Notes on Smooth Manifolds

Yannis Bähni

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich $E\text{-}mail\ address},$ Yannis Bähni: <code>yannis.baehni@uzh.ch</code>

Contents

Chapter 1. General Topology											4	4
1 Definitions and Basic Notions												4
Bibliography											:	8

CHAPTER 1

General Topology

1. Definitions and Basic Notions

Definition 1.1. Let X be a set. A **topology** on X is a collection \mathcal{T} of subsets of X satisfying the following properties:

- (i) $\varnothing, X \in \mathcal{T}$.
- (ii) If $U, V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$.
- (iii) If $(U_{\alpha})_{\alpha \in A}$ is a family of elements of \mathcal{T} , then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$.

A topological space is a tuple (X, \mathcal{T}) , where \mathcal{T} is a topology on X. Elements of \mathcal{T} are called **open sets**.

Example 1.1 (Topologies). Let X be a set. The reader may verify that the following collections are indeed topologies on X.

- (a) The collection $\mathcal{P}(X)$ is a topology on X, called the **discrete topology**.
- (b) The collection $\{\emptyset, X\}$ is a topology on X, called the *trivial topology*.
- (c) Let \mathcal{T} be a topology on X and let $S \subseteq X$. Then the collection $\{S \cap U : U \in \mathcal{T}\}$ is a topology on S, called the **subspace topology**.
- (d) The collection

$$\mathcal{T}_d := \{ A \subseteq M : \forall x \in A \exists r > 0 \text{ such that } B_r(x) \subseteq A \}$$
 (1)

is a topology on M, called the *metric topology induced by the* $metric\ d$.

Definition 1.2. Let X be a topological space and $x \in X$. An open set U is called a **neighbourhood of** x if $x \in U$.

Definition 1.3. Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. The **closure** of A in X, denoted by \overline{A} , is defined by

$$\overline{A} := \bigcap \{ B \subseteq X : A \subseteq B, B^c \in \mathcal{T} \}. \tag{2}$$

The interior of A in X, denoted by Int A, is defined by

$$\operatorname{Int} A := \bigcup \left\{ C \subseteq X : C \subseteq A, C \in \mathcal{T} \right\}. \tag{3}$$

Definition 1.4. Let X be a topological space. X is called a **Hausdorff** space if given $p, q \in X$ with $p \neq q$ we find neighbourhoods U and V of p and q, respectively, such that $U \cap V = \emptyset$

Definition 1.5. Let (X, \mathcal{T}) be a topological space. A collection \mathcal{B} of subsets of X is called a **basis for the topology of X** if the following two conditions hold:

- (i) $\mathcal{B} \subseteq \mathcal{T}$.
- (ii) For any $U \in \mathcal{T}$ we have $U = \bigcup_{\alpha \in A} B_{\alpha}$ where $B_{\alpha} \in \mathcal{B}$ for any $\alpha \in A$.

Definition 1.6. Let X be a topological space. X is called **second countable** if there exists a countable basis for the topology of X.

Definition 1.7. Let X and Y be two topological spaces and $f: X \to Y$. The map f is said to be **continuous** if for any open set $U \subseteq Y$ we have that $f^{-1}(U)$ is open in X.

Definition 1.8. Let X be a topological space. If $X = U \cup V$ for some disjoint, nonempty, open sets $U, V \subseteq X$, X is called **disconnected**, otherwise X is said to be connected.

Definition 1.9. Let X be a topological space. An open cover of X is a family $(U_{\alpha})_{\alpha \in A}$ of open subsets of X such that $X = \bigcup_{\alpha \in A} U_{\alpha}$. A subcover of $(U_{\alpha})_{\alpha \in A}$ is a subfamily $(U_{\beta})_{\beta \in B}$, $B \subseteq A$, such that $X = \bigcup_{\beta \in B} U_{\beta}$.

Definition 1.10. A topological space X is said to be **compact** if every open cover has a finite subcover.

Definition 1.11. Let X be a topological space. X is said to be locally **Euclidean of dimension n** if every point of X has a neighbourhood in X that is homeomorphic to an open subset of \mathbb{R}^n .

Definition 1.12 (Topological Manifold). An n-dimensional topological manifold is a second countable Hausdorff space that is locally Euclidean of dimension n.

Definition 1.13. Let M be a topological n-manifold. If (U, φ) , (V, ψ) ae two charts such that $U \cap V \neq \emptyset$, the composite map

$$\psi \circ \varphi : \varphi(U \cap V) \to \psi(U \cap V) \tag{4}$$

is called the **transition map from** φ **to** ψ .

Definition 1.14. Let M be a topological n-manifold. A collection of charts $\{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ is said to be an **atlas of class** \mathscr{C} for M if

- $\begin{array}{l} (i) \ \ M = \bigcup_{\alpha \in A} U_{\alpha}. \\ (ii) \ \ \varphi_{\alpha} \circ \varphi_{\beta} \in \mathscr{C} \ for \ all \ \alpha, \beta \in A. \end{array}$

Definition 1.15 (Manifolds of Class \mathscr{C}). Let M be a topological manifold. A \mathscr{C} -structure on M is an atlas $\mathcal{A} := \{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ of class \mathscr{C} for M that has the following maximality property: if (U,φ) is a chart such that $\varphi \circ \varphi_{\alpha}^{-1}$ and $\varphi_{\alpha} \circ \varphi^{-1}$ are of class \mathscr{C} for all $\alpha \in A$, then $(U, \varphi) \in \mathcal{A}$. The tuple (M, A), where A is a \mathscr{C} -structure on M, is called a **manifold of** class C. An atlas for M which has the maximality property is called a maximal atlas of class \mathscr{C} for M.

