TREHALOSE PHOSPHORYLASE, RECOMBINANT VECTOR CONTAINING THE GENE, AND TRANSFORMANT CONTAINING THE VECTOR AND PRODUCT THEREFROM

Patent Number:

JP10327887

Publication date:

1998-12-15

Inventor(s):

INOUE YASUSHI; TOMITA TETSUJI; ISHII KEIKO; OOSHIMA YOSHIE;

YAMANE KUNIO

Applicant(s):

SHOWA SANGYO CO LTD

Requested Patent:

JP10327887

requested ratent

Application Number: JP19980098147 19980327

Priority Number(s):

IPC Classification:

C12N15/09; C07H3/04; C12N1/21; C12N9/12; C12P19/02; C12P19/12

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To obtain a DNA for producing recombinant microbes capable of well productively preparing recombinant heat-resistant trehalose phosphorylase in high purity, by extracting it from the specific microbe capable of producing heat-resistant trehalose phosphorylase. SOLUTION: This DNA is obtained from Bacillus stearothermophilus SK-1(FERM P-14567) belonging to thermophilic Bacillus bacteria and has the base sequence from No.279 to No.2573 in the base sequence of the formula. The DNA encoding recombinant heat-resistant trehalose phosphorylase having the following properties is obtained by culturing the recombinant microbes obtainable on the basis of the DNA by the genetic engineering technique: (1) specifically reactive with trehalose and capable of reversible phosphorolysis; (2) having optimal temperature of about 70-75 deg.C and optimal pH of 6.5-7.5 and stable in pH ranging from 6.0 to 8.0; (3) having a molecular weight of 110000-150000 (according to gel filtration chromatography); (4) having an isoelectric point of 4.6-5.2.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-327887

(43)公開日 平成10年(1998)12月15日

			FI		酸別記号		(51) IntCL ^a
ZNAA	15/00	2 N	C 1		ZNA	15/09	C12N
•	3/04	7 H	Ç O			3/04	C07H
	1/21	2 N	C 1		•	1/21	C12N
	9/12					9/12	
	19/02	2 P	Cl			19/02	C12P
D (全 22 頁) 最終頁に続く	R項の数 12	翻求	未設求	來舊查書			
	人 0001870	出顧	(71)		特顯平10-98147	→	(21)出顯書
式会社	昭和產		}				
田区内神田2丁目2番1号	東京都				平成10年(1998) 3月27日		(22)出顧日
	者 井上 2	発明者	(72)				
市日の出2-20-2 昭和産業	千葉與			•	特顯平9-115994	它聚番号	(31)優先権3
合研究所内	株式会社				平 9 (1997) 3 月31日		(32)優先日
•	者 常田 1	発明和	(72)		日本 (JP)	上張国	(33)優先權主
市日の出2-20-2 昭和産業	千葉県						
合研究所内	株式会社						
	者 石井 🗈	発明者	(72)				
市日の出2-20-2 昭和産業	千葉県					*	
合研究所内	株式会社		-				
沼 要	人 弁理士	代理	(74)				
最終質に続く							

(54) 【発明の名称】 組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子、設遺伝子を含む組換えベクター 及び核ベクターを含む形質転換体とその産生物

(57)【要約】

【課題】 組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子、該遺伝子を含む組換えベクター、該組換えベクター含む形質転換体、該形質転換体を培養して組換え耐熱性トレハロースホスホリラーゼを製造する方法、及び該酵素の利用法を提供すること。

【解決手段】 以下の(a)又は(b)のDNAからなる遺伝子。

- (a)配列表の配列番号1に記載の塩基配列の内、塩基番号279から2573で表される塩基配列からなるDNA。
- (b)塩基配列(a)からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ下記の酵素化学的性質を有する組換え耐熱性トレハロースホスホリラーゼをコードするDNA。

【特許請求の範囲】

【請求項1】 以下の(a)又は(b)のDNAからな る遺伝子。

- (a)配列表の配列番号1に記載の塩基配列の内、塩基番号279から2573で表される塩基配列からなるDNA.
- (b) 塩基配列(a) からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ下記の酵素化学的性質を有する組換え耐熱性トレハロースホスホリラーゼをコードするDNA。

(1)作用

トレハロースを可逆的に加リン酸分解する。すなわち、 リン酸存在下でトレハロースに作用させると、等モルの グルコースとβーグルコース-1-リン酸を生成し、グ ルコースとβーグルコース-1-リン酸に作用させると 等モルのトレハロースとリン酸を生成する。

(2)基質特異性

トレハロースに特異的に作用する。

(3)至適温度

トレハロース加リン酸分解反応の至適温度は70℃~75℃付近で、60℃~75℃の範囲で最高活性の約50%以上を示す。

- (4) 熱安定性
- 10mMリン酸カリウム・クエン酸緩衝液(pH6.
- 0)中で、65℃、15分間処理後に無処理の95%以上の活性を有する。
- (5)至適pH
- $6.5 \sim 7.5.$
- (6)p H安定性
- pH6、0~8.0で安定。
- (7) 失活
- 100℃、10分間の加熱で100%失活する。
- (8) 分子園

ゲルデ過クロマトグラフィーにより測定した値は11万~15万。

- (9) 等電点
- 4.6~5.2.
- (10)阻害剤

HgCl2、ZnSO、で著しく活性が阻害される。

【請求項2】 配列表の配列番号1に記載の塩基配列の内、塩基番号279~2573で表される塩基配列からなるDNAが好熱性バチルス展細菌由来のものである請求項1記載の遺伝子。

【請求項3】 好熱性バチルス属細菌由来のものがバチルス・ステアロサーモフィラスSK-1 (FERM P-14567)である請求項1又は請求項2に記載の遺伝子。

【請求項4】 請求項1、2又は3に記載の遺伝子を含む組換えベクター。

【請求項5】 遺伝子がバチルス・ステアロサーモフィ

ラスSK-1 (FERM P-14567) の染色体由来の3.3k塩基対のDNA断片である請求項4記載の組換えベクター。

【請求項6】 遺伝子がバチルス・ステアロサーモフィラスSK-1 (FERM P-14567)の耐熱性トレハロースホスホリラーゼをコードする遺伝子部分である2295塩基対のDNA断片である請求項4記載の組換えベクター。

【請求項7】 ベクターがプラスミドベクターpSTP 1由来のものである請求項4、5又は6記載の組換えベ クター。

【請求項8】 請求項4、5、6又は7に記載の組換え ベクターを含む形質転換体。

【請求項9】 形質転換体が大勝菌である請求項8記載 の形質転換体。

【請求項10】 請求項8又は請求項9に記載の組換え 形質転換体を培養して、組換え耐熱性トレハロースホス ホリラーゼを製造する方法。

【請求項11】 請求項10に記載の組換え耐熱性トレハロースホスホリラーゼ及び耐熱性マルトースホスホリラーゼの存在下に、マルトースとリン酸もしくはリン酸塩とを、水性媒体中で、反応させることを特徴とするトレハロース又はβーグルコース-1-リン酸の製造方法

【請求項12】 請求項11の反応が55~70℃、p H4.5~8.0で行われる請求項11記載のトレハロ ース又はβ-グルコース-1-リン酸の製造方法。

【発明の詳細な説明】

[0001]

【発明の関する技術分野】本発明は、耐熱性トレハロースホスホリラーゼをコードする遺伝子、該遺伝子を含む 組換えベクターとその形質転換体、該形質転換体を用いた組換え耐熱性トレハロースホスホリラーゼの製造方法、及び該組換え耐熱性トレハロースホスホリラーゼを用いたトレハロース又はβーグルコース-1-リン酸の製造法に関する。

[0002]

【従来の技術】トレハロースは、酵母、かび、細菌、昆虫等に広く分布する二糖類で、他の二糖類に比べて安定なことから蛋白質等の乾燥保護剤(特表昭63-500562)としての利用等が考えられている有用な糖質である。

【0003】従来、トレハロースを調製する方法としては、酵母からの抽出法(特開平5-292986)、細菌による発酵法(特開平5-211882)等が知られている。しかし、これらの方法で調製したトレハロースは、大量生産が操作的、設備的に困難である、不純物除去工程が複雑である等の理由から製造コストが高くなり、非常に高価であるため食品用途には利用することができなかった。

【0004】一方、安価にトレハロースを調製する有効な方法として酵素法が挙げられる。その一つとして、マルトースホスホリラーゼとトレハロースホスホリラーゼを用いた同時反応法がある(特公昭63-6099

8)。この方法は2種類のホスホリラーゼがそれぞれマルトースとトレハロースに作用して可逆的に加リン酸分解しグルコースとβーグルコース-1-リン酸を生じる反応を利用したもので、安価な原料であるマルトースに両酵素を同時に作用させるとトレハロースが生成するものである。

【0005】これまでに知られているトレハロースホスホリラーゼとしては、トレハロースを加リン酸分解してグルコースと α -グルコース-1-リン酸を生じるものとグルコースと β -グルコース-1-リン酸を生じるものがある。

【0006】前者の反応を行うものとしては、フラムリ ナ・ベルティペス (Flammulina velutipes) (FEMS Mic robiol.Lett., 55, 147, 1988) やグリフォラ・フロンドサ (Grifola frondosa) (日本農芸化学会誌,68、580、199 4)、シゾフィラム (Schizophyllum)、アガリカス (Ag aricus)、プレウロルス (Pleurotus)、リフィラム (L yophllum)、レンチナス (Lentinus)、コリオラス (Co riolus)、パナス (Panus)、クレツドツス (Crepidotu s)、トリキャプタム (Trichaptum)、フォリオタ (Pho liota)、ピクノポラス (Pycnoporus)、コリオラス (C oriolus)、クリニペリス (Crinipellis)、ガノデルマ (Ganoderm)、グレオフィラム(Gloeophyllum)、トリ コローマ (Tricholoma) 等のキノコ類が産生するもの (特開平6-189779、特開平7-99988、特 開平7-255473、特開平8-89273)、リゾ パス・アジゴスボルス (Rhizopus azygosporus) などの カビ類が生産するもの(特開平9-28375)、酵母 ピヒア・ファーメンタンス (Pichia fermentans) が生 産するもの (Appl. Microbiol. Biotechnol., 43, 1088-109 5.1995) が挙げられる。

【0007】後者の反応を行うものとしては、緑藻ユーグレナ・グラチリス (Buglena gracilis) (J.Biol.Che m.、274、3223、1972) が産生するもの、放線菌カテラトスポラ・フェルジネラ (Catellatospora ferruginera) K Y 2 0 3 9 (FDMS Microbiol.Lett... 55、147~150、199 5)、キネオスポリア・オウランリアカ (Kineosporia a urantiaca) ATCC 2 9 7 2 7等が生産するもの (特開平7-59584)、細菌ミクロコッカス・バリアンス (Micrococcus varians) が生産するもの (特開平7-284389)、プレシオモナス (Plesiomonas) が生産するもの (特開平8-131157)、アルスロバクター・シトレウス (Arthrobacter citreus)、バチルス・サーキュランス (Bacillus circulans)、ブレビバクテリウム (Brevibacterium)、コリネバクテリウム・ゼロシス (Corynebacterium xerosis)、フラボバクテ

リウム (Flavobacterium)、ミクロコッカス・ルテウス (Micrococcus luteus)、セラチア (Seratia)、ストレプトマイセス・フラボビレンス (Streptomyces flavo virens)、キサントモナス・キャンペストリス (Xantho monas campestris) が生産するもの (特開平8-280395) が挙げられる。

【0008】これらのトレハロースホスホリラーゼの内、酵素化学的に酵素の特性が詳細に調べられているものは、ミクロコッカス・バリアンス(特開平7-284389)及びプレシオモナス(特開平8-131157)である。これらの酵素の熱安定性は、高いものでも50℃以下と低く、工業的製造条件で利用するのは困難である。

【0009】一般に、工業的に酵素反応で生産を行う場合、雑菌汚染の低減の目的から反応温度は55℃以上の高温が一般的に採られている。反応温度の高温化は基質と生産物の溶解度を上げて単位体積当たりの仕込量を多くすることができ、且つ、酵素反応速度が早くなり反応時間の短縮化ができる等の利点があるので、コスト的にも有利である。このようなことから工業的に使用される酵素は、一般的には熱安定性の優れたものが選ばれる。【0010】また、工業的に使用される酵素は、生産コストを下げるためにより安価であることも求められる。つまり、酵素生産微生物は酵素生産性が高いことを要求される。

