```
In [2]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [3]:

```
df = pd.read_csv("C:/Users/ameya/OneDrive/Desktop/DSBDAL/Iris.csv")
```

In [4]:

```
df.head()
```

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [5]:

```
df.shape
```

Out[5]:

(150, 6)

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtyp	es: float64(4),	int64(1), object	t(1)

memory usage: 7.2+ KB

```
In [7]:
```

```
df.describe()
```

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [8]:

```
df.isnull().sum()
```

Out[8]:

```
Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64
```

In [9]:

```
df['Species'].unique()
```

Out[9]:

```
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

In [10]:

```
x = df.drop(['Species'],axis=1)
y = df['Species']
```

In [11]:

X

Out[11]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

In [12]:

```
from sklearn.preprocessing import StandardScaler
scalar = StandardScaler()
x_scaled = scalar.fit_transform(x)
```

In [13]:

x_scaled

Out[13]:

```
array([[-1.72054204e+00, -9.00681170e-01,
                                           1.03205722e+00,
        -1.34127240e+00, -1.31297673e+00],
       [-1.69744751e+00, -1.14301691e+00, -1.24957601e-01,
        -1.34127240e+00, -1.31297673e+00],
       [-1.67435299e+00, -1.38535265e+00,
                                            3.37848329e-01,
        -1.39813811e+00, -1.31297673e+00],
       [-1.65125846e+00, -1.50652052e+00,
                                            1.06445364e-01,
        -1.28440670e+00, -1.31297673e+00],
       [-1.62816394e+00, -1.02184904e+00,
                                            1.26346019e+00,
        -1.34127240e+00, -1.31297673e+00],
       [-1.60506942e+00, -5.37177559e-01,
                                            1.95766909e+00,
        -1.17067529e+00, -1.05003079e+00],
       [-1.58197489e+00, -1.50652052e+00,
                                           8.00654259e-01,
        -1.34127240e+00, -1.18150376e+00],
       [-1.55888037e+00, -1.02184904e+00,
                                           8.00654259e-01,
        -1.28440670e+00, -1.31297673e+00],
       [-1.53578584e+00, -1.74885626e+00, -3.56360566e-01,
        -1.34127240e+00. -1.31297673e+001.
```

```
In [14]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_state=0)
```

```
In [15]:
```

```
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(x_train,y_train)
```

Out[15]:

GaussianNB()

In [16]:

```
y_pred = gnb.predict(x_test)
```

In [17]:

```
y_pred
```

Out[17]:

In [21]:

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
cm
```

Out[21]:

In [22]:

```
#For Setosa Class
tp=cm[0][0]
fn=(cm[0][1])+(cm[0][2])
tn=(cm[1][1])+(cm[1][2])+(cm[2][1])+(cm[2][2])
fp=(cm[1][0])+(cm[2][0])
print('true positive: ',tp)
print('false positive: ',fp)
print('true negative: ',tn)
print('false negative: ',fn)
error_rate=(fp+fn)/(tp+tn+fp+fn)
print('error rate:', error_rate )
```

true positive: 13 false positive: 0 true negative: 25 false negative: 0 error rate: 0.0

In [23]:

```
#For Versicolor Class
tp=cm[1][1]
fn=(cm[1][0])+(cm[1][2])
tn=(cm[0][0])+(cm[0][2])+(cm[2][0])+(cm[2][2])
fp=(cm[0][1])+(cm[2][1])
print('true positive: ',tp)
print('false positive: ',fp)
print('true negative: ',fn)
print('false negative: ',fn)
error_rate=(fp+fn)/(tp+tn+fp+fn)
print('error rate:', error_rate )
```

true positive: 16 false positive: 0 true negative: 22 false negative: 0 error rate: 0.0

In [24]:

```
#For Virginca Class
tp=cm[1][2]
fn=(cm[2][0])+(cm[2][1])
tn=(cm[0][0])+(cm[0][1])+(cm[1][0])+(cm[1][1])
fp=(cm[0][2])+(cm[1][2])
print('true positive: ',tp)
print('false positive: ',fp)
print('true negative: ',tn)
print('false negative: ',fn)
error_rate=(fp+fn)/(tp+tn+fp+fn)
print('error rate:', error_rate )
```

true positive: 0 false positive: 0 true negative: 29 false negative: 0 error rate: 0.0

In []:

In [23]:

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

Out[23]:

1.0

In [24]:

from sklearn.metrics import ConfusionMatrixDisplay
ConfusionMatrixDisplay.from_predictions(y_test, y_pred)

Out[24]:

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x23351
3363d0>

In [27]:

from sklearn.metrics import classification_report
cr = classification_report(y_test,y_pred)
print(cr)

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	13
Iris-versicolor	1.00	1.00	1.00	16
Iris-virginica	1.00	1.00	1.00	9
accuracy			1.00	38
macro avg	1.00	1.00	1.00	38
weighted avg	1.00	1.00	1.00	38

In []: