Исследование надёжности заёмщиков

Заказчик — кредитный отдел банка. Нужно разобраться, влияет ли семейное положение и количество детей клиента на факт погашения кредита в срок. Входные данные от банка — статистика о платёжеспособности клиентов.

Результаты исследования будут учтены при построении модели **кредитного скоринга** — специальной системы, которая оценивает способность потенциального заёмщика вернуть кредит банку.

1 Шаг 1. Откроем файл с данными и изучим общую информацию

```
In [268]:
                 import pandas as pd
In [269]:
          H
                 import warnings
               1
                 warnings.filterwarnings('ignore')
In [270]:
               1
                 try:
                     data = pd.read_csv('/da..ta.csv') # Yandex path
               2
               3
                 except:
               4
                     data = pd.read_csv("da...r.csv") # personal path
In [272]:
                 data.info() # информация о данных
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 21525 entries, 0 to 21524
             Data columns (total 12 columns):
              # Column
                                  Non-Null Count Dtype
             --- -----
                                  -----
              0 children
                                 21525 non-null int64
              1 days_employed
                                 19351 non-null float64
              2 dob_years
                                 21525 non-null int64
              3 education
                                 21525 non-null object
              4 education 21525 non-null int64
5 family_status 21525 non-null object
              6 family_status_id 21525 non-null int64
                                21525 non-null object
              7 gender
              8 income_type
                                 21525 non-null object
                                   21525 non-null int64
                 debt
              10 total_income 19351 non-null float64
                                   21525 non-null object
              11 purpose
             dtypes: float64(2), int64(5), object(5)
             memory usage: 2.0+ MB
```

1.1 12 колонок, 21525 строк

- children дети. челочисленное. есть данные по всем строкам
- days_employed трудовой стаж в днях. численное значение. есть пропуски данных
- dob_years возраст клиента, целочисленное. есть все строки
- education образование. текст. вроде бы без пропусков. надо посмотреть уники
- education id целочисленный идентификатор образования. можно сделать словарь
- family_status семейное положение. текст.
- family_status_id целочисленный идентификатор семейного положения. можно сделать словарь

- gender пол клиента. текст. хорошо бы проверить уники
- income_type тип занятости. текст. возможно словарь
- debt имел ли задолженность по возврату. целочисленное. возможно, булевое
- total income ежемесячный доход численное. есть пропуски
- purpose цель получения кредита текстовое. возможен словарь

2 Проверим пропуски

```
In [273]:
                  data.isna().sum()
   Out[273]: children
                                     0
              days_employed
                                  2174
              dob_years
              education
                                     0
              education id
                                     0
              family_status
              family_status_id
              gender
              income_type
                                     0
              debt
                                     0
                                  2174
              total income
              purpose
              dtype: int64
```

Интересное совпадение - 2174 пропуска в трудовом стаже и в ежемесячном доходе

3 Посмотрим доли отсутствующих значений

```
round(data.isna().sum() * 100 / len(data), 2)
In [274]:
   Out[274]: children
                                 0.00
             days_employed
                                10.10
              dob_years
                                 0.00
              education
                                 0.00
              education_id
                                 0.00
              family_status
                                 0.00
              family_status_id
                                 0.00
                                 0.00
              gender
              income_type
                                 0.00
              debt
                                 0.00
                                10.10
              total_income
              purpose
                                 0.00
              dtype: float64
```

Пропуски данных составляют 10%

4 Сводная информация по параметрам данных

Out[275]:		children	days_employed	dob_years	education_id	family_status_id	debt	total_income
	count	21,525.00	19,351.00	21,525.00	21,525.00	21,525.00	21,525.00	19,351.00
	mean	0.54	63,046.50	43.29	0.82	0.97	0.08	167,422.30
	std	1.38	140,827.31	12.57	0.55	1.42	0.27	102,971.57
	min	-1.00	-18,388.95	0.00	0.00	0.00	0.00	20,667.26
	25%	0.00	-2,747.42	33.00	1.00	0.00	0.00	103,053.15
	50%	0.00	-1,203.37	42.00	1.00	0.00	0.00	145,017.94
	75%	1.00	-291.10	53.00	1.00	1.00	0.00	203,435.07
	max	20.00	401,755.40	75.00	4.00	4.00	1.00	2,265,604.03

Далее - прорабатываем данные по колонкам

5 1. children - количество детей

5.1 проверим на уникальность

1 data.describe()

5.1.1 С количеством детей не всё в порядке.

1 # ЗАМЕНА ОТРИЦАТЕЛЬНОГО ЗНАЧЕНИЯ

- 1. Отрицательное значение это описка. надо внести то же значение, но положительное
- 2. Огромное значение 20! Тоже описка... Удалить лишний НОЛЬ в записи Делаем:

```
2 data.loc[data['children'] == -1, 'children'] = 1
3 data['children'].unique()

Out[277]: array([ 1, 0, 3, 2, 4, 20, 5])

-1 успешно заменил на 1 Теперь черёд за 20

In [278]: М 1 data.loc[data['children'] == 20, 'children'] = 2
2 data['children'].unique()
```

5.1.2 Количество детей - в норме!

Out[278]: array([1, 0, 3, 2, 4, 5])

In [277]:

Посмотрим распределение количества детей в выборке

Out[279]: <AxesSubplot:ylabel='Frequency'>

5.2 2. days_employed - трудовой стаж.

из проверки пропуском известно, что данные по трудовому стажу содержат ~10% пропусков

5.3 проверим на уникальность

```
In [280]:
                   # посмотрим список снизу
                   sorted(data['days_employed'].unique())
                2
   Out[280]:
              [-18388.949900568383,
               -17615.563265627912,
                -16593.472817263817,
               -15835.725774811905,
               -15785.678893355005,
               -15773.0613349239,
               -14051.20262056069,
               -13894.357289777596,
               -13025.425448134729,
               -12930.541677797675,
               -12785.542677341233,
               -12587.262898873396,
               -12401.233338542044,
               -12392.30937376918,
               -12136.131380846335,
               -12118.379735167442,
               -12111.680980751775,
               -11991.292307711721,
               -11986.106782911937,
                44040 44000000000
```

```
In [281]:
                1 # посмотрим список сверху
                  sorted(data['days_employed'].unique(), reverse=True)
   Out[281]: [401755.40047533,
               401715.8117488882,
               401675.093433862,
               401674.4666333656,
               401663.8500458008,
               401635.0326971183,
               401619.6332980906,
               401614.47562223615,
               401591.8284573659,
               401590.452230711,
               401575.19672763156,
               401573.9052883258,
               401556.7535504825,
               401524.25915292674,
               401517.2763879868,
               401486.70674559905,
               401458.8777808532,
               401446.44671989843,
               401440.83433553757,
```

5.3.1 Выявлено две проблемы

- 1. отрицательные значения
- 2. странный формат

Сначала приму **гипотезу** о том, что отрицательные значения - это описка при вводе данных. Почему? Отрицательные значения есть и среди пненсионеров, и среди работающих в настоящее время клиентов. Их надо превратить в положительные значения.

```
In [282]:
                   data.loc[data['days_employed'] < 0, 'days_employed'] = abs(data['days_employed'</pre>
                2
                  # проверка
                  sorted(data['days_employed'].unique())
   Out[282]: [24.14163324048118,
               24.240694791435672,
               37.72660206855514,
               50.12829786804968,
               55.838005521394265,
               60.6373275553343,
               61.5184565937786,
               61.596442746578425,
               72.62578520446468,
               74.99524988670981,
               75.98143820404016,
               79.88034967664467,
               87.9759189019844,
               88.43392772242983,
               94.01204313423708,
               94.10233686775595,
               94.75711243199892,
               95.97095690477032,
               96.65759932125448,
```

5.3.1.1 Отрицательные значения заменены на положительные.

5.3.2 Следющий шаг - это странный формат численного значения.

Минимальное значения в колонке - 24.+ Как известно, во временных отрезках, значение 24 - это количество часов в сутках. Значит, представленные численные данные следует разделить на 24, и получиться количество дней общего трудового стажа.

