Билет 4. Определенный интеграл Римана. Интегральные суммы и их предел. Критерий интегрируемости с использованием сумм Дарбу

Рассмотрим функцию f(x), определенную во всех точках интервала [a, b].

Определение 1. Разбиение $\{x_k\}$ отрезка [a, b] - множество точек $x_0, x_1, ..., x_n$, таких что а $= x_0 < x_1 < ... < x_{n-1} < x_n = b$.

Опеределение 2. Разбиение $\{x'_k\}$ сегмента [a,b] называется измельчением разбиения $\{x_k\}$, если каждая точка разбиения $\{x_k\}$ принадлежит разбиению $\{x'_k\}$.

Определение 3. Разбиение $\{x_k\}$ сегмента [a, b] называется объединением разбиений $\{x'_k\}$, $\{x''_k\}$ сегмента [a, b], если все точки разбиений $\{x'_k\}$ и $\{x''_k\}$ принадлежат разбиению $\{x_k\}$ и $\{x'_k\}$ состоит только из точек $\{x'_k\}$ и $\{x''_k\}$

Интегральная сумма - число $\sigma = \sigma(x_k, \xi_k) = \sum_{k=1}^n f(\xi_k) * \Delta x_k$, где $\xi_k \in [x_{k-1}, x_k], \ \Delta x_k = (x_k - x_{k-1}).$ σ зависит от разбиения $\{x_k\}$ и выбора точек ξ_k .

 $[x_{k-1},x_k]$ - частичный сегмент, ξ_k - промежуточная точка.

 $d = \max_{0 \le k \le n} \Delta x_k$ - диаметр разбиения.

Определение 4. Число I называется пределом интегральных сумм $\sigma(x_k, \xi_k)$ при $d \to 0$, если для $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$, что из $d < \varepsilon$ при \forall выборе $\xi_k \Rightarrow |I - \sigma| < \varepsilon$

$$I = \lim_{d \to 0} \sigma(x_k, \xi_k)$$

Определение 5. Функция f(x) называется интегрируемой по Риману на сегменте [a, b], если для этой функции на указанном сегменте \exists предел I ее интегральных сумм при $d \to 0$.

I - определенный интеграл Римана от функции f(x) в пределах от а до b и обозначается $\int_a^b f(x) dx$

а - нижний предел интегрирования, b - верхний предел интегрирования.

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(y)dy$$

Геометрический смысл определенного интеграла

Рассмотрим криволинейную трапецию - фигуру, ограниченную графиком неотрицательной функции y = f(x), заданной на [a,b], прямыми x=a, x=b и отрезком [a,b].

Рис. 1: Геометрический смысл интегральных сумм

На рисунке 1 видно, что интегральная сумма $\sigma(x_k, \xi_k)$ - площадь заштрихованной фигуры. Пример $f(x) = c = \mathrm{const.}$

При любом выборе точек $\xi_k f(\xi_k) = c$. Значит

$$\sigma(x_k, \xi_k) = c\Delta x_1 + c\Delta x_2 + \dots + c\Delta x_n = c(\Delta x_1 + \Delta x_2 + \dots + \Delta x_n) = c(b - a).$$

Значит

$$\int_{a}^{b} c dx = \lim_{d \to 0} \sigma(x_k, \xi_k) = \lim_{d \to 0} c(b - a) = c(b - a).$$

Следовательно функция интегрируема.

Утверждение. Если функция f(x) не является ограниченной на сегмента [a, b], то эта функция не интегрируема на сегменте [a, b].

Доказательство

Пусть f(x) не ограничена на [a, b]. Без ограничения общности предположим, что она неограничена на частичном сегменте $[x_0, x_1]$. На остальных сегментах зафиксируем произвольные промежуточные точки ξ_k

$$\sigma_1 = \sigma_1(x_k, \xi_k) = f(\xi_2)\Delta x_2 + f(\xi_3)\Delta x_3 + \ldots + f(\xi_n)\Delta x_n.$$

Так как функция не ограничена на сегменте $[x_0, x_1]$, значит $\forall M>0 \exists \xi_1 \in [x_0, x_1]$ такая, что

$$|f(\xi_1)| \ge \frac{|\sigma_1| + M}{\Delta x_1}.$$

$$\Rightarrow |f(\xi_1)|\Delta x_1 \ge |\sigma_1| + M.$$

$$|\sigma(x_k, \xi_k)| = |\sum_{k=1}^n f(\xi_k) * \Delta x_k| = |f(\xi_1) \Delta x_1 + \sigma_1| \ge |f(\xi_1)| \Delta x_1 - |\sigma_1| \ge M.$$

Пусть функция интегрируема на сегменте и \exists предел І. Значит для $M = |I| + 1 \exists \sigma$ такая, что $|\sigma| > |I| + 1$. Значит $|\sigma - I| \ge |\sigma| - |I| > |I| + 1 - |I|$. $|\sigma - I| > 1$, что противоречит определению предела І.

