# Module 5: Statistical inference (II)

Siyue Yang

05/21/2022

### Outline

#### This module we will review

- Basics of parametric inference
- Methods for generating parametric estimators
- Maximum likelihood estimators
- Delta method
- Optimization method for finding MLE in R (Newton-Raphson, EM algorithm)

#### Parametric inference

### Definition (Parametric models)

$$\mathfrak{F} = \{ f(\mathbf{x}; \theta) : \theta \in \Theta \}$$

where the  $\Theta \subset \mathbb{R}^k$  is the parameter space and  $\theta = (\theta_1, \dots, \theta_k)$  is the parameter.

#### Goal of parametric inference

ullet estimate the parametric heta (assume we known the form of the density).

### Parameter of interest and nuisance parameter

Often, we are interested in estimating some function  $T(\theta)$ .

For example, if  $X \sim N(\mu, \sigma^2)$ , then

- Parameters:  $\theta = (\mu, \sigma)$
- Parameter space:  $\Theta = \{(\mu, \sigma) : \mu \in \mathbb{R}, \sigma > 0\}$

If the goal is to estimate the  $\mu$  then

- Parameter of interest:  $T(\theta) = \mu$
- ullet Nuisance parameter:  $\sigma$

# Methods for generating parametric estimators

- Method of moments
- Maximum likelihood

### Method of moments

Suppose that the parameter  $\theta = (\theta_1, \dots, \theta_k)$  has k components.

• For  $1 \le j \le k$ , define the  $j^{\text{th}}$  moment

$$\alpha_j \equiv \alpha_j(\theta) = \mathbb{E}_{\theta}\left(X^j\right) = \int x^j dF_{\theta}(x)$$

• The  $j^{th}$  sample moment

$$\widehat{\alpha}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

• The method of moments estimator  $\widehat{\theta}_n$ 

$$\alpha_{1}\left(\widehat{\theta}_{n}\right) = \widehat{\alpha}_{1}$$

$$\vdots$$

$$\alpha_{k}\left(\widehat{\theta}_{n}\right) = \widehat{\alpha}_{k}$$

### Maximum likelihood

- Parametric model:  $f(x; \theta), X_1, \dots, X_n$  iid
- Likelihood function

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$$

• The log-likelihood function

$$\ell_n(\theta) = \log \mathcal{L}_n(\theta) = \sum_{i=1}^n \log f(X_i; \theta)$$

• The maximum likelihood estimator (MLE)

$$\hat{ heta}_{ extit{MLE}} = rg\max_{ heta} \mathcal{L}( heta)$$

## An example of MLE



Likelihood function for Bernoulli with n=20 and  $\sum_{i=1}^{n} X_i = 12$ . The MLE is  $\hat{\rho}_n = 12/20 = 0.6$ .

# Why is maximum likelihood estimation so popular?

- A unified framework for estimation.
- Under mild regularity conditions, MLEs are
  - **① consistent**  $\rightarrow$  converge to the true value in probability as  $n \rightarrow \infty$ , i.e.

$$\lim_{n\to\infty} P(|\hat{\theta} - \theta| \le \epsilon) = 1 \quad \forall \epsilon > 0$$

- **2** asymptotically normal  $\rightarrow \sqrt{n}(\hat{\theta} \theta) \sim N(0, \sigma^2)$  for large n
- **3** asymptotically efficient  $\rightarrow$  achieve the lowest variance for large n
- **4 equivariant**  $\rightarrow$  if  $\hat{\theta}$  is the MLE for  $\theta$  then  $g(\hat{\theta})$  is the MLE for  $g(\theta)$

# Steps to find the MLE

Write out the likelihood

$$\mathcal{L}(\theta) = f(X_1, \ldots, X_n; \theta)$$

Simplify the log likelihood

$$\ell(\theta) = \log \mathcal{L}(\theta)$$

- **3** Take the derivative of  $\ell(\theta)$  with respect to the parameter of interest,  $\theta$  Set =0
- **9** Solve for  $\theta$  (get  $\hat{\theta}_{MLE}$ )
- $\textbf{ § Check that } \hat{\theta}_{MLE} \text{ is a maximum } \left( \tfrac{\partial^2}{\partial \theta^2} \ell(\theta) < 0 \right)$

Suppose we have an iid sample  $\{X_1, \ldots, X_n\}$  with  $X_i \sim \text{Bernoulli}(p)$ . Find the MLE for p.

Suppose we have an iid sample  $\{X_1, \ldots, X_n\}$  with  $X_i \sim \text{Bernoulli}(p)$ . Find the MLE for p.

#### 1. The likelihood

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-p)^{n-S}$$

where  $S = \sum_i X_i$ 

Suppose we have an iid sample  $\{X_1, \ldots, X_n\}$  with  $X_i \sim \text{Bernoulli}(p)$ . Find the MLE for p.

1. The likelihood

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-p)^{n-S}$$

where  $S = \sum_i X_i$ 

2. Log-likelihood

$$\ell_n(p) = S \log p + (n - S) \log(1 - p)$$

Suppose we have an iid sample  $\{X_1, \ldots, X_n\}$  with  $X_i \sim \text{Bernoulli}(p)$ . Find the MLE for p.

