A differential Lyapunov framework for contraction analysis

F. Forni, R. Sepulchre

University of Liège

Reykjavik, July 19th, 2013

Outline

Why? regulation, observer design, synchronization

Regulation:

from
$$p(t)
ightarrow p_e$$
 to $p(t)
ightarrow \sin(\omega t)$

Filtering:

filters forget initial conditions

Synchronization:

Linear systems: incremental stability ≡ stability

$$\dot{x} = Ax$$
 $\dot{z} = Az$
 $e := x - z$
 $\dot{e} = Ae$

if
$$e \to 0$$
 then $d(x,z) \to 0$

Use Lyapunov on the error dynamics e:

$$V = (x - z)^T P(x - z) = e^T Pe$$

But the error in nonlinear spaces/dynamics...

 p_x, p_z

x, z

$$\dot{x} = -\sin(x) , \quad \dot{z} = -\sin(z)$$

$$e := x - z$$

$$\dot{e} = -\sin(x) + \sin(z)$$

$$\neq f(e)$$

$$\varphi$$

$$e = x - z? , \quad V(x, z)$$

The variational system replaces the error dynamics

$$\delta x := x - z$$
 for $z \to x$ (infinitesimal variation).

$$\dot{\delta x}$$
 or $\delta x^+ = f(x + \delta x) - f(x) \simeq \frac{\partial f(x)}{\partial x} \delta x$

If $\delta x \to 0$ then incremental stability

Time-varying linear system and tangent vectors (intrinsic!)

$$\begin{cases} \dot{x} = f(x) \\ \dot{\delta x} = \frac{\partial f(x)}{\partial x} \delta x \end{cases} \begin{cases} x^{+} = f(x) \\ \delta x^{+} = \frac{\partial f(x)}{\partial x} \delta x \end{cases}$$

- ► Time-varying linear dynamics of the "error" δx along any given solution x(t), since $\dot{\delta x} = \frac{\partial f(x(t))}{\partial x} \delta x$.
- $\delta x(t)$ is a tangent vector in the tangent space $T_{x(t)}\mathcal{M}$

From δx to the distance between solutions by integration

$$\begin{cases} \dot{x} = f(x) \\ \dot{\delta x} = \frac{\partial f(x)}{\partial x} \delta x \end{cases} \begin{cases} x^{+} = f(x) \\ \delta x^{+} = \frac{\partial f(x)}{\partial x} \delta x \end{cases}$$

- $\rightarrow x_s(0) = \gamma(s)$
- $x_s(t) = \text{time evolution of } \gamma \text{ along the flow}$
- length(t) = $\int |\delta x_s(t)| ds$

We need two ingredients:

$$\begin{cases} \dot{x} = f(x) \\ \dot{\delta x} = \frac{\partial f(x)}{\partial x} \delta x \end{cases} \begin{cases} x^{+} = f(x) \\ \delta x^{+} = \frac{\partial f(x)}{\partial x} \delta x \end{cases}$$

A metric for δx

A way to infer $\delta x(t) \rightarrow 0$

A metric for δx : Finsler structures

How to measure $\delta x \to 0$?

$$\delta x \in T_x \mathcal{M}$$
 $|\delta x|_x$ Finsler structure

- $\blacktriangleright \ \forall \delta x \in T_x \mathcal{M}, \qquad |\lambda \delta x|_x = \lambda |\delta x|_x$
- $\forall \delta x_1, \delta x_2 \in T_x \mathcal{M} \quad |\delta x_1 + \delta x_2|_x \le |\delta x_1|_x + |\delta x_2|_x$
- ► Example: $\sqrt{\delta x^T P(x) \delta x}$ P(x) > 0

A way to infer $\delta x(t) \to 0$: Lyapunov theory in $T\mathcal{M}$

$$\begin{cases} \dot{x} = f(x) \\ \dot{\delta x} = \frac{\partial f(x)}{\partial x} \delta x \end{cases} c_1 |\delta x|_x^p \le V(x, \delta x) \le c_2 |\delta x|_x^p$$

$$\dot{V} \le -\lambda V$$
 $\dot{V} = \frac{\partial V(x, \delta x)}{\partial x} f(x) + \frac{\partial V(x, \delta x)}{\partial x} \frac{\partial f(x)}{\partial x} \delta x$

