

## Réseaux Bayésiens Définition - Inférence

Philippe Leray

Philippe.Leray@insa-rouen.fr

INSA Rouen – Département ASI – Laboratoire PSI (FRE CNRS 2645)





### Introduction

- Modèle graphique (MG) = mariage entre la théorie des graphes et la théorie des probabilités
  - graphe d'états
  - probabilités de transition



- De nombreux modèles utilisés en Machine Learning peuvent être vus comme des cas précis de MG
  - Modèles de Markov Cachés (HMM)
  - Réseaux Bayésiens (RB)





### Plan

- Définition
- Algorithmes d'inférence
  - Bucket Elimination
  - Message Passing (Pearl)
  - Junction Tree (Jensen)
- Applications et Offre logicielle
- Apprentissage
  - des paramètres
  - de la structure
- Modèles étendus
  - variables continues : modèles conditionnels gaussiens
  - problèmes temporels : modèles dynamiques
  - théorie de la décision : diagrammes d'influence

## **Origine**



- règles:
  - si soleil=VRAI et arrosage=FAUX, alors sol=sec
- comment rajouter des informations probabilistes?

$$P(soleil) = 0.3$$

$$P(soleil) = 0.3 P(arrosage) = 0.5 P(sec) = ?$$

$$P(sec) = ?$$

comment inverser l'inférence d'un SE ?

$$P(sec) = 0.9$$

$$P(sec) = 0.9 P(arrosage) = 0.5 P(soleil)?$$

$$P(soleil)$$
?

- (Pearl 1988) Raisonnement probabiliste
- De nombreuses appellations :
  - SE bayesien, SE probabiliste, réseau de croyance, réseau causal
  - belief network, bayesian network, probabilistic independence networks





## Réseau Bayésien

- Réseau bayésien =
  - description qualitative des dépendances entre des variables (graphe causal)
  - description quantitative de ces dépendances
  - Exemple





## PERCEPTION STATES OF THE STATE

### **Exemple**

- Dépendance entre les variables (graphe)
  - DAG = Directed Acyclic Graph
  - Numérotation des variables dans l'ordre topologique





Description quantitative des dépendances (probabilités conditionnelles

P(Radio|Séisme)



- Indépendance conditionnelle :
  - $\blacksquare$  A et B sont indépendants conditionnellement à C ssi :
    - Iorsque l'état de C est connu, toute connaissance sur B n'altère pas A
    - P(A|B,C) = P(A|C)
- Les RB vont servir à représenter graphiquement les indépendances conditionnelles
- Exemple sur 3 nœuds
  - $\blacksquare$  3 types de relations possibles entre A, B et C ...





$$S_2$$
 $A = S \text{\'e} \text{isme}$ 
 $C = Radio$ 
 $C = Radio$ 

- Connexion série
- $\blacksquare A$  et B sont dépendants
- $\blacksquare$  A et B sont indépendants conditionnellement à C
  - si P(C) est connue, A n'intervient pas dans le calcul de P(B)
  - $P(S_5|S_4, S_2) = P(S_5|S_4) = P(S_5|parents(S_5))$





- Connexion divergente
- $\blacksquare$  A et B sont dépendants
- $\blacksquare$  A et B sont indépendants conditionnellement à C
  - lacksquare si P(C) est connue, A n'intervient pas dans le calcul de P(B)
  - $P(S_4|S_2,S_3) = P(S_4|S_2) = P(S_4|parents(S_4))$







- $\blacksquare$  Connexion convergente (A, B, C est une V-structure)
- $\blacksquare$  A et B sont indépendants
- $\blacksquare$  A et B sont dépendants conditionnellement à C
  - si P(C) est connue, P(A) intervient pas dans le calcul de P(B)
  - $\blacksquare P(S_3|S_1,S_2) = P(S_3|parents(S_3))$



## Conséquence

- $\blacksquare$  RB = représentation compacte de la loi jointe P(S)
  - Théorème de Bayes :

$$P(S) = P(S_1) \times P(S_2|S_1) \times P(S_3|S_1, S_2) \times \cdots \times P(S_n|S_1 \dots S_{n-1})$$

