Exemple de transformation en forme générale

Le système est réécrit dans sa forme générale comme suit :

$$x + y - s_1 = 0 \quad \land \\ 2x - y - s_2 = 0 \quad \land \\ -x + 2y - s_3 = 0 \quad \land \\ s_1 \ge 2 \quad \land \\ s_2 \ge 0 \quad \land \\ s_3 \ge 1$$

Transformation en forme générale

- Les variables s_1, \ldots, s_m sont appelées variables additionnelles.
- Les variables x_1, \ldots, x_n dans les contraintes intitiales sont appelées les variables du problème.
- ullet On a donc n variables du problème et m variables additionnelles.
- Une variable additionnelle est introduite seulement si L' n'est pas réduite à une variable du problème ou si elle n'a pas déjà été affectée à une variable additionnelle précédemment.

Arithmétique linéaire

M2 Info. 2021-2022

6 / 25

D. Delahaye

Arithmétique linéa

M2 Info. 2021-2022

. . .

Simplexe généralisé

D. Delahaye

Représentation matricielle

- On peut représenter les coefficients du système de contraintes comme une matrice A de dimension $m \times (n + m)$.
- Les variables $x_1, \ldots, x_n, s_1, \ldots, s_m$ sont écrites comme un vecteur x.
- Avec cette notation, notre problème est équivalent à rechercher l'existence d'un vecteur x t.q. :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

où $l_i \in \{-\infty\} \cup \mathbb{Q}$ est la borne inférieure de s_i et $u_i \in \{+\infty\} \cup \mathbb{Q}$ est la borne supérieure de s_i .

Les valeurs infinies sont pour les cas où il n'y a pas de borne.

Simplexe généralisé

Représentation matricielle

- On peut représenter les coefficients du système de contraintes comme une matrice A de dimension $m \times (n + m)$.
- Les variables $x_1, \ldots, x_n, s_1, \ldots, s_m$ sont écrites comme un vecteur x.
- Avec cette notation, notre problème est équivalent à rechercher l'existence d'un vecteur x t.q. :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

où $l_i \in \{-\infty\} \cup \mathbb{Q}$ est la borne inférieure de s_i et $u_i \in \{+\infty\} \cup \mathbb{Q}$ est la borne supérieure de s_i .

Les valeurs infinies sont pour les cas où il n'y a pas de borne.

D. Delahaye

Arithmétique linéaire

M2 Info. 2021-2022

8 / 25

D. Delahaye

Arithmétique linéa

Exemple de représentation matricielle

Pour le système de contraintes suivant :

$$x + y - s_1 = 0 \quad \land \\ 2x - y - s_2 = 0 \quad \land \\ -x + 2y - s_3 = 0 \quad \land \\ 2 \le s_1 \quad \land \\ 0 \le s_2 \quad \land \\ 1 \le s_3$$

On a la représentation matricielle suivante :

$$\left(\begin{array}{cccccc}
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-1 & 2 & 0 & 0 & -1
\end{array}\right)$$

Simplexe généralisé

Représentation sous forme de tableau

- Une partie de la matrice est diagonale de dimension $m \times m$ dont les coefficients sont -1 (conséquence directe de la forme générale).
- L'ensemble des m variables est appelé ensemble des variables basiques (ou dépendantes) et est noté \mathcal{B} .
- ullet L'ensemble des autres n variables est appelé ensemble des variables non basiques et est noté ${\mathcal N}$
- On peut représenter A sous la forme d'un tableau, qui est simplement A sans la matrice diagonale et qui est indexé par les variables basiques en ligne et par les variables non basiques en colonne.

D. Delahaye

Arithmétique linéaire

M2 Info. 2021-2022

10 / 25

D. Delahaye

Arithmétique linéaire

M2 Info. 2021-2022

Simplexe généralisé

Exemple de représentation sous forme de tableau

Pour la représentation matricielle suivante :

$$\left(\begin{array}{cccccc}
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-1 & 2 & 0 & 0 & -1
\end{array}\right)$$

On aura le tableau suivant :

$$\begin{array}{c|cccc}
 & x & y \\
\hline
s_1 & 1 & 1 \\
\hline
s_2 & 2 & -1 \\
\hline
s_3 & -1 & 2 \\
\end{array}$$

Simplexe généralisé

Représentation sous forme de tableau

• Le tableau est simplement une représentation différente de A, puisque Ax = 0 peut être réécrit en :

$$\bigwedge_{x_i \in \mathcal{B}} (x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j)$$

• L'algorithme du simplexe travaillera sur cette représentation.

