

วัตถุประสงค์

แบบประเมินนี้จัดทำขึ้นเพื่อประเมินระดับของการบูรณาการแนวคิดการใช้เคมีภัณฑ์อย่างยั่งยืน (sustainable chemistry) โดยอาศัยหลักการจากเคมีสีเขียวในกระบวนการหรือ กิจกรรมทางเคมี เช่น การสังเคราะห์สาร การวิเคราะห์ หรือการผลิตในระดับห้องปฏิบัติการหรืออุตสาหกรรม

ลำดับ	หลักการ	ประเด็นการตรวจประเมิน	มี	ไม่มี	รายละเอียด (ระบุตัวอย่าง)
1	การป้องกันการเกิดของเสียสารเคมี	- มีการกำหนดเป้าหมายการเพิ่มประสิทธิภาพการใช้			
	(Waste Prevention)	วัสดุและมีการทบทวนเป็นระยะหรือไม่			
		- มีการตรวจติดตามของเสียที่เป็นของแข็ง ของเหลว			
		และก๊าซหรือไม่			
		- กระบวนการผลิตได้รับการออกแบบเพื่อลดการเกิด			
		ของเสียตั้งแต่ต้นหรือไม่			
		- มีการนำวัสดุเหลือใช้กลับมาใช้ใหม่ภายใน			
		กระบวนการผลิตหรือไม่			
		- มีการปรับปรุงกระบวนการผลิตเมื่อพบวามีของเสีย			
		เกินเกณฑ์หรือไม่			
		- มีการเพิ่มประสิทธิภาพการใช้วัตถุดิบเพื่อลดของเสีย			
		หรือไม่			
		- มีการคำนวณค่า Environmental Factor หรือไม่			
2	เศรษฐศาสตร์เชิงอะตอม	- มีกระบวนการเลือกวิธีสังเคราะห์ที่มีประสิทธิภาพการ			
	(Atom Economy)	ใช้อะตอมสูงสุดหรือไม่			
		- มีการลดปฏิกิริยาข้างเคียงที่ไม่พึงประสงค์หรือไม่			

ลำดับ	หลักการ	ประเด็นการตรวจประเมิน	มี	ไม่มี	รายละเอียด (ระบุตัวอยาง)
		- มีการวัดปริมาณและตรวจสอบผลพลอยได้ที่ไม่			
		ต [้] องการหรือไม [่]			
		- มีการออกแบบกระบวนการใหม่เพื่อเพิ่มผลผลิตและ			
		ความเลือกจำเพาะหรือไม่			
		- มีการคำนวณตัวชี้วัด เช่น ร้อยละเศรษฐศาสตร์			
		อะตอมหรือไม่			
		- มีการพิจารณาทางเลือกของปฏิกิริยาเคมีสีเขียวเป็น			
		ประจำหรือไม่			
3	การเลือกวิธีการสังเคราะห๎แบบเป็น	- มีการประเมินข้อมูลความเป็นอันตรายของสารตั้งต้น			
	อันตรายน้อยลง	และสารตัวกลางก่อนทำการผลิตหรือไม่			
	(Less Hazardous Synthesis)	- มีการค้นหาสารเคมีชนิดอื่นที่ปลอดภัยกว่าหรือไม่			
		- มีการลดหรือเลิกใช้สารพิษหรือสารก่อมะเร็งหรือไม่			
		- มีการเลือกใช้กระบวนการที่มีลดความเสี่ยงลงได้ เช่น			
		ระบบน้ำ (wet process) หรือไม [่]			
		- มีการประเมินความเสี่ยงตั้งแต่ระยะเริ่มต [้] นของการ			
		พัฒนากระบวนการผลิตหรือไม่			
		- มีการควบคุมขนาดการผลิตเพื่อลดการใช้สารอันตราย			
		หรือไม่			
4	การออกแบบผลิตภัณฑ์เคมีที่	- มีการออกแบบผลิตภัณฑ์ทางเคมีให้มีความเป็นพิษ			
	ปลอดภัย (Safer Chemicals)	ลดลงหรือไม่			
		- มีการประเมินความสามารถในการสะสมชีวภาพและ			
		การคงอยู่ของสารหรือไม่			

