Chapitre 1

Notations et Symboles

Objectifs

- Connaître les ensembles de nombres.
- Connaître le vocabulaire lié aux ensembles, les symboles correspondant et leurs propriétés.
- Connaître les quantificateurs et savoir les utiliser.
- Connaître l'implication et l'équivalence ainsi que les méthodes pour démontrer l'une et l'autre.
- Être capable d'utiliser les symboles Σ et \prod , et d'effectuer des calculs avec ceux-ci.

Sommaire

I)	Les ensembles
	1) Les ensembles de nombres
	2) Vocabulaire lié aux ensembles
	3) Les quantificateurs
II)	Le raisonnement
	1) La conjonction et la disjonction
	2) L'implication
	3) L'équivalence
III)	Les symboles sigma et pi
	1) Notation
	2) Changement d'indice
	3) Règles de calculs 6
IV)	Exercices

I) Les ensembles

1) Les ensembles de nombres

- L'ensemble des entiers naturels, $\mathbb{N} = \{0, 1, 2, \dots\}$.
- L'ensemble des entiers relatifs : $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$.
- L'ensemble des nombres rationnels : \mathbb{Q} , un rationnel est une **fraction d'entiers**. Tout rationnel peut s'écrire de **manière unique** sous forme **irréductible** avec le numérateur dans \mathbb{Z} et le dénominateur dans \mathbb{N}^* .
- L'ensemble des nombres réels : \mathbb{R} , parmi ceux ci on distingue ceux qui sont rationnels (les éléments de \mathbb{Q}) et ceux qui sont **irrationnels**, par exemple √2 est irrationnel car ce n'est pas un élément de \mathbb{Q} .
- L'ensemble des nombres complexes : ℂ, qui fera l'objet d'un chapitre.

2) Vocabulaire lié aux ensembles

- L'ensemble vide : ∅.
- **L'égalité** : on dit que deux ensembles A et B sont égaux lorsqu'ils ont exactement les mêmes éléments (notation : A = B).

- **L'inclusion**: le symbole correspondant est \subset (se lit « est inclus dans »), il s'utilise entre deux **ensembles**. La proposition : $A \subset B$ signifie que A et B sont deux ensembles et que **tous les éléments de** A **sont également éléments de** B, la négation de cette proposition est : $A \not\subset B$, ce qui signifie que **au moins un élément de** A **n'est pas dans** B, par exemple $\mathbb{N} \subset \mathbb{Z}$ mais $\mathbb{R} \not\subset \mathbb{Q}$. Si E et A désignent des ensembles, et si A est inclus dans E, on dit que A est une **partie** de E. L'ensemble des parties de E est noté $\mathscr{P}(E)$, donc écrire « $A \subset E$ » revient à écrire « $A \in \mathscr{P}(E)$ ». L'ensemble vide (\emptyset) et E sont des parties de E.

Dire que deux ensembles A et B sont égaux, revient à dire que A est inclus dans B, et B est inclus dans A. Donc démontrer une égalité entre deux ensembles, peut se faire en montrant une double inclusion.

- **L'appartenance** : le symbole correspondant est ∈ (se lit « appartient à »), il s'utilise entre un **élément** et un **ensemble**. La proposition $x \in A$ signifie que A est un ensemble et que x est un élément de cet ensemble, la négation est $x \notin A$. Par exemple $\sqrt{2} \in \mathbb{R}$, mais $\sqrt{2} \notin \mathbb{Q}$.

