NAIST(情報科) 入試過去問題集(数学) 詳細解答編

目次

1	線形	代数 詳細解答	3
	1.1	問題1詳細解答:線形写像の反例	3
	1.2	問題 2 詳細解答:対角行列の逆行列	4
	1.3	問題3詳細解答:冪零行列の逆行列公式	5
	1.4	問題 4 詳細解答:2 × 2 行列の固有値・固有ベクトル	5
	1.5	問題5詳細解答:冪零行列と線形独立性←【問題ミス】	7
	1.6	問題 6 詳細解答:行列の交換法則と二項定理	8
	1.7	問題7詳細解答:対角化とその応用	10
	1.8	問題 8 詳細解答:行列の冪乗パターン	11
	1.9	問題 9 詳細解答:ケーリー・ハミルトンの定理の応用	12
		問題 10 詳細解答:直交性と正規直交基底	13
		問題 11 詳細解答:冪等行列の固有値	14
		問題 12 詳細解答:有限位数行列と直交行列	16
		問題 13 詳細解答:特殊な冪等関係←【問題ミス】	16
		問題 14 詳細解答:対角化とべき乗の一般計算	
		問題 15 詳細解答:特殊な 2 次行列方程式	
		問題 16 詳細解答:四面体の幾何計算	
		問題 17 詳細解答:行列の微分	20
		問題 18 詳細解答:特殊形状行列の逆行列	
		問題 19 詳細解答:二項定理を用いた行列のべき乗	
		問題 20 詳細解答:ベクトルの角度	
		問題 14 詳細解答:対角化とべき乗の一般計算	
		問題 15 詳細解答:特殊な 2 次行列方程式	
		問題 16 詳細解答:四面体の幾何計算	
		問題 17 詳細解答:行列の微分	
		問題 18 詳細解答:特殊形状行列の逆行列	
		問題 19 詳細解答:二項定理を用いた行列のべき乗	
		問題 20 詳細解答:ベクトルの角度	
		問題 21 詳細解答: 直交ベクトルと線形結合	
	1.29	問題 22 詳細解答:トレースを用いた行列方程式の不可能性	28
2	解析	学 詳細解答	29
	2.1	問題 1 詳細解答:極限の基本計算	29
	2.2	問題2詳細解答:根号を含む置換積分	30
	2.3	問題 3 詳細解答: ガンマ関数の性質	31

NAIST(情報科) 入試過去問題集 (数学) 詳細解答編

	2.4		31
	2.5		32
	2.6	, v = - 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32
	2.7		32
	2.8		33
	2.9		33
	2.10	問題 10 詳細解答:三角関数方程式の軌跡	33
	2.11	, v = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	33
			34
		THE ESTATION OF THE STATE OF TH	34
			35
			36
		, , = , , , , , , , , , , , , , , , , ,	36
		, , , , , , , , , , , , , , , , , , , ,	36
			36
	2.19	問題 19 詳細解答:対数関数の最小値	37
		, , = , , , , , , , , , , , , , , , , ,	37
			37
			38
	2.23	問題 23 詳細解答:数列の極限と級数の発散	38
		· · · · · · · · · · · · · · · · · · ·	39
			39
			10
	2.27	問題 27 詳細解答:置換積分の基本 4	10
3	重要	公式・定理まとめ 4	10
	3.1	線形代数の重要定理・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	3.2	解析学の重要定理・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
	3.3	計算技法のまとめ	11
4	おわ) に	1

1 線形代数 詳細解答

1.1 問題1詳細解答:線形写像の反例

解法戦略 (線形写像でないことの証明):線形写像であるための必要十分条件を確認し、それが成り立たないことを示す。線形写像の定義を満たさない具体例を構築する。

定義 (線形写像): 写像 $f:V\to W$ が線形写像であるための必要十分条件:

1. 加法性: $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ (すべての $\mathbf{x}, \mathbf{y} \in V$ に対して)

2. **斉次性**: $f(c\mathbf{x}) = cf(\mathbf{x})$ (すべての $c \in \mathbb{R}$, $\mathbf{x} \in V$ に対して)

与えられた写像: $f(\mathbf{x}) = \mathbf{x} + \mathbf{a}$ ($\mathbf{a} \neq \mathbf{0}$ は定数ベクトル)

証明方法 1:加法性の直接確認 加法性が成り立つかを検証します:

$$f(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mathbf{y}) + \mathbf{a} = \mathbf{x} + \mathbf{y} + \mathbf{a} \tag{1}$$

$$f(\mathbf{x}) + f(\mathbf{y}) = (\mathbf{x} + \mathbf{a}) + (\mathbf{y} + \mathbf{a}) = \mathbf{x} + \mathbf{y} + 2\mathbf{a}$$
(2)

 $\mathbf{a} \neq \mathbf{0}$ のとき:

$$x + y + a \neq x + y + 2a$$

したがって $f(\mathbf{x} + \mathbf{y}) \neq f(\mathbf{x}) + f(\mathbf{y})$ となり、加法性が成り立ちません。

証明方法2:零ベクトルの性質

定理 (線形写像の零ベクトル条件): f が線形写像ならば、必ず $f(\mathbf{0}) = \mathbf{0}$ が成り立つ。

定理の証明: 斉次性より $f(\mathbf{0}) = f(0 \cdot \mathbf{0}) = 0 \cdot f(\mathbf{0}) = \mathbf{0}$ しかし、与えられた写像では:

$$f(\mathbf{0}) = \mathbf{0} + \mathbf{a} = \mathbf{a} \neq \mathbf{0}$$

これは線形写像の必要条件に反します。

証明方法3: 斉次性の確認

斉次性についても確認してみます:

$$f(c\mathbf{x}) = c\mathbf{x} + \mathbf{a} \tag{1}$$

$$cf(\mathbf{x}) = c(\mathbf{x} + \mathbf{a}) = c\mathbf{x} + c\mathbf{a} \tag{2}$$

 $c \neq 1$ かつ $\mathbf{a} \neq \mathbf{0}$ のとき:

$$c\mathbf{x} + \mathbf{a} \neq c\mathbf{x} + c\mathbf{a}$$

斉次性も成り立ちません。

幾何学的解釈:写像 $f(\mathbf{x}) = \mathbf{x} + \mathbf{a}$ は平行移動(translation)です。線形写像は原点を原点に写し、直線を原点を通る直線に写しますが、平行移動は原点を \mathbf{a} に移すため線形写像ではありません。

1.2 問題 2 詳細解答:対角行列の逆行列

解法戦略 (対角行列の逆行列): 対角行列の逆行列は各対角成分の逆数を取った対 角行列になる。ただし、すべての対角成分が非零である必要がある。

与えられた行列:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

対角行列の性質確認:

- 1. すべての非対角成分が0
- 2. すべての対角成分が非零(1,1,2,3)

逆行列の存在条件確認:

$$\det(A) = 1 \cdot 1 \cdot 2 \cdot 3 = 6 \neq 0$$

したがって逆行列が存在します。

対角行列の逆行列公式:対角行列 $D = \operatorname{diag}(d_1, d_2, \ldots, d_n)$ に対して $(d_i \neq 0)$:

$$D^{-1} = \operatorname{diag}\left(\frac{1}{d_1}, \frac{1}{d_2}, \dots, \frac{1}{d_n}\right)$$

証明: $DD^{-1} = I$ を確認

$$\begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix} \begin{pmatrix} \frac{1}{d_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_n} \end{pmatrix} = I$$

答え:

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$$

検算:

$$AA^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix} = I$$

1.3 問題3詳細解答:冪零行列の逆行列公式

解法戦略 (幾何級数の和の応用): この問題は実質的に幾何級数の和の公式を行列に適用したものです。 $(1-r)^{-1}=1+r+r^2+\cdots$ の行列版を証明します。

目標: $X^n = O$ のとき、 $(E - X)^{-1} = E + X + X^2 + \cdots + X^{n-1}$ を示す 証明戦略:逆行列の定義 $AA^{-1} = E$ を使って直接計算

定義 (逆行列の定義): 行列 A の逆行列 A^{-1} は $AA^{-1}=A^{-1}A=E$ を満たす行列 です。

証明: $(E-X)(E+X+X^2+\cdots+X^{n-1})=E$ を示します。 左辺を展開:

$$(E - X)(E + X + X^{2} + \dots + X^{n-1})$$

$$= E(E + X + X^{2} + \dots + X^{n-1}) - X(E + X + X^{2} + \dots + X^{n-1})$$

$$= (E + X + X^{2} + \dots + X^{n-1}) - (X + X^{2} + X^{3} + \dots + X^{n})$$
(展開)

Telescoping 効果:各項を整理すると

$$= E + (X - X) + (X^{2} - X^{2}) + \dots + (X^{n-1} - X^{n-1}) - X^{n}$$
(4)

$$= E + 0 + 0 + \dots + 0 - X^{n} \tag{5}$$

$$=E-X^{n} \tag{6}$$

条件の適用: $X^n = O$ より

$$E - X^n = E - O = E$$

したがって:

$$(E - X)(E + X + X^{2} + \dots + X^{n-1}) = E$$

これにより $(E-X)^{-1} = E + X + X^2 + \dots + X^{n-1}$ が成り立ちます。

応用例: $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ のとき、 $X^2 = O$ なので:

$$(E-X)^{-1} = E + X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

実際に:

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

1.4 問題 4 詳細解答: 2×2行列の固有値・固有ベクトル

解法戦略 (固有値・固有ベクトルの計算手順):

- 1. 特性方程式 $\det(A \lambda E) = 0$ を解いて固有値を求める
- 2. 各固有値に対して $(A \lambda E)\mathbf{v} = \mathbf{0}$ を解いて固有ベクトルを求める

与えられた行列:

$$A = \begin{pmatrix} 4 & 5 \\ 1 & -9 \end{pmatrix}$$

Step 1: 固有値の計算

特性多項式を計算:

$$\det(A - \lambda E) = \det\begin{pmatrix} 4 - \lambda & 5\\ 1 & -9 - \lambda \end{pmatrix} \tag{7}$$

$$= (4 - \lambda)(-9 - \lambda) - 5 \cdot 1 \tag{8}$$

$$= -36 - 4\lambda + 9\lambda + \lambda^2 - 5 \tag{9}$$

$$= \lambda^2 + 5\lambda - 41 \tag{10}$$

特性方程式: $\lambda^2 + 5\lambda - 41 = 0$ 二次方程式の解の公式を適用:

$$\lambda = \frac{-5 \pm \sqrt{25 + 164}}{2} = \frac{-5 \pm \sqrt{189}}{2}$$

 $\sqrt{189} = \sqrt{9 \times 21} = 3\sqrt{21}$ なので:

$$\lambda_1 = \frac{-5 + 3\sqrt{21}}{2}, \quad \lambda_2 = \frac{-5 - 3\sqrt{21}}{2}$$

数値確認: $\sqrt{21} \approx 4.583$ なので

$$\lambda_1 \approx \frac{-5 + 13.749}{2} \approx 4.374$$

$$\lambda_2 \approx \frac{-5 - 13.749}{2} \approx -9.374$$

 $egin{aligned} \mathbf{Step} & \mathbf{2:} & \mathbf{b}$ 固有ベクトルの計算 $\lambda_1 = rac{-5+3\sqrt{21}}{2} & \mathbf{c}$ 対する固有ベクトル: $(A-\lambda_1 E)\mathbf{v}_1 = \mathbf{0} & \mathbf{b}$ を解きます:

$$\begin{pmatrix} 4 - \lambda_1 & 5 \\ 1 & -9 - \lambda_1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 $\begin{array}{l} 4-\lambda_1=4-\frac{-5+3\sqrt{21}}{2}=\frac{8+5-3\sqrt{21}}{2}=\frac{13-3\sqrt{21}}{2}\\ -9-\lambda_1=-9-\frac{-5+3\sqrt{21}}{2}=\frac{-18+5-3\sqrt{21}}{2}=\frac{-13-3\sqrt{21}}{2} \end{array}$ 連立方程式:

$$\frac{13 - 3\sqrt{21}}{2}x + 5y = 0 \tag{第 1 式}$$

$$x + \frac{-13 - 3\sqrt{21}}{2}y = 0 \tag{第 2 式}$$

第2式から: $x = \frac{13+3\sqrt{21}}{2}y$ y=2 とおくと: $x=13+3\sqrt{21}$ したがって: $\mathbf{v}_1 = \begin{pmatrix} 13 + 3\sqrt{21} \\ 2 \end{pmatrix}$ $\lambda_2 = rac{-5-3\sqrt{21}}{2}$ に対する固有ベクトル:同様に計算すると:

$$\mathbf{v}_2 = \begin{pmatrix} 13 - 3\sqrt{21} \\ 2 \end{pmatrix}$$

検算:

$$A\mathbf{v}_1 = \begin{pmatrix} 4 & 5 \\ 1 & -9 \end{pmatrix} \begin{pmatrix} 13 + 3\sqrt{21} \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 4(13 + 3\sqrt{21}) + 10 \\ (13 + 3\sqrt{21}) - 18 \end{pmatrix} = \begin{pmatrix} 62 + 12\sqrt{21} \\ -5 + 3\sqrt{21} \end{pmatrix}$$

一方:

$$\lambda_1 \mathbf{v}_1 = \frac{-5 + 3\sqrt{21}}{2} \begin{pmatrix} 13 + 3\sqrt{21} \\ 2 \end{pmatrix}$$

計算すると確かに一致します。

問題5 詳細解答:冪零行列と線形独立性←【問題ミス】 1.5

解法戦略 (冪零行列の性質を利用): $A^2 = O$ という冪零性と Ax = 0 という条件 を組み合わせて、線形独立性を示します。部分(B)では問題設定に注意が必要です。

与えられた条件:

- 1. $A \neq O$ (零行列でない)
- 2. $A^2 = O$ (A は冪零行列)
- 3. Ax = 0 (x は A の零空間に属する)

(A) 線形独立性の証明

定義 (線形独立): ベクトル (または行列) の集合 $\{v_1, v_2, \ldots, v_k\}$ が線形独立であ るとは、

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$$

が成り立つのは $c_1 = c_2 = \cdots = c_k = 0$ のときのみであることです。

詳細証明 (対偶による証明): $A \ge x$ が線形従属であると仮定して矛盾を導く。 Aとxが線形従属なら、ある非零定数c.dに対して:

$$cA + dx = 0$$

Ax = 0 の条件から、両辺に左から A をかけると:

$$cA^2 + dAx = cO + d \cdot 0 = O$$

 $A^2 = 0$ なので:

$$c \cdot O + 0 = O$$

これは自明に成り立つため、この方向では矛盾を導けません。 別のアプローチとして、具体例で確認します。

定理 (冪零行列の列空間と零空間の関係): $A^2=O$ ならば、 $\mathrm{Col}(A)\subseteq\mathrm{Null}(A)$ が成り立ちます。

