Les Intervalles et les « Segment Trees »

José Vander Meulen

7 décembre 2017

$\mathsf{Sum} = \mathsf{15} \; (\mathsf{v1})$

4 3 -2 7 8 1	0	1	2	3	4	5
	4	3	-2	7	8	1

$\mathsf{Sum} = 8 \; (\mathsf{v1})$

Sum = 17 (v1)

0	1	2	3	4	5
4	3	-2	3	8	1

- Si la longueur de t vaut n
 - Init (v1) est en $\mathcal{O}(n)$
 - Update (v1) est en $\mathcal{O}(1)$
 - Sum est (v1) en $\mathcal{O}(n)$

- Si la longueur de t vaut n
 - Init (v1) est en $\mathcal{O}(n)$
 - Update (v1) est en $\mathcal{O}(1)$
 - Sum est (v1) en $\mathcal{O}(n)$

TLE

4 3 -2 7 8 1

4 3 -2 7 8 1 0 0

7 3 -2 / 0 1 0 0

$\mathsf{Sum} = 0 \; (v2)$

$\mathsf{Sum} = 0 \; (v2)$

$\mathsf{Sum} = 9 \; (\mathsf{v2})$

$\mathsf{Sum} = 9 \; (\mathsf{v2})$

$\mathsf{Sum} = 17 \; (\mathsf{v2})$

$\mathsf{Sum} = 17 \; (\mathsf{v2})$

- Si la longueur de t vaut n
 - Init (v2) est en $\mathcal{O}(n)$
 - Update (v2) est en $\mathcal{O}(\log n)$
 - Sum est (v2) en $\mathcal{O}(\log n)$

- Si la longueur de t vaut n
 - Init (v2) est en $\mathcal{O}(n)$
 - Update (v2) est en $\mathcal{O}(\log n)$
 - Sum est (v2) en $\mathcal{O}(\log n)$

AC

• Si la longueur de t vaut $n = 2^m$ alors Le nombre de noeuds de l'arbre est égal à :

$$2^{m+1}-1$$

- L'id de la raçine est égal à 0
- Le fils gauche d'un noeud i $(0 \le i < n-1)$ est égal au noeud :

$$i * 2 + 1$$

• Le fils droit d'un noeud i ($0 \le i < n-1$) est égal au noeud :

$$i * 2 + 2$$

- Si un noeud i (0 < i) est impair, c'est un fils gauche
- Si un noeud i (0 < i) est pair, c'est un fils droit
- Le parent d'un noeud i (0 < i) est le noeud :

$$(i-1)/2$$

• L'élément t[i] $(0 \le i < i)$ est représenté par le noeud :

$$n + i - 1$$

• On représente l'arbre par un tableau de longueur :

$$2 * n - 1$$

							7							
21	12	9	7	5	9	0	4	3	-2	7	8	1	0	0