Latches e Flip-Flops

Nikolas Libert

nikolaslibert@utfpr.edu.br

Aula 09
Eletrônica Digital ET52C
Tecnologia em Automação Industrial

Latches e Flip-Flops

Latches e Flip-Flops

- Necessários para construção de circuitos sequenciais.
- Saídas possuem dois estados possíveis.
- Elementos com memória.
- Criados pela associação de portas lógicas com realimentação:
 - Saídas conectadas à entrada.

Latches e Flip-Flops

■ Estrutura básica:

- Saídas Q e \overline{Q} indicam o estado atual do componente.
- Uma sequência correta de sinais aplicados nas entradas gera uma mudança de estado.
- Flip-Flops (síncronos): mudanças de estado cadenciadas por borda de clock.
- Latches (assíncronos): mudanças de estado instantâneas.

Latch RS Básico

- Possui apenas duas entradas:
 - Reset (R).
 - Set (S).

■ Pode ser montado com portas Não E e inversoras.

- A saída do circuito depende do valor da saída anterior.
 - Na tabela verdade, a saída anterior é colocada como variável de entrada.

Caso 1

caso estável: o estado de saída não muda.

Caso 2

caso estável: o estado de saída não muda.

comutação no estado de saída.

Caso 4

comutação no estado de saída.

Caso 5

caso estável: o estado de saída não muda.

Caso 6

caso indesejável: as duas saídas ficam com mesmo valor.

deveria sempre haver um<u>a</u> saída Q e Q.

Caso 7

Indesejável: as duas saídas ficam com mesmo valor. deveria sempre haver uma saída Q e Q.

	S	R	Qa	Q _f	\overline{Q}_{f}
caso 0	0	0	0	0	1
caso 1	0	0	1	1	0
caso 2	0	1	0	0	1
caso 3	0	1	1	0	1
caso 4	1	0	0	1	0
caso 5	1	0	1	1	0
caso 6	1	1	0	1	1
caso 7	1	1	1	1	1

 Q_f continua igual a Q_a

 Q_f é fixado em 0

Q_f é fixado em 1

Não permitido

- Tabela verdade resumida:
 - Nível alto no pino S (Set): Saída muda para nível alto.
 - Nível alto no pino R (Reset): Saída muda para nível baixo.
 - Nenhuma entrada ativada: Saída permanece como estava.

 As duas entradas ativadas: comportamento indesejado (Q=Q=1).

S	R	Q _f
0	0	Qa
0	1	0
1	0	1
1	1	Χ

Circuito funciona como memória de 1 bit

Latch RS com Enable|Clock

Latch RS com Enable/Clock

- Possui uma entrada de enable/clock adicional:
 - Alterações nos pinos R e S só refletem na saída se simultaneamente a entrada de Clock estiver em nível alto.

Latch RS com EnablelClock

- Se a entrada de Clock estiver em nível baixo, S e R não podem interferir nas saídas.
- Se a entrada de Clock estiver em nível alto, o circuito funciona como um Latch RS normal.

Pode ser obtido por meio de um latch RS com realimentação adicional.

- A entrada S só será acionada se J estiver em nível alto e Q em nível baixo.
- A entrada R só será acionada se K estiver em nível alto e Q estiver em nível alto.
- O caso não permitido (R=S=Q= \overline{Q} =1) não ocorrerá mais. Será impossível ativar S e R simultaneamente.

Considerando entrada de clock sempre igual a 1, ache a tabela verdade do latch JK.

14

Considerando entrada de clock sempre igual a 1, ache a tabela verdade do latch JK.

No caso em que J=K=1, as entradas devem ser ativadas por pouco tempo, caso contrário a saída oscilará entre 0 e 1.

- Tabela verdade resumida:
 - Nível alto no pino J: Saída muda para nível alto.
 - Nível alto no pino K: Saída muda para nível baixo.
 - Nenhuma entrada ativada: Saída permanece como estava.
 - Nível alto nos pinos J e K: Nível lógico da saída é invertido.

J	K	Q _f
0	0	Qa
0	1	0
1	0	1
1	1	\overline{Q}_a

Situação indesejada do Latch RS (R=S=1) foi eliminada.

Latch JK com *Preset* e *Clear*

- Possui duas entradas adicionais.
 - Se a entrada *Preset* for acionada, Q inicia em nível alto.
 - Se a entrada Clear for acionada, Q inicia em nível baixo.
- *Preset* e *Clear* serão sempre entradas assíncronas.
 - Alteram a saída instantaneamente, independente do sinal de *clock*.

Representação do latch JK com portas lógicas:

Representação do latch JK com portas lógicas:

■ Adição dos pinos de Preset e Clear:

- Para Preset ou Clear em nível alto, o circuito funcionará como antes.
- Para Preset em nível baixo, a saída Q ficará em nível alto.
- Para $\overline{\text{Clear}}$ em nível baixo, a saída $\overline{\mathbb{Q}}$ ficará em nível alto.

■ Latch JK com *Preset* e *Clear*

Clr	Pr	Q _f
0	0	não permitido
0	1	0
1	0	1
1	1	funcionamento normal

- Quando o sinal de clock do latch JK está em nível alto, a saída reflete alterações nas entradas instantaneamente.
- No flip-flop JK, as saídas podem mudar apenas nas bordas de clock.
- São elementos síncronos.

- Exemplo: Latch JK x Flip-Flop JK
 - Ache a forma de onda das saídas.

- Exemplo: Latch JK x Flip-Flop JK
 - Ache a forma de onda das saídas.

- Flip-Flop JK mestre escravo
 - Possui saída intermediária Q_i.
 - Saída intermediária é alterada pelo estágio Mestre no nível alto de *clock*.
 - Saída intermediária é copiada para o Escravo no nível baixo de clock.

 Mudanças na saída principal serão observadas na borda descendente de *clock*.

Exemplo: Ache a forma de onda na saída.

■ Exemplo: Ache a forma de onda na saída.

Flip-Flop T

Flip-Flop T (Toggle)

■ Flip-Flop JK com entradas J e K interligadas.

Flip-Flop T

■ Flip-Flop T:

- Não é encontrado na série de CIs convencionais. Deve ser montado à partir de um JK.
- Utilizados na construção de contadores assíncronos.
- Se T estiver ativo, a saída é complementada a cada descida de *clock*.

Т	Q _f
0	Qa
1	\overline{Q}_a

Flip-Flop D

Flip-Flop D (Data)

Flip-Flop JK com entradas J e K interligadas por inversor.

Flip-Flop D

■ Flip-Flop D:

- Utilizados na construção de registradores de deslocamento.
- Armazena o dado inserido na entrada D a cada descida de clock.

D	Q _f
0	0
1	1

Referências

- IDOETA, I. V., CAPUANO, F. G. Elementos de Eletrônica Digital, 41ª Edição, Érica, São Paulo, 2013.
- PEDRONI, Volnei. Eletrônica Digital Moderna e VHDL, Campus, Rio de Janeiro, 2010.

