7. Най-голяма и най-малка точка на сгъстяване

Галина Люцканова

17 октомври 2013 г.

Определение 7.1: Нека X е множество от точките на сгъстяване за редицата $\{c_n\}_{n=1}^{\infty}$. Тогава най-малка точка на сгъстяване за редицата $\{c_n\}_{n=1}^{\infty}$ е x_0 , ако X е ограничено отдолу и $x_0 = \inf X$ (бележим с $\lim_{n\to\infty}\inf c_n$). Ако X е неограничено отдолу, то $\lim_{n\to\infty}\inf c_n = -\infty$.

Определение 7.2: Аналогично най-голяма точка на сгъстяване за редицата $\{c_n\}_{n=1}^{\infty}$ е x_0 , ако X е ограничено отгоре и $x_0 = \sup X$ (бележим с $\lim_{n\to\infty}\sup c_n$). Ако X е неограничено отгоре, то $\lim_{n\to\infty}\sup c_n = +\infty$.

Твърдение 7.1: Нека $\{c_n\}_{n=1}^{\infty}$ е ограничена редица. Тогава измежду точките на сгъстяване има най-малка и най-голяма (т.е. inf $X \in X$ и $\sup X \in X$).

Доказателство:

Нека да означим с X множеството от точки на сгъстяване за $\{c_n\}_{n=1}^{\infty}$. От теоремата на Болцано-Вайерщрас следва, че X не е празното множество (всяка ограничена редица има поне една точка на сгъстяване). Понеже редицата е ограничена, то и X е ограничено множество. Следователно по принципа за непрекъснатост следва, че съществуват $\sup X$ и $\inf X$. Означаваме с $C=\sup X$. Ще докажем, че C е точка за сгъстяване за $\{c_n\}_{n=1}^{\infty}$. (Защо трябва да докажем, че е точка за сгъстяване? Тема 2 при дефиницията на \sup). Тогава C ще е най-голямата точка на сгъстяване. Избираме $\varepsilon>0$ произволно. По последното твърдение от тема 2 следва, че съществува $x\in X$, такова че $x>C-\varepsilon$. Но понеже $x\in X$, то тогава x е

точка на сгъстяване. Нека да вземем ε_1 толкова малко, че $(x-\varepsilon_1,x+\varepsilon_1)\subset (C-\varepsilon,C+\varepsilon)$. То тогава в околността $(C-\varepsilon,C+\varepsilon)$ би имало безброй много елементи на c_n следователно X е точка на сгъстяване за c_n .

Примери:

1. Да разгледаме редицата $a_n = 2 + (-1)^n$ или записана в явен вид:

$$1, 3, 1, 3, \dots$$

Надявам се, че виждате, че тази редица из 2 точки на сгъстяване 1 и 3 следователно $\limsup = 3$, a $\liminf = 1$.

2. Да разгледаме редицата $a_n = \left(1 + \frac{n}{n+1}\right) \cdot \cos n \frac{\pi}{2}$. Сега да направим малко сметки за да се доберем до точките на сгъстяване. Ако n = 2k+1, то тогава получаваме $\cos \left(2k+1\right) \frac{\pi}{2} = 0$ и тогава членовете са 0, т.е. подредицата от членовете с нечетни номера клони към 0. Взимаме подредицата n = 4k имаме, че $a_{4k} = \left(1 + \frac{4k}{4k+1}\right) \cdot \cos 4k \frac{\pi}{2} = 1 + \frac{4k}{4k+1}$. Тази редица е сходяща, защото е монотонно растяща ($\frac{4k}{4k+1} < \frac{4k+1}{4k+2}$) и ограничена отгоре ($1 + \frac{4k}{4k+1} < 1+1$). Правим граничен преход и получаваме $a_{4k} \to 1+1=2$. Разглеждаме подредицата с номера n = 4k+2 и аналогично получавам $a_{4k+2} \to -2$. Така излиза, че редицата има 3 точки на сгъстяване - -2,0,2. Така получихме, че $\lim\sup a_n = 2$, а $\lim\inf a_n = -2$.

Какво означава понятието необходимо и достатъчно условие (от сега нататък ще бъде съкращавано като НДУ)? Това са условията, в които се използва най-често знакът \Leftrightarrow (който се чете тогава и само тогава).

Теорема 7.1 (НДУ на Коши) : Редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща \Leftrightarrow за всяко $\varepsilon>0$ може да се намери ν , такова че ако $m,n>\nu$, то $|a_n-a_m|<\varepsilon$.

Доказателство:

 \Rightarrow) Нека редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща и а е нейната граница. То тогава ще докажем, че за всяко $\varepsilon>0$ може да се намери ν , такова че ако $m,n>\nu$, то $|a_n-a_m|<\varepsilon$.

Сега първо да разкажа каква е логиката на нещата. За тази цел ще припомня какво значи една редица да е сходяща. Една редица е сходяща,

ако произволно близко до a са всички членове от някакъв номер нагоре. Тогава, ако вземем два члена (с номера по-големи от ν), то те ще са супер близко до a, то тогава би трябвало да са супер близко и един до друг.

