		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 113,1735 (2012)	1-Mar-2012

Q(β^-)=-2921.1 *12*; S(n)=10198.10 *19*; S(p)=9977.0 *16*; Q(α)=-5333.3 9 2012Wa38 Note: Current evaluation has used the following Q record -2921.1 1210198.1019 *9977.0 15* -5333.3 8 2011AuZZ. S(2n)=17250.4 *3*, S(2p)=18578.5 *17* (2011AuZZ). α : Additional information 1.

⁶⁸Zn Lev<u>els</u>

Cross Reference (XREF) Flags

	A B C D F G	68 Cu $β^-$ dec 68 Cu $β^-$ dec 68 Ga $ε$ deca 65 Cu($α$,p $γ$) 66 Zn(t,p) 67 Zn(d,p) 68 Zn($γ$, $γ'$)	ay (3.75 min) J 68Zn(p,p' y K 68Zn(e,e' L Coulomb M Coulomb) R 68 Zn(d,d'),(3 He, 3 He')) S 26 Mg(48 Ca, α 2n γ) excitation T 65 Cu(α ,p) excitation: projectile U 64 Ni(6 Li,d) V 66 Zn(α , 2 He) ') W 69 Ga(d, 3 He)
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0 [‡] 1077.37 [‡] 4	0 ⁺ 2 ⁺ @	stable 1.61 ps 2	ABCDEFGHIJKLMNOP R TUVWX ABCDEFGHIJKLMNOPQR TUVWX	
1655.91 8	0+	96 ps <i>16</i>	A C EF HIJ MNOP R W	T _{1/2} : weighted average of 103 ps 18 from B(E2) \uparrow in Coul. Ex.:Projectile and 70 ps 35 from centroid-shift measurement in $(p,p'\gamma)$. J^{π} : L(p,t)=L(t,p)=0.
1883.20 5	2+	1.01 ps 5	A CDEFG IJK MNOP R TU W	μ =+1.12 20 J ^π : L(p,t)=2. T _{1/2} : from DSAM in Coul. Ex.:Projectile. Others: 1.6 ps 3 from B(E2)↑ in (e,e'), 1.47 ps 12 from B(E2)↑ in Coul. Ex.:Projectile, >0.11 ps from DSAM in (α ,p γ). μ : from C- γ (θ ,H,t) in Coul. Ex.: Projectile.
2338.45 5	2+@	0.31 ps <i>3</i>	ABC EFG IJ MNO U W	$T_{1/2}$: from DSAM in Coul. Ex.:Projectile. Others: 0.24 ps $+1I-6$ from DSAM in $(n,n'\gamma)$ and 0.043 ps 4 from B(E2) \uparrow in Coul. Ex.:Projectile.
2370.3 <i>15</i> 2417.40 [‡] <i>6</i>	4+	0.73 ps 7	AB RTV B DEFG IJ MNO U WX	J^{π} : 1293 γ to 2 ⁺ .

