Package 'Kira'

September 5, 2024

Description Machine learning, containing several algorithms for supervised and unsupervised classifi-

Type Package

Version 1.0.6 **Date** 2024-09-04

Title Machine Learning

Depends R (>= 3.3.2)

Imports graphics, grDevices, MASS, stats

cis	on, in addition to a function that plots the Receiver Operating Characteristic (ROC) and Preon-Recall (PRC) curve graphs, and also a function that returns several metused for model evaluation, the latter can be used in ranking results from other packs.
License	GPL-3
Encodin	UTF-8
NeedsCo	mpilation yes
Author	aulo Cesar Ossani [aut, cre] (https://orcid.org/0000-0002-6617-8085)
Maintaiı	er Paulo Cesar Ossani <ossanipc@hotmail.com></ossanipc@hotmail.com>
	y CRAN
_	lication 2024-09-05 05:10:02 UTC
Conte	nts
	Kira-package
	elbow
	nierarchical
	rmeans 7
	knn 8
	da
	blot_curve
	ıda
	regression
	results
	ilhouette
Index	22
	1

2 Kira-package

Kira-package

Machine learning and data mining.

Description

Machine learning, containing several algorithms, in addition to functions that plot the graphs of the Receiver Operating Characteristic (ROC) and Precision-Recall (PRC) curve, and also a function that returns several metrics used to evaluate the models, the latter can be used in the classification results of other packages.

Details

Package: Kira
Type: Package
Version: 1.0.6
Date: 2024-09-04
License: GPL(>= 3)
LazyLoad: yes

This package contains:

- Algorithms for supervised classification: knn, linear (lda) and quadratic (qda) discriminant analysis, linear regression, etc.
- Algorithms for unsupervised classification: hierarchical, kmeans, etc.
- A function that plots the ROC and PRC curve.
- A function that returns a series of metrics from models.
- Functions that determine the ideal number of clusters: elbow and silhouette.

Author(s)

Paulo Cesar Ossani <ossanipc@hotmail.com>

References

Aha, D. W.; Kibler, D. and Albert, M. K. Instance-based learning algorithms. *Machine learning*. v.6, n.1, p.37-66. 1991.

Anitha, S.; Metilda, M. A. R. Y. An extensive investigation of outlier detection by cluster validation indices. *Ciencia e Tecnica Vitivinicola - A Science and Technology Journal*, v. 34, n. 2, p. 22-32, 2019. doi: 10.13140/RG.2.2.26801.63848

Charnet, R. at al. *Analise de modelos de regressao lienar*, 2a ed. Campinas: Editora da Unicamp, 2008. 357 p.

Chicco, D.; Warrens, M. J. and Jurman, G. The matthews correlation coefficient (mcc) is more informative than cohen's kappa and brier score in binary classification assessment. *IEEE Access*, *IEEE*, v. 9, p. 78368-78381, 2021.

elbow 3

Erich, S. Stop using the Elbow criterion for k-means and how to choose the number of clusters instead. *ACM SIGKDD Explorations Newsletter.* 25 (1): 36-42. arXiv:2212.12189. 2023. doi: 10.1145/3606274.3606278

Ferreira, D. F. *Estatistica Multivariada*. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.

Kaufman, L. and Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis, New York: John Wiley & Sons. 1990.

Martinez, W. L.; Martinez, A. R.; Solka, J. *Exploratory data analysis with MATLAB*. 2nd ed. New York: Chapman & Hall/CRC, 2010. 499 p.

Mingoti, S. A. *analysis de dados atraves de metodos de estatistica multivariada:* uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.

Nicoletti, M. do C. O modelo de aprendizado de maquina baseado em exemplares: principais caracteristicas e algoritmos. Sao Carlos: EdUFSCar, 2005. 61 p.

Onumanyi, A. J.; Molokomme, D. N.; Isaac, S. J. and Abu-Mahfouz, A. M. Autoelbow: An automatic elbow detection method for estimating the number of clusters in a dataset. *Applied Sciences* 12, 15. 2022. doi: 10.3390/app12157515

Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

Rencher, A. C. and Schaalje, G. B. *Linear models in statisctic*. 2th. ed. New Jersey: John & Sons, 2008. 672 p.

