Total No. of Printed Pages:03

T.E.(Computer) Semester- VI (Revised Course 2007-08) EXAMINATION MAY/JUNE 2019 Modern Algorithm Design Foundation

[Duration : Three Hours] [Max.Mark			ks:100	
Instructions:-		Please check whether you have got the right question paper. 1) Assume Data whenever necessary. 2) Answer any five full questions at least one from each module MODULE I		
Q.1	a)	Using step count method determine time complexity of the following algorithm. Algorithm Check (A, x, n) // A [1n] an array containing n elements i=n; while(A[i]!=x) i=i-1; return i; End	06	
	b)	What do you understand by Recursion? Compare the difference between iterative and Recursive algorithms, with example.	08	
	c)	With examples discuss the factors to be considered for analyzing the space and time complexities of an algorithm.	06	
Q.2	a)	Differentiate between the following i) Big 'oh' and Little 'oh' Notations ii) Big 'Omega' and Little 'Omega' Notations	04	
	b)	Explain the two phases of testing the program.	04	
	c)	Given a set of numbers $S=\{65,70,75,80,85,60,55,50,45\}$ Demonstrate how the randomized quick sort algorithm works to sort the elements. Also explain the worst case scenario for the algorithm.	08	
	d)	Explain how the binary search fits in divide and conquer strategy. Discuss the time complexity of best, worst and average scenario.	04	
		MODULE II		
Q.3	a)	Find the optimal solution for the given $0/1$ knapsack instance using dynamic programming technique n=5, $P(15) = (10,15,8,6,7)$, $W(15) = (4,6,3,4,2)$ with the knapsack of capacity 12.	08	

Paper / Subject Code: TE670 / Modern Algorithm Design Foundation

TE670

04

- b) Write Kruskal algorithm to find the minimum spanning tree. Compare its time complexity with Prim's MST algorithm.
- c) Let there be 5 programs and a computer tape of length 50 bytes. These programs associated with the lengths $(l_1, \ldots, l_5) = (5, 10, 3, 8, 7)$ have to be stored on the tape. Find the order which gives the optimal Mean Retrieval Time.
- Q.4 a) Solve the following Knapsack instance using greedy strategy where profits P=(11,21,31,33) and weights W=(2,11,22,15) with the capacity M=40.
 - b) Consider the directed graph G=(V,E,W) where $V=\{1,2,3,4\}$, $E=\{<1,2>, <1,3>, <1,4>, <2,1>, <2,3>, <2,4>, <3,1>, <3,2> <3,4>, <4,1>, <4,2> <4,3>\}$ and the corresponding weights $W=\{5,2,3,4,2,3,4,2,3,7,6,8\}$. Find the optimal tour of the graph using dynamic programming assuming source vertex as 2.
 - c) Obtain the shortest path from the source vertex S to the sink vertex 'T' on the following 08 graph.

MODULE III

Q.5 a) Explain the concept of Hamiltonian cycle in a graph with the help of an example.

Further write an algorithm to find all Hamiltonian cycles in a graph.

b) Write short note on Branch and Bound Technique.

- c) Draw the state space tree for the graph coloring problem when the number of vertices n=3 and the colors m=3. Write the algorithm for graph coloring problem.
- Q.6 a) With the help of an iterative algorithm explain the concept of backtracking.
 - b) Find the solution for the sum of subset problem also draw the state space generated for 10 the following data.

 n=6, M=30, W(1:6) = (5,10,12,13,15,18)

Paper / Subject Code: TE670 / Modern Algorithm Design Foundation

			160/
	c)	Write the estimate algorithm use to estimate efficiency of backtracking.	04
		MODULE IV	
Q.7	a)	Implement Boyer Moore algorithm on the given text and pattern. Text: a pattern matching algorithm Pattern: rithm	08
	b)	Explain the following algorithm i) The Distance Vector Algorithm ii) Link State Algorithm	08
	c)	Explain Trie., standard Trie and its compact Representation. With the help of an example.	04
Q.8	a)	Write Huffman coding algorithm and draw Huffman Tree for the string X. X= "a fast runner need never be afraid of the dark" Also get code's for each alphabet.	10
	b)	Write an algorithm for finding longest common subexpression in a string (LCS).	06
	c)	Write and explain complexity measures of an network algorithms.	04
	c)	Write and explain complexity measures of an network algorithms.	04