# DIGITAL TRANSMISSION

data can be stored in a ways, analog and digital. similar to data, signal can be both stored in analog and digital form. to transmiss data digitally it needs to be first converted to digital form.

This section will explain how to convert digital data into digital signal.

L line coding, block coding

option

## DIGITAL TRANSMISSION (CHANNEL)

### Simplified Communications Model - Diagram



**Wire Channel** 



# สัญญาณแบบใหนที่ส่งบน DIGITAL CHANNEL



## เราสามารถส่ง SIGNAL ที่เป็นตัวแทนข้อมูลแบบไหนได้บ้าง ใน DIGITAL CHANNEL

## **Line Coding**

Lani polar polar bipolar

**Block Coding** 









## ทำไมต้องมี สัญญาณ หลากหลายแบบ

## ■เพื่อลดข้อจำกัดและ เพิ่มความสามารถในการส่งข้อมูล

-ลดข้อจำกัด Error ที่อาจเกิดขึ้นกับสัญญาณ

- เพิ่ม Bit rate ในการส่งข้อมูล

- เพิ่ม -Sonta bit rate alamain

- ■เพิ่ม Data pattern เพื่อใช้ส่งได้หลากหลายขึ้น
  - Data และ Control information

# ERROR แบบใดที่เกิดกับสัญญาณ และควรหลีกเลี่ยง

### Distortion (DC Component)





### Bit Synchronization

■ Lack of clk synchronization between Tx,Rx → MSN (1) COUL





## ื เพิ่ม Bit rate ในการส่งข้อมูล



a. One data element per one signal element (r = 1)



c. Two data elements per one signal element (r = 2)



b. One data element per two signal elements  $\left(r = \frac{1}{2}\right)$ 



d. Four data elements per three signal elements  $\left(r = \frac{4}{3}\right)$ 



เป็นการแทน Data element ด้วย Signal element โดยตรง

โดยมีรูปแบบการแทน ขึ้นกับ r (bit/signal element)

Bit rate = baud-rate x r



## ■เพิ่ม Data pattern

- เพื่อใช้ส่งได้หลากหลายขึ้น
  - Data
  - Control information

| Data Sequence | Encoded Sequence | Control Sequence    | Encoded Sequence |
|---------------|------------------|---------------------|------------------|
| 0000          | 11110            | Q (Quiet)           | 00000            |
| 0001          | 01001            | I (Idle)            | 11111            |
| 0010          | 10100            | H (Halt)            | 00100            |
| 0011          | 10101            | J (Start delimiter) | 11000            |
| 0100          | 01010            | K (Start delimiter) | 10001            |
| 0101          | 01011            | T (End delimiter)   | 01101            |
| 0110          | 01110            | S (Set)             | 11001            |
| 0111          | 01111            | R (Reset)           | 00111            |
| 1000          | 10010            |                     |                  |
| 1001          | 10011            |                     |                  |
| 1010          | 10110            |                     |                  |
| 1011          | 10111            |                     |                  |
| 1100          | 11010            |                     |                  |
| 1101          | 11011            |                     |                  |
| 1110          | 11100            |                     |                  |
| 1111          | 11101            |                     |                  |

# Line Coding Techniques



- ■เพื่อลดปัญหา DC Component (Distortion)
  - ■ใช้ signal level -> (+,-) แทน (+, 0)
- ■เพื่อลดปัญหา Bit synchronization → ไม่รู้อ่า () มีที่เป็นกัดัง
  - aร้าง Transition (การเปลี่ยนแปลง) เมื่อมีบิต '0', '1' ติดกันนานๆ
- ■เพื่อเพิ่ม Bit rate
  - แทนสัญญาณให้ r (bit/signal element) มีค่ามาก

### POLAR NRZ-L AND NRZ-I SCHEMES

RS232 based protocol

การแทน data bit ด้วย signal element สามารถเลือกได้ แทนด้วย signal level แทนด้วย signal transition

### (Unipolar NRZ)

Amplitude



$$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$$

Normalized power

- ปัญหา DC Component (Distortion)
- ปัญหา Bit Synchronization '0' & '1' ติดกันนานๆ

### Ethernet (IEEE 802.3) 100Mbps



- O No inversion: Next bit is 0
- Inversion: Next bit is 1

ปัญหา Bit Synchronization เกิดกับ Bit ที่ถูกแทนด้วย No transition ติดกันนานๆ เช่น ในกรณีการแทนแบบนี้ ปัญหาจะเกิดกับ

