HIGHLY HEAT RESISTANT ALLOY

Publication number: RU2020178 (C1)

Publication date:

1994-09-30

Inventor(s):

1

AFANASEV SERGEJ V [RU]; ZIMIN GERMAN G [RU]; AKIMOV NADIR K [RU]; MAKSUTOV RASHAD R [RU]; PISAREV BORIS K [RU]; REBONEN VALERIJ N

[RU]; RTISHCHEV VLADIMIR V [RU]; SERGEEV ANATOLIJ B [RU]; TERESHCHENKO ALEKSANDR G [RU]; TITOVETS YURIJ F [RU]; PROSKURYAKOV GEORGIJ V [RU]; KHLYSTOV EVGENIJ N [RU]

Applicant(s):

TSNII KONSTRUKTSIONNYKH MATERI [RU]; N PROIZV OB EDINENIE I I PROEK

[RU]

Classification:

- international:

C22C19/05; C22C19/05; (IPC1-7): C22C19/05

- European:

Application number: SU19915012876 19911121 **Priority number(s):** SU19915012876 19911121

Abstract not available for RU 2020178 (C1)

Data supplied from the esp@cenet database — Worldwide

	•
	1

RU 2020178 C

(19) RU (11) 2 020 178 (13) C1

(51) MIK⁵ C 22 C 19/05

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка:	5012876/02,	21.11.1991	(71) Заявитель
			Пентралы

(46) Дата публикации: 30.09.1994

(56) Ссылки: Ост 1.90126-65.

Заявитель.
Центральный научно-исследовательский
институт конструкционных материалов
"Прометей",
Научно-производственное объединение по
исследованию и проектированию
энергетического оборудования
им.И.И.Ползунова

(72) Изобретатель: Афанасьев С.В., Зимин Г.Г., Акимов Н.К., Максутов Р.Р., Писарев Б.К., Ребонен В.Н., Ртищев В.В., Сергеев А.Б., Терещенко А.Г., Титовец Ю.Ф., Проскуряков Г.В., Хлыстов Е.Н.

(73) Патентообладатель: Центральный научно-исследовательский институт конструкционных материалов "Прометей", Научно-производственное объединение по исследованию и проектированию энергетического оборудования им.И.И.Ползунова

(54) ВЫСОКОЖАРОПРОЧНЫЙ СПЛАВ

(57) Реферат:

Использование: ответственные детали газотурбинных двигателей. Сплав содержит следующие компоненты, мас. %: углерод 0,005 - 0,12; бор 0, 005 - 0,015; хром 9,5 - 11,4; кобальт 5,2 - 6,8; молибден 0,5 - 1,5;

вольфрам 7,5 - 9,8; алюминий 3,8 - 4,4; титан 4,0 - 4,6; ниобий 0,5 - 1,5; марганец 0,3 - 0,8; кальций 0,005 - 0,02; иттрий 0,01 - 0,03; цирконий 0,005 - 0,03; никель - основа. 1 з.п. ф-лы, 2 табл.

Z

(19) RU (11) 2 020 178 (13) C1

(51) Int. Cl.⁵ C 22 C 19/05

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5012876/02, 21.11.1991

(46) Date of publication: 30.09.1994

(71) Applicant: Tsentral'nyj nauchno-issledovatel'skij institut konstruktsionnykh materialov "Prometej", Nauchno-proizvodstvennoe ob edinenie po issledovaniju i proektirovaniju ehnergeticheskogo oborudovanija im.I.I.Polzunova

(72) Inventor: Afanas'ev S.V., Zimin G.G., Akimov N.K., Maksutov R.R., Pisarev B.K., Rebonen V.N., Rtishchev V.V., Sergeev A.B., Tereshchenko A.G., Titovets Ju.F., Proskurjakov G.V., Khlystov E.N.

