Service Manual

Dolby NR-Equipped Stereo Cassette Deck RS-B106

Color

(K)...Black Type (S)...Silver Type

Color	Areas
(K) (S)	[E]All European
	areas except
	United Kingdom.
(K) (S)	[EK]United Kingdom.
(K) (S)	[EH]Holland.
(K) (S)	[EG]F.R. Germany.
(K) (S)	[XA]Asia, Latin
	America, Middle
	East and Africa.
(K) (S)	[XL]Australia.

RS-D550W MECHANISM SERIES

SPECIFICATIONS

Deck system Stereo cassette deck Track system 4-track, 2-channel Heads **REC/PLAY** Solid Permaloy head Erasing Double-gap ferrite head Motors Electronically controlled DC motor Recording system AC bias **Bias frequency** 80 kHz Erasing system AC erase Tape speed 4.8 cm/sec. Frequency response (w/o Dolby N.R.) **METAL** 20 Hz~16 kHz

 $\begin{array}{c} 30~\text{Hz}^{-15}~\text{KHz}~\text{(DIN)} \\ \text{CrO}_2 & 20~\text{Hz}^{-15}~\text{kHz} \\ 30~\text{Hz}^{-15}~\text{kHz}~\text{(DIN)} \\ \text{NORMAL} & 20~\text{Hz}^{-15}~\text{kHz} \\ & 30~\text{Hz}^{-15}~\text{kHz} \\ & 30~\text{Hz}^{-15}~\text{kHz}~\text{(DIN)} \\ \text{Wow and flutter} & 0.08\%~\text{(WRMS)} \\ & \pm 0.2\%~\text{(DIN)} \end{array}$

Fast Forward and Rewind Time

Approx. 95 seconds with C-60 cassette tape

S/N	(signal leve	I = max recor	ding level, CrO ₂ type tape)
DC	LBY NR in		66 dB
DC	LBY NR out		57 dB
Input s	ensitivity and ir	npedance	
MI	С		$0.25~\text{mV}/400~\Omega{\sim}10~\text{k}\Omega$
LIN	NE		60 mV/47 kΩ
Output	voltage and im	pedance	
LIN	٧E		400 mV/1.5 kΩ
HE	ADPHONES		80 mV/8 Ω
Power	consumption		15W
Power	supply		
Fo	r Australia		AC 50 Hz/60 Hz, 240V
Fo	r continental Eu	ırope	AC 50 Hz/60 Hz, 220V
Fo	r others	AC 50 Hz/60	Hz, 110V/127V/220V/240V
Dimens	sions (W $ imes$ H $ imes$ D))	$430 imes 115 imes 221.5 \ \text{mm}$
Weight			3.4 kg

Note

Specifications are subject to change without notice. Weight and dimensions are approximate.

* Dolby noise reduction manufactured under license from Dolby Laboratories Licensing Corporation.

"Dolby" and the double-D symbol are trade marks of Dolby Laboratories Licensing Corporation.

Technics

■ CONTENTS

	Page
Location of Controls	2
Operation	3
Disassembly Instructions	4
Measurement and Adjustment Methodes	5, 6
Wiring Connection Diagram	7, 8
Resistors and Capacitors	9
Printed Circuit Board	

	Page
Block Diagram	13, 14
• Electrical Parts List	14
Schematic Diagram	15~18
Replacement Parts List	19
Cabinet Parts Location	19, 20
Mechanical Parts Location	21, 22

■ LOCATION OF CONTROL

■ OPERATION

Recording

To erase recorded sounds

- 1. Set the Dolby noise-reduction switch to the "out"
- 2. Set the input level control to the minimum (0) position.
- 3. Prepare in the same way as for recording, and then let the tape run.

Note that any sounds on the tape will be automatically erased if a new recording is made on that part of the tape.

Adjustment of the recording level

The numbers which you should use as a guide for the adjustment of the tape level will differ depending upon the type of tape.

Normal tape CrO₂ tape	Metal tape
DD (+3 dB)	+5 dB

Timer Recording/Playback

If an audio timer (option) is connected to this unit, recording of a radio broadcast, or tape playback, will automatically begin at the preset time. Connect the AC power cord of this unit to the power source outlet of the timer. (See the operating instructions of the timer for detailed information.)

Timer recording

- 1. Prepare for recording.
- (Follow steps 1 through 10 of "Recording". After adjusting the recording level, press the stop button and the pause button.)
- 2. Set the timer to the desired recording-start time.
- 3. Press the record button.
- (At the set time, the power will switch ON and the broadcast will be recorded.)

After setting the timer

Make sure that the power switch is set to the "on" position.

Timer playback

- 1. Rewind the tape to the position from which you want playback to begin.
- 2. Set the timer to the desired playback-start time.
- 3. Press the playback button. (At the set time, the power will be switched ON and the playback will begin.)

After setting the timer

Make sure that the power switch is set to the "on" position.

■ DISASSEMBLY INSTRUCTIONS

Ref. No.	How to remove the case cover	Ref. No.	How to remove the mechanism unit
Procedure 1	• Remove the 4 screws (●~④).	Procedure 1 → 2	1. Push the eject button (see fig. 1). 2. Remove the 6 screws (1~6).
36	Up Case Cover		3. Remove the counter belt (for mechanism).
Eject E	\checkmark	Counter Belt	Mechanism Unit
Dof No.	Fig. 1	Ref. No.	Fig. 2 How to remove the tape
Ref. No.	How to remove the LED meter P.C.B.	4	selector P.C.B.
Procedure 1 → 3	 Remove the 2 screws (①, ②). Receive the 2 tabs aside. 	Procedure 1 → 4	1. Remove the 2 screws (1, 2). 2. Pull out the volume knob.
	Tab Fig. 3		Tape Selector P.C.B. Fig. 4
Ref. No. 5	How to remove the front panel	Ref. No. 6	How to remove the main P.C.B.
Procedure $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$	• Remove the 4 screws (●~•).	Procedure 1 → 6	
	Front Panel Fig. 5		Serial Number Plate Main P.C.B. Open

* Serial No. Indication

• The serial number plate of the product is attached to the back chassis (shown in fig. 6).

