

# **Device Mapper Multipath**

Adam Drew Software Maintenance Engineer Red Hat

#### **Agenda**

- What is Multipath?
- What is the Device Mapper?
- What is Device Mapper Multipath (dm-multipath)?
- What are the important dm-multipath terms & concepts?
- How do I configure dm-multipath?
- What are some differences between dm-multipath on RHEL 5 & RHEL 6?
- How can I diagnose dm-multipath problems and get help if I need it?



#### What is Multipath?

 Multipath is a storage network design technique that allows for fault tolerance or increased performance by providing multiple concurrent physical connections (paths) from the storage to the individual host systems





#### What is the Device Mapper?

- Device Mapper is the Linux kernel's device abstraction and mapping subsystem
- Device Mapper was introduced in the 2.6 Linux kernel.
- Device Mapper allows the Linux kernel to present virtual devices to user space
- These virtual devices are an abstraction that allows the kernel to route I/O to and from physical devices in a number of creative ways
- Device Mapper enables Logical Volume Management, copy-on-write snapshots, software RAID, device mirroring, device striping, and dm-multipath



#### **Device Mapper Multipath**

- Multiple paths to the storage result in multiple device nodes (e.g. /dev/sda, /dev/sdb, etc)
- dm-multipath identifies device nodes which correspond to the same LUN by their WWIDs
- Device Mapper creates a virtual device (e.g. /dev/mapper/mpath0) which routes I/O to and from the physical paths





#### **Terms & Concepts**

- LUN: Logical Unit Number. Though not an exact definition, in the common usage LUN means "the storage pool on the SAN side."
- Path: A physical connection from the host to the LUN.
   An HBA with 2 ports would provide 2 paths back to the storage. 2 HBAs with 2 ports each would provide 4 paths.
- Dev Node: A Device Node. The virtual device "file" exposed to user space via /dev (e.g. /dev/sda). Each path will result in a separate dev node.
- WWID: A unique ID assigned to a LUN on the storage side. Each path's dev node for a given LUN will share the same WWID.

#### **Terms & Concepts (cont'd)**

- Mpath Device: Common term for the virtual device that dm-multipath creates to point back to the underlying path dev nodes (e.g. /dev/mapper/mpath0)
- Path Group: dm-multipath organizes paths into path groups. Path groups allow dm-multipath to intelligently route I/O between multiple active paths.
- Path Checker: A simple operation that dm-multipath performs on all paths to determine their viability. For example, reading sector 0 on all paths.
- Queuing: In the event of a loss of all paths dmmultipath can be configured to queue I/O indefinitely



#### Software Stack – The multipath Command

- The multipath command is the central point in the dmmultipath stack for working with dm-multipath managed devices
- Does the "dirty work" of identifying paths back to the same LUN and abstracting them behind an mpath device by way of a device mapper map
- Can be run to report valuable information on the current status of various mpath devices and their underlying paths



#### Software Stack – The mulipathd daemon

- The multipathd daemon runs in the background and should be configured to start on boot on any system that requires dm-multipath
- On start, multipathd reads the multipath configuration file at /etc/multipath/multipath.conf and executes the proper multipath commands to set up the mpath devices in accordance with the config file
- multipathd then sleeps in the background waking up on an interval to run the path checker against the dmmultipath managed paths.
- multipathd will re-enable any failed paths that return to service if the path checker succeeds on them



#### **Software Stack - The Multipath Configuration File**

- The dm-multipath config file is located at /etc/multipath/multipath.conf
- multipath.conf can be used to control all of dmmultipath's behaviors including how paths are grouped, what path checker is used, and how mpath device should be named
- Examples and explanations of every directive available for multipath.conf can be seen at /usr/share/doc/device-mapper-multipath-<version>/multipath.conf.annotated
- The default values used for various storage devices can be seen at /usr/share/doc/device-mappermultipath-<version>/multipath.conf.defaults



#### The Software Stack – The Bindings File

- The bindings file is where dm-multipath stores its device alias bindings for later use
- If you allow dm-multipath to name your devices for you it will populate the bindings file with the alias maps it decides on
- The purpose of the bindings file is to ensure that device aliases are persistent, i.e. that a given mpath device will always correspond to the same LUN even across reboots
- The bindings file comes with a few "gotchas." It was located under /var in RHEL 5 but moved to /etc in RHEL 6. The bindings file should not be manipulated by-hand. Use multipath.conf to customize aliases.



