

Licence STS Informatique – 2^{ème} année Module « Réseaux 2 »

Rappels et compléments

François Barrère, Emmanuel Lavinal, Cédric Teyssié
Prénom.Nom@irit.fr

Rappels: modèle OSI

- Le modèle OSI (Open Systems Interconnection)
 - Modèle de référence pour l'interconnexion de systèmes ouverts normalisé par l'ISO (*International Standard Organization*)
- · Un modèle de référence...
 - Représentation abstraite permettant d'expliquer le fonctionnement d'un système de communication réel
 - Concepts et architecture sur lesquels « tout le monde » doit s'appuyer
- ... pour l'interconnexion de systèmes ouverts
 - favoriser l'échange d'informations entre systèmes informatiques et de télécommunications a priori hétérogènes (supports de transmission, type de liaisons, matériels, systèmes d'exploitation, ...)
- Modèle OSI = ensemble de définitions et de spécifications qui permettent l'interconnexion d'architectures réseaux hétérogènes

Rappels: modèle OSI

- Concepts de
 - Couche : Abstraction d'un problème de communication
 - Service : Chaque couche offre à sa couche adjacente supérieure un ou plusieurs services de communication
 - Protocole : Ensemble de règles pour réaliser un service.
 Communication horizontale entre entités homologues

Rappels: modèle OSI

COUCHE PHYSIQUE

- Nature des supports de communication
- Caractéristiques des supports : notion d'analyse spectrale
- Techniques de transmissions : codage de l'information

NATURE DES SUPPORTS

- Support **électrique** : propager une grandeur électrique
 - Câble coaxial
 - Paire torsadée
- Support optique : propager une onde optique
 - Fibre optique
- Support aérien : propager une onde électromagnétique
 - Sans fil

La paire torsadée

- Paire de deux conducteurs identiques torsadés
- Câbles constitués d'une paire (ex: desserte téléphonique) ou de plusieurs paires (ex: réseaux locaux, câbles téléphoniques d'opérateurs)
- Plusieurs types de paires torsadées
 - Paires torsadées non blindées (Unshielded Twisted Pair)
 - Paires torsadées écrantées (Foiled Twisted Pair)
 - Paires torsadées blindées (Shielded Twisted Pair)

Le câble coaxial

- Conducteur central rigide (en cuivre) au milieu d'un isolant, luimême entouré d'une tresse métallique. L'ensemble est entouré d'une gaine isolante.
- Caractéristiques électriques supérieures à celles de la paire torsadée, meilleure isolation (moins de perturbations électromagnétiques)
- Types les plus répandus :
 - Câbles d'impédance 50 Ω (utilisés dans des réseaux locaux)
 - Câbles d'impédance 75 Ω (utilisés en télévision, CATV)

La fibre optique

- Conducteur de lumière (fibre) véhiculant un faisceau lumineux
 - Un émetteur de lumière : diode électroluminescente (LED) ou diode LASER qui transforme les impulsions électriques en impulsions lumineuses
 - Un récepteur de lumière qui transforme les impulsions lumineuses en signaux électriques
- Système de transmission unidirectionnel
- Types de fibres
 - Multimode (MultiMode optical Fiber)
 - Monomode (Single Mode optical Fiber)

Performances

- Bande passante importante
- Vitesse de propagation élevée (monomode)
- Immunité électromagnétique
- Faible encombrement et poids

Supports sans fil

- Radiodiffusion
- Téléphonie cellulaire
- Liaisons satellites
- Systèmes infrarouges

Extrait du spectre radiofréquence :

Désignation	Fréquence	Longueur d'onde	Exemples
LF (Low Frequency)	30 kHz à 300 kHz	10 km à 1 km	Radionavigation
MF (Medium Freq.)	Medium Freq.) 300 kHz à 3 MHz 1 km		Radio AM
HF (High Freq.)	3 MHz à 30 MHz	100 m à 10 m	Radio amateur, RFID
VHF (Very High F.)	30 MHz à 300 MHz	10 m à 1 m	R. FM, TV, Pompiers,
UHF (Ultra High F.)	300 MHz à 3 GHz	1 m à 10 cm	TNT, GSM, Wi-Fi, GPS

COUCHE PHYSIQUE

- Nature des supports de communication
- Caractéristiques des supports : notion d'analyse spectrale
- Techniques de transmissions : codage de l'information

CARACTERISTIQUES SUPPORTS

Propagation de <u>signaux</u>

• électriques, optiques, radio

Valeur de <u>bande passante</u>

- gamme de signaux transmissibles,
- limitation de la rapidité de modulation

- limitation du débit binaire
- Valeur d'<u>affaiblissement</u>
 - conditionne l'éloignement maximum

COUCHE PHYSIQUE

- Nature des supports de communication
 - Caractéristiques des supports : analyse spectrale
 - Techniques de transmissions : codage de l'information

Quelle information sur le support ?

