隊名:

團隊成員:

這裡可放團隊照片 代表LOGO



# 各階段報告內容要求

| SE No. | Description      | 任務計劃書 (書審) | 第一次設計審查報<br>告 (書審) | 第二次設計審查報<br>告 (實體審) | 發射備便報告<br>(書審) |
|--------|------------------|------------|--------------------|---------------------|----------------|
| 0      | 隊名、參賽任務目標        | F          | F                  | F                   | F              |
| 1      | 團隊運作規劃           |            |                    |                     |                |
| 1.1    | <b>團隊組織分工</b>    | Р          | U                  | U                   | F              |
| 1.2    | 時程規劃             | Р          | U                  | U                   | F              |
| 1.3    | 火箭零件表、經費與預算規劃    | Р          | U                  | U                   | F              |
| 2      | 火箭功能需求、架構、設計與分析  |            |                    |                     |                |
| 2.1    | 火箭概念設計與功能需求確認    | Р          | F                  |                     |                |
| 2.2    | 火箭系統設計與功能需求確認    |            | Р                  | F                   | F              |
| 2.3    | 火箭飛行模擬分析         |            | Р                  | F                   | F              |
| 2.4    | 次系統設計與功能需求確認     |            | Р                  | F                   | F              |
| 3      | 如何達到設計目標         |            |                    |                     |                |
| 3.1    | 研發路徑規劃           | Р          | U                  | F                   | F              |
| 3.2    | 功能驗證方法與整合測試規劃    |            | Р                  | F                   | F              |
| 3.3    | 列表功能需求驗證成果       |            |                    | Р                   | F              |
| 4      | 競賽日工作規劃          |            |                    |                     |                |
| 4.1    | 發射前備便項目規劃與標準作業流程 |            | Р                  | U                   | F              |
| 4.2    | 發射執行規劃與標準作業流程    |            |                    | Р                   | F              |
| 5      | 風險評估             | Р          | U                  | U                   | F              |

新增頁

P: Preliminary Version; U: Update Version; F: Final Version

## 參賽任務目標

範例:本任務以火箭回收系統作為主要任務酬載,使火箭順利發射升空至1公里高度,降落後火箭可漂浮於海面並記錄基本飛行數據

- 上述內容以人、時、地、物的角度來描述
- 可以多個目標
- 可搭配右方任務概念流程圖說明



### 團隊組織分工

分組分工架構圖



## 團隊組織分工

人數、各組工作內容說明

| 職稱         | 工作內容 | 人員 |
|------------|------|----|
| 指導員        |      |    |
| 隊長         |      |    |
| 副隊長        |      |    |
| 系統工程與計劃管理組 |      |    |
| 結構組        |      |    |
| 酬載(回收)組    |      |    |
| 控制組        |      |    |

團隊總人數:XX人

## 工作項目規劃、甘特圖





## 火箭零件表、經費與預算規劃

火箭零件表 (規格、自製or購買、金額預算)

| 項目編號    | 項目名稱  | 規格       | 單位 | 屬性   | 數量 | 預估單價 |
|---------|-------|----------|----|------|----|------|
| STR.1.1 | 碳纖板   | 厚度3 mm   | 片  | 購買   | 4  | 865  |
| STR.1.2 | 引擎固定件 | 自行設計     | 個  | 委外加工 | 3  | 680  |
| STR.1.3 | 水電材料  | 直徑5吋PVC管 | 個  | 購買   | 1  | 225  |
| STR.1.4 | 火箭鼻錐  | 自行設計     | 個  | 自製   | 1  | 609  |

整理火箭零件表 (可包含規格、自製or購買、金額預算)

預算總金額:XX元

### 火箭零件表、經費與預算規劃

競賽經費來源與預算規劃,需考量後續決賽發射預算

| 經費來源          | 支出項目               | 數量 | 單位 | 單價    | 總價     | 備註 |
|---------------|--------------------|----|----|-------|--------|----|
|               | 高鐵來回               | 10 | 人  | 1,200 | 12,000 |    |
| 學校競賽補助<br>費用  | 餐飲住宿費(1300<br>元/日) | 10 | 人  | 1,300 | 13,000 |    |
| XXX元          | 保險費                | 10 | 人  |       |        |    |
|               |                    |    |    |       |        |    |
|               | 火箭耗材               | 1  | 批  |       |        |    |
| 決賽補助費用        |                    |    |    |       |        |    |
| XXX元          |                    |    |    |       |        |    |
|               |                    |    |    |       |        |    |
| 拉贊助費用         | 測試費用               | 1  | 次  |       |        |    |
| XXX元          | 遊覽車費用              | 3  | 天  |       |        |    |
| <b>7777</b> 0 |                    |    |    |       |        |    |

競賽經費來源與預算規劃,需考量後續決賽發射預算

## XXXX火箭全系統

這裡可放全系統代 表圖/照片

#### 火箭概念設計與功能需求確認

釐清要達到任務目標火箭全系統所需要具備的功能、型態 (外觀、物理特性) 介面、操作等基本需求。

數值待確認請標註TBD

#### 任務目標:

本任務以火箭回收系統作為主要任務酬載,使火箭順利發射升空至 1公里高度,降落後火箭可漂浮於海面並記錄基本飛行數據

#### 任務功能需求:

- ✓火箭應透過公版火箭推進系統抵達至少1 km的飛行高度火 箭應可攜帶4 kg任務酬載
- ✓酬載應可於火箭中執行XXX實驗
- ✓火箭應具備使用降落傘回收整支火箭的能力
- ✓火箭可漂浮於海面上
- ✓火箭應完整記錄任務過程中的所有飛行資料
- ✓火箭應可回傳落點位置資訊
- ✓發射仟務應確保人員及設施安全