定理の証明:A の列ベクトルを $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ とします。任意の列ベクトル \mathbf{a}_j に対して:

$$A\mathbf{a}_i = A \cdot (A \, \mathfrak{O} \, \hat{\mathbf{g}} \, j \, \mathfrak{R}) = (A^2 \, \mathfrak{O} \, \hat{\mathbf{g}} \, j \, \mathfrak{R}) = \mathbf{0}$$

したがって $\mathbf{a}_i \in \text{Null}(A)$ です。

具体例による検証: $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ とします。

$$A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O$$

Ax = 0 を満たす x は $x = \begin{pmatrix} t \\ 0 \end{pmatrix}$ $(t \neq 0)$ です。

$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 とすると、 A の列ベクトルは $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ と $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ です。

この場合、 $A \ge x$ は実際に線形独立になります。 \leftarrow ミス: 1次従属

問題の再解釈:与えられた例 $A=\begin{pmatrix}0&1\\0&0\end{pmatrix}$, $x=\begin{pmatrix}1\\0\end{pmatrix}$ では、実際に A と x は線形従属になります。

なぜならxはAの第2列ベクトルと等しいからです。

したがって、問題文の命題「Aと x が線形独立」は一般には成り立ちません。

(B) B⁻¹AB **の計算**

B = (x Ax) ですが、Ax = 0 より:

$$B = (x \quad 0)$$

これは第 2 列が零ベクトルなので、 $\det(B)=0$ となり正則ではありません。したがって B^{-1} は存在せず、 $B^{-1}AB$ は定義できません。

問題文の修正案:おそらく B=(x-y) where y は x と線形独立なベクトル、または異なる条件設定が意図されていたと思われます。

1.6 問題 6 詳細解答:行列の交換法則と二項定理

解法戦略 (交換可能な行列の性質): AN=NA が成り立つとき、二項定理 $(A+N)^k=\sum_{r=0}^k \binom{k}{r}A^{k-r}N^r$ が適用できます。N の冪零性も利用します。

与えられた行列:

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(A) AN = NA の証明

直接計算による証明:

$$AN = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

行列の積の計算:

$$(AN)_{ij} = \sum_{k=1}^{3} A_{ik} N_{kj} \tag{11}$$

$$(AN)_{11} = a \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 0 \tag{12}$$

$$(AN)_{12} = a \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = a \tag{13}$$

$$(AN)_{13} = a \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \tag{14}$$

$$\vdots (15)$$

したがって:

$$AN = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$$

同様に:

$$NA = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$$

3 Lot AN = NA cot.

理論的説明:A=aE (スカラー行列)なので、任意の行列 B に対して AB=BA が成り立ちます。これは aE が単位行列の定数倍だからです。

(B) N^2 と N^3 の計算

$$N^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

計算:

$$(N^2)_{12} = 0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \tag{16}$$

$$(N^2)_{13} = 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0 \tag{17}$$

$$(N^2)_{13} = 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 = 1 \tag{19}$$

したがって:

$$N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$N^3 = N^2 \cdot N = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O$$

冪零行列の性質:N は 冪零指数 3 \acute{o} 冪零行列です。 つまり $N^3=O$ かつ $N^2\neq O$ です。

(C) $(A+N)^k$ の計算

定理 (交換可能な行列の二項定理): AB=BA のとき、 $(A+B)^k=\sum_{r=0}^k \binom{k}{r}A^{k-r}B^r$

$$AN=NA$$
 なので二項定理が適用できます: $(A+N)^k=\sum_{r=0}^k \binom{k}{r}A^{k-r}N^r$ $N^3=O$ なので、 $r\geq 3$ の項はすべて 0 になります: $(A+N)^k=\binom{k}{0}A^kN^0+\binom{k}{1}A^{k-1}N^1+\binom{k}{2}A^{k-2}N^2=A^k+kA^{k-1}N+\frac{k(k-1)}{2}A^{k-2}N^2$ $A=aE$ なので $A^j=a^jE$: $(A+N)^k=a^kE+ka^{k-1}N+\frac{k(k-1)}{2}a^{k-2}N^2$ 各項を計算: $a^kE=\begin{pmatrix} a^k & 0 & 0 \\ 0 & a^k & 0 \\ 0 & 0 & a^k \end{pmatrix}$

各項を計算:
$$a^k E = \begin{pmatrix} a^k & 0 & 0 \\ 0 & a^k & 0 \\ 0 & 0 & a^k \end{pmatrix}$$

$$ka^{k-1}N = ka^{k-1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & ka^{k-1} & 0 \\ 0 & 0 & ka^{k-1} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{k(k-1)}{2}a^{k-2}N^2 = \frac{k(k-1)}{2}a^{k-2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \frac{k(k-1)}{2}a^{k-2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
したがって: $(A+N)^k = \begin{pmatrix} a^k & ka^{k-1} & \frac{k(k-1)}{2}a^{k-2} \\ 0 & a^k & ka^{k-1} \\ 0 & 0 & a^k \end{pmatrix}$

パターンの観察:この形は上三角行列で、対角成分がすべて a^k 、上側の成分は二項係 数とaの冪の積になっています。

1.7 問題7詳細解答:対角化とその応用

解法戦略 (対角化の完全な手順):

- 1. 特性方程式から固有値を求める
- 2. 各固有値の固有ベクトルを求める
- 3. 対角化行列を構成する
- 4. *Aⁿ* の公式を導出する

与えられた行列: $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$

(A) 固有値と固有ベクトル 固有値の計算:
$$\det(A - \lambda E) = \det\begin{pmatrix} 3 - \lambda & 1 \\ 2 & 4 - \lambda \end{pmatrix} = (3 - \lambda)(4 - \lambda) - 2 = 12 - 3\lambda$$
 -

 $4\lambda + \lambda^2 - 2 = \lambda^2 - 7\lambda + 10$

因数分解: $\lambda^2 - 7\lambda + 10 = (\lambda - 2)(\lambda - 5)$

固有值: $\lambda_1 = 2, \lambda_2 = 5$

 $\lambda_1=2$ の固有ベクトル

$$\lambda_1 = 2$$
 の固有ペクトル:
 $(A - 2E)\mathbf{v}_1 = \mathbf{0} : \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
第 1 行: $x + y = 0$ より $y = -x$
 $x = 1$ とおくと: $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$x=1$$
 とおくと: $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

検算:
$$A\mathbf{v}_1 = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} \mathbf{1} \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 2\mathbf{v}_1$$

$$\lambda_2=5$$
 の固有ベクトル: $(A-5E)\mathbf{v}_2=0:\begin{pmatrix} -2&1\\2&-1\end{pmatrix}\begin{pmatrix} x\\y\end{pmatrix}=\begin{pmatrix} 0\\0\end{pmatrix}$ 第 1 行: $-2x+y=0$ より $y=2x$ $x=1$ とおくと: $\mathbf{v}_2=\begin{pmatrix} 1\\2\\2\end{pmatrix}$ 検算: $A\mathbf{v}_2=\begin{pmatrix} 3&1\\2&4\end{pmatrix}\begin{pmatrix} 1\\2\end{pmatrix}=\begin{pmatrix} 5\\10\end{pmatrix}=5\begin{pmatrix} 1\\2\end{pmatrix}=5\mathbf{v}_2$ (B) 対角化 固有ベクトルを列に並べた行列: $P=\begin{pmatrix} 1&1\\-1&2\end{pmatrix}$ P の逆行列を求める: $\det(P)=1\cdot 2-1\cdot (-1)=3$ $P^{-1}=\frac{1}{3}\begin{pmatrix} 2&-1\\1&1\end{pmatrix}$ 対角行列: $D=P^{-1}AP=\begin{pmatrix} 2&0\\0&5\end{pmatrix}$ 検算: $P^{-1}AP=\frac{1}{3}\begin{pmatrix} 2&-1\\1&1\end{pmatrix}\begin{pmatrix} 3&1\\2&4\end{pmatrix}\begin{pmatrix} 1&1\\-1&2\end{pmatrix}$ 中間計算: $\frac{1}{3}\begin{pmatrix} 1&1\\1&2\end{pmatrix}=\frac{1}{3}\begin{pmatrix} 6&0\\0&15\end{pmatrix}=\begin{pmatrix} 2&0\\0&5\end{pmatrix}$ (C) A^n の計算 対角化の応用: $A=PDP^{-1}$ より $A^n=(PDP^{-1})^n=PD^nP^{-1}$ $D^n=\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ したがって: $A^n=P\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ $P^{-1}=\begin{pmatrix} 1&1\\1&2\end{pmatrix}\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ にかって: $A^n=P\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ $P^{-1}=\begin{pmatrix} 1&1\\1&2\end{pmatrix}\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}=\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ もだがって: $A^n=P\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}=\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ (C) A^n が $A^n=\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}=\begin{pmatrix} 2^n&0\\0&5^n\end{pmatrix}$ (C) A^n (D) A^n (C) A^n (C) A^n (D) A^n (D)

1.8 問題8詳細解答:行列の冪乗パターン

解法戦略 (周期性の発見と帰納法): 小さな冪から計算して周期性を発見し、帰納 法で一般化します。

与えられた行列:
$$X = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$$
 小さな冪の計算:

$$X^{1} = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$$

$$X^{2} = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & a-a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

$$X^{3} = X^{2} \cdot X = E \cdot X = X$$

$$X^{4} = X^{3} \cdot X = X \cdot X = X^{2} = E$$

周期性の発見: $X^2 = E$ なので、X は位数 2 の行列です。 一般公式:

- n が偶数のとき: $X^n = E$
- n が奇数のとき: $X^n = X$

厳密な証明:

帰納法による証明:

基底ケース: n = 1: $X^1 = X$ (奇数) n = 2: $X^2 = E$ (偶数)

帰納仮定:k < n のすべての整数に対して公式が成り立つと仮定

帰納ステップ:n+1 が偶数の場合 (n は奇数): $X^{n+1} = X^n \cdot X = X \cdot X = X^2 = E$ n+1 が奇数の場合 (n は偶数): $X^{n+1} = X^n \cdot X = E \cdot X = X$ したがって公式が成り立ちます。

別解(固有値による説明):

$$X$$
 の固有値を求めます: $\det(X - \lambda E) = \det\begin{pmatrix} 1 - \lambda & a \\ 0 & -1 - \lambda \end{pmatrix} = (1 - \lambda)(-1 - \lambda) = -(1 - \lambda)(1 + \lambda) = \lambda^2 - 1$

 δ 固有值: $\lambda_1 = 1, \lambda_2 = -1$

 X^n の固有値は $1^n = 1$ と $(-1)^n$ です。 - n が偶数のとき:固有値は 1, 1 - n が奇数のとき:固有値は 1, -1

これは上三角行列なので、対角成分が固有値と一致し、結果と整合します。

1.9 問題 9 詳細解答:ケーリー・ハミルトンの定理の応用

解法戦略 (ケーリー・ハミルトンの定理): 行列は自分の特性多項式を満たすという定理を使って、 A^{-1} を A と E の線形結合で表現します。

与えられた行列: $A = \begin{pmatrix} 5 & 3 \\ 8 & 6 \end{pmatrix}$

(A) 逆行列の直接計算

$$\det(A) = 5 \cdot 6 - 3 \cdot 8 = 30 - 24 = 6 \neq 0$$

したがって逆行列が存在します:
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} 6 & -3 \\ -8 & 5 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 6 & -3 \\ -8 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{4}{3} & \frac{5}{6} \end{pmatrix}$$

検算:
$$AA^{-1} = \begin{pmatrix} 5 & 3 \\ 8 & 6 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{4}{3} & \frac{5}{6} \end{pmatrix}$$
$$= \begin{pmatrix} 5 - 4 & -\frac{5}{2} + \frac{5}{2} \\ 8 - 8 & -4 + 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

(B) ケーリー・ハミルトンの定理による表現

定理 (ケーリー・ハミルトンの定理): 任意の正方行列 A は自分の特性多項式を満 たします。つまり、特性多項式を $p(\lambda) = \det(A - \lambda E)$ とすると、p(A) = O が成り立 ちます。

特性多項式の計算:
$$\det(A - \lambda E) = \det\begin{pmatrix} 5 - \lambda & 3 \\ 8 & 6 - \lambda \end{pmatrix} = (5 - \lambda)(6 - \lambda) - 24 = 0$$

 $30 - 5\lambda - 6\lambda + \lambda^2 - 24 = \lambda^2 - 11\lambda + 6$

ケーリー・ハミルトンの定理の適用: $A^2 - 11A + 6E = O$

この式を A^{-1} について解きます: $A^2 - 11A + 6E = O(A(A - 11E)) = -6E(A - \frac{1}{-6}(A - 11E))$ 11E) = E

したがって: $A^{-1} = \frac{1}{-6}(A - 11E) = \frac{1}{6}(11E - A)$

これを $A^{-1}=\alpha A+\beta E$ の形で表すと : $A^{-1}=-\frac{1}{6}A+\frac{11}{6}E$

したがって: $\alpha = -\frac{1}{6}$, $\beta = \frac{11}{6}$

検算:
$$-\frac{1}{6}A + \frac{11}{6}E = -\frac{1}{6}\begin{pmatrix} 5 & 3 \\ 8 & 6 \end{pmatrix} + \frac{11}{6}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{5}{6} + \frac{11}{6} & -\frac{1}{2} \\ -\frac{4}{3} & -1 + \frac{11}{6} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{4}{3} & \frac{5}{6} \end{pmatrix} = A^{-1}$$

問題 10 詳細解答:直交性と正規直交基底 1.10

解法戦略 (内積による直交性の確認と正規化):

- 1. 内積計算で直交性を確認
- 2. ベクトルの長さを計算
- 3. 正規化して正規直交基底を構成
- 4. 直交補空間のベクトルを求める

与えられたベクトル:
$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$$

(A) 直交性の証明

定義 (内積と直交性): ベクトル $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ の内積は $\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^n u_i v_i$ で定義され、 $\mathbf{u} \cdot \mathbf{v} = 0$ のとき $\mathbf{u} \perp \mathbf{v}$ ($\mathbf{u} \times \mathbf{v} \times \mathbf{v}$)

$$\mathbf{a} \cdot \mathbf{b} = 1 \cdot 1 + 1 \cdot (-1) + 1 \cdot 1 + 1 \cdot (-1) = 1 - 1 + 1 - 1 = 0$$

$$\mathbf{a} \cdot \mathbf{c} = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot (-1) + 1 \cdot (-1) = 1 + 1 - 1 - 1 = 0$$

$$\mathbf{b} \cdot \mathbf{c} = 1 \cdot 1 + (-1) \cdot 1 + 1 \cdot (-1) + (-1) \cdot (-1) = 1 - 1 - 1 + 1 = 0$$

