

Support vector machines

Lecture 12 of "Mathematics and Al"

Outline

- 1. Maximal margin classifier
- 2. Support vector classifier
- 3. SVC and logistic regression

Maximal margin classifier

Linearly separable patterns

Which decision boundary is the best?

Hyperplanes

Hyperplane (perpendicular to coordinate axis)

$$\beta_0 + x_j = 0$$

Hyperplane (general case)

$$\beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p} = 0$$

Hyperplane in vector notation

$$\beta_0 + \vec{\beta} \cdot \vec{x_i} = 0$$

Hyperplanes as separators

Hyperplane in vector notation

$$\beta_0 + \vec{\beta} \cdot \vec{x_i} = 0$$

Three sets of points

$$\left\{ \overrightarrow{x_i} \mid \beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i} = 0 \right\} \rightarrow \overrightarrow{x_i} \text{ in hyperplane,}$$

$$\left\{\overrightarrow{x_i} \mid \beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i} < 0\right\} \rightarrow \overrightarrow{x_i}$$
 on one side of hyperplane,

$$\left\{ \overrightarrow{x_i} \mid \beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i} > 0 \right\} \rightarrow \overrightarrow{x_i}$$
 on other side of hyperplane

Linear decision boundary for binary classification

$$\left\{ \overrightarrow{x_i} \mid \beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i} < 0 \right\}$$

- $\triangleright \overrightarrow{x_i}$ on one side of hyperplane
- \triangleright $(\overrightarrow{x_i}, y_i)$ is "cat"
- $\rightarrow y_i = -1$

- $\rightarrow \overrightarrow{x_i}$ on other side of hyperplane
- \triangleright $(\overrightarrow{x_i}, y_i)$ is "dog"
- $\triangleright y_i = +1$

For all training samples:

$$y_i \left(\beta_0 + \vec{\beta} \cdot \vec{x_i}\right) > 0$$

Hyperplanes and normal vectors

Hyperplane in vector notation

$$\beta_0 + \vec{\beta} \cdot \vec{x_i} = 0$$

Hyperplane in normal-vector notation

$$\vec{\beta} \cdot (\vec{x_i} - \vec{P}) = 0$$

with
$$\vec{P} = \begin{pmatrix} -\frac{\beta_0}{\beta_1} & 0 & \dots & 0 \end{pmatrix}^T$$

• Vector $\vec{\beta}$ is the **normal vector** of the hyperplane

Normal vectors and margins

Hyperplane in normal-vector notation

$$\vec{\beta} \cdot \left(\vec{x_i} - \vec{P} \right) = 0$$

• Distance from $\overrightarrow{x_i}$ to hyperplane

$$d_{\overrightarrow{\beta},\overrightarrow{x_i}} = \frac{\left\| \overrightarrow{\beta} \cdot \left(\overrightarrow{x_i} - \overrightarrow{P} \right) \right\|}{\left\| \overrightarrow{\beta} \right\|}$$

$$d_{\overrightarrow{\beta}} = \| \overrightarrow{\beta} \cdot (\overrightarrow{x_i} - \overrightarrow{P}) \| = |\beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i}|$$

Maximal margin classifier

Find the linear decision boundary (i.e., hyperplane)
 with the largest margin

For <u>all</u> training samples:

$$y_i \left(\beta_0 + \vec{\beta} \cdot \vec{x_i}\right) > M$$
with $\|\vec{\beta}\| = 1$

Maximal margin classifier: Optimization problem

$$\max_{\beta_0,\beta_1,\ldots,\beta_p,M} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \ \forall i = 1, \dots, n$$

Alternative optimization problem

Support vector classifier

Data without a linear separator

Slack variables ε_i

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

Slack variable

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C$$

Tuning parameter / hyperparameter

Examples

SVC & logistic regression

Alternative optimization problem for SVC

Loss functions for SVC and linear regression