2510.2 15 2750.76 8 3 - 0 0.257 ps 6 A EFG JKLNNO QR UV Fig. 14339 to 2°. μ=1.08 72 T _{1/2} ; from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in (n,n'y). If DS = 15 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in (n,n'y). If DS = 15 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Othe	E(level) [†]	J^π	T _{1/2}			XREF				Comments
2750.76 8 3 - © 0.257 ps 6 A EFG IJKLNN CR UV F 1/12. Trom DSAM in Coul. Ext. Projectile. Others: 0.45 ps +1/4-8 from DSAM in (n,n'γ) and 0.42 ps 1/4 from DSAM in Coul. Ext. Projectile. 2821.79 8 2 + © 0.15	2510.2 <i>15</i>			AB		N				
2821.79 8 2+6 0.15	2750.76 8	3-@	0.257 ps 6	A	EFG I	JKLMNO	QR	UV		μ =1.08 72 $T_{1/2}$: from DSAM in Coul. Ex.:Projectile. Others: 0.45 ps +14-8 from DSAM in (n,n' γ) and 0.42 ps 14 from DSAM in Coul. Ex. B(E3) \uparrow : 0.038 8 from (e,e') and 0.0220 17 from (d,d').
2955.9 22	2821 79 8	2+@	0.15& ps 3	ARC	FEGHT	1 N		II W	ī	μ : from C- $\gamma(\theta,H,t)$ in Coul. Ex.: Projectile.
2959.49 13 (4+)b			0.15 ps 5							
		$(A^{+})^{b}$		Ъ						I^{π}_{i} , proposed by (2000Wi18) (1007Pe77) in
3102.51 II 0 0 II 0 II 0 II 126 II 0 II 17 II 18 II 18 II 19 II 18 II 19 II 10 II 19 II 19 II 19 II 10	2939.49 13	(4')	0		erg 1	no		UW	IX	
3102.51 II 0+	3009.27 7	3+	0.28^{44} ps $+14-8$		FG I	J		W	I	
3160.1 3 3164.4 14 236.7 1 1 0	3102.51 11	0^{+}			EF I		P			
3164.4 14 3164.4 14 3164.4 14 3164.4 14 3164.8 13 1,2+d 3186.6 11 (1,2+) 3281.58 16 4+d 3287.09 13 2+ 0.08	3153.8? 4				e I					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3164.4 <i>14</i>				I.	J o				E=3170 <i>30</i> discrepant.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3184.18 <i>13</i>	1.2 + d	22& fs 6		Fa T		r	W	7	
3281.58 16 4^{+} 6^{-} 3287.09 13 2^{+} 0.08 3287.09 13 2^{+} 0.08 3287.09 14 $3334.7?$ 3346.09 20 1^{+} 6.1 3287 3346.09 20 1^{+} 3287 3487		,		Α		J				J^{π} : 1530 γ to 0 ⁺ .
3287.09 $I3$ $I3$ $I3$ $I3$ $I4$ $I5$ $I5$ $I5$ $I5$ $I5$ $I5$ $I5$ $I5$						n	r	W	1	•
3334.7? 3346.09 20 1+ 6.1 a fs 16 HIJ N T W J $^\pi$: J from $\gamma\gamma(\theta)$ in (γ,γ') ; π from L(d, 3 He). L(p,t)=(0) for 3345 discrepant. T _{1/2} : Other: 15 fs +7-6 from DSAM in $(n,n'\gamma)$. 3386? 3 3400.9 5 1,2+ e 45 $^\otimes$ fs +17-14 I S425.07 15 f eFG I W 4545.0 3 3458.83 16 5- $^\odot$ B DEFG IJ no r S486.84 10 f A e W J $^\pi$: 3+,4+,5+ from L(p,p')=4; f +5 from primary f from 2-,3- capture state. S586.64 10 f 4+ $^\odot$ BD G O X J $^\pi$: D transition to 5- and yield function favor J=6; f from L(d,p)=4. T _{1/2} : upper limit from f from L(d,p)=3. 3624.32 21 (1.2+)			0.08 ps $+2-1$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3334.7?				F					
3386? 3 3400.9 5	3346.09 20	1+	6.1 ^a fs 16		HI.	J N		T W	Ī	L(p,t)=(0) for 3345 discrepant.
3400.9 5 1,2+e 45& fs +17-14	22070 2				-					$T_{1/2}$: Other: 15 fs +7–6 from DSAM in $(n,n'\gamma)$.
3425.07 15		1.0+0	45& C 15 14							
3429.46 15 1,2*df			45 ^{cc} is +1/-14							
3451.0 3 3458.83 16 5-@ 3496.08 11 3+,4+ 62& fs 10 EFG IJ N R 3586.64 10 4+@ 3610.8 6 (6)- <2.5 ns B D G EFG IJ N R EFG IJ N R XREF: J(3465). W J ^{π} : 3+,4+,5+ from L(p,p')=4; \neq 5+ from primary γ from 2-,3- capture state. XREF: J(3595)N(3577). XREF: J(3595)N(3577). XREF: J(3595)N(3577). XREF: J(3695)N(3577). Elevel): from L(d,p)=4. T1/2: upper limit from $\gamma\gamma$ (t) of 152 γ in 65 Cu(α ,p γ). Elevel): from (p,p'). Other: 3620 10 in (t,p). J ^{π} : L(t,p)=(p,p')=3. J ^{π} : γ to g.s. J ^{π} : γ to γ to γ from L(d,p)=1.		•			eFG I			W	I	
3458.83 16 5^{-} $\frac{0}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ 1		$1,2^{+af}$						W	I	
3487.7 15 3496.08 11 3+,4+ 62 fs 10 eF IJ w J^{π} : 3+,4+,5+ from L(p,p')=4; \neq 5+ from primary γ from 2-,3- capture state. 3586.64 10 4+@ 3610.8 6 (6)- <2.5 ns B D G EFG IJ N R XREF: J(3595)N(3577). X J^{π} : D transition to 5- and yield function favor J=6; π from L(d,p)=4. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 152 γ in 65 Cu(α ,p γ). 3622 5 3- E J E(level): from (p,p'). Other: 3620 10 in (t,p). J ^{π} : L(t,p)=(p,p')=3. J ^{π} : γ to g.s. J ^{π} : 1213 γ to 4+, 3630 γ to 0+. 3664.7 3 (1,2)+ FG IJ W XREF: J(3658). J ^{π} : J from γ to 0+; π from L(d,p)=1.		@			I	no	r			
3496.08 11 3^{+} , 4^{+} 62 $\frac{\&}{}$ fs 10 $\frac{\text{eF}}{}$ IJ $\frac{\text{V}}{}$ $\frac{\text{J}^{\pi}}{}$: 3^{+} , 4^{+} , 5^{+} from L(p,p')=4; $\neq 5^{+}$ from primary γ from 2 ⁻ ,3 ⁻ capture state. 3586.64 10 $\frac{4^{+}}{}$ $\frac{\text{EFG}}{}$ IJ $\frac{\text{N}}{}$ R $\frac{\text{KREF}}{}$: J(3595)N(3577). 3610.8 6 (6) ⁻ <2.5 ns $\frac{\text{B}}{}$ D G $\frac{\text{D}}{}$ C $\frac{\text{J}}{}$ D transition to 5 ⁻ and yield function favor J=6; π from L(d,p)=4. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 152 γ in $\frac{65}{}$ Cu(α ,p γ). 3622 5 $\frac{3^{-}}{}$ E J $\frac{\text{E}}{}$ J $\frac{\text{E}}{}$ E(level): from (p,p'). Other: 3620 10 in (t,p). $\frac{\text{J}^{\pi}}{}$: L(t,p)=(p,p')=3. 3624.32 21 (1,2 ⁺) $\frac{\text{J}^{\pi}}{}$: γ to g.s. 3630.32 11 (2 ⁺) $\frac{\text{J}^{\pi}}{}$: γ to g.s. 364.7 3 (1,2) ⁺ $\frac{\text{F}}{}$ I R $\frac{\text{J}^{\pi}}{}$: γ to g.s. 37: 1213 γ to 4 ⁺ , 3630 γ to 0 ⁺ . 3658. $\frac{\text{J}^{\pi}}{}$: J from γ to 0 ⁺ ; π from L(d,p)=1.		5-w				J no				XREF: J(3465).
from 2 ⁻ ,3 ⁻ capture state. 3586.64 10 4 ⁺ @ 3610.8 6 (6) ⁻ <2.5 ns B D G 0 X J^{π} : D transition to 5 ⁻ and yield function favor J=6; π from L(d,p)=4. $T_{1/2}$: upper limit from γγ(t) of 152γ in 65 Cu(α,pγ). 3622 5 3 ⁻ E J E(level): from (p,p'). Other: 3620 10 in (t,p). J^{π} : L(t,p)=(p,p')=3. 3624.32 21 (1,2 ⁺) 3630.32 11 (2 ⁺) 3664.7 3 (1,2) ⁺ F I R 3664.7 3 (1,2) ⁺ FG IJ W XREF: J(3658). J^{π} : J from γ to 0 ⁺ ; π from L(d,p)=1.		-1 -1	&r	Α						
3610.8 6 (6) $^-$ <2.5 ns B D G 0 X J^π : D transition to 5 $^-$ and yield function favor J=6; π from L(d,p)=4. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 152 γ in 65 Cu(α ,p γ). 3622 5 3 $^-$ E J E(level): from (p,p'). Other: 3620 10 in (t,p). J^π : L(t,p)=(p,p')=3. 3624.32 21 (1,2 $^+$) I J^π : γ to g.s. 3630.32 11 (2 $^+$) F I R J^π : 1213 γ to 4 $^+$, 3630 γ to 0 $^+$. 3664.7 3 (1,2) FG IJ W XREF: J(3658). J^π : J from γ to 0 $^+$; π from L(d,p)=1.	3496.08 11	,	62 ^{cc} fs 10		eF I]		W	Ī	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<2.5 ns	В					X	J^{π} : D transition to 5 ⁻ and yield function favor J=6; π from L(d,p)=4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3622.5	3-			E.	1				65 Cu(α ,p γ).
3630.32 II (2 ⁺) F I R J^{π} : 1213 γ to 4 ⁺ , 3630 γ to 0 ⁺ . 3664.7 3 (1,2) ⁺ FG IJ W XREF: J(3658). J^{π} : J from γ to 0 ⁺ ; π from L(d,p)=1.										J^{π} : L(t,p)=(p,p')=3.
3664.7 3 $(1,2)^+$ FG IJ W XREF: J(3658). J^{π} : J from γ to 0^+ ; π from L(d,p)=1.							D			
							K		Ī	XREF: J(3658).
	3687.5 [‡] 5	(6 ⁺)		1	DE T				х	

