Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

PATIENT	
Name: 沈素美	Patient ID: 33120228
Date of Birth: Mar 14, 1965	Gender: Female
Diagnosis: Metastatic gastric adenocarcinoma	
ORDERING PHYSICIAN	
Name: 陳明晃醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11167896G Collection site: Ovary	Type: FFPE tissue
Date received: Aug 19, 2022 Lab ID: AA-22-04862	D/ID: NA

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	atient's Cancer Type	Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
CDKN2A Homozygous deletion	Abemaciclib, Palbociclib, Ribociclib	-
STK11 Homozygous deletion	Everolimus, Trametinib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 31

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
	Not detected	

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr19	STK11	Homozygous deletion	0
Chr9	CDKN2A	Homozygous deletion	0
Chr11	ATM	Heterozygous deletion	1
Chr16	TSC2	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr22	CHEK2	Heterozygous deletion	1
Chr7	KMT2C	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
No	usion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 50% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **31**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3B		
CDKN2A Homozygous deletion	Abemaciclib, Palbociclib, Ribociclib	sensitive
Level 4		
STK11 Homozygous deletion	Everolimus, Trametinib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **31**

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

VARIANT INTERPRETATION

ATM Heterozygous deletion

Biological Impact

The ataxia-telangiectasia mutated protein kinase (ATM) gene encodes a PI3K-related serine/threonine protein kinase involved in genomic integrity maintenance and plays central roles in DNA double-strand break (DSB) repair, which can be induced by ionizing radiation, chemotherapy drugs, or oxidative stress^[1]. ATM is a well-characterized tumor suppressor gene, hereditary mutations and haploinsufficiency of ATM result in markedly increased susceptibility to a variety of cancer types^{[2][3][4][5][6]}. Results from a case-cohort study of colorectal cancer and cancer-free control individuals suggested that germline pathogenic mutations in ATM and PALB2 should be added to established CRC risk genes as part of standard tumor genetic testing panels^[7]. ATM is among the most commonly aberrant genes in sporadic cancers. Somatic ATM aberrations are frequently observed in hematologic malignancies^{[8][9][10][11]} and a board range of tumors such as prostate cancer^[12], head and neck squamous cell carcinoma (HNSCC)^[13], pancreatic cancer^[14], lung adenocarcinoma^[15], breast cancer^[16], and ovarian cancer^[3].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[17].

In addition, ATM has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer or prostate cancer^{[18][19]}, niraparib efficacy in pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in advanced or metastatic cancer (NCT02286687), HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

Besides, another randomized, double-blind Phase II trial in patients with metastatic gastric cancer has shown that addition of olaparib to paclitaxel significantly increased the overall survival in both the overall population and patients with low or undetectable ATM protein expression^[20]. Also, a prospective study in muscle-invasive bladder cancer patients suggested that genomic alternations in the DNA repair genes ATMs, RB1 and FANCC could be recognized as biomarkers predictive of response to cisplatin-based neoadjuvant chemotherapy^[21]. However, loss-of-function of the ATM-CHEK2-TP53 cascade is associated with resistance to anthracycline/mitomycin-containing chemotherapy in patients with breast cancer^[22].

A retrospective study of VICTOR trial demonstrated that ATM loss was associated with worse prognosis in colorectal cancer^[23].

CDKN2A Homozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[24][25][26]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[27]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[28][29]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors[30][31]. Several

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **5** of **31**

ACTOnco® + Report

case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments[32][33][34]. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/ CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients[35][36][37]. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer[31][38][39].

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib[33]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models[40].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with nonsmall cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[41].

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[42]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry[43][44]. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers [45][46][47][48][49].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate[17].

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer or prostate cancer(NCT03533946)[18][19], niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

In a phase 2 trial, two prostate cancer patients harboring CHEK2 homozygous deletion was enrolled. One of the two patients had a response to olaparib[50].

