#### Experiment No.: 02

Name of the Experiment: Experimental Study of look up tables, MATLAB Function and Verify Output

#### Required Software:

- MATLAB
- Simulink

### Objectives:

- To know about 1D and 2D lookup table and their use
- To know about MATLAB Function block and its significance
- To verify output of particular problem with MATLAB function and Simulink block

### 1-D Look up Table:

A Tabulated Data is given for alternator where X= field Current and Y=Terminal Voltage

| Field Current If =X | Terminal Voltage Vt = Y |  |
|---------------------|-------------------------|--|
| .43                 | 104                     |  |
| .48                 | 116                     |  |
| .53                 | 134                     |  |
| .58                 | 148                     |  |
| .63                 | 158                     |  |
| .68                 | 180                     |  |
| .73                 | 196                     |  |
| .78                 | 228                     |  |
| .83                 | 235                     |  |
| .88                 | 252                     |  |

This tabulated data is used in 1D lookup table and taking the input the corresponding output can be seen in the display and verified.

## Circuit Diagram:



Figure 2.1.: Circuit Diagram of 1D look up Table using Simulink

2-D Look up Table: Tabular data is an Admittance matrix data from power system and for particular row and column the output is verified.

## Circuit Diagram:



Figure 2.2: Circuit Diagram of 2D look up Table using Simulink



Figure 2.3.: Circuit Diagram of 2D look up Table using Simulink

### Solution of Given Problem in Simulink:



Figure 2.4.: Circuit diagram to solve given problem in the lab

# Output:



Figure 2.5: Output of the given experimental problem using Simulink

# Alternate Solution Using MATLAB function Block:



Figure 2.6: Circuit Diagram using MATLAB function

```
MATLAB Function X
1
      function y = fcn(u)
2
     🗦 %#codegen
3
       %% checking the condition of the wave
4 -
       if (u>=0)
5 -
          y = -u;
6 -
       elseif (u<0) \&\& (u < -5)
7 -
            y = -5;
8
       else
9 -
            y = u;
10
       end
11
       end
```

Figure 2.7: MATLAB Function internal code

## Output:



Figure 2.8: Output of Given Experimental Problem using MATLAB Function block