Пример ограниченной неинтегрируемой функции

Функция Дирихле

$$f(x) = \begin{cases} 1 & x \in Q \\ 0 & x \in R \setminus Q \end{cases}$$

Построим 2 интегральные суммы σ_1, σ_2 со сколь угодно малым d. Для σ_1 возьмем иррациональные $\xi_k \Rightarrow \sigma_1 = 0$. Для σ_2 возьмем рациональные $\xi_k \Rightarrow \sigma_2 = \sum_{k=1}^n \Delta x_k = (b-a)$.

Пусть существует предел I, возьмем $\varepsilon = \frac{b-a}{2}$

$$|\sigma_1 - I| < \frac{b - a}{2}, |\sigma_2 - I| < \frac{b - a}{2}$$

$$|\sigma_2 - \sigma_1| = |(\sigma_2 - I) + (I + \sigma_1) \le |\sigma_2 - I| + |I - \sigma_1| < (b - a).$$

Но это противоречит тому, что $|\sigma_2 - \sigma_1| = b - a$.

Верхние и нижние суммы

Обозначим $m_k = \inf_{x_{k-1} \le x \le x_k} f(x), M_k = \sup_{x_{k-1} \le x \le x_k} f(x)$ - точные нижние и верхние грани соответственно на частичном сегменте $[x_{k-1}, x_k]$.

$$S = \sum_{k=1}^{n} M_k \Delta x_k$$

- верхняя сумма Дарбу

$$s = \sum_{k=1}^{n} m_k \Delta x_k$$

- нижняя сумма Дарбу для данного разбиения x_k сегмента [a, b]. Геометрический смысл верхних и нижних сумм Рассмотрим криволинейную трапецию.

Рис. 2: Геометрический смысл верхних сумм.

Рис. 3: Геометрический смысл нижних сумм.

По рисунку 2 видно, что верхняя сумма равна плозади элементарной ступенчатой фигуры, которая содержит криволинейную трапецию. Эта площадь заштрихована на рисунке. По рисунку 3 видно, что нижняя сумма равна плозади элементарной ступенчатой фигуры, которая содержится в криволинейной трапеции. Эта площадь заштрихована на рисунке 3.

Свойства верхних и нижних сумм

Свойство 1. Пусть σ , S, s соответствуют одному и тому же разбиению x_k , тогда при любом выборе ξ_k справедливо

$$s \le \sigma \le S$$
.

Доказательство

$$m_k \le f(\xi_k) \le M_k$$

$$m_k \Delta x_k \le f(\xi_k) \Delta x_k \le M_k \Delta x_k$$

$$\sum_{k=1}^{n} m_k \Delta x_k \le \sum_{k=1}^{n} f(\xi_k) \Delta x_k \le \sum_{k=1}^{n} M_k \Delta x_k$$

Свойство 2. Пусть x_k - произвольное разбиение сегмента [a, b], ε - произвольное положительное число. Тогда можно выбрать ξ_k так, что $0 \le S - \sigma(x_k, \xi_k) < \varepsilon$ и выбрать η_k так что $0 \le \sigma(x_k, \eta_k) - s \le \varepsilon$.

Доказательство

Зафиксируем x_k и $\varepsilon>0$. Т.к. $M_k=\sup_{x_{k-1}\leq x\leq x_k}f(x)$, то для выбранного ε $\exists \xi_k$, такая что

$$0 \le M_k - f(\xi_k) \le \frac{\varepsilon}{b - a}.$$

$$0 \le (M_k - f(\xi_k)) \Delta x_k \le \frac{\varepsilon}{b - a} \Delta x_k.$$

$$0 \le \sum_{k=1}^n M_k \Delta x_k - \sum_{k=1}^n f(\xi_k) \Delta x_k \le \frac{\varepsilon}{b - a} \sum_{k=1}^n \Delta x_k.$$

$$0 < S - \sigma(x_k, \xi_k) < \varepsilon$$

Второе двойное неравенство доказывается аналогично.

