ÚVOD DO MATEMATICKEJ LOGIKY

Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia

1. VÝROKY

Pod pojmom "výrok" rozumieme v bežnom živote čosi ako $\mathbf{V}\hat{\mathbf{Y}}$ sledok $\mathbf{RO}\mathbf{K}$ ovania (napr. súdu, alebo komisie odborníkov) - budí totiž dojem, že ide o pravdivé, nevyvrátiteľné tvrdenie. V matematickej logike má tento pojem "skromnejší" význam: chápeme ním každé zrozumiteľné oznámenie, ktoré môžeme "ohodnotiť" z hľadiska pravdivosti (čiže rozhodnúť, či je pravdivé alebo nepravdivé). Napr. "2 x 2 = 5" je $\mathbf{v}\hat{\mathbf{y}}\mathbf{ro}\mathbf{k}$, lebo mu dobre rozumieme a vieme, že neplatí (v bežnej aritmetike).

Príklad 1. Ktoré z nasledujúcich viet sú výroky?

- a) Michalovcami preteká rieka Laborec. [je to výrok; je pravdivý]
- b) Brusel je hlavné mesto Číny. [je to výrok; je nepravdivý]
- c) $\frac{2}{9} (\frac{1}{5}, \frac{5}{3}) = -\frac{1}{9} \quad [je \ to \ v\acute{y}rok; je \ pravdiv\acute{y}]$
- d) Zotrite tabul'u! [nie je to výrok]
- e) Môžeme sa hravo presvedčiť... [nie je to výrok]
- f) Má červený sveter. [nie je to výrok]
- g) $(a+b)^2 = a^2 + b^2$ [nie je to výrok]
- h) Pre všetky reálne čísla a,b platí: $(a+b)^2 = a^2 + b^2$. [je to výrok; je nepravdivý]
- i) Možno nájsť reálne čísla a,b také, aby platilo: $(a+b)^2 = a^2 + b^2$. [$je \ to \ výrok; je \ pravdivý$]
- j) Pre všetky reálne čísla a,b platí: $(a+b)^2 = a^2 + 2ab + b^2$. [je to výrok; je pravdivý]
- k) Máš domácu úlohu? [nie je to výrok]
- 1) Bledomodrý svet. [nie je to výrok]
- m) Aspoň dve zo strán tohoto 6-uholníka sú zhodné. [je to výrok]
- n) Štvoruholník má susedné strany zhodné. [nie je to výrok]
- o) Vo vesmíre existuje aj iná civilizácia, ako je naša [*je to výrok; nevieme rozhodnúť o jeho pravdivosti*]
- p) Každý modrooký človek je blondín. [je to výrok; je nepravdivý]
- r) Existuje párne prvočíslo. [je to výrok; je pravdivý]

Za výroky považujeme tie oznamovacie vety, ktorými sa niečo zrozumiteľne oznamuje, čo môže byť buď len pravdivé, alebo nepravdivé.

Výrokmi nie sú nápisy, rozkazovacie a opytovacie vety, neúplne alebo nejasne formulované vety a pod.

Pravdivému výroku priraďujeme **pravdivostnú hodnotu** "pravda" ("p" alebo "1") , nepravdivému "nepravda" ("n" alebo "0").

Hypotézou (domnienkou) rozumieme výrok, ktorého pravdivostná hodnota je neznáma.

<u>Príklad 2.</u> Určte pravdivostnú hodnotu nasledujúcich výrokov:

a) $2^3 < 3^2$ [p]

b) Každý štvorec je geometrický útvar. [p]

c) Každý geometrický útvar je štvorec.	[n]
d) Súčet dvoch nepárnych prirodzených čísel je vždy párny.	[p]
e) Existujú prirodzené čísla p,q,r také, že platí: $p^2 + q^2 = r^2$.	[p]
f) Pre každé prirodzené číslo n platí, že 2 ⁿ + 1 je prvočíslo.	[n]
g) Každé prirodzené číslo sa dá zapísať ako súčet nanajvýš	
troch prvočísel.	[hypotéza]

Cvičenia.

- 1. Napíšte päť výrokov a určte ich pravdivostnú hodnotu.
- 2. Napíšte päť viet, ktoré nie sú z rôznych dôvodov výrokmi.
- 3. Uveďte príklad výroku, ktorý je pre vás (alebo pre vášho súrodenca či spolužiaka) hypotézou.

2. NEGÁCIE VÝROKOV

V matematike i v bežnom živote potrebujeme často poprieť pravdivosť určitého výroku - čiže vysloviť sa v tom zmysle, že výrok neplatí, že platí "jeho pravý opak". Výroku V', ktorý popiera pravdivosť výroku V, hovoríme **negácia výroku** V. Výrok a jeho negácia majú zrejme rôzne, opačné pravdivostné hodnoty. (Ak bol pôvodný výrok pravdivý, jeho negácia je nepravdivá a naopak.)

Pozor však - definovať negáciu výroku ako výrok s opačnou pravdivostnou hodnotou než pôvodný výrok je nepostačujúce (premyslite si to!).

Negáciu výroku možno vykonať

- formálne predradením slovného spojenia "Nie je pravda, že" pred výrok V;
- iným konštruktívnejším spôsobom, ako ukazuje nasledujúci príklad.

Výrok V	Negácia výroku V
Matematika je veda vied.	Nie je pravda, že matematika je veda vied.
	Matematika nie je veda vied.
1 + 1 = 3	Nie je pravda, že $1 + 1 = 3$.
	$1+1\neq 3$
Vonku nesvieti slnko	Nie je pravda, že vonku nesvieti slnko.
	Vonku svieti slnko.
Každý štvorec je geometrický	Nie je pravda, že každý štvorec je geometrický
útvar.	útvar.
	Nie každý štvorec je geometrický útvar.
7 < 5	Nie je pravda, že 7 < 5
	7 ≥ 5

Keď sa vo výroku hovorí o jednej z niekoľkých možností, musí jeho negácia zahrnúť všetky ostatné možnosti.

Cvičenia.

1. Negujte:

- Pri pokuse zapísať racionálne číslo 1/4 ako desatinné číslo nedospejeme k cieľu.
- Gréci nezmenili pod vplyvom hláskového písma svoj pôvodný systém číslic.
- $\pi = 22 / 7$
- $355 / 113 \le \pi$ ($\pi = 3,14159265 \dots$; $355/113 = 3.1415929 \dots$)

V matematike i v bežnom živote sú časté výroky s údajmi o počte objektov.

