PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 97/05164

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: A1 C07K 14/025, C12N 15/37, 15/86, 5/10, (43) International Publication Date: 13 February 1997 (13.02.97) A61K 39/12, 31/73

Essendon, VIC 3040 (AU). EDWARDS, Stirling, John PCT/AU96/00473 (21) International Application Number: [AU/AU]; 14 May Street, Coburg, VIC 3058 (AU). (22) International Filing Date: 26 July 1996 (26.07.96)

(74) Agents: SLATTERY, John, Michael et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU). (30) Priority Data:

AU

(81) Designated States: AU, BR, CA, IL, JP, KR, NZ, SG, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, (71) Applicants (for all designated States except US): CSL LIM-GR, IE, IT, LU, MC, NL, PT, SE).

ITED [AU/AU]; 45 Poplar Road, Parkville, VIC 3052 (AU). THE UNIVERSITY OF QUEENSLAND [AU/AU]; St. Lucia, QLD 4067 (AU).

27 July 1995 (27.07.95)

(72) Inventors; and

PN 4439

(75) Inventors/Applicants (for US only): WEBB, Elizabeth, Ann [AU/AU]; 36 Zig Zag Road, Eltham, VIC 3095 (AU). MAR-GETTS, Mary, Brigid [IE/AU]; 92 Bent Street, Moonee Ponds, VIC 3039 (AU). COX, John, Cooper [AU/AU]; 365 Bacchus Marsh Road, Bullengarook, VIC 3437 (AU). FRAZER, Ian [AU/AU]; 64 Eighth Avenue, St. Lucia. QLD

4067 (AU). McMILLAN, Nigel, Alan, John [NZ/AU]; Center for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Wollongabba, QLD 4102 (AU). WILLIAMS, Mark, Philip [AU/AU]; 1/58 Chester Road, Annerley, QLD 4103 (AU). MOLONEY, Margaret, Bridget, Holland [AU/AU]; 22 Leslie Road,

Published

With international search report.

(54) Title: PAPILLOMAVIRUS POLYPROTEIN CONSTRUCTS

(57) Abstract

A papillomarivus polyprotein construct comprises at least two amino acid sequences fused directly or indirectly together, each of the sequences being the sequence of an early ORF protein of papillomavirus or an immunogenic variant or fragment thereof, and at least one of said sequences being other than the E6 or E7 protein sequence or an immunogenic variant or fragment thereof. Nucleic acid molecules encoding the polyprotein construct, prophylactic or therapeutic compositions comprising the polyprotein construct or the nucleic acid molecule, and methods for eliciting an immune response against papillomarivus in a host animal are also provided.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	TI	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	T.J	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagarcar	u.c	Uganda
FI	Finland		Mali, K. C.	- US	United States of America
FR	France	MN	Mongolia	UZ	
GA	Gabon	MR	Mauritania	VN	Uzbekistan Viet Nam

BNETOCID- WAS greeneded to

"PAPILLOMAVIRUS POLYPROTEIN CONSTRUCTS"

FIELD OF THE INVENTION

This invention relates to polyprotein constructs and in particular polyprotein constructs comprising a plurality of papillomavirus (PV) amino acid sequences which may be used in compositions for eliciting an immune response against PV, and particularly human papillomavirus (HPV), in a host animal.

10 BACKGROUND OF THE INVENTION

Papillomaviruses induce benign hyperproliferative lesions in humans and in many animal species, some of which undergo malignant conversion. The biology of papillomavirus infection is summarised in a review by J.P. Sundberg, entitled "Papillomavirus Infections in Animals" In "Papillomaviruses and Human Disease" edited by K. Syrjanen, L. Gissmann and L.G. Koss, Springer Verlag (1987).

Papillomaviruses are a family of small DNA viruses encoding up to eight early (E1, E2, E3, E4, E5, E6, E7 and E8) and two late genes (L1 and L2). These viruses have been classified in several distinct groups such as HPV which are differentiated into types 1 to ~70 depending upon DNA sequence homology. A clinicopathological grouping of HPV and the malignant potential of the lesions with which they are most frequently associated are summarised in "Papillomaviruses and Human Cancer" by H. Pfister, CRC Press, Inc. (1990). For example, HPV type 1 (HPV-1) is present in plantar warts, HPV-6 or HPV-11 are associated with condylomata acuminata (anogenital warts), and HPV-16 or HPV-18 are common in pre-malignant and malignant lesions of the cervical squamous epithelium.

The immunological approach to the prevention of HPV disease requires a thorough analysis of the viral proteins against which humoral and cellular immune responses are mounted during and after infection. However, despite recent limited

success (Kreider et al., 1986, J. Virol., 59, 369; Sterling et al., 1990, J. Virol., 64, 6305; Meyers et al., 1992, Science, 257, 971; Dollard et al., 1992, Genes and Development, 6, 1131), papillomaviruses are notoriously refractory to growth in cultured cells (Teichaman and LaPorta, 1987 In "The Papovaviridae", Vol 2 edited by N.P. Salzman and 5 P.M. Howley, p.109). As a consequence, the lack of viral reagents has delayed the analysis of the immune response to PV infection.

The recent advent of recombinant expression systems in vitro has allowed the production of viral proteins encoded by both early and late genes in relatively large amounts and in a purified form (Tindle et al., 1990, J. Gen. Virol., 71, 1347; Jarrett et al., 1991, Virology, 184, 33; Ghim et al., 1992, Virology, 190, 548; Stacey et al., 1991, J. Gen. Virol., 73, 2337). These systems have, for the first time, allowed the analysis of the host immune response to these viral proteins.

Interest in immune responses to the non-structural early open reading frame (ORF) proteins of HPV has centred on HPV-16 E7 because of an apparent association between serum antibodies to this protein and cervical cancer (for a review, see "Immune Response to Human Papillomaviruses and the Prospects of Human Papillomavirus-Specific Immunisation" by Tindle and Frazer *In* "Human Pathogenic Papillomaviruses" edited by H. zur Hausen, Current Topics in Microbiology Immunology, **186**, Springer-Verlag, Berlin, 1994).

The immune responses to other HPV early ORF proteins have also been investigated including HPV-16 E6 (Stacey et al., 1992, J. Gen. Virol., 73, 2337; Bleul et al., 1991, J. Clin. Microbiol., 29, 1579; Dillner, 1990, Int. J. Cancer, 46, 703; and Müller et al., 1992, Virology, 187, 508), HPV-16 E2 (Dillner et al., 1989 Proc.Natl. Acad. Sci.USA, 86, 3838; Dillner, 1990, supra; Lehtinen et al., 1992, J. Med. Virol., 37, 180; Mann et al., 1990, Cancer Res., 50, 7815; and Jenison et al., 1990, J. Infect. Dis., 162, 60) and HPV-16 E4 (Köchel et al., 1991, Int. J. Cancer, 48, 682; Jochmus-Kudielka et al., 1989, JNCI, 81, 1698; and Barber et al., 1992, Cancer Immunol. Immunother., 35,

- 33). However, comparison of these studies reveals a lack of correlation between the results of the various assays which have been used in assessing HPV early ORF protein reactivity in serum (Tindle and Frazer, 1994, supra).
- In addition, antibodies to other HPV early ORF proteins have not yet been sought with sufficient rigour in large enough numbers of patients to determine their utility as disease markers or as indicators of HPV protein immunogenicity following HPV infection.

A problem associated with immunising animals with preparations of individual PV proteins is that most of these proteins are comparatively small and might therefore not comprise many reactive epitopes. In addition, immunodominance of particular B or T cell epitopes within a single PV protein would vary presumably between animals of different major histocompatibility (MHC) backgrounds. To this end, the efficacy of such immunogens, in respect of eliciting an immune response against PV, might be expected to differ between animals of diverse MHC backgrounds.

In addition, there is surprisingly little knowledge regarding which PV proteins are expressed by infected cells at various stages of differentiation, and hence it is not possible to predict which proteins will be responsible for defining appropriate immunological targets.

The present invention provides a polyprotein construct comprising a plurality of PV early ORF proteins in one fused or linked construct to improve the efficacy of immune stimulation against PV infection and to avoid the need to define specific immunological targets.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides as an isolated product, a polyprotein construct comprising at least two amino acid sequences fused directly or indirectly

together, each of said sequences being the sequence of an early open reading frame (ORF) protein of papillomavirus (PV) or an immunogenic variant or fragment thereof, and at least one of said sequences being other than the E6 or E7 protein sequence or an immunogenic variant or fragment thereof.

5

In yet another aspect, the present invention provides a composition for eliciting a humoral and/or cellular immune response against PV in a host animal, said composition comprising an immunologically effective amount of a construct as described above, together with a pharmaceutically acceptable carrier and/or diluent.

10

In yet another aspect, this invention provides a method for eliciting a humoral and/or cellular response against PV in a host animal, which method comprises administering to the host animal an immunologically effective amount of a polyprotein construct as described above. In a related aspect, the invention also extends to use of such a polyprotein construct in eliciting an immune response against PV in a host animal. Preferably, the host animal is a human, however the host animal may also be a non-human mammal.

The present invention also extends to a nucleic acid molecule which encodes a polypeptide construct as broadly described above. Such a nucleic acid molecule may be delivered to a host animal in a nucleic acid vaccine composition with a pharmaceutically acceptable carrier and/or diluent, for expression of the encoded polyprotein construct *in vivo* in a host animal. Alternatively, the nucleic acid molecule may be included in a recombinant DNA molecule comprising an expression control sequence operatively linked to the nucleic acid molecule.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers."

DETAILED DESCRIPTION OF THE INVENTION

The term "polyprotein construct" as used herein is used to describe a protein construct made up of individual proteins that have been joined together in a sequence 5 whereby they retain their original relevant biological activities.

The term "isolated" as used herein denotes that the polyprotein construct has undergone at least one purification or isolation step, and preferably is in a form suitable for administration to a host animal.

10

By use of the term "immunologically effective amount" herein in the context of treatment of PV infection, it is meant that the administration of that amount to an individual PV infected host, either in a single dose or as part of a series, that is effective for treatment of PV infection. By the use of the term "immunologically effective amount" herein in the context of prevention of PV infection, it is meant that the administration of that amount to an individual host, either in a single dose or as part of a series, that is effective to delay, inhibit, treat or prevent PV infection or disease. The effective amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated, the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the immunogen, the assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

25 Preferably, the amino acid sequences in the polyprotein construct substantially correspond to the sequences of wild-type early ORF proteins of PV, including allelic or other variants thereof. Suitable variants include variants having single or multiple amino acid substitutions or additions to the wild-type sequences, and may have at least 50-60%, more preferably at least 70-80%, and most preferably at least 90%, similarity to the wild-30 type amino acid sequences, provided the variant is capable of eliciting an immune

response against PV in a host animal. The amino acid sequences may also be immunogenic fragments of the wild-type early ORF proteins, that is fragments of the proteins which are capable of eliciting an immune response in a host animal. Suitably, the immunogenic fragment will comprise at least five, and more preferably at least ten, contiguous amino acid residues of the particular protein. Such immunogenic fragments may also be recognised by PV-specific antibodies, particularly antibodies which have a protective or therapeutic effect in relation to PV infection. Preferably, the immunogenic fragment is a non-full length fragment of a wild-type amino acid sequence, which may for example comprise a deletion mutant of an early ORF protein corresponding to at least 50%, more preferably 60-70%, and even 80-90% of the full length wild-type amino acid sequence.

The amino acid sequences in the polyprotein construct of the present invention may be selected from the group consisting of the E1, E2, E3, E4, E5 (E5a, E5b), E6, E7 and E8 proteins of PV, and may be included in the construct in any desired order. By way of example, the construct may be selected from the group consisting of:

- (a) E6/E4
- (b) E6/E5a/E4
- (c) E6/E7/E4
- 20 (d) E6/E7/E5a/E4
 - (e) E6/E7/E1/E4
 - (f) E6/E7/E5a/E1/E4
 - (g) E6/E7/E5a/E1/E2/E4
 - (h) E6/E7/E5a/E5b/E1/E2/E4
- 25 (i) E2/E5b
 - (j) E2/E1/E5b
 - (k) E2/E5a/E5b
 - (I) E2/E1/E5a/E5b
 - (m) E2/E4/E5a/E5b/E6/E7/E1
- 30 (n) E2/E3/E4/E5/E8/E6/E7/E1.

As described above, at least one of the early ORF proteins is other than the E6 or E7 proteins. Preferably one of the early ORF proteins in the construct is the E4 protein.

The polyprotein constructs of this invention preferably comprise at least three, and more preferably three, four or five early ORF protein sequences. In addition, two or more different polyprotein constructs based on different combinations of early ORF proteins and/or different PV genotypes may be included in a single composition for prophylactic or therapeutic use.

In the polyprotein constructs of this invention, the amino acid sequences may be fused or linked directly together. Alternatively, they may be linked with a linker sequence of from 1 to 50, preferably 1 to 20, and more preferably 1 to 5, amino acid residues between the separate amino acid sequences. By way of example, such a linker sequence may be an amino acid sequence encoded by the nucleotide sequence comprising a restriction endonuclease site. Linker sequences as described above may also be provided before and/or after the amino acid sequences in the polyprotein constructs.

The polyprotein constructs of this invention may also comprise a tag protein or peptide moiety fused or otherwise coupled thereto to assist in purification of the polyprotein construct. Suitable tag moieties include, for example, (His)₆, glutathione-Stransferase (GST) and FLAG (International Biotechnologies), with the (His)₆ tag moiety being preferred. The constructs may further comprise a component to enhance the immunogenicity of the polyprotein. The component may be an adjuvant such as diphtheria or cholera toxin or *E. coli* heat labile toxin (LT), or a non-toxic derivative thereof such as the holotoxoid or B subunit of cholera toxin or LT. In addition, the polyprotein construct of the invention may comprise a lipid binding region to facilitate incorporation into ISCOMs. Suitable lipid binding regions are disclosed by way of example in Australian Provisional Patent Application No. PN8867/96, dated 25 March 1996. A preferred lipid binding region is an influenza haemagglutinin tail.