Результат сохраняю в той же колонке .

```
In [283]:
           H
                   data['days_employed'] = data['days_employed'] / 24
                2
                  # проверка
                  sorted(data['days_employed'].unique())
   Out[283]: [1.005901385020049,
               1.010028949643153,
               1.571941752856464,
               2.0886790778354034,
               2.3265835633914276,
               2.526555314805596,
               2.5632690247407752,
               2.566518447774101,
               3.0260743835193615,
               3.124802078612909,
               3.1658932585016735,
               3.328347903193528,
               3.6656632875826833,
               3.684746988434576,
               3.917168463926545,
               3.920930702823165,
               3.948213017999955,
               3.9987898710320966,
               4.027399971718936,
In [284]:
           М
                   # проверка сверху
                   sorted(data['days_employed'].unique(), reverse=True)
   Out[284]: [16739.80835313875,
               16738.158822870344,
               16736.462226410917,
               16736.436109723567,
               16735.993751908365,
               16734.793029046596,
               16734.151387420443,
               16733.93648425984,
               16732.992852390245,
               16732.93550961296,
               16732.299863651315,
               16732.246053680243,
               16731.53139793677,
               16730.17746470528,
               16729.886516166116,
               16728.612781066626,
               16727.453240868883,
               16726.935279995767,
               16726.701430647398,
```

5.3.3 Конверсия в дни из часов удалась.

Но что такое 16739 дней?

```
In [285]: ▶ 1 print('16739 дней это', round(16739/365), "лет")
```

46 лет трудового стажа - серьёзная цифра. Перед выходом на пенсию, у меня такой будет. Думаю, стоит проверить, нет ли ошибок здесь.

Если разница между возрастом и стажем меньше, чем 18 лет, стоит внимательно посмотреть на такие строки.

НО перед этим обращаю внимание на то, что в колонке со стажем есть пропуски. Надо с ними поработать и заменить на значение "0". Ведь если нет данных по стажу, значит трудового стажа просто нет. Или есть, но он не указан?

5.3.4 Выведу все строки с пропущенным значением стажа.

In [286]: ▶	1 d	aca.301 c_	_values(by='da	iys_empioy	eu)			
Out[286]:		children	days_employed	dob_years	education	education_id	family_status	family_status_id
	17437	1	1.01	31	среднее	1	женат / замужем	0
	8336	0	1.01	32	высшее	0	Не женат / не замужем	4
	6157	2	1.26	47	среднее	1	гражданский брак	1
	9683	0	1.40	43	среднее	1	Не женат / не замужем	4
	2127	1	1.45	31	высшее	0	женат / замужем	0
	21489	2	nan	47	Среднее	1	женат / замужем	0
	21495	1	nan	50	среднее	1	гражданский брак	1
	21497	0	nan	48	ВЫСШЕЕ	0	женат / замужем	0
	21502	1	nan	42	среднее	1	женат / замужем	0
	21510	2	nan	28	среднее	1	женат / замужем	0
	21525	rows × 12	columns					
				28	среднее	1		

50 лет, среднее образование, женат и **нет стажа?** Не может такого быть. Вывод: данные о стаже в строках со значением Nan говорят о пропусках, а не отстутствии стажа.

Сколько таких строк? 2174 строки. Это 10% от общего числа данных.

Я пока что не имею опыта в банковской сфере и поэтому спрошу бизнес, заполнить ли эти данные "0" или высчитывать медианные значения в корреляции с возрастом (и образованием).

5.3.5 посоветовался с бизнесом

решено пропуски данных о стаже работы оставить "как есть"

5.3.6 Проверка реальности больших сроков трудового стажа.

Out[287]:

	children	days_employed	dob_years	education	education_id	family_status	family_status_id	ć
14514	0	16,708.02	0	среднее	1	вдовец / вдова	2	
578	0	16,577.36	0	среднее	1	женат / замужем	0	
16861	0	16,495.58	0	среднее	1	в разводе	3	
14659	0	16,456.22	0	среднее	1	Не женат / не замужем	4	
10188	0	15,486.05	0	среднее	1	женат / замужем	0	
21489	2	nan	47	Среднее	1	женат / замужем	0	
21495	1	nan	50	среднее	1	гражданский брак	1	
21497	0	nan	48	ВЫСШЕЕ	0	женат / замужем	0	
21502	1	nan	42	среднее	1	женат / замужем	0	
21510	2	nan	28	среднее	1	женат / замужем	0	
21525 ו	rows × 13	columns						
4								•

Вывод отсортированных по "Детству" данных показал, что есть отрицательные значения. Это в тех строках, где не указан возраст. Отберём такие строки в отдельную табличку

```
2
               3
                  data_zero_dob_years.sort_values('childhood')
               4
Out[288]:
                     children days_employed dob_years education education_id family_status family_status_id ç
                                                                                          вдовец /
              14514
                            0
                                     16,708.02
                                                        0
                                                                                  1
                                                                                                                  2
                                                             среднее
                                                                                            вдова
                                                                                           женат /
                578
                            0
                                     16,577.36
                                                        0
                                                             среднее
                                                                                  1
                                                                                                                  0
                                                                                         замужем
              16861
                            0
                                     16,495.58
                                                                                  1
                                                                                                                  3
                                                        0
                                                             среднее
                                                                                        в разводе
                                                                                     Не женат / не
              14659
                                     16,456.22
                            0
                                                        0
                                                             среднее
                                                                                         замужем
                                                                                           женат /
              10188
                            0
                                     15,486.05
                                                        0
                                                             среднее
                                                                                  1
                                                                                                                  0
                                                                                         замужем
               6670
                            0
                                                        0
                                                             Высшее
                                                                                  0
                                                                                        в разводе
                                                                                                                 3
                                          nan
                                                                                           женат /
                            0
               8574
                                                        0
                                                                                  1
                                                                                                                  0
                                          nan
                                                             среднее
                                                                                         замужем
                                                                                           женат /
              12403
                            3
                                                        0
                                                             среднее
                                                                                  1
                                                                                                                  0
                                          nan
                                                                                         замужем
                                                                                      гражданский
              13741
                            0
                                          nan
                                                        0
                                                             среднее
                                                                                  1
                                                                                                                  1
                                                                                             брак
                                                                                           женат /
              19829
                            0
                                          nan
                                                        0
                                                             среднее
                                                                                  1
                                                                                                                  0
                                                                                         замужем
             101 rows × 13 columns
```

data_zero_dob_years = data.loc[data.loc[:,'dob_years'] == 0]

In [288]:

Что здесь получается? Похоже, что в основном это происходит с пенсионерами и тему, у кого нет данных в колонках возвраста и/или стажа

5.3.7 Посмотрим графическое представление по трудовому стажу

Распределение значений по трудовому стажу от возраста.

гипотеза строки со значениями days_employed меньше 2500 удалить

5.4 Несущественно для этого исследования

Ходил в курилку, там повстречал заказчиков исследования. Они и говорят:

- слушай, бро! чё ты паришься со стажем? у тебя какое задание? стаж в нём имеет место быть?
- посмотрел ТЗ " влияет ли семейное положение и количество детей"
- • блин. так ведь действительно, вроде не существенно.
- ладно. в порядок данные привёл, и хорошо. не будут смущать в процессе тзысканий

5.5 3. dob_years - возраст.

```
In [290]:
                   data['dob_years'].describe()
   Out[290]: count
                       21,525.00
               mean
                           43.29
               std
                           12.57
               min
                             0.00
               25%
                           33.00
                           42.00
               50%
               75%
                           53.00
                           75.00
               max
               Name: dob_years, dtype: float64
```

Из общих данных известно, что:

- возвраст указан в годах
- это целочисленное значение
- среднее 43 года
- есть значения "0" Значения "0" считаем ПРОПУСКОМ данных

```
data[data['dob_years'] == 0].count()
In [291]:
   Out[291]: children
                                   101
              days_employed
                                    91
              dob_years
                                   101
              education
                                   101
              education_id
                                   101
              family_status
                                   101
              family_status_id
                                   101
              gender
                                   101
              income_type
                                   101
              debt
                                   101
                                    91
              total_income
              purpose
                                   101
              childhood
                                    91
              dtype: int64
```

Таких "пропусков" 101 строка, что составляет меньше одного процента от всех данных.

гипотеза Этими строками можно пренебречь, однако! В ТЗ нет прямой отсылки к возрасту. На этом этапе ничего не делаем.

Замечательное распределение данных по возрасту. Смело считаем значения меньше 10 лет - пропусками дангных. Принеобходимости можно заменить на NaN

5.6 4. education - образование.

