Pros and cons of propositional logic

- © Propositional logic is declarative
- © Propositional logic allows partial/disjunctive/negated information
 - (unlike most data structures and databases)
- Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "all pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

This time

- First-order logic
 - Syntax
 - Semantics
 - Wumpus world example
- **Ontology** (ont = 'to be'; logica = 'word'): kinds of things one can talk about in the language
- A "controlled" vocabulary to describe objects and relations between them in a formal manner

Why first-order logic?

- We saw that propositional logic is limited because it only makes the ontological commitment that the world consists of facts.
- Difficult to represent even simple worlds like the Wumpus world;

e.g.,

"don't go forward if the Wumpus is in front of you" takes 64 rules

First-order logic (FOL)

- Ontological commitments:
 - **Objects**: wheel, door, body, engine, seat, car, passenger, driver
 - **Relations**: Inside(car, passenger), Beside(driver, passenger)
 - **Functions**: ColorOf(car)
 - **Properties**: Colored(car), IsOpen(door), IsOn(engine)...
- Functions are relations with single value for each object

Semantics

there is a correspondence between

- functions, which return values
- predicates, which are true or false

Function: father_of(Mary) = Bill

Predicate: father_of(Mary, Bill)

Examples:

"One plus two equals three"

Objects:

Relations:

Properties:

Functions:

"Squares neighboring the Wumpus are smelly"

Objects:

Relations:

Properties:

Functions:

Examples:

"One plus two equals three"

Objects: one, two, three, one plus two

Relations: equals

Properties: --

Functions: plus ("one plus two" is the name of the object

obtained by applying function plus to one and two;

three is another name for this object)

"Squares neighboring the Wumpus are smelly"

Objects: Wumpus, square

Relations: neighboring

Properties: smelly

Functions: --

FOL: Syntax of basic elements

- Constant symbols: 1, 5, A, B, USC, JPL, Alex, Manos, ...
- **Predicate symbols:** >, Friend, Student, Colleague, ...
- Function symbols: +, sqrt, SchoolOf, TeacherOf, ClassOf, ...
- Variables: x, y, z, next, first, last, ...
- Connectives: ¬, ∧, ∨, ⇒, ⇔
- Quantifiers: \forall , \exists
- Equality: =

Syntax of Predicate Logic

- Symbol set
 - constants
 - Boolean connectives
 - variables
 - functions
 - predicates (relations)
 - quantifiers

Syntax of Predicate Logic

- Terms: a reference to an object
 - variables,
 - constants,
 - functional expressions (can be arguments to predicates)

- Examples:
 - first([a,b,c]), sq_root(9), sq_root(n), tail([a,b,c])

Syntax of Predicate Logic

- Sentences: make claims about objects
 - (Well-formed formulas, (wffs))
- Atomic Sentences (predicate expressions):
 - loves(John,Mary), brother_of(John,Ted)
- Complex Sentences (Atomic Sentences connected by boolean connectors):
 - loves(John,Mary)
 - brother_of(John,Ted)
 - teases(Ted, John)

Examples of Terms: Constants, Variables and Functions

- Constants: object constants refer to individuals
 - Alan, Sam, R225, R216
- Variables
 - PersonX, PersonY, RoomS, RoomT
- Functions
 - father_of(PersonX)
 - product_of(Number1,Number2)

Examples of Predicates and Quantifiers

Predicates

- in(Alan,R225)
- partOf(R225,Pender)
- fatherOf(PersonX,PersonY)

Quantifiers

- All dogs are mammals.
- Some birds can't fly.
- 3 birds can't fly.

