REACTIVO LIMITANTE

REACTIVO LIMITANTE

- En una reacción química, *el reactivo limitante es el reactivo que determina cuánto producto se va a obtener.*
- Los otros reactivos están en exceso porque va a sobrar algo cuando el reactivo limitante se haya utilizado por completo.
- La cantidad máxima de producto que se puede producir se llama el rendimiento teórico.

HCl+ KMnO₄ → Cl₂+ KCl + MnCl₂

- El cloruro de potasio es un compuesto que se utiliza para la fabricación de fertilizantes.
- el cloruro de manganeso es una sal halógena que se utiliza para la fabricación de otros compuestos como el óxido de manganeso o carbonato de manganeso.
- Ambas sales se obtienen de la reacción que se da entre el ácido clorhídrico y el permanganato de potasio.
- Si la reacción inicia con 260 g de $KMnO_4$ y 420 g de HCl. ¿qué masa se obtendrá de cada sal (KCl y $MnCl_2$)?
- ¿Se cumple con la ley de conservación de la materia?

HCl+ KMnO₄ → Cl₂+ KCl + MnCl₂

$$5(2CI^{-} \rightarrow CI_{2} + 2e)$$

2(5e + 8H⁺ + MnO₄⁻ \rightarrow Mn⁺² + 4H₂O)

10 Cl- +
$$\frac{16}{16}$$
H⁺ + $\frac{2}{2}$ MnO₄⁻ 10e \rightarrow 10e + 5Cl₂ + $\frac{2}{2}$ Mn⁺² + 8H₂O)

Ya balanceada queda de la siguiente manera:

$$\frac{16}{16}HCI + \frac{2}{2}KMnO_4 \rightarrow 5CI_2 + \frac{2}{2}KCI + \frac{2}{2}MnCI_2 + 8H_2O$$

$16HCI + 2KMnO_4 \rightarrow 5CI_2 + 2KCI + 2MnCI_2 + 8H_2O$

Masa molar g/ mol	36	158	\longrightarrow	70	74	126	18
Masa inicial (g)	420	260					
Mol inicial	11.66	1.64					

$$420 g HCl \left[\frac{1 mol}{36 g} \right] = 11.66 mol HCl$$

$$260 g KMnO_4 \left[\frac{1 mol}{158 g} \right] = \mathbf{1.64} mol KMnO_4$$

$\frac{16}{16}HCI + \frac{2}{2}KMnO_4 \rightarrow 5CI_2 + 2KCI + 2MnCI_2 + 8H_2O$

Masa molar g/ mol	36	158	\longrightarrow	70	74	126	18
Masa inicial (g)	420	260					
Mol inicial	11.66	1.64					
Reactivo limitante	0.72	0.82					

$$420 \ g \ HCl \left[\frac{1 \ mol}{36 \ g} \right] = 11.66 \ mol \ HCl \qquad \frac{11.66}{16} = 0.72$$

$$260 \ g \ KMnO_4 \left[\frac{1 \ mol}{158 \ g} \right] = 1.64 \ mol \ KMnO_4 \qquad \frac{1.64}{2} = 0.82$$

$\frac{16}{16}HCI + \frac{2}{2}KMnO_4 \rightarrow 5CI_2 + \frac{2}{2}KCI + \frac{2}{2}MnCI_2 + 8H_2O$

Masa molar g/ mol	36	158	\longrightarrow	70	74	126	18
Masa inicial (g)	420	260					
Mol inicial	11.66	1.64					
Reactivo limitante	0.72	0.82					
Mol reaccionan	11.66	1.45			1.45	1.45	

$$11.66 \ mol \ HCl \left[\frac{2 \ mol \ KMnO_4}{16 \ mol \ HCl} \right] = 1.45 \ mol \ KMnO_4$$

$$11.66 \ mol \ HCl \left[\frac{2 \ mol \ KCl}{16 \ mol \ HCl} \right] = 1.45 \ mol \ KCl$$

$$11.66 \ mol \ HCl \left[\frac{2 \ mol \ MnCl_2}{16 \ mol \ HCl} \right] = 1.45 \ mol \ MnCl_2$$

