

Revision Series and Parallel Resistances

- Voltage, V: energy/charge, (V) • Current, I: charge/second, (C/s) \bullet Charge measured in Coulombs (C) -1C = charge on 6.241509×10^{18}
- $\bullet \ \, \hbox{Ohm's Law:} \,\, v=iR$ • Power: $P = vi = i^2 R = V^2 / R$ (W or J/s) • Series Resistance: $R_{\rm S} = \sum_i R_i \; (R_{\rm S} > R_i)$ • Parallel Resistance: $\frac{1}{R_{\rm P}} = \sum_i \frac{1}{R_i} \left(R_{\rm P} < R_i \right)$ • Two parallel resistances: $R_{\mathsf{P}} = \frac{R_1 R_2}{R_1 + R_2}$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$\oint_C \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{d\Phi}{dt}$	Faraday's Law
$\oint_C \mathbf{H} \cdot d\mathbf{\ell} = I + \int \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}$	Ampère's Law
$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	Gauss' Law
$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$	No magnetic monopole

Motivation 0 Revision 0 Kirchhoff Mesh 0 Nodal 0 Cramer 0 Sources 0 Thevenin 0 Noton 0 Loading 0

Kirchhoff's Current Law

- \bullet Current Law (KCL): \sum currents in $=\sum$ currents out
- \bullet OR (if we label all currents as inwards or outwards) \sum currents =0

Kirchhoff's Voltage Law

 \bullet Voltage Law (KVL): \sum voltages in a loop =0

 $-\Delta v_1 - \Delta v_3 + \Delta v_0 = 0$

Motivation Revision Revision Revision Mesh Nodal Cramer Sources Thevenin Norton Loading Superposition

Motivation of Source S

Kirchhoff's Laws

- Why do Kirchhoff's Laws help us to find currents in a circuit?
- ullet For m currents & n junctions:
 - $\bullet \ \ \mathsf{KVL} \ \mathsf{produces} \ m-n+1 \ \mathsf{independent} \ \mathsf{equations}$
 - ullet KCL produces n-1 independent equations
- ullet Total m equations for m unknown currents
- In practice we always need far fewer than this

- Loop traversing a resistor:
 - \bullet In same direction as current: $\Delta v = -iR$
 - \bullet In opposite direction to current: $\Delta v = +iR$

- KVL Polarity: Voltage Source
 - Loop traversing a voltage source:
 - \bullet from -ve to +ve: $\Delta v>0$
 - \bullet from +ve to -ve: $\Delta v < 0$

- ullet If the solved i is -ve, the actual current is in the opposite direction to the initial arrow
- \bullet If the solved v is -ve, the actual voltage is in the opposite direction to the initial arrow

KVL+KCL Example: Find i_1 , i_2 & i_3

KVL+KCL Example 2

- Find the currents in each of the three resistors
- Find the power delivered by each source and dissipated by each resistor

KVL+KCL Example 3

- $\bullet \ n=2 \ {\rm junctions} \colon \ n-1 \ {\rm eqns}$
- \bullet m=3 currents, m-n+1 eqns

A better way...

- Using KCL & KVL to find currents:
- 6 equations, 6 unknowns

4 junctions give 3 equations: $i_1=i_3+i_4$

 $i_1 = i_3 + i_4$ $i_2 + i_3 = i_5$

 $i = i_4 + i_5 = i_1 + i_2$

Loops give 3 equations: lower: $V-i_2R_2-i_5R_5=0$

lower: $V - i_2R_2 - i_5R_5 = 0$ left: $-i_1R_1 - i_3R_3 + i_2R_2 = 0$ right: $i_3R_3 - i_4R_4 + i_5R_6 = 0$

Mesh Analysis (I)

- Assign 1 current/loop
- Apply KVL around each loop, taking into account all currents

Mesh Analysis (II)

- 3 equations in 3 unknowns
- Junction equations (KCL) are "hidden"
- Actual current is sum of nominal currents, e.g., i in R_2 is $i_1 i_2$.

