Исследование образной и процедурной компонент элементов картины мира субъекта деятельности

Александр Панов

ИСА РАН научный руководитель д.ф.-м.н., проф. Г.С. Осипов

30 октября 2014 г.

Картина мира субъекта деятельности

Картина мира человека представляет собой сложное психофизиологическое образование, позволяющее ему как субъекту деятельности на материальном субстрате головного мозга строить модель действительности и на основе этой модели выполнять различные психические функции:

- восприятие,
- планирование,
- целеполагание,
- категоризация,
- обобщение и др.

Современные представленяи о принципах работы коры головного мозга

Маунткасл, Эдельман, Хокинс:

- неокортекс состоит из элементарных составных элементов, которые имеют одинаковое строение на всех участках коры,
- колонки латеральными связями объединены в регионы,
- неокортекс хранит последовательности паттернов,
- неокортекс воспроизводит паттерны автоассоциативно,
- неокортекс предсказывает паттерны,
- неокортекс хранит паттерны в инвариантной иерархической форме.

Слои и колонки неокортекса

Основные принципы модели

С целью проведения исследования модели были приняты следующие упрощения:

- дискретность во времени,
- простейшая строгая иерархия со связями только между ближайшими уровнями,
- обратная связь только по предсказанию, без моторной части,
- гипотеза одинаковой длительности для одной тематики,
- гипотеза «всегда начинаем с начала»,
- пороговая модель принятия решений,
- подавление непредвиденного сигнала.

Признаки и распознающие блоки

Пусть заданы следующие множества:

- ullet $\{R_i^j\}$ совокупность распознающих блоков,
- ullet $\{f_k\}$ совокупность допустимых признаков.

Введём бинарное отношение \dashv , определённое на декартовом произведении $\{f_k\} \times \{R_i^j\}$, и будем читать $f_k \dashv R_i^j$ как «признак f_k распознаётся блоком R_i^j ».

Множество всех распознаваемых блоком R_i^j признаков будем обозначать F_i^{*j} , т. е. $\forall f^* {\in} F_i^{*j} f^* {\dashv} R_i^j, F_i^{*j} {\subseteq} \{f_k\}.$

Иерархия распознающих блоков

Рассмотрим связный ориентированный (ярусный) граф $G_R = (V, E)$:

- ullet V множество вершин,
- Е множество рёбер,
- ullet каждая вершина v, принадлежащая j-ому ярусу графа G_R , связана с соответствующим распознающим блоком R_i^j уровня j,
- каждое ребро $e=(v,u){\in}E$ обозначает иерархическую связь между соответствующим вершине v дочерним блоком $R_{i_1}^{j_1}$ и соответствующим вершине u блоком—родителем $R_{i_2}^{j_2}$.

Входные признаки и функции распознавания

Определим:

- для каждого распознающего блока R_i^j множество $F_i^j \subseteq \{f_k\}$ совокупность входных признаков, в которую входят такие признаки, что для любого $f \in F_i^j$ существует распознающий блок R_k^{j-1} уровня j-1, дочерний по отношению к блоку R_i^j , такой, что $f \dashv R_k^{j-1}$
- для каждого признака $f^* {\in} F_i^{*j} \phi$ ункцию распознавания $\hat{f}(x_1,\dots,x_q) = x^*$, где $x^* {\in} (0,1)$ вес распознаваемого признака f^* , а $x_1,\dots,x_q {\in} (0,1)$ вес признаков из множества входных признаков F_i^j ,
- \bullet множество \hat{F}_i^j совокупность функций распознавания для блока R_i^j .

Динамика распознающего блока

Пусть

- ullet l_i^j мощность множества измеряемых признаков F_i^{*j} и множества функций измерения \hat{F}_i^j ,
- q_i^j мощность множества входных признаков F_i^j
- T_i^j упорядоченное множество локальных моментов времени T_i^j для распознающего блока R_i^j
- ullet h_i^j характерный масштаб времени, за который происходит один цикл вычисления в распознающем блоке R_i^j .

Динамика распознающего блока

В начале s-ого цикла вычисления (момент времени $au_s \in T_i^j$) распознающий блок R_i^j получает на вход вектор длины l_i^j ожиданий $\hat{x}_i^{j+1}(au_s)$:

$$\hat{x}_i^{j+1}(\tau_s) = \frac{1}{N_i^j} \sum_{k \in K_i^{j+1}} \hat{x}_k^{j+1}(\tau_s),$$

где N_i^j — количество родительских блоков, K_i^{j+1} — множество индексов родительских относительно R_i^j распознающих блоков.

Динамика распознающего блока

В каждый момент времени $t\in T_i^j$, $au_s\leqslant t\leqslant au_s+h_i^j$, распознающий блок R_i^j

- ullet получает на вход весовой вектор $ar{x}_i^j(t)$ длины l_i^j присутствия входных признаков из множества F_i^j ,
- ullet вычисляет выходной весовой вектор $ar{x}_i^{*j}(t)$ длины l_i^j присутствия измеряемых признаков из множества F_i^{*j} ,
- ullet вычисляет вектор длины q_i^j ожиданий $\hat{x}_i^j(t)$ присутствия входных признаков в следующий момент времени.

Схема входных и выходных отображений

Входные и выходные отображения

Пусть

- ullet X_i^{*j} множество возможных мгновенных значений выходных векторов распознающего блока R_i^j ,
- ullet X_i^j множество возможных мгновенных значений весовых векторов присутствия входных признаков,
- ullet \hat{X}_i^j множество всех возможных мгновенных значений векторов ожиданий или множество состояний распознающего блока R_i^j ,
- $\omega_i^j: T{
 ightarrow} X_i^j$ входное воздействие в смысле теории динамических систем,
- ullet $\gamma_i^j:T{
 ightarrow}X_i^{*j}$ выходная величина,
- ullet $arphi_i^j(t; au_s,\hat{x}_i^{j+1},\omega)=\hat{x}_i^j$ функция переходов,
- $\eta_i^j: T \times \hat{X}_i^j \to X_i^{*j}$ выходное отображение, определяющее выходные вектора $\bar{x}_i^{*j}(t) = \eta(t, \hat{x}_i^j(t)).$

Матрица предсказаний

Будем считать множество моментов времени T множеством целых чисел. Тогда распознающий блок R_i^j будет являться динамической системой с дискретным временем.

Поставим каждой функции измерения \hat{f}_k из множества \hat{F}_i^j в соответствие набор матриц предсказания $Z_k=\{Z_1^k,\dots,Z_m^k\}$ размерности $q_i^j \times h_i^j$. Тогда

- столбец $ar{z}_u^r=(z_{u1}^k,\dots,z_{uq}^k)$ матрицы Z_r^k это вектор предсказания присутствия входных признаков из множества F_i^j в момент времени au_s+u , $z_{uv}^k\in\{0,1\}$,
- ullet матрица Z^k_r задаёт последовательность событий, наличие которых свидетельствует о присутствии измеряемого функцией \hat{f}_k признака,
- \mathcal{Z}_i^j множество всех матриц предсказания распознающего блока R_i^j .

