

CHALLENGES OF BUILDING
TRANSFORMERS BASED NATURAL
LANGUAGE PROCESSING MODELS

Meriem Bendris, Solution Architect, NVIDIA

The brain of Conversational Al

LARGE LANGUAGE MODELS

Exploding model complexity

Exploding model complexity:

- Large models, large datasets and large compute
- OpenAl GPT-3 175B* parameters:
 - Compute: 4.5 ExaFLOPs / iteration (~95K iterations)
 - Memory using FP16: 2.8TB (700GB parameters + 700GB Gradients + 1400GB Optimizer state)

Challenges:

- Ability to efficiently collect and process large volumes of data
- Ability to efficiently train large models on large volumes of data
- Ability to cost effectively deploy large models

Machine Learning

Deep Learning Promise

From Language Models to NLP downstream tasks

Language Model Pretraining:

- Large unlabelled dataset
- Self-Supervised

Finetuning on downstream NLP tasks:

- Annotated dataset
- Additional layers

Language Models Examples

From Language Models to NLP downstream tasks with BERT

Success Reasons

Hardware Acceleration

Going Bigger

Model Size Comparison

Going Bigger

CHALLENGE OF GOING BIGGER

Large Neural Networks are big

Consider 1 billion parameters model in FP16 and do the math:

- Data representation: Weights and Gradients in FP16
- Adam optimizer: Store 12 bytes per weight in FP16

CHALLENGE OF GOING BIGGER

Large Neural Networks require Large Datasets

Word Language models

Machine Translation

Speech Models

Training across 1-GPU

Stochastic Gradient Decent Repeat n Epochs Batch 1: Forward, Backward Parameters update Batch 2: Forward, Backward Parameters update ••• Batch k: Forward, Backward Parameters update

Strategies

Advantage: Training Speed up Cost: Gradients exchange

Advantage: Training Bigger Models Cost: Features Maps exchange

Data Parallel - Gradient Exchange Strategies

Micro Batch Pipeline Parallelism

GPipe

Easy Scaling with Micro-Batch Pipeline Parallelism

<u>Yanping Huang et al. GPipe: Easy Scaling with Micro-Batch Pipeline</u>
Parallelism, Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

Interleaved Pipeline

Reduce pipeline Bubble with more communication

https://github.com/NVIDIA/Megatron-LM

Model Distribution - Tensor Slicing Strategy

(b) Self-Attention

Figure 3. Blocks of Transformer with Model Parallelism. f and g are conjugate. f is an identity operator in the forward pass and all reduce in the backward pass while g is an all reduce in the forward pass and identity in the backward pass.

Figure 4. Communication operations in a transformer layer. There are 4 total communication operations in the forward and backward pass of a single model parallel transformer layer.

Model Distribution - Hybrid Strategy - DeepSpeed

DeepSpeed Data Parallel (ZeRO Redundancy Optimizer) Tensor Slicing Megatron Model Pipelining

Example 3D parallelism with 32 workers

ZeRO Redundancy Optimizer

Maintain data parallelism communication volume and reduce memory footprint

Figure 1: Memory savings and communication volume for the three stages of ZeRO compared with standard data parallel baseline. In the memory consumption formula, Ψ refers to the number of parameters in a model and *K* is the optimizer specific constant term. As a specific example, we show the memory consumption for a 7.5B parameter model using <u>Adam</u> optimizer where *K*=12 on 64 GPUs. We also show the communication volume of ZeRO relative to the baseline.

Hardware Topology

175B Transformer ~ 34 days on a 1024 A100 1T Transformer ~ 84 days on 3072 A100

GRADIENT EXCHANGE CHALLENGES

Optimized Inter GPU Communication - NCCL

NVIDIA Collective Communications Library

- Automatic topology detection
- Graph search for the optimal set of rings and trees with the highest bandwidth and lowest latency over PCIe and NVLink high-speed interconnects within a node and over NVIDIA Mellanox Network across nodes
- Provide routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter, point-to-point send and receive
- Integrated within several Deep Learning frameworks such as Caffe2, MxNet, PyTorch

32xDGX1V + 4xMellanox CX-6, Transformer benchmark: Batch Size=640, Overlap=0.20

Transformer

The Training speedup takes NCCL 2.3 as a reference.

