

Contents

Maximum Principle	. 1	
-------------------	-----	--

Section 1. Maximum Principle

In this section, we discuss the maximum principle for linear operator, weak and strong solutions. First we give the definition of ellipticity. Assume $\Omega \subset \mathbb{R}^n$ is a bounded domain, and

$$Lu = a^{ij}(x)\nabla_i\nabla_j u + b^i(x)\nabla_i u + c(x)u,$$

the (x) in the coefficients indicates they only depend on x. Moreover, we assume $a^{ij} = a^{ji}$. Let $\lambda(x)$ and $\Lambda(x)$ be the smallest and greatest eigenvalue of a^{ij} respectively.

Definition 1.1. We say the operator L is

- (1) elliptic if $\lambda(x) > 0$;
- (2) strictly elliptic if $\lambda(x) \ge \lambda_0$ for some $\lambda_0 > 0$;
- (3) uniformly elliptic if L is elliptic and $\lambda_1 \leq \frac{\Lambda(x)}{\lambda(x)} \leq \lambda_2$ for some $\lambda_1, \lambda_2 > 0$.

In the following context, we shall assume that $a^{ij}(x)$, $b^i(x)$ and c(x) are continuous on $\bar{\Omega}$, which implies L is uniformly elliptic.

Now we can discuss the weak maximum principle.

Theorem 1.2. Assume $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$, $Lu \geq 0$, L is uniformly elliptic and $c \equiv 0$. Then

$$\sup_{\Omega} u = \sup_{\partial \Omega} u.$$

Proof. Let's first assume that Lu>0. If $x_0\in\Omega^\circ$ is the maximal point of u, then we have

$$\nabla u(x_0) = 0, \ \nabla_i \nabla_i u(x_0) \le 0.$$

This implies $a^{ij}\nabla_i\nabla_j u(x_0) \leq 0$, which can imply that $Lu(x_0) \leq 0$, contradiction! To handle $Lu \geq 0$, we consider an auxiliary function

$$\tilde{u}(x) = u(x) + \varepsilon e^{Ax^1},$$

where x^1 is the first component of \mathbf{x} , and ε , A need to be determined. We compute the operation of L on \tilde{u} :

$$L\tilde{u}(x) = Lu(x) + \varepsilon L(e^{Ax^{1}})$$

$$= Lu(x) + \varepsilon (a^{11}(x)\nabla_{1}\nabla_{1}(e^{Ax^{1}}) + b^{1}(x)\nabla_{1}(e^{Ax^{1}}))$$

$$= Lu(x) + \varepsilon (A^{2}e^{Ax^{1}}a^{11}(x) + b^{1}(x)Ae^{Ax^{1}})$$

$$= Lu(x) + \varepsilon Ae^{Ax^{1}}(Aa^{11}(x) + b^{1}(x)),$$

here $a^{11}(x) \ge c_0 > 0$ since a^{ij} is positive definite, $b^1(x) \ge -c_1$. So choose A so large that $Ac_0 - c_1 > 0$, we have

$$L\tilde{u}(x) > \varepsilon A(c_0 A - c_1) > 0$$
,

then by the first paragraph of this proof, we have $\sup_{\Omega} \tilde{u}(x) = \sup_{\partial\Omega} \tilde{u}(x)$. Let $\varepsilon \to 0$, we obtain $\sup_{\Omega} u(x) = \sup_{\partial\Omega} u(x)$.

Remark 1.3. If the condition is $Lu \leq 0$, then the conclusion is changed to $\inf_{\Omega} u = \inf_{\partial\Omega} u$.

Corollary 1.4. Assume $\Omega \subset \mathbb{R}^n$ is a bounded domain, $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$, L is (uniformly) elliptic. If $Lu \geq 0$, $c \leq 0$, then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} \max\{u, 0\}.$$

Proof. Consider $\Omega^+ \subset \Omega$ on which u > 0, then

$$L_0 u = a^{ij} \nabla_i \nabla_i u + b^i \nabla_i u \ge -cu(x) \ge 0.$$

Apply weak maximum principle (Theorem 1.2) then we obtain the conclusion.

