

Neural Networks Neural Language Models

T-622-ARTI

Stefán Ólafsson Spring 2023

Neural Network

- A network of small computing units (nodes)
- Each unit takes a vector of input values
- Produces a single output value

Feed-forward network and deep learning

Feed-forward:

Computation proceeds iteratively from one layer of units to the next

Deep learning:

Networks that are deep (many layers)

Neural Network (NN) and logistic regression

- NN share much of the same mathematics as logistic regression
 - But a more powerful classifier than logistic regression
 - Because of these hidden layers
- Logistic regression uses feature templates based on domain knowledge
- More common in NN to avoid the use of hand-derived features
 - Take raw words as inputs
 - Learns to induce features as part of the learning process

Units

- A neural unit takes a weighted sum of its input and adds a bias term
- Input: $x_1, x_2 \dots x_n$
- Weights: $w_1, w_2 \dots w_n$

•
$$z = \sum_{i=1}^{n} w_i x_i + b$$

• z = w * x + b

Activation value

 Neural units apply a non-linear function f to z to produce the output, the activation value, a.

$$y = a = f(z)$$

Popular non-linear functions: <u>sigmoid</u>, <u>tanh</u>, <u>ReLU</u>

Example

Figure 7.2 A neural unit, taking 3 inputs x_1 , x_2 , and x_3 (and a bias b that we represent as a weight for an input clamped at +1) and producing an output y. We include some convenient intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In this case the output of the unit y is the same as a, but in deeper networks we'll reserve y to mean the final output of the entire network, leaving a as the activation of an individual node.

Why do we need non-linear activation functions?

- to introduce <u>non-linearity</u> into the network
- this allows you to model output that varies non-linearly with its input variables
- if we only allow linear activation functions in a neural network, the output will just be a linear transformation of the input
- non-linear means that the output cannot be reproduced from a linear combination of the input

Why do we need multi-layer networks?

 Because a single neural unit cannot compute some very simple functions of its input.

Logical AND and OR

Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The inputs are shown as x_1 and x_2 and the bias as a special node with value +1 which is multiplied with the bias weight b. (a) logical AND, showing weights $w_1 = 1$ and $w_2 = 1$ and bias weight b = -1. (b) logical OR, showing weights $w_1 = 1$ and $w_2 = 1$ and bias weight b = 0. These weights/biases are just one from an infinite number of possible sets of weights and biases that would implement the functions.

$$y = \begin{cases} 0, & \text{if } w * x + b \leq 0 \\ 1, & \text{if } w * x + b > 0 \end{cases}$$

Perceptron: binary classifier; purely linear

Logical XOR

- Not possible to build a perceptron to compute logical XOR!
- A perceptron is a linear classifier
- XOR is not a linearly separable function

Linearly separable

The functions AND, OR, and XOR, represented with input x_0 on the x-axis and input x_1 on the Figure 7.5 y axis, Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig (2002).

XOR solution

Figure 7.6 XOR solution after Goodfellow et al. (2016). There are three ReLU units, in two layers; we've called them h_1 , h_2 (h for "hidden layer") and y_1 . As before, the numbers on the arrows represent the weights w for each unit, and we represent the bias b as a weight on a unit clamped to +1, with the bias weights/units in gray.

You should work out what happens for the inputs!

New representation

Figure 7.7 The hidden layer forming a new representation of the input. Here is the representation of the hidden layer, h, compared to the original input representation x. Notice that the input point [0 1] has been collapsed with the input point [1 0], making it possible to linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

Hidden layer

- Key advantage of neural networks:
 - Can automatically learn useful representations of the input

Feed-forward Neural Networks

- Simple feed-forward networks have three kinds of nodes:
 - Input units
 - Hidden units
 - Output units

Feed-forward Neural Networks

Figure 7.8 A simple 2-layer feed-forward network, with one hidden layer, one output layer, and one input layer (the input layer is usually not counted when enumerating layers).

