

STATE OF THE STATE

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART

e significação (m cococomo) - Lestidos de Societados estracionados estados de Societados estados de Comercio

AD-A163 429

NPS 68-36-001

NAVAL POSTGRADUATE SCHOOL Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA18 31 October and 2 November 1985

by

Paul A. Wittmann Marie C. Colton John J. Rendine Christopher N.K. Mooers

December 1985

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research Environmental Sciences Directorate (Code 1122) Arlington, VA 22217

86 1 27 149

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

RADM R.H. Shumaker Superintendent David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observation, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was prepared by:

PAUL A. WITTMANN Oceanographer

LT JOHN J. RENDINE, USN

Reviewed by:

CHRISTOPHER N.K. MODERS Chairman

Department of Oceanography

MARIE C. COLTON

Oceanographer/Engineer, NEPRF

CHRISTOPHER N.K. MODERS Professor and Chairman,

Department of Oceanography

Released by:

JOHN/N. DYFR

Dean of Science and Engineering

	NPS 68-86-001		1				
63.	NAME OF PERFORMING ORGANIZATION NAVPGSCOL Dept. of Oceanography	6b. OFFICE SYMBOL (If applicable) 68	7a. NAME OF MO	ONITORING ORGA	NIZATION		
6c. ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5008			7b. ADDRESS (City, State, and ZIP Code)				
8a.	NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NOO0146WR24027					
	ADDRESS (City, State, and ZIP Code) Arlington, VA 22217		PROGRAM ELEMENT NO. 61153N	PROJECT NO. RR0310306	TASK NO.	WORK UNIT ACCESSION NO	
_	TITLE (Include Security Classification) Hydrographic Data from the OPI Approved for public release; of PERSONAL AUTHOR(S) Paul A. Wittmann. Marie C. Col	distribution unl	limited.				
	a. TYPE OF REPORT 13b. TIME CO		14. DATE OF REPO	RT (Year, Month,		COUNT	
	COSATI CODES FIELD GROUP SUB-GROUP ABSTRACT (Continue on reverse if necessary Two P3 flights comprising to sample a subdomain of the Chydrographic data, acquired by	Physical Oc Dynamic Oce and identify by block in CPTOMA18 were California Curre	Current Syst ceanography eanography number) undertaken o ent System. its, from the	n 31 October	r and 2 Nove	ember 1985	
_	QUINCLASSIFIED/UNLIMITED SAME AS R LAME OF RESPONSIBLE INDIVIDUAL Paul A. Wittmann	RPT DOTIC USERS	UNCLASSI	FIED			
DI	O FORM 1473, 84 MAR 83 AP	R edition may be used un All other editions are of		SECURITY UNCLASS	CLASSIFICATION	OF THIS PAGE	

Hydrographic Data from the OPTOMA Program:

OPTOMA18
31 October and 2 November, 1985

by

Paul A. Wittmann
Marie C. Colton
John J. Rendine
Christopher N. K. Mooers

The OPTOMA Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

TABLE OF CONTENTS

·	PAGI
LIST OF TABLES	3
LIST OF FIGURES	4
INTRODUCTION	6
DATA ACQUISITION	6
DATA PROCESSING	7
DATA PRESENTATION	7
SECTION 1: FLIGHT I	я
SECTION 2: FLIGHT II	26
ACKNOWLEDGEMENTS	43
REFERENCES	43
INITIAL DISTRIBUTION LIST	44

LIST OF TABLES

Table No.	Caption	Page
1.	Flight I Station Listing	12
2.	Flight II Station Listing	30

LIST OF FIGURES

Figure No.		Caption	Page	
1.		The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	5	
2.		The flight track for OPTOMA18 Flight I.	9	
3.		AXBT station locations for OPTOMA18 Flight I.	10	
4.		Station numbers for OPTOMA18 Flight I.	11	
5.	(a)-(e).	Temperature profiles staggered by multiples of 5C (OPTOMA18 Flight I).	14	
6.	(a)-(f).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA18 Flight I).	19	
7.		Mean temperature profiles, with + and - the standard deviations, from OPTOMA18 Flight I.	25	
8.		The flight track for OPTOMA18 Flight II.	27	
9.		AXBT station locations for OPTOMA18 Flight II.	28	
10.		Station numbers for OPTOMA18 Flight II.	<u>3</u> 9	
11.	(a)-(d).	Temperature profiles staggered by multiples of 5C (OPTOMA18 Flight II).	32	
12.	(a)-(f).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Nashed lines are used if the cast was too shallow. (OPTOMA18 Flight II).	36	
13.		Mean temperature profiles, with + and - the	42	

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observation, Modeling and Analysis)
Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises and P3 flights has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

OPTOMA 18 Flight I was conducted by Patron Forty-six, COMPATWING TEN on 31 October 1985 in the CENCAL domain and Flight II was conducted by Patron Ninety-one, COMRESPATWINGSPAC on 2 November 1985 in the NOCAL domain.

