디지털 영상처리

OpenCV 인터페이스

학습목표

- ▶ OpenCV 프로그래밍 소개
- ▶ 윈도우 제어
- ▶ 이벤트 처리 함수
- ▶ 그리기 함수
- ▶ 영상파일 처리
- ▶ 비디오 처리
- ▶ Matplotlib 패키지 활용

영상을 읽고 표시하기

■ 처음 해보는 OpenCV 프로그래밍

```
영상 파일을 읽고 윈도우에 디스플레이하기
    import cv2 as cv
    import sys
02
03
    img=cv.imread('soccer.jpg') # 영상 읽기
04
05
    if img is None:
06
       sys.exit('파일을 찾을 수 없습니다.')
07
08
09
    cv·imshow('Image Display',img) # 윈도우에 영상 표시
10
11
    cv.waitKey()
   cv.destroyAllWindows()
```


OpenCV에서 영상은 numpy.ndarray 클래스 형의 객체

■ numpy는 다차원 배열을 위한 사실상 표준 모듈

- 이런 이유로 OpenCV는 영상을 numpy.ndarray로 표현
- OpenCV가 다루는 영상은 numpy가 제공하는 다양한 기능(함수)을 사용할 수 있음

OpenCV에서 영상은 numpy.ndarray 클래스 형의 객체

■ numpy는 다차원 배열을 위한 사실상 표준 모듈

- 이런 이유로 OpenCV는 영상을 numpy.ndarray로 표현
- OpenCV가 다루는 영상은 numpy가 제공하는 다양한 기능(함수)을 사용할 수 있음

```
In [1]: type(img)
    numpy.ndarray
In [2]: img.shape
    (948,1434,3)
```

OpenCV에서 영상은 numpy.ndarray 클래스 형의 객체

■ 영상의 표현

- 화소의 위치 (r, c) 또는 (y, x)
- 화솟값 조사

```
In [3]: print(img[0,0,0], img[0,0,1], img[0,0,2]) # (0,0) 화소 조사
162 104 98
In [4]: print(img[0,1,0], img[0,1,1], img[0,1,2]) # (0,1) 화소 조사
163 105 99
```


(a) 프로그램으로 조사

(b) 그림판으로 조사

그림 2-9 img 객체가 표현하는 영상의 구조와 내용

[프로그래밍 예제3] 웹 캠에서 비디오 읽기

■ 웹 캠에서 비디오 읽기

```
웹 캠으로 비디오 획득하기
    import cv2 as cv
02
    import sys
03
04
    cap=cv.VideoCapture(0,cv.CAP_DSHOW) # 카메라와 연결 시도
05
06
    if not cap.isOpened():
       sys.exit('카메라 연결 실패')
07
08
    while True:
09
10
       ret,frame=cap.read()
                                     # 비디오를 구성하는 프레임 획득
11
12
      if not ret:
13
          print('프레임 획득에 실패하여 루프를 나갑니다.')
14
          break
15
16
       cv.imshow('Video display',frame)
17
18
       key=cv.waitKey(1)
                                      # 1밀리초 동안 키보드 입력 기다림
19
       if key==ord('q'):
                                      # 'q' 키가 들어오면 루프를 빠져나감
20
          break
21
    cap.release()
22
                                      # 카메라와 연결을 끊음
    cv.destroyAllWindows()
```


[프로그래밍 예제3] 웹 캠에서 비디오 읽기

■ [웹 캠 프로그램]의 자료구조

(a) frames 리스트

프로그래밍 실습: RGB 채널별로 디스플레이

프로그램 3-1

RGB 컬러 영상을 채널별로 구분해 디스플레이하기

```
import cv2 as cv
01
02
    import sys
03
04
    img=cv.imread('soccer.jpg')
05
    if img is None:
06
07
        sys.exit('파일을 찿을 수 없습니다.')
80
09
    cv.imshow('original_RGB',img)
10
    cv.imshow('Upper left half',img[0:img.shape[0]//2,0:img.shape[1]//2,:])
    cv.imshow('Center half',img[img.shape[0]//4:3*img.shape[0]//4,img.
11
                shape[1]//4:3*img.shape[1]//4,:]
12
13
    cv.imshow('R channel',img[:,:,2])
14
    cv.imshow('G channel',img[:,:,1])
15
    cv.imshow('B channel',img[:,:,0])
16
    cv.waitKey()
17
    cv.destroyAllWindows()
18
```

RGB 채널별로 디스플레이

■ numpy의 슬라이싱 기능을 이용하여 RGB 채널별로 디스플레이

그림 3-8 numpy.ndarray의 슬라이싱을 이용한 영상 일부분 자르기([프로그램 3-1]의 10행)

■ 영상처리

- 2차원 행렬에 대한 연산
- 연산과정에서 행렬 원소 변경
- 전체 영상에 대한 변화 인지하기 어려움

■ 윈도우 영상 표시

- 영상처리로 적용된 행렬 연산의 의미 이해하기 쉬움
- OpenCV에서는 윈도우(window, 창)가 활성화된 상태에서만 마우스나 키보드 이벤트 감지

함수 설명

cv2.namedWindow(winname[, flags]) → None

■설명: 윈도우 이름을 설정한 후, 해당 이름으로 윈도우 생성

인수 설명

■ winname(str)	윈도우 이름
■ flags(int)	윈도우의 크기 조정

옵션	값	설명
cv2,WINDOW_NORMAL	0	윈도우 크기 재조정 가능
cv2,WINDOW_AUTOSIZE	1	표시될 행렬의 크기에 맞춰 자동 조정

cv2.imshow(winname, mat) → None

■설명: winname 이름의 윈도우에 mat 행렬을 영상으로 표시함. 생성된 윈도우가 없으면, winname 이름으로 윈도우를 생성하고, 영상을 표시한다.

인수 설명

■ mat(numpy.ndarray) 윈도우에 표시되는 영상(행렬이 화소값을 밝기로 표시)

cv2.destroyAllWindows() → None

■설명: 인수로 지정된 타이틀 윈도우 파괴

cv2.destroyAllWindows() → None

■설명: HighGUI로 생성된 모든 윈도우 파괴

cv2.moveWindow(winname, x, y) \rightarrow None

■설명: winname 이름의 윈도우를 지정된 위치인 (x, y)로 이동. 이동되는 윈도우의 기준 위치는 좌측 상단임

인수 설명

■ x, y

모니터 안에서 이동하려는 위치의 x, y 좌표

cv2.resizeWindow(winname, width, height) → None

■설명: 윈도우의 크기를 재조정한다.

