Extensiones de cuerpos finitos \mathbb{F}_p de grado n>1 y el algoritmo Berlekamp

Joel Barraza Nava

Colorado State University

November 2024

Introduction

► En esta platica exploraremos las extensiones de cuerpos de caracteristica p > 0 y primo. Dado un cuerpo finito \mathbb{F}_p , quisieramos saber como construir el cuerpo \mathbb{F}_{p^n} . Vearemos que la extension \mathbb{F}_{p^n} se puede construir si obtenemos un polinomio irreducible de un variable sobre \mathbb{F}_p . Es decir, si $p(x) \in \mathbb{F}_p[x]$ es irreducible de grado n tenemos $\mathbb{F}_{p^n} = \mathbb{F}_p[x]/\langle p(x) \rangle$. Con este hecho, existe un algoritmo "ligero" para determinar si un polinomio es irreducible sobre un cuerpo finito \mathbb{F}_p ? Resulta que todavia no existe un algoritmo para determinar si un polinomio es irreducible en tiempo polinomio $O(n^k)$. A pesar de esto, terminaremos con un ejemplo del algoritmo Berlekamp cual esta en uso hoy para ver como funciona.

- Sea \mathbb{F} un cuerpo, la *caracteristica* de \mathbb{F} es el numero entero positivo mas pequeño p tal que $p \cdot 1_{\mathbb{F}} = 0$.
- Siendo p el numero mas pequeño implica que p debe ser 0 o un numero primo.
- ▶ Supone que p = (ab), entonces

$$0 = p \cdot 1 = (ab) \cdot 1 = (a \cdot 1)(b \cdot 1)$$

debe ser que $0 = a \cdot 1$ o $0 = b \cdot 1$.

Definimos la mapa,

$$arphi: \mathbb{Z} o \mathbb{F}$$
 $p \mapsto p \cdot 1_{\mathbb{F}}$

con $\ker(\varphi) = p\mathbb{Z}$ de modo que $\mathbb{Z}/\ker(\varphi)$ nos da una inyeccion a \mathbb{F} .

- ▶ Obtenemos un subcuerpo generado por $1_{\mathbb{F}}$.
- ▶ Dado que la caracteristica de \mathbb{F} es p un numero primo (o cero), el cuerpo contiene un subcuerpo cual es isomorfico a \mathbb{F}_p (o \mathbb{Q}).

- ▶ El cuerpo $\mathbb K$ es una *extension* del cuerpo $\mathbb F$ si contiene $\mathbb F$ como un subcuerpo. Es decir, $\mathbb F \leq \mathbb K$ y denotado $\mathbb K/\mathbb F$.
- ▶ Dado una extension \mathbb{K}/\mathbb{F} la operacion de multiplicacion hace que \mathbb{K} sea un *espacio vectorial* sobre \mathbb{F} .
- ▶ El grado de \mathbb{K}/\mathbb{F} cual denotamos $[\mathbb{K} : \mathbb{F}]$ es la dimension de \mathbb{K} como un espacio vectorial sobre \mathbb{F} .
- ▶ Siendo un espacio vectorial, queremos un base para representar los elementos de \mathbb{K}/\mathbb{F} .

- ▶ En esta platica, restringimos nuestra consideración a cuerpos de característica p > 0.
- Sea $p(x) \in \mathbb{F}_p[x]$ un polinomio irreducible de grado n sobre \mathbb{F}_p . La irreducibilidad de p(x) es equivalente al ideal $\langle p(x) \rangle$ siendo maximal. En consecuencia, \mathbb{K} , el cociente dado por $\mathbb{F}_p[x]/\langle p(x) \rangle$ es un cuerpo.
- ▶ Deja $\alpha = x \mod p(x) \in \mathbb{K}$, los elementos

$$1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$$

forman un base para \mathbb{K} como un espacio vectorial sobre \mathbb{F}_p tal que $[\mathbb{K}:\mathbb{F}_p]=n$.

$$\{a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_{n-1}\alpha^{n-1} | a_0, a_1, a_2, \dots, a_{n-1} \in \mathbb{F}_p\}$$

- ▶ **Ejemplo:** El polinomio $p(x) = x^2 + x + 2$ es irreducible sobre \mathbb{F}_3 . Existe una extension $\mathbb{F}_3/\langle p(x)\rangle$ conteniendo la raiz α de p(x).
- **El** conjunto $\{1, \alpha\}$ es un base para la extension. Es decir,

$$\mathbb{F}_3[x]/\langle p(x)\rangle = \{a+b\alpha|\ a,b\in\mathbb{F}_3,\ \alpha^2 = 2\alpha+1\}.$$

