

ON THE CURVATURE GROUPS OF A CR MANIFOLD

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Dedicated to the memory of Aldo Cossu

ABSTRACT. We show that any contact form whose Fefferman metric admits a nonzero parallel vector field is pseudo-Einstein of constant pseudohermitian scalar curvature. As an application we compute the curvature groups $H^k(C(M), \Gamma)$ of the Fefferman space $C(M)$ of a strictly pseudoconvex real hypersurface $M \subset \mathbb{C}^{n+1}$.

1. STATEMENT OF RESULTS

Let M be a strictly pseudoconvex CR manifold of CR dimension n and θ a contact form on M such that the Levi form L_θ is positive definite. Let $S^1 \rightarrow C(M) \rightarrow M$ be the canonical circle bundle and F_θ the Fefferman metric on $C(M)$, cf. [6]. Let $\text{GL}(2n+2, \mathbb{R}) \rightarrow L(C(M)) \rightarrow C(M)$ be the principal bundle of linear frames tangent to $C(M)$ and $\Gamma : u \in L(C(M)) \mapsto \Gamma_u \subset T_u(L(C(M)))$ the Levi-Civita connection of F_θ . Let $H^k(C(M), \Gamma)$ be the curvature groups of $(C(M), \Gamma)$, cf. [3] and our Section 2. Our main result is

Theorem 1. *If (M, θ) is a pseudo-Einstein manifold of constant pseudohermitian scalar curvature ρ then the curvature groups $H^k(C(M), \Gamma)$ are isomorphic to the de Rham cohomology groups of $C(M)$. Otherwise (that is if either θ is not pseudo-Einstein or ρ is nonconstant) $H^k(C(M), \Gamma) = 0$, $1 \leq k \leq 2n+2$.*

The key ingredient in the proof of Theorem 1 is the explicit calculation of the infinitesimal conformal transformations of the Lorentz manifold $(C(M), F_\theta)$.

Corollary 1. *Let $\Omega \subset \mathbb{C}^{n+1}$ be a smoothly bounded strictly pseudoconvex domain. There is a defining function φ of Ω such that $\theta = \frac{i}{2}(\bar{\partial} - \partial)\varphi$ is a pseudo-Einstein contact form on $\partial\Omega$. If $(\partial\Omega, \theta)$ has constant pseudohermitian scalar curvature then*

$$H^k(C(\partial\Omega), \Gamma) \approx H^k(\partial\Omega, \mathbb{R}) \oplus H^{k-1}(\partial\Omega, \mathbb{R}),$$

for any $1 \leq k \leq 2n+2$.

The first statement in Corollary 1 is a well known consequence of the fact that $T_{1,0}(\partial\Omega)$ is an embedded CR structure, cf. J.M. Lee, [7]. If for instance Ω is the unit ball in \mathbb{C}^{n+1} and $\theta = \frac{i}{2}(\bar{\partial} - \partial)|z|^2$ then

$$H^k(C(\partial\Omega), \Gamma) = \begin{cases} \mathbb{R}, & k \in \{1, 2n+1, 2n+2\}, \\ 0, & \text{otherwise.} \end{cases}$$

The paper is organized as follows. In Section 2 we recall S.I. Goldberg & N.C. Petridis' curvature groups of a torsion-free linear connection (cf. also I. Vaisman, [10]) as well as the needed material on CR manifolds, Tanaka-Webster connection and the Fefferman metric. Section 3 is devoted to the proof of Theorem 1 and corollaries.

2. THE CURVATURE GROUPS OF THE FEFFERMAN METRIC

Let $(M, T_{1,0}(M))$ be a $(2n+1)$ -dimensional connected strictly pseudoconvex CR manifold with the CR structure $T_{1,0}(M) \subset T(M) \otimes \mathbb{C}$. Let θ be a contact form on M such that the Levi form

$$L_\theta(Z, \bar{W}) = -i(d\theta)(Z, \bar{W}), \quad Z, W \in T_{1,0}(M),$$

is positive definite. Let $H(M) = \text{Re}\{T_{1,0}(M) \oplus T_{0,1}(M)\}$ be the Levi distribution and

$$J : H(M) \rightarrow H(M), \quad J(Z + \bar{Z}) = i(Z - \bar{Z}), \quad Z \in T_{1,0}(M),$$

its complex structure. Let $\mathbb{C} \rightarrow K(M) \rightarrow M$ be the complex line bundle

$$K(M)_x = \{\omega \in \Lambda^{n+1}T_x^*(M) \otimes \mathbb{C} : T_{0,1}(M)_x \lrcorner \omega = 0\}, \quad x \in M.$$

