C09 - Applications et relations

I. Relations

2. Relations d'équivalences

$$\forall x \in E, x \in \overline{x}$$

Démonstration par réflexivité

Pour y - 2 = 2 - x:

$$\overline{3} = \{1, 3, 4, 5\} = \overline{4}$$

Il est facile de voir directement que pour $k \geq 2$ entier $\forall m, n, m', n' \in \mathbb{Z}$,

$$egin{aligned} m &\equiv m'[k] \ n &\equiv n'[k] \end{aligned} \Rightarrow m+n \equiv m'+n'[k]$$

 $(\equiv_k \text{ et + sont "compatibles"})$

Conséquence :

 ${}^{k}\overline{m+n}$ ne dépends que de ${}^{k}\overline{m}$ et ${}^{k}\overline{n}$

Donc on part poser ${}^{k}\overline{m} + {}^{k}\overline{n} = {}^{k}\overline{m+n}$

Puisque ... ne déprends pas de représentation de classe ...

Plus précisément en notant C_k l'ensemble des classes modulo k

Pour c, c' \in C $_k$ on définit $c+c=\overline{n+n'}$ ou $n\in C$ et $n'\in C'$

Sont des représentants quelconques des classes

PHOTO

On verra qu'on obtiens un groupe abélien $(C_k, +)$ qui est noté : $(\mathbb{Z}/k\mathbb{Z}, +)$ ou \mathbb{Z}/\equiv_k Groupe cyclique.

Ce groupe est un quotient du groupe $(\mathbb{Z},+)$ par le sous groupe $k\mathbb{Z}$: Idée on décide que tous les multiples de k sont "nuls".

Exclaibur 2.

En posant en quotient, on obtiens un anneau $(\mathbb{Z}/k\mathbb{Z},+, imes)$

$$\phi:egin{cases} t\mapsto e^{it}\ \mathbb{R} o\mathbb{U} \end{cases}$$

 $\mathbb{U}\simeq \mathbb{R}/2\pi\mathbb{Z}$ est isomorphe (iso : bijectif ; morphisme : transporte la loi) à

$$\phi: egin{cases} (\mathbb{E}/6\mathbb{Z},+)
ightarrow (\mathbb{U},\cdot) \ E \mapsto e^{rac{2\pi t}{6}} \end{cases}$$

 $\phi(\mathbb{Z}/6\mathbb{Z})=\mathbb{U}_6\;(\mathbb{U}_6,\cdot)$ et $(\mathbb{Z}/\mathbb{Z},+)$ sont isomorphes

Construction des ensembles :

 $\mathbb{N} \leftarrow \mathsf{Donn\acute{e}}$ par les dieux / l'inspecteur général / ZFR

$$\mathbb{Z} \leftarrow \mathbb{N} imes \mathbb{N} \; (m,n) + (m',n') = (m+m',n+n')$$
 $\mathbb{Z} = \mathbb{N} imes \mathbb{N} / \sim (m,n) \sim (m',n') \Leftrightarrow \; (m-n=m'-n') \Leftrightarrow \; m+n'=m'+n$ " $\mathbb{N} \subset \mathbb{Z}$ "

On prends $\{\overline{(n,o)}; n \in \mathbb{N}\}$

$$\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}^*/\sim$$

Où
$$(p,q) \sim (p',q') \Leftrightarrow \left(rac{p}{q} = rac{p'}{q'}
ight) \Leftrightarrow pq' = p'q$$

Notons $\frac{p}{q} = \overline{(p,q)}$

par exemple $(2,4)\sim (1,2)$ ie $\overline{(2,4)}=\overline{(1,2)}$ ie $\frac{2}{4}=\frac{1}{2}$

3. Relations d'ordre

• (\mathbb{R},\leq) est un ensemble totalement ordonné l'ordre " \subset " sur P(E) n'est pas total des que $|E|=card(E)\geq 2$:

Soient x, y différents dans E alors,

$$\{x\}$$
 no $\subset \{y\}$ et $\{y\}$ no $\subset \{x\}$

Excalibur 3.

