

What is our GOAL for this CLASS?

In this class, we learned how to control LEDs with push buttons and create a virtual piano using vegetables and fruits..

What did we ACHIEVE in the class TODAY?

- We learned about the basics of push buttons.
- We learned about controlling LEDs using a push button with a microcontroller.
- We learned about the basics of Buzzer.
- We learned about the ESP32 chip and its inbuilt touch sensors.
- We designed our Touch Piano with the help of the ESP32 Touch pin.

Which CONCEPTS/ CODING BLOCKS did we cover today?

- Normally open/closed Push Button
- Buzzer Programming
- Concept of frequency
- ESP32 Touch pin

How did we DO the activities?

- 1. Gather the below material from IoT Kit:
 - 1 X ESP32
 - 1 x Resistor 330 ohm
 - 1 x Push Button
 - 1 x USB Cable
 - 1 x LED
 - 1 x Breadboard
 - 6 x Jumper Wires
- 2. Mount **ESP32 on the breadboard** as shown below:

3. Mount Components

- Mount Resistors, LED, Pushbuttons on the breadboard as shown below:
- Connect the longer leg of the LED to one end of the resistor as shown below and another end in the breadboard other component rails.
- As we can only use two ends of the push-button, mount it that way to cover the middle breaker.

- 4. Provide VCC (+ve) (5V) and (GND(-ve) to LED & resistor respectively.
 - Connect the other end of the **resistor with ESP32 pin D26** (D31, D32, D25, D26, D12, D13, D17, D19) that are called Input/Output pins. To supply positive voltage, we can use any one of the mentioned pins.
 - Connect the shorter leg of the LED to the negative part to the **(GND(-ve))** terminal of the ESP32.
 - Connect push button one terminal is with **D12** (I/O) pin of ESP32 and other terminals of a push-button is connected to **GND**

- 5. Open the **Arduino IDE** and write the program.
 - Define a pin for the **PUSHBUTTON_PIN =12** (D12)
 - Define a pin for the **LED_PIN** =12 (D26)
 - Declare variable **button**
 - void setup() function is used to initialize everything
 - Describe **pinMode()** for both **LED,PushButton**

© 2023 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited. Please don't share, download or copy this file without permission.

- Pin Mode() :PinMode() will declare LED as digital OUTPUT, & Push Button as INPUT_PULL UP
- void loop() function is used to execute the main process.
- In **void loop()** function, **Digital read()** function read the state of the push button and stores its value in the variable button
- **DigitalRead()**: The digitalRead() function is used to determine whether the input pin is **HIGH or LOW**. If the input pin state is HIGH, it is returned as HIGH and otherwise as LOW. You only need to pass the pin number as an augment to this function.
- if the condition is used to check the state of variable **Push_button_state**
- When **Push_button_state** is HIGH, LED_PIN will be turned on, and otherwise, it will remain off.
- Digital Write() will help to change the state of LED

```
#define PUSHBUTTON_PIN 12
#define LED_PIN 26

int button = 0;  // variable for reading the button status

void setup()
{
    pinMode(LED_PIN, OUTPUT);
    pinMode(PUSHBUTTON_PIN, INPUT_PULLUP);
}

void loop()
[]
    button = digitalRead(PUSHBUTTON_PIN);
    if (button == LOW) {
        digitalWrite(LED_PIN, HIGH);
        delay(100);
}
    else{
        digitalWrite(LED_PIN, LOW);
}
```

• Now press the push button, it will turn your LED on, when you release the button it will be off.

6. Touch piano using ESP32 Touch pin:

- Materials required:
 - o 3 x Fruits, Vegetables
 - o 8 x Jumper wires
 - o 1 x ESP 32
 - 1 x Buzzer
- 7. **Mount the ESP32 on the breadboard**. Try to mount it from one end and to leave a © 2023 WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited. Please don't share, download or copy this file without permission.

few terminals open on one side as shown below

- 8. Mount the components on the breadboard
 - Connect positive part (VCC (+ve)) of the buzzer with ESP32 pin D12. Take the jumper wire and insert it into just below the buzzer VCC (+ve) part.
 - Connect negative part **(GND(-ve))** of the buzzer with ESP32 **GND(GND(-ve))** pin.
- 9. Fruits & Connections
 - Take three fruits/vegetables and insert male jumper wires one by one in each fruit/vegetable and other ends into ESP32 D25, D26, D32

