附录A 重要论文精读

必读论文清单,掌握大模型发展脉络

A.1 必读经典论文

A.1.1 Attention is All You Need (2017)

基本信息:

• 作者: Vaswani et al., Google

会议: NIPS 2017引用: 100,000+

核心贡献:

1. 提出Transformer架构

2. Self-Attention机制

3. Multi-Head Attention

4. Position Encoding

关键公式:

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

$$\operatorname{MultiHead}(Q,K,V) = \operatorname{Concat}(head_1,...,head_h)W^O$$

论文结构:

- 1. Introduction 为什么抛弃RNN/CNN
- 2. Background 序列建模的挑战
- 3. Model Architecture Transformer详解
 - 3.1 Encoder-Decoder结构
 - 3.2 Attention机制
 - 3.3 Position Encoding
 - 3.4 Feed-Forward Network
- 4. Training 优化器、正则化
- 5. Results 在翻译任务上的表现

面试高频问题:

- Q: 为什么要除以√d_k? A: 防止softmax陷入饱和区,保持梯度健康。当d_k较大时,点积的方差会很大,导致softmax的梯度很小。
- Q: Position Encoding为什么用sin/cos? A:
 - 函数周期性能编码相对位置关系
 - 可以外推到训练时未见过的长度
 - 不需要学习参数

影响:

- 开启Transformer时代
- 所有现代LLM的基础
- BERT、GPT都源于此

A.1.2 BERT (2018)

论文: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

基本信息:

• 作者: Devlin et al., Google

会议: NAACL 2019影响力: 革命性

核心创新:

1. 双向预训练: MLM让模型看到完整上下文

2. 大规模预训练+微调: 奠定范式

3. **NSP任务**: 学习句子关系

预训练任务:

Masked Language Model

输入: "我 [MASK] 吃 [MASK]" 目标: 预测 "爱" 和 "饭"

Next Sentence Prediction

输入: [CLS] 句子A [SEP] 句子B [SEP]

目标: B是否是A的下一句

模型配置:

模型	层数	隐藏维度	头数	参数量
BERT-Base	12	768	12	110M
BERT-Large	24	1024	16	340M

面试要点:

- BERT是Encoder-only, 适合理解任务
- 不适合生成任务 (无因果mask)
- [CLS] token用于分类任务
- Segment Embedding区分句子A/B

A.1.3 GPT-3 (2020)

论文: Language Models are Few-Shot Learners

核心发现:

• 涌现能力: 规模足够大时, 能力突然出现

• In-Context Learning: 无需微调, 从示例中学习

• 规模法则: 性能随模型大小、数据量、计算量幂律增长

模型规格:

版本	参数量	层数	隐藏维度	上下文长度
GPT-3	175B	96	12288	2048
GPT-3	13B	40	5140	2048
GPT-3	6.7B	32	4096	2048

Few-Shot Learning示例:

任务: 情感分类

2-shot示例:

输入: 这部电影很好看!

输出:正面

输入: 浪费时间。

输出:负面

查询:

输入: 演技精湛, 剧情感人。

输出: [模型预测]

关键发现:

面试要点:

- 为什么大模型能few-shot学习? (可能是预训练时见过类似模式)
- 涌现能力的阈值大概在10B-100B参数
- GPT-3证明了"规模就是一切" (某种程度上)

A.1.4 InstructGPT / ChatGPT (2022)

论文: Training language models to follow instructions with human feedback

核心方法: RLHF (三阶段)

数据规模:

SFT数据: 13k条高质量对话RM数据: 33k条比较数据PPO数据: 31k条prompt

效果:

- InstructGPT 1.3B > GPT-3 175B (在人类偏好上)
- 显著减少幻觉
- 更好的指令遵循

面试要点:

- RLHF为什么有效? (对齐人类价值观)
- 为什么需要SFT作为起点? (PPO从随机策略很难收敛)
- RM如何训练? (成对比较,学习人类偏好)

论文: LLaMA: Open and Efficient Foundation Language Models

贡献:

• 开源大模型的里程碑

• 证明了data quality > quantity (Chinchilla scaling law)

• 技术改进: RoPE、SwiGLU、RMSNorm

训练细节:

模型	参数	训练数据	训练时长
LLaMA-7B	7B	1T tokens	82,432 GPU小时
LLaMA-13B	13B	1T tokens	135,168 GPU小时
LLaMA-65B	65B	1.4T tokens	1,022,362 GPU小时

数据配比:

CommonCrawl: 67%

C4: 15%

Github: 4.5% Wikipedia: 4.5%

Books: 4.5% ArXiv: 2.5%

StackExchange: 2%

技术细节:

• Pre-normalization (更稳定)

• SwiGLU激活函数 (代替ReLU)

• RoPE位置编码 (更好的长度外推)

面试要点:

• LLaMA为什么比GPT-3小但效果好? (训练数据更多、更优质)

• Chinchilla scaling law:模型大小和数据量应该等比例增长

A.2 技术细节论文

A.2.1 Scaling Laws (2020)

论文: Scaling Laws for Neural Language Models (OpenAl)

核心公式:

$$L(N) = (N_c/N)^{lpha_N}$$

其中:

• L: 损失 (perplexity)

• N: 模型参数量

• $\alpha_N \approx 0.076$

计算预算分配:

给定计算预算C,最优分配:

• 模型参数: $N \propto C^{0.73}$ • 训练数据: $D \propto C^{0.27}$

Chinchilla修正:

DeepMind重新评估,发现应该:

• $N \propto C^{0.50}$

• $D \propto C^{0.50}$

即参数和数据等比例增长!

