

Programación III Práctica Calificada 2 Pregrado 2023-0

Profesor: José A. Chávez Álvarez

Lab 1.01

Indicaciones específicas:

- Esta evaluación contiene 9 páginas (incluyendo esta página) con 4 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - − p1.cpp
 - − p2.cpp
 - − p3.cpp
 - p4.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	5	
2	5	
3	5	
4	5	
Total:	20	

En Criptografía, el Cifrado por Desplazamiento permite esconder un mensaje utilizando la siguiente función:

$$c = F(x) = (ax + b)\%26,$$

donde x es una letra representada por un número entero entre 0 y 25, 0 para la letra A y 25 para Z (sin usar la $\tilde{\mathbf{N}}$). Note que la función F tiene los parámetros a y b, los cuales deben ser asignados al crear la función. Dicho esto:

- Implemente un Functor para cifrar, con a = 5 y b = 6, la frase PROGRAMACION.
- Luego implemente otro Functor para descifrar, con a=21 y b=4, la frase PYJGOCTVYATQOGSOGS.

El ejercicio debe ser validado con el siguiente bloque de código:

```
int main(){
    Cipher F(5,6); // Functor para cifrar, a=5 y b=6
    cout << F('Y') << endl; // Resultado: W

Cipher H(21,4); // Functor para descifrar, a=21 y b=4
    cout << H(F('Y')) << endl; // Resultado: Y

string s = "PROGRAMACION";
    cout << "Cifrando...PROGRAMACION" << endl;
    // Imprima el cifrado de 's'

string u = "PYJGOCTVYATQOGSOGS";
    cout << "Descifrando...PYJGOCTVYATQOGSOGS" << endl;
    // Imprima el descifrado de 'u'
}</pre>
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Librería Es-	Selección del	Selección del	Selección del	No se selección
tandar	contenedor de	contenedor	contenedor	ni el contene-
	acuerdo con lo	correcto, estruc-	correcto, estruc-	dor ni se de-
	solicitado, uso	turas genéricas	turas genéricas	sarrolló algorit-
	adecuado de	basados en	basados en	mos y estruc-
	los iteradores,	contenedores.	contenedores,	turas genéricas.
	estructuras	(4pts)	errores en el	(1pts)
	genéricas basa-		funcionamiento	
	dos en contene-		pasa algunas	
	dores. (5pts)		pruebas. (2pts).	

Para el siguiente ejercicio:

- ¿Que proceso realiza la función foo en el vector V?, mencione su hipótesis a modo de comentario.
- Encuentre un Invariante de Bucle que lo ayude a demostrar su hipótesis. Imprima en cada iteración el Invariante de Bucle para su validación.
- ¿Que sucede al terminar el bucle?, demuestre su hipótesis utilizando el Invariante de Bucle.
- Encuentre la complejidad algorítmica de foo.

A continuación se muestra la función foo:

```
template < typename T >
void foo(vector < T > & V) {
   int n = V.size();
   int i = (n - 1) / 2;
   int j = n / 2;
   T tmp;
   while (i >= 0 && j <= (n-1)) {
      tmp = V[i];
      V[i] = V[j];
      V[j] = tmp;
      i--;
      j++;
   }
}</pre>
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Complejidad Al-	Buen nivel de	Buen nivel de	Programa no	Se intento pero
gorítmica	abstracción, el	abstracción,	funciona ade-	no se logró que
	problema logro	el problema	cuadamente,	funcione lo solic-
	realizar con la	logro realizar	bajo nivel de	itado. (1pts)
	complejidad al-	lo solicitado sin	abstracción,	
	gorítmica solic-	lograr alcanzar	más de 3 er-	
	itado, funciona	la complejidad	rores, nivel de	
	correctamente	algorítmica	complejidad	
	y sin errores.	solicitado,	algorítmica in-	
	(5pts)	funciona correc-	correcta. (2pts)	
		tamente y sin		
		errores. (4pts)		

El propósito del siguiente programa es adaptar el método draw de la clase Linea a una que el usuario pueda utilizar directamente (draw_figure). Completar el siguiente bloque de código:

```
struct Point {
    // Completar
};
void draw_figure(Point &p) {
    // Completar
}
struct Line {
    Point _inicio;
    Point _final;
    Line(int x1, int y1, int x2, int y2){
         _{inicio.x} = x1;
        _{inicio.y} = y1;
        _{final.x} = x2;
        _final.y = y2;
    }
    void draw(){
        cout <<"Linea:⊔";
         cout << _inicio;</pre>
        cout << "----";
        cout << _final;</pre>
        cout << endl;</pre>
    }
};
int main() {
    Line obj1(2,2,5,6);
    LineAdapter adapter(obj1);
    draw_figure(adapter);
    // Resultado:
    // Linea: P(2,2)----P(5,6)
    return 0;
}
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Diseño de Pa-	Selección ade-	Selección de un	Selección de un	Selección de
trones	cuada de los	patrón que per-	patrón que per-	un patrón pero
	patrones que	mite la solución	mite la solucion	no se justificó
	permiten la	de alguno de	de alguno de	y descripción
	solución de	los problemas	los problemas	incorrecta del
	algún problema	de diseño con	de diseño pero	diagrama de
	de diseño con	una justificación	no se tiene una	clases, (1pts)
	una adecuada	y descripción	justificación	
	justificación y	a través de un	y descripción	
	descripción a	diagrama de	inadecuada del	
	través de un	clases. (4pts)	diagrama de	
	diagrama de		clases. (2pts).	
	clases. (5pts)			

El siguiente programa calcula, de forma secuencial, la media y desviación estándar de una secuencia de números enteros. Utilizando programación concurrente acelere el cálculo de estos dos valores, para ello:

- Genere un vector de 10 millones de números.
- Utilice la librería chrono para medir los tiempos.
- Compare su tiempo con el del programa original e indique con cuantos threads obtiene el tiempo más corto.

```
void random_ints(vector<int>& v, int N){
    for(int i=0; i<N; i++)
        v.push_back(rand() % 200 - 100);
}
template < typename T>
void info(vector<T> V, double& mean, double& std){
    for(const T& item: V)
        mean += item;
    mean = mean / V.size();
    for(const T& item: V)
        std += pow(item - mean, 2);
    std = std / V.size();
    std = sqrt(std);
}
int main(){
    vector<int> vec;
    random_ints(vec, 10000000);
    double mean = 0.;
    double std = 0.;
    info(vec, mean, std);
    cout << "Media: □" << mean << endl;
    cout << "Desviacion_Estandar:_" << std << endl;
}
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Programación	Buen nivel de	Buen nivel de	Programa no	Contiene errores
Concurrente	abstracción,	abstracción, el	funciona, bajo	que no hace que
	el problema	problema no se	nivel de ab-	funcione el pro-
	se desarrolla	utiliza la can-	stracción, más	grama. (1pts)
	utilizando la	tidad de hilos	de 3 errores	
	cantidad de	solicitados, no	visibles , no se	
	hilos solicitados,	se controla los	usa los hilos	
	se controla ade-	race condition	adecuadamente	
	cuadamente los	adecuadamente,	ni un control de	
	race condition,	funciona correc-	race condition.	
	funciona correc-	tamente y sin	(2pts)	
	tamente y sin	errores. (4pts)		
	errores. (5pts)			