딥러닝으로 어떤 문제를 풀 수 있을까?

딥러닝으로 어떤 문제를 풀 수 있을까?

- 딥러닝은 Deep Neural Network을 시키는 것.
- Deep Neural Network은 하나 이상의 로 구성된 Neural Network이다
- "학습" = 에 더더욱 잘 근사하도록 하는 것이다

 $f(\mathbf{X}) \approx \hat{f}(\mathbf{X})$

Neural Network

기본적인 Neural Network의 구성은:

Input Layer + (한개이상의) + Output Layer

- 각 Layer은 들로 구성된다.
- 각 뉴런은 다음 Layer의 뉴런과 연결 (edge) 되어 있다.
- 즉, 뉴론은 이전 Layer의 뉴론들의 출력값을 입력값으로 받는다.
- 각 뉴런은 으로 구성된다.

Deep Neural Network란?

$x_1 \ x_2 \ x_3$

- 뉴럴넷에 입력되는 값
- Input Layer의 1, 2, 3번째 뉴론이 출력하는 값
- 다음 Layer의 Input 값으로 전달

h_j

- Hidden Layer의 j번째 뉴론이 출력하는 값
- 이전 Layer인 Input Layer의 출력값을 입력값으로 사용하여 계산됨
- 다음 Layer의 Input 값으로 전달

Deep Neural Network란?

Neural Network의 동작 원리

Question:

- 어떻게 해야 Neural Network의 출력값인 \hat{Y} 가 실제값인 Y에 최대한 근사 $Y \approx \hat{Y}$ 할까?
- 각 Layer의 weight w 을 최적화해야 한다.

Neural Network의 동작 원리

Question:

- ullet 어떻게 해야 Neural Network의 출력값인 \hat{Y} 가 실제값인 Y에 최대한 근사 $Y pprox \hat{Y}$ 할까?
- 각 Layer의 weight ₩을 최적화해야 한다.

- Weight w_{ji} 이 바뀌면 주어진 Input x_i 값에 대한 Ouput y 값도 바뀐다
- 주어진 Input x_i 들에 대해서 최대한 실제값과 유사하게 Output \hat{y} 을 출력해주는 가중치 w_{ji} 들의 조합을 찾고 싶은 것
- 각 Layer의 weight w_{ji} 을 적절하게 조정해서 주어진 Input에 대해서 출력되는 값 \hat{y} 이 실제값 에 최대한 잘 근사하도록 최적화하는 것

Neural Network의 동작 원리

Weight 값의 최적화

Question:

• Weight 값을 어떻게 정의해야 예측값이 최대한 정확할까?

모름! 처음에는 weight 값을 랜덤하게 정의함!

• Weight 값을 어떻게 최적화해야 모델의 예측값이 더 정확해질 수 있을까?

* 즉, 처음에는 랜덤한 weight 값에 따라 모델의 예측값도 random 하지만 weight 값을 최적화하여 점차 모델의 정확도를 높임!

)

Deep Learning 기초개념

1. Training (학습 / 훈련) 데이터셋

-모델을 **학습**시키는 용도 -(딥러닝 모델의 경우) 학습 데이터셋에 대해서 하여 가 최소화되도록 최적화

2 Validation (검증) 데이터셋

-모델의 와 Hyperparameter Tuning에 사용 -학습 데이터셋에 대한 될 수 있기에 Validation 데이터셋으로 성능 평가

3. Test (시험) 데이터셋

-검증 단계에서 선택한 최적의 모델의 _____을 평가하는데 사용

Hyperparameter Tuning을 과도하게 적용하는 경우 Validation dataset에 대해서 unintentional overfitting 발생할 수 있다.

Overfitting란

• 학습 데이터의 Noise마저 학습하여 일반화 성능이 감소하는 것.

Hyperparameter란

- 모델 구조와 학습 방식에 영향을 주는 Parameter
- 모델의 최종 성능에도 영향을 준다.

Hyperparameter Tuning이란

- 가장 최적의 Hyperparameter 조합을 찾는 것.
- Validation 성능이 가장 높은 조합 찾기

Overfitting

Loss

Overfitting (과적합)이란

- Unseen data에 대해서 모델의 예측값이
 되지 않는 경우.
- 뉴럴넷 모델이 학습 데이터에 있는 에 대해서도 학습하여 가 저하되는 현상.

K-fold Cross Validation

- 1. 데이터 분할 원본 데이터셋을 K개의 서로 겹치지 않는 부분 집합으로 나눈다. (일반적으로 K=5 혹은 10 사용)
- 2 반복 학습 및 검증 하나의 폴드를 검증 데이터로 사용 K-1개의 폴드를 훈련 데이터로 사용하여 모델 학습
- 3. 성능 측정 각 반복마다 모델은 검증용 폴드에 대한 성능 평가 모든 K 번의 평가를 완료한 후에 평균 성능 계산
- 4. 최종 성능 평가 혹은 Hyperparameter Tuning Fold들에 대한 평균 성능을 최종 성능 지표로 사용 혹은 Hyperparameter Tuning에 사용

Loss와 Evaluation Metric의 차이

Loss Function

모델 학습 단계에서 모델의 가중치를 조정하기 위한 목적으로 예측 오차를 측정 예측한 값과 실제 타깃 값 사이의 차이 학습 단계에서 Loss을 최소화하는 방향으로 모델의 Weight을 조정 미분 가능해야한다!

Cross Entropy Loss, Mean Squared Loss, 등등

• Evaluation Metric

학습된 모델의 성능을 평가하는데 사용되는 지표 손실함수와 달리 평가 지표는 더 직관적이다. 정확도 (Accuracy), 정밀도 (Precision), 재현율 (Recall), F1 Score 등등