10) Mtb41 (MTCC#2)

SEQUENCE LISTING

- (2) INFORMATION FOR SEQ ID NO: 140:
 - (i) SEQUENCE CHARACTER STICS:
 - (A) LENGTH; 1441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

GAGGTTGCTG	GCAATGGATT	TCGGGCTTTT	ACCTCCGGAA	GTGAATTCAA	GCCGAATGTA	. 60
TTCCGGTCCG	GGGCCGGAGT	CGATGCTAGC	CGCCGCGGCC	GCCTGGGACG	GTGTGGCCGC	120
GGAGTTGACT	TCCGCCGCGG	TCTCGTATGG	ATCGGTGGTG	TCGACGCTGA	TCGTTGAGCC	180
GTGGATGGGG	CCGGCGGCGG	CCGCGATGGC.	GGCCGCGGCA	ACGCCGTATG	TGGGGTGGCT	240
GGCCGCCACG	GCGGCGCTGG	CGAAGGAGAC	GGCCACACAG	GCGAGGGCAG	CGGCGGAAGC	300
GTTTGGGACG	GCGTTCGCGA	TGACGGTGCC		GTCGCGGCCA		360
GTTGATGTCG	CTGGTCGCGG	CGAACATTCF		AGTGCGGCGA		420
CCAGGCCGAG	TATGCCGAAA	TGTGGGCCCA		GTGATGTACA		480
GGCATCTGCG	GCCGCGTCGG	CGTTGCCGC¢		CCCGTGCAAG		540
GGCCGGGCCC	GCGGCCGCAG	CCGCGGCGAG		GGTGCGGGCG		600
		AGCTGCCCCC	0000111-0-1-	AGCGACATTC		660
GGCCGCCAAC		TGACATCGGG		ATCGCGTCGA		720
GCAAGTCGGA	TCCGCTCAGC	CGATAGTGAT		ATAGGGGAAT		780
	ATTGCATCCA	TCGCGACCGG		CTCGCGATCA		840
		TATACGGGAA	CGCCGGCGGG	CTGGGACCGA		900
TCCACTGAGT	TCGGCGACCG	ACGAGCCGGA		GGCCCCTTCG		960
GCCGGTGTCC	GCGGGCGTCG	GCCACGCAGC		GCGTTGTCGG		1020
	GCCGCCCGG		1	GCAACACCCA		1080
CAGCGCCGGC	GCCGACCCGA	CGGCCCTAAA	¢GGGATGCCG			1140
	AGCCTGGCCG	CACGCGGCAC	GACGGGCGGT	GGCGGCACCC		1200
CAGCACTGAC						1260
GCCGCCCGGA	AACCCCCCGC		CGGCAACCGT		GCGGAAAATG	1320
CCTGGTGAGC			TCACACCGCT	TGTAGTAGCG		1380
GACGACGGTG	TCTGGATTCT	CGGCGGCTAT	CAGAGCGATT	TTGCTCGCAA	CCTCAGCAAA	1440 1441
G						1441

- (2) INFORMATION FOR SEQ ID NO:142:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 423 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Met Asp Phe Gly Leu Leu Pro Pro Glu Val Asn Ser Ser Arg Met Tyr

1 5 10 \ 15

Ser Gly Pro Gly Pro Glu Ser Met Leu Ala Ala Ala Ala Ala Trp Asp

Gly Val Ala Ala Glu Leu Thr Ser Ala Ala Val Ser Tyr Gly Ser Val 40 Val Ser Thr Leu Ile Val Glu Pro Trp Met Gly Pro Ala Ala Ala Met Ala Ala Ala Ala Thr Pro Tyr Val Gly Trp Leu Ala Ala Thr Ala 70 Ala Leu Ala Lys Glu Thr Ala Thr Gln Ala Arg Ala Ala Ala Glu Ala 85 Phe Gly Thr Ala Phe Ala Met Thr Val Pro Pro Ser Leu Val Ala Ala 105 Asn Arg Ser Arg Leu Met Ser Leu Val Ala Ala Asn Ile Leu Gly Gln 120 Asn Ser Ala Ala Ile Ala Ala Thr Gln Ala Glu Tyr Ala Glu Met Trp 135 Ala Gln Asp Ala Ala Val Met Tyr Ser Tyr Glu Gly Ala Ser Ala Ala 155 150 Ala Ser Ala Leu Pro Pro Phe Thr Pro Pro Val Gln Gly Thr Gly Pro 170 165 Ala Gly Pro Ala Ala Ala Ala Ala Thr Gln Ala Ala Gly Ala Gly 185 Ala Val Ala Asp Ala Gln Ala Thr Leu Ala Gln Leu Pro Pro Gly Ile 200 Leu Ser Asp Ile Leu Ser Ala Leu Ala Ala Asn Ala Asp Pro Leu Thr 215 220 Ser Gly Leu Leu Gly Ile Ala Ser Thr Leu Asn Pro Gln Val Gly Ser 2.3.5 230 Ala Gln Pro Ile Val Ile Pro Thr Pro Ile Gly Glu Leu Asp Val Ile 250 245 Ala Leu Tyr Ile Ala Ser Ile Ala Thr Gly Ser Ile Ala Leu Ala Ile 265 260 Thr Asn Thr Ala Arg Pro Trp His Ile Gly Leu Tyr Gly Asn Ala Gly 280 285 Gly Leu Gly Pro Thr Gln Gly His Pro Leu Ser Ser Ala Thr Asp Glu 295 Pro Glu Pro His Trp Gly Pro Phe Gly Gly Ala Ala Pro Val Ser Ala 315 310 Gly Val Gly His Ala Ala Leu Val Gly Ala Leu Ser Val Pro His Ser 330 325 Trp Thr Thr Ala Ala Pro Glu Ile Gln Leu Ala Val Gln Ala Thr Pro 345 Thr Phe Ser Ser Ala Gly Ala Asp Pro Thr Ala Leu Asn Gly Met 360 Pro Ala Gly Leu Leu Ser Gly Met Ala Leu Ala Ser Leu Ala Ala Arg 380 375 Gly Thr Thr Gly Gly Gly Thr Arg Ser Gly Thr Ser Thr Asp Gly 395 390 Gln Glu Asp Gly Arg Lys Pro Pro Val Val Val Ile Arg Glu Gln Pro 410 405 Pro Pro Gly Asn Pro Pro Arg 420

