

B4. Calculus Bổ sung cho bài giảng

2019

Nội dung bổ sung

- 1. Đạo hàm và tích phân
- 2. Gradient Descent

B4. Calculus

Bổ sung thêm cho bài giảng

1. Đạo hàm và tích phân

☐ Dãy số (thực)

$$f: N \to R$$

$$x_n = f(n)$$

$$\{x_n\}_n \equiv \{x_n\} \equiv x_1, x_2, x_3, \dots, x_n, \dots$$

☐ Giới hạn của dãy số (hội tụ)

$$\lim_{n \to \infty} x_n = a \qquad x_n \to a, n \to \infty$$

$$\forall (\varepsilon > 0), \exists n_0 : \forall n \ge n_0 : |x_n - a| < \varepsilon$$

B4. Calculus

Bổ sung thêm cho bài giảng

49

1. Đạo hàm và tích phân (tt.)

- ☐ Một số tính chất cơ bản của giới hạn
 - Mọi dãy hội tụ đều có giới hạn duy nhất
 - Mọi dãy hội tụ đều bị chặn
 - Giả sử: $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b$. Ta có:
 - $(i)\lim_{n\to\infty}(x_n+y_n)=a+b$
 - $(ii)\lim_{n\to\infty}(c+x_n)=c+a$
 - $(iii)\lim_{n\to\infty}(c.x_n)=c.a$
 - $(iv)\lim_{n\to\infty}(x_n.y_n)=a.b$

$$(v)\lim_{n\to\infty}(\frac{x_n}{y_n}) = \frac{a}{b}, y_n \neq 0, b \neq 0$$

B4. Calculus

Bổ sung thêm cho bài giảng

1. Đạo hàm và tích phân (tt.)

- ☐ Giới hạn của hàm số
 - A là *lân cận* của $x_0 \in \Upsilon$: $\exists (\delta > 0): (x_0 \delta, x_0 + \delta) \subset A$
 - Hàm số y = f(x) xác định trên lân cận A của x₀

$$\lim_{x \to x_0} f(x) = L \qquad f(x) \to L, x \to x_0$$
$$\forall (\varepsilon > 0), \exists (\delta > 0) : \forall |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

 \square Hàm số f(x) xác định trên A. Hàm f(x) liên tục tại $x_0 \in A$:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\forall (\varepsilon > 0), \exists (\delta > 0) :$$

$$\forall (x \in A) : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

• Hàm f(x) liên tục trên A nếu f(x) liên tục tại mọi $x \in A$

B4. Calculus

Bổ sung thêm cho bài giảng

51

1. Đạo hàm và tích phân (tt.)

- ☐ Một số tính chất cơ bản của đạo hàm
 - Nếu f có đạo hàm tại x₀ thì f liên tục tại x₀
 - Giả sử f(x), g(x) có đạo hàm tại x. Ta có:
 - (i) (a.f + b.g)'(x) = a.f'(x) + b.g'(x)
 - (ii) (f.g)'(x) = f'(x).g(x) + g'(x).f(x)
 - (iii) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x).g(x) g'(x).f(x)}{g^2(x)}$
 - (iv) $(f \circ g)'(x) = f'(g(x)).g'(x)$

B4. Calculus

Bổ sung thêm cho bài giảng

1. Đạo hàm và tích phân (tt.)

☐ Đạo hàm của một số hàm sơ cấp

1)
$$f(x) = a$$

$$\Rightarrow f'(x) = 0$$

9)
$$f(x) = \sin(x) \implies f'(x) = \cos(x)$$

10) $f(x) = \cos(x) \implies f'(x) = -\sin(x)$

$$2) \quad f(x) = x$$

$$\Rightarrow f'(x) = 1$$

3)
$$f(x) = x^{\alpha}, \alpha \in \mathbb{R} \setminus \{-1\} \implies f'(x) = \alpha x^{(\alpha-1)}$$

4)
$$f(x) = \frac{1}{x}$$

$$\Rightarrow f'(x) = \frac{-1}{x^2}$$

$$5) \quad f(x) = a^x, a > 0$$

4)
$$f(x) = \frac{1}{x}$$
 $\Rightarrow f'(x) = \frac{-1}{x^2}$
5) $f(x) = a^x, a > 0$ $\Rightarrow f'(x) = \frac{1}{x \cdot \ln(a)}$
6) $f(x) = e^x$ $\Rightarrow f'(x) = e^x$

6)
$$f(x) = e^{-x}$$

$$\Rightarrow f'(x) = e^x$$

$$7) \quad f(x) = \log_a(x),$$

7)
$$f(x) = \log_a(x), a > 0$$
 \Rightarrow $f'(x) = a^x \cdot \ln(a)$

$$8) \quad f(x) = \ln(x)$$

8)
$$f(x) = \ln(x)$$
 $\Rightarrow f'(x) = \frac{1}{x}$

B4. Calculus

Bổ sung thêm cho bài giảng

1. Đạo hàm và tích phân (tt.)

