Model of spins on Lattice

27 juin 2003,

Classement: Spins sur réseau

Contents

1	Def	initions	2
		1.0.1 Relations of $SU(2)$ algebra	4
2	Coh	nerent States	
	2.1	Field coherent states	
		2.1.1 Field operators	
		2.1.2 Scalar product	4
		2.1.3 Canonical variables; Classical equation of motion	4
		2.1.4 Closure relation	4
		2.1.5 Operator Magnetization	4
	2.2	Localized coherent states	ŀ
3	Mo	del	6
	3.1	Hamiltonian	6
		3.1.1 Hamiltonian \hat{H}_0	7
		$3.1.2$ Hamiltonian $\hat{H_1}$	7
		3.1.3 Matrix elements	7
		3.1.4 Numerical spectrum	8
	3.2		1(
	3.3	1	1.
	_	Minimum of energy	1

References:

• Book of Sachdev: model of Ising spin on 1Dim lattice in transverse magnetic field. This is an exact soluble model.

1 Definitions

Consider a **périodique 1D lattice with** N **discrete site**:

$$i = 1 \rightarrow N$$

On each site there is a spin 1/2.

The total Hilbert space is then

$$\mathcal{H}_{tot} = \underbrace{\mathbb{C}^2 \otimes \ldots \otimes \mathbb{C}^2}_{N}$$

One has dim $\mathcal{H}_{tot} = 2^N$.

The standard basis is composed by states of the form:

$$|s_1, s_2, \dots, s_N\rangle, \qquad s_i = 0 \text{ or } 1$$

In particular the state $|0\rangle = |0, \dots, 0\rangle$ corresponds to all the spin down.

1.0.1 Relations of SU(2) algebra

$$|z\rangle = \exp\left(z\hat{J}_{+}\right)|0\rangle$$
: coherent state $\langle z|z\rangle = \left(1+|z|^{2}\right)$

$$\langle z|\hat{J}_0|z\rangle = \frac{1}{2} (|z|^2 - 1)$$

$${}_{n}\langle z|\hat{J}_0|z\rangle_{n} = \frac{1}{2} \frac{(|z|^2 - 1)}{(1 + |z|^2)} = 2\beta\overline{\beta} - 1 = \frac{1}{2}\cos\theta$$

$${}_{n}\langle z|\hat{J}_x|z\rangle_{n} = \frac{z + \overline{z}}{1 + |z|^2} = (\beta + \overline{\beta})\sqrt{1 - \beta\overline{\beta}} = \frac{1}{2}\sin\theta\cos\varphi$$

$$\beta = \frac{z}{\sqrt{1 + |z|^2}}; \qquad |\beta| < 1$$

Remark (for after):

$$\partial_{\overline{\beta}} \langle J_0 \rangle_n = 2\beta$$

$$\partial_{\overline{\beta}} \langle J_x \rangle_n = \frac{1}{2\sqrt{1 - \beta \overline{\beta}}} \left(2 - 3\beta \overline{\beta} - \beta^2 \right)$$

2 Coherent States

2.1 Field coherent states

Definition 2.1. For a given $\psi \equiv (\psi_1, \dots, \psi_n) \in \mathbb{C}^N$, one associates a **field coherent** state:

$$|\psi\rangle = \exp\left(\sum_{i=1}^{N} \psi_{i} \hat{J}_{+,i}\right) |0\rangle$$
$$= \bigotimes_{i=1}^{N} \exp\left(\psi_{i} \hat{J}_{+,i}\right) |0_{i}\rangle = \bigotimes_{i=1}^{N} |\psi_{i}\rangle$$

Think of $|\psi\rangle$ as a classical field $\psi(i)$, noted $\psi_i = (i|\psi)$, on the lattice with values in \mathbb{C} . We note

$$\mathcal{H}_N = \mathbb{C}^N$$

the space of classical fields and $|\psi\rangle \in \mathcal{H}_N = \mathbb{C}^N$ a classical field.

