Bike Share System: Data Analysis & Incentive Program Proposal

By Hannah Hagen August 22, 2016

1. DATA ANALYSIS

a. Time Series Analysis

I created three time-series of:

- Total count
- Registered count
- Casual count

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

From these time-series, it is evident that total count of bike rentals has increased with time. Registered users make up the majority of bike share rentals. Growth in registered users is largely responsible for the overall growth of total rentals over time.

Casual usage has grown modestly, with variability in day-to-day usage being larger in 2012 than 2011. The larger extremes seen in 2012 may suggest that more people were willing to try a bike share on certain days in 2012 than in 2011.

Takeaways:

- Registered users account for the bulk of bike share rentals (they also typically pay a membership fee) so incentive programs may want to target acquisition of registered users.
- On the flip side, the small number of casual users may mean we should work on appealing better to causal users.

b. Multiple Regression Analysis

I conducted a multiple regression analysis to obtain an overview of which independent variables (season, holiday, weather, etc.) have a significant impact on the dependent variables (number of bikes rented).

I conducted three individual multiple regression analyses using ALL independent variables (except dteday). The three predictive, or dependent variables, are total count, registered count and casual count. I chose to conduct a multiple regression analysis, as opposed to many single regression analyses, because I wanted to account for relationships between variables and compare coefficients and std error between variables when combined in a single model. In conducting a multiple regression analysis, I am making the following assumption (which may or may not be valid):

 the dependent variable really is a linear function of the independent variables, with independent and identically normally distributed errors--the coefficient estimates are expected to be unbiased and their errors are normally distributed.

*In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

Because I am not certain this assumption is valid, a multiple regression analysis serves to indicate which variables will play a significant role in determining the predictive variable. Later, I will narrow in on key variables of interest and supplement this multiple regression analysis with tests/analyses for individual variables.

The results for each analysis are summarized below:

TOTAL COUNT

-----Summary of Regression Analysis-----

Formula: Y ~ <season> + <yr> + <mnth> + <holiday> + <weekday> + <workingday> + <weathersit> + <temp> + <atemp> + <hum> + <windspeed> + <intercept>

Number of Observations: 731 Number of Degrees of Freedom: 12

R-squared: 0.8002 Adj R-squared: 0.7972

Rmse: 872.4164

F-stat (11, 719): 261.8539, p-value: 0.0000

Degrees of Freedom: model 11, resid 719

Summary of Estimated Coefficients						
Variable		Std Err	t-stat	-	CI 2.5%	
season	509.7752	54.7571	9.31	0.0000	402.4512	617.0992
yr	2040.7034	65.1853	31.31	0.0000	1912.9403	2168.4665
mnth	-38.9796	17.0791	-2.28	0.0228	-72.4545	-5.5046
holiday	-518.9919	201.0403	-2.58	0.0100	-913.0310	-124.9529
weekday	69.0622	16.2990	4.24	0.0000	37.1162	101.0082
workingday	120.3570	72.0073	1.67	0.0951	-20.7774	261.4914
weathersit	-610.9870	78.3633	-7.80	0.0000	-764.5791	-457.3949
temp	2028.9161	1403.6706	1.45	0.1488	-722.2782	4780.1104
atemp	3573.2743	1589.3886	2.25	0.0249	458.0726	6688.4760
hum	-1018.8616	313.9952	-3.24	0.0012	-1634.2921	-403.4311
windspeed	-2557.5691	456.2775	-5.61	0.0000	-3451.8731	-1663.2652
intercept	1469.0031	240.2182	6.12	0.0000	998.1755	1939.8306
		End c	of Summary			

REGISTERED COUNT

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

-----Summary of Regression Analysis-----

Formula: Y ~ <season> + <yr> + <mnth> + <holiday> + <weekday> + <workingday> + <weathersit> + <temp> + <atemp> + <hum> + <windspeed> + <intercept>

Number of Observations: 731 Number of Degrees of Freedom: 12

R-squared: 0.8163 Adj R-squared: 0.8135

Rmse: 673.8781

F-stat (11, 719): 290.3983, p-value: 0.0000

Degrees of Freedom: model 11, resid 719

Summary of Estimated Coefficients						
Variable	Coef	Std Err	t-stat	p-value	CI 2.5%	CI 97.5%
season	447.9515	42.2959	10.59	0.0000	365.0515	530.8515
yr	1754.0185	50.3509	34.84	0.0000	1655.3308	1852.7062
mnth	-23.2353	13.1923	-1.76	0.0786	-49.0922	2.6217
holiday	-244.7780	155.2890	-1.58	0.1154	-549.1445	59.5884
weekday	42.6987	12.5898	3.39	0.0007	18.0227	67.3746
workingday	948.6076	55.6204	17.06	0.0000	839.5916	1057.6237
weathersit	-497.9377	60.5299	-8.23	0.0000	-616.5764	-379.2990
temp	834.0741	1084.2332	0.77	0.4420	-1291.0231	2959.1713
atemp	2678.4190	1227.6869	2.18	0.0295	272.1526	5084.6853
hum	-625.6313	242.5384	-2.58	0.0101	-1101.0066	-150.2561
			4 01			
	-1695.5151	352.4412	-4.81		-2386.2998	
intercept		185.5510	4.14	0.0000	404.5298	1131.8898
		End c	of Summary			

