SCALABLE PROCESSING OF MOVING FLOCK PATTERNS

Andres Calderon \cdot acald 013@ucr.edu

University of California, Riverside

October 31, 2024

LARGE TRAJECTORY DATABASES

- A spatial trajectory is a trace in time generated by a moving entity in a geographical space.
- \blacksquare i.e. $p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_n$
- A trajectory is stored as a time-ordered sequence of points, $p_i = (x, y, t)$ (spatial coordinate + time stamp).

(Shoval, 2017)

MOVEMENT PATTERNS

(Gudmundsson, et al. 2008)

• i.e. convoys, moving clusters, swarms, gatherings, **flocks**, ...

FLOCKS

- ullet arepsilon: Diameter of the circle which contains all the objects.
- \blacksquare μ : Minimum number of objects.
- lacksquare δ : Minimum time interval the objects travel 'together'.

Basic Flock Evaluation algorithm

- Vieira, et al. 2009.
- The first polynomial-time solution for determining disk locations.
- Under fixed time duration it has polynomial time complexity $O(\delta|\tau|^{(2\delta)+1})$

Basic Flock Evaluation algorithm

■ Two main parts:

- In the spatial domain it finds maximal disks at each time instant.
- ► In the temporal domain it joins consecutive times to match set of maximal disks.

ON THE SPATIAL DOMAIN

■ BFE overview...

ON THE SPATIAL DOMAIN

■ BFE overview...

ON THE TEMPORAL DOMAIN

■ BFE overview...

ON THE TEMPORAL DOMAIN

■ BFE overview...

PSI ALGORITHM

(Vieira, et al. 2009)

(Tanaka, et al. 2016)

CHALLENGES AND CONTRIBUTIONS

- High complexity limits scalability.
- Large datasets with dense clusters of moving entities per time instant significantly impact performance.
- Specifically,
 - identifying maximal disks is hindered by the extensive number of candidates requiring pruning.
 - when parallelizing, we must address moving flocks that traverse contiguous partitions.
- We propose a parallel and scalable solution for both spatial and temporal domains.

ON THE SPATIAL DOMAIN

■ Partitioning strategy...

ON THE SPATIAL DOMAIN

■ Handling duplication...

ON THE TEMPORAL DOMAIN

■ We introduce the *maxdist* parameter to define an area were we have to track **crossing partial flocks** (CPFs)...

ON THE TEMPORAL DOMAIN

*a,b,c and d are flocks moving along time.

ON THE TEMPORA DOMAIN

- Discovered flocks inside the safe area are ready to be reported.
- CPFs require post-processing. We propose four alternative:
 - ▶ Master
 - ► By-Level
 - ► Least Common Ancestor (LCA)
 - Cube-based

ON THE TEMPORAL DOMAIN

*a,b,c and d are flocks moving along time.

DATASETS

	Number of	Total number	Maximum
Dataset	Trajectories	of points	Duration (min)
Berlin10K	10000	97526	10
LA25K	25000	1495637	30
LA50K	50000	2993517	60

DATASETS

Synthetic datasets [LA50K]

• Optimizing the number of partitions for Phase 1.

- Analyzing most costly partitions.
 - ► Top 10 most costly partitions.

- Analyzing most costly partitions.
 - ► By Pairs density..

Method • BFE A PS

- Analyzing most costly partitions.
 - ▶ By Stages in the most costly partition [(a) BFE (b) PSI].

CAN WE REDUCE PRUNING TIME?

- Maximal clique (MC): Given an undirected graph, a MC is a subset of vertices, each directly connected to every other in the subset, that cannot be expanded by adding additional vertices.
- Minimum Bounding Circle (MBC): Given a set of points in Euclidean space, the MBC is the smallest circle that can enclose all the points.

CAN WE REDUCE PRUNING TIME?

CAN WE REDUCE PRUNING TIME?

■ Phase 1 variants performance [(a) vs BFE (b) vs PSI].

■ Relative performance of Phase 1 using synthetic datasets.

■ Finding best *step* value for By-Level alternative.

■ Finding best *interval* value for Cube-based alternative.

■ Scalable alternatives vs standard PSI.

■ Scalable alternatives in LA25K dataset.

■ Scalable alternatives in LA50K dataset.

Thank you!