Introdução aos Sistemas Digitais

Circuitos sequenciais

Circuitos sequenciais vs. combinatórios

Num circuito combinatório saídas dependem exclusivamente das entradas correntes.

Num circuito sequencial saídas dependem das entradas correntes e de todas as entradas que tenham surgido antes (desde o momento em que o circuito foi usado pela 1ª vez!).

Se aumentar o volume?

Circuitos sequenciais

Na prática, é impossível enumerar a sequência de todas as entradas que ocorreram no passado.

Em vez disso, as saídas num circuito sequencial dependem das entradas correntes e do seu estado.

O estado dum circuito sequencial é uma coleção de variáveis de estado que contêm toda a informação sobre o passado, necessária para determinar o comportamento do circuito no futuro.

Um circuito com n variáveis de estado tem 2ⁿ estados possíveis. Já que o número de estados é limitado, circuitos sequenciais são frequentemente chamados máquinas de estados finitos.

Sinal de relógio

A transição de um estado para outro ocorre em momentos específicos determinados pelo sinal de relógio (clock).

Exemplo: Qual é o período do sinal de relógio com freq = 50 MHz?

Elemento biestável

Elemento biestável (cont.)

Análise analógica

Pontos de equilibrio

Meta-estabilidade

Meta-estabilidade (cont.)

Meta-estabilidade: analogia mecânica (I)

Meta-estabilidade: analogia mecânica (II)

Latch S-R

Latch S-R: diagramas temporais

Latch S-R: parâmetros temporais

Meta-estabilidade pode ocorrer se o impulso (aqui, R) não atingir a largura mínima!

Latch S-R: símbolo

Latch S-R com portas NAND

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

Comparação de Latches S-R

com portas NOR

com portas NAND

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

Latch S-R com enable (C)

Latch D

S	R	С	Q	QN
0	0	1	last Q	last QN
0	1	1	0	1
1	0	1	1	0
1	1	1	1	1
Χ	х	0	last Q	last QN

С	D	Q	QN
1	0	0	1
1	1	1	0
0	χ	last Q	last QN

Latch D: diagrama temporal

Latch D: parâmetros temporais

Meta-estabilidade pode ocorrer se D variar muito perto do fecho da latch!

Latches vs. Flip-flops

• Latch: analisa as suas entradas continuamente e muda as suas saídas em qualquer instante.

• Flip-flop: normalmente analisa as suas entradas e muda as suas saídas **apenas em instantes determinados** por um sinal de relógio.

Flip-flop D (edge-triggered)

Flip-flop D: Diagramas temporais

Flip-flop D: Parâmetros temporais

Variantes do Flip-flop D

Negative-edge-triggered

Com entradas assíncronas

Variantes do Flip-flop D

• Com clock enable (EN)

• De teste (Scan)

Caraterização de flip-flops

- Tabelas de funcionamento
- Tabelas de transições
 - Equações caraterísticas
- Tabelas de excitação
- Diagramas de estado

Circuitos sequenciais síncronos (ou *máquinas de estados finitos*)

- Modelos estruturais: Mealy, Moore...
- Metodologia de análise
- Metodologia de síntese: diagramas de estados...

Máquina de estados finitos: estrutura de *Mealy*

Máquina de estados finitos: estrutura de *Moore*

Variante: saídas em pipeline

Máquinas de estados: metodologia de análise

Etapa 1.

- a) Determinar a função F (lógica de transição).
- b) Usando a equação caraterística dos FF, deduzir as **equações de transição** de estados (trivial com FF do tipo D).
- c) Determinar a função G (lógica de saída).

Etapa 2.

- a) Construir **tabela de transição** de estados
 - Para cada combinação estado/entrada, indicar o estado seguinte.
- b) Construir tabela de saídas
 - Para cada combinação estado/entrada, indicar os valores de saída (pode ser combinada com a tabela de transição de estados)