Rousseeuw P. J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. *Journal of Computational and Applied Mathematics*, 20:53-65. 1987. doi: 10.1016/0377-0427(87)90125-7

Sugar, C. A. and James, G. M. Finding the number of clusters in a dataset: An information-theoretic approach. *Journal of the American Statistical Association*, 98, 463, 750-763. 2003. doi: 10.1198/016214503000000666

Venabless, W. N. and Ripley, B. D. *Modern Applied Statistics with S.* Fourth edition. Springer, 2002.

Zhang, Y.; Mandziuk, J.; Quek, H. C. and Goh, W. Curvature-based method for determining the number of clusters. *Inf. Sci.* 415, 414-428, 2017. doi: 10.1016/j.ins.2017.05.024

elbow

Elbow method to determine the optimal number of clusters.

Description

Generates the Elbow graph and returns the ideal number of clusters.

Usage

```
elbow(data, k.max = 10, method = "AutoElbow", plot = TRUE,
    cut = TRUE, title = NA, xlabel = NA, ylabel = NA, size = 1.1,
    grid = TRUE, color = TRUE, savptc = FALSE, width = 3236,
    height = 2000, res = 300, casc = TRUE)
```

4 elbow

Arguments

data	Data with x and y coordinates.
k.max	Maximum number of clusters for comparison (default = 10).
method	Method used to find the ideal number k of clusters: "jump", "curvature", "Exp", "AutoElbow" (default).
plot	Indicates whether to plot the elbow graph (default = TRUE).
cut	Indicates whether to plot the best cluster indicative line (default = TRUE).
title	Title of the graphic, if not set, assumes the default text.
xlabel	Names the X axis, if not set, assumes the default text.
ylabel	Names the Y axis, if not set, assumes the default text.
size	Size of points on the graph and line thickness (default = 1.1).
grid	Put grid on graph (default = TRUE).
color	Colored graphic (default = TRUE).
savptc	Saves the graph image to a file (default = FALSE).
width	Graphic image width when savptc = TRUE (defaul = 3236).
height	Graphic image height when savptc = TRUE (default = 2000).
res	Nominal resolution in ppi of the graphic image when savptc = TRUE (default = 300).
casc	Cascade effect in the presentation of the graphic (default = TRUE).

Value

k.ideal Ideal number of clusters.

Author(s)

Paulo Cesar Ossani

References

Erich, S. Stop using the Elbow criterion for k-means and how to choose the number of clusters instead. *ACM SIGKDD Explorations Newsletter*. 25 (1): 36-42. arXiv:2212.12189. 2023. doi: 10.1145/3606274.3606278

Sugar, C. A. and James, G. M. Finding the number of clusters in a dataset: An information-theoretic approach. *Journal of the American Statistical Association*, 98, 463, 750-763. 2003. doi: 10.1198/016214503000000666

Zhang, Y.; Mandziuk, J.; Quek, H. C. and Goh, W. Curvature-based method for determining the number of clusters. *Inf. Sci.* 415, 414-428, 2017. doi: 10.1016/j.ins.2017.05.024

Onumanyi, A. J.; Molokomme, D. N.; Isaac, S. J. and Abu-Mahfouz, A. M. Autoelbow: An automatic elbow detection method for estimating the number of clusters in a dataset. *Applied Sciences* 12, 15. 2022. doi: 10.3390/app12157515

hierarchical 5

Examples

hierarchical

Hierarchical unsupervised classification.

Description

Performs hierarchical unsupervised classification analysis in a data set.

Usage

Arguments

data	Data to be analyzed.
titles	Titles of the graphics, if not set, assumes the default text.
analysis	"Obs" for analysis on observations (default), "Var" for analysis on variables.
cor.abs	Matrix of absolute correlation case 'analysis' = "Var" (default = FALSE).
normalize	Normalize the data only for case 'analysis' = "Obs" (default = FALSE).
distance	Metric of the distances in case of hierarchical groupings: "euclidean" (default), "maximum", "manhattan", "canberra", "binary" or "minkowski". Case Analysis = "Var" the metric will be the correlation matrix, according to cor.abs.
method	Method for analyzing hierarchical groupings: "complete" (default), "ward.D", "ward.D2", "single", "average", "mcquitty", "median" or "centroid".
horizontal	Horizontal dendrogram (default = FALSE).
num.groups	Number of groups to be formed.
lambda	Value used in the minkowski distance.
savptc	Saves graphics images to files (default = FALSE).
width	Graphics images width when savptc = TRUE (defaul = 3236).
height	Graphics images height when savptc = TRUE (default = 2000).
res	Nominal resolution in ppi of the graphics images when savptc = TRUE (default = 300).
casc	Cascade effect in the presentation of the graphics (default = TRUE).