【0011】この様な状況に鑑み、本発明者らは高温で るの酵素反応によるトレハロースの製造を行える高い熱安 定性を有する耐熱性トレハロースホスホリラーゼにつき 鋭意探索したところ、好熱性バチルス展細菌が生産するトレハロースホスホリラーゼが55℃以上の温度で使用しても失活しないことを見出した(特開平8-131166)。

【0012】しかしながら、これらの微生物は酵素の生産能力が十分でなく、トレハロースやβーグルコースー1ーリン酸を大量に生産しようとすると、微生物を大量に培養しなければならないという問題があった。この問題を解決するためには従来は、微生物の酵素生産能を改善する煩雑な育種操作を行っていた。具体的には、野生株を紫外線、エックス線、薬品(NTG(NーメチルーN⁻ーニトローNーニトロソグアニジン)、EMS(エチルメタンスルホネート)等)等を用い人工的変異手段で変異処理し、酵素生産性の向上した変異株を作製するといったものである。

【0013】また、トレハロースホスホリラーゼの生産がトレハロースによって誘導される微生物が多く、酵素生産培地の原料に高価なトレハロースを必要とする場合がある。このため当然ながらトレハロースホスホリラーゼ生産コストが高くなり、トレハロース製造コストも高くなる問題がある。この問題を解決する方法の一つとして、人工的変異によって酵素生産誘導が起こらなくなっ

た構成的変異株を作成する方法が考えられる。

【0014】そこで、本発明者らも、トレハロースホスホリラーゼ活性をもつバチルス属細菌に対して変異処理を行い、約1万株の変異株を調べたが、思惑とは異なり、トレハロースによる酵素生産誘導が解除された構成的変異株を得ることができなかった。このことは、トレハロースホスホリラーゼの遺伝子とトレハロースによる誘導に関連する遺伝子とが、何らかの関連を持って連動している可能性を示唆すると考えられた。この問題を解決するためには、偶然に頼る変異処理ではなく、遺伝子を単離して塩基配列を解析する遺伝子工学的な方法を採る必要があると考えられた。

【0015】一方、現在は、全アミノ酸配列が解明されていない酵素であっても、これをコードする遺伝子を単離し、その塩基配列を解明できれば、その酵素をコードするDNAを含む組換えDNAを作製し、これを微生物や動植物の細胞に導入して得られる形質歌換体を培養することにより、比較的容易に所望量の酵素が取得できるようになった。

【0016】そこで、かかる状況に鑑み、上記耐熱性酵素をコードする遺伝子を突き止め、その遺伝子配列を解析することは重要な技術的課題である。

[0017]

【発明が解決しようとする課題】本発明は、組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体、該形質転換体を培養して組換え耐熱性トレハロースホスホリラーゼを製造する方法、及び該酵素の利用法を提供することを目的とする。

[0018]

【課題を解決するための手段】本発明者らは、高い熱安定性を有する耐熱性トレハロースホスホリラーゼを自然界より探索した結果、目的とする新規な耐熱性トレハロースホスホリラーゼを好熱性バチルス属細菌が産生することを見出し、特に神奈川県の山中の土壌から分離したバチルス・ステアロサーモフィラス(Bacillus stearot hermophilus)SK-1が強い耐熱性トレハロースホスホリラーゼ産生能を示すことを発見し、通産省工業技術院生命工学工業技術研究所、特許微生物寄託センターへ寄託している(FERM P-14567)。

【0019】そして、更に研究を重ねた結果、本菌株の耐熱性トレハロースホスホリラーゼ遺伝子を単離し、該遺伝子から構造遺伝子を見つけ、遺伝子工学を利用して、組換え微生物を作製することによって酵素の生産性が飛躍的に上昇し、不純物の少ない、高純度の組換え耐熱性トレハロースホスホリラーゼが効率よく調製できることを見出し、本発明を完成した。

【0020】次に、この組換え微生物を培養することにより、高純度の組換え耐熱性トレハロースホスホリラーゼを生産させ、これを利用してトレハロースを製造する

ことができることを見出した。

【0021】すなわち、本発明は、以下のとおりである。

【0022】1) 以下の(a) 又は(b)のDNAからなる遺伝子。

【0023】(a)配列表の配列番号1に記載の塩基配列の内、塩基番号279から2573で表される塩基配列からなるDNA。

【0024】(b) 塩基配列(a) からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ下記の酵素化学的性質を有する組換え耐熱性トレハロースホスホリラーゼをコードするDNA。

【0025】(1)作用

トレハロースを可逆的に加リン酸分解する。すなわち、 リン酸存在下でトレハロースに作用させると、等モルの グルコースとβーグルコース-1-リン酸を生成し、グ ルコースとβーグルコース-1-リン酸に作用させると 等モルのトレハロースとリン酸を生成する。

【0026】(2)基質特異性

トレハロースに特異的に作用する。

【0027】(3)至適温度

トレハロース加リン酸分解反応の至適温度は70℃~75℃付近で、60℃~75℃の範囲で最高活性の約50%以上を示す。

Tare I

177

**

12.

【0028】(4)熱安定性

10mMリン酸カリウム・クエン酸緩衝液 (pH6. ≩ 0) 中で、65℃、15分間処理後95%以上の活性を有する。

(5)至適pH

6.5~7.5.

【0029】(6)pH安定性

pH6、0~8.0で安定。

【0030】(7)失活

100℃、10分間の加熱で100%失活する。

【0031】(8)分子量

ゲル沪過クロマトグラフィーにより測定した値は11万 ~15万。

【0032】(9)等電点

4.6~5.2.

【0033】(10)阻害剂

HgCl2、ZnSO4で著しく活性が阻害される。

【0034】なお、上記のDNAとして、遺伝子コードの縮重に基づき、配列表における配列番号1に示すアミノ酸配列を変えることなく、配列表の配列番号1に示す該当する塩基配列における塩基の1個又は2個以上を他の塩基で置き換えしたものは、当然、本発明に包含される。

【0035】2)配列表の配列番号1に記載の塩基配列の内、塩基番号279から2573で表される塩基配列からなるDNAが好熱性バチルス属細菌由来のものであ

る上記1記載の遺伝子。

【0036】3) 好熱性バチルス属細菌由来のものが バチルス・ステアロサーモフィラスSK-1 (FERM P-14567)である上記1又は2に記載の遺伝 子。

【0037】4) 上記1、2又は3に記載の遺伝子を含む組換えベクター。

【0038】5) 遺伝子がバチルス・ステアロサーモフィラスSK-1 (FERM P-14567)の染色体由来である3.3 k塩基対のDNA断片である上記4記載の租換えベクター。

【0039】6) 遺伝子がバチルス・ステアロサーモフィラスSK-1 (FERM P-14567)の耐熱性トレハロースホスホリラーゼをコードする遺伝子部分である2,295塩基対のDNA断片である上記4記載の組換えベクター。

【0040】7) ベクターがプラスミドベクターpS TP1由来のものである上記4、5又は6記載の組換え ベクター。

【0041】8) 上記4、5、6又は7に記載の組換 えベクターを含む形質転換体。

【0042】9) 形質転換体が大腸菌である上記8記 載の形質転換体。

【0043】10) 上記8又は請求項9に記載の組換 え形質転換体を培養して、組換え耐熱性トレハロースホ スポリラーゼを製造する方法。

【0044】11) 上記10に記載の耐熱性トレハロースホスホリラーゼ及び耐熱性マルトースホスホリラーゼの存在下に、マルトースとリン酸もしくはリン酸塩とを、水性媒体中で、反応させることを特徴とするトレハロース又はβ-グルコース-1-リン酸の製造方法。

【0045】12) 上記11の反応が55~70℃、 pH4.5~8.0で行われる請求項11記載のトレハ ロース又はβ-グルコース-1-リン酸の製造方法。

【0046】本発明でいう「ストリンジェントな条件でハイブリダイズする」とは、実施例2-3におけるハイブリダイズ溶液よりも構成成分濃度が高いか、ハイブリダイゼーション温度が高いか、洗浄液の構成成分濃度が高いか、洗浄液温度が高いかの場合をいう。

【0047】一般に、二本鎖のDNAは、熱やアルカリの処理により水素結合が解離して一本鎖となる(変性)、また、変性したDNAは徐々に温度を下げることにより、しだいにもとの二本鎖に復帰する(再生)。この変性と再生は、DNA二本鎖の塩基配列の相同性が高いほど、変性が起こりにくく(高い温度が必要)、再生し易い。

【0048】そこで、今、異なる2種類の二本鎖DNAが試験管内に存在するとき、変性を行い、その後再生を行うことにより、異種のDNA同士は、相同的配列に依存して異種間の二本鎖を形成していく。

【0049】このような2種のDNAの間の二本鎮の会合を、ハイブリッド形成といい、この方法により異なるDNAの間の相同性を調べることをハイブリダイゼーション法と呼んでいる。

【0050】本発明は、このようなハイブリダイゼーション法により、DNAの検索や同定等を行なうものである

【0051】ところで、本発明のDNAは、塩基配列 (a)からなるDNAとストリンジェントな条件下でハ イブリダイズするという特性を有するものである。

【0052】このことは、本発明において、ハイブリダイゼーション法により、DNAの検索や同定等を行なう場合、ストリンジェントな条件下で行なえば、耐熱性トレハロースホスホリラーゼの構造遺伝子と相同性の高いDNAはハイブリダイズするが、逆に、相同性の低いものはハイブリダイズしないので、その結果、純度が極めて高い、該酵素由来のDNAが効率よく得ることが可能となる。

【0053】したがって、本発明は、ハイブリダイゼーション法の操作条件の設定を工夫することにより、耐熱性トレハロースホスホリラーゼから、高純度の組換え耐熱性トレハロースホスホリラーゼのDNAを効率よく得ることができる。

【0054】本発明のDNAが、ストリンジェントな条。会件下でハイブリダイズするという特性を有する原因につからいては、学問的には解明していないが、多分、前記の耐意熱性トレハロースホスホリラーゼの(1)~(10)の会験像化学的性質の内、特に(3)の「至適温度」及び(4)の「熱安定性」という性質から来ているものと推察される。

【0055】本発明のDNAを入手する微生物としては、バチルス属に属し、耐熱性トレハロースホスホリラーゼ産生能を有する微生物であればいずれの微生物でもよい。特に、本発明者らが神奈川県の山中の土壌より分離したバチルス・ステアロサーモフィラスSK-1株(FERM P-14567)もしくはその突然変異体が好ましい。

【0056】本発明は、耐熱性トレハロースホスホリラーゼをコードする遺伝子を自律複製可能なベクターに組み込んだ、複製可能な組換えベクター及び該組換えベクターを宿主に導入してなる形質転換体を包含する。

【0057】自立複製可能なベクターとしては、pBR322、BluescriptIISK(+)、pUC18、pKK223-3、pCR2.1、pLEX、pJL3、pSW1、pSE280、pSE420、pHY300PLK等のプラスミドベクターや入まt11、入ZAP等のファージベクターが挙げられるが、大陽菌で発現させるには、pBR322、BluescriptIISK(+)、pUC18、pKK223-3、及びpCR2.1が好適であり、枯草菌で発現させるには、

pHY300PLKが好適である。

【0058】宿主としては、大腸菌、枯草菌、放線菌、 酵母等が挙げられる。

【0059】また、本発明は、組換え耐熱性トレハロースホスホリラーゼをコードする遺伝子を含む組換えベクターを宿主に導入してなる形質転換体を培養し、培養物から組換え耐熱性トレハロースホスホリラーゼを採取してなる、組換え耐熱性トレハロースホスホリラーゼの製造方法を包含する。

【0060】本発明の形質転換体の培養に用いる栄養培地としては、炭素源、窒素源、無機物、及び必要に応じ使用菌株の必要とする微量栄養素を程よく含有するものであれば、天然培地、合成培地のいずれでもよい。

【0061】炭素源としてはトレハロース、マルトース、スクロース、グルコース、フラクトース、デンプン、デキストリン、グリセリン等の炭化水素が用いられる。

【0062】窒素源としては、塩化アンモニウム、硫酸アンモニウム、尿素、硝酸アンモニウム、硝酸ナトリウム、グルタミン酸などのアミノ酸、尿素等の無機有機窒素化合物が用いられる。窒素源としてはペプトン、ボリペプトン、肉エキス、酵母エキス、コーンスティープリカ、大豆粉、大豆粕、乾燥酵母、カザミノ酸、ソリュブルベジタブルプロテイン等の窒素含有天然物も使用できる。