Mtb40 (HTCC#1)

(2) INFORMATION FOR SEQ ID NO:137:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

|--|

- (2) INFORMATION FOR SEQ ID NO:138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 392 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

 Met
 Ser
 Arg
 Ala
 Phe
 Ile
 Asp
 Pro
 Thr
 Ile
 Ser
 Ala
 Ile
 Asp
 Gly

 1
 5
 10
 10
 10
 15
 15
 15

 Leu
 Tyr
 Asp
 Leu
 Gly
 Ile
 Gly
 Ile
 Pro
 Asn
 Gln
 Gly
 Ile
 Leu

 Tyr
 Ser
 Ser
 Leu
 Glu
 Tyr
 Phe
 Glu
 Lys
 Ala
 Leu
 Glu
 Glu
 Ala
 Ala
 Ala
 Asp
 Lys
 Ala
 Ala
 Ala
 Asp
 Lys
 Tyr
 Ala

 Ala
 Phe
 Pro
 Gly
 Ser
 Ala
 Ala
 Ala
 Asp
 Lys
 Tyr
 Ala

 Ala
 Phe
 Pro
 Glu
 Fro
 Fro

													o Va				
													a Gl 14	y Al	a Me		
													14 s Th 5				
													a Gl				
													o Ile				
													Let				
		-						•					Gly				_
													Val				
													Leu				
				200					76	•			Asp Gly		_		
		~ ,	-					- 280					Ala	20-			
							295						300 Ala				
						3 (1)						7 7 C	Gly				
					J Z J					4 .	4 (1)		Ser				
		Thr	- T	7 V					445				Ala				
	Asp		,					100					Ala	200			
Lys 385					Arg I		3/5						380	-		1	 •••

Mtb9.9A (MTI-A)

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1742 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CCGCTCTCTT TCAACGTCAT AAGTTCGGTG GGCCAGTCGG CCGCGCGTGC ATATGGCACC AATAACGCGT GTCCCATGGA TACCCGGACC GCACGACGGT AGAGCGGATC AGCGCAGCCG

60

120

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2836 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

	GTTGATTCCG	TTCGCGGCGC	CCCCCNACAC	03.003.3.000	_	TCGCACAGGC	
	GCTTCCCTCC	22000000	CGCCGAAGAC	CACCAACTCC	GCTGGGGTGG	TCGCACAGGC	60
		G T CWGC T GGC	CGAATCCCAA	TGATTCCTCC	CECTACACACAC		
	CGATTACCCC	CACGGAAAGG	ACGACGATCG	TTCGTTTGCT	CCCTCTGCGG	TTGCTGGGCT	120
	CGGGCATGGC	CCCCTTTCTT	1.000.001.100	1100111001	CGGTCAGTCG	TACTTGGCGA	180
	C)) CCC	GCGGIIICIT	ACCTCGATCG	CACAGCAGCT	GACCTTCGGC	CCAGGGGGG	240
		ASSOCIATION	GCCTGGTACC	CAACGCCNCN	A TOTAL COLOR		240
	GCCCGGCGGT	GTCGGCGAGT	TTGGCGCGC	CGGAGCCGGT		CIGGGTGCAG	300
	CAACTTCCCC	CCTCCCCTCT		CGGMGCCGGT	CGGGAGGTTG	TCGGTGCCGC	360
		CGICGCGCI	CCGGCCTTCG	CGGAGAAGCC	TCACCCCC		
		CGAAGCGTCC	AGCTGCGGTC	AGGGAGGCCT	COMMOSS		420
	CGAGAGCGGG	GCGCCCTACA	CCCCCCCCCC	CTCACCGATA	GCTTCGAGGC	ATACCGCTGG	480
	TTT - CCCCC	CCGGCGTACA	GGCGCCTTCG	CTCACCGATA	CGGGTTCCGC	CACAGCGTGA	540
			GGATAGCTTT	CGATCCCCTC	TCCCCCC		540
•	TGCAGATAGC	GATCGACCGC	CCCCCTCCCT	AAACGCCGCA	22.22.2	CCGGAAATGC	600
	CCCCCCCCC	TC a TC CCC C		MAACGCCGCA	CACGGCACTA	TCAATGCGCA	660
		TOWTOCCMAN	TIGACCGITC	CGACGGGGG	TT 3 TO		
•	TCCCCAGCCC	GGTCGGTGGG	CCGATAAATA	CGCTGGTCAG	CCCCACCCCC	CAAGATTTCA	720
				CGCTGGTCAG	CGCGACTCTT	CCGGCTGAAT	780

