

PATIENT Chang Yang, Hsueh-Hua TUMOR TYPE

Gallbladder carcinoma

COUNTRY CODE

TW

REPORT DATE
22 December 2022
ORDERED TEST #
ORD-1521387-01

ABOUT THE TEST FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA.

DISEASE Gallbladder carcinoma
NAME Chang Yang, Hsueh-Hua
DATE OF BIRTH 17 July 1947
SEX Female
MEDICAL RECORD # 17527343

ORDERING PHYSICIAN Yeh, Yi-Chen
MEDICAL FACILITY Taipei Veterans General Hospital
ADDITIONAL RECIPIENT None
MEDICAL FACILITY ID 205872
PATHOLOGIST Not Provided

SPECIMEN ID HHCY 07/17/1947

SPECIMEN TYPE Blood

DATE OF COLLECTION 06 December 2022

SPECIMEN RECEIVED 12 December 2022

Biomarker Findings

Blood Tumor Mutational Burden - 8 Muts/Mb **Microsatellite status** - MSI-High Not Detected **Tumor Fraction** - Elevated Tumor Fraction

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

AKT2 amplification ATM L1524fs*7 CCNE1 amplification CASP8 G20fs*18 DNMT3A E463fs*188 RB1K95fs*15 TP53 D259Y, I195T

Report Highlights

- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 10)
- Variants that may represent clonal hematopoiesis and may originate from non-tumor sources: ATM L1524fs*7 (p. 6), DNMT3A E463fs*188 (p. 8)

BIOMARKER FINDINGS

Blood Tumor Mutational Burden - 8 Muts/Mb

Microsatellite status - MSI-High Not Detected

Tumor Fraction -

Elevated Tumor Fraction

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

 $\mbox{MSI-High}$ not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is considered elevated when ctDNA levels are high enough that an euploidy can be detected. There is higher sensitivity for identifying genomic alterations and a lower risk of false negative results in specimens with elevated tumor fraction; the positive percent agreement observed between liquid and tissue for defined short variants is \geq 90% (Li et al., 2021; AACR Abstract 2231) (see Biomarker Findings section).

GENOMIC FINDINGS	VAF%	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
AKT2 - amplification	-	None	None
10 Trials see p. <u>10</u>			
ATM - L1524fs*7	0.09%	None	None
10 Trials see p. <u>12</u>			
CCNE1 - amplification	-	None	None
4 Trials see p. <u>14</u>			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE

Gallbladder carcinoma

COUNTRY CODE

TW

REPORT DATE
22 December 2022
ORDERED TEST #
ORD-1521387-01

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS (CH)

Genomic findings below may include nontumor somatic alterations, such as CH. The efficacy of targeting such nontumor somatic alterations is unknown. This content should be interpreted based on clinical context. Refer to appendix for additional information on CH.

ATM - L1524fs*7 p. <u>6</u> **DNMT3A -** E463fs*188 p. <u>8</u>

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

<i>CASP8</i> - G20fs*18 p. <u>7</u>	RB1 - K95fs*15	ρ.	8
<i>DNMT3A</i> - E463fs*188 p. 8	<i>TP53</i> - D259Y, I195T	p. 1	9

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physician should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the US FDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MEN1, MLH1, MSH2, MSH6, MUTYH, NF1, NF2, PALB2, PMS2, POLE, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHB, SDHC, SDHD, SMAO4, STK11, TGFBR2, TF33, TSC1, TSC2, VHL, and WT1 is recommended.

Variant Allele Frequency is not applicable for copy number alterations.

Variant Allele Frequency Percentage

(VAF%)

ORD-1521387-01 **Blood Tumor** 8 Muts/Mb **Mutational Burden** Microsatellite status MSI-High Not Detected **Tumor Fraction** 26% AKT2 amplification Detected **ATM** L1524fs*7 0.09% CCNE1 amplification Detected CASP8 G20fs*18 69.5% DNMT3A E463fs*188 1.1% K95fs*15 RB1 23.8% **TP53** I195T 0.48% D259Y 20.7%

NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx or FoundationOne®CDx tests. Up to five previous tests may be shown.

For some genes in FoundationOne Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PATIENT Chang Yang, Hsueh-Hua

TUMOR TYPE Gallbladder carcinoma

REPORT DATE 22 December 2022

ORDERED TEST # ORD-1521387-01

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of \geq 5%, and bTMB is calculated based on variants with an allele frequency of \geq 0.5%.

Not Tested = not baited, not reported on test, or test preceded addition of biomarker or gene

Not Detected = baited but not detected on test

Detected = present (VAF% is not applicable)

VAF% = variant allele frequency percentage

Cannot Be Determined = Sample is not of sufficient data quality to confidently determine biomarker status

BIOMARKER FINDINGS

BIOMARKER

Blood Tumor Mutational Burden

RESULT 8 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of clinical evidence in solid tumors, increased blood tumor mutational burden (bTMB) may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁻³, anti-PD-1³⁻⁴, anti-PD-1/CTLA4 therapies⁵⁻⁶, anti-PD-L1/CTLA4 therapies⁵⁻¹⁰. A Phase 2 multi-solid-tumor trial showed that bTMB \geq 16 Muts/Mb (as measured by this assay) was associated with improved survival from treatment with a PD-1 inhibitor alone or in combination with a CTLA-4 inhibitor⁵. In non-small cell lung cancer (NSCLC), multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single-agent or combination treatments with either CTLA4

inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 Muts/Mb-16 Muts/Mb18-10. In head and neck squamous cell carcinoma (HNSCC), a Phase 3 trial showed that bTMB \geq 16 Muts/Mb (approximate equivalency \geq 8 Muts/Mb as measured by this assay) was associated with improved survival from treatment with a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor 11. In colorectal cancer (CRC), a Phase 2 study showed that bTMB TMB \geq 28 Muts/Mb (approximate equivalency \geq 14 Muts/Mb as measured by this assay) was associated with improved OS from a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor⁷.

FREQUENCY & PROGNOSIS

Average bTMB levels in solid tumors other than NSCLC have not been evaluated (PubMed, Mar 2022). Published data investigating the prognostic implications of bTMB levels in biliary tract cancer are limited (PubMed, Jul 2022). Although cases with hypermutated biliary tract cancer were enriched in a subgroup with poor prognosis in 1 study¹², TMB-high (≥10 mut/Mb) status in biliary adenocarcinoma not treated with immunotherapy was not significantly associated with OS in another

study, in which patients with TMB-high tumors experienced numerically longer OS compared with patients with TMB-low tumors (11.5 vs. 8.4 months, adjusted HR=0.65) 13 .