Semantics

- Referring to individuals
 - Jackie
 - son-of(Jackie), Sam
- Referring to states of the world
 - person(Jackie), female(Jackie)
 - mother(Sam, Jackie)

FOL: Atomic sentences

AtomicSentence → Predicate(Term, ...) | Term = Term

Term → Function(Term, ...) | Constant | Variable

- Examples:
 - SchoolOf(Manos)
 - Colleague(TeacherOf(Alex), TeacherOf(Manos))
 - $\bullet > ((+ x y), x)$

FOL: Complex sentences

```
Sentence → AtomicSentence

| Sentence Connective Sentence

| Quantifier Variable, ... Sentence

| ¬ Sentence

| (Sentence)
```

• Examples:

- S1 \wedge S2, S1 \vee S2, (S1 \wedge S2) \vee S3, S1 \Longrightarrow S2, S1 \Longleftrightarrow S3
- Colleague(Paolo, Maja) ⇒ Colleague(Maja, Paolo)
 Student(Alex, Paolo) ⇒ Teacher(Paolo, Alex)

Semantics of atomic sentences

- Sentences in FOL are interpreted with respect to a model and an interpretation
- Model contains objects and relations among them
- Terms: refer to objects (e.g., Door, Alex, StudentOf(Paolo))
 - <u>Constant symbols</u>: refer to <u>objects</u>
 - <u>Predicate symbols:</u> refer to r<u>elations</u>
 - <u>Function symbols:</u> refer to <u>functional Relations</u>
- An atomic sentence predicate(term₁, ..., term_n) is true iff the relation referred to by predicate holds between the objects referred to by term₁, ..., term_n

Models for FOL: Example

18

Example model

- Objects: John, James, Mary, Alex, Dan, Joe, Anne, Rich
- Relation: sets of tuples of objects
 {<John, James>, <Mary, Alex>, <Mary, James>, ...}
 {<Dan, Joe>, <Anne, Mary>, <Mary, Joe>, ...}
- E.g.: Parent relation -- {<John, James>, <Mary, Alex>, <Mary, James>}

```
then Parent(John, James) is true
Parent(John, Mary) is false
```

Quantifiers

- Expressing sentences about **collections** of objects without enumeration (naming individuals)
- E.g., All Trojans are clever

Someone in the class is sleeping

- Universal quantification (for all): ∀
- Existential quantification (three exists): ∃

Universal quantification (for all): ∀

∀ <variables> <sentence>

- "Every one in the cs460 class is smart": $\forall x \text{ In}(\text{cs460}, x) \Rightarrow \text{Smart}(x)$
- ∀ P corresponds to the conjunction of instantiations of P

```
In(cs460, Manos) \Rightarrow Smart(Manos) \land In(cs460, Dan) \Rightarrow Smart(Dan) \land ...
In(cs460, Bush) \Rightarrow Smart(Bush)
```

Universal quantification (for all): ∀

- ⇒ is a natural connective to use with ∀
- Common mistake: to use ∧ in conjunction with ∀
 e.g: ∀ x In(cs460, x) ∧ Smart(x)
 means "every one is in cs460 and everyone is smart"

Existential quantification (there exists): ∃

∃ <variables> <sentence>

- "Someone in the cs460 class is smart": $\exists x \text{ In}(\text{cs460}, x) \land \text{Smart}(x)$
- ∃ P corresponds to the disjunction of instantiations of P

```
In(cs460, Manos) ∧ Smart(Manos) ∨
In(cs460, Dan) ∧ Smart(Dan) ∨
...
In(cs460, Bush) ∧ Smart(Bush)
```

Existential quantification (there exists): \exists

- ∧ is a natural connective to use with ∃
- Common mistake: to use ⇒ in conjunction with ∃
 e.g: ∃ x In(cs460, x) ⇒ Smart(x)
 is true if there is anyone that is not in cs460!
 (remember, false ⇒ true is valid).