 ∞

0

(73) Proprietor: Tsentral'nyi nauchno-issledovatel'skij institut konstruktsionnykh materialov "Prometej", Nauchno-proizvodstvennoe ob edinenie po issledovaniju i proektirovaniju ehnergeticheskogo oborudovanija im.I.I.Polzunova

(54) HIGHLY HEAT RESISTANT ALLOY

(57) Abstract:

FIELD: responsible components of gas turbine engines. SUBSTANCE: the alloy comprises the following components (wt %): 0.005-0.12 carbon; 0.005-0.015 boron; 9.5-11.4 chromium; 5.2-6.8 cobalt; 0.5-1.5 molybdenum; 7.5-9.8 tungsten; 3.8-4.4

aluminium; 4.0-4.6 titanium; 0.5-1.5 niobium; 0.3-0.8 manganese; 0.005-0.02 calcium; 0.01-0.03 yttrium; 0.005-0.03 zirconium; and nickel, the base. EFFECT: improved properties of the highly heat resistant alloy. 2 cl, 2 tbl

. Изобретение относится к металлургии сплавов на основе никеля, содержащего хром, кобальт вольфрам, молибден, алюминий, титан, ниобий, марганец, углерод, бор, иттрий, цирконий, кальций и церий и используемых в энергетической промышленности для изготовления литых лопаток газовых турбин, работающих при температуре до 1000°С в агрессивных газовых средах.

В настоящее время для ответственных деталей газотурбинных двигателей в основном используются аустенитные сложнолегированные никелевые сплавы. При этом основные трудности при разработке лопаточных материалов заключаются в достижении оптимального сочетания высокой жаропрочности и стойкости против высокотемпературной коррозии. Известно, что легирующие элементы, приводящие к повышению коррозионной стойкости этих материалов, оказывают неблагоприятное уровень возлействие на высокотемпературной прочности. образом, возможность улучшения служебных свойств новых жаропрочных материалов связана прежде всего с балансировкой их состава и структурных составляющих.

Из известных жаропрочных сплавов, применяемых для изготовления литых лопаток отечественных стационарных и авиационных газовых турбин, по составу ингредиентов и своей технической сущности наиболее близким является состав ЖС6-К (ОСТ.1.90126-65), содержащий, мас.%: Углерод 0,13-0,20 Хром 9,6-12,0 Кобальт 4,0-5,0 Молибден 3,5-4,8 Вольфрам 4,5-5,5 Алюминий 5,0-6,0 Титан 2,5-3,2 Бор 0,02 (по

расчету) Церий 0,02 (по

Z

N

 ∞

расчету) Цирконий 0,04 (по

расчету) Никель Основа Известный сплав обладает достаточно высоким уровнем длительной прочности:

 $\sigma_{100}^{900} \ge 30 \ \text{krc/мм}^2$ для отливок с равноосной структурой.

 σ_{100}^{900} ≥ 32 кгс/мм² для отливок с ориентированной структурой. Однако плохая стойкость против высокотемпературной коррозии не позволяет рекомендовать этот сплав к применению в газотурбинных двитателях, работающих на топливе, содержащем серу и др. коррозионно-активные примеси. Кроме того, перспективные проекты газотурбинных установок повышенной мощности и ресурса требуют материалов с более высоким уровнем жаропрочности.

Целью изобретения является создание высокожаропрочного сплава на никелевой основе, обладающего удовлетворительным уровнем коррозионной стойкости.

Поставленная цель достигается путем следующего изменения ингредиентов:

В целях повышения стойкости против высокотемпературной коррозии отношение титана к алюминию доводится до значений Ті/Al ≥ 1,0 мас. % и их концентрация в сплаве изменяется с 5,0-6,0% по массе Al и 2,5-3,2% по массе Ті по 3,8-4,4% по массе Al и 4,0-4,6% по массе Ті. Кроме того, снижается содержание молибдена с 3,5-4,8 до 0,5-1,5 мас.% и вводится марганец в концентрации 0,3-0,8 мас.%, а также для улучшения адгезии окисной пленки с основным металлом

вводится иттрий в концентрации 0,01-0,03 мас %

Одновременно, для повышения уровня жаропрочности и температурной способности, увеличивается содержание кобальта с 4,0-5,0 до 5,2-6,8 мас.% и вольфрама с 4,5-5,8 до 7,5-9,8 мас.%, а также дополнительно вводится ниобий в концентрации 0,05-1,5 мас.% и кальций в концентрации 0,005-0,02 мас.%. При этом за счет расчетно-экспериментальной оценки обеспечивается высокий уровень фазовой стабильности предлагаемого

сплава $(\mathbf{r}_{\mathbf{N}_{\mathbf{v}}} \leq \mathbf{r}_{\mathbf{v}}^{\mathbf{c}} = 2,4)$ и когерентности γ и γ'

^{'5} -φas (a γ' - a γ < 0,01).