Exemple 33

X admet un plus petit élément (minimum) qui est \varnothing et un plus grand $\{0, 1, 2\}$

Soit $A \subset X$

Est-ce que A admet ... un plus petit et un plus grand élément.

exemple : $A = \{\emptyset, \{0\}, \{2, 0\}, \{0, 1\}\} \text{ min}(A) = \emptyset$

mais A n'admet pas de plus grand élément.

$$(\mathbb{N},1)$$
 où $orall a,b\in\mathbb{N},(a|b\Leftrightarrow (\exists k\in\mathbb{N},ka=b))$

Proposition 32 (Démonstration) :

Soient M, M' deux majorants de A appartenant à A alors,

Comme M majore A et $M' \in A$ alors $M' \leq M$

En échangeant les rôles, $M \le M'$ donc M = M'

- Quel lien entre 1 et [0; 1[?
 - 1 majore [0;1[cependant 2 majore [0;1[aussi, mais 1 est le plus petit des majorants de [0;1[
- Cela existe-t-il toujours? ($\mathbb{R}, P(F), \mathbb{N}, \ldots$) CN évidente on a besoin que la partie soit majorée.
- Exemple 35 (Démonstration):

Montrons que $\left\{\frac{1}{n};n\in\mathbb{N}/\{0\}\right\}$ admet une borne inférieure dans \mathbb{R} Montrons que l'ensemble des minorants de A est $]-\infty;0]$ par double inclusion

Si $n\in]-\infty;0]$, pour tout $n\in \mathbb{N}^*$, $n\leq 0\leq \frac{1}{n}$ donc n minore A.

Soit n un minorant de A

Alors
$$\forall n \in \mathbb{N}^*$$
, $n \leq \frac{1}{n}$

Donc par passage a la limite dans une inégalité large $m \leq 0$

$$]-\infty;0] \ {\rm est} \ 0, \ {\rm inf}(A)=0$$

Exercice 36

Soit
$$A \subset P(E)$$
,

Soit
$$M \in P(E)$$
 (i.e. $M \in E$)

M majore A

$$\Leftrightarrow \forall X \in A, X \subset M$$

$$1. \Leftrightarrow \bigcup_{X \in \varnothing} X \subset M$$

$$(orall X \in A, X \subset M (\Leftrightarrow orall X \in A, orall z \in X, z \in M))$$

$$\Leftrightarrow \forall X \in A, \forall z \in E(z \in X \Rightarrow z \in M)$$

$$\Leftrightarrow orall z \in E, orall X \in A, (z \in X \Rightarrow z \in M)$$

$$\forall z \in E, \forall X \in P(E), X \in A \Rightarrow \dots$$

M majore A

$$\Leftrightarrow \begin{cases} X \subset M \\ Y \subset M \Leftrightarrow X \cup Y \cup Z \subset M \\ Z \subset M \end{cases}$$

 \Leftarrow :

Si $X \cup Y \cup Z \subset M$ alors :

$$\left\{egin{aligned} X\subset X\cup Y\cup Z\subset M\ Y\subset\cdots\subset M\ Z\subset\cdots\subset M \end{aligned}
ight.$$

 \Rightarrow :

Supposons $X \subset M$, $Y \subset M$, $Z \subset M$

Soit $z \in X \cup Y \cup Z \subset M$

Si $z \in X$ comme $X \subset M$, alors $z \in M$

Si $z \in Y$ comme ...

Si ...

Mq:

$$orall X \in A, X \subset M \Leftrightarrow igcup_{X \in A} X \subset M$$

 \Leftarrow :

Supposons $\bigcup_{X' \in A} X' \subset M$

Soit $X \in A$

Alors $X \subset \bigcup_{X' \in A} X'$

 $\mathsf{Donc}\ X\subset M$

("Par transitivité de ⊂")

 \Rightarrow :

Supposons que $\forall X \in A$, $X \subset M$

Soit $z \in \bigcup_{X \in A} X$

Alors il existe $X_0 \in A$ tq $z \in X_0$

Comme $X_0 \in A$

Alors
$$X_0 \subset M$$

Donc $z \in M$

Ainsi

 $\bigcup_{X\in A}X$ est plus petit (Par inclusion au sens large) que tout majorant de A

• Est-ce que $\bigcup_{X\in A}X$ est un majorant de A? Oui par 1. car $\bigcup_{X\in A}X\subset \bigcup_{X\in A}X$ (Ou plus basiquement car si $X\in A,\, X\subset \bigcup_{X\in A}X$)

Conclusion:

