PENGENALAN POLA PENDAHULUAN

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliak bars@live.com

February 21, 2020

SELAYANG PANDANG

1 Administrasi Tentang Perkuliahan Referensi

2 Pembelajaran Mesin & Pengenalan Pola Definisi

3 Tugas dalam Machine Learning

Klasifikasi Regresi Supervised Learning Clustering Representasi Data

Administrasi

MATA KULIAH TERKAIT

Prerequisites

- Statistika & Probabilitas, e.g. distribusi normal, ekspektasi
- Aljabar Linear, e.g. vektor dan nilai eigen, perkalian matriks
- Kalkulus, e.g. diferensial, integral
- Kecerdasan Buatan

Paralel/Saran/Lanjutan

- Data/Text Mining
- Soft Computing

Aturan Perkuliahan

- Materi bisa dilihat di https://uai.aliakbars.id/mlpr/
- Kuliah setiap hari Rabu, pukul 07.00-09.30
- Bahasa/teknologi pengantar: Python, PyLab, Jupyter Notebook, Google Colab

ATURAN PERKULIAHAN

- Terdapat 4 tugas
- Kuis yang tidak masuk komponen penilaian
- Ujian Tengah Semester dan Ujian Akhir Semester (tidak ada ujian perbaikan)
- Komponen nilai: 40% tugas, 30% UTS, 30% UAS

ATURAN DALAM TUGAS

- Secara default, setiap tugas bersifat individual
- Silakan berdiskusi, tapi jangan menyalin kode atau tulisan teman
- Keterlambatan pengumpulan akan berakibat pada pengurangan nilai
- Pengumpulan tugas dilakukan melalui situs e-learning
- Kecurangan akan berakibat pada nilai E pada kuliah ini

Referensi

Buku dan materi daring yang bisa dijadikan referensi:

- VanderPlas, J. (2016). Python Data Science Handbook. O'Reilly Media. (tersedia online)
- Deisenroth, M., Faisal, A.A., & Ong, C.S. (2019) Mathematics for Machine Learning. Cambridge University Press. (tersedia online)
- 3 Bishop, C.M. (2007). Pattern Recognition and Machine Learning. Springer. (tersedia online)
- Domingos, P. (2012). A few useful things to know about machine learning. *Communications of the ACM*, 55(10), 78-87. (tersedia online)

Referensi

Beberapa kuliah terkait:

- University of Edinburgh: Introductory Applied Machine Learning
- 2 University of Edinburgh: Machine Learning and Pattern Recognition (graduate level)
- 3 Stanford CS229: Machine Learning
- 4 University of Oxford: Machine Learning (graduate level)
- 6 Max Planck Institute: Statistical Rethinking

MATERI

Sebelum UTS

- 1 Intro to MLPR
- 2 Probability
- 3 Discrete distributions
- 4 Gaussian distribution
- 6 Naïve Bayes
- 6 PCA
- Continue to the continue of the continue of

Setelah UTS

- Model evaluation
- 2 SVM
- 3 Neural Networks
- 4 k-Nearest Neighbours
- **6** k-Means clustering
- 6 GMM
- **7** Kuliah tamu

Pembelajaran Mesin & Pengenalan Pola

APA ITU MACHINE LEARNING?

- Menemukan pola dalam data dan menggunakannya untuk melakukan prediksi
- Bagaimana cara menyelesaikan dengan menggunakan komputer?
 - Masalahnya, kita tidak tahu cara menulis programnya
 - ...tapi kita punya contoh data

MENGAPA MACHINE LEARNING?

- Data ada di mana-mana
- ML mengombinasikan teori dan praktik
- Sudah berhasil menyelesaikan banyak kasus AI

Apa hubungannya dengan pengenalan pola?

Pengenalan Pola

- Pengenalan pola, pembelajaran mesin, data mining, dan knowledge discovery in databases (KDD) terkadang sulit dibedakan
- Pengenalan pola awalnya dikenal dalam tugas-tugas computer vision
- Pattern recognition \neq pattern matching

TUGAS DALAM MACHINE LEARNING

1 Memprediksi nilai yang sudah pasti

- 1 Memprediksi nilai yang sudah pasti
- ${\bf 2}\ Biasanya$ direpresentasikan sebagai kelas biner $\{0,\,1\}$ atau $\{\text{-}1,\,1\}$

- 1 Memprediksi nilai yang sudah pasti
- ${\bf 2}\ Biasanya$ direpresentasikan sebagai kelas biner $\{0,\,1\}$ atau $\{\text{-}1,\,1\}$
- 3 Membutuhkan label

- 1 Memprediksi nilai yang sudah pasti
- ${\bf 2}$ Biasanya direpresentasikan sebagai kelas biner $\{0,\,1\}$ atau $\{\text{-}1,\,1\}$
- 3 Membutuhkan label
- 4 Mempunyai evaluation metrics yang jelas, e.g. akurasi

- 1 Memprediksi nilai yang sudah pasti
- ${\bf 2}$ Biasanya direpresentasikan sebagai kelas biner $\{0,\,1\}$ atau $\{\text{-}1,\,1\}$
- 3 Membutuhkan label
- 4 Mempunyai evaluation metrics yang jelas, e.g. akurasi
- 6 Contoh: identifikasi spam, MNIST digit recognition

Quick, Draw!

