Heu d'entregar cada exercici per separat a la tasca corresponent del campus virtual. La data límit per l'entrega és divendres dia 4 de desembre a les 13 hores. En resoldre els exercicis, expliqueu bé els càlculs que feu i justifiqueu correctament els vostres raonaments.

Exercici 1. Considerem els subespais vectorials de \mathbb{R}^4 següents: F generat pels vectors (1,-1,2,2),(2,3,-1,-4),(1,-6,7,-2) i G_a igual al conjunt de solucions del sistema d'equacions

$$\begin{cases} 2x - y + 2z - 4t = 0 \\ x + ay + z - 2t = 0 \end{cases}$$

Doneu la dimensió, una base i equacions independents de cada un dels subespais $F, G_a, F \cap G_a$ i $F + G_a$, en funció del paràmetre a.

Solució. Comencem buscant les equacions de F. Per a fer-ho plantejem que qualsevol vector (x, y, z, t) ha de ser combinació lineal de la base de F.

$$\begin{pmatrix} 1 & -1 & 2 & 2 \\ 2 & 3 & -1 & -4 \\ 1 & -6 & 7 & 2 \\ x & y & z & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 5 & -5 & -8 \\ 0 & -5 & 5 & 0 \\ 0 & y+x & z-2x & t-2x \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 5 & 5 & 0 \\ 0 & y+x & z-2x & t-2x \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 5 & 5 & 0 \\ 0 & 0 & 5 & -8 \\ 0 & 0 & -5(y+x) - 5(z-2x) & -8(y+x) - 5(t-2x) \end{pmatrix}$$

A partir de la reducció de les tres primeres files, veiem que dim F=3. Per tant, el subespai quedarà determinat per una equació. De la reducció de la matriu, ja podem extreure l'equació de F:

$$-5(y+x) - 5(z-2x) = 0 \to (y+x) + (z-2x) \to -x + y + z = 0$$

També podem trobar l'equació de F per un altre mètode. A partir de les tres primeres files de la matriu anterior, veiem que els vectors (1,-1,2,2), (0,5,-5,-8), (0,0,0,1) formen base de F. L'equació ax+by+cz+dt=0 de F s'ha d'anul·lar en aquests tres vectors i obtenim a-b+2c+2d=0, 5b-5c-8d=0, d=0 que implica d=0, b=c, a=-c i dóna l'equació de F: -x+y+z=0.

A continuació busquem la base de G_a en funció del parametre:

$$\begin{cases} 2x - y + 2z - 4t = 0 \\ x + ay + z - 2t = 0 \end{cases}$$

Restant a la primera equació dos cops la segona obtenim el següent sistema:

$$\begin{cases} 2x - y + 2z - 4t = 0\\ (2a+1)y = 0 \end{cases}$$

On ens adonem que per a a=1/2 la segona equació s'anul·la. De manera que nomès ens queda una equació independent, i dim $G_a=3$. Mentre que si $a\neq 1/2$ mantenim dues equacions independents, amb el que dim $G_a=2$. Estudiem els dos casos amb detall.

Cas a=1/2: Tenim una equació independent, per tant la dimensió de G_a es 3 i tenim 3 graus de llibertat. Escollim $x=\alpha, z=\beta$ i $t=\gamma$.

$$2x - y + 2z - 4t = 0 \rightarrow y = 2x + 2z - 4t \rightarrow y = 2\alpha + 2\beta - 4\gamma = 0$$
$$(x, y, z, t) = \alpha(1, 2, 0, 0) + \beta(0, 2, 1, 0) + \gamma(0, -4, 0, 1)$$

Qualsevol vector de G_a ha de complir l'equació vectorial anterior. D'on extraiem directament que la base de G_a e es (1, 2, 0, 0), (0, 2, 1, 0), (0, -4, 0, 1).

