EECE 5550: Mobile Robotics

٠

Lecture 16: Motion planning

Plan of the day (©)

Last time: Planning as search

- Definition of planning problems & solutions
- Planning as graph search
- Graph search algorithms

Today: Application to robot motion planning (yay ⊚!)

- Robot workspaces & configuration spaces
- Grid-based motion planners
- Sampling-based planners for high-dimensional spaces
 - Probabilistic road maps (PRMs)
 - Rapidly-exploring random trees (RRTs)

References

Lecture "Planning II" from ETH Zurich's Autonomous Mobile Robots course

Classic (and very beautiful!) papers:

- "Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces"
- "Randomized Kinodynamic Planning"

Workspace and configuration spaces

Workspace: The environment in which the robot is operating. Often modeled at the level of *free* and *occupied* space

Configuration space: The set of feasible *robot states*

- Partially determined by workspace (no collisions permitted)
- For "interesting" (i.e. non-point) robots, also includes:
 - Orientations
 - Actuator limits ...

Workspace and configuration spaces

Configuration space for a point robot

Configuration space for a disc robot

Obstacle

Free space

Workspace and configuration space: two-link arm

Robot motion planning

Given:

- Workspace W, partitioned into free and occupied subsets
- Robot configuration space C, partitioned into corresponding free and occupied subsets
- Initial configuration $q_I \in C_{free}$
- Goal configuration $q_G \in C_{free}$

Find: A path τ : $[0,1] \to C_{free}$ such that $\tau(0) = q_I$ and $\tau(1) = q_G$

Robot motion planning: Challenges

Basic challenge: Workspaces and robot configuration spaces are generally *continuous*

⇒ Very hard to model arbitrary continuous shapes (Fun fact: these form infinite-dimensional spaces.)

One natural approach: Discretize the configuration space to get a *finite approximation*, and then solve the problem via *search*.

Simple case: route planning for a planar robot

Recall:

- Occupancy grids already provide a discrete model of free and occupied space
- For a *point* robot, C_{free} is just the set of unoccupied cells
- For disc robot, can also "grow" occupied cells to account for the body

Now: Construct a graph G = (V, E) where:

- Vertices are free cells
- Edges model connectivity between free cells

Then: Motion planning is just graph search!

Grid-based representations

More generally, one can "voxelize" any generic configuration space C_{free} , and then apply the same graph search strategy

Pros:

- Very simple idea
- Easy to implement
- Resolution completeness: If there is a feasible plan, this
 approach is guaranteed to find it as grid resolution r -> 0.

Con:

- Voxelization can introduce weird artifacts
- Not always clear how to choose resolution *r*: how small is "small enough"??
- Curse of dimensionality: Number of cells N in the voxel grid grows as $O(r^{-d})!$

Sampling-based planners

Main idea: Rather than trying to capture *every* point in the configuration space C via voxelization, let's *randomly sample* a *representative set S* of points in C_{free}

Then:

- $S \subset C_{free}$ provides a *sample-based* inner approximation of C_{free}
- NB: It's often easy to plan feasible motions between two *nearby* points $x, y \in S$ (E.g.: a straight-line path often suffices ...)
- If we draw an edge e between two points $x, y \in S$ whenever we can *locally* plan a feasible path from one to the other, we get a graph G = (V, E) that models *reachability*

Grid- vs. sample-based planners

Sampling-based planning: General framework

Starting with an empty graph G, repeat:

- 1. Sample a random point $x \in C_{free}$ and add to G [Q: How to sample x?]
- 2. For each vertex $y \in G$ s.t. $d(x, y) < \epsilon$, try to plan a path from x to y

NB: This requires:

- A suitable notion of *distance* for *C*
- A fast local planner
- 3. If a feasible path is found, add edge (x,y) to G.

The Probabilistic Roadmap (PRM) Algorithm

Two-phase algorithm for sampling-based planning:

- **1. Construction:** Build a roadmap (graph) by randomly sampling points over the *entire* configuration space and planning local paths
- **2.** Query: At run-time, given initial point $x \in G$ and goal $y \in G$:
 - Plan local paths from x and y to (nearby) vertices in the same connected component of G
 - Graph search!

Example: PRM planning with a 5 DOF robotic arm

Example: Solving the piano mover's problem with PRMs

Probabilistic Roadmaps: Key Properties

Recap: Builds a roadmap (graph) G over the *entire* space C_{free} by joining a *sparse sample* set using *local planning*

- Much more scalable than grid methods
 - We sparsely (inner) approximate true space C_{free} using sample-set S
 - Works well for high degree-of-freedom robots (e.g. robot arms, etc.)
- Probabilistically complete: If a feasible plan exists, the probability of finding it approaches 1 as the number of samples grows.
- Convenient "anytime" flavor: We can stop building the graph whenever we want, and we still get something useful
- Reusable! Enables fast multi-query planning

BUT: Costs a lot up-front (we build the roadmap G over the *entire* space C_{free})

Q: Can we get something faster in the single-query case?

