Databases

Lecture 6

Functional Dependencies. Normal Forms (III)

* See recap lecture example with schema decomposition.

- Example 10. The following relation stores the exam session schedule:
- EX_SCHEDULE[Date, Hour, Faculty_member, Room, Group]
- the following restrictions are expressed via <u>key definitions</u> and <u>functional</u> <u>dependencies</u>:
 - 1. a group of students has at most one exam per day
 - => {Date, Group} is a key
 - 2. on a certain date and time, a faculty member has at most one exam
 - => {Faculty_member, Date, Hour} is a key
 - 3. on a certain date and time, there is at most one exam in a room
 - => {Room, Date, Hour} is a key
 - 4. a faculty member doesn't change the room in a day
 - => the following dependency holds: $\{Faculty_member, Date\} \rightarrow \{Room\}$

- all attributes appear in at least one key, i.e., there are no non-prime attributes
- given the normal forms' definitions specified thus far, the relation is in 3NF
- objective: eliminate the {Faculty_member, Date} → {Room} functional dependency

Definition. A relation is in the Boyce-Codd normal form (BCNF) if and only if every determinant (for a functional dependency) is a key (informal definition - simplifying assumption: determinants are not too big; only non-trivial functional dependencies are considered).

• to eliminate the functional dependency, the original relation must be decomposed into:

EX_SCHEDULE'[Date, Hour, Faculty_member, Group],

ROOM_ALLOCATION[Faculty_member, Date, Room]

- these relations don't contain other functional dependencies, i.e., they are in BCNF
- however, the key associated with the 3rd constraint, {Room, Date, Hour}, does not exist anymore
- if this constraint is to be kept, it needs to be checked in a different manner (e.g., through the program)

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes

- problems
- I. compute the closure of F: F⁺
- II. compute the closure of a set of attributes under a set of functional dependencies, e.g., the closure of α under F: α^+
- III. compute the minimal cover for a set of dependencies

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the set F⁺ contains all the functional dependencies implied by F
- F implies a functional dependency f if f holds on every relation that satisfies F
- the following 3 rules can be repeatedly applied to compute F⁺ (Armstrong's Axioms):
 - α , β , γ subsets of attributes of A
 - 1. reflexivity: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - 2. augmentation: if $\alpha \rightarrow \beta$, then $\alpha \gamma \rightarrow \beta \gamma$
 - 3. transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- these rules are complete (they generate all dependencies in the closure) and sound (no erroneous functional dependencies can be derived)

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's Axioms:

4. union: if
$$\alpha \to \beta$$
 and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$

$$\alpha \to \beta => \alpha \alpha \to \alpha \beta$$
augmentation
$$\alpha \to \gamma => \alpha \beta \to \beta \gamma$$

$$\alpha \to \gamma => \alpha \beta \to \beta \gamma$$
augmentation

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's Axioms:

5. decomposition: if
$$\alpha \to \beta \gamma$$
, then $\alpha \to \beta$ and $\alpha \to \gamma$

$$\alpha \to \beta \gamma \qquad \qquad => \qquad \alpha \to \beta \ (\alpha \to \gamma \ \text{can similarly be shown to hold})$$

$$\beta \gamma \to \beta \ (\text{reflexivity})$$

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's Axioms:

- 6. pseudotransitivity: if $\alpha \to \beta$ and $\beta \gamma \to \delta$, then $\alpha \gamma \to \delta$ $\alpha \to \beta \Rightarrow \alpha \gamma \to \beta \gamma$ $\Rightarrow \alpha \gamma \to \delta$ transitivity
- α , β , γ , δ subsets of attributes of A

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes
- problems
- II. compute the closure of a set of attributes under a set of functional dependencies
- determine the closure of α under F, denoted as α^+
- α^+ the set of attributes that are functionally dependent on α under F

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes
- problems
- II. compute the closure of a set of attributes under a set of functional dependencies
- algorithm

```
closure := \alpha;
repeat until there is no change:
for every functional dependency \beta \to \gamma in F
if \beta \subseteq closure
then closure := closure \cup \gamma;
```

- R[A] a relation
- F a set of functional dependencies
- problems

III. compute the minimal cover for a set of dependencies

Definition: F, G - two sets of functional dependencies; F and G are equivalent (notation $F \equiv G$) if $F^+ = G^+$.

- R[A] a relation
- F a set of functional dependencies
- problems

III. compute the minimal cover for a set of dependencies

Definition: F - set of functional dependencies; a minimal cover for F is a set of functional dependencies F_M that satisfies the following conditions:

- 1. $F_M \equiv F$
- 2. the right side of every dependency in F_M has a single attribute;
- 3. the left side of every dependency in F_M is irreducible (i.e., no attribute can be removed from the determinant of a dependency in F_M without changing F_M 's closure);
- 4. no dependency f in F_M is redundant (no dependency can be discarded without changing F_M 's closure).

* closure of a set of functional dependencies

P1. Let R[ABCDEF] be a relational schema and S a set of functional dependencies over $R, S = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, D \rightarrow E\}$.

Show the following FDs are in $S^+: A \to BC$, $CD \to EF$, $AD \to E$, $AD \to F$.

$$\begin{array}{c}
A \to B \\
A \to C
\end{array}$$
 => $A \to BC$

$$\begin{array}{c}
CD \to E \\
CD \to F
\end{array} => CD \to EF$$
union

$$A \rightarrow C \Rightarrow AD \rightarrow CD$$
 $\Rightarrow AD \rightarrow E$ augmentation $CD \rightarrow E$ transitivity

* closure of a set of functional dependencies

P1. Let R[ABCDEF] be a relational schema and S a set of functional dependencies over $R, S = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, D \rightarrow E\}$.

