T.D. VII - Applications linéaires

I - Applications linéaires

Solution de l'exercice 1.

1. Soit $u=(x_1,y_1,z_1), v=(x_2,y_2,z_2)$ des éléments de \mathbb{R}^3 et $\lambda \in \mathbb{R}$. Alors,

$$f_{1}(u + \lambda v) = f_{1}(x_{1} + \lambda x_{2}, y_{1} + \lambda y_{2}, z_{1} + \lambda z_{2})$$

$$= (-(x_{1} + \lambda x_{2}) + 2(y_{1} + \lambda y_{2}), 2(x_{1} + \lambda x_{2}) - 3(y_{1} + \lambda y_{2}) + (z_{1} + \lambda z_{2}))$$

$$= (-x_{1} + 2y_{1}, 2x_{1} - 3y_{1} + z_{1}) + \lambda(-x_{2} + 2y_{2}, 2x_{2} - 3y_{2} + z_{2})$$

$$= f_{1}(u) + \lambda f_{1}(v).$$

$$= (x, y, z) \in \text{Ker } f_{2} \text{ si et seulement si } f_{2} \in f_{2}(u) + \lambda f_{2}(v).$$

$$= (x, y, z) \in \text{Ker } f_{2} \text{ si et seulement si } f_{2} \in f_{2}(u) + \lambda f_{2}(v).$$

Ainsi, f_1 est une application linéaire.

 $(x,y,z) \in \text{Ker } f_1$ si et seulement si $f_1(x,y,z) = (0,0)$ si et seulement si

$$\begin{cases}
-x + 2y &= 0 \\
2x - 3y + z &= 0
\end{cases} \Leftrightarrow \begin{cases}
-x + 2y &= 0 \\
y + z &= 0
\end{cases} \iota_{2\leftarrow 2L_1 + L_2}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases}
x &= -2\lambda \\
y &= -\lambda \\
z &= \lambda
\end{cases}$$

Ainsi, Ker $f_1 = \text{Vect}\{(-2, -1, 1)\}.$

Comme dim Ker $f_1 = 1$, d'après le théorème du rang.

$$Rg(f) = 3 - \dim Ker f = 2.$$

Comme Im $f_1 \subset \mathbb{R}^2$ et dim(Im f_1) = dim \mathbb{R}^2 , alors Im $f_1 = \mathbb{R}^2$. L'application f_1 est surjective.

2e Méthode.

$$\operatorname{Im}(f) = \operatorname{Vect} \{ f_1(1,0,0), f_1(0,1,0), f_1(0,0,1) \}$$

$$= \operatorname{Vect} \{ (-1,2), (2,-3), (0,1) \}$$

$$= \operatorname{Vect} \{ (-1,0), (2,0), (0,1) \}$$

$$= \operatorname{Vect} \{ (1,0), (0,1) \} = \mathbb{R}^2.$$

2. Soit $u=(x_1,y_1,z_1), v=(x_2,y_2,z_2)$ des éléments de \mathbb{R}^3 et $\lambda \in \mathbb{R}$. Alors.

$$f_2(u + \lambda v) = f_2(x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$

$$= (2(x_1 + \lambda x_2) + (y_1 + \lambda y_2) - (z_1 + \lambda z_2), (x_1 + \lambda x_2) - (y_1 + \lambda y_2) + 3(z_1 + y_1 - z_1, x_1 - y_1 + 3z_1, 4x_1 + y_1 - z_1) + \lambda(2x_2 + y_2 - z_2, x_2 - y_1 + y_2)$$

$$= f_2(u) + \lambda f_2(v).$$

 $(x,y,z) \in \text{Ker } f_2 \text{ si et seulement si } f_2(x,y,z) = (0,0) \text{ si et seulement si}$

$$\begin{cases} 2x + y - z &= 0 \\ x - y + 3z &= 0 \\ 4x + y - z &= 0 \end{cases} \Leftrightarrow \begin{cases} x - y + 3z &= 0 & \iota_{1} \leftarrow \iota_{2} \\ 2x + y - z &= 0 & \iota_{2} \leftarrow \iota_{1} \\ 4x + y - z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 3z = 0 \\ 2y - 7z = 0 \\ 5y - 13z = 0 \end{cases} \xrightarrow{L_2 \leftarrow L_2 - 2L_1} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

Ainsi, Ker f_2 = Vect $\{0_{\mathbb{R}^3}\}$. L'application f_2 est donc injective.

Comme dim Ker $f_2 = 3$, d'après le théorème du rang,

$$Rg(f) = 3 - \dim Ker f = 3.$$

Comme Im $f_2 \subset \mathbb{R}^3$ et dim(Im f_2) = dim \mathbb{R}^3 , alors Im $f_2 = \mathbb{R}^3$. L'application f_2 est donc surjective.

Ainsi, f_2 est une application linéaire bijective soit un automorphisme de \mathbb{R}^3 .

