浙江大学 物理实验报告

实验名称:	动态磁滞回线测量实验
指导教师:	

 专业:
 竺可桢学院混合班

 班级:
 混合 1903 班

 姓名:
 徐圣泽

 学号:
 3190102721

实验日期: 6 月 3 日 星期 三 下午

一、实验目的

- 1、了解铁磁材料的磁滞性质;
- 2、掌握示波器测量磁滞回线的原理;
- 3、测量磁化曲线的相关量和标定的方法;
- 4、探究实验数据处理过程中绘制的相关曲线。

二、 实验内容

- 1、测饱和磁滞回线
- 2、测量基本磁化曲线相关物理量;
- 3、标定磁场强度和磁感应强度;
- 4、计算磁化曲线相关物理量,绘制磁化曲线和 $\mu_{\alpha}-H_{m}$ 曲线。

三、实验原理

(一) 铁磁材料的磁滞性质

铁磁材料有一个重要的特点——磁滞。当材料磁化时,磁感应强度 *B* 不仅与当时的磁场强度 *H* 有关,而且决定于磁化的历史情况。

曲线 OA 表示铁磁材料从没有磁化开始磁化, B 随 H 的增加而增加,称为磁化曲线。当 H 增加到某一值 H_s 时,磁化达到饱和, B 也几乎不再增加,此时 B_m 称为饱和磁感应强度。

材料磁化后,若使H减小,B将不沿原路返回,而是沿曲线A'CA

下降,当H从 $-H_s$ 开始增加时,B又将沿着另一个曲线A'C'A上升。这样形成的一个闭合曲线称之为"磁滞回线",如右上图所示。

在如图所示的曲线中, B_r 是在H=0时的磁感应强度,称之为剩余磁感应强度; H_c 是在B=0时的磁场强度,称之为矫顽力。

由于铁磁材料的磁滞特性,为了使样品的磁特性反复出现,需要在每次测量前进行退磁,消除样品中的剩余磁性,使每次测得的基本磁化曲线由H=0,B=0的原始状态开始。

(二) 示波器测量磁滞回线原理图

如图是示波器测动态磁滞回线的原理电路。样品制成闭合环形后均匀绕以磁化线圈 N_1 和副线圈 N_2 ,即所谓的罗兰环。取样电阻两端的电压 u_1 加到示波器 x 轴输入端,电容 C 两端的电压 u_2 加到 y 输入端上。

(三) 电压与磁场强度、磁感应强度的关系

① u_1 (x 轴输入)与磁场强度H成正比

设样品的平均周长为l,磁化线圈匝数为 N_1 ,磁化电流瞬时值为 i_1 ,根据安培环路定理,有公式 $H\cdot l=N_1\cdot i_1$ 成立,因此有:

$$u_1 = R_1 i_1 = \frac{R_1 \cdot l}{N_1} H$$

从上式中可以发现,除 u_1 和H外,其余物理量均为已知常量,且二者满足正比关系,因此电子束水平偏转大小 u_1 与磁场强度H成正比。

② u_c (y 轴输入)与磁感应强度B成正比

设样品截面积为S,则根据电磁感应定律,副线圈匝数为 N_2 时,感应电动势为: $E_2=-N_2S\frac{dB}{dt}$ 。 当回路电流为 i_2 并且电容C上的电量为q时,有关系式 $E_2=R_2i_2+\frac{q}{C}$ 。

忽略自感应电动势的影响(因为 N_2 很小),并且当 R_2 、 C 足够大时可以使得 $\frac{q}{C}$ 相较于 $R_2 \cdot i_2$ 可以忽略,故将上式改写为 $E_2 = R_2 i_2$, 又因为 $i_2 = \frac{dq}{dt} = C \frac{du_c}{dt}$,故 $E_2 = R_2 C \frac{du_c}{dt}$ 。 因此 $N_2 S \frac{dB}{dt} = R_2 C \frac{du_c}{dt}$ (忽略正负号),将两边同时积分,得到了此式:

$$u_c = \frac{N_2 S}{R_2 C} B$$

因此可以发现,示波器的荧光屏上竖直方向的偏转大小 u_c 与磁感应强度B成正比。

(四)测量标定

①x 轴标定

对x轴进行标定的目的是为了确定示波器荧光屏x轴的每一格实际代表多少磁场强度。

调节 I_0 使荧光屏水平线长度为 M_x 格,对应 u_1 且为峰

值,即 $2\sqrt{2}R_1I_0$,因此每一小格代表的电压值为 $2\sqrt{2}R_1I_0/M_x$,因此每一小格代表的磁场强度为

$$2\sqrt{2}R_1I_0/M_x$$
 ,因此每一小格代表的
$$H_0 = \frac{2\sqrt{2}N_1I_0}{M_I} \, .$$

②y 轴标定

对y轴进行标定的目的是确定y轴的每一小格实际代表多少磁感应强度。

M 为一个标准互感器,流经其原边的瞬时电流为

 i_0 , 副边的感应电动势 $E_0 = -M \frac{di_0}{dt}$.

