

Общероссийский математический портал

С. Р. Насыров, Сходимость к ядру римановых поверхностей и их универсальных накрытий, Tp.~ceм. по краев. задачам, 1992, выпуск 27, 82–95

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:25:08

С.Р.Насыров

СХОДИМОСТЬ К ЯДРУ РИМАНОВЫХ ПОВЕРХНОСТЕЙ: И ИХ УНИВЕРСАЛЬНЫХ НАКРЫТИЙ

Эта статья является непосредственным продолжением работы [I], мы используем в ней основные обозначения и определения [I]. Краткое изложение основного результата (теорема 2) опубликовано в [2, теорема [3].

Пусть $\mathcal{G}_m=(\mathcal{R}_m,\mathcal{P}_m,\mathcal{T}_m), m\geqslant 1$, последовательность римано—вых поверхностей над $\bar{\mathcal{C}}$, $\mathcal{T}_m(\mathcal{P}_m)\to\mathcal{Z}_o$, $m\to\infty$. Рассмотрим множе ство G_1 $\{G_m\}$ римановых поверхностей $G = (R, P, \mathcal{T})$ таких, что а) $G(S) \in \mathcal{M}$ $\{G_m(S_m)\}$ для некоторых $S_m \in R_m(G_m)$, $S \in R(G)$, в) если j_m — канонические вложения, индуцированные а), то для любого $i: K_n(z_i, \delta) \subseteq (R, T, \mathcal{I})$ образ $j_m \circ j(\{|c| = \tau\})$, z < 1 , разбивает δ_m на две части, одна из которых является n -листным односвязным сферическим кругом с центром в $\mathscr{L}(m-2\mathfrak{F})$, с) если в цункте в) точка $\mathcal T$ совпадает с $\mathcal P$, то этот $\mathcal R$ -листный круг содержит P_m (m-a) (m-a) означает "асимптотически по m ", т.е. "при больших m "). Отметим, что в отличие от определения $\mathscr{G}\left\{\mathscr{O}_{m}\right\}$ здесь в пункте в) требуется, чтобы n-1листные круги были односвязными. Будем обозначать через $\ker \{ \delta_m \}$ множество максимальных элементов в $\mathscr{C}_{4}\{\mathscr{C}_{m}\}$, если это множество не пусто, в противном случае $\mathit{Kez}_1\{\mathscr{O}_m\}$ состоит по опре – делению из единственного элемента z_o . Будем говорить, что последовательность δ_m сходится регулярно к $\alpha \in Ob(\overline{\mathcal{RP}})$, и писать $\delta_m \rightarrowtail \mathcal{L}$, если $\alpha \in Ker\{\delta_{m_K}\}$ для любой подпоследователь ности δ_m последовательности δ_m . Для регулярной сходимости справедливи аналоги всех тех результатов из [1], которые имеют место для обычной сходимости. Ясно также, что для односвязных римановых поверхностей, а также для поверхностей без точек вет вления регулярная сходимость равносильна обычной.

Пусть $\mathcal J$ кривая в топологическом пространстве X, не обязательно замкнутая. Через $|\mathcal J|$ будем обозначать носитель кривой $\mathcal J$, а через $[\mathcal J]_X$ — гомотопический класс кривой $\mathcal J$ в X (относительно концов). Гомотопический класс точечной кривой будем обозначать через $\mathcal E_X$ или просто $\mathcal E$. Если $f: X \to Y$ — непрерывное отображение топологических пространств, то через

 $f_{\#}$ обозначим индупированное им отображение фундаментальных \mathcal{H} - некоторое подмножество группы \mathcal{G} группоидов. Пусть Оболочкой множества ${\mathcal H}$ называется подгруппа в ${\mathcal G}$, порожден – ная всевозможными сопряжениями элементов множества Н . Элементь оболочки называются следствиями элементов из \mathcal{H} [3, гл. ІУ, n.I].

Определение І. Последовательность римановых поверхностей eta_m сходится к римановой поверхности eta с сохранением связности, если выполняются условия: а) $eta_m \rightarrowtail eta$; в) если eta — замкнутая кривая в $ar{R}(eta)$, $[\ensuremath{\mathcal{J}}]_R \ne e$, $\text{то}[\ensuremath{j_m} \circ \ensuremath{\gamma}]_{R_m} \ne e(m-az)$, где $\ensuremath{j_m}$ — канонические вложения, определенные выше. Пример. $\ensuremath{\delta_m} = (E, \frac{z}{2}, \mathcal{Z} + \frac{z}{mz})$ сходится регулярно к $\ensuremath{\delta} = (E, \frac{z}{2}, \mathcal{Z} + \frac{z}{mz})$

 $=(E\setminus\{\mathcal{O}\},\frac{1}{2},\mathcal{Z})$, однако не сходится к \mathcal{O} с сохранением связности, так как, к примеру, кривая \mathcal{J} , однократно обходящая точку \mathcal{O} в $E\setminus\{\mathcal{O}\}$, не гомотопна точечной в $E\setminus\{\mathcal{O}\}$, в то время как $[j_m \circ \gamma]_E = e(m-\alpha i)$, так как E односвязно. Справедлива

лемма I. Если γ замкнутая кривая в $\mathcal{R}(6)$, $[\gamma]_{\mathcal{R}} = e$ и $f_m \to 6$ с сохранением связности, то $[f_m \circ f]_{\mathcal{R}_m} = e \ (m - \alpha_{\mathcal{F}})$. Доказательство. Нетрудно видеть, что существу-

ет компакт \mathcal{Q} в $\mathcal{R}(\mathcal{G})$ и кривая \mathcal{G} такие, что $|\gamma|, |\beta| \in \mathcal{G}$, кривые γ и β гомотопны в β , а кривая β_{n_k} является произведением петель $\alpha_{\kappa}\beta_{\kappa}^{n_{\kappa}}\alpha_{\kappa}$, $\kappa=1,\ell$, где β_{κ} — простая замкну тая кривая в $\hat{\mathcal{R}}$, проекция которой на $\bar{\mathcal{C}}$ есть π_{κ} – кратно обкодимая окружность, охватывающая некоторую точку ветвления $\mathcal{T}_{\mathcal{K}}$ в \mathcal{G} , т.е. $|\beta_{\mathcal{K}}^{\mathcal{H}_{\mathcal{K}}}| = i_{\mathcal{K}}(\{|\mathcal{Z}| = \mathcal{E}\})$, где $i_{\mathcal{K}}: \mathcal{K}_{\mathcal{H}_{\mathcal{K}}}(\mathcal{Z}_{\mathcal{K}}, \delta) \hookrightarrow (\mathcal{R}, \mathcal{T}_{\mathcal{K}}, \mathcal{T})$. В силу условия а) определения І $\mathcal{G}_{\mathcal{H}} \to \mathcal{G}$ регулярно. Поэтому $j_{m} \circ \beta_{\kappa}$ ограничивает односвязный круг в Λ_{m} ($m = \infty$) , $[j_{m} \circ \beta_{\kappa}]_{R_{m}} = e (m-\alpha s)_{s}$. Значит, $[j_{m} \circ \beta]_{R_{m}} = \prod_{\kappa} [j_{m} \circ \alpha_{\kappa}]_{R_{m}} \times [j_{m} \circ \beta_{\kappa}]_{R_{m}} [j_{m} \circ \alpha_{\kappa}]_{R_{m}} = e(m-\alpha s)_{s}$. Наконец, поскольку $[\mathcal{T}]_{Q} = e(m-\alpha s)_{s}$. $[j_{m} \circ \beta_{\kappa}]_{R_{m}} = [j_{m} \circ \beta_{\kappa}]_{s} = [j_{m} \circ$ $=[\beta]_{Q}$, имеем $[j_{m} \circ \gamma]_{j_{m}(Q)} = [j_{m} \circ \beta]_{j_{m}(Q)} (m-a_{\delta})$, а значит $[j_{m} \circ \gamma]_{R_{m}} = [j_{m} \circ \beta]_{R_{m}} = e(m-a_{\delta})$. Сходимость с сохранением связности локально равномерна: $\underline{\text{Лемма 2}}$. Пусть $b_{m} \to b$ и Q — компакт в R(b) . Тогда существует номер N , зависящий только от Q , такой, что для