Предлагаемый сплав на основе никеля, содержащий, мас. %: Углерод 0,005-0,12 Бор 0,005-0,015 Хром 9,5-11,4 Кобальт 5,2-6,8 Молибден 0,5-1,5 Вольфрам 7,5-9,8 Алюминий 3,8-4,4 Титан 4,0-4,6 Ниобий 0,5-1,5 Марганец 0,3-0,8 Кальций 0,005-0,02 Иттрий 0,01-0,03 Цирконий 0,005-0,03 Никель Основа

При этом сплав с содержанием углерода 0,005-0,05 мас.% рекомендуется использовать только для литья турбинных лопаток с ориентированной структурой, которые изготовляются методом направленной кристаллизации, в то время как сплав с содержанием углерода 0,06-0,12 мас.% следует использовать при изготовлении лопаток обычным литьем в вакууме.

В ЦНИИ КМ "Прометей" в вакуумных индукционных печах на чистых шихтовых материалах была произведена выплавка нового и известного сплавов, а также проведена их термическая обработка и исследованы коррозионная стойкость и механические свойства. Химические составы заявляемого и известного сплавов приведены в табл. 1., механические свойства и данные о коррозионной стойкости - в табл.2. Как показывают эти результаты, предлагаемый сплав имеет более высокую коррозионную стойкость и уровень механических свойств и длительной прочности по сравнению с указанным прототипом.

Формула изобретения:

1. ВЫСОКОЖАРОПРОЧНЫЙ СПЛАВ на основе никеля, включающий хром, кобальт, молибден, фольфрам, алюминий, титан, углерод, бор и цирконий, отличающийся тем, что он дополнительно содержит ниобий, кальций, иттрий и марганец при следующем соотношении компонентов, мас.%:

Углерод 0,005 - 0,12 Бор 0,005 - 0,015 Кобальт 5.2 - 6.8 Хром 9,5 - 11,4 55 Молибден 0,5 - 1,5 Вольфрам 7,5 - 9,8 Алюминий 3,8 - 4,4 Титан 4,0 - 4,6 Ниобий 0,5 - 1,5 60 Марганец 0,3 - 0,8 Кальций 0,005 - 0,02 Иттрий 0,01 - 0,03 Цирконий 0,005 - 0,03 Никель Остальное

2. Сплав по п.1, отличающийся тем, что он содержит 0,005 - 0,05 мас.% углерода и имеет

RU 2020178

RU 2020178 C

Таблица 1

Осноı 8 1 1 1 1 1 1 ź 0,030 0,005 0,012 0,002 0,007 0,05 0,007 0,011 17 0,015 0,030 0,010 0,020 0.005 0,007 0,007 0,002 ပ္ပ ı 4 1 ļ ပ္ပ 1 - 1 - 10,005 0,05 0,03 0,02 0,04 0,01 0, 0,6 0,8 0,2 0,5 0,4 6,0 Mn 1,5 1,5 0,3 1,7 ĝ 6,0 1,4 0,5 Содержание легирующих элементов, мас. 3,9 4,8 4,5 4,0 4,3 4,1 4,3 F 4,6 4,2 4,4 3,6 4,0 4,3 3,9 3,8 ₹ 9,2 9,8 7,3 6,6 8,8 9,7 7,6 7,5 ∣≥ 1,4 1,0 1,7 Š 0,5 7,0 5,8 6,8 4,8 ය 5,6 2'9 5,2 11,6 10,2 11,4 10,5 10,4 9,3 9,5 ပ 0,015 0,003 0,008 0,009 0,02 0,005 0,005 0,01 \mathbf{m} 0,0050 0,003 0,13 0,12 0,05 90'0 0.08 0,02 Ü Равно-Сплав Плав- Струк-ка тура сплава Ориен-Ориенванная основ-Равнованная 0СНОВ--одит тиро-REH ная 678 ¢217 674 675 676 672 673 671 Предлагае-MEİ