Алгоритм \mathfrak{A}_{th} (часть I, инициализация)

Require: $au_s, \hat{x}_i^{j+1}(au_s), \omega_i^j;$ Ensure: $\varphi_i^j, \eta_i^j;$

Алгоритм \mathfrak{A}_{th} (часть I, инициализация)

```
Require: \tau_s, \hat{x}_i^{j+1}(\tau_s), \omega_i^j;

Ensure: \varphi_i^j, \eta_i^j;

1: \hat{F}^* = \varnothing;

2: Z^* = \varnothing;

3: t = 0;

4: c_1 \in (0,1), c_2 \in (0,1);
```

Алгоритм \mathfrak{A}_{th} (часть I, инициализация)

```
Require: \tau_s, \hat{x}_i^{j+1}(\tau_s), \omega_i^j;
Ensure: \varphi_i^j, \eta_i^j:
 1: \hat{F}^* = \varnothing:
 2: Z^* = \emptyset:
 3: t = 0:
 4: c_1 \in (0,1), c_2 \in (0,1);
 5: for all компонент \hat{x}_{ik}^{j+1} вектора \hat{x}_{i}^{j+1}(	au_s)=(\hat{x}_{s1}^{j+1},\hat{x}_{s2}^{j+1},\dots,\hat{x}_{st}^{j+1}) do
      if \hat{x}_{ik}^{j+1} \ge c_1 then
 7: \hat{F}^* := \hat{F}^* \cup \{\hat{f}_k\}:
      end if
  8:
  9: end for
```

Алгоритм \mathfrak{A}_{th} (часть II, инициализация)

10: for all функций распознавания $\hat{f}_k \in \hat{F}^*$ do

11: **for all** $Z_r^k \in \mathcal{Z}_k$, соответствующих функции распознавания \hat{f}_k **do**

```
Алгоритм \mathfrak{A}_{th} (часть II, инициализация)

10: for all функций распознавания \hat{f}_k \in \hat{F}^* do

11: for all Z_k^k \in \mathcal{Z}_k, соответствующих функции распознавания \hat{f}_k do

12: if \frac{\|\vec{z}_1^r - \vec{x}_i^j\|}{\|\vec{z}_1^r\| + \|\vec{x}_i^j\|} < c_2 then

13: Z^* := Z^* \cup \{Z_r^k\};

14: end if

15: end for
```

16: end for

```
Алгоритм \mathfrak{A}_{th} (часть II, инициализация)
```

```
10: for all функций распознавания \hat{f}_k \in \hat{F}^* do
             for all Z_r^k \in \mathcal{Z}_k, соответствующих функции распознавания \hat{f}_k do
11:
                  if \frac{\|\bar{z}_1^r - \bar{x}_i^j\|}{\|\bar{z}_1^r\| + \|\bar{x}_i^j\|} < c_2 then
12:
                      Z^* := Z^* \cup \{Z_r^k\};
13:
                  end if
14:
      end for
15.
16: end for
17: \bar{N} := (|\{Z_r^1 | Z_r^1 \in Z^*\}|, \dots, |\{Z_r^{l_i^j} | Z_r^{l_i^j} \in Z^*\}|);
18: \bar{x}_i^{*j} := W(\bar{N});
                                                                                      \triangleright W — весовая функция
19: \eta(\tau_s, \hat{x}_i^j(\tau_s)) = \bar{x}_i^{*j};
20: \varphi(\tau_s + 1; \tau_s, \hat{x}_i^{j+1}, \omega) = \hat{x}_i^j(\tau_s + 1) = W(\sum_{\hat{f}_k \in \hat{F}^*} \hat{x}_{ik}^{j+1} \sum_{Z_i^k \in Z^*} \bar{z}_2^r);
```

Алгоритм \mathfrak{A}_{th} (часть III, основной цикл)

```
21: t = 1;
```

22: while
$$t \leqslant h_i^j - 1$$
 do

23:
$$\bar{x}_i^j = \omega(\tau_s + t);$$

```
Алгоритм \mathfrak{A}_{th} (часть III, основной цикл)

21: t=1;

22: while t\leqslant h_i^j-1 do

23: \bar{x}_i^j=\omega(\tau_s+t);

24: for all матриц предсказания Z_r^k из множества Z^* do

25: if \frac{\|\bar{z}_{t+1}^r-\bar{x}_i^j\|}{\|\bar{z}_{t+1}^r\|+\|\bar{x}_i^j\|}\geqslant c_2 then

26: Z^*:=Z^*\setminus\{Z_r^k\};

27: end if

28: end for
```

```
Алгоритм \mathfrak{A}_{th} (часть III, основной цикл)
```

```
21. t = 1:
22: while t \leq h_i^j - 1 do
        \bar{x}^{j} = \omega(\tau_{s} + t):
23:
            oldsymbol{\mathsf{for all}} матриц предсказания Z^k_x из множества Z^* oldsymbol{\mathsf{do}}
24:
                    if \frac{\|\bar{z}_{t+1}^r - \bar{x}_i^j\|}{\|\bar{z}_{t+1}^r\| + \|\bar{x}_i^j\|} \geqslant c_2 then
25:
                           Z^* := Z^* \setminus \{Z^k_n\}
26:
                    end if
27:
             end for
28:
             \bar{N} = (|\{Z_r^1 | Z_r^1 \in Z^*\}|, \dots, |\{Z_r^{l_i^j} | Z_r^{l_i^j} \in Z^*\}|):
29:
             \bar{x}_{\cdot}^{*j} := W(\bar{N}):
30:
             \eta(\tau_s + t, \hat{x}_i^j(\tau_s + t)) = \bar{x}_i^{*j};
31:
```

Алгоритм \mathfrak{A}_{th} (окончание)

```
32: t = t + 1;
```

33: if
$$t \leqslant h_i^j - 2$$
 then

Алгоритм \mathfrak{A}_{th} (окончание) 32: t=t+1; 33: if $t\leqslant h_i^j-2$ then 34: $\hat{x}_i^j:=W(\sum_{\hat{f}_k\in\hat{F}^*}\hat{x}_{ik}^{j+1}\sum_{Z_r^k\in Z^*}\bar{z}_{t+1}^r);$ 35: $\varphi(\tau_s+t;\tau_s,\hat{x}_i^{j+1},\omega)=\hat{x}_i^j(\tau_s+t)=\hat{x}_i^j;$ 36: end if 37: end while

Статический оператор распознавания

Зафиксируем момент времени t, равный началу некоторого s-го вычислительного цикла au_s .

В этом случае, распознающий блок R_i^j можно рассматривать как статический оператор распознавания $R_i^j(\hat{x}_i^{j+1},\mathcal{Z}_i^j,\bar{x}_i^j)=\bar{x}_i^{*j}.$

Задача классификации по Журавлёву

Пусть

- $\{Q\}$ совокупность задач классификации,
- ullet $\{\mathcal{A}\}$ множество алгоритмов, переводящих пары $(\hat{x}, ar{x})$ в вектора $\bar{\beta}$, составленные из элементов $0,1,\Delta:\mathcal{A}(\hat{x},\bar{x})=\bar{\beta}$. Если $\beta_i \in \{0,1\}$, то β_i — значение величины α_i , вычисленное алгоритмом \mathcal{A} . Если $\beta_i=\Delta$, то алгоритм \mathcal{A} не вычислил значение α_i .

