Lecture 14: Digital Signatures

COSC362 Data and Network Security

Book 1: Chapter 13 - Book 2: Chapter 2

Spring Semester, 2021

Motivation

- Digital signatures are one of the main benefits of public cryptosystems.
- ▶ In some countries, digital signatures are legally binding in the same way as handwritten signatures.

Outline

Properties

RSA Signatures

Discrete Logarithm Signatures Elgamal Signatures Digital Signature Standard

Outline

Properties

RSA Signatures

Discrete Logarithm Signatures Elgamal Signatures Digital Signature Standard

Confidentiality and Authentication

- Message authentication codes (MACs) only allow an entity with shared secret to generate a valid tag:
 - Providing data integrity and data authentication.
- Digital signatures use public key cryptography to provide properties of a MAC and more:
 - Only the owner of the private signing key can generate a valid digital signature.
- ► Security service:
 - Non-repudiation
 - ▶ A judge can decide which party has formed the signature

Comparing Physical and Digital Signatures

Physical signatures	Digital signatures	
Produced by a human	Produced by a machine	
Same on all documents	Function of the message	
Easy to recognize	Requiring a computer	
	to check	

Both signature types need to be difficult to forge.

Algorithms

- ► Algorithms:
 - Key generation
 - Signature generation
 - Signature verification
- ► The key generation algorithm outputs 2 keys:
 - ► A private *signing* key *K*_S
 - A public verification key K_V

Signature Generation Algorithm

Alice wants to generate a signature on a message *M*:

- ► Inputs:
 - Alice's private signing key K_S
 - ▶ Message M
- ► Ouput:
 - ▶ Signature $s = Sig(M, K_S)$
- ▶ Only Alice, the owner of K_S , should be able to generate a valid signature.
- ► The message should be any bit string.
- ► The set of all signatures is usually a set of fixed size.

Signature Verification Algorithm

Bob wants to verify a claimed signature *s* on message *M*:

- ► Inputs:
 - Alice's public verification key K_V
 - Message M
 - Claimed signature s
- ► Ouput:
 - ▶ Boolean value $Ver(M, s, K_V) = true/false$
- ▶ Anyone should be able to verify the signature.

Properties

- ▶ Correctness:
 - ▶ If $s = Sig(M, K_S)$ then $Ver(M, s, K_V) =$ true for any matching K_S and K_V .
- ▶ Unforgeability:
 - ▶ It is computationally infeasible for anyone without K_S to construct the pair (M, s) s.t. $Ver(M, s, K_V)$ = true.
- ▶ The signing algorithm *Sig may* be randomized:
 - ▶ There are many possible signatures for a single message.
- Stronger security definition:
 - ▶ An attacker has access to a *chosen message* oracle.
 - ► Forging a new signature should be difficult even if the attacker can obtain signatures on messages of her choice.

Security Goals

- ► Key recovery:
 - ► The attacker attempts to recover the private signing key K_S from the public verification key K_S and some known signatures.
- Selective forgery:
 - ► The attacker chooses a message and attempts to obtain a signature on that message.
- ► Existential forgery:
 - The attacker attempts to forge a signature on any message not previously signed.
 - It could be a meaningless message.
- ▶ Modern digital signatures are seen secure if they can resist existential forgery under a chosen message attack.

Outline

Properties

RSA Signatures

Discrete Logarithm Signatures Elgamal Signatures Digital Signature Standard

Key Generation

RSA signature keys are generated in the same way as RSA encryption keys:

- ▶ Public verification key: n, e where n = pq for large primes p, q.
- ▶ Private signing key: p, q, d s.t. $ed \mod \phi(n) = 1$.

A hash function h is also required, as a fixed public parameter. It can be a standard hash function (e.g. SHA-256).

Signature Generation and Verification

Signature generation:

- ▶ Inputs are message *M*, modulus *n* and private exponent *d*.
- ▶ Compute $s = h(M)^d \mod n$.
- ▶ Output (M, s) as the signature.

Signature verification:

- ▶ Inputs are claimed signature (M, s), modulus n and public exponent e.
- ▶ Compute h' = h(M).
- ► Check if $s^e \mod n = h'$? It so, then output true; otherwise, output false:
 - Check Lecture 12 for correctness.

Outline

Properties

RSA Signatures

Discrete Logarithm Signatures Elgamal Signatures Digital Signature Standard

Discrete Logarithm Signatures

- Security relying on difficulty of discrete logarithm problem.
- 3 versions:
 - 1. Original Elgamal signatures in \mathbb{Z}_p^* (1985).
 - 2. Digital signature algorithm (DSA) standardised by NIST:
 - an optimized version of Elgamal signatures
 - 3. DSA based on elliptic curve groups, known as ECDSA.

Elgamal Signatures

Elgamal Elements in \mathbb{Z}_p^*

- p is a large prime.
- ightharpoonup g is generator of \mathbb{Z}_p^* .
- \blacktriangleright x is the private signing key s.t. 0 < x < p 1.
- p, g, y form the public verification key where $y = g^x \mod p$.
- ▶ Alice wants to sign a value M where 0 < M < p 1.