- 10. Open the **Arduino IDE** and write the program.
 - Define **buzzer** and assign I/O pin **26**
 - Define variable along with datatype:
 - o Int, const int is called data types, data type int is used to store an

© 2023 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

Please don't share, download or copy this file without permission.

integer value

- VALUE_THRESHOLD
- TOUCH_SENSOR_VALUE_1, is used for Fruit/vegetable -1
- TOUCH_SENSOR_VALUE_2,is used for Fruit/vegetable -1
- TOUCH_SENSOR_VALUE_3is used for Fruit/vegetable 3

```
#define Buzzer 26

const int VALUE_THRESHOLD = 30;

int TOUCH_SENSOR_VALUE_1;
int TOUCH_SENSOR_VALUE_2;
int TOUCH_SENSOR_VALUE_3;
```

11. Initialization under **setup()** function

- void **setup()** is used to initialize.
- Describe **pinMode()** for Buzzer
- Pin Mode():PinMode() will declare Buzzer as digital OUTPUT
- Serial.begin() Serial. begin(9600) is used for data exchange data speed. This tells the Arduino to get ready to exchange messages with the Serial Monitor at a data rate of 9600 bits per second. That's 9600 binary ones or zeros per second and is commonly called a baud rate.
- Syntax for serial.begin : Serial.begin(speed)
- Set up delay()
- digitalWrite() will make the buzzer value LOW a starting.

•

```
void setup() {
  pinMode(Buzzer, OUTPUT);
  Serial.begin(115200);
  delay(2000);

  digitalWrite(Buzzer, LOW);
}
```

12. Execution of the main process using void loop()

© 2023 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited. Please don't share, download or copy this file without permission.


```
void loop() {

TOUCH_SENSOR_VALUE_1 = touchRead(T5);
TOUCH_SENSOR_VALUE_2 = touchRead(T6);
TOUCH_SENSOR_VALUE_3 = touchRead(T7);

Serial.print("TOUCH_SENSOR_VALUES 1:");
Serial.print(TOUCH_SENSOR_VALUE_1);
Serial.print(" ");
Serial.print("TOUCH_SENSOR_VALUES 2:");
Serial.print(TOUCH_SENSOR_VALUE_2);
Serial.print(" ");
Serial.print(" ");
Serial.print("TOUCH_SENSOR_VALUES 3:");
Serial.print(TOUCH_SENSOR_VALUE_3);
Serial.print(TOUCH_SENSOR_VALUE_3);
Serial.println(" ");
delay(500);
```

- The ESP32 chip comes with inbuilt touch sensors. These touch sensors are the capacitive type. These touch sensors are shared with I/O pins of ESP32. These touch sensors can detect electrical changes on GPIO pins.
 - touchRead(touch_sensor_pin_number): This function is used to read the touch sensor value associated with the touch pin. We simply need to write the pin number we will be using.
 - Store the **touchRead()** value of all fruit/Vegetable in respective variables.
 - Serial. print() is used to print the data.
 - Print the values of all touch sensors

13. Conditions

- The active buzzer will only generate a sound when it will be electrified. It generates sound at only
- If **TOUCH_SENSOR_VALUE_1** digitalWrite() function writes or changes the state of the Buzzer


```
if (TOUCH SENSOR VALUE 2 < VALUE THRESHOLD) {
   for(int i=0; i<5; i++) {
   digitalWrite(Buzzer, HIGH);
    delay(50);
    digitalWrite(Buzzer, LOW);
    delay(50);
  }
if (TOUCH_SENSOR_VALUE_3 < VALUE_THRESHOLD) {
 for(int i=0; i<8; i++) {
    digitalWrite(Buzzer, HIGH);
    delay(25);
    digitalWrite(Buzzer, LOW);
    delay(25);
  }
else{
  digitalWrite(2, LOW);
```

• Check the circuit. Touch any fruit or vegetable and it should play the sound.

What's NEXT?

In the next class will be introduced to the concept of **Analog inputs** and **sensors**.

Expand Your Knowledge

To know more about Basics of Electronics click here