Lecture Notes on Algebraic Combinatorics

Jeremy L. Martin

jlmartin@ku.edu

February 3, 2015

FOREWORD

The starting point for these lecture notes was my notes from Vic Reiner's Algebraic Combinatorics course at the University of Minnesota in Fall 2003. I currently use them for graduate courses at the University of Kansas. They will always be a work in progress. Please use them and share them freely for any research purpose. I have added and subtracted some material from Vic's course to suit my tastes, but any mistakes are my own; if you find one, please contact me at <code>jlmartin@ku.edu</code> so I can fix it. Thanks to those who have suggested additions and pointed out errors, including but not limited to: Logan Godkin, Alex Lazar, Nick Packauskas, Billy Sanders, and Tony Se.

1. The Fundamentals: Posets, Simplicial Complexes, and Polytopes

1.1. Posets.

Definition 1.1. A partially ordered set or poset is a set P equipped with a relation \leq that is reflexive, antisymmetric, and transitive. That is, for all $x, y, z \in P$:

- (1) $x \le x$ (reflexivity).
- (2) If $x \le y$ and $y \le x$, then x = y (antisymmetry).
- (3) If $x \le y$ and $y \le z$, then $x \le z$ (transitivity).

We say that x is **covered** by y, written $x \le y$, if x < y and there exists no z such that x < z < y. Two posets P, Q are **isomorphic** if there is a bijection $\phi : P \to Q$ that is order-preserving; that is, $x \le y$ in P iff $\phi(x) \le \phi(y)$ in Q.

We'll usually assume that P is finite.

Definition 1.2. A poset L is a **lattice** if every pair $x, y \in L$ has a unique **meet** $x \wedge y$ and **join** $x \vee y$. That is.

$$x \wedge y = \max\{z \in L \mid z \le x, y\},\$$

$$x \vee y = \min\{z \in L \mid z \ge x, y\}.$$

We'll have a lot more to say about lattices in Section ??.

Example 1.3 (Boolean algebras). Let $[n] = \{1, 2, ..., n\}$ (a standard piece of notation in combinatorics) and let $2^{[n]}$ be the power set of [n]. We can partially order $2^{[n]}$ by writing $S \leq T$ if $S \subseteq T$. A poset isomorphic to $2^{[n]}$ is called a **Boolean algebra of rank** n.

Note that $2^{[n]}$ is a lattice, with meet and join given by intersection and union respectively.