

Mikroişlemcili Sistemler ve Laboratuvarı 7.HAFTA

Amaçlar

- 8051 mikrodenetleyicisinin adresleme yöntemlerini kavramak
- Komut türleri ve adresleme modları arasındaki ilişkileri kavramak

Adresleme Yöntemleri

- Adresleme modu, bir bellek konumuna ya da bir veriye erişimin nasıl olacağını belirtir.
- Doğrudan kullanılan komut uzunluğunu etkiler.
- Kullanılan komutlara bağlı olarak bilginin farklı yollarla hedefe gitmesine olanak sağlar.
- 8051 mikrodenetleyicisinde kullanılan 8 farklı adresleme yöntemi şunlardır.
 - Kaydedici adresleme
 - Doğrudan adresleme
 - Dolaylı adresleme
 - İvedi adresleme
 - Bağıl (Koşullu) adresleme
 - Mutlak adresleme
 - Uzun adresleme
 - İndisli adresleme yöntemi

Kaydedici Adresleme

- 8051 mikrodenetleyicisinde RO'dan R7'ye kadar 8 tane genel amaçlı kaydedici vardır.
- Kaydedici adreslemede
 - Komutu oluşturan en yüksek değerlikli 5 bit yapılacak işlevi
 - En düşük değerlikli 3 bit ise R0 ile R7 arasındaki hangi kaydedicinin kullanılacağını gösterir.

Assembly Açıklama ADD A, R7 ;R7 kaydedicisinin içeriğini Akümülatöre ekle

ADD işlemini gösteren Opkod

Doğrudan Adresleme

- Doğrudan adresleme yöntemi, dahili alt RAM (lower RAM) ve SFR alanına erişmek için kullanılır.
- Doğrudan adresleme yönteminde komutlar 2 bayt uzunluğundadır.
 - İlk bayt opkod'u (gerçekleştirilecek işlemi),
 - ikinci bayt adres bilgisini gösterir.
- Doğrudan adresleme yöntemi adresleri örtüşen üst RAM ile SFR bölgeleri birbirinden ayrılmasını sağlar.
- Bu iki alandan SFR bölgesine doğrudan adresleme yöntemi kullanılarak erişilebilir.

Doğrudan Adresleme

```
Assembly Açıklama

MOV P1,A ;Aküyü Port 1'e kopyala

MOV A,70h ;70h adresinin içeriğini Aküye kopyala

MOV A,80h ;SFR bölgesine erişilir, 80h Port 0'ın adresidir.
;P0'daki bilgi Aküye kopyala
```

Dolaylı Adresleme

- Tanımlanan bir değişkenin adresinin değiştirilmesi, hesaplanması ya da tekrar değiştirilmesi işlemlerinde dolaylı adresleme yöntemi kullanılmaktadır.
- Adresleme yöntemlerinin en güçlüsüdür.
- Bu adreslemede kaynak veya hedefin adresi komutun içerisinde açık olarak verilmez.
- Verinin gerçek adresini tutmak için R0 ve R1 kaydedicileri "işaretçi" olarak kullanılır.
- Bu kaydediciler bilginin RAM'de yazılacağı veya okunacağı adresi içermektedirler.

Opkod i
$$i=0 => R0$$
 $i=1 => R1$

Dolaylı Adresleme

Assembly	Açıklama
MOV A, @R1	;Alt RAM'deki 50h adresinin içeriği (FFh)Aküye aktar

İvedi Adresleme

DPTR'nin kullanıldığı istisnai durum dışında
 2 bayt uzunluğundaki komutlardan oluşur.

 Bilginin geçici olarak komut içerisine yüklenmesi yüksek komut hızı sağlar.

Assembly	Açıklama
MOV A,#12	;Akü'ye 12 değerinin atılması
MOV R0,#10h	;10h bilgisini R0 saklayıcısına yükle
MOV DPTR,#2000H	;2000h bilgisini DPTR'ye yükle, 3 bayt'lık komut

Bağıl Adresleme

- Sadece atlama komutları ile birlikte kullanılır.
- Komutlar 1 bayt opkod ve 1 bayt adres bilgisi olmak üzere toplam 2 bayt uzunluğundadır.
- Adres bilgisi 8-bit ile ifade edildiği için maksimum +127 (ileri yön) ve -128 (geri yön) aralığında bir atlama işlemi gerçekleştirilir.

Bağıl Adresleme

Mutlak Adresleme

- Sadece ACALL ve AJMP komutları ile kullanılır.
- 2 bayt uzunluğundadır ve kod bellek içerisinde 2 KBaytlık bir alanı adresleyebilirler.
- Maksimum 64 KBayt olan kod bellek 2 KBaytlık 32 bölmeye ayrılabilir
- Hangi bölmenin seçileceğini program sayacı (PC) belirlemektedir.

Mutlak Adresleme

Uzun Adresleme

- Yalnızca 3 bayt'lık LCALL ve LJMP komutları kullanılır.
- 16-bit hedef adres bulunabilir.
- $2^{16} = 64$ KBaytlık adres aralığında atlama işlemi gerçekleştirilebilir.

Sıralı Adresleme

- Bellekte bulunan sıralı bilgilere erişmek için en elverişli adresleme yöntemidir.
- Çok sayıda veriye az sayıda komut kullanarak erişmek mümkündür.
- JMP ve MOVC komutları kullanılır.
- PC veya DPTR ile akümülatörün toplamı, atlanılacak olan etkin adres bilgisini belirler.

Sıralı Adresleme

Adres	Kodlar	
0030h		MOV A,#0
0032h		CALL BASLA
0050h	BASLA:	INC A
0051h		MOVC A, @A+PC
0052h		RET
0053h	TABLO:	DB 33h
0054h		DB 55h

Bölüm Soruları

- Bir mikroişlemcide çok sayıda adreslemenin olmasının avantaj ve dezavantajlarını açıklayınız?
- Uzun adresleme yerine bağıl adresleme ne zaman tercih edilmelidir?
- Adresleme ile komutların bayt miktarı arasında nasıl bir ilişki vardır?
- Tek-düze (uniform) komut ne demektir? 8051'in komut kümesi neden tek-düze komutlardan oluşamaz?