Groups 1-2: Marathon

Sample: 180 runners from a marathon

Group 1 variable: Each runner's age (age), measured in years Group 2 variable: Each runner's time (time), measured in minutes

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic	Std. Error	Statistic
age	180	36.69	.647	8.687
time	180	384.61	2.898	38.879
Valid N (listwise)	180			

Group 1 T-Test: age (test value = 30)

A new sports drink is targeting people around 30 years old as its consumers. Is it a good strategy to sponsor this marathon in the future and run its major marketing campaign there?

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
age	180	36.69	8.687	.647

One-Sample Test

Test Value = 30

			Significance		Mean	95% Confidence Differ	
	t	df	One-Sided p	Two-Sided p	Difference	Lower	Upper
age	10.331	179	<.001	<.001	6.689	5.41	7.97

One-Sample Effect Sizes

				95% Confidence Interval		
		Standardizer ^a	Point Estimate	Lower	Upper	
age	Cohen's d	8.687	.770	.603	.936	
	Hedges' correction	8.723	.767	.600	.932	

a. The denominator used in estimating the effect sizes. Cohen's d uses the sample standard deviation.

Groups 1-2: Marathon

Sample: 180 runners from a marathon

Group 1 variable: Each runner's age (age), measured in years Group 2 variable: Each runner's time (time), measured in minutes

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic	Std. Error	Statistic
age	180	36.69	.647	8.687
time	180	384.61	2.898	38.879
Valid N (listwise)	180			

Group 2 T-Test: time (test value = 390)

The expectation for runners from this age group is to finish this marathon route in about 6.5 hours (390 minutes). Did the runners from this marathon perform as expected?

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
time	180	384.61	38.879	2.898

One-Sample Test

Test Value = 390

			Significance		Mean	95% Confidence Differ	
	t	df	One-Sided p	Two-Sided p	Difference	Lower	Upper
time	-1.860	179	.032	.065	-5.389	-11.11	.33

One-Sample Effect Sizes

				95% Confidence Interval		
		Standardizer ^a	Point Estimate	Lower	Upper	
time	Cohen's d	38.879	139	285	.008	
	Hedges' correction	39.043	138	284	.008	

a. The denominator used in estimating the effect sizes. Cohen's d uses the sample standard deviation.

Groups 3-4: Albuquerque home

Sample: 68 new homes in Albuquerque on the market

Group 3 variable: Each new home's living space square footage (sqft), measured in square feet

Group 4 variable: Each new home's selling price (price), measured in \$1,000

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic	Std. Error	Statistic
sqft	68	1746.34	61.506	507.195
price	68	256.067	10.7521	88.6640
Valid N (listwise)	68			

Group 3 T-Test: sqft (test value = 1600)

A realtor has estimated the optimal size for first-time home buyers to be 1600 square feet. According to this suggestion, is Albuquerque a housing market best suited for first-time home buyers?

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean	
sqft	68	1746.34	507.195	61.506	

One-Sample Test

Test Value = 1600

			Significance		Mean	95% Confidence Differ	
	t	df	One-Sided p	Two-Sided p	Difference	Lower	Upper
sqft	2.379	67	.010	.020	146.338	23.57	269.11

One-Sample Effect Sizes

				95% Confiden	ice Interval
		Standardizer ^a	Point Estimate	Lower	Upper
sqft	Cohen's d	507.195	.289	.045	.530
	Hedges' correction	512.962	.285	.044	.524

 $\ensuremath{\text{a.}}$ The denominator used in estimating the effect sizes.

Cohen's d uses the sample standard deviation.

Groups 3-4: Albuquerque home

Sample: 68 new homes in Albuquerque on the market

Group 3 variable: Each new home's living space square footage (sqft), measured in square feet

Group 4 variable: Each new home's selling price (price), measured in \$1,000

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic	Std. Error	Statistic
sqft	68	1746.34	61.506	507.195
price	68	256.067	10.7521	88.6640
Valid N (listwise)	68			

Group 4 T-Test: price (test value = 300)

A sunroom company believes that homeowners from \$300K houses are most likely to spend money to build a sunroom. Would Albuquerque be a lucrative market for this sunroom company?

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
price	68	256.067	88.6640	10.7521

One-Sample Test

Test Value = 300

			Significance		Mean	95% Confidence Differ	
	t	df	One-Sided p	Two-Sided p	Difference	Lower	Upper
price	-4.086	67	<.001	<.001	-43.9329	-65.394	-22.472

One-Sample Effect Sizes

				95% Confidence Interval	
		Standardizer ^a Point Estimate Lower Uppe			
price	Cohen's d	88.6640	495	746	242
	Hedges' correction	89.6722	490	737	239

a. The denominator used in estimating the effect sizes. Cohen's d uses the sample standard deviation.

Groups 5-6: Baby

Sample: 189 newborn babies, followed up for 20 months

Group 5 variable: Each newborn baby's weight (newborn_weight), measured in lb

Group 6 variable: Each baby's age when the first word is spoken (first_word), measured in months

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic Std. Error		Statistic
newborn_weight	189	6.546	.1093	1.5025
first_word	189	12.58	.170	2.343
Valid N (listwise)	189			

Group 5 T-Test: newborn_weight (test value = 7.5)

A onesie is designed to fit 7.5-lb babies. Would it be a good fit for the babies in this sample?

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
newborn_weight	189	6.546	1.5025	.1093

One-Sample Test

Test Value = 7.5

			Significance		Mean	95% Confidence Differ	
	t	df	One-Sided p	Two-Sided p	Difference	Lower	Upper
newborn_weight	-8.729	188	<.001	<.001	9540	-1.170	738

One-Sample Effect Sizes

				95% Confidence Interval	
		Standardizer ^a	Point Estimate	Lower	Upper
newborn_weight	Cohen's d	1.5025	635	791	478
	Hedges' correction	1.5086	632	787	476

a. The denominator used in estimating the effect sizes.

Cohen's d uses the sample standard deviation.

Groups 5-6: Baby

Sample: 189 newborn babies, followed up for 20 months

Group 5 variable: Each newborn baby's weight (newborn_weight), measured in lb

Group 6 variable: Each baby's age when the first word is spoken (first_word), measured in months

Descriptive Statistics

	N	Mean		Std. Deviation
	Statistic	Statistic Std. Error		Statistic
newborn_weight	189	6.546	.1093	1.5025
first_word	189	12.58	.170	2.343
Valid N (listwise)	189			

Group 6 T-Test: first_word (test value = 12)

New parents often expect their babies to utter the first word at around 12 months of age. Did the babies from the sample data agree with this general timeline?

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
first_word	189	12.58	2.343	.170

One-Sample Test

Test Value = 12

			Significance		Mean	95% Confidence Differ	e Interval of the ence
	t	df	One-Sided p	Two-Sided p	Difference	Lower	Upper
first_word	3.415	188	<.001	<.001	.582	.25	.92

One-Sample Effect Sizes

				95% Confidence Interval		
		Standardizer ^a	Point Estimate	Lower Upper		
first_word	Cohen's d	2.343	.248	.103	.393	
	Hedges' correction	2.352	.247	.103	.391	

a. The denominator used in estimating the effect sizes. Cohen's d uses the sample standard deviation.