Homotopy categories

Def: A an ~- rategory Its homotopy category is

olu (ho A) =
$$1 \xrightarrow{q} A$$
 are "elements" of A
mor (ho A) = $f = q \longrightarrow b$ $1 \xrightarrow{p} A$

By Yoneda Lemma:

An object is uniquely determined up to up to by its "generalized elements" X - A But were interested in studying a-categories upto equiv. A not an iso.

· By 2-category Joneda:

. We've shown that equiv between ∞ -roats coincide with 2-roat equivariable in ThK

Initial / terminal elements in A, limits, columits

Def
$$A = \infty$$
-category
An initial element is left adjoint to $A \stackrel{!}{\longrightarrow} 1$
A terminal element is right adjoint to $A \stackrel{!}{\longrightarrow} 1$
 $1 \stackrel{!}{\longleftarrow} A$ $1 \stackrel{!}{\longleftarrow} A$

Initial $1 \longrightarrow A$, counit:

Brop A ~ A' Then A has an unital element iff A' does In which case its spreserved under equiv

Resp. Initial elements are "representably initial"

i.e. $\times \xrightarrow{!} 1 \xrightarrow{i} A$ is initial in fun (X,A).

i)
$$\forall X$$
 $1 \cong Fun(X,1) \xrightarrow{C*} Fun(X,A) \in q(at)$

ii)
$$\forall x$$
 $1 \cong \operatorname{Fun}^h(x,1) \xrightarrow{i_x} \operatorname{Fun}(x,A) \in \operatorname{Cot}$

Bup: Any two initial elements of A are iso in hoA.

Limits, Colimits:

2 kinds of diagrams: i) diagrams indexed by a simplicial set J

(K cartesian 2) diagrams indexed by other 00-category J.

closed)

Def ∞ -category of J-indexed diagrams valued in $A: \vec{A}: \vec{K} \times \vec{K} \longrightarrow K$ $\vec{A} := \begin{cases} i \end{cases} \text{ is implicial } \text{ contensor}$ $\vec{A}: \vec{A}: \vec{A} := \vec{A} : \vec{A$

• $J \stackrel{!}{\longrightarrow} 1$ unduces "constant functor" $A \stackrel{\triangle}{\longrightarrow} A^{J}$

Def In ∞ -cat A has all colons of shake J if Δ has a left adjoint all limits of shake J if it has a right adjoint A A A

colum cone: $A^3 \longrightarrow A^3$

$$\lim_{A^{J}} cone : \lim_{A^{J}} A^{J}$$

In 2-category hK, given a co-span
$$C \xrightarrow{g} A \xrightarrow{f} B$$

an absolute left-lifting of g through f is
$$c \xrightarrow{A\Pi} f s.t. \xrightarrow{g} A \xrightarrow{g} A$$

$$c \xrightarrow{g} A$$

for absolute right lifting reverse the 2-cells

 $\frac{\text{Lem}}{\text{If}}$ If $\frac{7 \text{B}}{\text{N}^{2}}$ is an absolute left lifting diagram so is $\frac{1}{9}$ A

Prof γ id $\beta \Longrightarrow uf$ is unit of an adjunction iff $\beta = \beta = \beta$. If fing diagram similarly for counit.

Note: colimit cone is an absolute left lifting diagram

a single colon A^{J} diagram $1 \longrightarrow A^{J} \longrightarrow A^{J}$

Def Let $D \xrightarrow{d} A^{J}$ be a family of J independed diagrams of Ad colim is an absolute left lifting $D \xrightarrow{M} A^{J}$ lim

D A A

Notation:
$$\triangle = [0] \rightleftharpoons [1] \rightrightarrows [2] \rightarrow \cdots$$

In
$$\varphi$$
 initial $\triangle_{+} = \triangle \cup [-1]$

$$\Delta_{\infty} = \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

Prop A = w-cat If A admits augementation + splitting how a columit,

the colinit given by the augementation

$$A \xrightarrow{\omega_{[-1]}} A \xrightarrow{\omega_{b}} A$$