The present invention also provides a nucleic acid molecule comprising a sequence of nucleotides which encodes a polyprotein construct as broadly described above.

The nucleic acid molecule may be RNA or DNA, single stranded or double stranded, in linear or covalently closed circular form. It will be appreciated that the sequence of nucleotides of this aspect of the invention may be obtained from natural, synthetic or semi-synthetic sources; furthermore, this nucleotide sequence may be a naturally-occurring sequence, or it may be related by mutation, including single or multiple base substitutions, deletions, insertions and inversions, to such a naturally-occurring sequence, provided always that the nucleic acid molecule comprising such a sequence is capable of being expressed as a polyprotein construct as described herein.

The nucleotide sequence may have expression control sequences positioned adjacent to it, such control sequences being derived from either a homologous or a heterologous source.

Since nucleic acid molecules may be delivered directly as "naked DNA" to a host animal, (see, for example, Wolfe et al., 1990, Science 247:1465 and Fynan et al., 1993, 20 Proc.Natl. Acad. Sci. USA, 90:11478), the present invention also includes a nucleic acid vaccine composition comprising a nucleic acid molecule as described above, together with a pharmaceutically acceptable carrier and/or diluent.

Immunisation with an isolated nucleic acid molecule allows *in vivo* synthesis of the encoded polyprotein construct by the host animal in a manner similar to the manner in which PV proteins are expressed during infection by PV. In this aspect, the present invention also extends to a method for eliciting an immune response against PV in a host animal, which method comprises administering to the host animal an immunologically effective amount of a nucleic acid molecule as described above. The invention also

WO 97/05164

extends to use of such a nucleic acid molecule in eliciting an immune response against PV in a host animal.

This invention also provides a recombinant DNA molecule comprising an expression control sequence having promoter and initiator sequences, the nucleotide sequence encoding the polyprotein construct being located 3' to the promoter and initiator sequences and a terminator sequence located 3' to this sequence of nucleotides. In yet another aspect, the invention provides a recombinant DNA cloning vehicle such as a plasmid capable of expressing the polyprotein construct, as well as a host cell containing a recombinant DNA cloning vehicle and/or a recombinant DNA molecule as described above.

Suitable expression control sequences and host cell/cloning vehicle combinations are well known in the art, and are described by way of example, in Sambrook *et al.*15 (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor; New York, Cold Spring Harbor Laboratory Press. Thus, the nucleotide sequence may be ligated into any suitable expression vector, which may be either a prokaryotic or eukaryotic expression vector. Preferably, the vector is a prokaryotic expression vector such as pTrcHisA or pGEX-STOP (a pGEX expression vector (Amrad/Pharmacia Biotech) which has been manipulated so as to result in truncation of the GST moiety, disclosed in Australian Provisional Patent Application No. PN8272/86, dated 26 February 1996). Whilst the host cell is preferably a prokaryotic cell, more preferably a bacterium such as *E. coli*, it will be understood that the host cell may alternatively be a yeast or other eukaryotic cell, or insect cells infected with baculovirus or the like.

25

Once recombinant DNA cloning vehicles and/or host cells expressing a polyprotein construct of this invention have been identified, the expressed polypeptides synthesised by the host cells, for example, as a fusion protein, can be isolated substantially free of contaminating host cell components by techniques well known to those skilled in the art.

WO 97/05164 PCT/AU96/00473

The polyprotein construct-encoding DNA sequence is formed by linking or "fusing" sequences encoding each of the individual protein moieties. The first sequence in the polyprotein DNA construction has a promoter element and a ribosome binding site. These elements assure that transcription of the polyprotein DNA into mRNA begins 5 at a defined site and that the signal, the ribosome binding site, needed for translation of mRNA into protein is present. Synthesis of the polyprotein is made continuous from one protein component to the next by removing or altering any initiation or binding signals and stop codons from the subsequent protein-encoding sequences. The stop codon, normally a signal for the ribosome to stop translation and to end the polypeptide, is not 10 altered or removed from the last DNA sequence. The individual protein encoding sequences are jointed such that a proper phasing is made of the mRNA reading frames for translation of the sequence into the desired amino acids. Once a DNA sequence encoding a polyprotein construct or a "polyprotein gene" is made, it is necessary to demonstrate that the construction leads to production of a stable polyprotein construct. 15 If the resulting protein is not stable, for example because the junctions between the proteins are vulnerable to proteolytic digestion, then the junction regions are modified. This can be done by inserting different amino acids at or near the junction or by building spacers of amino acids between the individual proteins. Linkers or spacers can also be introduced to modify the overall activity of the polyprotein. By adjusting the space 20 between and orientation of the individual proteins it is possible to modify the total activity of the polyprotein construct. Further details of the preparation of polyprotein constructs of the present invention by recombinant DNA techniques are disclosed, by way of example, in US Patent No. 4774180, the disclosure of which is incorporated herein by reference.

25

Preferably, the polymerase chain reaction (PCR) is used to amplify the nucleotide sequences encoding each of the individual PV early ORF proteins. The nucleotide sequences which are amplified may be full length or non full-length fragments thereof. Restriction endonuclease sites may be incorporated in the oligonucleotide primers used for PCR to furnish directional ligation of the amplification products in the same

translational frame and to enable directional cloning into a suitable expression vector. The primers may encode an artificial initiator codon or a termination codon.

The first nucleotide sequence has an initiator codon. This initiator codon may either be the normal wild-type initiator codon of the first sequence or may be inserted artificially at another chosen position of this sequence. Synthesis of the polyprotein construct is made continuous from one protein component to the next by removing or altering any initiation or binding signals and termination codons. The termination codon must be present in the last nucleotide sequence. This is effected normally by not altering or removing the termination codon of the last nucleotide sequence. However, this termination codon may be inserted artificially, by methods known to persons skilled in the art, by first removing the normal, wild-type termination codon of the last nucleotide sequence and inserting another, in the correct reading frame, at another position of this sequence.

15

The polyprotein construct-encoding DNA sequence may incorporate restriction sites at the flanking ends to facilitate insertion of the DNA sequence into a suitable expression vector.

The PV can be a human or an animal PV, and is preferably HPV. The HPV may be of any genotype, and may for example be selected from the group consisting of HPV-6, HPV-11, HPV-16, HPV-18, HPV-33, HPV-35, HPV-31 and HPV-45. Preferably, the HPV is HPV-6 or HPV-11.

The present invention is particularly, but not exclusively, directed to polyprotein constructs comprising early ORF proteins of the HPV-6 and HPV-11 genotypes which are causative agents of condylomata acuminata, however it will be appreciated that the invention extends to variants of the corresponding proteins in other HPV genotypes, particularly the HPV-16 and HPV-18 genotypes, and other genotypes which have oncogenic potential of a type similar to HPV-16 and HPV-18.

The polyprotein constructs of the present invention may comprise early ORF proteins of a single HPV genotype, or alternatively they may comprise early ORF proteins from more than one HPV genotype. In addition, a combination of more than one polyprotein construct may be used in cases where not all early ORF proteins are 5 represented in the one polyprotein construct, or where immune responses to more than one HPV genotype are desired.

The polyprotein constructs of the present invention are provided as isolated proteins, that is they are substantially free of other PV proteins, and find particular utility 10 for the treatment of genital warts, cervical cancer or other conditions caused by HPV in man. The polyprotein constructs can be included in pharmaceutical compositions for the treatment or prevention of diseases involving HPV as well as the other conditions discussed above.

The polyprotein constructs of the invention may be used to raise antibodies and/or induce cellular immune responses, either in subjects for which protection against infection by PV is desired, i.e. as prophylactic vaccines, or to heighten the immune response to an PV infection already present, i.e. as therapeutic vaccines. They also can be injected into production species to obtain antisera. In lieu of the polyclonal antisera 20 obtained in the production species, monoclonal antibodies may be produced using the standard methods or by more recent modifications thereof by immortalising spleen or other antibody-producing cells for injection into animals to obtain antibody-producing clones. The polyclonal or monoclonal antibodies obtained, corrected if necessary for species variations, can also be used as therapeutic agents.

25

15

Direct administration of the polyprotein constructs to a host animal such as a human can confer either protective immunity against PV or, if the subject is already infected, a boost to the subject's own immune response to more effectively combat the progress of the PV induced disease.

The magnitude of the prophylactic or therapeutic dose of a polyprotein constructs of this invention will, of course, vary with the group of patients (age, sex, etc.), the nature or the severity of the condition to be treated and with the particular polyprotein construct and its route of administration. In general, the weekly dose range for use lies within the range of from about 0.1 to about 5 µg per kg body weight of a mammal.

Any suitable route of administration may be employed for providing a mammal, especially a human, with an effective dosage of a polyprotein construct of this invention. For example, oral, rectal, vaginal, topical, parenteral, ocular, nasal, sublingual, buccal, intravenous and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, suppositories, aerosols and the like. Said dosage forms also include injected or implanted slow releasing devices specifically designed for this purpose or other forms of implants modified to additionally act in this fashion.

15

If the polyprotein constructs are to be administered as vaccines, they are formulated according to conventional methods for such administration to the subject to be protected. The polyprotein constructs may be delivered in accordance with this invention in ISCOMSTM (immune stimulating complexes), liposomes or encapsulated in compounds such as acrylates or poly(DL-lactide-co-glycoside) to form microspheres. They may also be incorporated into oily emulsions and delivered orally.

Other adjuvants, as well as conventional pharmaceutically acceptable carriers, excipients, buffers or diluents, may also be included in vaccine compositions of this invention. Generally, a vaccine composition in accordance with the present invention will comprise an immunologically effective amount of the polyprotein construct, and optionally an adjuvant, in conjunction with one or more conventional pharmaceutically acceptable carriers and/or diluents. An extensive though not exhaustive list of adjuvants can be found in Coulter and Cox, "Advances in Adjuvant Technology and Application", in *Animal Parasite Control Utilizing Biotechnology*, Chapter 4, Ed. Young, W.K., CRC

Press, 1992. As used herein "pharmaceutically acceptable carriers and/or diluents" include any and all solvents, dispersion media, aqueous solutions, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art and is described by way of example in *Remington's Pharmaceutical Sciences*, 18th Edition, Mack Publishing Company, Pennsylvania, U.S.A.

In practical use, a polyprotein construct of this invention can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g. oral or parenteral (including intravenous and intra-arterial). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water glycols, oils, alcohols, flavouring agents, preservatives, colouring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar-coated or enteric-coated by standard techniques.

In addition to the common dosage forms set out above, the polyprotein constructs of this invention may also be administered by controlled release means and/or delivery devices, including by way of example, the controlled release preparations disclosed in International Patent Specification No. PCT/AU93/00677 (Publication No. WO 94/15636).

Pharmaceutical compositions of the present invention suitable for oral or 30 parenteral administration may be presented as discrete units such as capsules, cachets or

tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.

Further features of the present invention are more fully described in the following Example(s). It is to be understood, however, that this detailed description is included solely for the purposes of exemplifying the present invention, and should not be understood in any way as a restriction on the broad description of the invention as set out above.

15

EXAMPLES

Example 1 - Amplification and cloning of early open reading frames (ORFs) of HPV6b

A clone containing the entire genome of HPV6b in pBR322 (de Villiers, 1981, *J. Virol*, **40**:932) was used as the template for separate PCR amplifications of E6, E7, E5a, E5b, E1, E2 and E4 open reading frame (ORF) sequences.

Appropriate restriction enzyme recognition sequences were included in the oligonucleotides used for amplification (Table I; 1-7) to allow sequential assembly of these amplified early gene sequences into a 'polyprotein' sequence as depicted in Figure 1A.

In this scheme, E6 was amplified with oligonucleotides containing a *Smal* site at the 5' end and *HindIII*, *Ncol* and *Xbal* sites at the 3' end. As well, E4 was amplified with oligonucleotides containing *Xbal*, *Sacl*, *Kpnl* and *Spel* sites 5' and a *BglIII* site 3'.

These amplified fragments were cloned as Smal/Xbal (E6) and Xbal/Bg/II (E4) (Figure 1B) in the vector pSP70 (Promega Corporation) which had been modified by the removal of an EcoRV/EcoRI fragment to contain a portion of the pGEM3Zf (Promega Corporation) polylinker - HindII through EcoRI. As well, unwanted sites upstream of the Smal site were removed by cleaving with Smal/XhoI and insertion of a Smal/SalI/XhoI linker to create the vector pSP70 (MOD).

The E6/E4 cassette was able to be removed by cleavage with *Smal/BglII* and this was then cloned for expression into the pGEX-STOP vector which produces a non-fusion protein with a C-terminal six-histidine sequence for purification purposes.

15

Using the introduced restriction enzyme recognition sequences, other early ORF sequences were incorporated into the E6/E4 cassette cloned into pSP70 (MOD) and then the newly created cassette cloned as a *Smal/BgIII* fragment into pGEX-STOP.

In this manner polyprotein constructs containing E6/E5a/E4, E6/E7/E4, E6/E7/E5a/E4, E6/E7/E1/E4 and E6/E7/E5a/E1/E4 were assembled. Complete DNA sequence data for the first three constructs is included and sequence data across the junctions of E1 is included for the latter two. DNA sequencing revealed the *Spel* site was inactivated by a single base change which occurred either during oligonucleotide synthesis, PCR or cloning.