Задача $Q(\hat{x}, \bar{x}, \alpha_1, \dots, \alpha_l) \in \{Q\}$ состоит в построении алгоритма, вычисляющего по поступившему вектору ожиданий \hat{x} и входному вектору \bar{x} значения $\alpha_1,\ldots,\alpha_l\in\{0,1\}$ присутствия признаков f_1^*, \ldots, f_I^* . Другими словами, искомый алгоритм \mathcal{A}^* переводит набор (\hat{x}, \bar{x}) в вектор $\bar{\alpha}=(\alpha_1,\ldots,\alpha_l)$, который будем называть информационным вектором входного вектора \bar{x} .

Свойство корректности алгоритма

Определение 1

Алгоритм $\mathcal A$ называется корректным для задачи Q, если выполнено равенство

$$\mathcal{A}(\hat{x}, \bar{x}) = \bar{\alpha}.$$

Алгоритм \mathcal{A} , не являющийся корректным для Q, называется некорректным.

Далее будем считать, что множество $\{\mathcal{A}\}$ является совокупностью, вообще говоря, некорректных алгоритмов.

Главное отличие от классической постановки: используются вектора, а не матрицы при формулировке соответствующих определений и утверждений.

Разложение алгоритма классификации

Утверждение 1 (аналог теоремы 1 по Журавлёву)

Каждый алгоритм $\mathcal{A} \in \{\mathcal{A}\}$ представим как последовательность выполнения алгоритмов R и C, где $R(\hat{x}, \bar{x}) = \bar{x}^*$, \bar{x}^* — вектор действительных чисел, $C(\bar{x}^*) = \bar{\beta}$, $\beta_i \in \{0, 1, \Delta\}$.

- R оператор распознавания,
- С решающее правило.

Решающее правило и операции над алгоритмами

Определение 2

Решающее правило C^* называется корректным на множестве входных векторов X, если для всякого вектора $\bar x$ из X существует хотя бы один числовой вектор $\bar x^*$ такой, что $C^*(\bar x^*)=\bar \alpha$, где $\bar \alpha$ — информационный вектор входного вектора $\bar x$.

В множестве операторов $\{R\}$ введем операции умножения на скаляр, сложения и умножения. Пусть r' — скаляр, $R',R''\in\{R\}$. Определим операторы $r'\cdot R',\ R'+R''$ и $R\cdot R''$ следующим образом:

$$r' \cdot R' = (r' \cdot x_1^{*\prime}, \dots, r' \cdot x_l^{*\prime}), \tag{1}$$

$$R' + R'' = (x_1^{*'} + x_1^{*''}, \dots, x_1^{*'} + x_l^{*''}), \tag{2}$$

$$R' \cdot R'' = (x_1^{*'} \cdot x_1^{*''}, \dots, x_1^{*'} \cdot x_l^{*''}). \tag{3}$$

Замыкание множества алгоритмов

Утверждение 2

Замыкание $L\{R\}$ множества $\{R\}$ относительно операций (1) и (2) является векторным пространством.

Утверждение 3

Замыкание $\mathfrak{U}\{R\}$ множества $\{R\}$ относительно операций (1), (2) и (3) является ассоциативной линейной алгеброй с коммутативным умножением.

Определение 3

Множества $L\{A\}$ и $\mathfrak{U}\{A\}$ алгоритмов $\mathcal{A}=R\cdot C^*$ соответственно таких, что $R{\in}L\{R\}$ и $R\in\mathfrak{U}\{R\}$, соответственно называются линейными и алгебраическими замыканиями множества $\{\mathcal{A}\}$.

Свойство полноты задачи

Зафиксируем пару (\hat{x}, \bar{x}) управляющего вектора и входного вектора. Будем рассматривать задачи $Q(\hat{x}, \bar{x})$, обладающие следующим свойством относительно множества операторов распознавания \mathcal{R} .

Определение 4

Если множество векторов $\{R(\hat{x},\bar{x})\}$, где R пробегает некоторое множество операторов распознавания \mathcal{R} , содержит базис в пространстве числовых векторов длины l, то задача $Q(\hat{x},\bar{x},\bar{\alpha})$ называется полной относительно \mathcal{R} .

Связь свойств полноты и корректности

Утверждение 4 (аналог теоремы 2 по Журавлёву)

Если множество задач $\{Q\}$ состоит лишь из задач, полных относительно \Re , то линейное замыкание $L\{R\cdot C^*\}$ $(C^*-$ произвольное фиксированное корректное решающее правило, R пробегает множество \Re является корректным относительно $\{Q\}$.

Основная теорема корректности

Будем рассматривать только такие задачи $Q(\hat{x}, \bar{x}, \bar{\alpha})$, для которых удовлетворяется следующее условие: $\exists k$ такое, что x_k является k-ым элементом вектора \bar{x} и $x_k > 1/2$.

Theorem 1

Линейное замыкание $L\{\mathcal{A}\}$ семейства алгоритмов $\{\mathcal{A}\}=\{R\cdot C^*\}$ с произвольным корректным решающим правилом C^* и операторами распознавания R, определенными алгоритмом \mathfrak{A}_{th} , является корректным на $\{Q\}$.

Операторы распознавания R^t

Фиксация момента времени не в начале вычислительного цикла, а на любом другом значении $au_s < t < au_s + h_i^j$, приводит к операторам вида $R_i^j(\hat{x}_i^j(t), \mathcal{Z}_i^j, \bar{x}_i^j(t))$, который кратко будем записывать R^t .

Для этих операторов постановка задачи распознавания выглядит таким же образом как и для операторов R, формулировки определений полноты и корректности идентичны. Теорема о корректности линейного замыкания $L\{R^t\cdot C^*\}$ доказывается аналогично.

Динамические операторы распознавания

Будем фиксировать не конкретный момент времени t, а промежуток времени $\Delta t = [\tau_s, \tau_s + h_i^j).$

В этом случае распознающий блок R_i^j можно рассматривать как динамический оператор распознавания $\hat{R}_i^j(\hat{x}_i^{j+1}(au_s),\mathcal{Z}_i^j,\omega_{i\Delta t}^j)=\gamma_{i\Delta t}^j$

- ullet принимающий функцию входного воздействия ω_i^j , ограниченную на промежутке времени Δt и
- ullet выдающий функцию выходной величины γ_i^j на том же временном промежутке.

