| NSIT                                                        | 09s | Structure de données |  |  |  |
|-------------------------------------------------------------|-----|----------------------|--|--|--|
| Structures linéaires: Les arbres                            |     |                      |  |  |  |
| Arbres, arbres binaires et arbres binaires de recherche 1/2 |     |                      |  |  |  |

| _ 1  | _     | - 10   | • • • | •     |
|------|-------|--------|-------|-------|
| Arbr | oc. I | ) A Fi | INIF  | INDE  |
|      | C3. L | JEI    |       | 10113 |

| Un graphe n'ayant                               | s'appelle un arbre.                                    |                            |
|-------------------------------------------------|--------------------------------------------------------|----------------------------|
| Un arbre est une                                | composée de nœu                                        | ds.                        |
| • Les nœuds peuvent avoir                       | des (ou nœuds enfants)                                 | situés au niveau inférieur |
| • Le nœud situé au niveau :                     | supérieur est appelé le nœud                           | (ou nœud parent)           |
| • Le nœud qui n'a pas de pe<br>est lade l'arbre | ère, généralement placé tout en haut,                  | Racine                     |
| • Les nœuds qui n'ont pas d<br>de l'arbre       | d'enfants s'appellent les                              | Racine Noeud interne       |
| Lade l'arbre cor                                | respond au nombre de nœuds.                            | Feuille                    |
| • On appelle parcourir depuis la racine p       | d'un nœud le nombre d'arêtes<br>our atteindre ce nœud. |                            |
| • Lade l'arbre co                               | orrespond à la profondeur de la feuille                | la plus éloignée de la     |
| Remarque: Il existe une déf                     | finition alternative de la hauteur                     |                            |
| • <u>cor</u>                                    | respond au nombre maximum d'enfant                     | cs qu'un nœud peut avoir.  |
| • Unees feuille                                 | t une suite finie de sommets consécuti                 | fs de la racine vers une   |

### Arbres binaires: Définitions

Un arbre binaire est un arbre \_\_\_\_\_\_ou localement complet, tous les nœuds n'ont que 0 ou 2 enfants. (Jamais 1).

Ne pas confondre avec un arbre binaire complet, où tous les niveaux sont remplis, à l'exception éventuelle du dernier, dans lequel les feuilles sont alignées à gauche.



# Arbres binaires: Implémentation avec une liste récursive

On peut définir un arbre comme une racine munie de deux sous-arbres :



## Arbres binaires: Rapport taille/hauteur



Le premier nœud de la p<sup>ième</sup> ligne porte le numéro :

N =

On prouve ainsi que:

p =

## **Arbres binaires: Parcours**

On définit classiquement plusieurs parcours dans les arbres : Le parcours en largeur et les parcours



| NSIT                                                        | 09s | Structure de données |  |  |  |
|-------------------------------------------------------------|-----|----------------------|--|--|--|
| Structures linéaires: Les arbres                            |     |                      |  |  |  |
| Arbres, arbres binaires et arbres binaires de recherche 2/2 |     |                      |  |  |  |

### Arbres Binaires de Recherche: Définitions

Un arbre binaire de recherche est un arbre binaire dont tous les nœuds portent des selon les règles suivantes.

L'étiquette portée par un nœud est:

- plus que toutes les étiquettes de son sous-arbre gauche.
- plus \_\_\_\_ que toutes les étiquettes de son sous-arbre droit.

Remarque: Un ABR se nomme BST en anglais pour binary search tree



### ABR: Implémentation en POO

**\_\_repr\_()** : Méthode spéciale de l'objet qui permet de préciser sa représentation

**dedans()** : Renvoie un booléen en fonction de la présence ou non d'une valeur recherchée

minimum(): Cherche le dernier fils gauche de la structure

maximum(): Cherche le dernier fils droit de la structure

taille() =

Hauteur() =

## **ABR**

#### Attributs:

label (" par défaut)

G (None à l'initialisation)

D (None à l'initialisation)

#### Méthodes:

repr ()

hauteur()

taille()

dedans()

minimum()

maximum()

ajouter()

#### ABR versus listes: Coût d'une recherche

Lorsque la taille d'une liste augmente, le temps de recherche d'un élément dans cette liste augmente .

Le nombre maximum de comparaisons correspond au nombre d'éléments de la liste.

Alors que dans un ABR, le nombre maximum de comparaisons correspond à la de l'ABR.