Maximum Flow: Simplified Version

Time Limit: 2 seconds

Problem Description

A flow network is a directed graph G = (V, E) where each edge $e \in E$ has a capacity c(e) > 0. A flow f from source s to sink t is a function $E \to \mathbb{R}^+ \cup \{0\}$ such that:

- $f(e) \le c(e)$ for $e \in E$.
- f(e) = 0 for $e \notin E$.
- $\sum_{u \in V} f(u, v) = \sum_{u' \in V} f(v, u')$ for $v \in V \setminus \{s, t\}$.

Given a flow network, write a program to compute the maximum flow f^* from s to t, i.e., $|f^*| = \sum_{v \in V} f^*(s, v)$ is maximized. You may assume there is only one edge between any pair of distinct vertices.

Technical Specifications

- 1. The number of test cases is no more than 20.
- 2. Basic: $n \le 20, m \le 50$.
- 3. Hard: $n \le 50, m \le 200$.
- 4. For $(u, v) \in E$, $1 \le c(u, v) \le 10^6$, and c_i 's are integral.

Input Format

The first line of the input file contains an integer indicating the number of test cases. The first line of each test case contains 4 integers n, m, s, t where $V = \{0, \ldots, n-1\}$, |E| = m, s is the source and t is the sink. The i-th of the following m lines contains three integers u_i, v_i, c_i representing that the i-th edge is from u_i to v_i and $c(u_i, v_i) = c_i$.

Output Format

For each test case, output $|f^*|$.

Sample Input

2

4 5 0 3

0 1 100000

0 2 100000

1 2 1

1 3 100000

2 3 100000

6 9 0 5

0 1 16

0 2 13

2 1 4

1 3 12

3 2 9

2 4 14

4 3 7

3 5 20

4 5 4

Sample Output

200000

23