0.1 复正规算子

定义 0.1 (正规算子和正规矩阵)

设 φ 是内积空间V上的线性变换, φ * 是其伴随, 若 $\varphi \varphi$ * = φ * φ , 则称 φ 是V 上的**正规算子**.

为了不引起混淆, 我们也称酉空间 (欧氏空间) V 上的正规算子 φ 为**复正规算子** (实正规算子).

复矩阵 A 若适合 $\overline{A}'A = A\overline{A}'$, 则称其为**复正规矩阵**.

实矩阵 A 若适合 A'A = AA', 则称其为**实正规矩阵**.

命题 0.1

- 1. 酉算子 (酉矩阵) 和 Hermite 算子 (Hermite 矩阵) 都是复正规算子 (矩阵).
- 2. 正交变换(正交矩阵)和对称变换(实对称矩阵)都是实正规算子(矩阵).

证明 证明都是显然的.

定理 0.1

酉空间 (欧氏空间) V 上的线性变换 φ 是复 (实) 正规算子的充分必要条件是 φ 在 V 的某一组或任一组标准 正交基下的表示矩阵都是复 (实) 正规矩阵. 因此, 复 (实) 矩阵的正规性在酉 (正交) 相似下是不变的.

证明 证明都是显然的.

引理 0.1

设 φ 是内积空间V上的正规算子,则对任意的 $\alpha \in V$,成立

 $\|\varphi(\alpha)\| = \|\varphi^*(\alpha)\|.$

证明 由 φ 的正规性,有

$$\|\varphi(\alpha)\|^2 = (\varphi(\alpha), \varphi(\alpha)) = (\alpha, \varphi^*\varphi(\alpha))$$
$$= (\alpha, \varphi\varphi^*(\alpha)) = (\varphi^*(\alpha), \varphi^*(\alpha))$$
$$= \|\varphi^*(\alpha)\|^2.$$

命题 0.2

设V是n维酉空间, φ 是V上的正规算子.

- (1) 向量 $u \neq \varphi$ 属于特征值 λ 的特征向量的充分必要条件为 $u \neq \varphi^*$ 属于特征值 $\overline{\lambda}$ 的特征向量;
- (2) 属于 φ 不同特征值的特征向量必正交.

证明

(1) 若 λ 是任一数,则 $(\lambda I - \varphi)^* = \overline{\lambda} I - \varphi^*$,且

$$(\lambda I - \varphi)(\overline{\lambda}I - \varphi^*) = (\overline{\lambda}I - \varphi^*)(\lambda I - \varphi),$$

即 $\lambda I - \varphi$ 也是正规算子. 于是由引理 0.1,

$$\|(\lambda I - \varphi)(\alpha)\| = \|(\overline{\lambda}I - \varphi^*)(\alpha)\|$$

对一切 $\alpha \in V$ 成立, 故 $(\lambda I - \varphi)(u) = 0$ 当且仅当 $(\overline{\lambda}I - \varphi^*)(u) = 0$ 成立.

(2) 设 $\varphi(u) = \lambda u, \varphi(v) = \mu v$ 且 $\lambda \neq \mu$, 则由 (1) 知 $\varphi^*(v) = \overline{\mu}v$, 于是

$$\lambda(u,v) = (\lambda u, v) = (\varphi(u), v) = (u, \varphi^*(v)) = (u, \overline{\mu}v) = \mu(u, v).$$

因为 $\lambda \neq \mu$,故(u,v) = 0.

引理 0.2

设 V 是 n 维酉空间, φ 是 V 上的线性变换, Q $\{e_1,e_2,\cdots,e_n\}$ 是 V 的一组标准正交基. 设 φ 在这组基下的表示矩阵 A 是一个上三角阵, 则 φ 是正规算子的充分必要条件是 A 为对角阵.

证明 若 A 是对角阵,则 $A\overline{A}' = \overline{A}'A$,故 $\varphi \varphi^* = \varphi^* \varphi$,即 φ 是正规算子. 反之,设 φ 是正规算子. 由于 A 是上三角阵,可记 $A = (a_{ij}), a_{ij} = 0 (i > j)$. 于是 $\varphi(e_1) = a_{11}e_1$,再由上面的命题可知 $\varphi^*(e_1) = \overline{a}_{11}e_1$. 另一方面,有

$$\varphi^*(e_1) = \overline{a}_{11}e_1 + \overline{a}_{12}e_2 + \cdots + \overline{a}_{1n}e_n.$$

因此 $a_{1j} = 0$ 对一切 j > 1 成立. 又因为 A 是上三角阵, 所以

$$\varphi(e_2) = a_{22}e_2$$
,

故又有 $\varphi^*(e_2) = \overline{a}_{22}e_2$ 及 $a_{2j} = 0(j > 2)$. 不断这样做下去即得 A 是对角阵.

