1. (15 points) Show that $\log_5 7$ is an irrational number.

suppose logs 7 is a rational number then logs 7 can be expressed as $\frac{b}{a}$ (a,b are all integers) that is $log_57 = \frac{b}{a}$ then $5^a = 7^b$ since 5 and 7 are all primes a b have only one value, namely a=b=0 so b make no sense so the hypothesis doesn't nork log, 7 is an irrational number

2. (20 points) Let p be a prime and let k be an integer such that 0 < k < p. We know that the binomial coefficient

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

is an integer. Show that $\binom{p}{k}$ is a multiple of p.

 $\frac{P!}{k!(p-k)!} \cdot k! = \frac{P!}{(P-k)!} \text{ it's obvious that } p | \frac{P!}{(P-k)!}$ and since p is a prime, gcd(p,k!) = 1according to FTA Theorem. $P | \frac{P!}{k!(p-k)!} = SO(k) \text{ is a multiple of } p.$

3. (20 points) Let a, b > 1 be relatively prime integers. Show that if a|n and b|n, then ab|n.

Since
$$a|n$$
, then there exists x , such that $n=ax$ since $b|n$, then there exists y , such that $n=by$. So $ax = by$, namely $\frac{a}{b} = \frac{y}{x}$ since a,b are relatively prime integers, then $b|x$. then there exists z , such that $x=bz$ So $h=ax=abz$ which shows $ab|n$.

4. (25 points) Let $a, b, c \in \mathbb{Z}^+$. Show that gcd(a, bc) = 1 if and only if gcd(a, b) = gcd(a, c) = 1.

(1) Sihleged (G,b) =
$$gcd(G,c) = 1$$

then a,b and a,c are relatively prime integers
so a and bc are relatively prime integers
so $gcd(G,bc) = 1$

then a and bc are relatively prime integers.

if alb or alc , then it contradicts with abbc

so abb and atc

that is gcd(a,bc) = gcd(a,c) = 1

5. (20 points) Let \mathbb{R} be the set of real numbers. Let $S = (\mathbb{R} \times \mathbb{R}) \setminus \{(0,0)\}$. Let

$$R = \Big\{ ((a,b),(c,d)) : (a,b),(c,d) \in S \text{ and } \exists \lambda \in \mathbb{R} \setminus \{0\} \text{ such that } (a,b) = (\lambda c,\lambda d) \Big\}$$

Show that R is an equivalence relation.

Reflexive: for any $(a,b) \in S$, let $\lambda = 1$ then $((a,b),(a,b)) \in R$ since (a,b) = (a,b)

Symmetric: for Gny ((a,b), (c,d)) ER.

there exists $\lambda = \lambda_0$ such that $(a,b) = (\lambda_0 C, \lambda_0 d)$

let $\lambda = \frac{1}{\lambda_0} \left(c_1 d_1 = \left(\frac{1}{\lambda_0} a_1 + \frac{1}{\lambda_0} b_1 \right) \right)$

So ((c,d), (a,b)) ER

Transitive: for any ((a.b), (c,d)), ((c,d), (e,f)) ER.

we know that $(a,b) = (\lambda, C, \lambda, d)$ $(C,d) = (\lambda, E, \lambda, f)$

so $(a,b) = (\lambda_1 \lambda_1 e, \lambda_1 \lambda_2 f)$

it means ((a,b), (e,f)) ER.

In conclusion. R is an equivalence relation.