 $\bigcup_{X\in A} X$ est le plus petit des majorants de A, donc A admet une borne supérieure :

$$sup(A) = igcup_{X \in A} X$$

Propriété 37

Soit E un ensemble

Pour l'ordre de l'inclusion sur P(E) toute partie A de P(E) admet une borne supérieure et inférieure qui sont :

$$sup(A) = igcup_{X \in A} X$$

$$inf(A) = igcap_{X \in A} X$$

En particulier si $A=\varnothing$

$$egin{cases} sup(arnothing) = arnothing \ inf(arnothing) = E \end{cases}$$

II. Applications

1. Point de vue intuitif

Notion:

L'ensemble des applications de E vers F est noté : F^E

- Ensemble des fonctions def sur I : \mathbb{R}^I
- Ensemble des suites réelles : $\mathbb{R}^{\mathbb{N}}$
- Ensemble des familles d'éléments de P(E) indexées par I : $P(E)^I$
- ullet $|\cdot|$, Re, Im, $\in \mathbb{R}^{\mathbb{C}}$

2. Point de vue formel

- Si $n\in\mathbb{N}$ et E un ensemble l'ensemble : $E^{[|1,n|]}$ est noté E^n en assimilant les applications / familles x $\begin{cases} [|1,n|] o E \\ i\mapsto x_i \end{cases}$ avec les n n-uplets $x=(x_1,\dots,x_n)$ qu'on note aussi $x=(x_i)_{i\in[|1,n|]}$
- Définition

Soient
$$f:E o F$$
n $A\subset E$, $B\subset F$ tq: $orall x\in A, f(x)\in B$

Alors, l'application b est définie

$$ilde{f}:egin{cases} A o B\ x\mapsto f(x) \end{cases}$$

est appelé implication induite de B par f

3. Surjectivité et injectivité

4. Notion d'antécédent

Définition 74 :

Voir f^{-1} écrit ne veut pas dire que f^{-1} existe

• Rappel : Image d'une partie A de E par f : Pour $A \subset E$.

$$f(A)=\{y\in F|\exists x\in A,y=f(x)\}=f(x);x\in A$$

Image réciproque d'une partie de B (de F) par f : Pour $B \subset F$,

$$f^{-1}(B) = \{x \in E | f(x) \in B\}$$

ATTENTION : f^{-1} n'existe pas

Excalidraw 4

5. Relations ensemblistes concernant les images directes et réciproques

Proposition 78 : Démonstration :

Soient
$$A, A' \in P(E)$$
 tq $A \subset A'$

Soit $y \in f(A)$.

Par définition de l'image directe, il existe $x \in A$ tq f(x) = y

Comme $A\subset A$, $x\in A'$ donc $y\in f(A')$

• Proposition 79 : Démonstration $f(A \cup A') = f(A) \cup f(A')$

Par double inclusion:

On a $A \subset A \cup A'$ donc par croissance des images directes,

$$f(A) \subset f(A \cup A')$$
.

De même $f(A') \subset f(A \cup A')$

Donc $f(A) \cup (A') \subset f(A \cup A')$

Soit $y \in f(A \cup A')$.

Par définition de l'image directe, il existe $x \in A \cup A'$ tq f(x) = y.

On fait une disjonction de cas :

• Si $x \in A$,

Alors
$$y = f(x) \in f(A) \subset f(A) \cup f(A')$$

• Si $x \in A'$

Alors
$$y=f(x)\in f(A')\subset f(A)\cup f(A')$$

Dans les 2 cas $y \in f(A) \cup f(A')$

Par double inclusion, $f(A \cup A') = f(A) \cup f(A')$

6. Composition

Proposition 87 : Démonstration

... L'ensemble de départ de $h\circ (g\circ f)$ est celui de $g\circ f$ i.e. celui de f

i.e. E

Celui de $(h \circ g) \circ f$ est celui de fi.e. E

Plus précisément, comme $f \in F^E$ et $g \in G^F$

Alors $g \circ f$ est bien définie et $g \circ f \in G^F$.

Puis comme $(g\circ f)\in G^E$ et $h\in H^G$, alors $h\circ (g\circ f)$ est bien défini et $h\circ (g\circ f)\in H^E$

De même comme $g \in G^F$ et $h \in H^G$,

 $h\circ g$ et un élément de H^F bien défini, pas $(h\circ g)\circ f$ est un élément de H^E bien défini.

