STAT 448 HW #1

Tianqi Wu

2018/9/4

Problem 1.(a)

Here is the code that produces the scatter plot matrix:

```
proc sgscatter data=fishy;
  title "Scatterplot Matrix for fishy Data";
  matrix weight length1 length3 height;
run;
```

From the plot, we can see that there are strong positive relationships among the numeric variables. There is nonlinear relationship between **weight** and others while there are linear relationships among others (**length1**, **length2** and **height**).

Problem 1.(b)

Here is the code that produces the correlation analyses:

```
proc corr data = fishy;
  title "Linear Correlation Analyses for fishy Data";
run;

proc corr data = fishy spearman;
  title "Nonlinear Correlation Analyses for fishy Data";
run;
```

For both linear and nonlinear correlation analyses, the correlation values among **weight**, **length1** and **length3** are quite large (around 0.95) with p-value < 0.0001. It indicates that there are strong positive correlation among the three variables. The correlation values between height and others are relatively smaller (around 0.7) with p-value < 0.0001 which indicates weaker positive correlations.

Problem 1.(c)

Here is the code that produces the correlation analyses when grouped:

```
proc corr data = fishy nosimple;
  by species;
  title "Linear Correlation Analyses by group for fishy
Data";
run;

proc corr data = fishy spearman nosimple;
  by species;
  title "Nonlinear Correlation Analyses by group for fishy
Data";
run;
```

For both linear and nonlinear correlation analyses for different species, the correlation values among all the variables are quite large (around 0.97) with p-value < 0.0001. It indicates that there are stronger positive correlation among all the variables after grouping by species. Also, the nonlinear one shows relatively higher correlations values overall.

Problem 1.(d)

Here is the code that produces the boxplot of the **weight** variable:

```
proc sgplot data=fishy;
  title "Vertical Box Plot of Weight";
  vbox weight;
run;
```

From the boxplot, the minimum is 0 and the maximum is around 1100. The mean and median is close (around 500). The upper quantile is around 700 and lower quantile is around 250. Hence, the IQR is around 450. The plot may be symmetric since there is no obvious skewness looking above and below the median. The box does not spread much and there is no outlier considering the range $(Q1-1.5*IQR, Q3+1.5*IQR) = (-425 \sim 1375)$.

Problem 1.(e)

Here is the code that produces the boxplots of the **weight** variable by species:

```
proc sgplot data=fishy;
  title "Vertical Box Plot of Weight by species";
  vbox weight / category=species;
run;
```

From the boxplots, **Bream** has similar mean and median (around 650) but **Perch** has distinct mean(400) and median(220). **Bream** does not spread as much as **Perch** and **Perch** has smaller minimum and larger maximum. Since **Bream** has a much smaller IQR, outliers may exist from the observation. **Bream** can be seen as symmetric but **Perch** skewed to the small values of weight.

Problem 1.(f)

Here is the code that produces the basic statistics, histogram and QQ plots of weight and length1:

```
proc univariate data=fishy;
  var length1 weight;
  histogram;
  qqplot;
run;
```

From the results, **length1** shows nearly straight line from the QQ plot which indicates normality while **weight** shows nonlinear property which does not indicate normality. **Length1** has skewness of -0.50 but **weight** has skewness of 0.05. **Also**, weight has relatively large variance. From the histograms, the distribution of **lenght1** is almost bell shaped but **weight** is more equally distributed.

				ATE Procedure e: length1			
			Мо	ments			
N			60	Sum Weights		60	
Mean		28.7633	333	Sum Observation	ns	1725.8	
Std [Deviation	6.9549	389	Variance		48.3711751 0.20263693	
Skev	vness	-0.495	219	Kurtosis			
Unco	orrected S	52493	3.66	Corrected SS		2853.89933	
Coef	f Variation	24.179	878	Std Error Mean		0.89787875	
		Basic S	Statis	tical Measures			
	Loc	ation		Variability			
	Mean	28.76333	Std	Deviation	6.95494 48.37118		
	Median	29.40000	Var	iance			
	Mode	20.00000	Rai	nge	33.60000		
			Inte	erquartile Range	9.	80000	

	N	oments		
N	60	Sum Weights	60	
Mean	530.765	Sum Observations	31845.9	
Std Deviation	306.483878	Variance	93932.3677 -1.1702522 5542009.7	
Skewness	0.04996808	Kurtosis		
Uncorrected SS	22444698.8	Corrected SS		
Coeff Variation	57.7437997	Std Error Mean	39.5668986	

Median	535.0000	Variance	939
Mode	500.0000	Range	10
		Interquartile Range	462.000

Problem 1.(g)

Here is the code that produces the basic statistics, histogram and QQ plots of height and length3 by species:

```
proc univariate data=fishy;
  var length3 height;
  by species;
  histogram;
  qqplot;
run;
```

From the results, length3, height of Bream and length3 of Perch show nearly straight lines from the QQ plots which indicates normality while height of Perch shows nonlinear property which does not indicate normality. Variables of Bream has greater mean and smaller variance. All of the variables have small skewness with no outliers.

Problem 1.(h)

Here is the code that produces hypothesis tests and confidence intervals of **length1**:

```
proc univariate data=fishy mu0=30 normaltest cibasic
alpha=0.05;
  var length1;
  ods select TestsForLocation TestsForNormality
BasicIntervals;
run;
proc ttest data = fishy h0=30;
  var length1;
  ods select ConfLimits TTests;
run;
```

From the goodness of fit tests, p-values > 0.05 indicates the normality of the variable length 1. Altogether with the result from the previous QQ plot and histogram, t-test is appropriate for determining the true center. From the result of t-test, p-value of 0.1736 > 0.05 indicates that it is reasonable to say that the true central length 1 among all fishes is 30 cm.