Bathythermographic data were acquired along the tracks shown in figures 2 and 8. The total areal coverage was roughly 530 km alongshore by 260 km cross-shore. Nominal station spacing was about 30 km along-track.

DATA ACQUISITION

Shallow (300m) and deep (700m) AXBT's, were deployed from a Navy P3 aircraft during both flights. The aircraft maintained an altitude between 500 and 800 ft, depending on the low level visibility, and an airspeed of 200 knots. Close station spacing (30km) was achieved by alternately dropping Channel 14 and 16 AXBTs. The data were recorded onboard on audio tapes using a stereo tape recorder. Analog traces were also produced using two lofargram recorders which operated on UHF channels 14 and 16. The shallow AXBTs were digitized onboard the aircraft using a Sippican 1K9 digitizer. The deep AXBTs were digitized after the flights, at NPS. A complete description of the data acquisition is given in Colton and Mooers (1985).

Station positions were obtained from the aircraft's Inertial Navigation System with hourly updates by TACAN (Tactical Air Navigation); accuracy of position is within 2.0 km. The thermistor of the Sippican AXBT has an accuracy of $\pm 0.18C$ in temperature and $\pm 2\%$ or 5m (whichever is greater) in depth.

DATA PROCESSING

Temperatures were computed from the received frequencies according to Sippican (1983). Depths were computed empirically from the descent rate of the AXBT (Bane and Sessions, 1984). The temperature/depth profiles were then edited for erroneous data points, mainly due to RF noise. From the Flight I data set, approximately 86% of casts were retained; of these, 39 were from deep and 39 from shallow AXBT's. From the Flight II data set, approximately 87% of of casts were retained; of these, 40 were from deep and 39 from shallow AXBT's. The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, D.C.

DATA PRESENTATION

The flight track, station locations and station numbers are shown in the first three figures of Sections I and II. These figures are followed by a listing of the stations, with their coordinates, and the date and time at which each station was occupied.

Vertical temperature profiles from the AXBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the flight track. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; an appropriate multiple of 5C has been added to each subsequent profile.

Isotherms along each transect are shown in the next pages. Transect extremes are identified. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to $\pm 20m$.

The data presentation concludes with plots of mean temperature profiles, with + and - the standard deviations.

SECTION I
OPTOMA 18 FLIGHT I
OCTOBER 31, 1985

Figure 2. The flight track for OPTOMA18 Flight I.

Figure 3. AXBT station locations for OPTOMA18 Flight I.

Figure 4. Station numbers for OPTOMA18 Flight I.

Table 1: Flight I Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)		
1	AXBT	85304	1622			
2	AXBT	85304	1631			
3	AXBT	85304	1638			
4	AXBT	85304	1639			
5	AXBT	85304	1620			
6	AXBT	85304	1649			
7	AXBT	85304	1704			
8	AXBT	85304	1712	35.27	123.29	
9	AXBT	85304	1717	35.20	123.45	
10	AXBT	85304	1721			
11	AXBT	85304	1725			
12	AXBT	85304	1730			
13	AXBT	85304	1734			
14	AXBT	85304	1742			
15	AXBT	85304 85304	1743			
16 17	AXBT	85304 85304	1751 1800			
18	AXBT AXBT	85304	1801			
19	AXBT	85304	1809			
20	AXBT	85304	1810			
21	AXBT	85304	1818			
22	AXBT	85304	1821			
23	AXBT	85304	1827			
24	AXBT	85304	1836			
25	AXBT	85304	1843			
26	AXBT	85304	1844			
27	AXBT	85304	1852			
28	AXBT	85304	1856			
29	AXBT	85304	1900			11.6
30	AXBT	85304	1902			11.8
31	AXBT	85304	1909	37.15		
32	AXBT	85304	1917	36.48		
33	AXBT	85304	1918			14.7
34	AXBT	85304	1925			
35	AXBT	85304	1928		123.07	14.9
36	AXBT	85304	1932			
37	AXBT	85304	1934			
38	AXBT	85304	1942			
39	AXBT	85304	1943			
40	AXBT	85304	1951			
41	AXBT	85304	1953			
42	AXBT	85304	2001			
43	AXBT	85304	2010			
44	AXBT	85304	2011			
45	AXBT	85304	2019	35.49	125.23	15.5