This space is the quantized space of the torus $\mathcal{H}_N(\theta=0)$.

The standard (position) basis is written:

$$|i\rangle = (0,\ldots,1,\ldots 0) \in \mathcal{H}_N = \mathbb{C}^N$$

with $i = 1 \rightarrow N$.

For example, for $\phi \in \mathbb{C}$,

$$|\phi|i\rangle = \exp\left(\phi \hat{J}_{+,i}\right)|0\rangle$$

is a spin coherent state at site i.

2.1.1 Field operators

We consider and note $(\hat{J}_{+}| = (\hat{J}_{+,1}, \dots \hat{J}_{+,i}, \dots \hat{J}_{+,N})$ as a field operator. Similarly for every operator.

For instance

$$\hat{J}_{+,i} = (\hat{J}_+|i)$$

we write also:

$$\hat{J}_{+,\psi} = (\hat{J}_{+}|\psi)$$

One has

$$|\psi\rangle = \exp\left(\sum_{i=1}^{N} \psi_{i} \hat{J}_{+,i}\right) |0\rangle$$

$$= \exp\left(\sum_{i=1}^{N} (i|\psi)(\hat{J}_{+}|i)\right) |0\rangle$$

$$= \exp\left((\hat{J}_{+}|\psi)\right) |0\rangle$$

2.1.2 Scalar product

One has

$$\langle \psi | \psi \rangle = \prod_{i=1}^{N} \langle \psi_i | \psi_i \rangle = \prod_{i=1}^{N} (1 + |\psi_i|^2)$$
$$= \exp \left(\sum_{i=1}^{N} \ln (1 + |\psi_i|^2) \right)$$

So only if $|\psi_i|^2 \simeq 0$, then one has $\langle \psi | \psi \rangle \simeq \exp\left(\sum_{i=1}^N |\psi_i|^2\right) = \exp\left((\psi | \psi)\right)$.

2.1.3 Canonical variables; Classical equation of motion

As for SU(2) coherent states, one define

$$\beta_i = \frac{\psi_i}{\sqrt{1 + \left|\psi_i\right|^2}}$$

so the classical equation of motion are

$$\frac{d\beta_i}{dt} = -i\frac{\partial H}{\partial \overline{\beta}_i}$$

with

$$H =_n \langle \psi | \hat{H} | \psi \rangle_n$$

2.1.4 Closure relation

$$\hat{I}_{\mathcal{H}_{tot}} = \int d\left[\psi\right] |\psi\rangle_{nn}\langle\psi|$$

2.1.5 Operator Magnetization

$$\hat{N} = \sum_{i=1}^{N} \hat{N}_{i}$$

$$\hat{N}_{i} = \left(\hat{J}_{0,i} + \frac{1}{2}\right)$$

has mean value:

$$\langle \psi | \hat{N} | \psi \rangle = \sum_{i=1}^{N} \langle \psi_i | \hat{N}_i | \psi_i \rangle$$
$$= \frac{1}{2} \sum_{i=1}^{N} |\psi_i|^2 = \frac{1}{2} (\psi | \psi)$$

or

$$_{n}\langle\psi|\hat{N}|\psi\rangle_{n} = \sum_{i=1}^{N} |\beta_{i}|^{2}$$

Finally if $\hat{H} = \hat{N}$ is the Hamiltonian then

$$\frac{d\beta_i}{dt} = -i\frac{\partial H}{\partial \overline{\beta}_i} = -i\beta_i$$

so as expected

$$\beta_i(t) = \beta_i(0) e^{-it}$$

2.2 Localized coherent states

There are well defined coherent states of the Torus denoted by

$$|z) \in \mathcal{H}_N, \quad z \in \mathbb{C}$$

With a given $\phi \in \mathbb{C}$, this gives special "field coherents states":

$$|\phi|z\rangle \in \mathcal{H}_{tot}$$

called localized coherent states.