인수 설명

■ width, height

변경 윈도우의 가로, 세로 크기

■ 예제: move_window.py

```
라이브리리 임포트
          import numpy as np
          import cv2
                              0 원소 행렬 생성
          image = np.zeros((200,300), np.uint8)
          image[:]=200
     6
슬라이스
연산자로
행렬원소값
          title1, title2 = 'Position1', 'Position2'
 지정
          cv2.namedWindow(title1, cv2.WINDOW AUTOSIZE)
          cv2.moveWindow(title1, 150, 150)
    10
    11
          cv2.moveWindow(title2, 400, 50)
    12
    13
          cv2.imshow(title1, image)
    14
          cv2.imshow(title2, image)
          cv2.waitKey(0)
    15
          cv2.destroyAllWindows()
    16
```


■ WINDOW_AUTOSIZE vs. WINDOW_NORMAL

```
import numpy as np
                import cv2
                image = np.zeros((200,300), np.uint8)
 np.ndarray.fill()
함수로 원소값 지정
            6
                image.fill(255)
                title1, title2 = 'AUTOSIZE', 'NORMAL'
                cv2.namedWindow(title1, cv2.WINDOW AUTOSIZE)
                cv2.namedWindow(title2, cv2.WINDOW NORMAL)
           10
           11
                cv2.imshow(title1, image)
           12
                cv2.imshow(title2, image)
           13
                cv2.resizeWindow(title1, 400, 300)
           14
                cv2.resizeWindow(title2, 400, 300)
           15
           16
                cv2.waitKey(0)
                cv2.destroyAllWindows()
           17
```

■ WINDOW_AUTOSIZE vs. WINDOW_NORMAL

이벤트 처리 함수

■ 이벤트

- 프로그램에 의해 감지되고 처리될 수 있는 동작이나 사건
- 예
 - 사용자가 키보드의 키를 누르는 것
 - 마우스를 움직이거나 마우스 버튼을 누르는 것
 - 깊이 들어가면 타이머(timer)와 같은 하드웨어 장치가 발생시키는 이벤트
 - 사용자가 자체적으로 정의하는 이벤트

■ 일반적으로 이벤트를 처리하기 위해 콜백(callback) 함수 사용

■ 콜백 함수

- 개발자가 시스템 함수를 직접 호출하는 방식
- 이벤트가 발생하거나 특정 시점에 도달했을 때 시스템이 개발자가 등록한 함수 호출

■ OpenCV에서도 기본적인 이벤트 처리 함수 지원

■ 키보드 이벤트, 마우스 이벤트, 트랙바(trackbar) 이벤트

키보드 이벤트 제어

■ delay 인수에 따라서 두 가지 모드 동작

함수 설명

cv2.waitKey([, delay]) → retval

■ 설명: delay(ms: milisccond) 시간만큼 키 입력을 대기하고, 키 이벤트가 발생하면 해당 키 값 반환

인수

설명

■ delay 지연 시간, ms 단위

- delay≤0 키 이벤트 발생까지 무한 대기

- delay > 0 지연 시간 동안 키 입력 대기, 지연 시간 안에 키 이벤트 없으면 - 1 반환

cv2.waitKeyEx([, delay]) → retval

■ 설명: cv2.waitKey()와 동일하지만, 전체 키 코드(full key code)를 반환한다. 화살표 키 등을 입력 받을 때 사용 가능 (OpenCV 3.4 이상에서 지원)

마우스 이벤트 제어

함수 설명

def setMouseCallback(windowName, onMouse, param=None) → None

■설명: 사용자가 정의한 마우스 콜백 함수를 시스템에 등록

인수 설명 winname

이벤트 발생을 확인할 윈도우 이름, 문자열

■ onMouse

마우스 이벤트를 처리하는 콜백 함수 이름(콜백함수)

param

이벤트 처리 함수로 전달할 추가적인 사용자 정의 인수

onMouse(event, x, y, flags, param=None)

■설명: 발생한 마우스 이벤트에 대한 처리와 제어를 구현하는 콜백 함수. cv2.setMouseCallback() 함수의 두 번째 인수(onMouse)의 구현부, 따라서 이름이 같아야 함. onMouse() 함수의 인수 구조(인수 타입, 인수 순서 등)를 유지해야 함.

event

발생한 마우스 이벤트의 종류

■ x, y

이벤트 발생 시 마우스 포인터의 x, y 좌표

■ flags

마우스 버튼과 동시에 특수키([Shift], [Alt], [Ctrl])를 눌렀는지 여부 확인

인수	
설명	

옵션	값	설명
cv2,EVENT_FLAG_LBUTTON	1	왼쪽 버튼 누르기
cv2,EVENT_FLAG_RBUTTON	2	오른쪽 버튼 누르기
cv2,EVENT_FLAG_MBUTTON	4	중간 버튼 누르기
cv2,EVENT_FLAG_CTRLKEY	8	[Ctrl] 키 누르기
cv2.EVENT_FLAG_SHIFTKEY	16	[Shift] 키 누르기
cv2,EVENT_FLAG_ALTKEY	32	[Alt] 키 누르기

■ param

콜백 함수로 전달하는 추가적인 사용자 정의 인수

⟨표 4.2.1⟩ 마우스 이벤트 종류

(<u>— 1217</u> - 11 — 12 — 811			
옵션	값	설명	
cv2.EVENT_MOUSEMOVE	0	마우스 움직임	
cv2.EVENT_LBUTTONDOWN	1	왼쪽 버튼 누르기	
cv2.EVENT_RBUTTONDOWN	2	오른쪽 버튼 누르기	
cv2.EVENT_MBUTTONDOWN	3	중간 버튼 누르기	
cv2.EVENT_LBUTTONUP	4	왼쪽 버튼 떼기	
cv2.EVENT_RBUTTONUP	5	오른쪽 버튼 떼기	
cv2.EVENT_MBUTTONUP	6	중간 버튼 떼기	
cv2.EVENT_LBUTTONDBLCLK	7	왼쪽 버튼 더블클릭	
cv2.EVENT_RBUTTONDBLCLK	8	오른쪽 버튼 더블클릭	
cv2.EVENT_MBUTTONDBLCLK	9	중간 버튼 더블 클 릭	
cv2,EVENT_MOUSEWHEEL	10	마우스 휠	
cv2.EVENT_MOUSEHWHEEL	11	마우스 가로 휠	