любого $m \gg N$ и любой кривой \mathcal{J} , $|\mathcal{J}| = \mathcal{G}$,

 $\mathrm{I)} \left[\gamma \right]_{\mathcal{R}} = e \Leftrightarrow \left[j_m \circ \gamma \right]_{\mathcal{R}_m} = e \; ; \quad \mathrm{II)} \quad \left[\gamma \right]_{\mathcal{R}} \neq e \Leftrightarrow \left[j_m \circ \gamma \right]_{\mathcal{R}_m} \neq e \; .$

Для доказательства лемми 2 нам понадобится

<u>Лемма 3.</u> Пусть $\mathcal{G}=(\mathcal{R},\mathcal{P},\mathcal{T})$, \mathcal{Q} — связная область в \mathcal{R} с компактным замыканием, ограниченная конечным числом простых замкнутых кривых \mathcal{B}_{i} , ..., \mathcal{B}_{S} в \mathcal{R} , $\mathcal{P}\in\mathcal{Q}$. Пусть кривая \mathcal{A}_{i} соединяет точку \mathcal{P} с началом кривой \mathcal{B}_{i} в \mathcal{Q} , $i=\overline{I,S}$ и $\mathcal{T}_{i}=\mathcal{A}_{i}$ \mathcal{B}_{i} \mathcal{A}_{i} , $i=\overline{I,S}$. Если \mathcal{T} — кривая в \mathcal{Q} с началом в точке \mathcal{P} и $[\mathcal{T}]_{R}=\mathcal{C}$, то $[\mathcal{T}]_{\overline{\mathcal{Q}}}$ принадлежит оболочке элементов $[\mathcal{T}_{i}]_{\overline{\mathcal{Q}}}$, $i\in\mathcal{A}$, в фундаментальной группе $\overline{\mathcal{Q}}$, где $\mathcal{A}=\left\{1\leq i\leq \mathcal{S}\mid [\mathcal{T}_{i}]_{R}=\mathcal{C}\right\}$.

Доказательство. Рассмотрим универсальное на-крытие $p:(\widehat{R},\widehat{P})\to (R,P)$ для (R,P) . Пусть \widehat{Q} — компонен та связности множества $p^{-1}(Q)$, содержащая точку $\widetilde{\mathcal{P}}$. Тогда $\mathcal Q$ ограничена в $\mathcal R$ не более, чем счетным числом простых нутих кривых, носители которых - компоненти связности множества $\mathcal{B}_{i\in\mathcal{A}} = \mathcal{U} \rho^{-1}(|\beta_i|)$, и разомкнутых дуг – компонент связности мно – жества $B_2 = U \rho^{-1}(|\beta_2|)$. Это следует из общих свойств накрывающих многообразий и теоремы о монодромии (см., напр., [4-6]). По той же теореме кривая $\widetilde{\mathscr{X}}$, которая является поднятием кривой \mathscr{Y} из точки $ar{\widetilde{\rho}}$, замкнута. Пусть $ar{\widetilde{\phi}}'$ - компонента связности множества $\widetilde{R} \setminus B_2$, содержащая точку \widetilde{P} . Тогда \widetilde{Q}' односвязна и $\widetilde{Q} \subset \widetilde{Q}'$, причем $\widetilde{Q}' \setminus \widetilde{Q}$ есть объединение не более, чем счетного числа жордановых областей, каждая из которых ограничена некоторой компонентой связности множества $\mathcal{B}_{\!\scriptscriptstyle f}$. Отскда следует, что фундаментальная группа $\mathcal{G}(\bar{\widehat{\mathcal{Q}}})$ в точке $\tilde{\mathcal{P}}$ есть свободная группа с образующими [$\widetilde{\mathcal{L}}_{\kappa\ell}$ $\widetilde{\beta}_{\kappa\ell}$ $\widetilde{\mathcal{L}}_{\kappa\ell}$] $\widetilde{\beta}_{\kappa\ell}$, где $\widetilde{\beta}_{\kappa\ell}$ — простая зам кнутая кривая в \widetilde{Q} , являющаяся поднятием $\beta_{\mathcal{K}}$ из некоторой точки, $|\widetilde{\beta}_{\mathcal{K}\ell}| = \partial \widetilde{Q}$, $\widetilde{\mathcal{L}}_{\mathcal{K}\ell}$ — кривая в \widetilde{Q} , соединяющая $\widetilde{\mathcal{P}}$ с началом $\beta_{\kappa\ell}$. Поскольку $[p(\vec{\alpha}_{\kappa\ell}, \vec{\beta}_{\kappa\ell}, \vec{\alpha}_{\kappa\ell})]_{\bar{Q}} = [p(\vec{\alpha}_{\kappa\ell})\beta_{\kappa}p(\vec{\alpha}_{\kappa\ell})]_{\bar{Q}} =$ $= [p(\widehat{\mathcal{A}}_{\kappa\ell}) \mathcal{A}_{\kappa}]_{\bar{Q}} \cdot [\gamma_{\kappa}]_{\bar{Q}} \cdot [p(\widehat{\mathcal{A}}_{\kappa\ell}) \mathcal{A}_{\kappa}]_{\bar{Q}}^{-1} , \text{ obpas } p_{\#}(\widehat{\mathcal{A}}_{\kappa\ell})_{\kappa\ell} \widehat{\mathcal{A}}_{\kappa\ell}),$ где $\rho'=\rho|_{\bar{\partial}}:\bar{\partial}\to\bar{\partial}$, принадлежит оболочке σ элементов $[\mathcal{J}_i]_{ar{Q}}$, $i\in A$. Значит, $\rho_\#'(\mathcal{F}(\widehat{\bar{Q}}))\subset\mathcal{O}$. В частности, $\rho_\#'([\mathcal{T}]_{ar{Q}})=[\mathcal{T}]_{ar{Q}}\in\mathcal{O}$. Лемма 3 доказана. — 84 —

Доказательство леммы 2. Можно считать, что $\mathcal Q$ удовлетворяет условиям леммы 3, в противном случае расширим $\mathcal Q$ до нужной области.

I) Если $|\mathcal{J}| \in \mathcal{G}$, $[\mathcal{J}]_R = \mathcal{C}$, то по лемме 3 в обозначениях той же леммы $[\mathcal{J}]_{\overline{\mathcal{G}}}$ принадлежит оболочке элементов $[\mathcal{J}_i]_{\overline{\mathcal{G}}}$, $\iota \in \mathcal{A}$. Так как $[\mathcal{J}_i]_R = \mathcal{C}$, $\iota \in \mathcal{A}$, то по лемме $[\mathcal{J}_i]_R = \mathcal{C}(m-a_1)$, $\iota \in \mathcal{A}$, Поскольку множество \mathcal{A} конечно, это условие выполняется для всех $\iota \in \mathcal{A}$ при $m > \mathcal{N} = \mathcal{N}(\mathcal{G})$. Из этого вытекает, что f_m переводит \mathcal{C} в единичную подгруппу фундаментальной группы $\mathcal{F}(\mathcal{R}_m)$. Значит, $[I_m \circ \mathcal{T}]_R = \mathcal{C}(m-a_1)$.

 f_m переводит \mathcal{O} в единичную подгруппу фундаментальной группы $\mathcal{F}(\mathcal{R}_m)$. Значит, $[j_m \circ \mathcal{T}]_{\mathcal{R}_m} = \mathcal{C}(m-ai)$. П) Предположим противное. Тогда существует последователь— ность кривых $\mathcal{T}^{(m_\kappa)}$ в \mathcal{R} , таких, что $|\mathcal{T}^{(m_\kappa)}| < \mathcal{Q}, [\mathcal{T}^{(m_\kappa)}]_{\mathcal{R}} \neq \mathcal{C}$, но $[\mathcal{T}_m]_{\mathcal{R}_m} = \mathcal{C}$, где $\mathcal{T}_m = j_{m_\kappa} \circ \mathcal{T}^{(m_\kappa)}$. Пусть $\mathcal{Q}_m = j_{m_\kappa} (\mathcal{Q})$. В силу леммы 3 в ее обозначениях $[\mathcal{T}_m]_{\bar{\mathcal{Q}}_{m_\kappa}}$ является следствием элементов $[j_{m_\kappa} \circ \mathcal{T}_i]_{\bar{\mathcal{Q}}_{m_\kappa}}$, $i \in \mathcal{A}_{m_\kappa}$, где $\mathcal{A}_m = \{1 \le i \le S \mid [j_{m_\kappa} \circ \mathcal{T}_i]_{\mathcal{R}_m} = \mathcal{E}\}$. Так как число различных подмножеств множест —

