Contents

Overview	1
Stepup: vertex set, adjacency matrix, node features	1
Naive Approach: append node feaetures to adjacency matrix	1
3 problems: parameter size, graph size, node ordering	1
Adopt CNN	1
Problem	2
Solutions	2
Kipf & Welling, ICLR 2017	2
Explain – transformation & aggregation	2
Explain – each node has a computational graph	2
Many layers – k-hops	2
Neighbourhood aggregation	2
Transformation choice – average embedding	3
Model Parameters: W, B; neighborhood aggregation, transformation	3
Matrix Formulation - efficient sparse matrix	3
Averging of neighbour embedding	3
Re-writing update function in matrix form	3
How to train GNN: supervised & unsupervised setting	3
Unsupervised Training	3
Supervised Training	3
Cross entropy loss	4
Model design	4
Step 1,2 - neighbour aggregation & loss function	4
Step 3 – train on a batch	4
Step 4 - enerate embeddings for nodes as needed	4
Inductive capcability	4
New graph	4
New nodes	1

Overview

Local network neighborhoods:

- Describe aggregation strategies
- Define computation graphs

Stacking multiple layers:

- Describe the model, parameters, training
- How to fit the model?
- Simple example for unsupervised and supervised training

Stepup: vertex set, adjacency matrix, node features

- Assume we have a graph G:
 - V is the vertex set
 - A is the adjacency matrix (assume binary)
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
 - v: a node in V; N(v): the set of neighbors of v.
 - Node features:
 - Social networks: User profile, User image
 - Biological networks: Gene expression profiles, gene functional information
 - When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

Naive Approach: append node feaetures to adjacency matrix

3 problems: parameter size, graph size, node ordering

- 1. Parameter size
 - a. One training example per node but for each node there are N + X (node features) number of features
 - b. Training unstable / easy to overfit
- 2. Graph with different size
 - o E.g. If 5 nodes, hard to fit in input size of 7
- 3. Node ordering
 - o If the column order change, then the adjacency matrix changes
 - Rows & cols permuted thou the info is the same

- o For images, the ordering can be top left pixel to bottom right
- o but for graphs, there is no fix node ordering i.e. unclear how to sort the graph to put them as input in the matrix
- Has to be invariant to node ordering
- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
- O(|V|) parameters
- Not applicable to graphs of different sizes
- Sensitive to node ordering

Adopt CNN

Goal. generalize convolutions beyond simple lattices & Leverage node features/attributes (e.g., text, images)

CNN = Sliding windows & locality.

CNN on an image:

Problem

- no fixed notion of locality or sliding window on the graph
 - o L: covers 3 nodes
 - o R: covers more nodes
- Graph is permutation invariantss

Solutions

• Aggregate information about a node based on its neighbouring nodes

Single Convolutional neural network (CNN) layer with 3x3 filter:

Idea: transform information at the neighbors and combine it:

- lacktriangleright Transform "messages" h_i from neighbors: $W_i \ h_i$
- Add them up: $\sum_i W_i h_i$

Kipf & Welling, ICLR 2017

- Neighbour nodes takes the message from the node and propagate.
 Steps
 - 1. Determine node computation graph
 - 2. Propagate & transform information

Idea: Node's neighborhood defines a computation graph

Learn how to propagate information across the graph to compute node features

Explain – transformation & aggregation

- 1. To decide node A informatino, we collect from its neighbours {B, C, D}, in which their info are based on their neighbours.
- 2. The message passing is then from the leaf to root
 - a. First, transform the info from leaf
 - b. Second, aggregate them in the parent node
 - c. Repeat

 Intuition: Nodes aggregate information from their neighbors using neural networks

Explain – each node has a computational graph

- Every node has its own computation graph / architecture
- The structure depends on other structure
- Different to classical DL

Many layers – k-hops

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, x_u
 - Layer-k embedding gets information from nodes that are K hops away

Neighbourhood aggregation

- The aggregation result is the same regardless of the ordering
 - Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Transformation choice – average embedding

- Ordering invariant
- Examples
 - o Average messages
 - o Apply NN
 - Apply linear transformation
 - Follow by non-linearity
- Transform current layer features + aggregated previous child nodes messages

Model Parameters: W, B; neighborhood aggregation, transformation

and run SGD to train the weight parameters

 h_{ν}^{k} : the hidden representation of node ν at layer k• W_k : weight matrix for neighborhood aggregation

• B_k : weight matrix for transforming hidden vector of self

matrix

Averging of neighbour embedding

- Many aggregations can be performed **efficiently** by (sparse) matrix operations
- Then
 - Node embedding is the avage of the neighbour embedding
 - i.e. the adjacency matrix * embedding spaces at a layer
- in short
 - o averging of neighbour embedding
 - summing and averagign can be rewritten as
 - matrix multiplication (dot prodct)
 - o the drawing is what correspond to what

• The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

Therefore,

Re-writing update function in matrix form

- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex
- Re-writing update function in matrix form:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{T} + H^{(k)}B_k^{T})$$
 where $\tilde{A} = D^{-1}A$

- Red: neighborhood aggregation
- Blue: self transformation

Matrix Formulation - efficient sparse How to train GNN: supervised & unsupervised setting

- Node embedding z₁ is a function of input graph
- Supervised setting: we want to minimize the loss £ (see also Slide 15):

$$\min_{\boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{y}, f(\boldsymbol{z}_v))$$

- **ν**: node label
- \mathcal{L} could be L2 if \mathbf{y} is real number, or cross entropy if \mathbf{v} is categorical
- Unsupervised setting:
- No node label available
- Use the graph structure as the supervision!

Unsupervised Training

- No labels
 - "Similar" nodes have similar embeddings

$$\mathcal{L} = \sum_{z_{u,z_{v}}} CE(y_{u,v}, DEC(z_{u}, z_{v}))$$

- Where $y_{u,v} = 1$ when node u and v are similar
- CE is the cross entropy (Slide 16)
- DEC is the decoder such as inner product (Lecture 4)
- Node similarity can be anything from Lecture 3, e.g., a loss based on:
- Random walks (node2vec, DeepWalk, struc2vec)
- Matrix factorization
- Node proximity in the graph

Supervised Training

• Directly train the model for a supervised task (e.g., node classification)

Cross entropy loss

- If label is 1, want output to be 1
- If 0, want 0
- Use cross entropy loss (Slide 16)

Model design

Step 1,2 - neighbour aggregation & loss function

Step 3 – train on a batch

Step 4 - enerate embeddings for nodes as needed

• **Generalisability.** Train embedding for one graph and transfer to another graph

Inductive capcability

- The same aggregation parameters are **shared** for all nodes
- The number of model parameters is **sublinear** in |V|
- # model parameters W & B, depends on
 - o #features / embedding dimensationality (since shared)
 - o not the size of graph (#nodes)
- Thus, generalize to unseen nodes

New graph

New nodes

• One forward pass can generate new embedding for the new node as the graph evoloving

