In [171]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [172]:

a=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions.csv")
a

Out[172]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates
0	USA	Alamogordo	DOE	32.54	
1	USA	Hiroshima	DOE	34.23	
2	USA	Nagasaki	DOE	32.45	
3	USA	Bikini	DOE	11.35	
4	USA	Bikini	DOE	11.35	
2041	CHINA	Lop Nor	HFS	41.69	
2042	INDIA	Pokhran	HFS	27.07	
2043	INDIA	Pokhran	NRD	27.07	
2044	PAKIST	Chagai	HFS	28.90	
2045	PAKIST	Kharan	HFS	28.49	

2046 rows × 16 columns

4

In [173]:

```
a=a.head(10)
a
```

Out[173]:

Body	Data.Magnitude.Surface	Location.Cordinates.Depth	Data.Yeild.Lower	Data.Yeild.Upper	Dat
0.0	0.0	-0.10	21.0	21.0	
0.0	0.0	-0.60	15.0	15.0	
0.0	0.0	-0.60	21.0	21.0	
0.0	0.0	-0.20	21.0	21.0	
0.0	0.0	0.03	21.0	21.0	
0.0	0.0	-0.08	37.0	37.0	
0.0	0.0	-0.08	49.0	49.0	
0.0	0.0	-0.08	18.0	18.0	
0.0	0.0	0.00	22.0	22.0	
0.0	0.0	-0.35	1.0	1.0	
4					•

In [174]:

```
# to find
a.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10 entries, 0 to 9
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	10 non-null	object
1	WEAPON DEPLOYMENT LOCATION	10 non-null	object
2	Data.Source	10 non-null	object
3	Location.Cordinates.Latitude	10 non-null	float64
4	Location.Cordinates.Longitude	10 non-null	float64
5	Data.Magnitude.Body	10 non-null	float64
6	Data.Magnitude.Surface	10 non-null	float64
7	Location.Cordinates.Depth	10 non-null	float64
8	Data.Yeild.Lower	10 non-null	float64
9	Data.Yeild.Upper	10 non-null	float64
10	Data.Purpose	10 non-null	object
11	Data.Name	10 non-null	object
12	Data.Type	10 non-null	object
13	Date.Day	10 non-null	int64
14	Date.Month	10 non-null	int64
15	Date.Year	10 non-null	int64
	6		

dtypes: float64(7), int64(3), object(6)

memory usage: 1.4+ KB

In [175]:

```
# to display summary of statastic
a.describe()
```

Out[175]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.
count	10.000000	10.000000	10.0	
mean	24.082000	93.307000	0.0	
std	14.133627	111.078447	0.0	
min	11.300000	-116.000000	0.0	
25%	11.312500	89.380000	0.0	
50%	21.900000	147.210000	0.0	
75%	33.807500	162.150000	0.0	
max	48.000000	165.200000	0.0	
4				•

In [176]:

```
# to display colum heading
a.columns
```

Out[176]:

In [177]:

sns.pairplot(a)

Out[177]:

<seaborn.axisgrid.PairGrid at 0x243f31f3cd0>

In [178]:

```
sns.displot(a["WEAPON DEPLOYMENT LOCATION"])
```

Out[178]:

<seaborn.axisgrid.FacetGrid at 0x243f6c30280>

In [179]:

Out[179]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Lo
0	USA	Alamogordo	DOE	32.54	
1	USA	Hiroshima	DOE	34.23	
2	USA	Nagasaki	DOE	32.45	
3	USA	Bikini	DOE	11.35	
4	USA	Bikini	DOE	11.35	
5	USA	Enewetak	DOE	11.30	
6	USA	Enewetak	DOE	11.30	
7	USA	Enewetak	DOE	11.30	
8	USSR	Semi Kazakh	DOE	48.00	
9	USA	Nts	DOE	37.00	
4 6	_				•

In [180]:

```
sns.heatmap(b.corr())
```

Out[180]:

<AxesSubplot:>

In [182]:

In [183]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [184]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[184]:

LinearRegression()

In [185]:

lr.intercept_

Out[185]:

0.0

In [186]:

coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff

Out[186]:

	Co-efficient
Location.Cordinates.Latitude	0.0
Location.Cordinates.Longitude	0.0
Data.Magnitude.Body	0.0
Data.Magnitude.Surface	0.0
Location.Cordinates.Depth	0.0
Data.Yeild.Lower	0.0

In [187]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[187]:

<matplotlib.collections.PathCollection at 0x243f8b88fa0>

In [188]:

```
lr.score(x_test,y_test)
```

Out[188]:

1.0

```
In [189]:
lr.score(x_train,y_train)
Out[189]:
1.0
In [190]:
from sklearn.linear_model import Ridge,Lasso
In [191]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[191]:
Ridge(alpha=10)
In [192]:
rr.score(x_test,y_test)
Out[192]:
1.0
In [193]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
  model = cd_fast.enet_coordinate_descent(
Out[193]:
Lasso(alpha=10)
In [194]:
la.score(x_test,y_test)
Out[194]:
1.0
```

```
In [195]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
  model = cd_fast.enet_coordinate_descent(
Out[195]:
ElasticNet()
In [196]:
en.coef_
Out[196]:
array([0., 0., 0., 0., 0., 0.])
In [197]:
en.intercept_
Out[197]:
0.0
In [198]:
prediction=en.predict(x_test)
prediction
Out[198]:
array([0., 0., 0.])
In [199]:
en.score(x_test,y_test)
Out[199]:
1.0
EVALUATION METRICS
```

```
from sklearn import metrics
```

In [200]:

```
In [201]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.0
In [202]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.0
In [203]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 0.0
MODEL SAVING
In [204]:
import pickle
In [205]:
filename='prediction'
pickle.dump(lr,open(filename,'wb'))
In [206]:
import pandas as pd
import pickle
In [207]:
filename='prediction'
model=pickle.load(open(filename, 'rb'))
In [209]:
real=[[10,20,30,40,50,60],[13,23,33,43,53,63]]
result=model.predict(real)
result
Out[209]:
array([0., 0.])
In [ ]:
```