TCGATGCTCT GGGCGCCGC TCGACGCCGA GTATCTCGAG TGGGCCGCAA ACCCGGTCAA ACGCTGTTAC TGTGGCGTTA CCACAGGTGA ATTTGCGGTG CCAACTGGTG AACACTTGCG AACGGGTGGC ATCGAAATCA ACTTGTTGCG TTGCAGTGAT CTACTCTTT GCAGAGAGCC 900 GTTGCTGGGA TTAATTGGGA GAGGAAGACA GCATGTCGTT CGTGACCACA CAGCCGGAAG 960 CCCTGGCAGC TGCGGCGGCG AACCTACAGG GTATTGGCAC GACAATGAAC GCCCAGAACG 1020 CGGCCGCGGC TGCTCCAACC ACCGGAGTAG TGCCCGCAGC CGCCGATGAA GTATCAGCGC 1080 TGACCGCGGC TCAGTTTGCT GCGCACGCGC AGATGTACCA AACGGTCAGC GCCCAGGCCG 1140 CGGCCATTCA CGAAATGTTC GTGAACACGC TGGTGGCCAG TTCTGGCTCA TACGCGGCCA CCGAGGCGGC CAACGCAGCC GCTGCCGGCT GAACGGGCTC GCACGAACCT GCTGAAGGAG 1260 AGGGGGAACA TCCGGAGTTC TCGGGTCAGG GGTTGCGCCA GCGCCCAGCC GATTCAGCTA 1320 TCGGCGTCCA TAACAGCAGA CGATCTAGGC ATTCAGTACT AAGGAGACAG GCAACATGGC 1380 CTCACGTTTT ATGACGGATC CGCATGCGAT GCGGGACATG GCGGGCCGTT TTGAGGTGCA 1440 CGCCCAGACG GTGGAGGACG AGGCTCGCCG GATGTGGGCG TCCGCGCAAA ACATTTCCGG 1500 TGCGGGCTGG AGTGGCATGG CCGAGGCGAC CTCGCTAGAC ACCATGACCT AGATGAATCA GGCGTTTCGC AACATCGTGA ACATGCTGCA CGGGGTGCGT GACGGGCTGG TTCGCGACGC 1620 CAACAACTAC GAACAGCAAG AGCAGGCCTC CCAGCAGATC CTGAGCAGCT AGCGCCGAAA GCCACAGCTG CGTACGCTTT CTCACATTAG GAGAACACCA ATATGACGAT TAATTACCAG TTCGGGGACG TCGACGCTCA TGGCGCCATG ATCCGCGCTC AGGCGGCGTC GCTTGAGGCG GAGCATCAGG CCATCGTTCG TGATGTGTTG GCCGCGGGTG ACTTTTGGGG CGGCGCCGGT TCGGTGGCTT GCCAGGAGTT CATTACCCAG TTGGGCCGTA ACTTCCAGGT GATCTACGAG CAGGCCAACG CCCACGGGCA GAAGGTGCAG GCTGCCGGCA ACAACATGGC GCAAACCGAC AGCGCCGTCG GCTCCAGCTG GGCCTAAAAC TGAACTTCAG TCGCGGCAGC ACACCAACCA GCCGGTGTGC TGCTGTGCC TGCAGTTAAC TAGCACTCGA CCGCTGAGGT AGCGATGGAT CAACAGAGTA CCCGCACCGA CATCACCGTC AACGTCGACG GCTTCTGGAT GCTTCAGGCG 2220 CTACTGGATA TCCGCCACGT TGCGCCTGAG TTACGTTGCC GGCCGTACGT CTCCACCGAT 2280 TCCAATGACT GGCTAAACGA GCACCCGGGG ATGGCGGTCA TGCGCGAGCA GGGCATTGTC 2340 GTCAACGACG CGGTCAACGA ACAGGTCGCT GCCCGGATGA AGGTGCTTGC CGCACCTGAT 2400 -CTTGAAGTCG TCGCCCTGCT GTCACGCGGC AAGTTGCTGT ACGGGGTCAT AGACGACGAG AACCAGCCGC CGGGTTCGCG TGACATCCCT GACAATGAGT TCCGGGTGGT GTTGGCCCGG 2460 CGAGGCCAGC ACTGGGTGTC GGCGGTACGG GTTGGCAATG ACATCACCGT CGATGACGTG ACGGTCTCGG ATAGCGCCTC GATCGCCGCA CTGGTAATGG ACGGTCTGGA GTCGATTCAC 2640 CACGCCGACC CAGCCGCGAT CAACGCGGTC AACGTGCCAA TGGAGGAGAT CTCGTGCCGA 2700 ATTCGGCACG AGGCACGAGG CGGTGTCGGT GACGACGGGA TCGATCACGA TCATCGACCG 2760 GCCGGGATCC TTGGCGATCT CGTTGAGCAC GACCCGGGCC CGCGGGAAGC TCTGCGACAT 2820 CCATGGGTTC TTCCCG 2836

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
- Met Thr
 Ile Asn Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala Met

 1
 5
 10
 15

 Ile Arg Ala Leu Ala Gly Leu Leu Glu Ala Glu His Gln Ala Ile Ile
 20
 25
 30

 Ser Asp Val Leu Thr Ala Ser Asp Phe Trp Gly Gly Ala Gly Ser Ala
 35
 40

Ala Cys Gln Gly Phe Ile Thr Gln Leu Gly Arg Asn Phe Gln Val Ile
50

Tyr Glu Gln Ala Asn Ala His Gly Gln Lys Val Gln Ala Ala Gly Asn
65

Asn Met Ala Gln Thr Asp Ser Ala Val Gly Ser Ser Trp Ala

Mtb9.9A (MTI-A) ORF peptides

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Met Thr Ile Asn Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Gln Phe Gly Asp Val Asp Ala His Gly Ala Met Ile Arg Ala Gln
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Asp Ala His Gly Ala Met Ile Arg Ala Gln Ala Ala Ser Leu Glu
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Met Ile Arg Ala Gln Ala Ala Ser Leu Glu Ala Glu His Gln Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Ala Ser Leu Glu Ala Glu His Gln Ala Ile Val Arg Asp Val 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Glu His Gln Ala Ile Val Arg Asp Val Leu Ala Ala Gly Asp 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPÒLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Ile Val Arg Asp Val Leu Ala Ala Gly Asp Phe Trp Gly Gly Ala
1 5 10 15.

- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single -
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Leu Ala Ala Gly Asp Phe Trp Gly Gly Ala Gly Ser Val Ala Cys Gln

1 10 15

- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Phe Trp Gly Gly Ala Gly Ser Val Ala Cys Gln Glu Phe Ile Thr
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Gly Ser Val Ala Cys Gln Glu Phe Ile Thr Gln Leu Gly Arg Asn
1 5 10

- (2) INFORMATION FOR SEQ ID NO:61:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Gln Glu Phe Ile Thr Gln Leu Gly Arg Asn Phe Gln Val Ile Tyr Glu 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Arg Asn Phe Gln Val Ile Tyr Glu Gln Ala Asn Ala His Gly Gln 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Ile Tyr Glu Gln Ala Asn Ala His Gly Gln Lys Val Gln Ala Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Asn Ala His Gly Gln Lys Val Gln Ala Ala Gly Asn Asn Met Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Lys Val Gln Ala Ala Gly Asn Asn Met Ala Gln Thr Asp Ser Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:
- Gly Asn Asn Met Ala Gln Thr Asp Ser Ala Val Gly Ser Ser Trp Ala 1 5 10 15

Mtb9.8 (MSL)

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 585 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

				CGGCGCGCAG		60
				AGAACGCCGG		120
				CCCCCGGATG		180
				CGACGGATCG		240
				CGAATCACGT		300
GGGTCGAAAG						360
CCCAGTCGGC						420
AGGCGGCGAT	GTCGGCTCAG	GCGTTTCACC	AGGGGGAGTC	GTCGGCGGCG	TTTCAGGCCG	480
CCCATGCCCG	GTTTGTGGCG	GCGGCCGCCA	AAGTCAACAC	CTTGTTGGAT	GTCGCGCAGG	540
CGAATCTGGG	TGAGGCCGCC	GGTACCTATG	TGGCCGCCGA	TGCTG		585

- (2) INFORMATION FOR SEQ ID NO:109:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

 Met
 Ser
 Leu
 Leu
 Asp
 Ala
 His Ile
 Pro
 Gln
 Leu
 Val
 Ala
 Ser
 Gln
 Ser

 1
 5
 5
 10
 10
 15
 15
 15

 Ala
 Phe
 Ala
 Ala
 Lys
 Ala
 Gly
 Leu
 Met
 Arg
 His
 Thr
 Ile
 Gly
 Gln
 Ala

 Glu
 Glu
 Ala
 Met
 Ser
 Ala
 Gln
 Ala
 Phe
 His
 Gln
 Gly
 Glu
 Ser
 Ser

35 40 45

Ala Ala Phe Gln Ala Ala His Ala Arg Phe Val Ala Ala Ala Ala Lys
50 55 60

Val Asn Thr Leu Leu Asp Val Ala Gln Ala Asn Leu Gly Glu Ala Ala
65 70 75 80

Gly Thr Tyr Val Ala Ala Asp Ala Ala Ala Ala Ser Thr Tyr Thr Gly
85 90 95

Phe

Mtb9.8 ORF peptides

- (2) INFORMATION FOR SEQ ID NO:110:.
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

Met Ser Leu Leu Asp Ala His Ile Pro Gln Leu Val Ala Ser Gln
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:111:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Ala His Ile Pro Gln Leu Val Ala Ser Gln Ser Ala Phe Ala Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:112:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

Leu Val Ala Ser Gln Ser Ala Phe Ala Ala Lys Ala Gly Leu Met
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

Ser Ala Phe Ala Ala Lys Ala Gly Leu Met Arg His Thr Ile Gly

1 5 10

- (2) INFORMATION FOR SEQ ID NO:114:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Lys Ala Gly Leu Met Arg His Thr Ile Gly Gln Ala Glu Gln Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:115:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

Arg His Thr Ile Gly Gln Ala Glu Gln Ala Ala Met Ser Ala Gln
1 5 10

- (2) INFORMATION FOR SEQ ID NO:116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

Gln Ala Glu Gln Ala Ala Met Ser Ala Gln Ala Phe His Gln Gly

- (2) INFORMATION FOR SEQ ID NO:117:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Ala Met Ser Ala Gln Ala Phe His Gln Gly Glu Ser Ser Ala Ala 1 5 10

- (2) INFORMATION FOR SEQ ID NO:118:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

Ala Phe His Gln Gly Glu Ser Ser Ala Ala Phe Gln Ala Ala His 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:119:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

Glu Ser Ser Ala Ala Phe Gln Ala Ala His Ala Arg Phe Val Ala
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:120:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Phe Gln Ala Ala His Ala Arg Phe Val Ala Ala Ala Lys Val

- (2) INFORMATION FOR SEQ ID NO:121:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Ala Arg Phe Val Ala Ala Ala Ala Lys Val Asn Thr Leu Leu Asp 1 5 10

- (2) INFORMATION FOR SEQ ID NO:122:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Ala Ala Ala Lys Val Asn Thr Leu Leu Asp Val Ala Gln Ala Asn 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:123:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Asn Thr Leu Leu Asp Val Ala Gln Ala Asn Leu Gly Glu Ala Ala 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Val Ala Gln Ala Asn Leu Gly Glu Ala Ala Gly Thr Tyr Val Ala Ala 1 5 10 15

