Síntese de Voz

Text-to-Speech (TTS) Synthesis

Eduardo Tenório embat@cin.ufpe.br embatbr@gmail.com

Síntese de Voz

- Introdução
- Métodos
 - 1. Formants
 - 2. Articulatory
 - 3. Concatenative
 - 4. Unit Selection
 - 5. HNM (Harmonic plus Noise Model)
 - 6. HMM (Hidden Markov Model)
- Conclusão

- Produz voz humana artificialmente
- Um sistema TTS converte texto em voz
- Onde usar?
 - Leitura de tela para cegos
 - Voz para pessoas com dificuldades de fala
 - Interface humano-máquina (Google Glass, Siri...)
 - Atores virtuais
 - [preencha com algo interessante]

- Um sistema TTS simula parte da speech chain:
 - Codificação da linguagem
 - Controles neuro-musculares
 - Trato vocal

Motor TTS:

Entrada: Texto

Saída: Voz

- Motor TTS:
 - Entrada: Texto
 - Saída: Voz
- Trabalha com:
 - Pronúncia do texto
 - Estrutura sintática
 - Semântica e ambiguidade

- Document Structure Detection:
 - Listas vs. texto corrente
 - Fim de frase
 - Fim de parágrafo
 - Pontuação
 - "This is Dr. Frankenstein"

- Text Normalization:
 - "I live on Bourbon St. in St. Louis"
 - "\$10"
 - "4:20"
 - "06/06/2014"
 - "She worked for DEC"
 - "I read Foucault"

- Linguistic Analysis:
 - Part of speech (POS): substantivo, verbo, etc.
 - Pausa entre frases
 - Presença de anáfora ("Latino é cantor. Ele é horrível!")
 - Ênfase nas palavras certas
 - Tipo da fala: raivoso, emotivo, relaxado, etc.
 - Um parser linguístico é muito lento

- Homograph Disambiguation:
 - Pronúncia correta de homografos
 - Checar o contexto
 - "an absent boy" vs. "do you choose to absent yourself?"
 - Isso já é Processamento de Linguagem Natural!

- Grapheme-to-Phoneme Conversion:
 - Converte o texto para tagged phone.
 - Uso de dicionário de pronúncia
 - Cada palavra é procurada independentemente
 - Regras de conversão para as exceções

- Pitch & Duration Attachment:
 - Provê ao sintetizador um conjunto de sinais de controle (sequência de sons, durações, pitch)
 - Sequência de sons deriva da ordem das palavras
 - Durações e pitch podem ser gerados baseados em regras próprias
 - Estresse, pausas e etc. tornam a voz mais natural

- Speech Synthesis:
 - Aqui o bicho pega!
 - Rule-based systems
 - Baseiam-se em modelos físicos
 - Voz gerada from scratch
 - Útil para sistemas simples
 - Data-driven systems
 - Necessita de uma base de dados
 - Abordagem dominante

- Os métodos são basicamente três:
 - Formants Synthesis
 - Articulatory Synthesis
 - Contatenative Synthesis

- Os métodos são basicamente três:
 - Formants Synthesis
 - Articulatory Synthesis
 - Contatenative Synthesis
 - Unit Selection é um aprimoramento
 - HNM é usado em conjunto com o Unit Selection
 - HMM parte de outra premissa, mas mantém a abordagem data-driven

Formants:

- Função do trato vocal simulada satisfatoriamente
- Frequências de ressonância do sistema
- Picos no espectro da frequência

- Formants:
 - Compensador permite simular efeitos anasalados, fricativos e plosivos
 - A especificação de 20 ou mais parâmetros pode gerar uma reconstrução satisfatória do sinal

- Formants:
 - Vantages:
 - Parâmetros altamente correlacionados com a produção e propagação do som no trato vocal
 - Inteligibilidade alta e computacionalmente leve
 - Desvantagens:
 - Difícil especificar os parâmetros automaticamente
 - Naturalidade extremamente deficiente

- Articulatory:
 - Modelagem direta de todo o sistema vocal
 - Voz de alta qualidade
 - Um dos métodos mais difíceis de implementar
 - Difícil adquirir dados para criar o modelo
 - Trade-off acurácia/implementação
 - Piores resultados
 - Silver bullet da síntese de voz (se for criado um modelo satisfatório)

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas ou trifonemas.
 - Unidades mais longas:
 - Mais natural
 - Menos pontos de concatenação
 - Necessita de mais memória
 - Tende a ser impraticável

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação
 - Necessita de menos memória
 - Coleta de amostras e técnicas de rotulação mais complexas
 - Difonemas são as unidades mais usadas:
 - Transição mais suave entre fonemas
 - Da metade do 1º à metade do 2º fonema

- Concatenative:
 - O espectrograma de baixo não é uma superposição do de cima

- Concatenative:
 - Difonemas:

Entrada: "I want".

