TRƯỜNG ĐHSP HÀ NỘI 2

ĐỀ THI OLYMPIC TOÁN SINH VIÊN 2025 Môn thi: Đại số

Đề thi chính thức

Thời gian làm bài: 120 phút

Câu 1 (6 điểm). Trong \mathbb{R} — không gian vecto $\mathbb{R}_3[x] = \{f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 : a_0, a_1, a_2, a_3 \in \mathbb{R}\}$, xét tập con

$$V = \{ f(x) \in \mathbb{R}_3[x] : f(x) : x^2 - 5x + 6 \}$$

- a) Chứng minh rằng V là một \mathbb{R} -không gian vecto con của $\mathbb{R}_3[x]$.
- b) Tìm một cơ sở, số chiều của V.

Câu 2 (6 **điểm**). Cho $a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4$ là các số thực đôi một khác nhau. Giải hệ phương trình

$$\begin{cases} \frac{a_1^4 - b_1^4}{a_1 - b_1}x + \frac{a_1^4 - b_2^4}{a_1 - b_2}y + \frac{a_1^4 - b_3^4}{a_1 - b_3}z + \frac{a_1^4 - b_4^4}{a_1 - b_4}t = 0\\ \frac{a_2^4 - b_1^4}{a_2 - b_1}x + \frac{a_2^4 - b_2^4}{a_2 - b_2}y + \frac{a_2^4 - b_3^4}{a_2 - b_3}z + \frac{a_2^4 - b_4^4}{a_2 - b_4}t = 0\\ \frac{a_3^4 - b_1^4}{a_3 - b_1}x + \frac{a_3^4 - b_2^4}{a_3 - b_2}y + \frac{a_3^4 - b_3^4}{a_3 - b_3}z + \frac{a_3^4 - b_4^4}{a_3 - b_4}t = 0\\ \frac{a_4^4 - b_1^4}{a_4 - b_1}x + \frac{a_4^4 - b_2^4}{a_4 - b_2}y + \frac{a_4^4 - b_3^4}{a_4 - b_3}z + \frac{a_4^4 - b_4^4}{a_4 - b_4}t = 0. \end{cases}$$

Câu 3 (6 **điểm**). Xét các dãy số $(x_n), (y_n)$ được xác định như sau

$$\begin{cases} x_0 = 2 \\ y_0 = 1, \end{cases} \begin{cases} x_{n+1} = 3x_n + 6x_n \\ y_{n+1} = x_m + 4y_n. \end{cases}$$

- a) Chứng minh rằng x_n, y_n là bội của 6^n với mọi số tự nhiên $n \geq 1$.
- $\mathbf{b)} \quad \text{Tính } \lim_{n \to +\infty} \frac{x_n 1}{y_n + 1}.$

Câu 4 (6 **điểm**). Tìm tất cả các đa thức $f(x) \in \mathbb{R}[x]$ thỏa mãn f(0) = 0 và

$$f(x^3 + x + 1) = f^3(x) + f(x) + 1, \forall x \in \mathbb{R}.$$

Câu 5 (6 **điểm**). Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác ngoài 2 và 5. Chứng minh rằng trong năm số đó tồn tại hai số có tích là một số chính phương.