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	
46	AXBT	85304	2023		•	•
47	AXBT	85304	2023		125.38	
48	AXBT	85304	2029			
49	AXBT	85304	2037		125.56	
50	AXBT	85304	2038			
51	AXBT	85304	2046			
52	AXBT	85304	2047		125.07	
53	AXBT	85304	2055		124.48	
54	AXBT	85304	2057		124.31	
55	AXBT	85304	2104	37.23	124.15	
56	AXBT	85304	2105	37.09	124.05	13.7
57	AXBT	85304	2113			
58	AXBT	85304	2117		123.49	
59	AXBT	85304	2121			
60	AXBT	85304	2125			
61	AXBT	85304	2129		123.27	15.8
62	AXBT	85304	2130			
63	AXBT	85304	2141		124.17	
64	AXBT	85304	2147			
65	AXBT	85304	2149			
66	AXBT	85304	2156		124.58	
67	AXBT	85304	2157			
68	AXBT	85304	2205			16.4
69	AXBT	85304	2206			
70	AXBT	85304	2215		125.31	
71	AXBT	85304	2216			
72	AXBT	85304	2225		124.57	
73	AXBT	85304	2228		124.40	
74	AXBT	85304	2233			
75	AXBT	85304	2235			
76 77	AXBT	85304	2250			
	AXBT	85304	2252		124.27	
78	AXBT	85304	2310	36.34	124.44	15.8

Andrew Sections

COOK 18222 22 CASSON

Figure 6 (a). Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA18 Flight I).

Figure 7. Mean temperature profile, with + and - the standard deviations, from OPTOMA18 Flight I.

SECTION 2
OPTOMA 18 FLIGHT II
NOVEMBER 2, 1985

Figure 8. The flight track for OPTOMA18 Flight II.

Figure 9. AXBT station locations for OPTOMA18 Flight II.

Figure 10. Station numbers for OPTOMA18 Flight II.