KMT2C Heterozygous deletion

Biological Impact

Lysine methyltransferase 2C (KMT2C) gene encodes the histone methyltransferase MLL3, which methylates lysine residue four on the tail of histone H3 (H3K4)[51]and regulates the gene expression during development and hematopoiesis^{[52][53][54]}. KMT2C is ubiquitously expressed, and its function is essential for normal embryonal

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

development and cell proliferation^[55]. Genetic deletion of the region containing KMT2C is the most common chromosomal abnormality in acute myeloid leukemia^{[56][57]}, and KMT2C mutation has been reported in breast cancer, cutaneous squamous cell carcinoma, and leukemia^{[56][59][60][61][62]}. KMT2C was implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[63]. Animal studies revealed that MLL3 haploinsufficiency enhances hematopoietic stem cells (HSCs) self-renewal capacity and induces extensive division of HSCs (AACR; Cancer Res 2018;78(13 Suppl): Abstract nr 4996).

Therapeutic and prognostic relevance

Preclinical studies of cell lines and xenograft models demonstrated that cells with reduced KMT2C expression and activity are deficient in homologous recombination-mediated double-strand break DNA repair and therefore, are more sensitive to olaparib, a PARP1/2 inhibitor^[64].

A meta-analysis indicated that low levels of KMT2C expression was associated with better overall survival in pancreatic ductal adenocarcinoma (PDAC) patients^[65]. However, another study of ER-positive breast cancer patients (n = 401) demonstrated that low KMT2C expression was associated with worse overall survival^[66].

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[67]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[68]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[69][70][71][72]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[73], colorectal cancer (CRC)^{[71][74][75]}, and less frequently seen in other cancers such as lung adenocarcinoma^[76], head and neck cancer^{[77][78]}, and cutaneous squamous cell carcinoma^[79].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[80]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[81].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[82][83]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[84].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[85][86][87][88][89][90][91][92]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[93].

STK11 Homozygous deletion

Biological Impact

The serine/threonine kinase 11 (STK11, also known as LKB1) gene encodes the multifunctional serine/threonine kinase, a tumor suppressor that functions as an inhibitor for the mTOR signaling pathway^{[94][95]}. STK11 is a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[96][97]}. In the mouse model, loss of STK11 promotes aggressive endometrial and squamous cell

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **31**

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

carcinomas^{[98][99]}. Mutations in STK11 have been found in lung, breast, cervical, testicular, and liver cancers, as well as malignant melanoma, pancreatic and biliary carcinoma^[100]. Germline mutations in STK11 are found in 30-70% of Peutz-Jeghers syndrome^[101].

Therapeutic and prognostic relevance

A clinical study in a pancreatic cancer patient with Peutz-Jeghers syndrome whose tumor harboring an STK11 D194E mutation coupled with the loss of heterozygosity of the other STK11 allele displayed partial response to the everolimus treatment^[102]. In another clinical case study, an adrenocorticotropic pituitary carcinoma patient whose tumor bearing an STK11 inactivating mutation responded to a combination of everolimus and radiotherapy^[103].

Preclinical data suggested that lung cancer cell lines with STK11 inactivating mutations may confer increased sensitivity to the MEK-1 and MEK-2 inhibitor, trametinib^[104].

Inactivating mutations of STK11 was shown to be associated with resistance to immune checkpoint blockade in KRAS-mutant lung adenocarcinoma (LUAC) and NSCLC (DOI: 10.1200/JCO.2017.35.15_suppl.9016)^{[105][106][107]}. It was proposed that loss of STK11 negatively impacts the number and function of tumor-infiltrating T cells (TILs) and PD-L1 expression on tumor cells and therefore results in an ineffective response to PD-1-targeting antibodies^[108].

