1

GATE-CS.51

EE23BTECH11046 - Poluri Hemanth*

Question: Consider the following recurrence:

$$f(1) = 1;$$

$$f(2n) = 2f(n) - 1$$
, for $n \ge 1$;

$$f(2n + 1) = 2f(n) + 1$$
, for $n \ge 1$.

Then, which of thefollowing is/are TRUE?

(A)
$$f(2^n - 1) = 2^n - 1$$

(B)
$$f(2^n) = 1$$

(C)
$$f(5 \cdot 2^n) = 2^{n+1} + 1$$

(D)
$$f(2^n + 1) = 2^n + 1$$

[GATE-CS.51 2022]

Solution:

(A)

let $x(2^k - 1) = 2^k - 1$ for any $k \ge 1$,

$$x(2^{k+1}-1) = x(2(2^k-1)+1)$$

From (3),

$$=2x(2^k-1)+1$$

$$=2(2^k-1)+1$$

$$=2^{k+1}-1$$

From (1),(7)

$$x(2-1) = 2 - 1 (k = 0)$$
= 1

Hence $x(2^n - 1) = 2^n - 1$ for $n \ge 1$

So statement A is TRUE

(B)

Let $x(2^k) = 1$ for any $k \ge 0$

$$x(2^{k+1}) = x(2 \cdot 2^k)$$

From (2)

From (11),(2)

$$=2x(2^k)-1$$

$$= 2 - 1$$

$$x(2) = 2x(1) - 1 (k = 0)$$
 (14)

$$=2-1\tag{15}$$

(16)

(11)

Hence $x(2^n) = 1$ for every $n \ge 0$ value.

So statement B is TRUE.

(2) **(C)**

(1)

(3) Let, $x(5 \cdot 2^k) = 2^{k+1} + 1$ be true for any $k \ge 0$,

$$x(5 \cdot 2^{k+1}) = x(2(5 \cdot 2^k)) \tag{17}$$

From (2)

$$= 2x(5 \cdot 2^k) - 1 \tag{18}$$

$$= 2(2^{k+1} + 1) - 1 \tag{19}$$

$$= 2^{k+2} + 1 \tag{20}$$

From (20)

(4)
$$x(5) = 2^1 + 1 \ (k = -1)$$
 (21)

$$=3 \tag{22}$$

Proof:-(5)

(6)
$$x(5) = x(2 \cdot 2 + 1) \tag{23}$$

(7) From (3),(16)

(8)

$$= 2x(2) + 1 \tag{24}$$

$$=3\tag{25}$$

(9) Hence $x(5.2^n) = 2^{n+1} + 1$ for $n \ge 1$

So statement C is TRUE.

$$x(2^{n} + 1) = x(2 \cdot 2^{n-1} + 1)$$
 (26)

(10) From (3),(16)

(D)

$$=2x(2^{n-1})+1\tag{27}$$

$$=2+1\tag{28}$$

$$(12) \qquad = 3 \tag{29}$$

(13)Hence statement D is FALSE.

Fig. 1. plot of x(n)