

Machine Learning and Pattern Recognition A High Level Overview

Prof. Anderson Rocha

(Main bulk of slides kindly provided by **Prof. Sandra Avila**)
Institute of Computing (IC/Unicamp)

SVMs are among the best "off-the-shelf" supervised learning algorithm.

Traditional Recognition

Traditional Recognition

Deep Learning

Deep Learning

Deep Learning

Transfer Learning

Transfer Learning

Transfer Learning

What is Support Vector Machine?

Support Vector Machine

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

Idea of separating data with a large "gap."

Support Vector Machine

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

Idea of separating data with a large "gap."

How does SVM work?

SVM: Notation

We will be considering a linear classifier for a binary classification problem with labels y and features x.

SVM: Notation

We will be considering a linear classifier for a binary classification problem with labels y and features x.

- Class labels: $y \in \{-1,1\}$ (instead of $\{0,1\}$)
- Parameters: w, b (instead of vector θ)

SVM: Notation

We will be considering a linear classifier for a binary classification problem with labels y and features x.

- Class labels: $y \in \{-1,1\}$ (instead of $\{0,1\}$)
- Parameters: w, b (instead of vector θ)
- Classifier: $h_{w,b}(x) = g(w^Tx + b)$
 - \circ g(z) = 1 if $z \ge 0$, and g(z) = -1 otherwise

Given a training example $(x^{(i)}, y^{(i)})$, we define the margin of (w, b) with respect to the training example:

$$y^{(i)}(w^Tx + b) \ge 1, i = \{1, ..., m\}.$$

Let $P(x^{(1)}, y^{(1)})$ be a point and l be a line defined by ax + by + c = 0. The distance d from P to l is defined by:

$$d(a,b,P) = \frac{|ax^{(1)} + by^{(1)} + c|}{\sqrt{a^2 + b^2}}$$

Let $P(x^{(1)}, y^{(1)})$ be a point and l be a line defined by ax + by + c = 0. The distance d from P to l is defined by:

$$d(a,b,P) = |ax^{(1)} + by^{(1)} + c|$$

$$\sqrt{a^2 + b^2}$$

$$d(w,b,x) = |w^Tx + b|$$

$$||w||$$

$$d(w,b,x) = \frac{|w^Tx + b|}{||w||}$$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^Tx + b) \ge 1, i = \{1, ..., m\}$

$$d(w,b,x) = \frac{|w^Tx + b|}{||w||}$$

http://cs229.stanford.edu/notes/cs229-notes3.pdf

$$\min_{w,b} \frac{1}{2} ||w||^2$$
s.t. $y^{(i)}(w^T x + b) \ge 1, i = \{1, ..., m\}$

• Linear SVM: $x_i \cdot x_j$

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ
- Kernel matrix $K_{ij} = K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = \phi(x_j) \cdot \phi(x_i) = K_{ji}$

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ
- Kernel matrix $K_{ij} = K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = \phi(x_j) \cdot \phi(x_i) = K_{ji}$
- Gaussian kernel: $K(x_i, x_j) = \exp(-\|x_i x_j\|^2/(2\sigma^2))$
- Polynomial kernel: $K(x_i, x_j) = (x_i \cdot x_j + 1)^d$, d degree
- Chi-square kernel, histogram intersection kernel, string kernel,

SVM is also available in scikit-learn library and follow the same structure: import library, object creation, fitting model and prediction.

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
model.fit(X, v)
model.score(X, y)
#Predict Output
predicted= model.predict(x test)
```

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
                                                object creation
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
model.fit(X, v)
model.score(X, v)
#Predict Output
predicted= model.predict(x test)
```

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
                                                 fitting model
model.fit(X, v)
model.score(X, y)
#Predict Output
predicted= model.predict(x test)
```

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
model.fit(X, v)
model.score(X, y)
#Predict Output
                                                 prediction
predicted= model.predict(x test)
```

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

C: Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

C: Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.

The parameters can be tuned using grid-search.

References

_ _ _

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 5
- Pattern Recognition and Machine Learning, Chap. 6 & 7

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 7
- http://cs229.stanford.edu/notes/cs229-notes3.pdf