Mtb39A (TbH9)

- (2) INFORMATION FOR SEQ ID NO:106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

GATCGTACCC GTGCGAGTGC TCGGGCCGTT TGAGGATGGA GTGCACGTGT CTTTCGTGAT	
	60
	120
	180
	240
	300
	360-
	420
	480
	540
	600
	660
	720
	780
	840
	900
	960
	1020
	1080
	1140
	1200
	1260
	1320
	1380
	1440
THE TO TOTOLISING IN CONTROL OF THE TANK O	1500
The state of the s	1560
THE PARTY OF THE PARTY AND A PARTY OF THE PA	1620
CACACACICA ACATIGICAL ACCIPITATION TO ACCOUNT	1680
The second of th	1740
The second designation of the second designa	1800
	1860
	1920
	1980
	2040
	2100
GCGAGTGACT TTTGGGGCGG CGCCGGTTCG GCGGCCTGCC AGGGGTTCAT TACCCAGTTG	2160
TACCCAGTTG	2220

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 391 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

1 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95

Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110

Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 115 120 125

Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140

Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala 145 150 155 160

Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr 165 170 175 Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser 180 185 190

Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu
195 200 205

Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu 210 215 220

Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn 235 235 240

Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val 245 250 255

Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270

Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala
275 280 285

Met Ser Ser Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Gly 290 295 300

Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val 305 310 315 320

Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg 325 330 335

Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly 340 345 350

Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly
355 360 365

Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met 370 375 380

Pro His Ser Pro Ala Ala Gly 385 390

Mtb32A (TbRa35)

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1872 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCGCT CACTCAGGTG GTCATGGTTG CTGAGCGTGC TGGCTGCCGT CGGGCTGGGC CTGGCCACGG CGCCGGCCCA 120 GGCGGCCCCG CCGGCCTTGT CGCAGGACCG GTTCGCCGAC TTCCCCGCGC TGCCCCTCGA CCCGTCCGCG ATGGTCGCCC AAGTGGCGCC ACAGGTGGTC AACATCAACA CCAAACTGGG CTACAACAAC GCCGTGGGCG CCGGGACCGG CATCGTCATC GATCCCAACG GTGTCGTGCT 300 GACCAACAAC CACGTGATCG CGGGCGCCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG CCAAACCTAC GGCGTCGATG TGGTCGGGTA TGACCGCACC CAGGATGTCG CGGTGCTGCA 420 GCTGCGCGGT GCCGGTGGCC TGCCGTCGGC GGCGATCGGT GGCGGCGTCG CGGTTGGTGA 480 GCCCGTCGTC GCGATGGGCA ACAGCGGTGG GCAGGGCGGA ACGCCCCGTG CGGTGCCTGG 540 CAGGGTGGTC GCGCTCGGCC AAACCGTGCA GGCGTCGGAT TCGCTGACCG GTGCCGAAGA 600 GACATTGAAC GGGTTGATCC AGTTCGATGC CGCAATCCAG CCCGGTGATT CGGGCGGGCC 660 CGTCGTCAAC GGCCTAGGAC AGGTGGTCGG TATGAACACG GCCGCGTCCG ATAACTTCCA 720 GCTGTCCCAG GGTGGGCAGG GATTCGCCAT TCCGATCGGG CAGGCGATGG CGATCGCGGG 780 CCAAATCCGA TCGGGTGGGG GGTCACCCAC CGTTCATATC GGGCCTACCG CCTTCCTCGG 840 CTTGGGTGTT GTCGACAACA ACGGCAACGG CGCACGAGTC CAACGCGTGG TCGGAAGCGC 900 TCCGGCGGCA AGTCTCGGCA TCTCCACCGG CGACGTGATC ACCGCGGTCG ACGGCGCTCC GATCAACTCG GCCACCGCGA TGGCGGACGC GCTTAACGGG CATCATCCCG GTGACGTCAT 1020 CTCGGTGAAC TGGCAAACCA AGTCGGGCGG CACGCGTACA GGGAACGTGA CATTGGCCGA GGGACCCCCG GCCTGATTTG TCGCGGATAC CACCCGCCGG CCGGCCAATT GGATTGGCGC CAGCCGTGAT TGCCGCGTGA GCCCCCGAGT TCCGTCTCCC GTGCGCGTGG CATTGTGGAA 1200 GCAATGAACG AGGCAGAACA CAGCGTTGAG CACCCTCCCG TGCAGGGCAG TTACGTCGAA . GGCGGTGTGG TCGAGCATCC GGATGCCAAG GACTTCGGCA GCGCCGCCGC CCTGCCCGCC GATCCGACCT GGTTTAAGCA CGCCGTCTTC TACGAGGTGC TGGTCCGGGC GTTCTTCGAC GCCAGCGCGG ACGGTTCCGN CGATCTGCGT GGACTCATCG ATCGCCTCGA CTACCTGCAG TGGCTTGGCA TCGACTGCAT CTGTTGCCGC CGTTCCTACG ACTCACCGCT GCGCGACGGC 1500 GGTTACGACA TTCGCGACTT CTACAAGGTG CTGCCCGAAT TCGGCACCGT CGACGATTTC GTCGCCCTGG TCGACACCGC TCACCGGCGA GGTATCCGCA TCATCACCGA CCTGGTGATG 1620 AATCACACCT CGGAGTCGCA CCCCTGGTTT CAGGAGTCCC GCCGCGACCC AGACGGACCG 1680____ TACGGTGACT ATTACGTGTG GAGCGACACC AGCGAGCGCT ACACCGACGC CCGGATCATC 1740 TTCGTCGACA CCGAAGAGTC GAACTGGTCA TTCGATCCTG TCCGCCGACA GTTNCTACTG 1800. GCACCGATTC TT 1860 1872

