Year 12 Chemistry

Topic Test # 2 (Bonding) - 2012

Name: **ANSWERS**

Part 1: Multiple Choice Section

10 marks

1. D 2. C 3. A 4. B 5. C 6. B 7. A 8. C 9. B 10. B ✓ each

Part 2: Short Answer Section

34 marks

- 1. Nitrogen (N_2) exists is a gas at room temperature. Nitrogen trichloride ($NC\ell_3$) exists as a liquid at room temperature.
 - (a) Name the bonding that would exist in a container of each substance giving reasons for your answer.
 - N₂ N-N bonds are covalent

✓

Intermolecular bonding is dispersion forces only as N_2 molecules are non-polar

 $NC\ell_3$ N-C ℓ bonds are covalent

✓

Intermolecular bonding is dipole-dipole and dispersion forces

- dipole-dipole because molecule is polar

- ✓
- dispersion forces because they occur between all particles

(5 marks)

2. Complete the following table:

Species	Electron dot diagram	Name of shape	Polarity (polar or non-polar)
SO ₂	.ö. s	bent	polar
HCN	H—C≡N:	linear	polar
SO ₄ ²⁻	[;;;] 2- ;;;;] 2- ;;;;	tetrahedral	N/A
PI ₃	<u> </u>	pyramidal	polar

(11 marks)

3. The following table gives some information about three elements in the fourth row of the Periodic Table.

Element	Electrical conductivity (MS m ⁻¹)	First ionisation energy (kJ mol¯')	Melting point (°C)
Potassium	14	425	63
Calcium	29	596	650
Germanium	1 x 10 ⁻⁴	762	938

ermanium		1 x 10 ⁻⁴	762		938
(a) What type of bonding would you expect to occur in germanium?					
	cova	llent network ✓			
(b)	Justi	fy your answer.			(1 mark)
	Poor	r electrical conductor, so ca	ın't be metallic	✓	
	High	melting point, so can't be r	nolecular	✓	
	Obv	iously not ionic, so ∴ coval	ent network	✓	(3 marks)
(c)	Expl	ain the trend in ionisation ene	rgies of the elements ab	ove.	
		easing nuclear charge (from Iding	ı K to Ca to Ge), with a	similar de	egree of
	.∵. m	ore energy required to remo	ove e ⁻ from Ge than Ca	than K.√	
					(1 mark)
(d)		ld the value of potassium's se for calcium? Explain why.	econd ionisation energy t	oe larger o	r smaller than
	Larg	jer ✓			
	whe	removal of 2 nd e ⁻ from Ca is reas K is from the third she acted and more energy requ	II – less shielding, ∴ m		gly 🗸
					(2 marks)

- 4. Use your understanding of atomic structure and bonding to:
 - (a) Complete a sketch showing the boiling points of the hydrides of group 14 (———) and group 17 (- - -) on the following graph.

- ✓ mp of group 14 hydrides increasing
- ✓ mp of group 17 hydrides higher than group 14
- √ mp of group 17 hydrides increasing from period 3 to period 5
- \checkmark mp of group 17 hydride in period 2 (HF) higher than period 3

(4 marks)

(b) Explain the overall trend shown on the graph:

Increasing mp with increasing size of molecules

This is due to increasing strength of dispersion forces with increasing size of molecule, as temporary dipoles become larger

✓
(2 marks)

(c) Give reasons for any exceptions to this trend.

HF has a particularly strong form of dipole-dipole attraction, called hydrogen bonding.

This arises due to the great difference in electronegativity between H and F and the small size of F.

(1 mark)

5. Using your knowledge of atomic structure and bonding explain the following physical data:

Substance	Solubility in water at 25°C (g L ⁻¹)	
1-pentanol (CH ₃ CH ₂ CH ₂ CH ₂ CH)	22.0	
1-hexanol (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH)	5.9	

Water is polar molecule and contains with dispersion forces and hydrogen bonding between molecules.

Hydrogen bonding also exists between molecules of each alcohol, but dispersion forces become more significant as the molecule becomes larger (as the carbon chain increases in length).

Only dispersion forces form between the carbon chain and water, which are much weaker than hydrogen bonds between water and dispersion forces between alcohols.

As the alcohol size increases, solubility in water decreases.

(4 marks)

End of Test