MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA SOLAR FOTOVOLTAICO DE 6 KW CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO EM 220V CARACTERIZADO COMO AUTOCONSUMO REMOTO.

MARIA DAS DORES PAIVA DE MEDEIROS RG: 4311641

ALEXANDRE MOUSINHO CORSINO ENGENHEIRO ELETRICISTA REGISTRO: 151767485-9

ALEXANDRE by ALEXANDRE
MOUSINHO
CORSINO:01
893200

540893200 Date: 2025.09.30

17:16:26 -03'00'

TUCURUI – PA SETEMBRO – 2025

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada

C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída

HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

I_N: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}\,\,$ para

sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

SUMÁRIO

1.	OBJETIVO	4
2.	REFERÊNCIAS NORMATIVAS E REGULATÓRIA	4
3.	DOCUMENTOS OBRIGATÓRIOS	5
4.	DADOS DA UNIDADE CONSUMIDORA	_
5.	LEVANTAMENTO DE CARGA E CONSUMO	
•		
	5.1. Levantamento de Carga	
	5.2. Consumo Mensal	7
6.	PADRÃO DE ENTRADA	8
	6.1. Tipo de Ligação e Tensão de Atendimento	8
	6.2. Disjuntor de Entrada	
	6.3. Potência Disponibilizada	
	6.4. Caixa de Medição	
	6.5. Ramal de Entrada	
7.	ESTIMATIVA DE GERAÇÃO	12
8.	DIMENSIONAMENTO DO GERADOR	12
	8.1. Dimensionamento do gerador	12
9.	DIMENSIONAMENTO DO INVERSOR	
10.	DIMENSIONAMENTO DA PROTEÇÃO	14
	10.1. Dispositivo de seccionamento visível	14
	10.2. DPS	14
	10.3. Aterramento	14
	10.4. Requisitos de Proteção	15
44	DIMENSIONAMENTO DOS CABOS	
	PLACA DE ADVERTÊNCIA	
	FYOS	19

1. OBJETIVO

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à EQUATORIAL, dos documentos mínimos necessários, em conformidade com a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT) ou internacionais (europeia e americana), para **SOLICITAÇÃO DE ORÇAMENTO DE CONEXÃO** de microgeração distribuída conectada à rede de distribuição de energia elétrica através sistema solar fotovoltaico de **6 kW**, composto por 1 gerador e 1 inversor, caracterizado como AUTOCONSUMO REMOTO.

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado do Pará foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica Terminologia.
- c) ABNT NBR 11704: Sistemas Fotovoltaicos Classificação.
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição.
- e) ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma rede elétrica de distribuição Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.020.EQTL.Normas e Padrões Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.001.EQTL.Normas e Padrões Fornecimento de Energia Elétrica em Baixa Tensão.
- EQUATORIAL ENERGIA NT.030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de Medição e Proteção.
- j) ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional –
 PRODIST: Módulo 3 Acesso ao Sistema de Distribuição. Revisão 6. 2016, Seção 3.7.
- k) ANEEL Resolução Normativa nº 414, de 09 de setembro de 2010, que estabelece as condições gerais de fornecimento de energia elétrica.
- I) ANEEL Resolução Normativa ANEEL nº 482, de 17 de abril de 2012, que estabelece as condições gerais para o acesso de micro geração e mini geração distribuída aos sistemas de distribuição de energia elétrica e o sistema de compensação de energia elétrica.
- m) IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface
- n) IEC 62116:2014 Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures.

3. DOCUMENTOS OBRIGATÓRIOS

Tabela 1 – Documentos obrigatórios para a solicitação de acesso de microgeração distribuída

