HW 4 PROBLEMS

- 1. Hassett, Chapter 2, #12, modified as follows:
 - (a) Before beginning, read the entire problem carefully and then consider a particular instance of the algebra homomorphism ψ in problem 12:

Consider the ring $k[x, y_1, y_2]$ and $\phi_1(x) = x$, $\phi_2(x) = x^2$.

- i. Carefully define the map ψ in this example.
- ii. Find the image of $f = x + y_1 2y_2$ and $g = xy_1 y_2$ under ψ .
- iii. Is ψ surjective? Prove your answer for the general case.
- iv. By direct computation, show that $y_i \phi_i \in \ker(\psi)$.
- v. By direct computation, show that $g \in I$ as defined in the problem.
- (b) Now do problem 12.
- 2. (a) Hassett, Chapter 2, #17a. You may (and are strongly encouraged to) use Singular to answer this question. Commands you will need are matrix, minor, print(A).
 - (b) View any 2×3 matrix $A = (a_{ij})$ as an element of $\mathbb{A}^6(\mathbb{R})$. Then consider the set of points $V \subseteq \mathbb{A}^6(\mathbb{R})$ satisfying the three equations g_1, g_2, g_3 . That is, V is the zero set of g_1, g_2, g_3 .

Using ideas from linear algebra, give a concrete description of this set V.

- 3. (a) By hand, compute a Groebner basis for the ideal $I = \langle f_1, f_2 \rangle = \langle x^2 y^2, xy 1 \rangle$ with respect to $>_{\text{lex}}$ for x > y. For your write up, please include all S-polynomials.
 - (b) You should be able to find a smaller (in terms of number) Groebner basis by taking only a subset of your answer to (a). More formally, a Groebner basis f_1, \ldots, f_r is called *minimal* if for all i,

$$< \operatorname{LT}(f_1), \dots, \operatorname{LT}(f_{i-1}), \operatorname{LT}(f_{i+1}), \dots, \operatorname{LT}(f_r) \rangle \neq < \operatorname{LT}(f_1), \dots, \operatorname{LT}(f_r) \rangle.$$

Give a minimal Grobner basis for I constructed from your answer to (a).

- (c) Give a concrete description of the zero set of the polynomials f_1 and f_2 .
- 4. Singular exercises.
 - (a) Determine whether $f = xy^3 z^2 + y^5 z^3$ and $g = -z^4yx z^4y + z^4 + z^2y^2 + z^2yx + zy^2x + zy^2 zy yx x^2$ are in the ideal $I = \langle -x^3 + y, x^2y z \rangle$. If not, give the normal form (mod I) with respect to $>_{\text{greylex}}$.
 - (b) (Calculus III) Consider the function of two variables

$$f(x,y) = x^3y^2 + x^2y^3 + x^2y + xy^2.$$

Use Singular to compute the critical points of f. You will need the command diff, and once you have computed a Groebner basis G for the appropriate ideal, you will need the commands

(c) (Lagrange multiplier problem – easy) Find the maximum and minimum values of $f(x,y) = 2x^2 + y^2$ subject to the constraint $g(x,y) = x^2 + y^2 - 9 = 0$. Do this by hand and by using Singular.