■ Mais dans un RB,  $P(S_i|S_1 ... S_{i-1}) = P(S_i|parents(S_i))$  d'où

$$P(S) = \prod_{i=1}^{n} P(S_i | parents(S_i))$$

La loi jointe (globale) se décompose en un produit de lois locales





$$P(Cambriolage, Seisme, Alarme, Radio, Tele) =$$
  
 $P(S_1)P(S_2|S_1)P(S_3|S_1, S_2)P(S_4|S_1, S_2, S_3)P(S_5|S_1, S_2, S_3, S_4)$   
 $P(S_1) P(S_2) P(S_3|S_1, S_2) P(S_4|S_2) P(S_5|S_4)$ 



### La d-séparation

Principe Principe

déterminer si 2 variables quelconques sont indépendantes conditionnellement à un ensemble de variables instantiées

#### Définition

- Deux variables A et B sont d-séparées si pour tous les chemins entre A et B, il existe une variable intermédiaire V différente de A et B telle que
  - la connexion est série ou divergente et V est instancié
  - Ia connexion est convergente et ni V ni ses descendants ne sont instanciés
- Si A et B ne sont pas d-séparés, ils sont d-connectés





- $\blacksquare$  exemple de d-séparation :  $S_1 \dots S_4$  ?
  - $V = S_3$  sur le chemin entre  $S_1$  et  $S_4$ .
  - $\blacksquare$  la connexion est convergente en V
  - V n'est pas instancié
  - $\rightarrow$   $S_1$  et  $S_4$  sont d-séparés (si  $S_3$  était mesuré,  $S_1$  et  $S_4$  seraient d-connectés)





- **a** autre exemple de d-séparation :  $S_2 \dots S_5$  ?
  - $ightharpoonup V = S_4$  sur le chemin entre  $S_2$  et  $S_5$ .
  - $\blacksquare$  la connexion est série en V
  - V n'est pas instancié
  - $\rightarrow$   $S_2$  et  $S_5$  sont d-connectés (si  $S_4$  était mesuré,  $S_2$  et  $S_5$  seraient d-séparés)

### Inférence

- Inférence = calcul de n'importe quelle  $P(S_i|S_j=x)$ NB : l'observation  $\{S_j=x\}$  est appellée l'évidence
- A quoi sert la loi jointe  $P(S) = P(S_1, ..., S_n)$  ?
- Rappel : marginalisation

$$P(S_i) = \sum_{s_1, s_2 \dots s_n} P(S_1 = s_1, S_2 = s_2, \dots, S_i, \dots S_n = s_n)$$

■ d'où

$$P(S_i|S_j = x) = \frac{P(S_i, S_j = x)}{P(S_j = x)} = \frac{\sum_{\{s_k\}_{k \neq i, j} P(S_1 = s_1, \dots, S_i, S_j = x, \dots S_n = s_n)}}{\sum_{\{s_k\}_{k \neq j} P(S_1 = s_1, \dots, S_j = x, \dots S_n = s_n)}}$$

Un RB décompose cette loi jointe, ce qui permet de simplifier les calculs



## Quelques algorithmes d'inférence

- Algorithmes exacts
  - Bucket Elimination
  - Message Passing (Pearl 88) pour les arbres
  - Junction Tree (Jensen 90)

Problème = explosion combinatoire de ces méthodes pour des graphes fortement connectés, etc . . . (inférence = problème NP-complet)

- Algorithmes approchés
  - Echantillonnage: Markov Chain Monte Carlo, ...
  - Méthodes variationnelles





### **Bucket Elimination**

- Principe
  - grâce à la décomposition de la loi jointe, certaines étapes de la marginalisation de  $P(S_i, S_j = x)$  se simplifient
  - Exemple
    - évidence  $E = \{S_4 = O\}$ , on cherche  $P(S_2|E)$

$$P(S, E) = P(S_1)P(S_2)P(S_3|S_1S_2)P(S_4 = 0|S_2)P(S_5|S_4 = 0)$$

$$P(S_2, E) = \sum_{S_1, S_3, S_5} P(S, E)$$

et si on choisit l'ordre des variables pour la marginalisation?



