

PRACTICA 2

Jesús Campos Márquez

2018/2019

MODELOS DE BUSQUEDA Y HEURISTICAS DE BUSQUEDA
Universidad de Huelva

Índice

- 1. Definición teórica de los algoritmos
 - 1.1. GRASP
 - 1.2. GRASP Extendido
 - 1.3. ILS
 - 1.4. VNS
- 2. Resultados de los algoritmos
 - 2.1. GRASP
 - 2.2. GRASP Extendido
 - 2.3. ILS
 - 2.4. VNS
- 3. Resultados Globales
- 4. Conclusiones

Definición teórica de los algoritmos

GRASP

Es un método que consiste en construir una solución Greedy especial. El proceso consiste en vez de añadir la mejor solución de forma directa, utiliza una lista de candidatos (LRC), en la que se guardan los 7 mejores posibles caminos, y de ellos se elige un aleatorio.

GRASP Extendido

Sigue la heurística del GRASP normal, su diferencia consiste en utilizar una probabilidad de elección para la LRC, dependiendo esta de su distancia, es decir, a mayor distancia, menos probabilidad de que se coja por este camino, pero existe posibilidad de salto, escapando por ello de óptimos locales.

ILS

Nos encontramos ante una búsqueda local reiterada que, básicamente, utiliza una búsqueda local (Mejor de todos, por ejemplo), y mediante una mutación, que es una sublista de los caminos a la que se le aplica un suffle, se cambia el orden de los caminos pudiendo escapar fácilmente de óptimos locales. (Figura 1.1)

Figura 1.1

VNS

Es un algoritmo que busca mediante entornos, donde lo que se hace es cambiar este entorno sistemáticamente dentro de una búsqueda local, mediante alteraciones del tamaño cuando la búsqueda no avanza. Utiliza mutaciones para llevar a cabo una mejora de la solución, cuya diferencia con el ILS radica en que este mismo construye un

camino en el conjunto de soluciones optimas locales y el VNS cambia el entorno a lo largo de la búsqueda de forma sistemática. (Figura 1.2)

Figura 1.2

Resultados de los algoritmos

Se mostrarán tablas gráficas del estudio realizada para cada algoritmo:

GRASP

	St	70	Chi	130	A2	80	р6	54	Vm108	4	Vm	1748
#Ejecución y Seed	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev
1	784	2240	7747	4160	2616	8960	26966	20928	288488	34688	414678	55936
2	826	2240	7724	4160	2632	8960	26980	20928	289780	34688	412394	55936
3	794	2240	7530	4160	2617	8960	26951	20928	289060	34688	410562	55936
4	828	2240	7719	4160	2618	8960	26894	20928	287474	34688	409256	55936
5	830	2240	7632	4160	2617	8960	26960	20928	288815	34688	411875	55936
Media	812,4	2240	7670,4	4160	2620	8960	26950,2	20928	288723,4	34688	411753	55936
Desviacion Típica	19,4072152	0	80,3606869	0	6,03324125	0	29,6405128	0	755,5802009	0	1824	0

Del algoritmo GRASP a primera vista podemos observar como da unas soluciones bastante buenas al recordar ciertas soluciones de otro algoritmo como la búsqueda local o como el Greedy estándar que daba las mejores soluciones hasta el momento, esto podríamos decir que se debe a que no coge directamente un mejor camino i no que gracia a la LRC podemos coger otros caminos que mejoren el costo.

