1) Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Date: 03 December 2019 Piacenza Weather Data:

Tout = 6°c

Relative Humidity = 90%

Atmospheric pressure = 1017kpa

From the Graph:

Specific Humidity = 0.005 $\left(\frac{gm \ of \ water}{gm \ of \ dry \ air}\right)$

Wet bulb temperature = 5°c

Specific enthalpy of humid air = $19 \left(\frac{KJ}{Kg \ of \ dry \ air} \right)$

$$P_v = \frac{p.\omega}{0.622 + \omega} = 0.84 \ kg$$

$$V_{room A} = 20 \times 6 \times 6 = 720 \text{ m}^2$$

$$m_v = \frac{p_v \cdot v}{R_v \cdot T} = \frac{0.84 \times 720}{0.4615 \times (273 + 6)} = 4.7 \text{ kg}$$

2) Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

Lat	at 40.65N	Long	17.95E	Elev	: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	6-10 WBAN	99999	
Annual	Heating and I	Humidificat	ion Design (Conditions	b											
Coldes	t Heat	Heating DB Humidification DP/MCDB and HR							Coldest month WS/MCDB					MCWS/PCWD		
Month			170		99.6%		99%			0.4%		1%		6% DB		
THE CALL	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD]	
(0)	(b)	(c)	(0)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		
Hottest Month	Mooth	0.4%		Cooling DB/MCWB		2%		Evapora 0.4%			ion WB/MCDB 1%				VPCWD	
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	W8	MCDB	WB	MCDB	MCWS	PCWD	
(0)	(6)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	
			Dehumidifi	cation DP/N	CDB and HR	2			T		Enthalo	py/MCDB			Hours	
	0.4%	1%				2%		0.4%			1% 2		%	8 to 4 &		
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
(0)	(b)	(c)	(0)	(0)	(1)	(9)	(h)	(1)	(j)	(k)	(1)	(m)	(0)	(0)	(P)	
26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	
xtrem	e Annual Des	gn Conditio	ons													
-	vtreme Annua	eme Annual WS		Extreme Annual DB			n-Year Return Period Valu									
			Max	Mean		Standard deviation			years	n=10 years		n=20 years			years	
1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
(a) 11.3	(6)	(c)	(4)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)	
	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	

Number of occupants = 2 Number of bed rooms = 1 Height of the building = 2.5m Area of the floor = 200 sq.m Internal gains

$$\dot{Q}_{igsensible} = 136 + 2.2A_{cf} + 22N_{oc}$$

$$= 136 + 2.2 (200) + 22(2)$$

$$= 620 \text{ W}$$
 $\dot{Q}_{iglatent} = 20 + 0.22A_{cf} + 12N_{oc}$

$$= 20 + 0.22 (200) + 12(2)$$

$$= 88 \text{ W}$$

INFILTRATION

A house with good construction quality, $A_{ul} = 1.4 \frac{cm^2}{m^2}$

 Table 3 Unit Leakage Areas

 Construction
 Description
 Ant, cm²/nm²

 Tight
 Construction supervised by air-sealing specialist
 0.7

 Good
 Carefully scaled construction by knowledgeable builder
 1.4

 Average
 Typical current production bousing
 2.8

 Leaky
 Typical pre-1970 houses
 5.6

 Very leaky
 Old houses in original condition
 10.4

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \, m^2$$

 $A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \, cm^2$

$$\Delta T_{cooling} = 31.1^{\circ}\text{c} - 24^{\circ}\text{c} = 7.1^{\circ}\text{c}$$

$$\Delta T_{heating} = 20^{\circ} \text{c} - (-4.1)^{\circ} \text{c} = 24.1^{\circ} \text{c}$$

INFILTRATION AIRFLOW RATE

$$Q_{i.heating} = A_L x IDF_{heating} = 481.6 \times 0.073 = 35.15 \frac{L}{S}$$

$$Q_{i.cooling} = A_L x IDF_{cooling} = 481.6 \times 0.033 = 15.89 \frac{L}{s}$$

$$IDF_{heating} = 0.06369 \frac{L}{s \times cm^2}$$

$$IDF_{heating} = 0.06369 \frac{L}{s \times cm^2} \qquad V_{infiltration_{heating}} = A_L \times IDF = 481.6 \ cm^2 \times 0.06369 \frac{L}{s \times cm^2} = 30.6731 \frac{L}{s}$$

$$IDF_{cooling} = 0.03188 \frac{L}{s \times cm^2}$$

$$IDF_{cooling} = 0.03188 \frac{L}{s \times cm^2} \qquad V_{infiltration_{cooling}} = A_L \times IDF = 481.6 \ cm^2 \times 0.03188 \frac{L}{s \times cm^2} = 15.3534 \frac{L}{s}$$

$$V_{ventilation} = 0.05 A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 m^2 + 3.5 \times 2 = 17 \frac{L}{s}$$

$$V_{inf-ventilation_{heating}} = 30.67 \frac{L}{s} + 17 \frac{L}{s} = 47.67 \frac{L}{s}$$

$$V_{inf-ventilation_{cooling}} = 15.35 \frac{L}{s} + 17 \frac{L}{s} = 32.35 \frac{L}{s}$$

$$Qinf-ventilation_{cooling}{}_{sensible} = C_{sensible} V \Delta T_{cooling} = 1.23 \times 32.35 \frac{L}{s} \times 7.1 = 282.51 \, W$$

$$Qinf-ventilation_{cooling}{}_{latent} = C_{latent} V \Delta \omega_{cooling} = 3010 \times 32.35 \frac{L}{s} \times 0.0039 = 379.75 \ W$$

$$Qinf-ventilation_{heating}{}_{sensible} = C_{sensible} V \Delta T_{heating} = 1.23 \times 47.67 \frac{L}{s} \times 15.9 = 932.28 \ W$$

$$Qinf-ventilation_{heating}{}_{latent} = C_{latent} V \Delta \omega_{heating} = 3010 \times 47.67 \frac{L}{s} \times 0.0065 = 932.66 \, W$$