Statistical Physics: Weekly Problem 3 (SP3)

- (1) (a) In the *microcanonical ensemble*, or (N, U, V) macrostate, are the various microstates that are consistent with the (N, U, V) macrostate equally probable, or do they have different in general probabilities? [1 mark]
 - (b) Similarly, in the *canonical ensemble*, or (N, T, V) macrostate, describing a system in thermodynamic equilibrium, are the various accessible microstates equally probable, or do they have, in general, different probabilities? [1 mark]
- (2) In a system of N weakly interacting particles in thermal equilibrium at temperature T, the probability that a particle will be in (single-particle) state i with energy ϵ_i is proportional to

$$p_i \propto \exp\left[-\frac{\epsilon_i}{k_{\rm B}T}\right],$$

i.e. the Boltzmann probability.

The two lowest-lying energy levels of a hydrogen atom have energies $\epsilon_0 = -13.6$ eV and $\epsilon_1 = -3.4$ eV. Ignoring degeneracies, at what temperature would we find one hundredth as many hydrogen atoms in the first excited state as in the ground state? $(k_B = 8.617 \times 10^{-5} \text{ eV K}^{-1})$ [2 marks]

- (3) A paramagnetic solid consists of N ions with spin 1/2 and magnetic moment μ_B . The system lies in a magnetic field B and each magnetic moment is oriented either parallel to the field (up), with energy $\epsilon_{\uparrow} = -\mu_B B$, or antiparallel (down) with energy $\epsilon_{\downarrow} = +\mu_B B$.
 - (a) What is the probability that an ion will have its magnetic moment oriented parallel to B? [2 marks]
 - (b) What is the internal energy U, entropy S and the temperature T of the system in the limit where all the magnetic moments are parallel to B? [3 marks] Hint: do not try to think of complicated equations. Use your physical intuition.
 - (c) The system of ions is brought into a state where the internal energy U is positive. Show that the temperature of the system is negative. Is a negative temperature "hotter" (i.e. of higher energy) or "colder" than infinite temperature? [1 mark]