■ MEASUREMENT AND ADJUSTMENT METHODES

Measurement Condition

- Input level controls: Maximum
- Balance controls: Center
- Tape select switch; Normal
- Dolby NR switch; Out

Measuring instrument

- EVM (Electronic Voltmeter)
- Oscilloscope
- Digital frequency counter
- AF oscillator

Test tape

- Head azimuth adjustment (8kHz, −20dB); QZZCFM
- Tape speed adjustment (3kHz, −10dB); QZZCWAT
- Playback frequency responce (315 Hz, 12.5 kHz, 10kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz, 63Hz, -20dB); QZZCFM

- · Make sure heads are clean
- Make sure capstan and pressure roller are clean.
- Judgeable room temperature 20±5°C (68±9°F)
- ATT (Attenuator)
- DC voltmeter
- Resistor (600Ω)
- Playback gain adjustment (315 Hz, 0dB); QZZCFM
- Overall frequency response, Overall gain adjustment Normal reference blank tape; QZZCRA
- CrO₂ reference blank tape; QZZCRX
- · Metal reference blank tape; QZZCRZ

Head azimuth adjustment

- 1. Test equipment connection is shown in Record/Playback Head Fig. 1.
- 2. Playback the azimuth adjusted part (8kHz, -20dB) of the test tape (QZZCFM) and regulate the angle adjusting screw so that the outputs of L-CH and R-CH are maximized. (When the adjusting positions are different with L-CH and R-CH, find a position where the

Fig. 2

outputs of L-CH and R-CH are balanced, and then make the adjustment.) 3. At the same time, draw a lissajous waveform and eliminate phase deflection.

Tape speed adjustment

- 1. Test equipment connection is shown in Fig. 3.
- 2. Playback the middle part of the test tape (QZZCWAT).
- 3. Adjust the VR in the motor so that the output is within the standard.

Fig. 1

Standard value: $3000 \pm 10 \, \text{Hz}$

Playback frequency response

- 1. Test equipment connection is shown in Fig. 4.
- 2. Playback the playback frequency response part (315Hz, 12.5 kHz \sim 63Hz, -20dB) of the test tape (QZZCFM).
- 3. Check that the frequency is within the range shown in Fig. 5 for both L-CH and R-CH.

— 5 **—**

Playback gain adjustment

- 1. Test equipment connection is shown in Fig. 4.
- 2. Playback the playback gain adjusted part (315Hz, 0dB) of the test tape (QZZCFM).
- 3. Adjust VR1, (L-CH) {VR2 (R-CH)} so that the output is within the standard.

Standard value: 0.4 ± 0.5 dB (0.02 V)

Overall frequency response

- 1. Test equipment connection is shown in Fig. 6.
- 2. Set the tape selector switch to the normal position.
- 3. Set a normal blank tape (QZZCRA) and record by applying signal (50 Hz, 100 Hz, 200 Hz, 500 Hz, 1kHz, 4kHz, 8kHz and 10kHz), 20dB attenuated from the reference input level signal (1 kHz, -24 dB).

Fig. 6

- 5. If it is not within the standard range, adjust the bias current by VR101 (L-CH) {VR102 (R-CH)} so that the frequency level is within the standard.
- Level up in high frequency range......Increase the bias current.
 Level down in high frequency range...... Decrease the bias current.
- 6. After that increase the signal recorded on CrO₂ blank tape (QZZCRX) and metal blank tape (QZZCRZ) up to 12.5kHz and adjust in the same way as mentioned above and check that the frequency level is within the range shown in Fig. 8.

Fig. 7

Overall gain adjustment

- 1. Test equipment connection is shown in Fig. 6.
- 2. Set the tape selector switch to the normal position.
- 3. Set a normal blank tape (QZZCRA) and apply the reference input level signal (1 kHz, -24 dB) in record pause
- 4. Adjust the output 0.42V by attenuator and then record.
- 5. Playback the signal recorded in step 3, and check that the output is within the standard.
- 6. If it is not within the standard, adjust VR3 (L-CH) {VR4 (R-CH)} and repeat the step (2), (3) and (4) until the output is within the standard.

Standard value: $0.4 V \pm 0.05 V$

Dolby NR circuit

- 1. Test equipment connection is shown in Fig. 9.
- 2. Set a normal tape and apply 5kHz signal in record pause
- 3. Adjust by attenuator so that the output between terminal (6) (L-CH) {terminal (9) (R-CH)} of IC403 and ground is 12.3 mV.
- 4. Turn NR switch ON, and check that the level changes as specified from the level in NR out mode.

Fig. 9

Standard value: $8 \pm 1.5 dB$

■ WIRING CONNECTION DIAGRAM

■ RESISTORS AND CAPACITORS

Notes: 1. Part numbers are indicated on most mechanical parts.
Please use this part number for parts order.

Important safety notice.
 Components identified by mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

- 3. The unit of resistance is OHM (Ω). K=1000 Ω , M=1000k Ω
- The unit of capacitance is MICROFARAD (μF). P=10⁶μF.

Numbering System of Resistor

Resistor Type		V	Vattage	Tolerance		
ERD :	Carbon	10	: 1/8W	J	: ±5%	
ERG :	Metal Oxide	25	: 1/4W	G	: ±2%	
ERC :	Solid	2F	: 1/4W	ĸ	: ±10%	
		S2	: 1/4W			
		S1	: 1/2W			
		12	: 1/2W			

Numbering System of Capacitor

Conneitor Tune	Volt	tage	Tolerance	
Capacitor Type	ECEA Type	Other		
ECEAN : Non-polar Electrolytic ECEA : Electrolytic ECCD : Ceramic ECKD : Ceramic ECQM : Polyester ECQV : Polyester ECQP : Polyester ECKF : Ceramic	2R3 : 2.3V DC OJ : 6.3V 1C : 16V 1E : 25V 1V : 35V 1H : 50V 50 : 50V 25 : 25V 2A : 100V	05 : 50 V DC 1 H : 50 V DC 1 : 125 V DC 2 H : 500 V DC KC : 400 V AC	C : $\pm 0.25 pF$ J : $\pm 5\%$ K : $\pm 10\%$ Z : $+80\%, -20\%$ M : $\pm 20\%$	