TSC2 Heterozygous deletion

Biological Impact

The tuberous sclerosis complex 2 (TSC2) gene encodes a protein called tuberin, which interact with a protein called hamartin (encoded by the TSC1 gene). This hamartin-tuberin tumor suppressor complex plays a critical role in growth control as a negative regulator of the mammalian target of rapamycin (mTOR) pathway^{[109][110]}. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis complex^{[111][112][113]}, while the loss of heterozygosity (LOH) in TSC1/TSC2 has been identified in head and neck squamous cell carcinoma (HNSCC)^[114] and endometrial cancer^[115]. TSC2 deletion, splicing-mutant, and inactivating mutations such as A1141T, G305V, S1514X, and R1032X, has been identified in TSC2-null hepatocellular carcinoma (HCC) cell lines, patient-derived xenograft, and primary tumors. Mutations in the TSC1 and TSC2 genes cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC)^[116].

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple cancer types, such as bladder cancer, gastric cancer, sarcoma, thyroid cancer, hepatocellular carcinoma (HCC) as well as head and neck squamous cell carcinoma (HNSCC)^{[117][118][119]}. Results from one Phase II study of advanced endometrial cancer showed that mutations in AKT1, TSC1, and TSC2 might predict sensitivity to temsirolimus^[120]. Recent studies indicated that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets^[121].

Everolimus has been approval by the U.S. FDA for Tuberous Sclerosis Complex (TSC)-associated renal angiomyolipoma and Tuberous Sclerosis Complex (TSC)-associated subependymal giant cell astrocytoma (SEGA). This approval is based on the results from EXIST-1, EXIST-2, and Study 2485 trials (NCT00789828, NCT00790400, and NCT00411619).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **8** of **31**

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
monarchE	HR-positive, HER2-negative
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36
	months(%): 86.1 vs. 79.0]
MONARCH 3 ^[122]	Breast cancer (Approved on 2018/02/26)
NCT02246621	HR-positive, HER2-negative
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.8]
MONARCH 2 ^[39]	Breast cancer (Approved on 2017/09/28)
NCT02107703	HR-positive, HER2-negative
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]
MONADOU 4[123]	Breast cancer (Approved on 2017/09/28)
MONARCH 1 ^[123]	HR-positive, HER2-negative
NCT02102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[124]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	-
	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[125]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on
EXIST-2	2012/04/26)
NCT00790400	-
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
DADIANT O[126]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[126]	
NCT00510068	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EVIOT 4[127]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[127] NCT00789828	
	Everolimus vs. Placebo [ORR(%): 35.0]
DECODD 4[128]	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[128]	-
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **9** of **31**

ACTOnco® + Report

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)			
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]			
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)			
QUADRA ^[129] NCT02354586	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)			
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]			
NOVA[130]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)			
NOVA ^[130]				
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]			

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

Olympus i A	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)			
OlympiA NCT02032823	gBRCA			
NC102032023	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]			
	Prostate cancer (Approved on 2020/05/19)			
PROfound ^[17] NCT02987543	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm, PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm			
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]			
	Ovarian cancer (Approved on 2020/05/08)			
PAOLA-1 ^[131] NCT02477644	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)			
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]			
POLO ^[132]	Pancreatic adenocarcinoma (Approved on 2019/12/27)			
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)			
NC102104193	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]			
SOLO-1 ^[133]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)			
NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)			
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]			
Oh mani A D[134]	Breast cancer (Approved on 2018/02/06)			
OlympiAD ^[134] NCT02000622	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative			
14010200022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]			
SOLO-2/ENGOT-Ov21 ^[135]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)			
NCT01874353	gBRCA+			
NC1010/4333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]			

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 31

ACTOnco® + Report

Study19 ^[136]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)		
	-		
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]		
Otanda 40[137]	Ovarian cancer (Approved on 2014/12/19)		
Study 42 ^[137]	Germline BRCA mutation (deleterious/suspected deleterious)		
NCT01078662	Olaparib [ORR(%): 34.0, DOR(M): 7.9]		

