Eigen-2

Title

Simple beam with a lumped mass supported on two springs

Description

Calculate the natural period of free vibration of a beam with a lumped mass.

Structural geometry

MODEL

Analysis Type

2-D eigenvalue analysis (X-Y plane)

Unit System

in, lbf

Dimension

Length L = 120 inSpring constant K = 300 lbf/in

Element

Beam element

Material

Modulus of elasticity $E = 30 \times 10^6 \text{ psi}$

Section Property

Moment of inertia $Iyy = 1.0 \text{ in}^2$

Boundary Condition

Nodes 1, 2 and 3; Constrain Dx

Nodes 1 and 3 ; Y spring constant = 300 lbf/in

Analysis Case

A lumped mass, $M = 1000/386 \text{ lbf} \cdot \text{sec}^2/\text{in exists}$ at the node 2.

Results

Eigenvalue Analysis Results

			ΕI	GENV	ALUE	A N	ALYS	IS				
Mode		Frequ	jency		Period		Tolerance					
No	(rad/	sec)	(cycle	/sec)	(se	ec)	Tolerance					
1	11	,783312	1	,875372	0	,533227	2,04	70e-016				
MODAL PARTICIPATION MASSES(%) PRINTOUT												
Mode	TRAN-X		TRAN-Y		TRAN-Z		ROTN-X		ROTN-Y		ROTN-Z	
No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
1	0,00	0,00	100,00	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
EIGENVECTOR												

Comparison of Results

Unit: psi

Result	Theoretical	STAAD/PRO	MIDAS/Civil
Natural period	0.533	0.533	0.533

References

Timoshenko, Young and Weaver, "Vibration Problems in Engineering", 4th Edition, p. 11, Problem 1.1-3.

"STAAD-III/ISDS, Getting Started and Example Manual", Research Engineers, Inc.,1994, Verification problem No.2.