CONJUNTOS Y CARDINALES INFINITOS

■ Def.

Un conjunto A decimos que es **finito** y de **cardinal** n (n=|A|) si existe una biyección

$$f: n \longrightarrow A$$
 donde $n = \{0, 1, \dots, n-1\} \subseteq \mathbb{N}$

Bien definida:

 $\nexists f_1, f_2$, biyecciones $f_1 \neq f_2$

 $f_1: n \longrightarrow A$

 $f_2: m \longrightarrow A \quad \text{si } n \neq m.$

Esta propiedad se conoce como el **Principio del Palomar**:

Sean A,B conjuntos finitos. Si $f:A\longrightarrow B$ y |A|>|B| entonces f no es invectiva.

(Si hay más palomas que huecos en el palomar, al menos dos palomas tendrán que compartir hueco.)

■ Teorema

Sean A, B conjuntos finitos. Entonces

- 1. $S \subseteq A \implies S$ también es finito y $|S| \le |A|$
- 2. $A \cup B$ es finito y

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$A\cap B=\emptyset\Longrightarrow |A\cup B|=|A|+|B|.$$

3. A - B es finito y

$$|A - B| = |A| - |A \cap B|$$

$$B \subseteq A \ (A \cap B = B) \Longrightarrow |A - B| = |A| - |B|$$

- 4. $A \times B$ es finito y $|A \times B| = |A| \cdot |B|$.
- 5. El conjunto de todas las funciones de A en B (denotado por $A \longrightarrow B$) es finito y $|A \longrightarrow B| = |B|^{|A|}$
- 6. $\mathcal{P}(A)$ es finito y $|\mathcal{P}(A)| = 2^{|A|}$

Dem.

Sea A un conjunto y sea $B \subseteq A$, la función característica de B es:

 $f_B:A\longrightarrow\{0,1\}$

$$f_B(x) = \begin{cases} 1 & \text{si } x \in B \\ 0 & \text{si } x \notin B \end{cases}$$

Luego, existe una biyección de $\mathcal{P}(A)$ en $A \longrightarrow 2$ por tanto $|\mathcal{P}(A)| = 2^{|A|}$.

1

Comparando Conjuntos

Sean A, B conjuntos (finitos o infinitos).

- 1. $A \sim_c B \text{ sii } \exists f : A \longrightarrow B \text{ biyectiva.}$ $A \neq B \text{ son conjuntos equipotentes.}$
- 2. $A \leq_c B$ sii $\exists f: A \longrightarrow B$ inyectiva. A está **dominado** por B
- 3. $A <_c B$ sii $A \le_c B$ pero $A \not\sim_c B$. A está **dominado estrictamente** por B.

■
$$\frac{\text{Ej.}}{\mathbb{N}_{+}} = \mathbb{N} - \{0\}$$
 $\mathbb{N}_{+} \leq_{c} \mathbb{N} \quad id_{\mathbb{N}_{+}} : \mathbb{N}_{+} \longrightarrow \mathbb{N}.$
 $n \longrightarrow n$
 $\mathbb{N}_{+} \sim_{c} \mathbb{N} \quad p : \mathbb{N}_{+} \longrightarrow \mathbb{N}.$
 $p(n) = n - 1$

■ Teorema

 \sim_c es una relación de equivalencia.

1.
$$A \sim_c A$$
 (RF)

2.
$$A \sim_c B \implies B \sim_c A \text{ (SIM)}$$

3.
$$A \sim_c B$$
, $B \sim_c C \implies A \sim_c C$ (TR)

■
$$\frac{\mathrm{Ej.}}{\mathbb{Z}} \sim_c \mathbb{N}$$
 $f: \mathbb{Z} \longrightarrow \mathbb{N}$
$$f(x) = \begin{cases} 2x & \text{if } x \ge 0 \\ 2|x| - 1 & \text{if } x < 0 \end{cases}$$

$$\mathbb{R} \sim_c \mathbb{R}_+$$
 $f: \mathbb{R} \longrightarrow \mathbb{R}_+.$
$$x \longrightarrow e^x$$

$$\mathbb{R} \times \mathbb{R} \sim_c \mathbb{C}$$
 $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{C}.$
$$f(x, y) = x + iy$$

■ Teorema

 $\overline{\text{Sean } A, B}, C \text{ conjuntos},$

1.
$$A \leq_c A$$

$$2. \ A \leq_c B \quad B \leq_c C \implies A \leq_c C$$

3.
$$\mathbf{A} \leq_{\mathbf{c}} \mathbf{B}, \, \mathbf{B} \leq_{\mathbf{c}} \mathbf{A} \Longrightarrow \mathbf{A} \sim_{\mathbf{c}} \mathbf{B} \text{ (importante)}$$

4.
$$A \sim_c B \implies A <_c B$$

5.
$$A \subseteq B \implies A \leq_c B$$

6. A finito
$$\implies A <_c \mathbb{N}$$

7. A infinito
$$\iff \mathbb{N} \leq_c A$$

Dem

3)

Si A y B son finitos $y |A| = n \quad |B| = m$

Sea $f_1: A \longrightarrow B$ inyectiva, luego $n \leq m$

Sea $f_2: B \longrightarrow A$ inyectiva, luego $m \le n$ y n = m.

Si A y B son infinitos es el teorema de Schröder- Berstein.

6)

Si A is finito y |A| = n existe

 $f: n \longrightarrow A$ bijyectiva. Si $A \sim_c \mathbb{N}$ también existe $g: A \longrightarrow \mathbb{N}$ biyectiva.

Asaímismo existe una inyección $n+1 \hookrightarrow \mathbb{N}$, luego la composición $n+1 \hookrightarrow \mathbb{N} \longrightarrow A$ también es inyectiva, pero n+1 > |A|. Contradicción.

7)

 \iff

Sea $f: \mathbb{N} \longrightarrow A$ injyectiva. Si A es finito |A| = n y $A \sim_c n$ luego existe $g: A \longrightarrow n$ biyectiva y la composición

 $\mathbb{N} \longrightarrow A \longrightarrow n$ es inyectiva, ya que f es inyectiva y g es biyectiva.

f iny g biy

Luego, tenemos una inyección $f \circ g : \mathbb{N} \longrightarrow n$ y como $n+1 \subseteq \mathbb{N}$ también existe una inyección $n+1 \longrightarrow \mathbb{N} \longrightarrow n$, y, por tanto, $n+1 \longrightarrow n$. Contradicción.

Luego, A tiene que ser infinito.

 \Longrightarrow)

A es infinito. Luego, para todo $n \in \mathbb{N}$ $n \nsim_c A$.

- 1. $0 \not\sim_c A \implies A \neq \emptyset$. Sea $a_0 \in A$.
- 2. $1 \nsim_c A \implies A \neq \{a_0\}$. Sea $a_1 \in A \{a_0\}$.
- 3. $2 \not\sim_c A \implies A \neq \{a_0, a_1\}$. Sea $a_2 \in A \{a_0, a_1\}$. :

Podemos entonces, definir una invección $f: \mathbb{N} \longrightarrow A$

$$f(i) = a_i$$

Efectivamente es inyectiva ya que $i\neq j \Longrightarrow f(i)\neq f(j)$ $a_i\neq a_j$

Luego, $\mathbb{N} \leq_c A$. (Este resultado dice que \mathbb{N} es el menor conjunto infinito.)

■ Ej.

$$\overline{\mathbb{N}} \times \mathbb{N} \sim_{c} \mathbb{N}$$

$$\mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$$

 $x \longrightarrow (x,0)$ invección

 $\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$

 $(x,y) \longrightarrow 2^x * 3^y$ invección (unicidad de descomp. en factores primos)

 $(0,1) \sim_c \mathbb{R}$

 $[0,1] \sim_c \mathbb{R}$

CONJUNTOS NUMERABLES Y NO NUMERABLES

■ Def.

Un conjunto A es **numerable** \iff A es finito o $A \sim_c \mathbb{N}$.

■ <u>Ej.</u>

$$\overline{A} = \{a, b, c\}, \mathbb{N}_+, \mathbb{N} \times \mathbb{N}, \mathbb{Z}.$$

■ Lema

1. Si $A \subseteq \mathbb{N}$, A es numerable.

2. Si B is numerable y $S \subseteq B \implies S$ es numerable.

Dem.

a) Si A es finito $\Longrightarrow A$ es numerable.

Si A es infinito, consideramos los elementos de A en orden creciente: $a_0 < a_1 < a_2 \dots$

Podemos definir la biyección $f: \mathbb{N} \longrightarrow A$

$$f(i) = a_i$$

Luego $A \sim_c \mathbb{N}$.

b) B es numerable.

Si B es finito y $S \subseteq B \implies S$ es finito, luego S es numerable.

Si B es infinito, $B \sim_c \mathbb{N}$.

Sea $S \subseteq B$, si S es finito, es numerable.

