

Distinguishing response behaviors within cumulative noise metrics for Quiet Supersonic Flights 2018 data

Aaron B. Vaughn and Andrew W. Christian
NASA Langley Research Center

March 21, 2023
Acoustics Technical Working Group Meeting

Introduction

➤ Upcoming X-59 community tests

- Ban on overland commercial supersonic flight
- Shaped-boom technology → Quiet supersonic flight
- Noise dose and annoyance response data to inform regulators

➤ How do people respond to multiple supersonic overflights in a day?

Dose-Response Data

How much did the sonic boom bother, disturb, or annoy you?

1 2 3 4 5

Convert to binary
“Highly Annoyed” (HA) response

Participant ID	Event Number	Dose (Noise Level)	Annoyance Response
001	1	70	0
001	2	81	1
001	3	74	0
002	1	72	0
002	2	78	0

Fit Statistical Model

Single-Event and Cumulative Dose-Response Data

➤ **Longitudinal (panel) Study Design:** each participant responds to multiple events

- Single Event (SE)

- Responses to individual flyovers
- Perceived Level (PL) [dB]

- Cumulative

- Response from end-of-day survey
- Perceived Day-Night Level (PLDNL) [dB]
 - Summation of single events (SE_i) in one day:

$$L_{dn} = 10 \log_{10} \left(\sum_i 10^{SE_i/10} \right) - 49.4$$

Participant ID	Event Number	Dose (PL)	Annoyance Response
001	1	70	0
001	2	81	1
001	3	74	0
002	1	72	0
002	2	78	0

Participant ID	Day	Dose (PLDNL)	Annoyance Response
001	1	32.7	1
002	1	29.6	0

Potential Predictors of Cumulative Annoyance

➤ Day-Night Level (DNL)

- Equal Energy Hypothesis
 - Level
 - Duration
 - Number of events

➤ Loudest single event

- Peak-End Rule

➤ Number of events

- Noise and Numbers
 - E.g., Fields 1983

Introducing \beth (“Bet”)

- Reformulating DNL equation:

$$L_{dn,\beth} = 20 \log_{10} \left[\left(\sum_{i=1}^N \left(10^{\frac{SE_i}{20}} \right)^{\beth^{-1}} \right)^{\beth} \right] - 49.4$$

- Based on generalized vector norms ($\beth = p^{-1}$)
- \beth (“bet”) is bounded from 0 to 1
- Interpretation given in table:

\beth	p -norm	$L_{dn,\beth}$ returns:	Importance given to:
0	∞	Maximum of SE_i vector	Loudest Single Event
0.5	2	Original DNL	Equal Energy
1	1	Coherent summation	Number of Events

ג Example

- Consider 3 combinations of SE:

- $SE_i = [80]$ (dB)
- $SE_i = [77, 77]$ (dB)
- $SE_i = [78, 74, 70, 65]$ (dB)

- Combine using $L_{dn,\gamma}$:

$$L_{dn,\gamma} = 20 \log_{10} \left[\left(\sum_{i=1}^N \left(10^{\frac{SE_i}{20}} \right)^{\gamma^{-1}} \right) \right] - 49.4$$

(For simplicity, drop 49.4)

ג	$L_{dn,\gamma}$ (dB)	$L_{dn,\gamma}$ (dB)	$L_{dn,\gamma}$ (dB)	Importance given to:
0	80	77	78	Loudest Single Event
0.5	80	80	80	Equal Energy
1	80	83	85	Number of Events

Analysis Methods

For each γ value from 0 to 1 in small (0.001) increments:

1) Calculate $L_{dn,\gamma}$ values:

$$L_{dn,\gamma} = 20 \log_{10} \left[\left(\sum_{i=1}^N \left(10^{\frac{SE_i}{20}} \right)^{\gamma^{-1}} \right)^\gamma \right] - 49.4$$

2) Fit logistic curve to $L_{dn,\gamma}$ dose-response data:

3) Evaluate Log Likelihood:

"the likelihood of the data given γ "

$$L_{dn,\gamma}(\text{Data}|\gamma) = \log \left(\prod_{i=1}^n A^{\text{HA}}(x_i) [1 - A^{\text{nHA}}(x_i)] \right)$$

4) Compute Posterior Distribution:
"the probability of γ given the data"

$$Po(\gamma|\text{Data}) = \frac{L_{dn,\gamma}(\text{Data}|\gamma) \cdot Pr(\gamma)}{P(\text{Data})}$$

5) Plot γ Posterior Distribution:

Examples of Potential \beth Results

- Plots not from real data, only illustrative of potential results
- Questions to consider when interpreting results:
 - Where is the peak?
 - How narrow/broad is the peak?
 - What \beth values can be rejected?

