GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

MOMPHE DE LA AGIONIATION	
NOMBRE DE LA ASIGNATURA	
	Dinámica
	Dinamica

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	140201	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento y la habilidad para conocer, comprender y resolver problemas relacionados con la Dinámica, mediante la enseñanza de las leyes que rigen el movimiento de partículas, sistema de partículas y cuerpos rígidos, que le permitan su aplicación a situaciones reales.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Relación de la dinámica con la mecánica
- 1.2 Unidades de medida
- 1.3 Fuerza gravitacional

2. Cinemática de partículas

- 2.1 Sistema referencial
- 2.2 Movimiento rectilíneo
- 2.3 Movimiento curvilíneo
- 2.4 Análisis de movimiento dependiente
- 2.5 Análisis de movimiento relativo

3. Cinética de partículas: fuerza y aceleración

- 3.1 Introducción
- 3.2 Leyes de Newton de movimiento
- 3.3 Ecuación de movimiento
- 3.4 Ecuación de movimiento para un sistema de partículas

4. Cinética de partículas: trabajo y energía

- 4.1 Introducción
- 4.2 Trabajo de una fuerza
- 4.3 Principio de trabajo y energía
- 4.4 Trabajo y energía para un sistema de partículas
- 4.5 Fuerzas conservativas y energía potencial
- 4.6 Conservación de energía

5. Cinética de partículas: impuso y momento

- 5.1 Principio de impulso lineal y momento
- 5.2 Impulso lineal y momento para un sistema de partículas
- 5.4 Conservación de momento lineal para un sistema de partículas
- 5.5 Momento angular
- 5.6 Principio de impulso angular y momento

6. Cinemática plana cuerpos rígidos

- 6.1 Movimiento de un cuerpo rígido
 - 6.1.1 Translación
 - 6.1.2 Rotación alrededor de un eje fijo

- 6.1.3 Movimiento plano general absoluto
- 6.1.4 Análisis de movimiento relativo: velocidad y aceleración
- 6.1.5 Centro instantáneo de velocidad cero

7. Cinética plana de cuerpos rígidos: Fuerza y aceleración

- 7.1 Momento de inercia
- 7.2 Ecuaciones de movimiento de cinética plana
- 7.3 Ecuaciones de movimiento: Translación, rotación alrededor de ejes fijos y movimiento plano general

8. Cinética plana de cuerpos rígidos: trabajo y energía

- 8.1 Energía cinética
- 8.2 Trabajo de una fuerza
- 8.3 Trabajo de un acoplo
- 8.4 Principio de trabajo y energía
- 8.5 Conservación de energía

9. Cinética plana de cuerpos rígidos: impulso y momento

- 9.1 Momento lineal y angular
- 9.2 Principio de impulso y momento
- 9.3 Conservación de momento

10. Vibraciones mecánicas

- 10.1 Conceptos básicos
- 10.2 Vibración subamortiguada
- 10.3 Métodos de energía
- 10.4 Vibración forzada subamortiguada
- 10.5 Vibración libre amortiguada viscosa
- 10.6 Vibración forzada amortiguada viscosa

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos:

Ingeniería mecánica: Dinámica, Hibbeler R. C., Prentice Hall Hispanoamericana, S., A., Séptima Edición, 1996.

Ingeniería Mecánica: Dinámica, Pytel, A. y Kiusalaas, J., México: Internacional Thompson editores, S.A. de C. V., Segunda Edición, 1999.

Mecánica para Ingeniería Dinámica, Bedford, Anthony y Fowler, Wallace, México: Addison – Wesley Iberoamericana, 1996.

Libros de consulta:

Engineering Mechanics: Dynamics, Hibbeler, R. C., England: John Wiley& Sons, Forth edition, 2004.

Engineering Mechanics: Dynamics, Bedford, A. M. y Fowler, W., England: John Wiley& Sons, 4th Edition, 2003.

Engineering Mechanics: Dynamics, Meriam, J. y Kraige, L. G., England: John Wiley& Sons, 5th Edition, 2002.

PERFIL PROFESIONAL DEL DOCENTE Ingeniero Mecánico, Ingeniero Físico, Físico, con especialidad en Mecánica preferente con grado de doctor y/o experiencia en Diseño Mecánico.