Machine Learning 2

Due: April 26, 2016

Homework 3

Instructor: Ke Tran Email: m.k.tran@uva.nl

Student: Andrea Jemmett UvA ID: 11162929 Collaborators: N/A Email: andreajemmett@gmail.com

Problem 1. Consider the inference problem of evaluating $p(\mathbf{x}_n|\mathbf{x}_N)$ for the graph shown in Figure 1, for all nodes $n \in \{1, ..., N-1\}$. Show that the message passing algorithm can be used to solve this efficiently, and discuss which messages are modified and in what way.

Figure 1: Chain of nodes model

Problem 2. Apply the sum-product algorithm to the chain of nodes model in Figure 1 and show that the results of message passing algorithm are recovered as a special case, that is

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

$$\mu_{\alpha}(x_n) = \sum_{x_n - 1} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\alpha}(x_{n-1})$$

$$\mu_{\beta}(x_n) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_n) \mu_{\beta}(x_{n+1})$$

where $\psi_{i,i+1}(x_i,x_{i+1})$ is a potential function defined over clique $\{x_i,x_{i+1}\}$.

Solution:

Figure 2: Factor graph for chain of nodes model

The first thing to do to apply the sum-product algorithm to the chain model of Figure 1 is to transform it into a factor graph. The factor graph for the chain model is shown in Figure 2.

Once we have a factor graph, we need to chose a root node, e.g., x_n , so that we can start propagating messages from the leaf nodes $(x_1 \text{ and } x_N)$ to the root. We start by propagating messages from x_1 to

Homework 3 2

the root:

$$\mu_{x_1 \to \psi_{1,2}}(x_1) = 1 \tag{1}$$

$$\mu_{\psi_{1,2}\to x_2}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \tag{2}$$

$$\mu_{x_2 \to \psi_{2,3}}(x_2) = \mu_{\psi_{1,2} \to x_2}(x_2) \tag{3}$$

$$\mu_{\psi_{2,3}\to x_3}(x_3) = \sum_{x_2} \psi_{2,3}(x_2, x_3) \mu_{x_2\to\psi_{2,3}}(x_2)$$
(4)

1

$$\mu_{x_{n-1} \to \psi_{n-1,n}}(x_{n-1}) = \mu_{\psi_{n-2,n-1} \to x_{n-1}}(x_{n-1}) \tag{5}$$

$$\mu_{\psi_{n-1,n}\to x_n}(x_n) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{x_{n-1}\to\psi_{n-1,n}}(x_{n-1})$$
(6)

and we note that a message that a variable node sends on one link is equal to the message that node has received on its other link. That is variable nodes act as *proxies* for messages created at factor nodes. If we define $\mu_{\alpha}(x_n)$ as the incoming from the left factor node to variable node x_n , we have that

$$\mu_{\alpha}(x_n) \equiv \mu_{\psi_{n-1,n} \to x_n}(x_n) \tag{7}$$

$$= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{x_{n-1} \to \psi_{n-1,n}}(x_{n-1})$$
(8)

$$= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\psi_{n-2,n-1} \to x_{n-1}}(x_{n-1})$$
(9)

$$= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\alpha}(x_{n-1})$$
(10)

If we compute in the same way the messages from leaf node x_N to the root node x_n , we obtain that

$$\mu_{\beta}(x_n) \equiv \mu_{\psi_{n,n+1} \to x_n}(x_n) \tag{11}$$

$$= \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_{x_{n+1} \to \psi_{n,n+1}}$$
(12)

$$= \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_{\psi_{n+1,n+2} \to x_{n+1}}(x_{n+1})$$
(13)

$$= \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_{\beta}(x_{n+1})$$
(14)

Finally applying eq. 8.63 from Bishop (with the addition of the normalizing constant Z that we know from the full joint distribution or we can compute locally on the node x_n) we have that

$$p(x_n) = \frac{1}{Z} \mu_{\psi_{n-1,n} \to x_n}(x_n) \mu_{\psi_{n,n+1} \to x_n}(x_n)$$
(15)

$$= \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n) \tag{16}$$

Homework 3

Problem 3. Run sum-product algorithm on the graph in Figure 3 with node x_3 designed as the root. Using the computed messages given in p.409 Bishop.

- 1. Show that the correct marginals are obtained for x_1 and x_3 .
- 2. Show that the sum-product algorithm on this graph gives the correct joint distribution for x_1 , x_2 .

Figure 3: A simple factor graph

Problem 4. Show that the marginal distribution for the variables \mathbf{x}_s in a factor $f_s(\mathbf{x}_s)$ in a tree-structured factor graph, after running the sum-product message passing algorithm, can be written as

$$p(\mathbf{x}_s) = f_s(\mathbf{x}_s) \prod_{i \in \text{ne}(f_s)} \mu_{x_i \to f_s(x_i)}$$

where $ne(f_s)$ denotes the set of variable nodes that are neighbors of the factor node f_s