| Name                                                                      |           |
|---------------------------------------------------------------------------|-----------|
| Signature                                                                 |           |
| P525/1<br>CHEMISTRY<br>Paper 1<br>DECEMBER, 2020<br>$2\frac{3}{4}$ hours. | EXA IOINA |

## JINJA JOINT EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

### **MOCK EXAMINATIONS - DECEMBER, 2020**

#### **CHEMISTRY**

(Principal Subject)

Paper 1

2 hours 45 minutes.

## **INSTRUCTIONS TO CANDIDATES:**

Answer ALL questions in part A and Six questions from part B.

All questions are to be answered in the spaces provided.

The Periodic Table with relative atomic masses is provided at the back.

## For Examiner's Use Only

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8        | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16      | 17 | Tota! |
|---|---|---|---|---|---|---|----------|---|----|----|----|----|----|----|---------|----|-------|
|   |   |   |   |   |   |   | <u> </u> |   |    |    |    |    |    |    |         |    |       |
|   |   |   |   |   | _ |   |          |   |    |    |    |    |    |    |         |    |       |
|   | _ |   |   |   |   |   |          |   |    |    |    |    |    |    | e<br>Be |    | _     |
|   |   |   |   |   |   |   |          |   | ß  | L  |    |    |    |    |         | 17 |       |

# PART A (46 MARKS)

| ***************************************                                                               | group (IV) elements.                    |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------|
| ***************************************                                                               | *************************************** |
| <ul><li>(ii) State the common oxidation states of group (I<br/>Compounds.</li></ul>                   | (V) elements in their                   |
|                                                                                                       | ( 01 mark)                              |
| (b) 1177                                                                                              |                                         |
| (b) What is meant by the term inert pair effect?                                                      | (01 mark)                               |
| ***************************************                                                               |                                         |
| ***************************************                                                               | ••••••••••                              |
| (c) State and explain the trend in inert pair effect down g                                           | group (IV) elements.                    |
| ••••••••••••••••••••••••••••••                                                                        | (03 marks)                              |
| ***************************************                                                               | *************************************** |
|                                                                                                       |                                         |
|                                                                                                       |                                         |
| ***************************************                                                               |                                         |
| ***************************************                                                               | •••••••                                 |
| ***************************************                                                               | •••••••••                               |
| (a) An aqueous solution containing 5.48 admissions                                                    | osmotic pressure of                     |
| 7.093 x 10 <sup>4</sup> NM <sup>-2</sup> at 25 <sup>6</sup> C. calculate the                          | (00                                     |
| 7.093 x 10 <sup>4</sup> NM <sup>-2</sup> at 25 <sup>0</sup> C. calculate the; (i) Molecular mass of Y | (1) no onles                            |
| at 23 C. Calculate the                                                                                | (02 marks)                              |
| at 23 C. Calculate the                                                                                | (02 marks)                              |

