Finite Automata | 109

For the state A, the incoming edges to this state are from $B_{\{}0\}$ to C with label b/0 and $B_{\{}1\}$ to C with label b/0. There is no difference in the outputs of the incoming edges to this state, and so in the constructing Moore machine the output for this state will be 0.

For the state D, the incoming edges are A to D with label b/0, from C to D with label a/0, and from D to D with label b/1.

We get two different outputs for two incoming edges (D to D output 1, C to D output 0). So, the state D will be divided into two, namely, $D_{\{0\}}$ and $D_{\{1\}}$.

The outgoing edges are duplicated for both the states generated from D. The modifi ed machine is

$110 \mid$ Introduction to Automata Theory, Formal Languages and Computation

21.Convert the following Mealy machine into an equivalent Moore machine.
[UPTU 2004]

Solution: The state q_0 has two incoming edges: from q_1 with label a/0 and from q_3 with label b/1. As there is a difference in output, the state q_0 is divided into q_00 and q_01 with outputs 0 and 1, respectively. The states q_1 and q_3 have only one incoming edge each, and so there is no need of division. The state q_2 has three incoming edges; among those,

two are of output '0' and another is of output '1'. Thus, it is divided into q_20 and q_21 with outputs 0 and 1, respectively.

From q_1 input with label 'a' ends on q_00 , and from q_3 input with label 'b' ends on q_01 . The outputs from old q_1 state are duplicated from q_00 and q_01 . The state q_1 and q_3 are not divided. q_1 gets output '1' and q_3 gets output '0'. Dividing the state q_0 and placing q_1 and q_3 , the intermediate machine becomes as follows

0000

The state q_24 is divided into q_20 and q_21 . From q_00 and q_01 input with label 'a' ends on q_21 . From q_3 input with label 'a' ends on q_20 . There is a loop on q_2 . That loop will be on q_20 with label 'b'. Another transition with label 'b' is drawn from q_21 to q_20 . The final Moore machine is as follows

0000

22. Minimize the following finite automata.

		Next State	
	Present State	I/P=a	I/P = b
\rightarrow	Α	В	F
	В	Α	F
	С	G	Α
	D	Н	В
	E	Α	G
	F	Н	С
	G	Α	D
	Н	Α	С

Here F, G, and H are the final states.

Solution: In the finite automata, the states are $\{A, B, C, D, E, F, G, H\}$. Name this set as S_0 .

 $S_0: \{A, B, C, D, E, F, G, H\}$

All of the states are 0 equivalents.

In the finite automata, there are two types of states: final state and non-final states. So, divide the set of states into two parts, Q1 and Q2.

$$Q_1 = \{F, G, H\}Q_2 = \{A, B, C, D, E\}$$

$$S_1:\{\{F,G,H\}\{A,B,C,D,E\}\}$$

The states belonging to same subset are 1-equivalent because they are in the same set for string length 1. The states belonging to different subsets are 1-distinguishable.

The next states of F are H and C. The next states of G and H are A, D and A, C, respectively.

A, D and A, C belong to the same subset but H and C belong to a different subset. So, F, G, and H are divided into $\{F\}, \{G, H\}$.

For input 0, the next states of A, B, C, D, and E are B, A, G, H, and A, respectively. For input 1,the next states of A, B, C, D, and E are F, F, A, B, and G, respectively. So, the set $\{A, B, C, D, E\}$ is divided into $\{A, B, E\}$ and $\{C, D\}$.

$$S_2: \{\{F\}\{G,H\}\{A,B,E\}\{C,D\}\}$$

By the same process, $\{A, B, E\}$ is divided into $\{A, B\}$, $\{E\}$.

$$S_3: \{\{F\}\{G,H\}\{A,B\}\{E\}\{C,D\}\} = \{\{A,B\},\{C,D\},\{E\},\{F\},\{G,H\}\}$$

The set is not dividable further. So, these are the states of minimized DFA. Let us rename the subsets as q_0, q_1, q_2, q_3 , and q_4 . The initial state was A, and so here the initial state is $\{A, B\}$, i.e., q_0 . The final state was F, G, and H, and so here the final states are $\{F\}$, i.e., q_3 and $\{G, H\}$, i.e., q_4 . The tabular representation of minimized *DFA* is

	Next State		
	Present State	I/P = 0	I/P=1
\rightarrow	q_0	q_0	q_0
	q_0	q_0	q_0

23.Design a Mealy and Moore machine for detecting a sequence 1010 where overlapping sequences are also accepted. Convert the Moore machine that you have got into a Mealy machine. Are there any differences? How will you prove that the two Mealy machines are equivalent?

Solution: The Mealy machine is

The Moore machine is

The converted Mealy machine from the given Moore machine is (by using the transactional format)

