Explanation of GIVE ME SOME FOOD(GMSF) function approximation

Gwangju AI school TEAM 4 of Vision A Give Me Some Food

1. Real number ℝ

branches of mathematics.

- 1.1. Mathematical definition: A real number is a value that represents a quantity along a continuous line. The real number system is a unification of the rational and irrational numbers, representing all points on an infinitely long number line. Set of real number is denoted by the symbol \mathbb{R} . Real numbers have the property of being ordered \mathbb{R} , which means that for any two different real numbers, one is necessarily greater than the other. This ordering, combined with their completeness (every bounded set has a least upper bound), gives rise to many foundational results in calculus, analysis, and other
- 1.2. Float point: Computers inherently work with discrete values due to their binary nature, so they can't represent most real numbers exactly. Instead, computers approximate real numbers using a format called floating-point representation. Computers typically use the IEEE 754 standard for floating-point arithmetic. The most commonly used formats under this standard are single precision(usually known as float in many programming languages) and double precision(double). Following figure shows an example of float point representation.

figure 1. Example of a float point representation

		0	0	0	0	• • •	0	1	0	1	0	1	0	• • •	0	0	(0			
		sign	exponent(magnitude)					fr	fraction(significand, mantissa)							bias					
_		bit									iraction(significana, martissa)								Sido		
	32 bit	1		8 bit					23 bit								127				
	SE DIC	bit		0 510					25 510								12.				
	64 bit	1			-	11 bi	it						52	bit					1023		
	C. Dit	bit	11 510						32 Bit												

- 2. Min-max scaling(or normalization): technique in preprocessing data for machine learning. The primary objective of min-max scaling is to transform features to be within a specific range, typically [0, 1].
- 2.1. Formula: Given a dataset, for each data point x in a feature, the transformed value x' after min-max scaling is computed as $x' = \frac{x \min}{\max \min}$ where x is the original value, min and max are the minimum and maximum value of the

¹⁾ Total ordered set.

feature in the dataset each. The formula can be modified as $x' = a + \frac{(x - \min)(b - a)}{\max - \min}$ for scaling the feature to be within a range [a, b].

- 2.2. Advantages²⁾: Min-max scaling ensures that all features have the same scale, in short scale invariance. This can be particularly important for algorithms that are sensitive to the scale of input features, like k-means clustering or gradient descent optimization in neural networks. And Min-max scaling preserves the shape of the original distribution, meaning the relative distances between data points remain the same. Also, by scaling features into a [0, 1] range, it can be beneficial for algorithms that expect input features within this range, like neural network.
- 3. Taylor series: A way to representation of a function as an infinite sum of terms, each of which is calculated from the values of the function's derivatives at a single point.
- 3.1. Definition

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!} + (x-a)^3 + \dots = \sum_{i=0}^{\infty} \frac{f^{(i)}}{i!}(x-a)^i = \sum_{i=0}^{\infty} a_i x^i$$

3.2. Taylor polynomial: Suppose we take Taylor series $\sum_{i=0}^{\infty} a_i x^i$ as infinite sum. Then partial sum $\sum_{i=0}^{n} a_i x^i$ is Taylor polynomial of nth degree.

figure 2. Taylor polynomial of cosine at degree 8.

3.3. Runge phenomenon: An unexpected behavior that can occur when trying to approximate certain functions using polynomial interpolation. Take a function

²⁾ Of course, there may be disadvantages, but in this paper, we try to include only the advantages that are necessary here.

and try to approximate it using a polynomial by picking a set of points and finding the polynomial that passes through these points (interpolation), one might intuitively expect that as you add more points (and therefore increase the degree of the interpolating polynomial), the approximation would get better everywhere. However, this is not always the case.

figure 3. Example of Runge phenomenon

- 4. Way of NumPy(C, math.h) calculates functions.
- 4.1. NumPy uses the computational methods found in the C language's math.h header file.
- 4.2. In math.h, calculations are structured based on data types (float128, float64, float32). However, the calculations here are strikingly similar.
- 4.3. math.h also defines numerical functions using the Taylor polynomial. To prevent the Runge phenomenon, it approximates on an interval-by-interval basis.
- 4.4. Additionally, there are instances where function values are returned using a dictionary (e.g., logarithm functions).
- 4.5. Functions can also be defined using pointer operations. Furthermore, square root operations are either incorporated in the ALU or use highly complex algorithms.

see examples: https://github.com/bminor/glibc/blob/master/sysdeps/ieee754/ldbl-128/e_asinl.c

- 5. Actual approximation: We already know that $e^x = \sum_{i=1}^{\infty} \frac{x^i}{i!}$ regarding value and differentiation. Infinite sum would guarantee those two important aspects but computer(needlessly human) can't handle infinite sum even if converges. So rather than use Taylor series, in here uses Taylor polynomial instead.
- 5.1. Taylor polynomial and adjusted coefficient

$$f(x) = \sum_{i=0}^{n} a_i x^i \dots = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