Из общих справочных данных, по колонке Образование, следующие сведения:

- это строковое значение
- нет пропусков строк
- вероятно присутствие неявных дубликатов

Проверяю неявные дубликаты выводом уникальных значений

```
In [293]: № 1 data['education'].unique()

Out[293]: array(['высшее', 'среднее', 'Среднее', 'Высшее', 'неоконченное высшее', 'начальное', 'Высшее', 'НЕОКОНЧЕННОЕ ВЫСШЕЕ', 'Неоконченное высшее', 'НАЧАЛЬНОЕ', 'Начальное', 'Ученая степень', 'УЧЕНАЯ СТЕПЕНЬ', 'ученая степень'], dtype=object)
```

Для удобного восприятия выведу отсортированный список в вертикальном расположении.

```
In [294]:
                  sorted(data['education'].unique())
   Out[294]: ['BыСШЕЕ',
                'Высшее',
                'НАЧАЛЬНОЕ',
                'НЕОКОНЧЕННОЕ ВЫСШЕЕ',
                'Начальное',
                'Неоконченное высшее',
                'CPEДНЕЕ',
                'Среднее',
                'УЧЕНАЯ СТЕПЕНЬ',
                'Ученая степень',
                'высшее',
                'начальное',
                'неоконченное высшее',
                'среднее',
                'ученая степень']
```

Здесь видны неявные дубликаты

- высшее ВЫСШЕЕ, Высшее
- начальное НАЧАЛЬНОЕ, Начальное
- неоконченное высшее НЕОКОНЧЕННОЕ ВЫСШЕЕ, Неоконченное высшее
- среднее СРЕДНЕЕ, Среднее
- ученая степень УЧЕНАЯ СТЕПЕНЬ, Ученая степень

Эти дубликаты поменяю на аналоги, написанные в нижнем регистре Попробую применить метод перевода в нижний регистр всех значений

5.6.1 Успех!

Посмотрим распределение уровня образования среди клиентов

```
In [296]: # data.plot(x='education', y='children', kind='bar')
2 # nodcчитываю количество строковых значений
3 unique_edu = sorted(data['education'].unique())
4 unique_edu

Out[296]: ['высшее', 'начальное', 'неоконченное высшее', 'среднее', 'ученая степень']
```


реднее

неоконченное высшее

```
In [298]: № 1 data['education'].sort_values().value_counts()

Out[298]: среднее 15233
высшее 5260
неоконченное высшее 744
начальное 282
ученая степень 6
Name: education, dtype: int64
```

ученая степень

начальное

Эта информация в ТЗ не требуется. Но интересно же!

5.7 5. education_id - идентификатор уровня образования.

Задачи: Проверить, сколько уникальных значений Как они соотносятся со строковыми значениями уровня образования В случае ошибок - исправить

Прекрасно! Количество значений _id совпадает с количеством категорий в строковым формате Теперь хочу проверить соответствие строковых и численных категорий. Нет ли ошибок...

Out[300]: высшее 5260 Name: education, dtype: int64

```
2 id_0['education'].sort_values().value_counts()

Out[301]: среднее 15233
Name: education, dtype: int64

In [302]: M 1 id_0 = data.loc[data.loc[:, 'education_id'] == 2]
2 id_0['education'].sort_values().value_counts()

Out[302]: неоконченное высшее 744
Name: education, dtype: int64

In [303]: M 1 id_0 = data.loc[data.loc[:, 'education_id'] == 3]
2 id_0['education'].sort_values().value_counts()

Out[303]: начальное 282
Name: education, dtype: int64
```

1 | id_0 = data.loc[data.loc[:, 'education_id'] == 1]

5.7.1 Прекрасно!

Out[304]:

In [301]:

Каждая числовая категория іd соответствует одному значению строковой категории

5.8 Можно сделать словарь категория уровня образования

Из основной таблицы data убираем колонку education И Создаём табличку 'education_dict' с колонками education id и education

```
In [304]: № 1 # новая табличка
2 education_dict = data[['education_id', 'education']]
3 education_dict
```

	education_id	education
0	0	высшее
1	1	среднее
2	1	среднее
3	1	среднее
4	1	среднее
21520	1	среднее
21521	1	среднее
21522	1	среднее
21523	1	среднее
21524	1	среднее

21525 rows × 2 columns

In [305]:	H	2	# убираем дубликаты в словаре education_dict = education_dict.drop_duplicates().reset_index(drop=True) education_dict
-----------	---	---	---

Out[305]:		education_id	education
	0	0	высшее
	1	1	среднее
	2	2	неоконченное высшее
	3	3	начальное
	4	4	ученая степень

Словарь education_dict готов!

Убираю лишнюю колонку из data

Tn [206].	N	1	<pre>del data['education']</pre>
ווו [סמכ].		т.	der data[education]
		2	data
		_	data

		ac								
ut[306]:			children	days_employed	dob_years	education_id	family_status	family_status_id	gender	inco
		0	1	351.57	42	0	женат / замужем	0	F	(
		1	1	167.70	36	1	женат / замужем	0	F	(
		2	0	234.31	33	1	женат / замужем	0	М	(
		3	3	171.86	32	1	женат / замужем	0	М	(
		4	0	14,177.75	53	1	гражданский брак	1	F	П
	215	20	1	188.72	43	1	гражданский брак	1	F	Κι
	215	21	0	14,330.73	67	1	женат / замужем	0	F	п
	215	22	1	88.06	38	1	гражданский брак	1	M	(
	215	23	3	129.69	38	1	женат / замужем	0	М	(
	215	24	2	82.69	40	1	женат / замужем	0	F	(
	2152	25 r	ows × 12	columns						
	4									•

5.9 6. family_status - семейное положение.

5.9.1 Из общей справки по данным

• строковое значение

• пропусков нет

5.9.2 Получаю список уникальных значений

5.9.3 Прекрасные новости!

Всего встречается 5 значений Неявных дубликатов нет

5.9.4 Можно переходить к следущей колонке

5.10 7. family_status_id - идентификатор семейного положения.

5.10.1 Из общей справки по данным

- целочисленный идентификатор семейного положения. можно сделать словарь
- пропусков нет

5.10.2 Посмотрим данные в отсортированном виде

5.10.3 Распределение значений

0.0

21525 rows × 2 columns

1.0

0.5

1.5

2.0

5.11 Для удобства оперирования данными, можно вывести колонку family_status в отдельный словарь

2.5

3.0

3.5

4.0

Из основной таблицы data убираем колонку family_status И Создаём табличку 'family_status_dict' с колонками family_status_id и family_status

```
In [311]:  

# Hoβaя maбличкa
2 family_status_dict = data[['family_status_id', 'family_status']]
3 family_status_dict
```

	3	family_status_di	ict
Out[311]:		family_status_id	family_status
		0 0	женат / замужем
		1 0	женат / замужем
		2 0	женат / замужем
		3 0	женат / замужем
		4 1	гражданский брак
	2152	1	гражданский брак
	2152	0	женат / замужем
	2152	1	гражданский брак
	2152	0	женат / замужем
	2152	0	женат / замужем

In [312]:	K	2	# убираем дубликаты в словаре family_status_dict.drop_duplicates().reset_index(drop=True family_status_dict
-----------	---	---	---

Out[312]:		family_status_id	family_status
	0	0	женат / замужем
	1	1	гражданский брак
	2	2	вдовец / вдова
	3	3	в разводе
	4	4	Не женат / не замужем

Словарь family_status_dict готов!

Убираю лишнюю колонку из data

In [313]: 🔰	1 2	<pre>del data['family_status'] data</pre>
-------------	--------	---

	2	data							
Out[313]:		children	days_employed	dob_years	education_id	family_status_id	gender	income_type	debt
		0 1	351.57	42	0	0	F	сотрудник	С
		1 1	167.70	36	1	0	F	сотрудник	С
		2 0	234.31	33	1	0	М	сотрудник	С
		3 3	171.86	32	1	0	М	сотрудник	С
		4 0	14,177.75	53	1	1	F	пенсионер	С
	215	20 1	188.72	43	1	1	F	компаньон	С
	215	21 0	14,330.73	67	1	0	F	пенсионер	С
	215	22 1	88.06	38	1	1	М	сотрудник	1
	2152	23 3	129.69	38	1	0	М	сотрудник	1
	215	24 2	82.69	40	1	0	F	сотрудник	С
	2152	25 rows × 11	columns						
	4								•

