Тема 4.1. Основные понятия теории кодирования.

Оптимальные коды

План: Коды. Алфавитное кодирование. Разделимые коды. Оптимальные коды и их свойства. Алгоритмы Фано и Хаффмана построения оптимальных кодов.

Задачи с решением

Пример 1: Закодировать по Фано сообщения, имеющие следующие вероятности:

символ	1	2	3	4	5	6	7
вероятность	0,4	0,2	0,1	0,1	0,1	0,05	0,05

Проверим выполнимость необходимого условия:

$$0.4 + 0.2 + 0.1 + 0.1 + 0.1 + 0.1 + 0.05 + 0.05 = 1.$$

Расположим элементы в порядке убывания вероятностей. Затем будем последовательно делить, не меняя порядка, все элементы на две группы, максимально близкие по суммарной вероятности (т.е. модуль разности сумм вероятностей первой и второй группы должен быть минимальных из всех возможных разбиений на группы). Для «верхней» группы будем ставить значение 0, «нижней» - 1:

Символ	Вероятность	Шаг 1	Шаг 2	Шаг 3	Шаг 4	Полученный код
1	0,4	0				0
2	0,2		0	0		100
3	0,1	1	1	1		101
4	0,1			0	0	1100
5	0,1				1	1101
6	0,05			1	0	1110
7	0,05			1	1	1111

Найдем стоимость кода (средняя длина кодового слова). Он является критерием степени оптимальности кодирования. Вычислим ее в нашем случае.

$$l = \sum_{i=1}^{7} l_i \cdot p_i = 1 \cdot 0, 4 + 3 \cdot 0, 2 + 3 \cdot 0, 1 + 4 \cdot (0, 1 \cdot 2 + 0, 05 \cdot 2) = 2, 5.$$

Пример 2: Закодировать по Хаффману сообщения, имеющие следующие вероятности:

символ	1	2	3	4	5	6	7
вероятность	0,4	0,2	0,1	0,1	0,1	0,05	0,05

Решение.

сообщения	p	p_1	\mathbf{p}_2	\mathbf{p}_3	\mathbf{p}_4	p ₅
1	0,4	0,4	0,4	0,4	0,4	0,6
2	0,2	0,2	0,2	0,2	0,47	0,4
3	0,1	0,1 ⊳	0,2	0,2 7	0,2	
4	0,1	0,1	0,1] ->	0,2	_	
5	0,1	0,1	0,1	_		
6	0,05 7	• 0,1 _				
7	0,05 \Bigg 🗎					

Вторым шагом производим кодирование, «проходя» по таблице справа налево (обычно это проделывается в одной таблице):

	A	A_1	A_2	A ₃	A ₄	A ₅
1	0,4	0,4	0,4	0,4	0,4	0,6 0
2	0,2	0,2	0,2	0,2	0,4 00	0,4 1
3	0,1	0,1	0,2	0,2 000	0,2 01	
4	0,1	0,1	0,1 0010	0,2 001		
5	0,1	0,1 0000	0,10011			
6	0,05 00010	0,1 0001				
7	0,05 00011					

Найдем стоимость кода (средняя длина кодового слова). Он является критерием степени оптимальности кодирования.

$$l = \sum_{i=1}^{7} l_i \cdot p_i = 1 \cdot 0, 4 + 2 \cdot 0, 2 + 4 \cdot (0, 1 \cdot 3) + 5 \cdot (0, 05 \cdot 2) = 2, 5.$$

Задачи для самостоятельного решения

1. Построить код Фано и Хаффмана для списка сообщений с заданным распределением частот. Определить стоимость кода. (* - правильная вероятность символа, т.е. такая вероятность, что сумма всех вероятностей равна 1):

1.1										
	S	T	U	V	W	X	Y	Z		
•	0,10	0,02	0,22	0,15	*	0,15	0,1	0,1		
1.2	1.2.									
	S	T	U	V	W	X	Y	Z		
	0,15	0,12	0,22	0,15	*	0,05	0,1	0,1		
1.3	1.3.									
	S	T	U	V	W	X	Y	Z		
	0,11	0,12	0,14	0,15	*	0,15	0,1	0,1		
1.4	•									
	S	T	U	V	W	X	Y	Z		
	0,15	0,06	0,21	0,05	*	0,15	0,1	0,1		
1.5	•									
	S	T	U	V	W	X	Y	Z		
	0,15	0,12	0,21	0,25	*	0,05	0,01	0,1		
1.6	•									
	S	T	U	V	W	X	Y	Z		
	0,15	0,02	0,02	0,25	*	0,15	0,01	0,1		
1.7	•									
	S	T	U	V	W	X	Y	Z		
	0,11	0,02	0,12	0,11	*	0,05	0,1	0,1		
1.8	•									
	S	T	U	V	W	X	Y	Z		
	0,13	0,12	0,02	0,15	*	0,05	0,1	0,1		
1.9	1.9.									
	S	T	U	V	W	X	Y	Z		
	0,15	0,02	0,23	0,15	*	0,15	0,01	0,1		
1.1	0.									
	S	T	U	V	W	X	Y	Z		

*

0,05

0,1

0,08

0,15

0,02

0,2

0,15