Динамические операторы распознавания

Действие динамического оператора \hat{R}_i^j можно заменить последовательным действием статических операторов

$$R(\hat{x}_{i}^{j+1}(\tau_{s}), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s})), R^{1}(\hat{x}_{i}^{j}(\tau_{s}+1), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s}+1)), \dots,$$

$$R^{h_{i}^{j}-1}(\hat{x}_{i}^{j}(\tau_{s}+h_{i}^{j}-1), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s}+h_{i}^{j}-1)),$$

в результате выдающих последовательность

$$\{\bar{x}_i^{*j}(t)\} = \{\bar{x}_i^{*j}(\tau_s), \bar{x}_i^{*j}(\tau_s+1), \dots, \bar{x}_i^{*j}(\tau_s+h_i^j-1)\}.$$

Так как параметр h_i^j фиксирован, то конечные последовательности векторов $\omega_{i\Delta t}^j$ и $\gamma_{i\Delta t}^j$ можно считать матрицами размерности $l_i^j imes h_i^j$. Далее будем опускать индексы i и j.

Задача классификации по Журавлёву

Задача $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$ состоит в построении алгоритма $\hat{\mathcal{A}}$, вычисляющего по поступившему начальному (управляющему) вектору ожиданий \hat{x} и матрице входных воздействий $\omega_{\Delta t}$ последовательность векторов $\beta_{\Delta t}$, монотонно сходящуюся к информационному вектору $\bar{\alpha}$.

Искомый оператор распознавания \hat{R} должен выдавать весовую матрицу присутствия измеряемых признаков $\gamma_{\Delta t}$, столбцы которой должны сходиться (с учётом корректного решающего правила) к информационному вектору: $\lim_{t \to au_s + h} \bar{x}^*(t) = \bar{\alpha}$.

Корректность алгоритма

Определение 5

Алгоритм $\hat{\mathcal{A}}(\hat{x},\bar{x})=eta_{\Delta t}=(ar{eta}_1,\dots,ar{eta}_h)$ называется корректным для задачи \hat{Q} , если выполнено условие

$$\|\bar{\beta}_1 - \bar{\alpha}\| \geqslant \|\bar{\beta}_2 - \bar{\alpha}\| \geqslant \dots \geqslant \|\bar{\beta}_h - \bar{\alpha}\| = 0.$$

 $\|ar{eta}_i - ar{lpha}\| = \sum_j (eta_{ij} - lpha_j)$, где $eta_{ij} - lpha_j = 0$, если $eta_{ij} = lpha_j$, $eta_{ij} - lpha_j = rac{1}{2}$, если $eta_{ij} = \Delta$, и $eta_{ij} - lpha_j = 0$ иначе. Алгоритм $\hat{\mathcal{A}}$, не являющийся корректным для \hat{Q} , называется некорректным.

Разложимость алгоритма

Утверждение 5

Каждый алгоритм $\hat{\mathcal{A}} \in \{\hat{\mathcal{A}}\}$ представим как последовательность выполнения алгоритмов \hat{R} и \hat{C} , где $\hat{R}(\hat{x},\mathcal{Z},\omega_{\Delta t})=\gamma_{\Delta t}$, $\gamma_{\Delta t}$ — матрица действительных чисел, $\hat{C}(\gamma_{\Delta t})=\beta_{\Delta t}$, $\beta_{\Delta t}$ — матрица значений $\beta_{ij}\in\{0,1,\Delta\}$.

Корректное решающее правило

Корректное решающее правило \hat{C}^* для матрицы $\gamma_{\Delta t}$ определяется через набор корректных правил для векторов (C_1^*,\dots,C_h^*) таких, что

$$||C_1^*(\bar{x}^*(\tau_s)) - \bar{\alpha}|| \ge ||C_2^*(\bar{x}^*(\tau_s + 1)) - \bar{\alpha}|| \ge \dots \ge$$

 $\ge ||C_h^*(\bar{x}^*(\tau_s + h - 1)) - \bar{\alpha}|| = 0.$

В простейшем случае $\forall i \ C_i^*(\bar{x}^*(\tau_s+i)) = \bar{\alpha}.$

Аналогично статическому случаю вводятся определения линейного $L\{\hat{R}\}$ и алгебраического $\mathfrak{U}\{\hat{R}\}$ замыкания над множеством $\{\hat{R}\}.$

Основная теорема корректности

Зафиксируем начальный вектора ожиданий \hat{x} и последовательность входных векторов $\omega_{\Delta t}$.

Если, как и в статическом случае, будем рассматривать только такие задачи $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$, для которых в матрице $\omega_{\Delta t}$ в каждом столбце с номером s $\exists k$ такое, что x_{sk} является k-ым элементом вектора $\bar{x}(\tau_s+s)$ и $x_{sk}>1/2$, то можно сформулировать следующую теорему.

Theorem 2

Линейное замыкание $L\{\hat{\mathcal{A}}\}$ семейства алгоритмов $\{\hat{\mathcal{A}}\}=\{\hat{R}\cdot\hat{C}^*\}$ с произвольным корректным решающим правилом \hat{C}^* и операторами распознавания \hat{R} , определенными алгоритмом \mathfrak{A}_{th} , является корректным на $\{\hat{Q}\}$.

Иерархический оператор распознавания

Для обоснования корректности иерархии операторов динамического распознавания, рассмотрим пример из двухуровневой иерархии, на каждом уровне которой находится по одному оператору: статический $R_{i_1}^{j+1}(\hat{x}_{i_1}^{j+2}, \bar{x}_{i_1}^{j+1}(\tau_s), \bar{\alpha}_{i_1}^{j+1})$ на верхнем уровне и динамический $\hat{R}_{i_2}^j(\hat{x}_{i_2}^{j+1}, \omega_{i_2\Delta t}^j, \bar{\alpha}_{i_2}^j)$ — на нижнем.

Данную иерархию можно рассматривать как иерархический оператор распознавания $\hat{R}^2_{e,j}(\hat{x}^{j+1}_{i_1}(au_s),\mathcal{Z}^{j+1}_{i_1},\mathcal{Z}^j_{i_2},\omega^j_{i_2\Delta t})=\bar{x}^{*j+1}_{i_1}$, принимающий функцию входного воздействия $\omega^j_{i_2\Delta t}$ нижнего уровня, ограниченную на промежутке времени Δt , и выдающий весовой вектор присутствия распознаваемых признаков $\bar{x}^{*j+1}_{i_1}$.

Задача классификации по Журавлёву

Задача $\hat{Q}_{e,j}^2(\hat{x}_{i_1}^{j+2},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_1}^{j+1})$ состоит в построении алгоритма $\hat{\mathcal{A}}_e$, вычисляющего по поступившему начальному вектору ожиданий $\hat{x}_{i_1}^{j+2}$ и матрице входных воздействий $\omega_{i_2\Delta t}^j$ значения информационного вектора $\bar{\alpha}_{i_1}^{j+1}$.

Основная теорема корректности

Зафиксируем начальный вектор ожиданий $\hat{x}_{i_1}^{j+2}$ и последовательность входных векторов $\omega_{i_2\Delta t}^j.$

Если мы будем рассматривать только такие задачи $\hat{Q}^2_{e,j}(\hat{x}^{j+2}_{i_1},\omega^j_{i_2\Delta t},\bar{\alpha}^{j+1}_{i_1})$, для которых в матрице $\omega^j_{i_2\Delta t}$ в каждом столбце с номером s $\exists k$ такое, что x_{sk} является k-ым элементом вектора $\bar{x}^j_{i_2}(\tau_s+s)$ и $x_{sk}>1/2$, то можно сформулировать следующую теорему.

