Devoir Maison n°1 - Corrigé

Exercice 1 : Une somme par récurrence

Pour tout $n \in \mathbb{N}^*$, posons $\mathcal{P}(n)$: " $\sum_{k=1}^{n} k 2^{k-1} = (n-1)2^n + 1$ ".

Montrons que $\mathcal{P}(n)$ est vraie pour tout $n \ge 1$ par récurrence.

• Initialisation : Vérifions la propriété $\mathcal{P}(1)$.

Avec n = 1, on a bien $\sum_{k=1}^{n} k2^{k-1} = 1 \times 2^0 = 1$ et $(n-1)2^n + 1 = (1-1) \times 2 + 1 = 1$.

On a donc l'égalité voulue : la propriété $\mathcal{P}(1)$.

• Hérédité : Soit $n \ge 1$ fixé. Supposons $\mathcal{P}(n)$ et montrons $\mathcal{P}(n+1)$. On a :

$$\sum_{k=1}^{n+1} k 2^{k-1} = \sum_{k=1}^{n} k 2^{k-1} + (n+1)2^n = ((n-1)2^n + 1) + (n+1)2^n \quad \text{d'après } \mathcal{P}(n)$$
$$= ((n-1) + (n+1))2^n + 1 = n(2n) \times 2^n + 1 = n2^{n+1} + 1.$$

Ceci montre $\mathcal{P}(n+1)$ et achève la récurrence.

Exercice 2 : Un famille de fonctions particulières

1. (Soit a un réel fixé.) Montrons que f_a satisfait la propriété (\star) , c'est à dire que

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \ f_a(x+y)f_a(x-y) = (f_a(x)f_a(y))^2.$$

Soient $x, y \in \mathbb{R}$ fixés. D'une part,

$$f_a(x+y) = e^{a(x+y)^2} = e^{ax^2 + 2axy + ay^2}$$
 et $f_a(x-y) = e^{a(x-y)^2} = e^{ax^2 - 2axy + ay^2}$

donc:

$$f_a(x+y) \times f_a(x-y) = e^{(ax^2+2axy+ay^2)+(ax^2-2axy+ay^2)} = e^{2a(x^2+y^2)}.$$

D'autre part,

$$f_a(x) \times f_a(y) = e^{ax^2} \times e^{ay^2} = e^{a(x^2 + y^2)},$$

donc : $(f_a(x)f_a(y))^2 = e^{2a(x^2+y^2)}$. On a bien montré l'égalité $f_a(x+y)f_a(x-y) = (f_a(x)f_a(y))^2$ C'est valable quels que soient $x, y \in \mathbb{R}$, d'où le résultat.

- 2. Procédons pour cela par analyse-synthèse.
 - Analyse : Soit f une fonction constante satisfaisant la propriété (\star) .

Puisque f est constante, on peut introduire $C \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, f(x) = C$.

La propriété $(\star): \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, f(x+y)f(x-y) = (f(x)f(y))^2$ donne donc ici :

$$C \times C = (C \times C)^2$$
 i.e $C^2 = C^4$ i.e $C^4 - C^2 = 0$ i.e $C^2(C^2 - 1) = 0$ i.e $(C = 0 \text{ ou } C = \pm 1)$.

Conclusion de l'analyse : si une fonction constante satisfait (\star) , cette constante vaut 0, 1, ou -1.

• Synthèse: Inversement, on peut vérifier facilement que les fonctions constantes (définies par $\forall x \in \mathbb{R}, f(x) = C$) avec C = 0 ou 1 ou -1 satisfont bien la propriété (\star) . (Il suffit de regarder les calculs faits dans l'analyse...)

Conclusion: les fonctions constantes satisfaisant (\star) sont les fonctions constantes égales à 0, 1 ou -1

3. On suppose ici que f satisfait la propriété (\star) .

Pour clarifier la rédaction, posons g = -f, c'est à dire : $\forall x \in \mathbb{R}, \ g(x) = -f(x)$.

Vérifions que g satisfait la propriété (\star) , c'est à dire : $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \ g(x+y)g(x-y) = (g(x)g(y))^2$.

