证明收敛列有界且极限唯一。

2

证明以下三条命题等价:

- A 是闭集;
- $\bar{A}=A$;
- 若 $\{x_n\}_{n=1}^{\infty} \subset A$ 收敛于 x_0 ,则 $x_0 \in A$ 。

3

证明 C[0,1] 可分。

4

证明: 映射 $T:X\to Y$ 连续当且仅当任意开集 $U\subset Y$,都有 $T^{-1}U$ 是 X 中开集。

5

证明: 映射 T 在 x_0 连续当且仅当任取 $\{x_n\}_{n=1}^{\infty} \subset X$,都有

$$x_n \to x_0 \Longrightarrow Tx_n \to Tx_0$$

6

证明离散度量空间完备。