

Powder samples were taken from the cylinder at depths of , 15, 3 , 5, 6 , 8 , 1 , 12 , 1 , 17 , 2 , and 3 mm measured from the surface The IR spectrum of each powder sample was mi ed with KBr in the proportion of 1 : 1 to facilitate quantitative measurement of carbonation depth

Mix	Curing	Strength	Carbonation depth (mm) Phenolphthalein P Infrared spectrum (I) Age (month)			Carbonation rate after constant 3	% increase	
(w/c)	type	(MPa)	1	2	3	months P (I)		
A		70	0.5 1.5 3	6.0	40.3			
(0.38)	water	78	(1)	(3)	(4.5)	(9.1)	49.2	
В	W	(2)	1	2.5	5	10.0	21	
(0.46)	Water	Water 63	(1.5)	(4.5)	(6)	(12.1)	21	
C		.,	1.5	4	8.5	17.1	15.	
(0.54)	water	ter 54 (3) (6)	(6)	(10)	(20.1)	17.5		

Type	References	Concrete strength (MPs)	Classification (A=accelerated N=normal)	Concrete condition	Carbonation rat constant K (mm year ^{0.7})
		35-66	A	Air cured	10—20.1 (phenolphtholein
High strength	ength This finding	28 days water cured then air cured	6—17.1 (phenolphthaleis		
	Rey	26.5 & 27	A	7 days water cured	11.9 and 10.8
Medium strength	Balayssac	25-40	N	28 days water cured	7.3 to 2.9
	Rey	18.5 & 20.5	A	A 7 days water 16.9 and 15.5 N 19 years 5.05 R.C. Building 5.05	16.9 and 15.5
Low strenth	Rey	19.0	N		

Carbonation depth by way of an IR spectroscopic test can be determined by the observing occurrence of COcharacteristic peaks relative to background noise at wave number 1 15 IR spectrometry gives more consistent results with lower variations in measurement than a phenolphthalein solution The carbonation rate constant found by IR spectrum analysis was 23 9% higher than that obtained using the phenolphthalein indicator Annua Concrete Sem nar 2005

	Surface Chlo tentiometri		
	Chloride content in 0 – 5 n	ım from top of surf	ace
w/c	Mix and	Chloride content (%)	
W/C	Curing condition	1 month	2 months
0.30	Mlur	1.599	2.512
0.38	M1 _{vuter}	1.488	1.507
0.16	M2 _{sir}	1.935	1.638
0.46	M2 _{wdet}	1.396	1.377
0.51	M3 _{sir}	2.605	1.861
0.54	M3 _{water}	1.824	1.693

	Chloride content in 0 – 5 n	ım from top of surf	ace	
***/*	Mix and	Chloride content (%)		
w/c	Curing condition	1 month	2 months	
0.20	M4 _{air}	1.892	2.657	
0.38	M4 _{water}	1.402	1.548	
0.16	M5 _{air}	1.548	1.369	
0.46	M5 _{water}	1.484	1.402	
0.51	M6 _{air}	1.843	2.135	
0.54	M6 _{water}	1.499	1.891	

Chloride ingress profiles
(by Potentiometric Titration Test)

The 2 month chloride ingress profiles are shown by following figures The limit of chloride content of concrete is 1% by mass of cement A horizontal red line is drawn in each figure to indicate the depth of penetration at 1% limit

