Vehicle Dynamics

Lesson n.3:

Longitudinal dynamics: braking manoeuvre

Secondary resistant forces

1. Rolling resistance:

$$R_X = R_{XF} + R_{XR} = f_V(W_F + W_R) = f_V W$$

Independent from load transfer phenomena

Contribution in the order of 0.01 g $(f_V g)$

2. Aerodynamic drag:

$$D_A = \frac{1}{2} \rho A C_X V^2$$

Contribution from negligible to 0.04 g $\,$

3. Powertrain:

Friction in bearings and gears

Engine brake

4. Road grade:

$$R_g = W \sin\Theta \cong W \Theta$$

Either resistant or traction force

Max contribution on highways of 0.04 g (Θ g)

Second Newton's law for the wheel during braking (simple model, more details will follw)

$$T_b - F_b r = I_w \alpha_w$$

$$F_b = \frac{T_b - I_w \alpha_w}{r} \cong \frac{T_b}{r}$$

where $T_b = f(P_a, Vel, Temp)$

Disk brake

Drum brake

Disk brake vs drum brake

Measured braking torque

Drum brake	Feature	Disk brake
+	Amplification of actuation force	
	Brake cooling (by ventilation	+
	Braking torque variation	+

Tire-road friction: hysteresis and adhesion

Key elements for brakes design

1. Braking coefficient variations

Key factors:

- Wheel Slip
$$\longrightarrow$$
 $Slip = \frac{V - \omega \cdot r}{V}$

- -Speed
- -Pressure
- -Vertical load
- -Weather conditions

2. Variations of maximum braking effort

Key elements:

- Front wheels locking ------ Reduced steerability
- Rear wheels locking. —— Vehicle spin

Anti-lock braking system (ABS)

Wheel slip operating range

Control logic

Example of ABS in a dynamic simulation

MultiBody vehicle model

Control unit model

Tangentianl wheel speed

Braking system: normal braking action

Braking system: hydraulic schematic

Braking system: auxiliary devices

Booster to amplify driver's pedal force effect on Tandem Master Cylinder (TMC)

Braking system: auxiliary devices

- 3. Camera posteriore;
- 5. Valvola di ritegno depressione;
- 8. Canale di collegamento camere; 9. Camera anteriore.

- 2. Sede puntale;
- 8. Canale di collegamento camere.

18

Braking system: auxiliary devices

- Depressore;
- 2. Tubo di depressione

Braking system: ABS control logics

Zona di lavoro del freno

Logica di controllo

Braking system: ABS hydraulic circuit

Braking system: ABS hydraulic circuit

Emergency Braking Action

Anti-lock braking system: motion equations

A kinematic excercise

Assumption
$$D_X = -a_X = \frac{F_{XT}}{M} = cost$$

Stopping time

$$t_S = \frac{V_0}{D_X}$$

Stopping distance

$$SD = \frac{{V_0}^2}{2D_X}$$

Let's prove it!