TÜRKÇE DATASET VE LSTM KULLANARAK TÜRKÇE ŞARKI ÜRETME PROJESİ

YZM308 – Üretken Yapay Zeka Dersi Final Projesi Dr. Öğr. Üyesi MURAT ŞİMŞEK

Atakan

Hasan Fatih Öztürk 220212002

Ostim Teknik Üniversitesi Yapay Zeka Mühendisliği

İçindekiler

0.1	Proje Tanımı ve Amacı	2
0.2	Mevcut Durum Analizi	3
0.3	İş Gereksinimleri	3
0.4	Teknik Gereksinimler	4
0.5	Veri Analizi ve Hazırlığı	4
0.6	Model Seçimi ve Geliştirme	5
0.7	Risk Analizi ve Kısıtlar	5
0.8	Karşılaşılan Zorluklar ve Çözümler	6
0.9	Modelin Mimari Tasarımı	6
0.10	Model Eğitimi	6
0.11	Modelin Performansı	7
0.12	Görselleştirme ve Analiz	7
0.13	Sonuç ve Gelecek Çalışmalar	8
0.14	Kavnakca	8

0.1 Proje Tanımı ve Amacı

Proje Adı: Türkçe Şarkı Sözü Üretimi (Generative AI Song Generator – TRLyrics)

Kapsam & Temel Hedefler

- Otomatik Söz Üretimi: Transformer tabanlı model, hece ölçüsünü ve kafiyeyi dikkate alarak özgün sözler yazar.
- Seed/Temaya Uyum: Kullanıcı "bir tohum dize" veya anahtar kelime girdiğinde, tutarlı devam kıtaları ve nakaratlar sunar.
- Gerçek Zamanlı Erişim: Web arayüzü ya da REST API ile ≤ 2 sn'de sonuç döndürür.
- Parametre Kontrolü: temperature, top-p, maksimum uzunluk gibi ayarlar, duy-gusal tonu kullanıcıya bırakır.

Çözülmek İstenen Problemler

- Yaratıcı Tıkanma: Profesyonel söz yazarına ulaşamayan müzisyenler için hızlı ilham.
- Dil Desteği Eksikliği: İngilizce odaklı araçların Türkçe kafiyede başarısız kalması.
- Zaman & Maliyet: Demo hazırlık süresini günlerden dakikalara indirme.

Neden Generative AI?

- Özgünlük: Büyük veriyle eğitilen model, kopya riskini minimize ederek taze dizeler üretir.
- Hızlı Varyasyon: Tek tıklamayla onlarca alternatif; sanatçı beğendiğini seçip şekillendirir.
- Esneklik: Parametrelerle slow-rock'tan rap'e, hüzünden neşeye farklı üslûplar yakalanır.

Uygulama Senaryoları

- Bağımsız Sanatçılar: Kısa sürede demo hazırlama; tek dizeyi girip tüm şarkıya ulaşma.
- Reklam Ajansları: Marka jingle'ı için 10-15 saniyelik özgün söz sloganları.
- Oyun & Film Sektörü: Tema müzikleri için konsepte uyumlu dinamik söz üretimi.
- Eğitim: Yaratıcı yazma atölyelerinde öğrencilere etkileşimli örnekler.

0.2 Mevcut Durum Analizi

Rakip Analizi

- Suno AI: Söz+beste birlikte üretir; Türkçe desteği beta aşamasında.
- OpenAI MuseNet: Çokdilli enstrümantasyon; söz üretmez.
- Yerel Uygulamalar: Az sayıda akademik prototip; piyasada ticari araç yok.

Hedef Kullanıcı Kitlesi ve İhtiyaçları

- Bağımsız müzisyenler & söz yazarları \rightarrow ilham, taslak, hız.
- Reklam ajansları \rightarrow jingle sözleri.
- \bullet Oyun & medya stüdyoları \to orijinal Türkçe içerik.

0.3 İş Gereksinimleri

Fonksiyonel Gereksinimler

- Kullanıcı prompt'u (tema / ilk dize / duygu) girer, sistem ≤ 10 sn içinde ≥ 4 kıta üretir.
- Parametre ayarı: temperature, top-p, uzunluk (token) seçilebilir.
- "Satır satır", "virgül ile ayır" veya "otomatik kafiye" biçim seçenekleri.
- Sonuçları .txt/.docx indirme ve paylaşılabilir görsel (söz + arka plan) üretme.

Fonksiyonel Olmayan Gereksinimler

- API çeşidi: REST + async destek.
- Tepki süresi < 1000 ms (cache'lenmiş model bellekte).
- Kullanıcı verisi 1 yıl saklanır; GDPR & KVKK uyumlu.
- Erişilebilirlik: mobil ve masaüstü uyumlu.