6 hierarchical

Value

Several graphics.

tab.res Table with similarities and distances of the groups formed.

groups Original data with groups formed.

res.groups Results of the groups formed.

R. sqt Result of the R squared.

sum. sqt Total sum of squares.

mtx.dist Matrix of the distances.

Author(s)

Paulo Cesar Ossani

References

Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

Mingoti, S. A. *analysis de dados atraves de metodos de estatistica multivariada:* uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.

Ferreira, D. F. *Estatistica Multivariada*. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.

kmeans 7

kmeans	kmeans unsupervised classification.	

Description

Performs kmeans unsupervised classification analysis in a data set.

Usage

```
kmeans(data, normalize = FALSE, num.groups = 2)
```

Arguments

data Data to be analyzed.

normalize Normalize the data (default = FALSE).

num. groups Number of groups to be formed (default = 2).

Value

groups Original data with groups formed.

res.groups Results of the groups formed.

R.sqt Result of the R squared.

sum.sqt Total sum of squares.

Author(s)

Paulo Cesar Ossani

References

Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

Mingoti, S. A. *analysis de dados atraves de metodos de estatistica multivariada:* uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.

Ferreira, D. F. *Estatistica Multivariada*. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.

```
data(iris) # data set

data <- iris

res <- kmeans(data[,1:4], normalize = FALSE, num.groups = 3)

message("R squared: ", res$R.sqt)
# message("Total sum of squares: ", res$sum.sqt)</pre>
```

8 knn

knn

k-nearest neighbor (kNN) supervised classification method

Description

Performs the k-nearest neighbor (kNN) supervised classification method.

Usage

```
knn(train, test, class, k = 1, dist = "euclidean", lambda = 3)
```

Arguments

train	Data set of training,	without classes.
-------	-----------------------	------------------

test Test data set.

class Vector with data classes names.

k Number of nearest neighbors (default = 1).

dist Distances used in the method: "euclidean" (default), "manhattan", "minkowski",

"canberra", "maximum" or "chebyshev".

lambda Value used in the minkowski distance (default = 3).

Value

predict The classified factors of the test set.

Author(s)

Paulo Cesar Ossani

References

Aha, D. W.; Kibler, D. and Albert, M. K. Instance-based learning algorithms. *Machine learning*. v.6, n.1, p.37-66. 1991.

Nicoletti, M. do C. O modelo de aprendizado de maquina baseado em exemplares: principais caracteristicas e algoritmos. Sao Carlos: EdUFSCar, 2005. 61 p.

See Also

```
plot_curve and results
```

Ida 9

Examples

```
data(iris) # data set
data <- iris
names <- colnames(data)</pre>
colnames(data) <- c(names[1:4], "class")</pre>
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7, 0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
dist = "euclidean"
# dist = "manhattan"
# dist = "minkowski"
# dist = "canberra"
# dist = "maximum"
# dist = "chebyshev"
k = 1
lambda = 5
r \leftarrow (ncol(data) - 1)
res <- knn(train = data.train[,1:r], test = data.test[,1:r], class = class.train,
           k = 1, dist = dist, lambda = lambda)
resp <- results(orig.class = class.test, predict = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix:"); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
message("General results of the classes:"); resp$res.class
```

lda

Linear discriminant analysis (LDA).

Description

Perform linear discriminant analysis.

10 Ida

Usage

```
lda(data, test = NA, class = NA, type = "train",
  method = "moment", prior = NA)
```

Arguments

data Data to be classified.

test Vector with indices that will be used in 'data' as test. For type = "train", one has

test = NA.

class Vector with data classes names.

type Type of type:

"train" - data training (default), or

"test" - classifies the data of the vector "test".

method Classification method:

"mle" to MLEs,
"mve" to use cov.mv,

"moment" (default) for standard mean and variance estimators, or

"t" for robust estimates based on the t distribution.

prior Probabilities of occurrence of classes. If not specified, it will take the propor-

tions of the classes. If specified, probabilities must follow the order of factor

levels.

