

Data Warehousing & Mining Techniques

Wolf-Tilo Balke Muhammad Usman

Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de

- Last Lecture:
 - Architectures: Three-Tier Architecture
 - Data Modeling in DW multidimensional paradigm
 - Conceptual Modeling: ME/R and mUML
- This week:
 - Data Modeling (continued)

3. Data Modeling

3.1 Logical Modeling: Cubes, Dimensions, Hierarchies

3.2 Physical Modeling: Array storage, Star, Snowflake

- Elements of the logical model
 - Dimensions and cubes
- Basic operations in the multidimensional paradigm
 - Cube -selection, -projection, -join
- Change support for the logical model

3.1 Logical Model

Goal of the Logical Model

- Refine the 'real' facts and dimensions of the subjects identified in the conceptual model
- Establish the granularity for dimensions

- Dimensions are entities
 chosen in the data model regarding some analysis purpose
 - Each dimension can be used to define
 more than one cube
 - They are hierarchically organized

- Dimension hierarchies are organized in classification levels also called granularities (e.g., Day, Month, ...)
 - The dependencies between the classification levels are described in the classification schema by functional dependencies
 - An attribute B is functionally dependent on some attribute A, denoted A \rightarrow B, if for all $a \in dom(A)$ there exists exactly one $b \in dom(B)$ corresponding to it

Classification schemas

- The classification schema of a dimension D is a semiordered set of classification levels $(\{D.K_0, ..., D.K_k\}, \rightarrow)$
- With a smallest element D.K₀,
 i.e. there is no classification level
 with smaller granularity

- A fully-ordered set of classification levels is called a Path
 - If we consider the classification schema of the time dimension, then we have the following paths
 - T.Day → T.Week
 - T.Day → T.Month → T.Quarter → T.Year

Here T.Day is the smallest element

Classification hierarchies

- Let $D.K_0 \rightarrow ... \rightarrow D.K_k$ be a path in the classification schema of dimension D
- A classification hierarchy concerning these path is a balanced tree which
 - Has as nodes dom(D.K₀)u...u dom(D.K_k)u {ALL}
 - And its edges respect the functional dependencies

• **Example:** classification hierarchy for the product dimension path

3.1 Cubes

- Cubes represent the basic unit of the multidimensional paradigm
 - They store one or more measures (e.g. the turnover for sales) in raw and pre-aggregated form
- More formally a cube C is a set of cube cells $C \subseteq \text{dom}(G) \times \text{dom}(M)$, where $G=(D_1.K_1, ..., D_n.K_n)$ is the set of **granularities**, $M=(M_1, ..., M_m)$ the set of **measures**
 - E.g. Sales((Article, Day, Store, Client), (Turnover))

- Aggregates are used for speeding up queries
 - For the 3-dim cube sales ((item, city, year), (turnover))
 we have
 - 3 aggregates with 2 dimensions e.g. (*, city, year)
 - 3 aggregates with I dimension e.g. (*, *, year)
 - I aggregate with no dimension (*,*,*)

 In the logical model cubes (also comprising the aggregates) are represented as a lattice of cuboids

The top most cuboid, the 0-D, which holds the highest

level of summarization is called apex cuboid

 The nD cube containing non-aggregated measures is called a base cuboid

But things can get complicated pretty fast (4 dim.)

- Basic operations of the multidimensional paradigm at logical level
 - Selection
 - Projection
 - Cube join
 - Aggregation

- Multidimensional Selection
 - The **selection** on a cube $C((D_1.K_1,...,D_g.K_g),$ $(M_1,...,M_m))$ with a predicate P, is defined as $\sigma_P(C) = \{z \in C: P(z)\}$, if all variables in P are either:
 - Classification levels K, which functionally depend on a classification level in the granularity of K, i.e. $D_i \cdot K_i \longrightarrow K$
 - Measures from (M₁, ..., M_m)
 - E.g. $\sigma_{P.Prod_group="Video"}(Sales)$

