Routing

DIE INTERNET-PROTOKOLLWELT

121

Übersicht

Aufgaben der Internetschicht

Aufbau und Funktionsweise eines Routers

Weiterleitung & Routing

Autonome Systeme

Routingverfahren im Internet

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

122

122

Die Internet-Schicht

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

123

123

Ziel der Internetschicht

Ende-zu-Ende-Kommunikation über mehrere Teilnetze hinweg bereitstellen

Aufgaben:

- Wegewahl
- Weiterleitung
- weitere Funktionen
- → Funktionen eines Routers

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

124

124

Wiederholung – Routingdienste in IP

Source Routing (IPv4)/Routing Header Extension (IPv6)

· Vorgabe des gesamten Weges bis zum Ziel durch den Sender

Probleme

- Eventuell suboptimaler Pfad
- Sicherheitslücke in IPv6
 - Direkte Pfadangabe erlaubt verschiedene Denial-of-Service-Angriffe auf zwei oder mehrere Router
 - Traffic wird durch einen erzwungenen Loop zwischen den Systemen vervielfacht
 - Führte zum Zurückziehen der Funktion in IPv6 im RFC 5095
- → Alternatives Routingverfahren notwendig

E INTERNET-PROTOKOLLWELT - 4. ROUTING

125

125

Wiederholung - Weiterleitung bei IP

Festlegungen

- Jeder Knoten triff Weiterleitungsentscheidungen
- Traditionell nur Ziel-IP-Adresse für Entscheidung relevant
 - Heute teilweise zusätzliche Policies
- Jede Komponente bestimmt nur den nächsten Knoten, nicht den gesamten Weg

Zwei Arten der Weiterleitung

- · Zielknoten befindet sich im gleichen Subnetz
 - direkte Zustellung
- Zielknoten ist nur über Router/Gateway zu erreichen
 - indirekte Zustellung über mehrere Router
 - Paket an nächsten Router adressiert

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

126

126

Was ist ein Router?

Gerät zur Kopplung von Netzwerken der Internetschicht

Ermöglicht

- Kommunikation entfernter Endsysteme über ein oder mehrere Netze
- Wegewahl
- Weiterleitung von Paketen anhand weltweit eindeutiger, bevorzugt hierarchischer Netzwerkadressen
- Segmentieren und Reassemblieren von Datenpaketen der Internetschicht zur Anpassung an unterschiedliche maximale Paketgrößen der Rechnernetzanschlusssicht (nur IPv4)
- Sicherheitsmechanismen zur Regelung von Netzzugriffen abhängig von der Netzwerkadresse (Stichwort **Firewall**)

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING 127

127

Paketverarbeitung im Router

IE INTERNET-PROTOKOLLWELT - 4. ROUTING

128

128

Einordnung im Schichtenmodell

- Für jedes angeschlossene Netzwerk eine eigene Instanz der Rechner-Netzanschlussschicht
- Protokoll der Internetschicht in der Regel für alle Netzwerke gleich (hier z. B. IP-Router), aber auch unterschiedliche Protokolle möglich
- Internetschichtinstanz verantwortlich für Paketweiterleitung anhand der global eindeutigen Netzwerkadressen
- Kontrollinstanzen für beispielsweise Routingprotokolle, Protokolle zur Fehleranzeige und Managementprotokolle

IE INTERNET-PROTOKOLLWELT - 4. ROUTIN

129

129

Grundlegende Router-Arten

WLAN-/DSL-Router

- Verwendung bei Endkunden zur Internetanbindung
- Vermitteln Zugang zum Internet für ein privates Heimnetz
- Unterstützen mehrere Geräte im Heimnetz

Enterprise Router

- Verwendung in Campusnetzwerken
 (z. B. eines Unternehmens oder einer Universität)
- Teilweise zur besseren Strukturierung des Netzes in Unternetze

Edge Router

- Verwendung meistens bei Internetdienstanbietern (Internet Service Provider, ISP)
- Zur Verbindung vom ISP zu Kundennetzen
- Unterstützung verschiedener Zugangstechnologien

Core Router

- Verwendung im Kernnetz
- Datendurchsatz: mehrere Terabit pro Sekunde
- Hohe Verfügbarkeit von 99,999 % oder höher
- Vollständig redundante Hard- und Softwarekomponenten

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

130

130

Beispielgeräte

ZU HAUSE

Bildquellen: https://de.wikipedia.org/wiki/Router Abruf: November 2016

IM KERNNETZ

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

13

131

Grundlegende Aufgaben eines Routers

Routing (deutsch Wegewahl)

