Machine learning Homework- Linear regression

Abinav Ravi Venkatakrishnan - 03694216 and Abhijeet Parida - 03679676

November 11, 2018

1 Least Square Regression

Problem 2

Given: The error function

$$E_{weighted}(w) = \frac{1}{2} \sum_{i=1}^{N} t_i [w^T \phi(x_i) - y_i]^2$$
 (1)

We know that taking the first derivative of the cost function gives the minimum of the error function.

$$\nabla E_{weighted}(w) = \nabla_w \frac{1}{2} \sum_{i=1}^{N} t_i [w^T \phi(x_i) - y_i]^2 = 0$$
 (2)

Now the RHS can be written as a matrix equation with T as the diagonal matrix.

$$\nabla_w E_{weighted} = \nabla_w \frac{1}{2} [\Phi^T \mathbf{T} w - y]^T [\Phi^T \mathbf{T} w - y]$$
(3)

If T = I(Identity Matrix) hence giving the solution

$$w_* = (\Phi^T \Phi)^{-1} \Phi^T y \tag{4}$$

 t_i acts as a multiplication factor for variance in y_i due to x_i

when the data points for which there are exact copies in the dataset. The error contribution due to these repeated points are increased.

2 Ridge regression

Problem 3

Before Augmentation,

$$E_{ridge} = \frac{1}{2} \sum_{i=1}^{N} (w_N^T \phi(x_i) - y_i)^2 + \frac{\lambda}{2} w_N^T w_N$$
 (5)

After Augmentation,

$$E_{ridge} = \frac{1}{2} \sum_{i=1}^{N+M} (w_{N+M}^T \phi(x_i) - y_i)^2 + \frac{\lambda}{2} w_{N+M}^T w_{N+M}$$

This can be split as,

$$E_{ridge} = \frac{1}{2} \sum_{i=1}^{N+M} (w_{N+M}^T \phi(x_i) - y_i)^2 + \frac{\lambda}{2} w_{N+M}^T w_{N+M}$$
(6)

$$= \frac{1}{2} \sum_{i=1}^{N} (w_N^T \phi(x_i) - y_i)^2 + \frac{\lambda}{2} w_N^T w_N + \frac{1}{2} \sum_{i=N}^{N+M} (w_{N:N+M}^T \phi(x_i) - y_i)^2 + \frac{\lambda}{2} w_{N:N+M}^T w_{N:N+M}$$
(7)
$$(8)$$

In 8, the term $w_{N:N+M} = 0$, because

$$w_{N:N+M} = (X_{N:N+M}^T X_{N:N+M})^{-1} X_{N:N+M}^T y_{N:N+M}$$

because

$$y_{N:N+M} = 0$$

Therefore 8 is equal to 5

3 Bayesian linear regression

Problem 4

We know that posterior \propto likelyhood x prior we will work in the log scale to easily deal with the \prod

$$log(\mathcal{N}(\mathbf{w}|\mathbf{m}_{N}, \beta^{-1}\mathbf{S}_{N})) + log(Gamma(\beta|a_{N}, b_{N})) = \sum_{i=1}^{N} log(\mathcal{N}(y_{i}|\mathbf{w}^{T}\phi(x_{i}), \beta^{-1})) + log(\mathcal{N}(\mathbf{w}|\mathbf{m}_{0}, \beta^{-1}\mathbf{S}_{0})) + log(Gamma(\beta|a_{0}, b_{0}))$$

By simple pattern matching after resolution we can easily find the unknowns and will hence prove the validity of the claim.

homework_03_notebook

November 9, 2018

1 Programming assignment 2: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

```
In [2]: X , y = load_boston(return_X_y=True)

# Add a vector of ones to the data matrix to absorb the bias term
# (Recall slide #7 from the lecture)
X = np.hstack([np.ones([X.shape[0], 1]), X])
# From now on, D refers to the number of features in the AUGMENTED dataset
# (i.e. including the dummy '1' feature for the absorbed bias term)

# Split into train and test
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
```

1.3 Task 1: Fit standard linear regression

```
X : array, shape [N, D]
                (Augmented) feature matrix.
            y : array, shape [N]
                Regression targets.
            Returns
            _____
            w : array, shape [D]
                Optimal regression coefficients (w[0] is the bias term).
            n n n
            # TODO
            w = np.zeros_like(X.shape[1])
            X_transpose = X.transpose((1,0))
            X_star = X_transpose.dot(X)
            X_inverse = np.linalg.inv(X_star)
            w = X_inverse.dot(X_transpose).dot(y)
            return w
1.4 Task 2: Fit ridge regression
In [10]: def fit_ridge(X, y, reg_strength):
             """Fit ridge regression model to the data.
             Parameters
             _____
             X : array, shape [N, D]
                 (Augmented) feature matrix.
             y : array, shape [N]
                 Regression targets.
             req_strength : float
                 L2 regularization strength (denoted by lambda in the lecture)
             Returns
             _____
             w : array, shape [D]
                 Optimal regression coefficients (w[0] is the bias term).
             11 11 11
             # TODO
             w = np.zeros_like(X.shape[1])
             X_transpose = X.transpose((1,0))
             X_star = X_transpose.dot(X)+ reg_strength*np.eye(X.shape[1])
             X_inverse = np.linalg.inv(X_star)
             w = X_inverse.dot(X_transpose).dot(y)
             return w
```

1.5 Task 3: Generate predictions for new data

In [11]: def predict_linear_model(X, w):

```
"""Generate predictions for the given samples.
             Parameters
             _____
             X : array, shape [N, D]
                 (Augmented) feature matrix.
             w : array, shape [D]
                 Regression coefficients.
             Returns
             _____
             y_pred : array, shape [N]
                 Predicted regression targets for the input data.
             11 11 11
             # TODO
             y_pred = np.dot(X,w)
             return y_pred
1.6 Task 4: Mean squared error
In [6]: def mean_squared_error(y_true, y_pred):
            """Compute mean squared error between true and predicted regression targets.
            Reference: `https://en.wikipedia.org/wiki/Mean_squared_error`
            Parameters
            _____
            y_true : array
                True regression targets.
            y_pred : array
                Predicted regression targets.
            Returns
            _____
            mse : float
               Mean squared error.
            11 11 11
            # TODO
            mse = np.mean((y_pred-y_true)**2)
            return mse
```

1.7 Compare the two models

The reference implementation produces * MSE for Least squares \approx 23.98 * MSE for Ridge regression \approx 21.05

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
In [12]: # Load the data
        np.random.seed(1234)
         X , y = load_boston(return_X_y=True)
         X = np.hstack([np.ones([X.shape[0], 1]), X])
         test size = 0.2
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
         # Ordinary least squares regression
         w_ls = fit_least_squares(X_train, y_train)
         y_pred_ls = predict_linear_model(X_test, w_ls)
         mse_ls = mean_squared_error(y_test, y_pred_ls)
         print('MSE for Least squares = {0}'.format(mse_ls))
         # Ridge regression
         reg_strength = 1
         w_ridge = fit_ridge(X_train, y_train, reg_strength)
         y_pred_ridge = predict_linear_model(X_test, w_ridge)
         mse_ridge = mean_squared_error(y_test, y_pred_ridge)
         print('MSE for Ridge regression = {0}'.format(mse_ridge))
MSE for Least squares = 23.984307611781773
MSE for Ridge regression = 21.051487033772275
```