|                        | eezing point of solution (freezing point depression 1.86°C mol <sup>-1</sup> kg <sup>-1</sup> )                                                             | (2)                                     |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| •••                    | ······································                                                                                                                      | ( = 2 marks                             |
| • • •                  | ······································                                                                                                                      |                                         |
|                        |                                                                                                                                                             |                                         |
|                        |                                                                                                                                                             |                                         |
| •••                    |                                                                                                                                                             |                                         |
| ••                     |                                                                                                                                                             |                                         |
| ••                     | •••••••••••••••••••••••••••••••••••••••                                                                                                                     |                                         |
|                        | •••••••••••••••••••••••••••••••••••••••                                                                                                                     |                                         |
|                        | ***************************************                                                                                                                     |                                         |
|                        | ······································                                                                                                                      | • • • • • • • • • • • • • • • • • • • • |
| D) State               | two assumptions made in the calculation in (a)                                                                                                              | (01 mark                                |
|                        |                                                                                                                                                             |                                         |
|                        |                                                                                                                                                             | ******************                      |
|                        |                                                                                                                                                             |                                         |
| I'L -                  |                                                                                                                                                             |                                         |
| ine equ                | ation for the redox reaction that occurs in an elec-                                                                                                        | trochemical cell is                     |
| shown b                | elow.                                                                                                                                                       | trochemical cell is                     |
|                        | CIOW.                                                                                                                                                       | trochemical cell is                     |
| Z                      | $In_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)}$                                                                                               | trochemical cell is                     |
| Z                      | CIOW.                                                                                                                                                       | etrochemical cell is                    |
| Z                      | $In_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)}$                                                                                               |                                         |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$<br>te the cell notation                                                                      |                                         |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$<br>te the cell notation<br><br>te equation for the reaction that takes place at the;         |                                         |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$<br>te the cell notation                                                                      |                                         |
| (a) Wri<br><br>(b) Wri | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$ te the cell notation  te equation for the reaction that takes place at the;  Cathode         | $(1\frac{1}{2} \text{ marks})$          |
| (a) Wri<br><br>(b) Wri | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$<br>te the cell notation<br><br>te equation for the reaction that takes place at the;         | $(1\frac{1}{2} \text{ marks})$          |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$ the the cell notation  the equation for the reaction that takes place at the;  Cathode       | $(1\frac{1}{2} \text{ marks})$          |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$ te the cell notation  te equation for the reaction that takes place at the;  Cathode         | ( 1 ½ marks)                            |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(l)})$ the the cell notation  the equation for the reaction that takes place at the;  Cathode       | (1½ marks)  (1½ marks)  (1½ marks)      |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(t)})$ the the cell notation  te equation for the reaction that takes place at the;  Cathode  Anode | (1½ marks)  (1½ marks)  (1½ marks)      |
| (a) Wri                | $(n_{(s)} + HgSO_{4(aq)} \rightarrow ZnSO_{4(aq)} + Hg_{(t)})$ the the cell notation  te equation for the reaction that takes place at the;  Cathode  Anode | (1½ marks)  (1½ marks)  (1½ marks)      |

| (c     | ) The standard reduction potentials for the half cell read and anode are +0.6IV and -0.76V respectively.                                                     | ctions at the cathode                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|        | Calculate the EMF of the cell                                                                                                                                | $(1\frac{1}{2} \text{ marks})$          |
|        |                                                                                                                                                              |                                         |
|        | ,                                                                                                                                                            |                                         |
| 4. (a) | Methylbutanoate can be reduced to two alkanols. Write;                                                                                                       |                                         |
| (i)    | The equation for the reduction of methylbutanoate                                                                                                            | (01 mark)                               |
|        |                                                                                                                                                              |                                         |
| (ii)   | Equation(s) to show how methylbutanoate can be synthe alkanols in (i)                                                                                        |                                         |
|        |                                                                                                                                                              | ,                                       |
|        |                                                                                                                                                              |                                         |
|        |                                                                                                                                                              |                                         |
|        |                                                                                                                                                              |                                         |
| (b)    | Name the reagent (s) that can be used to distinguish between and methylbutanoate and state what would be observed if is separately treated with the reagent. | each compound (03 marks)                |
| ·····  |                                                                                                                                                              |                                         |
|        |                                                                                                                                                              |                                         |
| 0.021  | queous solution contains 80cm <sup>3</sup> of 0.02M ammonia solut<br>M ammonium nitrate.                                                                     | tion and 60cm <sup>3</sup> of           |
|        | late the PH of the solution.<br>For ammonia = $1.8 \times 10^{-5}$ moldm <sup>-3</sup> at $25^{\circ}$ C.)                                                   |                                         |
|        | or administration 11.0 x 10 mordin at 25 °C.)                                                                                                                | $(4\frac{1}{2} \text{ marks})$          |
|        |                                                                                                                                                              |                                         |
|        |                                                                                                                                                              |                                         |
|        |                                                                                                                                                              |                                         |
|        |                                                                                                                                                              | *************************************** |
|        |                                                                                                                                                              | <u></u>                                 |
|        | © 2020 Jinia Joint Francisco B.                                                                                                                              |                                         |

