Math 104 - Weekly Assignment &, Solutions.

1 Let A := {x \in \mathbb{R} \tau : \alpha < x < b }.

We have shown that A+Ø. So, A finite or infinite.

Suppose that A is finite, then A= {x1,--, xn},

for some NEW, with x12xg2...2xu.

We know that Fxxx irrational with xxxxxxx < b,

so that the and known is largest than the largest element of A, contradiction. So, A is infinite.

2 Let's show: | |a|- |b| = |a+b|.

This is equivalent to $-|a+b| \le |a| - |b| \le |a+b|$ $|a|-|b| \le |a+b|$ $|a|d |a|-|b| \ge -|a+b|$ $|and |b| \le |a+b| + |a|$

Now, a= a+b + (-b) = |a| = |a+b| + |-b| = |a+b| + |b|,

ond $b=a+b+(-a) \longrightarrow |b| \le |a+b|+|-a|=|a+b|+|a|$

let 25 show: | |a| - |b| | = |a-b|:

One can work as above, or just apply what we just proved, for the real numbers a, -b:

$$|a| - |-b| \le |a + (-b)|$$
, i.e. $|a| - |b| \le |a - b|$

3 Since p(2) is a sum of squares, we have p(2) = 0, there.

$$= \mathcal{A}^{\alpha} \cdot \left(b_1^{\alpha} + \dots + b_n^{\alpha}\right) + \mathcal{A} \cdot \left(\mathcal{L} \cdot \left(a_1 b_1 + \dots + a_n b_n\right)\right)$$

$$+ \left(a_1^{\alpha} + \dots + a_n^{\alpha}\right).$$

This is a degree \mathcal{L} polynomial in \mathcal{L} , with discriminant $\Delta = \left[2\left(a_1b_1 + \dots + a_nb_n\right)\right]^2 - 4 \cdot \left(b_1^2 + \dots + b_n^2\right) \cdot \left(a_1^2 + \dots + a_n^2\right)$.

And, since $p(a) \ge 0$ $\forall a \in \mathbb{R}$, we have $\Delta \le 0$, so

 $\left[2\left(a_{1}b_{1}+\ldots+a_{n}b_{n}\right)\right]^{2}\leq4\left(b_{1}^{2}+\ldots+b_{n}^{2}\right)\cdot\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)$ 4. (a,b,+--+a,b,)

(aub+-- +anbn) = (b12+--+bn2) (a2+...+an2)

If you prefer proof by induction:

Obvious for n=1,2. Suppose you know it for n=m, you want it for n=m+1:

| a,b,+... +ambm+am+1bm+1 | = | aub++...+ambm| + | am+1bm+1

tricingle C-5 for this ineq. to by + -- + bm + |amy| . |bm+1|

4

Let $x_1, ..., x_n > 0 \implies \frac{1}{x_1}, ..., \frac{1}{x_n} > 0$, so we can apply the geometric-arithmetic mean inequality for $\frac{1}{x_1}, ..., \frac{1}{x_n}$:

$$\left(\begin{array}{cc} \frac{1}{x_{1}} & \cdots & \frac{1}{x_{n}} \end{array}\right)^{\frac{1}{n}} \leq \frac{\frac{1}{x_{1}}}{n} + \cdots + \frac{1}{x_{n}}$$

$$\frac{1}{\frac{1}{x_{1}} + \dots + \frac{1}{x_{n}}} \leq \frac{1}{\left(\frac{1}{x_{1}} + \dots + \frac{1}{x_{n}}\right)^{N_{n}}} \leq \frac{1}{\left$$

be bounded. This means that $\exists b, c \in \mathbb{R}$, with $b \leq a_n \leq c$, AneN.

Let A:= max [16], Icly Then,

|an| $\leq A$, $\forall m \in \mathbb{N}$: Indeed, $|b| \leq A \Leftrightarrow -A \leq b \leq A$, $|c| \leq A \Leftrightarrow -A \leq c \leq A$,

so -A = b = an = c = A, AnEN - - A = an = A, i.e.

lan < A, thew.

If A ≥0, then we let N:=A.

If A=0 (b=c=0), then an=0 them,
so M=1 will do.

6 (i) let (am, am+4) ...) be a final part of (an)new.

Let exo. Since an -a, there exists some

n, eN st. In≥n,, ane (a-e, a+E).

Let mo= max {n1, m}; then, an∈(a-E, a+E), +n>no,

i.e. all the terms of the sequence (ano, anoth 1---) are in (a-e,a+e).

But $(a_{n_0}, a_{n_0+1}, --)$ is a final part of $(a_{m_1}, a_{m+1}, ---)$ (since $n_0 \ge m$).

To, we have shown that there exists a final part of (amiamus:-) inside (a-e, a+e). Since E was arbitrary, (am, amus)...) converges to a.

(ii) Let exo. Since $(a_m, a_{m+1}, ...)$ converges to a, there exists some final part $(a_{n_0}, a_{n+1}, ...)$ of $(a_{m_1}a_{m+1}, ...)$ (i.e. some $n_0 \in \mathbb{N}$), s.t. all the terms of $(a_{n_0}, a_{n_0+1}, ...)$ are in $(a_{n_0}, a_{n_0+1}, ...)$ (i.e. $a_{n_0} \in (a_{n_0}, a_{n_0+1}, ...)$)

Since & was orbitrary, an mana

(iii) (a) (any) new is the sequence (ay, as, as, ...), which is a final part of (an men).

