

Unit 4 Tree

Prof. Brijesh Vala, Assistant Professor Computer Science & Engineering

Topic-1

Tree

Objectives

At the end of this unit, you will be able to understand the:

- basic tree terminologies (concepts)
- Various types of trees
- Various operation perform on binary trees

Nature View of a Tree

Computer Scientist's View

- A **tree** is a non-linear data structure. A tree consists of finite set of elements (one or more), called nodes, and a finite set of directed lines called branches, that connect the nodes.
- Tree is an acyclic digraph.
- The elements are connected in such a way that there are no loops.
- There is only a unique path from source to destination in a tree.

- When the branch is directed toward the node, it is indegree branch.
- When the branch is directed away from the node, it is an outdegree branch.
- The sum of the indegree and outdegree branches is the degree of the node.
- If the tree is not empty, the first node is called the root.

- Root node is the first node in the hierarchical arrangement. There can be only one root in the tree.
- Parent node is an immediate predecessor of a node.
- The immediate successors are called child.

DIGITAL LEARNING CONTENT

- The in-degree of the root is zero.
- With the exception of the root, all of the nodes in a tree must have an in-degree of exactly one; that is, they may have only one predecessor.
- All nodes in the tree can have out-degree of zero, one, or more.

- A leaf is any node with an out-degree of zero, that is, a node with no successors. (a node without any further child node)
- A node that is not a root or a leaf is known as an internal node.
- A node is a parent if it has successor nodes; that is, if it has outdegree greater than zero.
- A node with a predecessor is called a child.

•leaf: i,j,k,e,g,h,d

•Internal: b,c,f

Parent: root+any internal node (A,B,C,F)

- Two or more nodes with the same parents are called siblings.
- An ancestor is any node in the path from the root to the node.
- A descendant is any node in the path below the parent node; that is, all nodes in the paths from a given node to a leaf are descendants of that node.

Sibling: c,d

Ancestor(f):b,a
Descendant(f):i,j,k

- A path is a sequence of nodes in which each node is adjacent to the next node. It is number of successive edges from source node to destination node.
- The level of a node is its distance from the root. The root is at level 0, its children are at level 1, etc. ...

- The height of the tree is the total number of levels in the tree.
- The depth of the tree is last(max) level number of the tree.
- A <u>sub-tree</u> is any connected structure below the root. The first node
 in the subtree is known as the root of the subtree.

Different types of Trees

- Binary tree
- Threaded Binary Tree
- Binary Search Tree
- AVL Tree
- B Tree
- B+ Tree
- 2-3 Tree

Binary Trees

- A binary tree is a tree in which no node can have more than two children (subtrees); the maximum outdegree for a node is two.
- In other words, a node can contain either zero, one, or two subtrees.
- These subtrees are designated as the left subtree and the right subtree.

Binary Trees

A null tree is a tree with no nodes

FIGURE 6-6 Collection of Binary Trees

- The height of binary trees can be mathematically predicted
- •Given that we need to store N nodes in a binary tree, the maximum

height is

$$H_{\text{max}} = N$$

Height: 3

Total node: 3

A tree with a maximum height is rare. It occurs when all of the nodes in the entire tree have only one successor.

•The minimum height of a binary tree is determined as follows:

$$H_{\min} = \left[\log_2 N\right] + 1$$

Height: 3

Total node: 7

For instance, if there are three nodes to be stored in the binary tree (N=3) then $H_{min}=2$.

•Given a height of the binary tree, H, the minimum number of nodes in the tree is given as follows:

$$N_{\min} = H$$

•The formula for the maximum number of nodes is derived from the fact that each node can have only two child except leaf node.

$$N_{\text{max}} = 2^H - 1$$

Height: 3

Total nodes: 7

•A binary tree with N nodes has exactly N-1 edges.

•The number of leaf nodes is equal to the number of nodes with two

children + 1.

$$N_{\text{max}} = 2^H - 1$$

Total edges: 6

Leaf nodes: 4

•The balance factor of a binary tree is the difference in height between its left and right sub trees:

$$B = H_L - H_R$$

Balance of the В tree (b) (c) (d) (a) (e) (f) В (g) (h)

Complete binary trees

- •A complete binary tree is tree in which all the leaves are at same level and any non-leaf node have exactly two children.
- •The total number of nodes in complete binary trees are $2^h 1$.
- •Total number of leaf nodes in complete binary trees are 2^{h-1}.
- •Non leaf node = $2^{h-1} 1$.
- •At each level there are exactly 2^L number of nodes.