Patria k nim formulácie:

- * aspoň piati, minimálne piati, najmenej piati
- * najviac traja, maximálne traja
- * práve siedmi

a podobne.

Pri negovaní tohoto druhu výrokov možno s výhodou využiť grafické znázornenie na číselnej osi, ako ukazuje príklad:

	na cá cia vrámalny V
výrok V	negácia výroku V
a) Aspoň dvaja návštevníci zostali do	a') Najviac jeden návštevník zostal do
konca	konca.
3/43/43/43/43/43/4®	3/4
_ _ _•_•_••_	_•_• _ _
0 1 2 3 4 5 6	0 1 2 3
b) V skladbe bolo použitých najviac 5	b') V skladbe bolo použitých aspoň 6
motívov.	motívov.
3/43/43/4-3/43/4	3⁄4®
••_•_•	_ _ _ _
0 1 2 3 4 5 6	0 1 2 3 4 5 6 7
c) Aspoň jedno prvočíslo je párne	c') Žiadne prvočíslo nie je párne
3⁄43⁄43⁄43⁄43⁄43⁄4®	
	
0 1 2 3 4 5 6	0 1 2 3 4
d) Táto rovnica má práve 1 reálny koreň	d') Táto rovnica nemá žiaden alebo má
	aspoň 2 reálne korene.
	3⁄4®
— —•— — — —	_•_ _••_
0 1 2 4 5	0 1 2 3 4

Cvičenia.

2. Negujte:

- Nikto zo spolužiakov neprišiel.
- Dané kružnice majú spoločné aspoň 2 body.
- Možno nájsť najviac 3 prvočísla menšie ako 20.
- Táto rovnica má práve 2 reálne korene.
- Aspoň jeden z nás úlohu vyriešil.

3. VŠEOBECNÉ A EXISTENČNÉ KVANTIFIKÁTORY

Medzi slovné spojenia, ktoré vo výrokoch vyjadrujú údaje o počtoch objektov, sú významné naimä 2 druhv.

Všeobecný kvantifikátor vyjadruje, že každý uvažovaný objekt má (alebo žiaden nemá) vlastnosť, o ktorú ide.

Napr. "každý", "žiadny", "všetky", "ľubovoľný", "ktorýkoľvek", "ani jeden", ...

Existenčný kvantifikátor vyjadruje, že aspoň jeden uvažovaný objekt má (alebo nemá) vlastnosť, o ktorú ide.

Napr. "aspoň jeden", "možno nájsť", "existuje", "niektorý", ...

Príklad 1. Podčiarknite v nasledujúcich výrokoch všeobecné a existenčné kvantifikátory.

- a) Existuje 6-uholník, ktorý má aspoň tri tupé vnútorné uhly. [Existuje]
- b) *Možno nájsť* prirodzené číslo, ktoré je deliteľom *každého* prvočísla. [Možno nájsť; každého]
- c) Ani jeden koreň rovnice x + 1 = 0 nie je kladné číslo. [Ani jeden]

Negovanie výrokov so všeobecnými a existenčnými kvantifikátormi.

Príklad 2. Negujte:

- a) Všetky násobky čísla 8 sú párne čísla. [Niektoré násobky čísla. 8 nie sú párne čísla.]
- b) Ktorýkoľvek trojuholník má súčet dĺžok ťažníc väčší ako súčet dĺžok strán. [Existuje trojuholník, ktorý nemá súčet dĺžok ťažníc väčší ako súčet dĺžok strán.]
- c) Niektorý z koreňov tejto rovnice je záporný. [Všetky korene tejto rovnice sú nezáporné.]

Pokúsme sa sformulovať pravidlo, podľa ktorého by bolo možné negácie tohoto druhu "rutinne" vykonávať. Keďže existuje značná rozmanitosť v slovných vyjadreniach čo sa týka existenčných a všeobecných kvantifikátorov, zaveďme pre príslušné kvantifikované výroky jednotný tvar:

Pravidlo pre negovanie možno potom vyjadriť tabuľkou:

výrok V	negácia výroku V
<u>Pre každý</u> platí, že <u>je</u>	Existuje, ktorý <u>nie je</u>
Existuje aspoň 1, ktorý je	Pre každý platí, že <u>nie je</u>

Pri negovaní môžeme teda použiť takýto postup:

X : pôvodný výrok

X1 : výrok preformulovaný do jednotnej (matematickej) reči

X1': negácia výroku podľa tabuľky pre negovanie

X': negácia pôvodného výroku preformulovaná do bežnej reči

Napr.: A : Žiadny lichobežník nie je rovnoramenný.

A1 : O každom lichobežníku platí, že nie je rovnoramenný.

A1': Existuje lichobežník, ktorý je rovnoramenný.

A': Dá sa zostrojiť rovnoramenný lichobežník.

Alebo: B : Niektoré zlomky sa nedajú zjednodušiť.

B1 : Existuje aspoň jeden zlomok, ktorý sa nedá zjednodušiť.

B1': Pre každý zlomok platí, že sa dá zjednodušiť.

B': Všetky zlomky sa dajú zjednodušiť.

Cvičenia 1. Negujte:

a) Každý modrooký človek je blondín.

b) Možno nájsť reálne číslo x, pre ktoré platí : $x^2 < 0$.

c) Žiadny človek nemá na hlave viac ako 300 000 vlasov.

d) Existuje kladný koreň rovnice x + 2 = 0.

e) Pre každé reálne číslo *a* platí:

$$\sqrt{a+5} = \sqrt{a} + \sqrt{5}$$

f)Tretia mocnina l'ubovol'ného

reálneho čísla je kladná.

g) Niektoré násobky čísla 7 sú násobkami čísla 5.

h) Ľubovoľnému štvoruholníku možno opísať kružnicu.

2. Negujte:

a) Každá dvojica geometrických útvarov má spoločné aspoň tri body.

b) Existuje trojuholník, ktorý má aspoň dva vnútorné uhly tupé.

c) Každý prvok množiny A je prvkom aspoň jednej z množín B,C,D.

d) O ktoromkoľvek prirodzenom čísle platí, že má najmenej dvoch prirodzených deliteľov.

e) Každá z týchto rovníc má práve tri reálne korene.

f) Žiadny z navrhovaných postupov nemá viac ako 10 krokov.

g) Možno nájsť racionálne číslo, ktoré sa dá zapísať najviac piatimi rôznymi spôsobmi.