Explicitely:

$$|\phi|z\rangle\rangle = \exp\left(\phi \sum_{i=1}^{N} (i|z) \,\hat{J}_{+,i}\right) |0\rangle$$

= $\exp\left(\phi(\hat{J}_{+}|z)\right) |0\rangle$

from this last expression, because it depends algebraically on ϕ, z , it is clear that the familly of states $(|\phi|z)\rangle_{(\phi,z)\in\mathbb{C}^2}$ form a 2 dim algebraic submanifold \mathcal{F} of $P(\mathcal{H}_{tot})$.

$$|\psi_i\rangle = \exp\left(\phi(i|z)\,\hat{J}_{+,i}\right)|0_i\rangle$$

There norm is

$$\langle \phi | z \rangle | \phi | z \rangle = \prod_{i=1}^{N} (1 + |\phi|^2 |(i|z)|^2)$$

$$_{n}\langle\phi,z|\hat{N}|\phi,z\rangle_{n} = \left(\prod_{i=1}^{N} (1+|\phi|^{2}|(i|z)|^{2})^{-1}\right) \left(\frac{1}{2}|\phi|^{2}(z|z)\right)$$

Two questions arise

Questions

- 1. Is the Manifold \mathcal{F} complete? (i.e. span all \mathcal{H}_{tot})?
- 2. Find a closure relation?

Elements to answer:

- One can look for a state ortohognal to every localized coherent state.
- Compute the scalar product $\langle |\phi|z\rangle |\phi|z\rangle$ which gives the

3 Model

3.1 Hamiltonian

Proposed by Gregoire Misguish:

$$\begin{split} \hat{H}_t &= (1-t)\,\hat{H}_0 + t\hat{H}_1 \\ \hat{H}_0 &= 2\sum_{i=1}^N \hat{J}_{0,i} : \text{ Magnetic } z\text{-Field} \\ \hat{H}_1 &= -4\sum_{i=1}^N \hat{J}_{x,i}\hat{J}_{x,i+1} : \text{ Ising } -x \end{split}$$

An other one:

$$\hat{H}_{XYZ} = 4C_x \sum_{i=1}^{N} \hat{J}_{x,i} \hat{J}_{x,i+1} + 4C_y \sum_{i=1}^{N} \hat{J}_{y,i} \hat{J}_{y,i+1} + 4C_z \sum_{i=1}^{N} \hat{J}_{z,i} \hat{J}_{z,i+1}$$

 H_{XYZ} if the **Heisenberg model** if $C_x = C_y = C_z$, or the **XXZ model** if $C_x = C_y \neq C_z$. A more general one:

$$H_{C_x,C_y,C_z,C_0} = \hat{H}_{XYZ} + C_0 \hat{H}_0$$

for example \hat{H}_t is obtained with $C_x = -t$, $C_y = C_z = 0$, $C_0 = 1 - t$.

Remark: one can write:

$$\hat{J}_x = \frac{1}{2} \left(\hat{J}_+ + \hat{J}_- \right)$$

$$\hat{J}_y = \frac{i}{2} \left(\hat{J}_- - \hat{J}_+ \right)$$

3.1.1 Hamiltonian \hat{H}_0

$$\hat{H}_0 = 2\sum_{i=1}^N \hat{J}_{0,i}$$
: Magnetic z-Field

its spectrum is

$$E_i = 2i - N = -N, -N + 2, \dots, N,$$

 $i = 0, 1, 2, \dots, N$

Level E_i corresponds to a number i of spins up. There is C_N^i possibilities. So the multiplicity is

$$d_i = C_N^i = 1, N, ..., N, 1$$

3.1.2 Hamiltonian \hat{H}_1

$$\hat{H}_1 = -4\sum_{i=1}^{N} \hat{J}_{x,i} \hat{J}_{x,i+1}$$
: Ising $-x$

Level E_j corresponds to 2j frontiers (different closed spins), with

$$j = 0, 1, 2, \dots, [N/2]$$

Its energy is 1 for one frontier, and there is an even number of frontiers, so

$$E_j = -N + 4j = -N, -N + 4, \dots, \left(-N + 4\left[\frac{N}{2}\right]\right)$$