ва $\{1,2,...,s\}$ конечно, то переходя в случае необходимости к подпоследовательности, можно считать, что $A_{m_K} = A$ не зависит от κ . В силу условия в) определения I отсюда следует, что $\begin{bmatrix} \mathcal{J}_i \end{bmatrix}_{\mathcal{R}} = \mathcal{C}$, $i \in A$. Но так как f_{m_K} отображает гомеоморфно $\widehat{\mathcal{Q}}$ на $\widehat{\mathcal{Q}}_{m_K}$, то $\begin{bmatrix} \mathcal{J}^{(m_K)} \end{bmatrix}_{\widehat{\mathcal{Q}}}$ есть следствие элементов $\begin{bmatrix} \mathcal{J}_i \end{bmatrix}_{\widehat{\mathcal{Q}}}$, $i \in A$, а поскольку $\begin{bmatrix} \mathcal{J}_i \end{bmatrix}_{\mathcal{R}} = \mathcal{C}$, $i \in A$, то $\begin{bmatrix} \mathcal{J}^{(m_K)} \end{bmatrix}_{\mathcal{R}} = f_\#(\begin{bmatrix} \mathcal{J}^{(m_K)} \end{bmatrix}_{\widehat{\mathcal{Q}}}) =$

 $= \prod_{\vec{q}} j_{\#}([\delta_{n(i)}]_{\vec{q}} [\mathcal{J}_{n(i)}]_{\vec{q}} [\delta_{n(i)}]_{\vec{q}}^{-1}) = \prod_{i} [\delta_{n(i)}]_{\mathcal{R}} [\delta_{n(i)}]_{\mathcal{R}}^{-1} = \mathcal{C}, \text{ где } j :$ $\vec{Q} \to \mathcal{R} \quad \text{- вложение. Лемма 2 доказана.}$

Отметим следующий интересный факт.

<u>Теорема I.</u> Риманови поверхности без точек ветвления сходятся с сохранением связности.

Доказательство. Пусть $\mathcal{O}_m \to \mathcal{O}$, причем все \mathcal{O}_m и \mathcal{O} не имеют точек ветвления. Тогда $\mathcal{O}_m \to \mathcal{O}$ (в самом деле, n-листный круг без точек ветвления есть однолистный круг, т.е. односвязный). Итак, условие а) определения I выполнено. Докажем, что имеет место в). Предположим противное. Пусть \mathcal{J} — кривая в \mathcal{R} , такая что $\begin{bmatrix} \mathcal{J} \end{bmatrix}_{\mathcal{R}} \neq \mathcal{C}$, но $\begin{bmatrix} \mathcal{J}_m \end{bmatrix}_{\mathcal{R}_m} = \mathcal{C}$, где $\mathcal{J}_m = \mathcal{J}_m = \mathcal{J}_$

для некоторой подпоследовательности. Пусть $\mathcal Q$ - область в $\mathcal R$, удовлетворяющая условиям леммы 3, содержащая $|\gamma|$, $Q_{m_{p}} = j_{m_{p}}(Q)$. Вибирая в случае необходимости подпоследовательность (как и при доказательстве леммы 2, п.П), с использованием леммы 3 получаем, что существует такое множество A , что $[\mathcal{J}_{m_{\kappa}}]_{ar{Q}_{m_{\kappa}}}$ оболочке элементов $[j_{m_{\kappa}}, \gamma_i]_{\overline{Q}_{m_{\kappa}}}$, $i \in A$, причем $[\beta_{m_{\kappa}}]_{R_{m_{\kappa}}} = e$, $i\in A$, где $\beta_{m_\kappa}=j_{m_\kappa}\circ \beta_i$. Так как кривне β_{m_κ} простие, замкнутие и гомотопин точечным в R_{m_κ} , то они гомологичны нулю в $R_{m_{\kappa}}$, $i \in A$. Значит, либо $eta_{m_{\kappa}}^i$, либо $eta_{m_{\kappa}}^i$, либо $eta_{m_{\kappa}}^i$, либо $eta_{m_{\kappa}}^i$ ентированной границей односвязной подобласти $R_{m_k}^{\ \prime}$ в R_{m_k} . Отметим, что $\mathcal{K}_{m_k}(\beta_{m_k}^{\ \prime})=\mathcal{K}_{m_k}\circ j_{m_k}\circ \beta_i=\mathcal{K}\circ \beta_i$ не зависит от κ . Используя лемму 3 из [I] и переходя в случае необходимости к под последовательности, получаем, что римановы поверхности $\delta_{m_{\kappa}}' = = (R_{m_{\kappa}}', \mathcal{I}_{m_{\kappa}}, \mathcal{I}_{m_{\kappa}}, \mathcal{I}_{m_{\kappa}})$ (для некоторых точек $\mathcal{I}_{m_{\kappa}}$) попарно экви валентни и их ориентированной границей в $\mathcal R$ является $eta_{m_e}^{\iota}$ (случай $(\beta_{m_k}^z)$ рассматривается аналогично). В силу того, что δ является максимальным элементом в δ $\{\delta_m\}$, существует точка $\mathcal{T} \in \mathcal{R}$ и область \mathcal{R}' в \mathcal{R} такие, что $\delta' = (\mathcal{R}', \mathcal{T}, \mathcal{T}|_{\mathcal{R}'})$ эквивалентна всем $\theta_{m_{r}}^{'}$, причем граница $\mathcal{R}^{'}$ в \mathcal{R} есть $|\beta_{i}|$. Так как все $\theta_{m_{r}}$ односвязни, то и \mathcal{R}' односвязна. Поэтому β_i стягиваема в \mathcal{R} и $[\mathcal{J}_i]_{\mathcal{R}} = [\alpha_i \ \beta_i \ \alpha_i^-] = \mathcal{C}$, $i \in \mathcal{A}$. Наконец, так как $[\mathcal{J}]_{\overline{Q}}$ есть следствие элементов $[\mathcal{J}_i]_{\overline{Q}}$, $i \in \mathcal{A}$, то $[\mathcal{J}]_{\mathcal{R}}$ есть следствие элементов $[\mathcal{J}_i]_R$, $i\in A$, т.е. $[\mathcal{J}]_R = \mathcal{C}$. Теорема I доказана. Пусть $\mathcal{C} = (R, \mathcal{P}, \mathcal{T})$ — риманова поверхность над $\overline{\mathcal{C}}$, \mathcal{P} $\widetilde{R} \to R$ универсальное накрытие абстрактной римановой поверхности R, \widetilde{P} точка \widetilde{R} , такая, что $p(\widetilde{P}) = P$. Универсальным накрытием G назовем тройку $\widetilde{G} = (\widetilde{R}, \widetilde{P}, \widetilde{\widetilde{R}})$, где $\widetilde{R} = \widetilde{R} \circ P$. Как известно, универсальное накритие для $\mathcal R$ определяется с точностью до эквивалентности. Стандартной является реализация $\widetilde{\mathcal{R}}$ как множества гомотопических классов [χ] $_{_{\mathcal{D}}}$ кривих χ в \mathcal{R} с на чалом в точке ρ с нетрудно определнемой топологической комплексной структурой (см., напр., [4 – 6]). Отображение ρ : $\mathcal{R} \to \mathcal{R}$ определяется по формуле $\rho([\mathcal{X}]_{\mathcal{R}}) = \mathcal{P}'$, где \mathcal{P}' – ко – нечная точка γ . - 86 -

Теперь установим теорему о связи сходимости последовательности римановых поверхностей со сходимостью последовательности их универсальных накрытий.

