Herramientas de Teledetección Cuantitativa Clase 6

Francisco Nemiña

Esquema de presentación

Introducción

Nociones básicas

Matriz de confusión

Índice kappa

Muestreo

Práctica

Práctica

Objetivo de la validación

Lo que esperamos es asignarle a nuestro mapa temático un cierto grado de confianza a partir de datos medidos en el terreno.

Ejemplo de datos de referencia contra un mapa temático.¹

 $^{^1}$ Russell G Congalton y Kass Green. Assessing the accuracy of remotely sensed data: principles and practices. CRC press, 2008.

Comparación de area total.²

²Russell G Congalton y Kass Green. Assessing the accuracy of remotely sensed data: principles and practices. CRC press, 2008.

Comparacion de espacial.³

Definición

Lo que esperamos es asignarle a nuestro mapa temático un cierto grado de presición a partir de datos medidos en el terreno.

Definición

```
\begin{bmatrix} & 1 & 2 & \dots & k & n_{i+} \\ 1 & n_{11} & n_{12} & \dots & n_{1k} & n_{1+} \\ 2 & n_{21} & n_{22} & \dots & n_{2k} & n_{2+} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ k & n_{k1} & n_{k2} & \dots & n_{kk} & n_{k+} \\ n_{+j} & n_{+1} & n_{+2} & \dots & n_{+k} & N \end{bmatrix}
```


Definición

Donde

$$n_{i+} = \sum_{j} n_{ij}$$
$$n_{+j} = \sum_{i} n_{ij}$$

y donde n es el número total de muestras.

Ejemplo

Vamos a tomar sólo tres coberturas a modo de ejemplo

$$\begin{bmatrix} & A & S & V \\ A & 50 & 10 & 20 & 80 \\ S & 5 & 100 & 15 & 120 \\ V & 10 & 10 & 80 & 100 \\ & 65 & 120 & 115 & 300 \end{bmatrix}$$

Presición total

$$\frac{\sum_{i} n_{ii}}{n}$$

Presición usuario

$$\frac{n_{ii}}{n_{i+}}$$

Presición productor

$$\frac{n_{jj}}{n_{+j}}$$

Fracción de la muestra

$$p_{ij}=\frac{n_{ij}}{n}$$

Probabilidad de j en los datos de campo

$$p_{+j} = \sum_{i} p_{ij}$$

Probabilidad de i en la clasificación

$$p_{i+} = \sum_{j} p_{ij}$$

Ejemplo

$$\begin{bmatrix} A & S & V \\ A & 0,17 & 0,03 & 0,07 & 0,625 \\ S & 0,02 & 0,33 & 0,05 & 0,833 \\ V & 0,03 & 0,03 & 0,27 & 0,800 \\ & 0,769 & 0,833 & 0,696 & 0,767 \end{bmatrix}$$

Matriz de confusión

Cualquier análisis sobre el error de una clasificación parte de la matriz de confusión.

Definición

El índice kappa nos permite estimar si dos matrices de confusión son distintas una de la otra o no.

Mide cuanto se acerca mi clasificación a una clasificación al azar.

Definición

$$\hat{K} = \frac{p_0 - p_c}{1 - p_c}$$

donde

$$p_0 = \sum_i p_{ii}$$

У

$$p_c = \sum_i p_{i+} p_{+i}$$

Ejemplo

En este caso, $p_0=0.77$ y $p_c=0.35$ entonces el índice kappa nos queda

$$\hat{K} = \frac{0.77 - 0.35}{1 - 0.35} = 0.64$$

Ahora hay que interpretar esto.

Interpretación

Interpretaciones del índice kappa hay muchas. Lo mas básico es que cuanto más cerca de cero este el valor, más se parece la clasificación una clasificación aleatoria.

Cortes

Rangos de acuerdo del índice kappa⁴

⁴J Richard Landis y Gary G Koch. "The measurement of observer agreement for categorical data". En: biometrics (1977), págs. 159-174.

4 preguntas

- 1. ¿Qué categorías tengo?
- 2. ¿Qué unidad de muestreo usar?
- 3. ¿Cuántas muestras tomar?
- 4. ¿Cómo elegir las muestras?

¿Que categorías tengo?

Las clases tienen que ser

- Mutualmente exclusivas
- ► Totalmente exaustivas

Además de tener un tamaño mínimo para ser considerado de esa clase.

Clases de muestreo definidas en el terreno.⁵

⁵Russell G Congalton y Kass Green. Assessing the accuracy of remotely sensed data: principles and practices. CRC press, 2008.

¿Qué unidad de muestreo usar?

- Un solo píxel.
- Un clúster de píxeles
- Un polígono
- Un clúster de polígonos

¿Cuántas muestras tomar?

$$N = \frac{B}{4b^2}$$

donde B se obtiene a partir de la distribución χ^2 con un grado de libertad y b es la presición que uno acepta.

¿Como elegir las muestras?

- ► Al azar.
- Estratificado al azar.
- Sistemático.
- Clusters

Logistica

Todo lo que vimos va a estar supeditado a mi capacidad de realizar el muestreo.

Esquema de presentación

Introducción

Nociones básicas Matriz de confusión Índice kappa Muestreo

Práctica

Práctica

Práctica

Actividades prácticas de la sexta clase

- 1. Abrir las imágenes clasificadas y fusionadas por el método de clasificación supervisada y no supervisada.
- 2. Cargar los polígonos de validación correspondientes a cada clase.
- 3. Calcular al matriz de confusión correspondiente a cada clasificación.
- 4. Obtener la presición global, del usuario, productor y el índice kappa.

Esquema de presentación

Introducción

Nociones básicas Matriz de confusión Índice kappa

Práctica

Práctica

Práctica

Actividades prácticas de la sexta clase

- 1. Abrir las imágenes clasificadas y fusionadas por el método de clasificación supervisada y no supervisada.
- 2. Cargar los polígonos de validación correspondientes a cada clase.
- 3. Calcular al matriz de confusión correspondiente a cada clasificación.
- 4. Obtener la presición global, del usuario, productor y el índice kappa.

