Putnam practice, 2013-11-14

- 1. Given a finite number of points in the Euclidean plane, show that there is a line which contains exactly two of the points, unless all the points are collinear.
- 2. (Putnam 1963 B1) If a is a real number for which the polynomial $x^2 x + a$ divides $x^{13} + x + 90$, then give the value of a.
 - 3. Evaluate in closed form

$$\sum_{k=0}^{n} \binom{n}{k} k^2.$$

4. Define a sequence of real numbers by

$$S_1 = \log a$$
 and $S_n = \sum_{i=1}^{n-1} \log(a - S_i)$ for $n > 1$

Show that $\lim_{n\to\infty} S_n = a-1$.

5. (Putnam 1999, B-4) Suppose $f: R \to R$ has a continuous 3rd derivative, and suppose that for all $x \in R$, f(x) > 0, f'(x) > 0, and f'''(x) < f(x). Show that for all $x \in R$, f'(x) < 2f(x).

(WARNING: I consider that problem to be very difficult and too suggestive of many questions for research! So here is an alternative ODE question.)

6. (Putnam 1995, A-5) Let $x_1, x_2, \dots x_n$ be differentiable real-valued functions of a single variable t, which satisfy

$$\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\dots$$

$$\frac{dx_n}{dt} = a_{n1}x_1 + a_{22}x_2 + \dots + a_{nn}x_n$$

for some constants $a_{ij} \geq 0$. Suppose that for all $i, x_i(t) \to 0$ as $t \to \infty$. Are the functions $x_1, x_2, \ldots x_n$ necessarily linearly dependent?