

SEQUENCE LISTING

<110> O'Hara, Richard M. Jr.
Nagelin, Ann Marie

<120> Agents that Specifically Block CD28-Mediated Signaling and Uses
Therefor

<130> WYS-007.01

<140> 10/076934

<141> 2002-02-15

<150> 60/269,756

<151> 2001-02-16

<160> 3

<170> PatentIn version 3.5

<210> 1

<211> 3803

<212> DNA

<213> Homo sapiens

<400> 1
taaagtcatc aaaacaacgt tatatccgt gtgaaatgtc gcagtcagga tgccttgg 60
tttagtgccct tgatcatgtg ccctaagggg atggcgccg tgggtggc cgtggatgac 120
ggagactctc aggccttggc aggtgcgtt tcacgtccc ctcacactc gggttcccg 180
gggaggaggg gctggAACCC tagccccatcg tcaggacaaa gatgttcagg ctgtcttgg 240
ctctcaactt attcccttca attcaagtaa caggaaacaa gatttttgta aagcagtgc 300
ccatgttgt agcgtacgac aatgcggtaa accttagctg caagtattcc tacaatctct 360
tctcaaggga gttccggca tcccttcaca aaggactgga tagtgcgtg gaagtctgt 420
ttgttatgg gaattactcc cagcagcttc aggtttactc aaaaacgggg ttcaactgt 480
atggaaatt gggcaatgaa tcagtgcata tctacctcca gaatttttat gttAACCAA 540
cagatattta cttctgaaa attgaagttt tgcgtccctt cccttaccta gacaatgaga 600
agagcaatgg aaccattatc catgtgaaag ggaaacaccc ttgtccaaat cccctatcc 660
ccggaccccttc taagcccttt tgggtgcgttgg tgggtgggttgg tggagtcctt gcttgcata 720
gcttgcgtt aacagtggcc ttattttttt tctgggtgag gagtaagagg agcaggctcc 780
tgcacagtga ctacatgaac atgactcccc gcccggccgg gcccacccgc aagcattacc 840
agccctatgc cccaccacgc gacttcgcagc cctatgcgtc ctgacacggc cgcctatcc 900
gaagccagcc ggctggcagc ccccatctgc tcaatatcac tgctctggat aggaaatgac 960

cgccatctcc	agccggccac	ctcaggcccc	tgttgccca	ccaatgcca	ttttctcg	1020
gtgactagac	caaatatcaa	gatcatttg	agactctgaa	atgaagtaaa	agagattcc	1080
tgtgacaggc	caagtcttac	agtggcatgg	cccacattcc	aacttaccat	gtacttagt	1140
acttgactga	gaagtttaggg	tagaaaacaa	aaagggagtg	gattctggg	gcctcttccc	1200
tttctcactc	acctgcacat	ctcagtcag	caaagtgtgg	tatccacaga	cattttagg	1260
gcagaagaaa	ggcttagggaa	tcattccctt	tggttaaatg	ggtgtttaat	cttttgtt	1320
gtgggttaaa	cggggtaagt	tagagtaggg	ggagggatag	gaagacatata	ttaaaaacca	1380
ttaaacact	gtctccact	catgaaatga	gccacgtgt	tcctattta	tgctgtttc	1440
cttttagttt	gaaatacata	gacattgtct	tttatgaatt	ctgtatcata	tttagtcatt	1500
tgaccaaaatg	agggatttg	tcaaatttgg	gattccctca	aagaatatac	aggttaacca	1560
agttgcttc	ctcactccct	gtcatgagac	ttcagtgta	atgttcacaa	tataactttcg	1620
aaagaataaa	atagttctcc	tacatgaaga	aagaatatgt	cagggaaataa	ggtcacttta	1680
tgtcaaaatt	atttgagttac	tatgggacct	ggcgcagtgg	ctcatgctt	taatcccagc	1740
actttgggag	gccggagggtgg	gcagatca	tgagatcagg	accagcctgg	tcaagatgg	1800
gaaactccgt	ctgtactaaa	aataaaaaat	ttagcttgc	ctgggtggcag	gcacctgtaa	1860
tcccagctgc	ccaggaggct	gaggcatgag	aatcgcttga	acctggcagg	cgagggttgc	1920
agtggccga	gatagtgcca	cagctcttca	gcctgggcca	cagagtggaa	ctccatctca	1980
aacaacaaca	acaacaacaa	caacaacaac	aaaccacaaa	attatggag	tactgtgaag	2040
gattatgtt	ctaacagttc	attccatca	gaccaggtag	gagcttcc	gtttcatatg	2100
tttcagggtt	gcacagttg	tctctttaat	gtcggtgtgg	agatccaaag	tgggttgg	2160
aaagagcgtc	cataggagaa	gtgagaatac	tgtgaaaagg	gatgttagca	ttcatttagag	2220
tatgaggatg	agtcccaaga	agtttcttgc	gaaggaggac	gaatagaatg	gagtaatgaa	2280
attcttgcca	tgtgtcgagg	agatagccag	cattaggta	caatcttcca	gaagtggc	2340
ggcagaaggt	gccctggtga	gagctccctt	acagggactt	tatgtggttt	agggctcaga	2400
gctccaaaac	tctgggctca	gctgtcttgc	taccttggag	gtccattcac	atggaaagt	2460
attttggaat	gtgtctttg	aagagagcat	cagagttctt	aaggacttg	gtaaggcctg	2520
accctgaaat	gaccatggat	attttctac	ctacagtttgc	agtcaactag	aatatgcctg	2580
gggaccttga	agaatgcct	tcagtgccca	tcaccatttgc	ttcatgcttgc	agtttaattca	2640