'0' ติดกันนานๆ

## POLAR RZ / POLAR BIPHASE



ปัญหา ความเร็วในการส่ง และ Bandwidth ที่กว้าง

Ethernet networks (10BASE-X) Hard drive



แสดงสัญญาณที่ใช้แทนบิตข้อมูลด้วย

Signal Encoding Technique เหล่านี้

- 1)NRZ-L
- 2)NRZ-I
- 3)Polar RZ
- 4) Manchester

## **ACTIVITY #8.1**



### **MULTILEVEL**

### Multilevel: 2BIQ scheme

+3 - 00 | 11 | 01 | 10 | 01 | 1 | Time

Assuming positive original level

ปัญหา Bit Synchronization เกิดกับ Bit ที่ถูกแทนด้วย Inversion ติดกันนานๆ เช่น ในกรณ๊การแทนแบบนี้ ปัญหาจะเกิดกับ
'0' ติดกันนานๆ

ISDN (Telephone Line)



Previous level: Previous level: positive negative

| Next<br>bits | Next<br>level | Next<br>level |
|--------------|---------------|---------------|
| 00           | +1            | -1            |
| 01           | +3            | -3            |
| 10           | -1            | +1            |
| 11           | -3            | +3            |

Transition table

## **MULTILEVEL**



## MULTITRANSITION: MLT-3 SCHEME

multi-Level transmit.



a. Typical case



b. Worse case

### **FDDI Network**

## MANY SUN (ASMI)



แสดงสัญญาณที่ใช้แทนบิตข้อมูลด้วย

Signal Encoding Technique เหล่านี้

1)AMI

2)HDB3

3)2B1Q

4) MLT-3

**ACTIVITY #8.2** 

011111 000000 00 10 รหัส นศ. 61010497 ชื่อ-นามสกุล นารชิณธร จงรมวัมดังช่ 0 11 111 0000 10 Activity #8 NO-SCRAMBLING NRZ-L 1 - INVERT 0 -> + 000 HDB3 0 DEVEN 0 NRZ-I ٥ 0 0 start # + 2B1Q Polar RZ +3 +3 +3 +3 +10 -> 1 Jo -> 0 MLT-3 Manchester - 3 -J+ →1 + 72 ->0

LINE CODING

BIPOLAR

## **Block coding concept**



### Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme



| D . C         | E 110            | C . 1C              | T 11C            |
|---------------|------------------|---------------------|------------------|
| Data Sequence | Encoded Sequence | Control Sequence    | Encoded Sequence |
| 0000          | 11110            | Q (Quiet)           | 00000            |
| 0001          | 01001            | I (Idle)            | 11111            |
| 0010          | 10100            | H (Halt)            | 00100            |
| 0011          | 10101            | J (Start delimiter) | 11000            |
| 0100          | 01010            | K (Start delimiter) | 10001            |
| 0101          | 01011            | T (End delimiter)   | 01101            |
| 0110          | 01110            | S (Set)             | 11001            |
| 0111          | 01111            | R (Reset)           | 00111            |
| 1000          | 10010            |                     |                  |
| 1001          | 10011            |                     |                  |
| 1010          | 10110            |                     |                  |
| 1011          | 10111            |                     |                  |
| 1100          | 11010            |                     |                  |
| 1101          | 11011            |                     |                  |
| 1110          | 11100            |                     |                  |
| 1111          | 11101            |                     |                  |

### Figure 4.17 8B/10B block encoding



### NRZ encoding: RS232 based protocols

### Manchester encoding:

- Ethernet networks (IEEE 802.3)
- Hard drive

### Differential Manchester encoding:

• token-ring networks (IEEE 802.5)

### NRZ-Inverted encoding:

- USB
- Fiber Distributed Data Interface (FDDI)

2BIQ: ISDN (Telephone Line)

8B6T: 100 Mbps Ethernet

B8ZS and HDB3 : Fiber Optic

4B/5B NRZI: Ethernet 100 Mbps and FDDI

8B/10B, 4D-PAM: Gigabit Ethernet

# APPLICATIONS OF LINE CODING

### LINE CODING SUMMARIZE

| Objective              | Line Coding                             | Data rate                                                                    |
|------------------------|-----------------------------------------|------------------------------------------------------------------------------|
| High Data rate         | 2B1Q<br>4D-PAM5                         | 2 x Signal rate<br>4 channel of (2 x Signal<br>rate)                         |
| No Error Sync Long '1' | NRZ-I, AMI, MLT-3                       | Signal rate                                                                  |
| No Sync Error          | RZ, Manchester, Differential Manchester | (1/2) x signal rate                                                          |
|                        | 8B6T                                    | (4/3) x signal rate                                                          |
|                        | 4B/5B, 8B/10B                           | Require higher signal rate Data rate depends on chosen line coding technique |
|                        | B8ZS, HDB3 (AMI with Scrambling)        | Signal rate 4.                                                               |