• RESISTORS

Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value
R1, 2	ERDS2TJ101	100	R80	ERDS2TJ222	2.2 k	R307	ERDS2TJ561	560
R3, 4	ERDS2TJ155	1.5 M	R81, 82	ERDS2TJ222	2.2 k	R308	ERDS2TJ221	220
R5, 6	ERDS2TJ104	100 k	R83, 84	ERDS2TJ472		R309	ERD2FCG820	82
R7, 8	ERDS2TJ101	100	R85, 86	ERDS2TJ223		R311	ERDS2TJ473	47 k
R9, 10	ERDS2TJ820	82	R87, 88	ERDS2TJ393		R313	ERDS2TJ391	390
R11, 12	ERDS2TJ562	5.6 k	R89, 90	ERDS2TJ682	6.8 k	R401	ERDS2TJ242	2.4 k
R13, 14	ERDS2TJ274	270 k	R91, 92	ERDS2TJ272	2.7k	1		
R15, 16	ERDS2TJ472	4.7 k	R95, 96	ERDS2TJ221	220	R451, 452	ERDS2TJ184	180 k
R17	ERDS2TJ103	10 k				R453, 454	ERDS2TJ274	270 k
R18	ERD25FJ103	10 k	R97, 98	ERDS2TJ223	22 k	R455, 456	ERDS2TJ473	47 k
			R99, 100	ERDS2TJ331	330	R457, 458	ERDS2TJ472	4.7 k
R19, 20	ERDS2TJ104	100 k	R101	ERDS2TJ473	47 k	R461, 462	ERDS2TJ473	47 k
R22	ERDS2TJ473	47 k	R105, 106	ERDS2TJ103	10 k	R463, 464	ERDS2TJ332	3.3 k
R23	ERD25TJ333	33 k	R113, 114	ERDS2TJ102	1 k	R468	ERD25FJ242	2.4 k
R24	ERDS2TJ103	10 k	R115, 116	ERDS2TJ473	47 k	R470	ERDS2TJ103	10k
R26	ERD25FJ220	22	R119, 120	ERDS2TJ184	180 k	R471	ERDS2TJ102	1k
R27, 28	ERD25FJ101	100	R121, 122	ERD25FJ102	1k	R472	ERD25TJ105	1 M
R29, 30	ERDS2TJ101	100	R123, 124	ERDS2TJ151	150			
R31, 32	ERDS2TJ273	27 k	R125, 126	ERDS2TJ560	56	R601, 602	ERDS2TJ681	680
R33	ERDS2TJ222	2.2 k				R701	ERDS2TJ102	1k
R35	ERDS2TJ103	10 k	R128	ERDS2TJ102	1k	R703	ERDS2TJ472	4.7 k
			R129, 130	ERDS2TJ103	10 k	R705	ERDS2TJ683	68 k
R37, 38	ERDS2TJ155	1.5 M	R131	ERDS2TJ103	10 k	R706	ERD25TJ333	33 k
R39, 40	ERDS2TJ683	68 k	R201	ERG1SJ470	47	R707, 708	ERDS2TJ472	4.7 k
R43, 44	ERDS2TJ473			ERG12SJ680	68	R711	ERDS2TJ102	1 k
R45, 46	ERDS2TJ273	27 k	R217	ERDS2TJ272	2.7 k	R721, 722	ERDS2TJ912	9.1 k
R47, 48	ERDS2TJ102	1k	R218	ERDS2TJ103	10 k	R723, 724	ERDS2TJ103	10 k
R49, 50	ERDS2TJ122	1.2 k	R220	ERDS2TJ272	2.7 k	R725	ERDS2TJ102	1 k
R51, 52	ERDS2TJ154	150 k	R221	ERDS2TJ333	33 k			
R53, 54	ERD25FJ222	2.2 k	R222	ERDS2TJ153	15k	R729	ERDS2TJ103	10 k
R63, 64	ERDS2TJ561	560				R731, 732	ERDS2TJ273	27 k
R65, 66	ERDS2TJ103	10k	R223	ERDS2TJ101	100	R733, 734	ERDS2TJ222	2.2 k
			R301	ERD25FJ1R0	1	R735, 736	ERDS2TJ102	1 k
R68	ERDS2TJ562	5.6 k	R303, 304	ERDS2TJ223	22 k	R751	ERDS2TJ560	56
R79	ERD25FJ222	2.2k	R305, 306	ERDS2TJ100	10			
			l					

• CAPACITORS

Ref. No.	Part No.	Value	Ref. No.	Part No.	Value	Ref. No.	Part No.	Value
C1, 2	ECKD1H122KB	0.0012		ECQB1H562KZ	0.0056	C455, 456	ECQV1H473JZ	0.047
C3, 4	RCBS1H681KBY		C69, 70	ECQB1H472KZ	0.0047	C457, 458	ECQB1H333JZ	0.033
C5, 6	RCBS1H101KBY	100 p	C71, 72	ECQB1H392KZ	0.0039	C459, 460	RCBS1H221KBY	220 p
C7, 8	ECEA0JU101	100	C73, 74	ECEA1HU010	1	C461, 462	ECQB1H472JZ	0.0047
C9, 10	RCBS1H681KBY	680 p	C75, 76	RCBS1H561KBY	560 p	C463, 464	ECEA1EU4R7	4.7
C11, 12	ECQB1H123JZ	0.012	C77, 78	RCBS1H121KBY	120 p	C466	ECEA1CU100	10
C13, 14	ECEA1CU100	10	C83, 84	ECCD1H220J	22 p	C601, 602	ECBT1E223ZF	0.022
C18	ECEA1HU010	1	C101, 102	ECCD1H101J	100 p	C603, 604	ECEA1CU221	220
C31, 32	ECEA1CU100	10	C103	ECEA1CU100	10	C605, 606	ECEA1CU222	2200
C33, 34	RCBS1H101KBY	100 p	C104	ECEA1CU331	330	C701	ECEA1CU470	47
C35. 36	ECCD1H220J	22 P	C301	ECQP1153JZ	0.015	C702	ECKD1H122KB	0.0012
C37, 38	ECEA1HU010	1	C302	ECEA1EU4R7	4.7	C703	ECEA1HU2R2	2.2
C39, 40	ECBT1E223ZF	0.022	C303, 304	ECQB1H562KZ	0.0056	C705	ECEA1HU2R2	2.2
C41, 42	ECEA1HUR22	0.22	C305, 306	ECQB1H472KZ	0.0047	C706	RCBS1H221KBY	220 g
C43, 44	RCBS1H221KBY	220 p	C308	ECEA1CN100	10	C721, 722	ECQV1H563JZ	0.056
C47, 48	ECEA1CU221		C309	ECEA1AU220	22	C727, 728	ECEA1CU330	3
C53, 54	ECEA1CU100	10	C310	ECEA1HU010	1	C731	ECBT1E223ZF	0.02
C61, 62	ECEA1HU2R2	2.2	C450	ECEA1HU010	1	C732	ECEA1CU220	2
C63, 64	ECQB1H222KZ		C451, 452	ECQV1H104JZ	0.1			_
C65, 66	ECQB1H682KZ	0.0068	C453, 454	ECQV1H334JZ	0.33			

■ PRINTED CIRCUIT BOARDS

III POWER SUPPLY P.C.B.

