空气与气体动力学

张科

回顾:

$$\vec{\nabla}^* \cdot \vec{V}^* = 0$$

$$\frac{D\vec{V}^*}{Dt^*} = -\vec{\nabla} * p * + \frac{1}{Re} \nabla * 2 \vec{V} * - \frac{1}{Fr^2} \vec{\nabla} * z *$$

2.无量纲化N-S方程

$$\vec{V}^* = \vec{V}^* (Re) p^* = p^* (Re)$$

3.无量纲参数
$$Re = \frac{\rho U_0 L_0}{\mu}$$
 $Fr = \frac{U_0}{\sqrt{gL_0}}$ $Ma = \frac{U}{a}$ $Eu = \frac{\Delta p}{0.5 \rho U^2}$

4.相似准则及应用

$$St = \frac{fL}{U}$$
 $We = \frac{\rho U^2 L}{\sigma}$

6. 流动相似**原则**(similarity)设计模型实验,分析实验数据! 例7.5~7.10

例 7.8: 客车风洞实验,1/16模型(迎风面积 $A_m = 0.0305m^2$,模型宽度

 $W_m = 0.152m$), 得数据如下: $\mu = 1.789 \times 10^{-5} Pa \cdot s$, $\rho = 1.225 kg/m^3$

$$Re = \frac{\rho U_{\infty}^{\nu\nu} m}{\mu} = \frac{1.225 \times 0.152}{1.789 \times 10^{-5}} \times U_{\infty} = 1.04 \times 10^{4} U_{\infty}$$

$$Re > 4 \times 10^5$$
后, $C_D \approx 0.46$ $\Longrightarrow U_\infty > 40 \text{m/s}$

6. 流动相似**原则**(similarity)设计模型实验,分析实验数据!

例 7.8: 客车风洞实验,
$$1/16$$
模型(迎风面积 A_n 数 0.5 $W_m = 0.152m$),得数据如下: $\mu = 1.789 \times 10^{-5}I$ 图 0.5 $1. 绘制 $C_D(\frac{F_D}{0.5\rho U^2 _{\infty}A_m}) - Re(\frac{\rho U_{\infty}W_m}{\mu})$ 曲线, $C^{\frac{1}{2}}$ 0.4 模型電谱数, $Re_m(\times 10^{-5})$$

2.实物以100km/h行驶时的气动阻力,及克服其所需功率。

解: 2.
$$U_{\infty p} = 100 km/h = 100/3.6 = 27.78 m/s$$

$$Re = \frac{\rho U_{\infty p} W_p}{\mu} = \frac{1.225 \times 27.78 \times 0.152 \times 16}{1.789 \times 10^{-5}} = 4.63 \times 10^6 \implies C_D = 0.46$$

$$F_D = C_D \times 0.5 \rho U_{\infty p}^2 A_p = 0.46 \times 0.5 \times 1.225 \times 27.78^2 \times 0.0305 \times 16^2$$

= 1.698 × 10³N

$$\implies \dot{W} = F_D \times U_{\infty p} = 47.2 \times 10^3 W$$

作业:

D5 61 If viscosity is neglected typical numb flow

P5.61 If viscosity is neglected, typical pump-flow results from Prob. 5.20 are shown in Fig. P5.61 for a model pump tested in water. The pressure rise decreases and the power required increases with the dimensionless flow coefficient. Curve-fit expressions are given for the data. Suppose a similar pump of 12-cm diameter is built to move gasoline at 20°C and a flow rate of 25 m³/h. If the pump rotation speed is 30 r/s, find (a) the pressure rise and (b) the power required.

P5.61

此题未设置答案,请点击右侧设置按钮

鱼在水中运动过程中, 前后速度分布如下图所示。

问: (1) 鱼受到水对其的作用力沿x____?

(2) 需要给鱼施加沿x____的力才能使鱼保持匀速运动?

