

# Science of Psychology

PSY W1001 Section 2 MW 8:40-9:55 Fall 2012

Wednesday, October 31
Language and Thought
Intelligence

#### Announcements

- Exam postponed to November 12
  - Will include material through next Wednesday
- Make-up lecture will be scheduled
- Questions from last lecture?



#### Prospect Theory

- People make decisions based on anticipated gains and losses
  - We want to avoid loss more than receive gains
- Pattern of risk aversion
  - Risk averse:
    - High probability of gains
    - Low probability of losses
  - Risk Seeking
    - Low probability gains
    - High probability of losses
- You need to sell some stock to pay bills. You have a stock in your portfolio that you purchased at \$100/share, but is now worth \$45/share. You have another stock that you purchased at \$100/share that is now worth \$145/share. Which stock do you sell?



#### Prospect Theory

- People choose to take on a risk when evaluating potential losses and avoid risks when evaluating potential gains.
  - Choice 1:
    - (A) 100% chance to gain \$300
    - (B) 80% chance to gain \$400 (\$400 x 80% = \$320)
  - Choice 2:
    - (A) 100% of losing \$300
    - (B) 80% of losing \$400



#### Heuristics continued

- There are 45 students in a classroom. 40 are engineering majors and 5 are nursing majors. Annie is a quiet, but competent young woman. She loves animals, and used to play "hospital" with her dolls.
- Which is more likely?
  - A. Annie is a nursing major
  - B. Annie is an engineering major



#### Representativeness Heuristic

- Decision is biased to match expectation (and ignores probabilities)
  - 8 in 9 chance of engineer
  - 1 in 9 chance of nursing

• But, I bet you said it was more likely that she's a nursing major...



#### Probability

- Try the following conjunction exercise:
- Linda is 28 years old. She is active in a number of women's rights groups. She volunteers in a shelter for battered women, and often participates in marches for abortion rights. Which is more likely:
  - (A) Linda is a bank teller
  - (B) Linda is a bank teller who is also a feminist?



#### Conjunction Fallacy

- Conjunction fallacy: When people think that two events are more likely to occur together than either individual event (example of representative heuristic)
  - Linda is a bank teller.
  - Linda is a bank teller and a feminist.





#### Conjunction fallacy

- Tversky & Kahneman (1983) used the Linda probability task. The participants (83%) chose option B, Linda is regarded as "representative" of a feminist.
- Participants failed to use conjunctive rule.
  - But why?
- Because a conjunction of attributes makes for a more <u>typical</u> (similar) member of the category.



# Reasoning and the brain





#### The Neuroscience of Risky Decision Making





# Reasoning and the brain



Effect of damage to the PFC on performance on a reasoning task



#### Prefrontal cortex and risky behavior

- Neuroimaging and lesion studies
  - Prefrontal cortex
- Prefrontal damage
  - more risky decisions
  - Damage
    - poor performance on a gambling task
  - Activation
    - better task performance in healthy individuals



#### Game Theory

- How do you make decisions when others are also deciding on the same events?
  - Bluffing in poker
- Payoff matrix
  - If I make Decision A, what will the other person do, and what will the result be?
- Prisoner's dilemma
  - Rational decision is the worst outcome!
- Interesting intersection of psychology and economics



© 2006 Encyclopædia Britannica, Inc.



# Intelligence





# Defining Intelligence

• "a hypothetical mental ability that enables people to direct their thinking, adapt to their circumstances, and learn from experiences."



# The Intelligence Quotient

- France and primary school education for children of ALL social classes
- Psychologist Alfred Binet
- Physician Theodore Simon
  - asked to develop tests to allow educators to develop remedial programs
  - goal of Binet and Simon was to measure <u>aptitude</u> (natural intelligence) separate from <u>achievement</u>



#### The Intelligence Quotient

- Teachers could use test to estimate a child's <u>mental</u> <u>level</u>
- Compute average score of children of different age groups
- Find group whose average score was most like a given child's score, and that is the child's intelligence
  - 10 year old should score like other 10 year olds



#### Ratio IQ

- Stern (1914) mental level can be thought of as mental age
- Lewis Terman (1916) formalizes intelligence quotient or ratio IQ
- (mental age/physical age) x 100
- Average IQ is 100
  - 10 year old with "mental age" of 8 year old
    - $(8/10) \times 100 = IQ \text{ of } 80$
  - 10 year old with "mental age" of 12 year old
    - $(12/10) \times 100 = IQ \text{ of } 120$