- **La réunion** : le symbole correspondant est \cup (se lit « union »), il s'utilise entre deux **ensembles**, le résultat ne donne pas une proposition mais un autre **ensemble**. $A \cup B$ est l'ensemble que l'on obtient en regroupant les éléments de A avec ceux de B, par exemple $\mathbb{N} \cup \mathbb{Z} = \mathbb{Z}$.
- **L'intersection** : le symbole correspondant est ∩ (se lit « inter »), il s'utilise entre deux **ensembles**, là encore le résultat est un ensemble. $A \cap B$ désigne l'ensemble des éléments **communs** à A et B. Par exemple $\mathbb{N} \cap \mathbb{Z}^* = \mathbb{N}^*$. On dit que deux ensembles sont **disjoints** lorsque leur intersection est l'ensemble vide. Si A, B, C sont trois ensembles, on peut vérifier la propriété suivante :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 et $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- **La différence** : le symbole correspondant est \setminus (se lit « moins »), il s'utilise entre deux **ensembles**, là encore le résultat est un ensemble. Si A et B désignent deux parties d'un ensemble E, l'ensemble $A \setminus B$ est l'ensemble des éléments qui sont dans A mais pas dans B.
- − Le complémentaire : si A désigne une partie d'un ensemble E, le complémentaire de A dans E est noté $C_E(A)$ (ou bien $E \setminus A$) et désigne l'ensemble des éléments de E qui ne sont pas dans E. Par exemple $\mathbb{R} \setminus \mathbb{Q}$ est l'ensemble des irrationnels. Si E est E sont deux parties d'un ensemble E, on peut vérifier les propriétés suivantes :
 - $-A \cup C_E(A) = E.$
 - $C_E(E) = \emptyset, E \setminus \emptyset = E.$
 - $-E\setminus (E\setminus A)=A.$
 - $-E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$ (loi de *De Morgan* ¹).
 - $-E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$ (2ième loi de *De Morgan*).

- **Produit cartésien**: si *E* et *F* désignent deux ensembles, le produit cartésien de *E* par *F* est l'ensemble des couples (x, y) avec x ∈ E et y ∈ F. Notation: $E × F = \{(x, y) / x ∈ E, y ∈ F\}$. On rappelle que (x, y) = (a, b) si et seulement si x = a et y = b.

3) Les quantificateurs

Les quantificateurs servent à construire des propositions portant sur les éléments d'un ensemble, il en existe deux types :

– Le quantificateur **universel**, le symbole correspondant est \forall (se lit « pour tout »), par exemple la proposition « $\forall x \in \mathbb{R}, x^2 \ge 0$ » se lit « pour tout réel x, le carré de x est positif ou nul », ou bien encore « le carré de tout réel est positif ».

^{1.} MORGAN Augustus DE (1806 – 1871) logicien anglais.

- Le quantificateur **existentiel**, le symbole correspondant est ∃ (se lit « il existe au moins un »), par exemple la proposition « $\exists x \in \mathbb{C}, x^2 = -1$ », se lit « il existe au moins un nombre complexe dont le carré vaut -1 ».

- L'utilisation des quantificateurs est régie par deux règles : a) La négation de ∀ est∃ (et vice versa). b) On ne peut pas intervertir deux quantificateurs de nature différente.

Les deux propositions « $\forall x \in A, \exists y \in B, \dots$ » et « $\exists y \in B, \forall x \in A, \dots$ », n'ont pas le même sens. En effet, dans la première le y dépend de x alors que dans la seconde il s'agit du même y pour tous les x.

Exercice: Traduire dans le langage mathématique : la suite (u_n) est majorée. Écrire la négation. Qu'en est-il de la suite définie par $u_n = n^2$? Justifier.

Réponse: $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$. La négation est $\forall M \in \mathbb{R}, \exists n \in \mathbb{N}, u_n > M$. La suite (n^2) n'est pas majorée : soit $M \in \mathbb{R}$, si n > M, alors $(n+1)^2 > n > M$.

II) Le raisonnement

1) La conjonction et la disjonction

Soient P et Q deux propositions, par définition la proposition « P et Q » est vraie uniquement lorsque Pet Q sont vraies simultanément; la proposition « P ou Q » est fausse uniquement lorsque P et Q sont fausses simultanément. On résume ceci avec une table de vérité :

P	Q	P et Q	P ou Q
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

2) L'implication

Le symbole de l'implication est ⇒ (se lit « implique »), il s'utilise entre deux **propositions** construisant ainsi une nouvelle proposition. Si P et Q désignent deux propositions, alors par définition la proposition $P \Longrightarrow Q$ est fausse lorsque P est vraie et Q fausse, elle est vraie dans tous les autres cas.

P	Q	$P \Longrightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

La proposition $P \Longrightarrow Q$ se lit parfois « si P alors Q », sa **réciproque** est : $Q \Longrightarrow P$, et sa **contraposée** est : $(\text{non } Q) \Longrightarrow (\text{non } P)$.