Cледcтвие Для любого разбиения x_k

$$S = \sup_{\xi_k} \sigma(x_k, \xi_k), s = \inf_{\eta_k} \sigma(x_k, \eta_k)$$

Свойство 3. При измельчении разбиения верхняя сумма может только уменьшиться, а нижняя - увеличиться.

Доказательство

Пусть x'_k - измельчение x_k путем добавления точки $\bar{x} \in [x_{k-1}, x_k]$. Тогда в выражении S слагаемое $M_k \Delta x_k$ изменится на $M'_k(\bar{x} - x_{k-1}) + M''_k(x_k - \bar{x})$, где $M'_k = \sup_{x_{k-1} \le x \le \bar{x}} f(x)$, $M''_k = \sup_{\bar{x} \le x \le x_k} f(x)$.

Точная верхняя грань функции на части сегмента не превосходит точной верхней грани на всем сегменте. $M_k' \leq M_k, \, M_k'' \leq M_k,$

$$M'_k(\bar{x} - x_{k-1}) + M'_k(x_k - \bar{x}) \le M_k[(\bar{x} - x_{k-1}) + (x_k - \bar{x})] = M_k \Delta x_k.$$

Остальные слагаемые остаются без изменений. Следовательно свойство доказано. Для нижней суммы доказывается аналогично.

Свойство 4. Для двух разбиений x'_k, x''_k нижняя сумма одного из разбиений не превосходит верхней суммы другого.

Доказательство

 x_k - объединений разбиений x_k', x_k'' с суммами S, s. x_k - измельчение для x_k' и x_k'' . Согласно св.3

$$S' \ge S, S'' \ge S, s' \le s, s'' \le s.$$

Согласно св.1

$$s \le S$$
$$s' \le s \le S \le S$$

$$s'' < s < S < S'$$
.

Следствие Множество верхних сумм функции, отвечающих всевозможным разбиениям сегмента [a, b], ограничено снизу. Множество нижних сумм ограничено сверху.

Определение 6

Верхний интеграл Дарбу от функции f(x) - число $I^* = \sup S$.

Нижний интеграл Дарбу от функции f(x) - число $I_* = \inf_{\{x_k\}} s$.

Π емма 1. $I_* < I^*$.

Доказательство. Допустим, что это не так, тогда $I_* - I^* = \varepsilon > 0$. Тогда \exists разбиение x_k' такое, что для его верхней суммы S' верно $S' < I^* + \frac{\varepsilon}{2}$ и разбиение x_k'' , что для его s'' верно $s'' > I_* - \frac{\varepsilon}{2}$. Тогда

$$S' - s'' < I^* + \frac{\varepsilon}{2} - I_* + \frac{\varepsilon}{2} = I^* - I_* + \varepsilon = -\varepsilon + \varepsilon = 0.$$

Следовательно, $S' - s'' < 0 \Rightarrow s'' > S'$, что противоречит св.4. Наше предположение неверно, лемма доказана.

$$M = \sup_{x \in [a,b]} f(x), m = \inf_{x \in [a,b]} f(x)$$

Пусть x'_k - разбиение путем добавления l новых точек к разбиение x_k .

Лемма 2
$$S-S' \leq (M-m)ld, s'-s \leq (M-m)ld$$

Доказательство. Без ограничения общности, пусть x_k' получается путем добавления только одной точки $\bar{x} \in [x_{k-1}, x_k]$. Суммы S и S' будут отличаться только одним слагаемым. У S оно будет выражаться $M_k \Delta x_k$, а у S' - $M_k'(\bar{x} - x_{k-1}) + M_k''(x_k - \bar{x})$, где $M_k' = \sup_{x_{k-1} \le x \le \bar{x}} f(x), M_k'' =$

$$\sup_{\bar{z} < x < x} f(x)$$
.Тогда

$$\stackrel{x \le x \le x_k}{S - S'} = M_k \Delta x_k - [M_k'(\bar{x} - x_{k-1}) + M_k''(x_k - \bar{x})],$$
 где $M_k \le M, m \le M_k', m \le M_k''$.

$$S - s \le M \Delta x_k - m[(\bar{x} - x_{k-1}) + (x_k - \bar{x})] = (M - m) \Delta x_k \le (M - m)d.$$

Доказательство для нижних сумм аналогично.

Определение 7. Число A называется пределом верхних сумм S при $d \to 0$, если для $\forall \varepsilon > 0$ $\exists \delta > 0$, что при $d < \delta$ верно $|S - A| < \varepsilon$.

$$A = \lim_{d \to 0} S$$

Аналогично определяется предел $B = \lim_{t \to 0} s$.

Основная лемма Дарбу

$$I^* = \lim_{d \to 0} S, I_* = \lim_{d \to 0} s..$$

Доказательство.

1 случай:
$$f(x) = c = \text{const. S} = c(b-a), I^* = c(b-a).$$
 Значит, $I^* = \lim_{d \to 0} S$.

2 случай: f(x) непостоянна, а значит M > m.

Зафиксируем число $\varepsilon > 0$. По определению I^* существует разбиение x_k^* , такое что $S^* - I^* < \frac{\varepsilon}{2}$. Пусть L - множество точек x_k^* , не совпдающих с a, b. $1 = |\mathcal{L}|$

Пусть x_k - произвольное разбиение сегмента [a, b], у которого $d < \delta = \frac{\varepsilon}{2l(M-m)}$ и S - верхняя сумма.

Возьмем разбиение $x_k' = x_k \cup L$ - измельчение разбиений x_k, x_k^* . По лемме 2:

$$0 \le S - S' \le (M - m)ld < \frac{\varepsilon}{2}$$

С другой стороны согласно определению I^* и св.3:

$$I^* \le S' \le S^*$$

$$0 \le S' - I^* \le S^* - I^*$$

t.k. $S^*-I^*<\frac{\varepsilon}{2}, 0\leq S'-I^*<\frac{\varepsilon}{2}.$

$$0 \le S' - I^* + S - S' < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

 $0 \leq S - I^* < \varepsilon$ при $\mathrm{d} < \delta$. Следовательно $I^* = \lim_{d \to 0} S$. Для нижних сумм доказательство аналогично.

Вспомогательная теорема f(x) интегрируема на $[a,b] \Leftrightarrow I_* = I^*$.

Доказательство

 \Rightarrow :

f(x) интегрируема $\Rightarrow \exists I = \lim_{d\to 0} \sigma(x_k, \xi_k) \Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \forall \xi_k \text{ при } d < \delta : |I - \sigma(x_k, \xi_k)| < \frac{\varepsilon}{4}$ Согласно св.2 $\exists \xi_k', \xi_k''$:

$$S - \sigma(x_k, \xi_k') < \frac{\varepsilon}{4}, \sigma(x_k, \xi_k'') - s < \frac{\varepsilon}{4}.$$

Также по определению I верно:

$$|I - \sigma(x_k, \xi_k'')| < \frac{\varepsilon}{4}, |I - \sigma(x_k, \xi_k'')| < \frac{\varepsilon}{4}.$$

$$S - s = S - \sigma(x_k, \xi_k') + [\sigma(x_k, \xi_k') - I + [I - \sigma(x_k, \xi_k'')] + [\sigma(x_k, \xi_k'') - s] < \varepsilon.$$

т.к. $s \leq I_* \leq I^* \leq S$, то из S-s< ε следует $0 \leq I_* - I^* < \varepsilon$. Т.к. верно для $\forall \varepsilon$, то $I_* = I^*$. \Leftarrow :

Пусть $I^*=I_*=A$. По основной лемме Дарбу $I^*=\lim_{\substack{d\to 0\\ J\to 0}}S, I_*=\lim_{\substack{d\to 0\\ J\to 0}}s. \Rightarrow \forall \varepsilon>0 \; \exists \delta>0,$ что для любого разбиения с $\mathrm{d}<\delta$ верно $I_*-s=A-s<\varepsilon, S-I^*=S-A, \varepsilon.$

По св. 1 $s \le \sigma \le S$

$$A - \varepsilon < s \le \sigma \le S < A + \varepsilon$$

$$A - \varepsilon < \sigma < A + \varepsilon$$

$$|A - \sigma| < \varepsilon$$

Значит, по определению предела $A = \lim_{d \to 0} \sigma$. Значит f(x) интегрируема на [a,b].

Основная теорема. Ограниченная на [a,b] функция f(x) интегрируема на сегменте \Leftrightarrow для $\forall \varepsilon \exists x_k$ сегмента [a,b], для которого $S-s<\varepsilon$.

Доказательство

⇒: см. ⇒ вспомогательной теоремы.

 \Leftarrow : Пусть для $\forall \varepsilon \; \exists x_k$ сегмента [a,b], для которого $S-s<\varepsilon$. Т.к. $s\leq \sigma \leq S$, то $I^*=I_*$. Значит, по вспомогательной теореме получаем, что функция интегрируема.

