Computational Geometry: The Framework of Coresets

Project presentation - April '17

Charles Hamesse

Subjects

- 1. About geometric approximations
- 2. Envelopes and extent measures
- 3. Directions and directional widths
- 4. A simple coreset construction
- 5. An improved construction
- 6. Implementation

1. About geometric approximations

About geometric approximations: an introduction

Usual technique to develop approximation algorithms:

- extract small amounts of relevant information from the input data
- perform relatively-heavy computation on this extracted data.

If the input is a set of points, the question can be reduced to finding a small subset - a **coreset** - of the points, such that one can perform the desired computation on the coreset.

About geometric approximations: a state of the art

Considerable work has been done on measuring various descriptors of the extent of a set P of n points in \mathbb{R}^d .

- Exact algorithms for computing extent measures are generally expensive.
- ullet It is said that the best known algorithms for computing the smallest volume bounding box or tetrahedron containing P in \mathbb{R}^d require $O(n^d)$ time.

About geometric approximations: the goal

Ideally, one would like to argue that:

- ullet for any extent measure μ
- ullet for any paramater arepsilon such that 0<arepsilon<1

There exists a subset $Q\in P$ with $|Q|=1/arepsilon^{O(1)}$ such that $\mu(Q)\geq (1-arepsilon)\mu(P)$

About geometric approximations: an example coreset

Both red and blue points belong to P, red points belong to P's coreset Q.

2. Envelopes and extent measures

Envelopes and extent measures: intuition

Envelopes and extent measures: formal definition of envelopes

Let $F=\{f_1,...,f_n\}$ be a set of n d-variate functions defined over $x=(x_1,...,x_d)\in \mathbb{R}^d$:

1. The **lower envelope** of F is the graph of the function:

$$L_F: \mathbb{R}^d
ightarrow \mathbb{R}: x
ightarrow \min_{f \in F} f(x)$$

2. The **upper envelope** of F is the graph of the function:

$$U_F: \mathbb{R}^d {
ightarrow} \ \mathbb{R}: x
ightarrow \max_{f \in F} f(x)$$

Envelopes and extent measures: formal definition of extents

The **extent** is defined as:

$$J_F: \mathbb{R}^d
ightarrow \mathbb{R}: x
ightarrow U_F(x) - L_F(x)$$

Now let's introduce a parameter $\varepsilon>0$ and let Δ be a subset of \mathbb{R}^d . The ε -approximation of the extent of F within Δ is the subset G such that, for each $x\in\Delta$:

$$(1-arepsilon)J_F(x) \leq J_G(x)$$

Observation: $J_G(x) \leq J_F(x)$, as $G \subseteq F$.

If $\Delta = \mathbb{R}^d$, this is simply an arepsilon-approximation of the extent of F.

3. Directions and directional widths

Directions and directional widths: intuition

Directions and directional widths: directions and the n-sphere

Observation: Directions can be expressed as unit vectors on a n-dimensional sphere.

The n-sphere is the generalization of the ordinary sphere to spaces of arbitrary dimension. It is an n-dimensional manifold that can be embedded in Euclidean (n+1)-space.

It is defined by:

$$\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} \colon |x| = r\}$$

So our "usual" sphere is really a 2-sphere, or \mathbb{S}^2 .

Directions and directional widths: formal definition of directional widths

Let \mathbb{S}^{d-1} be the unit sphere centered at the origin in \mathbb{R}^d . For any direction $u\in\mathbb{S}^{d-1}$ and a point set $P\subseteq\mathbb{R}^d$, we define the directional width as:

$$\omega(u,P) = \max_{p \in P} \langle u,p
angle - \min_{p \in P} \langle u,p
angle$$

where $\langle \cdot, \cdot \rangle$ is the usual inner product.

Directions and directional widths: an approximation of directional widths

Let's again introduce a parameter $\mu>0$ and set $\Delta\subseteq\mathbb{R}^d$.

