LECTURE 7

EECS 575 - Fall 2022

Alexandra Veliche

Announcements & Reminders

- Homework 2
 - Due September 30 at 23:59.
- Homework 1 grading half-done
- Office Hours
 - Today: outside 3956 BBB (Theory Annex)

Agenda for this Lecture

- Indistinguishability
 - Statistical & Computational indistinguishability
 - Composition Lemma
 - Hybrid Lemma
- Pseudorandom Generators (PRGs)

 \bullet Let \mathcal{X} and \mathcal{Y} be two probability distributions over a common finite set Ω .

The *statistical distance* between ${\mathcal X}$ and ${\mathcal Y}$ is given by

$$\Delta(\mathcal{X}, \mathcal{Y}) \coloneqq \max_{A \subseteq \Omega} \{ |\mathcal{X}(A) - \mathcal{Y}(A)| \},$$

where $\mathcal{X}(S) \coloneqq \sum_{z \in A} \mathbb{P}[\mathcal{X} = z]$ is the probability that A occurs under \mathcal{X} .

* Let \mathcal{X} and \mathcal{Y} be two probability distributions over a common finite set Ω . The *statistical distance* between \mathcal{X} and \mathcal{Y} is given by

$$\Delta(\mathcal{X},\mathcal{Y})\coloneqq\max_{A\subseteq\Omega}\{|\mathcal{X}(A)-\mathcal{Y}(A)|\},$$
 where $\mathcal{X}(\mathcal{Z})\coloneqq\sum_{a\in A}\mathbb{P}[\mathcal{X}=a]$ is the probability that A occurs under \mathcal{X} .
$$|\chi(\bar{A})-g(\bar{A})|=|\langle I-\chi(A)\rangle-(I-g(A))|=|g(A)-\chi(A)|=|\chi(A)-g(A)|$$

$$\bar{A}=\Omega\setminus A$$

• Note: When Ω is infinite, the maximum is replaced with the *supremum*.

• Theorem:
$$\Delta(\mathcal{X}, \mathcal{Y}) = \frac{1}{2} \sum_{\omega \in \Omega} |\mathcal{X}(\omega) - \mathcal{Y}(\omega)|$$
.

Proof:
$$A = \{\omega \in \Omega : \chi(\omega) > y(\omega)\}$$
 maximizes $|\chi(A) - y(A)|$

$$\Delta(\chi, y) = |\chi(A) - y(A)| = \sum_{\omega \in A} |\chi(\omega) - y(\omega)|$$

$$\Delta(\chi, y) = |y(\overline{A}) - \chi(\overline{A})| = \sum_{\omega \in \overline{A}} |\chi(\omega) - y(\omega)|$$

$$2\Delta(\chi, y) = \sum_{\omega \in \Omega} |\chi(\omega) - y(\omega)|$$

$$\Delta(\chi, y) = \frac{1}{2} \sum_{\omega \in \Omega} |\chi(\omega) - y(\omega)|$$

$$\Delta(\chi, y) = \frac{1}{2} \sum_{\omega \in \Omega} |\chi(\omega) - y(\omega)|$$

- ❖ Lemma: Statistical distance is a metric, i.e.
 - (identity of indiscernibles) $\Delta(\mathcal{X}, \mathcal{Y}) = 0 \iff \mathcal{X} = \mathcal{Y}$
 - (symmetry) $\Delta(\mathcal{X}, \mathcal{Y}) = \Delta(\mathcal{Y}, \mathcal{X})$
 - (triangle inequality) $\Delta(\mathcal{X}, \mathcal{Z}) \leq \Delta(\mathcal{X}, \mathcal{Y}) + \Delta(\mathcal{Y}, \mathcal{Z})$.

* Lemma: ("information processing") Let f be any function (or randomized procedure) on Ω . Then $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$.

Statistical Indistinguishability

❖ Definition: Let $\mathcal{X} = \{\mathcal{X}_n\}_{n \in \mathbb{N}}$ and $\mathcal{Y} = \{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ be sequences of probability distributions, called *ensembles*. \mathcal{X} and \mathcal{Y} are *statistically indistinguishable*, denoted by $\mathcal{X} \approx_s \mathcal{Y}$, iff $\Delta(\mathcal{X}_n, \mathcal{Y}_n) = negl(n)$.