Kullanıcı Senaryosu (Örnek)

User Story – Müzisyen:

"Başlamak istediği sözü girer ve şarkılar akmaya başlar." Sentiment analysis bir sonraki sürümde gelecektir.

0.4 Teknik Gereksinimler

Bileşen	Seçim	Gerekçe
Veri Tipi	Saf metin (Türkçe şarkı sözleri)	Dil modeli için yeterli
Model	LLM tabanlı	Çeşitlilik + kalite
Veri Kaynağı	Public domain / Scraping / Stüdyo arşivleri	Çeşitlilik + kalite
Veri Miktarı	$\geq 200 \text{ bin satir}, \approx 20 \text{ MB corpus}$	Dil modeli için yeterli
Tokenizasyon	SentencePiece BPE, vocab 16 000	OOV azaltır
Model Tipi	LSTM (1 katman), Embedding 128, LSTM 1024	Düşük GPU gereksinimi
Altyapı	NVIDIA A100 40 GB GPU; TensorFlow 2.x	Ölçeklenebilirlik

0.5 Veri Analizi ve Hazırlığı

 \bullet Toplama: Web scraper \rightarrow .csv; lisans kontrolü

• Temizleme: Bozuk karakterler temizlendi, csv geçerken utf-8 ile çözüklü

• Kalite Kontrol: Dilbilgisi filtreleri, manuel rastgele örnek doğrulaması

• Gizlilik & Etik: Telif sahipliği; kullanıcı prompt'u loglarının anonimleştirilmesi.

Ahmet Kay (Potbori) Fabrika Kızı	Åafak Türküsü	Bir mavi otobüs
Ahmet Kay Acı Ninni	Baş Kaldırıyorum	Uyusun ha iyi
Ahmet Kay Acılara Tutunmak	Acılara Tutunmak	KavuÅŸmak
Ahmet Kay Ada Sahilleri	Hoşçakalın Gözüm	Ada sahillerinde
Ahmet Kay Adı Bahtiyar	Dinle Sevgili Ülkem	Geçiyor
Ahmet Kay Adı Yılmaz	Dosta Düşmana Karşı	Dalyan gibi bir
Ahmet Kay Ah	Resitaller	Yüzünün
Ahmet Kay Ah Ulan Rıza	Resitaller	Neden hala gelmedi?
Ahmet Kay Aklanacak Dünya	Yazmalı Gelin	Alnının orta
Ahmet Kay Al Öfkemi	Hoşçakalın Gözüm	Her sürgünün
Ahmet Kay Alnında Dağ Ateşi	Yorgun Demokrat	Alnını dağ
Ahmet Kay Amanın Minnoş	İyimser Bir Gül	DaÄŸda keklik
Ahmet Kay Amenna (YaÅŸayanlar B	Acılara Tutunmak	YaÅŸayanlar bir gÃ⅓r
Ahmet Kay An Gelir	An Gelir	Paldır küldür
		. 975 9

Şekil 1: Tablo: Temizlemeden önce veriler.

0.6 Model Seçimi ve Geliştirme

- LSTM (Baseline): Hızlı eğitim, düşük parametre; Uzun-bağlam sınırlı
- GRU: Daha az parametre; aynı sınırlama
- Transformer (Decoder-only): Daha uzun bağlam, kaliteli üretim; GPU maliyeti >2x
- Fine-tuned GPT-2-Türkçe: SOTA metin kalitesi; daha büyük veri ve lisans maliyeti (Kullanılamadı)

Seçim: Önce tek LSTM, sonra iki LSTM arasında dropout ve sequence düzeni.

Eğitim & Test Stratejisi

- \bullet 80-10-10 (train/val/test) bölme
- Epoch: 20; Batch: 128
- Erken durdurma (patience 5)

Başarı Kriterleri

- Perpleksite (PPL) < 35
- İnsan Turing testi: ≥ 60% "insan yazdı"
- BLEU-4 > 0.25 (prompt \rightarrow söz benzerliği)
- Kullanıcı memnuniyeti anketi $\geq 4/5$

0.7 Risk Analizi ve Kısıtlar

Kategori	Risk	Azaltım
Teknik	Overfitting küçük korpus	Veri augmentasyonu & dropout
Teknik	Uzun çıkışlarda tekrara girme	Top-p + n-gram blokaj
Yasal	Telif haklı sözlerin ezberlenmesi	Kayıtları filtrele
Etik	Nefret söylemi üretimi	Content filter
Operasyonel	GPU tedariği	Bulut multi-region alternatifleri