Ainsi $h\circ (g\circ f)$ et $(h\circ g)\circ f$ ont le même ensemble de départ E et le même ensemble d'arrivé H

Il suffit alors de montrer qu'elles ont le même graphe i.e. qu'elles donnent la même image de chaque élément de E :

$$h\circ (g\circ f)(x)=h((g\circ f)(x))=h(g(f(x)))=(h\circ g)(f(x))=((h\circ g)\circ f)(x$$

• Proposition 89 : Démonstration $\hbox{Comme } f \in F^E \hbox{ et } Id_E \in E^E, \, f \circ Id_E \in F^E \\ \hbox{Or, } f \in F^E \hbox{ donc il suffit de vérifier, pour } x \in E \\ (f \circ Id_E)(x) = f(Id_E) = f(x) \\ \hbox{De même pour toute l'égalité}$

7. Réciproque d'une bijection

Proposition 94 : Démonstration
 Supposons que f soit bijective.

On pose pour tout $y \in F$, g(y) l'unique élément de E tq f(x) = y (existe et est unique par bijectivité de f)

Cela définit $g \in E^F$

On a alors:

- D'une part, pour tout $x\in E$, g(f(x)) qui est l'unique $x'\in E$ tq f(x')=f(x) et qui vérifie donc x=x' par injectivité de f, donc g(f(x))=x. Ainsi, $g\circ f=Id_E$
- D'autre part, pour $y\in F,$ f(g(y))=y par définition de g(y). Ainsi $f\circ g=Id_F$ Ainsi g est réciproque de f

Supposons que f admette une réciproque g.

Alors $g \circ f = Id_E$ est injective (car bijective)

Donc f est injective

Puis $f \circ g = Td_F$ est surjective (car bijective)

Donc f est surjective

Ainsi f est bijective

On a alors l'équivalence voulue.

Montrons l'unicité de la réciproque :

Supposons que f soit bijective et prenons deux réciproques g et g^\prime de f

On a $g,g'\in E^F$

Prenons $y \in F$

On a f'(g(y)) = y = f(g'(y)) (car $f \circ g = f \circ g'$)

Or f est injective donc g(y) = g'(y)

Ainsi g = g'

Proposition 98 : Démonstration n°1

On a $g^{-1} \in F^G$ et $f^{-1} \in E^F$

Donc $f^{-1}\circ g^{-1}\in E^G$

Et aussi $(g\circ f)^{-1}\in E^G$

Pour $z \in G$

Or $g \circ f$ est injective (car bijective)

Donc
$$f^{-1} \circ g^{-1}(z) = (g \circ f)^{-1}(z)$$

Finalement:

$$(g\circ f)^{-1} = f^{-1}\circ g^{-1}$$

Proposition 98 : Démonstration n°2

Comme $g^{-1} \in F^G$ et $f^{-1} \in E^F$

Alors : $f^{-1}\circ g^{-1}\in E^G$ et :

$$(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ ((g^{-1}\circ g)\circ f)=f^{-1}\circ (Id_F\circ f)=f^{-1}\circ f=Ie$$

$$(g\circ f)(f^{-1}\circ g^{-1})=g\circ (f\circ f^{-1})\circ g^{-1}=g\circ Id_F\circ g^{-1}=g\circ g^{-1}=Id_G$$

Donc:

$$f^{-1}\circ g^{-1}=(g\circ f)^{-1}$$

8. Théorème de Cantor-Bernstein

9. Cardinal d'un ensemble fini

Lemme 104 : Démonstration :

Par recurrence finie

$$orall k \in [|1,p|], A_k: f(k) \geq k$$

Initialisation

$$f(1) \in [|1,n|] \ donc \ f(1) \geq 1$$

Hérédité

Soit $k \in [|1,p-1|]$ tq A_k

Alors par stricte croissance :

$$f(k+1) > f(k)$$

Mais comme se sont des entiers,

$$f(k+1) \ge f(k) + 1$$

Or par H.R. $f(k) \geq k$, donc $f(k+1) \geq k+1$ donc A_{k+1}

Conclusion :

Par récurrence,

$$orall k \in [|1,p|], f(k) \geq k$$

En particulier :

$$p \le f(p) \le n$$

Lemme 105 : Démonstration : Les images des éléments de [|1,p|] étant deux à deux distinctes on les notes en les ordonnant :

$$1 \le j_1 < j_2 < \dots < j_p \le n$$

On pose alors pour $i\in[|1,p|],\ \phi(i)$ l'unique élément de [|1,p|] tq $f(\phi(i))=f_i$