E(level) [†]	J^π	T _{1/2}	XI	REF	Comments
3709.8 3	(2+)		e IJ	N	4 ⁺ . L(t,p)=(5) for 3682 <i>10</i> discrepant. E(level): possible multiplet of levels in this region. XREF: J(3701)N(3701). J ^π : L(p,t)=2 for a level at 3701; however, L(t,p)=0+4 for a level at 3712 <i>10</i> . γ's to 2 ⁺ and 0 ⁺ favor J=2.
3717.47 20	1,2 ⁺ e	a	e HI	0	$T_{1/2}$: adopted value of $\Gamma_0/\Gamma = 0.63$ 4 gives $T_{1/2} = 22$ fs +8-5 for J=1 and 35 fs +11-6 for J=2.
3725.79 <i>17</i> 3732.4? <i>10</i>		33 ^{&} fs +9-6	B F IJ B	o V	J^{π} : 2648 γ to 2 ⁺ .
3776.32 <i>23</i> 3814 <i>4</i>	1,2 ⁺ d (3) ⁻		FG IJ E G	R U	XREF: G(3769)J(3783). XREF: E(3806)G(3815). J ^π : J from L(t,p)=(3); π from L(d,p)=4. E(level): weighted average of 3806 10 from (t,p) and 3815 4 from (d,p).
3814.83 <i>21</i>	1,2 ⁺ e	24 ^{&} fs +8-6	FI		E(level): γ -decay modes imply this level is distinct from the 3814 4, (3 ⁻) level.
3849.30 22	4+	$0.16^{\&}$ ps $+15-6$	EFG IJ	0	XREF: $E(3841)J(3840)$. J^{π} : $L(t,p)=4$.
3895.83 17	4+		EF IJ	N	XREF: $E(3886)J(3888)$. J^{π} : $L(t,p)=4$.
3910.99 <i>24</i> 3929? <i>4</i>	(3)-		FG I e I	r r	J ^{π} : 1494γ to 4 ⁺ , 2028γ to 2 ⁺ ; π from L(d,p)=4.
3935.08 <i>18</i> 3942.9 <i>8</i>	3 ⁺ (7 ⁻)	<6 ns	eF IJ D G	o TVX	J ^{π} : 3 ⁺ ,4 ⁺ ,5 ⁺ from L(p,p'); \neq 4 ⁺ ,5 from γ to 0 ⁺ g.s. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 332 γ in ⁶⁵ Cu(α ,p γ). J ^{π} : L(α , ² He)=(7), L(d,p)=4. This conflicts with yield function and γ (θ) in ⁶⁵ Cu(α ,p γ) which suggests J ^{π} =(8 ⁻).
3970.7? <i>12</i> 3989? <i>5</i>			В Ј		Configuration: $(f_{5/2}g_{9/2})_{7-}$ (1990Fi07,1985Ja02).
4027.7 4	(1 ⁻ ,2 ⁺)		FG I	N	XREF: N(4017). J^{π} : 4028 γ to g.s., 1277 γ to 3 $^{-}$, primary γ from 2^{-} , 3 $^{-}$ capture state. E(level): doublet in (d,p) with L=(4)+(1).
4061.0 3	(2) ⁺	62 ^{&} fs +21–17	E G IJ		XREF: E(4049). J^{π} : J from L(t,p)=(2); π from L(d,p)=1.
4096 <i>10</i> 4102? <i>5</i> 4110	4+		J I	N	J^{π} : L(p,t)=4.
4124 <i>10</i> 4139.2 <i>17</i> 4148 <i>7</i>	(4 ⁻ ,5 ⁻ ,6 ⁻) 1 ⁻ 0 ⁺	33 & fs +12-9	FG I E J	R	J^{π} : L(p,p')=5. J^{π} : 3062γ to 2 ⁺ , 4139γ to 0 ⁺ , π =– from L(d,p)=2. XREF: R(4170). E(level): weighted average of 4145 <i>10</i> from (t,p) and 4150 <i>10</i> from (p,p').
4215.4 6	1+,2+		FG IJ		J^{π} : L(t,p)=0. XREF: J(4205). J^{π} : 3138y to 2 ⁺ , 4216y to 0 ⁺ , π =+ from L(d,p)=1.
4229? <i>4</i> 4234 <i>4</i>	(0,1,2)		I IJ	o o	XREF: J(4240).
4252			e	N	J^{π} : $L(p,p')=(1)$.

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XRE	F	Comments
4284.0 <i>4</i>	$(2,3)^+$		eFG IJ		XREF: J(4278).
	()- /				J^{π} : 1 ⁺ ,2 ⁺ ,3 ⁺ from L(p,p'); 1533 γ to 3 ⁻ .
4325 6			GI	R	XREF: G(4303).
4339.1 20	(1)	12.0^{a} fs $+43-25$	HI	0	J^{π} : from $\gamma(\theta)$ in (γ, γ') .
4345 10	$3^{+},4^{+},5^{+}$		J		J^{π} : L(p,p')=4.
4355 10			G		J^{π} : $\pi = -$ from L(d,p).
4393 7	$3^{+},4^{+}$		G J		J^{π} : 1 ⁺ to 4 ⁺ from L(d,p)=1 and 3 ⁺ ,4 ⁺ ,5 ⁺ from
					L(p,p')=4.
					E(level): weighted average of 4396 10 from (d,p) and 4389 10 from (p,p').
4396.8 [‡] 7	(8^{+})		D	V X	J^{π} : L(α , ³ He)=(8); E2(+M3) 709 γ to the (6 ⁺) 3688
	,				level and the yield function of the 709γ .
					Configuration: $(g_{9/2})^2$ (1990Fi07,1985Ja02).
4408.4 <i>4</i>			F Ij		(89/2)
4414 6	$1^+, 2^+$		Ιj		J^{π} : L(p,p')=2, γ to g.s.
4437 5	,		G Ij		XREF: G(4425).
					J^{π} : $\pi = -$ from $L(d,p)$.
4444 6	$(1,2^+)$		Ij		J^{π} : γ to g.s.
4466.2 20	1-	7.0^{a} fs $+29-16$	GHI		XREF: G(4452).
					J^{π} : J from $\gamma(\theta)$ in (γ, γ') ; π from L(d,p)=2 for
					4452 10.
4496 <i>6</i>	$(1,2^+)$		IJ		J^{π} : γ to g.s.
4503.2 20	(1)	a	HI		J^{π} : from $\gamma(\theta)$ in (γ, γ') .
					$T_{1/2}$: adopted value of $\Gamma_0/\Gamma > 0.29$ gives 1 fs
					<T _{1/2} $<$ 12 fs.
4512.2 <i>3</i>	(2+)		F		J^{π} : 2095 γ to 4 ⁺ , 4513 γ to 0 ⁺ , primary γ from 2 ⁻ ,3 ⁻ capture state.
4520.6 <i>4</i>	$1,2^{+d}$		F IJ		
4535.6 <i>4</i>	$1,2^{+d}$		F IJ	u	XREF: J(4545).
4578 6	$(1,2^+)$		I	u	J^{π} : γ to g.s.
4587 <i>4</i>	$(1^+,2^+)$		IJ		J^{π} : L(p,p')=2, γ to g.s.
4608 <i>6</i>	(1-)		G IJ		J^{π} : L(d,p)=2, γ to g.s.
4642 <i>4</i>	1.2^{+d}		F IJ		
4656 10	2-,3-		G		J^{π} : L(d,p)=0.
4670 <i>6</i>	$(1,2^+)$		I		J^{π} : γ to g.s.
4680 <i>6</i>	(1,2)		IJ		
4724.1 5	$1^+, 2^+$		F IJ		XREF: I(4718).
	, :				J^{π} : L(p,p')=2, γ to g.s.
4732.8 11	1.2^{+d}		F		
4743 5	2-,3-		G IJ		J^{π} : L(d,p)=0.
4792 6	- ,=		IJ		XREF: J(4782).
4851.2 6	2-,3-		FG J		XREF: J(4841).
	,-				J^{π} : L(d,p)=0.
4857.9 <i>6</i>	1,2+		FI		J^{π} : γ to 0^+ ; primary γ from $2^-,3^-$ capture state.
4865.9 8	(9^{-})			X	J^{π} : 923 γ to (7 ⁻). J^{π} =(10 ⁻) proposed by
					2000Wi18,1997Be77 in 208 Pb(64 Ni,X γ).
4873 <i>4</i>	2-,3-,4-		IJ		J^{π} : L(p,p')=3.
4910.6 <i>4</i>	$1,2^{+d}$		FI		W. I. 7
4910.0 <i>4</i> 4951.5 <i>4</i>	1-,2-,3-		FG I		J^{π} : π =- from L(d,p)=2; γ to 2 ⁺ ; primary γ from
1751.5 1	1 ,2 ,5				2^{-} , 3^{-} capture state.
4963.0 7			F		= ,- enposite source.
4982 6			I		
4992.0 10	1,2 ⁺ <i>d</i>		FI		XREF: I(4998).
1772.0 10	1,2		1 1		11111.1(1770).