Cas $a \neq 1/2$: En aquest cas tenim dues equacions independents. I per tant dos graus de llibertat. De la segona equació directament extraiem que y=0. Escollint ara com a parametres $z=\beta$ i $t=\gamma$ obtenim:

$$\begin{cases} 2x - y + 2z - 4t &= 0 \\ y &= 0 \end{cases}$$

$$2x - y + 2z - 4t = 0 \rightarrow 2x + 2z - 4t = 0 \rightarrow x + z - 2t = 0 \rightarrow x = 2t - z$$

 $\rightarrow x = 2\gamma - \beta$

D'on obtenim l'equació vectorial que han de complir els vectors de G_a i deduïm que una possible base és la formada pels vectors (-1,0,1,0) i (2,0,0,1).

$$(x, y, z, t) = \beta(-1, 0, 1, 0) + \gamma(2, 0, 0, 1)$$

Base de $F \cap G_a$ per al cas a = 1/2: Busquem els vectors que compleixen les equacins de F i G_a , i per tant son solució del sistema:

$$\begin{cases} 2x - y + 2z - 4t = 0 \\ -x + y + z = 0 \end{cases}$$

Tenim dos equacions independents, la primera provinent de G_a i la segona de F. Per tant la dimensió de $F \cap G_a$ serà 2 i tindrem dos graus de llibertat. Escollim $y = \alpha$ i $z = \beta$.

$$\begin{cases} 2x - y + 2z - 4t &= 0 \\ -x + y + z &= 0 \end{cases} \to \begin{cases} 2x - y + 2z - 4t = 0 \\ x = y + z \end{cases}$$

$$2(y+z) - y + 2z - 4t = 0 \to y + 4z - 4t = 0 \to t = \frac{y-4z}{4}$$

Substituint els parametres obtenim el següent sistema, que ens permet esbrinar que la base de $F \cap G_a$ està formada pels vectors (1, 1, 0, 1/4) i (1, 0, 1, 1).

$$\begin{cases} x = \alpha + \beta \\ y = \alpha \\ z = \beta \\ t = \frac{\alpha}{4} + \beta \end{cases}$$

Base de $F \cap G_a$ per al cas $a \neq 1/2$: En aquest cas tenim tres equacions independents, amb el que nomès tindrem un grau de llibertat. Escollim $x = \lambda$

$$\begin{cases} 2x - y + 2z - 4t &= 0 \\ y &= 0 \\ -x + y + z &= 0 \end{cases} \rightarrow \begin{cases} x + z - 2t &= 0 \\ y &= 0 \\ -x + z &= 0 \end{cases} \rightarrow \begin{cases} x &= 2t - z \\ y &= 0 \\ x &= z \end{cases}$$

Substituint el parametre obtenim el següent sistema, que ens permet determinar que el vector (1,0,1,1) es base de $F \cap G_a$.

$$\begin{cases} x = \lambda \\ y = 0 \\ z = \lambda \\ t = \frac{x+z}{2} = \lambda \end{cases}$$

Per últim, ens falta obtenir una base i unes equacions del subespai $F + G_a$. Reunint les bases de F i de G_a obtindrem un conjunt de vectors generadors de $F + G_a$, tot i que n'obtinguem més dels necessaris per formar base. Estudiem doncs la dimensió de $F + G_a$ a partir de la formula de Grassmann.

$$\dim(F + G_a) = \dim F + \dim G - \dim(F \cap G_a)$$

Analitzem el cas per a a=1/2. On tenim que dim F=3, dim G=3 i dim $(F\cap G_a)=2$. Per tant:

$$\dim(F + G_a) = 3 + 3 - 2 = 4$$

Per la proposició 1.12.4, sabem que si F i G_a son subespais de \mathbb{R}^4 , aleshores també ho serà el subespai suma $F + G_a$. Així doncs, tenim que $F + G_a \subset \mathbb{R}^4$. Però donat que hem demostrat per Grassmann que dim $(F + G_a) = 4$, aleshores tindrem que, de fet, el subespai $F + G_a$ es \mathbb{R}^4 .

Donar una base de $F + G_a$ es doncs donar una base qualsevol de \mathbb{R}^4 , ens val amb la base canònica. $F + G_a = \langle (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) \rangle$.

Procedim anàlogament per al cas $a \neq 1/2$. En aquesta ocasió, tenim que dim F = 3, dim G = 2 i dim $(F \cap G_a) = 1$. Per tant:

$$\dim(F + G_a) = 3 + 2 - 1 = 4$$

On novament, podem comprobar com $F + G_a = \mathbb{R}^4$.

Exercici 2. Siguin E un espai vectorial de dimensió 4 i (e_1, e_2, e_3, e_4) una base de E. Considerem els vectors de E

$$u_1 = e_1 - e_3 + 2e_4$$
, $u_2 = -e_1 + e_2$, $u_3 = -e_1 + e_4$, $u_4 = 2e_1 - e_2 + e_4$.

