PHYS2641 — Laboratory Skills and Electronics

Electronics

Lecture 3

Dr Aidan Hindmarch a.t.hindmarch@durham.ac.uk

December 2019

Last week

- PID control systems
- 'Operational amplifiers'
- Some simple op-amp circuits

Last week – Op-amps: General properties

For an *ideal* op-amp:

- The open-loop gain A is *infinite*
- The input impedance is *infinite*
- The output impedance is zero

These give us 'Golden Rules' for a negative-feedback system:

- 1. The output will always attempt to drive the inputs to the same voltage (the steady-state error is zero)

 Using these
- 2. No current flows into the inputs
- 3. Loading does not affect the output

Using these rules we can figure out the behaviour of fairly complex opamp circuits!

This is also a very useful property!

Last week – Frequency response

- Ideal op-amp has infinite gain
- Real op-amps have limited gain, which drops off with increasing frequency

This is described by the 'gainbandwidth product' (i.e. Gain x Frequency = const.)

There is a trade-off between Gain and Bandwidth

We can use **feedback** to reduce the gain and thereby increase the bandwidth

Aims:

- 1. Limitations of real op-amps, Comparators
- 2. Positive feedback
- 3. Stability and oscillations in control systems

Aims:

- 1. Limitations of real op-amps, Comparators
- 2. Positive feedback
- 3. Stability and oscillations in control systems

Jupyter Demo: Example_Slew_rate.ipynb

Slew-rate

- The output response of an ideal op-amp is instantaneous
- Real op-amps have limited rate-of-change of the output. This is known as the 'Slew-rate', usually measured in V/µs

 Slew-rate limits suitability of some op-amps (e.g. 741) in high-frequency circuit applications

Slew-rate: example

Slew-rate: example (2)

Slew-rate: example (3)

Slew-rate: example (4)

Slew-rate-limited gain

- At high frequencies the slew-rate tends to decrease the amplitude of the output, and limits the effective voltage gain
- This is a different effect to and completely separate from the intrinsic drop-off in gain as frequency increases (which is due to gain-bandwidth product)
- If an amplifier is slew-rate-limited, the effective gain depends on the amplitude of the input signal – as V_{out} is limited [bandwidth-limited gain does not depend on input amplitude]
- Slew-rate-limiting is non-linear and gives rise to additional frequencycomponents in the output – i.e. a sinusoidal input does not result in a sinusoidal output [bandwidth-limited gain remains linear]

Jupyter Demo: Example_Saturation.ipynb

Saturation

- Output voltage of an ideal op-amp is unlimited (recall infinite gain)
- Max output of a real op-amp output is limited by the Power-supply rail voltages!

Jupyter Demo: Example_Saturation.ipynb

Saturation: design example

When the output saturates, information is lost: you know that the input is above a certain level, but cannot know details of the waveform it takes

Example: You have a small, noisy, signal that you want to amplify. Signal amplitude V_{signal} =10mV, V_{noise} =5mV. Your power supply is such that your amplifier output can range from -10V to +10V.

What is the maximum gain we can sensibly use?

The 'obvious answer' is that we use a gain of 1000, so $10\text{mV} \rightarrow 10\text{V}$

However, including noise the total input $V_{in} = V_{signal} + V_{noise} = 15$ mV, so we must set

Despite having a potential +/- 10 V amplifier output, to avoid saturation our maximum signal output amplitude is < 7 V

Saturation: uses

Saturation limits the output voltage (gain) which can be obtained from a given op-amp circuit

The output voltage is limited to the supply rail voltage which is used to power the op-amp

The output current is also limited by the current which can be drawn from the supply rails: this can limit the output current of a 'buffer' (last lecture)

However, saturation can also be employed in circuit design to create digital waveforms, perform logic operations etc.

Comparator

A simple comparator circuit consists of an op-amp *without* feedback

If V_{in} is sinusoidal, what form do we expect for V_{out} ?

