

Segurança em Redes S/MIME

Redes de Comunicação de Dados Departamento de Engenharia da Electrónica e das Telecomunicações e de Computadores

Instituto Superior de Engenharia de Lisboa

Baseados em:

 Acetatos do Prof. Dr. Andreas Steffen da Zürcher Hochschule Winterthur

RFC 822

- Define um formato para mensagens de texto a serem enviadas por email
- Norma da Internet
- Estrutura das mensagens de acordo com o RFC 822, actualizado no RFC 2822
 - Linha do *header* (e.g., from: ..., to: ..., cc: ...)
 - Linha em branco
 - Corpo (texto a ser enviado)

RFC 822

Exemplo

Date: Tue, 16 Jan 2005 01:27:05 (GMT)

From: "Vitor Almeida" <valmeida@deetc.isel.ipl.pt>

Subject: Teste

To: xpto@cobaia.deetc.isel.ipl.pt

Blablabla ...

Problemas com o RFC 822 e o SMTP

- Os ficheiros executáveis devem ser convertidos em ASCII
 - Existem vários esquemas (e.g., Unix UUencode)
 - É necessária uma norma
- O texto com caracteres especiais tem também de ser convertido (e.g., texto em português)
- Alguns servidores:
 - Rejeitam mensagens acima de um determinado tamanho
 - Apagam, adicionam e reordenam os caracteres CR e LF
 - Cortam ou dividem linhas maiores do que 76 caracteres
 - Removem espaços em branco no fim da linha (tabs e espaços)
 - Preenchem as linhas de uma mensagem até à mesma dimensão
 - Convertem caracteres tab em múltiplos espaços

MIME

- Define <u>novos headers</u> para os campos das mensagens
- Define um número de <u>formatos de conteúdos</u> (normaliza a representação de conteúdos multimédia)
- Define "codificações de transferência" que protegem o conteúdo de alterações pelo sistema de mail

MIME: Novos headers

MIME-Version

Content-Type

- Descreve os dados contidos no corpo da mensagem
- O agente receptor pode escolher um método apropriado para representar o conteúdo

Content-Transfer-Encoding

- Indica o tipo de transformação que foi utilizado para representar o corpo da mensagem
- Content-ID
- Content-Description
 - Descrição do objecto no corpo da mensagem
 - Útil quando o conteúdo não é legível (e.g., dados áudio)

MIME: Tipos e subtipos de conteúdos

- text/plain, text/enriched
- image/jpeg, image/gif
- video/mpeg
- audio/basic
- application/postscript, application/octet-stream
- multipart/mixed, multipart/parallel, multipart/alternative, multipart/digest (cada parte da mensagem/rfc822)
- message/rfc822, message/partial, message/external-body

MIME: Codificações de transferência

• 7bit

Linhas pequenas de caracteres ASCII

• 8bit

Linhas pequenas de caracteres não ASCII

binary

- Caracteres não ASCII
- Linhas não necessariamente curtas

quoted-printable

- Caracteres não ASCII são convertidos em números hexadecimais (e.g., =EF)
- **base64** (radix 64)
 - Blocos de 3 x 8-bits em blocos de 4 x 6 bits a transformar em caracteres ASCII

x-token

Codificação não normalizada

MIME: Exemplo

MIME-Version: 1.0

From: Nathaniel Borenstein <nsb@nsb.fv.com>

To: Ned Freed <ned@innosoft.com>

Date: Fri, 07 Oct 1994 16:15:05 -0700 (PDT)

Subject: A multipart example

Content-Type: multipart/mixed; boundary=unique-boundary-1

This is the preamble area of a multipart message. Mail readers that understand multipart format should ignore this preamble. If you are reading this text, you might want to consider changing to a mail reader that understands how to properly display multipart messages.

--unique-boundary-1

Content-type: text/plain; charset=US-ASCII

... Some text ...

