Aufgaben zum Thema Laufzeit

- (1) Gegeben sei ein Datentyp, dessen Elemente bezüglich < bzw. > vergleichbar sind. Im folgenden betrachten wir Datenstrukturen für Elemente dieses Typs.
 - (a) Warum lässt sich in einem Heap das Minimum nicht in $\Theta(1)$ entfernen, so dass die entstehende Struktur immer noch ein Heap ist? Tipp: Analysieren Sie die Laufzeit des sich ergebenden Heapsorts.
 - (b) Geben Sie eine Datenstruktur an, die die entsprechende Eigenschaft aus (a) hat.
 - (c) Warum ist dies kein Widerspruch zur Überlegung aus (a)?
- (2) Lösen Sie folgende Rekurrenzgleichungen:
 - (a) $T(n) = T(\frac{n}{2}) + n$
 - (b) $T(n) = 2 \cdot T(\frac{n}{2}) + 1$
 - (c) $T(n) = T(\frac{n}{2}) + 1$
- (3) Warum lässt sich das Mastertheorem nicht auf folgende Gleichungen anwenden?
 - (a) $T(n) = T(\frac{n}{2}) + \log(n)$
 - (b) $T(n) = n \cdot T(\frac{n}{2}) + 1$
 - (c) $T(n) = T(\frac{n}{2}) + n \cdot (2 \cos(n))$
 - (d) T(n) = T(n) + 1
- (4) Seien $f, g, h, j : \mathbb{N} \to \mathbb{N}_0$ monoton wachsend. Zeigen oder widerlegen Sie:
 - (a) $f \in \Theta(g)$ und $h \in \Theta(j) \Rightarrow f \circ h \in \Theta(g \circ j)$
 - (b) $f \in \Theta(g)$ und $h \in \Theta(j) \Rightarrow f \cdot h \in \Theta(g \cdot j)$
 - (c) $f \in \Theta(g)$ und $h \in \omega(j) \Rightarrow f + h \in \Theta(g + j)$
 - (d) $f \in o(g) \Rightarrow h \circ f \in o(h \circ g)$
 - (e) $f \in O(g) \Rightarrow h \circ f \in O(h \circ g)$
 - (f) $f \in o(g) \Rightarrow h \circ f \in O(h \circ g)$
 - (g) $f \in O(f^2)$
 - (h) $f \in o(f^2)$
 - (i) $f \in \Theta(f^2)$