Теорема 2. Последовательность римановых поверхностей $\mathcal{O}_m = (\mathcal{R}_m, \mathcal{P}_m, \mathcal{T}_m)$ сходится к римановой поверхности $\mathcal{O} = (\mathcal{R}, \mathcal{P}, \mathcal{T})$ с сохранением связности тогда и только тогда, когда выполняются следующие два условия:

I) последовательность универсальных накрытий $\widetilde{\mathcal{G}}_m = (\widetilde{\mathcal{R}}_m, \widetilde{\mathcal{P}}_m, \widetilde{\mathcal{R}}_m)$ римановых поверхностей \mathcal{G}_m сходится к универсальному на-крытию $\widetilde{\mathcal{G}} = (\widetilde{\mathcal{R}}, \widetilde{\mathcal{P}}, \widetilde{\mathcal{R}})$ римановой поверхности \mathcal{O} ;

П) ганонические вложения j_m , индуцированные сходимостью $\widetilde{\delta}_m \to \widetilde{\delta}$, можно подобрать таким образом, что $\rho_m \circ \widetilde{f}_m$ сходятся равномерно внутри \widetilde{R} ($\widetilde{\delta}$) к p (где $p_m : \widetilde{R}_m \to R_m$, $p: \widetilde{R} \to R$ — накрывающие отображения) в том смысле, что для любой подобласти $Q \subset \widetilde{R}$ ($\widetilde{\delta}$) , содержащей точку \widetilde{S} , римановы поверхности ($Q_m = \rho_m \circ \widetilde{j}(\widetilde{Q}), \rho_m \circ \widetilde{j}(\widetilde{S}), \mathcal{I}_m$ эквивалентны $Q = \rho(\widetilde{Q}), \rho(\widetilde{S}), \mathcal{I}_m$ ($m-a_1$).

Перед доказательством теоремы отметим следующий почти очевидный факт. Если $b_m=(R_m,P_m,\mathcal{T}_m)$ сходятся к $b=(R,P,\mathcal{R})$, b_m -канонические вложения, а $T\in R$ и $T_m\in R_m$ такие точки, что для любого круга $i:K(\mathcal{A},\mathcal{C})\hookrightarrow (R,T,\mathcal{R})$ образ окружности $j_m \circ i(\{|\mathcal{C}_i|=1/2\})$ разбивает R на две части, причем одна из них — R_{1m} является n —листным кругом, содержащим T_m , и $\mathcal{A}\in \mathcal{E}_m(R_{1m})$. Тогда $b_m=(R_m,T_m,\mathcal{R}_m)\to b'=(R,T,\mathcal{R})$ и каноничес — кие вложения, индуцированные сходимостями $b_m\to b$ и $b_m\to b'$, можно выбрать совпадающими. В частности, это верно, если $T\in \mathcal{R}(b)$ и $T_m=f_m(T)$ (m-as). Из этого замечания следует, что при доказательстве теоремы 2 можно считать, что P_m и P не являют—ся точками ветвления и $P_m=f_m(P)$ (m-as).

Доказательство теоремы 2 проведем в два этапа. А) Сначала докажем утверждение теоремы в предположении, что \mathcal{C}_m и \mathcal{C} не имеют точек ветвления.

Необходим ость. І) Пусть $\widetilde{c} \subset \widetilde{\mathcal{G}}$, $\widetilde{c} = (\widetilde{Q}, \widetilde{P}, \mathcal{I}|_{\widetilde{Q}})$. Так как ρ непрерывно и образ компакта при непрерывном отображении есть компакт, то $\mathcal{C} \subset \mathcal{G}$, где $\mathcal{C} = (Q, P, \mathcal{I}|_{Q})$, $Q = p(\widetilde{Q})$. Ясно, что $\widetilde{Q} \subset \left\{ \left[\mathcal{T} \right]_{R} \mid \mathcal{T} -$ кривая в Q, соединяющая P с некоторой точкой P'. Действительно, если $\widetilde{P} \in \widetilde{Q}$ и $\widetilde{\mathcal{T}}_{\mathcal{I}} -$ кри — вая в Q, соединяющая точки \widetilde{P} и $\widetilde{P}_{\mathcal{I}}$, то $\widetilde{P}_{\mathcal{I}} = \left[p(\widetilde{\mathcal{T}}_{\mathcal{I}}) \right]_{R}$, а

 $|p(\tilde{f_{n}})| < p(\tilde{Q}) = Q$. Теперь можно определить вложения $\tilde{f_{m}}: z \to \delta_{m}$ (m-az) по формуле $\tilde{f_{m}}([\gamma]_{R}) = [j_{m}(\gamma)]_{R_{m}}$, где γ - кривая в Q. Это определение корректно в силу утверждения I) леммы 2 и инъективно в силу утверждения I) той же леммы. Очевидно, что $\tilde{f_{m}}$ непрерывно. Итак, $\tilde{G} \in \mathcal{W} \setminus \delta_{m}$.

но, что \hat{j}_m непрерывно. Итак, $\hat{6} \in \mathcal{M} \cap \{6_m\}$. Покажем, что $\hat{6} \in \text{Ket} \setminus \{6_m\}$. Пусть $\widehat{q}_m : \widehat{c} \in \widehat{6}_m (m-\alpha z)$, где $\widehat{c} = (\widehat{Q}, \widehat{S}, \widehat{\rho})$, $\widehat{Q}_m = \widehat{q}_m (\widehat{Q})(m-\alpha z)$. Установим, что $\widehat{c} \in \widehat{6}$. Без ограничения общности можно считать, что \widehat{c} ограничена конечным числом аналитических кривых f_1 , ..., f_n , иначе рассмотрим компактное исчерпание \widehat{c} такими поверхностями. Тогда каждая риманова поверхность $(\widehat{Q}_m, \widehat{\rho}_m, \widehat{M}_m)$ также ограничена кривыми f_1 , ..., f_n . Отсюда следует, что \widehat{Q}_m ограничена в \widehat{R}_m кривыми f_{mi} , ..., f_{mn} , причем $\widehat{M}_m \cap f_{mi} = f_i$, $i = \widehat{I}_n$. В силу односвязности \widehat{R}_m носитель $|f_{mi}|$ кривой $|f_m|$ разбивает \widehat{R}_m на две части, одна из которых односвязна; обозначим ее через \widehat{Q}_{mi} . Ясно, что либо $\widehat{Q}_{mi} = \widehat{Q}_m$, либо $\widehat{Q}_m \cap \widehat{Q}_m = |f_{mi}|$, а риманова поверхность $\widehat{T}_{mi} = (\widehat{Q}_{mi}, \widehat{M}_m)$ ограничена в первом

случае кривой $f_{\widetilde{c}}$, а во втором — $f_{\widetilde{c}}$. В силу лемми 3 из [I] среди $\widehat{\mathcal{C}}_{mi}$ существует не более, чем конечное число различных (с точностью до эквивалентности). Поэтому, переходя в случае необ — кодимости к подпоследовательности, можно считать, что \mathcal{C}_{mi} не зависит от m для каждого $i=\overline{f_{,n}}$. Если для некоторого i имеем $\widehat{\mathcal{G}}_{mi} = \widehat{\mathcal{G}}_{mi} = \widehat{\mathcal{C}}_{mi} = \widehat{\mathcal{C}}_{$

 $=\widehat{Q}_m U(\bigcup_{i=1}^{n-1}\widehat{Q}_{mi}),\widehat{P}_m,\widehat{\mathcal{K}}_m|_{\widehat{Q}_m'})$. И в том, и в другом случае \widehat{z}' не зависит от m, ограничена одной кривой, односвязна, содержит \widehat{z} и