<u>Dohoda o symbolike:</u> Pre stručnosť a prehľadnosť vyjadrení boli zavedené nasledujúce značky:

∀ ... všeobecný kvantifikátor (má pripomínať prevrátené "A" - z nemeckého "alle");

∃ ... existenčný kvantifikátor (z nemeckého "existiert").

Píšeme napr.:

 $\forall x \in \mathbb{R}: x^2 \ge 0$ (Pre všetky reálne čísla x platí: $x^2 \ge 0$.)

 $\exists x \in \mathbb{N}$: (3n+1) je prvočíslo (Existuje prirodzené číslo n také, že 3n+1 je prvočíslo.)

4. ZLOŽENÉ VÝROKY

Z jednoduchých výrokov môžeme pomocou "logických spojok" vytvárať **zložené výroky**. K *logickým spojkám* (*logickým operátorom*) patria:

Názov	Značka	Význam
konjunkcia	Ù	"a súčasne"
alternatíva	Ú	"alebo"
implikácia	Þ	"ak , potom "
ekvivalencia	Û	"vtedy a len vtedy, keď"
negácia	¢	"nie je pravda, že "

Poznámka. Alternatíva sa niekedy nazýva aj **disjunkciou**.

Pravdivosť zloženého výroku závisí iba od pravdivosti jeho jednotlivých zložiek (tých jednoduchých výrokov, z ktorých je vytvorený), a to nasledujúcim spôsobom:

jednoduché výroky		zložené výroky				
A	В	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$	A'
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	0	0
1	1	1	1	1	1	0

Všimnime si, že **konjunkcia** je pravdivá len vtedy, keď oba zúčastnené výroky sú pravdivé. Skutočne: Výrok "Mám málo peňazí a výdavkov (mám) veľa" bude pravdivý len vtedy, ak má dotyčný skutočne málo peňazí a skutočne veľa výdavkov.

Naproti tomu **alternatíva** je pravdivá "skoro vždy". Nepravdivá je len vtedy, ak oba zúčastnené výroky sú nepravdivé.

Výrok "Telegram prišiel popoludní alebo večer" bude nepravdivý len vtedy, ak telegram neprišiel popoludní a neprišiel ani večer. Všimneme si ešte, že **alternatíva** znamená "alebo" v nevylučovacom zmysle. Nie je to teda "bud' - alebo".

Implikácia reprezentuje jednak "vyplývanie" v bežnom zmysle slova, ale je ponímaná všeobecnejšie - umožňuje navzájom spájať i výroky obsahovo spolu nesúvisiace. Všimnime si, že podobne ako **alternatíva** i **implikácia** je pravdivá "skoro vždy". Nepravdivá je len vtedy, ak prvý zúčastnený výrok je pravdivý a druhý nepravdivý (z pravdy by vyplývala nepravda).

Predstavme si, že ktosi povie: "Ak si túto úlohu sám vyriešil, tak ja som pápež!" Čo tým chcel autor výroku povedať? Zrejme, že ty si úlohu sám nevyriešil. Povedal to však "ozdobným" spôsobom, využívajúc vlastnosti implikácie. Skutočne: Jeho sugestívne zvolanie má byť nepochybne chápané ako pravdivý výrok; súčasne je zrejmé, že nie je pápež.. Teda A⇒B je pravda, B je nepravda. (Pozri tabuľku pravdivostných hodnôt zložených výrokov.) Takže nutne musí byť A nepravdivým výrokom. ("Úlohu si sám nevyriešil.")

Ekvivalencia je pravdivá len vtedy, ak oba zúčastnené výroky majú rovnakú pravdivostnú hodnotu.

Negáciu už poznáme - na rozdiel od predošlých štyroch zložených výrokov je vytvorená pomocou jediného jednoduchého výroku a pravdivá je len vtedy, ak pôvodný výrok je nepravdivý.

<u>Príklad 1</u>. Rozhodnite o pravdivosti zložených výrokov:

a) Pytagoras bol starogrécky učenec a B. Pascal žil v XVII. storočí.	[p]
b) Ak existuje rovnoramenný Δ, potom existuje aj rovnoramenný lichobežník.	[p]
c) Prvočísel je konečne veľa alebo č. 1 je zložené číslo.	[n]
d) (5 je prvočíslo) \wedge (7 < 5)	[n]
e) (Tretia odmocnina z 8 je 2)∨(tretia odmocnina z (-8) je (-2))	[p]
f) (7 nie je prvočíslo) \Rightarrow (7 je delitelom č. 1001)	[p]
g) $(14^2 = 196) \Leftrightarrow (13^2 = 169)$	[p]
h) $(\sqrt{1234321}) = 1111$)'	[n]
i) Ak je číslo 2002 deliteľné siedmimi, potom je aj č. 143 deliteľné siedmimi.	[n]
j) $(3^2 + 4^2 = 5^2) \Leftrightarrow (4^2 + 5^2 = 6^2)$	[n]

Cvičenia.

1. Rozhodnite o pravdivosti zložených výrokov:

- a) Pre počet uhlopriečok v ľubovoľnom konvexnom n uholníku platí [p] $p_n= n(n-3)/2$ alebo $p_n= n(n+3)/2$.
 b) Ak je Δ ABC pravouhlý s pravým uhlom pri vrchole C, potom pre jeho strany a, b, c (pri obvyklom označení) platí: $c^2=a^2+b^2$.
 c) $[(\sqrt{2}>1.4) \wedge (\sqrt{2}<1.5)]^*$
 [p] d) $(\pi=22/7)'$
 [p] e) $\forall x \in R$: $[(x/2=4) \Leftrightarrow (x=8)]$
- []* Konjukciu tohoto druhu zvykneme skrátene zapisovať (1.4 < $\sqrt{2}$ < 1.5)

<u>Poznámka</u>. Dávajme si pozor pri našich slovných vyjadreniach o použitých matematických postupoch. Ak naše úvahy či úpravy majú charakter *ekvivalencie* ("logickej rovnocennosti"), je namieste spojka "čiže". V prípade, že ide o postup, ktorý má charakter *implikácie* ("dôsledkový postup"), použijeme spojku "teda".

