programa de pós-graduação em ENGENHARIA DE DEFESA

Álgebra Linear Computacional

Parte V

Cap Hebert AZEVEDO Sá, Ph.D.

Definição: Um campo é um conjunto, denotado por \mathcal{F} , de elementos chamados escalares e duas operações chamadas adição "+" e multiplicação ".", tais que:

- a todo par de elementos α , $\beta \in \mathcal{F}$, se associa um elemento $\alpha + \beta$ chamado soma de α e β , e um elemento $\alpha.\beta$ chamado produto de α e β .
- Adição e Multiplicação são comutativas: $\alpha+\beta=\beta+\alpha$; $\alpha.\beta=\beta.\alpha$.
- Adição e Multiplicação são associativas: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$; $(\alpha.\beta).\gamma = \alpha.(\beta.\gamma)$.
- Multiplicação é distributiva com respeito a adição: $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.
- \mathcal{F} contém elementos neutros para a adição e para a multiplicação, denotados 0 e 1. Isto é, $\alpha + 0 = \alpha$ e $\alpha.1 = \alpha$.

1

Definição: Um campo é um conjunto, denotado por \mathcal{F} , de elementos chamados escalares e duas operações chamadas adição "+" e multiplicação ".", tais que (*Cont.*):

- Para todo $\alpha \in \mathcal{F}$ há um β tal que $\alpha + \beta = 0$. β é chamado inverso aditivo, também denotado por $-\alpha$.
- Para todo $\alpha \in \mathcal{F}$, $\alpha \neq 0$, há um β tal que $\alpha.\beta = 1$. β é chamado inverso multiplicativo, também denotado por $\frac{1}{\alpha}$.

Definição: Um **espaço vetorial** sobre um campo \mathcal{F} , denotado por $(\mathcal{X}, \mathcal{F})$ é um conjunto \mathcal{X} de elementos chamados *vetores*, um campo \mathcal{F} , e duas operações chamadas *adição vetorial* e *multiplicação por escalar*. As duas operações são definidas sobre \mathcal{X} e \mathcal{F} tal que:

- a todo par de elementos $u, v \in \mathcal{X}$, se associa um elemento $u + v \in \mathcal{X}$ chamado soma de u e v.
- a adição vetorial é comutativa: u + v = v + u.
- a adição vetorial é associativa: (u + v) + w = u + (v + w).
- \mathcal{X} contém um vetor $\mathbf{0}$, tal que $u + \mathbf{0} = u$ para todo $u \in \mathcal{X}$. $\mathbf{0}$ é o vetor nulo, ou "origem".
- para todo $u \in \mathcal{X}$, existe um vetor $\bar{u} \in \mathcal{X}$ tal que $u + \bar{u} = \mathbf{0}$.

Definição: Um **espaço vetorial** sobre um campo \mathcal{F} , denotado por $(\mathcal{X}, \mathcal{F})$ é um conjunto \mathcal{X} de elementos chamados *vetores*, um campo \mathcal{F} , e duas operações chamadas *adição vetorial* e *multiplicação por escalar*. As duas operações são definidas sobre \mathcal{X} e \mathcal{F} tal que (*Cont.*):

- para todo $\alpha \in \mathcal{F}$, e para todo $u \in \mathcal{X}$, existe um vetor $\alpha.u \in \mathcal{X}$ chamado o produto do vetor u pelo escalar α .
- o produto de um vetor por escalares é associativo, i.e., $\alpha \cdot (\beta u) = (\alpha \cdot \beta) \cdot u$.
- o produto de um vetor por escalares é distributivo com respeito à adição vetorial, i.e., $\alpha.(u+v)=\alpha u+\alpha v.$
- o produto de um vetor por escalares é distributivo com respeito à adição escalar, i.e., $(\alpha + \beta).u = \alpha u + \beta u$.
- para todo $u \in \mathcal{X}$, 1.u = u, onde 1 é o elemento neutro multiplicativo de \mathcal{F} .

Exemplo: O exemplo mais óbvio de um espaço vetorial é $(\mathbb{R}^n, \mathbb{R})$. Contudo, podemos definir outros espaços vetoriais.

Exemplo: suponha que $\mathbb{M}^{3\times3}$ é o conjunto de todas as matrizes 3×3 , cujos elementos são números reais. Sendo $(\mathbb{R},+,.)$ um campo, podemos definir o espaço vetorial $(\mathbb{M}^{3\times3},\mathbb{R})$.

Exemplo: Nas séries de Fourier, as diferentes senóides podem ser consideradas vetores de um espaço vetorial sobre o campo real.

