Foundation of Data Science and Analytics

Association Analysis: Advance Concepts

Material Adaptation:

Introduction to Data Mining, By Tan, Steinbach, Karpatne, Kumar

Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	$120 \mathrm{K}$	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	$100 \mathrm{K}$	10	1	No
Male	 41	$65 \mathrm{K}$	8	2	No
Female	 26	85K	12	1	No

Example of Association Rule:

 $\{Gender=Male, Age \in [21,30)\} \rightarrow \{No of hours online \ge 10\}$

Example: Internet Usage Data

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education		at Home	Auction	Online	Banking	Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No

{Level of Education=Graduate, Online Banking=Yes}

→ {Privacy Concerns = Yes}

 Introduce a new "item" for each distinct attributevalue pair

Male	Female	Education	Education	Education	 Privacy	Privacy
		= Graduate	= College	= High School	= Yes	= No
0	1	1	0	0	 1	0
1	0	0	1	0	 0	1
1	0	1	0	0	 1	0
0	1	0	1	0	 1	0
0	1	1	0	0	 1	0
1	0	0	1	0	 1	0
1	0	0	0	0	 0	1
1	0	0	0	1	 0	1
0	1	1	0	0	 0	1

- Some attributes can have many possible values
 - Many of their attribute values have very low support
 - Potential solution: Aggregate the low-support attribute values

- Distribution of attribute values can be highly skewed
 - Ex.: 85% of survey participants own a computer at home
 - Most records have Computer at home = Yes
 - Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home = Yes)
 - Potential solution:
 - discard the highly frequent items
 - Use alternative measures such as h-confidence
- Computational Complexity
 - Binarizing the data increases the number of items
 - But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
 - Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes

Handling Continuous Attributes

- Different methods:
 - Discretization-based
 - (Other methods; NOT Discussed)

- Different kinds of rules can be produced:
 - {Age∈[21,30), No of hours online∈[10,20)}→ {Chat Online =Yes}
 - {Age∈[15,30), Covid-Positive = Yes}→ Full_recovery

Discretization-based Methods

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	65K	8	2	No
Female	 26	85K	12	1	No

Male	Female	 Age	Age	$_{ m Age}$	 Privacy	Privacy
		 < 13	\in [13, 21)	$\in [21, 30)$	 = Yes	= No
0	1	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	1	 1	0
0	1	 0	0	0	 1	0
0	1	 0	0	0	 1	0
1	0	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	0	 0	1
0	1	 0	0	1	 0	1

Discretization-based Methods

Unsupervised:

- Equal-width binning
- <1 2 > <3 4 5 6 7 > < 8 9>

<1 2 3> <4 5 6> <7 8 9>

- Equal-depth binning
- Cluster-based

Supervised discretization

Continuous attribute, v

	1	2	3	4	5	6	7	8	9
Chat Online = Yes	0	0	20	10	20	0	0	0	0
Chat Online = No	150	100	0	0	0	100	100	150	100

bin₃

Discretization Issues

Pattern A: $Age \in [10, 15) \longrightarrow Chat Online = Never$ Pattern B: $Age \in [26, 41) \longrightarrow Chat Online = Never$ Pattern C: $Age \in [42, 48) \longrightarrow Online Banking = Yes$

Discretization Issues

- Interval too wide (e.g., Bin size= 30)
 - May merge several disparate patterns
 - Patterns A and B are merged together
 - May lose some of the interesting patterns
 - Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
 - Pattern A is broken up into two smaller patterns
 - Can recover the pattern by merging adjacent subpatterns
 - Pattern B is broken up into smaller patterns
 - Cannot recover the pattern by merging adjacent subpatterns
 - Some windows may not meet support threshold

Discretization: all possible intervals

Number of intervals = k Total number of Adjacent intervals = k(k-1)/2

Execution time

- If the range is partitioned into k intervals, there are O(k²) new items
- If an interval [a,b) is frequent, then all intervals that subsume [a,b) must also be frequent
 - ◆ E.g.: if {Age ∈[21,25), Chat Online=Yes} is frequent, then {Age ∈[10,50), Chat Online=Yes} is also frequent
- Improve efficiency:
 - Use maximum support to avoid intervals that are too wide

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - e.g., following rules are indicative of association between milk and bread
 - skim milk \rightarrow white bread,
 - -2% milk \rightarrow wheat bread,
 - skim milk \rightarrow wheat bread, etc.
 - Rules at higher level of hierarchy may be too generic
 - ◆ e.g., electronics → food

Concept Hierarchies

 How do support and confidence vary as we traverse the concept hierarchy?

```
- If \sigma(X1 \cup Y1) \ge \text{minsup},
and X is parent of X1, Y is parent of Y1
then \sigma(X \cup Y1) \ge \text{minsup}, \sigma(X1 \cup Y) \ge \text{minsup}
\sigma(X \cup Y) \ge \text{minsup}
```

- If $conf(X1 \Rightarrow Y1) \ge minconf$, then $conf(X1 \Rightarrow Y) \ge minconf$

Approach 1:

 Extend current association rule formulation by augmenting each transaction with higher level items

```
Original Transaction: {skim milk, wheat bread}
Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}
```

Issues:

- Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

Approach 2:

- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

Issues:

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns