Capstone Project - The Battle of Neighborhoods

- By Arun Sridharan

1. Introduction

1.1. Business Problem

A start-up idea that serves high school students with all the essentials that they require to perform better in their academics and other related fields. Let's name it '**SkoolestHub**'. This will be a retail store consisting of all essentials with buy and rent options.

SkoolestHub decides to setup its retail operations in New York City (NYC). As a first step, SkoolestHub need the repository of high schools operating in NYC. Based on this list, they need to setup the <u>optimal number of stores in NYC</u> that cater to the needs of all the schools in this area.

1.2. Interest

This is a type of greenfield analysis problem that can be used by organisations interested in finding out the optimal number of new locations that can be found to perform it's business operations.

2. Data

2.1. Requirements

Data requirements for solving this business problem are as follows:

- 2.1.1. List of High Schools in New York City
- 2.1.2. Latitude and Longitude information of all schools in the list

2.2. Sources

The information on the list of high schools in NYC is obtained from Wikipedia page (https://en.wikipedia.org/wiki/List of high schools in New York City). To find the Latitude and Longitude information of all schools, we use geopy package through which foursquare API is used to retrieve the information.

3. Methodology

3.1. Data import and processing

Using pandas, the data from excel is imported to python. A new column 'Search Address' is also created by concatenating the columns of 'School', 'Borough' and 'Region'.

<pre>import pandas as pd</pre>												
df[ˈ		od.read_excel("C:/Users/aruns/Desktop/NYC_School_List.xlsx") earch Address"] = df["School"].astype(str)+', '+df["Borough"]+', '+df["Region"] ed()										
	Region	Borough	School	P.S. Number	Туре	Religious Affiliation	Search Addres					
0	New York City	The Bronx	Academy for Language and Technology	X365	Public	NaN	Academy for Language and Technology, Th Bronx.					
1	New York City	The Bronx	Academy for Scholarship and Entrepreneurship:	X270	Public	NaN	Academy for Scholarship and Entrepreneurshi					
2	New York City	The Bronx	Academy of Mount Saint Ursula	NaN	Private, girls	Roman Catholic, Ursuline	Academy of Mount Saint Ursula, The Bronx, Ne					
3	New York City	The Bronx	Adlai E. Stevenson Educational Campus	NaN	Public	NaN	Adlai E. Stevenson Educational Campus, Th Bro					
4	New York City	The Bronx	Alfred E. Smith Career and Technical Education	X600	Public	NaN	Alfred E. Smith Career and Technic Education					

3.2. Get latitude and longitude information

Enter the foursquare credentials including Client_ID and Client_Secret. Using geopy, use the 'Search Address' column to get the latitude and longitude values of the schools

```
2. Get the latitude and the longitude information of the schools

In [4]: CLIENT_ID = 'ETGQH3VGLAASMD020YM5WLTSZTQVWZZIGTQFFMEN4FFW01BB' # your Foursquare ID CLIENT_SECRET = 'BSL2E0M0030JHSNHNFQ5VDBEOMWJXSR1Z5YMGHVMPST0B2MN' # your Foursquare Secret VERSION = '20180605' # Foursquare API version

print('Your credentials:')
print('CLIENT_D: + CLIENT_ID)
print('CLIENT_SECRET:' + CLIENT_SECRET)

Your credentials:
CLIENT_D: ETGQH3VGLAASMD020YM5WLTSZTQVWZZIGTQFFMEN4FFW01BB
CLIENT_SECRET:BSL2E0M0030JHSNHNFQ5VDBEOMWJXSR1Z5YMGHVMPST0B2MN

In [5]: from geopy.geocoders import Nominatim # module to convert an address into latitude and longitude values from geopy.extra.rate_limiter import RateLimiter

geolocator = Nominatim(user_agent="foursquare_agent")
# 1 - conveneint function to delay between geocoding calls geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
# 2 - create location column

df["location"] = df["Search Address"].apply(geocode)
# 3 - create longitude, loatitude and altitude from location column (returns tuple)
df["point"] = df["Search Address"].apply(lambda loc: tuple(loc.point) if loc else None)
# 4 - split point column into latitude, longitude and altitude columns
df[["latitude", "longitude", "altitude"]] = pd.DataFrame(df["point"].tolist(), index=df.index)
df.head()
```

3.3. Data cleaning

In this step, the rows where the latitude and longitude are not found is removed from the dataset. The index of the new dataset is reset.

_). Da	la CI	eanin	y									
<pre>df_clean = df.dropna(subset=["latitude","longitude"]) df_latlong = df_clean.reset_index() df_latlong.head()</pre>													
	index	Region	Borough	School	P.S. Number	Туре	Religious Affiliation	Search Address	location	point	latitude	longitude	altitude
	0 0	New York City	The Bronx	Academy for Language and Technology	X365	Public	NaN	Academy for Language and Technology, The Bronx	(Academy For Language And Technology, Harrison	(40.84933, -73.91516, 0.0)	40.849330	-73.915160	0.0
	1 6	New York City	The Bronx	Aquinas High School	NaN	Private, girls	Roman Catholic	Aquinas High School, The Bronx, New York City	(Aquinas High School, 685, East 182nd Street,	(40.8510979, -73.887549, 0.0)	40.851098	-73.887549	0.
	2 9	New York City	The Bronx	Belmont Preparatory High School	X434	Public	NaN	Belmont Preparatory High School, The Bronx, Ne	(Belmont Preparatory High School, East 189th S	(40.8593835, -73.8891737, 0.0)	40.859383	-73.889174	0.
	3 12	New York City	The Bronx	Bronx Academy of Letters	X551	Public	NaN	Bronx Academy of Letters, The Bronx, New York	(Bronx Academy of Letters, 339, Morris Avenue,	(40.8136235, -73.9260636, 0.0)	40.813623	-73.926064	0.
	4 13	New York City	The Bronx	Bronx Aerospace High School	X545	Public	NaN	Bronx Aerospace High School, The Bronx, New Yo	(Bronx Aerospace High School, East Gun Hill Ro	(40.8752925, -73.8615858, 0.0)	40.875293	-73.861586	0

3.4. Visualization of schools on a map

Using 'folium' map feature, the coordinates are plotted on the map. A feature group called 'schools' are created to mark the coordinates.

The schools are plotted in the map.

3.5. Segmentation of locations using clustering

Using k-means clustering technique, the latitude and longitude is used as input. The optimal number of clusters are iteratively found.

4. Results

Based on k-means clustering technique, the optimal number of stores to be setup in NYC are is 8. Each 8 stores will cater to the needs of all the schools in the specific cluster. Map displays the 8 clusters.

5. Discussion

The results found in this exercise is based on the distance between each location of the school. Any new school in the vicinity is opened after the stores is setup, then the new school needs to assign to the closest store. Not all factors like the numbers of students in a school. This will become a capacity planning exercise where the number of students can be included as weights in the model for each school.

6. Conclusion

This project has successfully clustered the high schools in NYC area. Based on the clustering results, the number of stores to be setup in NYC area is determined. The project used machine learning technique called 'k-means clustering' for segmentation. The geocodes of the high schools was determined by foursquare API. The visualization of the high schools on a map is also available.