Evaluation (30 min): Puissance perdue à cause des appareils en veille

Document : Energie consommée en 1 an par les appareils en veille pour un foyer

Appareil	Energie consommé en 1 an
Ordinateur en veille	114 kW.h
Télévision en veille	96400 W.h
Sèche-Linge en veille	105 kW.h
Four en veille	$88 \times 10^{-3} MW.h$
Boxe en veille	61 kW.h

Données : → 1kW. h = 3.6×10^6 J; $1kW. h = 1000 W. h = 10^{-3} MW. h$

- → EDF facture 18 centimes d'euros par kilowattheure
- → La puissance électrique en sortie de l'alternateur d'une éolienne est 1 MW
- →Le rendement de l'alternateur de l'éolienne est 95%
- → Nombre de fovers en France : 30 millions

Toutes les réponses seront justifiées. Toute démarche même non aboutie sera valorisée. Les formules devront être rappelées avant de faire les applications numériques. Les questions 2 et 4 peuvent être traitées sans avoir réussi la question 1.

- 5- Calculer la puissance totale consommée par les appareils en veille. On supposera que les appareils fonctionnent 24h/24 et 7J/7. (2 points)
- 6- Si ces appareils avaient été totalement éteins, de quel montant aurait diminué la facture EDF annuelle du foyer ? (2 points)
- 7- Si tous les foyers français débranchaient ces 5 appareils, combien d'éoliennes pourraient être économisées ? (2 points)
- 8- Quels sont les principaux inconvénients de l'énergie éolienne ? (Réponse attendue : 3-5 lignes) (2 points)

Term. Ens. Scientifique 10/12/2020

Evaluation (30 min): Puissance perdue à cause des appareils en veille

Document : Energie consommée en 1 an par les appareils en veille pour un foyer

Appareil	Energie consommé en 1 an
Ordinateur en veille	114 kW.h
Télévision en veille	96400 W.h
Sèche-Linge en veille	105 kW.h
Four en veille	$88 \times 10^{-3} MW.h$
Boxe en veille	61 kW.h

Données: → 1kW. h = 3,6 × 10⁶ J; $1kW. h = 1000 W. h = 10^{-3} MW. h$

- → EDF facture 18 centimes d'euros par kilowattheure
- → La puissance électrique en sortie de l'alternateur d'une éolienne est 1 MW
- →Le rendement de l'alternateur de l'éolienne est 95%
- → Nombre de foyers en France : 30 millions

Toutes les réponses seront justifiées. Toute démarche même non aboutie sera valorisée. Les formules devront être rappelées avant de faire les applications numériques. Les questions 2 et 4 peuvent être traitées sans avoir réussi la question 1.

- 1- Calculer la puissance totale consommée par les appareils en veille. On supposera que les appareils fonctionnent 24h/24 et 7J/7. (2 points)
- 2- Si ces appareils avaient été totalement éteins, de quel montant aurait diminué la facture EDF annuelle du foyer ? (2 points)
- 3- Si tous les foyers français débranchaient ces 5 appareils, combien d'éoliennes pourraient être économisées ? (2 points)
- 4- Quels sont les principaux inconvénients de l'énergie éolienne ? (Réponse attendue : 3-5 lignes) (2 points)