2e Méthode.

$$\operatorname{Im}(f) = \operatorname{Vect} \{ f_2(1,0,0), f_2(0,1,0), f_2(0,0,1) \}$$

$$= \operatorname{Vect} \{ (2,1,4), (1,-1,1), (-1,3,-1) \}$$

$$= \operatorname{Vect} \{ (0,-2,6), (1,-1,1), (0,2,0) \}$$

$$= \operatorname{Vect} \{ (0,0,6), (1,-1,1), (0,1,0) \}$$

$$= \operatorname{Vect} \{ (0,0,1), (1,0,0), (0,1,0) \} = \mathbb{R}^3.$$

3. Soit $u=(x_1,y_1,z_1),\ v=(x_2,y_2,z_2)$ des éléments de \mathbb{R}^3 et $\lambda\in\mathbb{R}$. Alors,

$$f_3(u + \lambda v) = f_3(x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$

$$= ((y_1 + \lambda y_2) + (z_1 + \lambda z_2), (x_1 + \lambda x_2) + (y_1 + \lambda y_2) + (z_1 + \lambda z_2), x_1 + \lambda x_2)$$

$$= (y_1 + z_1, x_1 + y_1 + z_1, x_1) + \lambda (y_2 + z_2, x_2 + y_2 + z_2, x_2)$$

$$= f_3(u) + \lambda f_3(v).$$

Ainsi, f_3 est une application linéaire.

 $(x, y, z) \in \text{Ker } f_3$ si et seulement si $f_3(x, y, z) = (0, 0)$ si et seulement si

$$\begin{cases} y+z &= 0\\ x+y+z &= 0 \Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} y &= \lambda\\ z &= -\lambda . \end{cases} \\ x &= 0 \end{cases}$$

Ainsi, Ker $f_3 = \text{Vect } \{(0, 1, -1)\}.$

$$\begin{split} \operatorname{Im}(f) &= \operatorname{Vect}\left\{f_3(1,0,0), \ f_3(0,1,0), \ f_3(0,0,1)\right\} \\ &= \operatorname{Vect}\left\{(0,1,1), (1,1,0), (1,1,0)\right\} \\ &= \operatorname{Vect}\left\{(0,1,1), (1,1,0), (1,1,0)\right\}. \end{split}$$

4. On remarque que si u = (1,0,1), alors

$$f_4(2u) = f_4(2,0,2) = 2(2,2) = 4(1,1)$$

et

$$2f_4(u) = 2f_4(1,0,1) = 2 \times 1(1,1) = 2(1,1)$$

Ainsi, $f_4(2u) \neq 2f_4(u)$ et la fonction f_4 n'est pas linéaire.

5. Soit $u=(x_1,y_1,z_1),\ v=(x_2,y_2,z_2)$ des éléments de \mathbb{R}^3 et $\lambda\in\mathbb{R}$. Alors,

$$f_5(u + \lambda v) = f_5(x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$

$$= 2((x_1 + \lambda x_2) + (y_1 + \lambda y_2) + (z_1 + \lambda z_2), (x_1 + \lambda x_2) - (y_1 + \lambda y_2))$$

$$= 2(x_1 + y_1 + z_1, x_1 - y_1) + \lambda 2(x_2 + y_2 + z_2, x_2 - y_2)$$

$$= f_5(u) + \lambda f_5(v).$$

Ainsi, f_5 est une application linéaire.

 $(x, y, z) \in \text{Ker } f_5$ si et seulement si $f_5(x, y, z) = (0, 0)$ si et seulement si

$$\begin{cases} 2(x+y+z) &= 0 \\ 2(x-y) &= 0 \end{cases} \Leftrightarrow \begin{cases} x+y+z &= 0 \\ x-y &= 0 \end{cases}$$
$$\Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= \lambda \\ y &= \lambda \\ z &= -2\lambda \end{cases}$$

Ainsi, Ker $f_5 = \text{Vect}\{(1, 1, -2)\}.$

Comme dim Ker $f_5 = 1$, d'après le théorème du rang,

$$Rg(f) = 3 - \dim Ker f = 2.$$

Comme Im $f_5 \subset \mathbb{R}^2$ et dim(Im f_5) = dim \mathbb{R}^2 , alors Im $f_5 = \mathbb{R}^2$. L'application f_5 est surjective.

2e Méthode.

$$Im(f) = Vect \{f_5(1,0,0), f_5(0,1,0), f_5(0,0,1)\}$$

$$= Vect \{(2,2), (2,-2), (2,0)\}$$

$$= Vect \{(0,2), (0,-2), (1,0)\}$$

$$= Vect \{(1,0), (0,1)\} = \mathbb{R}^2.$$

Solution de l'exercice 2. Raisonnons par double implication.

(⇒) Supposons que $g \circ f = 0$. Montrons que $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$. Soit $y \in \operatorname{Im}(f)$. Il existe $x \in \mathbb{R}^n$ tel que y = f(x). Ainsi,

$$g(y) = g(f(x)) = (g \circ f)(x) = 0$$

et $y \in \text{Ker}(g)$.

