

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: IT-703B SOFT COMPUTING

'ime Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Which theory defines the GA most?
 - a) Survivor of the fittest
 - b) Elimination of the unwanted
 - c) Gradient decent
 - d) Vagueness.
 - ii) Height of a Fuzzy Set A is
 - a) :
 - b) maximum membership value
 - c) 0.5
 - d) Minimum membership value.

CS/B.Tech/IT/ODD SEM/SEM-7/IT-703B/2016-17

- iii) KSOFM is technique.
 - a) Supervised learning
 - b) Unsupervised learning
 - c) Reinforcement learning
 - d) Semi-supervised learning.
- iv) Which crossover technique can be used for Travelling Salesman problem?
 - a) Single Point Crossover
 - b) Multipoint Crossover
 - c) Uniform Crossover
 - d) Ordered Crossover.
- v) Which of the following is not recurrent network?
 - a) Hopfield network
 - b) Bidirectional associative memory
 - c) Both (a) and (b)
 - d) None of these.
- vi) What are the following sequence of steps taken in designing a fuzzy logic machine?
 - a) Fuzzification > Rule evaluation > Defuzzification
 - b) Rule evaluation > Fuzzification > Defuzzification
 - c) Fuzzy Sets > Defuzzification > Rule evaluation
 - d) Defuzzification > Rule evaluation > Fuzzification.

- vii) Let A and B are two fuzzy sets with membership function μ , then $\mu_{A \cup B}(x)$ is equal to
 - a) $\{\mu_A(x) + \mu_B(x)\}$
 - b) $\{\mu_A(x) \mu_B(x)\}$
 - c) $\min\{\mu_A(x), \mu_B(x)\}$
 - d) $\max\{\mu_A(x),\mu_B(x)\}.$
- viii) In Fuzzy set, the range of membership function is
 - a) 0 100

b) 100 - 1000

c) 1 - 100

- d) 0 1.
- ix) Which Genetic Algorithm Operator elements weak chromosome?
 - a) Crossover

b) Reproduction

c) Mutation

- d) Selection.
- x) Which concept ensures selection of best chromosome for the next generation?
 - a) Ranked Selection
 - b) Elitism
 - c) Tournament Selection
 - d) Roulette Wheel Selection.

- CS/B.Tech/IT/ODD SEM/SEM-7/IT-703B/2016-17
 - xi) α -cut of fuzzy set generates a
 - a) Fuzzy set
- b) Rough set
-) Universal set
- d) Crisp set.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Consider two fuzzy sets $A = \left\{ \frac{0 \cdot 2}{1} + \frac{0 \cdot 3}{2} + \frac{0 \cdot 4}{3} + \frac{0 \cdot 5}{4} \right\}$

and $B = \left\{ \frac{0 \cdot 1}{1} + \frac{0 \cdot 2}{2} + \frac{0 \cdot 2}{3} + \frac{0 \cdot 1}{4} \right\}$. Find the algebraic sum and algebraic product of the given fuzzy sets.

- 3. a) What are the differences between crisp set and fuzzy set?
 - b) What do you understand by Generalized Modus Ponens?
- 4. Explain Roulette Wheel Selection with an example.
- 5. Consider the following ANN with Sigmoidal Activation function and answer the following:

- a) Total input to the neuron.
 - Final output of the neuron if $\lambda = 1$.
- c) Error, for $\lambda = 2$, $\lambda = 1$, if the target is 1.

'70257

3

Turn over

7/70257

b)

4

Implement the XOR function using McCulloh-Pitts neurons using binary data.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) How fuzzy logic is different from probability?
 - b) Write the significance of crossover probability (μ_c) and mutation probability (μ_m) .
 - Define learning. Differentiate among Supervised,
 Unsupervised and Reinforcement learning. 2 + 3
 - d) How can genetic algorithm be controlled by Fuzzy
 Logic?

 4
- a) What do you understand by Gene Encoding ?
 Explain how gene encoding can affect the GA.
 - b) How in simple GA does crossover an mutation help to solve the problem of Local Optima?
 4
 - c) Minimize f(X) = X², where X < 32, using simple GA. Use Binary Gene Encoding. Start with at least 6 chromosomes at 0th population and use two-point crossover and flip mutation with probability 0-8 and 0-3 respectively.

CS/B.Tech/IT/ODD SEM/SEM-7/IT 703B/2016-17

- 9. a) Define linearly separable problems. Why logical XOR cannot be designed by single layer perceptron?
 - b) Calculate the new weight of the following ANN using BP up to one epochs:

Let input $X_1 = 1$, and $X_2 = 2$ and desired outputs are $Y_1 = 0.4$ and $Y_2 = 0.5$ respectively. Let momentum $(\alpha) = 0.2$ and learning rate $(\eta) = 0.5$. Also consider that we have used identity function as Activation Function for input layer and Binary Sigmoidal function as Activation function for hidden and output all layers with $\lambda = 1$.

- 10. a) What is fuzzy quantifier? Differentiate between absolute and relative quantifier.
 - b) Differentiate between Mamdani FIS and Sugeno FIS.
 - c) What are the termination criteria for any optimization techniques of soft computing?
 - d) Explain the architectures of popular self-organizing maps.

I Turn over

11. a)	Show that fuzzy union and fuzzy intersect	ion
	satisfy the properties of T-norm and S-no	rm
	respectively.	5
b)	Compare feed-forward and feedback networks.	3
c)	Write a short note on Ant Colony Optimization.	5
d)	Define soft computing.	2