As well the tetrafusion construct of E6/E7/E5a/E4 was cloned for expression into pET23b (Novagen) by firstly subcloning the tetramer as a *Smal/Bg/III* fragment into the *Smal/BamHI* sites of the vector pRIT2T (AMRAD Pharmacia Biotech). The tetramer was

WO 97/05164 PCT/AU96/00473

- 17 -

then removed by restriction with Smal and Sall and cloned into the Hincll/Xhol sites of the vector pET23b.

A further construct containing E2 and E5b, but which could also accommodate the addition of E1 and E5a, was created by amplifying E2 with oligonucleotides containing a *Smal* site at the 5' end and *Xbal*, *Ncol*, *Kpnl* and *Sacl*, sites at the 3' end (Table 1; 8) and with E5b amplified using oligonucleotides with an *Xbal* site 5' and *Xhol*, *Bglll* sites 3' (Table 1; 9). These amplified fragments were then cloned into pSP70 (MOD) as depicted in Figure 1C.

10

Table 1

		Oligonucleotides us	ed for PCR
	Early gene	Forward	Reverse
1	E 6	FGCGCCCCGGGATGGAAAGTGC AAATGCCTCF (SEQ ID No. 1)	⁵ GCGCTCTAGACCATGGAAGCT TGGGTAACATGTCTTCCATGC ³ (SEQ ID. No.2)
2	E4	⁵ GCGCTCTAGAGAGCTCGGTACC ACTAGTGGAGCACCAAACATTGG GAAG ³	5'GCGCAGATCTTAGGCGTAGCT GAACTGTTAC3'
		(SEQ ID No. 3)	(SEQ ID No. 4)
3	E5a	⁵ 'GCGCCCATGGGAAGTGGTGCCT GTACAAATAGC ^{3'} (SEQ ID No. 5)	SGCGCTCTAGATTGCTGTGTGG TAACAATATAG3" (SEQ ID No. 6)
4	E7 .	⁵ GCGCAAGCTTCATGGAAGACAT GTTACCCTAAAG ³ ' (SEQ ID No. 7)	⁵ 'GCGCCCATGGGGTCTTCGGT GCGCAGATGG ³ ' (SEQ ID No. 8)
5	E1	⁵ GCGCGAGCTCGCGGACGATTCA GGTACAGAAAATG ³ (SEQ ID No. 9)	⁵ 'GCGCGGTACCTAAAGTTCTAA CAACTGTTCCTG ³ ' (SEQ ID No. 10)
6	E 2	⁵ 'GCGCGGTACCGAAGCAATAGCC AAGCGTTTAG ³ ' (SEQ ID No. 11)	⁵ 'GCGCACTAGTCAATAGGTGCA GTGACATAAATC ³ ' (SEQ ID No. 12)
7	E5b	⁵ 'GCGCTCTAGACTAACATGTCAAT TTAATGATG ³ ' (SEQ ID No. 13)	5'GCGCGAGCTCATTCATATA TATAATCACC³' (SEQ ID No. 14)
8	E2	⁵ GCGCCCCGGGATGGAAGCAATA GCCAAGCG ³ (SEQ ID No. 15)	⁵ 'GCGCTCTAGACCATGGGGTAC CGAGCTCCAATAGGTGCAGTG ACATAAATC ³ ' (SEQ ID No. 16)
9	E5b	S'GCGCTCTAGACTAACATGTCAAT TTAATGATG3' (SEQ ID No. 17)	5'GCGCAGATCTCTCGAGATTCA TATATATATAATCAC3' (SEQ ID No. 18)

Example 2 - Expression of different polyprotein constructs

The following constructs in pGEX-STOP were expressed in *E. coli* strain BL21 and protein production was assayed by PAGE followed by Western blotting:

5

- i) E6/E4
- ii) E6/E5a/E4
- iii) E6/E7/E4
- iv). E6/E7/E5a/E4

10

Construct (iv) in pET23b, expressed in *E. coli* strains BL21(DE3)pLysS and AD494(DE3)pLysS (Novagen), was also assayed for protein production by Western blotting and also by Coomassie Blue staining for the latter strain.

15 Cultures of 200mL were grown in Terrific broth (Tartoff and Hobbs, Focus, 9: 12, 1987) in the presence of 100 μ g/mL ampicillin (BL21) and 34μ g/ml cloramphenicol [BL21(DE3)pLysS] and 15μ g/mL kanamycin [AD494(DE3)pLysS]. At OD₆₀₀ ~ 1 protein expression was induced by the addition of IPTG to 0.4mM. Following induction samples were taken at 1, 2, 3, 4 and 5 hours and in some cases after overnight culture.

20

Figure 2 shows a Western blot result for the E6/E4 construct. This was probed with a polyclonal rabbit anti-E4 antibody (MWE4 - raised to the peptide LGNEHEESNSPLATPCVWPT conjugated to ovalbumin). An immunoreactive band of ~30 kDa was present in the 4 hour-induced sample (lanes 2 & 4, arrow) which was not present in the uninduced sample (lane 3).

The same ~ 30kDa band can also be seen in the induced sample in Figure 3, lane 3, arrow (lane 2-uninduced) while the E6/E5a/E4 trimer construct of ~ 40kDa was poorly represented after a 4 hour induction period (lane 5, arrow; uninduced sample-lane 4) using the same anti-E4 antibody.

In contrast however, a trimer construct of E6/E7/E4 (~ 41 kDa) could be easily detected after 5 hours induction using an anti-hexahistidine monoclonal antibody (Dianova) [Figure 4, lane 4, arrow; uninduced sample - lane 3].

The same trimer construct was again easily visualised after 5 hours induction using the anti-E4 antibody MWE4 (Figure 5, lane TRI, arrow; control sample - lane C) and the tetramer consisting of E6/E7/E5a/E4 (~51 kDa) could also be detected (lane TET, arrow). Although this band is weak, it must be noted that a considerable amount of high molecular weight material is also immunoreactive, indicating the tetramer is reasonably well expressed but possibly prone to aggregation.

Figure 6 indicates that an anti-E6 antibody (prepared as described below) was able to detect E6/E7/E4 after 5 hours induction (lane TRI, arrow) but not E6/E7/E5a/E4 (lane TET; lane C - uninduced). However, an anti-E7 antibody (prepared as described below) was able to detect after 5 hours induction both the trimer (Figure 7, lane TRI, arrow; lane C - uninduced) and the tetramer (lane TET, arrow; lane C - uninduced), with the latter again showing indications of aggregation. A monoclonal antibody raised to an E4 peptide also recognised the trimer.

The phenomenon of aggregation was clearly apparent when the E6/E7/E5a/E4 tetramer was expressed in the pET23b plasmid in BL21(DE3)pLysS (Figure 8 - a Western blot probed with MWE4). Lanes 2-5 are 1 hour, 2 hour, 3 hour and overnight uninduced samples and lanes 6-9 represent 1 hour, 2 hour, 3 hour and overnight induced samples. After 1 hour induction a band of E6/E7/E5a/E4 can clearly be seen (arrow), but with increased times of induction this seems to decrease and aggregated forms are increased. In contrast, when strain AD494(DE3)pLysS was used to express the tetramer, a substantial signal was obtained at the ~50kDa position on a Western blot of the insoluble fraction (Figure 9, arrow) following 2 hours induction, which still persisted at 3 hours. This immunoreactive band was not present in control samples and no protein was detected in the samples from the soluble fractions.

Figure 10 shows the Coomassie stained profile of an identical gel, indicating that the immunoreactive bands present after 2 and 3 hours induction (Figure 9) can clearly be visualised as stained bands (arrow) which are not present in the control samples.

5 Example 3 - DNA sequencing of polyprotein constructs

Polyprotein constructs were sequenced in both directions by the dideoxy method using primers that generated overlapping sequence information. The ^{T7}SequencingTM Kit (Pharmacia was used to generate ³⁵S-labelled chain-terminated fragments which were analysed on a Sequi-GenTM (Biorad) electrophoretic gel apparatus. The DNA and corresponding amino acid sequences for E6/E5a/E4 (CSL690.SEQ), E6/E7/E4 (CSL760.SEQ) and E6/E7/E5a/E4 (CSL673.SEQ) are shown below. (SEQ ID Nos: 19 and 20, 21 and 22, and 23 and 24, respectively).

For constructs E6/E7/E1/E4 (CSL 791) and E6/E7/E5a/E1/E4 (CSL 762), which were created from E6/E7/E4 and E6/E7/E5a/E4, respectively, DNA sequence analysis across the junctions of E1 with its neighbours is shown below (SEQ ID Nos. 25 and 26, 27 and 28, and 29 and 30, respectively).

WO 97/05164 PCT/AU96/00473

File : CSL690.SEQ - 22 -

Range: 1 - 11 Mode: Normal

Codon Table : Universal

070E18481 1 -

DERCOUNTE YES

E6/E5a/E4 - SEQ ID Nos, 19 (DNA) and 20 (amino acid)

ATG GAA AGT GCA AAT GCC TCC ACG TCT GCA ACG ACC ATA GAC CAG TTG TGC AAG --- --- --- --- --- --- --- --- --- --- --- --- --- ---Met Glu Ser Ala Asn Ala Ser Thr Ser Ala Thr Thr Ile Asp Gln Leu Cys Lys ACG TTT AAT CTA TCT ATG CAT ACG TTG CAA ATT AAT TGT GTG TTT TGC AAG AAT Thr Phe Asn Leu Ser Met His Thr Leu Gln Ile Asn Cys Val Phe Cys Lys Asn GCA CTG ACC ACA GCA GAG ATT TAT TCA TAT GCA TAT AAA CAC CTA AAG GTC CTG Ala Leu Thr Thr Ala Glu Ile Tyr Ser Tyr Ala Tyr Lys His Leu Lys Val Leu TTT CGA GGC GGC TAT CCA TAT GCA GCC TGC GCG TGC TGC CTA GAA TTT CAT GGA --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Phe Arg Gly Gly Tyr Pro Tyr Ala Ala Cys Ala Cys Cys Leu Glu Phe His Gly AAA ATA AAC CAA TAT AGA CAC TTT GAT TAT GCT GGA TAT GCA ACA ACA GTT GAA Lys Ile Asn Gln Tyr Arg His Phe Asp Tyr Ala Gly Tyr Ala Thr Thr Val Glu GAA GAA ACT AAA CAA GAC ATC TTA GAC GTG CTA ATT CGG TGC TAC CTG TGT CAC Glu Glu Thr Lys Gln Asp Ile Leu Asp Val Leu Ile Arg Cys Tyr Leu Cys His AAA CCG CTG TGT GAA GTA GAA AAG GTA AAA CAT ATA CTA ACC AAG GCG CGG TTC Lys Pro Leu Cys Glu Val Glu Lys Val Lys His Ile Leu Thr Lys Ala Arg Phe ATA AAG CTA AAT TGT ACG TGG AAG GGT CGC TGC CTA CAC TGC TGG ACA ACA TGC Ile Lys Leu Asn Cys Thr Trp Lys Gly Arg Cys Leu His Cys Trp Thr Thr Cys ATG GAA GAC ATG TTA CCC AAG CTT CCA TGG GAA GTG GTG CCT GTA CAA ATA GCT --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Met Glu Asp Met Leu Pro Lys Leu Pro Trp Glu Val Val Pro Val Gln Ile Ala GCA GGA ACA ACC AGC ACA TTC ATA CTG CCT GTT ATA ATT GCA TTT GTT GTA TGT --- --- --- --- --- --- --- --- --- --- --- --- --- ---Ala Gly Thr Thr Ser Thr Phe Ile Leu Pro Val Ile Ile Ala Phe Val Val Cys

TTT	GTT	AGC	ATC	ATA	СТТ	ATT	GTA	TGG	ATA	TCT	GAG	TTT	ATT	GTG	TAC	ACA	TCT
Phe	Val	Ser	Ile	Ile	Leu	Ile	Val	Trp	Ile	Ser	Glu	Phe	Ile	Val	Tyr	Thr	Ser
		603			612			621	•		630			639			648
GTG	CTA	GTA	СТА	ACA	CTG	CTT	TTA	TAT	TTA	CTA	TTG	TGG	CTG	CTA	TTA	ACA	ACC
Val	Leu	Val	Leu	Thr	Leu	Leu	Leu	Tyr	Leu	Leu	Leu	Trp	Leu	Leu	Leu	Thr	Thr
	-	657			666			675			684			693			702
cċc	TTG	CAA	TTT	TTC	CTA	CTA	ACT	CTA	CTT	GTG	TGT	TAC	TGT	CCC	GCA	TTG	TAT
Pro	Leu	Gln	Phe	Phe	Leu	Leu	Thr	Leu	Leu	Val	Cys	Tyr	Cys	Pro	Ala	Leu	Tyr
		711			720			729			738	•		747			756
ATA	CAC	TAC	TAT	TTA	GTT	ACC	ACA	CAG	CAA	TCT	<u>A</u> GA	GAG	CTC	GGT	ACC	ACT	TAA
Ile	His	Tyr	Tyr	Ile	Val	Thr	Thr	Gln	Gln	Ser	Arg	Glu	Leu	Gly	Thr	Thr	Asn
		765			774	•		783			792			801			810
GGA	GCA	CCA	AAC	ATT	GGG	AAG	TAT	GTT	ATG	GCA	GCA	CAG	TTA	TAT	GTT	CTC	CTG
Gly	Ala	Pro	Asn	Ile	Gly	Lys	Tyr	Val	Met	Ala	Ala	Gln	Leu	Tyr	Val	Leu	Leu
		819			828			837			846			855			864
CAT	CTG	TAT	CTA	GCA	СТА	CAC	AAG	AAG	TAT	CCA	TTC	CTG	AAT	CTA	CTA	CAT	ACA
His	Leu	Tyr	Leu	Ala	Leu	His	Lys	Lys	Tyr	Pro	Phe	Leu	Asn	Leu	Leu	His	Thr
		873			882			891			900			909			918
ccc	CCG	CAC	AGA	сст	ĊCA	ССС	TTG	TGT	CCT	CAA	GCA	CCA	AGG	AAG	ACG	CAG	TGC
Pro	Pro	His	Arg	Pro	Pro	Pro	Leu	Cys	Pro	Gln	Ala	Pro	Arg	Lys	Thr	Gln	Cys
		927			936			945			954			963			972
AAA	CGC	CGC	CTA	GGA	AAC	GAG	CAC	GAG	GAG	TCC	AAC	AGT	ccc	CTT	GCA	ACG	CCT
Lys	Arg	Arg	Leu	Gly	Asn	Glu	His	Glu	Glu	Ser	Asn	Ser	Pro	Leu	Ala	Thr	Pro
		981			990			999			1008			1017			1026
TGT	GTG	TGG	ccc	ACA	TTG	GAC	CCG	TGG	ACA	GTG	GAA	ACC	ACA	ACC	TCA	TCA	CTA
Cys	Val	Trp	Pro	Thr	Leu	Asp	Pro	Trp	Thr	Val	Glu	Thr	Thr	Thr	Ser	Ser	Leu
		1035			1044			1053			1062			1071			1080
ACA	ATC	ACG	ACC	AGC	ACC	AAA	GAC	GGA	ACA	ACA	GTA	ACA	GTT	CAG	CTA	CGC	CTA
Thr	Ile	Thr	Thr	Ser	Thr	Lys	Asp	Gly	Thr	Thr	Val	Thr	Val	Gln	Leu	Arg	Leu
		1089	ı		1098	ļ-		1107									
AGA	TCT	CAT	CAC	CAT	CAC	CAT	CAC	TAA	3'								
Arg	Ser	His	His	His	His	His	His	***									

