utilizzate asserzioni quantificate

- universale
 - Esempio: Tutti gli studenti di MMI sono iscritti ad Informatica
 - L'asserzione è vera per tutti gli studenti di MMI
- esistenziale
 - Esempio: Alcuni studenti di Informatica si laureano con lode
 - L'asserzione è vera per alcuni studenti di Informatica

La quantificazione universale di P(x) è l'asserzione:

P(x) è vera per tutti i valori di x nel dominio

La notazione $\forall x P(x)$ denota la quantificazione universale di P(x), ed è espressa dicendo per ogni x, P(x) è vera

- $MMI(x) \rightarrow Matricola(x)$
 - Traduzione: Se x segue il corso di MMI allora x è una matricola
 - Proposizione: NO
- ∀x (MMI(x) → Matricola(x))
 - **Dominio**: persone
 - Traduzione: Se una persona segue il corso di MMI allora è una matricola
 - Proposizione: SI

La quantificazione converte un predicato P(x) in una proposizione poiché fissa il valore di P(x) per variabili prese da un insieme

- Supponiamo che P(x) denoti $x \ge 0$
- P(x) è una proposizione? **NO. Può assumere molti valori diversi**
- $\forall x P(x) \stackrel{.}{e} una proposizione?$
 - SI. Il valore di ∀x P(x) è ben definito
 - è vero se P(x) è vero per ogni x nel dominio
 - è falso se esiste un valore di x per cui P(x) risulta falso

Nell'utilizzo del quantificatore è importante definire esattamente il dominio (l'universo del discorso)

- Supponiamo che P(x) denoti $x \ge 0$
- Quale è il valore di $\forall x P(x)$?
 - Sia l'insieme dei numeri interi ($Z = \{ ..., -1, 0, 1, 2, ... \}$) il dominio
 - \checkmark \forall $x \in \mathbf{Z} P(x)$
 - √ Falso. Poiché per x=-1 abbiamo x<o
 </p>
 - Sia l'insieme dei **numeri naturali** (**N** = { o, 1, 2, ... }) il **dominio**
 - $\forall x \in \mathbf{N} P(x)$
 - Vero.

Un elemento x del dominio per il quale P(x) è falsa è detto **controesempio** di $\forall x P(x)$

Per provare che una asserzione che utilizza un quantificatore universale è falsa basta individuare un controesempio

Esempio

sia $P(x) = \langle x \rangle = \langle x \rangle$, con dominio l'insieme dei numeri interi **Z**, si ha che

$$\forall x P(x) \hat{e} falso$$

La prova è data dall'esistenza di un intero come x=-1 per il quale P(x) è falso. Cioè x=-1 è un controesempio per $\forall x P(x)$

La quantificazione esistenziale di P(x) è l'asserzione:

Esiste almeno un elemento nel dominio

per il quale P(x) è vera

La notazione $\exists x P(x)$ denota la quantificazione esistenziale di P(x), ed è espressa dicendo esiste un x tale che P(x) è vera

- - Dominio: Insieme dei numeri reali R
 - Valore di verità di ∃x P(x) : T (E' possibile trovare un x > 13 in R)

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: ?

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: NO!
- ∃ x Laureato_Inf(x) ∧ Lode(x)
 - Dominio: Persone
 - Traduzione: esiste una persona che è un laureata in Informatica e che si è laureata con lode
 - Proposizione: ?

- Laureato_Inf(x) ∧ Lode(x)
 - Traduzione: x è un laureato in Informatica e x si è laureato con lode
 - Proposizione: NO!
- ∃ x Laureato_Inf(x) ∧ Lode(x)
 - Dominio: Persone
 - Traduzione: esiste una persona che è un laureata in Informatica e che si è laureata con lode
 - Proposizione: SI!

Asserzione	Quando è vera?	Quando è falsa?
∀ x P (x)	P(x) è vera per tutti gli x	C'è un x per il quale P(x) è falsa
∃x P (x)	C'è qualche x per il quale P(x) è vera	P(x) è falsa per tutti gli x

Supponiamo che gli elementi del dominio possano essere enumerati, cioè essi siano $x_1, x_2, ..., x_N$ allora

- $\forall x P(x) \hat{e} \text{ vera se } P(x_1) \land P(x_2) \land ... \land P(x_N) \hat{e} \text{ vera}$
- $\exists x P(x) \hat{e} \text{ vera se } P(x_1) \vee P(x_2) \vee ... \vee P(x_N) \hat{e} \text{ vera}$

- Supponiamo che P(x) denoti $(x^2 > 10)$
- **Dominio:** {1,2,3,4}
- Quale è il valore di verità di **3x P(x)**?
- Risposta:
 - il valore di $\exists x P(x)$ è lo stesso della disgiunzione P(1) VP(2) VP(3) VP(4)
 - poiché, **P(4)= 16 > 10**, abbiamo **3x P(x) è vera**

