The Hong Kong University of Science & Technology MATH3423 - Statistical Inference Final Examination - Fall 2014/2015

Answer <u>ALL</u> Questions Date: 12 December 2014

Full marks: 80 + 10 for Bonus Time Allowed: 3 hours

- DO NOT open the exam paper until instructed to do so.
- It is a closed-book examination.
- Five questions are included in this paper.
- Give detailed explanation how to obtain the final answer. NO mark will be given if only the final answer is written down.
- Unless specified, numerical answers should be EITHER exact OR corrected to 6 decimal places.
- You may write on the both sides of the examination booklet.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Name :		
Student Nu	mber : _	
Signature :		

For marking use only:

Question No.	Marks	Out of
1		20
		20
2		20
3		20
4		20
5		10

- 1. Let $X_1, ..., X_n$ be a random sample from the Bernoulli(θ), where θ is the unknown parameter.
 - (a) (2 marks) Find the complete and sufficient statistic for θ . Find its distribution.
 - (b) (3 marks) Find the UMVUE for θ^2 .
 - (c) (3 marks) Find the CRLB for θ^2 . Is the variance of the UMVUE for θ^2 equal to its CRLB? Explain in details.
 - (d) (2 marks) Find the limiting distribution of the maximum likelihood estimator for θ^2 as $n \to \infty$ by Delta method. What phenomenon do you observe?
 - (e) (5 marks) Find the UMVUE of $P(X_1 + X_2 + X_3 = 1)$.
 - (f) (5 marks) Find the maximum likelihood estimator for the variance of $\sum X_i$, i.e., $n\theta(1-\theta)$. Is it unbiased? Hence or otherwise, find the UMVUE for the variance of $\sum X_i$.
- 2. Let $X_1, ..., X_n$ be a r.s. from the continuous uniform distribution in the interval $(\theta, 2\theta), \theta \in (0, \infty)$.

Hint:

$$f(y_1, y_n) = n(n-1)(y_n - y_1)^{n-2}/\theta^n$$
 $\theta \le y_1 \le y_n \le 2\theta$

and

$$Cov(Y_1, Y_n) = \frac{\theta^2}{(n+1)^2(n+2)}$$
.

- (a) (2 marks) Find the method of moments estimator, $\tilde{\theta}$, for θ . Is it unbiased? Hence or otherwise, find an unbiased estimator of θ as a function of $\tilde{\theta}$. What is its corresponding variance?
- (b) (3 marks) Find $E(Y_1)$, where $Y_1 = \min(X_1, \dots, X_n)$. Hence or otherwise, find an unbiased estimator of θ as a function of Y_1 .
- (c) (3 marks) Find $E(Y_n)$, where $Y_n = \max(X_1, \dots, X_n)$. Hence or otherwise, find an unbiased estimator of θ as a function of Y_n .
- (d) (9 marks) Define the unbiased estimators of θ in parts (b) and (c) as U_a and U_b , respectively. Find a constant k so that the unbiased estimator, $kU_a + (1-k)U_b$, has the smallest variance. What is the variance of this unbiased estimator?
- (e) (3 marks) Does the UMVUE for θ exist? If yes, find it; if no, explain in details.

3. Individuals were classified according to gender and according to whether or not they were color-blind as follows:

	Male	Female
Normal	x_{11}	x_{12}
Color-blind	x_{21}	x_{22}

Let $X = (X_{11}, X_{12}, X_{21}, X_{22}) \sim \text{multinomial } (n, P_{11}, P_{12}, P_{21}, P_{22}).$

- (a) Test the hypothesis $H_0: P_{11} = \frac{p}{2}, P_{12} = \frac{p^2}{2} + pq, P_{21} = \frac{q}{2}, P_{22} = \frac{q^2}{2}$, where q = 1 p, against $H_1: (P_{11}, P_{12}, P_{21}, P_{22})$ takes any other value in $[0, 1]^4$ at the level of significance α .
 - i. (4 marks) Find the likelihood ratio statistic and then derive the approximate large sample likelihood ratio test.
 - ii. (2 marks) Write down the Pearson's goodness of fit test statistic and state the critical region for this test.
- (b) Suppose $x_{11} = 442, x_{12} = 514, x_{21} = 38, x_{22} = 6$. Perform the following tests at $\alpha = 0.05$. State clearly the hypothesis statements, value of test statistic, critical value and your conclusion for each test.
 - i. (6 marks) Test whether the null hypothesis $H_0: P_{11} = \frac{p}{2}, P_{12} = \frac{p^2}{2} + pq, P_{21} = \frac{q}{2}, P_{22} = \frac{q^2}{2}$ is true by the two tests derived above.
 - ii. (4 marks) Test the hypothesis that color blindness is independent of gender. No need to make the Yates's Correction.
 - iii. (4 marks) Test whether the probabilities of color-blind individuals for male and female are equal by z test. No need to make the continuity correction.

- 4. If X_1, X_2, \ldots, X_n are independently and normally distributed with the same unknown mean μ but different known variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$.
 - (a) (4 marks) Find the maximum likelihood estimator of μ . Hence, find its distribution.
 - (b) (6 marks) Construct the UMP test for testing $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$ at a significance level of α .
 - (c) (2 marks) Based on the test in part (b), calculate the power of test at $\mu_1 = 1$, where $\mu_1 \in \Theta_1$, when $\alpha = 0.05$, $\mu_0 = 0$, n = 10, $\sigma_1^2 = \ldots = \sigma_5^2 = 1$ and $\sigma_6^2 = \ldots = \sigma_{10}^2 = 2$. Round the value to two decimal places before finding the probability.
 - (d) Assuming that $\mu = 0$ and all σ_j^2 , for j = 1, ..., n, are equal to σ^2 but unknown, consider another hypothesis testing problem with $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$ at the level of significance α .
 - i. (4 marks) Find the expression of the likelihood ratio statistic.
 - ii. (4 marks) Hence, derive the exact likelihood ratio test at the significance level of α .
- 5. (Bonus: 10 marks) Consider a random sample of a fixed size n, $\{X_1, \ldots, X_n\}$, from a p.m.f. given by

$$p_{-1} = P(X_i = -1) = \frac{1-\theta}{2}, \quad p_0 = P(X_i = 0) = \frac{1}{2}, \quad p_1 = P(X_i = 1) = \frac{\theta}{2},$$

where $0 \le \theta \le 1$. Let $n_{-1} = \sum_{i=1}^{n} I_{\{X_i = -1\}}, n_0 = \sum_{i=1}^{n} I_{\{X_i = 0\}}, \text{ and } n_1 = \sum_{i=1}^{n} I_{\{X_i = 1\}}.$ Given that $(n_{-1}, n_0, n_1) \sim \text{multinomial}(n, p_{-1}, p_0, p_1).$

Find the maximum likelihood estimator, $\hat{\theta}$, for θ . Find $E(\hat{\theta})$. Hence or otherwise, find an unbiased estimator for θ

****** END ******