There is a natural action of \mathbb{R}_+ (the multiplicative positive reals) on $K(M) \setminus \{0\}$ such that $C(M) = (K(M) \setminus \{0\})/\mathbb{R}_+$ is a principal S^1 -bundle $\pi : C(M) \rightarrow M$ (the canonical circle bundle over M , cf. [2], Chapter 2). The Fefferman metric F_θ is given by

$$(1) \quad F_\theta = \pi^*\tilde{G}_\theta + 2(\pi^*\theta) \odot \sigma,$$

$$(2) \quad \sigma = \frac{1}{n+2} \left\{ d\gamma + \pi^* \left(i\omega_\alpha{}^\alpha - \frac{i}{2} g^{\alpha\bar{\beta}} dg_{\alpha\bar{\beta}} - \frac{\rho}{4(n+1)} \theta \right) \right\}.$$

The Fefferman metric is a Lorentz metric on $C(M)$, cf. J.M. Lee, [6]. The following conventions are adopted as to the formulae (1)-(2). Let T be the characteristic direction of $d\theta$ i.e. the tangent vector field on M determined by $\theta(T) = 1$ and $T \lrcorner d\theta = 0$. We set

$$\begin{aligned} G_\theta(X, Y) &= (d\theta)(X, JY), \quad X, Y \in H(M), \\ \tilde{G}_\theta(X, Y) &= G_\theta(X, Y), \quad \tilde{G}_\theta(Z, T) = 0, \quad Z \in T(M). \end{aligned}$$

There is a unique linear connection ∇ on M (the Tanaka-Webster connection of (M, θ) , cf. [9] and [11]) such that i) the Levi distribution is parallel with respect to ∇ , ii) $\nabla J = 0$ and $\nabla g_\theta = 0$, iii) the torsion T_∇ of ∇ is pure i.e.

$$\begin{aligned} T_\nabla(Z, W) &= 0, \quad T_\nabla(Z, \overline{W}) = 2iL_\theta(Z, \overline{W})T, \quad Z, W \in T_{1,0}(M), \\ \tau \circ J + J \circ \tau &= 0. \end{aligned}$$

Here g_θ is the Webster metric i.e. the Riemannian metric on M given by

$$g_\theta(X, Y) = G_\theta(X, Y), \quad g_\theta(X, T) = 0, \quad g_\theta(T, T) = 1,$$

for any $X, Y \in H(M)$. Also $\tau(X) = T_\nabla(T, X)$, $X \in T(M)$, is the pseudohermitian torsion of ∇ . If $\{T_\alpha : 1 \leq \alpha \leq n\}$ is a local frame of $T_{1,0}(M)$ defined on the open set $U \subseteq M$ then ω_α^β are the corresponding connection 1-forms of the Tanaka-Webster connection i.e. $\nabla T_\alpha = \omega_\alpha^\beta \otimes T_\beta$. Let R^∇ be the curvature of ∇ and

$$R_{\alpha\overline{\beta}} = \text{trace}\{X \mapsto R^\nabla(X, T_\alpha)T_{\overline{\beta}}\}$$

the pseudohermitian Ricci tensor of (M, θ) . Moreover $g_{\alpha\overline{\beta}} = L_\theta(T_\alpha, T_{\overline{\beta}})$ and $\rho = g^{\alpha\overline{\beta}}R_{\alpha\overline{\beta}}$ is the pseudohermitian scalar curvature of ∇ . Also $\gamma : \pi^{-1}(U) \rightarrow \mathbb{R}$ is a local fibre coordinate on $C(M)$. Precisely let $\{\theta^\alpha : 1 \leq \alpha \leq n\}$ be the admissible local coframe associated to $\{T_\alpha : 1 \leq \alpha \leq n\}$ i.e.

$$\theta^\alpha(T_\beta) = \delta_\beta^\alpha, \quad \theta^\alpha(T_{\overline{\beta}}) = 0, \quad \theta^\alpha(T) = 0.$$

The locally trivial structure of $S^1 \rightarrow C(M) \rightarrow M$ is described by

$$\pi^{-1}(U) \rightarrow U \times S^1, \quad [\omega] \mapsto (x, \frac{\lambda}{|\lambda|}), \quad \omega \in K(M)_x \setminus \{0\},$$

$$\omega = \lambda(\theta \wedge \theta^1 \wedge \cdots \wedge \theta^n)_x, \quad x \in U, \quad \lambda \in \mathbb{C} \setminus \{0\}.$$