Large Batch Size

Compensate the batch size increase by a learning rate increase

Large batch size lead to noisy gradients

Trust Ratio based optimizers: Instability when the ratio is too high

$$\lambda^l = \eta imes rac{||w^l||}{||
abla L(w^l)||}$$

- Layer-wise Adaptive Rate Scaling LARS
- Layer-wise Adaptive Moments optimizer for Batch training LAMB
- NVLAMB

Large Batch Size - Gradient accumulation:

Batch size is bounded by the GPU memory

Gradient accumulation: Split the batch into several mini-batches that will be run sequentially

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa

TRAINING MEMORY REDUCTION

Gradient-Checkpointing

TRAINING MEMORY BANDWIDTH REDUCTION

Automatic Mixed Precision

Use different numerical precisions in a computational method.

Performing operations in half-precision format while storing minimal information in single-precision to retain as much information as possible in critical parts of the network

Tensor cores: up to 3x overall speedup on the most arithmetically intense model architectures.

TRAINING MEMORY BANDWIDTH REDUCTION

Automatic Mixed Precision - APEX library

1 Epoch BERT finetuning for Sentiment Analysis
With/without fp16 (all other arguments are identical)
DGX-1 4 V100 16G, pytorch:20.06-py3, BS=32, max len=128,
warmup= 0.1, dynamic loss scaling
code available for reproduction

```
Iteration: 98% 205/209 [01:08<00:01, 3.03it/s]A
Iteration: 98% 205/209 [01:09<00:01, 3.02it/s]A
Iteration: 98% 205/209 [01:08<00:01, 3.02it/s]A
Iteration: 98% 205/209 [01:09<00:01, 3.03it/s]A
Iteration: 99% 206/209 [01:09<00:00, 3.04it/s]A
Iteration: 99% 206/209 [01:08<00:00, 3.03it/s]A
Iteration: 99% 206/209 [01:08<00:00, 3.04it/s]A
Iteration: 99% 206/209 [01:10<00:00, 3.03it/s]A
Iteration: 99% 207/209 [01:08<00:00, 3.03it/s]A
Iteration: 99% 207/209 [01:09<00:00, 3.03it/s]A
Iteration: 99% 207/209 [01:08<00:00, 3.02it/s]A
Iteration: 99% 207/209 [01:10<00:00, 3.03it/s]A
Iteration: 100% 208/209 [01:09<00:00, 3.04it/s]A
Iteration: 100% 208/209 [01:10<00:00, 3.02it/s]A
Iteration: 100% 208/209 [01:08<00:00, 3.02it/s]A
Iteration: 100% 208/209 [01:10<00:00, 3.03it/s]A
```

```
Iteration: 95% 199/209 [00:15<00:00, 13.97it/s]A
Iteration: 95% 199/209 [00:16<00:00, 13.97it/s]A
Iteration: 96% 201/209 [00:15<00:00, 13.94it/s]
Iteration: 96% 201/209 [00:15<00:00, 13.94it/s]
Iteration: 96% 201/209 [00:15<00:00, 13.93it/s]A
Iteration: 96% 201/209 [00:16<00:00, 13.96it/s]A
Iteration: 96% 201/209 [00:16<00:00, 13.82it/s]A
Iteration: 97% 203/209 [00:15<00:00, 13.85it/s]A
Iteration: 97% 203/209 [00:15<00:00, 13.87it/s]A
Iteration: 97% 203/209 [00:17<00:00, 13.82it/s]A
Iteration: 98% 205/209 [00:17<00:00, 13.82it/s]AA
Iteration: 99% 207/209 [00:17<00:00, 13.84it/s]A
Iteration: 99% 207/209 [00:17<00:00, 13.84it/s]A
Iteration: 100% 209/209 [00:15<00:00, 14.21it/s]A
Iteration: 100% 209/209 [00:15<00:00, 14.18it/s]A
```

Train without fp16

Train with fp16

BERT LARGE PRETRAINING

Encapsulate Best Practices

Training Natural Language Processing

BERT Pre-Training Throughput

DGX-A100 server w/ 8x NVIDIA A100 on PyTorch | DGX-1 server w/ 8x NVIDIA A100 on PyTorch | DGX-1 server w/ 8x NVIDIA V100 on PyTorch | DGX-1 server w/ 8x NVIDIA V100 on PyTorch | DGX-1 server w/ 8x NVIDIA A100 on PyTorch | DGX-1 server w/ 8x

NVIDIA A100 BERT Training Benchmarks

Framework	Network	Throughput	GPU	Server	Container	Precision	Batch Size	Dataset	GPU Version
PyTorch	BERT Pre-Training	2,274 sequences/sec	8x A100	DGX-A100	-	FP16	-	Wikipedia+BookCorpus	A100 SXM4-40GB

DGX-A100 server w/ 8x NVIDIA A100 on PyTorch (2/3) Phase 1 and (1/3) Phase 2 | Sequence Length for Phase 1 = 128 and Phase 2 = 512

