Tarea #1

Josué Vargas Camacho

Emerson Molina Murillo

Angie Marchena Mondell

Cristopher Zeledón Jiménez

William Sánchez Céspedes

- 10 V	Four. Diferenciales Tarea #1 14/10/20	70_
	3x (y2+1)dx + g (x2+2)dg=0	3
77	3x(y2+1)dx = -y(x2+2)dy	(=
2	$\int \frac{3x}{(x^2+2)} dx = \int \frac{-9}{(y^2+1)} dy = \frac{1}{x^2}$	G
	$3\int \frac{x}{(x^2+2)} dx = -1\int \frac{y}{(y^2+1)} dy$	
=>	Sustitución: => Sustitución: $u = (x^2 + 2)$ $v = (y^2 + 1)$ du = x dx $dv = y dy$	
=>	$\frac{3}{3} \int \frac{1}{2u} du = -1 \int \frac{1}{2u} dv$	
=)	$\frac{3}{2} \int \frac{1}{u} du = -\frac{1}{2} \int \frac{1}{V} dV$	1
=>	$\frac{3}{2} \ln u = -\frac{1}{2} \ln v $	
	$\frac{3}{2}\ln x^2+7 = -\frac{1}{2}\ln y^2+1 + C$ o con CamScanner	

$$0 = \frac{y}{x}$$

2 = Cjercico # 2.

xydx - (x2+4xy+4x2) d4=0 xy qx = (x2 + 4xy + 4x2) qx

$$\frac{XY}{X^2 + 4xy + 4y^2} = \frac{dy}{dx} \qquad \qquad \frac{1}{X} = \frac{1 + 40 + 40^2}{-40^2 - 40^3}$$

$$\frac{xy}{x^2} = \frac{dy}{dx}$$

$$\frac{x^2 + 4xy + 4y^2}{x^2}$$

$$\frac{y}{x} = \frac{dy}{dx}$$

$$\Rightarrow \frac{1}{x} = \frac{1}{F(0) - V}$$

$$\frac{1}{x} = \frac{1}{\frac{0}{1 + 40140^2} - \frac{0}{1}}$$

$$\frac{1}{x} = \frac{1}{1}$$

$$\frac{1}{1 + 40 + 40^{2} - 40^{3}}$$

$$\frac{1}{1} = \frac{-40^2 - 40^3}{1 + 40^4 + 40^3}$$

$$\frac{1}{x} = \frac{-1 - 40 - 40^2}{40^2 (1 + 4)}$$

-1-40-402 - AU+ B+ AU2+ BU+ 4(0)

* sistema de eccación

$$A + D = -4$$

 $A + T = -4$ $A + T = 8$

$$\begin{bmatrix} C = -\frac{1}{4} \end{bmatrix}$$

$$\frac{1}{x} = \frac{A \circ tB}{4 \circ^{2}} + \frac{C}{1+u}$$

$$\frac{1}{x} = \frac{3 \circ -1}{4 \circ^{2}} - \frac{1}{4}$$

$$= > \int \frac{1}{x} dx = \int \frac{-3 \circ d}{4 \circ^{2}} - \int \frac{1}{4 \circ^{2}} d\sigma - \frac{1}{4} \int \frac{1}{1+u} d\sigma$$

$$= |n| \times 1 + C = -\frac{3}{4} \int \frac{1}{0} d\sigma - \frac{1}{4} \int \frac{1}{0} d\sigma - \frac{1}{4} \int \frac{1}{1+u} d\sigma$$

$$= |n| \times 1 + C = -\frac{3}{4} |n| |\sigma| + \frac{1}{4} |\sigma|^{2} - \frac{1}{4} |n| |1 + \frac{1}{4} |\sigma|$$

$$= |n| \times 1 + C = -\frac{3}{4} |n| |\sigma| + \frac{1}{4} |\sigma|^{2} - \frac{1}{4} |n| |1 + \frac{1}{4} |\sigma|$$

$$= |n| \times 1 + C = -\frac{3}{4} |n| |\sigma| + \frac{1}{4} |\sigma|^{2} - \frac{1}{4} |n| |1 + \frac{1}{4} |\sigma|$$

Pregunta 3:	
(3x2 y + e4) dx + (x3,	+ Xey - 2y) dy = 0
$M = 3x^2y + c^{\gamma}$	$N = X^3 + Xe^{\gamma} - 2\gamma$
$\frac{\partial M}{\partial t} = 3x^2 + e^{Y}$	DN = 3x2+ e4
94	ðχ
df = 3x2y + e4	df = x3 + xex - 2,
9x	Эх
f = S 3x2y + exdx	xxxx + g(y) = xx + xx
f = 3y Sx2 dx + Sey dx	g`(y) = -2y
f = \$y . x3 + e4.x	g(y) = S-2y
$f = yx^3 + e^4x$	g(y) = -2 Sy o
	$g(y) = -2 \cdot y^2$
f = yx3 + exx + g(y)	7
$\frac{\partial f}{\partial y} = x^3 + xe^{y} + g(y)$	g(y) = -y2
,	
f = xx3 + exx + g(y)	
f = yx3 + exx - y2	
yx3+c4x-y2 = C	

	y' = 2x - 5eny
	Xcos y
	dy = 2x - serry
	dx xcoy
	Cxcosyldy = C2x-seny) dx
-	xcoxy dy + C sery -2x) dx = 0
	Ably + Maly = 0
	My = 000 y -7
	My = onsy 7 si es execto.
	W. Casy
	(xcosy dy = x Scosy = x scosy
	SCx,y) = x sery + gCx)
	Sx = septy +gcw = septy - 2x
	g'(x) = -2x
	$good = \int_{-2x}^{-2x} dx = -x^2$
-	
	FCX.Y) = X. seny - x2
	$x seny - x^2 = C$
	A Say - A

5.
$$(y \ln y - 2xy) dx + (x + y) dy = 0$$

$$\frac{\partial M}{\partial y} = 1 \ln y + x \frac{1}{x} + 1 - 2x = \ln y + 1 - 2x$$

$$\frac{\partial N}{\partial x} = 1$$

$$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = 9(y) = \frac{1}{y \ln y - 2xy} \left(1 - \ln y - 1 + 2x \right)$$

$$\frac{-\ln y + 2x}{y (\ln y - 2x)} \Rightarrow \frac{-(\ln y - 2x)}{y (\ln y - 2x)} = -\frac{1}{y}$$

$$9(y) = \frac{-1}{y} \qquad y = e^{\int \frac{1}{y}} = e^{\int \frac{1}{y}} = e^{\int \frac{1}{y}} = \frac{1}{y}$$

$$\frac{1}{y} \left(y \ln y - 2xy \right) dx + \frac{1}{y} \left(x + y \right) dy = 0$$

$$(\ln y - 2x) dx + \left(\frac{x}{y} + 1 \right) dy = 0$$

$$\frac{\partial M}{\partial x} = \frac{1}{y} = \frac{\partial N}{\partial x} = \frac{1}{x}$$

$$\Rightarrow \sin x \cos x \cos x$$

$$f = \int \ln y - 2x dx$$

$$f = \int \ln y - 2x dx$$

$$f = x \ln y - 2 \frac{x^2}{2}$$

$$f = x \ln y - x^2 + g(y)$$

$$\frac{\partial f}{\partial y} = \frac{x}{y} + g'(y) = \frac{x}{y} + 1$$

$$f = x \ln y - x^2 + g(y)$$

$$g'(y) = 1$$

$$g(y) = \int \frac{1}{y} = y$$