- Multidimensional projection
 - The **projection** of a function of some measure F(M)
 of cube C is defined as

$$\pi_{\mathsf{F}(\mathsf{M})}(\mathsf{C}) = \{ (\mathsf{g},\mathsf{F}(\mathsf{m})) \in \mathsf{dom}(\mathsf{G}) \times \mathsf{dom}(\mathsf{F}(\mathsf{M})) \colon (\mathsf{g},\mathsf{m}) \in \mathsf{C} \}$$

- E.g. $\pi_{\text{turnover, sold_items}}$ (Sales)

- Join operations between cubes is usual
 - E.g. if turnover would not be provided, it could be calculated with the help of the unit price from the price cube
- 2 cubes $C_1(G_1, M_1)$ and $C_2(G_2, M_2)$ can only be joined, if they have the **same granularity**

$$(G_1 = G_2 = G)$$

$$-C_1 \bowtie C_2 = C(G, M_1 \cup M_2)$$

Comparing granularities

- A granularity $G = \{D_1.K_1, ..., D_g.K_g\}$ is finer than $G' = \{D_1'.K_1', ..., D_h'.K_h'\}$, if and only if for each $D_i'.K_i' \in G' \exists D_i.K_i \in G$ where $D_i.K_i \rightarrow D_i'.K_i'$

- When the granularities are different, but we still need to join the cubes, aggregation has to be performed
 - E.g., Sales ⋈ Inventory: aggregate Sales((Day, Article, Store, Client)) to Sales((Month, Article, Store, Client))

- Aggregation is the most important operation for OLAP
- Aggregation functions
 - Compute a single value from some set of values, e.g. in SQL: SUM, AVG, Count, ...
 - Example: SUM_(P.Product_group, G.City, T.Month)(Sales)

3.1 Change support

- Classification hierarchy, classification schema, cube schema are all designed in the building phase and considered as fixed
 - Practice has proven different
 - DW grow old, too
- Reasons for classification hierarchy and schema
 - modifications
 - New requirements
 - Data evolution

- E.g. **Saturn** sells lots of electronics
 - Assume they feed data to their DW since 2003
 - Example of a simple classification hierarchy of data until 01.07.2008, for mobile phones only:

- After 01.07.2008 3G becomes hip and affordable and many phone makers start migrating towards
 3G capable phones
 - O2 made its XDA 3G capable

After 01.04.2011 phone makers already develop
 4G capable phones

Problem: Sales volume for GSM products can be problematic

- According to the most actual schema, O2 XDA belongs to the 3G category
- No O2XDA GSM only device will account for the GSM sales volume
- Solution: trace the evolution of the data
 - Versioning system of the classification hierarchy with validity timestamps

3.1 Classification Hierarchy Ution

Annotated change data

3.1 Classification Hierarchy Perolli

- The tree can be stored as metadata as a validity matrix
 - Rows are parent nodes and columns are child nodes

	GSM	3G	4G	Nokia 3600	O2 XDA	Berry Bold	Samsung Galaxy S4
Mobile phone	[01.03.2003, ∞)	[01.04.2005, ∞)	[01.04.2011, ∞)				
GSM				[01.04.2005, ∞)	[01.03.2003 <i>,</i> 01.07.2008)		
3G					[01.07.2008, ∞)	[01.03.2006, ∞)	
4G							[01.04.2011, ∞)
Nokia 3600							
O2 XDA							
Berry Bold							

- Flexibility gain: Having the validity information, queries like **as is versus as was** are possible
 - Even if in the latest classification hierarchy GSM products would not be provided anymore one can still compare sales for O2XDA as GSM vs. 3G

3.1 Schema Versioning

- No data loss
- All the data corresponding to all the schemas are always available
- After a schema modification the data is held in their belonging schema

3.1 Schema Versioning

- Advantages
 - Allows higher flexibility e.g. querying for the product family for old data
- Disadvantages