したがって $\mathbf{a} \perp \mathbf{b} \perp \mathbf{c}$ です。

(B) 正規直交基底の構成

各ベクトルの長さを計算: $||\mathbf{a}|| = \sqrt{1^2 + 1^2 + 1^2 + 1^2} = \sqrt{4} = 2 ||\mathbf{b}|| = \sqrt{1^2 + (-1)^2 + 1^2 + (-1)^2} = \sqrt{1^2 + (-1)^2 + 1^2 + (-1)^2}$ $\sqrt{4} = 2 ||\mathbf{c}|| = \sqrt{1^2 + 1^2 + (-1)^2 + (-1)^2} = \sqrt{4} = 2$

正規化:
$$\mathbf{u}_1 = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\mathbf{u}_2 = \frac{\mathbf{b}}{\|\mathbf{b}\|} = \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}$$

$$\mathbf{u}_3 = \frac{\mathbf{c}}{\|\mathbf{c}\|} = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}$$

正規直交性の確認:
$$||\mathbf{u}_i|| = 1$$
, $\mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij} = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$

(C) 直交するベクトルの構成

$$\mathbf{a},\mathbf{b},\mathbf{c}$$
 すべてに直交するベクトル $\mathbf{d}=\begin{pmatrix} d_1\\d_2\\d_3\\d_4 \end{pmatrix}$ を求めます。

条件:

$$\mathbf{a} \cdot \mathbf{d} = d_1 + d_2 + d_3 + d_4 = 0 \tag{20}$$

$$\mathbf{b} \cdot \mathbf{d} = d_1 - d_2 + d_3 - d_4 = 0 \tag{21}$$

$$\mathbf{c} \cdot \mathbf{d} = d_1 + d_2 - d_3 - d_4 = 0 \tag{22}$$

連立方程式を解く:

第 1 式と第 2 式から: $(d_1+d_2+d_3+d_4)-(d_1-d_2+d_3-d_4)=2d_2+2d_4=0$ したがって $d_2=-d_4$

第 1 式と第 3 式から: $(d_1+d_2+d_3+d_4)-(d_1+d_2-d_3-d_4)=2d_3+2d_4=0$ したがって $d_3=-d_4$

第1式に代入: $d_1 + (-d_4) + (-d_4) + d_4 = d_1 - d_4 = 0$ したがって $d_1 = d_4$

$$d_4 = 1$$
 とおくと: $\mathbf{d} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$

検算: $\mathbf{a} \cdot \mathbf{d} = 1 - 1 - 1 + 1 = 0$ $\mathbf{b} \cdot \mathbf{d} = 1 + 1 - 1 - 1 = 0$ $\mathbf{c} \cdot \mathbf{d} = 1 - 1 + 1 - 1 = 0$

完全な正規直交基底:
$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$$
 where $\mathbf{u}_4 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$

これは ℝ⁴ の正規直交基底を構成します。

1.11 問題 11 詳細解答:冪等行列の固有値

解法戦略 (対称性と冪等性の組み合わせ): ${}^tA = A$ (対称性) と $A^2 = A$ (冪等性) の条件を組み合わせて、固有値の制約を導出します。

与えられた条件:

- 1. ${}^tA = A$ (A は対称行列)
- 2. $A^2 = A$ (A は冪等行列)

定義 (冪等行列): $A^2 = A$ を満たす行列を冪等行列(idempotent matrix)といいます。

証明戦略:固有値の性質を直接使う

定理 (冪等行列の固有値): $A^2=A$ ならば、A の任意の固有値 λ は $\lambda^2=\lambda$ を満たします。

定理の証明: λ を A の固有値、 \mathbf{v} を対応する固有ベクトルとします ($\mathbf{v} \neq \mathbf{0}$)。

 $A\mathbf{v} = \lambda \mathbf{v}$

両辺に左から A をかけると: $A^2\mathbf{v} = A(\lambda \mathbf{v}) = \lambda A \mathbf{v} = \lambda^2 \mathbf{v}$

一方、 $A^2 = A$ より: $A^2 \mathbf{v} = A \mathbf{v} = \lambda \mathbf{v}$

したがって: $\lambda^2 \mathbf{v} = \lambda \mathbf{v} (\lambda^2 - \lambda) \mathbf{v} = \mathbf{0}$

 $\mathbf{v} \neq \mathbf{0}$ なので: $\lambda^2 - \lambda = 0 \ \lambda(\lambda - 1) = 0$

 $\lambda = 0$ または $\lambda = 1$

具体例による確認:

 2×2 の場合を考えます: $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ (対称行列)

$$A^2 = A$$
 の条件:
$$\begin{pmatrix} a^2 + b^2 & ab + bc \\ ab + bc & b^2 + c^2 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

これより:

$$a^2 + b^2 = a \tag{1}$$

$$b^2 + c^2 = c \tag{2}$$

$$ab + bc = b (3)$$

式 (3) から:b(a+c-1)=0

Case 1:
$$b = 0$$
 の場合 $A = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$

式 (1), (2) から: $a^2 = a$, $c^2 = c$ したがって $a, c \in \{0, 1\}$

この場合、固有値はaとcで、どちらも0または1です。

Case 2: $b \neq 0$ の場合 a + c = 1

式 (1) に代入: $a^2 + b^2 = a$ 式 (2) に代入: $b^2 + c^2 = c$

c=1-a を代入: $b^2+(1-a)^2=1-a$ $b^2+1-2a+a^2=1-a$ $b^2+a^2-a=0$ $a^2+b^2=a$ (式 (1) と一致)

特性方程式:
$$\det(A - \lambda E) = \det\begin{pmatrix} a - \lambda & b \\ b & c - \lambda \end{pmatrix} = (a - \lambda)(c - \lambda) - b^2 = \lambda^2 - (a + c)\lambda + (ac - b^2)$$

a+c=1 かつ式 (1), (2) から $ac-b^2=0$ なので: $\det(A-\lambda E)=\lambda^2-\lambda=\lambda(\lambda-1)$ したがって固有値は 0 と 1 です。

幾何学的解釈:冪等行列は射影行列(projection matrix)の性質を持ちます。 $A^2=A$ は「2回適用しても変化しない」ことを意味し、これは射影の特徴です。固有値0と1は、ベクトルが「消される」(0に射影)か「変化しない」(そのまま残る)ことに対応しています。

1.12 問題 12 詳細解答:有限位数行列と直交行列

解法戦略 (行列式の性質と固有値の制約): $A^k = E$ という条件から行列式の制約を導き、さらに固有値の制約を調べます。

(A) $A^k = E$ ならば A は正則

定理 (有限位数行列の正則性): $A^k = E$ となる自然数 k が存在するならば、A は正則です。

証明: $A^k = E$ の両辺の行列式を取ると: $\det(A^k) = \det(E)$

行列式の性質 $\det(AB) = \det(A)\det(B)$ より: $\det(A^k) = (\det A)^k$

したがって: $(\det A)^k = 1$

これは $\det A \neq 0$ を意味します $(\det A = 0$ なら $(\det A)^k = 0 \neq 1)$ 。

 $\det A \neq 0$ なので A は正則です。

逆行列の構成: $A^k=E$ より $A\cdot A^{k-1}=E$ なので: $A^{-1}=A^{k-1}$

これは A の逆行列が A の冪として表現できることを示しています。

(B) $A^2 = E$ の固有値

定理 (直交行列の固有値): $A^2 = E$ ならば、A の任意の固有値 λ は $\lambda = \pm 1$ です。

証明: λ を A の固有値、 \mathbf{v} を対応する固有ベクトルとします。

 $A\mathbf{v} = \lambda \mathbf{v}$

両辺に左から A をかけると: A^2 **v** = $A(\lambda$ **v**) = λA **v** = λ^2 **v**

 $A^2 = E \ \ \, \ \ \, \ \ \,$ $E\mathbf{v} = \mathbf{v} = \lambda^2 \mathbf{v}$

したがって: $\lambda^2 \mathbf{v} = \mathbf{v} (\lambda^2 - 1) \mathbf{v} = \mathbf{0}$

 $\mathbf{v} \neq \mathbf{0}$ なので: $\lambda^2 - 1 = 0$ $\lambda = \pm 1$

具体例: $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$

固有值: $\lambda_1 = 1, \lambda_2 = -1$

幾何学的解釈: $A^2=E$ を満たす行列は反射行列(reflection matrix)です。固有値 1 は反射軸上のベクトル(変化しない)、固有値-1 は反射によって符号が変わるベクトルに対応します。

1.13 問題 13 詳細解答:特殊な冪等関係←【問題ミス】

解法戦略 (行列の冪乗パターンと幾何級数): 行列の固有値を求め、対角化を利用して冪乗の和を計算します。

与えられた行列: $A = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$

基本計算: $A^2 = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 12 \\ 4 & 12 \end{pmatrix}$

(A)
$$A^2 - (2a+b)E = O$$
 を満たす a, b この条件式を展開すると: $\begin{pmatrix} 4 & 12 \\ 4 & 12 \end{pmatrix} - (2a+b) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 4 - (2a+b) & 12 \\ 4 & 12 - (2a+b) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ これより:

$$4 - (2a + b) = 0 \tag{(1,1) 成分)}$$

$$12 = 0 ((1,2) 成分)$$

$$4 = 0$$
 ((2,1) 成分)

$$12 - (2a + b) = 0 \tag{(2.2) 成分)}$$

第2式と第3式から矛盾が生じます。

問題の再解釈:おそらく問題設定に誤りがあります。代わりに A の固有値を使った別 のアプローチを試みます。

固有値の計算:
$$\det(A - \lambda E) = \det\begin{pmatrix} 1 - \lambda & 3 \\ 1 & 3 - \lambda \end{pmatrix} = (1 - \lambda)(3 - \lambda) - 3 = 3 - \lambda - \lambda$$

$$3\lambda + \lambda^2 - 3 = \lambda^2 - 4\lambda = \lambda(\lambda - 4)$$

固有値: $\lambda_1 = 0, \lambda_2 = 4$

(B) $E + A + A^2 + \cdots + A^n$ の計算

固有ベクトルの計算:

$$\lambda_1 = 0$$
 に対して: $A\mathbf{v}_1 = \mathbf{0} \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $x + 3y = 0$ より $x = -3y$ $\mathbf{v}_1 = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ $\lambda_2 = 4$ に対して: $(A - 4E)\mathbf{v}_2 = \mathbf{0} \begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $-3x + 3y = 0$ より $x = y$ $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 対角化: $P = \begin{pmatrix} -3 & 1 \\ 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$ P の逆行列: $\det(P) = -3 \cdot 1 - 1 \cdot 1 = -4$ $P^{-1} = \frac{1}{-4} \begin{pmatrix} 1 & -1 \\ -1 & -3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$

冪乗の計算:
$$A^n = PD^nP^{-1} = P\begin{pmatrix} 0 & 0 \\ 0 & 4^n \end{pmatrix}P^{-1}$$

$$n \ge 1 \ \mathcal{O} \ \mathcal{E} \ \mathcal{E} \ A^n = P \begin{pmatrix} 0 & 0 \\ 0 & 4^n \end{pmatrix} P^{-1} = 4^{n-1} P \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} P^{-1} = 4^{n-1} A$$

級数の和: $E+A+A^2+\cdots+A^n=E+A(1+4+4^2+\cdots+4^{n-1})$ 幾何級数の和: $1+4+4^2+\cdots+4^{n-1}=\frac{4^n-1}{4-1}=\frac{4^n-1}{3}$ したがって: $E+A+A^2+\cdots+A^n=E+A\cdot\frac{4^n-1}{3}$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{4^{n}-1}{3} \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 + \frac{4^{n}-1}{3} & 4^{n} - 1 \\ \frac{4^{n}-1}{3} & 1 + 4^{n} - 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3+4^{n}-1}{3} & 4^{n} - 1 \\ \frac{4^{n}-1}{3} & 4^{n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{4^{n}+2}{3} & 4^{n} - 1 \\ \frac{4^{n}-1}{3} & 4^{n} \end{pmatrix}$$

1.14 問題 14 詳細解答:対角化とべき乗の一般計算

解法戦略 (対角化による行列のべき乗計算): 行列 A の固有ベクトルを束ねた行列 P を使って対角化し、 A^n を効率的に計算します。

(A) P⁻¹AP の計算

一般的な 2×2 行列 A について考えます: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

固有値を λ_1, λ_2 とし、対応する固有ベクトルを $\mathbf{v}_1, \mathbf{v}_2$ とします。

$$P = (\mathbf{v}_1 \quad \mathbf{v}_2)$$
 とおくと: $P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = D$

計算プロセス:1. 特性方程式 $\det(A - \lambda E) = 0$ から固有値を求める 2. 各固有値に対して $(A - \lambda_i E)\mathbf{v}_i = \mathbf{0}$ を解いて固有ベクトルを求める 3. $P = (\mathbf{v}_1 \quad \mathbf{v}_2)$ を構成 4. P^{-1} を計算 5. $P^{-1}AP = D$ を確認

(B) Aⁿ の計算

対角化 $A=PDP^{-1}$ を利用: $A^n=(PDP^{-1})^n=PD^nP^{-1}$

ここで:
$$D^n = \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix}$$

したがって: $A^n = P \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} P^{-1}$

具体例:
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 の場合:

特性方程式: $\lambda^2 - 3\lambda - 4 = 0$ 固有值: $\lambda_1 = 4, \lambda_2 = -1$

固有ベクトル:
$$-\lambda_1 = 4$$
: $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - \lambda_2 = -1$: $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$A^n = \frac{1}{5} \begin{pmatrix} 2 \cdot 4^n + 3 \cdot (-1)^n & 4 \cdot 4^n - 4 \cdot (-1)^n \\ 6 \cdot 4^n - 6 \cdot (-1)^n & 9 \cdot 4^n + (-1)^n \end{pmatrix}$$

1.15 問題 15 詳細解答:特殊な2次行列方程式

解法戦略 (行列方程式の解法と周期性): $W^2+W+E=O$ という行列方程式を解き、W の性質を調べます。

与えられた行列:
$$W = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
, $W^2 + W + E = O$

(A) a,b の決定

$$W^2$$
 を計算: $W^2 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{pmatrix}$
 $W^2 + W + E = O$ より: $\begin{pmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{pmatrix} + \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

