Processors and Memory

System Processors
CPU Architecture
Memory Systems
Memory and Caching

Main memory

- DDR3 SDRAM (2007) faster than DDR3 and more power efficient, speeds from 800 -2133 MTS
- DDR4 SDRAM from late 2014, Lower voltage (1.2 vs 1.5), speeds up to 4000 MTS
- DDR5 SDRAM

What is all this useful for?

- Matching CPU speed to memory speed
- Program optimization

RAM speed and PCnnnn ratings

- Sometimes memory is described as PCnnnn, eg
 - PC3200
 - PC19200
- This is the maximum speed in Mbytes/sec that data can be transferred between the CPU and the memory.
- However, it will only reach this maximum with the correct CPU clock speed

Examples

- A CPU with a Front Side Bus running at 400 MHz can transfer data at a maximum rate of 400 x 106 x 8 = 3200Mbs
- A CPU with a Front Side Bus running at 2400 MHz can transfer data at a maximum rate of 400 x 106 x 8 = 19200Mb
- Put another way, PC3200 memory will work correctly at FSB speeds of up to 400 MHz, and PC19200 will work correctly for FSB speeds up to 2400 MHz
- PC19200 memory would work with a 400MHz FSB, but only running at 3200MHz (excluding other compatibility issues)
- The memory will generally run at 8 times the speed of the FSB, providing it doesn't exceed its maximum speed

Memory Latency

- Maximum Burst Speed is the rate data can be transferred to the CPU, but doesn't take account of latency.
- DDR1 SDRAM
 running at 100MHz
 (cycle time 1/108 =
 10nS), had typical
 timing of 2-3-3,
 meaning the CAS
 delay was 20nS.
- What about this one

Other bus structures

 Some newer CPUs have dual data buses which potentially double the maximum data transfer rate

Memory Chips

- Memory chips are arranged on circuit boards in DIMM (Dual In-Line Memory Module) format
 - edge card connectors on both sides of board

- each SDRAM type has different electrical properties are are incompatible
- keyed' so that they will only fit in the socket corresponding to that specific memory technology.

Memory Metrics

Memory metrics:

- Bandwidth
 - capacity: how much data can be transferred in a given time
 - peak bandwidth is theoretical efficiency
- Latency
 - delay: time from request for data to when data is available
 - chip memory organized as 2D matrix takes time to activate a row, select a column, switch between rows and columns, etc.

•

Main memory

• Example peak bandwidth and speeds:

Technology	Speed Rating	Peak Bandwidth
SDRAM	PC133	1.06 GB/sec
DDR SDRAM	DDR-400	3.2 GB/sec
DDR2 SDRAM	DDR2-800	6.4 GB/sec
DDR3 SDRAM DDR4 SDRAM	DDR3-1600 DDR4-2400	12.8 GB/sec 24.8 GB/sec

Non-volatile memory

- Computers require some information to remain in memory: the BIOS (Basic Input/output System)
 - enables computer to access components of hardware
 - needs to be in memory when computer boots
 - stored in non-volatile memory
- Flash EEPROM
 - Flash Electrically Erasable Programmable Read Only Memory

Cache

- Main memory is slow
- If CPU has to wait for a memory access, many CPU cycles are wasted

Cache

- static memory between CPU and main memory
- holds recently accessed data
- holds data predicted to be needed soon (prediction might not be accurate)
- multiple levels of cache

CPU Cache

Level 1 cache

- small (e.g. 64 KB)
- on CPU for ultra fast access
- runs at or near CPU speeds so little CPU delay to access
- Write-through is possible

Level 2 cache

- larger than level 1 (e.g. 256 KB)
- slower than level 1 cache
- on CPU

Level 3 cache

- larger than level 2 (e.g. 8 MB)
- slower than level 2 cache
- either on CPU or sometimes on a support chip

CPU Cache

- Cache is tiny compared to main memory
 - yet 90% hit rates are not uncommon on modern systems
- Principle of Locality
 - Locality of execution
 - Locality of data access

Memory Type	Size	Proportion of Total
Main Memory	8 GB	~99.9%
Level 3 Cache	8 MB	~0.1%
Level 2 Cache	256 KB	~0.00003%
Level 1 Cache	64 KB	~0.00008%

Cache for different purposes

- Types of cache
 - Instruction Cache
 - Data Cache
 - Translation look aside cache
- locality of execution
- locality of access
- locality of indexed access
- The fastest type of cache is content addressable
 - This is usually in the form of tables containing
 - The starting address of a notional block of memory
 - The block contents itself
 - These are mapped into a virtual memory address space
 - In operating systems they are called pages
 - In CPUs they are the L1,2,3 caches
 - In networking, they are called proxy caches

Memory Cache

Memory Cache

- When a memory access occurs the processor first checks the cache to see if cache contains the memory address
- If yes, it is loaded directly (Cache hit)
- If no, the data must be requested from memory, and is loaded into the cache
 - This also means a new space has to be found in the cache
 - How this is done is know a the Cache replacement policy
 - Eg, least recently used (study more in OS course)

Cache Write Policies

- If data is written to the cache, it needs to be written back to main memory at some point, unless it is not changed
- When Cache memory address is written to, a status bit is set, marking the location as dirty, meaning it must be written back
- Simplest approach is write through, where every cache write is written back to main memory, however this can be slow
- Alternatively, cache can be write back, whereby data is periodically written back to memory, or perhaps queued and written back asynchronously when the memory bus is free

Cache Communication

 It is common to have dedicated L1 and L2 cache for each core in a multicore CPU

 If one core loads a memory location that is currently held in the cache of another core, communication needs to occur to ensure that values are maintained correctly

Summary

- Memory
 - Technologies
 - Timing
 - Evolution of SDRAM
- Main Memory
- Memory Cache