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 355 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser 10 Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala 25 Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu 40 Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val 55 60 Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr 70 75 Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val 90 Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln 105 Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala

120 Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly 135 Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly 140 150 Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu 165 170 Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr 185 Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser 200 Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 215 Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala 230 Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly 245 250 Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu 265 Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val 280 Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile 295 Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp 310 315 Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln 325 330 Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 345 Pro Pro Ala 355

Mtb8.4 (DPV)

- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

CGCACCGCA CCTCAGCGC CTGCCATGC CGCGCAGTCC TATTTGCGCA ATTTCCTCGC 1 ACAGTACATC GGCCTTGTCG AGTCGGTTGC CGGCCAATTG CAAGCTGTGC CGGGGGCGGC 2 GGGCCCCATC CCGCGACCG GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA 3 ACGGGCCGCA TCCCGCGACC CGGCATCGTC GCCGGGGCTA GGCCAGATTG CCCCGCTCCT 4 CAACGGGCCG CATCTCGTGC CGAATTCCTG CAGCCCGGGG GATCCACTAG TTCTAGAGCG 4 GCCGCCACCG CGGTGGAGCT CGCCGGGGG GATCCACTAG TTCTAGAGCG 4	60 120 180 240 300 360 20 80
---	---

(2) INFORMATION FOR SEQ ID NO:102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 96 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

 Val
 Ala
 Met
 Ser
 Leu
 Thr
 Val
 Gly
 Ala
 Gly
 Val
 Ala
 Ser
 Ala
 Asp
 Pro

 1
 1
 5
 1
 10
 1
 15
 15
 15

 Val
 Asp
 Ala
 Val
 Ile
 Asp
 Thr
 Thr
 Cys
 Asp
 Tyr
 Gly
 Ala
 Tyr
 Gly
 Ala
 Ala
 Gly
 Ala
 Ala
 Ala
 Val
 Ala
 Ala
 Ala
 Ser

 Ala
 Ala

Mtb11 (Tb38-1)

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 327 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA	GACCGATGCC	GCTACCCTCG	CGCNGGNCCC	3.CCC2 3.CC		
CCCCCCCCCCCC		CIACCICO	COCAGGAGGC	AGGTAATTTC	GAGCGGATCT	60
CCGGCGACCT	GAAAACCCAG	ATCGACCAGG	TGGAGTCGAC	GGCAGGTTCG	MM 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
AGTGGCGCGG	CCCCCCCCC	100000000	100000	CCCAGGIICG	TIGCAGGGCC CAAGAAGCAG	120
	CGCGGCGGG	ACGGCCGCCC	AGGCCGCGGT	GGTGCGCTTC	CAAGAACCAC	100
CCAATAAGCA	GAAGCAGGAA	CTCGACGAGA	TCTCCACCAA	m) mmaaa	CAAGAAGCAG GCCGGCGTCC	180
7 7 T7 CTCC - C		CICORCOROR	ICICGACGAA	TATTCGTCAG	GCCGCCGTCC	240
AATACTCGAG	GGCCGACGAG	GAGCAGCAGC	AGGCGCTGTC	CTCGC3337C	GCCGGCGTCC	
CCGCTAATAC	GAAAAGAAAC			CICCCAAAIG	GGCTTCTGAC	300
CCCIMIAC	GAAAAGAAAC	GGAGCAA				227
						327

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 95 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile 1 5 10 15 Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly

TbRa3

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 542 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC CCCACATCCT GGGAACA	•
GGCGCGGAG GCGTCCAGC GGGCGCGGA TAGCGTCGAT GACATCCT GGGAACA	AGGC 60
CATTGAGCAG GACATGGGG TGGGAGAGAGAGAGTGGAT GACATCCGCG TCGCTCG	GGT 120
CATTGAGCAG GACATGGCCG TGGACAGCGC CGGCAAGATC ACCTACCGCA TCAAGCT	CGA 180
THE PART OF THE PA	
THE TOURS OF THE CONTROL OF THE CONT	
TOUGHT GUICCGCGTG CTGCCGTATC CAGGCGTGCA TCGGGATT	
TOTAL TACTICACT CHACCERAC TERRORATE TOTAL	
TOTAL COCCATO COCCAGATTER COCCAGANAC COCCAGA	
AGCGTCCGTA GGCGGCGGTG CTGACCGGCT CTGCCTGCGC CCTCAGTGCG GCCAGCG	GGA 480
GG GCCAGCG	AGC 540
	542

- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

 Val
 Ile
 Asp
 Ile
 Gly
 Thr
 Ser
 Pro
 Thr
 Ser
 Trp
 Glu
 Gln
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Asp
 Asp
 Ser
 Val
 Asp
 Asp
 Ile
 Arg
 Val
 Asp
 Asp
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 I