成分ごとに比較:

$$a^2 - b^2 + a + 1 = 0 ((1,1) 成分)$$

$$-2ab - b = 0 \tag{(1,2) 成分)}$$

$$2ab + b = 0 ((2,1) 成分)$$

$$a^2 - b^2 + a + 1 = 0 ((2.2) 成分)$$

第 2 式と第 3 式から:b(-2a-1)=0 かつ b(2a+1)=0 これより b=0 または 2a+1=0

Case 1: b=0 の場合第 1 式より: $a^2+a+1=0$ 判別式: $\Delta=1-4=-3<0$ なので実解なし

Case 2: 2a+1=0、すなわち $a=-\frac{1}{2}$ の場合第 1 式に代入: $\frac{1}{4}-b^2-\frac{1}{2}+1=0$ $\frac{3}{4}-b^2=0$ $b^2=\frac{3}{4}$ $b=\pm\frac{\sqrt{3}}{2}$

答え: $a=-\frac{1}{2},b=\pm\frac{\sqrt{3}}{2}$

(B) W^3 と $W^{100} + W^{250}$ の計算

 W^3 の計算: $W^3=W\cdot W^2=W(-W-E)=-W^2-W=-(-W-E)-W=W+E-W=E$

したがって $W^3 = E$ 、つまり W は位数 3 の行列です。

周期性の利用: $W^3=E$ なので、任意の整数 n に対して: $W^{3k}=E,\,W^{3k+1}=W,\,W^{3k+2}=W^2$

 W^{100} の計算: $100 = 3 \times 33 + 1$ なので $W^{100} = W^1 = W$

 W^{50} の計算: $50 = 3 \times 16 + 2$ なので $W^{50} = W^2$

$$W^2 = -W - E \, \, \sharp \, \, 0 \, : W^{100} + W^{50} = W + W^2 = W + (-W - E) = -E = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

1.16 問題 16 詳細解答:四面体の幾何計算

解法戦略 (ベクトルを用いた立体幾何): 4点からなる四面体について、ベクトルの 外積と内積を駆使して面積、垂線の足、体積を求めます。

与えられた4点:A(2,1,0), B(1,1,1), C(-1,1,1), D(0,2,1)

(A) △ABC **の面積**

ベクトルの設定:
$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

外積の計算: $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 0 & 1 \\ -3 & 0 & 1 \end{vmatrix}$

$$= \mathbf{i}(0 \cdot 1 - 1 \cdot 0) - \mathbf{j}((-1) \cdot 1 - 1 \cdot (-3)) + \mathbf{k}((-1) \cdot 0 - 0 \cdot (-3)) = \mathbf{i} \cdot 0 - \mathbf{j}(-1 + 3) + \mathbf{k} \cdot 0 = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 - 1 \cdot 0) + \mathbf{k}(0 \cdot 1 - 1 \cdot 0) = \mathbf{i}(0 \cdot 1 -$$

$$-2\mathbf{j} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$$

面積の計算: $|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{0^2 + (-2)^2 + 0^2} = 2$

 $S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \cdot 2 = 1$

 (\mathbf{B}) $\triangle ABC$ に点 D から降ろす垂線の足

平面 ABC の方程式:法線ベクトル: $\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$

単位法線ベクトル:
$$\mathbf{n}_0 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

平面の方程式: 0(x-2) + (-1)(y-1) + 0(z-0) = 0 つまり y=1

垂線の足の計算:点 D(0,2,1) から平面 y=1 への垂線の足は:垂線の足 H=(0,1,1)

検算:
$$\overrightarrow{DH} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$
 は確かに法線ベクトルに平行です。

(C) 四面体 ABCD の体積

体積公式: $V = \frac{1}{6} |\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD})|$

ベクトルの計算:
$$\overrightarrow{AD} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$$

$$\overrightarrow{AC} \times \overrightarrow{AD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 0 & 1 \\ -2 & 1 & 1 \end{vmatrix}$$

$$= \mathbf{i}(0\cdot 1 - 1\cdot 1) - \mathbf{j}((-3)\cdot 1 - 1\cdot (-2)) + \mathbf{k}((-3)\cdot 1 - 0\cdot (-2)) = -\mathbf{i} - \mathbf{j}(-3+2) - 3\mathbf{k} = \begin{pmatrix} -1\\1\\-3 \end{pmatrix}$$

スカラー三重積:
$$\overrightarrow{AB}\cdot(\overrightarrow{AC}\times\overrightarrow{AD})=\begin{pmatrix} -1\\0\\1\end{pmatrix}\cdot\begin{pmatrix} -1\\1\\-3\end{pmatrix}=1+0-3=-2$$

体積: $V = \frac{1}{6}|-2| = \frac{1}{3}$

問題17 詳細解答:行列の微分 1.17

解法戦略 (行列積の微分公式): 実数の積の微分公式 (fq)' = f'q + fq' の行列版を 証明します。

証明目標: $\frac{d}{dt}AB = \frac{dA}{dt}B + A\frac{dB}{dt}$

詳細証明 (成分による直接証明): 行列 $A=(a_{ij}(t)),\,B=(b_{ij}(t))$ とし、C=AB= $(c_{ij}(t))$ とします。

行列の積の定義より: $c_{ij}(t) = \sum_k a_{ik}(t)b_{kj}(t)$

両辺を t で微分: $\frac{dc_{ij}}{dt} = \frac{d}{dt} \sum_{k} a_{ik}(t)b_{kj}(t) = \sum_{k} \frac{d}{dt} [a_{ik}(t)b_{kj}(t)]$ 積の微分公式を適用: $= \sum_{k} \left[\frac{da_{ik}}{dt} b_{kj}(t) + a_{ik}(t) \frac{db_{kj}}{dt} \right]$

 $= \sum_{k} \frac{da_{ik}}{dt} b_{kj}(t) + \sum_{k} a_{ik}(t) \frac{db_{kj}^{L}}{dt}$ $\exists \text{ Thit } : \left(\frac{dA}{dt}B\right)_{ij} + \left(A\frac{dB}{dt}\right)_{ij}$

したがって: $\frac{d}{dt}(AB) = \frac{dA}{dt}B + A\frac{dB}{dt}$

重要な注意:行列の積は一般に交換法則が成り立たないため、 $\frac{dA}{dt}B$ と $B\frac{dA}{dt}$ は異なり ます。順序を正確に保つことが重要です。

す。順序を止催に保つことが重要です。

応用例:
$$A(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$
 (回転行列)
$$\frac{dA}{dt} = \begin{pmatrix} -\sin t & -\cos t \\ \cos t & -\sin t \end{pmatrix}$$

$$\frac{dA}{dt} = \begin{pmatrix} -\sin t & -\cos t \\ \cos t & -\sin t \end{pmatrix}$$

 $A(t)A^T(t) = E$ を微分: $\frac{d}{dt}(AA^T) = \frac{dA}{dt}A^T + A\frac{d(A^T)}{dt} = O$ これより直交行列の性質が導かれます。

問題 18 詳細解答:特殊形状行列の逆行列 1.18

解法戦略 (ブロック行列による逆行列計算):上三角ブロック行列の構造を利用し て逆行列を求めます。

与えられた行列:
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$$
 直接計算による方法:

$$A^{-1} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{pmatrix}$$
とおき、 $AA^{-1} = E$ の条件から各成分を求めます。

第1列の計算: A の第1列と A^{-1} の第1行の積から: $0 \cdot x_{11} + 1 \cdot x_{21} + 0 \cdot x_{31} + 0 \cdot x_{41} = 1$ よ したがって $x_{11} = -\frac{a_2}{a_1}$ $(a_1 \neq 0$ を仮定)

$$A^{-1} = \begin{pmatrix} -\frac{a_2}{a_1} & -\frac{a_3}{a_1} & -\frac{a_4}{a_1} & \frac{1}{a_1} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
検算: $AA^{-1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix} \begin{pmatrix} -\frac{a_2}{a_1} & -\frac{a_3}{a_1} & -\frac{a_4}{a_1} & \frac{1}{a_1} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = E$

問題 19 詳細解答:二項定理を用いた行列のべき乗 1.19

解法戦略 (交換可能行列と二項定理): $T^{-1}=E+bE_1+b^2E_2+b^3E_3$ の形で、指定 された二項定理を活用してべき乗を計算します。

与えられた行列:
$$T=\begin{pmatrix}1&b&0&0\\0&1&b&0\\0&0&1&b\\0&0&0&1\end{pmatrix}$$
 基本行列の定義: $E_1=\begin{pmatrix}0&1&0&0\\0&0&1&0\\0&0&0&1\\0&0&0&0\end{pmatrix}$, $E_2=E_1^2=\begin{pmatrix}0&0&1&0\\0&0&0&1\\0&0&0&0\\0&0&0&0\end{pmatrix}$ $E_3=E_1^3=\begin{pmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}$, $E_4=E_1^4=O$ 行列 T の表現: $T=E+bE_1$

ここで E は単位行列です。

交換性の確認:E と E_1 は交換可能($E \cdot E_1 = E_1 \cdot E = E_1$)なので、二項定理が適用 できます。

$$T^n$$
 の計算: $(E+bE_1)^n = \sum_{k=0}^n \binom{n}{k} E^{n-k} (bE_1)^k = \sum_{k=0}^n \binom{n}{k} b^k E_1^k$ $E_1^4 = O$ なので、 $k \ge 4$ の項は消えます: $T^n = \binom{n}{0} E + \binom{n}{1} b E_1 + \binom{n}{2} b^2 E_2 + \binom{n}{3} b^3 E_3$ $= E + nbE_1 + \frac{n(n-1)}{2} b^2 E_2 + \frac{n(n-1)(n-2)}{6} b^3 E_3$

具体的な行列形式:
$$T^n=egin{pmatrix}1&nb&rac{n(n-1)}{2}b^2&rac{n(n-1)(n-2)}{6}b^3\0&1&nb&rac{n(n-1)}{2}b^2\0&0&1&nb\0&0&1\end{pmatrix}$$

パターンの観察:各行の成分は二項係数とbの冪の積になっており、パスカルの三角 形の構造を反映しています。

問題20詳細解答:ベクトルの角度 1.20

解法戦略 (内積を用いた角度計算): ベクトルの内積公式 $\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ を使用し ます。

与えられたベクトル:
$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

(A) x_1 と x_2 のなす角

内積の計算:
$$\mathbf{x}_1 \cdot \mathbf{x}_2 = 1 \cdot 1 + \underline{1 \cdot (-1) + 1} \cdot 0 = \underline{1 - 1 + 0} = \underline{0}$$

ベクトルの大きさ:
$$|\mathbf{x}_1|=\sqrt{1^2+1^2+1^2}=\sqrt{3}$$
 $|\mathbf{x}_2|=\sqrt{1^2+(-1)^2+0^2}=\sqrt{2}$

角度の計算:
$$\cos \theta = \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{|\mathbf{x}_1| |\mathbf{x}_2|} = \frac{0}{\sqrt{3} \cdot \sqrt{2}} = 0$$

したがって $\theta = \frac{\pi}{2}$ (90度)

$$(\mathbf{B}) \mathbf{x}_1 \mathbf{c} \mathbf{x}_2 \mathbf{c}$$
 に直交するベクトル 外積を利用: $\mathbf{x}_1 \times \mathbf{x}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix}$

$$= \mathbf{i}(1 \cdot 0 - 1 \cdot (-1)) - \mathbf{j}(1 \cdot 0 - 1 \cdot 1) + \mathbf{k}(1 \cdot (-1) - 1 \cdot 1) = \mathbf{i} + \mathbf{j} - 2\mathbf{k} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

検算:
$$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1 + 1 - 2 = 0$$
 $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 1 - 1 + 0 = 0$ したがって $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ は両ベクトルに直交します。

したがって
$$\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$
は両ベクトルに直交します。

問題 14 詳細解答:対角化とべき乗の一般計算 1.21

解法戦略 (対角化による行列のべき乗計算): 行列 A の固有ベクトルを束ねた行列 P を使って対角化し、 A^n を効率的に計算します。

(A) $P^{-1}AP$ の計算

, 一般的な 2×2 行列 A について考えます: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

固有値を λ_1, λ_2 とし、対応する固有ベクトルを $\mathbf{v}_1, \mathbf{v}_2$ とします。

計算プロセス: 1. 特性方程式 $\det(A - \lambda E) = 0$ から固有値を求める 2. 各固有値に対 して $(A - \lambda_i E)\mathbf{v}_i = \mathbf{0}$ を解いて固有ベクトルを求める 3. $P = (\mathbf{v}_1 \quad \mathbf{v}_2)$ を構成 4. P^{-1} を 計算 5. $P^{-1}AP = D$ を確認

(B) Aⁿ の計算

対角化 $A=PDP^{-1}$ を利用: $A^n=(PDP^{-1})^n=PD^nP^{-1}$

$$\mathsf{ZZT}:D^n = \begin{pmatrix} \lambda_1^n & 0\\ 0 & \lambda_2^n \end{pmatrix}$$

したがって:
$$A^n = P\begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} P^{-1}$$

具体例:
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$
 の場合:

特性方程式: $\lambda^2 - 3\lambda - 4 = 0$ 固有値: $\lambda_1 = 4, \lambda_2 = -1$

固有ベクトル:
$$-3\lambda - 4 = 0$$
 固有温 : $\lambda_1 = 4$, $\lambda_2 = -1$ 固有ベクトル: $-\lambda_1 = 4$: $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ - $\lambda_2 = -1$: $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $A^n = \frac{1}{5} \begin{pmatrix} 2 \cdot 4^n + 3 \cdot (-1)^n & 4 \cdot 4^n - 4 \cdot (-1)^n \\ 6 \cdot 4^n - 6 \cdot (-1)^n & 9 \cdot 4^n + (-1)^n \end{pmatrix}$

$$A^{n} = \frac{1}{5} \begin{pmatrix} 2 \cdot 4^{n} + 3 \cdot (-1)^{n} & 4 \cdot 4^{n} - 4 \cdot (-1)^{n} \\ 6 \cdot 4^{n} - 6 \cdot (-1)^{n} & 9 \cdot 4^{n} + (-1)^{n} \end{pmatrix}$$

問題 15 詳細解答:特殊な2次行列方程式 1.22

解法戦略 (行列方程式の解法と周期性): $W^2+W+E=O$ という行列方程式を解 き、Wの性質を調べます。

与えられた行列:
$$W=\begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \quad W^2+W+E=O$$

(A) a,b の決定

$$W^2$$
 を計算: $W^2 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{pmatrix}$
 $W^2 + W + E = O$ より: $\begin{pmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{pmatrix} + \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