마우스 이벤트 제어

■ 예제: event_mouse.py

```
import numpy as np
import cv2
                                                         # 콜백 함수 - 이벤트 내용 출력
def onMouse(event, x, y, flags, param):
   if event == cv2.EVENT LBUTTONDOWN:
       print("마우스 왼쪽 버튼 누르기")
   elif event == cv2.EVENT RBUTTONDOWN:
       print("마우스 오른쪽 버튼 누르기")
   elif event == cv2.EVENT_RBUTTONUP:
       print("마우스 오른쪽 버튼 떼기")
   elif event == cv2.EVENT LBUTTONDBLCLK:
       print("마우스 왼쪽 버튼 더블클릭")
image = np.full((200, 300), 255, np.uint8)
                                                         # 영상 생성
                                              # 윈도우 이름
title1, title2 = "Mouse Event1", "Mouse Event2"
cv2.imshow(title1, image) # 영상 보기
cv2.imshow(title2, image)
                                              # 마우스 콜백 함수
cv2.setMouseCallback('Mouse Event1', onMouse)
                                              # 키 이벤트 대기
cv2.waitKey(0)
                                              # 열린 모든 윈도우 제거
cv2.destroyAllWindows()
```

마우스 이벤트 제어

■ 실행 결과

■ 트랙바(trackbar)

■ 일정한 범위에서 특정한 값을 선택할 때 사용하는 일종의 스크롤바 혹은 슬라 이더바

	함수 설명			
	cv2.createTrackbar(trackbarname, winname, value count, onChange) → None ■ 설명: 트랙바를 생성한 후, 지정한 윈도우에 추가하는 함수이다.			
인수 설명	 trackbarname winname value count onChange 	윈도우에 생성되는 트랙바 이름 트랙바의 부모 윈도우 이름(트랙바 이벤트 발생을 체크하는 윈도우) 트랙바 슬라이더의 위치를 반영하는 값(정수) 트랙바 슬라이더의 최댓값, 최솟값은 항상 0 트랙바 슬라이더의 값이 변경될 때 호출되는 콜백 함수		

onChange(pos) → None

■설명: 트랙바 슬라이더의 위치가 변경될 때마다 호출되는 콜백 함수. cv2.createTrackbar()의 마지막 인수와 이름이 같아야 한다.

인수	■ poo	트래바 스카이더 의치
설명	■ pos	드넥마 글다이니 위시

cv2.getTrackbarPos(trackbarname, winname) → retval

■ 설명: 지정한 트랙바의 슬라이더 위치를 반환한다.

cv2.setTrackbarPos(trackbarname, winname, pos) → None

■ 설명: 지정한 트랙바의 슬라이더 위치를 설정한다.

■ 형식

createTrackbar(trackbarname , winname, value , count , onChange , userdata);

예제 4.2.3 트랙바 이벤트 사용 - 05.event_trackbar.py import numpy as np 01 import cv2 02 03 def onChange(value): # 트랙바 콜백 함수 04 # 전역 변수 참조 05 global image, title 96 97 add value = value - int(image[0][0]) # 트랙바 값과 영상 화소값 차분 98 print("추가 화소값:", add_value) image = image + add value *0*9 # 행렬과 스칼라 덧셈 수행 10 cv2.imshow(title, image) 11 image = np.zeros((300, 500), np.uint8) # 영상 생성 13 title = 'Trackbar Event' 15 cv2.imshow(title, image) 16 cv2.createTrackbar('Brightness', title, image[0][0], 255, onChange) # 트랙바 콜백 함수 등록 cv2.waitKey(0) 18 # 열린 모든 윈도우 제거 cv2.destroyAllWindows()

■ 실행 결과

그리기 함수

■ 영상처리 프로그래밍 과정에서 해당 알고리즘 적용시 결과 확인 필요

- 얼굴 검출 알고리즘을 적용했을 때,
 - 전체 영상 위에 검출한 얼굴 영역을 사각형이나 원으로 표시
- 차선 확인하고자 직선 검출 알고리즘을 적용했을 때,
 - 차선을 정확하게 검출했는지 확인하기 위해 도로 영상 위에 선으로 표시

선 그리기

cv2.line(img, start, end, color, thickness)

- Start와 End 점을 연결하여 직선을 그림
 - img 그림을 그릴 이미지 파일
 - **start** 시작 좌표(ex; (0,0))
 - end 종료 좌표(ex; (500. 500))
 - color BGR형태의 Color(ex; (255, 0, 0) -> Blue)
 - **thickness** (*int*) 선의 두께. pixel

Parameter	내용
img	이미지 파일
pt1	시작점 좌표 (x, y)
pt2	종료점 좌표 (x, y)
color	색상 (blue, green, red) 0 ~ 255
thickness	선 두께 (default 1)
lineType	선 종류 (default cv.Line_8) - LINE_8: 8-connected line - LINE_4: 4-connecterd line - LINE_AA: antialiased line
shift	fractional bit (default 0)

사각형 그리기

cv2.rectangle(img, start, end, color, thickness)

- top-left corner와 bottom-right corner점을 연결하는 사각형을 그림
 - img 그림을 그릴 이미지 파일
 - start 시작 좌표(ex; (0,0))
 - end 종료 좌표(ex; (500, 500))
 - **color** BGR형태의 Color(ex; (255, 0, 0) -> Blue)
 - thickness (int) 선의 두께. Pixel
- cv2.rectangle(img, rec, color, thickness)
 - rec 사각형 영역(x, y, w, h)

직선 및 사각형 그리기

```
예제 4.3.1
          │ 직선 & 사각형 그리기 - 07.draw line_rect.pv
01 import numpy as np
02 import cv2
03
04 blue, green, red = (255, 0, 0), (0, 255, 0), (0, 0, 255) # 색상 선언
05 image = np.zeros((400, 600, 3), np.uint8)
                                                          # 3채널 컬러 영상 생성
06 image[:] = (255, 255, 255)
                                                           # 3채널 흰색
97
08 pt1, pt2 = (50, 50), (250, 350)
                                                           # 좌표 선언 - 정수형 튜플
09 pt3, pt4 = (400, 150), (500, 50)
10 \text{ roi} = (50, 200, 200, 100)
                                                           #시각형 영역 - 4원소 튜플
11
12 ## 직선 그리기
13 cv2.line(image, pt1, pt2, red)
14 cv2.line(image, pt3, pt4, green, 3, cv2.LINE AA) # 계단 현상 감소선
15
16 ## 사각형 그리기
17 cv2.rectangle(image, pt1, pt2, blue, 3, cv2.LINE_4) # 4방향 연결선
18 cv2.rectangle(image, roi, red, 3, cv2.LINE 8)
                                             # 8방향 연결선
19 cv2.rectangle(image, (400, 200, 100, 100), green, cv2.FILLED) # 내부 채움
20
21 cv2.imshow("Line & Rectangle", image)
                                                           # 윈도우에 영상 표시
22 cv2.waitKey(θ)
23 cv2.destroyAllWindows()
                                                           # 모든 열린 윈도우 닫기
```

직선 및 사각형 그리기

■ 실행결과

글자 쓰기

■ cv2.putText()

■ 행렬의 특정 위치에 원하는 글자를 써서 영상으로 표시하고 싶을 때 사용

■ 형식

3줄 세리프 폰트

글자 쓰기

함수 설명

cv2.putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) → img

■설명: text 문자열을 org 좌표에 color 색상으로 그린다.

