Current Science Editorial Board Meet: 30th Nov 2015

The Marine Nitrogen Cycle Experiments

R. Ramesh

Physical Research Laboratory

Ahmedabad

Redfield Ratio

Generally referred to as Redfield ratios (Redfield *et al.*, 1963). The same ratios approximately hold good for plankton and seawater (dissolved forms) but with some variations in time and space in the ocean.

106CO₂+16HNO₃+ H₃PO₄+122H₂O + Trace elements → $C_{106}H_{263}O_{110}N_{16}P + 138O_2$

Nitrogen limitation in the oceans

N amounts in global reservoirs

Reservoirs	Amount (Tg N)	% of total
Atmospheric N ₂	3.95×10 ⁹	79.5
Sedimentary rocks	9.99×10 ⁸	20.1
Ocean (N ₂)	2.0×10 ⁷	0.4
Ocean (NO ₃ -)	5.7×10 ⁵	~10-2
Soil organics	1.9×10 ⁵	~10-2
Land biota	1.0×10 ⁴	~10-3
Marine biota	500	~10-5

Source: J.N. Galloway, 2004

Natural abundance of isotopes

Element	Isotope	Abundance	Ratio measured	Reference standard
Hydrogen	${}^{1}\text{H}$ ${}^{2}\text{H} (D)^{b}$	99.984 0.0156	$^{2}H/^{1}H$ (D/H)	VSMOW ^a
Carbon	¹² C ¹³ C	98.982 1.108	¹³ C/ ¹² C	PDB^{c}
Nitrogen	¹⁴ N ¹⁵ N	99.630 0.366	$^{15}N/^{14}N$	N_2 -atm ^d
Oxygen	¹⁶ O ¹⁷ O	99.763 0.0375	¹⁸ O/ ¹⁶ O ¹⁸ O/ ¹⁷ O ^f	VSMOW, PDB ^e VSMOW
Sulfur	¹⁸ O ³² S	0.1995 95.02	$^{34}S/^{32}S$	CDT^g
	³³ S ³⁴ S	0.756 4.210		
	³⁶ S	0.014		

Natural Abundance Terminology

Isotopic Ratio

- 13C/12C, D/H, 18O/16O, 15N/14N
- Delta notation

$$\delta = \left(\frac{\mathsf{R}_{\mathsf{sample}}}{\mathsf{R}_{\mathsf{standard}}} - 1\right) \cdot 1000$$

Units (‰) Parts per thousand or "per mil"

δ Notations, %

$$\delta^{18}O = \frac{\left(\frac{180}{160}\right)_{\text{SAMPLE}} - \left(\frac{180}{160}\right)_{\text{VSMOW}}}{\left(\frac{180}{160}\right)_{\text{VSMOW}}} \times 1000$$

Different Oxic conditions

- Hypoxic (non-reducing, nitrite [NO $_2$ -] ~0, O $_2$ ~4.4 μ M)
- Suboxic (denitrifying NO_3 , NO_2 > 0, $0 < O_2 < 4.4 \mu M$)
- Anoxic (Sulphate reducing; NO₃-,NO₂-,O₂~
 0)

Source: Naqvi et al., 2000

N-Cycle

(i) Nitrogen fixation – conversion of atmospheric N_2 to organic N.

$$N_2+8H^+ \rightarrow 2NH_3+H_2$$

high energy is required to break the triple bond of N_2 – 226 kcal/mol

(ii) Ammonium assimilation – NH₃ or NH₄⁺ is taken up by an organism to become part of its biomass.

(iii) Nitrification – Oxidation of NH₃ or NH₄⁺ to nitrate or nitrite by an organism, as means of producing energy.

$$NH_4^+ + 3/2O_2 \rightarrow NO_2^- + H_2O + 2H^+ \quad \Delta G = -290 \text{ kJ/mol}$$

$$NO_2^- + 1/2O_2 \rightarrow NO_3^ \Delta G = -82 \text{ kJ/mol}$$

(iv) Assimilatory nitrate reduction — is the uptake of nitrate by an organism and incorporation as biomass through nitrate reduction.

The Marine Nitrogen Cycle

Global Marine Nitrogen Imbalance

Sources and Sinks

Reactive nitrogen budget

Loss by denitrification, and anammox

Gain by rivers, aerosols, and fixation by Diazatrophs (equivalents of legumes on land) capable of fixing atmospheric nitrogen (Nitrogen reductase)

Major Questions Addressed

- 1. How much nitrogen and carbon is fixed during a *Trichodesmium* bloom period in the Arabian Sea? Is nitrogen cycle in balance in the Arabian Sea?
- 2. Does nitrogen fixation occur in sediments, if yes then how much? Is it significant?
- 3. Can we quantify theoretically the amount of external nitrogen inputs in the denitrification zones of the Arabian Sea?

- 5.. Does nitrogen through aerosol deposition significantly contribute to new production in the northern Indian Ocean?
- 6. How much nitrogen from Indian rivers reaches to the Arabian Sea and Bay of Bengal? Is this contribution significant to new production?