If x is near 0, terms of high degree such as x^{10} are approximately zero, so we decided to define Taylor polynomial $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n := \tilde{f}(x)$ since lower degree term is and the difference between f and \tilde{f} as $f(x) - \tilde{f}(x) := error(x)$. We take adjusted coefficient by manually and gradient descent both. Source code is below.

```
mport numpy as np
 original function
def original_function(x):
   return np.tan(x)
def cost(p, q):
   x = np.linspace(0, 0.8, 800)
   return (x[1]-x[0]) *np.sum((original_function(x) -approximation_function(x, p, q))**2)
def gradients(p, q):
   h = 1e - 6
   J =cost(p, q)
J_p =cost(p +h, q)
   dp = (J_p -J) /h
# partial differentiation py q
   J_q = cost(p, q + h)
   dq = (J_q - J) / h
   return dp, dq
def gradient descent(lr =0.005, num iterations =2000):
   print("==:
    for i in range(num_iterations):
       dp, dq =gradients(p, q)
       p =p -lr *dp  # updating gradient
       q =q -lr *dq
                        # updating gradient
       # printing processes
       if i %200 ==0:
          print(f"Iteration {i:4d}: Cost = {cost(p, q):.16f}, p = {p:.13f}, q = {q:.13f}")
   return p, q
p, q =gradient_descent()
print("======
print("OPTIMAL RESULT")
print(f"Optimal p: {p} -> coefficient_1 = {p*(0.1)}")
print(f"Optimal q: {q} -> coefficient 2 = {q*(0.11)}"
```

5.2. Tilde approximation³⁾: In computer science and algorithm analysis, the tilde is used to describe an approximation, specifically when discussing asymptotics. Saying $f(n) \sim g(n)$ means that f(n) and g(n) are asymptotically equivalent. Formally, this means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$. In this context, only the highest order term affects the result, and the others can be omitted. Here we got some idea and thought this wat: at point near zero, we take lower order term rather than higher order.

³⁾ This notation helps to express that two functions grow at essentially the same rate, even if they might not be strictly equivalent in terms of big O, big Theta, or big Omega notations.

- 5.3. Horner's method: A technique used to evaluate polynomial functions efficiently. Instead of calculating each term of the polynomial individually and summing them up. Horner's method reduces the number of multiplications and additions by leveraging a nested factorized form of the polynomial.
- 5.4. Osculating circle: The circle that has the same figure 4. Osculating circle tangent and curvature as the curve at the given point. Because of this, it provides a good approximation of the curve near that point. If the function f(x) is smooth at x = a and curvature of the function $\kappa_a = k$, osculating circle tangent to the curve at point P(a, f(a)) and its radius $\frac{1}{h}$.

osculating circle P(a, f(a))

y = f(x)

STRATAGIES

- \blacktriangleright Take domain of the approximation by [-1,1] since we want to use min-max scaling for convinience. Also, we can Also we don't want Runge phenomenon.
- ▶ We need to adjust coefficient of polynomial.
- ▶ Since python is not that fast to find values in dictionary compared with C. we don't use it.
- ▶ At some intervals, osculating circle works better considering square root operation.

6. Result

6.1. Efficiency test source code example

```
import numpy as np
import time
arccos_b1 = 1
arccos_b5 =0.075
arccos_b7 =0.04464285714285714285714285
arccos_b11 =0.02734375
arccos_b13 =0.02208533653846153846153846153846
arccos_pi_over_2 = 1.57079632679489661923132169163975
# modified arccos function with degree 13, some modified coefficients
def arccos(n):
   result =arccos_pi_over_2 -n * (arccos_b1 +p * (arccos_b3 +p * (arccos_b5 +p * (arccos_b7 +p * (arccos_b9 +p * (arccos_b11 +arccos_b13 *p))))))
    return result
```

```
# Generate a list of random numbers
random_nums1 = [random.random() *0.76 for _in range(1000000)]

def time_test1(test_original, test_modified) :
    # testing cases
    exp_original_start =time.time()
    for num in random_nums1:
        test_original(num)
    exp_original_done =time.time()
    exp_modified_start =time.time()
    for num in random_nums1:
        test_modified(num)
    exp_modified_done =time.time()
    exp_time_comparision
    =100 *round((exp_modified_done-exp_modified_start)/(exp_original_done-exp_original_start), 2)
    # print
    print("original function elapsed time :", exp_original_done -exp_original_start)
    print("f'Result : {100 -exp_time_comparision}% time consumption saved')
    return None
time test1(np.arccos, arccos)
```