Theorem 3

Линейное замыкание $L\{\hat{\mathcal{A}}_e\}$ семейства алгоритмов $\{\hat{\mathcal{A}}_e\}=\{\hat{R}_{e,j}^2\cdot\hat{C}_e^*\}$ с произвольным корректным решающим правилом \hat{C}_e^* и операторами распознавания $\hat{R}_{e,j}^2$, определёнными алгоритмом \mathfrak{A}_{th} , является корректным на множестве задач $\{\hat{Q}_{e,j}^2\}$.

Результаты

- теорема корректности линейного замыкания иерархических операторов распознавания интерпретируется как существование такого способа обучения иерархии распознающих блоков, в результате которого данная иерархия будет корректно распознавать поступающие стимулы,
- был разработан алгоритм работы региона неокортекса в процессе восприятия с известными допущениями и упрощениями,
- было проведено исследование данного алгоритма путём построения операторов распознавания (статического, динамического и иерархического),
- был применён алгебраический подход к исследуемому алгоритму, доказаны теоремы корректности по всем оператором распознавания,
- с помощью распознающего блока возможно описать и другие компоненты элемента картины мира и построить модели других когнитивных функций.

Протознак и именование знака

До того, как происходит связывание компонент знака в единую структуру под одним именем, существуют лишь "парные" переходы между компонентами знания агента о том или ином явлении. До моментам именования эти компоненты образуют "протознак":

- перцепт становится образом знака после выполнения процедуры именования,
- функциональное значение значением знака,
- биологический смысл личностным смыслом знака.

Схема алгоритма формирования знака

- Формирование перцепта.
- Порождение на основе прошлого опыта или на основе прецедентов — множества пар вида "перцепт — функциональное значение" — функционального значения объекта.
- Получение субъектом из культурной среды, аккумулированной в системе естественного языка, пары "имя знака значение" и оценка специальным механизмом степени близости функционального значения, построенного на стадии 1 к значению, полученному из культурной среды; в случае недостаточной близости переход к п. 1 и продолжение формирования перцепта.
- Овязывание имени из пары "имя знака значение" с перцептом, построенным после завершения выполнения п. 1−3; с этого момента перцепт превращается в образ.

Схема алгоритма формирования знака

- Формирование личностных смыслов знака на основе прецедентов действий с предметом.
- Овязывание имени из пары "имя знака значение" со сформированным личностным смыслом. С этого момента функциональное значение превращается в значение, а биологический смысл в личностный смысл.

Отношения измеримости

Введём семейство бинарных отношений $\{\sqsubset, \sqsubset^1, \sqsubset^2, \dots\}$, определённых на декартовом произведении $\{f_k\} \times \{f_k\}$.

"Признак f_1 является составляющим признака f_2 " или "признак f_2 измеряется по признаку f_1 ", $(f_1,f_2)\in \sqsubset$ или $f_1 \sqsubset f_2$, в том случае, если $f_1\dashv R_1^j, f_2\dashv R_2^{j+1}, R_2^{j+1}$ — родительский блок по отношению к R_1^j и в множестве матриц предсказания \mathcal{Z}_2 признака f_2 существует как минимум одна матрица Z_r^2 , содержащая некоторый столбец \bar{z}_u^r с элементом $z_{uv}^r\neq 0$, где v — индекс признака f_1 во входном векторе вероятностей для распознающего блока R_2^{j+1} .

Отношения измеримости

Пара признаков $(f_1,f_2)\in \sqsubseteq^t$ или $f_1\sqsubseteq^t f_2$, где $t\in\{1,2,\dots\}$, в том случае, если $f_1\dashv R_1^j, f_2\dashv R_2^{j+1}$, R_2^{j+1} — родительский блок по отношению к R_1^j и в множестве матриц предсказания \mathcal{Z}_2 признака f_2 существует как минимум одна матрица Z_r^2 , содержащая t—ый столбец \bar{z}_t^r с элементом $z_{tv}^r\neq 0$, где v— индекс признака f_1 во входном векторе вероятностей для распознающего блока R_2^{j+1} .

Каждый элемент векторов-столбцов соотносится с признаком из входного множества признаков распознающего блока, что означает задание типа для каждого элемента вектора-столбца. Будем обозначать тип k-го элемента вектора-столбца распознающего блока R_i^j как $f_i^j(k) \in F_i^j$, $k \in (1,q_i^j)$.

Признаки "условие" и "эффект"

Введем два выделенных из множества $\{f_k\}$ признака: f_c — "условие" и f_e — "эффект", измеряемые одним распознающим блоком R_0^1 .

Определение 6

Те признаки, которые измеряются распознающими блоками, выступающими родительскими по отношению к блоку R_0^1 , будем называть процедурными признаками, остальные — объектными признаками.

Для любого процедурного признака выполняются следующие естественные условия:

- условие всегда предшествует эффекту,
- условие всегда влечет за собой эффект и
- все условия всегда отделены от своих эффектов.

Столбцы условий и эффектов

Определение 7

Те столбцы матрицы предсказания Z, в которых соответствующий признаку f_e элемент вектора не нулевой, будем называть столбцами эффектов, а те столбцы матрицы предсказания Z, в которых не равен нулю элемент вектора, соответствующий признаку f_c – столбцами условий.

Пополним семейство отношений $\{ \sqsubset, \sqsubset^1, \sqsubset^2, \dots \}$ двумя отношениями: \sqsubset^c и \sqsubset^e , принадлежность к которым пары признаков (f_1, f_2) свидетельствует о том, что признак f_1 присутствует соответственно в столбце условий и эффектов как минимум в одной матрице предсказания процедурного признака f_2 .

Перцепт

Определение 8

Если f_1 — признак, то подмножество $\tilde{p}(f_1)$ множества $\{f_k\}$ таких признаков, что $\forall f_i \in \tilde{p}(f_1) f_i \sqsubset f_1$, будем называть перцептом признака f_1 .

На множестве всех перцептов \tilde{P} введем величину $\rho_p(\tilde{p}(f_1), \tilde{p}(f_2))$, вычисляемую по следующему правилу:

- ullet если f_1 и f_2 измеряются разными распознающими блоками, т.е. $f_1\dashv R_1^j, f_2\dashv R_2^i$, то $ho_p(ilde{p}(f_1), ilde{p}(f_2))=\infty$,
- ullet если f_1 и f_2 измеряются одним и тем же распознающим блоком R_1^j со множеством входных признаков F_1^j мощности q и характерным временем h, то

$$\rho_p(\tilde{p}(f_1), \tilde{p}(f_2)) = \min_{\substack{Z_1^r \in Z_1 \\ Z_s^s \in Z_2}} \frac{1}{q \cdot h} \sum_{u=1}^h \|\bar{z}_u^r - \bar{z}_u^s\|. \tag{4}$$

Функциональное значение

Определение 9

Если f_1 — признак, f_2 — процедурный признак, $f_1 \sqsubset^c f_2$, то будем называть f_2 функциональным значением признака f_1 . Множество всех функциональных значений признака f_1 будем обозначать $\tilde{m}(f_1)$.

