Chapter 2 - Operations

November 28, 2020

From "Book of Abstract Algebra" by Charles C. Pinter

A. Examples of Operations

Which of the following rules are operations on the indicated set? (\mathbb{Z} designates the set of integers, \mathbb{Q} the rational numbers, and \mathbb{R} the real numbers.) For each rule which is not an operation, explain why it is not.

- 1. $a * b = \sqrt{|ab|}$, on the set \mathbb{Q} .
- 2. $a * b = a \ln b$, on the set $\{x \in \mathbb{R} : x > 0\}$.
- 3. a * b is a root of the equation $x^2 a^2b^2 = 0$, on the set \mathbb{R} .
- 4. Subtraction, on the set \mathbb{Z} .
- 5. Subtraction, on the set $\{n \in \mathbb{Z} : n \geq 0\}$.
- 6. a * b = |a b|, on the set $\{n \in \mathbb{Z} : n \ge 0\}$.

Solution

1. This is not an operation on \mathbb{Q} because a*b is not uniquely defined and \mathbb{Q} is not closed under *. If a and b are rational numbers they can be written as $a=\frac{c}{d}$ and $b=\frac{e}{f}$ where c,d,e, and f are integers, $d\neq 0$, and $f\neq 0$. If we let c=2, d=1, e=2, and f=1 then

$$\sqrt{\frac{2}{1} \cdot \frac{2}{1}} = \sqrt{2 \cdot 2} = \sqrt{4}$$

and since $\sqrt{4} = \pm 2$ we see that a*b is not uniquely defined. Now let c=3, d=1, e=2, and f=1 then

$$\sqrt{\frac{3}{1} \cdot \frac{2}{1}} = \sqrt{6}$$

and we see that there is no rational number f such that $f \cdot f = 6$, therefore $\sqrt{6}$ is not a rational number. Thus, \mathbb{Q} is not closed under *.

1

2. This is not an operation on the set $\{x \in \mathbb{R} : x > 0\}$ because the set $\{x \in \mathbb{R} : x > 0\}$ is not closed under *. For example, if we let a = 2 and b = 1 then

$$a \ln b = 2 \ln 1 = 0$$

and $0 \notin \{x \in \mathbb{R} : x > 0\}$. Therefore the set $\{x \in \mathbb{R} : x > 0\}$ is not closed under * and * is not an operation on the set $\{x \in \mathbb{R} : x > 0\}$.

3. This is not an operation on \mathbb{R} because a * b is not uniquely defined. If we solve for x we see

$$x^2 - a^2b^2 = 0$$
$$x^2 = a^2b^2$$

since a^2 and b^2 will always be positive numbers, then a^2b^2 will be positive as well. Then solving for x we have

$$x = (ab, -ab)$$

and we see that a * b is not uniquely defined and therefore * is not an operation on \mathbb{R} .

- 4. This is an operation on \mathbb{Z} .
- 5. This is not an operation on \mathbb{Z} because the set $\{n \in \mathbb{Z} : n \ge 0\}$ is not closed under *. For example, if we let a = 10 and b = 5 then 5 10 = -5 and $-5 \notin \{n \in \mathbb{Z} : n \ge 0\}$. Therefore the set $\{n \in \mathbb{Z} : n \ge 0\}$ is not closed under *.
- 6. This is an operation on the set $\{n \in \mathbb{Z} : n \geq 0\}$.

B. Properties of Operations

Each of the following is an operation * on \mathbb{R} . Indicate whether or not

- (i). it is commutative,
- (ii). it is associative,
- (iii). \mathbb{R} has and identity element with respect to *,
- (iv). every $x \in \mathbb{R}$ has an inverse with respect to *.

Instructions For (i), compute x * y and y * x, and verify whether or not they are equal. For (ii), compute x * (y * z) and (x * y) * z, and verify whether or not they are equal. For (iii), first solve the equation x * e = x for e; if the equation cannot be solved, there is identity element. If it can be solved, it is still necessary to check that e * x = x * e = x for any $x \in \mathbb{R}$. If it checks, then e is an identity element. For (iv), first not that it there is no identity element, there can be no inverses. If there is an identity element e, first solve the equation x * x' = e for x'; if the equation cannot be solved, x does not have an inverse. If it can be solved, check to make sure that x * x' = x' * x = e. If this checks, x' is the inverse of x.