### **Bucket Elimination**

 $lue{}$  Commençons par  $S_5$ 

$$\sum_{S_5} P(S_1, S_2, S_3, S_4 = O, S_5) = P(S_1)P(S_2)P(S_3|S_1, S_2) \dots$$

... 
$$P(S_4 = O|S_2) \sum_{S_5} P(S_5|S_4 = O)$$

 $\blacksquare$  Cette dernière somme vaut 1 ! On a éliminé  $S_5$ 

$$P(S_1, S_2, S_3, S_4 = O) = P(S_1)P(S_2)P(S_3|S_1, S_2)P(S_4 = O|S_2)$$

 $\blacksquare$  Au tour de  $S_1$ 





### **Bucket Elimination**

$$\sum_{S_1} P(S_1, S_2, S_3, S_4 = O) = P(S_2)P(S_4 = O|S_2)\dots$$

... 
$$\sum_{S_1} P(S_1) P(S_3|S_1, S_2)$$

■ Cette dernière somme nous rend une table dépendant de  $S_2$  et  $S_3$  :  $T(S_2, S_3)$ 

$$P(S_2, S_3, S_4 = O) = P(S_2)P(S_4 = O|S_2)T(S_2, S_3)$$

■ Idem avec  $S_3$  pour obtenir  $P(S_2, S_4 = O)$ 

Marginalisation = série de produits locaux de matrices et de marginalisations locales

## Message Passing (Pearl 1988)

- Chaque nœud envoie des messages à ses voisins
  - L'algorithme ne marche que dans le cas des arbres
  - (mais est généralisable au cas des poly-arbres)
  - $lackbox{\blacksquare} E = ext{ensemble}$  de variables instanciées.  $E = N_x \cup D_x$



- 2 types de messages  $\lambda$  et  $\pi$  serviront à calculer
  - lacksquare  $\lambda(X) \propto P(D_x|X)$
  - $\blacksquare \pi(X) \propto P(X|N_x)$
- et ensuite on peut montrer que

$$P(X|E=e) \propto \lambda(X)\pi(X)$$

## THE STATE OF THE PROPERTY OF T

## **Message Passing**

- $lue{}$  Les messages  $\lambda$ 
  - $\blacksquare$  Pour chaque enfant Y de X,

$$\lambda_Y(X=x) = \sum_y P(Y=y|X=x)\lambda(Y=y)$$

- Comment calculer  $\lambda$  en chaque nœud?
  - Si X instancié,  $\lambda(X) = [001 \dots 0]$  (la position du 1 correspond à la valeur donnée à X
  - sinon
    - si X est une feuille,  $\lambda(X) = [1 \dots 1]$
    - sinon

$$\lambda(X = x) = \prod_{Y \in Enf(X)} \lambda_Y(X = x)$$



# THE STATE OF THE PARTY OF THE P

## **Message Passing**

- $lue{}$  Les messages  $\pi$ 
  - Pour Z l'unique parent de X,

$$\pi_X(Z=z) = \pi(Z=z) \prod_{U \in Enf(Z) \setminus \{X\}} \lambda_U(Z=z)$$

- Comment calculer  $\pi$  en chaque nœud?
  - Si X instancié,  $\lambda(X) = [001 \dots 0]$  (la position du 1 correspond à la valeur donnée à X
  - sinon
    - si X est la racine,  $\pi(X) = P(X)$
    - sinon

$$\pi(X = x) = \sum_{z} P(X = x | Z = z) \pi_X(Z = z)$$







|     | Pluie = |                            |       |
|-----|---------|----------------------------|-------|
|     | $m_0$   | $m_{\scriptscriptstyle 1}$ | $m_2$ |
| R=O | 0.85    | 0.50                       | 0.05  |
| R=N | 0.15    | 0.50                       | 0.95  |

|               | Pluie = |       |       |
|---------------|---------|-------|-------|
|               | $m_0$   | $m_1$ | $m_2$ |
| F=OK<br>F=BAD | 0.20    | 0.75  | 0.90  |
| F=BAD         | 0.80    | 0.25  | 0.10  |

$$\blacksquare$$
  $E = \emptyset$ 

$$P(F) = ?$$

0.20 0.80

$$P(R) = ?$$

$$P(F) = \sum_{m} P(F|M=m)P(M=m)$$

| 0.85 | 0.50<br>0.50 | 0.05 | 0.56 |
|------|--------------|------|------|
| 0.15 | 0.50         | 0.95 | 0.44 |







