Multi-armed Bandits with externalities

VVN

2019

The model for two arms

Reward structure:

- We have a set of two arms and a corresponding set of two user types (each with populations $Z_1(t)$ and $Z_2(t)$).
- If the user arriving at time t is of type Y(t) and is shown the arm X(t), then the reward R(t) is chosen from a Bernoulli distribution with mean $b_{X_1Y_t}$.
- Therefore we have a matrix $B = [b_{ij}]_{2\times 2}$ of the mean rewards where in each row i ,the element b_{ii} has the highest value.

The model for two arms

Updating the population: After reward R(t) is obtained, the $Z_i(t)$'s are updated as follows -

- $Z_{X_{*}}(t+1) = Z_{X_{*}}(t) + R(t)$
- $Z_{-X}(t+1) = Z_{-X}(t) + (1-R(t))$

where $Z_{-X_{+}}$ is the population of the arm that was not recommended.

Notation: We use z_i to denote the proportion of the respective balls. For the policies, we use p to denote probability of choosing arm 1 given a user of type 1 appears and q the probability of choosing arm 2 given a user type 2 appears.

Solution via ODE for a probabilistic policy

Differential equation:

$$\frac{dz}{dt} = \frac{c + az}{A + t}$$

where $z = z_1(t)$, $A = z_1(0) + z_2(0)$ (initial number of balls) and c, a are given by :

$$c = (1-q)b_{10} + q(1-b_{11})$$

 $a = -(1+c-pb_{00}-(1-p)(1-b_{01}))$

Solution via ODE for a probabilistic policy

Solution to the differential equation :

$$z(t) = -\frac{c}{a} + (z(0) + \frac{c}{a})(1 + \frac{t}{A})^a$$

Here a is always negative so the proportion of balls of type 1 approaches (-c/a) asymptotically. We can now maximize this term to find the optimum policy (p,q).

• The optimum policy (that maximizes long term population of type 1) can be found by minimizing δ such that $-c/a = 1 - \delta$. Therefore:

$$\delta = rac{1 - p b_{00} - (1 - p)(1 - b_{01})}{1 + (1 - q) b_{10} + q(1 - b_{11}) - p b_{00} - (1 - p)(1 - b_{01})}$$

is to be minimized w.r.t (p, q).

Solution via ODE for a probabilistic policy

Optimum policy : The optimum policy that minimizes the δ mentioned above turns out to be :

$$p = I_{\{b_{00} > 1 - b_{01}\}}$$

$$q = I_{\{b_{10} < 1 - b_{11}\}}$$

(where I_e is the indicator function of event e)

- The policy described in the previous slide optimizes the proportion of users of a given type.
- If we decide, instead, to optimize the reward accumulated over time, we may get a different policy.
- The greedy policy (where we offer each user type the arm they prefer) gives better mean reward (given the user type) than the optimal policy in the previous slide.
- However, there is a tradeoff between the two policies because the greedy policy has a sub optimal proportion of more rewarding users.

Figure 1: Proportion of type 0 users vs time (Red : Greedy , Green : Optimal)

Figure 2: Cumulative reward vs time (Red : Greedy, Green : Optimal)

Case 1: We first consider the case : $b_{00} < 1 - b_{01}$ and $b_{11} > 1 - b_{10}$ (In which case the optimal policy is to show the arm of the opposite type).

• Say we try to find a policy for which the equilibrium reward attained per unit time is maximum. That is, we maximize :

$$R = z(T)(pb_{00} + (1-p)(1-b_{01})) + (1-z(T))(qb_{11} + (1-q)(1-b_{10}))$$

- Optimizing this over (p, q), we get that the greedy policy almost always gives us the maximum reward (taking T = 100, 1000, 10000).
- The reward obtained vs (p, q) is plotted in the following slide for a particular Bernoulli matrix satisfying case 1.
- The greedy policy is sub-optimal only in cases where b_{10} is close* to b_{11} in value (in which case the policy p=1, q=0 becomes more rewarding, but only slightly*).

*This can be made more precise by explicitly differentiating R above and seeing the signs of the derivatives

10 / 33

Figure 3: XY - plane : Values of (p,q), Z-axis : Value of equilibrium reward

Case 2 and 3: In the case : $b_{00} > 1 - b_{01}$ and $b_{11} > 1 - b_{10}$ (for which the optimal policy is p = 1, q = 0) or for the case $b_{00} < 1 - b_{01}$ and $b_{11} < 1 - b_{10}$ (for which the optimal policy is p = 0, q = 1), we obtain the same results as the previous case.