GAMBAR: Quick, Draw! The Data dari Google

INNEREYE RESEARCH PROJECT

GAMBAR: Project InnerEye untuk membantu dokter mendeteksi penyakit pada organ dalam dari Microsoft

Misklasifikasi dalam Pengenalan Objek

GAMBAR: Kesalahan model machine learning akibat adversarial examples

1 Membutuhkan label

- Membutuhkan label
- 2 Memprediksi nilai kontinu

- Membutuhkan label
- 2 Memprediksi nilai kontinu
- **3** Evaluation metrics berupa error, e.g. Mean Squared Error (MSE), Mean Absolute Error (MAE)

- Membutuhkan label
- 2 Memprediksi nilai kontinu
- 3 Evaluation metrics berupa error, e.g. Mean Squared Error (MSE), Mean Absolute Error (MAE)
- 4 Contoh: prediksi nilai saham, jumlah RT dari suatu tweet

Inpainting

Gambar: Mengisi potongan gambar yang hilang [Pathak, 2016]

Klasifikasi vs Regresi

Gambar: Perbedaan klasifikasi dan regresi

Klasifikasi dan Regresi

Fungsi

Kedua tugas ini dapat dilihat sebagai fungsi f yang memetakan atribut x ke label y.

Probabilitas dalam Machine Learning

- Asumsikan Anda diberi kasus berupa klasifikasi artikel berita. Anggap \mathbf{x} adalah dokumen, dan y adalah label. $y \in \{"Olahraga", "Politik"\}$
- Anda diminta membuat fungsi f dalam Java yang menerima masukan berupa $\mathbf x$ dan mengeluarkan y
- Jika saya akan membayar Anda Rp 1000 setiap artikel politik yang benar, dan Rp 1 juta untuk setiap artikel olahraga yang Anda dapat temukan dengan benar, bagaimana Anda akan membuat f?

Probabilitas dalam Machine Learning

 Agar lebih sulit, bagaimana kalau Anda akan didenda Rp 10.000 setiap ada dokumen yang salah diklasifikasi? Apa yang Anda akan lakukan?

Probabilitas dalam Machine Learning

- Agar lebih sulit, bagaimana kalau Anda akan didenda Rp 10.000 setiap ada dokumen yang salah diklasifikasi? Apa yang Anda akan lakukan?
- Jawabannya: Jangan buat fungsi. Definisikan probabilitas $p(y|\mathbf{x})$. Lalu, ambil keputusan yang dapat memaksimalkan keuntungan Anda.

"No silver bullet"

Clustering

1 Mencoba memberikan deskripsi terhadap data

Clustering

- 1 Mencoba memberikan deskripsi terhadap data
- 2 Tidak berhubungan dengan label

CLUSTERING

- 1 Mencoba memberikan deskripsi terhadap data
- 2 Tidak berhubungan dengan label
- 3 Menemukan pola yang "menarik" dalam data

CLUSTERING

- 1 Mencoba memberikan deskripsi terhadap data
- 2 Tidak berhubungan dengan label
- 3 Menemukan pola yang "menarik" dalam data
- 4 Tidak mempunyai evaluation metrics yang pasti

CONTOH CLUSTERING

GAMBAR: Clustering buah lemon dan jeruk [Murray, 2011]

Bagaimana merepresentasikan datanya?

• dokumen?

- dokumen?
- gambar?

- dokumen?
- gambar?
- video?

- dokumen?
- gambar?
- video?
- suara?

- dokumen? bag of words, word embedding
- gambar? *pixels*, *regions*
- video? *pixels in frames*
- suara? *MFCC*

IKHTISAR.

- ML & PR ada di mana-mana dan berguna untuk prediksi dalam skala besar
- Butuh pemahaman teoretis untuk dapat memahami algoritma dan membuat yang baru
- "No silver bullet"
- Buat model, bukan algoritma
- Mungkin butuh pandangan probabilistik

PERTEMUAN BERIKUTNYA

- Probabilitas
- Peubah acak
- Ekspektasi
- Peluang bersyarat
- Bayes' rule

Referensi

Ian J. Goodfellow et al. (2015) Explaining and Harnessing Adversarial Examples ICLR 2015

Deepak Pathak et al. (2016)

Context Encoders: Feature Learning by Inpainting

CVPR 2016

Iain Murray (2011)

Oranges, Lemons and Apples dataset

http://homepages.inf.ed.ac.uk/imurray2/teaching/oranges_and_ lemons/

Terima kasih