- (4) 正向
- **多** 负向

六. 粘性不可压流动(内流,外流)

粘性不可压内流

、粘性不可压外部扰流

通道内流动一般特征(5.6、9.1)、无限大平板间 (周向均匀圆管)充分发展层流(5.3、5.4)、管内 流能量损失(9.2-9.4)、

管内流, \vec{V} ,au,Q, Δp , h_{LT}

边界层基本概念(10.1)、边界层动量积分方程 (10.4)、边界层方程(10.2、10.3)、曲面边界层及 边界层分离(10.5)、扰流物体的阻力(10.6)

流场分布, u,D,L(飞行器, 建筑物, 桥梁等)

六. 粘性不可压流动(内流,外流)

Developed

Steam pipe bridge in a geothermal power plant. Pipe flows are everywhere, often occurring in groups or networks. They are designed using the principles outlined in this chapter. (Courtesy of Dr. E. R. Degginger/Color-Pic Inc.)

边界层基本概念、边界层动量积分方程、边界层方程、 曲面边界层及边界层分离、 扰流物体的阻力

Growing

Boundary

Laminar BL

Inviscid

6.1通道内流动一般特征

① 层流、湍流(5.6)

(b)

1839年德国工程师 G.H.L. Hagen发现粘性 流存在两个区域。

Fig. 6.4 Experimental evidence of transition for water flow in a $\frac{1}{4}$ -in smooth pipe 10 ft long.

6.1通道内流动一般特征

① 层流、湍流 (5.6)

1883年英国学者Osborne Reynolds实验表明, 粘性流随 $\frac{\rho V d}{\mu}$ (Re数) 变化。

湍流

condition (b). (From Ref. 4.)

6.1通道内流动一般特征

① 层流、湍流(5.6) 1883年英国学者Osborne Reynolds实验表明, 粘性流随 $\frac{\rho V d}{\mu}$ (Re数)变化。

Fig. 6.5 Reynolds' sketches of pipe-flow transition: (*a*) low-speed, laminar flow; (*b*) high-speed, turbulent flow; (*c*) spark photograph of condition (*b*). (*From Ref. 4.*)

6.1通道内流动一般征

① 层流、湍流(5.6) 1883年英国学者Osborne Reynolds实验表明, 粘性流随 $\frac{\rho V d}{\mu}$ (Re数)变化。

$$\overline{V} = \frac{1}{A} \int u dA$$
 $Re = \frac{\rho \overline{V}D}{\mu}$

圆管: Re < 2000~2300为层流。

Fig. 6.5 Reynolds' sketches of pipe-flow transition: (*a*) low-speed, laminar flow; (*b*) high-speed, turbulent flow; (*c*) spark photograph of condition (*b*). (*From Ref. 4.*)

6.1通道内流动一般征

②起始段、充分发展流动(9.1)

内流发展受壁面限制, 壁面附近为有速度梯度的边界层区, 远离壁面为速度均匀的无粘核心区 从入口向下游壁面粘性影响范围逐渐扩大, 直至边界层在轴线处相交,

之后进入充分发展流动, $\frac{\partial u}{\partial x} = 0$

6.1通道内流动一般征

求: \vec{V} , τ , Q, Δp 解微分连续性方程、N-S方程。

假设:牛顿流体、不可压,x方向无重力、 充分发展流动($\frac{\partial \vec{V}}{\partial x} = 0$)、Z向无限大(2D)、定常($\frac{\partial}{\partial t} = 0$) $\frac{L_e}{a} < \frac{x}{a}$ $\frac{a}{w} \ll 1$

解: 定常、不可压连续性方程: $\vec{
abla}\cdot\vec{
abla}=0$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\frac{\partial v}{\partial x} = 0 \qquad \frac{\partial u}{\partial x} = 0 \qquad \frac{\partial v}{\partial x} = 0$$

$$\vec{V} = (u(y), 0)$$

$$\frac{\partial v}{\partial x} = 0 \qquad v = 0$$

$$v = 0$$

$$v = 0$$

$$v = 0$$

求: \vec{V} , τ , Q, Δp 解微分连续性方程、N-S方程。

假设:牛顿流体、不可压, x方向无重力、

充分发展流动($\frac{\partial \vec{V}}{\partial x} = 0$)、Z向无限大(2D)、定常($\frac{\partial}{\partial t} = 0$)

$$\frac{L_e}{a} < \frac{x}{a} \qquad \frac{a}{w} \ll 1$$

解: N-S方程:
$$\rho \frac{D\vec{V}}{Dt} = -\vec{\nabla} p_k + \mu \nabla^2 \vec{V}$$
 $p_k = p + \rho g y$

$$p_k = p + \rho g y$$

$$x$$
方向:
$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$$
$$\frac{\partial u}{\partial x} = 0 \qquad v = 0$$
$$\frac{\partial u}{\partial x} = 0$$

