Week Ten

Siva Sundar, EE23B151

December 7, 2024

2^{nd} December

- **Graphs**: consists of the following:
 - Set V which contains **vertices** and set A with **arrows**,
 - -s and t are the **source** and **target** functions respectively.

Note: From every graph we can get a *preorder*. **Hasse Diagram** is a graph that gives a *presentation* of a preorder (P, \leq) . (See page.14)

- Total order: They are posets (partially ordered sets), with an additional condition: "for all x, y, either $x \le y$ or $y \le x$ ". (They should be comparable)
- Partitions can be made from preorders. (See page.16)
- Preorder of **upper sets** (U(X) contains q, if $p, q \in X$ and $p \leq q$) on a discrete preorder on set X is same as power set P(X).
- **Product Preorder:** Given (P, \leq) and (Q, \leq) , we define $(P \times Q, \leq)$ such that:

$$(p,q) \leqslant (p',q') \iff p \leqslant p' \& q \leqslant q'$$

4th December

• Monotone map is a structure preserving function $f: A \to B$, such that:

$$\forall x, y \in A$$
, if $x \leq_A y$ then $f(x) \leq_B f(y)$.

Cardinality is a function which maps a set to a natural number (which is the number of elements in the set). This function is a monotone map, as:

if
$$X \subseteq Y$$
, then $n(X) \leq n(Y)$.

If a map $f: X \to Y$ exists, then there exists a monotone map $g; Prt(Y) \to Prt(X)$. (Prt(X) gives the set of all partitions on X).

If f and q are monotones, then $f \circ q$ is also monotone.

Let P be a preorder. Monotone maps $P \to \mathcal{B}$ are in one-to-one correspondence with upper sets of P. (See page.22).

- Yoneda Lemma: to know an element is the same as knowing its upper set (the relationships it has with other elements). (see page 20).
- Pullback map: Let P and Q be preorders, and $f: P \to Q$ be a monotone map. Then we can define a monotone map $g: U(Q) \to U(P)$ which is called the *pullback along f.* (U(X)) is the set of all uppersets of X).

Author: Siva Sundar Roll No: EE23B151

7th December

• For a preorder (P, \leq) , and $A \subseteq P$ be a subset, we say $p \in P$ is a **meet** of A if

- $\star \ \forall a \in A$, we have $p \leq a$.
- $\star \ \forall q, q \leqslant a \ \forall a \in A$, we have $q \leqslant p$.

We denote meet 'p' as: $p \cong \bigwedge A$ or $p \cong \bigwedge_{a \in A} a$. This represents the *greatest lower bound* of the subset A. As the **GLB** is the "greatest among **all** lower bounds", we can say this is a **Universal property**.

- Similarly, for the preoreder discussed above, we say p is a **join** of A if:
 - $\star \ \forall a \in A$, we have $a \leq p$.
 - $\star \ \forall q, \ a \leqslant q \ \forall a \in A$, we have $p \leqslant q$.

We denote join p as: $p \cong \bigvee A$ or $p \cong \bigvee_{a \in A} a$. This represents the *lowest upper bound* of subset A. This is also a universal property.

- Any two things defined by the **same** universal property are automatically **equivalent** in a way known as 'unique up to unique isomorphism'. For example, we can see that if there exists two meets p and q for a preorder, they will be isomorphic to each other by definition.
- In a discrete preorder, there exist no meets nor joins.
- In any partial order (where \cong and = are the same), $p \lor p = p \land p = p$. (See page 25)
- In a power set P(X), for subsets, say $A, B \in X$, the meet is their intersection, ie, $A \wedge B = A \cap B$ and their join is their union, $A \vee B = A \cup B$.
- For a preorder P, $A \subseteq B \subseteq P$, then we say
 - \star if meets of A and B exist, then $\bigwedge B \leqslant \bigwedge A$
 - \star if joins of A and B exist, then $\bigvee A \leqslant \bigvee B$
- A monotone map $f: P \to Q$ has a **generative effect** if there exist elements $a, b \in P$ such that:

$$f(a) \lor f(b) \not\cong f(a \lor b)$$

If the monotone map dosen't have a generative effect, then it will preserve the meets.

• A Galois connection between two preorders P and Q is a pair of monotone maps $f: P \to Q$ and $g: Q \to P$ such that:

$$f(p) \leqslant q \iff p \leqslant g(q)$$

We say f is the *left adjoint* and g is the *right adjoint* of the Galois connection.

- If P and Q are total orders and $f: P \to Q$ and $g: Q \to P$ are drawn with arrows bending counterclockwise, then f is left adjoint to g iff the arrows do not cross. (See page 28)
- Galois connections are a kind of relaxed version of isomorphisms. (Page 30)
- Right adjoints **preserve meets**, and Left adjoints **preserve joins** (See *Adjoint Functor Theorem*). Hence, left afjoints will not have generative effects.

Author: Siva Sundar Roll No: EE23B151

• Closure operator $j: P \to P$ on a preorder P is a monotone map with:

- $\star \ p \leqslant j(p)$
- $\star\ j(j(p))\cong j(p)$

They can be made by composing left adjoint f with its right adjoint g. The other composite map $g \circ f$ (interior map) satisfies: $(g \circ f)(p) \leq p$.