Value

predict The classified factors of the set.

Author(s)

Paulo Cesar Ossani

References

Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

Venabless, W. N. and Ripley, B. D. *Modern Applied Statistics with S.* Fourth edition. Springer, 2002.

Mingoti, S. A. *Analise de dados atraves de metodos de estatistica multivariada:* uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.

Ferreira, D. F. *Estatistica Multivariada*. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.

See Also

plot_curve and results

Ida 11

```
data(iris) # data set
data <- iris
names <- colnames(data)</pre>
colnames(data) <- c(names[1:4],"class")</pre>
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
r <- (ncol(data) - 1)
class <- data[,c(r+1)] # classes names</pre>
## Data training example
res <- lda(data = data[,1:r], test = NA, class = class,
           type = "train", method = "moment", prior = NA)
resp <- results(orig.class = class, predict = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix:"); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
message("General results of the classes:"); resp$res.class
## Data test example
class.table <- table(class) # table with the number of elements per class</pre>
prior <- as.double(class.table/sum(class.table))</pre>
test = as.integer(rownames(data.test)) # test data index
res <- lda(data = data[,1:r], test = test, class = class,
           type = "test", method = "mle", prior = prior)
resp <- results(orig.class = class.test, predict = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix: "); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
```

plot_curve

```
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
message("General results of the classes:"); resp$res.class
```

plot_curve

Graphics of the results of the classification process

Description

Return graphics of the results of the classification process.

Usage

Arguments

data	Data with x and y coordinates.
type	ROC (default) or PRC graphics type.
title	Title of the graphic, if not set, assumes the default text.
xlabel	Names the X axis, if not set, assumes the default text.
ylabel	Names the Y axis, if not set, assumes the default text.
posleg	0 with no caption, 1 for caption in the left upper corner, 2 for caption in the right upper corner, 3 for caption in the right lower corner (default), 4 for caption in the left lower corner.
boxleg	Puts the frame in the caption (default = TRUE).
axis	Put the diagonal axis on the graph (default = TRUE).
size	Size of the points in the graphs (default = 1.1).
grid	Put grid on graphs (default = TRUE).
color	Colored graphics (default = TRUE).
classcolor	Vector with the colors of the classes.
savptc	Saves graphics images to files (default = FALSE).
width	Graphics images width when savptc = TRUE (defaul = 3236).
height	Graphics images height when savptc = TRUE (default = 2000).
res	Nominal resolution in ppi of the graphics images when savptc = TRUE (default = 300).
casc	Cascade effect in the presentation of the graphic (default = TRUE).

plot_curve 13

Value

ROC or PRC curve.

Author(s)

Paulo Cesar Ossani

See Also

results

```
data(iris) # data set
data <- iris
names <- colnames(data)</pre>
colnames(data) <- c(names[1:4], "class")</pre>
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
dist = "euclidean"
# dist = "manhattan"
# dist = "minkowski"
# dist = "canberra"
# dist = "maximum"
# dist = "chebyshev"
k = 1
lambda = 5
r <- (ncol(data) - 1)
res <- knn(train = data.train[,1:r], test = data.test[,1:r], class = class.train,
           k = 1, dist = dist, lambda = lambda)
resp <- results(orig.class = class.test, predict = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix:"); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
```

14 qda

qda

Quadratic discriminant analysis (QDA).

Description

Perform quadratic discriminant analysis.

Usage

```
qda(data, test = NA, class = NA, type = "train",
  method = "moment", prior = NA)
```

Arguments

data Data to be classified. test Vector with indices that will be used in 'data' as test. For type = "train", one has test = NA. Vector with data classes names. class type Type of type: "train" - data training (default), or "test" - classifies the data of the vector "test". method Classification method: "mle" to MLEs, "mve" to use cov.mv. "moment" (default) for standard mean and variance estimators, or "t" for robust estimates based on the t distribution. Probabilities of occurrence of classes. If not specified, it will take the proporprior tions of the classes. If specified, probabilities must follow the order of factor

Value

predict The classified factors of the set.

levels.

qda 15

Author(s)

Paulo Cesar Ossani

References

Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

Venabless, W. N. and Ripley, B. D. *Modern Applied Statistics with S.* Fourth edition. Springer, 2002.

