

Expected Values and Standard Errors for Sums

1. Fill in the blanks. Compute the z-scores for the range then use the normal curve to compute the probability of getting a sample sum in that range.

Box	$\mathrm{mean}_{\mathrm{box}}$	$\mathrm{SD}_{\mathrm{box}}$	n	$\mathrm{EV}_{\mathrm{sum}}$	SE_{sum}	range	probability
4 6	5	1	16	80	4	76 to 84	68%
4 6			16			80 to 88	
4 6			16			over 84	
4 6			100			490 to 510	
4 6			100			485 to 515	
4 6			100			over 520	
1 9			25			105 to 145	
1 9			25			95 to 155	
1 9			25			under 125	
			144			66 to 78	
			144			60 to 78	
			10,000			4950 to 5050	
0 1 2			100			92 to 108	

$$EV_{sum} = n \times AV_{box}$$
 $SE_{sum} = \sqrt{n} \times SD_{box}$

Expected Values and Standard Errors for Percentages

1. Fill in the blanks. Since the boxes contain only zeros and ones, the $100\% \times$ (the average of a sample) is the percentage of ones in the sample. Compute the z-scores for the range then use the normal curve to compute the probability of getting a sample percentage in that range.

Box	mean _{box}	$\mathrm{SD}_{\mathrm{box}}$	n	$\mathrm{EV}_\%$	SE _%	range	probability
5 0 s 5 1 s	0.5	0.5	16	50%	12.5%	37.5% to 62.5%	68%
5 0 s 5 1 s			16			25.0% to 75.0%	
5 0 s 5 1 s			16			45.0% to 55.0%	
5 0 s 5 1 s			100			37.5% to 62.5%	
$5 \boxed{0} \text{s}$ $5 \boxed{1} \text{s}$			100			25.0% to 75.0%	
$5 \boxed{0} \text{s}$ $5 \boxed{1} \text{s}$			100			45.0% to 55.0%	
65 0 s 35 1 s			100			30.0% to 40.0%	
65 0 s 35 1 s			1,000			30.0% to 40.0%	
65 0 s 35 1 s			10,000			30.0% to 40.0%	
3,581 0 s 3,091 1 s			25			41.0% to 51%	
3,581 0 s 3,091 1 s			100			41.0% to 51%	
3,581 0 s 3,091 1 s			1,000			41.0% to 51%	
3,581 0 s 3,091 1 s			1,000			45.0% to $47%$	
$\mathrm{EV}_{\mathrm{av}} = \mathrm{AV}_{\mathrm{box}} \mathrm{SH}$	$E_{\rm av} = { m SD}_{ m box}$	$/\sqrt{n}$					