- bezeichnet das Finden von Pfaden, auf denen Pakete durch ein Netz transportiert werden
- Abbild der erreichbaren Teilnetze auf Basis der Netztopologie
- Ermittlung der besten Pfade anhand von IP-Präfix

Forwarding (deutsch Weiterleitung)

- bezeichnet die Auswahl des nächsten Wegpunktes für jedes Paket in einem Knoten
- eigentlich die Auswahl der passenden Ausgangsschnittstelle
- lokale Entscheidung in jedem Konten
- muss möglichst schnell erfolgen

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

132

132

Kontroll- und Datenpfad

Datenpfad in Vermittlungsschicht

Weiterleitung der Datenpakete

Kontrollpfad in darüber liegender Schicht

 für den Austausch von Routingkontrollinformation (Routing-PDUs in N-PDUs oder sogar in T-PDUs gekapselt)

Routinginformation

- Austausch/Sammlung durch Routingprotokoll
- Speicherung in Routingtabelle

Routing-Algorithmus verwaltet die Routingtabelle

- Einfügen/Löschen/Ändern von Einträgen
- auf der Basis der gewonnenen Routinginformation

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

133

133

Grundlegende Teilfunktionen

Weiterleitung

- Basisfunktionen
 - Header-Validierung
 - TTL-Überprüfung
 - Adresssuche
 - Fragmentierung (nur IPv4)
 - Behandeln von IP Optionen
 - Fehlerbenachrichtigung via ICMP
- Komplexe Funktionen
 - Klassifikation
 - Filterung
 - Priorisierung
 - Umwandlung

Routing

- Pfadberechnung
- Aktualisieren der Routingtabelle
- Ausführung von Routingprotokollen

Management

- Systemkonfiguration
- Monitoring

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

134

134

Komponenten eines Routers

Zwei grundlegende Sichtweisen

Funktional

- · Module, die die zur Weiterleitung benötigten Funktionen realisieren
- Typische Module:
 - Network Interfaces
 - Forwarding Engine
 - Queue Manager
 - Traffic Manager
 - Backplane/Switching Fabric
 - Route Control Processor

Architektur

- Hardwarenahe Sicht
- Welche Hardwarekomponenten gibt es und wie werden diese verknüpft?
- Wie und wo werden Module implementiert?

135

Datenpaketfluss durch einen Router

RIB Routing Information Base Forwarding Information Base

136

Die Internet-Protokollwelt Wintersemester 2020/21

137

Ablauf der Weiterleitung

- 1. Empfangen des Paketes von N2H-Instanz der Eingangsschnittstelle
- 2. Paket in Eingangspuffer zwischenspeichern
- 3. Paketkopf auf Gültigkeit prüfen
- 4. IP-Optionen verarbeiten
- 5. Ziel-IP-Adresse extrahieren
- 6. Weiterleitungsziel in der Routingtabelle nachschlagen: Ziel, Ausgangsport(s)
- 7. Fragmentierung (falls notwendig bzw. möglich)
- 8. Paketkopf aktualisieren: TTL dekrementieren, Prüfsumme aktualisieren
- 9. Paket an Ausgangsschnittstelle (ggf. mehrere) weitergeben
- 10. Paket in Ausgangspuffer zwischenspeichern
- 11. Senden des Pakets an N2H-Instanz der Ausgangsschnittstelle
- 12. Fehlermeldung senden (falls notwendig)

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

138

138

Leistungsmaße für Router

Durchsatz

- $O_R = N \cdot R_I$
- N Anzahl der Schnittstellen
- R_I Datenrate einer Schnittstelle
- · Angegeben in bit pro Sekunde

Verarbeitete Pakete pro Sekunde

- $\circ PR_R = \frac{D_R}{S_P}$
- ∘ S_P Paketgröße
- Beispiel: 2 Millarden Pakete pro Sekunde bei 640 Gbps Durchsatz und 40 byte Paketgröße
- → Zeit für komplette Verarbeitung: 8 ns pro Paket

Typische Paketgrößen

- 40 byte TCP Acknowledgements
- 64 byte IMCP Echo Requests
- 576 byte IPv4 Internet Path MTU (obsolet)
 IPv6 minimum MTU (obsolet)
- 1280 byte IPv6 minimum MTU (RFC 2460)
- 1500 byte Max. Ethernet Payload