1. The likelihood

$$\mathcal{L}_n(p) = \prod_{i=1}^n f(X_i; p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i} = p^{S} (1-p)^{n-S}$$

where  $S = \sum_i X_i$ 

2. Log-likelihood

$$\ell_n(p) = S \log p + (n - S) \log(1 - p)$$

3. MLE (Solved the scoring equation)

$$\ell_n'(p) = 0$$

The MLE is  $\hat{p}_n = S/n$ .

#### Score function and Fisher information

Score function

$$s(X; \theta) = \frac{\partial \log f(X; \theta)}{\partial \theta}$$

Fisher information

$$I_n(\theta) = \mathbb{V}_{\theta} \left( \sum_{i=1}^n s(X_i; \theta) \right)$$
$$= \sum_{i=1}^n \mathbb{V}_{\theta} (s(X_i; \theta))$$

# Asymptotic normality

Let  $se = \sqrt{\mathbb{V}\left(\widehat{\theta}_n\right)}$ . Under appropriate regularity conditions, the following hold:

• se  $\approx \sqrt{1/I_n(\theta)}$  and

$$\frac{\left(\widehat{\theta}_n - \theta\right)}{\mathsf{se}} \rightsquigarrow \mathit{N}(0,1).$$

2 Let  $\widehat{\operatorname{se}} = \sqrt{1/I_n\left(\widehat{\theta}_n\right)}$ . Then,

$$\frac{\left(\widehat{\theta}_n - \theta\right)}{\widehat{\text{se}}} \rightsquigarrow N(0, 1)$$

Let

$$C_n = (\widehat{\theta}_n - z_{\alpha/2}\widehat{se}, \widehat{\theta}_n + z_{\alpha/2}\widehat{se})$$

Then,  $\mathbb{P}_{\theta}$  ( $\theta \in C_n$ )  $\to 1 - \alpha$  as  $n \to \infty$ .

#### Elements of likelihood estimation

One random variable: Given a model for X which assumes X has a density  $f(x; \theta)$ ,  $\theta \in \Theta \subset \mathbb{R}^k$ , we have the following definitions:

| likelihood function                       | $L(\theta; x) = c(x)f(x; \theta)$                                             |
|-------------------------------------------|-------------------------------------------------------------------------------|
| log-likelihood function                   | $\ell(\theta; x) = \log L(\theta; x)$                                         |
| score function                            | $u(\theta) = \partial \ell(\theta; x) / \partial \theta$                      |
| observed information function             | $j(\theta) = -\partial^2 \ell(\theta; x) / \partial \theta \partial \theta^T$ |
| expected information (in one observation) | $i(\theta) = \mathrm{E}_{\theta} \left\{ U(\theta) U(\theta)^T \right\}$      |

# Elements of likelihood estimation (i.i.d.)

Independent observations: When we have  $X_i$  independent, identically distributed from  $f(x_i; \theta)$ , then, denoting the observed sample  $\mathbf{x} = (x_1, \dots, x_n)$  we have:

likelihood function  $L(\theta; \mathbf{x}) = \prod_{i=1}^n f\left(x_i; \theta\right)$  log-likelihood function  $\ell(\theta) = \ell(\theta; \mathbf{x}) = \sum_{i=1}^n \ell\left(\theta; x_i\right)$  maximum likelihood estimate  $\hat{\theta} = \hat{\theta}(\mathbf{x}) = \arg\sup_{\theta} \ell(\theta)$  score function  $U(\theta) = \ell'(\theta) = \sum U_i(\theta)$  observed information function  $j(\theta) = -\ell''(\theta) = -\ell''(\theta; \mathbf{x})$  observed (Fisher) information  $j(\hat{\theta}) = \mathbb{E}_{\theta} \left\{ U(\theta)U(\theta)^T \right\} = ni_1(\theta)$ 

### Delta method

### Theorem (The Delta Method).

Suppose that

$$\frac{\sqrt{n}\left(Y_{n}-\mu\right)}{\sigma}\rightsquigarrow N(0,1)$$

and that g is a differentiable function such that  $g'(\mu) \neq 0$ . Then

$$\frac{\sqrt{n}\left(g\left(Y_{n}\right)-g(\mu)\right)}{\left|g'(\mu)\right|\sigma}\rightsquigarrow N(0,1).$$

In other words,

$$Y_n pprox \mathit{N}\left(\mu, rac{\sigma^2}{n}
ight) \quad ext{ implies that } \quad \mathit{g}\left(Y_n
ight) pprox \mathit{N}\left(\mathit{g}(\mu), \left(\mathit{g}'(\mu)
ight)^2 rac{\sigma^2}{n}
ight).$$

Let  $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$  and let  $\psi = g(p) = \log(p/(1-p))$ .

Let  $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$  and let  $\psi = g(p) = \log(p/(1-p))$ .