Etapa 3. Desenhar diagrama de estados

Análise de máquinas de estados: exemplo

Etapa 1

Equações de excitação (bloco combinatório F)

$$D0 = Q0 \cdot EN' + Q0' \cdot EN$$

$$D1 = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

Equações características (dos flip-flops usados)

$$Q0* = D0$$

 $Q1* = D1$

Equações de transição

$$Q0* = Q0 \cdot EN' + Q0' \cdot EN$$

$$Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

Equações de saída

$$MAX = Q1 \cdot Q0 \cdot EN$$

Etapa 2: Tabelas

$$\mbox{Equações de transição:} \begin{cases} \mbox{Q0*} &= \mbox{Q0} \cdot \mbox{EN'} + \mbox{Q0'} \cdot \mbox{EN} \\ \mbox{Q1*} &= \mbox{Q1} \cdot \mbox{EN'} + \mbox{Q1'} \cdot \mbox{Q0} \cdot \mbox{EN} + \mbox{Q1} \cdot \mbox{Q0'} \cdot \mbox{EN} \end{cases}$$

Equação de saída: MAX = Q1 · Q0 · EN

Tabela de transições

Tabela de estados

Tabela de estados/saídas

Etapa 3: Diagrama de estados

Variação ao exemplo anterior

• Transformou-se numa máquina de Moore

Diagramas temporais

Análise de máquinas de estados: exemplo II

Limitações temporais

Dadas especificações temporais dos elementos de memória e dos tempos de propagação dos elementos combinatórios coloca-se o problema de determinar qual a frequência máxima de funcionamento dum sistema sequencial síncrono.

Parâmetros temporais:

- flip-flops: T_{setup} , T_{hold} , $\max(T_{\text{pHL}}, T_{\text{pLH}})$
- lógica para cálculo do estado seguinte: Tp

Limitações temporais

$$T_{clk} > T_{setup} + max(T_{pHL}, T_{pLH}) + T_{p}$$

 $T_{hold} < min(T_{pHL}, T_{pLH}) + T_{p}$

Limitações temporais

Exemplo I:

- $-T_{\text{setup}} = 10 \text{ns}, T_{\text{hold}} = 5 \text{ns}, T_{\text{pHL}} = T_{\text{pLH}} = 20 \text{ ns}$
- T_p portas elementares = 10 ns

Exercício

- Mostre que o diagrama de estados do sistema da figura corresponde a um funcionamento periódico com 128 estados.
- Se o tempo de atraso de cada etapa elementar de soma for de 20 ns calcule a frequência máxima de funcionamento do sistema. Admita $T_{\text{setup}} = T_{\text{hold}} = 5$ ns e $T_{\text{pHL}} = T_{\text{pLH}} = 15$ ns.
- Repita o cálculo admitindo que a estrutura de soma é do tipo "carry lookahead"

Máquinas de estados finitos: metodologia de projeto/síntese

- 1. Construir tabela de estados/saídas e/ou diagrama de estados Mnemónicas para designar os estados
- Minimizar número de estados
- 3. Escolher variáveis de estado e decidir codificação dos estados
- 4. Construir tabela de transições/saídas
- 5. Escolher tipo de flip-flop para o registo de estado
- 6. Construir tabela de excitação
- 7. Deduzir funções de excitação

 Na forma mínima: mapas de Karnaugh...
- 8. Deduzir funções de saída
 Na forma mínima: mapas de Karnaugh...
- 9. Desenhar diagrama lógico

Exemplo 1

- Máquina de venda de bebidas
 - Requisitos gerais:
 - entrega lata de cerveja (sem álcool) após depósito de € 0.60
 - uma única entrada para moedas de € 0.20 e € 0.50
 - · a máquina não dá troco
 - Passo 1: perceber o problema (fazer um desenho!...)

Exemplo 1 – Análise de requisitos

- Começar por identificar as sequências de entradas que levam diretamente à abertura
 - 3 moedas de €0.20
 - 1 moeda de €0.20 + 1 moeda de €0.50
 - 1 moeda de €0.50 + 1 moeda de €0.20
 - 2 moedas de €0.50
 - 2 moedas de €0.20 + 1 moeda de €0.50
- Identificar entradas e saídas:
 - Entradas:
 - V (sensor ativo para €0.20)
 - C (sensor ativo para €0.50)
 - Saída
 - drink

Exemplo 1 – Diagrama de Estados

 Diagrama de estados primário

Diagrama de estados correto com reutilização de estados \ \ \ \

Exemplo 1 – Tabela de Estados

 Tabela de Estados/Saídas decorre diretamente do Diagrama de Estados

Cstate	Inputs		Nstate	Output
	٧	С		
EO	0	0	E0	0
	0	1	E2	0
	1	0	E1	0
	1	1	×	X
E1	0	0	E1	0
	0	1	E3	0
	1	0	E2	0
	1	1	X	X
E2	0	0	E2	0
	0	1	E3	0
	1	0	E3	0
	1	1	×	X
E3	X	X	E3	1

