Asynchronous Methods for Deep Reinforcement Learning

Deep Learning Paper Review

한양대학교 AILAB 김 건

Introduction

- 自 Ir
 - Introduction
- Related Work
- Model 🗠
- Experiments
- Conclusion

- Asynchronous Methods for Deep Reinforcement Learning
- ICML 2016에서 발표된 논문
- DQN을 개선한 논문
- Asynchronous(비동기) Methods를 4가지 강화학습 방법들에 적용시킴
- 결과적으로 Asynchronous Advantage Actor-Critic RL(A3C)을
 제안
- 1 Machine에 Multi Thread로 구현
- A3C 알고리즘은 여러 환경에서 기존 기법들과 비교하여 더 적은 Computation Resource 로 (16cpu without gpu) 더 우수한 결과를 (여러 게임에서 outperform) 수십 배까지 빠른 속도로 학습함
- https://www.youtube.com/watch?v=gINks-YCTBs 좋은 수식 설명

Related Work & Background

Introduction

Related Work

Model

Experiments

Conclusion

- Background
 - Reinforcement Learning
 - Policy & Value Function
 - Q-learning

- Related Work
 - DQN

Reinforcement Learning

Introduction

Related Work

Model

Experiments

Conclusion

- 강화 학습?
 - 어떤 환경(Environment) 안에서 정의된 에이전트(Actor)가 현재의 상태(State)를 인식하여, 선택 가능한 행동들(Actions) 중 보상(Reward)을 최대화 하는 행동 혹은 행동순서를 선택(Policy)하는 방법이다. (Wikipedia)

• 정답은 모르지만, 자신이 한 행동에 대한 보상을 통해 학습

Policy & Value Function

Introduction

Related Work

Model

Experiments

Conclusion

- Policy π(s)
 - 어떤 state에서 어떤 action을 할 것인가
 - Optimal Policy (보상을 최대하 하는 Policy) 를 찾는 것이 강화 학습의 목적
- State-value function
 - 어떤 Policy를 진행하였을 때 어떤 상태 S의 가치
- Action-value function
 - 어떤 상태 s에서 action a를 할 때의 보상
- 위의 value function들을 이용하여 policy를 improve한다.

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

Definition

The action-value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

Introduction

Related Work

Model

Experiments

Conclusion

Q-function(action value function)

Q (state, action) = r

state와 action을 넣어주면 reward 값을 주는 함수

Q-learning

Introduction

Related Work

Model

Experiments

Conclusion

Exploration, Discounted future reward 두 개념을 적용하여 Q function을 학습

```
Initialize Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]
S \leftarrow S';
until S is terminal
```


Related Work

- DQN (<u>2013</u>, <u>2015</u>) Deep Q Network
 - CNN을 활용하여 pixel data 자체를 학습 가능 (한 agent 여러 게임 적용)
 - Experience replay memory 를 활용하여 input들 간의 correlation으로 인해 발생하는 문제를 해결 (학습의 비효율성, policy 고정)
 - Target network를 분리하여 target의 불안정성을 해결함

- | Introduction
- Related Work
- Model
- Experiments
- Conclusion

Asynchronous Methods for Deep Reinforcement Learning

Introduction

Related Work

Model

Experiments

Conclusion

- DQN의 단점
 - 1. 많은 메모리의 사용
 - 2. 느린 학습 속도
 - 3. 불안정한 학습 과정 (value-based greedy policy)

Asynchronous Advantage Actor-Critic (A3C) RL 으로 모든
 문제를 해결함

Asynchronous Methods

- Introduction
- Related Work
- Model
- Experiments
- Conclusion

- 여러 개의 에이전트를 만들어서 각각 gradient 를 계산
- 비동기적으로 global network를 업데이트 한다.

Asynchronous Methods

- Introduction
- Related Work
- Model
- Experiments
- Conclusion

- 각 agent가 다른 policy를 가지고 탐험을 하기에 replay memory를 사용할 필요가 없어짐 (각 agent가 서로 다른 exploration policy 가짐)
- Monte Carlo -> TD 사용 가능
- Monte Carlo Method
 - 한 Episode 마다 학습을 진행하는 방법
- Temporal Difference
 - Time step 마다 학습을 진행하는 방법

Actor - Critic

Introduction

Related Work

Model

Experiments

Conclusion

- Actor-Critic = 실시간 학습 + Policy Gradient
- Policy-Based RL
 - Policy 자체를 학습하는 방식
 - 경로 동안 받을 것이라고 기대하는 보상의 합
 - 기존 Value-Based RL은 Value function을 학습하고 거기에 Policy를 맞췄다.

Actor – Critic & Advantage

Introduction

Related Work

Model

Experiments

Conclusion

- Critic
 - Value function을 근사하여 현재 상태를 Evaluation
- Actor (agent) 행동을 함
 - Critic이 제안하는 방향으로 정책을 근사
 - Policy π(s)
 - 어떤 state에서 어떤 action을 할 것인가
 - Optimal Policy (보상을 최대하 하는 Policy) 를 찾는 것이 강화 학습의 목적

Advantage function

- State-value function
 어떤 Policy를 진행하였을 때 어떤 상태 S의 가치
- Actor-Critic 기법에 Advantage가 포함되 있다고 생각하면 됨
- 예상치보다 실제로 더 나온 값. Loss에서 사용
- Critic 으로 Actor를 평가한다.

Asynchronous Methods for Deep Reinforcement Learning

Introduction

Related Work

Model

Experiments

Conclusion

- Actor-Critic Network를 여러 Thread에 생성하여 비동기적으로 학습을 함.
- DQN의 단점
 - 1. 많은 메모리의 사용
 - 2. 느린 학습 속도
 - 3. 불안정한 학습 과정 (value-based greedy policy)
- 1,2번 문제를 Asynchronous Methods를 통하여 해결
- 3번 문제를 Actor-Critic 기법을 적용하여 해결

Experiments

Introduction

Related Work

Model

Experiments

Conclusion

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary Table SS3 shows the raw scores for all games.

.1	Number of threads.				
Method∉	1 ₽	2 ↔	4 ₽	8 ₽	164
1-step Q₽	1.0₽	3.0₽	6.3₽	13.3₽	24.14
1-step SARSA ₽	1.0₽	2.8₽	5.9 ₽	13.1₽	22.1
n-step Q∉	1.0₽	2.7₽	5.9 ₽	10.7₽	17.2
A3C₽	1.0 ↔	2.1₽	3.7₽	6.9₽	12.54

일정 점수에 도달하기 위한 학습 속도 1-step 방법이 더 많은 actor를 사용할 때 특정 점수를 얻기 위해 더 적은 데이터가 필요함을 관찰함.

1-step method의 bias를 줄이는데 multithread 방식이 아주 효과적이라서 그런 거 같다고 함

- 당연한 얘기지만, 다른 모델보다 성능이 잘 나온다고 함
- TORCS Car Racing Simulator
- MuJoCo Physics Simulator
- <u>Labyrinth</u>

Conclusion

Introduction

Related Work

Model

Experiments

Conclusion

Conclusion

• 기존 4개의 대표적인 강화 학습 알고리즘의 비동기 버전을 제시

• Value-based, policy-based, on & off policy methods 들을 사용한 다양한 도메인에서 안정적이고 효율적인 방식으로 학습이 가능함

• Experience replay도 통합하면 데이터 효율성을 향상시킬 수 있음

• 여러 강화 학습 기법들을 통합할 수 있을 거다.

Thank you