IV COUNTER P.C.B.

6 8 **■ TERMINAL GUIDE** OF TRANSISTORS, I MAIN P.C.B. **III** MECHANISM P.C.B. **DIODES AND IC'S** NE657N LM6417E589 22 Pin BA6146 DN6838-A 2SA1115E UN4113 2SD1265-O V PEAK LEVEL METER P.C.B. 2SJ40D, 2SK381D 2SC2603EFG PEAK LEVEL METER 2SC3311 2SD1450R SLV31VC3 VI TAPE SELECTOR P.C.B. Ca 0 A (TYPE II/CrO2) TAPE SELECTOR (S1-5) PHONES INPUT SELECTOR (TYPE I/Normal) -

---- 12 ----

— 11 —

■ BLOCK DIAGRAM

■ ELECTRICAL PARTS LIST

Notes: 1. Part numbers are indicated on most mechanical parts.
Please use this part number for parts order.

2. Important safety notice:

Components identified by \triangle mark have special characteristics important for safety.

When replacing any of these components, use only manufacturer's specified parts.

 Bracketed indications in Ref. No. columns specify the area. Parts without these indications can be used for all areas.

Ref. No.	Part No.	Description	Ref. No.		Part No.	Description
INTEGRATED CIRCUITS			COILS			
IC1	M5220L	Integrated Circuit	L101, 102 L401, 402		SLQX303 – 1K QLM9Z10K	Peaking Coil MPX Coil
IC2, 3, 4	M5218L	Integrated Circuit				
IC403	NE657N	Integrated . Circuit	COMBINATIO)N I		
IC701	LM6417E589	Integrated Circuit	Z701		EXBF9E822J8R	Combination Part
IC703, 704	BA6146	Integrated Circuit	Z702		EXBF8E561J4R	Combination Part
IC707	DN6838 – A	Integrated Circuit	FL METER			
TRANSISTORS			FL1		SADBG368Z	FL Meter
Q1, 2	2SJ40D	FET	TRANSFORM	ER	S	
Q3, 4 Q5, 6 Q7 Q9, 10	2SA1115E 2SC2603EFG UN4113 2SK381D	Transistor Transistor Transistor FET	T301		QLB0202K	Bias Oscillation Coil
Q21, 22 Q23~28	2SB894R 2SC2603EFG	Transistor Transistor	T600 [XA]	Δ	SLT5L269W	Power Transformer
Q29, 30 Q57	2SD1450R 2SC2603EFG	Transistor Transistor	T600 [EK, XL]	Δ	SLT5L267W	Power Transformer
Q58	2SA1115E	Transistor	T600 [other]	Δ	SLT5L268W	Power Transformer
Q301, 302 Q401	2SC3311 - Q 2SJ40D	Transistor Transistor	FUSES			
Q601 Q602	2SD1265 – 0 2SB744Q	Transistor Transistor		_	XBA2C05TB0	250 V, T500 mA
Q701 ~ 704, 705, 706	2SC2603EFG	Transistor	F1 [EK] F1 [other]		XBAQ0003	250 V, T500 mA
DIODES & RECT	IFIERS		SWITCHES			
D1~5, 7, 8, 61, 62	1SS133	Diode	S1		SSH3701	Push Switch (linc/Mic)
D63 D301 D452	MTZ8R2B 1S2473 1S2473	Zener Diode	S101~104		SSP83	Tutch Switch (Rew/Rec/
D453 D601	1SS133 MTZ20BT77 1SR35200	Diode Diode Zener Rectifier Zener Diode LED	S301		SSH2109	Mute/Motor) Push Switch (Metal/CrO₂/
D701 D702, 703 D705	MTZ5R6BT77 1SS133 SVGLB203DN1		S601 S602 [XA] only		SSH1069 SSR187 – 1	Normal) Power Switch Voltage
D710	SLV31VC3	LED	S701		SSG13	Selector Touch Switch (Counter Reset)
VARIABLE RESIS	STORS		JACKS			
VR1, 2	QVNB3A00B223	P.B. Gain Adj.			QJA0454ZC	Min look
VR3, 4	QVNB3A00B473	VR Overall Gain Adj. VR	J1 J2		QJA0454ZC QJA0455ZC	Mic Jack Headphones Jack
VR5 VR7, 8	EWHFDAF15G25 EWC5SA000A54	Balance Control Input Level				
VR101, 102	QVNB3A00B104	Control Bias Current Adj. VR			•	

■ SCHEMATIC DIAGRAM

Notes:

(This schematic diagram may be modified at any time with the development of new technolgy.)

* This is the basic circuit diagram of this unit.

Note that part of the circuit is subject to change depending on the

• \$1.1.1~\$1.1.4:

Input selector switch in "line" position.

• S1-5 Noise reduction switch in "OUT" position.

• S101 : REW switch in "OFF" position.

: REC switch in "OFF" position. • S102

: MUTE switch in "OFF" position. • S103

Motor switch in "OFF" position. • S104

Tape selector switch in "TYPE I /Normal" position. • S301 (TYPE IV/Metal ↔ TYPE III/CrO₂ ↔ TYPE I /Normal)

• S601 Power switch in "ON" position.

: Voltage selector in "240V" position. • S602

([XA] only)

Counter reset switch. • S701

ullet Resistance are in ohms (Ω), 1/4 watt unless specified otherwise. 1 K = 1,000(Ω), 1 M = 1,000 k(Ω)

• Capacity are in micro-farads (µF) unless specified otherwise.

· All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise specified. ..Voltage values at record mode. ..Voltage values at CrO₂ tape mode.

.Voltage values at Metal tape mode.

.Voltage values at Dolby B NR mode. For measurement use EVM.

-) indicates B (bias).

() indicates the flow of the playback signal.
 () indicates the flow of the record signal.

• Important safety notice:

Components identified by $\underline{\Lambda}$ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

* Caution!

CrO₂.

Metal

IC and LSI are sensitive to static electricity.