PCT/AU96/00473 WO 97/05164

- 24 -File : CSL760.SEQ

1128 Mode : Normal Range: 1 - 112 Codon Table: Universal

E6/E7/E4 - SEQ ID Nos. 21 (DNA) and 22 (amino acid)

							L)/ L / / !	L ¬	JLQ		03. 2	1 (D)	17.17	2170 2	-		uc.u,
			9)		18			27			36			45			54
5 '	ATG	GAA	AGT	GCA	AAT	GCC	TCC	ACG	TCT	GCA	ACG	ACC	ATA	GAC	CAG	TTG	TGC	AAG
	Met	Glu	Ser	Ala	Asn	Ala	Ser	Thr	Ser	Ala	Thr	Thr	Ile	Asp	Gln	Leu	Cys	Lys
			63			72			81			90			99			108
	ACG	TTT	AAT	CTA	TCT	ATG	CAT	ACG	TTG	CAA	ATT	AAT	TGT	GTG	TTT	TGC	AAG	AAT
	Thr	Phe	Asn	Leu	Ser	Met	His	Thr	Leu	Gln	Ile	Asn	Cys	Val	Phe	Cys	Lys	Asn
			117			126			135			144			153			162
	GCA	CTG	ACC	ACA	GCA	GAG	ATT	TAT	TCA	TAT	GCA	TAT	AAA	CAC	СТА	AAG	GTC	CTG
	Ala	Leu	Thr	Thr	Ala	Glu	Ile	Tyr	Ser	Tyr	Ala	Tyr	Lys	His	Leu	Lys	Val	Leu
			171			180	•		189			198			207			216
	TTT	CGA	GGC	GGC	TAT	CCA	TAT	GCA	GCC	TGC	GCG	TGC	TGC	CTA	GAA	TTT	CAT	GGA
					 Tyr	 Pro	 Tur		n1=	 Cve						 Phe	uie	
	rne	Arg	225	Gly	Tyl	234	1 9 1	,	243	Cys	д а	252	Cys	Бей	261	1110		270
				~~~			C.			m n m	C C T		<b></b>			202	cmm	
			AAC		TAT	AGA			GAI	1A1			TAT		ACA	ACA		
	Lys	Ile	Asn	Gln	Tyr	Arg	His	Phe	Asp	Tyr	Ala	Gly	Tyr	Ala	Thr	Thr	Val	Glu
			279			288			297			306			315			324
	GAA	GAA	ACT	AAA	CAA	GAC	ATC	ATT	GAC	GTG	CTA	ATT	CGG	TGC	TAC	CTG	TGT	CAC
	Glu	Glu	Thr	Lys	Gln	Asp	Ile	Leu	Asp	Val	Leu	Ile	Arg	Cys	Tyr	Leu	Cys	His
			333			342			351			360			369			378
	AAA	CCG	CTG	TGT	GAA	GTA	GAA	AAG	GTA	AAA	CAT	ATA	CTA	ACC	AAG	GCG	CGG	TTC
		 D								 T						 Dl-		
	Lys	PIO	387	Cys	GIU	396	Gru	гàг	405	гуѕ	uts	414	Leu	Int	423	Ala	Arg	432
	מידמ	אמה		חתת	тст		ጥርር	מממ		cec	<b>דוכי</b> ר		CAC	ፕርር		ארא	ncn	TGC
	Ile	Lys		Asn	Cys		Trp	_	=		Cys		His	Cys	_	Thr	Thr	
			441			450						468			477			486
	ATG	GAA	GAC	ATG	TTA	ccc	AAG	CTT	CAT	GGA	AGA	CAT	GTT	ACC	CTA	AAG	GAT	ATT
	Met	Glu	Asp	Met	Leu	Pro	Lys	Leu	Hịs	Gly	Arg	His	Val	Thr	Leu	Lys	Asp	Ile
			495	٠		504			513			522			531			540
	GTA	TTA	GAC	CTG	CAA	CCT	CCA	GAC	CCT	GTA	GGG	TTA	CAT	TGC	TAT	GAG	CAA	TTA
	Val	Leu	Asp	Leu	Gln	Pro	Pro	Asp	Pro	Val	Gly	Leu	His	Cys	Tyr	Glu	Gln	Leu
			549			558			567			576			585	,		594

							_	25									
GTA	GAC	AGC	TCA	GAA	GAT	GAG	GTG	GAC	GAA	GTG	GAC	GGA	CAA	GAT	TCA	CAA	CCT
Val	Asp	Ser	Ser	Glu	Asp	Glu	Val	Asp	Glu	Val	Asp	Gly	Gln	Asp	Ser	Gln	Pro
		603	;		612	?		621			630			639			648
TTA	AAA	CAA	CAT	TTC	CAA	ATA	GTG	ACC	TGT	TGC	TGT	GGA	TGT	GAC	AGC	AAC	GTT
Leu	Lys	Gln	His	Phe	Gln	Ile	Val	Thr	Cys	Cys	Cys	Gly	Cys	Asp	Ser	Asn	Val
		657			666			675			684			693			702
CGA	CTG	GTT	GTG	CAG	TGT	ACA	GAA	ACA	GAC	ATC	AGA	GAA	GTG	CAA	CAG	CTT	CTG
Arg	Leu	val	val	Gln	Cys	Thr	Glu	Thr	Asp	Ile	Arg	Glu	 Val	Gln	Gln	Leu	Leu
		711			720			729			738			747			756
TTG	GGA	ACA	CTA	AAC	ATA	GTG	TGT	ССС	ATC	TGC	GCA	CCG	AAG	ACC	CCA	TGG	TCT
 Leu	Gly	Thr	 Leu	 Asn	 Ile	 Val	 Cys	 Pro	Ile	 Cys	 Ala	Pro	 Lys	Thr	Pro	Trp	 Ser
	•	765			774		•	783		•	792		•	801		•	810
AGA	GAG	CTC	GGT	ACC	ACT	AAT	GGA	GCA	CCA	AAC	ATT	GGG	AAG	TAT	GTT	ATG	GCA
 Arg	 Glu	 Leu	 Glv	 Thr	 Thr	 Asn	Gly	 Ala	 Pro	 Asn	 Ile	Gly	 Lys	Tyr	 Val	 Met	 Ala
,		819	•		828		_	837			846	•	•	855	•		864
GCA	CAG		ጥልጥ	стт		CTG	СДТ		тат	СТА		СТА	CAC		AAG	ТАТ	CCA
						 Leu				<u></u>							
ATA	GIII		Tyr	val		Leu	utz		Tyr	rea		Dea	UIS		БУЗ	I y I	
		873			882			891			900			909			918
			<b>-</b>			ACA											
Phe	Leu	Asn	Leu	Leu	His	Thr	Pro	Pro	His	Arg	Pro	Pro	Pro	Leu	Cys	Pro	Gln
	•	927			936			945			954			963			972
GCA	CCA	AGG	AAG	ACG	CAG	TGC	AAA	CGC	CGC	CTA	GGA	AAC	GAG	CAC	GAG	GAG	TCC
Ala	Pro	Arg	Lys	Thr	Gln	Cys	Lys	Arg	Arg	Leu	Gly	Asn	Glu	His	Glu	Glu	Ser
		981			990			999		:	1.0.08		:	1017		:	1026
AAC	AGT	ccc	CTT	GCA	ACG	CCT	TGT	GTG	TGG	ccc	ACA	TTG	GAC	CCG	TGG	ACA	GTG
Asn	Ser	Pro	Leu	Ala	Thr	Pro	Cys	Val	Trp	Pro	Thr	Leu	Asp	Pro	Trp	Thr	Val
	1	1035		:	1044		;	1053			1062			1071		٠	1080
GAA	ACC	ACA	ACC	TCA	TCA	CTA	ACA	ATC	ACG	ACC	AGC	ACC	AAA	GAC	GGA	ACA	ACA
Glu	Thr	Thr	Thr	Ser	Ser	Leu	Thr	Ile	Thr	Thr	Ser	Thr	Lys	Asp	Gly	Thr	Thr
	1	1089		:	1098			1107			1116			1125			
GTA	ACA	GTT	CAG	CTA	CGC	CTA	AGA	TCT	CAT	CAC	CAT	CAC	CAT	CAC	TAA	3'	
Val	Thr	Val	Gln	Leu	Arg	Leu	Arg	Ser	His	His	His	His	His	His	***		

WO 97/05164 PCT/AU96/00473

- 26 -

	e :	CSL6		NA -	12	- <b>-</b>	Mad	٠ ٠	iorm.	a '								
	ige : lon T	able	_								D N.		2 (D)	NIA) :	and 1	) / (ar	mino	acid)
								:5a/E		EQ II	אט		3 (Di	NA) (		24 (ai	111110	acid)
			9			18			27			36			45			54
5 '	ATG	GAA	AGT	GCA	AAT	GCC	TCC	ACG	TCT	GCA	ACG	ACC	ATA	GAC	CAG	TTG	TGC	AAG
	Met	Glu	Ser	Ala	Asn	Ala	Ser	Thr	Ser	Ala	Thr	Thr	Ile	Asp	Gln	Leu	Cys	Lys
			63			72			81			90			99			108
	ACG	TTT	AAT	CTA	TCT	ATG	CAT	ACG	TTG	CAA	ATT	AAT	TGT	GTG	TTT	TGC	AAG	AAT
	Thr	Phe	Asn	Leu	Ser	Met	His	Thr	Leu	Gln	Ile	Asn	Cys	Val	Phe	Cys	Lys	Asn
			117			126			135			144			153			162
	GCA	CTG	ACC	ACA	GCA	GAG	ATT	TAT	TCA	TAT	GCA	TAT	AAA	CAC	CTA	AAG	GTC	CTG
	Ala	Leu	Thr	Thr	Ala	Glu	Ile	Tyr	Ser	Tyr	Ala	Tyr	Lys	His	Leu	Lys	Val	Leu
			171			180			189			198			207			216
	TTT	CGA	GGC	GGC	TAT	CCA	TAT	GCA	GCC	TGC	GCG	TGC	TGC	CTA	GAA	TTT	CAT	GGA
	Phe	 Arg	Gly	Gly	Tyr	Pro	Tyr	Ala	Ala	Cys	Ala	Cys	Cys	Leu	Glu	Phe	His	Gly
			225			234			243			252			261			270
	AAA	ATA	AAC	CAA	TAT	AGA	CAC	TTT	GAT	TAT	GCT	GGA	TAT	GCA	ACA	ACA	GTT	GAA
	 Lys	 Ile	asn	Gln	Tyr	Arg	His	Phe	Asp	Tyr	Ala	Gly	Tyr	Ala	Thr	Thr	Val	Glu
			279			288			297			306			315			324
	GAA	GAA	ACT	AAA	CAA	GAC	ATC	TTA	GAC	GTG	CTA	ATT	CGG	TGC	TAC	CTG	TGT	CAC
	Glu	Glu	Thr	Lys	Gln	Asp	Ile	Leu	Asp	Val	Leu	Ile	Arg	Cys	Tyr	Leu	Cys	His
			333			342			351			360			369			378
	AAA	CCG	CTG													GCG	CGG	TTC
	Lys	Pro	Leu											Thr			Arg	Phe
			387			396			405			414			423			432
		AAG	CTA	AAT	TGT	ACG	TGG	AAG	GGT	CGC	TGC	CTA	CAC	TGC	TGG	ACA	ACA	TGC
	Ile	Lys	Leu	Asn	Cys	Thr	Trp	Lys	Gly	Arg	Cys	Leu	His	Cys	Trp	Thr	Thr	Cys
			441			450			459			468			477			486
	ATG	GAA	GAC	ATG	TTA	CCC	AAG	CTT	CAT	GGA	AGA	CAT	GTT	ACC	CTA	AAG	GAT	ATT
	 Met	Glu	Asp	 Met	 Leu	Pro	Lys	Leu	His	Gly	Arg	His	Val	Thr	Leu	Lys	Asp	Ile
			495			504			513	;		522	:		531	L		540
	GTA	TTA	GAC	CTG	CAA	ССТ	CCA	GAC	ССТ	GTA	GGG	ATT.	CAT	TGC	TAT	GAG	CAA	ATT
	Val	Leu	Asp	Leu	Gln	Pro	Pro	Asp	Pro	Val	Gly	Leu	His	Cys	Tyr	Glu	Gln	Leu
			549			558			567	,		576	5		585	5		594