成分ごとに比較:

$$a^2 - b^2 + a + 1 = 0 \tag{(1,1) 成分)}$$

$$-2ab - b = 0 \tag{(1,2) 成分)}$$

$$2ab + b = 0 \tag{(2.1) 成分)}$$

$$a^2 - b^2 + a + 1 = 0 \tag{(2,2) 成分)}$$

第2式と第3式から:b(-2a-1)=0 かつ b(2a+1)=0

2a + 1 = 0

Case 1: b=0 の場合第 1 式より: $a^2+a+1=0$ 判別式: $\Delta=1-4=-3<0$ なの で実解なし

Case 2: 2a+1=0、すなわち $a=-\frac{1}{2}$ の場合第 1 式に代入: $\frac{1}{4}-b^2-\frac{1}{2}+1=0$ $\frac{3}{4} - b^2 = 0$ $b^2 = \frac{3}{4}$ $b = \pm \frac{\sqrt{3}}{2}$

答え: $a = -\frac{1}{2}, b = \pm \frac{\sqrt{3}}{2}$

 $(\mathbf{B}) \ W^3 \ \mathsf{E} \ W^{100} + W^{50} \ \mathfrak{O}$ 計算

 $W^2 + W + E = O \ \ \, \ \ \, \ \, W^2 = -W - E$

 W^3 の計算: $W^3 = W \cdot W^2 = W(-W - E) = -W^2 - W = -(-W - E) - W =$ W + E - W = E

したがって $W^3 = E$ 、つまり W は位数 3 の行列です。

周期性の利用: $W^3 = E$ なので、任意の整数 n に対して: $W^{3k} = E$, $W^{3k+1} = W$, $W^{3k+2} = W^2$

 W^{100} の計算: $100 = 3 \times 33 + 1$ なので $W^{100} = W^1 = W$

 W^{50} の計算: $50 = 3 \times 16 + 2$ なので $W^{50} = W^2$

$$W^2 = -W - E \ \ \ \ \ \ \ \ : W^{100} + W^{50} = W + W^2 = W + (-W - E) = -E = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

問題 16 詳細解答:四面体の幾何計算 1.23

解法戦略 (ベクトルを用いた立体幾何): 4 点からなる四面体について、ベクトルの 外積と内積を駆使して面積、垂線の足、体積を求めます。

与えられた 4 点:A(2,1,0), B(1,1,1), C(-1,1,1), D(0,2,1)

(A) $\triangle ABC$ の面積

ベクトルの設定:
$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

外積の計算: $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 0 & 1 \\ -3 & 0 & 1 \end{vmatrix}$

$$= \mathbf{i}(0 \cdot 1 - 1 \cdot 0) - \mathbf{j}((-1) \cdot 1 - 1 \cdot (-3)) + \mathbf{k}((-1) \cdot 0 - 0 \cdot (-3)) = \mathbf{i} \cdot 0 - \mathbf{j}(-1 + 3) + \mathbf{k} \cdot 0 = \mathbf{i}(-1 + 3) + \mathbf{i}(-1 +$$

$$-2\mathbf{j} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$$

面積の計算: $|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{0^2 + (-2)^2 + 0^2} = 2$

 $S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \cdot 2 = 1$ (B) $\triangle ABC$ に点 D から降ろす垂線の足

平面 ABC の方程式: 法線ベクトル: $\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$

単位法線ベクトル: $\mathbf{n}_0 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$

平面の方程式:0(x-2)+(-1)(y-1)+0(z-0)=0 つまり y=1

垂線の足の計算:点 D(0,2,1) から平面 y=1 への垂線の足は:垂線の足 H=(0,1,1)

検算:
$$\overrightarrow{DH} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$
 は確かに法線ベクトルに平行です。

(C) 四面体 *ABCD* の体積

体積公式:
$$V = \frac{1}{6} |\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD})|$$

ベクトルの計算:
$$\overrightarrow{AD} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$$

$$\overrightarrow{AC} \times \overrightarrow{AD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 0 & 1 \\ -2 & 1 & 1 \end{vmatrix}$$

$$= \mathbf{i}(0\cdot 1 - 1\cdot 1) - \mathbf{j}((-3)\cdot 1 - 1\cdot (-2)) + \mathbf{k}((-3)\cdot 1 - 0\cdot (-2)) = -\mathbf{i} - \mathbf{j}(-3+2) - 3\mathbf{k} = \begin{pmatrix} -1\\1\\-3 \end{pmatrix}$$

スカラー三重積:
$$\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} = 1 + 0 - 3 = -2$$

体積: $V = \frac{1}{6}|-2| = \frac{1}{3}$

問題 17 詳細解答:行列の微分 1.24

解法戦略 (行列積の微分公式): 実数の積の微分公式 (fg)' = f'g + fg' の行列版を 証明します。

証明目標: $\frac{d}{dt}AB = \frac{dA}{dt}B + A\frac{dB}{dt}$

詳細証明 (成分による直接証明): 行列 $A=(a_{ij}(t)), B=(b_{ij}(t))$ とし、C=AB= $(c_{ij}(t))$ とします。

行列の積の定義より: $c_{ij}(t) = \sum_k a_{ik}(t)b_{kj}(t)$ 両辺を t で微分: $\frac{dc_{ij}}{dt} = \frac{d}{dt}\sum_k a_{ik}(t)b_{kj}(t) = \sum_k \frac{d}{dt}[a_{ik}(t)b_{kj}(t)]$ 積の微分公式を適用: $=\sum_k \left[\frac{da_{ik}}{dt}b_{kj}(t) + a_{ik}(t)\frac{db_{kj}}{dt}\right]$

 $= \sum_{k} \frac{da_{ik}}{dt} b_{kj}(t) + \sum_{k} a_{ik}(t) \frac{db_{kj}^{L}}{dt}$ これは: $\left(\frac{dA}{dt} B \right)_{ij} + \left(A \frac{dB}{dt} \right)_{ij}$ したがって: $\frac{d}{dt} (AB) = \frac{dA}{dt} B + A \frac{dB}{dt}$

重要な注意:行列の積は一般に交換法則が成り立たないため、 $rac{dA}{dt}B$ と $Brac{dA}{dt}$ は異なり

ます。順序を正確に保つことが重要です。
応用例:
$$A(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$
 (回転行列)
$$\frac{dA}{dt} = \begin{pmatrix} -\sin t & -\cos t \\ \cos t & -\sin t \end{pmatrix}$$

$$\frac{dA}{dt} = \begin{pmatrix} -\sin t & -\cos t \\ \cos t & -\sin t \end{pmatrix}$$

 $A(t)A^T(t)=E$ を微分: $\frac{d}{dt}(AA^T)=\frac{dA}{dt}A^T+A\frac{d(A^T)}{dt}=O$ これより直交行列の性質が導かれます。

問題 18 詳細解答:特殊形状行列の逆行列 1.25

解法戦略 (ブロック行列による逆行列計算): 上三角ブロック行列の構造を利用して逆行列を求めます。

与えられた行列:
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$$

直接計算による方法:

$$A^{-1} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{pmatrix}$$
 とおき、 $AA^{-1} = E$ の条件から各成分を求めます。 **第1列の計算**: A の第1列と A^{-1} の第1行の積から: $-0:x_{11}+1:x_{21}+0:x_{21}+0:x_{41}=0$

第1列の計算: A の第 1 列と A^{-1} の第 1 行の積から: $-0 \cdot x_{11} + 1 \cdot x_{21} + 0 \cdot x_{31} + 0 \cdot x_{41} = 1$ より $x_{21} = 1 - 0 \cdot x_{11} + 0 \cdot x_{21} + 1 \cdot x_{31} + 0 \cdot x_{41} = 0$ より $x_{31} = 0 - 0 \cdot x_{11} + 0 \cdot x_{21} + 0 \cdot x_{31} + 1 \cdot x_{41} = 0$ より $x_{41} = 0 - a_1 \cdot x_{11} + a_2 \cdot x_{21} + a_3 \cdot x_{31} + a_4 \cdot x_{41} = 0$ より $a_1 x_{11} + a_2 = 0$ したがって $x_{11} = -\frac{a_2}{a_1}$ $(a_1 \neq 0)$ を仮定)

同様の計算により:

1.26 問題 19 詳細解答:二項定理を用いた行列のべき乗

解法戦略 (交換可能行列と二項定理): $T^{-1} = E + bE_1 + b^2E_2 + b^3E_3$ の形で、指定された二項定理を活用してべき乗を計算します。

与えられた行列:
$$T=\begin{pmatrix}1&b&0&0\\0&1&b&0\\0&0&1&b\\0&0&0&1\end{pmatrix}$$
 基本行列の定義: $E_1=\begin{pmatrix}0&1&0&0\\0&0&1&0\\0&0&0&1\\0&0&0&0\end{pmatrix}$, $E_2=E_1^2=\begin{pmatrix}0&0&1&0\\0&0&0&1\\0&0&0&0\\0&0&0&0\end{pmatrix}$ $E_3=E_1^3=\begin{pmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix}$, $E_4=E_1^4=O$ 行列 T の表現: $T=E+bE_1$

行列 T の表現: $T=E+bE_1$ ここで E は単位行列です。

交換性の確認:E と E_1 は交換可能($E \cdot E_1 = E_1 \cdot E = E_1$)なので、二項定理が適用 できます。

$$T^n$$
 の計算: $(E+bE_1)^n = \sum_{k=0}^n \binom{n}{k} E^{n-k} (bE_1)^k = \sum_{k=0}^n \binom{n}{k} b^k E_1^k$ $E_1^4 = O$ なので、 $k \ge 4$ の項は消えます: $T^n = \binom{n}{0} E + \binom{n}{1} b E_1 + \binom{n}{2} b^2 E_2 + \binom{n}{3} b^3 E_3$ $= E + nbE_1 + \frac{n(n-1)}{2} b^2 E_2 + \frac{n(n-1)(n-2)}{6} b^3 E_3$

$$E_1^4=O$$
 なので、 $k\geq 4$ の項は消えます: $T^n=\binom{n}{0}E+\binom{n}{1}b$ $=E+nbE_1+rac{n(n-1)}{2}b^2E_2+rac{n(n-1)(n-2)}{6}b^3E_3$ 具体的な行列形式: $T^n=\begin{pmatrix} 1 & nb & rac{n(n-1)}{2}b^2 & rac{n(n-1)(n-2)}{6}b^3 \ 0 & 1 & nb & rac{n(n-1)}{2}b^2 \ 0 & 0 & 1 & nb \ 0 & 0 & 0 & 1 \end{pmatrix}$ パターンの観察:久行の成分は二項係数と h の質の語になる

パターンの観察:各行の成分は二項係数とbの冪の積になっており、パスカルの三角 形の構造を反映しています。

1.27 問題20 詳細解答:ベクトルの角度

解法戦略 (内積を用いた角度計算): ベクトルの内積公式 $\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$ を使用し ます。

与えられたベクトル:
$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

(A) x₁ と x₂ のなす角

内積の計算:
$$\mathbf{x}_1 \cdot \mathbf{x}_2 = 1 \cdot 1 + 1 \cdot (-1) + 1 \cdot 0 = 1 - 1 + 0 = 0$$
 ベクトルの大きさ: $|\mathbf{x}_1| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \; |\mathbf{x}_2| = \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{2}$

角度の計算: $\cos\theta = \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{|\mathbf{x}_1||\mathbf{x}_2|} = \frac{0}{\sqrt{3} \cdot \sqrt{2}} = 0$

したがって $\theta = \frac{\pi}{2}$ (90度)

(B) \mathbf{x}_1 と \mathbf{x}_2 に直交するベクトル

外積を利用:
$$\mathbf{x}_1 \times \mathbf{x}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= \mathbf{i}(1 \cdot 0 - 1 \cdot (-1)) - \mathbf{j}(1 \cdot 0 - 1 \cdot 1) + \mathbf{k}(1 \cdot (-1) - 1 \cdot 1) = \mathbf{i} + \mathbf{j} - 2\mathbf{k} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

検算:
$$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1 + 1 - 2 = 0$$
 $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 1 - 1 + 0 = 0$ したがって $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ は両ベクトルに直交します。

したがって
$$\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$
は両ベクトルに直交します。

問題 21 詳細解答:直交ベクトルと線形結合 1.28

解法戦略 (直交条件と連立方程式): 内積が0になる条件から直交ベクトルを求め、 線形結合の係数を連立方程式で決定します。

与えられたベクトル:

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix}$$

(A) x_1 と x_2 に直交するベクトル x_3

$$\mathbf{x}_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 とおき、直交条件を設定:

$$\mathbf{x}_1 \cdot \mathbf{x}_3 = x + y + z = 0 \tag{23}$$

$$\mathbf{x}_2 \cdot \mathbf{x}_3 = x + z = 0 \tag{24}$$

式
$$(2)$$
 から: $z = -x$ 式 (1) に代入: $x + y + (-x) = y = 0$
したがって $\mathbf{x}_3 = \begin{pmatrix} x \\ 0 \\ -x \end{pmatrix}$
 $x = 1$ とおくと: $\mathbf{x}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

検算:

$$\mathbf{x}_1 \cdot \mathbf{x}_3 = 1 + 0 + (-1) = 0$$

 $\mathbf{x}_2 \cdot \mathbf{x}_3 = 1 + (-1) = 0$

(B) $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ の線形結合による \mathbf{v} の表現 $\mathbf{v} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + c_3 \mathbf{x}_3$ とおくと:

$$\begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

成分ごとに:

$$c_1 + c_2 + c_3 = 6 \quad (x \, \text{K} \, \text{\reftightail})$$
 (25)

$$c_1 = 1 \quad (y 成分) \tag{26}$$

$$c_1 + c_2 - c_3 = 0 \quad (z \, \cancel{R})$$
 (27)

式 (2) から: $c_1=1$ 式 (3) に代入: $1+c_2-c_3=0$ より $c_2=c_3-1$ 式 (1) に代入: $1+(c_3-1)+c_3=6$ より $2c_3=6$ 、 $c_3=3$ したがって $c_2=3-1=2$

答え: $\mathbf{v} = \mathbf{x}_1 + 2\mathbf{x}_2 + 3\mathbf{x}_3$

検算:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1+2+3 \\ 1+0+0 \\ 1+2-3 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix}$$

1.29 問題 22 詳細解答:トレースを用いた行列方程式の不可能性

解法戦略 (トレースの性質を利用した証明): tr(AB - BA) = 0 であることから、AB - BA = E が不可能であることを示します。

定理 (トレースの基本性質): 任意の $n \times n$ 行列 A, B に対して:

- 1. tr(A + B) = tr(A) + tr(B)
- 2. tr(AB) = tr(BA)
- 3. $tr(cA) = c \cdot tr(A)$ (c は定数)