содержится во всех $\mathcal{O}_m (m-\alpha s)$. Поэтому, заменяя в случае необходимости $\widetilde{\mathcal{C}}$ на $\widetilde{\mathcal{C}}'$, можно сразу считать, что $\widetilde{\mathcal{C}}$ односвязна. Более того, в силу лемми 5 из [I], переходя в случае необходимости к подпоследовательности, можно считать, что все риманови поверхности $(\mathcal{Q}_m, \mathcal{P}_m, \mathcal{T}_m |_{\mathcal{Q}_m})$, где $\mathcal{Q}_m = \mathcal{P}_m (\widetilde{\mathcal{Q}}_m)$, эквива – лентны некоторой фиксированной римановой поверхности $\mathcal{C} = (\mathcal{Q}, \mathcal{S}, \rho)$. Тогда определены вложения $\mathcal{Q}_m : \mathcal{C} \subseteq \mathcal{G}_m$, так как $\mathcal{C}_m \to \mathcal{C}_m$, то

Тогда определены вложения $q_m\colon \mathcal{T}=\mathcal{G}_m$, так как $\mathcal{G}_m\to\mathcal{G}$, то в силу следствия I из [I] существует $q\colon \mathcal{C}=\mathcal{G}$. Ясно, что су-

ществует единственный морфизм $\rho':\widetilde{c}\to c$ в категории $\mathcal{R}\mathcal{P}_{I}$ такой, что коммутативна диаграмма

Диаграмма I

Определим вложение $\tilde{q}:\tilde{c} \hookrightarrow \tilde{c}$ следующим образом. Если $\tilde{T}\epsilon$ $\in \tilde{Q}$, \tilde{G} — кривая в \tilde{Q} , соединяющая \tilde{S} с \tilde{f} , то пусть $\tilde{q}(\tilde{T}) = [q \circ \rho'(\tilde{T})]_R$. Покажем, что \tilde{q} определено корректно. Если \tilde{T}_1 и \tilde{T}_2 — две кривые, соединяющие \tilde{S} с \tilde{f} в \tilde{Q} , то в силу односвязности \tilde{Q} имеем $[T_1]_{\tilde{q}} = [T_2]_{\tilde{Q}}$, поэтому $[q \circ \rho'(T_1)]_R = (q \circ \rho')_\# ([T_1]_{\tilde{Q}}) = (q \circ \rho')_\# ([T_2]_{\tilde{Q}}) = [q \circ \rho'(T_2)]$. Ясно, что \tilde{Q} непрерывно. Покажем, что \tilde{Q} инъективно. Если \tilde{T}_2 соединяет \tilde{S} с \tilde{T} , $\tilde{t} = 1,2$, причем $\tilde{q}(\tilde{T}_1) = \tilde{q}(\tilde{T}_2)$, то в силу коммутативности диаграммы $[\rho_m \circ \tilde{q}_m(T_1)]_{R_m} = [j_m \circ q \circ \rho'(\tilde{T}_1)]_{R_m} = [j_m \circ q \circ \rho'(\tilde{T}_$

П) Осталось показать, что $\rho_m \circ j_m$ сходятся равномерно внутри $\widetilde{\mathcal{R}}$ к ρ . Пусть $(\widetilde{\mathcal{Q}}_n)_{n \geqslant 1}$ — компактное исчерпание $\widetilde{\mathcal{R}}$, $\widetilde{\rho} \in \widetilde{\mathcal{Q}}_n$, $\widetilde{\mathcal{T}}_n = (\widetilde{\mathcal{Q}}_n, \widetilde{\rho}, \widetilde{\mathcal{X}} \big|_{\widetilde{\mathcal{Q}}_n})$, $n \geqslant 1$. Тогда $\widetilde{\mathcal{C}}_n = \widetilde{\mathcal{C}}_n$ и так как $\widetilde{\mathcal{C}}_m \to \widetilde{\mathcal{C}}$, то $\widetilde{j}_m : \widetilde{\mathcal{C}}_n = \widetilde{\mathcal{C}}_m$ ($m-a_{\overline{I}}$) . Рассуждая как и при доказательстве п. I), получаем, что существуют $\mathcal{C}_n = (\mathcal{Q}_n, \mathcal{P}, \widetilde{\mathcal{X}} \big|_{\widetilde{\mathcal{Q}}_n}) = \widetilde{\mathcal{C}}_n$ отображение $\rho_n : \widetilde{\mathcal{C}}_n \to \mathcal{C}_n$ такие, что коммутативна диаграмма

$$\begin{array}{ccc}
\widetilde{t}_n & \widetilde{j}/\widetilde{\varrho}_n & \widetilde{\delta}_m \\
\downarrow \rho_n' & \downarrow & \downarrow \rho_m \\
\widetilde{t}_n & \xrightarrow{j_m/\varrho_n} & \delta_m
\end{array}$$

Диаграмма 2

Так как j_m инъективни, а $\widetilde{\mathcal{Q}}_n \subset \widetilde{\mathcal{Q}}_m$, $m \gg n$, то $p_m' |_{\widetilde{\mathcal{Q}}_n} = p_n'$, $m \gg n$. Следовательно, на \widetilde{R} определено отображение $p' \colon \widetilde{R} \to R$, такое, что $p' |_{\widetilde{\mathcal{Q}}_n} = p_n'$. Из коммутативности диаграмми 2 следует. Что $\Im \circ p_n' = \Im_n \circ j_m \circ p_n' = \Im_n \circ p_n' \circ j_m' |_{\widetilde{\mathcal{Q}}_n} = \Im_n' \circ j_m' |_{\widetilde{\mathcal{Q}}_n} = \widetilde{\mathcal{T}}_n' \circ j_m' |_{\widetilde{\mathcal{Q}}_n} = \widetilde{\mathcal{Q}}_n' \circ j_m' |_{\widetilde{\mathcal{Q}$

$$(\widetilde{R},\widetilde{\rho}) \xrightarrow{\widehat{\rho}'} (\widetilde{R},\widetilde{\rho})$$

$$\downarrow \rho$$

$$(R,\rho)$$

Тогда $\widehat{\mathcal{H}}\circ\widehat{\rho}'=\mathcal{H}\circ\rho\circ\widehat{\rho}'=\mathcal{H}\circ\rho'=\widehat{\mathcal{H}}$, $\widehat{\rho}'(\widehat{\mathcal{D}})=\widehat{\mathcal{D}}$. Из этих соотноше — ний с учетом голоморфности $\widehat{\mathcal{H}}$ и $\widehat{\rho}$ и локальной инъективности $\widehat{\mathcal{H}}$ нетрудно вывести, что $\widehat{\rho}':\widehat{\mathcal{R}}\to\widehat{\mathcal{R}}$ — тождественное отображение. Значит, $\rho'=\rho\circ\widehat{\rho}'=\rho$ в силу коммутативности диаграмми 2 $fm\circ\rho|_{\widehat{\mathcal{G}}_n}=fm\circ\rho'|_{\widehat{\mathcal{G}}_n}=fm\circ\rho'=\widehat{\mathcal{H}}_n\circ\widehat{f}_n|_{\widehat{\mathcal{G}}_n}$, что и завершает доказательство Π).

Достаточность. Сначала введем одно обозначение и отметим два простых факта. Пусть $\mathcal{G}_{i}=(R_{i},P_{i},\mathcal{T}_{i})$, i=1,2— две римановы поверхности. Если $\rho:\mathcal{G}_{i}\to\mathcal{G}_{i}$ — морфизм в категории \mathcal{RP}_{i} , то через $\rho(\mathcal{G}_{i})$ будем обозначать риманову поверхность $(\rho(R_{i}),P_{i},\mathcal{T}_{i})$ Если ρ инъективно, то $\rho(\mathcal{G}_{i})$ эквивалентна \mathcal{G}_{i} . Если $\mathcal{G}_{i}=\mathcal{U}\mathcal{G}_{i}$ ($zel\mathcal{G}_{i}$), и $\mathcal{J}_{i}:\mathcal{G}_{i}\hookrightarrow\mathcal{G}_{i}$, а ρ инъектив—

но на каждой $f(\mathcal{C}_{\alpha})$, то $p(\mathcal{C}_{1})=\bigcup_{\alpha}\mathcal{C}_{\alpha}$ ($zel\,\mathcal{C}_{2}$) . Перейдем теперь к доказательству.