FINDING SUMMARY

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma $^{14-15}$ and cigarette smoke in lung cancer¹⁶⁻¹⁷, treatment with temozolomide-based chemotherapy in glioma¹⁸⁻¹⁹, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes²⁰⁻²⁴, and microsatellite instability (MSI)^{20,23-24}. High bTMB levels were not detected in this sample. It is unclear whether the bTMB levels in this sample would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{1-2,4}. Depending on the clinical context, TMB testing of an alternate sample or by another methodology could be considered.

BIOMARKER

Tumor Fraction

RESULT

Elevated Tumor Fraction

specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management²⁵⁻³⁰.

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Specimens with elevated tumor fraction have high circulating-tumor DNA (ctDNA) content, and thus high sensitivity for identifying genomic alterations. Such specimens are at low risk of false negative results. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not be overinterpreted or compared from one blood draw to another. There are currently no targeted approaches to address

FREQUENCY & PROGNOSIS

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)³¹. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer³², Ewing sarcoma and osteosarcoma³³, prostate cancer²⁸, breast cancer³⁴, leiomyosarcoma³⁵, esophageal cancer³⁶, colorectal cancer³⁷, and gastrointestinal cancer³⁸.

FINDING SUMMARY

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content 39 , the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy⁴⁰⁻⁴¹.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

AKT2

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Amplification or activation of AKT2 may promote AKT-mTOR pathway activation and may predict sensitivity to inhibitors of the AKT and downstream mTOR pathways. Clinical benefit has been achieved in 1 patient with AKT2 amplification treated with an mTOR inhibitor⁴². In preclinical studies, the AKT inhibitor MK-2206 showed

evidence of enhancing anti-tumor activity of other chemotherapeutic agents in lung and ovarian tumor cells43.

FREQUENCY & PROGNOSIS

AKT2 amplification has been reported most frequently in endometrial cancer (3.7%), ovarian cancer (3.6%), cancer of unknown primary (CUP) (2.2%), pancreatic cancer (1.8%), head and neck cancer (1.6%), and bladder cancer (1.4%)44. One study found AKT2 protein expression to be more common in hilar cholangiocarcinomas (54%) than peripheral cholangiocarcinomas (27%)45. AKT expression was associated with favorable prognosis in cholangiocarcinoma⁴⁶, while another study reported no prognosis relevance of pAKT in the intrahepatic cholangiocarcinoma⁴⁷.

FINDING SUMMARY

AKT2 encodes an intracellular serine/threonine kinase that is also known as PKB-beta. AKT2 is one of three members of the AKT gene family, and activation of AKT2 has been implicated in multiple malignancies⁴⁸⁻⁴⁹. AKT isoforms appear to have different roles in tumorigenesis; AKT1 appears to contribute to the initiation of tumors, whereas AKT2 promotes invasion and metastasis in breast tumors⁵⁰. Although AKT2 amplification has been reported to associate with AKT2 overexpression⁵¹⁻⁵³, studies in various cancers suggest that AKT2 phosphorylation may have greater clinical relevance than AKT2 amplification or mRNA overexpression⁵⁴⁻⁵⁵.

GENE

ATM

ALTERATION L1524fs*7

TRANSCRIPT ID NM 000051.3

CODING SEQUENCE EFFECT 4569_4570insA

VARIANT CHROMOSOMAL POSITION chr11:108163477

of the ATR inhibitor ceralasertib and durvalumab for patients with advanced gastric cancer, objective responses (ORs) were experienced by 50% (4/8) of patients with loss of ATM expression, compared with 14% (3/21) patients with intact ATM⁶⁹. Studies showing reduced cell viability and increased DNA damage in preclinical models of solid tumors⁷⁰⁻⁷² and hematologic malignancies^{70,73} also support the increased sensitivity of ATMdeficient cells to ATR inhibitors. Preclinical experiments also indicate that loss of ATM causes dependency on DNA-PKcs in cancer cells; DNA-PKcs inhibitors promoted apoptosis in ATMdeficient cells and were active in a lymphoma mouse model lacking ATM activity74.

or protein loss. In a Phase 2 study of a combination

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Loss of functional ATM results in a defective DNA damage response and homologous recombinationmediated DNA repair and may predict sensitivity to PARP inhibitors⁵⁶⁻⁵⁷. Clinical responses have been reported for patients with ATM-mutated prostate cancer treated with PARP inhibitors⁵⁸⁻⁶⁰ and PARP inhibitors have shown limited clinical benefit for patients with other ATM-mutated solid tumors including pancreatic cancer⁶¹⁻⁶², colorectal cancer⁶³, papillary renal cell carcinoma⁶⁴, ovarian cancer⁶⁵, small cell bowel cancer,62, and biliary tract cancer66. In Phase 1 trials of ATR inhibitors, a heavily pretreated patient with colorectal cancer who achieved a CR to berzosertib⁶⁷ and 4 out of 4 patients with diverse solid tumors who achieved PRs to BAY189534468 harbored ATM inactivation

FREQUENCY & PROGNOSIS

ATM alterations have been observed in various solid tumors, with mutations being more frequent than gene loss and often seen in small bowel (7-9%), endometrial (7%), non-melanoma skin (3-6%), bladder (5%), hepatobiliary (4-5%), colorectal (4-5%), and lung (3%) cancer^{44,75}. Published data investigating the prognostic implications of ATM alterations in biliary tract carcinoma are limited (PubMed, Feb 2022).

FINDING SUMMARY

ATM encodes the protein ataxia telangiectasia mutated, which is a serine/threonine protein kinase that plays a key role in the DNA damage response⁷⁶. Loss of functional ATM promotes tumorigenesis⁷⁷. Alterations such as seen here may disrupt ATM function or expression⁷⁸⁻⁸⁰.

POTENTIAL GERMLINE IMPLICATIONS

ATM mutation carriers have increased cancer risk, with female carriers displaying a 38% lifetime risk of breast cancer⁸¹. Biallelic mutations in ATM underlie the rare autosomal-recessive inherited disorder ataxia-telangiectasia (A-T), also referred to as genome instability or DNA damage response syndrome82. This disease is characterized by genomic instability, sensitivity to DNA-damaging agents, and increased risk of developing cancer^{76,82}. The prevalence of A-T is estimated at 1:40,000 to 1:100,000 worldwide⁸². In the appropriate clinical context, germline testing of ATM is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion⁸³⁻⁸⁸. Comprehensive genomic profiling of solid tumors may detect nontumor alterations that are due to CH87,89-90. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

GENOMIC FINDINGS

CCNE1

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies that directly target CCNE1 alterations. Because amplification or overexpression of CCNE1 leads to increased genomic instability though the ATR-CHK1-WEE1 pathway⁹¹⁻⁹² and cyclin E1 promotes cell cycle progression in a complex with CDK2⁹³, clinical and preclinical studies have investigated inhibitors of CHK1, ATR, CDK2, and WEE1 as potential therapeutic approaches for tumors with CCNE1 activation. Clinical benefit has been reported for patients with recurrent high-grade serous ovarian carcinoma (HGSOC) with CCNE1 amplification or expression in response to treatment with the

