Geofísica Aplicada a Sísmica de Exploração Teoria Propagação de Ondas

Carlos H. S. Barbosa¹ & Luana N. Osório²

17 de Outubro de 2018

¹c.barbosa@nacad.ufrj.br

²luana.n.osorio@gmail.com

Sumário

» DIA 1

- Motivações
 - Levantamento Sísmico
 - Perspectivas da Indústria do Petróleo
- Fundamentos de Sísmica
 - Tipos de Ondas Sísmica
 - Interpretação Geométrica: Traçados de Raios
 - O Sismograma
 - Processamento Sísmico: Aspectos Gerais
- Aquisição Sísmica: Onshore e Offshore

Sumário

» DIA 2

- Introdução
- Equação da Onda Acústica
 - Domínio do Tempo Equação Escalar da Onda
 - Domínio da Frequência Equação de Helmholtz
- Método das Diferenças Finitas
 - Teoria
 - Discretização da Equação Escalar da Onda
 - Condições de Contorno e Camadas de Amortecimento
- Ambiente Seismic Unix (SU)

Sumário

» DIA 3

- Introdução
- Implementação Modelagem Sísmica
 - Linguagem de Programação C
 - Explicação da Estrutura do Código
- Aplicações Numéricas
 - Modelo de Velocidade Homogênea
 - Modelo de Velocidades Camadas Paralelas
 - Modelo de Velocidades Marmousi

Referências

- » Curso baseado no livro "An Introduction to Geophysical Exploration" escrito por Philip Kearey, Michael Brooks e Ian Hill e ministrado sem fins lucrativos na Universidade Federal Rural do Rio de Janeiro (UFRRJ).
 - Imagens de autoria[®] dos escritores do livro (imagens do primeiro dia de curso).
 - Exceto as imagens que contém referências na própria página.

» Referências complementares:

- Manual do Seismic Unix (SU).
- Chapman, C. H. 2004. Fundamentals of seismic wave propagation, Cambridge UP.
- Ajo-Franklin, J. B. 2005. Frequency domain modeling techniques for the escalar wave equation: An introduction. s.l.: MIT.

INTRODUÇÃO

Introdução

OPERADORES DIFERENCIAIS

Campo Escalar: $\phi(x, y, z)$, Campo Vetorial: $\bar{v} = (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$.

» Gradiente:

$$\nabla \phi = \frac{\partial \phi}{\partial x}\hat{\mathbf{i}} + \frac{\partial \phi}{\partial y}\hat{\mathbf{j}} + \frac{\partial \phi}{\partial z}\hat{\mathbf{k}}.$$

» Divergente:

$$\nabla \cdot \bar{\mathbf{v}} = \frac{\partial \mathbf{v}_{\mathsf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_{\mathsf{y}}}{\partial \mathbf{v}} + \frac{\partial \mathbf{v}_{\mathsf{z}}}{\partial \mathbf{z}}.$$

Introdução

OPERADORES DIFERENCIAIS

Campo Escalar: $\phi(x, y, z)$,

Campo Vetorial: $\vec{v} = (v_x \hat{i} + v_y \hat{j} + v_z \hat{k}).$

» Laplaciano:

$$\nabla \cdot \nabla \phi = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}.$$

» Rotacional:

$$\nabla \times \bar{\mathbf{v}} = \left(\frac{\partial \mathbf{v}_{\mathbf{z}}}{\partial \mathbf{y}} - \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{z}}\right)\hat{\mathbf{i}} + \left(\frac{\partial \mathbf{v}_{\mathbf{z}}}{\partial \mathbf{x}} - \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{z}}\right)\hat{\mathbf{j}} + \left(\frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{x}} - \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}}\right)\hat{\mathbf{k}}$$

Introdução: Operadores Matemáticos

OPERADORES DIFERENCIAIS

Campo Escalar: ϕ

Campo Vetorial: $\bar{v} = (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$

Aplicação dos operadores aos campos escalar e vetorial.