Donc, $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$

(\Leftarrow) Supposons que $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$. Montrons que $g \circ f = 0$. Soit $x \in \mathbb{R}^n$. Alors, $f(x) \in \operatorname{Im}(f)$, donc $f(x) \in \operatorname{Ker}(g)$ et

$$(q \circ f)(x) = q(f(x)) = 0.$$

Ainsi, $g \circ f = 0$.

A. Camanes

Lycée Ozenne 64

Solution de l'exercice 3. Comme f est une application linéaire, alors Im(f) est un sous-espace vectoriel de \mathbb{R} . Ainsi, $\dim \text{Im}(f) \leq 1$.

Comme f n'est pas l'application nulle, alors $\text{Im}(f) \neq \{0\}$, donc $\dim \text{Im}(f) \geq 1$.

Finalement, dim $\operatorname{Im}(f) = 1$ et $\operatorname{Im}(f) \subset \mathbb{R}$, donc $\operatorname{Im}(f) = \mathbb{R}$. Ainsi, f est une application surjective.

2º méthode. Comme f n'est pas l'application linéaire nulle, il existe $x_0 \in \mathbb{R}^n$ tel que $y_0 = f(x_0) \neq 0$.

Soit $y \in \mathbb{R}$. Alors, comme y_0 est non nul,

$$y = \frac{y}{y_0} y_0$$

$$= \underbrace{\frac{y}{y_0}}_{\in \mathbb{R}} f(x_0)$$

$$= f\left(\underbrace{\frac{y}{y_0} x_0}_{\in \mathbb{R}^n}\right), \text{ car } f \text{ est linéaire.}$$

Ainsi, y possède un antécédent par f et la fonction f est surjective. \square

Solution de l'exercice 4.

1. D'après la définition, la famille $(e_i, f(e_i))$ est liée. Ainsi, il existe $(\alpha_i, \beta_i) \neq (0, 0)$ tel que

$$\alpha_i e_i + \beta_i f(e_i) = \overrightarrow{0_3}.$$

Supposons par l'absurde que $\beta_i = 0$. Alors, $\alpha_i \neq 0$ et $\alpha_i e_i = \overrightarrow{0_3}$, soit $e_i = \overrightarrow{0_3}$. Ceci est impossible car e_i est un vecteur de la base canonique. Ainsi, $\beta_i \neq 0$ et $f(e_i) = -\frac{\alpha_i}{\beta_i} e_i$.

2. Comme $(e_i + e_j, f(e_i + e_j))$ est liée et $e_i + e_j \neq \overrightarrow{0_3}$, en effectuant le même raisonnement qu'à la question précédente, il existe $a_{i,j} \in \mathbb{R}$ tel que

$$f(e_i + e_j) = a_{i,j}(e_i + e_j).$$

3. Comme la fonction f est linéaire, en utilisant les questions précédentes,

$$f(e_i + e_j) = f(e_i) + f(e_j)$$

$$a_{i,j}(e_i + e_j) = a_i e_i + a_j e_j$$

$$(a_{i,j} - a_i)e_i + (a_{i,j} - a_j)e_j = \overrightarrow{0}_3.$$

Pour $i \neq j$, comme (e_i, e_j) est une famille libre alors

$$\begin{cases} a_{i,j} - a_i = 0 \\ a_{i,j} - a_j = 0 \end{cases}$$

soit $a_i = a_{i,j} = a_j$ et $a_i = a_j$. Notons

$$a = a_1 = a_2 = a_3$$
.

Soit $(x, y, z) \in \mathbb{R}^3$. Comme f est linéaire,

$$f(x, y, z) = f(xe_1 + ye_2 + ze_3) = xf(e_1) + yf(e_2) + zf(e_3)$$
$$= xae_1 + yae_2 + zae_3$$
$$= a(xe_1 + ye_2 + ze_3)$$
$$= a(x, y, z).$$

Ainsi, $f = a \operatorname{Id}$.

Solution de l'exercice 5.

1. Soit $x \in \operatorname{Ker} u^k$. Alors,

$$u^{k}(x) = \overrightarrow{0_{n}}$$

$$u\left(u^{k}(x)\right) = u\left(\overrightarrow{0_{n}}\right)$$

$$u^{k+1}(x) = \overrightarrow{0_{n}}.$$

Donc $u \in \text{Ker } u^{k+1}$.

2. D'après la question précédente, $d_k \leq d_{k+1}$. Ainsi, la suite (d_k) est croissante.

De plus, comme Ker $u^k \subset \mathbb{R}^n$, alors $d_k \leq n$.

Ainsi, la suite (d_k) est croissante et majorée par n. D'après le théorème de la limite monotone, la suite (d_k) converge.

