non- pelitalit Here f(-x)= -x si(-x)=-(x)[-sin x] = x sin x : fix) is aren,: bn=0+a0= & To sendan pan= & Ston cosunda ao = & Susinda an = 2 fr Sinn Gosnada SinAcorB = 1 (Sin(A+B)+ Sin(A+B)) an = Assissiluth) 11 + 7 Sis(1-n) n dy = $\frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n-1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n+1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n+1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n+1) dx$ $= \frac{1}{\pi} \int_{0}^{\pi} \sin(n+1) dx - 2 \sin(n+1) dx$ = # { 2 [(n+1)] -1 [- sin (n+1)] - + [+ 2 [- (os)n+1)] - [- sin (n+1)] - [= # {-# (-1) n+1 - 0} + # { # (-1) } (1 n+1) $= \frac{1}{2\pi} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} \right) = \frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} \right) = \frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} \right) = \frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} \right) = \frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} - \frac{1}{2\pi} \right) = \frac{1}{2\pi} \left(\frac{1}{2\pi} - \frac{1}{2\pi}$ $2 = -2(-1)^n$ or $\left| a_n = \frac{2(-1)^n}{n-1} \right| \left| \frac{1}{1} \right|$

5) obtain the FS of fine) = The in OLNLATT. House Soli the FS of for) having period as dis,

f(x) = \frac{20}{7} = \frac{2}{7} \tan (of hx + 1) \frac{2}{7} \text{bu Sinhx}. $\frac{1}{12\pi^{-1}} = \frac{1}{2\pi^{-1}} = \frac{1}{2\pi^{-1$ - fratt-1)=-f(x) = f(x) is odd ... ao zanzo f bn = 2 for sin na do = 2 (T-a) sin na do = 1 ((m-x) (-coshx) - (-1) (-sihx)] 0 } * · for) = = = 1 & sinm . : T-7 = Sin + 1 Sin 2 + 1 Sin 3 x+ 年=1-3+5----