Training Models 4: Logistic Regression

Learning outcomes

After this lecture you should be able to:

- 1. Define logistic regression as an optimization problem
- 2. Develop multi-class classifiers from binary classifiers
- Define how to generalize logistic regression to more than 2 classes

Bonus:

Compare training with the log loss function and with maximum likelihood

Recall: ML as an optimization problem

steps	example: linear regression
define a model , with parameters, that will be used to make predictions	$\hat{y} = \theta^T \cdot \mathbf{x}$
define a cost function to explain what it means for the model to fit the data well	$MSE(\mathbf{X}, \theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^T \cdot \mathbf{x}^{(i)} - y^{(i)})^2$
if possible, find the partial derivatives of the cost function	$\frac{\partial}{\partial \theta_j} MSE(\mathbf{X}, \theta) = \frac{2}{m} \sum_{i=1}^m \left(\theta^T \cdot x^{(i)} - y^{(i)} \right) x_j^{(i)}$
fit the model to your training data by finding the parameters that minimize the cost function, using gradient descent	

Model for logistic regression

Logistic regression is used for classification.

To get class probabilities, first apply a linear model, then apply the logistic function:

$$\hat{p} = \sigma(\theta^T \cdot \mathbf{x})$$

Cost function for logistic regression?

A prediction \hat{p} is between 0 and 1.

A target value y is exactly 0 or 1.

What should the cost function do?

For example, what if the prediction is 0.4 and the correct label is 1?

Cost function for a single prediction

$$c(\theta) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1\\ -\log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

if y = 1, cost is high when \hat{p} is 0

if y = 0, cost is high when \hat{p} is 1

Cost function for entire training set

Cost for a single training example:

$$c(\theta) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1\\ -\log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

Cost for training set is the average cost per training example:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)}) \right]$$

m: number of training examples

 $\hat{p}^{(i)}$: predicted probability of ith training example

 $y^{(i)}$: label (0 or 1) or ith training example

"log loss"

Logistic regression decision boundary

Classify irises using logistic regression:

```
from sklearn.datasets import load_iris
iris = load_iris()
X = iris["data"][:, 3:]  # petal width
y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0
# fit the logistic regression model
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)
```


Logistic curve with two predictors

Logistic regression with >2 classes?

Here are two ways to build a k-way classifier from a bunch of binary classifiers:

☐ One-vs-all:

- Train one binary classifier for every class
- Run every classifier; select class with highest decision score

□ One-vs-one:

- Train a binary classifier for every <u>pair</u> of classes
- Run every classifier; select class that wins the most "duels"

	C1	C2	C 3
score on x	0.5	0.7	0.2

which class do we predict?

	C12	C13	C23
score on x	0.2	0.6	0.7

which class do we predict?

Softmax regression

We can modify logistic regression to directly support k-way classification.

Idea: Each class k has its own vector θ_k of coefficients used to compute a score for class k:

$$s_k(\mathbf{x}) = \theta_k^T \cdot \mathbf{x}$$

Suppose we have 3 classes.

From a training example x, compute a score for each class:

How to convert these scores into probabilities for each class?

$s_1(\mathbf{x})$	$s_2(\mathbf{x})$	$s_3(\mathbf{x})$
1.7	2.4	0.5

Softmax function

We can use the softmax function to get a probability value for every class k:

$$\hat{p}_k = \sigma(s(\mathbf{x}))_k = \frac{\exp(s_k(\mathbf{x}))}{\sum_{j=1}^K \exp(s_j(\mathbf{x}))}$$

Example:

$s_1(\mathbf{x})$	$s_2(\mathbf{x})$	$s_3(\mathbf{x})$
1.7	2.4	0.5

Step 1:

$$exp(1.7) = e^{1.7} = 5.5$$

 $exp(2.4) = e^{2.4} = 11$
 $exp(0.5) = e^{1.6} = 1.6$

Probability of class 1:
$$\frac{5.5}{5.5+11+1.6} = 0.30$$

Probability of class 2:
$$\frac{11}{5.5+11+1.6} = 0.61$$

Probability of class 3:
$$\frac{1.6}{5.5+11+1.6} = 0.09$$

What is the predicted class?