$$|\delta x(t)|_{x(t)} \le ke^{-\lambda t} |\delta x(0)|_{x(0)}$$

A way to infer $\delta x(t) \to 0$: Lyapunov theory in $T\mathcal{M}$

$$\begin{cases} x^{+} = f(x) \\ \delta x^{+} = \frac{\partial f(x)}{\partial x} \delta x \end{cases} c_{1} |\delta x|_{x}^{p} \leq V(x, \delta x) \leq c_{2} |\delta x|_{x}^{p}$$

$$V^+ \le \lambda V$$
 $V^+ = V(f(x), \frac{\partial f(x)}{\partial x} \delta x)$

$$|\delta x(t)|_{x(t)} \le k\lambda^t |\delta x(0)|_{x(0)}$$

Example: $\dot{x} = -\sin(x)$, contraction in $(-\pi, \pi)$

$$\dot{x} = -\sin(x)$$

$$V(x, \delta x) = \frac{1}{2} \delta x^2$$

$$\dot{V}(x,\delta x) = -\cos(x)\delta x^2$$

$$\Rightarrow$$
 contraction in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

same as Lyapunov on e := x - z

$$\begin{cases} \dot{x} = -\sin(x) \\ \dot{\delta x} = -\cos(x)\delta x \end{cases}$$

$$V(x, \delta x) = \frac{\delta x^2}{1 + \cos(x)}$$
$$\dot{V}(x, \delta x) = -\delta x^2$$

$$V(x, \delta x) = -\delta x^2$$

 \Rightarrow contraction in $(-\pi,\pi)$

Nonlinear filters: uniform contraction w.r.t. input signal

$$\begin{cases} \dot{x} = f(x) \\ \dot{\delta x} = \frac{\partial f(x)}{\partial x} \delta x \end{cases} \rightarrow \begin{cases} \dot{x} = f(x, t) \\ \dot{\delta x} = \frac{\partial f(x, t)}{\partial x} \delta x \end{cases} \rightarrow \begin{cases} \dot{x} = f(x, u(t)) \\ \dot{\delta x} = \frac{\partial f(x, u(t))}{\partial x} \delta x \end{cases}$$

$$c_1|\delta x|_x^p \leq V(x,\delta x) \leq c_2|\delta x|_x^p \quad \to \quad c_1|\delta x|_x^p \leq V(t,x,\delta x) \leq c_2|\delta x|_x^p$$

$$\dot{V} \leq -\lambda V$$

$$|\delta x(t)|_{x(t)} \le ke^{-\lambda t} |\delta x(0)|_{x(0)}$$

i.e. from any $(x_0, \delta x_0)$

Example: $\dot{x} = -\sin(x) + u$

$$\begin{cases} \dot{x} = -\sin(x) + u \\ \dot{\delta x} = -\cos(x)\delta x \end{cases}$$

$$V(x, \delta x) = \frac{1}{2}\delta x^2$$

$$\dot{V}(x, \delta x) = -\cos(x)\delta x^2$$
 uniform contraction in $(-\frac{\pi}{2}, \frac{\pi}{2})$

Solutions converge towards each other provided that u(t) preserves the invariance of the contraction region.

Example: $\dot{x} = -\sin(x) + u$

$$\begin{cases} \dot{x} = -\sin(x) + u \\ \dot{\delta x} = -\cos(x)\delta x \end{cases}$$

$$V(x, \delta x) = \frac{\delta x^2}{1 + \cos(x)}$$
$$\dot{V}(x, \delta x) = -\delta x^2 + \frac{\delta x^2 \sin(x) u}{(1 + \cos(x))^2}$$

no uniform contraction in $(-\pi,\pi)$

Solutions converge towards each other only for suitable inputs u(t)

Example: $\dot{x} = -\sin(x) + \cos(\frac{x}{2})u$

$$\dot{x} = -\sin(x)
\begin{cases}
\dot{x} = -\sin(x) + \cos(\frac{x}{2})u \\
\dot{\delta x} = \left[-\cos(x) - \frac{1}{2}\sin(\frac{x}{2})u\right]\delta x
\end{cases}$$

$$V(x, \delta x) = \frac{\delta x^2}{1 + \cos(x)}$$

$$\dot{V}(x, \delta x) = -\delta x^2 + \delta x^2 \underbrace{u\left(-\frac{\cos(\frac{x}{2})}{(1 + \cos(x))^2} - \frac{\sin(\frac{x}{2})}{2(1 + \cos(x))}\right)}_{=0!}$$
uniform contraction in $(-\pi, \pi)$

Example: $\dot{x} = -\sin(x) + \cos(\frac{x}{2})u$

What we gain from a differential Lyapunov theory?