■ img 문자열을 작성할 대상 행렬(영상)

■ text 작성할 문자열

■ org 문자열의 시작 좌표, 문자열에서 가장 왼쪽 하단을 의미

■ fontFace 문자열의 폰트

■ fontScale 글자 크기 확대 비율

■ color 글자의 색상 ■ thichness 글자의 굵기

■ lineTpye 글자 선의 형태

■ bottomLeftOrigin 영상의 원점 좌표 설정(True- 좌하단 왼쪽, False- 좌상단)

-세리프 체

인수

설명

글자의 획 끝에 날카롭게 튀어나온 글자체 명조체, 궁서체 등

-산세리프 체

날카로운 장식선이 없는 글자체 돋움체 , 고딕체

〈표 4.3.1〉 문자열의 폰트(fontFace)에 대한 옵션과 의미

옵션	값	설명
cv2,FONT_HERSHEY_SIMPLEX	0	중간 크기 산세리프 폰트
cv2,FONT_HERSHEY_PLAIN	1	작은 크기 산세리프 폰트
cv2.FONT_HERSHEY_DUPLEX	2	2줄 산세리프 폰트
cv2,FONT_HERSHEY_COMPLEX	3	중간 크기 세리프 폰트
cv2,FONT_HERSHEY_TRIPLEX	4	3줄 세리프 폰트
cv2.FONT_HERSHEY_COMPLEX_SMALL	5	COMPLEX 보다 작은 크기
cv2.FONT_HERSHEY_SCRIPT_SIMPLEX	6	필기체 스타일 폰트
cv2.FONT_HERSHEY_SCRIPT_COMPLEX	7	복잡한 필기체 스타일
cv2.FONT_ITALIC	16	이탤릭체를 위한 플래그

글자! 쓰기

```
예제 4.3.2
           │ 글자 쓰기 - 08.put_text.py
    import numpy as np
01
02
    import cv2
03
    olive, violet, brown = (128, 128, 0), (221, 160, 221), (42, 42, 165) # 색상 지정
                                              # 문자열 위치 좌표
05
    pt1, pt2 = (50, 230), (50, 310)
96
97
    image = np.zeros((350, 500, 3), np.uint8)
                                                                             글자 확대 비율
    image.fill(255)
98
09
    cv2.putText(image, 'SIMPLEX', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, brown)
10
11
    cv2.putText(image, 'DUPLEX', (50, 130), cv2.FONT HERSHEY DUPLEX, 3, olive)
    cv2.putText(image, 'TRIPLEX', pt1, cv2.FONT_HERSHEY_TRIPLEX, 2, violet)
12
    fontFace = cv2.FONT HERSHEY PLAIN | cv2.FONT ITALIC # 글차체 상수
13
                                                                                    기울임체 포함
    cv2.putText(image, 'ITALIC', pt2, fontFace, 4, violet)
14
15
    cv2.imshow('Put Text', image)
16
                                                        # 윈도우 이름 지정 및 영상 표시
                                                        # 케이벤트 대기
17
    cv2.waitKey(0)
```

4.3.2 글자 쓰기

■ 실행결과

4.3.3 원 그리기

- cv2.circle() 함수
 - 원의 중심 좌표(center), 반지름(radius), 선의 색상(color)은 반드시 지정

	함수 설명			
	cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) → img			
■ 설명:	: center를 중심으로	radius 반지름의 원을 그린다.		
	■ img	원을 그릴 대상 행렬(영상)		
	■ center	원의 중심 좌표		
인수	■ radius	원의 반지름		
설명	■ color	선의 색상		
20	■ thickness	선의 두께		
	■ lineType	선의 형태 , cv2.line() 함수의 인수와 동일		
	■ shift	좌표에 대한 비트 시프트 연산		

4.3.3 원 그리기

```
예제 4.3.3
             원 그리기 - 09.draw circle.pv
01
    import numpy as np
02
    import cv2
03
    orange, blue, cyan = (0, 165, 255), (255, 0, 0), (255, 255, 0)
04
05
    white, black = (255, 255, 255), (0, 0, 0)
06
    image = np.full((300, 500, 3), white, np.uint8) # 컬러 영상 생성 및 초기화
97
98
    center = (image.shape[1]//2, image.shape[0]//2)
                                                         # 영상 중심 좌표 - 역순 구성
09
    pt1, pt2 = (300, 50), (100, 220)
10
    shade = (pt2[0] + 2, pt2[1] + 2)
                                                         # 그림자 좌표
11
12
    cv2.circle(image, center, 100, blue)
                                                         # 원 그리기
    cv2.circle(image, pt1, 50, orange, 2)
13
14
    cv2.circle(image, pt2, 70, cyan, -1)
                                                         # 원 내부 채움
15
16
    font = cv2.FONT HERSHEY COMPLEX;
17
    cv2.putText(image, 'center blue', center, font, 1.0, blue)
18
    cv2.putText(image, 'pt1 orange', pt1, font, 0.8, orange)
    cv2.putText(image, 'pt2 cyan', shade, font, 1.2, black, 2) # 그림자 효과
19
20
    cv2.putText(image, 'pt2_cyan', pt2, font, 1.2, cyan, 1)
21
22
    cv2.imshow("Draw circles", image)
23
    cv2.waitKey(0)
```

4.3.3 원 그리기

■ 실행 결과

■ 타원 그리기 인수 의미

함수명과 반환형 및 인수 구조

cv2.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) →img

■설명: center를 중심으로 axes 크기의 타원을 그린다.