| 5.         | the periodic table.                                                                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------|
|            | (a) Write down the formula of the oxide of each element in its highest oxidation state.  (1 \frac{1}{2} \text{ marks}) |
|            |                                                                                                                        |
|            | ······································                                                                                 |
|            | (b) Write equations for the reactions, if any between the oxides in (a) and water (04 marks)                           |
|            | ••••••                                                                                                                 |
|            |                                                                                                                        |
| <b>'</b> . | Write equations to show how the following conversions can be affected.  (a) Benzoic acid to phenylamine (03 marks)     |
|            | •••••••••••••••••••••••••••••••••••••••                                                                                |
|            |                                                                                                                        |
|            | (b) Phenol to methylbenzene (04 marks)                                                                                 |
|            |                                                                                                                        |
|            |                                                                                                                        |
|            | ***************************************                                                                                |

| (a) State the oxidation state and the coordination number complex.                                     | (01 mark)                   |
|--------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                        |                             |
|                                                                                                        |                             |
|                                                                                                        |                             |
| (b) Write the formulae for the ionization isomers of the comp                                          | lex. (02 marks)             |
|                                                                                                        |                             |
|                                                                                                        |                             |
| (c) Name the reagent that can be used to distinguish between t                                         | he isomers in (b) (01 mark) |
|                                                                                                        | •••••                       |
| (d) In each case state what is observed when the isomers are s with the reagent you have named in (c). | separately treated          |
|                                                                                                        |                             |
|                                                                                                        |                             |
|                                                                                                        |                             |
| (a) Define the term eutectic mixture.                                                                  | (01 mark)                   |
|                                                                                                        |                             |
| •••••••••••••••••••••••••••••••••••••••                                                                | •                           |
|                                                                                                        |                             |
| · · · · · · · · · · · · · · · · · · ·                                                                  |                             |



| (b) Determine the molecular formula of Z (the vapor density of           | ,                                       |
|--------------------------------------------------------------------------|-----------------------------------------|
|                                                                          | $(2\frac{1}{2} \text{ marks})$          |
| ***************************************                                  |                                         |
| ***************************************                                  | *****************                       |
| ***************************************                                  |                                         |
|                                                                          | *************************************** |
| ***************************************                                  | :·····································  |
| (c) Z burns with a sooty flame and reacts with bromine water             | <b>6</b>                                |
| precipitate. Identify Z.                                                 | (03 marks)                              |
| ***************************************                                  |                                         |
|                                                                          |                                         |
| / 10 xxx                                                                 |                                         |
| (d) Write a reaction scheme to show how Z can be synthesized fro         | m benzoic acid.                         |
|                                                                          | (03 marks)                              |
|                                                                          |                                         |
|                                                                          | •••••                                   |
| ***************************************                                  | •••••                                   |
|                                                                          | •••••••                                 |
| 1. Explain the following observations.                                   |                                         |
| (a) Carbon dioxide is a gas at room temperature where as silicon (solid. | (IV) oxide is a                         |
|                                                                          | (03 marks)                              |
| ***************************************                                  | •••••••                                 |
| ***************************************                                  |                                         |
| ***************************************                                  | • • • • • • • • • • • • • • • • • • • • |
|                                                                          | •;•••••                                 |
|                                                                          |                                         |
|                                                                          |                                         |
|                                                                          |                                         |
| © 2020 Jinja Joint Examinations Board End                                |                                         |

| K <sub>sp</sub> of silver chromate is 1.3 x 10                                                                                 | ,                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                | •••••                                                                                                                               |
| ······                                                                                                                         | ••••••••••••••••                                                                                                                    |
| `                                                                                                                              | as lead (IV) bromide does not. (03 marks)                                                                                           |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
|                                                                                                                                |                                                                                                                                     |
| The elements beryllium, magnesium eriodic table, but beryllium differs                                                         | n and calcium belong to the group II of the s in some of its properties from the group                                              |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b          | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesiun eriodic table, but beryllium differs nembers.                                                | n and calcium belong to the group II of the s in some of its properties from the group                                              |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |
| The elements beryllium, magnesium eriodic table, but beryllium differs nembers.  a) State three properties in which b members. | n and calcium belong to the group II of the s in some of its properties from the group peryllium differs from the rest of the group |

