Math 300.2 Homework 8

Paul Hacking

March 23, 2012

Reading: Gilbert and Vanstone, Chapter 6.

- (1) Determine the range (or image) of the following functions.
 - (a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$.
 - (b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 5$.
 - (c) $f: \mathbb{Z}^2 \to \mathbb{Z}, f(x,y) = 12x + 57y.$
 - (d) $f: \mathbb{Z} \to \{0, 1, 2, 3\}$, $f(x) = x^2 \mod 4$ (that is, f(x) is the remainder on dividing x^2 by 4).
- (2) For each of the following pairs of functions $f: X \to Y$ and $g: Y \to Z$ describe the composite function $g \circ f: X \to Z$ explicitly.
 - (a) $f: \{1,2,3\} \to \{A,B,C,D\}, f(1) = B, f(2) = C, f(3) = A;$ $g: \{A,B,C,D\} \to \{\alpha,\beta,\gamma\}, g(A) = \gamma, g(B) = \alpha, g(C) = \beta,$ $g(D) = \alpha.$
 - (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 1; g: \mathbb{R} \to \mathbb{R}, g(x) = x^3 + 4.$
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y,2x+y); $g: \mathbb{R}^2 \to \mathbb{R}^2$, g(x,y) = (3x+4y,2x+5y).
- (3) Which of the following functions have an inverse? If the inverse exists, describe it explicitly. Otherwise explain carefully why the inverse does not exist.
 - (a) $f: \{1, 2, 3, 4\} \to \{A, B, C, D\}, 1 \mapsto C, 2 \mapsto D, 3 \mapsto A, 4 \mapsto B.$
 - (b) $f: \mathbb{R} \to (0, \infty), f(x) = e^x$.
 - (c) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 4x + 3.

- (d) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 7.$
- (e) $f: \mathbb{N}^2 \to \mathbb{N}, f(x,y) = 2^x \cdot 3^y$.
- (f) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 3x^2 + 2x$.
- (g) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x + 4y, 3x + 6y).
- (h) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x + 5y, 3x + 7y).
- (4) Which of the following functions are injective? Justify your answer carefully.
 - (a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$
 - (b) $f: [0, 2\pi) \to \mathbb{R}^2$, $f(t) = (\cos t, \sin t)$.
 - (c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x + 1$. [Hint: Use Q8(a) below]
 - (d) $f: \mathbb{N}^2 \to \mathbb{N}, f(x,y) = 3^x \cdot 5^y$.
 - (e) $f: X \to Y$, X and Y are finite sets, and |X| > |Y|.
- (5) Let $X = \{1, 2, 3\}$ and $Y = \{A, B, C, D, E\}$. How many functions $f: X \to Y$ are there? How many of these functions are injective?
- (6) Describe a bijective function $f: \mathbb{N} \to \mathbb{Z}$. (Recall \mathbb{N} is the set of positive integers and \mathbb{Z} is the set of all integers.)
- (7) Give an example of a pair of functions $f: X \to Y$ and $g: Y \to X$ such that g(f(x)) = x for all $x \in X$ but $f(g(y)) \neq y$ for some $y \in Y$.
- (8) (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and suppose that $f'(x) \neq 0$ for all $x \in \mathbb{R}$. Show that f is injective. [Hint: Use the mean value theorem].
 - (b) Give an example of an injective differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that f'(x) = 0 for some $x \in \mathbb{R}$.
- (9) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a function which preserves distances. That is, for a pair of points $p_1 = (x_1, y_1), p_2 = (x_2, y_2) \in \mathbb{R}^2$, define the distance $d(p_1, p_2) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$. Then the function f satisfies $d(f(p_1), f(p_2)) = d(p_1, p_2)$ for all $p_1, p_2 \in \mathbb{R}^2$. Show that f is a bijection, so has an inverse.

[Hint: To show f is injective, prove that $d(p_1, p_2) = 0 \iff p_1 = p_2$. To show that f is surjective, fix two distinct points $p_1, p_2 \in \mathbb{R}^2$, say

 $p_1=(1,0)$ and $p_2=(0,1)$, and consider $f(p_1), f(p_2) \in \mathbb{R}^2$. Given a point $q \in \mathbb{R}^2$, we want to show that there is a point $p \in \mathbb{R}^2$ such that f(p)=q. If f(p)=q then we must have $d(p_1,p)=d(f(p_1),q)$ and $d(p_2,p)=d(f(p_2),q)$. Now draw circles with centers at p_1 and p_2 to find 1 or 2 possibilities for p, and show that one of them works.]