Proveu que (u_1, u_2, u_3, u_4) és base de E. Doneu la matriu de canvi de base de la base (u_1, u_2, u_3, u_4) a la base (e_1, e_2, e_3, e_4) i la matriu de canvi de base de la base (e_1, e_2, e_3, e_4) a la base (u_1, u_2, u_3, u_4) . Calculeu les coordenades del vector $v = u_1 + u_2 + u_3 + u_4$ en la base (e_1, e_2, e_3, e_4) i les coordenades del vector $w = e_1 + e_2 + e_3 + e_4$ en la base (u_1, u_2, u_3, u_4) .

Solució. Veiem si els vectors u_1, u_2, u_3, u_4 són linealment independents reduint la matriu que té per files les coordenades de cada un d'aquests vectors en la base (e_1, e_2, e_3, e_4) .

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 3 \\ 0 & -1 & 2 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Com la matriu reduida no té cap fila de zeros obtenim que els quatre vectors són independents. Com el nombre d'aquests vectors és igual a la dimensió de l'espai vectorial E, obtenim que són base de E.

La matriu de canvi de la base (u_1, u_2, u_3, u_4) a la base (e_1, e_2, e_3, e_4) és la matriu C que té per columnes les coordenades dels vectors u_1, u_2, u_3, u_4 en la base (e_1, e_2, e_3, e_4) . Tenim doncs

$$C = \left(\begin{array}{rrrr} 1 & -1 & -1 & 2 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right).$$

La matriu de canvi de base de la base (e_1, e_2, e_3, e_4) a la base (u_1, u_2, u_3, u_4) és la matriu inversa de C. Calculem C^{-1} .

$$\begin{pmatrix} 1 & -1 & -1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 3 & -3 & -2 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 3 & -1 & -2 & -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & 0 & 0 & 1 & 1 & 3 & 1 \\ 0 & 0 & -2 & 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 2 & 1 & 1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & -2 & 0 \\ 0 & 2 & 0 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & -2 & 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 2 & 1 & 1 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 3/2 & 3/2 & 1/2 \\ 0 & 0 & 1 & 0 & 1/2 & 3/2 & 3/2 & 1/2 \\ 0 & 0 & 0 & 1 & 1/2 & 1/2 & 1/2 & 1/2 \end{pmatrix}$$

Hem obtingut

$$C^{-1} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 1/2 & 3/2 & 3/2 & 1/2 \\ -1/2 & -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 3/2 & 1/2 \end{pmatrix}.$$

El vector $v = u_1 + u_2 + u_3 + u_4$ té coordenades (1, 1, 1, 1) en la base (u_1, u_2, u_3, u_4) . Tenim

$$C\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 & 2\\0 & 1 & 0 & -1\\-1 & 0 & 0 & 0\\2 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\-1\\4 \end{pmatrix}.$$

Les coordenades de v en la base (e_1, e_2, e_3, e_4) són doncs (1, 0, -1, 4).

El vector $w = e_1 + e_2 + e_3 + e_4$ té coordenades (1, 1, 1, 1) en la base (e_1, e_2, e_3, e_4) . Tenim

$$C^{-1} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & 0\\1/2 & 3/2 & 3/2 & 1/2\\-1/2 & -1/2 & 1/2 & 1/2\\1/2 & 1/2 & 3/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -1\\4\\0\\3 \end{pmatrix}.$$

Les coordenades de w en la base (u_1, u_2, u_3, u_4) són doncs (-1, 4, 0, 3).

Exercici 3. Sigui E un espai vectorial de dimensió 6. Siguin F, G i H subespais vectorials de E tals que dim F = 3, dim G = 2, dim H = 1, $G \not\subset F$, $(F + G) \cap H = \{\vec{0}\}$.

- 1) Proveu que $F \cap H = \{\vec{0}\}$ i $G \cap H = \{\vec{0}\}$.
- 2) Proveu que $\dim(F\cap G)=0$ o 1 i determineu, en cada un dels dos casos, la dimensió de F+G+H.
- 3) Doneu un exemple de subespais F,G i H de \mathbb{R}^6 complint les condicions de cada un dels dos casos de l'apartat anterior.

Solució.