Show the following FDs are in $S^+: A \to BC$, $CD \to EF$, $AD \to E$, $AD \to F$.

$$\begin{array}{c}
A \to C \\
CD \to F
\end{array} \Rightarrow AD \to F$$
pseudotransitivity

* closure of a set of attributes under a set of functional dependencies

P2. Let R[ABCDEF] be a relational schema, S a set of functional dependencies over R and α a subset of attributes of the set of attributes of R, $S = \{A \rightarrow B, A \rightarrow C, CD \rightarrow E, CD \rightarrow F, D \rightarrow E\}$, $\alpha = \{A, D\}$. Compute α^+ .

$$\alpha^{+} = \{A, D\}$$

 $A \rightarrow B \Rightarrow \alpha^{+} = \{A, B, D\}$
 $A \rightarrow C \Rightarrow \alpha^{+} = \{A, B, C, D\}$
 $CD \rightarrow E \Rightarrow \alpha^{+} = \{A, B, C, D, E\}$
 $CD \rightarrow F \Rightarrow \alpha^{+} = \{A, B, C, D, E, F\}$
 $D \rightarrow E, E$ already in α^{+}

- iterate over all dependencies one more time, α^+ remains unchanged
- $\alpha^+ = \{A, B, C, D, E, F\}$

* minimal cover for a set of functional dependencies

P3. Let R[ABCD] be a relational schema and S a set of functional dependencies over R, $S=\{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C, AC \rightarrow D\}$. Compute a minimal cover of S.

• decomposition: $A \rightarrow BC \Rightarrow A \rightarrow B$, $A \rightarrow C$

$$A \rightarrow B$$

$$A \rightarrow C$$

$$B \rightarrow C$$

$$A \rightarrow B$$
- can be eliminated
$$AB \rightarrow C$$

$$AC \rightarrow D$$

- * minimal cover for a set of functional dependencies
- P3. Let R[ABCD] be a relational schema and S a set of functional dependencies over R, $S=\{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C, AC \rightarrow D\}$. Compute a minimal cover of S.
- augmentation: $A \rightarrow C \Rightarrow A \rightarrow AC$
- transitivity: $A \rightarrow AC$, $AC \rightarrow D \Rightarrow A \rightarrow D$ => C in $AC \rightarrow D$ is redundant

$$=> A \rightarrow B$$

$$A \rightarrow C$$

$$B \rightarrow C$$

$$AB \rightarrow C$$

$$A \rightarrow D$$

- * minimal cover for a set of functional dependencies
- P3. Let R[ABCD] be a relational schema and S a set of functional dependencies over R, $S=\{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C, AC \rightarrow D\}$. Compute a minimal cover of S.
- augmentation: $A \rightarrow C \Rightarrow AB \rightarrow CB$
- decomposition: $AB \rightarrow CB \Rightarrow AB \rightarrow C$ => can eliminate $AB \rightarrow C$

$$\begin{array}{ccc} = > & A \to B \\ & A \to C \\ & B \to C \\ & A \to D \end{array}$$

- * minimal cover for a set of functional dependencies
- P3. Let R[ABCD] be a relational schema and S a set of functional dependencies over R, $S=\{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C, AC \rightarrow D\}$. Compute a minimal cover of S.
- transitivity: $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$ => can eliminate $A \rightarrow C$

$$=> A \to B$$

$$B \to C$$

$$A \to D$$

Example 11. Consider relation DFM[Department, FacultyMembers, MeetingDates], with repeating attributes *FacultyMembers* and *MeetingDates*.

• a possible instance is given below:

Department	FacultyMembers	MeetingDates
Computer Science	FCS1 FCS2 FCSm	DCS1 DCS2 DCSn
Mathematics	FM1 FM2 FMp	DM1 DM2 DMq

• eliminate repeating attributes (such that the relation is at least in 1NF) - replace DFM by a relation DFM' in which *FacultyMember* and *MeetingDate* are scalar attributes:

Department	FacultyMember	MeetingDate
Computer Science	FCS1	DCS1
Computer Science	FCS1	DCS2
***	•••	•••
Computer Science	FCS1	DCSn
Computer Science	FCS2	DCS1
Computer Science	FCS2	DCS2
•••	••••	•••
Mathematics	FM1	DM1
•••	•••	•••
Mathematics	FMp	DMq

Department	FacultyMember	MeetingDate
Computer Science	FCS1	DCS1
Computer Science	FCS1	DCS2
•••	•••	•••
Computer Science	FCS1	DCSn
Computer Science	FCS2	DCS1
Computer Science	FCS2	DCS2
•••	••••	•••
Mathematics	FM1	DM1
•••	••••	•••
Mathematics	FMp	DMq

- in this table, each faculty member has the same meeting dates
- therefore, when adding / changing / removing rows, additional checks must be carried out

References

- [Ta13] ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra02] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga09] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009
- [Ha96] HANSEN, G., HANSEN, J., Database Management And Design (2nd Edition), Prentice Hall, 1996
- [Ra02S] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, Slides for the 3rd Edition, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [Si11] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (6th Edition), McGraw-Hill, 2011
- [Si19S] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts, Slides for the 7th Edition, http://codex.cs.yale.edu/avi/db-book/
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html