Пусть $(\widetilde{\mathcal{C}}_n)_{n\geqslant 1}$ — компактное исчерпание $\widetilde{\mathcal{C}}$, $\widetilde{\mathcal{C}}_n=(\widehat{\mathcal{G}}_n$, $\widetilde{\mathcal{P}}_n$, $\widetilde{\mathcal{A}}_n|_{\widetilde{\mathcal{G}}_n})$. Тогда $(\mathcal{C}_n)_{n\geqslant 1}$ — компактное исчерпание $\widetilde{\mathcal{C}}$, где $\mathcal{C}_n = \mathcal{P}(\widetilde{\mathcal{C}}_n) = (\mathcal{Q}_n, \mathcal{P}_n, \mathcal{T}_n |_{\mathcal{Q}_n})$. В силу условия П) теоремы \mathcal{C}_n эквивалентна части δ_m , т.е. $\mathcal{E}_n \hookrightarrow \delta_m(m-as)$. Отсюда следует, что $\delta \in \mathcal{H}^{r}\{\delta_m\}$. Покажем, что $\delta \in \ker \{\delta_m\}$. Пусть $c \hookrightarrow \delta_m (m-as)$. Требуется доказать, что $c \hookrightarrow \delta$. Без ограничения общности можно считать, что $\mathscr C$ ограничена конечным числом аналитических кривых. Тогда существует конечное число односвязных римановых поверхностей \mathscr{C}_{i} , таких, что $\mathscr{C}=\mathscr{U}\mathscr{C}_{i}(\mathit{zelc})$. Так как \mathscr{C}_{i} односвязны, то по теореме о монодромии $\mathcal{E}_{i} \hookrightarrow \widetilde{\mathcal{E}}_{m}$ ($m-a_{1}$), и так как в силу условия I) теоремы $\widetilde{\mathcal{E}}_{m} \to \widetilde{\mathcal{E}}$, то $\mathcal{E}_{i} \hookrightarrow \widetilde{\mathcal{E}}$. Пусть $\widetilde{\mathcal{E}}_{m} = U\mathcal{E}_{i}$ ($zel\ \widetilde{\mathcal{E}}$) = $(\widetilde{\mathcal{Q}},\widetilde{\mathcal{P}},\widetilde{\mathcal{R}}/_{\widetilde{\mathcal{Q}}})$ \hookrightarrow $\widetilde{\mathcal{E}}$. Рассмотрим компактное исчерпание $(\mathcal{E}_{ni})_{n > 1}$ для \mathcal{E}_{i} . Тогда, как и выше, получаем, что $\widetilde{\mathcal{E}}_{n} = U\mathcal{E}_{ni}$ ($zel\ \widetilde{\mathcal{E}}$) — компактное исчерпание $\widetilde{\mathcal{E}}$. В силу условия I) теоремы, инъективности ρ_m на ℓ_{ni} и j_m внутри R_m риманова поверхность $\ell_n = \ell_{ni} \ell_{ni}$ (ref 6) = $\rho (\ell_{ni} \ell_{ni} \ell_{ni})$ эквивалентна $\rho_m \circ \hat{f}_m (\mathcal{U} \tau_{ni} (\tau \circ l \hat{\sigma})) = \rho_m (\mathcal{U} \tau_{ni} (\tau \circ l \hat{\sigma}_m)) = \mathcal{U} \tau_{ni} (\tau \circ l \hat{\sigma}_m) .$ $\mathcal{C}_n \subset \mathcal{O}_m(m-as)$, а так как $(\mathcal{C}_n)_{n \geq 1}$ — компактное исчерпание arphi , то и $\widetilde{\iota} \subset \mathscr{G}_{\mathfrak{m}}$. Итак, $\mathscr{G} \in \mathit{Kez} \{\mathscr{G}_{m}\}$. Аналогично для любой $\{\delta_{m_{\kappa}}\}$ имеем $\delta \in \mathit{Ker}\{\delta_{m_{\kappa}}\}$, т.е. $\delta_{m} \! \to \! \delta$. Доказательство теоре-

В) Доказательство для общего случая.

мы в случае А) закончено.

Отметим, что $\rho_m |_{R_m(\delta_m)} = \rho_m : \hat{\delta}_m \to \delta_m$ и $\rho |_{R(\delta)} = \hat{\rho} : \hat{\delta} \to \delta$ являются накрытиями δ_m и δ соответственно.

являются накритиями $\widehat{b_m}$ и \widehat{b} соответственно. Необходимость. Пусть $\widehat{b_m} \to \widehat{b}$. Тогда $\widehat{b_m} \to \widehat{b}$. Построим универсальные накрытия $\widehat{p}:\widehat{\delta} \to \widehat{b}, \widehat{p_m}:\widehat{\delta_m} \to \widehat{b_m}$ для $\widehat{\delta}$ и $\widehat{b}(m \ge 1)$ соответственно. Тогда $\widehat{\widetilde{p}} = \widehat{p} \circ \widehat{p}:\widehat{\delta} \to \widehat{b}$ и $\widehat{\widetilde{p}_m} = \widehat{p_m} \circ \widehat{b_m}$. $\widehat{b_m} \to \widehat{b_m}$ — накрытия \widehat{b} и $\widehat{b_m}$ ($m \ge 1$), которые в силу односвязности $\widehat{\delta}$ и $\widehat{\delta_m}$ являются универсальными для \widehat{b} и $\widehat{b_m}$:

В силу доказанного в п. А) (необходимость) имеем $\widehat{\widetilde{\mathcal{E}}}_m \to \widehat{\widetilde{\mathcal{E}}} = (\widehat{\widetilde{\mathcal{R}}},\widehat{\widetilde{\mathcal{P}}},\widehat{\mathcal{P}},\widehat{\widetilde{\mathcal{P}}},\widehat{\mathcal{P$ $\widehat{\widetilde{\mathcal{J}}}_m$) и $\widehat{\widetilde{\rho}}_m \circ \widehat{\widetilde{f}}_m$ сходятся равномерно внутри $\widehat{\widetilde{\mathcal{R}}}$ к $\widehat{\widetilde{\rho}}$, где $\widehat{\widetilde{f}}_m$ – канонические вложения, индуцированные сходимостью $\widehat{\widetilde{\delta}}_m \to \widehat{\widetilde{\delta}}$. Покажем, что $\widehat{p}_m \circ \widehat{j}_m$ сходятся к $\widetilde{
ho}$ внутри $\widehat{\mathcal{R}}$. Пусть $\widehat{\widetilde{\mathcal{T}}}$ = $=(\widetilde{\hat{Q}},\widetilde{\widetilde{P}},\widetilde{\widetilde{Z}}\mid_{\widetilde{\widetilde{Q}}})$ С \subseteq $\widetilde{\widehat{G}}$; без ограничения общности можно считать, ограничена аналитической кривой и односвязна. В силу леммы 5 из [I] существует подпоследовательность $m_{_{\!P}}$, такая, что все $\widehat{\widetilde{\rho}}_{m_k}\widehat{\widetilde{j}}_{m_k}\widehat{\widetilde{z}}$) = $\widehat{\widetilde{c}}_{m_k}$ эквивалентны некоторой фиксированной римановой поверхности $\widehat{\widetilde{c}}$. Покажем, что \widehat{c} эквивалентна $\widehat{\rho}$ ($\widehat{\widetilde{c}}$) $\widehat{\widetilde{z}}$ $\widehat{\widetilde{z}}$ этого достаточно установить, что для любых двух точек $\widetilde{\widetilde{T}}_{i}$, $\widetilde{\widetilde{T}}_{i} \in \widetilde{\widetilde{Q}}$ равенства $\widetilde{\widetilde{\rho}}_{m_{\kappa}} \circ \widetilde{\widetilde{j}}_{m_{\kappa}} (\widetilde{\widetilde{T}}_{i}) = \widetilde{\widetilde{\rho}}_{m_{\kappa}} \circ \widetilde{\widetilde{J}}_{m_{\kappa}} (\widetilde{\widetilde{J}}_{m_{\kappa}}) = \widetilde{\widetilde{J}}_{m_{\kappa}} \circ \widetilde{\widetilde{J}}_{m_{\kappa}} (\widetilde{J}_{m_{\kappa}}) = \widetilde{\widetilde{J}}_{m_{\kappa}} \circ \widetilde{J}_{m_{\kappa}} (\widetilde{J}_{m_{\kappa}}) = \widetilde{J}_{m$ $(\kappa$ - α 1). В силу того, что ρ_m $\widetilde{\delta}_m \to \delta_m$ — универсальное на-критие, первое равенство по теореме о монодромии имеет место тогда и только тогда, когда $\left[\widetilde{\widetilde{\rho}}_{m_k} \circ \widetilde{\widetilde{f}}_{m_k} (\widetilde{\widetilde{J}}_k)\right]_{R_{m_k}} = \left[\widetilde{\widetilde{\rho}}_{m_k} \circ \widetilde{\widetilde{f}}_{m_k} (\widetilde{\widetilde{J}}_k)\right]_{R_{m_k}}$ где $\widetilde{\widetilde{f}}_{L}$ и $\widetilde{\widetilde{f}}_{Z}$ — некоторые кривые в $\widetilde{\widetilde{Q}}_{L}$, соединяющие $\widetilde{\widetilde{D}}$ с T_{L} и T_{Z} соответственно. Так как $\widetilde{\widetilde{f}}_{m_{K}}$ $\circ \widetilde{\widetilde{f}}_{m_{K}}$ сходятся равномерно к $\widetilde{\widetilde{\mathcal{P}}}$ в $\widetilde{\widetilde{\mathcal{Q}}}$, то предыдущее соотношение эквивалентно $\left[j_{m_{\kappa}}\hat{\widetilde{\rho}}(\hat{\widetilde{\beta}}_{i})\right]_{\mathcal{R}_{m_{\kappa}}} = \left[j_{m_{\kappa}}\hat{\widetilde{\rho}}(\hat{\widetilde{\beta}}_{2})\right]_{\mathcal{R}_{m_{\kappa}}}$. Tak kak $\delta_{m} \rightarrow \delta$ с сохранением связности, то в силу лемми 2 это равносильно равенству $\left[\widetilde{\widetilde{\rho}}(\widetilde{\widetilde{\widetilde{J}}_{\ell}})\right]_{\mathcal{R}}=$ = $\left[\widetilde{\widetilde{\rho}}(\widetilde{\widetilde{J}_{\ell}})\right]_{\mathcal{R}}$. Так как $\rho:\widetilde{\delta}\to\delta$ — универсальное накритие, то последнее равенство по теореме о монодромии означает, что концы кривых $\widetilde{\widetilde{\rho}}(\widehat{\widetilde{\widetilde{\gamma}_{t}}})$ и $\widetilde{\widetilde{\rho}}(\widehat{\widetilde{\widetilde{\gamma}_{t}}})$, которые являются поднятиями кривых $\widetilde{\widetilde{\rho}}(\widehat{\widetilde{\widetilde{\gamma}_{t}}})$ и $\widetilde{\widetilde{\rho}}(\widehat{\widetilde{\widetilde{\gamma}_{t}}})$ на $\widetilde{\widetilde{\mathcal{R}}}$, совпадают, т.е. $\widetilde{\rho}(\widehat{\widetilde{\widetilde{\gamma}_{t}}}) = \widetilde{\rho}(\widehat{\widetilde{\widetilde{\gamma}_{t}}})$. Итак, мы показали, что из нашей последовательности можно выделить подпоследовательность m_{κ} , такую, что $\widetilde{\rho}_{m_{\kappa}} \circ \widetilde{j}_{m_{\kappa}}$ сходится к $\widetilde{
ho}$ внутри $\widehat{\widetilde{\mathcal{R}}}$. Так как это верно и для любой подпоследовательнос —

ти, то $\widetilde{\rho}_m$ о \widetilde{j}_m сходятся к $\widetilde{\rho}$ внутри $\widetilde{\mathcal{R}}$. Так как теорема 2 в случае А) нами уже установлена, то применяя ее утверждение к последовательности накрытий $\widetilde{\rho}_m:\widetilde{\delta}_m\to\widetilde{\delta}_m$, получаем, что $\widetilde{\delta}_m\to\widetilde{\delta}_m$, докажем, что $\widetilde{\rho}_m$ сходится к p внутри $\widetilde{\mathcal{R}}(\widetilde{\delta})$, где \widetilde{f}_m – канонические вложения индупированные сходимостыю $\widetilde{\delta}\to\widetilde{\delta}$. Пусть область $\widehat{Q} \subset \widehat{\mathcal{R}}(\widehat{\mathcal{C}}), P \in \widehat{Q}, \widehat{\mathcal{C}} = (\widehat{Q}, \widehat{\mathcal{P}}, \widehat{\mathcal{A}}|_{\widehat{\mathcal{O}}}) \subset \widehat{\mathcal{C}}$. Без ограничения общности можно считать, что $\widetilde{c}=\int\limits_{z=t}^{u}\widetilde{c}_{i}(ze\ell\widetilde{z})$, где все \widetilde{c}_{i} одно связны. По теореме о монодромии с учетом условия $\widetilde{z}_i \subset \mathcal{E}$ по – дучаем, что $\widetilde{c}_i \subset \hookrightarrow \widetilde{\widetilde{c}}$. Пусть $\widetilde{\widetilde{c}} = \overset{n}{U}\widetilde{c}_i (zel\widetilde{\widetilde{c}})$, тогда $\widetilde{\widetilde{c}} \subset \hookrightarrow \widetilde{\widetilde{c}}$. Tak kak $\hat{\tilde{\delta}}_m \rightarrow \hat{\tilde{\delta}}$, to $\hat{\tilde{c}} \hookrightarrow \hat{\tilde{\delta}}_m$ if $\hat{\tilde{\rho}}(\hat{\tilde{c}}) = \rho \circ \hat{\rho}(\hat{\tilde{c}}) = \rho(\hat{c})$ skbiba лентна $\rho_m \circ \hat{j}_m(\tilde{c}) = \rho_m \circ \hat{j}_m \circ \hat{j}_m(\tilde{c}) = \tilde{\rho}_m \circ \hat{j}_m(\tilde{c}) = \tilde{\rho}_m \circ \hat{j}_m(\tilde{c}) \pmod{m}$, т.е. $\rho_m \circ \hat{j}_m$ сходятся к ρ внутри \widetilde{R} . Осталось установить, что $\widetilde{G}_m \to \widetilde{G}$. Мн уже показали, что $\widetilde{G}_m \to \widetilde{G}$. Докажем сначала, что $\widetilde{G} \in G \{ G_m \}$. Пусть $j:K_n(\mathcal{J}_1,\delta) \subset \mathcal{L}(\widetilde{R},\widetilde{T},\widetilde{\mathcal{I}})$ — вложение n –листного одно– связного круга с единственной точкой ветвления над точкой \mathcal{Z}_1 $(\mathcal{R},\widetilde{\mathcal{I}})$, при котором точке ветвления соответствует точка $\widetilde{\mathcal{T}}$. Так как ho - накрывающее отображение, то радиус круга можно $\,$ счи тать настолько малым, что $\rho \circ j$ инъективно и $j = \rho \circ j$: $K_n(x_1, \delta) \in (R, T, \mathcal{R})$, где $T = \rho(\tilde{T})$. Имеем $\rho_m j_m \circ j(\{|\xi| = z\}) = j_m \rho \circ j(\{|\xi| =$ = \int_{m} ° $j(\{|\zeta|=z\})$, поэтому \int_{m} ° $j(\{|\zeta|=z\})$ является компонентой связности множества ρ_{m} ° j_{m} ° $j(\{|\zeta|=z\})$, 0 < z < 1 . Так как ℓ_{m} \rightarrow $\rightarrow 6$ регулярно, то $j_m \circ j(\{|c|=r\})$ разбивает \mathcal{R}_m на две части R_{m_1} и R_{m_2} , причем одна из них, скажем R_{m_1} , такова, что δ_{m_2} $=(R_{mi},\mathcal{F}_m|_{R_{mi}})$ — односвязный n —листный круг, причем $\mathcal{F}_m(R_{mi})$ содержит точку \mathcal{Z}_{1} . По теореме о монодромии любая компонента связности множества $\rho_{m} \circ j_{m} \circ j(\{|\mathcal{Z}|=z\})$, в частности, и $j_{m} \circ j_{m} \circ j_{$ $\circ \widehat{f}(\{|\zeta|=z\})$ разбивает $\widehat{\mathcal{R}}_m$ на две части $\widehat{\mathcal{R}}_{m_1}$ и $\widehat{\mathcal{R}}_{m_2}$, причем $(\widehat{R}_{m_1},\widehat{\mathcal{A}}_m\mid_{\widehat{R}_{m_1}})$ эквивалентна δ_{m_1} , т.е. является односвяз — ным n —листным кругом. Таким, образом, $\widehat{\delta}\in \mathcal{G}$ $\{\delta_m\}$ $\widetilde{\widetilde{c}}_m \to \widetilde{\widetilde{c}}$, to $\widetilde{\widetilde{c}} \in \ker\{\widetilde{\widetilde{c}}_m\}$. Kpome toro, $\widetilde{\widetilde{c}} \in \mathcal{M}\{\widetilde{\widetilde{c}}_m\}$. Shayut, $\widehat{\mathcal{H}}:\widehat{\mathcal{C}}\hookrightarrow\widehat{\mathcal{G}}$. Нам надо показать, что $\widehat{\mathcal{C}}\hookrightarrow\widehat{\mathcal{G}}$. Для этого надо установить, что если $j:K_n(\mathcal{E}_o,\mathcal{E})\hookrightarrow\widehat{\mathcal{C}}(\widehat{\mathcal{S}})$, то $\widehat{\mathcal{H}}\circ\widehat{j}(\{|\mathcal{C}|=z\})$ при

