Preliminaries

0.1: Basics

Proposition 1

- 1. For (not injective) \rightarrow (no left inverse): if f is not injective then there exist $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$, call this element $b \in B$. If a left inverse $g: B \rightarrow A$ existed it would be the case that $g(b) = a_1$ but also $g(b) = a_2$. This is not a function. For (injective) \rightarrow (left inverse): we want to construct a $g: B \rightarrow A$ such that g(f(a)) = a holds for all $a \in A$. The
 - For (injective) \rightarrow (left inverse): we want to construct a $g: B \rightarrow A$ such that g(f(a)) = a holds for all $a \in A$. The definition of injective given is that if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. The contrapositive is that if $f(a_1) = f(a_2)$, then $a_1 = a_2$, meaning that the preimage of any $b \in \inf$ is a one-element set $\{a\}$. Defining g(b) = a means g(f(a)) = g(b) = a as required.
- 2. For (not surjective) \rightarrow (no right inverse): if f is not surjective then there exists $b \in B$ such that $b \notin \inf$. Then, $f \circ g$ (for some $g: B \rightarrow A$) cannot be the identity map because $(f \circ g)(b)$ cannot be b. For (surjective) \rightarrow (right inverse): we want to construct $g: B \rightarrow A$ such that f(g(b)) = b holds for all $b \in B$. For a given $b \in B$, choose an a such that f(a) = b. This is always possible since $\inf f = B$. Define g(b) = a, then f(g(b)) = f(a) = b as required.
- 3. For (bijective) \rightarrow (inverse exist): if f is bijective then it is injective and surjective. From the above we see that f has a left inverse g and right inverse h, now we need to show g = h.

$$f = f \tag{1}$$

$$I \circ f = f \circ I \tag{2}$$

$$(f \circ h) \circ f = f \circ (q \circ f) \tag{3}$$

$$f \circ h \circ f = f \circ g \circ f \tag{4}$$

$$q \circ f \circ h \circ f = q \circ f \circ q \circ f \tag{5}$$

$$I \circ h \circ f = I \circ g \circ f \tag{6}$$

$$I \circ h \circ f \circ h = I \circ g \circ f \circ h \tag{7}$$

$$I \circ h \circ I = I \circ g \circ I \tag{8}$$

$$h = g \tag{9}$$

4. It suffices to show (injective) \leftrightarrow (surjective). If f is injective then (from part 1) the preimage of every $b \in \inf f$ is a single element set. Since every element of A is some preimage, $|\inf f| = |A|$. Then since |A| = |B| we see that $\inf f = B$. If f is surjective then $|\inf f| = |B|$, but $|A| \ge |\inf f|$ (by something like the pigeonhole principle), so $|A| = |\inf f|$ and we have a bijection between the two sets.

Exercises

1. Instead of checking these just work out the general case first. Let $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

$$MX = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ c & d \end{bmatrix}$$
 (10)

$$XM = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix}$$
 (11)

The equality of the diagonal elements means c = 0, the equality of the top right entries means a = d. The general form of X is

$$X = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} . \tag{12}$$

So in order, the answers are: yes, no, yes, no, yes, no.

- 2. If $P, Q \in \mathcal{B}$, (P+Q)M = PM + QM = MP + MQ = M(P+Q).
- 3. (PQ)M = P(QM) = P(MQ) = (PM)Q = (MP)Q = M(PQ).
- 4. See (12).
- 5. (a) No: then $1 = f(\frac{1}{2}) = f(\frac{2}{4}) = 2$.
 - (b) Yes: $f\left(\frac{mx}{my}\right) = \frac{m^2x^2}{m^2y^2} = \frac{x^2}{y^2} = f\left(\frac{x}{y}\right)$ (anyway, this is just $x \mapsto x^2$).
- 6. No: then $0 = f(1.0) = f(0.\overline{9}) = 9$.
- 7. Reflexivity: f(a) = f(a) so $a \sim a$. Symmetry: $a \sim b \implies f(a) = f(b) \implies f(b) = f(a) \implies b \sim a$. Transitivity: equality is transitive so if $a \sim b$ and $b \sim c$ then f(a) = f(b) = f(c) so $a \sim c$.

0.2: Properties of the Integers

Exercises

- 1. Future Eric promises to do this boring computation: find GCD using the Euclidean Algorithm, then LCM = product/GCD
- 2. If k|a and k|b then a = mk and b = nk for some $m, n \in \mathbb{Z}$. Then as + bt = mks + nkt = k(ms + nt).
- 3. If n is composite then it is either a power of a prime p^n or its prime factorization $\prod_i p_i^{n_i}$ contains multiple primes. In the first case, a=p and $b=p^{n-1}$. In the second case, $a=p_1^{n_1}$ and $b=\prod_{i>1} p_i^{n_i}$.
- 4. $ax + by = a\left(x_0 + \frac{b}{d}t\right) + b\left(y_0 \frac{a}{d}t\right) = ax_0 + by_0 + a\frac{b}{d}t b\frac{a}{d}t = N$
- 5. Future Eric does not promise to do this boring computation
- 6. Call the set A. If |A| = 1, trivially that element m is the minimal element. For |A| = n > 1 elements, choose one element a (finite choice) and make the set $A^* = \{b|b \in A, b \neq a\}$. Then A^* has a minimal element, call it m_{n-1} . Since A is a set, $a \neq m_{n-1}$. Then one of them is smaller, and is the unique minimal element of A.
- 7. If $a^2 = pb^2$ then $p = \frac{a^2}{b^2} = \left(\frac{a}{b}\right)^2$. Any prime factor on the right-hand side shows up an even number of times; the only prime factor on the left-hand side shows up once (an odd number of times).
- 8. ?
- 9. programming
- 10. ?
- 11. Write the prime factorization of n as $\prod_i p_i^{n_i}$. Then $\phi(n) = \prod_i (p_i 1) p_i^{n_i 1}$. If d | n then all the prime factors of d are prime factors of n; the prime factorization of d is $p_{i_1}^{m_1} \dots p_{i_j}^{m_j}$ where $i_1 \dots i_j$ are some labels of prime factors of n and all m_i are at most the corresponding n_i . Then $\phi(d) = \prod_k (p_{i_k} 1) p_k^{m_k 1}$. Comparing to $\phi(n)$, we see $(p_{i_k} 1) p_k^{m_k 1} | (p_k 1) p_k^{n_k 1}$ since $n_k \ge m_k$. This is true for each prime factor of d.