| •••      | group members.                                                                              | (1 ½ mark                       |
|----------|---------------------------------------------------------------------------------------------|---------------------------------|
|          |                                                                                             |                                 |
|          | ······································                                                      |                                 |
| •••      | ***************************************                                                     |                                 |
|          | ***************************************                                                     |                                 |
|          |                                                                                             |                                 |
| (c) Wr:  | to any at                                                                                   |                                 |
| (i)      | te equations for the reactions between water and the Beryllium carbide                      | following carbides              |
| ( )      | *******                                                                                     | $(1 \frac{1}{2} \text{ marks})$ |
|          |                                                                                             |                                 |
| (ii)     | Magnasia                                                                                    |                                 |
| ()       | Magnesium carbide                                                                           | $(1 \pm \text{marks})$          |
|          |                                                                                             |                                 |
| (iii)    | Calcium carbida                                                                             |                                 |
| ()       | Calcium carbide                                                                             | $(1 \frac{1}{2} \text{ marks})$ |
|          |                                                                                             |                                 |
| (a) Wha  | It is magnet be at                                                                          |                                 |
| ••••••   | it is meant by the term salt hydrolysis?                                                    | (01 mark)                       |
| ······   |                                                                                             | ••••••                          |
| ,        |                                                                                             |                                 |
|          |                                                                                             |                                 |
|          |                                                                                             |                                 |
| b) Sodiu | m sulphido                                                                                  |                                 |
| (i)      | m sulphide undergoes hydrolysis. Write the; equation for the hydrolysis of sodium sulphide. |                                 |
|          | * * * * * * * * * * * * * * * * * * * *                                                     | $(1 \frac{1}{2} \text{ marks})$ |
|          |                                                                                             |                                 |
| (ii)     |                                                                                             | ••••••                          |
|          | expression for the hydrolysis constant K <sub>h</sub> , for sodium                          |                                 |
|          |                                                                                             | (01 mark)                       |

|                     | alculate the PH of a solution containing 3.9 gdm <sup>-3</sup> of sodium sulphide. ne hydrolysis constant for sodium sulphide = $1.25 \times 10^{-10}$ moldm <sup>-3</sup> )  (3 \frac{1}{2} marks |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                    |
| •••••               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                              |
| •••••               | ······································                                                                                                                                                             |
| •••••               | ······································                                                                                                                                                             |
| . • • • • • •       |                                                                                                                                                                                                    |
| •••••               |                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                    |
| (d) St              | tate whether an aqueous solution of sodium chloride is acidic, basic or cutral. (give a reason for your answer) (02 marks)                                                                         |
| (d) S1              |                                                                                                                                                                                                    |
| (d) St<br>no<br>    | eutral. (give a reason for your answer) (02 marks)                                                                                                                                                 |
| <br>                | eutral. (give a reason for your answer) (02 marks)                                                                                                                                                 |
| <br><br><br>. (a) S | eutral. (give a reason for your answer) (02 marks)                                                                                                                                                 |
| <br><br><br>. (a) S | Sketch a graph to show how conductivity of an aqueous solution of ammonia                                                                                                                          |
| <br><br><br>. (a) S | Sketch a graph to show how conductivity of an aqueous solution of ammonia                                                                                                                          |
| <br><br><br>. (a) S | Sketch a graph to show how conductivity of an aqueous solution of ammonia                                                                                                                          |
| <br><br><br>. (a) S | Sketch a graph to show how conductivity of an aqueous solution of ammonia                                                                                                                          |
| <br><br><br>. (a) S | Sketch a graph to show how conductivity of an aqueous solution of ammonia varies with concentration.  (02 marks)  (02 marks)                                                                       |
| (a) S               | Sketch a graph to show how conductivity of an aqueous solution of ammonia varies with concentration.  (02 marks)  (02 marks)                                                                       |