Mesh Analysis (III) • Lower loop: $V - R_2(i_1 - i_2) - R_5(i_1 - i_3) = 0$ • LH loop: $-R_1(i_1 - i_2) - R_2(i_2 - i_1) = 0$ • RH loop: $-R_1(i_2 - R_3(i_2 - i_3) - R_2(i_2 - i_1) = 0$ • $-R_1(i_2 - R_3(i_2 - i_3) - R_2(i_2 - i_1) = 0$ • $-R_1(i_2 - i_2) - R_1(i_2 - R_3(i_2 - i_3) - R_2(i_2 - i_1) = 0$ • $-R_1(i_3 - i_2) - R_1(i_3 - i_2) - R_1(i_3 - i_1) = 0$ • $-R_1(i_3 - i_2) - R_1(i_3 - i_2) - R_2(i_3 - i_1) = 0$ • $-R_1(i_3 - i_2) - R_2(i_3 - i_3) - R_2(i_3 - i_1) = 0$

Motivation Revision Revision | R

F: 1::1 1.40 ::

• Find i through 4Ω resistor $\begin{array}{c} 5\Omega \\ \hline \\ i_2 \\ \hline \\ i_1 \\ \hline \\ 5 V \\ \end{array}$

 $i_3-i_2=0.726-0.565=0.161\,\mathrm{A}$ in the direction of i_3 (upwards)

Nodal Analysis

- Assign a reference node
- Use KCL at each subsequent node where the voltage is unknown
- Form and solve equations for voltages

Nodal Analysis Example (I)

• KCL @ V₁

$$\frac{V - v_1}{R_1} + \frac{v_2 - v_1}{R_3} + \frac{-v_1}{R_4} = 0$$

• KCL @ V2:

$$\frac{V - v_2}{R_2} + \frac{v_1 - v_2}{R_3} + \frac{-v_2}{R_5} = 0$$

Mesh Analysis Example (II)

$$R_1 = R_5 = 2 \Omega, R_2 = R_4 = 4 \Omega, R_3 = 3 \Omega, V = 5 V$$

$$\frac{5-v_1}{2} + \frac{v_2-v_1}{3} + \frac{-v_1}{4} = 0$$

$$\frac{5 - v_2}{4} + \frac{v_1 - v_2}{3} + \frac{-v_2}{2} = 0$$

$$\left[\begin{array}{ccc} \frac{-1}{2} + \frac{-1}{3} + \frac{-1}{4} & \frac{1}{3} \\ \frac{1}{3} & \frac{-1}{2} + \frac{-1}{3} + \frac{-1}{4} \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = \left[\begin{array}{c} -\frac{5}{2} \\ -\frac{5}{4} \end{array}\right]$$

Nodal Analysis Example (III)

Solving matrix equations

$$\left[\begin{array}{cc} -13 & 4 \\ 4 & -13 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] \left[\begin{array}{c} -30 \\ -15 \end{array}\right]$$

- 2 Eqns. in 2 unknowns
- Solve by substitution, computer, or Cramer's Rule

- In Mesh / Nodal Analysis, often have to solve Ax = b, where
 - $\bullet \ \, A \ \, \text{is an} \,\, n \times n \,\, \text{matrix of coefficients}$
 - ullet x is a vector of unknown variables, e.g., i_1,\ldots,i_3 or v_1,v_2
 - b is a vector of known voltages or currents

Matrix Equations

$$\left[\begin{array}{cc} -13 & 4 \\ 4 & -13 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] \left[\begin{array}{c} -30 \\ -15 \end{array}\right]$$

$$\begin{bmatrix} -8 & 3 & 5 \\ 3 & -12 & 4 \\ 5 & 4 & -12 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \end{bmatrix}$$

$$Ax = b$$

Cramer's Rule Example

ullet Cramer's Rule says we can find x_i by replacing the ith column of A with b and calculating the normalised determinant of the resulting matrix, A_i :

$$A: \left[\begin{array}{rrr} -8 & 3 & 5 \\ 3 & -12 & 4 \\ 5 & 4 & -12 \end{array} \right]$$

$$\Rightarrow A_1: \left[\begin{array}{ccc} -5 \\ 0 \\ 0 \end{array} \right] \begin{array}{cccc} 3 & 5 \\ -12 & 4 \\ 4 & -12 \end{array} \right]$$

$$\Rightarrow A_2: \begin{bmatrix} -8 & -5 & 5 \\ 3 & 0 & 4 \\ 5 & 0 & -12 \end{bmatrix}$$

$$\Rightarrow A_3: \begin{bmatrix} -8 & 3 & -5 \\ 3 & -12 & 0 \\ 5 & 4 & 0 \end{bmatrix}$$

Cramer's Rule

$$ullet$$
 Find $|A|$, then find i_1 , i_2 , i_3

$$\left[\begin{array}{ccc} -8 & 3 & 5 \\ 3 & -12 & 4 \\ 5 & 4 & -12 \end{array}\right] \left[\begin{array}{c} i_1 \\ i_2 \\ i_3 \end{array}\right] = \left[\begin{array}{c} -5 \\ 0 \\ 0 \end{array}\right]$$