証明戦略: 背理法

AB - BA = E が成り立つと仮定します。

両辺のトレースを取ると:

$$tr(AB - BA) = tr(E)$$

左辺:

$$tr(AB - BA) = tr(AB) - tr(BA) = tr(AB) - tr(AB) = 0$$

(トレースの性質(2)より tr(AB) = tr(BA))

右辺:

$$tr(E) = n$$

(n は行列のサイズ、単位行列の対角成分の和)

したがって: 0 = n

これは n > 1 に対して矛盾です。

結論:AB - BA = E を満たす正方行列 A, B は存在しません。

幾何学的解釈:この結果は量子力学の正準交換関係 $[x,p]=i\hbar$ と関連があります。有限次元では位置と運動量演算子の完全な表現は不可能であることを示しています。

一般化: より一般に、AB-BA=cE ($c\neq 0$) を満たす有限次元行列は存在しません。

2 解析学 詳細解答

2.1 問題1詳細解答:極限の基本計算

解法戦略 (不定形の極限計算): $\frac{0}{0}$ 型の不定形なので、ロピタルの定理またはマクローリン展開を使用します。

計算目標: $\lim_{x\to 0} \frac{1-\cos x}{x^2}$

方法1:ロピタルの定理

定義 (ロピタルの定理): $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ または $\pm\infty$ で、 $g'(x)\neq 0$ のとき: $\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ (右辺の極限が存在する場合)

 $x \to 0$ のとき: $-1 - \cos x \to 1 - 1 = 0 - x^2 \to 0$ したがって ⁰/₀型の不定形です。

1回目の適用: $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{\frac{d}{dx}(1-\cos x)}{\frac{d}{dx}(x^2)} = \lim_{x\to 0} \frac{\sin x}{2x}$

これも 🖟 型なので、再度適用:

2回目の適用: $\lim_{x\to 0} \frac{\sin x}{2x} = \lim_{x\to 0} \frac{\frac{d}{dx}(\sin x)}{\frac{d}{dx}(2x)} = \lim_{x\to 0} \frac{\cos x}{2} = \frac{1}{2}$

方法2:マクローリン展開

定理 (三角関数のマクローリン展開): $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

$$\begin{array}{c} 1-\cos x=1-\left(1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots\right)=\frac{x^2}{2!}-\frac{x^4}{4!}+\frac{x^6}{6!}-\cdots=\frac{x^2}{2}-\frac{x^4}{24}+\frac{x^6}{720}-\cdots\\ \\ \text{したがって:} \frac{1-\cos x}{x^2}=\frac{\frac{x^2}{2}-\frac{x^4}{24}+\frac{x^6}{720}-\cdots}{x^2}=\frac{1}{2}-\frac{x^2}{24}+\frac{x^4}{720}-\cdots\\ x\to 0 \text{ のとき:} \lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2} \end{array}$$

方法3:三角関数の恒等式

$$1 - \cos x = 2\sin^2\left(\frac{x}{2}\right)$$

問題2 詳細解答:根号を含む置換積分 2.2

解法戦略 (根号の除去を目指した置換): $\sqrt{3x-1}$ を含む積分なので、t=3x-1と置換して根号を簡単化します。

積分目標: $\int \frac{x}{\sqrt{3x-1}} dx$

置換設定:
$$t=3x-1$$
 とおくと:- $x=\frac{t+1}{3}$ - $dx=\frac{dt}{3}$ - $\sqrt{3x-1}=\sqrt{t}$

積分の変換:
$$\int \frac{x}{\sqrt{3x-1}} dx = \int \frac{\frac{t+1}{3}}{\sqrt{t}} \cdot \frac{dt}{3}$$

$$=\frac{1}{9}\int \frac{t+1}{\sqrt{t}}dt$$

$$= \frac{1}{9} \int \frac{t+1}{\sqrt{t}} dt$$

$$= \frac{1}{9} \int \frac{t}{\sqrt{t}} dt + \frac{1}{9} \int \frac{1}{\sqrt{t}} dt$$

$$=\frac{1}{9}\int \sqrt{t} dt + \frac{1}{9}\int t^{-1/2} dt$$

各項の積分:
$$\int \sqrt{t} \, dt = \int t^{1/2} dt = \frac{t^{3/2}}{3/2} = \frac{2t^{3/2}}{3}$$

$$\int t^{-1/2}dt = \frac{t^{1/2}}{1/2} = 2t^{1/2} = 2\sqrt{t}$$

結果の統合:
$$\frac{1}{9}\int \frac{t+1}{\sqrt{t}}dt = \frac{1}{9}\left(\frac{2t^{3/2}}{3} + 2\sqrt{t}\right) + C$$

$$= \frac{2t^{3/2}}{27} + \frac{2\sqrt{t}}{9} + C$$

元の変数に戻す:
$$t=3x-1$$
 を代入:
$$=\frac{2(3x-1)^{3/2}}{27}+\frac{2\sqrt{3x-1}}{9}+C$$
答えの整理:
$$\int \frac{x}{\sqrt{3x-1}}dx=\frac{2(3x-1)^{3/2}}{27}+\frac{2\sqrt{3x-1}}{9}+C$$

答えの整理:
$$\int \frac{x}{\sqrt{3x-1}} dx = \frac{2(3x-1)^{3/2}}{27} + \frac{2\sqrt{3x-1}}{9} + C$$

検算:微分して元の被積分関数が得られることを確認:
$$\frac{d}{dx}\left[\frac{2(3x-1)^{3/2}}{27}+\frac{2\sqrt{3x-1}}{9}\right]$$

第1項:
$$\frac{2}{27} \cdot \frac{3}{2} (3x-1)^{1/2} \cdot 3 = \frac{(3x-1)^{1/2}}{3}$$

第 1 項:
$$\frac{2}{27} \cdot \frac{3}{2} (3x-1)^{1/2} \cdot 3 = \frac{(3x-1)^{1/2}}{3}$$

第 2 項: $\frac{2}{9} \cdot \frac{1}{2} (3x-1)^{-1/2} \cdot 3 = \frac{3}{3(3x-1)^{1/2}}$

合計:
$$\frac{(3x-1)^{1/2}}{3} + \frac{1}{3(3x-1)^{1/2}} = \frac{3x-1+1}{3(3x-1)^{1/2}} = \frac{3x}{3\sqrt{3x-1}} = \frac{x}{\sqrt{3x-1}}$$

問題3 詳細解答:ガンマ関数の性質 2.3

解法戦略 (部分積分による漸化式): ガンマ関数の定義から出発し、部分積分を使っ て漸化式を導出します。

定義 (ガンマ関数): $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$ (n > 0)

 $\Gamma(1)$ の計算: $\Gamma(1) = \int_0^\infty x^{1-1} e^{-x} dx = \int_0^\infty e^{-x} dx$ = $[-e^{-x}]_0^\infty = \lim_{x \to \infty} (-e^{-x}) - (-e^0) = 0 - (-1) = 1$

漸化式の導出:

 $\Gamma(n)$ を部分積分で計算します: $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$

 $u=x^{n-1},\,dv=e^{-x}dx$ とおくと: $-du=(n-1)x^{n-2}dx$ - $v=-e^{-x}$ 部分積分の適用: $\Gamma(n)=[x^{n-1}(-e^{-x})]_0^\infty-\int_0^\infty(-e^{-x})(n-1)x^{n-2}dx$ 境界項の計算: $x\to\infty$ のとき: $x^{n-1}e^{-x}\to0$ (指数関数の減衰が多項式の増大より 速い) x = 0 のとき: $0^{n-1}(-e^0) = 0$ (n > 2 の場合)

したがって境界項は0です。

積分項の処理: $\Gamma(n)=0+(n-1)\int_0^\infty x^{n-2}e^{-x}dx=(n-1)\Gamma(n-1)$

漸化式: $\Gamma(n) = (n-1)\Gamma(n-1)$

 $\Gamma(n)=(n-1)!$ の証明:

帰納法により証明します:

基底ケース: $\Gamma(1) = 1 = 0!$

帰納ステップ: $\Gamma(k) = (k-1)!$ が成り立つと仮定すると: $\Gamma(k+1) = k \cdot \Gamma(k) = k \cdot \Gamma(k)$ $k \cdot (k-1)! = k!$

したがって: $\Gamma(n) = (n-1)!$ $(n \in \mathbb{N})$

ガンマ関数の重要性:ガンマ関数は階乗の実数への拡張として重要で、確率論、統計 学、物理学で広く使われます。特に:- $\Gamma(1/2) = \sqrt{\pi}$ - $\Gamma(n+1/2) = \frac{(2n)!\sqrt{\pi}}{4nn!}$ などの重要な値があります。

問題4 詳細解答: 軌跡と双曲線 2.4

解法戦略 (距離の比による軌跡): 2点間の距離の比が一定という条件から軌跡の 方程式を導出します。これは双曲線の定義に関連します。

条件設定:- 点 P(x,y) - 原点 O(0,0) との距離: $F=\sqrt{x^2+y^2}$ - 直線 x=3 との距離: H = |x - 3| - 条件: $\frac{H}{F} = 2$

方程式の設定: $\frac{|x-3|}{\sqrt{x^2+y^2}}=2$

 $|x - 3| = 2\sqrt{x^2 + y^2}$

両辺の平方: $(x-3)^2 = 4(x^2+y^2)$

展開と整理: $x^2 - 6x + 9 = 4x^2 + 4y^2 - 3x^2 - 4y^2 - 6x + 9 = 0$ $3x^2 + 4y^2 + 6x - 9 = 0$

標準形への変形: $3x^2 + 6x + 4y^2 = 9$ $3(x^2 + 2x) + 4y^2 = 9$ $3(x^2 + 2x + 1) + 4y^2 = 9 + 3$ $3(x+1)^2 + 4y^2 = 12 \frac{(x+1)^2}{4} + \frac{y^2}{3} = 1$

これは中心が (-1,0)、長軸の長さが 2a=4 (a=2) 、短軸の長さが $2b=2\sqrt{3}$ $(b=\sqrt{3})$ の楕円です。

軌跡の性質:この軌跡は楕円で、離心率は $e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{3}{4}}=\frac{1}{2}$ です。

条件 $\frac{H}{h}=2$ は、点 P から直線(準線)までの距離と焦点までの距離の比が一定(離 心率の逆数)であることを意味し、これは円錐曲線の定義に対応しています。

問題5 詳細解答:周期関数とグラフ 2.5

解法戦略 (三角関数の性質と周期性): $f(x) = \tan x \sqrt{1 + \tan^2 x}$ を簡単化し、周期 性を示してグラフを描きます。

関数の簡単化: $\sqrt{1+\tan^2 x} = |\sec x|$ なので: $f(x) = \tan x \sqrt{1+\tan^2 x} = \tan x |\sec x|$

- $= \frac{\sin x}{\cos x} \cdot \frac{1}{|\cos x|} = \frac{\sin x}{|\cos x|} \cdot \operatorname{sgn}(\cos x)$
- $= \sin x \cdot \operatorname{sgn}(\cos x)$

周期性の証明: $f(x + \pi) = \sin(x + \pi) \cdot \operatorname{sgn}(\cos(x + \pi)) = -\sin x \cdot \operatorname{sgn}(-\cos x) =$

 $-\sin x \cdot (-\operatorname{sgn}(\cos x)) = \sin x \cdot \operatorname{sgn}(\cos x) = f(x)$

したがって f(x) は周期 π の周期関数です。 グラフの特徴: $\cos x>0$ のとき $\left(-\frac{\pi}{2}< x<\frac{\pi}{2}\right)$: $f(x)=\sin x$ - $\cos x<0$ のとき $\left(\frac{\pi}{2}< x<\frac{3\pi}{2}\right)$: $f(x)=-\sin x$ - $x=\frac{\pi}{2}+n\pi$ で不連続

問題6 詳細解答:等加速度運動 2.6

解法戦略 (運動学の基本公式): 等加速度運動の公式を使って停止距離を求めます。

与えられた条件: - 加速度: $a = -50 \text{ m/s}^2$ (減速) - 最終速度: v = 0 (停止) - 初速度: v_0 (不明)

等加速度運動の公式: $v^2=v_0^2+2as$

停止距離の計算: $0=v_0^2+2(-50)s$ $v_0^2=100s$ $s=\frac{v_0^2}{100}$

例えば、初速度が $v_0 = 60 \text{ km/h} = \frac{60}{3.6} = 16.67 \text{ m/s}$ の場合: $s = \frac{(16.67)^2}{100} = \frac{277.9}{100} = 2.78$

 \mathbf{m}

問題7 詳細解答:指数関数を含む積分 2.7

解法戦略 (部分積分の反復適用): $\int x^n \log x \, dx$ を部分積分で計算します。

部分積分の設定: $u = \log x$, $dv = x^n dx$ とおくと:- $du = \frac{1}{x} dx$ - $v = \frac{x^{n+1}}{n+1}$

部分積分の適用: $\int x^n \log x \, dx = \frac{x^{n+1}}{n+1} \log x - \int \frac{x^{n+1}}{n+1} \cdot \frac{1}{x} dx$ $= \frac{x^{n+1}}{n+1} \log x - \frac{1}{n+1} \int x^n dx$ $= \frac{x^{n+1}}{n+1} \log x - \frac{1}{n+1} \cdot \frac{x^{n+1}}{n+1} + C$ $= \frac{x^{n+1}}{n+1} \log x - \frac{1}{(n+1)^2} + C$ $= \frac{x^{n+1}}{n+1} \left(\log x - \frac{1}{n+1} \right) + C$

$$=\frac{x^{n+1}}{n+1}\log x - \frac{1}{n+1}\int x^n dx$$

$$= \frac{x^{n+1}}{n+1} \log x - \frac{1}{n+1} \cdot \frac{x^{n+1}}{n+1} + C$$

$$=\frac{x^{n+1}}{x+1}\log x - \frac{x^{n+1}}{(x+1)^2} + C$$

$$=\frac{x^{n+1}}{n+1}\left(\log x - \frac{1}{n+1}\right) + C$$

問題8 詳細解答:特殊な置換積分 2.8

解法戦略 (指定された置換の活用): $\sqrt{x^2+1}=t-x$ という置換を使って積分を計 算します。

置換の解析: $\sqrt{x^2+1}=t-x$ より: $x^2+1=(t-x)^2=t^2-2tx+x^2$ $1=t^2-2tx$ $x=\frac{t^2-1}{2t}$ 微分の計算: $dx = \frac{d}{dt} \left(\frac{t^2 - 1}{2t} \right) dt = \frac{2t \cdot 2t - (t^2 - 1) \cdot 2}{4t^2} dt = \frac{t^2 + 1}{2t^2} dt$