【0063】無機物としてはリン酸二水業カリウム、リ

ン酸水素二カリウム、硫酸マグネシウム、硫酸第一鉄、硫酸マンガン、硫酸亜鉛、塩化ナトリウム、塩化カリウム、塩化カルシウム等が用いられる。その他にビオチン、チアミン等の微量栄養素を必要に応じて使用する。【0064】培養法としては液体培養法(撮とう培養法もしくは通気撹拌培養法)がよく、工業的には通気撹拌培養法が最も適している。培養温度とpHは、使用する形質転換体の増殖に最も適した条件を選べばよい。培養時間は培養条件によって変わってくるが、通常15~48時間程度であり、粗換え耐熱性トレハロースホスホリラーゼの生成が確認されたとき、好ましくは生成が最大

に達したときに培養を停止する。 【0065】この様にして得られた培養物から本発明の 組換え耐熱性トレハロースホスホリラーゼを採取するに は、まず、培養液中の菌体を物理的な手法で破砕する か、有機溶剤やリゾチームのような酵素によって溶解し た後、残渣を遠心分離法や沪過法等により除去する。こ れを限外沪過、塩析、透析、溶剤沈澱等の処理を単独或 いは組み合わせに付すことにより工業用途の濃縮酵素液 が調製できる。

【0066】更に、この激縮酵素液をイオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル沪過クロマトグラフィー、等電点クロマトグラフィー等の周知の単離・精製法の組合せに付

すことにより、精製標品を得ることができる。

【0067】次に、本発明は、組換え耐熱性トレハロースホスホリラーゼと耐熱性マルトースホスホリラーゼの存在下にマルトースとリン酸もしくはリン酸塩とを、水溶媒中で反応させることにより、トレハロース又はβーグルコースー1ーリン酸を製造する方法を包含する。 【0068】このように、本発明は、新規な好熱性バチルス属細菌、特にバチルス・ステアロサーモフィラスS

ルス属細菌、特にパチルス・ステアロサーモフィラスS K-1 (FERM P-14567)由来の耐熱性トレハロースホスホリラーゼ遺伝子を基に、遺伝子工学的手法により、粗換え耐熱性トレハロースホスホリラーゼを得、これを用いて組換え做生物を作製したものであって、これを培養すれば、酵素の生産性が飛躍的に上昇し、不純物の少ない、高純度の組換え耐熱性トレハロースホスホリラーゼが調製できる点で極めて優れていると言える。

【0069】また、組換え耐熱性トレハロースホスホリラーゼが工業的規模で大量に、効率よく生産できるようになった結果、これを利用することにより、有用なトレハロースの製造が飛躍的に効率よく製造することができる点においても、非常に価値がある。

【0070】以上、本発明は、本発明者らが先に見出した耐熱性トレハロースホスホリラーゼについて遺伝子学的解明を行い、この解明を基に、そのDNAの遺伝子学動的な特性を見つけ、遺伝子工学的な手法によって、高純 型度でしかも耐熱性という極めて有用な特性を有する組換 型之耐熱性トレハロースホスホリラーゼを効率よく製造で ごきるDNAを得た点に、格別の意義があることが分かる 最であろう。

【0071】以下、本発明について詳細に説明する。 【0072】[1] 耐熱性トレハロースホスホリラーゼの酵素化学的性質:本発明は、本発明者らによる、耐熱性トレハロースホスホリラーゼの発見に基づくものであるが、この酵素は、好熱性バチルス属細菌、バチルス・ステアロサーモフィラスSK-1株から産生されたものであり、その酵素化学的特性を調べた結果(実施例1)、その酵素化学的性質は、以下のとおりであった。 【0073】なお、トレハロースホスホリラーゼ活性は、以下のように測定した。

【0074】酵素溶液 0.4 m 1 と 0.5 M リン酸カリウム・クエン酸緩衝液(p H 6.0)0.06 m 1、2 W / V%トレハロース 0.6 m 1、蒸留水 0.14 m 1を混合し、60℃、20分反応後 10分間の煮沸によって反応を停止させた。次に、この反応停止液から 0.02 m 1を採取し、グルコース 校査試薬(グルコース C II ーテストワコー;和光純薬工業(株))を3 m 1 加え、室温で20分間反応させた後、505 n m での吸光度を分光光度計を用いて反応液中のグルコース 愚測定した。遊離した生成したグルコースの量から 1分間に 1 μ m o 1のトレハロースを加リン酸分解した酵素量を 1単位とした。

【0075】また、ホスホリラーゼであることを確認するために、反応終了後の反応液を陰イオン交換カラムで分離後、示差屈折計を検出手段とする高速液体クロマトグラフィーによりβーグルコース-1-リン酸を定量した。

【0076】(1)作用

以下の式1で示すように、トレハロースを可逆的に加り

式1 トレハロース + リン酸 ご グルコース + β-グルコース・1-リン酸

(2) 基質特異性

トレハロース、ネオトレハロース、マルトース、イソマルトース、セロビオース、シュークロース、pーニトロフェノールーαーグルコシド、pーニトロフェノールーβーグルコシドを基質として加リン酸分解反応を行ったところ、トレハロース以外にはグルコースの生成がほとんど認められなかった(表1)。

【表1】

基質特異性

基	質	相対活性(%)	-
トレハロ	ース	100	•
ネオトレ	ハロース	1	
マルトー	2	0	
イソマル	トース	1	
セロビオ	ース	0	
シューク	ロース	1	
p-=\u7x=	ルーα -D-ダルコジ	. 0	
p-=1-27==	n-β-D-9" Nay	• 0	_

(3)至適温度

40mMリン酸カリウム・クエン酸緩衝液(pH6.

0)中で各種温度(40~90℃)で反応させたところ、トレハロース加リン酸分解反応の至適温度は70℃~75℃付近で、60℃~75℃の範囲で最高活性の約50%以上を示した(図1)。

【0077】(4)熱安定性

- 10mMリン酸カリウム・クエン酸緩衝液(pH6.
- 0)中にてインキュベートし、残存活性を測定したところ、65℃で15分間処理で、無処理の95%以上の活性を示した(図2)。

【0078】(5)至適pH

25mMリン酸カリウム・クエン酸緩衝液 (pH4.0 ~7.7) と25mMトリス塩酸緩衝液 (pH7.7~ 9.0) を用いて60℃で反応を行ったところ、至適p Hは6.5~7.5であった(図3)。

【0079】(6)pH安定性

100mMリン酸カリウム・クエン酸緩衞液(pH4.0~8.0)と100mMトリス塩酸緩衝液(pH7.5~9.0)を用いて60℃で24時間インキュベート

ン酸分解する。すなわち、リン酸存在下でトレハロース に作用させると、等モルのグルコースとβーグルコース -1-リン酸を生成し、グルコースとβーグルコース-1-リン酸に作用させると等モルのトレハロースとリン 酸を生成する。

【化1】

1 タッリアの産を汗針を測定しかところ。

し、各pHでの残存活性を測定したところ、pH6.0 ~8.0で安定であった(図4)。

【0080】(7)失活

100℃、10分間の加熱で100%失活する。

【0081】(8)分子量

Superdex200pg(ファルマシア バイオテク(株))を用いたゲルデ過クロマトグラフィーにより、各種標準タンパク質との相対溶出保持時間から分子量を求めた結果、本酵素の分子量は11万~15万であった。

【0082】(9)等電点

等電点電気泳動により、各種標準タンパク質との相対移動度から等電点は4.6~5.2であった。

【0083】(10)阻害剂

1 mMの $HgCI_2$ で $99%、ZnSO_4$ で80%の活性 阻害が見られた(表2)。

【表2】

阻害剤

阻害剂*	相対活性(%)
FeCl 2	9 5
MgCI a	102
MnSO.	110
CaCl a	100
РЬ (СН₃ОО) .	93
Ba (OH) 2	106
ZnSO4	20
CuSO ₄	9 1
HgCl.	1
EDTA · 2Na	99
B-11127 1291-	9 6
OTT	86
PCMB	0
無禁加	100

^{*1} mM

(11) N末端アミノ酸配列

常法により、アプライド・バイオシステムズ製気相プロテインシーケンサー「477A型」を使用して分析を行

ったところ、この酵素は、N末端に配列番号2に示すアミノ酸配列を有していた。

【0084】[2] 耐熱性トレハロースホスホリラー ゼのDNAの配列解析

本発明者らは、上記の(11)のN末端アミノ酸配列に基づき、バチルス・ステアロサーモフィラスSK-1株の染色体DNAから耐熱性トレハロースホスホリラーゼをコードするDNAを取得し、その配列の解析を行った。

【0085】まず、バチルス・ステアロサーモフィラス SK-1株の菌体よりアクロモペプチダーゼとSDSを 用いた凍結融解法により染色体DNAを調製した。この 染色体DNAをHindIII、BamHI、PstI、Sall、EcoRI等 の制限酵素で切断し、アガロースゲル電気泳動により分 離し、ナイロン膜上にブロッティングした。一方、配列 番号2に示すトレハロースホスポリラーゼのN末端の8 から13番目のアミノ酸配列に基づき、5'-CARYTNAAYAT HGARAA-3'で表される配列のオリゴヌクレオチドTN3 を合成し、放射性同位元素32Pで標識し、これをプロー ブとして前記ナイロン膜上のDNA断片とサザンハイブ リダイゼーションを行った。その結果、HindIIIで切断 してできる断片中、約2.0 k塩基対の断片がハイブリ ダイズすることが分かった。そこで、HindIIIで切断し た染色体DNAからアガロースゲル電気泳動によって約 2.0k塩基対のDNA断片を分画、抽出した。これを プラスミドベクターp UC118のHindIII部位に挿入 し、大腸菌を形質転換した。得られた形質転換株からオ リゴヌクレオチドTN3とハイブリダイズする組換えプ ラスミドを有するものを検索し、トレハロースホスホリ ラーゼをコードするDNAの5、端DNA断片をクロー ン化した。

【0086】そして、この組換えプラスミド中の挿入された約2.0k塩基対の断片の塩基配列を蛍光ラベルを用いたダイプライマー法により決定した。

【0087】次に、この解析したDNA断片の塩基配列の3、側に制限酵素Mspl認識配列が検出されたことから、このMspl認識配列から下流の塩基配列と相同性を示す、約2.0 k塩基対のMsplで切断した染色体DNA断片をインバースPCR法によって解析した。2種類のDNA断片の塩基配列解析結果より、耐熱性トレハロースホスホリラーゼをコードする全塩基配列を決定することができた。その配列を配列番号3に示す。

【0088】[3] 粗換之耐熱性トレハロースホスホリラーゼのDNAの単離・同定とその製造:耐熱性トレハロースホスホリラーゼの構造遺伝子を含むDNA断片の塩基配列が決定できたことから、該トレハロースホスホリラーゼをコードするDNA配列の開始コドン上流132塩基目からの配列5'-TTGAAAACAAATCAGTTCAA-3'で表されるオリオヌクレオチド5TP2と、終止コドン下流の配列で配列表における配列番号4の塩基番号162から

の配列のアンチセンス配列5 $^-$ TCGTCGCGCTTCCACCGATT-3 $^-$ で表されるオリゴヌクレオチド3TP2をプライマーとして、前記の染色体DNAをテンプレートとしたPCRを行い、耐熱性トレハロースホスホリラーゼ構造遺伝子を含む約3.3 k塩基対のDNA断片を調製した。これをプラスミドベクターpCR2.1にライゲーションして、組換えプラスミドpSTP1を作製し、大腸菌INV α F $^-$ (endA1, recA1, hsdR17(r^{-k} , g^{+k}), supE44, λ -, thi-1, gyrA, relA1, ϕ 80 1acZ Δ M15 Δ (lacZYA-arg F), deoR+, F $^-$) 株へ導入を行い、形質転換された大腸菌STP1を得た。

【0089】そして、上記の形質転換体中の組換えプラスミドpSTP1に挿入された3.3k塩基対のDNA断片中の構造遺伝子周辺の塩基配列の解析を行った。その結果は、配列番号1に示す通りであり、前記の耐熱性トレハロースホスホリラーゼのDNA配列の配列番号3の塩基番号257~2796と一致することが確認された。

【0090】そこで、形質転換大腸菌STP1をジャー培養し、組換え耐熱性トレハロースホスホリラーゼ租酵素の調製を行った。培養は、容量51のファーメンターにポリペプトン1.6%、酵母エキス1%、NaC10.5%、MgSO40.05%を含有する培地(pH7.0)約31を入れて滅菌後、予め严遏滅菌したアンビション水溶液を100mg/1になるように添加し、温度量を35℃とした後、種培養液2V/V%を接種して、3点

【0091】培養終了後、培養液中の菌体破壊を行い、 これを除去した粗酵素液を調製した。粗酵素液のトレハー ロースホスホリラーゼ活性は3,000単位/mlであった。

5℃、pH6.5~7.5に保持しながら24時間通気:

【0092】更に、実施例3に示すとおり、この粗酵素を精製し、組換え耐熱性トレハロースホスホリラーゼの 精製標品を得た。

【0093】本発明の組換之型耐熱性トレハロースホスホリラーゼの性質は、以下の通りである。

【0094】(1)作用

攪拌培養した。

前記の式1で示すように、トレハロースを可逆的に加りン酸分解する。すなわち、リン酸存在下でトレハロースに作用させると、等モルのグルコースとβーグルコースー1-リン酸を生成し、グルコースとβーグルコースー1-リン酸に作用させると等モルのトレハロースとリン酸を生成する。

【0095】(2)基質特異性

トレハロース、ネオトレハロース、マルトース、イソマルトース、セロビオース、シュークロース、p-ニトロフェノールー α ーグルコシド、p-ニトロフェノールー β -グルコシドを基質として加リン酸分解反応を行ったところ、トレハロース以外にはグルコースの生成がほと

んど認められなかった。

【0096】(3)至適温度

40mMリン酸カリウム・クエン酸緩衝液(pH6.