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

-					
PALOMA-2 ^[138] NCT01740427 PALOMA-3 ^[139]	DAL OMA 0[138]	Breast cancer (Approved on 2017/03/31)			
		ER+, HER2-			
	NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]			
	DAL ONA 0[139]	Breast cancer (Approved on 2016/02/19)			
		ER+, HER2-			
	NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]			

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONALEESA-2 ^[38]	Breast cancer (Approved on 2017/03/13)
	HR+, HER2-
NCT01958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITON2	TRITONIO	Prostate cancer (Approved on 2020/05/15)
		gBRCA+, sBRCA
	NCT02952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
		Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
	ARIEL3 ^[18]	AII HRD tBRCA
	NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
		(tBRCA)(M): 16.6 vs. 5.4]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

ARIEL2[140]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

51100 4 0 4 [141]	Breast cancer (Approved on 2018/10/16)
EMBRACA ^[141]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[142]	Renal cell carcinoma (Approved on 2007/05/30)				
NCT00065468	-				
NC10005466	Temsirolimus vs. IFN-α [OS(M): 10.9 vs. 7.3]				

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

- FDA Approval Summary of Trametinib (MEKINIST)

BRF117019, NCI-MATCH,	Cancer (Approved on 2022/06/22)		
CTMT212X2101	BRAF V600E		
NCT02034110,			
NCT02465060,	Dabrafenib + trametinib [ORR(adult patients)(%): 41.0, ORR(pediatric patients)(%): 25.0]		
NCT02124772			
BRF117019 ^[143]	Anaplastic thyroid cancer (Approved on 2018/05/04)		
NCT02034110	BRAF V600E		
NG102034110	Dabrafenib + trametinib [ORR(%): 61.0]		
DDE442000[144]	Non-small cell lung cancer (Approved on 2017/06/22)		
BRF113928 ^[144]	BRAF V600E		
NCT01336634	Trametinib + dabrafenib vs. Dabrafenib [ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]		

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 12 of 31

ACTOnco® + Report

OOMPL -1/1451	Melanoma (Approved on 2014/01/10)
COMBI-d ^[145]	BRAF V600E/K
NCT01584648	Trametinib + dabrafenib vs. Dabrafenib + placebo [PFS(M): 9.3 vs. 8.8]
METRIC ^[146]	Melanoma (Approved on 2013/05/29)
NCT01245062	BRAF V600E/K
INC 101245062	Trametinib vs. Dacarbazine or paclitaxel [PFS(M): 4.8 vs. 1.5]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **13** of **31**

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **14** of **31**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage	
Not Detected								

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-04862

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 31

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID		Coverage	
ADAMTS16	P966L	19	c.2897C>T	NM_139056	-	7.3%	302	
ATM	Splice region	-	c.5177+3G>A	NM_000051	-	59.5%	504	
BCOR	K1137R	7	c.3410A>G	NM_001123385	-	41.8%	581	
BRCA2	G2508S	15	c.7522G>A	NM_000059	COSM7343858	47.8%	1798	
BUB1B	V292I	7	c.874G>A	NM_001211	-	47.1%	680	
CCNB1	M252T	6	c.755T>C	NM_031966	-	34.3%	670	
DTX1	Splice region	-	c.1549-6_1549- 5delinsTG	NM_004416	-	38.9%	1423	
JAK2	V392M	9	c.1174G>A	NM_004972	COSM5979661	49.1%	1319	
KMT2C	S4300P	52	c.12898T>C	NM_170606	-	29.2%	839	
PTPRT	Q1429E	31	c.4285C>G	NM_007050	-	52.4%	462	
RECQL4	Q1011R	18	c.3032A>G	NM_004260	-	62.3%	316	
STAG2	Q1089P	30	c.3266A>C	NM_001042751	-	47.1%	667	
TSC2	R1159W	30	c.3475C>T	NM_000548	-	38.0%	142	