	■img	그릴 대상 행렬(영상)
	■ center	원의 중심 좌표
	■axes	타원의 절반 크기(x축 반지름, y축 반지름)
	■angle	타원의 각도 (3시 방향이 0도, 시계방향 회전)
인수	■startAngle	호의 시작 각도
설명	■endAngle	호의 종료 각도
	■ color	선의 색상
	■thickness	선의 두께
	■lineType	선의 형태
	■ shift	좌표에 대한 비트 시프트

```
예제 4.3.4
             타원 및 호 그리기 - 10.draw ellipse.pv
    import numpy as np
01
02
    import cv2
03
04
    orange, blue, white = (0, 165, 255), (255, 0, 0), (255, 255, 255) # 색상 지정
    image = np.full((300, 700, 3), white, np.uint8) # 3채널 행렬 생성 및 초기화
05
96
07
    pt1, pt2 = (180, 150), (550, 150)
                                                       # 타원 중심점
                                    타원각도: 0
98
    size = (120, 60)
                                                       # 타원 크기 – 반지름 값임
09
   cv2.circle(image, pt1, 1, 0, 2)
                                                       # 타원의 중심점(2화소 원) 표시
10
    cv2.circle(image, pt2, 1, 0, 2)
11
12
13
    cv2.ellipse(image, pt1, size, 0, 0, 360, blue, 1) # 타원 그리기
    cv2.ellipse(image, pt2, size, 90, 0, 360, blue, 1)
15
    cv2.ellipse(image, pt1, size, 0, 30, 270, orange, 4) #호그리기
16
    cv2.ellipse(image, pt2, size, 90, -45, 90, orange, 4)
17
18
    cv2.imshow("문자열", image)
19
    cv2.waitKey()
                                                        # 키입력 대기
```

■ 실행 결과

- 영상처리
 - 2차원 데이터에 대한 행렬 연산
- 영상처리 프로그래밍을 한다는 것
 - 영상이라는 2차원 데이터의 원소 값을 개발자가 원하는 방향으로 변경하는
 것
 - 영상을 다루려면 기본적으로 영상의 화소 접근, 값 수정, 새로 만들 수 있어야 함

- 화소 (픽셀)
 - 8비트 그레이 레벨 영상 데이터의 밝기 정도

화소의 십진수 값	화소의 이진수 값	표현되는 밝기	
0	0000 0000	검정색	
:		ž.	
63	0011 1111	어두운 회색	
:		28	
127	0111 1111	회색	
:		1	
191	1011 1111	밝은 회색	
:		1 1	
255	1111 1111	흰색	

- 흑백 영상 ?
 - 단어 자체의 의미: 검은색과 흰색의 영상, 의미 안맞음
- 그레이 스케일(gray-scale) 영상 , 명암도 영상
 - 화소값은 0~255의 값을 가지는데 0은 검은색을, 255는 흰색을 의미
 - 0~255 사이의 값들은 다음과 같이 진한 회색에서 연한 회색

- 영상처리 과정
 - 영상 파일을 읽어 들여 행렬에 저장
 - 행렬 연산 과정에서 행렬의 원소를 필요할 때마다 눈으로 직접 확인
 - 처리된 결과 행렬을 영상 파일로 저장 →
- 영상파일을 처리해 주는 함수와 활용 방법 필수

함수설명				
cv2.imread(filename[, flags]) → retval ■설명: 지정한 영상파일로부터 영상을 적재한 후, 행렬로 반환한다.				
인수	■ filename	적재할 영상파일 이름(디렉터리 구조 포함)		
설명	설명 ■ flags 적재한 영상을 행렬로 반환될 때 컬러 타입을 결정하는 상수			
cv2.imwrite(filename, img[, params]) → retval ■설명: img 행렬을 지정한 영상파일로 저장한다.				
인수	■ filename	저장할 영상파일 이름(디렉터리 구조 포함), 확장자명에 따라 영상파일 형식 결정		
설명	■ img	저장하고자 하는 행렬(영상)		
20	■ params	압축 방식에 사용되는 인수 쌍(paramld, paramValue)		

⟨표 4.4.1⟩ 행렬의 컬러 타입 결정 상수

옵션	값	설명	
cv2.IMREAD_UNCHANGED	-1	입력 파일에 정의된 타입의 영상을 그대로 반환(알파(alpha) 채널 포함)	
cv2.IMREAD_GRAYSCALE	0	명암도(grayscale) 영상으로 변환하여 반환	
cv2.IMREAD_COLOR	1	컬러 영상으로 변환하여 반환	
cv2.IMREAD_ANYDEPTH	2	입력 파일에 정의된 깊이(depth)에 따라 16비트/32비트 영상으로 변환, 설정되지 않으면 8비트 영상으로 변환	
cv2,IMREAD_ANYCOLOR	4	입력 파일에 정의된 타입의 영상을 반환	

```
예제 4.4.1
              영상파일 읽기1 - 12.read_image1.py
    import cv2
01
02
03
    def print matInfo(name, image):
                                                          # 행렬 정보 출력 함수
         if image.dtype == 'uint8':
                                        mat type = 'CV 8U'
04
05
         elif image.dtype == 'int8':
                                        mat_type = 'CV 8S'
         elif image.dtype == 'uint16':
                                        mat type = 'CV 16U'
06
07
         elif image.dtype == 'int16':
                                        mat type = 'CV 16S'
         elif image.dtype == 'float32': mat_type = 'CV_32F'
98
         elif image.dtype == 'float64': mat type = 'CV 64F'
09
         nchannel = 3 if image.ndim == 3 else 1
10
11
12
         ## depth, channel 출력
13
         print("%12s: depth(%s), channels(%s) -> mat type(%sC%d)"
14
              % (name, image.dtype, nchannel, mat type, nchannel))
15
    title1, title2 = 'gray2gray', 'gray2color'
                                                                            # 윈도우 이름
    gray2gray = cv2.imread("images/read gray.jpg", cv2.IMREAD GRAYSCALE)
                                                                            # 명암도
17
    gray2color = cv2.imread("images/read gray.jpg", cv2.IMREAD COLOR)
                                                                            # 컬러 영상
19
                                                            Run: 12.read_image1 ▼
                                                                                                                         r¢:
    ## 예외처리 -영상파일 읽기 여부 조사
                                                             C:\Python\python. exe D:/source/chap04/12. read_image1. py
                                                             Traceback (most recent call last):
    if gray2gray is None or gray2color is None:
21
                                                               File "D:/source/chap04/12.read_image1.py", line 23, in <module>
         raise Exception("영상파일 읽기 에러")
22
                                                                 raise Exception("영상파일 읽기 에러")
                                                             Exception: 영상파일 읽기 에러
```

```
print("행렬 좌표 (100, 100) 화소값")
24
    print("%s %s" % (title1, gray2gray[100, 100])) # 행렬 내 한 화소값 표시
25
26
    print("%s %s\n" % (title2, gray2color[100, 100]))
27
28
    print_matInfo(title1, gray2gray)
                                                      # 행렬 정보 출력 함수 호출
29
    print_matInfo(title2, gray2color)
30
                                                      # 행렬 정보를 영상으로 띄우기
31
    cv2.imshow(title1, gray2gray)
    cv2.imshow(title2, gray2color)
32
33 cv2.waitKey(0)
```