38kD

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1993 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA	60
AGCAIGCGGA AACCGCCCGA TACGTCGCCG GACTGTCGCG CGACCTCAAG GACTGTCAAG	120
GCGGAAAIIG AAGAGCACAG AAAGGTATGG CGTGAAAATT CGTTTCCATA GGGTATA	180
COIGITACC GCIGCGCCGC TGCTGCTAGC AGCGGCGGCC TGTGCCTCG3 33.555	240
CGGTTCGCCT GAAACGGGCG CCGGCGCCGG TACTGTCGCG ACTACCGCGG CCCCC	300
GGIGACGIIG GCGGAGACCG GTAGCACGCT GCTCTACCCG CTGTTCAAGG MOMON-	360
GGCCTITCAC GAGAGGTATC CGAACGTCAC GATCACCGCT CAGCCGA CGG	420
COGGAICGCG CAGGCCGCCG CCGGGACGGT CAACATTGGG GCCTCCCAGG coma	480
GGAAGGIGAI AIGGCCGCGC ACAAGGGGCT GATGAACATC GCGCTACCCA TOTTO	540
GCAGGICAAC TACAACCTGC CCGGAGTGAG CGAGCACCTC AAGCTGAACG CAAAACAACCTGC	600
GGCGGCCAIG TACCAGGGCA CCATCAAAAC CTGGGACGAC CCGCACATGG GTGGACGACGACGACGACGACGACGACGACGACGACGACGAC	660
CCCGGCGIG AACCIGCCG GCACCGCGGT AGTTCCGCTG CACCCGCGCG AGGGTT	
IGACACCITC ITGTTCACCC AGTACCTGTC CAAGCAAGAT CCCGACCCCM CCCCA	720
GCCCGGCIIC GGCACCACCG TCGACTTCCC GGCGGTGCCG GGTGCGCTCC GTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	780 840
CAACGGCGC ATGGTGACCG GTTGCGCCGA GACACCGGGC TGCCTCCCCT AND TOTAL	900
CAGCIICCIC GACCAGGCCA GTCAACGGGG ACTCGGCGAG GCCCAACTAG GGAALL	960
IGGCAATITE TIGITGCCCG ACGCGCAAAG CATTCAGGCC GCGGCCCGTG GGTTG	1020
GAAAACCCCG GCGAACCAGG CGATTTCGAT GATCGACGGG CCCGCGGGG	1020
GAICAICAAC TACGAGTACG CCATCGTCAA CAACCGGCAA AAGGACCGCG	1140
GACCIIGCAG GCATTTCTGC ACTGGGCGAT CACCGACGGC AACAACGCCT CCTTGGGGGGAT	1200
CCAGGITCAI ITCCAGCCGC TGCCGCCCGC GGTGGTGAAG TTGTCTCAGG GGTGGTGAAG	1260
GACGATITCU AGCTAGCCTC GTTGACCACC ACGCGACAGC AACCTCCCTG	1320
GCIGCITIGC GGAGCATGCT GGCCCGTGCC GGTGAAGTCG GCCCCCGTGG GGGGG	1320
CGGIGGIIGG GTGGGATAGG TGCGGTGATC CCGCTGCTTG CGCTCCTCTT	1440
GIGCIGGICA ICGAGGCGAT GGGTGCGATC AGGCTCAACG GGTTCCATTTT GTGGTGCATTTT	1500
ACCOANIGE ATCCAGGCA CACCTACGGC GAAACCGTTG TCACCGAGGG	1560
CGGICGGCGC CTACTACGGG GCGTTGCCGC TGATCGTCGG GACGCTGCCG AGGGGGG	1620
TOUCCUIGAT CATCGCGGTG CCGGTCTCTG TAGGAGCGGC GCTCGTCATG GTGCTCATG	1680
IGCCGAAACG GITGGCCGAG GCTGTGGGAA TAGTCCTGGA ATTGCTCGCC CGAATGGGA	1740
GCGIGGICGI CGGTTTGTGG GGGGCAATGA CGTTCGGGCC GTTCATCGCT CAMGA CAMGA	1800
CICCGGIGAT CGCTCACAAC GCTCCCGATG TGCCGGTGCT GAACTACTTG CCCGGGGAGA	1860
CGGGCAACGG GGAGGGCATG TTGGTGTCCG GTCTGGTGTT GGCGGTGATG GTCCTTGGGA	1920
TIATOGCCAC CACCACTCAT GACCTGTTCC GGCAGGTGCC GGTGTTGCCC CGGGAGGGCC	1920
CGATCGGGAA TTC	1993
	2000

(2) INFORMATION FOR SEQ ID NO:155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

- Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15
- Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30
- Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45
- Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60
- Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80
- Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95
- Ala Gly Thr Val Asn Ile Gly Ala Ser Asp ATa Tyr Leu Ser Glu Gly
 100 105 110
- Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys
 130 140
- Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160
- Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175
- Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190
- Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205
- Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220
- Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240
- Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 245 250 255
- Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn 260 265 270
- Phe Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe 275 280 285
- Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro 290 295 300

Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn 305 310 315 320

Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu 325 330 335

His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 355 360 365

Ile Ala Thr Ile Ser Ser 370

DPEP

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGCATCACC	ATCACCATCA	CATGCATCAG	GTGGACCCCA	ACTTGACACG	TCGCAAGGGA	60
CGATTGGCGG				GCCTGGTGAC		120
CCCGCGACCG	CCAACGCCGA	TCCGGAGCCA	GCGCCCCCGG	TACCCACAAC	GGCCGCCTCG	180
CCGCCGTCGA	CCGCTGCAGC	GCCACCCGCA	CCGGCGACAC	CTGTTGCCCC	CCCACCACCG	240
GCCGCCGCCA	ACACGCCGAA	TGCCCAGCCG	GGCGATCCCA	ACGCAGCACC	TCCGCCGGCC	300
GACCCGAACG	CACCGCCGCC	ACCTGTCATT	GCCCCAAACG	CACCCCAACC	TGTCCGGATC	360
GACAACCCGG	TTGGAGGATT	CAGCTTCGCG	CTGCCTGCTG	GCTGGGTGGA	GTCTGACGCC	420
GCCCACTTCG	ACTACGGTTC	AGCACTCCTC	AGCAAAACCA	CCGGGGACCC	GCCATTTCCC	480
				TCGGCCGGCT	AGACCAAAAG	540
CTTTACGCCA	GCGCCGAAGC	CACCGACTCC	AAGGCCGCGG	CCCGGTTGGG	CTCGGACATG	600
GGTGAGTTCT			CGGATCAACC		CTCGCTCGAC	660
GCCAACGGGG	TGTCTGGAAG	CGCGTCGTAT	TACGAAGTCA	AGTTCAGCGA	TCCGAGTAAG	720
CCGAACGGCC	AGATCTGGAC	GGGCGTAATC	GGCTCGCCCG	CGGCGAACGC	ACCGGACGCC	780
GGGCCCCCTC	AGCGCTGGTT	TGTGGTATGG			GGTGGACAAG	840
GGCGCGGCCA	AGGCGCTGGC	CGAATCGATC	CGGCCTTTGG	TCGCCCCGCC	GCCGGCGCCG	900
GCACCGGCTC	CTGCAGAGCC	CGCTCCGGCG	CCGGCGCCGG	CCGGGGAAGT	CGCTCCTACC	960
CCGACGACAC	CGACACCGCA	GCGGACCTTA	CCGGCCTGA			999