3. D'après la définition de p,

$$\begin{cases} d_{p-1} & \neq d_p \\ d_k & = d_p, \, \forall \, k \geqslant p \end{cases}$$

Comme Ker $u^{p-1} \subset \text{Ker } u^p \text{ et } d_{p-1} \neq d_p$, alors

$$\operatorname{Ker} u^{p-1} \neq \operatorname{Ker} u^p$$
.

Soit $k \geqslant p$. Comme Ker $u^p \subset \text{Ker } u^k$ et $d_k = d_p$, alors

$$\operatorname{Ker} u^k = \operatorname{Ker} p.$$

II - Applications linéaires & Matrices

Solution de l'exercice 6.

1. Comme

$$f(1,0) = (1,3) = 1 \cdot (1,0) + 3 \cdot (0,1),$$

$$f(0,1) = (1,-5) = 1 \cdot (1,0) - 5 \cdot (0,1),$$

alors

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 1 \\ 3 & -5 \end{pmatrix}.$$

2. Comme

$$f(0,1) = (1,-5) = -5 \cdot (0,1) + 1 \cdot (1,0),$$

$$f(1,0) = (1,3) = 3 \cdot (0,1) + 1 \cdot (1,0),$$

alors

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} -5 & 3\\ 1 & 1 \end{pmatrix}.$$

3. D'une part,

$$f(1,2) = (4,-1)$$

 $f(3,4) = (10,-1)$.

D'autre part, la matrice de passage de la base ${\mathcal B}$ à la base canonique vaut

$$P = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} -4 & 3 \\ 2 & -1 \end{pmatrix}.$$
Ainsi, $P \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -19/2 \\ 9/2 \end{pmatrix}$ et $P \begin{pmatrix} 10 \\ -1 \end{pmatrix} = \begin{pmatrix} -43/2 \\ 21/2 \end{pmatrix}$. Donc
$$f(1,2) = -\frac{19}{2}(1,2) + \frac{9}{2}(3,4)$$

$$f(3,4) = -\frac{43}{2}(1,2) + \frac{21}{2}(3,4).$$

Ainsi,

$$Mat_{\mathscr{B}}(f) = \frac{1}{2} \begin{pmatrix} -19 & -43 \\ 9 & 21 \end{pmatrix}.$$

2º Méthode. D'une part, si $(x,y) = \alpha(1,2) + \beta(3,4)$, alors

$$\begin{cases} \alpha + 3\beta &= x \\ 2\alpha + 4\beta &= y \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta &= x \\ -2\beta &= y - 2x \end{cases} \Leftrightarrow \begin{cases} \alpha &= -2x + \frac{3}{2}y \\ \beta &= x - \frac{1}{2}y \end{cases}$$

Ainsi,

$$f(1,2) = (4,-1) = \left(-8 - \frac{3}{2}\right)(1,2) + \left(4 + \frac{1}{2}\right)(3,4)$$

$$= -\frac{19}{2}(1,2) + \frac{9}{2}(3,4)$$

$$f(3,4) = (10,-1) = \left(-20 - \frac{3}{2}\right)(1,2) + \left(10 + \frac{1}{2}\right)(3,4)$$

$$= -\frac{43}{2}(1,2) + \frac{21}{2}(3,4),$$

et on retrouve le résultat précédent.

4. Comme

$$f(1,0,0) = (1,3,0) = (1,0,0) + 3(0,1,0) + 0(1,1,1),$$

$$f(0,1,0) = (1,0,1) = 0 \cdot (1,0,0) - (0,1,0) + (1,1,1),$$

$$f(1,1,1) = (2,2,1) = (1,0,0) + (0,1,0) + (1,1,1),$$

alors

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 0 & 1 \\ 3 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Solution de l'exercice 7. En utilisant les définitions,

$$f(1,2,1) = (7,4,5),$$

$$f(2,3,3) = (13,9,15),$$

$$f(3,7,1) = (21,16,5).$$

D'autre part, si $(x, y, z) = \alpha(3, 1, 4) + \beta(5, 3, 2) + \gamma(1, -1, 7)$, alors

$$\begin{cases} x = 3\alpha + 5\beta + \gamma \\ y = \alpha + 3\beta - \gamma \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta - \gamma = y \\ 3\alpha + 5\beta + \gamma = x \\ 4\alpha + 2\beta + 7\gamma \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha + 3\beta - \gamma = y \\ -4\beta + 4\gamma = x - 3y \Leftrightarrow \begin{cases} \alpha + 3\beta - \gamma = y \\ -4\beta + 6\gamma = x - 3y \\ -2\gamma = 5x - 7y - 2z \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = \frac{23}{4}x - \frac{33}{4}y - 2z \\ \beta = -\frac{11}{4}x + \frac{17}{4}y + z \\ \gamma = -\frac{5}{5}x + \frac{7}{6}y + z \end{cases}$$