DEPLOYMENT CHALLENGES

Reduce latency & Maximize throughput

Model Optimization

NVIDIA TensorRT

Weight & Activation Precision Calibration: Maximizes throughput by quantizing models to INT8 while preserving accuracy

Layer & Tensor Fusion: Optimizes use of GPU memory and bandwidth by fusing nodes in a kernel

Kernel Auto-Tuning: Selects best data layers and algorithms based on target GPU platform

Dynamic Tensor Memory: Minimizes memory footprint and re-uses memory for tensors efficiently

Time Fusion: Optimizes recurrent neural networks over time steps with dynamically generated kernels

MODEL OPTIMIZATION

TensorRT - Quantization

Convert continuous values to discrete set of values using linear/non-linear scaling techniques.

Relative to fp32 math

Input Type	Accumulation Type	Relative math throughput	Bandwidth savings
FP16	FP16	8x	2x
INT8	INT32	16x	4x
INT4	INT32	32x	8x
INT1	INT32	128x	32x

Bert large uncased	FP32	Int8 (GeLU10)	Rel Err %
MRPC	0.855	0.843	0.70%
SQuAD 1.1 (F1)	91.01	90.40	0.67%

MODEL OPTIMIZATION

TensorRT - Transformer Layers Fusion

NVIDIA TensorRT

Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQuAD with batch size =1 and sequence length = 128.

Pruning

Reduce the complexity of neural networks by Removing Unnecessary Connections

- Reduce memory bandwidth
- Reduce memory footprint
- Accelerate the compute

Maintain accuracy of the original unpruned network

6 inputs, 6 neurons (including 2 outputs), 32 connections

6 inputs, 5 neurons (including 2 outputs), 24 connections

Structured Sparsity in A100

Fine-grained structured sparsity for Tensor Cores

- 50% fine-grained sparsity
- 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Accuracy:

- Medium sparsity level (50%), fine-grained
- Training: a recipe shown to work across tasks and networks

Speedup:

- Specialized Tensor Core support for sparse math
- Structured: lends itself to efficient memory utilization

2:4 structured-sparse matrix

Sparsity on BERT for SQUAD Q&A

NVIDIA A100 BERT Inference Benchmarks												
Network	Network Type	Batch Size	Throughput	Efficiency	Latency (ms)	GPU	Server	Container	Precision	Dataset	Framework	GPU Version
BERT-Large with Sparsity	Attention	94	6,188 sequences/sec	-	-	1x A100	DGX-A100	-	INT8	SQuaD v1.1	-	A100 SXM4-40GB
A100 with 7 MIG instances of 1g.5gb Sequence length=128 Efficiency based on board power Containers with a hyphen indicates a pre-release container												

Production Data Center Inference Server

MAXIMIZE THROUGHPUT

Handle the maximum number of users at a time

MINIMIZE LATENCY

Customer experience depends on response time

ZERO DOWNTIME

Deploy updates without disrupting your service

MINIMIZE COST

Choosing the right hardware for the job and ensuring high levels of utilization

Triton Takes Care of Plumbing To Deploy Models for Inference

Multiple **Frameworks**

TensorFlow

PYTÖRCH Custom

All Major Framework Backends For Flexibility & Consistency

Standard HTTP/gRPC Communication

Concurrent Execution

Automatically Runs Multiple Models Concurrently On One Or More GPUs To Maximize Utilization

Different Types of **Queries**

Real

time

Batch

Ensemble

Dynamic **Batching**

Supports Different Types Of Inference Queries For Different Use Cases

Dynamic Batching Maximizes Throughput **Under Latency Constraint**

DYNAMIC BATCHING SCHEDULER

Assume 4 gives best utilization in this

example.

```
max_batch_size: 8
dynamic_batching {
    preferred_batch_size: [ 4, 8 ]
    max_queue_delay_microseconds: 100
}
```

Megatron GPT-3 large model inference with Triton Inference Server and ONNX runtime

DEEP LEARNING PROFILER

NVIDIA Nsight Systems

nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx --delay=60 python my_dnn_script.py

Tensorboard-plugin

ENABLING LARGE SCALE MODELS

NVIDIA Solutions

- Training: Megatron-LM, Distributed Training, Optimizer (LARC, LAMB), Automatic Mixed Precision, NGC
- Inference: TensorRT, Structured Sparsity, Triton Inference Server
- Reference architecture: A100, DGX A100, DGX SuperPOD

A100 With MIG DGX A100 DGX SUPERPOD

PERSPECTIVES & TAKEAWAY

NLP in Real Applications

NVIDIA RIVA

Fully Accelerated Framework for Multimodal Conversational AI Services

Available in Riva 1.0 Beta Available in future version