with multiplicity:

$$d_j = 2C_N^j$$

3.1.3 Matrix elements

In the standard basis $|s\rangle = |s_1, \dots, s_N\rangle$, with dimension 2^N . On has

$$\hat{J}_x = \frac{1}{2} \begin{pmatrix} \hat{J}_+ + \hat{J}_- \end{pmatrix} \equiv_{basis(+,-)} \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\hat{J}_y = \frac{i}{2} \begin{pmatrix} \hat{J}_- - \hat{J}_+ \end{pmatrix} \equiv \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\hat{J}_z \equiv \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

So if:

$$s = 0 \quad for \quad |-\rangle$$

= 1 $for \quad |+\rangle$

and

 $\overline{s} = 1 - s$

then

$$2\hat{J}_{x}|\overline{s}\rangle = |s\rangle$$

$$2\hat{J}_{y}|\overline{s}\rangle = i(1-2s)|s\rangle$$

$$2\hat{J}_{z}|s\rangle = (2s-1)|s\rangle$$

3.1.4 Numerical spectrum

programme spins-reseau.cc.

3.2 Classical equation of motion for field coherent states

As explained above,

$$\frac{d\beta_i}{dt} = -i\frac{\partial H}{\partial \overline{\beta}_i}$$

with

$$H = {}_{n}\langle\psi|\hat{H}|\psi\rangle_{n}$$
$$= (1-t)H_{0} + tH_{1}$$

with

$$H_0 = 2\sum_{i=1}^{N} \langle J_{0,i} \rangle$$

$$H_1 = -4\sum_{i=1}^{N} \langle \psi | \hat{J}_{x,i} \hat{J}_{x,i+1} | \psi \rangle_n = -4\sum_{i=1}^{N} \left\langle \hat{J}_{x,i} \right\rangle \left\langle \hat{J}_{x,i+1} \right\rangle$$

So

$$\frac{d\beta_i}{dt} = (-i) (1 - t) \partial_{\overline{\beta}_i} \langle J_{0,i} \rangle + 4it \left(\left\langle \hat{J}_{x,i-1} \right\rangle + \left\langle \hat{J}_{x,i+1} \right\rangle \right) \partial_{\overline{\beta}_i} \langle J_{x,i} \rangle$$

3.3 Minimum of energy

First suppose that the **coherent state field is uniform**:

$$\beta_i = \beta \quad \forall i$$

then in spherical coordinates,

$$\langle H \rangle = (1 - t) N \cos \theta - tN \sin^2 \theta \cos^2 \varphi$$

which is plot with dessin H.C

For t = 0, the minimum is at $\theta = \pi$ (spin down $|-z\rangle$).

For t=1, there are two equal minima at $\theta=\pi/2$ and $\varphi=0$ and $\varphi=\pi$ (spin $|+_x>$ or $|-_x>$).

Analitically, we have to solve

$$0 = \partial_{\theta} \langle H \rangle = -(1-t) N \sin \theta - 2t N \sin \theta \cos \theta \cos^{2} \varphi$$

$$\Leftrightarrow -\frac{1-t}{2t} \sin \theta = \sin \theta \cos \theta \cos^{2} \varphi$$

$$0 = \partial_{\varphi} \langle H \rangle = tN \sin^2 \theta \sin 2\varphi$$

The minimum is then:

for t < 1/3, at $\theta = \pi$

for t > 1/3, at $\varphi = 0, \pi$ and $\cos \theta = -\frac{1-t}{2t}$.

The value of energy is then

$$E_{min} = -(1-t) N$$
 for $t < 1/3$
= $-\left(\frac{1-2t+5t^2}{4t}\right) N$ for $t > 1/3$

Plot in black with spins reseau.cc.