F=BAD

0.80

0.25

0.10

 $\blacksquare E = \{M = m_2\}$ 

0.15

0.50

0.95

R=N

- $lacksquare \lambda(M) = \pi(M) = [0 \ 0 \ 1]$  (nœud instancié)
- $\blacksquare P(M|E) \propto \lambda(M)\pi(M) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$  (logique)
- messages envoyés aux enfants :
  - $\blacksquare \pi_R(M) = \pi(M)\lambda_F(M) = [0 \ 0 \ 1]$
  - $\blacksquare \pi_F(M) = \pi(M)\lambda_R(M) = [0 \ 0 \ 1]$





|     | $m_0$ | $m_1$        | $m_2$ |
|-----|-------|--------------|-------|
| R=O | 0.85  | 0.50<br>0.50 | 0.05  |
| R=N | 0.15  | 0.50         | 0.95  |
|     | i     |              |       |

|               | Pluie = |       |       |
|---------------|---------|-------|-------|
|               | $m_0$   | $m_1$ | $m_2$ |
| F=OK<br>F=BAD | 0.20    | 0.75  | 0.90  |
| F=BAD         | 0.80    | 0.25  | 0.10  |

$$lackbox{\blacksquare} E = \{M = m_2\}$$
 suite...

 $\blacksquare$  en R :

$$\blacksquare \pi(R) = P(R|M)\pi_R(M) = [0.05 \ 0.95]$$

$$\lambda(R) = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
 (feuille)

$$P(R|E) \propto \lambda(R)\pi(R) = [0.05 \ 0.95]$$

0 0 1

 0.85
 0.50
 0.05

 0.15
 0.50
 0.95

Pluie=Forte ⇒ Randonnée=Non







 $\blacksquare E = \{M = m_2\} \text{ fin}$ 

0.15

 $\blacksquare$  en F :

R=N

- $\blacksquare \pi(F) = P(F|M)\pi_F(M) = [0.9 \ 0.1]$
- $\lambda(F) = \begin{bmatrix} 1 & 1 \end{bmatrix}$  (feuille)

0.50

0.95

 $P(F|E) \propto \lambda(F)\pi(F) = [0.9 \ 0.1]$ 

Pluie=Forte ⇒ Fleurs arrosées

F=BAD

0.80

0.25

0.10







F=BAD

0.80

0.25

0.10

 $E = \{F = OK(0.2) | BAD(0.8) \}$  (soft evidence)

#### En F:

R=N

0.15

$$\lambda(F) = \pi(F) = [0.2 \ 0.8]$$

0.50

$$P(F|E) \propto \lambda(F)\pi(F) = [0.2 \ 0.8]$$

0.95

message envoyé au parent :

$$\lambda_F(M) = \lambda(F)P(F|M) = [0.68 \ 0.35 \ 0.26]$$

0.20 0.75 0.90 0.80 0.25 0.10

0.2 0.8 0.68 0.35 0.26





 $E = \{F = OK(0.2) | BAD(0.8) \}$  (soft evidence)

### En R:

- $\lambda(R) = \begin{bmatrix} 1 & 1 \end{bmatrix}$  (feuille)
- $\blacksquare \pi(R) = ?$
- message envoyé au parent :

$$\lambda_R(M) = \lambda(R)P(R|M) = [1 \ 1 \ 1]$$







 $E = \{F = OK(0.2) | BAD(0.8) \}$  (soft evidence)

### En M:

- $\lambda(M) = \lambda_R(M)\lambda_F(M) = [0.68 \ 0.35 \ 0.26]$
- $\blacksquare \pi(M) = P(M) = [0.3 \ 0.6 \ 0.1]$  (racine)
- $P(M|E) \propto \lambda(M)\pi(M) = \begin{bmatrix} 0.463 & 0.477 & 0.060 \end{bmatrix}$
- message:  $\pi_R(M) = \pi(M)\lambda_F(M) = [0.204\ 0.216\ 0.026]$





 $E = \{F = OK(0.2) | BAD(0.8) \}$  (soft evidence)

#### Retour en R:

- $\lambda(R) = \begin{bmatrix} 1 & 1 \end{bmatrix}$  (feuille)
- $\blacksquare \pi(R) = P(R|M)\pi_R(M) = [0.283 \ 0.229]$
- $P(R|E) \propto \lambda(R)\pi(R) = \begin{bmatrix} 0.553 & 0.447 \end{bmatrix}$



Fleurs plutôt en mauvais état ⇒ Randonnée = plutôt oui

## **Junction Tree (Jensen 1990)**

- Message Passing ne s'applique bien qu'aux arbres
  - Besoin d'un algorithme plus général
  - Principe
    - Transformer le graphe en un arbre (non orienté)...
    - Arbre = arbre de jonction des cliques maximales du graphe moralisé et triangulé
  - Moralisation = marier les parents et "désorienter" le graphe
  - Triangulation = éviter les cycles dans le graphe non orienté.