5. VÝROKOVÉ FORMULY. TAUTOLÓGIE.

Tak, ako je možné v "číselnej algebre" vytvárať pomocou premenných výrazy,ktorých "vyhodnotením" - po dosadení číselných hodnôt premenných - dostaneme číslo, je možné vytvárať výrazy aj pomocou výrokových premenných. Hovoríme im **výrokové formuly**. Ich vyhodnotením dostaneme pravdivostnú hodnotu "pravda" alebo "nepravda".

<u>Príklad 1</u>. Zistite, pri ktorých hodnotách výrokových premenných A, B nadobúda výroková formula $(A \vee B)' \Leftrightarrow (A' \vee B')$ hodnotu pravda..

Riešenie.

Zostavíme príslušnú pravdivostnú tabuľku:

A	В	A'.	B'	A' ∨ B'	(A ∨ B)'	$(A \lor B)' \iff (A' \lor B')$
0	0	1	1	1	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	0	0	1

Daná výroková formula je pravdivá práve vtedy, keď oba z výrokov A,B sú pravdivé alebo oba nepravdivé.

Výroková formula, ktorá nadobúda hodnotu "pravda" pri všetkých variáciách hodnôt zúčastnených premenných, sa nazýva **tautológia.**

<u>Príklad 2</u>. Zistite, ktoré z nasledujúcich výrokových formúl sú tautológie:

- a) $(A')' \Leftrightarrow A$
- b) $[(A \land B)' \Leftrightarrow (A' \lor B')]$
- c) $[(A \lor B)' \Leftrightarrow (A' \land B')]$
- d) $[(A \Rightarrow B)' \Leftrightarrow (A \land B')]$
- e) $(A \Leftrightarrow B)' \Leftrightarrow [(A \land B') \lor (A' \land B)]$

Riešenie.

Všetky sú tautológiami. Uveď me aspoň niektoré z pravdivostných tabuliek.

a)

	A'	(A')'	$(A')' \Leftrightarrow A$
0	1	0	1
1	0	1	1

b)

A	В	$A \wedge B$	$(A \wedge B)'$	A'	B'	A' ∨ B'	$(A \land B)' \Leftrightarrow (A' \lor B')$
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

Negovanie zložených výrokov.

Predchádzajúci príklad nebol náhodný. Keď si formuly všimneme bližšie, vidíme, že poskytujú návod, ako negovať zložené výroky. Napríklad v prípade c) vidíme, že negovať alternatívu je z hľadiska logiky to isté, ako konjugovať negácie jednotlivých výrokov, a podobne. Formuly b), c) sa nazývajú "de Morganove" pravidlá.

Príklad 3. Negujte výroky:

- a) Anna sa učí a Viera hrá. [Anna sa neučí alebo Viera nehrá]
- b) Dám si čaj, alebo (si dám) minerálku. [Nedám si čaj ani minerálku.]
- c) Ak zmaturujem, pôjdem na vysokú školu. [Zmaturujem a nepôjdem na VŠ.]
- d) Prezradím ti to ⇔ keď sa mi zaviažeš mlčaním.
 [Prezradim ti to a ty sa mi nezaviažeš mlčaním alebo ti to neprezradím a ty sa mi zaviažeš mlčaním.]
- e) Včera nepršalo. [Včera pršalo.]
- f) $2 \operatorname{deli} 5 \wedge 2 \operatorname{deli} 6$ [2 nedeli $5 \vee 2$ nedeli 6]
- g) 8<5<10 [8≥5 ∨ 5≥10]
- h) 7 delí $1001 \Rightarrow 7$ delí 143 [7 delí $1001 \land 7$ nedelí 143]

Vráťme sa k výrokovým formulám. Iste ste si všimli, že pravdivostná tabuľka, pomocou ktorej sme skúmali formulu s jednou výrokovou premennou, mala 2 riadky (výroková premenná mohla nadobudnúť hodnotu 1alebo 0.) Skúmanie formuly s dvomi výrokovými premennými vyžadovalo 4 riadky (každá z výrokových premenných mohla nadobudnúť hodnotu 1alebo 0, takže 2x2=4). Zrejme pri troch výrokových premenných bude potrebné 2x2x2=8 riadkov tabuľky, atď. Na poradí riadkov samozrejme nezáleží, pozor však pri kontrole výsledkov.

<u>Príklad 4</u>. Zistite, či ide o tautológiu:

$$[(A \land B) \Rightarrow C] \Leftrightarrow [A \Rightarrow (B \Rightarrow C)] \dots (*)$$

Riešenie.

Zostavme tabuľku pravdivostných hodnôt:

A	В	C	Α∧	$(A \wedge B) \Rightarrow C$	$B \Rightarrow C$	$A \Rightarrow (B \Rightarrow C)$	(*)
			В				
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	1	0	1	1
0	1	1	0	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Je to tautológia.

Cvičenia.

1. Zistite, ktoré z nasledujúcich formúl sú tautológie:

a)
$$(A \wedge B')' \Rightarrow (A' \vee B)$$
 (áno)

b) $[(A \Rightarrow B) \land (B \Rightarrow A)] \Leftrightarrow [A \Leftrightarrow B]$	(áno)
c) $[A \lor (A' \land B)] \Leftrightarrow (A \lor B)$	(áno)
d) $[(A' \Rightarrow B)' \Leftrightarrow (A \lor B)$	(nie)
e) A v A'	(áno)
f) $(A \Rightarrow B) \Leftrightarrow (B' \Rightarrow A')$	(áno)
g) $(A \Leftrightarrow B) \Leftrightarrow (A' \Leftrightarrow B')$	(áno)

2. Negujte:

- Nie som hladný a nie som smädný.
- Ak dostanem čerstvé ovocie, nekúpim kompót.
- Pôjdem rovno domov alebo sa zastavím v kníhkupectve.
- Pomaranče kúpim len vtedy, ak nebudú citróny.
- Ak neprídem načas, zostanem vonku.
- 3. Zistite, ktoré z nasledujúcich formúl sú tautológie:

a)
$$(A' \lor B') \land (B \ni \Rightarrow A') \land (X \Leftrightarrow A')$$
 (nie)
b) $[(A' \land B) \lor (B \Rightarrow C')] \lor (A' \Leftrightarrow C)$ (nie)
c) $[(A' \lor B) \lor (A \land C)] \lor (B' \lor C')$ (áno)
d) $[A \Rightarrow (B \land C)] \Leftrightarrow [A \Rightarrow (B \Rightarrow C)]$ (nie)
e) $[(A \lor B')' \land C'] \Leftrightarrow [A \lor B' \lor C]'$ (áno)

<u>Poznámka</u>. V tomto článku sme sa venovali výrokovým formulám. V matematickej literatúre sa možno stretnúť s formálne podobným, obsahovo však značne odlišným pojmom <u>výroková forma</u>. Aspoň stručne vysvetlime jeho obsah: *Výroková forma* je zápis s premennými, ktorý nie je výrokom, ale ktorý sa výrokom stane po dosadení konštánt za premenné. Iným spôsobom, ako vytvoriť z výrokovej formy výrok, je predradenie vhodného kvantifikátora. Napr. " $(a + b)^2 = a^2 + b^2$ " nie je výrok (je to výroková forma), ale " $(2 + 3)^2 = 2^2 + 3^2$ " už výrokom je. Podobne " $\forall a,b \in R$: $(a + b)^2 = a^2 + b^2$ " alebo " $\exists a,b \in R$: $(a + b)^2 = a^2 + b^2$ " sú výroky.