t < 1 разбивает $t \in \mathbb{R}$ на две части, одна из которых является односвязным кругом с центром в точке $t \in \mathbb{R}$. Пусть $t \in \mathbb{R}_m$ — канонические вложения, индушированные включением $t \in \mathbb{R}$ $t \in \mathbb{R}$. В силу того, что $t \in \mathbb{R}$ $t \in \mathbb{R}$, с использованием условия в) определения $t \in \mathbb{R}$ получаем, что $t \in \mathbb{R}$ подна из которых является односвязным $t \in \mathbb{R}$ и тогда $t \in \mathbb{R}$ по $t \in \mathbb{R}$ получаем, что $t \in \mathbb{R}$ получаем, что $t \in \mathbb{R}$ по $t \in \mathbb{R$

точно такие же рассуждения к любой подпоследовательности $\{\hat{G}_{m_k}\}$, нолучаем, что $\tilde{G} \in \text{Ket} \{\hat{G}_{m_k}\}$. Значит, $\tilde{G}_m \to \tilde{G}$. V Д о с т а т о ч н о с т ь. Если $\tilde{G}_m \to \tilde{G}$, то $\tilde{G}_m \to \tilde{G}$ и в силу доказанного в п.А) $\tilde{G}_m \to \tilde{G}$ и $\tilde{\rho}_m \circ \hat{j}_m \to \tilde{\rho}$ внутри \tilde{G} . Так как по условию $\rho_m \circ j_m \to \rho$ внутри \tilde{G} , то $\tilde{\rho}_m \circ j_m = \rho_m \circ \tilde{\rho}_m \circ j_m \to \rho$. Значит, использун опять п. А), получаем, что $\tilde{G}_m \to \tilde{G}$. Сходимость $\tilde{G}_m \to \tilde{G}$ в окрестности точек ветвления обосновывается аналогично тому, как это было сделано при доказательстве необходимости для общего случая В). Наконец, покажем, что $\tilde{G}_m \to \tilde{G}$ с сохранением связности. Пусть $\tilde{f}_m \to \tilde{G}$ замкнутая кривая в $\tilde{R}(\tilde{G})$, $\tilde{f}_m \neq \tilde{G}$, $\tilde{f}_m \to \tilde{G}$ поднятие f на $\tilde{f}_m \to \tilde{f}_m$. Тогда f не замкнута по теореме о монодромии. Значит, $f_m \to \tilde{f}_m$ также не замкнути $f_m \to \tilde{f}_m$ в силу инъективности f_m . Применяя снова теорему о монодромии, получаем, что $\tilde{f}_m \to \tilde{f}_m$ $\tilde{f}_m \to \tilde{f}_m$ $\tilde{f}_m \to \tilde{f}_m$. Теорема доказана.

Литература

І. Насиров С. Р. Бикомпактность пространств риманових поверхностей в топологии, индуцированной сходимостью к ядру // Тр.семин. по краев. задачам. Казань, 1990. — Вип. 24.

- 2. Насыров С. Р. Топологическое пространство римановых поверхностей над сферой, связанное со сходимостью к ядру // ДАН УССР. Сер. А. Физ.—мат. и техн. науки. 1988.— № 5.— С.19—22.
- 3. Кроуэлл Р., Фокс Р. Введение в теорию узлов.— М.: Мир. 1967. — 348 с.
- 4. Масси У., Столлингс Дж. Алгебраическая топология. Введение. М.: Мир. 1977. 343 с.
- 5. Спеньер Э. Алгебраическая топология. М.: Мир, 1971. 680 с.
- 6. Спрингер Дж. Введение в теорию римановых поверхностей. - М.: ИЛ, 1960. - 343 с.

Р.Б.Салимов. Е.В.Стрежнева

К РЕШЕНИЮ ОБРАТНОЙ СМЕШАННОЙ КРАЕВОЙ ЗАЛАЧИ

I. Пусть $\mathcal{Q}_{\mathcal{Z}}$ — односвязная конечная область, расположен — ная в плоскости комплексного переменного $\mathcal{Z}=x+\iota_{\mathcal{Y}}$ и ограниченная кривой $\mathcal{Z}_{\mathcal{Z}}$, состоящей из двух жордановых линий — ломаной $\mathcal{Z}_{\mathcal{Z}}^{1}$, содержащей $\mathcal{Z}_{\mathcal{Z}}$ прямолинейных звеньев, и кривой $\mathcal{Z}_{\mathcal{Z}}^{2}$, соединяющей конци $\mathcal{A}_{\mathcal{Z}}$, ломаной $\mathcal{Z}_{\mathcal{Z}}^{2}$.

Пусть $w = w(\mathscr{Z})$ — функция, аналитическая в области $\mathscr{Q}_{\mathfrak{Z}}$ и отображающая конформно область $\mathscr{Q}_{\mathfrak{Z}}$ на однолистную область $\mathscr{Q}_{\mathfrak{W}}$, расположенную внутри кривой $\mathscr{L}_{\mathfrak{W}}$ в плоскости переменного $w = \mathscr{G} + \iota \mathscr{L}$; обозначим через $\mathscr{L}_{\mathfrak{W}}^{\mathfrak{L}}$ и $\mathscr{L}_{\mathfrak{W}}^{\mathfrak{L}}$ части $\mathscr{L}_{\mathfrak{W}}$, отвечающие соответственно $\mathscr{L}_{\mathfrak{Z}}^{\mathfrak{L}}$ и $\mathscr{L}_{\mathfrak{Z}}^{\mathfrak{L}}$ при указанном отображении.

Рассмотрим решение следующей задачи, называемой обратной смешанной краевой задачей. Дана часть кривой $\mathcal{Z}_{\mathcal{Z}}$ в виде лома — ной $\mathcal{Z}_{\mathcal{Z}}$, остальная часть $\mathcal{Z}_{\mathcal{Z}}$ неизвестна. На $\mathcal{Z}_{\mathcal{Z}}$ заданы зна — чения функции $W = W(\mathcal{Z})$ в виде

$$W = \varphi(x) + i \varphi(x) \quad , \tag{I}$$

где \mathcal{X} — абсимсса точки $\mathcal{Z}_{\mathcal{Z}}^2$. Задана кривая $\mathcal{Z}_{\mathcal{W}}^1$, которая вместе с кривой $\mathcal{Z}_{\mathcal{W}}^2$, определяемой уравнением (I), образует замкнутую жорданову кривую $\mathcal{Z}_{\mathcal{W}}$, причем положительному направ — лению обхода на $\mathcal{Z}_{\mathcal{Z}}$, при котором область $\mathcal{Q}_{\mathcal{Z}}$ остается слева,