

Построение модели насыщения Брукс-Кори и ее равновесная инициализация в ГДМ

Докладчики:

Ведущий инженер ПАО Татнефть Файзрахманов Галим

Инженер 1 категории ПАО Татнефть Еремеев Данил

Ведущий инженер ПАО Татнефть Мавлявов Ильнур

МОДЕЛИ НАСЫЩЕНИЯ

Типы моделей насыщения в геологии терригенных коллекторов

Электрометрическая модель

Пример (уравнение Арчи-Дахнова):

$$K_{\rm B} = \left(\frac{d * \rho_{\rm B}}{K_{\rm II}^m * \rho_n}\right)^{\frac{1}{n}}$$

- Учет в каждой скважине в отдельности;
- Общепринятый метод построения;
- Не требует спец.
 исследований керна.
- Не учитывает капиллярные эффекты;
- Влияние разработки;
- Невозможность равновесной инициализации в ГДМ.

Капиллярно-гравитационная модель

- Менее чувствителен к качеству каротажа;
- Отсутствие влияния разработки;
- Более физичная;
- Возможность равновесной инициализации

Пример (уравнение Брукса-Кори):

$$K_B = K_{BO} + (1 - K_{BO}) * (\frac{P_{Bыт}}{P_C})^{\frac{1}{n}}$$

- Необходимость качественных спец. исследований;
- Более осредененный показатель насыщенности;

МОДЕЛИ НАСЫЩЕНИЯ

Сравнение моделей насыщения

Электрометрическая модель

Капиллярно-гравитационная модель

ОБЩИЙ ВИД МОДЕЛИ НАСЫЩЕНИЯ В ГМ

$K_{\rm B} = K_{\rm BO} + (1 - K_{\rm BO}) * K_{\rm BH}$			
Квн = a · f(H_fwl)	Квн = $(\frac{J}{a})^{\frac{1}{b}}$	Квн = $(\frac{P_{\text{ВЫТ}}}{P_{\text{C}}})^{\frac{1}{n}}$	
Произвольная зависимость	Ј функция	Брукс-Кори	

Принятые обозначения			
SWL	SOWCR	SWn	
Связная вода	Остаточная нефть	Нормированная водонасыщенность	

ОСОБЕННОСТИ МОДЕЛИ БРУКС-КОРИ

Описываемая зависимость

$$K_B = K_{BO} + (1 - K_{BO}) * (\frac{P_{BЫT}}{P_C})^{\frac{1}{n}}$$

Особенности
$$(\frac{P_{B \to T}}{P_{C}})^{\frac{1}{n}} \to 0 \qquad \qquad K_{B} \to K_{BO}$$

$$(\frac{P_{B \to T}}{P_{C}})^{\frac{1}{n}} \neq 0 \qquad \qquad K_{B} \neq K_{BO}$$

WORKFLOW ПОСТРОЕНИЯ НАСЫЩЕНИЯ

Обработка керновых исследований капиллярных давлений по каждому образцу.

Сбор параметров Кп, Кпр, Кво, Рвыт и п с каждого образца в сводную таблицу.

Поиск корреляций между параметрами Кво(Кп), Кпр(Кво), Рвыт(Кпр/Кп), n(Кпр/Кп)

Расчет кубов фильтрационноемкостных свойств и водонасыщенности.

1.0

0.0

2.0

3.0

4.0

0.0

1.0

2.0

3.0

4.0

ТИПИЧНЫЕ ОШИБКИ ПРИ ПОСТРОЕНИИ БК

- 1. Показатели трендов выходят за пределы измеренных значений (исследовать в пределах диапазона показаний ГМ и лаб. исследований);
- 2. Нефизичный характер кривых (напр. Рвыт растет с ростом Кп) В идеальном случае все функции монотонно убывают;
- 3. Диапазон значений в модели не совпадает с лабораторными исследованиями;
- 4. Показатели полученной водонасыщенности не совпадают с лабораторными исследованиями
- 5. Использование некондиционных замеров (нефизичное падение тренда, перегибы, вылеты использование недожатых измерений)

ПРИЧИНЫ НЕВЯЗОК НАСЫЩЕНИЯ ГМ И ГДМ

Сравнение моделей насыщения

Кв→Кво, но Кв≠Кво

$\left(\frac{P_{\text{BMT}}}{P_{\text{C}}}\right)^{\frac{1}{n}} \to 0$

 $\left(\frac{P_{\text{BMT}}}{P_{\text{C}}}\right)^{\frac{1}{n}} \neq 0$

Кв≠Кво, Рс≠О т.к. Рс(SWU)=Рвыт

Гидродинамическая модель

Кв=Кво при $Pc(\Delta \rho gh)$ ≥ Pcmax

Pc=0 при SW = SWU

РАВНОВЕСНАЯ VS НЕРАВНОВЕСНАЯ ИНИЦИАЛИЗАЦИИ

PABHOBECHAЯ (SWOF, JFUNC, PCW)

- Расчет начального состояния ИСХОДЯ условия ИЗ капиллярно-гравитационного равновесия;
- Позволяет получить равновесное начальное состояние (более «физичное» состояние с учетом ККД и ФЕС);
- 3. Увеличивается скорость расчета.
- «Прямое» влияние изменений в ГДМ на начальное (при изменении ФЕС насыщение меняется характер насыщения).

