Apprentissage avec erreurs

Définition du problème

- Soit $\mathbb{T}\cong \mathbb{R}/\mathbb{Z}\cong [0,1)$, étant donné $s\in \mathbb{Z}_q^n$, et ϕ une distribution sur \mathbb{T}
- On note $A_{s,\phi}$ la distribution sur $\mathbb{Z}_q^n \times \mathbb{T}$ telle que
 - On choisi $a \in \mathbb{Z}_q^n$ uniformément et $e \in \mathbb{T}$ par ϕ
 - On calcule $(a, (a \cdot s)/q + e)$
- Le problème $LWE_{q,\phi}$ demande à trouver $s\in\mathbb{Z}_q^n$ étant donné un nombre polynomial d'échantillons de $A_{s,\phi}$

Apprentissage avec erreurs

Schéma TFHE (clé secrète)

- q>p des puissances de deux et $\Delta=q/p$
- χ une distribution Gaussienne centrée sur \mathbb{Z}_q
- $Gen(1^n) = s \stackrel{R}{\leftarrow} \{0,1\}^n$
- Avec $a \overset{R}{\leftarrow} \mathbb{Z}_q^n$ appelé le masque et l'erreur $e \overset{\chi}{\leftarrow} \mathbb{Z}_q$

$$Enc_s \colon \mathbb{Z}_p \to (\mathbb{Z}_q^n \times \mathbb{Z}_q) \qquad Dec_s \colon (\mathbb{Z}_q^n \times \mathbb{Z}_q) \to \mathbb{Z}_p$$

$$Enc_s(m) = (a, a \cdot s + \Delta m + e) \quad Dec_s(a, b) = (b - a \cdot s)/\Delta$$