```
1--
```

```
import pandas as pd
df=pd.read_csv('kc_house_data.csv')
df.head()
```

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080

df.info()

Column

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
```

Non-Null Count Dtype

0	id	21613	non-null	int64
1	date	21613	non-null	object
Lanataha	ak a bian átá anrag	iotró	null	float64
ге потеро	ok a bien été enreg	istre.	null	int64
4	บล เกาเาบบเทร	Z1012	non-null	float64
5	sqft_living	21613	non-null	int64
6	sqft_lot	21613	non-null	int64
7	floors	21613	non-null	float64
8	waterfront	21613	non-null	int64
9	view	21613	non-null	int64
10	condition	21613	non-null	int64
11	grade	21613	non-null	int64
12	sqft_above	21613	non-null	int64
13	sqft_basement	21613	non-null	int64
14	yr_built	21613	non-null	int64
15	yr_renovated	21613	non-null	int64
16	zipcode	21613	non-null	int64
17	lat	21613	non-null	float64
18	long	21613	non-null	float64
19	sqft_living15	21613	non-null	int64
20	sqft_lot15	21613	non-null	int64
dtyp	es: float64(5),	int64	(15), obje	ct(1)
memo	ry usage: 3.5+ /	ИΒ		

df.columns

```
'lat', 'long', 'sqft_living15', 'sqft_lot15'],
            dtvpe='object')
print(df.isnull().sum())
     id
                        0
     date
                       0
     price
                       0
                       0
     bedrooms
     bathrooms
                       0
     sqft_living
                       0
     sqft_lot
                       0
     floors
                       0
     waterfront
                       0
     view
                        0
     condition
                       0
     grade
                        0
     sqft_above
                        0
     sqft_basement
                        0
     yr_built
     yr_renovated
                       0
     zipcode
                        0
     lat
                        0
     long
                        0
     sqft_living15
                        0
     sqft_lot15
                        0
     dtype: int64
print(df.isnull().sum().sum())
 Le notebook a bien été enregistré.
     3
            9824
     4
            6882
     2
            2760
     5
            1601
     6
             272
     1
             199
     7
              38
     8
              13
     0
              13
     9
               6
               3
     10
               1
     11
     33
               1
     Name: bedrooms, dtype: int64
df['grade'].value_counts()
     7
            8981
     8
            6068
     9
            2615
     6
            2038
     10
            1134
     11
             399
     5
             242
```

```
12 90
4 29
13 13
3 3
1 1
```

Name: grade, dtype: int64

import matplotlib.pyplot as plt
plt.plot(df['price'])

[<matplotlib.lines.Line2D at 0x7fc953c53790>]

import seaborn as sns
sns.distplot(df['price'],bins=5,hist=True,kde=False,color='red')

Le notebook a bien été enregistré. X packages/seaborn/distributions.py:2557: FutureWarning: ning)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc94fc3ae10>

import matplotlib.pyplot as plt
v=df['grade'].value_counts()
v.plot.bar(rot=45)

<matplotlib.axes._subplots.AxesSubplot at 0x7fc94fa80b10>

import matplotlib.pyplot as plt
plt.hist('sqft_living',data=df)

3--

```
from sklearn.model_selection import train_test_split
x=df[["id","grade","bathrooms","bedrooms"]]
y=df["price"].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=40)
```

4--

```
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
x=df[["grade"]]
y=df["price"].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=40)
model=LinearRegression()
model.fit(x train,y train)
```

```
predicted=model.predict(x_test)

print("MSE", mean_squared_error(y_test,predicted))
print("R squared", metrics.r2_score(y_test,predicted))

MSE 68533946794.312935
R squared 0.4552042311532961
```

5--

```
plt.scatter(x,y,color="r")
plt.title("Linear Regression")
plt.ylabel("Salary")
plt.xlabel("grade")
plt.plot(x,model.predict(x),color="k")
plt.show()
```


6-- R-squared=0.455<0.5 the half of the output can be explained by the model's inputs donc la correlation est faible

```
x=df[['grade','bedrooms','bathrooms']] #we have more than one input
y=df["price"].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.35,random_state=40) #splitt
model=LinearRegression()
model.fit(x_train,y_train)
predicted=model.predict(x_test)

print("MSE", mean_squared_error(y_test,predicted))
print("R squared", metrics.r2_score(y_test,predicted))

MSE 66370581890.284134
R squared 0.4720658164992009
```

```
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
x =df[['sqft_living','sqft_lot']]
y = df['price'].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.35, random_state=40)
lg=LinearRegression()
poly=PolynomialFeatures(degree=2)

x_train_fit = poly.fit_transform(x_train) #transforming our input data
lg.fit(x_train_fit, y_train)
x_test_ = poly.fit_transform(x_test)
predicted = lg.predict(x_test_)

print("MSE: ", metrics.mean_squared_error(y_test, predicted))

MSE: 56768005841.851654
R squared: 0.5484479725877804
```

Le notebook a bien été enregistré.

√ 0 s terminée à 10:42

X