0.3: $\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo n

Exercises

- 1. $\bar{0}: \{\ldots, -36, -18, 0, 18, 36, \ldots\}$ $\bar{1}: \{\ldots, -35, -17, 1, 19, 37, \ldots\}$ $\bar{n}: \{\ldots, -36+n, -18+n, n, 18+n, 36+n, \ldots\}$
- 2. For $a \in \mathbb{Z}$, there exists unique $q, r \in \mathbb{Z}$ with $r \in [0, n)$ such that a = qn + r. Then a and r are in the same equivalence class modulo n.

3. Write $a = \sum_i a_i 10^i$. Then

$$a \bmod 9 = \sum_{i} \left(a_i 10^i \right) \bmod 9 \tag{13}$$

$$= \sum_{i} (a_i) \bmod 9 \left(10^i\right) \bmod 9 \tag{14}$$

$$\equiv \sum_{i} (a_i) \bmod 9 (10 \bmod 9)^i \tag{15}$$

$$= \sum_{i} (a_i) \operatorname{mod} 9 (1 \operatorname{mod} 9)^{i}$$
(16)

$$= \sum_{i} (a_i) \operatorname{mod} 9 (1 \operatorname{mod} 9) \tag{17}$$

$$=\sum_{i} a_i \bmod 9 \tag{18}$$

- 4. $37 \equiv 8 \mod 29$, so we want $8^{100} \mod 29$. Notice that $8^2 = 64 = 58 + 8 \equiv 8 \mod 29$ so you can keep multiplying by 8 to find $8 \equiv 8^2 \equiv 8^3 \equiv \ldots \equiv 8^{100}$.
- 5. We want $9^{1500} \mod 100$. Note that (trial and error) $9^10 \equiv 1 \mod 100$. Then $9^{1500} = (9^{10})^{150} \equiv 1^{150} \mod 100 = 1 \mod 100$.
- 6. $0^2 = 0$; $1^2 = 1$; $2^2 = 4 \equiv 0$; $3^2 = 9 \equiv 1$
- 7. Both a^2 and b^2 are 0 or 1 mod 4, so their sum is 0, 1 or 2 mod 4 (not 3).
- 8. The left-hand side of $a^2 + b^2 = 3c^2$ is, from above, in one of $\bar{0}, \bar{1}, \bar{2}$. Since c^2 is in $\bar{0}$ or $\bar{1}$, the right-hand side is in $\bar{0}$ or $\bar{3}$. For equality the only option is that c^2 is in $\bar{0}$ while a^2 and b^2 are either both in $\bar{0}$ or $\bar{2}$. In either case all are even; being squares, this means that a^2, b^2, c^2 are all divisible by 4 and in $\bar{0}$, so we can divide both sides by 4. This can be repeated ad infinitum, even though $a^2, b^2, c^2 > 0$ and there is a minimal positive integer 1.
- 9. $1^2 = 1$; $3^3 = 9 \equiv 1$; $5^2 = 25 \equiv 1$; $7^2 = 49 \equiv 1$; any higher odd integer is equivalent to one of these.
- 10. $(\mathbb{Z}/n\mathbb{Z})^x = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} | (a,n) = 1\}$, and $\phi(n)$ is the number of a on [1,n] (equivalent to [0,n-1] modulo n) such that (a,n)=1.
- 11. If (a, n) = 1 and (b, n) = 1, then, taking the prime factorizations of all three, we see that a and n have no prime factors in common (likewise for b and n). Then ab has no prime factors in common with n, so (ab, n) = 1. Take everything modulo n to complete the proof.

12.

- 13. If (a, n) = 1 then there exist $x, y \in \mathbb{Z}$ such that ax + ny = 1. Take both sides modulo n to get $(a \mod n)(x \mod n) \equiv 1 \mod n$. Then c = x, or any equivalent.
- 14. Exercise 12 shows that if $(a, n) \neq 1$, then there is no c such that $ac \equiv 1 \mod n$. Exercise 13 shows that if (a, n) = 1, then there is such a c. We can take c to be on [0, n 1) without loss of generality. Then $\{\bar{a}|(a, n) = 1\} = \{\bar{a}|\exists c \text{ such that } \bar{a} \cdot \bar{c} \equiv 1 \mod n\}$. For n = 12, the first set is $\{1, 5, 7, 11\}$. To see which elements aren't invertible we have to make a times table:

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

- 15. Future Eric does not promise to do this boring computation
- 16. programming