Model subjecte

- 1. a) Să se definiească noțiunile și să se dea câte un exemplu din fiecare: funcție bijectivă, element minimal, ordin al unui element într-un grup.
- b) Fie $f:G\to H$ un homomorfism de grupuri. Să se arate că $\mathrm{Ker}(f)$ este subgrup în G.
- c) Fie (L, \leq) o mulţime ordonată. Să se arate că dacă există inf X pentru orice $X \subseteq L$, atunci există sup X pentru orice $X \subseteq L$.
- 2. Se consideră funcțiile: $f: \mathbb{R} \to \mathbb{R}$ și $g: (0, \infty) \to \mathbb{R}$

$$f(x) = \begin{cases} x^2, & x \ge 2\\ 3x - 2, & x < 2 \end{cases} \quad \text{si } g(x) = x^2 - 6x + 5.$$

- a) Să se studieze injectivitatea și surjectivitatea acestor funcții.
- b) Dacă există să se determine inversele acestor funcții.
- c) Dacă sunt definite să se calculeze compunerile $f \circ g$ și $g \circ f$.
- d) Să se găsească două functții h_1, h_2 asftfel încât $g \circ h_1$ și $g \circ h_2$ să fie definite, $g \circ h_1 = g \circ h_2$, dar $h_1 \neq h_2$.
- 3. a) Arătați că relația $(\mathbb{R}, \mathbb{R}, \equiv)$ este o echivalență, unde $x \equiv y$ ddacă [x] = [y], unde [x] este partea întreagă a lui $x \in \mathbb{R}$. Determinați o bijecție $\mathbb{R}/_{\equiv} \to \mathbb{Z}$.
- b) Arătați că $(\mathbb{N}, \mathbb{N}, :)$ este o relație de ordine, unde n:m ddacă există $q \in \mathbb{N}$ astfel încât n=mq. Există in \mathbb{N} un cel mai mare element relativ la această relație de ordine?
- 4. a) Arătați că $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a,b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$ este un subgrup în $\operatorname{GL}_2(\mathbb{R}) = \{A \in \operatorname{M}_n(\mathbb{R}) \mid \det A \neq 0 \}.$
- b) Găsiți un izomorfism de grupuri $f: \mathbb{C}^* \to G$, cu G de la a).
- c) Arătați că într-un grup (oarecare) (G,\cdot) este valabilă $\operatorname{ord}(xy)=\operatorname{ord}(yx),$ $\forall x,y\in G.$