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

13

139

Inhalt der Routingtabelle

Pfad zu einem Netz

- Pfad steht für ein ganzes Teilnetz
- Häufigste Eintragsart

Pfad zu einem Knoten

Spezifischer Pfad zu einem Knoten

Typisch

200.000 – 1.000.000 Einträge

Standardpfad

- Falls kein passender Eintrag zu einem Netz oder Knoten gefunden wird
- Default Gateway

Lookback-Adresse

- Pakete an eigene Loopback-Schnittstelle weiterleiten
- o 127.0.0.1 in IPv4

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

140

140

IP Weiterleitungsentscheidung

Von jedem Knoten ausgeführt

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

141

141

Beispiel: Routingtabelle

DIE INTERNET-PROTOROLLWELT - 4. RO

142

142

Beispiel: Linkversagen

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

14

143

Aktualisierung der Routingtabelle

Statisch

Manueller Eintrag

Durch Routingverfahren

- Basis gesammelte Routinginformationen
- Wegeauswahl durch speziellen Routingalgorithmus

Durch ICMP-Nachrichten

- Bei Fehlern
- TTL Ablauf

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

144

144

Routingverfahren

Aufgabe

 Fällen der Entscheidung, auf welcher Übertragungsleitung ein eingehendes Paket (Nachricht) weitergeleitet werden soll

Ziele bei Weiterleitung

- Niedrige mittlere Paketverzögerung
- Hoher Netzdurchsatz

Herausforderungen

- Zuverlässigkeit der Paketzustellung
- Geringe zusätzliche Belastung durch Austausch von Routinginformationen
- Schnelle Reaktion auf Topologieänderungen
- Aktuelle und vollständige Informationen über den Zustand des Netzes
- Ressourceneffizienz
- Schleifenfreiheit
- Berücksichtigung der Anforderungen der Anwendungen

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

14

145

Aspekte von Routingverfahren

Verwendete Informationen

• Welche Adressen werden verwendet?

Routenbestimmung

- Wie wird ein Pfad ermittelt?
- Wer bestimmt die Route?

Austausch/Sammlung von Routinginformationen

- Wie?
- Wann?

Verwendete Metriken

- Abhängig von aktueller Netzsituation?
- Oder davon unabhängig?

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

146

146

Routenbestimmung

Wie wird ein Weg ermittelt?

- Statisch: alle Wege werden vorher fest vorgegeben
- Adaptiv: Wege können sich während dem Betrieb ändern

Wer bestimmt die Route?

- Mögliche Knoten
 - Quelle oder spezieller Router
- Algorithmen
 - Verteilt
 - Zentralisiert
 - Hierarchisch

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

147

147

Austausch von Routinginformationen

Wie?

- Fluten
- Selektiv

Wann?

- Periodisch und bei Änderungen proaktiv
- Nach Bedarf und bei Änderungen reaktiv

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

148

148

Metriken

ALLGEMEIN

Lastverteilung Minimale Anzahl der Hops Qualitätsparameter

。 Bitrate, Verzögerung, Durchsatz, ...

Sicherheit

Gebühren

Kombination mehrerer gewichteter Werte in einer Funktion

Policies

•••

ZUSTANDSABHÄNGIG

Feste Kosten für mögliche Verbindungen

 (i. Allg. umgekehrt proportional zur Übertragungskapazität)

Anzahl der auf Übertragung wartenden Pakete

Fehlerrate

Paketverzögerungszeit auf einer Verbindung

Art des Verkehrs (Dialog, Batch)

Prioritäten

Dienstunterstützung durch Router

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

149

149

Die Struktur des Internets

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

150

150

Autonome Systeme und Routing

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

151

151

Autonome Systeme, AS

entsprechen einer Administrativen Domäne

- Das Internet besteht aus vielen Teilnetzen
- AS bilden die Organisationstruktur des Internet
- Jedes AS besitzt global eindeutige AS-Nummer, ASN

Ziele

- AS verwendet intern frei wählbares lokales Routingprotokoll
- AS definieren Policies für Durchgangsverkehr
- Interne Struktur nach außen unsichtbar

Verkehrsarten

- Lokaler Traffic
 - Pakete von oder zu Knoten im AS
- Transit Traffic (Durchgangsverkehr)
 - Wird durch ein AS transportiert

AS Typen

- Stub AS
 - · Hat nur Verbindungen zu einem anderen AS
- Multihomed AS
 - Verbindet mehrere AS
 - Transportiert keinen Transit-Traffic
- Transit AS
 - Verbindet mehrere AS und transportiert Durchgangsverkehr

