INTELIGÊNCIA COMPUTACIONAL

PREPARANDO OS DADOS

FELIPE TORRES

CONHECER OS DADOS DO SEU DATASET

 O primeiro passo para a análise de um conjunto de dados ou dataset é conhecer os seus dados. Esta etapa auxilia:

• A definir as técnicas de pré-processamento.

• Ajuda a projetar e definir os algoritmos que serão utilizados no data mining.

Entender os resultados das suas análises

CONHECER OS DADOS DO SEU DATASET

- Dados podem ser de diversos tipos:
 - Registros (em um BD)
 - Matriz de dados (numéricos)
 - Palavras de um documento
 - Dados de um grafo
 - Ordem temporal ou sequencial
 - Dados espaciais
 - Imagens, multimídia

CONJUNTO DE DADOS

- Conjuntos de dados são formados por instâncias
 - Amostras, exemplos, objetos, tuplas, pontos, entidades, casos, vetores
 - Instâncias são descritas por atributos
 - Linhas em um BD são instâncias
 - Colunas em um BD são atributos

- Atributo (ou dimensões, features, variáveis):
 - um campo representando uma característica da instância. ex.: nome, endereço, ID

- Tipos:
 - Nominal: qualitativo
 - Binário: qualitativo
 - Ordinal: qualitativo
 - Numérico: quantitativo

- Nominal
 - valor do atributo é um nome para algo
 - uma categoria, um código, um estado
 - exemplos: estado civil, cor do cabelo, ocupação
 - podem ser representados por números arbitrários
 - mas não tem sentido efetuar operações entres estes valores, não são quantitativos, nem tem ordenação
 - não há média nem mediana

- Binário
 - atributos com dois valores: 0 e 1
 - ausente ou presente, sim ou não
 - exemplo: fumante? possui carro?
 - simétrico: ambos valores são relevantes
 - assimétrico: um valor é mais relevante
 - (normalmente, o valor I é utilizado)

- Ordinal
 - valores possuem uma ordem (ranking)
 - o valor em si não tem significado
 - exemplo: notas, tamanho P exemplo: notas, tamanho P M-G, escala de G, escala de satisfação
 - podem vir da discretização de quantidades numéricas

- Numérico
 - quantitativo, quantidade mensurável
 - escala por intervalo (interval-scaled)
 - escala de unidades de mesmo tamanho
 - ordem, há diferença entre valores
 - não há zero verdadeiro, indicando ausência
 - exemplo: temperatura em celsius, dias de calendário
- escala por razão (ratio-scaled):
 - há zero verdadeiro
 - exemplo: temperatura em K, valor monetário

- Atributo Discreto
 - Somente um conjunto finito ou contável de valores
 - ex.: cep, profissão, palavras em coleção de documentos
 - As vezes, representado por variáveis inteiras
- Atributo Contínuo
 - Número reais
 - ex.: temperatura, altura, peso
 - Na prática, medimos e representamos usando um número finito de dígitos

 ponto-flutuante

- Características de conjuntos de dados
 - Dimensionalidade
 - Número de atributos
 - Maldição da dimensionalidade (dimensionality curse): redução?
 - Esparcidade (Sparcity)
 - Atributos ausentes ou 0
 - Resolução
 - Padrões dependem da escala

ESTATÍSTICA BÁSICA DOS DADOS

Medidas para compreender melhor os seus dados.

 A utilização de medidas de tendência central para entender o comportamento dos dados.

 Medidas de dispersão e visualização dos dados, auxiliam também no entendimento do dataset.

ESTATÍSTICA BÁSICA DOS DADOS – TENDÊNCIA CENTRAL

- Média Aritmética
 - n é tamanho da amostra, N é tamanho da população

$$ar{x}=rac{x_1+x_2+\ldots+x_n}{n}=rac{1}{n}\sum_{i=1}^n x_i$$

- Média Ponderada
 - Média ponderada é a média aritmética com um quociente x_i ponderando os valores

$$rac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} = rac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots + w_n}$$

ESTATÍSTICA BÁSICA DOS DADOS - TENDÊNCIA CENTRAL

Mediana

- valor do meio se quantidade impar, ou média dos valores do meio se quantidade par
- atributos numéricos e ordinais

ESTATÍSTICA BÁSICA DOS DADOS - TENDÊNCIA CENTRAL

Moda

- valor mais frequente
- uma moda: unimodal
- bimodal, trimodal, multimodal
- atributos numéricos, ordinais e nominais