### 火箭任務需求與驗證成果

#### 任務需求與驗證狀態

可參考下表需求矩陣檢查撰寫方向,並注意此並非標準答案。

- 整理驗證成果圖/照片/影片
- 除了必須飛行測試才能驗證項目,應盡可能讓相關需求在飛行前透過地面測試被驗證。

|                   | 編號     | 需求內容                   | Trace from  | Owner | Verification metod | Verification<br>lead | Verification<br>level | 原因                               | 狀態      | 需求類型 |
|-------------------|--------|------------------------|-------------|-------|--------------------|----------------------|-----------------------|----------------------------------|---------|------|
|                   | ISSE.1 | 任務應於2024年6月完成任務        | Stakeholder |       | Demonstration      |                      | System                | 任務宣言                             |         | 環境需求 |
| Mission statement | ISSE.2 | 任務應達到1 km飛行高度          | Stakeholder |       | Demonstration      |                      | System                | 任務宣言                             |         | 功能需求 |
| & Concept         | ISSE.3 | 任務應完成火箭系統回收            | Stakeholder |       | Demonstration      |                      | System                | 任務宣言                             |         | 功能需求 |
| (MDR定案)           | ISSE.4 | 任務應確保人員及設施安全           | Stakeholder |       | Inspection         |                      | System                | 任務概念                             |         | 安全需求 |
| (IVIDR 足采)        | ISSE.5 | 任務應使用公版固態火箭推進系統        | Stakeholder |       | Inspection         |                      | System                | 任務概念                             |         | 型態需求 |
|                   | ISSE.6 | 全箭成本應低於預算2萬之內          | Stakeholder |       | Inspection         |                      | System                | 任務概念                             |         | 環境需求 |
|                   |        | 編完一段請空行                |             |       |                    |                      |                       |                                  |         |      |
|                   | MR.1   | 火箭應透過公版推進模組抵達至少1km的飛行高 | ISSE.2/5    |       | Demonstration      |                      | System                |                                  |         | 功能需求 |
|                   | MR.2   | 火箭應可承受飛行過程中的所有作用力      | ISSE.2      |       | Demonstration      |                      | System                |                                  |         | 性能需求 |
|                   | MR.3   | 任務應具備地面支援設備使火箭能順利發射    | ISSE.2      |       | Demonstration      |                      | System                |                                  |         | 功能需求 |
| Mission           | MR.4   | 火箭應完整記錄任務過程中的所有飛行資料    | Stakeholder |       | Demonstration      |                      | System                | 本仕務做為心海火<br>箭比賽的驗證與測<br>試,可以誘過資料 |         | 功能需求 |
| requirements      | MR.5   | 火箭應能與地面站穩定進行通訊         | ISSE.3      |       | Demonstration      |                      | System                |                                  |         | 功能需求 |
| (MDR定案)           | MR.6   | 火箭應具備在空中打開降落傘的能力       | ISSE.3      |       | Demonstration      |                      | System                |                                  |         | 功能需求 |
| (WDK定来)           | MR.7   | 火箭應具備從海中完整回收的能力        | ISSE.3      |       | Demonstration      |                      | System                |                                  |         | 功能需求 |
|                   | MR.8   | 位於台灣東部朝東發射,軌跡盡可能遠離陸地與  | ISSE.4      |       | Demonstration      |                      | System                |                                  |         | 環境需求 |
|                   | MR.9   | 任務的成本應在新台幣兩萬塊以內        | ISSE.6      |       | Inspection         |                      | System                | 經費稍微超支,目前                        | pass    | 品質需求 |
|                   | MR.10  | 任務應於2024年6月完成任務        | ISSE.1      |       | Demonstration      |                      | System                | 任務時程延至8約初                        | pass    | 品質需求 |
|                   | MR.11  | 任務應使用專案管理工具進行任務規劃      | Stakeholder |       | Inspection         |                      | System                |                                  | checked | 功能需求 |



12

#### 火箭系統設計與功能需求確認

使用open rocket或其他相同功能軟體進行更細節的火箭設計繪製

| 箭身材質               | 火箭總重   | 全長    | 箭身尺寸               | 頂點高度<br>@風速<br>4 m/s | 離架穩定<br>度       | 質心和壓力中心                                    | 離架速度    | 到頂點時間 | 供電時間          | 火箭上下鏈<br>通訊頻段 |
|--------------------|--------|-------|--------------------|----------------------|-----------------|--------------------------------------------|---------|-------|---------------|---------------|
| 4.1mm<br>厚<br>PVC管 | 28.4kg | 280cm | 外徑164mm<br>內徑156mm | 1021m~<br>1068m      | >1.52 倍<br>火箭直徑 | CG: 190.3 cm<br>CP: 231 cm<br>CP-CG>2倍火箭直徑 | 16.1m/s | 15.4s | >3hr          | 434Mhz        |
| FVCE               |        |       |                    |                      |                 | CF-CG/2個人則且性                               |         |       | <b>勘估结</b> 確認 | 清樗註TBD        |

