Data: Nume:

Test AC Varianta 9

1. Se consideră un modul de prelucrare a două intrări pe 4 biți, așa cum este ilustrat mai jos.

- a) Dacă bitul cel mai semnificativ ai intrării **x** coincide cu bitul cel mai puțin semnificativ ai intrării **y** atunci se va roti conținutul intrării **x** cu două poziții la dreapta și va fi livrat la ieșirea **o**. În caz contrar se va roti conținutul intrării **y** cu două poziții la stânga și va fi furnizat la ieșirea **o**.
- b) Redactaţi un **testbench** care să verifice funcţionalitatea modulului Verilog implementat anterior.
- 2. Se consideră următorul tabel de adevăr:

Inputs				Outputs		
I_3	I ₂	I_1	I_0	02	01	00
0	0	0	0	1	0	1
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	1	0	1
0	1	1	1	0	1	0
1	0	0	0	0	0	0
1	0	0	1	1	0	0

Obs: Mintermii de la 10 → 15 sunt considerați elemente don't care

Pe baza configurațiilor binare date în tabel să se :

- a) Minimizeze pe foaie funcțiile de la ieșire folosind metoda diagramelor Karnaugh.
- b) Redacteze un modul care implementează funcția booleană rezultată după minimizare. Modulului i se va atribui un nume sugestiv (ex. *minimization*).

Data: Nume:

3. Se consideră un Linear Feedback Shift Register (LFSR) de 6 ranguri, construit conform secvenței de ieșire: $q[0] \leftarrow q[5]$; $q[1] \leftarrow q[0]$; $q[2] \leftarrow q[1] \oplus q[5]$; $q[3] \leftarrow q[2]$; $q[4] \leftarrow q[3]$; $q[5] \leftarrow q[4]$.

- a) Să se deseneze pe o foaie arhitectura completă a LFSR-ului conform secvenței de propagare menționată mai sus.
- b) Să se implementeze, folosind **vectori de instanțe**, structura LFSR proiectată la subpunctul a).
- c) Să se redacteze, folosind limbajul Verilog, un **testbench** care să verifice funcționalitatea modulului Verilog implementat anterior.