$16HCI + 2KMnO_4 \rightarrow 5CI_2 + 2KCI + 2MnCI_2 + 8H_2O$

Masa molar g/ mol.19	36	158	\rightarrow	70	74	126	18
Masa inicial (g)	420	260					
Mol inicial	11.66	1.64					
Reactivo limitante	0.72	0.82					
Mol reaccionan	11.66	1.45			1.45	1.45	
Mol final	0	0.19			1.45	1.45	

mol final = mol inicial - mol reaccionan

$$11.66 - 11.66 = 0$$

$$1.64 - 1.45 = 0.19$$

$16HCI + 2KMnO_4 \rightarrow 5CI_2 + 2KCI + 2MnCI_2 + 8H_2O$

Masa molar g/ mol	36	158	\longrightarrow	70	74	126	18
Masa inicial (g)	420	260					
Mol inicial	11.66	1.64					
Reactivo limitante	0.72	0.82					
Mol reaccionan	11.66	1.45			1.45	1.45	
Mol final	0	0.19			1.45	1.45	
Masa final (g)	0	30.02	\longrightarrow		107.3	182.7	

$$0.19 \ mol \ KMnO_4 \left[\frac{158 \ g \ KMnO_4}{1 \ mol} \right] = 30.02 \ g \ KMnO_4$$

$$1.45 \ mol \ KCl \left[\frac{74 \ g \ KCl}{1 \ mol \ KCl} \right] = 107.3 \ g \ KCl$$

$$1.45 \ mol \ MnCl_2 \left[\frac{126 \ g \ MnCl_2}{1 \ mol \ MnCl_2} \right] = 182.7 \ g \ MnCl_2$$

$\frac{16}{16}HCI + 2KMnO_4 \rightarrow \frac{5}{2}CI_2 + 2KCI + 2MnCI_2 + 8H_2O$

Masa molar g/ mol	36	158	\longrightarrow	70	74	126	18
Masa inicial (g)	420	260					
Mol inicial	11.66	1.64					
Reactivo limitante	0.72	0.82					
Mol reaccionan	11.66	1.45		3.64	1.45	1.45	5.83
Mol final	0	0.19		3.64	1.45	1.45	5.83
Masa final (g)	0	30.02	\longrightarrow	254.8	107.3	182.7	104.94

$$11.66 \ mol \ HCl \left[\frac{5 \ mol \ Cl_2}{16 \ mol \ HCl} \right] = 3.64 \ mol \ Cl_2$$

$$3.64 \ mol \ HCl \left[\frac{70 \ g \ Cl_2}{1 \ mol \ HCl} \right] = 254.8 \ g \ Cl_2$$

$\frac{2}{2}NaOH + \frac{1}{1}H_2SO_4 \longrightarrow \frac{1}{1}Na_2SO_4 + \frac{2}{2}H_2O$

n.	Masa molar g/ mol	40	98	\rightarrow	142	18
	Masa inicial (g)	100	100			
	Mol inicial	2.5 mol	1.02 mol			
	Reactivo limitante	1.25	1.02 RL			
	Mol reaccionan	2.04	1.02		1.02	2.04
	Mol final	0.46	0		1.02	2.04
	Masa final (g)	18.4 g	0	\rightarrow	144.84	36.72

$$Mol\ inicial = 100\ g\ NaOH \left[\frac{1\ mol\ NaOH}{40\ g\ NaOH} \right] = \mathbf{2.5}\ mol$$

Reactivo limitante =
$$\frac{mol\ inical}{Coefic\ esteq} = \frac{2.5\ mol\ NaOH}{2} = 1.25$$

$$1.02 \ mol \ H_2SO_4 \left[\frac{2 \ mol \ NaOH}{1 \ mol \ H_2SO_4} \right] = 2.04 \ mol \ NaOH$$

$$1.02 \ mol \ H_2SO_4 \left[\frac{1 \ mol \ Na_2SO_4}{1 \ mol \ H_2SO_4} \right] = 1.02 \ mol \ Na_2SO_4$$

 $mol\ final = mol\ inicial - mol\ reaccionan$

$$0.46 \ mol \ NaOH \left[\frac{40 \ g \ NaOH}{1 \ mol \ NaOH} \right] = \mathbf{18.4} \ \mathbf{g} \ \mathbf{NaOH}$$

Masa molar g/ mol	40	98	\rightarrow	142	18
Masa inicial (g)	100	100			
Mol inicial	2.5 mol	1.02 mol			
Reactivo limitante	1.25	1.02 RL			
Mol reaccionan	2.04	1.02		1.02	2.04
Mol final	0.46	0		1.02	2.04
Masa final (g)	18.4 g	0	\rightarrow	144.84	36.72
Rendimiento 100 %	1.25	1.02 RL		144.84	36.72
Rendimiento 84 %				121.66	30.84 g

 Na_2SO_4

100% ----- 144.84 g 84 % -----x= **121.66** g