5.12 8. gender - пол

5.12.1 Из общей справки по данным

- текстовый формат
- пропусков нет

5.12.2 Смотрим уникальные значения

```
In [314]:
                   data['gender'].sort_values().value_counts()
   Out[314]: F
                      14236
                       7288
               XNA
               Name: gender, dtype: int64
           Женщины, женщины... Всё то они крутятся, вертятся... И ещё странная ХНА Пойду, проверю
           ЙЦУКЕН
            • проверка на ЙЦУКЕН не дала вменяемого результата Посмотрю всю строку с этим значением
In [315]:
                   print(data.loc[data.loc[:,'gender'] == 'XNA'])
                      children days_employed dob_years
                                                           education_id family_status_id
               10701
                                               total_income
                     gender income_type debt
                                                                                       childhood
                                                                              purpose
                                                   203,905.16 покупка недвижимости
               10701
                        XNA
                               компаньон
                                                                                           23.73
           Я предложил заказчику удалить эту единственную странную строку. Заказчик согласился.
In [316]:
                   data = data.loc[data['gender'] != 'XNA']
                2
                3
                   #data.drop(data[data['gender'] == 'XNA'].index, inplace=True)
In [317]:
                   # контроль
                1
                2
                   data.reset_index(inplace=True)
                   data['gender'].sort_values().value_counts()
   Out[317]: F
                    14236
                     7288
               Name: gender, dtype: int64
In [318]:
                   data[10700:10703]
   Out[318]:
                      index children days_employed dob_years education_id family_status_id gender income_tyr
                     10700
                10700
                                  1
                                             21.37
                                                         37
                                                                      0
                                                                                     0
                                                                                                 компаньс
                10701 10702
                                  0
                                          16,191.93
                                                         60
                                                                      1
                                                                                                 пенсионє
                10702 10703
                                  0
                                            150.83
                                                         35
                                                                      1
                                                                                     0
                                                                                            F
                                                                                                  сотрудні
  In [ ]:
                1
```

5.13 Успешно удалена странная строка из dataframe

5.14 9. income_type - тип занятости

5.14.1 Из общей справки по данным

• текстовый формат

5.14.2 Смотрим уникальные значения

```
In [319]:
                 data['income_type'].sort_values().value_counts()
   Out[319]: сотрудник
                                 11119
                                 5084
              компаньон
                                  3856
              пенсионер
              госслужащий
                                  1459
              безработный
                                     2
                                     2
              предприниматель
                                     1
              студент
                                     1
              в декрете
              Name: income_type, dtype: int64
```

5.14.2.1 у нас получается "карманный банк" для своих, для сотрудников и компаньонов ?

нет. наверно всё-таки здесь ошибка в терминах

5.14.3 Прекрасная колонка! Ничего не надо делать)))

5.15 10. debt - имел ли задолженность по возврату.

5.15.1 Из общей справки по данным

- текстовое
- пропусков нет

5.15.2 Смотрим уникальные значения

5.15.3 Вот, какие замечательные клиенты у банка!

Задолженности имели лишь...

```
In [321]:  print((1741/19783)*100, '%')

8.800485265126625 %
```

Много это или мало? Спрошу у бизнеса...

5.16 11. total_income - ежемесячный доход - численное

5.16.1 Из общей справки по данным

- вещественное
- есть пропуски. столько же ,сколько пропуков в колнке со стажем
- отрицательные значения отсутствуют

5.16.2 Смотрим в сортированном виде

```
In [322]:
                   data['total_income'].sort_values()
   Out[322]:
              14584
                       20,667.26
               13005
                       21,205.28
               16173
                       21,367.65
               1598
                       21,695.10
               14275
                       21,895.61
               21488
                              nan
               21494
                              nan
               21496
                              nan
               21501
                              nan
               21509
                              nan
               Name: total_income, Length: 21524, dtype: float64
```

5.16.3 Распределение возраст/доход

5.16.4 Распределение стаж / доход

Есть клиенты без указания стажа с высоким уровнем дохода. Интересно посмотреть их тип занятости...

5.16.5 Соотношение образования и уровня дохода

- высшее
- среднее
- неоконченное высшее
- начальное
- ученая степень

Парадокс - обладатели учёной степени заявляют самый низкий уровень дохода!

5.16.6 Соотношение семейного статуса и уровня дохода

- женат / замужем
- гражданский брак
- вдовец / вдова
- в разводе
- Не женат / не замужем

Интересная и совсем не однозначная картина.

5.16.7 Соотношение наличие задолженности и уровень дохода

- нет задолженности
- есть задолженность

С более высоким уровнем дохода - меньше задолженностей.

5.17 Начну восполнять пробелы в данных о доходах

На уровень дохода могут влиять * стаж * возраст * образование * пол * тип занятости

В данных о стаже у неас пропуски в тех же строках, что и данных о доходе. Так что этот параметр в расчет точно не берём.

Пол. Ну... Во-первых, у нас среди клиентов преобладание женщин. Во-вторых, в нашей стране уже значительно снизилась зависисимость заработка от пола "в среднем по больнице". Так что этот параметр тоже пока отложим.

В сухом остатке - возраст - образование - тип занятости

Данные по образованию и типу занятости являются прямыми категориями. Но возраст - это набор цифр. Для анализа медианного значения дохода следует этот показатель свести к категориям.

По исследованию данных в первой части работы:

- медиана = 43 года
- минимум ~ 18 лет

Исследуем пропуски (згачение "0") в возрасте

```
# табличка с возрастом "0"
In [328]:
              2 dob_years_0 = data[data['dob_years'] == 0]
              3 dob_years_0.info()
             <class 'pandas.core.frame.DataFrame'>
             Int64Index: 101 entries, 99 to 21312
             Data columns (total 12 columns):
                 Column
             #
                                  Non-Null Count Dtype
             --- -----
                                  -----
             0
                index
                                                 int64
                                  101 non-null
                                  101 non-null
              1
                children
                                                 int64
              2 days_employed 91 non-null
                                                 float64
              3
                dob_years
                                 101 non-null
                                                 int64
                 education_id 101 non-null
              4
                                                 int64
                 family_status_id 101 non-null
              5
                                                 int64
              6
                 gender
                                101 non-null
                                                 object
              7
                 income_type
                                  101 non-null
                                                 object
              8
                 debt
                                  101 non-null
                                                 int64
              9
                 total_income
                                  91 non-null
                                                 float64
              10 purpose
                                  101 non-null
                                                 object
              11 childhood
                                  91 non-null
                                                 float64
             dtypes: float64(3), int64(6), object(3)
             memory usage: 10.3+ KB
```

In [329]:

dob years 0.describe()

Out[329]:

	index	children	days_employed	dob_years	education_id	family_status_id	debt	total_inc
count	101.00	101.00	91.00	101.00	101.00	101.00	101.00	ξ
mean	10,300.77	0.50	2,896.50	0.00	0.67	1.24	0.08	158,33
std	5,826.99	0.81	5,900.53	0.00	0.51	1.52	0.27	74,38
min	99.00	0.00	4.54	0.00	0.00	0.00	0.00	34,97
25%	6,407.00	0.00	40.29	0.00	0.00	0.00	0.00	99,58
50%	10,545.00	0.00	73.29	0.00	1.00	1.00	0.00	152,41
75%	14,608.00	1.00	209.25	0.00	1.00	3.00	0.00	212,54
max	21,313.00	3.00	16,708.02	0.00	2.00	4.00	1.00	386,37
4								•

Что ж... всё очень похоже на случайное значение "0" в данных по возрасту.

Заполню медианными значениями по группам

Сначала заменю "0" на np.NaN

```
In [331]:
                    # проверка
                  2
                    data.info()
               <class 'pandas.core.frame.DataFrame'>
               RangeIndex: 21524 entries, 0 to 21523
               Data columns (total 12 columns):
                     Column
                                         Non-Null Count
                                                           Dtype
                 0
                     index
                                         21524 non-null
                                                           int64
                 1
                     children
                                         21524 non-null
                                                           int64
                 2
                     days_employed
                                         19350 non-null
                                                           float64
                 3
                     dob_years
                                         21423 non-null
                                                           float64
                 4
                                         21524 non-null
                                                           int64
                     education_id
                 5
                     family_status_id 21524 non-null
                                                           int64
                 6
                     gender
                                         21524 non-null
                                                           object
                 7
                                         21524 non-null
                     income type
                                                           object
                 8
                     debt
                                         21524 non-null
                                                           int64
                 9
                                         19350 non-null
                                                           float64
                     total_income
                 10
                     purpose
                                         21524 non-null
                                                           object
                     childhood
                                         19350 non-null
                                                           float64
               dtypes: float64(4), int64(5), object(3)
               memory usage: 2.0+ MB
In [332]:
                    data.sort_values(['dob_years'])
    Out[332]:
                        index
                              children days_employed dob_years education_id family_status_id gender income_tyr
                 1981
                        1981
                                    0
                                               30.19
                                                          19.00
                                                                          1
                                                                                                  F
                                                                                                       компаньс
                 15658
                       15659
                                                39.51
                                                          19.00
                                                                                                       компаньс
                 13020
                       13021
                                    0
                                               29.00
                                                          19.00
                                                                          2
                                                                                          4
                                                                                                  F
                                                                                                       компаньс
                 10235
                       10235
                                    0
                                                                          1
                                                                                          0
                                                                                                  F
                                               33.06
                                                          19.00
                                                                                                       сотрудні
                 9218
                        9218
                                    0
                                                          19.00
                                                                                                  F
                                                13.42
                                                                          1
                                                                                          1
                                                                                                       компаньс
                 19828
                       19829
                                    0
                                                                          1
                                                                                          0
                                                                                                  F
                                                 nan
                                                            nan
                                                                                                       сотрудні
                20461
                       20462
                                            14,113.95
                                                            nan
                                                                                                       пенсионе
                 20576 20577
                                    0
                                            13,822.55
                                                            nan
                                                                                                       пенсионє
                 21178
                      21179
                                    2
                                                4.54
                                                                          0
                                                                                          0
                                                            nan
                                                                                                 М
                                                                                                       компаньс
                21312 21313
                                               52.85
                                    0
                                                                          1
                                                                                                 Μ
                                                            nan
                                                                                                       сотрудні
               21524 rows × 12 columns
           И меняем NaN на медианные значения по группам
```

data['dob_years'] = data.loc[:, 'dob_years'].fillna(data.groupby('family_status)