D. Delahaye

Arithmétique linéair

M2 Info. 2021-2022

12 / 25

D. Delahaye

Arithmétique linéa

Affectation et initialisation de l'algorithme

- En plus de la structure de tableau, le simplexe maintient une affectation des variables $\alpha: \mathcal{B} \cup \mathcal{N} \to \mathbb{Q}$.
- L'algorithme est initialisé comme suit :
 - ightharpoonup L'ensemble $\mathcal B$ est initialisé avec les variables additionnelles.
 - \triangleright L'ensemble $\mathcal N$ est initialisé avec les variables du problème.
 - $\alpha(x_i) = 0$, pour tout x_i avec $i \in \{1, ..., n+m\}$.
 - On se donne un ordre fixe sur les variables x_i avec $i \in \{1, ..., n+m\}$.
- Si l'affectation initiale de zéro à toutes les variables satisfait toutes les bornes inférieures et supérieures des variables basiques, alors la formule peut être déclarée satisfiable (les variables non basiques n'ont pas de bornes explicites).
- Sinon l'algorithme doit changer son affectation.

Simplexe généralisé

Algorithme

- ① S'il n'y a pas de variable de base qui ne respecte pas ses bornes, retourner « Satisfiable ». Sinon, x_i est la première variable basique dans l'ordre sur les variables qui ne respecte pas ses bornes.
- 2 Rechercher la première variable non basique appropriée x_j dans l'ordre sur les variables pour la faire pivoter avec x_i . S'il n'y a pas de telle variable, retourner « Insatisfiable ».
- 3 Effectuer l'opération de pivot sur x_i et x_j .
- 4 Aller à l'étape 1.

D. Delahaye

Arithmétique linéaire

M2 Info. 2021-2022

14 / 25

D. Delahave

rithmétique linéair

M2 Info. 2021-2022

. .

Simplexe généralisé

Algorithme

- L'algorithme maintient deux invariants :
 - ► (Inv-1) Ax = 0
 - (Inv-2) les variables non basiques sont dans leurs bornes :

$$l_j \leq \alpha(x_j) \leq u_j$$
, pour tout $x_j \in \mathcal{N}$

• Ces deux invariants sont satisfaits initialement car toutes les variables dans x sont à 0, et les variables non basiques non pas de bornes.

Simplexe généralisé

Algorithme

- La boucle principale de l'algorithme vérifie s'il existe une variable basique qui ne respecte pas ses bornes.
- S'il n'y a pas de telle variable, alors les variables basiques et non basiques satisfont leurs bornes.
- En raison de l'invariant Inv-1, ceci signifie que l'assignation courante α satisfait :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

et l'algorithme retourne « Satisfiable ».

D. Delahaye

Arithmétique linéair

M2 Info. 2021-2022

6 / 25

D. Delahaye

Arithmétique linéa

Simplexe généralisé

Algorithme

- Sinon, soit x_i la variable basique qui ne respecte pas ses bornes, et supposons, sans perte de généralité, que $\alpha(x_i) > u_i$, c'est-à-dire que la borne supérieure de x_i n'est pas respectée.
- Comment pouvons-nous modifier l'affectation de x_i pour qu'elle satisfasse ses bornes? Nous devons trouver un moyen de réduire la valeur de x_i .
- Rappelons comment cette valeur est calculée :

$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$

Algorithme

- La valeur de x_i peut être réduite :
 - En diminuant la valeur d'une variable non basique x_j telle que $a_{ij} > 0$ et que son affectation actuelle est supérieure à sa borne inférieure l_i .
 - Ou en augmentant la valeur d'une variable x_j telle que $a_{ij} < 0$ et que son affectation actuelle est inférieure à sa borne supérieure u_i .
- Une variable x_j qui remplit l'une de ces conditions est dite appropriée ou acceptable. S'il n'y a pas de variables appropriées, alors le problème est insatisfiable et l'algorithme se termine.

