Elements of Programming Languages Tutorial 2: Substitution and alpha-equivalence Solution notes

1. Evaluation

(a) • $(\lambda x: \mathtt{int.} \ x) \ 1$

$$\frac{\lambda x : \mathtt{int.} \ x \Downarrow \lambda x : \mathtt{int.} \ x}{(\lambda x : \mathtt{int.} \ x) \ 1 \Downarrow 1} \frac{1 \Downarrow 1}{1 \Downarrow 1}$$

• $(\lambda x: \mathtt{int}. x + 1) 42$

$$\frac{\lambda x : \mathtt{int.} \ x + 1 \Downarrow \lambda x : \mathtt{int.} \ x + 1}{(\lambda x : \mathtt{int.} \ x + 1)} \ \frac{42 \Downarrow 42}{42 \Downarrow 42} \ \frac{1 \Downarrow 1}{42 + 1 \Downarrow 43}$$

• $(\lambda x: \mathtt{int} \to \mathtt{int}. \ x) \ (\lambda x: \mathtt{int}. \ x) \ 1$ Type annotations elided.

$$\frac{\overline{\lambda x.\,x \Downarrow \lambda x.\,x} \quad \overline{\lambda x.\,x \Downarrow \lambda x.\,x} \quad \overline{\lambda x.\,x \Downarrow \lambda x.\,x}}{\underbrace{(\lambda x.\,x)\,(\lambda x.\,x) \Downarrow \lambda x.\,x}} \quad \underline{1 \Downarrow 1}}{((\lambda x.\,x)\,(\lambda x.\,x))\,1 \Downarrow 1}$$

• (*) $((\lambda f: \text{int} \to \text{int. } \lambda x: \text{int.} f(fx)) (\lambda x: \text{int. } x+1))$ 42 Type annotations elided.

$$\frac{(\lambda f. \lambda x. f(fx)) \Downarrow (\lambda f. \lambda x. f(fx))}{(\lambda f. \lambda x. f(fx)) (\lambda x. x + 1) \Downarrow \lambda x. (\lambda x. x + 1) ((\lambda x. x + 1)x)} \frac{\vdots}{42 \Downarrow 42} \frac{\vdots}{(\lambda x. x + 1)((\lambda x. x + 1)42) \Downarrow 44}$$

where

$$\frac{\lambda x. \ x + 1 \Downarrow \lambda x. x + 1}{\lambda x. \ x + 1 \Downarrow \lambda x. x + 1} \frac{\lambda x. x + 1 \Downarrow \lambda x. x + 1}{(\lambda x. \ x + 1)42 \Downarrow 43} \frac{42 + 1 \Downarrow 43}{(3 + 1) 44} \frac{\lambda x. x + 1 \Downarrow \lambda x. x + 1}{(\lambda x. \ x + 1)((\lambda x. \ x + 1)42) \Downarrow 44}$$

(b) If $e_1: \tau$ then we can define let $x=e_1$ in e_2 as $(\lambda x:\tau. e_2)$ e_1 . The evaluation rule for let can be emulated as follows:

$$\underbrace{\frac{e_1 \Downarrow v_1 \quad e_2[v_1/x] \Downarrow v}{\mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 \Downarrow v}}_{\big(\lambda x : \tau. \ e_2 \ \psi \ \lambda x : \tau. \ e_2\big)} \underbrace{\frac{\lambda x : \tau. e_2 \Downarrow \lambda x : \tau. \ e_2}{\lambda x : \tau. \ e_2\big)} \underbrace{\frac{e_1 \Downarrow v_1 \quad e_2[v_1/x] \Downarrow v}{(\lambda x : \tau. \ e_2) \ e_1 \Downarrow v}}_{\big(\lambda x : \tau. \ e_2\big)}$$

2. Typechecking

(a) • Int => Int

• Int => Boolean => Int

• (Int => Boolean => String) => (Int => Boolean) => (Int => String)

```
{x: (Int => Boolean => String) =>
{y: (Int => Boolean) =>
{z: Int => x(z)(y(z))}}
```