上Rail Button 離尾部120 cm Mass with no motors 17578 g CP: 230 cm Mass with motors 28578 g 全長279cm 下Rail Button離尾部3 cm 鼻錐配置 2.6 kg配重 直徑 16.4 cm 航電鎖固面 鼻錐59cm 前段70cm 後段150cm 引擎 酬載 空腔 航電 新增頁尾 40cm **20cm** 91cm **59cm** 

數值待確認請標註TBD

### 火箭系統設計與功能需求確認

#### 質量分佈、浮力等資訊

總重:28.4 kg

avionics: 1.02 kg

• payload : 1.89 kg

• 配重塊: 2.6 kg

• 引擎:13.5 kg (結構重9kg·藥重4.5kg)

管身結構重:

• 鼻錐:0.34 kg

• Connector 6" to 5" : 0.5 kg

• 前段管: 2.24 kg

• 後段管:3.86 kg + 0.4 kg發泡

• Connector 6" : 0.56 kg

• 3 mm碳纖尾翼+尾翼固定結構+尾部端蓋:1.51 kg



#### 火箭系統設計與功能需求確認

質量分佈、浮力等資訊

數值待確認請標註TBD

- 浮力公式:ρV (kgw),PVC管面積: $\frac{\pi}{4}$  × 0.164<sup>2</sup> = 0.2112  $m^2$  ,ρ = 1020 kg/m^3 (海水密度)
- 若要25 kgf (少了引擎藥重)的浮力,六吋PVC管約需要120 cm的管長
- 主要以<mark>航電段前後的39cm+空腔81cm (螢光標記)</mark>作為漂浮段(內部填充發泡),鼻錐也能提供額外浮力



#### 火箭系統設計與功能需求確認

火箭設計與發射架長度

數值待確認請標註TBD

鋁擠軌道長度400 cm,上方(靠近鼻錐)Rail button (藍色三角形)離尾部120 cm
 下方(靠近尾翼)Rail Button離尾部3 cm,有效滑動長度280 cm (400-120 cm)



#### 火箭飛行模擬分析

2維-3維飛行模擬結果

• 飛高:傾角85度,風速為2 m/s東風時,Apogee為<mark>1039m</mark>。

T+15.4s Apogee V = 20.8 m/s



T+16s
Deploy Parachute
V = 24.8 m/s

| 箭體參數設定     |      |
|------------|------|
| 推進劑重量 (kg) | 4.5  |
| 航電重量 (kg)  | 5    |
| 結構重量 (kg)  | 14.9 |
| 酬載重量       | 4    |
| 起飛重量 (kg)  | 28.4 |
| 火箭直徑 (mm)  | 156  |
| 飛行阻力係數 Cd  | 0.6  |
|            |      |

#### 火箭飛行模擬分析

#### 2維-3維飛行模擬結果

- 穩定度(CG到CP長度/直徑):離架時是1.52,後面飛行過程都在2.8左右。
- 離架速度=16.1 m/s, 如果現場風速大於4 m/s (1/4離架速度)就要考慮NO-GO



| <b>新體參數設</b> 定 | 3    |
|----------------|------|
| 推進劑重量 (kg)     | 4.5  |
| 航電重量 (kg)      | į    |
| 結構重量 (kg)      | 14.9 |
| 酬載重量           | 4    |
| 起飛重量 (kg)      | 28.4 |
| 火箭直徑 (mm)      | 156  |
| 飛行阻力係數 Cd      | 0.6  |

## 火箭飛行模擬分析

落點分析



- 左圖為在<mark>2 m/s及4 m/s</mark>的東、南、西、北風之下 之落點分析,下表為落點位置
- · 應注意東風大於2 m/s時,火箭**很可能在岸上落地!**

| Name                  | Latitude    | Longitude   |
|-----------------------|-------------|-------------|
| Launch Field          | 22°10′29″N  | 120°53′33″E |
| EastWind_2m/s         | 22°10′29″N  | 120°53′39″E |
| EastWind_4m/s         | 22°10′29″N  | 120°53′34″E |
| WestWind_2m/s         | 22°10′29″N  | 120°53′46″E |
| WestWind_4m/s         | 22°10′29″N  | 120°53′50″E |
| SouthWind_2m/s        | 22°10′32″N  | 120°53′42″E |
| SouthWind_4m/s        | 22°10′36″N  | 120°53′42″E |
| NorthWind_2m/s        | 22°10′26″N  | 120°53′42″E |
| NorthWind_4m/s        | 22°10′22″N  | 120°53′43″E |
| NoChute_EastWind_4m/s | 22°10′29′′N | 120°54′00″E |

18



### 研發路徑與整合測試規劃

研發流程圖釐清主要工作項目、工作順序與關聯性,並補充說明整合測試的方法



#### 火箭系統需求與驗證成果

#### 火箭全系統

- 可參考下表需求矩陣檢查撰寫方向,並注意此並非標準答案。
- 針對需求列表說明如何驗證 (Inspection、Demonstration、Analysis、Test)
- 整理火箭的設計方案與對應的需求項目驗證結果