# More on calculating the IQ

- Deviation IQ
  - (individual score/average score of people in same age group) x 100
- Age alone, then, does not increase IQ
  - I'm 50. If I'm the same mental age as a 25 year old then I would have an IQ of 200!!
    - $(50/25) \times 100 = IQ \text{ of } 200$
    - (I'm smart, but not that smart!!)
  - Deviation IQ compares me to my age group
- Most researchers now compute ratio IQ for children and deviation IQ for adults



#### IQ in the Population





#### The Logic of Intelligence Testing





#### Correlation Interlude





strong, positive correlation

weak, positive correlation





weak, negative correlation



#### Consequential Behaviors

- IQ scores predict school performance (*r* = .5)
- Correlates with job performance (r = .53)
- Correlates with income (r = .4)





#### IQ and Life Outcomes



#### **Population Percentages**

| Total population distribution                                   | 5  | 20 | 50 | 20  | 5  |
|-----------------------------------------------------------------|----|----|----|-----|----|
| Out of labor<br>force more than<br>1 month out of<br>year (men) | 22 | 19 | 15 | 14  | 10 |
| Unemployed<br>more than<br>1 month out<br>of year (men)         | 12 | 10 | 7  | 7   | 2  |
| Divorced in 5 years                                             | 21 | 22 | 23 | 15  | 9  |
| Had children outside of marriage (women)                        | 32 | 17 | 8  | 4   | 2  |
| Lives in poverty                                                | 30 | 16 | 6  | 3   | 2  |
| Ever incarcerated (men)                                         | 7  | 7  | 3  | 1   | 0  |
| Chronic welfare recipient (mothers)                             | 31 | 17 | 8  | 2   | 0  |
| High school<br>dropout                                          | 55 | 35 | 6  | 0.4 | 0  |



#### The Nature of Intelligence

- Spearman and <u>factor</u> <u>analysis</u>
- Two-factor theory of intelligence
  - general ability (g)
  - task-specific skills (s)
- Thurstone —primary mental abilities

| Table 9.2 Thurstone's Primary Mental Abilities |                                                                         |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Primary Mental Ability                         | Description                                                             |  |  |  |
| Word fluency                                   | Ability to solve anagrams and to find rhymes, etc.                      |  |  |  |
| Verbal comprehension                           | Ability to understand words and sentences                               |  |  |  |
| Number                                         | Ability to make mental and other numerical computations                 |  |  |  |
| Space                                          | Ability to visualize a complex shape in various orientations            |  |  |  |
| Memory                                         | Ability to recall verbal material, learn pairs of unrelated words, etc. |  |  |  |
| Perceptual speed                               | Ability to detect visual details quickly                                |  |  |  |
| Reasoning                                      | Ability to induce a general rule from a few instances                   |  |  |  |



#### Three-Level Hierarchy

- Three-level hierarchy
  - general factor
  - group factors
  - specific factors





#### Middle-Level Abilities

- Hard to define what lies between general intelligence and specific abilities
- Some use a bottom-up approach
  - Start with responses on intelligence tests and look to see
     what "clusters" these responses form
- Some use a top-down approach
  - broad survey of human abilities and then look to see what these tests measure or do not measure



#### Bottom-Up Approach

- Carroll (analysis of 500 studies)
- 8 independent middle-level abilities
  - memory and learning
  - visual perception
  - auditory perception
  - retrieval ability
  - cognitive speediness
  - processing speed
  - crystallized intelligence
  - fluid intelligence



#### Top-Down Approach

- Analyze people's responses to questions on intelligence tests
- Sternberg—three kinds of intelligence
  - analytic intelligence
  - creative intelligence
  - practical intelligence



#### Other Important Abilities

- Gardner believes standard intelligence tests fail to measure some important human abilities
- Prodigies and savants
  - linguistic
  - logical-mathematical
  - spatial
  - musical
  - bodily-kinesthetic
  - intrapersonal
  - interpersonal
  - naturalistic



#### Intelligence and Genes

- Galton (1869) genealogical studies of eminent families
- Hereditary Genius
  - intelligence is inherited
- Monozygotic twins raised together (IQ correlation = .86)
- Dizygotic twins raised together (IQ correlation = .
   60)



