DFA
$$M=(Q, \xi, S, A, F)$$
 $N=(Q, \xi, \Lambda, S, F)$
 $S: QX \xi \to Q$ $A \in Q$. $A: QX \xi \to 2^{Q}$
 $S \in Q$.
 $L(M) = \{x \in \xi^{*} \mid M \text{ accepts } x\}$
 $L(N) = \{x \in \xi^{*} \mid N \text{ accepts } x\}$
 $A \le \xi^{*} \text{ is regular if } \exists a \text{ DFA } M \text{ At } L(M) = A$.
For every NFA N $\exists a \text{ DFA } M \text{ A.t } L(M) = L(N)$.
 $\exists A \subseteq \xi^{*} \text{ is regular if } \exists a \text{ NFA N } g.f L(N) = A$.

Examples.
$$\mathcal{E} = \{a, b\}$$
.

$$A_1 = \{w \in \mathcal{E}^* \mid w \text{ ends in 'a'}\}$$

$$b$$

$$a$$

$$-2i$$

$$b$$

$$a$$

$$-7i$$

$$b$$

$$A_2 = \{w \in \mathcal{E}^* \mid w \text{ is } \in \text{ or } w \text{ ends in 'a'}\}$$

$$A_2 = \{w \in \mathcal{E}^* \mid w \text{ is } \in \text{ or } w \text{ ends in 'a'}\}$$

$$-2i$$

$$-3i$$

$$L(M_3) = A_3$$
.
 $A_4 = \frac{2}{3}WEZ^* | W Contains a substring aab \{ \}.$

NFA: E-transitions. Transitions will E-label.

P=>9: Automaton can take an Etransition any time without reading on input Symbol.

if N is in state & and the next symbol is b.

- Read b and move to stolep.
- move to t without reading any symbol /ken read b and Move to 2.
- Move to t (no input), move to u (no input) read b, move to r.

Example. Z={a}.

A= {wez* | Iwl is divisible by 33.

B= [wes* | Iwl is divisible by 5].

C= \(\omega \omega \est{\text{NW}} \) IWI is divisible by 30853.

L(N) = C.

For every E-NFAN, JaDFAM s.+ L(N)=L(M).

E-transitions - Convenience.

AB=
$$\frac{2}{5}$$
 xy | 5 CEA and y EB $\frac{3}{5}$.

If $A_1B \subseteq E^*$ are regular ten AB is regular.

 $A \to \frac{3}{5}$ M, $5 + 2$ (M₁)=A; $3 \to \frac{3}{5}$ M₂ $5 + 2$ (M₂)=B

To Construct M₃ S.+ 2 (M₃)=AB

E-NFA

M₁

M₂

M₃

M₁

M₂

$$L(m_3) = AB.$$

 $A^* = \underbrace{\sum_{i} x_2 \dots x_n / n \ge 0} \text{ and } x_i \in A, 1 \le i \le n$ $= \underbrace{\{\epsilon\}} U A U A^2 U \dots$

if A is regular then A is regular.

3 DFA M, s.+ L(M)= A.

Mi

To construct M2 s.+ $L(M_2) = A^*$. L) NFA with E-transitions.

 $\angle (m_2) = A^*$

$$\rightarrow \cdot \xrightarrow{a} \cdot \xrightarrow{a} \circ$$

$$A^* \longrightarrow \underbrace{\epsilon} \longrightarrow \bullet -$$

$$\angle (m') \neq A^*$$