Then $\gamma([\omega]) = \arg(\lambda/|\lambda|)$ where $\arg : S^1 \rightarrow [0, 2\pi]$. If $(U, x^1, \dots, x^{2n+1})$ is a system of local coordinates on M then $(\pi^{-1}(U), \tilde{x}^1, \dots, \tilde{x}^m)$ are the naturally induced local coordinates on $C(M)$ i.e. $\tilde{x}^A = x^A \circ \pi$, $1 \leq A \leq 2n+1$, and $\tilde{x}^m = \gamma$ (with $m = 2n+2$).

Let $\Pi : L(C(M)) \rightarrow C(M)$ be the projection and $\rho : \text{GL}(m, \mathbb{R}) \rightarrow \text{End}_{\mathbb{R}}(\mathbb{R}^m)$ the natural representation. We denote by $\Omega_{\rho(\text{GL}(m))}^k(C(M))$ the space of tensorial k -forms of type $\rho(\text{GL}(m, \mathbb{R}))$ i.e. each $\omega \in \Omega_{\rho(\text{GL}(m))}^k(C(M))$ is a \mathbb{R}^m -valued k -form on $L(C(M))$ such that

- i) $\omega_u(X_1, \dots, X_k) = 0$ if at least one $X_i \in \text{Ker}(d_u\Pi)$,
- ii) $\omega_{ug}((d_uR_g)X_1, \dots, (d_uR_g)X_k) = \rho(g^{-1})\omega_u(X_1, \dots, X_k)$ for any $g \in \text{GL}(m, \mathbb{R})$, $X_i \in T_u(L(C(M)))$ and $u \in L(C(M))$.

Let Γ be the Levi-Civita connection of $(C(M), F_\theta)$ thought of as a connection-distribution in $L(C(M)) \rightarrow C(M)$. If $\omega \in \Omega_{\rho(\text{GL}(m))}^k(C(M))$ then its covariant derivative with respect to Γ is the tensorial $(k+1)$ -form of type $\rho(\text{GL}(m, \mathbb{R}))$

$$(\nabla\omega)(X_0, \dots, X_k) = \omega(hX_0, \dots, hX_k),$$

for any $X_i \in T(L(C(M)))$, $0 \leq i \leq k$. Here $h_u : T_u(L(C(M))) \rightarrow \Gamma_u$ is the natural projection associated to the direct sum decomposition $T_u(L(C(M))) = \Gamma_u \oplus \text{Ker}(d_u\Pi)$. Let us consider the $C^\infty(C(M))$ -module

$$L^k = \Omega_{\rho(\text{GL}(m))}^k(C(M)) \times \Pi^*\Omega^k(C(M))$$

and the submodule \tilde{L}^k given by

$$\tilde{L}^k = \{(\omega, \Pi^*\alpha) \in L^k : \nabla^2\omega = 0\}.$$

Let $\eta \in \Gamma^\infty(T^*(L(C(M))) \otimes \mathbb{R}^m)$ be the canonical 1-form i.e. $\eta_u = u^{-1} \circ (d_u\Pi)$ for any $u \in L(C(M))$. If we set

$$D^k : \tilde{L}^k \rightarrow \tilde{L}^{k+1}, \quad D^k(\omega, \Pi^*\alpha) = (\nabla\omega - \eta \wedge \Pi^*\alpha, \Pi^*d\alpha),$$

then $\tilde{L} = (\bigoplus_{k=0}^m \tilde{L}^k, D^k)$ is a cochain complex, cf. [3], p. 550. The curvature groups of Γ are the cohomology groups

$$H^k(C(M), \Gamma) = H^k(\tilde{L}) = \frac{\text{Ker}(D^k)}{D^{k-1}\tilde{L}^{k-1}}, \quad 1 \leq k \leq m.$$

3. INFINITESIMAL CONFORMAL TRANSFORMATIONS

We shall establish the following

Theorem 2. *Any infinitesimal conformal transformation of the Feferman metric F_θ is a parallel vector field.*