#### Intelligence and Genes

- Heritability coefficient
- Value can change depending on the group of people measured

| Relationship                                               | Shared<br>Home? | %<br>Shared<br>Genes | Correlation between Intelligence Test Scores (r) |
|------------------------------------------------------------|-----------------|----------------------|--------------------------------------------------|
| Twins                                                      |                 |                      |                                                  |
| Identical twins (n = 4,672)                                |                 | 100%                 | .86                                              |
| Identical twins (n = 93)                                   |                 | 100%                 | .78                                              |
| Fraternal twins (n = 5,533)                                |                 | 50%                  | .60                                              |
| Parents and Children                                       |                 |                      |                                                  |
| Parent-biological child (n = 8,433)                        |                 | 50%                  | .42                                              |
| Parent-biological child (n = 720)                          |                 | 50%                  | .24                                              |
| Nonbiological parent-adopted child (n = 1,491)             |                 | 0%                   | .19                                              |
| Siblings                                                   |                 |                      | *                                                |
| Biological siblings (2 parents in common) ( $n = 26,473$ ) |                 | 50%                  | .47                                              |
| Nonbiological siblings (no parents in common) (n = 714)    |                 | 0%                   | .32                                              |
| Biological siblings (2 parents in common) (n = 203)        | No              | 50%                  | .24                                              |



#### Heritability Coefficient

- Heritability coefficient generally increases with the age of the sample measured
- Shared environment
- Nonshared environment
- Genes and environments interact



#### Intelligence and Groups

- Some groups do outperform other groups on certain tests
- Do these differences reflect actual group differences in IQ?
- If so, what causes these differences?



# Intelligence and Groups

- Cultural bias in testing?
  - group differences in nonverbal skills
- Bias in testing situations?
- Experiential differences
- APA
  - "Culturally based explanations of the Black/White IQ differential have been proposed; some were plausible, but so far none has been conclusively supported. There is even less empirical support for a genetic interpretation. In short, no adequate explanation of the differential between the IQ means of Blacks and Whites is presently available."



#### Changing Intelligence

- Intelligence can and does change
- But not—usually —dramatic change
- Relative intelligence
- Absolute intelligence
- Flynn effect
  - Are we getting smarter?

| Table 9.4         The Stability of Intelligence Test Scores over Time |                                                                    |                               |                 |  |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|-----------------|--|--|--|
| Mean Initial Study Age (Years)                                        |                                                                    | Mean Follow-up<br>Age (Years) | Correlation (r) |  |  |  |
| 1                                                                     | 2                                                                  | 9                             | .56             |  |  |  |
| 2                                                                     | 14                                                                 | 42                            | .68             |  |  |  |
| 3                                                                     | 19                                                                 | 61                            | .78             |  |  |  |
| 4                                                                     | 25                                                                 | 65                            | .78             |  |  |  |
| 5                                                                     | 30                                                                 | 43                            | .64–.79         |  |  |  |
| 6                                                                     | 50                                                                 | 70                            | .90             |  |  |  |
| Source: Ada                                                           | Source: Adapted from Deary, Whalley, Lemon, Crawford, Starr, 2000. |                               |                 |  |  |  |



# Improving Intelligence

- Correlation between formal education level and IQ is high (r = .55 to .90)
- Intelligence of schoolchildren declines in the summer
- Cognitive enhancers
  - methylphenidate (Ritalin)
  - Ampakines (boost glutamate)
  - Modafinil (dopamine reuptake inhibitor)



#### Study Questions

- Expand on the first question from the previous lecture to include all of the heuristics and biases discussed and the influence of each on decision making.
- What is game theory?
- Using an example, define prospect theory
- What is the relationship of the prefrontal cortex to risky behavior?
- What is the IQ?
- What are the differences in mental tests of IQ?
- Explain how the bell curve relates to IQ.
- What are two important considerations in evaluating mental tests? What do you have to take into account for each?
- Give a definition of intelligence
- Was Binet measuring intelligence? Why or why not?
- Compare and contrast a ratio and a deviation IQ score.
- How did Spearman conceptualize intelligence?
- Do people with higher IQ's have better lives? Support your answer with data, not opinion.
- How does Sternberg conceptualize intelligence?
- How does Gardner conceptualize intelligence?
- How does culture influence the measure of intelligence?
- How do genes and the environment interact to affect intelligence?
- What is predicted by having a higher IQ? A lower IQ?

\*Note: Lecture only included through slide 32. You are responsible for the information on the remaining slides and the corresponding study questions. See your textbook for more in depth explanations.