Ainsi,

$$f(1,2,1) = -\frac{11}{4}(3,1,4) + \frac{11}{4}(5,3,2) + \frac{3}{2}(1,-1,7)$$

$$f(2,3,3) = -\frac{59}{2}(3,1,4) + \frac{35}{2}(5,3,2) + 14(1,-1,7)$$

$$f(3,7,1) = -\frac{85}{4}(3,1,4) + \frac{61}{4}(5,3,2) + \frac{17}{2}(1,-1,7).$$

Finalement,

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}_1}(f) = \begin{pmatrix} -\frac{11}{4} & -\frac{59}{2} & -\frac{85}{4} \\ \frac{11}{4} & \frac{35}{2} & \frac{61}{4} \\ \frac{3}{2} & 14 & \frac{17}{2} \end{pmatrix}.$$

Solution de l'exercice 8. D'après la matrice de f dans la base \mathcal{B} ,

$$f(e_1) = 3e_2 + e_3,$$

$$f(e_2) = e_1 + 5e_2,$$

$$f(e_3) = 2e_1 + 4e_2 + 3e_3.$$

En réordonnant ces expressions,

$$f(e_3) = 3e_3 + 4e_2 + 2e_1,$$

$$f(e_2) = 5e_2 + e_1,$$

$$f(e_1) = e_3 + 3e_2.$$

Ainsi,

$$\operatorname{Mat}_{\mathscr{B}_1}(f) = \begin{pmatrix} 3 & 0 & 1 \\ 4 & 5 & 3 \\ 2 & 1 & 0 \end{pmatrix}.$$

Solution de l'exercice 9.

1. D'après les propriétés des matrices,

$$Rg(u) = Rg(A) = Rg\begin{pmatrix} 3 & 2 & 1 \\ -4 & -3 & -1 \\ -4 & -2 & -2 \end{pmatrix}$$
$$= Rg\begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ 2 & 2 & 0 \end{pmatrix}$$
$$= Rg\begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 2.$$

2. $(x,y,z) \in \text{Ker } u \text{ si et seulement si}$

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} 3x + 2y + z &= 0 \\ -4x - 3y - z &= 0 \Leftrightarrow \begin{cases} 3x + 2y + z &= 0 \\ -x - y &= 0 & \iota_{2} \leftarrow \iota_{2} + \iota_{1} \\ 2x + 2y &= 0 & \iota_{3} \leftarrow \iota_{3} + 2\iota_{1} \end{cases}$$

$$\begin{cases} 3x + 2y + z &= 0 \\ -x - y &= 0 \end{cases} \Leftrightarrow \lambda \in \mathbb{R} ; \begin{cases} x &= \lambda \\ y &= -\lambda \\ z &= -\lambda \end{cases}$$

Ainsi,

$$\operatorname{Ker} f = \operatorname{Vect} \{(1, -1, -1)\}.$$

De plus,

$$Im(u) = Vect \{(3, -4, -4), (2, -3, -2), (1, -1, -2)\}$$

= Vect \{(0, -1, 2), (0, -1, 2), (1, -1, -2)\}
= Vect \{(0, -1, 2), (1, -1, -2)\}.

Posons

$$\varepsilon_1 = (1, -1, -1),$$

 $\varepsilon_2 = (0, -1, 2),$
 $\varepsilon_3 = (1, -1, -2).$

Montrons que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 . Comme il s'agit d'une famille de vecteurs il suffit de montrer qu'elle est libre. Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que

$$\alpha\varepsilon_1 + \beta\varepsilon_2 + \gamma\varepsilon_3 = 0_{\mathbb{R}^3}$$

$$\alpha u(\varepsilon_1) + \beta u(\varepsilon_2) + \gamma u(\varepsilon_3) = 0_{\mathbb{R}^3}$$

$$\beta(0, 1, -2) + \gamma(-1, 1, 2) = (0, 0, 0)$$

Ainsi, $\beta = \gamma = 0$. On en déduit que $\alpha = 0$ et que la famille est libre. Ainsi, \mathscr{B} est une base de \mathbb{R}^3 .

3. D'après la définition de $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$,

$$P = P_{\mathscr{C}}^{\mathscr{B}} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & -1 \\ -1 & 2 & -2 \end{pmatrix}.$$

4. D'après les définitions précédentes,

$$u(\varepsilon_1) = (0, 0, 0)$$

 $u(\varepsilon_2) = (0, 1, -2) = -\varepsilon_2$
 $u(\varepsilon_3) = (-1, 1, 2) = -\varepsilon_3$

Ainsi,

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

5. D'après les formules de changement de base,

$$\operatorname{Mat}_{\mathscr{C}}(u) = P_{\mathscr{C}}^{\mathscr{B}} \operatorname{Mat}_{\mathscr{B}}(u) P_{\mathscr{B}}^{\mathscr{C}}$$
$$A = PBP^{-1}.$$