- 整理驗證成果圖/照片/影片
- 除了必須飛行測試才能驗證項目,應盡可能讓相關需求在飛行前透過地面測試被驗證。

|               | 編號     | 需求內容                 | Trace from | Owner | Verification<br>metod | Verification<br>lead | Verification<br>level | 原因  | 狀態      | 需求類型 |
|---------------|--------|----------------------|------------|-------|-----------------------|----------------------|-----------------------|-----|---------|------|
|               |        |                      |            |       |                       |                      |                       |     |         |      |
|               | SYS.1  | 火箭結構應有空間容納所有次系統      | MR.1/2     |       | Test                  |                      | System                |     | checked | 功能需求 |
|               | SYS.2  | 火箭重量應低於公版推進模組所能負荷之重量 | MR.1       |       | Analysis              |                      | System                |     | checked | 功能需求 |
|               | SYS.3  | 火箭結構應能回收             | MR.7       |       | Demonstration         |                      | System                |     | TBC     | 功能需求 |
|               | SYS.4  | 火箭應提供各個次系統所需電力       | MR.4/5/6   |       | Test                  |                      | System                |     |         | 功能需求 |
|               | SYS.5  | 火箭應於落海之前與地面站保持穩定通訊   | MR.5       |       | Demonstration         |                      | System                |     | TBC     | 功能需求 |
| System        | SYS.6  | 火箭應具備判斷自身姿態的功能       | MR.1       |       | Test                  |                      | System                |     |         | 功能需求 |
| requirements  | SYS.7  | 火箭應於展開降落傘後落於海面上      | MR.6/7     |       | Analysis              |                      | System                |     | checked | 功能需求 |
| (MDR初版 / SDR定 | SYS.8  | 火箭應能承受所有環境變化         | MR.8       |       | Test                  | nice to have         | System                |     | pass    | 功能需求 |
| 案)            | SYS.9  | 火箭應具備漂浮於海上的能力        | MR.7       |       | Demonstration         |                      | System                |     | TBC     | 功能需求 |
|               | SYS.10 | 火箭應具備飛行資料紀錄器         | MR.4       |       | Inspection            |                      | System                |     | checked | 功能需求 |
|               | SYS.11 | 火箭應具備位置回報系統          | MR.4/5     |       | Inspection            |                      | System                |     | checked | 功能需求 |
|               | SYS.12 | 火箭應具備影像紀錄能力          | MR.4       |       | Demonstration         | nice to have         | System                |     | pass    | 功能需求 |
|               | SYS.13 | 火箭應具備點火能力            | MR.1       |       | Test                  |                      | System                |     |         | 功能需求 |
|               | SYS.14 | 火箭應有能使其穩定發射的機構       | MR.1       |       | □ SYS.1: Ē            | 1.完成全箭次              | 系統組裝與鎖                | 固測試 |         |      |







SYS.4: 尚未完成箭身上電測試

SYS.5: 待飛試驗證

SYS.3: 待飛試驗證

SYS.6: 尚未完成箭身IMU姿態測試

SYS.7: 飛試模擬分析完成

SYS.9: 待飛試驗證

SYS.10: 已完成箭身飛行資料紀錄測試

SYS.2: 已完成軟體分析,全箭可透過公版推進模組達1 Km飛行高度

## XXX火箭結構次系統

這裡可放次系統代表圖/照片

依照組織架構其他次系統以同樣模式處理

#### 火箭結構次系統設計與功能需求確認

火箭主結構設計-全箭

• 結構設計說明

#### 材料:

火箭箭身-PVC水管 鼻錐-玻璃纖維 尾翼-碳纖維板

#### 連接方式:

6吋PVC連接管連接兩段PVC水管

6吋-5吋PVC轉接管連接PVC管與鼻錐



#### 火箭結構次系統設計與功能需求確認

火箭主結構設計-尾翼與固態推進系統

• 推進系統固定說明

利用M6\*12 螺絲與螺帽固定尾翼於金屬雷切板

再利用PVC管蓋與M6螺絲將底部與火 箭外殼固定





#### 火箭結構次系統設計與功能需求確認

火箭次結構設計-火箭發射架滑塊(Rail Button)

• Rail Button固定說明

利用M6螺絲與螺帽固定於PVC管

與發射軌道接觸部分則為光滑無牙

Rail Button共有兩個以固定於鋁擠 行發射軌道







### 火箭系統需求與驗證成果

#### 火箭結構次系統

- 可參考下表需求矩陣檢查撰寫方向,並注意此並非標準答案。
- 針對需求列表說明如何驗證 (Inspection、Demonstration、Analysis、Test) 整理火箭的設計方案與對應的需求項目驗證結果