影响:

• GPT-3: 训练不足 (太大的模型,太少的数据)

• LLaMA: 遵循新法则 (更小的模型, 更多的数据)

A.2.2 LoRA (2021)

论文: LoRA: Low-Rank Adaptation of Large Language Models

核心思想:

$$W = W_0 + \Delta W = W_0 + BA$$

其中:

• W₀: 预训练权重 (冻结)

• $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$: 低秩矩阵

• $r \ll \min(d, k)$: 秩

参数效率:

原始参数: d × k = 4096 × 4096 = 16,777,216

LoRA参数: $d \times r + r \times k = 4096 \times 8 + 8 \times 4096 = 65,536$

减少: 256倍!

实验发现:

- rank=1也有效果
- rank=8几乎等同于全参数微调
- 只对Attention层应用LoRA效果就很好

A.2.3 Flash Attention (2022)

论文: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

问题:

- 标准attention需要存储 $O(n^2)$ 的注意力矩阵
- 内存带宽是瓶颈

解决方案:

- 分块计算 (tiling)
- 在SRAM中计算,减少HBM访问
- 在线softmax更新

效果:

• 显存降低: $MO(n^2)$ 到O(n)

• 速度提升: 2-4倍

• 支持更长序列:从2K到8K+

算法关键:

关键: 不存储完整的attention矩阵

而是分块计算,每次只在SRAM中存储小块

for block_j in K_blocks:

for block_i in Q_blocks:

在SRAM中计算小块的attention

 $S_{ij} = Q_i @ K_j^T$

在线更新softmax和输出

不需要存储完整矩阵

A.3 论文阅读方法

A.3.1 三遍阅读法

第一遍 (10分钟):

- 标题、摘要、引言
- 结论和图表
- 参考文献

目标: 判断是否值得深读

第二遍(1小时):

- 详细阅读全文
- 忽略复杂证明
- 记录关键点和疑问

目标: 理解主要内容

第三遍 (3-4小时):

• 逐行阅读

- 尝试重新推导
- 复现实验 (如果可能)

目标: 深入掌握

A.3.2 论文笔记模板

论文标题

基本信息

- 作者:
- 发表:
- 链接:

核心问题

- 要解决什么问题?
- 为什么重要?
- 现有方法的局限?

核心贡献

- 1.
- 2.
- 3.

方法

- 关键思想:
- 技术细节:
- 算法流程:

实验

- 数据集:
- 基线方法:
- 主要结果:
- 消融实验:

优缺点

优点

-

缺点/局限

-

启发

- 对我的研究/工作的启发
- 可以改进的地方

相关论文

_

A.3.3 面试准备建议

必须能解释的论文 (Top 5):

- 1. Attention is All You Need
- 2. BERT
- 3. GPT-3
- 4. InstructGPT/ChatGPT
- 5. LLaMA

每篇论文准备:

- 5分钟口述总结
- 3个核心贡献
- 2个面试高频问题
- 1个深度技术细节

示例回答框架:

面试官: "介绍一下Transformer"

回答模板:

- 1. 【背景】(30秒)
 - 2017年Google提出
 - 解决RNN并行化问题
- 2. 【核心创新】(1分钟)
 - Self-Attention机制
 - Multi-Head设计
 - Position Encoding
- 3. 【技术细节】(1-2分钟)
 - Attention公式及为什么这样设计
 - 架构图: Encoder-Decoder
 - 参数量计算
- 4. 【影响】(30秒)
 - BERT、GPT都基于此
 - 开启Transformer时代
- 5. 【准备追问】
 - 为什么要√d_k?
 - Multi-Head的作用?
 - 与RNN相比的优劣?

A.4 论文资源

A.4.1 论文列表网站

• arXiv.org: 最新论文

Papers with Code: 论文+代码Hugging Face Papers: 社区精选

• Google Scholar: 追踪引用

A.4.2 论文阅读工具

Zotero: 文献管理Notion: 笔记整理Obsidian: 知识图谱

• Semantic Scholar: 论文推荐

A.5 本附录小结

🛂 精选5篇必读论文,奠定理论基础 🗹 提供论文阅读方法和笔记模板 🗹 面试准备框架和回答技巧

阅读建议:

- 从经典论文开始 (Transformer、BERT、GPT-3)
- 每周精读1-2篇
- 做笔记+口述总结
- 关注最新进展 (arXiv)

下一附录: 附录B将整理开源资源汇总。