1.2次元ベクトルによる面の定義

2次元平面上に、 \vec{a} , \vec{b} があるとする。 すると、その平面上の任意のベクトル \vec{p} は (ただし、 \vec{a} , \vec{b} は平行で無い)

$$ec{p}=nec{a}$$
 + $mec{b}$ (※n,mは任意の実数)

平行でなれば、 平面上のあらゆる **大きさ・角度・向き** のベクトルを作成できる。

3.法線ベクトル

法線ベクトルとは、 あるベクトルに対して垂直なベクトルである。 内積が0になれば良いので、 あるベクトルを \vec{a} 、法線ベクトルを \vec{n} とすると、

 $\vec{a} \cdot \vec{n} = 0$

が成り立つベクトルを求めれば、それが法線ベクトルである。

2次元ベクトルだと、法線ベクトルは1方向。 3次元ベクトルだと、無数の方向に存在する。

5.内積の活用法

これまで内積は主になす角を求める際に使用していましたが、内積にはもう一つ重要な性質があります。それが、**投影**です。**射影**とも言います。

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$$

であるので、 $|ec{b}|$ or $|ec{a}|$ が1であれば $ec{a}$ or $ec{b}$ or $ec{c}$ 軸上に

 $ec{a}$ or $ec{b}$ or $ec{c}$ 軸上に 変換した長さが獲得できます。

2.3次元ベクトルによる面の定義

3次元平面上に、 \vec{a} , \vec{b} があるとする。 すると、その平面上の任意のベクトル \vec{p} は (ただし、 \vec{a} , \vec{b} は平行で無い)

 $ec{p}=nec{a}$ + $mec{b}$ (※n,mは任意の実数)

三次元でも、平面上では二次元と同じなので 平面上のあらゆる 大きさ・角度・向き のベクトルを作成できる。

4.面法線

外積の定義より、

3次元ベクトルの外積を出すと、面の法線 ベクトルが求まる事が分かります。

外積で求まるベクトルは、 \vec{a} , \vec{b} で作られる面の法線

計算上、正規化した外積を法線ベクトルと して扱うのが普通なので、

$$\vec{n} = \frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$$

これを**面法線**と言う。 面法線は**その面の正面方向**として扱われる。

これが投影と呼ばれる物で、 影を落としたように見るのでそう呼ば れます。

投影で得られるのは長さですので、 正規化した軸ベクトルを掛ければ、 **投影(射影)ベクトル**が求まります。 \bar{a} の投影ベクトルを \bar{h} とし、 \bar{b} を正規化したものを \bar{B} とすると

$$\vec{h} = \vec{B}(\vec{B} \cdot \vec{a})$$

6.面法線と内積による反射の導出

ある面に対しての入射ベクトルを \vec{a} 反射ベクトルを \vec{b} ,面法線を \vec{n} とする。 \vec{a} から \vec{n} への射影ベクトル \vec{h} は

$$\vec{h} = \vec{n} |\vec{a}| \cos \theta$$

反射は右図のようなベクトル経路を取る。 よって、

$$\vec{b} = 2 \vec{h} + \vec{a}$$

上記のような形で、 面法線と内積で反射ベクトルを求められる。

1

次の外積によって求められる法線ベクトルを答えよ(正規化しなくてよい)。 また、 \vec{a} , \vec{b} において \vec{b} 方向の射影ベクトル \vec{h} を求めよ。

なお、 $\vec{a} = (1,2,3), \vec{b} = (-1,2,-3), \vec{c} = (2,4,6)$ とする。

$$\vec{a} \times \vec{b}$$
, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$

2

次の衝突状態の反射について考える。

入射ベクトル $\vec{a}=(1,2,3)$, 反射面上のベクトル $\vec{b}=(2,3,4)$, $\vec{c}=(4,3,2)$ とする。

面の法線ベクトル: \vec{n} , \vec{a} から \vec{b} への射影ベクトル: \vec{h} , 反射ベクトル: \vec{l} を求めよ。