Lyapunov (stability) vs Finsler-Lyapunov (incr. stability)

$$\dot{x} = f(x)$$

Find Lyapunov V(x)

$$\frac{\partial V(x)}{\partial x}^{T} f(x) \le -\lambda V(x)$$

Find Finsler-Lyapunov $V(x, \delta x)$

$$\frac{\partial V(X)}{\partial X}^T F(X) \le -\lambda V(X)$$

▶ Then, $x(t) \rightarrow x_e$.

► Then, $\delta x(t) \rightarrow 0$.

Finsler-Lyapunov unifies many contraction approaches

$$V = |\delta x|$$

$$|A| := \sup_{x=1} |Ax|, \ \mu(A) := \lim_{h \to 0^+} \frac{|l+hA|-1}{h}, \ \exists c > 0, \ \forall x$$

$$\mu(\frac{\partial f(x)}{\partial x}) < -c$$

$$V = \delta x^{T} P \delta x$$

$$\exists P = P^{T} > 0, \exists Q = Q^{T} > 0, \forall x$$

$$\frac{\partial f(x)}{\partial x}^{T} P + P \frac{\partial f(x)}{\partial x} < -Q$$

$$V = \delta x^{T} M(x) \delta x,$$

$$\exists M(x) = M(x)^{T} > 0, \ \forall x$$

$$\frac{\partial f(x)}{\partial x}^{T} M(x) + M(x) \frac{\partial f(x)}{\partial x} + [\dot{M}(x)] < -cM(x)$$

IS, IAS, IES

$$X := \begin{bmatrix} x \\ \delta x \end{bmatrix}, F(X) := \begin{bmatrix} f(x) \\ J(x)\delta x \end{bmatrix}, \dot{X} = F(X)$$

Let $V: T\mathcal{M} \to \mathbb{R}_{\geq 0}$ be a Finsler-Lyapunov function s.t. $\forall X$

- ► $\frac{\partial V(X)}{\partial X}^T F(X) \le 0$ ⇒ Incremental Stability.
- ▶ $\frac{\partial V(X)}{\partial X}^T F(X) \le -\alpha(V(X))$ $\alpha \in \mathcal{K}$ ⇒ Incremental Asymptotic Stability. $\lim_{t\to\infty} d(\varphi(t,x_0),\varphi(t,x_1)) \le \lim_{t\to\infty} \int_0^1 V(...)ds = 0$
- ▶ $\frac{\partial V(X)}{\partial X}^{I} F(X) \le -cV(X)$ c > 0⇒ Incremental Exponential Stability. $d(\varphi(t, x_0), \varphi(t, x_1)) \le \int_0^1 e^{-ct} ... ds = e^{-ct} \int_0^1 ... ds$

Advantages: relaxations, design, I/O

► Relaxations (LaSalle):

from
$$\dot{V} \leq -\alpha(V)$$
 to $\dot{V} \leq -W(x, \delta x) \leq 0$

► Design:

$$u = k(x)$$
 such that $\dot{V} \leq -\alpha(V)$

▶ open systems...

What about systems that contract only partially?

Horizontal contraction - symmetries or first integrals

(Cooperative irreducibile systems of ordinary differential equations with first integral, Mierczynski)

Horizontal contraction - attractors - Bendixon's criterion

no limit cycles if the system contracts in the direction of the vector field f(x) - connections with Bendixon-like criteria.

Example: phase synchronization

(Stabilization of planar collective motion: All-to-all communication, Sepulchre, Paley, and Leonard)

$$\dot{\theta}_{k} = \frac{1}{n} \sum_{j=1}^{n} \sin(\theta_{j} - \theta_{k})$$

$$\dot{\theta} = \underbrace{\frac{1}{n} \begin{bmatrix} 0 & s_{21} & \cdots & s_{n1} \\ s_{12} & 0 & \cdots & s_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \cdots & 0 \end{bmatrix}}_{=:\mathbf{S}(\theta)} \mathbf{1} \quad \Rightarrow \quad \mathbf{S}(\theta) = \mathbf{S}(\theta + \alpha \mathbf{1})$$

Contraction in any forward invariant compact set \mathcal{C} not containing unstable and saddle points