- 1) Si $u \in F$, tenim $u = u + \vec{0}$ i $\vec{0} \in G$, per tant $u \in F + G$; tenim doncs $F \subset F + G$. Igualment, si $v \in G$, tenim $v = \vec{0} + v$ i $\vec{0} \in F$, per tant $v \in F + G$; tenim doncs $G \subset F + G$. Ara $F \subset F + G$ implies $F \cap H \subset (F + G) \cap H$. Per hipòtesi, tenim $(F + G) \cap H = \{\vec{0}\}$ i, com $F \cap H$ és subespai vectorial de E, per ser intersecció de dos subespais, obtenim $F \cap H = \{\vec{0}\}$. Igualment, $G \subset F + G$ implies $G \cap H \subset (F + G) \cap H$. Com $(F + G) \cap H = \{\vec{0}\}$ i, com $G \cap H$ és subespai vectorial de E, obtenim $G \cap H = \{\vec{0}\}$.
- 2) Com $F \cap G$ és subespai vectorial de G, es compleix $\dim(F \cap G) \leq \dim G = 2$. Ara, si fos $\dim(F \cap G) = 2 = \dim G$, tindriem $F \cap G = G$ i, per tant $G \subset F$, que contradiu la hipòtesi. Tenim doncs $\dim(F \cap G) = 0$ o 1.

Aplicant la fòrmula de Grassmann, tenim

$$\dim(F+G+H) = \dim(F+G) + \dim H - \dim((F+G) \cap H).$$

Com per hipòtesi, és $(F+G) \cap H = \{\vec{0}\}$, tenim $\dim((F+G) \cap H) = 0$. Aplicant de nou la fòrmula de Grassmann, tenim $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$. Obtenim doncs $\dim(F+G+H) = \dim(F+G) + \dim H = \dim F + \dim G + \dim H - \dim(F\cap G) = 6 - \dim(F\cap G)$. Per tant

$$\dim(F + G + H) = \begin{cases} 6 & \text{si} & \dim(F \cap G) = 0 \\ 5 & \text{si} & \dim(F \cap G) = 1 \end{cases}$$

3) Considerem la base canònica de \mathbb{R}^6 : $(e_1, e_2, e_3, e_4, e_5, e_6)$ amb $e_1 = (1, 0, 0, 0, 0, 0), e_2 = (0, 1, 0, 0, 0, 0), e_3 = (0, 0, 1, 0, 0, 0), e_4 = (0, 0, 0, 1, 0, 0), e_5 = (0, 0, 0, 0, 1, 0), e_6 = (0, 0, 0, 0, 0, 0, 1).$ Com exemple amb $\dim(F \cap G) = 0$, podem prendre $F = \langle e_1, e_2, e_3 \rangle$, $G = \langle e_4, e_5 \rangle$. Tenim $\dim F = 3$, $\dim G = 2$ i $F \cap G = \{(0, 0, 0, 0, 0, 0)\}$, per tant $\dim(F \cap G) = 0$. Ara $F + G = \langle e_1, e_2, e_3, e_4, e_5 \rangle$ i el subespai $H = \langle e_6 \rangle$ compleix $(F + G) \cap H = \{(0, 0, 0, 0, 0, 0)\}$, ja que la reunió de la base de F + G i la de H és un conjunt de vectors linealment independents. Tenim $F + G + H = \langle e_1, e_2, e_3, e_4, e_5, e_6 \rangle = \mathbb{R}^6$, per tant, efectivament, $\dim(F + G + H) = 6$. Com exemple amb $\dim(F \cap G) = 1$, podem prendre $F = \langle e_1, e_2, e_3 \rangle$, $G = \langle e_1, e_4 \rangle$. Tenim $\dim F = 3$, $\dim G = 2$ i $F \cap G = \langle e_1 \rangle$, per tant $\dim(F \cap G) = 1$. Ara $F + G = \langle e_1, e_2, e_3, e_4 \rangle$ i el subespai $H = \langle e_6 \rangle$ compleix $(F + G) \cap H = \{(0, 0, 0, 0, 0, 0)\}$, ja que la reunió de la base de F + G i la de H és un conjunt de vectors linealment independents. Tenim $F + G + H = \langle e_1, e_2, e_3, e_4, e_6 \rangle$, per tant, efectivament, $\dim(F + G + H) = 5$.