The Fisher information function is I(p) = 1/(p(1-p))

Let  $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$  and let  $\psi = g(p) = \log(p/(1-p))$ .

The Fisher information function is I(p) = 1/(p(1-p))

The estimated standard error of the MLE  $\hat{p}_n$  is

$$\widehat{\mathrm{se}} = \sqrt{\frac{\widehat{p}_n \left(1 - \widehat{p}_n\right)}{n}}$$

Let  $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$  and let  $\psi = g(p) = \log(p/(1-p))$ .

The Fisher information function is I(p) = 1/(p(1-p))

The estimated standard error of the MLE  $\hat{p}_n$  is

$$\widehat{\mathrm{se}} = \sqrt{\frac{\widehat{p}_n \left(1 - \widehat{p}_n\right)}{n}}$$

The MLE of  $\psi$  is  $\widehat{\psi} = \log \widehat{p}/(1-\widehat{p})$ . Since, g'(p) = 1/(p(1-p)), according to the delta method

$$\widehat{\operatorname{se}}\left(\widehat{\psi}_{n}\right)=\left|g'\left(\widehat{p}_{n}\right)\right|\widehat{\operatorname{se}}\left(\widehat{p}_{n}\right)=\frac{1}{\sqrt{n\widehat{p}_{n}\left(1-\widehat{p}_{n}\right)}}$$

Let  $X_1, \ldots, X_n \sim \mathsf{Bernoulli}(p)$  and let  $\psi = g(p) = \log(p/(1-p))$ .

The Fisher information function is I(p) = 1/(p(1-p))

The estimated standard error of the MLE  $\hat{p}_n$  is

$$\widehat{\mathrm{se}} = \sqrt{\frac{\widehat{p}_n \left(1 - \widehat{p}_n\right)}{n}}$$

The MLE of  $\psi$  is  $\widehat{\psi} = \log \widehat{p}/(1-\widehat{p})$ . Since, g'(p) = 1/(p(1-p)), according to the delta method

$$\widehat{\operatorname{se}}\left(\widehat{\psi}_{n}\right)=\left|g'\left(\widehat{p}_{n}\right)\right|\widehat{\operatorname{se}}\left(\widehat{p}_{n}\right)=\frac{1}{\sqrt{n\widehat{p}_{n}\left(1-\widehat{p}_{n}\right)}}$$

An approximate 95 percent confidence interval is

$$\widehat{\psi}_n \pm \frac{2}{\sqrt{n\widehat{p}_n(1-\widehat{p}_n)}}$$

#### MLE in R

Sometimes, there is no closed-form solution, so we need to use optimization methods to find the maximum of the log-likelihood.

- optim() find values of some parameters that minimizes some function.
- Newton-Raphson
- EM-algorithm

## Newton-Raphson

Derivative of the log-likelihood around  $\theta$ :

$$0 = \ell'(\widehat{\theta}) \approx \ell'\left(\theta^{j}\right) + \left(\widehat{\theta} - \theta^{j}\right)\ell''\left(\theta^{j}\right)$$

Solving for  $\widehat{\theta}$  gives

$$\widehat{ heta} pprox heta^j - rac{\ell'\left( heta^j
ight)}{\ell''\left( heta^j
ight)}.$$

This suggests the following iterative scheme:

$$\widehat{ heta}^{j+1} = heta^j - rac{\ell'\left( heta^j
ight)}{\ell''\left( heta^j
ight)}$$

In the multiparameter case, the mle  $\hat{\theta}=\left(\hat{\theta}_1,\ldots,\hat{\theta}_k\right)$  is a vector and the method becomes

$$\widehat{\theta}^{j+1} = \theta^j - H^{-1}\ell'\left(\theta^j\right)$$

where  $\ell'(\theta^j)$  is the vector of first derivatives and H is the matrix of second derivatives of the log-likelihood.

# Expectation-Maximization (EM) algorithm

Idea: Iterate between taking an expectation then maximizing.

Suppose we have data Y whose density  $f(y;\theta)$  leads to a log-likelihood that is hard to maximize. However we can find another variable Z s.t.  $f(y;\theta) = \int f(y,z;\theta)dz$  and  $f(y,z;\theta)$  is easy to maximize.

- Pick a starting value  $\theta^0$ . Now for  $j=1,2,\ldots$ , repeat steps E and M below:
- (The E-step): Calculate

$$J\left(\theta\mid\theta^{j}\right)=\mathbb{E}_{\theta^{j}}\left(\log\frac{f\left(Y^{n},Z^{n};\theta\right)}{f\left(Y^{n},Z^{n};\theta^{j}\right)}\mid Y^{n}=y^{n}\right).$$

The expectation is over the missing data  $Z^n$  treating  $\theta^i$  and the observed data  $Y^n$  as fixed.

• (M-step) Find  $\theta^{j+1}$  to maximize  $J(\theta \mid \theta^j)$ 

#### Resources

#### This tutorial is based on

- Harvard Biostatistics Summer Pre Course [link]
- "All of Statistics" by Larry A. Wasserman [link]