1.
$$x * y = \sqrt{x^2 + y^2}$$

2.
$$x * y = |x + y|$$

3.
$$x * y = |xy|$$

4.
$$x * y = x - y$$

5.
$$x * y = xy + 1$$

6.
$$x * y = \max\{x, y\}$$

7.
$$x * y = \frac{xy}{x+y+1}$$

Solution

1. Commutative Associative Identity Inverses Yes
$$\boxtimes$$
 No \square Yes \boxtimes No \square Yes \boxtimes No \square

(i).
$$x*y = \sqrt{x^2 + y^2}$$

 $y*x = \sqrt{y^2 + x^2} = \sqrt{x^2 + y^2}$ because + is a commutative operation on \mathbb{R}
(Thus * is commutative.)

(ii).
$$x * (y * z) = x * (\sqrt{y^2 + z^2}) = \sqrt{x^2 + (\sqrt{y^2 + z^2})^2} = \sqrt{x^2 + y^2 + z^2}$$

 $(x * y) * z = \sqrt{(x^2 + y^2) * z} = \sqrt{(\sqrt{x^2 + y^2})^2 + z^2} = \sqrt{x^2 + y^2 + z^2}$
(Thus * is associative.)

(iii). Solve
$$x*e=x$$
 for x : $\sqrt{x^2+e^2}=x$ therefore $e=0$.
Check: $x*0=\sqrt{x^2+0}=\sqrt{x^2}=x$; $0*x=\sqrt{0+x^2}=\sqrt{x^2}=x$
Therefore, 0 is the identity element.
(* has an identity element)

(iv). Solve
$$x * x' = e$$
 for x' .

$$x * x' = e$$

$$\sqrt{x^2 + x'^2} = 0$$

$$x' = \sqrt{-x^2}$$

$$x' = \pm ix$$

where i is the imaginary unit.

Now check that x * x' = x' * x = e.

If
$$x' = ix$$
 then

$$x * x' = \sqrt{x^2 + (xi)^2}$$

$$= \sqrt{x^2 + (x^2 \cdot i^2)}$$

$$= \sqrt{x^2(1 + i^2)}$$

$$= \sqrt{x^2(1 + (-1))}$$

$$= \sqrt{x^2 \cdot 0} = 0$$

and

$$x' * x = \sqrt{(xi)^2 + x^2}$$

$$= \sqrt{(x^2 \cdot i^2) + x^2}$$

$$= \sqrt{(1 + i^2)x^2}$$

$$= \sqrt{(1 + (-1))x^2}$$

$$= \sqrt{0 \cdot x^2} = 0$$

If x' = -ix then

$$x * x' = \sqrt{x^2 + (-xi)^2}$$

$$= \sqrt{x^2 + (xi)^2}$$
 exponent rule: $(-a)^n = a^n$, if n is even
$$= \sqrt{x^2 + (x^2 \cdot i^2)}$$

$$= \sqrt{x^2(1 + i^2)}$$

$$= \sqrt{x^2(1 + (-1))}$$

$$= \sqrt{x^2 \cdot 0} = 0$$

and

$$x' * x = \sqrt{(-xi)^2 + x^2}$$

$$= \sqrt{(xi)^2 + x^2}$$
 exponent rule: $(-a)^n = a^n$, if n is even
$$= \sqrt{(x^2 \cdot i^2) + x^2}$$

$$= \sqrt{(1+i^2)x^2}$$

$$= \sqrt{(1+(-1))x^2}$$

$$= \sqrt{0 \cdot x^2} = 0$$

Therefore, $\pm ix$ is the inverse of x. (Every element has an inverse)

2. Commutative Associative Identity Inverses Yes \boxtimes No \square Yes \square No \boxtimes Yes \boxtimes No \square Yes \boxtimes No \square

- (i). x * y = |x + y| y * x = |y + x| = |x + y| because + is a commutative operation on \mathbb{R} (Thus * is commutative.)
- (ii). x*(y*z) = x*|y+z| = |x+|y+z||Let x = -5, y = 10, and z = -20, then |-5+|10-20|| = |-5+|-10|| = |-5+10| = |5| = 5 (x*y)*z = |x+y|*z = ||x+y|+z|Again, let x = -5, y = 10, and z = -20, then ||-5+10|-20| = ||5|-20| = |5-20| = |-15| = 15Since $5 \neq 15$ then * is not associative on \mathbb{R}
- (iii). Solve x*e=x for e: $|x+e|=x\Rightarrow e=0$ Check: x*0=|x+0|=x; 0*x=|0+x|=|x|=x. Therefore 0 is the identity element.
- (iv). Solve x*x'=0 for x': $|x+x'|=0 \Rightarrow x'=-x$ Check: x*x'=|x-x|=0x'*x=|-x+x|=0. Therefore, -x is the inverse of x.
 - 3. Commutative Associative Identity Inverses Yes \boxtimes No \square Yes \square No \boxtimes Yes \boxtimes No \square Yes \boxtimes No \square