E(level) [†]	J^{π}	T _{1/2}	XREF	7	Comments
5019 10	_		G	U	J^{π} : L(d,p)=2.
					E(level): from ⁶⁷ Zn(d,p). Other 5030 20 in ⁶⁴ Ni(⁶ Li,d).
5120 <i>10</i>	-		G	V	J^{π} : L(d,p)=2.
5146 <i>5</i>			I		* **
5162 <i>10</i>			G		
5187.7 7			F		
5200 <i>10</i>	$2^{-},3^{-}$		G		J^{π} : L(d,p)=0.
5283.4 6			FG		
5298.0 <i>4</i>	$1^{-},2^{+}$		F		J^{π} : 2547 γ to 3 ⁻ 2751, γ to g.s.
5307.5 10	_		FG		XREF: G(5317).
5400 4 5					J^{π} : from L(d,p)=2.
5400.4 5	1211		F		
5403.2 5	$1,2^{+d}$		F I		
5415.3 8	$1,2^{+d}$		FG		
5420?			G		
5565.0 8			F		
5610?	(=)		G		IT 1 (1) (2)
5635 10	(-)		G		J^{π} : L(d,p)=(2).
5693.8 <i>6</i> 5860	_		F		J^{π} : L(d,p)=2.
5990.7 <i>9</i>	(11^{-})		G	Х	
3990.1 9	(11)			A	$(2000\text{Wi}18), (1997\text{Be}77) \text{ in } ^{208}\text{Pb}(^{64}\text{Ni}, \text{X}\gamma).$
6760	_		G		J^{π} : L(d,p)=2.
7110	$2^{-},3^{-}$		G		J^{π} : L(d,p)=0.
7362.3 5	1-,5	0.240^{a} fs $+14-12$	Н		J^{π} : from $\gamma(\theta)$ and polarization data in (γ, γ') .
x#	J	0.2.0 15 .17 12		S	J^{π} : based on observed feeding into known
					levels, the estimated spin of the lowest level in the super-deformed band is 17 2
#					(1999De20).
1506.0+x [#] 10	J+2			S	
3223.0+x [#] 15	J+4			S	
5141.1+x# <i>18</i>	J+6			S	
7262.1+x [#] 20	J+8			S	
9593.1+x [#] 23	J+10			S	
12148.2+x [#] 25	J+12			S	
14943+x [#] 3	J+14			S	
18016+x?#	J+16			S	

 $^{^{\}dagger}$ From least squares fit to $E\gamma$ by evaluator, except where noted. ‡ Yrast band (2000Wi18,1997Be77).

^{*} Super-deformed band (1999De20).

[@] From L transfer in (t,p) and (p,t).

[&]amp; From DSAM in $(n,n'\gamma)$.

^a From Γ measurement in (γ, γ') . For the 4339 and 4466 levels, $\Gamma_{\gamma o}/\Gamma_{\gamma}$ is assumed to be 1. Thus, the deduced half-life may be an upper limit.

b L(t,p)=4 for E=2955 10, L(p,t)=4, 4+(2) for E=2957, L(d,p)=(1)+(3) for E=2958 4. c L(t,p)=0 for possible doublet at 3157 10.

^d γ' s to 0⁺ and 2⁺; primary γ from 2⁻,3⁻ capture state.

 $^{^{}e}$ D,E2 γ to g.s. f L(t,p)=2 for 3427 10, L(d,p)=1 for 3424 4.

γ (68Zn)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f .	J_f^{π}	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments
1077.37	2+	1077.34‡ 5	100	0.0)+	E2		0.000247 4		$\alpha(K)$ =0.000221 4; $\alpha(L)$ =2.22×10 ⁻⁵ 4; $\alpha(M)$ =3.18×10 ⁻⁶ 5; $\alpha(N+)$ =1.273×10 ⁻⁷ 18 B(E2)(W.u.)=14.69 19
										Mult.: Q from $\gamma\gamma(\theta)$ in (n,γ) and 68 Ga ε decay; E2 from comparison to RUL.
1655.91	0+	578.52 [‡] 13	100‡ 5	1077.37 2	2+	E2		0.001272 18		$\alpha(K)$ =0.001139 16; $\alpha(L)$ =0.0001160 17; $\alpha(M)$ =1.659×10 ⁻⁵ 24 $\alpha(N+)$ =6.50×10 ⁻⁷ 10 B(E2)(W.u.)=5.5 10
										Mult.: Q from $\gamma \gamma(\theta)$ in (n,γ) and ⁶⁸ Ga ε decay; E2 from comparison to RUL.
		1659 [‡] 7		0.0)+	E0#			4.2×10 ⁻² 10	$I_{(\gamma+ce)}$: from ce(K)(1659)/ I_{γ} (578 γ)=2.2×10 ⁻⁴ 4 and and $I_{\gamma+ce}$ (1656)/ I_{ce} (K)(1656)=0.55.
1883.20	2+	227.31 [‡] 15	0.049 16	1655.91 ()+	(E2) ^d		0.0300		$\alpha(K)$ =0.0268 4; $\alpha(L)$ =0.00286 4; $\alpha(M)$ =0.000406 6; $\alpha(N+)$ =1.476×10 ⁻⁵ 21 B(E2)(W.u.)=16 6 I _{γ} : weighted average of 0.043 16 from (n, γ),
										E=thermal and 0.09 4 from 68 Ga ε decay.
		805.83 [‡] 7	68.0 <i>17</i>	1077.37 2	2+	M1+E2 [@]	-1.55 5	0.000471 7		$\alpha(K)$ =0.000422 6 ; $\alpha(L)$ =4.24×10 ⁻⁵ 7 ; $\alpha(M)$ =6.08×10 ⁻⁶ 9 ; $\alpha(N+)$ =2.43×10 ⁻⁷ 4 B(E2)(W.u.)=28.6 18 ; B(M1)(W.u.)=0.0050 4 I _{γ} : weighted average of 65 3 from (n, γ), E=thermal and 68.9 17 from ⁶⁸ Ga ε decay.
										δ: from ⁶⁸ Ga ε decay. Others: -1.45 15 from (n,γ) , E=thermal and -1.5 3 from $(n,n'\gamma)$.
		1883.16‡ 6	100.0‡ 19	0.0)+	(E2) ^d		0.000333 5		$\alpha(K)=6.97\times10^{-5}\ 10;\ \alpha(L)=6.91\times10^{-6}\ 10;$ $\alpha(M)=9.91\times10^{-7}\ 14;\ \alpha(N+)=0.000255\ 4$ B(E2)(W.u.)=0.85 5
2338.45	2+	682.57 [‡] <i>16</i>	0.331 [‡] 21	1655.91 ()+	(E2) ^d		0.000789 11		$\alpha(K)=0.00707 \ 10; \ \alpha(L)=7.16\times10^{-5} \ 10;$ $\alpha(M)=1.025\times10^{-5} \ 15; \ \alpha(N+)=4.05\times10^{-7}$ B(E2)(W.u.)=2.4 3
		1261.08 [‡] 6	100.0‡ 21	1077.37	2+	M1+E2 [@]	-0.16 2	0.0001725 25		$\alpha(K)=0.0001418\ 20;\ \alpha(L)=1.410\times10^{-5}\ 20;\ \alpha(M)=2.02\times10^{-6}\ 3$ $\alpha(N+)=8.20\times10^{-8}\ 12$ $\alpha(M)=2.02\times10^{-8}\ 12$
		2338.40 [‡] 8	1.19 [‡] <i>17</i>	0.0)+	(E2) ^d		0.000529 8		$\alpha(K)=4.71\times10^{-5} \ 7; \ \alpha(L)=4.67\times10^{-6} \ 7;$

