ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY

Základy elektrotepelných procesů

Termočlánky

Vypracoval: Martin Zlámal

Ostatní členové měřícího týmu:

Milan Flor Filip Sauer

Cvičení

"út 11:10 – 12:50"

Datum měření Datum vypracování

20. října 2015 26. října 2015

Školní rok Semestr Ročník

2015/16 1. 1.

Úkolem měření bylo provedení cejchování tří druhů termočlánků (Fe-Ko, Ch-A, Cr-CrNi) podle normálu (termočlánek Ch-Ko) pro alespoň čtyři teploty. Toto zadání se liší od původního zadání podle dostupných termočlánků a přístrojů v laboratoři.

Naměřené a vypočtené hodnoty

Tabulka 1: Naměřené hodnoty napětí [mV]

Číslo měření	E normál	J termočlánek	K termočlánek	T termočlánek
1	1,6	1,4	1,2	1,3
2	3,5	3,1	2,4	2,6
3	5,2	4,5	3,5	3,7
4	6,8	5,8	4,5	4,8
5	8,3	7,0	5,3	5,8

Z těchto hodnot podle příslušných tabulek k daným termočlánkům vznikla následující tabulka.

Tabulka 2: Přepočtené hodnoty naměřenách napětí [°C]

Číslo měření	E normál	J termočlánek	K termočlánek	T termočlánek
1	27	23	30	33
2	57	60	59	63
3	83	84	86	88
4	107	110	110	111
5	129	132	129	132

Grafy

Graf 1 byl vytvořen z přepočtených hodnot tabulky 2. Mezní hodnoty normálu E jsou vypočteny podle specifikace tohoto termočlánku. Konkrétně pro teploty vyšší než 0 °C je ochylka rovna 1,7 °C nebo 0,5 % (platí vyšší z hodnot). V tomto případě se pak jednalo o absolutní odchylku, tedy ±1,7 °C.

Vzhledem k tomu, že tento graf není příliš čitelný, druhý přiložený graf zobrazuje cejchovní křivky, tedy absolutní rozdíly oproti normálu.

Použité přístroje

- Milivoltmetry 29756 (E), 29761 (J), 29759 (K) a 29758 (T)
- Autotransformátor 7503
- Pec 5897
- Ledová lázeň (neoznačena)
- Multimetr Mastech MY-65 22402/30

Graf 1: Přepočtené hodnoty teplot vzhledem k povolené mezní chybě normálu

Graf 2: Cejchovní křivky jednotlivých termočlánků

Závěr

Z prvního grafu je vidět, že naměřené křivky nejsou v mezích normálu E. Dokonce ani samotný normál v těchto mezích není. Meze jsou určeny pouze podle první a poslední hodnota, což může být jeden z důvodů. Dalším důvodem může být skutečnost, že se při měření nečekalo na úplné ustálení termočlánků, ale měřilo se podle předem stanoveného časového itervalu. Samotné ustálení termočlánků však může u vyšších hodnot trvat déle. Poslední možností je, že všechny termočlánky mají skutečně takto zakřivenou charakteristiku.

Nehledě na důvod zakřivení průběhů můžeme z grafu také vypozorovat, že při menších teplotách jsou odchylky od normálu větší a se vzrůstající teplotou se zmenšují. To může být dáno tím, že pro každý termočlánek probíhalo měření v nejnižších hodnotách jejich pracovního rozsahu.