Complete binary trees

strictly binary trees

- •When every non-leaf node in **binary tree** is filled with left and right subtrees, then a tree is called strictly binary tree.
- •In other word a node have either two child node or zero child node at all.
- •A strictly binary tree with N leaves always have 2N-1 nodes.

strictly binary trees

DIGITAL LEARNING CONTENT

strictly binary trees

(a) Complete trees (at levels 0, 1, and 2)

(b) Nearly complete trees (at level 2)

FIGURE 6-7 Complete and Nearly Complete Trees

Representation of a trees

- Array representation
- Linked List representation

Array Representation of a trees

Linked Representation of a trees

Binary trees Transversal

•A binary tree traversal requires that each node of the tree be processed once and only once in a predetermined sequence.

- 1. In-order traversal Left sub tree ----- root-----right sub tree
- 2. Pre-order traversal root----- Left sub tree ----- right sub tree
- 3. Post order traversal Left sub tree----- root

(b) Inorder traversal

(c) Postorder traversal

DIGITAL LEARNING CONTEN

Trees Transversal

ALGORITHM 6-2 Preorder Traversal of a Binary Tree

```
Algorithm preOrder (root)
Traverse a binary tree in node-left-right sequence.
  Pre root is the entry node of a tree or subtree
  Post each node has been processed in order
1 if (root is not null)
     process (root)
  2 preOrder (leftSubtree)
     preOrder (rightSubtree)
2 end if
end preOrder
```


Trees Transversal

Preorder: ABEFCGH

Find the preorder traversal of following tree

A,B,E,F,I,K,C,G,H

Inorder traversal

ALGORITHM 6-3 Inorder Traversal of a Binary Tree

```
Algorithm inOrder (root)
Traverse a binary tree in left-node-right sequence.
  Pre root is the entry node of a tree or subtree
  Post each node has been processed in order
1 if (root is not null)
     inOrder (leftSubTree)
  2 process (root)
     inOrder (rightSubTree)
2 end if
end inOrder
```


Find the Inorder traversal of the following

Postorder traversal Algorithm

ALGORITHM 6-4 Postorder Traversal of a Binary Tree

```
Algorithm postOrder (root)
Traverse a binary tree in left-right-node sequence.
  Pre root is the entry node of a tree or subtree
  Post each node has been processed in order
1 if (root is not null)
    postOrder (left subtree)
  postOrder (right subtree)
    process (root)
2 end if
end postOrder
```


Find the Postorder traversal of the following tree

FIGURE 6-15 Infix Expression and Its Expression Tree

Reconstruct Binary tree

We can reconstruct binary from following two traversals

- In order traversal
- 2) Pre-order or post order traversal

Lets reconstruct binary from following two traversals

- 1) In order traversal: XBGDHAEICJFK
- 2) Pre-order traversal: ABXDGHCEIFJK

Lets reconstruct binary from following two traversals

- In order traversal: bgdaecf
- 2) Pre-order traversal: gdbefca

- •In a linked representation of a binary tree, the number of null links (null pointers) are actually more than non-null pointers.
- These null links can be replace with pointers called threads.
- Consider the following binary tree:

- •A left null link of a node is replaced with the address of its inorder predecessor.
- •And right null link of a node is replace with the address of its inorder successor.
- •In previous example there are 7 null pointers & 5 Actual.
- •We can generalize it that for any binary tree with n nodes there will be (n+1) null pointers and 2n total pointers.
- •The objective here to make effective use of these null pointers.

- •And binary tree with such pointers are called threaded binary tree.
- •In the memory representation of a threaded binary tree, it is necessary to distinguish between a normal pointer and a thread.

