

Center

FINAL

REPORT ON TREATABILITY TEST OF GROUNDWATER BY ULTRAVIOLET (UV)/OXIDATION UMATILLA DEPOT ACTIVITY HERMISTON, OREGON

Contract No. DAAA15-90-D-0015 Delivery Order No. 10

Prepared for:

U.S. ARMY ENVIRONMENTAL CENTER Aberdeen Proving Ground, Maryland 21010

Prepared by:

DAMES & MOORE 849 International Drive, Suite 320 Linthicum, Maryland 21090

DISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE

JUNE 1995

Printed on Recycled Paper

Approved for public released

Distribution Uplimited

19961125 157

DTIC QUALITY INSPECTED 3

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

FINAL

REPORT ON
TREATABILITY
TEST OF
GROUNDWATER BY
ULTRAVIOLET (UV)/
OXIDATION,
UMATILLA
DEPOT ACTIVITY
HERMISTON,
OREGON

Contract No. DAAA15-90-D-0015 Delivery Order No. 10

Prepared for:

U.S. ARMY ENVIRONMENTAL CENTER
Aberdeen Proving Ground,
Maryland 21010

Prepared by:

DAMES & MOORE 849 International Drive, Suite 320 Linthicum, Maryland 21090

JUNE 1995

DTIC QUALITY INSPECTED 3

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

and Budget, Paperwork Reduction Project (0704-0100), V	vasnington, DC 20505.		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE Jun 1995	3. REPORT TYP Final (Jul 91 -	E AND DATES COVERED Jun 95)
TITLE AND SUBTITLE Report on Treatability Test of Groundy Umatilla Depot Activity, Hermiston, Ore	rater by Ultraviolet (UV)/Oxidation		5. FUNDING NUMBERS CDAAA15-90-D0015 TA10
6. AUTHOR(S) E. Ritchie, W. Ballard, S. Lemont, M. O	chsner, K. Parrett, R. Tucker		
7. PERFORMING ORGANIZATION NAME Dames & Moore 849 International Drive, Suite 320 Linthicum, Maryland 21090	:(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
SPONSORING/MONITORING AGENC U.S. Army Environmental Center Aberdeen Proving Ground, Maryland			10. SPONSORING/MONITORING AGENCY REPORT NUMBER SFIM-AEC-BC-CR-95046
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STAT Distribution Unlimited Approved for Public Release	EMENT		12b. DISTRIBUTION CODE
The Report on the Treatability Tec (USAEC), to document the results of the tr Washout Lagoons) pumping tests. It has I Remedial Investigation/Feasibility Study (F whether UV/ozone is a feasible atternat treatment technology, field setup, sam UV/ozone, but that 1,3,5-trinitrobenzene an evaluation of a field method for analyse.	been prepared for the USAEC under the II/FS) activities being performed at UMC tive for effectively removing explosives pling/analyses, results, and useability. 11.3.5-TNB) was difficult to treat. Prois	epot Activity (UMDA), Hermiston, ne Base Realignment and Closure DA. The objective of the treatabilit s from groundwater at Site 4. Th The results indicate that most e ected costs for a full-scale treatme	Oregon, during the Site 4 (Explosive e (BRAC) Program, and is part of the ry test was to gather data to evaluate e report presents discussions on the explosives were effectively treated by ent system are provided. In addition.
14. SUBJECT TERMS Treatability Test, Explosives in Ground	dwater, Remediation, UV/Oxidation Tr	eatment	15. NUMBER OF PAGES 383
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	

CONTENTS

1.0	INTRODU	CTION	1-1
2.0	TREATAB	ILITY TEST METHODS	2-1
2.1	TECHNOI	LOGY DESCRIPTION	2-1
2.2	METHOD	S	2-2
2.2.1	Bench-S	cale Study	2-2
2.2.2	Field Se	tup	2-4
2.2.3	Test Par	rameters	2-4
2.2.4	Samplin	g/Analysis During Treatability Test	2-8
2.2.4.1	Labor	ratory Analysis	2-8
2.2.4.2	Field	Analysis	2-9
2.2.4.3	Samp	le Designation	2-9
2.2.5	Carbon	Adsorption Units	2-11
2.2.6	Discharg	ge System	2-12
3.0	TREATAB	ILITY TEST RESULTS AND EVALUATION	3-1
3.1	RESULTS	OF BENCH-SCALE STUDY	3-1
3.2 ·	RESULTS	OF TREATABILITY TEST	3-1
3.2.1	Well 4-1		3-2
3.2.2	Well 4-1	3	3-19
3.3	USABILIT	Y OF UV/OZONE TREATMENT SYSTEM	3-36
4.0	REFEREN	CES	4-1
APPE	NDIX A:	Ultrox Report	
APPE	NDIX B:	Sample Collection Log	
APPE	NDIX C:	System Settings Log	
APPE	NDIX D:	Addendum to Method Development Report	

FIGURES

<u>No.</u>

<u>No.</u>		Page
2-1	The Ultrox UV/Oxidation System	2-3
2-2	Field Setup of Pump Test, Treatability Test, and Discharge Field	2-5
	TABLES	
<u>No.</u>		Page
2-1	Treatability Test Treatment Conditions	2-7
2-2	Sample Designation Summary for Treatability Test Samples	2-10
3-1	Chemical Analysis Results, Treatability Test at Well 4-1	3-3
3-2	Chemical Analysis Results Treatability Test at Well 4 13	2 20

LIST OF ACRONYMS AND ABBREVIATIONS

BRAC Base Realignment and Closure Program

COD Chemical Oxygen Demand

1,3-DNB 1,3-Dinitrobenzene

2,4-DNT 2,4-Dinitrotoluene

2,6-DNT 2,6-Dinitrotoluene

EPA U.S. Environmental Protection Agency

FS Feasibility Study

FSP Field Sampling Plan

HMX High Melting Explosive (cyclotetramethylenetetranitramine)

H₂SO₄ Sulfuric acid

HSP Health and Safety Plan

IRDMIS Installation Restoration Data Management Information System

lb/day Pounds per day

mg/L Milligrams per liter

mg/L/min Milligrams per liter per minute

mph Miles per hour

NaOH Sodium hydroxide
PVC Polyvinyl chloride

QAPP Quality Assurance Project Plan

QC Quality control

RDX Royal Demolition Explosive (hexahydro-1,3,5-trinitro-1,3,5-

triazine)

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

SOP Standard operating procedure

TDS Total dissolved solids

1,3,5-TNB 1,3,5-Trinitrobenzene

2,4,6-TNT 2,4,6-Trinitrotoluene

TOC Total organic carbon

LIST OF ACRONYMS AND ABBREVIATIONS (cont'd)

TSS Total suspended solids

μg/L Micrograms per liter

UMDA Umatilla Depot Activity

USAEC U.S. Army Environmental Center (formerly USATHAMA)

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

UV Ultraviolet

1.0 INTRODUCTION

This document is the Report on the Treatability Test of Groundwater by Ultraviolet (UV)/Oxidation for the Supplementary Remedial Investigation/Feasibility Study (RI/FS) at the Umatilla Depot Activity (UMDA), Hermiston, Oregon. It has been prepared for the U.S. Army Environmental Center (USAEC), formerly the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), under the Base Realignment and Closure (BRAC) Program, Contract No. DAAA15-90-D-0015, Delivery Order No. 10. The report describes the treatability test (using UV/ozone) performed during pumping tests at Site 4, Explosive Washout Lagoons.

Field data gathering methods, and protocols for sample handling and analysis were performed according to the Standard Operating Procedures (SOPs) defined in Part B of the RI/FS Project Plan, the Field Sampling Plan (FSP), (Dames & Moore, 1990), and in accordance with an addendum to the FSP (Dames & Moore, 1993a). Fieldwork and chemical analyses were also performed in accordance with the Quality Assurance Project Plan (QAPP), Part C of the RI/FS Project Plan, the Health and Safety Plan (HSP), Part D, and an addendum to the HSP presented in Appendix A of the FSP Addendum (Dames & Moore, 1993a).

The purpose of this report is to document the results of the treatability test performed at UMDA during the Site 4 pumping tests. The objective of the treatability test was to gather data to evaluate whether UV/ozone is a feasible alternative for effectively removing explosives from groundwater at Site 4. This evaluation was performed at the suggestion of the U.S. Environmental Protection Agency (EPA) Region X to add to the database of information about the technology's effectiveness and to support the Feasibility Study (FS) for UMDA groundwater conducted by USAEC in 1993. The test was conducted on groundwater removed from the alluvial aquifer during pumping tests and served to decontaminate the groundwater prior to discharge, as well as to collect treatability data. The treatment goals were to reduce Royal Demolition Explosive (RDX) and 2,4,6-trinitrotoluene (2,4,6-TNT)

concentrations to 2 micrograms per liter (μ g/L) or less, and the remaining explosives to below detectable levels. Note that nitrate/nitrite was not treated by either the UV/ozone system or the carbon units. However, as discussed with EPA Region X, the nitrate/nitrite concentrations are similar to those off-post, due to the agricultural nature (i.e., use of fertilizers) of the surrounding areas.

The pumping tests were conducted to obtain drawdown and recovery data to more fully characterize the hydraulic properties of the unconfined aquifer, and to provide data to aid in the design of any remedial recovery system deemed appropriate as part of the FS. The extended aquifer pumping tests were conducted on three of the alluvial wells at Site 4 (4-1, 4-13, and 4-18). Water from wells 4-1 and 4-13 was used to evaluate the effectiveness of the UV/ozone system; water from well 4-18 was treated only by the carbon units. The results of the pumping tests will be presented in an addendum to the Remedial Investigation (RI) Report (Dames & Moore, 1992), and will not be discussed in this document.

Detailed information on UMDA and Site 4 is presented in the RI Report for UMDA (Dames & Moore, 1992), and is not repeated in this document.

2.0 TREATABILITY TEST METHODS

2.1 TECHNOLOGY DESCRIPTION

UV/oxidation is a relatively new technology that involves the irradiation of wastewater with low- or high-intensity UV light concurrent with ozone and/or hydrogen peroxide dosing to degrade chemical contaminants into simpler, less toxic compounds. When wastewater is irradiated with UV light, the contaminant molecules become highly reactive. Ozone and/or hydrogen peroxide is added to the influent as an oxidant; consequently, the contaminants in the wastewater are rapidly oxidized. If the reaction goes to completion, the final products are carbon dioxide, water, nitrate/nitrite dissolved in the effluent, and salts (if chlorine atoms are present in the wastewater). While some small chain aliphatics may remain in the treated water, these constituents are not toxic and are not regulated.

The UV/oxidation technology was chosen to be evaluated at UMDA because it had been shown to be effective for treating explosives-contaminated groundwater at a few other sites. For example, the results of pilot studies performed at Site F, SuBASE Bangor, Washington (NCEL, 1992), indicated that a UV/ozone system is more efficient than a UV/peroxide system at degrading explosives--particularly 1,3,5-trinitrobenzene (1,3,5-TNB)--in groundwater. However, using UV/oxidation to treat explosives-contaminated groundwater is a relatively new approach. The effectiveness of the treatment can depend largely on the type of UV unit being used and the chemistry of the groundwater. Therefore, a pilot study at UMDA was performed to furnish cost and treatment effectiveness information for the UV/oxidation remedial alternative being considered in the FS for groundwater at UMDA. A UV/ozone system--supplied by Ultrox, Santa Ana, California--was evaluated as part of the current study.

The Ultrox UV/ozone system utilizes UV light and ozone to destroy organic compounds in water. Untreated water enters the 6500-gallon influent equalization tank and is pumped to the UV/ozone treatment tank through a flow meter on the

inlet spool. Water flows through the UV treatment tank in a sinusoidal and serpentine pathway, which is created by baffles within the tank. Ozone is produced from air by a 28 pounds per day (lb/day) ozone generator. The air is compressed, filtered, and dried by the Ultrox air preparation system prior to injection into the ozone generator. The ozone is produced at a concentration of approximately 2% in air and flows from the ozone generator to the ozone distribution manifold on the UV treatment tank. From the ozone distribution manifold, the ozone flows through rotometers to spargers located in the bottom of each cell within the UV treatment tank. The spargers diffuse the ozone through the water within the treatment tank where it reacts with UV to form a highly oxidative environment. It is this environment that destroys the chemical bonds of the organic compounds. Any residual ozone that collects within the UV treatment tank above the water surface is destroyed by a catalyst-based ozone destruction unit called a DecompozonTM. A diagram of the Ultrox UV/ozone system that was used during the treatability test is shown in Figure 2-1.

2.2 <u>METHODS</u>

2.2.1 Bench-Scale Study

Prior to field mobilization, Ultrox performed a laboratory bench-scale study on a 2-gallon sample of groundwater collected from well 4-1. The purpose of this study was to evaluate the need for metals or other pretreatment and to establish preliminary operating conditions (e.g., color testing for light transmission, pH testing for pH adjustment). Ultrox characterized the groundwater by analyzing for the following parameters using the indicated EPA analytical methods:

- Color (EPA 110.2)
- pH (EPA 150.1)
- Iron (EPA 236.2) and Manganese (EPA 243.2)
- Chlorides (EPA 325.3)
- Chemical Oxygen Demand (COD) (EPA 410.1)

- Total Organic Carbon (TOC) (EPA 415.1)
- Total Dissolved Solids (TDS) (EPA 160.1)
- Total Suspended Solids (TSS) (EPA 160.2)
- Alkalinity (EPA 310.1)
- Turbidity (EPA 180.1).

Based on the results of this characterization (presented in Appendix A), pretreatment was determined to be unnecessary for the treatability test.

2.2.2 Field Setup

The treatability test equipment was set up in one location on the top of Coyote Coulee near well 4-13 (see Figure 2-2). The pumps in wells 4-1 and 4-13 (the pumping test wells) were individually plumbed to the treatability test staging area. Water was directed to a 6,500-gallon equalization tank and then the UV/ozone system, or bypassed the system directly to the carbon units. The equalization tank provided sufficient storage for the pumping test groundwater so that the flow rate into the UV/ozone system could be varied. The bypass was necessary to treat any surplus water that the treatability test could not handle (particularly during the low-flow treatment conditions, as discussed in Section 2.2.3, or in case the UV/ozone system failed) so as not to interfere with the pumping tests. The water from the UV/ozone system was also piped to the carbon units, to ensure that all water had been sufficiently treated prior to discharge.

2.2.3 <u>Test Parameters</u>

Design parameters that were evaluated during the treatability test were pH, ozone dosage, and retention time. During each of the two pumping tests, three pH levels and three ozone dosages were evaluated (nine studies per pumping test). The pH values that were investigated were 5, 7 (neutral, or natural groundwater pH), and 9; the three ozone dosages that were evaluated were 1.5, 2.5, and 3.5 milligrams per liter per minute (mg/L/min). (Note that--at the retention times that were evaluated as part of the test (see below)--the UV/ozone system had an ozone dosage

capacity of 3.6 mg/L/min.) These values were based on treatability studies performed at other locations (ICF, 1993; NCEL, 1992), Ultrox's experience with treating explosives-contaminated water, and the results of the bench-scale study.

The approach to raising the pH involved metering a 20% sodium hydroxide (NaOH) solution into the influent line of the UV/ozone treatment tank. The metering volume and rate was determined by field experiment prior to starting the treatability test. The experiment was conducted by collecting a 5-gallon sample and adding NaOH solution until the desired pH was achieved. The pH was monitored by a pH meter. The volume added was scaled up based on the flow of groundwater to the Ultrox system. The same procedure was followed for lowering the pH, but a solution of 10% sulfuric acid (H₂SO₄) was used.

In addition to varying the pH and ozone dosages, three retention times--30, 90, and 150 minutes--were evaluated for each of the nine studies, for a total of 27 treatment conditions per pumping test. These retention times were based on Ultrox's experience with treating similar wastewater and on the results of the bench-scale study. The different retention times were achieved by varying the flow rate of the groundwater to the UV/ozone system. Each of the 27 treatment conditions per pump test was run for approximately 3 hours after which samples were collected for chemical analysis (see Section 2.2.4). A summary of the treatability test treatment conditions is presented in Table 2-1. The logs documenting the actual system settings are presented in Appendix B.

In addition to the 27 UV/ozone tests per pumping test, three ozone/hydrogen peroxide tests per pumping test were run, per request of USAEC. The UV lamps were shut off, and an ozone dose of 3.5 mg/L/min, pH of 7, and hydrogen peroxide dose of 1.2 milligrams per liter (mg/L) were run at three retention times: 30, 90, and 150 minutes. Similar to the UV/ozone tests, each of the ozone/hydrogen peroxide tests were run for approximately 3 hours after which samples were collected for chemical analysis (see Section 2.2.4). The ozone/hydrogen peroxide treatment conditions are also summarized in Table 2-1.

TABLE 2-1
Treatability Test Treatment Conditions

		Time	Time	Flow Rate	Retention Time	Ozone		Hydrogen Peroxide	
	Test No.	well 4-1	well 4-13	(gpm)	(min)	(mg/L/min)	pН	(mg/L)	Samples (a)
	DAY/1								
									1 (6
-		10:45 - 14:54	11:45 - 14:45	4.3	150	1.5	7		3
		15:15 - 18:15	15:05 - 18:05	7.2	90	1.5	7	-	3
İ		18:35 - 21:35	18:15 - 21:15	21.6	30	1.5	7		3
		22:00 - 01:00	21:30 - 00:30	4.3	150	2.5	7		3
	DAY2	01:35 - 04:35	01:00 - 04:00	7.2	90	2.5	7	••	3
•									
- 1	1	04:55 - 07:55	04:15 - 07:15	21.6	30	2.5	7		3
		08:15 - 11:15	07:30 - 10:30	4.3	150	3.5	7		3
		01:30 - 04:30	10:45 - 13:45	7.2	90	3.5	7	-	3
		05:00 - 08:00	13:55 - 16:55	21.6	30	3.5	7		3
		11:00 - 14:00	19:15 - 22:15	4.3	150	1.5	5	-	3
E		14:30 - 17:30	22:45 - 01:45	7.2	90	1.5	5		3
	DAY 3								
- 11		17:45 - 20:45	02:10 - 05:10	21.6	30	1.5	5		3
	1	21:00 - 24:00	05:30 - 08:30	4.3	150	2.5	5		3
		01:05 - 04:05	09:00 - 12:00	7.2	90	2.5	5		3
		04:35 - 06:35	12:20 - 15:20	21.6	30	2.5	5		3
		07:05 - 10:05	15:40 - 18:40	4.3	150	3.5	5		3
		10:20 - 13:20	19:00 - 22:00	7.2	90	3.5	5		. 3
L	181	13:50 - 15:50	22:10 - 01:10	21.6	30	3.5	5		3
	AY.4								
		17:30 - 20:30	08:00 - 11:00	4.3	150	1.5	9		3
		21:00 - 24:00	11:20 - 14:20	7.2	90	1.5	9		3
		00:50 - 03:50	14:35 - 17:35	21.6	30	1.5	9		3
		04:30 - 07:30	17:45 - 20:45	4.3	150	2.5	9		3
		08:05 - 11:05	21:05 - 00:05	7.2	90	2.5	9	•••	3
		11:35 - 14:35	00:40 - 02:40 *	21.6	30	2.5	9	-	3
	25	15:05 - 18:05	03:00 - 06:00	4.3	150	3.5	9		3
)AY 5								
		18:25 - 21:25	11:00 - 14:00	7.2	90	3.5	9	-	3
		21:50 - 00:55	14:15 - 17:15	21.6	30	3.5	9		3
		6:00 - 19:00	17:55 - 20:55	4.3	150	3.5	7	1.2	3
		9:15 - 22:15	21:20 - 00:20	7.2	90	3.5	7	1.2	3
		2:45 - 01:45	00:50 - 03:50	21.6	30	3.5	7	1.2	3
	AY 6								
				••	4-				3(c)

Total Samples/Pumping Test: Field Duplicates:

94 5

- (a) Samples were collected after each treatment condition was run for approximately 3 hours. At that time, samples were collected at influent (i.e., pretreatment), post UV/ozone system but before carbon treatment, and post carbon treatment, for a total of 3 samples after each treatment condition. Samples were split and one sent to the laboratory for explosives and nitrate/nitrite analyses, and the other analyzed by the field method for 2,4,6-TNT and RDX.
- (b) One sample was collected at the start of the pumping test at the pump discharge only.
- (c) Samples were collected approximately 30 minutes prior to the end of the pumping test from the influent, post UV/Ozone system and postcarbon treatment.
 - * Daylight savings time began.

2.2.4 Sampling/Analysis During Treatability Test

Laboratory Analysis. Groundwater samples were collected and sent to the chemical laboratory for analysis during each of the treatability tests. Analyses were conducted for nitrate/nitrite and the following explosive compounds: nitrobenzene; 1,3-dinitrobenzene (1,3-DNB); 1,3,5-TNB; 2,4-dinitrotoluene (2,4-DNT); 2,6-DNT; 2,4,6-TNT; RDX; High Melting Explosive (HMX); and tetryl. Samples were collected of both treated and untreated groundwater to determine changes in nitrate/nitrite and explosive compounds concentrations with time, and the effectiveness of the UV/ozone system in treating the explosives. In addition, tests for pH and conductivity were conducted in the field for all groundwater samples prior to submittal to the laboratory.

Samples were collected at the following locations:

- At the pump discharge, prior to any treatment (i.e., influent).
- Between the UV/ozone system and the carbon units, after treatment by UV/ozone.
- At the discharge of the carbon units, after both the UV/ozone and carbon filtration (i.e., effluent).

Samples were collected at each of the above locations at the following frequency:

- At the start of each pumping test (at pump discharge only).
- After each treatment condition (see Table 2-1) had been run for 3 hours.
- Approximately 30 minutes prior to the end of each pumping test.

Based on the above sampling frequency, 94 samples were collected during each of the two pumping tests, for a total of 188 samples. As mentioned previously, samples were analyzed for explosives and nitrate/nitrite. Samples associated with each treatment condition are summarized in Table 2-1, as well as the number of

quality control (QC) samples (i.e., 5 duplicates per pumping test). Actual sampling records are presented in Appendix C.

2.2.4.2 <u>Field Analysis</u>. Total concentrations of 2,4,6-TNT and RDX were measured in the field during pumping tests. The purpose of the field analysis was to monitor the effectiveness of the treatment system, assist in adjusting the operation of the UV/ozone system, and follow trends in groundwater quality--on a real-time basis--that may have occurred as a result of pumping. Measurements were carried out using a colorimetric method described in the Method Validation Report (Dames & Moore, 1993) and modified in the field. The modifications are discussed in an Addendum to the Method Validation Report, presented in Appendix D of this document. Samples for field analysis were collected at the same times and locations as for laboratory analysis.

2.2.4.3 <u>Sample Designation</u>. To effectively maintain accurate records of sample locations, treatment conditions, and sample analysis data, a sample designation system was used that was developed in conformance with systems used in previous investigations and USAEC data management requirements and specifications. The sample designation was required, at minimum, to include the sample's location (e.g., the well location number and location in the treatment system), treatment condition, and type of analysis (e.g., laboratory or field). The use of a standardized sample designation system ensured the use of a consistent sample numbering approach by field personnel and a simple, standardized reference for associating sampling results with the various treatment conditions.

Similar to the system used for other investigations of the RI/FS at UMDA, an eight-character sample designation code was used, which was a FIELD SAMPLE NUMBER. (The code is limited to eight alphanumeric characters, the maximum field width for sample site identification numbers in USAEC's Installation Restoration Data Management Information System (IRDMIS).) The UMDA treatability test sample designations included the information summarized in Table 2-2. Note that the time that a sample was collected was recorded in the sample collection log with the

Table 2-2

Sample Designation Summary for Treatability Test Samples

Character No.	Description	Sample Designation Code
1	Sample Matrix Groundwater	G
2-3	Well No 4-1 4-13	01 13
4	Sample Location in Treatment System Influent (Pretreatment) Post UV/Ozone Treatment Effluent (Post Carbon Treatment)	I U E
5-6	Treatment Condition Start of pumping test (at pump discharge) 1 to 30 30 minutes prior to the end of pumping test	00 01 to 30 31
7	Type of Analysis Laboratory Field	L F
8	QC Sample Designation Field Duplicate	D

Sample Designation Examples

G01U23LD Duplicate (D) groundwater (G) sample from well 4-1 (01), post UV/ozone treatment (U), twenty-third treatment condition (23), laboratory analysis (L).

G13E16F Groundwater (G) sample from well 4-13 (13), post carbon treatment (E), sixteenth treatment condition (16), field analysis.

treatment condition number; this information could not be included in the eight-digit sample designation code, nor in IRDMIS in conjunction with other information (e.g., sample data). However, the time that a sample was collected was not considered as critical as the treatment condition in the sample designation code; time is included in the results tables in Section 3.0 of this report. Also note that the samples collected at the start and near the end of each pumping test were given treatment condition numbers of 00 and 31, respectively.

2.2.5 <u>Carbon Adsorption Units</u>

Because some contaminant residuals could be present in the UV/ozone system effluent at different times during the treatability test (depending upon the pH and UV/ozone doses applied), and because at the longer retention times the UV/ozone system could not handle all the water from the pumping test, carbon adsorption was used downstream of the UV/ozone unit to polish the effluent water and as a bypass to the UV/ozone system to ensure that the water discharged to the environment was fully treated. Carbon adsorption had been used previously for groundwater treatment during pumping tests at Site 4, and was found to be effective in treating the groundwater.

The effluent water from the UV/ozone system was pumped to a 4,500-gallon tank and then through the carbon units. Three two-unit systems in parallel were hooked up, so that 1 to 2 systems could be used (depending on the flow rate from the pumping test), and 1 system could be used for backup in case a system failed. The six carbon adsorption canisters (ones already onsite from previous pumping tests) were set on the ground near the UV/ozone system. The six units were connected using 2-inch polyvinyl chloride (PVC) pipe, in a series-parallel arrangement; that is, three pairs of tanks, with two tanks connected in series, were connected in parallel. The water was treated/polished by the carbon units, and flowed from the carbon units to a simple drip-irrigation system to the ground surface for discharge (see Section 2.2.6). As discussed in Section 2.2.4, the treated water was sampled prior to discharge.

2.2.6 <u>Discharge System</u>

The discharge system consisted of PVC piping from the carbon units, a poly tank, an in-line booster pump, and four PVC discharge lines in a discharge field. From the carbon units, treated water was pumped northeastward, to the southwest quadrant of the East Centre Road and Rim Road intersection. At this location, four discharge lines were joined together by a manifold. The manifold consisted of solid PVC pipe with elbows or tees used to connect the discharge lines. The discharge lines were constructed of PVC pipe, capped at the end, and slotted on the top portion only to allow water to fill the entire length of the line before discharging. Each discharge line was 20 feet long. The treated effluent flowed from the carbon units, through the discharge network, and trickled onto the ground surface, where the wastewater infiltrated into the soil and evaporated. In this manner, the groundwater from the pumping tests was treated and disposed of away from each wellhead, so as not to interfere with the pumping tests.

3.0 TREATABILITY TEST RESULTS AND EVALUATION

This section presents the results of the bench-scale study and treatability test performed at wells 4-1 and 4-13 at Site 4, and evaluates the effectiveness and usability of the UV/ozone system.

3.1 RESULTS OF BENCH-SCALE STUDY

The results of Ultrox's bench-scale study are discussed in detail in the Ultrox Report, presented in Appendix A. In summary, the study indicated that no pretreatment (e.g., filtration, precipitation) was necessary for the treatability test. The study also provided data on the various treatment parameters, and indicated that the selected pH, ozone dosages, and retention times would provide the information necessary to evaluate the efficacy of the system, and to achieve the treatment objectives for some of the treatment conditions.

3.2 <u>RESULTS OF TREATABILITY TEST</u>

As discussed in Section 2.2.4, samples for the treatability tests were collected after each treatment condition had been run for approximately 3 hours, at which time samples were collected at the influent (i.e., prior to any treatment), after the UV/ozone system but prior to the carbon units, and at the effluent (i.e., at the discharge of the carbon units). The laboratory chemical analysis results are presented in this section. Also, the laboratory results and interpretation by Ultrox are presented in Appendix A. The field analysis results are presented in Appendix D, the Addendum to the Method Development Report.

The chemical analysis results are presented in tables for each well in the results subsections. Data are reported by field ID number in chronological order. Information on the test parameters (i.e., pH, ozone dosage, and retention time) is included in the tables. Note that only compounds that were detected in at least one sample collected during a treatability test are presented in these tables, rather than all constituents analyzed. The chemical results are compared against a set of

comparison criteria developed during the RI (Dames & Moore, 1992) and based on human health standards, where available. The detected concentrations of compounds are compared to the comparison criteria selected for them, and exceedances are flagged on the table by brackets around the listed concentration.

3.2.1 Well 4-1

The treatability test at well 4-1 was started on October 13, 1994, and all 30 treatment conditions were completed by October 21, 1994. As presented in Table 3-1, the initial conditions at well 4-1 (i.e., at the start of the pumping test and prior to any treatment; field ID G01I00L) indicate various concentrations of most of the explosives analyzed for, with 2,4,6-TNT and RDX having the highest concentrations. Also, nitrate/nitrite was detected at a concentration of 22,000 micrograms per liter (μ g/L), which did not vary significantly throughout the test.

As expected, 1,3,5-TNB--a breakdown product of other explosives, particularly 2,4,6-TNT – -was the most difficult explosive to treat. Although under many of the treatment conditions the other explosives were non-detectable, 1,3,5-TNB still had high concentrations. The concentrations often increased from the influent level to the post-UV/ozone system level, likely due to the treatment of 2,4,6-TNT that results in creating more 1,3,5-TNB, a breakdown product. There were three treatment conditions under which the levels of 1,3,5-TNB were reduced to below the comparison criterion of $1.75 \mu g/L$ or were non-detectable. (All other explosives were non-detectable.) The field IDs and associated treatment conditions were as follows:

Field ID	Ozone Dosage (mg/L/min)	Retention Time (min)	pН
G01U13L	2.5	150	5
G01U16L	3.5	150	5
G01U17L	3.5	90	5

TABLE 3-1 Chemical Analysis Results Treatability Test at Well 4-1

								COMPARISON	CRITERIA	34.	C/.1	3.5	9	0.18	0.007	1750	17.5	01	52.5	,	0000	10000
G01E02L	1-4	CGW	13-oct-1993	18:15	1.5	96	7	•	UGL	077 O T.1	L1 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		. 00000	38000
GOIU02L	I	CW.	3-oct-1993	8:15	.s	9			U CL			2.55 C	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56			f 00007 l
G01102L G									ngr 1					[320 C]							1 22000	f 77007 J
COLEGIL								_	UGL	H	1	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		1 40000	[48000]
COLUMN	4-1	CGW	13-oct-1993	14:45	1.5	150	7	0	UGL	1 140	_	ב	Ľ	C] LT 0.064	Ľ	-1	L	LŢ	LT	•		[78000]
G01101L	4-1	CGW	13-oct-1993	14:45	1.5	150	7	•	UGL	140	140	[6.64	3200	C] [310 C	91]	270	12	_			י מטטנר ג	[77000]
C01100L	4-1	CGW	13-oct-1993	10:30	n/a	n/a	n/a	m/a	UGL		061 1	[5.55	1 2900	[310	[14.8	1200	12.9	1 2600	LT 1.56		1	00077
						'min.)			CRLS	0770	0.449	119.0	0.635	0.064	0.074	1.21	0.645	1.17	2.49			01
FIELD ID	SITE ID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	Explosives	ISSINB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL		Other inorganics	NITRATE/NITRITE

									COMPARISON			1			∞	07	ç				2		10000
									<u> </u>		-		5.5	0	0.0	0.0	175	12		2.5	35.		100
G01E04L	4-1	CGW	14-oct-1993	01:00	20:10	5.7	150	7	0			; <u>-</u>	1T 0.236										[20000]
G01U04L	1-1	CGW	14-oct-1993	01:00	7.5		2	7	0 1301		011	11 0611	C LI 0.011										[26000]
G01104L	4-1	CGW	14-oct-1993	01:00	15		001	7	ngr ngr				0011										[19000]
GOIE03L	-1	CGW	13-oct-1993	21:35		30	20	7	o ncr		LT 0.449	LT 0.611	LT 0.635	TT 0.00	L1 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	1. 1. S6			[24000]
3L	4-1							_										1.8 C					[22000]
			.1993								[130 C]	[7.59 C]	3300				950 C	12.6 C	[2900 C]				[24000]
C01103L	-+ (3	13-00	21:35	5.	5	S t	- 6	CRLs UGL		0.449	1190	0.635	0.064	0.00	0.074	1.21	0.645	1.17	2.49		-	01
FIELD ID	MATOR	MAIKIA	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST - II	1303 (mad)	HZOZ (mg/L) UNITS	Explosives	35TNB	I3DNB	246TNT	24DNT		ZeDN1	HMX	NITROBENZENE	RDX	FETRYL		Other Inorganics	NII KATE/NITRITE

Table 3-1 (cont'd)

								COMPARISON	CRITERIA		1.75	3.5	01	0.18	0.007	1750	17.5	01	52.5	10000	
G01E06L	4-1	CGW	14-oct-1993	07:55	2.5	30	7	•	ner		LT	L	LT	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT	LT 1.56	[18000]	
			60											S C	74	C	15	<u>د</u>	2	[22000]	
C01106L	4-1	CGW	14-oct-199	07:55	2.5	30	7	•	ngr		1 700	_	_	_	L		LT	_	L	[220	
			_											Ü						19000	
G01106L	4-1	CGW	14-oct-1993	07:55	2.5	30	7	0	ner		[120	[6.87	310	300	14.8	120	13	[270	1.92	1900	
											_			_	_		<u> </u>			0]	
GOIEOSL	4-1	CGW	14-oct-1993	04:35	2.5	90	7	0	UGL					LT 0.06						[18000]	
JOST.		2	:1-1993	55	2.5				L		[390 C]	T 0.611	T 0.635	T 0.064		LT 1.21				[24000]	
COLUBSE	4-1	CGW	14-00	04::	2.5	90	1	0	ner		<u>5</u>	כל	cl Cl	c] r			-			_	
GOIIOSL	4-1	CGW	14-oct-1993	04:35	2.5	0			UGL					320						00081	
	4	<u>ပ</u>	Ť	_	7	6	7	•	CRLs		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49	01	
FIELD ID	SITE ID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	Explosives	135TNB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	NITRATE/NITRITE	

							-	COMPARISON	CRITERIA		1.75	3.5	01	0.18	0.007	1750	17.5	10	52.5	00001
01E07L		GW	f-oct-1993	1:15	sc.	20			ner		LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56	[19000]
C01U07L G									ner r										LT 1.56	[28000]
G01107LD	1-4	CGW	14-oct-1993	11:15	3.5	150	7	0	UGL			01]	-	C) (310 C)		[2400		_] [20000]
G01107L	4-1	CGW	14-oct-1993	11:15	3.5	150	7	0	UGL			[6.3		008			_		LT 7.8	[20000
9	a	. XI	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	110	mg/L)	CRLs		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49	10
FIELD ID	SITE ID	MATRIX	SAMPL	SAMPL	OZONE	RETEN	TEST pH	H2O2 (mg/L)	UNITS	Explosives	35TNB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	Other Inorganics NITRATE/NITRITE

Table 3-1 (cont'd)

									COMPARISON	CRITERIA		1.75	3.5	10	0.18	0.007	1750	17.5	10	52.5		10000
	,			93								0.449	111	35	164	174		545	11	99		[18000]
	,01E09L	4-1	MS:	5-oct-19	00:80	3.5	30	1	•	JGL		Ī	LT 0.6	_	_	_		_	11	J 1.5		[18
												S	່ບ	Ü					C 1	_		0]
	COOL		×	ct-1993	90				0	ï		059]	1.86	[39.7	T 0.064	T 0.074	J 12	T 0.645	7.3	LT 1.56		[21000]
	3	4-1	90	15-0	08:	3.5	30	7	0	nC			ີ ບ							-		_
	9L			-1993								190	[6.3	3200	340	0.37	1800	14	3400	7.8		[19000]
		4-1	CGW	15-oct-	08:00	3.5	30	7	•	CCL		_		_	_	LT	_		_	LT		_
	EOSL		CGW	oct-1993	30					ïL		LT 0.449	LT 0.611	LT 0.635		LT 0.074						[19000]
	3	4	S	- 5	04:	3.5	90	7	•	19n		<u>ت</u>			_	_	_	_				1
	COLOGE	4-1	CGW	5-oct-1993	04:30	3.5	06	7	0	UGL		[450	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[24000
	_		_	_			-						<u></u>				ပ		ົວ			0]
	COLLOSE	4-1	CGW	15-oct-1993	04:30	3.5	96	7	•	UGL		180	[5.3	1 3200	1 330	LT 0.37	1 2000	01	3400	LT 7.8		00061]
c : # 3										CRLS		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49		10
Site 4 Groundwater Data US/13/94 Fage#: 3	FIELDID	SITEID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	Femlocives	135TNB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX .	TETRYL	Other Increanics	NITRATE/NITRITE

0L G01E10L G01I11L G01UIIL G01EIIL 4-1 4-1 4-1 4-1 CGW CGW CGW CGW 1993 15-oct-1993 15-oct-1993 15-oct-1993 14:00 17:30 17:30 17:30 1.5 1.5 1.5 1.5 150 90 90 90 5 5 5 5 0 0 0 0 UGL UGL UGL UGL		C] LT 0.449 [170 C] [67 C] LT 0.449	LT 0.611 [5.3 C] LT 0.611 [T. 0.611	LT 0.635 3000 Cl LT 0.635 1T 0.635	0.064 LT 0.064 [310 C] LT 0.064 LT 0.064 [0.18	LT 0.074 LT 0.37 LT 0.074 LT 0.074	LT 1.21 1400 C LT 1.21 LT 1.21	LT 0.645 LT 3.2 LT 0.645 LT 0.645	LT 1.17 [3000 C] LT 1.17 LT 1.17	LT 1.56 LT 7.8 LT 1.56 LT		24000] [20000] [20000] [32000] [24000]
G01110L G01U10L 4-1 4-1 CGW CGW 15-oct-1993 15-oct-1993 14:00 14:00 1.5 1.5 150 150 5 5 0 0 UGL UGL		c] [C] LT	C] LT	[330 C] LT 0.06	: :	ייייייייייייייייייייייייייייייייייייי	נו.		LT		[26000] [2400
FIELD ID SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.) TEST pH II202 (mg/L)	Explosives			•	24DNI 0.064		NITRORFNZENE		IX.	7.49	Other Inorganics	NITRATE/NITRITE 10

								COMPARISON	CRITERIA			1.75	3.5	10	0.18	0.007	1750	17.5	01	52.5	00001
G01E13LD	4-1	CGW	16-oct-1993	24:00	2.5	150	\$	•	ner			LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56	[26000]
G01E13L	1-4	CGW	16-oct-1993	24:00	2.5	150	v	0	UGL			LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56	[26000]
COLUISE	1-4	CGW	16-oct-1993	24:00	2.5	150	vs.	0	UGL				L	L	ב	LT 0.074	LT	LT	LT 1.17	LT 1.56	[26000]
G01113L	4-1	CGW	16-oct-1993	24:00	2.5	150	25	0	UGL			[170 C]	[6.3 C]	[3200 C]	[330 C]	LT 0.37		13 C		LT 7.8	[34000]
							2		UGL			LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56	[23000]
2L	4-1						· ·		UGL					[97.8 C]		LT 0.074	LT 12		[17.4 C]		[24000]
12L	4-1		15-oct-1993 1	20:45	1.5		4.		UGL					[3200 C]		LT 0.37) 	[3300 C]	LT 7.8	[20000]
<u></u>	4	<u> </u>	15	7	_	<u> </u>	v.	0	CRLs			0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49	01
FIELD ID	SITE ID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	·	Explosives	135TNB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	Other Inorganics NITRATE/NITRITE

	COMPARISON		1.75		5. 2	910	0000	100.0	06/1	27.1	⊇ Ç	6.40	10000
GOIEISL 4-1 CGW 16-oct-1993 06:35 2.5	S O UGL		LT	17	Ξ	Cl 1.T 0.064		T 1.31	17. 1.2.1 17. 0.64 6	C 11 11 2	LT 1.56		[22000]
G01Ui5L 4-1 CGW 16-oct-1993 06:35 2.5	o O UGL		009]	∞ :	[29.3		LT 0.074	-	C 1.T 0.645	5.03	LT 1.56] [22000]
G01115L 4-1 CGW 16-oct-1993 06:35 2.5	o O UCL										LT 7.8		[20000]
G01E14L 4-1 CGW 16-oct-1993 04:05 2.5 90	o O UGL		C] LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 121	LT 0.645	LT 1.17	LT 1.56] [22000]
G01U14L 4-1 CGW 16-oct-1993 04:05 2.5 90	o UGL		_	Ľ	LT	L			LT	Ci LT 1.17] [24000
G01114L 4-1 CGW 16-oct-1993 04:05 2.5 90	ngr ngr		081]	8.9]	(3100	[320	LT 0.37	L 1800	61]	1 3300	LT 7.8		[20000
	CRLs		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49		01
FIELD ID SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.)	H2O2 (mg/L) UNITS	Explosives	135TNB	ISDNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	Other Ingranice	NITRATE/NITRITE

Table 3-1 (cont'd)

		A						COMPARISON	CRITERIA		1.75	3.5	01	0.18	0.007	1750	17.5	01	52.5	•	10000
G01E17L	4-1	CGW	16-oct-1993	13:20	3.5	06	•6	•	UGL		LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[22000]
C01U17L	4-1	CGW	16-oct-1993	13:20	3.5	96	S	0	UGL				LT 0.635								[26000]
C01117L									UGL				[3100 C]				14 C		LT 7.8		[22000]
COIEIGL (LT 0.635						LT 1.56		[22000]
COLUIGE							w.	0	ncr				LT 0.635		LT 0.074				LT 1.56		[26000]
116L		CGW	16-oct-1993	5	3.5		v.	0	UGL				[3100 C]		LT 0.37	1500 C	12 C		LT 1.56		[19000]
									CRLs		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49		01
FIELD 1D	SITEID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pil	H2O2 (mg/L)	UNITS	Explosives	135TNB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	Other Inorganics	NITRATE/NITRITE

FIELD ID		G01118L	G01U18L	COLE	8L	G01119L	9	01U19L		\$01E19L	
SITE ID		4-1	4-1	1-4		1-1	•	4-1		4-1	
MATRIX		CGW	CGW	CGW		CGW	O	GW		CW	
SAMPLE DATE		16-oct-1993	16-oct-1993	16-oct-	1993	16-oct-1993	=	6-oct-1993		6-oct-1993	
SAMPLE TIME		15:50	15:50	15:50		20:30	7	0:30	•	20:30	
OZONE (mg/L/min.)		3.5	3.5	3.5		1.5	_	v.		4	
RETENTION TIME (min.)		30	30	30		150		20		95	
TEST PH		8	S	40		6	6				
H2O2 (mg/L)		0	0	0		•	-				COMPARISON
UNITS	CRLs	UGL	UGL	ner		UGL	1	n cr		ngr	CRITERIA
Explosives											
135TNB	0.449	091]	c] 250	CLT	0.449	091 J	5	I 330	ט		27.1
I3DNB	0.611	_	C) LT 0.611	LT	0.611	6.3	ت ت	7.92	T (7)		3.5
246TNT	0.635	0011]	C] 5.42	CLT	LT 0.635	1800	၁	LT 0.635	5	LT 0.635) <u>-</u>
24DNT	0.064		C] LT 0.064	LT	0.064	[200	:				81.0
26DNT	0.074	LT 0.37	LT 0.074	LT	0.074	LT 0.37	•	LT 0.074			0.007
HMX	1.21	480	C LT 1.21	LT	1.21	750	ပ				1750
NITROBENZENE	0.645		LT	LT	0.645	13	ပ				17.5
RDX	1.17	0	C] 1.29	C LT	1.17	0061]	C				0
TETRYL	2.49	LT 7.8	LT 1.56	ב	1.56	LT 7.8					52.5
Other Inorganics											
NITRATE/NITRITE	01	[20000	[24000	_	[26000]	[20000]	_	[24000]	_	[19000]	10000

Table 3-1 (cont'd)

								COMPARISON	CRITERIA												•	
								COM	CRIT		1.75	3.5	01	0.18	0.007	1750	17.5	10	52.5		10000	
GOIEZIL	4-1	CGW	17-oct-1993	03:50	1.5	30	6	•	ner		LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[22000]	•
											ົວ	ົວ	ับ	ับ	•		၁	ວ	•			
GOIUZIL	4-1	CGW	17-oct-1993	03:50	1.5	30	6	•	n cr		[330	[20.1	[130	65]	LT 0.074	LT 30	1.81	[23.5	LT 1.56		[20000	
											ົວ	S	<u>ت</u>	ົວ		ပ	Ş	ับ	•			
G01121L	4-1	CGW	17-oct-1993	03:50	1.5	30	6	0	UGL		091]	8.9	[930	[130	LT 0.37	300	[27	1200	LT 7.8		[20000]	
					_																	
301E20L	4-1	CGW	7-oct-1993	24:00	1.5	90	6	•	UGL		LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[20000]	
			_									၁		ပ							_	
S01U20LD	1-1	₩S:	17-oct-1993	24:00	1.5	90	6	0	ner		[430	[16.7	LT 0.635	[0.449	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[22000	
		_	_	•				-			ر ا			ົວ							_	
G01U20L	4-1	CGW	17-oct-1993	24:00	1.5	06	6	0	ner		[430	[16.4	LT 0.635	[0.429	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[24000	
		_	_					-			ر ت	ರ	ပ	ر ت		ပ	ပ	C			_	
G01120L	4-1	CGW	17-oct-1993	24:00	1.5	90	6	0	ngr		091]	8.9	0061	[220	LT 0.37	820	9.5	1 2000	LT 7.8		[20000	
									CRLs		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49		01	
FIELD ID	SITEID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	Explosives	135TNB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	Other Increanice	NITRATE/NITRITE	

COMPARISON	1.75 3.5 10 0.18 0.007 1750 17.5 10	10000
1993	0.449 0.611 0.635 0.064 0.074 1.21 0.645 1.17	[20000]
G01E23L 4-1 CGW 17-0ct-1993 11:05 2.5 90 9		
G01U23L 4-1 CGW 17-oct-1993 11:05 2.5 99 9	[580 2.99 LT 0.635 LT 0.064 LT 0.074 LT 1.21 LT 0.645 LT 1.17 LT 1.17	[26000]
0 0 1 - 4 8 8 9	50000000	_
G01123L 4-1 CGW 17-oct-1993 11:05 2.5 90 9	[160 [6.8 [2000 [240 LT 0.37 750 11 [2100 LT 7.8	[19000]
G01E22L 4-1 CGW 17-oct-1993 07:30 2.5 150 9 0	LT 0.449 LT 0.611 LT 0.635 LT 0.635 LT 0.064 LT 0.074 LT 1.21 LT 0.645 LT 1.17 LT 1.56	[26000]
G01U22L 4-1 CGW 17-oct-1993 07:30 2.5 150 9 9	[380 C] 0.841 C LT 0.635 LT 0.064 LT 0.074 LT 1.21 LT 0.645 LT 1.17 LT 1.156	[19000]
5	00000000	. 00
G01122L 4-1 CGW 17-oct-1993 07:30 2.5 150 9 0	[160 [5.8 [1600 [190 LT 0.37 650 [1900 [1900	00061]
CRLs	0.449 0.611 0.635 0.064 0.074 1.21 0.645 1.17	01_
SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.) TEST pH H202 (mg/L) UNITS	Explosives 135TNB 13DNB 246TNT 246TNT 26DNT HMX NITROBENZENE RDX TETRYL	Other Inorganics NITRATE/NITRITE

	-							COMPARISON	CRITERIA		1.75	3.5	10	81.0	0.007	1750	17.5	10	52.5		10000
																					1
GOIE2SL	4-1	CGW	17-oct-1993	18:05	3.5	150	6	0	ner	F	C] LI 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56] [28000
G01U25L	4-1	CGW	17-oct-1993	18:05	3.5	150	6	0	ner	051.3	061		CJ LT 0.635		LT 0.074	C LT 1.21	LT 0.645	c] LT 1.17	LT 1.56		[27000]
G01125L	1-	CGW	17-oct-1993	18:05	3.5	150	6	0	UGL						LT 0.37		LT 3.2		LT 7.8		[22000]
G01E24L	4-1	CGW	17-oct-1993	14:35	2.5	30	6	•	UGL	H	3	LT	LT	LT	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56		[20000]
G01U24L	4-1	CGW	17-oct-1993	14:35	2.5	30	6	0	UGL	[530	230 C	[14.7 C]	[63.6 C]	[15.1 C]	LT 0.074	LT 30	0.944 C	[10.4 C]	LT 1.56		[24000]
124L		CGW	17-oct-1993	14:35	2.5		6	•	UGL			[6.8 C]	[3100 C]	[320 C]	LT 0.37	1200 C	[20 C]		LT 7.8		[22000]
									CRLs	0770	0.449	119.0	0.635	0.064	0.074	1.21	0.645	1.17	2.49		10
D	SITE ID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	EXPROSIVES	1351 NB	13DNB	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	TETRYL	Other Inorganics	NITRATEMITRITE

					_				_		
COMPARISON	CNITENIA	1.75	3.5	. S	9	0.18	1000	05/1	C.7.	52.5	10000
G01E27L 4-1 CGW 18-oct-1993 00:55 3.5 3.6 9 9		LT 0.449	1 T 0 611	1T 0.635	LT 0.053	LT 0.034	1.0.0 L1	17 0 646	L1 0.043	LT 1.56	[22000]
		ວ	ر ر	ס כ	כ כ	7			ζ	ر	_
G01U27L 4-1 CGW 18-oct-1993 00:55 3.5 9 9		L 680	1 95	[144	0.38	1.T 0.074	LT 131	1T 0 648	263	LT 1.56	
		C	ີ ບ	כ ב	כ פ	5	5	<u>.</u>	5 (2	_
G01127LD 4-1 CGW 18-oct-1993 00:55 3.5 3.0 0		160	5.8	3100	1 330	LT 0.37	r 2200	1	1 3000	LT 7.8	[1900
		C	ַ	ີ ວ	T =	5	כ	7 0	5 5	5	_
G01127L 4-1 CGW 18-oct-1993 00:55 3.5 3.0 9 9		[160	6.3	1 3100	1 320	LT 0.37	1 2000	8	1 3100	LT 7.8	[22000]
G01E26L 4-1 CGW 17-oct-1993 21:25 3.5 90 9		C] LT 0.449	LT 0.611	LT 0.635	LT 0.064	LT 0.074	LT 1.21	LT 0.645	LT 1.17	LT 1.56	[26000]
G01U26L 4-1 CGW 3 17-oct-1993 21:25 90 9 0		[250	+ .			LT 0.074				LT 1.56	[20000]
		C	Ü	C	C)		ပ	ວ		•	_
G01126L 4-1 CGW 17-oct-1993 21:25 3.5 90 9		[150	8.9]	0091]	081	LT 0.37	700	[29	1900	LT 7.8	[24000
CRLs		0.449	0.611	0.635	0.064	0.074	1.21	0.645	1.17	2.49	01
SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.) TEST pH H202 (mg/L)	Explosives	135TNB	SDNIS	246TNT	24DNT	26DNT	HMX	NITROBENZENE	RDX	IETRYL	Other Inorganics NITRATE/NITRITE

Table 3-1 (cont'd)

			,					COMPARISON	CRITERIA		1.75	3.5	10	0.18	0.007	1750	17.5	01	52.5	10000
G01E29L	4-1	CGW	18-oct-1993	22:15	3.5	VU/ow 06	-	1.2	ner		LT	LT 0.611	LT	CJ LT 0.064	LT 0.074	LT 1.21	LT 0.645	C] LT 1.17	LT 1.56	[22000]
G01U29L	4-1	CGW	18-oct-1993	22:15	3.5	90 wo/UV	7	1.2	ner				1 350					088]	LT 1.56] [24000]
G01129L	1-4	CGW	18-oct-1993	22:15	3.5	VU/ow 06	7	1.2	UGL		091]	8.9]	[3300	[310	[14	1400	14	3200	LT 7.8] [20000
G01E28L	1-4	CGW	18-oct-1993	19:00	3.5	150 wo/UV	7	1.2	UGL		C] LT 0.449	LT 0.611	L	C] LT 0.064	LT 0.074	C LT 1.21	LT 0.645	C] LT 1.17	LT 1.56] [19000
G01U28L	1-1	CGW	18-oct-1993	19:00	3.5	150 wo/UV	7	1.2	UGL		_	Ľ	_	C] [0.318	LT 0.074	096 2		c] [820] [24000
G01128L	4-1	CGW	18-oct-1993	19:00	3.5	150 wo/UV	7	1.2	ı UGL			[5.3	_	(310					LT 7.8	[20000
FIELD ID	SITE ID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS CRLS	Explosives	135'TNB 0.449	13DNB 0.611	246TNT 0.635	24DNT 0.064	26DNT 0.074	HMX 1.21	NITROBENZENE 0.645	RDX 1.17	TETRYL 2.49	Other Inorganics NITRATE/NITRITE 10

FIELDID		G01130L	Ö	G01U30L	0	G01E30L	G01131L		01U31L	9	01E31L	GOIE31LD	
SITED		1-1	4	4-1	4	1-1	4-1	•		•	4-1	4-1	
MATRIX		CGW	Ö	CGW	Ü	GW	CGW	O	GW	0	GW	CGW	
SAMPLE DATE		19-oct-1993	19	19-oct-1993	15	-oct-1993	21-oct-1993	7	1-oct-1993	7	1-oct-1993	21-oct-1993	
SAMPLE TIME		01:45	•	1:45	0	1:45	06:30	_	6:30	-	W-30	04:30	
OZONE (mg/L/min.)		3.5	€.	45	6	v;	3.5					3.5	
RETENTION TIME (min.)		30 wo/UV	ĕ	30 wo/UV	Ř	VU/ow (150		20	, -	. 05	150	
TEST pII		7	7		7		7				2	100	
H2O2 (mg/L)		1.2	-	1.2	_	7				•		٠ -	MOSICI VILLOS
UNITS	CRLs	ner	ב	nCL	ב	n cr	ner	; =	ner UGL	-	JGI.		CPITEDIA
Explosives													
135TNB	0.449	091]	C	1 320	C	LT 0.449	150	5	1 260	כ	1 T 0 440	1 T 0 440	35 1
13DNB	119.0	5.00	ີ ວ	LT 0.611	7	LT 0611	25.1	5 5	1 T 0 611	5	L1 0.449	LI 0.449	5.7
246TNT	0.635	1 3200	ت ت	I 720	Ü	LT 0.635	1 3100	<u>כ</u>	1 T 0 635		LT 0.615	LT 0.635	5.5
24DNT	0.064	1 300	ت ت	0.891		LT 0.064	1 300	ס פ	LT 0.064		IT 0.053	LT 0.064	91.0
26DNT	0.074	[13	<u>ပ</u>	LT 0.074	,	LT 0.074	1 14	70	I.T 0.074		LT 0.074	LT 0.074	0.00
HMX	1.21	1400	'ပ	1300	C	LT 1.21	1300	ر ر	1 T 24		17 131	17 131	1360
NITROBENZENE	0.645	[29	ວ	LT 0.645		LT 0.645	[33	י כ	LT 0.645		17.0 64s	1T 0 646	06/1
RDX	1.17	1 3000	ີ ວ	-	Ü	LT 1.17	1 2900	ร ฮ	TT 1 17		T 1 17	L1 0.043	5.7.5
TETRYL	2.49	LT 7.8		LT 1.56		LT 1.56	LT 7.8	5	LT 1.56		LT 1.56	LT 1.56	52.5
Other Increanics													
NITRATE/NITRITE	01	[20000]	-	1 22000	_	[22000]	[20000]	_	[26000	_	[24000]	[26000]	10000
							and the second second						

[] = Detected concentration exceeds comparison criterion C = Confirmed Result U = Unconfirmed Result ND = Not Detected
NSA = No Standard Available
NT = Not Tested GT = Greater Than LT = Less Than NA = Not Available

UV 3-18 These results indicate that an acidic pH (i.e., 5) assists in the destruction of 1,3,5-TNB; the retention time must be greater than 30 minutes, and possibly at least 90 minutes; and the ozone dosage must be at least 2.5 mg/L/min.

The three tests involving hydrogen peroxide/ozone, and no UV, indicated that this type of treatment is not nearly as effective as UV/ozone. As presented in Table 3-1, the results for these three tests (field IDs G01U28L, G01U29L, and G01U30L) indicated that many of the explosives--not just 1,3,5-TNB--were not well degraded after the hydrogen peroxide/ozone treatment.

Even though most of the UV/ozone treatment conditions did not effectively treat all of the explosives, note that the carbon effectively polished the groundwater such that no detectable concentrations of explosives were discharged to the ground (see effluent results on Table 3-1).

3.2.2 Well 4-13

The treatability test at well 4-13 was started on October 27, 1993, and all treatment conditions were completed by November 2, 1993. As indicated in Table 3-2, the initial operating conditions at well 4-13 indicated that RDX was the principal explosive present in this area that required treatment. Nitrate/nitrite was present at a concentration of 48,000 μ g/L. Similar to the test at well 4-1, 1,3,5-TNB was the most persistent explosive to treat. However, there were lower concentrations overall, mainly because there was no 2,4,6-TNT to start with to break down to more 1,3,5-TNB. Under all of the UV/ozone treatment conditions, RDX was effectively treated to below a detectable level. However, 1,3,5-TNB continued to be persistent. The system effectively treated all explosives to below the comparison criteria or the detection limit under six treatment conditions, as listed on page 3-36.

