```
In [7]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

In [8]: dataset = pd.read_csv(r'D:\NIT\DECEMBER\11 DEC (SLR(SIMPLE))\11th - Regression

In [9]: dataset
```

Out[9]:		YearsExperience	Salary
	0	1.1	39343
	1	1.3	46205
	2	1.5	37731
	3	2.0	43525
	4	2.2	39891
	5	2.9	56642
	6	3.0	60150
	7	3.2	54445
	8	3.2	64445
	9	3.7	57189
	10	3.9	63218
	11	4.0	55794
	12	4.0	56957
	13	4.1	57081
	14	4.5	61111
	15	4.9	67938
	16	5.1	66029
	17	5.3	83088
	18	5.9	81363
	19	6.0	93940
	20	6.8	91738
	21	7.1	98273
	22	7.9	101302
	23	8.2	113812
	24	8.7	109431
	25	9.0	105582
	26	9.5	116969
	27	9.6	112635
	28	10.3	122391
	29	10.5	121872

```
In [10]: X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,1].values
```

```
In [11]: X
Out[11]: array([[ 1.1],
                [ 1.3],
                 [ 1.5],
                [ 2. ],
                [ 2.2],
                [ 2.9],
                [ 3. ],
                [ 3.2],
                [ 3.2],
                [ 3.7],
                [ 3.9],
                [ 4. ],
                [ 4. ],
                [ 4.1],
                [4.5],
                [ 4.9],
                [5.1],
                [ 5.3],
                [ 5.9],
                [ 6. ],
                [ 6.8],
                [ 7.1],
                [ 7.9],
                [ 8.2],
                [ 8.7],
                [ 9. ],
                [ 9.5],
                [ 9.6],
                [10.3],
                [10.5]])
In [12]: y
Out[12]: array([ 39343, 46205, 37731, 43525, 39891, 56642, 60150, 54445,
                 64445, 57189, 63218, 55794, 56957, 57081, 61111, 67938,
                 66029, 83088, 81363, 93940, 91738, 98273, 101302, 113812,
                109431, 105582, 116969, 112635, 122391, 121872], dtype=int64)
In [13]: from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test = train_test_split(X, y, test_size = 0.30, random_
In [14]: X_train
```

```
Out[14]: array([[ 7.9],
                 [ 2.9],
                 [5.1],
                [ 3.2],
                 [ 4.5],
                [ 8.2],
                 [ 6.8],
                [ 1.3],
                [10.5],
                [ 3. ],
                 [ 2.2],
                [5.9],
                [ 6. ],
                [ 3.7],
                [ 3.2],
                [ 9. ],
                [ 2. ],
                [ 1.1],
                [7.1],
                [ 4.9],
                 [ 4. ]])
In [15]: X_test
Out[15]: array([[ 1.5],
                [10.3],
                [4.1],
                 [ 3.9],
                 [ 9.5],
                 [ 8.7],
                 [ 9.6],
                 [ 4. ],
                 [ 5.3]])
In [16]: y_train
Out[16]: array([101302, 56642, 66029, 64445, 61111, 113812, 91738, 46205,
                121872, 60150, 39891, 81363, 93940, 57189, 54445, 105582,
                 43525, 39343, 98273, 67938, 56957], dtype=int64)
In [17]: y_test
Out[17]: array([ 37731, 122391, 57081, 63218, 116969, 109431, 112635, 55794,
                 83088], dtype=int64)
In [18]: from sklearn.linear_model import LinearRegression
         regressor = LinearRegression()
In [19]: regressor
Out[19]: ▼ LinearRegression
         LinearRegression()
In [20]: regressor.fit(X_train, y_train)
         y_pred = regressor.predict(X_test)
In [21]: y_pred
```

plt.show()


```
In [23]: plt.scatter(X_train, y_train, color = 'red')
   plt.plot(X_train, regressor.predict(X_train), color = 'blue')
   plt.title('Salary vs Experience (Training set)')
   plt.xlabel('Years of Experience')
   plt.ylabel('Salary')
   plt.show()
```


