Punktgruppen und Kristalle

Naoki Pross, Tim Tönz

Hochschule für Technik OST, Rapperswil

10. Mai 2021

Einleitung

2D Symmetrien

Algebraische Symmetrien

3D Symmetrien

Matrizen

Kristalle

Anwendungen

Einleitung

- ► Was heisst *Symmetrie* in der Mathematik?
- ► Wie kann ein Kristall modelliert werden?
- ► Aus der Physik: Piezoelektrizität

2D Symmetrien

Algebraische Symmetrien

3D Symmetrien

Matrizen

Kristalle

Anwendungen

 $\overline{ ext{Polarisation}}$ $\overline{ ext{Feld}}$ $ec{ec{E}_p}$

Licht in Kristallen

Symmetriegruppe und Darstellung

$$G = \{1, r, \sigma, \dots\}$$

 $\Phi: G o O(n)$

$$U_{\lambda} = \{v : \Phi v = \lambda v\}$$

$$= \text{null} (\Phi - \lambda I)$$

Helmholtz Wellengleichung

$$abla^2 ec{E} = arepsilon \mu rac{\partial^2}{\partial t^2} ec{E}$$

Ebene Welle

$$ec{E} = ec{E}_{
m o} \exp \left[i \left(ec{k} \cdot ec{r} - \omega t
ight)
ight]$$

Anisotropisch Dielektrikum

$$(Karepsilon)ec{E}=rac{\omega^2}{\mu k^2}ec{E}$$

$$\vec{E} \in U_{\lambda} \implies (K\varepsilon)\vec{E} = \lambda \vec{E}$$

$$\vec{F} = \kappa \vec{x}$$
 (Hooke)