- CV_8U: 8-bit unsigned integer: uchar (0~255)
- CV_8S: 8-bit signed integer: schar (-128~127)
- CV_16U: 16-bit unsigned integer: ushort (0~65535)
- CV_16S: 16-bit signed integer: short (-32768~32767)
- CV 32S: 32-bit signed integer: int (-2147483648~2147483647)
- CV 32F: 32-bit floating-point number: float (-LT MAX~FLT MAX, INF, NAN)
- CV 64F: 64-bit floating-point number: double (-DBL MAX~ DBL MAX, INF, NAN)
- Multi-channel array: CV_8UC3, CV_8U(3), CV_64FC4, CV_64FC(4)
- CV 8UC1에서
 - CV : 컴퓨터비전의 약자
 - 8 : 비트단위, 하나의 픽셀을 표현하기 위해서 8bits를 활용하겠다는 의미.
 - U: unsigned의 약자 (S: signed, F: floating)
 - C1 : channel-1, 즉 채널 1개를 의미

■ 실행결과

모듈 임포트 하기

- 모듈 라이브러리 파일 만들기
 - 프로젝트 루트 폴더(source)에서 마우스 우버튼 눌러 'Common' 이름으로 폴 더 생성
 - 루트 폴더에 'Common' 폴더를 두는 것
 - 'Common' 폴더에서 파이썬 소스 파일(utils.py) 추가


```
예제 4.4.2
            영상파일 읽기(컬러) - 13.read_image2.py
                                                         저자 생성 모듈의 함수 임포트
    import cv2
01
    from Common.utils import print matInfo # 행렬 정보 출력 함수 임포트
02
03
04
    title1, title2 = 'color2gray', 'color2color'
05
    color2gray = cv2.imread("images/read_color.jpg", cv2.IMREAD_GRAYSCALE)
    color2color = cv2.imread("images/read color.jpg", cv2.IMREAD COLOR)
96
    if color2gray is None or color2color is None:
                                                      # 예외처리
97
        raise Exception("영상파일 읽기 에러")
98
09
10
    print("행렬 좌표(100, 100) 화소값")
11
    print("%s %s" % (title1, color2gray[100, 100])) # 한 화소값 표시
12
    print("%s %s\n" % (title2, color2color[100, 100]))
13
14
    print matInfo(title1, color2gray)
                                                      # 행렬 정보 출력
    print matInfo(title2, color2color)
15
                                                      # 행렬 정보 영상으로 띄우기
16
    cv2.imshow(title1, color2gray)
    cv2.imshow(title2, color2color)
17
18
   cv2.waitKey(0)
```

■ 실행결과

컬러 영상도 명암도 타입으로 읽으면 1채널 영상이 됨

4.4.2 행렬을 영상파일로 저장

- cv2.imwrite() 함수
 - 행렬을 영상 파일로 저장
 - 확장자에 따라서 JPG, BMP, PNG, TIF, PPM 등의 영상 파일 포맷 저장 가능

(표 4.4.3) 압축 방식에 사용되는 params 인수 튜플(paramld, paramValue)의 예시

paramld	paramValue (기본값)	설명	
cv2.IMWRITE_JPEG_QUALITY	0~100 (95)	JPG 파일 화질, 높은 값일수록 화질 좋음	
cv2.IMWRITE_PNG_COMPRESSION	0~9 (3)	PNG 파일 압축 레벨, 높은 값일수록 용량은 적어지고, 압축 시간이 길어짐	
cv2.IMWRITE_PXM_BINARY	0 or 1 (1)	PPM, PGM 파일의 이진 포맷 설정	

4.4.2 행렬을 영상파일로 저장

예제 4.4.3 행렬 영상 저장1 - 15.write_image1.py 01 import cv2 02 03 image = cv2.imread("images/read_color.jpg", cv2.IMREAD_COLOR) if image is None: raise Exception("영상파일 읽기 에러") # 예외처리 04 05 06 params_jpg = (cv2.IMWRITE_JPEG_QUALITY, 10) # JPEG 화질 설정 07 # PNG 압축 레벨 설정 params png = [cv2.IMWRITE PNG COMPRESSION, 9] 08 09 ## 행렬을 영상파일로 저장 cv2.imwrite("images/write test1.jpg", image) 10 # 디폴트는 95 11 cv2.imwrite("images/write_test2.jpg", image, params_jpg) # 지정한 화질로 저장 12 cv2.imwrite("images/write test3.png", image, params png) 13 # BMP 파일로 저장 cv2.imwrite("iamges/write test4.bmp", image) print("저장 완료") 14

4.4.2 행렬을 영상 파일로 저장

■ 실행결과

- 동영상 파일
 - 초당 30프레임 저장, 압축 필요 → 압축 코덱(codec) 사용함
- OpenCV는 동영상을 처리할 수 있는 클래스 제공

VideoCapture 클래스 함수 설명

cv2.VideoCapture() → ⟨VideoCapture object⟩

cv2.VideoCapture(filename) → ⟨VideoCapture object⟩

cv2.VideoCapture(device) → ⟨VideoCapture object⟩

■ 설명: 생성자, 3가지 VideoCapture 객체 선언 방법을 지원한다.

인수

■ filename

개방할 동영상파일의 이름 혹은 영상 시퀀스

설명

device

개방할 동영상 캡처 장치의 ID(카메라 한대만 연결되면 0을 지정)

cv2.VideoCapture.open(filename) → retval

cv2.VideoCapture.open(device) → retval

■ 설명: 동영상 캡처를 위한 동영상파일 혹은 캡처 장치를 개방한다.

cv2.VideoCapture.isOpened() → retval

설명: 캡처 장치의 연결 여부를 반환한다.

cv2.VideoCapture,release() → None

■설명: 동영상파일이나 캡처 장치를 해제한다. (클래스 소멸자에 의해서 자동으로 호출되므로 명시적으로 수행하지 않아도 됨)

cv2.VideoCapture.get(propld) → retval

■ 설명: 비디오 캡처의 속성 식별자로 지정된 속성의 값을 반환한다. 캡처 장치가 제공하지 않는 속성은 0을 반환한다.

