AROB Practical Work

Author 1, Author 2

Abstract-Practical work abstract. 200 words approx.

I. INTRODUCTION

Small introduction to motivate the algorithm and relevant bibliography. This is an example to add a citation in Latex [?].

II. ALGORITHM DESCRIPTION

Short description of the algorithm.

This is an example to include an equation in the document,

$$\dot{x} = v\cos(\theta). \tag{1}$$

Equation (??) shows part of the kinematics of a unicycle vehicle.

III. IMPLEMENTATION DETAILS

Relevant details of your implementation. You can include a pseudo-code algorithm, like the one in Algorithm ??.

Algorithm 1 Pseudo-RRT

Require: x_0 and x_g 1: Initialize Tree with x_0

2: **while** x_q not reached **do**

3: $x_r =$ Generate a random location

4: $x_n = \text{Nearest}(\text{Tree}, x_r)$

5. **if** Ω = 1. Free ()

5: **if** ObstacleFree (x_r, x_n) **then**

6: Add x_r to Tree

7: Check if x_g is reachable from x_r

8: **end if**

9: end while

10: **return** Path from x_0 to x_q

IV. EXPERIMENTAL RESULTS

Experiments and results. Include your beautiful plots, like the one in Fig. ??.

Fig. 1. Figure caption. i

You can also include a table, like Table ??.

Algorithm	RRT	RRT*	A*
Computational Time (s)	1	3	5
Path distance (m)	5	3	1

TABLE I COMPARISON RESULTS

V. CONCLUSIONS

Practical work conclusions. Remember, it is part of your job to make us believe you deserve the maximum grade!!

REFERENCES

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, ser. Intelligent Robotics and Autonomous Agents series. MIT Press, 2005.