By a result of C.R. Graham, [4], σ is a connection 1-form in $S^1 \rightarrow C(M) \rightarrow M$. For each vector field $X \in T(M)$ let X^\dagger denote the horizontal lift of X with respect to σ i.e. $X_z^\dagger \in \text{Ker}(\sigma_z)$ and $(d_z\pi)X_z^\dagger = X_{\pi(z)}$ for any $z \in C(M)$. To prove Theorem 2 we need to recall the following

Lemma 1. (E. Barletta et al., [1])

The Levi-Civita connection $\nabla^{C(M)}$ of $(C(M), F_\theta)$ and the Tanaka-Webster connection ∇ of (M, θ) are related by

$$(3) \quad \nabla_{X^\dagger}^{C(M)} Y^\dagger = (\nabla_X Y)^\dagger - (d\theta)(X, Y)T^\dagger - \{A(X, Y) + (d\sigma)(X^\dagger, Y^\dagger)\}S,$$

$$(4) \quad \nabla_{X^\dagger}^{C(M)} T^\dagger = (\tau(X) + \phi X)^\dagger,$$

$$(5) \quad \nabla_{T^\dagger}^{C(M)} X^\dagger = (\nabla_T X + \phi X)^\dagger + 2(d\sigma)(X^\dagger, T^\dagger)S,$$

$$(6) \quad \nabla_{X^\dagger}^{C(M)} S = \nabla_S^{C(M)} X^\dagger = (JX)^\dagger,$$

$$(7) \quad \nabla_{T^\dagger}^{C(M)} T^\dagger = V^\dagger, \quad \nabla_S^{C(M)} S = 0,$$

$$(8) \quad \nabla_S^{C(M)} T^\dagger = 0, \quad \nabla_{T^\dagger}^{C(M)} S = 0,$$

for any $X, Y \in H(M)$. Here $A(X, Y) = g_\theta(\tau(X), Y)$. Also the vector field $V \in H(M)$ and the endomorphism $\phi : H(M) \rightarrow H(M)$ are given by

$$G_\theta(V, Y) = 2(d\sigma)(T^\dagger, Y^\dagger), \quad G_\theta(\phi X, Y) = 2(d\sigma)(X^\dagger, Y^\dagger),$$

for any $X, Y \in H(M)$.

A vector field \mathcal{X} on $C(M)$ is an infinitesimal conformal transformation of F_θ if

$$(9) \quad \nabla^{C(M)} \mathcal{X} = \lambda I,$$

for some $\lambda \in C^\infty(C(M))$ where I is the identical transformation of $T(C(M))$. Let S be the tangent to the S^1 -action (locally $S = \partial/\partial\gamma$). Taking into account the decomposition $T(C(M)) = H(M)^\dagger \oplus \mathbb{R}T^\dagger \oplus \mathbb{R}S$ the first order partial differential system (9) is equivalent to

$$(10) \quad \nabla_{X^\dagger}^{C(M)} \mathcal{X} = \lambda X^\dagger, \quad \nabla_{T^\dagger}^{C(M)} \mathcal{X} = \lambda T^\dagger, \quad \nabla_S^{C(M)} \mathcal{X} = \lambda S,$$

for any $X \in H(M)$. Let $\{X_a : 1 \leq a \leq 2n\} = \{X_\alpha, JX_\alpha : 1 \leq \alpha \leq n\}$ be a local frame of $H(M)$. Then $\mathcal{X} = \mathcal{X}^a X_a^\dagger + f T^\dagger + g S$ for some C^∞ functions \mathcal{X}^a , f and g . By (6)-(8) in Lemma 1 the last equation in (10) may be written

$$S(\mathcal{X}^a) X_a^\dagger + \mathcal{X}^a (JX_a)^\dagger + S(f) T^\dagger + S(g) S = \lambda S$$

hence

$$(11) \quad \mathcal{X}^a = 0, \quad S(f) = 0, \quad S(g) = \lambda.$$

Similarly, by (4) and (6) in Lemma 1 the first equation in (10) may be written

$$X^\dagger(f) T^\dagger + f(\tau(X) + \phi X)^\dagger + X^\dagger(g) S + g(JX)^\dagger = \lambda X^\dagger$$

hence

$$(12) \quad X^\dagger(f) = 0, \quad X^\dagger(g) = 0,$$

$$(13) \quad f(\tau(X) + \phi X)^\dagger + g(JX)^\dagger = \lambda X^\dagger.$$

Lemma 2. *With respect to a local frame $\{T_\alpha : 1 \leq \alpha \leq n\}$ of $T_{1,0}(M)$ the endomorphism $\phi : H(M) \otimes \mathbb{C} \rightarrow H(M) \otimes \mathbb{C}$ is given by $\phi T_\alpha = \phi_\alpha^\beta T_\beta + \phi_\alpha^{\overline{\beta}} T_{\overline{\beta}}$ with*