scores:

$s_1(\mathbf{x})$	$s_2(\mathbf{x})$	$s_3(\mathbf{x})$
1.7	2.4	0.5

probabilities:

\widehat{p}_1	\widehat{p}_2	\widehat{p}_3
1.7	2.4	0.5

- use class with highest probability
- 2. use class with highest score
- 3. use class with highest value of $\theta_k^T \cdot x$

$$\underset{k}{\operatorname{argmax}} \, \sigma(s(x))_{k}$$

$$\operatorname*{argmax}_{k} s_{k}(x)$$

$$\underset{k}{\operatorname{argmax}}(\theta_k^T \cdot x)$$

Cost function for softmax regression?

How to compute how well the model is doing on a training set?

actual class	predicted prob. of class 1	predicted prob. of class 2	predicted prob. of class 3
1	0.1	0.5	0.4
3	0.1	0.1	0.8
2	0.2	0.6	0.2

Idea:

 \square for each example, cost is the log of the prediction \hat{p}_k for the actual class k

For example 1, $\log(0.1) = -1.0$ For example 2, $\log(0.8) = -0.097$

for total cost, use negative average

$$-\frac{1}{3}\left(-1.0 - 0.097 - 0.22\right) = 0.44$$

Cost function in softmax regression

Cross-entropy cost function:

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(p_k^{(i)})$$

 $y_k^{(i)}$ is 1 if $y^{(i)}$ is k, else 0

Example:

actual class	predicted prob. of class 1	predicted prob. of class 2	predicted prob. of class 3
1	0.1	0.5	0.4
3	0.1	0.1	0.8
2	0.2	0.6	0.2

$$J(\Theta) = -\frac{1}{3} *$$

$$(log(0.1) + log(0.8) + log(0.6))$$

$$= -1/3 (-1 - 0.10 - 0.22)$$

$$= 0.44$$

Summary

- 1. We can turn values from a linear model into probabilities using the logistic function.
- 2. In logistic regression (binary classification), the cost function is "log loss".
- 3. You can build a k-way classifier from binary classifiers using 'one-vs-all' or 'one-vs-one'
- 4. Softmax regression is a "native" k-way extension to logistic regression

Bonus: Log loss versus max likelihood

Training a logistic regression model is often done using the maximum likelihood method.

- Define the probability of the seeing the training data given the parameters
- Use the parameter values to maximize the probability of seeing the training data

Here's the probability of seeing the training data:

$$\prod_{i:y^{(i)}=1} \hat{p}^{(i)} \prod_{i':y^{(i')}=0} (1 - \hat{p}^{(i')})$$

If you take the log, and divide by the number of training examples, you get log loss!

Log loss versus max likelihood - detail

$$log\left(\prod_{i:y^{(i)}=1}\hat{p}^{(i)}\prod_{i':y^{(i')}=0}(1-\hat{p}^{(i')})\right)$$

$$= log\left(\prod_{i:y^{(i)}=1}\hat{p}^{(i)}\right) + log\left(\prod_{i':y^{(i')}=0}(1-\hat{p}^{(i')})\right)$$

$$= \sum_{i:y^{(i)}=1}log(\hat{p}^{(i)}) + \sum_{i':y^{(i')}=0}log(1-\hat{p}^{(i')})$$

$$= \sum_{i}log(\hat{p}^{(i)}) + \sum_{i':y^{(i')}=0}log(1-\hat{p}^{(i')})$$

$$= \sum_{i}log(\hat{p}^{(i)}) + \sum_{i}log(1-\hat{p}^{(i')}) + \sum_{i':y^{(i')}=0}log(1-\hat{p}^{(i')})$$

$$= \sum_{i}log(\hat{p}^{(i)}) + \sum_{i':y^{(i')}=0}log(1-\hat{p}^{(i')})$$

$$= \sum_{i}log(\hat{p}^{(i)}) + (1-g^{(i)})log(1-\hat{p}^{(i')})$$

maximum likelihood formulation

log loss is this multiplied by -1/m