TABLE 3-2
Chemical Analysis Results
Treatability Test at Well 4-13

G13U01L G13E01L G13I02L G13E02L G13E02L 4-13 4-13 4-13 4-13 CGW CGW CGW CGW 14:45 14:45 18:05 18:05 14:45 14:45 18:05 18:05 14:45 14:45 18:05 18:05 150 150 90 90 7 7 7 7 7 7 7 7 7 7 7 7 90 90 90 90 1GL UGL UGL UGL UGL UGL UGL UGL 1 LT 0.611 LT 0.611 LT 0.449 1 LT 0.611 LT 0.664 LT 0.644 1 LT 0.611 LT 0.664 LT 0.664 1 LT 0.644 LT 0.064 LT 0.064 1 LT 0.11 LT 1.11 LT 1.11 1 LT 0.15 LT 1.15 LT 1.15 1 LT 0.15 LT 1.15 LT 1.	G13101L 4-13 CGW 27-oct-1993 14:45 150 7 0 UGL UGL C	G13100L 4-13 CGW 27-oct-1993 11:10 n/a n/a n/a 1/2 1 (3.22 LT 0.064 90.2 [2300 LT 1.56	SITE ID MATRIX
---	--	--	------------------

SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.) TEST pH H202 (mg/L) UNITS 135TNB 13DNB 24DNT HMX RDX TETRYL	CRLs 0.449 0.611 0.064 1.21 1.17 2.49	G13103L 4-13 CGW 27-oct-1993 21:15 1.5 30 7 7 0 0 0.9 LT 0.064 LT 0.064 LT 61 [2300 LT 56 LT 61 LT 61 LT 61 LT 1.56	G13U CGW 27-oct 21:15 30 7 0 0 0 CC CC 1.5 30 CC	G13U03L 4-13 CGW 27-oct-1993 21:15 1.5 3.0 0 UGL [8.08 LT 0.064 LT 1.21 LT 1.21 LT 1.17	G13E 4-13 CGW 27-06 21:15 30 7 00 1.5 30 CG UT	G13E03L 4-13 CGW 27-oct-1993 21:15 1.5 30 7 7 0 UGL LT 0.449 LT 0.611 LT 0.064 LT 1.21 LT 1.21 LT 1.21 LT 1.21 LT 1.36	G13104L 4-13 CGW 28-oct-1993 00:30 2.5 150 7 0 0 1 CL LT 0.611 LT 0.641 LT 0.641 LT 0.641 LT 0.641 LT 0.641 LT 0.641 LT 0.641	ס ס	G13U04L 4-13 CGW 28-oct-1993 00:30 2.5 150 7 7 0 0 0 1 7 1 7 4 1 7 4 1 1 0.061 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G13E04L 4-13 CGW 28-oct-1993 00:30 2.5 150 7 0 UGL CJ LT 0.449 LT 0.641 LT 0.641 LT 0.641 LT 1.21 LT 1.21 LT 1.21 LT 1.21 LT 1.35		COMPARISON CRITERIA . 1.75 3.5 0.18 1750 10 52.5
NITRATE/NITRITE	10	f 48000	_	f 48000 1		I 44000 1	[44000]	-	1 52000	1 1 21000	-	00001

COMPARISON	1.75 3.5 0.18 1750 10 52.5
Gi3E06L 4-13 CGW 28-oct-1993 07:15 2.5 30 7 0	C] LT 0.449 C LT 0.611 LT 0.064 LT 1.21 LT 1.17 LT 1.56] [48000]
G13U06L 4-13 CGW 28-oct-1993 07:15 2.5 30 7 7	[140
G13106L 4-13 CGW 28-oct-1993 07:15 30 7 UGL	[3.16 C] LT 0.611 LT 0.064 LT 61 [2200 C] LT 1.56 [5200]
G13E05L 4-13 CGW 28-oct-1993 04:00 7 7 UGL] LT 0.449 LT 0.611 LT 0.064 LT 1.21 LT 1.17 LT 1.56
G13U05L 4-13 CGW 28-oct-1993 04:00 2.5 90 7 0	[60 C] LT 0.611 LT 0.064 LT 1.21 LT 1.17 LT 1.56 48000]
G1308L 4-13 4-13 28-oct-1993 04:00 2.5 7 0 UGL	[3.08 C] LT 0.611 LT 0.064 60 1 [2300 C] LT 1.56 [48000]
CRLS	0.449 0.611 0.064 1.21 1.17 2.49
SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.) TEST pH H202 (mg/L) UNITS	Explosives 135TNB 13DNB 24DNT HMX RDX TETRYL Other Inorganics

FIELD 1D SITE ID	G13107L 4-13	9 4	313107LD	<u>6</u>	G13U07L	9	G13E07L	G13108L		G13U08L	G13E08L	
	CGW	Ü	CGW	Ö	À	Ÿ	2 AS	NO C			SI-+ CEW	
SAMPLE DATE	28-oct-1993	22	8-oct-1993	28-1	oct-1993	7	8-oct-1993	28-oct-1993		-1993	28-oct-1993	
SAMPLE TIME	10:30	1	1:30	10	30	Ξ	30	13:45			13.45	
OZONE (mg/L/min.)	3.5	Б	2	3.5	•	(1)	v	3.5			3.5	
RETENTION TIME (min.)	150	15	20	150	-	11	90	90			. 6	
	7	7		7		7		7				
	0	•		•		0		_	. c			COMPABISON
CRLs	ncr	ר	ngr	Ď	UGL	_	n GL	UGL	ner		ner	CRITERIA
0.449	[2.8	[j	[3.89	را دا	[12.3	C	LT 0.449	1.71	ပ	2 CJ	LT 0.449	1.75
0.611		ပ	LT 0.611		LT 0.611		LT 0.611	LT 0.61			LT 0.611	3.5
0.064	_		LT 0.064		LT 0.064		LT 0.064	[0.19	ວ	.064	LT 0.064	. 81.0
1.21			LT 61		LT 1.21		LT 1.21	LT 61	•	.21	LT 1.21	1750
1.17	[2300	ົວ	0061	<u>ာ</u>	LT 1.17		LT 1.17	[2400	ت ت	.17	LT 1.17	9
2.49	LT 1.56		LT 1.56		LT 1.56		LT 1.56	LT 1.56		.56	LT 1.56	52.5
01	[48000	_	[44000]	_	[52000]	_	[44000]	[4400	[44000] [5	[26000]	[44000]	10000

FIELD ID		G13109L	G13U09L	G13E09L	0	31101	CIMIL		Citrior		
SITE ID		4-13	4-13	4-13	4		4-13	2	4 13		
MATRIX		CGW	CGW	W.C.		A.	N.J.		COM		
SAMPLE DATE		28-nct-1993	78-oct_1003		\$	1003			Cow		
SAMPLE TIME		16:55	16.55		9 5	-001-1993	1-130-87	993	28-oct-1993		
OZONE (mg/L/min.)		15	3.6		77	<u>c</u> .	CI:77		22:15		
RETENTION TIME (min.)		90	: :	3.3		ç: Ş	5:1		S	-	
TEST pll		7	Š 1-		<u> </u>		2 .		150		
H2O2 (mg/L)			. c	٠ د	ne		ne		vo e		
UNITS	CRLs	UGL	ner	ner	<u> </u>	n er	ner.		191	COMPARISON	RISON
											VIV.
Explosives											
135TNB	0.449	[2.32	C] [120	5			Cl LT 0	449	LT 0.449	1 75	
ISDNB	0.611	LT 0.611	LT 0.611		_			119	LT 0611	3.5	
24DNI	0.064	LT 0.064	LT 0.064			LT 0.064	0 LT	064	1 T 0 064	91	
HMX	1.21	LT 61	LT 12			LT 61		21	T 1 31	0.10	
RDX	1.17	I 2400	Cl LT 12				111	1 -	17 1 17	06/1	
TETRYL	2.49	LT 1.56	LT 1.56	LT 1.56		LT 1.56	1.1 1.56	2 9	1.T 1.56	01	
								3	00:1	27.3	
Other Inorganics											
NITRATE/NITRITE	01	[44000] [48000] [44000	_	[44000]		[44000]	[44000]	10000	
					-						

၁
LT 0.611 LT 0.611
119:0

ged - 6/CI/CO RIEG LORMOUDD - 2010	Lage #: 7									
FIELD ID SITE ID MATRIX SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) TEST pH H2O2 (mg/L)	CRLS	G13113L 4-13 CGW 29-oct-1993 08:30 2.5 150 5 0	0 4 0 8 8 5 5 6 0 D	Gi3Ui3L 4-13 CGW 29-oct-1993 08:30 150 5 5 UGL	Gi3Ei3L 4-13 CCW 29-oct-1993 08:30 2.5 150 5 0	G13E13LD 4-13 CGW 29-oct-1993 08:30 2.5 150 5	G13114L 4-13 CGW 29-oct-1993 12:00 2.5 90 5	Gi3U14L 4-13 CGW 29-oct-1993 12:00 2.5 90 5	G13E14L 4-13 CGW 29-oct-1993 12:00 2.5 90	COMPARISON
							200	OGE	UGE	CRITERIA
Explosives										
135TNB	0.449	[1.97	[<u></u>	LT 0.449	LT 0.449	LT 0.449	[3.27	5	1 T 0 440	32.1
LSDNB	0.611	0.928		LT 0.611	LT 0.611	LT 0.611	0 892	ر ر	LT 0.419	1.73
24DN	0.064	LT 0.064		LT 0.064	LT 0.064	LT 0.064	LT 0.064)	L1 0.011	5.5
HMX	1.21	LT61		LT 1.21	LT 1.21	LT 1.21	1.T 61		L1 0.004	0.18
KIJX	1.17	[2100	C	LT 1.17	LT 1.17	LT 1.17	I 2300	כ	17 1 17	06/1
IEIRYL	2.49	LT 1.56		LT 1.56	LT 1.56	LT 1.56	LT 1.56		LT 1.56	10 52.5
Other Inorganics										
NITRATE/NITRITE	01	[48000	_	[48000]	[40000]	[40000]	[44000]] [48000]] [44000]	10000

Table 3-2 (cont'd)

FIELDID		GISHSE	3	GIBUISE	5	GIJEISL	G13116L	ی	13U16L	GIJEI6L		
SITE ID		4-13	4-1		4-1	5	4-13	4	-13	4-13		
MATRIX		CGW	90	CGW	Ö	CGW	CGW	_	CGW	CGW		
SAMPLE DATE		29-oct-1993	29-	oct-1993	29.	oct-1993	29-oct-1993	74	1-oct-1993	29-oct-1993		
SAMPLE TIME		15:20	15:	20	15:	.20	18:40	_	8:40	18:40		
OZONE (mg/L/min.)		2.5	2.5		2.5	•-	3.5		N.	3.5		
RETENTION TIME (min.)		30	30		30		150	_	50	150		
TEST pH		ıc.	ĸ		S		40	•		v.		
H2O2 (mg/L)		0	0		•		0	•		•	3	COMPARISON
UNITS	CRLs	UGL	Ũ	UGL	Ď	ner.	UGL		ner	ncr		CRITERIA
Explosives								. (
135TNB	0.449	[3.48	<u>ر</u> ا	[29.9	<u>ت</u>	LT 0.449	[1.92	C	LT 0.449	LT 0.449		1.75
13DNB	0.611	LT 0.611		LT 0.611		LT 0.611	0.962	ပ	LT 0.611	LT 0.611		3.5
24DNT	0.064	LT 0.064	٠	LT 0.064		LT 0.064	LT 0.064		LT 0.064	LT 0.064		0.18
HMX	1.21	LT 61		LT 1.21		LT 1.21	LT 61		LT 1.21	LT 1.21		1750
RDX	1.17	[2300	ر ت	LT 1.17		LT 1.17	056]	ົວ	LT 1.17	LT 1.17		10
TETRYL	2.49	LT 1.56		LT 1.56		LT 1.56	LT 1.56		LT 1.56	LT 1.56		52.5
Other Inorganics	:				,			,				
	9,	44000	_	1 44000		[48000]	[44000]	_		[52000] [40000]		00001

FIELD ID		CIMIT		01311171	COSTORIO					
CITE IN		7/11/15		7/1001	GISEI/L	GISHSE		G13U18L	G13E18L	
		4-13	4	-13	4-13	4-13	•	1-13	4-13	
MATRIX		CGW	U	GW	CGW	CCW		MOU	MOO	
SAMPLE DATE		29-oct-1993	,	0-oct-1903	70.004 1003	30 24 1003		1000	רפא	
SAMPLE TIME		22.00	,	72.00	17.00	30-001-1993	•	30-0ct-1993	30-oct-1993	
OZONF (mg/l /min)		2	4 (00:77	01:10		01:10	01:10	
		5.5	7	n	3.5	3.5	•	1.5	3.5	
KELENTION TIME (min.)		90	5	_	90	30		9	5	
TEST pil		45	4		•	. 4	. `	2.	8 •	
H2O2 (mg/L)			, e			n (••		'n	
			> '		-	•	_		0	COMPARISON
	CKLS	ner		UGL	CCL	ner		ner	HGI.	COLTEDIA
										Chilenia
Explosives										
	0770	1001	ξ	0 T 1						
	0.447	10.7	7		L1 0.449	1.99	Ü	[4.9	C] LT 0.449	1.75
	119.0	0.834	ပ	LT 0.611	LT 0.611	0.88	U	I.T 0 611	1T 0.611	3 6
	0.064	LT 0.064		LT 0.064	I.T 0.064	1T 0.064	,	1 T 0 064	100 1	3.3
HMX	121	17.61		17 121	161 11	10.00		L1 0.004	L1 0.064	0.18
	: :	2010	į	17:11	17.1 17	17		LT 1.21	LT 1.21	1750
	///	7300	<u>ت</u>		LT 1.17	[2300	ົວ	LT 1.17	LT 1.17	2
TEIRYL	2.49	1.84	ပ	LT 1.56	LT 1.56	177	ن '	1T 1 56	1 T 1 SK	200
						:)	00:1	21 1.30	27.2
Other Inorganics										
NITRATE/NITRITE	01	[48000	_	[48000]	[44000]		-	44000		
			_	T coops 1	1 00044 1	[000++]	_	1 44000	1 44000] 1 48000	 10000
						_				

Table 3-2 (cont'd)

4-13		4-13 CGW 30-oct-1993 14:20 1.5 90 9	4-13 CGW 30-oct-1993 14:20				2	
Natrix CGW C		CGW 30-oct-1993 14:20 1.5 99	CGW 30-oct-199 14:20		1-13	4-13		
SAMPLE DATE 30-oct-1993 30 SAMPLE TIME 11:00 11:00 11:00 OZONE (mg/L/min.) 1.5 1.5 1.5 RETENTION TIME (min.) 150 150 150 15 TEST pH 9 9 9 9 9 H202 (mg/L) 0 0 0 0 0 0 0 UNITS CRLs UGL UGL UGL U U		30-oct-1993 14:20 1.5 99 9	30-oct-199; 14:20		CGW	CGW		
11:00 11:0		14:20 1.5 90 9	14:20		10-oct-1993	30-oct-15	993	
0ZONE (mg/L/min.) RETENTION TIME (min.) TEST pH H202 (mg/L) UNITS 0.449 [5 C] [37.8 C]		1.5 90 9			4:20	14:20		
TEST pH 9 9 9 9 9 9 9 9 9		90	5:1		5.	1.5		
TEST pH 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		60.	90		00	06		
H202 (mg/L) UNITS CRLs UGL UGL UGL UGL UGL UGL UGL UGL	JGL	0	6		•	6		
UNITS CRLs UGL UGL U	JGL		•	~	_	0		COMPARISON
0.449 [5 C] [37.8 C]		OGL	OGL	_	UGL	UGL		CRITERIA
0.449 [5 C] [37.8 C]								
	LT 0.449	[2.9	c] [100	ວ	96]	C] LT 0.449	49	1.75
LT 3.1 [5.64 C]	LT 0.611	LT 3.1		\overline{c}	[5.97	C) LT 0.6	=	3.5
0.064 LT 0.32 LT 0.064	LT 0.064	LT 0.32	LT 0.06		LT 0.064	LT 0.0	64	0.18
1.21 21 C LT 1.21	LT 1.21				LT 1.21	LT 1.2	_	1750
1.17 [1300 C] LT 1.17	LT 1.17		C] LT 1.17		LT 1.17	LT 1.1	7	10
YL 2.49 LT 7.8 LT 1.56	LT 1.56	LT 7.8	LT 1.56		LT 1.56	LT 1.5	9	52.5
Orber Increasing								
TE 10 [48000] [52000]	[48000]	[48000]		[48000]	[48000] [480	[48000]	10000

FIELD ID		G13121L	G	GI3U2IL	Ü	3E21L	G131221.		1311221	נו	15221	
SITE ID		4-13	4-13	**	4		4-13	. 7	113			
MATRIX		CGW	S	W	2	M	MS.		M.J.	į	À	
SAMPLE DATE		30-oct-1993	30-0	1ct-1993	2	nct-1993	30 oct 1003		0 oot 1003	ָב ב	1003	
SAMPLE TIME		17:35	17:3	2	-2	35	20-00-1775	, ,	0.46		JCI-1993	
OZONE (mg/L/min.)		5.	5			3	2.5	, ,			2	
RETENTION TIME (min.)		30	30	30	2		150	, -	. 5	6.7		
TEST pH		6	•		6 0		0		0.	001		
H2O2 (mg/L)		0			· c		` =	. =	•	, (
UNITS	CRLs	UGL	ner	ĭ	ຸລ	n cr	ner		190	ב	ligi.	 COMPAKISON
Explosive												
135TNB	0.449	5]	5	190		T 0.440	9 2	5	111	5	977	
I3DNB	0.611	1 T 3 1	5	10 4		T 0411	1.7.3.	7	1.76 1.	: כ	0.449	 1.75
24DNT	0.000		•	C.61		L1 0.011	LI 3.1		LI 0.611		0.611	3.5
	0.004	LI 0.32	_	1. 0.064	_	LT 0.064	LT 0.32		LT 0.064	Ľ	0.064	. 18
HMX	1.21	34	ر د	9 L	_	LT 1.21	32	ပ	LT 1.21	LT	1.21	1750
RDX	1.17	[2300	C)	JT 1.17		LT 1.17	I 2500	ວ	LT 1.17	LT	1.17	2
TETRYL	2.49	LT 7.8	_	JT 1.56	-	LT 1.56	LT 7.8	•	LT 1.56	17	LT 1.56	52.5
Other Inorganics												
NITRATEAITRITE	10	[48000	_	[48000]	_	[48000]	[48000]	_	[48000]		[.44000]	00001
							1	-	00001		-	200

								COMPARISON	CRITERIA		75	ر.	•••	750	0	52.5		00001
						•		5			_	3		-		8		_
G13E24L	4-13	CGW	31-oct-1993	02:40	2.5	30	6	•	ner		C] LT 0.449	CJ LT 0.611	LT 0.064	LT 1.21	LT 1.17	LT 1.56] [48000]
G13U24L	4-13	CGW	31-oct-1993	02:40	2.5	30	6	0	ner] [210	[13.3	LT 0.064			LT 1.56		[48000]
G13124L	1-13	CGW	31-oct-1993	12:40	2.5	30	•		ner		[4.4 C]	LT 3.1	LT 0.32		[1300 C]	LT 7.8		[44000]
					2.5		6		ner		LT 0.449		LT 0.064	LT 1.21	LT 1.17	LT 1.56		[44000]
GI3U23L					2.5		6		ncr		[36 C]		LT 0.064		LT 1.17	LT 1.56		[48000]
G13123L	4-13	CGW	31-oct-1993	00:00	2.5	90	6	•	UGL		[5.5 C]	LT 3.1	LT 0.32		[1400 C]	LT 7.8		[48000]
									CRLs		0.449	0.611	0.064	1.21	1.17	2.49		01
FIELD ID	SITE ID	MATRIX	SAMPLE DATE	SAMPLE TIME	OZONE (mg/L/min.)	RETENTION TIME (min.)	TEST pH	H2O2 (mg/L)	UNITS	Explosives	I35TNB	13DNB	24DNT	HMX	RDX	TETRYL	Other Inorganics	NITRATE/NITRITE

FIELDID		G13125L	GI3U25L	GI3E25L	G13126L		13U26L	G13E26L		
SITE ID		4-13	4-13	4-13	4-13		-13	4-13		
MATRIX		CGW	CGW	CGW	CGW		M.S.	M30		
SAMPLE DATE		31-oct-1993	31-oct-1993	31-oct-1993	01-nov-1993		1-nov-1993	01-nov-1993		-
SAMPLE TIME		00:90	00:90	06:00	14:00		14:00	14:00		
OZONE (mg/L/min.)		3.5	3.5	3.5	3.5		v	**		
RETENTION TIME (min.)		150	150	150	06			£ 5	-	
TEST pH		6	6	6			,	2		
II2O2 (mg/L)		•	0					` =	COMPABISON	-
UNITS	CRLs	UGL	ncr	UGL	UGL	. –	n gr	ner	CRITERIA	-
Explosives										
135TNB	0.449	[5.5	C] [45.8	CJ LT 0.449	[2.7	ວ	16]	Cl LT 0.449	1.75	
13DNB	0.611	LT 3.1	LT 0.611		LT 3.1	•	1.19	C LT 0.611		
24DNT	0.064	LT 0.32	LT 0.064	LT 0.064	LT 0.32		LT 0.064	LT 0.064	œ. C	
HMX	1.21		C LT 1.21	LT 1.21	32	ບ	LT 121	1,7 1,21	1750	
RDX	1.17		C LT 1.17	LT 1.17	I 2100	ָ כ	LT 1.17	LT 1.17		
TETRYL	2.49	LT 7.8	LT 1.56	LT 1.56	LT 7.8	5	LT 1.56	LT 1.56	52.5	
Other Inorganies										
NITRATE/NITRITE	01	[48000] [48000]] [44000]	[48000]	-	[00009]] [48000]	00001	

		G13127L	5	3127LD	G	3U27L	9	13E27L	G13128L	G13U28I		G13E28L	
SITEID		4-13	4-1	3	4-1	13	4	13	4-13	4-13		4-13	
MATRIX		CGW	ວ	W.	ວ	W	Ö	GW	CGW	CGW		CGW	
SAMPLE DATE		01-nov-1993	-10	-nov-1993	-10	nov-1993	=	-nov-1993	01-nov-1993	01-nov-1		01-nov-1993	
SAMPLE TIME		17:15	17:	17:15	17:	17:15	7	17:15	20:55	20:55		20:55	
OZONE (mg/L/min.)		3.5	3.5		3.5		6	w.	3.5	3.5		3.5	
RETENTION TIME (min.)		30	30		30		8	-	150 wo/UV	150 wo/L		150 wo/UV	
TEST pH		6	6		•		6		7	7		7	
H2O2 (mg/L)		•	•		0		•		1.2	1.2		1.2	COMPARISON
UNITS	CRLs	UGL	Ď	ner	٥	UGL		UGL	UGL	ngr		UGL	CRITERIA
Explosives													
135TNB	0.449	[3	<u>ت</u>	[2.3	[<u></u>	[230	C)	LT 0.449	1 3.6	c] [3.66	C	LT 0.449	1.75
13DNB	0.611	LT 3.1		LT 3.1		[7.05	Ü	LT 0.611	LT 3.1	LT 0.61		LT 0.611	3.5
24DNT	0.064	LT 0.32		LT 0.32		LT 0.064		LT 0.064	LT 0.32	LT 0.064	4	LT 0.064	0.18
HMX	1.21	28		28	ပ	LT 1.21		LT 1.21	LT 24	2.43		LT 1.21	1750
RDX	1.17	[2100	C)	[2900	C]	LT 1.17		LT 1.17	[1900	C] [33.9	ပ	LT 1.17	01
TETRYL	2.49	LT 7.8		LT 7.8		LT 1.56		LT 1.56	LT 7.8	LT 1.56		LT 1.56	52.5
Other Increanics													
NITRATE/NITRITE	10	[48000		[48000	_	[48000] [48000]	_	[48000]		[48000] [52000]	90]	[44000]	10000

FIELD ID SITE ID MATRIX		G13129L 4-13 CGW	G13U29L 4-13 CCW	G13129 4-13		G13130L 4-13	G13 4-13	U30L	G13E30L 4-13		
SAMPLE DATE SAMPLE TIME OZONE (mg/L/min.) RETENTION TIME (min.) TEST_M		02-nov-1993 00:20 3.5 90 wo/UV	02-nov-1993 00:20 3.5 90 wo/UV	02-nov-1993 00:20 3.5 90 wo/UV		02-nov-1993 03:50 3.5 30 wo/UV	02-n 02-n 03:50 3.5	C.G.W 02-nov-1993 03:50 3.5 30 wo/UV	CGW 02-nov-1993 03:50 3.5 30 wo/UV	,	
H202 (mg/L) UNITS	CRLs	1.2 UGL	1.2 UGL	7 1.2 UGL		7 1.2 UGL	7 1.2 UGL	اد	7 1.2 UGL	COMPARISON CRITERIA	
Explosives 1357NB	0.449	[3.5	CJ [3.22	c	0.449	LT 2.2	_		C] LT 0.449	. 1.75	
	0.061	LT 3.1 LT 0.32			0.611	LT 3.1 LT 0.32	55		LT 0.611 LT 0.064	3.5	
	1.21 1.17 2.49	18 [2000 LT 7.8	C 4.41 C] [74.9 LT 1.56	့ ၁	LT 1.21 LT 1.17 LT 1.56	21 [2500 LT 7.8	ပ ပ []	13 [340 LT 1.56	C LT 1.21 CJ LT 1.17 LT 1.56	1750 10 52.5	
Other Inorganics NITRATE/NITRITE	01	[44000] [52000]		[48000]	[48000]		52000	[52000] [48000]	10000	

Table 3-2 (cont'd)

FIELDID		GI3I31L	GI3	GIBUSIL	GI3E3	II.	GI3E311.D		
SITE ID		4-13	4-13		4-13		4-13		
MATRIX		CGW	CGV	^	CGW		CGW		
SAMPLE DATE		02-nov-1993	02-n	02-nov-1993	02-nov-1993	1993	02-nov-1993		
SAMPLE TIME		15:30	15:3	_	15:30		15:30		
OZONE (mg/L/min.)		3.5	3.5		3.5		3.5		
RETENTION TIME (min.)		150	150		150		150		
TEST pil		7	7		-		7		
H2O2 (mg/L)		0	0		0				COMPABISON
UNITS	CRLs	UGL	UGL	د	ner		ner		CRITERIA
Explosives									
135TNB	0.449	[3.9	C]		Cl LT	0.449	LT 0.449	•	1.75
13DNB	0.611	LT 3.1	L		LT	1190	LT 0.611		3.5
24DNT	0.064	LT 0.32	<u>.</u>	F 0.064	LT	0.064	LT 0.064		5.5 0 10
IIMX	1.21	24	1 L	r 1.21	1	121	LT 121		1750
RDX	1.17	I 2000	CI	r 1.17	1	117	LT 1.17		10
TETRYL	2.49	LT 7.8		LT 1.56	LT	1.56	LT 1.56		52.5
Other Inorganics									
NITRATE/NITRITE	01	[48000	_	00095]	_	[48000]	[48000]		10000

[] = Detected concentration exceeds comparison criterion	C = Confirmed Result	U = Unconfirmed Result
ND = Not Detected	NSA = No Standard Available	NT = Not Tested
GT = Greater Than	LT = Less Than	NA = Not Available

Field ID	Ozone Dosage (mg/L/min)	Retention Time (min)	рН
G13U10L	1.5	150	5
G13U11L	1.5	90	5
G13U13L	2.5	150	5
G13U14L	2.5	90	5
G13U16L	3.5	150	5
G13U17L	3.5	90	5

Similar to well 4-1, the results indicate that a lower pH of 5 is best to treat the explosives, as well as a retention time of greater than 30 minutes and possibly at least 90 minutes. However, it appears that a lower ozone dosage of 1.5 mg/L/min was sufficient to treat the levels and types of explosives present at well 4-13.

The three tests involving hydrogen peroxide/ozone, and no UV, indicated that this type of treatment is not nearly as effective as UV/ozone. As presented in Table 3-2, the results for these three tests (field IDs G13U28L, G13U29L, and G13U30L) indicated that none of the explosives--not just 1,3,5-TNB--were not well degraded after the hydrogen peroxide/ozone treatment.

Even though most of the UV/ozone treatment conditions did not effectively treat all of the explosives, note that the carbon effectively polished the groundwater such that no detectable concentrations of explosives were discharged to the ground.

3.3 <u>USABILITY OF UV/OZONE TREATMENT SYSTEM</u>

In general, the UV/ozone system was easy to set up and maintain. The system consisted of three main components--UV/ozone reactor, ozone generator, and air preparation system. They were supplied by Ultrox. The remaining components--including external generator/fuel and 6,500- and 4,500-gallon tanks--came from separate sources, and were coordinated by Dames & Moore.

The set up was quick, taking approximately one day. All components were placed on skids, making unloading and setup very easy with the use of a forklift. Setup of the system was facilitated by the Ultrox engineer who knew where to locate all components in a most efficient manner. All fittings were quick connect/disconnect type.

The operation of the Ultrox system was divided among two 12-hour shifts, and included operation of the pumping tests. The daytime shift work for the UV/ozone system was supervised by the Ultrox engineer, while the nighttime shift was supervised by a trained Dames & Moore person. The operation of the system was easy, although certain conditions had to be maintained throughout the treatability tests. Each of the operating parameters—ozone dosages, retention time, and pH—had to be continually monitored and adjusted throughout the shift. Sampling of the effluent from the UV/ozone system was easily performed via a sample tap. The pH was measured before and after treatment by the UV/ozone system, and was found to increase about 0.5 after the system. However, this was not considered to be of concern.

The Ultrox system was essentially maintenance free. One filter on the air compressor needed to be relieved manually and the flowmeter on the influent line to the UV/ozone reactor malfunctioned and needed to be replaced. In addition, the black holding tank for the ozone generator increased in temperature during the day such that it could not generate the higher ozone dosages. However, the tests requiring high ozone dosages were performed during the nighttime shifts when the sun was not present to heat up the tank.

As with the mobilization, the de-mobilization of the system was quick, and took approximately one-half day. No problems were encountered.

4.0 REFERENCES

- Dames & Moore, 1993a. Field Sampling Plan Addendum for Pumping Tests,

 Treatability Tests, Alluvial Well Installation and Groundwater Sampling at the

 Explosive Washout Lagoons (Site 4), Supplementary Remedial Investigation/

 Feasibility Study of Umatilla Depot Activity, Hermiston, Oregon, Report No.

 SFIM-AEC-BC-CR-93119, U.S. Army Environmental Center, Aberdeen Proving

 Ground, Maryland, September 1993.
- Dames & Moore, 1993b. <u>Method Validation Report, Field Method for the Determination of TNT and RDX in Groundwater</u>, Report No. ENAEC-BC-CR-93106, U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland, September 1993.
- Dames & Moore, 1992. Remedial Investigation Report for the Umatilla Depot

 Activity, Hermiston, Oregon, Report No. CETHA-BC-CR-92054, U.S. Army

 Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland,

 August 1992.
- Dames & Moore, 1991. Supplementary Field Sampling Plan, Remedial Investigation/
 Feasibility Study (RI/FS) of the Umatilla Depot Activity, Hermiston, Oregon,
 Report No. CETHA-IR-CR-91014, U.S. Army Toxic and Hazardous Materials
 Agency, Aberdeen Proving Ground, Maryland, February 1991.
- Dames & Moore, 1990. Project Plan, Remedial Investigation/Feasibility Study of the Umatilla Depot Activity, Hermiston, Oregon, Report No. CETHA-IR-CR-90126, U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland, October 1990.
- ICF Kaiser Engineers, 1993. Milan Army Ammunition Plant O-Line Ponds Area

 Treatability Study Report for Groundwater Treatment Alternatives, U.S. Army

 Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland,

 March 1993.

Naval Civil Engineering Laboratory (NCEL), 1992. <u>Draft Phase II Report, USN NCEL Managed, Bremerton, Washington, Pollution Abatement RTD&E Support Task, GSA Task No. POC171028, November 1992.</u>

APPENDIX A: Ultrox Report

A Division of Zimpro Environmental. Inc.

7755 Center Avenue, Ste. 1119 Huntington Beach, CA 92647 Phone: (714) 545-5557 Fax: (714) 557-5396

ULTROX DIVISION OF ZIMPRO ENVIRONMENTAL, INCORPORATED

UV/OXIDATION FIELD PILOT STUDY

FOR

DAMES & MOORE, INCORPORATED

AN EVALUATION OF THE ULTROX•
UV/OXIDATION TREATMENT
OF GROUNDWATER FROM
THE UMATILLA DEPOT ACTIVITY
HERMISTON, OREGON

Submitted by:
Bill Himebaugh and Paul Nguyen
ULTROX division of Zimpro Environmental, Inc.

February 22, 1994

Revision 1 June, 1995

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	A-4
2.0	TECHNOLOGY DESCRIPTION	A- 6
3.0	TEST OBJECTIVES	A-8
4.0	4.3 Ozone Generator 4.4 Decompozon TM Residual Ozone Destruction Unit 4.5 Hydrogen Peroxide Feed Assembly 4.6 6500 Gallon Equalization Tank 4.7 Effluent Sump	A-9 A-11 A-11 A-11 A-11 A-11 A-12 A-12
5.0	5.1 Laboratory Test	A-13 A-13 A-14 A-14
6.0	RESULTS AND CONCLUSIONS	A-17
7.0	CONCLUSIONS	A-24
8.0	COMMERCIAL 8.1 Well 4-1 System 8.1.1 Equipment 8.1.3 Costs 8.2 Well 4-13 System	A-25
Δ ΡΡΙ	ENDIX	A-29
•	Laboratory Data Table 5 - Field Pilot Test Analytical Results - Phase 1 Table 6 - Field Pilot Test Analytical Results - Phase 2	A-30 A-31
•	Process Flow Diagram	

1.0 EXECUTIVE SUMMARY

Ultrox division of Zimpro Environmental, Inc. (Ultrox) was contracted by Dames & Moore, Inc. (Dames & Moore) to conduct a field pilot study to evaluate the effectiveness of the advanced oxidation process (AOP) on the destruction of explosives in groundwater.

The field pilot study was conducted in two phases. The first phase was conducted from October 13 to October 21, 1993 and evaluated the treatment of explosives from well 4-1. The second phase was conducted from October 27 to November 3, 1993 and evaluated the treatment of explosives in groundwater from well 4-13. A total of 31 separate test conditions were evaluated for each phase (31 tests from Well 4-1 and 31 tests from Well 4-13). The UV/Oxidation system utilized for this pilot study was the Ultrox® P-650 UV/Oxidation pilot system consisting of a 650 gallon (working capacity) UV treatment tank, a 28 lb/day ozone generator (operating on compressed air), a DecompozonTM residual ozone decomposer, a hydrogen peroxide feed system, and a pH adjustment system (see Figure 1). The treatment variables for the tests included ozone (O₃) dosage, hydrogen peroxide dosage (H₂O₂), UV exposure time (or residence time) and pH. The first 27 oxidation tests for each phase were conducted based upon a 3 x 3 (Table 3) matrix which varied UV exposure time, ozone and pH dosing rate of the groundwater. Hydrogen peroxide was evaluated in the final 3 samples of each test phase and not in the first 27 tests (Test 31 duplicated the conditions of Test 7). Hydrogen peroxide was not evaluated in the first 27 tests because historical data from previous tests conducted by Ultrox, involving the oxidation of explosives, indicates that UV with ozone is more effective in the destruction of explosives than UV with H₂O₂. Tests 28 -30 were conducted with ozone and hydrogen peroxide without UV.

Prior to the start of the pilot study, a sample was collected from Well 4-1 by Dames & Moore and shipped to Ultrox for bench scale evaluation. The purpose of the bench scale test was to determine if the ozone and UV dosages in the test plan were sufficient to provide the required data to optimize treatment conditions during the pilot study. The laboratory tests results indicated sufficient reduction in total organic

carbon to postulate that the test plan conditions would suffice. In addition to oxidation tests, the untreated sample was analyzed for parameters which may affect the oxidation process. The results are provided in Table 7.

The first phase of the study was conducted on groundwater from Well 4-1. This groundwater was characterized by relatively high concentrations of 2,4,6-TNT (average of 2,773 μ g/l), RDX (average of 2,765 μ g/l) and HMX (average of 1,253 μ g/l). Although present in lower concentrations, the most persistent compound during the test was 1,3,5-Trinitrobenzene (1,3,5-TNB). Results indicate that 1,3,5-TNB was actually increased during the initial oxidation before being oxidized to below the treatment objective concentration of 0.6 μ g/l. Treatment objectives for all compounds were achieved with 90 minutes of UV exposure and 316 mg/l of ozone. Prior to treatment, the groundwater pH was reduced to 5 by addition of sulfuric acid.

The second phase of the study was conducted on groundwater from Well 4-13. This groundwater contained significantly lower concentrations of all compounds except RDX (average concentration of 2,080 μ g/l). However, during the oxidation process, increases in 1,3,5-TNB were detected. It is not known what precursors contributed to the increases in 1,3,5-TNB since 2,4,6-TNT (a known precursor of 1,3,5-TNT) was not detected in the untreated groundwater. Treatment objectives were achieved for all detected explosive compounds in five of the oxidation tests conducted on Well 4-13. Each of these tests were conducted with the groundwater pH adjusted to 5 by addition of sulfuric acid. By applying 135 mg/l of ozone during 90.3 minutes of UV exposure (pH of groundwater = 5), 1,3,5-TNB was reduced to 0.76 μ g/l. Since this is 0.16 μ g/l lower than treatment objective of 0.6 μ g/l and the full scale system design allows for an additional 68 lbs/day of ozone, the treatment objectives can be achieved with a full scale system modeled after the treatment conditions from Test 11.

2.0 TECHNOLOGY DESCRIPTION

The Ultrox® technology is an enhanced or advanced oxidation process (AOP) which utilizes UV light, H_2O_2 , and/or O_3 . H_2O_2 and O_3 vary in their effectiveness depending on the compounds targeted. Ultraviolet light, when combined with H_2O_2 and/or O_3 , produces a highly oxidative environment significantly more destructive than that typically created with O_3 or H_2O_2 by themselves or in combination.

UV light significantly enhances ozone or H₂O₂ reactivity by:

- i) Transformation of O₃ and H₂O₂ to highly reactive hydroxyl (OH) radicals;
- ii) Excitation of the target organic solute to a higher energy level; and
- iii) Cleavage of chemical bonds to destroy the target contaminants.

Table 1 illustrates the relative oxidant strength of hydroxyl radical (OH)°, O_3 , H_2O_2 and $C1_2$. Hydroxyl radicals can be formed from UV with O_3 , UV with H_2O_2 , UV with O_3 and H_2O_2 or O_3 with H_2O_2 .

Ultrox® UV/Oxidation treatment systems typically consist of a UV treatment tank, an ozone generator, an air preparation system, a hydrogen peroxide feed system and an off gas treatment system. The UV treatment tank is a gravity vessel constructed of 316L stainless steel and is baffled to provide a serpentine and sinusoidal pathway for the groundwater as it flows through the treatment tank. This flow provides optimized exposure to the UV and oxidants. Ozone is produced on site by from compressed, filtered and dried air. The ozone flows into a manifold on the UV treatment tank which distributes the ozone into the groundwater through spargers or diffusers which are located in the bottom of the treatment tank. Any residual ozone is destroyed by an Ultrox® DecompozonTM destruction unit. The DecompozonTM employs a proprietary, nickel based catalyst. Hydrogen peroxide is applied directly into the UV treatment tank influent line by a chemical metering pump.

When treating volatile compounds, it is not unusual for a small percentage of volatile compounds to strip when ozone is sparged through the UV reactor. Generally, the volume stripped is quite low due to the reactions occurring in the water phase and

the low air-to-water ratio employed. Any volatile organic compounds (VOCs) in the gas phase are destroyed in an off gas control device (D-TOX). Residual ozone in the off gas is converted to oxygen in a catalytic ozone destruct unit (DECOMPOZONTM). These units have been tested by the Environmental Protection Agency, which concluded that no VOCs or ozone were detected to be emitting from the DECOMPOZONTM/D-TOX unit (see EPA SITE Report No.EPA/540/589/012).

TABLE 1 - Relative Oxidant Strengths		
Relative Oxidation Potential (C12 = 1.0)	Species	Oxidation Potential (Volts)
2.23	fluorine	3.03
2.06	hydroxyl radical	2.80
1.78	atomic oxygen (single)	2.42
1.52	ozone	2.07
1.31	hydrogen peroxide	1.78
1.25	perhydroxyl radical	1.70
1.24	permanganate	1.68
1.15	chlorine dioxide	1.57
1.07	hypoiodous acid	1.45
1.00	chlorine	1.36
0.80	bromine	1.09
0.39	iodine	0.54

3.0 TEST OBJECTIVES

- 3.1 The objectives of the field pilot study were as follows:
 - To obtain sufficient data to identify the most effective and cost efficient ozone dosing rate, UV exposure time and pH combination that would destroy the target contaminants to below the treatment objective concentrations specified for each compound (see Table 2).
 - To identify appropriate dosages of ozone and UV exposure time or retention time required to achieve those treatment objectives most efficiently.
 - To obtain data required to develop capital, operating and maintenance costs of a full scale system capable of achieving the treatment objectives at a flow rate of 100 gpm.

TABLE 2 - Treatment Objectives		
TARGET COMPOUND	OBJECTIVE CONCENTRATION (µg/l)	
RDX	2	
HMX	1.65	
2,4,6-Trinitrotoluene (2,4,6-TNT)	2	
2,4-Dinitrotoluene (2,4-DNT)	0.60	
2,6-Dinitrotoluene (2,6-DNT)	1.15	
1,3,5-Trinitrobenzene (1,3,5-TNB)	0.60	
1,3-Dinitrobenzene (1,3-DNB)	0.50	
Nitrobenzene	1.07	
Tetryl	0.55	

4.0 EQUIPMENT AND MATERIALS

The pilot plant project included the following equipment and materials:

- Ultrox

 P-650 UV Treatment Tank
- Air Preparation System consisting of:
 - Compressor
 - Air Filter
 - Air Dryer
- 28 lb/day PCI Ozone Generator
- DecompozonTM Residual Ozone Destruction Unit
- Hydrogen Peroxide Feed Assembly
- 6,500 gallon Equalization Tank
- 400 gallon sump and sump pump
- 4,000 gallon effluent pH adjustment tank
- pH adjustment equipment consisting of:
 - Caustic chemical metering pump
 - Acid chemical metering pump
 - Sodium hydroxide solution
 - Sulfuric acid solution

4.1 Ultrox P-650 UV Treatment Tank

The Ultrox® P-650 UV Treatment Tank is constructed of 316L stainless steel and has a working capacity of 650 gallons. The P-650 is a gravity tank designed with six internal baffles which divide the inside of the tank and provide a serpentine and sinusoidal flow of water through the tank. The P-650 contains 72 Ultrox® UV lamps (12 lamps per baffled area), ozone diffusers and six sample ports. Figure 1 provides a sketch of the Ultrox® P-650 UV/oxidation system.

4.2 Air Preparation

The Air Preparation System employed at Umatilla consisted of a rotary screw type air compressor, air filter unit (to remove compressor oils and particulates), and a regenerative desiccant dryer (reduces dewpoint in the air to less than -70°F).

4.3 Ozone Generator

The ozone generator employed during the field pilot test was a 28 lb/day, fixed voltage, variable frequency inverter generator. This system produces ozone from the air treated in the Air Preparation System. The resulting ozone (concentration = 2% in air) flows to the P-650 UV treatment tank ozone manifold for distribution throughout the UV treatment tank.

4.4 DecompozonTM Residual Ozone Destruction Unit

The DecompozonTM Unit is a catalytic ozone destruction unit which reduces the residual ozone from the P-650 UV treatment tank to below 0.1 ppm by weight.

4.5 Hydrogen Peroxide Feed Assembly

The Hydrogen Peroxide Feed Assembly consists of a chemical metering pump, pump stand and calibration tube. The metering pump injects the hydrogen peroxide into the influent line of the P-650 UV Treatment Tank.

4.6 6500 Gallon Equalization Tank

A 6500 gallon polyethylene tank was provided to collect the water from the well pumps prior to oxidation. Water from the equalization tank was pumped at the prescribed test flow rates into the UV treatment tank.

4.7 Effluent Sump

A 400 gallon polyethylene tank was provided to collect the treated groundwater from the P-650 UV Treatment Tank. The groundwater was pumped from the sump to the pH adjustment tank by a float actuated sump

pump located in the bottom of the sump. Caustic and acid were added to the groundwater in the sump as required to neutralize the pH.

- 4.8 4000 Gallon Effluent pH Adjustment Tank
 A 4000 gallon polyethylene tank was provided downstream of the sump to
 allow for adequate retention time for pH adjustment from the sump.
- 4.9 pH Adjustment Equipment

 The pH adjustment equipment consisted of two chemical metering pumps (one for sulfuric acid and one for sodium hydroxide) and reservoirs containing the acid and caustic. These pumps served to adjust the groundwater pH either upstream prior to UV/Oxidation or downstream to neutralize the pH.

5.0 OXIDATION TEST PROCEDURES

5.1 Laboratory Test

Prior to conducting the field pilot test, two laboratory bench scale tests were conducted on a groundwater sample from Well 4-1. Each test was conducted with UV and ozone at the existing pH of 7. The first bench scale test was conducted for a period of 150 minutes with an ozone dosing rate of 3.5 mg/l/min. Samples were collected after 30, 90, and 150 minutes of UV exposure and analyzed for TOC. Results indicated that the TOC was reduced from 8.7 to 1.8 by the end of the test (Table 3). This is below the TOC concentration of the distilled water blank (1.9 mg/l). This reduction in TOC indicates that UV with ozone significantly reduces the explosives concentration within 150 minutes and confirms our upper limit for field pilot treatment. The second bench scale test was conducted for 150 minutes with an ozone dosing rate of 1.5 mg/l/min. Samples were collected after 30, 90, and 150 minutes of UV exposure and analyzed for TOC. Results indicate that TOC was reduced from 8.7 to 2.1 after 150 minutes of UV exposure. This TOC reduction indicates that even at lower ozone dosing rates it is likely that the explosives concentration was significantly reduced. Based upon this information, the test plan for the pilot study (Table 4) was developed using 30 minutes of UV treatment with 1.5 mg/l/min of ozone as the low level of treatment and 150 minutes of UV treatment with 3.5 mg/l/min of ozone as the high level of treatment. Historical data indicates that correlations exist between the reduction in 1,3,5-TNB and TOC. Since 1,3,5-TNB is the most persistent of the target compounds, it was concluded that treatment objectives could be achieved with the high level treatment conditions, and treatment objectives would not be achieved with the low level treatment conditions. Therefore, the optimum treatment conditions were somewhere between the high and low treatment level conditions and could be determined by results of our test plan.

TABLE 3 - BENCH SCALE TOC REDUCTION

_	TIBLES BENCHES TOUTE OF THE									
	Time	Test 1	Test 2	Untreated						
	(min)	Ozone = 3.5 mg/l/min	Ozone = 1.5 mg/l/min	Distilled Water						
	0	8.7	8.7	1.9						
	30	3.2	4.8	1.9						
	90	2.4	2.7	1.9						
	150	1.8	2.1	1.9						

Note: All TOC results are expressed in mg/l.

5.2 Preparation

The Ultrox field engineer (Paul Nguyen) arrived at the Umatilla Army Depot Activity site on September 27, 1993, to prepare for arrival of equipment, assist in site preparation and obtain badges and vehicle permits. The UV/Oxidation equipment arrived on site on September 30, 1993. The Ultrox field engineer assembled the equipment conducted a system check. System was found to be in working condition. The UV/Oxidation was inspected for damage and proper installation. No damage was noted.

5.3 Testing

Phase 1 testing (Well 4-1) commenced on October 4, 1993 and was completed with the final sample collection of Test 31 on October 21, 1993. Phase 2 (Well 4-13) began on October 27, 1993 and was completed after final sample collection of Test 31 on November 2, 1993. Table 4 provides the test plan followed during each of the two phases of testing. The concentration of ozone diffused into the UV treatment tank during the testing was 2% by weight percentage. The ozone for each test was diffused into the UV treatment tank at a continuous rate.

Ultrox field engineer's field notes and daily log are provided in the Appendix.

TABLE 4 - TREATMENT CONDITIONS

TABLE 4 - TREATMENT CONDITIONS										
	Time	Time	Flow	retention	Ozone	12.82	pH			
Test No.	Well 4-1	Wei 4-18		IIIne				Samiles		
1	10:45 - 14:54	11:45 - 14:45	4.3	151.16	1.5	-	7	1		
2	15:15 - 18:15	15:05 - 18:05	7.2	90.28	1.5	•	7	3		
3	18:35 - 21:35	18:15 - 21:15	21.6	30.09	1.5	•	7	3		
4	22:00 - 01:00	21:30 - 00:30	4.3	151.16	2.5		7	3		
5	01:35 - 04:35	01:00 - 04:00	7.2	90.28	2.5		7	3		
6	04:55 - 07:55	04:15 - 07:15	21.6	30.09	2.5	-	7	3		
7	08:15 - 11:15	07:30 - 10:30	4.3	151.16	3.5	-	7	3		
8	01:30 - 04:30	10:45 - 13:45	7.2	90.28	3.5	-	7	3		
9	05:00 - 08:00	13:55 - 16:55	21.6	30.09	3.5	-	7	3		
10	11:00 - 14:00	19:15 - 22:15	4.3	151.16	1.5	-	5	3		
11	14:30 - 17:30	22:45 - 01:45	7.2	90.28	1.5	-	5	3		
12	17:45 - 20:45	02:10 - 05:10	21.6	30.09	1.5	-	5	3		
13	21:00 - 24:00	05:30 - 08:30	4.3	151.16	2.5	-	5	3		
14	01:05 - 04:05	09:00 - 12:00	7.2	90.28	2.5	-	5	3		
15	04:35 - 06:35	12:20 - 15:20	21.6	30.09	2.5	-	5	3		
16	07:05 - 10:05	15:40 - 18:40	4.3	151.16	3.5	-	5	3		
17	10:20 - 13:20	19:00 - 22:00	7.2	90.28	3.5	-	5	3		
18	13:50 - 15:50	22:10 - 01:10	21.6	30.09	3.5	-	5	3		
19	17:30 - 20:30	08:00 - 11:00	4.3	151.16	1.5	-	9	3		
20	21:00 - 24:00	11:20 - 14:20	7.2	90.28	1.5	-	9	3		
21	00:50 - 03:50	14:35 - 17:35	21.6	30.09	1.5	-	9	3		
22	04:30 - 07:30	17:45 - 20:45	4.3	151.16	2.5	-	9	3		
23	08:05 - 11:05	21:05 - 00:05	7.2	90.28	2.5	-	9	3		
24	11:35 - 14:35	00:40 - 02:40*	21.6	30.09	2.5	-	9	3		
25	15:05 - 18:05	03:00 - 06:00	4.3	151.16	3.5		9	3		
26	18:25 - 21:25	11:00 - 14:00	7.2	90.28	3.5	•	9	3		
27	21:50 - 00:55	14:15 - 17:15	21.6	30.09	3.5	-	9	3		
28	16:00 - 19:00	17:55 - 20:55	4.3	151.16	3.5	1.2	7	3		
29	19:15 - 22:15	21:20 - 00:20	7.2	90.28	3.5	1.2	7	3		
30	22:45 - 01:45	00:50 - 03:50	21.6	30.09	3.5	1.2	7	3		

Daylight Savings Time Began

5.4 Sample Analyses.

Samples were collected by Dames & Moore personnel and the Ultrox field engineer during the pilot program. Influent samples were collected from a valved sample port located on the influent line of the UV treatment tank. Effluent samples were collected from a valved sample port located on the effluent gooseneck weir. The collected samples were sent by Dames & Moore to Environmental Science & Engineering Laboratory (ESE) in Gainesville, Florida, for analysis. Results are provided in Tables 5 and 6.

6.0 RESULTS AND CONCLUSIONS

Analytical results (Tables 5 and 6) from ESE Laboratory indicate that the groundwater from Well 4-1 and Well 4-13 were quite dissimilar. Well 4-1 can be characterized as having significantly higher concentrations than Well 4-13 of all targeted compounds except RDX and Tetryl.

6.1 Laboratory Bench Scale Test

Prior to the field pilot testing, a sample was collected from Well 4-1 by Dames & Moore and sent to Ultrox for laboratory bench scale evaluation. The purpose of the bench scale test was to determine the oxidant dosages estimated to meet reductions in total organic carbon (TOC) and apply that data in the development of a test plan for the field pilot study. The untreated sample was analyzed for parameters which can affect the oxidation process (Table 7). These results indicate that the groundwater contained low concentrations of iron and manganese (removal not required), low suspended solids (<4 mg/l), low turbidity (0.3 NTUs), low chlorides (29 mg/l), moderately high hardness and dissolved solids (314 and 384 mg/l respectively). The total organic carbon (TOC) was 11 mg/l and the chemical oxygen demand (COD) was 27 mg/l. The pH was neutral (7). The untreated sample was subjected to two bench scale oxidation tests. The first test was conducted with an ozone dosing rate of 3.5 mg/l/min. Samples were collected after 30, 90 and 150 minutes of UV treatment (as in all tests involving UV and ozone, ozone and UV were applied simultaneously and continuously). Total organic carbon was reduced from 7.8 mg/l to 1.8 mg/l after 150 minutes of treatment. The second tests was conducted with an ozone dosing rate of 1.5 mg/l/min. Samples were collected after 30, 90 and 150 minutes of UV treatment. At this lower dosing rate, the TOC was reduced from 8.9 to 2.1. Based on the reductions in TOC achieved during the bench scale tests, it was postulated that the treatment objectives for all explosives would be achieved by applying an ozone dosing rate between 1.5 and 3.5 mg/l/min during a UV irradiation period of between 30 and 150 minutes.

6.2 Well 4-1 Results

The Well 4-1 groundwater contained relatively high concentrations of RDX (1,210-3,420 μ g/l) and 2,4,6-TNT (959-3310 μ g/l) with moderate levels of HMX (299-2,310 μ g/l), 2,4-DNT (127-335 μ g/l), and 1,3,5-TNB (120-356 μ g/l). Tetryl was detected in 5 influent samples and concentrations ranged from 1.82 to 9.95 μ g/l.

6.2.1 RDX Destruction

The average concentration of RDX detected in the untreated groundwater was 2,765.5 μ g/l and ranged from 1,210 to 3,520 μ g/l. The results of the oxidation tests indicate that RDX was reduced to below the treatment object concentration ($<2 \mu g/l$) with the lowest ozone dosing rate (1.5 mg/l/min) after 90 minutes of UV exposure at a neutral pH (Test 2). RDX was also reduced to below treatment objective concentration within 30 minutes at the higher ozone dosing rate of 3.5 mg/l/min (Test 18). It is important to note, that the ozone dosing rate is not the same as the total ozone dosage. Results from Test 2 indicate that the total ozone dosage was 135.42 mg/l (1.5 mg/l/min x 90.28 minutes = 135.42 mg/l). This is higher than the 105.2 mg/l (3.5 mg/l/min x 30.09 minutes = 105.32 mg/l) total ozone dosage applied in Test 18 due to the longer UV exposure (retention) time. A comparison of Tests 9, 18 and 27 indicates that the lower pH of 5 resulted in better RDX reduction than tests where the pH was 7 or 9.

6.2.2 Tetryl Destruction

With the exceptions of Tests 2, 3, 4, 6 and 7, Tetryl was not detected in the untreated samples. When detected, the concentrations ranged from 1.82 to 9.5 μ g/l. Tetryl was reduced to below the detection limit of 1.56 for all tests except 12 where the detected concentration was 2.25 μ g/l. Since no Tetryl was detected in the untreated sample, and

it is not considered a byproduct of the other species detected, the Tetryl result from Test 12 is considered an anomaly.

6.2.3 Destruction of 2,4-Dinitrotoluene

Results indicate that the average 2,4-DNT concentration in the untreated groundwater was 284.2 μ g/l. Concentrations ranged between 127 and 335 μ g/l. The treatment objective concentration of $0.6 \mu g/l$ was achieved for all tests where UV exposure time (or retention time) was 90 minutes or greater. The treatment objective for 2,4-DNT was also achieved within 30 minutes of treatment with an ozone dosing rate of 3.5 mg/l/min.. However, the most efficient UV/Oxidation of 2.4-DNT occurred in Test 15 where the concentration was reduced to below 0.33 μ g/l at the ozone dosing rate of 2.5 mg/l/min during 30 minutes of UV exposure. This reduction was only achieved at pH 5 and not at 7 or 9. Results from tests 28, 29 and 30 indicate that a combination of ozone and hydrogen peroxide without UV could also reduce the 2,4-DNT to below 0.6 μ g/l with a dosing rate of 3.5 mg/l/min of ozone and 1.2 mg/l/min of hydrogen peroxide for a period between 30 and 90 minutes of retention time.

6.2.4 Destruction of HMX

The average HMX concentration detected in the untreated Well 4-1 groundwater was 1,252.6 μ g/l. The concentration ranged between 270 and 2,310 μ g/l. The treatment objective for HMX (1.65 μ g/l) was achieved in all tests which involved UV/Oxidation for 90.3 minutes or greater. Where the ozone dosing rate of 3.5 mg/l/min was applied, treatment objectives were achieved within 30 minutes of UV exposure. While tests involving ozone and hydrogen peroxide without UV resulted in decreases in HMX, this approach was not effective in reducing the HMX below 468 μ g/l.

6.2.5 Destruction of 2,4,6-Trinitrotoluene

The average 2,4,6-DNT concentration detected in the untreated groundwater was 2,773.2 μ g/l. The concentration ranged between 959 and 3,310 μ g/l. The treatment objective for 2,4,6-TNT (2 μ g/l) was achieved for all tests where UV/Oxidation treatment was conducted for 90.3 minutes or greater. Treatment objectives were achieved after 30 minutes of treatment during Test 18 where the ozone dosing rate was 3.5 mg/l/min and the influent pH was 5. These objectives were not achieved at that dosing rate when the pH was 7 or 9. Tests involving ozone and hydrogen peroxide without UV were not effective in reducing the 2,4,6-TNT below 338 μ g/l.

6.2.6 Destruction of 1,3,5-Trinitrobenzene

The average concentration of 1,3,5-TNB detected in the untreated groundwater was $164.3 \mu g/l$. The concentration ranged from 120 to $356 \mu g/l$. The treatment objective concentration for 1,3,5-TNB $(0.6 \mu g/l)$ was achieved in two oxidation tests (Tests 16 and 17). These tests were conducted with the groundwater pH adjusted to 5 and an ozone dosing rate of 3.5 mg/l/min during a minimum UV exposure time of 90.3 minutes. Based upon the data, the optimum treatment conditions required for achieving the treatment objectives for 1,3,5-TNB include 3.5 mg/l/min for 90.3 minutes with the groundwater pH adjusted to 5. Because 1,3,5-TNB was the most persistent compound treated, these treatment conditions achieved treatment objectives for all compounds detected. While a nominal reduction in 1,3,5-TNB was detected in Test 28, the other tests conducted with O_3 and H_2O_2 without UV resulted in increased 1,3,5-TNB concentrations.

6.3 Well 4-13 Results

Well 4-13 groundwater contained significantly lower concentrations of all explosive compounds except RDX. The RDX concentration (average of

2,080 μ g/l) was comparable to the concentration detected from Well 4-1 (average of 2,765 μ g/l).

6.3.1 RDX Destruction

The average concentration of RDX detected in the untreated groundwater was 2,080 μ g/l and ranged from 972 to 2,600 μ g/l. The analytical results indicate that RDX was reduced to below the treatment object concentration ($<2~\mu$ g/l) in all UV/Oxidation tests except Test 21. Test 21 was performed with the lowest ozone dosing rate (1.5 mg/l/min) and the shortest UV exposure time (30 minutes) with the groundwater pH at 9. Despite the low ozone dosage and UV exposure associated with Test 21, RDX was reduced to within 0.28 μ g/l of the objective concentration. Results from tests 28, 29 and 30 indicate that ozone and hydrogen peroxide without UV was effective in reducing the RDX by 85% to 98%. However, non of the non-UV tests achieved the treatment objective for RDX within 151.2 minutes.

6.3.2 Tetryl Destruction

With the exceptions of Tests 17 and 18, Tetryl was not detected in the untreated samples. The detected concentrations were 1.84 and 1.77 μ g/l respectively. Tetryl was not detected above the detection limit of 1.56 for any of the tests.

6.3.3 Destruction of 2,4-Dinitrotoluene

Results indicate that the 2,4-DNT concentration in the untreated groundwater was not detected except in Test 8 (0.192 μ g/l). No 2,4-DNT was detected in any of the effluent samples.

6.3.4 Destruction of HMX

The average of the HMX concentrations detected in the untreated groundwater was $30.2 \mu g/l$. The detected concentrations ranged between 17.5 and 61 $\mu g/l$. The treatment objective for HMX (1.65 $\mu g/l$) was achieved in all tests which involved UV/Oxidation at a pH of 5 or 7. Where the pH of the groundwater was 9, the objective concentration was achieved when 2.5 mg/l/min was applied for 90.3 minutes. However at the higher ozone dosing rate of 3.5, the objective was not achieved within 90.3 minutes with the groundwater pH at 9. Tests involving ozone and hydrogen peroxide without UV were effective in reducing the HMX, but not below 1.65 $\mu g/l$.

6.3.5 Destruction of 2,4,6-Trinitrotoluene

No 2,4,6-TNT was detected in the untreated groundwater from Well 4-13. Consequently, no 2,4,6-TNT was detected in any of the treated samples.

6.3.6 Destruction of 1,3,5-Trinitrobenzene

The average concentration of 1,3,5-TNB detected in the untreated groundwater was 3.9 μ g/l. The concentration ranged from 1.71 to 5.72 μ g/l. The treatment objective concentration for 1,3,5-TNB (0.6 μ g/l) was achieved in five oxidation tests (Tests 10, 13, 14, 16 and 17). Each of these tests were conducted with the groundwater pH of 5. The effluent concentration of 1,3,5-TNB was greater than the influent in all tests except the five where the treatment objective was achieved (and Test 11 where the effluent concentration was

 $0.764 \mu g/l$). The effluent analytical results indicate that 1,3,5-TNB is being produced during UV/Oxidation. This is generally the result of the oxidation of 2,4,6-TNT. However, since this compound was not detected in the untreated sample, the precursor to 1,3,5-TNB is not known.

The most efficient treatment (lowest total ozone dosage and UV exposure time) conditions were from Test 14 which involved an ozone dosing rate of 2.5 mg/l/min during a minimum UV exposure time of 90.3 minutes. However, because the 30 minute sample (having a total ozone dosage of 105.4 mg/l and UV exposure time of 30.1 minutes) resulted in a 1,3,5-TNB concentration of only 4.91 μ g/l, it is probable that the optimum conditions for Well 4-13 will be less than 90.3 minutes and greater than 30.1 minutes of UV exposure with an ozone dosing rate between 2.5 and 3.5 mg/l/min.

Because 1,3,5-TNB was the most persistent compound treated, these treatment conditions achieved treatment objectives for all compounds detected in Well 4-13.

7.0 CONCLUSIONS

Analytical results from Well 4-1 tests indicate that the Ultrox UV/Oxidation system was capable of reducing all explosives detected in the groundwater to below their respective treatment objective concentrations. The pH of the groundwater had a significant affect on the oxidation process. A pH of 5 provided better reductions in all compounds and was required to meet the treatment objectives for 1,3,5-TNB (the most persistent compound detected). To achieve the treatment objectives for all compounds a cumulative ozone dosage of 316 mg/l is required with 90 minutes of UV irradiation of the groundwater after pH has been adjusted to 5 by addition of sulfuric acid.

Analytical results indicate that the Ultrox• UV/Oxidation system was again effective in reducing all explosives detected in the groundwater from Well 4-13 to below their respective treatment objective concentrations. Although the treatment objective for 1,3,5-TNB was not achieved during Test 11, the full scale system provides adequate reserve ozone production capacity to further reduce the 1,3,5-TNB to below 0.6 μg/l. Based upon a flow rate of 100 gpm and an ozone dosage of 135 mg/l, the full scale system ozone generator capacity required is 162.2 lbs/day. Since Ultrox's ozone generators are produced with production capacities of either 150 lbs/day or 230 lbs/day, the 230 lb/day generator was selected for the full scale system. Since this generator provides an additional capacity of 67.8 lbs/day, more than enough capacity exists to reduce the 1,3,5-TNB concentration an additional 0.164 μg/l. As in the treatment of Well 4-1 groundwater, the pH must be reduced to 5 by addition of sulfuric acid.

Based upon the results of this pilot study and others involving treatment of explosives, the higher the concentration of explosives and the higher the flow rate, the better the economics associated with UV/oxidation.

8.0 COMMERCIAL

This section provides estimated prices in U.S. dollars for the supply of Ultrox equipment and services as described below. These price estimates are based upon F.O.B. point of manufacture. Price estimates do not include federal; state, provincial, regional or municipal taxes. Duties, permits, costs of obtaining permits, bonds and interest or penalties are not included.

8.1 Well 4-1 System

The equipment and prices described under this section are based upon the results of Test 17 of the Well 4-1 test program. This system is capable of meeting the treatment objectives for all detected explosives at a flow rate of 100 gpm. These estimates do not include costs associated with addition of sulfuric acid which is required to reduce the pH from neutral to 5.

8.1.1 Equipment

8.1.1.1 UV Treatment Tank.

Two Ultrox F-3900 UV treatment tanks.

One Ultroxe F-1300 UV treatment tank.

8.1.1.2 Ozone Generator

One 400 lb/day Ozone generator.

- 8.1.1.3 Air Preparation System
 - Compressor
 - Air Filter
 - Air Dryer
- 8.1.1.4 Residual Ozone Destruction System

One DecompozonTM catalytic ozone destruction unit.

8.1.2 Assumptions.

Flow rate = 100 GPM

Cost per KWH = \$0.06

pH = 5

UV retention time = 91 minutes

Ozone injection rate = 3.5 mg/l/minute

Total accumulated ozone dosage = 333 mg/l

8.1.3 Costs

8.1.3.1 Capital Costs

Capital costs for equipment as described in Section 8.1 is estimated to be \$900,000.

8.1.3.2 Operating and Maintenance Costs

Operating Costs:

O₃ ELECTRICITY:

\$1.83/1000 GAL

UV ELECTRICITY:

\$0.66/1000 GAL

TOTAL OPERATING COSTS \$2.49/1000 GAL

Maintenance Costs:

LAMP REPLACEMENT AMORTIZED ON A DAILY BASIS

COST \$1.15/1000 GAL

 $\underline{\text{TOTAL 0\&M COSTS}}$ = \$3.64/1000 GAL

8.2 Well 4-13 System

The equipment and prices described under this section are based upon the results of Test 11 of the Well 4-13 test program. This system is capable of meeting the treatment objectives for all detected explosives at a flow rate of 100 gpm. These estimates do not include costs associated with addition of sulfuric acid which is required to reduce the pH from neutral to 5.

8.2.1 Equipment

8.2.1.1 UV Treatment Tank.

Two Ultroxe F-3900 UV treatment tanks.

One Ultrox F-1300 UV treatment tank.

8.2.1.2 Ozone Generator

One 230 lb/day Ozone generator.

- 8.2.1.3 Air Preparation System
 - Compressor
 - Air Filter
 - Air Dryer
- 8.2.1.4 Residual Ozone Destruction System

One DecompozonTM catalytic ozone destruction unit.

8.2.2 Assumptions.

Flow rate = 100 GPM

Cost per KWH = \$0.06

pH = 5

UV retention time = 90 minutes

Ozone injection rate = 1.5 mg/l/minute

Total accumulated ozone dosage = 135.5 mg/l

8.2.3 Costs

8.2.3.1 Capital Costs

Capital costs for equipment as described in Section 8.1 is estimated "to be \$770,000.

8.2.3.2 Operating and Maintenance Costs

Operating Costs:

O₃ ELECTRICITY:

\$0.75/1000 GAL

UV ELECTRICITY:

\$0.66/1000 GAL

TOTAL OPERATING COSTS \$1.41/1000 GAL

Maintenance Costs:

LAMP REPLACEMENT AMORTIZED ON A DAILY BASIS

COST \$1.14/1000 GAL

 $\underline{\text{TOTAL O&M COSTS}} = \$2.55/1000 \text{ GAL}$

APPENDIX

Laboratory Data
Process Flow Diagram
Field Engineer's Daily Log & Notes

LABORATORY DATA

TABLE 5 - FIELD PILOT TEST A ULTROX P-650 Pilot Program - UN Phase 1 - We

									Filase	- 110
Run #	\$	Date	Ozone:Cose	⊗ 7/4538⊗	*****	Reletion.	93	#202°	7.2.	RDX
*******		****	Rete	0.08806		Titue			trial less	
1	10:45 - 14:54	13-Oct	1.5	226.74	4.3	151.16	7	r√a	2890	1.1
2	15:15 - 18:15	13-Oct	1.5	135.42	7.2	90.28	7	n/a	2920	1.1
3	18:35 - 21:35	13-Oct	1.5	45.14	21.6	30.09	7	n/a	2920	39.
4	22:00 - 01:00	14-Oct	2.5	377.91	4.3	151.16	7	n/a	3020	1.1
5	01:35 - 04:35	14-Oct	2.5	225.69	7.2	90.28	7	n/a	3520	1.1
6	04:55 - 07:55	14-Oct	2.5	75.23	21.6	30.09	7	n/a	2730	10.
7	08:15 - 11:15	14-Oct	3.5	529.07	4.3	151.16	7	n/a	3200	1.1
8	01:30 - 04:30	15-Oct	3.5	315.97	7.2	90.28	7	n/a	3370	1.1
9	05:00 - 08:00	15-Oct	3.5	105.32	21.6	30.09	7	n/a	3420	7.3
10	11:00 - 14:00	15-Oct	1.5	226.74	4.3	151.16	5	n/a	3410	1.1
11	14:30 - 17:30	15-Oct	1.5	135.42	7.2	90.28	5	n/a	3040	1,1
12	17:45 - 20:45	15-Oct	1.5	45.14	21.6	30.09	5	n/a	3240	17.
13	21:00 - 24:00	16-Oct	2.5	377.91	4.3	151.16	5	n/a	3250	1.1
14	01:05 - 04:05	16-Oct	2.5	225.69	7.2	90.28	5	n/a	3230	
15	04:35 - 06:35	16-Oct	2.5	75.23	21.6	30.09	5	n/a	3150	5.2
16	07:05 - 10:05	16-Oct	3.5	529.07	4.3	151.16	5	n/a	2950	1.1
17	10:20 - 13:20	16-Oct	3.5	315.97	7.2	90.28	5	n/a	2870	1.1
18	13:50 - 15:50	16-Oct	3.5	105.32	21.6	30.09	5	n/a	1320	1.2
19	17:30 - 20:30	16-Oct	1.5	226.74	4.3	151.16	9	n/a	1910	1.1
20	21:00 - 24:00	17-Oct	1.5	135.42	7.2	90.28	9	n/a	2030	
21	00:50 - 03:50	17-Oct	1.5	45.14	21.6	30.09	9	n/a	1210	
22	04:30 - 07:30	17-Oct	2.5	377.91	4.3	151.16	9	n/a	1870	
23	08:05 - 11:05	17-Oct	2.5	225.69	7.2	90.28	9	n/a	2100	
24	11:35 - 14:35	17-Oct	2.5	75.23	21.6	30.09	9	n/a	2860	10.
25	15:05 - 18:05	17-Oct	3.5	529.07	4.3	151.16	9	n/a	2070	
26	18:25 - 21:25	17-Oct	3.5	315.97	7.2	90.28	9	n/a	1900	
27	21:50 - 00:55	18-Oct	3.5	105.32	21.6	30.09	9	n/a	3120	2.6
28	16:00 - 19:00	18-Oct	3.5	529.07	4.3	151.16	7	1.2	3160	
29	19:15 - 22:15	18-Oct	3.5	315.97	7.2	90.28	7	1.2	3140	89
30	22:45 - 01:45	19-Oct	3.5	105.32	21.6	30.09	7	1.2	3000	141
	06:30	21-Oct	3.5	529.07	4.3	151.16	7	n/a	2910	1.1

TABLE 5 - FIELD PILOT TEST ANALYTICAL RESULTS ULTROX P-650 Pilot Program - UMATILLA DEPOT ACTIVITY Phase 1 - Well 4-1

· · · · · · · · · · · · · · · · · · ·	**************************************	Retention	::::::::::::::::::::::::::::::::::::::	880028	Rex	**************************************	\$1≈5568	81215618	223 DASS		****	XHUX.
80e		Time			muen	E-Huern	Miker	Emen	Influent:		nfkæn.	Emen
.74	4.3	151.16	7	n/a	2890	1.17	1.56	1.56	313	0.064	270	1.21
.42	7.2	90.28	7	n/a	2920	1.17	1.82	1.56	310	0.064	946	1.21
14	21.6	30.09	7	r/a	2920	39.4	2.12	1.56	322	33	953	786
.91	4.3	151.16	7	n/a	3020	1.17	1.57	1.56	322	0.064	1270	1.21
.69	7.2	90.28	7	r/a	3520	1.17	1.56	1.56	324	0.064	2310	1.21
23	21.6	30.09	7	n/a	2730	10.9	9.95	1.56	304	2.17	1160	219
.07	4.3	151.16	7	rva	3200	1.17	1.92	1.56	302	0.064	1980	1.21
97	7.2	90.28	7	n/a	3370	1.17	7.8	1.56	327	0.064	2010	1.21
.32	21.6	30.09	7	n/a	3420		7.8	1.56	330	0.064	1730	1.21
.74	4.3	151.16	5	n/a	3410		7.8	1.56	333	0.064	1480	1.21
.42	7.2	90.28	5	n/a	3040	1.17	7.8	1.56	307	0.064	1390	1.21
14	21.6	30.09	5	r/a	3240		7.8	2.25	331	13.1	1850	1.21
.91	4.3	151.16	5	n/a	3250		7.8	1.56	329	0.064	1550	1.21
.69	7.2	90.28	5	n/a	3230		7.8	1.56	321	0.064	1800	1.21
23	21.6	30.09	5	n/a	3150		7.8	1.56	335	0.331	1460	12.1
.07	4.3	151.16	5	n/a	2950		7.8	1.56	317	0.064	1520	1.21
.97	7.2	90.28	5	n/a	2870			1.56	320	0.064	1090	1.21
.32	21.6	30.09	5	n/a	1320	_	7.8	1.56	136	0.064	480	1.21
.74	4.3	151.16	9	n/a	1910		7.8	1.56	201	0.064	736	1.21
.42	7.2	90.28	9	n/a	2030		7.8	1.56	215		843	1.21
14	21.6	30.09	9	r/a	1210		7.8	1.56	127	59.4	299	30.3
.91	4.3	151.16	9	n/a	1870		7.8	1.56		0.064	674	1.21
.69	7.2	90.28	9	n/a	2100		7.8	1.56	237	0.064	754	1.21
23	21.6	30.09	9	n/a	2860		7.8	1.56	316	15.1	1200	30.3
.07	4.3	151.16	9	n/a	2070	1.17	7.8			0.064	863	1.21
.97	7.2	90.28	9	n/a	1900	1.17	7.8			0.064	682	1.21
.32	21.6	30.09	9	n/a	3120	2.62	7.8				1960	1.21
.07	4.3	151.16	7	1.2	3160	826	7.8					965
.97	7.2	90.28	7	1.2	3140	890	7.8				1350	
.32	21.6	30.09	7	1.2	3000	1410	7.8	1.56		0.891	1350	
.07	4.3	151.16	7	n/a	2910	1.17	7.8	1.56	297	0.064	1310	24.2

NALYTICAL RESULTS MATILLA DEPOT ACTIVITY

ell 4-1

Se i	18.225₹6°688	882853688	AND NE	***********	SE S	*****		2450:INI		
	Miller	FM am	influent:	Efficient	influent	Efficient	##AJErd			
7	1.56	1.56	313	0.064	270	1.21	3190	0.635	144	142
爿	1.82	1.56	310	0.064	946	1.21	3140	0.635	142	451
4	2.12	1.56	322	33	953	786	3250	172	133	372
7	1.57	1.56	322	0.064	1270	1.21	3310	0.635	127	107
7	1.56	1.56	324	0.064	2310	1.21	3270	0.635	133	395
9	9.95	1.56	304	2.17	1160	219	3090	59.8	120	695
7	1.92	1.56	302	0.064	1980	1.21	3090	0.635	128	
7	7.8	1.56	327	0.064	2010	1.21	3170	0.635	182	59.2
ii	7.8	1.56	330	0.064	1730	1.21	3170		185	59.2
7	7.8	1.56	333	0.064	1480	1.21	3500		183	22.8
7	7.8	1.56	307	0.064	1390	1.21	2940	0.635		59.2
4	7.8	2.25	331	13.1	1850	1.21	3200	97.9	178	59.2
7	7.8	1.56	329	0.064	1550	1.21	3200	0.635		1.63
7	7.8	1.56	321	0.064	1800	1.21	3150	the second name of the second		8.17
23	7.8	1.56	335	0.331	1460	12.1	3180			
7	7.8		317	0.064	1520	1.21	3130			
7	7.8	1.56	320	0.064	1090	1.21	3060			0.449
29	7.8		136	0.064	480	1.21	1000			59.2
7	7.8		201	0.064	736	1.21	1740			59.2
7	7.8			0.429		1.21	1920			59.2
.5	7.8		127	59.4	299		959			59.2
17	7.8		191	0.064	674	1.21	1660	_		59.2
17	7.8		237	0.064			2010			
.4	7.8	1.56	316		1200	30.3	3120			59.2
17	7.8	1.56	216	0.064			1970			59.2
17	7.8						1590			59.2
52	. 7.8	1.56					3090			59.2
26	7.8						3310			218
8	7.8			_	1350		3200			230
10	7.8				1350		3210			315
17	7.8	1.56	297	0.064	1310	24.2	3150	0.635	153	253.