$$(14) \quad \phi^{\overline{\alpha}\beta} = \frac{i}{2(n+2)} \left\{ R^{\overline{\alpha}\beta} - \frac{\rho}{2(n+1)} g^{\overline{\alpha}\beta} \right\}, \quad \phi^{\alpha\beta} = 0,$$

and $\phi^{\overline{\alpha}\beta} = g^{\overline{\alpha}\gamma} \phi_\gamma^\beta$ and $\phi^{\alpha\beta} = g^{\alpha\overline{\gamma}} = \phi_{\overline{\gamma}}^\beta$.

Proof of Lemma 2. Taking the exterior derivative of (2) we obtain

$$(n+2)d\sigma = \pi^* \left(id\omega_\alpha^\alpha - \frac{i}{2} dg^{\alpha\overline{\beta}} \wedge dg_{\alpha\overline{\beta}} - \frac{1}{4(n+1)} d(\rho\theta) \right).$$

Note that $\nabla g_\theta = 0$ may be locally written as $dg_{\alpha\overline{\beta}} = g_{\alpha\overline{\gamma}} \omega_{\overline{\beta}}^\gamma + \omega_\alpha^\gamma g_{\gamma\overline{\beta}}$. Also $g^{\alpha\overline{\beta}} g_{\overline{\beta}\gamma} = \delta_\gamma^\alpha$ yields $dg^{\alpha\overline{\beta}} = -g^{\gamma\overline{\beta}} g^{\alpha\overline{\rho}} dg_{\overline{\rho}\gamma}$. Hence

$$dg^{\alpha\overline{\beta}} \wedge dg_{\alpha\overline{\beta}} = \omega_{\alpha\overline{\beta}} \wedge \omega^{\alpha\overline{\beta}} + \omega_{\overline{\alpha}\beta} \wedge \omega^{\overline{\alpha}\beta} = 0.$$

Let $\{\theta^\alpha : 1 \leq \alpha \leq n\}$ be the admissible local coframe associated to $\{T_\alpha : 1 \leq \alpha \leq n\}$. Then (by a result in [11], cf. also [2], Chapter 1)

$$d\omega_\alpha^\alpha = R_{\lambda\overline{\mu}} \theta^\lambda \wedge \theta^{\overline{\mu}} + (W_{\alpha\lambda}^\alpha \theta^\lambda - W_{\alpha\overline{\mu}}^\alpha \theta^{\overline{\mu}}) \wedge \theta,$$

$$W_{\alpha\lambda}^\beta = g^{\overline{\sigma}\beta} \nabla_{\overline{\sigma}} A_{\alpha\lambda}, \quad W_{\alpha\overline{\mu}}^\beta = g^{\overline{\sigma}\beta} \nabla_\alpha A_{\overline{\mu}\overline{\sigma}},$$

where $A_{\alpha\beta} = A(T_\alpha, T_\beta)$ and covariant derivatives are meant with respect to the Tanaka-Webster connection. Finally (by the very definition of ϕ)

$$(n+2)G_\theta(\phi X, Y) = i(R_{\alpha\overline{\beta}} \theta^\alpha \wedge \theta^{\overline{\beta}})(X, Y) - \frac{\rho}{4(n+1)} (d\theta)(X, Y)$$

for any $X, Y \in H(M) \otimes \mathbb{C}$. This yields (14). Lemma 2 is proved.

Proof of Theorem 2. Let us extend both members of (13) by \mathbb{C} -linearity. Then (13) holds for any $X \in H(M) \otimes \mathbb{C}$. By a result in [9] $\tau(T_{1,0}(M)) \subseteq T_{0,1}(M)$ hence $\tau(T_\alpha) = A_\alpha^{\overline{\beta}} T_{\overline{\beta}}$ for some C^∞ functions $A_\alpha^{\overline{\beta}}$. Using (13) for $X = T_\alpha$ we obtain

$$(15) \quad f A_\alpha^{\overline{\beta}} = 0, \quad f \phi_\alpha^\beta + (ig - \lambda) \delta_\alpha^\beta = 0.$$