Secondary trouble can be prevented by taking care during

- * Cover the parts boxes made of plastics with aluminum foil.
- * Ground the soldering iron.
- * Put a conductive mat on the work table.
- * Do not touch the legs of IC or LSI with the fingers directly.

■ EQUIVALENT CIRCUIT

IC703, 704: BA6146

SPECIFICATIONS * Input level control ... MAX

Playback S/N ratio * Test tapeQZZCFM	Greater than 45dB
Overall distortion * Test tapeQZZCRA for NormalQZZCRX for CrO ₂ QZZCRZ for Metal	Normal Less than 3.5% CrO2, Metal Less than 4%
Overall S/N ratio * Test tapeQZZCRA	Greater than 43dB (without NAB filter)

• REPLACEMENT PARTS LIST

Notes: • Part numbers are indicated on most mechanical parts. Please use this part number for parts order.

• Important safety notice:

Components identified by A mark have special characteristics important for safety.

When replacing any of these components, use only manufacturer's specified parts.

- Bracketed indications in Ref. No. columns specify the area. Parts without these indications can be used for all areas.
- (k)-marked parts are used for black only, while ()-marked parts are for silver type only.
- Part other then (c)- and (c)-marked are use for both black and silver type.
- The parenthesized numbers in the column of description stand for the quantity per set.

Ref. No.		Part No. Description				Ref. N	No.	. Part N		Description		
CABINET and CHASSIS PAR			PARTS			31		643 – V		Connector	(1	
							32	QJP19		2 Pin I		(1
1 [XL]	Δ	SJS92	37	AC Inlet		(1)	32	QJP19		3 Pin I		(1
1 [othe	er] ∆	SJS92	36	AC Inlet		(1)	33	QJS19			Socket	(1
							33	QJS19			Socket	(1
2	0	SKC19	20S98	Case Co	over	(1)	34	QTF10		Fuse I	Holder	(4)
2	K	SKC19	20K99	Case Co	over	(1)	35 0	SBC79		Buttor		(1)
							35 K	SBC79	98	Buttor	1	(1)
3		SJF30	57N	Termina	ıl Plate	(1)						
4		SMPM	11	LED Ho	lder	(1)	SCREWS	, NUTS	& WASH	HERS		
5		SMN20	000	Volume	Angle	(1)						
3		QMA4	779	MIC Ang	gel	(1)	N1	QNQ1	070	Nut		(3)
7		SNE55		Earth Pl		(1)	N2	XNS8		Nut		(2)
3		SXDM	24	Counter	Pulley Ass'y	(1)	N3	XTV3 -	-6BFN	Tappir	ng Screw	(3)
9		SUS79		Holder S		(1)				⊕3×6		
0		SGXSD	225W – KM		e Holder	(1)	N4	XSS3 -	⊦ 6S	Screw	⊕3×6	(2)
					Ass'y_		N5	XTV3 -	+ 10BFN	Tappir	ng Screw	(1)
[10-1		(QBP	2006A	Tape Pressure		(2)				⊕3×10		
				Spring			N6	XTB26	+ 8J	Tappir	ng Screw	(3)
1		SGXSD250 - SE		Damper Gear Ass'y		(1)				⊕2.6×		
							N7	XTBS3	+ 8JFZ1	Tappir	ng Screw	(1)
2	0	SGYSE	3106 – SE	Front Pa	anel Ass'y	(1)				⊕3×8		. ,
2	K	SGYSE	3106 – KE	Front Pa	anel Ass'y	(1)	N8	XTV3+	- 12G		ig Screw	(5)
	-						1			⊕3×1		,
3		SMN20	01 – 1	Button A	Angle	(1)	N9	XTV3+	- 8JR		g Screw	(8)
							1			⊕3×8		, -,
4	0	SBC80	1A – 1	Rec But	ton	(1)	N10	XTB3 -	- 8BFN	~	g Screw	(4)
4	(K)	SBC80	1A	Rec But	ton	(1)				⊕3×8		(- /
												
5	0	SBC80	2A – 1	Play But	tton	(1)	N11	XTN3 -	- 10B	Tappin	g Screw	(2)
5	(K)	SBC80	2A	Play But	tton	(1)				⊕3×1		(-)
				•		. ,	N12	XTB3+	6FR		a Screw	(2)
6	0	SBC80	3A – 1	Rew But	tton	(1)				⊕3×6		(-)
6	(K)	SBC80	3A	Rew But		(1)	N13	XTB3 4	12BFZ		g Screw	(1)
	_					` ′				⊕3×1		(•)
7	0	SBC80	4A – 1	ff Buttor	า	(1)	N14	XWG3		Washe		(2)
7	(K)	SBC80		ff Buttor		(1)	N15	QBW2	ากล	Washe		(1)
						, ,		45	300	** aone	•	(• /
8	0	SBC80	5A – 1	Stop Bu	tton	(1)	N16 0	SNE21	25	Ornam	ent Screw	(4)
8	ĸ	SBC80		Stop Bu		(1)	N16 (K)	SNE21			ent Screw	(4)
-				otop Bu		(- /	""	OITLE	25-1	Omam	ent Sciew	(4)
9	0	SBC80	6A – 1	Pause B	utton	(1)	N17	YTR3	10BFZ	Tannin	g Screw	(1)
9	ĸ	SBC80		Pause B		(1)	1111	A1034	10612	⊕3×1		(1)
•		00000	57.	, adoc 5	atton	١٠,	N18	SHWM	24470	Washe		(1)
0		SUB25	5	Power R	od	(1)	' ' ' '	0111111	241110	vva5iic	•	(1)
						. ,	1005000	20150				
21 0		SBC666		Power Button		(1)	ACCESSO	DRIES				
1	(K)	SBC66		Power B		(1)						
						(-)	A1 [EK]	SQFM		Instruc	tion Book	(1)
2	0	SBC72	3 – 4	Push Bu	tton	(2)	A1 [EG]	SQFM:		Instruc	tion Book	(1)
2	ĸ	SBC72		Push Bu		(2)	A1 [other]	SQFM	53	Instruc	tion Book	(1)
	•	- · - ·	-			,_,						
3	0	SBC79	9 – 1	Select B	utton	(3)		SJA16			wer Cord	(1)
3	ĸ	SBC799		Select B		(3)	A2 [XL] ▲	SJA17			wer Cord	(1)
-	···	550,50	-	30.00t D		(3)	A2 [EK] ▲	SFDAC			wer Cord	(1)
4	0	SBN12	04 – 1	Input Vo	lume Knob	(1)	A2 <u>∧</u>	SJA17	I	AC Po	wer Cord	(1)
4	ĸ	SBN12			lume Knob	(1)	[other]					
	••	3511121	٠.	put ¥0	.c/iic Miob	117	-					
5	0	SBN12)5 1	Balance	Volume	(1)	A3	SJP226	64	Pin Co	rd	(1)
•		001112	JJ — 1	Knob	Volume	(' '	A4 [XA] ∆	SJP921	15	Plug		(1)
5	(P)	SBN12	25	Balance	Volumo	(1)	only					. ,
J	K	301112	55	Knob	Volume	('')						
				KIIOO			DAOKINO	_				
6		QDB01	13 2	Counter	Polt	(1)	PACKING	5				
7					Deit				_		_	
•		SHRM	,	Sheet		(1)	P1 [EK] O	SPGM8		Carton		(1)
8	0	SYKM3	^	Coocett	Lid Aca'r	(1)	P1 [EK] (K)	SPGM8		Carton		(1)
					Lid Ass'y	(1)	P1 [XA]	SPGM		Carton		(1)
В	(K)	SYKM3	1	Cassette	Lid Ass'y	(1)	P1 0	SPGM	31	Carton	Box	(1)
ס נודי		01/110-					[other]					
9 [E]				Main Ca		(1)	P1 (K)	SPGM8	30	Carton	Box	(1)
9 [EK]				Main Ca		(1)	[other]					. ,
9 [XA]				Main Ca		(1)						
9 [XL]				Main Ca		(1)	P2	SPSM1	3	Cushio	n (L)	(1)
9 [othe	er]	SKMSE		Main Cas		(1)	P3	SPSM1		Cushio		(1)
	-				•		P4	SPSM1		Pad	(11)	(1)
29-1		[SKL2	93	Case Fo	ot	(4)	P5	XZB40			20	
)		QJT105		Contact		(5)	P6			Poly Ba		(1)
1		SJT305		5 Pin Co	nnector	(1)	. 0	XZB18	13003	Poly Ba		(1)
			- •	50						(Acces	SULIES)	