☐ Tích phân xác định

B4. Calculus

Bổ sung thêm cho bài giảng

Nội dung bổ sung 1. Đạo hàm và tích phân 2. Gradient Descent

Bổ sung thêm cho bài giảng

B4. Calculus

☐ Hồi quy tuyến tính (linear regression)

Training set:

$$\hat{X} = \begin{pmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_m \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1n} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ x_{m1} & \dots & x_{mn} & 1 \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Tìm vector cột: $w = (w_1, \dots, w_n, w_0)^T$ sao cho $\hat{y} = \hat{x}.w \approx \hat{y}$ tốt nhất

Hàm mất mát (*loss function*):
$$L(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{x}_i w)^2$$

Tim optimal point:

$$w^* = \arg\min_{w} L(w)$$

B4. Calculus

Bổ sung thêm cho bài giảng

59

2. Gradient Descent (tt.)

- ☐ Một số hàm mất mát (loss function)
 - Regression loss

Mean square error/Quadratic loss/L2 loss: $MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$

 $MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$ Mean absolute error/L1 loss:

 $MBE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)$ Mean bias error:

Classification loss

Hinge loss/Multi class SVM loss, Cross entropy loss, ...

B4. Calculus

Bổ sung thêm cho bài giảng

- ☐ Thuật toán Gradient descent
 - local/global minimum (maximum): f'(x₀) = 0
 - vòng lặp tìm optimal point x* tiến gần đến x₀ (local minimum) Nếu $f'(x^{(t)}) > 0$: $x^{(t)}$ ở bên PHẢI của $x_0 \Rightarrow$ cần lùi sang TRÁI Nếu $f'(x^{(t)}) < 0$: $x^{(t)}$ ở bên TRÁI của $x_0 \Rightarrow$ cần tiến sang PHẢI Tóm lại: x(t) cần di chuyển NGƯ C DẤU với đạo hàm

 ρ > 0: *learning rate* (tốc độ học)

B4. Calculus

Bổ sung thêm cho bài giảng

2. Gradient Descent (tt.)

☐ Hồi quy tuyến tính (linear regression)

Hàm mất mát (loss function):
$$L(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{x}_i w)^2$$

Tim optimal point:

$$w^* = \operatorname*{arg\,min} L(w)$$

Xét:

$$\hat{X} = \begin{pmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_m \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1n} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ x_{m1} & \dots & x_{mn} & 1 \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

B4. Calculus

- ☐ Hồi quy tuyến tính (linear regression)
 - Đạo hàm riêng theo wi

$$L(w_i) = (y_i - \sum_{j=0}^n \hat{x}_j w_j)^2 = (y_i - (\hat{x}_i w_i + \sum_{j \neq i} \hat{x}_j w_j))^2 =$$

$$= y_i^2 - 2y_i (\hat{x}_i w_i + C_i) + (\hat{x}_i w_i + C_i)^2 =$$

$$= y_i^2 - 2y_i \hat{x}_i w_i - 2y_i C_i + \hat{x}_i^2 w_i^2 + 2\hat{x}_i w_i C_i + C_i^2 =$$

$$= -2y_i \hat{x}_i w_i + \hat{x}_i^2 w_i^2 + 2\hat{x}_i w_i C_i + D_i$$

B4. Calculus

Bổ sung thêm cho bài giảng

63

2. Gradient Descent (tt.)

- ☐ Hồi quy tuyến tính (linear regression)
 - Đạo hàm riêng theo w_i

$$L(w_i) = -2y_i \hat{x}_i w_i + \hat{x}_i^2 w_i^2 + 2\hat{x}_i w_i C_i + D_i$$

$$\frac{\partial L(w_i)}{\partial w_i} = -2y_i \hat{x}_i + 2\hat{x}_i^2 w_i + 2\hat{x}_i C_i = 2\hat{x}_i \cdot (\sum_{j=0}^n x_j w_j - y_i)$$

$$\frac{\partial L(w)}{\partial w} = \begin{pmatrix} \frac{\partial L(w)}{\partial w_1} \\ \frac{\partial L(w)}{\partial w_2} \\ \vdots \\ \frac{\partial L(w)}{\partial w_n} \end{pmatrix} = \frac{1}{m} \hat{X}^T (\hat{X}.w - Y)$$

B4. Calculus

Bổ sung thêm cho bài giảng

☐ Hồi quy tuyến tính (linear regression)

$$\frac{\partial L(w)}{\partial w} = \frac{1}{m} \hat{X}^T (\hat{X}.w - Y) = 0$$

Giải hệ phương trình, tìm w:

$$\underbrace{\hat{X}^{T}.\hat{X}}_{\mathbf{A}}.w = \underbrace{\hat{X}^{T}.Y}_{\mathbf{B}}$$

• Nếu $\hat{X}^T.\hat{X}$ khả nghịch: $w = (\hat{X}^T.\hat{X})^{-1}.\hat{X}^T.Y$

$$w = (\hat{X}^T . \hat{X})^{-1} . \hat{X}^T . Y$$

• Nếu \hat{X}^T . \hat{X} KHÔNG khả nghịch: $w = (\hat{X}^T.\hat{X})^{\dagger}.\hat{X}^T.Y$ với $(\hat{X}^T.\hat{X})^\dagger$ là ma trận *giả nghịch đảo* của $\hat{X}^T.\hat{X}$

B4. Calculus

Tài liệu tham khảo

Vũ Hữu Tiệp, Machine Learning cơ bản, 2018