- 27 -

WO 97/05164

GTA	GAC	AGC	TCA	GAA	GAT	GAG	GTG	GAC	GAA	GTG	GAC	GGA	CAA	GAT	TCA	CAA	ССТ
 Val	Asp	 Ser	 Ser	Glu	Asp	Glu	 Val	Asp	Glu	Val	Asp	Gly	Gln	Asp	Ser	Gln	Pro
		603			612			621			630			639			648
TTA	AAA	CAA	CAT	TTC	CAA	ATA	GTG	ACC	TGT	TGC	TGT	GGA	TGT	GAC	AGC	AAC	GTT
 Leu	 Lys	Gln	His	Phe	Gln	Ile	Val	Thr	Cys	Cys	Ċys	Gly	Cys	Asp	Ser	Asn	Val
		657			666			675	•		684			693			702
CGA	CTG	GTT	GTG	CAG	TGT	ACA	GAA	ACA	GAC	ATC	AGA	GAA	GTG	CAA	CAG	CTT	CTG
 Arg	 Leu	Val	Val	Gln	cys	Thr	Glu	Thr	Asp	Ile	Arg	Glu	Val	Gln	Gln	Leu	Leu
		711			720			729			738			747			756
TTG	GGA	ACA	СТА	AAC	ATA	GTG	TGT	ccc	ATC	TGC	GCA	CCG	AAG	ACC	CCA	TGG	GAA
 Leu	Gly	Thr	 Leu	 Asn	 Ile	Val	 Cys	Pro	Ile	Cys	Ala	Pro	Lys	Thr	Pro	Trp	Glu
		765			774			783			792			801			810
GTG	GTG	CCT	GTA	CAA	ATA	GCT	GCA	GGA	ACA	ACC	AGC	ACA	TTC	ATA	CTG	CCT	GTT
 Val	 Val	Pro	 Val	Gln	Ile	Ala	Ala	Gly	Thr	Thr	Ser	Thr	Phe	Ile	Leu	Pro	Val
		819			828			837			846			855			864
ATA	ATT	GCA	TTT	GTT	GTA	TGT	TTT	GTT	AGC	ATC	ATA	CTT	ATT	GTA	TGG	ATA	TCT
Ile	Ile	Ala	Phe	Val	Val	Cys	Phe	Val	Ser	Ile	Ile	Leu	Ile	Val	Trp	Ile	Ser
		873			882			891			900			909			918
GAG	TTT	ATT	GTG	TAC	ACA	тст	GTG	CTA	GTA	CTA	ACA	CTG	CTT	TTA	TAT	TTA	CTA
Glu	Phe	Ile	Val	Tyr	Thr	Ser	Val	Leu	Val	Leu	Thr	Leu	Leu	Leu	Tyr	Leu	Leu
		927			936			945			954			963			972
TTG	TGG	CTG	CTA	TTA	ACA	ACC	ccc	TTG	CAA	TTT	TTC	CTA	CTA	ACT	CTA	CTT	GTG
Leu	Trp	Leu	Leu	Leu	Thr	Thr	Pro	Leu	Gln	Phe	Phe	Leu	Leu	Thr	Leu	Leu	Val
		981			990			999			1008			1017			1026
TGT	TAC	TGT	ccc	GCA	TTG	TAT	ATA	CAC	TAC	TAT	ATT	GTT	ACC	ACA	CAG	CAA	TCT
Cys	Tyr	Cys	Pro	Ala	Leu	Tyr	Ile	His	Tyr	Tyr	Ile	Val	Thr	Thr	Gln	Gln	Ser
		1035			1044			1053			1062			1071			1080
AGA	GAG	CTC	GGT	ACC	ACT	AAT	GGA	GCA	CCA	AAC	ATT	GGG	AAG	TAT	GTT	ATG	GCA
Arg	Glu	Leu	Gly	Thr	Thr	Asn	Gly	Ala	Pro	Asn	Ile	Gly	Lys	Tyr	Val	Met	Ala
		1089			1098			1107			1116	•		1125	5		1134
GCA	CAG	TTA	TAT	GTT	CTC	CTG	CAT	CTG	TAT	CTA	GCA	CTA	CAC	AAG	AAG	TAT	CCA
Ala	Gln	Leu	Tyr	Val	Leu	Leu	His	Leu	Tyr	Leu	Ala	Leu	His	Lys	Lys	туг	Pro
		1143			1152	:		1161	_		1170	)		1179	€		1188

WO 97/05164 PCT/AU96/00473

- 28 -

TTC	CTG	AAT	CTA	CTA	CAT	ACA	ccc	CCG	CAC	AGA	CCT	CCA	CCC	TTG	TGT	CCT	CAA
Phe	 Leu	Asn	Leu	 Leu	His	Thr	Pro	Pro	His	Arg	Pro	Pro	Pro	Leu	Cys	Pro	Gln
		1197			1206			1215			1224			1233			1242
GCA	CCA	AGG	AAG	ACG	CAG	TGC	AAA	CGC	CGC	CTA	GGA	AAC	GAG	CAC	GAG	GAG	TCC
Ala	Pro	Arg	Lys	Thr	Gln	Cys	Lys	Arg	Arg	Leu	Gly	Asn	Glu	His	Glu	Glu	Ser
		1251			1260			1269			1278			1287			1296
AAC	AGT	ccc	CTT	GCA	ACG	CCT	TGT	GTG	TGG	ССС	ACA	TTG	GAC	CCG	TGG	ACA	GTG
 Asn	ser	Pro	Leu	Ala	Thr	Pro	Cys	Val	Trp	Pro	Thr	Leu	Asp	Pro	Trp	Thr	Val
	:	1305		:	1314			1323		:	1332		:	1341			1350
GAA	ACC	ACA	ACC	TCA	TCA	CTA	ACA	ATC	ACG	ACC	AGC	ACC	AAA	GAC	GGA	ACA	ACA
 Glu	Thr	Thr	Thr	ser	 Ser	Leu	Thr	Ile	Thr	Thr	Ser	Thr	Lys	Asp	Gly	Thr	Thr
	:	1359		:	1368		:	1377		:	1386		:	1395			
GTA	ACA	GTT	CAG	CTA	CGC	CTA	AGA	TCT	CAT	CAC	CAT	CAC	CAT	CAC	TAA	3'	
 Val	Thr	 Val	Gln	 Leu	ara	 Leu	Arg	 Ser	His	His	His	His	His	His	***		

Junction of El and E4 ORFs for CSL791 and CSL762

SEQ ID Nos. 25(DNA) and 26(amino acid)

Modified

GAG GAA GAT GGA AGC AAT AGC CAA GCG TTT AGA TGC GTG CCA GGA ACA GTT GTT AGA ACT TTA GGT ACC ACT AGA CCA AAC ATT GGG AAG TAT GTT ATG GCA 3' Glu Glu Asp Gly Ser Asn Ser Gln Ala Phe Arg Cys Val Pro Gly Thr Val Val Arg Thr Leu Gly Thr Thr Asn Gly Ala Pro Asn Ile Gly Lys Tyr Val Met Ala

\$

El

Junction of E5a and E1 for CSL762

SEQ ID Nos. 27 (DNA) and 28 (amino acid)

Mal Sac1

TGT CCC GCA TTG TAT ATA CAC TAC TAT ATT GTT ACC ACA CAG CAA TCT AGA GAG CTC GCG GAC GAT TCA GGT ACA GAA AAT GAG GGG TCT GGG TGT ACA GGA 3' Cys Pro Ala Leu Tyr Ile His Tyr Ile Val Thr Gln Gln Gln Ser Arg Glu Leu Ala Asp Asp Ser Gly Thr Glu Asn Glu Gly Ser Gly Cys Thr Gly

ESa

Junction of E7 and E1 for CSL791

SEQ ID Nos. 29(DNA) and 30(amino acid)

col Mal Saci

TTG GGA ACA CTA AAC ATA GTG TGT CCC ATC TGC GCA CCG AAG ACC CCA TGG TCT AGA GAG CTC GCG GAC GAT TCA GGT ACA GAA AAT GAG GGG TCT GGG TGT ACA Leu Gly Thr Leu Asn Ile Val Cys Pro Ile Cys Ala Pro Lys Thr Pro Trp Ser Arg Glu Leu Ala Asp Ser Gly Thr Glu Asn Glu Gly Ser Gly Cys Thr

ş

H

5.

# Example 4 - Preparation of antibodies to HPV6b early ORF protein products

The following peptides corresponding to portions of the sequence of the relevant E proteins, were synthesised and conjugated to diphtheria toxoid:

5

- E6 dip. tox-C-QYRHFDYAQYATTVEEETKQDILD
- E7 MHGRHVTLKDIVLDLQPPD-C-dip. tox

For the E6 peptide two rabbits (following pre-bleeding) were each inoculated with approximately 54µg peptide/104µg diphtheria toxoid in Freund's complete adjuvant followed at 3-weekly intervals by a similar dose of peptide conjugate in Freund's incomplete adjuvant. Bleeds were taken one week after the second dose and one week following the third dose. The same regime was used for the E7 peptide using 45µg peptide/103 µg diphtheria toxoid.

15

Serum derived from the bleeds were tested for specific antibody in a solid phase EIA against biotin-conjugated peptide which had been bound to plates coated with strepavidin.

## 20 Example 5 - Purification of polyprotein E6/E7/E4

The trimer polyprotein E6/E7/E4 was expressed in *E. coli* BL21 cells by induction of cells at OD₆₀₀ ~ 1 using 0.4mM IPTG. The cells were harvested by centrifugation (4,000g, 20 minutes), resuspended in 30mM Tris pH8.0, disrupted by sonication (MSE, amplitude 18µm, 4 x 30 seconds) and inclusion bodies pelleted by centrifugation (12,000g, 30 minutes). The pellet containing the trimer was solubilized in 8M Urea, 30mM Tris pH8.0 for 16 hours in the presence of protease inhibitors (Boehringer Cat. No. 1697498) and then centrifuged at 12,000g for 30 minutes and the supernatant collected. To this, Tris-(2-carboxyethyl)phosphine (TCEP) [Pierce] was added to 1.2mM final concentration. The supernatant was applied to Q-sepharose HP (Pharmacia) and the

column washed with one column volume of 8M Urea, 1.2mM TCEP, 30 mM Tris pH8.0. Fractions were then eluted using a gradient containing 0 to 1M NaCl in 10 column volumes of the washing buffer. The fractions obtained were examined by Western blot from 4 to 20% SDS-PAGE probed with the anti-E4 antibody MWE4.

5

Figure 11 shows a Western blot of material obtained from Q-sepharose. An immunoreactive band of ~ 41kDa is evident in supernatant material from the urea solubilisation lane 3, and in fractions corresponding to 120 to 150 mM NaCl (lanes 8 and 9, arrow).

10

Supernatant from the urea solublisation was also applied to a column containing Chelating Sepharose Fast Flow (Pharmacia) to take advantage of the C-terminal six histidine sequence. Relatively poor binding of the trimer to the Nickel column was observed under the conditions described. The trimer was eluted from the column using a 0 to 500 mM imidazole gradient.

### Example 6

In a further example of the present invention, a DNA sequence coding for a single polyprotein (Fig. 12) is formed by fusion of DNA fragments encoding HPV-6 early ORF proteins wherein the order of the ORFs is E2, E4, E5a, E5b, E6, E7 and E1.

The DNA sequences encoding the early ORF proteins are amplified individually by PCR using HPV-6 genomic DNA using the primers set out in Table 2.

25

Table 2

Gene	Oligor	nucleotides
E2	(a) (b)	5'-GTG TGT GAG CTC ATG GAA GCA ATA GCC AAG-3' (SEQ ID No. 31) and 5'-GTG TGT GTC GAC CAA TAG GTG CAG TGA CAT-3' (SEQ ID No. 32)
E4	(c)	5'-GTG TGT GTC GAC ATG GGA GCA CCA AAC ATT-3' (SEQ ID No. 33) and 5'-GTG TGT AGA TCT TAG GCG TAG CTG AAC TGT-3' (SEQ ID No. 34)
E5a	(e) (f)	5'-GTG TGT AGA TCT ATG GAA GTG GTG CCT GTA-3' (SEQ ID No. 35) and 5'-GTG TGT CTT AAG TTG CTG TGT GGT AAC AAT-3' (SEQ ID No. 36)
E5b	(g) (h)	5'-GTG TGT CTT AAG ATG ATG CTA ACA TGT CAA-3' (SEQ ID No. 37) and 5'-GTG TGT CCG CGG ATT CAT ATA TAT ATA ATC-3' (SEQ ID No. 38)
E6	(i) (j)	5'-GTG TGT CCG CGG ATG GAA AGT GCA AAT GCC-3' (SEQ ID No. 39) and 5'-GTG TGT GCT AGC GGG TAA CAT GTC TTC CTA-3' (SEQ ID No. 40)
E <i>7</i>	(k) (l)	5'-GTG TGT GCT AGC ATG CAT GGA AGA CAT GTT-3' (SEQ ID No. 41) and 5'-GTG TGT CGA TCG GGT CTT CGG TGC GCA GAT-3' (SEQ ID No. 42)
E1	(m) (n)	5'-GTG TGT CGA TCG ATG GCG GAC GAT TCA GGT-3' (SEQ ID No. 43) and 5'-GTG TGT GGT ACC TCA TAA AGT TCT AAC AAC-3' (SEQ ID No. 44)

The primers are synthesised to incorporate artificial restriction enzyme sites at the 5' and 3' termini of the amplification products. These restriction enzyme sites are used to facilitate the fusion of PCR products encoding the appropriate early ORF proteins in the desired order and in the correct translational frame. The restriction enzyme sites are also used to aid the cloning of the PCR products into the expression vector pTrcHisA. When cloned into this vector, the polyprotein construct is expressed as an N-terminal

hexaHis fusion. The nucleotide sequence and deduced amino acid sequence of this fusion are shown below (SEQ ID Nos. 45 and 46, respectively).