A set $Q\subseteq P$ is a μ -approximation of P within $\Delta\subseteq\mathbb{R}^d$ if, for each $u\in\Delta$:

$$(1-\mu)\omega(u,P) \le \omega(u,Q)$$

4. A simple coreset construction

A simple coreset construction: roadmap

In the litterature, it is shown that:

1. Any point set can be turned into an α -fat point set using a linear non-singular transform.

"Let P be a set of n points in \mathbb{R}^d and let ε be a parameter. There exists a linear non-singular transform T such that T(P) is α_d -fat, where α_d is a constant depending only on d."

2. There exists an algorithm for computing coresets of α -fat point sets.

"Let P be a α -fat point set contained in C. For any $\varepsilon>0$, we can compute, in $O(n+1/(\alpha\varepsilon)^{d-1})$ time, a subset $Q\subseteq P$ of $O(1/(\alpha\varepsilon)^{d-1})$ points that ε -approximates P."

A simple coreset construction: fat point sets

A point set P is lpha-fat if there exists a point $p\in\mathbb{R}^d$ and a hypercube $\mathbb C$ centered at the origin so that:

$$p + \alpha \mathbb{C} \subset CH(P) \subset p + \mathbb{C}$$

So in this sense, an α -fat point set is just a non-empty set of points whose convex hull:

- \bullet contains the hypercube of edge length α centered at the origin,
- is contained in the unit hypercube.

A simple coreset construction: the algorithm

Consider a d-dimensional grid $\mathbb Z$ of size $\delta=\frac{arepsilonlpha}{6\sqrt{d}}.$ That is:

$$\mathbb{Z}=\{(\delta i_1,...,\delta i_d)|i_1,...,i_d\in\mathbb{Z}\}$$

- For each column along the x_d -axis in \mathbb{Z} , pick one point from both extreme nonempty cells and add them to Q.
- Clearly, the Hausdorff distance between Q and P is smaller than $\frac{\varepsilon\alpha}{6}$ and Q makes an ε -approximation of P.
- It can be shown that $|Q|=O(1/(\alpha\varepsilon)^{d-1})$, so Q can be constructed in time $O(n+1/(\alpha\varepsilon)^{d-1})$.

A simple coreset construction: the Hausdorff distance

It is defined as:

$$d_H(X,Y) = \max \{ \sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y) \}$$

Intuition: it is, in a way, the greatest of all the distances from a point in one set to the closest point in the other set.

Illustration by Rocchini - Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=2918812

A simple coreset construction: an example

5. An improved construction

An improved construction: the algorithm

Let S be the sphere of radius $\sqrt{d+1}$ centered at the origin and set $\delta=\sqrt{\varepsilon\alpha}\leq 1/2$.

ullet One can construct a set J of $O(1/\delta^{d-1})$ points on S so that:

$$\forall x \in S, \ \exists y \in J: ||x - y|| \leq \delta$$

- We process P into a data structure that can answer ε -approximate nearest-neighbor queries.
- K-d trees allow exact nearest-neighbor queries.

An improved construction: the algorithm (2)

For a query point q, let $\phi(q)$ be the point of P returned by this data structure.

- ullet For each point $y\in J$, compute $\phi(y)$
- Return the set $Q=\{\phi(y)|y\in J\}$.

An improved construction: an example

6. Implementation

Implementation: computing the error

For a set of directions Δ , the error is defined as:

$$err(Q,P) = \max_{u \in \Delta} rac{\omega(u,P) - \omega(u,Q)}{\omega(u,P)}$$

- Intuitively, it is the maximum value amongst all relatives errors on the directional width for all directions u in Δ .
- Accuracy rises with the number of directions considered.
- Authors use 1000 directions in a 4D space.
- I implemented 4 directions in a 2D space: the horizontal, the vertical and both diagonals.

Implementation: demo

Questions?