对两边积分,得到 $u_c = \frac{Mi_0}{R_c C}$ 。

A 测得的为 i_0 的有效值 I_0 ,因此 u_c 也是有效值,相应的峰值为 $\frac{2\sqrt{2}MI_0}{R_2C}$,若此时对应的垂直线长度

为 M_y , 故 y 轴每一小格代表的磁感应强度为 $B_0 = \frac{2\sqrt{2}MI_0}{N_2SM_y}$ 。

实验仪器 四、

GY-4 可调隔离变压器、示波器、螺线环、交流电流表、电阻 R_1 、 R_2 ,电容 C 、标定电阻 R_0 、BH-2 标准 互感器

实验原始数据记录 五、

(一) 测饱和磁滞回线

80V 时的电流(A) = 0.59

测量量	Hm	Bm	Нс	Br	-Hc	-Br	-Hm	-Bm
示波器对应格数	11.9	10.5	3.9	7.1	3.9	7.1	11.8	10.5

表 1 各测量量与示波器对应格数

实验截图:

(二)测量基本磁化曲线

保持示波器增益不变, 依次调节电压为 10V、20 V、30 V、40 V、50 V、60 V、70 V、80 V、90 V、100 V, 记录各个磁滞回线波形顶点坐标:

E	电压	10	20	30	40	50	60	70	80	90	100
Ux	(格)	2.7	3.4	3.9	4.5	5.6	7.2	9.1	11.6	14.0	18.0

. 14										1
l Uv(格)	11	27	1 10	5/1	70	I 2 N	1 95	105	117	1 12 0
Oy Vili /	1.1		0	J. T	7.0	0.0	ر. ح	10.5	11.2	12.0

表 2 各电压下的波形顶点坐标

实验截图:

30V 60V 100V

(三) 标定磁场强度 H

调节电源电压调节电流值为相应值,记录示波器上显示的波形总长度:

电流值(A)	0.02	0.04	0.06	0.08	0.10	0.12
Mx(小格)	8.2	15.8	24.0	32.4	40.0	48.0

表 3 不同电流下 x 轴波形长度所占格数

实验截图:

0.02 A 0.06A 0.10A

(四) 标定磁感应强度 B

调节电源电压调节电流值为相应值,记录示波器上显示的波形总长度:

电流值(A)	0.05	0.10	0.15	0.20	0.25	0.30
My(小格)	7.0	13.6	20.0	26.4	32.4	40.0

表 4 不同电流下 y 轴波形长度所占格数

实验截图:

0.30A

六、 实验数据处理和结果分析

(一) H 标定数据处理

利用公式 $H_0 = \frac{2\sqrt{2}N_1I_0}{M_xl}$, 计算得到各电流下 H_0 的值为(其中 $N_1 = 600$, l = 47.123cm) :

电流值(A)	0.02	0.04	0.06	0.08	0.10	0.12
Mx(小格)	8.2	15.8	24.0	32.4	40.0	48.0
示波器单位电压值表示的磁场强度 H ₀ (A/m)	8.78	9.12	9.00	8.89	9.00	9.00

表 5 各电流下 Ho的值

求得 H_0 的平均值为8.97A/m。

(二) B 标定数据处理

利用公式 $B_0 = \frac{2\sqrt{2}MI_0}{N_2SM_y}$,计算得到各电流下 B_0 的值为 (其中 $N_2 = 75$, $S = 1.3273cm^2$, M = 0.01H):

电流值(A)	0.05	0.10	0.15	0.20	0.25	0.30
My(小格)	7.0	13.6	20.0	26.4	32.4	40.0
示波器单位电压值表示的磁感应强度 Bo(T)	0.0203	0.0209	0.0213	0.0215	0.0219	0.0213

表 6 各电流下 Bo 的值

求得 B_0 的平均值为0.0212T

(三)基本磁化曲线数据

①由实验原理值, $H_m = u_x \cdot H_0$, $B_m = u_v \cdot B_0$, 代入数据得到相应值,记录于下表;

②真空磁导率为 $\mu_0=4\pi\times 10^{-7}H/m$,绝对磁导率为 $\mu=\frac{B}{H}$,相对磁导率为 $\mu_\alpha=\frac{\mu}{\mu_0}$,代入数据计算得

到相对磁导率记录于下表中:

电压	10	20	30	40	50	60	70	80	90	100
Ux (格)	2.7	3.4	3.9	4.5	5.6	7.2	9.1	11.6	14.0	18.0
Uy (格)	1.1	2.7	4.0	5.4	7.0	8.0	9.5	10.5	11.2	12.0
Hm(A/m)	24.2	30.5	35.0	40.4	50.2	64.6	81.6	104.1	125.6	161.5
Bm(T)	0.023	0.057	0.085	0.114	0.148	0.170	0.201	0.223	0.237	0.254
相对磁导率 μα	766	1494	1929	2257	2351	2090	1963	1702	1505	1254

