2

1

2

WHAT IS CLAIMED IS:

1	1.	A stator assembly comprising:
2		a plurality of stator coil assemblies; and
3		a stator coil support structure constructed of a non-magnetic,
4		thermally-conductive material, said stator coil support structure including:
5		an axial passage for receiving a rotor assembly; and
6		a plurality of channels positioned radially about said axial
7		passage, each said channel being configured to receive one or more of
8		said stator coil assemblies.

- The stator assembly of claim 1 wherein each said stator coil assembly is surrounded 2. 1 by a ground plane assembly. 2
- The stator assembly of claim 1 further comprising a magnetic annular assembly 3. 1 surrounding said stator coil support structure, wherein said magnetic annular assembly 2 includes a plurality of axial coolant passages. 3
 - The stator assembly of claim 3 further comprising a coolant circulation system for 4. circulating a cooling liquid through said axial coolant passages.
- The stator assembly of claim 1 wherein said non-magnetic, thermally conductive 5. 1 material is a sheet material, said sheet material being laminated to form said stator coil 2 support structure. 3
- The stator assembly of claim 5 wherein said sheet material is a polymer-based 6. 1 2 adhesive.
- The stator assembly of claim 5 wherein said sheet material a graphite-based material. 1 7.
 - The stator assembly of claim 1 further comprising an epoxy filler disposed between 8. said stator coil assemblies and said stator coil support structure.

5

6

7

8

9

10

11

1

2

2

3

1

2

1	9.	A superconducting rotating machine comprising:
2		a stator assembly including a plurality of stator coil assemblies, and a stator
3		coil support structure constructed of a non-magnetic, thermally-conductive material,

said stator coil support structure including:

an axial passage for receiving a rotor assembly; and
a plurality of channels positioned radially about said axial passage,
each said channel being configured to receive one or more of said stator coil
assemblies; and

a rotor assembly configured to rotate within said stator assembly, said rotor assembly including an axial shaft, and at least one superconducting rotor winding assembly.

- 10. The superconducting rotating machine of claim 9 wherein each said stator coil assembly is surrounded by a ground plane assembly.
- 11. The superconducting rotating machine of claim 9 wherein said stator assembly further includes a magnetic annular assembly surrounding said stator coil support structure, wherein said magnetic annular assembly includes a plurality of axial coolant passages.
- 12. The superconducting rotating machine of claim 11 further comprising a coolant circulation system for circulating a cooling liquid through said axial coolant passages.
- 1 13. The superconducting rotating machine of claim 9 wherein said non-magnetic, thermally conductive material is a sheet material, said sheet material being laminated to form said stator coil support structure.
- 1 14. The superconducting rotating machine of claim 13 wherein said sheet material is a polymer-based adhesive.

- 1 15. The superconducting rotating machine of claim 13 wherein said sheet material is a
- 2 graphite-based material.
- 1 16. The superconducting rotating machine of claim 9 further comprising an epoxy filler
- disposed between said stator coil assemblies and said stator coil support structure.
- 1 17. The superconducting rotating machine of claim 9 wherein said at least one
- 2 superconducting rotor winding assembly is constructed using a high-temperature,
- 3 superconducting material.
- 1 18. The superconducting rotating machine of claim 17 wherein said high temperature,
- 2 superconducting material is chosen from the group consisting of: thallium-barium-calcium-
- 3 copper-oxide; bismuth-strontium-calcium-copper-oxide; mercury-barium-calcium-copper-
- 4 oxide; and yttrium-barium-copper-oxide.
- 1 19. The superconducting rotating machine of claim 9 further comprising a refrigeration
- 2 system for cooling said at least one superconducting rotor winding assembly.

1

2

3

1

2

3

- 21. The method of claim 20 wherein said forming a non-magnetic, thermally conductive 1 cylindrical structure includes laminating multiple layers of a non-magnetic, thermally 2 3 conductive sheet material to form the non-magnetic, thermally conductive cylindrical structure. 4
 - 22. The method of claim 20 wherein said forming a non-magnetic, thermally conductive cylindrical structure includes casting a non-magnetic, thermally conductive material to form the non-magnetic, thermally conductive cylindrical structure.
- 23. The method of claim 20 further comprising: 1 providing a plurality of axial coolant passages in the non-magnetic, thermally 2 conductive cylindrical structure. 3
 - 24. The method of claim 20 further comprising: depositing an epoxy filler between the stator coil assemblies and the nonmagnetic, thermally conductive cylindrical structure.

