Métricas para Classificação

INFORMAÇÃO,

TECNOLOGIA

& INOVAÇÃO

Risco

$$R(g) := \mathbb{E}[\mathbb{I}(Y \neq g(\mathbf{X}))] = \mathbb{P}(Y \neq g(\mathbf{X}))$$

Data Splitting

Risco

$$R(g) := \mathbb{E}[\mathbb{I}(Y \neq g(\mathbf{X}))] = \mathbb{P}(Y \neq g(\mathbf{X}))$$

$$\widehat{R}(g) := \frac{1}{m} \sum_{k=1}^{m} \mathbb{I}(Y_k' \neq g(\mathbf{X}_k'))$$

OUTRAS MÉTRICAS

EXEMPLO: Doença rara

Poucos pacientes com Y=1

Classificador trivial: g(x)=0

EXEMPLO: Doença rara

Matriz de confusão

	Valor verdadeiro	
Valor Predito	Y=0	Y=1
Y=0	VN	FN
Y=1	FP	VP

EXEMPLO: Doença rara

- ▶ Sensibilidade/Recall: S = VP/(VP + FN) (dos pacientes doentes, quantos foram corretamente identificados?)
- **Especificidade:** E = VN/(VN + FP) (dos pacientes não doentes, quantos foram corretamente identificados?)
- ► Valor preditivo positivo/Precision: VPP = VP/(VP + FP) (dos pacientes classificados como doentes, quantos foram corretamente identificados?)
- ▶ Valor preditivo negativo: VPN = VN/(VN + FN) (dos pacientes classificados como não doentes, quantos foram corretamente identificados?)
- corretamente identificados?)

 Estatística F1: $F1 = \frac{2}{1/S + 1/VPP}$

Matriz de confusão

	Valor verdadeiro	
Valor Predito	Y=0	Y=1
Y=0	VN	FN
Y=1	FP	VP

Problema relacionado

$$Y=1$$
 é raro $\Rightarrow \mathbb{P}(Y=1|\mathbf{x})$ baixo

$$g(\mathbf{x}) = \mathbb{I}(\mathbb{P}(Y=1|\mathbf{x}) \geq 1/2) = 0$$
 para quase todo \mathbf{x}

$$g(\mathbf{x}) = \mathbb{I}(\mathbb{P}(Y = 1|\mathbf{x}) \geq K)$$

Curva ROC

Precision-Recall Curve

Assimetria nos erros

O problema é o desbalanceamento?

Python

