

Kibana Data Analyst

An Elastic Training Course

7.1.1

elastic.co/training

Kibana Data Analyst

Course: Kibana Data Analyst

© 2015-2019 Elasticsearch BV. All rights reserved. Decompiling, copying, publishing and/or distribution without written consent of Elasticsearch BV is strictly prohibited.

Welcome to This Virtual Training

- We will start momentarily
- The training will start with an audio/video test, to make sure that everyone can hear and see the instructors
- To prevent any audio/video issues, please:
 - disable any ad blockers or script blockers
 - use a supported web browser: Chrome or Firefox
- In case of problems, try the following steps in order:
 - refresh this web page
 - open this page in an "incognito" or "private" window
 - try another web browser
 - as a last resort, restarting your computer sometimes helps too

Welcome to This Training

- Visit training.elastic.co and log in
 - follow instructions from registration email to get access

Go to "My Account" and click on today's training

Download the PDF file (this contains all the slides)

- Click on "Virtual Link" to access the Lab Environment
 - create an account
 - you will need an access token, which the instructor will provide

About This Training

- Environment
- Introductions
- Code of Conduct (https://www.elastic.co/community/codeofconduct)
- Agenda...

Course Agenda

- 1 Kibana Fundamentals
- 2 Kibana Search
- 3 Kibana Visualizations
- 4 Kibana Dashboards
- 5 Kibana Visual Builder
- 6 Kibana Management

Module 1

Kibana Fundamentals

Topics

- Introduction to Kibana
- Discover Interface
- Aggregations

Lesson 1

Introduction to Kibana

The Elastic Stack

Ingest: Logstash and Beats

Logstash

- Server-side data processing
- Ingests data from multiple sources simultaneously (MongoDB, PostgreSQL, Elasticsearch, ...)
- Parse, transform and prepare your data for ingestion

Beats

- Single purpose data shippers
- Many flavors: Filebeat, Metricbeat, Packetbeat, Winlogbeat, ...
- Lightweight agents that send data from a machine to Elasticsearch or Logstash

Index: Query and Aggregations

- Elasticsearch
 - Heart of the Elastic Stack
 - distributed: easy to scale
 - RESTful: easy to communicate with using APIs
 - search, analyze and store data

Visualize

Kibana

- Window into Elastic Stack
- Provides Web-based UI to
 - Manage the stack
 - Interact with the data
 - Get data in
 - And more...

Data Journey

Document

- Document
 - Serialized JSON Object
 - Stored in Elasticsearch
 - Has Unique ID

title	category	date	author_first_name	author_last_name	author_company
Fighting Ebola with Elastic	User Stories		Emily	Mosher	

A row in a table

```
"title": "Fighting Ebola with
Elastic",
    "category": "User Stories",
    "author": {
        "first_name": "Emily",
        "last_name": "Mosher"
     }
}
```

A Simple Example: Spreadsheet

id	user	age	country	category
1	Bill	30	FR	A
2	Marie	32	US	A
3	Claire	32	US	A
4	Tom	44	DE	В
5	John	40	US	В
6	Emma	26	US	В

A Simple Example: Elasticsearch

Data Categories

- Time Series Data
 - Event data associated with a moment in time
 - typically grows rapidly
- Static Data:
 - relatively slower growth

```
"cuisine": "French",
   "ingredients": "Cheese, flour, butter, eggs, milk, nutmeg",
   "time_in_min": 50,
   "level": "easy"
}
```

Which category do these documents belong to?

```
"tweet": "Wow Elasticsearch 7.0 seems awesome!",
    "hashtags": ["elasticsearch", "kibana"]
    "timestamp": September 1st 2017, 07:15:40.035
}
```

Elasticsearch Index

- Data Container
 - Categorical Index
 - Time Based Index

Kibana Index Pattern

- Points to one or more Elasticsearch indices
- Tells Kibana which data you want to work with

Datasets

Messages

Users

John Smith
.....
32 likes

John Smith
....
123 likes

John Smith
....
18 likes

```
"message_id": 41,
  "first_name": "John",
  "last_name": "Smith",
  "geo.country": "Germany",
  "geo.city": "Berlin",
  "nb_of_followers": 130,
  "average_like": 87.45,
  "salary": 120000,
  "occupation": "Sales"
}
```


