A Hierarchical Model for Action Recognition Based on Body Parts

¹Zhejiang University of Technology, Hangzhou, China, ²City Univ. of Hong Kong, HK, China, ³Soochow Univ., Suzhou, China Zhanpeng Shao¹, You-Fu Li², Yao Guo², Jianyu Yang³, Zhenhua Wang¹

Motivation

RGB+D+S channels using Depth Cameras [2]

A human action can been seen as a set of concurrent motions on multiple body-parts of the human skeleton, which could provide a very compact representation for understanding human actions

Proposed Method

1. Hierarchical action representation

All possible virtual rigid bodies (body-parts) in the left arm

RRV descriptor of each body-part in the hierarchical model

Concatenate RRV descriptors of all body-parts in part-wise and layer-wise orders to build a hierarchical RRV descriptor for the model

FV encoding on the HRRV descriptor learning

2. Hierarchical body-parts learning

(2) Apply L1 norm among body-parts (group sparsity) at the same layer to achieve active body-parts selection.

(1) Apply L4 norm based regularization inside the features of each bodypart to encourage certain degree of "diversity" induction.

(3) Apply L2 norm over feature groups from all layers to fuse multiple bundles of bodyparts.

Experimental Results

[2] Shahroudy, J. Liu, T. T. Ng, and G. Wang, Ntu rgb+d: A large scale datase for 3d human activity analysis, CVPR2016

clap hands	ŀ									100.0
wave	-								100.0	
pull	-							100.0		
push	-						100.0			
throw						80.00				20.00
carry	10.00				90.00					
pick up	-			100.0						
stand up			100.0							
sit down	_	100.0								
walk	100.0									

RECOGNITION PERFORMANCE ON THE THREE DATASETS USING DIFFERENT METHODS.

DIFFERENT METHODS.					
MSR-Action3D	Modality	Accuracy(%)			
EigenJoints [26]	S	82.3			
DMM & HOG [27]	D	85.5			
Actionlet Ensemble [1]	S, D	88.2			
HON4D [2]	D	88.9			
DSTIP [28]	D	89.3			
Motion Trajectories [29]	S	92.1			
MMMP [6]	S, D	93.1			
Lie Group [10]	S	89.5			
Elastic Functional Coding [12]	S	85.2			
LTBSVM [3]	S	91.2			
Range Sample [25]	D	95.6			
SNV [30]	S, D	93.1			
Random forests [14]	S, D	94.3			
Deep CNN [24]	D	100.0			
HBPL(Ours)	S	94.9			

RECOGNITION PERFORMANCE ON THE THREE DATASETS USING

DIFFERENT VARIATIONS OF OUR HBPL METHOD						
Methods	MSR-Action3D	UT-Kinect	UCF-Kinect			
HRRV-SVM	84.98%	94.0%	98.28%			
HBPL $-\ell_2$ Norm	88.28%	96.0%	98.91%			
HBPL-SJD	71.43%	87.0%	94.14%			
HBPL(L1)	91.94%	94.0%	99.22%			
HBPL(L2)	92.67%	95.0%	99.53%			
HBPL(L3)	89.38%	94.0%	99.38%			
HBPL(L1+L2)	93.41%	96.0%	99.53%			
HBPL(L1+L3)	91.94%	95.0%	99.69%			
HBPL(L2+L3)	92.67%	95.0%	99.77%			
HBPL(L1+L2+L3)	94.87%	97.0%	99.69%			

UT-Kinect	Modality	Accuracy(%)
Histograms of 3D Joints [22]	S	90.9
DSTIP [28]	D	85.8
Random Forests [14]	S, D	91.9
Lie Group [10] (reported by [31])	S	93.6
Elastic Functional Coding [12]	S	94.9
Motion Trajectories [29]	S	91.5
LTBSVM [3]	S	88.5
SNV [30] (reported by [24])	S, D	88.9
Deep CNN [24]	D	90.9
ST-LSTM [31]	S	95.0
HBPL(Ours)	S	97.0
UCF-Kinect	Modality	Accuracy(%)
EigenJoints [26]	S	97.1
Motion Trajectories [29]	S	99.2
LAL [4]	S	95.9
LTBSVM [3]	S	97.9
Hankelets [11]	S	97.7
HBPL(Ours)	S	100.0