

Problem set 1

```
Given a linearly separable training set S and learning rate \eta \in \mathbb{R}^+ w_0 \leftarrow 0; b_0 \leftarrow 0; k \leftarrow 0 R \leftarrow \max_{1 \leq i \leq l} \lVert x_i \rVert repeat for i=1 to l if y_i(\langle w_k \cdot x_i \rangle + b_k) \leq 0 then  w_{k+1} \leftarrow w_k + \eta y_i x_i \\ b_{k+1} \leftarrow b_k + \eta y_i R^2 \\ k \leftarrow k+1  end if end for Until there are no mistakes within the for loop Return the list (w_k, b_k)
```


Agenda

- —Introduction
- —Learning problem & linear classification
- —Linear models: regression & logistic regression
- Non-linear transformation, overfitting & regularization
- —Support Vector Machines and kernel learning
- —Neural Networks: shallow [and deep]
- —Theoretical foundation of supervised learning
- —Unsupervised learning

Today's agenda

- —Non-linear transformations
- —Regularization: restricting solutions

Linear is limited

Often, the target does not linearly depend on the variables, but they are related

Ad spendings

Again: linear in what?

Linear regression implements

$$\sum_{i=0}^{d} \mathbf{w_i} x_i$$

Linear classification implements

$$sign(\sum_{i=0}^{d} \mathbf{w_i} x_i)$$

Algorithms work because of linearity in the weights

What we would like to have

Data:

Hypothesis:

Transform the data nonlinearly

$$(x_1, x_2) \stackrel{\Phi}{\rightarrow} (x_1^2, x_2^2)$$

Nonlinear transforms

$$\mathbf{x} = (x_0, x_1, \dots, x_d) \stackrel{\Phi}{\rightarrow} \mathbf{z} = (z_0, z_1, \dots, z_{\tilde{d}})$$

Each
$$z_i = \phi_i(\mathbf{x})$$
 $\mathbf{z} = \Phi(\mathbf{x})$

Example:
$$\mathbf{z} = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2)$$

Final hypothesis $g(\mathbf{x})$ operates on \mathcal{X} :

$$sign(\widetilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x}))$$
 or $\widetilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x})$

Quiz

- —Let the hypothesis set be $\tilde{h} = sign(\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x}))$ with $\Phi(\mathbf{x}) = \mathbf{z} = (1, x_1^2, x_2^2)$
- —Can you tell what geometric forms $\widetilde{\mathbf{w}}=(\widetilde{w}_0,\widetilde{w}_1,\widetilde{w}_2)$ corresponds to?

$$\widetilde{\mathbf{w}} = (1, -1, -1)$$

$$\widetilde{\mathbf{w}} = (-1,1,1)$$

$$\widetilde{\mathbf{w}} = (1, -1, -2)$$

$$\widetilde{\mathbf{w}} = (1, 1, -1)$$

A flexible way to transform raw data: radial basis functions

—The following transformation uses radial basis functions

$$z = \Phi(x) = \begin{pmatrix} 1 \\ B(x, \mu_1, \gamma) \\ \vdots \\ B(x, \mu_d, \gamma) \end{pmatrix} \text{ where } B(x, \mu, \gamma) = \exp(-\gamma ||x - \mu||^2)$$

Basic RBF model (using training data points)

Standard form (where $(x_n, y_n) \in D$ is our training data)

$$h(x) = \sum_{n=1}^{N} w_n \exp(-\gamma ||x - x_n||^2)$$

Today's agenda

- —Non-linear transformations
- —Regularization: restricting solutions

Review

Machine Learning / Burkhardt Funk 30.10.2020

14

Illustration of overfitting

Simple target function

5 data points include a bit **noise**

4th-order polynomial fit

 $E_{in} = 0$ (in-sample error) E_{out} is huge (out-of-sample error)

15

What is the optimal hypothesis set?

Two learners O (10th order polynomial) and R (2nd order polynomial)

We know the target is 10th order

O chooses \mathcal{H}_{10}

R chooses #2

Learning a 10th order target

16

Learning curves for both hypothesis sets

06.11.2020 17 Machine Learning / Burkhardt Funk

The goal of regularization

free fit

restrained fit

18

Unconstrained solution

Given
$$(x_1, y_1)$$
, ..., $(x_N, y_n) \rightarrow (\mathbf{z}_1, y_1)$, ..., (\mathbf{z}_N, y_n)

Minimize
$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_n - y_n)^2$$

Minimize
$$\frac{1}{N}(\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{Z}\mathbf{w} - \mathbf{y})$$

$$\mathbf{w}_{\text{lin}} = (Z^{\mathsf{T}}Z)^{-1}Z^{\mathsf{T}}\mathbf{y}$$

Constraining the weights

Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} with $w_q = 0 \ for \ q > 2$

