CS492: Probabilistic Programming Markov Chain Monte Carlo

Hongseok Yang KAIST

CS492: Probabilistic Programming Markov Chain Monte Carlo

Hongseok Yang KAIST

Really about: Metropolis-Hastings algorithm

(doquery :1mh induce-fn [ints2 outs2])

(doquery : lmh induce-fn [ints2 outs2])

Lightweight Metropolis Hastings algorithm* (LMH).

Learning outcome

- Can explain Metropolis-Hastings algorithm.
- Can say when this algo. is correct.
- Can develop an instance of the algorithm.

Markov rules 10 islands.

100i people live in island i.

Markov rules 10 islands.

100i people live in island i.

King loves his people and wants to visit each island as often as its population size.

Markov rules 10 islands.

100i people live in island i.

King loves his people and wants to visit each island as often as its population size.

Markov rules 10 islands.

100i people live in island i.

i ~ discrete(1,2,...,10).Visit i.Repeat.

King loves his people and wants to visit each island as often as its population size.

Markov rules 10 islands.

100i people live in island i.

King loves his people and wants to visit each island as often as its population size.

Solution

k_n — King's current island at step n.

Repeat the following steps:

- I. Flip a coin with prob. 0.5. If head, move clockwise. If tail, move counterclockwise.
- 2. $k' := target island. \alpha := min(1,k'/k_n).$
- 3. Flip a coin with prob. α . If head, $k_{n+1} := k'$. Otherwise, $k_{n+1} := k_n$.

Solution

k_n — King's current island at step n.

Repeat the following steps:

- I. Flip a coin with prob. 0.5. If head, move clockwise. If tail, move counterclockwise.
- 2. $k' := target island. \alpha := min(1,k'/k_n).$
- 3. Flip a coin with prob. α . If head, $k_{n+1} := k'$. Otherwise, $k_{n+1} := k_n$.

[Q] Why correct? What does correctness even mean?

Sequence generated by the algorithm: k_1 , k_2 , k_3 , k_4 , k_5 , ..., k_n , ...

[Strong convergence] For any $f : \{1,..,10\} \rightarrow \mathbb{R}$, $(\sum_{j \leq n} f(k_j))/n \rightarrow \mathbb{E}_{p(i)}[f(i)]$ as $n \rightarrow \infty$ with prob. I

p(i) = i/55, the target prob. for the visit of i.

Holds because I) the random move of the algo. has p as invariant; 2) the algo. may reach from one island to another in finitely many moves.

Metropolis algorithm

Goal: Generate a sample from target r(x)/Z, where $Z=\int r(x)dx$, the normalising constant.

Parameter: Conditional distribution q(x'|x).

- Should be symmetric q(x'|x) = q(x|x').
- Represents a random move.
- Called proposal kernel.

Metropolis algorithm

Goal: Generate a sample from target r(x)/Z, where $Z=\int r(x)dx$, the normalising constant.

Parameter: Conditional distribution q(x'|x).

- Should be symmetric q(x'|x) = q(x|x').
- Represents a random move.
- Called proposal kernel.

[Q] What are r(-) and q(-|-) in King Markov?

Metropolis algorithm

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Metropolis Noisy greedy exploration.

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, 1)$

- \geq I for better x'
- < I for worse x'
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, 1)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q1] How is it related to our sol. for King Markov?

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Use it & do posterior inference. Assume $x \in \mathbb{R}^m$.

r(x) = p(x|y)p(x) Noisy greedy exploration. $q(x) = normal(x, \epsilon \times ID)$ S No need to know Z.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Use it & do posterior inference. Assume $x \in \mathbb{R}^m$.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, r(x')/r(x_n))$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q3] Does each step preserve r(x)/Z as invariant?

- I. initialise x_1 randomly; n:=1
- 2. repeat:
- - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
- a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \frac{r(x_n) \times q(x'|x_n)}{r(x_n)/r(x_n)})$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

 $r(x') \times q(x_n|x')$

[QI] Develop q for the King Markov puzzle.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
- a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \frac{r(x_n) \times q(x'|x_n)}{r(x_n)}$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Noisy greedy exploration. Find a (relative) obj.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:

- b) $u \sim uniform(0, I)$
- c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q2] Noisy greedy exploration. Find a (relative) obj.

Target r(x)/Z. Symmetric proposal q(x'|x).

- I. initialise x_1 randomly; n:=1
- 2. repeat:
 - a) $x' \sim q(x'|x_n)$; $\alpha := \min(1, \frac{r(x_n) \times q(x'|x_n)}{r(x_n)}$
 - b) $u \sim uniform(0, I)$
 - c) $x_{n+1} := (if (u \le \alpha) then x' else x_n); n:=n+1$

[Q3] Does each step preserve r(x)/Z as invariant?

Metropolis-Hastings algo.

- Generate samples from unnormalised r(x).
- Noisy greedy exploration using q(x'|x).

Recap of the MH algo.

- Generate samples from unnormalised r(x).
- Noisy greedy exploration using q(x'|x).
- Each step of MH has r(x)/Z as inv. dist.

[Thm I] Suppose q(x|x') > 0 iff q(x'|x) > 0. Then, each step of MH has r/Z as inv. dist.

```
MH samples: x_1, x_2, x_3, ..., x_n, ... [Thm2] For all f:X \to \mathbb{R} with \mathbb{E}_{r(x)/Z}[f(x)] defined, \sum_{i \le n} f(x_i)/n \to \mathbb{E}_{r(x)/Z}[f(x)] \text{ as } n \to \infty \text{ with prob. I,} if the MH with q is r/Z-irreducible.
```

The estimate converges to the right value.

MH samples: x_1 , x_2 , x_3 , ..., x_n , ...

[Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined,

 $\sum_{i\leq n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)]$ as $n\longrightarrow \infty$ with prob. I,

if the MH with q is r/Z-irreducible.

The estimate converges to the right value.

MH samples: x_1 , x_2 , x_3 , ..., x_n , ...

[Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined,

 $\sum_{i\leq n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)]$ as $n\longrightarrow \infty$ with prob. I,

if the MH with q is r/Z-irreducible.

MH moves well. For any r/Z-legal x, x', the MH can go from x to x' with non-zero prob.

The estimate converges to the right value.

MH samples: x_1 , x_2 , x_3 , ..., x_n , ...

[Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined,

 $\sum_{i\leq n} f(x_i)/n \longrightarrow \mathbb{E}_{r(x)/Z}[f(x)]$ as $n\longrightarrow \infty$ with prob. I,

if the MH with q is r/Z-irreducible.

MH moves well. For any r/Z-legal x, x', the MH can go from x to x' with non-zero prob.

MH samples: $x_1, x_2, x_3, ..., x_n, ...$ [Thm2] For all $f:X \to \mathbb{R}$ with $\mathbb{E}_{r(x)/Z}[f(x)]$ defined, $\sum_{i \le n} f(x_i)/n \to \mathbb{E}_{r(x)/Z}[f(x)] \text{ as } n \to \infty \text{ with prob. I,}$

Consequence of a general result in ergodic theory.

Thm I plays a crucial role in the proof.

if the MH with q is r/Z-irreducible.

Reference

I looked at Chapters 5 and 6 of Robert & Casella's "Monte Carlo Statistical Methods".

Not recommended for general reading.

But details and pointers can be found there.