Scanned by CamScanner

| Explain the shape of the gr             |                                                                 | (03 mark                                |
|-----------------------------------------|-----------------------------------------------------------------|-----------------------------------------|
|                                         |                                                                 |                                         |
|                                         |                                                                 |                                         |
|                                         |                                                                 | 3                                       |
|                                         |                                                                 |                                         |
|                                         |                                                                 |                                         |
|                                         |                                                                 |                                         |
|                                         |                                                                 |                                         |
|                                         |                                                                 |                                         |
| Molar conductivities of son             | no alastralistas et infinite diluti                             |                                         |
| given in the table below.               | ne electrolytes at infinite dilutio                             | n at 298K arc                           |
|                                         |                                                                 | 2                                       |
| Electrolyte                             | Molar conductivity ( $\Omega^{-1}$ c                            | m <sup>2</sup> mol <sup>-1</sup> )      |
| Sodium chloride                         | 126.5                                                           |                                         |
| Hydrochloric acid                       |                                                                 |                                         |
| Sodium hydroxide                        | 248.4                                                           |                                         |
|                                         |                                                                 | • • • • • • • • • • • • • • • • • • • • |
|                                         |                                                                 | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                                         | onization of water at 298K.                                     | (2 ± marks                              |
|                                         |                                                                 |                                         |
|                                         |                                                                 | · · · · · · · · · · · · · · · · · · ·   |
|                                         |                                                                 | •••••                                   |
|                                         |                                                                 |                                         |
|                                         |                                                                 |                                         |
| *************************************** |                                                                 |                                         |
|                                         |                                                                 |                                         |
| (conductivity of water - 5              |                                                                 | •••••                                   |
| volume of $18 \text{ cm}^3$ )           | $5.5 \times 10^{-3} \Omega^{-1} \text{cm}^{-1}$ and 1 mole of v | vater occupies a                        |
|                                         |                                                                 |                                         |
| © 2020 Jinja Joint Exam                 | ninations Board En                                              | ,                                       |

| Br₁ / H₂O                                        |            |
|--------------------------------------------------|------------|
| a) $CH_1CH \longrightarrow CH_2 \longrightarrow$ | (03 marks) |
|                                                  |            |
| ***************************************          | ,          |
| ***************************************          |            |
|                                                  | ,,         |
|                                                  |            |
|                                                  |            |
|                                                  | •••••      |
| (b) $HCO_2H + CH_3CH_2OH$ conc. $H_2SO_4$ / warm | (04 marks) |
|                                                  |            |
|                                                  | .,         |
|                                                  |            |
|                                                  |            |
|                                                  |            |
|                                                  |            |
|                                                  |            |
|                                                  |            |
|                                                  |            |
| (c) $CH_3COCH_3 \xrightarrow{NaCN \mid H_1SO_4}$ | (02 marks) |
|                                                  | ······     |
|                                                  |            |
|                                                  |            |
|                                                  |            |
|                                                  |            |

| 16. (a) State th | ree properties exhibited by copper as a transitional cl                                                   | ement. $(1\frac{1}{2} \text{ marks})$   |
|------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                  |                                                                                                           | •••••••                                 |
|                  |                                                                                                           |                                         |
| •••••            |                                                                                                           |                                         |
| (b) Descri       | be reactions of copper with nitric acid.                                                                  | $(2\frac{1}{2} \text{ marks})$          |
|                  |                                                                                                           |                                         |
| •••••            |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  | neous solution of ethane – 1, 2 – diammine was added to (II) sulphate. (1½ marks)  State what is observed | (1 ½ marks)                             |
|                  |                                                                                                           |                                         |
| (ii)             | Write equation (s) for the reactions that take place.                                                     | (01 mark)                               |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           | • • • • • • • • • • • • • • • • • • • • |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |
|                  |                                                                                                           |                                         |

