

Lecture 4: Edge Based Vision

Spring 2021

Slides by: Dr Carole Twining

Presented by: Terence Morley

Handouts & Lecture Notes

• Report in Scientific American (June 2014): "In each study, however, those who wrote out their notes by hand had a stronger conceptual understanding and were more successful in applying and integrating the material than those who used [sic] took notes with their laptops."

The Pen Is Mightier Than the Keyboard

P. A. Mueller, D. M. Oppenheimer, *Psychological Science*, Vol 25, Issue 6, pp. 1159 – 1168, April-23-2014.

- Handouts are to aid note taking, not a total replacement for note taking
- Podcasts, slides, pdfs etc on BlackBoard

Overview:

- Why Edges Matter:
 - Edges in images correspond to physical events: edge of object, change in colour, change of surface orientation
- Edges and Derivatives
 - Convolution and filters (to detect changes)
- Edges and Scale
 - Physical edges persist across scales
- Edge Detection
 - Problem with noise, and accurate edge location
- Edge growing
 - **■** Thresholding with hysteresis
 - **■** Edge relaxation
- Hough Transform
 - Finding lines

Edges and Derivatives

light

First-Derivative Edge Filters

- What is an edge?
- To detect: look at the slope

Discrete version of $\partial_{\mathbf{x}}$, Central difference

dark

						_				
-1	0	1		-1	0	1				
-1	0	1		-2	0	2		1	0	
-1	0	1	1	-1	0	1		0	-1	
Prewitt .				Sobel			R	ob	ert	ts

?		?
-1	0	1
?		?

Decomposable: Exterior product

Multiplies and adds

$$(a \otimes b) * \mathcal{I} \equiv a * (b * \mathcal{I})$$

First Derivative Filters: Sobel

 ${\mathcal I}$

 $\overline{\mathcal{I}_{\mathbf{X}}} \doteq \mathbf{S}_{\mathbf{X}} * \mathcal{I} \quad \mathcal{I}_{\mathbf{y}} \doteq \mathbf{S}_{\mathbf{y}} * \mathcal{I}$

Edge strength: $g = |\overrightarrow{\nabla} \mathcal{I}| = \sqrt{\mathcal{I}_x^2 + \mathcal{I}_y^2}$

Ridges of g at edges, but noisy.

Normal to Edge:
$$\hat{\underline{n}} = \frac{\overrightarrow{\nabla} \mathcal{I}}{|\overrightarrow{\nabla} \mathcal{I}|}$$

Second-Derivative Edge Filters

Laplacian: scalar operator

$$\triangle = \nabla^2 = \partial_{\mathbf{x}}^2 + \partial_{\mathbf{y}}^2$$

- Difference of Gaussian, Laplacian of Gaussian: includes gaussian smoother
- False edges: every peak/trough of gradient gives a zero-crossing, not just big peaks
- Doesn't tell us the direction of the edge (scalar operator)
- Tends to create closed loops of edges ('plate of spaghetti' effect)

Laplacian

Laplacian Filter

Zero Crossings

- Need to consider smoothing and noise
- Need to consider scale
- Need to consider edge detection

-1	-1	-1	
-1	8	-1	
-1	-1	-1	

MANCHESTER 1824

Edges and Scale

Edges and Scale

- Edge filters enhance noise
- What is a 'real' edge and what noise?
- Edges exist at many different scales
- What scales matter depends on application
- Sensible approach: use many different scales
 - Edges persist across scales, allows fusion across scales
- Gaussian gives scale & smoothing separable filter

Edges and Scale

Marr-Hildreth:

- - combine into single stage LoG
- **Edges at zero-crossings**
- Edges move with scale if curved
- No information on direction
- 'Plate of spaghetti' problem

Canny:

- Convolve with gaussian $\mathcal G$ Convolve with gaussian $\mathcal G$ Take Laplacian ∇^2 of result: Take gradient $\overrightarrow{\nabla}$ of result

$$\overrightarrow{\nabla}(\mathcal{G}*\mathcal{I}), g = |\overrightarrow{\nabla}(\mathcal{G}*\mathcal{I})|$$

Find gradient direction:

$$\widehat{\underline{n}} = \overrightarrow{\nabla} (\mathcal{G} * \mathcal{I}) / g$$

- **Create gaussian-smoothed** derivative tuned to this direction
- Take another derivative in that direction to find local maximum, zero-crossing
- Stable across scales

Marr-Hildreth vs Canny

- Both involve pre-smoothing with gaussian
- Both involve second-derivative BUT:

Marr-Hildreth:

- No information on direction
- By adding second-derivative in other direction, increases effect of noise

Canny:

- Create tuned derivative given estimated gradient direction
- Only compute second derivative in gradient direction
- Check that it really is local maximum of edge strength in that direction (see nonmaximum suppression)