А сега към доказателството. Задаваме $\varepsilon > 0$. Понеже $\{a_n\}_{n=1}^{\infty}$ е сходяща, то съществува ν , такова че при $n > \nu$ е изпълнено, че $|a_n - a| < \frac{\varepsilon}{2}$. Понеже $\{a_n\}_{n=1}^{\infty}$ е сходяща, то съществува ν , такова че при $m > \nu$ е изпълнено, че $|a_m - a| < \frac{\varepsilon}{2}$. Тогава при $m, n > \nu$ получваме, че

$$|a_m - a_n| = |a_m - a + a - a_n| \le |a_m - a| + |a - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

т.е. редицата удовлетворява условието.

 \Leftarrow) Нека сега е изпълнено, че за всяко $\varepsilon>0$ може да се намери ν , такова че ако $m,n>\nu$, то $|a_n-a_m|<\varepsilon$. Ще докажем, че редицата е сходяща.

Сега - логиката на нещата. Имаме, че всеки 2 члена са супер близко един до друг (от някакъв номер нататък), то тогава те би трябвало да са супер близко до някакво фиксирано число. Понеже всеки от членовете е супер близко до това число, то би трябвало това да е границата на редицата.

Сега обратно към доказателството. Задаваме $\varepsilon=1$, то тогава съществува естествено число ν , такова че $|a_n-a_m|<1$ за $m,n>\nu$. Нека фиксираме $m=m_0$, тогава получаваме, че:

$$-1 < a_n - a_{m_o} < 1 \quad \forall m \ge \nu$$

 $-1 + a_{m_o} < a_n < 1 + a_{m_o} \quad \forall m \ge \nu$

което от своя страна означава, че редицата е ограничена, тъй като m_0 е фиксирано. Следователно по теоремата на Болцано-Вайерщрас, съществува подредица a_{n_k} , която е сходяща. Нека означим нейната граница с а. Задаваме $\varepsilon>0$. Тогава съществува ν_1 , такова че при $k>\nu_1$ е изпълнено $|a_{n_k}-a|<\varepsilon$. Също така съществува ν_2 , такова че при $m,n>\nu_2$ е изпълнено $|a_n-a_m|<\frac{\varepsilon}{2}$. Тъй като членовете на редицата a_{n_k} са членове на редицата a_n , то тогава $|a_n-a_{n_k}|<\frac{\varepsilon}{2}$ при $n_k,n>\nu_2$. Тогава от предните разсъждения получаваме, че

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 (1)

при някое фиксирано $k > \nu_1$, такова че $n_k > \nu_2$ и произволно $n > \nu_2$. Нека $\nu = \max\{\nu_1, \nu_2\}$. Тогава получаваме неравенството (1) при $n > \nu$. Това означава, че при $n > \nu$ е изпълнено (1).

<u>Твърдение 7.2:</u> $\{a_n\}_{n=1}^{\infty}$ е сходяща $\iff \{a_n\}_{n=1}^{\infty}$ е ограничена и има само (или не повече от) една точка на сгъстяване.

Доказателство:

- ⇒) Използваме твърдение 6.2 и свойство 4.3 и директно излиза.
- \iff) Нека a_n има една точка на сгъстяване, такава съществува поради теоремата на Болцано-Вайерщрас. Означаваме я с а. Ще докажем, че $\lim_{n\to\infty}a_n=a$.

Допускаме противното т.е. $\{a_n\}_{n=1}^{\infty}$ не е сходяща редица, което означава, че съществува околност $(a-\varepsilon,a+\varepsilon)$, извън която има безброй много членове на редицата. Понеже редицата е ограничена т.е. $M \leq a_n \leq N$, то тогава в интервала $[M,a-\varepsilon]$ или в интервала $[a+\varepsilon,N]$ има безброй много членове на редицата. С това достигнахме до извода, че редицата има друга точка на сгъстяване освен а, защото ако една подредица се съдържа в затворен интервал, всяка нейна точка на сгъстяване е пак там. Това води до противоречие.

<u>Пример 7.1:</u> Ще докажем, че редицата $a_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ не е сходяща. За целта ще използваме критерия на Коши (НДУ на Коши) т.е. трябва да докажем, че не е изпълнено условието на Коши (или за всяко $\varepsilon>0$ може да се намери ν , такова че ако $m,n>\nu$, то $|a_n-a_m|<\varepsilon$). Това означава, че съществува ε_0 , такова че за всяко ν има двойка $m,n>\nu$, то $|a_n-a_m|\geq \varepsilon_0$. Да разгледаме двойката m и n, такава че m=2n. Сега да пресметнем:

$$|a_{2n} - a_n| = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}$$

Полагаме $\varepsilon_0 = \frac{1}{2}$. Тогава получихме, че за всяко ν е изпълнено:

$$|a_{2n} - a_n| \ge \frac{1}{2} = \varepsilon_0$$

С това доказахме, че редицата е разходяща.

Намерете пример за редица, която има точно една точка на сгъстяване, но не е сходяща.