Remark 1.5. If $Lu \leq 0$ and $c \leq 0$, then $\inf_{\Omega} u \geq \inf_{\partial \Omega} \min\{u, 0\}$; If Lu = 0, then $\sup_{\Omega} |u| = \sup_{\partial \Omega} |u|$.

An application of weak maximum principle is uniqueness of solution, or comparison principle.

Proposition 1.6. Let L be elliptic on Ω , $c \leq 0$, $u, v \in C^2(\Omega) \cap C^0(\bar{\Omega})$. Then

- (1) If Lu = Lv on Ω and u = v on $\partial\Omega$, then $u \equiv v$ on Ω ;
- (2) If $Lu \ge Lv$ on Ω , $u \le v$ on $\partial\Omega$, then $u \le v$ on Ω .

These two statements are one-line corollaries of Theorem 1.2 and Corollary 1.4.

Next we discuss the strong maximum principle. Simply speaking, strong maximum principle asserts that if u attains its maximum at an interior point, then $u \equiv \text{const.}$ To develop the strong maximum principle, we first need the Hopf lemma.

Lemma 1.7. Let L be uniformly elliptic, $Lu \geq 0$, $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ and $x_0 \in \partial\Omega$. We assume:

- (1) either c = 0 or $c \le 0$, $u(x_0) \ge 0$;
- (2) at x_0 , we can find $B(y,R) \subset \Omega$ such that $x_0 \in \partial B(y,R)$;
- (3) for all $x \in \Omega$, $u(x) < u(x_0)$,

then $\frac{\partial u}{\partial \mathbf{n}}(x_0) > 0$, where **n** is the outer normal vector.

Proof. Let 0 < r < R, consider the annulus

$$A(r,R) = B(y,R) - B(y,r).$$

Let $v(x) = e^{-A\rho^2} - e^{-AR^2}$, where $\rho = |x - y| > r$, then

$$v(x) = \begin{cases} \geq 0 \text{ on } A(r, R), \\ 0 \text{ on } \partial B(y, R). \end{cases}$$

Direct calculation gives

$$Lv(x) = e^{-A\rho^2} (4A^2 a^{ij} (x_i - y_i)(x_j - y_j) - 2A(a^{ii} + b^i (x_i - y_i))) + cv(x)$$

> $e^{-A\rho^2} (4A^2 \lambda(x)\rho^2 - 2A(a^{ii} + |\mathbf{b}|\rho) + c),$

where $\mathbf{b}=(b^1,\cdots,b^n)$. By uniformly ellipticity, a^{ii}/λ , $|\mathbf{b}|/\lambda$ and c/λ are bounded, so we can choose A so large that $Lv\geq 0$ on the annulus A(r,R). Since $u(x)-u(x_0)<0$ on $\partial B(y,r)$, there is a constant ε such that $u(x)-u(x_0)+\varepsilon v(x)\leq 0$ on $\partial B(y,r)$. This inequality also holds on $\partial B(y,R)$ since on which v=0. Hence we have $L(u(x)-u(x_0)+\varepsilon v(x))\geq -cu(x_0)\geq 0$ in A(r,R), and $u(x)-u(x_0)+\varepsilon v(x)\leq 0$ on $\partial A(r,R)$. Then by Corollary 1.4, this implies $u(x)-u(x_0)+\varepsilon v(x)\leq 0$ on whole A(r,R). Taking the normal derivative at x_0 , we obtain

$$\frac{\partial u}{\partial \mathbf{n}}(x_0) \ge -\varepsilon \frac{\partial v}{\partial \mathbf{n}}(x_0) = -\varepsilon v'(R) > 0$$

as required.

Now we can state the strong maximum principle.

