AUFGABE 4.1 EINE KONTEXTFREIE SPRACHE

Gegeben sei die Grammatik $G = (\{S, X\}, \{x, y\}, P, S)$ mit der Produktionsmenge $P = \{X \rightarrow xXy \}$

TEILAUFGABE 4.1.1 VON G ERZEUGTE SPRACHE, 2 PUNKTE

Geben Sie an

- a) 3 Worte, welche man aus G ableiten kann,
- b) $\mathcal{L}(G)$, also alle von G erzeugten Worte.
 - a) xy, xxyy, xxxyyy
 - b) $L(G) = x^n y^n$

TEILAUFGABE 4.1.2 CHOMSKY-NORMALFORM, 4 PUNKTE

Geben Sie für G eine Grammatik G' in Chomsky-Normalform mit L(G) = L(G') an.

$$G \! = \! (\{S,\!X,\!Y,\!A\},\!\{x,\!y\},\!P,\!S)$$

$$P=\{ \\ S \rightarrow XY \\ S \rightarrow XA \\ A \rightarrow SY \\ X \rightarrow x \\ Y \rightarrow y$$

AUFGABE 4.2 CHOMSKY-NORMALFORM UND CYK-ALOGRITHMUS

Gegeben seien die Grammatiken $G_x = (\{S\}, \{a, b\}, P, S)$ mit der Produktionsmenge

$$P_x = \{S \to aSb, S \to b\}$$

und $G_y = (\{S,A,B\}, \{a,b,c\}, P,S)$ mit der Produktionsmenge

$$P_{\gamma} = \{S \rightarrow cAB, A \rightarrow aAb, B \rightarrow cBb, A \rightarrow ab, B \rightarrow \epsilon\}$$

TEILAUFGABE 4.2.1 2 PUNKTE

TEILAUFGABE 4.2.3 3 PUNKTE

Geben Sie für die Grammatik G_x eine Grammatik G_x' in Chomsky-Normalform mit $\mathscr{L}(G_x) = \mathscr{L}(G_x')$ an. Geben Sie für die Grammatik G_y eine Grammatik G_y' in Chomsky-Normalform mit $\mathscr{L}(G_y) = \mathscr{L}(G_y')$ an.

G'x = ({S,X,Y,A,B}, {a, b}, P, S)
Px = {
$$S \rightarrow AX$$

 $Y \rightarrow SB$
 $X \rightarrow YB$
 $Y \rightarrow B$
 $A \rightarrow a$
 $B \rightarrow b$
}
 $L(G'x) = a^n b^{n+1}$

G'y = ({S,X,Y,A,B}, {a, b, c}, P, S)
Py = { S
$$\rightarrow$$
 CX
X \rightarrow YZ
Y \rightarrow AU
U \rightarrow YB
Y \rightarrow AB
Z \rightarrow CB
Z \rightarrow CV
V \rightarrow ZB
A \rightarrow a
B \rightarrow b
C \rightarrow c
}
L(G'y) = $c a^n b^n c^v b^v$

AUFGABE 4.4 DER KELLERAUTOMAT Pab

Betrachten Sie den PDA $P_{ab}=(Q,\Sigma,\Gamma,\delta,q_0)=(\{q_0,q_1\},\{a,b\},\{A,B,\#\},\delta,q_0)$ mit δ gegeben wie folgt:

Abbildung 1: Erweitertes Zustandsübergangsdiagramm für P_{ab}

TEILAUFGABE 4.4.1 2 PUNKTE

Bestimmen Sie für die Worte

- a) $\omega_1 = ab$
- b) $\omega_2 = aab$
- c) $\omega_3 = bbbaa$

jeweils alle Konfigurationen (aktueller Zustand, verbleibendes Eingabewort, Inhalt des Kellers), die P_{ab} während der Verarbeitung der Worte durchläuft. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

$\omega 1 = ab$	$\omega 2 = aab$	ω 3 = bbbaa
q0, ab, #	q0, aab, #	q0, bbbaa, #
q0, b, A#	q0, ab, A#	q0, bbaa, B#
q0, ε, #	q0, b, AA#	q0, baa, BB#
	q0, ε, A#	q0, aa, BBB#
Vollständig eingelesen, Stack nicht leer	q1, ε, #	q0, a, BB#
=> nicht akzeptiert	q1, ε, ε	q0, ε, B#
		q1, ε, #
	Vollständig eingelesen, Stack leer => akzeptiert	q1, ε, ε

Vollständig eingelesen, Stack leer => akzeptiert

TEILAUFGABE 4.4.2 2 PUNKTE

Welche Sprache $\mathcal{L}(P_{ab})$ wird von P_{ab} akzeptiert?

 $L(P_{ab}) = \{w \mid w \text{ kann 0 bis beliebig viele 'a' oder 'b' in beliebiger Reihenfolge enthalten aber es dürfen nie gleich viele 'a' wie 'b' existieren}$

Aufgabe 4.5 Der Kellerautomat P_{01}

Betrachten Sie den PDA $P_{01} = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{A, B, X, \#\}, \delta, q_0)$ mit δ gegeben wie

• $\delta(q_0, 0, \#) = (q_1, A\#)$

•
$$\delta(q_0, \varepsilon, \#) = (q_0, \varepsilon)$$

•
$$\delta(q_1, 0, A) = (q_1, AA)$$

•
$$\delta(q_1, 1, A) = (q_2, \varepsilon)$$

•
$$\delta(q_2, \varepsilon, A) = (q_1, \varepsilon)$$

•
$$\delta(q_1, \varepsilon, \#) = (q_0, \varepsilon)$$

•
$$\delta(q_2, \varepsilon, \#) = (q_3, X)$$

•
$$\delta(q_3, 1, B) = (q_3, BB)$$

•
$$\delta(q_3, 0, B) = (q_3, X)$$

•
$$\delta(q_3,0,X) = (q_3,\varepsilon)$$

•
$$\delta(q_3, 1, X) = (q_3, XB)$$

•
$$\delta(q_3, \varepsilon, \#) = (q_0, \#)$$

TEILAUFGABE 4.5.1 1 PUNKT

Stellen Sie die Zustandsübergangsfunktion mit Hilfe eines Graphen dar.

TEILAUFGABE 4.5.2 3 PUNKTE

Bestimmen Sie für die Worte

a)
$$\omega_1 = 001$$

b)
$$\omega_2 = 101$$

c)
$$\omega_3 = 100001$$

jeweils alle Konfigurationen (aktueller Zustand, verbleibendes Eingabewort, Inhalt des Kellers), die P_{01} während der Verarbeitung der Worte durchläuft. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

$$\omega 1 = 001$$

q0, 001,# q1, 01, A# q1, 1, AA#

q2, ε, A#

q1, ε, #

q0, ε, ε

Vollständig eingelesen, Stack leer

q0, 101, # q3, 01, B#

 $\omega 2 = 101$

q3, 1, X#

q3, ε, XB

Vollständig eingelesen, Stack nicht leer => nicht akzeptiert

=> akzeptiert

 $\omega 3 = 100001$

q0, 100001, #

q3, 00001, B#

q3, 0001, X#

q3, 001, #

q0, 001, #

q1, 01, A#

q1, 1, AA#

q2, ε, A#

q1, ε, #

q0, ε, ε

Vollständig eingelesen, Stack leer => akzeptiert

TEILAUFGABE 4.5.3 2 PUNKTE

Welche Sprache $\mathcal{L}(P_{01})$ wird von P_{01} akzeptiert?

L (P₀₁) = {w | w muss immer doppelt so viele '0' wie '1' enthalten}