UNIVERSITÀ DEGLI STUDI DI CATANIA
Anno Accademico 2024 - 2025
Corso di Laurea in Informatica
Test di ingresso INFORMATICA
Prova del 30/09/24

COGNOME e NOME: (IN STAMPATELLO)	
FIRMA:	
N. MATRICOLA (qualora non si fosse ancora in possesso di matricola fornire codice fiscale):	

NON saranno soggette alla valutazione le prove MANCANTI del Cognome e Nome, nonché della Firma

Non sono consentiti formulari, appunti, libri e calcolatori; non è consentito comunicare con i colleghi; ogni mezzo di comunicazione elettronico deve essere tenuto spento. Durante la prova non è possibile uscire dall'aula prima di avere consegnato definitivamente il compito.

1) Si supponga di disporre di una sequenza di N bit per codificare numeri interi. Si supponga che un bit venga riservato alla rappresentazione del segno. Volendo rappresentare il numero -128, indicare il

Per ciascuna delle seguenti dodici domande indicare l'unica risposta corretta.

va	lore minimo di N, tra quelli elencati, che consente tale rappresentazione:
	N=8
	N = 32
	N = 16
	N = 64
,	ella rappresentazione dei numeri in virgola mobile in singola precisione (standard IEEE 754), il campo tto mantissa o significando è lungo x bit. Quanto vale x ?
	x = 24
	x = 12
	x = 16
	x = 30
	nessuna delle precedenti risposte è corretta.
3) In	una macchina di Von Neumann:
	le istruzioni del programma vengono eseguite nel loro ordine naturale, ovvero quello stabilito da chi ha codificato il programma;
	le istruzioni del programma vengono eseguite secondo l'ordine stabilito dalla CPU; tale ordine può variare in base al tipo di CPU ed in base all'istante di esecuzione;
	l'intero programma viene memorizzato nei registri della CPU, i dati in memoria centrale;
	Nessuna delle risposte precedenti è corretta

4) Nel	la codifica base due e complemento a due, avendo a disposizione N bit, sarà possibile rappresentare:
	tutti i numeri interi dell'intervallo $[2^{-N}, 2^{N+1}];$
	tutti i numeri interi dell'intervallo $[-2^N, 2^{N+1}];$
	tutti i numeri interi dell'intervallo $[-2^{N-1}, 2^{N-1} - 1];$
	tutti i numeri interi dell'intervallo $[-2^{N-1}, 2^{N+1}];$
5) Il p	paradigma della programmazione procedurale:
	è incompatibile con i costrutti della programmazione imperativa;
	si basa sulle procedure, che sono sequenze di istruzioni che non possono includere i costrutti if-then-else o while;
	si basa su procedure e oggetti;
	nessuna delle precedenti risposte è corretta;
6) Sia	no N ed x due numeri interi positivi. Il seguente algoritmo in notazione NLS:
P & WI	=0
	calcola il prodotto $N * x$
	calcola il prodotto $(N-1)*x$
	calcola la somma $\sum_{k=1}^{k \le N} x^{k-1}$
	calcola la somma $\sum_{j=0}^{j\leq N} x^j$
7) Un	interprete per uno specifico linguaggio di programmazione L:
	traduce un programma P1 codificato in linguaggio L in un programma equivalente P2 codificato in un linguaggio di basso livello, sulla macchina di sviluppo; infine P2 sarà eseguito su una macchina detta di produzione;
	l'interprete stesso va tradotto in linguaggio macchina mediante un compilatore; il programma in linguaggio L va a sua volta compilato; infine entrambi vengono eseguiti sulla macchina di produzione;
	traduce in linguaggio macchina un programma codificato in liguaggio L nei casi in cui un precedente tentativo di traduzione mediante un compilatore non sia andato a buon fine;
	traduce in linguaggio macchina, poco per volta, un programma codificato in linguaggio di alto livello, passando tali istruzioni macchina alla CPU per la loro esecuzione.

8) Siano $A \in B$ interi positivi, sia T una matrice di dimensioni $A \times B$. Sia b un numero tale che 0 < b < B. Il seguente algoritmo

```
Leggi A
   Leggi B
   Leggi b
   Leggi T
   j \leftarrow 1
   S \leftarrow 0
   While (j \le b) Do
      i \leftarrow A - 1
      While (i \ge 0) Do
        S \leftarrow T[i][j] + S
        i \leftarrow i-1
      Endwhile
      j \leftarrow j + 2
   Endwhile
   Stampa S
        somma gli elementi delle colonne di T con indici dispari appartenenti all'intervallo [1, b-1]
  somma (B-1) \times A elementi della matrice T;
  somma gli elementi delle colonne di T con indici dispari appartenenti all'intervallo [1, b]
  somma B \times (A-1) elementi della matrice T;
  9) Sia Y un numero intero positivo, sia M una matrice di dimensioni Y \times Y, siano a ed b due numeri
   interi tali che 0 < a < b \le Y. Si consideri il seguente algoritmo:
```

```
Leggi M;
Leggi a;
Leggi b;
i \leftarrow a;
S \leftarrow 0;
While (i \le b) Do
   S \leftarrow M[i][i-1] + S
  i \leftarrow i + 1
EndWhile
Stampa S;
```

- esso contiene un errore logico;
- esso calcola la somma di a-b elementi di tutte le colonne i-esime di M;
- esso calcola la somma di b-a elementi della diagonale secondaria di M;
- esso contiene un errore sintattico;
- esso calcola la somma di b-a+1 elementi della diagonale secondaria di M;

10) Si	i consideri la rappresentazione in virgola mobile IEEE 754. Sia $X=123456789123456789*10^{-10}$.
	È rappresentabile sia in precisione singola che in doppia precisione, in quanto l'ordine di grandezza del numero è compatibile con entrambi i formati;
	È rappresentabile sia in precisione singola che in doppia precisione, in quanto l'ordine di grandezza della mantissa è compatibile con entrambi i formati;
	Si otterrà un errore di approssimazione e con una rappresentazione in singola precisione e con una rappresentazione in doppia precisione;
	Non è rappresentabile nè in precisione singola nè in doppia precisione, in quanto l'ordine di grandezza del numero non è compatibile con alcuno dei formati;
11) U	In algoritmo che permetta di calcolare le prime N potenze di un numero x $(x^0, x^1, \dots, x^{N-1})$
	richiede al più x^N passi;
	richiede al più N passi;
	richiede al più x^{N-1} passi;
	richiede al più $N+1$ passi;
12) Si	iano $a \in b$ due numeri interi positivi, con $a < b$. Il seguente algoritmo:
	eggi a;
	eggi b;
	$\leftarrow a;$ Vhile $(i \le b)$ Do
	Stampa i
	$i \leftarrow i + 1$
\mathbf{E}	${f CndWhile}$
	produrrà $a + b$ iterazioni
	produrrà b iterazioni
	produrrà $b-a-1$ iterazioni
	produrrà $b - a + 1$ iterazioni
	produrrà $b-a$ iterazioni