

Project 2. Basic Principle of OFDM Technology

Cheng PENG

Department of Biomedical Engineering

pengc@sustech.edu.cn

Fall 2020

Lab Schedule

2020年	周次	_	Ξ	Ξ	四	五	六	目	
11月	第10周	16 初二	17 初三	18 初四	19 初五	20 初六	21 初七	22 小雪	← lab 5
	第11周	23 初九	24 初十	25 +–	26 +=	27 +≡	28 十四	29 +五	← Intro to project 1
	第12周	30 +六	1 +七	2 +八	3 +九	4 ≒+	5 世─	6 大雪	← Q&A, intro to project 2
	第13周	7 ±=	8 世四	9 ⊞五	10 ^{廿六}	11 世七	12 世八	13 世九	← Presentation 1
12月	第14周	14 <u>≡</u> +	15 ^{11月小}	16 初二	17 初三	18 初四	19 初五	20 初六	← Project 2 Q&A
	第15周	21 冬至	22 初八	23 初九	24 初十	25 +–	26 +=	27 +≡	← Presentation 2

Overview

- Review of baseband signal processing of OFDM systems
- Introduction of the transmitter's DAC + RF front-end

- Your jobs include
 - Receiver's RF front-end + ADC
 - Simulation results
 - Discussion on real channel vs. equivalent discrete-time channel
 - Discussion on the benefits and applications of OFDM technology

Review of Baseband Signal Processing of OFDM Systems

Review of Baseband Signal Processing of OFDM Systems

- Delay Spread in Wireless Channel
 - Inter-Symbol Interference

- DFT Helps Solving Inter-Symbol Interference
 - DFT and Periodic Convolution
 - How to Get Periodic Convolution

Tutorial on Orthogonal Frequency Division Multiplexing (OFDM)

Equivalent Wireless Channel

Discrete-Time OFDM Model

The discrete-time OFDM system model is given below

$$\widetilde{Y}[k] = Na_k\widetilde{H}[k], \qquad k = 0, 1, ..., N-1$$

Block 1

$$\widetilde{X}[0] = a_0$$

$$\widetilde{X}[N-1]=a_{N-1}$$

The length of CP is M

$$x[N-M], ..., x[N-1], x[0], x[1], ..., x[N-1]$$

Transmission to Equivalent
Wireless Channel

Remove Cyclic Prefix

OFDM Symbol: $\{x[N-M], ..., x[N-1], x[0], x[1], ..., x[N-1]\}$

Introduction of the transmitter's DAC + RF front-end

Equivalent Wireless Channel

 The equivalent DT wireless channel includes RF front-end and real wireless channel

DAC + Transmitter RF Front-End (Block 3)

Time Domain Analysis

- Suppose the input signal to the RF front end is x[n]
- Convert to impulse train: $x_p(t) = \sum_n x[n]\delta(t nT)$
- After DAC: $x_c(t) = \sum_n x[n]c(t nT)$
 - c(t) is a rectangular wave
- Real part: $x_r(t) = real[x_c(t)]$
- imaginary part: $x_i(t) = imag[x_c(t)]$
- After modulation
 - $x_{cos}(t) = x_r(t) \cos \omega_c t$
 - $x_{sin}(t) = x_i(t) \sin \omega_c t$
- After summation: $x_{tx}(t) = x_r(t) \cos \omega_c t + x_i(t) \sin \omega_c t$

How to represent all these CT signals in Matlab?

Real signal!!!