- Visit Strigo using the link that was shared with you, and log in if you haven't already done so
- Click on "My Lab" on the left

 Click on the gear icon next to "My Lab" and select "Machine Info"

Copy the hostname that is shown under "Public DNS"

- From here you can access lab instructions and guides
 - you also have them in your .zip file, but it is easier to access and use the lab instructions from here:

Welcome to Kibana Data Analyst

- Lab Instructions
- Virtual Classroom User Guide
- Dashboard
- Kibana

Accessing your Cluster

- Click on the Kibana link:
- Log in
 - username: training
 - password: kibana_management

Lesson 1

Review - Introduction to Kibana

Summary

- Elasticsearch, Kibana, Logstash, and Beats are components of the Elastic Stack
- Kibana can be used to analyze, search, interact with and visualize the data in Elasticsearch
- Kibana can be used to manage the Elastic Stack
- Data is sent as JSON objects into Elasticsearch
- In Kibana, an index pattern can be created to target a specific set of indices

Quiz

- 1. What are the four main components of the Elastic Stack?
- 2. True or False: Data is stored inside Kibana.
- 3. What would be a suitable index pattern for accessing both cooking_recipes and cooking_user indices?
- 4. What kind of dataset the two following documents belong to?

```
{
   "heartbeat": 123,
   "timestamp": "Mon, 24 Dec 2018 00:23:28 GMT"
}
```

```
{
   "first_name": "Bill",
   "last_name": "Smith",
   "age": 27,
   "country": "Mongolia"
}
```


Lesson 1

Lab - Introduction to Kibana

Lesson 2

Discover Interface

Overview

- Elasticsearch data types:
 - numeric
 - text
 - date
 - keywords
 - ...
- Discover interface
 - Explore data in Elasticsearch
 - Slice and Dice (Analyze) Data

Discover Interface

Discover Interface

Search is Everywhere

- Elasticsearch is a search engine
 - Kibana can be used to search documents in Elasticsearch
- A search is executed by sending a query to Elasticsearch
 - A query can answer many different types of questions:
 - who are the users that are called Melissa?
 - what are the names of the people living in France?
 - are there any messages about Netflix?
- In Kibana, a search can be executed from the query bar
 - Kibana supports multiple query languages

Querying

Kibana supports multiple query languages

	id	user	age	country	category
X	1	Bill	30	FR	A
/	2	Marie	32	US	A
/	3	Claire	32	US	A
/	4	John	40	DE	В
/	5	John	44	US	В
/	6	Emma	44	US	В

Search a Specific Field

 By default, the query below will search all fields for all values

but being more specific will improve search

What are the messages published by user John from country US?

Query above can be made more specific like this

Elasticsearch will only need to search limited fields

Boolean Operators

- By default, Kibana uses the or logic
 - so it matches any documents containing john or us
- Kibana allows you to use the following boolean operators:
 - and, or, and not
- Now, you can rewrite the query with the and logic

user:john and country:us

	id	user	age	country	category
X	1	Bill	30	FR	A
X	2	Marie	32	US	A
X	3	Claire	32	US	A
X	4	John	40	DE	В
/	5	John	44	US	В
X	6	Emma	44	US	В

Querying Numeric Fields

Let's add some complexity to the question:

What are the messages in which the user is John in the US country whose age is over 40?

- Numbers are different than text
 - instead of exact matches you often have relations:
 - less than (<)</pre>
 - less than or equal (<=)</p>
 - greater than (>)
 - greater than or equal (>=)
- Now, you can rewrite the query as:

user:john and country:us and age>40

Q

Query "Context"

- Query includes criteria about where to search based on
 - Distribution in Elasticsearch
 - Distribution in Time Period

Make sure to set the correct index pattern and timeframe:

Demo

Lesson 2

Review - Discover Interface

Summary

- The discover interface allows you to explore the different aspects of your data
- The most common mistake in the discover interface is not checking the index pattern and time picker
- The search bar can be used to search all the data inside Elasticsearch
- The document table can be customized to display a table of only selected fields

Quiz

- 1. What are the first two settings someone should check when using the discover interface?
- 2. What are the three different boolean operators?
- 3. Build the query: "Find the messages from Claire younger than 30 years old that belong to the category A?"