S výrokovými formami možno vykonávať obdobné "operácie" ako s výrokmi (z jednoduchých tvoriť zložené pomocou "logických spojok"). Zavádzajú sa aj pojmy *definičný obor výrokovej formy* a *obor pravdivosti výrokovej formy*, pomocou ktorých možno rozmanité matematické poznatky terminologicky ujednotiť.

6. RIEŠENIE SLOVNÝCH ÚLOH POMOCOU VÝROKOVEJ LOGIKY

Sú typy slovných úloh, pri ktorých je výhodné urobiť "výrokovú analýzu" textu a na riešenie použiť tabuľky pravdivostných hodnôt výrokov. Postup si ukážeme na príklade.

<u>Príklad 1</u>. Pri spracúvaní počítačových programov A,B,C platia tieto podmienky:

Ak sa spracúva program A aj B, nespracúva sa C. Ak sa nespracúva A, spracúva sa B. Ak sa spracúva B alebo C, nespracúva sa A. Aké sú možnosti spracúvania pri dodržaní uvedených podmienok?

Riešenie: Zaveď me si nasledujúce označenie: A ... spracúva sa program A

B ... spracúva sa program B

C ... spracúva sa program C

Podľa textu úlohy zrejme platí výrok: $[(A \land B \Rightarrow C')] \land [A' \Rightarrow B] \land [(B \lor C) \Rightarrow A']....(v)$ Zostavme príslušnú tabuľku pravdivostných hopdnôt:

	В	C	A'	C'	AΛ	(A∧B)⇒C	A'⇒	B∨C	(B∨C)⇒	(v)
					В	,	В		A'	
0	0	0	1	1	0	1	0	0	1	0
0	0	1	1	0	0	1	0	1	1	0
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	0	0	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1
1	0	1	0	0	0	1	1	1	0	0
1	1	0	0	1	1	1	1	1	0	0
1	1	1	0	0	1	0	1	1	0	0

Ako vidno z tabuľky, sledovaný zložený výrok nadobúda hodnotu "pravda" v troch prípadoch, čo sú súčasne možnosti spracovania. Spracúva sa len program B, alebo B a súčasne C, alebo len program A.

Cvičenia.

1. Pri vyšetrovaní krádeže auta sa zistili nasledujúce skutočnosti:

V inkriminovanom čase sa na mieste činu nevyskytoval podozrivý A, alebo tam nebol podozrivý B. Keď sa tam nevyskytol B, nebol tam ani A. Podozrivý C sa na mieste činu vyskytol práve vtedy, keď tam nebol A.

Možno jednoznačne určiť páchateľa v prípade, že bol práve jeden? [Páchateľom bol C.]

2. Rozhodnite, ktorí žiaci zo štvorice A,B,C,D pôjdu na výlet, ak sa majú dodržať tieto zásady:

Pôjde aspoň jeden z dvojice B,D, najviac jeden z dvojice A,C, aspň jeden z dvojice A,D a najviac jeden z dvojice B,C. Ďalej je isté, že B nepôjde bez A a že C pôjde vtedy, keď pôjde D. [Sú dve riešenia: A a B, alebo C a D]

7. MATEMATICKÉ VETY

Potreba utriediť matematické poznatky do bezosporného hierarchického systému je veľlmi stará. V tomto smere je známe úspešné dielo starogréckeho matematika Euklida s názvom Základy. Jednotlivé poznatky ("matematické vety") sa tam radia od tých najjednoduchších,

najzrejmejších, prijímaných bez dôkazu (hovoríme im <u>axiómy</u>), až po tie menej názorné, niekedy až prekvapujúce - a to tým spôsobom, že sa vyvodzujú jedny z druhých (zložitejšie tvrdenia sa dokazujú s využitím jednoduchších, už predtým dokázaných tvrdení).

Táto základná schéma budovania matematických (a nielen matematických) teórií - vylepšená a zdokonalená - sa používa prakticky dodnes.

Nevyhnutnou súčasťou každej teórie sú predovšetkým <u>definície</u>, vymedzujúce obsah a rozsah používaných pojmov; a potom <u>vety</u> - pravdivé tvrdenia, ktoré sa dokazujú spôsobom už popísaným vyššie.

Matematické vety majú často tvar implikácie $A \Rightarrow B$ (A - predpoklady vety, B - záver, čiže tvrdenie vety), prípadne ekvivalencie $A \Leftrightarrow B$.

Hoci nás matematické teórie často očarúvajú krásou svojej logickej stavby a pôsobia veľmi "jednoznačne", cesta k ich vytvoreniu nebýva ani jednoduchá, ani priamočiara. Nevyhnutnou zložkou vedeckej práce je tvorba a overovanie hypotéz, čo je proces v prípade "prvolezcov" vysoko náročný na kvalitu myslenia.

Ilustrujme si túto činnosť aspoň na jednoduchších príkladoch.

Overovanie platnosti hypotéz.

Hypotéza je výrok, ktorý ponúka na základe známych faktov nové závery. Najčastejšie má tvar všeobecného alebo existenčného výroku. Overiť hypotézu znamená túto dokázať, alebo vyvrátiť. O tom, že to nie je vždy jednoduché, svedčia niektoré hypotézy, ktoré stáročia odolávali pokusom o dôkaz.

Fermat (17. storočie): Pre žiadne prirodzené číslo n>2 nemožno nájsť trojicu prirodzených čísel p,q,r, aby platilo: $p^n + q^n = r^n$. (Táto hypotéza bola dokázaná r. 1993.)