RU 2020178 C1

RU 2020178 C1

Продолжение табл. 1

R ⊂

2020178

7 ပ

Сплав	Плав-	Сплав Плав- Структу-			-	Содерж	ание ле	гируюш	Содержание легирующих элементов, мас. %	tentos,	Mac. %						
	ĸa	ра спла- ва	ပ	8	ప	රි	№	≩	₹	П	qN	Mn	_	ပီ	ය	Zr	Ē
Изве-	620	Изве- 620 Ориен- 0,13	0,13	0,02	10,4	4,6	4,0	4,6	5,5	3,0	,		ı	0,015	1	0,03	
стный		тиро-	•														
	_	ванная															
	621	Равно-	0,18	0,02	10,6 4,8	4,8	4,6	4 5	0'9	2,7	1	ı	ı	0,015	ı	0.03	ı
		основ-					***************************************										
		H BB						•									

* - Плавки запредельного состава

Таблица 2

Сплав	Плавка	Структура	Tucn., OC	Механ	Механические характеристики при	эктеристик	идии	Длительная	пъная	Скарость	Темпера-
					растяжения	сения		прочность	ность	коррозии.	тура пере-
				ØB,	002,	ð5. %	% ∌	Напряже-	Время до	Mr/cm2 4	хода к
				Krc/mm ²	Krc/MM ²			ние	разруше-		интенсив-
								Krc/mm²	HM9, 4		ной кор-
											розии, °С
Предла-	671	Ориенти-	800	118,5	102,5	9,5	20,5	20,0	1825	0,72	820
raeMbiv		рованная	006	92,5	83,0	12,0	23,5	30.0	790	32,0	
	672	- ! - i	800	120,5	107,5	10,0	22,5	20,0	2690	0,58	820
			006	102,0	89,5	11,0	19,5	30,0	880	24,0	
	673	<u>.</u> !	800	121,0	108,5	8,5	18,5	20'0	2500	0,37	860
			006	104,0	90,5	9,5	17,0	30,0	1050	19,6	
	674	Равноос-	800	110,0	101,5	7.0	14,0	20,0	1100	0,42	860
		новная	006	89,5	80,5	10,5	18,0	30,0	550	21,0	
	675	=	800	115,0	106,0	6,5	12,0	20'0	1240	0,40	880
			006	92,5	85.0	0.6	18,5	30,0	635	18,0	
	929	z]	800	114,5	104,0	0'9	12,5	20'0	1200	66,0	006
			006	95,0	0'98	8,5	16,5	30,0	610	1,4	
	677*	Ориенти-	800	105,0	95.0	11.0	23.0	20,0	890	1,5	800
		рованная	006	82,5	76,0	18,0	26.5	30'0	490	35,0	
	678 [*]	Равно-	800	108,5	100,5	3,9	8,5	20'0	620	0,28	910
		-воноо	006	95,0	87,5	4,5	9,5	30,0	205	0,72	
		ная									

RU 2020178 C1

Продолжение табл. 2 розии, ^оС коррозии, тура переинтенсив-Скорость Темпераной корхода к 800 800 Mr/cm2 4 40,0 0.09 52,0 84,0 Напряже- Время до -әтмдее ния, ч 445 110 380 90 Длительная прочность Krc/MM² ние, 50,0° 30,0 50,0 30,0 ₹ 6,5 6,0 8,5 Механические хар-ки растяжения % % % 4,5 6,0 2,0 Krc/MM² 0'08 68,5 83,5 66,0 O02, $\kappa rc/mm^2$ 93,5 82,5 94,0 79,5 G_B, Структура Тисп., ^оС 900 800 900 тирован-Равно-Ориен-OCHOBсплава ная ная Номер сплава 620 621 Сплав Известĭ

* -- Плавки запредельного состава

င် ပ

 ∞

0

0 2

 \mathbb{Z}