--unique-boundary-1

MIME: Exemplo

Content-Type: multipart/parallel; boundary=unique-boundary-2

--unique-boundary-2

Content-Type: audio/basic

Content-Transfer-Encoding: base64

... base64-encoded 8000 Hz single-channel mu-law-format audio data goes here ...

--unique-boundary-2

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

... base64-encoded image data goes here ...

--unique-boundary-2--

MIME: Exemplo (continuação)

--unique-boundary-1

Content-type: text/enriched

This is <bold><italic>enriched.</italic></bold><smaller>as defined in RFC 1896</smaller>lsn't it <bigger><bigger>cool?</bigger></bigger>

--unique-boundary-1

Content-Type: message/rfc822

From: (mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: Quoted-printable

... Additional text in ISO-8859-1 goes here ...

--unique-boundary-1--

S/MIME: Serviços

- enveloped data (application/pkcs7-mime; smime-type = enveloped-data)
 - Envelope digital normalizado
- signed data (application/pkcs7-mime; smime-type = signed-data)
 - Assinatura digital normalizada ("hash and sign")
 - conteúdo + assinatura são codificados usando codificação base64
- clear-signed data (multipart/signed)
 - Assinatura digital normalizada
 - Apenas a assinatura é codificada usando base64
 - Receptor sem capacidade S/MIME pode ler a mensagem mas não pode verificar a assinatura
- signed and enveloped data
 - Entidades assinadas e cifradas podem ser em qualquer ordem

Algoritmos de criptografia

Message digest

deve: SHA-1

pode (receptor): MD5 (compatibilidade para trás)

Assinatura digital

– deve: DSS

– pode: RSA

Cifra assimétrica

deve: ElGamal

– pode: RSA

Cifra simétrica

– emissor:

pode: 3DES, RC2/40

– receptor:

• deve: 3DES

• pode: RC2/40

Segurança de uma entidade MIME

- Uma entidade MIME é preparada de acordo com as regras normais para a preparação de uma mensagem MIME
- A entidade MIME preparada é processada pelo S/MIME para produzir um objecto PKCS
- O objecto PKCS é tratado como o conteúdo de uma mensagem e passada ao MIME

PKCS7: "Dados assinados"

Version

(Set of) Digest Algorithms

Content Info

Set of certificates

Set of CRLs

Signer Info

Content type

Content

Version

Signer ID (issuer and ser. no.)

Digest Algorithm

Authenticated Attributes

Digest Encryption Alg.

Encrypted digest (signature)

PKCS7: "Dados cifrados"

Version Version Originator Info Recipient ID (issuer and s.no.) Recipient Info Key Encryption Algorithm Encrypted Key Content type **Encrypted Content Info** Content Encryption Alg. **Encrypted Content**

Exemplo: Dados cifrados

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;

name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhlGfHfYT6 7n8HHGghyHhHUujhJh4VQpfyF467GhlGfHfYGTrfvbnjT6jH7756tbB9H f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhlGfHfYT6ghyHhHUujpfyF4 0GhlGfHfQbnj756YT64V

Exemplo: Dados assinados

Content-Type: multipart/signed; protocol="application/pkcs7-signature"; micalg=sha1; boundary=boundary42

--boundary42

Content-Type: text/plain

This is a clear-signed message.

--boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhlGfHfYT6 4VQpfyF467GhlGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhlGfHfYT6ghyHhHUujpfyF4 7GhlGfHfYT64VQbnj756

--boundary42--

O que é o S/MIME?

- Secure / Multipurpose Internet Mail Extension
- Melhoria de segurança do MIME
- Fornece serviços semelhantes ao PGP
- Baseado na tecnologia da RSA Security
- Norma da indústria
 - RFC 2630 ("Cryptographic Message Syntax")
 - RFC 2632 ("S/MIME Version 3 Certificate Handling")
 - RFC 2633 ("S/MIME Version 3 Message Specification")

S/MIME

- Teve origem na RSA Data Security Inc. em 1995.
- Foi depois mais desenvolvido pelo working group IETF S/MIME em: www.ietf.org/html.charters/smime-charter.html
- A versão 3 é especificada nos RFC 2630-2634.
- Algumas alterações levaram à versão 3.1
- Permite segurança flexível cliente-cliente através de cifra e assinaturas
- Grande suporte, e.g. no Microsoft Outlook, Netscape Messenger, Lotus Notes...

