Steps to SAS e-Miner

Figure 1: Overview of Workflow in SAS e-Miner

1. File Import Settings.

The File Imported was the one prepped with Knime.

Figure 2: File Import Settings

2. Added StatExplore

Read the summary statistics to understand the distribution of the data and what might the distribution mean. The explanation was written in the report.

3. Added Graph Explore

Figure 3: Graph Explore Setting Size Changed to Max

Figure 4: Tested Plots for Visualization of Data

Figure 5: Current GraphExplore Results Display

Plots were added to get a better visualization and understanding of the data, but were not added to the case study report as the focus of the case study was on training a good model.

4. Added First Impute Node

Figure 6: Impute Node

Property	Value
General	
Node ID	Impt2
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Nonmissing Variables	No
Missing Cutoff	50.0
☐Class Variables	
-Default Input Method	None
-Default Target Method	None
Normalize Values	Yes
☐Interval Variables	
-Default Input Method	Median
Default Target Method	None
Default Constant Value	
Default Character Value	
Default Number Value	
☐Method Options	
-Random Seed	12345
-Tuning Parameters	
Tree Imputation	
- Carra	

Figure 7: First Impute Node Setting Default Imput Method as Median

5. Linked a StatExplore Node to First Impute Node

a. A summary statistic to check the mean and standard deviation if impute is median

6. Added Second Impute Node

Figure 7: Second Impute Node

Figure 8: Second Impute Node's Input Method Default Set to Tree Surrogate

7. Linked a StatExplore Node to Second Impute Node

- a. A summary statistic to check the mean and standard deviation if impute is Tree Surrogate
- 8. After comparison of the summary statistics of the two imputation methods, added a third impute node and configured the final setting of a third impute node.

Figure 9: Impute (4) being the third impute node.

Figure 10: Final Setting of Imputation

9. Linked a Summary Statistics Node to Final Impute Node to confirm distribution and proportions

10. Added a Drop Node

Figure 11: Drop Node

Figure 12: Drop Node Setting

11. Added Data Partition Node

Figure 13: Added Data Partition

. Property	Value		
General			
Node ID	Part		
Imported Data			
Exported Data			
Notes			
Train			
Variables			
Output Type	Data		
Partitioning Method	Default		
Random Seed	12345		
Data Set Allocations			
-Training	70.0		
-Validation	30.0		
Test	0.0		
Report			
Interval Targets	Yes		
Class Targets	Yes		
Status			
Create Time	1/7/24 5:28 PM		
Run ID	c378bd89-a199-47d8-ab06-0054		
Last Error			
Last Status	Complete		
Last Run Time	1/7/24 7:06 PM		
Dun Duration	O Hr. O Min. 2 SE Soc		

Figure 14: Data Partition Setting

12. Added Model Nodes

Figure 15: Model Nodes: Decision Tree, Gradient Boosting, and HP Forest

The three nodes used for modeling are the Decision Tree, Gradient Boosting, and HP Forest. The configuration of each model will be explained in the following sections.

F	Property	Value
L-M	linimum Categorical Size	5
= N	ode	
Le	eaf Size	8
-N	umber of Rules	5
-N	umber of Surrogate Rules	0
Sp	plit Size	
= Sp	plit Search	
-Us	se Decisions	No
-Us	se Priors	No
E)	xhaustive	5000
-N	ode Sample	20000
ΞSι	ubtree	
M	ethod	Assessment
Nı	umber of Leaves	1
-As	ssessment Measure	Decision
	ssessment Fraction	0.25
= Cr	ross Validation	
-Pe	erform Cross Validation	Yes
-Nı	umber of Subsets	10
Nı	umber of Repeats	1
-Se	eed	12345
=0	bservation Based Importance	
-0	bservation Based Importance	No
Mi	umber Single Var Importance	ς

Figure 16 Setting of Decision Tree

The input data will be modeled using different decision trees. Firstly, a full decision tree will be trained and configured to have a maximum depth property of 10 and a leaf size of 8. A maximum depth of 10 allows the decision tree to have a reasonably complex structure, capturing intricate patterns in the data.

Figure 17: Setting of Gradient Boosting

There is little risk of overfitting as the dataset is large enough. The leaf size of 8 would add regularization and prevent the model from being too sensitive to noise in the training data as the training data has 20 features. Gradient Boosting was set to have a maximum depth of 10. With Gradient Boosting often combining weak learners, this should also capture a more complex pattern than the default depth of 2 and should be less prone to overfitting than the decision tree.

Property	Value
General	
Node ID	HPDMForest
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Tree Options	
-Maximum Number of Trees	100
-Seed	12345
-Type of Sample	Proportion
-Proportion of Obs in Each Sample	0.6
Number of Obs in Each Sample	
Splitting Rule Options	
-Maximum Depth	50
-Missing Values	Use In Search
-Minimum Use In Search	1
-Number of Variables to Consider	
-Significance Level	0.05
-Max Categories in Split Search	30
-Minimum Category Size	5
Exhaustive	5000
Node Options	
Method for Leaf Size	Default

Figure 18: Setting of HP Random Forest.

The HP Random Forest setting was kept the same since it is more robust to overfitting as compared to decision trees and this should be a good starting point for a prediction of customer churn.

13. Added Model Comparison Node

Figure 19: Addition of Model Comparison Node

To assess and compare the models, a model comparison node was added to the diagram.

Fit Statistics Model Selection based on Valid: Misclassification Rate (_VMISC_)								
Selected Model	Model Node	Model Description	Valid: Misclassification Rate	Train: Average Squared Error	Train: Misclassification Rate	Valid: Average Squared Error		
Y	Boost Tree HPDMForest	Gradient Boosting Decision Tree HP Forest	0.08666 0.18544 0.18891	0.00336 0.13573 0.12096	0.00000 0.16990 0.16915	0.07459 0.14661 0.13986		

Figure 20: Fit Statistics of Three Models