In [330]:

In [333]:

import numpy as np

data['dob_years'].replace(0, np.NaN, inplace = True)

```
<class 'pandas.core.frame.DataFrame'>
            RangeIndex: 21524 entries, 0 to 21523
            Data columns (total 12 columns):
                 Column
                                      Non-Null Count
                                                        Dtype
             0
                 index
                                      21524 non-null
                                                        int64
             1
                 children
                                      21524 non-null
                                                        int64
             2
                 days_employed
                                      19350 non-null
                                                        float64
             3
                 dob_years
                                      21524 non-null
                                                        float64
                                                        int64
             4
                 education_id
                                      21524 non-null
                 family_status_id 21524 non-null
             5
                                                        int64
             6
                 gender
                                      21524 non-null
                                                        object
             7
                 income_type
                                      21524 non-null
                                                        object
             8
                 debt
                                      21524 non-null
                                                        int64
             9
                                      19350 non-null
                                                        float64
                 total_income
             10
                 purpose
                                      21524 non-null
                                                        object
                 childhood
                                      19350 non-null
                                                        float64
            dtypes: float64(4), int64(5), object(3)
            memory usage: 2.0+ MB
                 data.sort_values(['dob_years'])
Out[335]:
                    index
                          children days_employed dob_years education_id family_status_id gender income_tyr
              5563
                    5563
                                0
                                                       19.00
                                                                       2
                                                                                       4
                                            36.89
                                                                                              Μ
                                                                                                    сотрудні
              4098
                    4098
                                             4.66
                                                       19.00
                                                                       1
                                                                                              M
                                                                                                   компаньс
             12046
                   12047
                                0
                                            42.51
                                                       19.00
                                                                       1
                                                                                                    сотрудні
             2725
                    2725
                                                       19.00
                                             4.83
                                                                       1
                                                                                                   компаньс
             10235
                   10235
                                0
                                            33.06
                                                       19.00
                                                                       1
                                                                                      0
                                                                                                    сотрудні
             11531
                   11532
                                0
                                           278.45
                                                      74.00
                                                                       1
                                                                                              F
                                                                                                    сотрудні
              2557
                    2557
                                        15,535.88
                                                      74.00
                                                                                              F
                                n
                                                                       1
                                                                                      0
                                                                                                   пенсионє
              3460
                    3460
                                        14,359.33
                                                      74.00
                                                                                              M
                                                                                                   пенсионе
              4895
                    4895
                                0
                                        14,230.34
                                                      74.00
                                                                       0
                                                                                       0
                                                                                                   пенсионє
              8880
                    8880
                                0
                                            69.96
                                                      75.00
                                                                       1
                                                                                       2
                                                                                                 госслужащи
            21524 rows × 12 columns
```

5.18 Заполняем пропуски дохода

```
In [336]:
                  data['total_income'] = data['total_income'].fillna(data.groupby(['income_type',
```

In [334]:

In [335]:

data.info()

5.18.1 Вот что получилось

5.18.2 Распределение возраст/доход

Стало

5.19 12. purpose - цель получения кредита

5.19.1 Из общей справки по данным

- текстовое
- пропусков нет

5.19.2 Смотрим уникальные значения

		- `
Out[338]:	свадьба	797
	на проведение свадьбы	777
	сыграть свадьбу	774
	операции с недвижимостью	676
	покупка коммерческой недвижимости	664
	покупка жилья для сдачи	653
	операции с жильем	653
	операции с коммерческой недвижимостью	651
	жилье	647
	покупка жилья	647
	покупка жилья для семьи	641
	строительство собственной недвижимости	635
	недвижимость	634
	операции со своей недвижимостью	630
	строительство жилой недвижимости	626
	покупка недвижимости	623
	строительство недвижимости	620
	покупка своего жилья	620
	ремонт жилью	612
	покупка жилой недвижимости	607
	на покупку своего автомобиля	505
	заняться высшим образованием	496
	автомобиль	495
	сделка с подержанным автомобилем	489
	свой автомобиль	480
	на покупку подержанного автомобиля	479
	автомобили	478
	на покупку автомобиля	472
	дополнительное образование	462
	приобретение автомобиля	462
	сделка с автомобилем	455
	высшее образование	453
	получение дополнительного образования	447
	образование	447
	получение образования	443
	профильное образование	436
	получение высшего образования	426
	заняться образованием	412

Видим множество неявных дубликатов

Name: purpose, dtype: int64

5.19.3 Создам список уникальных значений

```
purpose unique
Out[339]: array(['покупка жилья', 'приобретение автомобиля',
                   'дополнительное образование', 'сыграть свадьбу',
                   'операции с жильем', 'образование', 'на проведение свадьбы',
                   'покупка жилья для семьи', 'покупка недвижимости',
                   'покупка коммерческой недвижимости', 'покупка жилой недвижимости',
                   'строительство собственной недвижимости', 'недвижимость',
                   'строительство недвижимости', 'на покупку подержанного автомобиля',
                   'на покупку своего автомобиля',
                   'операции с коммерческой недвижимостью',
                   'строительство жилой недвижимости', 'жилье',
                   'операции со своей недвижимостью', 'автомобили',
                   'заняться образованием', 'сделка с подержанным автомобилем', 'получение образования', 'автомобиль', 'свадьба',
                   'получение дополнительного образования', 'покупка своего жилья',
                   'операции с недвижимостью', 'получение высшего образования',
                   'свой автомобиль', 'сделка с автомобилем',
                   'профильное образование', 'высшее образование',
                   'покупка жилья для сдачи', 'на покупку автомобиля', 'ремонт жилью',
                   'заняться высшим образованием'], dtype=object)
```

purpose_unique = data['purpose'].unique()

Предварительное знакомство с данными показало то, что кое-что в них было не так.

6 children

In [339]:

6.1 отрицательные значения

исправлено

6.2 гигантское количество

убран "0" в числе

7 days_employed

7.1 странные числа

методом сортировки вывлено минимальное количество, очень похожее на количество часов в сутках значения заменены делением на 24

7.2 отрицательные значения

отрицательные значения заменены на положительные

7.3 пропущенные значения

пока оставлено без изменений

Безвозрастные умудрились наработать трудовой стаж. Но мы уже избавились от безвозрастных - наградили их жизнью

8 dob_years

8.1 пропущенные значения

пока оставлено без изменений

Безвозрастных мало, а основная возрастная группа - 30 - 50 лет.

9 education

только странно, что клиенты с учёной степенью имеют малый доход

9.1 неявные дубликаты

из-за применения разного регистра исправлено

9.2 по сути, дублируется колонкой education_id

столбец удалён сформирован словарь с education_id

10 education_id

всё хорошо сформирован словарь для education

11 family_status и family_status_id

сформирован словарь излишний столбец family_status удалён

12 gender

12.1 Успешно удалена странная строка из dataframe

13 income_type

всё прекрасно

```
data['income_type'].sort_values().value_counts()
In [344]:
   Out[344]: сотрудник
                                  11119
              компаньон
                                   5084
                                   3856
              пенсионер
                                   1459
              госслужащий
              безработный
                                      2
                                      2
              предприниматель
                                      1
              студент
                                      1
              в декрете
              Name: income_type, dtype: int64
```

14 debt

данные в отличном состоянии

Вот, какие замечательные клиенты у банка!

15 total_income

15.1 есть незначительное (~10%) количество пропусков

пока что пропуски оставил как есть

Распределение возраст/доход

16 purpose

нет пропусков есть неявные дубликаты

17 Шаг 2. Предобработка данных

18 Обработка пропусков

Для обработки пропусков, обратим внимание на вопросы, поставленные в качестве целей исследования.