0.8 Karşılaşılan Zorluklar ve Çözümler

- Veri Seti Temizliği: Türkçe karakterlerde bozulmalar, eksik veya anlamsız satırlar
- Donanım Kısıtlamaları: Eğitim süresinin uzunluğu, yüksek bellek ihtiyacı
- Overfitting: Dropout ve erken durdurma (EarlyStopping) ile aşıldı

0.9 Modelin Mimari Tasarımı

Model, Sequential bir Keras modeli olarak tasarlanmıştır:

- Embedding Layer: Tokenleri vektöre dönüştürür.
- LSTM Layer: Sıralı verileri işler, dil modeli kurar.
- Dropout: Aşırı öğrenmeyi engeller.
- Dense Layer: Çıktı vektörünü oluşturur.

```
####Tek lstm kullanmak için bu kodu kullanın
model = tf.keras.Sequential([
    tf.keras.layers.Embedding(vocab_size, EMBED_DIM, input_length=SEQ_LEN),
    tf.keras.layers.LSTM(LSTM_UNITS),
    tf.keras.layers.Dense(vocab_size, activation="softmax")
])

optimizer = Adam(learning_rate=0.001)
model.compile(
    optimizer=optimizer,
    loss="sparse_categorical_crossentropy"
)
```

Sekil 2: Tablo: model kodları.

Modelin eğitiminde EarlyStopping ve ModelCheckpoint gibi geri çağırma fonksiyonları kullanılmıştır.

0.10 Model Eğitimi

Model, 20 epoch boyunca, batch_size=128 olacak şekilde eğitilmiştir. Eğitim sırasında loss (kayıp) değerleri takip edilmiştir. Modelin eğitim süresi, kullanılan donanıma (A100 GPU) göre yaklaşık 20 dakika olarak belirtilmiştir.

```
checkpoint = ModelCheckpoint(
    '/content/drive/MyDrive/MRT_SMSK/check4_model.keras', ##HER KULLANIMI
    monitor='loss',
    save_best_only=True
)#Loss yükselmeye başlarsa son epochu kaydedecek
#Loss grafiği çıkarmak için history.df bağlayacağız
history = model.fit(
    dataset,
    epochs=EPOCHS,
    callbacks=[es, checkpoint]
)
```

Şekil 3: Tablo: Model.

0.11 Modelin Performansı

Model eğitimi tamamlandığında loss değeri gözlemlenmiş, loss değeri 4 altına düşmemiştir. Modelin eğitim sonrası test edilmesi için çeşitli başlangıç dizeleriyle şarkı sözü üretimi denenmiştir. Üretilen şarkı sözleri, anlam bütünlüğü, tutarlılık ve yaratıcılık açısından manuel olarak incelenmiştir.

Şekil 4: Tablo: Kayıp fonksiyon verileri LATEX sebebiyle kaymıştır.

0.12 Görselleştirme ve Analiz

• Eğitim ve doğrulama loss grafiklerinin çizimi

- Modelin zaman içerisindeki başarımı, olası overfitting/underfitting durumları
- Üretilen şarkı sözlerinin örnekleri:

0.13 Sonuç ve Gelecek Çalışmalar

Bu proje, Türkçe şarkı sözü üretiminde LSTM tabanlı yaklaşımların başarılı olabileceğini göstermiştir. Özellikle yaratıcı metin üretimi için, daha büyük ve dengeli veri setleriyle, farklı mimariler (Transformer tabanlı modeller, GPT, vb.) denenerek başarı daha da artırılabilir. Ayrıca, kullanıcıdan belirli bir tema, ruh hali veya anahtar kelimeyle şarkı üretimi için ilave arayüzler geliştirilebilir.

0.14 Kaynakça

- Chollet, F. diğerleri. (2015). Keras [Yazılım]. GitHub. Retrieved May 20, 2025, from https://keras.io/api/
- Keras 3 API Documentation. (2025). Models API, Layers API, Callbacks API ve diğer bileşenler [Çevrimiçi belge]. Retrieved May 20, 2025, from https://keras.io/api/
- Kudo, T. Richardson, J. (2018). google/SentencePiece [Yazılım]. GitHub. Retrieved May 20, 2025, from https://github.com/google/sentencepiece
- The pandas development team. (2020). pandas-dev/pandas: Pandas [Yazılım]. Zenodo. Version: latest. DOI: 10.5281/zenodo.3509134. Erişim: https://doi.org/10.5281/zenodo.3509
- Hochreiter, S. Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
- Gers, F. A., Schmidhuber, J. Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10), 2451–2471.
- Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N. Wu, Y. (2016). Exploring the Limits of Language Modeling. arXiv:1602.02410. Retrieved May 20, 2025, from