Simulation Dose Data

- **Simulation goals:**
 - Demonstrate Σ analysis
 - Provides context for understanding QSF18 results
- 10,000 cumulative dose-response pairs
- Dose:
 - Number of single events: 1 to 7 from uniform distribution
 - Single-event dose range: 65 to 90 dB from uniform distribution
- Maximum Single Event PL vs Number of Events
 - Top left corner empty
 - Due to logarithmic relationship & uniform distributions
- Need to define responses

Simulation Response Data

- Simulations with same doses but differing responses
- Specify $\gamma = 0.5$ as “true” response

- **Simulation 1:**

- Fully Sampled Dose-Response Curve
- %HA from 0 to almost 100%HA

- **Simulation 2:**

- Poorly Sampled Dose-Response Curve
- %HA from 0 to about 4%HA

Simulation 1 Results: Fully Sampled Dose-Response Curve

- Where is the peak?
 - How narrow/broad is the peak?
 - What γ values can be rejected?
- $\gamma \approx 0.5$; **accurate**
 - Narrow peak; **precise**
 - $\gamma = 0$ & 1 can be confidently rejected

Simulation 2 Results: Poorly Sampled Dose-Response Curve

- Where is the peak?
- How narrow/broad is the peak?
- What γ values can be rejected?

- $\gamma \approx 0.5$; somewhat accurate
- Very broad peak; not precise
- $\gamma = 0$ & 1 cannot be confidently rejected

Simulation Results for Various Input γ Values

- Previous examples set input γ to 0.5
- Now vary γ from 0 to 1 in 0.01 steps for both cases
 - Simulation 1 is fully sampled dose-response curve
 - Simulation 2 is poorly sampled dose-response curve
- Results:
 - Both simulations are accurate
 - Input γ captured within output γ CI
 - Simulation 1 more precise
 - Simulation 2 rejects fewer γ values

Quiet Supersonic Flights 2018 (QSF18)

- Galveston, Texas in November 2018
- Low-amplitude sonic booms via F-18 dive maneuver
- 9 Flight days
 - 52 total flyover events
- 385 provided ≥ 1 cumulative response
- **1952 total cumulative dose-response pairs**

QSF18 Dose-Response Data Summary

➤ Cumulative Dose

- 1,952 cumulative doses calculated from 8,704 single events
- Cumulative range in PLDNL: 7.3 to 41.1 dB

➤ Cumulative Response

- 5-point verbal response scale
- Few annoyed responses
 - 15 (<1%) highly annoyed (HA)
 - 73 (4%) at least moderately annoyed (MA+)
 - 243 (12%) at least slightly annoyed (SA+)

QSF18 Data: Max Single Event Level vs Number of Events

- Maximum Single Event PL vs Number of Events plot with DNL noted in color describes tested Σ space
- Maximum Single Event PL:
 - Ranges from 63 to 90 dB
- Number of Events:
 - 4 to 8 planned events per day (1 to 7 measured)
 - Doses only assigned when certain conditions met
- Multiple ways to achieve the same DNL
 - Trend dominated by maximum single event level due to logarithmic relationship

QSF18 נ Posterior Distribution Results for HA

- Where is the peak?
- How narrow/broad is the peak?
- What γ values can be rejected?

- $\gamma \approx 0.16$ for HA
- Very broad peak; **not precise**
- $\gamma = 1$ is **weakly rejected**

QSF18 ↗ Posterior Distribution Results for HA, MA+, & SA+

- Where is the peak?
 - How narrow/broad is the peak?
 - What γ values can be rejected?
- $\gamma \approx 0.16$ for HA; $\gamma \approx 0.72$ for MA+ & SA+
 - Very broad peak; **not precise**
 - $\gamma = 0$ is **rejected by MA+ & HA+**

People who are differently annoyed may be annoyed differently

Conclusion

- Σ (“bet”) analysis works and provides insight into cumulative dose-response relationship

- Test design is important
 - Simulation demonstrates Σ analysis
 - QSF18 results are limited
 - Framework for future analysis of X-59 community data
- Σ analysis is applicable to other noise studies
- Manuscript on Σ analysis in progress

