INM431: Machine Learning

Probability theory and Bayes Theorem

Pranava Madhyastha (pranava.madhyastha@city.ac.uk)

Apples and oranges: picking an item from the box

Random variables: BOX = {red, blue}; FRUIT = {apple, orange}

What is the probability of picking an apple?

What is the probability of picking an apple?

P(Fruit=apple) = P(Fruit=apple, Box=red) + P(Fruit=apple, Box=blue) $P(\text{Fruit=apple}, \text{Box=red}) = P(\text{Fruit=apple}|\text{Box=red}) \times P(\text{Box=red})$ $P(\text{Fruit=apple}, \text{Box=blue}) = P(\text{Fruit=apple}|\text{Box=blue}) \times P(\text{Box=blue})$

Basic rules of probability

Probability $\in [0,1]$

$$P(X) = 1 - \neg P(X)$$

Basic rules of probability

Sum rule:
$$P(X) = \sum_{Y} P(X, Y)$$

Product rule: $P(X \cap Y) = P(Y|X)P(X)$

$$P(X,Y)$$
 Joint probability Conditional probability Marginal probability

Quick quiz

What is the probability that the fruit was from BLUE box if an orange was picked?

Try resorting to sum & product rules (and nothing else).

Most general form of Bayes' theorem

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

where,
$$P(X) = \sum_{Y} P(X|Y)P(Y)$$
 (normalisation constant)

posterior ∝ likelihood × prior

Correlation: Normalised co-variance

The magnitude of the covariance is a bit tricky to interpret.

Correlation:
$$\rho[x,y] = \frac{\mathbb{E}_{x,y}[\{x - \mathbb{E}[x]\}\}\{y - \mathbb{E}[y]\}]}{(\sigma_x \sigma_y)}$$

where, $\sigma_{\!\scriptscriptstyle X}$ is the standard deviation in x and $\sigma_{\!\scriptscriptstyle Y}$ is the standard deviation in y

also,
$$\rho[x, x] = 1$$

Bayesian learning

Every training example can incrementally decrease or increase the estimated probability about a certain hypothesis

Prior knowledge can be combined with observations to obtain the probability of a certain event. This can be done through:

- a prior probability for every candidate hypothesis
- a probability distribution over the observations for each hypothesis

Bayes' theorem

We want to obtain the best hypothesis (h) from a large event space \mathcal{H} , given some observed data \mathcal{D}

In bayesian learning, best hypothesis = most probable hypothesis, given the observations \mathscr{D} + prior information about the various hypotheses in \mathscr{H}

Bayes' theorem helps us compute the probability of a hypothesis based on its prior probability, the probabilities of observing data under a given hypothesis and the observed data.

Bayes' theorem

- P(h) = prior probability of hypothesis h
 - initial probability of the hypothesis, before we have any data
- $P(\mathcal{D})$ = prior probability of training data \mathcal{D}
 - without any knowledge about any hypothesis
- $P(h \mid \mathscr{D})$ = posterior probability of h given \mathscr{D}
 - contains the confidence that h is true after having access to the dat.
- $P(\mathcal{D} \mid h)$ = the likelihood of the data \mathcal{D} given that h is true

The Bayes' theorem for Bayesian learning

$$P(h \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid h)P(h)}{P(\mathcal{D})}$$

posterior & likelihood X prior

In general, in frequentist ML, we are interested in $P(h \mid \mathcal{D})$, i.e., probability that h is true given the data \mathcal{D}

In bayesian learning methods, we have the opportunity to calculate $P(h \mid \mathcal{D})$ using both P(h) and $P(\mathcal{D})$, but computing this is not always tractable

Exercise

A test for salmonella is made available to chicken farmers. The test will correctly show a positive result for salmonella 95% of the time. However the test also shows positive results 15% of the time in salmonella free chickens. 10% of chickens have salmonella.

If a chicken tests positive, what is the probability that it has salmonella?

Expectation

The average value (or the mean) of any function f(x) under a probability distribution P(x) is called the "**expectation**" (or the expected value) of f(x), denoted by:

$$\mathbb{E}[f] = \sum_{x} P(x) f(x)$$

In the case of continuous variables:

$$\mathbb{E}[f] = \int_{x} P(x)f(x)dx$$

Further, with a finite number of points N drawn from a probability distribution, the expected value is computed by using:

$$\mathbb{E}[F] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Covariance

Cov[x, y] denotes the extent to which the random variables x and y vary together (co-vary).

It is a measure of linear dependence.

If x and y are **independent** then Cov[x, y] = 0, however note that the converse may not necessarily be true, e.g., $y = x^2$.

In case of vectors ${\bf x}$ and ${\bf y}$, covariance is typically represented with a matrix with a symbol \sum or $K_{{\bf x}{\bf y}}$.

Computing covariance

For random variables:

$$Cov[x, y] = \mathbb{E}_{x,y}[\{x - \mathbb{E}[x]\}\}\{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

For vectors:

$$Cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\}\}\{\mathbf{y} - \mathbb{E}[\mathbf{y}]\}]$$
$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathsf{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathsf{T}}]$$

Example (covariance with random variables)

$\boldsymbol{\mathcal{X}}$	y	xy
3	2	6
-1	4	-4
1	1	1
$\mathbb{E}[x] = 1$	$\mathbb{E}[y] = 7/3$	$\mathbb{E}[xy] = 1$

$$Cov[x, y] = 1 - (2.33) \times 1$$

$$Cov[x, x] = Var[x]$$

The covariance of a variable with itself is called its variance

Homework: vectors

X	y	xy ^T
(3,2)	(2,3)	?
(-1,4)	(-4,-5)	?
(1,1)	(2,3)	?
$\mathbb{E}[x] = ?$	$\mathbb{E}[y] = ?$	$\mathbb{E}[xy] = ?$

$$Cov[x, y] = ?$$

$$Cov[x, x] = ?$$