Si S es infinito $\Longrightarrow \mathbb{N} \leq_c S$, También se verifica $S \hookrightarrow B \sim_c \mathbb{N} \implies S \leq_c \mathbb{N}$ iny

$$\mathbb{N} \leq_c S, \quad S \leq_c \mathbb{N} \implies S \sim_c \mathbb{N}$$

■ <u>Teorema</u>

1. A es numerable sii existe una inyección $f:A\longrightarrow \mathbb{N}.\ (A\leq_c\mathbb{N}).$

2. $A \neq \emptyset$, A es numerable sii existe una función suprayectiva $g: \mathbb{N} \longrightarrow A$.

Dem.

a)

 \Longrightarrow)

Si A es finito, $A \sim_c n$, y puesto que $n \hookrightarrow \mathbb{N}$ tenemos una inyección $A \sim n \hookrightarrow \mathbb{N}$ $\implies A \leq_c \mathbb{N}$

Si A es infinito, $A \sim_c \mathbb{N}$.

⇐=)

Si tenemos una inyección $f:A\longrightarrow \mathbb{N} \implies f:A\longrightarrow ran(f)$ es una biyección. Luego $A\sim_c ran(f)\subseteq \mathbb{N}$ y por el lema anterior ran(f) es numerable.

Si ran(f) es finito $A \sim_c ran(f) \sim_c n$ para algún $n \in \mathbb{N}$. Luego A tiene que ser finito, $\implies A$ es numerable.

Si ran(f) es infinito $ran(f) \sim_c \mathbb{N}$ y $A \sim_c ran(f)$. Luego $A \sim_c \mathbb{N} \Longrightarrow A$ es numerable.

b)
$$A \neq \emptyset$$

 \Longrightarrow)

Si A es numerable, por a) existe una inyección $f: A \longrightarrow \mathbb{N}$ $(f: A \longrightarrow ran(f))$ es una bivección)

Definimos $g: \mathbb{N} \longrightarrow A$

$$g(n) = \begin{cases} f^{-1}(n) & \text{if } n \in ran(f) \\ a_0 & \text{if } n \notin ran(f) \end{cases} \quad a_0 \in A \neq \emptyset$$

g es suprayectiva: $\forall a \in A, f(a) \in ran(f), f(a) = n \in \mathbb{N} \implies a = f^{-1}(n) = g(n)$

Sea $g: \mathbb{N} \longrightarrow A$ suprayectiva. $A = \{a_0 = g(0), a_1 = g(1), \ldots\}$ (Algunos elementos pueden estar repetidos, g no tiene que ser necesariamente inyectiva). Decimos g enumera A.

Definimos $f: A \longrightarrow \mathbb{N}$ inyectiva $f(a) = \text{el menor } n \in \mathbb{N} \text{ tal que } g(n) = a.$

Propiedades de Conjuntos Numerables.

■ Teorema

- 1. Sean A, B conjuntos numerables $\implies A \cup B$, $A \times B$ son numerables.
- 2. Sean $A_1, \ldots A_n$, conjuntos numerables $\implies A_1 \cup \ldots \cup A_n, A_1 \times \ldots \times A_n$ son numerables.

Dem.

a)

Si $A = \emptyset$ o $B = \emptyset$ es trivial.

Si $A \neq \emptyset$ y $B \neq \emptyset$. Existen funciones suprayectivas $f: \mathbb{N} \longrightarrow A$ $g: \mathbb{N} \longrightarrow B$.

Podemos definir
$$h: \mathbb{N} \longrightarrow A \cup B$$
 suprayectiva.
$$h(n) = \left\{ \begin{array}{ll} f(i) & \text{si} & n=2i \\ g(i) & \text{si} & n=2i+1 \end{array} \right.$$

Existen funciones inyectivas $f': A \longrightarrow \mathbb{N}$ $g': B \longrightarrow \mathbb{N}$.

Podemos definir $h': A \times B \longrightarrow \mathbb{N}$ inyectiva.

$$h'((a,b)) = 2^{f'(a)}3^{g'(b)}$$

$$h'((a,b)) = h'((a',b'))$$

$$2^{f'(a)}3^{g'(b)} = 2^{f'(a')}3^{g'(b')} \implies \begin{cases} f'(a) = f'(a') \\ g'(b) = g'(b') \end{cases} \implies \begin{cases} a = a' \\ b = b' \end{cases}$$

Por inducción sobre n. $A_1 \cup \ldots \cup A_n = (A_1 \cup \ldots \cup A_{n-1}) \cup A_n$

$$A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

■ $\frac{\text{Ej.}}{\mathbb{Z}} = A \cup B$ es un conjunto numerable.

 $A = \{n \in \mathbb{Z} | n \ge 0\}$ es un conjunto numerable.

 $B = \{n \in \mathbb{Z} | n \leq 0\}$ es un conjunto numerable.