- Supponiamo che P(x) denoti «x² > 10»
- **Dominio:** {1,2,3,4}
- Quale è il valore di verità di ∀x P(x)?
- Risposta:
 - il valore di $\forall x P(x)$ è lo stesso della disgiunzione $P(1) \Lambda P(2) \Lambda P(3) \Lambda P(4)$
 - poiché, **P(1)**= 1 < 10, abbiamo ∀x **P(x) è falsa**

La formulazione di un asserzione nella logica predicativa dipende dal dominio

Esempio

Tutti gli studenti di Informatica sono simpatici

- Dominio: studenti di Informatica
- Traduzione: ∀x Simpatico(x)
- **Dominio**: studenti
- Traduzione: ∀x (Inf(x) → Simpatico(x))
- Dominio: persone
- Traduzione: ∀x ((Stud(x) ∧ Inf(x)) → Simpatico(x))

La formulazione di un asserzione nella logica predicativa dipende dal dominio

Esempio

Qualche studente di ingegneria è simpatico

- Dominio: studenti di Ingegneria
- Traduzione: ∃x Simpatico(x)
- **Dominio**: studenti
- Traduzione: ∃x (Ing(x) ∧ Simpatico(x))

Tipicamente, date due qualunque predicati S(x) e P(x):

Le asserzioni universali sono legate alle implicazioni

• Tutti S(x) sono P(x)

 $\forall x (S(x) \rightarrow P(x))$

• Nessun $S(x) \stackrel{.}{e} P(x)$

 $\forall x (S(x) \rightarrow \neg P(x))$

Esempio

Tutti gli italiani mangiano la pasta

Dominio: italiani

Traduzione: ∀x Mangia_pasta(x)

• **Dominio**: persone

Traduzione: ∀x (Italiano(x) → Mangia_pasta(x))

Tipicamente, date due qualunque predicati S(x) e P(x):

Le asserzioni esistenziali sono legate alle congiunzioni

• Qualche S(x) è P(x)

 $\exists x (S(x) \land P(x))$

Qualche S(x) non è P(x)

 $\exists x (S(x) \land \neg P(x))$

Esempio

Qualche italiano è vegano

• Dominio: italiani

Traduzione: ∃x Vegano(x)

• **Dominio**: persone

Traduzione: ∃x (Italiano(x) ∧ Vegano(x))

Quantificatori innestati

Più di un quantificatore può essere necessario per rappresentare una qualche asserzione

Esempio

Ogni numero reale ha un corrispondente negativo

Assumiamo che:

- il dominio sia l'insieme dei numeri reali R

Traduzione: $\forall x \exists y P(x,y)$

Quantificatori innestati

Invertendo i quantificatori le asserzioni potrebbero avere un significato completamente differente

L'ordine dei quantificatori innestati è importante

Esempio

Un italiano si laurea in Informatica ogni ora

Assumiamo che A(x,y) = «x si laurea nell'ora y»

Traduzione 1: $\exists x \forall y A(x,y)$

Traduzione 2: $\forall y \exists x A(x,y)$

Qual è corretta? Traduzione 2!

Quantificatori innestati

Invertendo i quantificatori le asserzioni potrebbero avere un significato completamente differente

L'ordine dei quantificatori innestati è importante

Esempio

∀x ∃y Ama(x,y) è diverso da ∃y ∀x Ama(x,y)

Assumiamo che Ama(x,y) = x ama y

∀x ∃y A(x,y) si traduce come «Ognuno ama qualcuno»

∃y ∀x A(x,y) si traduce come *«Esiste qualcuno che è amato da tutti»*

Supponiamo:

- Le variabili x,y denotano persone
- Ama(x,y) = «x ama y»

Si traducano le seguenti asserzioni:

- Ognuno ama Antonio
 - ∀x Ama(x,Antonio)
- Ognuno ama qualcuno
 - ∀x∃y Ama(x,y)

Supponiamo:

- Le variabili x,y denotano persone
- Ama(x,y) = «x ama y»

Si traducano le seguenti asserzioni:

- C'è qualcuno che ama ogni altro
 - ∃x∀y Ama(x,y)
- C'è qualcuno che non è amato da Antonio
 - ∃y ¬Ama(Antonio,y)
- C'è qualcuno che non ama nessun altro
 - ∃x ∀y ¬Ama(x,y)

Esempio

Niente è perfetto

Traduzione: ¬(∃x Perfect(x))

Un altro modo per esprimere l'asserzione precedente è:

Ogni cosa è imperfetta

Traduzione: ∀x ¬Perfect(x)

Esempio

Niente è perfetto

Traduzione: ¬(∃x Perfect(x))

Un altro modo per esprimere l'asserzione precedente è:

Ogni cosa è imperfetta

Traduzione: $\forall x \neg Perfect(x)$

 $\neg(\exists x \ Perfect(x)) \ e \ equivalente \ a \ \forall x \ \neg Perfect(x)$

Esempio

Non è vero che tutti gli italiani mangiano pasta

Traduzione: $\neg \forall x (Italiano(x) \rightarrow Mangia_pasta(x))$

Un altro modo per esprimere l'asserzione precedente è:

C'è qualche italiano che non mangia pasta

Traduzione: $\exists x (Italiano(x) \land \neg Mangia_pasta(x))$

Equivalente a $\exists x \neg (Italiano(x) \rightarrow Mangia_pasta(x))$

 $\neg(\forall x P(x))$ è equivalente a $\exists x \neg P(x)$

Esistono le seguenti leggi di De Morgan per la negazione dei quantificatori

Negazione	Asserzione equivalente
¬∀ x P(x)	∃x ¬P(x)
<i>¬∃x P(x)</i>	∀x ¬P(x)

Proviamo che $\neg \forall x P(x)$ è equivalente a $\exists x \neg P(x)$

Dim.

Cominciamo col provare che $\neg \forall x P(x) \rightarrow \exists x \neg P(x)$

Se $\neg(\forall x P(x))$ è vera => $(\forall x P(x))$ è falsa

=> **∃x per il quale P(x) è falsa**, cioè

 $\exists x \text{ per il quale } \neg P(x) \text{ è vera, cioè } \exists x \neg P(x)$

Proviamo che $\neg \forall x P(x)$ è equivalente a $\exists x \neg P(x)$

Dim.

Ci rimane da provare che $\exists x \neg P(x) \rightarrow \neg \forall x P(x)$

Se $\exists x \neg P(x) \hat{e} \text{ vera} => \exists x \text{ per cui } P(x) \hat{e} \text{ falsa}$

=> non è vero che ∀x P(x) è vera, cioè

$$\neg (\forall x P(x))$$

Negazione di quantificatori innestati

Per negare asserzioni con quantificatori innestati, si applica la negazione al quantificatore più a sinistra ed utilizzando le regole

$$\neg \forall x P(x) \hat{e}$$
 equivalente a $\exists x \neg P(x)$

$$\neg \exists x P(x) \hat{e}$$
 equivalente a $\forall x \neg P(x)$

si procede applicando la negazione al quantificatore immediatamente successivo, e così via

Esempio

Non c'è una persona che ama tutti gli altri

Traduzione: $\neg \exists x \ \forall y \ Ama(x,y)$ $\neg \exists x \ (\forall y \ Ama(x,y)) \equiv \ \forall x \ \neg (\forall y \ Ama(x,y)) \equiv \ \forall x \ \exists y \ \neg Ama(x,y)$

Quale è la negazione della seguente asserzione?

Tutte le auto straniere hanno difetti di fabbricazione

 $\forall x \ (AutoStraniera(x) \rightarrow Difettosa(x))$

 $\neg \forall x (AutoStraniera(x) \rightarrow Difettosa(x))$

 $\exists x \neg (AutoStraniera(x) \rightarrow Difettosa(x))$

 $\exists x \neg (\neg AutoStraniera(x) \lor Difettosa(x))$

 $\exists x (AutoStraniera(x) \land \neg Difettosa(x))$

Assumiamo che l'universo del discorso sia l'insieme dei numeri naturali **N**. Consideriamo la seguente asserzione:

Tutti i numeri primi sono dispari

Essa è vera o falsa? Perché?

$$\forall x (Primo(x) \rightarrow Dispari(x))$$

Controesempio: X = 2

L'asserzione è falsa!

Assumiamo che l'universo del discorso sia l'insieme dei numeri naturali. Quale è la negazione della seguente asserzione:

Tutti i numeri primi sono dispari

$$\forall x \ (Primo(x) \rightarrow Dispari(x))$$

$$\neg \forall x \ (Primo(x) \rightarrow Dispari(x))$$

$$\exists x \ \neg (Primo(x) \rightarrow Dispari(x))$$

$$\exists x \ (Primo(x) \land \neg Dispari(x))$$

Quale è la negazione della seguente asserzione:

C'è un giocatore della Juve che è infortunato

Dominio = l'insieme dei giocatori di calcio

Juve(x) = «x è un giocatore della Juve»

Salute(x) = x è in salute»

 $\exists x \ (Juve(x) \land \neg Salute(x))$

 $\neg \exists x (Juve(x) \land \neg Salute(x))$

 $\forall x \neg (Juve(x) \land \neg Salute(x))$

 $\forall x \ (\neg Juve(x) \ VSalute(x))$

 $\forall x \ (Juve(x) \rightarrow Salute(x))$