Problem 1.(i)

Here is the code that produces hypothesis tests and confidence intervals of length3 by species:

```
proc univariate data= fishy normaltest;
  var length3;
  by species;
  ods select TestsForLocation TestsForNormality
BasicIntervals;
run;
proc ttest data=fishy;
class species;
var length3;
ods select TTests Equality ConfLimits;
run;
```

First, from the goodness of fit tests, p-value >0.05 for variable length3 from both species indicate that two classes are normal. Then, from the t-test, p-value =0.0003 indicates that length3 between the two species are different. Since length3 of Bream has a lower bound of confidence interval(36.9) larger than the upper bound(34.7) of length3 of Perch, Bream has significantly greater length3 than Perch.

				The T	TEST	Proc	edui	re				
				Vai	riable:	leng	th3					
species	Met	hod	M	lean	95%	6 CL I	Mea	n	Sto	d Dev	95% CL	Std Dev
Bream			38.5	5733	36.92	94	40.2	173	4	.4025	3.5062	5.9184
Perch			31.0	0033	27.34	69	34.6	598	9	.7921	7.7985	13.1637
Diff (1-2)	Poo	led	7.5	5700	3.64	63	11.4	937	7	.5917	6.4266	9.2767
Diff (1-2)	Satt	erthwaite	7.5	5700	3.60	92	11.5	308				
		Method		Varia	nces		DF	t Val	ue	Pr>	t	
		D										
		Pooled		Equal			58	3.	.86	0.000	03	
		Satterthw	aite	Equal		40.2			.86 .86	-		
			aite			40.2				-		
			aite	Unequ			:64	3.		-		
				Unequ	ual		64 ince	3.	.86	-		

Problem 1.(j)

Here is the code that produces the log transformation and goodness of fit tests for weight:

```
data log_fishy;
  set fishy;
  lnweight = log(weight);
run;
proc univariate data= log_fishy;
  var lnweight;
  by species;
run;
```

After performing the log transformation, goodness of fit tests are used and the results show that p-value >0.05 for Bream indicates that **weight** of Bream is normal. However, since the p-value =0.0032 < 0.05 for Shapiro-Wilk test for Perch, the **weight** of Perch is not normal. Hence, using a log transformation of weight **does not** allow for a two sample t-test of the mean weight to be performed by species.

		s	pecie	s=Brea	ım				
	Те	sts f	or Lo	cation	Mu0	=0			
	Test		Statistic			p Value			
	Student's t	t	t 95.43263		Pr > t		<.0001		
	Sign	M		15	Pr >= M		<.0001		
	Signed Rank	S		232.5	Pr>	= S	<.000	01	
		Tes	ts fo	r Norm	ality				
Test			Statistic					ue	
Shapiro-Wilk				0.944	478	Pr < \	N	C	.1201
Kolmogorov-Smirnov				0.130	0.130407)	>0	.1500
Crame	r-von Mises	W	-Sq	0.073	859	Pr > \	N-Sq	- Sq 0.2436	
		A-Sq			0.49411		-Sq 0.2080		
Ander	son-Darling The	UNI	VARI	ATE P	oced	Pr > /	A-Sq	(0.2086
Ander		UNI Vai	VARI	IATE Pr	roced ight		A-Sq	C	0.2086
Ander	The	UNI Var	VARI riable	ATE P	oced ght	lure	A-Sq		0.2086
Ander	The	UNI Var s	VARI riable	IATE Processions	oced ght	lure			0.2086
Ander	The	UNI Var s	VARI riable pecie or Lo	IATE Processions	oced ght	lure i=0 p Val			0.2086
Ander	The Test	UNI Var s sts f	VARI riable pecie or Lo	IATE Presented in the second s	roced ight ch : Mu0	lure i=0 p Val	ue	01	0.2086
Ander	The Test Student's t	e UNI Var s sts f	VARI riable pecie or Lo Statis	IATE Presented in the service of the	roced ght ch : Mu0	lure l=0 p Val	ue <.000	01	0.2086
Ander	The Te Test Student's t	s UNI Vai s sts fe	VARI riable pecie or Lo Statis	IATE Presented in the season of the season o	roced ght ch : Mu0	ure =0 p Val • t •== M		01	0.2086
Ander	The Te Test Student's t	s UNII Van	VARI riable pecies oor Lo Statis	IATE Presented in the season of the season o	roced ght ch : Mu0	ure =0 p Val • t •== M		01	0.2086
Test	The Te Test Student's t	s UNII Van	VARI riable pecie or Lo Statis 27.2	es=Perocation: stic 20234 15 232.5	roced ght ch : Mu0	ure =0 p Val • t •== M		D1 D1 D1	0.2086
Test Shapir	The Test Student's t Sign Signed Rank	sunii vai	VARI riable pecies or Lo Statis 27.2	IATE Presented in the present of the	roced ght ch : Mu0	ure =0 p Val • t •== M	- 000- 000- 000- 000- 000- p Val	01 01 01	0.2086
Test Shapin Kolmo	The Test Student's t Sign Signed Rank	S UNII Value S S Sts for S S S S S S S S S S S S S S S S S S S	VARI riable pecies or Lo Statis 27.2	es=Pero ecation: stic 20234 15 232.5	Pr> ality		vue	01 01 01 01 01 01	0.0032
Test Shapir Kolmo Crame	The Test Student's t Sign Signed Rank	S UNII Van	VVARI riable pecie or Lo Statiss 27.2	es=Perocation: stic 20234 15 232.5 r Norm atistic	Pr> Pr> ality 537 726	i=0	vue)1)1)1)1 ((0.0032