求: \vec{V} , τ , Q, Δp 解微分连续性方程、N-S方程。

假设:牛顿流体、不可压, x方向无重力、

充分发展流动($\frac{\partial \vec{V}}{\partial x} = 0$)、Z向无限大(2D)、定常($\frac{\partial}{\partial t} = 0$)

$$\frac{L_e}{a} < \frac{x}{a} \qquad \frac{a}{w} \ll 1$$

解: N-S方程:
$$\rho \frac{D\vec{V}}{Dt} = -\vec{\nabla} p_k + \mu \nabla^2 \vec{V}$$
 $p_k = p + \rho g y$

$$p_k = p + \rho g y$$

y方向:
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$$
$$v=0$$

求: \vec{V} , τ , Q, Δp 解微分连续性方程、N-S方程。

假设:牛顿流体、不可压, x方向无重力、 充分发展流动($\frac{\partial \vec{V}}{\partial x} = 0$)、Z向无限大(2D)、定常($\frac{\partial}{\partial t} = 0$)

$$\frac{L_e}{a} < \frac{x}{a} \qquad \frac{a}{W} \ll 1$$

解:
$$\nu \frac{\partial u}{\partial y^2} = \frac{1}{\rho} \frac{\partial \rho}{\partial x}$$

$$v\frac{\partial^{2}u}{\partial y^{2}} = \frac{1}{\rho}\frac{\partial p}{\partial x}$$

$$u = u(y), p = p(x)$$

$$\frac{dp}{dx} = \mu \frac{d^{2}u}{dy^{2}}$$

$$ODE常微分方程$$

$$f(x) = f(y) = constant$$

解:
$$\frac{dp}{dx} = \mu \frac{d^2u}{dv^2} = C$$

(a).平板库埃特流动(couette flow, purely shear driven flow)

$$\frac{dp}{dx} = 0, u(0) = 0, u(a) = U$$
 (边界条件)

$$\frac{d^{2}u}{dy^{2}} = 0 \implies u(y) = ky + B$$

$$u(0) = 0$$

$$u(a) = U$$

$$u(y) = \frac{u}{a}y$$

 $\delta \ll D$ 时可看作

解:
$$\frac{dp}{dx} = \mu \frac{d^2u}{dy^2} = C$$

(a).平板库埃特流动(couette flow, purely shear driven flow)

$$\frac{dp}{dx} = 0, \quad \triangleright \quad u(y) = \frac{U}{a}y$$

> Shear stress:
$$au_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \frac{du}{dy} = \mu \frac{U}{a} = C$$

$$au_{wall} = \mu \frac{U}{a}$$

ightharpoonup Volume flow rate: $Q = \int u(y) dy dz = b \int \frac{u}{a} y dy$ (宽度为b)

$$q = \frac{Q}{b} = \int_0^a \frac{U}{a} y dy = \frac{Ua}{2}$$

$$\triangleright \bar{V} = \frac{q}{q} = \frac{0}{2}$$

 $ilde{x}$: $ec{V}$,au,Q, Δp

$$\frac{\Delta p}{u_{wall} = 0}$$
 解: $\frac{dp}{dx} = \mu \frac{d^2u}{dy^2} = C$

