Contents

1	Groups	2
	1.1 Notation	
	1.2 Groups	2
	1.3 Symmetric Groups	
	1.4 Cayley Tables	
2	Subgroups	. 13

Contents 1

1 Groups

1.1 Notation

1.
$$\mathbb{N} = \{1, 2, ...\}$$

2.
$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

3.
$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \right\}$$

4.
$$\mathbb{R}$$
 = real numbers

5.
$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$$

For $n\in\mathbb{N},$ $\mathbb{Z}_n=$ integers modulo $n=\{[0],...,[n-1]\}$ where $[r]=\{z\in\mathbb{Z}:Z\equiv r \, \mathrm{mod}\, n\}$

We note that the set $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_n$ has 2 operations $+, \cdot$.

For $n \in \mathbb{N}$, an $n \times n$ matrix over \mathbb{R} (or \mathbb{Q} or \mathbb{C}) is an $n \times n$ array

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

with $a_{ij} \in \mathbb{R}$.

Note we can also do +, \cdot . For $A, B \in M_n(\mathbb{R})$

$$A + B \coloneqq \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix} \quad A \cdot B \coloneqq \begin{bmatrix} \sum_{k=1}^{n} a_{ik} b_{kj} \end{bmatrix}$$

1.2 Groups

Definition 1.2.1

Let G be a set and $*: G \times G \to G$. We say G is a *group* if the following are satisfied:

- 1. Associativity: if $a, b, c \in G$, then a * (b * c) = (a * b) * c
- 2. Identity: there is $e \in G$ such that a * e = e * a = a for all $a \in G$
- 3. Inverses: for all $a \in G$, there is $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition 1.2.2

A group is called *abelian* if a*b=b*a for all $a,b\in G$

Exercise 1.2.1

Prove in the definition of a group, 1-sided identity and inverses are enough to have 2-sided identity and inverses

Proposition 1.2.1

previous exercise

Suppose G is a set, $*: G \times G \to G$ is associative. Suppose there is $e \in G$ such that e*a=a for all $a \in G$. Further suppose that for every $a \in G$, there is $a^{-1} \in G$ such that $a^{-1}*a=e$. Then for all $a \in G$,

- 1. a * e = a
- 2. $a * a^{-1} = e$

Proof of 1: Let $a \in G$, then

$$a^{-1} * a * e = e * e = e = a^{-1} * a$$

Multiplying on the left by a^{-1} gives

$$a^{-1^{-1}} * a^{-1} * a * e = a^{-1^{-1}} * a^{-1} * a$$

$$\implies e * a * e = e * a$$

$$\implies a * e = a$$

Proof of 2: Let $a \in G$, then

$$a^{-1} * a * a^{-1} = e * a^{-1} = a^{-1}$$

Again multiplying on the left by a^{-1} gives

$$a * a^{-1} = e$$

Proposition 1.2.2

Let G be a group, let $a \in G$. Then

- 1. The group identity is unique
- 2. The inverse of a is unique

Proof of 1: Suppose e_1, e_2 are both identities. Then

$$e_1 = e_1 * e_2 = e_2$$

Proof of 2: Suppose b_1, b_2 are inverses of a. Then

$$b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$$

Example 1.2.1

 $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ are all abelian groups

Example 1.2.2

 $(\mathbb{Z},\cdot),(\mathbb{Q},\cdot),(\mathbb{R},\cdot),(\mathbb{C},\cdot)$ are not groups as 0 has no inverse

Example 1.2.3

but $(\mathbb{Q}\setminus\{0\},\cdot), (\mathbb{R}\setminus\{0\},\cdot), (\mathbb{C}\setminus\{0\},\cdot)$ are abelian groups

Definition 1.2.3

For a set (S, \cdot) let $S^* \subseteq S$ denote the set of all elements with inverses.

Exercise 1.2.2

what is \mathbb{Z}_n^* ?

Example 1.2.4

 $(M_n(\mathbb{R}),+)$ is an abelian group.