Documentos Obrigatórios	Até 10 kW	Acima de 10 kW	Observações
1. Formulário de Solicitação de Acesso	SIM	SIM	
2. ART do Responsável Técnico	SIM	SIM	
3. Diagrama unifilar do sistema de geração, carga, proteção e medição	SIM	SIM	
4. Diagrama de blocos do sistema de geração, carga e proteção	NÃO	SIM	Até 10kW apenas o diagrama unifilar
5. Memorial Técnico Descritivo	SIM	SIM	
6. Projeto Elétrico, contendo:	NÃO	SIM	
6.1. Planta de Situação		•	
6.2. Diagrama Funcional			
6.3. Arranjos Físicos ou layout e detalhes de montagem			Itens integrantes do Projeto
6.4. Manual com Folha de Dados (datasheet) dos Inversores (fotovoltaica e eólica) ou dos geradores (hidríca, biomassa, resíduos, cogeração, etc)			Elétrico
7. Certificados de Conformidade dos Inversores ou o número de registro de concessão do INMETRO para a tensão nominal de conexão com a rede	SIM	SIM	Inversor acima de 10 kW, não é obrigatória a homologação, apresentar apenas certificados de conformidade.
8. Dados necessários para registro da central geradora conforme disponível no site da ANEEL: www.aneel.gov.br/scg	SIM	SIM	
9. Lista de unidades consumidoras participantes do sistema de compensação (se houver) indicando a porcentagem de rateio dos créditos e o enquadramento conforme incisos VI a VIII do art. 2º da Resolução Normativa nº 482/2012	SIM, ver observação	SIM, ver observação	Apenas para os casos de autoconsumo consumo remoto, geração compartilhada e EMUC
10. Cópia de instrumento jurídico que comprove o	SIM, ver	SIM, ver	Apenas para EMUC e geração
compromisso de solidariedade entre os Integrantes	observação	observação	compartilhada.
11.Documento que comprove o reconhecimento pela	SIM, ver	SIM, ver	Apenas para cogeração
ANEEL, no caso de cogeração qualificada	observação	observação	qualificada
12. Contrato de aluguel ou arrendamento da unidade	SIM, ver	SIM, ver	Quando a UC geradora for
consumidora	observação SIM, ver	observação SIM, ver	alugada ou arrendada Quando a solicitação for feita
13.Procuração	observação	observação	por terceiros
14. Autorização de uso de área comum em condomínio	SIM, ver observação	SIM, ver observação	Quando uma UC individualmente construir uma central geradora utilizando a área comum do condomínio

NOTA 1: Para inversores até 10 kW é obrigatório o registro de concessão do INMETRO.

4. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato: 3036330987;

Classe: Residencial;

Nome do Titular da CC: MARIA DAS DORES PAIVA DE MEDEIROS;

Endereço Completo: R. G, PROX CARTORIO 1 OFICIO, Nº 214 - SANTA ISABEL; Número de identificação do poste e/ou transformador mais próximo: 17/03/2003 - 150;

Coordenadas georrefenciadas: X = 444845;48748076 Y = 4497306;1331672

Figura 1: Localização da unidade consumidora.

5. LEVANTAMENTO DE CARGA E CONSUMO

5.1. Levantamento de Carga

Tabela 2 – Levantamento de carga

ITEM	DESCRIÇÃO	P (W) [A]	QUANT. [B]	CI (kW) [C = (A*B)/1000]	FP [D]	CI (kVA) [E = C/D]	FD [F]	D(kW) [G = CxF]	D(kVA) [H = ExF]
	Ar condicionado	910,00							
1	9000 BTU	W	2	1,82 kW	1	1,82	0,76	1,38	1,38
		1000,00							
2	Ferro Elétrico	W	1	1,00 kW	1	1	0,76	0,76	0,76
		500,00							
3	Geladeira	W	1	0,50 kW	0,8	0,63	0,86	0,43	0,54
		50,00							
4	Lâmpadas	W	11	0,55 kW	1	0,55	0,86	0,47	0,47
	•	1000,00							
5	Micro ondas	W	1	1,00 kW	1	1	0,76	0,76	0,76
	Máquina de	700,00							
6	lavar roupa	W	1	0,70 kW	1	0,7	0,76	0,53	0,53
		110,00							
7	TUG's	W	13	1,43 kW	0,8	1,79	0,76	1,09	1,36
		4270,00							
TOTAL		W		7,00 kW		7,48		5,43	5,8

5.2. Consumo Mensal

Tabela 3 – Consumo mensal dos últimos 12 meses

MÊS	CONSUMO (kWh)
MÊS 1	524,00
MÊS 2	435,00
MÊS 3	447,00
MÊS 4	572,00
MÊS 5	542,00
MÊS 6	433,00
MÊS 7	478,00
MÊS 8	489,00
MÊS 9	521,00
MÊS 10	492,00
MÊS 11	403,00
MÊS 12	541,00
TOTAL	5477,00
MÉDIA	456,41

6. PADRÃO DE ENTRADA

6.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora é ligada em ramal de ligação em baixa tensão, através de um circuito bifásico à três condutores, sendo dois condutores FASE de diâmetro nominal 16 mm² e um condutor NEUTRO de diâmetro nominal 16 mm², com tensão de atendimento em 220 V, derivado de uma rede aérea de distribuição secundária da EQUATORIAL ENERGIA no estado do Pará.