S/MIME: Formato das mensagens

- Como o nome sugere, o S/MIME adiciona facilidades de segurança através da extensão do MIME
- O S/MIME adiciona 5 novas combinações de conteúdos "type/subtype" incluindo:
 - application/pkcs7-mime;
 smime-type=enveloped-data
 - application/pkcs7-mime;
 smime-type=signed-data
 - multipart/signed
- Os restantes tipos são para as mensagens de gestão de chaves

S/MIME: Processamento

- O processamento S/MIME pode ser aplicado a qualquer entidade MIME:
 - Uma parte de uma mensagem multipart MIME, talvez uma que seja ela própria do tipo S/MIME Content-Type.
 - O resultado final é sempre outra entidade MIME, do tipo S/MIME Content-Type.
 - Então a cifra e a assinatura podem ser aplicadas uma depois da outra, em qualquer ordem

S/MIME: Processing – Sender

- O processamento inicial do S/MIME produz um objecto PKCS.
 - PKCS = Public Key Cryptography Standard, conjunto de especificações desenvolvidas pela RSA
- Os objectos PKCS incluem a informação necessária ao processamento pelo receptor assim como o conteúdo original. O objecto PKCS é em formato binário, tendo de ser codificado em base64 para produzir um objecto MIME do tipo S/MIME content-type
- O receptor efectua as operações em ordem inversa

S/MIME: enveloped-data

S/MIME: enveloped-data

Exemplo de mensagem (de RFC 2633):

```
Content-Type: application/pkcs7-mime;
   smime-type=enveloped-data; name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition:attachment; filename=smime.p7m
```

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GI 7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jHd f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHh6

S/MIME: enveloped-data

- O tipo S/MIME enveloped-data fornece um serviço de confidencialidade de dados através de cifra.
- O header S/MIME contém os campos originais To:, From: e Subject:, pelo que a protecção não é completa.
- Algoritmos simétricos com chaves de sessão para cifra eficiente de grandes quantidades e cifra assimétrica para protecção das chaves de sessão.
- O receptor realiza os seguintes passos: obtém a chave de sessão K usando a chave privada, usa K para decifrar EncryptedContent.
 - Os algoritmos usados são especificados nos blocos RecipientInfo e EncryptedContentInfo.

S/MIME: signed-data

S/MIME: signed-data

Exemplo de mensagem (do RFC 2633):

```
Content-Type: application/pkcs7-mime;

smime-type=signed-data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition:attachment; filename=smime.p7m
```

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB977n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUHJhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8

S/MIME: signed-data

- O tipo S/MIME signed-data fornece serviços de integridade de dados, autenticação da origem dos dados e não-repudiação utilizando as assinaturas dos emissores.
- São suportados múltiplos assinantes prepara um bloco SignerInfo para cada um.
- O receptor testa a assinatura usando a entidade S/MIME embebida no objecto PKCS e a chave pública do emissor.
- O receptor sem capacidade S/MIME não consegue ler a mensagem original (mesmo que não queira saber das assinaturas).