Rapidly-exploring Random Trees (RRTs)

Main idea: Instead of building a *graph* by sampling vertices *uniformly* over C_{free} , we build a tree outwards from the initial state x towards the goal y.

RRT algorithm

```
BUILD_RRT(x_{init})
        \mathcal{T}.init(x_{init});
        for k = 1 to K do
              x_{rand} \leftarrow RANDOM\_STATE();
              \text{EXTEND}(\mathcal{T}, x_{rand});
        Return \mathcal{T}
EXTEND(\mathcal{T}, x)
        x_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(x, \mathcal{T});
        if NEW_STATE(x, x_{near}, x_{new}, u_{new}) then
              \mathcal{T}.add_vertex(x_{new});
              \mathcal{T}.add_edge(x_{near}, x_{new}, u_{new});
              if x_{new} = x then
                    Return Reached:
6
              else
                    Return Advanced;
        Return Trapped;
9
```


NEW_STATE: f_{new} is gotten from x_{near} and u_{new} by forward simulation using system dynamics:

$$\dot{x} = f(x, u)$$

Fig. 5. Basic rapidly exploring random tree construction algorithm.

Key point: Unlike PRM, in RRT we *do not* require that the control u_{new} drives x_{near} to x; only that it *makes* progress towards x

What makes RRTs "rapidly exploring"?

Voronoi bias: Random sampling tends to place new vertices in larger Voronoi cells (⇒ unexplored regions)

RRT: Key Properties

- Probabilistically complete
- Single query & directed
 - Edges in RRTs are directed: travel is from the initial location towards the goal $(x -> y \neq y -> x)$
 - RRTs retain control information u in their edges
 - **Key payoff:** Unlike PRMs, RRTs can easily handle dynamic constraints:

$$\dot{x} = f(x, u)$$

In fact, RRTs were explicitly developed for *kinodynamic planning* (planning w/kinematic and dynamic constraints)

⇒Often applied to planning in *phase space* (position *and* velocity)

Planning with phase space as configuration space

Fig. 2. Slices of \mathcal{X} for a point mass robot in two dimensions with increasingly higher initial speeds. White areas represent \mathcal{X}_{free} , black areas are \mathcal{X}_{obst} , and gray areas approximate \mathcal{X}_{ric} .

Example: RRT Dubin's path planner

RRT trajectory planning with racecar dynamics

Variations on a Theme: Biased RRT sampling

```
Input: q_{\text{start}}, q_{\text{goal}}, number n of nodes, stepsize \alpha, \beta

Output: tree T = (V, E)

1: initialize V = \{q_{\text{start}}\}, E = \emptyset

2: for i = 0: n do

3: if \operatorname{rand}(0, 1) < \beta then q_{\text{target}} \leftarrow q_{\text{goal}}

4: else q_{\text{target}} \leftarrow \operatorname{random} sample from Q

5: q_{\text{near}} \leftarrow \operatorname{nearest} neighbor of q_{\text{target}} in V

6: q_{\text{new}} \leftarrow q_{\text{near}} + \frac{\alpha}{|q_{\text{target}} - q_{\text{near}}|} (q_{\text{target}} - q_{\text{near}})

7: if q_{\text{new}} \in Q_{\text{free}} then V \leftarrow V \cup \{q_{\text{new}}\}, E \leftarrow E \cup \{(q_{\text{near}}, q_{\text{new}})\}

8: end for
```

Biasing tree expansion towards the goal: Sample the goal state q_{goal} itself with probability $\beta > 0$

Variations on a Theme: Bi-directional RRT

```
RRT_BIDIRECTIONAL(x_{init}, x_{goal});

1 \mathcal{T}_a.init(x_{init}); \mathcal{T}_b.init(x_{goal});

2 for k = 1 to K do

3 x_{rand} \leftarrow RANDOM\_STATE();

4 if not (EXTEND(\mathcal{T}_a, x_{rand}) = Trapped) then

5 if (EXTEND(\mathcal{T}_b, x_{new}) = Reached) then

6 Return PATH(\mathcal{T}_a, \mathcal{T}_b);

7 SWAP(\mathcal{T}_a, \mathcal{T}_b);

8 Return Failure
```

Fig. 7. A bidirectional rapidly exploring random trees-based planner.

Bi-directional RRT grows two trees towards each other: one from the initial state, and one from the goal

Example: Bi-directional RRT path-planning