ESTATÍSTICA BÁSICA DOS DADOS – DISTRIBUIÇÃO SIMÉTRICA

- Variância e desvio padrão
 - amostra: s, população: σ
 - variância

$$s^2 = rac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x}
ight)^2,$$

• Desvio padrão é a raiz quadrada da variância

ESTATÍSTICA BÁSICA DOS DADOS - DESVIO PADRÃO

Quantil

- Pontos que dividem dados ordenados em q subconjuntos de tamanho igual
- Cada subconjunto é um q-quantil, teremos (q-1) qquantis
- q=100: os 100-quatil são percentis
- q=4: os 4-quantil são quartis

- Quartil, outliers e boxplots
 - Quartil: QI (percentil de 25%), Q3 (percentil de 75%)
 - Inter-quartil range: IQR = Q3 quartil range: IQR = Q3 –
 Q1
 - Resumo de 5 valores: min, QI, mediana, Q3, max
 - Boxplot: final da caixa são os quartis, mediana é marcada, além de bigodes e outliers
 - Outlier: usualmente, um valor maior/menor que I.5*IQR

Uma indústria produz uma peça automotiva cujo valor de referência é 75cm. Após verificar lotes com peças fora de especificação, enviaram duas equipes de trabalhadores (A e B) para treinamento. Para um verificar a eficiência do treinamento, foram selecionadas 10 peças produzidas pelas equipes A e B e 10 peças produzidas pelas equipes C e D que não participaram do treinamento.

- I. As equipes A e B produzem peças com menor variabilidade, indicando que o treinamento teve o efeito desejado;
- 2. A equipe D é a que produz peças com maior variabilidade;
- 3. A equipe B é a que produz peças com menor variabilidade.

Como as peças das equipes A e B tem menor variabilidade e com valor médio próximo do valor de referência, vale a pena enviar as demais equipes para o treinamento.

- Curva de distribuição normal
 - De μ-σ até μ+σ: contém até 68% das medidas (μ: média, σ: desvio padrão)
 - De μ –2 σ até μ +2 σ : contém cerca de 95%
 - De μ –2 σ até μ +2 σ : contém cerca de 95%
 - De μ -3 σ até μ +3 σ : contém cerca de 99.7%

Nem sempre os dados tem distribuição normal!

- Histograma: gráfico exibe frequência tabulada por meio de barras
 - Mostra proporção de casos que caem em várias categorias ou intervalos
 - Difere de um gráfico de barras pois a área da barra denota o valor e não a altura como em gráfico de barra, distinção importante quando as categorias não tem largura uniforme

Histograma

- Histograma:
- Histogramas de distribuições diferentes

Scatter plot

- Permite visualização de correlação entre duas variáveis
- Cada par de valores é indicado como um ponto em um plano

Scatter plot

Violin plot

Violin plot

 Aplicação de várias técnicas para captação, organização, tratamento e a preparação dos dados.

• É uma etapa que possui fundamental relevância no processo de KDD.

 Compreende desde a correção de dados errados até o ajuste da formatação dos dados para os algoritmos de mineração de dados que serão utilizados.

- Qualidade dos dados
 - Limpeza dos dados

- Preparação dos dados
 - Integrar dados e atributos
 - Reduzir dados
 - Transformar dados e atributos

• Que tipos de problemas podemos ter com os dados?

Como detectar estes problemas?

Como tratar estes problemas?

- Medidas de Qualidade
 - Acurácia: corretos ou errados
 - Completude: não registrado, não disponível
 - Consistência Consistência: alguns modificados modificados, outros não, sem referência, padrões diferentes,...
 - Temporalidade: atualizados no tempo correto?
 - Credibilidade: quão confiáveis são os dados?
 - Interpretabilidade: quão fácil é o entendimento dos dados?

- Problemas com dados
 - Ruído
 - Outlier
 - Duplicações
 - Inconsistências
 - Valores ausentes
 - Limpeza dos Dados (Data Cleaning)!

- Ruído: mudança nos valores originais
 - gerado na captura, armazenamento, transmissão, processamento, conversão
 - ex.: barulho barulho de fundo captado captado em conjunto comjunto com o áudio de uma voz, sensibilidade do sensor de luz na captura de uma imagem fotográfica
 - pode ser feita filtragem espectral ou suavização dos dados

 Outliers: instâncias de dados com características consideravelmente diferentes da maioria das outras instâncias

Identificar ou remover outliers

- Valores ausentes
 - informação não coletada (ex.: pessoa se recusou a oferecer)
 - atributos não aplicáveis a todos casos (ex.: renda não é aplicável a crianças)
- Lidando com valores ausentes
 - Eliminar instâncias de dados
 - Corrigir manualmente
 - Utilizar um valor de tendência central
 - Estimar valores ausentes com base nos demais
 - Ignorar valores ausentes na análise

- Base de dados pode possuir instâncias duplicadas, ou quase duplicadas
 - Pode ocorrer na mesclagem de dados de fontes heterogêneas
 - Ex.: mesma pessoa com vários endereços de email