Case 4:In the case : $b_{00} > 1 - b_{01}$ and $b_{11} < 1 - b_{10}$, the optimal and the greedy policy coincide and hence the optimal policy also gives us the maximum reward.

$$egin{aligned} r_2 &= q b_{11} + (1-q) b_{10} \ d_1 &= p (1-b_{00}) + (1-p) b_{01} \ d_2 &= q (1-b_{11}) + (1-q) b_{10} \ R_T(p,q) &= T (rac{r_1 d_1 + r_2 d_2}{d_1 + d_2}) + (r_1 - r_2) (z_0 - rac{d_1}{d_1 + d_2}) (\sum_{t=1}^T (1 + rac{t}{A})^{-(d_1 + d_2)}) \ Z_T &= rac{d_1}{d_1 + d_2} + (z_0 - rac{d_1}{d_1 + d_2}) (1 + rac{T}{A})^{-(d_1 + d_2)} \end{aligned}$$

 $r_1 = pb_{00} + (1-p)b_{01}$

P1 and P2

• Problem P1:

Maximize $R_T(p,q)$ given constraints $z_T(p,q) > z^*$ and 1 > p, q > 0.

• Problem P2:

Maximize $z_T(p,q)$

given constraints $R_T(p,q) > R^*$ and 1 > p, q > 0.

Solution for problem P1

Figure 4: Optimal Policy solution of problem P1 vs values of z^*

15 / 33

A Mixed Policy

An alternative policy might be to play the optimal policy for some time T_0 and then use the greedy policy till some deadline T.

In this case, we can put either of the following constraints as our aim, and optimize over varying T_0 :

- **P1**: Maximize the reward accrued at deadline given that the population of type 0 must be greater than a threshold.
- P2: Maximize population at deadline given reward greater than a threshold.

Figure 5: Cumulative reward at deadline Vs T_0 (deadline $T=2\times 10^6$)

Figure 6: Proportion of type 0 at deadline Vs T_0 (deadline $T=2\times 10^6$)

Further observations:

• The graph of proportion of type 0 users vs T_0 is always strictly increasing. **Reason**: If $T_0^1 > T_0^2$ then

$$(1+\frac{T_0^1}{A})^a > (1+\frac{T_0^2}{A})^a$$

- The graph of cumulative reward vs T₀ is strictly decreasing after reaching the maxima at atmost one point.
- For small values of deadline T, the reward is strictly decreasing for all values of T_0 .
- Manipulating the population first and then exploiting to get reward is
 the best policy to maximize cumulative reward up to some deadline
 T. Reason: As A increases, the time t' required for the population
 to reach some threshold under the optimal policy increases. This
 increases the time spent not being greedy, which in turn decreases the
 reward.

Finding the optimum T_0 :

- Given the deadline, plot the two graphs in the preceding slides using the deadline and reward matrix.
- To solve P1, find the value T_0^* after which the value of the population exceeds the threshold in Fig 5. Then choose $T_0^{opt} > T_0^*$ at which the graph in Fig 4 attains maxima.
- To solve P2, follow similar procedure, except that the threshold is now in Fig 4.

Solution via Voter model

- Model: The randomly chosen voter changes preference when it obtains reward = 1 on the arm of opposite preference or reward = 0 on the arm of its own preference.
- The proportion of preference 0 users as a function of time for a fixed policy becomes :

$$z(t) = \frac{d_1}{d_1 + d_2} + (z_0 - \frac{d_1}{d_1 + d_2})e^{-t\frac{d_1 + d_2}{A}}$$

where c and a are defined as before.

 The optimal policy for this case turns out to be the same as the one obtained previously.

Figure 7: Cumulative reward at deadline Vs T_0 (deadline $T=2\times 10^6$)

Figure 8: Proportion of type 0 at deadline Vs T_0 (deadline $T=2\times 10^6$)

Unknown matrix

Now we move on to the case where the matrix B is unknown and we wish to maximize the type 0 preference user population at a deadline T.

- The general problem we seek to tackle is: **Problem:** Given a deadline T, find a policy that maximizes the population of type 0 users at t = T (or alternatively, minimize the expected cumulative regret between it and the optimal policy).
- We first restrict ourselves to the following policy: **Policy 1:** Show arms uniformly at random and keep updating the estimate of matrix B till a time T_{thresh} . After this, show arms according to the optimal policy for the estimated matrix \hat{B} .