Example 1.2.5

 $\text{Consider } \left(M_{n(\mathbb{R})},\cdot\right) \text{ The identity matrix is } \begin{bmatrix} \begin{smallmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \in M_n(\mathbb{R}) \\ \text{However, since not all } M \in M_n(\mathbb{R}) \text{ have multiplicative inverses, } (M_n(\mathbb{R}),\cdot) \text{ is not a group.}$

Notation

$$\operatorname{GL}_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) : \det(M) \neq 0 \}$$

Note

If $A,B\in \mathrm{GL}_n(\mathbb{R})$, then $\det(AB)=\det(A)\det(B)\neq 0$ Thus $AB\in \mathrm{GL}_n(\mathbb{R})$. The associativity of $\mathrm{GL}_n(\mathbb{R})$ inherits from $M_n(\mathbb{R})$. Also the identity matrix satisfies $\det(I)=1\neq 0$ and thus $I\in \mathrm{GL}_n(\mathbb{R})$. Finally, for $M\in \mathrm{GL}_n(\mathbb{R})$, there exists $M^{-1}\in M_n(\mathbb{R})$ such that $MM^{-1}=I=M^{-1}M$ since $\det(M^{-1})=\frac{1}{\det(M)}\neq 0$, we have $M^{-1}\in \mathrm{GL}_n(\mathbb{R})$. Thus $(\mathrm{GL}_n(\mathbb{R}),\cdot)$ is a group, called the general linear group of degree n over \mathbb{R}

Note

if $n \geq 2$, then $\operatorname{GL}_n(\mathbb{R})$ is not abelian.

Exercise 1.2.3

What is $(GL_1(\mathbb{R}), \cdot)$?

Example 1.2.6

Let G, H be groups. The *direct product* is the set $G \times H$ with the component wise operation defined by

$$(g_1,h_1)*(g_2,h_2)=(g_1*_Gg_2,h_1*_Hh_2)$$

One can check that $G\times H$ is a group with identity (e_G,e_H) and the inverse of (g,h) is (g^{-1},h^{-1})

Note

One can show by induction that if $G_1, ..., G_n$ are groups, then $G_1 \times \cdots \times G_n$ is also a group.

Notation

Given a group G and $g_1,g_2\in G$, we often denote g_1*g_2 by g_1g_2 and its identity by 1. Also the unique inverse of an element $g\in G$ is denoted by g^{-1} . Also for $n\in\mathbb{N}$, we define $g^n=g*g*\cdots*g$ (n-times) and $g^{-n}=\left(g^{-1}\right)^n$. Finally, we denote $g^0=1$.

Proposition 1.2.3

Let G be a group and $g,h\in G$ we have

1.
$$g^{-1} = g$$

2.
$$(gh)^{-1} = h^{-1}g^{-1}$$

1.
$$g^{-1} = g$$

2. $(gh)^{-1} = h^{-1}g^{-1}$
3. $g^n g^m = g^{n+m}$ for all $n, m \in \mathbb{Z}$

4.
$$(g^n)^m = g^{nm}$$
 for all $n, m \in \mathbb{Z}$

Proof of 1: Since

$$g^{-1}g = 1 = gg^{-1}$$

so $g^{-1^{-1}} = g$

Proof of 2:

$$(gh)(h^{-1}g^{-1}) = g(hh^{-1})g^{-1} = g1g^{-1} = 1$$

Similarly,

$$(h^{-1}g^{-1})(gh) = 1$$

Thus $(gh)^{-1} = h^{-1}g^{-1}$

Proof of 3: We proceed by considering cases:

1. if n = 0 then

$$g^n g^m = g^0 g^m = 1g^m = g^m = g^{0+m} = g^{n+m}$$

2. if n > 0, we will proceed by induction on n. Case 1 establishes the base case. Let $m \in \mathbb{Z}$, $n \in \mathbb{Z}_{>0}$. Suppose that $g^n g^m = g^{n+m}$ Then

$$g^{n+1}g^m = gg^ng^m = gg^{n+m} = g^{n+m+1}$$

3. if n < 0, then n = -k for some $k \in \mathbb{N}$. We have

$$g^k g^n g^m = g^{k+n} g^m = g^0 g^m = g^m$$

also

$$g^k g^{n+m} = g^{k+m+n} = g^m$$

Thus

$$g^k g^n g^m = g^k g^{n+m}$$

So

$$g^n g^m = g^{n+m}$$

as desired.

