

Digital Communications Introduction

- 1) Definitions
- 2) Propagation channel
- 3) Elements of the communication channel
- 4) Performance criteria

Nathalie Thomas

IRIT/ENSEEIHT
Nathalie.Thomas@enseeiht.fr

Transmit a given bit rate Rb = Number of bits to be transmitted per second.

DVB example: BER<10⁻¹⁰, (QEF transmission) Rb \sim 30 à 40 Mbps

Obtain a given Bit Error Rate:

ER = Number of erroneous bits
Number of transmitted bits

Received Binary information: 0 1 0 1 0 1 1 ...

Propagation channel

- Wired transmissions: xDSL, optical fiber, cable TV, power Line communications...
 - ⇒ Propagation on copper, coaxial cables or optical fibers via electrical or optical signals.
- Wireless transmissions: WiFi, Terrestrial TV, Satellite transmissions, GSM, 3G, 4G ...
 - => Propagation in free space via radio (or Hertzian): frequencies < 3000 GHz

Propagation channel Telecommunication Standards / Recommandations

Propagation channel: distorsions/constraints

Attenuation of the transmitted signal

Absorption, scattering due to atmospheric gases, to clouds, to rain, skin effect for cooper (Increases with increasing frequency),

- Baseband or carrier modulated transmission
- Shared communication channel
 - → Multiplexing methods, regulation agencies.
- Noise
 - → External noise = other signals received in addition to the useful communication signal.
 - → Internal Noise = due to electronic devices/components inside the receiver.
- One or several paths between the transmitter and the receiver
 - => flat fading or frequency selective channel
- Limited allocated bandwidth
- Fixed or Mobile transmission
 - => stationnary or non stationnary channel

Propagation channel

Example of free space propagation for fixed satellite telecommunication systems

Attenuation effect on a DVB-S transmission (absorption, scattering due to atmospheric gases, clouds and rain)

Propagation channel Baseband or carrier modulated transmission

Example of a fixed satellite DVB-S transmission DVB-S:

Propagation in bands

L: 1.4-1.6 GHz, C: 4-6 GHz, Ku: 10.7-12.45 GHz and Ka: 20-30 GHz

Shared propagation channel: frequencies regulation

- Depending on the countries: regulatory agencies or a ministries

Examples:

- → In France : ARCEP (Autorité de Régulation des Communications Electroniques), ANRT (Agence Nationale de Régulation des Fréquences), CSA (Conseil Supérieur de l'Audiovisuel)
- → In the United States of America : FCC (Federal Communications Commission)
- → In Japan: MIC (Ministry of Internal Affairs and Communications)

- Collaborations between states:

Examples:

- → ORECE : Organe des Régulateurs Européens des Communications Electroniques in Europ,
- → NARUC : National Association of Regulatory Utility Commissioners (regulators of individual states) in the United States,
- → ARTAC : Association des Régulateurs de Télécommunications de l'Afrique Centrale, in Africa,

- International Telecommunication Union (ITU)

- → Responsible for the telecommunications regulation in the world
- → 193 member states and 700 associated members (from Information and Communication Technology sector).
- → Forum in which the states and the private sector coordinate together.

Unlicensed bandwidth

- → industrial, scientific and medical (ISM) : (902-928 MHz, 2.400-2.4835 GHz)
- → Unlicensed National Information Infrastructure (UNII) : 5.15-5.25 GHz, 5.25-5.35 GHz
- → UNII-3/ISM : 5.725-5.850 GHz

Shared propagation channel: Multiplexing methods

→ Examples of multiplexing methods

FDM(Frequency Division Multiplexing)

(Code Division Multiplexing)

TDM
(Time Division Multiplexing)

MF-TDM (Multi Frequency - Time Division Multiplexing)

Propagation channel: Additive noise

Noise characteristics :

- \rightarrow White noise, with PSD = $N_0/2$ whatever is the frequency, with $N_0=k(T_e+T_i)$
 - k = Bolztmann constant
 - T_e = external noise temperature
 - T_i = internal noise temperature
- \rightarrow Gaussien Noise, with power σ^2
- → Added at the receiver input, assuming then that its components are ideal,
- → A dégradation measurment: the Signal to Noise Ratio or SNR

$$SNR_{dB} = 10 log \frac{P_{useful signal}}{P_{noise}}$$

Propagation channel

Example of free space propagation for fixed satellite telecommunication systems

→ Additive noise:

- → Other signals received in addition to the useful communication signal.
 - Coming from natural sources: atmosphere (storm, lightning, thunder), earth, sky (sun, milky way)
 - Coming from artificial sources: human activity.
- → Electronic devices in the receiver: amplifiers, antenna, etc.

→ Examples of introduced distorsions

Examples:

NRZ-type transmitted signal

Transmitted image

Noisy signal, $SNR_{dB} = 10 \text{ dB}$

Received image, SNR_{dB} = 10 dB

BER = 2.38 10⁻⁶

Noisy signal, $SNR_{dB} = 0 dB$

Received image, $SNR_{dB} = 0 dB$

Only one path: the line of sight (LOS) between the transmitter and the receiver

Several paths between the transmitter and the receiver (« multi-paths » channel)

Only the line of sight between the transmitter and the receiver

$$y(t) = \alpha x(t - \tau) + n(t) = \alpha \delta(t - \tau) * x(t) + n(t)$$

Severals paths between the translitter and the receiver (« multi-paths » channel)

$$y(t) = \sum_{k=0}^{N-1} \alpha_k x(t - \tau_k) + n(t) = \sum_{k=0}^{N-1} \alpha_k \delta(t - \tau_k) * x(t) + n(t)$$

