CHAPTER-1 RELATIONS AND FUNCTIONS

EXERCISE - 1.3

- **1**. Let $f:\{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g:\{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1,2), (3,5), (4,1)\}$ and $g = \{(1,3), (2,3), (5,1)\}$. Write down gof.
- **2**. Let f, g, and h be functions from RtoR.Show that

$$(f+g)oh = foh + goh$$

$$(f.g)oh = (foh).(goh)$$

3. Find gof and fog,if

(i)
$$f(x) = |x|$$
 and $g(x) = |5x - 2|$

(ii)(x)=
$$8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

- **4.** If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, show that $f\circ f(x) = x$, for all $x \neq \frac{2}{3}$. What is the inverse of f?
- **5**. State with reason whether the following functions have an inverse.

(i)
$$f: \{1, 2, 3, 4\} \to \{10\}$$
 with

$$f = \{(1,10), (2,10), (3,10), (4,10)\}$$

(ii)
$$g:\{5,6,7,8\} \rightarrow \{1,2,3,4\}$$
 with

$$g = \{(5,4), (6,3), (7,4), (8,2)\}$$

(iii)
$$h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 with

$$h = \{(2,7), (3,9), (4,1), (5,13)\}$$

- **6.** Show that $f: [-1,1] \to \mathbf{R}$, given by $f(x) = \frac{x}{(x+2)}$, is one-one. Find the inverse of the function $f:[-1,1]\to \mathrm{Range}\ f.$ (Hint: For $y\in f,$ solve $y=\frac{x}{x+2}$ for some x in [-1,1], i.e., $x=\frac{2y}{1-y}$).
- **7**. Consider f: $\mathbf{R} \rightarrow \mathbf{R}$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
- **8.** Consider $f: \mathbf{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse of $f^{-1}(y) = \sqrt{y-4}$, where \mathbf{R}_+ is the set of all non-negative real numbers.

- 9. Consider $f: \mathbf{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with: $f^{-1}(y) = (\frac{(\sqrt{(y+6)}-1)}{3})$
- **10**. Let $f: X \to Y$ be an invertible function. Show that f has a unique inverse. (Hint: Suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $f \circ g_1(y) = 1_Y(y) = f \circ g_2(y)$.) Use one-one ness of f).
- **11.** Consider $f: \{1,2,3\} \to \{a,b,c\}$ given by f(1)=a, f(2)=b and f(3)=c. Find f^{-1} and show that $(f^{-1})^{-1}=f$.
- **12.** Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $(f^{-1})^{-1} = f$.
- **13.** If $f: \mathbf{R} \to \mathbf{R}$ is given by $f(x) = (3 x^3)^{\frac{1}{3}}$, then $f \circ f(x)$ is
 - (A) $x^{\frac{1}{3}}$ (B) x^{3} (C)x (D) $(3-x^{3})$
- **14**. Let f: **R** $\left\{-\frac{4}{3}\right\}$ be a function defined as: $f(x) = \frac{4x}{3x+4}$. The inverse of

f is the map $g: Rangef \to \mathbf{R} - \left\{-\frac{4}{3}\right\}$ given by

- (A) $g(y) = \frac{3y}{3-4y}$ (B) $g(y) = \frac{4y}{4-3y}$
- (C) $g(y) = \frac{4y}{3-4y}$ (D) $g(y) = \frac{3y}{4-3y}$