Table 2: Flight II Station Listing

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)
1	AXBT	85306	1812	38.03	123.56	12.8
Ž	AXBT	85306	1814		124.13	
3	AXBT	85306	1821		124.30	
4	AXBT	85306	1826		124.49	
5	AXBT	85306	1830		125.07	
6	AXBT	85306	1832		125.24	
7	AXBT	85306	1839		125.39	
8	AXBT	85306	1841		126.00	
9	AXBT	85306	1848		126.16	15.3
10	AXBT	85306	1852	37.18	126.39	15.9
11	AXBT	85306	1901		126.47	
12	AXBT	85306	1903		126.55	
13	AXBT	85306	1912		127.03	
14	AXBT	85306	1913		127.11	
15	AXBT	85306	1922		127.19	
16	AXBT		1923		127.26	
17	AXBT	85306	1939		127.22	
18	AXBT	85306	1949		126.41	
19	AXBT	85306	1956		126.23	
20	AXBT	85306	1957		126.02	
21	AXBT	85306	2005		125.43	
22	AXBT	85306	2009		125.24	
23	AXBT	85306	2014		125.08	
24	AXBT	85306	2017		124.59	
25	AXBT	85306	2021		124.51	
26 27	AXBT	85306 85306	2027 2033		124.36	
28	AXBT AXBT	85306	2033		124.25 124.22	
29	AXBT	85306	2034		124.22	
30	AXBT	85306	2044		124.05	
31	AXBT	85306	2050		124.36	
32	AXBT	85306	2056	_	124.52	
33	AXBT	85306	2057		125.09	
34	AXBT	85306	2104		125.25	
35	AXBT	85306	2106		125.42	
36	AXBT	85306	2112		125.58	
37	AXBT	85306	2118		126.21	
38	AXBT	85306	2123		126.27	
39	AXBT	85306	2127		126.37	
40	AXBT	85306	2132		126.43	
41	AXBT	85306	2134		126.51	
42	AXBT	85306	2141	. 38.29	126.59	
43	AXBT	85306	2145		127.06	
44	AXBT	85306	2151		127.15	15.1
45	AXBT	85306	2154	39.04	126.58	15.9

```
GMT
                            LAT
                                    LONG
                                           SURFACE
STN TYPE
          YR/DAY
                          (NORTH)
                                   (WEST)
                                            TEMP
                          (DD.MM)(DDD.MM)(DEG C)
 46
     AXBT
            85306
                     2201
                            39.13
                                    126.39
                                              14.8
                            39.21
 47
     AXBT
            85306
                     2205
                                    126.22
                                              13.2
 48
     AXBT
            85306
                     2210
                            39.26
                                    126.04
                                              12.6
 49
     AXBT
                     2211
                            39.32
                                    125.46
                                              13.5
            85306
 50
     AXBT
            85306
                     2219
                            39.37
                                    125.30
                                              13.3
 51
     AXBT
                     2223
                            39.42
                                    125.14
            85306
                                              11.7
 52
                            39.30
                                    125.09
     AXBT
            85306
                     2227
                                              12.9
 53
     AXBT
            85306
                     2229
                            39.16
                                    125.01
                                              13.2
 54
                     2235
                            39.03
                                    124.53
                                              13.2
     AXBT
            85306
 55
     AXBT
            85306
                     2237
                            38.51
                                    124.46
                                              13.7
            85306
                     2243
 56
     AXBT
                            38.37
                                    124.36
                                              12.6
                     2245
                            38.24
                                    124.29
 57
     AXBT
                                              13.4
            85306
 58
     AXBT
                     2252
                            38.17
                                    124.46
                                              14.2
            85306
 59
                            38.10
                                              14.9
     AXBT
            85306
                     2256
                                    125.02
 60
                     2301
                                              14.5
     AXBT
            85306
                            38.04
                                    125.18
 61
     AXBT
                     2303
                            37.58
                                    125.36
                                              14.7
            85306
 62
63
                     2319
                            37.59
                                    126.19
            85306
                                              15.1
     AXBT
                            38.12
                     2324
     AXBT
            85306
                                    126.27
                                              15.3
 64
                            38.20
     AXBT
            85306
                     2329
                                    126.36
                                              14.4
 65
     AXBT
            85306
                     2334
                            38.38
                                    126.44
                                              14.7
 66
     AXBT
            85306
                     2336
                            39.05
                                    126.17
                                              13.9
 67
     AXBT
            85306
                     2349
                            39.11
                                    125.58
                                              12.9
 68
     AXBT
            85306
                     2356
                            39.17
                                    125.42
                                              13.9
 69
     AXBT
            85307
                            39.11
                                    125.17
                        5
                                              13.3
 70
     AXBT
                        6
                            38.56
                                    125.09
            85307
                                              13.5
 71
     AXBT
                            38.42
                                              14.2
            85307
                       14
                                    125.00
                       14
 72
     AXBT
            85307
                            38.31
                                    124.54
                                              14.6
 73
     AXBT
                       22
                            38.28
                                    125.12
             85307
                                              14.0
 74
                            38.25
     AXBT
                                    125.30
            85307
                       24
                                              14.7
 75
                            38.22
                                    125.47
     AXBT
             85307
                       31
                                              14.8
 76
                       32
                            38.18
                                    126.07
     AXBT
             85307
                                              15.0
 77
     AXBT
             85307
                       41
                            38.34
                                    126.09
                                              14.9
 78
     AXBT
             85307
                       50
                            38.47
                                    125.48
                                              14.6
 79
     AXBT
                       52
                            38.46
                                    125.30
             85307
                                              14.2
```


Temperature profiles staggered by multiples of 5C (OPTOMAI8 Flight II). Figure 11 (a).

Figure 11 (d).

Figure 12 (a). Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA18 Flight II).

Figure 12 (d).

Figure 13. Mean temperature profile, with + and - the standard deviations, from OPTOMA18 Flight II.

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program.

The success of the fieldwork was strongly dependent on the competent, willing support of the Patrol Wing and Navy Reserve Patrol Wing. Members of the scientific crew were Ms. Marie Colton, NEPRF, and LT John J. Rendine, USN, NPS.