Goldbach (18. storočie): Každé prirodzené číslo je súčtom nanajvýš troch prvočísel.

Príklad 1. Overte pravdivosť následujúcich hypotéz. Každú nepravdivú hypotézu negujte.

- a) Možno nájsť nájsť najviac jedno reálne číslo x, pre ktoré platí $(2^x)^2 = 2^{x.x}$.
 - [nie; $x=0 \lor x=2$; Možno nájsť aspoň dve reálne čísla x, pre ktoré platí $(2^x)^2 = 2^{x.x}$.]
- b) Pre každé reálne číslo x platí: $x^2 < 2^x$.
 - [nie; napr. x=3; $\exists x \in \mathbb{R}: x^2 \ge 2^x$]
- c) Číslo 3/5 možno zapísať najviac štyrmi rôznymi spôsobmi. [nie; 6/10, 9/15, 12/20, 15/25, 30/50, ...; Číslo 3/5 možno zapísať aspoň piatimi rôznymi spôsobmi.]
- d) Pre každú dvojicu celých čísel a,b platí: |a+b|=|a|+|b|. [nie; napr. a=3, b=-5; Existuje dvojica celých čísel a,b, pre ktoré |a+b|≠|a|+|b|.]
- e) Rovnica $x^3 x^2 + 2 = 0$ má aspoň jeden reálny koreň. [áno; x=-1]
- f) Každé prvočíslo je nepárne. [nie; p=2 je párne a je to prvočíslo; Existuje párne prvočislo.]

Príklad 2. Dokážte následujúce hypotézy:

- a) Súčet troch za sebou nasledujúcich celých čísel je deliteľný tromi.
 - $[z+(z+1)+(z+2)] = 3(z+1) = 3k, k \in \mathbb{Z}$
- b) Ak pripočítame k súčinu dvoch za sebou idúcich celých čísel väčšie z nich, dostaneme druhú mocninu väčšieho čísla.

$$[z(z+1)+(z+1)=(z+1)^2]$$

Cvičenia.

- 1. Overte pravdivosť nasledujúcich hypotéz. Každú nepravdivú hypotézu negujte.
 - a) $\forall a \in \mathbb{R}$: $a > 0 \Rightarrow a + 1/a \ge 2$

[áno]

- b) Existujú aspoň dve prirodzené čísla, pre ktoré platí $2^n = n^2$. [áno; n=2, n=4]
- c) Každý trojuholník je rovnoramenný.
 - [nie; Existuje trojuholník, ktorý nie je rovnoramenný.]
- d) Existuje trojuholník, ktorý má aspoň 2 vnútorné uhly tupé. [nie; O každom trojuholníku platí, že má najviac jeden uhol tupý.]
- e) V každom trojuholníku je súčet dĺžok ľubovoľných dvoch jeho strán väčší, ako dĺžka tretej strany. [áno]
- f) Existuje reálne číslo, ktorého tretia mocnina nie je kladná. [áno]
- g) Možno nájsť najviac päť reálnych čísel x, pre ktoré platí |x|=-x. [nie; Možno nájsť aspoň 6 reálnych čísel x, pre ktoré platí: |x|=-x]
- h) \forall $n \in \mathbb{N}$: $n^2 + n + 17$ je prvočíslo. [nie; napr. n=17; \exists $n \in \mathbb{N}$: $n^2 + n + 17$ nie je prvočíslo.]
- 2. Rozhodnite o pravdivosti nasledujúcich hypotéz. Každú nepravdivú hypotézu negujte:
- Koreňom rovnice 0.x = 0 je každé reálne číslo.
- Existuje reálne číslo x, ktoré je koreňom rovnice 0.x=1.
- Každé reálne číslo x je koreňom rovnice 0/x=0.
- Existuje práve jedno reálne číslo x, ktoré je koreňom rovnice $x^2=0$.
- Existuje aspoň jedno reálne číslo x, ktoré je koreňom rovnice \sqrt{x} =-1.
- Neexistuje reálne číslo x, ktoré by bolo koreňom rovnice 1/x=0.
- 3. Dokážte platnosť hypotéz:
 - a) Súčet štyroch za sebou nasledujúcich celých čísel je párny.
 - b) Súčet druhých mocnín dvoch za sebou nasledujúcich celých čísel je nepárny.
 - c) Rozdiel druhých mocnín každých dvoch po sebe nasledujúcich nepárnych čísel je deliteľ ný ôsmimi.

$$[(2k+3)^2 - (2k+1)^2 = 8(k+1)]$$

8. OBMENY A OBRÁTENIA VIET

Už sme spomínali skutočnosť, že matematické vety majú často tvar implikácie A⇒B.

K takejto vete možno vždy formulovať takzvanú **obmenenú vetu** tvaru B'⇒A', ktorá je z hľadiska pravdivosti s pôvodnou vetou rovnocenná. (Pozri cvičenie 1f) z predchádzajúceho článku.)

Naproti tomu takzvaná **obrátená veta** k vete $A \Rightarrow B$ tvaru $B \Rightarrow A$ môže, ale aj nemusí mať rovnakú pravdivostnú hodnotu, ako veta pôvodná.

<u>Príklad 1</u>. K daným vetám vyslovte vety obmenené a obrátené. Ak je to možné, rozhodnite aj o ich pravdivosti.

a) Ak je uhol α tupý, potom uhol β nie je pravý.

Obmenená veta: Ak je uholβ pravý, potom uhol α nie je tupý. *Obrátená veta:* Ak uhol β nie je pravý, potom uhol α je tupý.

b) Ak je p párne prvočíslo, potom p = 2.				
Obmenená veta: Ak p ≠ 2, potom p nie je párne prvočíslo.	(p)			
<i>Obrátená veta:</i> Ak p = 2, potom p je párne prvočíslo.	(p)			
c) Ak $c = 22/7$, potom $c > \pi$.	(p)			

Obmenená veta: Ak $c \le \pi$, potom $c \ne 22/7$. (p) *Obrátená veta:* Ak c > π , potom c = 22/7. (n)

Matematické vety majú často tvar kvantifikovaných výrokov. Pri tvorbe obmenených a obrátených viet sa kvntifikácia zachováva. (Na rozdiel od negácie, kedy sa vzájomne zamieňajú všeobecný a existenčný kvantifikátor - ako už vieme.)

Vytvorte obmenu, obrátenie a negáciu pôvodnej vety. Rozhodnite aj o Príklad 2. pravdivosti jednotlivých tvrdení.