인수 설명 **propld**

속성 식별자 - 〈표 4.5.1〉에서 정리

cv2.VideoCapture.set(propld, value) → retval

■ 설명: 지정된 속성 식별자로 비디오 캡처의 속성을 설정한다.

인수

propld

속성 식별자

설명 ■ value

속성 값

cv2.VideoCapture.grab() → retval

■ 설명: 캡처 장치나 동영상파일에서 다음 프레임을 잡는다.

retrieve([, image[, flag]]) → retval, image

■설명: grab()으로 잡은 프레임을 디코드해서 image 행렬로 전달한다.

인수

■ image

flag

잡은 프레임이 저장되는 행렬

설명

프레임 인덱스

cv2. VideoCapture.read([image]) → retval, image

■설명: 캡처 장치나 동영상파일에서 다음 프레임을 잡아 디코드해서 image 행렬로 전달한다.

VideoWriter 클래스 설명

cv2.VideoWriter([filename, fourcc, fps, frameSize[, isColor]]) → ⟨VideoWriter object⟩

cv2.VideoWriter.open(filename, fourcc, fps, frameSize[, isColor]) → retval

인수 설명 ■ filename 출력 동영상파일의 이름

■ fourcc 프레임 압축에 사용되는 코덱의 4-문자

■fps 생성된 동영상 프레임들의 프레임률(초당 프레임수)

■ frameSize 동영상 프레임의 크기(가로×세로)

■isColor True면 컬러 프레임으로 인코딩, False면 명암도 프레임으로 인코딩

cv2. VideoWriter. isOpened() → retval

■설명: 캡처 장치나 동영상파일이 열려있는지 확인한다.

cv2. Video Writer. write (image) → None

■설명: image 프레임을 파일로 저장한다.

cv2. Video Writer. open()

■설명: 영상을 동영상파일의 프레임으로 저장하기 위해 동영상파일을 개방한다. 인수는 생성자의 인수와 동일하다.

cv2.VideoWriter.isOpened()

■설명: 동영상파일 저장을 위해 VideoWriter 객체의 개방 여부를 확인한다.

⟨표 4.5.1⟩ 카메라의 주요 속성 식별자

·			
속성 상수	설명	T&U	00.019
cv2.CAP_PROP_POS_MSEC	동영상파일의 현재 위치인 밀리초(millisecond)	ESSENTIALS	Home >> Video Codecs by FOURCC
cv2.CAP_PROP_POS_FRAMES	캡처되는 프레임의 번호	What is a FOURCC? Video Codecs by FOURCC	These are the FOURCCs I know about that refer to compressed formats (the ones that you see displayed when you don't have the right codec installed to play a given AVI file). If you know of any more, please drop me a line.
cv2.CAP_PROP_POS_AVI_RATIO	동영상파일의 상대적 위치 (0 - 시작, 1 - 끝)	Identify by FOURCC Download video codecs	Quickjump: 0-9 A B C D E F G H I J K L M N O
cv2.CAP_PROP_FRAME_WIDTH	프레임의 너비	TECHNICAL RGB Formats	PQRSTUVWXYZ
cv2.CAP_PROP_FRAME_HEIGHT	프레임의 높이	YUV Formats Graphics Chips Sample Code	0-9 1978: A.M.Paredes predictor 2VUY: 2VUY / BlackMagic
cv2.CAP_PROP_FPS	초당 프레임 수	Registration Help me out	3IV0: 3ivx 3IV1: 3ivx 3IV2: 3ivx
cv2.CAP_PROP_FOURCC	코덱의 4문자		
cv2.CAP_PROP_FRAME_COUNT	동영상파일의 총 프레임 수		
cv2.CAP_PROP_FORMAT	cv2.VideoCatpure.retrieve()이 반환하는 행렬 포	맷	
cv2.CAP_PROP_BRIGHTNESS	카메라에서 영상의 밝기		
cv2.CAP_PROP_CONTRAST	카메라에서 영상의 대비		
cv2.CAP_PROP_SATURATION	카메라에서 영상의 포화도		
cv2.CAP_PROP_HUE	카메라에서 영상의 색상		
cv2.CAP_PROP_GAIN	카메라에서 영상의 Gain		
cv2.CAP_PROP_EXPOSURE	카메라에서 노출		
cv2.CAP_PROP_AUTOFOCUS	자동 초점 조절		_

Video Cadecs by FOURCC - fou x + ← → C 🖒 🗎 fourcc.org/codecs.php

☆ 🖭 🔯 🛘 🕦 S C font 🔇 📗

〈표 4.5.2〉 주요 코덱 문자

속성 상수	설명
cv2.VideoWriter_fourcc('D', 'I', 'V', '4') cv2.VideoWrite_fourcc(*'DIV4')	DivX MPEG-4
cv2.VideoWriter_fourcc('D', 'I', 'V', '5') cv2.VideoWrite_fourcc(*'DIV5')	Div5
cv2.VideoWriter_fourcc('D', 'I', 'V', 'X') cv2.VideoWrite_fourcc(*'DIVX')	DivX
cv2.VideoWriter_fourcc('D', 'X', '5', '0') cv2.VideoWrite_fourcc(*'DX50')	DivX MPEG-4
cv2.VideoWriter_fourcc('F', 'M', 'P', '4') cv2.VideoWrite_fourcc(*'FMP4')	FFMpeg
cv2.VideoWriter_fourcc('1', 'Y', 'U', 'V') cv2.VideoWrite_fourcc(*'TYUV')	IYUV
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') cv2.VideoWrite_fourcc(*'MJPG')	Motion JPEG codec
cv2.VideoWriter_fourcc'M', 'P', '4', '2') cv2.VideoWrite_fourcc(*'MP42')	MPEG4 v2
cv2.VideoWriter_fourcc('M', 'P', 'E', 'G') cv2.VideoWrite_fourcc(*'MPEG')	MPEG codecs
cv2.VideoWriter_fourcc('X', 'V', 'I', 'D') cv2.VideoWrite_fourcc(*'XVID')	XVID codecs
cv2.VideoWriter_fourcc('X', '2', '6', '4') cv2.VideoWrite_fourcc(*'X264')	H.264/AVC codecs
-1	코덱 선택 대화상자 띄움