Threaded Binary tree

•Therefore we have an alternate node representation for a threaded binary tree which contains five fields as show bellow

For any node p, in a threaded binary tree.

lthred(p)=1 indicates lchild (p) is a thread pointer

lthred(p)=0 indicates lchild (p) is a normal

rthred(p)=1 indicates rchild (p) is a thread

rthred(p)=0 indicates rchild (p) is a normal pointer

Threaded tree Transversal

Threaded tree Transversal

- We start at the leftmost node in the tree, print it, and follow its right thread
- If we follow a thread to the right, we output the node and continue to its right
- If we follow a link to the right, we go to the leftmost node, print it, and continue

Threaded tree Transversal

Start at leftmost node, print it

Threaded tree Transversal

Follow thread to right, print node

Threaded tree Transversal

Follow link to right, go to leftmost node and print

Threaded tree Transversal

Follow thread to right, print node

Threaded tree Transversal

Follow link to right, go to leftmost node and print

Threaded tree Transversal

Follow thread to right, print node

Threaded tree Transversal

Follow link to right, go to leftmost node and print

Threaded tree Transversal

Follow thread to right, print node

Threaded tree Transversal

Follow link to right, go to leftmost node and print

Advantage of Threaded Binary tree

- The traversal operation is more faster than that of its unthreaded version.
- Because with threaded binary tree non-recursive implementation is possible which can run faster and does not require the botheration of stack management.
- we can efficiently determine the predecessor and successor nodes starting from any node.

Disadvantage of Threaded Binary tree

- Insertion and deletion from a threaded tree are very time consuming operation compare to non-threaded binary tree.
- This tree require additional bit to identify the threaded link.

Binary Search Tree

Binary Search Tree

- The node in extreme left will be the smallest node in the tree.
- The node in the extreme right will be the largest node in the tree.
- Since nodes in binary search trees are ordered the time needed to search an element is greatly reduced.

Operation on Binary Search Tree

- Search
- Insertion
- Deletion

Search

- Search function is used to find whether a value is present in a tree or not.
- This process begins at the root node.
- The function first checks if the binary tree is empty.
- Then it checks if the value to be searched is less than or greater than the node.
- If the value is less than it will go to the left sub tree else to the right sub tree.

Insert

- Insert is used to add a new node with a given value at the correct position in the binary search tree.
- The insert function continues moving down the tree until it reaches a leaf node.
- If the new node's value is greater than the parent node then the new node is inserted in right sub tree else in the left sub tree.

Deletion

- 1) Deleting a node that has no children.
- 2) Deletion a node that has one child.
- 3) Deletion a node that has two children.

Deletion

Deletion a node with one child

- To handle this case node's child is set to be child of node's parent.
- If node was left child of its parent then node's child becomes left child of node's parent.
- If node was right child of it's parent then node's child becomes right child of node's parent.

Deletion a node with Two child

- To handle this case replace node's value with its IN ORDER PREDECESSOR or IN ORDER SUCCESSOR.
- In order predecessor is right most child of left sub tree.
- In order successor is left most child of right sub tree.

Deletion a node with 45

Deletion a node with 45

UNIT 4 Tree

Prof. Pintu Chauhan, Assistant Professor Computer Science & Engineering

Topic-2

AVL Tree

Balanced Tree

 Binary Search Tree gives advantage of Fast Search, but sometimes in few cases we are not able to get this advantage. E.g. look into worst case BST

50

Balanced binary trees are classified into two categories

for Binary Search Tree

Worst search time cases

Height Balanced Tree (AVL Tree)

- A Balance factor of a node $|H_L H_R| \le 1$, where $H_{L_1} H_R$ are heights of left and right sub-tree respectively
- Permissible balance factors:
 - A Left-High (balance factor +1)
 The left-sub tree is one level taller than the right-sub tree
 - Balanced (balance factor 0)
 The left and right sub-trees are both the same heights
 - Right-High (balance factor -1)
 The right sub-tree is one level taller than the left-sub tree.
- In height balanced tree, each node must be in one of these states
- If there exists a node in a tree where this is not true, then such a tree is called Unbalanced

AVL Tree

AVL Tree

- Sometimes tree becomes unbalanced by inserting or deleting any node
- Then based on position of insertion, we need to rotate the unbalanced node
- Rotation is the process to make tree balanced

AVL Tree Rotation

The following operations are performed on AVL tree...

- Search
- Insertion
- Deletion

AVL Tree Rotation

There are **four** rotations and they are classified into **two** types.

Operation on an AVL

- In AVL tree, after performing operations like insertion and deletion we need to check the **balance factor** of every node in the tree. Permissible balance factors:
- If every node satisfies the balance factor condition then we conclude the operation otherwise we must make it balanced.
- If there exists a node in a tree where this is not true, then such a tree is called Unbalanced

Rotation operations are used to make the tree balanced.

Rotation is the process of moving nodes either to left or to right to make the tree balanced.