Lesson 2

Lab - Discover Interface

Lesson 3

Aggregations

Overview

- Data is often complex and involves many dimensions
- Often, we want summarized insights:
 - slices based on specific attributes
 - calculations based on specific attributes

— ...

- Spreadsheets might fulfill this using a "pivot table"
- In the Elastic Stack we call the equivalent functionality an aggregation
- All aggregations are performed at elasticsearch, Kibana just renders the results

A Simple Example: Spreadsheet

id	user	age	country	category
1	Bill	30	FR	A
2	Marie	32	US	A
3	Claire	32	US	A
4	Tom	44	DE	В
5	John	40	US	В
6	Emma	26	US	В

A Simple Example: Elasticsearch

Metrics Aggregation

- Metric aggregations
 - Calculates numerical values over a set of documents
 - similar to how values are summarized in a pivot table for a specific column
 - mathematic operation that outputs
 - a single value (eg., avg, sum, min, max, unique count)
 - or multiple values (eg., percentiles, percentile_ranks)

A Simple Average Using Pivot Table

id	user	age	country	category
1	Bill	30	FR	A
2	Marie	32	US	A
3	Claire	32	US	A
4	Tom	44	DE	В
5	John	40	US	В
6	Emma	26	US	В

A Simple Average Using Aggregations


```
"aggregations": {
    "avg_of_age": {
      "avg": {
        "field": "age"
"aggregations" : {
    "avg of age" : {
      "value" : 34.0
```

Buckets

- Bucket aggregation
 - A way of slicing data
 - similar to grouping by values in rows or columns in a pivot table
 - Creates buckets
 - collection of documents that share a common criterion
 - can have one or more metrics associated with it
 - Number of documents (doc count) per bucket is default metric

Simple Bucket Using a Pivot Table

id	user	age	country	category
1	Bill	30	FR	Α
2	Marie	32	US	Α
3	Claire	32	US	Α
4	Tom	44	DE	В
5	John	40	US	В
6	Emma	26	US	В

Pivot table definition

Pivot table

Rows	Values	category	COUNT of id
Order ASC by	COUNT of id	A	3
category		В	3

Simple Bucket Aggregation


```
"aggregations": {
    "categories": {
      "terms": {
        "field": "category"
"aggregations": {
    "categories": {
    "buckets": [
          "key": "A",
          "doc count": 3
          "key": "B",
          "doc_count": 3
```

Adding Metrics

id	user	age	country	category
1	Bill	30	FR	A
2	Marie	32	US	A
3	Claire	32	US	Α
4	Tom	44	DE	В
5	John	40	US	В
6	Emma	26	US	В

Rows	Values	category	COUNT of age	AVG of age
Order ASC by	COUNT of age	A	3	31.33
category	AVG of age	В	3	36.66

Adding Metrics


```
"aggregations": {
  "categories": {
    "terms": {
      "field": "category"
    "aggregations": {
      "avg age per category": {
        "avq": {
          "field": "age"
} } } }
"aggregations": {
  "categories": {
    "buckets": [
        "key": "A",
        "doc count": 3,
        "avg_age_per_category": {
          "value": 31.33
```

"key": "B",

1 } }

"doc count": 3,

"value": 36.66

"avg_age_per_category": {

Nesting Rows/Columns in a Pivot Table

id	user	age	country	category
1	Bill	30	FR	Α
2	Marie	32	US	Α
3	Claire	32	US	Α
4	Tom	44	DE	В
5	John	40	US	В
6	Emma	26	US	В

Rows	Values
Order ASC by category	COUNT of age
Order ASC by country	AVG of age

category	country	COUNT of age	AVG of age
A	FR	1	30
	US	2	32
В	DE	1	44
	US	2	33

Adding Sub-Bucket Aggregation

Metrics Aggregation

Metrics Aggregation Count of Documents

Bucket Aggregation

Sub-bucket Aggregation

Lesson 3

Review - Aggregations

Summary

- Kibana renders visualizations using the results of Elasticsearch aggregations
- There are two main types of aggregations:
 - metric
 - bucket
- Metric aggregations are used to compute numeric values
- Bucket aggregations are used to group data together

Quiz

- 1. What are the two main types of aggregations?
- 2. True or False: Aggregations are used by Kibana to render visualizations.
- 3. Explain which aggregations are used to build the following visualization.

Lesson 3

Lab - Aggregations