整理驗證成果圖/照片/影片 除了必須飛行測試才能驗證項 目,應盡可能讓相關需求在飛 行前透過地面測試被驗證。

|             | 編號     |         | 需求內容               | Trace from | Owner | Verification<br>metod | Verification<br>lead | Verification<br>level | 原因 | 狀態 | 需求類型 |
|-------------|--------|---------|--------------------|------------|-------|-----------------------|----------------------|-----------------------|----|----|------|
|             |        |         |                    |            |       |                       |                      |                       |    |    |      |
|             | STR.1  |         | 火箭結構的安全係數應大於 1.3   | SYS.2      |       | Analysis              |                      | System                |    |    | 功能需求 |
|             | STR.2  |         | 火箭結構內的空間應足夠容納推進次系統 | SYS.1      |       | Test                  |                      | Sub-system            |    |    | 介面需求 |
|             |        | STR.2.1 | 火箭應有能固定推進次系統的鎖件    | STR.2      |       | Test                  |                      | Element               |    |    | 介面需求 |
|             | STR.3  |         | 火箭結構內的空間應足夠容納航電次系統 | SYS.1      |       | Inspection            |                      | Sub-system            |    |    | 介面需求 |
|             |        | STR.3.1 | 火箭應有能固定航電次系統的鎖件    | STR.3      |       | Test                  |                      | Element               |    |    | 介面需求 |
|             | STR.4  |         | 火箭結構內的空間應足夠容納酬載次系統 | SYS.1      |       | Inspection            |                      | Sub-system            |    |    | 介面需求 |
|             |        | STR.4.1 | 火箭應有能固定酬載次系統的鎖件    | STR.4      |       | Test                  |                      | Element               |    |    | 介面需求 |
| Structure   | STR.5  |         | 火檢結構總重量應小於18.5公斤   | SYS.2      |       | Inspection            |                      | System                |    |    | 性能需求 |
| Subsystem   |        | STR.5.1 | 航電系統重量應小於2公斤       | STR.5      |       | Inspection            |                      | Element               |    |    | 性能需求 |
| Requirement |        | STR.5.2 | 酬載系統重量應小於3公斤       | STR.5      |       | Inspection            |                      | Element               |    |    | 性能需求 |
|             | STR.6  |         | 火箭應有能套上鼻錐的固定件      | SYS.1      |       | Inspection            |                      | Sub-system            |    |    | 型態需求 |
|             |        | STR.6.1 | 鼻錐應有能讓酬載施加推力的平面    | STR.6      |       | Test                  |                      | Element               |    |    | 功能需求 |
|             | STR.7  |         | 火箭結構應能使訊號傳輸順利      | SYS.5      |       | Test                  |                      | System                |    |    | 介面需求 |
|             | STR.8  |         | 火箭結構應能穩定放置於地面的發射架  | SYS. 14    |       | Test                  |                      | Sub-system            |    |    | 功能需求 |
|             | STR.9  |         | 火箭結構應能有完整的組裝流程     | MR.2       |       | Inspection            |                      | System                |    |    | 操作需求 |
|             | STR.10 |         | 火箭結構應能承受降落時的衝擊     | MR.2       |       | Demonstration         |                      | System                |    |    | 性能需求 |









STR.2 推進系統空間與固定確認完成

### 火箭系統需求與驗證成果

#### 火箭航電次系統/酬載次系統

- 可參考下表需求矩陣檢查撰寫方向,並注意此並非標準答案。
- 針對需求列表說明如何驗證 (Inspection、Demonstration、Analysis、Test)
- 整理火箭的設計方案與對應的需求項目驗證結果

同結構次系統整理相關設計、 驗證成果圖/照片/影片

|                          | 編號     | 需求內容                                     | Trace from  | Owner | Verification<br>metod | Verification<br>lead | Verification<br>level | 原因 | 狀態      | 需求類型 |
|--------------------------|--------|------------------------------------------|-------------|-------|-----------------------|----------------------|-----------------------|----|---------|------|
|                          |        |                                          |             |       |                       |                      |                       |    |         |      |
|                          | AVI.1  | 通訊模組應具備傳輸訊號至少 1.4 公里的能力                  | SYS.5       |       | Test                  |                      | Sub-system            |    | checked | 功能需求 |
|                          | AVI.2  | 飛控電腦應能夠以更新率 0.5 秒回傳火箭位置、速度等飛行資料          | SYS.5/10/11 |       | Test                  |                      | Sub-system            |    | checked | 性能需求 |
|                          | AVI.3  | 姿態感測器應能夠至少以每 0.5 秒紀錄火箭的<br>速度、位置、高度等飛行資料 | SYS.10      |       | Test                  |                      | Sub-system            |    | checked | 性能需求 |
| Avionic control          | AVI.4  | 飛控電腦應於火箭過最高點時正常發送訊號<br>給酬載組              | SYS.7       |       | Test                  |                      | Sub-system            |    | checked | 功能需求 |
| Subsystem<br>Requirement | AVI.5  | 電力供應模組應在火箭回收之後至少還保留<br>10 % margin       | SYS.4       |       | Test                  |                      | Sub-system            |    | TBC     | 功能需求 |
|                          | AVI.6  | 電力供應模組需要有更換電池的設計                         | SYS.4       |       | Test                  |                      | Sub-system            |    | TBC     | 功能需求 |
|                          | AVI.7  | 電力供應模組需要有上電設計                            | SYS.4       |       | Test                  |                      | Sub-system            |    | TBC     | 功能需求 |
|                          | AVI.8  | 航電盒子應能夠容納於箭體當中                           | SYS.1       |       | Inspection            |                      | System                |    | checked | 介面需求 |
|                          | AVI.9  | 航電系統應有檢測模式可在地面進行timer檢<br>測              | MR.3        |       | Test                  |                      | Sub-system            |    | checked | 功能需求 |
|                          | AVI.10 | 航電系統應有分離接頭判斷火箭是否離架                       | MR.3        |       | Test                  |                      | Sub-system            |    | checked | 功能需求 |