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

152

152

Wintersemester 2020/21 Die Internet-Protokollwelt

Intra-Domain-Routing

Zwei grundlegende Algorithmenarten

Innerhalb eines AS

Ziele

- Optimale Routen als Fokus
- Stabile Routen

Distance-Vector-Algorithmen

- Benötigen nur lokales Wissen
- Schleifen sind möglich

Link-State-Algorithmen

- Benötigen globales Wissen
- Topologie bekannt

154

Routing Information Protocol, RIP

[RFC 2453]

Intra-Domain-Routingverfahren nach Distanz-Vektor-Prinzip

- Bellman-Ford-Algorithmus
- Unterstützt Split Horizon und Poison Reverse
- Nachrichtenaustausch via UDP

Idee

- Jeder Knoten hat eine Tabelle mit einem Eintrag der besten Entfernung zu Zielsystem
- Einträge enthalten: Entfernung, Ziel und Ausgang

Algorithmus

- 1. Anfrage an alle Nachbarn nach deren Tabelle
- 2. Berechnung der eigenen Tabelle
- 3. Periodische Advertisement-Pakete an alle Nachbarn

INTERNET-PROTOKOLLWELT - 4. ROUTING

155

155

RIP

Eigenschaften

- adaptiv
- · verteilt auf dedizierten Routern
- Periodischer Austausch der Informationen
- Kostenfunktion nur abhängig der Entfernung

Nachteile

- Keine Berücksichtigung des aktuellen Netzzustands
- Maximal 15 Hop lange Pfade
- · Langsame Konvergenz bei Änderungen
 - → Count-To-Infinity-Problem
- · Veraltet, aber in Sensornetzen RIPng

Router A bis E verbunden, plötzlich fällt A aus

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

156

156

Ad hoc On-Demand Distance Vector, AODV

[RFC 3561]

Intra-Domain-Routingverfahren nach Distance-Vector-Prinzip

- Dijkstra-Algorithmus
- Nachrichtenaustausch via UDP

Algorithmus

- Broadcast-Anfrage nach Pfad zu angegebener Adresse (Route Request, RREQ)
- Unicast-Antwort zur Übermittlung einer Route an den Anfragenden (Route Reply, RREP)
- Gefundene Route wird in Routingtabelle gespeichert
- Auch Zwischenknoten können RREQ-Pakete beantworten, wenn der Routingeintrag noch aktuell ist
- Route Error, RERR, zur Information über nicht mehr existierende Nachbarn

IE INTERNET-PROTOKOLLWELT - 4. ROUTIN

15

157

AODV

Eigenschaften

- Adaptiv
- · Verteilt, auf allen beteiligten Knoten
- Reaktive Routenbestimmung nach Bedarf

Vorteile

 Geringe zusätzliche Last, da Routen nur bei Bedarf gesucht werden

Nachteile

 Zusätzliche Verzögerung bis Routen gefunden werden

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

158

158

Open Shortest Path First, OSPF

[RFC 2328]

Intra-Domain-Routingverfahren nach Link-State-Prinzip

- Dijkstra-Algorithmus
- Nachrichtenaustausch via IP

Algorithmus

- 1. Erkennen von Nachbarn über Hello-Pakete
- 2. Messung der Kosten zu allen Nachbarn über Echo-Pakete
- 3. Erzeugung eines Link-State-Pakets mit ermittelten Daten zu jedem Nachbarn
- 4. Austausch des Link-State-Pakets mit allen Nachbarn
- 5. Berechnung des optimalen Weges zu allen Knoten

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

159

159

OSPF

Eigenschaften

- adaptiv
- verteilt auf dedizierten Routern
- Periodischer Austausch der Informationen
- Kostenfunktion abhängig vom aktuellen Zustand des Links
- Wegbestimmung zu allen anderen Routern

Vorteile

- Berücksichtigt aktuellen Zustand des Netzes
- Authentifizierte Kontrollnachrichten
- Unterstützt Areas für bessere Skalierbarkeit

Nachteile

 Aufwändige Berechnung nach jedem Update notwendig

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

160

160

Border Gateway Protocol, BGP

Version 4 [RFC 4271]

Inter-Domain-Routingverfahren nach Path-Vector-Prinzip

- · Liste mit Wegen zu allen andern AS
- Nachrichtenaustausch via TCP

Idee

- Routen entsprechen Pfad zu anderen AS
- interne Details der autonomen Systeme sind nicht bekannt
- Routingtabelle mit aggregierten Pfaden zu allen anderen AS
- Routing Algorithmus nicht festgelegt
 - Kann durch Policies bestimmt werden
 - Beispiele: Hot-Potato, Cold-Potato, Shortest Path, ...