Sumar:

$$(a+b\alpha)+(c+d\alpha)=(a+c)+(b+d)\alpha$$

Multiplicacion:

$$(a + b\alpha) \cdot (c + d\alpha) = ac + (ad + bc)\alpha + bc\alpha^2$$

= $ac + (ad + bc)\alpha + bc(2\alpha + 1)$

- ▶ **Ejemplo:** El polinomio $p(x) = x^4 + x + 1$ es irreducible sobre \mathbb{F}_2 . Existe una extension $\mathbb{F}_2[x]/\langle p(x)\rangle$ conteniendo la raiz α of p(x).
- ▶ El conjunto $\{1, \alpha, \alpha^2, \alpha^3\}$ es un base para la extension.

$${a+b\alpha+c\alpha^2+d\alpha^3|a,b,c,d\in\mathbb{F}_2,\ \alpha^4=\alpha+1}$$

▶ De hecho, si el polinomio $p(x) \in \mathbb{F}_p[x]$ es irreducible, el grado del polinomio va indicar el tamaño del cuerpo finito. Es decir, si el grado de p(x) es n la extension contiene p^n elementos. Denotamos la extension del cuerpo finito con \mathbb{F}_{p^n}

Sea $f(x) \in \mathbb{F}_p[x]$ de grado n y \mathbb{F}_{p^n} una extension de caracteristica $p \neq 0$, se dice que f se descompone en \mathbb{F}_{p^n} , si se puede escribir como un producto de factores lineales en $\mathbb{F}_{p^n}[x]$. Es decir, existen $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}_{p^n}$ tales que

$$f(x) = a(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

donde $a \in \mathbb{F}_p$ es el coeficiente líder de p.

Al cuerpo \mathbb{F}_{p^n} se le llama cuerpo de descomposicion de caracteristica p si se descompone sobre \mathbb{F}_{p^n} y $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$ donde α es una raiz de f.

▶ Siendo $\mathbb{F}_{p^n}^{\times}$ generado por α implica que grupo es ciclico y el orden de la raiz es $p^n - 1$. Entonces,

$$\alpha^{p^n-1} = 1 \Rightarrow \alpha^{p^n} = \alpha \Rightarrow \alpha^{p^n} - \alpha = 0$$

y resulta que α es una raiz del polinomio $x^{p^n} - x$. Ademas, las raizes del polinomio $x^{p^n} - x$ son todo el cuerpo \mathbb{F}_{p^n} .

- Veamos que \mathbb{F}_{p^n} es el cuerpo de descomposicion del polinomio $x^{p^n} x$.
- ▶ Recordamos que α es un raiz de f. Entonces f resulta ser divisor de $x^{p^n} x$.
- Este hecho motiva el resultado que el polinomio $x^{p^n} x$ es el producto de polinomios distintos y irreducibles de grado d > 1 junto con factores lineales.

► Ejemplo: La factorizacion del polinomio $x^9 - x$ en polinomios de grado 2 sobre \mathbb{F}_3 .

$$\frac{x^9 - x}{x(x-1)(x-2)} = (x^2 + x + 2)(x^2 + 2x + 2)(x^2 + 1)$$

- ▶ Si dos polinomios irreducibles de grado 2 sobre \mathbb{F}_3 forman cuerpos con el mismo numero de elementos, son isomorfos?
- ▶ Si! En general, todos los cuerpos \mathbb{F}_{p^n} de grado $n \ge 1$ y caracteristica p > 0 primo son isomorfos.

Ejemplo: Factorizamos el polinomio $f(x) = x^4 + x^2 + x + 1$ sobre \mathbb{F}_2 con el algoritmo Berlekamp.

- Resolvamos la derivada, $f'(x) = 4x^3 + 2x + 1 \equiv 1 \mod 2$ y calculamos el maximo comun divisor cual es gcd(f(x), f'(x)) = 1. Siendo primos relativos implica que las raizes de f(x) son unicos (multiplicidad 1).
- Calculamos los exponentes $x^{qi} \mod f(x)$ para todo i = 0, 1, ..., n-1 (dado que q = 2 y n = 4).

$$x^{0} \equiv 1 \mod f$$

$$x^{2} \equiv x^{2} \mod f$$

$$x^{4} \equiv 1 + x + x^{2} \mod f$$

$$x^{6} \equiv 1 + x + x^{3} \mod f$$

Los monomios $\{1, x, \dots, x^{n-1}\}$ forman el base para un espacio vectorial sobre \mathbb{F}_2 . Los exponentes $1, x^2, x^4, x^6$ son las filas de una matriz (4×4) .

