

Design and Analysis of Algorithms CSE2012

Dr. Ramesh Ragala

January 3, 2022

DESIGN AND ANALYSIS OF ALGORITHMS

Course Objectives:

- To provide a mathematical foundation for analyzing and proving the efficiency of an algorithm.
- To focus on the design of algorithms in various domains of computer engineering.
- To provide familiarity with main thrusts of work in algorithms sufficient to give some context for formulating and seeking known solutions to an algorithmic problem.

DESIGN AND ANALYSIS OF ALGORITHMS

- Expected Course Outcome: On completion of this course, student should be able to
 - Ability to use mathematical tools to analyze and derive the running time of algorithms and prove the correctness.
 - Explain and apply the major algorithm design paradigms.
 - Explain the major graph algorithms and their analyses.
 - Explain the major String Matching algorithms and their analysis.
 - Explain the major Computational Geometry algorithms and their analysis.
 - Provide algorithmic solutions to real-world problem from various domains.
 - Explain the hardness of real world problems with respect to algorithmic efficiency and learning to cope with it.

Syallbus: MODULE - I

Algorithm Development

- Stages of algorithm development for solving a problem:
 - Describing the problem
 - Identifying a suitable technique
 - Design of an algorithm
 - Proof of Correctness of the algorithm

SYALLBUS: MODULE - II

Algorithm Design Techniques

- Brute force techniques:
 - Travelling Salesman Problem
- Divide and Conquer:
 - Finding a maximum and minimum in a given array
 - Strassen'sMatrix multiplicati
- Greedy techniques:
 - Huffman Code and Data Compression
 - Fractional Knapsack problem
- Dynamic programming
 - 0/1 Knapsack problem
 - Matrix chain multiplication
 - LCS
 - Travelling Salesman Problem
- Backtracking Technique:
 - N-Queens Problem
 - Knights Tour on Chess Board

SYALLBUS: MODULE - III

- String Matching Algorithms
 - Naïve String matching Algorithms
 - KMP algorithm
 - Rabin-Karp Algorithm

Syallbus: MODULE - IV

Computational Geometry Algorithms

- Line Segments
 - properties
 - intersection
- Convex Hull finding algorithms
 - Graham's Scan Algorithm
 - Jarvis's March Algorithm

SYALLBUS: MODULE - V

Graph Algorithms

- All pair shortest path
 - Floyd-Warshall Algorithm
- Network Flows
 - Flow Networks
 - Maximum Flows
 - Ford-Fulkerson Algorithm
 - Push Re-label Algorithm
 - Minimum Cost Flows
 - Cycle Cancelling Algorithm

Syallbus: MODULE - VI

Complexity Classes

- P and NP Class
- Reducibility
- NP-completeness
- SAT (without proof)
- 3-SAT
- Vertex Cover
- Independent Set
- Maximum Clique

SYALLBUS: MODULE - VII

Approximation and Randomized Algorithms

- Approximation Algorithms
 - set-covering problem
 - Vertex cover problem
 - K-center clustering
- Randomized Algorithms
 - Hiring problem
 - Finding the global Minimum Cut

SYALLBUS: MODULE - VIII

- Recent Trends
 - Guest Lecture by Industry Expert

TEXT BOOK

 Thomas H. Cormen, C.E. Leiserson, R L.Rivest and C. Stein, Introduction to Algorithms, Third edition, MIT Press, 2009.

FIGURE: Front cover of the book

Reference Book

• Jon Kleinberg, ÉvaTardos ,Algorithm Design, Pearson education, 2013

FIGURE: Front cover of the book

Reference Book

 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, "Network Flows: Theory, Algorithms, and Applications", Pearson Education, 2014

FIGURE: Front cover of the book