1	25.	A method of manufacturing a stator coil support structure comprising:	
2		forming a non-magnetic, thermally conductive cylindrical structure;	
3		forming a plurality of axial slots radially about the non-magnetic, thermally	
4		conductive cylindrical structure;	
5		inserting into each axial slot a heat-sinking member, thus forming a channel	
6		between each pair of adjacent heating-sinking members; and	
7		positioning one or more of the stator coil assemblies in each of the channels.	
1	26.	The method of claim 25 wherein said forming a non-magnetic, thermally conductive	
2	cylindrical structure includes laminating multiple layers of a non-magnetic, thermally		
3	conductive sheet material to form the non-magnetic, thermally conductive cylindrical		
4	struct	ture.	
1	27.	The method of claim 25 wherein said forming a non-magnetic, thermally conductive	
2	cylindrical structure includes casting a non-magnetic, thermally conductive material to form		
3	the non-magnetic, thermally conductive cylindrical structure.		
1	28.	The method of claim 25 further comprising:	
2		providing a plurality of axial coolant passages in the non-magnetic, thermally	
3		conductive cylindrical structure.	
1	29.	The method of claim 25 further comprising:	
2		depositing an epoxy filler between the stator coil assemblies and the non-	
3		magnetic thermally conductive cylindrical structure	

3

members.

F&R Docket No.: 05776-770001 / ASC-546

1	30.	A stator assembly comprising:	
2		a plurality of stator coil assemblies;	
3		a magnetic annular assembly; and	
4		a plurality of non-magnetic, thermally-conductive heat sinking	
5		members positioned radially about said magnetic annular assembly, thus	
6		forming a plurality of channels, each being configured to receive one or more	
7		of said stator coil assemblies.	
1	31.	The stator assembly of claim 30 wherein said magnetic annular assembly includes a	
2	plurali	ty of axial coolant passages.	
1	32.	The stator assembly of claim 31 further comprising a coolant circulation system for	
2	circula	ting a cooling liquid through said axial coolant passages.	
1	33.	The stator assembly of claim 30 wherein said non-magnetic, thermally-conductive	
2	heat si	nking members are constructed of a non-magnetic, thermally conductive sheet	
3	material, wherein said sheet material is laminated to form said non-magnetic, thermally-		
4	conduc	ctive heat sinking members.	
1	34.	The stator assembly of claim 33 wherein said sheet material is a polymer-based	
2	adhesi	ve.	
1	35.	The stator assembly of claim 33 wherein said sheet material a graphite-based	
2	materi	al.	
1	36.	The stator assembly of claim 30 further comprising an epoxy filler disposed between	

said stator coil assemblies and said non-magnetic, thermally-conductive heat sinking

37.	A method of manufacturing a stator coil support structure comprising:
	forming a magnetic annular assembly;
	forming a plurality of non-magnetic, thermally-conductive heat sinking
	members;
	positioning the heat-sinking members radially about the magnetic annular
	assembly, thus forming a channel between each pair of adjacent heating-sinking
	members; and
	positioning one or more of the stator coil assemblies in each of the channels.

- 38. The method of claim 37 wherein said forming a plurality of non-magnetic, thermally conductive heat-sinking members includes laminating multiple layers of a non-magnetic, thermally conductive sheet material to form the non-magnetic, thermally conductive heat-sinking members.
- 39. The method of claim 37 wherein said forming a plurality of non-magnetic, thermally conductive heat-sinking members includes casting a non-magnetic, thermally conductive material to form the non-magnetic, thermally conductive heat-sinking members.
- 40. The method of claim 37 further comprising providing a plurality of axial coolant passages in the magnetic annular assembly.
- 41. The method of claim 37 further comprising depositing an epoxy filler between the stator coil assemblies and the non-magnetic, thermally conductive heat-sinking members.