Deep Feed-forward Neural Network

Hidden Input Hidden Hidden Output

Feed-forward Neural Networks

- Weight matrix W for a hidden layer
- W_{ii}: the weight of the connection from the i-th input x_i to the j-th hidden unit h_i
- Allows for effective matrix operations
- $h = \sigma(W * x + b)$
- W is a matrix, x, b and h are vectors

Output layer

- h forms a representation of the input
- The output layer takes this new representation h and computes a final output.
- The output could be a real value
- In many cases, however, the network makes a classification decision.

Output layer

- If binary classification, then single output node
- y is then the probability of the positive class
- If multinomial classification (e.g. PoS tagging), then one output node for each possible PoS
- The output layer then gives a probability distribution over output nodes.

Output layer

- The output layer has a weight matrix, U.
- z = U*h
- z is a vector of real-valued numbers
- For multiclass classification we need a vector of probabilities
- Can convert it to a probability distribution by using the **softmax** function (d is the dimension of z):
- $softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^d e^{z_j}} \ 1 \le i \le d$

Feed-forward Neural Networks

Figure 7.8 A simple 2-layer feed-forward network, with one hidden layer, one output layer, and one input layer (the input layer is usually not counted when enumerating layers).

Softmax example

- Given a vector z=[0.6, 1.1, -1.5, 1.2, 3.2, -1.1]
- softmax(z) is [0.055, 0.090, 0.0067, 0.10, 0.74, 0.010].

Neural network classifier with one hidden layer

- Builds a vector **h**, a hidden layer representation of the input
- Then runs standard logistic regression on the features that the network develops in **h**.
- Deep neural network is like layer after layer of logistic regression classifiers:
 - Prior layers induce the feature representations themselves, as opposed to using hand-crafted features

Neural network classifier with one hidden layer

•
$$h = \sigma(W * x + b)$$

- z = U * h
- y = softmax(z)
- 2-layer network

Training

- Learn weights $W^{[i]}$ and bias $b^{[i]}$ that make \hat{y} for each training observation as close as possible to the true y.
- 1. loss (cost) function
- 2. Iteratively updating the weights => gradient descent

Difference to logistic regression?

- In logistic regression, for each observation we directly compute the derivative of the loss function with respect to an individual **w** or **b**.
 - Cost function is convex
- For neural networks, with many layers, we need what is called error back-propagation
- See chapter 7.4 in the textbook

More than one layer: non-convex

Application: Neural Language Models (NLM)

- Language modeling:
 - Predicting upcoming words from prior word contexts
- Advantages of NLMs compared to n-gram language models:
 - Don't need smoothing
 - Can handle much longer histories
 - Can generalize over context of similar words
 - Usually give higher accuracy

Neural Language Models (NLM)

- Disadvantages of NLMs compared to n-gram language models:
 - Strikingly slower to train

Feed-forward neural language model

- Standard feedforward network
- Takes as input at time t a representation of some number of previous words $(w_{t-1}, w_{t-2} ...)$
- Output a probability distribution over possible next words
- $P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$
- N=4, 4-gram: $P(w_t \mid w_{t-1}, w_{t-2}, w_{t-3})$

Word Embeddings

- Prior context is represented by embeddings of the previous words.
- Allows neural language models to generalize to unseen data, much better than n-gram LMs

Figure 7.12 A simplified view of a feedforward neural language model moving through a text. At each timestep t the network takes the 3 context words, converts each to a d-dimensional embeddings, and concatenates the 3 embeddings together to get the $1 \times Nd$ unit input layer x for the network. These units are multiplied by a weight matrix W and bias vector b and then an activation function to produce a hidden layer h, which is then multiplied by another weight matrix U. (For graphic simplicity we don't show b in this and future pictures). Finally, a softmax output layer predicts at each node i the probability that the next word w_t will be vocabulary word V_i . (This picture is simplified because it assumes we just look up in an embedding dictionary E the d-dimensional embedding vector for each word, precomputed by an algorithm like word2vec.)

What if we do not have pre-trained embeddings?

- We then need to learn the embeddings during training of the network
- We represent each of the previous words as a onehot vector
 - one dimension for each word in the vocabulary
 - [0 0 0 0 1 0 0 ... 0 0 0 0]

Figure 7.13 Learning all the way back to embeddings. Notice that the embedding matrix E is shared among the 3 context words.