- Attention, ne pas confondre données et signal!
- Données :
 - Informations véhiculant un sens
 - Flot d'information continu (ex: voix) ou binaire (ex: mp3)
- Signaux :
 - Représentation (électrique, électromagnétique) des données
- Convergence des données vers le tout numérique

Codage de l'information

- Communication = Transmission + Compréhension
- Problème :
 - Comment « traduire » une information (texte, image, son,...) pour la transmettre sur un support ?
 - Exemples :
 - Onde acoustique en signal électrique
 - Suite de chiffres binaires en signal électrique / électromagnétique
- Techniques de codage
 - Codage source : adaptation du train binaire au contenu
 - Codage canal: adaptation du train binaire au support

Comment transférer l'information?

Transmission bande de base / large bande

- Deux types de transmission :
 - Transmission en bande de base
 Le spectre du signal physique contient la fréquence nulle et les basses fréquences
 - → Codage en ligne
 - Transmission sur fréquence porteuse (~ large bande)
 Le spectre du signal physique est dans une bande de fréquences centrée sur la fréquence porteuse
 - → Modulation (en bande transposée)

Transmission bande de base / large bande

- Transmission large bande
 - Boucle locale
 - Modem V90/V92
 - Modem ADSL

- Transmission bande de base
 - Architecture système matériels
 - Réseaux LAN, MAN, WAN

Transmission sur fréquence porteuse

Modulation d'un signal sinusoïdal

$$Y(t) = A SIN (\omega t + \Phi)$$

- Trois types de modulation :
 - Amplitude (A): ASK (Amplitude Shift Keying)
 - Fréquence (ω/2π) : FSK (*Frequency Shift Keying*)
 - Phase (Φ): PSK (*Phase Shift Keying*)

Transmission sur fréquence porteuse (2)

Modulation de phase

Modulation amplitude

Modulation fréquence

Transmission en bande de base : codes en ligne

Transmission en bande de base : codes en ligne

Complexité du processus de codage

Précodage 4B/5B

- Principe de fonctionnement
 - Une séquence binaire de 4 bits est remplacée par une combinaison de 5 bits

Donnée (Hexa)	Donnée binaire	Symbole 4B/5B	Donnée (Hexa)	Donnée binaire	Symbole 4B/5B
0	0000	11110	8	1000	10010
1	0001	01001	9	1001	10011
2	0010	10100	Α	1010	10110
3	0011	10101	В	1011	10111
4	0100	01010	С	1100	11010
5	0101	01011	D	1101	11011
6	0110	01110	Е	1110	11100
7	0111	01111	F	1111	11101

Symboles de contrôle :

Idle	11111		
J	11000	K	10001
Т	01101	R	00111

Codage 8B/6T

DATA/Non DATA

Octet 0
Octet 1
Octet 2

- Principe de fonctionnement
 - Association à chaque octet de 6 signaux ternaires

Valeur des signaux

S5	S4	S3	S2	S1	S0
V1	V1	V1	V1	V1	V1
V1	V1	V1	V1	V1	V2
V1	V1	V1	V1	V1	V3
V1	V1	V1	V1	V2	V1
V1	V1	V1	V1	V2	V2
V1	V1	V1	V1	V2	V3
V1	V1	V1	V1	V3	V1
V1	V1	V1	V1	V3	V2
V1	V1	V1	V1	V3	V 3
•••	•••	•••	•••	•••	•••
36	35	34	33	3 ²	31

Combinaisons possibles

3 ²	9

Codage 8B/6T

Symboles ternaires associés aux octets

		•					
00	-+00-+	40	-00+0+	80	-00+-+	C0	-+0+-+
01	0-+-+0	41	0-00++	81	0-0-++	C1	0-+-++
02	0-+0-+	42	0-0+0+	82	0-0+-+	C2	0-++-+
03	0-++0-	43	0-0++0	83	0-0++-	C3	0-+++-
04	-+0+0-	44	-00++0	84	-00++-	C4	-+0++-
05	+0+0	45	00-0++	85	00++	C5	+0++
06	+0-0-+	46	00-+0+	86	00-+-+	C6	+0-+-+
07	+0-+0-	47	00-++0	87	00-++-	C7	+0-++-
08	-+00+-	48	00+000	88	-000+0	C8	-+00+0
09	0-++-0	49	++-000	89	0-0+00	C9	0-++00
0A	0-+0+-	4A	+-+000	8A	0-00+0	CA	0-+0+0
0B	0-+-0+	4B	-++000	8B	0-000+	CB	0-+00+
0C	-+0-0+	4C	0+-000	8C	-0000+	CC	-+000+
0D	+0-+-0	4D	+0-000	8D	00-+00	CD	+0-+00
0E	+0-0+-	4E	0-+000	8 E	00-0+0	CE	+0-0+0

Comment transférer l'information ?

Transférer des informations à distance

Transférer des informations à distance

Exemple du réseau téléphonique (RTC)