表 7 基本磁化曲线相关数据

为了更方便地处理数据,我写了以下代码,算出 Hm、Bm,以及相对磁导率 μ_{α} :

1. #include <stdio.h>

2.

```
3.
      int main(){
4.
         double ux[10],uy[10];
5.
         double hm[10],bm[10];
6.
         double ua[10];
7.
         double h0=8.97,b0=0.0212,u0;
8.
         u0=4*3.14159*0.0000001;
9.
         for(int i=0;i<10;i++){</pre>
10.
            scanf("%lf",&ux[i]);
11.
            hm[i]=h0*ux[i];
12.
13.
         for(int i=0;i<10;i++){</pre>
14.
            scanf("%lf",&uy[i]);
15.
            bm[i]=b0*uy[i];
16.
17.
         for(int i=0;i<10;i++){</pre>
18.
            ua[i]=bm[i]/(hm[i]*u0);
19.
20.
         for(int i=0;i<10;i++){</pre>
21.
            22.
23.
         return 0;
```

程序运行的结果如下:

```
C:\Users\DELL\Desktop\未命名1.exe
2. 7 3. 4 3. 9 4. 5 5. 6 7. 2 9. 1 11. 6 14. 0 18. 0 1. 1 2. 7 4. 0 5. 4 7. 0 8. 0 9. 5 10. 5 11. 2 12. 0 Hm[1] = 24. 2, Bm[1] = 0.023, ua[1] = Hm[2] = 30. 5, Bm[2] = 0.057, ua[2] = 1 Hm[3] = 35. 0, Bm[3] = 0.085, ua[3] = 1
                                                                                                    1494
                                                                                                    1929
Hm[ 4] =
Hm[ 5] =
Hm[ 6] =
                      40. 4, Bm[ 4]
50. 2, Bm[ 5]
64. 6, Bm[ 6]
                                                      = 0.114, ua[
                                                                                                    2257
                                                      = 0.148, ua[
                                                                                     6] =
                                                     = 0.170, ua[
                                                                                                    2090
Hm[ 0] - 04.0, Bm[ 0] - 0.170, ua[ 0] -
Hm[ 7] = 81.6, Bm[ 7] = 0.201, ua[ 7] =
Hm[ 8] = 104.1, Bm[ 8] = 0.223, ua[ 8] =
Hm[ 9] = 125.6, Bm[ 9] = 0.237, ua[ 9] =
Hm[10] = 161.5, Bm[10] = 0.254, ua[10] =
                                                                                                    1963
                                                                                                    1702
                                                                                                    1505
 Process exited after 29.54 seconds with return value 0
 请按任意键继续. . .
```

将程序运行的结果填入表中,得到了各电压下的磁场强度、磁感应强度和相对磁导率。

(四) 曲线拟合部分

①磁化曲线

依次在图中作出表格中的磁滞回线的顶点,连接得到如下曲线图:

拟合得到的磁化曲线较为符合实验原理中的磁化曲线图,斜率先增大后减小。

② μ_{α} $-H_{m}$ 曲线

Hm(A/m)	24.2	30.5	35.0	40.4	50.2	64.6	81.6	104.1	125.6	161.5
相对磁导率 μ_{α}	766	1494	1929	2257	2351	2090	1963	1702	1505	1254

经作图发现, μ_{α} 和 H_m 符合原理中的描述,相对磁导率随着磁场强度的增大先增大到峰值,再减小。 从图中可以发现,初始磁导率 $\mu_{\alpha_0}=766$,最大磁导率 $\mu_{\alpha_m}=2351$ 。

七、实验心得

思考题

- 1、R1 的值为什么不能大? R1 如果过大,对应信号较弱,不利于测量。
- 2、Uc 对应的是 H 还是 B? 请说明理由? 对应的是 B, 因为感应电动势是由 B 引起的。
- 3、测量回线要使材料达到磁饱和,退磁也应从磁饱和开始,意义何在? 为了使之形成一条闭合的曲线。

心得体会

在本次实验中,我大致完成了实验内容,达到了实验目的。

本次动态磁滞回线的测量实验是本学期第三个电磁学实验。在我看来,本次实验的重点在于理解实验 原理,只要理清了原理,并细致地记录各组数据,便能较好地完成此次实验。本次实验的数据处理部分相 对比较常规,并且在多次尝试利用代码后,我发现利用程序处理数据的方法能够带来极大的便利。

在连续三周的电磁学实验后,我已经对电和磁的关系有了进一步的认识,两者总是"相伴而行",关系密不可分。虚拟实验简化了电磁学实验的复杂程度,也减小了实验的危险程度,但仍然能学到很多,即使中规中矩地按照实验指导书完成实验内容,也能获得很大的收获。