• Montrons que ϕ est injective : Soient $k,k'\in[|1,p|]$ tq $\phi(k)=\phi(k')$ Alors $j_k=f(\phi(k))=f(\phi(k'))=j_k'$ et par stricte croissance de la suite finie :

$$(j_i)_{i \in [|1,p|]}, \; k = k'$$

• Montrons que ϕ est surjective : Soit $k \in [|1,p|]$ par définition des j_i Il existe $l \in [|1,p|]$ tq $f(k)=j_i$ Par ailleurs, $f(\phi(l))=j_l$, Donc par injectivité de j $\phi(l)=k$

Ainsi ϕ est bijective

Remarque :

On définit les ensembles infinis par : E ssi il existe $f:E\mapsto E$ injective et non surjective. Tous les autres sont des ensembles finis.

10. Opération sur les cardinaux finis

• Propositions :

$$|E \sqcup F| = |E| + |F|$$
 $|E imes F| = |E||F|$ $|F^E| = |F|^{|E|}$ $|P(E)| = 2^{|E|}$

• Proposition 121:

Notons pour E, F deux ensembles quelconques.

Inj(E, F) l'ensemble des injections dans d'ensemble F^E

Surj(E, F) ...

Bij(E, F) ...

Soient, E, F finis de cardinaux $p \le n$

Combien d'injections de E vers F?

i.e. |Inj(E, F)| = ?

(Si p > nn Inj(E,F) = \varnothing)

Comme |E| = p on peut numéroter les éléments de $E; x_1, x_2, \dots, x_p$

(Comme on a une bijection $egin{cases} [|1,p|]
ightarrow E \ i \mapsto x_i \end{cases}$)

De même choisir une injection de E vers F c'est :

- Choisir $f(x_1)$ (n possibilités)
- Puis choisir $f(x_2)$ (n-1 possibilités)
- ...
- Et enfin Choisir $f(x_p)$ (n-p+1 possibilités) Il y a donc $n \times (n-1) \times \cdots \times (n-p+1)$ choix i.e. : $\frac{n!}{(n-p)!}$ choix
- Remarque :

Le fait qu'on ait : $p \le n$ assure que les choix peuvent se faire jusqu'à celui de $f(x_p)$.

Image mentale: arbre (Excalibur 5.)

On a donc bien:

$$|Inj(E,F)|=rac{n!}{(n-p)!}$$

- Proposition 122 :
 - Définition :

Soit E et $k\in\mathbb{N}$

On note:

$$P_k = \{ A \in P(E) | |A| = k \}$$

Remarque : si E est fini de cardinal n < k,

$$P_k = \emptyset$$

11. Ensembles infinis

• Démonstration : ("Diagonale" de Cantor) :

On prouve que $|\mathbb{N}|<|[0,1]|$ (1 $=0.9999\ldots$)

Par l'absurde en supposant qu'on peut dénombrer/numéroter [0, 1] et on écrit dans un tableau (infini) une écriture décimale de chaque élément de [0, 1] par ordre de numérotation. $(\phi: \mathbb{N} \to [0, 1]$ est la bijection)

$$egin{array}{c|cccc} n & \phi(n) \\ 0 & 0,1789233345 \dots \\ 1 & 0,3614254789 \dots \\ 2 & 0.11111112111 \dots \\ k & 0,273 & d \end{array}$$

Ou d est la $(k+1)^{\it eme}$ décimale

On construit un développement décimal tq la n-ieme décimale de ce développement soit différente de 0 de 9 et de la n-ieme décimale de $\phi(n-1)$

Par exemple ici :

0,273...

On note x le nombre admettant ce développement décimal Comme ϕ est bijective, il existe $k\in\mathbb{N}$ tq x=P(k). En regardant la diagonale don doit avoir $d\neq d$ pour la $(k+1)^{eme}$ décimale de ce development.

Ainsi [0,1], n'est pas dénombrable

Or $|[0,1]| \geq |\mathbb{N}|$

 $\mathsf{Donc}\ |[0,1]| > |\mathbb{N}|$

Donc $|\mathbb{R}| \geq |[0,1]| > |\mathbb{N}|$

- Proposition 128 :
 - Excalibur 6.
- Proposition 129 :
 - Excalibur 7.