Exemplo 1 – Tabela de Transições

- Codificação dos estados
 - State Assignment
- Processo arbitrário a priori
- Eg:
 - E0 = 00
 - E1 = 01
 - E2 = 10
 - E3 = 11
- Substituindo na Tabela de Estados os símbolos de cada estado pela respetiva codificação obtemos a Tabela de Transições/Saídas

Cstate	Inputs		Nstate	OPEN
Q1Q0	V	С	(Q1Q0)*	
00	0	0	00	0
	0	1	10	0
	1	0	01	0
	1	1	X	X
01	0	0	01	0
	0	1	11	0
	1	0	10	0
	1	1	X	X
10	0	0	10	0
	0	1	11	0
	1	0	11	0
	1	1	X	X
11	X	X	11	1

Exemplo 1 – Equações

Exercício: deduza a partir dos mapas de Karnaugh que

$$D_0 = V \oplus Q_0 + Q_1 \cdot (C + V)$$

$$D_1 = Q_1 + C + V \cdot Q_0$$

$$drink = Q_1 \cdot Q_0$$

Codificação de estados

- Nº de estados: q
- Nº mínimo de variáveis: $m \in N : \log_2 q \le m < \log_2 q + 1$
- Um número superior a *m* pode ser vantajoso...
- Neste exemplo: 4 estados, 2 variáveis de estado (Q1,Q0):

$$E0 ==> 00$$

Codificação: diretrizes gerais

- Escolher um código para o estado inicial que facilite a operação de RESET (normalmente 00..00 ou 11..11)
- Minimizar o número de variáveis que variam em cada transição de estado
- Em grupos de estados relacionados, manter o máximo possível de variáveis constantes.
- Atribuir códigos próximos a estados funcionalmente 'parecidos'.
- Aproveitar a liberdade de escolha quando há estados não usados.
- Decompor as variáveis de estado em grupos com significado funcional bem definido relativamente a entradas e/ou saídas.
- Avaliar eventuais vantagens de usar um número de variáveis superior ao mínimo.

Estados não usados

Critério de risco mínimo

 especificar estados seguintes (possivelmente estado inicial) para precaver situações anómalas => circuitos de excitação mais condicionados e por isso mais caros.

Critério de custo mínimo

 não especificar estado seguinte; tirar partido das irrelevâncias para minimizar lógica de excitação => diminuição de custo.

Exemplo 2: Detetor de Sequências

- Reconhecimento de padrões em frases de comprimento finito:
 - Um reconhecedor de frases finitas tem uma entrada (X) e uma saída (Z). A saída é ativa sempre que a sequência de entrada ...010...é observada, desde que a sequência 100 nunca tenha surgido.
 - Exemplo do comportamento entrada/saída:
 - X: 00101010010...
 - Z: 00010101000...

Exemplo 2: Diagrama de Estados

 Desenhar o diagrama de estados para os padrões que devem ser reconhecidos i.e., 010 e 100.

Exemplo 2: Diagrama de Estados

 Completar o diagrama analisando as condições de transição de cada estado

Transições em S3

Transições em S1 e S4

Transições em S2 e S5

Exemplo 2: Revisão

- Revisão do procedimento:
 - Escrever sequências de teste com as entradas/saídas para perceber a especificação
 - Criar uma sequência de estados e transições para as sequências que se pretende ver reconhecidas
 - Acrescentar transições em falta; reusar estados existentes o mais possível
 - Verificar o comportamento entrada/saída do diagrama de estados para assegurar que funciona como pretendido

Exemplo 2: Implementação

Exercício:

- Proponha o diagrama de estados seguindo o modelo de Mealy
- Sugira uma codificação adequada de estados e deduza a tabela de transições/saída
- Obtenha equações para funções de excitação/saída

Revisão da metodologia de síntese

Projetar uma MEF que detete a ocorrência de 3 "1" numa sequência de comprimento 5. As sequências a detetar começam forçosamente por "11". A MEF deverá ser tal que depois de detetados os "11" inciais a próxima sequência só pode começar ao fim de mais de 3 entradas quer a resposta final seja "1" ou "0"

Exemplo:

X: 100110110011010...