Теорема 1 Непрерывные на [a,b] функции интегрируемы на этом сегменте по Риману.

Доказательство. Пусть $f(x) \in C[a,b] \Rightarrow f(x)$ равномерно непрерывна на [a,b]. Зафиксируем $\varepsilon > 0$. Для него $\exists \delta$ такой, что для $\forall \xi', \xi''$, для которых $|\xi' - \xi''| < \delta$, верно $|d(\xi') - f(\xi'')| < \frac{\varepsilon}{b-a}$

Возьмем такое разбиение x_k , что $d < \delta$. Значит, для \forall сегмента $[x_{k-1}, x_k]$ верно $M_k - m_k < \frac{\varepsilon}{b-a}$.

$$S - s = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \frac{\varepsilon}{b - a} \sum_{k=1}^{n} \Delta x_k = \varepsilon.$$

$$S - s < \varepsilon.$$

Значит по основной теореме функция интегрируема.

Теорема 2. Монотонная на [a,b] функция f(x) интегрируема по Риману на этом сегменте. Доказательство

Пусть f(x) неубывающая функция. Зафиксируем ε и возьмем разбиение такое, что d< $\frac{\varepsilon}{f(b)-f(a)}$.

$$S - s = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \frac{\varepsilon}{f(b) - f(a)} \sum_{k=1}^{n} (M_k - m_k).$$

т.к. функция монотонная, $\sum_{k=1}^{n} (M_k - m_k) = f(b) - f(a)$

Значит $S-s<\varepsilon$, а значит функция интегрируема.

Свойства интегриируемых функций

Свойство 1. Пусть функция f(x) интегрируема по Риману на [a,b], М и m - ее точные верхняя и нижняя грани на [a,b]. Пусть далее, функция $\varphi(x)$ определена на сегменте [m, M] и удовлетворяет условию Липшица: существует $C \ge 0$ такое, что для $\forall x_1, x_2 \in [a, b]$

$$|\varphi(x_1) - \varphi(x_2)| \le C|x_1 - x_2|$$

Тогда сложная функция $h = \varphi(f(x))$ интегрируема по Риману на [a,b]. Доказательство.

Зафиксируем $\varepsilon > 0$. Т.к. f(x) интегрируема на $[a,b] \Rightarrow \exists x_k : S - s < \frac{\varepsilon}{C}$. Пусть $m_k = \inf_{x_{k-1} \le x \le x_k} f(x), M_k = \sup_{x_{k-1} \le x \le x_k} f(x), m *_k = \inf_{x_{k-1} \le x \le x_k} h(x), M *_k = \sup_{x_{k-1} \le x \le x_k} h(x)$ x,y - произвольные точки из $[x_{k-1}]$

$$|h(x) - h(y)| \le |h(x) - h(y)| = |\varphi(f(x)) - \varphi(f(y))| \le C|f(x) - f(y)| \le C(M_k - m_k)$$

Т.к. х,у - произвольные точки из $[x_{k-1}, x_k]$, то $M *_k - m_* k \leq C(M_k - m_k)$.

$$S*-s* = \sum_{k=1}^{n} M *_k \Delta x_k - \sum_{k=1}^{n} m *_k \Delta x_k \le c \sum_{k=1}^{n} M_k \Delta x_k - \sum_{k=1}^{n} m_k \Delta x_k \le C(S-s) < C \frac{\varepsilon}{C} = \varepsilon.$$

$$S*-s* < \varepsilon.$$

По основной теореме h(x) интегрируема на [a,b].

Следствие. $f^{2}(x)$ интегрируема на [a,b], если f(x) интегрируема на сегменте.

Доказательство. Проверим условие Липшица функции $\phi(t)=t^2.$

$$|t_1^2 - t_2^2| = |t_2 - t_1| \cdot |t_2 + t_1| \le C|t_2 - t_1|$$
, где $C = \max(2|\mathbf{m}|, 2|\mathbf{M}|)$.

Свойство 2. Пусть функции f(x) интегрируемы на сегменте [a,b]. Тогда функции $f(x)\pm g(x)$

интегрируемы на сегменте, причем $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) \pm \int_{a}^{b} g(x) dx$.

Доказательство.

$$\sum_{k=1}^{n} [f(\xi_k) \pm g(\xi_k)] \Delta x_k = \sum_{k=1}^{n} f(\xi_k) \pm \sum_{k=1}^{n} g(\xi_k)$$

Т.к существует предел правой части, то существует предел и левой части.