TABLE 6 - FIELD PILOT TEST. ULTROX P-650 Pilot Program - U Phase 2 - W

									rnase	3 Z - VV
Run #		Date	GZORE DOSA	(Ozona	S 10 11 S	Presentium:	***	N ZOV	(4)	γ.ε.Σ
			Rate	Dosage		Time			i di Len	Efficent
1	11:45 - 14:45	27-Oct	1.5	226.74	4.3	151.16	7	n/a	2380	<1.17
2	15:05 - 18:05	27-Oct	1.5	135.42	7.2	90.28	7	n/a	1220	<1.17
3	18:15 - 21:15	27-Oct	1.5	45.14	21.6	30.09	7	n/a	2250	<1.17
4	21:30 - 00:30	28-Oct	2.5	377.91	4.3	151.16	7	n/a	2220	<1.17
5	01:00 - 04:00	28-Oct	2.5	225.69	7.2	90.28	7	n/a	2280	<1.17
6	04:15 - 07:15	28-Oct	2.5	75.23	21.6	30.09	7	n/a	2180	<1.17
7	07:30 - 10:30	28-Oct	3.5	529.07	4.3	151.16	7	n/a	2310	<1.17
8	10:45 - 13:45	28-Oct	3.5	315.97	7.2	90.28	7	n/a	2360	<1.17
9	13:55 - 16:55	28-Oct	3.5	105.32	21.6	30.09	7	n/a	2350	<1.17
10	19:15 - 22:15	28-Oct	1.5	226.74	4.3	151.16	5	n/a	2270	<1.17
11	22:45 - 01:45	29-Oct	1.5	135.42	7.2	90.28	5	n/a	2350	<1.17
12	02:10 - 05:10	29-Oct	1.5	45.14	21.6	30.09	5	n/a	2240	<1.17
13	05:30 - 08:30	29-Oct	2.5	377.91	4.3	151.16	5	n/a	2600	<1.17
14	09:00 - 12:00	29-Oct	2.5	225.69	7.2	90.28	5	n/a	2300	<1.17
15	12:20 - 15:20	29-Oct	2.5	75.23	21.6	30.09	5	n/a	2260	<1.17
16	15:40 - 18:40	29-Oct	3.5	529.07	4.3	151.16	5	n/a	972	1.17
17	19:00 - 22:00	29-Oct	3.5	315.97	7.2	90.28	5	n/a	2240	1.17
18	22:10 - 01:10	30-Oct	3.5	105.32	21.6	30.09	5	n/a	2290	1.17
19	08:00 - 11:00	30-Oct	1.5	226.74	4.3	151.16	9	n/a	1170	1.17
20	11:20 - 14:20	30-Oct	1.5	135.42	7.2	90.28	9	n/a	2320	1.39
21	14:35 - 17:35	30-Oct	1.5	45.14	21.6	30.09	9	n/a	2340	2.28
22	17:45 - 20:45	30-Oct	2.5	377.91	4.3	151.16	9	n/a	2420	1.17
23	21:05 - 00:05	31-Oct	2.5	225.69	7.2	90.28	9	n/a	1390	1.17
24	00:40 - 02:40*	31-Oct	2.5	75.23	21.6	30.09	9	n/a	1320	1.17
25	03:00 - 06:00	31-Oct	3.5	529.07	4.3	151.16	9	n/a	1970	1.17
26	11:00 - 14:00	01-Nov	3.5	315.97	7.2	90.28	9	n/a	2100	1.17
27	14:15 - 17:15	01-Nov	3.5	105.32	21.6	30.09	9	n/a	2140	1.17
28	17:55 - 20:55	01-Nov	3.5	529.07	4.3	151.16	7	1.2	1940	33.9
29	21:20 - 00:20	02-Nov	3.5	315.97	7.2	90.28	7	1.2	1990	74.9
30	00:50 - 03:50	02-Nov	3.5	105.32	21.6	30.09	7	1.2	2340	335
31	15:30	02-Nov	3.5	529.07	4.3	151.16	7	n/a	1960	1.17

^{*} Daylight Savings Time Bogan

TABLE 6 - FIELD PILOT TEST ANALYTICAL RESULTS

ULTROX P-650 Pilot Program - UMATILLA DEPOT ACTIVITY

Phase 2 - Well 4-13

	Filase 2 - Well 4-15											
38780	Flow	Retention		727	#IDX	\$\$\$\				7 (8) (1)	HIAX	
age		Time			aficent	Efficient	halen	Effluent		Emuent	%initient	Ellinent Inf
.74	4.3	151.16	7	n/a	2380	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.42	7.2	90.28	7	n/a	1220	<1.17	1.56	<1.56	.064	<,064	60.5	<1.21
14	21.6	30.09	7	r/a	2250	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.91	4.3	151.16	7	n/a	2220	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.69	7.2	90.28	7	n/a	2280	<1.17	1,56	<1.56	.064	<.064	61	<1.21
23	21.6	30.09	7	n/a	2180	<1.17	1,56	<1.56	.064	<.064	60.5	<1.21
.07	4.3	151.16	7	n/a	2310	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.97	7.2	90.28	7	n/a	2360	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.32	21.6	30.09	7	n/a	2350	<1.17	1.56	<1.56	.064	<.064	60.5	<12.1
5.74	4.3	151.16	5	n/a	2270	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.42	7.2	90.28	5	n/a	2350	<1.17	1.56	<1.56	.064	<.064	31.1	<1.21
14	21.6	30.09	5	n/a	2240	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.91	4.3	151.16	5	n/a	2600	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
.69	7.2	90.28	5	n/a	2300	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
23	21.6	30.09	5	n/a	2260	<1.17	1.56	<1.56	.064	<.064	60.5	<1.21
0.07	4.3	151.16	5	n/a	972	1.17	1.56	<1.56	.064	<.064	60.5	<1.21
5.97	7.2	90.28	5	n/a	2240	1.17	1.84	<1.56		<.064	60.5	<1.21
5.32	21.6	30.09	5	n/a	2290	1.17	1.77	<1.56		<.064	60.5	<1.21
5.74	4.3	151.16	9	n/a	1170	1.17	7.80	<1.56		<.064	21.1	4.59
5.42	7.2	90.28	9	n/a	2320	1.39	7.80				31.9	5.17
.14	21.6	30.09	9	n/a	2340	2.28	7.80	<1.56		<.064	34.2	7.78
7.91	4.3	151.16	9	n/a	2420	1.17	7.80	<1.56			32.6	1.26
5.69	7.2	90.28	9	n/a	1390	1.17	7.80	<1.56			30.3	<1.21
23	21.6	30.09	9	n/a	1320	1.17	7.80				30.5	13.1
9.07	4.3	151.16	9	n/a	1970	1.17	7.80				28.6	<1.21
.97	7.2	90.28	9	n/a	2100	1.17	7.80	<1.56			31.5	2.45
5.32	21.6	30.09	9	n/a	2140	1.17	7.80				28	14.1
0.07	4.3	151.16	7	1.2	1940	33.9	7.80				24.2	2.43
5.97	7.2	90.28	7	1.2	1990						17.5	4.41
.32	21.6	30.09	7	1.2	2340					_	20	13.8
9.07	4.3	151.16	7	n/a	1960	1.17	7.80	<1.56	0.319	<.064	24.9	1.67

ANALYTICAL RESULTS UMATILLA DEPOT ACTIVITY

Vell 4-13

1611 4-			E TER Y KT M	MAN 97 97 9 30 40	WAS BUT LYNNAN	P. WAS CO. TO THE	U 89 87 37 3 3 4 4 4	202.75 · 4-4 / YC-31	CK X -MANIE
	\$4365VS			HIMEX		***************************************			
millent	Effluent		Effluent	******	Efficient ®	Sinfluent &		influents	
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	2.74	21.8
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	3.29	55.6
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	2.4	178
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	3.08	7.44
1.56	<1.56	.064	<.064	61	<1.21	0.635	< 0.635	3.17	58.4
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	2.8	138
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	3.89	12.3
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	<0.635	1.71	22.5
1.56		.064	<.064	60.5	<12.1	0.635	< 0.635	2.31	121
1.56	<1.56	.064	<.064	60.5	<1.21	0.635	< 0.635	2.68	<0.449
1.56		.064	<.064	31.1	<1.21	0.635	< 0.635	2.89	0.764
1.56		.064	<.064	60.5	<1.21	0.635	< 0.635	2.21	74.1
1.56			<.064	60.5	<1.21	0.635	< 0.635	1.98	<0.449
1.56			<.064	60.5	<1.21	0.635	<0.635	3.27	<0.449
1.56		.064	<.064	60.5	<1.21	0.635	< 0.635	3.48	29.9
1.56			<.064	60.5	<1.21	0.635	< 0.635	1.93	<0.449
1.84		.064	<.064	60.5	<1.21	0.635	< 0.635	2.01	<0.449
1.77			<.064	60.5	<1.21	0.635	< 0.635	2	4.91
7.80			<.064	21.1	4.59	3.18		4.98	37.8
7.80		0.319	<.064	31.9	5.17	3.18		2.85	98.4
7.80	-		<.064	34.2		3.18		5.23	185
7.80	<1.56	0.319	<.064	32.6	1.26	3.18		5.56	37
7.80			<.064	30.3	<1.21	3.18		5.71	94
7.80		0.319	<.064	30.5	13.1	3.18		4.41	211
7.80			<.064	28.6		3.18		5.72	45.8
7.80			<.064	31.5				2.72	92.8
7.80		0.319	<.064	28		3.18		2.95	
7.80		0.319	<.064	24.2		3.18		3.56	
7.80		0.319	<.064	17.5		3.18		3.51	3.22
7.80			<.064	20				2.25	6.47
7.80		0.319	<.064	24.9	1.67	3.18	< 0.635	3.89	7.95

PROCESS FLOW DIAGRAM

FIELD ENGINEER'S DAILY LOG & NOTES

Umatilla Army Depot Dames & Moore Pilot Project Well 4-1

Date:

10-11-93 Monday

Onsite:

07:30 am

Depart Site: 06:00 pm

Total Hours: 10 hrs 30 min

Called High Purity Chemicals, and they said that it should be coming in the afternoon. 01:45 pm the chemicals finally arrived. They were still switching out the pumps, and after that, they will have to calibrate the pumps. It will take all day tuesday for them to do their step test on the pumps. So the schedule for now is, that we will start the treatment on wednesday. We are just running the system to train the crew, and also get the system ready and adjusted. It looks like both wells will be pumping more than expected. Kevin and I decided that when it comes to pH adjustment, we will have to adjust it as batch.

Date:

10-12-93 Tuesday

Onsite:

07:30 am

Depart Site: 07:00 pm

Total Hours: 11 hrs 30 min

More training and also treating the water form the pump test. They had to redo their step test on the two wells, so now well 4-1 is pumping at 36 gpm and well 4-13 will pump at 60 gpm.

Date:

10-13-93 Wednesday

Onsite:

07:30 am

Depart Site: 08:15 pm

Total Hours: 12 hrs 45 min

Totalizer started at 1360979. Started the test at 11:00 am. dosages and flowrates are set for 1.5 mg/l/min and started 4.3 gpm. Flows have to be adjusted constantly for the correction of the head pressure inside the baker tank. The pump test was stop, because the flowrate was too high, and that the well was getting too much of a draw-down. They lower the flowrate and resume pumping at 2:30 pm. But the treatability study kept on going.

Date:

10-14-93 Thursday

Onsite:

07:30 am

Depart Site: 08:30 pm

Total Hours: 13 hrs 00 min

Test #1 through #6 completed over night. Started test #7 with O₃ dose of 3.5. The system is holding up pretty good. The pump test flowrate is still too high. They are going to shut the pumps down at 11:30 am and start over later. the treatability study will also be shut down during this time. Well 4-1 will probably be pumping at 15 gpm. I switch the metering pumps around so that I can pump at a slow rate. for the new flow. The flowrate will be 14 gpm form well 4-1. They will probably start the treatment system at midnight.

Date:

10-15-93 Friday

Onsite: Depart Site: 10:00 pm

07:15 am

Total Hours: 14 hrs 45 min

Completed test #8 and #9. I will setup for the pH down to a pH of 5. Started next set of runs at 11:00 am. The sulfuric acid at 10% is taking a lot to adjust the water down to 5. 20 gallons of 1N will adjust 8000 gallons at pH of 5. I ordered 25% solution sulfuric acid, and Dames & Moore will have someone pick it up and deliver it onsite. I can only get 15 gallons of the 24% solution. The 25% solution took a lot less than the 1N, and it also mixes into the water quicker. Trained dayshift on how to adjust the metering pump.

Date:

10-16-93 Saturday

Onsite:

07:15 am

Depart Site: 06:00 pm Total Hours: 10 hrs 45 min

Completed test up to #15. The pH was running a little low, because nightshift didn't know which area to maintain the pH at. The pH was going into the baker tank at 5, but entering the reactor at 3.3. I had to shut the metering pump of at let the pH come up to 5. After the set of pH 5 test was done, I hooked up the other metering pump to adjust the pH up to 9 with the sodium hydroxide.

Date:

10-17-93 Sunday

Onsite:

07:15 am

Depart Site: 06:00 pm

Total Hours: 10 hrs 45 min

Completed up to test #20. The system is still holding up pretty good. But the sump pump float switch went bad on me. I went into town to look for another switch, but all I can get was a sump pump with a float switch. I bought the pump and replaced the float switch. I also bought some fittings to set the new pump up as a back-up pump. I took the other metering pump and washed it out and got it ready for the H₂O₂ test. I had to come back out to the site, because I forgot to open the valve on the sump pump fully open when I was working on the float switch.

Date:

10-18-93 Monday

Onsite: Depart Site: 06:00 pm

07:15 am

Total Hours: 10 hrs 45 min

Completed up to test #27. I let the 6500 tank drain through the system, and flush it out to let the pH get back to neutral. I set up the H₂O₂ pump to inject into the reactor. We will wait till later in the afternoon to start the O₃ and H₂O₂ test, so that ozone generator will be a little cooler. After the 20, test, we will just treat the water at 14 gpm until the pump test is completed. We started the O₃ and H₂O₂ test at 4:00 pm.

Sulfuric acid took at 1N to adjust 8000 gallons and 25% solution 8 gallons to adjust

14000 gallons.

Date:

10-19-93 Tuesday

Onsite:

07:30 am

Depart Site: 05:30 pm

Total Hours: 10 hrs 00 min

Completed test #27 to #29. The ozone generator did not quite make the dose of 3.5 mg/l/min. The actual was 3.3 mg/l/min. Removed the H₂O₂ pump and cleaned up around the area a little bit. And started to treat the pump test water at 14 gpm and O₃ dose of 2.5 mg/l/min. The sulfuric acid will not arrive until tomorrow. I order a oil filter and 5 gallons of oil to do the oil change on the diesel generator.

Date:

10-14-93 Wednesday

Onsite:

07:30 am

Depart Site: 05:30 pm

Total Hours: 10 hrs 00 min

System is running fine. The sulfuric acid arrived, and still treating the pump test water.

Date:

10-15-93 Thursday

Onsite:

07:00 am

Depart Site: 12:00 pm

Total Hours: 5 hrs 00 min

Completed test #31 at 6:30 am. All samples were collected, and the treatability study is completed for phase 1 of the pump test. We are still treating the water that is in the baker tank before shutting down.

Umatilla Army Depot Dames & Moore Pilot Project Well 4-13

Date:

10-27-93 Wednesday

Onsite:

07:30 am

Depart Site: 07:00 pm

Total Hours: 11 hrs 30 min

Received the parts for Lehne & Son at the Hotel last night. Installed the mufflers for the dryer. Started pump test at 11:00 am, and the treatability test at 11:45 am. Had to train Mike, a new Dames & Moore person replacing Linda. The effluent pumps after the GAC was not able to keep up with the flowrate of the pump test and the high flowrate of the treatment system. They will have to add or change the pump for the high flowrates.

Date:

10-28-93 Thursday

Onsite:

07:30 am

Depart Site: 07:30 pm

Total Hours: 12 hrs 00 min

Complete test up to #7. The system is running fine. We are not quite making 3.5 mg/l/min. It is only producing 1.9% concentration. But with this well, it might not need all that much. I set up the metering pump for the sulfuric acid to adjust the pH. The pH adjustment to 5 will be going on later in the day. Started to adjust the pH at 18:30.

Date:

10-29-93 Friday

Onsite:

07:30 am

Depart Site: 05:30 pm

Total Hours: 10 hrs 00 min

Completed test up to #13. Had a little problem with the HC-12 monitor, but after switching on and off a couple of time, the monitor was work alright. They had a problem with the pH, but it ended up being a bad probe. They re-calibrated the pH probe and that corrected the meter. The system is running fine now. We used 9 gallons of sulfuric acid to adjust 22911 gallons of water to pH5.

Date:

10-30-93 Saturday

Onsite:

07:00 am

Depart Site: 05:30 pm

Total Hours: 10 hrs 30 min

Completed test up to #18. Kyle tried to pH adjust the water up to 9, but I had the wrong pump setup. When I arrived on-site, he said that he could only get the pH up to 8.6 when the pump was set to it's maximum. We switched out the pumps and sure enough, the setting of 40% was what we estimated on the pump. We started the set of pH 9 at 08:00 am. System running fine.

Date:

10-31-93 Sunday

Onsite:

07:30 am Depart Site: 06:00 pm Total Hours: 10 hrs 45 min

Completed test up to #25. System was running fine until the totalizer when bad. There was no flow going through the totalizer. At first we thought it was the gate valve in front of the totalizer. When we drained the reactor and took the valve apart, it would open and close. So we took a look at the totalizer. It seems that something is stuck inside the totalizer, jamming the paddle wheel, and we can't take it apart. There is a spare totalizer here, but we done have the flanges to connect it to the reactor. We will have to shutdown until tomorrow when the hardware stores are open. The system was shut down at 09:50 am. I removed the old totalizer and got it ready for the new one for tomorrow. We drained the 6500 gallon tank so that we will have a fresh batch of water when we start up tomorrow.

Date:

11-01-93 Monday

Onsite:

10:00 am

Depart Site: 06:00 pm Total Hours: 08 hrs 00 min

When into town to look for a set of flange to pipe fitting. Nobody has it, so I went to Pursewell and asked Dennis. He didn't have any either, but he did sent me so somebody who can make one up. Kyle and I installed the new totalizer into the system and started test #26 at 11:00 am. I adjusted one baker tank to pH 9 then switched the pumps and setup for H₂O₂ injection. I had Heller & Son come and fill the diesel tank with 150 gallons more. We used 7.5 gallons of 20% sodium hydroxide to 28,217 gallons of water for the pH 9.

Date:

11-02-93 Tuesday

Onsite:

07:00 am

Depart Site: 05:00 pm

Total Hours: 10 hrs 00 min

Completed test up to #30. We are just treating the water until the end of the pump test which will be finish at 04:00 pm, and the last sample will be taken at 03:30 pm. I am injecting H₂O₂ just to give it more oxidant, and also using up all the H₂O₂. The pump trest

finished at 04:00 pm. The treatability test was completed at 03:30 pm, but we still have some water in the 6500 gallon baker tank for demostrations for tomorrow.

Date:

11-03-93 Wednesday

Onsite:

08:00 am

Depart Site: 06:00 pm

Total Hours: 10 hrs 00 min

Winds started to pick up quite a bite, the tent was coming apart. I had to take the tent down. I started the system up and got it ready for the demostration for Kevin Parrett. The last demostration was over at 05:00 pm. After the demostration, I started to drain the system.

Date:

11-04-93 Thursday

Onsite:

07:30 am

Depart Site: 01:00 pm

Total Hours: 5 hrs 30 min

I started to take the system apart. I removed all the parts that I borrowed from Dames & Moore, and started to package the pilot plant up. The baker tanks will be used until next week, so the plumbing was left on.

DAILY LOG

DATE:	9-27-93 MON	
TIME ON SITE:	7:30 Am	
TIME EXIT SITE:	3:30 pm	
TOTAL HOURS ON SITE:	2 Bres	
NOTES: GOT BADGED AN	D VERICLE ROTASTRATION. LYTTEN	10
le delayed to mi	i.es.l	_
		_
		_
		_
		_
·		_
		_
		_
		-
		_

DATE:	4-18-93	TUES	.*
TIME ON SITE:	7:30 Am		
TIME EXIT SITE:	3:30 pm	<u>.</u>	
TOTAL HOURS ON SITE:	8 hr.	·-	
NOTES: Help est-up	ate totale.	"Alp ne	tink
phunding.			
·			
			•

DATE:	7-29-93 WO
TIME ON SITE:	7:30 Am
TIME EXIT SITE:	3:30 pm
TOTAL HOURS ON SITE:	8:00 fra.
NOTES: Lysten famit	arrived lower generator
shower up. Dessel fin	el come

DATE:	9-30-93 14uc
TIME ON SITE:	7:30 Am
TIME EXIT SITE:	6:30 pm
TOTAL HOURS ON SITE:	_11 hrs.
NOTES: Sasta	enwelpt 7:30 am. But
fact to contract	sicort to guide the driver to
It to it somethy	The sale of 1130 and

DATE:	10-1-93 Fai
TIME ON SITE:	7:30 Am
TIME EXIT SITE:	6:00 Pm
TOTAL HOURS ON SITE:	9.5 km
NOTES: 9tock-up feel	lives and generator for power.
that at jones gens	, , to-
	· · · · · · · · · · · · · · · · · · ·

DATE:	10-2-93 SAT
TIME ON SITE:	8:30 Am
TIME EXIT SITE:	5:00 Pm
TOTAL HOURS ON SITE:	8.5 has
NOTES: Charle the	of agotan Fell UV tack with
and not in change to	which man almost and
	· · · · · · · · · · · · · · · · · · ·

DATE:	10-3-93 SUN
TIME ON SITE:	9:00 Am
TIME EXIT SITE:	5:00 pm
TOTAL HOURS ON SITE:	8 Rrs
NOTES: Gor water pumped and charled and sho supplementations the or	into 6500 took Norted Wyone on Could into the it water in a fill want plunding was not connected.

DATE:	10-4-93 MON
TIME ON SITE:	7:3C AM
TIME EXIT SITE:	6:00 pm
TOTAL HOURS ON SITE:	101/2 Rus
NOTES: stand to treat	The grand with at Hapm and
goto a little lorm ite	the agent greater is at maximum

DATE:	10-5-93 742>
TIME ON SITE:	7:30 Am
TIME EXIT SITE:	6:00 Pm
TOTAL HOURS ON SITE:	10 hys
NOTES: How are ding a	dep tack on the well purp and
will be some that can	files (GK) to more duce is
at in my the form	gord is 2 gpm.

10-6-93	
7:30 Am	
Latel aring text text	mit al
	2 hatel arrived so how the text

DATE:	10-11-93 man
TIME ON SITE:	7:30 Am
TIME EXIT SITE:	6:00 pm
TOTAL HOURS ON SITE:	101/2 for
NOTES: Colled up the the chamical chance pumps, and after we the change it ill to the the ctep test le to the chart they were ampert the ix	chemical store, and they said be there in 100 morning. 1:45 m p. Thou were still writching out also sill face to colibrate the extracted for many for them. To the extracted for many in the treatment any two exercises the cycles pains with will be enough more than wello will be enough more than the aigust, it will be adjusted as

DATE:	10-17-93 TUES
TIME ON SITE:	0230 07:30 Am
TIME EXIT SITE:	7:00 A
TOTAL HOURS ON SITE:	11-12 h
NOTES: Frest water on	I training Thought to sedo the top cells, and so wor well
a 60 gpm	

DATE:	10-13-93 wes
TIME ON SITE:	7:20 pm
TIME EXIT SITE:	€ 8:15 Pm
TOTAL HOURS ON SITE:	12th 45
NOTES: TOTALDER. 1860 despes, and Plannote at 43 ppn Florida connect of lad in was stop, the larnore at 1:30 pm. Ret to	The START TEST at 11 or come are not for 15 organs, and Atenting to be leaved the well tent to the flower to was to high, and the hard a street down. They resume purpose to best ability study kept going.

DATE:	10-14-93 TAURS
TIME ON SITE:	07:30 on
TIME EXIT SITE:	8:30 p~
TOTAL HOURS ON SITE:	13 Rr.
NOTES: Jest # 1 to 6 commended to 12 to 15 to 16	deter started test of with 3.5 607 Ling in Or for the start flow and game to shirt down at 18.30 m be treatedulity will clar be shirt down and oldy be a more at a rate of 15 metric promps around some that along sate of the ment flow rate ell 4-1. They will probably start t.

DATE:	10-15-93 Fizi
TIME ON SITE:	07:15 An
TIME EXIT SITE:	10:00 pm
TOTAL HOURS ON SITE:	14:45 Pro
NOTES: completed text Among to 5 ph. It is the shipme axid at ph how to 5 20 ROCC gellow only to had acrostonly from and have the same adjust the watering	the grant of subject of algorithms to algorithms about of subject of any of 11.00 or of the subject of any of the subject of any of the subject of the subje

DATE:	10/16/93 SAT
TIME ON SITE:	67:15 am
TIME EXIT SITE:	6:00 Am
TOTAL HOURS ON SITE:	10:45 km
NOTES: Completed text, a little long because area to maintain The the Balon tours at a una 3.3 I had to like to be the player for the physical by the physical ph 9	p to 75. The pH was remained in the state of the the set of most the state of the s

DATE:	10-17-93 BUN
TIME ON SITE:	07:15 Am
TIME EXIT SITE:	6:00 pm
TOTAL HOURS ON SITE:	10h 45
NOTES: Completed up to up. Bet The sump sump into the many sump with a fle The suited onto the of Act at 72 mm to leade at	Don't winted to broke from a still held in the form of the come of

DATE:	10-18-93 MON
TIME ON SITE:	07:15 Am
TIME EXIT SITE:	6:00 pm
TOTAL HOURS ON SITE:	10h 45 min
NOTES: completed up to	The tent at last is the HOT the tent at last is the HOT ster. We ill contitle later to ton ill and so we will treat out taking any simples. Itaked On the
Sulfix or 20 pls @ IN for	1 8,000 gels / gel and for 400 witer. 1 25% for 14000 gels. Indeed for 1750t.
MUN RICITY CHE	n 503-247-2985

DATE:	10-19.93 Tues
TIME ON SITE:	07:30 Am
TIME EXIT SITE:	05:30 Am
TOTAL HOURS ON SITE:	10 km
NOTES: Completed Co. H. O. H.	Or test. The your conester did not putting to all 23 and lamored the 14,0, Italia behalite to denie governous desiel porter to the still treated
	<i>y</i>
MIKE HAGY - HAUR PO# 10057	OCT11753
14503 - 720-74	189
PACTS - 3	7.90 FILTER 15-40 S FELD.
	42.14

DATE:	10-20-93 Wen,	•
TIME ON SITE:	7:30 Am	
TIME EXIT SITE:	05:30	,
TOTAL HOURS ON SITE:	1000	-
NOTES: System among	fine sulfine acid	should arrive
at non today. Still in	othing now to	
	· · · · · · · · · · · · · · · · · · ·	

DATE:	10-21-93 Thespan
TIME ON SITE:	0.700 Am
TIME EXIT SITE:	
TOTAL HOURS ON SITE:	
NOTES: Completed text # 31	at 16:30 an all songles are
of the pump test. The	The are first other to
Oher oil at liese an	entor it 753 has
	START 551/km
	·

DATE:	10-27-93 WEDNESDAY
TIME ON SITE:	07:30 An
TIME EXIT SITE:	19:00 pm
TOTAL HOURS ON SITE:	12 hrs 30
NOTES: Pacined parts from and the dryer started for Test at #21/45 cm. Lyden after the CAR is not alle have to change or sail a	The I so hateld the wiffler of the track to be so the solding to be will stop to he will so you

DATE:	10-28-93 THURS	
TIME ON SITE:	07:30 Am	
TIME EXIT SITE:	07:30 pm	
TOTAL HOURS ON SITE:	12 hors o min	
NOTES: Lysten many free	Completed text to	6 # 7 1k
growing 1.9% concertistion	Hadristment H	tring sup for
fis. Day . Thated	to Al algust Jones	to 5 at 18:30

DATE:	10-29-93 FRI
TIME ON SITE:	07:30 h
TIME EXIT SITE:	17:30 en
TOTAL HOURS ON SITE:	10 has.
NOTES: Congleted test up 7 The HC-12 montes but ofte of the state of land to meter the party of the meter of	to 13. Así a little pullera with a withing off and a for while, it ley had problem will thought, intitate of a contrate of a con
We used 990 22911 geilen	llon of alfanic axia to adjust of motor of to pH 5
	190003 167092 g zillon silling 22911

DATE:	10-30-93 SAT
TIME ON SITE:	07:00 m
TIME EXIT SITE:	05:30 pm
TOTAL HOURS ON SITE:	10 hs 30 min
NOTES: Consider that up to animal monte, the said to the rump up man. Wa the setting of 40% as what Text to pH 9 at 9:00 am	100 2 Syle tiest of when the cate 1 started only get up & 86 Jam autohad and the prop and cure enough, we estanted the sot of

DATE:	10-31-93 Suni
TIME ON SITE:	07:30 Am
TIME EXIT SITE:	05:30 p
TOTAL HOURS ON SITE:	10 kre
NOTES: Completed text and the text of the text of the veries of the text of th	Jak 75 hysten was some fine day of the property of the gate value of the solve of t
all telegran and got it get to flanger. Draw the flanger Draw have a fresh bratch a	soon for the sent one some we as soon but a tank, so that we can see we see with the see we will all the see we see with the see we will all the see we see

DATE:	11-1-93 moni
TIME ON SITE:	10:00 Am
TIME EXIT SITE:	06:00 pm
TOTAL HOURS ON SITE:	2 hrs
NOTES: Went with the work of the man who could not the the same who could not the same of the same of the property of the prop	her it so I went to Furnewell a last face any cutter lant he hid sent make one in the theyle and I they system and started test # 26 a loker took to PR 9 than writch Hade my the depol with 150 pollows more
218220 2588 3	28217
19000	

DATE:	11-2-93 rues
TIME ON SITE:	07:00 Am
TIME EXIT SITE:	
TOTAL HOURS ON SITE:	
NOTES: Completed test up the end of the pum test and the last sample is in H202 last to give it in Recorded at 03:50 but Recorded to last demonstrations	# #30. We are just treating until The may text will be knick at 04.00. If he tree at 12.30 pm. I am injection ore middle and also many as the est at 04.00 pm. Treatelility. text was we still have come water in 6000.

DATE:	11-4-93 [Hues
TIME ON SITE:	07:30 m
TIME EXIT SITE:	1:00
TOTAL HOURS ON SITE:	5.An 30min
NOTES: Started to 15ke	system and served all the
to section the policy of	and up. the forest tense will be used
until mest week, as the	plunting was left on

ULTROX® UV/OXIDATION WATER TREATMENT SYSTEM

UV
A-72

APPENDIX B: Sample Collection Log

TESTS TREATABILI

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

SAMPLE COLLECTION LOG

PUMPING WELL 4-1

jodojacajania	1	7 7	<u> 7</u>	۲ '	1	١	,	ر	7	_ /	7	, ,	7	7		7	7		,	7	>	7	7.	7	,
Sampler's Initials	KLP.	X S	KS	KS	KS	KS	KS	KS	KS	1			Q ₃	5	E	3	5	5	5	S	9	F	(4)	3	9
(BP) Totalizar Reading	17/62	39141	39141	39141	43762	-	*	25,94 50:72		4	52560		1	59398		->	19119		7	48169				71113	7
(TS) Totalizer Reading	24020	28400		D	30756		→	25752		A	35766		-6	35766		→	40550		Ŷ	40550			-	43481	7
Serrole	520	128	762	218	705	752	786	670	519	414	763	769	758	apto	803	Ma	700	184	100 mg) 164	hal	phc	722		866
Semple PH	7.83	7.69	7.34	8.24	2.48	162	8.27	7.69	7.51	8.16	7.68	8.	8.28	7.38	7.74	7.91	2.38	7.44	7.89	7.62	7.62	8.17	8.30	7.60	7.84
Time Sample Collected	10:30/10-13	5h. H		Δ	8:15		>	51:35		Δ	6/1/00		Þ	0405	_	→	0756		→	1115			÷	1915/0430	1
Time Test Starred	n/a	54:01		->	15:15		→	18:35		4	27:00		4	01:35	_	ラ	2540		→	0815			→	0/30	-3
Fleid Serryle No	G01100(F or L)	G01101(F or L)	GO1UO1(F or L)	G01E01(F or L)	G01102 (F or L)	G01U02(F or L)	G01E02(F or L)	G01103(F or L)	GO1U03(F or L)	G01E03(F or L)	G01104(F or L)	GO1U04(F or L)	G01E04(F or L)	G01105(F or L)	GO1UOS(F or L)	G01E05(F or L)	G01108(F or L)	G01U06(F or L)	G01E08(F or L)	G01107(F or L)	G01107(F or L)D	G01U07(F or L)	G01E07(F or L)	G01108(F or L)	GO1U08(F or L)
Post GA <i>C</i> (E)				×			×			×			×			×			×				×		
Post UV/ox (U)			×			×			×			×			×			×				×			×
Influent III	×	×			×			×			×			×			×			×	×			×	
H202 (mg/L)	n/e	0			0			0			0			0			0			0				0	
Ŧ	n/a	7			7			7			7			7			7			7				7	
UV/ox Flow Rate (gpm)	e/u	4.3			7.2			21.6			4.3			7.2			21.6			4.3				7.2	
Ozone (mg/L/min)	B/u	1.5			1.5			1.5			2.5			2.5			2.5			3.5				3.5	
No.	0	-			2			6			4			ro.			۵			7				80	٦

TREATABILI TESTS

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

Sentines Sentin	PUMF	PUMPING WELL 4	4-1					SAMPLE	E COLLECTION LOG	N LOG							
1.5	Zees. No.		UV/ox Flow Rate (gpm)	I.		Influent	Post UV/ox (U)	Post GAC (E)	Fleid Sample No.	Time Tast Started	Tame Sample Collected	Semple pH	Serrole	Totalize	Totaliter	Samolaria	
1.5								×	G01E08(F or L)	0130	क्षार विश्वक	7.79		43481	71113	B	7
1.5 4.3 5 0	6		21.6	7	0	×			G01109(F or L)	0500	0080/91/0	7,36	735	तप्रश	73766	(Å)	1
15 4.3 5 0							×		GO1U09(F or L)			2.51	79.2			9	\
1.5								×	G01E09(F or L)	->	→	7.79	762	- >	→	3	7
1.5 7.2 5 0 X X CONTRIGER	10	1.5		ហ	0	×			G01110(F or L)		\sim	8,18		25224	78187	KŚ	١
1.5 7.2 5 0 x 0 0 0 0 0 0 0 0							×		GO1U10(F or L)			7,35	843			1. 5	1
15 7.2 5 0 X X								×	GO1E10(F or L)	4	- D	8.21	326	0	D	k ')	2
1.5 21.6 5 0 X X	=	1.5	7.2	S	0	×			G01111 (F or L)	14:30	(7:30	28.5		50319	75157	KS	١,
1.5 21.6 5 0 X							×		G01U11(F or L)			14.7	819			K S	١.
1.5 21.6 5 0								×	GO1E11(F or L)	4	A	8.19	805	4	D	531	1
2.5 4.3 5 0 x x x gotelzie or 1	12	1.5	21.6	ß	0	×			G01112(F or L)	54:61	53:45	7.60	762	30505	77 706	165	١.
2.5 4.3 5 0 x x Gotte12ff or U							×		GO1U12(F or L)			00.9	814			(c r	١
2.5 4.3 5 0 x								×	G01E12(F or L)	A	A	8.32	141	A		125	1
No.	13	2.5	4.3	ທ	0	×			G01113(F or L)		24:00	7.50	449	53358	'	\$	1
2.5 7.2 5 0 X X GOIE13 Fort) \ \(\begin{array}{c c c c c c c c c c c c c c c c c c c							×		G01U13(F or L)			4.05	713			B	7
2.5 7.2 5 0 X X GOILIAFOLLD \$\sqrt{10}\$ \$\								×	G01E13(F or L)			9.48	756			97	`
25 7.2 5 0 x x GOIII4ForU O1:05 0405 6.38 714 678 1713 60 26 21.6 5 0 x x GOIEI4ForU O425 063K 5.70 724 5584								×	G01E13(F or L)D	>	>	و طرد	756	>	>	5	,
2.5 21.6 5 0 X X GOILISFOIL) 0435 0636 5.70 728 \$5990 7713 49 70 70 70 70 70 70 70 70 70 70 70 70 70	14	2.5	7.2	ro.	0	×			G01114(F or L)	01:05	20405	J. 38	714	67a	21713	9	\
2.5 21.6 5 0 x x Gotesial							×		G01U14(F or L)			6.50	769			9	7
2.5 21.6 5 0 x x GOILISIF or L) 0435 0636 5.70 72% \$5890 77113 W 2.5 21.6 5 0 x x GOILIBIF or L) 0435 0636 5.70 72% \$5890 77113 W 3.5 4.3 5 0 x x GOILIBIF or L) 0705 6.21 536 6.18 779 779 779 779 779 779 779 779 779 77								×	GO1E14(F or L)	→	7	ا و ال	75	ラ	>	3	.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	2.5	21.8	Ŋ	0	×			G01115(F or L)	0435	0638	5.70	XCL	3888	7	8)
3.5 4.3 5 0 \times \times GOITHEFORU & \cup 6.31 784 \cup true \cup 10 \cup							×		G01U15(F or L)			3.50	858			S	3
3.5 4.3 5 0 x x GOILIGHFOLL OPOS 1005 6,21 536 61841 77913 (1)								×	GO1E15(F or L)	چ-	>	6.3	186	7	ے	3	1
x GOIUTEFOLD 1. 1, 3.52 951 L L 10	9		4.3	ß	0	×			G01116(F or L)	0105	1005	18,0	536	15819	77913	(10))
							×		G01U16(F or L)	1	77	3.52	951	7:	7	0	-

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY TREATABILI. TESTS

UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

SAMPLE COLLECTION LOG

PUMPING WELL 4-1

	7	7	7	۷	7	7	۵)	,	>	>	>	>	2	د	>	>	۷	7	>	>	5)	7	7
Semples's Inflicts	B	 <5	· K S	KS	KS	1.5	53	13	125	11.5	(5)	16.5	5	97	(1)	(1)	(I)	(i)	(D)	(1)	5	V _y	1,	AIAC:	A1963
(BP) Totaliser Reading	2113	\$0070		t	87178		b	8358	_	1	330.86		4	>	V. 3. 36		/	830.86		}	7808 S		÷	83086	+
(TS) Totalber Reading	1819	62151		8	15179		Ð	66207		- 6-	181168		0	>	31216	-	Ĵ	75663			77680		\rightarrow	80381	Ŷ
Sample	~518	432	200	888	298	880	813	835	893	918	812	505	808	178	177	175	813	832	826	508	108	783	164	3,8	823
Sample	6.0)	21.9	4.90	7.001	6,65	6.41	7.30	1216	8.60	8.36		فرين	8.87		9.21	316	8. bu	9.49	8.6 1	8.39	9.34	31.8	8.30	1.20	8,73
Tene Semple Collected	1005	13:23"		Δ	15:50		4	20:30		4	24:00dil		0	7	035817		- <u>></u> -	0730		->	1104			1435	+
Thrie Tast: Starred	2020	10:30		A	13:50		0	17:30		4	21:00		A	7	00:50		~	0430		7	0305			135	-
	or L)	r LJD	or L)	J. C.	or L)	or L)	or LJ	or L)	or L)	or LJ	or L)	or L)	or L)	or L)											
Flaid Sampla No	G01E16(F or L)	G01117(F or L)	G01U17(F or L)	G01E17(F or L)	G01118(F or L)	G01U18(F or L)	G01E18(F or L)	G01119(F or L)	G01U19(F or L)	G01E19(F or L)	G01120(F or L)	G01U20(F or L)	GO1U20(F or L)D	G01E20(F or L)	G01121(F or L)	G01U21(F or L)	G01E21(F or L)	G01122(F or L)	G01U22(F or L)	G01E22(F or L)	G01123(F or L)	G01U23(F or L)	G01E23(F or L)	G01124(F or L)	G01U24(F or L)
Post Flaid GAC Sample (E) No.	X GOTE16(F	G01117(F	G01U17(F	X G01E17(F	G01118(F	G01U18(F	X G01E18(F	G01119(F.	G01U19(F	X G01E19(F	G01120(F	G01U20(F	G01U20(F o	X G01E20(F	G01121(F c	G01U21(F	X G01E21(F	G01122(F	G01U22(F	X G01E22(F	G01123(F	G01U23(F	X G01E23(F	G01124(F	G01U24(F
	1	G01117(F	X G01U17(F		G01118(F	X G01U18(F		G01119(F	X G01U19(F		G01120(F o	X G01U20(F	X G01U20(F o		G01121(F c	X G01U21(F		G01122(F	X G01U22(F		G01123(F	X G01U23(F		G01124(F	X G01U24(F
Post GAC (E)	1	X G01117(F			X G01118(F			X G01119(F.			X G01120(F c				X G01121(F c			X G01122(F.			X G01123(F o			X G01124(F	
Post Post UV/ox GAC (U) (E)	1																								
Influent Post Post UV/or GAC	1	×			×			×			×				×			×			×			×	
H202 Influent Post Post GAC GAC (II) (U) (E)	1	×			×			×			× .0				×			×			×			× 0	
mg/t) Influent Post Post mg/t (II) IU) (E)	1	.2 5 0 X			× 0			× 0			× .0 6				× 0			× 0			× 0			× 0	

TREATABILI' rESTS

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

PUMP	PUMPING WELL	4-1					SAMPLE	E COLLECTION LOG	N LOG						
Toet	euazo:	UVIOK	н	H202	Influent	Post	Post	Flatd	Tans	Tene	Sample	Sample	(TB)	/ (BP)	Sampler's
No.	triad friend	Flow Rate (gpm)		tmg/L)	0	UV/0X (U)	GAC (E)	Sample No.	Tast	Sample Collected	Į	Cond	Totalizer Reading	Totelizer Reading	Filiate
							×	G01E24(F or L)	58:11	14:35	25.8	518	68508	83086	MARY
25	3.5	4.3	6	0	×			G01125(F or L)	50:51	50181	8.32	833	8257L	8.3826	ارد
						×		G01U25(F or L)			8,75	1.23			S
							×	G01E25(F or L)	Þ	A	8.36	719	4	4	165
26	3.5	7.2	ø.	0	×			G01126(F or L)	18:25	21:25	8.33	167	82576	86623	1 52
						×		G01U26(F or L)			8.37	763			5)
							×	G01E28(F or L)	0	-0	8.29	792	\$	+	10.5
27	3.5	21.8	6	0	×			G01127(F or L)	21:50	00:55	910c	136	2220	87491	5
					×			G01127(F or L)D			4.30	736			10
						×		G01U27(F or L)			86.38	114			. "
							×	G01E27(F or L)	Δ	\rightarrow	5.16	SUG	->	÷	ρ_{i}
28	3.5	4.3 wo/UV	7	1.2	×			G01128(F or L)	16:00	19:00	7.69	759	98018	16468	MAO/K
						×		G01U28(F or L)			7.99	731			165
							×	G01E28(F or L)	4	4	7.81	256	٥	-	Ŋ
29	3.5	7.2 wo/UV	7	1.2	×			G01129(F or L)	51:H2	51:22	2.75	لمول	Sh8'a01	89481	155
						×		G01U29(F or L)			00.)	702			75
							×	G01E29(F or L)	4	. 	7.95	147	4	•	K
30	3.5	21.6 wo/UV	7	1.2	×			G01130(F or L)	22:45	01:45	7.73	Yas	103653	89491	7
						×		G01U30(F or L)			7.87	773			<u></u>
							×	G01E30(F or L)	>	→	2:17	762	→	→	3
31	3.5	4.3	7	0	×			G01131(F or L)	0300	7050	18.45	830	106363	15/63	×
						×		G01U31(F or L)			1	L 673	1		S
							×	GO1E31(F or L)			86.8	181		1	34. W
							×	G01E31(F or L)D	A	7	8.98	781	Ŷ	·	4
File:TF	File:TREATO1.XLS	574 Feb.		L= Cont	L = Contract Laboratory Sample	tory Samp	•	TS = Treatment System	stem						

UV B-5

F = Field Laboratroy Sample

DAMES & MOORE

BP = Bypass System

D = Duplicate Sample Required

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON TREATABIL, TESTS

SAMPLE COLLECTION LOG **PUMPING WELL 4-1**

	\$ \frac{1}{2} \tilde{\text{E}} \times	Serricte No. S1 G01E26(F or L) G01127(F or L) G01127(F or L) G01127(F or L) G01128(F or L) G01128(F or L) G01128(F or L)	Tiest Earnplas Sterred Collected	Service Servic	Cond	Totalizer Reading	(BP) Totalisa	Sempler's initiate
	₩				Comp			Fridate
							Reading	
	×	GO1E26(F or L) GO1127(F or L) GO1127(F or L) GO1U27(F or L) GO1E27(F or L) GO1128(F or L) GO1E28(F or L)						
	×	GO1127(F or L) GO1127(F or L) GO1U27(F or L) GO1E27(F or L) GO1128(F or L) GO1128(F or L)						
	×//×	GO1127(F or L)D GO1U27(F or L) GO1E27(F or L) GO1128(F or L) GO1E28(F or L)						
	×	G01U27(F or L) G01E27(F or L) G01128(F or L) G01E28(F or L)						
	×	G01128(F or L) G01128(F or L) G01228(F or L)						
	/ ×	G01128(F or L) G01428(F or L) G01628(F or L)						
×	×	GOTEZBIF or IN						
	×	G01E28(F or L)						
			=					
×		G01129(F or L)	/					
×		G01U29(F or L)	/	/				
	×	G01E29(F or L)		/				
×		G01130(F or L)						
×		G01U30(F or L)				<i>†</i>	/	
	×	G01E30(F or L)				-		
×		G01131(F or L)		7.82	777	3 5567	1600	5
×		G01U31(F or L)		8.14	893			5
	×	G01E31(F or L)		7.87	82			3
	×	G01E31(F or L)D	*	2.87	202	->	>	9
L= Contract Laboratory Sample		S = Treatment System						
	X X X X X X X X X X X X X X X X X X X		GO1129(F or L) GO1129(F or L) GO130(F or L) GO1130(F or L) GO1131(F or L) GO1131(F or L) GO1131(F or L) X GO1E31(F or L) X GO1E31(F or L) TS = Treatment Syst	X GO1E28(F or L) GO1U29(F or L) GO1U29(F or L) GO1U30(F or L) GO1U30(F or L) GO1U31(F or L) GO1U31(F or L) X GO1E31(F or L) X GO1E31(F or L) X GO1E31(F or L) X GO1E31(F or L) TS = Treatment System	X GO1E28(F or L) GO1U29(F or L) GO1U30(F or L) GO1U30(F or L) GO1U30(F or L) GO1U31(F or L) X GO1E31(F or L) X GO1E31(F or L) X GO1E31(F or L) X TS = Treatment System	X GO1E28(F or L) CG0128(F or L) GG1128(F or L) GG1128(F or L) GG1130(F or L) GG1130(F or L) GG1131(F or L) CG01131(F or L) X GG1E31(F or L)	X GO1[28(F or L) CO1[28(F or L) CO1[30(F or L) CO1[30(F or L) CO1[30(F or L) CO1[30(F or L) CO1[31(F or L) CO1[X GO1[28(F or L) CO1[28(F or L) CO1[30(F or L) CO1[30(F or L) CO1[30(F or L) CO1[30(F or L) CO1[31(F or L) CO1[

F = Field Laboratroy Sample

D = Duplicate Sample Required

BP = Bypass System

DAMES & MOORE

FESTS TREATABILL

7: SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

. 6.

SAMPLE COLLECTION LOG

110 Samplarie mill Filte //// 11111 nii mi こら Mica 52 3 73 12 Mecs N K 5 521 KS 22 S 22 5 ¥ BC 168720 086807 જુ 98275 108/1801 0880 29490 51286 05.78/1 Reading 18650 12955 51286 1186:0 as951 13726 78 162092 589291 15893 157/68 9929 210191 00151 15493 15493 89/151 157/68 157168 15493 15493 15493 922 908 938 Semple Cond 829 228 088 258 8 23 827 875 883 890 298 598 016 831 803 934 444 648 88 800 828 98 148 7.82 7,75 7.79 8,23 7.92 7.76 8.37 7.72 7,83 8,26 7.83 7.76 8,20 7,84 8,22 2.68 618 7.76 25.8 8.04 7,84 71'8 ä 8.05 7.31 8.3 5hi 21 1805 2115. 2115 Time 11:10 Collected 1445. 1805 1805 10:30 1445. 5441 0030 800 2170 2115 10-27-93 5051 0730 Time Started 505 1/45 1505 Sh:01 9415 1/45 0010 1145 1815 1815 2130 -181 G13107(F or L)D G13U07(F or L) G13U08(F or L) G13E07(F or L) G13E06(F or L) G13U05(F or L) G13E05(F or L) G13U06(F or L) G13108(F or L) G13U01(F or L) G13U02(F or L) G13U03(F or L) G13U04(F or L) G13E04(F or L) G13106(F or L) G13107(F or L) G13E01(F or L) G13E02(F or L) G13E03(F or L) G13102 (F or L) G13104(F or L) G13105(F or L) G13100(F or L) G13101(F or L) G13103(F or L) Sample Fladd Ŷ GAC Post Œ × × × × × × × Pes Vox 3 × × × × × × × × × × × × × × 8 × × × × H202 0 0 0 0 0 0 0 0 **%** _ Ŧ ^ 1 7 7 UV/ox Flow Rase (Bam) 21.8 21.6 7.2 4.3 7.2 7.2 n/a 4.3 4.3 **PUMPING WELL 4-13** Oxpre-3.5 2.5 2.5 3.5 n/a r. ا 5 2.5 Jest No. 8 9 4 ល 7 0 8 m

STS TREATABIL

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

. 1. 2 21.

PUM	PUMPING WELL 4-13	4-13					SAMPLE	E COLLECTION LOG	ON LOG							
Test		ΑοίλΩ	н	H202	Influent	Post	Post	Fleid	Tine	Time	Sample	Sample	(115)	(48)	Sampler's	00000
No.	(mg/L/min)	Flow Rate (gpm)		(mg/L)	t)	UV/0x (U)	GAC (E)	Serrote No.	Tast Started	Sampla Collected	I	Cond	Totalizer Reading	Totalizer	halists	ogrania.
						-	×	G13E08(F or L)	Sh: 01	Sh:El	8.23	8/6	167092	168720	nu	_
6	3.5	21.6	7	0	×			G13109(F or L)	1355	1655	7.37	930	16 9058	177300	1111	`
						×	-	G13U09(F or L)		1655	24.5	061			m ci	_
							×	G13E09(F or L)	1	1655	7.60	777	+	1	mee	_
5	1,5	4.3	2	0	UNTREATE X			G13110(F or L)	5161	2215 .	8.02	892	774805	13 500	F. W	3
						×		G13U10(F or L)		2215	7,64	618)—		1911	`
							×	G13E10(F or L)		2215	8,23	810	→	> 24	Juct.	2
=	1.5	7.2	2	0	×			G13111 (F or L)	3245	5410	7.10	088	508hL1	460405	165	`
						×		G13U11(F or L)		5710	09.9	447			KS	ر
							×	G13E11(F or L)	→	01115	7.52	383	A	Þ	17.5	,
12	1.5	21.6	S.	0	*			G13112(F or L)	0170	0150	7,50	1030	177492	213810	165	>
						×		G13U12(F or L)			95.9	1020			5)/	>
							×	G13E12(F or L)	4	4	8.20	460		\	KS	د
13	2.5	4.3	ហ	0	×			G13(13(F or L)	0530	0830	27'2	106	181022	222490	KS	7
						×		G13U13(F or L)			7.18	0501			321	7
			•				×	G13E13(F or L)		_1	8.18	2%			321	7
							×	G13E13(F or L)D	-	→	8.18	296	Þ	4	52)	7
14	2.5	7.2	ស	0	×			G13114(F or L)	0060	12:00	24.7	968	220181	235150	KS ////	1
						×		G13U14(F or L)			7,12	792			KS/min	_
							×	G13E14(F or L)	Þ	D	8.03	110	4		1.0/2.1	
5	2.5	21.6	ß	0	×			G13115(F or L)	1220	1520	7.13	296	185810	865212	MIL	1
						×		G13U15(F or L)		0251	6.22	830			141	/
							×	G13E15(F or L)	\rightarrow	1520	7.52	820	_>	7	1111	-
16	3.5	4.3	ß	0	×			G13116(F or L)	OHS ! 100	1840	7.25	857	187285	257505	DIN.	` :
						×		G13U16(F or L)	1540	1840	10,10	406	1	7	1211	
								1								ì

TESTS TREATABILI

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

			\	\	\	\	١	_	/)	`	1	,	\	١	\	۲	`	`	\	`	`	12	5	<u>, </u>	<u> </u>	_	
	Samplar's	Fridate	hw	11.11	101	11116.	KS	22	45	10.5	17.5	ارر	pul			- 1	nu		->		-	->	521/00	/KS	14.0	!	15	
	(8P)	Totalizar Reading	253305	264960	1.)	27.107.		→ >	7.32.65		-1-	311190			ح	319280	•	_	329520	-	<u>→</u>	34/18	-	0	351030	*	"
	(TS)	Totalize Reading	187785	187885		1	190003		4	200050		-0	200050			_>	205705	-	_	205850		>	708854		-	00 hbo 2	→	2.1
	Semple	Cond	813	804	2882	810	770	837	835	855	1-839	787	862	848	851	893	830	908	900	860	646	927	846	8/6	870	315	27%	
	Sample	Ŧ	7.59	7.34	98.9	7.1.5	7.35	6.63	69'6	7,26	6,47	8.02	7.75	9.07	9.09	8.03	7.90	12.6	7.94	2.68	8.82	7.88	7.79	8.68		7,85	9,15	" ' '
	Time	Sample Collected	oh 81	2200	0.022	2 200	0110		4	11:00		4	14:20			0	1735	_	_	2045	2045	2045	5000	9000	0005	0240	4	
FOG	Time	Tast	0,65/	0061	_	\rightarrow	2210		-	0800		٥	11:20				1435		7	1245		-	2105		>	ohoo	4	1
AMPLE COLLECTION LOG	Flafó	Sampla No.	G13E18(F or L)	G13117(F or L)	G13U17(F or L)	G13E17(F or L)	G13118(F or L)	G13U18(F or L)	G13E18(F or L)	G13119(F or L)	G13U19(F or L)	G13E19(F or L)	G13120(F or L)	G13U20(F or L)	G13U20(F or L)D	G13E20(F or L)	G13121(F or L)	G13U21(F or L)	G13E21(F or L)	G13122(F or L)	G13U22(F or L)	G13E22(F or L)	G13123(F or L)	G13U23(F or L)	G13E23(F or L)	G13124(F or L)	G13U24(F or L)	
MPLE CO	Post	GAC (E)		G13	613	X G13	613	G13	X G13	G13	G13	X G13	G18	G13	G13(X G13	G13	613	X G13	G1:	G13	X G13	61	G13	× 61	10	15	
SAI	Post Pc	UV/0x G,			×			×			×			×	×			×			×			×			×	
	Influent	3		×			×			×			×				×			×			×			×		
	H202	Img/L)		0			0			0			0				0			0			0			0		
	Hđ			ro			r.			6			6				6			6			6			6		
1-13	UV/ox	Flow Fate (gpm)		7.2			21.6			4.3			7.2				21.6			4.3			7.2			21.6		
PUMPING WELL 4-13	eud2O	(mg/L/min)		3.5			3.5			1.5			1.5				1.5			2.5			2.5			2.5		
PUMPI	Test	No.		17			18			19			20				21			22			23			24		

UV B-9

TREATABILI TESTS

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY

UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

CAMPIE COLLECTION LOG * * 7cst beyon on 11/1/93 @ 11/25

PUMPING WELL 4-13 Test Ozone VViox PH H202 Influent Post	UV/ox PH H202 Influent	H202 Influent	Influent		Post		SAMPI	PLE COLLECTION	N LOG .	Time *	Test begins	20 2	@ 56/1/11			
n) How Rete (mg/L)	(mg/L)	(mg/L)				UV/ox	GAC (E)	Serrold No.	Test Started	Sample Collected	Sample p+f	Cord	Totalizer Reading	Totalizar Reading	Sampler's hillele	
							×	G13E24(F or L)	0h <i>0</i> 0	oh20	רהר	414	209400	351030	125	`
3.5 4.3 9 0 X	0 6	0		×				G13125(F or L)	0300	0090	2,80	936	144212	391098	12.5	`
						×		G13U25(F or L)			8.74	1012				`
							×	G13E25(F or L)	-	-	7.91	156	*	8	1.5	>
3.5 7.2 9 0 X	0	0		×				G13126(F or L)	11:00*	00:41	2.69	926	818278	169870	inu	1
						×		G13U26(F or L)			8.76	81.6	2,9228			١
							×	G13E26(F or L)	-	4	805	966		t)
3.5 21.6 9 0 X	0 6	0		×				G13127(F or L)	1915	1715	16.6	897		181630		1
×	×	×	×	×	- 1			G13127(F or L)D		1715	7.79	8,94				`
					. 1	×		G13U27(F or L)	~	171.5	8.30	146			4)
							×	G13E27(F or L)	`A	1115	8.61	416	>	>	>)
3.5 4.3 wo/UV 7 1.2 X	7 1.2	1.2		×	- [G13128(F or L)	1755	2055	7.72	860	201122	18 9320	14%	1
×					^			G13U28(F or L)		2.055	8.15	346			1011	\
					- 1		×	G13E28(F or L)	→	2055	7.83	933	⇒	^	1000	1
3.5 7.2 wo/UV 7 1.2 X	7 1.2	1.2		×				G13129(F or L)	8120	0000	7.84	298	201122	HS KS	16.5	\
					- 1	×		G13U29(F or L)		+	8.14	288			16.5	\
					l l		×	G13E29(F or L)	->	~	7.89	903	4	-0	KS	\
3.5 21.6 wo/UV 7 1.2 X	7 1.2	1.2	.2	×				G13130(F or L)	0000	0350	7.78	847	20122	313686	KS	4.7.
						×		G13U30(F or L)			8.04	885			KS	١
							×	G13E30(F or L)	D	A	881/	407	-	-	ろ	1
3.5 4.3 7 0 X	7 0	0		×				G13131(F or L)	1230	1530	7.68	417	22.9916	2005	AU	
						×		G13U31(F or L)		_	8.26	878	229916	529055		
							×	G13E31(F or L)	`		7.78	906	26622	529855		
							×	G13E31(F or L)D	7	*	7.76	930	229916	550/1	Ŷ	
						1			Te - Treet							

F - Field Laboratroy Sample File:TREAT13.XLS

L- Contract Laboratory Sample D - Duplicate Sample Required

BP = Bypass System

TS - Treatment System

DAMES & MOORE

UV B-10

APPENDIX C: System Settings Log TREATABL Y TESTS

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

Ozone Doseage = air flow x 03 conx x2.