— 19 —

Ref. No.

Dolby NR-Equipped Stereo Cassette Deck

RS-B106

DEUTSCH

■ MESSUNGEN UND EINSTELL METHODEN

Meßinstrumente

- Elektronisches Voltmeter (EVM)
- Oszilloskop
- Digitaler Frequenzmesser
- Audiofrequenz-Oszillator

- Dämpfungswiderstand
- Gleichstrom-Voltmeter
- Wiederstand (600Ω)

Kopfazimut-Justierung

- Die Anschlußverbindungen für die Testgeräte sind in Abb. 1 gezeigt.
- Den Azimut-Justierungsteil (8kHz, -20dB) des Testbandes (QZZCFM) wiedergeben und die Winkeljustierungs-Einstellschraube so verstellen, daß der Ausgang vom linken und rechten Kanal maximal wird. (Wenn die Justierpositionen für den linken und

Azimuth Schrau Abb. 2

Abb. 1

rechten Kanal verschieden sind, ist eine Position zu finden, wo der Ausgang des linken und rechten Kanals ausgelichen ist, und dann ist die Justierung durchzuführen.)

- 3. Gleichzeitig eine Lissajous-Wellenform ziehen und Phasenablenkung eliminieren.
- 4. Nach erfolgter Justierung sind die Bandführungs-Höhen-und-Winkeljustierschrauben zu sichern.

Bandgeschwindigkeits-Justierung

- 1. Der Testaufbau ist in Abb. 3 gezeigt.
- 2. Den mittleren Teil des Testbandes (QZZCWAT) wiedergeben.
- 3. Den Drehwiderstand im Motor so justieren. daß die Ausgangsleistung dem Standard-Wert entspricht.

Standard-Wert: $3000 \pm 10 \, \text{Hz}$

Abb. 3

Wiedergabe-Frequenzgang

- 1. Der Testaufbau ist in Abb. 4 gezeigt.
- Den Wiedergabe-Frequenzgangteil (315 Hz, 12,5kHz~63 Hz, -20 dB) des Testbandes (QZZCFM) wiedergeben.
- Überprüfen, ob der Frequenzgang innerhalb des in Abb. 5 für den linken und rechten Kanal gezeigten Bereichs liegt.

Abb. 4

Abb. 5

Justierung des Wiedergabe-Verstärkungsgrades

- 1. Der Testaufbau ist in Abb. 4 gezeigt.
- 2. Den für den Wiedergabe-Verstärkungsgrad justierten Teil (315Hz, 0dB) des Testbandes (QZZCFM) wiedergeben.
- 3. Den Drehwiderstand 1, (linker Kanal) {Drehwiderstand 2 (rechter Kanal)} so justieren, daß die Ausgangsleistung dem Standard-Wert entspricht.

Standard-Wert: 0,4 V ± 0,5 dB (0,02 V)

Gesamtfrequenzgang

- 1. Der Testaufbau ist in Abb. 6 gezeigt.
- 2. Den Bandsorten-Wahlschalter in die "Normal"-Position einstellen
- 3. Eine Normalband-Leercassette (QZZCRA) einsetzen und aufnehmen, während ein Signal von nacheinander 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 4 kHz, 8 kHz und 10kHz bei 20dB, abgeschwächt vom Referenz-Eingangspegelsignal (1kHz, -24dB) eingegeben wird.

Abb. 6

- 4. Das in Schritt 2 aufgezeichnete Signal wiedergeben und prüfen, ob der Pegel ieder Ausgangsfreguenz im Bereich liegt, der in Abb. 7 im Vergleich zur Referenzfrequenz (1kHz) gezeigt wird.
- 5. Falls er nicht im Standard-Bereich liegt, ist der Vormagnetisierungs-strom mit Drehwiderstand 101 (linker Kanal) (Drehwiderstand 102 (rechter Kanal)) so zu justieren, daß der Frequenzpegel innerhalb des Standards zu liegen kommt.
 - Erhöhter Pegel im Frequenzbereich........... Den Vormagnetisierungsstrom erhöhen.
 - Reduzierter Pegel im Frequenzbereich...... Den Vormagnetisierungsstrom senken.
- 6. Anschließend das auf der CrO₂-Leerband-Cassette (QZZCRX) und der Reineisenband-Leercassette (QZZCRZ) aufgezeichnete Signal auf 12,5kHz erhöhen und auf gleiche Weise justieren, wie vorgehend beschrieben. Dann überprüfen, ob der Frequenzpegel innerhalb des in Abb. 8 gezeigten Bereichs liegt.