Definição: Seja $(\mathcal{X}, \mathcal{F})$ um espaço vetorial, e seja \mathcal{Y} um subconjunto de \mathcal{X} . \mathcal{Y} será um subespaço vetorial de \mathcal{X} se atender aos mesmos axiomas de $(\mathcal{X}, \mathcal{F})$. Naturalmente, $(\mathcal{Y}, \mathcal{F})$ será também um espaço vetorial.

Obs.: Seja $(\mathcal{X}, \mathcal{F})$ um espaço vetorial e $\mathcal{Y} \subset \mathcal{X}$. As proposições a seguir são equivalentes:

- $(\mathcal{Y}, \mathcal{F})$ é um subespaço vetorial;
- para todo $u, v \in \mathcal{Y}, u + v \in \mathcal{Y}$ (fechado com relação à adição vetorial); e para todo $\alpha \in \mathcal{F}, u \in \mathcal{Y}, \alpha u \in \mathcal{Y}$ (fechado com relação à multiplicação de vetor por escalar);
- para todo $\alpha \in \mathcal{F}$, $u, v \in \mathcal{Y}$, $\alpha u + v \in \mathcal{Y}$.

Verificação se o espaço nulo N(A) é um espaço vetorial Espaço nulo da matriz A. Fechamento com adição e multiplicação

Exemplo: Seja A uma matriz $n \times n$. O conjunto de vetores $x \in \mathbb{R}^n$ satisfazendo Ax = 0 é um subespaço de \mathbb{R}^n chamado o *espaço nulo* de A, denotado N(A). Para demonstrar, basta verificarmos que:

- A0 = 0. Logo, $0 \in N(A)$.
- $x, y \in N(A) \implies Ax = 0, Ay = 0$. Logo, A(x + y) = Ax + Ay = 0. Logo, $x + y \in N(A)$. (Fechamento com relação à adição vetorial.)
- $x \in N(A)$, $r \in \mathbb{R} \implies A(tx) = t(Ax) = 0$. Logo, $tx \in N(A)$. (Fechamento com relação à multiplicação vetor por escalar.)

Definição: Seja $(\mathcal{X}, \mathcal{F})$ um espaço vetorial. Uma combinação linear é uma soma *finita* do tipo $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$, onde $n \geq 1$, $\alpha_i \in \mathcal{F}$ e $x_i \in \mathcal{X}$.

Definição: Um conjunto finito de vetores em \mathcal{X} dado por $\{v_1, v_2, ..., v_k\}$ é **linearmente dependente** se existe um conjunto de escalares $\alpha_i \in \mathcal{F}$, diferente do conjunto trivial (i.e., em que todos os α_i são nulos), tal que há uma combinação linear que gere o vetor nulo, i.e., $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0$. Caso contrário, o conjunto é **linearmente independente**.

Obs. 1: para um conjunto L.l., teremos

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0 \iff \alpha_i = 0, \forall i \in \{1, 2, \dots, k\}$$

Obs. 2: um conjunto será L.l. se todos os seus subconjuntos forem L.l.

Obs. 3: Se um conjunto for L.D., ao menos um elemento deste conjunto pode ser escrito como uma combinação linear dos outros elementos do conjunto.

Exemplos:

- $\{[1 \ 0]^{\top}, [0 \ 1]^{\top}\} \text{ \'e L.l.};$
- $-\{[1\ 0]^{\top},[0\ 1]^{\top}\},[1\ 1]^{\top}\} \in L.D.;$
- $\{1, t, t^2, ..., t^n\}$ é L.l.; Espaço vetorial de n dimensões
- $\{1, t, t^2, (2+3t+5t^2)\}$ é L.D.;
- $\{\sin(t), \cos(t), \sin(2t), \cos(2t), \dots, \sin(nt), \cos(nt)\}$ é L.I.;

Definição: Seja S um subconjunto de vetores de um espaço vetorial (X, F). O **espaço gerado** por S, denotado $span\{S\}$ é o conjunto de todas as combinações lineares possíveis dos elementos de S.

$$span\{\mathcal{S}\} = \{x \in \mathcal{X} | \exists n \geq 1, \alpha_1, \dots, \alpha_n \in \mathcal{F}, v_1, \dots, v_n \in \mathcal{S}, \ x = \sum_{i=1}^n \alpha_i v_i \}$$

Obs.: $span{S}$ é um subespaço.