Soient $x, y \in \mathbb{R}$ fixés. On a :

$$g(x+y)g(x-y) = (-f(x+y)) \times (-f(x-y))$$

$$= f(x+y)f(x-y)$$

$$= (f(x)f(y))^2 \quad \text{car on sait que } f \text{ satisfait la propriété } (\star)$$

$$= \left((-g(x)) \times (-g(y))\right)^2 \quad \text{car } f = -g$$

$$= (g(x)g(y))^2.$$

Ceci est valable quels que soient $x, y \in \mathbb{R}$. On a bien montré que -f satisfait la propriété (\star)

4. On suppose ici que f satisfait la propriété (\star) .

Soit $x \in \mathbb{R}$ fixé. Supposons que f(2x) = 0 et montrons que f(x) = 0.

D'après la propriété (\star) , on sait que $\forall a, b \in \mathbb{R}, f(a+b)f(a-b) = (f(a)f(b))^2$.

En choisissant a = b = x, on obtient : $f(2x) \times f(0) = f(x)^4$.

Or on sait que f(2x) = 0. On en déduit $f(x)^4 = 0$, c'est à dire f(x) = 0.

On a bien montré l'implication $f(2x) = 0 \Rightarrow f(x) = 0$

- 5. Soit f une fonction satisfaisant la propriété (\star) .
 - (a) Montrons par récurrence que : $\forall n \in \mathbb{N}, \ f\left(\frac{\alpha}{2^n}\right) = 0.$
 - Initialisation : Vérifions la propriété pour n=0, c'est à dire $f(\alpha)=0$. C'est bien vrai d'après l'énoncé (α est une valeur où f s'annule).
 - Hérédité : Soit $n \in \mathbb{N}$ fixé. Supposons que $f\left(\frac{\alpha}{2^n}\right) = 0$ et montrons que $f\left(\frac{\alpha}{2^{n+1}}\right) = 0$.

D'après la question 4., on sait que pour tout $x \in \mathbb{R}$, si f(2x) = 0, alors f(x) = 0.

Avec $x = \frac{\alpha}{2^{n+1}}$, on sait ici que $f(2x) = f\left(\frac{\alpha}{2^n}\right) = 0$, on peut donc conclure que $f\left(\frac{\alpha}{2^{n+1}}\right) = 0$.

Ceci achève la récurrence. Conclusion : $\boxed{\forall n \in \mathbb{N}, \ f\left(\frac{\alpha}{2^{n+1}}\right) = 0}$

(b) On vient de voir que $\forall n \in \mathbb{N}, \ f\left(\frac{\alpha}{2^{n+1}}\right) = 0.$

Par hypothèse, on sait aussi que f est continue en 0, c'est à dire : $f(x) \xrightarrow[x \to 0]{} f(0)$.

 α étant une valeur fixée, on a bien-sûr $\lim_{n\to+\infty}\frac{\alpha}{2^n}=0$. Par composition de limite, on a donc :

$$\lim_{n \to +\infty} f\left(\frac{\alpha}{2^{n+1}}\right) = \lim_{x \to 0} f(x) = f(0).$$

Ainsi,
$$f(0) = \lim_{n \to +\infty} f\left(\frac{\alpha}{2^{n+1}}\right) = 0 \text{ (car } \forall n \in \mathbb{N}, \ f\left(\frac{\alpha}{2^{n+1}}\right) = 0).$$

On a bien montré que f(0) = 0.

Montrons maintenant que f est la fonction nulle, c'est à dire que : $\forall x \in \mathbb{R}, f(x) = 0.$

Soit $x \in \mathbb{R}$ fixé quelconque. Montrons que f(x) = 0.

D'après la propriété (\star) , on sait que $\forall a, b \in \mathbb{R}, f(a+b)f(a-b) = (f(a)f(b))^2$.

En choisissant, encore une fois, a = b = x, on obtient : $f(2x) \times f(0) = f(x)^4$.

Puisque f(0) = 0, cela donne $f(x)^4 = 0$, et donc f(x) = 0.

C'est valable quel que soit $x \in \mathbb{R}$. On a bien montré que $\forall x \in \mathbb{R}, f(x) = 0$