Markov chain Monte Carlo II

Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, N. Thompson Hobbs

August 1, 2019

Housekeeping

- ▶ Bayes lab: "The likelihood profile for θ is based on the data but it shows much less dispersion than the distribution of the data shown in the histogram you constructed. Why?"
- ► Schedule through spring recess
- Review deterministic models lecture and re-read chapter 2 in Hobbs and Hooten before Tuesday.
- Bring cheatsheet on Tuesday.
- ► Read 6.2.1 and 6.2.2 before Thursday.

The MCMC algorithm

- ► Some intuition
- ► Accept-reject sampling with Metropolis algorithm
- ► Introduction to full-conditional distributions
- ▶ Gibbs sampling
- ► Metropolis-Hastings algorithm
- ► Implementing accept-reject sampling

Implementing MCMC for multiple parameters and latent quantities

- Write an expression for the posterior and joint distribution using a DAG as a guide. Always.
- If you are using MCMC software (e.g. JAGS) use the expression for the posterior and joint distribution as template for writing code.
- ► If you are writing your own MCMC sampler:
 - Decompose the expression of the multivariate joint distribution into a series of univariate distributions called *full-conditional* distributions.
 - Choose a sampling method for each full-conditional distribution.
 - Cycle through each unobserved quantity, sampling from its full-conditional distribution, treating the others as if they were known and constant.
 - The accumulated samples approximate the marginal posterior distribution of each unobserved quantity.
 - Note that this takes a complex, multivariate problem and turns it into a series of simple, univariate problems that we solve, as in the example above, one at a time.

Choosing a sampling method

- 1. Accept-reject:
 - 1.1 Metropolis
 - 1.2 Metropolis-Hastings
- 2. Gibbs: accepts all proposals because they are especially well chosen.

When is accept-reject update mandatory?

We need to use Metropolis, Metropolis-Hastings or some other accept reject methods whenever

- 1. A conjugate relationship does not exist for the full-conditional distribution of a parameter, for example, for the shape parameter in the gamma distribution.
- 2. The deterministic model is non-linear, which almost always means a conjugate doesn't exist for its parameters.

When is a model linear?

- A model is linear if it can be written as the sum of products of coefficients and predictor variables, i.e. $\mu_i = \beta_0 + \beta_1 x_{1,i} + + \beta_n x_{n,i}$ or in matrix form $\mu_i = \mathbf{x}_i \boldsymbol{\beta}$. We can take powers and products of the x and the model remains linear. We often transform models to linearize them using link functions (i.e., log, logit, probit).
- A model is non-linear if it cannot be written this way.

Metropolis Updates

$$[\theta^{*k+1}|y] = \underbrace{\frac{[y|\theta^{*k+1}][\theta^{*k+1}]}{[y|\theta|\theta]d\theta}}_{\text{likelihood prior}}$$

$$[\theta^k|y] = \underbrace{\frac{[y|\theta^k][\theta^k]}{[y|\theta|\theta]d\theta}}_{[y|\theta|\theta]d\theta}$$

$$R = \underbrace{\frac{[\theta^{*k+1}|y]}{[\theta^k|y]}}$$

Proposal distributions

- Independent chains have proposal distributions that do not depend on the current value (θ^k) in the chain. This is what we used in the fish disease example.
- ▶ Dependent chains, as you might expect, have proposal distributions that do depend on the current value of the chain (θ^k) . In this case we draw from

$$[\theta^{*k+1}|\theta^k,\sigma] \tag{1}$$

where σ is a tuning parameter that we specify to obtain an acceptance rate of about 40%. Note that my notation and notation of others simplifies this distribution to $[\theta^{*k+1}|\theta^k]$ The σ is implicit because it is a constant, not a random variable.

Why are dependent chains usually more efficient that independent chains?

Proposal distributions for dependent chains

Metropolis-Hastings updates

- Metropolis updates require symmetric proposal distributions (e.g., uniform, normal).
- ► Metropolis-Hastings updates allow use of asymmetric (e.g., beta, gamma, lognormal).

Definition of symmetry

A proposal distribution is symmetric if and only if

$$[\boldsymbol{\theta}^{*k+1}|\boldsymbol{\theta}^k] = [\boldsymbol{\theta}^k|\boldsymbol{\theta}^{*k+1}]. \tag{2}$$

Normal and uniform are symmetric. Gamma, beta, lognormal are not.

Illustrating with code

```
#symmetric example
sigma=1
x = .8
z=rnorm(1,mean=x,sd=sigma);z
#[z|x]
dnorm(z,mean=x,sd=sigma)
#[x[z]
dnorm(x,mean=z,sd=sigma)
#asymmetric example
sigma=1
x = .8
a.x=x^2/sigma^2; b.x=x/sigma^2
z=rgamma(1,shape=a.x,rate=b.x);z
a.z=z^2/sigma^2; b.z=z/sigma^2
\#[z]x
dgamma(z,shape=a.x,rate=b.x)
#[xlz]
dgamma(x,shape=a.z,rate=b.z)
```

Metropolis-Hastings updates

Metropolis R:

$$R = \frac{[\boldsymbol{\theta}^{*k+1}|y]}{[\boldsymbol{\theta}^k|y]} \tag{3}$$

Metropolis-Hastings R:

Proposal distribution

$$R = \frac{[\theta^{*k+1}|y]}{[\theta^k|y]} \underbrace{\frac{[\theta^k|\theta^{*k+1}]}{[\theta^{*k+1}|\theta^k]}}_{\text{Proposal distribution}},$$
(4)

which is the same as:

$$R = \underbrace{\frac{[y|\theta^{*k+1}][\theta^{*k+1}]}{[y|\theta^k][\theta^k]} \underbrace{[\theta^k|\theta^{*k+1}]}^{\text{Proposal distribution}}}_{\text{Likelihood Prior Proposal distribution}}$$
(5)

Example using beta proposal distribution

- 1. Current value of parameter, $\theta^k = .42$, tuning parameter set at $\sigma = .10$
- 2. Make a draw from $\theta *^{k+1} \sim \text{beta}(m(.42,.10))$, where m is moment matching function.
- 3. Calculate $R = \underbrace{ \underbrace{ \begin{bmatrix} y \mid \theta^{*k+1} \end{bmatrix} \begin{bmatrix} \theta^{*k+1} \end{bmatrix} \begin{bmatrix} .42 \mid m(\theta^{*k+1},.10) \end{bmatrix}}_{\text{Likelihood}} \underbrace{ \begin{bmatrix} y \mid \theta^k \end{bmatrix} \begin{bmatrix} \theta^k \end{bmatrix} \begin{bmatrix} \theta^{*k+1} \mid m(.42,.10) \end{bmatrix}}_{\text{beta proposal}}.$
- 4. Choose proposed or current value based on ${\cal R}$ as we did with Metropolis.

MCMC

- Methods based on the Markov chain Monte Carlo algorithm allow us to approximate marginal posterior distributions of unobserved quantities without analytical integration.
- This makes it possible to estimate models that have many parameters, have multiple sources of uncertainty, and include latent quantities.
- We will learn a tool, JAGS, that simplifies the implementation of MCMC methods.
- ▶ Will will put this tool to use in building models that include nested levels in space, errors in the observations, differences among groups and processes that unfold over time.