Compared with exact result in red (from Jordan-Wigner trick):

$$E_0(t) = -tN\left(\int_0^{2\pi} \frac{dk}{2\pi} \sqrt{2\lambda \cos(k) + \lambda^2 + 1}\right), \quad \lambda = \frac{1-t}{t} = 0 \to \infty$$

Remark: there is a symmetry

$$E_{0}(1-t) = -(1-t)N\left(\int_{0}^{2\pi} \frac{dk}{2\pi} \sqrt{2\lambda^{-1}\cos(k) + \lambda^{-2} + 1}\right)$$
$$= -t\lambda N\left(\int_{0}^{2\pi} \frac{dk}{2\pi} \sqrt{2\lambda^{-1}\cos(k) + \lambda^{-2} + 1}\right)$$
$$= E_{0}(t)$$

3.4 Maximum of energy

is for $\theta = 0$, and gives

$$E_{max}(t) = (1 - t) N$$

which shows that the upper spectrum is bad described for $t \simeq 1$ (Ising dynamics). The reason is that the eigenstate of maximum energy is an anti-ferro state, bad described by our trial state.

3.5 Fourier basis @@

Because \hat{H} is invariant by translation, we try to express it after a Fourier transform $(z_n) \to (z_m)$, in order to decouple sectors of different momentum m:

$$(m|\psi) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \exp(-i\frac{2\pi}{N}nm) \ \psi_n$$
 (1)

$$= \sum_{n=0}^{N-1} (m|n)(n|\psi) \tag{2}$$

Recall of notations for operators:

$$(\hat{A}|i) = \hat{A}_i$$

and for $|\psi\rangle \in \mathbb{C}^N$,

$$\hat{A}_{\psi} = (\hat{A}|\psi)$$

And define:

$$(i|\hat{A}) = ((\hat{A}|i))^{+} = \hat{A}_{i}^{+} = (\hat{A}^{+}|i)$$

So that

$$(\hat{A}|\psi)^{+} = \left(\sum_{i} \psi_{i} \hat{A}_{i}\right)^{+}$$

$$= \left(\sum_{i} \overline{\psi_{i}} \left(\hat{A}_{i}\right)^{+}\right)$$

$$= \sum_{i} (\psi|i)(i|\hat{A})$$

$$= (\psi|\hat{A})$$

We define:

$$\hat{J}_{+,m} = \sum_{n} (\hat{J}_{+}|n) (n|m)$$

Proposition 3.1. The operators basis $\hat{J}_{0,m}$, $\hat{J}_{\pm,m}$, for $m=1 \to N$, have algebra relations:

$$\left[\hat{J}_{+,m}, \hat{J}_{-,m'}\right] = 2\hat{J}_{0,m+m'}$$

and give a new decomposition of the whole space:

$$\mathcal{H}_{tot} = \bigotimes_{i=1}^{N} \mathcal{H}_{m,i} = \underbrace{\mathbb{C}^2 \otimes \ldots \otimes \mathbb{C}^2}_{N}$$

Proof. One has

$$\begin{bmatrix} \hat{J}_{+,m}, \hat{J}_{-,m'} \end{bmatrix} = \hat{J}_{+,m} \hat{J}_{-,m'} - \hat{J}_{-,m'} \hat{J}_{+,m}
= \sum_{n,n'} (J_{+}|n)(n|m)(J_{-}|n')(n'|m') - (J_{-}|n')(n'|m')(J_{+}|n)(n|m)
= \sum_{n,n'} ((J_{-}|n')(J_{+}|n) + 2\delta_{n,n'} J_{0,n}) (n|m)(n'|m') - (J_{-}|n')(n'|m')(J_{+}|n)(n|m)
= \sum_{n} 2J_{0,n}(n|m)(n|m')
= \sum_{n} 2(J_{0}|n)(n|m+m')
= 2J_{0,m+m'}$$

Remak: in case of algebra $[a_n^+, a_{n'}] = \delta_{n,n'}I$, one obtains instead

$$[a_m^+, a_{m'}] = \dots = \sum_n 2(I|n)(n|m+m') = 2\sum_n (n|m+m') = 2\sqrt{N}\delta_{m,(-m')}$$

References