

THE ART & SCIENCE OF PREDICTIVE ANALYTICS AND DATA SCIENCE

26 March 2019, Singapore

Dr Dan Putler, Chief Data Scientist, Alteryx Vincent Toh, Team Lead, Sales Engineering, Alteryx

9:00 AM Welcome & Introduction

9:10 AM Developing an In-House Predictive Capability

10:00 AM Addressing the Data Problem

10:30 AM Break

10:45 AM Real-World Example Beyond Basic BI

11:30 AM Putting the Power of Predictive into Production

11:45 AM Q/A

12:00 PM End of Event

DEVELOPINGAN IN-HOUSE PREDICTIVE ANALYTICS CAPABILITY

- What is predictive analytics and how does it differ from BI?
- The benefits and difficulties of creating a predictive analytics capability
- Four steps to build in-house predictive analytics expertise

BI AND REPORTING VS. PREDICTIVE ANALYTICS

- Same underlying goal, to inform management decision making
 - Requires understanding of business issues in order to provide the right information to inform business decisions
- What the two approaches provide is different
 - BI and reporting provide information that is currently available
 - Predictive analytics provides information that is not currently available, but which can be reasonably predicted

PREDICTIVE ANALYTICS INFLUENCE ON PROGRAM SUCCESS

Source: TDWI 2017

PREDICTIVE ANALYTICS -**OPPORTUNITY AND CHALLENGE**

250% 2.5X

Implementing Predictive Analytics

FACTORS SLOWING PREDICTIVE ANALYTICS ADOPTION

THE SCARCITY OF DATA SCIENTISTS AND WHAT TO DO

FOUR STEPS TO DEVELOP PREDICTIVE EXPERTISE

- 1. Start small and take a "learning by doing" approach
- 2. Develop an initial list of possible predictive analytics projects that address frequent and important business decisions in your organization
- 3. Select projects from the initial list that can make use of well-known metrics
- 4. Compare the results of a new predictive analytics based process to the old process used to make the decision

1. START SMALL AND TAKE A "LEARNING BY DOING" APPROACH

- Start with one to four people involved
 - Have the belief that predictive analytics could improve their organizations, be willing to acquire some additional skills, and have enough time to experiment with the methods
 - Understanding the business and data is more important
 - » Some upskilling on technical capabilities may be needed
- Only a small number (one to a handful) of projects are undertaken that are often "skunkworks" in nature
 - Minimizes the initial investment, prevents over inflated expectations, allows the
 organization to begin to develop expertise in the area they can leverage in the future,
 and gain a realistic sense of the potential returns to predictive analytics

2. DEVELOP A LIST OF POSSIBLE PREDICTIVE ANALYTICS PROJECTS

- Thinking through how "predicted information" can be used to help decision making is a crucial first step to developing a successful in-house predictive analytics program
- It is often useful to start the process by examining your organization's key performance indicators, or KPIs
 - Think through what underlying business decisions drive a particular KPI, and then think of ways predicted information could better inform those decisions
- Example: Personal loans issued by a credit union

3. SELECT PROJECTS THAT MAKE USE OF WELL-KNOWN "METRICS"

- A predictive model is only as good as the data. Selecting the right data is crucial
- Determining the appropriate metrics can be challenging, but there is often no need to re-invent the wheel
- Many verticals and/or domains have "go to" metrics for predicting information
 - Recency, frequency, and monetary value (or RFM) in marketing
 - Credit scores in financial services
 - Elo ratings in sports

4. COMPARE RESULTS OF THE NEW PROCESS WITH THE OLD PROCESS

- Testing and experimentation are an essential part of predictive analytics
- There are two basic testing approaches, A/B testing and retrospective testing
 - A/B testing involves the use of two (or more) different samples with one sample being the "treatment" group where a predictive model is employed for decision making, and the other a "control" group that uses the current decision making process
 - Retrospective testing uses historical data from two time periods, where models are created in the earlier period, and a comparison is made between the decisions actually made, and those that we would make with the predicted information

KEY TAKE-AWAYS

- Predictive analytics and traditional BI and reporting have the same objective, improve decision making by better informing decisions, but predictive analytics can provide information that BI and reporting cannot
- Predictive analytics can have significant returns, but there are challenges that need to be overcome
- Taking a four step approach to developing expertise in predictive analytics can help overcome some of those challenges