GRASP Extendido

	St	70	Ch1	130	A2	80	p6	54	Vm108	14	Vm1	748
#Ejecución y Seed	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev
1	797	2240	7294	4160	2620	8960	26961	20928	288652	34688	412639	55936
2	806	2240	7348	4160	2628	8960	26835	20928	287073	34688	409256	55936
3	795	2240	7392	4160	2609	8960	26890	20928	287792	34688	411556	55936
4	771	2240	7456	4160	2620	8960	27077	20928	288954	34688	413520	55936
5	811	2240	7383	4160	2618	8960	26956	20928	285582	34688	410562	55936
Media	796	2240	7374,6	4160	2619	8960	26943,8	20928	287610,6	34688	411506,6	55936
Desviacion Típica	13,7985506	0	53,2976547	0	6,06630036	0	81,1403722	0	1210,485456	0	1503,06482	0

Da resultados muy buenos, mejorando al GRASP estándar, su diferencia es que la probabilidad no es exactamente un aleatorio, si no que depende de la distancia(costo) hacia otro punto, siendo la de mayor distancia la que tiene meno posibilidades, como se puede observar mejora todas las medias, aunque en el siguiente punto del índice se expondrá una comparativa más clara.

ILS

	St	70	Ch:	130	A2	80	р6	54	Vm108	4	Vm1	1748
#Ejecución y Seed	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev
1	1489	2240	16958	4160	2808	8960	106417	20928	2531932	34688	4609081	55936
2	1369	2240	15881	4160	2808	8960	106755	20928	2500437	34688	4441337	55936
3	1294	2240	17167	4160	2801	8960	105297	20928	2551132	34688	4505682	55936
4	1461	2240	16567	4160	2808	8960	107211	20928	2467005	34688	4584718	55936
5	1234	2240	16492	4160	2805	8960	106253	20928	2533209	34688	4416095	55936
Media	1369,4	2240	16613	4160	2806	8960	106386,6	20928	2516743	34688	4511382,6	55936
Desviacion Típica	96,6573329	0	442,3849	0	2,75680975	0	635,82312	0	29746,23498	0	76081,0987	0

Sus resultados no son del todo malos, en comparación con algoritmos de la practica anterior, aunque si es verdad que no llegar ni por asomo a alcanzar a los GRASP's, esto es debido a la heurística y a que además el algoritmo está capado a 32*n, por lo que no converge bien, además de esto, su solución inicial empieza en un aleatorio por lo que con un comienzo desde Greedy iría mucho mejor. Se puede decir a que con más evaluaciones es capaz de mejorar el algoritmo, sin embargo, su tiempo de ejecución es bastante elevado.

VNS

	St	70	Ch:	130	A2	80	р6	54	Vm108	34	Vm1	748
#Ejecución y Seed	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev	Coste	#Ev
1	1352	2240	16378	4160	3572	8960	152373	20928	2627618	34688	4560909	55936
2	1396	2240	16108	4160	3230	8960	149119	20928	2534040	34688	4468966	55936
3	1439	2240	16099	4160	3508	8960	125449	20928	2538674	34688	4642871	55936
4	1341	2240	17056	4160	3397	8960	127776	20928	2532497	34688	4632575	55936
5	1483	2240	17244	4160	3247	8960	170255	20928	2520048	34688	4556866	55936
Media	1402,2	2240	16577	4160	3390,8	8960	144994,4	20928	2550575,4	34688	4572437,4	55936
Desviacion Típica	53,2668753	0	482,156821	0	136,486483	0	16661,6322	0	39011,2181	0	62704,2679	0

Sus resultados son similares al ILS y, además, es debido al mismo problema, por lo que, dejándole más evaluaciones, generaría unos resultados mejores.

Resultados globales y comparacion entre algoritmos

Método	St7	70	Ch1	130	A2	80	P6	54	Vm1	084	Vm1	748
ivietodo	Coste	Veces	Coste	Veces	Coste	Veces	Coste	Veces	Coste	Veces	Coste	Veces
Busqueda Mejor	957	112001	10305	208001	2784	448001	86661	1046401	1201350	1734401	1971923	2796801
Greedy	815	1	7358	1	2975	1	43210	1	297042	1	413657	1
GRASP	784	2240	7530	4160	2616	8960	26894	20928	287474	34688	409256	55936
GRASP Extendido	771	2240	7294	4160	2609	8960	26835	20928	285582	34688	409256	55936
ILS	1234	2240	15881	4160	2801	8960	105297	20928	2467005	34688	4416095	55936
VNS	1341	2240	16099	4160	3230	8960	125449	20928	2520048	34688	4468966	55936

La tabla anterior muestra los resultados globales, con los mejores resultados tras 5 ejecuciones de cada algoritmo y con cada fichero, para poder hacer una buena comparación se utilizarán resultados de algoritmos de la practica anterior y que se han utilizado en este practica para mejorar resultados, como son la búsqueda del mejor de todos (Búsqueda local o BL) y el Greedy estándar.

