Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

DESCRIPTION

The μ A741 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The μ A741 is short-circuit-protected and allows for nulling of offset voltage.

FEATURES

- Internal frequency compensation
- Short circuit protection
- Excellent temperature stability
- High input voltage range

PIN CONFIGURATION

Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	μΑ741N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	μΑ741CN	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	-40°C to +85°C	SA741CN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	μΑ741F	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to +70°C	μΑ741CF	0580A
8-Pin Small Outline (SO) Package	0 to +70°C	μΑ741CD	SOT96-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage		
	μA741C	±18	V
	μΑ741	±22	V
P_{D}	Internal power dissipation		
	D package	780	mW
	N package	1170	mW
	F package	800	mW
V _{IN}	Differential input voltage	±30	V
V _{IN}	Input voltage ¹	±15	V
I _{SC}	Output short-circuit duration	Continuous	
T _A	Operating temperature range		
	μA741C	0 to +70	°C
	SA741C	-40 to +85	°C
	μΑ741	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

1994 Aug 31 1 853-0903 13721

^{1.} For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Philips Semiconductors Product specification

General purpose operational amplifier

μ A741/ μ A741C/SA741C

DC ELECTRICAL CHARACTERISTICS T_A = 25°C, V_S = ±15V, unless otherwise specified.

A 17 5	PARAMETER	TEST CONDITIONS	μ Α741		μ Α741C		LINUT		
SYMBOL			Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage	R _S =10kΩ	T	1.0	5.0		2.0	6.0	mV
		R_S =10kΩ, over temp.		1.0	6.0			7.5	mV
$\Delta V_{OS}/\Delta T$				10			10		μV/°C
Ios	Offset current			20	200		20	200	nA
		Over temp.						300	nA
		T _A =+125°C		7.0	200	1			nA
		T _A =-55°C		20	500				nA
$\Delta I_{OS}/\Delta T$				200			200		pA/°C
I _{BIAS}	Input bias current			80	500		80	500	nA
		Over temp.						800	nA
		T _A =+125°C		30	500				nA
		T _A =-55°C		300	1500				nA
$\Delta I_B/\Delta T$				1			1		nA/°C
		R _L =10kΩ	±12	±14		±12	±14		V
V_{OUT}	Output voltage swing					1			
		R_L =2kΩ, over temp.	±10	±13		±10	±13		V
		$R_L=2k\Omega$, $V_O=\pm 10V$	50	200		20	200		V/mV
A _{VOL}	Large-signal voltage gain	$R_L=2k\Omega$, $V_O=\pm 10V$,				1			
		over temp.	25			15			V/mV
	Offset voltage adjustment range			±30			±30		mV
		R _S ≤10kΩ				l	10	150	μV/V
PSRR	Supply voltage rejection ratio								
		R _S ≤10kΩ, over temp.		10	150				μV/V
						70	90		dB
CMRR	Common-mode rejection ratio					l			
		Over temp.	70	90					dB
				1.4	2.8		1.4	2.8	mA
I _{CC}	Supply current	T _A =+125°C		1.5	2.5				mA
		T _A =-55°C		2.0	3.3				mA
V_{IN}	Input voltage range	(μA741, over temp.)	±12	±13		±12	±13		V
R _{IN}	Input resistance		0.3	2.0		0.3	2.0		MΩ
			1	50	85		50	85	mW
P_D	Power consumption	T _A =+125°C	1	45	75				mW
		T _A =-55°C		45	100				mW
R _{OUT}	Output resistance			75			75		Ω
I _{SC}	Output short-circuit current		10	25	60	10	25	60	mA

2 1994 Aug 31

Philips Semiconductors Product specification

General purpose operational amplifier

μ A741/ μ A741C/SA741C

DC ELECTRICAL CHARACTERISTICS

 T_A = 25°C, V_S = $\pm 15 V\!,$ unless otherwise specified.

SYMBOL	PARAMETER	TEST COMPLIANC		LINUT		
SYMBOL		TEST CONDITIONS	Min	Тур	Max	UNIT
V _{OS}		R _S =10kΩ		2.0	6.0	mV
	Offset voltage	R _S =10k Ω , over temp.			7.5	mV
$\Delta V_{OS}/\Delta T$				10		μV/°C
I _{OS}				20	200	nA
	Offset current	Over temp.			500	nA
Δl _{OS} /ΔT				200		pA/°C
I _{BIAS}				80	500	nA
	Input bias current	Over temp.			1500	nA
$\Delta I_{B}/\Delta T$				1		nA/°C
		R_L =10k Ω	±12	±14		V
V _{OUT}	Output voltage swing					
		R_L =2k Ω , over temp.	±10	±13		V
		$R_L=2k\Omega$, $V_O=\pm 10V$	20	200		V/mV
A _{VOL}	Large-signal voltage gain					
		R_L =2kΩ, V_O =±10V, over temp.	15			V/mV
	Offset voltage adjustment range			±30		mV
PSRR	Supply voltage rejection ratio	R _S ≤10kΩ		10	150	μV/V
CMRR	Common mode rejection ration		70	90		dB
V _{IN}	Input voltage range	Over temp.	±12	±13		V
R _{IN}	Input resistance		0.3	2.0		МΩ
P_d	Power consumption			50	85	mW
R _{OUT}	Output resistance			75		Ω
I _{SC}	Output short-circuit current			25		mA

AC ELECTRICAL CHARACTERISTICS

 T_A =25°C, V_S = ±15V, unless otherwise specified.

SYMBOL	PARAMETER	TEGT COMPITIONS	μΑ741, μΑ741C			
		TEST CONDITIONS	Min	Тур	Max	UNIT
R _{IN}	Parallel input resistance	Open-loop, f=20Hz	0.3			МΩ
C _{IN}	Parallel input capacitance	Open-loop, f=20Hz		1.4		pF
	Unity gain crossover frequency	Open-loop		1.0		MHz
	Transient response unity gain	V _{IN} =20mV, R _L =2kΩ, C _L ≤100pF				
t _R	Rise time			0.3		μs
	Overshoot			5.0		%
SR	Slew rate	C≤100pF, R _L ≥2kΩ, V _{IN} =±10V		0.5		V/μs

Philips Semiconductors Product specification

General purpose operational amplifier

μ A741/ μ A741C/SA741C

EQUIVALENT SCHEMATIC

Figure 2. Equivalent Schematic

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

1994 Aug 31 5

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 4. Typical Performance Characteristics (cont.)

General purpose operational amplifier

μ A741/ μ A741C/SA741C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 5. Typical Performance Characteristics (cont.)