0)中で各種温度(40~90℃)で反応させたところ、トレハロース加リン酸分解反応の至適温度は70℃~75℃付近で、60℃~75℃の範囲で最高活性の約50%以上を示した。

【0097】(4)熱安定性

10mMリン酸カリウム・クエン酸緩衝液(pH6.

0)中にてインキュベートし、残存活性を測定したところ、65℃で15分間処理で、無処理の95%以上の活性を示した。

【0098】(5)至適pH

25mMリン酸カリウム・クエン酸緩衝液(pH4.0~7.7)と25mMトリス塩酸緩衝液(pH7.7~9.0)を用いて反応を行ったところ、至適pHは6.5~7.5であった。

【0099】(6)pH安定性

100mMリン酸カリウム・クエン酸緩衝液(pH4.0~8.0)と100mMトリス塩酸緩衝液(pH7.5~9.0)を用いて60℃で24時間インキュベートし、各pHでの残存活性を測定したところ、pH6.0~8.0で安定であった。

【0100】(7)失活

100℃、10分間の加熱で100%失活する。

【0101】(8)分子量

Superdex200pg(ファルマシア バイオテク(株))を用いたゲルデ過クロマトグラフィーにより、各種標準タンパク質との相対溶出容量から分子量を求めた結果、本酵素の分子量は11万~15万であった。

【0102】(9)等電点

等電点電気泳動により、各種標準タンパク質との相対移動度から等電点は4.6~5.2であった。

【0103】(10)阻密剂

1 mMのHgC12で99%、ZnSO4で80%の活性 阻害が見られた。

【0104】(11) N末端アミノ酸配列

常法により、アプライド・バイオシステムズ製気相プロテインシーケンサー「477A型」を使用して分析を行ったところ、精製酵素はN末端に配列番号2に示すアミノ酸配列を有していた。

【0105】この組換之型耐熱性トレハロースホスホリラーゼの酵素化学的特性は、バチルス・ステアロサーモフィラスSK-1の由来の耐熱性トレハロースホスホリラーゼの酵素学的性質と一致するものであった。

【0106】従って、前述の組換え型耐熱性トレハロースホスホリラーゼをコードするDNAは、バチルス・ステアロサーモフィラスSK-1の由来のものであると判断した。

【0107】[4] トレハロース又はβーグルコース -1-リン酸の製造

組換え型耐熱性トレハロースホスホリラーゼ及び耐熱性マルトースホスホリラーゼの存在下に、マルトースとリン酸もしくはリン酸塩とを、水性媒体中で、反応させて、トレハロース又は8-グルコース-1-リン酸を製造する方法について、以下述べる。

【0108】この反応に用いられる組換え型耐熱性トレハロースホスホリラーゼとしては、pH6.0の緩衝液、例えば10mMリン酸カリウム・クエン酸緩衝液(pH6.0)中で、50~70℃のいずれかの温度で、好ましくは55~70℃のいずれかの温度で、特に65℃で15分処理後に無処理の95%以上の活性を有するものが好適に用いられる。これらの酵素は、精製酵素であっても、粗酵素であってもよい。また、さらにこれを酵素の常法により担体に固定した固定化酵素を用いることも可能である。

【0109】また、この反応に用いる耐熱性マルトースホスホリラーゼとしては、上記反応温度のいずれかで、及び上記pH範囲のいずれかで、組換え型耐熱性トレハロースホスホリラゼーの助力の下に、マルトースとリン酸もしくはリン酸塩からトレハロースを生産し得るもので、マルターゼ等のトレハロースの製造に悪影響を及ぼす酵素を含まないものであればよい。

【0110】しかしながら、好適にはpH6.0の緩衝 が、例えば10mM酢酸緩衝液(pH6.0)中で、5 が 0~65℃のいずれかの温度で、好ましくは55~65℃のいずれかの温度で、特に60℃で15分処理後に無災処理の80%以上の活性を有する耐熱性マルトースホスホリラーゼを用いることができる。かかる性質を有する耐熱性マルトースホスホリラーゼの例として、本発明者らによって見出されたバチルス・sp.RK-1(FERM P-15044)が産生する耐熱性マルトースホスホリラーゼを挙げることができる。

【0111】耐熱性マルトースホスホリラーゼは組換え 型耐熱性トレハロースホスホリラーゼと同様、精製酵素 であっても粗酵素であってもよい。

【0112】マルトースとしてはマルトースまたはマルトース含有物(例えばマルトース高含有糖液)を用いることができる。リン酸塩としてはリン酸三カリウム(もしくはナトリウム)、リン酸水素ニカリウム(もしくはナトリウム)等の水溶性リン酸塩を用いることができる。水性媒体としては水、緩衝液等が挙げられる。緩衝液としては酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、コハク酸緩衝液、トリス・塩酸緩衝液等を用いることができる。

【0113】酵素の使用量については特に制限はないが、マルトース1gに対して各酵素とも、0.1~50単位、好ましくは1~20単位使用するのが好適であ

る。また、組換え型耐熱性トレハロースホスホリラーゼ と耐熱性マルトースホスホラリーゼとの使用比率は特に 制限ないが、単位の比で前者:後者=1:5~5:1、 好ましくは1:2~2:1が適当である。

【0114】リン酸及び/またはリン酸塩はマルトースに対して、特に制限はないが、0.001~1倍モル、好ましくは0.005~0.5倍モル使用するのが適当である。尚、緩衝液がリン酸(塩)を含有する場合は系中のリン酸及びリン酸塩の総量が上記範囲であればよい。

【0115】上記反応は温度、雑菌汚染をさらに避けるとともに収率を挙げるため、好ましくは55~70℃、好ましくは55~65℃、更に好ましくは60~65℃で行う。pHは一般に4.5~8.0、好ましくは5.0~6.0で行うのが適当である。上記条件で十分なトレハロース生成が見られた時点で反応を終了するが、反応は通常1~144時間で終了する。

【0116】反応終了後、反応液の加熱による酵素の失活、pHの低下(塩酸等の酸の添加)による酵素の失活等の適当な手段で反応を停止させ、活性炭処理、イオン交換樹脂処理、エタノール晶出処理等の単離・精製手段を適宜組み合わせてトレハロースを得ることができる。【0117】また、本発明は、組換え型耐熱性トレハロースホスホリラーゼの存在下にトレハロースとリン酸もしくはリン酸塩とを、水溶媒中で反応させせて、βーグルコース-1-リン酸を製造することもできる。

【0118】その場合、この反応に用いられる組換え型耐熱性トレハロースホスホリラーゼ、トレハロース、水溶媒は、トレハロース製造の場合と同様にして行うことができる。酵素はマルトース1gに対して0.1~50単位、好ましくは1~20単位が好適である。

【0119】反応温度、反応pH、反応時間はトレハロース製造の場合と同様にして行うことができる。反応終了後、イオン交換樹脂処理等の単離・精製手段を適宜組み合わせてβーグルコースー1ーリン酸を得ることができる。

[0120]

【発明の実施の形態】以下、本発明の実施の形態を実施 例により詳細に説明する。

【0121】トレハロースホスホリラーゼ活性は、以下のように測定した。

【0122】適宜希釈した酵素溶液0.4m1と0.5M リン酸クエン酸緩衝液(pH6.0)0.06m1、2W /V%トレハロース0.6m1、蒸留水0.14m1を混合し、60℃、20分反応後10分間の煮沸によって反応を停止させた。次に、この反応停止液から0,02m 1を採取し、グルコース検査試薬グルコースCIIーテストワコー(和光純薬工業(株))を3m1加え、室温で20分間反応させた後、505nmでの吸光度を分光光度計を用いて測定し、反応液中のグルコース量を定量し た。生成したグルコースの量から1分間に1μmolのトレハロースを加リン酸分解した酵素量を1単位とした。

[0123]

【実施例1】 精製トレハロースホスホリラーゼの酵素 化学的特性

[実施例1-1] 精製酵素の調製

バチルス・ステアロサーモフィラスSK-1 (FERM P-14567) による耐熱性トレハロースホスホリラーゼの精製は以下のようにして行った。

【0124】(培養) 酵母エキス1%、ボリペアトン2%、トレハロース1%を含有する培地(pH7.0)100mlを500mlバッフル付きマイヤーフラスコに入れ、121℃、20分間オートクレーブ殺菌したものに、バチルス・ステアロサーモフィラスSK-1を1白金耳植菌し、55℃にて16時間振とう培養したものを種培養液とした。

【0125】容量51のファーメンターに種培養の場合と問組成の培地約31を入れて減菌し、温度を55℃とした後、種培養液2V/V%を接種し、55℃、pH6.0~7.0に保持しながら18時間通気攪拌培養した。

【0126】(粗酵素調製)分離した培養液に硫安を40~60%の飽和溶液になるよう溶解し、生じたタンパック質の沈澱を遠心分離によって回収して、10mMリン気酸カリウム・クエン酸緩慢液(pH6.0)に溶解後、室間じ緩衝液に対して透析を行い、濃糖後トレハロースホシスホリラーゼ活性350単位/mlの粗酵素液を10me1得た。

【0127】(イオン交換クロマトグラフィー)10m、Mリン酸カリウム・クエン酸緩衝液(pH6.0)によって平衡化したTSKgelDEAEトーヨーパール6 50M(東ソー(株))を詰めたカラムに、粗酵素液を添加し、5カラム容量の0~0.4M NaClの上昇濃度勾配によって溶出し、分画分取した。活性のある画分は合わせて濃縮、脱塩後、更に、一連の同じクロマトグラフィー操作を行い精製度を上げた。

【0128】(疎水クロマトグラフィー) 40%飽和となるように硫酸アンモニウムを溶解した10mMリン酸カリウム・クエン酸緩衝液 (pH6.0)によって平衡化した、TSKgelPhenylトーヨーパール650M (東ソー(株))を詰めたカラムに、上記部分精製酵素液を添加し、8カラム容量の40%~0%飽和硫酸アンモニウム溶液の下降濃度勾配によって溶出し、分画分取した。活性のある画分を合わせて濃縮、脱塩を行った。

【0129】(吸着クロマトグラフィー)0.3mMとなるように $CaC1_2$ を溶解した10mMリン酸カリウム・クエン酸緩衝液(pH6.0)によって平衡化した、PENTAX GH-0810Mカラムに、上記部

分精製酵素液を添加し、10カラム容量の10~300 mMリン酸カリウム・クエン酸緩衝液(pH6.0)の上昇濃度勾配によって溶出し、分画分取した。活性のある画分を合わせて濃縮、脱塩を行った。

【0130】(ゲルデ過クロマトグラフィー) 0.2M NaC1を溶解した10mMリン酸カリウム・クエン酸 緩鍛液(pH6.0)によって平衡化した、Super dex200pgカラム(ファルマシア バイオテク(株))に、上記部分精製酵素液を添加し、同じ緩衝液で溶出し、分画分取した。活性のある画分を合わせて機 織、脱塩を行った。