By Lemma 2

$$\phi_\alpha^\beta = \frac{i}{2(n+2)} \left(R_\alpha^\beta - \frac{\rho}{2(n+1)} \delta_\alpha^\beta \right)$$

and a contraction leads to $\phi_\alpha^\alpha = i\rho/[4(n+1)]$. Next a contraction in the second of the identities (15) gives $f \phi_\alpha^\alpha + n(ig - \lambda) = 0$ or $i\rho f + 4n(n+1)ig = 4n(n+1)\lambda$ and then

$$(16) \quad g = -\frac{\rho}{4n(n+1)} f$$

and $\lambda = 0$ as f, g and λ are \mathbb{R} -valued. In particular $\nabla^{C(M)} \mathcal{X} = 0$. Theorem 2 is proved.

Corollary 2. *Any infinitesimal conformal transformation of F_θ is a parallel vector field of the form*

$$(17) \quad \mathcal{X} = a \left(T^\dagger - \frac{\rho}{4n(n+1)} S \right), \quad a \in \mathbb{R}.$$

In particular any contact form θ whose Fefferman metric F_θ admits a nontrivial parallel vector field is pseudo-Einstein of constant pseudohermitian scalar curvature and vanishing pseudohermitian torsion.

Proof. By (7)-(8) in Lemma 1 the middle equation in (10) may be written

$$T^\dagger(f)T^\dagger + fV^\dagger + T^\dagger(g)S = \lambda T^\dagger$$

hence

$$(18) \quad T^\dagger(f) = \lambda, \quad T^\dagger(g) = 0,$$

$$(19) \quad f(z) V_{\pi(z)} = 0, \quad z \in C(M).$$

Yet $\lambda = 0$ (by Theorem 2) so that (by (11)-(12) and (18)) $f = a$ and $g = b$ for some $a, b \in \mathbb{R}$. Let us assume now that F_θ admits a parallel vector field $\mathcal{X} \neq 0$. Replacing from (16) into the second of the identities (15) leads to

$$(20) \quad a \left(R_\alpha^\beta - \frac{\rho}{n} \delta_\alpha^\beta \right) = 0.$$

Note that $a \neq 0$ (otherwise (16) implies $b = 0$ hence $\mathcal{X} = 0$) so that (by (20)) $R_{\alpha\bar{\beta}} = (\rho/n)g_{\alpha\bar{\beta}}$ i.e. θ is pseudo-Einstein (cf. [7]). Also (16) shows that $\rho = \text{constant}$. Finally the first identity in (15) implies $\tau = 0$. Corollary 2 is proved.

A remark is in order. Apparently (19) implies that $a = 0$ when $\text{Sing}(V) \neq \emptyset$ (and then there would be no nonzero parallel vector fields on $(C(M), F_\theta)$). Yet we may show that

Corollary 3. *Assume that θ is pseudo-Einstein. Then $V = 0$ if and only if ρ is constant.*

So (19) brings no further restriction. *Proof of Corollary 3.* Note that

$$2(d\omega_\alpha^\alpha)(T, T_\beta) = -W_{\alpha\beta}^\alpha, \quad 2(d\omega_\alpha^\alpha)(T, T_{\bar{\beta}}) = W_{\alpha\bar{\beta}}^\alpha,$$

$$2d(\rho\theta)(T, T_\beta) = -\rho_\beta, \quad 2d(\rho\theta)(T, T_{\bar{\beta}}) = -\rho_{\bar{\beta}},$$

where $\rho_\beta = T_\beta(\rho)$ and $\rho_{\bar{\beta}} = \overline{\rho_\beta}$. Consequently

$$2(n+2)(d\sigma)(T^\dagger, T_\beta^\dagger) = -iW_{\alpha\beta}^\alpha + \frac{1}{4(n+1)}\rho_\beta.$$

On the other hand (cf. [2], Chapter 5) if θ is pseudo-Einstein then

$$W_{\alpha\beta}^\alpha = -\frac{i}{2n}\rho_\beta, \quad W_{\alpha\bar{\beta}}^\alpha = \overline{W_{\alpha\beta}^\alpha}.$$

Hence V is given by (see Lemma 1 above)

$$G_\theta(V, T_\beta) = -\frac{1}{4n(n+1)}\rho_\beta.$$

Clearly if $\rho = \text{constant}$ then $V = 0$. Conversely if $V = 0$ then $\bar{\partial}_b\rho = 0$ i.e. ρ is a \mathbb{R} -valued CR function. As M is nondegenerate ρ is constant. Corollary 3 is proved.