6. Comme B est une matrice diagonale, alors pour tout n entier naturel,

$$B^n = \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}.$$

7. En utilisant la méthode de Gauss-Jordan,

$$P_{\mathscr{B}}^{\mathscr{C}} = \left(P_{\mathscr{C}}^{\mathscr{B}}\right)^{-1} = \begin{pmatrix} 4 & 2 & 1 \\ -1 & -1 & 0 \\ -3 & -2 & -1 \end{pmatrix}.$$

Ainsi,

$$\begin{split} A^n &= \left(PBP^{-1}\right)^n = PB^nP^{-1} \\ &= \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & -1 \\ -1 & 2 & -2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 \\ -1 & -1 & 0 \\ -3 & -2 & -1 \end{pmatrix} \\ &= (-1)^n \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & -1 \\ -1 & 2 & -2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 \\ -1 & -1 & 0 \\ -3 & -2 & -1 \end{pmatrix} \\ &= (-1)^n \begin{pmatrix} -3 & -2 & -1 \\ 4 & 3 & 1 \\ 4 & 2 & 2 \end{pmatrix}. \end{split}$$

III - Rangs de matrices

Solution de l'exercice 10.

- 1. Les colonnes de la matrice ne sont pas colinéaires et la matrice est non nulle. Le rang vaut 2.
- ${\bf 2.}\,$ Toutes les lignes sont proportionnelles à la première qui est non nulle. Le rang vaut 1.
- ${\bf 3.}\,$ Toutes les lignes sont proportionnelles à la première qui est non nulle. Le rang vaut 1.
- **4.** Les deux premiers vecteurs colonnes sont non colinéaires, le troisième est la somme des deux premiers. Le rang vaut 2.
- 5. Les deux vecteurs colonnes ne sont pas colinéaires. Le rang vaut 2.
- **6.** Toutes les colonnes sont égales à la première qui est non nulle. Le rang vaut 1. $\hfill\Box$

Solution de l'exercice 11.

1. En effectuant des opérations élémentaires :

$$\operatorname{Rg} A_{1} = \operatorname{Rg} \begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ 2 & 2 & 0 \end{pmatrix} \quad {}^{L_{2} \leftarrow L_{2} + L_{1}}_{L_{3} \leftarrow L_{3} + 2L_{1}}$$

$$= \operatorname{Rg} \begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad {}^{L_{3} \leftarrow L_{3} + 2L_{2}}$$

$$= 2$$

2. En effectuant des opérations élémentaires :

$$\operatorname{Rg} A_{2} = \operatorname{Rg} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 4 \\ 0 & -1 & 1 \end{pmatrix} \quad L_{3 \leftarrow L_{3} - L_{1}}$$

$$= \operatorname{Rg} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 6 \end{pmatrix} \quad L_{3 \leftarrow 2L_{3} + L_{2}}$$

$$= 3.$$

T.D. VII - Applications linéaires

3. En effectuant des opérations élémentaires :

$$\operatorname{Rg} A_{3} = \operatorname{Rg} \begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 3 & -5 & -4 \\ 0 & 6 & -7 & -13 \\ 0 & 5 & 0 & -2 \end{pmatrix} \qquad \begin{matrix} L_{2} \leftarrow L_{2} - 2L_{1} \\ L_{3} \leftarrow L_{3} - 4L_{1} \\ L_{4} \leftarrow L_{4} - L_{1} \end{matrix}$$

$$= \operatorname{Rg} \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & -5 & 3 & -4 \\ 0 & -7 & 6 & -13 \\ 0 & 0 & 5 & -2 \end{pmatrix} \qquad c_{2} \leftrightarrow c_{3}$$

$$= \operatorname{Rg} \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & -5 & 3 & -4 \\ 0 & 0 & 9 & -37 \\ 0 & 0 & 5 & -2 \end{pmatrix} \qquad L_{3} \leftarrow 5L_{3} - 7L_{2}$$

$$= \operatorname{Rg} \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & -5 & 3 & -4 \\ 0 & 0 & 9 & -37 \\ 0 & 0 & 0 & 167 \end{pmatrix} \qquad L_{4} \leftarrow 9L_{4} - 5L_{3}$$

$$= 4.$$

IV - Questions plus théoriques

Solution de l'exercice 12.

1. Soit $N, M \in \mathcal{M}_3(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Alors, d'après la distributivité du produit matriciel par rapport à l'addition,

$$\varphi(\lambda M + N) = (\lambda M + N)A$$
$$= \lambda MA + NA$$
$$= \lambda \varphi(M) + \varphi(N).$$

Ainsi, φ est un endomorphisme de $\mathcal{M}_3(\mathbb{R})$.