Это

- Есть ли зависимость между наличием детей и возвратом кредита в срок?
- Есть ли зависимость между семейным положением и возвратом кредита в срок?
- Есть ли зависимость между уровнем дохода и возвратом кредита в срок?
- Как разные цели кредита влияют на его возврат в срок?

Прорабатываем пропуски последовательно.

18.1 ...детей ...

18.1.1 есть ли пропуски в детях?

из первого раздела известно, что данных о количестве детей, пропусков нет. а со странными значениями уже справились

18.2 ...семейное положение ...

18.2.1 есть ли пропуски в данных о семейном положении?

из первого раздела известно, что таких пропусков нет. а со странными значениями уже справились

18.3 ...уровень дохода ...

18.3.1 есть ли пропуски в данных об уровне дохода?

из первого раздела известно, что такие пропуски есть. посмотрим на них более пристально

2 строк пропуском значений

ДВЕ строки можно удалить без последствий для результатов анализа

```
In [350]:
                     income_nan = data.loc[data['total_income'].isna()]
                  2
                     income_nan
    Out[350]:
                        index
                              children days_employed dob_years education_id family_status_id gender
                                                                                                           income
                  5936
                         5936
                                    0
                                                           58.00
                                                  nan
                                                                                            0
                                                                                                      предприним
                 12406 12407
                                    0
                                                           57.00
                                                                            2
                                                                                            3
                                                  nan
                                                                                                             пенс
```

Из принта видно, что Nan одновременно встречается в колонках days_employed и total_income (и вычесленном childhood) всего 2 строки

Для предпринимателя и пенсионера не нашлось похожих)))

В отсортированном принте отсутсвуют False. Это значит то, что во всех строках NaN для total_income также NaN и в days employed

Посмотрим, как распределяются строки NaN в разрезе других колонок

```
In [352]:
                    # количество детей
                 1
                    income_nan['children'].value_counts()
    Out[352]: 0
               Name: children, dtype: int64
In [353]:
                    # возраст
                    income_nan['dob_years'].plot(kind='hist');
                  1.0
                  0.8
                  0.6
                  0.4
                  0.2
                  0.0
                               57.2
                      57.0
                                        57.4
                                                 57.6
                                                          57.8
                                                                  58.0
In [354]:
                 1
                    # тип занятости
                 2
                 3
                    income_nan['income_type'].value_counts()
```

Никаких аномалий не выявлено. Распределение примерно похоже на общее распределение данных по остальным показателям среди общей массы.

Для ответа на поставленный перед исследованием вопрос

1

Name: income_type, dtype: int64

Out[354]: пенсионер

предприниматель

• Есть ли зависимость между уровнем дохода и возвратом кредита в срок? строки с пропущенными значениями в колонке total_income исключаем из анализа, принимая к сведению несущественное (ДВЕ) их количество. Имеем в виду, что одновременно в такой выборке данных также будут отсутвовать пропуски в колонке days_employed

(после создания колонки категорий целей кредитования)

18.4 ...цель получения кредита ...

18.4.1 есть ли пропуски в данных о целях получения кредита?

из первого раздела известно, что таких пропусков нет. также составлен словарь, в котором выделены категории целей

Вывод

Данные подготовлены для работы.

Для ответа на вопросы

- Есть ли зависимость между наличием детей и возвратом кредита в срок?
- Есть ли зависимость между семейным положением и возвратом кредита в срок?
- Как разные цели кредита влияют на его возврат в срок? исследуем данные в data

Для ответа на вопрос

• Есть ли зависимость между уровнем дохода и возвратом кредита в срок? исследуем data_not_na

18.5 Замена типа данных

Вывод

для ответа на поставленные вопросы ти пы данных менять не надо. для обработки целей кредитлования воспользуемся лемматизацией ниже

18.6 Обработка дубликатов

Есть ли явные дубликаты в данных?

```
In [355]: № 1 print('Количество явных дубликатов:', data.duplicated().sum())
```

Количество явных дубликатов: 0

Вывод

19 ! Явных дубликатов нет!

Неявные дубликаты обработаны ранее

19.1 Лемматизация

```
In [356]:
                2 from pymystem3 import Mystem
                3 m = Mystem()
                4
                5 # проведём лемматизацию уникальных значений колонки purpose
                6 # соберём уникальные значения purpose
                7 purpose_unique = data['purpose'].unique()
                8 purpose_unique
                9
   Out[356]: array(['покупка жилья', 'приобретение автомобиля',
                       'дополнительное образование', 'сыграть свадьбу',
                      'операции с жильем', 'образование', 'на проведение свадьбы',
                      'покупка жилья для семьи', 'покупка недвижимости',
                      'покупка коммерческой недвижимости', 'покупка жилой недвижимости',
                      'строительство собственной недвижимости', 'недвижимость',
                      'строительство недвижимости', 'на покупку подержанного автомобиля',
                      'на покупку своего автомобиля',
                      'операции с коммерческой недвижимостью',
                      'строительство жилой недвижимости', 'жилье',
                      'операции со своей недвижимостью', 'автомобили',
                      'заняться образованием', 'сделка с подержанным автомобилем',
                      'получение образования', 'автомобиль', 'свадьба',
                      'получение дополнительного образования', 'покупка своего жилья',
                      'операции с недвижимостью', 'получение высшего образования',
                      'свой автомобиль', 'сделка с автомобилем',
                      'профильное образование', 'высшее образование', 'покупка жилья для сдачи', 'на покупку автомобиля', 'ремонт жилью',
```

'заняться высшим образованием'], dtype=object)

38 уникальных значений для лемматизации

```
In [357]:
                            lemmas_series = []
                        2
                            for i in range(len(purpose_unique)):
                        3
                        4
                                   lemmas = m.lemmatize(purpose_unique[i])
                        5
                                   lemmas_series.append([lemmas])
                                   # print(lemmas)
                        6
                        7
                           print(lemmas_series)
                     ть', '\n']], [['недвижимость', '\n']], [['строительство', ' ', 'недвижимость', '\n']], [['на', ' ', 'покупка', ' ', 'подержать', ' ', 'автомобиль', '\n']], [['на', ' ', 'свой', ' ', 'автомобиль', '\n']], [['операция', ' ', 'с', ' ', 'коммерческий', ' ', 'недвижимость', '\n']], [['строительство', ' ', 'жилой', ' ', 'недвижимость', '\n']], [['операция', ' ', 'со', '
                      ', 'свой', ' ', 'недвижимость', '\n']], [['автомобиль', '\n']], [['заниматься', '
                     ', 'образование', '\n']], [['сделка', ' ', 'с', ' ', 'подержанный', ' ', 'автомобиль', '\n']], [['получение', ' ', 'образование', '\n']], [['автомобиль', '\n']],
                     ль , \п ]], [[ получение , , ооразование , \n ]], [[ автомобиль , '\n']], [[ свадьба', '\n']], [[ получение', ' , 'дополнительный', ' ', 'образование', '\n']], [[ покупка', ' ', 'свой', ' ', 'жилье', '\n']], [[ операция', ' ', 'с', ' ', 'недвижимость', '\n']], [[ получение', ' , 'высокий', ' ', 'образование', '\n']], [[ свой', ' ', 'автомобиль', '\n']], [[ сделка', ' ', 'с', ' ', 'автомобиль', '\n']], [[ профильный', ' ', 'образование', '\n']], [[ высокий', ' ', 'образование', '\n']], [[ на', ' ', 'покупка', ' ', 'автомобиль', '\n']], [[ ремонт', ' ', 'жилье', '\n']], [[ заниматься', ' ', 'высокий', ' ', 'образование', '\n']],
                     [['заниматься', ' ', 'высокий', ' ', 'образование', '\n']]]
                19.2 Сделаем отбор в отдельные таблицы строк из data, в которых в
                purpose встречаются ключевые слова
In [358]:
                        1 # готовлю таблички для наполнения данными
                        2 data_1 = data # скопировал стркутуру и данные
                        3 # удаляю все строки
                            data_1 = data_1.loc[data_1['children'] < 0] # заведомо значение False
                            data_1
     Out[358]:
                         index children days_employed dob_years education_id family_status_id gender income_type de
In [359]:
                            # дублирую dataframe без строк в заготовки для группировки по ключевым словам
                            auto = data_1 # автомобиль
                        3
                            education = data_1 # образование
                            wedding = data_1 # свадьба
                            commercial_real_estate = data_1 # коммерческая недвижимость
                            real_estate_renovation = data_1 # ремонт жилья
                            real_estate = data_1 # недвижимость (частная)
                        7
                            no_label = data_1 # если не будет ключевых влов, включённых в отбор
In [360]: ▶
                        1 len(data)
```

