TASKS	M 1	M 2	М 3	M 4	M 5	M 6	M 7	M 8	M 9	M 10	M 11	M 12
Confirm design specifications for 976nm BTF Diode, control board, Yb doped fiber optic, mirrors, and FBG's, then order components for the FBL and appratus												
Get the absorption spectrum of water ice using a spectrometer and thin sheet of ice												
Assemble the apparatus with the Yb fiber cable, mirror, and grating and mount the FBL for power testing												
If Lasing, test with different grating angles to see which wavelength has best absorption effect on the ice to confirm the absorption spectrum												
Start simulations in python to calculate power needed for high powered FBL and simulate this in Ansys												
Order neccessary FBG to make a condensed design												
Couple the fiber optics instead of a free-space design to condense the apparatus and show a plug-n-play design												
Test power with plug-n-play design and confirm absorption spectra												
Use spectra from experiments in sumlations to more accurately depict effects on water ice in a vacuum environment												
Reach out for more opportunities with NASA for future research												