6.2. Disjuntor de Entrada

No ponto de entrega/conexão é instalado um disjuntor termomagnético, em conformidade com a norma NT.001.EQTL. Normas e Padrões da Equatorial Energia, com as seguintes características:

NÚMERO DE POLOS: 2 TENSÃO NOMINAL: 400 V CORRENTE NOMINAL: 63 A FREQUÊNCIA NOMINAL: 60 HZ

ELEMENTO DE PROTECAO: TERMOMAGNÉTICO CAPACIDADE MAXIMA DE INTERRUPCAO: 3 kA; ACIONAMENTO: TRAVADO NO MODO "LIGADO"

CURVA DE ATUACAO (DISPARO): C.

6.3. Potência Disponibilizada

A potência disponibilizada para unidades consumidora onde será instalada a microGD é igual à:

PD [kVA] = $(V_N [V] X I_{DG} [A] X NF) /1000 = (220 V x 63 A x 1) / 1000 = 13,86 kVA$

PD [kW] = PD [kVA] x FP = $13,86 \times 1 = 13,86 \text{ kW}$

VN = 220

IDG = 63 A

NF = 1

FP = 1

PD (kW) = 13,86 kW

6.4. Caixa de Medição

A caixa de medição já existente polifásica em material polimérico tem as dimensões de 260 mm x 423 mm x 130 mm (comprimento, altura e largura), está instalada no muro, no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e layout, em conformidade com as normas da concessionária NT.001.EQTL e NT.030.EQTL.

Figura 7: Desenho dimensional detalhado da caixa de medição.

TIPO	DIMENSÕES
POLIFÁSICA	260 X 423 x 130

Figura 8: Padrão de entrada conforme a Norma Técnica NT.001.EQTL.

Figura 9: Ramal de Entrada.

Figura 10: Ramal de Ligação.

O aterramento da caixa de medição é com 1 haste de aterramento de comprimento 1200 mm e diâmetro 12,7 mm", condutor de 6 mm² com conexão em conector.

6.5. Ramal de Entrada

O ramal de entrada da unidade consumidora é, através de um circuito bifásico à três condutores, sendo dois condutores FASE de diâmetro nominal 16 mm² e um condutor NEUTRO de diâmetro nominal 16 mm², em 220 V.

7. ESTIMATIVA DE GERAÇÃO

Estimativa de geração para 1000 kWh ao mês.

8. DIMENSIONAMENTO DO GERADOR

8.1. Dimensionamento do gerador

Tabela 4 – Características técnicas do gerador.

Fabricante	SUNOVA
Modelo	SS-BG610-72MDH(T)
Potência nominal – Pn [W]	610 W
Tensão de circuito aberto – Voc [V]	55,17 V
Corrente de curto circuito – Isc [A]	13,95 A
Tensão de máxima potência – Vpmp [V]	45,42 V
Corrente de máxima potência – Ipmp [A]	13,32 A
Eficiência [%]	21,64%
Comprimento [m]	2,382 m
Largura [m]	1,134 m
Área [m2]	2,70 m²
Peso [kg]	32,5 kg
Quantidade	15
Potência do gerador [kW]	6 kW

9. DIMENSIONAMENTO DO INVERSOR

Tabela 5 – Características técnicas do inversor 1.

Fabricante	SOLPLANET
Modelo	ASW6000-S-G2
Quantidade	1
Entrada	
Potência nominal – Pn [kW]	6 kW
Máxima potência na entrada CC – Pmax-cc [kW]	9 kW
Máxima tensão CC – Vcc-máx [V]	600 V
Máxima corrente CC – lcc-máx [V]	16A/16A
Máxima tensão MPPT – Vpmp-máx [V]	550 VDC
Mínima tensão MPPT – Vpmp-min [V]	80 VDC
Tensão CC de partida – Vcc-part [V]	100 VDC
Quantidade de Strings	2
Quantidade de entradas MPPT	2
Saída	
Potência nominal CA – Pca [kW]	6 kW
Máxima potência na saída CA – Pca-máx [kW]	6 kW
Máxima corrente na saída CA – Imáx-ca [A]	27,3 A
Tensão nominal CA – Vnon-ca [V]	220 / 230 / 240

