TD 1 STATISTIQUE - 1SN

Exercice 1. Durée d'attente à un feu rouge.

On considère la variable aléatoire "durée d'attente à un feu rouge". La durée maximale d'attente à ce feu rouge est notée θ , paramètre inconnu strictement positif. On observe un échantillon $t_1,...,t_n$ de taille n, où t_i désigne la durée d'attente observée pour le $i^{\grave{e}me}$ individu. On fait l'hypothèse que les variables aléatoires T_i associées aux observations t_i sont indépendantes et de même loi uniforme sur $[0,\theta]$, i.e., $T_i \sim U[0,\theta]$.

- 1. Représenter le graphe de la densité de la loi $U[0,\theta]$ et préciser ses paramètres moyenne et variance.
- 2. On désire estimer le paramètre θ . Déterminer le biais et la variance de la statistique $\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$. Montrer que $\widehat{\theta}_1 = 2\overline{T}$ est un estimateur sans biais et convergent en probabilité de θ .
- 3. Montrer que l'estimateur du maximum de vraisemblance de θ est $Y_n = \sup T_i$.
 - En utilisant l'équivalence des événements suivante $Y_n < y \iff T_i < y, \forall i = 1, ..., n$, calculer la fonction de répartition de Y_n . En déduire sa densité et calculer $E[Y_n]$ et var (Y_n) .
 - Montrer que la statistique $\hat{\theta}_2 = \frac{n+1}{n} Y_n$ est un estimateur sans biais et convergent en probabilité de θ .
- 4. Lequel des deux estimateurs $\hat{\theta}_1$ et $\hat{\theta}_2$ choisiriez-vous pour estimer θ ?

Exercice 2. La durée de fonctionnement d'un matériel électrique est représentée par une variable aléatoire réelle X suivant une loi de Weibull de densité :

$$f(x; \theta, \lambda) = \frac{\lambda}{\theta} x^{\lambda - 1} \exp\left\{-\frac{x^{\lambda}}{\theta}\right\}$$
 $x > 0$

avec $\theta > 0$ et $\lambda > 0$. On suppose que λ est connu.

- 1. Déterminer la loi de $U = X^{\lambda}$ puis calculer $E(X^{\lambda})$ et $Var(X^{\lambda})$.
- 2. On considère un échantillon $(X_1, ..., X_n)$ de même loi que X. Calculer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ . Cet estimateur est-il sans biais ? convergent ? efficace ? Calculer son erreur quadratique moyenne.

Exercice 3. Soient $X_1, ..., X_n, n$ variables aléatoires indépendantes de même loi de densité :

$$f(x) = \beta e^{\beta(\alpha - x)} 1_{[\alpha, +\infty[}(x)$$

- 1. α étant connu, déterminer l'estimateur du maximum de vraisemblance de $\omega=1/\beta$ noté $\widehat{\omega}$. Vérifier qu'il est sans biais et convergent. Montrer enfin que $\widehat{\omega}$ est l'estimateur efficace de ω .
- 2. β étant connu, étudier l'estimateur du maximum de vraisemblance de α noté $\widehat{\alpha}$. On admet que la densité de probabilité de $\widehat{\alpha}$ est :

$$f(u) = n\beta e^{n\beta(\alpha-u)} 1_{[\alpha,+\infty[}(u)$$

En s'aidant de ce qui a été fait à la première question, déterminer le biais et la variance de $\widehat{\alpha}$. En déduire un estimateur sans biais et convergent de α . Déterminer $E\left[\frac{\partial^2 \ln f(X_1,\ldots,X_n;\alpha)}{\partial \alpha^2}\right]$. Que dire de l'efficacité de $\widehat{\alpha}$?

1

3. β étant connu, déterminer l'estimateur de α obtenu à l'aide de la méthode des moments noté $\overline{\alpha}$. Comparer les deux estimateurs $\overline{\alpha}$ et $\widehat{\alpha}$.

Exercice 4. Lois de Poisson

- 1. Soient $X_1, ..., X_n$, n variables aléatoires indépendantes suivant des lois de Poisson de paramètre λ . Déterminer l'estimateur du maximum de vraisemblance du paramètre λ . Est-il sans biais, convergent, efficace ?
 - 2. Même question lorsque $X_1,...,X_n$ sont n variables aléatoires de loi de Poisson de paramètres $\lambda_j=j\lambda,\,j\in\{1,...,n\}$

 \mathbb{R} Lequel des deux estimateurs \mathcal{B}_1 et \mathcal{B}_2 choisince-vous pour estimer \mathcal{B} ?

