Final Report Parson's Programming Puzzles: Optimizing Efficiency and Investigating the Effects of Feedback

Further research on Social Addictive Gameful Engineering (SAGE) design and computational thinking (CT)

Spring 2021 Alexander Liebeskind

Overview

- 1. Related Research
- 2. Study Purpose
- 3. Methods
- 4. Results
 - a. Cognitive Load
 - b. Performance
 - c. Efficiency
 - d. Motivation
- 5. Discussion
- 6. Further Work

Related Research

- 1. Integrating Parsons Programming Puzzles with Scratch
- 2. Parson's Programming Puzzles: A Fun and Effective Learning
 Tool for First Programming Courses
- 3. Lessons Learned from Available Parsons Puzzles Software
- 4. Measuring Cognitive Load in Introductory CS: Adaptation of an

Instrument

```
when clicked $
go to x: 130 y: 50 $

If touching color 7 $

wait 3 secs 5

If touching color 7 $

then 10

go to x: 240 y: 230 $

say Here is the sailing store! for 2 secs $

Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $
The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store! for 2 secs $

The say Here is the sailing store!
```

Study Purpose

Number	Type	Name	Game Type	
1	PPP+f	Let's go sailing! (A)	parsons	
2	PPPd+f	Let's go sailing! (B)	parsons	
3	ScratchIE+f	Let's go sailing! (C)	parsons (no palette)	
4	ScratchIEd + f	Let's go sailing! (D)	parsons (no palette)	
5	PPP-f	Let's go sailing! (A2)	parsons (no feedback)	
6	PPPd-f	Let's go sailing! (B2)	parsons (no feedback)	
7	ScratchIE-f	Let's go sailing! (C2)	parsons (no feedback no palette)	
8	ScratchIEd-f	Let's go sailing! (D2)	parsons (no feedback no palette)	
9	PPP+f	Your very first recipes! (AC)	parsons	

- 1. Fs1/SAGE validation
- 2. Cognitive Load, Efficiency, Performance, Motivation
- 3. Demographics

Methods

Results: Cognitive Load

- 1. After Pretest (Survey 03)
- 2. After Puzzle (Survey 04)
- 3. After Posttest (Survey 06)

Test Statisticsa,b

	Intrinsic Load	Germaine Load	Overall Cognitive Load	Extraneous Load
Kruskal-Wallis H	24.554	3.845	24.818	20.305
df	7	7	7	7
Asymp. Sig.	.001	.797	.001	.005

Results: Performance

Test Statistics^a

	PRE - POST
Z	-2.735b
Asymp. Sig. (2-tailed)	.006

Figure 6.2: Sample output for Wilcoxon Signed Ranks Test indicating a significant difference in transfer performance for groups 1-8.

Test Statistics^a

	PRE - POST	
Z	-1.029b	
Asymp. Sig. (2-tailed)	.303	

Figure 6.3: Sample output for Wilcoxon Signed Ranks Test indicating no significant difference in transfer performance for group 9.

Results: Efficiency

$$E_{instructional} = \frac{Z_{P_{test}} - Z_{E_{learning}}}{\sqrt{2}} \qquad E_{performance} = \frac{Z_{P_{test}} - Z_{E_{test}}}{\sqrt{2}}$$

Test Statisticsa,b

	Performance	Performance	Instructional	Instructional
	Efficiency (time	Efficiency (CL	Efficiency (time	Efficiency (CL
,	based)	based)	based)	based)
Kruskal-Wallis H	4.721	7.264	40.215	14.808
df	7	7	7	7
Asymp. Sig.	.694	.402	.000	.039

Figure 6.4: Sample Kruskal Wallis H test efficiency output.

Results: Motivation

- 1. TEQ Results
- 2. Individual quantifiers
- 3. Expanding fs1 results to further conditions

Programming is	PPP	PPP-distractor	limited-constraint-feedback
	Positive Sh	ifts	de de
something I've wanted to learn	M=0.19, SD=1.40	M=0.27, SD=1.31	M=0, SD=1.19
fun	M=0.74, SD=1.67*	M=0.40, SD=1.74	M=0.36, SD=1.43
enjoyable	M=0.90, SD=1.83*	M=-0.05, SD=1.68	M=0.68, SD=1.76*
important to know	M=0.25, SD=1.48	M=-0.05, SD=1.17	M=0.09, SD=1.19
easy to start	M=1.35, SD=2.29*	M=0.68, SD=1.13*	M=0.45, SD=1.71
something that takes practice	M=0.065, SD=1.09	M=0.05, SD=1.29	M=-0.32, SD=1.17
	Negative S	hifts	da co
too difficult to understand	M-1.48=, SD=2.03**	M=-0.77, SD=1.77	M=-0.64, SD=1.89
boring	M=-0.41, SD=1.6	M=-0.32, SD=1.17	M=-0.54, SD=1.90
a foreign concept	M=-1.13, SD=1.83*	M=-0.27, SD=1.55	M=0, SD=2.07
too time consuming	M=-0.35, SD=2.09	M=-0.09, SD=1.27	M=-0.09, SD=2.44

Discussion

- Significance of performance and instructional efficiency findings
- 2. Efficiency support for related work
- 3. Informing fs3 study design
 - a. Sample size, pipeline, conditions
- 4. Key points for SIGSCE submission

Further Work

Fs1 revisions

2. Fs3 design

|≡ 3. Fs2 writeup (SIGSCE technical symposium)

Additional analysis

- a. Demographics
- Grouped comparisons (training element, puzzle type, etc.)

References

- [1] SDT. Self-determination Theory. https://selfdeterminationtheory.org/intrinsic-motivation-inventory/.
- [2] B. B. Morrison, e. a. (2014). Measuring cognitive load in introductory cs: adaptation of an instrument.
- [3] Briana B. Morrison, Brian Dorn, M. G. (2014). Measuring cognitive load in introductory cs: Adaptation of an instrument. ICER '14: Proceedings of the tenth annual conference on International computing education research.
- [4] Dale Parsons, P. H. (2006). Parson's programming puzzles: A fun and effective learning tool for first programming courses. ACE '06: Proceedings of the 8th Australasian Conference on Computing Education Volume 52.
- [5] Dmytro Vitel, Bari A.T.M. Golam, A. G. (2019). Lessons learned from available parsons puzzles software.
- [6] Fred G. W. C. Paas, J. J. G. V. M. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures.
- [7] Jeff Bender (2021). Spring 2021 field study goals.
- [8] Jeff Bender, Bingpu Zhao, L. M. G. K. (2020). Integrating parsons programming puzzles with scratch.
- [9] P. Charters, e. a. (2014). Challenging stereotypes and changing attitudes: the effect of a brief programming encounter on adults' attitudes toward programming.
- [10] Tamara Van Gog, F. P. (2008). Instructional efficiency: Revisiting the original construct in educational research.