Frequência nominal – Fn [Hz]	50Hz/ 60Hz
Máxima tensão CA – Vca-máx [V]	295 V
Mínima tensão CA – Vca-min [V]	180 V
THD de corrente [%]	3.0%
Fator de potência	1(ajustável 0.8)
Tipo de conexão – fase + fase + terra	F+F+T
Eficiência máxima [%]	97.7%

9.1. LOCALIZAÇÃO E ACESSO AOS INVERSORES

O acesso aos inversores se dará através do portão principal da residência com localização segura e de fácil acesso, os inversores serão instalados na parede a uma altura de 1,50m em relação ao solo.

10. DIMENSIONAMENTO DA PROTEÇÃO

Tabela 7 - Disjuntores CA

Cto.	Inversor	N° de polos	Tensão Nominal CC [V]	Corrente Nominal [A]	Frequência [Hz]	Capacidade Máxima de Interrupção [kA]	Curva de Atuação
CA1	Inversor (6KWp)	2	500 V	DJ 32 A	60 Hz	3 kA	С

10.1. Dispositivo de seccionamento visível

Como será utilizado o inversor como interface, não será necessário à utilização do Dispositivo de Seccionamento Visível – DSV, portando o DSV será dispensado.

10.2. DPS

Serão utilizados equipamentos de proteção, com finalidade de isolar o sistema fotovoltaico, impedindo acidentes elétricos como curtos-circuitos e surtos elétricos. Esses equipamentos serão conectados ao inversor de frequência e ao quadro de proteção da rede elétrica. Quando conectado ao lado CC, ele protege a instalação e os módulos **fotovoltaicos** contra descargas elétricas. Quando os dispositivos de segurança estão presentes na conexão com o lado CA, ele realiza a proteção da instalação contra descargas atmosféricas.

A parte CC que vem integrada já no inversor é projetada para absorver surtos provenientes de descargas atmosféricas que possam incidir diretamente sobre os módulos fotovoltaicos.

No inversor **ASW6000-S-G2**, do lado CA, a proteção é executada na saída do inversor com dois Dispositivos de Proteção contra Surtos (DPS/275Vca/45kA) e em seguida por um disjuntor bipolar de 32A, permitindo o desligamento da saída do inversor. Do lado CC a proteção é feita de forma interna no inversor por uma chave segcionadora de 1100V/25A e um DPS (500Vcc-20kA) para cada MPPT.

10.3. Aterramento

Sistema terá um isolamento galvânico entre a corrente continua do sistema fotovoltaico e a rede. Soluções técnicas diversas podem ser utilizadas e são aceitáveis desde que respeitem as normas vigentes e de boas práticas.

A edificação possui malhas de aterramento no esquema TT (conforme norma ABNT NBR 5410:2004) resultando em uma resistência de aterramento inferior a 10Ω mesmo em solo seco. A instalação ser composta por 4 hastes com 2 metros de distância entre as hastes de 2,44 metros com seção de 5/8" enterradas no solo e também a haste com a mesma descrição é enterrada no solo abaixo do quadro do disjuntor geral garantem a qualidade do aterramento.

Os cabos de aterramento dos módulos fotovoltaicos são próprios para instalação externa sujeitos a insolação e intempéries causadas pelo tempo. A bitola para aterramento entre as estruturas metálicas e os string box é de 6mm² conforme recomendado pela IEC/TS 62548:2013 (norma elaborada pela comissão de Estudo CE03:064.01 do COBEI). A conexão entre a moldura dos módulos e o cabo terra é executada por terminais de fixação, a fim de garantir a qualidade do aterramento, é feito a quebra do anodizado da estrutura metálica para maior segurança do aterramento.