定理 0.2 (Schur(舒尔) 定理)

设V 是n 维酉空间, φ 是V 上的线性算子,则存在V 的一组标准正交基,使 φ 在这组基下的表示矩阵为上三角阵.

证明 对 V 的维数 n 用数学归纳法. 当 n=1 时结论显然成立. 设对 n-1 维酉空间结论成立, 现证 n 维酉空间的情形. 由于 V 是复线性空间, 故 φ^* 总存在特征值与特征向量, 即有

$$\varphi^*(e) = \lambda e$$
.

设 W 是由 e 张成的一维子空间的正交补空间, 由命题??知 W 是 $(\varphi^*)^* = \varphi$ 的不变子空间, 将 φ 限制在 W 上得到 W 上的一个线性变换. 注意到 $\dim W = n-1$, 故由归纳假设, 存在 W 的一组标准正交基 $\{e_1, e_2, \cdots, e_{n-1}\}$, 使 $\varphi|_W$ 在这组基下的表示矩阵为上三角阵. 令 $e_n = \frac{e}{\|e\|}$, 则 $\{e_1, e_2, \cdots, e_n\}$ 成为 V 的一组标准正交基, 使 φ 在这组基下的表示矩阵为上三角阵.

推论 0.1 (Schur 定理)

任一n 阶复矩阵均酉相似于一个上三角阵. 即若A 是n 阶复矩阵, 则存在n 阶酉矩阵 U, 使得 $U^{-1}AU$ 是上三角矩阵.

证明 证法一: 由定理 0.2立得.

证法二: 由命题??可知, 存在可逆矩阵 P, 使得 $P^{-1}AP = M$ 是上三角矩阵. 又由矩阵的 QR 分解可知, 存在酉矩阵 U 和上三角矩阵 R, 使得 P = UR, 于是

$$A = PMP^{-1} = (UR)M(UR)^{-1} = U(RMR^{-1})U^{-1}.$$

因为上三角矩阵的逆阵是上三角矩阵,上三角矩阵的乘积是上三角矩阵,故 RMR^{-1} 仍是上三角矩阵,从而 $U^{-1}AU = RMR^{-1}$ 是上三角矩阵.

定理 0.3

设V 是n 维酉空间, φ 是V 上的线性算子, 则 φ 为正规算子的充分必要条件是存在V 的一组标准正交基, 使 φ 在这组基下的表示矩阵是对角阵. 特别, 这组基恰为 φ 的 n 个线性无关的特征向量.

证明 利用引理 0.2和Schur 定理, 我们立即得到证明.

定理 0.4

复矩阵 A 为复正规矩阵的充分必要条件是 A 酉相似于对角阵.

证明 利用引理 0.2和Schur 定理, 我们立即得到证明.

定理 0.5

复正规矩阵的特征值就是复正规矩阵在酉相似关系下的全系不变量,即两个复正规矩阵酉相似的充分必要条件是它们具有相同的特征值.

证明

命题 0.3

设 φ 是n维酉空间V上的线性算子, λ_1 , λ_2 , \cdots , λ_k 是 φ 的全体不同特征值, V_1 , V_2 , \cdots , V_k 是对应的特征子空间,则 φ 是正规算子的充分必要条件是

$$V = V_1 \perp V_2 \perp \dots \perp V_k. \tag{1}$$

证明 设 φ 是正规算子,则它是一个可对角化线性变换,因此

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$$
.

又从命题??知道, 若 $i \neq j$, 则 $V_i \perp V_j$, 所以(1)式成立.

反之, 若(1)式成立, 则在每个 V_i 中取一组标准正交基, 将这些基向量组成 V 的一组标准正交基. 因为每个 V_i 都是 φ 的特征子空间, 即 $\varphi(\alpha) = \lambda_i \alpha$ 对一切 $\alpha \in V_i$ 成立, 故 φ 在这组基下的表示矩阵是对角阵, 因此 φ 是正规算子.

定理 0.6

任一 n 阶酉矩阵必酉相似于下列对角阵:

$$\operatorname{diag}\{c_1,c_2,\cdots,c_n\},\$$

其中 c_i 为模长等于1的复数.

证明 由命题 0.1及定理 0.4知酉矩阵酉相似于 $\mathrm{diag}\{c_1,c_2,\cdots,c_n\}$. 由于与酉矩阵酉相似的矩阵仍是酉矩阵, 故 $\mathrm{diag}\{c_1,c_2,\cdots,c_n\}$ 是酉矩阵, 因此 $|c_i|=1$.