PORO → PCW_{MAX} PERM → SWL

DEPTH→ P_c

HEPABHOBECHAЯ (SWATINIT)

- 1. Явное задание начального состояния из ГМ (меньше трудозатрат на начальном этапе);
- Максимально приближенное значение начальных геологических запасов;
- Начальное состояние в общем случае неравновесно;

ПРИНЦИП РАСЧЕТА НАСЫЩЕННОСТИ И МАСШТАБИРОВАНИЯ

Масштабирование рассчитывается отдельно по каждой ячейке по обеим осям.

T.e. на выходе мы получаем индивидуальные кривые капиллярного давления для каждой ячейки.

НЕРАВНОВЕСНАЯ ИНИЦИАЛИЗАЦИЯ. МЕХАНИКА РАБОТЫ

1. EQUIL

Для каждого региона равновесия задается FWL

2. SWL = f (ΦEC)

Для каждой ячейки на основе её ФЕС рассчитывается значение минимальной водонасыщенности в ячейке – масштабирование водонасыщенности

3. $p_{c_depth} = \Delta \rho g \Delta h$

ГДМ рассчитывает капиллярное давление из плотности флюидов и высоты над FWL

4. PCW = $P_{cn_{max}} \times (P_{c_{depth}}/P_{c_{n}} (SWATINIT))$

На основе её ФЕС рассчитывается значение максимального капиллярного давления в каждой ячейке – масштабирование капиллярного давления по текущему состоянию SWATINIT (поправка подбивается под насыщение).

5. $S_w = SWOF (P_c(PCW))$

Для каждой ячейки на основе таблицы SWOF (или корреляции) масштабированной по п.2 и п.3 получаем значение водонасыщенности (вкладка МОП в тНавигатор)

НЕРАВНОВЕСНАЯ ИНИЦИАЛИЗАЦИИ

Максимальное капиллярное давление в системе рассчитанное по SWATINIT*

^{*}ФЕС и SWOF в каждом случае идентичны

PABHOBECHAЯ ИНИЦИАЛИЗАЦИЯ. MEXAHUKA PAБOTЫ JFUNC

1. EQUIL

Для каждого региона равновесия задается FWL

2. SWL = f (ΦEC)

Для каждой ячейки на основе её ФЕС рассчитывается значение минимальной водонасыщенности в ячейке – масштабирование водонасыщенности

3. $p_{c_depth} = \Delta \rho g \Delta h$

ГДМ рассчитывает капиллярное давление из плотности флюидов и высоты над FWL

4. PCW = f (J функции)

Для каждой ячейки на основе её ФЕС рассчитывается значение максимального капиллярного давления в ячейке – для дальнейшего масштабирование по нему.

5. $S_w = SWOF (P_c (PCW))$

Для каждой ячейки на основе таблицы SWOF (или корреляции) масштабированной по п.2 и п.3 получаем значение водонасыщенности (вкладка МОП в тНавигатор)

РАВНОВЕСНАЯ ИНИЦИАЛИЗАЦИЯ. ЗАДАНИЕ ПОЛЬЗОВАТЕЛЬСКОГО PCW

1. EQUIL

Для каждого региона равновесия задается FWL

2. $SWL = = f(\Phi EC)$

Для каждой ячейки на основе её ФЕС рассчитывается значение минимальной водонасыщенности в ячейке – масштабирование водонасыщенности

3. $p_{c_depth} = \Delta \rho g \Delta h$

ГДМ рассчитывает капиллярное давление из плотности флюидов и высоты над FWL

4. PCW = f (J функции)

Для каждой ячейки на основе её ФЕС рассчитывается значение максимального капиллярного давления в ячейке – для дальнейшего масштабирование по нему.