CHK1 inhibitor prexasertib 94 . Studies of the WEE1 inhibitor adavosertib observed PRs in patients with CCNE1-amplified HGSOC and ovarian cancer⁹⁵⁻⁹⁶. Similarly, in a Phase 2 study of patients with CCNE1-amplified solid tumors, adavosertib elicited an ORR of 26% with PRs reported for patients with ovarian cancer, urothelial carcinoma, or melanoma⁹⁷. Preclinical studies have demonstrated that cell lines with CCNE1 amplification or overexpression were sensitive to inhibitors of ATR98-99, CDK2100, or WEE192,101. However, other studies have shown that sensitivity of various cell lines to CDK2 inhibitors, including SNS-032, dinaciclib, and seliciclib, at clinically achievable doses, is largely independent of CCNE1 copy number or expression¹⁰²⁻¹⁰⁵. One study has reported a reduction in tumor CCNE1 levels in 4/6 lung and esophageal cancer cases following treatment with the HDAC inhibitor vorinostat106

FREQUENCY & PROGNOSIS

In one study, CCNE1 amplification was observed 7% of in gallbladder samples $^{107}.$ CCNE1

amplification has been reported in 1-2% of samples in published cholangiocarcinoma datasets¹⁰⁸⁻¹⁰⁹. Published data investigating the prognostic implications of CCNE1 alterations in biliary tract carcinoma are limited (PubMed, Mar 2022).

FINDING SUMMARY

CCNE1 encodes the protein cyclin E1, which plays a role in the regulated transition from the G1 to S phase by binding to and activating cyclin-dependent protein kinase 2 (CDK2). It also has a direct role in initiation of replication and the maintenance of genomic stability 93. Amplification of chromosomal region 19q12-q13 has been demonstrated in many types of cancer, and CCNE1 is a well-studied gene within this amplicon 110-111. Increased copy number of CCNE1 is highly associated with overexpression of the cyclin E1 protein 112-113. Cyclin E1 overexpression can lead to cell transformation as a result of an increase in cyclin E1 activity 93,114.

GENE

CASP8

ALTERATION

G20fs*18

TRANSCRIPT ID

NM_001080125.1

CODING SEQUENCE EFFECT

56_57insAACTTCTTCCT

VARIANT CHROMOSOMAL POSITION

chr2:202122999

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted approaches to directly address alterations in CASP8.

FREQUENCY & PROGNOSIS

CASP8 mutations have been observed across solid tumors⁴⁴, including 8.2% of head and neck squamous cell¹¹⁵, 3.2% of colorectal¹¹⁶, and 4% of cervical¹¹⁷ carcinoma cases. Reduced expression of CASP8 has been associated with poor prognosis in ovarian cancer¹¹⁸, prostate cancer¹¹⁹, and medulloblastoma¹²⁰.

FINDING SUMMARY

CASP8 encodes caspase-8, a multifunctional protein that mediates apoptosis¹²¹⁻¹²⁴, cell motility¹²⁵⁻¹²⁶, and cell signaling, including through the NFkB¹²⁷⁻¹²⁹ and MAPK¹³⁰⁻¹³¹ pathways. The role of CASP8 in cancer is complex and context-dependent, with diverse cancer types exhibiting either overexpression or loss of expression. CASP8 mutations found in the context of cancer tend to be truncating or missense mutations; most of the characterized mutations impair apoptosis¹³²⁻¹³⁶ and promote NFkB activation¹³⁷.

GENOMIC FINDINGS

GENE

DNMT3A

ALTERATION

E463fs*188

TRANSCRIPT ID NM_022552.3

CODING SEQUENCE EFFECT

1388delA

VARIANT CHROMOSOMAL POSITION

chr2:25469069-25469070

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted therapies available to address genomic alterations in DNMT₃A in solid tumors.

FREQUENCY & PROGNOSIS

DNMT₃A alterations have been reported at relatively low frequencies in solid tumors and are more prevalent in hematological malignancies (cBioPortal, Feb 2022)¹³⁸⁻¹³⁹. Published data investigating the prognostic implications of DNMT₃A alterations in solid tumors are limited (PubMed, Feb 2022).

FINDING SUMMARY

The DNMT₃A gene encodes the protein DNA methyltransferase ₃A, an enzyme that is involved in the methylation of newly synthesized DNA, a function critical for gene regulation¹⁴⁰⁻¹⁴¹. The role of DNMT₃A in cancer is uncertain, as some reports describe increased expression and contribution to tumor growth, whereas others propose a role for DNMT₃A as a tumor suppressor¹⁴²⁻¹⁴⁷. Alterations such as seen here may disrupt DNMT₃A function or expression¹⁴⁸⁻¹⁵¹.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion83-88. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy83-84. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁵². Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH87,89-90. Patientmatched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

GENE

RB1

ALTERATION K95fs*15

TRANSCRIPT ID

NM_000321.2

CODING SEQUENCE EFFECT

284_287delAAAA

VARIANT CHROMOSOMAL POSITION

chr13:48916752-48916756

approaches to target RB1 inactivation under investigation in preclinical studies include inhibitors of BCL-2 family members¹⁵⁹ and activation of the NOTCH pathway¹⁶⁰.

kinase A, particularly in small cell lung cancer

(SCLC). A clinical study evaluating the Aurora

kinase A inhibitor alisertib for patients with

RB1 deletion and clinical benefit¹⁵⁸. Other

prostate cancer did not find an association between

FREQUENCY & PROGNOSIS

RB1 mutations have been reported across solid tumors including small cell lung cancer (60%), bladder (13%), uterine sarcoma (10%), nonmelanoma skin cancer (9.5%), and gastrointestinal neuroendocrine tumors (9.3%)⁷⁵. The prognostic significance of RB1 mutation in gallbladder carcinoma has not been extensively studied (PubMed, Jul 2022).

FINDING SUMMARY

RB1 encodes the retinoblastoma protein (Rb), a tumor suppressor and negative regulator of the cell cycle¹⁶¹⁻¹⁶². Alterations such as seen here may disrupt RB1 function or expression¹⁶³⁻¹⁶⁹.

POTENTIAL GERMLINE IMPLICATIONS

Mutations in RB1 underlie the development of retinoblastoma (RB), a rare tumor that arises at a rate of approximately 1:20,000 live births, with nearly 5,000 new cases worldwide per year¹⁷⁰. Germline mutations in RB1 account for approximately 40% of RB tumors¹⁷¹ and are associated with an increased risk of developing secondary malignancies that include soft tissue and bone sarcoma and malignant melanoma¹⁷²⁻¹⁷³. In the appropriate clinical context, germline testing of RB1 is recommended.