At this point we may prove Theorem 1. Let \mathcal{L}^k be the sheaf associated to the module \tilde{L}^k i.e. for any open set $A \subseteq C(M)$

$$\mathcal{L}^k(A) = \{(\lambda, \Pi^*\alpha) : \lambda \in \Omega_{\rho(\text{GL}(m))}^k(\Pi^{-1}(A)), \quad \nabla^2\lambda = 0, \quad \alpha \in \Omega^k(A)\}.$$

Let $D^k : \mathcal{L}^k \rightarrow \mathcal{L}^{k+1}$ be the sheaf homomorphism induced by the module homomorphism $D^k : \tilde{L}^k \rightarrow \tilde{L}^{k+1}$.

Lemma 3. *Let \mathcal{S}_θ be the sheaf of parallel vector fields on $(C(M), F_\theta)$. For each open set $A \subseteq C(M)$ let $j_A : \mathcal{S}_\theta(A) \rightarrow \mathcal{L}^0(A)$ be given by*

$$j_A(\mathcal{X}) = (f_{\mathcal{X}}, 0), \quad \mathcal{X} \in \mathcal{S}_\theta(A),$$

$$f_{\mathcal{X}} : \Pi^{-1}(A) \rightarrow \mathbb{R}^m, \quad f_{\mathcal{X}}(u) = u^{-1}(\mathcal{X}_{\Pi(u)}), \quad u \in \Pi^{-1}(A).$$

Then

$$(21) \quad 0 \rightarrow \mathcal{S}_\theta \xrightarrow{j} \mathcal{L}^0 \xrightarrow{D^0} \mathcal{L}^1 \xrightarrow{D^1} \cdots \xrightarrow{D^{m-1}} \mathcal{L}^m \rightarrow 0$$

is a fine resolution of \mathcal{S}_θ so that the curvature groups of Γ are isomorphic to the cohomology groups of $C(M)$ with coefficients in \mathcal{S}_θ .

Proof. Let $(f, \lambda) \in \mathcal{L}^0$ such that $0 = D^0(f, \lambda) = (\nabla f - \lambda\eta, d\lambda)$. Let $z \in C(M)$ and $u \in \Pi^{-1}(z)$. We set by definition $\mathcal{X}_z = u(f(u))$. As $f \circ R_g = \rho(g^{-1}) \circ f$ for any $g \in \text{GL}(m, \mathbb{R})$ it follows that \mathcal{X}_z is well defined. Let $(\Pi^{-1}(C(U)), x^i, X_j^i)$ be the naturally induced local coordinates on $L(C(M))$ i.e. $x^i(u) = \tilde{x}^i(\Pi(u))$ and $X_j^i(u) = a_j^i$ for any $u = (z, \{X_i : 1 \leq i \leq m\}) \in L(C(M))$ such that $X_j = a_j^i(\partial/\partial x^i)_z$

(here $C(U) = \pi^{-1}(U)$). Given a vector field $X = \lambda^j \partial/\partial x^j + \lambda_j^i \partial/\partial X_j^i$ on $L(C(M))$

$$(\nabla f)_u X_u = \lambda^j(u) u^{-1} (\nabla_{\partial/\partial \tilde{x}^j}^{C(M)} \mathcal{X})_{\Pi(u)}, \quad u \in \Pi^{-1}(C(U)).$$

Then $\nabla f = \lambda \eta$ implies that $\nabla^{C(M)} \mathcal{X} = \lambda I$ hence (by Theorem 2) $\lambda = 0$ i.e. $(f, \lambda) = j(\mathcal{X})$. Therefore the corresponding sequence of stalks $0 \rightarrow \mathcal{S}_{\theta, z} \rightarrow \mathcal{L}_z^0 \rightarrow \mathcal{L}_z^1 \rightarrow \cdots \rightarrow \mathcal{L}_z^m \rightarrow 0$ is exact at \mathcal{L}_z^0 while the exactness at the remaining terms follows from the Poincaré lemma for D as in [3], p. 552. Lemma 3 is proved. In particular if θ is a pseudo-Einstein contact form of constant pseudohermitian scalar curvature then (by Corollary 2) $\mathcal{S}_\theta = \mathbb{R}$ and Lemma 3 furnishes a resolution $0 \rightarrow \mathbb{R} \xrightarrow{j} \mathcal{L}^*$ of the constant sheaf \mathbb{R} where

$$j_A(a) = (f_\mathcal{X}, 0), \quad a \in \mathbb{R},$$

and \mathcal{X} is given by (17) in Corollary 2, hence

$$H^k(C(M), \Gamma) \approx H^k(C(M), \mathbb{R}), \quad 1 \leq k \leq m.$$

Otherwise (i.e. if θ is not pseudo-Einstein or ρ is nonconstant) then $\mathcal{S}_\theta = 0$. Theorem 1 is proved.