	Campo de Entrada	Resultado
Gradiente ∇	ϕ	$ abla \phi$ (Campo Vetorial)
Divergente $\nabla \cdot$	$ar{m{v}}$	$ abla \cdot ar{v}$ (Campo Escalar)
Rotacional $ abla imes$	$ar{m{ u}}$	$ abla imes ar{v}$ (Campo Vetorial)
Laplaciano $ abla^2$	ϕ	$ abla^2 \phi$ (Campo Escalar)

Derivada Direcional

$$\frac{\partial \phi}{\partial s} = \nabla \phi \cdot \vec{s}$$

EQUAÇÃO DA ONDA ACÚSTICA

Domínio do Tempo

Princípios utilizados na dedução da equação acústica da onda

- Princípio da conservação de massa
 - Equações de continuidade
- Princípio da conservação de momento
 - Equações do movimento
- Relação constitutiva
 - Equações de estado

Princípio da conservação de massa:

A variação de massa por unidade de tempo dentro de um volume controlado V é igual ao fluxo na entrada menos o fluxo na saída mais a massa resultante das massas por unidade de tempo.

Equação de continuidade

$$\frac{\partial \rho}{\partial t} = -\nabla(\rho \bar{\mathbf{v}}) + \frac{\partial I_{\rho}}{\partial t}$$

- \bar{v} é a velocidade da partícula,
- ρ é a densidade volumétrica.

Princípio da conservação de momento:

A variação do momento com relação ao tempo é igual à resultante de todas as forças.

Equação do movimento

$$\frac{\partial(\rho\bar{\mathbf{v}})}{\partial t} = \bar{\mathbf{f}} - \nabla \mathbf{p}$$

- \bar{v} é a velocidade da partícula,
- \bullet ρ é a densidade volumétrica.

Relação constitutiva:

É a relação entre duas quantidades físicas que é específica a um determinado material ou classe de materiais.

Equação de estado

$$\frac{\Delta \rho}{\rho_0} = \gamma \frac{\Delta p}{p_0} + \frac{\gamma(\gamma - 1)}{2} \left(\frac{\Delta p}{p_0}\right)^2 + \cdots$$

- ρ é a densidade volumétrica,
- γ é a razão entre o calor total e calor específico para uma pressão p constante.

Equação da Onda Acústica

$$\frac{1}{k}\frac{\partial p}{\partial t} + \nabla \cdot \bar{v} = \frac{\partial I_{\rho}}{\partial t}$$
$$\frac{\partial \bar{v}}{\partial t} + \frac{1}{\rho}\nabla p = \frac{\bar{f}}{\rho}$$

- p e \bar{v} são o campo de pressão e a velocidade da partícula, respectivamente,
- $p \in \overline{v}$ são campos escalar e vetorial em função de x, y, $z \in t$,
- \bullet ρ e k a densidade volumétrica e o módulo de Bulk, respectivamente,
- \bar{f} é a densidade de forças externas,
- I_{ρ} é distribuição de energia inserida no meio.

Equação da Onda Acústica

$$\frac{\rho}{k} \frac{\partial^2 \mathbf{p}}{\partial t^2} - \rho \nabla \cdot \left(\frac{1}{\rho} \nabla \mathbf{p}\right) = \rho \frac{\partial^2 \mathbf{I}_{\rho}}{\partial t^2} - \rho \nabla \cdot \left(\frac{\overline{\mathbf{f}}}{\rho}\right)$$

- p é o campo de pressão,
- p é o campo escalar em função de x, y, z e t, ou seja, p(x, y, z, t),
- ullet ρ e k a densidade volumétrica e o módulo de Bulk, respectivamente,
- \bullet \bar{f} é a densidade de forças externas,
- I_{ρ} é distribuição de energia inserida no meio,
- $\rho/k = 1/c^2$, onde c é velocidade de propagação da onda P.