10.4. Requisitos de Proteção

Tabela 8 – Características técnicas do gerador

Requisito de Proteção	Obrigatório	Ajuste
Elemento de desconexão	Sim, quando não usar	
Liemento de desconexao	inversor	
Elemento de interrupção (52)	Sim	
Proteção de subtensão (27) e sobretensão (59)	Sim	
Proteção de subfrequência (81U) e	0:	
sobrefrequência (810)	Sim	
Relé de sincronismo (25)	Sim	
Anti-ilhamento (78 e 81 df/dt – ROCOF)	Sim	
Proteção direcional de potência (32)	Sim, quando não usar	
Proteção directorial de potencia (32)	inversor	
Tempo de Reconexão (temporizador) (62)	Opcional, quando não	
Tempo de Reconexao (temponzador) (02)	usar inversor	

Referente ao inversor ASW6000-S-G2, Caso a rede da concessionária opere fora das faixas toleradas para a tensão e frequência (ABNT 60149:2013) o inversor é bloqueado e desconectado da rede através de 2 relés de proteção conectados em série, interno do inversor, em um intervalo de tempo inferior a 2 segundos. Esta proteção é conhecida como "anti-ilhamento" e após o reestabelecimento da rede pela concessionária o religamento do inversor é executado em 180 segundos, conforme exigência da companhia. Conforme tabelas 9 e 10 abaixo:

Tabela 9: Ajustes de sobre e Subtensão

FAIXA DE TENSÃO NO PONTO DE CONEXÃO [V]	TEMPO DE DESCONEXÃO [S]
V > 242	0,2 s
176 ≤ V ≤ 242	Operação Normal
V < 176	0,4 s

Tabela 10: Ajustes dos Limites de Frequência (sobre e subfrequência)

· · · · · · · · · · · · · · · · · · ·					
FAIXA DE FREQÜÊNCIA NO PONTO DE	TEMPO DE DESCONEXÃO				
CONEXÃO (HZ)	[S]				
f < 57,5	0,2				
57,5 < f < 62	Operação normal				
f > 62	0,2				

Portanto, ocorrerá proteção de desligamento da rede quando o sistema estiver fora da faixa de tensão e frequência da rede e com falha de sobre corrente, conforme os requisitos da IEC 11-20 e normas da distribuidora de energia elétrica local. Reset automático das proteções de início automático.

11. DIMENSIONAMENTO DOS CABOS

11.1. ISOLAÇÃO

O cabeamento elétrico será feito por meio de cabos condutores isolados, conforme a descrição abaixo:

- Seção do condutor de cobre calculado de acordo com a norma IEC / NBR
- Cabo tipo FG21, se a passagem de cabos for externa ou FG27 se a instalação for subterrânea.
- Tipo N07V-k se a instalação for para dutos em edifícios.

Os cabos também estarão de acordo com as normas IEC, com código e cores conforme a norma UNEL / NBR.

Para não comprometer a segurança dos trabalhadores durante a instalação, verificação ou manutenção, os condutores seguirão a tabela de cores conforme abaixo:

- Cabos de proteção: Amarelo-Verde (Obrigatório)
- Cabos de neutro: Azul claro (Obrigatório)
- Cabos de fase: Cinza/Marrom
- Cabos de circuito c.c.: Com indicação especifica de (+) para positivo e (-) para negativo.

Como pudemos notar a especificação exposta acima, a seção do condutor do sistema fotovoltaico é superdimensionada, com referimento a corrente e as distâncias limitadas.

Com estas seções, a queda de potencial está contida dentro 2% do valor medido a partir de qualquer módulo para o grupo de conversão.

- Isolamento: 1 kV.
- Bitola: 4mm².
- Capacidade de condução de corrente: 28 A.

12. PLACA DE ADVERTÊNCIA

Junto ao padrão de entrada de energia, próximo a caixa de medição e proteção será instalada uma placa de advertência com os seguintes dizeres: "CUIDADO – RISCO DE CHOQUE ELÉTRICO – GERAÇÃO PRÓPRIA". A placa foi confeccionada em PVC conforme orientações normativas contidas na norma NDU-013, seguindo como exemplo a imagem abaixo.

ANEXOS

- Formulário de Solicitação de Acesso
- ART do Responsável Técnico
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Projeto Elétricos contendo: planta de situação, diagrama funcional, arranjos físicos ou lay-out, detalhes de montagem, manual com folha de dados do gerador e manual com folha de dados do inversor (se houver)
- Para inversores até 10 kW registro de concessão do INMETRO, para inversores acima de 10 kW certificados de conformidade
- Dados de registro
- Lista de rateio dos créditos
- Cópia de instrumento jurídico de solidariedade
- Para cogeração documento que comprove o reconhecimento pela ANEEL.