ลำดับ	หลักการ	ประเด็นการตรวจประเมิน	มี	ไม่มี	รายละเอียด (ระบุตัวอยาง)
		- มีการพิจารณาทางเลือกที่มีโครงสร้างโมเลกุลที่			
		ปลอดภัยกว่าหรือไม่			
		- มีการประเมินผลกระทบต่อสุขภาพและสิ่งแวดล้อมใน			
		การพัฒนาผลิตภัณฑ์หรือไม่			
		- มีการประเมินการสัมผัสของผู้ใช้งานในระหว่างการใช้			
		ผลิตภัณฑ์หรือไม่			
5	การใช้ตัวทำละลายและสารช่วยที่	- มีการส่งเสริมกระบวนการที่ไม่ใช้ตัวทำละลายหรือไม่			
	ปลอดภัย	- หากจำเป็นต้องใช้ตัวทำละลาย มีการเลือกจากกลุ่มตัว			
	(Safer Solvents and	ทำละลายสีเขียว (green solvent) หรือไม่			
	Auxiliaries)	- มีระบบการ recycle ตัวทำละลายกลับมาใช้ใหม			
		หรือไม่			
		- มีการติดตามปริมาณการใช้ตัวทำละลายและมีการใช้			
		ที่ลดลงอย่างต่อเนื่องหรือไม่			
6	การเลือกใช้พลังงานอย่างมี	- มีกระบวนการประเมินการใช้พลังงานเชิงความร้อน			
	ประสิทธิภาพ (Energy	และไฟฟ้าหรือไม่			
	Efficiency)	- มีการดำเนินการผลิตที่อุณหภูมิและความดันปกติ			
		เท่าที่เป็นไปได้หรือไม่			
		- มีการนำพลังงานความร้อนเหลือกลับมาใช้ใหม่หรือไม่			
		- มีการทบทวนขั้นตอนที่ใช้พลังงานสูงและหาทางเลือก			
		ที่มีประสิทธิภาพกว่าหรือไม่			
		- มีการใช้แหล่งพลังงานทางเลือกหรือไม่			

ลำดับ	หลักการ	ประเด็นการตรวจประเมิน	มี	ไม่มี	รายละเอียด (ระบุตัวอย [่] าง)
7	การเลือกใช้วัตถุดิบที่หมุนเวียนได้	- มีการประเมินความยั่งยืนและความสามารถในการ			
	(Use of Renewable	หมุนเวียนของวัตถุดิบหรือไม่			
	Feedstocks)	- มีการให้ความสำคัญกับวัตถุดิบจากชีวมวลหรือวัสดุรี			
		ไซเคิลมากกว่าวัตถุดิบจากป์โตรเลียมหรือไม่			
		- มีการทำการวิเคราะห์วัฏจักรชีวิต (LCA: Life Cycle			
		Assessment) ในการเลือกวัตถุดิบหรือไม [่]			
8	การลดการใช้สารอนุพันธ์โดยไม่	- มีการวิเคราะห์กระบวนการสังเคราะห์เพื่อหลีกเลี่ยง			
	จำเป็น	การปรับเปลี่ยนหมู่ฟังก์ชันที่ไม่จำเป็นหรือไม่ (เช่น หมู่			
	(Reduce Derivatives)	คาร์บอกซิล อัลดีไฮด์ เอมีน ไฮดรอกซิล)			
		- มีการลดความซับซ้อนของกระบวนการตั้งแต่ระยะ			
		ออกแบบหรือไม [่]			
		- มีการประเมินทางเลือกที่เป็นมิตรต [่] อสิ่งแวดล้อมใน			
		กรณีจำเป็นต้องมีอนุพันธ์หรือไม่			
9	การใช้ตัวเร่งปฏิกิริยาเพื่อเพิ่ม	- มีการเลือกใช [้] ตัวเร [่] งปฏิกิริยาหรือไม [่]			
	ประสิทธิภาพในการผลิต	- มีการเลือกตัวเร่งปฏิกิริยาที่สามารถนำกลับมาใช้ใหม่			
	(Catalysis)	ได้หรือไม่			
		- มีการศึกษาใช้ตัวเร่งปฏิกิริยาเชิงชีวภาพหรือเอนไซม์			
		เป็นทางเลือกสีเขียวหรือไม			
10	การออกแบบผลิตภัณฑ์ทางเคมีที่	- มีการศึกษาเส้นทางการย่อยสลายของผลิตภัณฑ์			
	ยอยสลายตามธรรมชาติได ้	ภายใต้สภาวะธรรมชาติหรือไม่			
	(Design for Degradation)	- ผลิตภัณฑ์ออกแบบมาให้ย่อยสลายเป็นสารที่ไม่เป็น			
		พิษหรือไม่			