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of limited clinical data 153 and strong preclinical data $^{154-157}$, RB1 inactivation may be associated with sensitivity to inhibitors of Aurora

GENOMIC FINDINGS

GENE

TP53

ALTERATION

D259Y, I195T TRANSCRIPT ID

NM_000546.4, NM_000546.4

CODING SEQUENCE EFFECT 775G>T, 584T>C

VARIANT CHROMOSOMAL POSITION

chr17:7577506, chr17:7578265

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib¹⁷⁴⁻¹⁷⁷ or p53 gene therapy such as SGT53¹⁷⁸⁻¹⁸². In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype183. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer¹⁸⁴. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer¹⁸⁵. The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone 186. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib combined with paclitaxel¹⁸⁷. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71%

(5/7) response rate for patients with TP53 alterations¹⁸⁸. The Phase 2 FOCUS₄-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring 189 . In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage¹⁸². Missense mutations leading to TP₅₃ inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR¹⁹⁰. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/ 29)191.

FREQUENCY & PROGNOSIS

Inactivation of p53, through mutation, deletion, or loss of heterozygosity (LOH), has been observed in 25-63% of gallbladder carcinomas and 10-61% of cholangiocarcinomas^{12,192-200}. TP53 mutations occur more frequently in tumors caused by liver fluke (O. viverrini) infection (40%) than in cholangiocarcinoma cases not related to infection (9%)¹⁹⁵. TP53 alteration and inactivation were shown to be early and common events in gallbladder carcinogenesis²⁰¹. Aberrant TP53 expression, which is indicative of TP53 dysregulation, has been observed in 20-62% of gallbladder carcinomas and 25% (5/20) of cholangiocarcinomas²⁰²⁻²⁰⁴. Data regarding the prognostic significance of TP53 mutation in cholangiocarcinoma are conflicting²⁰⁵⁻²¹³. Overexpression of p53 protein has been associated with reduced patient survival in poorly differentiated gallbladder adenocarcinomas and biliary tract cancers²¹⁴⁻²¹⁵; however, another study did not find such a correlation²⁰⁷.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP_{53} gene, is common in aggressive advanced cancers²¹⁶. Alterations such as seen here may disrupt TP_{53} function or expression²¹⁷⁻²²¹.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the TP53 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with Li-Fraumeni syndrome (ClinVar, Sep 2022)²²². Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers²²³⁻²²⁵, including sarcomas²²⁶⁻²²⁷. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000²²⁸ to 1:20,000²²⁷. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30²²⁹. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion⁸³⁻⁸⁸. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy⁸³⁻⁸⁴. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁵². Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH87,89-90. Patientmatched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

CLINICAL TRIALS

IMPORTANT Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial → Geographical proximity → Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

AKT2

ALTERATION amplification

RATIONALE

AKT2 amplification or mutation may lead to AKT- sensitivity to inhibitors of this pathway. mTOR pathway activation and may predict

NCT04341259

A Study Of The Pharmacokinetics And Safety Of Ipatasertib In Chinese Participants With Locally Advanced Or Metastatic Solid Tumors

TARGETS AKTs

PHASE 1

LOCATIONS: Shanghai City (China)

NCT03239015

Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular

PHASE 2

TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRs, BRAF, CDK4,

LOCATIONS: Shanghai (China)

NCT04803318

Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors

PHASE 2

TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK

LOCATIONS: Guangzhou (China)

NCT05125523

PHASE 1

A Study of Sirolimus for Injection (Albumin Bound) in Patients With Advanced Solid Tumors

TARGETS mTOR.

LOCATIONS: Tianjin (China)

NCT03772561

PHASE 1

Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid **Tumor Malignancies**

TARGETS

PARP, AKTs, PD-L1

LOCATIONS: Singapore (Singapore)

isclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

TUMOR TYPE Gallbladder carcinoma

REPORT DATE 22 December 2022

ORDERED TEST # ORD-1521387-01

CLINICAL TRIALS

NCT03297606	PHASE 2		
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, BRAF, SMO		
LOCATIONS: Vancouver (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Cingston (Canada), London (Canada)	Ottawa (Canada), Montreal (Canada), Toronto (Canada),		
NCT04551521	PHASE 2		
CRAFT: The NCT-PMO-1602 Phase II Trial	TARGETS PD-L1, AKTs, MEK, BRAF, ALK, RET, ERBB2		
LOCATIONS: Würzburg (Germany), Mainz (Germany), Heidelberg (Germany), Tübingen (German	ny)		
NCT03673787	PHASE 1/2		
A Trial of Ipatasertib in Combination With Atezolizumab	TARGETS AKTs, PD-L1		
LOCATIONS: Sutton (United Kingdom)			
NCT01582191	PHASE 1		
A Phase 1 Trial of Vandetanib (a Multi-kinase Inhibitor of EGFR, VEGFR and RET Inhibitor) in Combination With Everolimus (an mTOR Inhibitor) in Advanced Cancer	TARGETS mTOR, EGFR, SRC, RET, VEGFRs		
LOCATIONS: Texas			
NCT03203525	PHASE 1		
Combination Chemotherapy and Bevacizumab With the NovoTTF-100L(P) System in Treating Participants With Advanced, Recurrent, or Refractory Hepatic Metastatic Cancer	TARGETS VEGFA, mTOR		
LOCATIONS: Texas			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

CLINICAL TRIALS

GENE ATM

RATIONALE

Loss or inactivation of ATM may increase sensitivity to PARP inhibitors, ATR inhibitors, or

DNA-PKcs inhibitors.

ALTERATION L1524fs*7

NCTO4644068

Study of AZD5305 as Monotherapy and in Combination With Anti-cancer Agents in Patients With Advanced Solid Malignancies

TARGETS
ERBB2, TROP2, PARP

LOCATIONS: Shanghai (China), Guangzhou (China), Seoul (Korea, Republic of), Chongqing (China), Chengdu (China), Chuo-ku (Japan), Melbourne (Australia), Lublin (Poland), Warszawa (Poland)

NCTO4123366

Study of Olaparib (MK-7339) in Combination With Pembrolizumab (MK-3475) in the Treatment of Homologous Recombination Repair Mutation (HRRm) and/or Homologous Recombination Deficiency (HRD)-Positive Advanced Cancer (MK-7339-007/KEYLYNK-007)

TARGETS
PARP, PD-1

LOCATIONS: Fukuoka (Japan), Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Okayama (Japan), Nagoya (Japan), Tokyo (Japan), Kashiwa (Japan), Sapporo (Japan), Nedlands (Australia), Southport (Australia)

NCT03742895

Efficacy and Safety of Olaparib (MK-7339) in Participants With Previously Treated, Homologous Recombination Repair Mutation (HRRm) or Homologous Recombination Deficiency (HRD) Positive Advanced Cancer (MK-7339-002 / LYNK-002)