- Adaptation of the data to the queried schema is done

on the spot

This results in longer query run time

3.1 Schema Modification 1000

Schema evolution

- Advantage: Faster to execute queries for DW with many schema modifications
 - Because all data is prepared for the current and single schema
- Disadvantage: It limits user flexibility only queries based on the actual schema are supported

3.2 Physical Model

- Defining the physical structures
 - Define the actual storage architecture
 - Decide on how the data is to be accessed and how it is arranged

- Performance tuning strategies (next lecture)
 - Indexing
 - Partitioning
 - Materialization

3.2 Physical Model

- The data in the DW is stored according to the multidimensional paradigm
 - The obvious multidimensional storage model is directly encoding matrices
- Relational DB vendors, in the market place saw the opportunity and adapted their systems
 - Special schemas respecting the multidimensional paradigm

3.2 Multidimensional Model

- The basic data structure for multidimensional data storage is the array
- The elementary data structures are the cubes and the dimensions

$$-C=((D_1,...,D_n),(M_1,...,M_m))$$

• The storage of matrices is intuitive as arrays of arrays i.e. physically **linearized**

3.2 Linearization

- Linearization example: 2D cube $|D_1| = 5$, $|D_2| = 4$, cube cells = 20
 - Query: Jackets sold in March?
 - Measure stored in cube cell D₁[4], D₂[3]
 - The 2D cube is physically stored as a linear array, so
 - $D_1[4]$, $D_2[3]$ becomes array cell 14
 - $(Index(D_2) 1) * |D_1| + Index(D_1)$
 - Linearized Index = 2*5+4=14

3.2 Linearization

Generalization:

- Given a cube $C=((D_1, D_2, ..., D_n), (M_1:Type_1, M_2:Type_2, ..., M_m:Type_m)),$ the index of a cube cell z with coordinates $(x_1, x_2, ..., x_n)$ can be linearized as follows:
 - Index(z) = $x_1 + (x_2 1) * |D_1| + (x_3 1) * |D_1| * |D_2| + ...$ + $(x_n - 1) * |D_1| * ... * |D_{n-1}| =$

$$=1+\sum_{i=1}^{n}((x_{i}-1)*\prod_{j=1}^{i-1}|D_{i}|)$$

• Influence of the **order of the dimensions** in the cube definition

In the cube the cells of D₂ are ordered one beneath the other
 e.g., sales of all pants involves a column in the cube

If we consider a data block to hold 5 cells, a query over all products sold in January can be answered with just 1 block read, but a query of all sold pants, involves reading 4 blocks

Jan (1)

Feb(2)

Mar(3)

Apr(4)

- Solution: use caching techniques
 - But...caching and swapping is performed by the operating system, too
 - MDBMS has to manage its caches such that the OS doesn't perform any damaging swaps

- Storage of dense cubes
 - If cubes are dense, array storage is quite efficient.
 However, operations suffer due to the large cubes
 - Loading huge matrixes in memory is not good
 - Solution: store dense cubes not linearly but on 2
 levels
 - The first contains indexes and the second the data cells stored in blocks
 - Optimization procedures like indexes (trees, bitmaps),
 physical partitioning, and compression (run-length-encoding) can be used

Storage of sparse cubes

- All the cells of a cube, including empty ones, have to be stored
- Sparseness leads to data being stored in several physical blocks or pages
 - The query speed is affected by the large number of block accesses on the secondary memory

– Solution:

- Do not store empty blocks or pages but adapt the index structure
- 2 level data structure: upper layer holds all possible combinations of the sparse dimensions, lower layer holds dense dimensions

• 2 level cube storage

3.2 Physical Model

Relational model, goals:

 As low loss of semantically knowledge as possible e.g., classification hierarchies

- The translation from multidimensional queries must be efficient
- The RDBMS should be able to run the translated queries efficiently
- The maintenance of the present tables should be easy and fast e.g., when loading new data