Open systems - differential dissipativity

Variational open systems

$$\begin{cases} \dot{x} &= f(x, u) \\ \dot{y} &= h(x, u) \end{cases}$$

$$\Rightarrow \qquad \qquad \dot{\delta x} = \underbrace{A(x, u)}_{\frac{\partial f(x, u)}{\partial x}} \delta x + \underbrace{B(x, u)}_{\frac{\partial f(x, u)}{\partial u}} \delta u$$

$$\dot{\delta y} = \underbrace{C(x, u)}_{\frac{\partial h(x, u)}{\partial x}} \delta x + \underbrace{D(x, u)}_{\frac{\partial h(x, u)}{\partial u}} \delta u$$

Storage and supply rate lifted to $T\mathcal{M}$

$$S: T\mathcal{M} \to \mathbb{R} \leftarrow \text{differential storage}$$

To make the connection to incremental stability we need

$$c_1|\delta x|_x^p \leq S(x,\delta x) \leq c_2|\delta x|_x^p$$

$$\dot{S}(x, \delta x) \le s(x, w, \delta w) \leftarrow \text{differential supply rate}$$

$$w := (u, y) \qquad \delta w = (\delta u, \delta y)$$

- ▶ Differential passivity: $s(x, w, \delta w) = \delta y^T \delta u$
- ▶ "Quadratic" differential supply: $s(x, w, \delta w) = \delta w^T Q(x) \delta w$

Linear systems: differential passivity ≡ passivity

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \Rightarrow \begin{cases} \dot{\delta x} = A\delta x + B\delta u \\ \delta y = C\delta x \end{cases}$$
$$S = \frac{1}{2}\delta x^{T} P \delta x \Rightarrow \dot{S} \leq \delta y^{T} \delta u \text{ if}$$
$$\delta u = 0 \Rightarrow A^{T} P + PA \leq 0$$

 $\delta v^T \delta u \Rightarrow PB = C^T$

Differential passivity if uniform contraction w.r.t. u.

$$\begin{cases} \dot{x} = f(x) + g(x)u \\ y = h(x) \end{cases} \Rightarrow \begin{cases} \dot{\delta x} = \frac{\partial (f(x) + g(x)u)}{\partial x} \delta x + g(x)\delta u \\ \delta y = \frac{\partial h(x)}{\partial x} \delta x \end{cases}$$

For differential passivity, let $S = \delta x^T P(x) \delta x$. Then, $\dot{S} \leq \delta y^T \delta u$ if

$$\delta u = 0 \quad \Rightarrow \quad P(x) \frac{\partial (f(x) + g(x)u)}{\partial x} + \dot{P}(x) \le 0$$
$$\delta y^{\mathsf{T}} \delta u \quad \Rightarrow \quad P(x)g(x) = \frac{\partial h(x)}{\partial x} \le 0$$

Differential passivity, incremental stability, interconnections

Thm1: differential passivity \Rightarrow incremental stability.

Proof:
$$\dot{S} \leq \delta y^T \delta u \Rightarrow \dot{S} \leq 0 \ (\delta u = 0) \Rightarrow |\delta x(t)|_{x(t)} \leq K|\delta x(0)|_{x(0)}$$

Thm2: differentially passivity + feedback \Rightarrow differentially passivity

Proof:
$$S = S_1 + S_2$$
 $\dot{S} = -\delta y_1^T \delta y_2 + \delta y_2^T \delta y_1 + \begin{bmatrix} \delta y_1 \\ \delta y_2 \end{bmatrix}^T \begin{bmatrix} \delta v_1 \\ \delta v_2 \end{bmatrix}$

Contraction and differential dissipativity

Selected Bibliography

- ▶ A differential Lyapunov framework for contraction analysis.
 F. Forni, R. Sepulchre, submitted to IEEE TAC. Available on arXiv.
- On differentially dissipative dynamical systems.
 F. Forni, R. Sepulchre, Nolcos 2013.
- On contraction analysis for non-linear systems.
 W. Lohmiller and J. E. Slotine, 1998.
- An intrinsic observer for a class of Lagrangian systems.
 N. Aghannan and P. Rouchon, 2003.
- Uniform output regulation of nonlinear systems: A convergent dynamics approach. A. Pavlov, N. van de Wouw, and H. Nijmeijer, 2005.
- Global entrainment of transcriptional systems to periodic inputs
 G. Russo, M. Di Bernardo, and E.D. Sontag, 2010.
- ► Metric Properties of Differential Equations D. C. Lewis, 1951.
- A Lyapunov approach to incremental stability properties. D. Angeli. 2000