$\gamma(^{68}\text{Zn})$ (continued)

						y(Zii)	(continued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
2370.3		1292.9 <i>15</i>	100	1077.37 2+				$\alpha(M)=6.69\times10^{-7}\ 10;\ \alpha(N+)=0.000476\ 7$ B(E2)(W.u.)=0.019 4 E _{γ} ,I _{γ} : from ⁶⁸ Cu β - decay (30.9 s + 3.75 min).
2417.40	4+	534.22 20	0.56 16	1883.20 2 ⁺	$(E2)^d$		0.001618 23	$\alpha(K)$ =0.001448 21; $\alpha(L)$ =0.0001478 21; $\alpha(M)$ =2.11×10 ⁻⁵ 3; $\alpha(N+)$ =8.25×10 ⁻⁷ B(E2)(W.u.)=6.0 19
		1339.96 5	100 3	1077.37 2+	E2		0.000190 3	$\alpha(K)$ =0.0001368 20; $\alpha(L)$ =1.364×10 ⁻⁵ 20; $\alpha(M)$ =1.95×10 ⁻⁶ 3 $\alpha(N+)$ =3.77×10 ⁻⁵ 7 B(E2)(W.u.)=10.8 12 Mult.: Q from $\gamma\gamma(\theta)$ in (n, γ), E2 from comparison to RUL. δ : $\delta(M3/E2)$ =-0.05 δ from $\gamma\gamma(\theta)$ in (n, γ),E=thermal and +0.02 +5-2 from $\gamma(\theta)$ in $\delta(L)$ From RUL, one expects $\delta<2.4\times10^7$.
2510.2 2750.76	3-	1432.8 <i>15</i> 412.41 <i>12</i>	100 7.7 <i>6</i>	1077.37 2 ⁺ 2338.45 2 ⁺	(E1)		0.000964 14	E _γ ,I _γ : from ⁶⁸ Cu β – decay (30.9 s + 3.75 min). α (K)=0.000865 $l3$; α (L)=8.65×10 ⁻⁵ $l3$; α (M)=1.237×10 ⁻⁵ $l8$; α (N+)=4.92×10 ⁻⁷ B(E1)(W.u.)=0.00161 $l7$ Mult.: D from RUL; $\Delta \pi$ =yes from level scheme.
		1673.29 10	100 7	1077.37 2+	(E1)		0.000445 7	$\alpha(K)$ =4.66×10 ⁻⁵ 7; $\alpha(L)$ =4.61×10 ⁻⁶ 7; $\alpha(M)$ =6.60×10 ⁻⁷ 10; $\alpha(N+)$ =0.000393 6 B(E1)(W.u.)=0.00031 3 Mult.: D,E2 from RUL; $\Delta\pi$ =yes from level scheme.
2821.79	2+	483.35 [‡] <i>16</i>	2.8 [‡] 3	2338.45 2+	M1+E2 [@]		0.0017 5	$\alpha(K)=0.0015\ 5;\ \alpha(L)=0.00016\ 5;\ \alpha(M)=2.2\times10^{-5}\ 7;$ $\alpha(N+)=9.E-7\ 3$ δ : $-0.12\ 6$ or $+1.7\ 9$ from $\gamma\gamma(\theta)$ in 68 Ga ε decay.
		938.61 [‡] 20	1.86 [‡] <i>17</i>	1883.20 2+	M1+E2 [@]	-0.7 3	0.000304 12	$\alpha(K)=0.000272\ 11;\ \alpha(L)=2.72\times10^{-5}\ 11;\ \alpha(M)=3.90\times10^{-6}\ 16$ $\alpha(N+)=1.57\times10^{-7}\ 6$ $B(E2)(W.u.)=1.8\ 11;\ B(M1)(W.u.)=0.0020\ 8$ δ : from $\gamma\gamma(\theta)$ in 68 Ga ε decay.
		1165.92 [‡] <i>15</i>	0.17‡ 10	1655.91 0+	E2 ^d		0.000211 3	$\alpha(K)$ =0.000185 3; $\alpha(L)$ =1.85×10 ⁻⁵ 3; $\alpha(M)$ =2.65×10 ⁻⁶ 4; $\alpha(N+)$ =4.67×10 ⁻⁶ 7 B(E2)(W.u.)=0.16 11
		1744.42 [‡] <i>13</i>	100 [‡] 5	1077.37 2+	M1+E2 [@]	+0.27 5	0.000241 4	$\alpha(K)=7.70\times10^{-5}\ 11;\ \alpha(L)=7.63\times10^{-6}\ 11;\ \alpha(M)=1.094\times10^{-6}\ 16;\ \alpha(N+)=0.0001550$ B(E2)(W.u.)=0.9 4; B(M1)(W.u.)=0.023 5 δ : from $\gamma\gamma(\theta)$ in 68 Ga ε decay. Others: +0.24 13 from (n, γ) and +0.15 5 from (n, $\eta'\gamma$).
		2821.73 [‡] <i>14</i>	4.9 [‡] 4	0.0 0+	(E2) ^d		0.000740 11	$\alpha(K)=3.43\times10^{-5}$ 5; $\alpha(L)=3.39\times10^{-6}$ 5; $\alpha(M)=4.86\times10^{-7}$ 7; $\alpha(N+)=0.000702$ 10

 ∞

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
								B(E2)(W.u.)=0.057 13
2955.9		585.6 <i>15</i>	100	2370.3				I_{γ} : Other: 10 3 in (n, γ), E=thermal. E_{γ} , I_{γ} : from ⁶⁸ Cu β - decay (3.75 min).
2955.9 2959.49	(4^{+})	542.05 16	12.0 20	2417.40 4 ⁺				E_{γ} , I_{γ} . Holli weu p - decay (3.73 illill).
2,3,1,1	(,)	1883.1 ^{&} 5	100 27	1077.37 2+				
3009.27	3 ⁺	591.71 16	5.7 6	2417.40 4+				
		670.89 <i>17</i>	4.8 6	2338.45 2+				I_{γ} : Other: 18 3 in $(n,n'\gamma)$.
		1126.07 6	100 5	1883.20 2 ⁺	M1+E2 [@]	-0.36 + 20 - 27	0.000201 6	$\alpha(K)=0.000179\ 5;\ \alpha(L)=1.79\times10^{-5}\ 5;\ \alpha(M)=2.56\times10^{-6}$
								7; $\alpha(N+)=1.39\times10^{-6}$ 10
								B(E2)(W.u.)=6 +7-6; $B(M1)(W.u.)=0.040 +13-21$
		1022 1 2	11.7.70	1077.27.2+	(M1 - F2)	0.15.2	0.000201.5	δ : from $\gamma\gamma(\theta)$ in (n, γ), E=thermal.
		1932.1 <i>3</i>	11.7 <i>12</i>	1077.37 2+	(M1+E2)	-0.15 <i>3</i>	0.000301 5	$\alpha(K)=6.39\times10^{-5}$ 9; $\alpha(L)=6.33\times10^{-6}$ 9; $\alpha(M)=9.07\times10^{-6}$ 13; $\alpha(N+)=0.000230$ 4
								B(E2)(W.u.)=0.010 +5-7; B(M1)(W.u.)=0.0010 +4-6
								Mult., δ : D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level
								scheme.
	0.1	1210.20	1000	1000 00 0+			0.000400.4	δ: from $ γ(θ)$ in $(n,n'γ)$.
3102.51	0_{+}	1219.3 ^a 1	100 ^a	1883.20 2 ⁺	[E2]		0.000199 3	$\alpha(K)$ =0.0001676 24; $\alpha(L)$ =1.674×10 ⁻⁵ 24; $\alpha(M)$ =2.40×10 ⁻⁶ 4; $\alpha(N+)$ =1.185×10 ⁻⁵
		2025.1 ^f	-2	1077.37 2+				
2152 00		815.7 ^a f 5	≤3 100 ^a 21	2338.45 2+				E_{γ}, I_{γ} : from $(p, p'\gamma)$.
3153.8?		1270.0^{af} 5						1 4 1070 ' 1 114 '4 1 60 11
3160.1		$12/0.0^{a}$ 3 2082.7^{a} 3	<79 ^a 100 ^a	1883.20 2 ⁺ 1077.37 2 ⁺				I_{γ} : the 1270 γ is a doublet with I_{γ} =68 11.
3164.4		747.0^{af} 14	100 100 ^a	2417.40 4+				
3184.18	1,2+	845.2 6	6.5 15	2338.45 2+				
5101.10	1,2	1300.87 20	25.5 20	1883.20 2 ⁺				
		2106.83 18	100 15	1077.37 2+				
		3184.3 6	32 4	$0.0 0^{+}$				
3186.6	$(1,2^+)$	1529.7 15	56 17	1655.91 0 ⁺				E _y ,I _y : from 68 Cu β - decay (30.9 s).
3281.58	4+	2110.1 <i>15</i> 864.17 <i>14</i>	100 28 100 ^a 9	1077.37 2 ⁺ 2417.40 4 ⁺				E _y ,I _y : from ⁶⁸ Cu β - decay (30.9 s).
3201.30	4	1397.0 ^a f 6	18 ^a 3	1883.20 2 ⁺				I_{γ} : weighted average of (n,γ) and $(n,n'\gamma)$. I_{γ} : weighted average of (n,γ) and $(n,n'\gamma)$.
2297.00	2+	465.20^{f} 18	1.6 3	2821.79 2 ⁺				i_{γ} . weighted average of (i_{i},γ) and (i_{i},i_{i}) .
3287.09	2 '	465.20 ³ 18 1403.7 3	1.6 <i>3</i> 4.3 <i>14</i>	2821.79 2 ⁺ 1883.20 2 ⁺				
		1630.9 <i>3</i>	14.5 14	1655.91 0 ⁺				I_{γ} : Other: 38 15 in $(n,n'\gamma)$.
		2209.75 16	100 12	1077.37 2+	(M1+E2) [@]		0.00044 4	$\alpha(K)=5.12\times10^{-5}$ 12; $\alpha(L)=5.07\times10^{-6}$ 12;
					()			$\alpha(M) = 7.27 \times 10^{-7} 16; \ \alpha(N+) = 0.00038 4$
								δ : -0.07 10 for $J^{\pi}(3287)=1^{+}$ and +0.63 +22-37 for

