18.5 习题

张志聪

2025年5月27日

18.5.1

• ⇒

如果 f 是可测的,那么对任意开集 $V\subseteq \mathbb{R}^m$, $f^{-1}(V)$ 都是可测的,而 开盒子 B 本身就是开集,所以 $f^{-1}(B)$ 是可测的。

• =

对任意开集 $V \subseteq \mathbb{R}^m$,由引理 18.5.10 可知,V 可写成可数个或有限个开盒子的并集,即

$$V = \bigcup_{B \in \Sigma} B$$

 Σ 是一个可数集或者有限集。我们有

$$f^{-1}(V) = \bigcup_{B \in \Sigma} f^{-1}(B)$$

因为 $f^{-1}(B)$ 是可测的,利用 (iv) $(\sigma-$ 代数性质可知), $\bigcup_{B\in\Sigma}f^{-1}(B)$ 是可测的,即 $f^{-1}(V)$ 是可测的。

18.5.2

对任意开集 $V\subseteq\mathbb{R}^m$,由引理 18.5.10 可知,V 可写成可数个或有限个开盒子的并集,即

$$V = \bigcup_{B \in \Sigma} B$$

 Σ 是一个可数集或者有限集。对任意开盒子 $B \in \Sigma$ 可以表示成

$$B = \prod_{i=1}^{m} (a_i, b_i)$$

对任意 $1 \le j \le m$,令 $b_j = (a_j, b_j)$,由题设可知, $f_j^{-1}(b_j)$ 是可测的。接下来证明:

$$f^{-1}(B) = \bigcap_{j=1}^{m} f_j^{-1}(b_j)$$

因为任意 $x_0 \in f^{-1}(B)$,那么 $f(x_0) \in B$,所以对任意 $1 \leq j \leq m$ 都有 $f_j(x_0) \in b_j$,否则与 $f(x_0) \in B$ 矛盾,于是可得 $x_0 \in \bigcap_{j=1}^m f_j^{-1}(b_j)$,进而 $f^{-1}(B) \subseteq \bigcap_{j=1}^m f_j^{-1}(b_j)$ 。

任意 $x_0 \in \bigcap_{j=1}^m f_j^{-1}(b_j)$,那么对任意 $1 \leq j \leq m$ 都有 $f_j(x_0) \in b_j$,于是可得 $(f_1(x_0), \dots, f_m(x_0)) \in B$,所以 $x_0 \in f^{-1}(B)$,进而 $\bigcap_{j=1}^m f_j^{-1}(b_j) \subseteq f^{-1}(B)$ 。 综上可得 $f^{-1}(B) = \bigcap_{j=1}^m f_j^{-1}(b_j)$ 。

因为任意 $1 \leq j \leq m$, $f_j^{-1}(b_j)$ 都是可测的,利用引理 $18.4.4(\mathbf{d})$ (布尔代数性质)可知 $\bigcap_{j=1}^m f_j^{-1}(b_j)$ 是可测的,即 $f^{-1}(B)$ 是可测的。

我们有

$$f^{-1}(V) = \bigcup_{B \in \Sigma} f^{-1}(B)$$

由开盒子 B 的任意性和 σ 代数性质可知 $\bigcup_{B\in\Sigma}f^{-1}(B)$ 是可测的,即 $f^{-1}(V)$ 是可测的。

综上可得,f 是可测函数。

18.5.3

对任意开集 $V\subseteq \mathbb{R}^p$,由引理 18.5.2 (连续函数是可测的) 可知, $g^{-1}(V)$ 是可测的。

因为 $g^{-1}(V)\subseteq W$,且由题设可知 f 是可测的,所以 $f^{-1}(g^{-1}(V))$ 是可测的。

接下来我们需要证明:

$$f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$$

任意 $x_0 \in f^{-1}(g^{-1}(V))$,那么 $f(x_0) \in g^{-1}(V)$,进而 $g(f(x_0)) \in V$,即 $g \circ f(x_0) \in V$,所以 $x_0 \in (g \circ f)^{-1}(V)$,从而可得 $f^{-1}(g^{-1}(V)) \subseteq (g \circ f)^{-1}(V)$ 。

任意 $x_0 \in (g \circ f)^{-1}(V)$,那么 $g \circ f(x_0) \in V$,即 $g(f(x_0)) \in V$,于是可得 $f(x_0) \in g^{-1}(V)$,进而 $x_0 \in f^{-1}(g^{-1}(V))$,从而可得 $(g \circ f)^{-1}(V) \subseteq f^{-1}(g^{-1}(V))$ 。

综上可得 $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ 。 所以 $(g \circ f)^{-1}(V)$ 也是可测的。

18.5.4

- \Rightarrow 因为 $(a,\infty) \subseteq \mathbb{R}$,于是由 f 是可测的可得, $f^{-1}((a,\infty))$ 是可测的。

$$[a,\infty) = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, \infty)$$

 f^{-1} 保持集合运算,我们有:

$$f^{-1}([a,\infty)) = f^{-1}\left(\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, \infty\right)\right)$$
$$= \bigcap_{n=1}^{\infty} f^{-1}(\left(a - \frac{1}{n}, \infty\right))$$

由于 $f^{-1}((a-\frac{1}{n},\infty))$ 都是可测的,由 $\sigma-$ 代数性质可得

$$f^{-1}([a,\infty)) = \bigcap_{n=1}^{\infty} f^{-1}((a-\frac{1}{n},\infty))$$

是可测的。

任意开集 $V \subseteq \mathbb{R}$,由引理 18.4.10 可知,V 可写成可数个或有限个开 盒子的并集,即

$$V = \bigcup_{B \in \Sigma} B$$

Σ 是一个可数集或者有限集。

对任意开盒子 $B \in \Sigma$,B 是一维空间中的开盒子,于是可表示成 (a,b) 其中 a,b 都是实数。我们有

$$B = (a, b) = (a, \infty) \setminus [b, \infty)$$

有题设可知 $f^{-1}((a,\infty)), f^{-1}([b,\infty))$ 都是可测的,于是我们有

$$f^{-1}(B) = f^{-1}((a, \infty) \setminus [b, \infty))$$
$$= f^{-1}((a, \infty)) \setminus f^{-1}([b, \infty))$$

利用推论 18.4.7 可知, $f^{-1}(B)$ 是可测的。