Formale Spezifikation und Verifikation

Wintersemester 2024

Prof. Dr. Gidon Ernst gidon.ernst@lmu.de

Software and Computational Systems Lab Ludwig-Maximilians-Universität München, Germany

September 30, 2024

Prof. Dr. Gidon Ernst 1/29

Spezifikation und Testen eingebetter Systeme

Prof. Dr. Gidon Ernst 2 / 29

Plan

Bisher: Lineare Temporale Logik

- Syntax und Semantik von Formeln, diskrete Zeitschritte
- Sicherheits- und Lebendigkeitseigenschaften
- ► Model Checking mit Büchi-Automaten

Heute: Eingebettete Systeme

- Controller + Modell der physikalischen Umgebung:
 - → kontinuierliche Zeit und Werte
- Modellierung und Spezifikation mit Hybriden Automaten und MTL/STL
- Gezieltes Aufdecken gefährlichen Verhaltens durch Simulation

Nächste Woche: aus der Praxis, bis ca 12:15

Prof. Dr. Gidon Ernst 3 / 29

Reaktive Systeme

Prof. Dr. Gidon Ernst 4/29

Eingebettete Systeme

"Cyber-Physical Systems"

Prof. Dr. Gidon Ernst 5 / 29

Eingebettete Systeme—Charakteristika

- "Cyber-Physical Systems"
 - ► Interaktion: technisches System ↔ Umwelt
 - zeitliches Verhalten
 - Modellierung: hybride Automaten, Matlab, . . .
 - Spezifikation Quantitative (lineare) Temporallogik
 (Metric Temporal Logic (MTL), Signal Temporal Logic (STL))

Prof. Dr. Gidon Ernst 6 / 29

Physikalische Systeme: Außensicht

- ightharpoonup Eingabesignal $x \in T \to \mathbb{R}^n$
- ▶ Ausgabesignal $y \in T \to \mathbb{R}^m$

Prof. Dr. Gidon Ernst 7 / 29

Beispiel Uhr: Außensicht

Prof. Dr. Gidon Ernst 8 / 29

Beispiel Uhr: Modell

Prof. Dr. Gidon Ernst

Reminder: Thermostat diskret Modelliert

Modellierung: Automat mit Variablen (≈ Kontrollflussautomat)

Prof. Dr. Gidon Ernst 10/29

Beispiel: Thermostat als hybrider Automat

Prof. Dr. Gidon Ernst 11/29

Beispiel: Bouncing Ball

Bouncing Ball Model Two separate Integrators are less efficient than a single Second-Order Integrator for simulating a bouncing ball. Click here to see sidemo bounce for the recommended modeling approach. Gravitational Velocity Acceleration -9.81 Position Velocity [15] $s \rfloor$ Position [10] Initial Velocity Initial Position Coefficient of Restitution

Copyright 1990-2013 The MathWorks, Inc.

Prof. Dr. Gidon Ernst

Trajektorien des Bouncing Balls

Prof. Dr. Gidon Ernst

Bouncing Ball als hybrider Automat

Prof. Dr. Gidon Ernst 14/29

Bouncing Ball als hybrides Programm

```
assume H \ge 0 \& g > 0; // Starthöhe und Gravitation
assume 0 < c < 1; // Dämpfung beim Aufprall
x := H, v := 0;
loop {
    continuously {
       x' == v, v' == -q
    invariant (x >= 0)
    until (x == 0):
   V := -C * V;
```

Prof. Dr. Gidon Ernst 15 / 29

Modellierung physikalischer Systeme

- ightharpoonup Eingabesignal $x \in T \to \mathbb{R}^n$
- ightharpoonup Ausgabesignal $y \in T \to \mathbb{R}^m$
- ▶ Differenzialgleichungen: $\delta y/\delta t = f(x)$
- Diskrete (Betriebs-)modi
- Kontinuierliches Verhalten
- Diskrete Transitionen ("Sprünge")
- Abstraktion vs Präzision bei physikalischen Phänomenen

Problem: analytische Ansätze (Lösen von Gleichungen) oft nicht möglich

Ansätze:

- eingeschränkte Modelle, z.B. gezeitete Automaten
- ► Testen/Simulation
- interaktive Beweissysteme, z.B. KeYmaeraX (\rightarrow Marvin Brieger)

Prof. Dr. Gidon Ernst 16/29

Simulation der Trajektorie des Bouncing Balls

```
Gleichungen: dv/dt = -q und dx/dt = v
diskreter Übergang bei x = 0: v \rightsquigarrow -v;
Schrittweise Integration mit dt klein genug (z.B. 0.01); z.B. mit dem
Euler-Verfahren (besser: Runge-Kutta)
class BouncingBall {
    double t, v, x;
    void next(double dt) {
         t += t;
         v += dt * -Constants.q;
         x += dt * v;
         if(x \ll 0)
             V = -V:
```

Prof. Dr. Gidon Ernst 17 / 29

Spezifikation: Metric/Signal Temporal Logic

Wie LTL, aber kontinuierliche Zeit ("Signale" statt Abläufe)

- temporale Operatoren mit Zeitintervallen:
 - $ightharpoonup \Box_{[a,b]} \phi$ gilt zum Zeitpunkt t wenn ϕ ab allen Zeitpunkten $t+a\ldots t+b$ gilt
 - $ightharpoonup \lozenge_{[a,b]} \phi$ gilt zum Zeitpunkt t wenn ϕ ab irgendwann zwischen $t+a\ldots t+b$ gilt
 - $\blacktriangleright \phi \mathcal{U}_{[a,b]} \psi$ analog
 - kein "next" $\circ \phi$,

Beispiele (Bouncing Ball)

Prof. Dr. Gidon Ernst

Beispiel: Automatikgetriebe

Modeling an Automatic Transmission Controller

?