SYSTEM SETTINGS LOG

PUMPING WELL No. 4-

Desired H202 Conc	V// 0	M	NA.	Q	77	ZK	0 64	NA	K.A.	0 ////	1/1	VIV	N/N o			Oly o	O N	4/2	o Ala	NN		0		e N	0 N/A	AV	() Z	0 10/4	N/U	V
Desired Actual pH	7 7.6	7.7	7.8	7 7.9	7.8	23	7 7.9	7.7	7.9	7 7.8	7.8	200	7.7	7.6	2.7	7.6	7.4	7.3	7 7.5	7.7	7.6	7.6	۲.۲	7.6	7 7.5	7.3	7.0	5 6.4	5.8	() y -
Actual De UV/ox Flow Rate	5.5 AG-16A 6"	3.8	4	7.0	7.0	6.9	21.2	512	21.2	۲.0	6.0	4.0	7.1	(e, 7 Apple 7.4)	10.0 Market 0.0)	2.18	30 935 40	20.4	4.4	4.0	4.3	7.0	7.5	8.0 Ams to 7.0	21.4	30.€	91.4	175	7	
Desired UV/ox Flow Rate	4.3			7.2			21.6			4.3			7.2			21.6			4.3			7.2			21.6			4.3		
Actual . Ozone Doseage mg/L/min	1.5	1.5	 		1.5	.5	57	1.6	1,6	9.2	5.6	3. %	2,6	J.6	3.6	3.6	2.6	عادلا	3.7	3.4	3.4	3.7	3.5	3.5	3.5	3,5	3.5	1.5	5.1	` .
Ozone Conc %	2.075	2,0.2	2016	2.080	2.677	2,06	2.675	2.112	021.5	2.176	2.146	2,145	3716	2,150	5.157	2,153	2.40	a.162	2,13	Sp.1.80	1.977	2.180	2.063	2.041	2,070	2,072	2,07a	2.0%	2,042	, ,
Air How Rate sofh	210	208	210	210	802	208	210	017	208	345	345	345	345	348	345	345	345	345	2 8 5	490	490	485	7%7	&h	08 h	34	480	O.G	210	
Cell Pressure psi	51	15	SI	75	<u>S</u>	15	15	15	15	15	15	15	15	15	S	15	S	15	<u> </u>	R	5	S	7	S	5	5	15	[5	15	
Desired Ozone Doseage mg/L/min	1.5			1.5			1.5			2.5			2.5			2.5			3.5			3.5			3.5			1.5		
Date/Time	11 25	02:21/5101	62.81 61.01	51:51/51-01	-	1011/18:15	_		52:12/81-01	00:22/21-01	08:52 /11.01	45:00 11-0	·		2850 N/G	SS/0/110	1 =		1 ~	_	-	_	615/030D	10/5/04an		1	1	0011/11/19	_	
Test	0 1	10.	ર	2 10	· 01	0	3	0)	0)	4	9	S	2	2	9	9		3	7	3	3	8			0		3	10	3	

UV C-2

TREATABII / TESTS SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON SYSTEM SETTINGS LOG

PUMPING WELL NO. 7-1

Number											
		Pressing	Rafe	France	Oyena	INVINE	T. W.	111		1707	CUCH
	Dozesoe	, , , ,	And	8	Docance	E. O	D			1	
	mg/L/min	ē.		ş	mg/L/min	dom nate	abu vate				ma/L
00:31 /51:01	1.5	15	210	1.993	1.5	٦,٢	5,5	5	5.5	0	<i>₹//</i> ¥
07:21 /31-01		15	2.0	2095	S :1		7.6		5.6		MA
17.45	1.5	15	210	2.060	1.5	21.6	21.6	2	2.3	0	1/4
51:6//51-01		1	ţ	1		,	1		1		4/4
10-15/20:35		15	210	1.996	1.5		21.0		5.6		N/A
10-15/21:00	2.5	15	350	2,22	۲.٦	4.3 -	4.4	S.	0'h	0	N/A
13-15/26:30		K	350	7,086	6.6		٦.٦		4.8		W/A
22:82/31.01		51	35.0	2.082	2.6		4.0		5.7		N/4
10/16/0105	2.5	15	345	2,077	2,5	7.2	7.4	2	5.7	0	NIA
10/16 0335		Ū	350	2.0%0	2.6		7.3		5.40		NA
10/16 (3555		51	350	a,096	ما.ه		J.4		5.16		N/A
10/16 0 435	2.5	15	3 50	2,105	D.6	21.6	21.5	TO.	4.53	0	NIN
		/>/	360	3.116	2.6		20.7		4.38		NIB
16/10 DIBS		15	350	3.116	ى د		<u>ه.</u>		4.20		Ala
10/10 0705	3.5	15	1 9 0	2.148	3.7	4.3	4.3	S	3.59	0	NIA
10/16 0835		5	490	810,6	3.5		5.4.4.7		56		Ala
into off		જ	S	1.995	3,4		5.0		5.7		2
1 18 100C	3.5	75	450	3,011	3.4	7.2	7.4	S	6.0	0	AIN
11 July 1150) <u>·</u> (والحار	500B	3.5		20		5.7		NA
14/k 1310		15	490	1,972	3,4		7.0		5.6		N/A
02:51 110	3.5	íŚ	450	1.948	3.4	21.6	71.12	υ	5.6	. 0	rilA
10/16 111.50		(5)	490	1,3155	3.4		21.0		7.7		N/u
11/11/15:45		15	ગ _ે ખ	1952	3.4		21.0		5.7		٦/٦
10/16/17 30	1.5	14.5	210	2.0.5	71	4.3	4.0	6	1.6	0	ア/ス
11/11/18:00		15	212	2.015	1.5		د('ط		9,3		M/A
M 720.35		15	212	2,058	<i>J:1</i>		مانق		4.3		1-/A
7	1.5	S	SIC.	2002	۱.۶	7.2	7.4	o	2	0	KIA
111/12.20		15	212	2,080	77		7,2		9,3		W/A
111/13:55		15	212	2.107	9,		7,2		9,3		N/A
10/10/00/20	1.5	15	3/0	8.113	1.6	21.6	31.4	6	9.3	0	NA
Q(:1:0//:/h)		Ϋ́	did	S. Dac	151		0.12		1.6		N/W

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON SYSTEM SETTINGS LOG TESTS TREATA

ø	ø	-
	Š	
	ř	•
_	3	
	_	
		•
	c	5
4	2	ě
1	•	•
•	-	7
•		4
Į	3	J
1	>	
1	э	
1	ď	3
i	Ξ,	•
	£	-
7	7	•
1	-	=
1	5	5
ŀ	Ė	•
		,
4	•	

Test	Date/Time	Desired	Cell	Air Haw	Ozone	Actual	Desired	Actual	pellee	Acon	Des fred	Actual
Number		Ozone	Pressure	Rate	Conte	Ozone	UV/ox	UV/ox	, nH	Hu	HOUS	CUCH
		Doseage	isa	scfh	8	Вовения	Flow Bate	Flow Rate		:		
		mg/L/min				mg/L/min	man.	man			a pu	and I
	0/50 0340		(5	e) で	2.036	7.5		10		0.6		V. 7
22	M17 0430	2.5	15,	345		9.60	4.3	(C)	6	9.6	0	1
	MIT CLEGE		5	350		9.6		いい		2		
	9KT0 (140		4	345	3.136	3.6		7,(,,		9.3		
23	17/1 (1865)	2.5	, C.		18018	8,5	7.2	100	6	500	0	
	11 CA35		167	ì	2.070	215		17.4		9.3		
	14.1. 10.1.		16.5	-3/45	1. (2) . G	25		7.9		2.5	-	
24	1. 1.136	2.5	1.5	340	2,057	3.5	21.6	21.0	6	1.0	0	
			3	350	2.051	2.2		20.5		9.7		
	10/17 11:30		Ā	345	2,005	22		20,0		9,2.		
25	111/11 15.65	3.5	5	3490	100,0	3.5	4.3	4.5	6	9.2	0	
	11,11 16.40		15	d'io	XI.FIS	3.3		1 15		9,5		
	\$5:L1 L1/91		5	તીલ	1,766	3.4		5		9.3		
26	19.7 13.25	3.5	15	01.1.	13.10	3.4	7.2	٦,٢	6	2,9	0	-2
			15	400	2,015	3.5		2,5		5,3		20
	10/17 11:20		ζ)	06.15	2.028	3.5		7,1		9.2		W/A.
27	- 1	3.5	15	0,40	2 033	3.5	21.6	21.0	o	27	0	NA
	W(1) 25.20		15	01:10	2,053	3.5		31.0		9,1		٧A
28		3.5	14.5	990	1.896	3.5	4.3 wo/UV	4.0	7	7.8	1.2	. 21
			15.0	200	1.911	3.3		4.0		1.7		(2.T) 4/C
			15.0	200	1.401	3.4		4.4		7.7		1.2
29		3.5	او	066	1.843	2,2	7.2 wo/UV	0.۲	7	7.7	1.2	1.2
			2	490	1.908	3.3		7.1		7.7		2.
			(کی :	964	1.90	3,5		7.0		7.8		1.2
30	5h:17 Mh	3.5	/5	490	1.416	3,3	21.6 wo/UV	0.12	7	7.7	1.2	7.1
	11 14 CO:15		15	496	1.943	3.3		21.0		2.8		1.7
	16 19 1935		15.	17.71	1.932	5.5		0.00		2.9		1.2
31		3.5	5	B	1.95/	34	4.3	4.3	7	29	0	ot
	लांन 0330		15	290	1935	33		4.4		1.54		t.
File: TC.XLS	113/10 CUEU		(5	$\partial \mathcal{G}_{0}$	1.947	3.4		4.7		1.83		1.1

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY WATHER DEPORT A A THURSTOOM TO STUDY WATHER THE A PROPERTY WATHER THE PROPERTY WATHER THE A PROPERTY WATHER THE A PROPERTY WATHER THE PROPERTY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

SYSTEM SETTINGS LOG

15. WE BOSE = A.F. X OZONIF CONCX 7. 29. 6×5

650	Actual **H202* Conc	N/A											_					•						E CHINGE	-			D TREATE				▶
	Destred H202* Conc mg/L	0			0			0			0			0			0			0			0	PH PROB		0		ACI	0 F			0 4
	Actual	7.80	7.8%	7.33	7.79	7.73	272	7.89	7.77	7.2	7.95	7.73	54.7	7.80	7.85	ነነ./	1.90	7.86	78·L	7.83	7,84	2,69	7.75	8.09	8,12	7.94	7001	7.49	5.830	00.0	6.03	7.18
30.00	Destred * pH; +	7			7			7			7			7			7			7			7			7			ro.			ß
	Actual UV/ox How Rate	4.4	4.4	4.8	7,2	7.2	7.2	20.4	30.8	21.0	4,0	4./	۲.۱	7.3	7.0	7.2	21.5	21.8	212	4.1	'n	4.1	7.0	7.0	2,2	3/16	20.4	20.0	4.4	4.3	4.3	7.1
	Desired UV/ox Flow Rate	4.3			7.2			21.6			4.3			7.2			21.6		. !	4.3			7.2			21.6			4.3			7.2
	Actual Czone Doseage mg/L/min	-51	۱, ۍ	7.5	1.5	1.5	1.5	1,5	1,5	1.5	2,5	2.5	2.6	2.5	5.2	7.7	7.7	2,5	2.5	3,3	3.4	3.3	3.4	3.5	3.4	3,5	3.3	3.4	5/文章	(1.5	1.5	1.5
	Ozone Cone %	2.022	1.977	2040	2.095	2.006	1.983	2.023	2.086	1.961	2.055	2.00.2	2,078	2,031	2.042	3,196	2.011	2.046	250.5	1,120	7,1,2	1.925	1.7.	2.032	1.992	2.012	1,925	1.985	2.063	2.0%	2.028	2.086
-	Air Flow Rate acfh	210	210	210	0	210	0/0	210	210	210		345		350	345	અદ	345	245	346	066	496	420	110	490	490	064	490	490	210	- 1	- 1	2.00
	Gell Preasure psi	51	15	15	15	15	15	15	15	15	14.7	14.2	150	15.0	15.6	K.0	15,0	15,0	15.0	0,2	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	150	15.0	15,0	15.0
2	Desired Ozone Doseage mg/L/min	1.5			1.5			1.5			2.5			2.5			2.5			3.5			3.5			3.5			1.5			1.5
PUMPING WELL NO. 4-13	Date/Time	0821 86/18/01	10/87 1849	16.00	1555	0111	1750	1815 1920	3005	2105	2130 2233	.	0000	0010	0250	0350	2110	2450	5060	0730		0201	1045	1206		51/11. 331	15,0	1620	2106 2015	2105	5516	13515 2330
PUMPING W	Test Number	-			2			6			4			S			ဖ			7			80			6			10			11

SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON SYSTEM SETTINGS LOG

PUMPING WELL No. 4-13

		0 22	20	31.2	6.1.5	3	1.852	210	5,5		1550
				-				-	1		
		200	•			2	. 477	0.0	51	2	005,
		9.15		7.0		5.1	2.053	ait	15		1325
		9.21		7.0		ا. ل	2-147	210	15		1225
	0	9.4	6	7,7	7.2	9'	2,130	210	15	1.5	11:20
		9.50),'b		1.5	7.007	210	S		0:50
		953		4.2	1	1,5	2,06	210	S		0930
	0	9.3	6	- ز	4.3	1.5	1, 995	210	51	1.5	0800
	-	8,10		21,2	,	3.4	1.958	olh	7		0100
		81'5		21.00		2.3	1.911	490	15		31/5
	0	5.35	ß	21.6	21.6	3.5	3.035	490	15	3.5	2300
		5.22		7.2		3.2	1.81/	06/1	(5		2130
		5.24		7.0	NO.	3.5	2,003	064	15.		51.08
	0	22'5	2	24.4	7.2	3,6	2,062	490	15	3.5	1450
-4		5.21		4.4		3.5	2.041	490	15		1820
		5.11		4,4		3,5	2.015	eb),	15		120
	0	5.25	ro.	4,4	4.3	3,3	1.887	064	15	3.5	1635
		5.07		21.6		2.5	2.056	345	15		1,150
		5.24		7.00		2.5	110.8	345	15		1340
	0	5.89	ស	20.0	21.6	2,5	2.057	345	/5	2.5	0.24/1/20
		5.56		7.0		2.6	2.110	345	15		10 1 1 1 50
		575		7.0		9.2	4,157	345	S		<u>_</u>
	0	254	r.	2,7	7.2	9.2	2.138	348	Ŋ	2.5	10.79/09:00
		5.3		4.8		5.2	2,090	345	7		02:80 / 67:01
		5.30		4.1		7'2	2712	345	15		00: LO /61:01
	c	5,52	2	4,3	4.3 .	6.2	2,188	3415	15	2.5	05:30
		5.50		7.5		5'1	2.013	210	(5		00:50 /15(-01
+	,	4.40		20.5		1,6	011'2	912	15		03:40
-	C	27.2	2	21.8	21.6	1.6	לואל	210	15	1.5	0170 19/61-01
		5,85		7.4	7.7	1,6	2,136	210	15		<u> </u>
λĀ		476.77	5	7.0	7,7	9'1	2.017	210	2	1,5	5100/12-01
ma/L	mg/L			gpm	gpm	mg/L/min				mg/L/min	
Conc	Conc			Flow Rate	Flow Rate	Doseage	8	scft	þsi	Doseage	
Actura	Desired	ieline.		TO VOX	NOIAN	Ozone	Cone	Rate	Pressure	Ozone	
	enad beaddoodgegoogcogcogcog										

TREATA TESTS SUPPLEMENTARY REMEDIAL INVESTIGATION/FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON SYSTEM SETTINGS LOG

PUMPING WELL NO. 4-13

Actual H2021 Conc mg/L	2/4																¥		D	1.2						٥		D				Α̈́	N/A
Desired H202 Conc mg/L		0			0			0			0			0			0			1.2			1.2			1.2			0			0	<i>,</i> 6
Actual	64.6	9.43	9.43	9.48	9.26	9.21	9.25	9.25	9.24	94.48	9.44	9.31	9.41	9.39	9,35	14.6	9.32	9.33	9,33	7.89	2.18	7,76	7.80	7.82	1.84	58.7	787	7.80	3712	7,72	7.77	9.43	6.39
Desired * pH	446	6			6			6			6			0			6			7			7			7			7			6	6
Actual UV/ox Flow Rate gpm	21.6	4.4	4,0	4.4	7.2	7.2	2.0	241.5	71,4	21.4	4,3	4.4	٩.١	7,3	7,2	2,2	27.6	21.6	21.6	4.0	4.4	4.4	7.1	7.1	7.0	21,5	21.3	21,3	4.4	4.3	4,3	7.0	7.2
Desired UV/ox How Rate gpm		4.3		•	7.2			21.8			4.3			7.2			21.6			4.3 wo/UV			7.2 wo/UV			21.6 wo/UV			4.3			7,7	2'2
Actual Ozone Doseage mg/L/min	h'1	2,4	a.5	3.5	2.5	2.5	2.5	2.5	7.7	þ. 2	3.5	3,2	3,5	2'2	3,2	3.3	3.8	3.5	3.3	3.3	3,3	3.3	3,3	3.3	3.3	3,3	3,5	3.5	3,5	3.5	3.5	3.4	4.8
Ozone Cont	1.933	1,947	2.048	20022	2.082	3.085	2.045	2.048	2,016	2.028	1,998	1.842	2040	1.848	1.848	866.1	1.903	100.5	1.997	20601	1.877	1.930	1,923	1.977	1.921	1,903	2001	2.008	2.025	2.007	2.015	1.443	1.985
Air How Rate softh	210	345	345	345	34.5	5		345					4,0	0617	0 6 h	0617	064	06h	190	190	0617	14.90	490	7067	Oph	obh	496	Obh	490	994	440	495	490
Cell Pressule ps	15	15	15	15	6	/5	/5	15	15	Si	15	v	SI	51	51	15	15	15	Š	15	5	1.5	15	15	3	(5	7	5/	15	15	15	15	હ
Desired Ozone Doseage mg/L/min		2.5			2.5			2.5			3.5			3.5			3.5			3.5			3.5			3,5			3.5			3.5	3.5
Date/Time	10/80/98/200	1810	1925	2015	2125	2220	2330	04.00	01.10	0220	0300	06430	0550	0620	0210	11/193 1325	1450	1550	1630	1815	1930	2010	2145	2245	2330	0500	مدين	0340	1230	1345	1500	11-1-13/11:00	11/1931215
Test		22			23			24			25			26			27			28			29			30			31		File: TC.XLS	26	

APPENDIX D:
Addendum to Method Development Report

CONTENTS

D.1	INTRODUCTION	D-3
D.2	FIELD IMPLEMENTATION OF FIELD METHOD	D-4
D.2.1	INSTRUMENT CALIBRATION	D-4
D.2.2	QUALITY CONTROL DATA	D-4
D.2.3	IMPLEMENTATION AND OPERATION OF THE FIELD ANALYTICAL METHOD	D-13
D.2.4	COMPARISON OF CONTRACT LABORATORY DATA TO FIELD LABORATORY DATA	D-14
D.2.5	OBSERVED DEFICIENCIES WITH FIELD METHOD	D-24
D.2.5	.1 RDX Color Development	D-24
D.2.5	.2 TNT and RDX Extraction Efficiencies	D-26
D.2.5	.3 Cost and Availability of the SPE Cartridges	D-26
D.2.6	RECOMMENDATIONS FOR FURTHER METHOD DEVELOPMENT	D-26
D.3	REVISED FINAL FIELD METHOD SOP FOR THE DETERMINATION OF TNT AND RDX IN GROUNDWATER (U.S. ARMY ENVIRONMENTAL CENTER, JUNE 1995)	D-27
D.4	REFERENCES	D-37
D.5	INITIAL AND DAILY CALIBRATION WORKSHEETS	D-38
D.6	DAILY ANALYSIS LOGS	D-4 7
D.7	SAMPLE CALCULATION WORKSHEETS	D-74
D.8	DAILY QC CALCULATION WORKSHEETS	D-102
D.9	FIELD SAMPLE CHAIN-OF-CUSTODY FORMS	D-117
D.10	FIELD LABORATORY NOTES)-131

D.1 INTRODUCTION

The purpose of this addendum is to document modifications to the field method Standard Operation Procedure (SOP) for the determination of 2,4,6-trinitrotoluene (TNT) and Royal Demolition Explosive (RDX) in groundwater as presented in the Final Method Validation Report, Field Method for the Determination of TNT and RDX in Groundwater (Dames & Moore, 1993). This addendum is also intended to document the results of the field analysis of samples collected during the treatability test at Umatilla Depot Activity (UMDA), Hermiston, Oregon, and to provide an evaluation of method performance. The following sections present Quality Control (QC) data and analytical data from the field method as well as the observed difficulties and deficiencies encountered by the chemists during method implementation. Recommendations for further method development and modification are also presented.

D.2 FIELD IMPLEMENTATION OF FIELD METHOD

D.2.1 <u>INSTRUMENT CALIBRATION</u>

Instrument calibration was achieved and maintained following the procedure described in the SOP (Dames & Moore, 1993). This procedure included the evaluation of initial calibration standards and daily (i.e., continuing) calibration standards. Initial calibration standards were prepared from stock solution at concentrations of 100, 250, 500, 1000 and 5000 micrograms per liter (μ g/L) for both TNT and RDX. Since the analytical methods for TNT and RDX resulted in a 20-fold concentration, the lowest possible quantitation limit was 5 μ g/L. As a check against instrument stability, daily calibration standards were prepared and evaluated daily. The Quality Assurance/Quality Control (QA/QC) results from the initial and daily calibrations are presented in Section D.2.2 and worksheets are presented in Section D.5. The daily analysis logs are presented in Section D.6.

D.2.2 **QUALITY CONTROL DATA**

Method performance was carefully monitored by evaluating instrument linearity and stability and analytical precision and accuracy. The QA/QC program established for accomplishing this task is presented in the SOP. This program consisted of the following goals:

- Initial Calibration performed as needed with correlation coefficient greater than 0.995.
- Daily Calibration performed at least daily with percent difference (%D) between + or -10 percent.
- Method Blank performed at least daily with results less than the detection limit.
- Blank Spike performed at least daily with percent recovery (%R) between 90 and 110 percent.

- Sample Duplicate performed at least daily with relative percent difference (RPD) less than 25 percent.
- Matrix Spike performed daily with %R between 75 and 125 percent.

As a result of practical constraints realized during field operations it was necessary to deviate slightly from the QA/QC program presented in the SOP. Instead of choosing a matrix spike sample having a detectable concentration of TNT and RDX less than $1000 \mu g/L$, the matrix spike sample was chosen randomly with some samples having non-detectable concentrations of TNT and RDX with others having concentrations exceeding $1000 \mu g/L$. This variance was determined to be necessary to minimize the number of sample "re-runs" (i.e., from nondetections or excess concentrations of TNT and/or RDX), thereby allowing the chemists to better keep up with the sample train and to help speed up sample turnaround time.

The QA/QC program performance is presented in tabular form (Table D.2.2-1) and in the form of control charts (Figures D.2.2-1 through D.2.2-4). The daily analysis log and calculation worksheets are presented in Sections D.5 through D.8. Chain-of-custody forms and field laboratory notes are presented in Sections D.9 and D.10, respectively.

Initial calibrations (Section D.5) used for TNT determination were performed on October 11 and 27, 1993, and for RDX determination on October 13 and 27, 1993. Correlation coefficients for TNT were 0.9999 and 0.9995, respectively, with response factors of 4.75E-5 and 4.28E-5, respectively. Correlation coefficients for RDX were 0.9990 and 0.9967, respectively, with response factors of 3.59E-5 and 3.04E-5, respectively.

Daily calibration checks were typically performed twice per day from October 12 through November 3. These dates correspond to the beginning and ending of the field analysis schedule for the treatability test. The performance for both TNT and RDX was poor between October 12 and October 19. The %D for TNT was outside of the QC limits all 14 times and for RDX was only within the QC limits 3 out of 13

TABLE D.2.2-1
FIELD ANALYSIS FOR TNT AND RDX
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON
Control Chart Data

File Name CCD.XLS

11.0	-													
Daily Calibration Check		¥	Slank Spikes	Recoveries	•		Sample Duplicates	licates			Matrix Spikes Recoveries	kes Rec	overies	
(%D)			(%R)				(RPD)				(%R)			
Date	TNT	RDX	Date	TNT	RDX		Date	TNT	RDX		Date	TN	RDX	
12-0ct	-15		13-Oct	74	158		13-Oct				13-Oct			
13-Oct	-19	-33	14-0ct	14	187		14-0ct	60	27		14-0ct	105	0	NR/RDX
14-0ct	-11	-33	15-Oct	78	57		15-0ct				15-Oct		1	
14-0ct	-28	-16	16-0ct	106	106		16-0ct		103	TNT/QN	16-0ct	22	200	2267/RDX
14-0ct	-19	-44	17-0ct	80	82		17-0ct	31		ND/RDX	17-0ct	200	0	213/TNT - NR/RDX
15-Oct	-40	-21	18-Oct	72	200	211/RDX	18-0ct	48	42		18-Oct	0	0	NR/TNT - NR/RDX
15-0ct	-11	-83	19-0ct	86	23		28-0ct		8	TNT/QN	28-Oct	57	8	
16-0ct	-11	-5	28-Oct	88	86		29-0ct	22	15		29-Oct	82	200	787/RDX
16-0ct	-36	-10	29-0ct	77	200	329/RDX	30-Oct		54	TNT/QN	30-Oct	73	185	
17-0ct	-28	-21	30-Oct	8	178		31-0ct	17	10	799/RDX	31-Oct	87	32	
17-0ct	-15	rċ	31-0ct	73	87		2-Nov	67		ND/RDX	2-Nov	6	33	
17-0ct	=	-61	2-Nov	118	86		2-Nov		104		2-Nov		200	8224/RDX
18-Oct	-15	-61	3-Nov	72	142		3-Nov		14	ND/TNT	3-Nov	64	48	
19-0ct	-32	-61										:	?	
28-0ct	7	16												
28-0ct	7	35												
29-0ct	-5	-39												
29-Oct	-12	23												
29-Oct	16													
30-0ct	7	69-												
30-0ct	16	4												
31-0ct	7	-5												
31-Oct	7	-39												

SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON FIELD ANALYSIS FOR TNT AND RDX **Control Chart Data TABLE D.2.2-1**

File Name CCD.XLS

Daily Calibration Check	Blank Spike	ss Recover		Sample Duplicat	licates		Matrix Sp	atrix Spikes Reco	veries
(2%)	(%R)			(RPD)			(%R)		
Date TNT RDX	Date	TNT	RDX	Date	TNT	RDX	Date	TNT	RDX

84	-45	15	69-	-81	7	-45
30	7	16	-5	-16	7	-5
31-0ct	1-Nov	1-Nov	2-Nov	2-Nov	3-Nov	3-Nov

NR - Spike Not Recovered

ND - Not Detected

times. The %D fell below the lower limit of -10 with near consistency between these dates. Upon resumption of the field program on October 28, the %D for TNT improved remarkably while RDX appeared to worsen. The %D for TNT was within the QC limits 10 out of 16 times and for RDX was only within the QC limits 4 out of 16 times. The out-of-limit values were for the most part above the +10 limit for TNT and below the -10 limit for RDX. According to the SOP, corrective action required the re-analysis of the initial calibration standards. This was initially attempted but did not result in an improvement in daily calibration QC values. Based on this result, it appeared that the problem did not result from instrument stability but possibly from deficiencies with the analytical method (e.g., with color development). This assumption appears to be further supported by the results of blank spike and sample duplicate evaluations.

Method Blanks were performed at least daily. Results were consistently less than the detection limit and within QC limits.

Blank spikes were analyzed once per day with one exception. The blank spike was inadvertantly neglected on November 1. The percent recoveries for TNT fell below the 90 percent QC limit in nearly all samples. For a significant number of samples the %R for TNT tended to fall close to an average value of 80 percent. The %R for RDX fell equally below and above the QC limits and in a number of samples was greater than 160 percent.

Sample duplicates were initially analyzed at a frequency of five percent. After realizing that this was not corresponding to one duplicate sample per day, the frequency was changed from a percentage basis to a daily basis. In total, sample duplicates were neglected on four dates--October 13, 15, and 19, and November 3. RPDs for TNT were within the QC limit of 25 percent on three occasions while outside of the QC limit on three occasions. On four occasions the duplicate samples contained non-detectable concentrations of TNT preventing a duplicate comparison. The average RPD for TNT was 32 percent. RPDs for RDX were within the QC limit of 25 percent on two occasions while outside of the QC limit on seven occasions. On two occasions the

duplicate samples contained non-detectable concentrations of RDX. On one occasion (October 31) the RPD for the RDX duplicate was 799. For graphical considerations, this data point is shown in Figure D.2.2-3 as lying on the maximum scaling point of 110. Not using this extreme outlier (i.e., 799 RPD), the average RPD for RDX is 55.

As with sample duplicates, matrix spike recoveries were initially analyzed at a frequency of five percent. After realizing that this was not corresponding to one matrix spike sample per day, the frequency was changed from a percentage basis to a daily basis. In total, matrix spike samples were neglected on four dates--October 13, 15, and 19, and November 3. The %R for TNT fell within the QC limit of 75 to 125 percent on three occasions and outside of the QC limit on seven occasions. For a significant number of samples the %R for TNT tended to fall close to an average value of 75 percent. The %R for RDX fell equally below and above the QC limits and in a number of samples was greater than 180 percent and less than 40 percent. On three occasions, the %R for RDX were extremely high with values of 2267, 787, and 8224.

D.2.3 <u>IMPLEMENTATION AND OPERATION OF THE FIELD ANALYTICAL METHOD</u>

The SOP for the field method (Dames & Moore, 1993) was adhered to as closely as possible during the field program. TNT and RDX were extracted from groundwater samples by passing through a Heyesep RTM solid phase extraction (SPE) cartridge purchased from Supelco Inc. (Bellefonte, PA). These SPE cartridges were special ordered with 1 gram Heyesep RTM placed in a 3 mL tube and precleaned by the manufacturer (i.e., Supelco Inc.). After color development, absorption was measured using an AC-powered, dual-beam spectrometer (Hitachi U2000). To facilitate sample analysis, a multiple extraction manifold (Supelco Visiprep DL Vacuum Manifold) was used for the extraction of multiple samples.

Several minor modifications to the SOP were determined to be necessary to maintain efficiency and/or to improve method performance. Section D.3 presents the SOP which has been revised to reflect the specific procedure used during the field program. The "minor" modifications included: standard concentrations, zero absorption

determination, color development incubation times, and blank spike and matrix spike preparation.

D.2.4 <u>COMPARISON OF CONTRACT LABORATORY DATA TO FIELD</u> <u>LABORATORY DATA</u>

A comparison of the contract laboratory data (using an HPLC method based on USATHAMA method UW21) to the field laboratory data is presented in Table D.2.5-1 and Figures D.2.5-1 through D.2.5-3. The %D was calculated for samples having a positive detection by both the contract laboratory and the field laboratory.

The %D for the TNT data for well 4-1 tended to range between 5 and -200 with two extreme outlyers of -870 and -1025. In the majority of the samples, the field laboratory concentration was greater than the contract laboratory concentration. The average RPD of the contract laboratory data to the field laboratory data for TNT was 105 with a standard deviation of 2.03. Although low concentrations of TNT were detected by the field laboratory for well 4-13, this analyte was not detected by the contract laboratory.

The %D for the RDX data for well 4-1 tended to range between 80 and -100 with two extreme outlyers of -775 and -4861. The average RPD of the contract laboratory data to the field laboratory data for TNT was 167 with a standard deviation of 7.25. The %D for the RDX data for well 4-13 tended to range between 50 and -350 with three extreme outlyers of -754, -804 and -979. The average RPD of the contract laboratory data to the field laboratory data for TNT was 208 with a standard deviation of 2.36.

Based on this comparison of the contract laboratory data to the field laboratory data, the field method performance appears to be better for TNT than for RDX. However, the comparison of data also indicates that the field method tends to produce false positive results, particularly in the case of TNT. On average, the field method for both TNT and RDX appear to vary from contract laboratory data by a factor of two or more.

TABLE D.2.5-1
COMPARISON OF FIELD LABORATORY AND CONTRACT LABORATORY RESULTS
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

	2.4.6-TNT	2,4,6-TNT		RDX	RDX	
·	Field Laboratory	Contract Laboratory		Field Laboratory	Contract Laboratory	
Sample i.D.	(ug/L)	(ug/L)	% Difference	(ug/L)	(ug/L)	% Difference
Well 4-1					(69/4)	70 Difference
G01100	3900	2900	-34%	2560	2600	2%
G01101	3190	3200	0%	2480	2900	14%
G01U01	45	0.635U		85	1.170	1476
G01E01	5 U	0.635U		5 U	1.170	
G01102	3340	3200	-4%	4090	2900	-41%
G01U02	146	0.635U		5	1.17U	
G01E02	5 U	0.635U		440	1.17U	
G01103	3200	330	-870%	3880	2900	-34%
G01U03	304	180	-69%	74	39.4	-88%
G01E03	.50	0.635U		88	1.17U	
G01104	3430	3300	-4%	1950	3000	35%
G01U04	6	0.635U		50	1.17U	
G01E04	50	0.635U		50	1.170	
G01105	3550	3300	-8%	1820	3600	49%
G01U05	28	0.635U		SU	1.17U	
G01E05	50	0.635U		50	1.170	
G01106	3400	3100	-10%	3070	2700	-14%
G01U06	203	59.8	-239%	22	10.8	-104%
G01E06	50	0.635U		22	1.17U	
G01107	3060	3100	1%	2475	3200	23%
G01107D	3250	3200	-2%	1880	3400	45%
G01U07	50	0.635U		50	1.17U	
G01E07	50	0.635U		30	1.17U	
G01108	3640	3200	-14%	2270	3400	33%
G01U08	46	0.635U		50	1.17U	
G01E08	5U	0.635U		5	1.17U	
G01109	3220	3200	-1%	2840	3400	16%
G01U09	117	39.7	-195%	7	7.3	4%
G01E09	50	0.635U		5U	1.17U	
G01110	3670	3600	-2%	674	3400	80%
G01U10	33	0.635U		50	1.17U	
G01E10	5U	0.635U		5U	1.17U	
G01111	3480	3000	-16%	3370	3000	-12%
G01U11	6	0.635U		5U	1.17U	
G01E11	5U	0.635U		50	1.17U	
G01112	3130	3200	2%	1160	3300	65%
G01U12	161	97.8	-65%	27	17.4	-55%
G01E12	5 U	0.635U		5U	1.170	
G01113	3040	3200	5%	907	3300	73%
G01U13	38	0.6350	- 72	50	1.170	, 5 %
G01E13	50	0.635U		35	1.170	
GO1E13D	50	0.635U		11	1.170	

TABLE D.2.5-1
COMPARISON OF FIELD LABORATORY AND CONTRACT LABORATORY RESULTS
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

	RDX	RDX		2,4,6-TNT	2,4,6-TNT	
	Contract Laboratory	Field Laboratory		Contract Laboratory	Field Laboratory	>
% Difference	(ug/L)	(ug/L)	% Difference	(ug/L)	(ug/L)	Sample I.D.
459	3300	1800	-44%	3100	4470	G01114
	1.170	50		0.635U	50	G01U14
	1.17U	11		0.635U	5Ú	G01E14
619	3200	1240	-16%	3200	3720	G01115
-72%	5.23	9	-135%	29.3	69	G01U15
	1.170	29		0.6350	5 U	G01E15
-21%	2900	3500	-45%	3100	4510	G01116
	1.17U	50		0.635U	50	G01U16
	1.17U	5U		0.635U	50	G01E16
14%	2900	2480	-37%	3100	4240	G01117
	1.17U	18		0.6350	50	G01U17
	1.17U	11		0.635U	50	G01E17
-17%	1300	1520	-252%	1100	3870	G01118
-4861%	1.29	64	-1025%	5.42	61	G01U18
	1.17U	1170		0.635U	5 U	G01E18
-33%	1900	2520	-66%	1800	2990	G01119
	1.170	11		0.635U	76	G01U19
	1.170	310		0.635U	50	G01E19
-94%	2000	3870	-128%	1900	4330	G01120
0.,,	1.170	16		0.635U	68	G01U20
	1.170	5U		0.635U	94	G01U20D
	1.170	5U	b.	0.6350	5 U	G01E20
-60%	1200	1920	-325%	930	3950	G01121
-23%	23.5	29	-145%	130	319	G01U21
20%	1.170	6		0.635U	50	G01E21
-36%	1900	2590	-109%	1600	3350	G01122
	1.170	9		0.6350	36	G01U22
	1.170	529		0.635U	5U	G01E22
21%	2100	1660	-23%	2000	2450	G01123
217	1.170	9		0.635U	40	G01U23
	1.170	6		0.635U	5 U	G01E23
37%	2900	1840	3%	3100	3020	G01124
-73%	10.4	18	-98%	63.6	126	G01U24
70,7	1.170	53		0.6350	50	G01E24
-9%	2000	2180	-133%	2000	4650	G01125
	1.170	9		0.635U	9	G01U25
	- 1.170	10		0.635U	5 U	G01E25
-136%	1900	4490	-281%	1600	6100	G01126
-13070	1.170	13	20.70	0.635U	28	G01U26
	1.170	108		0.635U	5U	G01E26
646/		5600	-12%	3100	3480	G01127
-81%	3100	4310	-12%	3100	3170	G01127D
-44%	3000	4310	*470	3100	3170	-0.12/0

TABLE D.2.5-1
COMPARISON OF FIELD LABORATORY AND CONTRACT LABORATORY RESULTS
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

	2,4,6-TNT	2,4,6-TNT		RDX	RDX	
	Field Laboratory	Contract Laboratory		Field Laboratory	Contract Laboratory	
Sample I.D.	(ug/L)	(ug/L)	% Difference	(ug/L)	(ug/L)	% Difference
G01E27	5 U	0.635U		16	1.17U	
G01128	5600	3300	-70%	1860	3200	42%
G01U28	280	330	15%	121	820	85%
G01E28	5 U	0.635U		5 U	1.17U	
G01129	4080	3300	-24%	1690	3200	47%
G01U29	309	350	12%	118	880	87%
G01E29	5 U	0.635U		7	1.170	
G01130	3650	3200	-14%	1840	3000	39%
G01U30	814	720	-13%	166	1400	88%
G01E30	50	0.635U		5 U	1.17U	
G01I31	2930	3100	5%	2630	2900	9%
G01U31	202	0.635U		5 U	1.170	
G01E31	50	0.635U		10	1.17U	
G01E31D	5 U	0.635U		50	1.170	
AVERAGE REL	ATIVE % DIFFEREN	ICE (Well 4-1) =	105%			167%
STANDARD D	EVIATION (Well 4-1) =	2.03			7.25

U = The material was analyzed for but was not detected above the associated value.

TABLE D.2.5-1
COMPARISON OF FIELD LABORATORY AND CONTRACT LABORATORY RESULTS
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

	2,4,6-TNT	2,4,6-TNT		RDX	RDX	
	Field Laboratory	Contract Laboratory		Field Leboratory	Contract Laboratory	
Sample I.D.	(ug/L)	(ug/L)	% Difference	(ug/L)	(ug/L)	% Difference
Well 4-13						•
G13100	40	0.635U		3950	2300	-72%
G13I01	24	0.635U		565	2400	76%
G13U01	17	0.635U		50	1.17U	
G13E01	5U	0.635U		50	1.170	
G13102	91	0.635U		4980	1200	-315%
G13U02	7	0.635U		50	1.17U	
G13E02	50	0.635U		5U	1.170	
G13103	68	0.635U		2730	2300	-19%
G13U03	40	0.635U		5U	1.170	
G13E03	5U	0.635U		51	1.170	
G13104	19	0.635U	•	2690	2200	-22%
G13U04	5 U	0.635U		5U	1.170	
G13E04	5 U	0.6350		24	1.170	
G13105	19	0.635U		2470	2300	-7%
G13U05	12	0.6350		50	1.170	, ,,
G13E05	50	0.635U		50	1.170	
G13106	24	0.6350		1040	2200	53%
G13U06	24	0.635U		8	1.170	
G13E06	5Ú	0.635U		50	1.170	
G13107	26	0.635U		1720	1900	9%
G13107D	21	0.635U		1990	2300	13%
G13U07	5 U	0.635U		50	1.170	
G13E07	5 U	0.635U		1430	1.170	
G13108	. 12	0.635U		1200	2400	50%
G13U08	50	0.635U		5U	1.170	30 %
G13E08	50	0.635U		11	1.170	
G13109	20	0.635U		3250	2400	-35%
G13U09	15	0.635U		5	120	-00%
G13E09	50	0.635U		11	1.170	
G13110	20	0.635U		4810	2300	-109%
G13U10	50	0.635U		11	1.170	-100 %
G13E10	5U	0.635U		58	1.170	
G13I11	18	0.635U		7440	2400	-210%
G13U11	5 U	0.635U		8	1.170	210%
G13E11	5U	0.635U		5U	1.170	
G13112	9	0.635U		7098	2300	-209%
G13U12	8	0.635U		50	1.170	-20376
G13E12	5U	0.635U		5U	1.170	
G13I13	16	0.635U		5930	2100	-182%
G13U13	5U	0.635U		8	1.170	-10276
G13E13	5U	0.635U		11	1.170	
G13E13D	5U	0.635U		6	1.170	

TABLE D.2.5-1
COMPARISON OF FIELD LABORATORY AND CONTRACT LABORATORY RESULTS
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

Field Laboratory		2,4,6-TNT	2,4,6-TNT		RDX	RDX	
Semple D.							
G13114 20	Comple LD		·	% Difference			% Difference
G13U14 SU	•			76 Dillerence			
G13E14 SU							140%
G13115 27 0.635U 7110 2300 -209% G13U15 7 0.635U 17 1.17U G13116 23 0.635U 8 1.17U G13116 5U 0.635U 8590 950 -804% G13U16 5U 0.635U 27 1.17U G13117 19 0.635U 3750 1.17U G13117 5U 0.635U 3750 1.17U G13118 24 0.635U 9570 2300 -316% G13U19 18 0.635U 9570 2300 -316% G13U19 18 0.635U 13 1.17U G13119 24 3.2U 11100 1300 -754% G13U20 19 0.635U 13 1.17U G13120 43 3.2U 1170 2300 45% G13U20 19 0.635U 13 1.17U G13120 19 0.635U 13 1.17U G13119 5U 0.635U 13 1.17U G13119 5U 0.635U 13 1.17U G13119 18 0.635U 13 1.17U G13120 43 3.2U 11100 1300 -754% G13U20 19 0.635U 13 1.17U G13120 19 0.635U 5U 1.17U G13120 5U 0.635U 5U 1.17U G13121 5U 0.635U 5U 1.17U G13122 5U 0.635U 5U 1.17U G13124 5U 0.635U 5U 1.17U 5U 1.17U 613122 5U 0.635U 5U 1.17U 613122 5U 0.635U 5U 1.17U 613124 5U 0.635U 5U 0.635U 5U 1.17U 613124 5U 0.635U 5U 1.17U 613124 5U 0.635U 5U 0.635U 5U 1.17U 613124 5U 0.635U 5U 0.635U 5U 1.17U 613124 5U 0.635U 5U 0.635U 5U 1.17U 613125 5U 0.635U							
G13U15 7							200%
G13E15 5U 0.635U 8 1.17U 505 804% 613U16 5U 0.635U 178 1.17U 613E16 5U 0.635U 178 1.17U 613E17 5U 0.635U 3750 2300 311% 613U18 5U 0.635U 3750 1.17U 613E18 5U 0.635U 3750 1.17U 613E18 5U 0.635U 3750 2300 316% 613U18 5U 0.635U 3750 2300 316% 613U19 18 5U 0.635U 13 1.17U 613E18 5U 0.635U 13 1.17U 613E18 5U 0.635U 13 1.17U 613E19 5U 0.635U 13 1.17U 613E19 18 0.635U 32 1.17U 613E19 5U 0.635U 13 1.17U 613U20 23 0.635U 5U 1.17U 613U20 23 0.635U 5U 1.17U 613E20 5U 0.635U 5U 1.17U 613E21 5U 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613E23 5U 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613E23 5U 0.635U 5U 1.17U 613E24 5U 0.635U 5U 1.17U 613E25 5U 0.635U 5U 1.17U 613E26 5U 0.635U 5U 0.17TU 613E26 5U 0.635U 5U 0.17TU 613E26 5U 0.635U 5U 0.17TU 613E26 5U 0.635U 5U 0.635U 5U 0.17TU 613E26 5U 0.635U 5U 0.6							-20376
G13116 5U 0.635U 8590 950 -804% 613U16 5U 0.635U 178 1.17U 613U17 19 0.635U 950 27 1.17U 613U17 5U 0.635U 950 3750 1.17U 613U17 5U 0.635U 9570 2300 -316% 613U18 5U 0.635U 9570 2300 -316% 613U18 5U 0.635U 11100 1300 -754% 613U19 18 0.635U 11100 1300 -754% 613U19 18 0.635U 11100 1300 -754% 613U19 18 0.635U 1117U 613U20 13 1.17U 613U20 19 0.635U 1117U 613U20 19 0.635U 1117U 613U20 19 0.635U 1117U 613U20 19 0.635U 1117U 613U20 19 0.635U 13 1.17U 613U21 59 0.635U 5U 1.17U 613U21 59 0.635U 5U 1.17U 613U22 5U 0.635U 5U 1.17U 613U23 11 0.635U 5U 1.17U 613U24 75 0.635U 5U 1.17U 613U25 5U 0.635U 5U 1.17U 613U26 13 0.635U 5U 1.17U 613U26 13 0.635U 5U 1.17U 613U26 13 0.635U 5U 1.17U 613U25 5U 0.635U 5U 1.17U 613U26 13 0.63							
G13U16							9040
G13E16 5U 0.635U 27 1.17U 1.17							-80476
G13117 19 0.635U 3460 2300 -311% G13U17 5U 0.635U 3750 1.17U 613118 24 0.635U 9570 2300 -316% G13U18 5U 0.635U 9570 2300 -316% G13U18 5U 0.635U 56 1.17U 613118 24 0.635U 350 13 1.17U 613119 24 3.2U 11100 1300 -754% G13U19 18 0.635U 32 1.17U 613E19 5U 0.635U 13 1.17U 613E19 5U 0.635U 13 1.17U 613E19 5U 0.635U 13 1.17U 613E20 23 0.635U 1270 2300 45% G13U20 19 0.635U 117U 613E20 5U 0.635U 117U 613E20 5U 0.635U 11 17U 613E21 59 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613E23 5U 0.635U 5U 1.17U 613E24 5U 0.635U 5U 1.17U 613E24 5U 0.635U 5U 1.17U 613E24 5U 0.635U 5U 1.17U 613E25 5U 0.635U 5U 1.17U 613E26 5U 0.635U 5U 1.17U 613E27 29 3.2U 7300 2100 -248% 613E27 2000 2100 -248% 613E27 2000 2100 -248% 613E27 2000 2							
G13U17 5U 0.635U 3750 1.17U G13E17 5U 0.635U 27 1.17U G13E17 5U 0.635U 27 1.17U G13E18 24 0.635U 9570 2300 -316% G13U18 5U 0.635U 56 1.17U G13E18 5U 0.635U 13 1.17U G13E18 5U 0.635U 13 1.17U G13E19 5U 0.635U 13 1.17U G13E19 5U 0.635U 13 1.17U G13E19 5U 0.635U 13 1.17U G13E20 19 0.635U 13 1.17U G13E20 5U 0.635U 5U 1.17U G13E20 5U 0.635U 5U 1.17U G13E20 5U 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13E23 5U 0.635U 5U 1.17U G13E23 5U 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13E26 14 3.2U 4710 2000 -136% G13U26 7 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13E26 14 3.2U 5690 2100 -171% G13E26 5U 0.635U 5U 1.17U G13E27 29 3.2U 7300 2100 -248% G13U27 290 3.2U 7300 2100 -248% G13U27 2000 5000 5000 5000 5000 5000 5000 50							0440
G13E17 SU							-311%
G13118 24 0.635U 9570 2300 -316% G13U18 5U 0.635U 56 1.17U G13E18 5U 0.635U 13 1.17U G13E18 5U 0.635U 13 1.17U G13E19 5U 0.635U 32 1.17U G13E19 5U 0.635U 13 1.17U G13E19 5U 0.635U 13 1.17U G13E19 5U 0.635U 127O 230O 45% G13U2O 23 0.635U 5U 1.17U G13E2O 5U 0.635U 5U 1.17U 5U							
G13U18 5U 0.63SU 56 1.17U G13E18 5U 0.635U 13 1.17U G13I19 24 3.2U 1110O 130O -754% G13U19 18 0.635U 32 1.17U G13E19 5U 0.635U 13 1.17U G13I2O 230O 45% G13U2O 23 0.635U 5U 1.17U G13U2O 23 0.635U 5U 1.17U G13I2O 13 1.17U G13I2O 23 0.635U 5U 1.17U G13I2O 1.17U G13I2O 5U 1.17U G13I2O 318O 230O -38% G13U2O 13 1.17U G13I2O 3.2U 318O 230O -38% G13U2O 138O 230O -38% G13U2O 1.17U G13I2O 5U 0.635U 5U 1.17U G13I2O 1.17U G13I2O 5U 1.17U G13I2O 5U 1.17U G13I2O 5U 1.17U G13I2O 5U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
G13E18 5U 0.635U 13 1.17U 61312 13 1.17U 613124 5U 0.635U 5U 0.635U 5U 1.17U 613125 5U 0.635U 5U 1.17U 613126 5 5U 0.635U 5U 1.17U 613126 613127 9 3.2U 1100 1200 1400 -979% 613121 50 0.635U 5U 1.17U 613122 5 5U 0.635U 5U 1.17U 613122 17 3.2U 11700 2500 368% 613122 5 5U 0.635U 5U 1.17U 613123 5 5U 0.635U 5U 1.17U 613123 6 5U 0.635U 5U 1.17U 613123 6 5U 0.635U 5U 1.17U 613124 5 5U 0.635U 5U 1.17U 613124 5 5U 0.635U 5 5U 1.17U 613124 5 5U 0.635U 5 5U 1.17U 613125 5 5U 3.2U 4510 1300 -247% 613125 5 5U 3.2U 4510 1300 -247% 613125 5 5U 3.2U 4710 2000 -136% 613125 5 5U 3.2U 4710 2000 -136% 613125 5 5U 3.2U 4710 2000 -136% 613125 5 5U 0.635U 5 5U 1.17U 613126 14 3.2U 5690 2100 -171% 613126 14 3.2U 5690 2100 -171% 613126 14 3.2U 5690 2100 -171% 613126 5 5U 0.635U 5 5U 1.17U 613126 14 3.2U 5690 2100 -171% 613127 29 3.2U 7300 2100 -248% 6131270 14 3.2U 2300 2900 21%							-316%
G13I19 24 3.2U 11100 1300 -754% G13U19 18 0.635U 32 1.17U G13E19 5U 0.635U 13 1.17U G13I20 43 3.2U 1270 2300 45% G13U20 23 0.635U 5U 1.17U G13I20 50 0.635U 5U 1.17U G13I21 59 0.635U 5U 1.17U G13I22 5U 0.635U 5U 1.17U G13I22 5U 0.635U 5U 1.17U G13I23 9 3.2U 11700 2500 -368% G13U23 11 0.635U 5U 1.17U G13I23 9 3.2U 11700 2500 -368% G13U23 11 0.635U 5U 1.17U G13I23 9 3.2U 15100 1400 -979% G13I23 11 0.635U 5U 1.17U G13I23 5U 0.635U 5U 1.17U G13I24 5U 0.635U 5U 1.17U G13I24 5U 0.635U 5U 1.17U G13I25 5U 0.635U 5U 1.17U G13I26 14 3.2U 5690 2100 -136% G13I26 14 3.2U 5690 2100 -136% G13I26 14 3.2U 5690 2100 -171% G13I26 5U 0.635U 5U 1.17U 5U 0.635U 5U 0.635U 5U 0.17U 5U 0.635U 5U 0.635U 5U 0.17U 5U 0.635U 5U 0.635							
G13U19 18 0.635U 32 1.17U G13E19 5U 0.635U 13 1.17U G13I20 43 3.2U 1270 2300 45% G13U20 23 0.635U 5U 1.17U G13U20D 19 0.635U 5U 1.17U G13E20 5U 0.635U 13 1.17U G13E21 59 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13E22 177 3.2U 11700 2500 -368% G13U22 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13E23 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 5U 1.17U G13E24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13E27 29 3.2U 7300 2100 -248% G13U27 29 3.2U 7300 2100 -248% G13U27 14 3.2U 2300 2900 21%							
G13E19 5U 0.635U 13 1.17U G13I20 43 3.2U 1270 2300 45% G13U20 23 0.635U 5U 1.17U 613E20 5U 1.17U 613E20 5U 0.635U 5U 1.17U 613I21 22 3.2U 3180 2300 -38% 613U21 59 0.635U 5U 1.17U 613E21 5U 0.635U 5U 1.17U 613E22 17 3.2U 11700 2500 -368% 613U22 5U 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613E23 9 3.2U 15100 1400 -979% 613U23 9 3.2U 15100 1400 -979% 613U23 5U 0.635U 5U 1.17U 613E24 5U 0.635U 5U 1.17U 613E24 5U 0.635U 5U 1.17U 613E24 5U							-754%
G13I20 43 3.2U 1270 2300 45% G13U20 23 0.635U 5U 1.17U 613U20D 19 0.635U 5U 1.17U 613E20 5U 0.635U 5U 1.17U 613E20 5U 0.635U 13 1.17U 613E21 59 0.635U 5U 1.17U 613E21 5U 0.635U 5U 1.17U 613I22 17 3.2U 11700 2500 -368% 613U22 5U 0.635U 5U 1.17U 613I22 5U 0.635U 5U 1.17U 613I22 5U 0.635U 5U 1.17U 613I22 5U 0.635U 5U 1.17U 613I23 9 3.2U 15100 1400 -979% 613I23 9 3.2U 15100 1400 -979% 613I23 9 3.2U 4510 1300 -247% 613I24 5U 0.635U 5U 1.17U 613I24 5U 0.635U 5U 1.17U 613I24 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
G13U2O 23 0.635U 5U 1.17U G13U2OD 19 0.635U 5U 1.17U G13E2O 5U 0.635U 13 1.17U G13I21 22 3.2U 318O 230O -38% G13U21 59 0.635U 5U 1.17U 1.17U 1.17U 1.17U 1.17U 1.17U 613I22 17 3.2U 1170O 250O -368% 613U22 5U 0.635U 5U 1.17U 613E22 5U 0.635U 5U 1.17U 613U23 9 3.2U 1510O 140O -979% 613U23 11 0.635U 5U 1.17U 613I24 5U 3.2U 451O 130O -247% 613U24 75 0.635U 5U 1.17U 613I24 5U 0.635U 5U 1.17U 613I25 5U 0.635U 5U 1.17U 613I25 5U 0.635U 5U 1.17U 613E26 5U 0.635U 5U							
G13U2OD 19 0.635U 5U 1.17U 1.1							45%
G13E20 5U 0.635U 13 1.17U G13I21 22 3.2U 3180 2300 -38% G13U21 59 0.635U 5U 1.17U 5U 1.17U 6U 1.17U <							
G13I21 22 3.2U 3180 2300 -38% G13U21 59 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13I22 17 3.2U 11700 2500 -368% G13U22 5U 0.635U 5U 1.17U 50 1.17U 50 61 1.17U 61 61 1.17U 61							
G13U21 59 0.635U 5U 1.17U G13E21 5U 0.635U 5U 1.17U G13I22 17 3.2U 11700 2500 -368% G13U22 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13I23 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 27 1.17U G13E24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U							
G13E21 5U 0.635U 5U 1.17U G13I22 17 3.2U 11700 2500 -368% G13U22 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13I23 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 27 1.17U G13I24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-38%</td></t<>							-38%
G13I22 17 3.2U 11700 2500 -368% G13U22 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13I23 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 27 1.17U G13I24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
G13U22 5U 0.635U 5U 1.17U G13E22 5U 0.635U 5U 1.17U G13I23 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U							
G13E22 5U 0.635U 5U 1.17U G13I23 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 27 1.17U G13I24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13U26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13E27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900<							-368%
G13123 9 3.2U 15100 1400 -979% G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 27 1.17U G13I24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 5U 1.17U G13U26 14 3.2U 5690 2100 -171% G13E26 5U 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13U22	50					
G13U23 11 0.635U 5U 1.17U G13E23 5U 0.635U 27 1.17U G13I24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13U26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13E22	50					
G13E23 5U 0.635U 27 1.17U G13I24 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13I26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13123	9					-979%
G13124 5U 3.2U 4510 1300 -247% G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13U26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13U23	11	0.635U				
G13U24 75 0.635U 5U 1.17U G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13U26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13E23	50	0.635U				
G13E24 5U 0.635U 5U 1.17U G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13I26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13E27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13124	50	3.20				-247%
G13I25 5U 3.2U 4710 2000 -136% G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13I26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13U24	75	0.635U				
G13U25 7 0.635U 5U 1.17U G13E25 5U 0.635U 16 1.17U G13I26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13E24	5 U	0.635U		50		
G13E25 5U 0.635U 16 1.17U G13I26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13125	5 U	3.2U				-136%
G13I26 14 3.2U 5690 2100 -171% G13U26 13 0.635U 5U 1.17U 5U 1.17U 5U 1.17U 5U 5U 1.17U 5U	G13U25	7	0.635U				
G13U26 13 0.635U 5U 1.17U G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13E25	5 U	0.635U		16	1.170	
G13E26 5U 0.635U 5U 1.17U G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13126	14	3.20		5690	2100	-171%
G13I27 29 3.2U 7300 2100 -248% G13I27D 14 3.2U 2300 2900 21%	G13U26	13	0.635U		50	1.17U	
G13I27D 14 3.2U 2300 2900 21%	G13E26	5 U	0.635U		5 U	1.17U	
	G13127	29	3.20		7300	2100	-248%
G13U27 100 0.635U 89 1.17U	G13127D	14	3.20		2300	2900	21%
	G13U27	100	0.635U		89	1.170	

TABLE D.2.5-1
COMPARISON OF FIELD LABORATORY AND CONTRACT LABORATORY RESULTS
SUPPLEMENTARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY
UMATILLA DEPOT ACTIVITY, HERMISTON, OREGON

	2,4,6-TNT	2,4,6-TNT		RDX	RDX	
	Field Leboratory	Contract Laboratory		Field Laboratory	Contract Laboratory	
Sample I.D.	(ug/L)	(ug/L)	% Difference	(ug/L)	(ug/L)	% Difference
G13E27	5 U	0.635U		18	1.170	
G13I28	167	3.20		3910	1900	-106%
G13U28	5 U	0.635U		97	33.9	-186%
G13E28	5U	0.635U		8	1.17U	
G13129	64	3.2U		8960	2000	-348%
G13U29	19	0.635U		297	74.9	-297%
G13E29	5 U	0.635U		15	1.17U	
G13I30	14	3.20		7790	2500	-212%
G13U30	50	0.635U		1320	340	-288%
G13E30	50	0.635U		13	1.17U	
G13I31	10	3.2U		3830	2000	-92%
G13U31	50	0.635U		5	1.170	
G13E31	50	0.635U		13	1.170	
G13E31D	50	0.635U		12	1.170	
AVERAGE REL	ATIVE % DIFFEREN	ICE (Well 4-13) =	105%			208%
	EVIATION (Well 4-1		NA.			2.36

U = The material was analyzed for but was not detected above the associated value.

C01120 C01158 **CO1157** Comparison of Contract Laboratory to Field Laboratory 2,4,6-TNT Data C01054 C01154 Well 4-1 £11100 SAMPLE coinis **≠1110**9 C01104 -300% -100% -200% 400% 100% % DIEFERENCE

Figure D.2.5-1

UV D-21

Figure D.2.5-2

UV D-22

Figure D.2.5-3

UV D-23

This comparison also suggests that the field method may perform better with samples collected from well 4-1 as compared to well 4-13. This may indicate that matrix interference is more prevalent in groundwater samples collected from well 4-13.

D.2.5 OBSERVED DEFICIENCIES WITH FIELD METHOD

Several deficiencies were observed during implementation of the field method. These deficiencies included color development, extraction efficiency and cost and availability of the SPE cartridges. These deficiencies should be considered empirical and are based on daily observations by the field chemists as well as a review of the QC results. In summary, method performance for RDX is considered to have been poor to moderate and for TNT is considered to have been moderate to good. This assessment is based on the utilization of the method as a field tool for approximate analyte concentrations on a relatively fast turnaround.

D.2.5.1 RDX Color Development

The color development for RDX appeared to be inadequate and inconsistent in both the samples and the standards. The RDX color development of field samples was inconsistent from analysis to analysis as quantitatively evident from the QA/QC sample duplicate results. The RPD between the sample result and the sample duplicate result ranged from 14 (November 3, 1993) to 799 (October 31, 1993). A comparison of the field method data and the contract laboratory data showed large differences between the reported results. In general, RDX results of field-analyzed samples were higher than those for the contract laboratory split samples.

Color development for the RDX initial calibration standards was inconsistent throughout the entire field screening project. This is evident from high percent relative standard deviations for the two initial calibration curves generated during the analyses of samples. The percent relative standard deviation for the October 13 initial calibration was 31 and the percent relative standard deviation for the October 27 initial calibration was 33. The %Ds of the average response factors for the continuing

calibrations varied greatly throughout the course of the field project. The %D averaged at 37 for 29 continuing calibration standards and ranged from 2 to 89.

Although a specific reason for the apparent problems with the RDX method cannot be cited with certainty, two possible reasons are likely. These include matrix interferences and the reduction step in the color development reaction. Matrix interferences could result in low and/or high percent recoveries for the matrix spike samples and in poor RPDs for sample duplicates as well as between field-analyzed samples and contract laboratory-analyzed samples. Inadequate reduction during color development may have resulted from matrix interferences but may also have resulted from storage or use of zinc dust as the reductive agent.

It was determined during the course of the field project that the zinc dust became ineffective over time. Since the field laboratory was not equipped with a desiccator, the zinc dust was stored in a sealed container under ambient conditions. Upon realizing that the stock supply of zinc dust may have degraded, a fresh container of zinc dust was used in the color development process. The %D for RDX went from 89 on October 15 (using old zinc dust) to 12 on October 16 (using fresh zinc dust). The %D remained less than 25 for the next three extraction sets over two days while using the new zinc dust.

There was also concern regarding the time the zinc dust was in contact with the extract. Fifteen seconds was the method-recommended time that the zinc dust was to be in contact with the extract. It was not clear if incubation time was sufficient to allow the zinc to reduce the analytes in solution for proper color development to occur. Furthermore, it is possible that zinc dust is not a strong enough reductant for the intended application. During telephone conversations between the field chemists and the technical support division of the Hach Company, it was suggested that cadmium may be a more effect reductant.

D.2.5.2 TNT and RDX Extraction Efficiencies

The SPE vacuum manifold system used in the extraction of the groundwatersamples for the analysis of TNT and RDX method did not allow for accurate flow rate calibration. Furthermore, it was difficult to maintain a consistent flow rate throughout sample extraction. Up to eight sample extractions were performed simultaneously using the vacuum manifold. The flow rate was kept to a dropwise extraction and was approximately 5 to 10 milliliters per minute (ml/min). Generally, each one liter sample was extracted within two hours from the beginning of sample extraction. In summary, a non-optimum extraction flow rate and the variations in extraction flow rate through the SPE cartridges may have affected the extraction efficiencies for TNT and RDX.

D.2.5.3 Cost and Availability of the SPE Cartridges

The Heyesep R[™] SPE cartridges were purchased from Supelco, Inc., as a special order item. These cartridges required approximately two to three weeks for the manufacturer to produce and ship. The cost of these cartridges was several times higher than a standard product.

D.2.6 <u>RECOMMENDATIONS FOR FURTHER METHOD DEVELOPMENT</u>

Based on the performance of the field program, additional experimentation could be conducted which could allow the field method to be developed further. Several modifications could be evaluated which may alleviate or reduce many of the observed deficiencies presented in the preceding section. These include the following:

- Equipping the field laboratory with a desiccator for storing the reductant.
- Replacing the zinc powder with a more powerful reductant, such as cadmium.
- Replacing the Hach NitriVer 3[™] reagent with the Greiss reagent.
- Replacing the colorimetric method with a field lab based on a more proven method such as SW-846 Method 8330, which utilizes a high pressure liquid

chromatograph (HPLC). As another option, the applicability of the relatively new immunoassay methods could be evaluated.

D.3 REVISED FINAL FIELD METHOD SOP FOR THE DETERMINATION OF TNT AND RDX IN GROUNDWATER (U.S. ARMY ENVIRONMENTAL CENTER, JUNE 1995)

I. Summary

- A. Analytes: This method is suitable for determining the concentration of TNT and RDX in the field using AC or DC powered equipment.
- B. Matrix: This method is suitable for the determination of TNT and RDX in water.
- C. General Method: Nitroaromatics are extracted from water samples with a PorapakTM R solid phase extraction cartridge and are eluted with acetone. Color is developed in aliquots of the acetone extract with potassium hydroxide and sodium sulfate, in the case of TNT, and acetic acid, zinc dust, and Hach NitriVer 3 powder, in the case of RDX. The colored solutions are read on a Hach DR 2000 DC powered, single beam spectrophotometer or a Hitachi U2000 AC powered, dual beam spectrophotometer at 540 nm and 507 nm, respectively, and the absorbance compared to a standard curve to establish concentration.

II. <u>Application</u>

- A. <u>Calibration Range</u>: The method was developed to address concentrations ranging from 5 to $5000 \mu g/L$. Sample concentrations beyond the upper calibration limit will be diluted and reanalyzed.
- B. Tested Concentration Range: This method was tested over the range of 5 to 5000 μ g/L.
- C. <u>Sensitivity</u>: The sensitivity at the method detection limit is dependent on the level of concentration employed in the extraction, which is, in turn, dependent upon the concentration expected or encountered in the sample. Within the typical working range

of the spectrophotometer (i.e., Hach DR-2000) and in unconcentrated samples, the average absorbance per μ g/L was found to be 0.00027 for TNT and 0.00009 for RDX.

- D. <u>Interferences</u>: No interference was noted between TNT and RDX in solution. Potential interferences in the field are expected to be the same as those given in the related methods presented in Appendices A, B, and C.
 - E. Safety Information: See Appendix D.

III. Apparatus and Chemicals

A. Instrumentation

1. Field portable, DC powered, single beam spectrophotometer (Hach DR-2000 spectrophotometer or equivalent, bandpass 20 nm). Alternatively, fixed base, AC powered, dual beam spectrophotometer (Hitachi U-2000 spectrometer or equivalent, bandpass 2 nm).

B. Analytes:

TNT (2,4,6-trinitrotoluene)

BP: 280° C (explodes)

MP: 80.1° C

Solubility in water: 130 mg/L

Octanol/water partition coefficient: 68

CAS # 118-96-7

RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)

MP: 204° C

Solubility in water: 60 mg/L

Octanol/water partition coefficient: 7.5

CAS # 121-82-4

C. Reagents and SARMs:

- 1. TNT (standard)
- 2. RDX (standard)
- 3. Acetone
- 4. Potassium hydroxide (KOH, reagent grade pellets)
- 5. Sodium sulfite (reagent grade)
- 6. Glacial acetic acid (reagent grade)
- 7. Hach NitriVer 3 powder pillows

- 8. Zinc dust (325 mesh)
- 9. Type II water

D. Equipment:

- 1. Heyesep RTM R solid phase extraction cartridge, 1 g in 3 ml tube
- 2. One-hole stoppers
- 3. Vacuum flasks (1 and 4L)
- 4. Vacuum tubing
- 5. 30 mL disposable amber screw cap vials
- 6. Graduated cylinders

500 ml

100 ml

50 ml

10 ml

7. Disposable syringes

10 ml

30 ml

60 ml

8. Volumetric flasks

10 ml

25 ml

50 ml

100 ml

250 ml

- 9. Glass cuvette, 1 cm pathlength
- 10. Vacuum pump
- 11. Stopwatch
- 12. Cold storage
- 13. Glass tubing
- 14. Vial rack
- 15. Glassware cleaning supplies
- 16. Nail clipper
- 17. Spatula
- 18. Squirt bottles
- 19. Adaptors for sample reservoir
- 20. Sample reservoirs (60 ml)
- 21. Flask holder
- 22. Syringe filters (0.45 micron)
- 23. Supelco Visiprep DL Vacuum Manifold
- 24. Disposable liners

IV. Calibration

A. <u>Preparation of Standards</u>: Initial stock standard solutions should be obtained at concentrations of 1000 mg/L for TNT and RDX. A working stock standard is prepared at 20 mg/L for TNT and RDX. Calibration solutions are prepared in acetone at concentrations of 100, 250, 500, 1000 and 5000 μ g/L for TNT. Calibration solutions are prepared at 100, 250, 500, 1000, and 5000 μ g/L for RDX. (Note that during method validation, it was not possible to distinguish between blank, 5, and 10 μ g/L standards for RDX. Thus, sample concentration was used for analysis.) Approximately 3 ml of water are added to the calibration standards for each 100 ml of acetone employed to ensure adequate color development. Glass volumetric flasks and syringes are used for this purpose. Standards should be stored in amber bottles and stored in the dark at 4° C.