Marr-Hildreth Edge Detection

RGB PLOT

white, all 3 scales

Marr-Hildreth Edge Detection

 $\sigma = 10$

- Some edges not well localized
- 'Plate of spaghetti' effects

Trace zero crossings in image +ve

Keeps going until meets edge or closes the loop

MANCHESTER 1824

Edge Detection

Edge Detection: First Derivatives

- Position of maximum can be difficult to locate:
 - second-derivative, zero crossing more precise
- Simple threshold:
 - thick edges, need to apply thinning
 - missed edges, streaking (see thresholding with hysteresis)

Edge Detection:

- Zero-crossing more precisely located than maximum
 - Sub-pixel accuracy?
- Thresholding in Marr-Hildreth (LoG):
 - Threshold at ~zero, but what about noise?
 - Doesn't use directional information
 - Other second derivative increases noise
- 'Plate of spaghetti':
 - **■** continuity => closed loops or meets boundary
- Thresholding & Thinning 1st Derivative
 - Incorporates neighbourhood information
 - Still doesn't use all available information
- If we had the edge direction as well......

Non-Maximum Suppression

- Start from edge-strength signal g
- Locate possible edge point P
- lacktriangle Identify gradient direction $\widehat{\underline{n}}$
- lacksquare Interpolate g at P_1 and P_2
- P is local maximum provided: $g(P) > g(P_1)$ & $g(P) > g(P_2)$
- Only accepts as edge if proper maximum, rejects if not
- In practise, only allow a set of discrete possible directions

Object & pixel positions

Canny Edge Detector

$$\sigma = 1.5$$

 $\sigma = 2$

white, all 3 scales

Canny Edge Detector:

$$\sigma = 10$$

$$\sigma = 20$$

Marr-Hildreth vs Canny at σ=10

From Edge Pixels to Edges

- Have candidate edge pixels
- Have information on edge direction and strength
- Want connected edges:

Edge growing

 Going from individual edge pixels, to entire, connected edges – curves that are boundaries of objects

Edge Growing

Edge Thresholding with Hysteresis

- Edge strength image, two thresholds T_H & T_L
- Only edges have points g> T_H
- Edges have all points g> T_L
- Start at point g>T_H, and trace connected points with $g>T_1$

$$g > T_L$$

$$g > T_L g > T_H Result$$

Edge Relaxation

Use context to resolve ambiguity (as in segmentation)

g(i): Edge strength at pixel i

 $\underline{e}(i)$: Edge direction at pixel i

Normalise edge strengths $g(i) \Rightarrow P(\underline{e}, i) \leq 1$

Compatibility

Pixels i and j,

edge directions \underline{e} and \underline{e}' :

$$c_{i,j}(\underline{e},\underline{e}')=0$$
 not neighbours

$$\mathbf{c}_{\mathbf{i},\mathbf{j}}(\underline{e},\underline{e}') = |\cos(\alpha)|$$

As before, update probabilities based on support

Edge Relaxation

weak and strong edges

- Supporting each other
- Many refinements and alternatives in the literature, but all applying same basic ideas

Hough Transform

Aside: Lines in human vision

See lines where we have only minimal information

Actually straight, but we don't see them as that!

Hough Transform (1)

- Have some set of points, parts of edges etc
- Want to put them together into continuous lines
- Strategy:
 - **■** Transform to parameter space
 - Let points vote for lines that could pass through them
 - Look for clusters
- Finding the right parameter space
- Can be extended if you can find such a space for shape of interest

Hough Transform (2)

Set of points $\{P_i = (x_i, y_i)\}$ in image plane. Any and all straight lines thro' P_i :

 $y_i = mx_i + c$ \Rightarrow $c = -x_i m + y_i$

 L_i : line in (c,m) plane, intercept y_i , gradient $-x_i$

Hough Transform (3)

- ullet Repeat for all points $\{P_i=(x_i,y_i)\}$ in image plane
- Look for points in (c,m) plane where lots of lines cross
- Lines which pass thro' lots of points in image plane

Hough Transform (4)

 Verticals, m is infinite! Need better parameter space

Hough Transform (5)

- Single point $P_i = (x_i, y_i)$
- ullet All possible heta : allowed values of r, sinusoid curve
- Extend to other than lines, generalised Hough transform

Example: Integrated Circuit

Image

Edge Pixels

Example: Integrated Circuit

Each edge pixel
= 1 sinusoid

Each peak
= 1 line in image
Set of peaks at
approx 90°

Another at
approx 0°

Example: Finding Lines under Noise

Broken Line

Hidden under noise

Edge Strength Image

Example: Finding Lines under Noise

Hough Space

...thresholded

Summary:

- Edges and Derivatives
 - Convolution and filters (first & second derivatives, gaussians)
- Edges and Scale
 - Physical edges persist across scales
- Edge Detection
 - Problems with noise, and accurate edge location
 - Non-maximum suppression
- Edge Growing
 - **■** Thresholding with hysteresis
 - Edge relaxation
- Hough Transform
 - Finding lines/circles etc even when occluded