S/MIME: Assinatura em claro

- Usa o conteúdo do MIME tipo multipart/signed.
- A primeira parte contem a entidade MIME a ser assinada
- A segunda contém a entidade S/MIME application/pkcs7signature, criada como para o tipo signed-data.
- Os receptores que têm capacidade MIME mas não S/MIME podem ainda ler a mensagem
- Os receptores que têm capacidade S/MIME usam a primeira parte como objecto MIME na verificação da assinatura S/MIME

S/MIME: Assinatura em claro


```
Content-Type: multipart/signed;
  protocol="application/pkcs7-signature";
  micalg=sha1; boundary=boundary42
--boundary42
Content-Type: text/plain
This is a clear-signed message.
--boundary42
Content-Type: application/pkcs7-signature;
  name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition:attachment; filename=smime.p7s
  ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF4674VQ
  pfyF467GhIGfHfYT6jH77n8HHGqhyHhHUujhJh756tb6
--boundary42--
```

Algoritmos S/MIME

- Cifra simétrica:
 - DES, 3DES, RC2 com chaves de 40 e 64 bits.
- Cifra assimétrica:
 - RSA, ElGamal.
- Hashing:
 - SHA-1, MD5.
- Assinaturas:
 - RSA, Digital Signature Standard (DSS).

MIME: Multipurpose Internet Mail Extension

RFC 1521 / RFC 1522

```
From: trinity@matrix.org
To: neo@matrix.org
MIME-Version: 1.0
Content-Type: multipart/mixed;
 boundary=boundary1
--boundary1
Content-Type: text/plain; charset=us-ascii
Dear Neo, please study the attached Word document.
--boundary1
Content-Type: application/msword; name="Matrix.doc"
Content-Transfer-Encoding: base64
ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfH
4VQpfyF467GhIGfHfYT6jH77n8HHGqhyHhHUujhJh756tbTrfv=
--boundary1--
```

S/MIME: Formato das mensagens assinadas I

RFC 1847 / RFC 2311 / PKCS #7

```
Content-Type: multipart/signed;
  protocol="application/pkcs7-signature";
  micalg=sha1; boundary=boundary1
```

--boundary1

```
Content-Type: text/plain

This is a clear-signed message.
```


--boundary1

```
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfH
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbTrfv=
```

--boundary1--

S/MIME: Mensagens assinadas

Multiplos anexos


```
Content-Type: multipart/signed;
  protocol="application/pkcs7-signature";
  micalg=sha1; boundary=boundary1
```

--boundary1

```
Content-Type: multipart/mixed; boundary=boundary2
... multipart message with various MIME-types ...
```

--boundary1

```
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfH
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbTrfv=
```

--boundary1--

PKCS #7 – Public Key Cryptography Standard Norma de sintaxe de mensagens criptográficas

Estrutura ASN.1 para conteúdos do tipo SignedData

Estrutura ASN.1 para o tipo SignerInfo

```
version
issuerAndSerialNumber
digestAlgorithm
authenticatedAttributes
digestEncryptionAlgorithm
encryptedDigest
unauthenticatedAttributes
assinatura
```

Mensagem assinada com múltiplas assinaturas

S/MIME: Formato de mensagem assinada II

RFC 2311 / PKCS #7

```
Content-Type: application/pkcs7-mime;
smime-type=signed-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfH
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbTrfv=
```

- Conteúdo MIME transportado num "Signed Data Object" PKCS#7
 - Esta alternativa de formato de assinatura é usado, por exemplo, no Outlook
 2000
 - Pro: O conteúdo MIME não é sujeito a alterações da codificação de transferência forçada por agentes intermédios de mail.
 - Contra: De maneira a ler a mensagem MIME embebida, o cliente de email do receptor tem de suportar S/MIME.

