

ГЕНЕРАТИВНЫЕ МОДЕЛИ

https://www.midjourney.com/explore

Al Masters **10 пр**в

О ПРЕПОДАВАТЕЛЯХ И КУРСЕ

РОМАН ИСАЧЕНКО, лектор

- Кандидат физико-математических наук, преподаватель МФТИ

МАТВЕЙ МОРОЗОВ, семинарист

- 🛇 Выпускник МФТИ (2020)
- 🖨 Старший разработчик в SberDevices

🗖 telegram: @morozov_ma

ГРИГОРИЙ КСЕНОФОНТОВ, асисстент

 Выпускник МФТИ (2023), аспирант SkolTech

КОРОТКО О КУРСЕ

Курс посвящен современным методам построения генеративных порождающих моделей. Рассматриваются следующие классы генеративных

моделей:

- авторегрессионные модели,
- модели скрытых переменных,
- модели нормализующих потоков,
- состязательные модели,
- диффузионные модели.

Особое внимание уделяется свойствам различных классов генеративных моделей, их взаимосвязям, теоретическим предпосылкам и методам оценивания качества.

Целью курса является знакомство слушателя с широко применяемыми современными методами генеративного моделированиями.

Курс сопровождается практическими заданиями, позволяющими на практике понять принципы устройства рассматриваемых моделей.

СТРУКТУРА КУРСА

14 лекций

14 семинаров

6 домашних заданий

экзамен

КАК ФОРМИРУЕТСЯ ОЦЕНКА?

6 дз по 15 баллов: **90 БАЛЛОВ**

устный экзамен: 30 БАЛЛОВ

максимум за курс: **120 БАЛЛА** Финальная оценка выставляется по формуле:

min(floor(#баллов/10), 10)

	Nº	ТЕМА ЛЕКЦИИ
	1	Logistics. Generative models overview and motivation. Problem statement. Divergence minimization framework. Autoregressive models (PixelCNN).
	2	Normalizing Flow (NF) intuition and definition. Linear NF. Gaussian autoregressive NF. Coupling layer (RealNVP).
	3	Forward and reverse KL divergence for NF. Latent variable models (LVM). Variational lower bound (ELBO). EM-algorithm.
	4	Amortized inference, ELBO gradients, reparametrization trick. Variational Autoencoder (VAE). NF as VAE model. Discrete VAE latent representations.
	5	Vector quantization, straight-through gradient estimation (VQ-VAE). Gumbel-softmax trick (DALL-E). ELBO surgery and optimal VAE prior. Learnable VAE prior.
	6	Likelihood-free learning. GAN optimality theorem. Wasserstein distance.
	7	Wasserstein GAN (WGAN). f-divergence minimization. GAN evaluation (FID, Precision-Recall, truncation trick).
	8	Langevin dynamic. Score matching (Denoising score matching, Noise Conditioned Score Network (NCSN)). Forward gaussian diffusion process.
	9	Denoising score matching for diffusion. Reverse Gaussian diffusion process. Gaussian diffusion model as VAE. ELBO for DDPM.
	10	Denoising diffusion probabilistic model (DDPM): reparametrization and overview. Denoising diffusion as score-based generative model. Model guidance: classifier guidance, classfier-free guidance.
	11	Continuous-in-time NF and neural ODE. Continuity equation for NF log-likelihood. FFJORD and Hutchinson's trace estimator. Adjoint method for continuous-in-time NF.
	12	SDE basics. Kolmogorov-Fokker-Planck equation. Probability flow ODE. Reverse SDE. Variance Preserving and Variance Exploding SDEs.
	13	Score-based generative models through SDE. Flow matching. Conditional flow matching. Conical gaussian paths.
	14	Conical gaussian paths (continued). Linear interpolation. Link with diffusion and score matching. Latent space models. Course overview.

ЧТО НУЖНО ЗНАТЬ?

- Теория вероятностей + Статистика
- Машинное обучение + Основы глубокого обучения
- Python + pytorch

КЛЮЧЕВЫЕ МОМЕНТЫ

- Курс математически нагружен.
- Курс постоянно развивается.
- Любой фидбек, особенно негативный, приветствуется!

REPO:

https://github.com/r-isachenko/2025-DGM-AlMasters-course

РОМАН ИСАЧЕНКО

1

telegram: @roman_isachenko

ДО ВСТРЕЧИ НА КУРСЕ!