Proof of 4: We proceed by considering cases:

- 1. if m = 0, then $(g^n)^m = (g^n)^0 = 1 = g^0 = g^{n0} = g^{nm}$
- 2. if m > 0, then

$$(g^n)^m = \underbrace{g^n g^n \cdots g^n}_{m \text{ times}} = g^{nm}$$

3. if m < 0, then m = -k for some $k \in \mathbb{N}$. We will induct on k. For k = 1 we see that $(g^n)^{-1} = g^{-n}$ since

$$g^n g^{-n} = g^{n-n} = g^0 = 1$$

Suppose $(g^n)^{-\ell} = g^{-n\ell}$ for all $1 \le \ell \le k$ Then

$$(g^n)^{-k-1} = (g^n)^{-k} (g^n)^{-1} = g^{-nk} g^{-n} = g^{-nk-n} = g^{-n(k+1)}$$

Exercise 1.2.4

prove 3,4

Warning

In general, it is not the case that if $g, h \in G$ then $(gh)^n = g^n h^n$, this is not true unless G is abelian

Proposition 1.2.4

Let G be a group and $g,h,f\in G$ Then

- 1. They satisfy the left and right cancellation. More precisely,
 - a. if gh = gf then h = f
 - b. if hg = fg then h = f
- 2. Given $a,b\in G$ the equations ax=b and ya=b have unique solutions for $x,y\in G$

Proof of 1-a: By left-multiplying by g^{-1} , we have

$$gh = gf \iff g^{-1}gh = g^{-1}gf \iff h = f$$

Proof of 1-b: similar to 1-a **Proof of 2:** Let $x = a^{-1}b$ then

$$ax = aa^{-1}b = b$$

If u is another solution, then au=b=ax. By 1-a, u=x. Similarly, $y=ba^{-1}$ is the unique solution of ya=b

1.3 Symmetric Groups

Definition 1.3.1

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by S_L

Example 1.3.1

Consider the set $L = \{1, 2, 3\}$ which has the following different permutations

$$\binom{123}{123}, \binom{123}{132}, \binom{123}{213}, \binom{123}{231}, \binom{123}{312}, \binom{123}{321}$$

Where $\binom{123}{123}$ denotes the bijection

$$\sigma: \{1,2,3\} \longrightarrow \{1,2,3\}$$

$$\sigma(1)=1, \sigma(2)=2, \sigma(3)=3$$

Notation

For $n\in\mathbb{N}$ we denote by $S_n=S_{\{1,2,\dots,n\}}$ the set of all permutations of $\{1,2,\dots,n\}$. We have seen that the order of $S_3=3!=6$. To consider the general S_n , we note that for a permutation $\sigma\in S_n$, there are n choices for $\sigma(1), n-1$ choices for $\sigma(2),\dots,1$ choice for $\sigma(n)$ Thus

Proposition 1.3.1

$$|S_n| = n!$$

Note

For Möbius quizzes, use "9 dots" for permutations.

Remark

Given $\sigma, \tau \in S_n$ we can compose them to get a new element $\sigma\tau$, where $\sigma\tau = \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ given by $x \mapsto \sigma(\tau(x))$ Since both σ, τ are bijections, $\sigma\tau \in S_n$

Example 1.3.2

Compute $\sigma \tau$ and $\tau \sigma$ if

$$\sigma = \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1234 \\ 2431 \end{pmatrix}$$

Then $\sigma\tau(1)=\sigma(2)=4,...$ Then $\sigma\tau=\binom{1234}{4213},$ and $\tau\sigma=\binom{1234}{3124}$ We note that $\sigma\tau\neq\tau\sigma$

Note

For any $\sigma, \tau \in S_n$ we have that $\tau \sigma, \sigma \tau \in S_n$ but $\sigma \tau \neq \tau \sigma$ in general on the other hand, for any σ, τ, μ we have $\sigma(\tau \mu) = (\sigma \tau)\mu$. Also note the *identity permutation* $\varepsilon \in S_n$ is defined as

$$\varepsilon = \begin{pmatrix} 12 \cdots n \\ 12 \cdots n \end{pmatrix}$$

Thus for any $\sigma \in S_n$, we have $\sigma \varepsilon = \varepsilon \sigma = \sigma$