Lorsque la proposition $P \Longrightarrow Q$ est vraie et si on sait que la proposition P est vraie, alors d'après la définition, on peut affirmer que la proposition Q est nécessairement vraie. Ce raisonnement est appelé déduction.

Exemple: Si A et B sont deux parties d'un ensemble E, alors démontrer la proposition : « $A \subset B$ », revient à démontrer pour tout élément x de E, l'implication : $x \in A \Longrightarrow x \in B$.

Comment démontrer que $P \Longrightarrow Q$ (sous - entendu : est vraie)?

- a) Méthode directe: on suppose que la proposition P est vraie (c'est l'hypothèse), on cherche alors à établir que nécessairement la proposition Q est vraie elle aussi. Remarquons que si la proposition P est fausse alors la proposition $P \Longrightarrow Q$ est vraie indépendamment de Q.
- b) Par l'absurde : on suppose le contraire de $P \Longrightarrow Q$, c'est à dire on suppose que P est vraie et que Q est fausse. On montre alors que ceci conduit à une contradiction, or il ne doit pas y avoir de contradictions en mathématiques (principe de non - contradiction), ce qui signifie que l'hypothèse faite est fausse et par conséquent $P \Longrightarrow Q$.

3) L'équivalence

Le symbole de l'équivalence est ⇔ (se lit « équivaut à »), il s'utilise entre deux propositions donnant ainsi une nouvelle proposition. Si P et Q désignent deux propositions, alors par définition la proposition $P \iff Q$ est **vraie** lorsque P et Q ont toutes deux la même valeur de vérité, sinon elle est fausse.

P	Q	$P \Longleftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

La proposition $P \iff Q$ se lit parfois : P si et seulement si Q (ou bien P ssi Q). Dire que P équivaut à Q revient à dire que *P* implique *Q* et que **la réciproque est vraie**.

Exemple: Si A et B sont deux parties d'un ensemble E, alors démontrer la proposition : «A = B», revient à démontrer pour tout élément x de E, l'équivalence : $x \in A \iff x \in B$.

Comment démontrer que $P \iff Q$?

- a) En deux temps : on établit dans un premier temps que $P \Longrightarrow Q$, puis dans un deuxième temps on établit la réciproque (i.e. $Q \Longrightarrow P$).
- b) Méthode directe : on suppose que la proposition P est vraie (hypothèse) puis on cherche à établir que Q est vraie en s'assurant à chaque étape du raisonnement que l'équivalence est conservée. Cette méthode n'est pas toujours applicable.

THÉORÈME 1.1

Soient P et Q deux propositions:

- La proposition $P \iff Q$ est équivalente à (non P) \iff (non Q).
- Non(P et Q) et équivalente à « non(P) ou non(Q) ».
- Non(P ou Q) est équivalente à « non(P) et non(Q) ».
- L'implication P ⇒ Q est équivalente à sa contraposée : (non Q) ⇒ (non P).
- L'implication P \Longrightarrow Q est équivalente à « (non P) ou Q ».
- La proposition non($P \Longrightarrow Q$) est équivalente à « P et non(Q) ».

Preuve: Il suffit de faire les tables de vérités.

Comment démontrer « P ou Q » : cette proposition est équivalente à « (non P) \Longrightarrow Q ». Par conséquent, démontrer « P ou Q » revient à démontrer « (non P) \Longrightarrow Q ».

III) Les symboles sigma et pi

1) Notation

On considère n nombres a_1, a_2, \ldots, a_n , la somme de ces n nombres est $a_1 + a_2 + \cdots + a_n$, par commodité cette somme sera notée : $\sum_{i=1}^{n} a_i$. Le produit de ces n nombres est $a_1 \times a_2 \times \cdots \times a_n$, par commodité, ce produit sera noté : $\prod^n a_i$. L'indice utilisé pour parcourir les termes de la somme et du produit est noté idans les exemples ci - dessus, mais le **nom** de l'indice importe peu, par exemple :

$$\sum_{i=1}^{n} a_i = \sum_{k=1}^{n} a_k = \sum_{j=1}^{n} a_j \text{ et } \prod_{i=1}^{n} a_i = \prod_{k=1}^{n} a_k = \prod_{j=1}^{n} a_j.$$

Ce qui importe c'est la valeur de départ de l'indice, la valeur finale, et le fait que l'indice varie de 1 en 1.