TARGETS PARP

LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Nedlands (Australia), Darlinghurst (Australia), Adana (Turkey), Jerusalem (Israel), Konya (Turkey), Ramat Gan (Israel), Beer-Sheva (Israel), Istanbul (Turkey)

NCT02264678 PHASE 1/2

Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents

TARGETS
ATR, PARP, PD-L1

LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Goyang-si (Korea, Republic of), Cambridge (United Kingdom), Withington (United Kingdom), Manchester (United Kingdom), London (United Kingdom), Coventry (United Kingdom), Sutton (United Kingdom), Oxford (United Kingdom)

NCT04298008	PHASE 2	
AZD6738 Plus Durvalumab in Biliary Tract Cancer	TARGETS ATR, PD-L1	
LOCATIONS: Seoul (Korea, Republic of)		

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

CLINICAL TRIALS

NCT04298021	PHASE 2		
DDR-Umbrella Study of DDR Targeting Agents in Advanced Biliary Tract Cancer	TARGETS PD-L1, ATR, PARP		
LOCATIONS: Seoul (Korea, Republic of)			
NCT05035745	PHASE 1/2		
Selinexor & Talazoparib in Advanced Refractory Solid Tumors; Advanced/Metastatic Triple Negative Breast Cancer (START)	TARGETS XPO1, PARP		
LOCATIONS: Singapore (Singapore)			
NCT03772561	PHASE 1		
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1		
LOCATIONS: Singapore (Singapore)			
NCT04801966	PHASE NULL		
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF		
LOCATIONS: Melbourne (Australia)			
NCT02693535	PHASE 2		
TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer	TARGETS ALK, ROS1, AXL, TRKA, MET, TRKC, CDK4, CDK6, FLT3, VEGFRs, CSF1R, KIT, RET, mTOR, ERBB2, MEK, BRAF, PARP, PD-1, CTLA-4, EGFR, ERBB4		
LOCATIONS: Hawaii, Washington, Oregon, California			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

Hsueh-Hua TUMOR TYPE Gallbladder carcinoma

REPORT DATE
22 December 2022

ORDERED TEST # ORD-1521387-01

FOUNDATIONONE®LIQUID CDx

CLINICAL TRIALS

CCNE1

RATIONALE

Strong preclinical and clinical data suggest that CCNE1 amplification may predict sensitivity to

WEE1 inhibitors.

ALTERATION amplification

NCT04768868	PHASE 1				
The Safety and Pharmacokinetics Preliminary Efficacy of IMP7068 in Patients With Advanced Solid Tumors	TARGETS WEE1				
LOCATIONS: Taipei (Taiwan), Taoyuan (Taiwan), Taichung (Taiwan), Tainan (Taiwan), Shanghai (Chir Kansas, Texas	na), Wuhan (China), Beijing (China), Chengdu (China),				
NCT05128825	PHASE 2				
A Study of ZN-c3 in Subjects With Malignant Tumors	TARGETS WEE1				
LOCATIONS: Nevada, Colorado, Texas, Ohio, Pennsylvania, Maryland, Virginia					
NCT03968653	PHASE 1				
Study of Oral Debio 0123 in Combination With Carboplatin in Participants With Advanced Solid Tumors	TARGETS WEE1				
LOCATIONS: Groningen (Netherlands), Nijmegen (Netherlands), Leiden (Netherlands), Barcelona (Spain)					

NCT05109975	PHASE 1
A Study to Evaluate Safety and Preliminary Anti-tumor Activity of Debio 0123 as Monotherapy in Adult Participants With Advanced Solid Tumors	TARGETS WEE1
LOCATIONS: Bellinzona (Switzerland), Zürich (Switzerland), Michigan, Texas	

TUMOR TYPE
Gallbladder carcinoma

REPORT DATE
22 December 2022

FOUNDATION ONE ** LIQUID CDx

ORDERED TEST # ORD-1521387-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

BRCA1 E1849Q	CD22 amplification	CEBPA amplification	CSF3R H54D
EP300	GABRA6	HSD3B1	IDH2
Q950P	T414I	G90S	M293T
NF1	NF2	POLE	SMO
M1461>IR	E106K	R260*	A729V
SOCS1 A76G and P50L	STAG2 E276K		

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1521387-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

ABL1 Exons 4-9	ACVR1B	AKT1 Exon 3	AKT2	AKT3	ALK Exons 20-29, Introns 18, 19	ALOX12B	AMER1 (FAM123B or WTX)	APC
AR	ARAF Exons 4, 5, 7, 11, 13, 15, 16	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BCR* Introns 8, 13, 14	BRAF Exons 11-18, Introns 7-10	BRCA1 D Introns 2, 7, 8, 12, 16, 19, 20	BRCA2 0 Intron 2	BRD4	BRIP1	BTG1
BTG2	BTK Exons 2, 15	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD70	CD74* Introns 6-8	CD79A	CD79B	CD274 (PD-L1)	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	СЕВРА	СНЕК1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1 Exon 3	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1
DDR2 Exons 5, 17, 18	DIS3	DNMT3A	DOT1L	EED	EGFR Introns 7, 15, 24-27	EMSY (C11orf30)	EP300	ЕРНАЗ
ЕРНВ1	ЕРНВ4	ERBB2	ERBB3 Exons 3, 6, 7, 8, 10, 12, 20, 21, 23, 24, 25	ERBB4	ERCC4	ERG	ERRFI1	ESR1 Exons 4-8
ETV4* Intron 8	ETV5* Introns 6, 7	ETV6* Introns 5, 6	EWSR1* Introns 7-13	EZH2 Exons 4, 16, 17, 18	EZR* Introns 9-11	FANCA	FANCC	FANCG
FANCL	FAS	FBXW7	FGF10	FGF12	FGF14	FGF19	FGF23	FGF3
FGF4	FGF6	FGFR1 Introns 1, 5, Intron 17	FGFR2 Intron 1, Intron 17	FGFR3 Exons 7, 9 (alternative designation exon 10), 14, 18, Intron 17		FH	FLCN	FLT1
FLT3 Exons 14, 15, 20	FOXL2	FUBP1	GABRA6	GATA3	GATA4	GATA6	GID4 (C17orf39)	GNA11 Exons 4, 5
GNA13	GNAQ Exons 4, 5	GNAS Exons 1, 8	GRM3	GSK3B	H3-3A (H3F3A)	HDAC1	HGF	HNF1A
HRAS Exons 2, 3	HSD3B1	ID3	IDH1 Exon 4	IDH2 Exon 4	IGF1R	IKBKE	IKZF1	INPP4B
IRF2	IRF4	IRS2	JAK1	JAK2 Exon 14	<i>JAK3</i> Exons 5, 11, 12, 13, 15, 16	JUN	KDM5A	KDM5C
KDM6A	KDR	KEAP1	KEL	KIT Exons 8, 9, 11, 12, 13, 13, 11, 11, 12, 13, 13	KLHL6 7,	KMT2A (MLL) Introns 6, 8-11, Intron 7	KMT2D (MLL2)	KRAS