Example:
$$\chi_n = \mathcal{U}(\mathfrak{fo, 15^n})$$
 uniform $\longrightarrow \chi$
 $y_n = \mathcal{U}(\mathfrak{fo, 15^n})\mathfrak{fon}$ $\longrightarrow \mathcal{Y}$
 $A = \mathfrak{fon}$ $\Longrightarrow \chi_n(A) = \frac{1}{2^n}$ $\Longrightarrow \Delta(\chi_n, y_n) = \left|\frac{1}{2^n} - 0\right| = \frac{1}{2^n} = \operatorname{negl}(n)$
 $y_n(A) = 0$

Turing test:

ullet Definition: Let $\mathcal X$ and $\mathcal Y$ be distributions and $\mathcal A$ be a (possibly randomized) algorithm. The *distinguishing advantage* of $\mathcal A$ between $\mathcal X$ and $\mathcal Y$ is given by

$$Adv_{X,Y}(\mathcal{A}) \coloneqq |\mathbb{P}[\mathcal{A}(X) = 1] - \mathbb{P}[\mathcal{A}(Y) = 1]|.$$

$$= |\mathbb{P}[\mathcal{A}(X) = 1] - \mathbb{P}[\mathcal{A}(Y) = 1]|.$$

 \Leftrightarrow For ensembles $\mathcal{X}=\{\mathcal{X}_n\}_{n\in\mathbb{N}}$, $\mathcal{Y}=\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$, $Adv_{\mathcal{X},\mathcal{Y}}(\mathcal{A})$ is a function on n.

❖ Definition: Let $\mathcal{X} = \{\mathcal{X}_n\}_{n \in \mathbb{N}}$ and $\mathcal{Y} = \{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ be ensembles over $\{0,1\}^{\ell(n)}$ for $\ell(n) = poly(n)$. \mathcal{X} and \mathcal{Y} are computationally indistinguishable, denoted by $\mathcal{X} \approx_c \mathcal{Y}$, if for any nuPPT algorithm \mathcal{A} , $Adv_{\mathcal{X},\mathcal{Y}}(\mathcal{A}) = negl(n)$.

❖ Definition: Let $\mathcal{X} = \{\mathcal{X}_n\}_{n \in \mathbb{N}}$ and $\mathcal{Y} = \{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ be ensembles over $\{0,1\}^{\ell(n)}$ for $\ell(n) = poly(n)$. \mathcal{X} and \mathcal{Y} are computationally indistinguishable, denoted by $\mathcal{X} \approx_c \mathcal{Y}$, if for any nuPPT algorithm \mathcal{A} , $Adv_{\mathcal{X},\mathcal{Y}}(\mathcal{A}) = negl(n)$.

* \mathcal{X} is *pseudorandom* if $\mathcal{X} \approx_c \{\mathcal{U}_{\ell(n)}\}_{n \in \mathbb{N}}$ the ensemble of uniform distributions over $\{0,1\}^{\ell(n)}$.

Composition Lemma

Lemma: ("composition lemma", analogue of information processing)

Let $\mathcal B$ be nuPPT algorithm. If $\{\mathcal X_n\}_{n\in\mathbb N}pprox_c\{\mathcal Y_n\}_{n\in\mathbb N}$, then $\{\mathcal B(\mathcal X_n)\}_{n\in\mathbb N}pprox_c\{\mathcal B(\mathcal Y_n)\}_{n\in\mathbb N}$.

❖ Note: $\mathcal{B}(\mathcal{X}_n)$ is the distribution obtained by sampling $x \leftarrow \mathcal{X}_n$ and outputting $\mathcal{B}(x)$.