Single Left Rotation (LL Rotation)

- In LL Rotation, every node moves one position to left from the current position.
- To understand LL Rotation, let us consider the following insertion operation in

AVL Tree.

Insert 8, 10, 12

8

10

-1

12

Tree is imbalanced

To make balanced we use LL Rotation which moves nodes one position to left

After LL Rotation Tree is balanced

Single Right Rotation (RR Rotation)

- In RR Rotation, every node moves one position to right from the current position.
- To understand RR Rotation, let us consider the following insertion operation in

After RR Rotation Tree is balanced

Left Right Rotation (LR Rotation)

- The LR Rotation is a sequence of single left rotation followed by a single right rotation
- In LR Rotation, at first, every node moves one position to the left and one position to right from the current position.

To understand LR Rotation, let us consider the following insertion operation in

Right Left Rotation (LR Rotation)

- The RL Rotation is a sequence of single right rotation followed by a single left rotation
- In RL Rotation, at first, every node moves one position to the right and one position to left from the current position.
- To understand RL Rotation, let us consider the following insertion operation in

AVL Tree Rotation

The following operations are performed on AVL tree...

- Search
- Insertion
- Deletion

Search Operation in AVL Tree

- In an AVL tree, the search operation is performed with O(log n) time complexity.
- The search operation in the AVL tree is similar to the search operation in a Binary search tree.
- We use the following steps to search an element in AVL tree.
- **Step 1 -** Read the search element from the user.
- **Step 2** Compare the search element with the value of root node in the tree.
- **Step 3** If both are matched, then display "Given node is found!!!" and terminate the function
- **Step 4 -** If both are not matched, then check whether search element is smaller or larger than that node value.

Search Operation in AVL Tree

- **Step 5** If search element is smaller, then continue the search process in left subtree.
- **Step 6** If search element is larger, then continue the search process in right subtree.
- **Step 7** Repeat the same until we find the exact element or until the search element is compared with the leaf node.
- **Step 8 -** If we reach to the node having the value equal to the search value, then display "Element is found" and terminate the function.
- Step 9 If we reach to the leaf node and if it is also not matched with the search element, then display "Element is not found" and terminate the function.

Insertion Operation in AVL Tree

- In an AVL tree, the insertion operation is performed with O(log n) time complexity.
- In AVL Tree, a new node is always inserted as a leaf node.
- The insertion operation is performed as follows.
- **Step 1** Insert the new element into the tree using Binary Search Tree insertion logic.
- **Step 2** After insertion, check the **Balance Factor** of every node.
- Step 3 If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.
- Step 4 If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is said to be imbalanced. In this case, perform suitable Rotation to make it balanced and go for next operation.

Deletion Operation in AVL Tree

- The deletion operation in AVL Tree is similar to deletion operation in BST.
- But after every deletion operation, we need to check with the Balance Factor condition.
- If the tree is balanced after deletion go for next operation otherwise perform suitable rotation to make the tree Balanced.

UNIT 4 Tree

Prof. Shyambabu PAndey, Assistant Professor Computer Science & Engineering

Topic3

B & B+ Tree

Issue with Binary Search Tree (BST): Binary search tree is a good idea, but it stores only one value at each node. Suppose we have a large number of values or we want to store more than one value at one node then Binary search tree is not applicable. So, we have to go for Multiple Way Search Tree. It is also known as M -Way Search Tree or M-ary tree.

M-way search tree is a tree that can have more than two children.

An m-way is tree of order m (m children) in which:

- 1. Each internal node (except root) can have at most m children/nod and each node can contain at most m-1 value.
- 2. The values in each node are in ascending order.
- 3. The values in the first i children are smaller than the i-th value.
- 4. The values in the last m-i children are larger than the i-th value.

Example: Let us take a 4-way search tree.

Here the order of tree is 4 so the value of m is 4. We can see each node has at most 4 children and each node can contain at most 3

(m-1) nodes.

Issue with M-Way Search Tree: M-way search tree is not a height balanced tree. It will take more time for insertion and deletion operation of a node.

B Tree was developed by **Bayer and McCreight** in 1972 with the name **Height Balanced m-way Search Tree**. Later it was named as B-Tree.

A B-Tree is a height balanced m-Way search tree, In which:

 If the degree of tree is m then each node (Internal node except root node) can contain at most m children/nodes and at least [m/2].