Elgamal Signatures

Elgamal Operations in \mathbb{Z}_p^*

Signature generation:

1. Alice selects a random k s.t. gcd(k, p - 1) = 1 and computes

$$r = g^k \mod p$$

2. Alice solves $M = xr + ks \mod (p-1)$ for s by computing

$$s = k^{-1}(M - xr) \mod (p - 1)$$

3. Alice outputs the tuple (M, r, s).

Signature verification:

▶ Bob checks if $g^M \equiv y^r r^s \mod p$ (= $(g^x)^r (g^k)^s$).

Digital Signature Standard

Digital Signature Algorithm (DSA)

- First published by NIST in 1994.
- ► Standard: FIPS PUB 186-4 (2013).
- Based on Elgamal signatures.
- Simpler calculations and shorter signatures:
 - ▶ Calculations done in a *subgroup* of \mathbb{Z}_p^* or an elliptic curve group.
- Used with SHA family of hash functions.
- Preventing attacks that Elgamal signatures may be vulnerable to.

Digital Signature Standard

Idea

- ▶ Prime p chosen s.t. p-1 has a prime divisor q of much smaller size (224 or 256 bits).
- ▶ Generator g used in Elgamal signatures replaced by $g = h^{\frac{p-1}{q}} \mod p$ where h is a generator:
 - ▶ g has order q since $g^q \mod p = 1$:
 - $p = p^q \mod p = (h^{\frac{p-1}{q}})^q \mod p = h^{p-1} \mod p = 1$ (Fermat's theorem).
 - ▶ All exponents can be thus reduced modulo *q* before exponentiation.

☐ Digital Signature Standard

Comparison

Differences with Elgamal signatures:

- Message is hashed using standard SHA hash algorithm.
- \triangleright g chosen to be of order q, which is much smaller than p.
- Verification equation becomes¹:

$$(g^{H(M)})^{s^{-1}}(y^{-r})^{s^{-1}} \equiv r \pmod{p}$$

Both sides of the equation are then reduced modulo q.

 $^{{}^{1}\}text{from }g^{H(M)}\equiv y^{r}r^{s}\mod p$

Digital Signature Standard

Parameters

- ▶ *p* is a prime modulus, of *L* bits.
- ightharpoonup q is a prime divisor of p-1, of N bits.
- Valid combinations:
 - L = 1024, N = 160
 - ► L = 2048, N = 224
 - ► L = 2048, N = 256
 - L = 3072, N = 256
- $g = h^{\frac{p-1}{q}} \mod p$ is the generator where 1 < h < p-1.
- → H is the hash function from SHA family variant s.t. the output is an N-bit digest.

Key and Signature Generations

Key generation:

- ▶ Choose a random integer x s.t. 0 < x < q.
- ▶ Compute $y = g^x \mod p$.
- ▶ Set *x* as the secret key and *y* as the public key.

Signature generation:

- ▶ Let *M* be a message.
- ▶ Choose k at random s.t. 0 < k < q.
- ▶ Compute $r = (g^k \mod p) \mod q$.
- ► Compute $s = k^{-1}(H(M) xr) \mod q$.
- ightharpoonup Set (M, r, s) as the signature.

└ Digital Signature Standard

Signature Verification

Signature verification:

- \blacktriangleright (M, r, s) is the claimed signature.
- ► Check if 0 < r < q and 0 < s < q.
- ► Compute $w = s^{-1} \mod q$.
- ▶ Compute $u_1 = H(M)w \mod q$.
- ▶ Compute $u_2 = rw \mod q$.
- ▶ Check if $(g^{u_1}y^{-u_2} \mod p) \mod q = r$.

Digital Signature Standard

Comparison

Differences with Elgamal signatures:

- ▶ Verification equation is the same, except that all exponents and final result are reduced modulo *q*.
- ➤ Signature generation mainly requires one exponentiation with a short exponent (224 or 256 bits).
- ▶ Signature verification requires 2 short exponentiations.
- ► Signature size is only 2*N* bits:
 - ▶ 448 bits when *N* = 224
 - ▶ 512 bits when N = 256

└ Digital Signature Standard

Parameter Values

Key lengths defined in the 2013 standard version:

Version no.	p	q	Hash function
1	1024 bits	160 bits	SHA-1
2	2048 bits	224 bits	SHA-224
3	2048 bits	256 bits	SHA-256
4	3072 bits	256 bits	SHA-256

NIST special publication SP 800-57 does NOT approve Version no. 1.

└ Digital Signature Standard

Elliptic Curve DSA (ECDSA)

- ► Standard: FIPS PUB 186-4 (2013).
- Parameters chosen from NIST approved curves.
- Signature generation and verification are the same, except that:
 - ▶ *q* becomes the order of the elliptic curve group.
 - ▶ Multiplication modulo *p* is replaced by the elliptic curve group operation.
 - After operations on group elements, only the x coordinate is kept (from the pair (x, y)).

Digital Signature Standard

Comparison

ECDSA versus DSA:

- ► ECDSA signatures are generally not shorter than DSA signatures for the same security level.
- ► ECDSA signature size varies with the underlying curve:
 - ▶ Between 326 bits and 1142 bits from approved curves.
- ▶ ECDSA public keys are shorter than DSA public keys.