

Presented by 杨欣然 郑奘巍

Turing machine

In honor of Alan Turing, Godel and Cantor

Simulation

- http://morphett.info/turing/turing.html
- * Rules
- * Design a Palindrome detector
- * Show examples of Binary addition and Binary multiplication
- * Universal Turing machine
- * Not consider the space and efficiency

- * read the most left one
- * goto the right side
- * judge the most right one
- * goto the left side ;loop

乔姆斯基四类文法

Q1:语言与可计算性有什么关系?

Q2: 0型文法代表着文法构造能力的极限,它能否表达所有语言?

Definition

- * 可计算性理论(Computability theory)研究在不同的 计算模型下哪些算法问题能够被解决。
- * 可计算: 问题能够被图灵机解决
- *解决:图灵机、文法、lambda、马尔科夫转移链.....
- * 判定问题是无穷多个同类个别问题的总称
- * 判定问题怎么刻画绝大部分问题?

转化

- * 考虑排序问题,输入一串数(符号),希望输出一串数(符号)
- * 考虑一般问题: 可以用英文、数字表示输入
- * 把自然数关联到公理和规则
- * 求解一个函数
- * 哥德尔

哥德尔编码

- * 在计算机上一切都是数字。比如,字母"N"是78,字母"u"是 117
- * Number 0 exists
- * 7811710998101114324832101120105115116115
- * 对余下的所有初级公理和规则进行同样的编码,接着我们可以开始对这个形式系统的第一个推论进行编码,再对推论的推论进行编码,等等等。最后,任何公理或者推论序列都变成一个数字。

哥德尔宣称

* 我来告诉你一个特别的方法,怎样把任意证明变成一个极大的数字,并且怎样准确地把这些数字转回到原来的证明。只要你有任何证明,10页纸甚至1000页纸长的证明,都仅仅是一个唯一的完全表示你的证明的数字。并且这一点,对于所有可能的证明都成立。从现在开始,我们就只处理和证明关于数字的定理和关于数字的函数。这就简单得多了。

可计算函数

- * 所有问题就成了计算对应函数值(自然数)的问题
- * 图灵机能计算该函数就可以解决该问题
- * 改变输入方式, 穷举自然数, 判定是否为解来求解函数 (集合无穷也是可以的)
- * 把这一列输入的字符串作为语言
- * 可计算语言: 一个语言S可以被图灵机接受

图灵可判定语言

- * Turing machine decidable language: S
- * 如果判断在S中则接受,否则停机
- * 可计算语言
- ※ 哪些问题不可计算呢?

停机问题

- * $A=\{\langle M, \omega \rangle \mid M描述一台图灵机, 且M描述的机器接受 \omega \}$
- * 假设存在H
- * Post correspondence problem
- Mortality (computability theory)
- * Entscheidungsproblem

፩・论・编	自动机理论:	形式语言和形式文法	
乔姆斯基层级	文法	语言	极小自动机
类型 0	无限制	递归可枚举	图灵机
_	(无公用名)	递归	判定器
类型 1	上下文有关	上下文有关	线性有界
_	附标	附标	嵌套堆栈
_	Linear context-free rewriting systems etc.	Mildly context-sensitive	Thread automata
_	树-邻接	适度上下文有关	嵌入下推
类型 2	上下文无关	上下文无关	非确定下推
_	确定上下文无关	确定上下文无关	确定下推
_	Visibly pushdown	Visibly pushdown	Visibly pushdown
类型 3	正则	正则	有限
_	_	Star-free	Counter-free (with aperiodic finit

每个语言范畴都是其直接上面的范畴的真子集 每个语言范畴内的语言都可以用同一行的文法和自动机表示

图灵可识别语言

- * Turing machine recognizable language
- * 对应的是0型语言(半判定语言)
- * 如果判断在S中则接受
- * $A=\{\langle M, \omega \rangle \mid M描述一台图灵机, 且M描述的机器接受 \omega \}$
- *难道还有不可识别语言?