Veta:	$\forall n \in N : (6 \text{ delí } n \Rightarrow 3 \text{ delí } n)$	(p)
Obmenená veta:	$n \in N : (3 \text{ nedelí } n \Rightarrow 6 \text{ nedelí } n)$	(p)
Obrátená veta:	$\forall n \in \mathbb{N} : (3 \text{ delí } n \Rightarrow 6 \text{ delí } n)$	(n)
Negácia pôvodnej vety:	$\exists n \in N : (6 \text{ delí } n \land 3 \text{ nedelí } n)$	(n)

<u>Cvičenie</u>. Vytvorte obmeny, obrátenia a negácie následujúcich viet.

- a) \forall n \in N: n je párne číslo \Rightarrow n² je párne číslo.
- b) Pre všetky kladné reálne čísla x platí: $x>1 \Rightarrow \sqrt{x}>1$.
- c) O každom štvoruholníku platí: Ak sú uhlopriečky 4-uholníka navzájom kolmé, potom ie to štvorec.
- d) Pre každý trojuholník ABC platí: Ak je trojuholník ABC pravouhlý s pravým uhlom pri vrchole C, potom (pri obvyklom značení) platí : $c^2 = a^2 + b^2$.

Poznámka. Obmenenú vetu môžeme vytvoriť aj k vete, ktorá má tvar ekvivalencie (podľa tautológie z bodu 1g) z predchádzajúceho článku).

9. MATEMATICKÉ DÔKAZY

Ako dokázať vetu typu A ⇒ B? Formálna matematická logika hovorí o štyroch typoch dôkazov:

- a) priamy dôkaz,
- b) nepriamy dôkaz,
- c) dôkaz sporom,
- d) dôkaz matematickou indukciou.

(Pričom prvé tri typy dôkazov môžeme využiť aj v iných vedách, napríklad vo filozofii; posledný z menovaných je špecificky matematický).

Za základný typ dôkazu sa považuje <u>priamy dôkaz</u>, spočívajúci vo vytvorení akéhosi reťazca implikácií $A\Rightarrow B_1$, $B_1\Rightarrow B_2$, ..., $B_k\Rightarrow B$ a následného logického záveru: $A\Rightarrow B$.

Pravda, nebýva to vždy také jednoduché a často musíme dielčie implikácie $A_i \Longrightarrow A_{i+1}$ nahradiť implikáciami typu $(A_i \land C_i) \Longrightarrow A_{i+1}$, kde C_i je nejaká vhodná veta, už predtým dokázaná, alebo nejaké "samozrejmé" tvrdenie, alebo vhodná konjunkcia niekoľkých už predtým dokázaných viet a podobne.

<u>Príklad 1</u>. Druhá mocnina nepárneho čísla je číslo nepárne. Dokážte. *Dôkaz*.

Preformulujme dané tvrdenie tak, aby malo tvar implikácie:

 \forall n \in N: n je nepárne číslo \Rightarrow n² je nepárne číslo [\forall n \in N: A(n) \Rightarrow B(n)]

A(n): n je nepárne číslo
$$↓$$

B₁(n): n=2k+1, k∈ N₀ $↓$

B₂(n): n² = (2k+1)² $↓$

B₃(n): n² = 4k²+4k+1 $↓$

B₄(n): n² = 2(2k²+2k)+1 $↓$

B₅(n): n² = 2r +1, r ∈ N₀ $↓$

B(n): n² je nepárne číslo

Príklad 2. Dokážte:
$$\forall$$
 n ∈ N: n ≥ 3 ⇒ n² -5 n + 6 ≥ 0

A(n): n ≥ 3 ∧ C(n): 3 > 2

↓

B₁(n): n ≥ 3 ∧ n ≥ 2

↓

B₂(n): n - 3 ≥ 0 ∧ n - 2 ≥ 0

↓

B₃(n): (n - 3)(n - 2) ≥ 0 ∧ C3(n): n² - 5n + 6 = (n-2)(n-3)

↓

B(n): n² - 5n + 6 ≥ 0

Poznámka.

Zápis dôkazov v predošlých dvoch príkladoch sme volili taký, aby vynikla ich logická štruktúra. V praxi zápisy často skracujeme, napr. v pr. 1 stačí zapísať:

$$n = 2k + 1, \ k \in N_0 \Longrightarrow n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2r + 1 \ , \ \ r \in \ N_0$$

Ďalším typom dôkazu je <u>nepriamy dôkaz.</u> Spočíva v dôkaze obmenenej vety, ktorá, ako je nám už známe, má tú istú pravdivostnú hodnotu ako pôvodná veta.

S viacerými príkladmi na priamy a nepriamy dôkaz sa stretneme v ďalšom štúdiu matematiky, napr. v kapitole o deliteľnosti prirodzených čísel.

Tretím typom dôkazu je <u>dôkaz sporom</u>. Spočíva v tom, že z platnosti predpokladov vety a súčasnej <u>neplatnosti</u> záveru vety vyvodíme logicky správnym postupom "spor" - teda tvrdenie, ktoré evidentne neplatí (napr. je v rozpore s už predtým dokázanými tvrdeniami).

<u>Príklad 3</u>. Nech p je daná priamka a A bod, ktorý na nej neleží. Bodom A možno viesť k priamke p najviac jednu kolmicu. Dokážte!

<u>Riešenie</u>. Dôkaz urobíme sporom. Nech tvrdenie vety neplatí, čiže nech za daných predpokladov možno viesť bodom A k priamke p aspoň dve rôzne kolmice. Tieto zrejme pretnú priamku p v dvoch rôznych bodoch R,S. Vznikne trojuholník RSA, ktorý má dva pravé uhly, a teda súčet veľkostí vnútorných uhlov väčšší ako 180 stupňov - čo je v spore s tým, že súčet veľkostí vnútorných uhlov v každom trojuholníku je 180 stupňov. - Dôkaz je hotový.

S ďalšími príkladmi dôkazu sporom sa môžeme stretnúť v kapitole o deliteľnosti prirodzených čísel (napr. s "klasickým" Euklidovým dôkazom tvrdenia, že prvočísel je nekonečne veľa), poprípade v časti týkajúcej sa číselných oborov (tvrdenie o iracionalite čísla $\sqrt{2}$).