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **16** of **31**

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

TEST DETAILS SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Aug 2022
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11167896G
- Collection site: Ovary
- Examined by: Dr. Chien-Ta Chiang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 25%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 50%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 827x
- Target Base Coverage at 100x: 94%

RNA test

- Average unique RNA Start Sites per control GSP2: 117

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862 ONC

Date Reported: Sep 01, 2022

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 31

ACTOnco® + Report

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號 yehr_

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **19** of **31**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTSS
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	митүн	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	ECED	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
		EGFK										

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **20** of **31**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
TSC2	Everolimus, Temsirolimus	sensitive
ATM	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
CHEK2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
KMT2C	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
SMAD4	Cetuximab	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **21** of **31**

ACTOnco® + Report

1: Everolimus, Temsirolimus; 2: Trametinib

1: Abemaciclib, Palbociclib, Ribociclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

REFERENCE

- PMID: 22079189; 2012, Trends Biochem Sci;37(1):15-22
 The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
- 2. PMID: 1548942; 1992, Leukemia;6 Suppl 1():8-13 Cancer susceptibility in ataxia-telangiectasia.
- PMID: 12810666; 2003, Cancer Res;63(12):3325-33
 Contributions of ATM mutations to familial breast and ovarian cancer.
- PMID: 1961222; 1991, N Engl J Med;325(26):1831-6
 Incidence of cancer in 161 families affected by ataxia-telangiectasia.
- PMID: 28779002; 2017, J Med Genet;54(11):732-741
 Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.
- PMID: 16400190; 2006, Carcinogenesis;27(4):848-55
 Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors.
- PMID: 29478780; 2018, Am J Hum Genet; 102(3):401-414
 Inherited DNA-Repair Defects in Colorectal Cancer.
- PMID: 9488043; 1998, Oncogene;16(6):789-96
 ATM is usually rearranged in T-cell prolymphocytic leukaemia.
- PMID: 11429421; 2001, J Clin Pathol;54(7):512-6
 Ataxia telangiectasia gene mutations in leukaemia and lymphoma.
- 10. PMID: 11756177; 2002, Blood;99(1):238-44

ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances.

- PMID: 21993670; 2012, Haematologica;97(1):47-55
 ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression.
- PMID: 22981675; 2013, Eur Urol;63(5):920-6
 Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
- PMID: 22410096; 2012, Oral Oncol;48(8):698-702
 Correlation of Ataxia-Telangiectasia-Mutated (ATM) gene loss with outcome in head and neck squamous cell carcinoma.
- PMID: 23103869; 2012, Nature;491(7424):399-405
 Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
- PMID: 18948947; 2008, Nature;455(7216):1069-75
 Somatic mutations affect key pathways in lung adenocarcinoma.
- PMID: 30537493; 2019, Hum Pathol;86():85-92
 Molecular characterization of metaplastic breast carcinoma via next-generation sequencing.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 18. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 19. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **31**

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.

- 20. PMID: 26282658; 2015, J Clin Oncol;33(33):3858-65
 - Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer.
- 21. PMID: 26238431; 2015, Eur Urol;68(6):959-67
 - Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 22. PMID: 22420423; 2012, Breast Cancer Res;14(2):R47
 - Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
- 23. PMID: 23154512; 2012, Oncotarget;3(11):1348-55
 - Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN.
- PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 25. PMID: 8521522: 1995. Cell:83(6):993-1000
 - Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 26. PMID: 9529249; 1998, Cell;92(6):725-34
 - ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 27. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 - Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- 28. PMID: 7550353; 1995, Nat Genet;11(2):210-2
 - Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 29. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 - The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 30. PMID: 27849562; 2017, Gut;66(7):1286-1296
 - Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 31. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 - The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 32. PMID: 28283584; 2017, Oncologist;22(4):416-421
 - Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 33. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 - Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 34. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501
 - Does CDKN2A loss predict palbociclib benefit?
- PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 36. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 - A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 25 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

