

Open-Vocabulary Segmentation

常世杰

2023.3.31

Fully-Supervised OV SS

Two-stage OVSeg

One-stage OVSeg

Two-stage OVSeg

(b) our semantic-assisted calibration network

CVPR 2024 SCAN

Mask proposal (mask2former) + CLIP Classification

CVPR 2023 SAN

of Tech. (DUT), P. R. China.

Open-Vocabulary Segmentation with Semantic-Assisted Calibration

One-stage OVSeg

FAM: Feature Aggregation Module SFM: Skip-layer Fusion Module CER: Category Early Rejection

CAT-Seg .: Cost Aggregation for Open-Vocabulary Semantic Segmentation

Seokju Cho*,1 Heeseong Shin*, Sunghwan Hong Seungjun An Seungjun Lee¹, Anurag Arnab² Paul Hongsuck Seo² Seungryong Kim¹ ¹Korea University ²Google Research

N, H, W

SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation

Bin Xie¹, Jiale Cao¹, Jin Xie², Fahad Shahbaz Khan³, and Yanwei Pang^{1,4} ¹Tianjin University ²Chongqing University

NPC

双阶段法用两个独立的网络预测mask和类别—速度慢 现有单阶段法用ViT作为视觉backbone—局部表示差

利用层次化结构带来更多局部信息

提出CER, 提前过滤图片中不存在的类别,

Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models

Sifei Liu^{2†} Arash Vahdat^{2†} Wonmin Byeon² Xiaolong Wang¹ Shalini De Mello² ¹UC San Diego ²NVIDIA

DeepSeek-MoE DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

	A-847	PC-459	A-150	PC-59	PAC-20
SED-B	11.4	18.6	31.6	57.3	94.4
moe	10.9	17.7	31.5	57.5	94.1
deepseek	10.8	18.1	31.5	57.1	93.6

	A-847	PC-459	A-150	PC-59	PAC-20
CAT-v1-B	8.4	16.6	27.2	57.5	93.7
SED-B	11.4	18.6	31.6	57.3	94.4
CAT-v2-B	12.0	19.0	31.8	57.5	94.6
SED-L	13.9	22.6	35.2	60.6	96.1
CAT-v2-L	16.0	23.8	37.9	63.3	97.0

特征图基于cost volume, 导致特征图大小受类别数影响(B, C, H, W) -> (B, T, C, H, W) solov2 预测逻辑: 为每个类别T预测一个二值mask 训练集和测试集类别域偏移太大,测试集很多类别 loU=0

CAT-Seg-v1 v.s. SED v.s. CAT-Seg-v2

CAT-Seg-v1	SED	CAT-Seg-v2
CLIP-ViT + feature backbone	CLIP-ConvNext	CLIP-ViT
Fine-tune visual encoder attention	Fine-tune full visual encoder	Fine-tune q
Train 384	Train 768	Train 384
Test sliding inference 384/640	Test 640	Test sliding
Imagenet templates	Imagenet templates	Single temp

q/v visual&textual encoder g inference 384/640 plate

ViT-Base 2d8h

	A-847	PC-459	A-150	PC-59	PAC-20
SED-B	11.4	18.6	31.6	57.3	94.4
	3.1	9.0	17.3	49.3	89.1

	A-847 8.00	PC-459 20	A-150 5.31	PC-59 9.01	PAC-20 2.0
CAT-B	12.1	19.1	31.6	57.4	94.7
baseline	10.0	16.6	27.0	52.6	93.8
baseline2	10.8	17.5	28.6	54.0	94.2
	11.1	17.8	30.7	56.0	94.4
	11.6	18.6	31.1	56.8	94.8
dino	10.1	16.5	27.1	52.5	93.9
deformcl	11.6	18.9	31.5	57.2	94.8

	A-847 8.00	PC-459 20	A-150 5.31	PC-59 9.01	PAC-20 2.0
baseline2	10.8	17.5	28.6	54.0	94.2
+aug	10.9	17.7	28.6	54.4	94.6
+ms	10.8	17.5	28.4	53.9	94.5
dcn	11.4	18.3	31.1	55.7	94.8
+cls	12.0	19.5	31.9	58.2	94.4
Oracle	28.7	43.2	51.1	75.3	97.7

	Components	A-847	PC-459	A-150	PC-59	PAS-20	PAS-20 ^b
(I)	Feature Agg.	5.6	12.8	23.6	58.1	96.3	77.7
(II)	Cost Agg.	14.7	23.2	35.3	60.3	96.7	78.9
(III)	(II) + Spatial agg.	14.9	23.1	35.9	60.3	<u>96.7</u>	79.5
(IV)	(II) + Class agg.	14.7	21.5	36.6	60.6	95.5	80.5
(V)	(II) + Spatial and Class agg.	<u>15.5</u>	23.2	<u>37.0</u>	62.3	<u>96.7</u>	81.3
(VI)	(V) + Embedding guidance	16.0	23.8	37.9	63.3	97.0	82.5
		-	-	-	-	52.3	
		- 8.1	- 11.5	26.4	44.8	52.3	- 70.2
		- 8.1 9.0	- 11.5 12.4	- 26.4 29.6	- 44.8 55.7		70.2
						-	70.2 -
		9.0	12.4	29.6	55.7	- 94.5	- 70.2 - -
		9.0 <u>12.4</u>	12.4 <u>15.7</u>	29.6 32.1	55.7 <u>57.7</u>	94.5 94.6	70.2 - - - 82.5
		9.0 12.4 11.1	12.4 15.7 14.5	29.6 32.1 29.9	55.7 <u>57.7</u> 57.3	94.5 94.6	- - -