10. DÔKAZ MATEMATICKOU INDUKCIOU

Predstavme si akúsi "perpetuum mobile bábiku", o ktorej platí:

- 1° Spravila prvý krok.
- 2° Ak spraví k ty krok, tak potom spraví aj (k+1). krok (platí pre všetky k∈ N).

Môžeme o nej vyhlásiť, že chodí? Zrejme áno. Podľa 1° spravila prvý krok, podľa 2° teda spraví aj druhý (keď prvý, tak aj druhý), opäť podľa 2° spraví aj tretí krok (keď druhý, tak aj tretí), atď.

Záver: Bábika chodí.

A teraz si predstavme matematické tvrdenie tvaru:

 $\forall n \in \mathbb{N}$: V(n).

Použijúc predchádzajúcu analógiu pre dôkaz uvedeného tvrdenia by stačilo overiť dva kroky:

- 1° Platnosť uvedeného tvrdenia pre n=1.
- 2° Platnost' tvrdenia:

$$\forall k \in \mathbb{N}: V(k) \Rightarrow V(k+1)$$

Po ich overení už stačí len vysloviť záver: Pre všetky prirodzené čísla n platí V(n).

Uvedená schéma je základnou schémou dôkazu, ktorý sa nazýva <u>dôkaz matematickou indukciou</u> (platnosť tvrdenia sa podľa kroku 2° sťaby prenáša, "indukuje" z "k" na "k+1"). Výrokovú formu V(k) z kroku 2° nazývame <u>indukčný predpoklad.</u>

je počet vrcholov n- tého obrazca daný vzťahom $p_n = 4n + 2$. Dokážte.

Riešenie. Dôkaz vykonáme matematickou indukciou.

- 1° p₁=6, ako možno l'ahko u prvého obrazca spočítať; aplikovaním dokazovaného vzťahu pre n=1 dostávame: p1= 4.1+2=6. Takže pre n=1 tvrdenie platí.
- 2° Nech pre nejaké k platí $p_k = 4k + 2$ (indukčný predpoklad).

Ako si možno všimnúť, každý nasledujúci obrazec v uvedenej postupnosti má o 4 vrcholy viac ako obrazec predchádzajúci. Platí teda:

$$p_{k+1} = p_k + 4 = (4k + 2) + 4 = 4k + 4 + 2 = 4(k + 1) + 2.$$

Záver: V uvedenej postupnosti obrazcov je počet vrcholov n-tého obrazca daný výrazom 4n+2.

Dôkaz je hotový.

Vyslovte hypotézu a dokážte ju.

- 2. Určte počet častí, na ktoré delí rovinu n priamok, prechádzajúcich jedným bodom. Vyslovte hypotézu a dokážte ju.
- 3. Dokážte: $\forall n \in N$:
 - a) 1 + 2 + 3 + ... + n = n.(n+1)/2
 - b) 1.2 + 2.3 + ... + n.(n+1) = n.(n+1).(n+2)/3

S ďalšími príkladmi na dôkaz matematickou indukciou sa možno stretnúť v rozmanitých častiach matematiky - v úlohách o deliteľnosti, postupnostiach, v kombinatorike a ďalších.

ZÁVER

Cieľom predloženej práce bolo vytvoriť podporné učebné texty pre vyučovanie základov logiky v 1.ročníku gymnázia, ktoré by poskytli vyučujúcim (poprípade i žiakom) súhrnný pohľad na danú problematiku a zaplnili tak určitú medzeru v súčasnej učebnicovej literatúre. Skutočnosť, že aktuálne učebnice ("klasické" i "alternatívne") sa matematickej logike venujú iba "útržkovitým" spôsobom, vníma značná časť učiteľskej verejnosti ako negatívny jav. Skúsenosti z vyučovania ukazujú, že u časti slabších žiakov dochádza k nevhodnej "mäteži" pojmov, ktorej možno zabrániť jedine explicitným oddelením poznatkov z matematickej logiky od poznatkov z iných partií matematiky (máme na mysli predovšetkým teóriu čísel, riešenie rovníc a nerovníc, ale aj ďalšie). Na druhej strane uvedenie "logiky v

kocke" v úvode stredoškolského štúdia umožní popri "čistote" budovania pojmového aparátu ostatných častí matematiky i budovanie paralel medzi logikou a teóriou množín, čo možno účinne zužitkovať napr. v teórii pravdepodobnosti.

Nezanedbateľ nou námietkou proti súčasnému stavu je i fakt, že matematická logika sa prezentuje "iba" ako nástroj na spresňovanie vyjadrovania a dokazovania v matematike, pričom jej druhý rozmer - aplikovateľ nosť (napr. v logických obvodoch alebo pri riešení slovných úloh)- sa zanedbáva.

Pri tvorbe predložených textov som vychádzala z dlhoročných skúseností z vyučovania (ako svojich, tak aj kolegov v rámci našej predmetovej komisie matematiky), pričom som sa opierala o text pripravovaných vedomostných štandardov budúcich maturantov (materiál ŠPÚ), rešpektujúc obmedzenia vyplývajúce zo súčasnej časovej dotácie. Príklady a cvičenia som volila také, aby na jednej strane poskytli vyučujúcemu dostatok cvičebného materiálu, na strane druhej by však mohli (a mali) tvorivého učiteľa inšpirovať k tvorbe vlastných príkladov podľa aktuálnej situácie.

Verím, že predložené texty prispejú svojím skromným dielom ku skvalitneniu výuky v 1.ročníku gymnázií.

Zoznam použitej literatúry

- [1] Šedivý, J., Lukátšová, J., Odvárko, O., Zöldy, M.: Úlohy o výrokoch a množinách pre 1.ročník gymnázia. Bratislava, SPN 1970
- [2] Bušek,I., Boček,L., Calda,E.: Matematika pro gymnázia;Základní poznatky z matematiky.

Praha, Prometheus 1995

- [3] Smida,J., Šedivý,J., Lukátšová,J., Vocelka,J.:Matematika pre 1.ročník gymnázia; Úvod; Teória čísel. Bratislava, SPN 1994 (3.upravené vydanie)
- [4] Hecht, T., Bero, P., Černek, P.: Matematika pre 1.ročník gymnázií a SOŠ; 1.zošit-Čísla.

 Bratislava, Orbis Pictus Istropolitana 1996
- [5] Hecht,T.: Matematika pre 4.ročník gymnázií a SOŠ; 2.zošit-Matematická analýza; Logika.

Bratislava, OrbisPictusIstropolitana 2000