Übung 1: endlicher deterministischer Automat

1. Gegeben δ mit dem Startzustand q_0 und den Endzustände q_3 . Geben Sie den Automatengraphen an und wandeln Sie den Automaten in einen ϵ -freien NEA um.

δ	3	0	1	2
q0	{q1}	{q0}	{q0, q2}	Ø
q1	Ø	{q0}	{q0}	{q3}
q2	{q3}	{q1}	Ø	Ø
q3	Ø	Ø	Ø	Ø

Lsg:

2. Vervollständigen Sie folgenden nicht vollständigen DEA und geben Sie die Überführungstabelle an.

Lsg:			
δ	a	b	c
q0	$\mathbf{q0}$	q1	$\mathbf{q0}$
q1	q3		$\mathbf{q2}$
q2			
q3	$\mathbf{q4}$		
q4		q4	q4

Vollständig

3. Wandeln Sie den e-NEA in einen NEA um. Geben Sie die Übergangstabelle an.

Lsg:				
δ	3	a	b	c
q0	{q1}	$\{q2, q0\}$	{q2}	${q1, q0}$
q1	Ø	{q1}	{q1}	Ø
q2	{q0}	{q3}	Ø	Ø
q3	Ø	{q1}	{q1}	Ø

δ	ε	a	b	c
q0	Ø	{q2, q1, q0}	{q2, q1}	{q1, q0}
q2	Ø	$\{q3, q0, q2, q1\}$	$\{q2, q1\}$	$\{q0, q1\}$
q3	Ø	{q1}	{q1}	Ø
q1	Ø	{q1}	{q1}	Ø

4. Geben Sie für den regulären Ausdruck L=(a+b)*c*(c+a)* einen e-NEA an und wandeln Sie diesen in einen DEA um.

Lsg:

δ	3	a	b	c
q0	Ø	{q0, q2}	{q0}	{q1, q2}
q1	Ø	{q2}	Ø	$\{q2, q1\}$
q2	Ø	{q2}	Ø	{q2}

DEA:

5. Geben Sie für den regulären Ausdruck L=(a+b)*c*(c+a)* eine Typ3-Grammatik an, die diese Sprache erzeugt.

Lsg: G = ({S, B, C}, {a, b, c}, P, S} mit P
P ={ S -> aS |bS| cB| cC| aC|
$$\epsilon$$
, B -> cB | cC | aC| ϵ , C -> cC| aC | ϵ }

1. Minimieren Sie folgenden Automaten

Lsg: Automat

2. Konstruieren Sie einen endlichen Automaten über dem Alphabet $\Sigma = \{0,1,2\}$, der alle Worte akzeptiert, die keine 01 Sequenz enthalten.

Lsg:

Automat mit der eine 01 Sequenz akzeptiert:

Automat der keine 01-Squenz akzeptiert:

Mealy-Automat

Beispiel: Blumenautomat

Ein Blumenautomat bietet Blumensträuße für 4 EUR an. Der Kunde wirft 1- oder 2-Euro-Münzen ein und erhält die Blumen. Andere Münzwerte akzeptiert der Automat nicht. Zu viel gezahltes Geld wird nicht erstattet.

Der Blumenautomat kann als Mealy-Automat MA = (X, Y, Z, δ , λ , q_0) modelliert werden mit

- X = {1_EUR, 2_EUR}
- Y = {-, Blumen}
- $Z = \{q_0, q_1, q_2, q_3\}$
- δ, λ als Tabelle

δ	1_EUR	2_EUR	2	L	1_EUR	2_EUR
q 0	q ₁	q 2	q	0	-	-
q1	q 2	q 3	q	1	-	-
q_2	q 3	q 0	q:	2	-	Blumen
qз	q 0	q 0	q:	3	Blumen	Blumen

oder als Graph

• q₀