

E1214 Fundamentos de las Comunicaciones E0214 Comunicaciones E0311/E1311 Comunicaciones

Temas a tratar

- Fuentes de ruido
- Modelo ruido térmico
- Modelo ruido de disparo
- Temperatura equivalente
- Potencia disponible

ARSAT 1 en INVAP

Fuentes de ruido

Externas al Sistema

Debidas a condiciones atmosféricas, condiciones del sol, radiación cósmica, actividad humana, etc.

Internas del Sistema

Originadas en los subsistemas que componen el sistema de comunicaciones, debido al movimiento aleatorio de cargas dentro de los dispositivos.

El número de electrones libres en la barra es:

n L A

donde n es el número de electrones libre por unidad de volumen, L la longitud del cilindro y A su área.

La resistencia del cilindro es: $R=
ho rac{L}{\Delta}$

$$R = \rho \frac{L}{A}$$

donde ρ es el coeficiente de resistividad del material y puede

calcularse como: $\rho = \frac{m \alpha}{n q^2}$

donde

m: Masa del electrón (9,11 10^{-31} kg)

 α : Nro. Promedio de choques por segundo de

un electrón con partículas pesadas ($\sim 10^{14}$ en el Cu)

q : carga del electrón (1,6 10^{-19} C)

Objetivo: Obtener la DEP de los procesos de corriente y/o de tensión que representan al Ruido Térmico

$$I_k(t) = \frac{q}{L/V_k(t)}$$

 $V_k(t)$ es la magnitud de la velocidad del k-ésimo electrón en la dirección de L

$$I(t) = \sum_{k=1}^{nLA} I_k(t) = \frac{q}{L} \sum_{k=1}^{nLA} V_k(t)$$

Suposiciones:

- Puedo modelar a las $V_k(t)$ como un PAESA de media nula, iid.
- Sólo los choques con partículas pesadas modifican la velocidad; es decir que $V_k(t_1)$ y $V_k(t_2)$ serán independientes si se produjeron uno o más choques entre el electrón k-ésimo y una partícula pesada en el intervalo (t_1, t_2) .

- La probabilidad de que se produzcan dos colisiones simultáneas es nula.
- El número de colisiones producidas en cada uno de dos intervalos de tiempo disjuntos son independientes entre sí.
- Para intervalos de tiempo pequeños Δt , la probabilidad de colisión es proporcional a Δt .

Distribución Poisson:

P{k colisiones en D segundos}=
$$\frac{(\alpha D)^k}{k!}e^{-\alpha D}$$

$$R_{V_kV_k}(\tau) = E\{V_k(t+\tau)V_k^*(t)\}$$
 la pregunta es si hubo o no colisión en $(t, t+\tau)$

Si llamamos $N_{|\tau|}$ al número de colisiones producidas en el intervalo $|\tau|$

$$R_{V_kV_k}(\tau) = E\{V_k(t+\tau) \ V_k^*(t)/N_{|\tau|} = 0\} \ P\{N_{|\tau|} = 0\} + E\{V_k(t+\tau) \ V_k^*(t)/N_{|\tau|} \neq 0\} \ P\{N_{|\tau|} \neq 0\}$$

$$R_{V_kV_k}(\tau) = \mathrm{E}\{|V_k(t)|^2\} \, \mathrm{e}^{-\alpha|\tau|} \stackrel{\longleftarrow}{=} \frac{k}{m} \, \mathrm{e}^{-\alpha|\tau|}$$
 k : constante de Boltzmann (1,38 $10^{-23} \mathrm{J/K}$)

$$R_{II}(\tau) = E\{I(t+\tau) I^*(t)\} = \left(\frac{q}{L}\right)^2 \sum_{k=1}^{nLA} R_{V_k V_k}(\tau) = \frac{n A q^2}{L} R_{V_k V_k}(\tau)$$

$$R_{II}(\tau) = \frac{A}{L} \frac{n q^2}{m \alpha} k T \alpha e^{-\alpha |\tau|}$$

$$R_{II}(\tau) = \frac{1}{R} k T \alpha e^{-\alpha|\tau|}$$

$$E(t) = I(t) R$$
 \longrightarrow $R_{EE}(\tau) = R^2 R_{II}(\tau)$

$$R_{EE}(\tau) = k T R \alpha e^{-\alpha|\tau|}$$

$$S_{EE}(f) = \mathcal{F}\{R_{EE}(\tau)\}$$

$$S_{EE}(f) = \frac{2 k T R}{1 + \left(\frac{2 \pi f}{\alpha}\right)^2}$$

Los procesos I(t) y E(t) son gaussianos, de media nula. Además, son ergódicos en media y correlación.

$$\frac{\alpha}{2\pi}$$
 ~ 10^{13} Hz para el Cu

Modelo Ruido Blanco (para frecuencias por debajo del THz)

$$R_{EE}(\tau) = 2 k T R \delta(\tau)$$

$$S_{EE}(f) = 2 k T R \quad [V^2/Hz]$$

$$R_{EE}(\tau) = 2 k T R \delta(\tau)$$

$$S_{EE}(f) = 2 k T R$$
 [V²/Hz]

Modelo de ruido blanco solo tiene sentido físico a la salida de un sistema que lo limite en banda.

En un ancho de banda BW = B, la potencia media normalizada de este proceso es:

$$P_{E_S} = R_{E_S E_S}(0) = \int_{-\infty}^{\infty} S_{E_S E_S}(f) \, df = E\{|E_S(t)|^2\} = var\{E_S(t)\} = \overline{E_S^2(t)} = 4 \, k \, T \, R \, B \quad [V^2]$$

Fórmula de Nyquist

Puede demostrarse que para cualquier circuito pasivo, lineal y bilateral que se encuentra a una temperatura T:

Objetivo: Obtener DEP de $I_n(t)$

$$I(t) = I_S + I_n(t)$$

- La probabilidad de que se produzcan dos pasajes de carga simultáneos es nula.
- El número de pasajes producidos en cada uno de dos intervalos de tiempo disjuntos son independientes entre sí.
- Para intervalos de tiempo pequeños Δt , la probabilidad de que ocurra un pasaje es proporcional a Δt .

$$I(t) = \sum_{k=-\infty}^{\infty} h(t - t_k) \qquad \alpha = \frac{I_s}{q}$$
aleatorios

Distribución Poisson:

P{pasaje de k portadores en D segundos}= $\frac{(\alpha D)^k}{k!}e^{-\alpha D}$

$$I(t) = \{Z * h\}(t)$$

$$R_{II}(\tau) = \{R_{ZZ} * r_{hh}\}(\tau)$$

$$S_{II}(f) = S_{ZZ}(f) s_{hh}(f) = S_{ZZ}(f) |H(f)|^2$$

$$S_{II}(f) = \alpha^2 H(0)^2 \delta(f) + \alpha |H(f)|^2$$

$$E\{I(t)\} = E\{Z(t)\} H(0)$$

$$I_S = \alpha \qquad q$$

Puede demostrarse (ver libro Papoulis)

$$R_{ZZ}(\tau) = \alpha^2 + \alpha \, \delta(\tau)$$

$$S_{ZZ}(f) = \alpha^2 \delta(f) + \alpha$$

 $S_{II}(f) = I_s^2 \delta(f) + \alpha |H(f)|^2$

$$S_{II}(f) = I_s^2 \delta(f) + \alpha |H(f)|^2$$

$$h(t) \cong q \delta(t)$$

$$S_{II}(f) = I_s^2 \delta(f) + \alpha q^2$$

$$S_{II}(f) = I_s^2 \, \delta(f) + \boxed{q \, I_s}$$

$$S_{I_nI_n}(f) = q I_s$$
 Modelo de ruido blanco

En ancho de banda B: $P_{I_n} = \overline{I_n^2} = 2 \ q \ I_s \ B$ [A²]

En el caso del diodo polarizado en directa:

$$I = I_S (e^{\frac{V}{V_T}} - 1)$$
 donde $V_T = \frac{kT}{q} \cong 25$ mV @ 20°C

Podríamos pensar que los dos términos de corriente (difusión y arrastre) son independientes y poseen sus propios procesos de ruido por pasaje aleatorio de cargas. Por lo tanto, en un ancho de banda B:

$$P_{I_n} = \overline{I_n^2} = 2 \ q \ I_s \ e^{\frac{V}{V_T}} B + 2 \ q \ I_s \ B = 2 \ q \ (I + 2I_s) B \cong 2 \ q \ I \ B$$
 [A²]

Dado que:
$$g = \frac{1}{r_d} = \frac{dI}{dV} = I_S \ e^{\frac{V}{V_T}} \frac{1}{V_T} \cong \frac{I \ q}{k \ T}$$

$$En \ directa$$

$$P_{l_n} = \overline{I_n^2} \cong 2 \ q \ I \ B = 2 \ k \ T \ g \ B \ [A^2]$$

$$\overline{E_n^2} = \overline{I_n^2} \ r_d^2 = 2 \ k \ T \ r_d \ B \ [V^2]$$

$$S_{l_n l_n}(f) = k \ T \ g \ [A^2/Hz]$$

$$I_n(t)$$

$$g = 1/r_d$$

$$S_{E_n E_n}(f) = k \ T \ r_d \ [V^2/Hz]$$

En el caso del diodo sin polarizar: Como la corriente neta es cero, podemos pensarlo como I_s de difusión y – I_s de arrastre:

$$\overline{I_n^2} \cong 2 \ q \ 2I_s \ B = 4 \ k \ T \ g \ B \quad [A^2] \qquad \overline{E_n^2} = \overline{I_n^2} \ r_d^2 = 4 \ k \ T \ r_d \ B \quad [V^2]$$

Potencias y DEPs

Para desnormalizar los valores de Potencia:

$$P[W] = \frac{P[V^2]}{R[\Omega]}$$

$$P[W] = P[A^2] R[\Omega]$$

Para desnormalizar los valores de DEP:

$$S_{EE}(f) = 2 k T R$$
 [V²/Hz]
 $S_{EE}(f) = 2 k T$ [W/Hz]

$$S_{II}(f) = 2 k T G$$
 [A²/Hz]
 $S_{II}(f) = 2 k T$ [W/Hz]

Potencia disponible

La máxima potencia que podemos "extraer" de una fuente dada se conoce con el nombre de Potencia Disponible P_a y es la potencia que entrega una fuente real a la carga, en condiciones de adaptación.

Recordando el teorema de máxima transferencia de potencia.

$$P_{R_L} = \overline{E^2(t)} \; \frac{R_L}{(R + R_L)^2}$$

$$\frac{d P_{R_L}}{d R_L} \stackrel{\downarrow}{=} 0$$

 $\frac{d P_{R_L}}{d R_L} \stackrel{\longleftarrow}{=} 0 \qquad P_{R_L} \text{ es máxima si } R_L = R \text{ (adaptación)}$

$$P_{a} = \frac{\overline{E^{2}(t)}}{4R} \qquad P_{a} = \frac{4kTRB}{4R} = kTB \quad [W]$$
© BW=B

DEP disponible

La DEP disponible (unilateral) para una resistencia a temperatura T=To=290K (17°C)

$$S_a(f) \cong 4 \ 10^{-21} \frac{\text{W}}{\text{Hz}} \cong -204 \frac{\text{dBW}}{\text{Hz}} = -174 \frac{\text{dBm}}{\text{Hz}}$$

Para un circuito RLC pasivo bilateral, la condición de adaptación de impedancia se cumple cuando $Z_L=Z^{st}$

$$Z^* = R(f) - jX(f)$$
 $S_a(f) = \frac{2 k T R(f)}{4 R(f)} = \frac{kT}{2}$

Temperatura equivalente de ruido de un dipolo

Para cualquier fuente con DEP constante definimos a la temperatura equivalente de ruido como:

$$T_e = \frac{P_a}{k B} \text{ [K]}$$

Si la DEP no es constante y es función de f: $T_e = \frac{2 S_a(f)}{k}$ [K]

Por lo tanto, en un circuito RLC, si todos sus componentes se encuentran a la misma temperatura física T, entonces la temperatura equivalente de ruido del dipolo es $T_e = T$

Fuentes:

- Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc.
- A. Greg (Greg L de Wikipedia en inglés) Animación mostrando la agitación térmica de un gas.
- Apuntes de cátedra de Dr. Agustín Roncagliolo y Dr. J. P. Pascual.
- Probability, Random Variables, and Stochastic Processes; Athanasios Papoulis, Unnikrishna Pillai, 2002.