5. $S_w = SWOF (P_c (PCW))$

Для каждой ячейки на основе таблицы SWOF (или корреляции) масштабированной по п.2 и п.3 получаем значение водонасыщенности (вкладка МОП в тНавигатор)

СТРОИМ КРОССПЛОТ ВОДОНАСЫЩЕННОСТИ ИЗ ГМ ОТ КАПИЛЛЯРНОГО ДАВЛЕНИЯ

Задаем фильтры:

- Коллектор (NTG) = 1;
- Крайние точки насыщенности
 - Sw≠1
 - Sw≠0
- Исследуемый объект
 - Каждый горизонт исследуется отдельно)

Для одной и той же насыщенности получаем разные капиллярные давления при разных ФЕС

РЕМАСШТАБИРУЕМ ВОДОНСЫЩЕННОСТЬ ПО МИНИМАЛЬНОЙ ВОДОНАСЫЩЕННОСТИ

Нормируем насыщенность в каждой ячейке по значению SWL (принимается что SWU =1)

$$ARRSWAT_SCALED = \frac{S_{w} - S_{wl}}{1 - S_{wl}}$$

ПОИСК КОРРЕЛЯЦИИ С ФЕС (В ДАННОМ СЛУЧАЕ С ПАРМЕТРОМ **√(Кпр/Кп)**

Выбираем область по оси х (предлагаемые критерии – наибольшая плотность точек, широкий диапазон значений капиллярного давления).

Область должна иметь минимальную ширины (~0,0001)

Расчет нормированной ККД по минимальной водонасыщенности и максимальному капиллярному давлению

4

- Рассчитываем р_{с_согг}, берем формулу из линии тренда прошлого пункта и вставляем в калькулятор.
 - В знаменателе та же формула, но вместо куба "Крг_Кр" среднее значение "Крг_Кр" в рассматриваемом фильтре водонасыщенности (в примере 4,75)
- Строим кроссплот ремасштабированного капиллярного давления (p_{c_norm}) от нормированной водонасыщенности (ARRSWAT-SCALED)
- Переносим данный кроссплот в таблицу SWOF (капиллярное давление от водонасыщенности) в виде таблицы (сокращаем количество точек или переводим в степенную функцию).

Таким образом в ГДМ задается:

- 1) SWL зависимость как в геологии
- 2) PERM и PORO зависимости как в геологии
- 3) SWOF (масштабированная таблица капиллярной кривой) из последнего пункта.
- 4) PCW из последнего пункта

Типичные ошибки:

- 1) Нефизичные корреляции (или её отсутствие) с ростом ФЕС максимальное капиллярное давление системы монотонно растем
- 2) Неправильное задание ВНК или ЗСВ
- 3) Неправильный выбор области водонасыщенности и среднего значения Кпр_Кп в ней

ВСПОМОГАТЕЛЬНЫЕ МАТЕРИАЛЫ

Урок от тНавигатор по построению равновесной и неравновесной инициализации с разбором основных особенностей методик

- https://youtu.be/PtOFg-RQar4?si=YCfgnuBJGEoo86bc
- https://youtu.be/zz8QcAzC-so?si=umiLDw_3gHE1ECWU

Методика построения насыщенности в ГМ (затрагиваются большинство методик достаточно подробно)

 https://www.youtube.com/live/UTpEBybpqLE?si=ON2qiKbb M1p1HSOU

Построение модели насыщения Брукс-Кори и ее равновесная инициализация в ГДМ

Ведущий инженер ПАО Татнефть Файзрахманов Галим

+7 926 893-35-93

FayzrakhmanovGG@tatneft.ru

Инженер 1 категории ПАО Татнефть Еремеев Данил

> +7 927 046-17-41 EremeevDV@tatneft.ru

Ведущий инженер ПАО Татнефть Мавлявов Ильнур

> +7 917 920-34-38 MavlyavovIR@tatneft.ru

СПАСИБО ЗА ВНИМАНИЕ

МОДЕЛИРОВАНИЕ РАВНОВЕСНОГО НАСЫЩЕНИЯ. УСКОРЕННЫЙ МЕТОД

Поиск корреляции максимального капиллярного давления по готовому кубу водонасыщенности

3

- •На кроссплот капиллярного давления от нормированной водонасыщенности добавляем степенную линию тренда (тип зависимости не играет роль главное сохранять физичность)
- Получаем куб PCW_TREND куб тренда (вероятного значения) капиллярного давления при нормированной водонасыщеннсти.
- •PCW_HACK =

 $Pc_max*(P_c/PCW_TREND)- куб$ максимального капиллярного давления передаваемый в ГДМ.

•Данный куб стоит ограничить от слишком больших и маленьких значений без значительного влияния на распределение.

PCW_TREND – зависимость описанная линией тренда PCW_HACK = Pc_max * (Pc / PCW_TREND) Hanp. PCW_TREND = 2.2 * (0.038 * Pow(SWAT_SCALED , (-0.91)))

PCW_TREND