Remember – V_{out} is the product of the op-amp 'open-loop gain' (A>10⁵) and the error signal (V_+ - V_- = V_{in})

Jupyter Demo: Example_Comparator.ipynb

Comparator (2)

 V_{out} will saturate at either positive or negative supply-rail voltage, depending on the sign of V_{in} (equivalent to sign of $V_{+} - V_{-}$): a 'comparison' between voltages V_{+} and V_{-}

Jupyter Demo: Example_Comparator.ipynb

Comparator (3)

Input noise (blue) can cause the output (red) to oscillate when the input signal is ~ zero

Jupyter Demo: Example_Comparator.ipynb

 R_2

Vout

Note the positions of inverting/noninverting inputs. Try not to make this circuit when you intend to make a

(non-)inverting amplifier!

Schmidt trigger

A 'hysteretic' comparator which ignores noise on the input below a 'threshold' value.

The circuit is configured with 'positive-feedback'; (V_{out} feeds back into non-inverting input) so the

output saturates, i.e.

$$V_{out} = \pm V_{\text{supply}}$$

Threshold voltage at which the output reverses is:

$$V_{ ext{threshold}} = \mp V_{ ext{supply}} \left(rac{R_1}{R_2}
ight)$$

Aims:

- 1. Limitations of real op-amps, Comparators
- 2. Positive feedback
- 3. Stability and oscillations in control systems

Control systems

 V_{+} V_{-} V_{out} $V_{out} = A(V_{+} - V_{-})$

Recall – Closed loop control system:

 $A\beta$ is sometimes referred to as the 'loop gain'

 $A\beta > 0$ results in *Negative feedback, when* $A\beta >> 0$ the gain is determined solely by β

Negative feedback provides a stable output and control of gain

Control systems

Recall – Closed loop control system:

$$Gain = \frac{A}{1 + A\beta}$$

But, what happens when $A\beta < 0$??

Answer: 'Positive feedback'!

Positive feedback

Negative feedback tends to <u>reduce</u> the error signal – stable output

Positive feedback causes V_{err} to <u>increase</u>

Input

(set-point)

Feedback signal

A

Error signal

Positive feedback

Output

Example of positive feedback

Nuclear fission chain-reaction:

- Neutron with sufficient KE is absorbed by U₂₃₅ atom
- U₂₃₅ atom spits into fission fragments, releasing further energetic neutrons
- More U₂₃₅ atoms absorb neutrons → fission → release more neutrons

Each cycle more atoms undergo fission, and more neutrons are released: a cascade reaction occurs

Example of positive feedback (2)

'Bank-run':

Durham

University

- A bank appears to be on the verge of insolvency
- People rush to withdraw their cash
- Bank moves closer to insolvency
 - More people rush to withdraw cash...

High-gain positive feedback tends to lead to exponential growth, until limited by environmental or systemic factors:

Bank becomes insolvent – no more cash to give out All $\rm U_{235}$ atoms have fissioned – no further reaction

Amplifier output limited by supply-rail voltage – **Saturation**!

Aims:

- 1. Limitations of real op-amps, Comparators
- 2. Positive feedback
- 3. Stability and oscillations in control systems

Control systems

$$Gain = \frac{A}{1 + A\beta}$$

 $A\beta > 0$ results in *Negative feedback*: guaranteed stable $A\beta < 0$ results in *Positive feedback*

Control systems

$$Gain = \frac{A}{1 + A\beta}$$

What happens when $\underline{A\beta} = -1$??

Answer: Closed-loop gain tends to infinity!

If gain = ∞ we can have output with no input signal

$$A\beta = -1??$$

What does having $A\beta = -1$ actually mean?