- 37. PMID: 24797823; 2014, Oncologist;19(6):616-22
 - Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 39. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33
 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 41. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431
 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5
 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- PMID: 15261141; 2004, Cancer Cell;6(1):45-59
 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- PMID: 23296741; 2013, Fam Cancer;12(3):473-8
 The risk of gastric cancer in carriers of CHEK2 mutations.
- 46. PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10
 A risk of breast cancer in women carriers of constitutional CHEK2 gene mutations, originating from the North Central Poland.
- PMID: 25583358; 2015, Int J Cancer;137(3):548-52
 CHEK2 mutations and the risk of papillary thyroid cancer.
- PMID: 12052256; 2002, Breast Cancer Res;4(3):R4
 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- PMID: 15125777; 2004, Mol Cancer;3():14
 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- PMID: 26510020; 2015, N Engl J Med;373(18):1697-708
 DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
- 51. PMID: 25998713; 2015, Nat Rev Cancer;15(6):334-46
 Hijacked in cancer: the KMT2 (MLL) family of methyltransferases
- 52. PMID: 24081332; 2013, Mol Cell Biol;33(23):4745-54
 The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers.
- 53. PMID: 23166019; 2012, Genes Dev;26(23):2604-20
 Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian MII3/MII4.
- 54. PMID: 27926873; 2016, Cell Rep;17(10):2715-2723
 FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3.
- PMID: 17021013; 2006, Proc Natl Acad Sci U S A;103(42):15392-7
 Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 26 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

- 56. PMID: 11891048; 2002, Gene;284(1-2):73-81

 MLL3, a new human member of the TRX/MLL gene family, maps to 7q36, a chromosome region frequently deleted in myeloid leukaemia.
- 57. PMID: 22234698; 2012, Blood;119(10):e67-75
 High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations.
- PMID: 25537518; 2015, Oncotarget;6(4):2466-82
 Genetic alterations of histone lysine methyltransferases and their significance in breast cancer.
- PMID: 25303977; 2014, Clin Cancer Res;20(24):6582-92
 Mutational landscape of aggressive cutaneous squamous cell carcinoma.
- PMID: 25151357; 2014, Nat Genet;46(10):1097-102
 Genetic landscape of esophageal squamous cell carcinoma.
- 61. PMID: 28801450; 2017, Blood;130(14):1644-1648
 Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations.
- 62. PMID: 25794446; 2015, Cancer Genet; 208(5):178-91 The cancer COMPASS: navigating the functions of MLL complexes in cancer.
- 63. PMID: 24794707; 2014, Cancer Cell;25(5):652-65
 MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia.
- 64. PMID: 30665945; 2019, EMBO Rep;20(3): The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer.
- 65. PMID: 27280393; 2016, Cancer Res;76(16):4861-71
 Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.
- 66. PMID: 27986439; 2017, Clin Breast Cancer; 17(3):e135-e142 Expression Levels of KMT2C and SLC20A1 Identified by Information-theoretical Analysis Are Powerful Prognostic Biomarkers in Estrogen Receptor-positive Breast Cancer.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- 68. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.
- PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36
 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- 71. PMID: 8673134; 1996, Nat Genet;13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
- 72. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- 73. PMID: 9135016; 1997, Cancer Res;57(9):1731-4 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- 75. PMID: 22810696; 2012, Nature;487(7407):330-7

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 27 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

Comprehensive molecular characterization of human colon and rectal cancer.

- PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 78. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7
 Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.
- PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 80. PMID: 29703253; 2018, BMC Cancer;18(1):479
 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.
- PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- 82. PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- PMID: 24384683; 2014, Br J Cancer;110(4):946-57
 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- PMID: 12237773; 2002, Br J Cancer;87(6):630-4
 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 86. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- PMID: 25681512; 2015, J Clin Pathol;68(5):341-5
 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.
- 88. PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- PMID: 26947875; 2016, Transl Oncol;9(1):1-7
 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- PMID: 25760429; 2015, Pancreas;44(4):660-4
 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- 91. PMID: 22504380; 2012, Pancreas;41(4):541-6
 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9
 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- PMID: 18425078; 2008, Mod Pathol;21(7):866-75
 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- 94. PMID: 19029933; 2008, Oncogene;27(55):6908-19 LKB1; linking cell structure and tumor suppression.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 28 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

- PMID: 19584313; 2009, Physiol Rev;89(3):777-98
 LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism.
- 96. PMID: 20142330; 2010, Dis Model Mech;3(3-4):181-93
 Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy.
- 97. PMID: 17676035; 2007, Nature;448(7155):807-10 LKB1 modulates lung cancer differentiation and metastasis.
- PMID: 18245476; 2008, Cancer Res;68(3):759-66
 Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.
- PMID: 18172296; 2008, Cancer Res;68(1):55-63
 LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis.
- PMID: 25244018; 2014, Int J Mol Sci;15(9):16698-718
 Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function.
- PMID: 9425897; 1998, Nat Genet;18(1):38-43
 Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.
- 102. PMID: 21189378; 2011, J Clin Oncol;29(6):e150-3 mTOR inhibitor treatment of pancreatic cancer in a patient With Peutz-Jeghers syndrome.
- PMID: 27615706; 2016, CNS Oncol;5(4):203-9
 Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy.
- 104. PMID: 27821489; 2017, Cancer Res;77(1):153-163
 A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.
- 105. PMID: 29764856; 2018, Clin Cancer Res;24(22):5710-5723
 TP53, STK11, and EGFR Mutations Predict Tumor Immune Profile and the Response to Anti-PD-1 in Lung Adenocarcinoma.
- PMID: 29773717; 2018, Cancer Discov;8(7):822-835
 STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
- 107. PMID: 29337640; 2018, J Clin Oncol;36(7):633-641 Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing.
- 108. PMID: 26833127; 2016, Cancer Res;76(5):999-1008 STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
- 109. PMID: 21157483; 2011, Nat Rev Mol Cell Biol;12(1):21-35 mTOR: from growth signal integration to cancer, diabetes and ageing.
- 110. PMID: 12271141; 2002, Proc Natl Acad Sci U S A;99(21):13571-6 Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
- PMID: 9242607; 1997, Science;277(5327):805-8
 Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
- PMID: 8269512; 1993, Cell;75(7):1305-15
 Identification and characterization of the tuberous sclerosis gene on chromosome 16.
- 113. PMID: 1303246; 1992, Nat Genet;2(1):37-41 Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 29 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

- 114. PMID: 18538015; 2008, BMC Cancer;8():163
 Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.
- PMID: 28339086; 2017, Int J Oncol;50(5):1778-1784
 Identification of novel mutations in endometrial cancer patients by whole-exome sequencing.
- PMID: 17005952; 2006, N Engl J Med;355(13):1345-56
 The tuberous sclerosis complex.
- 117. PMID: 22923433; 2012, Science;338(6104):221
 Genome sequencing identifies a basis for everolimus sensitivity.
- 118. PMID: 26859683; 2016, Oncotarget;7(9):10547-56
 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 119. PMID: 25724664; 2015, Mol Cancer Ther;14(5):1224-35 Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus.
- 120. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- 121. PMID: 26412398; 2015, Sci Rep;5():14534
 PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 123. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- 124. PMID: 26703889; 2016, Lancet;387(10022):968-977
 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 126. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 127. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 128. PMID: 18653228; 2008, Lancet; 372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 129. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 30 of 31

Project ID: C22-M001-02539 Report No.: AA-22-04862_ONC Date Reported: Sep 01, 2022

ACTOnco® + Report

- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 134. PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 135. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 136. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 25366685; 2015, J Clin Oncol;33(3):244-50
 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 140. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
- 141. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.
- 143. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13
 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 144. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50

 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
- 145. PMID: 25265492; 2014, N Engl J Med;371(20):1877-88 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 31 of 31