Out[360]: 21524

```
In [361]: ▶
                  %%time
               1
               2
                  def create_category_purpose(row):
               3
                      lem purpose = m.lemmatize(row['purpose'])
               4
                      if 'автомобиль' in lem_purpose:
               5
                          return 'автомобиль'
                      elif 'образование' in lem_purpose:
               6
               7
                          return 'образование'
                      elif 'свадьба' in lem purpose:
               8
               9
                          return 'свадьба'
                      elif 'сдача' in lem_purpose and 'жилье' in lem_purpose:
              10
                          return 'коммерческая недвижимость'
              11
                      elif 'коммерческий' in lem_purpose and 'недвижимость' in lem_purpose:
              12
              13
                          return 'коммерческая недвижимость'
                      elif 'ремонт' in lem purpose and 'недвижимость' in lem purpose:
              14
              15
                          return 'ремонт недвижимости'
                      elif 'ремонт' in lem_purpose and 'жилье' in lem_purpose:
              16
              17
                          return 'ремонт недвижимости'
                      elif 'недвижимость' in lem purpose:
              18
                          return 'недвижимость'
              19
              20
                      elif 'жилье' in lem_purpose:
                          return 'недвижимость'
              21
              22
                      else:
                          return 'без группы'
              23
              24
              25
              26 # применяю функцию с созданием столбца purpose category
                  data['purpose_category'] = data.apply(create_category_purpose, axis=1)
              28
                  data['purpose_category'].sort_values().value_counts()
              29
              CPU times: user 922 ms, sys: 359 ms, total: 1.28 s
              Wall time: 2.62 s
   Out[361]: недвижимость
                                           8259
              автомобиль
                                           4315
              образование
                                           4022
              свадьба
                                           2348
              коммерческая недвижимость
                                         1968
              ремонт недвижимости
                                           612
```

20 Готовы отдельные срезы данных по целям запроса кредитов.

20.1 Категоризация данных

Name: purpose_category, dtype: int64

в общем объёме исходных данных есть возможность выделения категорий в : - образование, семейный статус, пол, тип занятости, цель кредитования

Трансформация текстовых значений этих колонок выгодна для дальнейшей передачи в подразделение машинного обучения.

(кроме цели кредитования)

В текущих задачах мне удобнее работать с текстовыми значениями, в которых неявные дубликаты обработаны.

Цель кредитования тоже удобно рассматривать в текстовом виде. Но сначала её про работал методами лемматизации и категоризации.

21 Шаг 3. Ответьте на вопросы

Уровень дохода.

0.0

0.5

1.0

1.5

2.0

le6

Здесь для анализа влияния этого параметра на возвратность кредита следует выделить интервальные группы. Посмотрим на расперделение по сумме за отсечением строк с отсутствующими данными. это срез данных data_not_na

• Есть ли зависимость между уровнем дохода и возвратом кредита в срок?

```
pd.options.display.float_format = '{:,.2f}'.format # установка формата вывода н
In [370]:
In [371]:
                   # сделал табличку без NaN в total_income
            H
                1
                2
                   data_not_na = data.dropna(subset=['total_income'])
                   dept_0 = data_not_na[data_not_na['debt'] == 0] # отобрал строки с возвратом кре
In [372]:
                1
                2
                3
                   dept_1 = data_not_na[data_not_na['debt'] == 1] # отобрал строки без возврата кр
                4
                   dept_0['total_income'].describe()
   Out[372]: count
                          19,781.00
                         165,762.10
               mean
                          98,154.69
               std
                          21,205.28
               min
               25%
                         107,659.93
               50%
                         143,855.21
               75%
                         197,783.26
                       2,265,604.03
               max
               Name: total_income, dtype: float64
In [373]:
                   dept_0['total_income'].plot(kind = 'hist');
                 16000
                 14000
                 12000
                 10000
                  8000
                  6000
                  4000
                  2000
```

```
In [374]:
                   dept_1['total_income'].describe()
   Out[374]: count
                           1,741.00
              mean
                         161,042.93
                          97,817.13
              std
              min
                          20,667.26
              25%
                         108,252.81
              50%
                         140,638.62
              75%
                         189,395.52
                       2,200,852.21
              max
              Name: total_income, dtype: float64
In [375]:
                   dept_1['total_income'].plot(kind = 'hist');
```


21.1 Федеральная служба государственной статистики разделяет уровень жизни россиян в зависимости от доходов на следующие категории:

```
крайняя нищета (доходы ниже прожиточного минимума — до 7-8 тыс.р.)

нищета (доходы от одного до двух прожиточных минимума — от 8 до 12 тыс.р.)

бедность (доходы от 12 до 20 тысяч рублей в месяц)

выше бедности (доходы от 20 до 30 тысяч рублей в месяц)

средний достаток — (доходы от 30 до 60 тысяч рублей в месяц)

состоятельные — (доходы от 60 до 90 тысяч рублей в месяц)

богатые — (доходы от 90 тысяч рублей в месяц)

сверхбогатые — (доходы свыше 150 тысяч рублей в месяц)

в наших исследуемых данных есть уровни дохода от "выше бедности" до "сверхбогатые"
```

```
2 total_income_20 = data_not_na[data_not_na['total_income'] > 20000]
 3 total_income_20 = total_income_20[total_income_20['total_income'] <= 30000]</pre>
 5 count = total_income_20['index'][total_income_20['debt'] == 1].count()
 6 | print('В категории выше бедности задолженность у', count, 'клиентов')
   print(round((count / total_income_20['index'].count()) * 100, 2), '% от общего
   print()
 9
10 # средний достаток
   total_income_30 = data_not_na[data_not_na['total_income'] > 30000]
   total_income_30 = total_income_30[total_income_30['total_income'] <= 60000]</pre>
13
14 | count = total_income_30['index'][total_income_30['debt'] == 1].count()
    print('В категории средний достаток задолженность у', count, 'клиентов')
    print(round((count / total_income_30['index'].count()) * 100, 2), '% от общего
17
   print()
18
19 # состоятельные
20 | total_income_60 = data_not_na[data_not_na['total_income'] > 60000]
21 total_income_60 = total_income_60[total_income_60['total_income'] <= 90000]
22
    count = total_income_60['index'][total_income_60['debt'] == 1].count()
23
    print('В категории состоятельные задолженность у', count, 'клиентов')
24
    print(round((count / total_income_60['index'].count()) * 100, 2), '% от общего
26 | print()
27
28 # богатые
   total_income_90 = data_not_na[data_not_na['total_income'] > 90000]
29
    total_income_90 = total_income_90[total_income_90['total_income'] <= 150000]</pre>
30
31
32 | count = total_income_90['index'][total_income_90['debt'] == 1].count()
33 print('В категории богатые задолженность у', count, 'клиентов')
    print(round((count / total_income_90['index'].count()) * 100, 2), '% от общего
35 | print()
36
37
   # сверхбогатые
38
    total_income_150 = data_not_na[data_not_na['total_income'] > 150000]
39
40 | count = total_income_150['index'][total_income_150['debt'] == 1].count()
    print('В категории сверхбогатые задолженность у', count, 'клиентов')
42
    print(round((count / total_income_150['index'].count()) * 100, 2), '% от общего
43
В категории выше бедности задолженность у 2 клиентов
9.09 % от общего числа клиентов этой категории
В категории средний достаток задолженность у 47 клиентов
5.99 % от общего числа клиентов этой категории
В категории состоятельные задолженность у 213 клиентов
8.38 % от общего числа клиентов этой категории
В категории богатые задолженность у 707 клиентов
8.66 % от общего числа клиентов этой категории
В категории сверхбогатые задолженность у 772 клиентов
7.71 % от общего числа клиентов этой категории
```

In [376]:

1 # выше бедности

21.2 ВЫВОД. Уровень дохода тоже влияет на возвратность кредитов

Количество детей

Те же выборки:

- dept 0
- dept_1
- Есть ли зависимость между наличием детей и возвратом кредита в срок?

```
In [377]:
                   dept_0['children'].describe()
   Out[377]:
              count
                       19,781.00
                            0.47
               mean
               std
                            0.75
               min
                            0.00
               25%
                            0.00
               50%
                            0.00
               75%
                            1.00
                            5.00
               max
              Name: children, dtype: float64
In [378]:
                   dept_1['children'].describe()
   Out[378]: count
                       1,741.00
                           0.54
               mean
               std
                           0.78
                           0.00
               min
               25%
                           0.00
               50%
                           0.00
               75%
                           1.00
                           4.00
               max
              Name: children, dtype: float64
                   dept_0['children'].value_counts() # количества категорий
In [379]:
   Out[379]: 0
                    13083
                     4420
               1
               2
                     1929
               3
                      303
               4
                       37
                        9
              Name: children, dtype: int64
In [380]:
                   dept_1['children'].value_counts() # количества категорий
   Out[380]: 0
                    1063
                     445
               1
               2
                     202
               3
                      27
               Name: children, dtype: int64
```

```
data_not_na['children'].value_counts() # количества категорий всего
In [381]:
   Out[381]: 0
                   14146
              1
                    4865
              2
                    2131
              3
                     330
              4
                      41
              5
                       9
              Name: children, dtype: int64
In [383]:
                   print('Имеют задолженности по количеству детей')
                  for i in range(len(data['children'].value_counts())):
                2
                3
                       print(round(((dept_1['index'][dept_1['children'] == i].count())
                4
                5
                          / ((dept_0['index'][dept_0['children'] == i].count())
                             + (dept_1['index'][dept_1['children'] == i].count())))
                6
                7
                          * 100, 2), '% в семье', i, 'реб.')
              Имеют задолженности по количеству детей
```

Имеют задолженности по количеству детей 7.51 % в семье 0 реб. 9.15 % в семье 1 реб. 9.48 % в семье 2 реб. 8.18 % в семье 3 реб. 9.76 % в семье 4 реб. 0.0 % в семье 5 реб.

21.3 ВЫВОД. Количество детей имеет некоторое влияние на возвратность кредитов

Самый ненадёжный сегмент - два ребенка

Надёжный сегмент - трое детей и бездетные

Пятеро детей - редкий случай и надёжный

Семейное положение

Те же выборки:

- dept 0
- dept_1
- Есть ли зависимость между семейным положением и возвратом кредита в срок?

```
dept_1['family_status_id'].value_counts() # количества категорий
   Out[385]: 0
                   931
              1
                   388
              4
                   274
              3
                    85
              2
                    63
              Name: family_status_id, dtype: int64
              А теперь возьму в долях от общего количества по каждой категории
In [386]:
                1
                2
                  print('Общее число клиентов по категориям')
                3
                4
                  data not na['family status id'].value counts()
              Общее число клиентов по категориям
   Out[386]: 0
                   12379
              1
                    4176
              4
                    2813
              3
                    1194
              2
                     960
              Name: family_status_id, dtype: int64
In [388]:
                1
                  print('Имеют задолженности по категориям')
                  print('клиенты разного семейного статуса:')
                3
                  for i in range(len(family_status_dict)):
                4
                5
                       print(round(((dept_1['index'][dept_1['family_status_id'] == i].count())
                6
                          / ((dept_0['index'][dept_0['family_status_id'] == i].count())
                7
                             + (dept_1['index'][dept_1['family_status_id'] == i].count())))
                8
                          * 100, 2), "%", family_status_dict['family_status'][i])
              Имеют задолженности по категориям
              клиенты разного семейного статуса:
              7.52 % женат / замужем
              9.29 % гражданский брак
```

Вывод

In [385]:

Семейное положение имеет значение

9.74 % Не женат / не замужем

6.56 % вдовец / вдова 7.12 % в разводе

21.4 ВЫВОД. Семейное положение имеет значение на возвратность кредитов

Самый ненадёжный сегмент - не женат / не замужем

Самый надёжный сегмент - вдовец / вдова

Разведённые и семейные - примерно рядом

Цели кредитования

Те же выборки:

- dept 0
- dept_1
- Как разные цели кредита влияют на его возврат в срок?

```
dept_0['purpose_category'].value_counts() # количества категорий
In [389]:
   Out[389]: недвижимость
                                            7662
                                            3912
              автомобиль
                                            3651
              образование
                                            2162
              свадьба
                                            1817
              коммерческая недвижимость
              ремонт недвижимости
                                             577
              Name: purpose_category, dtype: int64
                   dept_1['purpose_category'].value_counts() # количества категорий
In [390]:
   Out[390]: недвижимость
                                            596
                                            403
              автомобиль
                                            370
              образование
              свадьба
                                            186
                                            151
              коммерческая недвижимость
                                             35
              ремонт недвижимости
              Name: purpose_category, dtype: int64
In [391]:
                   print('Имеют задолженности по категориям')
                1
                2
                   print(round(((dept_1['index'][dept_1['purpose_category'] == 'недвижимость'].cou
                       ((dept_0['index'][dept_0['purpose_category'] == 'недвижимость'].count())+\
                3
                           (dept_1['index'][dept_1['purpose_category'] == 'недвижимость'].count())
                   print(round(((dept_1['index'][dept_1['purpose_category'] == 'автомобиль'].count
                5
                       ((dept_0['index'][dept_0['purpose_category'] == 'автомобиль'].count())+\
                6
                7
                           (dept_1['index'][dept_1['purpose_category'] == 'автомобиль'].count())))
                   print(round(((dept_1['index'][dept_1['purpose_category'] == 'образование'].coun'
                8
                       ((dept_0['index'][dept_0['purpose_category'] == 'образование'].count())+\
                9
                           (dept_1['index'][dept_1['purpose_category'] == 'образование'].count()))
               10
                   print(round(((dept_1['index'][dept_1['purpose_category'] == 'свадьба'].count())
               11
                       ((dept_0['index'][dept_0['purpose_category'] == 'свадьба'].count())+\
               12
                           (dept_1['index'][dept_1['purpose_category'] == 'свадьба'].count()))) *
               13
                   print(round(((dept_1['index'][dept_1['purpose_category'] == 'коммерческая недви;
               14
               15
                       ((dept_0['index'][dept_0['purpose_category'] == 'коммерческая недвижимость'
                           (dept_1['index'][dept_1['purpose_category'] == 'коммерческая недвижимос'
               16
                                * 100, 2), '% коммерческая недвижимость')
               17
                   print(round(((dept_1['index'][dept_1['purpose_category'] == 'ремонт недвижимост
               18
                       ((dept_0['index'][dept_0['purpose_category'] == 'ремонт недвижимости'].coun
               19
               20
                           (dept_1['index'][dept_1['purpose_category'] == 'ремонт недвижимости'].c
               21
                                * 100, 2), '% ремонт недвижимости')
               22
               23
                  print('от общего числа клиентов этой категории')
               24
               25
              Имеют задолженности по категориям
```

7.22 % недвижимость
9.34 % автомобиль
9.2 % образование
7.92 % свадьба
7.67 % коммерческая недвижимость
5.72 % ремонт недвижимости
от общего числа клиентов этой категории

21.5 ВЫВОД. Цель кредитования имеет значение на возвратность кредитов

Самый ненадёжный сегмент - автомобиль

Самый надёжный сегмент - недвижимость

Свадьба - тоже хорошая цель по возвратности

А вот образование лишь ненамного надёжнее, чем автомобиль

22 Шаг 4. Общий вывод

По результатам исследования можно отметить влияние на возврастность кредитов всех рассматриваемых факторов

23 Самый высокорисковый клиент:

С низким доходом, двумя детьми, с целью на автомобиль

Таких клиентов в банке 0 !!!

24 Прекрасная работа отдела продаж!

Повысим ставки. Следующая "вилка" в доходах: до 60000 р

```
In [393]:
                   print('B банке', data['index'][(data['total_income'] <= 60000) & (data['childre</pre>
                2
                        & (data['purpose_category'] == 'автомобиль')].count()
                3
                   , "таких клиентов, а с проблемой по возврату из них -", data['index'][(data['de
                        & (data['total income'] <= 60000) & (data['children'] == 2) & \
                4
                           (data['purpose_category'] == 'автомобиль')].count()
                5
                   , 'то есть процент невозврата', round((data['index'][(data['debt'] == 1) &\
                6
                7
                        (data['total_income'] <= 60000) & (data['children'] == 2) &\</pre>
                            (data['purpose category'] == 'автомобиль')].count()*100)/data['index']
                8
                9
                                 <= 60000) & (data['children'] == 2) & (data['purpose_category'] ==</pre>
                                    'автомобиль')].count(), 2), '%')
               10
```

В банке 12 таких клиентов, а с проблемой по возврату из них - 4 то есть процент не возврата 33.33~%

25 33 % огромная цифра!

26 Самый низкокорисковый клиент:

С более, чем средним достатком, с тремя детьми, семейные, с целью кредитования на недвижимость

В банке 123 таких клиентов, а с проблемой по возврату из них - 10 то есть процент невозврата 8.13~%