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1521387-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

LTK	LYN	MAF	MAP2K1 (MEK1) Exons 2, 3	MAP2K2 (MEK2) Exons 2-4, 6,	MAP2K4 7	MAP3K1	MAP3K13	МАРК1
MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MERTK	MET	MITF
MKNK1	MLH1	MPL Exon 10	MRE11 (MRE11A)	MSH2 Intron 5	MSH3	MSH6	MST1R	MTAP
MTOR Exons 19, 30, 39, 40, 43-45, 47, 48, 53, 56	МИТҮН	MYB* Intron 14	MYC Intron 1	MYCL (MYCL1)	MYCN	MYD88 Exon 4	NBN	NF1
NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2 Intron 26	<i>NOTCH3</i>	NPM1 Exons 4-6, 8, 10	NRAS Exons 2, 3
NSD2 (WHSC1 or MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1 Exons 14, 15, Introns 8-11	NTRK2 Intron 12	NTRK3 Exons 16, 17	NUTM1* Intron 1	P2RY8	PALB2
PARP1	PARP2	PARP3	PAX5	PBRM1	<i>PDCD1</i> (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA Exons 12, 18, Introns 7, 9, 11	PDGFRB Exons 12-21, 23
PDK1	PIK3C2B	PIK3C2G	PIK3CA Exons 2, 3, 5-8, 10, 14, 19, 21 (Coding Exons 1, 2, 4-7, 9, 13, 18, 20)		PIK3R1	PIM1	PMS2	POLD1
POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PRKN (PARK2)	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1 Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8	RARA Intron 2	RB1	RBM10	REL	RET Introns 7, 8, Exons 11, 13-16, Introns 9-11
RICTOR	RNF43	ROS1 Exons 31, 36-38, 40, Introns 31-35	RPTOR	RSPO2* Intron 1	SDC4* Intron 2	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SLC34A2* Intron 4	SMAD2	SMAD4	SMARCA4	SMARCB1
SMO	SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2
STAT3	STK11	SUFU	SYK	TBX3	TEK	<i>TENT5C</i> (FAM46C)	TERC* ncRNA	TERT* Promoter
TET2	TGFBR2	TIPARP	TMPRSS2* Introns 1-3	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2
TYRO3	U2AF1	VEGFA	VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status Blood Tumor Mutational Burden (bTMB) Tumor Fraction

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.

ABOUT FOUNDATIONONE LIQUID CDX

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform highcomplexity clinical testing.

Please refer to technical information for performance specification details.

INTENDED USE

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

TEST PRINCIPLES

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted

cfDNA undergoes whole-genome shotgun library construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also reports tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

RANKING OF THERAPIES AND CLINICAL TRIALS

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

LIMITATIONS

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- **3.** A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- 4. The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- **5.** The test is not intended to provide information on cancer predisposition.
- 6. Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulating tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate is computationally derived from the observed level of aneuploidy in the sample. Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected and is significantly distinct from that typically found in non-tumor samples.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- **10.** Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2,

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®Liquid CDx

*KMT*2*D* (*MLL*2), *MPL*, *MYD88*, *SF*3*B*1, *TET*2, *TP*53, and *U*2*AF*1.

- 11. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.
- The test is not intended to replace germline testing or to provide information about cancer predisposition.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's

Electronically signed by Julie Tse, M.D. | 22 December 2022

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

Foundation Medicine, Inc. | www.rochefoundationmedicine.com

tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, ATM, CBL, CHEK2, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This report makes no promises or guarantees that a particular drug will be effective in the treatment of

disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences. FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE
Gallbladder carcinoma

REPORT DATE
22 December 2022

APPENDIX

About FoundationOne®Liquid CDx

ORDERED TEST # ORD-1521387-01

FOUNDATIONONE® LIQUID CDx

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.4.0

APPENDIX

References

ORDERED TEST # ORD-1521387-01

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- 3. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- Aggarwal C, et al. Clin. Cancer Res. (2020) pmid:
- 5. Schenker et al., 2022; AACR Abstract CT022
- 6. Saori et al., 2021; ESMO Abstract 80P
- 7. Chen EX, et al. JAMA Oncol (2020) pmid: 32379280
- 8. Rizvi NA, et al. JAMA Oncol (2020) pmid: 32271377
- 9. Si H. et al. Clin Cancer Res (2021) pmid: 33355200
- 10. Leighl NB, et al. J Thorac Oncol (2022) pmid: 34800700
- 11. Li et al., 2020; ASCO Abstract 6511
- 12. Nakamura H. et al. Nat. Genet. (2015) pmid: 26258846
- 13. Shao C, et al. JAMA Netw Open (2020) pmid: 33119110
- 14. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 15. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 16. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 17. Rizvi NA. et al. Science (2015) pmid: 25765070
- 18. Johnson BE, et al. Science (2014) pmid: 24336570
- 19. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 21. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 23. Nature (2012) pmid: 22810696
- 24. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid:
- Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 26. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- 27. Hrebien S, et al. Ann. Oncol. (2019) pmid: 30860573
- 28. Choudhury AD, et al. JCI Insight (2018) pmid: 30385733
- 29. Goodall J, et al. Cancer Discov (2017) pmid: 28450425 30. Goldberg SB, et al. Clin. Cancer Res. (2018) pmid:
- 29330207 Bettegowda C, et al. Sci Transl Med (2014) pmid:
- 24553385
- 32. Lapin M, et al. J Transl Med (2018) pmid: 30400802 33. Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
- 34. Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095 35.
- Egyud M, et al. Ann. Thorac. Surg. (2019) pmid: 36.
- 37. Fan G, et al. PLoS ONE (2017) pmid: 28187169
- 38. Vu et al., 2020; DOI: 10.1200/PO.19.00204
- 39. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320
- 40. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 41. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 42. Basho RK, et al. JAMA Oncol (2017) pmid: 27893038
- 43. Hirai H. et al. Mol. Cancer Ther. (2010) pmid: 20571069
- 44. Zehir A, et al. Nat. Med. (2017) pmid: 28481359 45. Guedj N, et al. J. Hepatol. (2009) pmid: 19446907
- 46. Javle MM, et al. J. Gastroenterol. Hepatol. (2006) pmid: 16984600
- 47. Schomitz et al., 2007, 18161916
- 48. Liu AX, et al. Cancer Res. (1998) pmid: 9679957
- Vivanco I, et al. Nat. Rev. Cancer (2002) pmid: 12094235
- 50. Chin YR, et al. Cell Adh Migr () pmid: 21519185
- 51. Cheng JQ, et al. Proc. Natl. Acad. Sci. U.S.A. (1992) pmid: 1409633
- 52. Thompson FH, et al. Cancer Genet. Cytogenet. (1996)