Fonemas: /#/ AY/ /W/ /AA/ /N/ /T/ /#/

Difonemas: /# AY/ /AY-W/ /W-AA/ /AA-N/ /N-T/ /T- #/

- Os pontos de concatenação ainda soam pouco naturais (transição não suave)
- Nem sempre o difonema representa o som correto

- Unit Selection:
 - Em Concatenative Synthesis, difonemas precisam ser modificados através de processamento de sinais para resultar na prosódia desejada
 - Pontos de concatenação tornam a fala pouco natural
 - Efeitos de co-articulação não são limitados apenas ao fonema anterior

- Unit Selection:
 - Unidade com várias instâncias (variações na prosódia)
 - A instância que melhor casa com o target é escolhida (menos modificações)

- Unit Selection:
 - As unidades ainda sofrem transformações (PSOLA, TD-PSOLA, HNM...)
 - Contudo, quanto maior a base, maior a chance de encontrar um match
 - Reduz a necessidade de aplicar as modificações de prosódia

- Unit Selection:
 - Minimizar target cost: estimativa da incompatibilidade entre uma unidade e o target
 - Minimizar join cost: estimativa da incompatibilidade acústica com o fonema anterior

Figure 1. Unit Selection Costs

- Unit Selection:
 - Unidades consecutivas possuem join cost zero (concatenação natural)
 - O unit selection é a tarefa de determinar a sequência cujo custo total é o menor

$$C^{t}(t_{i}, u_{i}) = \sum_{j=1}^{p} w_{j}^{t} C_{j}^{t}(t_{i}, u_{i})$$

$$C^{c}(u_{i-1}, u_{i}) = \sum_{j=1}^{q} w_{j}^{c} C_{j}^{c}(u_{i-1}, u_{i})$$

$$C(t_{1}^{n}, u_{1}^{n}) = \sum_{i=1}^{n} C^{t}(t_{i}, u_{i}) + \sum_{i=2}^{n} C^{c}(u_{i-1}, u_{i}) + C^{c}(S, u_{1}) + C^{c}(u_{n}, S)$$
[3]

- Unit Selection:
 - Ou selecionar o melhor caminho (Viterbi search)

Figure 1: For half-phones in the word "two", a search finds the lowest cost path, selecting one candidate unit from each column for synthesis.

- Unit Selection:
 - Base mínima com 30 minutos de gravação já torna o método realizável (na prática, 1-10 horas)
 - Desvantagens:
 - Base de dados grande
 - Rotulação incorreta e não detecção de contexto leva a fragmentos de voz com qualidade péssima
 - Margem de erro considerável

- Unit Selection + HNM:
 - Modificações prosódicas são necessárias para sintetizar voz com alta qualidade
 - Inteligibilidade, naturalidade e agradabilidade superiores ao TD-PSOLA

- Unit Selection + HNM:
 - Modificações prosódicas são necessárias para sintetizar voz com alta qualidade
 - Inteligibilidade, naturalidade e agradabilidade superiores ao TD-PSOLA
 - Fala composta pelas partes harmonica (quase periódica) e ruidosa (não periódica)
 - Separadas pela maximum voiced frequency, Fm, que varia no tempo
 - F < Fm → harmônicos
 - F > Fm → componente ruidosa

- Unit Selection + HNM:
 - Espectro dividido em duas bandas
 - A banda baixa é modelada como uma soma de harmônicos
 - Onde arg{ak(ti)} = arg{ck(ti)} = arg{dk(ti)}

$$s_h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j k \omega_0(t) t}$$
 (1)

$$A_k(t) = a_k(t_i) \tag{2}$$

$$A_k(t) = a_k(t_i) + t b_k(t_i)$$
(3)

$$A_k(t) = a_k(t_i) + t c_k(t_i) + t^2 d_k(t_i)$$
(4)

- Unit Selection + HNM:
 - Ao usar Ak(t) = ak(ti), modelo HNM1, a fala produzida já possui uma ótima qualidade
 - A banda alta é formada pela convolução de um modelo autorregressivo (envelopado) com o ruído branco

$$s_n(t) = e(t)[h(\tau, t) \star b(t)] \tag{5}$$

- Unit Selection + HNM:
 - A parte não períodica é o resultado da parte harmônica subtraída da fala completa
 - Descontinuidades nos pontos de concatenação são considerados apenas para a parte harmônica
 - Incompatibilidades nos pitches são removidas efetuando uma interpolação linear num ponto de concatenação, t = ti

- HMM:
 - *Unit Selection* possui como desvantagem:
 - Um grande e crescente banco de dados
 - Pouca flexibilidade (recria o que foi gravado)

- HMM:
 - *Unit Selection* possui como desvantagem:
 - Um grande e crescente banco de dados
 - Pouca flexibilidade (recria o que foi gravado)
 - HMM utiliza uma abordagem estatística para inferir parâmetro a partir dos dados

HMM:

- Unit Selection possui como desvantagem:
 - Um grande e crescente banco de dados
 - Pouca flexibilidade (recria o que foi gravado)
- HMM utiliza uma abordagem estatística para inferir parâmetro a partir dos dados
- Vantagens:
 - Necessita de menos memória
 - Mais variações nos exemplos (converter uma voz em outra)

HMM:

- Consiste de duas fases principais: treinamento e síntese
- Na fase de treinamento geralmente utiliza como característica o MFCC e suas derivadas primeira e segunda
- As características são extraídas por frame, colocadas em um vetor e usadas pelo algoritmo Baum-Welch para criar um modelo de cada fonema
- Síntese em dois estágios:
 - Estimação das características
 - Transformação em sinais de áudio

- HMM:
- Ainda assim não é melhor que o *Unit Selection* (estado da arte)
- Modelagem pode ser melhorada utilizando:
 - Hidden semi-Markov Models
 - Trajectory HMMs
 - Stochastic Markov Graphs

HMM:

- Integração com HNM leva a um sistema mais rápido e barato de desenvolver
- Produz fala de qualidade superior ao *Unit Selection*
- Contudo, mais difícil de entender...
- mas uma vez entendido, mais fácil de implementar

Conclusão

- Métodos de síntese de voz já são suficientemente bons
- O estado da arte ainda requer uma quantidade de dados grande demais
- Deve-se tentar entender melhor o funcionamento do sistema vocal humano para modelá-lo
- E aprimorar métodos estocásticos