Math Statistics Semiweekly HW 11

Ozaner Hansha

October 23, 2020

Question 1

Problem: Prove that if $\hat{\theta}$ is a sufficient estimator for paraeter θ then, $\lambda \hat{\theta}$ is also a sufficient estimator of θ . Where $\lambda \in \mathbb{R}^+$.

Solution: Suppose our sample X is taken from the distribution characterized by the joint pdf $f_X(\mathbf{x}; \theta)$, where θ is the parmeter. Also consider a statistic $\hat{\theta}: \mathcal{X} \to \mathcal{T}$. We know from the factorization theorem that $\hat{\theta}$ is a sufficient statistic iff there exists functions $h(\mathbf{x})$ and $g(\hat{\theta}(\mathbf{x}); \theta)$ such that:

$$f_X(\mathbf{x};\theta) = h(\mathbf{x})g(\hat{\theta}(\mathbf{x});\theta)$$

Now consider a bijection $r: \mathcal{T} \to \mathcal{S}$. Note that r has an inverse r^{-1} since it is a bijection. As a result, we can define the following function:

$$g'(t;\theta) = g(r^{-1}(t);\theta)$$

We can now prove our result:

$$f_X(\mathbf{x}; \theta) = h(\mathbf{x})g(\hat{\theta}(\mathbf{x}); \theta)$$
 (\$\hat{\theta}\$ is sufficient)
$$= h(\mathbf{x})g(r^{-1}(r(\hat{\theta}(\mathbf{x}))); \theta)$$

$$= h(\mathbf{x})g'(r(\hat{\theta}(\mathbf{x})); \theta)$$

And so by the factorization theorem, we have shown that for any sufficient statistic $\hat{\theta}$ with codomain \mathcal{T} and bijective function r with domain \mathcal{T} , the statistic $r(\hat{\theta})$ is also sufficient.

A simple corollary to this is that multiplication by a positive constant λ preserves sufficiency, since $r(t) = \lambda t$ is a bijection with its inverse being $r^{-1}(t) = \frac{t}{\lambda}$.