(b).平板泊肃叶流动 $\frac{dp}{dx} \neq 0$ (purely pressure driven flow)

$$\frac{dp}{dx} = \mu \frac{d^2u}{dy^2} = C$$

$$\mu \frac{du}{dy} = \frac{dp}{dx}y + C_1$$

$$\mu u(y) = \frac{1}{2\mu} \frac{dp}{dx}y^2 - \frac{a}{2\mu} \frac{dp}{dx}y$$

$$\mu u(y) = \frac{dp}{dx} \frac{y^2}{2} + C_1 y + C_2$$

$$u(y) = \frac{1}{2\mu} \frac{dp}{dx} y^2 + \frac{C_1}{\mu} y + \frac{C_2}{\mu}$$

边界条件:
$$u(0) = 0$$
 $u(0) = \frac{C_2}{\mu} = 0$ $C_2 = 0$ $u(a) = 0$ $u(a) = \frac{1}{2\mu} \frac{dp}{dx} a^2 + \frac{C_1}{\mu} a = 0$ $C_1 = -\frac{a}{2} \frac{dp}{dx}$

$$u(a) = \frac{1}{2\mu} \frac{dp}{dx} a^2 + \frac{C_1}{\mu} a = 0 \implies C_1 = -\frac{a}{2} \frac{dp}{dx}$$

求: \vec{V} ,au,Q, Δp

(b).平板泊肃叶流动 $\frac{dp}{dx} \neq 0$ (purely pressure driven flow)

$$u(y) = \frac{1}{2\mu} \frac{dp}{dx} y^2 - \frac{a}{2\mu} \frac{dp}{dx} y$$

$$= \frac{a^2}{2\mu} \frac{dp}{dx} \left[\left(\frac{y}{a} \right)^2 - \left(\frac{y}{a} \right) \right]$$

$$= \frac{a^2}{2\mu} \left[\left(-\frac{dp}{dx} \right) \frac{y}{a} \left(1 - \frac{y}{a} \right) \right] > 0$$

$$> 0 > 0$$

$$\begin{array}{c|c} p_1 & p_2 \\ \hline L \\ p_1 > p_2 \end{array}$$

$$u(y) > 0, \quad \lim \frac{dp}{dx} < 0 \quad \frac{dp}{dx} = C \quad p = kx + B$$
点流动
$$-\frac{dp}{dx} = \frac{p_1 - p_2}{L} = \frac{\Delta p}{L} \quad u(y) = \frac{a^2}{2\mu} \left(\frac{\Delta p}{L}\right) \frac{y}{a} \left(1 - \frac{y}{a}\right)$$

 \vec{x} : \overline{V} , τ , Q, Δp

解:
$$\frac{dp}{dx} = \mu \frac{d^2u}{dv^2} = C$$

(b).平板泊肃叶流动 $\frac{dp}{dx} \neq 0$ (purely pressure driven flow)

$$u(y) = \frac{a^2}{2\mu} \left(-\frac{dp}{dx} \right) \frac{y}{a} \left(1 - \frac{y}{a} \right)$$

$$\succ$$
 Shear stress:

> Shear stress:
$$\tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \frac{du}{dy} = a \frac{dp}{dx} \left(\frac{y}{a} - \frac{1}{2} \right)$$

$$\tau_{wall} = \pm a \frac{dp}{dx}$$

$$ightharpoonup \overline{V} = \frac{q}{a} = \frac{a^2}{12\mu} (-\frac{dp}{dx})
ightharpoonup @y = a/2, u_{max} = \frac{a^2}{8\mu} (-\frac{dp}{dx}) = 1.5\overline{V}$$

求: \vec{V} ,au,Q, Δp

解:
$$\frac{dp}{dx} = \mu \frac{d^2u}{dy^2} = C$$

(a).平板库埃特流动(couette flow, purely shear driven flow)

$$ightharpoonup u(y) = \frac{U}{a}y$$

(b).平板泊肃叶流动 $\frac{dp}{dx} \neq 0$ (purely pressure driven flow)

$$u(y) = \frac{a^2}{2u} \left(-\frac{dp}{dx} \right) \frac{y}{a} \left(1 - \frac{y}{a} \right)$$

Note:

1.仅适用层流.

Re<2000层流; Re>7700湍流

2.入口效应, L_e/D ≈ 0.06Re

作业:

复习笔记!

1.用积分方程求 τ_{w_o}

5.2, 5.4, 5.14

看例5.3~5.7