Composition Lemma

Proof:
$$\{X_n\} \approx c \{y_n\} \Leftrightarrow + nuPPT A$$
, $Adv_{X_n,y_n}(cA) = ny_n(n)$
To show: $\{B(X_n)\} \approx c \{B(y_n)\} \Leftrightarrow + nuPPT D$, $Adv_{B(X_n),B(y_n)}(D) = ny_n(n)$.
(reduction) Let D be any $nuPPT$ also attempting to distinguish Ledwen $\{B(X_n)\}$ and $\{B(y_n)\}$.
Construct A : given X , compute $\{B(X)\}$, cun $D(B(X))$, order what D orders.
 D , B $nuPPT \Rightarrow A$ $nuPPT \cup$
 $Adv_{X_n,y_n}(A) = |P[A(X_n) = 1] - P[A(y_n) = 1]|$ by construction
$$= |P[D(B(X_n)) = 1] - P[D(B(y_n)) = 1]$$

Hybrid Lemma

Lemma: ("hybrid lemma", analogue of triangle inequality)

Let
$$\mathcal{X}^i = \left\{\mathcal{X}^i_n\right\}_{n \in \mathbb{N}}$$
 for $i \in [m], m = poly(n)$. If $\mathcal{X}^i \approx_c \mathcal{X}^{i+1}$ for any $i \in [m-1]$, then $\mathcal{X}^1 \approx_c \mathcal{X}^m$.

 $\forall a,b,c \in \mathbb{R},$ $|a-c| \leq |a-b| + |b-c|$

Hybrid Lemma

 $\chi_n \approx c \chi_n^2 \approx c \chi_n^3 \approx c \approx c \chi_n^M$

Proof: Let
$$D$$
 be any $n PPT$ also. against $X_n^l us. X_n^m$.

Denote $p_i(n) := P[D(X_n^i) = 1] \in \mathbb{R}$

$$Adv_{X_i^iX_i^m}(D) = |p_i(n) - p_m(n)| \leq \sum_{i=1}^{m-1} |p_i(n) - p_{i+1}(n)| = \sum_{i=1}^{m-1} Adv_{X_i^iX_i^{i+1}}(D)$$

$$= (m-1) \operatorname{regl}(n) = \operatorname{poly}(n) \cdot \operatorname{regl}(n) = \operatorname{regl}(n).$$

 $Adv_{\chi'_1\chi^m}(D) = negl(n)$.

Pseudorandom Generators

- ❖ Definition: A pseudorandom generator (PRG) is a deterministic, efficiently-computable function $G: \{0,1\}^* \to \{0,1\}^*$ with expansion $\ell(n) > n$ that satisfies
 - (expansion) $|G(x)| = \ell(|x|) > x$ for any $x \in \{0,1\}^*$
 - (pseudorandomness) the ensemble $\{G(\mathcal{U}_n)\}_{n\in\mathbb{N}}$ is pseudorandom, i.e. for any

$$\text{nuPPT}\,\mathcal{D},\ Adv_G^{PRG}(\mathcal{D})\coloneqq \big|\mathbb{P}_{x\leftarrow\{0,1\}^n}\big[\mathcal{D}\big(G(x)\big)=1\big]-\mathbb{P}\big[\mathcal{D}\big(\mathcal{U}_{\ell(n)}\big)=1\big]\big|.$$

Pseudorandom Generators

Examples: Determine if the functions below are PRGs.

$$H(x) := \overline{G(x)}$$
, assuming G is a PRG. \longrightarrow Yes! use composition lemma exercise!

$$\bullet H(x) \coloneqq x || (x_1 \oplus \cdots \oplus x_n). \longrightarrow \mathcal{N}_0 ?$$

$$\mathcal{D}(y \in \{0,1\}^{n+1}): \quad \text{if} \quad y_1 \oplus \dots \oplus y_n = y_{n+1}: \text{ output } 1 \quad \text{output } 1 \quad \text{output } 1$$

$$\text{else: output } 0.$$

References

- ❖ J. Katz, Y. Lindell. *Introduction to Modern Cryptography*. 2nd ed. CRC Press. 2015. pg.
- ❖ C. Peikert. Theory of Cryptography: Lecture 4 & 5. Lecture Notes. <a>≥
- * R. Pass, A. Shelat. A Course in Cryptography. § 3.1. »
- ❖ Y. Kalai, N. Stephens-Davidowitz. *Cryptography & Cryptanalysis (6.875).* Lecture notes. Fall 2019.
- ❖ C. Peikert. Advanced Cryptography (EECS 575). Lecture notes. Fall 2020.