- nmid: 8646743
- 53. Altomare DA, et al. Oncogene (2005) pmid: 16288292
- 54. Int. J. Biol. Markers () pmid: 18409144
- 55. Scrima M. et al. PLoS ONE (2012) pmid: 22363436
- 56. Michels J, et al. Oncogene (2014) pmid: 24037533
- 57. Bryant HE, et al. Nucleic Acids Res. (2006) pmid: 16556909
- 58. Mateo J, et al. N. Engl. J. Med. (2015) pmid: 26510020
- 59. Mateo J, et al. Lancet Oncol. (2019) pmid: 31806540
- 60. Abida W. et al. Clin. Cancer Res. (2020) pmid: 32086346
- 61. Ma et al., 2022; ASCO GI Abstract 563
- 62. Dhawan et al., 2020: ASCO Abstract 3513
- Papageorgiou GI, et al. Front Oncol (2021) pmid: 35004311
- 64. Olson D, et al. Clin Genitourin Cancer (2016) pmid:
- 65. Swisher FM. et al. Nat Commun (2021) pmid: 33941784
- 66. Zhang W, et al. Oncologist (2020) pmid: 32045060
- 67. O'Carrigan et al., 2016; ASCO Abstract 2504
- 68. Yap TA, et al. Cancer Discov (2021) pmid: 32988960
- Kwon M, et al. J Immunother Cancer (2022) pmid: 35790315
- 70. Menezes DL, et al. Mol. Cancer Res. (2015) pmid:
- 71. Vendetti FP, et al. Oncotarget (2015) pmid: 26517239
- 72. Min A, et al. Mol. Cancer Ther. (2017) pmid: 28138034
- 73. Kwok M, et al. Blood (2016) pmid: 26563132
- 74. Riabinska A, et al. Sci Transl Med (2013) pmid: 23761041
- 75. Nguyen B, et al. Cell (2022) pmid: 35120664
- Shiloh Y, et al. Nat. Rev. Mol. Cell Biol. (2013) pmid:
- 77. Cremona CA, et al. Oncogene (2014) pmid: 23851492
- 78. Jiang X, et al. J. Biol. Chem. (2006) pmid: 16603769
- 79. Fernandes N, et al. J. Biol. Chem. (2005) pmid: 15713674
- 80. Scott SP, et al. Proc. Natl. Acad. Sci. U.S.A. (2002) pmid:
- 81. van Os NJ, et al. Clin Genet (2016) pmid: 26662178
- 82. Rothblum-Oviatt C, et al. Orphanet J Rare Dis (2016) pmid: 27884168
- 83. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- 84. Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 85. Xie M, et al. Nat. Med. (2014) pmid: 25326804
- 86. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- 87. Severson EA. et al. Blood (2018) pmid: 29678827
- 88. Fuster JJ. et al. Circ. Res. (2018) pmid: 29420212
- 89. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 90. Razavi P, et al. Nat. Med. (2019) pmid: 31768066 91. Lin AB, et al. Clin. Cancer Res. (2017) pmid: 28331049
- 92. Chen X, et al. Clin Cancer Res (2018) pmid: 30181387
- 93. Möröy T, et al. Int. J. Biochem. Cell Biol. (2004) pmid:
- 15147722
- 94. Lee JM, et al. Lancet Oncol. (2018) pmid: 29361470
- 95. Lheureux S, et al. Lancet (2021) pmid: 33485453 96. Oza AM, et al. Clin Cancer Res (2020) pmid: 32611648
- 97. Fu et al., 2021; AACR abstract 974
- 98. Toledo LI, et al. Nat. Struct. Mol. Biol. (2011) pmid: 21552262
- 99. Buisson R, et al. Mol. Cell (2015) pmid: 26365377
- 100. Yang L, et al. Oncotarget (2015) pmid: 26204491
- 101. Kok YP, et al. Oncogenesis (2020) pmid: 33028815
- Taylor-Harding B, et al. Oncotarget (2015) pmid: 25557169
- 103. Etemadmoghadam D, et al. Clin. Cancer Res. (2013) ice of the test result. Any other transfo ned format is not an "official / formal solution" and not guarantee the accuracy

- nmid: 24004674
- Scaltriti M, et al. Proc. Natl. Acad. Sci. U.S.A. (2011) nmid: 21321214
- Nanos-Webb A, et al. Breast Cancer Res. Treat. (2012) pmid: 21695458
- Ma T, et al. Mol. Cancer Ther. (2013) pmid: 23686769 106.
- 107. Narayan RR, et al. Cancer (2019) pmid: 30427539
- 108. Lowery MA, et al. Clin. Cancer Res. (2018) pmid: 29848569
- Sanchez-Vega F, et al. Cell (2018) pmid: 29625050
- 110. Leung SY, et al. Mod. Pathol. (2006) pmid: 16575401
- 111. Lin L. et al. Cancer Res. (2000) pmid: 11156406
- Mayr D, et al. Am. J. Clin. Pathol. (2006) pmid: 16753589
- 113. Nakayama N, et al. Cancer (2010) pmid: 20336784
- Stamatakos M, et al. World J Surg Oncol (2010) pmid: 21176227
- 115. Nature (2015) pmid: 25631445
- Yaeger R, et al. Cancer Cell (2018) pmid: 29316426
- Cancer Genome Atlas Research Network, et al. Nature (2017) pmid: 28112728
- Hernandez L, et al. Cell Death Discov (2015) pmid: 28179987
- 119. Rodríguez-Berriguete G, et al. BMC Cancer (2015) pmid:
- 26507126 120. Pingoud-Meier C, et al. Clin. Cancer Res. (2003) pmid:
- 14695141
- 121. Galluzzi L, et al. Immunity (2016) pmid: 26885855
- 122. Tummers B, et al. Immunol. Rev. (2017) pmid: 28462525
- 123. Crowder RN, et al. Exp. Oncol. (2012) pmid: 23070000
- 124. Liu J, et al. Mol. Cancer (2011) pmid: 21801448
- 125. Graf RP, et al. Curr. Mol. Med. (2014) pmid: 24467204 Barbero S, et al. Cancer Res. (2009) pmid: 19383910
- 127. Zhang L, et al. Cell. Signal. (2015) pmid: 25446254 128. Su H, et al. Science (2005) pmid: 15746428
- 129. Henry CM, et al. Mol. Cell (2017) pmid: 28212752
- 130. Kober AM, et al. Cell Death Dis (2011) pmid: 21975294
- 131. Sun BK, et al. Oncol. Rep. (2011) pmid: 21152872
- 132. Soung YH, et al. Cancer Res. (2005) pmid: 15705878
- 133. Soung YH, et al. Oncogene (2005) pmid: 15531912 134. Mandruzzato S, et al. J. Exp. Med. (1997) pmid: 9271594
- 135. Kim HS, et al. Gastroenterology (2003) pmid: 12949717
- 136. Li C, et al. Mol Oncol (2014) pmid: 24816188 137. Ando M, et al. Cancer Sci. (2013) pmid: 23659359
- 138. Cerami E. et al. Cancer Discov (2012) pmid: 22588877
- 139. Gao J, et al. Sci Signal (2013) pmid: 23550210
- Trowbridge JJ, et al. Nat. Genet. (2011) pmid: 22200773
- 141. Prog Mol Biol Transl Sci (2011) pmid: 21507354
- 142. Yang J, et al. Mol Med Rep () pmid: 21887466 Vallböhmer D, et al. Clin Lung Cancer (2006) pmid: 16870044
- 144. Daskalos A, et al. Cancer (2011) pmid: 21351083 145. Fabbri M, et al. Proc. Natl. Acad. Sci. U.S.A. (2007) pmid: 17890317
- Gao Q, et al. Proc. Natl. Acad. Sci. U.S.A. (2011) pmid: 22011581
- **147.** Kim MS, et al. APMIS (2013) pmid: 23031157
- 148. Chen ZX, et al. J. Cell. Biochem. (2005) pmid: 15861382
- 149. Guo X, et al. Nature (2015) pmid: 25383530 150. Sandoval JE, et al. J. Biol. Chem. (2019) pmid: 30705090
- 151. Zhang ZM, et al. Nature (2018) pmid: 29414941 Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 153. Owonikoko et al., 2016; ESMO Abstract 14230
- 154. Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631

