Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação

SCC-205 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS Turma C – 2°. Semestre de 2009 – Prof. João Luís

Lista de Exercícios do Capítulo 4

1. Seja G = ({a, b}, {A, B}, A, P), onde P consiste de:

$A \rightarrow Ba$	$B \rightarrow BB$
$Aa \rightarrow Bb$	$B \rightarrow b$
$B \rightarrow bA$	$A \rightarrow a$
$Ab \rightarrow \lambda$	

Qual é o tipo da L(G)? Que processador de linguagem (AFD/AFN, APN, Máquina de Turing) reconheceria esta linguagem? Por que?

- **2.** Considere a seguinte linguagem livre de contexto $L = \{0^n1^n \mid n \ge 1\}$. Escreva a Máquina de Turing T de duas cabeças que processa esta linguagem. Verifique como T age com as entradas 01 e 011.
- **3.** Dê uma Máquina de Turing de duas cabeças que processa a linguagem $L = \{ww^R \mid w \text{ em } \{0,1\}^*\}$. Discuta por que é mais fácil para uma Máquina de Turing de várias cabeças reconhecer esta linguagem do que para uma Máquina de Turing de cabeça única.
- **4.** Escreva uma máquina de Turing de uma fita que compute f(x) = 2 * x. Dê sua especificação completa $(Q, \Sigma, q_0, q_a, \delta)$.
- **5.** Seja o seguinte conjunto de produções da gramática livre de contexto G_A :

$$S \rightarrow aaZcc$$

 $Z \rightarrow aZc$
 $Z \rightarrow b$

Observe agora o seguinte conjunto de produções da gramática linear a direita G_B :

$$S \rightarrow aA$$

 $A \rightarrow aB$
 $B \rightarrow aB \mid bC$
 $C \rightarrow cC \mid cD$
 $D \rightarrow c$

Qual a relação entre G_A e G_B ? São equivalentes? Por que? Escreva a máquina de Turing que processa $L(G_A)$.

6. Seja o seguinte conjunto de produções da gramática *G*:

$$S \rightarrow aSBC|aBC$$

 $CB \rightarrow BC$
 $aB \rightarrow ab$
 $bB \rightarrow bb$
 $bC \rightarrow bc$
 $cC \rightarrow cc$

- a) Qual o processador de linguagem de menor poder computacional capaz de processar L(G) (AFN, APD, ALL ou MT)? Por que?
- b) Escreva este processador.
- **7.** Considere a gramática $G = (\{a,b\}, \{S,A,B\}, S, P\},$ onde P é o conjunto de produções:

$$S \rightarrow aAa \mid bBb$$

 $A \rightarrow b$
 $B \rightarrow aA$

- a) Ache o autômato limitado linearmente que processe L(G), se possível. Se não for possível, explique o porquê.
- b) Ache a máquina de Turing de uma cabeça que processe L(G), se possível. Se não for possível, explique o porquê.
- **8.** Seja o seguinte autômato finito ($\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\}$):

$$\begin{array}{c|cccc} \delta & \mathbf{0} & \mathbf{1} \\ \hline \mathbf{q}_0 & q_1 & q_1 \\ \hline \mathbf{q}_1 & q_1 & q_0 \end{array}$$

Escreva a máquina de Turing T equivalente. Se não for possível, explique o porquê.

9. Escreva uma máquina de Turing que compute max (n, m). Descreva uma configuração exemplo e identifique qual a técnica de construção usada.

2

10.Sejam as seguintes linguagens:

(a)
$$L_{11A} = \{wcw \mid w \in \{a, b\}^*\}$$

(b)
$$L_{11B} = \{a^n b^m c^m d^n \mid n, m \ge 1\}$$

(c)
$$L_{11C} = \{a^n b^m c^k \mid n, m, k \ge 1\}$$

(d)
$$L_{11D} = \{a^n b^m c^n d^m \mid n, m \ge 1\}$$

Para as linguagens acima:

- (a) Dê seus tipos.
- (b) Se forem LLD ou LLC construa suas gramáticas OU seus processadores.
- (c) Se forem LSC ou LRE construa máquinas de Turing para reconhecê-las.
- **11.** Seja a linguagem $L_{12} = \{0^k, \text{ onde } k = 2^n \mid n \ge 0\}$, que consiste de todas as cadeias de 0s cujo comprimento é uma potência de 2. Seja a máquina de Turing M_{12} que processa L_{12} :

Responda:

- (a) Dê a definição formal de M_{12} = (Q, Σ , q_0 , q_a , δ).
- (b) Verifique o comportamento de M_{12} para as seguintes cadeias de entrada, por meio de transições entre descrições instantâneas:
 - (a) 0
 - (b) 000
 - (c) 0000
- (c) A partir de M_{12} , obtenha a gramática irrestrita G_{12} que gera a linguagem aceita por M_{12} .
- **12.** Escreva uma máquina de Turing de uma cabeça M_{13} que processa a linguagem $L_{13} = \{w \# w \mid w \in \{0, 1\}^*\}$.
- **13.**Escreva uma máquina de Turing de duas cabeças M_{14} que processa a linguagem $L_{14} = \{w \# w \mid w \in \{0, 1\}^*\}$.