FLEXIBLE END-TO-END

DISCOVER, CATALOG AND SHARE

ALTERYX CONNECT

ALTER YOUR

ANALYTICS LIFECYCLE

BEFORE

Scripts and Tools

Informatica, Talend, Paxata, Trifacta

GIS
Specialists

Esri, Pitney Bowes, SAP

SPSS, SAS, R, Python

Java, PHP, C++, Ruby

Visualizations & Reports

Microsoft, Tableau, Qlik

ALTERYX SELF-SERVICE

Analyst

Find the right data asset

Data

Scripts and Tools

Prep and Blending

Spatial Data

Predictive and Prescriptive

Production and Output

NEW INSIGHTS BETTER DECISIONS MORE VALUE

A REAL WORLD APPLICATION OF PREDICTIVE ANALYTICS

- The predictive analytics pyramid
- A hands application to predict electricity demand for an electric utility tomorrow

THE PREDICTIVE ANALYTICS PYRAMID

Select
the final model
from a set of
possible models

The relationships between predictors and target meet expectations

Find and engineer appropriate and meaningful predictors

Determine the information needed to address the problem/issue

DETERMINE THE AMOUNT OF ELECTRICITY TO SUPPLY TOMORROW

- <u>The decision</u>: An electric utility needs to determine the amount of electricity it needs to produce and (potentially) buy tomorrow, and whether to sell power to other utilities
- <u>The information needed</u>: The critical information needed is the amount of electricity their customers will demand for each hour tomorrow
- <u>Meaningful predictor metrics</u>: Metrics that have proven valuable for predicting hourly electricity demand include:
 - The temperature this hour and in the preceding hour
 - The time of day, day of week, and month of year
 - The length of time since sun rise and the prior sunset
- To Alteryx, in order to provide the needed predicted information

PUTTINGTHE POWER OF PREDICTIVE INTO PRODUCTION

FLEXIBLE END-TO-END

MODEL DEPLOYMENT METHODS

REPORTS

INTERACTIVE DASHBOARDS

REAL-TIME APPLICATIONS

MODEL DEPLOYMENT METHODS

REPORTS

INTERACTIVE DASHBOARDS

DATA SCIENCE IS ABOUT PRACTICAL, REAL-WORLD SOLUTIONS

Carl wants to watch a good movie

Hey, Carl. Check these out!

EXPLANATION ISN'T ALWAYS IMPORTANT

Carl would like Frozen because Cindy liked it.

http://courses.washington.edu/css490/2012.Winter/lecture_slides/08b_collaborative_filtering_1_r1.pdf

Sarah's algorithm is seamlessly embedded

MODEL DEPLOYMENT REALITY

DEPLOYMENTS TAKE 12-20 WEEKS

COST TO DEPLOY 1 MODEL RUNS IN EXCESS OF \$250,000

< 10% OF MODELS MAKE IT TO PRODUCTION

SELF-SERVICE MEETS REAL-TIME

- Deploy R & Python models into production without recoding
- Embed machine learning models into business processes
- Manage and monitor models, version control and iterate

DYNAMIC PRICING

Suggest prices through a website or app

RECOMMENDER SYSTEMS

Use predictive models to forecast consumer behavior

REAL-TIME
CREDIT SCORING

Determine the credit approval via embedded app

FRAUD DETECTION

Automatically determine if transactions are fraudulent

FLEXIBLE END-TO-END

CONSUMER PRODUCTS

NORDSTROM

MANUFACTURING

RETAIL

ENERGY & UTILITIES

MEDIA

MEDIABRANDS

TECHNOLOGY

FINANCIAL SERVICES

PROFESSIONAL SERVICES

TELECOM & CABLE

vodafone

HEALTHCARE

RESTAURANTS

TRAVEL & HOSPITALITY

EMBARKING ON THE PATH TO PREDICTIVE

- Predictive Analytics Templates
- Alteryx Academy Free Training in our Alteryx Community
- Alteryx Predictive Analytics Udacity Course

Thank you

Q+A