- Propagation channel model

The transmitted signal is filtered by the propagation channel

Propagation channel model

The transmitted signal is filtered by the propagation channel

- AWGN (Additive White Gaussian Noise) channel

Propagation channel

One or several paths between the transmitter and the receiver

- Propagation channel model

Limited bandwidth AWGN channel

Baseband transmission:

Carrier modulated transmission:

Propagation channel

Example of a band limited AWGN channel: DVB-S fixed satellite transmission

Propagation channel model

- Frequency selective channel

→ « Channel coherence bandwidth »: widest frequency band for which the channel can be considerated as « flat »

Propagation channel

Example of a frequency selective channel: DTV (DVB-T) transmission

Example of distorsions introduced by a frequency selective channel

Propagation channel

Fixed or mobile transmission

Fixed transmission

$$y(t) = \sum_{k=0}^{N-1} \alpha_k x(t - \tau_k) + n(t)$$

Mobile transmission

$$y(t) = \sum_{k=0}^{N-1} \alpha_k(t) x(t - \tau_k(t)) + n(t)$$

→ « Channel coherence time » : duration for which the channel impulse response can be considered as invariant (stationnary channel)

Received Binary information: 0 1 1 0 0 1 0 1 1 0

Example:

Analog signal:

Corrupted analog signal:

Transmission quality is improved:

Quality criterion is the Bit Error Rate (BER) which can be very low even with corrupted received analog signals. Of course BER is a function of SNR.

Transmission quality is improved:

Quality criterion is the Bit Error Rate (BER) which can be very low even with corrupted received analog signals. Of course BER is a function of SNR.

Price to pay: occupied bandwidth is larger for digital transmissions.

Example : fixed phone digitization $B_{analog} = 3.1 \text{ kHz}$

 $B_{digital} \sim 64 \text{ kHz}$ (Fe=8kHz, nb=8 bits)

But source coding will help on this point!

25

Example of source coding: Huffman coding

Message to transmit: EMMENE MOI A LA MER

Natural binary coding:

9 different characters = > 4 bits per character ($2^4=16$)

E	M	Espace	Α	N	1	0	R	L
4/19	4/19	4/19	2/19	1/19	1/19	1/19	1/19	1/19
0000	0001	0010	0011	0100	0101	0110	0111	1000

19x4 = 76 bits to be sent, example with 2G transmission (9,6 kbps): 0,79 ms

Smarter code (Huffman):

Е	M	Espace	Α	N	1	0	R	L
4/19	4/19	4/19	2/19	1/19	1/19	1/19	1/19	1/19
01	10	11	0000	0011	00100	00101	00010	00011

12x2+3x4+4x5 = 56 bits to be sent, example with 2G transmission (9,6 kbps): 0,58 ms

Gain: 26,32 %

Transmission quality is improved:

Quality criterion is the Bit Error Rate (BER) which can be very low even with corrupted received analog signals. Of course BER is a function of SNR.

Of course there is a price to pay: occupied bandwidth is larger for digital transmissions.

But source coding will help on this point!

Transmission quality is improved:

Quality criterion is the Bit Error Rate (BER) which can be very low even with corrupted received analog signals. Of course BER is a function of SNR.

New functions (digital functions) can be used in the transmission channel, like channel coding allowing to obtain the same BER with a lower transmitted power.

Of course there is a price to pay: occupied bandwidth is larger for digital transmissions.

But source coding will help on this point!

Basic digital transmission channel: channel coding

Example of channel coding

Basic digital transmission channel: modulation

Example of Modulation

Basic digital transmission channel: synchronization

Synchronization on the clock (« in time ») and on the carrier (« in frequency »)

- On the carrier (for carrier-modulated transmissions)

Basic digital transmission channel: performance criteria

Basic digital transmission channel: example

Channel transmission is designed to:

It will cost in terms of:

Transmit a given bit rate
 Rb = Number of bits to
 be transmitted per second.

 Needed bandwidth B in the transmission channel

Table D	1: Example	of System perf	formance over	33 MHz transpor	der SNR
Bit Rate R _u (after MUX) [Mbit/s]	Bit Rate R'u (after RS) [Mbit/s]	Symbol Rate [Mbaud]	Convolut. Inner Code Rate	RS Outer Code Rate	C/N (33 MHz) [dB]
23,754	25,776	25,776	1/2	188/204	4,1
31,672	34,368	25,776	2/3	188/204	5,8
35,631	38,664	25,776	3/4	188/204	6,8
39,590	42,960	25,776	5/6	188/204	7,8
41,570	45,108	25,776	7/8	188/204	8,4

<u>DVB-S example: satellite broadcasting for muti-media contents</u>

Quasi Error Free (QEF) transmission:

 $BER < 10^{-10}$

- Achieve a given Bit Error Rate Needed SNR at the receiver input => needed transmitted power.

BER = Number of erroneous bits
Number of transmitted bits

References

French references

- → M. Joindot, A. Glavieux, « Introduction aux communications numériques », Dunod
- → J.C. Bic, D. Duponteil, J.C.Imbeaux, « Eléments de communications numériques », Dunod

English books

- → J. G. Proakis, « Digital Communications », Mac Graw Hill Book Cie
- → Lindsay and Simon, « Telecommunications system engineering », Prentice Hall

Example: DVB-S standard

- → J.J. Spilker, « Digital communication by satellite », Prentice Hall
- → Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for 11/12 GHz satellite services, norme ETSI EN 300 421.
- → Digital Video Broadcasting (DVB): User guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2), norme ETSI EN 102 376.