Actual Wireless Channel

- In this project, the wireless channel is approximated as a continuous-time LTI systems
- The impulse response is a causal finite-length continuoustime function
- Assume the channel impulse response is
 - $h(t) = 0.5\delta(t) + 0.4\delta(t 1.5T) + 0.35\delta(t 2.5T) + 0.3\delta(t 3T)$
 - T is the sampling period

 $\hat{\mathbf{1}}$

Actual wireless channel h(t)

Block 4 - ? Your task to design block 4

Your Tasks

Your tasks

- a. Design the receiver's RF front-end + ADC (Block 4), explain why your design can lead to correct signal detection.
- b. Derive h[n] and discuss the relation between h(t) and h[n] (see Page 6), determine the length of CP.
 - The impulse response of Actual Wireless Channel is given as

$$h(t) = 0.5\delta(t) + 0.4\delta(t - 1.5T) + 0.35\delta(t - 2.5T) + 0.3\delta(t - 3T)$$

- c. Randomly generate two discrete time signals $\{xp[0],xp[1],...,xp[31]\}$ (pilot/common information) and $\{x[0],x[1],...,x[31]\}$ (data), transmit these two signals by two OFDM symbols, and at least show the following items (in the simulation, $T=1\mu s$ and carrier frequency $\omega_c=100MHz$).
 - c1: plot the highlighted signals at Page 8 & 13.
 - c2: plot and discuss the Fourier transform of signal highlighted at Page 13.
 - c3: plot how the signal changes in the Block 4 step-by-step.
 - c4: plot the highlighted signals at Page 9, compare the final detected signal with the original transmitted signal.

- d. Elaborate on the applications of OFDM technology.
 - Any practical communication system using OFDM? Why?

Task overview

Simulation:

- DAC + Transmitter Front-end (DAC and modulation)
- Actual wireless channel: convolution (linear)
- Receiver + ADC Front-end (demodulation and ADC)

OFDM

- Get periodic convolution (IDFT & DFT, add & remove CP)
- Channel estimation send a Pilot Signal (common signal) to estimate the channel gain (get to know the H[k])
- Signal detection detect the received signal (via the knowledge of H[k])

Tips on Receiver Design

- In order to demodulate the signal, receiver should
 - Multiple the received signal with carrier: $\cos \omega_c t$ and $\sin \omega_c t$ (recall lab assignment of '007')
 - You can use an ideal low-pass filter (fft \rightarrow set the frequency components to be eliminated as $0 \rightarrow$ ifft)
- After demodulation, the receiver should
 - Use integrator to accumulate the received power, then generate DT signal for further processing:

$$y_{int}(t) = \frac{1}{T} \int_{t-T}^{t} y_{dem}(\tau) d\tau$$
$$y_{int}(nT) = y_{int}(t)|_{t=nT}$$

Average value in one sampling period as the discrete value of that time point

• $y_{int}(nT)$ keeps all the necessary information

Lab Report

- Abstract
 - What you have done in this project
- Introduction
 - Elaborate on the baseband of OFDM (Block 1&2)
 - Elaborate on the DAC + RF front-end of the transmitter (Block 3)
- Receiver Design and Analysis
 - Task a: Elaborate on your design of receiver RF front-end + ADC (Block 4)
 - Task b: Elaborate on the relation between h(t) and h[n]
- Simulations
 - Task c: show how the signal transforms step-by-step with figures
- Discussions
 - Task d: elaborate on the advantages of OFDM systems (>300 words)
- Please attach the Matlab code in your report

Organization and presentation

- $\cdot \le 4$ students/group.
- Each group needs to present 1 of the 2 Lab Projects (but submit reports for both projects):
 - The presentation date is Dec. 24th for Project 2.
- Each presentation should be within 10 minutes
 - All team members need to contribute to the presentation.
 - Presenting in English (recommended) or Chinese.

The presentation should (but not limited to) ...

- Introduce
 - team
 - objective of the project
 - background review (search more additional information)
 - methodology
- Present
 - relevant data, figure, etc.
 - the results for project tasks (e.g., with demo, Figure, etc.)
 - interpretation of project findings

- Discuss
 - what you have learned from this study?
 - problems during this project and your solution
 - investigation beyond project tasks
 - critical thinking
- Appendix (if any)
- Team effort (e.g., individual contribution)
- Reference
- Q & A (answer questions raised from audience)

Grading according to ...

