Clustering - Kmeans

Boston University CS 506 - Lance Galletti

What is a Clustering

What is a Clustering

What is a Clustering

A clustering is a grouping / assignment of objects (data points) such that objects in the same group / cluster are:

- similar to one another
- dissimilar to objects in other groups

Applications

- Outlier detection / anomaly detection
 - Data Cleaning / Processing
 - Credit card fraud, spam filter etc.
- Feature Extraction
- Filling Gaps in your data
 - Using the same marketing strategy for similar people
 - Infer probable values for gaps in the data (similar users could have similar hobbies, likes / dislikes etc.)

Clusters can be Ambiguous

Types of Clusterings

Partitional Making k partitions

Each object belongs to exactly one cluster

Hierarchical

A set of nested clusters organized in a tree

Density-Based Making a notion of closeness(density)

Defined based on the local density of points

Soft Clustering

Each point is assigned to every cluster with a certain probability

Partitional Clustering

Partitional Clustering

Goal: partition dataset into k partitions

Similar things in the same cluster Cluster with the smallest variance possible

cost function: bigger value for the points that are spread

Cost Function

take a distance between point and the mean and square it then, sum all up

$$\sum_{i} \sum_{x \in C_i} d(x, \mu_i)^2$$

for every point in that cluster and sum all the value from each cluster

- Way to evaluate and compare solutions
- Hope: can find some algorithm that find solutions that make the cost small

K-means

Given $X = \{x_1, ..., x_n\}$ our dataset, **d** the euclidean distance, and **k**

Find **k** centers $\{\mu_1, ..., \mu_k\}$ that minimize the **cost function**:

$$\sum_{i}^{k} \sum_{x \in C_{i}} d(x, \mu_{i})^{2}$$

When **k=1** and **k=n** this is easy. Why? one cluster and separate cluster for every point When $\mathbf{x_i}$ lives in more than 2 dimensions, this is a very difficult (**NP-hard**) problem

increase the mean for yellow and decrease it for blue

K-means - Lloyd's Algorithm

- 1. Randomly pick **k** centers {μ₁, ... , μ_k}
- 2. Assign each point in the dataset to its closest center
- 3. Compute the new centers as the means of each cluster
- 4. Repeat 2 & 3 until convergence

3 compute true center

Converges

Questions