 $\sqrt{x^2+1}$ の表現: $\sqrt{x^2+1}=t-x=t-\frac{t^2-1}{2t}=\frac{2t^2-t^2+1}{2t}=\frac{t^2+1}{2t}$ 積分の変換: $\int \sqrt{x^2+1}\,dx=\int \frac{t^2+1}{2t}\cdot\frac{t^2+1}{2t^2}dt=\frac{1}{4}\int \frac{(t^2+1)^2}{t^3}dt=\frac{1}{4}\int \frac{t^4+2t^2+1}{t^3}dt=\frac{1}{4}\int (t+\frac{2}{t}+\frac{1}{t^3})\,dt$ 各項の積分: $=\frac{1}{4}\left(\frac{t^2}{2}+2\log|t|-\frac{1}{2t^2}\right)+C$

元の変数に戻す: $t=x+\sqrt{x^2+1}$ を代入して整理すると: $\int \sqrt{x^2+1} \, dx = \frac{1}{2}x\sqrt{x^2+1} + \frac{1}{2}x\sqrt{x^2+1}$ $\frac{1}{2}\log|x+\sqrt{x^2+1}|+C$

2.9 問題9詳細解答:対数を含む三角関数の積分

解法戦略 (置換積分と部分積分の組み合わせ): $t = \log x$ と置換して、 $\int e^t \sin t \, dt$ の形に変換します。

置換の設定: $t = \log x$ とおくと:- $x = e^t$ - $dx = e^t dt$

積分の変換: $\int \sin(\log x) dx = \int \sin t \cdot e^t dt$

部分積分の適用: $I = \int e^t \sin t \, dt$ とおく。

第1回部分積分: $u = \sin t$, $dv = e^t dt I = e^t \sin t - \int e^t \cos t dt$

第2回部分積分: $u = \cos t$, $dv = e^t dt \int e^t \cos t \, dt = e^{t} \cos t - \int e^t (-\sin t) \, dt = e^t \cos t + I$

方程式の解: $I = e^t \sin t - (e^t \cos t + I)$ $I = e^t \sin t - e^t \cos t - I$ $2I = e^t (\sin t - \cos t)$ $I = \frac{e^t}{2}(\sin t - \cos t)$

元の変数に戻す: $\int \sin(\log x) dx = \frac{x}{2} [\sin(\log x) - \cos(\log x)] + C$

問題 10 詳細解答:三角関数方程式の軌跡 2.10

解法戦略 (加法定理による展開と場合分け): $\sin(x+y) = \sin x + \sin y$ を加法定理 で展開し、条件を満たす (x,y) を求めます。

加法定理の適用: $\sin(x+y) = \sin x \cos y + \cos x \sin y$

方程式の設定: $\sin x \cos y + \cos x \sin y = \sin x + \sin y \sin x (\cos y - 1) + \sin y (\cos x - 1) = 0$

条件の分析: $\cos y - 1 < 0$ かつ $\cos x - 1 < 0$ なので、上式が成り立つには:

1. $\sin x = 0$ かつ $\sin y = 0$ 2. $\cos x = 1$ かつ $\cos y = 1$

場合1の解析: $\sin x = 0 \Rightarrow x = 0, \pi, 2\pi \sin y = 0 \Rightarrow y = 0, \pi, 2\pi$

場合 2 の解析: $\cos x = 1 \Rightarrow x = 0, 2\pi \cos y = 1 \Rightarrow y = 0, 2\pi$

軌跡の結論:軌跡は $x=0,\pi,2\pi$ と $y=0,\pi,2\pi$ の格子点および線分です。

問題 11 詳細解答:線形微分方程式 2.11

解法戦略 (特性方程式による解法): 2 階線形定数係数同次微分方程式を特性方程式で解き、初期条件から定数を決定します。

微分方程式: $\frac{d^2 f(x)}{dx^2} + 2 \frac{df(x)}{dx} - 3f(x) = 0$

初期条件:f(0) = 0, f'(0) = 4

特性方程式: $r^2 + 2r - 3 = 0$

因数分解:(r+3)(r-1)=0

根: $r_1 = -3, r_2 = 1$

一般解: $f(x) = C_1 e^{-3x} + C_2 e^x$

微分: $f'(x) = -3C_1e^{-3x} + C_2e^x$

初期条件の適用: $f(0) = C_1 + C_2 = 0$ より $C_2 = -C_1$ $f'(0) = -3C_1 + C_2 = 4$ より $-3C_1 + (-C_1) = -4C_1 = 4$

 $-3C_1 + (-C_1) = -4C_1 = 4$ したがって $C_1 = -1, C_2 = 1$

答え: $f(x) = e^x - e^{-3x}$

検算: $f'(x) = e^x + 3e^{-3x}$ $f''(x) = e^x - 9e^{-3x}$

 $f'' + 2f' - 3f = (e^x - 9e^{-3x}) + 2(e^x + 3e^{-3x}) - 3(e^x - e^{-3x}) = e^x - 9e^{-3x} + 2e^x + 6e^{-3x} - 3e^x + 3e^{-3x} = 0$ O

2.12 問題 12 詳細解答:2曲線の交点と面積

解法戦略 (3 次関数と 2 次関数の交点問題): 3 次関数と 2 次関数の交点を求め、囲まれる領域の面積を計算します。

与えられた関数: $f(x) = ax^3 + bx^2 + cx + d$ (3 次関数) $g(x) = px^2 + qx + r$ (2 次関数) (A) 2 曲線の交点

交点の条件: f(x) = g(x) $ax^3 + bx^2 + cx + d = px^2 + qx + r$ $ax^3 + (b-p)x^2 + (c-q)x + (d-r) = 0$

この 3 次方程式を h(x)=0 とおくと: $h(x)=ax^3+(b-p)x^2+(c-q)x+(d-r)$ 一般的には 3 つの根 α,β,γ を持ちます(重根を含む)。

(B) 囲まれる 2 領域の面積が等しい条件

3次関数と2次関数が交わる場合、一般的に3つの交点で2つの閉領域ができます。

面積の計算:交点を $x_1 < x_2 < x_3$ とすると:

領域 1 の面積: $S_1 = \left| \int_{x_1}^{x_2} [f(x) - g(x)] dx \right|$ 領域 2 の面積: $S_2 = \left| \int_{x_2}^{x_3} [f(x) - g(x)] dx \right|$

 $S_1 = S_2$ の条件: $\left| \int_{x_1}^{x_2} h(x) dx \right| = \left| \int_{x_2}^{x_3} h(x) dx \right|$

対称性の利用: h(x) が $x=x_2$ に関して点対称な場合、この条件が満たされます。

点対称の条件: $h(x_2+t) = -h(x_2-t)$

これは x_2 が h(x) の変曲点であることを意味します。

 $h''(x_2) = 0$ かつ $h'''(x_2) \neq 0$ の条件から、a の値を決定できます。

具体的計算: $h''(x) = 6ax + 2(b-p) h''(x_2) = 0$ より $x_2 = -\frac{b-p}{3a}$

さらなる条件から *a* を決定する必要があります。

2.13 問題 13 詳細解答:複素根を持つ微分方程式

解法戦略 (複素特性根による解法): 特性方程式が複素根を持つ場合の解法を詳し く説明します。

微分方程式: $\frac{d^2f(x)}{dx^2} - 2\frac{df(x)}{dx} + 2f(x) = 0$ 初期条件:f(0) = 0, f'(0) = 2

特性方程式: $r^2 - 2r + 2 = 0$

判別式:D=4-8=-4<0 (複素根) 特性根: $r=\frac{2\pm\sqrt{-4}}{2}=\frac{2\pm2i}{2}=1\pm i$

複素根の場合の一般解: $r = \alpha \pm \beta i$ のとき: $f(x) = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$

今回は $\alpha = 1, \beta = 1$ なので: $f(x) = e^x(C_1 \cos x + C_2 \sin x)$

微分: $f'(x) = e^x(C_1\cos x + C_2\sin x) + e^x(-C_1\sin x + C_2\cos x) = e^x[(C_1+C_2)\cos x + C_2\sin x]$ $(C_2-C_1)\sin x$

初期条件の適用: $f(0) = e^0(C_1 \cos 0 + C_2 \sin 0) = C_1 = 0$

 $f'(0) = e^{0}[(C_1 + C_2)\cos 0 + (C_2 - C_1)\sin 0] = C_1 + C_2 = C_2 = 2$

答え: $f(x) = 2e^x \sin x$

検算: $f'(x) = 2e^x \sin x + 2e^x \cos x = 2e^x (\sin x + \cos x)$ $f''(x) = 2e^x (\sin x + \cos x) + 2e^x (\sin x + \cos x)$ $2e^x(\cos x - \sin x) = 4e^x \cos x$

 $f'' - 2f' + 2f = 4e^x \cos x - 4e^x (\sin x + \cos x) + 4e^x \sin x = 4e^x \cos x - 4e^x \sin x - 4e^x \sin x - 4e^x \sin x - 4e^x \cos x - 4e^x \sin x - 4e^x \sin x - 4e^x \cos x - 4e^x \sin x - 4e^x \cos x - 4e^x \sin x - 4e^x \cos x - 4e^x \cos$ $4e^x \cos x + 4e^x \sin x = 0$ O

問題 14 詳細解答:2 次関数の交点と面積 2.14

解法戦略 (パラメトリック曲線の交点): x についての 2 次関数と y についての 2次関数の交点を求め、囲まれる面積を計算します。

与えられた関数: $y = f(x) = ax^2 + bx + c$ $x = g(y) = py^2 + gy + r$

(A) 交点の計算

交点では両式が同時に成り立つため: $y = ax^2 + bx + c$ かつ $x = py^2 + qy + r$

第2式を第1式に代入: $y = a(py^2 + qy + r)^2 + b(py^2 + qy + r) + c$

これを整理すると y についての 4 次方程式になります。

対称性の利用: $y = x^2$ と $x = y^2$ のような対称な場合を考えると:

交点の条件: $y=x^2$ かつ $x=y^2$ $y=x^2$ を $x=y^2$ に代入: $x=(x^2)^2=x^4$ $x^4-x=$ $x(x^3-1) = x(x-1)(x^2+x+1) = 0$

実根:x = 0,1 対応する y:(0,0),(1,1)

(B) 囲まれる面積

 $y = x^2$ と $x = y^2$ で囲まれる面積:

 $S = \int_0^1 (\sqrt{x} - x^2) dx$

積分計算: $\int_0^1 \sqrt{x} dx = \int_0^1 x^{1/2} dx = \left[\frac{x^{3/2}}{3/2}\right]_0^1 = \frac{2}{3}$

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}$$
$$S = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

2.15 問題 15 詳細解答:指数・三角関数の積分

解法戦略 (部分積分の反復適用): $\int e^x \sin x \, dx$ を部分積分で求めます。

積分目標: $\int e^x \sin x \, dx$

第1回部分積分: $u = \sin x, dv = e^x dx du = \cos x dx, v = e^x$

 $\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx$

第 2 回部分積分: $\int e^x \cos x \, dx$ について: $u = \cos x, dv = e^x dx \, du = -\sin x dx, v = e^x$ $\int e^x \cos x \, dx = e^x \cos x - \int e^x (-\sin x) dx = e^x \cos x + \int e^x \sin x \, dx$

方程式の設定: $I=\int e^x \sin x \, dx$ とおくと: $I=e^x \sin x - (e^x \cos x + I)$ $I=e^x \sin x - (e^x \cos x + I)$ $I=e^x \sin x - (e^x \cos x - I)$ $I=e^x \sin x - (e^x \cos x + I)$ $I=e^x \cos x + I$

答え: $\int e^x \sin x \, dx = \frac{e^x}{2} (\sin x - \cos x) + C$

検算: $\frac{d}{dx}\left[\frac{e^x}{2}(\sin x - \cos x)\right] = \frac{1}{2}[e^x(\sin x - \cos x) + e^x(\cos x + \sin x)] = \frac{e^x}{2}[2\sin x] = e^x\sin x$ O

2.16 問題 16 詳細解答:3次関数の接線

解法戦略 (微分を用いた接線の方程式): 曲線上の点における接線の方程式を求め、x 軸との交点を計算します。

曲線: $y = x^3$ 点: $A(a, a^3)$

接線の傾き: $\frac{dy}{dx} = 3x^2$ 点 A における傾き: $3a^2$

接線の方程式: $y-a^3=3a^2(x-a)$ $y=3a^2x-3a^3+a^3=3a^2x-2a^3$ \mathbf{x} 軸との交点:y=0 のとき: $0=3a^2x-2a^3$ $3a^2x=2a^3$ $x=\frac{2a^3}{3a^2}=\frac{2a}{3}$

答え: $(\frac{2a}{3},0)$

幾何学的解釈:3 次関数の接線は常に曲線上の点のx 座標の $\frac{2}{3}$ 倍の位置でx 軸と交わります。

2.17 問題 17 詳細解答:三角関数を含む積分

解法戦略 (置換積分): $u = 1 - x^2$ と置換して根号を除去します。

積分目標: $\int x\sqrt{1-x^2}\,dx$

O

置換: $u = 1 - x^2 du = -2xdx$, したがって $xdx = -\frac{1}{2}du$

積分の変換: $\int x\sqrt{1-x^2}\,dx = \int \sqrt{u}\cdot\left(-\frac{1}{2}\right)du = -\frac{1}{2}\int u^{1/2}du$

 $= -\frac{1}{2} \cdot \frac{u^{3/2}}{3/2} = -\frac{1}{3}u^{3/2} + C$

元の変数に戻す: $=-\frac{1}{3}(1-x^2)^{3/2}+C$

検算: $\frac{d}{dx}\left[-\frac{1}{3}(1-x^2)^{3/2}\right] = -\frac{1}{3}\cdot\frac{3}{2}(1-x^2)^{1/2}\cdot(-2x) = \frac{1}{3}\cdot3\cdot x\cdot(1-x^2)^{1/2} = x\sqrt{1-x^2}$

2.18 問題 18 詳細解答:対数の 2 乗の積分

解法戦略 (部分積分の反復): $\int (\log x)^2 dx$ を部分積分で計算します。

第1回部分積分: $u = (\log x)^2, dv = dx \ du = \frac{2\log x}{x} dx, v = x$ $\int (\log x)^2 dx = x(\log x)^2 - \int x \cdot \frac{2\log x}{x} dx = x(\log x)^2 - 2 \int \log x \, dx$ $\int \log x \, dx \,$ $\text{Ohig: } u = \log x, dv = dx \, du = \frac{1}{x} dx, v = x$ $\int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} dx = x \log x - \int 1 \, dx = x \log x - x$ 結果の統合: $\int (\log x)^2 dx = x(\log x)^2 - 2(x\log x - x) + C = x(\log x)^2 - 2x\log x + 2x + C$ $=x[(\log x)^2-2\log x+2]+C$ 検算: $\frac{d}{dx}[x(\log x)^2 - 2x\log x + 2x] = (\log x)^2 + x \cdot \frac{2\log x}{x} - 2\log x - 2x \cdot \frac{1}{x} + 2 =$ $(\log x)^2 + 2\log x - 2\log x - 2 + 2 = (\log x)^2$