На множестве всех функциональных значений \tilde{M} введем величину $ho_m(\tilde{m}(f_1),\tilde{m}(f_2))$, вычисляемую по следующему правилу:

$$\rho_m(\tilde{m}_1(f_1), \tilde{m}_2(f_2)) = \min_{\substack{f_i \in \tilde{m}(f_1) \\ f_j \in \tilde{m}(f_2)}} \rho_p(\tilde{p}(f_i), \tilde{p}(f_j)). \tag{5}$$

Матрица предсказаний процедурного признака

Матрицу предсказания Z_r^p процедурного признака f_p всегда можно представить в следующем виде:

$$Z_r^p = (\bar{z}_1^{r,c}, \dots, \bar{z}_{j_1}^{r,c}, \bar{z}_{j_{1+1}}^{r,e}, \dots, \bar{z}_{i_1}^{r,e}, \dots, \dots, \\ \bar{z}_{i_{k-1}+1}^{r,c}, \dots, \bar{z}_{j_k}^{r,c}, \bar{z}_{j_k+1}^{r,e}, \dots, \bar{z}_{i_k}^{r,e}),$$

где $\bar{z}_i^{r,c}$ — столбцы причин, $\bar{z}_i^{r,e}$ — столбцы следствий.

Величину k будем называть актностью процедурного признака. В дальнейшем будем рассматривать простые матрицы предсказаний k-актного процедурного признака:

$$Z_r^p = (\bar{z}_1^{r,c}, \bar{z}_2^{r,e}, \dots, \bar{z}_{2 \cdot k-1}^{r,c}, \bar{z}_{2 \cdot k}^{r,e}).$$

Краткая форма k-актного процедурного признака f_p имеет матрицу предсказания, в которой оставлены только первый столбец условий и последний столбец эффектов.

Процедурный признак как правило

Любой одноактный процедурный признак f_p , измеряемый распознающим блоком R_i^j , можно представить в виде правила $r_p=(F_C(f_p),F_A(f_p),F_D(f_p))$, в котором:

- ullet $F_C(f_p)\subseteq F_i^j$ множество признаков условий правила: $\forall f\in F_C(f_p)\ f\sqsubset^c f_p;$
- ullet $F_A(f_p)\subseteq F_i^j$ множество добавляемых правилом признаков: $\forall f\in F_A(f_p)\; f\sqsubset^e f_p, f
 otin F_C;$
- ullet $F_D(f_p)\subseteq F_i^j$ множество удаляемых правилом признаков: $orall f\in F_D(f_p)\ f
 otin F_A, f\in F_C.$

Свойство выполнимости

Определение 10

Процедурный признак f_p^1 с матрицей предсказания $Z=(\bar{z}_1^c,\bar{z}_2^e)$ выполняется на векторе z длины q, если $z\cdot \bar{z}_1^c=\bar{z}_1^c$.

Будем говорить, что процедурный признак f_p^1 выполним в условиях процедурного признака f_p^2 , если

- ullet оба признака измеряются одним и тем же распознающим блоком R_i^j и признак f_p^1 выполняется на столбце условий матрицы предсказания признака f_p^2 ,
- $f_p^1\dashv R_1^{j_1}, f_p^2\dashv R_2^{j_2}$, множества $F_C(f_p^1)$ и $F_C(f_p^2)$ состоят из одних и тех же признаков, образуемый вектор \tilde{z} (той же мощности, что и множество $F_1^{j_1}$) элементы которого, соответствующие признакам из $F_C(f_p^2)$ принимаются равными 1, остальные 0, и признак f_p^1 выполним на векторе \tilde{z} .

Свойство конфликтности

Определение 11

Будем говорить, что два процедурных признака f_p^1 и f_p^2 конфликтуют, если выполнено как минимум одно из следующих условий:

- $F_D(f_p^1) \cap F_A(f_p^2) \neq \emptyset$,
- $F_D(f_p^2) \cap F_A(f_p^1) \neq \emptyset$,
- $F_D(f_p^1) \cap F_C(f_p^2) \neq \emptyset$,
- $F_D(f_p^2) \cap F_C(f_p^1) \neq \varnothing$.

Операции приведения признаков

Определение 12

Операцией сохраняющего приведения вектор-столбца $ar{z}_1$ к множеству входных признаков $F_{i_2}^{j_2}$ будем называть такой вектор $ar{z}_3$ длины $q_{i_2}^{j_2}$, элемент которого $z_{3k}=1$, если $f_{i_1}^{j_1}(k)=f_{i_2}^{j_2}(k)$ и $z_{1k}=1$, иначе $z_{3k}=0$, и обозначать $(ar{z}_1 o F_{i_2}^{j_2})=ar{z}_3$.

Определение 13

Операцией сужающего приведения вектор-столбца \bar{z}_1 к некоторому столбцу \bar{z}_2 распознающего блока $R_{i_2}^{j_2}$ будем называть такой вектор \bar{z}_3 длины $q_{i_2}^{j_2}$, элемент которого $z_{3k}=1$, если $f_{i_1}^{j_1}(k)=f_{i_2}^{j_2}(k)$, $z_{2k}=1$ и $z_{1k}=1$, иначе $z_{3k}=0$, и обозначать $(\bar{z}_1\Rightarrow\bar{z}_2)=\bar{z}_3$.

Опыт наблюдения

У субъекта имеется опыт наблюдения, который выражается в виде отношения Ψ_p^m : $\tilde{p}\Psi_p^m\tilde{m}$, или $\Psi_p^m(\tilde{p})=\tilde{m}$, в том случае, если $\tilde{p}\in\tilde{P}$ является перцептом некоторого признака f, а $\tilde{m}\in\tilde{M}$ — функциональным значением того же признака f.

Алгоритм \mathfrak{A}_{pm} (часть I)

Require: $\tilde{m} = \{f_p\}, \Psi_p^m, \hat{F} \subseteq \{f_k\};$

Алгоритм \mathfrak{A}_{pm} (часть I)

```
Require: \tilde{m} = \{f_p\}, \Psi_p^m, \hat{F} \subseteq \{f_k\};
```

- 1: $\tilde{p}^{*(0)} := \varnothing$;
- 2: $Z^{*(0)} := \emptyset$;
- 3: t := 0;

Алгоритм \mathfrak{A}_{pm} (часть I)

4: for all $f^{(t)} \in \hat{F}$ do

```
Require: \tilde{m} = \{f_p\}, \Psi_p^m, \hat{F} \subseteq \{f_k\};

1: \tilde{p}^{*(0)} := \varnothing;

2: Z^{*(0)} := \varnothing;

3: t := 0;
```

