

OAB is a triangle. P is the point on AB such that AP:PB = 5:3

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 2\mathbf{b}$$

$$\overrightarrow{OP} = k(3\mathbf{a} + 5\mathbf{b})$$
 where k is a scalar quantity.

Find the value of k.

(Total for Question 1 is 4 marks)

2 *OABC* is a trapezium.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overrightarrow{AB} = \mathbf{b}$$

$$\overrightarrow{OC} = 3\mathbf{b}$$

D is the point on OB such that OD:DB = 2:3E is the point on BC such that BE:EC = 1:4

Work out the vector \overrightarrow{DE} in terms of **a** and **b**. Give your answer in its simplest form.

(Total for Question 2 is 4 marks)

3 *CDEF* is a quadrilateral.

$$\overrightarrow{FE} = \mathbf{a}$$
 $\overrightarrow{ED} = \mathbf{b}$ $\overrightarrow{CD} = 2\mathbf{a}$

The point P is such that CEP is a straight line and that CE = EP

Use a vector method to prove that *CF* is parallel to *DP*.

(Total for Question 3 is 4 marks)

4 OXYZ is a parallelogram.

$$\overrightarrow{OX} = \mathbf{a}$$

P is the point on OX such that OP:PX = 1:2R is the point on OY such that OR:RY = 1:3

Work out, in its simplest form, the ratio ZP:ZR You must show all your working.

Diagram **NOT** accurately drawn

ABC is a triangle.
The midpoint of BC is M.
P is a point on AM.

$$\overrightarrow{AB} = 4\mathbf{a}$$

$$\overrightarrow{AC} = 2\mathbf{b}$$

$$\overrightarrow{AP} = \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

Find the ratio *AP*: *PM*

6 \overrightarrow{OAB} is a triangle. $\overrightarrow{OA} = \mathbf{a} \qquad \overrightarrow{OB} = \mathbf{b}$
The point C lies on OA such that $OC : CA = 1 : 2$ The point D lies on OB such that $OD : DB = 1 : 2$
Using a vector method, prove that ABDC is a trapezium.
(Total for Question 6 is 3 marks)

OAB is a triangle.

Q is the point on AB such that OQP is a straight line.

$$\overrightarrow{OA} = 4\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{AP} = 2\mathbf{a} + 8\mathbf{b}$

Using a vector method, find the ratio AQ:QB

8 ABCD is a parallelogram and ADM is a straight line.

$$\overrightarrow{AB} = \mathbf{a}$$
 $\overrightarrow{BC} = \mathbf{b}$ $\overrightarrow{DM} = \frac{1}{2}\mathbf{b}$

K is the point on AB such that $AK:AB = \lambda:1$ L is the point on CD such that $CL:CD = \mu:1$ KLM is a straight line.

Given that $\lambda: \mu = 1:2$

use a vector method to find the value of λ and the value of μ

 $\lambda = \dots$

 $\mu = \dots$

(Total for Question 8 is 5 marks)

$$\overrightarrow{OA} = \mathbf{a}$$
 $\overrightarrow{OC} = \mathbf{c}$ $\overrightarrow{AB} = 2\mathbf{c}$

P is the point on AB such that AP : PB = 3 : 1 Q is the point on AC such that OQP is a straight line.

Use a vector method to find AQ : QCShow your working clearly.

10 OXYZ is a trapezium.

$$\overrightarrow{OX} = \mathbf{a}$$

$$\overrightarrow{XY} = \mathbf{b}$$

$$\overrightarrow{OZ} = 3\mathbf{b}$$

M is the midpoint of OX

N is the point such that MNZ and ONY are straight lines.

Given that $ON: OY = \lambda: 1$

use a vector method to find the value of λ

$\lambda = \dots$
/\`
Λ
 (Total for Question 10 is 5 marks)

11 *OACB* is a trapezium.

$$\overrightarrow{OA} = 2\mathbf{a}$$
 $\overrightarrow{OB} = 5\mathbf{b}$ $\overrightarrow{AC} = 3\mathbf{b}$

The diagonals, OC and AB, of the trapezium intersect at the point P.

Find and simplify an expression, in terms of **a** and **b**, for \overrightarrow{OP} Show your working clearly.

\rightarrow
$\overrightarrow{OP} = \dots$
$\overrightarrow{OP} = \dots$ (Total for Question 11 is 5 marks)

12 The diagram shows triangle *OAB*

$$\overrightarrow{OA} = 8\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$

M is the point on OB such that OM: MB = 1:2 N is the midpoint of AB P is the point of intersection of ON and AM

Using a vector method, find \overrightarrow{OP} as a simplified expression in terms of **a** and **b** Show your working clearly.

$\overrightarrow{OP} =$
$\overrightarrow{OP} =$ (Total for Question 12 is 5 marks)

13 *OAB* is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \qquad \overrightarrow{OB} = \mathbf{b}$$

C is the midpoint of *OA*.

D is the point on AB such that AD:DB = 3:1

E is the point such that $\overrightarrow{OB} = 2\overrightarrow{BE}$

Using a vector method, prove that the points C, D and E lie on the same straight line.

(Total for Question 13 is 5 marks)

14 The diagram shows trapezium *OACB*.

$$\overrightarrow{OA} = 3\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{AC} = 4\mathbf{b}$

N is the point on OC such that ANB is a straight line.

Find \overrightarrow{ON} as a simplified expression in terms of **a** and **b**.

(Total for Question 14 is 5 marks)

15 *CDEF* is a quadrilateral.

$$\overrightarrow{CD} = \mathbf{a}, \ \overrightarrow{DE} = \mathbf{b} \text{ and } \overrightarrow{FC} = \mathbf{a} - \mathbf{b}.$$

(a) Express \overrightarrow{FE} in terms of **a** and/or **b**. Give your answer in its simplest form.

(2)

M is the midpoint of DE. X is the point on FM such that FX: XM = n:1CXE is a straight line.

(b) Work out the value of n.

$$n =$$
 (4)

OAN, OMB, APB and MPN are straight lines.

$$OA:AN = 1:4$$

$$OM: MB = 1:1$$

$$\overrightarrow{OA} = 2\mathbf{a}$$
 $\overrightarrow{OB} = 2\mathbf{b}$

By using a vector method, find the ratio AP:PB Give your answer in its simplest form.

(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)
(Total for Question 16 is 5 marks)

17 *OAB* is a triangle.

$$\overrightarrow{OA} = 2\mathbf{a}$$
 and $\overrightarrow{OB} = 2\mathbf{b}$

M is the midpoint of AB.

N is the point on OB such that ON: NB = 2:1

P is the point on AN such that OPM is a straight line.

Use a vector method to find OP:PM

Show your working clearly.