Equação da Onda Acústica

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = \rho \frac{\partial^2 I_{\rho}}{\partial t^2}$$

- p é o campo de pressão,
- p é o campo escalar em função de x, y, z e t, ou seja, p(x, y, z, t),
- ullet $I_{
 ho}$ é distribuição de energia inserida no meio,
- $c = \sqrt{k/\rho}$ é a velocidade de propagação da onda P no meio.

EQUAÇÃO DA ONDA ACÚSTICA

Domínio da Frequência

Transformada de Fourier

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

Transformada Inversa de Fourier

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} dt$$

- $i = \sqrt{-1}$,
- \bullet ω é a frequência em rad/s,

A equação da onda no domínio da frequência é obtida aplicando a Transformada de Fourier à equação no domínio do tempo.

Equação da Onda: Domínio da Frequência

$$\nabla^2 P(\vec{r}, \omega) + \frac{\omega^2}{c^2} P(\vec{r}, \omega) = S(\omega)$$

Equação da Onda: Domínio da Tempo

$$\nabla^2 p(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2 p(\vec{r},t)}{\partial t^2} = -s(t)$$

Parte real do campo de pressão no domínio da frequência:

Esquerda: 1 Hz e Direita: 5 Hz.

Parte real do campo de pressão no domínio da frequência:

Esquerda: 10 Hz e Direita: 20 Hz.

Campo de pressão no domínio do tempo:

Snapshot no tempo t = 0,4s de propagação em um meio homogêneo.

MÉTODO DAS DIFERENÇAS FINITAS

Método das Diferenças Finitas

$$D_+u(x)=\frac{u(x+h)-u(x)}{h}$$

$$D_{-}u(x)=\frac{u(x)-u(x+h)}{h}$$

Randall J. LeVeque (2007)

Método das Diferenças Finitas

- As duas equações no slide anterior são conhecidas como método das diferenças finitas progressivas e regressivas,
- Existem outras maneiras mais sotisticadas de se obter tais aproximações,
- Método dos coeficientes indetermindados,
- Expansão de uma função em série de Taylor é uma delas:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a).$$

Método das Diferenças Finitas: Expansão de Taylor

• Expandindo uma função f(x) nos pontos $x \pm \Delta x$ e $x \pm 2\Delta x$, chega-se à:

$$f(x + \Delta x) = f(x) + \frac{\partial f(x)}{\partial x} \frac{\Delta x}{1!} + \frac{\partial^2 f(x)}{\partial x^2} \frac{(\Delta x)^2}{2!} + \frac{\partial^3 f(x)}{\partial x^3} \frac{(\Delta x)^3}{3!} + \dots$$

$$f(x - \Delta x) = f(x) - \frac{\partial f(x)}{\partial x} \frac{\Delta x}{1!} + \frac{\partial^2 f(x)}{\partial x^2} \frac{(\Delta x)^2}{2!} - \frac{\partial^3 f(x)}{\partial x^3} \frac{(\Delta x)^3}{3!} + \dots$$

$$f(x+2\Delta x) = f(x) + \frac{\partial f(x)}{\partial x} \frac{2\Delta x}{1!} + \frac{\partial^2 f(x)}{\partial x^2} \frac{(2\Delta x)^2}{2!} + \frac{\partial^3 f(x)}{\partial x^3} \frac{(2\Delta x)^3}{3!} \dots$$

$$f(x-2\Delta x) = f(x) - \frac{\partial f(x)}{\partial x} \frac{2\Delta x}{1!} + \frac{\partial^2 f(x)}{\partial x^2} \frac{(2\Delta x)^2}{2!} - \frac{\partial^3 f(x)}{\partial x^3} \frac{(2\Delta x)^3}{3!} + \dots$$

Método das Diferenças Finitas: Expansão de Taylor

 Somando adequadamente as equações anteriores e rearranjando chega-se a aproximação da derivada de segunda ordem por diferenças finitas:

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{a_0 f(x) + a_1 \left[f(x + \Delta x) + f(x - \Delta x) \right] + a_2 \left[f(x + 2\Delta x) + f(x - 2\Delta x) \right]}{(\Delta x)^2} + O(\Delta x^4)$$

Aproximação Geral

 Com a Expansão de Taylor é possível deduzir expressão geral da discretização da derivada segunda:

$$\frac{\partial^2 f}{\partial i^2} \approx \frac{1}{\Delta i^2} \left[c_0 f_0 + \sum_{m=1}^{N/2} c_m (f_m + f_{-m}) \right],$$

- c_m são os coeficientes da discretização,
- i diz respeito a variável de interesse,
- N é a ordem de discretização da derivada.