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \Rightarrow B - I = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

▶ Reducimos B-I con el metodo de eliminacion Gaussiana para calcular el rango del matriz cual es r=2. Por lo tanto, el polinomio f(x) se factoriza en k=4-2 polinomios distintos, monicos, y irreducibles.

► Calculamos el espacio nulo de B – I,

$$\mathsf{nul}(B-I) = \{(1,0,0,0), (0,0,1,1)\}$$

cuales vectores coresponden a los polinomios $h_1(x) = 1$ y $h_2(x) = x^2 + x^3$.

Sea $h_i(x) = c$ para todos $c \in \mathbb{F}_2$, calculamos el maxino comun divisor por cada $(h_i(x) - c, f(x))$.

$$\gcd(f(x), h_2(x) - 0) = x + 1$$
$$\gcd(f(x), h_2(x) - 1) = x^3 + x^2 + 1$$

▶ El polinomio f(x) se factoriza en dos polinomios monicos, distintos, y irreducibles. El algoritmo termina por la razon de que k=2.

Ejemplo: Factorizamos el polinomio $f(x) = x^8 + x^7 + x^4 + x^3 + x + 1$ sobre \mathbb{F}_3 con el algoritmo Berlekamp.

- Resolvamos la derivada, $f'(x) = 8x^7 + 7x^6 + 4x^3 + 3x^2 + 1 \equiv 2x^7 + x^6 + x^3 + 1$ mod 3 y gcd(f(x), f'(x)) = 1 implica que las raizes de f(x) son unicos.
- ▶ Dado que q = 3 y n = 8, los exponentes $x^{3i} \mod f(x)$ para todo i = 0, 1, ..., 7.

$$x^{0} \equiv 1 \mod f$$
 $x^{3} \equiv x^{3} \mod f$
 $x^{6} \equiv x^{6} \mod f$
 $x^{9} \equiv 1 + 2x^{2} + x^{3} + 2x^{5} + x^{7} \mod f$
 $x^{12} \equiv x + x^{4} + 2x^{5}$
 $x^{15} \equiv 1 + x + x^{3} + 2x^{4} + 2x^{7} \mod f$
 $x^{18} \equiv 1 + x^{4} + 2x^{6} \mod f$
 $x^{21} \equiv 2 + x^{2} + x^{5} \mod f$

Las congruencias forman las filas de un martiz (8×8) ,

$$B - I = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 & 2 & 2 & 0 & 2 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 & 0 & 2 \end{pmatrix}$$

El rango del matriz B-I es r=5, entonces f(x) se factorizara en k=8-5=3 polinomios distintos, monicos, y irreducibles.

Calculamos el espacio nulo,

$$\begin{aligned} \mathsf{nul}(B-I) &= \{ (1,0,0,0,0,0,0), \\ & (0,0,0,1,0,0,0,1), (0,2,2,1,1,1,1,0) \} \end{aligned}$$

cuales coresponden a los polinomios

$$h_1(x) = 1$$

 $h_2(x) = x^3 + x^7$
 $h_3(x) = 2x + 2x^2 + x^3 + x^4 + x^5 + x^6$

► Calculamos cada maximo comun divisor de $(h_i(x) - c, f(x))$ por todo $c \in \mathbb{F}_3$.

ightharpoonup Tomamos $h_2(x)$,

$$gcd(f(x), h_2(x) - 0) = 1$$

$$gcd(f(x), h_2(x) - 1) = 1 + x$$

$$gcd(f(x), h_2(x) - 2) = 1 + x^3 + x^7$$

Entonces f(x) se factoriza en k=3 polinomios pero en este caso solo tenemos dos.

$$f(x) = (1+x)(1+x^3+x^7)$$

Por este caso, applicamos el proceso otra vez al polinomio $1+x^3+x^7$ y obtenemos

$$1 + x^3 + x^7 = (2 + 2x + 2x^2 + x^3 + x^4 + x^5 + x^6)(2 + x).$$

Ahora tenemos que,

$$f(x) = (1+x)(2+2x+2x^2+x^3+x^4+x^5+x^6)(2+x)$$

y para $2+2x+2x^2+x^3+x^4+x^5+x^6$, applicando el proceso una vez mas nos da que k=1 entonces el polinomio ya es irreducible.

▶ Hacemos el proceso una vez mas con $h_3(x)$.

$$\gcd(f(x), h_3(x) - 0) = 1 + x$$

$$\gcd(f(x), h_3(x) - 1) = 2 + 2x + 2x^2 + x^3 + x^4 + x^5 + x^6$$

$$\gcd(f(x), h_3(x) - 2) = 2 + x$$

► La factorizacion de f es,

$$f(x) = (1+x)(2+2x+2x^2+x^3+x^4+x^5+x^6)(2+x).$$

