

 $FI \land P$

DATA SCIENCE

DATA GOVERNANCE & DATA SECURITY MANAGEMENT Prof. Dr. Renê de Ávila Mendes

2

Objetivos da disciplina

DISCIPLINA: Data Governance & Data Security Management

OBJETIVOS: Descubra como funciona um projeto de banco de dados dentro de um ambiente corporativo, aplicando técnicas de levantamento e documentação de requisitos, aderente aos projetos de bancos de dados e aprenda a representar esses requisitos em arquiteturas de solução tecnológica para Data distribution e Data integration, modelos de estruturas de dados e dicionários de dados buscando Data quality. Garanta a qualidade dos dados de uma empresa para prover os melhores subsídios à tomada de decisão de negócio, praticando Data cleaning para limpar, harmonizar, complementar e corrigir dados inconsistentes, incompletos ou incorretos. Compreenda como funciona o ciclo de vida da informação e as responsabilidades administrativas sobre os dados de negócio, buscando qualidade, segurança e compatibilidade com políticas de administração de informação corporativas auditáveis, aplicando práticas atuais de Data profiling e conhecendo os princípios de Data auditing, de forma a atender a Lei Geral de Proteção de Dados (LGPD).

Assuntos – 2º Semestre

- Qualidade em metadados
- Arquiteturas de integração e distribuição física de banco de dados
- Master Data Management e Data Hub
- Qualidade de dados
- Enterprise Data Management
- LGPD

PADRÃO DE NOMENCLATURA DE DADOS

- Abra o arquivo "padrao_nomenclatura_dados.txt"
- Leia o arquivo para entender o padrão
- 10'

Exercício Oracle Data Modeler

- Abra o arquivo "dd_dicionado_dados.doc" e implemente a estrutura proposta usando o Oracle Data Modeler
- 30'

Técnicas de integração de dados

- Dados são considerados ativos corporativos
- Os ativos corporativos devem ser gerenciados
- O compartilhamento dos dados entre sistemas é necessário para que o dado seja:
 - Adquirido
 - Enriquecido
 - Corrigido
 - Consumido

KREPS, Jay. I Heart Logs: Event Data, Stream Processing, and Data Integration. "O'Reilly Media, Inc.", 2014, p. 12.

KREPS, Jay. I Heart Logs: Event Data, Stream Processing, and Data Integration. "O'Reilly Media, Inc.", 2014, p. 12.

KREPS, Jay. I Heart Logs: Event Data, Stream Processing, and Data Integration. "O'Reilly Media, Inc.", 2014, p. 12.

KREPS, Jay. I Heart Logs: Event Data, Stream Processing, and Data Integration. "O'Reilly Media, Inc.", 2014, p. 11.

Cópia em mídia externa

- Método útil para situações em que os dados precisam chegar ao destino mais rápido do que outros métodos podem resolver
- Casos de uso:
 - Migração de dados offiline entre data centers (devido a mudança de fornecedor de cloud, por exemplo)
 - Importação de dados para cloud
 - Transporte de dados críticos (diminui o risco de interceptação ou violação)

https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html

https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html

https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html

Data export/import

- Integração assíncrona de dados entre bases de dados
- Dados em formato binário proprietário ou SQL
- DDL em formato SQL

External table

- Integração offline de dados entre bases de dados
- Os dados são lidos do arquivo quando um SELECT é executado sobre a tabela externa

Comparando ETL com ELT

	ETL	ELT
Origem dos dados	Algumas	Todas
Transferência de dados	Lote	"Bulk" e streaming
Limpeza dos dados	Antes da carga	Prorrogada
Padronização de dados mestre	Antes da carga	Prorrogada

https://www.lynda.com/Hadoop-tutorials/Comparing-big-data-ELT-traditional-ETL/385663/424483-4.html

Database link

- Integração síncrona de dados entre bases de dados
 - Mesmo produto (Oracle X Oracle)
 - Produtos diferentes (Oracle x SQL Server)
- Requer uma conexão aberta entre os bancos

Replicação síncrona

• Síncrona (two-phase commit)

Backup e restore

- Cópia dos dados para uma mídia
- Permite a restauração dos dados
- Incremental e diferencial

Incremental Data repository Incremental Incremental Incremental backup backup Data Thursday Friday Saturday Sunday

Data repository differential backup differential backup Data source D

Snapshot

- Duplicação idêntica do banco de dados ou de um sistema inteiro
- Funcional: utilizado para duplicar um ambiente ou servidor ou uma base de dados

Web services

- Transferência de dados entre aplicações
- Utilizam protocolos como SOAP (Simple Object Access Protocol) e REST (Representationl Transfer Protocol)
- Trocam dados em XML, JSON, CSV etc.