- Going from multidimensional to relational
 - Representations for cubes, dimensions, classification hierarchies and attributes
 - Implementation of cubes without the classification hierarchies is easy
 - A table can be seen as a cube
 - A column of a table can be considered as a dimension mapping
 - A tuple in the table represents a cell in the cube
 - If we interpret only a part of the columns as dimensions we can use the rest as measures
 - The resulting table is called a fact table

Article	Store	Day	Sales
Laptops	Hannover, Saturn	13.11.2015	6
Mobile Phones	Hannover Saturn	18.12.2015	24
Laptops	Braunschweig Saturn	18.12.2015	3

Snowflake-schema

- Simple idea: use a table for each classification level
 - This table includes the ID of the classification level and other attributes
 - 2 neighbor classification levels are connected by I:n connections e.g., from n Days to I Month
 - The measures of a cube are maintained in a fact table
 - Besides measures, there are also the foreign key IDs for the smallest classification levels

(Snowflake Schema

Snowflake?

- The **facts/measures** are in the center
- The dimensions spread out in each direction and branch out with their granularity

3.2 Snowflake Example

3.2 Snowflake Schema

Advantage:

- With a snowflake schema the size of the dimension tables will be reduced and queries will run faster
- Easier to maintain (avoid redundancy)
- Allows for more flexible querying with complex dimensions with many classification levels

3.2 Snowflake Schema

Disadvantages

- If fact tables are responsible for 90% of the storage requirements then normalizing the dimensions can reduce the performance of the DW because it leads to a large number of tables
 - E.g. join between
 product categ.
 country and year have
 to be performed
 at query time

Star schema

Basic idea: use a denormalized schema for all the dimensions

• A star schema can be obtained from the snowflake schema through the denormalization of the tables

belonging to a dimension

(3.2 Star Schema - Example

3.2 Star Schema

Advantages

- Improves query performance for often-used data
- Less tables and simple structure
- Efficient query processing with regard to dimension joining

Disadvantages

- In some cases, high overhead of redundant data
- Representing many-to-many relationships?

3.2 Snowflake vs. Star

Snowflake

- The structure of the classifications are expressed in table schemas
- The fact and dimension tables are normalized

vs. Star

- The entire classification is expressed in just one table
- The fact table is normalized while in the dimension tables the normalization is broken
 - This leads to redundancy of information in the dimension tables

3.2 Examples

Snowflake

Product_ID	Description	Brand	Prod_group_ID
10	E71	Nokia	4
11	PS-42A	Samsung	2
12	5800	Nokia	4
	Bold	Berry	4

Prod_group_ID	Description	Prod_categ_ID
2	TV	11
4	Mobile Pho	11

Prod_categ_ID	Description
11	Electronics

• Star

Product_ ID	Description		Prod. group	Prod. categ
10	E71	•••	Mobile Ph	Electronics
11	PS-42A		TV	Electronics
12	5800		Mobile Ph	Electronics
13	Bold		Mobile Ph	Electronics

3.2 Snowflake to Star

- When should we go from snowflake to star?
 Heuristics-based decision
 - When typical queries relate to coarser granularity (like product category)
 - When the volume of data in the dimension tables is relatively low compared to the fact table
 - When modifications on the classifications are rare compared to insertion of fact data

3.2 Do we have a winner?

- Snowflake or Star?
 - It depends on the necessity
 - Fast query processing or efficient space usage
 - However, most of the time a mixed form is used
 - The **Starflake schema:** some dimensions stay normalized corresponding to the snowflake schema, while others are denormalized according to the star schema

3.2 Our forces combined

• The **Starflake schema:** which dimensions to normalize?