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α	Comments
3287.09	2+	3287.2 3	48 5	0.0 0+				I_{γ} : Other: 5 4 in $(n,n'\gamma)$.
3334.7?		996.2 ^f 5	52 14	2338.45 2+				,
		1451.8 ^f 6	62 14	1883.20 2+				
		2257.2 ^f 7	100 19	1077.37 2+				
3346.09	1+	1462.0 <i>af</i> 23	27 <mark>a</mark> 10	1883.20 2+				
		2270 ^a 3	34 <mark>a</mark> 11	1077.37 2+				
		3346.0 ^a 2	100 ^a 17	0.0 0+	(M1)		0.000856 12	$\alpha(K)$ =2.53×10 ⁻⁵ 4; $\alpha(L)$ =2.50×10 ⁻⁶ 4; $\alpha(M)$ =3.58×10 ⁻⁷ 5; $\alpha(N+)$ =0.000828 12 B(M1)(W.u.)=0.060 21 Mult.: D,E2 from comparison to RUL, from level scheme transition is 1 ⁺ to 0 ⁺ .
3386?		$2310^{af} 3$	100 <mark>a</mark> 50	1077.37 2+				
		$3383^{af} 5$	30 a 17	$0.0 0^{+}$				
3400.9	1,2+	1517.7 <mark>a</mark> 5	89 ^a 22	1883.20 2+				
		$2322^{af} 3$	100 a 45	1077.37 2+				
		3402 ^a 5	24 ^a 12	0.0 0+				
3425.07		1542.0 2	53 5	1883.20 2 ⁺				
2420.46	1,2+	2347.5 2 1091.04 <i>f</i> 18	100 <i>15</i> 28 2	1077.37 2 ⁺ 2338.45 2 ⁺				
3429.46	1,2	1546.13 <i>16</i>	28 Z 100 8	1883.20 2 ⁺				
		2352.4 3	50 10	1077.37 2 ⁺				
		3430.2 11	12 4	$0.0 0^{+}$				
3451.0		630.0 ^a 13	46 ^a 19	2821.79 2+				
		1114.0 ^a f 18	95 <mark>a</mark> 40	2338.45 2+				
		2373.5^{af} 3	100 ^a 26	1077.37 2+				
3458.83	5-	499.9 ^{&} f 5		2959.49 (4+)				E_{γ} : observed only in 208Pb(⁶⁴ Ni,X γ) as sole depopulating transition from a 3459 level.
		1041.26 <i>16</i>		2417.40 4+	(E1+M2)	+0.07 5	0.000120 4	$\alpha(K)=0.000108 \ 4; \ \alpha(L)=1.07\times10^{-5} \ 4; \ \alpha(M)=1.53\times10^{-6} \ 6; \ \alpha(N+)=6.17\times10^{-8} \ 22$
								Mult.: D+Q from $\gamma(\theta)$ in 65 Cu(α ,p γ), $\Delta\pi$ =yes from level scheme.
								$ δ$: from $ γ(θ)$ in $ ^{65}$ Cu($ α$,p $ γ$).
3487.7		736.9 15	100	2750.76 3-				E_{γ} , I_{γ} : from ⁶⁸ Cu β - decay (30.9 s).
3496.08	3+,4+	744.8 6	3.1 15	2750.76 3-				
		1612.2 <i>6</i> 2418.7 <i>1</i>	5.4 <i>15</i> 100 <i>12</i>	1883.20 2 ⁺ 1077.37 2 ⁺				
3586.64	4+	835.87 ^a 6	100 12 100 ^a 19	2750.76 3 ⁻				
2200.01	•	$2508^a 4$	46 ^a 13	1077.37 2 ⁺				