- The *magnitude* of the loop-gain $|A\beta|=1$ Any signal in the loop will keep the same amplitude every time it passes round the feedback loop
- The *phase-shift* of the loop-gain $\angle A\beta$ gives a 'total' phase-shift of 2π around the feedback loop

Signal mixer in our block-diagram representation includes a phase-shift of π

These are the 'Barkhausen Criteria' for stability

A and β can both have *frequency dependence* (magnitude and phase)

Special case: $A\beta = -1$

- The *magnitude* of the loop-gain $|A\beta| = 1$
- The *phase-shift* of the loop-gain $\angle A\beta$ gives a 'total' phase-shift of 2π around the feedback loop

Any electrical 'signal' circulating around the loop can be thought of as composed of many different frequency Fourier components

A and β will be different for each frequency: Barkhausen criteria are met only for a single Fourier component

Special case: $A\beta = -1$

- The *magnitude* of the loop-gain $|A\beta| = 1$
- The *phase-shift* of the loop-gain $\angle A\beta$ gives a 'total' phase-shift of 2π around the feedback loop

If $|A\beta| < 1$ then the signal will decay in amplitude every pass of the feedback loop; any frequency components with $|A\beta| < 1$ will disappear

If phase-shift around the loop is not a multiple of 2π , signal de-phases (*c.f.* destructive interference). De-phased signal time-averages to zero; any frequency components with total phase not $2\pi n$ will disappear

Special case: $A\beta = -1$

- The *magnitude* of the loop-gain $|A\beta| = 1$
- The *phase-shift* of the loop-gain $\angle A\beta$ gives a 'total' phase-shift of 2π around the feedback loop

Frequencies components where Barkhausen criteria are not met vanish

Only single frequency component remains – determined by phase behaviour of A and β; output has a (tuneable) single frequency...

The output of this circuit is a sine wave!

Control systems

$$Gain = \frac{A}{1 + A\beta}$$

What happens when $A\beta < -1$??

Again, can generate output with no signal input...

What about $A\beta < -1$

What does having $A\beta$ < -1 actually mean?

- The *magnitude* of the loop-gain $|A\beta| > 1$ Any signal will be amplified every time it passes round the feedback loop
- The *phase-shift* of the loop-gain $\angle A\beta$ again gives 2π phase-shift around the feedback loop

Again, all frequency components where this criterion is not met will de-phase, and time-average to zero

Single-frequency signal that saturates at the supply voltage – square-wave!

Op-amp oscillator implementation

$$V_{out} = -AV_{-}$$

$$V_{-} = \beta V_{out}$$

Inverting amplifier provides:

- Gain A
- Phase shift π

For stable sinusoidal output at a specified frequency, β must provide:

- Gain 1/A so that Aβ = 1
- Phase shift π so that total phase shift around the loop is a multiple of 2π

Op-amp oscillator implementation

$$V_{out} = -|A|V_{-}$$

$$V_{-} = \beta V_{out}$$

Simplest case:

- $R_1 = R_2$
- |A| = 1

Feedback component β is a unity-gain, frequency-dependent, phase-shifter:

- Phase shift π for one specific frequency f only
- $|\beta| = 1$ for all frequencies

Stability vs. oscillation

If we *want* our circuit to oscillate, we can design the correct gain and phase-shift at the desired frequency

Loop-gain magnitude > 1 results in *saturation:* square-wave output at frequency ω with 180 degree phase shift across β

Loop-gain magnitude = 1 results in sinusoidally varying output at frequency ω with 180 degree phase shift across β

If we *don't want* our circuit to oscillate, i.e. to remain stable under all conditions, we must ensure that the loop-gain is < 1 (< 0 dB) at any frequency that produces 180 degree phase shift across β

Function generator

Sine-wave: magnitude of loop-gain = 1 and total phase-shift = 360 degrees at desired frequency

Square wave: magnitude of loop-gain > 1 and total phase-shift = 360 degrees at desired frequency

University

Triangular wave is time-integral of square wave...

Triangle waveform: generated by feeding the output of a square-wave oscillator through an integrator (last week)

Amplitude of waveform can be tuned by another amplifier circuit with potentiometer (variable resistor) to tune the gain

Summary

Limitations of op-amps:

- High-frequency operation may be limited by 'slew-rate' of output
- High-gain operation may be limited by 'saturation' at supply rail voltages
 - This may be used to make a 'comparator' or 'Schmidt-trigger' circuit
- Positive-feedback can lead to exponential growth or oscillation of output – function generator
 - 'Barkhausen criteria' for output oscillation without input signal

Next lecture – modulation and demodulation