#### The Software Stack – Device Mapper & SCSI

- dm-multipath provides its functionality by creating and manipulating Device Mapper maps.
- You can see the multipath device maps in dmsetup output.
- dm-multipath relies on the SCSI layer for identifying devices by WWID and determining if a path has failed
- dm-multipath has no "special" way to know if a path has failed. dm-multipath "knows" a path has failed if it receives a SCSI error on that path. If something is hiding or blocking SCSI errors you will not get failover!



#### The Software Stack – The dm-multipath Module

- The dm-multipath kernel module is a plugin for Device Mapper
- The dm-multipath module contains the multipath specific logic that enables Device Mapper to provide multipath functionality
- It handles the "dirty work" of re-routing the I/O, failing over between path groups, and other low level operations



#### The Software Stack - How It All Fits Together

- multipathd starts and reads multipath.conf
- multipathd reads the bindings file to to see what the device alias maps were the last time it ran
- multipathd runs the multipath commands required to comply with the config file directives and the bindings file maps
- multipath command sets up the Device Mapper maps
- multipathd sleeps; It wakes to check path viability on the interval and in the manner specified in multipath.conf
- SCSI errors cause the dm-multipath kernel module to re-route I/O to available paths.

#### Configuring dm-multipath: RHEL 5

- Ensure that the device-mapper-multipath RPM is installed
- Edit /etc/multipath.conf and comment-out the blacklist
- Start the multitpathd service and chkconfig it on
- Run multipath -ll and verify you have a multipath device



## Configuring dm-multipath demo: RHEL 5





#### Configuring dm-multipath: RHEL 6

- RHEL 6 uses the mpathconf command to configure dm-multipath
- mpathconf will automatically create a multipath.conf
- mpathconf can also automatically chkconfig the multipathd service on, and start it



## Configuring dm-multipath demo: RHEL 6





#### Differences in dm-multipath for RHEL 5 & RHEL 6

- RHEL 6 can use find\_multipaths to more intelligently create mpath devices.
- RHEL 6 can more efficiently choose which paths to send IO down based on queue size or service time. RHEL 5 could only round-robin between paths.
- RHEL 6 sees its bindings file under /etc by default.
   Having the bindings file under /var caused problems for some folks in RHEL 5.
- The remote FC port device loss and SCSI I/O failure timeouts can be explicitly controlled by dm-multipath in RHEL 6 allowing for greater predictability and control for failover timing.



#### Getting in-depth: multipath command output

 multipath -ll provides valuable information on current multipath topology

```
mpath device name
WWID
device mapper alias
hardware information
LUN size
enabled features
hardware handler
write protect status
```

```
root@rhel6-node1:~
[root@rhel6-node1 ~]# multipath -ll mpathe
                 00020004) dm-5 IET, VIRTUAL-DISK
size=954M features='0' hwhandler='0' wp=rw
 -+- policy='round-robin 0' prio=1 status=active
[root@rhel6-node1 ~]#
```



#### Getting in-depth: Path Groups & Policies

- dm-multipath groups paths into path groups.
- Path group policies define the criteria by which dmmultipath groups paths:
  - Multibus : All paths in one path group
  - Failover: Each path in its own path group
  - Serial : Group by serial number
  - Prio : Group by path prio (determined by prio callout)
  - Node: Group by SCSI target number
- A single path group at a time is active
- Default is multibus



#### **Getting in-depth: Path Selectors**

- dm-multipath determines which path within a path group to send IO down based on a path selector
- RHEL 6 has multiple path selectors, RHEL 5 only has round-robin
  - Round Robin: Loop through all paths in group
  - Queue Length: Select path with shallowest IO queue
  - Service Time: Select path with lowest estimated syctime
- Different path selectors can be configured for each multipath
- The default is round robin



#### **Getting in-depth: Path Groups & Selectors Demo**





#### **Getting in-depth: Device Mapping**

- Storage devices pass though multiple levels of abstraction between the hardware drivers and user space
- It is important to be able to clearly identify which device maps to which other device all the way through the stack so that in the event of a problem what is wrong can be clearly understood
- Understanding the device mapping and abstraction systems in use, and in what order they occur, is useful for "checking Device Mapper's work" and determining where in the stack a problem may be



#### Getting in-depth: Device Mapping (cont'd)



- The WWID and LUN # set on the SAN
- HBA info available in /sys/class/fc\_host
- SCSI Quad H:B:T:L in /proc/scsi/scsi
- Double check WWID with /sys/block/
- Dev node under /dev
- multipath -II output



### **Getting in-depth: Device Mapping example**





#### Getting in-depth: Device Mapping example cont'd

```
mpath4 (3600a0b800013275100000bb14d11c49a) dm-2 IBM, 1742-900
[size=8.0G][features=0][hwhandler=1 rdac][rw]
\_ round-robin 0 [prio=100][active]
\_ 5:0:1:0 sdh 8:112 [active][ready]
\_ round-robin 0 [prio=0][enabled]
\_ 5:0:0:0 sdb 8:16 [active][ghost]
[root@cs-rh5-1 ~]# ll /sys/class/fc_host
total 0
drwxr-xr-x 3 root root 0 Apr 1 14:00 host4
drwxr-xr-x 3 root root 0 Apr 1 14:00 host5
Host: scsi5 Channel: 00 Id: 00 Lun: 00
 Vendor: IBM Model: 1742-900
                                          Rev: 0914
  Type: Direct-Access
                                          ANSI SCSI revision: 05
Host: scsi5 Channel: 00 Id: 01 Lun: 00
  Vendor: IBM Model: 1742-900
                                          Rev: 0914
  Type: Direct-Access
                                          ANSI SCSI revision: 05
[root@cs-rh5-1 ~]# scsi id -q -u -s /block/sdh
3600a0b800013275100000bb14d11c49a
[root@cs-rh5-1 ~]# scsi id -q -u -s /block/sdb
3600a0b800013275100000bb14d11c49a
```



#### **Troubleshooting Tips**

- Check the basics first! Use a simple multipath.conf with nothing set other than the defaults and no black list.
   Make sure multipathd is chkconfigged on and running.
- Most suspected dm-multipath issues aren't dm-multipath issues at all! Check the storage stack all the way from the SAN through /proc/scsi/scsi, and the WWIDs. If /proc/scsi/scsi doesn't see your LUNs then dm-multipath wont either! WWIDs don't match? Then dm-multipath wont touch them!
- All LUNs in /proc/scsi/scsi, right # of dev nodes, path WWIDs match, and have a simple config? Check known issues. /var on a seperate filesystem from /?
- When in doubt reboot or rescan SCSI bus and restart mutlipathd.

#### **Documentation**

- Official Product Documentation: docs.redhat.com
  - RHEL 6 DM Multipath Guide
  - RHEL 5 DM Multipath Guide
- Customer Portal: access.redhat.com
  - Lots of solutions created directly from resolved support cases
  - Technical Briefs
  - User Groups
  - Videos
- /usr/share/doc/device-mapper-multipath-<version>/



#### **Questions? Thanks!**

- Thank you very much for working with Red Hat and attending this webinar. I hope it was interesting and proves useful!
- Need more help? Contact your TAM and Red Hat Support. We're here to help.

