

Introducción

Bloqueo es una técnica para tratar con factores perturbadores (nuisance factors) controlables. De igual forma, también es útil dado que hay múltiples situaciones en las que es imposible efectuar todas las corridas de un experimento factorial 2k bajo condiciones homogéneas.

Consideramos dos casos:

Diseños replicados.

Diseños con una sola réplica.

Diseños replicados

- Si hay n réplicas en el diseño, cada réplica se puede identificar con un bloque, asociado a un factor perturbador.
- Cada réplica se corre en uno de los bloques (período de tiempo, lotes de materia prima, operario, etc.).
- Las corridas dentro de los bloques deben ser aleatorizadas.

Tabla 7-1 Experimento del proceso químico en tres bloques

	Bloque 1	Bloque 2	Bloque 3
	(1) = 28	(1) = 25	(1) = 27
	a = 36	a = 32	a = 32
	b = 18	b = 19	b = 23
	ab = 31	ab = 30	ab = 29
Totales de los bloques	$B_1 = 113$	$B_2 = 106$	$B_3 = 111$

Diseños replicados

Tabla 7-2 Análisis de varianza del experimento del proceso químico en tres bloques

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F_0	Valor P
Bloques	6.50	2	3.25		
A (concentración)	208.33	1	208.33	50.32	0.0004
B (catalizador)	75.00	1	75.00	18.12	0.0053
\overrightarrow{AB}	8.33	1	8.33	2.01	0.2060
Error	24.84	6	4.14		
Total	323.00	11			

Confusión

 Hay muchos problemas en los que es imposible realizar una réplica completa de un diseño factorial en un bloque. La confusión (o mezclado) es una técnica de diseño mediante la cual un experimento factorial completo se distribuye en bloques, donde el tamaño del bloque es menor que el número de combinaciones de los tratamientos de una réplica.

*El efecto de los bloques y la interacción AB son idénticos. Es decir, AB está confundido (o mezclado) con los bloques.

Este enfoque puede usarse para confundir o mezclar cualquier efecto (A, B o AB) con los bloques. Por ejemplo, si (1) y b se hubieran asignado al bloque 1 y a y ab al bloque 2, el efecto principal de A se habría confundido con los bloques. La práctica usual es confundir la interacción de orden más alto con los bloques.

Confusión

Figura 7-2 El diseño 2³ en dos bloques con ABC confundido.

Ejemplo

The Direct Mail Experiment from Problem 6.24

	Coded Factors		Number of Orders			Facto	r Levels	
Run	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	Replicate 1	Replicate 2		Low (-1)	High (+1)
1	-	-	_	50	54	A (class)	3rd	1st
2	+	_	_	44	42	B (type)	\mathbf{BW}	Color
3	_	+	_	46	48	C (\$)	\$19.95	\$24.95
4	+	+	_	42	43			
5	_	_	+	49	46			
6	+	_	+	48	45			
7	_	+	+	47	48			
8	+	+	+	56	54			

Run	Interacción	Α	В	С	ABC	BLOQUE
1	(1)	-1	-1	-1	-1	1
2	а	1	-1	-1	1	2
3	b	-1	1	-1	1	2
4	ab	1	1	-1	-1	1
5	С	-1	-1	1	1	2
6	ac	1	-1	1	-1	1
7	bc	-1	1	1	-1	1
8	abc	1	1	1	1	2

* La interacción ABC está confundida con los 2 bloques

Bibliografía

Gutierrez, H. Análisis y diseño de experimentos. México: Mc Graw Hill, 2004.

Montgomery. Diseño y análisis de Experimentos. 2 Edición. John Wiley and sons, 2002.