Experimental procedure for N₂ fixation

Water sampling

Uptake Calculation

Tracer Addition

Analysis

Incubation

Filtration

Preservation

Rosette Sampler

Students working on the deck

Methodology developed for N_2 fixation in water column

Filtration onboard ship

N_2 - fixation calculation

Specific uptake rate
$$V(T^{-1}) = \left(\frac{1}{t}\right) \left(\frac{A_{PN_f} - A_{PN_0}}{A_{N_2} - A_{PN_0}}\right)$$

Volumetric rate of N_2 fixation

$$\rho \approx V[PN]_f$$

 $A_{N2} = {}^{15}N$ enrichment of N_2 available for fixation $A_{PN0} = {}^{15}N$ enrichment of PON at the start of experiment $A_{PNf} = {}^{15}N$ enrichment of PON at the end of experiment = time of incubation (~4 hrs) $[PN]_0$ = concentration of PON at the start of the experiment

 $[PN]_f$ = concentration of PON at the end of the experiment

$A_{\rm N2}$ calculation i.e. estimation ¹⁵N enrichment of N_2 available for fixation

$$A_{N_2} = \frac{\left(15N_{tracer} \times tracer conc + \frac{15}{N_{natural}} * ambient conc\right)}{(tracer conc + ambient conc)}$$

Table 5. Solubility of nitrogen from moist air at one atmosphere total pressure in (ml/l).							!		
SALINITY IN PERMIL									
T(°C)	0	10	20	30	34	35	36	38	40
-1			16.28	15.10	14.65	14.54	14.44	14.22	14.01
0	18.42	17.10	15.87	14.73	14.30	14.19	14.09	13.88	13.67
1	17.95	16.67	15.48	14.38	13.96	13.86	13.75	13.55	13.35
0 1 2 3 4	17.50	16.26	15.11	14.04	13.64	13.54	13.44	13.24	13.05
3	17.07	15.87	14.75	13.72	13.32	13.23	13.13	12.94	12.76
4	16.65	15.49	14.41	13.41	13.03	12.93	12.84	12.66	12.47
5	16.26	15.13	14.09	13.11	12.74	12.65	12.56	12.38	12.21
6	15.88	14.79	13.77	12.83	12.47	12.38	12.29	12.12	11.95
8	15.16	14.14	13.18	12.29	11.95	11.87	11.79	11.62	11.46
10	14.51	13.54	12.64	11.80	11.48	11.40	11.32	11.17	11.01
12	13.90	12.99	12.14	11.34	11.04	10.96	10.89	10.74	10.60
14	13.34	12.48	11.67	10.92	10.63	10.56	10.49	10.35	10.21
16	12.83	12.01	11.24	10.53	10.25	10.19	10.12	9.99	9.86
18	12.35	11.57	10.84	10.16	9.90	9.84	9.77	9.65	9.52
20	11.90	11.16	10.47	9.82	9.57	9.51	9.45	9.33	9.21
22	11.48	10.78	10.12	9.50	9.26	9.21	9.15	9.03	8.92
24	11.09	10.42	9.79	9.20	8.98	8.92	8.87	8.76	8.65
26	10.73	10.09	9.49	8.92	8.71	8.65	8.60	8.50	8.39
28	10.38	9.77	9.20	8.66	8.45	8.40	8.35	8.25	8.15
30	10.06	9.48	8.93	8.41	8.21	8.16	8.12	8.02	7.92
32	9.76	9.20	8.67	8.18	7.99	7.94	7.89	7.80	7.71
34	9.48	8.94	8.43	7.96	7.77	7.73	7.68	7.59	7.51
36	9.21	8.69	8.20	7.75	7.57	7.53	7.48	7.40	7.31
38	8.95	8.46	7.99	7.55	7.38	7.33	7.29	7.21	7.13
40	8.71	8-23	7.78	7.36	7.19	7-15	7.11	7.03	6.95

Stable Isotope Mass Spectrometer for measuring 13C and 15N isotopes

Error Analysis

Sources of error in this case

- (i) Incubation time 2-3%
- (ii) Isotopic composition of PON $(A_{PN0} \text{ and } A_{PNf}) \pm 0.2 \%$,
- (iii) $A_{N2} 3\%$
- (iv) PON concentration 4%

So maximum error in V ± 6 % and in $\rho \pm 10.0$ %

N₂ fixation in the Arabian Sea

Sampling Locations

Study the *Trichodesmium* bloom in the Arabian Sea

Physical and chemical properties

Light properties

Depth profile of N₂ fixation and primary productivity

Depth profile of N₂ fixation

Integrated N₂ fixation and primary productivity

Gandhi et al 2011 Global Biogeochemical Cycles,25, GB4014

Summary of N₂ fixation in the Arabian Sea

- 1. N_2 fixation was measured during a bloom period for the in the NE Arabian Sea using a new technique.
- 2. We have estimated that 22.5 Tg y⁻¹ nitrogen is fixed in the Arabian Sea, which is ~11% of global nitrogen fixation in the 2% of the global ocean area and much higher than previous indirect estimations.
- 3. There is no significant correlation between N_2 fixation and primary productivity.

Developments in the N-Cycle of Arabian Sea: Results from the present study

Nitrogen Fluxes (Tg N a⁻¹)

Processes	Earlier Estimations	Present Estimations
Atmospheric deposition	1.6	1.2
N ₂ fixation	3.3	22.5
Rivers	1.2	0.1
Other processes (non-photic)	?	?
Denitrification	- 33	?
Anammox	?	?