- (2) INFORMATION FOR SEQ ID NO:53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 25 Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 40 Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 55 60 Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro 70 75 Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro 105 Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 120 125 Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 135 140 Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 150 Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 170 165 Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 185 Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 200 Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 215 220 Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 230 Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 250 245 Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 280 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 295 300 Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 310 315 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 325

TbH4

- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 702 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

(2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 286 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

1				5					10					15	. Val
			20					25					3.0	/ Leu	Gln
		35					40					45			Val
	, 5 0					55					60				Glu
65					70					75					Phe 80
				85					90					95	Glu
			100					105					110		Ala
	Thr	115					120					125		_	
	Met 130					135					140		٠.		-
145					150					155					160
	Asp			165					170					175	
	Ala		180					185					190		
	Val	195					200					205			
	Pro 210					215					220		_	_	
225	Phe				230					235					240
	Glu			245					250					255	_
	Val		260		•			265					270	Ala	Gln
Leu	Pro	Gly	Phe	Asp	Glu	Gly	Gly	Gly	Leu	Arg	Pro	Xaa	Lys		

MTbRa12

(2) INFORMATION FOR	SEO	ID	NO:4:
---------------------	-----	----	-------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CGGTATGAAC	ACGGCCGCGT	CCGATAACTT	CCAGCTGTCC	CAGGGTGGGC	AGGGATTCGC	60
CATTCCGATC	GGGCAGGCGA	TGGCGATCGC	GGGCCAGATC	CGATCGGGTG	GGGGGTCACC	120
CACCGTTCAT	ATCGGGCCTA	CCGCCTTCCT	CGGCTTGGGT	GTTGTCGACA	ACAACGGCAA	180
CGGCGCACGA	GTCCAACGCG	TGGTCGGGAG	CGCTCCGGCG	GCAAGTCTCG	GCATCTCCAC	240
CGGCGACGTG	ATCACCGCGG	TCGACGCCC	TCCGATCAAC	TCGGCCACCG	CGATGGCGGA	300
CGCGCTTAAC	GGGCATCATC	CCGGTGACGT	CATCTCGGTG	AACTGGCAAA	CCAAGTCGGG	360
CGGCACGCGT	ACAGGGAACG	TGACATTGGC	CGAGGGACCC	CCGGCCTGAT	TTCGTCGYGG	420
ATACCACCCG	CCGGCCGGCC	AATTGGA		٠		447

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly 40 Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 55 Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 75 Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 90 Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 105 Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 120 115 Gly Pro Pro Ala 130

DPPD

(2) INFORMATION FOR SEQ ID NO:240:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 339 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

ATGAAGTTGA	AGTTTGCTCG	CCTGAGTACT	GCGATACTGG	GTTGTGCAGC	GGCGCTTGTG	60
TTTCCTGCCT	CGGTTGCCAG	CGCAGATCCA	CCTGACCCGC	ATCAGCCGGA	CATGACGAAA	120
GGCTATTGCC	CGGGTGGCCG	ATGGGGTTTT	GGCGACTTGG	CCGTGTGCGA	CGGCGAGAAG	180
TACCCCGACG						240
TACTTCGATT	GTGTCAGCGG	CGGTGAGCCC	CTCCCCGGCC	CGCCGCCACC	GGGTGGTTGC	300
GGTGGGGCAA	TTCCGTCCGA	GCAGCCCAAC	GCTCCCTGA			339

(2) INFORMATION FOR SEQ ID NO:241:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 112 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:

 Met
 Lys
 Leu
 Lys
 Phe
 Ala
 Arg
 Leu
 Ser
 Thr
 Ala
 Ile
 Leu
 Gly
 Cys
 Ala

 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala

ESAT-6

- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 base pairs
 - (B) TYPE: nucleic acid

(C)	STRANDEDNESS:	single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

ATGACAGAGC	AGCAGTGGAA	TTTCGCGGGT	ATCGAGGCCG	CGGCAAGCGC	AATCCAGGGA	60
AATGTCACGT	CCATTCATTC	CCTCCTTGAC	GAGGGGAAGC	AGTCCCTGAC	CAAGCTCGCA	120
GCGGCCTGGG	GCGGTAGCGG	TTCGGAAGCG	TACC			154

(2) INFORMATION FOR SEQ ID NO:104:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 51 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

 Met
 Thr
 Glu
 Gln
 Trp
 Asn
 Phe
 Ala
 Gly
 Ile
 Glu
 Ala
 Ala
 Ala
 Ser

 1
 Ile
 Gln
 Gly
 Asn
 Val
 Thr
 Ser
 Ile
 His
 Ser
 Leu
 Leu
 Asp
 Glu
 Gly
 Gly
 Gly
 Glu
 Gly
 Ser
 Gly
 Ser