| 17. (a)    | Explain<br>(i) | n what is meant by th<br>Rate constant | e follov                                | ving terr                              | ns.       |                                       | (01 mark)                               |
|------------|----------------|----------------------------------------|-----------------------------------------|----------------------------------------|-----------|---------------------------------------|-----------------------------------------|
|            |                | •••••                                  | • • • • • • • • • • • • • • • • • • • • |                                        |           |                                       | • • • • • • • • • • • • • • • • • • • • |
|            |                |                                        | •••••                                   |                                        |           |                                       |                                         |
|            |                |                                        | •••••                                   |                                        |           |                                       | ••••••                                  |
|            | (ii)           | Order if reaction.                     |                                         |                                        |           |                                       | (01 mark)                               |
|            |                |                                        | • • • • • • • • • •                     |                                        |           |                                       |                                         |
|            |                |                                        | • • • • • • • • • • • • • • • • • • • • |                                        |           |                                       |                                         |
| •          | ,              |                                        |                                         |                                        | ,         |                                       | ,,                                      |
| (b)        | The iod        | lination of propanone                  | e in the                                | presence                               | of an aci | d occurs a                            | according to                            |
| the i      | followin       | g equation; CH <sub>3</sub> Co         | OCH <sub>3</sub> +                      | $I_2 \stackrel{H^+}{\rightarrow} CH_3$ | COCH,I-   | + HI                                  |                                         |
| The        | followi        | ng Kinetic data was o                  | btained                                 | for the                                | above rea | ction.                                |                                         |
| Time (s)   |                |                                        | 0                                       | 3600                                   | 7200      | 10800                                 | 14400                                   |
| Concentrat | tion of p      | ropanone (moldm <sup>-3</sup> )        | 0.241                                   | 0.157                                  | 0.105     | 0.069                                 | 0.046                                   |
| Plot       | a graph        | of concentration of p                  | ropanoi                                 | ne again:                              | st time.  |                                       | (03 marks)                              |
| (c) 1      | Use the        | graph to;                              |                                         | 7                                      |           |                                       |                                         |
| (          | i) Dedu        | ace the order of reacti                | on with                                 | respect                                | to propan | one. (Ord                             | ler of                                  |
|            |                | ion w .r.t iodine is ze                |                                         | -                                      |           | _                                     | (1 <u>1</u> marks)                      |
|            |                |                                        | •••••                                   |                                        |           |                                       |                                         |
|            |                |                                        | • • • • • • • • • • • • • • • • • • • • |                                        |           |                                       |                                         |
|            |                | ,                                      | • • • • • • • • • • • • • • • • • • • • | •••••                                  |           | · · · · · · · · · · · · · · · · · · · |                                         |
|            |                |                                        |                                         |                                        |           |                                       |                                         |
| ••••       |                |                                        |                                         |                                        |           | · · · · · · · · · · · · · · · · · · · |                                         |
|            | ٠.             |                                        |                                         |                                        |           |                                       |                                         |

| (ii)        | (ii) Determine the rate constant, K. |         |       |              |    |    |     |    |       |    |    |    | (  | 2   | 1    | 11    | (S         | s) |     |        |    |            |    |    |    |    |    |    |      |     |   |         |            |    |            |        |     |  |
|-------------|--------------------------------------|---------|-------|--------------|----|----|-----|----|-------|----|----|----|----|-----|------|-------|------------|----|-----|--------|----|------------|----|----|----|----|----|----|------|-----|---|---------|------------|----|------------|--------|-----|--|
| <br>        |                                      | • • • • |       |              |    | ٠. | ٠.  | ٠. |       | ٠. | ٠. | ٠. |    |     |      |       | . <i>.</i> |    | ٠.  | <br>٠. |    |            |    |    |    | ,  |    | ٠. | <br> | . , |   | <br>    | , <b>.</b> |    |            | <br>   |     |  |
|             |                                      |         |       | . <i>.</i> . | ٠. | ٠. |     | ٠. | ٠.    | ٠. |    | ٠, | ٠. | ٠., |      | ٠.,   |            | ٠. | ٠.  | <br>   |    |            |    |    |    | ٠. | ٠. | ٠. | <br> |     |   | <br>    |            | ٠. | . <b>.</b> | <br>   |     |  |
| • • • • • • |                                      |         | , · · |              |    | ٠. | ٠., |    |       | ٠. |    |    |    | ٠.  | <br> |       |            |    |     | <br>   | ٠. |            | ٠. |    |    |    |    |    | <br> |     | • | <br>    |            |    |            | <br>   |     |  |
|             | • • •                                |         | •••   |              |    | ٠. |     |    | • •   |    |    |    | ٠. | ٠.  |      | • • • |            |    |     | <br>   |    |            | ٠. | ٠. | ٠. |    |    |    | <br> |     |   |         | ٠.         |    |            | <br>   |     |  |
|             |                                      | ,       | ٠.,   |              |    |    | ••• |    | • • • |    |    |    |    |     | <br> |       |            |    | ٠., | <br>   |    | . <i>,</i> |    | ٠, | ., |    |    |    | <br> |     |   | <br>. , |            |    |            | <br>٠, | ٠., |  |

© 2020 Jinja Joint Examinations Board

End