D. Delahaye

Arithmétique linéaire

M2 Info. 2021-2022

18 / 25

D. Delahaye

Arithmétique linéa

M2 Info. 2021-2022

Simplexe généralisé

Algorithme

• Soit θ qui dénote de combien nous devons augmenter (ou diminuer) $\alpha(x_i)$ afin de respecter la borne supérieure u_i de x_i :

$$\theta = \frac{u_i - \alpha(x_i)}{a_{ij}}$$

- Augmenter (ou diminuer) x_j de θ place x_i dans ses bornes. En revanche, x_j ne satisfait plus nécessairement ses bornes, et peut donc ne plus respecter l'invariant Inv-2.
- Il faut donc intervertir x_i et x_j dans le tableau, c'est-à-dire que nous rendons x_i non basique et x_j basique. Cela nécessite une transformation du tableau, qui se fait selon la méthode du pivot.
- L'opération de pivotement est répétée jusqu'à ce qu'une jusqu'à ce qu'une affectation satisfaisante soit trouvée, ou que le système soit déterminé comme étant insatisfiable.

Simplexe généralisé

Méthode du pivot

- Supposons que nous souhaitons intervertir x_i avec x_j .
- L'élément a_{ij} est appelé le pivot. La colonne de x_j est appelée la colonne pivot. La ligne i est appelée la ligne pivot.
- Une précondition pour intervertir deux variables x_i et x_j est que le pivot est non nul, à savoir $a_{ii} \neq 0$.
- L'opération de pivotement est réalisée comme suit :
 - **1** Résoudre la ligne i pour x_i .
 - 2 Pour toutes les lignes $l \neq i$, éliminer x_j en utilisant l'égalité pour x_j obtenue à partir de la ligne i.

D. Delahaye Arithmétique linéaire M2 Info. 202

M2 Info. 2021-2022 20 / 25

D. Delahaye

Arithmétique linéaire

Suite de l'exemple

- La borne inférieure de s_1 est 2 et elle n'est pas respectée.
- La variable non basique qui est la plus basse dans l'ordre est x.
- La variable x a un coefficient positif, mais pas de borne supérieure.
- La variable x convient donc pour l'opération de pivotement.
- On doit augmenter s_1 de 2 afin de respecter la borne inférieure, ce qui signifie que x doit également être augmentée de 2 ($\theta = 2$).

Simplexe généralisé

Suite de l'exemple

• La première étape est de résoudre la ligne de s_1 pour x:

$$s_1 = x + y \Leftrightarrow x = s_1 - y$$

• On utilise cette égalité pour remplacer x dans les autres lignes :

$$s_2 = 2(s_1 - y) - y \Leftrightarrow s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \Leftrightarrow s_3 = -s_1 + 3y$

D. Delahaye

Arithmétique linéaire

M2 Info. 2021-2022

22 / 25

D. Delahaye

Arithmétique linéa

M2 Info. 2021-2022

Simplexe généralisé

Suite de l'exemple

Le résultat de l'opération de pivotement est le suivant :

- La borne inférieure de s₃ n'est pas respectée.
- La seule variable appropriée pour le pivotement est y.
- On doit ajouter 3 à s_3 afin de respecter la borne inférieure, d'où :

$$\theta = \frac{1 - (-2)}{3} = 1$$

Simplexe généralisé

Suite de l'exemple

Après avoir pivoté avec s_3 et y, on obtient :

	S1	<i>s</i> ₃	$\alpha(x) =$	1
	2/3	-1/3	$\alpha(y) =$	
	1	,	$\alpha(s_1) = \alpha(s_1)$	
У	1/3	1/3	$\alpha(s_2) = \alpha(s_3) = 0$	

- L'affectation satisfait les bornes (des variables basiques).
- Le système initial de contraintes est donc satisfiable.
- L'affectation $\{x \mapsto 1, y \mapsto 1\}$ est une solution.