ЛАБОРАТОРНА РОБОТА № 5

РОЗКРИТТЯ НЕВИЗНАЧЕНОСТІ ЦІЛЕЙ В ЗАДАЧАХ СИСТЕМНОГО АНАЛІЗУ

Мета заняття: ознайомитися з методами пошуку Парето-оптімальної множини, її звуження на підставі інформації про переваги людини, що приймає рішення (ЛПР), та находження остаточного рішення багатокритеріальної задачі шляхом зведення її до певного скалярного варіанту; вирішити задачу пошуку рішення багатокритеріальної задачі.

Хід роботи

Завдання №1-4

Знайдемо Парето-оптимальну множину векторів для скінченої множини проектів реалізації складного пристрою, що оцінюються по 9-ти бальній шкалі:

№ варіанту 5						
Век-	Значення критеріїв					
тори	1	2	3	4	5	6
y^1	9	4	9	5	5	6
y^2	1	2	7	3	5	4
y^3	1	2	5	4	4	5
y ⁴	1	4	5	5	5	4
y ⁵	1	9	8	3	3	3
y^6	8	6	5	3	5	3
y ⁷	7	4	9	3	4	5

Рисунок 1 – Множина проектів реалізації складного пристрою згідно варіанту

```
Y =
  [[9 4 9 5 5 6]
  [1 2 7 3 5 4]
  [1 2 5 4 4 5]
  [1 4 5 5 5 4]
  [1 9 8 3 3 3]
  [8 6 5 3 5 3]
  [7 4 9 3 4 5]]

Pareto's optimal set of vectors:
PY =
  [[9 4 9 5 5 6]
  [1 9 8 3 3 3]
  [8 6 5 3 5 3]]
```

Рисунок 2 – Множина Парето-оптимальних векторів

3мн.	Арк.	№ докум.	Підпис	Дата	Державний університет «Житомирська полі- техніка».21.125.05.000 — Лр5			
Розр	об.	Гончаров М.В.				Літ.	Арк.	Аркушів
Пере	евір.	Подчашинський Ю.О			Звіт з		1	3
Керівник								
Н. кс	нтр.				лабораторної роботи №4	ФІКТ Гр. КБ-2(1)		КБ-2(1)
Зав.	каф.							

Проведемо обрахунок коефіцієнтів відносної віжливості критеріїв θ_{15} , θ_{16} , знаючи що 1-ий критерій є пріоритетним, і задля виграшу 1 одиниці якості по 1-му критерію ЛПР готова пожертвувати 1,2 одиницями по 5-му і 1,7 одиницями по 6-му критеріях. На основі обрахованих значень, обрахуємо стислу множину Парето:

$$w_1^* = 1.2$$
 $w_5^* = 1.2$ $w_6^* = 1.7$

$$\theta_{15} = \frac{1.2}{(1.2+1)} = 0.55$$
 $\theta_{16} = \frac{1.7}{(1.7+1)} = 0.63$

Рисунок 3 – Стиснена множина Парето-оптимальних векторів

Як можна спостерігати на рис.3, спроба стиснення множини для данної комібнації критеріїв та значень не допомогла скоротити кількість Парето-оптимальних векторів та повернула попередньо обраховану множину Парето ($\{y^1\ y^5\ y^6\}$ з урахуванням коефіцієнтів відносної віжливості критеріїв). Це означає, що ця множина вже є максимально стиснутою, але нам ще вдалося оптимізувати значення важливих критерів.

Виконаємо пошук оптимального вектора за методом головного критерію:

```
Main criteria method

Enter an index of main criteria i = 1

Enter a vector m-1| bound values = 1 2 2 2 2 2

Fo = [9. 4. 9. 5. 7.18 7.89]
```

Рисунок 4 – Оптимальний вектор, знайдений за методом головного критерію

Виконаємо пошук оптимального вектора за методами лінійної, мультиплікативної та максимінної згорток при різних коефіцієнтах відносної важливості критеріїв:

		Гончаров О.О		
		Подчашинський Ю.О		
Змн.	Арк.	№ докум.	Підпис	Дата

```
Linear Convolution method
Enter weighting factor a = .55
Fo = [9. 4. 9. 5. 7.18 7.89]

Multiplicative Convolution method
Enter weighting factor a = .55
Fo = [9. 4. 9. 5. 7.18 7.89]

Maxmin Convolution method
Enter weighting factor a = .55
Fo = [9. 4. 9. 5. 7.18 7.89]
```

Рисунок 5 — Оптимальний вектор, знайдений за методами лінійної, мультиплікативної та максимінної згорток (при ваговому коефіцієнті 0,55)

```
Linear Convolution method
Enter weighting factor a = .63
Fo = [9. 4. 9. 5. 7.18 7.89]

Multiplicative Convolution method
Enter weighting factor a = .63
Fo = [9. 4. 9. 5. 7.18 7.89]

Maxmin Convolution method
Enter weighting factor a = .63
Fo = [9. 4. 9. 5. 7.18 7.89]
```

Рисунок 6 — Оптимальний вектор, знайдений за методами лінійної, мультиплікативної та максимінної згорток (при ваговому коефіцієнті 0,63)

3 рис. 5-6 можемо зробити висновок, що для данних вагових коефіцієнтів, всі методи знайшли однаковий оптимальний вектор $\mathbf{F_0} = [9, 4, 9, 5, 7.18, 7.89]$, тобто вектор \mathbf{y}^1 .

Висновки: в ході виконання лабораторної роботи ми ознайомилися з методами пошуку Парето-оптімальної множини, її звуження на підставі інформації про переваги людини, що приймає рішення (ЛПР), та находження остаточного рішення багатокритеріальної задачі шляхом зведення її до певного скалярного варіанту; вирішили задачу пошуку рішення багатокритеріальної задачі.

		Гончаров О.О		
		Подчашинський Ю.О		
Змн.	Арк.	№ докум.	Підпис	Дата