Moralisation : marier les parents de chaque nœud

$$S_{1}$$

$$A=Cambriolage$$

$$S_{3}$$

$$P(S_{3}|S_{1},S_{2}) \clubsuit C = Alarme$$

$$S_{1}$$

$$A=Cambriolage$$

$$S_{2}$$

$$A=Cambriolage$$

$$S_{3}$$

$$\Phi(S_{1},S_{2},S_{3}) C = Alarme$$

$$S_{2}$$

$$B = S\acute{e}isme$$

$$S_{2}$$

- Triangulation: tout cycle de longueur au moins 4 doit contenir une corde (arête reliant deux sommets non consécutifs sur le cycle)
- (= aucun sous-graphe cyclique de longueur > 3).
- Triangulation optimale pour des graphes non-dirigés = NP-difficile (comment choisir les meilleures cordes ?)



- Clique = sous-graphe du RB dont les nœuds sont complétement connectés
- Clique maximale = l'ajout d'un autre nœud à cette clique ne donne pas une clique





Théorème : Si le graphe est moralisé et triangulé, alors les cliques peuvent être organisées en un arbre de jonction



$$S_1S_2S_3$$
  $S_2$   $S_4$   $S_4$   $S_4$   $S_5$ 

$$P(S) = \Phi(S1, S2, S3)\Phi(S2, S4)\Phi(S4, S5)$$

L'inférence se fait au niveau des  $\Phi$ 

### **Applications**

- Diagnostic et raisonnement dans des systèmes complexes
- Marketing/Finance (modélisation de risques) :
  - ATT : détection de fraudes (mauvais payeurs) pour les factures de téléphone
  - Altaprofit : optimation de portefeuilles (contrats d'assurance vie)
- Informatique :
  - Microsoft : printer troubleshooting, assistant Office
  - MODIST : évaluation de la qualité pour des développements logiciels





### **Applications**

- Médecine:
  - Aide au diagnostic de problèmes cardio-vasculaires
  - Surveillance transfusionnelle, ...
  - Industrie:
    - NASA : aide au diagnostic de pannes en temps réel pour les systèmes de propulsion de la navette spatiale
    - Lockheed Martin : système de contrôle d'un véhicule sous-marin autonome
    - Ricoh : aide au télédiagnostic
    - EDF : modélisation de groupes electrogènes





### Offre logicielle

- Toolbox
  - Bayes Net Toolbox (BNT) pour Matlab
  - gR, GRAPPA, ... pour  $\mathcal{R}$
  - BNJ, JavaBayes, ... pour Java
- Logiciels non commerciaux
  - Microsoft Belief Network [US]
  - Genie 2/Smile [US]
- Logiciels commerciaux
  - Bayesia [FR]
  - ProBT (inférence probabiliste) [FR]
  - Hugin [DK]
  - Netica [CA]



A Complete Software Package to Solve Problems Using Bayesian Belief Networks and Influence Diagrams







### Références



· Introduction intuitive aux réseaux bayésiens - Fondements théoriques et algorithmes Méthodologie de mise en œuvre Domaines d'application et études de cas détaillées Outils logiciels: Bayes Net Toolbox, BayesiaLab, Hugin et Netica

- Les Réseaux Bayésiens P. Naïm, P.H. Wuillemin, Ph. Leray, O. Pourret, A. Becker (Eyrolles)
- Probabilistic reasoning in Intelligent Systems : **Networks of plausible inference** - J. Pearl (Morgan Kaufman)
- An introduction to Bayesian Networks F. Jensen (Springer Verlag)
- **Probabilistic Networks and Expert Systems** R.G. Cowell & al. (Springer Verlag)
- Learning Bayesian Networks R. Neapolitan (Prenctice Hall)
- Learning in Graphical Models Jordan M.I. ed. (Kluwer)



**EYROLLES**