B. <u>Initial Calibration</u>: A 25 ml aliquot of each standard for TNT and a 5 ml aliquot of each standard for RDX is used and processed, as discussed in Sections VIIB and VIIC, respectively.

The zero absorbance setting is established by preparing TNT and RDX reagent blanks. The TNT reagent blank is 24 ml of acetone and 1 ml of water and the RDX reagent blank is 5 ml of acetone. Both reagent blanks are processed through the color development procedure as described in Section VIIIB for TNT and Section VIIC for RDX. Zero the instrument according to manufacturer's instructions. Measure and record the absorbance for each TNT and RDX calibrations standard separately at 540 and 507 nm, respectively. Calculate a correlation coefficient and an average response factor for each data set. If the correlation coefficient is > 0.995, linearity can be assumed. If not, prepare a calibration curve for future use.

C. <u>Continuing Calibration</u>: Continuing calibration is performed using a midrange standard at a frequency of one per extraction batch (500 μ g/L for TNT and RDX). The continuing calibration standard result should be within 80 to 120 percent of the true value. If the daily calibration check fails to meet this criterion, re-run the

calibration check. If the second calibration check also fails, a new initial calibration is required.

D. Calculations

The correlation coefficient is calculated as follows:

$$\mathbf{r} = \frac{\sum M_1 M_2}{\sqrt{((\sum M_1^2)(\sum M_2^2))}}$$

where: r = correlation coefficient

 M_1 = known concentration of a standard

 M_2 = instrument response for that standard.

The response factor for each standard is calculated as follows:

$$RF = \frac{A_{i}}{C_{i}}$$

where: RF = response factor

 $A_s = absorbance of the standard$

 C_{*} = known concentration of the standard.

The average response factor is calculated as follows:

$$R_a = \frac{(R_1 + R_2 + ...R_n)}{n}$$

where: R_a = average response factor

 R_n = response factor for a given standard

n = number of standards in the curve.

The recovery of the daily calibration check is calculated as follows:

$$R_d = \frac{C_d}{C_s}$$

where: R_d = recovery of the daily calibration check

 C_d = concentration of the daily calibration check

 C_{\bullet} = known concentration of the standard.

V. Certification Testing

The ability of the analyst to perform the method with acceptable precision and accuracy must be demonstrated prior to its use in the field.

Two sets of spiked sample solutions are prepared at the same concentrations as the calibration standards. The samples are analyzed and the results are recorded in $\mu g/L$. A percent recovery is calculated using the following formula:

% R should fall within the range of 75 - 125 for each analyte at each concentration.

A Relative Percent Difference (RPD) should be calculated for each concentration pair as follows:

RPD =
$$\frac{|(R_1 - R_2)|}{(R_1 + R_2)/2} \times 100$$

where: RPD = relative percent difference

R₁ = result of the first analysis

 R_2 = result of the second analysis.

The RPD should be less than 25% for each analyte at each concentration.

VI. Sample Handling

Samples should be stored at 4° C in amber glass bottles, in the dark, prior to analysis. Samples should be analyzed within 24 hours of collection. Samples with concentrations less than $1000 \,\mu\text{g}/\text{L}$ will require pre-concentration prior to analysis. The analyst will be required to adjust instrument reported concentrations by the appropriate concentration factor to arrive at a final sample concentration.

VII. Procedure

A. <u>Pre-Concentration of Water Sample:</u> A 500-ml graduated cylinder is used to measure out a 1000-ml aliquot of sample. Connect the vacuum pump to a 1 L vacuum flask. Connect the Heyesep RTM solid phase extraction (SPE) cartridge to the SPE vacuum manifold system. Fit the barrel of a 60 ml disposable syringe into the top of an extraction cartridge. Rinse the extraction cartridge and 60 ml reservoir (i.e., disposable syringe) with approximately 10 ml of acetone from a squirt bottle. Apply a slight vacuum to draw the acetone through the extraction cartridge. Rinse the extraction cartridge and reservoir with approximately 25 ml of deionized water to remove acetone using a slight vacuum. Repeat the deionized water rinse.

Filter the sample through the extraction cartridge at approximately 5 to 10 mL/minute (1 liter of sample should be filtered in 2 hours). Rinse the extraction cartridge with approximately 25 ml of deionized water to remove interfering ions.

Release vacuum. Properly dispose of filtrate. Add 10 ml of acetone to the extraction cartridge and let stand for 8 minutes. After 8 minutes elute the sample with just enough vacuum to pull the acetone through the extraction cartridge into 30 ml amber vial.

Immediately upon cessation of elution, release vacuum, bring the extract to 10 ml with acetone, and separate the eluant into two 5 ml aliquots. One 5 ml aliquot is used for RDX determination. The second is diluted to 25 ml with acetone and 1 ml of water for TNT determination.

Sample concentrations beyond the upper calibration limit will be diluted and reanalyzed.

B. TNT Test: A 25 ml aliquot of extract is poured into the barrel of a 30 ml disposable syringe and syringe-filtered into a clean sample vial with 1 pellet of KOH and about 1 g of Na₂SO₃. The vial is shaken for 3 minutes and is then allowed to stand for an additional 18 minutes. (A total of 20 minutes is needed for adequate color development.) The extract is then syringe-filtered into a clean 30 ml amber vial. Color development is complete at the end of the filtration. The solution is read on the spectrophotometer at 540 nm. The final concentration factor is 20X.

C. RDX Test: A 5 ml aliquot of extract is acidified by adding $500 \mu l$ of glacial acetic acid. The acidified extract is poured into the barrel of a 10 ml disposable syringe which contains approximately 0.3 g of zinc dust. After 15 seconds, the solution is syringe-filtered into a 30 ml amber vial containing 20 ml of deionized water and the content of 1 NitriVer 3 powder pillow. The vial is shaken to mix the reagents and allowed to stand for 25 minutes. The mixture is then syringe-filtered into a clean 30 ml amber vial and read on the spectrophotometer at 507 nm. The final concentration factor is 20X.

VIII. Calculations

The sample concentration is arrived at using the following formula:

$$C_{\bullet} \mu g/L = \frac{(A_{\bullet}/RF)}{CF}$$

where: C_{\bullet} = concentration in the sample

A_s = absorbance of the sample

RF = response factor taken from the daily calibration

CF = concentration factor.

IX. Daily Quality Control

Daily quality control consists of the following checks:

- 1. <u>Blank</u> A method blank will be processed daily. Results of the blank analysis should be < the detection limit. An acceptable blank must be analyzed prior to analysis of field samples.
- 2. Blank spike A method blank, spiked at 500 μ g/L (in final extract/25 μ g/L in sample), should be processed daily.
- 3. Matrix spike A field sample, spiked at 500 μ g/L (in final extract/25 μ g/L in sample), should be analyzed daily. The sample chosen for the matrix spike should have a concentration < 1000 μ g/L but should not be a blank. Calculate a percent recovery as follows:

$$\%R = \frac{C_{ms} - C_{s}}{C_{k}}$$

where: %R = percent recovery

 C_{ms} = concentration of the matrix spike

C_s = concentration of the unspiked sample

 C_k = known concentration of the spike.

%R for matrix spikes should initially fall within the range of 75 -125. Control charts should be established based on daily matrix spike results and used according to the USAEC QA guidance documents (USATHAMA, 1987, 1990, 1993).

4. <u>Duplicate</u> - a sample duplicate should be performed daily. Calculate a relative percent difference using the formula given in Section V.

The RPD should initially be < 25%. Control charts should be established based on daily duplicate results and used according to USAEC QA guidance documents (USATHAMA, 1987, 1990, 1993).

Note: This Revised Final SOP appears in the following report:

Dames & Moore, 1995. Report on Treatability Test of Groundwater by Ultraviolet (UV)/Oxidation, Umatilla Depot Activity, Hermiston, Oregon, U.S. Army Environmental Center, Aberdeen Proving Ground, June 1995.

Copies of this report or further information in the SOP may be obtained from:

Dr. Charles Lechner/SFIM-AEC-BCA U.S. Army Environmental Center Building 4480 Aberdeen Proving Ground, MD 21010 Phone: (410) 671-1605

-or-

Dr. Stephen Lemont Dames & Moore 849 International Drive, Suite 320 Linthicum, MD 21090 Phone: (410) 859-5040

D.4 REFERENCES

- Dames & Moore, 1993. <u>Final Method Validation Report, Field Method for the Determination of TNT and RDX in Groundwater</u>, Report No. ENAEC-BC-CR-93106, prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland, September 1993.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1990. <u>Quality</u>
 <u>Assurance Program</u>, Aberdeen Proving Ground, Maryland, January 1990.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1987. <u>Quality</u>
 <u>Assurance Program</u>, Aberdeen Proving Ground, Maryland.
- U.S. Army Environmental Center (USAEC), 1993. <u>Guidelines for Implementation of ER 1110-1-263 for USAEC Projects</u>, Aberdeen Proving Ground, Maryland, May 1993.

D.5 INITIAL AND DAILY CALIBRATION WORKSHEETS

TNT Field Screening Analysis Initial Calibration Worksheet

UMDA

Date: Oct. 11, 1993

•	Comments	
	Corr Coef	
	Relative Standard Deviation	(RSD)
	Ave RF (Ra)	
	Response Factor (RF)	
	Standard Abs. (As)	
	Standard Conc. (ug/L) (Cs)	
	Anal. No.	
	Standard	

0.9999	4.81	4.75E-05	4.64E-05	0.229	4940	9	5000 ppb
			4.76E-05	0.047	886	5	1000 ppb
			4.45E-05	0.022	484	4	500 ppb
			4.86E-05	0.012	247	3	250 ppb
			5.06E-05	0.005	98.8	2	100 ppb

UV D-39

RF = As/Cs

RSD = (standard deviation n-1/average RF) x 100

Comments

Percent Difference (%D)

Average RF (Ra)*

Response Factor (RF)

Standard Abs.

Conc. (ug/L) (Cs) STD

Analysis Date

Anal. No.

Standard

Daily Continuing Calibration Worksheet

	000000000000000000000000000000000000000					000000000000000000000000000000000000000	***************************************	
200 ppp	15	10/12/93	494	0.02	4.05E-05	4.75E-05	-14.8	
500 ppb	19	10/13/93	494	0.019	3.85E-05	4.75E-05	-19.1	
500 ppb	2	10/14/93	494	0.021	4.25E-05	4.75E-05	-10.6	
200 ppb	18	10/14/93	494	0.017	3.44E-05	4.75E-05	-27.6	
500 ppb	42	10/14/93	494	0.019	3.85E-05	4.75E-05	-19.1	
500 ppb	28	10/15/93	494	0.014	2.83E-05	4.75E-05	-40.4	low recovery - use for calc
500 ppb	37	10/15/93	494	0.021	4.25E-05	4.75E-05	-10.6	
500 ppb	17	10/16/93	494	0.021	4.25E-05	4.75E-05	-10.6	
200 ppb	44	10/16/93	494	0.015	3.04E-05	4.75E-05	-36.1	low recovery
200 ppb	15	10/17/93	494	0.017	3.44E-05	4.75E-05	-27.6	
200 ppb	38	10/17/93	494	0.02	4.05E-05	4.75E-05	-14.8	
500 ppb	48	10/17/93	494	0.026	5.26E-05	4.75E-05	10.7	

RSD = (standard deviation n-1/average RF) x 100

TNT Field Screening Analysis Initial Calibration Worksheet

UMDA

Date: Oct. 11, 1993

Comments
Coef (r)
Relative Standard Deviation (RSD)
Ave RF (Ra)
Response Factor (RF)
Standard Abs. (As)
Standard Conc. (ug/L) (Cs)
Anaf. No.
Standard

			Г	Г	Т	T
	800000					
				l		
	800000					
	00000000					
	3000000					66
	8000000					0.9999
	8000000					0
	8000000					
	8888888		Γ		Γ	
	00000000		l			
	0000000					4.81
-	00000000					4
	8000000					
	2000000		T		T	
	******					05
						5E-(
	B000000					4.75E-05
	888888					'
	888888					
	**************************************	5.06E-05	4.86E-05	.45E-05	4.76E-05	-05
	600000 10000000000000000000000000000000	39 (36E	55	76E	34E
-	2000000	ы О	4.8	4.4	4	4.64E-05
	0000000		_	<u> </u>	_	Ц
	0000000					
	MANAGE	2	2	22	17	6
	0000000	0.0	0.	0.0	0.047	.2.
		ا		٦		
						Ц
		8	_	_	~	0
		98.8	247	494	988	94
		رد				4
	Ī					
		7	က	4	ស	မ
			Ц			Ц
		امِ	۾	ą	qq	q
		ᆸ	pr	DE	d 0	d 0
		힏	250	500	1000 ppb	8
					-	ر۳)
	1					

RF = As/Cs UV D-40

RSD = (standard deviation n-1/average RF) x 100

Daily Continuing Calibration Worksheet

Comments	
Percent Difference (%D)	
Average RF (Ra)*	
Response Factor (RF)	
Standard Abs.	
STD Conc. (ug/L) (Cs)	
Analysis Date	
Anal. No.	
Standard	

-14.8	-31.9						
4.75E-05	4.75E-05						
4.05E-05	3.24E-05						
0.02	0.016						
494	494						
10/18/93	10/19/93						
6	13						
500 ppb	500 ppb	-					

RF = As/Cs

RSD = (standard deviation n-1/average RF) x 100

* - Ra taken from initial calibration

 $%D = ((RF - Ra)/Ra) \times 100$ 06702-086-111 10/29/93 dmw

Dames & Moore

TNT Field Screening Analysis Initial Calibration Worksheet

UMDA

Date: Oct. 27, 1993

Comments
Corr Coef (r)
Relative Standard Deviation (RSD)
Ave RF (Ra)
Response Factor (RF)
Standard Abs. (As)
Standard Conc. (ug/L) (Cs)
Anal. No.
Standard

					0.9995
000000000000000000000000000000000000000					9:30 0:38
					4.28E-05
000000000000000000000000000000000000000	3.98E-05	4.78E-05	4.38E-05	3.78E-05	4.48E-05
	0.004	0.012	0.022	0.038	0.225
	100.4	251	502	1004	5020
000000000000000000000000000000000000000	8	6	10	11	12
	100 ppb	250 ppb	500 ppp	1000 pph	5000 ppp

UV D-41

RF = As/Cs

RSD = (standard deviation n-1/average RF) x 100

Daily Continuing Calibration Worksheet

Comments										Do not use for calculation		
Percent Difference (%D)	7.0	2.3	-2.3	-11.6	16.3	2.3	16.3	2.3	-2.3	30.2	7.0	16.3
Average RF (Ra)*	4.28E-05	4.28E-05	4.28E-05									
Response Factor (RF)	4.58E-05	4.38E-05	4.18E-05	3.78E-05	4.98E-05	4.38E-05	4.98E-05	4.38E-05	4.18E-05	5.58E-05	4.58E-05	4.98E-05
Standard Abs.	0.023	0.022	0.021	0.019	0.025	0.022	0.025	0.022	0.021	0.028	0.023	0.025
STD Conc. (ug/L) (Cs)	502	502	502	502	502	502	502	502	502	502	502	502
Analysis Date	10/28/93	10/28/93	10/29/93	10/29/93	10/29/93	10/30/93	10/30/93	10/31/93	10/31/93	10/31/93	11/1/93	11/1/93
Anal. No.	4	57	m	35	45	,	32	2	32	42	2	36
Standard	FOO onk	500 nnh	500 onb	500 oob	500 ppp	500 pph	200 ppp	500 app	500 Pub	500 pph	500 ooh	500 pph

TNT Field Screening Analysis Initial Calibration Worksheet

UMDA

Date: Oct. 27, 1993

Comments	
Corr Coef (r)	
Relative Standard Deviation	(RSD)
Ave RF (Ra)	
Response Factor (RF)	
Standard Abs. (As)	
Standard Conc. (ug/L) (Cs)	
Anal. No.	
Standard	

000000000000000000000000000000000000000	000000000000000000000000000000000000000							
100 ppb	8	100.4	0.004	3.98E-05				
250 ppb	6	251	0.012	4.78E-05				
500 ppb	10	502	0.022	4.38E-05				
1000 ppb	11	1004	0.038	3.78E-05				
5000 ppb	12	5020	0.225	4.48E-05	4.28E-05	9.30	0.9995	

RF = As/Cs UV D-42

RSD = (standard deviation n-1/average RF) x 100

Daily Continuing Calibration Worksheet

Comments				
Percent Difference (%D)	-2.3	-16.3	2.3	-2.3
Average RF (Ra)*	4.28E-05	4.28E-05	4.28E-05	4.28E-05
Response Factor (RF)	4.18E-05	3.59E-05	4.38E-05	4.18E-05
Standard Abs.	0.021	0.018	0.022	0.021
STD Conc. (ug/L) (Cs)	502	502	502	502
Analysis Date	11/2/93	11/2/93	11/3/93	11/3/93
Anal. No.	2	32	12	34
Standard	500 ppb	500 ppb	200 ppp	500 ppb

1	т-	Г	1	1	_	Т	_	_	
-2.3	-16.3	2.3	-2.3						
4.28E-05	4.28E-05	4.28E-05	4.28E-05						
4.18E-05	3.59E-05	4.38E-05	4.18E-05						
0.021	0.018	0.022	0.021						
502	502	502	502						
11/2/93	11/2/93	11/3/93	11/3/93						
2	32	12	34						
200 ppb	500 ppb	200 ppb	500 ppb						

RDX Field Screening Analysis Initial Calibration Worksheet

UMDA

Date: Oct. 13, 1993

Comments			
Corr	Coef	Ξ	
Relative	Standard	Deviation	(RSD)
Ave	Æ	(Ra)	
Response	Factor	(RF)	
Standard	Abs.	(As)	
Standard	Conc. (ug/L)	(Cs)	
Anal.	No.		
Standard			

				,
				0.999
				30.6
				3.59E-05
5.04E-05	4.44E-05	2.62E-05	3.23E-05	2.62E-05
0.005	0.011	0.013	0.032	0.13
99.2	248	496	992	4960
4	2	9	7	8
100 ppb	250 ppb	500 ppb	1000 ppb	5000 ppb

RF = As/Cs UV D-43

RSD = (standard deviation n-1/average RF) x 100

Daily Continuing Calibration Worksheet

Standard	Anal.	Analysis	STD	Standard	Response	Average	Percent	Comments
	No.	Date	Conc. (ug/L) (Cs)	Abs.	Factor (RF)	RF (Ra)*	Difference (%D)	
	000000000000000000000000000000000000000							
500 ppb	6	10/13/93	496	0.012	2.42E-05	3.59E-05	-32.6	
500 ppb	10	10/14/93	496	0.012	2.42E-05	3.59E-05	-32.6	
500 ppb	32	10/14/93	496	0.015	3.02E-05	3.59E-05	-15.7	
500 ppb	26	10/14/93	496	0.01	2.02E-05	3.59E-05	-43.8	
500 ppb	17	10/15/93	496	0.014	2.82E-05	3.59E-05	-21.3	use for all data calc on 10/15
500 ppb	44	10/15/93	496	0.002	4.03E-06	3.59E-05	-88.8	obvious color development@
1000 ppb	15	10/16/93	892	0.035	3.53E-05	3.59E-05	-1.7	
500 ppb	31	10/16/93	496	0.016	3.23E-05	3.59E-05	-10.1	
500 ppb	2	10/17/93	496	0.014	2.82E-05	3.59E-05	-21.3	
500 ppb	28	10/17/93	496	0.017	3.43E-05	3.59E-05	-4.5	
500 ppb	59	10/17/93	496	0.007	1.41E-05	3.59E-05	-60.7	poor color development**

RF = As/Cs $%D = ((RF - Ra)/Ra) \times 100$

RSD = (standard deviation n-1/average RF) x 100

* - Ra taken from initial calibration

10138382.XLS

RDX Field Screening Analysis

Initial Calibration Worksheet

UMDA

Date: Oct. 13, 1993

Comments	
Coef (r)	
Refative Standard Deviation (RSD)	
Ave RF (Ra)	20 202 0
Response Factor (RF)	5.04E-05 4.44E-05 2.62E-05 3.23E-05
Standard Abs. (As)	0.005 0.011 0.013 0.032
Standard Conc. (ug/L) (Cs)	99.2 248 496 992
Anal. No.	5 6
Standard	100 ppb 250 ppb 500 ppb 1000 ppb

D-44 U 44

RSD = (standard deviation n-1/average RF) x 100

Daily Continuing Calibration Worksheet

Comments
Percent Difference (%D)
Average RF (Ra)*
Response Factor (RF)
Standard Abs.
STD Conc. (ug/L) (Cs)
Analysis Date
Anal. No.
Standard

	Г	Г	Г	Т	Т	Т	Т	Γ	Т	Т
Poor Color Development	Poor Color Development									
-60.7	-60.7									
3.59E-05	3.59E-05									
1.41E-05	1.41E-05									
0.007	0.007									
496	496									
10/18/93	10/19/93									
26	4									
500 ppb	500 ppb									

RF = As/Cs %D = ((RF - Ra)/Ra) x 100

RSD = (standard deviation n-1/average RF) x 100

. - Ra taken from initial calibration

RDX Field Screening Analysis Initial Calibration Worksheet

UMDA

Date: Oct. 27, 1993

Comments			
Corr	Coef	Œ	
Relative	Standard	Deviation	(RSD)
Ave	Æ	(Ra)	
Response	Factor	(RF)	
Standard	Abs.	(As)	
Standard	Conc. (ug/L)	(Cs)	
	No.		
Standard			

		_	_	
				0.9967
				33.3
				3.04E-05
4.66E-05	2.23E-05	2.98E-05	2.14E-05	3.18E-05
0.005	900'0	0.016	0.027	0.171
107.4	268.5	537	1262	5370
2	15	4	16	9
100 ppb	250 ppb	500 ppb	1000 ppb	5000 ppb

UV D-45

RF = As/Cs

RSD = (standard deviation n-1/average RF) x 100

Daily Continuing Calibration Worksheet

Comments						do not use for quantitation	use for all daily quantitation			Re-extracted on 11/1/93	
Percent Difference (%D)	16.4	34.8	-38.7	22.6	-7.1	-69.4	4.2	-1.9	-38.7	83.8	-44.8
Average RF (Ra)*	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05
Response Factor (RF)	3.54E-05	4.10E-05	1.86E-05	3.72E-05	2.82E-05	9.31E-06	3.17E-05	2.98E-05	1.86E-05	5.59E-05	1.68E-05
Standard Abs.	0.019	0.022	0.01	0.02	0.014	0.005	0.017	0.016	0.01	0.03	0.00
STD Conc. (ug/L) (Cs)	537	537	537	537	496	537	537	537	537	537	537
Analysis Date	10/28/93	10/28/93	10/29/93	10/29/93	10/29/93	10/30/93	10/30/93	10/31/93	10/31/93	10/31/93	11/1/93
Anal. No.	33	47	13	24	99	13	23	12	22	52	13
Standard	500 ppb	500 ppb	500 ppb	500 ppb	500 ppb	500 ppb					

RF = As/Cs%D = ((RF - Ra)/Ra) x 100

500 ppb

RSD = (standard deviation n-1/average RF) x 100

· - Ra taken from initial calibration

3.04E-05

1.49E-05

Dames & Moore

Daily Continuing Calibration Worksheet

Comments		
Percent	Difference	(%D)
Average	R	(Ra)*
Response	Factor	(RF)
Standard	Abs.	
STD	Conc. (ng/L)	(Cs)
Analysis	Date	
Anal.	Š.	
Standard		

		T	T	Т	Τ	T	Т	T	Т	Т	Τ	Τ
	do not use	do not use		do not usa								
	-69.4	-81.6	6.1-	-44.8								
	3.04E-05	3.04E-05	3.04E-05	3.04E-05								
	9.31E-06	5.59E-06	2.98E-05	1.68E-05								
	0.005	0.003	0.016	0.00								
000000000000000000000000000000000000000	537	537	537	537								
000000000000000000000000000000000000000	11/2/93	11/2/93	11/3/93	11/3/93								
000000000000000000000000000000000000000	12	22	14	25								
	500 ppb	500 ppb	500 ppb	500 ppb								

RF = As/Cs RSD = (standard deviation n-1/average RF) x 100 %D = ((RF - Ra)/Ra) x 100

* - Ra taken from initial calibration

D.6 DAILY ANALYSIS LOGS

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/4/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REMEENT BLANK TRIT	1	O8: 49	540 AM WANELEMETH
072 299 00c TUT	2		
REAGENT RUNK POX	3	10:01	TOT AM WHUSTENETH
५०० १३३ ५८०.	4	10:48	
973 899 \$500)	5	10:50	100,000 standard
1000 ada 500	6	11:25	read at 88% offer 15 min
1000 pap STO	7	11:30	92 % after 20 min.
mo-kby	8		
MBS - RAY 500 NAB	9	14:12	
mb Trof Recolor blance	110,	1	
MB/TWT	11/		
MBS . TOT	n	#4:13	
500 PPB TNT	10		
500 PPB + NT	(4		
METHOD BLANK THT	12	14:32	10 EK
METHOD RLANK SPIKE THI	13	14:36	10 KK
REAGENT BLANK ROX	74		
RAY BLANK SPIKE	15		
TNT 500 1948	76	15:28	
TW 500 PPB	1	15131	
TNT 508 PAB	18	15:37	
	UV		

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/6/19

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
Service in Product			
DEACENT BLANK	2		
~ SU PPR ZDX	3		
500 PPB 20X	ч		
1000 PPB RDX	5		
5000 PP3 RDX	6		
Stop PiB EDX	% 7		
1000 TEB ROX	8		
500 PPB RDX	7		AUTOZERU METER ANDLYSIS
ร์ร็อ คิศิล ผิ <i>D</i> X	to,		
100 PP8 ROX	12		
m/8 10/5/93	-12 13		
M/B 10/5/93 B5 #1 10/5	-314		
RS #2 10/5	415		
85 23 10/5	45 16		
35#4 10/5	12 7		
25 45 10/5	# 15		
35 26 0/5	20		
Soo PAS ROX	21		\$5% 15 % D RUN DNALYSET
METHOR BLANK ROX 10/6	n		
35 # 1 A PX 10/6	23		308./
BS # 2 RDX 10/6	24		1614
BS #3 RDV 10/6	25		1210
85 & 4 RDX 10/6	26		947.4
B5 45 RDX 10/6	27		1184
TO SOO PPB TNT	28	17:55	MUTORERUED W/ TNI RB> STO LON
MB 10/6 TNT	29	17:57	AS
BS# , 10/6 TNT	30	17:59	478.5 APS
BS#2 10/6 TNT	31	18:01	456.6
BS# 3 10/6 TMT	32	18:03	
BS#4 10/6 INT	33	18:05	
BSEK 10/6 TNT	34	18:07	
			
		-	
			
	T 13.7		

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date : 10/11

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REAGENT BLASK TOT	1	15:32	540 nm WL
100 PPB TNT	2	15:33	
250 PAB THI	3	15:36	
JOO PPB TNT	4	15:39	
TUT 899 GOGI	5	15:41	
ELLA POR TAIT	6	15:44	T = 0.9999
Water Blank Spikel	7	19:38	
Mater Charles Snike 1	8	16:47	
World Spike 2 Sample 2 Spike Sample 3 Spike	g	16:46	
Samo	10	16:49	
Sandle 2 saile	11	16:55	
Samuel 2 Sains	12-	14:58	
SOO PAB THIT		17:09	
50 000 mil	13	17:40	
50 PPB TNT 10,000 PPB TNT	13	17:43	
TO TO TRIPIN	,3	11.42	
	-		
		-	
	UV		

UMDAC.XLS

TNT and RDX Field Screening Analysis **Daily Analysis Log**

UMDA

Date : 15/12

Sample	Anal.	Analysis	Comments
Sample	No.	Time	- Community
1	140.	Hr : Min	
Repairt Blank	1	15:21	ROX ANALYSIS SOT MM WHUELEWAY
(OPA) POX	2	15.27	
250 POD ROX	3		
Service	4	15:30	
SOUDOL ROY	3	15:37	
Soon and RIX	6	15.40	
Marind Blank 1947 RDX	7	15:55	
Blank Spike ROX	3	15:59.	
4-1 Dup ROX	9	16:02	
4-1 ROX	10	16:05	
4-1 MS PDX	11	16017	
4-1 MSD RDX	17.	-	
RENGETYT BLANK	13	16:42	THE ANALYSIS SYD AM WAUTLENGTH
ECHCENT BLKNK	14	16:42	TO AMOSCEDED
TOO PER THT	15	16:45	
METHOL BLANK THE 11/12	16	16:50	
BLANT SPIKE THE 10/12	17	16:52	AUTOZEROED BEFORE ANALYSIS
4) - 1	18	16:56	AUTOREDED BEFORE ANALYSIS
4-1 DWP	19	16:58	ANTOZEROFD BEFOLL KNULTSIS
4-1 ms	20	17:00	AUTOZOLOG BEFORE ANALTSIS
4.1 msp	2-1	17:03	
	ļ		
		,	
·			
	LIV		
	UV		

UMDAC.XLS

Page			of		<u> </u>
DAMES	&	M	0	OR	Ε

TNT and RDX Field Screening Analysis Daily Analysis Log **UMDA**

Date: 10/13/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REAGEST BLANK	+	11:12	ROX MUNLYSIS - 507 AM - Aut . DEROED
100 PPR STP RAX	7	12:08	REPERP STM SON MOS
REAGENT BLANK	3	17:01	
100 PPB 20X	4	17:02	
250 PPB BDX	5	17:03	
500 PPR ROY	4	17:05	
X451 844 adal	7	17:06	
TOOD PAB RDX	8	17:08	T = 0.9987 w/88 F=0.9990 w/out AB
SO PRE RAY	9	19:20	AUTOZERSED W/NEW RENGET AT BLANK
1000 PAB ROX	10	19:27	TILLI BECEEVE TO DE LA PROPERTIE DE LA PROPERT
METHOD BLANK EOK	11	19:24	
Brak SPIKE ROX	12	19:26	
#100	13	19:28	
1101	14	19:30	
#102	15	19:32	
E 103	16	19:34	
AGGIGAT BLANK TAT	17	20.11	Auto BUV W THY REAGENT BLOM
MA THT	18	20:13	
500 PPB TNT	19	20:16	
SB TNT	20	20:19	
# 100 TNT	21	20:21	
# 101 +NT	22	20:23	
4 102 TNT		20:16	•
# 103 TNT	73	20:29	
		İ	
	Ť ·		
	-		
	UV		

TNT and RDX Field Screening Analysis Daily Analysis Log

- UMDA

Date: 10/14/93

Sample	Anal.	Analysis	Comments
ID	No.	Time	
		Hr : Min	
RENGENT BLANK	1	11:49	THE ALMLYSIS - AUTOFEDED
TAT STOR OF	2	11:50	oK.
	3	11:54	AUTOZEROCO BEFORT ANALYSIS
#104	4	11:56	PORTION OF SAMPLE LAST DURING CO - REENTLACT
# 105	5	11:58	
≠ 101 ₹ 107	6	11:59	
	7	12:02	JALLE ABOUT \$5000 PPS STD. SEE SHAPLE CALC. SE
# (08	8	12:04	Chicago About a seed file site.
# 109	9	(3:38	ROX AMELYSIS
REAGENT BLANK	10	13:41	LOW - CONTINUE ANXISTS
500 PP3 20x	-	13:45	AUTOREROEL DEFOLE ANNULL
74104	11	13:49	AUTOZEROFO REFOLE AUMLYSIS - REGYTRACT
I 105	-	7	WIN OSOFORD REPORT HOME AND THE STATE OF THE PARTY OF THE
7106	13	3:51	
P107	14	13:52	
#108	15	13:56	
# 109	16	13:52	
BEAGONT BLANK	17	15:44	TAT ANALYSIS
500 PPB TAT	15	15751	Low continue ANALYSIS - REMAINED
MATHED BLANK 10/14	19	15:55	CE MERCIEC .
BLANK SPIKE 10/14	٤٥	15.57	RUTOZERO BEFORE BARLIS AZARALT
a IIC	21	15:59	AUTOZETRO SEFORE ANALYSIS THE PROPERTY
# (11)	22	16.01	ANTOZEAB BECORE MNDLYSID - EERNBLYZE
4111	2-3	16:05	E PAZALNZE
a iii	24	16:07	()
DIII	25	16:11	
H 113	7.6	16:13	
#UH.	27	16:15	
Ħ 115	78	16:16	
REMLENT BLANK	29	18:15	ROX ANALYSIS ALTONOLO
500 PP# RDX	30	18:18	FERUN
200 BB & DX	31	18:19	of actual
SOOPAB ROX	35	18120	o k
METHOD BLANK 10/14 RDS	33	K:22	
BLANK SPIKE 10/14 ROX	34	18824	
#110	35	18:26	
# 111	36	18:28	
#112	77	18:30	
#113	38	18:31	
29) (¹ 4	39	18:33	
#115	40	18:34	
REAGENI BLANK	41	20:07	AUTO LERD TNT AMALYSIS.
500 PPB TNT	42	20:10	
±10.5	43	20:14	
*116	44	30:13	
	45	30.90	
117	46	20:23	
118	47	20.26	
119	48	20:28	
120	1 49	10:31	Auro Ecro
12050	UV	19.71	MUIN PL/V

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

13

Date: 10/14/53

Sample ID	Anal. No.	Analysis Time Hr : Min		Comments
121	50	20:34	Auro Zero	·
22	- XO 511	20:37	on- 10/14/93	
121	515tok	20:41		
12-2	52	20:43	AUTO ZRU	
122	53	20:44	101.00	
	27	20.51		
500 PPB HAINT	54	20:47		71 8
BOO PPB ROX	55	21:10	AUTO ZERO	10x HUMASIS
500 PPB ROX	56	21:16		
¥ 105	57 58	21:19	Auto EVINO	
+ 116 + 117	SR	21:21		
4117	59	21:22	Auto BUV	
# 118		21:23	7/4/1	
M also	60	21:24		
# 119	[0]	21:26		
120	62	21:28		
12050	63	21:30	Auro Zuo	
121	63 64 165	21:30		
172	105	21:34		
1				
		-		
				•
	4			
	\rightarrow			
	+			
	\rightarrow			
	_			
				
			\	
				\
	+			
				
				gn-
	Luv L			(4) 14

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 15/15/93

Sample	Anal.	Analysis	Comments
ID	No.	Time	
		Hr : Min	
RB RDX Analyses	l l	11:18	
100 ppb RDX	2	11:20	
250 oph	3	11:21	
500 eph	4	11:24	
1000 pp	5	11:26	
5000 epb		11:30	
170 406		11:35	
250 ppb	87	11:42	
500 pph	48	11:44	
1000 pph	10 1	11:47	
5000 -nh	+1 10	11:45	
RB ROX Analysis	÷ (0	13:09	Auto frero
1000 000	# 12	13:07	
SALO DOP	413	13:10	
1,000 PPb	14	14:20	
RB RDX	184		Auto Eci o
5000 PP b	145	14:24	
REAGENT BLOOK ROX	16	14:45	Auro Feco
500 PPb	17	14:50	MSE FAR CONTINUCIAL CAL.
850 66P	18	14:53	DOME NOT WIE ART STHER STO
1000 PPb	19	14:53	
5000 PPL	20	13:00	
REALERY BLANK ROX ANAL.	21	16:37	
125	-22	16.40	
4124	2-322	14:43	
+125	₹ 23	16:46	
⁴ 123	24	16:52	
± 126	25	14:55	
4127	26	, 16:57	
+128	27	16:59	
REAGENT ISLANK THI ANAK	28	7.67	Auto 700
SUD CAP INT	28	18:02	
REAGENT BLANK THT ANAL	29	18:03	
¥123	30	18:05	
# 124	31		Auto ZERD
#125	32	18:11	
	33	18:14	
# 126 # 124	34	18:110	Auro Zeno
	35	18:19	The Source
# 128	3(₄	20:12	Auro Zeeo
REAGENT BLANK THE ANAL	37	20:14	naio con
500 PPB TNT	38	20:19	AUTO ZCED
MB		20:21	PULL ELEC
RS	39		0
129	40	20:24	Auro Zeeo
130	41	20:25	1
131	42	20:29	Auro Zero
+32	43	20:29	
REAGET BLANK ROX ANAL	43	21:02	
500 PPB	UV HH	21:07	LOW ABSORBANCE RENDING - OBUIONS COLUR

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/15/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
APTHOO BLACK 10/15	45	21:12	
ant SPIKE 10/15	46	21:14	
129	47	21:15	
130	48	21:17	
131	48	21:19	
	1		
	1		
	1		
	1		,
	 \		
	 	 	·
		1	
	+	1	
		 	
		\	
		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		`	
· · · · · · · · · · · · · · · · · · ·		<u> </u>	
		<u> </u>	
		1	``
			`
			``.
	1		
	 	 	
	-	-	
		-	
		-	
	UV		

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 16/16/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REAGENT BLANK	(13:10	RDX AMALYSIS
SOD PAB ROX	2	(3:12	REPREP
S132	3	13:14	
2133	4	13:15	
# 124	2	13:17	
R 135	6	13:19	
# 136	7	13:20	
# 137	8	(3:23	
# 138	٩	13:24	·
₩ 139	10	13:26	
# 140	11	13:28	
# 141	12	13:30	
# 141 ms	ja_ 13	13:32	·
\$500 P28 P.DV	14	14:40	EZAMLYTE
See PPB RDY	15	1441	ಬಾಕ್
SEACENT BLANK	16	15:14	THE MARCES IS
TOO PPB THT	17	15:45	
# 132	18	15:22	
ゴ(33	19	15:24	
T 134	20	15:27	AUTOBERO REFORE ANHLYSIS
H 135	21	15:28	
RETACENT BLUNK	22	1530	AUTOZERO
D 136	2-3	15:39	
7614	24	15,43	
3812	25	15:45	
H 139	26	15:46	
140	27	15,48	
D141	28	15.52	
7141 ms	29	15:54	
DENGENT BLANK	30	18:08	RDX Alaus IS
500 PPB ROX	31	18:69	
mp 10/16/93	32	18:11	
BS 10/16	33	18:13	
4142	311	18:14	
±/ 113	35	18:16	
म। म्	36	(8:20	AUTOZERO BEFORE ANALYSIS
≈ 142	37	18:22	
#146	38	18.24	
=147	39	18:26	
#148	40	18:27	
मापु	41	18:36	
± 150	42	18:32	
PLEACENT BLONK	43	19:06	TUT MUMINIS - RUTUBERO - NOT ANMLYZE)
500 PP3 - NT	44	19.08	
BS \$ 10/16	45	19:14	
MB 10/16	16.	19:15	
F142	47	19:17	
= 143	48	19:18	
# 144	UV	19'20	REANDLYZE - GUVETTE DIRTY

TNT and RDX Field Screening Analysis Daily Analysis Log **UMDA**

Date: 13/16/53

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
生 14人	50	19:20	
4147	51	19:27	
216 # 146	52	19:24	
#147 + 148	53	19:25	
はってつ	54	19:27	
2149	55	19:29	
# 150	56	19:30	
		,	
	 		
	-		
	-		
	UV		
	D-58		

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/17/43

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REAGENT BLUNK		13:20	AUTOZOLO BEFOLE HUNLISIS - RDX BHALYSIS
500 PPB	2	13:21	
a (2)	3	13:22	
W 152	ч	13:24	
¥153	5	13:25	
# 154	6	13:27	
# 155	7	13:29	
± 156	8	13:3031	BEYOUD CALIBRATION RALLE
#\S7	٩	13133	
#128	10	13:35	
# 159	11	13:38	
# 160	12	13:41	
F (6)	13	13:43	
ZERGENT BLANK	14	15:09	THE HEALTS IS - MUTOZERO BEFORE ANNO
500 PPB	15	15:12	
-	16	15:15	
# 151	17	15:16	
# 123 # 125	18	15:17	
	19	15118	
150	20	15,20	
T155		15:21	
#156	21	15:22	
*157	22	15:23	
*158	24	15:25	
#159			
# 16b	25	15:26	
#161	26	15127	ROX ANALYSIS - ANTORERO BEFORE ANALYSIS
BERGENS STANK	27	17:47	RIX ANALYSIS - AUTSECEO BEFORE TO
500 PPS RDX	2-8	13:48	
REAGENT THANK MB 10/17		17:50	
RS: 10/17	30	17:51	
# 162	31	17:53	
#162 ms	32	17:55	
8163	33	17:56	
#164	34	17:57	
±165	35	17:59	
¥166	36	18:00	
RPHGENT BLYDK	37	19:•3	THE ANALYSIS - AUTOZERO BEFORE MANDET
500 PPB TNT	38	19:04	
my 10/17	39	19:05	
BS 10/17	46	19:08	
A 162	41	19:10	
# 162 st ms	42	19:11	
世へに	43	19:13	
x 164	44	19:14	
± 165	45	19:10	
166	46	19:18	
QUAGENT BLANK INT ANAL	47	20:00	
SOUPPBINT	48	20:04	
	49	20:04	
4167	UV	1 7	

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date:

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
#168	60	20:07	
生169	51	20:10	
# 170	62	20:12	
# (-) (63	20:17	
#177	54	20:15	
# 173	55	20:17	
# 174	51-	20:19	
+175	57	80:21	
LEAGENT DUNK	58	20:38	RDX MUNICIO - MUTOPERS BEFALL MUNICISIO
SUD PAR ROX	55	20:40	DON'T WIE FOR QUANTITOTION - WIE PARHOUS STA
#167	60	20:42	And the same of th
# 168	61	20:43	
		20:44	
2169	62	20:46	
	63		
171	64	20:47	
172	65	20:48	
#173	66	20:49	
2174	67	20:51	
175	68	20:52	
\			

		-	
		,	

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 170/14/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REALINT BLANK	\	15:48	RDI MORENSIS
100 PPB 20X	2	15:54	
250 PAB 25%	3	15:58	NO COLOR PEULL COMENT
500 PPR ROX	벅	+5 16.00	FOR STANDARDS
1000 PAD RDX	5	16:01	
Soon PPB R	6	16:03	
REAGENT PLANK TIVT	7	17:05	TUT AUBLISIS AUTOZERD
REDGERNT BLANK	છ	17:06	
SHOPP NEW	9	17:01	
500 PPP OLD	10	17:00	
MB 10/14	1)	17:10	
BS 10/18	17	17:12	
176	13	12:15	
177	14	17:17	
119	15	17:14	Auro 2500
Na	110	17:20	
180	14	17:22	Auto 2600
181	18	17:24	
18	19	17:14	
183	20	17:28	
	21	17:28	
194	22	17:32	
135	2'5	17:34	
	24	19:09	ROX AMBLYSTE - RETRUM #4
REAGENT BLANK	25	(71,60	AUTOREAS
REAGENT BLANK	2.6	17:11	
500 PPB 570	27	18:12	
	28	(7:13	
85 10/18	29	18:15	
#176	30	18:16	
# 177	31	18:17	
#178	32	18:18	
# 179 P 179	33	18:26	
# 180	34	18:27	
# 181	35	18:29	
# 185	36	18:31	MUTDERED REFORE ANYLYSIS
#18.3			The state of the s
# 183 ms	37	18:37	
# 18d	38 39	18:34	
# (85	77	18:35	
		 	
		 	
			
		1	

UV D-61

UMDAC.XLS

D m 10/4/53

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date : 10/19/93

Sample ID	Anal. No.	Analysis Time	Comments
		Hr : Min	
ROLLET BURNE - CONTROL	1	12:00	BOX HMBTAZIZ
RR - 1	2-	12:02	
14 500 PPS-14	3	12:03	
100 PP# - 10	4	12:05	
128-2	5	12:07	
500 PPB - 24	6	12:09	
500 PPB- 28	٦	12:11	
500 PP8	8	13:50	NEW STOCK WHEILTERED
REDGENT BLANK	9	16:46.	THE HUNLYSIS AUTO ZCRD
MB	10	11:48.	
REALENT BLANK	1(16:50 .	
MB	12	16:52.	
TM GOOPPH	1 13	16:54	
12)	14	16:56	
BSD	15	16:58	
4186	16	17:01.	
#187	17	17:03.	
4188	18	17:05.	
#189	19	17:07	
#190	20	17:09	
#191	21	17:11	
4192	22	17:13	
#193	23	17:14	
#194	24	17:16	
EMPPB .	25	17:32	AUTO ZOZO BELOLE
REVERSE BLANK	26	18:29	ROY ADRWSIS AUTOBER - BETURE MINUT
MB 10/19	27	18:30	
85 1-/19	28	18:31	
PSD 10/19	29	18:33	
186	3 9	18:34	
וצין	31	18:36	
188	32	18:37	
2189	33	18:38	
7190	34	18:39	
191	75	(2:4)	
1192	36	18:42	•
193	37	18:43	
4197	38	18:44	
	_		
<u> </u>			

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/27/43

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REALENT BLANK	i	14:42	RDX AUALYSIS - KUTOZERO BEFORE AMEL
, so PPB RDX	~	14:43	
250 999 RDX	3	14:47	POOR COLOR DEVELOPMENT
500 PP\$ 20X	4	14:49	
1000 PPB RDX	5	14:52	
5000 PPB RDX	6	14:53	
REALENT BLANK	7	15:45	TNT ANALYSIS
100 PPB	8	15:47	
250 PPB	9	15:49	
C- PPR	10	15:51	
SOD PPB	11	15:53	
	12	15:54.	
5000 PPB		16:13	PDY ANALYSIS - POOR COLUR DEVELOPMEN
250 PAB ROX	13		POOR COLON DENEMBER
1000 PPR RDX	19	16:16	use for curve
520 USB FPX	15	17:56	
ODO PPS RAX	16	17:58	<u> </u>
			<u> </u>
	 		
	<u> </u>		
	ļ		
	<u> </u>		
	1		
	 		
	1		
	 	 	
	 		
	 		
	1		
			Das (5/27/63
	1		

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/28/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
ROGEONT BLANK THT	1	13:37	AUTO ZERO
500 PPB TNT	2	13:36	PARTICULATE MATTER IN MEDIUM
500 PPB TNT	3	13:52	11 12 14 11
SUD PPB TWI	4	13:53	use for quantifution
# 1	5	13: 57	REALACYZE
*2	6	13:59	
43	7	14:01	
माक्ट	18	14:03	
#5 #196	9	14:25	AUTO ZERO AFTER ANAL
*197	10	14:07	
4 198	11	14:09	
4 1985D	12	14:10	J.
REAGENT BLANK TNT	13	14:18	READER OF TINT
#19850	14	14:19	
#1	15	14:22	
# 2	160	14:24	AUTOZERO BEROKE
#3	17	14:26	
# 195	18	14:29	
4196	19	14:31	
#197	2.0	14:33	
#198	21	14:34	
SUD PPB TNT	22	14:37	
REAGENT BLANK RPX	23	15:59	RERLIN MNALYZE
500 PPB PADX	24	16:00	
41	25	16:02	
#2	210	16:04	DIDN'T SWITCH TO ROX WAVELENGTH
¥3	1 27	ماه: ما	
" tm 195	28	16:08	
#196	29	16:10	
#197	30	16:12	
+198	31	16:14	AUTO ZERO AFTER
REAGENT BLANK RDX	37	16:16.	RDY DNOTASIZ
500 PPB ROX	33	16:19.	
41	34	11.:21	
#2	35	110:23	
#3	36	16:24	
#195	37	16:26	
#1987	38	16:28	
# 196	39	16:29	
±198	40	16:31	RELUJ
4 19951)	41	16:33	
#198	42	16:35	·
1198	43	14:39	
# 19 B S D	44	16:42	
REACENT BLANK ROX	45	18:14	ROX AMMYSIX
REMENT BLANK BOX	40	18:14	
DITTO BAR DON	47	13:16	
SUD PPB ROX	47	14.19	
mb bS	49	13:20	
02	UV	10.20	

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/28/93

Sample	Anal.	Analysis	Comments
ID	No.	Time	
		Hr : Min	
BQ .	50	18:24 18:24 18:26 18:20 18:32	
45	51	18:24	
H (12	12:26	
in a second	63	18:28	Auro Ecco AFIER
H3	53 54	18:50	
4 0	55	18:32	
leagent blank tht	56	19:02	TUT KNAL-1315
of only	59 59	19:04	
OD POP	58	19:06	
AC .	59	19:09	
8S 4	60	19:10	
9	61	19:10	
6	42	19:13	
7	63	19:15	
8	(4)	19:17	
9	64	19:18	
•	- 23	17-10	
	-		
	1		
		· · · · · · · · · · · · · · · · · · ·	
		_	
		 	
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		ļ	
	-UV	1	Du 10/28/93

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/29/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
RENGENT	,	12:05	TNT MUNICYSIS - KERNA
RENGENT	7	12:09	ALTOZER BEFORE AUXLYSIS
500 778	J.O.	12:10	
= 10	4	12:16	
廿11	5	12:17	
#12	6	12:18	
# 13	٦	12:19	
ਖ਼ 1ਪ੍	8	12:21	
#15	9	12:22	
ĦIF	10	12:24	AUTOZERO BEFORT ANALYSIS
出い	11	12:28	AUTORELO BEFORE HUNGSIS
REAGENT RIDER	12	13:42	ZDX MANLYTIS - HUTBZERO BEFORE HANLYT
500 928	13	13:44	
#10	14	13:51	
क्य । १	15	13152	
512	16	13;28	
H 13	١٦	13:59	
# 14	18	14:00	
H 1 5	19	14:01	
H 16	20	14:03	
サ ウ	21	(4:04	Act A act all
ZEMBENT BLANK	22	15:37	ADD ANGLYSIS
REMERNT BLANK		15:37	NKTOSENO BEFORE DANKYSIS
500 888	24	15:42	
#18	72	15:43	
# 19	7-6	15:46	
# 20	27	15:47	
#21	28	15:48	
#ZIMS	30	15:50	
¥22	31	15:51	
エ ⁴ で3	32	15:55	
= 24	33	15.33	TUT MANLY515
RENGENT BLANK	34	16:52	
500 PP8	35	16:52	なせれんと
# 18 288 LLZ	36	16:53	
₹ 19	36	16:54	
# 19 # 70	38	16:55	
# 20	39	16:56	
ELI MS	10	14:58	
#55	ul	16:59	
#23	42	17:00	
# ₂ 4	43	17:02	
ISENCENT BLONK	44	18:04	JNJ
See TYB	45	18:06	
MB 10/29	46	18:07	
ES 10/29	45	18109	
H-25	48	18:10	
٠- ٤.٥	7.0	18:11	

TNT and RDX Field Screening Analysis Daily Analysis Log

- UMDA

Date: 10/29/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
#27	50	18:17	
428	- 17	18:14	
\$29	52	18:16	
230	53	14:17	
REALENT BLOOK	54	19:18	ROX ANALYSIS
REAGENT BLANK	55	16:18	AUTITORE BE FORE MULLY IS
500 PPB	56	19:20	496 mg/L TRUE UNINE
	57	19:22	O
ans 10/29	54	19:24	
85 10/29	59	19:25	
±25		19:26	
#26	10	19:27	
P2	61	11:27	
#28	62	19:29	
≒	63	19:30	
30	c ⁴	19:31	
\			
	-		
			
		<u> </u>	
		 	
-			
		†	
	T 13.7	!	. 1.7
00700 000 1/2 10/00/07	UV D-67	UMDAC.	KLS PHOOFE (0) 21 Sparnes & Moore
06702-086-111 10/29/93 dmw	1)-6/		V (, , ,) () ()

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10/30/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
BLANK REAGENT	1	12:53	THE ANALYSIS
JOO potos TNT	2	12:56	7
#3	3	13:27	Auto Zerro APTER
#32	4	12:59	
#33	5	13:01	Auto Zepo AfTER
# 34	Le	13:03	
# 35	7	13:04	
#36	8	13:05	
# 37	9	13:07	
# 38	10	13:08	
REAGENT BLANK	11	14:25	AUTOZENO AFTER
REAGENT BLANK	12	14:07	ROX ANALYSIS.
	13	14:27	
31 Ppb RDX	14	14.09	
32	12	14:31	
33	16	14:33	
33 34	17	14:34	
35	18	14:36	
3.5 34	19	14:37	
37	20	14:39	
37 38	RI	14:41	
REAGENT BLANK		16:42	RDX - NOT ANALYZED
500 PDB RDX	23. 2	16:44	AUTOZERO AFTER.
MB	24 23	16:45	
BS	25 24	16:47	
±39	21025	16:49	
* 40	27 26	16:51	
# 41	2827	14:25	
442	29/28	16:53	
442ms	3029	16:54	
+ 43	3430	16:56	
READENT BLANK	3231	17:31	TNT
500 PPB	3332	17:33.	
mß	33	17:37	
BS	3534	17:38	
31	36351	17:39	
40	2726	17:40	
41	3937 3938	17:41	
42	39 18	17:42	
42MS	4037	17:44	
43	4+40	17:45	

UMDAC.XLS

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 10 (31/93

Sample	Anal.	Analysis	Comments
ID	No.	Time Hr : Min	
	,	12:24	דעד מימנאזוז
REAGENT SLMWK	2	12:25	TO NORETY!
TOO PPB	3	12:26	
#44	41	12:28	
#45	5	12:29	
446	6	12:34	
#47	1 7	12:32	
# 4 g	8	12:34	
±144	9	12:36	
≠50	10	12:38	
#51	11	14:00	RDX MAKUSIS
REAGENT BLANK	12	14:01	
500 PPB	13	14:03	
≠ 42	14	14:04	
	15	14:06	
#47 1:5	16	14:07	
	17	14:69	
#48	18	14:10	
# 50 1:5	19	14:13	
# 20	20	14:15	
	21	15:44	
DEACENT BLANK	2-2	15:46	
5010 888	23	(५: ५४	
# 53	24	15:49	
₩ 5Y	25	15:51	
# 55 1:5	26	15:52	
≠ 56	27	15:54	
= 57	28	15:56	
#581:5	29	15:57	
#59	30	15:59	
RENGENT BLUNK	31	16:44	TUT AMALYSE
	3.2	16:45	
£99 007 #52	33	16:46	
#23	34	16:47	
ASY	35	16:49	
#22	3€	16:50	
# 2C	37	16:51	
# 5G	38	14:53	AUTOZERO BEFORE ANKINSIS
#54	39	16:55	
#54 #59	40	16:56	
REACENT BLANK	41	HE 17:11	
SOU PPB	42	17:13	
ma 10/31	43	17:22	
B2 10/31	44	17:23	
	45	17:26	
#60	43	17:27	
五(2)	47	17:29	
762	48	17:31	
#63	49	17:32	
\$ (3 ms	UV	36-	

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 16/31/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
±64	50	17:35	
REMEDENT BUNK	51	17:55	RDX ANDLYSIS
500 PPB	52	17:56	
MB 10/31	53	17:58	
B5 10 31	54	17:59	
H68	55	18:01	
#GI	56	18:03	
#62	57	18:05	
#63	58	18:08	
#63 ms	59	18:11	PROBLEM WITH COLDE PRUFLOPMENT.
464	60	18:15	
	1	†	
	1		
	1		
	1		
	 		
	+		
			<u> </u>
	-		
**			
	-		
	-		
	1		
1			

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 11/193

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
REAGENT BLANK		12:55	TNT ANALYSIS.
500 PPB	2	12:57	
65	3	12:59	
66	H	13:00	
(e)	5	13:02	RE-AIVER 9
67	6	13:64	RE-ANALYSI) OF #67
LAD .	7	13:05	AUTO ZERIO DETER
69	8	13:07	
10	9	13:10	
171	10	13:12	
72	11	13:14	
eacent whank	12	14:27	ROX ANALYSIS
500 PPB	13.	14:28	
65 (54)(115) 9r	14	14:30	
Cole	15	14:37	HUTO ZERO ACTER
(07)	16	14:31	
(A (1:5)	13	14:30	AUTO LEAD AFTER
69	18	14:39	
70	19	14:41	
71 (1:5)	20	14:42	
72	21	14:44	
REAGENT BLANK	22:	17:53	RDX ANALYSIS-
500 993	2.3	กเรร	
(60)	a4.	17: 57	11.10
+ (0) (1:5)	24.	17:59	AUTO ZERO ALTER
3 64	24.	18:03	
47364	रुष	18:05	
74 73	28	18:07	1 200
474	29	18:10	Auro Zeno Afreg
± 75	30	18:12	0
476	31	18:14	Ayro Zeru Betone
# 77	32	13:16	READER DIONT Chains Been!
REAGENT BLATTL	33	19:21	
SOUPPE	34	18:23	
PAGENT BLANK	35	18:26	TIT MARLYS IS
500 APB	36	18:28	AUN Zen
1 13			
74	38 39	17:09	
H MC		18:31	
76	49.	13:32	AUTO ZEro Betvex
71.	41	16.79	HAID 4.000 ISSUED
	_		
	1 1		

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 11/2/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
RENGENT BLACK	\	12:06	THE ANALYSIS
500 PPB	ک	12:08	
\$75	3	12:09	
2479	4	(2:11	
#70	2	12:13	
#81	6	12:14	
285	7	12:15	
₹83	8	12:17	
#84	٩	12:19	
#84 ms	\ 8	12:21	
SENGENT BLANK	(1	13:43	RDX KNALYSIS
566 PPR	12	13:45	
サブマ)3	13:47	
世マタ	મ્ય	13:48	
#80 1:5	15	13141	
# हा	16	13:51	
#82	17	13:53	
₽83 1:2	18	13:55	
#84 1:2	19	13:57	
#84 W2 1:2	20	13:58	
REAGENT BLANK	21	15:48	•
500 PPB	22	15:48	
MB 11/2	23	15:51	
3215	24	15:52	
±62	25	15:56	
E 63	26	15:58	
± 63 ms	27	15759	
±85	28	16:01	
786	29	16:03	
वष्ट्र ।: ५	30	16:05	
REAGENT BLANK	31	16:11	THE AMPLYSIS
500 PPB	32	16:13	
mB 1:/2	33	16:14	
BS 11/2	34	16:16	
P 82	35	16:17	
586	36	16:19	
F87	37	16:21	
			·
			•
	UV		

Dames & Moore

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily Analysis Log

UMDA

Date: 1/3/93

Sample ID	Anal. No.	Analysis Time Hr : Min	Comments
HEAGENT BLANK	\	12:35	TrT Annysis
NT 500 ppb	2	12:40	CRYSTAL ON GLASS CUVETTE-BEAMPLYSIS-
50000	3	12:42	Use Annal # 12
500 pg. 17	ч	12:44	
× 88	5	12:48	
4 90	يا	12:52	AUTOZERO BEFORE
# 41	7	17:54	
4 90	7	12:54	
# 93	9		
+ 94	10	12:59	
# 95	11	13.00	
500000	12-	13.78	
WAGINT ISLAM'L	13	14.10	RDI MARYS.
700 ppb.	14	14.11	
500 ppb: #37	15	14:13	
#34	16	14:14	
¥90 (1.5)	17	14:14	
# 71	N	M +2	
492-	19	14.20	
493	20	14:22	
#94	2-1	14.23	
¥ 95	22-	14.27	
ROAGEM BLANIL	23	15.59	TAT PANAYSIS
RIPHAT FARNK	14	16:01	
Soupph	25	16:02	
mg 11/3	20	110:03	
BS 11/3	27	16.05	
86	27	16.07	
8797	25	16:09	
38 93	30	16.00	
24 99	3	16:12	
gams	32	16:13	
REAGENT BLANK.	33	14:24	TNT ANMYSIS.
500pps	34	14.26	,
MB 11/3 500 pps	35.	14:27	,
m3/1/3'	36"	16:27	
Bs 11/3	33	14:29	
96	32.	14:30	
र्य <u>ा</u> श्रद	34.	14:34	
94	40	16:36	
49	41	14:57	
99 MS	41	16:42	
	UV		

D.7 SAMPLE CALCULATION WORKSHEETS

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/11/93

Comments	TAT KUMUNIS		concentration beyond cal range	concentration beyond cal range	concentration beyond cal range											
Sample Conc (ug/L) (Cs)	4.49	59.55	370.79	420.22	347.19											
Conc Factor (CF)	20	20	20	20	20											
Final Extract Vol (ml) (Vf)	25	25	25	25	25											
Initial Sample Vol (ml) (Vi)	1000	1000	1000	1000	1000											
Response Factor* (RF)	4.45E-05	4.45E-05	4.45E-05	4.45E-05	4.45E-05											
Sample Abs (As)	0.004	0.053	0.33	0.374	0.309								:			
Wave- lenth	540	540	540	540	540											
Anal. No.	7	6	10	11	12											
eg S UV D-75	MB 10/11	BS#2 10/11	SAMPLE#1	SAMPLE#1 MS	SAMPLE#1 MSD											

^{* -} taken from daily calibration standard

101183A.XLS

Page 1 of

DAMES & MOORE

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/12/93

Comments	TNT ANALISIS																
Sample Conc (ug/L) (Cs)	1.23	18.52	3925.93	3654.32	4172.84	4148.15											
Conc Factor (CF)	20	20	-	-	-	1											
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25											
Initial Sample Vol (ml) (Vi)	1000	1000	50	20	50	50											***************************************
Response Factor* (RF)	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05											***************************************
Sample Abs (As)	0.001	0.015	0.159	0.148	0.169	0.168											
Wave- lenth	540	540	540	540	540	540											000000000000000000000000000000000000000
Anal. No.	16	17	18	19	20	21											
Sample UV D-76	MB 10/12	BS 10/12	4 - 1	4 -1 dup	4 -1 MS	4 - 1 MSD											000000000000000000000000000000000000000

* - taken from daily calibration standard 06702-086-111 10/12/93 dmw

101293A.XLS

CF = Vi/Vf

DAMES & MOORE

TNT and RDX Field Screening Analysis Sample Calculation Worksheet UMDA

Date: 10/13/93

	Comments	RDX analysis						TNT analysis													
	Sample Conc (ug/L) (Cs)	-2.07	39.26	2561.98	2479.34	84.71	-2.07	1.30	18.18	3896.10	3194.81	45.45	-14.29								
	Conc Factor (CF)	20	20	1	1	20	20	20	20	1	ı	20	20								
	Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25								
	Initial Sample Vol (ml) (Vi)	1000	1000	50	20	1000	1000	1000	1000	20	50	1000	1000								
	Response Factor* (RF)	2.42E-05	2.42E-05	2.42E-05	2.42E-05	2.42E-05	2.42E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05								
	Sample Abs (As)	-0.001	0.019	0.062	90.0	0.041	-0.001	0.001	0.014	0.15	0.123	0.035	-0.011								
	Wave- lenth	507	507	507	507	507	507	540	540	540	540	540	540								
	Anal. No.	11	12	13	14	15	16	18	20	21	22	23	24								
Date : 10/13/33	ega E E E UV D-77	MR RDX 10/13	RS RDX 10/13	#100	#101	#102	#103	MB TNT 10/13	BS TNT 10/13		#101	#102	#103								

* - taken from daily calibration standard

CF = Vi/Vf

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 10/14/93

Comments	TNT analysis	portion of extract lost - reextract				below MDL	RDX analysis	lost portion of extract - reextract					below MDL - Tast				below MDL			below MDL	below MDL CD X			below MDL	below MDL		below MDL
Sample Conc (ug/L) (Cs)	3341.2	50.6	-2.4	3200.0	303.5	-2.4	4090.9	6.2	444.2	3884.3	74.4	88.8	-4.4	10.2	3430.2	5.8	-2.9	3546.5	27.6	-8.7	-1.7	46.4	1953.6	-1.7	0.0	1821.2	3.3
Conc Factor (CF)	1	20	20	-	20	20	-	20	20	-	20	20	20	20	-	20	20	-	20	20	20	20	-	20	20	ı	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	50	1000	1000	50	1000	1000	20	1000	1000	20	1000	1000	1000	1000	20	1000	1000	20	1000	1000	1000	1000	20	1000	1000	50	1000
Response Factor* (RF)	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	2.42E-05	2.42E-05	2.42E-05	2.42E-05	2.42E-05	2.42E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05
Sample Abs (As)	0.142	0.043	-0.002	0.136	0.258	-0.002	0.099	0.003	0.215	0.094	0.036	0.043	-0.003	0.007	0.118	0.004	-0.002	0.122	0.019	-0.006	-0.001	0.028	0.059	-0.001	0	0.055	0.002
Wave- lenth	540	540	540	540	540	540	202	507	507	202	202	507	540	540	540	540	540	540	540	540	507	507	202	507	507	507	507
Anal. No.	3	4	5	9	7	8	11	12	13	14	15	16	19	20	21	24	25	26	27	28	33	34	35	36	37	38	39
D-78	#104	#105	#106	#107	#108	#109	#104	#105	#106	#107	#108	#109	MB 10/14	BS 10/14	#110	#111	#112	#113	#114	#115	MB 10/14	BS 10/14	#110	#111	#112	#113	#114

* - taken from daily calibration standard

CF = Vi/Vf

Cs = As/RF/CF

Dernee & Moore

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/14/93

Comments	below MDL - RDX analysis	TNT analysis			below method detection limit		duplicate sample of #119	matrix spike of #119	below method detection limit	below method detection limit	RDX analysis					duplicate sample of #119	matrix spike of #119	below method detection limit		•		
Sample Conc (ug/L) (Cs)	-5.0	145.5	3402.6	202.6	-3.9	3064.9	3246.8	3584.4	-9.1	-15.6	5.0	3069.3	22.3	52.0	2475.2	1881.2	1435.6	2.5	29.7			
Conc Factor (CF)	20	20	1	20	20	1	1	1	20	20	20	1	20	20	1	1	1	20	20			
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25			
Initial Sample Vol (ml) (Vi)	1000	1000	50	1000	1000	20	20	50	1000	1000	1000	20	1000	1000	20	20	20	1000	1000			
Response Factor* (RF)	3.02E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	3.85E-05	2.02E-05	2.02E-05	2.02E-05	2.02E-05	2.02E-05	2.02E-05	2.02E-05	2.02E-05	2.02E-05			
Sample Abs (As)	-0.003	0.112	0.131	0.156	-0.003	0.118	0.125	0.138	-0.007	-0.012	0.002	0.062	600.0	0.021	0.05	0.038	0.029	0.001	0.012			
Wave- lenth	202	540	540	540	540	540	540	540	540	540	507	202	507	507	507	507	507	507	507			
Anal. No.	40	43	44	45	46	47	48	49	51	53	57	58	59	9	61	62	63	64	65			
Sample O O D-79	#115	#105	#116	#117	#118	#119	#120	#120 MS	#121	#122	#105	#116	#117	#118	#119	#120	#120 MS	#121	#122			