Finally, for $\sigma \in S_n$, since it is a bijection, there is a unique bijection $\sigma^{-1} \in S_n$ called the *inverse permutation* of σ such that for all $x, y \in \{1, 2, ..., n\}$

$$\sigma^{-1}(x) = y \Longleftrightarrow \sigma(y) = x$$

It follows that

$$\sigma(\sigma^{-1}(x)) = \sigma(y) = x$$

and

$$\sigma^{-1}(\sigma(y)) = y$$

i.e we have

$$\sigma\sigma^{-1}=\sigma^{-1}\sigma=\varepsilon$$

Example 1.3.3

$$\sigma = \binom{12345}{45123}$$

Then

$$\sigma^{-1} = \binom{12345}{34512}$$

From the above we have

Proposition 1.3.2

 (S_n, \circ) is a group, called the $symmetric\ group\ of\ degree\ n$

Exercise 1.3.1

Write down all rotations and reflections that fix an equilateral triangle. Then check why it is the "same" as S_3

Example 1.3.4

Consider

$$\sigma = \begin{pmatrix} 123456789(10) \\ 317694258(10) \end{pmatrix} \in S_{10}$$

We note that $1 \to 3 \to 7 \to 2 \to 1$ and $4 \to 6 \to 4$ and $5 \to 9 \to 8$ and $10 \to 10$ Thus σ can be *decomposed* into one 4-cycle (1372), one 2-cycle (46), and one 3-cycle (598) and one 1-cycle (10) (we usually do not write 1-cycles) Note that these cycles are *pairwise disjoint* and we have

$$\sigma = (1372)(46)(598)$$

We can also write $\sigma = (46)(598)(1372)$, or $\sigma = (64)(985)(7213)$

Theorem 1.3.3

Cycle Decomposition

If Given $\sigma \in S_n$ with $\sigma \neq \varepsilon$, then σ is a product of (one or more) disjoint cycles of length at least 2. This factorization is unique up to the order of the factors.

Proof: See bonus 1.

Convention

Every permutation of S_n can be regarded as a permutation in S_{n+1} by fixing the number n+1, thus

$$S_1 \subseteq S_2 \subseteq \dots \subseteq S_n \subseteq S_{n+1}$$

1.4 Cayley Tables

Definition 1.4.1

For a finite group G, defining its operation by means of a table is sometimes convenient. Given $x, y \in G$, the product xy is the entry of the table in the row corresponding to x and the column corresponding to y, such a table is a *Cayley table*.

Remark

By cancellation, the entries in each row or column of a Cayley table are all distinct

Example 1.4.1

Consider $(\mathbb{Z}_2,+)$ its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}_2 & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \\ \end{array}$$

Example 1.4.2

Consider the group $\mathbb{Z}^* = \{1, -1\}$. Its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}^* & 1 & -1 \\ \hline 1 & 1 & -1 \\ \hline -1 & -1 & 1 \\ \end{array}$$

Note

If we replace 1 by [0] and -1 by [1] the Cayley tables of \mathbb{Z}^* and \mathbb{Z}_2 become the same. In this case, we say \mathbb{Z}^* and \mathbb{Z}_2 are *isomorphic* denoted by

$$\mathbb{Z}^* \cong \mathbb{Z}_2$$

Example 1.4.3

For $n \in \mathbb{N}$, the *cyclic group of order* n is defined by

$$C_n = \left\{1, a, a^2, ..., a^{n-1}\right\}$$
 with $a^n = 1$ and $1, a, ..., a^{n-1}$ are distinct

The Cayley table of C_n is as follows

C_n	1	a	a^2		a^{n-2}	a^{n-1}
1	1	a	a^2		a^{n-2}	a^{n-1}
\overline{a}	a	a^2	a^3		a^{n-1}	1
a^2	a^2	a^3	a^4		1	a
:	÷	:	:	٠.	:	:
a^{n-2}	a^{n-2}	a^{n-1}	1	•••	a^{n-4}	a^{n-3}
a^{n-1}	a^{n-1}	1	a		a^{n-3}	a^{n-2}

Proposition 1.4.1

Let G be a group. Up to isomorphism, we have

- 1. If |G| = 1, then $G \cong \{1\}$
- 2. If |G| = 2, then $G \cong C_2$
- 3. If |G| = 3, then $G \cong C_3$
- 4. If |G|=4, then $G\cong C_4$ or $G\cong K_4\cong C_2\times C_2$