【0131】(ネイティブボリアクリルアミドゲル電気 泳動)上記精製酵素をネイティブボリアクリルアミドゲ ル電気泳動し、ゲルをCBB染色してタンパク質のバンドを調べたところ一本のバンドしか検出されず、単一タ ンパク質であることが確認できたので精製トレハロース ホスホリラーゼ酵素液とした。

【0132】[実施例1-2] 精製酵素の酵素化学的特性

実施例1-1で調製した精製トレハロースホスホリラー ゼ液を用い、以下の酵素化学的特性を調べた。

【0133】(1)作用

実施例1-1で調製した精製酵素液0.4m1と0.5M リン酸クエン酸緩衝液(pH6.0)0.06m1、2W /V%トレハロース0.6m1、蒸留水0.14m1を混合し、60℃、60分間トレハロース分解反応を行った。反応後10分間の煮沸によって反応を停止させ、この反応停止液から0.02m1を採取し、グルコース検査試薬グルコースCIIーテストワコー(和光純薬工業(株))を3m1加え、室温で20分間反応させた後、505nmでの吸光度を分光光度計を用いて測定し、反応液中のグルコース量を定量した。一方、反応停止液を陰イオン交換カラムを用いた高速液体クロマトグラフィーで分離後、示差屈折計でβーグルコース-1-リン酸を検出し定量した。その結果、反応停止液中のグルコース含量とβーグルコース-1-リン酸含量は等しかった。

【0134】また、精製酵素液0.4m1と0.5M酢酸 超衝液(pH6.0)0.12ml、0.5Mβ-グルコース-1-リン酸・Na水溶液0.12ml、0.5M グルコース水溶液0.12ml、蒸留水0.44mlを混合し、60℃、60分反応後10分間の煮沸によって反応を停止させた。次に、この反応停止液から0.02mlを採取し、グルコース検査試薬グルコースCIIーテストワコー(和光純薬工業(株))を3ml加え、室温で20分間反応させた後、505nmでの吸光度を分光光度計を用いて測定し、反応液中のグルコース量を定量した。一方、反応停止液をTSKgel Amido80カラム(東ソー(株))を用いた高速液体クロマトグラフィーで分離後、示差風折計で反応液のトレハロースを

検出し定量した。

【0135】その結果、反応停止液中の消費グルコース 量と生成トレハロース量は等しかった。従って、精製酵 素の作用は、式(1)で示すように、トレハロースを可 逆的に加リン酸分解する。すなわち、リン酸存在下でト レハロースに作用させると、等モルのグルコースとβー グルコース-1-リン酸を生成し、グルコースとβーグ ルコース-1-リン酸に作用させると等モルのトレハロ ースとリン酸を生成すると結論した。

【0136】(2)基質特異性

(1)のトレハロース分解反応の基質を以下のものに置き換えて加リン酸分解反応を行ったところ、ネオトレハロース、マルトース、イソマルトース、セロビオース、シュークロース、p-ニトロフェノールー α -グルコシド、p-ニトロフェノールー β -グルコシドを基質として加リン酸分解反応を行ったところ、いずれもグルコースの生成が認められなかった(表1)。

【0137】(3)至適温度

精製トレハロースホスホリラーゼ活性を各種温度(40~90℃)で行ったところ、トレハロース加リン酸分解 反応の至適温度は70℃~75℃付近で、60℃~75 ℃の範囲で最高活性の約50%以上を示した(図1)。

【0138】(4)熱安定性

精製酵素液を各種温度(40~90℃)に15分間インボ キュベートした後、トレハロースホスホリラーゼ活性を 測定したところ、65℃処理で、無処理の95%以上の 活性を示した(図2)。

【0139】(5)至適pH

トレハロースホスホリラーゼ活性測定に用いる0.5M リン酸クエン酸緩衝液 (pH6.0) の代わりに0.5M リン酸カリウム・クエン酸緩衝液 (pH4.0~7. 7) もしくは0.5Mトリス塩酸緩衝液 (pH7.7~

7) もしくは0.5Mトリス塩酸液酸液(PH7.7~9.0)を用いて反応を行ったところ、至適pHは6.5~7.5であった(図3)。

【0140】(6)pH安定性

精製トレハロースホスホリラーゼ酵素液を100mMリン酸カリウム・クエン酸緩衝液(pH4.0~8.0)と100mMトリス塩酸緩衝液(pH7.5~9.0)と混合し、60℃で24時間インキュベートした後、各pHでの残存活性を測定したところ、pH6.0~8.0で安定であった(図4)。

【0141】(7)失活

精製トレハロースホスホリラーゼ酵素液を100℃、1 0分間加熱した後、残存活性を測定したところ、活性は 100%失活していた。

【0142】(8)分子量

Superdex200pg(ファルマシア バイオテク(株))を用いたゲルデ過クロマトグラフィーにより、各種標準タンバク質との相対溶出容量から分子量を求めた結果、精製酵素の分子量は11万~15万であっ

た.

【0143】(9)等電点

等電点電気泳動により、各種概準タンパク質との相対移動度から等電点は4.6~5.2であった。

【0144】(10)阻害剤

精製トレハロースホスホリラーゼ酵素液に終濃度 1 mM になるように阻害剤を添加した後、残存活性を測定したところ、 $HgCl_2$ で $99%、<math>ZnSO_4$ で80%の活性阻害が見られた(表2)。

【0145】(11) N末端アミノ酸配列

常法により、アプライド・バイオシステムズ製気相プロ テインシーケンサー「477A型」を使用して分析を行ったところ、精製酵素はN末端に配列表における配列番 号2に示すアミノ酸配列を有していた。

[0146]

【実施例2】 耐熱性トレハロースホスホリラーゼをコードするDNAを含む組換えDNA及び組換えDNA形質転換大腸歯の調製

[実施例2-1] 染色体DNAの調製

ポリペプトン2%、酵母エキス1%を含有する培地(p H7.0) 5mlを試験管に入れ、121℃、20分間 オートクレーブ殺菌したものにバチルス・ステアロサー モフィラスSK-1株を植菌し、55℃で14時間振と う培養した。これを種歯液とし、同じ培地100mlを 500m1パッフル付フラスコに入れ、121℃、20 分間オートクレーブ殺菌したものに5%植菌し、55℃ で6時間回転振とう培養した。 遠心分離により培養液か ら菌体を分離し、O.1M EDTAを含むO.15M N aC1溶液(pH8.0)に懸濁した。これにアクロモ ペプチダーゼ (和光純菜(株)) を4mg/m1となるよ うに加え、37℃で20分間穏やかに振とうした後、-80℃で30分間凍結した。解凍後、1%SDSと0. 1M NaClを含む0.1Mトリス・塩酸緩衝液(pH 9.0) を加えて60℃に加温した。冷却後、1 mM E DTAを含む10mMトリス・塩酸緩衝液(pH8. O) (TE緩衝液)で飽和したフェノール溶液を加えて 除蛋白処理を行った。その後、冷エタノールを加え、生 成した粗染色体DNAを採取し、これを70%、80 %、90%エタノールにそれぞれ5分間ずつ浸した後、 TE緩衝液に溶解した。これにR NaseA (シグマ)を 20μg/m1となるように加え、37℃で30分間反 応させた。反応液を再度フェノール溶液による除蛋白処 理を行い、冷エタノールを加えて生成した染色体DNA を採取し、70%、80%、90%エタノールにそれぞ れ5分間ずつ浸した後、1mg/mlとなるようにTE 緩衝液に溶解し、染色体DNA溶液とした。

【0147】[実施例2-2] トレハロースホスホリラーゼをコードするDNAの5'端DNA断片の取得 実施例2-1で調製した染色体DNAをHindIII、BamH I、Pati、Sali、EcoRI等の各種制限酵素で切断し、アガ ロースゲル電気泳動を行った。分離したDNA断片を常法によりナイロン膜Gene Screen Plus Hybridization Transfer Membrane (デュボン)に固定した。一方、配列表における配列番号2に示すトレハロースホスホリラーゼのN末端の8から13番目のアミノ酸配列のGIn-Leu-Asn-Ile-Glu-Asnで表される配列に基づき、5'-CARYTNAAYATHGARAA-3'で表される配列のオリゴヌクレオチドTN3を化学合成した。このオリゴヌクレオチドTN3を放射性同位体⁹²Pで概識後、前記ナイロン膜上に固定したDNA断片とSouthern,E.M.らの方法(J.Mol.Biol.,98:503-517,1975)に従ってサザンハイブリダイゼーションを行った。

【0148】このときのハイブリダイゼーションの条件 は、5XSSC、1%SDS、10%硫酸デキストリ ン、0.5mg/mlサケ変性DNAからなる溶液中に おいて42℃で16~20時間ハイブリダイズを行い、 その後2XSSC、1%SDSからなる溶液中にて55 ℃で30分間のサイクルで3回ナイロン膜を洗浄した。 【0149】その結果、制限酵素HindIIIで切断した約 2.0 k塩基対のDNA断片がハイブリダイズした。そ こでHindIIIで切断した染色体DNAを再度アガロース ゲル電気泳動し、約2.0k塩基対のDNA断片をDE 81ペーパー (ワットマン) を用いて抽出した。抽出し~. たDNA断片をプラスミドベクターpUC118のHind: III部位に挿入した。この組換えプラスミドをコンピテ ントセルE.coli JM109 (宝酒造(株)) 10 x 0μ1に加え、氷冷下に30分静置後、42℃で45秒。 間加温し、SOC培地を加えて37℃で1時間振とう培・ 養することにより、組換えプラスミドを導入した形質転し 換大腸菌を得た、得られたそれぞれの形質転換体からア ルカリーSDS法により組換えプラスミドを回収し、Hi ndIIIで切断後、アガロースゲル電気泳動を行い、DN A断片を前述と同様にナイロン膜上に固定した。ナイロー ン膜上に固定したDNAは32Pで標識したTN3をプロ ープとして前述と同様の条件でサザンハイブリダイゼー ションを行い、ハイブリダイズする組換えプラスミドを 選択し、2.0k塩基対のHindIII断片をクローン化し た。

【0150】この選択した組換えプラスミドをHindIIIで切断後、アガロースゲル電気泳動を行い、挿入された約2.0k塩基対の染色体DNA断片をDE81ペーパーを用いて抽出した。抽出したDNA断片は超音波処理によって0.5kから1.0k塩基対の大きさに小断片化した後、RTG pUC18 Smal/BAP+L1gase(ファルマシア)を用いてプラスミドベクターpUC18のSmal部位に挿入した。そして、この組換えプラスミドをコンピテントセル E.coli 109(宝酒造(株))を用いて大腸菌JM109に導入した。得られた大腸菌から組換えプラスミドを抽出し、このプラス

ミドをテンプレート、2種類の合成オリゴヌクレオチド FP (5'-GTTTTCCCAGTCACGACG-3') 及びRP (5'-GAATT GTGAGCGGATAAC-3')をプライマーとしてPCRを行い、 pUC18に挿入したDNA断片の増幅を行った。反応 条件は、93℃で2分間加熱した後、95℃で1分、5 5℃で1分30秒、72℃で3分のサイクルを30回繰 り返してから、最後に72℃で15分保温した。反応液 90 u 1 にPEG溶液 (20%ポリエチレングリコー ル、2、5M NaC1)を60µ1加えて混合し、氷 中に15分間静置した。遠心分離により沈殿したDNA 断片を分離し、70%エタノールで洗浄後、真空乾燥し た。これを適量の蒸留水に溶解し、塩基配列決定用DN Aを調製した。このDNAをテンプレートとし、PRI SM Dye Primer Cycle Seque ncing Ready Reaction kit (パーキンエルマー)を用いたジデオキシ・チェーン・ ターミネーター法により、DNA断片の蛍光ラベルを行 い、DNAシークエンサー373A(Applied Biosystems)で分析して塩基配列を決定し た。決定した全ての塩基配列をコンピューターソフトG ENETYX-MAC (ソフトウエアー開発(株))を用 いて解析し、2.0k塩基対のDNA断片の塩基配列を 決定した。結果、この断片は、トレハロースホスポリラ ーゼ遺伝子のプロモーター及び構造遺伝子の途中までを 含む1.956塩基対のDNA断片であることが判明し

