Network Security Project 2

Attack Classification

Instructor: Shiuhpyng Shieh

TA: Su-Xin Chong, Wan-Yu Chen, Tsung-Hung Wu,

Pei-Hsuan Hung, Zhong-Hao Liao

Outline

- Background knowledge
 - Cyber Attacks
 - Log Analysis
- Project introduction
 - Project objectives
 - Attack categories
- Scoring
 - Demo notice
 - Submission rules

Cyber Attack

- A cyber attack can be defined as a malicious act that seeks to disrupt digital life. This act could be the
 - Disruption of a communication pathway
 - Damage of data
 - Stealing data
- Hackers target enterprises, governments, institutions, or even individuals with valuable information. Threats posed by cyber-attacks include
 - Distributed Denial of service attacks (DDoS)
 - Bruteforce attacks
 - IP/Port scanning, etc.

Log Analysis

- Evaluation of logs
- Can be used in all sorts of scenarios
 - Help mitigate various of risks
 - Troubleshoot systems, computers or networks
 - Understand the behaviors of users (UBA)

Introduction

- 5 attack categories
- Packetbeat logs for each categories with both training/testing datasets
- Build a model to classify which attack the log stands for
- The model will be evaluated with another dataset at demo time

Detailed Steps

- Take a look at how the assigned attack categories work
 - Try to figure out possible features that this attack might generate
- Observe the logs (if needed)
 - Use elasticdump or other useful tools to import the logs to ELK
 - Elastic Cloud might help if you don't want to setup ELK stack on your machine locally (14-day trial)
- Design a model to classify the attacks
 - Your model can be either rule-based or machine-learning based
- Demonstrate your model at demo time
 - Your model will be tested on another dataset
 - The format is the same as your training/testing dataset

Attack Categories

- IP Scan
- Port Scan
- DDoS (Distributed Denial of service)
- RDP Brute-Force
- C&C (Command and Control)

IP Scan

 Attackers send packets to IP addresses in LAN within a short period of time to seek if there exists other machines in the internal network

Port Scan

• Attackers try to **send packets to different ports in a short time** to figure out an active port/service on victim machine

DDoS (Distributed Denial of Service)

- Attackers flood the targeted machine with overwhelmed requests to prevent legitimate requests from accessing the normal service
- In this project, the attacker tries to flood the victim's ssh service(port 22) to prevent normal user from logging in

RDP Brute-Force

 Attackers seek if default RDP port is opened on the victim machine and seek to bruteforce the user's password to gain access to the machine

C&C (Command and Control)

- A tactic commonly used by attacker to control the compromised machine
- Attackers won't need to hard-code the fixed command in the malware in this fashion
- Malwares need to communicate to remote server periodically to know what command to execute
- Malwares usually exfiltrate information of infected machine to the attacker.
 - In this project, the attacker exfiltrate some files from the victim on an unusual port

C&C (Command and Control)

Design a Model

- You are given logs collected from packetbeat in host when different attacks are carried out
- Try to figure out the characteristics of each attacks, and develop a model to classify them

Model I/O

- Input: Read the directory of files from command line argument
- Output: Input filename with the classified category in

```
<filename>: <category> format
```

```
→ Logs python model.py ./Evaluation

Attack_1.json: C&C

Attack_2.json: DDoS Correctly classified

Attack_3.json: IP Scan

Attack_4.json: Port Scan

Attack_5.json: C&C Falsely classified
```

Elasticdump (Optional)

- Tool for moving and saving indices on Elasticsearch
 - Import JSON data to Elasticsearch
 - Export data from Elasticsearch to JSON file
 - Migrate data between Elasticsearch servers
- Installation/Usage
 - https://github.com/dsnslab/NetworkSecurity/blob/master/109-2/Project2/Elasticdump.pdf
- Reference
 - https://github.com/elasticsearch-dump/elasticsearch-dump

Scoring

- Part A: Report (25%)
 - A report in PDF format that contains:
 - What model or algorithm you use?
 - What features/rules you used for your model?
 - Why do you select them? Please describe as much detail as possible
 - Anything interesting things you find or problems you encounter
 - A folder that contains:
 - Source code of your model
 - A README file explaining how to execute the model
- Part B: Demo (75%)

Demo

- Your model will be evaluated with another dataset
- Bring your own device
- Your model should be executed on-site during the demo period. Make sure the result shows up within a reasonable time

- Time: 5/31(Mon.), 6/1(Tue.), 6/4(Fri.)
 - The exact time and venue will be further noticed a week before the deadline

Submission

- Upload a zip file named "<STUDENT ID>.zip" to E3 platform
- A zip file which includes:
 - The source code of your model.
 (The model can be written in any language, but needs to be executed on-site at demo time)
 - Report in PDF format:
 - The core logic of the model, result and accuracy.
 - Anything interesting you find or problems you encounter.
- Deadline: 2021/05/30 (Sunday) 23:55
- The penalty for late submission is 10% per day, and 10 points will be deducted for handing in wrong file format.
- Plagiarism is strictly prohibited!

Q&A

- Questions and answers for Project 2 from last semester
 - https://github.com/dsnslab/NetworkSecurity/issues?q=label%3A109-1-pj2
- Feel free to contact us via email or Github issue if you have any questions.
 (You are encouraged to discuss with other classmates in issues)
- Email: TA@dsns.cs.nctu.edu.tw
- TA Hour:
 - o Mon. 13:00~15:00 @EC622
 - o Tue. 13:00~15:00 @EC622