Mingoti, S. A. *Analise de dados atraves de metodos de estatistica multivariada:* uma abordagem aplicada. Belo Horizonte: UFMG, 2005. 297 p.

Ferreira, D. F. *Estatistica Multivariada*. 2a ed. revisada e ampliada. Lavras: Editora UFLA, 2011. 676 p.

See Also

plot_curve and results

```
data(iris) # data set
data <- iris
names <- colnames(data)</pre>
colnames(data) <- c(names[1:4], "class")</pre>
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
r <- (ncol(data) - 1)
class <- data[,c(r+1)] # classes names</pre>
## Data training example
res <- qda(data = data[,1:r], test = NA, class = class,
           type = "train", method = "moment", prior = NA)
resp <- results(orig.class = class, predict = res$predict)</pre>
message("Mean Squared Error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix: "); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
```

16 regression

```
message("Kappa coefficient: ", resp$kappa)
message("General results of the classes:"); resp$res.class
## Data test example
class.table <- table(class) # table with the number of elements per class</pre>
prior <- as.double(class.table/sum(class.table))</pre>
test = as.integer(rownames(data.test)) # test data index
res <- qda(data = data[,1:r], test = test, class = class,
           type = "test", method = "mle", prior = prior)
resp <- results(orig.class = class.test, predic = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix: "); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
message("General results of the classes:"); resp$res.class
```

regression

Linear regression supervised classification method

Description

Performs supervised classification using the linear regression method.

Usage

```
regression(train, test, class, intercept = TRUE)
```

Arguments

train Data set of training, without classes.

test Test data set.

class Vector with data classes names.

intercept Consider the intercept in the regression (default = TRUE).

Value

predict The classified factors of the test set.

regression 17

Author(s)

Paulo Cesar Ossani

References

Charnet, R. at al. *Analise de modelos de regressao lienar*, 2a ed. Campinas: Editora da Unicamp, 2008. 357 p.

Rencher, A. C. and Schaalje, G. B. *Linear models in statisctic*. 2th. ed. New Jersey: John & Sons, 2008. 672 p.

Rencher, A. C. Methods of multivariate analysis. 2th. ed. New York: J.Wiley, 2002. 708 p.

See Also

plot_curve and results

```
data(iris) # data set
data <- iris
names <- colnames(data)</pre>
colnames(data) <- c(names[1:4], "class")</pre>
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7, 0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
r <- (ncol(data) - 1)
res <- regression(train = data.train[,1:r], test = data.test[,1:r],</pre>
                  class = class.train, intercept = TRUE)
resp <- results(orig.class = class.test, predict = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix:"); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
message("General results of the classes:"); resp$res.class
```

18 results

resi	ıΊ	ts

Results of the classification process

Description

Returns the results of the classification process.

Usage

```
results(orig.class, predict)
```

Arguments

orig.class Data with the original classes.

predict Data with classes of results of classifiers.

Value

mse Mean squared error.
mae Mean absolute error.
rae Relative absolute error.

conf.mtx Confusion matrix.

rate.hits Hit rate. rate.error Error rate.

num.hits Number of correct instances. num.error Number of wrong instances.

kappa Kappa coefficient.

roc.curve Data for the ROC curve in classes.
prc.curve Data for the PRC curve in classes.

res.class General results of the classes: Sensitivity, Specificity, Precision, TP Rate, FP

Rate, NP Rate, F-Score, MCC, ROC Area, PRC Area.

Author(s)

Paulo Cesar Ossani

References

Chicco, D.; Warrens, M. J. and Jurman, G. The matthews correlation coefficient (mcc) is more informative than cohen's kappa and brier score in binary classification assessment. *IEEE Access, IEEE*, v. 9, p. 78368-78381, 2021.

