University of Ottawa Master of Engineering **Electrical and Computer Engineering** Assignment 1 **ELG7132D Topics in Electronics I: Simulation of Radio Frequency Circuits** Submitted by Karthik M Prakash University ID: 300037618

Contents	Pg.no
1. Introduction	3
2. Circuit Diagram	4
3. Equivalent Circuit Model	5
4. G Matrix	6
5. C Matrix	7
6. Source Vector	8
7. Function Vector	9
8. Nodes and their Indices	10

Introduction

The objective is to get familiarized with the HiSPICE- Matlab interface as a tool to used extract the circuit mathematical structures which is done through executing simple commands to access the mathematical constructs describing the circuit.

Circuit Diagram

Fig.1 Tuned Amplifier Circuit

Fig.1.1 Crystal Equivalent model

Equivalent Circuit Model

G – Matrix

	0	-1/R1	-1/R3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1/ R 1+ 1/ R 3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
-1/R1	0	/R1+1/R2	+1/Rb 0	0	0	0	- 1/Rb	0	0	0	0	0	0	0	0	0	0	0
-1/R3	0	0	1/R3+1/R	c 0	0	0	0	0	0	-1/Rc	0	0	0	0	0	0	0	0
0	0	0	0 1/I	Re+1/Rm-	+1/R4 -1/R4	0	0	0	0	0	-1/Re	1/Rm	0	0	0	0	0	0
0	0	0	0	- 1/R4	1/R4	1/Rb	0	0	0	0	0	0	0	0	0	0	0	0
0	0	-1/Rb	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.02	-0.99	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	1/Rc	0	0	0	0	0	0	0	0
0	0	0	-1/Rc	0	0	0	0	0	0	0	0	0	0	0	0	-1	0.99	0
0	0	0	0	-1/Re	0	0	0	0	0	0	1/Re	0	0	0	0	0.02	-1	0
0	0	0	0	- 1/Rm	0	0	0	0	0	0	0	1/Rm	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	-1	-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0

The G-Matrix is formed by considering all the resistors. In a closed network with various linear and nonlinear elements the G matrix represents the presence of resistors between various node.

C- Matrix

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	C1	-C1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	-C1 (Ccx+C1+	C2 ₀	0	0	0	0	0	-Cex	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	C0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0		0	0	0	Cc+Ce	0	0	-Cc	-Ce	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	-Cex	0	0	0	-Cc	0	0	Ccx+Ce	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	-Ce	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	Ce	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	Cm	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Lc	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Lm

The C-Matrix is formed by considering all the capacitors and the inductors. In a closed network with various linear and nonlinear elements the C-matrix represents the presence of capacitors and the inductors between various node.

Source Vector b(t)

0	`
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
Vdd	
Vin	
0	
Vdc	
Vde	
0	

The source vector represents the various voltage sources present in a network. It also denotes the node at which the source is present.

b(t) =

Function Vector f(x(t))

0
0
0
0
0
0
g(V8-V7) + g(V9-V7)
-g(V8-V7)
g(V9-V7)
0
0
0
0
0
0
0
0
0
0

f(x(t)) =

Nodes and their indices

Node Label	Index Assigned by Hi-Spice
ndd	1
nVin	2
n1	3
nVo	4
A1	5
n3	6
xQ.n01	7
xQ.n02	8
xQ.n03	9
xP.n04	10
xQ.n05	11
xCrystal.nC	12
xCrystal.C1	13
Vdd	14
Vin	15
Le	16
Vdc	17
Vde	18
Lm	19

Table 1: Nodes in the network and their corresponding indices