- Frequency of the modifications: if the dimensions change often, normalization leads to better results
- Amount of dimension elements: the bigger the dimension tables, the more space normalization saves
- Number of classification levels in a dimension: more classification levels introduce more redundancy in the star schema
- Materialization of aggregates for the dimension levels: if the aggregates are materialized, a normalization of the dimension can bring better response time

3.2 More Schemas

Galaxies

- In practice it is possible to have more measures described by different dimensions
 - Thus, more fact tables

(A) 3.2 Physical Models

- Based on the physical model used:
 - MOLAP (Multidimensional OLAP)
 - ROLAP (Relational OLAP)
 - HOLAP (Hybrid OLAP)
 - DOLAP (Desktop OLAP)

3.2 Physical Models

MOLAP

- Presentation layer provides the multidimensional view
- The MOLAP server stores data in a multidimensional structure
 - The computation (pre-aggregation) occurs in this layer during the loading step (not at query)

Data

Advantage: excellent performance

- All values are pre-generated when the cube is

created

Disadvantages

- Enormous amount of overhead
 - An input file of 200 MB can expand to 5 GB with aggregates
- Limited amount of data it can handle
 - Cubes can be derived from a large amount of data, but usually only summary level information are be included in the cube
- Requires additional investment
 - Cube technology is often proprietary

• Products:

 Cognos (IBM), Essbase (Oracle Analytics Cloud), Microsoft Analysis Service, Palo (Open source)

3.2 Physical Models

ROLAP

- Presentation layer provides
 the multidimensional view
- The ROLAP Server generates
 SQL queries, from the OLAP requests, to query the RDBMS
- Data is stored in RDBs

- Special schema design: e.g., star, snowflake
- Special indexes: e.g., bitmap, R-Trees
- Advantages
 - Proven technology (relational model, DBMS)
 - Can handle large amounts of data (VLDBs)
- Disadvantages
 - Limited SQL functionalities
- Products
 - Microsoft Analysis Service, Siebel Analytics (now Oracle BI), Micro Strategy, Mondrian (open source)

3.2 ROLAP vs. MOLAP **Jetour**

Based on OLAP needs…

	OLAP needs	MOLAP	ROLAP
User Benefits	Multidimensional View	٧	٧
	Excellent Performance	٧	-
	Real-Time Data Access	-	٧
	High Data Capacity	-	٧
MIS Benefits	Easy Development	٧	-
	Low Structure Maintenance	-	٧
	Low Aggregate Maintenance	٧	-

- ... MOLAP and ROLAP complement each other
- Why not combine them?

(Physical Models

- HOLAP: Best of both worlds
- Split the data between MOLAP and ROLAP
 - Vertical partitioning
 - Aggregations are stored in MOLAP for fast query performance,
 - Detailed data in ROLAP to optimize time of cube processing (loading the data from the OLTP)
 - Horizontal partitioning
 - HOLAP stores some slice of data, usually the more recent one (i.e. sliced by Time dimension) in MOLAP for fast query performance
 - Older data in ROLAP

3.2 Physical Models

- DOLAP: Developed as extension to the production system reports
 - Downloads a small hypercube from a central point (data mart or DW)
 - Performs multidimensional analysis while disconnected from the data source
 - Computation is performed at the client side
 - Requires little investment
 - It lacks the ability to manage large data sets

- Logical Model
 - Dimensions, Hierarchies, Classification Levels and Cubes
- Physical Level
 - Array based storage
 - How to perform linearization
 - Problems:
 - Order of dimensions solution: caching
 - Dense Cubes, Sparse Cubes solution: 2 level storage
 - MOLAP, ROLAP, HOLAP

Physical Level

- Relational Implementation through:
 - Star schema: improves query performance for often-used data
 - Less tables and simple structure
 - Efficient query processing with regard to dimensions
 - In some cases, high overhead of redundant data
 - Snowflake schema: reduce the size of the dimension tables
 - However, through dimension normalization large number of tables

(Next lecture

- DW Optimization / Indexes
 - Bitmap indexes
 - Tree based indexes