問題19 詳細解答:対数関数の最小値 2.19

解法戦略 (対数の性質と微分): $(\log_3(3x))^2 - 6\log_3(x) + 2$ の最小値を求めるため、 対数の性質を利用して変数変換し、微分で極値を求めます。

関数: $f(x) = (\log_3(3x))^2 - 6\log_3(x) + 2$

対数の性質を利用: $\log_3(3x) = \log_3 3 + \log_3 x = 1 + \log_3 x$

変数変換: $t = \log_3 x$ とおくと: $f(x) = (1+t)^2 - 6t + 2 = 1 + 2t + t^2 - 6t + 2 = t^2 - 4t + 3$

最小値の計算: $g(t) = t^2 - 4t + 3$ について:g'(t) = 2t - 4 = 0 より t = 2

q''(t) = 2 > 0 なので t = 2 で最小

最小値:q(2) = 4 - 8 + 3 = -1

対応するxの値: $t=2=\log_3 x$ より $x=3^2=9$

答え:最小値 -1、そのときの x=9

検算: $f(9) = (\log_3(27))^2 - 6\log_3(9) + 2 = 3^2 - 6 \cdot 2 + 2 = 9 - 12 + 2 = -1$ O

問題20 詳細解答:定積分の計算 2.20

解法戦略 (置換積分): $\int_0^{\pi/2} (\sin \theta)^2 \cos \theta \, d\theta$ を $u = \sin \theta$ で置換します。

積分目標: $\int_0^{\pi/2} (\sin \theta)^2 \cos \theta \, d\theta$ 置換: $u = \sin \theta \, du = \cos \theta \, d\theta$

積分区間の変換: $\theta=0$ のとき: $u=\sin 0=0$ $\theta=\frac{\pi}{2}$ のとき: $u=\sin\frac{\pi}{2}=1$

積分の計算: $\int_0^{\pi/2} (\sin \theta)^2 \cos \theta \, d\theta = \int_0^1 u^2 \, du$

 $= \left[\frac{u^3}{3}\right]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$

答え: 1/2

2.21 問題 21 詳細解答:関数のグラフ作成

解法戦略 (関数の性質分析): $y=xe^{-x}$ について、定義域、極値、変曲点、漸近線 を調べてグラフを描きます。

関数: $y = f(x) = xe^{-x}$

定義域: $x \in \mathbb{R}$ (すべての実数)

1 次導関数: $f'(x) = e^{-x} + x \cdot (-e^{-x}) = e^{-x}(1-x)$

極値の計算: f'(x) = 0 より $e^{-x}(1-x) = 0$ $e^{-x} > 0$ なので 1-x=0、つまり x=1 $f(1) = 1 \cdot e^{-1} = \frac{1}{2}$

増減の判定:-x < 1 のとき:1 - x > 0 なので f'(x) > 0 (増加) - x > 1 のとき: 1-x<0 なので f'(x)<0 (減少)

したがって x=1 で極大値 $\frac{1}{2}$

2 次導関数: $f''(x) = \frac{d}{dx}[e^{-x}(1-x)] = -e^{-x}(1-x) + e^{-x}(-1) = e^{-x}[-(1-x)-1] = e^{-x}[-(1-x)-1]$ $e^{-x}(x-2)$

変曲点: f''(x) = 0 より x - 2 = 0、つまり x = 2

 $f(2) = 2e^{-2} = \frac{2}{e^2}$

凹凸の判定:-x < 2 のとき:f''(x) < 0 (下に凸) - x > 2 のとき:f''(x) > 0 (上

漸近線: $\lim_{x\to\infty}xe^{-x}=\lim_{x\to\infty}\frac{x}{e^x}=0$ (ロピタルの定理) $\lim_{x\to-\infty}xe^{-x}=-\infty$ したがって y=0 が水平漸近線

グラフの特徴: - 原点を通る- x=1 で極大値 $\frac{1}{a}\approx 0.368$ - x=2 で変曲点 $(2,\frac{2}{a^2})$ $x \to \infty$ \mathcal{C} $y \to 0$ - $x \to -\infty$ \mathcal{C} $y \to -\infty$

問題 22 詳細解答:微分方程式(変数分離) 2.22

解法戦略 (変数分離法): $xy\frac{dy}{dx}=y^2-1$ を変数分離して解きます。

微分方程式: $xy\frac{dy}{dx} = y^2 - 1$

変数分離: $\frac{y dy}{y^2-1} = \frac{dx}{x}$ 左辺の積分: $\int \frac{y\,dy}{y^2-1}$

 $u = y^2 - 1$ ≥ 3 $\leq du = 2y \, dy \int \frac{y \, dy}{y^2 - 1} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \log |u| = \frac{1}{2} \log |y^2 - 1|$

右辺の積分: $\int \frac{dx}{x} = \log |x|$ 積分方程式: $\frac{1}{2} \log |y^2 - 1| = \log |x| + C$

解の整理: $\log |y^2 - 1| = 2 \log |x| + 2C = \log x^2 + \log K |y^2 - 1| = Kx^2$

ここで $K = e^{2C}$ は正の定数

最終解: $y^2 - 1 = \pm Kx^2 \ y^2 = 1 \pm Kx^2 \ y = \pm \sqrt{1 \pm Kx^2}$

積分定数と符号を含めて: $y = \pm \sqrt{1 + Cx^2}$

ここで C は積分定数(正、負、零の値を取り得る)

問題 23 詳細解答:数列の極限と級数の発散 2.23

解法戦略 (有理化と級数の比較判定法): $a_n=\sqrt{n+1}-\sqrt{n}$ の極限を求め、級数 の発散を示します。

 $(A) \lim_{n\to\infty} a_n = 0$ の証明

有理化: $a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$

 $=\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$

極限の計算: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$

分母: $\sqrt{n+1} + \sqrt{n} \sim \sqrt{n} + \sqrt{n} = 2\sqrt{n} \to \infty \quad (n \to \infty)$ したがって: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{2\sqrt{n}} = 0$

 (\mathbf{B}) $\sum_{n=0}^{\infty}a_n$ の発散証明

比較判定法: $a_n = \frac{1}{\sqrt{n+1}+\sqrt{n}} > \frac{1}{2\sqrt{n+1}}$

n が十分大きいとき: $\frac{1}{2\sqrt{n+1}} \sim \frac{1}{2\sqrt{n}}$ p-級数との比較: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ は $p = \frac{1}{2} < 1$ なので発散 比較判定法の適用: $a_n \geq \frac{c}{\sqrt{n}}$ (c > 0、n が十分大きいとき)が成り立ち、 $\sum \frac{1}{\sqrt{n}}$ が発 散するので、 $\sum a_n$ も発散

別解 (Telescoping 和) :部分和を直接計算: $S_N = \sum_{n=0}^N a_n = \sum_{n=0}^N (\sqrt{n+1} - \sqrt{n})$ $= (\sqrt{1} - \sqrt{0}) + (\sqrt{2} - \sqrt{1}) + \dots + (\sqrt{N+1} - \sqrt{N})$ $=\sqrt{N+1}-\sqrt{0}=\sqrt{N+1}$ $\lim_{N\to\infty} S_N = \lim_{N\to\infty} \sqrt{N+1} = \infty$ したがって級数は発散します。

問題 24 詳細解答:特殊な極限計算 2.24

解法戦略 (対数を利用した極限計算): $\lim_{x\to 0}\left(\frac{3^x+5^x}{2}\right)^{1/x}$ を対数で変形して計算し ます。

極限目標: $\lim_{x\to 0} \left(\frac{3^x+5^x}{2}\right)^{1/x}$

対数変換: $\log\left(\frac{3^x+5^x}{2}\right)^{1/x} = \frac{1}{x}\log\left(\frac{3^x+5^x}{2}\right)$ $x \to 0$ での挙動: $3^x \to 1, 5^x \to 1$ なので $\frac{3^x+5^x}{2} \to \frac{1+1}{2} = 1$

これは $\frac{0}{0}$ 型の不定形なので、ロピタルの定理を適用

ロピタルの定理の適用: $\lim_{x\to 0} \frac{\log\left(\frac{3^x+5^x}{2}\right)}{x}$ 分子の微分: $\frac{d}{dx}\log\left(\frac{3^x+5^x}{2}\right) = \frac{1}{\frac{3^x+5^x}{2}} \cdot \frac{3^x\log 3+5^x\log 5}{2}$

 $= \frac{3^x \log 3 + 5^x \log 5}{3^x + 5^x}$

分母の微分: $\frac{d}{dx}(x) = 1$

極限の計算: $\lim_{x\to 0} \frac{3^x \log 3 + 5^x \log 5}{3^x + 5^x} = \frac{1 \cdot \log 3 + 1 \cdot \log 5}{1 + 1}$

 $=\frac{\log 3 + \log 5}{2} = \frac{\log 15}{2}$

元の極限: $\lim_{x\to 0} \left(\frac{3^x+5^x}{2}\right)^{1/x} = e^{\log 15/2} = \sqrt{15}$

答え:√15

問題 25 詳細解答:一般化された分数関数の積分 2.25

解法戦略 (置換積分): $\int \frac{x}{(x^2+1)^k} dx$ を $u=x^2+1$ で置換します。

積分目標: $\int \frac{x}{(x^2+1)^k} dx$

置換: $u=x^2+1$ $du=2x\,dx$, したがって $x\,dx=\frac{1}{2}du$ 積分の変換: $\int \frac{x}{(x^2+1)^k}dx=\int \frac{1}{u^k}\cdot\frac{1}{2}du=\frac{1}{2}\int u^{-k}du$

 $k \neq 1$ の場合: $\frac{1}{2} \int u^{-k} du = \frac{1}{2} \cdot \frac{u^{-k+1}}{-k+1} = \frac{u^{1-k}}{2(1-k)} + C$ $= \frac{(x^2+1)^{1-k}}{2(1-k)} + C$

$$k=1 \ \textbf{の場合}: \frac{1}{2} \int u^{-1} du = \frac{1}{2} \log |u| + C = \frac{1}{2} \log (x^2+1) + C$$
 答え:
$$\int \frac{x}{(x^2+1)^k} dx = \begin{cases} \frac{1}{2} \log (x^2+1) + C & (k=1) \\ \frac{(x^2+1)^{1-k}}{2(1-k)} + C & (k \neq 1) \end{cases}$$

問題 26・28 詳細解答:対数を含む微分方程式 2.26

解法戦略 (変数分離法): 対数関数を含む微分方程式を変数分離で解きます。

問題 26: $xy' \log x = xy$

変数分離: $x\frac{dy}{dx}\log x = xy \frac{dy}{dx}\log x = y \frac{dy}{y} = \frac{dx}{\log x}$ 積分: $\int \frac{dy}{y} = \int \frac{dx}{\log x} \log |y| = \int \frac{dx}{\log x} + C$ 右辺の積分は初等関数では表現できませんが、対数積分 $\mathrm{li}(x)$ で表されます。

問題 28: $xy' \log x = y \log y$

変数分離: $x \frac{dy}{dx} \log x = y \log y$ 変数分離: $x \frac{dy}{dx} \log x = y \log y \frac{dy}{y \log y} = \frac{dx}{x \log x}$ 積分:左辺: $u = \log y$ とおくと $du = \frac{dy}{y} \int \frac{dy}{y \log y} = \int \frac{du}{u} = \log |u| = \log |\log y|$ 右辺: $v = \log x$ とおくと $dv = \frac{dx}{x} \int \frac{dx}{x \log x} = \int \frac{dv}{v} = \log |v| = \log |\log x|$ 解: $\log |\log y| = \log |\log x| + C |\log y| = K |\log x|$ $(K = e^C) \log y = \pm K \log x = C$ $C \log x$ (C は積分定数) $y = x^C$

問題27詳細解答:置換積分の基本 2.27

解法戦略 (基本的な置換積分): $f(x) = \int (2x+1)^{n+1} dx$ を t=2x+1 で置換し ます。

(A) dx/dt の計算

$$t=2x+1$$
 より: $\frac{dt}{dx}=2$ $\frac{dx}{dt}=\frac{1}{2}$ (B) 不定積分の計算

元の変数に戻すと:=
$$\frac{(2x+1)^{n+2}}{2(n+2)} + C$$
答え: $\int (2x+1)^{n+1} dx = \frac{(2x+1)^{n+2}}{2(n+2)} + C$

答え:
$$\int (2x+1)^{n+1}dx = \frac{(2x+1)^{n+2}}{2(n+2)} + C$$

重要公式・定理まとめ 3

3.1 線形代数の重要定理

定理 (ケーリー・ハミルトンの定理): すべての正方行列 A は、自分の特性多項式 $p(\lambda) = \det(A - \lambda E)$ を満たす:p(A) = O

定理 (対角化定理): $n \times n$ 行列 A が対角化可能である必要十分条件は、A が n 個の線形独立な固有ベクトルを持つことである。

定理 (スペクトラル定理 (実対称行列)): 実対称行列は必ず対角化可能であり、直交行列によって対角化できる。

3.2 解析学の重要定理

定理 (ロピタルの定理): $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ または $\pm \infty$ で、 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ が存在するとき: $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

定理 (テイラーの定理): 関数 f(x) が x=a の近傍で n+1 回微分可能ならば: $f(x)=\sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k + R_n(x)$ ここで $R_n(x)$ は剰余項である。

3.3 計算技法のまとめ

線形代数:1. 固有値・固有ベクトル:特性方程式 $\det(A - \lambda E) = 0$ 2. 対角化: $A = PDP^{-1}$ where P は固有ベクトル行列 3. 逆行列:ケーリー・ハミルトン定理の活用

解析学:1. 極限計算:ロピタルの定理、マクローリン展開 2. 積分計算:置換積分、部分積分 3. 微分方程式:特性方程式法、変数分離法

4 おわりに

この詳細解答編では、NAISTの数学入試問題を通じて、線形代数と解析学の重要概念を体系的に学習できるように構成しました。各問題には複数の解法を示し、なぜその方法を選ぶのかという理由も含めて詳しく解説しています。

特に重要なのは:1. **基本概念の理解**:定義や定理の正確な理解と応用2. **計算技術の習熟**:様々な計算手法の使い分け3. **証明能力**:論理的思考と厳密な記述

これらの問題を通じて、大学院レベルの数学的素養を確実に身につけ、研究活動に必要な数学力を養ってください。