【0151】 [実施例2-3] 耐熱性トレハロースホスホリラーゼをコードするDNAの3、端DNA断片の取得

実施例2-2で決定した配列に制限酵素Msp I認識配列が見られたことから、染色体DNAをMsp Iで切断し、アガロース電気泳動後、ナイロン膜上に固定した。次に、実施例2-2でクローン化した2.0 k塩基対のHindIII切断DNA断片を更にMsp I で切断し、約0.2k塩基対のDNA断片を調製し、これをRandam Primer DNA Labeling Kit(室酒造(株))を用いたランダムプライマーDNAラベリング法により放射性同位体32Pで標識し、前記ナイロン膜上に固定したDNA断片とサザンハイブリダイセーションを行った。

【0152】このときのハイブリダイゼーションの条件は、5XSSC、1%SDS、10%硫酸デキストリン、0.5mg/mlサケ変性DNAからなる溶液中において65℃で16~20時間ハイブリダイズを行い、その後2XSSC、1%SDSからなる溶液中にて65℃で30分間のサイクルで3回ナイロン膜を洗浄した。結果、2.0k塩基対のDNA断片がハイブリダイズした。

【0153】そこで、実施例2-2で決定した配列のNo PI認識配列以降の塩基配列を基に、5'-TGTGCTTTGCCATCA OGTTCGTGTA-3' 及び5'-ATTTGCGCTGGGCAGCCAAAGCTGT-3'で 表されるオリゴヌクレオチドTL及びTRを化学合成 し、一方、実施例2-1で調製した染色体DNAを制限 酵素Msplで切断した後、DNA Ligation K it (宝酒造(株))を用いてライゲーションを行い、こ のDNAをテンプレート、TL及びTRをプライマーと LTAmpliTaq DNA Polymerase (パーキンエルマー)を用いてインバースPCRを行っ た。反応条件は、95℃で3分間加熱後、95℃で30 秒間、65℃で8分間のサイクルを32回繰り返してか ら、最後に72℃で12分間保温した。反応液をアガロ ースゲル電気泳動したところ、約2.0k塩基対のDN A断片が検出されたので、アガロースゲルよりこのDN A断片をDE81ペーパー (ワットマン) を用いて抽出 した。抽出したDNA断片は超音波処理によって0.5 から1.0k塩基対の大きさに小断片化した後、RTG

pUC18 Smal/BAP+Ligase (ファルマ シア)を用いてプラスミドベクターpUC18のSml部 位に挿入した。そして、この組換えプラスミドをコンピ テントセル E.coli JM109 (室酒造(株)) を用いて大腸菌JM109に導入した。得られた形質転 換大腸菌から組換えプラスミドを抽出し、このプラスミ ドをテンプレート、オリゴヌクレオチドFP及びRPを プライマーとしてPCRを行った。反応液から増幅した。 DNA断片を精製し、塩基配列決定用DNAを調製し た。そして、このDNA断片をテンプレートとしてPR ISM Dye Primer Cycle Sequ encing Ready Reaction Kit (パーキンエルマー)を用いた蛍光ラベル反応を行い、 DNAシークエンサー373A (Applied Bi osystems)で分析して塩基配列を決定した。決 定した全ての塩基配列をコンピューターソフトGENE TYX-MAC(ソフトウエアー開発(株))を用いて解 析し、トレハロースホスホリラーゼをコードするDNA の3、端を含む919塩基対とその下流に存在する34 0塩基対の配列を決定した。919塩基対の配列と実施 例2-2で決定した配列と合わせることによって耐熱性 トレハロースホスホリラーゼをコードするDNAの配列 が決定できた。決定したトレハロースホスホリラーゼを コードする塩基配列を配列表における配列番号3に示 す。また、終始コドンから下流にある340塩基対の配 列を配列表における配列番号4に示す。

【0154】 [実施例2-4] 組換えプラスミドpS TP1と形質転換大腦菌STP1の調製

実施例2-3で決定した塩基配列より、トレハロースホスホリラーゼをコードするDNA配列の開始コドン上流132塩基目からの配列5'-TTGAAAACAAATCAGTTCAA-3'で表されるオリゴヌクレオチド5TP2と、終止コドン下流の配列で配列表における配列番号4の塩基番号162からの配列のアンチセンス配列5'-TCGTCGGCTTCCACCGAT

T-3'で表されるオリゴヌクレオチド3TP2を化学合成した。実施例2-1で調製した染色体DNAをテンプレートとし、5TP2と3TP2をプライマーとしてPCRを行い、3.3 k塩基対のDNA断片を得た。

【0155】この3.3 k塩基材のDNA断片を、Original TA CloningKit (Invitrosen)を用いて、プラスミドベクターpCR2. 1にライゲーション後、大腸菌 I N V α F' (endAl, recAl, hsdR $17(r^k, m^{tk})$, supE44. λ ~, thi-1, gyrA, relA1, ϕ 80 lacZ Δ M15 Δ (lacZYA-argF), deoR*, F') 株への導入を行い、3.3 k塩基材のDNA断片が組み込まれた組換えプラスミドpSTP1 (図5)を有する形質転換大腸菌STP1を得た。

【0156】上記の形質転換大腸菌STP1をEscheric hia coli STP1と命名し(受託番号: FERM P-1 6162)、工業技術院生命工学工業技術研究所に平成9年3月27日に寄託した。

【0157】そして、形質転換大腸菌STP1を培養し、培養液から組換えプラスミドpSTP1を抽出し、 挿入した約3.3 k 塩基対のDNA断片の5°側から2 686塩基までの配列の解析を行った。その塩基配列 を、配列表の配列番号1に示す。

【0158】この配列は、実施例2-3で決定した耐熱性トレハロースホスホリラーゼのDNA配列の配列番号3の塩基番号257~2796と一致することが判明し、組換え耐熱性トレハロースホスホリラーゼをコードしていることが確認できた。

[0159]

【実施例3】 形質転換大腸菌STP1が生産する組換 え耐熱性トレハロースホスホリラーゼの酵素化学的特性 [実施例3-1] 組換え耐熱性トレハロースホスホリ ラーゼの精製

バクトトリプトン1.6%、酵母エキス1.0%、NaC 10.5%を含有する培地(pH7.0)100mlを500ml三角フラスコに入れ、121℃、20分間オートクレーブ殺菌した後、沪過滅菌した10mg/mlアンピシリン水溶液0.5mlを添加したものに、実施例2で得られた形質転換大腸菌STP1を1白金耳植菌し、37℃で16時間回転振とう培養したものを種培養液とした。

【0160】容量51のファーメンターに種培養と同組成の培地(pH7.0)約31を入れて減菌後、子め戸過減菌したアンピシリン水溶液を100mg/1になるように添加し、温度を35℃とした後、種培養液2V/V%を接種して、35℃、pH6.5~7.5に保持しながら24時間通気攪拌培養した。

【0161】培養終了後、培養液を連続的に超音波処理 して歯体の破壊を行った。これを遠心分離し菌体残渣を 除去した培養液上清を得た。この上清を限外沪過によっ て約100mlまで濃縮した後、10mM酢酸緩衝液 (pH6.0)を31加えて、再度100m1まで機縮し、粗酵素液を得た。粗酵素液のトレハロースホスホリラーゼ活性は3,000単位/m1であった。

【0162】次に、この粗酵素液を実施例1-1と同様にして精製を行い、ネイティブボリアクリルアミドゲル電気泳動で単一タンパク質であることを確認した。

【0163】 [実施例3-2] 組換え耐熱性トレハロースホスホリラーゼの酵素化学的特性

実施例3-1の精製した組換え耐熱性トレハロースホス ホリラーゼの酵素化学的特性は実施例1-2と同様にし て調べた。以下に結果を示す。

【0164】(1)作用

トレハロースを可逆的に加リン酸分解する。すなわち、 リン酸存在下でトレハロースに作用させると、等モルの グルコースとβーグルコース-1-リン酸を生成し、グ ルコースとβーグルコース-1-リン酸に作用させると 等モルのトレハロースとリン酸を生成する。

【0165】(2)基質特異性

トレハロース、ネオトレハロース、マルトース、イソマルトース、セロビオース、シュークロース、p-ニトロフェノールーβーグルコシドを基質として加リン酸分解反応を行ったところ、トレハロース以外にはグルコースの生成が認められたかった

【0166】(3)至適温度

40mMリン酸カリウム・クエン酸緩衝液(pH6. 0)中で各種温度(40~90℃)で反応させたところ、トレハロース加リン酸分解反応の至適温度は70℃、~75℃付近で、60℃~75℃の範囲で最高活性の約50%以上を示した。

【0167】(4)熱安定性

10mMリン酸カリウム・クエン酸緩衝液 (pH6.0) 中にてインキュベートし、残存活性を測定したとこ

0)中にてインキュベートし、残存活性を測定したところ、65℃で15分間処理で、無処理の95%以上の活性を示した。

【0168】(5)至適pH

25mMリン酸カリウム・クエン酸緩衝液(pH4.0 ~7.7)と25mMトリス・塩酸緩衝液(pH7.7 ~9.0)を用いて60℃で反応を行ったところ、至適 pHは6.5~7.5であった。

【0169】(6)pH安定性

100mMリン酸カリウム・クエン酸緩衝液(pH4.0~8.0)と100mMトリス・塩酸緩衝液(pH7.5~9.0)を用いて60℃で24時間インキュベートし、各pHでの残存活性を測定したところ、pH6.0~8.0で安定であった。

【0170】(7)失活

100℃、10分間の加熱で100%失活した。

【0171】(8)分子量

Superdex200pg(ファルマシア バイオテ

ク(株))を用いたゲル沪過クロマトグラフィーによ り、各種標準タンパク質との相対溶出容量から分子量を 求めた結果、本酵素の分子量は11万~15万であっ

【0172】(9)等電点

等電点電気泳動により、各種標準タンパク質との相対移 動度から等電点は4.6~5.2であった。

【0173】(10)阻害剤

1mMのHgCl2で99%、ZnSO4で80%の活性 阻害が見られた。

【0174】(11) N末端アミノ酸配列

常法により、アプライド・バイオシステムズ製気相プロ テインシーケンサー「477A型」を使用して分析を行 ったところ、精製酵素はN末端に配列表における配列番 号2に示すアミノ酸配列を有していた。

【0175】この結果から、組換え耐熱性トレハロース ホスホリラーゼは、耐熱性トレハロースホスホリラーゼ と同じ酵素化学的性質を有することが確認された。

[017.6]

【実施例4】 組換え耐熱性トレハロースホスホリラー ゼを用いたトレハロースの製造

[実施例4-1] 耐熱性マルトースホスホリラーゼの

酵母エキス1%、ポリペプトン2%、マルトース1%を 含有する培地 (pH7.0) 100mlを500mlバ ッフル付きマイヤーフラスコに入れ、121℃、20分 間オートクレーブ殺菌したものに、バチルスsp.RK -1 (FERMP-15044)を1白金耳植菌し、5 5℃にて16時間振とう培養したものを種培養液とし た.