 Introduction 	20%
• Results	30%
 Discussion 	30%
• Q&A	10%
• Overall (e.g., PPT design and presentation)	10%

- Report deadline
 - For Project 2: Dec 27th, 2:00 pm

Any questions?

More tips

How to represent all these CT signals in Matlab?

- By DT signals
- How many DT points for 1 sec CT signal? (<u>sampling frequency</u> / sampling period)
 - Exact value up to you
 - Note that the carrier frequency $\omega_c = 2\pi f_c = 100 MHz$, the <u>sampling</u> frequency here cannot be less than $\frac{2\omega_c}{2\pi} = \omega_c/\pi$ according to the sampling theory.

Two sampling periods (frequencies) to deal with

- Two sampling periods (so that two sampling frequencies)
 - One is the sampling period of the system ADC and DAC, $T = 1\mu s$,
 - Used in ADC, DAC
 - The other is the sampling frequency used to represent the CT signal of the system in Matlab
 - Used in real wireless channel part (between transmitter and receiver), i.e.
 the linear convolution part

What needs to be emphasized (more than once)

- Do NOT use the approach of Channel Equalizer
 - That is NOT what this project asks to do
- OFDM approach includes two steps:
 - Channel estimation send a common signal
 - In the receiver part, you know the signal but do not know the channel gain;
 - Calculate and the channel gain
 - Signal detection send an arbitrary signal
 - In the receiver part, you know the channel gain (from the channel estimation step) but do not know the signal

- Generate random signals (pilot signal or arbitrary signal to be sent)
 - Just use
 - pilot = randn(1,32); % or rand(1,32)
 - data = randn(1,32);
- Just ignore the parts of 'serial-to-parallel' and 'parallel-to-serial'

 Block 1 $\tilde{X}[0] = a_0$

• The impulse response of Actual Wireless Channel is given as

$$h(t) = 0.5\delta(t) + 0.4\delta(t - 1.5T) + 0.35\delta(t - 2.5T) + 0.3\delta(t - 3T)$$

- It is only used to calculate the convolution in the Actual Wireless Channel, but not for detecting signal (we don't know h(t) in reality)
 - AGAIN, DO NOT turn the project to a Channel Equalizer project

Maybe helpful

- \cdot R = 1000;
- fct = R*fs; % fs-the sampling frequency of the system, corresponding to T = 1us,

% fct- the sampling frequency you use when representing CT signal in Matlab

- xp = upsample(xwithcp,R);
- xc = reshape(repmat(xwithcp,R,1),1,[]);

Sinusoidal signal generation

- Same to project 1
- Sinsig = $sin(2*pi*f*t) \rightarrow CT$ signal, (f frequency in Hz)
- In Matlab, the Sinsig should be represented as a DT signal with the same sampling frequency as the original voice signal
- Sinsigdt = sin(2*pi*f*n*dT), dT is the sampling interval
 - dT=1/fs

Ideal low pass filter

• See Lab 3 slides page 30-34

Pad a zero

- Pad a zero at the end of the convolution in the actual wireless channel
- $h(t) = 0.5\delta(t) + 0.4\delta(t 1.5T) + 0.35\delta(t 2.5T) + 0.3\delta(t 3T)$
- If represent h(t) in Matlab by 1000 points per sampling period T, you'll get 4*1000 points, denoted as Nht*1000
- Represent modulated signal xmod(t) with same in the same manner, you'll get Nxmod*1000 points
- After convolution in the actual wireless channel (simulating in Matlab),
 the convoluted signal will have length of

$$Nht * 1000 + Nxmod * 1000 - 1$$

 Pad a zero at the end to get an integer multiple of 1000 for the coming ADC part

- %--ADC--% integral
- xde_lp = [xde_lp,0]; % xde_lp-demodulated signal, pad a zero
- A = reshape(xde_lp,R,[]); % every R points, which will be sampled to get a digital value, are arranged in one column;
- xr = mean(A,1); %