Definição: Um conjunto de vetores \mathcal{B} em $(\mathcal{X}, \mathcal{F})$ é uma base para \mathcal{X} se:

- (1) \mathcal{B} é L.I.; e
- (2) $span\{\mathcal{B}\} = \mathcal{X}$.

Definição: Seja n > 0 inteiro. O espaço vetorial $(\mathcal{X}, \mathcal{F})$ possui dimensão finita n se:

- (1) Existe um subconjunto de n vetores L.I. em $\mathcal X$; e
- (2) Qualquer subconjunto de n+1 ou mais vetores de \mathcal{X} seja L.D.

Obs.: Um espaço vetorial pode ter dimensão infinita.

Obs.: a dimensão do espaço nulo de uma matriz é chamada nulidade da matriz.

Os vetores dados por:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 , $e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, ... , $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$,

formam uma base para \mathbb{R}^n . Essa base é chamada base canônica, ou base padrão.

No entanto, qualquer outro conjunto de n vetores L.I. em \mathbb{R}^n também será uma base para \mathbb{R}^n . Podemos, inclusive, encontrar matrizes que representem a Transformação Linear de Mudança de Base. (Será a inversa da matriz cujas colunas são os vetores que formam a nova base.)

Exemplo:

Sejam os seguintes vetores em \mathbb{R}^3 :

$$u = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, v = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}.$$

O vetor $3u - v = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}^{\top}$ está contido no plano gerado por u e v, representado por $span\{u,v\}$.

Se montarmos a matriz $\begin{bmatrix} 1 & -1 & 4 \\ 2 & 1 & 5 \\ 1 & 2 & 1 \end{bmatrix}$ e encontrarmos seu espaço nulo, qual lugar geométrico o representará?

Exemplo: [Ford], Exemplo 3.6

Posto de uma matriz

Definição: O **posto** de uma matriz é a dimensão do espaço vetorial gerado pelos vetores representados por suas linhas (ou colunas).

Observe que o espaço vetorial gerado pelas linhas não se altera quando são realizadas operações elementares na matriz. Logo, o posto de uma matriz não se altera quando esta é escalonada.

Exemplo: [Ford], Exemplo 3.12

Obs.: em uma matriz quadrada $n \times n$, a soma do posto e da nulidade será n. Caso o posto da matriz seja n, diz-se que ela é de posto cheio.

O determinante é uma função de uma matriz quadrada que gera um valor escalar. Quando nulo, ele indica que a matriz é singular, i.e., não possui inversa. Caso contrário, a matriz será não-singular.

Para uma matriz 1×1 , o determinante será o próprio elemento único da matriz.

Para matrizes de ordens maiores, o determinante será calculado pela soma dos produtos dos elementos de uma linha (ou de uma coluna) pelos determinantes menores equivalentes, alternando-se o sinal dos produtos entre "+" e "-".

Em outras palavras, para uma matriz A quadrada $n \times n$, teremos,

$$det(A) = a_{11}det(M_{11}) - a_{12}det(M_{12}) + \cdots + (-1)^{n+1}det(M_{1n}),$$

onde M_{ij} é a matriz resultante quando exclui-se a linha i e a coluna j de A.

Em consequência, se uma matriz tiver uma linha composta por zeros, o determinante será nulo.

Outra consequência é que o determinante de uma matriz triangular será o produtos dos termos de sua diagonal principal.

Propriedades:

- det(AB) = det(A)det(B)
- $det(A^{\top}) = det(A)$
- $det(A) = 0 \implies A$ não é de posto cheio
- Seja A e seu det(A). Se uma linha (ou coluna) de A for multiplicada por um fator k, seu determinante também o será
- $det(kA) = k^n det(A)$
- se trocarmos duas linhas ou duas colunas de posição, o determinante é multiplicado por -1
- se somarmos um multiplo de uma linha a outra linha (ou de uma coluna a outra coluna), o determinante não se altera

Definição: O cofator de ordem (i,j) de A será dado por $(-1)^{i+j}det(M_{ij})$

Definição: A matriz adjunta de *A* será a transposta da matriz de seus cofatores. (Ver [Ford], Exemplo 4.8)

Teorema [Ford, Th 4.3]: $A^{-1} = \frac{1}{det(A)} adj(A)$

Teorema [Ford, Th 4.5]:

- A não singular \iff $det(A) \neq 0$
- $A \text{ singular} \iff det(A) = 0$
- Ax = 0 tem solução não trivial $\iff det(A) = 0$

Teorema [Ford, Th 4.6][Regra de Cramer]: $x_i = \frac{\Delta_i}{\Delta}$