2. Rappelons que

$$E_{1,1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{1,3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$E_{2,1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{2,2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{2,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$E_{3,1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, E_{3,2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, E_{3,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ainsi,

$$\varphi(E_{1,1}) = E_{1,1}A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = E_{1,1} + 2E_{1,2} + 3E_{1,3}$$

$$\varphi(E_{1,2}) = E_{1,2}A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = -E_{1,1} + E_{1,2} + 2E_{1,3}$$

$$\varphi(E_{1,3}) = E_{1,3}A = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = E_{1,2} + 3E_{1,3}$$

$$\varphi(E_{2,1}) = E_{2,1}A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix} = E_{2,1} + 2E_{2,2} + 3E_{2,3}$$

$$\varphi(E_{2,2}) = E_{2,2}A = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} = -E_{2,1} + E_{2,2} + 2E_{2,3}$$

$$\varphi(E_{2,3}) = E_{2,3}A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} = E_{2,2} + 3E_{2,3}$$

$$\varphi(E_{3,1}) = E_{3,1}A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 3 \end{pmatrix} = E_{3,1} + 2E_{3,2} + 3E_{3,3}$$

$$\varphi(E_{3,2}) = E_{3,2}A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 2 \end{pmatrix} = -E_{3,1} + E_{3,2} + 2E_{3,3}$$

$$\varphi(E_{3,3}) = E_{3,3}A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 2 \end{pmatrix} = E_{3,2} + 3E_{3,3}$$

Ainsi, en notant $\mathscr{B} = (E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{2,2}, E_{2,3}, E_{3,1}, E_{3,2}, E_{3,3}),$

$$\mathrm{Mat}_{\mathscr{B}}(\varphi) = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 2 & 3 \end{pmatrix}$$

Solution de l'exercice 13. Z_n est l'ensemble des matrices qui commutent avec toutes les matrices de $\mathcal{M}_n(\mathbb{R})$. Cet ensemble est appelé le *centre* de $\mathcal{M}_n(\mathbb{R})$. La lettre Z provient de l'initiale de Z entrum qui signifie centre en allemand.

1. Soit $A, B \in \mathbb{Z}_n$ et $\lambda \in \mathbb{R}$. Montrons que $\lambda A + B \in \mathbb{Z}_n$. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Alors,

$$(\lambda A + B)M = \lambda AM + BM$$
$$= \lambda MA + MB, \text{ car } A, B \in \mathbb{Z}_n$$
$$= M(\lambda A + B).$$

Ainsi, $\lambda A + B$ commute avec toute matrice de $\mathcal{M}_n(\mathbb{R})$ et $\lambda A + B \in \mathbb{Z}_n$.

- 2. a) On peut ici dessiner les matrices produits...
 - * La matrice $E_{i,j}A$ est constituée de 0 sauf sur la i^e ligne qui est constituée des éléments $a_{j,1}, a_{j,2}, \ldots, a_{i,n}$.
 - * La matrice $AE_{i,j}$ est constituée de 0 sauf sur la j^e colonne qui est constituée des éléments $a_{1,i}, a_{2,i}, \ldots, a_{n,i}$.

Comme $AE_{i,j} = E_{i,j}A$, en identifiant les éléments, on obtient

- * les coefficients situés à la i^e ligne et j^e colonne sont égaux, soit $a_{j,j}=a_{i,i}$,
- * les autres coefficients sont nuls, soit $a_{j,k}=0$ si $k\neq j$ et $a_{k,i}=0$ si $k\neq i$.
- **b)** En uilisant la question précédente pour tous les couples (i, j) et en notant λ la valeur commune à tous les $a_{i,i}$, alors $A = \lambda I$.

Lycée Ozenne 71

3. Nous avons montré à la question précédente que, si A commute avec toutes les matrices de $\mathcal{M}_n(\mathbb{R})$, alors il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I$. Réciproquement, si $A = \lambda I$, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $A(\lambda I) = \lambda IA = \lambda A$.

Finalement,
$$Z_n = \{\lambda I, \lambda \in \mathbb{R}\} = \text{Vect}\{I\}.$$

Solution de l'exercice 14. Raisonnons par Analyse / Synthèse.

Analyse. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Supposons qu'il existe S symétrique et A antisymétrique telles que M = S + A. Alors,

$$M = S + A$$
$$M^{T} = S^{T} + A^{T}$$
$$= S - A$$

Ainsi, en additionnant puis soustrayant ces égalités, on obtient

$$S = \frac{1}{2}(M + M^T)$$
 et $A = \frac{1}{2}(M - M^T)$.

Synthèse. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Posons

$$S = \frac{1}{2}(M + M^T)$$
 et $A = \frac{1}{2}(M - M^T)$.

D'une part,

$$S^{T} = \left(\frac{1}{2}(M + M^{T})\right)^{T} = \frac{1}{2}(M^{T} + M) = S$$
$$A^{T} = \left(\frac{1}{2}(M - M^{T})\right)^{T} = \frac{1}{2}(M^{T} - M) = -A$$

Ainsi, S est symétrique et A est antisymétrique. D'autre part,

$$S + A = \frac{1}{2}(M + M^T) + \frac{1}{2}(M - M^T) = M.$$

Solution de l'exercice 15.