ggtgttgaag gagcttaggt ttagaggca ctagacttg gttcaagtct cgtagtagt	2700
tgaatagcct caggcaagtc actgcccacc taagatgtg gttttcaac tataaatgg	2760
gataatggtt acaaattgtct ctccatatac tataatctcc ataaggcat ggccaagtc	2820
tgtcttgc tctgcctatc cctgacgtt agtagcatgc ccgacataca atgttagcta	2880
ttgttattat tgccatatac ataaattatg tataaaaatt aaactggca atagcctaag	2940
aaggggggaa tattgtaca caaatttaaa cccactacgc agggatgagg tgctataata	3000
tgaggaccc ttaacttcca tcattttcct gtttcttgc atatgttac ttgtatgaa	3060
atataaggca cctccactt ttatgtatac aaagaggct ttaatttt tttatgtg	3120
agaaggaagg gaggagttagt aatcttgc tccatatcg aaaatactgt acitgggt	3180
attttaagt gggcttccat tccatggatt taatcgatcc caagaagatc aaactcagca	3240
gtacttgggt gctgaagaac tggttgcatt accctggcac gtgtgccact tgccagctt	3300
cttggcaca cagagttctt caatccaaat tatcagatg tatttggaaa tgacagagct	3360
ggagagtttt ttgaaatggc agtggcaaat aaataaatac tttttttaa atggaaagac	3420
ttgatctatg gtaataaaatg attttgcattt ctgactggaa aaataggcct actaaagatg	3480
aatcacactt gagatgttcc ttactcactc tgccacagaaa caaagaagaa atgttataca	3540
gggaagtccg ttttcaat tagtatgaaac caagaaatgg ttccaaaaca gtggtaggag	3600
caatgcttc atagtttcg atatgttagt tatgaaagaaa acaatgtcat ttgctgtat	3660
tattgtaaat gtcttataat taatggact cctataattt ttgattgtga gtcacccat	3720
ttgggttaag catgccaatt taaagagacc aagtgtatgt acattatgtt ctacatattc	3780
agtgataaaa ttactaaact act	3803

<210> 2
<211> 219
<212> PRT
<213> Homo sapiens

<400> 2

Met Leu Arg Leu Leu Ala Leu Asn Leu Phe Pro Ser Ile Gln Val			
1	5	10	15

Thr Gly Asn Lys Ile Leu Val Lys Gln Ser Pro Met Leu Val Ala Tyr		
20	25	30

Asp Asn Ala Val Asn Leu Ser Cys Lys Tyr Ser Tyr Asn Leu Phe Ser

35

40

45

Arg Glu Phe Arg Ala Ser Leu His Lys Gly Leu Asp Ser Ala Val Glu
50 55 60

Val Cys Val Val Tyr Gly Asn Tyr Ser Gln Gln Leu Gln Val Tyr Ser
65 70 75 80

Lys Thr Gly Phe Asn Cys Asp Gly Lys Leu Gly Asn Glu Ser Val Thr
85 90 95

Phe Tyr Leu Gln Asn Leu Tyr Val Asn Gln Thr Asp Ile Tyr Phe Cys
100 105 110

Lys Ile Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys Ser
115 120 125

Asn Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser Pro
130 135 140

Leu Phe Pro Gly Pro Ser Lys Pro Phe Trp Val Leu Val Val Val Gly
145 150 155 160

Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile
165 170 175

Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met
180 185 190

Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro
195 200 205

Tyr Ala Pro Pro Arg Asp Phe Ala Tyr Arg Ser
210 215

<210> 3
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> primer

<400> 3

Glu Ser Gly Ser Val Ser Ser Glu Glu Leu Ala Phe Arg Ser Leu Asp
1 5 10 15