CASUAL COUNT

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

```
-----Summary of Regression Analysis-----
```

```
Formula: Y ~ <season> + <yr> + <mnth> + <holiday> + <weekday> + <workingday> + <weathersit> + <temp> + <atemp> + <hum> + <windspeed> + <intercept>
```

Number of Observations: 731 Number of Degrees of Freedom: 12

R-squared: 0.6883 Adj R-squared: 0.6835

Rmse: 386.2691

F-stat (11, 719): 144.3305, p-value: 0.0000

Degrees of Freedom: model 11, resid 719

Summary of Estimated Coefficients						
Variable	Coef	Std Err	t-stat	p-value		CI 97.5%
season	61.8237	24.2441	2.55	0.0110	14.3051	109.3422
yr	286.6849	28.8613	9.93	0.0000	230.1168	343.2530
mnth	-15.7443	7.5619	-2.08	0.0377	-30.5656	-0.9230
holiday	-274.2139	89.0122	-3.08	0.0021	-448.6777	-99.7501
weekday	26.3635	7.2165	3.65	0.0003	12.2192	40.5079
workingday	-828.2507	31.8818	-25.98	0.0000	-890.7390	-765.7623
weathersit	-113.0493	34.6960	-3.26	0.0012	-181.0534	-45.0452
temp	1194.8420	621.4859	1.92	0.0549	-23.2705	2412.9544
atemp	894.8553	703.7140	1.27	0.2039	-484.4242	2274.1348
hum	-393.2302	139.0238	-2.83	0.0048	-665.7168	-120.7436
windspeed	-862.0540	202.0204	-4.27	0.0000	-1258.0140	-466.0941
intercept	700.7933	106.3584	6.59	0.0000	492.3308	909.2558
		End of	f Summary			

Takeaways:

- Total count:
 - The rank of variables in terms of magnitude of coefficient (largest to small) is:

Feeling temp
Windspeed
Year
Temp
Humidity
Weather
Holiday
Season
Working day
Week day
Month *

The standard error for each variable is a measure of the precision of the
measurement of the coefficient (similar to an inverse signal-to-noise ratio). It is
important to take into account the precision because this indicates how much
confidence we can have in our coefficient measurement. Below is the same list of

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

variables ranked by coefficient magnitude, but those with notable std error are marked.

Feeling temp (high std err)

Windspeed (medium std err)

Year

Temp (high std err)

Humidity (medium std err)

Weather

Holiday (medium std err)

Season

Working day

Week day

Month *

 For instance, for feeling temp, the variable with the coefficient of largest magnitude, the 95% confidence interval for the coefficient is 458 to 6688, quite a large range but still placing that coefficient in the top half of the list ~95% of the time.

Conclusions:

- Based on this multiple regression analysis, which again is conducted on uncertain assumptions, it appears that lean demand periods are determined largely by weather and natural conditions, including feeling temperature, windspeed, temperature, humidity and weather.
- This was against my own expectation that human-based factors, such as holiday, working day, week day would have the greatest impact. (always interesting to be proven wrong).
- Year also plays a large role according to this analysis, but we already knew that from the time series.
- Based on this knowledge, I would recommend an incentives program that encourages users to take up bike sharing during weather conditions, in which they typically refrain from bike sharing.
- The lean demand times appear to occur based on weather (not on holiday). So some kind of incentive program to encourage users to bike when sun is not out, or the windspeed is high.
- Improve the bikes for these conditions
 - Safety is a big concern in stormy conditions: tricycles, equip mirrors on bikes, lounging bikes that is more comfortable, less exposed (warmer).
 - o Offer rental of helmets (with windshield) or gloves
 - For hot conditions, encourage office to have a shower at work. Partner with gym for users to shower before work.

If I had more time, I would conduct a similar analysis for registered and casual users to better understand the factors that impact their behavior. For the majority of this analysis and the purposes of time, I focus on total count since this is the most universal metric of bike share usage.

c. Investigation into individual variables: feeling temperature, wind speed, temperature, humidity and weather

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

These variables appear to be the most significant according to the multiple linear regression.

I conducted individual linear regressions for each variable.

- Mostly linear, but drops off at high temperatures (convex)
- People seem more interested in bike during warmer weather. Cold weather has low rates for bike sharing.

• Linear relationship here, the higher the wind speed, fewer bike shares.

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

- Again convex relationship. Linear except at high temperatures (drops off)
- Warm weather sees higher bike share rates.

• Linear relationship, but not very strong. Lots of variability (std error). At high humidity, the bike share usage is slightly lower.

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.

Takeaways

•

Analyses I would conduct if I had more time:

- Non-linear regressions for each variable, since many of them do not have linear behavior.
- A multiple (non-linear) regression using only feeling temperature, wind speed, temperature, humidity and weather as independent variables and test the strength of this model as compared to the global, linear model.
- Create several different models (using different variables for multiple regression). I would train the model on 80% of the data and use the other 20% of the data as a validation data set to measure the model's ability to predict new data points, as well as measure the model's error.

Lastly, I want to circle back around on my investigation of the impact of month on bike share usage since the multiple linear regression was an inappropriate way to assess the impact of month. First I create a scatter plot. Here you can see that

^{*}In the future, I would leave out month from a multiple linear regression since it is not a linear variable but rather categorical. Therefore, the low calculate coefficient is misleading. In fact, month does have a strong impact on total count, but it is not linear. More on this later in the analysis.