If $M \subset \mathbb{C}^{n+1}$ is a strictly pseudoconvex real hypersurface then (by a result of J.M. Lee, [7]) M admits globally defined pseudo-Einstein contact forms. On the other hand the pullback to M of $dz^0 \wedge \cdots \wedge dz^n$ is a global nonzero section in $K(M)$. In particular $C(M)$ is trivial. If θ is a pseudo-Einstein contact form on M of constant pseudohermitian scalar curvature then (by Theorem 1 and the Künneth formula)

$$\begin{aligned} H^k(C(M), \Gamma) &= H^k(C(M), \mathbb{R}) = \sum_{p+q=k} H^p(M, \mathbb{R}) \otimes H^q(S^1, \mathbb{R}) = \\ &= H^k(M, \mathbb{R}) \oplus H^{k-1}(M, \mathbb{R}) \end{aligned}$$

and Corollary 1 is proved. Using M. Rumin's criterion (cf. [8]) for the vanishing of the first Betti number of a pseudohermitian manifold we get

Corollary 4. *Let $M \subset \mathbb{C}^{n+1}$ be a connected strictly pseudoconvex real hypersurface and θ a pseudo-Einstein contact form on M with $\rho = \text{constant}$ and $\tau = 0$. If $n \geq 2$ then $H^1(C(M), \Gamma) = \mathbb{R}$.*

An interesting question is whether one may improve Corollary 1 by choosing a contact form with ρ constant to start with. Indeed as $T_{1,0}(M)$ is embedded one may choose a pseudo-Einstein contact form θ . On the other hand if the CR Yamabe invariant $\lambda(M)$ is $< \lambda(S^{2n+1})$ then (by the solution to the CR Yamabe problem due to D. Jerison & J.M. Lee, [5]) there is a positive solution u to the CR Yamabe equation

such that $u^{2/n}\theta$ has constant pseudohermitian scalar curvature. Yet (by a result in [7]) the pseudo-Einstein property is preserved if and only if u is a CR-pluriharmonic function. It is an open problem whether the CR Yamabe equation admits CR-pluriharmonic solutions.

REFERENCES

- [1] E. Barletta & S. Dragomir & H. Urakawa, *Yang-Mills fields on CR manifolds*, submitted to J. Math. Phys., 2005.
- [2] S. Dragomir & G. Tomassini, *Differential geometry and analysis on CR manifolds*, to be published in Progress in Math., Birkhäuser, Boston, 2006.
- [3] S.I. Goldberg & N.C. Petridis, *The curvature groups of a pseudo-Riemannian manifold*, J. Differential Geometry, 9(1974), 547-555.
- [4] C.R. Graham, *On Sparling's characterization of Fefferman metrics*, American J. Math., 109(1987), 853-874.
- [5] D. Jerison & J.M. Lee, *The Yamabe problem on CR manifolds*, J. Diff. Geometry, 25(1987), 167-197.
- [6] J.M. Lee, *The Fefferman metric and pseudohermitian invariants*, Trans. A.M.S., (1)296(1986), 411-429.
- [7] J.M. Lee, *Pseudo-Einstein structures on CR manifolds*, American J. Math., 110(1988), 157-178.
- [8] M. Rumin, *Un complexe de formes différentielles sur les variétés de contact*, C.R. Acad. Sci. Paris, 330(1990), 401-404.
- [9] N. Tanaka, *A differential geometric study on strongly pseudoconvex manifolds*, Kinokuniya Book Store Co., Ltd., Kyoto, 1975.
- [10] I. Vaisman, *The curvature groups of a space form*, Ann. Scuola Norm. Sup. Pisa, 22(1968), 331-341.
- [11] S.M. Webster, *Pseudohermitian structures on a real hypersurface*, J. Diff. Geometry, 13(1978), 25-41.

Authors' address: Università degli Studi della Basilicata, Dipartimento di Matematica, Contrada Macchia Romana, 85100 Potenza, Italy.

e-mail: barletta@unibas.it, dragomir@unibas.it