Theorem 1.8. Let L be uniformly elliptic, $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$, $Lu \geq 0$. Assume either c = 0 or $c \leq 0$ and c/λ is bounded, then if u attains maximum at $x_0 \in \Omega$, then $u \equiv \text{const.}$

Proof. Suppose u is not constant and attains maximum in an interior point. If $x_0 \in \Omega$ is the maximum point, then we can find an interior ball $B(y,R) \subset \Omega$ such that $x_0 \in B(y,R)$ and $u(x) < u(x_0)$ in Ω . Then by Hopf lemma (Lemma 1.7), $\frac{\partial u}{\partial \mathbf{n}}(x_0) > 0$, contradict to $\nabla u(x_0) = 0$.

Remark 1.9. The condition $Lu \geq 0$ often comes from some curvature condition.

An important application of maximum principle is C^0 -estimate.

Theorem 1.10. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, Lu = f, L elliptic, $c \leq 0$ and $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$. Then there exists a constant C depending on Ω and the coefficients of L, such that

$$\sup_{\Omega} |u| \le \sup_{\partial \Omega} |u| + C \sup_{\Omega} |f|,$$

where $C = C(\operatorname{diam}(\Omega), L)$.

Proof. Without loss of generality we assume Ω lies in $\{\mathbf{x}: 0 < x^1 < d\}$ for some d > 0. Let

$$v(x) = \sup_{\partial \Omega} |u| + (e^{\alpha d} - e^{\alpha x^{1}}) \sup_{\Omega} |f|,$$

where $\alpha > 0$. Thus for $\lambda \alpha^2 + b^1 \alpha \ge 1$, we have

$$\begin{split} Lv &= -(a^{11}\alpha^2 + b^1\alpha)e^{\alpha x^1}\sup_{\Omega}|f| + cv(x)\\ &\leq -(\lambda\alpha^2 + b^1\alpha)e^{\alpha x^1}\sup_{\Omega}|f|\\ &\leq -\sup_{\Omega}|f|\\ &\leq f. \end{split}$$

Moreover, $v \geq \sup_{\partial\Omega} |u|$, hence we have

$$\begin{cases} Lv \le f \text{ in } \Omega \\ v \ge u \text{ on } \partial\Omega, \end{cases}$$

then by comparison principle (Proposition 1.6), we obtain $v \ge u$ in Ω . Hence for $C \ge \sup_{\Omega} (e^{\alpha d} - e^{\alpha x^1})$, which only depends on $\operatorname{diam}(\Omega)$, we have $\sup_{\Omega} |u| \le \sup_{\Omega} |u| + C \sup_{\Omega} |f|$.

We also consider elliptic operator of divergence from

$$Lu = \nabla_i(a^{ij}\nabla_j u), \tag{1.1}$$

ellipticity is defined as before, depending on the positivity of a^{ij} .

Definition 1.11. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, L defined as (1.1). We say $Lu = 0 \ (\geq 0, \leq 0)$ in the weak sense if for any $v \in C_0^1(\Omega)$ the equality

$$\int_{\Omega} a^{ij} \nabla_j u \nabla_i v = 0 \ (\leq 0, \geq 0)$$

holds.

Now we discuss the weak maximum principle for weak solutions.

Theorem 1.12. Assume $a^{ij}(x) \in C^1(\Omega)$ and $u \in C^2(\Omega)$. If $Lu \geq 0$ in the weak sense, then

$$\sup_{\Omega} u = \sup_{\partial \Omega} u.$$

Proof. Assume $\sup_{\Omega} u > \sup_{\Omega u} = u_0$. Let $x_0 \in \Omega$ such that $u(x_0) > u_0$. Choose $\Omega^1 \subset\subset \Omega$ and c such that $u(x) - u(x_0) - c > 0$ on Ω^1 and $u(x) - u(x_0) - c = 0$ on $\partial\Omega^1$. Let $\varphi(x) = u(x) - u(x_0) - c$ and

$$v(x) = \begin{cases} \varphi(x) \text{ in } \Omega^1, \\ 0 \text{ on } \Omega \setminus \Omega^1. \end{cases}$$

By assumption $Lu \geq 0$, we have

$$0 \ge \int_{\Omega} a^{ij} \nabla_i u \nabla_j v$$
$$\ge \int_{\Omega} \lambda |\nabla v|^2.$$

Hence $\nabla v = 0$, c = const on Ω^1 . But v = 0 on $\partial \Omega^1$, contradicts to $v = \varphi > 0$ on Ω^1 .