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
3610.8	(6)-	152.0 5	100	3458.83 5-	M1(+E2)	-0.05 +8-6	0.0205 12	$\alpha(K)$ =0.0183 10 ; $\alpha(L)$ =0.00190 12 ; $\alpha(M)$ =0.000272 16 ; $\alpha(N+)$ =1.07×10 ⁻⁵ 6 B(M1)(W.u.)>0.0024 E _γ : from 65 Cu(α ,pγ). Mult.: D+Q from $\gamma(\theta)$ in 65 Cu(α ,pγ), $\Delta\pi$ =no from level scheme. δ : from $\gamma(\theta)$ in 65 Cu(α ,pγ).
3624.32	$(1,2^+)$	2546.9 ^a 2 3626 ^a 5	$100^{a} 25$ $26^{a} 12$	$1077.37 2^+ \\ 0.0 0^+$				\mathbf{c} . Hom $\gamma(0)$ in \mathbf{c} u($\alpha, \mathbf{p}\gamma$).
3630.32	(2+)	348.7 ^f 3 621.06 14 879.59 15 1212.7 3 3630.2 6	3.5 7 42 4 100 13 23 3 68 9	3281.58 4 ⁺ 3009.27 3 ⁺ 2750.76 3 ⁻ 2417.40 4 ⁺ 0.0 0 ⁺				
3664.7	(1,2)+	1781.5 <i>3</i> 2587.2 <i>7</i> 3664.8 <i>10</i>	100 <i>10</i> 65 <i>19</i> 36 <i>9</i>	1883.20 2 ⁺ 1077.37 2 ⁺ 0.0 0 ⁺				
3687.5	(6 ⁺)	1270.1 5	100	2417.40 4+	(E2+M3)	+0.14 5	0.000201 8	$\alpha(K)$ =0.000161 7; $\alpha(L)$ =1.61×10 ⁻⁵ 7; $\alpha(M)$ =2.30×10 ⁻⁶ 10; $\alpha(N+)$ =2.13×10 ⁻⁵ 5 E _γ : from ⁶⁵ Cu(α ,pγ). Mult.: Q+O from $\gamma(\theta)$ in ⁶⁵ Cu(α ,pγ), $\Delta\pi$ =no from level scheme. δ: from $\gamma(\theta)$ in ⁶⁵ Cu(α ,pγ).
3709.8	(2+)	1371.6 ^a 3 3708.2 ^a 8	100 ^a 19 71 ^a 10	2338.45 2 ⁺ 0.0 0 ⁺				
3717.47 3725.79	1,2+	2061.5 ^a 2 3717.5 ^a 5 904.6 4	58 ^a 9 100 ^a 10 11 3	1655.91 0 ⁺ 0.0 0 ⁺ 2821.79 2 ⁺				
3123.19		975.4 ^f 4	13 3	2750.76 3				E_{γ} : Other: 978.0 17 in $(n,n'\gamma)$. I_{γ} : Other: 30 17 in $(n,n'\gamma)$.
		1387.21 <i>19</i> 2648.1 <i>6</i>	63 <i>5</i> 100 <i>30</i>	2338.45 2 ⁺ 1077.37 2 ⁺				(0)
3732.4? 3776.32	1,2+	1222.2 ^f 15 1437.76 24 2699.5 10 3777.0 ^f 9	100 62 5 35 11 100 18	2510.2 2338.45 2 ⁺ 1077.37 2 ⁺ 0.0 0 ⁺				E_{γ} , I_{γ} : from ⁶⁸ Cu β^- decay (3.75 min).
3814.83	1,2+	3777.07 9 2737.4 ^a 2 3817 ^a 5	100 18 100 27 37 6	$ \begin{array}{ccc} 0.0 & 0^{+} \\ 1077.37 & 2^{+} \\ 0.0 & 0^{+} \end{array} $				
3849.30	4+	1431.86 22	100 9	2417.40 4+				

γ (68Zn) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
	3849.30	4+	1511.1 7	13 6	2338.45	2+	[E2]	0.000210 3	$\alpha(K)$ =0.0001068 15; $\alpha(L)$ =1.063×10 ⁻⁵ 15; $\alpha(M)$ =1.523×10 ⁻⁶ 22 $\alpha(N)$ =6.15×10 ⁻⁸ 9 B(E2)(W.u.)=3.1 +19–31
	3895.83	4+	936.7 <i>3</i> 1478.31 <i>18</i> 1557.1 <i>6</i>	22 5 100 8 8 4	2959.49 2417.40 2338.45	4+			I_{γ} : Other: 47 20 in $(n,n'\gamma)$.
	3910.99	(3)-	629.3 ^f 3 1493.5 3 1572.5 9 2027.9 4	29 7 95 12 22 7 100 15	3281.58 2417.40 2338.45 1883.20	4 ⁺ 4 ⁺ 2 ⁺			1y. Other. 47 20 m (n,n y).
	3929? 3935.08	3 ⁺	2852 ^{af} 4 1113.34 20 1184.5 ^f 3 1596.3 5	100 ^a 9.6 12 12 3 7.6 20	1077.37 2821.79 2750.76 2338.45	2 ⁺ 2 ⁺ 3 ⁻			I_{γ} : Other: 29 14 in $(n,n'\gamma)$.
	3942.9	(7-)	2857.6 <i>4</i> 3935.1 <i>13</i> 332.1 <i>5</i>	100 28 6 3 100	1077.37 0.0 3610.8	2+		0.00771 12	E_{γ} , I_{γ} : from ⁶⁵ Cu(α ,p γ).
)	3970.7?	(1)	$1014.5^{f} 15$ $1149.4^{f} 20$	100 <i>45</i> 32 <i>13</i>	2955.9 2821.79	2+		0.00771 12	E_{γ},I_{γ} : from ⁶⁸ Cu β^- decay (3.75 min). E_{γ},I_{γ} : from ⁶⁸ Cu β^- decay (3.75 min).
	3989? 4027.7	(1-,2+)	3989 ^{af} 5 1018.3 4 1276.9 6 4028.3 8	100 ^a 16 5 27 11 100 14	0.0 3009.27 2750.76 0.0	3 ⁺ 3 ⁻			
	4061.0	(2)+	1724 ^a 3 2983.5 ^a 3	65 ^a 20 100 ^a 15	2338.45 1077.37	2 ⁺ 2 ⁺			
	4102? 4139.2	1-	4102^{af} 5 3062.4^{f} 5 4139.1 17	100 ^a 100 <i>10</i> 19 9	0.0 1077.37 0.0	2+			
	4215.4	1+,2+	3137.8 <i>6</i> 4215.9 <i>15</i>	100 <i>16</i> 27 <i>12</i>	1077.37 0.0	2+			
J	4229?		3152 <i>af</i> 4	100 ^a	1077.37				
	4234 4284.0	$(0,1,2)^-$ $(2,3)^+$	3157 ^a f 4 1274.8 8 1533.2 4 3206.4 9	100 ^a 20 8 39 8 100 14	1077.37 3009.27 2750.76 1077.37	3 ⁺ 3 ⁻			
	4325		4325 ^a 6	100 ^a	0.0				
	4339.1	(1)	4339 ^b 2	100 ^b	0.0	0+			

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_j^{π}	Mult.	δ	α	Comments
4396.8	(8+)	709.3 5	100	3687.5 (6	E2(+M3)	+0.05 +2-8	0.000716 12	$\alpha(K)$ =0.000642 11; $\alpha(L)$ =6.49×10 ⁻⁵ 11; $\alpha(M)$ =9.30×10 ⁻⁶ 16 $\alpha(N+)$ =3.67×10 ⁻⁷ 7 $E_{\gamma}I_{\gamma}$: from ⁶⁵ Cu(α ,p γ). Mult.: Q+O from $\gamma(\theta)$ in ⁶⁵ Cu(α ,p γ), $\Delta\pi$ =no from level scheme. δ: from $\gamma(\theta)$ in ⁶⁵ Cu(α ,p γ).
4408.4		1448.8 <i>5</i> 3331.0 <i>4</i>	13 <i>3</i> 100 <i>10</i>	2959.49 (4 ⁻¹ 1077.37 2 ⁺)			o. Hom $\gamma(o)$ in $\operatorname{Cu}(a,p\gamma)$.
4414	$1^+, 2^+$	4414 ^a 6	100 ^a	$0.0 0^{+}$				
4437		3360 ^{af} 5	100 ^a 17	1077.37 2+				
		4440 ^a 6	<164 ^a	$0.0 0^{+}$				
4444	$(1,2^+)$	4444 <mark>a</mark> 6	100 <mark>a</mark>	$0.0 0^{+}$				
4466.2	1-	4466 ^b 2	100 ^b	0.0 0+	[E1]		0.00186 3	$\alpha(K)=1.208\times10^{-5}\ 17;\ \alpha(L)=1.188\times10^{-6}\ 17;\ \alpha(M)=1.702\times10^{-7}\ 24;\ \alpha(N+)=0.00184\ 3$ B(E1)(W.u.)=0.00065 +15-27
4496	$(1,2^+)$	4496 ^a 6	100 ^a	$0.0 0^{+}$				
4503.2	(1)	3427 ^{af} 5	≤150 ^a	1077.37 2+				
		4503 ^b 2	100 ^a 40	$0.0 0^{+}$				
4512.2	(2^{+})	2094.6 3	100 12	2417.40 4+				
		3434.9 8	78 <i>16</i>	1077.37 2+				
		4513.3 8	80 14	$0.0 0^{+}$				
4520.6	1,2+	1698.0 ^f 8	25 7	2821.79 2+				I_{γ} : Other: 200 120 in (n,n' γ), relative to $I_{\gamma}(4521\gamma)=100$ 65.
		2181.7 5	46 8	2338.45 2+				I_{γ} : Other: 300 130 in (n,n' γ), relative to $I_{\gamma}(4521\gamma)=100$ 65.
		4521.0 6	100 9	$0.0 0^{+}$				
4535.6	$1,2^{+}$	3458.1 <i>4</i>	100 12	1077.37 2+				
		4535.5 9	30 6	0.0 0+				
4578	$(1,2^+)$	4578 ^a 6	100 ^a	$0.0 0^{+}$				
4587	$(1^+, 2^+)$	3511 ^a 5	100 ^a 16	1077.37 2+				
4600	(1-)	4585 ^a 6	$28^{a} 9$	$0.0 0^{+}$				
4608	(1-)	4608 ^a 6	100 ^a	0.0 0+				
4642	1,2+	$2300^{af} 3$	37 ^a 30	2338.45 2+				
		3567 ^a 5	100^{a} 18	1077.37 2+				
		4639 ^a 6	42 ^a 18	$0.0 0^{+}$				
4670	$(1,2^+)$	$3592^{af} 5$	100 ^a 56	1077.37 2+				
		4670 ^a 6	62 ^a 41	$0.0 0^{+}$				

