Part C: Improved Greedy

My idea was inspired by the previous greedy algorithm. I noticed that the greedy algorithm only contained one permutation which always started from the same initial city. I wondered if making the initial city different obtains a better result.

I created a loop outside the original greedy algorithm. There is also a list called "all_travelled" which is a collection of permutations resulted from different initial cities.

After the loops, we calculate the tour value out of those n permutations. The results are kept in a list called "results".

Then we find the best/smallest value from "results" and return the corresponding permutaiton.

It is clear to see that there are 3 nested for loops that all run for n times. Therefore time complexity of the improved greedy algorithm is $O(n^3)$ for n equals to the total number of cities.

Part D: Experiments

I wrote functions that create both euclidean graphs and general graphs. Then I tested with random generated graphs and obtained the following outputs.

Note: All results in the table are the average of 25 outputs.

Euclidean	Original	Swap	2_Opt	Greedy	Improved Greedy
20	82.13	80.14	73.43	81.85	76.13
40	128.14	121.19	107.85	126.63	119.24
60	148.9	139.05	118.86	154.57	130.56
80	167.07	157.99	131.74	152.82	141.41
General	Original	Swap	2-Opt	Greedy	Improved Greedy
4	6.885	6.878	6.828	8.242	6.828
6	16.532	16.522	16.243	20.485	16.243
8	30.331	30.321	29.69	36.73	29.657
10	48.288	48.278	47.154	56.971	47.071

For Euclidean graphs 2-Opt is the best algorithm since for all number of cities they have the shortest route. Improved Greedy is not far behind 2-Opt and is better than all the other algorithm.

For General graphs Improved Greedy is better than or equal to 2-Opt. There are cases where they share the same shortest route value and as number of cities increases Improved Greedy surpasses 2-Opt.