Coeficientes das Diferenças Finitas

N	0	1	2	3	4	5	6	7	8
2	-2	1							
4	$-\frac{5}{2}$	4/3	$-\frac{1}{12}$						
6	$-\frac{49}{18}$	3 2	$-\frac{3}{20}$	190					
8	$-\frac{205}{72}$	8 5	$-\frac{1}{5}$	8 315	$-\frac{1}{560}$				
10	$-\frac{5269}{1800}$	5 3	$-\frac{5}{21}$	5 126	$-\frac{5}{1008}$	$\frac{1}{3150}$			
12	$-\frac{5369}{1800}$	12	$-\frac{15}{56}$	10 189	$-\frac{1}{112}$	$\frac{2}{1925}$	$-\frac{1}{16632}$		
14	$-\frac{266681}{88200}$	7 4	$-\frac{7}{24}$	7	$-\frac{7}{528}$	7 3300	7	$\frac{1}{84084}$	
16	$-\frac{1077749}{352800}$	16	$-\frac{14}{45}$	112 1485	$-\frac{7}{396}$	112 32175	$-\frac{30888}{23861}$	16 315315	$-\frac{1}{41184}$
	552000	-	40	1.400	330	22112	5001	212212	41104

MÉTODO DAS DIFERENÇAS FINITAS

Discretização da Equação Escalar da Onda

Equação da Onda Acústica

 A propagação é descrita pela equação diferencial parcial de segunda ordem:

$$\frac{1}{c^2} \frac{\partial^2 p(\vec{r}, t)}{\partial t^2} - \nabla^2 p(\vec{r}, t) = s(t) \delta(\vec{r} - \vec{r}_s)$$

- p é a pressão função do espaço $\vec{r} = (x, y, z)$ and tempo (t),
- c é a velocidade de propagação da onda compressional no meio,
- $\delta(\vec{r} \vec{r}_s)$ é um operador que representa a localização da fonte sísmica s(t),

Discretização das Derivadas Parciais

$$\begin{split} &\frac{\partial^2 p(\mathbf{x}, \mathbf{y}, \mathbf{z}, t)}{\partial t^2} \approx \frac{1}{\Delta t^2} \left[P_{i,j,k}^{n+1} - 2 P_{i,j,k}^n + P_{i,j,k}^{n-1} \right] \\ &\frac{\partial^2 p(\mathbf{x}, \mathbf{y}, \mathbf{z}, t)}{\partial \mathbf{x}^2} \approx \frac{1}{h^2} \left[c_0 P_{i,j,k}^n + c_1 (P_{i+1,j,k}^n + P_{i-1,j,k}^n) + c_2 (P_{i+2,j,k}^n + P_{i-2,j,k}^n)) \right] \\ &\frac{\partial^2 p(\mathbf{x}, \mathbf{y}, \mathbf{z}, t)}{\partial \mathbf{x}^2} \approx \frac{1}{h^2} \left[c_0 P_{i,j,k}^n + c_1 (P_{i,j+1,k}^n + P_{i,j-1,k}^n) + c_2 (P_{i,j+2,k}^n + P_{i,j-2,k}^n)) \right] \\ &\frac{\partial^2 p(\mathbf{x}, \mathbf{y}, \mathbf{z}, t)}{\partial \mathbf{z}^2} \approx \frac{1}{h^2} \left[c_0 P_{i,j,k}^n + c_1 (P_{i,j,k+1}^n + P_{i,j,k-1}^n) + c_2 (P_{i,j,k+2}^n + P_{i,j,k-2}^n)) \right] \end{split}$$

- $h = \Delta x = \Delta x = \Delta z$ é o espaçamento da malha,
- \bullet Δt é o intervalo de tempo.