4.5.1 카메라에서 프레임 읽기

```
예제 4.5.1
              카메라 프레임 읽기 - 17.read_pccamera.py
01
    import cv2
02
    def put string(frame, text, pt, value, color=(120, 200, 90)): #문자열 출력 함수
03
        text += str(value)
04
05
        shade = (pt[0] + 2, pt[1] + 2)
96
        font = cv2.FONT HERSHEY SIMPLEX
        cv2.putText(frame, text, shade, font, 0.7, (0, 0, 0), 2)
97
                                                                   # 그림자 효과
98
        cv2.putText(frame, text, pt , font, 0.7, color, 2)
                                                                   # 글자 적기
09
    capture = cv2.VideoCapture(0)
10
                                                           # 0번 카메라 연결
                                                            # 카메라 연결 예외처리
11
    if capture.isOpened() == False:
                                                     Run: 17.read_pccamera 🔻
                                                                                                                 ф —
12
         raise Exception("카메라 연결 안됨")
                                                      C:\Python\python. exe D:/source/chap04/17. read pccamera. py
                                                      Traceback (most recent call last):
13
                                                        File "D:/source/chap04/17. read pccamera. py", line 11, in \(\)module\(\)
                                                         if capture.isOpened() == False: raise Exception("카메라 연결 아됨")
                                                      Exception: 카메라 연결 안됨
    ## 카메라 속성 획득 및 출력
    print("나비 %d" % capture.get(cv2.CAP_PROP_FRAME_WIDTH))
16
    print("높이 %d" % capture.get(cv2.CAP PROP FRAME HEIGHT))
17
    print("노출 %d" % capture.get(cv2.CAP PROP EXPOSURE))
18
    print("밝기 %d" % capture.get(cv2.CAP PROP BRIGHTNESS))
19
```

4.5.1 카메라에서 프레임 읽기

```
14 ## 카메라 속성 획득 및 출력
    print("니비 %d" % capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    print("높이 %d" % capture.get(cv2.CAP PROP FRAME HEIGHT))
16
    print("上叁 %d" % capture.get(cv2.CAP PROP EXPOSURE))
18
    print("밝기 %d" % capture.get(cv2.CAP PROP BRIGHTNESS))
19
20
    while True
                                                       #무한 반복
                                                       # 카메라 영상 받기
21
        ret, frame = capture.read()
22
        if not ret: break
        if cv2.waitKey(30) >= 0: break
                                                       # 종료 조건 - 스페이스바 키
23
24
25
        exposure = capture.get(cv2.CAP PROP EXPOSURE) # 노출 속성 획득
         put string(frame, 'EXPOS: ', (10, 40), exposure)
26
        title = "View Frame from Camera"
27
28
        cv2.imshow(title, frame)
                                                       # 윈도우에 영상 띄우기
    capture.release()
```

4.5.4 동영상파일 읽기

```
예제 4.5.4
            동영상파일 읽기 - 20.read_video_file.py
   import cv2
01
   from Common.utils import put string
                                                     # 글쓰기 함수 임포트
03
   capture = cv2.VideoCapture("images/video file.avi") # 동영상파일 개방
04
05
   if not capture.isOpened(): raise Exception("동영상파일 개방 안됨")
                                                                     # 예외 처리
06
   frame_rate = capture.get(cv2.CAP_PROP_FPS)
                                                     # 초당 프레임 수
                                                     # 지연 시간
   delay = int(1000 / frame rate)
98
   frame cnt = 0
                                                     # 현재 프레임 번호
```

```
11 while True:
12
         ret, frame = capture.read()
        if not ret or cv2.waitKey(delay) >= 0: break
13
                                                     # 프레임 간 지연 시간 지정
         blue, green, red = cv2.split(frame)
14
                                                      # 컬러 영상 채널 분리
15
         frame cnt += 1
16
         if 100 <= frame cnt < 200: cv2.add(blue, 100, blue)
                                                                # blue 채널 밝기 증가
17
         elif 200 <= frame_cnt < 300: cv2.add(green, 100, green)
                                                                # green 채널 밝기 증가
18
19
         elif 300 <= frame cnt < 400: cv2.add(red , 100, red)
                                                                # red 채널 밝기 증가
20
         frame = cv2.merge( [blue, green, red] )
                                                                # 단일채널 영상 합성
21
         put string(frame, 'frame cnt: ', (20, 30), frame cnt)
22
         cv2.imshow("Read Video File", frame)
23
24 capture.release()
```

4.5.4 동영상파일 읽기

```
11 while True:
12
        ret, frame = capture.read()
        if not ret or cv2.waitKey(delay) >= 0: break # 프레임 간 지연 시간 지정
13
         blue, green, red = cv2.split(frame)
14
                                           # 컬러 영상 채널 분리
15
        frame cnt += 1
16
17
        if 100 <= frame_cnt < 200: cv2.add(blue, 100, blue) # blue 채널 밝기 증가
18
        elif 200 <= frame_cnt < 300: cv2.add(green, 100, green) # green 채널 밝기 증가
         elif 300 <= frame_cnt < 400: cv2.add(red , 100, red) # red 채널 밝기 증가
19
20
        frame = cv2.merge( [blue, green, red] )
                                                            # 단일채널 영상 합성
21
22
         put_string(frame, 'frame_cnt: ', (20, 30), frame_cnt)
23
         cv2.imshow("Read Video File", frame)
24 capture.release()
```

4.5.4 동영상파일 읽기

■ 실행결과

연습문제1

- PC 카메라를 통해 받아온 프레임에 다음의 영상처리를 수행하고, 결과 영상을 윈도우에 표시하는 프로그램을 작성하시오
 - (200, 100)좌표에서 100X200 크기의 관심 영역 지정
 - 관심 영역에서 녹색 성분을 50만큼 증가
 - 관심 영역의 테두리를 두께 3의 빨간색으로 표시

연습문제2

■ 다음의 마우스 이벤트 제어 프로그램을 작성하시오

- 마우스 오른쪽 버튼 클릭 시 원(클릭 좌표에서 반지름 20화소)을 그린다
- 마우스 왼쪽 버튼 클릭 시 사각형(크기 30 x 30)을 그린다.
- 추가
 - 트랙바를 추가해서 선의 굵기를 1~10 픽셀로 조절한다.
 - 트랙바를 추가해서 원의 반지름을 1~ 50픽셀로 조절한다.