【0177】容量51のファーメンターに酵母エキス1 %、ポリペプトン2%、マルトース1%を含有する培地 (pH7.0)約31を入れて滅菌し、温度を55℃と した後、種培養液 2 V / V%を接種し、55℃、p H 6.0~7.0に保持しながら40時間通気撹拌培養し

【0178】培養終了後、培養物を遠心分離により菌体 を分離し、上清に硫安を80%飽和に溶解し、析出した タンパク質を遠心分離によって集めた。これを10mM 酢酸緩衝液 (pH6.0) に溶解後、同じ緩衝液に対し て透析を行い、漁縮後約200単位/ml粗酵素液を2 Oml得た。

【0179】 [実施例4-2] マルトースからトレハ ロースの生成反応

実施例4-1で調製した耐熱性マルトースホスホリラー ゼ粗酵素液と実施例3-1で調製した粗換え型トレハロ ースホスホリラーゼ粗酵素液を用いて、基質のマルトー スに作用させトレハロースへ変換させた。

【0180】反応液はマルトース濃度30W/W%、リ ン酸濃度10mM、粗酵素各10単位/gとなるように 添加し、酢酸緩衝液でpH5.0に調製した。反応は6 0℃で48時間行った。反応の停止は10分間100℃ に加熱して行った。反応終了後、各反応液をTSKge Amido80カラム(東ソー(株))、溶離液ア セトニトリル/水 (76/24)、流速0.8ml/m in、カラム温度80℃、示差屈折計Shodex(昭 和電工(株))を検出手段とする高速液体クロマトグラ フィーにより反応液の糖組成を定量した。また、B-グ ルコースー1ーリン酸は反応液を陰イオン交換カラムを 用いた高速液体クロマトグラフィーにより定量した。 【0181】結果、基質マルトースの65%がトレハロ

ースに変換された。

[0182]

【実施例5】 トレハロース含有糖液、及びその粉末の 製造

コーンスターチにαーアミラーゼを作用させた澱粉液化 液に枝切り酵素プロモザイム(ノボノルディクスバイオ インダストリー)とβーアミラーゼ(長瀬産業(株)) を作用させて調製したマルトース高含有糖液(固形分3 OW/W%、固形分当たりのマルトース純度80%) に、実施例4-1で調製した組換え型トレハロースホス ホリラーゼ粗酵素液と実施例4-2で調製したバチルス sp.RK-1 (FERM P-15044)の耐熱性 マルトースホスホリラーゼ粗酵素液をそれぞれ固形分1。 g当たり10単位になるように加え、さらに、リン酸濃 🗆 度10mMになるようにリン酸カリウムを加えて、60dl で、pH5.0で48時間反応させ、次いで100℃でご 10分間加熱して酵素を失活させた。

【0183】この反応液を活性炭で脱色し、イオン交換」 樹脂で脱塩した後、濃度約75%まで濃縮し、トレハロ ース含有糖液を得た。この糖液を実施例4-3と同様に 高速液体クロマトグラフィーによって分析した結果、固 形分当たりの割合はグルコース2.8%、トレハロース・ 63.2%、マルトース20.5%、マルトトリオース 5、1%、その他マルトオリゴ糖8.4%であった。

【0184】また、前記反応液に固形分1g当たり1単 位になるようにグルコアミラーゼ(生化学工業(株)) を加え、55℃で8時間反応させ、次いで100℃で1 O分間加熱して酵素を失活させた。この反応液を活性炭 で脱色し、イオン交換樹脂で脱塩した後、濃度約50% まで濃縮し、ナトリウム型イオン交換カラムで分離を行 い、トレハロース画分を分取した。この分取した糖液を 濃縮し、固形分75%で固形分当たり95%のトレハロ ースを含有するトレハロース高含有糖液を得た。

【0185】さらに、このトレハロース高含有糖液を濃 縮後乾燥することにより粉末トレハロースを得た。

【0186】以上の結果から、組換え耐熱性トレハロー スホスホリラーゼを利用して、トレハロースを製造する ことが出来ることが確認された。

[0187]

【発明の効果】本発明は、本発明者らが見出した、好熱性バチルス属細菌、特にバチルスステアロサーモフィラスSK-1(FERM P-14567)由来の耐熱性トレハロースホスホリラーゼ遺伝子を基に、遺伝子工学的手法により、組換え耐熱性トレハロースホスホリラーゼを得、これを培養すれば、酵素の生産性が飛躍的に上昇し、不純物の少ない、高純度組換え耐熱性トレハロースホスホリラーゼを効率よく製造できるDNAを得た点で極めて優れている。

【0188】また、このように、組換え耐熱性トレハロースホスホリラーゼが工業的規模で大量に、効率よく生産できるようになった結果、これを利用することにより、有用なトレハロースの製造が飛躍的に効率よく製造することができる点においても、非常に価値がある。

[0189]

【配列表】

配列番号:1

配列の長さ:2686

配列の型:核酸 鎖の数:2本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名:バチルス・ステアロサーモフィラス

株名:SK-1 配列の特徴

特徴を示す記号: 5' UTR

存在位置: 1...278

特徴を決定した方法:E 特徴を示す記号:CDS

存在位置: 279. . 2573

特徴を決定した方法:E

特徴を示す記号: 3'UTR

存在位置: 2574...2686

特徴を決定した方法:E

配列

TTCCGAAAGA TTTTACTGTA CCATATGATT GGATGGTAAA CTATACTCTT CTTTATCATT CGAAAAATG TAAGCCCATT CAAAATGATA GTTTGATGAC TCTAGTTTGT AAAAAATCAT AAAGGAGTTC TTTTTTGGGC TCAAGGTTGA AAACAAATCA GTTCAATCAT ATGCTGCTAT CGTTCTGACA CTTTTGATTG TGCTGATTTT CCAGATATAA ATCGTATCAG AATCAACATC CGTCAGAGTA AAAGAATAAT GAAACAGGAG TGTCTTAC ATG TCT TGG TCA ATT AGC Met Ser Trp Ser Ile Ser TCC AAT CAG CIT AAT ATT GAA AAC TTG TTA AAT GAA GAA AGT CTC TTT Ser Asn Gln Leu Asn Ile Glu Asn Leu Leu Asn Glu Glu Ser Leu Phe 15 10 TTC ACT GGT AAT GGG TAT ATT GGT GTA CGT GGA AAT TTC GAA GAA AAA 392 Phe Thr Gly Asn Gly Tyr Ile Gly Val Arg Gly Asn Phe Glu Glu Lys 25 30 TAT TAT GAT GGT GCT TCG TCA ATT CGC GGT ACA TAT ATC AAT GCA TTC Tyr Tyr Asp Gly Ala Ser Ser Ile Arg Gly Thr Tyr Ile Asn Ala Phe 45 CAC GAT ATA ACT GAT ATT AAC TAC GGT GAA AAA TTA TAT GCA TTC CCT His Asp Ile Thr Asp Ile Asn Tyr Gly Glu Lys Leu Tyr Ala Phe Pro 60 GAA ACG CAA CAG AAG TTA GTG AAT GTC ATT GAT GCG CAA ACT GTT CAA Glu Thr Gln Gln Lys Leu Val Asn Val Ile Asp Ala Gln Thr Val Gln 80 ATA TAC TIT GGA GAA GAA GAA AGG TIT TCG CIT TIT GAA GGA GAA lle Tyr Phe Gly Glu Glu Glu Glu Arg Phe Ser Leu Phe Glu Gly Glu 90 95 100 GTC ATT CAA TAT GAA CGG CAT CTC CAT ATG GAC AAA GGC TTT TCA GAA 632 Val Ile Gln Tyr Glu Arg His Leu His Met Asp Lys Gly Phe Ser Glu 110 CGT GTG ATT CAT TGG CGT TCT CCT GGA GGA AAA GAA GTC AAA CTC AAG Arg Val lie His Trp Arg Ser Pro Gly Gly Lys Glu Val Lys Leu Lys 125

river re		***	ም ም ል	A CT	PC.	and to	A TWD	ጥልጥ	444	r.a.	Curports	ቸዋረ	ATA	CKC	CAA	720
					_	TTC	. .	_	_		_					728
	Lys	MR	Leu	HIL		Phe	116	fÀI.	Lys	145	Leu	FIRE	116	GIII	150	
135	AC A	ΑΨΤ	CAA	ccc	140 CTT	AAT	Tr.Jury	Jalak	ccc		ACC:	AAC	CTC	CTT		776
						Asn										110
116	1117	116	014	155	491	NO11	LIE	ruc	160	L)S	1111	LJS	441	165		
ΔΓΔ	GTP	AAC	GGA		GTC	TCA	AAT	TTTT		GAT	CCA	AGT	GAT			824
						Ser										04 .
• • • • •	,,,,	,	170					175	,				180			
GTC	GGT	TCA		CAT	GCG	AAG	CTC		ACA	GTC	TCG	GAT		GTT	ATT	872
						Lys										
		185	-			•	190					195				
GAA	GGG		TTT	GTT	AGT	ATA	GAA	ACA-	AAA	ACG	AAA	CGG	TCA	AAT	CTT	920
Glu	Gly	Asp	Phe	Val	Ser	He	Glu	Thr	Lys	Thr	Lys	Arg	Ser	Asn	Leu	
	200					205					210					
TAT	GCC	GCP	TGT	ACA	TCA	ACA	TGC	AGA	CTA	AAC	ATT	GAT	TTT	CAG	CGA	968
Tyr	Ala	Ala	Cys	Thr	Ser	Thr	Cys	Arg	Leu	Asn	He	Asp	Phe	Gln	Arg	
215					220					225					230	
GAA	TAT	GTT	AAA	AAT	GAG	AAG	TCG	GTT	GAA	AÇT	GTA	CTC	ACT	TTT	GAA	1016
Glu	Tyr	Val	Lys	Asn	Glu	Lys	Ser	Val	Glu	Thr	Val	Leu	Thr	Phe	Glu	
		•		235					240					245		
						ATG										1064
Leu	Thr	Glu	Lys	Ała	He	Met	Thr	Lys	He	Asn	He	îyr	Thr	Asp	Thr	
			250					255		•	•		260			
						CCA										1112
Leu	Arg	His	Gly	Asp	Arg	Pro		Arg	Thr	Gly	Leu		Leu	Cys	Gln	
		265					270					275			c	44.0
						TTT										1160
Lys		Ser	Cys	Leu	Thr	Phe	Asn	Asp	Leu	Lys		Gin	Gin	Lys	HIS	
	280	a . m	445		mac	285		ccı	C MT	CT 4	290	ልሞል	ጥርማ	CCA	ሮ ለሞ	1200
						CTT										1208
		ASP	Lys	rne		Leu	Lyr	Ala	ASP		GIU	116	261	ary	310	
295		(TPC	C		300		ccc	district.	A A C	305	ጥገጥ	ር AT	ም ታር	CTA	CAA	1256
															Gln	1230
GIN	Ala	Leu	GIN			116	ALK	rne	320	Leu	rne	1112	r¢ů	325		
ተ ሮል	CĆA	ccc	œc.	315		ጉ ዮታ	ተርል	ΔΔΤ		GCT	GCA	ΔΔΑ	GGT		TCA	1304
															Ser	2501
DCI	ura	013	330		in 9	1110		335				-,-	340			,
GGC	GAA	GGG			GGG	CAT	TAT		TGG	GAT	ACC	GAA			ATG	1352
															Met	
		345					350		·			355				
GTG	CCA			TTG	ATG	ACG	AAT	CCT	GAG	TTA	GCA	AAG	CAA	TTG	CTC	1400
															Leu	
	360					365					370					
ATT			TAT	TCA	ATC	CTA	GAT	AAA	GCA	ÇGT	GAA	AGA	GCA	AGG	GAA	1448
He	Tyr	Arg	Tyr	Ser	He	Leu	Asp	Lys	Ala	Arg	Glu	Arg	Ala	Arg	Glu	
375					380)				385					390	
															GGA	1496
Met	Gly	His	Arg	Lys	Gly	Ala	Leu	Phe	Pro	Trp	Arg	Thr	Ile	Ser	Gly	
								,								

				3 9 5					400					405		
			TCT				_						_			1544
Gly	Glu	Cys	Ser	Ser	Tyr	Phe	Pro		Gly	Thr	Ala	Gln		His	ile	
			410				-	415					420			4500
	,		ATC													1592
Ser	Ala		He	Ala	Tyr	Ser			Gln	Tyr	ľyr		ya l	Thr	Lys	
		425		~= 4			430		0.00		cen c	435	A/D/D	~	ACA.	***
			TTC													1640
ASP		ASP	Phe	Leu	Lys		ıyr	чу	Ala	GIU		Leu	116	atu	Ittr	
C Crit	440	CTC	TGG	ATC	CAT	445	CCA	CAT	ተ ለዋ	CAT	450	CCA	AAA	ተተዋ	**	1688
			Trp													1000
	Arg	Leu	ITP	met	460	I III.	diy	nıs	ıyı	465	gru	diy	Lys	riic	470	
455	ሮ አሞ	cer	GTA	ACC:		CCT	CAC	CAG	ተ ለተ		TCT	ΔΤΤ	CTC	ልልሮ		1736
			Val													1,50
116	USP	AIU	,41	475	41,	•••		u. u	480	••••	-42	•••	,	485	7	
AAC	TAT	TAC	ACG		GTG	ATG	GCA	AAG		AAT	TTG	CGC	TGG		GCC	1784
			Thr													
			490					495					500			
AAA	AGT	GTC	GCT	GAA	TTA	GAA	AAA	CAT	GCA	CCT	GAT	ACA	TTA	GCA	TCA	1832
			Ala													
	•	505					510					515				
TTA	AAA	GCA	AAG	CTT	GAA	ATT	ACT	GAC	GAG	GAA	ATA	GCA	GAA	TGG	ATA	1880
Leu	Lys	Ala	Lys	Leu	Glu	He	Thr	Asp	Glu	Glu	Ile	Ala	Glu	Trp	He	
	520	٠.				525					530					
			GAA													1928
Lys	Ala	Ala	Glu	Ala	Met	Tyr	Leu	Pro	Tyr	Asp	Pro	Thr	Leu	Asn		
535					540					545					550	4055
			GAT													1976
Asn	Pro	Gln	Asp		Thr	Phe	Leu	GIn		Gin	Val	ltb	ASP			
		~~		555	~~ ***			COMP.	560	whe	CAT	ም ል ም	CAT	565 cor		2024
															TTG	2024
Asn	Thr	Pro	Lys	Glu	HIS	lyr	PTO			Leu	nis	ıyı	580		Leu	
A COT	गुष्पा 🛦	ጥልጥ	570 CGC	ተ ለሮ	C 4 4	CTÉ A	ጥርማ	575		ccc	CAT	AΓΔ			cct	2072
															Ala	2012
1111	LCU	585		131	0111	141	590		U 111		·	595				
CAT	TTT		TTA	GAG	GAT	GAA			GGA	TCT	GTG			GAT	TCT	2120
															Ser	
	600					605		·	•		610					
TAT			TAT	GAA	AAA			ACT	CAC	GAT	TCT	TCC	CTA	TCT	TCA	2168
															Ser	
615					620					625	_				630	
TGT	GTG	TTT	AGT	ATT	ATG	GCT	GCA	ÁAA	ATT	GGC	: GAA	TTA	GAC	: AAG	GCT	2216
Суз	Val	Phe	Ser	Lie	Met	Ala	Ala	Lys	He	Gly	Glu	Leu	Asp	Lys	Ala	
				635					640					645		
															CAT	2264
Tyr	Glu	Tyr	Phe	He	Glu	Thr	Ala		_	Asp	Leu	Asp			His	
			650					655					660			~~~
GGT	AAT	ACC	AAA	GAC	GGT	CTC	CAT	ATG	GCC	AA7	ATG	GG/	GG/	ACC	TGG	2312

Gly Asn Thr Lys Asp Gly Leu His Met Ala Asn Met Gly Gly Thr Trp									
665 670 675									
ATG GCG ATT GTT TAT GGA TTT GCT GGC CTT CGG ATC AAA GAA AGC GGG 2360									
Met Ala Ile Val Tyr Gly Phe Ala Gly Leu Arg Ile Lys Glu Ser Gly									
680 685 690									
TTG TCA TTA GOG CCA GTG ATT CCA AAA CAA TGG CAG TCA TAT AGA TTT 2408									
Leu Ser Leu Ala Pro Val Ile Pro Lys Gln Trp Gln Ser Tyr Arg Phe									
695 700 705 710									
TCG ATT CAA TAT TTA GGT AGA CAC ATT TCA GTC TCC GTT GAT ACA AAA 2456									
Ser Ile Gln Tyr Leu Gly Arg His Ile Ser Val Ser Val Asp Thr Lys									
715 720 725									
GGG ACG AAA GTG AAT CTT TTG AAT GGA GAG GAA CTA ACT ATC AAA CTT 2504									
Gly Thr Lys Val Asn Leu Leu Asn Gly Glu Glu Leu Thr Ile Lys Leu									
730 735 740									
TAT GGT AAA AAG CAT CAA TTA ACA AAA GAT GAA CCT CTT GAA ATA ACA 2552									
Tyr Gly Lys Lys His Gln Leu Thr Lys Asp Glu Pro Leu Glu Ile Thr									
745 750 755									
TTT AAT AAC GGG CGT GTT GAT TAACCAATAA AAACCAGTTA CCATTGGCCT 2603									
Phe Asn Asn Gly Arg Val Asp									
760 765									
ATTCATGGCT TTTCTGCCGA AGTCGGAAAA GCTTGGTCTT TAACTGGCTA TATAGACTTA 2663									
TTGCCATGCT ACTACGTCTT TAT 2686									
トポロジー:直鎖状									
配列の種類:ペプチド									
フラグメントの型:N末端フラグメン	۲								

配列の長さ:20

配列の型:アミノ酸

鎖の数:1本額

配列番号2

配列

Ser Trp Ser Ile Ser Ser Asn Gln Leu Asn Ile Glu Asn Leu Leu Asn

1

10

Glu Glu Ser Leu

配列番号3

配列の長さ:2796

配列の型:核酸

鎖の数:2本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名:バチルス・ステアロサーモフィラス

株名:SK-1

CAATTAGATA ATTGAAAATC AGAGGAGATG CAAGGGGATT CCTTTCTTGA TGGAAATCGG TGAGAATOGG AGCGGCAAGC AGTTTTGCCC GTTCCATCGC GATGTGTCCA TTCCGAAAGA 120 TTTTACTGTA CCATATGATT GGATGGTAAA CTATACTCTT CTTTATCATT CGAAAAAATG TAAGCCCATT CAAAATGATA GTTTGATGAC TCTAGTTTGT AAAAAATCAT AAAGGAGTTC TTTTTTGGGC TCAAGGTTGA AAACAAATCA GTTCAATCAT ATGCTGCTAT CGTTCTGACA CTTTTGATTG TGCTGATTTT CCAGATATAA ATCGTATCAG AATCAACATC CGTCAGAGTA AAAGAATAAT GAAACAGGAG TGTCTTACAT GTCTTGGTCA ATTAGCTCCA ATCAGCTTAA TATTGAAAAC TTGTTAAATG AAGAAAGTCT CTTTTTCACT GGTAATGGGT ATATTGGTGT ACGTGGAAAT TTCGAAGAAA AATATTATGA TGGTGCTTCG TCAATTCGCG GTACATATAT 540 CAATGCATTC CACGATATAA CTGATATTAA CTACGGTGAA AAATTATATG CATTCCCTGA 600 AACGCAACAG AAGTTAGTGA ATGTCATTGA TGCGCAAACT GTTCAAATAT ACTTTGGAGA 660 AGAAGAAGAA AGGTTTTCGC TTTTTGAAGG AGAAGTCATT CAATATGAAC GGCATCTCCA 720 TATGGACAAA GGCTTTTCAG AACGTGTGAT TCATTGGCGT TCTCCTGGAG GAAAAGAAGT

```
CAAACTCAAG TTTAAAAGGT TAACTTCATT CATTTATAAA GAACTTTTCA TACAGGAAAT 840
TACAATTGAA COOGTTAATT TTTTTGGGAA AACGAAGGTG GTTTCCACAG TTAACGGAGA 900
TGTCTCAAAT TTTGTTGATC CAAGTGATCC ACGGGTCGGT TCAGGACATG CGAAGCTCTT 960
GTCAAATCIT TAIGCCGCTT GTACATCAAC ATGCAGACTA AACATTGATT TTCAGCGAGA 1080
ATATGTTAAA AATGAGAAGT CGGTTGAAAC TGTACTCACT TTTGAATTAA CAGAAAAAGC 1140
GATCATGACT AAAATAAATA TATATACAGA TACGCTTCGA CATGGAGATC GTCCACTTCG 1200
GACTGGTCTT GATCTATGTC AGAAATTATC ATGTTTGACG TTTAATGACC TTAAAGAACA 1260
GCAAAAGCAC TATTTAGATA AGTTTTGGCT TTACGCAGAT GTAGAAATAT CTGGAGATCA 1320
GGCGCTCCAA GAAGGGATAC GCTTTAACTT ATTTCATTTG CTACAATCAG CAGGGCGCGA 1380
TOSTITTICA AATATAGCTG CAAAAGGTTT GTCAGGCGAA GGGTATGAAG GGCATTATTT 1440
TTGGGATACC GAAATATATA TGGTGCCAGT TTTCTTGATG ACGAATCCTG AGTTAGCAAA 1500
GCAATTGCTC ATTTATOGAT ATTCAATCCT AGATAAAGCA OGTGAAAGAG CAAGGGAAAT 1560
GGGCCATAGA AAAGGCGCTT TATTTCCATG GCGAACAATA TCAGGAGGAG AATGTTCTTC 1620
TTATTTCCA GCTGGAACAG CTCAGTACCA TATTAGTGCA GATATCGCTT ATAGTTACGT 1680
TCAATATTAC TTAGTTACGA AAGATTTGGA TTTCCPAAAA TCTTATGGAG CTGAACTGTT 1740
AATTGAAACA GCTCGTCTCT GGATGGATAC CGGACATTAT CATGAAGGAA AATTTAAAAT 1800
TGATGCTGTA ACGGGGCCTG ACGAGTATAC GTGTATTGTG AACAATAACT ATTACACGAA 1860
CGTGATGGCA AAGCACAATT TGCGCTGGGC AGCCAAAAGT GTCGCTGAAT TAGAAAAACA 1920
TGCACCTGAT ACATTAGCAT CATTAAAAGC AAAGCTTGAA ATTACTGACG AGGAAATAGC 1980
AGAATGGATA AAAGCAGCTG AAGCTATGTA TTTGCCTTAT GATCCAACAC TTAATATTAA 2040
CCCGCAGGAT GACACATTIT TGCAGAAACA AGTTTGGGAT TTCGATAATA CGCCGAAAGA 2100
ACATTACCCG CTTCTCTTGC ATTATCATCC GTTGACTTTA TATCGCTACC AAGTATGTAA 2160
GEAGGCCGAT ACAGTACTCG CTCATTTTT ATTAGAGGAT GAACAAGATG GATCTGTGAT 2220
TOGAGATTCT TATCATTATT ATGAAAAAT CACTACTCAC GATTCTTCCC TATCTTCATG 2280
TGTGTTTAGT ATTATGGCTG CAAAAATTGG CGAATTAGAC AAGGCTTATG AATATTTAT 2340
TGAAACAGCT CGTTTAGATT TAGATAATAC ACATGGTAAT ACGAAAGACG GTCTCCATAT 2400
GGOGAATATG GGAGGAACGT GGATGGCGAT TGTTTATGGA TTTGCTGGCC TTCGGATCAA 2460
AGAAAGCGGG TTGTCATTAG CGCCAGTGAT TCCAAAACAA TGGCAGTCAT ATAGATTTTC 2520
GATTCAATAT TTAGGTAGAC ACATTTCAGT CTCCGTTGAT ACAAAAGGGA CGAAAGTGAA 2580
TCTTTTGAAT GGAGAGGAAC TAACTATCAA ACTTTATGGT AAAAAGCATC AATTAACAAA 2640
AGATGAACCT CTTGAAATAA CATTTAATAA CGGGCGTGTT GATTAACCAA TAAAAACCAG 2700
TTACCATTGG CCTATTCATG GCTTTTCTGC CGAAGTCGGA AAAGCTTGGT CTTTAACTGG 2760
                                                                2796
CTATATAGAC TTATTGCCAT GCTACTACGT CTTTAT
```

配列番号4

配列の長さ:340 配列の型:核酸

鎖の数:2本鎖 トポロジー: 直鎖状 配列の種類:Genomic DNA

起源

生物名:バチルス・ステアロサーモフィラス

株名:SK-1

配列

TTGCTTGGTG GAGGAAAAAC GGCTGTCATC GAAATGGCCG CTGCCTCAGG ACTACATCTT GTTCCGAAAG AAAAACGAAA TCCACTGATC ACCACAACGA GAGGAACAGG GGAATTGATT CGAGOGGCTC TTGATGTGGG AGTCGAGCAT ATTATTATCG GAATCGGTGG AAGCGCGACG 180 AACGATGGTG GAGCGGGAAT GGTTCAAGCG CTAGGCGGCC GACTTCTTGA TCGACATGGG AATGAGATTG CCTATGGCGG TGGAAGTTTA TCACAATTAG CAACGATTGA TCTTTCCTAT 300 TTAGACCOGA GGTTAAAGAA CGTAAAAATC GAAGTCGCTT 340

【図面の簡単な説明】

【図1】本発明の耐熱性トレハロースホスホリラーゼの 至適温度

【図2】本発明の耐熱性トレハロースホスホリラーゼの

熱安定性

【図3】本発明の耐熱性トレハロースホスホリラーゼの

【図4】本発明の耐熱性トレハロースホスホリラーゼの

p H安定性

【図5】本発明のプラスミドベクターpSTP1構造

【図2】

【図3】

【図4】

フロントページの続き

(51) Int. Cl. ⁶	•	識別記号		FΙ	
C12P	19/12			C12P	19/12
//(C12N	15/09	ZNA			
C12R	1:07)				
(C12N	15/09	ZNA			
C12R	1:19)		•		
(C12N	1/21				
C12R	1:19)				
(C12N	9/12				
C12R	1:19)				
(C12N	9/12				
C12R	1:07)				

(72)発明者 大島 良恵

千葉県船橋市日の出2-20-2 昭和産業

株式会社総合研究所内

(72) 発明者 山根 國男

茨城県土浦市常名4016-44