Свойство 3. Если f(x) интегрируема на [a,b], то функция cf(x), где c - константа, также интегрируема на сегменте, причем $\int\limits_a^b cf(x)dx=c\int\limits_a^b f(x)dx$

Доказательство.

$$\sum_{k=1}^{n} cf(\xi_k) \Delta x_k = c \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Cnedcmeue Линейная комбинация $\sum_{i=1}^{n} c_i f_i(x)$ интегрируемых функций $f_i(x)$ интегрируема.

Свойство 4. Пусть f(x), g(x) интегрируемы на [a,b], тогда f(x)g(x) тоже интегрируема на сегменте.

Доказательство.

$$4f(x)g(x) = [f(x) + g(x)]^2 - [f(x) - g(x)]^2$$

Применим св. 2, 3 и следствие к св.1 и получим интегрируемость f(x)g(x).

Свойство 5. Если f(x) интегрируема на сегменте [a,b]. Тогда f(x) интегрируема на любом $[c,d]\subset [a,b]$.

Доказательство

Зафиксируем $\varepsilon > 0$. Для него по основной теореме $\exists x_k : S - s < \varepsilon$.

 $x'_k = x_k \cup c, d$. По св. 3 сумм Дарбу об измельчении $S' - s' < \varepsilon$. Рассмотрим разбиение отрезка [c,d] \bar{x}_k , состоящее из точек разбиения x'_k , принадлежащих отрезку [c,d].

$$\bar{S} - \bar{s} \le S' - s' < \varepsilon.$$

A значит f(x) интегрируема на [c,d].

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Аддитивность интеграла Римана.

Если f(x) интегрируема на [a,c] и [c,b], то она интегрируема на [a,b], причем

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx$$

Доказательство.

1 случай: a < c < b

Зафиксируем $\varepsilon>0$. Для него существуют разбиения $x_k',x_k'',$ такие что $S'-s',\frac{\varepsilon}{2},S''-s'',\frac{\varepsilon}{2}.$ $x_k=x_k'\cup x_k''$

$$S - s \le S' + S'' - s' - s'' < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Значит f(x) интегрируема на [a,b].

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k = \sum_{k=1}^{n} f(\xi_k) \Delta x_k + \sum_{k=1}^{n} f(\xi_k) \Delta x_k,$$

где \sum' берется по частичным сегментам из [a,c], а \sum'' - из [c,b]. Перейдем к пределу и получим:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

случай: с не лежит в [a,b]. Без ограничения общности примем c < a < b. По свойству 5 f(x) интегрируема на [a,b] и согласно формуле из 1 случая:

$$\int_{c}^{a} f(x)dx + \int_{a}^{b} f(x)dx = \int_{c}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Дополнения

1.Ограниченная на сегменте [a,b] функция f(x), имеющая лишь конечное число точек разрыва, интегрируема на этом сегменте. Кусочно непрерывная на данном сегменте функция интегрируема на этом сегменте. 2. Если поменять значение функции в конечном числе точек, то это не отразится ни на существовании, ни на величине интеграла. 3. Если $f(x) \ge 0$ для

$$\forall x \in [a, b], \text{ TO } \int_a^b f(x) dx \ge 0.$$

- 4. Если $f(x) \leq g(x)$ на [a,b], то $\int_{a}^{b} f(x)dx \leq \int_{a}^{b} g(x)dx$.
- 5. Если f(x) интегрируема на [a,b], то |f(x)| интегрируема на [a,b] и

$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx$$

6.**Первая формула среднего значения** Если f(x), g(x) интегрируемы на [a,b], $g(x) \ge 0$ $(g(x) \le 0)$ на [a,b], $M = \sup_{x \in [a,b]} f(x)$, $m = \inf_{x \in [a,b]} f(x)$, то найдется число $\mu : m \le \mu \le M$, такое что

$$\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx$$

Если f(x) непрерывна, то

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

Если $g(x)=\equiv 1$, то

$$\int_{a}^{b} f(x)dx = \mu(b-a)$$

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

7. Вторая формула среднего значения Пусть f(x) интегрируема на [a,b], а g(x) монотонна на [a,b]. Тогда $\exists \xi$:

$$\int_{a}^{b} f(x)g(x)dx = g(a)\int_{a}^{\xi} f(x)dx + g(b)\int_{\xi}^{b} f(x)dx.$$