Properties of quantifiers

```
\forall x \ \forall y is the same as \forall y \ \forall x \ (why??)
```

$$\exists x \exists y$$
 is the same as $\exists y \exists x$ (why??)

$$\exists x \ \forall y \ \text{is } \underline{\mathsf{not}} \ \mathsf{the same as} \ \forall y \ \exists x$$

$$\exists x \ \forall y \ Loves(x,y)$$

"There is a person who loves everyone in the world"

$$\forall y \; \exists x \; Loves(x,y)$$

"Everyone in the world is loved by at least one person"

Not all by one person but each one at least by one

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream) \quad Proof?$$

$$\exists x \ Likes(x, Broccoli)$$
 $\neg \forall x \ \neg Likes(x, Broccoli)$

Proof

In general we want to prove:

$$\forall x P(x) \le \neg \exists x \neg P(x)$$

$$\Box \forall x P(x) = \neg(\neg(\forall x P(x))) = \neg(\neg(P(x1) \land P(x2) \land ... \land P(xn))) = \neg(\neg(P(x1) \lor \neg P(x2) \lor ... \lor \neg P(xn)))$$

- Brothers are siblings
- Sibling is transitive
- One's mother is one's sibling's mother
 - -
- A first cousin is a child of a parent's sibling

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

Sibling is transitive

$$\forall$$
 x, y, z Sibling(x, y) \land Sibling(y, z) \Rightarrow Sibling(x, z)

One's mother is one's sibling's mother

A first cousin is defined as a child of a parent's sibling

Brothers are siblings

$$\forall$$
 x, y Brother(x, y) \Rightarrow Sibling(x, y)

Sibling is transitive

$$\forall$$
 x, y, z Sibling(x, y) \land Sibling(y, z) \Rightarrow Sibling(x, z)

One's mother is one's sibling's mother

$$\forall$$
 m, c, d Mother(m, c) \land Sibling(c, d) \Rightarrow Mother(m, d)

A first cousin is defined as a child of a parent's sibling

Brothers are siblings

$$\forall$$
 x, y Brother(x, y) \Rightarrow Sibling(x, y)

Sibling is transitive

$$\forall$$
 x, y, z Sibling(x, y) \land Sibling(y, z) \Rightarrow Sibling(x, z)

One's mother is one's sibling's mother

$$\forall$$
 m, c, d Mother(m, c) \land Sibling(c, d) \Rightarrow Mother(m, d)

A first cousin is defined as a child of a parent's sibling

$$\forall$$
 c, d FirstCousin(c, d) \Leftrightarrow \exists p, ps Parent(p, d) \land Sibling(p, ps) \land Parent(ps, c)

- One's mother is one's sibling's mother

 ∀ m, c,d Mother(m, c) ∧ Sibling(c, d) ⇒ Mother(m, d)
- \forall c,d \exists **m** Mother(m, c) \land Sibling(c, d) \Rightarrow Mother(m, d)

Every gardener likes the sun.

```
\forall x gardener(x) => likes(x,Sun)
```

You can fool some of the people all of the time.

```
\exists x \forall t (person(x) ^time(t)) => can-fool(x,t)
```

You can fool all of the people some of the time.

All purple mushrooms are poisonous.

You can fool all of the people some of the time.

```
∀ x ∃ t (person(x) ^ time(t) =>
can-fool(x,t)
```

All purple mushrooms are poisonous.

You can fool all of the people some of the time.

```
∀ x ∃ t (person(x) ^ time(t) =>
can-fool(x,t)
```

All purple mushrooms are poisonous.

```
\( x \) (mushroom(x) \(^\) purple(x)) =>
poisonous(x)
```

• No purple mushroom is poisonous.

No purple mushroom is poisonous.

```
¬(∃ x) purple(x) ^ mushroom(x) ^ poisonous(x)
or, equivalently,
(∀ x) (mushroom(x) ^ purple(x)) =>
¬poisonous(x)
```

There are exactly two purple mushrooms.

• Deb is not tall.

```
¬tall(Deb)
```

• X is above Y if (and only if) X is on directly on top of Y or else there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.

$$(\forall x) (\forall y) above(x,y) <=> (on(x,y) v (\exists z) (on(x,z) ^ above(z,y)))$$