Abb. 7

Abb. 8

Justierung des Gesamtverstärkungsgrades

- 1. Der Testaufbau ist in Abb. 6 gezeigt.
- Den Bandsorten-Wahlschalter in die "Normal"-Position einstellen.
 Eine Normalband-Leercassette (QZZCRA) einsetzen und im Aufnahmepause-Zustand des Gerätes das Referenzsignal (1kHz, -24dB) eingeben.
- 4. Die Ausgangsleistung mit dem Dämpfungswiderstand auf 0,42V justieren und dann aufnehmen.
- 5. Das in Schritt 3 aufgezeichnete Signal wiedergeben und überprüfen, ob die Ausgangsleistung dem Standard-Wert entspricht.
- 6. Falls sie nicht dem Standard-Wert entspricht, ist der Drehwiderstand 3 (linker Kanal) (Drehwiderstand 4 (rechter Kanal)} zu justieren, und dann sind die Schritte (2), (3) und (4) zu wiederholen, bis die Ausgangsleistung dem Standard-Wert entspricht.

Standard-Wert; 0,4 V ± 0,05 V

Dolby-Rauschunterdrückungs-Schaltkreis

- 1. Der Testaufbau ist in Abb. 9 gezeigt.
- 2. Eine Normalband-Cassette einsetzen und im Aufnahmepause-Zustand des Gerätes ein 5kHz-Signal eingeben.
- 3. Mit dem Dämpfurgswiderstand so justieren, daß die Ausgangsleistung zwischen Anschluß 6 (linker Kanal) {Anschluß (9) (rechter Kanal)} des IC403 und Masse 12.3 mV beträgt.
- 4. Den Rauschunterdrückungs-Schalter (NR) einschalten und prüfen, ob der Pegel wie vorgeschrieben gegenüber dem Pegel im rauschunterdrückungsfreien Zustand verändert wird.

Abb. 9

Standard-Wert: 8 ± 1.5 dB

FRANÇAIS

■ METHODES DES MEASURES ET REGLAGES

Appareils de mesurage

- Voltmètre électronique
- Oscilloscope
- Compteur de fréquence numérique
- Oscillateur de fréquence audio

- A.T.T. (Atténuateur)
- Voltmètre à C.C.
- Résistance (600Ω)

Réglage de l'angle des têtes de lecture

- 1. Le raccordement de l'équipement d'essai est montré à la Fig. 1.
- 2. Faire jouer la partie réglée azimutale (8kHz. -20dB) de la bande d'essai (QZZCFM) et. régler la vis de mise au point azimutale de telle sorte que les puissances de sortie du canal de gauche et du canal de droite soient au maximum.

Fig. 1

Fig. 2

Tête en Enregistremen

(Si les positions de réglage du canal de gauche et du canal de droite sont différentes, trouver une position où les puissances de sortie des canaux de gauche et de droite soient équilibrées, puis effectuer la mise au point.)

- 3. En même temps, établir une forme d'onde de Lissajous et éliminer la déviation de phase.
- 4. Après le réglage, bloquer les vis du réglage angulaire et de la hauteur des guides de bande.

Réglage de la vitesse de défilement de la bande

- 1. Le raccordement de l'equipement d'essai est montré à la Fig. 3.
- 2. Faire jouer la partie centrale de la bande d'essai (QZZCWAT).
- 3. Régler VR dans le moteur de telle sorte que la puissance de sortie soit en decà de la normale.

Fig. 3

Valeur normalisée: 3000 ± 10 Hz

Réponse en fréquence de la lecture

- 1. Le raccordement de l'équipment d'essai est montré à la
- 2. Faire jouer la partie de la réponse en fréquence de la lecture (315Hz. 12.5kHz~63Hz. -20dB) de la bande d'essai
- 3. Vérifier que la fréquence soit en deçà de la plage montrée à la Fig. 5, à la fois pour le canal de gauche et le canal de droite. Sortie de ligne

Fig. 5

Fig. 4

Réglage d'amplification de la lecture

- 1. Le raccordement de l'équipement d'essai est montré à la Fig. 4.
- 2. Faire jouer la partie réglée d'amplification de la lecture (315Hz, 0dB) de la bande d'essai (QZZCFM).
- 3. Régler VR 1 (canal de gauche) [VR 2 (canal de droite)] de telle sorte que la puissance de sortie soit en deçà de la normale.

Valeur normalisée: 0.4 ± 0.5 dB (0.02 V)

Réponse en fréquence globale

- 1. Le raccordement de l'équipement d'essai est montré à la Fig. 6.
- 2. Régler le commutateur sélecteur de bande sur la position normale.
- 3. Installer une bande vierge normale (QZZCRA) et enregistrer en appliquant un signal (50Hz, 100Hz, 200 Hz, 500 Hz, 1 kHz, 4 kHz, 8 kHz et 10 kHz) de 20 dB atténués provenant du signal du niveau d'entrée, de référence (1 kHz, -24 dB).

Fig. 6.

- 4. Faire jouer le signal enregistré à l'étape 2 et vérifier que le niveau de chaque fréquence de sortie soit en deçà de la plage montrée la Fig. 7 en comparaison avec la fréquence de référence (1 kHz).
- 5. S'il n'est pas en deçà de la plage standard, régler le courant de polarisation avec VR101 (canal de gauche) [VR102 (canal de droite)], de telle sorte que le niveau de fréquence soit en decà de la normale. Niveau vers la haut dans la plage de fréquence élevée...... Augmenter le courant de polarisation.
 - · Niveau vers le bas dans la plage de fréquence élevée...... Diminuer le courant de polarisation.
- 6. Après cela, amplifier le signal enregistré sur la bande vierge CrO₂ (QZZCRX) et la bande vierge métallisée (QZZCRZ) jusqu'à 12,5kHz et régler de la même manière que celle mentionnée ci-dessus. Puis, vérifier que le niveau de fréquence soit en decà de la plage montrée à la Fig. 8.

