

ESIR2 RT RT - TD 1 - Octobre 2015

Les réseaux WiFi (Partie 1)

But

L'objectif de ce TD est d'étudier les réseaux locaux sans fil (WLan).

Réseau sans-fil : protocole d'accès au médium

Question 1 Pourquoi le protocole CSMA/CD ne peut-il être utilisé avec une transmission radio?

Question 2 Un réseau IEEE 802.11 s'appuie sur la technologie Ethernet. Montrer que l'interconnexion des points d'accès n'est généralement pas un problème en utilisant le réseau Ethernet de l'entreprise?

Question 3 Pourquoi peut-il y avoir des collisions sur un réseau sans fil?

Question 4 Le fait d'attendre la valeur d'un temporisateur avant de transmettre ne porte-il pas atteinte au débit effectif du système?

Question 5 Rappelez le format de la couche physique DSSS.

Question 6 Rappelez la technique d'accès au média utilisée par le protocole 802.11.

Question 7 Est ce qu'il évite réellement toutes les collisions? En quoi améliore t-il le traitement des collisions par rapport à la version de base qui pratique l'échange direct d'une trame de donnée suivie de son acquittement?

Question 8 Pourquoi les économies d'énergie constituent-elles un point faible des réseaux Wi-Fi?

Question 9 Pourquoi le débit effectif d'un réseau Wi-Fi est-il loin du débit théorique?

Question 10 Si 11 clients se partagent les ressources d'une cellule, pourquoi chaque utilisateur ne reçoit-il pas plus de 1Mbit/s en moyenne?

Question 11 Si deux clients accèdent à un même point d'accès avec des vitesses différentes (par exemple, l'un à 11 Mbit/s et l'autre à 1 Mbit/s), à quelle vitesse le point d'accès doit-il émettre ses trames de supervision?

CSMA/CA: Efficacité

Une station A envoie à 1Mbps un flux de trames contenant chacune 1500bytes de données utiles à une station B. On estime que :

- la période de contention (backoff) est en moyenne de $20\mu s$;
- L'entête des trames de la couche PHY est de $192\mu s$;
- RTS à une taille de 20bytes, CTS de 14bytes et ACK de 14bytes;
- les temps de propagation sont négligeables.

On demande:

- 1. de déterminer l'efficacité du canal avec et sans le mécanisme RTS/CTS. On estime qu'aucune trame n'est perdue.
- 2. la probabilité de perte de trame p à partir de laquelle le mécanisme RTS/CTS est avantageux. Lorsque le mécanisme RTS/CTS n'agit pas, on estime que seules les trames de données peuvent être perdues; lorsqu'il agit, seules les trames RTS peuvent être corrompues. Il faut $20\mu s$ pour détecter l'absence d'une trame (CTS ou ACK), après quoi un délai de DIFS est introduit. On supposera p^2 négligeable.
- 3. Vaut-il mieux utiliser RTS/CTS si les pertes ont une grande ou une petite probabilité?

Les stations cachées

Question 12 Si une carte Wi-Fi pouvait émettre automatiquement à une puissance suffisante pour atteindre le point d'accès, cela allongerait-il le temps de vie des batteries? Quel problème on pourrait avoir dans ce cas?

Question 13 Rappelez ce qu'est le problème des stations cachées?

Question 14 Quel mécanisme est mis en place pour permettre de ne plus avoir ce problème dans un réseau sans fil?

Question 15 Dessinez le schéma d'échange de trames entre une station A et une station B dans le cas d'un réseau BSS lorsque la station A fait un "ping" vers la station B (demande et réponse). Indiquez, en détail et avec précision :

- La durée de réservation de temps.
- L'occupation du média.