Cramer's Rule

Example

ullet Find |A|, then find v_1 and v_2

$$\left[\begin{array}{cc} -13 & 4 \\ 4 & -13 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] \left[\begin{array}{c} -30 \\ -15 \end{array}\right]$$

- Some (equivalent) conditions for valid results:
 - Need as many equations as unknowns
 - Need a unique solution for results to be valid
 - $\bullet \ A \ \mathsf{must} \ \mathsf{be} \ \mathsf{square} \ \big(\mathsf{i.e.}, \ n \times n\big) \\$

Current Source

Voltage Source

Voltage Source

- Ideally, maintains fixed voltage across its terminals regardless of load
- i.e., an ideal voltage source has 0 resistance
- e.g., behaves like an ideal battery

- Ideally, provides a constant current regardless of load
- \bullet i.e. ideal current source has ∞ resistance.
- Practically very complicated: Requires lots of semiconducting
- See more of this in ECEN303, ECEN403

Circuit Theorems

- A common theme of this course is that complicated circuits can be reduced to much simpler ones.
- ullet e.g., What does the circuit in the red box look like to the load, R_L ?

Thevenin's Theorem

- We can replace a two terminal network of resistors and energy sources with a *voltage* source V_T and a *series* resistance, R_T :
- ullet $V_{\mathrm{T}}=$ open-cct voltage of the network
- \bullet $R_{\mathsf{T}} = V_{\mathsf{OC}}/I_{\mathsf{SC}}$

Thevenin's Theorem Example

• What is the Thevenin equivalent of this circuit?

12Ω - 24 V b

Norton's Theorem

- We can replace any two terminal network of resistors and energy sources with a *current* source and a *parallel* resistance, $R_{\rm N}$:
- ullet $I_{
 m N}=$ short-circuit current of the network
- $\bullet \ R_{\mathsf{N}} = V_{\mathsf{OC}}/I_{\mathsf{SC}}$

Norton's Theorem Example

• What is the Norton equivalent of this circuit?

Norton's Theorem Example (II)

• Example: What is the Norton equivalent of this circuit?

Example: equivalent of voltage divider

- Find the Thevenin and Norton equivalents of a voltage divider
 - i.e. what is the equiv. cct inside the box?
 - Remove load
 - Find V_{OC}
 - ullet Find I_{SC}

Source Resistance

ullet Another way to find $R_{
m T}$ or $R_{
m N}$ is to measure the resistance "looking" into" the network, with sources zeroed, i.e.,:

- \bullet Voltage sources shorted out (V=0)
- ullet Current sources open-circuited (I=0)

Source Resistance

- Remove load
- Short voltage source

Circuit Loading

- Previous example shows we can replace a voltage divider with a Thevenin equivalent $V_{\rm T}$ and series resistance, $R_{\rm T}$.
- What happens when a load is connected?

- Circuit Loading
 - \bullet $R_{\rm L}$ & $R_{\rm T}$ form new voltage divider, so $V_{\rm L} < V_{\rm T}$
 - ullet Voltage drop, $V_{
 m L}-V_{
 m T}$ depends entirely on the ratio of $R_{
 m L}$ to $R_1\|R_2.$

Circuit Loading

- \bullet Practically, we can think of $R_{\rm T}$ as the internal resistance of the
- ullet We say $R {\sf L}$ loads the source
- ullet We can reduce loading by using smaller R_1 , R_2 (stiff voltage divider - will see this in ECEN204)
- But: this leads to larger currents and more resistive heating

- - Design a power supply based on a 9V battery for an audio amplifier
 - \bullet How big should $R_{\rm T}$ be?

• Find the Thevenin equivalent circuit

- $R_{\rm L}=100\,\Omega$ is connected between a & b.
- What is V_{L} ?
- What is P_L (power dissipated across R_L)?

Superposition

- \bullet Previously, had to use KCL + KVL around two loops to find i
- Alternatively, can consider effect of sources independently:

Superposition (II)

ullet Open-circuit the I source, find i_1 :

• Short-circuit V source, find i2:

ullet By superposition, $i=i_1+i_2$

(Aside:)Current Divider

• Consider the similarities between these two circuits:

Current Divider (II)

$$I = I_1 + I_2$$
 $I = I_1 + I_2$
 $I_1 = I \frac{G_1}{G_1 + G_2} = I \frac{R_2}{R_2 + R_2}$

Summary

- Kirchhoff's Laws
- Mesh Analysis
- Nodal Analysis
- Cramer's Rule
- \bullet Circuit Theorems: $R_{\rm R} = V_{\rm OC}/I_{\rm SC}$
- V & I Sources
- Superposition