- Dados incompletos ou inconsistentes
 - Identificar, preencher, estimar, corrigir

- Agregação
- Amostragem
- Redução de dimensionalidade
- Redução de numerosidade
- Discretização e Binarização
- Transformações de atributos

- Agregação
- Combinar dois ou mais atributos (ou instâncias) em um único atributo (ou instância)
- Motivação
 - Redução de dados
 - Reduzir o número de atributos ou instâncias
 - ex.: vendas mensais agregadas em vendas anuais
 - Mudança de escala
 - Cidade agregadas em regiões, estados, países, etc
 - Dados mais 'estáveis'
 - Dados agregados podem ter menor variabilidade
 - ex.: temperatura do dia vs temperatura do mês

- Amostragem
 - Obter um conjunto de amostra menor que o conjunto de dados original
 - Escolha um subconjunto representativo
 - Cuidado com o tamanho da amostra
 - Pode reduzir tempo de processamento e espaço de memória
 - Poder ser usado para testes iniciais antes de execução na base completa

- Amostragem
 - Aleatório simples
 - Cada instância tem mesma probabilidade
 - Sem reposição
 - Instância selecionada não pode mais ser escolhida
 - Com reposição
 - Instância selecionada poder ser escolhida de novo
 - Amostragem estratificada
 - Dados são particionados, instâncias são sorteadas de cada partição (proporcionalmente)

Amostragem

Amostragem

Raw Data

Cluster/Stratified Sample

- Maldição da dimensionalidade: aumento do número de dimensões deixa dados mais esparsos
- Redução de dimensionalidade
 - tenta eliminar eliminar atributos atributos irrelevantes irrelevantes ou reduzir reduzir ruído
 - reduz tempo e memória para mineração de dados
 - facilita visualização
- Técnicas
 - Principal Components Analysis
 - Singular Vector Decomposition
 - Feature subset selection (subconjunto de atributos)

Principal Component Analysis (PCA)

- Ache uma projeção que captura a maior parte da variação dos dados
- Dados originais são projetados em um espaço menor, composto pelos autovetores da matriz de co-variância

- Seleção de subconjunto de atributos
 - Podem haver atributos redundantes ou irrelevantes
 - Para n atributos, existem 2n Para n atributos, existem 2 subconjuntos n subconjuntos
 - Podemos tentar busca exaustiva pelo melhor subconjunto
 - Pode-se avaliar por teste de significância estatística, por ganho de informação, executando a tarefa de mineração,...
 - Mas busca exaustiva pode ser proibitiva

- Seleção de subconjunto de atributos
 - Uso de heurísticas
 - Tipicamente uso de algoritmo guloso: busca localmente a melhor solução
 - Passo-a-passo para frente: começa com subconjunto vazio e adiciona o melhor atributo a cada passo
 - Passo-a-passo para trás: começa com todos atributos e elimina o pior a cada passo
 - Combinação de adicionar e eliminar
 - Árvore de decisão: atributos mais relevantes para particionamento são nós da árvore

- Criação de atributos
 - Criar novos atributos que capturam a informação importante nos dados de forma mais eficiente que os originais
 - Feature extraction dependente de domínio
 - ex.: extração de descritores de imagens
 - Mapeamento de dados em outro espaço
 - transformada de Fourier
 - Feature construction
 - combinar dados existentes, dependente de domínio

Criação de atributos

- Redução de numerosidade
 - Reduza volume de dados escolhendo uma representação de dados alternativa, menor
 - Métodos paramétricos (ex. regressão)
 - Ajuste os dados a um modelo e guarde os parâmetros do modelo, descartando os dados
 - Métodos não paramétricos
 - Não assuma modelos
 - histogramas, agrupamento, amostragem,...

- Redução de numerosidade
 - Histograma: divida os dados em intervalos e guarde somente a média de cada
 - Agrupamento: descoberta de grupos com similaridade interna e dissimilaridade externa
 - Guarde os centróides (protótipos) dos grupos

Discretização

- Transformação de atributos numéricos em categóricos (ordinais ou nominais)
- Não supervisionado (sem uso da classe): intervalos iguais, frequências iguais, agrupamento
- Supervisionado: maximizar pureza de classe nos intervalos, ex: minimizar entropia

Binarização

 Transformação de atributos em um ou mais atributos binários

- Transformações de atributos
 - função que mapeia um conjunto de valores de um atributo em um novo conjunto de valores
 - funções simples: xk, log(x), ex, |x|
 - ex: bytes transmitidos de I a 109, pode aplicar log(X)
 - normalização ou padronização

INTELIGÊNCIA COMPUTACIONAL

PREPARANDO OS DADOS

FELIPE TORRES