Proof of 1: obviously

Proof of 2: If |G|=2 then $G=\{1,g\}$ with $g\neq 1$ Then $g^2=g$ or $g^2=1$. We note that if $g^2=g$, then g=1 contradiction.thus $g^2=1$. Thus the Cayley table is as follows

$$\begin{array}{c|ccccc}
G & 1 & g \\
\hline
1 & 1 & g \\
g & g & 1
\end{array}$$

Cayley Tables

which is the same as C_2

Proof of 3: If |G|=3, then $G=\{1,g,h\}$ with $g\neq 1, h\neq 1, g\neq h$ By cancellation, we have $gh\neq g, gh\neq h$, thus gh=1. Similarly, we have hg=1. Also, on the row for g, we have g1=g, gh=1. Since all entries in this row are distinct, we have $g^2=h$. Similarly, we have $h^2=g$. Thus we obtain the following Cayley table

$$\begin{array}{c|cccc} G & 1 & g & h \\ \hline 1 & 1 & g & h \\ \hline g & g & h & 1 \\ \hline h & h & 1 & g \end{array}$$

Which is the same as C_3 .

Proof of 4: See assignment 1

Exercise 1.4.1

Consider the symmetry group of a non-square rectangle. How is it related to K_4 ?

2 Subgroups

Definition 2.0.1

Let G be a group and $H \subseteq G$. If H itself is a group, then we say H is a subgroup of G.

Note

We note that since G is a group, for $h_1, h_2, h_3 \in H \subseteq G$, we have

$$h_1(h_2h_3) = (h_1h_2)h_3$$

Thus

Proposition 2.0.1

Subgroup Test

Let G be a group, $H \subseteq G$. Then H is a subgroup of G if

- 1. If $h_1, h_2 \in H$, then $h_1 h_2 \in H$
- $2. \ 1_H \in H$
- 3. If $h \in H$, then $h^{-1} \in H$

Subgroups

Exercise 2.0.1

Prove that $1_H = 1_G$

Example 2.0.1

Given a group G, then $\{1\}$, G are subgroups of G

Example 2.0.2

We have a chain of groups

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Example 2.0.3

Define

$$\operatorname{SL}_n(\mathbb{R}) = (\operatorname{SL}_n(\mathbb{R}), \cdot) \coloneqq \{M \in M_n(\mathbb{R}), \det(M) = 1\} \subseteq \operatorname{GL}_n(\mathbb{R})$$

Note that the identity matrix $I \in \mathrm{SL}_n(\mathbb{R})$. Let $A, B \in \mathrm{SL}_n(\mathbb{R})$, then

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

and

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{1} = 1$$

i.e. $AB, A^{-1} \in \mathrm{SL}_n(\mathbb{R})$. By the subgroup test (Proposition 2.0.1), $\mathrm{SL}_n(\mathbb{R})$ is a subgroup of $\mathrm{GL}_n(\mathbb{R})$. We call $\mathrm{SL}_n(\mathbb{R})$ the special linear group of order n over \mathbb{R}

Definition 2.0.2

Given a group G, we define the *center of* G to be

$$Z(G) \coloneqq \{ z \in G \,|\, zg = gz \,\,\forall g \in G \}$$

Remark

Z(G) = G iff G is abelian.

Proposition 2.0.2

Z(G) is an abelian subgroup of G.

Proof: Note that $1 \in Z(G)$. Let $y, z \in Z(G)$ Then for all $g \in G$, we have

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Thus $yz \in Z(G)$. Also, for $z \in Z(G)$, $g \in G$ we have

$$zg = gz \iff z^{-1}(zg)z^{-1} = z^{-1}(gz)z^{-1}$$
$$\iff gz^{-1} = z^{-1}g$$

Thus $z^{-1} \in Z(G)$. By the subgroup test (Proposition 2.0.1), Z(G) is a subgroup of G. Also, by the definition of Z(G), we see that it is abelian.

Proposition 2.0.3

Let H, K be subgroups of a group G. Then $H \cap G$ is also a subgroup.

Proof: Exercise

Proposition 2.0.4

Finite Subgroup Test

If $H \neq \emptyset$ is a finite subset of a group G, then H is a subgroup of G iff H is closed under its operation.

Subgroups 15