

Диагностика сердечно-сосудистых заболеваний по ЭКГ на библиотеке MIRF

Автор: Швыркова Александра Алексеевна, 17.Б-10-мм Научный руководитель: доц. к.т.н. Ю. В. Литвинов Консультант: Инженер-программист ООО "Технологический центр Дойче банка" А.В. Ломакин

Санкт-Петербургский государственный университет Кафедра системного программирования

28 мая 2020г.

Введение

На сегодняшний день электрокардиограмма является самым распространенным видом выявления сердечно-сосудистых заболеваний.

Проблемы, возникающие при работе с ЭКГ:

- Протокол расшифровки ЭКГ содержит множество пунктов и подразумевает много ручной работы
- Даже аккуратный подсчёт параметров не всегда позволяет точно поставить диагноз

Предметная область

Сырые ЭКГ данные – это набор аналоговых или цифровых сигналов, которые характеризуются своей частотой.

Отведение – сигнал из набора сырых данных. По смыслу является разностью потенциалов между двумя электродами на теле человека.

QRS-комлекс – набор точек, характеризующих каждый удар сердца.

Рис. 1: Внешний вид QRS-комплекса [1]

Существующие инструменты

- Cardiologs
- KardiaMobile
- MITK

Недостатки существующих решений:

- Доступны только на коммерческой основе
- Закрытый исходный код
- Отсутствует кроссплатформенность
- Несколько лет код не обновляется и не поддерживается
- Нужны отдельные дорогостоящие сенсоры

Постановка задачи

Целью данной работы является расширение библиотеки MIRF возможностью обрабатывать ЭКГ-сигналы и распознавать различные заболевания с их помощью.

Задачи:

- Изучить существующие алгоритмы фильтрации и классификации ЭКГ-сигналов, выявить их достоинства и недостатки
- Реализовать и обучить свёрточную нейронную сеть для классификации ЭКГ-сигналов
- Реализовать блоки для предобработки и классификации ЭКГ-сигналов, а также генерации pdf-отчётов в MIRF
- Объединить блоки в единый конвейер

Схема решения

Рис. 2: Конвейер для обработки ЭКГ

Чтение ЭКГ-сигнала

Для хранения ЭКГ-сигнала нужны:

- заголовочный файл
- файл с байтовым представлением отведений

Форматы ЭКГ-сигналов:

- 212 используется в MIT-BIH Arrhythmia Database
- 16 используется в РТВ Diagnostic ECG Database

Фильтрация

Виды помех: белый шум, плавающая изолиния

Решение: дискретное вейвлет-преобразование

Реализация: Matlab

Алгоритм:

- Декомпозиция сигнала на аппроксимирующие и детализирующие коэффициенты
- С помощью пороговых функций некоторые коэффициенты зануляются или уменьшаются
- 3 Сигнал восстанавливается из новых коэффициентов

Пример фильтрации

Рис. 3: Фильтрация ЭКГ-сигнала

Выделение ударов

Рис. 4: Исходный сигнал и выделенные удары

Алгоритм Пана-Томпкинсона:

- Последовательным применением фильтров подавляются компоненты, не относящиеся к QRS-комплексу
- С помощью скользящего окна находятся индексы R-зубцов

Классификация ЭКГ-ударов

	Тип слоя	Выход
0	Input	(128, 128, 1)
	Conv2D	
1	ELU	(128, 128, 64)
	Batch normalization	
	Conv2D	
2	ELU	(128, 128, 64)
	Batch normalization	
3	MaxPooling	(64, 64, 64)
	Conv2D	
4	ELU	(64, 64, 128)
	Batch normalization	
	Conv2D	
5	ELU	(64, 64, 128)
	Batch normalization	
6	MaxPooling	(32, 32, 128)
	Conv2D	
7	ELU	(32, 32, 256)
	Batch normalization	
	Conv2D	
8	ELU	(32, 32, 256)
	Batch normalization	
9	MaxPooling	(16, 16, 256)
	Dense	
10	ELU	(2048)
	Batch normalization	
	Dropout	
11	Dense softmax	(8)

Таблица 1: Архитектура нейронной сети

- Архитектура сверточной нейронной сети: Т. J. Jun et al., "ECG arrhythmia classification using a 2-D convolutional neural network", 2018 [2]
- Сеть реализована с помощью библиотеки Keras
- Выполнена аугментация изображений, относящихся к аритмиям
- 100852 изображения ударов до аугментации

Оценка точности модели

Виды прогнозов модели: истинноположительные, истинноотрицательные, ложноположительные, ложноотрицательные Метрики оценки качества модели: точность, специфичность,

чувствительность, положительная предсказательная оценка

Классификатор	Точность	Спец-ть	Чувст-ть	ППО
Реализованный автором	95.6	94.3	98.7	87.7
Acharya et al. [3]	93.4	91.6	96.0	97.8
Kiranyaz et al. [4]	99.0	98.9	93.9	90.6
Jiang and Kong [5]	98.8	99.4	94.3	95.8

Таблица 2: Сравнение полученной модели с другими решениями

Пример работы

Рис. 5: Пример отчета

Итоги

- Изучены методы фильтрации и классификации ЭКГ-сигналов, выбраны одни из наилучших решений
- Реализована готовая архитектура свёрточной нейронной сети.
 Произведено её обучение. Получены метрики оценки качества модели
- Реализованы блоки для чтения, фильтрации, выделения ударов, классификации и генерации отчёта
- Блоки объединены в единый конвейер

Ссылки

- [1] A. Işın, S. Özdalili, "Cardiac arrhythmia detection using deep learning" in Procedia Computer Science, Vol.120, pp.268–275
- [2] T. J. Jun, H. M. Nguyen, D. Kang, D. Kim, D. Kim, Y.-H. Kim, "ECG arrhythmia classification using a 2-D convolutional neural network", 2018. URL: https://arxiv.org/pdf/1804.06812.pdf
- [3] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych, R. S. Tan, "A deep convolutional neural network model to classify heartbeats" in Computers in Biology and Medicine, 2017, pp. 389–396.
- [4] S. Kiranyaz, T. Ince, M. Gabbouj, "Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks" in IEEE Transactions on Biomedical Engineering, 2016, Vol. 63(3), pp. 664–675.
- [5] W. Jiang, S. Kong, "Block-Based Neural Networks for Personalized ECG Signal Classification" in IEEE Transactions on Neural Networks, 2007, Vol. 18(6), pp. 1750–1761.