Copyright 1990-2021 The MathWorks, Inc.

Prof. Dr. Gidon Ernst

Beispiel: Automatikgetriebe

Prof. Dr. Gidon Ernst 20 / 29

Eigenschaften: Automatikgetriebe

Prof. Dr. Gidon Ernst 21/29

Falsifikation

"wie kann ich ein Auto gegen die Wand fahren"

Falsifikation

Naiver Ansatz: Zufallstesten

Beispiel: Verletzung für $\square(v<120)$ finden

Prof. Dr. Gidon Ernst 22 / 29

Naiver Ansatz: Zufallstesten

```
Beispiel: Verletzung für \square(v < 120) finden
z.B. analog zu Property-based:
@Property
void test(Model model, Formula phi,
          @ForAll double[] throttle, @ForAll double[] brake)
        Trace trace = model.simulate(throttle, brake);
        if(!phi.satisfiedOn(trace)) {
                 throw RequirementViolated(...);
```

Prof. Dr. Gidon Ernst 22 / 29

Metric Temporal Logic: "Robustheit"

Prof. Dr. Gidon Ernst 23 / 29

Gradientenverfahren

Beispiel: Verletzung für $\square(v<120)$ finden

 Prof. Dr. Gidon Ernst
 24 / 29

Stochastische Optimierung [Nelder/Mead, CMA-ES]

Beispiel: Verletzung für $\square(v < 120)$ finden

 Prof. Dr. Gidon Ernst
 25 / 29

Inkrementelle Optimierung

Beispiel: Verletzung für $\square(v<120)$ finden

Prof. Dr. Gidon Ernst 26 / 29

Diskrete Baumsuche [RRT, aLVTS]

Beispiel: Verletzung für $\square(v<120)$ finden

Prof. Dr. Gidon Ernst 27 / 29

ARCH-COMP

Wettbewerb seit 2014:

- Ziel: Vergleich von Analysemethoden für hybride Systeme
- unterschiedliche Kategorien:
 - rein kontinuierlich vs diskrete Übergänge
 - lineare vs nichtlineare Differenzialgleichung
 - Verifikation vs Testen

Prof. Dr. Gidon Ernst 28 / 29

ARCH-COMP

Wettbewerb seit 2014:

- Ziel: Vergleich von Analysemethoden für hybride Systeme
- unterschiedliche Kategorien:
 - rein kontinuierlich vs diskrete Übergänge
 - lineare vs nichtlineare Differenzialgleichung
 - Verifikation vs Testen

Impact

- Schnittstelle zwischen Industrie und Forschung
- lacktriangle Etablierung von Benchmarks o Vergleichbarkeit, Reproduzierbarkeit

Übertrag der Ansätze auf Neuronale Netze

Prof. Dr. Gidon Ernst 28 / 29

ARCH-COMP: Falsifikation

https://cps-vo.org/group/ARCH/FriendlyCompetition

Falsifikation

"wie kann ich ein Auto gegen die Wand fahren"

Falsifikation

Organisation

- Benchmarks:
 - 7 Modelle
 - ca 25 Spezifikationen insgesamt
- Abfolge
 - festlegen der Benchmarks
 - TeilnehmerInnen führen Experimente durch
 - Ergebnisse werden gesammelt
 - Bericht wird geschrieben

Validierung

Fehlerquellen

2021/FALS/Validation.md

Formalisierung

Suchraum

Ergebnis

Simulation/ Berechnungen property: AT1 7

formula: \square [0, 20] (speed < 120)

input is within bounds

using stop time as provided: 20.0

falsified is correct

expected robustness -0.014

computed robustness -0.013

robustness error 0.001

[...]

9

Validierung über die Robustheit

um wie viel haben wir die Wand verfehlt?

reported (by participants)

computed (by validator)

confirmed falsification?

$$r >= 0$$

Ergebnisse

- Viele Diskrepanzen entdeckt
 - Dokumentation: ungenau, unvollständig, inkonsistent
 - vereinzelte Fehler: Formalisierung, Suchraum
 - Format der berichteten Ein-/Ausgabesignale

- Zusammenfassung
 - viele vorige Ergebnisse bestätigt | teilweise falsche Ergebnisse
 - die größten und offensichtlichsten Fehler sind beseitigt
 - einzelne subtilere Fehler bleiben (unklar warum)

Fehlersuche

manuelle Überprüfung: verletzt das Signal die Spec?

"Ergebnisse"

License

©These slides are licensed under the creative commons license:

https://creativecommons.org/licenses/by-nc-nd/4.0/

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

- (i) give appropriate credit
- (=) distribute without modifications
- s do not use for commercial purposes

Prof. Dr. Gidon Ernst 29 / 29