#### 需求矩陣範例下載請點我

|                   | PL.1 |        | 酬載系統應於達到最高點前後2秒內使降落傘開傘          | SYS.7  | Test          | System 確保開傘的環境不會    | checked | 功能需求 |
|-------------------|------|--------|---------------------------------|--------|---------------|---------------------|---------|------|
|                   | PL.2 |        | 酬載系統應具備降落傘開傘機構                  | PL.1   | Test          | Element             | checked | 功能需求 |
|                   | PL.3 |        | 降落傘應可承受速度30 m/s之展開力             | SYS.7  | Analysis      | System 避免開傘時降落傘受    | checked | 性能需求 |
|                   | PL.4 |        | 火箭的降落終端速度應小於 13 m/s             | SYS.7  | Analysis      | System 避免落海時箭體受損    | checked | 安全需求 |
|                   | PL.5 |        | 酬載系統應能承受起飛時的震動                  | MR.2   | Demonstration | System              | pass    | 性能需求 |
| Payload Subsystem | PL.6 |        | 酬載系統應能承受海邊鹽度、濕度                 | SYS.8  | Demonstration | System              | pass    | 環境需認 |
| Requirement       | PL.7 |        | 酬載系統應能於降落後準確回報位置且至少持續 5 小時      | SYS.11 | Inspection    | Sub-system 縮小火箭降落範圍 | checked | 功能需求 |
|                   | PL.8 |        | 通訊地面站應能實時紀錄火箭的速度、位置、<br>高度等飛行資料 | SYS.10 | Test          | Sub-system          | checked | 功能需  |
|                   |      | PL.8.1 | 地面通訊站需有UI介面方便判斷資料               | SYS.10 | Test          | Sub-system          | checked | 功能需求 |
|                   | PL.9 |        | 酬載系統應具備監控降落傘是否開啟的能力             | MR.6   | Demonstration | Sub-system          | pass    | 介面需求 |

## 競賽日工作規劃

這裡可放次系統代 表圖/照片

### 決賽工作項目與流程

決賽期間,發射日前的工作項目規劃、時程規劃 (人、時、地、物) 發射日,火箭上發射架前與發射後的工作項目規劃、時程規劃 (人、時、地、物)

| D-1 Day                      |              |         |       |       |       |  |  |  |  |
|------------------------------|--------------|---------|-------|-------|-------|--|--|--|--|
| Work item                    | $\checkmark$ | owner   | 15:00 | 16:00 | 17:00 |  |  |  |  |
| 場地整理                         |              | 結構組     |       |       |       |  |  |  |  |
| 發射架架設                        |              | 結構組     |       |       |       |  |  |  |  |
| 控制室地點與點火模組操作距離確認             |              | 航電組     |       |       |       |  |  |  |  |
| 火箭組裝與上電功能測試 (test mode test) |              | 航電組、酬載組 |       |       |       |  |  |  |  |
| 火箭通訊測試                       |              | 航電組     |       |       |       |  |  |  |  |
| 推進系統試組裝(OK後要拆下)              |              | 推進組     |       |       |       |  |  |  |  |
| 火箭上架測試                       |              | 結構組     |       |       |       |  |  |  |  |
| 合照                           |              | All     |       |       |       |  |  |  |  |
| 火箭發射演練                       |              | All     |       |       |       |  |  |  |  |

## 決賽工作項目與流程

決賽期間,發射日前的工作項目規劃、時程規劃 (人、時、地、物) 發射日,火箭上發射架前與發射後的工作項目規劃、時程規劃 (人、時、地、物)

| D Day                        |   |         |      |   |      |     |   |      |  |  |
|------------------------------|---|---------|------|---|------|-----|---|------|--|--|
| Work item                    | V | owner   | 5:00 | 0 | 6:00 | 7:0 | 0 | 8:00 |  |  |
| 場地整理                         |   | 結構組     |      |   |      |     |   |      |  |  |
| 火箭組裝與上電功能測試 (test mode test) |   | 航電組、酬載組 |      |   |      |     |   |      |  |  |
| 火箭通訊測試                       |   | 航電組     |      |   |      |     |   |      |  |  |
| 推進系統組裝                       |   | 推進組     |      |   |      |     |   |      |  |  |
| 火箭上架 (包含點火頭安裝)               |   | 結構組     |      |   |      |     |   |      |  |  |
| 發射程序                         |   | All     |      |   |      |     |   |      |  |  |
| 回收&收拾                        |   | All     |      |   |      |     |   |      |  |  |