Proposition 1.1. Let M be a topological manifold. Every atlas A of class \mathscr{C} for M is contained in a unique maximal atlas of the same class \mathscr{C} for M, called the \mathscr{C} -structure determined by \mathcal{A} .

Definition 1.16 (Tangent Space). A linear map $v: C^{\infty}(M) \to \mathbb{R}$ is called a **derivation at p** if it satisfies

$$v(fg) = f(p)v(g) + g(p)v(f) \qquad \forall f, g \in C^{\infty}(M).$$
 (5)

The set of all derivations of $C^{\infty}(M)$ at p, denoted by T_pM , is a vector space called the **tangent space to M** at p.

Lemma 1.1 (Properties of Tangent Vectors on Manifolds). Suppose M is a smooth manifold, $p \in M$, $v \in T_pM$ and $f, g \in C^{\infty}(M)$.

- (a) If f is a constant function, then v(f) = 0.
- (b) If f(p) = g(p) = 0, then v(fg) = 0.

Proof. Property (b) is immediate and (a) follows from

$$v(1) = v(1 \cdot 1) = 2v(1) \tag{6}$$

which implies v(1) = 0 and thus by linearity

$$v(\lambda) = v(\lambda \cdot 1) = \lambda v(1) = 0 \tag{7}$$

where
$$\lambda \in \mathbb{R}$$
.

Definition 1.17 (Tangent Bundle). Let M be a smooth manifold. The tangent bundle of M, denoted by TM, is defined to be

$$TM := \coprod_{p \in M} T_p M. \tag{8}$$

The mapping $\pi: TM \to M$ which is defined by $\pi(p, v) := p$ is called **projection map**.

Definition 1.18 (Vector Fields). Let M be a smooth manifold. A **vector field on M** is a section of the map $\pi: TM \to M$, i.e. a vector field is a continuous map $X: M \to TM$, usually written $p \mapsto X_p$, with the property that

$$\pi \circ X = \mathrm{id}_M \tag{9}$$

or equivalently, $X_p \in T_pM$ for every $p \in M$. We say that a vector field X is a **smooth vector field** if $X : M \to TM$ is a smooth map. The **set of** all **smooth vector fields on** M is denoted by $\mathfrak{X}(M)$.

Proposition 1.2 (Lipschitz Estimate for C^1 -functions).

Theorem 1.1 (Inverse Function Theorem). Suppose U and V are open subsets of \mathbb{R}^n , and $F: U \to V$ is a \mathscr{C}^1 -function. If DF(a) is invertible at some point $a \in U$, then there exist connected neighborhoods $U_0 \subseteq U$ of a and $V_0 \subseteq V$ of F(a) such that $F|_{U_0}: U_0 \to V_0$ is a \mathscr{C}^1 -diffeomorphism.

Proof. The proof is based on Banach fixed point theorem (see [Lee13, p. 657]). Since U is open, we find $\varepsilon > 0$ such that $B_{\varepsilon}(a) \subseteq U$. Hence define $\varphi : B_{\varepsilon}(0) \to \mathbb{R}^n$ by

$$\varphi(x) := F(x+a) - F(a) \tag{10}$$

Observe, that $\varphi \in \mathscr{C}^1$ with $D\varphi(0) = DF(a)$. Also the composition $D\varphi(0)^{-1} \circ \varphi$ is \mathscr{C}^1 . Furthermore

$$D(D\varphi(0)^{-1}\circ\varphi)(0)=D(D\varphi(0)^{-1})(\varphi(0))\circ D\varphi(0)=D\varphi(0)^{-1}\circ D\varphi(0)=\mathrm{id}_{\mathbb{R}^n}$$

Therefore we can assume that $F: B_{\varepsilon}(0) \to \mathbb{R}^n$ fulfills F(0) = 0 and $DF(0) = \mathrm{id}_{\mathbb{R}^n}$. Since $\det(DF(x))$ is a continuous function, we can assume that DF(x) is invertible for every $x \in U$. Define $\psi: U \to \mathbb{R}^n$ by

$$\psi(x) := x - F(x). \tag{11}$$

Theorem 1.2 (Implicit Function Theorem). Let $U \subseteq \mathbb{R}^n \times \mathbb{R}^k$ be an open subset, and let $(x,y) = (x^1, \dots, x^n, y^1, \dots, y^k)$ denote the standard coordinates on U. Suppose $\Phi: U \to \mathbb{R}^k$ is a \mathscr{C}^1 -function, $(a,b) \in U$, and $c := \Phi(a,b)$. If the $k \times k$ matrix

$$A := \left(\frac{\partial \Phi^i}{\partial y^j}(a, b)\right)_{1 \le i, j \le k} \tag{12}$$

is non-singular, i.e. $A \in GL(k,\mathbb{R})$, then there exist neighbourhoods $V_0 \subseteq \mathbb{R}^n$ of a and $W_0 \subseteq \mathbb{R}^k$ of b and a \mathscr{C}^1 -function $F: V_0 \to W_0$ such that $\Phi^{-1}(c) \cap (V_0 \times W_0)$ is the graph of F, that is, $\Phi(x,y) = c$ for $(x,y) \in V_0 \times W_0$ if and only if y = F(x).

Proof.
$$\Box$$

Bibliography

[Lee13] J.M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer New York, 2013. ISBN: 9780387217529.