## INFORMATION FOR HEXAHIS-POLYPROTEIN FUSION SEQUENCE:

- (I) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 4770 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: HUMAN PAPILLOMAVIRUS TYPE 6
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 1..4761
  - (D) OTHER INFORMATION:/codon_start= 1 /product= "HPV-6 Polyprotein"
- (ix) FEATURE:
  - (A) NAME/KEY: misc RNA
  - (B) LOCATION:1..108
  - (D) OTHER INFORMATION:/function= "Tag used for protein purification" /product= "hexaHis leader sequence from pTrcHisA"
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION: 109...114
  - (D) OTHER INFORMATION: /label= SacI
- (ix) FEATURE:
  - (A) NAME/KEY: mRNA
  - (B) LOCATION: 115..1218
  - (D) OTHER INFORMATION:/gene= "HPV-6 E2"
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature (B) LOCATION:1219..1224

  - (D) OTHER INFORMATION: /label= SalI
- (ix) FEATURE:
  - (A) NAME/KEY: mRNA
  - (B) LOCATION: 1225..1551
  - (D) OTHER INFORMATION:/gene= "HPV-6 E4"
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION: 1552...1557
  - (D) OTHER INFORMATION:/label= BglII
- (ix) FEATURE:
  - (A) NAME/KEY: mRNA
  - (B) LOCATION: 1558..1830
  - (D) OTHER INFORMATION:/gene= "HPV-6 E5a"
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION: 1831..1836
  - (D) OTHER INFORMATION: /label= BfrI
- (ix) FEATURE:
  - (A) NAME/KEY: mRNA
  - (B) LOCATION: 1837..2052
  - (D) OTHER INFORMATION:/gene= "HPV-6 E5b"

									-	- 35	-					
	(ix)	(A	TURE NA LO OT	ME/K CATI	ON: 2	053.	.205	8	el= :	SacI	ī					
	(ix)	(A (B	TURE ) NA ) LO ) OT	ME/K	ON: 2	059.	.250	8 /gen	e= ":	HPV-	6 E6'	<del>.</del>				
	(1X)	(A (B	TURE ) NA ) LO ) OT	ME/K	ON: 2	509.	.251	4	el= :	NheI						
	(ix)	(A (B	TURE ) NA ) LO ) OT	ME/K	ON: 2	515.	.280	8 /gen	e= *:	HPV-	6 E7'	-				
	(ix)	(A (B	TURE ) NA ) LO ) OT	ME/K CATI	ON: 2	809.	.281	4	el=	PvuI						
	(ix)	(A (B	TURE ) NA ) LO ) OT	ME/K CATI	ON: 2	815.	.476	4 /gen	e= ".	HPV-	6 E1	-				
	(ix)	(A (B	) LO	ME/K CATI	ON: 4	765.	. 477	ture 0 /lab	el=	KpnI						
ATG Met 1	GGG G1 y	GGT Gly	TCT Ser	CAT His 5	CAT His	CAT His	CAT _.	CAT His	CAT His 10	GGT Gly	ATG Met .	GCT . Ala	AGC Ser	ATG Met 15	ACT Thr	48
GGT Gly	GGA Gly	CAG Gln	CAA Gln 20	ATG Met	G1 y	CGG Arg	GAT Asp	CTG Leu 25	TAC Tyr	GAC Asp	GAT Asp	GAC <b>A</b> sp	GAT Asp 30	AAG Lys	GAT Asp	96
CGA Arg	TGG Trp	GGA Gly 35	TCC Ser	GAG Glu	CTC Leu	ATG Met	GAA Glu 40	GCA Ala	ATA Ile	GCC Ala	AAG Lys	CGT Arg 45	TTA Leu	GAT <b>A</b> sp	GCG Ala	144
TGC Cys	CAG Gln 50	GAA Glu	CAG Gln	TTG Leu	TTA Leu	GAA Glu 55	CTT Leu	TAT Tyr	GAA Glu	GAA Glu	AAC Asn 60	AGT Ser	ACT Thr	GAC Asp	CTA Leu	192
CAC His 65	AAA Lys	CAT His	GTA Val	TTG Leu	CAT His 70	TGG Trp	AAA Lys	TGC Cys	ATG Met	AGA Arg 75	CAT His	GAA Glu	AGT Ser	GTA Val	TTA Leu 80	240
TTA Leu	TAT Tyr	AAA Lys	GCA Ala	AAA Lys 85	CAA Gln	ATG Met	ej À eec	CTA Leu	AGC Ser 90	CAC His	ATA Ile	GGA Gly	ATG Met	CAA Gln 95	GTA Val	288
GTG Val	CCA Pro	CCA Pro	TTA Leu 100	AAG Lys	GTG Val	TCC Ser	GAA Glu	GCA Ala 105	AAA Lys	GGA Gly	CAT His	AAT Asn	GCC Ala 110	ATT Ile	GAA Glu	336
ATG Met	CAA Gln	ATG Met 115	His	TTA Leu	GAA Glu	TCA Ser	TTA Leu 120	Leu	AGG Arg	ACT Thr	GAG Glu	TAT Tyr 125	AGT Ser	ATG Met	GAA Glu	384
CCG Pro	TGG Trp	Thr	TTA Leu	CAA Gln	GAA Glu	ACA Thr 135	Ser	TAT	GAA Glu	ATG Met	TGG Trp 140	CAA Gln	ACA Thr	Pro	CCT Pro	432
AAA Lys	CGC	TGT Cys	TTT Phe	AAA Lys	AAA Lys	CGG Arg	GGC Gly	Lys	ACT Thr	GTA Val	GAA Glu	GTT Val	AAA Lys	TTI Phe	GAT Asp	480

WO 97/05164 - 36 -160 150 GGC TGT GCA AAC AAT ACA ATG GAT TAT GTG GTA TGG ACA GAT GTG TAT Gly Cys Ala Asn Asn Thr Met Asp Tyr Val Val Trp Thr Asp Val Tyr GTG CAG GAC AAT GAC ACC TGG GTA AAG GTG CAT AGT ATG GTA GAT GCT 576 Val Gln Asp Asn Asp Thr Trp Val Lys Val His Ser Met Val Asp Ala AAG GGT ATA TAT TAC ACA TGT GGA CAA TTT AAA ACA TAT TAT GTA AAC 624 Lys Gly Ile Tyr Tyr Thr Cys Gly Gln Phe Lys Thr Tyr Tyr Val Asn TTT GTA AAA GAG GCA GAA AAG TAT GGG AGC ACC AAA CAT TGG GAA GTA 672 Phe Val Lys Glu Ala Glu Lys Tyr Gly Ser Thr Lys His Trp Glu Val TGT TAT GGC AGC ACA GTT ATA TGT TCT CCT GCA TCT GTA TCT AGC ACT Cys Tyr Gly Ser Thr Val Ile Cys Ser Pro Ala Ser Val Ser Ser Thr ACA CAA GAA GTA TCC ATT CCT GAA TCT ACT ACA TAC ACC CCC GCA CAG 768 Thr Gln Glu Val Ser Ile Pro Glu Ser Thr Thr Tyr Thr Pro Ala Gln ACC TCC ACC CTT GTG TCC TCA AGC ACC AAG GAA GAC GCA GTG CAA ACG Thr Ser Thr Leu Val Ser Ser Ser Thr Lys Glu Asp Ala Val Gln Thr 260 CCG CCT AGG AAA CGA GCA CGA GGA GTC CAA CAG TCC CCT TGC AAC GCC 864 Pro Pro Arg Lys Arg Ala Arg Gly Val Gln Gln Ser Pro Cys Asn Ala 280 TTG TGT GTG GCC CAC ATT GGA CCC GTG GAC AGT GGA AAC CAC AAC CTC 912 Leu Cys Val Ala His Ile Gly Pro Val Asp Ser Gly Asn His Asn Leu ATC ACT AAC AAT CAC GAC CAG CAC CAA AGA CGG AAC AAC AGT AAC AGT 960 Ile Thr Asn Asn His Asp Gln His Gln Arg Arg Asn Asn Ser Asn Ser TCA GCT ACG CCT ATA GTG CAA TTT CAA GGT GAA TCC AAT TGT TTA AAG 1008 Ser Ala Thr Pro Ile Val Gln Phe Gln Gly Glu Ser Asn Cys Leu Lys TGT TTT AGA TAT AGG CTA AAT GAC AGA CAC AGA CAT TTA TTT GAT TTA 1056 Cys Phe Arg Tyr Arg Leu Asn Asp Arg His Arg His Leu Phe Asp Leu ATA TCA TCA ACG TGG CAC TGG GCC TCC TCA AAG GCA CCA CAT AAA CAT 1104 Ile Ser Ser Thr Trp His Trp Ala Ser Ser Lys Ala Pro His Lys His GCC ATT GTA ACT GTA ACA TAT GAT AGT GAG GAA CAA AGG CAA CAG TTT 1152 Ala Ile Val Thr Val Thr Tyr Asp Ser Glu Glu Gln Arg Gln Gln Phe TTA GAT GTT GTA AAA ATA CCC CCT ACC ATT AGC CAC AAA CTG GGA TTT 1200 Leu Asp Val Val Lys Ile Pro Pro Thr Ile Ser His Lys Leu Gly Phe 395 ATG TCA CTG CAC CTA TTG GTC GAC ATG GGA GCA CCA AAC ATT GGG AAG 1248 Met Ser Leu His Leu Leu Val Asp Met Gly Ala Pro Asn Ile Gly Lys 405 TAT GTT ATG GCA GCA CAG TTA TAT GTT CTC CTG CAT CTG TAT CTA GCA 1296 Tyr Val Met Ala Ala Gln Leu Tyr Val Leu Leu His Leu Tyr Leu Ala CTA CAC AAG AAG TAT CCA TTC CTG AAT CTA CTA CAT ACA CCC CCG CAC 1344

Leu His Lys Lys Tyr Pro Phe Leu Asn Leu Leu His Thr Pro Pro His

BARCOCIO- JAM

070E1R181 1 -

445

- 37 -

AGA Arg	CCT Pro 450	Pro	CCC Pro	TTG '	Cys	CCT ( Pro ( 455	CAA ( Sln )	GCA Ala	CCA Pro	AGG Arg	AAG Lys 460	ACG Thr	G]ů	TGC Cys	AAA Lys	1392	
CGC Arg 465	CGC Arg	CTA Leu	GGA Gly	Asn	GAG Glu : 470	CAC ( His (	GAG (	GAG Glu	TCC Ser	AAC Asn 475	AGT Ser	CCC Pro	CTT Leu	GC A	ACG Thr 480	1440	
CCT Pro	TGT Cys	GTG Val	TGG Trp	CCC . Pro ' 485	ACA '	TTG ( Leu /	GAC ( Asp	CCG Pro	TGG Trp 490	ACA Thr	GTG Val	GAA Glu	ACC Thr	ACA Thr 495	ACC Thr	1488	
TCA Ser	TCA Ser	CTA Leu	ACA Thr 500	ATC . Ile	ACG . Thr	ACC I	Ser	ACC Thr 505	AAA Lys	GAC Asp	GGA Gly	ACA Thr	ACA Thr 510	GTA Val	ACA Thr	1536	
GTT Val	CAG Gln	CTA Leu 515	CGC Arg	CTA . Leu .	AGA Arg	Ser 1	ATG Met 520	GAA Glu	GTG Val	GTG Val	CCT Pro	GTA Val 525	CAA Gln	ATA Ile	GCT Ala	1584	
GCA Ala	GGA Gly 530	ACA Thr	ACC Thr	AGC Ser	Thr	TTC . Phe 535	ATA Ile	CTG Leu	CCT Pro	GTT Val	ATA Ile 540	ATT Ile	GCA Ala	TTT Phe	GTT Val	1632	
GTA Val 545	TGT Cys	TTT Phe	GTT Val	Ser	ATC Ile 550	ATA Ile	CTT Leu	ATT Ile	GTA Val	TGG Trp 555	ATA Ile	TCT Ser	GAG Glu	TTT Phe	ATT Ile 560	1680	
GTG Val	TAC Tyr	ACA Thr	TCT Ser	GTG Val 565	CTA Leu	GTA Val	CTA Leu	ACA Thr	CTG Leu 570	CTT Leu	TTA Leu	TAT Tyr	TTA Leu	CTA Leu 575	TTG Leu	1728	
TGG Trp	CTG Leu	CTA Leu	TTA Leu 580	ACA Thr	ACC Thr	CCC Pro	Leu	CAA Gln 585	TTT Phe	TTC Phe	CTA Leu	CTA Leu	ACT Thr 590	CTA Leu	CTT Leu	1776	
GTG Val	TGT Cys	TAC Tyr 595	TGT Cys	CCC Pro	GCA Ala	TTG Leu	TAT Tyr 600	ATA Ile	CAC His	TAC Tyr	TAT Tyr	ATT Ile 605	GTT Val	ACC Thr	ACA Thr	1824	
CAG Gln	CAA Gln 610	CTT Leu	AAG Lys	ATG Met	ATG Met	CTA Leu 615	ACA Thr	TGT Cys	CAA Gln	TTT Phe	AAT Asn 620	GAT Asp	GGA Gly	GAT Asp	ACC Thr	1872	
TGG Trp 625	CTG Leu	GGT Gly	TTG Leu	TGG Trp	TTG Leu 630	TTA Leu	TGT Cys	GCC Ala	TTT Phe	ATT Ile 635	GTA Val	GGG Gly	ATG Met	TTG Leu	GGG Gly 640	1920	
TTA Leu	TTA Leu	TTG Leu	ATG Met	CAC His 645	TAT Tyr	AGA Arg	GCT Ala	GTA Val	CAA Gln 650	GGG Gly	GAT Asp	AAA Lys	CAC His	ACC Thr 655	Lys	1968	
TGT Cys	AAG Lys	AAG Lys	TGT Cys 660	Asn	AAA Lys	CAC His	AAC Asn	TGT Cys 665	Asn	GAT Asp	GAT Asp	TAT	GTA Val 670	Thr	ATG Met	2016	<b>,</b>
His	Tyr	675	Thr	Asp	Gly	Asp	Tyr 680	Ile	Туг	: Met	: Asn	685	Arg	Met	GAA Glu	2064	1
Sei	690	Asr )	n Ala	Ser	Thr	<b>Ser</b> <b>6</b> 95	Ala	Thr	Thi	r Ile	700	) GTL	, Ler	ı cys	AAG Lys	2112	2
Th: 705	Phe	e Ası	ı Lev	Ser	710	His	Thr	Leu	ı Glı	71:	e Ast	л Су:	s Va.	l Pne	TGC Cys 720	2160	
AA( Ly:	AA AS	r GCZ	A CTO	725	Thr	GCA Ala	GAG Glu	ATT	TA' Ty: 73	r Se	A TAI	r Al	A TA:	r AA r Ly 73	A CAC s His	220	8
CT: Le	A AAG	G GT	C CTC	TTI Phe	CGA Arg	GGC Gly	GGC GBC	TA:	r CC	A TA	r GC.	A GC a Al	C TG a Cy	c GC s Al	G TGC a Cys	225	6

