Question 1

1)
$$E \rightarrow G \in F + \text{ iff } G \subseteq E^+ \quad \text{So compute } \{E\}^+$$

1st scan of E:

$$E^+:=\{E\}$$

$$E^+:=\{E,B,C,D\}$$

2nd scan of E:

$$E^+:=\{E,B,C,D,G,H\}$$

$$E^+:=\{E,B,C,D,G,H,I\}$$

3rd scan of E:

no change, therefore the algorithm terminates

$$\{E\}^+ := \{B,C,D,E,G,H,I\}$$

$$G \subseteq E^+$$
, so $E \rightarrow G \in F +$

- 2) AEJ/ABJ
- 3)96 ABHJ/ABCJ/ABDJ/ACEJ/ABIJ
- 4) $F_m = \{AB \rightarrow E C \rightarrow H E \rightarrow B E \rightarrow D D \rightarrow C H \rightarrow G D \rightarrow I\}$
- 5) 1NF. In question 4, when finding the minimal cover, EH \rightarrow I can be written into E \rightarrow I, so it's partially dependency, not 2NF.
- 6)not dependency-preserving

$$F_1 = \{AB \rightarrow DE E \rightarrow BCD\} F_2 = \{C \rightarrow GH H \rightarrow G\} F_3 = \emptyset$$

 $F \neq F_1 \cup F_2 \cup F_3$, thus, not dependency-preserving

7)not lossless-join

Decomposition	A	В	С	D	Е	G	Н	I	J
R ₁ (ABCDE)	a	a	a	a	a	b	b	b	b
R ₂ (CGH)	b	b	a	b	b	a	a	b	b
R ₃ (EIJ)	b	b	b	b	a	b	b	a	a

Decomposition	A	В	С	D	E	G	Н	I	J
$R_1(ABCDE)$	a	a	a	a	a	a	a	a	b
R ₂ (CGH)	b	b	a	b	b	a	a	b	b
R ₃ (EIJ)	b	a	a	a	a	a	a	a	a

8) $F = \{AB \rightarrow DE C \rightarrow GH E \rightarrow BCD D \rightarrow CI H \rightarrow G EH \rightarrow I\}$

 $F_m = \{AB \rightarrow E C \rightarrow H E \rightarrow B E \rightarrow D D \rightarrow C H \rightarrow G D \rightarrow I\}$

Consider AB \rightarrow E, AB is not a superkey, split R into R₁{A,B,E} and R₂{A,B,C,D,G,H,I,J}

Consider $E \rightarrow B$, E is not a superkey, split R_1 into $R_{11}\{A,E\}$, $R_{12}\{B,E\}$

Consider $C \rightarrow H$, C is not a superkey, split R into $R_3\{C,H\}$,

 $R_4{A,B,C,D,E,G,I,J}$

Consider $D \rightarrow C$, D is not a superkey, split R_4 into $R_{41}\{C,D\}$,

 $R_{42}\{A,B,D,G,I,J\}$

Consider D→I, split R_{42} into R_{5} {A,B,D,G,J}, R_{6} {D,I}

Consider AB \rightarrow D, split R₅ into R₅₁{A,B,D},R₅₂{A,B,G,J}

Consider AB \rightarrow E, E \rightarrow D D \rightarrow C C \rightarrow H H \rightarrow G, so AB \rightarrow G, split R₅₂ into

 $R_{7}\{A,B,J\},R_{8}\{A,B,G\}$

One of the possible lossless-join decompositions to BCNF is R_{11} , R_{12} , R_3 , R_{41} , R_{51} , R_6 , R_7 , R_8

Question 2

1) Undo T1, T2, T4

2)Non-serializable

From R(B) W(B), we can find that $T_1 \rightarrow T_3$, $T_1 \rightarrow T_2$, $T_2 \rightarrow T_4$, $T_4 \rightarrow T_3$, $T_2 \rightarrow T_3$, $T_1 \rightarrow T_4$, $T_3 \rightarrow T_2$, $T_3 \rightarrow T_4$

From R(A) W(A), we can find that $T_4 \rightarrow T_2, T_1 \rightarrow T_2, T_4 \rightarrow T_1$

The precedence graph:

This graph is cyclic, so the transaction schedule conflict is non-serializable.

3)

Time	t_1	t_2	t_3	t_4	t_5	t_6	t ₇	t ₈	t ₉	t_{10}	t ₁₁	t ₁₂	t ₁₃	t ₁₄	t ₁₅
T ₁	R(B)	R(A)	W(B)	W(A)											
T ₂					R(A)	R(A)	R(B)	W(B)	W(A)						
T ₃										R(B)	W(B)				
T ₄												R(A)	W(A)	R(B)	W(B)

4)

Time	t_1	t_2	t_3	t_4	t_5	t_6	t ₇	t_8	t ₉	t ₁₀	t ₁₁	t ₁₂	t ₁₃	t_{14}	t ₁₅
T_1	L(A)	R(A)	W(A)		L(B)	R(B)	W(B)								
T ₂		L(B)	R(B)	W(B)		L(A)	R(A)	W(A)							
T ₃									R(A)	W(A)	R(B)	W(B)			
T_4												R(A)	W(A)	R(B)	W(B)

Question 3

1)37

2)

