CS150: Database & Datamining Lecture 22: Analytics & Machine Learning IV

Xuming He Spring 2019

Acknowledgement: Slides are adopted from the Berkeley course CS186 by Joey Gonzalez and Joe Hellerstein, Stanford CS145 by Peter Bailis.

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Classification

Dimensionality Clustering Reduction

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Classification

Dimensionality Clustering Reduction

Spam Classification

- ➤ Goal: given the text in an email predict whether it is spam
- **≻**Training Data:

Content	Is Spam
Viagra & Cialas half-off today	SPAM
Class is Cancelled today	NOT SPAM
Deals on new Autos	SPAM
Receipt from Ritual Coffee	NOT SPAM

First best solution?

What is wrong with this?

➤ Why is Spam Classification Hard?

- Easy for humans to recognize
- Difficult to formally describe (as an algorithm)
- Personal: different people have different tastes in Spam
- Good candidate for Machine Learning, the second best solution

```
def predSpam(doc):
   if "Viagra" in doc:
      return True
   elif "Cialas" in doc:
      return True
   elif "Class" in doc:
      return False
   elif "Deals" in doc:
      return True
   else:
      return False
```

Spam Classification

➤ Goal: given the text in an email predict whether it is spam

≻Training Data:

Content	Is Spam
Viagra & Cialas half-off today	SPAM
Class is Cancelled today	NOT SPAM
Deals on new Autos	SPAM
Receipt from Ritual Coffee	NOT SPAM

- ➤ Machine Learning:
 - Learn a function that generalizes the relation:

 $F(Content; \theta) \rightarrow isSpam$

- F: is the model type
- θ : are the model parameters
- \triangleright Machine learning alg. search for the "best" θ

Common Classification Models

- ➤ Most models predict the probability
 - Why would probability be helpful?
- ➤ Nearest Neighbor: works embarrassingly well
 - return the label of the nearest training point to the query point
- ➤ Logistic Regression: widely used and simple
 - Similar to least squares regression but for classification
- ➤ Naïve Bayes: occasionally used
 - Classic model based on Bayes Rule
- >Support Vector Machines: kernel methods
 - Capable of automatically growing model size with data
- > Deep Learning: more on this soon ...

Logistic Regression

➤ Basic Model:

$$\mathbf{P}(y|x,\theta) = \sigma(y(\theta^T x))$$

$$= \frac{1}{1 + \exp(-y(\theta^T x))}$$

Note that y is either +1 or -1

➤ Logistic Function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Symmetric

$$1 - \sigma(a) = \frac{\exp(-a)}{1 + \exp(-a)} = \frac{1}{\exp(a) + 1} = \sigma(-a)$$

Gradient

$$\sigma'(a) = \frac{\exp(-a)}{(1 + \exp(-a))^2} = \sigma(a)(1 - \sigma(a))$$

Logistic Regression

≥2D example:

What a linear classifier does?

- > If its input is within a specific angle of its weight
 - If the input pattern matches the weight pattern closely enough

$$P(y=1) > 0.5 \Leftrightarrow \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})} > 0.5 \Leftrightarrow \mathbf{w}^T \mathbf{x} > 0$$

Learning the Logistic Regression Model

- ➤ How do we fit the Logistic Regression model?
 - method of maximum likelihood
- \triangleright Select the best θ by maximizing prob. of data
 - Solve the following convex optimization problem

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp\left(-y_i(\theta^T x_i) \right) \right) + \lambda R(\theta)$$

- Regularized using same techniques as regression
- ➤ Optimized using numerical methods
 - SGD: Stochastic Gradient Descent

Learning with regularization

Constraints on hypothesis space

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

In common use:

L2 regularization

L1 regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2)
$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$$

Support Vector Machines

Which Line is the Best Classifier?

Support Vector Machines

Which Line is the Best Classifier?

Hyperplane Distance

- Line is a 1D, Plane is 2D
- Hyperplane is many D
 - Includes Line and Plane
- Defined by (w,b)
- Distance:

$$\frac{\left|w^{T}x - b\right|}{\left\|w\right\|}$$

• Signed Distance: $\frac{w^{i}x-b}{\|w\|}$

Margin

How to maximize margin

Choose w that maximizes:

How to maximize margin

$$\underset{w,b}{\operatorname{argmax}} \left[\min_{(x,y)} \frac{y(w^{T}x - b)}{\|w\|} \right]$$

$$= \underset{w,b: \ \|w\|=1}{\operatorname{argmax}} \left[\underset{(x,y)}{\min} \ y \Big(w^T x - b \Big) \right]$$

Hold Denominator Fixed

Suppose we instead enforce:

$$\min_{(x,y)} y(w^T x - b) = 1$$

Hold Numerator Fixed

Then:

$$= \underset{w,b}{\operatorname{argmin}} \|w\| = \underset{w,b}{\operatorname{argmin}} \|w\|^2$$

Max-margin classifier (SVM)

Multiclass Linear classifier

Multiclass Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear classifier

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Instance-based learning

- Alternative to parametric models are non-parametric models
- These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems)
- Learning amounts to simply storing training data
- Test instances classified using similar training instances
- Embodies often sensible underlying assumptions:
 - Output varies smoothly with input
 - Data occupies sub-space of high-dimensional input space

Nearest Neighbors

- ullet Training example in Euclidean space: ${f x} \in \Re^d$
- Idea: The value of the target function for a new query is estimated from the known value(s) of the nearest training example(s)
- Distance typically defined to be Euclidean:

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^d (x_j^{(a)} - x_j^{(b)})^2}$$

Algorithm:

1. Find example (\mathbf{x}^*, t^*) (from the stored training set) closest to the test instance \mathbf{x} . That is:

$$\mathbf{x}^* = \underset{\mathbf{x}^{(i)} \in \text{train. set}}{\operatorname{argmin}} \operatorname{distance}(\mathbf{x}^{(i)}, \mathbf{x})$$

2. Output $y = t^*$

Nearest Neighbors

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred
- Decision boundaries: Voronoi diagram visualization
 - show how input space divided into classes
 - each line segment is equidistant between two points of opposite classes

Nearest Neighbors

Example: 2D decision boundary

Vision example

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

Test images and nearest neighbors

Vision example

Distance Metric to compare images

L1 distance: $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

u	anını	g imag	JC
10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

Vision example

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

KNN: Distance metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

K = 1

Practical issues

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Very problem-dependent.

Must try them all out and see what works best.

Model selection

5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

KNN in CV

Decent performance when lots of data

0123456789

- Yann LeCunn MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: d = 784
 - 60,000 training samples
 - 10,000 test samples
- Nearest neighbour is competitive

Test Error Ra	ate (%)
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	0.8
Boosted LeNet-4, [distortions]	0.7

KNN in CV

 Problem: Where (e.g., which country or GPS location) was this picture taken?

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single image. CVPR'08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]

KNN in CV

- Problem: Where (e.g., which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with GPs info (dense sampling across world)
 - Represent each image with meaningful features
 - ► Do kNN!

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single image. CVPR'08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]

KNN Summary

- Naturally forms complex decision boundaries; adapts to data density
- If we have lots of samples, kNN typically works well
- Problems:
 - Sensitive to class noise
 - Sensitive to scales of attributes
 - ▶ Distances are less meaningful in high dimensions
 - Scales linearly with number of examples

Supervised Learning Reinforcement & Bandit Learning Unsupervised Learning

Classification

Dimensionality Clustering Reduction