- If the degree of the tree is m, then each node must have at least [m/2]-1 keys and maximum of m-1 keys.
- Root nodes can have a minimum of two children.
- All the leaf nodes should have the same depth.

Operations on B-Tree:

- Searching
- Insertion
- Deletion

Searching in B-Tree: Suppose we want to search an element 'X' In a B-Tree, then the following will be steps:

- 1. First of all compare 'X' with the first element of the root node in the tree.
- 2. If comparison is matched, then display "Given element is found" and terminate the function.
- 3. If comparison is not matched, then check 'X' is smaller or larger than that key value (That means first element of root node).

- 4. If 'X' is smaller, then go to the left subtree and continue the search process.
- 5. If 'X' is larger, then compare 'X' with the next key value in the same node and repeat steps 2, 3, 4 and 5 until we find the exact match or until the 'X' is compared with the last key value in the leaf node.
- 6. If the last key value in the leaf node is also not matched then display "Element is not found" and terminate the function.

Construct a B-Tree of order 3 by using following key values 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

Here order of B-Tree is 4. So m = 4

- No. of at most children of internal node except root node = m = 4
- No. of at least children node of internal node except root node m/2 = 2
- No. of at most key value at every node of tree= m-1 = 3
- No. of at least key value at every node of tree= m/2-1 = 1

Insert 10

Time Complexity:

- **Best case**: O(1) (constant time). When a key is inserted in the root node, it will take constant time for insertion.
- Average case: O(logn) (logarithm time). When a key is inserted in the internal node then, it will take logarithm time for insertion.
- Worst case: O(logn) (logarithm time). When a key will be inserted in the lean node, it will take logarithm time for insertion.

Deletion in B-Tree:

- Apply the search operation in B-Tree and find the target key in the nodes.
- After finding the location of the target key, There are two conditions based on the location of the target key.

a. If the target key is in the leaf node:

1. If the target key is in the leaf node and the number of keys are more than min keys in the node. Deleting the target key does not violate any rule of B-Tree, so directly delete the target key.

- 2. If the target is in leaf node and it has min key nodes, then Deleting of target key will violate the property of B Tree.
 - Target node can borrow key from immediate left node, or immediate right node (sibling)
 - The sibling will say yes if it has more than minimum number of keys
 - The key will be borrowed from the left sibling node, the max value will be transferred to the target node. Or, The key will be borrowed from the right sibling node, the minimum value will be transferred to the target node.

- 3. Target is in the leaf node, but no siblings have more than min number of keys
 - If both the immediate sibling nodes already have a minimum number of keys, then merge the node with either the left sibling node or the right sibling node. This merging is done through the parent node.

b. If the target key is in an internal node:

- Either choose, in- order predecessor or in-order successor
- In case the of in-order predecessor, the maximum key from its left subtree will be selected

- In case of in-order successor, the minimum key from its right subtree will be selected
- If the target key's in-order predecessor has more than the min keys, only then it can replace the target key with the max of the inorder predecessor
- If the target key's in-order predecessor does not have more than min keys, look for the in-order successor's minimum key.
- If the target key's in-order predecessor and successor both have less than min keys, then merge the predecessor and successor.
- But, if the sibling also has only a minimum number of keys then, merge the node with the sibling along with the parent. Arrange the children accordingly (increasing order).

Example: Let us take a B tree of order 4

Here m=4

minimum number key of each node except root node: m/2-1= 1

Delete 90

Delete 50

Delete 60

Time Complexity:

- Best case: O(1) (constant time). When a key is present in the root node, it will take constant time for deleting.
- Average case: O(logn) (logarithm time). When a key is in the internal node then, it will take logarithm time for deleting.
- Worst case: O(logn) (logarithm time). When a key will be inserted in the leaf node, it will take logarithm time for deleting.

B+ - Tree

•B+ Tree is an extension of B Tree which allows efficient insertion, deletion and search operations.

B+-Tree is a height balanced M-Way search tree, In which:

- •If the degree of tree is M then each node(Internal node) can contain at most m children/nodes and at least [M/2].
- •If the degree of the tree is M, then each node can have at least [m/2]-1 keys and maximum of m-1 keys.
- •Root nodes can have a minimum of two children.
- •All the leaf nodes should have the same depth.
- Values are stored only on leaf nodes.
- •The leaf nodes of a B+ tree are linked together in the form of singly linked lists to make the search queries more efficient.