CF = Vi/Vf

101493A.XLS

^{* -} taken from daily calibration standard

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 10/15/93

Comments	IRDX analysis	below MDL				below MDL	TNT analysis		below MDL			below MDL	below MDL				below MDL	RDX analysis - below MDL			below MDL	below MDL			
Sample Conc (ug/L) (Cs)	2269.5	0.0	5.3	2836.9	7.1	0.0	3639.6	45.9	-45.9	3215.5	116.6	-56.5	-1.2	18.8	3670.6	32.9	-9.4	-5.3	14.2	673.8	-5.3	0.0			
Conc Factor (CF)	1	20	20	-	20	20	-	20	20	1	20	20	20	20	ı	20	20	20	20	1	20	20			
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25			
Initial Sample Vol (ml) (Vi)	20	1000	1000	50	1000	1000	50	1000	1000	20	1000	1000	1000	1000	50	1000	1000	1000	1000	50	1000	1000			
Response Factor* (RF)	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.83E-05	2.83E-05	2.83E-05	2.83E-05	2.83E-05	2.83E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05			
Sample Abs (As)	0.064	0	0.003	0.08	0.004	0	0.103	0.026	-0.026	0.091	990.0	-0.032	-0.001	0.016	0.156	0.028	-0.008	-0.003	0.008	0.019	-0.003	0			
Wave- lenth	507	202	202	202	507	202	540	540	540	540	540	540	540	540	540	540	540	207	507	202	507	507			
Anal. No.	24	22	23	25	26	27	30	31	32	33	34	35	38	39	40	41	42	45	46	47	48	49			
Sample OI D-80	#123	#124	#125	#126	#127	#128	#123	#124	#125	#126	#127	#128	MB 10/15	BS 10/15	#129	#130	#131	MB 10/15	BS 10/15	#129	#130	#131			

^{. -} taken from daily calibration standard 08702-086-111 10/16/93 dmw

101593A.XLS CF = Vi/Vf

Page of 2

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/16/93

Comments	RDX analysis	below MDL	below MDL			below MDL		below MDL				TWY awalyis		below MDL			below MDL			below MDL	below MDL		RDX analysis - below MDL			below MDL	
Sample Conc (ug/L) (Cs)	3371.1 R	0.0		1161.5	26.9	0.0	906.5	0.0	35.4	11.3	597.7	3482.4	5.9	-1.2 b	3129.4	161.2	-7.1 t	3035.3	37.6	-8.2 t	0.0	14.1	-3.1 F	26.3	1795.7	-3.1	10.8
Conc Factor (CF)	1	20	20	1	20	20	1	20	20	20	20	1	20	20	1	20	20	1	20	20	20	20	20	20	1	20	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	50	1000	1000	20	1000	1000	20	1000	1000	1000	1000	20	1000	1000	20	1000	1000	20	1000	1000	1000	1000	1000	1000	50	1000	1000
Response Factor* (RF)	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	3.53E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	4.25E-05	3.23E-05	3.23E-05	3.23E-05	3.23E-05	3.23E-05
Sample Abs (As)	0.119	0	0	0.041	0.019	0	0.032	0	0.025	0.008	0.422	0.148	0.005	-0.001	0.133	0.137	-0.006	0.129	0.032	-0.007	0	0.012	-0.002	0.017	0.058	-0.002	0.007
Wave- lenth	507	202	507	202	202	202	202	202	507	202	507	540	540	540	540	540	540	540	540	540	540	540	202	507	507	507	202
Anal. No.	3	4	5.	9	7	8	6	10	11	12	13	18	19	20	21	23	24	25	26	27	28	29	32	33	34	35	36
S UV D-81	#132	#133	#134	#135	#136	#137	#138	#139	#140	#141	#141 MS	#132	#133	#134	#135	#136	#137	#138	#139	#140	#141	#141 MS	MB 10/16	BS 10/16	#142	#143	#144

^{• -} taken from daily calibration standard

101693A.XLS CF = Vi/Vf

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/16/93

Comments	RDX analysis				below MDL	below MDL	TNT analysis - below MDL			below MDL	below MDL			below MDL		below MDL	below MDL					
Sample Conc (ug/L) (Cs)	1238.4	9.3	29.4	3498.5	0.0	0.0	0.0	26.3	4473.7	0.0	0.0	3717.1	69.1	3.3	4506.6	-1.6	-1.6					
Conc Factor (CF)	1	20	20	-	20	20	20	20	-	20	20	-	20	20	-	20	20					
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25					
Initial Sample Vol (ml) (Vi)	50	1000	1000	50	1000	1000	1000	1000	20	1000	1000	20	1000	1000	20	1000	1000					
Response Factor* (RF)	3.23E-05	3.23E-05	3.23E-05	3.23E-05	3.23E-05	3.23E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05					
Sample Abs (As)	0.04	0.006	0.019	0.113	0	0	0	0.016	0.136	0	0	0.113	0.042	0.002	0.137	-0.001	-0.001					
Wave- lenth	507	507	507	507	507	507	540	540	540	540	540	540	540	540	540	540	540					
Anal. No.	37	38	39	40	41	42	46	45	47	48	50	51	52	54	53	55	56					
Sample UV D-82	#145	#146	#147	#148	#149	#150	MB 10/16	BS 10/16	#142	#143	#144	#145	#146	#147	#148	#149	#150					

^{* -} taken from daily calibration standard

Dames & Moore

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 10/17/93

es UV D-83	Anal. No.	Wave- lenth	Sample Abs (As)	Response Factor* (RF)	Initial Sample Vol (ml) (Vi)	Final Extract Vol (ml) (Vf)	Conc Factor (CF)	Sample Conc (ug/L) (Cs)	Comments
#151	3	507	0.07	2.82E-05	50	25	1	2482.3	RDX analysis
#152	4	507	0.01	2.82E-05	1000	25	20	17.7	
#153	5	507	900.0	2.82E-05	1000	25	20	10.6	
#154	9	507	0.043	2.82E-05	20	25	1	1524.8	
#155	7	507	0.036	2.82E-05	1000	25	20	63.8	
#156	œ	507	0.659	2.82E-05	1000	25	20	1168.4	
#157	6	507	0.071	2.82E-05	20	25	1	2517.7	
#158	10	507	900.0	2.82E-05	1000	25	20	10.6	
#159	11	507	0.175	2.82E-05	1000	25	20	310.3	
#160	12	507	0.109	2.82E-05	20	25	1	3865.2	
#161	13	507	0.00	2.82E-05	1000	25	20	16.0	
#151	16	540	0.146	3.44E-05	20	25	1	4244.2	TNT analysis
#152	17	540	0	3.44E-05	1000	25	20	0.0	below MDL
#153	18	540	0.001	3.44E-05	1000	25	70	1.5	below MDL
#154	19	540	0.133	3.44E-05	20	25	1	3866.3	
#155	20	540	0.042	3.44E-05	1000	25	20	61.0	
#156	21	540	0.001	3.44E-05	1000	25	50	1.5	below MDL
#157	22	540	0.103	3.44E-05	20	25	1	2994.2	
#158	23	540	0.052	3.44E-05	1000	25	20	75.6	
#159	24	540	0	3.44E-05	1000	25	20	0.0	below MDL
#160	25	540	0.149	3.44E-05	50	25	1	4331.4	
#161	26	540	0.047	3.44E-05	1000	25	20	68.3	
MB 10/17	29	203	-0.002	3.43E-05	1000	25	20	-2.9	RDX analysis - below MDL
BS 10/17	30	202	0.014	3.43E-05	1000	25	20	20.4	
#162	31	202	-0.001	3.43E-05	1000	25	20	-1.5	below MDL
#162 MS	32	202	0.004	3.43E-05	1000	25	20	5.8	
#163	33	507	0.001	3.43E-05	1000	25	20	1.5	below MDL

^{* -} taken from daily calibration standard

06702-086-111 10/18/93 dmw

CF = Vi/Vf

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/17/93

Comments	IRDX analysis			TNT analysis - below MDL				below MDL			below MDL			below MDL			below MDL			below MDL	RDX analysis						
Sample Conc (ug/L) (Cs)	1924.2	29.2	5.8	0.0	19.8	93.8	121.0	1.2	3950,6	318.5	-1.2	3346.0	36.1	1.0	2452.5	39.9	-1.0	3022.8	126.4	1.0	2594.8	8.7	529.2	1661.8	8.7	5.8	1836.7
Conc Factor (CF)	1	20	20	20	20	20	20	20	1	20	20	_	20	20	J	20	20	_	20	20	-	20	20	-	20	20	1
Final Extract Vol (ml)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	50	1000	1000	1000	1000	1000	1000	1000	20	1000	1000	20	1000	1000	20	1000	1000	20	1000	1000	20	1000	1000	50	1000	1000	50
Response Factor* (RF)	3.43E-05	3.43E-05	3.43E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	5.26E-05	5.26E-05	5.26E-05	5.26E-05	5.26E-05	5.26E-05	5.26E-05	5.26E-05	5.26E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05
Sample Abs (As)	990.0	0.02	0.004	0	0.016	0.076	0.098	0.001	0.16	0.258	-0.001	0.176	0.038	0.001	0.129	0.042	-0.001	0.159	0.133	0.001	0.089	900.0	0.363	0.057	900.0	0.004	0.063
Wave- lenth	507	507	202	540	540	540	540	540	540	540	540	540	540	540	540	540	540	540	540	540	507	207	507	202	507	507	202
Anal. No.	34	35	36	39	40	41	42	43	44	45	46	49	20	51	52	53	54	55	56	57	09	61	62	63	64	65	99
es UV D-84	#164	#165	#166	MB 10/17	BS 10/17	#162	#162 MS	#163	#164	#165	#166	#167	#168	#169	#170	#171	#172	#173	#174	#175	#167	#168	#169	#170	#171	#172	#173

* - taken from daily calibration standard

CF = ViVf

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/17/93

Comments														
														_
Sample Conc (ug/L) (Cs)	17.5	57.5												
Conc Factor (CF)	20	70												
Final Extract Vol (ml) (Vf)	25	52												
Initial Sample Vol (ml) (Vi)	1000	1000												
Response Factor* (RF)	3.43E-05	3.43E-05												
Sample Abs (As)	0.012	0.036												
Wave- lenth	507	20/												
Anal. No.	67	89												
Sample ID-85	#174	#175												

· - taken from daily calibration standard

06702-088-111 10/18/93 dmw

CF = Vi/Vf Cs =

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

Page of DAMES & MOORE

UMDA

Date: October 18, 1993

Comments	TNT analysis - below MDL	below MDL	below MDL				below MDL			below MDL					below MDL	RDX analysis - below MDL	below MDL										Auto Zero			
Sample Conc (ug/L) (Cs)	1.77	00.0	-12.41	17.73	4645.39	8.87	-12.41	6099.29	28.37	-1.77	3475.18	3168.60	5174.42	49.42	-5.81	1.45	0.00	5.81	52.33	2180.23	8.72	10.20	4489.80	13.12	107.87	2937.67	2827.99	4314.87	23.32	16.03
Conc Factor (CF)	20	20	20	20	-	20	20	1	20	20	-	-	-	20	20	20	20	20	20	1	20	20	1	20	20	ı	1	1	20	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	1000	1000	1000	50	1000	1000	20	1000	1000	20	50	50	1000	1000	1000	1000	1000	1000	50	1000	1000	50	1000	1000	50	50	50	1000	1000
Response Factor* (RF)	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05
Sample Abs (As)	0.001	0	-0.007	0.01	0.131	0.005	-0.00	0.172	0.016	-0.001	0.098	0.109	0.178	0.034	-0.004	0.001	0	0.004	0.036	0.075	900.0	0.007	0.154	0.009	0.074	0.192	0.097	0.148	0.016	0.011
Wave- lenth	540	540	540	540	540	540	540	540	540	540	540	540	540	540	540	202	507	507	507	507	507	507	507	507	507	507	507	507	507	507
Anal. No.	7	8	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	27	28	29	30	31	32	33	34	35	36	37	38	39
S UV D-86	RB 101893 TNT	101893		BS 101893 TNT	#176	#177	#178	#179	#180	#181	#182	#183	#183SD	#184	35	RB 101893 RDX	RB 101893 RDX	MB 101893 RDX	BS 101893 RDX	#176	#177	#178	#179	#180	#181	#182	#183	#183SD	#184	#185

* - taken from daily calibration standard

CF = Vi/Vf

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

DAMES & MOORE Page of

UMDA

Date: October 19, 1993

Comments	TNT analysis - below MDL	below MDL	below MDL						below MDL			below MDL			below MDL	RDX analysis - below MDL	below MDL					below MDL						below MDL
Sample Conc (ug/L) (Cs)	-1.77	0.00	0.00	5.32	21.28	37.23	5602.84	280.14	-3.55	4078.01	308.51	-2.91	6947.67	813.95	-7.27	0.00	0.00	14.53	30.52	1860.47	120.64	2.92	1690.96	118.08	7.29	1836.73	166.18	00.0
Conc Factor (CF)	20	20	20	20	20	20	-	20	20	1	20	20	1	20	20	20	20	20	20	1	20	20	1	20	20	ı	20	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	1000	1000	1000	1000	1000	50	1000	1000	50	1000	1000	50	1000	1000	1000	1000	1000	1000	20	1000	1000	09	1000	1000	20	1000	1000
Response Factor* (RF)	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.44E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05	3.43E-05
Sample Abs (As)	-0.001	0	0	0.003	0.012	0.021	0.158	0.158	-0.002	0.115	0.174	-0.002	0.239	0.56	-0.005	0	0	0.01	0.021	0.064	0.083	0.002	0.058	0.081	0.005	0.063	0.114	0
Wave- lenth	540	540	540	540	240	540	540	540	540	540	540	540	540	540	540	202	202	507	507	507	507	507	507	507	202	202	507	507
Anal. No.	6	10	11	12	14	15	16	17	18	19	20	21	22	23	24	26	27	28	29	30	31	32	33	34	32	96	37	38
es UV D-87	RE 101993 TNT	MB 101993 TNT	RB 101993 TNT	MB 101993 TNT	BS TNT	BSD TNT	#186	#187	#188	#189	#190	#191	#192	#193	#194	RB 101993 RDX	MB 101993 RDX	BS	BSD	#186	#187	#188	#189	#190	#191	#192	#193	#194

^{* -} taken from daily calibration standard

CF = Vi/Vf

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 10/28/93

Comments	TNT analysis		below MDL	below MDL					RDX analysis	below MDL		below MDL				below MDL	below MDL		below MDL		below MDL	below MDL		below MDL	TNT analysis - below MDL		below MDL
Sample Conc (ug/L) (Cs)	2925.76	201.97	-3.28	-3.28	14.19	40.39	24.02	17.47	2627.12	-5.65	9.89	4.24	29.66	3954.80	564.97	-1.41	0.00	24.39	4.88	4975.61	-4.88	-6.10	2731.71	-3.66	1.14	21.69	0.00
Conc Factor (CF)	1	20	20	20	20	20	20	20	-	20	20	20	20	0.2	0.2	20	20	20	20	1	20	20	1	20	20	20	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	20	1000	1000	1000	1000	1000	1000	1000	20	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	250	1000	1000	250	1000	1000	1000	1000
Response Factor* (RF)	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	3.54E-05	3.54E-05	3.54E-05	3.54E-05	3.54E-05	3.54E-05	3.54E-05	3.54E-05	4.10E-05	4.10E-05	4.10E-05	4.10E-05	4.10E-05	4.10E-05	4.10E-05	4.10E-05	4.38E-05	4.38E-05	4.38E-05
Sample Abs (As)	0.134	0.185	-0.003	-0.003	0.013	0.037	0.022	0.016	0.093	-0.004	0.007	0.003	0.021	0.028	0.004	-0.001	0	0.02	0.004	0.204	-0.004	-0.005	0.112	-0.003	0.001	0.019	0
Wave- lenth	540	540	540	540	540	540	540	540	507	507	507	202	202	507	507	202	507	507	507	507	507	507	507	507	540	540	540
Anal. No.	18	19	20	21	14	15	16	17	37	39	38	43	44	34	35	36	48	49	50	51	52	53	54	55	58	59	09
Sample UV D-88	#195	#196	#197	#198	#198 MS	#1	#2	#3	#195	#196	#197	#198	#198 MS	#1	#2	#3	MB 10/28	BS 10/28	#4	#5	9#	#7	#8	6#	MB 10/28	BS 10/28	#4

^{· -} taken from daily calibration standard

06702-086-111 10/30/93 dmw

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/28/93

Comments			below MDL													
Sample Conc (ug/L) (Cs)	91.32				39.95											
Conc Factor (CF)	1	20	20	1	20											
Final Extract Vol (ml) (Vf)	25	25	25	25	25											
Initial Sample Vol (ml) (Vi)				\vdash	Н											
Response Factor* (RF)	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05											
Sample Abs (As)	0.004	900'0	-0.001	0.003	0.035											
Wave- lenth	540	540	540	540	540											
Anal. No.	61	62	63	64	65											
S UV D-89	#5	9#	1,4	#8	6#											

* - taken from daily calibration standard

CF = Vi/Vf

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/29/93

Comments	TNT Analysis - below MDL		below MDL	below MDL			below MDL		RDX Analysis		below MDL		3	below MDL	below MDL		RDX Analysis	below MDL				below MDL			TNT Analysis	below MDL	
Sample Conc (ug/L) (Cs)	0.00		0.00		19.14	11.96	-2.39 b	23.92	51.08 F	2688.17	-2.69 t	24.19	2473.12	-10.75	-2.69	1043.01	8.06	1.34	1715.05	1989.25	2204.30	1.34	1427.42	1204.30	23.81		26.46
Conc Factor (CF)	20	2	20	20	2	20	20	5	20	2	20	20	5	20	20	2	20	20	2	2	2	20	20	2	20	20	5
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	250	1000	1000	250	1000	1000	250	1000	250	1000	1000	250	1000	1000	250	1000	1000	250	250	250	1000	1000	250	1000	1000	250
Response Factor* (RF)	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	3.72E-05	3.72E-05	3.72E-05	3.72E-05	3.72E-05	3.72E-05	3.72E-05	3.72E-05	3.78E-05	3.78E-05	3.78E-05
Sample Abs (As)	0	0.004	0	-0.001	0.004	0.01	-0.002	0.005	0.019	0.25	-0.001	0.009	0.23	-0.004	-0.001	0.097	900.0	0.001	0.319	0.37	0.41	0.001	1.062	0.224	0.018	0	0.005
Wave- lenth	540	540	540	540	540	540	540	540	507	507	507	507	507	507	507	507	507	507	507	507	507	507	202	202	540	540	540
Anal. No.	4	5	9	7	8	6	10	11	14	15	16	17	18	19	20	21	25	26	27	28	29	30	31	32	36	37	38
Sample UP-90	#10	#11	#12	#13	#14	#15	#16	#17	#10	#11	#12	#13	#14	#15	#16	#17	#18	#19	#20	#21	#21MS	#22	#23	#24	#18	#19	#20

^{· -} taken from daily calibration standard

06702-086-111 10/31/93 dmw

CF = Vi/Vf Cs

Cs = As/RF/CF

102883A.XLS

Dames & Moore

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/29/93

Sample	Anal.	Wave-	Sample	Response	Initial	Final	Conc	Sample	Comments
 UV D-91	No.	lenth	Abs (As)	Factor* (RF)	Sample Vol (ml) (Vi)	Extract Vol (ml) (Vf)	Factor (CF)	Conc (ug/L) (Cs)	
#21	39	540	0.004	3.78E-05	250	25	5	21.16	
#21MS	40	540	0.00	3.78E-05	250	25	2	47.62	
#22	41	540	0.001	3.78E-05	1000	25	20	1.32	below MDL
#23	42	540	-0.001	3.78E-05	1000	25	20	-1.32	below MDL
#24	43	540	0.004	3.78E-05	250	25	2	21.16	
MB TNT 10/29	46	540	0	4.98E-05	1000	25	20	0.00	TNT Analysis - below MDL
BS TNT 10/29	47	540	0.019	4.98E-05	1000	25	20	19.08	
#25	48	540	0.003	4.98E-05	1000	25	20	3.01	below MDL
#26	49	540	-0.001	4.98E-05	1000	25	20	-1.00	below MDL
#27	50	540	0.005	4.98E-05	250	25	5	20.08	
#28	51	540	0.015	4.98E-05	1000	25	20	15.06	
#29	52	540	-0.001	4.98E-05	1000	25	20	-1.00	below MDL
#30	53	540	0.005	4.98E-05	250	25	5	20.08	
MB RDX 10/29	57	507	0.002	2.82E-05	1000	25	20	3.55	RDX Analysis - below MDL
BS RDX 10/29	58	202	0.046	2.82E-05	1000	25	20	81.56	
#25	59	507	0.001	2.82E-05	1000	25	20	1.77	below MDL
#26	09	202	900.0	2.82E-05	1000	25	20	10.64	
#27	61	202	0.458	2.82E-05	250	25	2	3248.23	
#28	62	202	0.003	2.82E-05	1000	25	20	5.32	below MDL
#29	63	202	0.006	2.82E-05	1000	25	20	10.64	
#30	64	202	0.678	2.82E-05	250	25	5	4808.51	
000000000000000000000000000000000000000	000000000000000000000000000000000000000	300000000000000000000000000000000000000	***************************************		***************************************	000000000000000000000000000000000000000	000000000000000000000000000000000000000		

^{* -} taken from daily calibration standard

CF = Vi/Vf

102993A.XLS

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 10/30/93

Comments	TNT analysis - below MDL	below MDL		below MDL	below MDL			below MDL	RDX analysis				below MDL		below MDL	below MDL	below MDL								TNT analysis - below MDL		
Sample Conc (ug/L) (Cs)	-1.14	0.00	18.26	0.00	-1.14	9.13	7.99	-1.14	11.04	58.36	7444.79	7.89	3.15	7091.48	-1.58	0.00	0.00	44.16	5930.60	7.89	11.04	6.31	56.78	5640.38	2.01	20.08	16.06
Conc Factor (CF)	20	20	5	20	20	5	20	20	20	20	2	20	20	2	20	20	20	20	2	20	20	20	20	2	20	20	5
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	1000	250	1000	1000	250	1000	1000	1000	1000	250	1000	1000	250	1000	1000	1000	1000	250	1000	1000	1000	1000	250	1000	1000	250
Response Factor* (RF)	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	3.17E-05	4.98E-05	4.98E-05	4.98E-05
Sample Abs (As)	-0.001	0	0.004	0	-0.001	0.002	0.007	-0.001	0.007	0.037	1.18	0.005	0.002	1.124	-0.001	0	0	0.028	0.94	0.005	0.007	0.004	0.036	0.894	0.002	0.02	0.004
Wave- lenth	540	540	540	540	540	540	540	540	507	507	507	507	507	507	507	507	207	202	507	507	202	207	507	507	540	540	540
Anal. No.	3	4	5	9	7	8	6	10	14	15	16	17	18	19	20	21	23	24	25	26	27	28	29	30	33	34	35
S UV D-92	#31	#32	#33	#34	#35	#36	#37	#38	#31	#32	#33	#34	#35	#36	#37	#38	MB 10/30	BS 10/30	#39	#40	#41	#42	#42 MS	#43	MB 10/30	BS 10/30	#39

* - taken from daily calibration standard

CF = Vi/Vf

Cs = As/RF/CF

Dames & Moore

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/30/93

							 	_		 		 	 		 	
Comments	below MDL:	below MDL	below MDL													
Sample Conc (ug/L) (Cs)				l	20.08											
Conc Factor (CF)	20	20	20	20	2											
Final Extract Vol (ml) (Vf)	25	25	25	25	25											
Initial Sample Vol (ml) (Vi)	1000	1000	1000	1000	250											
Response Factor* (RF)	4.98E-05	4.98E-05	4.98E-05	4.98E-05	4.98E-05											
Sample Abs (As)	0	0.001	0	0.018	0.005											
Wave- lenth	540	540	540	540	540											
Anal. No.	36	37	38	39	40											
D-93	#40	#41	#42	#42 MS	#43											

* - taken from daily calibration standard

CF = Vi/Vf

DAMES & MOORE

Sample Calculation Worksheet

TNT and RDX Field Screening Analysis

UMDA

Date: 10/31/93

Comments	TNT analysis- Rolow MOI	Below MDI			Below MDL		Below MDL	Below MDL	RDX analysis								RDX analysis								TNT analysis	Below MDL	Below MDL
Sample Conc (ug/L) (Cs)	1.14	1.14	27.40	6.85	0.00	22.83	-1.14	-1.14	6.71	278.52	7114.09	16.78	8,39	8590.60	26.85	177.85	9462.37	3747.31	26.88	9569.89	56.45	13.44	11075.27	32.26	19.14	0.00	0.00
Conc Factor (CF)	20	20	5	20	20	5	20	20	20	20	-	20	20	-	20	20	-	20	20	-	20	20	-	20	2	20	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	1000	250	1000	1000	250	1000	1000	1000	1000	250	1000	1000	250	1000	1000	250	1000	1000	250	1000	1000	250	1000	250	1000	1000
Response Factor* (RF)	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	1.86E-05	4.18E-05	4.18E-05	4.18E-05
Sample Abs (As)	0.001	0.001	900.0	900.0	0	0.005	-0.001	-0.001	0.004	0.166	0.212	0.01	0.005	0.256	0.016	0.106	0.176	1.394	0.01	0.178	0.021	0.005	0.206	0.012	0.004	0	0
Wave- lenth	540	540	540	540	540	540	540	540	507	202	202	507	507	202	507	507	507	207	507	207	507	507	507	202	540	540	540
Anal. No.	3	4	ည	9	7	8	6	10	13	14	15	16	17	18	19	20	23	24	25	26	27	28	29	30	33	34	35
Samples UV D-94	#44	#45	#46	#47	#48	#49	#50	#51	#44	#45	#46	#47	#48	#49	#51	#50	#52	#53	#54	#55	#56	#57	#58	#59	#52	#53	#54

• - taken from daily calibration standard

Cs = As/RF/CF

CF = Vi/Vf

103103A.XLS

Dames & Moore

TNT and RDX Field Screening Analysis Sample Calculation Worksheet UMDA

Date: 10/31/93

Comments		Below MDL	Below MDL			analysis-Below MDL		Below MDL					Below MDL	RDX analysis (Re-extract)	Re-extract	Re-extract	Re-extract	Below MDL (Re-extract)	Below MDL (Re-extract)	Below MDL (Re-extract)**	Re-extract			
_		Belo				TNT																		
Sample Conc (ug/L) (Cs)	23.92	0.00	00.00	23.92	17.94	2.39	17.94	2.39	43.06	22.73	19.14	44.26	-1.20	0.89	21.47	12.52	1266.5	4.47	-2.68	-3.58	12.52			
Conc Factor (CF)	5	20	20	5	20	20	20	20	5	20	20	20	70	20	20	20	5	20	20	20	20			
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25			
Initial Sample Vol (ml) (Vi)	250	1000	1000	250	1000	1000	1000	1000	250	1000	1000	1000	1000	1000	1000	1000	250	1000	1000	1000	1000,			
Response Factor* (RF)	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	5.59E-05	5.59E-05	5.59E-05	5.59E-05	5.59E-05	5.59E-05	5.59E-05	5.59E-05			
Sample Abs (As)	0.005	0	0	0.005	0.015	0.002	0.015	0.002	600'0	0.019	0.016	0.037	-0.001	0.001	0.024	0.014	0.354	0.005	-0.003	-0.004	0.014			
Wave- lenth	540	540	540	540	540	540	540	540	540	540	540	540	540	507	507	507	507	507	507	507	507			
Anal. No.	36	37	38	39	40	43	44	45	46	47	48	49	50	53	54	55	56	57	58	59	09			
D-95	#55	#56	#57	#58	#59	MB 10/31	BS 10/31	09#	#61	#62	#63	#63MS	#64	MB 10/31	BS 10/31	#60	#61	#62	#63	#63MS	#64			

Cs = As/RF/CF

^{* -} taken from daily calibration standard $$\star$$ - taken from daily calibration standard during entire color development stage (25 MIN)

TNT and RDX Field Screening Analysis Sample Calculation Worksheet

UMDA

Date: 10/30/93

Comments	below MDL	below MDL													
Sample Conc (ug/L) (Cs)	-3.01	-4.02													
Conc Factor (CF)	20	5													
Final Extract Vol (ml)	25	25													
fnitial Sample Vol (ml) (Vi)	1000	250												•	
Response Factor* (RF)	4.98E-05	4.98E-05													
Sample Abs (As)	-0.003	-0.001													
Wave- lenth	540	540													
Anal. No.	40	41													000000000000000000000000000000000000000
D-96	#76	LL#													

^{* -} taken from daily calibration standard

110183A.XLS

Page of the DAMES & MOORE

TNT and RDX Field Screening Analysis Sample Calculation Worksheet UMDA

Date: 11/1/93

Comments	TNT analysis		below MDL		below MDL	below MDL			RDX analysis	below MDL	below MDL	sample diluted 1:5	below MDL	below MDL	sample diluted 1:5	below MDL						below MDL	below MDL		TNT analysis - below MDL	below MDL	
Sample Conc (ug/L) (Cs)	21.83	58.95	1.09	17.47	4.37	0.00	8.73	10.92	3178.57	-8.93	-2.98	11726.19	-8.93	-14.88	15119.05	0.00	10.07	21677.85	10.07	26.85	4510.07	-3.36	3.36	4711.41	4.02	4.02	75.30
Conc Factor (CF)	5	20	20	5	20	20	5	20	5	20	20	1	20	20	1	20	20	1	20	20	ວ	20	20	5	20	2	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	250	1000	1000	250	1000	1000	250	1000	250	1000	1000	250	1000	1000	250	1000	1000	250	1000	1000	250	1000	1000	250	1000	250	1000
Response Factor* (RF)	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	4.58E-05	1.68E-05	1.68E-05	1.68E-05	1.68E-05	1.68E-05	1.68E-05	1.68E-05	1.68E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	4.98E-05	4.98E-05	4.98E-05
Sample Abs (As)	0.005	0.054	0.001	0.004	0.004	0	0.002	0.01	0.267	-0.003	-0.001	0.197	-0.003	-0.005	0.254	0	0.003	0.323	0.003	0.008	0.336	-0.001	0.001	0.351	0.004	0.001	0.075
Wave- lenth	540	540	540	540	540	540	540	540	507	507	507	507	507	507	507	507	507	202	202	202	202	507	507	507	540	540	540
Anal. No.	3	4	9	7	8	6	10	11	14	15	16	17	18	19	20	21	24	25	27	28	29	30	31	32	37	38	39
Sample OI UV D-97	#65	99#	467	#68	69#	#70	#71	#72	#65	99#	#67	#68 1:5	1	#70	#71 1:5	#72	09#	#61 1:5	#64	#73	#74	#75	#76	477	#73	#74	#75

^{* -} taken from daily calibration standard 08702-086-111 11/2/93 dmw

110183A.XLS CF = Vi/Vf

Demes & Moore

Page of _____ DAMES & MOORE

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 11/2/93

Comments	TNT analysis	below MDL			below MDL				RDX analysis-below MDL		sample diluted 1:5	below MDL	below MDL	sample diluted 1:5	sample diluted 1:5		RDX analysis-below MDL		below MDL	below MDL					TNT analysis - below MDL			below MDL
Sample Conc (ug/L) (Cs)	7.18		14.35	13.16		28.71	14.35	33.49	-3.29	16.45	5690.79	-4.93	-1.64	7302.63	2302.63	9342.11	-3.29	21.38	0.00	-1.64	8.22	88.82	18.09	3914.47	0.00	29.25	100.28	-1.39
Conc Factor (CF)	20	20	2	20	20	5	2	2	20	20	1	20	20	1	1	1	20	20	20	20	20	20	20	1	20	20	20	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	1000	250	1000	1000	250	250	250	1000	1000	250	1000	1000	250	250	250	1000	1000	1000	1000	1000	1000	1000	250	1000	1000	1000	1000
Response Factor* (RF)	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.59E-05	3.59E-05	3.59E-05	3.59E-05
Sample Abs (As)	0.006	0	0.003	0.011	-0.001	900.0	0.003	0.007	-0.002	0.01	0.173	-0.003	-0.001	0.222	0.07	0.284	-0.002	0.013	0	-0.001	0.005	0.054	0.011	0.119	0	0.021	0.072	-0.001
Wave- lenth	540	540	540	540	540	540	540	540	202	202	507	202	202	209	202	209	209	202	507	209	202	209	202	202	540	540	540	540
Anal. 'No.	3	4	5	9	7	8	6	10	13	14	15	16	17	18	19	20	23	24	25	26	27	28	29	30	33	34	35	36
Sample OU D-98	#78	#79	08#	#81	#82	#83	#84	#84MS	#78	#79	#80 (1:5)	#81	#82	#83 (1:5)	#84 (1:5)	#84 MS (1:5)	MB 11/2	BS 11/2	#62	#63	#63MS	#82	98#	#87 (1:5)	MB 11/2	BS 11/2	#85	#86

* - taken from daily calibration standard

CF = Vi/Vf

DAMES & MOORE

٦

Page

Cs = As/RF/CF

TNT and RDX Field Screening Analysis

Sample Calculation Worksheet

UMDA

Date: 11/2/93

Comments		
Sample Conc (ug/L) (Cs)	167.13	
Conc Factor (CF)		
Final Extract Vol (ml) (Vf)	25	
Initial Sample Vol (ml) (Vi)	250	
Response Factor* (RF)	3.59E-05	
Sample Abs (As)	90000	
Wave- lenth	240	
Anal. No.	37	
Sample UV D-99	#87	

• - taken from daily calibration standard

CF = Vi/Vf

Cs = As/RF/CF

UMDA

Date: 11/3/93

Comments	TNT analysis - below MDL				below MDL		below MDL	below MDL	RDX analysis								below MDL							TNT analysis - below MDL			below MDL
Sample Conc (ug/L) (Cs)	2,28	1.14	63.93	19.41	-1.14	13.70	2.28	-1.14	97.32	8.39	8959.73	296.98	15.10	7785.23	1315.44	13.42	0.00	35.23	3825.50	5.03	13.42	11.74	25.17	00.0	17.94	9.57	1.20
Conc Factor (CF)	20	20	2	20	20	ည	20	20	20	20	1	20	20	1	20	20	20	20	1	20	20	20	20	20	20	2	20
Final Extract Vol (ml) (Vf)	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Initial Sample Vol (ml) (Vi)	1000	1000	250	1000	1000	250	1000	1000	1000	1000	250	1000	1000	250	1000	1000	1000	1000	250	1000	1000	1000	1000	1000	1000	250	1000
Response Factor* (RF)	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	4.38E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	2.98E-05	4.18E-05	4.18E-05	4.18E-05	4.18E-05
Sample Abs (As)	0.002	0.001	0.014	0.017	-0.001	0.003	0.002	-0.001	0.058	0.005	0.267	0.177	0.00	0.232	0.784	0.008	0	0.021	0.114	0.003	0.008	0.007	0.015	0	0.015	0.002	0.001
Wave- lenth	540	540	540	540	540	540	540	540	202	202	507	507	507	507	507	202	507	507	202	507	507	507	507	540	540	540	540
Anal. No.	5	4	9	7	80	6	10	11	15	16	17	18	19	20	21	22	26	27	28	29	30	31	32	36	37	38	39
S UV D-100	#88	#89	06#	#91	#92	#93	#94	#95	#88	#89	#90 1:5	#91	#92	#93 1:5	#94	#95	MB 11/3	BS 11/3	#96 1:5	#97	#98	66#	#99 MS	MB 11/3	BS 11/3	#36	#97

^{* -} taken from daily calibration standard 06702-086-111 11/4/83 dmw

CF = Vi/Vf 110393A.XLS

Cs = As/RF/CF

ا د

Dames & Moore

TNT and RDX Field Screening Analysis Sample Calculation Worksheet UMDA

Date: 11/3/93

Comments	below MDL	below MDL														
Sample Conc (ug/L) (Cs)	-1.20	-1.20	11.96													
Conc Factor (CF)	20	20	20													
Final Extract Vol (ml) (Vf)	25	25	25													
Initial Sample Vol (ml) (Vi)	1000	1000	1000												•	
Response Factor* (RF)	4.18E-05	4.18E-05	4.18E-05													
Sample Abs (As)	-0.001	-0.001	0.01													
Wave- lenth	540	540	540													
Anal. No.	40	41	42													
S UV D-101	#88	#66	#89 MS													

Cs = As/RF/CF

D.8 DAILY QC CALCULATION WORKSHEETS

UMDA

Date: 10/12/93

	,	-	
Relative Percent Difference RPD			
Blank Spike Dup Rec. %R			
Blank Spike Dup. Conc. (ug/L)			
Blank Spike Recovery %R	75		
Blank Spike Concentration (ug/L)	18.52		
Spike Amount (ug/L)	24.7		
Blank Concentration (ug/L)	0		
Blank ID	BS 10/12		

Relative Percent Difference RPD	1		
Matrix Spike Dup Rec. %R	45		
Matrix Spike Dup. Conc. (ug/L)	4148		
Matrix Spike Recovery %R	50		
Matrix Spike Concentration (ug/L)	4173		
Spike Amount (ug/L)	494	-	
Sample Concentration (ug/L)	3926		
Or 103	4 - 1		

UMDAE.XLS

UMDA

Date: 10/13/93

Compound	Blank ID	Blank Concentration (ug/L)	Spike Amount (ug/L)	Blank Spike Concentration (ug/L)	Blank Spike Recovery %R
TNT	BS 10/13	0	24.7	18.2	74
RDX	BS 10/13	0	24.8	39.3	158

UV D-104

Compound	Sample ID	Sample Concentration (Cs) (ug/L)	Sample Duplicate Concentration (Cs) Concentration (Cd) (ug/L) (ug/L)	Relative Percent Difference (ug/L)	Spike Amount (ug/L)	Matrix Spike Concentration (ug/L)	Matrix Spike Recovery (%R)
					000000000000000000000000000000000000000		

UMDA

Date: 10/14/93

Blank Spike Recovery %R 187 41 Blank Spike Concentration (ng/L) 10.2 46.4 Spike Amount (ug/L) 24.8 24.7 Concentration Blank (ug/L) 0 0 BS 10/14 BS 10/14 Blank ID Compound RDX IN

> UV D-105

584			
Ř		1436	
494		496	
9		27	
3247		1881	
3065		2475	
119		119	
TNT		RDX	
	119 3065 3247 6 494	119 3065 3247 6	119 3065 3247 6 494 119 2475 1881 27 496

Comments: Sample #120 is the duplicate of sample #119 NR - not recovered

DAMES & MOORE

TNT and RDX Field Screening Analysis

Daily QC Calculation Worksheet

UMDA

Date: 10/15/93

		<u> </u>	<u> </u>
Blank Spike Recovery %R	76	57	
Blank Spike Concentration (ug/L)	18.8	14.2	
Spike Amount (ug/L)	24.7	24.8	
Blank Concentration (ug/L)	0	0	
Blank ID	BS 10/15	BS 10/15	
Compound	TNT	RDX	

UV D-106

Matrix Spike Recovery (%R)		
Matrix Spike Concentration (ug/L)		
Spike Amount (ug/L)		
Relative Percent Difference (ug/L)		
Duplicate Concentration (Cd) (ug/L)		
Sample Concentration (Cs) (ug/L)		
Sample ID		
Compound		

Comments: No matrix sample analyzed on 10/15/93

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily QC Calculation Worksheet

UMDA

Date: 10/16/93

Blank Spike Recovery %R	106	106	
Blank Spike Concentration (ug/L)	26.3	26.3	
Spike Amount (ug/L)	24.7	24.8	
Blank Concentration (ug/L)	0	0	
Blank ID	BS 10/16	 BS 10/16	
Compound	TNT	RDX	

UV D-107

Matrix Spike Recovery (%R)	57	2267
Matrix Spike Concentration (ug/L)	14.1	597.7
Spike Amount (ug/L)	24.7	24.8
Relative Percent Difference (ug/L)	S	103
Duplicate Concentration (Cd) (ug/L)	0	11.3
Sample Concentration (Cs) (ug/L)	0	35.4
Sample ID	140	140
Compound	TNT	RDX

Comments: Sample #141 is the duplicate of sample #140 NC - not calculable; must have 2 positive results in order to calculate RPD

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100 08702-086-111 10/17/83 dmw

UMDA

Date: 10/17/93

Blank Spike Recovery %R	80	82	
Blank Spike Concentration (ug/L)	19.8	20.4	
Spike Amount (ug/L)	24.7	24.8	
Blank Concentration (ug/L)	0	0	
Blank ID	BS 10/17	BS 10/17	
Compound	TNT	RDX	

UV D-108

Matrix Spike Recovery (%R)	213	N.	
Matrix Spike Concentration (ug/L)	121	5.8	
Spike Amount (ug/L)	24.7	24.8	
Relative Percent Difference (ug/L)	31	NC	
Duplicate Concentration (Cd) (ug/L)	93.8	0	
Sample Concentration (Cs) (ug/L)	68.3	16	
Sample ID	161	161	
Compound	TNT	RDX	

Comments:

Sample #162 is the duplicate of sample #161 NC - not calculable; 2 positive results are required for calculation NR - not recovered

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily QC Calculation Worksheet

UMDA

Date: 10/18/93

Blank Spike Recovery %R 211 Concentration Blank Spike (ng/L) 17.73 52.33 Amount Spike (ng/L) 24.8 24.7 Concentration (ng/L) -12.41 Blank 5.81 BS 10/18 BS 10/18 Blank ID Compound ROX TNT

UV D-109

Compound	Sample ID	Sample Concentration (Cs) (ug/L)	Duplicate Concentration (Cd) (ug/L)	Relative Percent Difference (ug/L)	Spike Amount (ug/L)	Matrix Spike Concentration (ug/L)	Matrix Spike Recovery (%R)
TNT	183	3168.6	5174.42	48	24.7	121	WR 12338-
RDX	183	2827.99	4314.87	42	24.8	5.8	NR 11380

Sample #183 is the duplicate of sample #182 Comments:

NC - not calculable; 2 positive results are required for calculation

NR - not recovered

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100 06702-086-111 10/27/83 dmw

UMDA

Date: 10/19/93

Compound	Blank ID	Blank Concentration	Spike Amount	Blank Spike Concentration	Blank Spike Recovery
		(ng/L)	(ng/L)	(ug/L)	%R
TNT	BS 10/19	5.32	24.7	21.28	86
	BSD 10/19	5.32	24.7	37.23	151
RDX	BS 10/19	0	24.8	14.53	29
	BSD 10/19	0	24.8	30.52	123

UV D-110

Matrix Spike Recovery (%R)			
Matrix Spike Concentration (ug/L)			
Spike Amount (ug/L)			
Relative Percent Difference (ug/L)			
Duplicate Concentration (Cd) (ug/L)			
Sample Concentration (Cs) (ug/L)			
Sample ID			
Compound	TNT	RDX	

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily QC Calculation Worksheet

UMDA

Date: 10/28/93

Blank Spike Recovery 88 98 Concentration Blank Spike (ng/L) 24.4 21.7 Amount Spike (ng/L) 24.8 24.7 Concentration (ug/L) Blank 0 0 **BS 10/28** BS 10/28 Blank 1D Compound TN RDX

UV D-111

Compound	Sample ID	Sample Concentration (Cs) (ug/L)	Duplicate Concentration (Cd) (ug/L)	Relative Percent Difference (ug/L)	Spike Amount (ug/L)	Matrix Spike Concentration (ug/L)	Matrix Spik Recovery (%R)
TNT	197	0	0	NC	24.7	14.2	57
RDX	197	9.89	4.2	81	24.8	29.7	80

Comments:

Sample #198 is the duplicate of sample #197 NC - not calculable; 2 positive results are required for calculation

UMDA

Date: 10/29/93

Blank Spike Recovery %R	77	329
Blank Spike Concentration (ug/L)	19.1	81.6
Spike Amount (ug/L)	24.7	24.8
Blank Concentration (ug/L)	0	0
Blank ID	BS 10/29	BS 10/29
Compound	TNT	RDX

UV D-112

Matrix Spike Recovery (%R)	85	1935	
Matrix Spike Concentration (ug/L)	47.6	2200	
Spike Amount (ug/L)	24.7	24.8	
Relative Percent Difference (ug/L)	22	15	
Duplicate Concentration (Cd) (ug/L)	21.2	1990	
Sample Concentration (Cs) (ug/L)	26.5	1720	
Sample ID	20	21	
Compound	TNT	RDX	

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100

Page | of |

DAMES & MOORE

Daily QC Calculation Worksheet Date: 10/30/93 UMDA

TNT and RDX Field Screening Analysis

8	20.1	24.7	0	BS 10/30	IN
%R	(ug/L)	(ug/L)	(ng/L)		
Recovery	Concentration	Amount	Concentration		
Blank Spike	Blank Spike	Spike	Blank	Blank ID	Compound

UV D-113

	200000000000000000000000000000000000000	
	000000000000000000000000000000000000000	

	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
	200000000000000000000000000000000000000	

178

44.2

24.8

BS 10/30

RDX

_			
Matrix Spike Recovery (%R)	73	185	
Matrix Spike Concentration (ug/L)	18.1	56.8	
Spike Amount (ug/L)	24.7	24.8	
Relative Percent Difference (ug/L)	NC	54	
Duplicate Concentration (Cd) (ug/L)	0	6.31	
Sample Concentration (Cs) (ug/L)	0	11.0	
Sample ID	41	41	
Compound	TNT	XOX	

Comments:

Sample #42 is the duplicate of sample #41 NC - not calculable; 2 positive results are required for calculation

%R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100

0 Page

DAMES & MOORE

TNT and RDX Field Screening Analysis Daily QC Calculation Worksheet

UMDA

Date: 10/31/93

Blank Spike Recovery 73 87 Concentration Blank Spike (ng/L) 17.94 21.47 Amount Spike (ug/L) 24.8 24.7 Concentration Blank (ug/L) 2.39 0.89 BS 10/31 Blank 1D BS 10/31 Compound RDX TNI

UV D-114

Matrix Spike Recovery (%R)	87	32
Matrix Spike Concentration (ug/L)	44.26	-3.58
Spike Amount (ug/L)	24.7	24.8
Relative Percent Difference (ug/L)	17	799
Duplicate Concentration (Cd) (ug/L)	19.14	-2.68
Sample Concentration (Cs) (ug/L)	22.73	4.5
Sample ID	62	62
Compound	TNT	RDX*

Sample #63 is the duplicate of sample #62 Comments:

NC - not calculable; 2 positive results are required for calculation

* Re extract due to Zinc being in contact with sample #63MS extract during entire color development time (25 min) $RPD = (|(Cs - Cd)|/((Cs + Cd)/2)) \times 100$ %R = ((Spike Conc. - Sample Conc.)/Spike Amount) x 100

06702-086-111 11/1/83 dmw

A Demes & Moore

5

TNT and RDX Field Screening Analysis Daily QC Calculation Worksheet

UMDA

Date: 10/31/99

11/2/93

Blank ID Compound

Concentration Blank (ug/L)

Blank Spike Concentration (ng/L) Spike Amount (ug/L)

Blank Spike

Recovery

UV D-115

TNT	BS 11/2	0	24.7	29.25	118
XOX	BS 11/2	-3.29	24.8	21.38	98

Matrix Spike Recovery (%R)	19	33	8224	
Matrix Spike Concentration (ug/L)	33.49	8.22	9342.11	
Spike Amount (ug/L)	24.7	24.8	24.8	
Relative Percent Difference (ug/L)	67	NC	104	
Duplicate Concentration (Cd) (ug/L)	14.35	-1.64	2302.63	
Sample Concentration (Cs) (ug/L)	28.71	0.0	7302.63	
Sample ID	83	62	83.	
Compound	TNT	RDX		

Comments:

Sample #63 is the duplicate of sample #62 NC - not calculable; 2 positive results are required for calculation

DAMES & MOORE

TNT and RDX Field Screening Analysis

Daily QC Calculation Worksheet

UMDA

Date: 11/3/93

Compound	Blank ID	Blank Concentration (ug/L)	Spike Amount (ug/L)	Blank Spike Concentration (ug/L)	Blank Spike Recovery %R
TNT	BS 11/3	0	24.7	17.9	72
RDX	BS 11/3	0	24.8	35.2	142

UV D-116

Matrix Spike Recovery	(%K)
Matrix Spike Concentration	(ng/L)
Spike Amount	(ng/L)
Relative Percent Difference	(ng/L)
Duplicate Concentration (Cd)	(ng/L)
Sample Concentration (Cs)	(ng/L)
Sample ID	
Compound	

1	8		
	49	48	
	12.0	25.2	
	24.7	24.8	
	NC	14	
	0	11.7	
	0	13.4	:
	98	86	
	TNT	RDX	

Comments:

Sample #98 is the duplicate of sample #99 NC - not calculable; 2 positive results are required for calculation

D.9 FIELD SAMPLE CHAIN-OF-CUSTODY FORMS

GROUP: UMPUF FIELL * * * FIELD LUGSHEET Environmental solence & Engineering, Inc. twhice as *** FIELD LUGS PROJECT MUMBEE 5924062G 0200 PROJECT NAME: WMATILLA PUMP TEST

. JOE VONDRICK COURL LLE DATE FRACTIONS (CIRCLE H2.2

TIME

STE

-SITE

ESE #

(NAME/ORGANIZATION/DATE/TIME G13I01F G13U01F G13E01F G13I02F G13U02F G13I0ÖF G13E02F G13I03F G13U03F G13E03F G13I04F G13U04F G13E04F G13I05F G13U05F G13E05F G13I06F G13U06F FIELD AL OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I = LUNIMBLE C = CURROSLIVE T = TC / C MASIE H SOUTH ACAUT HAZARD; IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. **1C**H GEPTH FEET ب ا ا WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL 11 TIPE Š₹ SE CE GΣ GE G₹ GE 3 35 30 œ B 35 30 GΣ **%**5 3€ 3 3 GΣ BYPAEAMETER LIST REC'D UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 2115 2115 3 751:12 24:45 14:45 **PB3D** 5 B ,00 270 9330 14:45 18:05 12:05 21:15 0990 11:3 7:17 34 10/27/93 10/38/93 59/82/01 1023/93 127/83 8/17/0 57/27/0 10/28/93 10/28/93 53 10/27/13 5/8/3 57 / LZ /01 10/27/93 10/28/93 51/12/0 E6/80/01 S P/100 0 27 ELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) ĹΤι Ĺ, [I بتا Ĺ, Ĺ ĹŢ, ĹŢ. Į۲, بترا [I, [I [I بعآ ĹΤι بتا بترا ī بتا [I ſτι ہتا [I [I Ĺ بتا Į, بتا Ŀ Ĺ ſτι بتا \sim 4 - 134-13 m - 13 -13 -13 4-13 -13 4-1 4-1 4-1 - 7 i ì -CHANGE -CIRCLE -HAZARD -PLEASE د. 4 4 ġ 4 J abla4 ď ひ UV ლ * *****2 *14 ***** 5 ***** 7 **6*** *10 *****12 *13 *15 *16 * *4 9* **8** *17 *18 *11 **D-118** \mathbb{Z}

Deg Temp? Interior (#) more samples on If Yes, Seals Intact? Yes/No If Yes, describe shipping Yes/No; I anticipate SAMPLER: Shipped on Ice? Yes/No; I anticipat SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; Any Problems? Preservatives Audited? Yes/No

 \circ

LAB COORD. JOE VONDRICK Environmental Science & Engineering, Inc. 10-v6-93 *** FIELD LOGSHEET *** FIELL GROUP: UMPUF PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMP TEST LAB COGRD. JOE VONDRICK

ESE #	SITE/STA HAZ?		FRACTIONS (CIRCLE)	DATE	TIME	PARAMETER LIST	SER TOPE	14 : JL :		S TECH	11000
*19	4-13	Ĺτί	ĹŦĄ	10/28/93	5110	UMW04	ΘW	WELL	1334		G13E06F
*20	4-13	ίъι	Ŧ.	10/28/83	(0:30	UMW04	GW	WELL			G13I07F
*21	4-13	FI	귬	10 28/93	08:01	UMW04	МS	WELL		S	G13I07FD
*22	4-13	Ŀч	ĹŦ	10[28]93	05:00	UMW04	GW	WELL			G13U07F
*23	4-13	ĹŦ4	Ħ	15/28/93	10:30	UMW04	GW	WELL			G13E07F
*24	4-13	ĹĿij	ĒĿ	10/28/93	13:46	UMW04	GW	WELL			G13I08F
*25	4-13	Ēų	·	80/80 M	13:45	UMW04	GW	WELL			G13U08F
*26	4-13	Ĺщ	년	56 92 91	13:45	UMW04	ВМ	WELL			G13E08F
*27	4-13	E4	ഥ	29/82/01	16:55	UMW04	GW	WELL			G13I09F
*28	4-13	Ŀч	Į.	598201		UMW04	ВМ	WELL			G13U09F
*29	4-13	FI	댐	10/2893		UMW04	GW	WELL			G13E09F
*30	4-13	F	ī.	59/8z/01	22:15	UMW04	ВW	WELL			G13I10F
*31	4-13	다	Ĩ.	E 162/01	ST. ST.	UMW04	МS	WELL			G13U10F
*32	4-13	ഥ	년	E) /87 01	22:15	UMW04	ВW	WELL			G13E10F
*33	4-13	म	Ē4	10/20/93	01:45	UMW04	GW	WELL			GISIIIE
*34	4-13	ᄄ	ĹŦŧ	28/82/01	5):10	UMW04	ВМ	WELL			G13U11F
*35	4-13	ᄄ	ĹŦ	10/21/93	54:10	UMW04	ВМ	WELL			G13E11F
* 36	4-13	ᄄ	Ĺч	16/12/01	0,120	UMW04	СW	WELL			G13I12F
UV D-119	CHANGE OR ENTI- CIRCLE FRACTION TO THE TRACTION R SI NS C L=16N1 COMP	TE ID AS NECESSA OLLECTED. ENTER MALE C. CORROSIVE R. REACTI LETED LOGSHEETS	RY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND WE TELL WASTE HEOTHER ACUTE HAZARD: IDENTIFY SPECIFICS IF KNOWN WITH SAMPLES TO Environmental Science & Engineering,	LPHANUME LD DATA HER ACUTE HAZI	(IF REOUI	CTERS RED) FY SPI Scien	MAY BE US HAZARD CC SCIFICS IF	SED ODE ANI KNOW!	D NOTES N Inc.	ES C.	
RET.INO	UISHED BY: (NAM	E/OR	I 🔨 I	TIME)	VIA:	REC'D	BY	(NAME/ORGA	ORGANIZATION/DATE	ION/D	ATE/TIME)
-] 	 	; ; ; ;		 	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2							1 1 1			1	

Deg C SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samples on / SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Interior Temp? Preservatives Audited? Yes/No Any Problems? Yes/No; If Yes, describe:

LAB COORD. JOE VONDRICK FIELD GROUF: UMPUF Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET ***
PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMP TEST LAE

ESE #	SITE/STA H	HA2?	FRACTIONS (CIRCLE	(CIRCLE)	DATE	TIME	PARAMETER 11ST					
	,							SAM TAPE	3/16 1/26	DEPTH	S TECH	FIELD 1D
*3/	4-13		F F		1-/29/93	, 01:50	UMW04	ВW	WELL			G13U12F
*38	4-13		न न		1	61.7	UMW04	GW	WELL			G13E12F
* 39	4-13		E.		1	200	UMW04	GW	WELL			-
*40	4-13		म म		13/20	08,30	UMW04	GW	WELL			G13U13F
*41	4-13		F F		43	8 30	UMW04	GW	WELL			G13E13F
*42	4-13		ĮĮ.		3	off . 1:30	UMW04	GW	WELL		5	G13E13FD
*43	4-13		ĮT.		86 125/01	12:00	UMW04	GW	WELL			G13I14F
*44	4-13		FI FI		2 9 96 01	00:21	UMW04	GW	WELL			G13U14F
*45	4-13		FI FI		10 24 93	12:00	UMW04	GW	WELL			G13E14F
*46	4-13		ᄕ		10 29 93	1520	UMW04	GW	WELL			G13I15F
*47	4-13		FT FT		57/10/01	1520	UMW04	GW	WELL			G13U15F
*48	4-13		대		10/28/43	5	UMW04	GW	WELL			G13E15F
*49	4-13		स		10/24/53	1840	UMW04	GW	WELL			G13I16F
* 20	4-13		ĮTI ĮTI		CA) CO.	のアルー	UMW04	GW	WELL			G13U16F
*51	4-13		FT FT		542001	(H8)	UMW04	GW	WELL			G13E16F
*52	4-13		F F		1929/93	2200	UMW04	ВW	WELL			G13I17F
*53	4-13		F F	·	10/29/93	920D	UMW04	GW	WELL			G13U17F
*54	4-13		FI FI		10/24/93	2200	UMW04	GW	WELL			G13E17F
UV	ANGE OR RCLE FR. ZARD COI	NTER FIONS S: I:1	SITE ID AS COLLECTED GNITABLE C=CORRO MPLETED LO	NECESSARY; ENTER DAT SIVE R-REACTIVE T	UP TO TIME,	9 ALPHANUMERIC FIELD DATA (IF H-OTHER ACUIT HAZARD: ES TO ENVIYORM	AANUMERIC CHARACTERS DATA (IF REQUIRED) tunt HAZARD: IDENTIFY SP Environmental Scien	CTERS M (YED) H Y SPEC	MAY BE USED HAZARD CODE AND PECIFICS IF KNOWN	SED ODE AN	ND NOTES	ES
RELINOU	ISHED BY:	(NAME/	ORGANIZATI	(ON/DATE/TIME)		VIA:	REC'D	BY (N	(NAME/ORGANI	ANIZA	17	ATE/TIME)
-		 				} i 	: : : : : : :	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1				 	: : : : : : : :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	; 		
က	:				1 1 1 1 1 1] } ! ! !				1 1 1		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Interior Temp? (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samp SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Preservatives Audițed? Yes/No Any Problems? Yes/No; If Yes, describe:

VONDRICK FIELD GROUP: UMPUF COORD. JUE LAB *** FIELD LOGSHEET PROJECT NAME: UMATILLA FUMP TEST *** & Engineering, Inc. 10-06-93 PROJECT NUMBER 3924062G 0200 Environmental Science

(NAME/ORGANIZATION/DATE/TIME) ታ G13U20FD G13U19F G13I21F Ēz. G13U18F G13E18F G13I19F G13E19F G13I20F G13U20F G13E20F G13U21F G13E21F G13I22F G13U22F G13E22F G13123F G13U23F G13118 FIELD 10 OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I=1GN17881E C=CORROSIVE R=REACTIVE T=TOXIC WASTE H=0THER ACUTE HAZARD; IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. 16.08 LEPTH FEET SITE TIPE WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL SAM TIPE ĞΚ SE ďΣ GW GW GW GW ßΣ Ğξ GΨ SE CE GΣ ßΣ ßΣ ŒΣ SE ΘM ΘM BY PAEAMETER LIST UMM04 UMW04 7:35 17:55 133 1420 92h1 20 45 3 3 2045 क्त र (O O) 3 2045 6 OHO 0110 000 TIME 5000 0110 10 30/93 108993 0 30/93 1032093 18/06/01 103093 57/05/01 5 30 93 0/30/93 10/10/93 10 30 93 10 30/93 DATE 020153 10 31 93 121/83 10 50 93 0/30/93 SP10810 (NAME/ORGANIZATION/DATE/TIME) FRACTIONS (CIRCLE Ĺ بتإ Ĺτ Ĺ, بتإ ĹŢ Ĺ ſι [I4 ſμ بتإ ہتا بتا ഥ ſτι 14 ſτι Ē ہتا ہتا ſ۲ ĹŢ ſτι ſτι ſτι [I Į, Γı ſτι 124 ſ۲ı ſτι [I4 Ĺ SITE/STA HAZ? BY: -13 -13 -13 -13 4 - 13-13 -13 4 - 134 - 13-13 -13 -CHANGE -CIRCLE -HAZARD -PLEASE 4 ひ マ ď 4 Þ ELINQUISHED UV * 55 *56 ***57 *** 58 ***** 59 ***60** *62 *63 *64 *65 99* *67 *68 **69*** *70 *71 *72 *****61 D-121 ESE

 \circ Deg Interior Temp? (#) more samples on If Yes, Seals Intact? Yes/No If Yes, describe: anticipate shipping Yes/No; on Ice? Yes/No; I anticipat Custody Seals Used? Yes/No; Any Problems? Preservatives Audited? Yes/No SAMPLE CUSTODIAN: Shipped SAMPLER:

4

Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET *** FIELD GROUF: UMPUF

LAB COORD, JOE VONDELICK

ESE	SITE/STA HAZ?		FRACTIONS (CIRCLE)	DATE	TIME	PRESHETER LIST					
e H	•			-			SAM TYPE	SITE 1.PE	3 HL431	ТЕСН	F 1616 1D
- 10	7			10/11/93	0005	UMM04	GW	WELL	=	O	G13E23F
- 11	7	,		16 31 44	6240	UMW04	GW	WELL			G13124F
*75	4-13		Er.	12/16/21	27.5	UMM04	GW	WELL			G13U24F
*76	4-13		Į.	12 21	CF. C.	UMW04	GW	WELL		5	113E24F
*77	4-13		Ŧ.	Time Time	9090	UMW04	GW	WELL			G13125F
*78	4-13	-	F F	3	0600	UMW04	GW	WELL		S	302
*19	4-13		ᄕ	10 31 93	ಧಾತ್ರಂ	UMW04	GW	WELL		9	13E25F
*80	4-13	-	ĹĿ,	1,193	1400	UMW04	GW	WELL		ß	13126F
*81	7		ᄕ	11/1/53	35,	UMW04	GW	WELL		g	13U26F
*82	4-13	-	Ęri	26/1/11	1400	UMW04	GW	WELL		0	G13E26F
*83	4-13		ĘŦ!	1./1/43	17:15	UMW04	GW	WELL		10	G13127F
	4-13		ĮT.	11/1/93	51:12	UMW04	GW	WELL		G1	G13127FD -
*85	4-13	ш	ĮT.	発売	17:15	UMW04	GW	WELL		0	G13U27F
*86	4-13	-	ĘŦ.	11 193	51:15	UMW04	GW	WELL		9	G13E27F
*87	4-13	-	Ē4	11/193.	20186	UMW04	GW	WELL		9	G13128F
*88	4-13	<u>Ε</u> ,	Ē.	11/1/52	25:45	UMW04	GW	WELL		9	G13U28F
68*	4-13	Ē	ĘŦ,	11/1/3	70:02	UMW04	GW	WELL		S	G13E28F
06*	4-13	Ħ	Œ,	11/2/53	0100	UMW04	ВМ	WELL			G13129F
UV D-122	IGE OR E		TTE ID AS NECESSARY COLLECTED. ENTER DIVIBIL C-CORROSIVE R-REACTIVE PLETED LOGSHEETS WI	UP TO	9 ALPHANUMERIC CHARACTERS MAY BE USED FIELD DATA (IF REQUIRED), HAZARD CODE AND NO FIELD PATA (IF REQUIRED), HAZARD CODE AND NO FIELD TO ENVIRONMENTAL Science & Engineering	IC CHARA(IF REQUIN D: IDENTIE	TERS (ED) (Y SPE	MAY BE US HAZARD CC CIFICS IF	SED SDE AND F KNOWN		
	ISHED BY:	ME/	RGANIZATION/DATE/T	ME)	VIA:	REC'D	ВУ (NAME/ORG	ANIZATI	ON/DATE	TE/TIME)
- 10		 								 	
7		1		 	 						
3			- 8				 	; 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ded C Interior Temp? (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samp SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Preservatives Audițed? Yes/No Any Problems? Yes/No; If Yes, describe:

LAB COORD. JOE VONDEICK FIELD GROUF: UMPUF Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET *** PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA FUMP TEST LAB

₩ ESE	SITE/STA	HAZ?	FRACT	FRACTIONS (CIRCLE)	DATE	TIME	PARTER LIST	SAM TYPE	SITE TIPE	DEPTH	#3 <u>#</u>	91 91313
* 91	4-13		ţ r i		11/2/93	17:00	UMW04	GW	WELL	FEET	O	G13U29F
*92	4-13		F		11, 193	07,00	UMW04	GW	WELL			G13E29F
* 63	4-13		다 다		11/2/93	03:50	UMW04	GW	WELL			G13I30F
* 94	4-13		F F		11/2/83	03:50	UMW04	GW	WELL			G13U30F
¥62	4-13		म		11/2/93	03:50	UMW04	GW	WELL		0	G13E30F
96*	4-13		म				UMW04	GW	WELL			G13I31F
* 87	4-13		F F				UMW04	GW	WELL			G13U31F
* 68	4-13		F F				UMW04	GW	WELL		0	G13E31F
66*	4-13		표				UMW04	GW	WELL		G1	G13E31FD
*100	4-1		F F		\$ 10/13/93	9,3	UMW04	GW	WELL		0	GOIIOOF
*101	4 – 1		표		1. 1.3/93	14:45	UMW04	GW	WELL		0	GOIIOIF
*102	4-1		ĮŢI		10/13/93	34:45	UMW04	GW	WELL			GOIUOIF
*103	4-1		Eri Eri		10/13/93	14:45	UMW04	GW	WELL			GOIEOIF
*104	4-1		든 단		10/13/93	3:12	UMW04	GW	WELL			G01102F
*105	4-1		F F		10/13/63	18:15	UMW04	GW	WELL		0	G01U02F
*106	4-1		F F		(2)	18:15	UMW04	GW	WELL		0	G01E02F
*107	4-1		FT FT		16/13/93	21:35	UMW04	GW	WELL			G01103F
*108	4-1		F F		10/13/93	21:35	UMW04	GW	WELL			G01U03F
UV D-123	-CHANGE OR -CIRCLE FRA -HAZARD COD -PLEASE RET	ENTER CTION ES: I	SITE S COLL GUITABLE DMPLET	ID AS NECESSAR ECTED. ENTER D C-corrosive R-REACTIVE TED LOGSHEETS W	Y; UP TO '9 AI NATE, TIME, FIEI T-TOXIC NASTE H-OTH	PHANUMER D DATA (IC CHARA IF REOUI D: IDENTI	CTERS RED) FY SPE Scienc	'9 ALPHANUMERIC CHARACTERS MAY BE USED FIELD DATA (IF REQUIRED), HAZARD CODE AND H=OTHER ACUIT HAZARD: IDENTIFY SPECIFICS IF KNOWN SS TO Environmental Science & Engineering	SED ODE AN F KNOW neerin	D NOTES N 9, Inc.	S .
ON I	ISHED BY:	NAM	ORGA	IZATION/DATE/TIM	Λ	IA:	REC'D	BY ((NAME/ORG	ORGANIZATION/	/NC	DATE/TIME)
-		. ! . !	 								; ; ;	
2	; ; ; ; ; ;	 	 						 	 	 	! ! ! !
		:) 	: : : : :	1 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		