- **1.** Comme $f^2 \neq 0$, l'application f^2 n'est pas l'application nulle et il existe $x_0 \in \mathbb{R}^3$ tel que $f(x_0) \neq 0$.
- **2.** Soit $a, b, c \in \mathbb{R}$ tels que

$$ax_0 + bf(x_0) + cf^2(x_0) = 0.$$

En composant par f^2 ,

$$af^{2}(x_{0}) + bf^{3}(x_{0}) + cf^{4}(x_{0}) = f^{2}(0)$$

 $af^{2}(x_{0}) = 0$, car $f^{3} = f^{4} = 0$

Comme $f^2(x_0) \neq 0$, alors a = 0.

Ainsi, en reprenant l'équation, on obtient

$$bf(x_0) + cf^2(x_0) = 0.$$

En composant par f,

$$bf^{2}(x_{0}) + cf^{3}(x_{0}) = f(0)$$

 $bf^{2}(x_{0}) = 0$, car $f^{3} = 0$

Comme $f^2(x_0) = 0$, alors b = 0.

Ainsi, en reprenant l'équation, on obtient

$$cf^2(x_0) = 0.$$

Comme $f^2(x_0) = 0$, alors c = 0.

Finalement, a = b = c = 0 et la famille $(x_0, f(x_0), f^2(x_0))$ est libre.

3. Comme

$$f(x_0) = f(x_0)$$

$$f(f(x_0)) = f^2(x_0)$$

$$f(f^2(x_0)) = f^3(x_0) = 0,$$

alors

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

4. Soit g telle que $g \circ f = f \circ g$. Notons

$$\operatorname{Mat}_{\mathscr{B}}(g) = \begin{pmatrix} a & b & c \\ d & e & f \\ \gamma & h & i \end{pmatrix}.$$

Alors,

$$f \circ g = g \circ f$$

$$\operatorname{Mat}_{\mathscr{B}}(f)\operatorname{Mat}_{\mathscr{B}}(g) = \operatorname{Mat}_{\mathscr{B}}(g)\operatorname{Mat}_{\mathscr{B}}(f)$$

$$\begin{pmatrix} 0 & 0 & 0 \\ a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} b & c & 0 \\ e & f & 0 \\ h & i & 0 \end{pmatrix}.$$

Ainsi,

$$\begin{cases} b &= 0 \\ c &= 0 \\ a &= e \\ b &= f \Leftrightarrow \\ d &= h \\ e &= i \\ f &= 0 \end{cases} \Leftrightarrow \begin{cases} b &= c = f = 0 \\ a &= e \\ d &= h \\ e &= i \end{cases}$$

soit

$$\operatorname{Mat}_{\mathscr{B}}(g) = \begin{pmatrix} a & 0 & 0 \\ d & a & 0 \\ \gamma & d & a \end{pmatrix}$$

5. Notons $N = \text{Mat}_{\mathscr{B}}(f)$. On remarque que

$$N = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{ et } N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Si g commute avec f, d'après la question précédente, il existe $a, d, \gamma \in \mathbb{R}$

tels que

$$\operatorname{Mat}_{\mathscr{B}}(g) = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$= aI_3 + dN + \gamma N^2$$
$$g = a\operatorname{Id} + df + \gamma f^2.$$

Réciproquement, si $g=af^2+bf+c\operatorname{Id}$, alors $g\circ f=af^3+bf^2+cf=f\circ g$. \square

Solution de l'exercice 16.

1. D'après la définition du produit matriciel,

$$AX = 0$$

$$\begin{pmatrix} \sum_{j=1}^{n} a_{1,j} x_j \\ \sum_{j=2}^{n} a_{2,j} x_j \\ \vdots \\ \sum_{j=2}^{n} a_{n,j} x_j \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

En utilisant la i^{e} ligne de ce produit matriciel, puis en sortant le i^{e} terme de la somme,

$$\sum_{i=1}^{n} a_{i,j}x_j = 0$$

$$\sum_{k \neq i} a_{i,k}x_k + a_{i,i}x_i = 0$$

$$a_{i,i}x_i = -\sum_{k \neq i} a_{i,k}x_k.$$

T.D. VII - Applications linéaires

2. En utilisant l'inégalité triangulaire,

$$|a_{i_0,i_0}x_{i_0}| \leqslant \sum_{k \neq i_0} |a_{i_0,k}x_k|$$

$$|a_{i_0,i_0}| \cdot |x_{i_0}| \leqslant \sum_{k \neq i_0} |a_{i_0,k}| \cdot |x_{i_0}|$$

$$|a_{i_0,i_0}| \leqslant \sum_{k \neq i_0} |a_{i_0,k}|,$$

 $car x_{i_0} \neq 0.$

3. D'après l'hypothèse,

$$|a_{i_0,i_0}| > \sum_{k \neq i_0} |a_{i_0,k}|.$$

On obtient ainsi une contradiction et X = 0.

Finalement, Ker $A=\{0\}$. Ainsi, l'endomorphisme canoniquement associé à A est injectif donc bijectif. La matrice A est donc inversible. \square