

UNITED STATES DEPARTMENT OF COMMERCE Patent and Trademark Office

Address: BOX INTERFERENCE

Commissioner of Patents and Trademarks

Washington, D.C. 20231

Telephone: (703) 308-9797 Facsimile: (703) 308-7953

MAILED

OCT 2 9 1999

PAT. & T.M. OFFICE BOARD OF PATENT APPEALS AND INTERFERENCES Applicants: Bouchard et al. Serial No.: 08/162,984 Filed: December 8, 1993 For: NEW TAXOIDS, THEIR

PREPARATION AND

PHARMACEUTICAL COMPOSITION

CONTAINING THEM

Accorded benefit: France 92 14813,

filed December 9, 1992

Pursuant to the APJ's decision on motion in Interference No. 103,675, this interference is hereby redeclared by deleting count 1 and substituting count 4 for count

1. Count 4 reads as follows:

[Bouchard] A taxoid of the formula:

in which

R represents hydrogen or acetyl,

R₁ represents benzoyl or R₂-O-CO- in which R₂ represents t-butyl, and

Ar represents phenyl or α - or β -naphthyl, said phenyl or naphthyl being unsubstituted or substituted by $C_{1,4}$ alkyl, $C_{1,4}$ alkoxy, halogen, or CF_3 , or Ar represents 2- or 3-thienyl or 2- or 3-furyl, said thienyl or furyl being unsubstituted or substituted by halogen,

[Chen] A compound of the formula

in which

 R^1 or -COR² in which R^2 is t-butyloxy, $C_{1.6}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.6}$ cycloalkyl, or phenyl, optionally substituted with one to three same or different $C_{1.6}$ alkyl, $C_{1.6}$ alkoxy, halogen or -CF₃ groups;

 R^2 is C_{1-6} alkyl, C_{1-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl, or a radical of the formula -W-R^x in which W is a bond, C_{2-6} alkenediyl, or -(CH₂)_t-, in which t is one to six; and R^x is naphthyl, furyl, thienyl or phenyl, and furthermore R^x can be optionally substituted with one to three same or different C_{1-6} alkyl, C_{1-6} alkoxy, halogen or -CF₃ groups; and

 R^3 is OCOR, -OCOOR, H, OH; R^4 is hydrogen; or R^3 and R^4 jointly form a carbonyl group; and R is $C_{1.6}$ alkyl.

Serial No. 08/162,984

[Hester] A compound of the Formula 1:

1

wherein

R₁ is selected from the group consisting of

-CH₃,

 $-C_6H_6$ or phenyl substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_3 alkoxy, halo, C_1 - C_3 alkylthio, trifluoromethyl, C_2 - C_6 dialkylamino, hydroxy or nitro, and

-2-furyl, 2-thienyl, 1-naphthyl, 2-naphthyl or 3,4-methylenedioxyphenyl;

R₂ is selected from the group consisting of -H, -NHC(O)H, -NHC(O)C₁-C₁₀ alkyl,

-NHC(O)phenyl, -NHC(O)phenyl substituted with one, 2 or 3 C₁-C₄ alkyl, C₁-C₅ alkoxy, halo,

 C_1 - C_3 alkylthio, trifluoromethyl, C_2 - C_6 dialkylamino, hydroxy or nitro.

-NHC(O)C(CH₃)=CHCH₃, -NHC(O)OC(CH₃)₃, -NHC(O)OCH₂phenyl, -NH₂, -NHSO₂-4-

methylphenyl, -NHC(O)(CH₂)₃COOH, -NHC(O)-4-(SO₃H)phenyl, -OH, -NHC(O)-1-adamantyl,

-NHC(O)O-3-tetrahydrofuranyl, -NHC(O)O-4-tetrahydropyranyl -NHC(O)CH2C(CH3)3,

 $-\mathrm{NHC}(\mathrm{O})\mathrm{C}(\mathrm{CH_3})_3, -\mathrm{NHC}(\mathrm{O})\mathrm{OC_1-C_{10}} \text{ alkyl, -NHC}(\mathrm{O})\mathrm{NHC_1-C_{10}} \text{ alkyl, -NHC}(\mathrm{O})\mathrm{NHPh},$

-NHC(O)NHPh substituted with one, 2 or 3 C_1 - C_4 alkyl, C_1 - C_3 alkoxy, halo, C_1 - C_3 alkylthio, trifluoromethyl, C_2 - C_6 dialkylamino, or nitro, -NHC(O) C_3 - C_8 cycloalkyl, -NHC(O) $C(CH_2CH_3)_2CH_3$ -NHC(O) $C(CH_3)_2CH_2CH_3$, phthalimido, -NHC(O)-1-phenyl-1-cyclopentyl, -NHC(O)-1-methyl-1-cyclohexyl, -NHC(S)NHC(CH_3)3, and -NHC(O)NHC(CH_3)3,

 R_3 is selected from the group consisting of -H, NHC(O)phenyl and -NHC(O)OC(CH $_3$) $_3$, with the overall proviso that one or R_2 and R_3 is -H but R_2 and R_3 are not not both -H;

 R_4 is -H or selected from the group consisting of -OH, -OAc(-OC(O)CH₃), -OC(O)OCH₂C(C1)₃, -OCOCH₂CH₂NH3 ⁺ HCOO; -NHC(O)phenyl,-NHC(O)OC(CH₃)₃, -OCOCH₂-CH₂COOH and pharmaceutically acceptable salts thereof, -OCO(CH₂)₃COOH and pharmaceutically acceptable salts thereof and -OC(O)-Z-C(O)-R {where Z is ethylene (-CH₂CH₂-), propylene (-CH₂CH₂-), -CH=CH-, 1,2-cyclohexane or 1,2-phenylene, R' is -OH, -OH base, -NR₂'R₃',-OR₃',-SR₃',-OCH₂C(O)NR₄' R₅' where R_2' is-H or -CH₃, R_3' , R_3' is (CH₂)_nNR'₆R₇' or (CH₂)_nN⁺R₆'R₇'R₈'X- where n is 1-3, R_4' is -H or C₁-C₄ alkyl, R₅' is -H, -C₁-C₄ alkyl, benzyl, hydroxethyl, -CH₂CO₂H is dimethylaminoethyl, R₆' and R₇' are CH₃, -CH₂CH₃, benzyl or R₆' and R₇' together with the nitrogen of NR₆'R₇' form a pyrrolidino, piperidino, morpholino, or N-methylpiperizino group; R₈' is -CH₃, -CH₂CH₃ or benzyl, X' is halide, and base is NH₃, (HOC₂H₄)₃N,N(CH₃)₃, CH₃N(C₂H₄)₂NH, NH₂(CH₂)₆NH₂, N-methylglucamine, NaOH or KOH)}, -OC(O)(CH₂)_NNR²R³ {where n is 1-3, R² is -H or -C₁-C₃ alkyl and or R³ is -H or C₁-C₃ alkyl, -OC(O)CH(R"NH₂ {where R"is selected from the group consisting of -H, -CH₃, -CH₂,CH(CH₃)₂, -CH(CH₃)CH₂CH₃, -CH(CH₃)₂, -CH₂ phenyl, -(CH₂)₄NH₂, -CH₂CH₂COOH,-(CH₂)₃NHC(=NH)NH₂}, the residue of the amino acid proline, -OC(O)CH=CH2, -C(O)CH2CH2C(O)NHCH2CH2SO3Y+, -OC(O)CH2CH2C(O)NHCH2CH2 CH₂SO₃-Y⁺ wherein Y⁺ is Na⁺ or N⁺(Bu)₄, and -OC(O)CH₂CH₂C(O)OCH₂CH₂OH;

 R_5 is -H or -OH, with the overall proviso that when R_5 is -OH, R_4 is -H and with the further proviso that when R_5 is -H, R_4 is other than H;

R₆ is -H:-H;

 R_7 is α -H: β -R₇₄;

R₇₄ and R₈ are taken together to form a cyclopropyl ring; and

 R_{10} is -H or -C(O)CH₃; or

Serial No. 08/162,984

the pharmaceutically acceptable salt thereof when the compound contains either an acidic or basic functional group.

Mary F. Downey
Administrative Patent Judge

(703) 308-9797