- 38 -

			740					745		- 50	, -		750			
TGC Cys	CTA Leu	GAA Glu 755		CAT His	GGA :	Lys :	ATA [le:	ASD	CAA Gln	TAT Tyr	AGA Arg	CAC His 765	TTT Phe	GAT Asp	TAT Tyr	2304
GCT Ala	GGA Gly 770	TAT Tyr	GCA Ala	ACA Thr	Thr	GTT ( Val (	GAA Glu	GAA Glu	GAA Glu	ACT Thr	AAA Lys 780	CAA Gln	GAC A≤p	ATC Ile	TTA Leu	2352
GAC Asp 785	GTG Val	CTA Leu	ATT Ile	CGG Arg	TGC Cys 790	TAC   Tyr	CTG Leu	TGT Cys	CAC His	AAA Lys 795	CCG Pro	CTG Leu	TGT Cys	GIU	GTA Val 800	2400
GAA Glu	AAG Lys	GTA Val	AAA Lys	CAT His 805	ATA Ile	CTA . Leu	ACC Thr	<b>A</b> AG Lys	GCG Ala 810	CGG Arg	TTC Phe	ATA Ile	AAG Lys	CTA Leu 815	AAT Asn	2448
TGT Cys	ACG Thr	TGG Trp	AAG Lys 820	GGT Gly	CGC Arg	TGC Cys	CTA Leu	CAC His 825	TGC Cys	TGG Trp	ACA Thr	ACA Thr	TGC Cys 830	ATG Met	GAA Glu	2496
GAC Asp	ATG Met	TTA Leu 835	CCC Pro	GCT Ala	AGC Ser	ATG Met	CAT His 840	GGA Gly	AGA Arg	CAT His	GTT Val	ACC Thr 845	CTA Leu	AAG Lys	GAT Asp	2544
ATT Ile	GTA Val 850	TTA Leu	GAC Asp	CTG Leu	CAA Gln	CCT Pro 855	CCA Pro	GAC <b>A</b> sp	CCT Pro	GTA Val	GGG Gly 860	Leu	CAT His	TGC Cys	TAT Tyr	2592
GAG Glu 865	Gln	TTA Leu	GTA Val	GAC <b>A</b> sp	AGC Ser 870	TCA Ser	GAA Glu	GAT Asp	GAG Glu	GTG Val 875	GAC Asp	GAA Glu	GTG Val	GAC <b>As</b> p	GGA Gly 880	2640
Gln	Asp	Ser	Gln	CCT Pro 885	Leu	Lys	Gln	His	890	GIN	116	· val	. 1111	895	Cys	2688
Cys	Gly	Cys	900	Ser	Asn	Val	Arg	905	, Val	Val	GII	ı Cys	910	)		2736
GAC Asp	ATC	AGA Arg 915	Glu	GTG Val	CAA Gln	CAG Gln	CTT Leu 920	Leu	TTG Leu	GGA Gly	ACA Thi	CT) r Lev 925	. ~	: ATA	Val	2784
Cys	930	) )	Cy:	s Ala	Pro	Lys 935	Thr	Arq	g Sei	мет	94	0	p AS	, 361	GGT Gly	2832
Th: 94:	c Glu	ı Ası	n Glu	Gl) د	950	Gly	Cys	Th	r GI	955	5	e me	c va	1 01.	A GCT Ala 960	2880
Il	e`Va	l Gli	n Hi	965	Thr	Gly	Thi	r GI	97	0	. ~	p As	p GI	97		2928
GA G1	G GT u Va	G GA	G GA u As 98	p Se	r GGC r Gly	TAT	GA(	D Me 98	t va	G GA	C TT p Ph	T AT	T GA e As 99	یہ ب	C AGC p Ser	2976
AA As	T AT n Il	T AC e Th 99	r Hi	C AA'	T TC	A CTO	GA 1 Gl	u Ai	A CA a Gl	G GC n Al	A TI a Le	eu ei	T AA ne As 005	C AG	G CAG g Gln	3024
G1	u Al 10	a As 110	p Th	r Hi	s Ty	10	a Th 15	r Vā	11 61	n As	10	020	ys A	rg by	G TAT	3072
Le	A G( su G) 025	T AC	er Pi	EA TA	r Va	T AG 1 Se 30	T CC r Pr	T AT	TA AA	sn Tr	or I 035	TA G	CC G la G	AG GG	A GTG La Val 1040	3120

- 39 -

GAA Glu	AGT Sei	GAA Glu	ATA Ile	AGT Ser 1045	Pro	CGA Arg	TTG Leu	GAC Asp	GCC Ala 1050	TIE	AAA Lys	CTT Leu	ACA Thr	AGA Arg 1055	0	3168
CCA Pro	AAA Lys	AAG Lys	GTA Val 1060	Lys	CGA Arg	CGG Arg	CTG Leu	TTT Phe 106	CAA Gln 5	ACC Thr	AGG AIg	GAA Glu	CTA Leu 1070	TIII	GAC Asp	321€
AGT Sei	GGA Gly	TAT Tyr 107	Gly	TAT Tyr	TCT Ser	GAA Glu	GTG Val 108	GIU	GCT Ala	GGA Gly	ACG Thr	GGA Gly 108	T 111	CAG Gln	GTA Val	3264
GAG Glu	AAA Lys 1090	His	G] y	GTA Val	CCG Pro	GAA Glu 1099	Asn	GGG Gly	GGA Gly	GAT Asp	GGT Gly 110	GIN	GAA Glu	AAG Lys	GAC Asp	3312
ACA Thr 1105	Gly	AGG Arg	GAC A≤p	ATA Ile	GAG Glu 111	Gly	GAG Glu	GAA Glu	CAT His	ACA Thr 111	GIU	GCG Ala	GAA Glu	Ala GCG	CCC Pro 1120	3360
ACA Thr	AAC Asn	AGT Ser	Val	CGG Arg 112	Glu	CAT His	GCA Ala	GGC Gly	ACA Thr 113	Ala	GGA Gly	ATA Ile	TTG Leu	GAA Glu 113	Leu	3408
TTA Leu	AAA Lys	TGT Cys	AAA Lys 114	Asp	TTA Leu	CGG Arg	Ala	GCA Ala 114	Leu	CTT Leu	GGT Gly	<b>AA</b> G Lys	TTT Phe 115	rys	GAA Glu	345€
TGC Cys	TTT Phe	GGG Gly 115	Leu	TCT Ser	TTT Phe	ATA Ile	GAT Asp 116	Leu	ATT Ile	AGG Arg	CCA Pro	TTT Phe 116	Lys	AGT Ser	GAT Asp	3504
AAA Lys	ACA Thr 117	Thr	TGT Cys	TTA Leu	GAT Asp	TGG Trp 117	Val	GTA Val	GCA Ala	GGG Gly	TTT Phe 118	GIY	ATA Ile	CAT His	CAT His	3552
AGC Ser 118	Ile	TCA Ser	GAG	GCA Ala	TTT Phe 119	Gln	Lys	TTA Lev	ATT	GAG Glu	PIC	Leu	AGT Ser	TTA Leu	TAT Tyr 1200	3600
GCA Ala	CAT His	ATA Ile	CAP Glr	TGG Trp 120	Lev	ACA Thr	AAT Asr	GCA Ala	TGG Trp 121	e GT?	ATC Met	GTA : Val	TTG Leu	TTA Leu 121	GTA Val 5	3648
TTA Leu	TTA Leu	AGA 1 AIG	TTT Phe 122	: Lys	GT#	TAA /	AAJ	A AG1 5 Se1 122	Arg	AG1 Sei	Thi	GT1	r GCA 1 Ala 123	. ~ .	ACA Thr	3696
CTI Lev	GCA Ala	A ACC 3 Th: 12:	r Le	A TTA	A AA? 1 Asi	TATA	Pro 12-	o GI	A AAC LL ASI	CA n Gli	A ATO	TT t Les 12	a	GAC	CCA Pro	3744
CCI Pro	A AA	s Il	A CA e Gl:	A AG	r GI	r GT. y Val	I AL	a Al	C CTO	S TA	T TG r Tr 12	p rn	T CG	g Th	Gly	3792
n	A TC e Se 65	A AA r As	T GC n Al	C AG a Se	r AC r Th 12	r Va	r AT 1 11	A GG e Gl	G GA y Gl	n YT	A CC a Pr 75	A GA o Gl	A TG u Tr	G AT. p Il	A ACA e Thr 1280	3840
CG Ar	c CA g Gl	A AC	A GT Ya Va	1 11	T GA e Gl 85	A CA u Hi	c GG s Gl	G TT y Le	n AT	A GA a As 90	C AG	T CA	G TT n Ph	T AA e Ly 12	A TTA s Leu 95	3888
AC Th	A GA r Gl	IA A. eM u.	et Va	G CA 1 G1 300	G TG	6 GC p Al	G TA	r As	AT AA sp As 305	T GA	C AI	TA TO	/S G.	G GA u Gl 310	G AGT u Ser	3936
GA G1	IA A. LI U.	Le A	CA TI la Pi 315	TT GP ne Gl	A TA	AT GO /r Al	.a G	AA AG Ln Ai 320	GG GC rg G1	GA GA	AT TT	ne A	AT TO Sp Se 325	T AF	AT GCA sn Ala	3984
C(	GA GO	IA T	IT T	IA A) eu A:	AT AG	SC AJ er As	AT A' sn M	IG C	AG G( ln A)	CA A	AA T	AT G yr V	TG A	AA GI ys Ai	AT TGT sp Cys	4032

