CS 70

Discrete Mathematics and Probability Theory

Quiz 0

Spring 2020

1. [**True or False**] Mark each of the following "True" if it is a valid logical equivalence, or "False" otherwise.

(a)
$$P \implies Q \equiv P \lor \neg Q$$

(b)
$$P \Longrightarrow Q \equiv (\neg P \Longrightarrow \neg Q)$$

(c)
$$P \Longrightarrow Q \equiv (Q \land P) \lor \neg P$$

Solution:

- (a) **False.** $P \Longrightarrow Q$ is equivalent to $\neg P \lor Q$, and is *not* equivalent to $P \lor \neg Q$.
- (b) **False.** This is the inverse of the implication, which, unlike the contrapositive $\neg Q \implies \neg P$, is not equivalent.
- (c) **True.** You can verify this with a truth table.
- **2. [True or False]** Let P(x) and Q(x) be a propositions about an integer x, and suppose you want to prove the theorem $\forall x$, $(P(x) \Longrightarrow Q(x))$. Mark each of the following proof strategies "True" if it would be a valid way to proceed with such a proof, or "False" otherwise.
- (a) Find an x such that Q(x) is true or P(x) is false.
- (b) Show that, for every x, if Q(x) is false then P(x) is false.
- (c) Assume that there exists an x such that P(x) is false and Q(x) is false and derive a contradiction.
- (d) Assume that there exists an x such that P(x) is true and Q(x) is false and derive a contradiction.

Solution:

- (a) **False.** This tells you nothing about *all* x. This would show $\exists x$, $(\neg P(x) \lor Q(x))$ (note the "exists" instead of "for all").
- (b) **True.** This proves the contrapositive, which is equivalent to the original implication.
- (c) **False.** The negation of $\forall x$, $(P(x) \Longrightarrow Q(x))$ is $\exists x$, $(P(x) \land \neg Q(x))$ (why?). So if we are to do a proof by contradiction, this is what we should assume.

(d) **True.** See previous part.

3. [**Proof**] Suppose you have a rectangular array of pebbles, where each pebble is either red or blue. Suppose that for every way of choosing one pebble from each column, there exists a red pebble among the chosen ones. Prove that there must exist an all-red column.

Solution: We give a proof by contraposition. Suppose there does not exist an all-red column. This means that, in each column, we can find a blue pebble. Therefore, if we take one blue pebble from each column, we have a way of choosing one pebble from each column without any red pebbles. This is the negation of the original hypothesis, so we are done.