### 決賽工作項目與流程

發射日標準作業流程、檢查項目表

|      |     | 檢查項目表範例                                                           |     |  |  |  |  |  |
|------|-----|-------------------------------------------------------------------|-----|--|--|--|--|--|
|      |     | Operation Checklist                                               | 日期: |  |  |  |  |  |
| 校名   |     |                                                                   |     |  |  |  |  |  |
| 隊名   |     |                                                                   |     |  |  |  |  |  |
|      |     | Assemble Recovery Systems                                         |     |  |  |  |  |  |
| 步驟   | 組別  | 別工作描述                                                             |     |  |  |  |  |  |
| -0   | 回收  | 將減速傘放入部署袋中(附有旋轉接頭)。                                               | 0   |  |  |  |  |  |
| .1   | 回收  | 將主傘放入部署袋中(附有旋轉接頭)。                                                |     |  |  |  |  |  |
| .2   | 回收  | 使用快速連接件將降落傘與預先綁好的減震繩連接(40 英尺的減速傘,30 英尺的主傘)。                       |     |  |  |  |  |  |
| .3   | 回收  | 秤量黑火藥的需求重量(主要)(克)。                                                |     |  |  |  |  |  |
| .4   | 回收  | 秤量黑火藥的需求重量(備用)(克)。                                                |     |  |  |  |  |  |
| .5   | 回收  | 重複步驟 1.4 和 1.5 以完成主傘的準備。                                          |     |  |  |  |  |  |
|      |     | Final Confirmation of the Avionics                                |     |  |  |  |  |  |
| -0   | 航電  | 檢查 CAN 線纜:確保它們沒有損壞。                                               |     |  |  |  |  |  |
| .1   | 航電  | 鍵盤開關短路測試:確保所有鍵盤開關正常運作。                                            |     |  |  |  |  |  |
| .2   | 航電  | 線纜短路測試:確保所有線纜正常連接且未損壞。                                            |     |  |  |  |  |  |
| .3   | 航電  | 裝上電池:確認所有電池的電壓。18650 鋰離子電池:約 4V 每節,9V 電池:約 9V(使用全新電池)。            |     |  |  |  |  |  |
| .4   | 航電  | 確保所有鍵盤開關處於關閉狀態(開路)。                                               | -   |  |  |  |  |  |
| .5   | 航電  | 將航電系統連接至鍵盤開闢。                                                     |     |  |  |  |  |  |
| .6   | 航電  | 開機測試:                                                             |     |  |  |  |  |  |
| .6.1 | 航電  | Easymini:確認啟動順序。 「滴」代表短促的蜂鳴聲,「答」代表長蜂鳴聲(三倍長度),「嘟」代表不和諧的聲音。         |     |  |  |  |  |  |
| .6.2 | 航電  | GPS:檢查 GPS 信號。                                                    |     |  |  |  |  |  |
| .6.3 | 航電  | SRAD:啟動時,數據模組的 LED 燈亮起,蜂鳴 2 秒,延遲 3 秒,再蜂鳴 2 秒,獲取初始高度(移動平均),蜂鳴 5 秒。 |     |  |  |  |  |  |
| .7   | 航電  | 確認電源模組電壓:3.3V 埠應為 ~3.28V,點火電源應為 ~5V。                              |     |  |  |  |  |  |
| .8   | 航電  | 關閉所有鍵盤開闢:COTS SW -> COTS PWR -> SRAD EM -> SRAD PWR。              |     |  |  |  |  |  |
| .9   | 航電  | 斷開所有連接器。                                                          |     |  |  |  |  |  |
| -10  | 航電  | 為 SRAD 航電設備放置塑料屏蔽(塑料瓶)。                                           |     |  |  |  |  |  |
|      |     | Assemble Avionics Bay                                             |     |  |  |  |  |  |
| -0   | 航電艙 | 鎖緊航電艙隔板兩側的螺絲。                                                     |     |  |  |  |  |  |
| 3 1  | 航雷舱 | 聞除所有鍵盤閱閱: SRAD PWR -> SRAD FM -> COTS PWR -> COTS SW ∘            | п   |  |  |  |  |  |