不可识别语言

- * 可计算函数是定义在自然数上的
- * 通过某种方法可以"遍历"自然数、整数甚至有理数
- * 可数集: 直观上可以知道下一个是什么
- * 根据集合论的定义,可数集是可以和N建立一一关系的集合 (回忆: N的幂集也是不可数的)

全部语言的集合是不可数的

- * 不可数及不能与N建立对应关系
- * 可以证明: R不可数(其实与N的幂集等势)(利用康托对角线法)
- * 可以证明: 无限的二进制序列的集合与R可以建立对应关系(直观: 无限与无限产生了更高的无限)
- * 可以证明: 无限的二进制数的集合可以与所有语言的集合建立对应关系
- * 易证: 图灵机的集合是可数的

结论

- * 存在图灵机不可识别语言
- * 要例子?
- *难!
- * 以实数为例,存在实数是不可定义的。因为定义用的是有限语言,有限语言与N可以建立对应关系。所以,不可识别语言大都不可定义。

・论・编	自动机理论	: 形式语言和形式文法	
乔姆斯基层级	文法	语言	极小自动机
类型 0	无限制	追归可枚举	图灵机
_	(无公用名)	递归	判定器
类型 1	上下文有关	上下文有关	线性有界
_	附标	附标	嵌套堆栈
_	Linear context-free rewriting systems etc.	Mildly context-sensitive	Thread automata
_	树-邻接	适度上下文有关	嵌入下推
类型 2	上下文无关	上下文无关	非确定下推
_	确定上下文无关	确定上下文无关	确定下推
_	Visibly pushdown	Visibly pushdown	Visibly pushdown
类型 3	正则	正则	有限
_	_	Star-free	Counter-free (with aperiodic fini-

每个语言范畴都是其直接上面的范畴的真子集 每个语言范畴内的语言都可以用同一行的文法和自动机表示

- * 递归集 递归集最初是对于元素都是自然数的集合定义的,它们是有算法确定每个自然数是否为其元素的集合
- 递归可枚举集 如果对于集合A可以编一个程序P,输入域中任意元素x,若x∈A,则P的执行将终止并输出"是",否则P 的执行不终止,就称A为递归可枚举集。A为递归可枚举集的充分必要条件是可以编一个程序枚举A的元素,即打印A的元素,使得对于 A中任意元素,只要时间足够长总会在打印纸上出现。

有关的拓展话题

- * 比图灵机更强的计算模型 https://www.zhihu.com/question/21579465
- * 谕示机 ——由图灵提出
- * Blum Shub Smale machine
-
- * 都是理论上的(而且我看不懂)

有关的拓展话题

- ❖ 0型语言
- * 图灵机的等价模型
- * 不可计算问题的证明
- * 哥德尔不完备定理
- * 连续统假设
- *集合论
- * 康托的对角线法
- * P与 NP (都是可判定问题)

以及

- * 学好集合论
- * 各种悖论

引用及鸣谢

- * University of Melbourne, School of Mathematics and Statistics http://morphett.info/turing/turing.html Turing machine simulator
- * Wikipedia
- * Alan Turing ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM
- * silverbullettt 《关于图灵机的三个问题》 http://blog.sina.com.cn/s/blog 4dff87120100y1fv.html
- * 刘未鹏 《康托尔、哥德尔、图灵——永恒的金色对角线》
- * 陈有祺 《形式语言与自动机》
- * http://skibinsky.com/godel-turing-and-cantor-the-math/
- * www.zhihu.com
- * 顾森讲数学
- *《算法图灵机及可计算性理论》ppt
- * 宋方敏 《20世纪最伟大的智者之一Alan Turing》
- https://yq.aliyun.com/articles/72782
- * CSDN
- * 百度百科
- * 张健 《逻辑公式的可满足性判定一方法 工具及应用》
- * 以及其它未列出的参考
- * 赫兆宽 杨跃 《集合论 对无穷概念的探索》