Derivatives - Hull

Last Updated May 16, 2023

1. Concepts

Maturity - The end of the life of a contract.

Arbitrage - The simultaneous purchase and sale of the same asset in different markets in order to profit from tiny differences in the asset's listed price.

Market to Market (MtM) - Price of an asset/product at the present moment.

Short - Short position = Seller position

Long - Long position = Buyer position

Risk factor - Source of uncertainty.

- IR: Interest Rate
 - Yield Curves: Rate curves given by countries
 - Reference rate curves: EURIBOR, LIBOR, SOFR
 - CDS curves
- FX: Foreign Exchange. ex. EUR/USD
- Equity: ex. BNP equity.
- Commodities: ex. Oil price.

Spot Price - The price for immediate delivery.

OTC Market - Over-the-counter. A market where traders deal directly with each other or through an interdealer broker. The traders are usually financial institutions, corporations, and fund managers.

Exchange-traded markets - A derivatives exchange is a market where individuals and companies trade standardized contracts that have been defined by the exchange. Contrary to OTC

2. Notation

S - Stock price, more generally underlying asset price.

 Δ - Variation

- t Time
- ϕ Normal distribution
- σ Volatility
- r Interest rate
- c, f Price of option

3. Assets

Most known:

- Commodities
- Real State
- Currencies
- Stocks
- Bonds

Types of bonds: Zero coupon bond, Coupon bond, Convertible bond, Callable bond

- Zero coupon bond: Only has one face value payment at maturity.
- Coupon bond: It has multiple coupon payments and one face value payment. Coupon rate = (k*n)/N, k: number of coupons per year.

- Convertible bond: Only convert to stock when market price of the bond < value of the stock.
- Callable bond: Have to return the bonds for the company at a fixed price when the company decides to call it back.

Pricing:

- Zero coupon bond:

$$P = \frac{N}{(1 + r_T)^T}$$

- Coupon bond:
- \Rightarrow Method 1:

Continuously compounded and compounded once per annum:

$$P = Ne^{-r_TT} + \sum_{i=i_0}^{T} Ce^{-ir_i}, P = \frac{N}{(1+r_T)^T} + \sum_{i=i_0}^{T} \frac{C}{(1+r_i)^i}$$

 \Rightarrow Method 2 (Yield):

Continuously compounded and compounded once per annum:

$$P = Ne^{-yT} + \sum_{i=i_0}^T Ce^{-iy}, P = \frac{N}{(1+y)^T} + \sum_{i=i_0}^T \frac{C}{(1+y)^i}$$

P: Bond price

N: Principal / face value / value

C: Coupon

 i_0 : Time for receiving first coupon with years as unit. Ex: 1/2 year, 1 year, etc.

i: Time. The difference between two consecutives i is i_0

 r_i : Rate interest at time i

T: Maturity

y: Yield

4. Credit Risk

Probability of default by time t

$$Q(t) = 1 - e^{-\int_0^t \lambda(\tau)d\tau} = 1 - e^{-\overline{\lambda}(t)t}, \qquad \overline{\lambda}(T) = \frac{s(T)}{1 - R}$$

 λ : Hazard rate

s(T): Bond yield spread for a T-year bond.

R: Recovery rate. Percentage of the bond value that is recovered in case of default.

$$Q(t) = 1 - e^{-\frac{s(T)}{1-R}t}$$

$$V(t) = e^{-\frac{s(T)}{1-R}t}$$

V(t): Probability of non-default by time t.

Frank Facundo

CVA and DVA

CVA: Credit Value Adjustment.

DVA: Debt Value Adjustment.

$$CVA = \sum_{i=1}^{N} q_i v_i \qquad DVA = \sum_{i=1}^{N} q_i^* v_i^*$$

 q_i : Risk-neutral probability of default of counterparty during the ith interval.

 v_i : Present value of the expected loss to the bank if the counterparty defaults during the ith interval.

 q_i^* : Risk-neutral probability of default of the bank during the ith interval.

 v_i^* : Present value of the expected loss to the counterparty if the bank defaults during the ith interval.

$$q_i = V(t_{i-1}) - V(t_i)$$
$$v_i = f_{n,d}(1 - R)$$

5. Derivatives

A derivative involves two parties agreeing to a future transaction. Its value depends on (or derives from) the values of other underlying variables.

Forward contracts

- A contract that obligates the holder to buy or sell an asset for a predetermined delivery price at a predetermined future time. The contract has a virtual zero cost at time zero.
- Forward's delivery price when created

$$F_0 = S_0 e^{rT}$$

 F_0 : Forward delivery price

 S_0 : Price of underlying asset

T: Time to maturity

r: Risk-free rate

 \Rightarrow **Assumptions**:

- The gain is the free-risk rate

- Not coupon neither yield from underlying asset.

- MtM of a Forward (Payoff)

$$f = (F_0 - K)e^{-rT}$$

 $f: MtM ext{ of Forward}$

 F_0 : Forward price at present time (if it was created at present time). Formula is above.

K : Delivery price for a contract that was negotiated some time ago. (F_0 when forward was created.)

T: Time to maturity

r: Risk-free rate

Future contracts

- A contract that obligates the holder to buy or sell an asset at a predetermined delivery price during a specified future time period. The contract is settled daily.

Difference Forward and Future

- Future are traded in exchange markets whereas Forwards are OTC.

Options

-

Swaps: Interest rate swap

-

Swaps: Currency swap

-

 $Swaps:\ CDS(Credit\ default\ swap)$

Swaps: Quanto

-

6. Black and Scholles

Assumptions

 Stock price assumes that percentage changes in very short period of time are normally distributed.

$$\frac{\Delta S}{S} \backsim \phi(\mu \Delta t, \Delta t)$$

Equation

$$\frac{\partial f}{\partial t} + rS\frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf$$

7. Risk

Greeks or Risk sensitivities

 $\frac{\text{VaR \& ES}}{\text{PnL}}$

Greek	Symbol	Measures	Definition
Delta	$\Delta = \frac{\partial c}{\partial S}$	Underlying variable (S) exposure	Change in option price due to spot
Gamma	$\Gamma = \frac{\partial^2 c}{\partial S^2}$	Underlying variable (S) convexity	Curvature of option price with respect to spot
Theta	$\Theta = \frac{\partial c}{\partial t}$	Time decay	Change in option price due to time passing
Vega	$v = \frac{\partial c}{\partial \sigma}$	Volatility exposure	Change in option price due to volatility
Rho	$\rho = \frac{\partial c}{\partial r}$	Interest rate exposure	Change in option price due to interest rates
Volga	$\frac{\partial^2 c}{\partial \sigma^2}$	Volatility convexity	Curvature of option price with respect to spot
Vanna	$\frac{\partial c}{\partial S \partial t}$		Change in Delta due to Volatility