Quand DevOps rencontre BigData!

@obazoud - Olivier Bazoud

@vhe74 - Vincent Heuschling

Objectifs

Comprendre ce que les outils Bigdata peuvent apporter dans le traitement des données dans un contexte Devops

Speakers

Olivier Bazoud - @obazoud

DevOps, Chef/Puppet, Logs, Hadoop Spring, Node.js, NoSQL Co-auteur de "Spring Batch in Action"

Vincent Heuschling - @vhe74

Fondateur d'Affini-Tech: "Bigdata Architects"

Bigdata, NoSQL, Hadoop, Spark, Datascience

Co-Animateur du Podcast @Bigdatahebdo

Agenda

- · Présentation du contexte 15 mn
- · Découverte du Hand's on Lab 5 mn
- · A vous de jouer! Ih30 + 45mn
- · Démo du cluster Spark dans le cloud 10 mn
- · Jouer avec le cluster 15 mn

Contenu du Toolkit

- Spark 1.3
- SBT avec le cache pré-chargé
 & un squelette d'application
- MAVEN avec le cache pré-chargé
 & un squelette d'application
- · Sample de données
- https://github.com/obazoud/devoxx-quand-devops-rencontre-bigdata

Contexte

Devops en quelques slides

Devops: Principes CAMS

Culture Automation Measurement Sharing

Devops: Principes CAMS

Casser les silos L'humain avant les process Esprit d'équipe Monitoring Gestion centralisée des logs

"Infrastructure as code" Déploiement continue Dashboards, KPI L'amélioration continue "Fast feedbacks"

Analyse de logs

Plus de serveurs, c'est plus de logs à analyser!

Possibilités:

- awk, grep...
- Logstash, Fluentd, Flume, ...
- Utiliser les outils de type "BigData"

Bigdata

plus de Data?
plus vite?

plus d'hétérogénéité dans les Data? Rupture Techno

Open source

Data-science

Changement de paradigmes

Hadoop? Spark?

HDFS
Map-Reduce
Opensource
Google en 06

Fonctionnel In-Memory Midsize Data Berkeley AMPLab

Hadoop: HDFS

Splitter les fichiers pour pouvoir les traiter en parallèle sans limite de taille

Hadoop: Map-Reduce

Map : distribuer les traitements sur tous les noeuds du cluster ou des blocs de données sont présents.

Hadoop: Map-Reduce

Reduce: Synthétiser les résultats du Map

Spark: Mieux car en mémoire


```
val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line
split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Functional
```


Spark: RDD

Spark Execution Model

Spark: Fonctionnel

```
val textFile = sc.textFile("hdfs://somefile")
val wordCounts = textFile
             .flatMap(line => line.split(" "))
             .map(word => (word, 1))
             .reduceByKey((a, b) => a + b)
```

Hands on lab

Agenda

- 1. Manipuler des données avec le REPL
- 2. Analyser des Apache logs
- 3. Détecter des anomalies dans des logs réseau
- 4. Utiliser un cluster

Comptes Google

Pour vous connecter au cluster vous vous authentifierez avec vos comptes Google.

http://bit.ly/devops-bigdata

Repo Github

Updatez le repository founit dans le « package usb »

git clone https://github.com/obazoud/ devoxx-quand-devops-rencontre-bigdata.git

Exercice 1

Prise en main de Spark à travers le REPL.

- Spark-shell
- Lire un fichier
- Comptage de lignes
- Wordcount

Exercice 2

Construction d'une application pour analyser des logs Apache

- En Java
- En Scala

Exercice 3

Regroupement d'événements dans des captures réseau par « Machine Learning non

supervisé »

K-Means de Spark ML-Lib

Démo Spark @ Cloud

Spark sur Google Cloud

Emulation Hadoop/HDFS par le Google Cloud storage : gs://handsondevoxxfr/kddcup.data

Storage browser en mode web: https://console.developers.google.com/project/blast-machine-201504/storage/browser/ handsondevoxxfr/

Spark sur Google Cloud

Votre code sur le Cloud

Utilisation du REPL

Utilisation du REPL Spark depuis le master node du cluster.

Partage des ressources du cluster en limitant le nombre de coeurs et la mémoire alloué à chaque application

Connexion au master

Connexion en pseudo-ssh:

https://cloudssh.developers.google.com/projects/blast-machine-201504/zones/europe-west1-b/

instances/spark-m?authuser=0&hl=fr

Check de l'environnement Spark:

http://spark-m:8080/

Lancement du REPL

```
$ MASTER=spark://spark-m:7077 bin/spark-shell \
         --total-executor-cores 8 \
         --executor-memory 2G \
         --name your nickname
## check on http://spark-m:8080
```

8 A