Attention Models

- Neural Machine Translation
- Text Summation
- Question Answering
- Neural Machine Translation
 - Introduction to Neural Machine Translation
 - Seq2Seq model and its shortcomings
 - Solution for the information bottleneck

Seq2Seq model

- Introduced by Google in 2014
- Maps variable-length sequences to fixed-length memory
- Inputs and outputs can have different lengths
- LSTMs and GRUs to avoid vanishing and exploding gradient problems

Seq2Seq encoder

- typically consists of an embedding layer and an LSTM module with one of the sentence
- transforms words tokenized first into a vector for input to the LSTM module
- the LSTM module receives inputs from the embedding layer, as well as the hidden states from the previous step

Seq2Seq decoder

- The decoder is constructed similarly with an embedding layer and an LSTM layer.
- the output word of a step as the input word for the next step.
- pass the LSTM hidden state to the next step.

The information bottleneck

- Variable-length sentences + fixed-length memory
- =>As sequence size increases, model performance decreases

Use all the encoder hidden states?

Solution: focus attention in the right place

Seq2Seq model with attention

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio*

Université de Montréal

Traditional seq2seq models

(C) deepleaming.a

How to use all the hidden states?

How to use all the hidden states?

The attention layer in more depth

Learnable parameters

$$c_i = \sum_{j=1}^{T_x} \boxed{\alpha_{ij} h_j}$$

$$\texttt{a}_{i1} h_1 + \texttt{a}_{i2} h_2 + \texttt{a}_{i3} h_3 + \dots + \texttt{a}_{iM} h_M \longrightarrow \texttt{c}_i$$

Context Vector is an expected value

Queries, Keys, Values and Attention

Queries, Keys, Values

Scaled dot-product attention

(Vaswani et al., 2017)

Weighted sum of values V

Just two matrix multiplications and a Softmax!

Alignment Weights

Keys

Similar words have large weights

- Flexible attention
- Works for languages with different grammar structures!

Summary

- Attention is a layer that lets a model focus on what's important
- Queries, Values, and Keys are used for information retrieval inside the Attention layer
- Works for languages with very different grammatical structures

(©) deeplearning.a

Setup for machine translation

Data in machine translation

English	French
I am hungry!	J'ai faim!
	•••
I watched the soccer game.	J'ai regardé le match de football.

Attention! (pun intended) Assignment dataset is not as squeaky-clean as this example and contains some Spanish translations.

🔘 deeplearning.ai

Machine translation setup

- Use pre-trained vector embeddings
- Otherwise, initially represent words with a one-hot vectors
- Keep track of index mappings with word2ind and ind2word dictionaries
- Add end of sequence tokens: <EOS>
- Pad the token vectors with zeros

Preparing to Translate to English

ENGLISH SENTENCE:

Both the ballpoint and the mechanical pencil in the series are equipped with a special mechanism: when the twist mechanism is activated, the lead is pushed forward.

TOKENIZED VERSION OF THE ENGLISH SENTENCE:

[·	4546	4	1	135	58	362	8	4	23	326	2	20104	17	745	82	10	964	1	5	6	
4	3103	3	1 2	2767	7	30	13	914	479	7 (64	196	4	224	474	5	479	7	16		
2	4864	86		2	4	106	0 1	6	641	L3 1	1138	3	1	0	0	0	0	0	0	0	0
0	0	0	0	0		0 0	Q	0	0	0	0	0	0_{p_a}	dO _{din}	0	0	0]				
	<eos></eos>																				

FRENCH TRANSLATION:

Le stylo à bille et le porte-mine de la série sont équipés d'un mécanisme spécial: lorsque le mécanisme de torsion est activé, le plomb est poussé vers l'avant.

TOKENIZED VERSION OF THE FRENCH TRANSLATION:

Teacher Forcing

- Training for NMT
- Teacher forcing

Training seq2seq models

20

Teacher Forcing

Neural Machine Translation Model with Attention

- How everything fits together
- NMT model in detail
- NMT Model

Neural Machine Translation Model

Neural Machine Translation Model

BLEU Score

BiLingual Evaluation Understudy

Compares candidate translations to reference (human) translations The closer to 1,

the better

Candidate	I	I	am	I	
Reference 1	Younes	said	I	am	hungry
Reference 2	Не	said	I	am	hungry

How many words from the **candidate** appear in the **reference** translations?

BLEU Score

Candidate

Ι

I

am

Ι

Reference 1

Younes

said

Ι

am

hungry

Reference 2

He

said

Ι

am

hungry

Count:
$$\frac{1+1+1+1}{4} = 1$$

A model that always outputs common words will do great!

BLEU Score (Modified)

Candidate

I

I

am

Ι

Reference 1

Younes

said

Reference 2

He

said

Count:
$$\frac{1+1}{4} = 0.5$$

hungry

Better than the previous implementation version!

ROUGE

- <u>Recall</u>-Oriented <u>Understudy</u> for <u>Gisting</u> <u>Evaluation</u>
- Compares candidates with reference (human) translations
- Multiple versions for this metric

ROUGE-N

Candidate	I	I	am	I	
Reference 1	Younes	said	I	am	hungry
Reference 2	He	said	I	am	hungry

How many words from the **reference** appear in the **candidate** translations?

ROUGE-N

Count 1:
$$1+1 = 0.4$$
 Count 2: $1+1 = 0.4$

$$F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \longrightarrow F1 = 2 \times \frac{\text{BLEU} \times \text{ROUGE-N}}{\text{BLEU} + \text{ROUGE-N}}$$

$$F1 = 2 \times \frac{0.5 \times 0.4}{0.5 + 0.4} = \frac{4}{9} \approx 0.44$$

Sampling and Decoding

- Random sampling
- Temperature in sampling
- Greedy decoding
- Seq2Seq model

Greedy decoding

- Selects the most probable word at each step
- But the best word at each step may not be the best for longer sequences...
- Can be fine for shorter sequences, but limited by inability to look further down the sequence
 J'ai faim.

I am_hungry__.
I am, am, am, am...

Random sampling

am	full	hungry	I	the
0.05	0.3	0.15	0.25	0.25

Often a little too random for accurate translation!

Solution: Assign more weight to more probable words, and less weight to less probable words.

Temperature

- Can control for more or less randomness in predictions
- Lower temperature setting : More confident, conservative network
- Higher temperature setting : More excited, random network

Beam search

Most probable translation **is not** the one with the most probable word at each step

Solution

Calculate probability of multiple possible sequences

- Beam search decoding
 - Probability of multiple possible sequences at each step
 - Beam width B determines number of sequences you keep
 - Until all B most probable sequences end with <EOS>

Beam search with **B=1** is **greedy decoding**.

Beam search example

Beam search decoding

Problems with beam search

Penalizes long sequences, so you should normalize by the sentence length

Computationally expensive and consumes a lot of memory

- Minimum Bayes Risk (MBR)
 - Generate several candidate translations
 - Assign a similarity to every pair using a similarity score (such as ROUGE!)
 - Select the sample with the highest average similarity

Minimum Bayes Risk (MBR)

Example: MBR Sampling