APPENDIX

References

ORDERED TEST # ORD-1521387-01

- 155. Gong X, et al. Cancer Discov (2019) pmid: 30373917
- 156. Oser MG, et al. Cancer Discov (2019) pmid: 30373918 157. Yang W, et al. Kaohsiung J Med Sci (2022) pmid: 34741392
- Beltran H, et al. Clin. Cancer Res. (2019) pmid: 30232224
- Allaman-Pillet N, et al. Ophthalmic Genet. () pmid: 159. 21955141
- 160. Viatour P, et al. J. Exp. Med. (2011) pmid: 21875955
- Burkhart DL, et al. Nat. Rev. Cancer (2008) pmid: 18650841
- 162. Knudsen ES, et al. Nat. Rev. Cancer (2008) pmid: 19143056
- 163. Berge EO, et al. Mol. Cancer (2010) pmid: 20594292
- 164. Giacinti C, et al. Oncogene (2006) pmid: 16936740
- 165. Otterson GA, et al. Proc. Natl. Acad. Sci. U.S.A. (1997) pmid: 9342358
- Otterson GA, et al. Am. J. Hum. Genet. (1999) pmid: 10486322
- 167. Qin XQ, et al. Genes Dev. (1992) pmid: 1534305
- 168. Rubin SM, et al. Cell (2005) pmid: 16360038
- 169. Sun H, et al. Mol. Cell. Biol. (2006) pmid: 16449662
- 170. Chen Z, et al. Hum. Mutat. (2014) pmid: 24282159
- 171. Yun J, et al. Int J Ophthalmol (2011) pmid: 22553621
- 172. Houston SK, et al. Int Ophthalmol Clin (2011) pmid: 21139478
- Ng AK, et al. Semin Radiat Oncol (2010) pmid: 19959033
- 174. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid: 21389100
- 177. Osman AA, et al. Mol. Cancer Ther. (2015) pmid

- 25504633
- 178. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 179. Xu L, et al. Mol. Med. (2001) pmid: 11713371
- 180. Camp ER, et al. Cancer Gene Ther. (2013) pmid:
- 181. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 182. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 183. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 184. Moore et al., 2019; ASCO Abstract 5513
- 185. Leijen S. et al. J. Clin. Oncol. (2016) pmid: 27998224
- 186. Oza et al., 2015; ASCO Abstract 5506
- 187. Lee J, et al. Cancer Discov (2019) pmid: 31315834
- 188. Méndez E. et al. Clin. Cancer Res. (2018) pmid: 29535125
- 189. Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- 190. Gourley et al., 2016: ASCO Abstract 5571
- 191. Park H, et al. ESMO Open (2022) pmid: 36084396
- 192. Li M, et al. Nat. Genet. (2014) pmid: 24997986
- 193. Ross JS, et al. Oncologist (2014) pmid: 24563076
- 194. Jiao Y, et al. Nat. Genet. (2013) pmid: 24185509
- 195. Chan-On W. et al. Nat. Genet. (2013) pmid: 24185513
- 196. Borger DR, et al. Oncologist (2012) pmid: 22180306
- 197. Suto T, et al. J Surg Oncol (2000) pmid: 10738270
- 198. Ong CK, et al. Nat. Genet. (2012) pmid: 22561520
- 199. Javle M, et al. Cancer (2016) pmid: 27622582 200. Nault JC, et al. Semin, Liver Dis. (2011) pmid: 21538283
- 201. Moreno M, et al. Ann Hepatol () pmid: 16177659 202. Won HS, et al. BMC Cancer (2010) pmid: 20955617
- 203. Chaube A, et al. BMC Cancer (2006) pmid: 16686942
- 204. Chuang SC, et al. World J Surg (2004) pmid: 15573254
- 205. Ruzzenente A, et al. Ann. Surg. Oncol. (2016) pmid: 26717940

- 206. Xiaofang L, et al. World J Surg Oncol (2012) pmid: 22230750
- 207. Aiiki T. et al. Hepatogastroenterology () pmid: 8799388
- 208. J Surg Oncol (2006) pmid: 16724348
- 209. Guo R, et al. Hum. Pathol. (2014) pmid: 24746206
- 210. Boerner T, et al. Hepatology (2021) pmid: 33765338
- 211. Conci S, et al. Updates Surg (2020) pmid: 32020551
- 212. Simbolo M, et al. Sci Rep (2018) pmid: 29740198
- 213. Churi CR, et al. PLoS ONE (2014) pmid: 25536104
- **214.** Lee CS, et al. Pathology (1995) pmid: 7567135
- 215. Ahrendt SA, et al. J Hepatobiliary Pancreat Surg (2000)
- pmid: 11180865
- 216. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid: 18410249
- 218. Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12826609
- 219. Kamada R. et al. I. Biol. Chem. (2011) pmid: 20978130
- 220. Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- **221.** Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- 226. Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316
- Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid: 19204208
- 228. Lalloo F, et al. Lancet (2003) pmid: 12672316
- 229. Mandelker D. et al. Ann. Oncol. (2019) pmid: 31050713

isclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy