

Capstone Project

Emotions Detection

Artificial Intelligence & Machine Learning for Business Applications

20 August 2022

Nolan Grieves

Problem and Solution

- Problem: Detect human emotion (happy or not) in images of faces
- How can we automatically detect human emotion with high accuracy?
- Solution: Machine Learning Models
 - which model and how to optimize?

Data Description

- 48x48 grayscale JPEG images (Kaggle)
- Train (2000 happy, 2022 not happy)
- Test (200 happy, 224 not happy)
- Noticeable differences between two classes

Exploratory Data Analysis

- Average images show smile evident in happy images and upper cheek more prominent
- Difference image shows contrasts between chin, forehead, and upper cheeks
- Standard deviation images show largest differences in mouth
- Blurring and resizing images tested

Machine Learning Models

- Built 5 different types of models
 - Logistic Regression
 - Random Forest
 - XGBoost
 - Artificial Neural Network (ANN)
 - Convolutional Neural Network (CNN)
- Each model optimized
 - Model structure
 - Hyperparameters (model options)

Final Model: Convolutional Neural Network

- >80% accuracy and recall on test data
- Optimized design for image processing
 - First uses filters on data
 - Pools results to reduce data size
 - Also uses layers of neurons like ANNs
- Previous studies find CNNs better at computer vision tasks
 - Better at capturing relevant features
 - Ignore spatial and translational transformations
 - 'regularized' to prevent overfitting

Business Recommendations

- CNN model can be applied to grayscale images to predict happy or not with ≥80% accuracy
- Emotional AI (affective computing) has numerous applications
 - **Improve human-machine interactions** (detect emotion trigger response)
 - Advertising, marketing, customer support (gauge response)
 - Education (student comprehension)
 - Healthcare (emotional state in counseling)
 - Workplace (sentiment of meetings)
 - Interest of things (devices respond based on emotion)
 - * Improved model could detect facial features or individuals

Stanford University

Summary & Further Improvements

- 5 types of machine learning models built
- CNN gives best performance (>80% test accuracy)
- Further Improvements
 - Applied CNN to full Kaggle data (7 emotions): 54% test accuracy
 - Test different structures of CNN (number and position of layers)
 - Methods to further reduce overfitting (e.g., size and position of dropout)
 - Data augmentation (e.g., image rotation)
 - Test other Transfer Learning models (further test VGG16 and others)
 - Further optimize hyperparameters

More training data: GPT-3

- 100s of billions of training words
- bigger model (175 billion parameters)