1340 1335 1330

Ala 1345	Thr	Met	Cys	Arg	His 1350	Tyr	Lys	His	Ala	GAA Glu 1355	Met	Arg	Lys	Met	Ser 1360	4080
ATA Ile	AAA Lys	CAA Gln	TGG Trp	ATA Ile 136	Lys	CAT His	AGG Arg	GGT Gly	TCT Ser 1370	AAA Lys )	ATA Ile	GAA Glu	GGC Gly	ACA Thr 1375	Gly	4128
AAT Asn	TGG Trp	AAA Lys	CCA Pro 1380	Ile	GTA Val	CAA Gln	TTC Phe	CTA Leu 1385	Arg	CAT His	CAA Gln	AAT Asn	ATA Ile 1390	Glu	TTC Phe	4176
ATT Ile	CCT Pro	TTT Phe 1395	Leu	ACT Thr	AAA Lys	TTT Phe	AAA Lys 1400	Leu	TGG Trp	CTG Leu	CAC His	GGT Gly 1405	Thr	CCA Pro	AAA Lys	4224
AAA Lys	AAC Asn 141	Cys	ATA Ile	GCC Ala	ATA Ile	GTA Val 141	Gly	CCT Pro	CCA Pro	GAT Asp	ACT Thr 1420	Gly	AAA Lys	TCG Ser	TAC Tyr	4272
TTT Phe 1425	Cys	ATG Met	AGT Ser	TTA Leu	ATA Ile 1430	Ser	TTT Phe	CTA Leu	GGA Gly	GGT Gly 1435	Thr	GTT Val	ATT Ile	Ser	CAT His 1440	4320
GTA Val	AAT Asn	TCC Ser	AGC Ser	AGC Ser 144	His	TTT Phe	TGG Trp	TTG Leu	CAA Gln 1450	CCG Pro	TTA Leu	GTA Val	GAT Asp	GCT Ala 1455	Lys	4368
GTA Val	GCA Ala	TTG Leu	TTA Leu 1460	Asp	GAT Asp	GCA Ala	ACA Thr	CAG Gln 146	Pro	TGT Cys	TGG Trp	ATA Ile	TAT Tyr 1470	Met	GAT Asp	4416
ACA Thr	TAT Tyr	ATG Met 147	Arg	AAT Asn	TTG Leu	TTA Leu	GAT Asp 148	Gly	AAT Asn	CCT Pro	ATG Met	AGT Ser 148	Ile	GAC Asp	AGA Arg	4464
AAG Lys	CAT His 149	Lys	GCA Ala	TTG Leu	ACA Thr	TTA Leu 149	Ile	AAA Lys	TGT Cys	CCA Pro	Pro 150	Leu	CTA Leu	GTA Val	ACG Thr	4512
TCC Ser 150	Asn	ATA Ile	GAT Asp	ATT Ile	ACT Thr 151	Lys	GAA Glu	GAT Asp	AAA Lys	TAT Tyr 151	Lys	TAT Tyr	TTA Leu	CAT His	ACT Thr 1520	4560
AGA Arg	GTA Val	ACA Thr	ACA Thr	TTT Phe 152	Thr	TTT Phe	CCA Pro	AAT Asn	CCA Pro 153	TTC Phe 0	CCT Pro	TTT Phe	GAC Asp	AGA Arg 153	Asn	4608
G] y	AAT Asn	GCA Ala	GTG Val 154	Tyr	GAA Glu	CTG Leu	Ser	AAT Asn 154	Thr	AAC Asn	TGG Trp	AAA Lys	TGT Cys 155	Phe	TTT Phe	4656
GAA Glu	AGA Arg	CTG Leu 155	Ser	TCA Ser	AGC Ser	CTA Leu	GAC Asp 156	Ile	CAG Gln	GAT Asp	TCT Ser	GAG Glu 156	Asp	GAG Glu	GAA Glu	4704
GAT Asp	GGA Gly 157	Ser	AAT Asn	AGC Ser	CAA Gln	GCG Ala 157	Phe	AGA Arg	TGC Cys	GTG Val	CCA Pro 158	Gly	ACA Thr	GTT Val	GTT Val	4752
	Thi	TTA Leu		(GGTA	rcc											4770

#### **CLAIMS:**

- 1. A polyprotein construct comprising at least two amino acid sequences fused directly or indirectly together, each of said sequences being the sequence of an early ORF protein of papillomavirus (PV) or an immunogenic variant or fragment thereof, and at least one of said sequences being other than the E6 or E7 protein sequence or an immunogenic variant or fragment thereof.
- 2. A polyprotein construct according to claim 1, wherein said sequences are sequences of early ORF proteins of human PV, or immunogenic variants or fragments thereof.
- 3. A polyprotein construct according to claim 2, wherein said early ORF proteins are selected from the group consisting of the E1, E2, E3, E4, E5 (E5a, E5b), E6, E7 and E8 proteins of PV.
- 4. A polyprotein construct according to any of claims 1 to 3, selected from the group consisting of:
  - (a) E6/E4
  - (b) E6/E5a/E4
  - (c) E6/E7/E4
  - (d) E6/E7/E5a/E4
  - (e) E6/E7/E1/E4
  - (f) E6/E7/E5a/E1/E4
  - (g) E6/E7/E5a/E1/E2/E4
  - (h) E6/E7/E5a/E5b/E1/E2/E4
  - (i) E2/E5b
  - (i) E2/E1/E5b
  - (k) E2/E5a/E5b
  - (l) E2/E1/E5a/E5b

- (m) E2/E4/E5a/E5b/E6/E7/E1
- (n) E2/E3/E4/E5/E8/E6/E7/E1.
- 5. A polyprotein construct according to claim 1, further comprising one or more linker sequences between and/or before and/or after said amino acid sequences.
- 6. A polyprotein construct according to claim 5, wherein said linker sequence(s) comprise from 1 to 5 amino acid residues.
- 7. A polyprotein construct according to claim 1, further comprising a tag protein or peptide moiety fused or otherwise coupled thereto.
- 8. A polyprotein construct according to claim 7, wherein said tag moiety is selected from the group consisting of (his)₆, glutathione-S-transferase (GST) and FLAG.
- 9. A polyprotein construct according to claim 1, further comprising an adjuvant moiety fused or otherwise coupled thereto.
- 10. A polyprotein construct according to claim 9, wherein said adjuvant moiety is selected from diphtheria toxin, cholera toxin and *E. coli* heat labile toxin (LT) and non-toxic derivatives thereof such as the holotoxoid or B sub-unit of cholera toxin or LT.
- 11. A polyprotein construct according to claim 1, further comprising a lipid binding region.
- 12. A polyprotein construct according to claim 11, wherein said lipid binding region is an influenza haemagglutinin tail.

- 13. A composition for eliciting a humoral and/or cellular immune response against papillomavirus in a host animal, said composition comprising an immunologically effective amount of a polyprotein construct according to any of claims 1 to 12, together with a pharmaceutically acceptable carrier and/or diluent.
- 14. A vaccine composition according to claim 13, further comprising an adjuvant.
- 15. A method for eliciting a humoral and/or cellular response against papillomavirus in a host animal, which method comprises administering to the host animal an immunologically effective amount of a polyprotein construct according to any of claims 1 to 12.
- 16. A method according to claim 15, wherein said polyprotein construct is administered in a composition together with a pharmaceutically acceptable carrier and/or diluent.
- 17. A method according to claim 16, wherein said composition further comprises an adjuvant.
- 18. A method according to any of claims 15 to 17, wherein said host animal is a human.
- 19. Use of a polyprotein construct according to any of claims 1 to 12, in eliciting an immune response against papillomavirus in a host animal.
- 20. A nucleic acid molecule which encodes a polyprotein construct according to any of claims 1 to 12.
- 21. A recombinant DNA molecule comprising an expression control sequence operatively linked to a nucleic acid molecule according to claim 20.

- 22. A recombinant DNA molecule according to claim 21, wherein said expression control sequence comprises promoter and initiator sequences, the sequence of nucleotides encoding the polyprotein construct being located in a single translational frame 3' to the promoter and initiator sequences, and a termination sequence located 3' to said sequence of nucleotides.
- 23. A recombinant DNA cloning vehicle or vector comprising a recombinant DNA molecule according to claim 21 or claim 22.
- 24. A recombinant DNA cloning vehicle or vector according to claim 23, wherein said vector is a plasmid.
- 25. A host cell transfected or transformed with a recombinant DNA molecule according to claim 21 or claim 22, or a recombinant DNA cloning vehicle or vector according to claim 23 or claim 24.
- 26. A host cell according to claim 25, wherein said host cell is E. coli.
- 27. A recombinant polyprotein construct prepared by expression in a host cell according to claim 25 or claim 26.
- 28. A composition comprising a nucleic acid molecule according to claim 20, together with a pharmaceutically acceptable carrier and/or diluent.
- 29. A method for eliciting an immune response against PV in a host animal, which method comprises administering to the host animal an immunologically effective amount of a nucleic acid molecule according to claim 20.
- 30. Use of a nucleic acid molecule according to claim 20 in eliciting an immune response against PV in a host animal.

1/12

] Xhol, Bg/III Bg/III Bg/III **E**4 Spel **F**4 E5b E2 Kpnl Hindlll, Ncol, Xbal, Sacl, Kpnl, Spel Sacl, Kpnl, Ncol, Xbal 낊 Sacl E5b Xbal **E**5a Ncol **E**2 **E6** E7 Smal HindIII Smal **E**6 Smal  $\mathbf{\omega}$ 4

SUBSTITUTE SHEET (RULE 26)

WO 97/05164 PCT/AU96/00473





SUBSTITUTE SHEET (RULE 26)

WO 97/05164 PCT/AU96/00473

3/12

Figure 3



4/12



**SUBSTITUTE SHEET (RULE 26)** 



WO 97/05164 PCT/AU96/00473

6/12 Figure 6



Figure 7



SUBSTITUTE SHEET (RULE 26)

Figure 8



WO 97/05164 PCT/AU96/00473

Figure 9



Figure 10



WO 97/05164 PCT/AU96/00473

11/12

Figure 11



Figure 12

E2	E4	E5a	E5b	E6	<b>E</b> 7	E1
		L				<u></u>

100 aa

hexaHis Tag encoded by pTrcHisA

International Application No. PCT/AU 96/00473

### A. CLASSIFICATION OF SUBJECT MATTER

Int Cl⁶: C07K 14/025; C12N 15/37, 15/86, 5/10; A61K 39/12, 31/73

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)  $IPC^6: C07K, C12N, A61K$ . Chemical Abstracts. All through Electronic Databases

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
DERWENT Databases: WPAT & JAPIO. Search terms: See extra sheet.

	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	DE 4435907 (GUTZMANN et al), 11 April 1996, IPC ⁶ C07K 14/37, 14/01, 14/08; A61K 38/16	
P,Y	See claims, especially claims 9 and 10	1-3
	TANIGUCHI & YASUMOTO: "A Major Transcript of Human Papillomavirus Type 16 in Transformed NIH 3T3 Cells contains Polycistronic mRNA encoding E7, E5, and E1^E4 Fusion Gene". Virus Genes, 3(3), pp 221-233, 1990.	
x	See abstract, figures 3 and 6, p 229 lines 4-10 and 15-16	1-3

	X Further documents are listed in the continuation of Box C	X See patent family annex
"A" "E" "L" "O"	Special categories of cited documents:  document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
	f the actual completion of the international search	Date of mailing of the international search report  18.09.96
PO BO WODE	RALIAN INDUSTRIAL PROPERTY ORGANISATION OX 200 CN ACT 2606	Authorized officer  ROBYN PORTER
AUST	RALIA Facsimile No.: (06) 285 3929	Telephone No.: (06) 283 2318

Form PCT/ISA/210 (second sheet) (July 1992) cophin

_iternational Application No. PCT/AU 96/00473

	PCT/AU 96/00473	
C (Continuat	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	ROHLFS et al: "Viral Transcription in Human Keratinocyte Cell Lines Immortalized by Human Papillomavirus Type-16". Virology, 183, pp 331-342 (1991).  See Figure 1; page 334, column 2, lines 5-9, 13-15 and 19-20; page 335 column 1, lines 26-27 and column 2 lines 2-10	1-4
x	CHIANG et al: "An E1M^E2C Fusion Protein Encoded by Human Papillomavirus Type 11 Is a Sequence-Specific Transcription Repressor". Journal of Virology, 65(6), pp 3317-3329, 1991. See abstract, p 3318, column 2, 2nd full paragraph, Figures 1 and 2, p 3321, column 1, 1st full sentence, column 2, line 3 - p 1322, column 1, line 2, column 2 lines 2-5, p 3323, column 1, 1st full paragraph, p 3326, column 2 lines 5-9 and 1st 2 sentences of 1st full paragraph	1-4, 20-22
x	LAMBERTI et al: "Transcriptional activation by the papillomavirus E6 zinc finger oncoprotein". The EMBO Journal, 9 (6), pp 1907-1913, 1990.  See abstract, figure 1, p 1912, 2nd paragraph of "Constructions"	1, 5, 20-22
x	WO 92/11290 (CETUS CORPORATION), 9 July 1992, IPC ⁵ C07K 13/00, 15/18, A61K 37/10, G01N 33/569, 33/68, C12Q 1/18, 1/70. See abstract, p 6 lines 3-11, page 7 line 12 - page 12, line 9, claims	1-3, 13-20
x	TOMITA & SIMIZU: "Translational properties of the human papillomavirus type-6 L1-coding mRNA". Gene, 133, pp 223-225, 1993. See in particular figure 1B #3	1-3, 5, 20, 2
x	WO 94/12629 (BAYLOR COLLEGE OF MEDICINE) 9 June 1994, IPC ⁵ C12N 15/00; A61K 31/70.  See abstract, p 3 lines 16-31, p 7 line 19 - p8 line 7, p11 lines 1-15, p 16 lines 35-36, Example 1 (on p 27), claim 1, Figure 1	1-3, 5, 20, 2

International Application No. PCT/AU 96/00473

#### Box

Search terms used:

#### WPAT and JAPIO search

SS1: PAPILLOMAVIRUS## OR PAPILLOMA(W)VIRUS##

SS2 : EARLY (3N)(ORF OR OPEN(W)READING(W)FRAME# OR PROTEIN# OR POLYPEPTIDE#)

SS3:1 AND 2

SS4 : E1# OR E2# OR E3# OR E4# OR E5# OR E6# OR E7# OR E8#

SS5:1 AND 4

SS 6:3 OR 5

Search terms used:

#### Chemical Abstracts Search

L1: S EARLY (3N) (ORF OR OPEN()READING()FRAME# OR PROTEIN# OR POLYPEPTIDE#)/IT

L2: S PAPILLOMAVIRUS?/IT OR PAPILLOMA()VIRUS##/IT

L3 : S (E1# OR E2# OR E3# OR E4# OR E5# OR E6# OR E7# OR E8#)/IT

L4: S L1 AND L2

L5: S L3 (L) L2

L6: S (FUS## OR FUSI##)/IT

L7: S L6 (L) L5

L8: S L6(L) L4

L9: S L7 OR L8

International Application No. PCT/AU 96/00473

Information on patent family members

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Doo	current Cited in Search Report	Patent Family Member										
DE	4435907	AU	42701/96	wo	9611272							
wo	9211290	AU	91731/91	CA	2098926	EP	563307					
		JP	7503230	US	5464936							
wo	9412629	AU	60140/94									

END OF ANNEX

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LÎNES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)