Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

Методы измерений и электромеханические системы Отчёт по лабораторной работе \mathbb{N}^{1}

«Многократные прямые измерения физических величин и обработка результатов наблюдений»

Выполнил студент:

Евсеева Полина Валерьевна группа: 23.С02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1		дение	2
	1.1	Цель работы	2
		Решаемые задачи	
2		овная часть	2
	2.1	Теоретическая часть	2
	2.2	Эксперимент	3
	2.3	Обработка данных и обсуждение результатов	4
		Исходный код	4
		Таблицы	7
		Графики	
3	Выі	ВОДЫ	12

1 Введение

1.1 Цель работы

Цель данной лабораторной работы заключается в изучении методов многократных прямых измерений физических величин, а также в освоении процедур обработки полученных данных для повышения их точности и достоверности. Для достижения поставленной цели необходимо выполнить серию измерений одной и той же физической величины, обработать полученные результаты с помощью статистических методов и оценить погрешности измерений.

Методы исследования включают использование стандартных измерительных приборов, математическое моделирование процессов, а также статистическую обработку данных с применением соответствующих формул для оценки погрешностей и анализа результатов.

1.2 Решаемые задачи

- 1. Освоить методику использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнить простейшую статистическую обработку серии результатов наблюдений при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

В данной лабораторной работе используется метод многократных прямых измерений для регистрации данных с частотомера, который отображает временные диапазоны регистрации сигналов с генератора. Мы проводим серию измерений с целью определения средней величины, отклонений и оценки погрешностей, связанных с приборами.

Формула относительной погрешности прибора δT :

$$\delta T = \pm (0,05+0,05\frac{T_{\kappa}}{T_{x}})\% \tag{1}$$

Формула для нахождения среднего арифметического \overline{T} :

$$\overline{T} = \frac{\sum_{i=1}^{n} T_i}{n} \tag{2}$$

где n - количество результатов отдельных наблюдений, T_i - результат измерения отдельного наблюдения.

Вычисление погрешности прибора $\Delta T_{\rm приб}$ определяется следующей формулой:

$$\Delta T_{\text{приб}} = \frac{\delta T * \overline{T}}{100\%} \tag{3}$$

Среднеквадратичное отклонение σ :

$$\sigma \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (T_i - \overline{T}^2)}$$
 (4)

Средняя квадратичная погрешность среднего ΔT :

$$\Delta T = \sigma_{\overline{T}} \approx \frac{\sigma}{\sqrt{n}} \tag{5}$$

2.2 Эксперимент

От генератора сигналов Γ 5-2A на частотомер Ч3-32 подается последовательность трапецеидальных импульсов, диапозоны которых были заданы $0-10^6$ мс для грубой шкалы и $0-10^4$ мс для точной шкалы. Задаваемое импульсы многократно измерялись цифровым частотомером. Все данные в ходе эксперимента записывались в протокол наблюдения.

Рис. 1. Схема установки

Рис. 2. Фотография установки

2.3 Обработка данных и обсуждение результатов

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio. Код полностью расположен в репозитории на GitHub.

Исходный код

Программа выполняет обработку данных, считанных из файлов с точными и грубыми измерениями. Вначале открывается файл с точными значениями, и все строки с числами считываются в вектор. После этого вычисляется среднее значение для этих данных, и это значение используется для вычисления отклонений от среднего для каждого числа в векторе. Далее программа рассчитывает квадрат этих отклонений, что соответствует стандартному отклонению, и выводит результаты.

После вычисления стандартного отклонения программа вычисляет среднюю погрешность прибора, используя заранее определённые параметры. Далее, с ис-

пользованием функции, которая рассчитывает погрешности на основе значений времени и других параметров, программа выводит погрешности для каждого значения.

Аналогично проводятся измерения и для грубых, и для точных значений.

Листинг 1. Вычисление среднего

```
Функции для вычислений
 double avarage (const vector < double > & data)
      double sum = 0.0;
      for (double u : data)
6
           sum += u;
8
      return sum / data.size();
9
10
11
 vector < double > standart Deviation (vector < double > & rand Dev Ar)
12
13
      vector < double > standAr;
14
      for (int i = 0; i < randDevAr.size(); i++)
15
16
           double t = randDevAr[i];
17
           standAr.push back(t * t);
18
19
      return standAr;
20
^{21}
  vector < double > random Deviation (const vector < double > & data, double
     avarage)
      vector < double > rand DevAr;
      for (int i = 0; i < data.size(); i++)
      {
           randDevAr.push back(data[i] — avarage);
29
30
      return randDevAr;
31
32
33
  vector < double > calculateDeltaT (const vector < double > & Tx values, double
      gamma0, double T0, double T avg)
35
      vector < double > deltaT results;
36
      for (double Tx : Tx values)
37
38
           double gamma T = gamma0 + (T0 / Tx);
39
           deltaT results.push back(gamma T * T avg);
40
41
      return deltaT results;
42
43 }
```

```
44
45
       // Вычисление среднего значения
46
      double mean = avarage(values);
47
       cout << "Среднее значение точные(): " << mean << endl;
48
49
      // Вычисление отклонений от среднего для каждого значения
50
       cout << "Отклонения от среднего: " << endl;
51
       vector < double > ar1 = random Deviation (values, mean);
53
54
      for (int i = 0; i < ar1.size(); i++)
55
           cout << ar1[i] << "\n";</pre>
      cout << endl:</pre>
60
      // Вычисление стандартного отклонения
61
62
      cout << "Стандартное отклонение: " << endl;
63
64
       vector < double > ar2 = standart Deviation (ar1);
65
       for (int i = 0; i < ar2.size(); i++)
66
67
           cout \ll ar2[i] \ll "\n";
68
69
      cout << endl;
70
71
      // Вычисление средней погрешности прибора
72
       cout << "Средняя погрешность прибора: " << endl;
73
74
      cout << (gamma0 + (T0 / mean)) * mean << "\n";
75
       cout << endl;
76
77
      // Вычисление погрешностей
78
       cout << "Погрешности точные(): " << endl;
79
80
      vector < double > delta T1 = calculate Delta T (values, gamma0, T0, mean
81
      for (int i = 0; i < delta T1.size(); i++)
83
           cout \ll delta T1[i] \ll "\n";
84
85
      cout << endl;
86
87
```