γ (68Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
4680		4680 ^a 6	100 <mark>a</mark>	0.0	0+
4724.1	$1^+, 2^+$	1902.2 5	61 <i>16</i>	2821.79	2+
		4724.3 8	100 14	0.0	0_{+}
4732.8	1,2+	1723.5 ^f 5	42 9	3009.27	3+
		3077.2 ^f 8	100 20	1655.91	0^{+}
		3655.2 16	44 22	1077.37	2+
		4732.8 <i>14</i>	38 11	0.0	0_{+}
4743	2-,3-	3666 ^{af} 5	100 <mark>a</mark>	1077.37	2+
4792	,	4792 <mark>a</mark> 6	100 <mark>a</mark>	0.0	0^{+}
4851.2	2-,3-	916.1 ^f 4	9 4	3935.08	3 ⁺
		1186.9 ^f 6	16 5	3664.7	$(1,2)^+$
		2512.7 6	100 <i>30</i>	2338.45	2+
4857.9	$1,2^{+}$	3201.1 9	88 <i>21</i>	1655.91	0_{+}
		4858.4 8	100 18	0.0	0_{+}
4865.9	(9-)	923.0 ^{&} 5	100 ^{&}	3942.9	(7^{-})
4873	2-,3-,4-	$2122^{af} 3$	100 ^a 58	2750.76	3-
		2990 ^a 4	≤344 ^a	1883.20	2+
4910.6	1,2+	3027.7 ^f 14	11 6	1883.20	2+
		3254.4 10	13 6	1655.91	0+
		3833.1 <i>4</i>	100 12	1077.37	2+
4951.5	1-,2-,3-	1767.2 <i>4</i>	30 6	3184.18	1,2+
		3068.8 8	37 9	1883.20	2+
4062.0		3874.1 8	100 23	1077.37	2 ⁺
4963.0		3885.5 7	100 100 ^a	1077.37	2 ⁺ 0 ⁺
4982		4982 ^a 6		0.0	-
4992.0	1,2+	3107.5 ^f 15	85 41	1883.20	2+
		3913.9 18	100 29	1077.37	2 ⁺ 0 ⁺
5146		4992.0 <i>11</i> 2732 <i>af 4</i>	76 <i>18</i> 100 <i>47</i>	0.0 2417.40	0 · 4 ⁺
3140		4069^{af} 5			-
5107.7			<6	1077.37	2+
5187.7		2770.4 <i>7</i> 4109.8 <i>13</i>	100 <i>30</i> 31 <i>14</i>	2417.40 1077.37	4 ⁺ 2 ⁺
5283.4		2866.1 7	100 30	2417.40	4 ⁺
3203.4		2800.1 / 2944.5 f 9			
			52 <i>15</i> 52 <i>17</i>	2338.45	2 ⁺ 2 ⁺
5298.0	$1^{-},2^{+}$	3399.8 <i>11</i> 2547.0 <i>4</i>	52 17 100 30	1883.20 2750.76	3-
3298.0	1 ,2	2547.04 $2959.7f$ 8			
		_, , , , ,	43 13	2338.45	2 ⁺
		3415.6 9	91 26	1883.20	2+

 γ ⁽⁶⁸Zn) (continued)

 $\Gamma_0/\Gamma=0.85$ from (γ,γ') .

Mult.: from $\gamma(\theta)$ (lin pol) in (γ, γ') .

Mult.

2+

 0^{+}

 0^{+}

3+

4+

2+

 0^{+}

2+

3-

4+

2+

 (9^{-})

2+

 0^{+}

2+

 0^{+}

J

E1

Qe

Qe

 Q^e

 Q^e

Qe

1077.37

1655.91

3009.27

2417.40

1883.20

1077.37

2750.76

2417.40

2338.45

2417.40

4865.9

2821.79

1655.91

1077.37

X

1506.0+x J+2

3223.0+x J+4

5141.1+x J+6

7262.1+x J+8

9593.1+x J+10

12148.2+x J+12

14943+x J+14

0.0

0.0

0.0

0.0

Comments

 E_{γ}

4221.7 17

5297.3 11

3651.5 10

2391.2 6

2982.9 6

3519.4 6

5403.9 8

4337.3 15

5415.3 9

2814.4 11

3147.3 11

 3226.4^{f} 7

1124.7[&] 5

3276.3 6

4540<mark>b</mark>

5706^b

6285^b

7362^b

1506^c

1717^c

1918^c

2121^c

2331^c

2555^c

2795^c

3073*cf*

[@] D+Q from $\gamma\gamma(\theta)$, M1+E2 from comparison to RUL. & From 208 Pb(64 Ni,X γ). Δ E γ =0.5 keV assumed by evaluator.

^c From 26 Mg(48 Ca, α 2n γ). Δ E γ =1 keV assumed by evaluator.

[†] From (n,γ) E=thermal, except where noted.

From ce data in $(p,p'\gamma)$ or ⁶⁸Ga ε decay.

 E_i (level)

5298.0

5307.5

5400.4

5403.2

5415.3

5565.0

5693.8

5990.7

7362.3

1506.0+x J+2

3223.0+x J+4

5141.1+x J+6

7262.1+x J+8

9593.1+x J+10

12148.2+x J+12

[‡] From ⁶⁸Ga ε decay.

^a From $(n,n'\gamma)$. ^b From (γ, γ') .

J+14

J+16

14943+x

18016+x?

15

 $1,2^{+}$

 1.2^{+}

 (11^{-})

1-

 I_{γ}^{\dagger}

29 15

30 7

50 11

100 30

100 22

76 10

100 37

57 12

58 18

52 16

100 14

100

100<mark>&</mark>

 γ (68Zn) (continued)

 $[^]d$ D,E2 from RUL; ΔJ^{π} =2,no from level scheme. e From $\gamma(\theta)$ in $^{26}{\rm Mg}(^{48}{\rm Ca},\alpha 2{\rm n}\gamma)$. f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