(b) • $(\lambda x: int. x) 1$

$$\frac{\overline{x: \mathtt{int} \vdash x: \mathtt{int}}}{\vdash \lambda x : \mathtt{int}. \ x: \mathtt{int} \to \mathtt{int}} \quad \frac{}{\vdash 1: \mathtt{int}}$$

$$\vdash (\lambda x : \mathtt{int}. \ x) \ 1: \mathtt{int}$$

• $(\lambda x: \mathtt{int}. x + 1) 42$

• $(\lambda x: \mathtt{int} \to \mathtt{int}. x) (\lambda x: \mathtt{int}. x)$

$$\frac{\overline{x : \mathtt{int} \to \mathtt{int} \vdash x : \mathtt{int} \to \mathtt{int}}}{\vdash (\lambda x : \mathtt{int} \to \mathtt{int}. \ x) : (\mathtt{int} \to \mathtt{int}) \to (\mathtt{int} \to \mathtt{int})} \quad \frac{\vdots}{\vdash \lambda x : \mathtt{int} \ x : \mathtt{int} \to \mathtt{int}}$$

$$\vdash (\lambda x : \mathtt{int} \to \mathtt{int}. \ x) \ (\lambda x : \mathtt{int}. \ x) : \mathtt{int} \to \mathtt{int}$$

• $(\lambda x:\tau.\ x\ x)$ This expression cannot be typed. There is no way to choose τ so that the following derivation can be completed:

$$\frac{\frac{??}{x:\tau \vdash x:\tau_1 \rightarrow \tau_2} \quad \frac{??}{x:\tau \vdash x:\tau_1}}{\underbrace{\frac{x:\tau \vdash x\; x:\tau_2}{\vdash \lambda x:\tau.\; x\; x:\tau_2}}}$$

For if $\tau=\tau_1$ then we would also have to have $\tau=\tau_1\to\tau_2$, i.e. $\tau_1=\tau_1\to\tau_2$ which is not possible if equality is structural.

3. Alpha-equivalence for L_{Lam}

(a) The missing rules are:

$$e_1 \equiv_{\alpha} e_2$$

$$\frac{e \equiv_{\alpha} e' \quad e_{1} \equiv_{\alpha} e'_{1} \quad e_{1} \equiv_{\alpha} e'_{1}}{\text{if e then e_{1} else e_{2}} \equiv_{\alpha} \text{ if e' then e'_{1} else e'_{2}}}$$

$$\frac{e_{1}(x \leftrightarrow z) \equiv_{\alpha} e_{2}(y \leftrightarrow z) \quad z \notin FV(e_{1}, e_{2})}{\lambda x. e_{1} \equiv_{\alpha} \lambda y. e_{2}} \qquad \frac{e_{1} \equiv_{\alpha} e'_{1} \quad e_{1} \equiv_{\alpha} e'_{1}}{e_{1} e_{2} \equiv_{\alpha} e'_{1} e'_{2}}$$

Point this out: To be precise, we should also extend FV as follows:

$$FV(\lambda x : \tau. e) = FV(e) - \{x\}$$

$$FV(e_1 e_2) = FV(e_1) \cup FV(e_2)$$

(b) Which of the following alpha-equivalence relationships hold?

$$\begin{array}{ccc} \text{if true then } y \text{ else } z & \equiv_{\alpha} & y & \text{FALSE} \\ \text{let } x = y \text{ in (if } x \text{ then } y \text{ else } z) & \equiv_{\alpha} & \text{let } z = y \text{ in (if } x \text{ then } y \text{ else } z) & \text{FALSE} \\ \lambda x. \left(\text{let } y = x \text{ in } y + y \right) & \equiv_{\alpha} & \lambda x. \left(\text{let } x = x \text{ in } x + x \right) & \text{TRUE} \end{array}$$

(c) The pictures should be as follows:

let x = 1 in let y = 2 in x + y

 $\lambda x. \lambda x. x + x$

let
$$x = 1$$
 in λy . $x + y$

4. (*) Naive substitution and variable capture

(a)

$$(\lambda y.\ \lambda z.\ ((x+y)+z))[y\times z/x] \quad = \quad \lambda y.\ \lambda z.\ (((y\times z)+y)+z)$$
 (if $x==y$ then $\lambda z.x$ else $\lambda x.x)[z/x] \quad = \quad \text{if } z==y$ then $\lambda z.z$ else $\lambda x.z$

(b)

$$\lambda y.\ \lambda z.\ ((x+y)+z) \quad \equiv_{\alpha} \quad \lambda a.\ \lambda b.\ ((x+a)+b)$$
 if $x==y$ then $\lambda z.x$ else $\lambda x.x \quad \equiv_{\alpha} \quad \text{if } x==y$ then $\lambda c.x$ else $\lambda d.d$

(c)

$$(\lambda a.\ \lambda b.\ ((x+a)+b))[y\times z/x] \quad = \quad \lambda a.\ \lambda b.\ (((y\times z)+a)+b)$$
 (if $x==y$ then $\lambda c.x$ else $\lambda d.d$) $[z/x] \quad = \quad$ if $z==y$ then $\lambda c.z$ else $\lambda d.d$

Illustrate that the substitutions performed without α -conversion lead to variable capture, and different binding structure from those performed after α -converting to fresh names.