Exemple:
$$1 + 2 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
; $1 \times 2 \times \dots \times n = \prod_{k=1}^{n} k = n!$.

Changement d'indice

Considérons la somme $\sum_{k=1}^{n} a_k$, effectuons le changement d'indice q = k + 1, k allant de 1 à n de 1 en 1, l'indice q ira de 2 à n+1 de 1 en 1, et comme k=q-1, on peut écrire : $\sum_{k=1}^{n}a_k=\sum_{k=1}^{n+1}a_{q-1}$. De même en posant j=k-1 et i=n-k, on obtient : $\sum_{k=1}^n a_k = \sum_{i=0}^{n-1} a_{j+1} = \sum_{i=0}^{n-1} a_{n-i}$. De la même façon, on a : $\prod_{k=1}^n a_k = \prod_{q=2}^{n+1} a_{q-1}, \text{ et en posant } j = k-1 \text{ et } i = n-k, \text{ on obtient } : \prod_{k=1}^n a_k = \prod_{j=0}^{n-1} a_{j+1} = \prod_{i=0}^{n-1} a_{n-i}.$

Après le changement d'indice, on doit retrouver exactement les mêmes termes que dans la somme initiale (ou le produit initial).

Règles de calculs

Preuve: Celle - ci découle des propriétés des opérations usuelles sur les nombres.

IV) Exercices

★Exercice 1.1

Soient A et B deux parties d'un ensemble E $(A, B \in \mathcal{P}(E))$, démontrer les assertions suivantes :

- a) $A \cup B = B \iff A \subset B$.
- b) $A \cap B = B \iff B \subset A$.
- c) $A \cup B = A \cap B \iff A = B$.
- d) $A \subset B \iff (E \setminus B) \subset (E \setminus A)$.
- e) $A \setminus B = A \setminus (A \cap B)$.

★Exercice 1.2

Les assertions suivantes sont - elles vraies ou fausses?

- a) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x \leq y$.
- b) $\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, y \leq x$.
- c) $\forall x \in \mathbb{R}^+, \exists n \in \mathbb{N}, x \leq 2^n$.

★Exercice 1.3

- a) Factoriser puis calculer la somme : $\sum_{i=1}^{n} \left(\sum_{j=1}^{n} ij \right)$.
- b) Écrire la somme suivante avec le symbole Σ et montrer que celle ci est nulle lorsque $p \ge 1$:

$$\binom{n}{n}\binom{n}{n-p} - \binom{n}{n-1}\binom{n-1}{n-p} + \dots + (-1)^p \binom{n}{n-p}\binom{n-p}{n-p}$$

★Exercice 1.4

- a) Simplifier les sommes suivantes : $\sum_{k=0}^{n} \frac{\binom{n}{k}}{3^k}$; $\sum_{k=0}^{n} e^k$; $\sum_{k=1}^{n} \ln\left(\frac{k}{k+1}\right)$; $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.
- b) Simplifier les produits suivants : $\prod_{k=1}^{n} \frac{k}{k+2}$, $\prod_{k=1}^{n} e^k$.

★Exercice 1.5

Résoudre dans \mathbb{R} (en raisonnant par équivalence) :

a)
$$\sqrt{\frac{1+x}{1-x}} \le 1-x$$
; b) $|1-x| \ge 2|x|-1$; c) $|x+2| \ge \frac{1-x}{1+x}$.

★Exercice 1.6

Compléter les valeurs initiales et finales des indices dans les sommes suivantes :

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j}\right) = \sum_{j=2}^{?} \left(\sum_{i=2}^{?} a_{i,j}\right) \text{ et } \sum_{i=1}^{n} \left(\sum_{j=1}^{i} a_{i,j}\right) = \sum_{j=2}^{?} \left(\sum_{i=2}^{?} a_{i,j}\right).$$

On disposera les termes $a_{i,j}$ dans un tableau, puis on calculera la somme en faisant d'abord le total de chaque ligne, et on recommencera le calcul en faisant d'abord le total de chaque colonne.