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

161

161

BGP

Eigenschaften

- (adaptiv)
- · Verteilt, auf beteiligten Routern
- Anzahl der AS als Metrik
- Kein periodischer Austausch, nur ereignisbasierte Updates durch Ausfälle

Externes BGP

- Zwischen 2 Peer-Routern zweier AS
- Weitergaben von eBGP-Informationen im Regelfall nur an direkte Nachbarn

Internes BGP

· Zwischen den Border-Routern eines AS

Nachteile

- Keine Berücksichtigung des Zustands der Verbindungen
- Keine Lastverteilung immer nur ein Pfad gewählt
- Sehr große Routingtabellen
- Sicherheitsbedenken

DIE INTERNET-PROTOKOLLWELT - 4. ROUTIN

162

162

Weitere Algorithmen in BGP

Hot-Potato

Ziele:

- Durchgangsverkehr schnell an anderes AS weitergeben
- Eigene Ressourcen schonen

Prinzip.

 Weitergabe an Übertragungsleitung mit der kürzesten Warteschlange

Cold-Potato

Ziele:

- Möglichst lange Kontrolle über Traffic
- Dienstgütekriterien einhalten

E INTERNET-PROTOKOLLWELT - 4. ROUTING

163

163

Literatur

BADACH, Anatol; HOFFMANN, Erwin (2007): *Technik der IP-Netze. Funktionsweise, Protokolle und Dienste*. München: Carl Hanser Verlag.

Debes, Maik; Heubach, Michael; Seitz, Jochen; Tosse, Ralf (2007): *Digitale Sprach- und Datenkommunikation. Netze - Protokolle - Vermittlung.* München: Fachbuchverlag Leipzig im Carl Hanser Verlag.

LEVIS, Philip; MAZIERES, David (2010) CS144 – Introduction to Computer Networking. Lecture Notes. Stanford University. Online. URL http://www.scs.stanford.edu/10au-cs144/notes/ Abruf: November 2016.

POHLMANN, Norbert; DIERICHS, Stefan (2008) *So funktioniert Internet-Routing. Wie Routing dem Netz seine Selbstheilungskräfte verleiht.* Heise. Online. URL: http://heise.de/-221495 Abruf: November 2016.

SINHA, Rishi; PAPADOPOULUS, Christos; HEIDEMANN, John. (2007) Internet Packet Size Distributions: Some Observations. Technical Report. ISI-TR-2007-643. University of Southern California.

SCHUDEL, Gregg; SMITH, David J. (2008): Chapter 1: Internet Protocol Operations Fundamentals. Cisco Press. Network World. Online. URL: http://www.networkworld.com/article/2283224/lan-wan/chapter-1--internet-protocol-operations-fundamentals.html Abruf: November 2016.

UDACITY (2015): Computer Networking - Georgia Tech - Network Implementation. Online. URL: https://www.youtube.com/playlist?list=PLAwxTw4SYaPn21MqCiFq2r0F5jk9l6cW2 Abruf: November 2016.

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

164

164

Requests for Comments

Hawkinson, John; Bates, Tony (1996): Guidelines for Creation, Selection, and Registration of an Autonomous System (AS). Internet Engineering Task Force (IETF) (Request for Comments, 1930).

Moy, John (1998): OSPF Version 2. Internet Engineering Task Force (IETF) (Request for Comments, 2328).

MALKIN, Gary Scott (1998): *RIP Version 2*. Internet Engineering Task Force (IETF) (Request for Comments, 2453).

DEERING, Stephen E.; HINDEN, Robert M. (1998): Internet Protocol, Version 6 (IPv6) Specification. Internet Engineering Task Force (IETF) (Request for Comments, 2460).

PERKINS, Carl E.; BELDING-ROYER, Elizabeth M.; DAS, Samir R. (2003): Ad hoc On-Demand Distance Vector (AODV) Routing. Internet Engineering Task Force (IETF) (Request for Comments, 3561).

REKHTER, Yakov; LI, Tony; HARES, Susan (2005): A Border Gateway Protocol 4 (BGP-4). Internet Engineering Task Force (IETF) (Request for Comments, 4271).

ABLEY, Joe; SAVOLA, Pekka; NEVILLE-NEIL, George (2007): Deprecation of Type 0 Routing Headers in IPv6. Internet Engineering Task Force (IETF) (Request for Comments, 5095).

DIE INTERNET-PROTOKOLLWELT - 4. ROUTING

165

165