We weaken the assumption of C^{∞} -ness of coefficient and u. There are two cases. The first one is

$$u \in W^{1,2}(\Omega) = \{ f \in L^2(\Omega) : \int |\nabla f|^2 < +\infty \}$$

and assume

$$Lu = \nabla_i (a^{ij} \nabla_j u + b^i u) + c^i \nabla_i u + du.$$

Assume L has bounded coefficient, that is,

$$\sum |a^{ij}|^2 \le \Lambda$$

and

$$\frac{1}{\lambda^2} \left(\sum (|b^i|^2 + |c^i|^2) \right) + \frac{1}{\lambda} |d|^2 \leq A.$$

We say u satisfies $Lu \geq 0$ in the weak sense if for all $v \in C_0^1(\Omega)$, we have

$$\int (a^{ij}\nabla_j u + b^1 u)\nabla_i v - (c^i\nabla_i u + du)v \le 0.$$

Theorem 1.13. Under above assumption, $Lu \ge 0$ implies

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+$$

Proof. See [GT01, Theorem 8.1].

Remark 1.14. If $Lu = g + \nabla_i f^i$ has weak solution $u \in W^{1,2}(\Omega)$, $g \in L^{q/2}(\Omega)$ and $f^i \in L^q(\Omega)$ provided q > n, then from the Moser iteration, we can obtain L^{∞} -bound of u.

The second case is $u \in W^{2,n}_{loc}(\Omega) \cap C^0(\bar{\Omega})$. Consider the equation Lu = f for $Lu = a^{ij}\nabla_i\nabla_j u + b^i\nabla_i u + cu$, such u is called a *strong solution*. Then we have the Alexander–Backerman–Pucci maximum principle.

Theorem 1.15. Let $Lu \geq f$, L elliptic, $D = \det a^{ij}$ and $D^* = D^{1/n}$. Assume $\frac{|b|}{D^*}$, $\frac{|f|}{D^*} \in L^n(\Omega)$, $c \leq 0$ in Ω , $u \in W^{2,n}_{loc}(\Omega) \cap C^0(\bar{\Omega})$, then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+ + \tilde{C} ||f||_{L^n}.$$

Proof. See [GT01, Theorem 9.1].

Remark 1.16. The ABP maximum principle has a geometric proof. It often applies to non-divergence type of elliptic PDEs like Monge–Amperé equations.

Now we discuss some practical useful principle on manifolds.

(1) Let (M,g) be a compact Riemannian manifold, $u \in C^2(M)$. If x_0 is the maximum point of u, then $\nabla u(x_0) = 0$ and $e^{\varphi} \Delta e^{-\varphi} u(x_0) < 0$. Hence we can estimate $\tilde{\Delta} u(x)$ from below to get

$$\tilde{\Delta}u(x) \ge f(x, u, \nabla u).$$

(2) Let (M, g) be a noncompact complete Riemannian manifold. Then the Omori–Yau maximum principle tells that for $u^* = \sup u$, there exists a sequence of points $\{x_k\}$ such that

$$u(x_k) > u^* - \frac{1}{k} \cdot |\nabla u|(x_k) < \frac{1}{k} \cdot \Delta u(x_k) < \frac{1}{k}$$

Bibliography

[GT01] David Gilbarg and Neil S. Trudinger. *Elliptic partial differential equations of second order*. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