Método das Diferenças Finitas

Critério de Não Dispersão

$$h \leq \frac{V_{min}}{Gf_{corte}}$$

- V_{min} é a menor velocidade de propagação da onda P no meio;
- G determina a quantidade de pontos necessário para representar o menor comprimento de onda;
- f_{corte} é a frequência de corte.

Equação da Onda Acústica: Fonte Sísmica

$$f(t) = \left[1 - 2\pi(\pi f_c f_d)^2\right] e^{\left[-\pi(\pi f_c f_d)^2\right]}$$

- $t_d = k\Delta t t_f$ representa a translação temporal da fonte no tempo;
- t_f é o meio período da função Gaussiana dado por:

$$t_f = \frac{2\sqrt{\pi}}{f_c}$$

е

$$t_{corte} = 3\sqrt{\pi}f_c$$

• f_{corte} é a frequência de corte.

Fonte Sísmica

Fonte Sísmica: Espectro de Frequência

Critério de Estabilidade

$$\Delta t \leq \frac{h}{\beta V_{max}}$$

- V_{max} é a maior velocidade de propagação da onda P no meio;
- h é o espaçamento da malha;
- $oldsymbol{\circ}$ determina quantos intervalos de tempo serão necessários para que a frente de onda percorra uma distância equivalente ao espaçamento entre os pontos da malha.

MÉTODO DAS DIFERENÇAS FINITAS

Condições de Contorno e Camadas de Amortecimento

Condições de Contorno e Camadas de Amortecimento

- É necessário o conhecimento das condições iniciais e de contorno para solucionar as equações diferenciais:
 - Condições de contorno usuais, tais como, Dirichlet e Neumann,
 - Condições de contorno não reflexivas (Reynolds, 1978),
 - Camadas de Amortecimento: Cerjan, Perfectly Matched Layer (PML) e variações, tal como, a PML Convolutional.
- As condições de contorno não reflexivas e camadas de amortecimentos são utilizadas para superar o problema de truncamento do modelo de trabalho.

Condições de Contorno

Reynolds (1978)

 Baseada na solução da equação da onda 1D proposta por D'Alambert.

Equação da onda 1D sem fonte

$$\frac{\partial^2 p}{\partial t^2} = c^2 \frac{\partial^2 p}{\partial x^2}$$

Solução de D'Alambert

$$p = f_1(x - ct) + f_2(x + ct)$$

Condições de Contorno

Reynolds (1978)

 Baseada na solução da equação da onda 1D proposta por D'Alambert.

Manipulando a solução

$$\frac{\partial p}{\partial t} = cf_2'; \qquad \frac{\partial p}{\partial x} = f_2'$$

Equação contorno esquerdo

$$\frac{\partial p}{\partial t} - c \frac{\partial p}{\partial x} = 0$$

- Esta metodologia é extralolada para todos os contornos,
- Estas derivadas são discretizadas com o Método das Diferenças Finitas.

Camadas de Amortecimento

Cerjan et al (1985)

 Esta técnica minimiza o efeito do truncamento do domínio inserindo uma camada antes do contorno do problema para atenuar a amplitude da onda antes de alcançar o contorno.

Perfil de Amortecimento

$$f_a = e^{-[f_{at}(N_p - i)]^2}$$

- f_a é chamado de perfil de amortecimento,
- f_{at} é um fator de atenuação a determinar,
- N_p é o número de pontos a adicionar no domínio truncado para atenuar o campo de ondas,
- i é o índice da malha do domínio discretizado.

Camadas de Amortecimento

Cerjan et al (1985)

Perfil de Amortecimento

$$f_a = e^{-[f_{at}(N_p - i)]^2}$$

Thank you for your time.

Johanh Jall for your time!

Overleaf Template.