 $A_1 \times \ldots \times A_n$ es un conjunto numerable si

 $A_i, 0 \le i \le n \text{ son todos numerables.}$

 $f_i: A_i \longrightarrow \mathbb{N} \ 0 \le i \le n \text{ inyectivas } (A_i \text{ numer}).$

Definimos
$$h: A_1 \times \ldots \times A_n \longrightarrow \mathbb{N}$$
 inyectiva.
 $h((a_1, \ldots, a_n)) = p_1^{f_1(a_1)} \cdots p_n^{f_n(a_n)}$ donde $p_1, p_2 \ldots, p_n$ son primos.

■ Teorema

Sea
$$C = \{A_i | i \in \mathbb{N}\}\ (A_i \text{ numerable } i \in \mathbb{N})$$

$$\bigcup \mathcal{C} = \bigcup_{i \in \mathbb{N}} A_i$$
 es numerable.

Dem. Definimos $g: \mathbb{N} \longrightarrow \bigcup \mathcal{C}$ suprayectiva.

Sea
$$A_0 = \{a_{00}, a_{01}, \dots, a_{0n}, \dots\}$$

$$A_1 = \{a_{10}, a_{11}, \ldots\}$$

$$A_i = \{a_{i0}, a_{i1}, \ldots\}$$

$$a_{00}, (g(0))$$

$$a_{01}, a_{10}, (g(1), g(2))$$

$$a_{02}, a_{11}, a_{20}, (g(3), g(4), g(5))$$

$$a_{03}, a_{12}, a_{21}, a_{30} \dots (g(6), g(7), g(8), g(9), \dots)$$

$$\mathbb{Q}_+ = \{x \in \mathbb{Q} | x > 0\}$$
 es numerable. $\mathbb{Q}_- = \{x \in \mathbb{Q} | x < 0\}$ es numerable.

Podemos definir $f: \mathbb{Q}_+ \longrightarrow \mathbb{N} \;$ inyectiva.

$$f(\frac{m}{n}) = 2^m 3^n$$
 (m, n primos entre sí.)

CONJUNTOS NO NUMERABLES

■ Teorema

 $\mathcal{P}(\mathbb{N})$ es un conjunto infinito, no numerable.

Dem

$$\mathcal{P}(\mathbb{N})$$
 no es finito ya que $\mathbb{N} \leq_c \mathcal{P}(\mathbb{N})$ $(f : \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N}))$ $f(n) = \{n\}$

 $\mathcal{P}(\mathbb{N})$ es no numerable. Vamos a demostrar que no existe $g: \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N})$ suprayectiva.

Supongamos que existe $g_0 : \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N})$.

Sean
$$A_0 = g_0(0)$$
 $A_1 = g_0(1)$ $A_2 = g_0(2) \dots$

Definimos $D = \{i \in \mathbb{N} | i \notin A_i\} \in \mathcal{P}(\mathbb{N})$. Pero $D \neq g_0(n) \ \forall n \in \mathbb{N}$.

Supongamos $D=g_0(n_0)$ para algún $n_0\in\mathbb{N}:n_0\in D\iff n_0\not\in A_{n_0}=g_0(n_0)=D$ $n_0\in D\iff n_0\not\in D$

(Diagonalización de Cantor.)

■ Teorema

Sea A un conjunto. $A <_c \mathcal{P}(A)$.

$$\mathbb{N} <_c \mathcal{P}(\mathbb{N}) <_c \mathcal{P}(\mathcal{P}(\mathbb{N})) \dots$$

■ Teorema

 $\overline{\text{Sea } I \subseteq \mathbb{R}}$ un intervalo cualquiera de \mathbb{R} .

1.
$$I \sim_c \mathbb{R}$$

2.
$$\mathbb{R} \sim_c \mathcal{P}(\mathbb{N})$$

Teorema

 $\overline{\text{Sean } A_0}, A_1, \dots A_{n-1}, \text{ conjuntos tales que } A_i \sim_c \mathbb{R} \quad \forall 0 \leq i \leq n-1$

1.
$$A_0 \cup A_1 \cup \ldots \cup A_{n-1} \sim_c \mathbb{R}$$

2.
$$A_0 \times A_1 \times \ldots \times A_{n-1} \sim_c \mathbb{R}$$

Teorema

Sea $C = \{A_i | i \in \mathbb{N}\}$ una familia numerable de conjuntos tal que $A_i \sim_c \mathbb{R} \ \forall i \in \mathbb{N}$. $\bigcup_{i \in \mathbb{N}} A_i \sim_c \mathbb{R}$.