Таблицы

Таблица 1. Результаты грубых измерений

№ П.П.	Диапазон показаний использованной шкаль прибора	Результаты отдельных наблюдений (T_i)	Погрешность прибора на данной шкале $(\Delta T_{\rm приб})$
	MC	MC	MC
1	$0 - 10^6$	282.7	0.000240974
2	$0 - 10^6$	281.7	0.000241329
3	$0 - 10^6$	282.5	0.000241045
4	$0 - 10^6$	282.0	0.000241222
5	$0 - 10^6$	282.0	0.000241222
6	$0 - 10^6$	282.9	0.000240904
7	$0 - 10^6$	281.8	0.000241293
8	$0 - 10^6$	282.6	0.00024101
9	$0 - 10^6$	282.1	0.000241187
10	$0 - 10^6$	282.3	0.000241116

Таблица 2. Результаты точных измерений

N⁰	Результаты отдельных	Случайные откло-	
	наблюдений (Ті)	нения от среднего	$d_i^2 = (T_i - \overline{T})^2$
П.П.	наолюдении (11)	$d_i = T_i - \overline{T}$	
	MC	MC	MC
1	282.926	0.4746	0.225245
2	281.803	-0.6484	0.420423
3	282.582	0.1306	0.0170564
4	282.693	0.2416	0.0583706
5	281.794	-0.6574	0.432175
6	282.524	0.0726	0.00527076
7	282.220	-0.2314	0.053546
8	282.786	0.3346	0.111957
9	281.807	-0.6444	0.415251
10	282.256	-0.1954	0.0381812
11	282.973	0.5216	0.272067
12	282.224	-0.2074	0.0430148
13	281.997	-0.4544	0.206479
14	282.622	0.1706	0.0291044
15	282.770	0.3186	0.101506

Таблица 3. Результаты точных измерений

$N_{\overline{0}}$	Результаты отдельных	Случайные откло-	
П.П.	наблюдений (Ті)	нения от среднего	$d_i^2 = (T_i - \overline{T})^2$
11.11.		$d_i = T_i - \overline{T}$	
1.0	MC	MC	MC
16	283.136	0.6846	0.468677
17	282.735	0.2836	0.080429
18	282.340	-0.1114	0.01241
19	282.339	-0.1124	0.0126338
20	282.128	-0.3234	0.104588
21	282.258	-0.1934	0.0374036
22	282.489	0.0376	0.00141376
23	282.505	0.0536	0.00287296
24	282.958	0.5066	0.256644
25	282.638	0.1866	0.0348196
26	282.345	-0.1064	0.11321
27	281.898	-0.5534	0.306252
28	282.345	-0.1064	0.011321
29	282.684	0.2326	0.0541028
30	283.159	0.7076	0.500698
31	282.816	0.3646	0.132933
32	281.950	-0.5014	0.251402
33	282.197	-0.2544	0.0647194
34	282.422	-0.0294	0.00086436
35	282.430	-0.0214	0.00045796
36	282.642	0.1906	0.0363284
37	282.971	0.5196	0.269984
38	282.580	0.1286	0.016538
39	282.115	-0.3364	0.113165
40	281.863	-0.5884	0.346215
41	282.017	-0.4344	0.188703
42	282.424	-0.0274	0.00075076
43	282.675	0.2236	0.049997
44	283.157	0.7056	0.497871
45	282.442	-0.0094	0.00008836
46	281.895	-0.5564	0.309581
47	281.993	-0.4584	0.210131
48	282.236	-0.2154	0.0463972
49	282.728	0.2766	0.0765076
50	283.063	0.6116	0.374055

Таблица 4. Таблица для построения гистограммы и кривой распределения

№ ин- тер- ва-	Γ раницы интервалов (ширина интервала $\Delta h = 0.1814$)	Число случаев (Δn) , когда результат наблюдения попадает в данный интервал	Доля (часть) полного числа результатов, попадающих в данный интервал $(\delta n = \frac{\Delta n}{n})$
1	281.345	1	0.02
2	281.526	2	0.04
3	281.708	3	0.06
4	281.890	4	0.08
5	282.071	9	0.18
6	282.252	7	0.14
7	282.433	8	0.16
8	282.615	8	0.16
9	282.796	5	0.10
10	282.977	3	0.06

Графики

Рис. 3. Зависимость измерений от времени

Рис. 4. Плотность распределения

Рис. 5. Зависимость измерений от времени

Рис. 6. Гистограмма

3 Выводы

В ходе выполнения работы я приобрела навыки использования измерительных приборов для многократных прямых измерений физических величин. Научилась работать с частотомером и разобралась в методах статистической обработки результатов, включая расчет дисперсии и среднеквадратичного отклонения. Попробовала работать в среде gnuplot для реализации графиков..

Список литературы

 $[1] \ \mathtt{https://github.com/st106773/Workshop1.git}$