Machine Learning Lab Homework 3

- * Please note that all homework should be your own work. You should also not copy answers from other person's, books or internet resources.

 * I didn't proofread the questions. If you find any typos/errors, let me know.
- * Use the same dataFind \mbox{ONE} datasets, and drop a line at e-class Q & A saying "OOO uses \mbox{OOO}^*

0. Read File

read vour csv file into 2-dimenson list (a_list).

If your data needs preprocssing (Label Encoding & Normalization), please do that.

2. Divide into train & test

From a_list, construct X_train, X_test, Y_train, Y_test

3. Running AdaBoost

from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier

prepare your X_train, X_test, Y_train, Y_test files

build ensemble model clf = AdaBoostClassifier() clf.fit(X_train, Y_train)

Predict the class labels for the provided data predictions = clf.predict(X_test)

probability estimates for the test data X. pred_prob = clf.predict_proba(X_test)

show the mean accuracy score OR accuracy_score

O Refer to the following page

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.ht

1) run by changing n_estimators = 5, 7, 10, 30, 100, and show the accuracies of

- 1 -

- 2) Plot your results and explain the effect of the n estimators
- 3) compare the best performance of AdaBoostClassifier with that of IBL. Which is

4. Running Random Forest

from sklearn import RandomForestClassifier

prepare your X_train, X_test, Y_train, Y_test files

build random forest model clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) clf.fit(X, v)

Predict the class labels for the provided data predictions = clf.predict(X_test)

show the mean accuracy score OR accuracy_score

O refer to the following page https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

- 1) Run by changing n_estimators = 2, 5, 30, 50, 100, respectively, and show the accuracies of each run
- 2) Plot your results and explain the effect of the n_estimators
- 3) Choose the optimal $n_{estimators}$ from q. 1), and run the model by changing oob_score = True/False, respectively. Show the accuracies of each run, and explain the effect of the oob_score.
- 4) Choose the optimal n_estimators from q. 1), and run the model by changing max_features = "auto", "sqrt", "log2", respectively. Show the accuracies of each run, and explain the effect of the max_features.

5. Running SVM

from sklearn import svm

clf = svm.SVC()
clf.fit(X_train, Y_train)
clf.predict(X_test)

O refer to the following page https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

- 1) calculate the accuracy of SVC.
- 2) run SVC by changing kernel to 'linear', 'poly', 'rbf', and 'sigmoid', and show the accuracies of each. Which kernel function shows the best accuracy ? and explain why ?
- 3) compare the accuracy of SVC with that of IBL, RandomForest, and AdaBoost, respectively. Explain the results.

6. Clustering (K Means)

import matplotlib.pyplot as pyplot

from sklearn.cluster import KMeans import numpy as np

kmeans = KMeans(n_clusters=4, max_iter=600, algorithm = 'auto', random_state=0) kmeans.fit(X_train)
labels = kmeans.predict(X_train)

cluster labels for each data

center of each clusters centroids = kmeans.cluster_centers_

distance within cluster print("Inertia for KMeans with 4 clusters = %lf " %(kmeans.inertia_))

O refer to the following page http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

- 1) run KMeans 3 times by changing n_clusters = 2, 5, 7 respectively and show the
- 2) For the clustering of k=2, pick one cluster. Calculate the average value of each attribute of the data in that cluster.
- 3) For each cluster, calculate majority (the most frequent) value of class/target value. (let's call this 'cluster label')
- 4) Suppose each of X_test is classified based on 'cluster labels', calculate the
- 5) run KMeans 3 times by changing n_init values (your own choice of n_init). Compare the performance of each.

- 3 -

7 Clustering (FM)

import matplotlib.pyplot as plt

import numpy as np from sklearn.mixture import GaussianMixture

 $gmm = GaussianMixture(n_components=4).fit(X_train)$

predict the labels for data points labels = gmm.predict(X_train)

probabilistic cluster assignments probs = gmm.predict_proba(X_train) print(probs[:5].round(3))

O refer to the following page $\frac{\text{https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.h}{\text{tml}}$

- 1) run GaussianMixture 3 times by changing n_clusters = 2, 3, 7 respectively.
- 2) For the clustering of k=3, show the predicted labels for the input data.
- 3) show the probabilistic cluster assignments. This returns a matrix of size [n_samples, n_clusters].

Hand In

upload the following files at e-class.
- report file, ii) program source file, iii) data file

Due: 5/21(Fri) 23:59 PM