Unknown matrix

Figure 9: Proportion of type 0 users at deadline Vs T_{thresh} (deadline T=500)

25 / 33

Unknown matrix

- The plot in the previous slide was for a case when the optimal policy is supposed to be p = q = 1.
- A similar plot is obtained for other values of matrix *B*, demonstrating the tradeoff between estimation of *B* and exploitation in all cases.
- The optimal T_{thresh} changes with the matrix B, which is why we need a policy that does estimation simultaneously and incorporates some measure of certainty of the estimate while recommending arms.

Notation:

- Z_t =number of type 0 balls in urn at time t
- z_t =proportion of type 0 balls in the urn at time t

We define regret at time T as:

$$Regret(T) = E[\sum_{t=1}^{T} (\Delta Z_t^{opt} - \Delta Z_t^{pol})]$$

where the ΔZ_t^{opt} is the number of type 0 balls added at time t given that the proportion of type 0 balls in the urn is z_t^{pol} . We wish to minimize this regret.

The above definition gives us the following expression for regret at time T.

$$Regret(T) = R_{explore} + R_{exploit}$$

where,

$$R_{\text{explore}} = 0.5(\sum_{1}^{2m} z_t)|b_{00} + b_{01} - 1| + 0.5(2m - \sum_{1}^{2m} z_t)|b_{11} + b_{10} - 1|$$

and

$$R_{exploit} = p'(\sum_{2m}^{T} z_t)|b_{00} + b_{01} - 1| + q'(T - 2m - \sum_{2m}^{T} z_t)|b_{11} + b_{10} - 1|$$

Here p' and q' are the probabilities of "bad" events happening. That is, if say $b_{00}+b_{01}>1$ then $p'=Prob(\hat{b_{00}}+\hat{b_{01}}<1)$.

VVN Bandits and Externalities 2019 28 / 33

Let
$$|b_{00}+b_{01}-1|=\Delta_0$$
 and $|b_{11}+b_{10}-1|=\Delta_1$. Also let $S_i^j=\sum_{t=i}^j z_t.$ Then :

$$Regret(T) = [0.5S_1^{2m}\Delta_0 + 0.5(2m - S_1^{2m})\Delta_1] + [p'S_{2m}^T\Delta_0 + q'(T - 2m - S_{2m}^T)\Delta_1]$$

If we want an upper bound on the regret, then we need an upper bound on p', q'. This demands a lower bound on the number of times a particular element of the matrix B was sampled.

VVN

Some observations that may be useful:

- In the exploration phase, $U_0 = max(z_0, \frac{1-b_{00}+b_{01}}{1-b_{00}-b_{11}+b_{01}+b_{10}}) \ge z_t$ and $z_t \ge min(z_0, \frac{1-b_{00}+b_{01}}{1-b_{00}-b_{11}+b_{01}+b_{10}}) = L_0$
- By the above observation, $2mU_0 \ge \sum_{1}^{2m} z_t \ge 2mL_0$.
- Similarly we can find bounds (in terms of the asymptotic proportion values) for the sum term in the exploitation phase. Let those bounds be $(T-2m)U_1, (T-2m)L_1$.

VVN

Using the Hoeffding bound and the above observations, we get :

$$p' \le e^{-mL_0\Delta_0^2}$$
$$q' \le e^{-m(1-U_0)\Delta_1^2}$$

The upper bound on regret becomes:

$$[mU_0 + (T-2m)U_1e^{-mL_0\Delta_0^2}]\Delta_0 + [m(1-L_0) + (T-2m)(1-L_1)e^{-m(1-U_0)\Delta_1^2}]\Delta_1$$

Deriving a bounds on regret for a special case: Consider the case where we have $b_{00} = b_{11}$ and $b_{01} = b_{10}$. For this case we get the following two bounds on the regret as defined previously:

Gap-dependent bound :

$$R_T \leq m + e^{\frac{-m\Delta^2}{2}} (T - 2m)$$

Gap-independent bound :

$$R_T \leq \mathcal{O}(T^{2/3}(\log(T))^{1/3})$$

Link to all codes

Github:

https://github.com/vivien98/MultiArmedBandit-simulations

33 / 33