S/MIME: Formato da mensagem cifrada

RFC 2311 / PKCS #7

```
Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfH
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbTrfv=
```

Estrutura ASN.1 para conteúdos do tipo EnvelopedData

Mensagem cifradas com receptores múltiplos

Envelope utilizando cifra simétrica

S/MIME: Mensagem assinada e cifrada I

Assinar antes de cifrar

```
Content-Type: application/pkcs7-mime;
                 smime-type=signed-data; ...
              signedData ::= {
                                 Entidade MIME a
                contentInfo
                                   ser assinada
                     Entidade MIME a ser cifrada
Content-Type: application/pkcs7-mime;
   smime-type=enveloped-data; ...
envelopedData EnvelopedData ::= {
  encryptedContentInfo Entidade MIME cifrada
```

A(s) assinatura(s) não são visiveis antes da decifração (Anonimato)

S/MIME: Mensagem assinada e cifrada II

Cifra antes da assinatura

```
Content-Type: application/pkcs7-mime;
     smime-type=enveloped-data; ...
  envelopedData EnvelopedData ::= {
    encryptedContentInfo Entidade MIME cifrada
         Entidade MIME a ser assinada
Content-Type: application/pkcs7-mime;
   smime-type=signed-data; ...
signedData SignedData ::= {
                    Entidade MIME a
  contentInfo
                      ser assinada
```

A(s) assinaturas podem ser verificadas antes de decifrar (Confiança)

Gestão de chaves no PGP e S/MIME

- O PGP e o S/MIME usam:
 - Chaves públicas para cifra de chaves de sessão/verificação de assinaturas.
 - Chaves privadas para decifrar chaves de sessão / criar assinaturas.
- De onde vêm estas chaves e até onde é que se pode confiar nelas?

Gestão de chaves

- Os certificados S/MIME estão de acordo com o ISO/ITU-T X.509v3. A mesma norma que é usada para definir certificados no SSL/TLS e IPSec.
- O esquema de gestão de chaves está entre a hierárquia rigida de certificação e a "web of trust" do PGP
 - Os certificados são assinados pelas autoridades de certificação (CA)
 - A autenticação das chaves é baseada em cadeias de certificados.
 - Utilizadores/gestores são responsáveis por configurar os seus clientes com uma lista de chaves de raíz de confiança.

S/MIME: Gestão de chaves

Alguns pormenores:

- Interpretação: Ao utilizador final é perguntado: "Confia neste certificado?" Como é que um utilizador não consciente dos certificados deve interpretar isto?
- Escala: Como gerir um grande número de utilizadores?
- Revogação: Como comunicar a todos os utilizadores de que um certificado já não é válido?
- Responsabilidade: Quanta responsabilidade (se alguma) aceita o emissor? Talvez tudo bem se o emissor for o empregador.
- Armazenamento da chave privada: No computador do utilizador final, talvez protegida por uma password.
- Procedimento de emissão de certificados (registo): É mesmo o Xavier? Sim? Qual Xavier?

Segurança no E-mail: Para lá do PGP e do S/MIME

- O PGP e o S/MIME contrariam as ameaças básicas à confidencialidade, integridade e autenticidade do email razoavelmente bem (assumindo uma boa gestão das chaves).
- Eles não protegem contra outras ameaças (vírus, DoS, divulgação, uso não-autorizado,...)
- Não fornecem nenhuma protecção contra análise de tráfego.
- Medidas de segurança adicional serão necessárias para construir um sistema de email seguro.

Anti-virus e filtagem de conteúdos

- Complementar o servidor de email (ou máquinas clientes) com software de filtragem de conteúdos/SPAM
 - Bloquear emails com conteúdos ativos ou tipos específicos de anexos.
 - Rejeitar ou marcar emails suspeitos de serem SPAM
 - Analisar emails de entrada e de saída à procura de vírus e de conteúdos não apropriados.
 - Adicionar avisos.
 - O servidor não pode aplicar filtragem de conteúdos a emails cifrados (só se tivesse as chaves necessárias)
- Carga significativa para o servidor de email, pode aborrecer os utilizadores (mas a quem pertencem afinal os emails?).

Protecção anti-spamming

- Configurar o servidor de email para não permitir a realização das funções de mail relay.
- Prevenir que o servidor seja utilizado como um agente no envio de emails por spammers.
- Jogar fora todos os emails de servidores na Open Relay Blacklist (ORB) [http://www.ordb.org/].
- Controlar quem pode correr um servidor de email na sua organização através da política apropriada e vigilância apropriadas.