Алгоритм \mathfrak{A}_{pm} (часть I)

```
Require: \tilde{m} = \{f_p\}, \Psi_p^m, \hat{F} \subseteq \{f_k\};

1: \tilde{p}^{*(0)} := \varnothing;

2: Z^{*(0)} := \varnothing;

3: t := 0;

4: for all f^{(t)} \in \hat{F} do

5: if \exists \tilde{m}^{(t)} \in \tilde{M} такое, что \tilde{p}(f^{(t)}), \tilde{m}^{(t)}) \in \Psi_p^m and

6: \tilde{m}^{(t)} выполним в условиях признака f_p and

7: \nexists f : f \in \tilde{p}^{*(t)}, (\tilde{p}(f), \tilde{m}(f)) \in \Psi_p^m, \tilde{m} конфликтует с \tilde{m}^{(t)} then
```

Алгоритм \mathfrak{A}_{pm} (часть I)

```
Require: \tilde{m} = \{f_p\}, \Psi_n^m, \hat{F} \subseteq \{f_k\};
 1: \tilde{p}^{*(0)} := \emptyset:
 2 Z^{*(0)} := \emptyset
 3: t := 0:
 4: for all f^{(t)} \in \hat{F} do
            if \exists \tilde{m}^{(t)} \in \tilde{M} такое, что \tilde{p}(f^{(t)}), \tilde{m}^{(t)}) \in \Psi_n^m and
 5:
     	ilde{m}^{(t)} выполним в условиях признака f_p and
 6:

\exists f: f \in \tilde{p}^{*(t)}, (\tilde{p}(f), \tilde{m}(f)) \in \Psi_n^m, \tilde{m} конфликтует с \tilde{m}^{(t)} then
 7:
                  \tilde{p}^{*(t)} = \tilde{p}^{*(t)} \cup \{f^{(t)}\};
 8:
                  if \exists R_i^j такой, что f^{(t)} \in F_i^j then
 9:
                         R_i^{j(t)} := R_i^j
10:
```

```
Алгоритм \mathfrak{A}_{pm} (часть II)

11: else
12: R_i^{j(t)} := \argmax_{\{R\}} (F_i^j \cap \tilde{p}^{(t)}), R_i^{j(t)} := F_i^{j(t)} \cup f^{(t)};
13: end if
```

Алгоритм \mathfrak{A}_{pm} (часть II)

11: else
12:
$$R_i^{j(t)}:=rg\max_{\{R\}}(F_i^j\cap ilde{p}^{(t)}), R_i^{j(t)}:=F_i^{j(t)}\cup f^{(t)};$$
13: end if
14: $ar{z}_s:=(z_{s1},z_{s2},\ldots,z_{sq}), z_{sk}=1$, если k – индекс признака $f^{(t)}$ во входном векторе распознающего блока $R_i^{j(t)}$ и $z_{sk}=0$ иначе;

 $Z^{*(t)} := Z^{*(t)} \cup \bar{z}_{a}$

Алгоритм \mathfrak{A}_{pm} (часть II) 11: else 12: $R_i^{j(t)} := \underset{\{R\}}{\arg\max}(F_i^j \cap \tilde{p}^{(t)}), R_i^{j(t)} := F_i^{j(t)} \cup f^{(t)};$ 13: end if 14: $\bar{z}_s := (z_{s1}, z_{s2}, \dots, z_{sq}), z_{sk} = 1$, если k – индекс признака $f^{(t)}$ во входном векторе распознающего блока $R_i^{j(t)}$ и $z_{sk} = 0$ иначе;

15:

```
Алгоритм \mathfrak{A}_{pm} (часть II)
11:
                    else
                          R_i^{j(t)} := \arg\max(F_i^j \cap \tilde{p}^{(t)}), R_i^{j(t)} := F_i^{j(t)} \cup f^{(t)};
12:
                    end if
13:
                    ar{z}_s := (z_{s1}, z_{s2}, \dots, z_{sq}), z_{sk} = 1, если k – индекс признака f^{(t)}
14:
       во входном векторе распознающего блока R_i^{j(t)} и z_{sk}=0 иначе;
                    Z^{*(t)} := Z^{*(t)} \cup \bar{z}_e:
15:
                    Z_n^{(t)}:=(ar{z}_1^{c(t)},ar{z}_2^{e(t)},\ldots,ar{z}_{2\cdot k-1}^{c(t)},ar{z}_{2\cdot k}^{e(t)}), где
16:
                         \bar{z}_i^{c(t)} = \bigvee_{\tilde{m}_i^{(t)}} (\bar{z}_j^{c(t)} \rightarrow F_p^j), \bar{z}_i^{e(t)} = \bigvee_{\tilde{m}^{(t)}} (\bar{z}_j^{e(t)} \Rightarrow \bar{z}_j^e),
17:
             end if
18:
```

Алгоритм \mathfrak{A}_{pm} (часть III)

```
19: \tilde{m}^{*(t)} = \{f_p^{(t)}\};

20: \mathcal{Z}^{*(t)} = \{Z^{*(t)}\};

21: t = t + 1;
```

22: end for

Алгоритм \mathfrak{A}_{pm} (часть III)

```
19: \tilde{m}^{*(t)} = \{f_p^{(t)}\};
20: \mathcal{Z}^{*(t)} = \{Z^{*(t)}\};
21: t = t + 1;
22: end for return \Psi_p^m, определенная на паре (\tilde{p}, \tilde{m}), где \tilde{p} = \lim_{t \to \infty} \tilde{p}^{*(t)},
23: f^*, Z^* = \lim_{t \to \infty} Z^{*(t)}, \mathcal{Z}^* = \{Z^*\};
```

\mathfrak{A}_{pm} Теорема корректности алгоритма \mathfrak{A}_{pm}

Theorem 4

Алгоритм \mathfrak{A}_{pm} корректен, т. е. последовательность функциональных значений $\langle \tilde{m}^{*(0)}, \tilde{m}^{*(1)}, \ldots \rangle$, которая строится с помощью алгоритма \mathfrak{A}_{pm} для функционального значения \tilde{m} , сходится к \tilde{m} .

Доказательство.

Рассмотрим два элемента последовательности $\tilde{m}^{*(t)}=\{f_p^{(t)}\}$ и $\tilde{m}^{*(t+1)}=\{f_p^{(t+1)}\}$. Соответствующие матрицы предсказания будут иметь следующий вид:

$$Z_p^{(t)} = (\bar{z}_1^{c(t)}, \bar{z}_2^{e(t)}, \dots, \bar{z}_{2 \cdot k-1}^{c(t)}, \bar{z}_{2 \cdot k}^{e(t)}), \tag{6}$$

$$Z_p^{(t+1)} = (\bar{z}_1^{c(t+1)}, \bar{z}_2^{e(t+1)}, \dots, \dots, \bar{z}_{2 \cdot k-1}^{c(t+1)}, \bar{z}_{2 \cdot k}^{e(t+1)}). \tag{7}$$

Если на шаге 1 и 2 алгоритма \mathfrak{A}_{pm} на (t+1)-й итерации не был найден подходящий признак, то матрицы $Z_p^{(t)}$ и $Z_p^{(t+1)}$ равны. Рассмотрим случай, когда был найден подходящий признак $f^{(t+1)}$ с функциональным значением $\tilde{m}^{(t+1)}=\{\tilde{f}_p^{(t+1)}\}$ с соответствующей матрицей предсказания $\tilde{Z}_p^{(t+1)}=(\bar{z}^{c(t+1)},\bar{z}^{e(t+1)})$.

Доказательство (продолжение).

Так как выполнено условие шага 1, то признак $ilde f_p^{(t+1)}$ выполним на некотором $(2\cdot s-1$ -м столбце условий матрицы предсказания признака f_p . Это означает, что матрицы $Z_p^{(t)}$ и $Z_p^{(t+1)}$ будут отличать только в двух вектор-столбцах $(2\cdot s-1)$ -м и $(2\cdot s)$ -м:

$$\bar{z}_{2\cdot s-1}^{c(t+1)} = \bar{z}_{2\cdot s-1}^{c(t)} \lor (\bar{z}^{c(t+1)} \to F_p^j), \tag{8}$$

$$\bar{z}_{2\cdot s}^{e(t+1)} = \bar{z}_{2\cdot s}^{e(t)} \lor (\bar{z}^{e(t+1)} \Rightarrow \bar{z}_{2\cdot s}^e).$$
 (9)

По определению расстояние между функциональными значениями $ilde{m}^{(t)}$ и $ilde{m}$ примет следующее значение:

$$\rho_m(\tilde{m}^{(t)}, \tilde{m}) = \min_{\substack{f_i \in \tilde{m}^{(t)} \\ f_i \in \tilde{m}}} \rho_p(\tilde{p}(f_i), \tilde{p}(f_j)) = \rho_p(\tilde{p}(f_p^{(t)}), \tilde{p}(f_p)) =$$

Доказательство (продолжение).

$$= \frac{1}{q \cdot h} \sum_{\substack{\bar{z}_u^1 \in Z_p^{(t)} \\ \bar{z}_z^2 \in Z_-}} \|\bar{z}_u^1 - \bar{z}_u^2\|. \tag{10}$$

Аналогично для $\tilde{m}^{(t+1)}$:

$$\rho_m(\tilde{m}^{(t+1)}, \tilde{m}) = \frac{1}{q \cdot h} \sum_{\bar{z}_u^1 \in Z_p^{(t+1)}} \|\bar{z}_u^1 - \bar{z}_u^2\|.$$
 (11)

Рассмотрим разность

$$\rho_m(\tilde{m}^{(t)}, \tilde{m}) - \rho_m(\tilde{m}^{(t+1)}, \tilde{m}) = \frac{1}{q \cdot h} (\|\bar{z}_{2 \cdot s - 1}^{c(t)} - \bar{z}_{2 \cdot s - 1}^{c}\| + \|\bar{z}_{2 \cdot s}^{e(t)} - \bar{z}_{2 \cdot s}^{e}\| - \|\bar{z}_{2 \cdot s}^{e(t)}\| - \|\bar{z}_{2 \cdot s}^{$$

Доказательство (продолжение).

$$-\|\bar{z}_{2\cdot s-1}^{c(t+1)} - \bar{z}_{2\cdot s-1}^{c}\| - \|\bar{z}_{2\cdot s}^{e(t+1)} - \bar{z}_{2\cdot s}^{e}\|) = \frac{1}{q \cdot h} (\|\bar{z}_{2\cdot s-1}^{c(t)} - \bar{z}_{2\cdot s-1}^{c}\| + \|\bar{z}_{2\cdot s}^{e(t)} - \bar{z}_{2\cdot s}^{e}\| - \|\bar{z}_{2\cdot s-1}^{c(t)} \vee (\bar{z}^{c(t+1)} \to F_p^j) - \bar{z}_{2\cdot s-1}^{c}\| - \|\bar{z}_{2\cdot s}^{e(t)} \vee (\bar{z}^{e(t+1)} \Rightarrow \bar{z}_{2\cdot s}^{e}) - \bar{z}_{2\cdot s}^{e}\|),$$

где $ar{z}_{2\cdot s-1}^c, ar{z}_{2\cdot s}^e$ — столбцы матрицы предсказания процедурного признака f_p , соответствующего функциональному значению $ilde{m}$. Так как $ilde{f}_p^{(t+1)}$ выполним на $(2\cdot s-1)$ —м столбце условий матрицы предсказания признака f_p , то после применении операции приведения $ar{z}^{c(t+1)} o F_p^j$ в результирующем векторе единицы появляются только на тех же местах что и в векторе $ar{z}_{2\cdot s-1}^c$.

Доказательство (продолжение).

Это означает, что в векторе $ar{z}_{2\cdot s-1}^{c(t)}\lor(ar{z}^{c(t+1)}\to F_p^j)$ по сравнению с вектором $ar{z}_{2\cdot s-1}^{c(t)}$ единицы находятся только в тех же местах, что и в векторе $ar{z}_{2\cdot s-1}^c$, а новых нулей не появляется. В следствие чего разность $\|ar{z}_{2\cdot s-1}^{c(t)}-ar{z}_{2\cdot s-1}^c\|-\|ar{z}_{2\cdot s-1}^{c(t)}\lor(ar{z}^{c(t+1)}\to F_p^j)-ar{z}_{2\cdot s-1}^c\|$ всегда больше нуля.

Так как для столбцов эффектов применяется операция сужающего приведения, которая оставляет единицы только на тех местах, на которых одновременно находятся единицы в приводимом векторе и векторе, к которому осуществляется приведение. В связи с этим разность $\|\bar{z}_{2\cdot s}^{e(t)} - \bar{z}_{2\cdot s}^e\| - \|\bar{z}_{2\cdot s}^{e(t)} \lor (\bar{z}^{e(t+1)} \Rightarrow \bar{z}_{2\cdot s}^e) - \bar{z}_{2\cdot s}^e\|$ также больше нуля.

Доказательство (окончание).

Так как обе разности в скобках выражения для $ho_m(\tilde{m}^{(t)},\tilde{m})ho_m(\tilde{m}^{(t+1)},\tilde{m})$ больше нуля, то отсюда следует, что функциональное значение $\tilde{m}^{(t+1)}$ ближе к \tilde{m} . В виду произвольности выбора итерации t, это приводит к сходимости всей последовательности $\langle \tilde{m}^{*(0)}, \tilde{m}^{*(1)}, \dots \rangle$.

Архитектура интеллектуального агента

Результаты

- Впервые построена модель структурных компонент элемента картины мира субъекта деятельности.
- Впервые проведена постановка задач распознавания в терминах алгебраической теории для образной компоненты элемента картины мира в динамическом и иерархическом случаях.
- Доказаны теоремы корректности линейных замыканий множеств построенных в работе операторов распознавания.
- Построен алгоритм итерационного процесса формирования нового элемента картины мира.
- Проведено оригинальное исследование итерационного процесса формирования нового элемента картины мира.

Спасибо за внимание!

ИСА РАН, лаб. «Динамические интеллектуальные системы», pan@isa.ru