Fig. 7

Fig. 8

Réglage d'amplification globale

- 1. Le raccordement de l'équipement d'essai est montré à la Fig. 6
- Régler le commutateur sélecteur de bande sur la position normale.
 Installer une bande vierge normale (QZZCRA) et appliquer le signal de niveau d'entrée de référence (1kHz, 24dB) sur le mode d'intermission d'enregistrement.
- 4. Régler la puissance de sortie 0.42 V avec l'atténuateur, puis enregistrer.
- 5. Faire jouer le signal enregistré à l'étape 3 et vérifier que la puissance de sortie soit en deçà de la normale.
- 6. Si elle n'est pas en decà de la normale, régler VR3 (canal de gauche) [VR4 (canal de droite)] et répéter les étapes (2), (3) et (4) jusqu'à ce que la puissance de sortie soit en decà de la normale.

Valeur normalisee: 0.4 ± 0.05 V

Circuit de réduction des bruits Dolby

- 1. Le raccordement de l'équipement d'essai est montré à la Fig. 9.
- 2. Installer une bande normale et appliquer un signal de 5kHz sur le mode d'intermission d'enregistrement.
- 3. Régler avec l'atténuateur de telle sorte que la puissance de sortie entre la borne 6 (canal de gauche) [borne 9 (canal de droite)] de IC403 et la masse soit de 12,3mV.
- 4. Mettre en marche le commutateur de réduction des bruits et vérifier que le niveau change tel qu'il est spécifié à partir du niveau d'entrée sur le mode de sortie de réduction des bruits.

Fig. 9

Valeur normalisée: 8±1.5dB

ESPAÑOL

■ METODOS DE AJUSTE Y MEDIDA

Instrumento de medición

- EVM (Voltimetro electrónico)
- Osciloscopio
- Frecuencimetro digital
- Oscilador AF

- ATT (Atenuador)
- Voltimetro CC
- Resistor (600Ω)

Ajuste acimutal de cabeza

- 1. La conexión del equipo de prueba se muestra en la Fig. 1.
- 2. Reproducir la parte ajustada de acimut (8kHz, -20dB) de la cinta de prueba (QZZCFM) y regular el tornillo de ajuste de ángulo de manera que las salidas de CH-I y CH-D sean maximizadas.

Fig. 2

(Cuando las posiciones de ajuste sean diferentes de CH-I v CH-D, encontrar una posición donde las salidas de

Fig. 1

- 3. Al mismo tiempo, trazar una forma de onda de Lissajous y eliminar la deflexión de fase.
- 4. Después del ajuste, fije los tornillos de ajuste de altura y ángulo de guía de cinta.

Ajuste de velocidad de cinta

- 1. La conexión del equipo de prueba se muestra en la Fig. 3.
- 2. Reproducir la parte media de la cinta de prueba (QZZCWAT).
- 3. Ajustar el RV del motor de manera que la salida esté dentro de la estandard

Fig. 3

Valor estandard: 3000 ± 10 Hz

Respuesta de frecuencia de reproducción

- 1. La conexión del equipo de prueba se muestra en la Fig. 4.
- 2. Reproducir la parte de respuesta de frecuencia de reproducción (315Hz, 12,5kHz — 63Hz, -20dB) de la cinta de prueba (QZZCFM).
- 3. Comprobar que la frecuencia esté dentro de la gama mostrada en la Fig. 5 tanto para CH-l como para CH-D.

Fig. 4

Fig. 5

Ajuste de ganancia de reproducción

- 1. La conexión del equipo de prueba se muestra en la Fig. 4.
- 2. Reproducir la parte ajustada de la ganancia de reproducción (315Hz, 0dB) de la cinta de prueba (QZZCFM).

— 5 **—**

3. Ajustar RV1 (CH-I) {RV2 (CH-D)} de manera que la salida esté dentro de la estandard.

Valor estandard: $0.4 \pm 0.5 dB$ (0.02 V)

Respuesta de frecuencia total

- 1. La conexión del equipo de prueba se muestra en la Fig. 6.
- 2. Poner el interruptor selector de cinta en la posición "normal".
- 3. Colocar una cinta virgen normal (QZZCRA) y grabar aplicando señal (50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 4kHz, 8kHz y 10kHz), 20dB atenuada de la señal de nivel de entrada de referencia (1 kHz. -24dB).

- 4. Reproducir la señal grabada en el paso 2 y comprobar que el nivel de cada frecuencia de salida esté dentro de la gama mostrada en la Fig. 7. en comparación con la frecuencia de referencia (1kHz).
- 5. Si no está dentro de la gama estandard, ajustar la corriente de polarización mediante RV101 (CH-I) (RV102 (CH-D)) de manera que el nivel de frecuencia esté dentro del estandard.
 - · Subir el nivel en la gama de alta frecuencia..... Incrementar la corriente de polarización.
 - Bajar el nivel en la gama de alta frecuencia..... Disminuir la corriente de polarización.
- 6. Después de eso, incrementar la señal grabada en la cinta virgen CrO₂ (QZZCRX) y la cinta virgen metálica (QZZCRZ) hasta 12,5 kHz y ajustar de la misma manera como mencionado arriba y comprobar que el nivel de frecuencia esté dentro de la gama mostrada en la Fig. 8.

Fig. 7

Fig. 8

Ajuste de ganancia total

- 1. La conexión del equipo de prueba se muestra en la Fig. 6.
- 2. Poner el interruptor selector de cinta en la posición "normal".
- 3. Colocar una cinta virgen normal (QZZCRA) y aplicar la senal de nivel de entrada de referencia (1kHz, -24dB) en la modalidad de pausa de grabación.
- 4. Ajustar la salida 0,42 V mediante atenuador y, luego, grabar.
- 5. Reproducir la señal grabada en el paso 3 y comprobar que la salida esté dentro de la estandard.
- 6. Si no está dentro de la estandard, ajustar RV3 (CH-I) {RV4 (CH-D)} y repetir el paso (2), (3) y (4) hasta que la salida esté dentro de la estandard.

Valor estandard: 0.4 V ± 0.05 V

Circuito RR Dolby

- 1. La conexión del equipo de prueba se muestra en la Fig.
- 2. Colocar una cinta normal y aplicar señal 5kHz en la modalidad de pausa de grabación.
- 3. Ajustar mediante atenuador de manera que la salida entre terminal (6) (CH-I) {terminal (9) (CH-D)} de IC403 y tierra sea 12.3 mV.
- 4. Prender el interruptor RR y comprobar que el nivel cambia como especificado por el nivel en la modalidad de salida RR.

Valor estandard: 8 ± 1,5 dB

Fig. 9