Deg C Interior Temp? (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samp. SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Preservatives Audited? Yes/No Any Problems? Yes/No; If Yes, describe:

COORD. JOE VONLAICK FIELD GROUP: UMPUF LAB Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMF TEST

(NAME/ORGANIZATION/DATE/TIME GOIEO3F G01I04F G01E04F G01105F G01U04F 301U05F 301E05F 301I06F G01U06F G01E06F G01107F 301I07FD 301U08F G01U07F 301E07F G01108F 301E08F G01I09F NOTES OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I=16NITABLE C=corrosive R=reactive T=10x1c waste H=0THER acute wazer: IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. 1.1 DEPTH FEET SITE TIPE WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL SAM TIPE SΣ ΩM GΣ SE CE GΚ GΣ SΣ <u>%</u> MS 30 GΕ 30 ßΣ GW SΣ GΕ 3 BY REC'D PERSONAL LIST UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 755 , 1,53, 0430 0430 0500 2000 04:35 04:38 1752 50:10 15. 0755 50.50 TIME 21:35 01:00 S:30 10/15/93 (r/3/4) - 1:3 10/14/43 (5/43 HD/15/43 011163 1.163 22/1-1/01 10/14/62 54/4/01 10/14/93 5/11/2 1014193 26/1/10 DATE 24/4101 0/13/43 RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) FRACTIONS (CIRCLE ſτι ſ. ſτ ſτι Į, ſΤ [I4 بتر Ē ſτι [T ш ū ſz, [4 屲 [z, Ē ĹŦ, Ŀ ĹŢ. Ĺ, ستا [I4 ſ۲, Ī, HAZ? SITE/STA 4-1 4-1 4-1 4-1 4 - 14-1 4-1 4-1 4-1 4-1 ī 1 7 4-1 ◡ ď 4 A - CHANGE OF CIRCLE 1 Þ J Þ d *112 *113 *114 * 1 15 *116 *117 *118 *109 *119 *123 *125 *126 *110 *120 *122 *124 *121 *111 D-124 ~ ESE

 \circ Deg Temp? Interior (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more sampsample CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No If Yes, describe: Yes/No; Any Problems? Preservatives Audited? Yes/No

LAB COORD. JOE VONDRICK Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET *** FIELD GROUP: UMPUF PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMP TEST LAB COORD. JOE VONDRICE

₩ ESE	SITE/STA	HAZ?	FRACTIONS (CIRCLE)	DATE	TIME	PARAMETER E ST	SFR TYPE	SITE TIPE	H1430	нээт з	91 15111
*127	4-1		F F	10/12/83	0800	UMW64	GW	WELL	- 1		G01U0\$F
*128	4 - 1		F F	10/15/97	9980	UMW04	ВW	WELL			G01E09F
*129	4-1			10/15/93	00%	UMW04	СW	WELL			GOIIIOF
*130	4 – 1		F F		1400	UMW04	GW	WELL			GOIUIOF
*131	4-1		, l	0/15/93	1400	UMW 6:4	ВМ	WELL			GOIEIOF
*132	4 – 1		4 4	25/51/9	17:30	UMW04	ВW	WELL			GOIIIIF
*133	4-1		F F	115	17:30	UMW04	GW	WELL			G01U11F
*134	4-1		. H	10/15/83	ار) :ځه	UMW04	СW	WELL			G01E11F
*135	4-1			10/15/93	54:07	UMW04	ВW	WELL			G01I12F
*136	4-1		F	11/11/11	20:45	UMW04	ВМ	WELL			G01U12F
*137	4 - 1		ਜ ਜ	115/13	24:02	UMW04	GW	WELL			G01E12F
*138	4-1		F F	66/91/11	00:00	UMW04	ВМ	WELL			G01113F
*139	4-1		म म	10/11/83	00:00	UMW04	GW	WELL			GOIUI3F
*140	4-1		F F	1,0193	ı	UMW04	GW	WELL			G01E13F
*141	4-1		F F	(93	2/	1.8/JUMM04	ВМ	WELL		9	G01E13FD
*142	4-1		F F	16/93	2400 oyor	J- UMW04	GW	WELL			G01114F
*143	4-1		स स	19/11/93	2900	UMW04	GW	WELL			G01U14F
*144	4-1		F F	10/14/93.	2405	UMW04	GW	WELL			G01E14F
UV D-125	CHANGE OF CIRCLE FRHAZARD CC	CTCT	SITE ID AS NECESSARY; US COLLECTED. ENTER DATE, elenitable C-corrosive R-reactive T-10x OMPLETED LOGSHEETS WITH	7	9 ALPHANUMERIC FIELD DATA (IF H-OTHER ACUIT HAZARD: ES TO ENVIYOUM	C CHAR F REOU IDENT	CTERS (RED) FY SPE Scienc	ACTERS MAY BE USED IRED HAZARD CODE AND THEY SPECIFICS IF KNOWN Science & Engineering,	USED CODE A IF KNO	ND NOTES WN ng, Inc.	ES C.
RELINO	UISHED BY:	(NAME	/ORGANIZATION/DATE/TIME)		VIA:	REC 'D	BY ((NAME/OR	ORGANIZA	Z	DATE/TIME)
-											
2		i i									
Ε	 	 		 	 	 	 	 	 	 	\
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1			1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Deg C

SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samples on / SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Interior Temp? Preservatives Audited? Yes/No Any Problems? Yes/No; If Yes, describe:

COORD. JOE VONDRICK FIELD GROUP: UMPUF LLE * * * Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMP TEST

(NAME/ORGANIZATION/DATE/TIME) G01U20FD≯ GOIIIŜF 301E15F 301116F GOIUIGE 301E16F 301U15F 301I17F 301U17F 301E17F G01118F 301U18F G01E18F G01U19F 301E19F 301I20F G01U20F G01119F OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: Islaniable C.corrosive R. Heacing T. Tolic Haste Acut Hazard: IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. DEPTH FEET SITE TIPE WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL IN TIPE **%** GΨ 30 **™** 3€ **%** ĞΚ ßΣ SΣ GΣ GW 30 ŒΣ 30 30 ďΣ ßΚ GΨ BY REC'D UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMM04 UMM04 UMM04 UMW04 24:00 まれる 5 20,30 20:30 Q5:51 15:57 3:50 20:30 A 13:20 1005 2510 13:21 2001 635 2001 0635 TIME き 9/10 0//0 0//0/ 17/07 <u> 1</u>||つ 1000 10/16. 1011 10/16 100 DATE 10 RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) Sin FRACTIONS (CIRCLE ſτι ſτι [I ſτι [Ŧ [I4 (T. ہتا ĹŢ, Ŀ ſz, ſτι ſτι ſΞ4 Гщ ഥ ш 'n ഥ [4 ſτι [I ſτι يتا ᄺ ſz, Ē 1 Ľ [I [I, Ē ſτι ſτι Ŀ HAZ? SITE/STA 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 ī ď ġ 4 4 4 4 -CHANGE -CIRCLE -HAZARD -PLEASE UV *146 *148 *149 *145 *147 *150 *152 *153 *154 *155 *156 *157 *158 *159 *160 *****162 *161 *151 ESE D-126

Deg Interior Temp? (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samp SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No If Yes, describe: Yes/No; Any Problems? Preservatives Audited? Yes/No

 \circ

COORD. JOE VONDRICK GROUP: UMPUF FIELD LLE ** *** FIELD LOGSHEET PUMP PROJECT NAME: UMATILLA Environmental Science & Engineering, Inc. 10-66-93 PROJECT NUMBER 3924062G 0200

(NAME/ORGANIZATION/DATE/TIME) 301U21F 301E21F 301121F G01122F G01U22F G01123F 301U23F 301E23F G01E22F 301124F 301U24F G01125F 301U25F G01E25F G01126F 301E24F G01U26F 301E20 NOTES Inc. S IECH OR ENTER SITE ID AS NECESSARY; UP TO 9' ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND PROBES: I=10NIABLE C-CORROSIVE R-REACTIVE T=10NIC HAZARD; IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, DEP TH FEET SITE TIPE WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL 24 T 35 Ğξ ŠΣ Œ. ĞΚ ĞΚ ĞΚ ΩM S. C. \mathbb{S} 35 35 35 35 ß G ďΣ ßΣ 35 GΨ $\mathbf{B}\mathbf{Y}$ PARAMETER LIST UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 18:05 18:05 71:25 21:25 3:05 14:35 75:71 07:30 11:05 14:35 07:30 ... S 30:11 52:10 05.20 TIME 27:12 24:00 VIA: 410 0 4101 Ţ イラ 510 101 DATE 1101 10/01 110 7 410 10/17 4 410 <u>ک</u> 0 3 ٥ (NAME/ORGANIZATION/DATE/TIME) FRACTIONS (CIRCLE [24 ſΞι بتآ (H Ē Ē Ĺ بتا Ŀ F ſΞ ſΞι Ľ. ū Ŀ 54 [±4 بتا [I4 ىتا Ŀ [14 1 Ē [T4 بتا ഥ Ŀ ഥ Ē Ē ш ſΤι ĹΉ ſτι ſτι HAZ? SITE/STA ī 1 ī ī 1 4-1 RELINQUISHED BY: ī ī ī ī ı ī ı 4 A-CHANGE A-CIRCLE -HAZARD -PLEASE マ d 4 4 ひ ひ 4 4 d d 4 4 4 4 4 ব *163 *168 *170 *172 *176 *178 *180 *164 *165 *166 *167 *169 *171 *173 *174 *177 *179 *175 ESE D-127

 \circ Deg Temp? Interior samples on Seals Used? Yes/No; If Yes, Seals Intact? Yes/No If Yes, describe: more = I anticipate shipping Yes/No; on Ice? Yes/No; reservatives Audited? Yes/No SAMPLE CUSTODIAN: Custody Shipped SAMPLER:

COORD, JOE VONDRICK GROUP: UMPUF FIELL LLE * * * Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMP TEST

(NAME/ORGANIZATION/DATE/TIME G01E26F 301U28F G01127F 301I27FD G01U27F G01E27F 301E28F G01U30F G01E31F G01I28F G01129F G01U29F 301E29F 301I30F G01E30F G01I31F G01U31F G01E31FD F1E10 10 OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I = 1 CHITABLE C = CORROSIVE R = REACTIVE T = TOTIC HASARD; IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. TECH **DEPTH** FEET 11E 11PE WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL WELL 14.1.14 3 GΕ G₹ Z C C SE C GΕ SΣ ĞE O 30 ĞΚ GΣ $\mathbb{S}^{\mathbb{N}}$ ďΣ GΕ GW GΨ BE GW. $\mathbf{B}\mathbf{Y}$ PARAMETEF LIST REC'D UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 60:54 25.00 00:55 21:25 44: 66 æ:55 ٥ 21:15 9:6 22:15 22:15 24:10 TIME 9:6 57:10 2:3 01:45 118/53 0/18/13 24/21/01 5/8/51 CP/81 0/18/83 CB 181/0 20 21 93 18/93 18/43 0/11/63 0/18/93 10/11/93 59/19/63 DATE RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) FRACTIONS (CIRCLE [z, ш Ē4 ſτι ſτ, ſτι ш Ţ, [T ĹŦ, ſτι ĹŦ, ہتا [I Ĺz, [4 Ŀ ſτ ſτι ſτι Ĺ بتر [I Ĺ, ш ū Ē, ſτι ſτ ſτι ſτι ĹŦ, ഥ HAZ? SITE/STA 4-1 1 4-1 7 <u>_</u> ī 1 1 1 ī 7 7 4-1 4-1 4 ਹਾ d বা d 4 Q, V 4 ひ ひ ġ A-CHANGE A-CIRCLE A-HAZARD -PLEASE * *182 *183 *184 *185 *186 *187 *188 *189 *192 *193 *194 *195 *196 *197 *198 *190 *191 *18 D-128 ESE

Deg Temp? Interior (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping Seals Intact? Yes/No SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Yes/No Any Problems? Yes/No; If Yes, describe:

 \mathcal{O}

COORD, JOE VONDRICK FIELL GROUP: UMPUF L.F.E * * * Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET PROJECT NAME: UMATILLA PUMP TEST PROJECT NUMBER 3924062G 0200

(NAME/ORGANIZATION/DATE/TIME) FIELD ID OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I=10NITABLE C=CORROSING R=REACTIVE T=10NIC WASTE H=0THER ACUTE HAZARD; IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. S TECH DEPTH SAK TIPE SATE TIPE BY REC D PAHANETER LIST UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 UMW04 TIME DATE RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) FRACTIONS (CIRCLE) ĹĽ Ľ ſτι Ĺ بتا ſτι ſτ ſΞι 124 Ē, ſτι بتا ſτι ſτι ſΞ Ŀ Ē Ē بتا بتا ſτι ىتا [II 14 Ŀ ſτι ſτι [z, Ŀ ſτι [II ſτι Ē, ſτ [14 ſτι SITE/STA HAZ? -CHANGE A-CIRCLE A-HAZARD -PLEASE *205 *199 *202 *203 *204 *206 *215 *216 *200 *201 *207 *208 *209 *210 *211 *212 *213 *214 D-129 ESE

Deg Interior Temp? (#) more samples on SAMPLER: Shipped on Ice? Yes/No; I anticipate snipping Sals Intact? Yes/No SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No SAMPLE CUSTODIAN: Custody Seals Used? Yes/No Any Problems? Yes/No; If Yes, describe:

C

LAE COORE. JOE VONDRICK FIELD GROUP: UMPUF Environmental Science & Engineering, Inc. 10-06-93 *** FIELD LOGSHEET *** PROJECT NUMBER 3924062G 0200 PROJECT NAME: UMATILLA PUMP TEST LAE

17.7	F F UMWO4	F F	H . H	F F UMW04	F F UMW04	T. I.	ਜ਼ ਜ਼	F F UMW04	F F UMW04	-CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERI -CIRCLE FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (I -HAZARD CODES: I=1GNITABLE C=CORPOSIVE T=1COLC MESTER HESTARD: PLEASE RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environ	BY: (NAME/ORGANIZATION/DATE/TIME)			
ESE # SIT	*217	*218	*219	*220	*221	*222	*223	*224	*225	D-130	ELINQUISHE		2	

C Deg SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping (#) more samples on SAMPLE CUSTODIAN: Custody Seals Used? Yes/No; If Yes, Seals Intact? Yes/No Interior Temp? Preservatives Audited? Yes/No Any Problems? Yes/No; If Yes, describe: **D.10 FIELD LABORATORY NOTES**

Dames & Moore

1750 S. W. Harbor Way Suite 400 Portland, Oregon 97201 #1

AL ALL CONTRACTOR CONT

Field Laboratory Dotebook #1
Field Sampling for TNT FRAX
UWDA, Hermichon, OR
10/12/93 to 10/19/93

POSTMASTER
RETURN IF NOT DELIVERED
RETURN POSTAGE GUARANTEED
215.15 PDX

and progressive the contra

श्तक्ष

1982 Record Registre

D-132 in the content of the content

· ASSETTIME CATALOGUE PER . . T. com

.	10/2/93	
1	FIELD SCREENING LABORATORY NOTEBOOK FOR ROY AND	
	TNT ANALYSIS	
	CHEMISTS: DOUID WECHSLER (SEN) DEBOIR LEIBENSBERGER	(Pet)
	TNT STANDARD SOLITIONS	
	DATE STD CONC. (my/ml) ALIQUOT (ml) VOLUME (ml) CONC. mg	./_
	R/30/93 5000 2PB 988 0.5 100 4940	
	1/38/13 5 5 5 17 17 17 17 17 17 17 17 17 17 17 17 17	
<u> </u>		
	V 5 PP8 0.00988 50 V 4.94	
	RDX STONDARD SOLUTIONS STOCK 1	
	DATE STD CONC. (ug/m) AL. ONDT (m) Volume (m) - CONC. (e	80
	9/30/93 5000 PPB 992 0.50 100 . 4960	
	1000 PB 4.96 20 992	
	99.2	
	1. PPB 0.992 10 9.92	
	V 5-888 0.00992 50 V 4.96	
	DISCURDING TO AND 5 PPB STANDARDS FOR BOTH THE AND ROX	
	ILWARLE TO REED 5 AND 10 PPR THE STANDARD ON SPECTROPHOTO	
L	WILL SUPPLEMENT WITH SO AND SOO PPB STRAIREDS FOR 5 P	7
	curue	
	Dmw 10/2/93	
UV		
D-133		

	725 5	TANDARD	50 LUTIONS		Fine	FINAL
	DATE	STO	conc. (mg/m)	ALIQUAT	(ml) Vocans	1) Cure. (ag/i
	10/2/93	500 PPB	4.94	(6	100	474
		50 PPB	0.494	V	V	49.4
	ANALTZEE	O LUB PP	B STONOARD	TWT AFTER	Autozeroine	ニ れで
	.~STRum	545 W170	- REAGENT 3	LANK AN AB	ORBANCE OF -	0.001 WAS
	ZEAD FOR	E THE 10	OPPB TUT ETH	WARD A NE	W 100 2PB 5T	ADDALD WAS
	PRTEADTO	Fron	(000 008	5T.4 ~ 0.48 A		
****	n nectaled	The CHE	(COS VAR	,	·	
	DATE S	2 072	one. (ug/L) A	LI QUOT (M)	FINAL Useumz (M)	Find (
	10/2/3 100	0 8 P R	988	۱ ه	100	98.8
	/ /					
,	STANDAR	5	c.(_q/L) A	820rbamch		•
	1	50	0.0	0.156		
	2	19	ح د ر	æ. o.o z ³		,
	3			4.008		
		50		8,008		
	4	5 0	o -	b.004		
		50	o -			
	4	5 0	o -	0.004	(101)	
	7	\$ 0		0.005	(IDL)	mit. The
	1 5 Unaste	50 50	e	0.005 0.005	DETECTION L	
	TDL 13	50 50 70 ACHIE	TUT (00 PP8	0.005 0.005		
	TDL 13	50 50	TUT (00 PP8	0.005 0.005	DETECTION L	
UV	TDL 13	TO ACHIE	299 00) JUT	0.005 0.005 1057RUMENT	DETECTION L	of Smyl

Į			3 03
*		WE DECIDED TO MAKE A NEW INTERMEDIATE STANDARD SOLUTI	عه دم.
64/U		20 mg/ml AND THEN MAKE THE INDIVIDUAL WORKING STANDARDS	Faor
		THE INTERMEDIATE.	
1 1			
-		5-18 50 Lu 7100 : 988 mar/m	
		TNT STOCK SOLUTION: 988 mg/m) TNT STOCK SOLUTION: 988 mg/m) TNT ERMEDIA 988 mg/m) × 100ml = 19.76 mg/ml STANDARI	TE STOCK
		488 2/21	
15		25-1=	
- 7AC		5000 PPB: 19.76 mg/s/ > 75 m/=	
		THE STANDARDS FINAL	FIRML
		DATE STD. CONS. (mg/al) ALIQUOT (ml) UsumE(ml)	•
		10/2/93 20 PAM STACK 988 2 100	19760)
		5000 PB 19.76 25	4940
		1000 998	988
• • •		50 · PP8 2.5	494
€0		25U PPB 1.25	247
<u> </u>		V 100 PPR V 0.50	94.8
•		5-ANDROS WERT CULOR DEJELOARD ACCORDING TO THE ME	THOD SOP
		T SOMET ROPLICEDANCE CP.	
	-	HOTIGME	
		D ABS CONC(ug/L) RF	
·		1 0.000 0 2 0.273 5000 5.46-45 ⁵ 3 0.046 1000 4.6×10 ⁵	
4E		3 0.046 1000 4.6×10 ³ 4 0.018 500 3.6×10 ⁵	
1	· ·	7 0.007 250 2.88165	
J _		8 100	
	1137		
	UV	CORRELATION OF STANDARDS : 0.9994 Dum	15/- 157

	an 05
\$ ₁ i	RDX INTERMEDIATE STOCK SOLUTION:
	992 mg/ml * 250ml = 19.84 mg/ml
Y7€	0
	RDX WORKING STANDARD SOLUTIONS:
>&D*	5000 PPB: 19.84 mg/ml x 25ml = 4960 mg/1
	1000 PPB: 19.84 mg/ml + 5ml : 992 mg/l
	500 PPR : 19.84 40/ml × 12.5ml = 496 mg/L
	250 PAB: 19.84 mg/ml × 100ml = 248 mg/ml
·	120 PPB : 19.84 ug/ml × 1.25ml = 248 mg/ml 120 PPB : 19.84 mg/ml × 0.5ml = 99.2 mg/ml
	J. O
	ALL STANDAY CALIBRATION STANDARDS WERE PREPARED WITH 3 ml
	OF WATER FOR EVERY 100 ml OF SOLUTION.
	DUTE AMERITE STO CONC. (mg/m) MLIQUOT(m) VOLUME(m) CONCENTENTION
	10/3/93 RDY STOCK 992 5 250 19840
,	5000 PPB 19.84 25 100 , 4960
	1000 PAB 5 992
	500 PP\$ 2.5 496
	250 248
	V 100 PPS V 0.5 V 99.2
	THE INITIAL CALIBRATION FROM 10/3 FOR RDY IS SHOWN ON PG. 6.
₹	
	TO CLEAD CULTETTES AFTER AN ROY SOLUTION HAS BEEN MEASURED
0	LIST DI WATER (2 RIUSES) RUD THEN ACETONE (2 BINSES)
	10/1/87 DI WHIER (2 KIBJES) 14-0 (11/87)
UV	
D-137	

3		THE JOOK PAR THE STANDARY COLOR PENELUPED AND ANNIATED ON
		10/3/23 BT APPROXIMATELY 09:00 WAS REMUMILYZED AT 16:41
*		
		CN 10/3/93. AN ABSORDANCE REDUCTION OF 43% WAS OBSERVED
		" KROW THE INITIAL AUDICISIS. THE COLOR DEVELOPED STANBARD WAS
*		STORED IN A CLEAR WIAL IN THE SEALED (DARK) COOLER I
		THEOLOGHOUT THE PHY.
		OTOME 3 3/93 16:4)
		ABS GOVE I
		1 0.161 2874 RETHAL 5000 PAB
٦		1/07
		0~~ ~/2/53
-		
4		
-		
	UV	
	D-139	

	•	
		AFTER ZO MINUTE'S OF COLOR DEVELOPMENT THE STANFARD
		WAS REMARITED AND THE UNILLE WAS READ AT 116 PPB.
		THIS CONCENTRATION VALUE IS WITHING THE DC CRITERIA
		OF - 10% - FOR A CONTINUENCE CALIBRATION HIL ROX
•		SHELLER HAS STANDARDS WILL BE COLOR PEUTLOPED FOR 20
	·	minuter.
:		(I LITER OF EACH) A METHOD BLANK AND A METHOD BLANK SPIKE WERE EXTRACTED
		THROUGH THE SPE CRETEIDES HOLOROING TO THE METHOD SOP.
		THE EXTRACTS WERE SPLIT AND COLOR DEUZLOSED ACCORDING TO THE
		METHOD SOP. THE ROX SPIKE RECOVERY WAS MIGH:
i		50247100 cone = \$11.1 mg/L × 20 = 40.56 mg/L
		TRUE VALUE = 24.8 10/2 /24.8 100 = 164 /2
	٠.	0
0		THE SPIKE RECOURTY WHI MCLEPTHBLE.
		SPIKE excovered = 482.4 mg/L 1 20 = 24.12 mg/L
		Tent vALLE = 24.7 mg/L
-		24.12
1		7. R: 24.7 x 100 = 98 %
-inat		
once (mg las)		
4.7		
4.8		
·		
METEL	•	
8%9 PPB.	UV	bum 10/4/93
, ,	D-141	
1 60	the state of the s	THE TOTAL STATE OF THE STATE OF

1	
	CHEMISTS: DHUIS WECHSLER (SEA) DEBBIE LEIBENSBERGER (PET)
	JOHN KEARLIS (BAL)
	•
	SETUP VACORUM EXTRACTION MANIFOLD TO EXTRACT ? SAMPLES, EXTRACTED
	I METHOD BLANK AND 6 BLANK SPIKES WITH 2 ml OF MATRIX SPIKE .
	SOLUTION SETTING WE THE EXTENSITION WHIT AND CONDITIONING
	THE SOLID PHETE EXTENCTION (SPE) CARTEIBLET TOOK SLIGHTLY MORE
	THAN I HOLE SPE CHRTRIDE CONDITIONING CONSISTS OF ELUTING
	10 ml of ACETONE FULLOWED IMMEDIATELY WITH 2 25 ml RUPHOTS
·	OF DI WHTER. APPROXIMENTELY 12" OF WHTER WHY LEFT ON TOP
	OF THE CARTRIGGE PACKING TO MAINTHIN WETHERS OF THE PACKING.
	& 1 LITER OF SEMPLE IS THEN ELLITED PROPERTY AT APPROXIMATED
	5 - 10 m/min THEOLEH THE CRETRIDGE MATIL ALL THE SAMPLE
	IS EXTRACTED. THE SPE CARTRIGGE SHOWLD BEMAIN WET FROM
	THE BEGINNING OF THE CONDITIONING WHTIL PETER THE SHIMPLE IS
•	ELLITED THROUGH THE CARTEDGE. THE CHAPAIDERS, WAS THEN
; :	RINSED TWICE WITH 25 ml of DI WATER, AND TAKEN TO
	DRYNUTSS. THE SUMPLE COLLECTION VESSELS WERE PLACED IN THE
	DECLEMENT MANIFOLD AND 10 ml OF MEDITONE WAS MADED TO ENCH
	SPE CARTELOGE. THE ACETONE WAS PULLED TO THE BETTOM OF THE
	CARTRIDGE AND MILLOWED TO SIT FOR F MINUTES BEFORE THE
	EXTRACT WAS ELUTED THROUGH THE CHRTEIBGE DROPWISE WITH
,	DRYNETS TILL EXTRACTS WERE THEEN TO 10 ml wITH MCETONE.
	*
	A TUT CALIBRATION CURUE WAS AURITED WILL WAFILTERSO ACETANS
	AS THE REFERENCE SOLUTION. LINEARITY WAS OBTAINED TEO.9940
	THE REMEAST SLANK USED WAS PREPARED AT 8 AM. THE WOLKING
D-142	
	programme and the second of th

		st 1	1
	<u> </u>	STUNDARDS WERE PREPARED ON 10/5/93 AND WERE COLOR DEVELO	ילח
		AT APPROXIMATELY 11 KM. THE CHLIBRATION CARDE 13 SHOWN BELOW	
<u>.</u>		CALIBRATION SECAN @ 41:4m	
cted			
		STD 1 0.006 0.000 REAGENT BLANK STD 2 0.002 98.80 (00 APR	
•		STD 3 0.008 247.0 STD 4 0.019 494.0	
אנ אל		STD 5 0.044 988.0 STD 6 0.227 4940	
-		K: *** A0: -0.001 PHOTOMETRYZTNT 10/05/93 11:27	
		1D ABS CONC 1	
quets		*HOTOMETRY/TNT 10/05/93 11:27	
, WG.			
acov .			
13 m	•		
. <i>IJ</i>			
<u>-</u>			
Ĥ			
(E			
		4340	
		5'	
	•		
.		TRY/TNT 10/05/93 11:28	
78.		MEAN= 367.2 SD= 646.0 CV= 175.9	
340			
6	UV		
	D-143	NEW RB	
(1974) miles H. A. (2009) / 1 HO So			· · · · · · · · · · · · · · · · · · ·

14.1 14.1 14.1	12								- ' !	
		Tore	CHLIBRAT	-(-) 3T	MALOHROS	were	REGUAL	THE AND	MPASUR	TO MENINON OF
							•	BELOW HAN		
		1	L KNST						,	* 1
			7 - 7 - 7 - 7						***	
			بليف جميله .	en termi	en eren a narra a ange '	***************************************	an de appendent an espe	11:42	•	
			(D	ABS	CONC	$\frac{\mathbf{F}}{\mathbf{r}}$	TRUE	%.D :	-	
_		<u> </u>	1	0.017			494	\$ 10.0		B
		l	2 3	0.192		5000	4940	15.6		
			4	0.039		_	488	ডে.১ १,7		- All San Control
			5	0.040		+000	*	9.2		
			. 6	0.098			247	2.2 -		1.
		ļ	7	0.004			98.3	51.9		
			8.			5000	4940	33.0		
			9;		•	+	98.8	261		
			10			1-0	38.8	328		
	BLANK SPIKES WELT COLOR DEVELOPED FOR THE AND THE UNLIES DOLL FOR APPROXIMATELY TO MINITES AFTER COLOR DEVELOPMENT AND THE STABILIZED FOR 5 MINITES APPROXIMATELY THEN THE ADSORBHME VALUES REGAN TO DECREASE CONTINUALLY. PROPOSED CHANGES TO LAR SET-UP AND PROCEDURES;							TS AFTER		
								WHERE THE		_
		CANTE	o ay r	HE HO	D VIRE	هراهمای				
<u></u>										المحدث المساءة
						Amon	t of L	MIZE ADDED	30 TH	T STANDARDS
		- u. C. 1 ~ C	PREPA	PATION						
~ 		3) Rm	AH EX	PELIMEN	T come	<u> ७६७६</u> ।	UPING 2	THE EARLY	الم دا	TH WATER
								SHTER ADDE	D. Ank	145 G
	JV 7	HE S	unices	FOR	MPPROX	matel	.v /2	Hour To	TRACK	ABSORBALICE'S
D	-144									
										1 A NO. 100 A N. A.

											
והצנ		THE	INSTELLA EN	T WAS	must c	ON K	STALL THE	LF FREE	FROM		
AND		U1884	UIBRATIONS. Z BLANK SPIKES WERE COLOR DEUFLOPED OME WITH								
		WATE	e white	And out	w ITKOL	T WKTE	R. Tue.	GETRALT -	אד אזונ		
	•	w ATE	R MODED .	to 17 ce	OLOR DEU	FL. PED 1.	MARGIATEL)	-HILE	THE		
	: !	EXTA	1CT W174	امد حسم	TELL AD	0E0 (or . 05/50	OPED BY T	HE END		
		→	45 3 m	اسدوح	SHAKING	PERIOD	. THE EX	TAMETS L	ERE		
		ANAL	ZED FOR	40 min	127 A	345 00	RESULTS	HRE SHU	wall Ballow.		
		Test	I ,	Color De	rutiopm22	T BE-GAN	AT 16:50				
			H WKTEL		- A A S		LT WATER				
		7 ime		17:3L	M A 5.	Time	ABS.	Time	MOS.		
!		14.3	0.056	(', 3 C	5.001	16:57	2.0.5	17:31	0.060		
		17:00	6.059	17:39	0.067	16:59	0.057	17:33	. 0.056		
Y		17:02	0.000	17:36	0.067	76:01	0.054	17:35	0.056		
Ter		17:04	0.061	צצ! דו	0.068	17:03	y20.0	17:37	0.056		
(ND		17:06	۵.٥63			17:05	4.054		•		
LLY.		17:04	0.063			רס:רו	٧.05٧				
		04: ٦٦	0.063		 	17:05	0.054	÷			
		21:51	0.064	-		17:11	o. o54	:			
	•	או: רו	4.864			17:13	0.055				
	-	17:16	0.065			17:15	0.056		,		
	,	17:18	0.066			17:17	o. •55				
2 25		17:20	0,065			17:19	720.0				
NDARDS:		17:22	0.667			17:21	0.055	*			
		17:24	0.066			17:23	0.055				
47.20 E		17:26	0.068			17:25	0.055				
		17:28	0.006·			17:27	6.056				
BANCES.	UV	12:30				17:29	0.056				
:	D-145										
Literature sen					1						

	THE SUMP PROCEDURY WITH THE COLOR DEVELOPMENT WAS PERFORMED	· 40
	ON 7 - MORE BLUNK SPIKE EXTRACTS AND THE EXTRACTS REHAUS IN	
· · · · · · · · · · · · · · · · · · ·	THE SAME MANNER AS THE PASTIONS 2 EXTRACTS. THE ETENCTS	1
	WERE ANALYZED FOR 30 MINUTES AND THE RESULTS ARE	1
	SHOWN BELOW.	
		1
	TEST # 2 COLOR PRUELOPARNT DECHA AT 17:44	
	WITH WATER WITHOUT WHTER. TIME ABS. TIME ABS.	
	17:51 0.061 17:52 0.057	
_	17:53 0.662 17:54 0.457	-
	17:55 0.061 17:56 0.057	
	17:57 0.063 17:58 0.058	1.
	17:59 0.061 12:00 0.057	1
	18:01 0.06) 18:02 0.05 V	1
	18:03 0.061 18:04 0.059	1
	18:05 0.064 18:66 0.054	
i	الإ: ٥ م م ١١٠٠ م ١١٠٠ م	
·	18:09 0.066 17:10 0.058	
	18:11 0.060 18:12 0.059	
	18:13 0.059 18:14 0.559	
	18:15 0.059	
	18:17 0.059 18:18 0.057	
	(8:50 0.026 (6:51 0.069	•
	18:22 0.060 18:23 0.059	:
		•
	THE SECOND PLANK SPIKE EXTENCT WITHOUT WATER WAS SCANNED ONCE	
UV	EVERY GO SECONDS FOR 2 HOURS TO DETERMINE THE DETE TIME	_
D-146		
The state with the terminal production of the state of th	Andrew and the state of the sta	on Error

-		FOR : COLDE	BEVELOPED	THT	GETEN LTS	. THE RE	54L75 - ALF	- 54.mw
4.7		<u>11.1156</u>		NW.	A CONTRACTOR OF STREET			
-	5		:	100.000	18:30			
-	4145	UAN/UNIT	normalist to the second of the	1777 93	productive species (PT)	-		
	sec	ABS	: قال	1.80	maigratt. 1160	6360		*. *
-				240	บ. บุธบ	1 4 4 4 4 70		584 Coleman
	. 0	0.058		300	0.061	6480		
-	60	0.058		360	0.061	6540		
	120	0.058		420	0.061	6600		
	180	0.058		480	0.062	6660		
	240	0.058		540	0.062	6720		
į	300	0.057		600	0.062	6780		
<u> </u>	360	0.058		660	0.063	6840		
	420	0.058		720	0.663	6900		
	480	0,058		780	0.063	6960		
	540			840	0.063	7020		
	600			900	0.064	7080		
:	660			960	0.064	7140		
	720			020	0.064	7200	0.0	66
	780			080	0.064			
•	. 840			140	0.064			
	- 900			200	0.065			
;	960			260 260	0.065			
<u> </u>	1020			200 1970	0.065			
	1080	0.1		აშ0	0.065			
1	; 1140			440	0.065			
1	1200			500	0.065			
i	1260			560 560	0.065			
-	1320			620	0.065			
	1380			680 680	0.065			
_	1440			740	0.065			
	1500			800	0.065			
:	1560			860 860	0.065			
	1620			920	0.065			
	1680			920 980	0.065			
	1740			900 040	0.065			
	1800			100	0.065			
	1860			160	0.066			
	1920	0.057		220	0.066			
	1980			280	0.066			
	2040			340	0.866			
	2100			400	0.066		-	
	2160			460	0.065			
	2220			520	0.066			
+	- / 2280			580	0.066			
1	2340	· ·		54U	0.066			_
	2400			700	0.006			
-	2460			760	0.066		•	
i	2520			820	0.066			
+	. 2580			880 880	0.066			
;	2640			94Ú	0.066			
1	- 2700			000	0.066			
:	2760			060	0.066			
نا	_ 2820	0.059		ህ ምርት '''' ግ				
			1.4	1 251 1				
	# 11 시호 제 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계			1 201	#1, ປຽ ນ 11, # 5 #4			
			-4.			. :	**	
	UV -							
	UV				·			
1	D 147			•		Dni		97
	D-147					シハレ	r 1./5/	12

*	6.	PH TOMETRY 15	ROY CALIBRATION CHANGE
3		ID ABS CONCIT F) - OSUS	ALL STHER ONTA IN
45		1 0.000 0.000 LO 2 0.059 1623	LASONATORY DATA NOTYBOAL
	·· .	3 0.051 1401 PHOTOMETRY/RDX #[10/06/93 09:34	
AND		ID ABS CONC	<u></u>
,		PHOTOMETRY/RDX 10/06/93 10:19	
		1b ABS CONC	
ARDI	#/	STD 1 0.000 0.000 STD 2 5.001 99.20	
		STD 4 0.016 496.0	
Χ		STD 6 0.224 4950 K= **** AO= -0.004	
(
Lask		. PHOTOMITRY/RDX 10/06/93 11:12	
		To the second se	
10-01			
READY			
uldo:			
μ			
245			
		<u> </u>	
· ·			
•	·		
:			
•			
WTER.			Um 10/6/43
	UV		
	D-149		
as agreeding their process. Confidencementations, or	progra, dominante programa	The second secon	en, per prome y spen en son en

i.	10/12/93
11	CHEMISTS: DAVID NECHSLETZ (SEA) JOHNNA MODER (SEA)
*	RDY WORKING STANDARDS WERE PREPARED AT 100 250 500, 1000 AND
	5000 119/L FOR THE CHLIBRATION CHANE. A NEW 20 PPM
	WARKING STECK WAS PREPARED ROX EXTRACTS MNO CALIBRATION
	STANDARDS WERE COLOR DENGLOPED ACCORDING TO THE METHOD
	50 P.
1	WATER FALL WELL 4-1 WAS COLLECTED AT THE INFLUENT
eve	SAMPLING PORT OF THE WHTER TREMTMENT SYSTEM. 50ml OF
	TEMPLE WAS EXTENCTED THROUGH THE SPE CARTAIDED THE SUMPLE
·	WAS EXTRACTED IN DUPLICATE THE MODING A MATRIX SPIKE AND
	MATRIX SPIKE DUPLICATE SHUPLES. THESE DC FAMPLES WERE
	ESTANCTED WING SOUL OF SAMPLY. A 1 LITPL SAMPLE OF METHOD
•	BLANK AND METHOD BLANK TPIKE WERE EXTRACTED WITH THIS
· A	SAMPLY SET.
	·
-	PDX WID THE CONCENTRATIONS FROM WELL 4-1 AS REPORTED IN PIFES
	REPORT AUGUST 1992 ALE 2700 and 3400 eng/L RESPECTIVELY.
	PDX = 2700 mg/L = 1000ml x (5ml x 1000ml) = 2700mg/L
:	Turan. VOL.
•	TAT: 3400 mg/L & 50ml x (5ml x 1000ml) = 3400 mg/L
	AFTER THE INITIAL SOM OF SAMPLE WAS EXTENCED AN ABOTTOML
UV	150 ml of DI WATER WAS APPED TO THE SAMPLE CONTAMERS
D-15	
	Section 1995 (1995) (19

		·				.•	10/13/53	21
1		CHEMI	its : 3	HUNN MO	AT (SEA) DAV	is WECKSLAR		
						•		
.es		Propu	nen Hub	دەدەك ل	FUELDPED WEN	RDX - CAL	ABRATION CU	BUE FROM
MANARA		RDY W	SORKING	STOCK &	FROM 10/12	(52:		
ent.						•		
	•	BTE	STAND.	ANALYTE	Stock	ALIQUOT (a)) Varano (a	Final Come lagh
. '		10/17/53	5000	Kox	17.84 mg/ml	2.5	10	4960
		1	1000	1		6.5		192
MCGNT			200			0.25		496
			250			0.125		248
		J 1	100	-		۵،05۵		99.2
		V	100					
٢		-			- 1			
THE	,	501		sust-pme h	٦ ،			
<u>_</u>		.477	·	THRE	5768	***		-
		.0>		10:29	10:59		.*	
	•	~50		• : 3 0	11:00		•	
		500	(-	»:31	1(:01			
		1000	10	:32	11:02			
		5000	(0	:33	11143			
	•	28	10;	ष्ठर	11:04			
1	r	RECUA	سهمر	-1~6 5P	E CHATFING	es for e	IRST SET	e sameit
*	•				or sumpless			
•	+				4-1. The		•.	
		אר ואוד	THE BILL	716 6017	1:20, 50 m	_\ of S≤	ادر کا مسا	1 32
		EXTRACT	EO.		•			
2/93	UV						· · · · · · · · · · · · · · · · · · ·	
	D-153				W			nomen toutoutoutoutoutoutoutoutoutoutoutoutout

	SET SPE	Vacuum marif	OLD WITH 6	SPE EXTRACTION
				الم ما بدروس
				ER. THE CHATRIPLES
				ON THE WILLIAM WATE
			WITH WHIER	DE THE WINNER WATER
	SEMPLE ELL	TION BEGAN.		
			START	Fimish
	Jample	Prestire	Time	Time
***	MB 10/13	1 L	4:15	5 :15
	BS 10/13	اك	9:15	6:17
	100	50 ml	4:15	4:45
	101	50-1	4:15	4:45
	102	1 L	4:15	6:07
	103	1 L	Y:15	6:17
				:
	RDX COLOR	DEUTLOPMENT		
	SAMPLE	STURE	STOP	•
	RB	19:38	19:08	
	500	18:35	(7:10)	
	1430	18:40	19:71	
	MB	18:41	19:12 .	
	16.5	18:42	15:13	
	1100	18:43	11:14	
	4 101 .	18:44	19:16	
	#102	18:45		
	103		19:17	· · · · · · · · · · · · · · · · · · ·
		18:46	19:18	
UV				
D-154				

· \$	•			
01	TAT COLOR	. Deverops	-6nt	
1 .	SAMPLE	START	STOP	
•	_ MB	19:41	20:01	
14	543 35	11:4)	20,02	
	(o =	19:46	20:06	
	101	19:46	20:07	
	102	19:51	20:11	
	103	19:51	20:12	
	500	19:57	20:21	
	Riz	19:57	20;21	
				`
	4			
			·	
			-	
				,
•				
3				
UV				
D-155				DMW 10/13/93

UV #108

100

11:26

11:31

1

D-156 4108

-		_				
				TAMETION CARTRIBLES		
-		FACH SP	E CASTRIDE	TS WAS CONDITIO	אדו ש משב	10 ml of
		ALETONZ	A~10 2 2	5ml prigners of	estem Id a	2
		SAMPLE	Vocano	STERT TIME	STOP Time	
		7110	50~1	11200	11:30	VELLOW
		# 111	١٢		13:20	CLEAR ALBER
		7112	١٤		13:10	CLEHR
<u>ل</u>						CLEO ~
		113	50-1		11:30	c LEAR
		8114	11		12:30	Mm3ET-
aw		3115	١٢	4	13:20	CFENT
FR		mB	1 L	12:05	13.20	CLEAR
		13 5 ⁺	١٢	7	13! 15	GINK
				•		
,		4 1 1 0	r 25 PP	m SPIKENG SOLU	7102 ADOR	0 To
			85005 Ex			
			er Devero	•		
		Sample	STHRT	57.01	·	
		RB	12:52	13:23		
<u> </u>		500	12:53	13:24		
*		4104	12:54	13:25		·
_		#105	12:55	13:27		
		#106	12:56	17:28		
*		#107	12:57	13:29		
		H 108	12:58	13:30		
	UV		(2:51	13 13 1		
	D-157	Ħ109	(2.31	., .31		
				and the second s	La tra gging at 1 particularion and the second and the second at the sec	to the second of

<u> </u>	727 000	on peverophent			-
	Sumple	FAATS	5708		
	RG	15:00	15:20		
	500	4	4		
	m B	15:05	15:25		:
	85	<u>\</u>	¥		
	110	15:10	:5130		
	li t	V	4		
	li v	15:15	15: 35		
•	113	10	A		
	114	15:20	15:40		
	115	J.	+	·	
	manifolp.	COLLMAN WE	عدما 11 مع	D WITH 10.	
	METONE E	COLLMAS WE ALHAMO Z ZE	she ciablificate	O WITH 10.	at 37L.
	MANIFOLD. MCETONE E	COLLING WE ACHAND Z Z: USCULE GYTANTEN	STRAT TIME	OF OF DT W	at 37L.
	MANIFOLD. MCETONE E	COLLMAI WE ALHAND Z ZE USCULE CYTHATES 50 ml	she ciablificate	STOP TIME	at 37L.
	MANIFOLD. MCETONE EN Sample #116 #117	COLLINAS WE BIHAND Z ZE CETTALTER 50 ml	STRAT TIME	OF OT WITH 10. OF OF DT WITH STOP TIME 16:30 18:00	at 37L.
	Tample #116 #117	COLLINAS WE ALHAND Z ZE USLINEE EXTRACTED 50 ml L	STRAT TIME	STOP TIME 16:30 18:40	at 37L.
	MANIFOLD. MCETONE EN Sample #116 #117 #118 #119	COLLMAN WE ALHAMO Z ZE CEXTRACTED SO ml L L 50 ml	STRAT TIME	5 WITH 10. OF OF DT WI STOP TIME 16:30 18:00 18:15	at 37L.
	Sample # 116 # 117 # 118 # 119	COLLMAN WE ALHAMO Z ZE CEXTMACTER SO m! ! L ! L 50 m! 50 m!	STRAT TIME	STOP TIME 16:30 18:40	at 37L.
	MANIFOLD. MCETONE EN Sample #116 #117 #118 #119	COLLMAN WE ALHAMO Z ZE CEXTRACTED SO ml L L 50 ml	STRAT TIME	5 WITH 10. OF OF DT WI STOP TIME 16:30 18:00 18:15	at 37L.
	# 119 # 120 50 +	COLLINAS WE ALHAMO Z ZE USITUALE SOMI IL SOMI SOMI SOMI JU JU JU JU JU JU JU JU JU J	STRAT TIME	5 WITH 10. OF OF DT WITH 16:30 18:00 18:15 16:30	at 37L.
	# # 11 9 # 120 SD # 121	COLLMAN WE ALHAMO Z ZE CEXTMACTER SO m! ! L 1 L 50 m! 50 m! 1 L 1 L	STRATTME 15:55	5 WITH 10. OF OF DT WITH 16:30 18:40 18:40 16:30 16:30 16:30	at 37L.
	# 119 # 120 50 +	COLLINAS WE ALHAMO Z ZE USITUALE SOMI IL SOMI SOMI SOMI JU JU JU JU JU JU JU JU JU J	STRATTINE 15:55	5 WITH 10. OF OF DT WITH 16:30 18:00 18:00 18:15 16:30 16:30 16:30	at 37L.

',				
	* Sam	PLF SPIKED	WITH IM! of 25	pom SPIKING
		2 BEFORE		· .
~	RDX C	SCOR DEUEL	٠٥١٠٥٠٠	
	i	TAATE		·
		17:28		
	i i	17:29		
	MB	17:30		
	83	וניקו		
	110	17:32		
	111		18:04	
	112		14: • 5	
—	113	17:35		
	114	17:36		
	115	רג:דו		
				•
	725	Cacar Drog	しゃんせんて	
		START		
,	RB	19:43	20: • 7	
-	500	4	20:04	
	\$ 105	19:47	٧٥:65	
_	#146	با	20:06	
-	#117	19:53	20:07	
	#118	1	20:08	
	4,15		10:09	
	t, 20	+	20:10	-
	UV 5 124 -5	19:58	20:11	
	D-159 7 121	. 1	20:12	

POX COL	or ofurtoemi	7~1	a.	
SAMPLE	START	STOP		
28	20:24	20:54		*
500	źð:25	20:55		
¥ 105	20:26	20:56		
711	20:27	20:57		-
רון ש	۲۰:۲۶ ا	20:58		:
#114	20:21	ZP!59		
A11 £	20:30	21:00		
4,110	20:71	21:01		
# 12D m5	20:32	21:22		
\$ 121	20:33			
272	20:34	21:05		
	20.)4	21.03		
			•	
				-
				-
			· ·	
				*
				-
UV				
D-160			pr-J 10/14/93	

		108 29
		CHEMISTS: Johns Moore (SEA) Pavis WECHILER (SEA)
,		PREPARED RIEW 20 PPM PX STOCK USING ZMI OF 992mg/m) STOCK CONCENTRATION. FINAL UDILLE 100ml IN ACETONS.
•		PRIPAREN NEW ROX CALIBRATION CLAUE;
	!	STOCK STOCK FINGL VOLUME CONC. (mg/L)
		100 PPB 11.84 ug/ml 50 ml 10 ml 99.2 250 PPB 125 ml 248
		500 PPB 250\ 496
		5000 PPB 4 2500 1 4960
		ROX COLOR DEUELOPMENT
······································	: •	& Tamplet Stuat From
		100 PPB 10:36 11:06
-		250 PPB 10:37 11:07
		1000 PPB 10:39 11:01
		5000 PPB 10:41 11:11
<u>.</u>		SETUP SPE UNCHUM MANIFOLD SYSTEM TO EXTLACT 6
+		ml ALIQUOTS OF DI WATER.
	UV	
	D-161	

)	START	5+.0-	- Sampus	-
	SOMPLE	VOLUME EXTRACTED	Time	Time	Coner 3	
					LIGHT	
	923	50m	12:10	12:45	YELLOW	_
	121/	١٤		13:52	CLEAR	
	4 -					
	1 125	. 11		13:58	CLEAR	
	# 126	50 m		12:50	42647 4266m	
	=127	11		14:05	CLEHR .	_
	\$ 124		4	14:06	CLEKA	
						_
20	CALIBRATION	S CHRUF & COLOR	Peverbed	MGAIN.		
	Sample					
	Jam FLE	JIAKE	MOP.			_
	28	12:31	1:56			
	100	12:32	2:57			
	250	12:33	2:58			
	500	12:34	2:55			`
	1000					
	11000	12:35	3:00		•	
	5000	12:36	7;00		•	
				•		
						_
	+ PDX C	ocor severapment	TIME R	EDUCED F	-2au 30	
	אתו מו עד פין	To 25 minutes.				_
						į
	SAMPLE X	DX color Denstob				
		· ·	سجهرا	· · · · · · · · · · · · · · · · · · ·		_
	SHAPLE	STHAT STOP				
	123	16:01 16:25				, .
		_				
	124	16:03 16:27				_
	125	16:04 16:28				
						_
UV	126	16:07 /6:29				_
	127	16:06 16:31				
			-			

		TWT C	0705 benero	pment:		
,		SAMPLY	STHRT	STOP		
		RB	17:20	17:40		
		500	17:25	17:45		·
•		123	17:29	17:49		
		124	V	17:50		
		125	17:34	17:54		
		126	4	17:55		
		127	17:38	17:58		
		,28	V	17:59		
		Situp S	PE JACKER	MANIFOLD SYS	TEM for }	\$5 sumples.
		•				oml ACETONE
			25 placionots			
# : : : :						
			Volume	START	5708	SAKA (E
		Sample	VOLUME EXTANCIZA	START Times	Stop Tind	
	·	SAMPLY mg 10/15	Volume	START Times	5708	
	·	SAMPLY mg 10/15 85 10/15	Volume EXTAGLIED	START Times	570P Ting 19:10	
		SAMPLY MB 10/15 BS 10/15 H125	Volume EXTANCIED IL	START Times	570P Tind 19:10	MARGURANCE
		SAMPLY mg 10/15 85 10/15	VOLUME ENTANCIED IL IL	START Times	5 to P Tind 19:10 19:15 17:47	LIGHT YELLOW
•		SAMPLY MB 14/15 BS 10/15 H125 H125	Volume EXTANCTED 1L 1L 50ml	START Times	57.0° Tind 19:10 19:15 17:47	LICHT VELLOW CLERK
		SAMPLY MB 14/15 BS 10/15 H125 H125	Volume EXTANCTED 1L 1L 50ml	START Times	57.0° Tind 19:10 19:15 17:47	LICHT VELLOW CLERK
		SAMPLY MB 14/15 BS 10/15 H125 H125	Volume EXTANCTED 1L 1L 50ml	START Times	57.0° Tind 19:10 19:15 17:47 18:57	LICHT VELLOW CLERK
•		SAMPLY MB 14/15 BS 10/15 H125 H125	Volume EXTANCTED 1L 1L 50ml	START Times	57.0° Tind 19:10 19:15 17:47 18:57	LICHT VELLOW CLERK
•		SAMPLY MB 14/15 BS 10/15 H125 H125	Volume EXTANCTED 1L 1L 50ml	START Times	57.0° Tind 19:10 19:15 17:47 18:57	LICHT VELLOW CLERK
•		SAMPLY MB 10/15 BS 10/15 H125 H130 =131	Volume EXTANCTED 1L 1L 50ml	START Times	57.0° Tind 19:10 19:15 17:47 18:57	LICHT VELLOW CLERK

32	2					
	THT C	ocor perecop	Tustan			
	SAMPLY	START	5700		· · · · · · · · · · · · · · · · · · ·	
	IKB	19:45	20:05			
	500	1	20:06			
	m B	19150	20110			•
	B 5	J	20:11			
	121	19:55	20:15			
	130		20:16			
	131	y	20:17			
<u>.</u>						•
1	PDA COL	on Peurlorn	245			
	Sample	Store	57.0			
	RO	20:27	2015 Z			
	500	20:28	20:54			
	ms	20:29	20:55			
	13 2	20:30	20:56			
	129	20:31	20:58			
	130	20:32	20:57			
	131	20:33	21:00			
						:
UV						
D-16						
				10/15/	13 20	
						700 mm

						1,0	33
	CHARLISTS	. .	\. \.	WER (SEA)) James	16/93	(NS
	2.11.642.13			·	, =====================================		<i>J</i>
	Setup	595 W	ودديريم	maniford	TO EXTRACT	11 54 mas	125.
	ENCH EX	المديري	CARTRIBO	£ WAT .		01 HTIW	ml
	ACTTONE	and 2 -	25 ml	KLIPHOTS	of DI wa	rër.	
	Sample	VOLAN		START	510P	Sumpi	
	T 132	50		8:15	8:45	YELLOW CLEAR	1
	\33	1 L		4:20	10:10		2
	134	الـ		¥	10:40	CLEAR	
	135	50.	ما	8:15	8:45		
	136	1_		8:30	10:10	CLEAR	
	137	12		<u>v</u>	(+:55	CLEAN	
	138	50 w	4	8:25	9:00	درو دد ۷۵در ص	
	139	11	.,	8:30	10:10	CLEXA	
	140	12		9:25	10:55	CLESAR	
	141	11		1	<u> </u>	CLEAR	
	14120*	IL		V	V	(Lothe	
		· · · · · · · · · · · · · · · · · · ·					
	* 1 - (05	25 Ppm	SPIKE	SULLTION	apped to	sample	JEF URE
	EXTRA CT 10	, نـــ					
			Stock			FINAL	FINAL
-	AMPLYTE	DATE	Conc (my/	i) STO	4 L(B WOT (m1)	Volume (ma)	Count
	RDX	10/16/93	992	-OPPM	5,200	(0	19.8424/2)
	ROY		19.84	500 PAB	0.254	1	196 -19/1
UV	TAT	7	19.76	500 PAB	4.7.20		19 Margh
		٠					

UV D-165

Rax	-ocoa Development	
SAMPLE	STALT STOP	
RB	12125 12150	
560	12:26 12:51	
132	12:27 12:52	
133	12128 12153	
134	12:21 12:54	
135	12:30 12:55	
134	12:3) 12:56	
ונו	12:32 12:57	
138	12:33 12:58	
135	12:84 (2:59	
140	12:35 13:01	
191	12:36 13:02	
141 57	12:14 13:03	
	1777	
TAT CO.	or Pruriament	
	START STOP	
₹.B	14:49 15:10	
500	(5:4)	
132	15:12	
134	14:54 15:14	
135	1 15:15	
137	15:16	
135	15:20	•
UVI40	15:22	
Uyiqu	10:24	
D-166()	15.23	

	SETUP	SPE VALUE	~ mu-ifold	SYSTEM TO	EXTRACT SAMPLES.
•	ENCH 5	PE CHRITIDGE	WAS CONDI	Tieneto 10 m	ON ACETOUS AND
	2 - 25m	beionors of	DI WATER		·
:		,			
!	Sumple	Johns	START	57.0	Sample
		EXTRACTED	Time	Ting	
	142	50ml	06:51	13:05	78(10U
	143	١٢		15:05	CLEAR
	144	1L		15:00	< 6 0 1/4 R
	145	50ml		13:05	4 ELLON
	146	(7		15:15	cietan
	ועק	١٢		14:15	CLERR
	148	50ml		13:05	Y82160
	145	16		15115	CLEAR
	150	(L	13:45	15:15	< Lëpa
	ms	16	1	15:15	CLEAR
	BS	الـ	1	15:15	CLEAR
	\$ 64	COLOR DEUX	LARMEST		
	SHIPLE	START	5T 0P		
		17:51	17:57	***************************************	
	500	17:32	רז:58		
	MB	17:37	17:59		
	142	17:35	18:61		
	147	17:34	18:02	,	·
· :	145	17:37	18:05		
<u> </u>	147	17:35	18:66		
UV	148	17:40	18:08		
D-167	149	17:41	18:05		
	150	17:42	18:10	72.2	

	THE COLOR DEVELOPMENTS SHIPLE START STOP	
V	BS 18:31 12:55	
	MB 18:39 19:00	
	PB 18:45 19:05	
-	500 19:06	
-	142 19:07	
	143	
	144 17:09	
	145 19:10	
	146 14:50 19:12	
L	147 1 19:13	
	148 12:44	
	149 19:15	2
	150 19:16	
	1 [6	
		· · · · · · · · · · · · · · · · · · ·
		1
		•
		-
,		
UV D 169		
D-168	2mu 10/16	193
	X (5)(10	1

#					10/17/93	31
-		٠	S! JOHNA MORE	SEA MOVIE		(A)
•		-Hem (ST)) . Johann Frankt	1.	×	
	-	(35. 2	SPE VAGULLE	manifold	TO EXTRACT	11 SAMPLOSS.
<u> </u>			SPE CHATRIDGE			
_		<u> </u>	-25 ml marquets	87 7 2		
_			Volume	JT WRT.	STOP	Sumpet Local
_		Sample	•	8:55	9:30	785FOM
<u>-</u>		151	50	9:00	10:45	LLEAL
		152	1000	1	10:45	CLEAR
		153 154	(000		9:35	75.00
_		155	50		ره ۱()	CLEKR
<u> </u>	·	156		4:55	(0:30	CLEAR
		157	\000	9:00	4:30	786600
		158	50	7	10:30	CLERG
-		159	(000	9:45	11:05	< د ری په در
		160	50	1	16:15	CLEAR
		161	1000	1	11105	CLEMR
		· • •				
- †			SLOR DEVELOPMEN	JT		
		SAMPLE		9072		
•		2B	12:31	12:56		
		500	12:52	12:57		
*		151	(2:33 %	12:58		
		152	12:34	12:59		
	UV	153	12:35	12:00		
	D-169	127	(2:36	13;64		
_			\			

4						(31)
<u></u>	RDX Cu	ron beneroth	nent - com't	•		53
	SUMPLE	START	576P			•
	155	12:37	13:02			
	156	12:38	13:03			
	157	12:39	13:04	. •		•
	158	12:40	13:05			_
	159	12:41	13:06			
<u> </u>	140	12:43				_
	141		13:08			
<u></u>	SETUP	SPG UACUL	m manifold	TO EXTRUC	T 9 SAMPLES	
	1	RACTUM CARTINO				7
		400 Z-25m				
			•			
	SAMPLE	Value Enem	START.	STOP THE	Cour	1
	167	5021	15:13	15:40		:
	168	١٢		17:20		-
	169	14		17:15		
	170	50ml		16:00		
	171	١٢		17:25		
	172	11		17:10		
	173	50nl		15.45		•
~	174	16	4	16:55		*
	175	14	(8:00	17:40		*
- UV				4.4		_
- <u>D-170</u>					•	_
						ġ.

	Tot Col	e Develoen	-BNT	· ·		
•	Sumple	START .	Fre			
	MB	11:22	11:42			
	500		11:43			
	ເຮົເ		19144			
	152	V	11:45			
	153	11:27	11:47			
	154		11:48			
	155		11:45			
i	:56		11:50			
<i>C</i> 5.	157	V	11:51			
F	158	11:32	11:52			
	155		11:53			
:	160		11:54			
	161		11:55			
					OCT 8 SHIPP	
-	1				WITH 10 ml	of
	ACETONE A	20 2-25m	al ALIQUE	ts of DT	WATER.	
		Vocume	START	550 P	SumNE	
	Sample	EXTRACTED	TIME	Times	COLOR	
4 	ms	١٤	12:14	13:20	CLEAR	
	B 5 *	L	4	13:45	CLEAR	
•	1625D*	1L	12:13	13:45 13:40	CLEUP- CLEAR	
	163	11	4	13:40	CLEAR	
UV	164	50ml	12:15	12:35	right YELL	ه د
	165	\ L	12:11	14:00	CLEAR	·
	166	IL	12:13	14:07	CLOAR	
	Minimal No. 14 Sept.	Theres	The section of the section of			

70						
	THE COLOR	DEVELOPMEN	υT			
	SAMPLY	START	STOP			1
	MB	14:00	14:20	<u> </u>		
	85		14:21			34
	RB		14:22	·		
	500	4	14:23			
	162	4:05	14:25			
	16250	1	14:26			i
	163	V	14:27			
-	164	4:10	14:30			
1	165	1	14:31			
	166	¥	14:32			
						**
	20X TOLOR	Developa	nept_			
	SAMPLE	START	STOP			
	PB	17:07	17:32			
	500	80: הן	17:33			
	MB	17:09	17:34			
	82	17:10	17.35			
	162	17:11	17:36		-	<u>:</u>
	1625)	51:17	17:37			4
~	163	דן: רו	17:38		•	
~	164	17:14	17:35			5 3 f
1.	165)7:15	17:40			
	166	17:46	17:41			
UV						
D-172			_			
-						1

		TNT COI	of Developm	हर्णा		
•			STARE			
;		500	19:27	19:47		
		169		18:48	<u> </u>	
: ر*		167		19:49		
		168	Ą	19:50		·
_		ارز	19:3)	19:51		
		170	1	19:52		
_		Rg		-18:53		
		172		19:54		
1		175	19:33	19:55		
		173		19:56		
1		4CI	¥	11:57		
		PDX	Color Pevelo	PWENT		
		Sumply 500	START 18:59	570F 20:24	•	
		28	21:00	20:25		
		167	20:01	20:26		
		168	20:02	20:27		
		169	20:03	20:28		
		170	20:04	20:29		
•	· .	171	20:05	20:30		
		172	20:06	20:31		
*		173	20:07	20:32		
		174	20:08	20:33		
	UV	175	20:09	20:34		
	D-173					10/1/93
					2MN	ديارا ه

UV

D-174

							,	
_		2001P(V)	P Sorm		STOCK		FIRML	Finds
		اسمديرح	570	<u></u>	conc. (se/al)	August (al)	Howard	(al) Conc.
-		TUT	20 ppm Stock	# 023- 223	1004	l	50	lalguso, os
_			20 PAL	ALCUSTAUDHAD		1	4	21.48mg/sl
		RDY	Stock	#083-242	1074		. 4	21. 1. 1.
_			100 PPB	_	21.48	0.050	10	107.4 mg/c
-			250 888	-		0.125		258.5 mg/L
_				_		6.250		537 mell
_		-	500 PPB					0
		1	1000 PPB			0.500	+	1074 arg/L
		V	5000 198		V	2.5	V	5370 mg/L
						<u></u>		7
	-	ROX (NELDAMENT:	_			
		Dampus	r	START	5000			
		P.B		14:10	14:35			
		104		14:11	14:36			
		250		। ध्राप्ट	14:37			
		500		(4:13	ાન:38			
		1000		14:14	14:39			
_		5000		14:15	14:41			
		мВ		14:16	14143			
		BS		14:17	14:44			
		176		14:18	14:45			
	-	177		14:19	14:48			
4	•	178		14:21	14:48			
		180		14:22	14:50			
+		181		14:24	14;50			
		182		14:25	14:52			
	UV	183		14:24	14:53			
	D-175	1845		14:28	14:56	<u> </u>		
		185		14:21	14:57			
							onserno um altre	er en e lessannastria.

		×		
44				
	THI COLOR DOUBLOP	neut		
	SAMPLE START	STOP		
	RB 16:19	16:39		
	.176	16:40)
	ררו	16:41	• •	
	ארוו ארוו	16:42		
	179 16:31	16:51		
	180 16:25	16:45		
	181	16:46		
	182	16:47		
	183	16:48		
	18350 16:31	16:52		
	184	16:53		
	185	16:54	·	
	mb 16:36	16:56		:
	85	16:57		
	TOD V	16:58		
		<u>/</u>		7
UV				
D-176				
	and the property of	Dnu	10/18/97	(a)

		•		10/19	/93
	Cue	Januar Ma	et Davio		
	CHEKISTS			:	
		F 1/4	STAN 3- EVT	w.T 13 54	MPLES. ERLH
					= ACTTONE AND
•				(0.0)	
	2·25ml	ALIQUETS OF	AI WATER.		
	F	Volume	START	STOP	Sumpre
	SAMPLE	ENTRACTION	9:20	9:45	イをしい
	186		1	11:58	CLEAR
	188	16		11:50	CLEAR
	189	Soul	V	9:38	<i>محدوسا</i>
	190) L	10:20	12:45	CLEAR
	19 (الـــــــــــــــــــــــــــــــــــــ	9:20	12:27	CLEMR
	192	50ml	9:20	9:43	46110M
		IL	10:20	12:42	CLOMA
	193	١ــ	18:20	13)20	cleke
	82#	ال	9:20	11:50	CLEAR
	BSD*	۱۲	70	12:00	CLEAR
	MB	1L	13:30	14:30	CLEKIL
•	178 RE	14	13:30	14:30	CLYAR
*	1/6/20				
6	* 1 . 1	25 ppm	SPINE SOLU	OBOBA HOLT	BEFURE EXTRACTION.
	M 0				
**					
UV D-17					_
D-17					

4(6
	THE COLOR DEVELOPMENT
	SAMPLE STOP
	RB 16:03
	200
	2B 16:25
	85 16:26
	850 16:27
	186 16:08 16:28
	187
	16:30
-	185 16:31
	190 16:32
	191 16:13 16:33
	192 16:34
	193
	194 16:36
	17825 4 16:37
· · · · · · · · · · · · · · · · · · ·	
· ————————————————————————————————————	PDA COLOR DEVELOPMENT
	BAMPLE START STOP
···	RB 17:40 18:06
	500 17:41 18:07
~	PAB 17:42 18:08
	135 12:43 (A: L)
	BSD 17:44 18:10
UV	186 17:45 18:11
D-178	187 17:46 18:17.

1

`.

•

`.

`.

`.

							41
-	· · · · · · · · · · · · · · · · · · ·	ROX CD	EON'T.	Fi-P			
		تعسالة	START				
		188	17:48	13:13			
4		189	17:49	18:14			
		190	17:50	16:15			
		191	17:51	14:16			
		192	17:52	18:17			
	·	193	17:53	12:12			
		194	17:54	18:16			
		178RK	17:55	18:20			
		<u> </u>					
			/				
			/ .				
			/		. ,		
	-		\				
-			<u> </u>				
			_				
4							
*							
		<u> </u>					
	UV						
	D-179						
					•	Omit	10/19/93
					~ <i>&</i>		

Dames & Moore | 1750 S. W. Harbor Way

Suite 400 Portland, Oregon 97201

#2

Field Laboratory Notebook #2
Field Sampling for TNT & RDX
UMDA - Hermiston, OR
10/27/93 to 11/3/93

POSTMASTER RETURN IF NOT DELIVERED **RETURN POSTAGE GUARANTEED** 215.15 PDX

Received Registra

D-181

	SU 01
	CHEMISTS: JANUAR MOORE (SEA) DAVID WECHILLE (SEA)
	LABORA (PER)
	RPX INTERMEDIATE STOCK SOL: 21.48 ug/m/
	5000 PB: 21.48 uglal x 25ml = 537.0
	1000 PPB 21.48 regime x 5m1 = 107.4
	500 PPB 21.48 uglad 4 10 = 537
	250 PPB 21.48 mg/ml × 10 = 268.5
	100 PPB 21.48 uglml 10 - 107.4
	U .
	ROX WORKING STANDARD SOL (MC)
	Major Final
	10/27/93 RDX 21110m 21.48
	500 PPB 21.48 2.5 10 537,0
	1000 PPB .5 107.4
	500 PPB · 25 · 537
	250 PPB125 268.5
	100 PPB V .050 V 107.4
	ADDED 300 H20 to EACH STANDARD.
	TNT STANDARD SOL STOCK FINAL
	DATE STD ALIQUOT (m1) CONC LUGIL)
	10/24/93 5000 PPB 12.5 20.08 50 5020
	1000 PPB 2.5 . 100.4.
	500 pp 1.25 50.2. **
	150 pps ==================================
UV	100 PPB .250 V V 10,0H
D-182	ADDED 1.6 ml of H20 to Back STANDARD

			·····		1_
	ROX 30	FANDARNS COLOR DE	UTLOAMONT:		L
	SHUPLE	START TIME	FINISH TIME		
	Rg	14:67	14:32		
	100	14:08	14:33		
	と 写り	14702	14:34		
	500	14:10	14:35		
· · · · · · · · · · · · · · · · · · ·	1000	14111	14:36		1-
	5000	14:12	14:3ን		-
					-
	RDX COLOR	Ocutopment! to	Tend NE gust	IN 4 10 ml STRINGE;	-
	5ml of Ac	IDIFIED STANDARD 1	5 POURTO INTO	THE SYRINGE WHO	-
·				or 4 sout 15 recoups.	
	THE SOLUTION	W IT THEN FILTERED	1070 20 ml OF	DI WHTER THE	-
·	ו מתבועצת ש	POWDER PILLOW . To	HE SOLUTION COL	OR DEVELOPS FOR	
	25 minuter	LADY ADDITION TO	25 Taun Il 347	SOLUTION. AT THE	
	END DE COL	oc Development 70	LE SOLUTION E	_	
	CLEAN VIAL	SHT LO DEST DAM.	Spected phatomete	(RB) C. THE READERT BLANK	
	13 MANDLED	NO THE SAME M	ALMER AT THE	STANDARDS, EXCEPT	
	THE KB 15	D. 5ml OF ALETENE	ACIDIFIED WITH	500 ml DE ACETIC MCIA	
	Rancent Blun	LK AFTER COLUR DEL	ELOTMENT HAS U	STECTABLE	
		OLOR. ANALYZED STA		ئم)	
Ö		POSITION AND MATTER			
		auk. The 250 per			
• •		ITH THE STHER POIN			
ÜŸ		1000 PPR STQ HOMROS A			-
D-18:	En was use	THE STANDA	ens cour overs	PED CETTER THAN	1
	let 10/12/10/	18 . 10/19. Des	INTO BEEN LEFT O	SCAPPED WAS USED THEN.	

							03
		THE INTERMEDI	AIE STOCK	50L: 2	0.08 mg/r	Q	
		5000 PPB	20.08,	igful X.	12.5 al =	502	*
		1000 PPG			2.5 =	4.001	
		500 PPG	2 20.03	l0 ×	1.25 =	. 50.2	3. } *
		250 PPI	3 20.08	right	x .425 = 50 -	25.1	
		100 . 668	3 20.08	uglml	x ·250 -	10.04	
		THT COLOR TO	everopment				
NGT:		PLACED 25ml	of 100,20	50,500,10	100 + 5000 P	PB TNT	
۵		SOLUMON INTO	SCPCRAIE VIAL	CONTAIN	ING & Ba E	muigo	
CANDS.		SULATE AND			-		
אורווו		AND ALLOWO	TO SIT FOR 2	OMIN.			
<u>-</u>							
150		SAMPLE	START TIME		FINISH TIME		·
		RB	3:06		3:24		••
BLANK		100	3:12		3:32		
<u>T</u>		250	3:12		3:32		
ACID.		500	3:12		3:32.		
		1000	3:04	.	3:26		
:		5000	3:06		3:26		
s							ليد
		ROW COLOR DE	: דושאים ב				
TLY		5 duple	START TIME	F 122 (544	+10h2		
		250	15:31	15:56			
₹	UV		15:32	15:57		A	
,	D-184	Poor color De	EUCLOAMENT.				
דאנט.					•		
130 300							× A profession of the state of

	J4						
•	NEW ROX WORKING STANDARDS FOR 1000 PPR AND 250 PPR MERE						
	PREPARED WITH A REMOSENT BLANK. THE 250 PPR AND 1000 PPR STANDWARDS						
*	WERE PREPARED EXECTLY AS DESCRIBED ON PG. 1.						
	Roy color Development						
	SHAPLE START TIME STUP TIME						
Mar.	26 17:17 17:42						
	250 17:18 17:43						
	1038						
	STANDARDS READ HIGHER ABSORBANCE JALLES THEN THE PREVIOUS						
	2 SETS UP 250 WWO 1000 PPB STHMOHEDS. USE THESE 250 DPA						
	AND 1-00 PPB STANDARDS FOR THE CALIBRATION CURVE.						
)						
UV							
D-185							
	Dun (0/27/93						

	/				$\overline{}$
		•			
				10/29/93	05
	CHEMISTS: DAVID	Wearston (SEN)	JOHNNA MOORY		
05					
	SETUR SPE EL	ACULLA MANIFOLD	FOR EXTA	actions of	8
	SAMPLES. Com				
	ano 2 =5ml H				
	SAMPLE EXT	MING.	FINISH TIME	INITIAL	
	195 -1000		10:07	JELLON	
	196 1000		11:29	CLEUR	
	197	89:30	11:24	CLEAR	
205	(98'	of: 20	11:36	CLEAR	
26	198 ms	07:30	•	CLEAR	-
		69:30	11:14	LIGHT YELLOW	
	2	69:30	11:34	LIGHT	
	3	69:30	1(:36	CLEAR'	
	I'm of mathin se		الاعتمار المعتمدا المسا	To EDETICA	TIG
	198ms.				
	CoLOR OF FILTRA	E WATER IS SLI	CHTLY YELLOW	INDICATING	POSSIBLE
	SPE CANTRIDGE				
	SAMPLES.				
	SAMPLE # 1 AND	B 2 MEE INFILM	ENT SHAPLES		N
UV					
D-186					

70100	OF 1101 N	PROX IN SEPERATE VOL	- PUREL
TNT25ml	0F 21.48 ug/m	(RDX polution, ADDED =	sooul
		OF VOI FLASIC W ACET	
		ight TNT Solution, ADM	
00 170			
		ES BY ADDING 750ul of	
コンリイバリン しんし	ITION INTO SEPER	. VOA AMBER BOTTLES TO ATE VOA AMBER VIALS CONTA SULFITE. SHOOK FOR 3 MIN.	intint/_ I
BAMPLE #	TIME SHART	TIME STOP	
500ppb TNT	12:50	12:10	
RB TINT	12:50	12:10	
41	12:50	12:10	
+2	12:50	12:10	
±3	12:56	1:16	
195	12:56	1:16	
+196	12:56	1:16	
*197	12:56	1:16	
#198	1:03	1:23	•
# 198SD	1:03	1:23	
	-		
1:100 (5	and "2 ROX	FRACTION WERE DILUTED AFTER THE ACETOME EXTEN	BY # FA
TIV SPLIT INTO			ACT WAS
D-187		, (· · · · · · · · · · · · · · · · ·	

		SETUP	SPE Wer	war marifol	D FOR 8 SAM	PLES CAMPIDGES
		LIERE COMO	HTIN 15moit	10ml of A	CETONE AND Z	25ml ALIQUOTS
		of DI v				
			V-13-1			
2			EXTRACTION	EXTRA CTION	E < TRA CT. + +	Samle >
2		Sample	Volume	START TIME	FINISH TIME	Course
		me 10/28	1000 21	13:50	15:28	CLEMP
		85 10/28	1000 ml	13:50	15:41	CLEAR
		44	1000ml	13:50	(6:02	CLEAR
,		-	,	1210		LIGHT
		=2	250 ml	(3:50	14:36	161707
		26	1000_	13:50	15:29	CLUAR
)		=7	1000ml	13:50	15:39	CLEAR
		17.		(3:50		LIGHT
		11 8	250 m(14:57	7026000
		tt ę	1000ml	(3:50	16:06	LLEAR
		B2 10/18	WAS FORTIFE	ED WITH IN	of matrix 3	PIKE FOLKTION.
<u> </u>					***	
		KOX COW	R DEVILLOPME	ME ST	TIME STOP	
		500 ppb	•	3:10	3:45	
,		RB		3:22	3:44	
		ι		3:23	3:48	
		2		3:24	3:49	**
		3		3:25	3:50	
ACTOR		195		3:26	3:51	**
		194		3:26	3.51	
1	UV	197		3:27	3:53	
	D-188	148		3:27	3:55	· · · · · · · · · · · · · · · · · · ·
اذ	√ .	19850		3:30	3:55	
	out	Stranger British	A State of the Sta	e de la companya de l	to	in the second of

08		<i>i</i> ·	250		1
· · · · · · · · · · · · · · · · · · ·	ROX COLOR DEVENOP	ment			1
•		START	stop.		•
	RB RDY	<i>5</i> .35	6:00		
	SOUPEN ROX	5:3 6	6:01		ac.
	AB EOX	5:37	6:02		1
	BS	5.39.	७:०ख		
	4	5:40	6:05	_	<u></u>
·	5	5:41	راه: ا		*
	4	5:42	4107		
	1	5:43	6:08		
	8	5:44	6:09		
	9	5:45	6:10		1
	Samples #5 mil	IFTER THE MC	CTOWE EXTENCT	FACTOR OF 5	10000000000000000000000000000000000000
49	THE COLOR E	Turmanatus	START	5700	
	\$ 500 pps TAT		15:35	18:57	*
	RB		18:35	18:57	4
	me .		18:35	18:57	
	8?		18:42	(9: 04) - 14:81	
	# J		18:42	(7:04	*
	# 5 ⁻	•	18:42	19:04	
UV	¥ 6		18:42	19:04	-
D-189	רש		18:47	19:06	
	स		18:47	19:08 Dmu 10/28/9	3

	UV	18 19 20. 21 21SD 22 23 24	11:15	1:25 1:25 1:25 11:55 11:50 1:05 1:25 11:50	1 L 1 L 250ml 250ml 250ml 1 L 1 L 250ml	COLOR CLEAR YELLOW YELLOW CLEAR CLEAR YELLOW YELLOW YELLOW YELLOW
		19 20. 21 21SD 22 23		1:25 1:25 11:55 11:55 11:05 1:05	1L 250ml 250ml 250ml 1L 1L	CLEAR CLEAR YELLOW YELLOW CLEAR CLEAR
		19 20. 21 21SD 22		1:25 1:25 11:55 11:55 11:50	1L 250ml 250ml 250ml	CLEAR CLEAR YELLOW YELLOW CLEAR
		19 20. 21 21SD		1:25 1:25 11:55 11:55 11:50	1L 250ml 250ml 250ml	CLEAR CLEAR YELLOW YELLOW YELLOW
		19 20. 21		1:25 1:25 11:55 11:35	1L 1L 250ml 250ml	CLEAR CUEAR YELLOW YELLOW
		19		1:25 1:25 11:55	1L 1L 250ml	CLEAR CLEAR YELLO
		19 .		1:25	11	CLEAR
				1:25	IL	CLEAR
		18			_	_
				TIME STOP	Volume	CALDR.
		Sample	Time START			
2		or Dr Hat				J. 20.11
			WERE CONDITIONED			
		EXTRACTION:	SET UP SPE VA	truum ment	on Pol 8 SA	npies.
		wor of	LEACH CARTELOGE WATER 13	SLIGHTLY	ICHAN	
	:	DETER EVIDACIÓN	LEACH CLOOP DINCE IN	AS DINED IN	1 25ml of 1	DI HO
			V	0. <i>30</i>	2 001111	yellow.
	:	17		8:58	260ml.	
	1	16		10:10		CLEAR
	,	15		10:15	IL	VELLAN CLEAR
		14		8:5¢	250ml	
		13		- 10:15	11	CLEAR
	:	12		8: 5 8	I L	YELLOW .
		11	8.15	10.96	250ml	
		10	TIME SHART	TIME STE	VOLUME	CLEAR
		SAMPLE	•	•		
		Evaportion	: WERE CONDITIONED	יויים אין אייוייין איי	C A	3" 25 L 5
		10 29 93	SET UP SPE VACUI	um mento D F	DE B COMPLET	Camainite

10	
	PREPARED THT 500 PPB STANDARD FROM 20.08 mg/ml STOCK
	SOLUTION LICED 1.25 ml of STOCK INTO FINAL VOLUME
	OF SOM! 1.5 ml OF WATER WAS MODED FOR PROPER COLOR
	DEVELOPMENT
	TAT COLOR PENELDAMENT
	SAMPLE START STOP
	RB 11:43 12:03
	500 12:04
	12:04
	12:05
	12 11:48
	13 / 12:13
	14 12, 12)
	15 11:54 12:14
	16 12:15
	17 12:15
	10 No. 8 1/2
·	PREPARIED 500 PPB ROY STANDARD FROM 21.48 STOCK SOLUTION
	He 0.25 ml acionor of Stock Secution in a Final volume
.	10 ml. 0.3 ml OF WHITER WHI HODED FOR PROPER COLOR DEVELOPMENT
UV	
D-191	

cK		RDX C.	LOR DEU	ecoment:			
		SAMPLE		TART	2006		%
		RB	,3	3:06	13:39		
		500		3:07	13:40		
		#16		3:08	13:41		
		tı		3:09	13:42		
		1		3:10	13:43		
		13		3 110	13:44		
		(4	•	3:((13:45		
		15); {\	13:46		·
		16	13	3; F	13:47		•
		เา	13	:13	13:46		
		PRECEE	יושב דעד	MAN EDX AN	ALYSES WERE	performed in cle	TAR VIALS.
		EXTRACTION	V: CONDIT	INVED WERE	CONDITIONED	8 SAMPLES, CARTRI W/ 10ml of ACET	DOES WERE
		2 X25	nl of bi	H20			
		SAMPLE	START	STOP	Volym	E COLOR	
(64)		25	2:29	5 4:15	<u> </u>	CLEAR	
		24.		4:97	T IL	CLEAR	
PMENT.		27		a :50	250r	nl YELLOI	N
		28		4:15	5 11	- CLEAR	*
· · · · · · · · · · · · · · · · · · ·		29		3:50) 11	- CLEAR	
		30		a :50	250	m) yellon	/
		MB		4:25			
		BS	-	4:2	<u> </u>	- CLEAR	
	UV						
	D-192	BS WAS	FORTIFIED	wllml	nc RDX/TNT	MATRIX SPIKE SO	Lution.
.1							carrier and the second

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
12					1
	PREPARED	500 PPB RDX	STANDARD:	•	
-	0,25	ml of 21.48	alm) STOCK is	UTO FINAL VOLLAME	of loal a
		WATER ADDED	U		
					*1
·	TEM COLO	e bevelopmen	π:		Section 1
<u></u>	SAMPLE	START	9078		
>	RB	15:00	15:27		
S*	500	15:01	15129		
	18	15:02	15:25		
~-	19	15:03	15130		
	2.	15:04	15:30		
	21	15:05	(5:3)	4 /	
	245)	15:06	15:32		3
	22	15:07	15:33		-
	25	(551			
		15:69	15:33		
<i>~</i>	24	(3,6)	15:34		
~		iolor develo			a de
~	SUMPLUS	START	STOP	·	
	RP	16:18	16:40		4:
~	500		16:40		
~	18	1	16:41		A+
~	15	· · ·	16:41		
~	20	16:23			
<u>~</u>	21 21 ms				
-	*	4			<u> </u>
~UV	22	16:28	1		
~D-193	23	b			<u> </u>
	24	V	•	Daw 10/29/	63

					10/30/93
	CHEMISTS: JOHN	NA MOORE	(SeX)	Davis 45	SENSION (SEA)
oul					
-	Setup SPE VA	cum munife	LA FOR	8 same	LES. THE SPE
	CARTRILES WEDE	CONSTIONE	HTIW C	10	OF ALTTONE MAD
	2 25ml whichou	S OF WAT	EA.		
		Time		V ₆ L.	S4 24 5
	SAMPLE S	THAT		EXTRACTED	Sample
	31	8:40	10:58	1000 ml	CLEUR
	32		(0:53	1000ml	LLEAR
	33		<i>વ:</i> ५५	250 ml	richet Yethom
	34		(0-46	(mooo)	citar
	35		11214	Invocal	LIERA
	36		10;54	250 ml	Y GILDING
	37		14:32	1000ml	cieax
	38	↓	10:56	1000 ml	CLEAR
•					·
			4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	THE COLOR DEVE	-OPMENT			
	SAMOLE I	IME SIMET	TIME:	SIDP	
	RB	12:14	12:	36	
	500				
	31				
	32	\checkmark		/	
	33	12:25	17	:45	
	34		,		
UV	36				
D-194	36				
*	37	12:31	(/	
					22 гологиянов до 2000 година

 \equiv

1

				. /	
14			. 1		
	38	12:31	12:51		
 		· · · · · · · · · · · · · · · · · · ·			
	Some	SPE VACUUM	MANGOLD TO	EXTRACT	Y SHMPLES.
4					10 m of Acuton
	2.00 2	Zōm/ ALIQUE	ots by wate	<u> </u>	
	SAMPLE	VOLUME EXTRACTED	START	rime Stop	COLOR
~	m8 10/30	1000 ml	12142	15:07	CLEAR
•	BS 10/30	loooml	1		LIGHT
	39			13:15	1 Grom
	41	1000 ml	·	14:31	CLEAN
	42	1000 ml		14:50	crear
	42 ms	1000 ml		15:07	CLEAR
	413	250 m	L .	13: 29	TOTLOW .
	ROX COLOR	Derelopment	TIMES STANK	Time Stop	
\	RB		1:46	2:11	
	600 ppb		1:46	2:12 2![]	4
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	31		1:47	3:13 2:12	
ite.	32		1:48	2.142:13	
	33 34		1:49	2:14 2:15	
r's	35		1:51	2:14	
	36		1:52	2117	•
U	v 3 ¹		1:53	2:18	
D-1	937		1:55	2 20	
					ż

	ROX COLOR DE	VELOPMENT		
	SAMPLE	STALT	STOP	
	RB	4:17	4:32	
כנידם דונ	500pp L	4:06	4:33	· · · · · · · · · · · · · · · · · · ·
	BS 10/30	4:074:08	4:34	
<u> </u>	MB 10/30	4:08 4.09	4:35	•
	3 9	4:09	4:34	
	40	4:10	4:77	
	*1.	4:11	4:38	
	42	4:12	4:39	
1	42ms	4:13	4:40	
:	43.	4:14	4.41	
!	INT WOR	DEVELOPMEN	Ī.	•
· t	RB	429	4:29	
	500			
	MB			
	10.5	\\	V	
	34	4:13	4:23	
	40			
	41	$\overline{}$	<u> </u>	
i	42	4:15	4.35	,
	4 2005	•		
UV D-196	43	<u> </u>	V	······································
1		-		

0		V	•
KI	U	r	

DILUTED SAMPLE 46 +49 (1:5) AFTER SPLITTING INTO 2X SMI FRACTIONS.

	TOT COLOR	Development
ı		

 SAMPLE	START	5707		
RA	11:48	12:08		
500	1		٠.	
44)		
45	14	V		
46	ıı :53	in:13		
47	1	1		
48	, -	1		
49	11:59	12:19		
50	1 .	1.		
51	4	y		

ROX	CALOR	DEUELOPMENT

		•	
	SAMPLE	START	9078
	A.s	3:35	13:50
	500	13,26	13:51
	પ્ય	13:27	1352
	45	13.28	13:53
	46	13:29	13:5"Y
	47	17:30	13:55
	48	(3:30	13:56
UV	41	(3:3)	13:57
D-198	5,2	13:32 10:3	,3:58
	51	(3;33	13:59

	į				
	EXTRACTION				
<u> </u>				· · · · · · · · · · · · · · · · · · ·	
	SAMPLE	STAKET	STOP	volume	COLOR
	60	2:00	3.35	11	CLEAR
T	رو ا		2:40	250	LT YELLON
	62		3:45	11	CLEAR
	63		3:30		CLEAR
	63MS		3:40	14	CLEAR
	MB		3:45	14	CLEAR
	BS		3:40	16	CLEAR
	64	V	22:45	16	CLEAR
	SPIKE SOLUT	WERE FORTH)		ROXITNT
·	SAMPLYS #5	Z #55, And #) 58 30×		
	SAMPLYS #5	2 #55 And # color point	58 20x		
	SPIKE SOLLIT SHIMPLUS #5 LIS BEFOLZ RDX COLOR SAMPLE	2 #55 And to color pour	58 ROX ELUPRONT,	FRACTION	WERE DILLIED
·	SAMPLYS #5	2 # ST AND TO COLOR DOWN	58 20x STOP 570P	FRACTION	
	SPIKE SOLUT SHIMPLUS #5 LIS BEFORE ROX COLOR SAMPLE RS	2 #55 And # COLOR DOUBLEST! START 15:10	58 20x FLOPENT, 570P 5735	FRACTION	WERE DILLIED
	SAMPLES TO SAMPLES TO SAMPLES RO	2 #55 And # color pour boversomers: 574 AT 15:10 15:12	58 20X FLUPPENT., 510P ,5135 15:36	FRACTION	WERE DILLIED
	SPIKE SOLLIT SHIMPLUS #5 LIS BEFORE ROX COLOR SAMPLE RO SOS	2 #55 And # COLOR DOUBLEST! START 15:10	58 20X ELOPENT, 570P .5135 15:36 15:37	FRACTION	WERE DILLIED
	SHIMPLUS #5 LIS BEFORE ROX COLOR SAMPLE ROS 52 53	2 #55 And # 2 COLOR DOWN DEVELORMENT: START 15:10 15:12 15:13	58 20X FLOPENT, 572P 5735 15:36 15:37	FRACTION	WERE DILLIED
	SHIMPLUS #5 LIS BEFORE ROX COLOR SAMPLE ROS 52 54	2 #55 And # 2 #55 And # - COLOA DENIE DEVELDENDEST: STA AT 15:10 15:12 15:13 15:14	58 20X ELUPRONT, 570P .5135 15:36 15:37 15:38	FRACTION	WERE DILLIED
UV	SHIMPLUS #5 LIS BEFORE ROX COLOR SAMPLE RO 505 57 54	2 # 55 And # 2 COLOR DOWN DOWNDAMENT: START 15:10 15:12 15:13 15:14	58 20X FLOPENT. 570P 570P 570P 15:35 15:36 15:37 15:38 15:39 15:40 15:41	FRACTION	WERE DILLIED
UV D-199	SHIMPLUS #5 LIS BEFOLF ROX COLOR SAMPLE RS 500 52 54 56	2 # 55, And # 2 COLOA DOWN DOWNDAMENT: STAAT 15:10 15:11 15:12 15:15 15:16	58 20X ELUPRONT, 570P .5135 15:36 15:37 15:38	FRACTION	WERE DILNTED

	THT COLO	e deuelopne.			
		57A.87			
	RB	16:15			
	500				٨
	52				
	53				
	54	b			
	55	16:21			
	56				
	57				
	58				
	59				
	TNT COLOR	DEVELOPMENT			
	RB	4.42	5:05		·
	RS 10/31			<i>:</i>	
	BS 10/31	4	V		
	.60	4:60	540	****	
	61				
	62				
*	43		4	,	
	63MS	4:55	5:15		
	64		V		
TIN/					
UV D-200					*
2200		4,1,0			
¥					

■ Itali	.1		-	7
1			•	
20	O ROX CO			
- v	SAMPLE	START	STOP	
	RB	5:26	5:51	į.
	500	5:18	5.53	
	mB	5:30	5:55	
	135	5:31	5:54	
· · ·	60	5:32	5:57	
	ų l	5:34	5:59	
	42	5:35	6:00	
	43	5:36	6:01	Ţ.
	63ms	5:37	6:02	
	64.	5.38	6:03	
	SAMPLE (3ms CONTAI	NED LINC DURING COLOR	
			ESMIN) ZINC WAS FILTERED	
	1		BY ACCIDENT.	:
	REEXTRAC	T SAMPLES	=60, 61, 62, 63, 63 m5, 420 64 F	200
-	ROX FRA	CT104 TE	Ex PROBLEMS WITH COLOR DEUCL	OPMENT
			M THIS EXTRACTION BATCH (20X	
				•
				:
_				
UV	-			
D-201				
			(۶/۱۵/۵۱ سمو	1

4				11/193
.:	SETUP	SPE UNCHUM	MANIFOLD	TO EYPRUCT 8 SAMPLES.
				MICH 10 ml of ACETONE
		5 ml MLIQUOTY OF		
			•	
	SAMPLE	START	9072	VOL. Exercités COLOR
	¥ 65	69:46	10:29	250 m) LIGHT YELLOW
	T 66		11:29	IL CLEME
	=67		(0.32	IL CLEAR
;	# 68		10:16	250ml LIGHT YPLLOW
	TL G		11:15	1 L CLEAR
·	# 70		11:32 H8:32	IL CLEAR
	ורע		10:52	250ml LIGHT TPLLOW
	272	وك	11:25	IL CLEAR
				-
	TNT COLOR	DEVELOPMENT		
i	SAMPLE	SIART	STOP	•
•	45	12:20	12:40	
মা ,	104	12:20	12:40.	
) - 	67	12:27	12:47	
	68	12:27	12:47	
	69	12:27	12:47	
	70	12:27	12:47	
	71	12:3]	12:51	
	72	12:31	12:51	·
	RB	12:20	12:40	
UV D-202	500ppb	17:20	12:40	

22	2			· .		*
	ROX COLOR	2 DEVELOPMENT	•			J.
·	SAMPLE	START	STOP			
	72	1:41	2:04			
	RB	1:43	2:08	·		
	500	1:45	2:10			
	65	1:46	2:11			
	66	1:47	2:12			
	67	1:49	2:14			
	47	1:50	2:15			
	69	1:51	2:16		V	
	70	1:54.	2:19			
	71	1:55	2:20		,	
	5					
	STEINDER	TPE CARTAI	DOES FOR		ACTIONS	
	ano 2 2	5ml ALIQUATS	of water			
	SAMPLE	Volume Estracted	START	907Z	cocop	
	65*	1	14:24	16:09	CLEAR	
	61*	250 ml		15:27	VELLOW	
	64*	11		15:55	LEAC	
	73	١٢		15:55	CLEAR	
	74	250ml		15:32	YELLON	20.0
	75	1 L		16:10	CLEAR	
UV	76	(_		16:08	CLEAR	
D-203	רב	250 ml		15:33	1640-	*-24
* EXTRAC	T. FOR ROX	FRACTION O	n L7.			

	ROX COLOR	DEVELOPMEN	T	
	Sample	START	STOP	*
	RB	5:15	5:40	
	500 ppb	5:14	5:41	500 ppb standard was: -250ml RDX in 10ml ACETONGWW/ 300 Ml of DF H20
	60	5:17	6:42	300 M of DI 420
	6	5:18	5:43	
	64	6:19	5:44	
	13	5:20	5:45	
	14	5:21	5:46	
	15	5:22	5:47	
	74	5.23	6:48	
	17	5:24	5:49	
	TNT COLOR	2 DEUTLOPME	ωt	·
	ENMPLE	START	2008	
-	128	17:54	18:14	
	500	1	18:15	
	73		18:15	
	74	4	18:16	
	75	16:01	18:52	
	76		18:22	
	77	V	18:23	·
			<u> </u>	
UV				
D-204				11/1/93
*1				DAW jet

	•						-	
4					11/2/9	3	1	
	EXTRACTIO	W'. SET U	D SPE VACU	IUM MANIFOL	8 ++100 a		1	
	SAMPLES. THE CONCINES WERE CONDITIONDED WITH D 10 ml							
	OF ACETONE & 2x 25ml OF PI 420							
							}	
	SAMPLE	START	STOP	volume	COLOR		•	
	78	8:35	10:30	IL	CLEAR		~	
	79		10:30	11_	CLEAR		`	
	80		9:15	250 m1	LYELLOW		<u> </u>	
	81		10:00	IL	CLEAR		_	
	82		10:30		CLEAR		_	
	83 .		9:15	250 ml	LT YELLOW			
	84		9:15	250 ml	LT YELLOW			
	84MS		9:15	250ml	LTYELLOW	,	*	
4,4	84 ISAMPLE) WAS FOR	A CHAM	IMI OF THE	RDX SPICE SOL	25ppm		
	TAT COL	DR DE	verdensut	1				
	SAMPLE	77	AST 5	TOP			-	
-	RB		11-35: 11	1155			-	
4	500		13.50	1:56				
+	78		(· · · · · · · · · · · · · · · · · · ·	1:57			_	
1	79		11.	:28			_	
+	80		N:2: 5, 11	:58			_	
+	81		1417. 12:	02			<u> </u>	
+	82	11.1	12:	63	·····		_	
7	83		12:				_	
\dagger	84		12:0	,			_	
1	84ms		V 12:0	,4				

· Luma

UV

D-205

	EXTRACTION: SET UP SPE VACUUM MANIFOLD WITH 8						
	SAMPLES. THE CARTRIGES WERE CONDITIONED WITH 10ml of						
	ACETONE È 2 x 25 ml of DI H2D.						
	SAMPLE START STOP VOLUME COLOR						
	*62 11:30 1:30 = 950ml CLEAR						
	63 11:30 1130 IL CLEAR						
	LABMS 1:25 IL CLEAR						
	85 1:30 IL CLEAR						
	86 1:35 IL CLEAR						
•	87 12:15 250ml LT YELLOW						
	MB 11/2 1:30 IL CLEAR						
	BS 11/2 V 1:30 IL CLEAR						
<u> </u>							
	* SAMPLE #62 HAD A CRACKIN BOTTLE AND APPROX 50 M						
	OF SAMPLE LEAKED OUT. THERE WERE NO ADDITIONAL						
	SAMPLES TO REPLUN ANALYSIS						
	63MS AND BS "12 LOERE FORTIFIED WITH I'M OF						
	25ppm TNTIRDX SPIKE SOLUTION.						
<u>:</u>							
	SAMPLE 80 83 84 AND 84 MS RDX FRACTION WERE DILLITED						
	1:5 (Iml > 5ml) AFTER SPLTTING THE 10 ml EXTENCT FOR						
	ROX MAD THE MURLYSES.						
<u> </u>							
U							
D-2	206						
1							

	REX CO	LOR DEVELOPME				
	3 Etmpla	START	5769			
	RB	13,07	13133			
	500	13:08	13:24			
	78	13:08	13:34			
	79	13:09	13: 35			•
	80	13/10	13:36			
	81	13:11	13:37			
	82	13:12	13:38			
	83	13:13	13:40			
	84	13:14	13:41			
			•			
	S4 ms	13:15	13142 SPLE #87 WAT	<u> </u>	1:5 (1ml	→ 5
	ROX COLOR	CACTION OF SUM DEVELOPMENT	IPLE #87 WAT	<u> </u>	1:5 (Iml	→ 5
	ROX COLOR	DEVELOPMENT	TAP	<u> </u>	1:5 (Iml	→ 5
-	RDX COLOR SAMPLE RB	DEULTOPHENT START 15:07 15	TAP # 97 WAT	DILUTED	1:5 (1ml	→ 5
	ROX COLOR SAMPLE RB	DEVELOPMENT START 5 15:07 15	TAP	DILUTED	1:5 (Iml	→ 5
	ROX COLOR SAMPLE RB 500 M8 11/2	DEUZZOPWENT START 5 15:07 15 15:08 15	TOP # 87 WAT	DILUTED	1:5 (Iml	→ 5
	RDX COLOR SAMPLE RB 500 M8 11/2 85 11/2	DEVELOPMENT START 5 15:07 15 15:08 15 15:09 15	TAP ::39 ::40 ::41	DILUTED	1:5 (1ml	→ 5
	FAMPLE RB 500 M8 11/2 65 11/2	DEVELOPMENT START 5 15:07 15 15:08 15 15:09 15 15:10 15	TOP : 39 : 40 : 41 : 41	DILUTED	1:5 (Iml	→ 5
	FDX COLOR SAMPLE RB 500 M8 11/2 65 11/2 63	DEUTOPHENT START 15:07 15:08 15:09 15:10 15:11	TAP 1:39 1:40 1:41 1:42	DILUTED	1:5 (Iml	→ 5
	SAM ROX F ROX COLOR SAMPLE RB 500 M8 11/2 85 11/2 62 63 63 ms	DEVELOPMENT START 5 15:07 15 15:09 15 15:10 15 15:11 15 15:13 15	TOP : 39 : 40 : 41 : 42 : 43	DILUTED	1:5 (Iml	→ 5
IIV	FAMPLE ROX COLOR SAMPLE RB 500 M8 11/2 65 11/2 62 63 63 ms	DEUTERPHENT START START 15:07 15:08 15:09 15:10 15:11 15:11 15:11 15:11 15:11 15:11 15:11 15:11 15:11 15:11	TOP (:39 (:40 (:42 (:43 (:44 (:45)	DILUTED	1:5 (Iml	→ 5
UV D-207	SAM ROX F ROX COLOR SAMPLE RB 500 M8 11/2 85 11/2 62 63 63 ms	DZUZZOPMENT START 5 15:07 15 15:08 15 15:10 15 15:11 15 15:13 15 15:15 15 15:15 15	TOP : 39 : 40 : 41 : 42 : 43	DILUTED	1:5 (Iml	

	-) EVT	7 4			-
	SETUP	SPE CAM	TCTION CAR	TRIBET FO	R EXTRACTION	4
A-D	THE CARTE	وها سهود د	onpittenes	₩ 10 m	OF ACETONE AND	4
	2 25ml	MLIQUOTT				
	SAMPLE	UDLUME		500P	COLOR	
	mB 11/3	Po IL	12:25	14:27	CLEHR	
<u>-</u>	85 11/3	1 _		14:20	CLENT	I
	96	2502		13:00	LI GHT VELLOW	1
	97	1 L		13:50	CLEAR	1
	98	IL		14:10	CLEAR	
	99	١٢		17:58	CLEAR	L
	19ms	16		14:76	CLENT	
						1
	82 11/3	mpp game	were fire	TIFIED WIT	w Iml of	1
· :	THT AND	RDX Stilling	Socution.			
					•	
:	ROX COLO	R DEVELOPMENT	Γ			1
	RB	1:35	+2552:00			
	500ppm	1:34	1:59			
	88	1:37	2:02			
	-89	1:38	2:07			
-	90	1:39	2:04			
	91	1:40	2:05			
	92	1:41	2:06	·		
	43	1:42	2:07		4	
	94	1:43	2:07			→
UV	95	1:44	2:09			_
D-210						-
						-

4-1	27 30				
	30	·			
		ROK COLOR	_ DEVELOPMEN	η 4	
		SAMPLE	SART	STOP	. **
-~		er	3:27	3:57	
		500	3:14	3:49	· · · · · · · · · · · · · · · · · · ·
-		me	3:253:28	3:53	
- - -		BS	3:263:29	3:54	
}		96/1:5)	3:27 3:30	3.65	
1		97	3:28 3:31	3.56	
		9-3	3:32	3:57	
-		99	3:30 3:33	3:58	
-		99MS	3:3+3:34	3:55	
-		THE COLO	or prustopmen	T	
\		SAMPLE	START	STOP	
~		± EG	15:59	16:23	
}		500		16:23	
 		MB		16:24	
-		BS		15:25	
-		96	1	16:26	
		97	16:05	16:26	
		98		16:28	
		15		4:29	
		99~3	V	16:29	
. 					
	U	Ý			
	D-:	211			
					gmw 11 3 93
			7		White and the second se

							33
			•				
						_	
		,	PHOTOMETRY/TNT		10/12/93	08:58	
			1D ABS CONC	F -		_	
					10/12/93	09:18	
			ID ABS CONC	-			1
			PHOTOMETRY/RDX		10/12/93		
			ID ABS CONC			_	
			STD 1 0.000 0.000 STD 2 0.001 99.20		•	_	
			STD 3 0.002 248.0 STD 4 0.011 496.0	,			
			STD 5 0.020 992.0 STD 6 0.131 4960			***	
			K- *** A0= -0.00 PROTOMETRY/RDX	12	10/12/93	15:41 _	
			ID ABS CONC				
!			PHOTOMETRY/RDX		10/12/93	15:41	
	N	þ	-				
	·		0. 000	ರಾ ಉ	re.	0.181	
-			<u> </u>		_L-		
			200			_	i
			a /				
						-	
			g \				
			O0KE (UG/L)				
				1			·
				1		-	
				,	N. Committee	_	
	-					_	
+					1	_	
· —•			:		1	· _	
			<u>496)</u>			_	
	UV		_				
	D-214					_	
1				***************************************			

\$

			-			* 4	
i .						•	35
	РНО ГОМІ	ETRY/RDX		10/13/93	17:01 1		·
	1D STD 1	ABS CONC 0.000 0.000					,
	2 OTS =	0.005 99.20 0.011 248.0			•		
		0.013 496.0 0.032 992.0 0.130 4960		-			
	K'= * 3	F## AO= 0.00 TRY/RDX		10/13/93	17:08	· · · · · · · · · · · · · · · · · · ·	
	10	ABS CONC	F'				
	РНОТОМЬ	TRYZRÐX		10/13/93	17:08		
		<u>့</u> ေ			چ ب		
		S N	राव का 	TC:	<u> </u>	***************************************	· · · · · · · · · · · · · · · · · · ·
				~			
		1			٠.		
	<u>=</u>						
			\ \				
					•		
			, , , ,	N.			
	 රා ලා			·.	V.	,	
					4		
	· · · · · · · · · · · · · · · · · · ·						
					•		
UV D-216							
D-210			-				

·					
			•	-	•
					10/10/02 10/15
	РНОТО	METRYZRE	ΟX		10/13/93 19:15
			govia	-	
	11)	ABS	CONC	F	
	女 9 1	0.010	005.0	_	
			385.8 616.8		
	2	3 -0.001		10	
			655.0	1.00	
	5		2216		
	· G		2117		
		0.041	1367		
		3 -0.001		LO	
		METRY/T			10/13/93 19:37
	iD	ABS	CONC	\mathbf{F}	
				••	#17 IN LOGBOOK
	#18 ₁	0.901	19.76		_
	:		425.1		IS REMGENT BLUNK
	. :	s 0.014	304.4		
		4 - 9,150	3230		A utozero.
	•	o u.123	2640		
			743, 4		
	#24	7 -0.011	-247,0	LO	
•					
	•				-
	.		•		
	Durane	334E1T1137 271	et re		10 /14 /00 00 /5 /
	FIOIC	OMETRY/T	X I		10/14/93 08:04
	1.0	ABS	CONC	Г	
				-	
	*) ;	0.000	0.000	l.O	
	2		453,8		
	. ;		3044		
		1 0.043	900.4		
		5 -0.002	-54.34	LO	
		0.136	2927		
		7 - 0.258	5572	HI	
		3 - 0.002		L.O	
	PHOTO	MCFRYZRI)),		16/14/93 13:00
			_		
	1.0	ABS	CONC	F	
	29			_	
	•		0.000	10	•
	. 2		385,8		
			3697		
1	. 2		46.99	1	
1	. 5		8375	HI	•
			3499		
	6		1140		
	. "1				
UV			1426		
UV	. "1				
UV D-217	. "1				

		- x ₁ · d	
7	PHOTOMETRYZINT	10/14/93 15:41	1
	ID ABS CONC F		37
	p17 1 0.000 -9.879 LO		
	2 0.017 361.9		
	3 -0.003 -83,98 LO 4 0.007 138,7		
· .	5 0.118 2534		
*	6 -0.002 -54.34 LO 7 0.003 54.34		
;	8 0.004 64.21 9 -0.002 -69.15 LO		·
	10 0.122 2613		
·	11 0.019 425.1 78 12 -0.006 -143.2 LO		
	Mark and a second	10/14/93 17:36	•
	ID ABS CONC F		
-	4 A 1 0,000 -10,44 1.0		
	2 0.013 502.3		
	3 0.013 508.7 4 0.015 540.5		
-	5 -0.001 -36.54 LO		
	6 0.028 883.9 7 0.059 2066		
	8 -0.001 -41.77 LO 9 0.000 -20.88 LO		
	10 - 0.055 - 1920		
	11 0.002 31.33 40 12 -0.003 -88.76 LO		•
7	PHOTOMETRYZINT	10/14/93 20:03	
	ID ABS CONC F		
	41 1 0.000 -9.879 LÖ	•	-
	2 0.019 413.6 3 0.112 2385		
	4 0.131 2810		
	5 0.156 3346 6 -0.003 -79.03 LO		•
	47 7 0.118 2534 8 0.125 2667		
	9 0.138 2953		
	10 -0.291 -5018 LO 11 -5.007 -168.0 LO	•	
	12 -0.060 -1234 LO 13 -0.012 -261.8 LO		-
	54 14 0.004 69.15		
	PĤOTOMETRYZRDX	10/14/93 21:08	
	10 ABS CONC F		
	55 1 0.000 -10.44 LO		
	2 0.010 235.0 3 0.002 36.54		
	4 60.062 2206		
	60 6 0.021 705.8		
	7 0.050 1715 ε 0.038 1219		
UV	9 0.829 903.0		
D-21	10 0.001 15.66		
15-21			

```
PHOTOMETRY/TNT
                                 10/15/93 09:16
              ABS
                     CONC
       PHCTOMETRY/RDX
                                 10/15/93 10:16
       I D
             ABS
                    CONC
                    ----
             0.000 -5.221 LO
            0.009
                    189.8
             0.003
                    57, 43
             0.006
                    112, 1
             0.018
                    616.8
             0.097
                    3637
             0.002
                    41,77
            0.005
                    105.7
             0.017
                    604.1
             0.096
                    3578
        11 0.000 -10.44 LO
        12
            0.029 680.4
        13
            0.108
                   4072
        14
            0.021
                   712.2
        15
            0.096
                   3578
            0.000 -5.221 LO
        16
        17
            0.014
                   515.1
        18
            0.004
                  67.87
        19
            0.015 553.2
        20
            0.094
                   3499
        21
            0.000 -5.221 LO RB
        20
            0.000 - 5.221 \text{ LO}
        23
            0.003 52.21
        21
            0.064
                   2275 # 113
        25
            0.080
                    2917
           0.004
                  78,31
        27 0.000 0.000 LO
    PHOTOMETRYZTNI
                               10/15/93 17:44
    1D
           ABS
                   CONC
                  ----
     28 1
          0.014 298.7
        2 0.000 -14.81 LO LS
        3 0.103
                  2188
        4 0.026
                  565.9
        5 -0.026 -543.3 LO
          0.991
                  1928
        7 - 0.066
        8 -0.032 -661.9 LO
     36 9 0.000 -4.939 LO RB
       10 0.021 471.0 500PB
UV
       1! -0.001 -39.51 LO
         0.016 344.6
0.156 3362
0.028 599.5
D-219
       13
       14
       15 -0.008 -172.8 LO
```



```
PHOTOMETRY/RDX
                                  10/16/93 17:19
                ABS
                       CONC F
                       ____
               0.000 0.000 LO
             2 0.016 578.7 500 PPB
              3 -0.002 -57.43 LO
              4 0.017 604.1
              5 0.058
                       2038
               -0.002 -73.09 LO
                0.007
                      138.0
                0.040
             8
                       1298
             9
                0.006
                       118.6
            19
                0.019 - 655.0
            11
                0.113 4269
                0.000 -5.221 LO
            13 0,000 -20.88 LO
         PHOTOMETRYZTNT
                                  10/16/93 18:32
          110
                ABS
                       CONC F
                       ____
                0.015
                       321,7
             2
                0.016 338.9
                0.000 -19,75 LO
                0.136
                      2927
                0.000 -4.939 LO
                0.904
                      74.09
                0.000
                      0.000 1.0
                       2422
                0.113
                0.042
             9
                       872.9
            10 0.137
                       2932
            11 0.002 29.64
         55 12 -0.001 -34.57 LO
            13 -0,001 -34.57 LO
               -0.001
                                   <u>10/17/9</u>3 09:04
          PHOTOMETRY/TNT
                 ABS
                        CONC
                ____
                                  10/17/93 10:35
          PHOTOMETRY/RDX
          1D
                 ABS
                        CONC
              1 0.000. -5.221 LO
              2 0.014 521,4 500988
              3 6,070
                        2542
                0,010
                        235.0
                0.006
                0.043
                        1456
              7
                 0.036
                         1140
                0.659
                         IH XXXX
                0.071
                        2561
                 0.006
                        112, 1
                         6766 BI
             1.1
                 0.175
                 0.109
                        4111
             12
UV
             13
                 0.009
                        202.7
D-221
```

		PHOTOME TRY/	TNT		10/17/93 14:07	
		ID ABS	CONC	F		
		3 0.14	6 3123			
		4 0.000 5 0.00	0 - 14.81 1 4.9 40	1.0		
		6 0.133 2 7 0.043	3 2852			
		8 0,00	1 4.940			
-		9 0.103 10 0.053				
			0 -14.81	1.0		
		13 0,04	7 988, 0			
		PHOTOMETRY/1	RDX		10/17/93 17:25	
		TD ABS	CONC	F		
1		v7 1 0.000	0 -10.44	1.0		
		2 0,01	7 591.4 2 -5 7.43	ç		
			4 521,4			
			1 - 31.32 4 83.54	10		
		7 0.00 8 0.060	1 5,221			
		35 9 0.021	0 686.8			
		10 0.00- PHOTOMETRY/			10/17/93 18:59	
		ID ABS	CONC	\mathbf{r}		
			0 -4.939	L.O		
		2 0.020 3 0.000				
		40 4 0.016	5 338.9	V		
		5 0.076 6 0.098	3 2093			ī
		7 0.00 8 0.160	1 4,940 J 3447			1
		45 9 0.258	5567			:
		11 0.980	14.81	LO		.h
		12 0.026 13 0.176		500		•
		\$> 14 0.038 15 0.00	3 810.5			n.
		16 0.129	9 2767			<u></u>
		17 0.047 18 -0.00		LO		
		56 19 0.159 20 0.133	9 3426			
		21 0.00				
	UV					
	D-222			ngilija ja e sanaga V vill		

		Total Co.
40		
42	PHOTOMETRY/RDX 10/17/93 20:36	
	ID ABS CONC F	
•	\$\frac{5\frac{1}{2}}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ž,
	60 3 0.089 3312 4 0.006 131.5	
	5 0.363 **** HI 6 0.057 2009	
-	7 0.006 125.1 65 8 0.004 73.09	
	9 0.063 2246 10 0.012 358.2	
· · · · · · · · · · · · · · · · · · ·	11 0.036 1150	
-	Note: Data from 10/11/93	:
	Chronological Korder	
	Critonological bolder	
-		
		*
	PHOTOMETRY/TNT 10/11/93 15:45	
	ID ABS CONC F	
	1 0.004 69.15 MB	N.
	2 0.052 1084 85 ¹	
•	4 0.380 7134 HI 5 0.374 8085 HI	
	6 0.309 6688 HI 7 0.028 599.5 500 798 TOT	
	<u> </u>	
		-
	8 0.012 264.2 9 0.525 **** HI	
uv		
D-223	3	
No. of the state o	· · · · · · · · · · · · · · · · · · ·	con a final transfer

		ye	43
	-	PHOTOMETRY/TNT 10/11/93 15:00	
		ID ABS CONC	
		STD 1 0.000 0.000	
		STD 2 0.005 98.80 STD 3 0.012 247.0 STD 4 0.022 494.0	
		STD 4 0.022 494.0 7 2 8.4440 STD 5 0.047 988.0 STD 6 0.229 4940	
		K- **** A0= 0.000 PHOTOMETRY/TNΓ 10/11/93 15:43	
		ID ABS CONC F	
		PHOTOMETRY/INT 10/11/93 15:44	
	;	10711793 13.44	
		0. 229 0. 000 18	
		A LL.	
	:		
		*	
	·		 ;
		- <u> </u>	
		- <u>-</u>	*
		- \	
		- \	
	-		
			•
i		DD/CD/MPPDIAN STREET	7
		PHOTOMETRY/TNT 10/11/93 15:44	
		N= 192 MEAN= 879.8 SD=_819.4 CV= 93.14	
	·	· ·	
	UV		
	D-224		

i			
	*		
	$m{I}$		
	A LONGOVAL TRANSPORT	-	
1	HOTOMETRY/TNT .	10/18/93 16:50	2
	· ID ABS CONC F		<u> </u>
	ABS CONC F		
	PHOTOMETRYZRDX	10 (10 (00 10 7)	
	· ·	10/18/93 16:52	
	ID ABS CONC		
	and apply to the made of the first time apply the form the same		
	PROTOMETRY/TNT	10/18/93 16:58	
	ID ABS CONC F		. 5
	7 1 4 (0)		
	7 1 0.001 4.940 2 0.000 -9.879 LC		
	3 0.020 448.0		
·	(4 0.016 356.1		
	5 -0.007 -167.9 1.0		
	6 0.010 218,5		1
	7 0. 131 2799		
	8 0.005 P8.91		
	9 -0.007 -153.1 LO		
	10 0.172 3697		
	11 0.016 350.4		
	12 -0.001 -39.51 LO 13 0.098 2093		
	14,0.109 2321		
	15 0.178 3824		*
	16 0.034 719.4		
	17 -0.004 -98.80 LO	· · · · · · · · · · · · · · · · · · ·	
	PHOTOMETRY/RDX	10/18/93 17:57	
	10		
	ID ABS CONC		3
	PHOTOMETRYZRDX	-	4
	THOTOMETRIVEDA	10/18/93 17:59	
	ID ABS CONC F	-	
			*
	24 1 0.001 10.44	-	
	2 0.000 -5.221 (a)		. ;
	3 0.007 138.0	-	
,	4 0.004 63.54		۶. غ
	5 0.035 1140 6 0.075 2719	-	
•			*
	7 0.006 131.5 8 0.007 144.5	_	
	9 0.154 5927		a he
	10 0.009 209.2		
	11 0.074 2680		** **
	12 0.192 7447 HI	-	
	13 0.097 3627		
	14 0.148 5700		
	15 0.016 565.9 16 0.011 330.7		. 2
	16 0.011 330,7	_	
• • • •			
UV			· · · · · · · · · · · · · · · · · · ·
D-225			
17-443	· · · · · · · · · · · · · · · · · · ·	•	

	1		. 45
	<u> </u>	· 1	
	-		
	₽HOTOMETRY/TNT	10/18/93 10:19	
	ID ABS CONC F		
	PHOTOMET RYZRDX	10/18/93 14:25	
	ID ABS CONC F		^
	PHOTOMETRY/RDX	10/18/93 14:28	
	— ID ABS CONC		
	STD 1 0.000 0.000 STD 2 0.009 107.4		
	STD 2 0.009 107,4 STD 3 0.007 268,5 STD 4 0.011 537.0		:
	STD 5 0,008 1074		
	- STD 6 0.015 5370 K: **** A0: 0.004	10.710.200.100.00	
	PHOTOMETRY/RDX	10/18/93 16:02	
	ID ABS CONC F		
	PHOTOMETRY/RDX	10/18/93 16:03	
	_ •	•	
	_		
	1	+	
		+	
	-		
	_		
·			·
	- Ci		
	4	No.	
			7
	_ <u>2</u>		
		+	
UV			
D-226			:

40			
46	PHOTOMETRY/TNT	10/19/93 08:24	
·	ID ABS CONC F	,	3
	PHOTOMETRY/RDX	10/19/93 11:46	
	ID ABS CONC F	•	
	1 0.000 -10.44 LO 2 0.005 88.75	-	
A .	3 0.006 118.6	-	
	5 0.002 41.77	-	1
	6 0.003 57.43 7 0.003 52.21	_	
	————————————————————————————————————	10/19/93 16:44	
	TD ABS CONC F	-	
	9 1 -0.001 -49.40 LO	-	
	2 0.000 -4.939 LO 3 0.000 -14.81 LO	-	:
	4 0.003 49.40 5 0.016 350.4	_	
	6 0.012 252.7 7 0.021 465.3 8 0.159 3400	_	
	9 - 0.158 - 3400	_	<u>:</u>
	11 0.115 2465		
	2. 12 0.174 3745 13 -0.002 -59.27 L0 14 0.239 5163	_	
	15 0.560 **** HI 16 -0.005 -118.5 LO	_	*
:	25 17 0.014 293.0	_	
			<u>.</u>
	PHOTOMETRY/RDX	10/19/93 17:36	
	— ID ABS CONC F		
	~6 1 0.000 -5.221 LO	_	
	2 0.000 -5.221 LO 3 0.010 228.6		
	4 0.021 718.5 3 5 0.004 2285		
	- 6 0.083 3055 7 0.002 26.10	-	· .
			59
	>5 10 0.005 88,75 11 0.063 2255		
	- 12 0.114 4299 13 0.000 -10.44 LO	_	
UV	_		
D-227			
D-22/		·	
			3

	d	РНОТОМ	ETRY/TN	T.		10/27/93 12:54	
		ID 2	ABS	CONC	F		
	,	РНОТОМ	FTRYZED	X		10/27/93 14:36	
		Ib.	VRS	CONC	1.		
		PHOTOM	ETRYZRD			19/27/93 14:39	
		1 D	ABS	-			
	~ ~	STD 1 ST9 2	0.005	107.4			
	- 4	STD 4	0.016	268, 5 - 537, 0			
	_ 6		0.171	1074 5370 × -0.00	А		
			ETRYZRD			10/27/93 14:53	
	_	FD	ABS	CONC	<u>-</u>		
			ETRYZTN	•		10/27/93 15:34	
		1D	ABS	CONC	-	10.000.000.15.10	
	_	PHOTOM	ETRYZTN ABS	CONC		10/27/93 15:40	
	_ 7	STD 1		0.000			
		STD 2	0.004				
	11	STD 4 STD 5	0.022	502.0 1004			
	n n		*** A0	5020)= -0,00	1		
			ETRYZTN		ь	10/27/93 15:54	
		10	ABS	CONC	F -		
T117						A	
UV)				_		
D-228					_		

UV

D-232

52			*
	PHOTOMETRY/TNT	10/29/93 16:17	1
	ID ABS CONC F	-	
	33 1 0.000 -6.275 LO		:
	2 0.018 409.5		
	353 0.019 435.9		
	4 0.018 389.7 5 0.000 6.275		
	6. 0.005 113.3		
	7 0.004 109.0 40 8 0.009 182.1		
	9 0.001 25.10		
£.Ł	10 -0.001 -25.10 10		
	11 0.004 94.12 12 0.000 12.55		,
	45 13 0.025 594.7		
	14 0.000 -6.275 LO 15 0.019 435.9		· · · · · · · · · · · · · · · · · · ·
	16 0.003 69.02		
~	17 -0.001 -25.10 LO		
	50 18 0.005 121.9 19 0.015 330.3		
	20 -0.001 -43.92 LO		
~	53 21 0.005 113.3 PHOTOMETRY/RDX	10/29/93 18:48	
		10/20/90 16:46	
	1D ABS CONC F		
:	54 1 -0.001 -28.26 LO		
1	\$\$ 2 0.000 0.000 LO 3 0.014 481.0		
*	3 0.014 481.0 4 0.002 45.22		
	5 0.046 1631	•	1 .
	6 0,001 5,652 6 7 0,006 197,5		
~~	8 0.458 *** H!		
	9 0,003 62.18 10 0,006 271.3		
	11 0.678 *** HI		
~		***	
			!
~			
<u> </u>		•	
~			
~			
~~			
~ 	,		
_ UV	·		1
D-233			*
~			
			1

	PHOTOMETRY/TNT	10/30/93 11:10
	ID ABS CONC F	
	1 0.000 0.000 LO 2 0.022 502.0 3 -0.001 -25.10 LO 4 0.000 -12.55 LO 5 0.004 100.4 6 0.000 -12.55 LO 7 -0.001 -43.92 LO 8 0.002 62.75 9 0.007 152.0 10 -0.001 -50.20 LO	
	PHOTOMETRY/RDX	10/30/93 13:09
	# 1 0,001 11,30	
	2 0,000 -5,652 10 13 3 0,005 107,4 5 6 4 0,007 297,5	
	らか 5 0.037 1361 6 1.180 **** III イヤ 0.005 101.7	
	8 0,002 28,26 9 1,124 *** H! •• 10 -0,001 -28,26 L0	
	11 0,000 -11,30 LO 12 0,017 590,2 5 • • 13 0,000 -11,30 LO 14 0,028 1099	
	ኈኝ 15 0.940 **** H₁ 16 0.005 96.09 17 0.007 304.0	
	18 0.004 90.44 19 0.036 1354 30 0.894 *** H1	
-	PROTOMETRYZTNI	10/30/93 16:56
<u> </u>	31 1 0.000 6.275	
	2 0.025 617.8 3 0.002 62.75	
	4 0.020 449.2 35 5 0.004 100.4 6 0.000 6.275	
	7 0.001 37,65 8 0.000 ~6.275 LO 9 0.018 402.9	
	10 0.005 117.6	
UV		
D-234		

	1				
					- Control
			·		4
54	PHOTOMETRY/	INT	10/31/93 10:39	•	*
1	ID ABS	CONC F			
F-7	1 0.000	0.000 LO			
•	2 0.023	2 525.2			
	3 0.00 4 0.00				
<u></u>	5 0.000	130.5			
	6 0.000 7 0.000	3 130.5 3 -6.275 LO			
~~ *	8 0.009	5 117.6			
J	9 -0.00	-37.65 LO	•		
	PHOTOMETRY/		10/31/93 12:41		-
<u></u>	ID ABS	CONC F			
.جي	AL				
	- 4 1 0.000 2 0.014	1 -11.30 LO 554.4			
~ <u></u>	3 ti 005	73.48			
	4 0.165 15 5 0.212				
	6 0.010	389.3			
~	7 0.005 8 0.256				
<u>ح</u>	9 0.016	542.5			
•	$\frac{-}{}$ \sim 10 0.106	3422 (-5,652 £0)			
~	12 0.010	376.2			•
_	13 0.176 14 1.394				
	15 0.016 م	382,7			
<u>-</u>	$\frac{16}{17}$ 0.178				
_	, 18 0.005	152.5	1		
		441.7			
~	PHOTOMETRY/T	NJ.	10/31/93 16:42		
	ID ABS	CONC F			
	3) 1 0.000	6,275	•		
<i>~</i>	2 0.021	482.2			
_	3 0.004 4 0.000	104,7 -12,55 LO			
***************************************	35 5 0.000	-12.55 ± 0			
~	$\frac{6}{7}$ $\frac{0.005}{0.000}$	126,2 -6,275 LO		•	
_	8 0.000	-12.55 LO			
•	— 9 0.005 ყა ₁₀ 0.015				-
	11 0.000	6.275			
_	$\begin{array}{ccc} 12 & 0.028 \\ 13 & 0.002 \end{array}$				
*	14 0.015	310.4			
	45 15 0.002 — 15 0.009				
	17 0.019	435.9			
	18 0.016 , 19 0.037				
		-43.92 LO			
\mathbf{D}_{2}	35				
			Mar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		622
					2

The same of	193		
	·		55
		PROTOMETRY/RDX 10/31/93 1	7:35
		1D ARS CONC F	
		51 1 0.000 -16.95 LO 2 0.030 1150	
		3 0.001 16.96 4 0.024 935.8 5 0.014 494.2	
		6 0.354 *** III 7 0.005 152.5	
		8 -0.003 -90.44 LO 9 -0.004 -113.0 LO	
		LD 10 0.014 474.5	
	·		·
		•	
			· · · · · · · · · · · · · · · · · · ·
			1
	UV		}
	D-23	6	

	· · · · · · · · · · · · · · · · · · ·		
FC			
56			
	DUO/POMPITEN //PMT	11/01/93 08:26	
	PHOTOMETRY/TNT ID ABS CONC F	11701793 06.20	
	1 0.000 12.55		
4	2 0.023 540.6 3 0.005 126.2		
	4 0.054 1364 5 0.004 94.12		
	6 0.001 37.65 7 0.004 109.0 8 0.004 104.7		
	8 0.004 104.7 9 0.000 -12.55 LO 10 0.002 62.75		
	11 0.010 212.3 PHOTOMETRY/RDX	11/01/93 13:33	
	1D ABS CONC Γ		
	12 1 0.000 -11.30 LO 2 0.000 343.4		
	3 0.267 8236 HT 4 -0.003 -101.7 LO		
	165 -0.001 -39.56 LO 6 0.197 6154		
	7 -0.003 -96.09 LO 8 -0.005 -146.9 LO 9 9 0.254 7836 H1		
	10 0.000 -16.95 LO 11 0.000 0.000 LO		
	12 0.008 330.3 13 0.003 56.52		
	ል ኗ 14 0.323 9912 ዘ! 15 0.003 62.18 16 0.003 67.83		
	17 0.008 317.2 18 0.336 **** H1		
	50 19 -0.001 -33.91 LO 20 0.001 22.61		
	21 0,351 **** HI 22 0.000 -11.30 LO 34 23 0.021 780.9		
·	PHOTOMULENALINE	11/01/93 18:25	
	1D ABS CONC F 35 1 0.000 12.55		
6	35 1 0.000 12.55 2 0.025 602.4 3 0.004 100.4		
-	5 0.004 100.4 4 0.001 25.10 5 0.075 1808		
4.	40 6 -0.003 -87.85 LO		
UV			
D-237			

	PHOTOMETRY/ThT	11/02/93 08:04	
	ID ABS CONC F		
;	1 0.000 12.55		
	2 0.021 488,8 3 -0.006 143,4	,	
:	4 0.000 -6.275 LO 5 9.003 69.02 6 0.011 233.8		
1	7 -0.001 -25.10 LO 8 0.006 139.1		<u> </u>
	9 0.003 87.85 10 0.007 147.7		**************************************
	PHOTOMUTRYZRDX	. 11/02/93 13:29 😓 .	
	ID ABS CONC F		
	1 0.000 -11.30 to 2 0.005 101.7		
	3 -0.002 -62.17 LO 4 0.019 369.6		
	5 0,173 5418 6 -0.003 -96.09 LO		
	7 -0.001 -45.22 LO 8 0.222 6904		
	9 0.070 2359 20 10 0.284 8739 HI 11 0.000 -11.30 LO	-	
	12 0.000 -11.30 LO 12 0.003 62.18 13 -0.092 -67.63 LO	•	
	14 U.013 461.4 25 15 U.000 -11.30 LO	•	
1	16 -0.001 -56.52 LO 17 0.005 98.09	•	
-	18 0,054 1878 19 0.011 408,9	•	
•	3 0 20 0,119 3830 PHOTOMETRYZINI	11/02/93 16:05	
	ID ABS CONC I	-	
-	1 0,000 6,275 2 0,018 402,9	-	
+	3 0.000 -6.275 LO 4 0.021 475.6	-	
+	3 5 5 0,072 1740 6 -0,001 -25,10 LO		
+	7 0.006 139.1		
+			
+			
UV			
D-238			*

D-239