Московский государственный технический университет им. Н.Э. Баумана

Контроллер шагового и асинхронного двигателей. Описание программы РОФ.МГТУ.000001-01 РПЗ

Подп. и дата	
Инв. И дубл.	
Взам. Инв. Л	
Подп. и дата	
Инв. И подп.	

Листов ___

Проверил — Рафиков А.Г. (подпись, дата)
Разработал — Малютин Р.С. (подпись, дата)
— Храпов Н.А. (подпись, дата)

ОГЛАВЛЕНИЕ

1	ОБЩИЕ СВЕДЕНИЯ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
1.1 HE	ОБОЗНАЧЕНИЕ И НАИМЕНОВАНИЕ ПРОГРАММЫ. ОШИБКА! ЗАКЛАДКА ОПРЕДЕЛЕНА.			
1.2 ФУ	ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ, НЕОБХОДИМОЕ ДЛЯ НКЦИОНИРОВАНИЯ ПРОГРАММЫ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
1.3 ПР(ЯЗЫКИ ПРОГРАММИРОВАНИЯ, НА КОТОРЫХ НАПИСАНА ОГРАММА ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
2	ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
2.1	НАЗНАЧЕНИЕ ПРОГРАММЫ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
3 ОПИСАНИЕ ЛОГИЧЕСКОЙ СТРУКТУРЫ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.				
3.1	ИСПОЛЬЗУЕМЫЕ БИБЛИОТЕКИ. ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
3.2	АЛГОРИТМ ПРОГРАММЫОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
3.3 YA0	СТРУКТУРА ПРОГРАММЫ С ОПИСАНИЕ ФУНКЦИЙ СОСТАВНЫХ СТЕЙ И СВЯЗИ МЕЖДУ НИМИ ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			
3.4 HE	СВЯЗИ ПРОГРАММЫ С ДРУГИМИ ПРОГРАММАМИ ОШИБКА! ЗАКЛАДКА ОПРЕДЕЛЕНА.			
4 ОПІ	ИСПОЛЬЗУЕМЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА ОШИБКА! ЗАКЛАДКА НЕ РЕДЕЛЕНА.			
5	ВЫЗОВ И ЗАГРУЗКА ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.			

1 ВВЕДЕНИЕ

В современном технологическом пространстве, где автоматизация играет ключевую роль в различных отраслях промышленности, разработка эффективных систем управления двигателями становится неотъемлемой частью инженерной практики. В этом контексте, контроллеры асинхронного и шагового двигателей представляют собой важные компоненты для обеспечения точности, надежности и эффективности работы механизмов.

С каждым днем растет спрос на автоматизированные системы в промышленности, бытовой технике, робототехнике и других областях, что придает большое значение разработке продвинутых устройств управления двигателями. Контроллеры асинхронного и шагового двигателей являются важными элементами таких систем, обеспечивая точное и эффективное управление движением механизмов.

Цель настоящей работы состоит в разработке контроллера, способного обеспечить оптимальное функционирование асинхронных и шаговых двигателей. Путем изучения существующих методов управления, анализа технических характеристик двигателей и разработки соответствующих алгоритмов управления, мы стремимся к созданию эффективной системы, способной соответствовать требованиям различных промышленных и бытовых приложений.

2 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

В свете быстрого развития промышленных технологий и постоянной необходимости в эффективном управлении механизмами, контроллеры асинхронного и шагового двигателей занимают центральное место в автоматизированных системах. Назначение этих устройств простирается на множество областей промышленности и техники, начиная от производственных линий и заканчивая бытовыми приложениями.

Основное предназначение контроллеров асинхронного и шагового двигателей заключается в обеспечении точного и эффективного управления движением механизмов. Эти устройства играют важную роль в автоматизации процессов производства, обеспечивая стабильность работы механических устройств и точное позиционирование в пространстве.

На сегодняшний день на рынке представлены различные модели контроллеров, такие как Modicon M340, Siemens SIMATIC S7, Delta Electronics ASDA-A2, каждая из которых обладает своими характеристиками и функциональными возможностями. Эти разработки позволяют реализовать управление двигателями с высокой точностью и надежностью, что делает их привлекательным выбором для широкого спектра применений в промышленности и технике.

Контроллеры асинхронного и шагового двигателей предоставляют ряд преимуществ для различных отраслей:

- В промышленной автоматизации они обеспечивают стабильное и точное управление механизмами на производственных линиях и конвейерах.
- В робототехнике они позволяют реализовать точное позиционирование и движение манипуляторов и роботов.
- В системах транспорта они обеспечивают эффективное управление движением автомобилей, поездов и других транспортных средств.

 В бытовой технике они могут использоваться для управления двигателями в стиральных машинах, посудомоечных машинах и других устройствах.

Контроллер асинхронного и шагового двигателей, реализованный в данном проекте, позволяет упростить процесс управления двигателями и предоставляет возможность удаленного подключения и управления по локальной сети, что позволяет большему количеству людей беспрепятственно использовать данные типы двигателей.

3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Аппаратная часть

3.1.1 Описание схемы

Исходя из технического задания были разработаны техническая и программная части для устройства. В качестве основных компонентов были выбраны контроллер PIC18F45K22, Ethernet-адаптер ENC28J60.

На плате присутствует модуль с портом Ethernet, который необходим для связи устройства управления двигателями с сетью, по которой и происходит подключение и управление контроллером.

Также, в аппаратной части присутствуют такие элементы, как резисторы, конденсаторы и кварцевые резонаторы.

3.1.2 Обоснование выбора компонентов

3.1.2.1 Обоснование выбора микропроцессорного модуля

Выбор микроконтроллера PIC18F45K22 обусловлен низкой стоимостью, высокой скоростью работы.

В отличие от одноплатных компьютеров, таких как Raspberry Pi 4, контроллер PIC работает без операционной системы: все ресурсы платформы посвящены выполнению одной программы, которая обрабатывает входящие TCP пакеты и управляет исполнительными устройствами.

3.1.2.2 Обоснование выбора резисторов и конденсаторов

3.1.2.3 Расчет времени наработки на отказ

Для подсчета времени наработки устройства на отказ, проанализируем интенсивность отказа для всех компонентов и соединений. Для подсчета вероятности отказа одного элемента или соединения используется распределение Пуассона. Плотность функции вероятности имеет следующий вид:

$$\frac{\lambda^x}{x!}e^{-\lambda}$$

Вероятность отказа будет рассчитываться по формуле:

$$P = e^{-t\lambda}$$
, t – время работы устройства.

Определим интенсивность отказа для каждого элемента и соединения:

Наименование элемента	Интенсивность отказов, $\lambda * 10^{-6}$	Количество, N
Конденсаторы	0,044	11
Резисторы	0,088	25
Кварцевые резонаторы	0,052	1
Транзистор	0,421	6
Микросхемы	0,049	6
Разъемы	0,05	1
Плата	1,032	1
Диоды	0,16	3

Суммарная интенсивность отказов $\lambda = 7,118 * 10^{-6}$

Среднее время наработки на отказ: $T = \frac{1}{\lambda} = 140488$ часов

3.1.4 Расчет потребляемой мощности

В общем виде, потребляемая мощность устройством рассчитывается по следующей формуле:

$$P_{\Sigma} = \Sigma (U_{\text{пит.устр}} * I_i)$$

Где I_i — потребляемый ток і-го элемента.

Ток потребления равен А.

Таким образом, максимальная потребляемая мощность устройства равна:

$$P_{\Sigma} =$$

3.1.5 Внешний вид аппаратной части

ПРОДОЛЖЕНИЕ СЛЕДУЕТ