ลำดับ	หลักการ	ประเด็นการตรวจประเมิน	มี	ไม่มี	รายละเอียด (ระบุตัวอยาง)
		- ผลิตภัณฑ์ออกแบบมาให้ย่อยสลายเป็นสารที่สามารถ			
		ย่อยสลายได้ตามธรรมชาติหรือไม่			
11	การวิเคราะห์แบบเรียลไทม์เพื่อ	- มีการติดตั้งเทคโนโลยีการติดตามแบบเรียลไทม์			
	ป้องกันมลพิษ	(real-time monitoring) หรือไม			
	(Real-time Analysis)	- มีการวัดการปล่อยของเสียหรือมลพิษในระหว่าง			
		กระบวนการอยางต่อเนื่องหรือไม่			
		- มีระบบเตือนภัยสำหรับการเกิดความผิดปกติของ			
		กระบวนการหรือไม่			
12	การเลือกใช้สารเคมีที่ปลอดภัยเพื่อ	- มีการเลือกใช้สารและกระบวนการที่มีความเสี่ยงต่ำที่			
	ลดโอกาสการเกิดอุบัติเหตุทางเคมี	อาจก่อให้เกิดไฟไหม้หรือการระเบิดหรือไม่			
	(Inherently Safer Chemistry	- มีการประเมินความไวต่อปฏิกิริยาและความเข้ากันได้			
	for Accident Prevention)	ของสารเคมีก่อนการขยายขนาดหรือไม่			
		- มีการลดปริมาณสารเคมีในกระบวนการ (Process			
		Intensification) หรือไม [่]			
		- มีการเน้นระบบความปลอดภัยแบบ Passive (เช่น			
		การระบายความดัน, การทำให้เฉื่อย) มากกวาระบบ			
		Active หรือไม [่]			
		- มีการอบรมพนักงานเกี่ยวกับความปลอดภัยทางเคมี			
		หรือไม่			
13	การดำเนินการที่เป็นการช่วย	- มีการดำเนินการที่ช่วยให้บรรลุเป้าหมายความเป็นกลาง			
	ส่งเสริมความเป็นกลางทาง	ทางคาร์บอน (Carbon Neutrality) หรือไม [่]			

ลำดับ	หลักการ	ประเด็นการตรวจประเมิน	มี	ไม่มี	รายละเอียด (ระบุตัวอย่าง)
	คาร์บอนและการปล่อยก๊าซเรือน	- มีการดำเนินการที่ช่วยให้บรรลุเป้าหมายการปล่อยก๊าซ			
	กระจกสุทธิเป็นศูนย์ (Carbon	เรือนกระจกสุทธิเป็นศูนย์ (Net Zero Emission) หรือไม			
	Neutrality and				
	Net Zero Emission)				