6.2. Accuracy test source code example

```
mport numpy as np
import random
test_value_random =random.random()
  F 7. approximation of exponential x to the base 2 function(2^x or 2 ** x) constants for modified estimation
exp2 b0 = 1
exp2_b1 =1
exp2 b3 =0.168067226890756302521008403361
exp2_b4 =0.04545454545454545454545454545
exp2_log2 =0.693147180559945309417232121458
  in odified exponential x to the base 2 function with degree 4, some modified coefficients
  For operation test
def exp2(n):
      n =exp2_log2 *n
      result =exp2 b0 +n * (exp2 b1 +n * (exp2 b2 +n * (exp2 b3 +n *exp2 b4)))
                             -Testing values----
test_original =np.exp2
test_approximation =exp2
test_value1 =0.13
test_value2 =0.35
test_value3 =0.<u>5</u>7
rest_value3 =0.5/
print('7. approximation of y=2^x', '\n')
print('Testing value1 x=0.13')
print('original function :', test_original(test_value1))
print('modified function :', test_approximation(test_value1), '\n')
print('Testing value2 x=0.35')
print('original function :', test_original(test_value2))
print('modified function :', test_approximation(test_value2), '\n')
print('Testing value3 x=0.57')
print('original function :', test_original(test_value2))
print('original function :', test_original(test_value3))
print('modified function :', test_approximation(test_value3), '\n')
print(f"Testing value_random x={test_value_random}")
print('original function :', test_original(test_value_random))
print('modified function :', test_approximation(test_value_random))
```

6.3. Hypothesis test: Operating source code 6.1. we get around 30% improvement comparing original way(NumPy). We got several samples, and operated t-test. Statistical result is below. Every test shows that modified way lessen time under p<<.05.

table 1. Paired sample statistics

Paired sample statistics									
		Mean	N	Std. Deviation	Std. Error Mean				
	NumPy (original)	.4490	37	.02255	.00371				
arccosine -	modified	.3081	37	.01959	.00322				
	NumPy	.4420	32	.02036	.00360				
arcsine -	modified	.2824	32	.01212	.00214				
hyperbolic arcsine -	NumPy	.4671	50	.02452	.00347				
hyperbolic arcsine -	modified	.2661	50	.01525	.00216				
cosine -	NumPy	.4321	59	.02179	.00284				
cosine -	modified	.2785	59	.01468	.00191				
hamanhalia assina	NumPy	.4470	59	.02893	.00377				
hyperbolic cosine -	modified	.2174	59	.01251	.00163				
	NumPy	.4381	82	.02543	.00281				
exponential -	modified	.1664	82	.01110	.00123				
amanantial (base 0)	NumPy	.4679	53	.03557	.00489				
exponential (base 2) -	modified	.1793	53	.01301	.00179				
	NumPy	.4483	50	.02689	.00380				
exponential - 1	modified	.1890	50	.01163	.00164				
ain a	NumPy	.4383	46	.02760	.00407				
sine -	modified	.2693	46	.01354	.00200				
hrmarhalia aina	NumPy	.4436	65	.02916	.00362				
hyperbolic sine -	modified	.2030	65	.01354	.00168				
tonoont	NumPy	.4362	54	.02312	.00315				
tangent -	modified	.2248	54	.01268	.00173				
barranhalia aira	NumPy	.4769	66	.02791	.00344				
hyperbolic sine -	modified	.2302	66	.01982	.00244				

table 2. Paired samples test

		1	Paired Samples	Test				
_	Mean	Std. Deviation	Std. Error Mean	Interva Diffe	nfidence l of the rence	- t -	df	p(2-tailed)
difference between				Lower	Upper			
arccosine	.14089	.02331	.00383	.13312	.14866	36.762	36	.000
difference between arcsine	.15960	.01677	.00296	.15355	.16565	53.841	31	.000
difference between hyperboilic arcsin	.20098	.02334	.00330	.19435	.20761	60.896	49	.000
difference between cosine	.15368	.02264	.00295	.14778	.15958	52.128	58	.000
difference between hyperbolic cosine	.22956	.02795	.00364	.22227	.23684	63.092	58	.000
difference between exponential	.27165	.02487	.00275	.26619	.27712	98.901	81	.000
difference between exponential(base 2)	.28860	.03010	.00413	.28030	.29690	69.808	52	.000
difference between exponential-1	.25930	.02450	.00347	.25234	.26626	74.826	49	.000
difference between sine	.16897	.02550	.00376	.16139	.17654	44.933	45	.000
difference between hyperbolic sine	.24061	.02801	.00347	.23367	.24755	69.265	64	.000
difference between tangent	.21144	.02290	.00312	.20519	.21769	67.850	53	.000
difference between hyperbolic sine	.24673	.02561	.00315	.24043	.25302	78.266	65	.000