```
# mengimport library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# metode svm
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split

#mengimport dataset (dataset yang digunakan yaitu dataset redwine)
data = pd.read_csv('/content/sample_data/winequality-red.csv')
data.head()
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulŗ
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	

```
# proses splint data
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.2, random_state=1
)

from sklearn import svm
model_SVM = svm.SVC(kernel='linear')
model_SVM.fit(x_train, y_train)
y_predict = model_SVM.predict(x_test) # berisi hasil data testing

    /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversionW
    y = column_or_1d(y, warn=True)

#testing
prediksi = model_SVM.predict([[0.70, 0.00, 1.9, 0.76, 1.0]]) # angkanya bebas
```

```
if prediksi == "0":
   print(prediksi, "kualitas red wine rendah")
else:
   print(prediksi, "kualitas red wine tinggi")
```

[5] kualitas red wine tinggi

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have "X does not have valid feature names, but"

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: elementw This is separate from the ipykernel package so we can avoid doing imports until

menghitung confusion matrix
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_predict)
print(confusion matrix)

ГΓ 0] 0 0 0 7 3 0 0] 0 0 102 41 01 79 0 50 0 0] 0 6 29 0] 1 0]] 1

menampilkan report hasil confusion matrix
from sklearn.metrics import classification_report
print(classification_report(y_test, y_predict))

support	f1-score	recall	precision	
1	0.00	0.00	0.00	3
10	0.00	0.00	0.00	4
143	0.66	0.71	0.61	5
129	0.56	0.61	0.52	6
35	0.00	0.00	0.00	7
2	0.00	0.00	0.00	8
320	0.57			accuracy
320	0.20	0.22	0.19	macro avg
320	0.52	0.57	0.48	weighted avg

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefin _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefin warn prf(average, modifier, msg start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefin _warn_prf(average, modifier, msg_start, len(result))

New Section

```
#pembagian Atribut Independen (x) dan Atribut Dependen (y)
x = pd.DataFrame(data.iloc[:,1:6])
y = pd.DataFrame(data.iloc[:,11:12])
print("5 paling atas data fitur: \n" , x.head())
print("======"")
print("5 paling atas data kelas: \n" , y.head())
    5 paling atas data fitur:
        volatile acidity citric acid ...
                                          chlorides free sulfur dioxide
                  0.70
                               0.00 ...
                                             0.076
                                                                  11.0
                  0.88
                               0.00 ...
                                             0.098
                                                                  25.0
    1
    2
                  0.76
                               0.04 ...
                                             0.092
                                                                  15.0
    3
                  0.28
                               0.56 ...
                                                                  17.0
                                             0.075
    4
                  0.70
                               0.00 ...
                                             0.076
                                                                  11.0
    [5 rows x 5 columns]
    5 paling atas data kelas:
        quality
             5
             5
    1
    2
             5
    3
             6
    4
             5
```

×