Operation on B+ - Tree

- Insertion
- Deletion
- Searching

Searching in B-Tree

The search operation in B+-Tree is similar to the search operation in B Search Tree. Suppose we want to search 'X' In a B-Tree, then the following will be steps:

- 1. First of all compare 'X' with the first element of the root node in the tree.
- 2. If comparison is matched, then display "Given element is found" and terminate the function.
- 3. If comparison is not matched, then check 'X' is smaller or larger than that key value (That means first element of root node).
- 4. If 'X' is smaller, then go to the left subtree and continue the search process.

Searching in B-Tree

- 5. If 'X' is larger, then compare 'X' with the next key value in the same node and repeat steps **2**, **3**, **4** and **5** until we find the exact match or until the 'X' is compared with the last key value in the leaf node.
- 6. If the last key value in the leaf node is also not matched then display "Element is not found" and terminate the function.

Time Complexity

- Best case: O(1) (constant time). When a key is present in the root node, it will take constant time for searching.
- Average case: O(logn) (logarithm time). When a key is in the internal node then, it will take logarithm time for searching
- Worse Case: O(logn) (logarithm time). When a key will be inserted in the leaf node, it will take logarithm time for searching.

Always, New elements will be inserted at leaf nodes in B+-Tree. Suppose we want to insert a key value 'X', then the following will be steps to insert a new element in B+-Tree.

- 1. First of all check whether the tree is empty.
- 2. If the tree is empty, then create a node with 'X' and insert it in the tree as a root node.
- 3. If the tree is not empty, then insert 'X' into the suitable leaf node by using Binary Search Tree logic.

- 4. If the respective leaf node has some empty position, then insert 'X' in that node in ascending order of key value.
- 5. If the respective leaf node is full, then split that node and send a copy of the middle value to its parent. Repeat the same procedure until 'X' will be fixed into a node.
- 6. If the splitting is performed at root node then the middle value becomes a new root node for the tree and the height of the tree is increased by one.

Example: Construct a B+-Tree of order 4 for the given elements 10, 20, 30, 40, 50, 60, 70, 80, 90.

Here m=4

Maximum number of children nodes of internal nodes: 4

Minimum number of children nodes of internal nodes: m/2= 2

Maximum number of keys on each node: m-1= 3

Minimum number of keys on each node: m/2-1= 1

Insert 10

Insert 20, 30

For Deletion of a node from B+-Tree, we have to apply the following procedure:

- 1. Apply the search operation in B+-Tree and find the target key in the nodes.
- 2. After finding the position of the target key in leaf nodes, There are two conditions based on the location of the target key in leaf node.

a. The target key is present only at the leaf node not in the indexes (or internal nodes). There are two cases for it:

case 1: There is more than the minimum number of keys in the node. Simply delete the key

case 2: There is an exact minimum number of keys in the node. Delete the key and borrow a key from the immediate sibling. Add the median key of the sibling node to the parent.

b. The key to be deleted is present in the internal nodes as well. Then we have to remove them from the internal nodes as well. There are the following cases for this situation.

Case 1: If there is more than the minimum number of keys in the node, simply delete the key from the leaf node and delete the key from the internal node as well. Fill the empty space in the internal node with the inorder successor.

Case 2: There is an exact minimum number of keys in the node. Delete the key and borrow a key from the immediate sibling. Add the median key of the sibling node to the parent.

Case 3: This case is similar to Case 1 but here, empty space is generated above the immediate parent node. After deleting the key, merge the empty space with its sibling. Fill the empty space in the grandparent node with the inorder successor.

Example: Let take a B+-Tree order of 4.

Here m=4

Maximum number of children nodes of internal nodes: 4

Minimum number of children nodes of internal nodes: m/2=2

Maximum number of keys on each node: m-1= 3

Minimum number of keys on each node: m/2-1=1

Delete 90:

Differenence between B-Tree & B+-Tree

B-Tree	B+-Tree
Data is stored in leaf nodes as well as internal nodes.	Data is stored in leaf nodes as well as internal nodes.
Searching is a bit slower as data is stored in internal as well as leaf nodes.	Searching is faster as the data is stored only in the leaf nodes.
No redundant search keys are present.	No redundant search keys are present.
Deletion operation is complex.	Deletion operation is easy as data can be directly deleted from the leaf nodes.
Leaf nodes cannot be linked together.	Leaf nodes are linked together to form a linked list.

DIGITAL LEARNING CONTENT

Parul[®] University