檢查項目表範例下載請點我

#### 標準作業流程範例

FR



火箭lift-off 火箭離架

最高點 降落傘

火箭

落海

## 失效模式效應分析 (FMEA)

參考下表FMEA建立自評內容

可依據自評內容進一步確認功能需求完整性並進行風險管理

|               |            |                  |                                          |                                         |                                                                                                 |     |     | 失效  | 效模式效應分析 () | FMEA)                                                                     |
|---------------|------------|------------------|------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----|-----|-----|------------|---------------------------------------------------------------------------|
|               | 功能         | 潛在失效模式           | 失效影響                                     | 失效因素                                    | 現狀控制                                                                                            |     | 矯   | 正前  |            | 建議矯正措施/狀態                                                                 |
| ,             |            |                  |                                          |                                         |                                                                                                 | 發生度 | 嚴重度 | 難檢度 | 虱險優先數(RPN  |                                                                           |
| 抗電系統          | 提供各次系統電力   | 無法有效提供           | 部分或全部功能                                  | 電力不足                                    | 將謹慎估算所需電力,並設置margin                                                                             | 7   | 8   | 9   | 280        | 電力還沒經過測試驗證 故發生度稍高一點 之後試完會再修正                                              |
|               | 次系統之間的訊號傳輸 | 無法正常傳輸           | 次系統無法執行                                  | 軟硬體異常                                   | 做詳細的整合測試                                                                                        | 4   | 6   | (   | 5 144      | 做整合測試,獨立開傘機構                                                              |
|               | 箭體姿態資料收集   | 無法判定正確姿態         | 無法追蹤或收集<br>飛行數據資料                        | 硬體異常、感測器異常                              | 將加強測試和驗證,並確實執行校正工作                                                                              | 5   | 4   | 7   | 7 140      | 增加更多的姿態感測器,以提供冗餘並確保數據的可靠性。此外,改進數據收集軟增加數據錯誤檢測和修正功能,並定期進行軟硬體整合測試,以確保數據的準確性  |
|               | 影像資料收集     | 無法收集影像<br>資料     | 影像資料無法回<br>收並記錄                          | 攝影模組硬體異常                                | 將加強測試和驗證                                                                                        | 8   | 2   | 7   | 7 112      | 增加冗餘的影像資料收集設備,以確保在主設備失效時仍能獲得可靠的影像資料。此外,改進影像資料收集和回傳的軟硬體系統,確保數據的完整性和準確性。    |
|               | 箭體傳送資料到地面站 |                  | 無法即時接收到<br>箭體姿態資料、<br>影像資料               | 通訊硬體異常或訊號干擾                             | 將加強測試和驗證,並加裝記憶卡儲存資料                                                                             | 6   | 2   | 8   | 96         |                                                                           |
| 推進系統          | 引擎點火       | 無法點燃推進劑。         | 無法起飛。                                    | 點火系統故障。                                 | 建立點火系統的定期檢查和維護程序,包括電子<br>點次裝置的功能測試和點火藥的品質檢測。此外<br>,設計時考慮引,點火系統的冗餘設計,確保主<br>要點火系統失效時,可以立即敢用備用系統。 | 3   | 7   | 3   | 3 63       | 例行檢查與維護,<br>增加點火系統的實時監控。<br>進行定期模擬點火測試。                                   |
|               | 推進劑燃燒      | 火箭推進劑不<br>均勻燃燒。  | 導致推力波動,<br>影響火箭的穩定<br>性,極端情況下<br>可能造成火箭解 | 推進劑成分分布不均或製造缺<br>陷。                     | 現狀控制措施:對推進劑的製造過程進行嚴格控制,包括精確的成分計量和均匀的混合工藝。實施成品的質量檢驗,包括燃燒試驗,以確保每一批次的推進劑達到設計要求的燃燒性能。               | 4   | 9   | 2   | 144        | 加強推進劑的生產過程監控和<br>實時品質分析。                                                  |
|               | 火箭噴嘴       | 無法穩定飛行。          | 推力方向偏移或<br>減小,影響火箭<br>的軌跡和性能。            | 推進過程中噴嘴受損或因異物堵須                         | 現狀控制措施:在火箭組裝和發射前對噴嘴進行<br>徹底的檢查,確保無裂紋、損壞或異物堵塞。同<br>時,開發噴嘴的耐磨和抗腐蝕材料(e.g. 石墨),以<br>減少運行中的損壞風險      | 3   | 7   | 3   | 63         | 使用更高耐磨性材料。                                                                |
|               | 推進引擎結構     |                  | 結構損壞,導致<br>推進劑燒穿或火<br>箭解體。               | 推進系統的結構部件(如殼體或<br>固定裝置)強度不足。            | 進行結構強度的詳細計算和測試,以確保所有結構元件都能承受預期的最大壓力和溫度。採用高強度材料和加固設計來提高結構的整體強度和耐久性。                              | 2   | 9   | 2   | 72         | 實施非破壞性檢測技術<br>(eg. 起聲波或X光檢測)<br>提前預測和解決潛在的結構問題。                           |
|               | 推進劑溫溼度敏感性  | 在極端溫溼度<br>條件下,推進 | 推力方向偏移或<br>減小,影響火箭<br>的軌跡和性能。            | 国體推進劑對溫濕度變化敏感,<br>過高或過低的溫度都可能影響其<br>性能。 |                                                                                                 | 5   | 7   | 3   | 3 105      | 建立更精確的環境控制系統,<br>確保存儲和運輸條件始終處於<br>最佳範圍。<br>實時監定推進劑的溫濕度條件,<br>並自動調整以保持穩定性。 |
| <b>火箭結構系統</b> | 外殼結構固定     | 火箭結構損壞           | 結構損壞造成箭<br>體功能異常                         | 組裝或加工瑕疵                                 | 確保組裝依據SOP,並有第2人檢查確認。                                                                            | 2   | 7   | 2   | 2 28       |                                                                           |
|               | 尾翼         | 結構損壞             | 結構損壞造成箭                                  | 組裝或加工瑕疵                                 | 確保組裝依據SOP,並有第2人檢查確認。                                                                            | 2   | 7   | 2   | 2 28       |                                                                           |
|               | 地面發射架      | 被強側風吹倒           | 被強側風吹倒                                   | 設計不良                                    | 加強環境測試與整合測試驗證。                                                                                  | 3   | 6   | (   | 108        | 檢查天氣預報,特別是風速和風向。檢查在地面上固定的螺絲是否穩定                                           |
|               | 地面組裝上架     | 組裝發生異常           | 無法正常組裝                                   | 組裝操作不當                                  | 擬定SOP、強化操作演練。                                                                                   | 1   | 1   | 2   | 2 2        |                                                                           |
| 匡             | 引擎組裝介面     |                  |                                          |                                         |                                                                                                 |     |     |     | 108        | 重新設計並標準化引擎組裝流程,強化組裝過程中的每個步驟,確保使用精密的                                       |

## Appendix

範例檔下載

- 2025\_台灣盃火箭競賽\_各階段報告範例\_v1投影片檔下載請點我
- 需求矩陣範例下載請點我
- 檢查項目表範例下載請點我
- 失效模式效應分析 (FMEA)範例下載請點我