By (i) and (ii), and a and and

(b) Consider the sequences $(a_{n+n_0-1})_{n\in\mathbb{N}}, \quad (b_{n+n_0-1})_{n\in\mathbb{N}}, \quad (c_{n+n_0-1})_{n\in\mathbb{N}}, \quad (d_{n_0}, d_{n_0+2})_{n-1})$ $(d_{n_0}, d_{n_0+2})_{n-1}, \quad (d_{n_0}, d_{n_0+2})_{n-1}, \quad (d_{n_0}, d_{n_0+2})_{n-1})$

These are final parts of (an) new, (bn) new and (cn) new)

they all converge to l(by (i)). And: an \le bn \le Cn +n > no

- an+no-1 = bn+no-1 = cn+no-4 + nao EN $\int_{0}^{\infty} n \to +\infty$

By the sandwich lemma, but not

By (ii), also by I as noto.

- If $x \in \mathbb{R}$ the sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n = x + \frac{1}{n}$ then there of irrational numbers converging to x:

X+ m ~ X+0=X. and $\times \xrightarrow{n \to +\infty} \times$

- If x = a : the sequence (bn) new with b_=x+ 19 frew is a sequence of irrational numbers converging to x:

$$x + \frac{\sqrt{2}}{n} = x + \frac{\sqrt{2}}{n} \cdot \frac{1}{n} \xrightarrow{n \to +\infty} x + \frac{\sqrt{2}}{n} \cdot 0 = x$$

(8) Suppose that $(-1)^m \xrightarrow[n \to +\infty]{} a$, for some $a \in \mathbb{R}$

Suppose that $a \neq 1$.

Then, consider the neighbourhood $\left(a - \frac{11-a1}{2}, a + \frac{u-a1}{2}\right)$ of a $\left(a - \epsilon^{\frac{\alpha}{2}}, a + \epsilon\right)$ for $\epsilon = \frac{11-a1}{2}$

Then, $1 \notin \left(a - \frac{|1-a|}{2}, a + \frac{|1-a|}{2}\right)$ (otherwise $|1-a| < \frac{|1-a|}{2}$),

So there doesn't exist any final part of ((-1)") mell that fully lies in (a-11-al, a+11-al)

(as all final parts contain 1 as a term).
This contradicts the definition of limit,
so a=1.

Now, consider neighbourhood around a (=1)

that doesn't contain -1;

for instance, (0,2).

There doesn't exist any final part of ((-1)") ment fully inside (0,2) (as all final parts have -1

so we have a contradiction to the limit being 1.

So, we ended up to:

if $(-1)^m \xrightarrow[n \to \infty]{} a \in \mathbb{R}$, then a=1, which is eventually a contradiction.

So, ((-1)) men doesn't converge in R.

(i) False: $\frac{\sqrt{2}}{n}$ irrational them,

but $\frac{\sqrt{2}}{n}$, a radional.

(ii) Follse: $((-1)^m)_{m \in \mathbb{N}}$ bounded, but it doesn't converge.

True: • an -0 - (an) men bounded, so F M1>0 s.t. |an | \le M1 Unen.

> · (bn)neN bounded => I Me>0 s.t. |bn| ≤ Me, the N.

=> lan.bn = lan1.1bn = M1. Mg the N),
so (anbn) bounded.

(iii) True: a>0, so the neighbourhood $(a-\frac{\alpha}{2}, a+\frac{\alpha}{2})=(\frac{\alpha}{2}, \frac{3\alpha}{2})$

Since an -a, Froeld s.t.

 $\forall n \geq n_0$, $a_n \in \left(\frac{\alpha}{2}, \frac{3\alpha}{2}\right)$. S_0 , $a_n > \frac{\alpha}{2} > 0$, $\forall n \geq n_0$.

(v) false: If a >0, this is true (iV).

But if a=0, it can be false: for instance,

$$\frac{(-1)^n}{n} = (-1)^n$$
bounded

| n = 100
|

(i) Suppose that b < a. In an an Consider $\varepsilon = \frac{|b-a|}{3}$;

then,

b+E < a-E.

And: Since $a_n \rightarrow a$, $\exists n \in \mathbb{N}$: $\forall n \geq n_1$, $a_n \in (a - \epsilon, a + \epsilon)$ $=) \quad a_n \geq a - \epsilon, \quad \forall n \geq n_1.$

Since $b_n \rightarrow b$, $\exists n_2 \in \mathbb{N}$: $\forall n \ge n_2$, $b_n \in (b-\epsilon, b+\epsilon)$ $b_n < b-\epsilon$, $\forall n \ge n_2$.

Pick $n_0 = \max\{n_1, n_2\}$; then,

 $a_{n_0} > a - \varepsilon$ (since $n_0 > n_1$)

and by < b+ (since no > ng)

So, bno 26+2 < a-e < ano

- bno <ano, contradiction, as an = bn theN.

So, a < b.

(ii) No: Consider an = - in, then,

and by = 1 , thew.

Then: an < bn tnew,

but $d_n = -\frac{1}{n} = -1 \cdot \frac{1}{n} \longrightarrow -4 \cdot 0 = 0$,

 $b_n = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$

so a=b in this case.