	A-847 8.00	PC-459 20	A-150 5.31	PC-59 9.01	PAC-20 2.0
CAT-B	12.1	19.1	31.6	57.4	94.7
baseline	10.0	16.6	27.0	52.6	93.8
baseline2	10.8	17.5	28.6	54.0	94.2
i-i corr	11.1	17.8	30.7	56.0	94.4
i-i corr2	11.6	18.6	31.1	56.8	94.8
dino	10.1	16.5	27.1	52.5	93.9
maskMH A	11.6	18.9	31.5	57.2	94.8
dcn	11.4	18.3	31.1	55.7	94.8

去掉spatial和class aggregation和decoder中的浅层特征 去掉spatial和class aggregation

加入i-i correlation

在baseline2的基础上将浅层特征替换为dino对应层特征

Class aggregation时使用mask MHA,仅和相近的K个类别做MHA K初步设置为16,感觉应该增大K试一下

降点原因可能是原spatial agg都使用了大核 CAT-Seg 12, SED 9

GAU: General Assemble Unit 🗸

softmax

Matrix

multiply

Min-max

norm

Affinity

初始DCNv3核设置为3

- · 获取更好的初始化cost volume
- 更好的cost aggregation方式

对spatial和class都使用deformable操作: Spatial,改一下DCNv3中生成offset和mask的过程 Class,使用mask MHA仅和相近的K个类别做MHA

	A-847 8.00	PC-459 20	A-150 5.31	PC-59 9.01	PAC-20 2.0	
CAT-B	12.1	19.1	31.6	57.4	94.7	
oracle	28.7	43.2	51.1	75.3	97.9	
Cls_head	12.2	19.2	31.9	58.1	94.7	
APL	12.1	19.1	32.0	58.2	94.9	
MLDecod er	12.1	19.5	31.5	58.0	95.0	
+RAM	11.3	19.1	31.6	57.4	94.8	

给定图片中存在的类别

MLDecoder+ AP Loss

Transformer cross-attention + BCE Loss Transformer cross-attention + AP Loss

使用RAM进行分类直接测试性能

5分类联合训练后,性能会有一点提升,但过用分类头 **送别**

调整CLIP以生成更好的cost volume

Method		Fair	V21	PC60	C-Obj	V20	City	PC59	ADE	C-Stf	Avg
CLIP [27]	ICML'21	/	18.6	7.8	6.5	49.1	6.7	11.2	3.2	7.2	13.8
MaskCLIP [46]	ECCV'22	✓	43.4	23.2	20.6	74.9	24.9	26.4	11.9	16.7	30.3
ReCo [28]	NeurIPS'22	X	25.1	19.9	15.7	57.7	21.6	22.3	11.2	14.8	23.5
GroupViT [36]	CVPR'22	X	52.3	18.7	27.5	79.7	18.5	23.4	10.4	15.3	30.7
TCL [7]	CVPR'23	X	55.0	30.4	31.6	83.2	24.3	33.9	17.1	22.4	37.2
CLIP Surgery [18]	Arxiv'23	✓	41.2	30.5	-	-	31.4	-	12.9	21.9	-
SCLIP [32]	Arxiv'23	1	61.7	31.5	32.1	83.5	34.1	36.1	17.8	23.9	40.1
GEM [4]	CVPR'24	1	46.2	-	-	-	-	32.6	15.7	-	-
CLIP-DIY [35]	WACV'24	X	59.0	-	30.4	-	-	-	-	-	-
FOSSIL [3]	WACV'24	X	-	-	-	-	23.2	35.8	18.8	24.8	-
NACLIP [PAMR]	Ours	/	58.8	32.2	33.2	77.1	35.5	35.2	17.4	22.9	39.0
NACLIP	Ours	1	62.4	35.0	36.2	80.6	38.3	38.4	19.1	25.2	41.9

corr. self-attn

NACLIP

$$\begin{aligned} \boldsymbol{Attn} &= \operatorname{Softmax} \left(\boldsymbol{X} \boldsymbol{W}_{q} \boldsymbol{W}_{q}^{T} \boldsymbol{X}^{T} / \tau \right) \\ &+ \operatorname{Softmax} \left(\boldsymbol{X} \boldsymbol{W}_{k} \boldsymbol{W}_{k}^{T} \boldsymbol{X}^{T} / \tau \right), \end{aligned}$$

SCLIP

