A primeira Escola presencial gratuita de Inteligência Artificial do Brasil

Aula 17/03/2020: Regressão Linear

Professor: Eng. Rodolfo Magliari de Paiva

Apoio:

Objetivo da Aula

- Entender a diferença entre eventos Determinísticos e Probabilísticos;
- Aprender a interpretar um Gráfico de Dispersão;
- Saber como efetuar e interpretar uma Correlação Linear;
- Compreender o sentido e o objetivo de se efetuar uma Regressão Linear;
- Efetuar uma Regressão Linear.

Eventos

Determinístico x Probabilístico

- Evento Determinístico:

As variáveis são todas conhecidas, sendo possível saber qual será o resultado exato quando efetuarmos o cálculo. (Matemática)

- Evento Probabilístico:

Não são conhecidas todas as variáveis, não sendo possível saber o resultado exato, mas sim um resultado esperado. (Estatística)

- Evento Determinístico:

Um funcionário de uma empresa ganha R\$ 200,00 fixo por mês, mais R\$ 150,00 por hora trabalhada na semana.

Quanto ele ganhará se trabalhar 20h em um mês?

Ele ganhará R\$ 3.200,00

- Evento Probabilístico:

Um motorista de táxi acordou às 7h00 da manhã para ir trabalhar, se ele sair de casa às 7h30 e voltar às 22h, quanto ele ganhará no dia sabendo que ele cobra R\$ 5,00 fixo por passageiro e mais R\$ 1,50 por Km rodado?

Para responder a essa pergunta precisaríamos responder outras antes:

- Quantas pessoas farão corrida com ele?
- Qual o dia da semana?
- É feriado ou não?
- Houve trânsito?
- Houve acidente no percurso?

• • •

- Entre outras flutuações aleatórias!

Saber o futuro não é tarefa fácil!

Porém, é possível tentar se aproximar dele e prever resultados esperados

Algumas técnicas estatísticas que podem ajudar:

- Regressão Linear Simples;
- Regressão Linear Múltipla;
- Regressão Logística;
- Floresta Randômica;
- Árvore de Decisão;
- Redes Neurais;
- Machine Learning;
- ARIMA;
- SARIMA;

. . .

Gráfico de Dispersão

A utilização deste gráfico é muito importante para descobrir se duas variáveis podem estar associadas:

Correlação Linear de Pearson

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

OBS: Válido apenas para mostrar a associação entre variáveis **quantitativas**.

Interpretação:

$$-1 \leq \rho \leq 1$$

Onde:

ho=1, correlação linear perfeita positiva;

ho = -1, correlação linear perfeita negativa;

 $\rho = 0$, não existe correlação.

Valor de ρ (+ ou -)	Interpretação
0.00 a 0.19	Uma correlação bem fraca
0.20 a 0.39	Uma correlação fraca
0.40 a 0.69	Uma correlação moderada
0.70 a 0.89	Uma correlação forte
0.90 a 1.00	Uma correlação muito forte

Fonte: Shimakura, 2006

Exemplos:

Figura 1: Correlação linear perfeita positiva.

Figura 2: Correlação linear perfeita negativa.

Figura 3: Não existe correlação.

Figura 4: Não existe relação linear.

Atenção

Associação não implica em Causa e Efeito!

Regressão Linear Simples

Técnica excelente para ser aplicada quando existe uma boa Correlação Linear (positiva ou negativa), e é dada por:

$$Y = \alpha + \beta X + \varepsilon$$

(Erro, resultado de flutuações aleatórias)

Onde:

$$\hat{\beta} = \frac{\sum_{i=1}^n X_i Y_i - nXY}{(n-1)S_X^2},$$

(Intercepto)

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}.$$

Outro item que é interessante analisar: R²

- É um indicador que mede a qualidade do ajuste na Regressão Linear. Seu resultado varia de 0 a 1;
- Quanto mais próximo de 0, menos a Regressão Linear se ajustou;
- Quanto mais próximo de 1, mais a Regressão Linear se ajustou.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y_{i}^{predito})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Exercícios

- **1-)** Qual a diferença entre um evento determinístico e probabilístico? Dê um exemplo para cada.
- 2-) Qual a importância de elaborar um gráfico de dispersão entre duas variáveis?
- 3-) O que mede o Coeficiente de Correlação Linear de Pearson?
- **4-)** Dada a tabela a seguir, calcule o coeficiente de Correlação Linear de Pearson e interprete o resultado.

Х	Υ
4	2
6	3
8	4

- **5-)** Com base no resultado anterior, seria possível realizar uma previsão utilizando a Regressão Linear Simples?
- 6-) Com base na tabela do exercício 4-) faça o que se pede:
- a-) Dê a Equação da Reta e o Gráfico de Dispersão com o ajuste da reta
- **b-)** Sabendo que o $R^2 = 1$, o que isso significa?
- c-) Para uma observação futura de X = 10, qual deve ser o resultado esperado para Y?

Gabarito

1-) Em um evento determinístico as variáveis são conhecidas e o resultado é exato. Já em um evento probabilístico não são conhecidas todas as variáveis e o resultado é sempre algo esperado.

Exemplo (livre): Ao soltar uma caneta de uma determinada altura é 100% de certeza que ela irá cair, porém não é possível determinar a posição que ela irá ficar no chão.

- **2-)** Descobrir se as variáveis possuem alguma tendência a estarem associadas, entendendo o comportamento do fenômeno.
- **3-)** Mede a associação entre duas variáveis quantitativas de forma linear crescente ou decrescente.

4-)

	X	Υ	X - Xmédia	Y - Ymédia
	4	2	-2	-1
	6	3	0	0
	8	4	2	1
Média	6	3	-	-

	(X - Xmédia).(Y - Ymédia)	(X - Xmédia)²	(Y - Ymédia)²	(X - Xmédia)² . (Y - Ymédia)²	
	2	4	1	16	
	0	0	0	√[(X - Xmédia)² . (Y - Ymédia)²]	
	2	4	1		
Soma	4	8	2	4	

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2 \right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2 \right]}}$$

O Coeficiente de Correlação Linear deu 1, logo é possível dizer que as variáveis X e Y estão fortemente associadas de forma positiva.

5-) Sim, pois é existe uma correlação linear forte.

6-)

a-)

١.						
'	X	Υ	X.Y	n	n.Xmédia.Ymédia	
	4	2	8	3	54	$\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i - nXY}{\sum_{i=1}^{n} X_i Y_i - nXY}$
	6	3	18		X.Y - n.Xmédia.Ymédia	
	8	4	32		4	
	Som	a	58		$(n-1)S_X^2$	0,5
					8	$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$
						0
						Eq. da Reta
						$Y = \alpha + \beta X + \varepsilon$
						Y = 0 + 0.5x + Erro Aleatório

b-) Significa que a variável X responde 100% pela qualidade do modelo, ou seja, o modelo de Regressão Linear é válido.

Bibliografia

MONTGOMERY, Douglas C. e RUNGER, George C. **Estatística Aplicada e Probabilidade para Engenheiros**. 6ª Edição. Rio de Janeiro: GEN|LTC, 2016

Contatos

Prof. Eng. Rodolfo Magliari de Paiva

Cel.: (11) 9-6866-5501

E-mail: rodolfomagliari@gmail.com

LinkedIn: Rodolfo Magliari de Paiva