Y: 00000000000001...

(Re)inicialização assíncrona

(Re)inicialização síncrona

Latches e registos multibit

Registo de 8 bits (octal)

Saídas de 3 estados!

Registo vs. Latch

Registo de 8 bits: variantes

Saídas de 3 estados

CLR assíncrono

Clock enable

Registos de deslocamento

1) Serial-in, serial-out

Conversão série/paralelo

2) Serial-in, parallel-out

Conversão paralelo/série

Sistemas de transmissão série

Qualquer conversão

Registo de deslocamento universal 74x194

Inputs

Function

Hold

Load

Shift right

Shift left

Next state

QC*

QC

QB

QD

QB*

QB

QC

QA*

QA

QB

Detalhe de um andar do 74x194

+5 V

Q0

Q1

Q2 Q3

Diagrama de estados

Self-correcting ring counter

Contador de Johnson (twisted ring)

CLOCK

Q0

Q1

Q2

Q3

S₁

S2

S3

STATE

RESET_L

Self-correcting Johnson counter

Shift-registers em cascata

Contadores

Contadores - MSI

	Current State				Next State						
CLR_L	LD_L	ENT	ENP	QD (ac d	OB C	ΩA.	QD*	QC∗	QB∻	QA∗
0	х	х	х	х	х	х	х	0	0	0	0
1	0	x	x	x	x	X	х	D	С	В	Α
1	1		x	x	X	X	х	QD	QC	QB	QA
1	1	x	0	x	X	х	x	QD	QC	QB	QA
1	1	. 1	. 1	0	0	0	0	0	0	0	1
1	1	. 1	. 1	0	0	0	1	0	0	1	0
1	1	. 1	. 1	0	0	1	0	0	0	1	1
1	1	. 1	. 1	0	0	1	1	0	1	0	0
1	1	. 1	. 1	0	1	0	0	0	1	0	1
1	1	. 1	. 1	0	1	0	1	0	1	1	0
1	1	. 1	. 1	0	1	1	0	0	1	1	1
1	1	. 1	. 1	0	1	1	1	1	0	0	0
1	1	. 1	. 1	1	0	0	0	1	0	0	1
1	1	. 1	. 1	1	0	0	1	1	0	1	0
1	1	. 1	. 1	1	0	1	0	1	0	1	1
1	1	. 1	. 1	1	0	1	1	1	1	0	0
1	1	. 1	. 1	1	1	0	0	1	1	0	1
1	1	. 1	. 1	1	1	0	1	1	1	1	0
1	1	. 1	. 1	1	1	1	0	1	1	1	1
1	1	. 1	. 1	1	1	1	1	0	0	0	0

Funcionamento em modo livre (free-running)

5

CLK

QΑ

QB

QC

QD

RCO

COUNT

ieeta

Controlo da sequência de contagem: exemplo

Controlo da sequência de contagem: outro exemplo

Contadores em cascata

Circuitos sequenciais vs. iterativos Circuito Iterativo:

primary inputs PI_{n} cascading Pl₁ cascading output input Ы module CO module CO module CO PO PO PO boundary boundary inputs outputs PO_{n-1} primary outputs

Circuitos sequenciais vs. iterativos Circuito Sequencial:

Somador: iterativo

Exercícios

Utilizando o contador binário módulo 16, componente 74x163, construa um circuito que implemente sequência de contagem seguinte: (4,5,6,7,8,9,A,B,C), (4,5,6,7,8,9,A,B,C), ...

Projete uma linha de atraso de comprimento N, variável entre 1 e 16.

O comprimento desejado é especificado por 4 entradas A3 A2 A1 A0 contendo a representação binária de N-1.

Utilize apenas shift registers de 4 bits e multiplexers 4:1.

Minimize o número de componentes usados.

Exercícios (cont.)

Determine os valores mostrados nos displays:

Exercícios (cont.)

O circuito da figura ao lado inclui um contador binário módulo 16 com entradas de load e clear síncronas. Determine a sequência de contagem seguida pelo circuito.

Exercícios (cont.)

Analise o circuito da figura ao lado que inclui um registo de deslocamento de 4 bits, que faz deslocamento no sentido $Q0 \rightarrow Q3$. Assumindo que o estado atual é Q3Q2Q1Q0 = 0011, qual será o estado seguinte?