Softer version: $\sum_{q=0}^{Q} w_q^2 \leq C$ "soft-order" constraint

Minimize
$$\frac{1}{N}(\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{Z}\mathbf{w} - \mathbf{y})$$

subject to: $\mathbf{w}^\mathsf{T}\mathbf{w} \leq \mathcal{C}$

Solution: \mathbf{w}_{reg} instead of \mathbf{w}_{lin}

Solving for w_{reg}

Minimize
$$E_{in}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y})$$

subject to
$$\mathbf{w}^\mathsf{T}\mathbf{w} \leq \mathcal{C}$$

$$\nabla E_{in}(\mathbf{w}_{reg}) \propto -\mathbf{w}_{reg} =: -2\frac{\lambda}{N}\mathbf{w}_{reg}$$

$$\nabla E_{in}(\mathbf{w}_{reg}) + 2\frac{\lambda}{N}\mathbf{w}_{reg} = \mathbf{0}$$

Minimize
$$E_{in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

Augmented error

Minimizing
$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$= \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w} \text{ unconditionally}$$

Minimizing
$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y})$$

subject to:
$$\mathbf{w}^{\mathsf{T}}\mathbf{w} \leq C$$

The solution

$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$= \frac{1}{N} ((\mathbf{Z}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w})$$

$$\nabla E_{\text{aug}}(\mathbf{w}) = 0$$

$$\Rightarrow$$
 $Z^{T}(Zw - y) + 2\lambda w = 0$ (typically we drop the 2)

$$\mathbf{w}_{\text{reg}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \lambda \mathbf{I})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

(with regularization)

as opposed to

$$\mathbf{w}_{\text{lin}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

(without regularization)

The result

Minimizing $E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$ for different λ 's:

Machine Learning / Burkhardt Funk

Another exciting regularizer

—In LASSO regression we use

$$E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} |\mathbf{w}|$$

 LASSO regression can be used for variable selection

Source: https://www.quora.com/How-would-you-describe-the-difference-between-linear-regression-lasso-regression-and-ridge-regression

Finding the best λ

- —We want to estimate/minimize E_{out} we can do so by using a separate dataset that has not been used for training
- —This approach is called validation
- —Now we can minimize E_{val} by finding the best λ

Additional material

The learning algorithm

—Finding w_1, \dots, w_n for

$$h(x) = \sum_{n=1}^{N} w_n \exp(-\gamma ||x - x_n||^2)$$

- —Based on D = $(x_1, y_1), ..., (x_n, y_n)$
- —Can we choose $w_1, ..., w_n$ such that $E_{in} = 0$ or $h(x_n) = y_n$?
- —We need to solve $y_n = \sum_{m=1}^N w_m \exp(-\gamma ||x_n x_m||^2)$

Solution

 $-y_n = \sum_{m=1}^N w_m \exp(-\gamma ||x_n - x_m||^2)$ gives us N equations with N unknowns

$$\begin{bmatrix} \exp(-\gamma || x_1 - x_1 ||^2) & \cdots & \exp(-\gamma || x_1 - x_N ||^2) \\ \exp(-\gamma || x_2 - x_1 ||^2) & \cdots & \exp(-\gamma || x_2 - x_N ||^2) \\ \vdots & & \vdots & \\ \exp(-\gamma || x_N - x_1 ||^2) & \exp(-\gamma || x_N - x_N ||^2) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_N \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_N \end{bmatrix}$$

—If Φ is invertible, then $\mathbf{w} = \mathbf{\Phi}^{-1}\mathbf{y}$

The impact of γ

—Large or small γ ?

30

What about generalization?

- —So far, we have fitted the training dataset perfectly → hypothesis is not likely to generalize
- —Solution: Regularization add penalty term:

$$\boldsymbol{w}_{ridge} = (\Phi^T \Phi + \boldsymbol{\delta^2 I})^{-1} \Phi^T \boldsymbol{y}$$

—This will be the topic of the lecture on overfitting and regularization

A detailed experiment to understand overfitting

Impact of noise level and target complexity

$$y = f(x) + \underbrace{\epsilon(x)}_{\sigma^2} = \sum_{q=0}^{Q_f} a_q x^q + \epsilon(x)$$

noise level: σ^2

target complexity: Q_f

Data set size: N

Legendre polynomials

 $\mathcal{H}_{\mathcal{Q}}$: polynomials of Order \mathcal{Q}

linear regression in $\mathcal Z$ space

$$z = \begin{bmatrix} 1 \\ L_1(\mathbf{x}) \\ \vdots \\ L_Q(\mathbf{x}) \end{bmatrix}$$

$$\mathcal{A}_{\mathcal{Q}} = \left\{ \sum_{q=0}^{\mathcal{Q}} w_q L_q(\mathbf{x}) \right\}$$

Legendre polynomials:

The overfit measure

We fit the data set $(x_1, y_1), ..., (x_N, y_N)$ using our two models:

7₂: 2nd-order polynomials

 \mathcal{H}_{10} : 10th –order polynomials

Compare out-of-sample errors of

 $g_2 \in \mathcal{H}_2 \text{ and } g_{10} \in \mathcal{H}_{10}$

overfit measure: $E_{out}(g_{10}) - E_{out}(g_2)$

Weight 'decay'

Minimizing $E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$ is called weight *decay*. Why?

Gradient descent: $\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E_{\text{in}}(\mathbf{w}(t)) - 2\eta \frac{\lambda}{N} \mathbf{w}(t)$

$$= \mathbf{w}(t) \left(1 - \frac{2\eta\lambda}{N} \right) - \eta \, \nabla E_{\text{in}} (\mathbf{w}(t))$$