Firewalls e servidores de email

- Colocar o servidor de email por detrás do firewall.
- Configurar o firewall para bloquear todo o tráfego externo de/para o MTA excepto do porto 25 (SMTP).
- Limitar as possibilidades de ataques ao servidor de email, mas um ataque com sucesso pode dar acesso a sistemas internos.
 - Necessita de medidas de segurança.
- Melhor utilização de uma rede de perímetro.
 - Isolar totalmente o servidor das redes interiores e exteriores através de firewalls
 - Configurar o firewall para bloquear todo o tráfego interno de/para o MTA excepto nos portos 25, 110 (POP3),143 (IMAP) e 53 (DNS).
- Utilização de DomainKeys para certificar os servidores de email dos respectivos domínios.

Fortalecer os servidores de email

Tomar medidas adicionais no servidor de email:

- Fortalecer o sistema operativo (OS):
 - Remover contas não necessárias, aplicações e serviços de rede.
 - Aplicar os "patches" mais recentes do OS.
- Fortalecer a aplicação do servidor de email (eg Sendmail, Microsoft Outlooh Exchange):
 - Usar as últimas versões do software.
 - Escolher configurações apropriadas (eg limitar as dimensões dos anexos, as facilidades de mail relay e permissões de ficheiros).
 - Manter actualizados com os "patches" dos vendedores.

Administração do servidor de email

- Fazer log dos dados dos servidor de email e rever os ficheiros de logs regularmente (considerar a análise automática).
- Ter em atenção os alertas de vulnerabilidades e manter o servidor de email com os patches actualizados.
- Considerar permitir apenas administração a partir da consola ou utilizar SSH para a administração remota.
- Efectuar os backups apropriados do servidor de email.

Segurança do email do lado do cliente

De novo, uma boa configuração e os *patches* apropriados são essenciais:

- Desactivar o "preview" automático de mensagens.
- Desactivar o processamentode conteúdoa activos (macros, ActiveX, Java, Javascript,...).
- Desactivar as caixas de diálogo "remember this password?"
 POP/IMAP se possível.
- Considerar protocolos POP e IMAP fortalecidos.
- Estar atento aos riscos extra dos acessos através da Web:
 - Armazenamento das teclas introduzidas e captura das credenciais dos utilizadores.
 - Os conteúdos sobre HTTP podem não passar pelos filtros de conteúdos.
 - Os *emails* dos clientes podem ser deixados no histórico do *browser* ou em ficheiros temporários.

Política de emails e treino

- Desenvolver e publicitar uma politica de email para os utilizadores.
 - Regras de utilização, definições de abuso de serviço, clarificação de a quem pertencem os emails.
- Assegurar que os utilizadores percebem a política de email antes de utilizarem o sistema.
- Aumentar a consciência de segurança na organização através de treino.
- Forçar a política de segurança!

Súmario

- O email passa através de redes internas e da rede pública da Internet.
- O email é sujeito a muitas ameaças.
- O PGP e o S/MIME podem servir para resolver o problema da segurança extremo-a-extremo através de mecanismos de cifra e de assinatura digital.
- Endereçar os restantes assuntos requer uma ponderação cuidadosa de segurança do computador, segurança da rede e contra-medidas na gestão de segurança.

Alguns recursos

- NIST Special Publication 800-45:
 - Guidelines on Electronic Mail Security por S. Bisker, M. Tracy e W. Jansen. Available de:
 - http://csrc.nist.gov/publications/nistpubs/index.html
- W. Stallings, "Network Security Essentials", Capítulo 5: Mais sobre PGP e S/MIME.
- http://www.spamlaws.com/: detalhes sobre a legislação anti-spam.
- Open PGP: www.openpgp.org
- S/MIME: www.ietf.org/html.charters/smime-charter.html
- Todos os RFCs estão em www.ietf.org.