Los resultados muestran un claro 'Vencedor' el cuál es el GRASP extendido, gracias a su lista LRC de mejores candidatos con una probabilidad condicionada por su distancia/costo.

Gracias a esto, el algoritmo es capaz de mejorar al que en la práctica 1 se consideraba como un algoritmo 'invencible' debido a que daba una muy buena solución al instante que no era capaz de ser mejorada por otros con una heurística mas elaborada como la búsqueda tabú.

Sin embargo, podemos considerar que los algoritmos ILS no son del todo malos debido a que la solución dada puede ser mejorada dado un número de evaluaciones mayor, al

estar considerando que l máximo número de evaluaciones posibles es 32*n, siendo n el numero de ciudades del fichero a tratar.

Para demostrar esto último, se ha creado una tabla que resume un pequeño estudio de convergencia, realizada mediante la mejor solución tras 5 ejecuciones del algoritmo y con dos ficheros, el mas pequeño y el más grande. (Figura 2.1 y 2.2)

	ILS				
Evaluaciones	St70	Vm1748			
32*n	1234	4416095			
64*n	1082	3746492			
150*n	1014	3067047			
200*n	987	2894675			

	VNS				
Evaluaciones	St70	Vm1748			
32*n	1341	4468966			
64*n	1140	3875837			
150*n	1110	3082749			
200*n	997	2954363			

Figura 2.2

Figura 2.1

Para probar algunos cambios, se ha creado la siguiente tabla que muestra una comparación con iniciación basada en Greedy e iniciación basada en Aleatorio, para los algoritmos ILS y VNS:

St70	Aleatorio	Greedy
ILS	1234	796
VNS	1341	796

Vm1748	Aleatorio	Greedy
ILS	4416095	405545
VNS	4468966	408834

Para cada algoritmo se han realizado 5 evaluaciones y cogida la mejor.

Puede verse que los saltos para data sets grandes el cambio de coste es muy significativo empezando desde Greedy. Por otra parte, podríamos decir que empezando desde un Greedy en los algoritmos ILS y VNS, podemos mejorar la solución significativamente sin aumentar el numero de evaluaciones y con ello la tardanza del algoritmo y, además, se obtendrían mejores resultados que con el algoritmo GRASP y GRASP Extendido que hemos considerado como el mejor en la comparación con los demás, por lo que si se quieren conseguir buenas soluciones empezar desde una solución Greedy ayudaría a mejorar los resultados y maximizar recursos en el caso de estar visitando rutas como es el problema del tsp.

Conclusiones

Tras el estudio de los algoritmos con los distintos datasets, tras el estudio de convergencia, y tras ver la comparativa global de los algoritmos con Búsqueda del mejor de todos y Greedy de la anterior práctica, puede decirse que una heurística simple como la del Greddy, con varias evaluaciones (en nuestro caso 50 y capado a 32*n llamadas al cálculo de distancia), los algoritmos van bastante bien en cuanto a tiempo y soluciones, no alcanzando un óptimo global, pero acercándose mucho, consiguiendo que los GRASP's mejoren a un Greedy estándar empezando desde ciudades aleatorias.

Por otra parte, se ha podido comprobar que con más evaluaciones las búsquedas multiarranque son capaces de generar mejoras a las soluciones con menos evaluaciones, aunque esto no significa que su coste depende del tiempo de ejecución directamente al verse que empezando desde una solución inicial Greedy, mejora significativamente los resultados sin aumentar las evaluaciones y por consiguiente el tiempo de ejecución.