See Also

plot_curve

results 19

```
data(iris) # data set
data <- iris
names <- colnames(data)</pre>
colnames(data) <- c(names[1:4],"class")</pre>
#### Start - hold out validation method ####
dat.sample = sample(2, nrow(data), replace = TRUE, prob = c(0.7,0.3))
data.train = data[dat.sample == 1,] # training data set
data.test = data[dat.sample == 2,] # test data set
class.train = as.factor(data.train$class) # class names of the training data set
class.test = as.factor(data.test$class) # class names of the test data set
#### End - hold out validation method ####
dist = "euclidean"
# dist = "manhattan"
# dist = "minkowski"
# dist = "canberra"
# dist = "maximum"
# dist = "chebyshev"
k = 1
lambda = 5
r <- (ncol(data) - 1)
res <- knn(train = data.train[,1:r], test = data.test[,1:r], class = class.train,
           k = 1, dist = dist, lambda = lambda)
resp <- results(orig.class = class.test, predict = res$predict)</pre>
message("Mean squared error:"); resp$mse
message("Mean absolute error:"); resp$mae
message("Relative absolute error:"); resp$rae
message("Confusion matrix:"); resp$conf.mtx
message("Hit rate: ", resp$rate.hits)
message("Error rate: ", resp$rate.error)
message("Number of correct instances: ", resp$num.hits)
message("Number of wrong instances: ", resp$num.error)
message("Kappa coefficient: ", resp$kappa)
# message("Data for the ROC curve in classes:"); resp$roc.curve
# message("Data for the PRC curve in classes:"); resp$prc.curve
message("General results of the classes:"); resp$res.class
dat <- resp$roc.curve; tp = "roc"; ps = 3
# dat <- resp$prc.curve; tp = "prc"; ps = 4
plot_curve(data = dat, type = tp, title = NA, xlabel = NA, ylabel = NA,
           posleg = ps, boxleg = FALSE, axis = TRUE, size = 1.1, grid = TRUE,
           color = TRUE, classcolor = NA, savptc = FALSE, width = 3236,
           height = 2000, res = 300, casc = FALSE)
```

20 silhouette

silhouette	Silhouette method to determine the optimal number of clusters.
SIIMOGETTE	simonene memor to determine the optimal number of emisters.

Description

Generates the silhouette graph and returns the ideal number of clusters in the k-means method.

Usage

Arguments

data	Data with x and y coordinates.
k.cluster	Cluster numbers for comparison in the k-means method (default = 2:10).
plot	Indicates whether to plot the silhouette graph (default = TRUE).
cut	Indicates whether to plot the best cluster indicative line (default = TRUE).
title	Title of the graphic, if not set, assumes the default text.
xlabel	Names the X axis, if not set, assumes the default text.
ylabel	Names the Y axis, if not set, assumes the default text.
size	Size of points on the graph and line thickness (default = 1.1).
grid	Put grid on graph (default = TRUE).
color	Colored graphic (default = TRUE).
savptc	Saves the graph image to a file (default = FALSE).
width	Graphic image width when savptc = TRUE (defaul = 3236).
height	Graphic image height when savptc = TRUE (default = 2000).
res	Nominal resolution in ppi of the graphic image when savptc = TRUE (default = 300).
casc	Cascade effect in the presentation of the graphic (default = TRUE).

Value

k.ideal	Ideal number of clusters.
eve.si	Vector with averages of silhouette indices of cluster groups (si).

Author(s)

Paulo Cesar Ossani

silhouette 21

References

Anitha, S.; Metilda, M. A. R. Y. An extensive investigation of outlier detection by cluster validation indices. *Ciencia e Tecnica Vitivinicola - A Science and Technology Journal*, v. 34, n. 2, p. 22-32, 2019. doi: 10.13140/RG.2.2.26801.63848

Kaufman, L. and Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis, New York: John Wiley & Sons. 1990.

Martinez, W. L.; Martinez, A. R.; Solka, J. *Exploratory data analysis with MATLAB*. 2nd ed. New York: Chapman & Hall/CRC, 2010. 499 p.

Rousseeuw P. J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. *Journal of Computational and Applied Mathematics*, 20:53-65. 1987. doi: 10.1016/0377-0427(87)90125-7

Index

```
* Hierarchical cluster
     hierarchical, 5
* Linear discriminant analysis
* Quadratic discriminant analysis
     qda, 14
* elbow
     elbow, 3
* kmeans
     kmeans, 7
* knn
     knn, 8
* plot.curve
    plot_curve, 12
* regression
     regression, 16
* results
     results, 18
* silhouette
     \verb|silhouette|, 20|\\
elbow, 3
hierarchical, 5
{\tt Kira-package}, {\color{red} 2}
kmeans, 7
knn, 8
1da, 9
plot_curve, 8, 10, 12, 15, 17, 18
qda, 14
regression, 16
results, 8, 10, 13, 15, 17, 18
silhouette, 20
```