REFERENCES

CALL PRODUCTION OF THE PRODUCT

- Bane, J.M., and Sessions, M.H., A Field Performance Test of the Sippican Deep Aircraft-Deployed Expendable Bathythermograph, J. Geophys. Res., Vol 89, pp. 3615-3621, 1984.
- Colton, M.C., and Mooers, C.N.K., OPTOMA Program Interim Report: The Airborne Ocean Thermal Structure Mapping Project. February, 1983 through February 1985, NPS Technical Report No. NPS-68-85-008, August 1985.
- Sippican Operation and Maintenance Manual: MK9 Digital XBT/XSV System, R-1197/B, September 1983.

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker Mr. Paul A. Wittmann Dr. Mary L. Ratteen Dr. Laurence C. Breaker LCDR J. Edward Johnson, USN Dr. James L. Mueller Prof. Kenneth L. Davidson Dr. Roland W. Garwood Prof. Robert L. Haney Prof. Dale F. Leipper Prof. Robert D. Renard Dr. Glenn H. Jung Dr. Gordon Groves LT John J. Rendine, USN	33 1 1 1 1 1 1 1 1 1 1 1 1
2.	Harvard University Division of Applied Sciences Pierce Hall, Room 100D Cambridge, MA 02138	
	Prof. Allan R. Robinson Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering	1 1 1 1
3.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217	
	Dr. Thomas W. Spence Dr. Thomas B. Curtin Dr. Robert Abbey	1 1 1
4.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Prof. Robert L. Smith Dr. Adriana Huyer	1

5.	Jet Propulsion Laboratory (JPL) California Institute of Tech. 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Denise E. Hagan (Code 183-501) Dr. Mark Abbott (also at Scripps)	1
6.	Commanding Officer Fleet Numerical Oceanography Center (FNOC) Monterey, CA 93943	
	CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LTJG Diane Durban	1 1 1 1
7.	Sandia National Laboratories Div. 6334 Albuquerque, NM 97185	
	Dr. Mel Marietta Dr. Eugene S. Hertel Dr. Stuart L. Kupferman	1 1 1
8.	Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, D.C. 20233	
	LCDR Craig S. Nelson, NOAA Corps	1
9.	National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307	
	nr. Dale B. Haidvogel	1
10.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Prof. Russ E. Davis Dr. Jerome A. Smith Mr. Phillip Bogden	1 1 1
11.	Princeton University Geophysical Fluid Dynamics Program P.O. Box 308 Princeton, NJ 08540	
	Prof. George L. Mellor	1

12.	Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118	
	Dr. Robert N. Miller	1
13.	Woods Hole Oceanographic Institution Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Nr. Robert C. Beardsley	1
14.	Naval Ocean Research and Development Activity (NORDA) NSTL Station Bay St. Louis, MS 39525	
	Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas	1 1 1
15.	Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4	
	Prof. Lawrence A. Mysak	1
16.	Department of Oceanography University of Hawaii 2525 Correa Road Honolulu, HI 96822	
	Prof. Lorenz Magaard	1
17.	Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2	
	Nr. Motoyoshi Ikeda	1
18.	Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France	
	Pr. Jacques Saurel	1

19.	Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149	
	Dr. Otis Brown	1
20.	Applied Physics Laboratory University of Washington 1013 NE 40th Str. Seattle, WA 98105	
	Dr. Thomas B. Sanford	1
21.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Steven C. Riser	1
22.	California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093	
	Dr. Robert L. Bernstein	1
23.	Marine Sciences Research Center State University of New York Stony Brook, NY 11794	
	Dr. Nong-Ping Wang	1
24.	Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707	
	nr. Jack Calman	1
25.	Pacific Marine Environmental Lab NOAA Bldg. 3 7600 Sand Point Way, NE Seattle, WA 98115	
	Mr. James R. Holbrook	1
26.	Maval Environmental Prediction Research Facility (NEPRF)	
	Ms. Marie Colton Mr. Robert Fett	1

27.	Graduate School of Oceanography University of Rhode Island Kingston, RI 02881	1
	Dr. Everett F. Carter	1
28.	Dept. of Meteorology University of Maryland College Park, MD 20792	1
	Dr. James A. Carton	
29.	Coastal Studies Institute Louisiana State University Baton Rouge, LA 70803-7527	
	Prof. S. A. Hsu Mr. Robert Sylvia	1
30.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
31.	Dudley Knox Library Code D142 Naval Postgraduate School Monterey, CA 93943	2
32.	Research Administration (Code 012) Naval Postgraduate School Monterey, CA 93943	1

END

FILMED

2-86

DTIC