Zu Abschnitt 7.1

7.1.1 Man folgere aus dem Approximationssatz von Weierstraß, dass die Polynome mit rationalen Koeffizienten in $C\left[a,b\right]$ dicht liegen. Weiter soll gezeigt werden, dass die Menge dieser Polynome abzählbar ist.

Insgesamt heißt das: C[a,b] ist separabel.

Sei also $f \in CIab$ und $\varepsilon > 0$. Wähle nach dem Approximationssatz von Weierstraß ein Polynom $p:[a,b] \to \mathbb{R}$ mit $\|f-p\|_{\infty} < \varepsilon/2$. Als Polynom ist p von der Form

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

mit einem $n \in \mathbb{N}$ und $a_i \in \mathbb{R}$ für $1 \le i \le n$. Zu jedem $1 \le i \le n$ wähle nun ein $q_i \in \mathbb{Q}$, so dass

$$|a_i - q_i| < \frac{\varepsilon}{2(n+1) \max\{|a|, |b|\}^i}$$

Definiere $q:[a,b]\to\mathbb{R}$ durch

$$q(x) := \sum_{i=0}^{n} q_i x^i$$

dann ist q ein Polynom mit rationalen Koeffizienten und für $x \in [a, b]$ gilt:

$$|f(x) - q(x)| \leq |f(x) - p(x)| + |p(x) - q(x)|$$

$$\leq ||f - p||_{\infty} + \left| \sum_{i=0}^{n} (a_i - q_i) x^i \right|$$

$$\leq \frac{\varepsilon}{2} + \sum_{i=0}^{n} |a_i - q_i| |x|^i$$

$$< \frac{\varepsilon}{2} + \sum_{i=0}^{n} \frac{\varepsilon}{2(n+1) \max\{|a|, |b|\}^i} \max\{|a|, |b|\}^i$$

$$= \frac{\varepsilon}{2} + \sum_{i=0}^{n} \frac{\varepsilon}{2(n+1)}$$

$$= \varepsilon.$$

Es folgt $\left\|f-q\right\|_{\infty}<\varepsilon$ und damit der erste Teil der Behauptung.

Zur Abzählbarkeit der Menge der Polynome mit rationalen Koeffizienten: Man zeigt zunächst, dass \mathbb{Q}^n für $n \in \mathbb{N}$ abzählbar ist. Für n=1 ist die Behauptung klar, sei also n>1 und bereits gezeigt, dass \mathbb{Q}^{n-1} abzählbar ist. Es seien nun $\sigma: \mathbb{N} \to \mathbb{Q}$ und $\tau: \mathbb{N} \to \mathbb{Q}^{n-1}$ bijektiv und weiter sei $\rho: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ bijektiv (dass \mathbb{N}^2 abzählbar ist, sieht man wie die Abzählbarkeit von \mathbb{Q} mit dem ersten Cantorschen Diagonalverfahren), und seien $\rho_1, \rho_2: \mathbb{N} \to \mathbb{N}$ die Projektionen auf die erste und zweite Komponente.

Betrachte nun die Abbildung:

$$\beta \mathbb{N} \ni n \mapsto ((\tau \circ \rho_1)(n), (\sigma \circ \rho_2)(n)) \in \mathbb{Q} \times \mathbb{Q}^{n-1} = \mathbb{Q}^n$$

 β ist bijektiv als Komposition bijektiver Abbildungen, also in \mathbb{Q}^n abzhählbar. Es sei nun $\mathbb{Q}[x]^{\leq n}$ die Menge der Polynome mit rationalen Koeffizienten vom Grad höchstens n, durch

$$(q_i)_{0 \le i \le n} \mapsto \sum_{i=0}^n q_i x^i$$

ist eine Bijektion $\alpha:\mathbb{Q}^{n+1}\to\mathbb{Q}\,[x]^{\leq n}$ definiert, also ist $\mathbb{Q}\,[x]^{\leq n}$ für jedes $n\in\mathbb{N}$ abzählbar. Damit ist aber auch $\mathbb{Q}\,[x]=\bigcup_{n\in\mathbb{N}}\,\mathbb{Q}\,[x]^{\leq n}$ als Vereinigung abzählbarer Mengen abzählbar. Also ist $C\,[\,a,b\,]$ separabel, was zu zeigen war.

7.1.2 Sei $X\subset C$ [1,2] die Menge derjenigen Polynome, für die alle Exponenten durch 5 teilbar sind; z.B. liegen $3x^5-10.2x^{100}$ und $2x^{100005}$ in X, das Polynom x^5-2x aber nicht. Zeigen Sie, dass X in der Supremumsnorm dicht in C [1,2] liegt.

In dieser Aufgabe bezeichne $\|\cdot\|_{C[\,a,b\,]}$ die Supremumsnorm auf dem Intervall $[\,a,b\,]$.

Es sei also $f \in C[1,2], f:[0,3] \to \mathbb{R}$ eine stetige Fortsetzung und $\varepsilon > 0$, wähle zunächst nach dem Approximationssatz von Weierstraß ein Polynom $p(x) = \sum_{i=0}^n p_i x^i$ mit $\|f-p\|_{C[0,3]} < \varepsilon/2$, weiterhin wähle wegen der gleichmäßigen Stetigkeit von f ein $\delta > 0$, so dass $\delta \leq 1$ und $|f(x) - f(y)| < \varepsilon/2$ für $x, y \in [a, b]$ mit $|x - y| \leq \delta$.

 $\delta > 0$, so dass $\delta \le 1$ und $|f(x) - f(y)| < \varepsilon/2$ für $x, y \in [a, b]$ mit $|x - y| \le \delta$. Nach dem Approximationssatz von Weierstraß existiert weiterhin ein Polynom $q(x) = \sum_{i=0}^m q_i x^i$, so dass $\|q - \sqrt[5]{\cdot}\|_{C[1,32]} \le \delta$. Definiere nun $s : [1,2] \to \mathbb{R}$ durch $s(x) := (p \circ q)(x^5)$, dann gilt für $x \in [1,2]$ zunächst

$$\begin{split} s(x) &= (p \circ q)(x^5) \\ &= p\left(\sum_{j=0}^m q_j x^{5j}\right) \\ &= \sum_{i=0}^n p_i \left(\sum_{j=0}^m q_j x^{5j}\right)^i \\ &= \sum_{i=0}^n p_i \sum_{\substack{0 \le k_1, \dots, k_m \le i \\ k_1 + \dots + k_m = i}} \frac{i!}{\prod_{j=0}^m k_j!} \prod_{j=0}^m q_j^{k_j} x^{5jk_j} \\ &= \sum_{i=0}^n \sum_{\substack{0 \le k_1, \dots, k_m \le i \\ k_1 + \dots + k_m = i}} \left(p_i \frac{i!}{\prod_{j=0}^m k_j!} \prod_{j=0}^m q_j^{k_j}\right) x^{5ij} \end{split}$$

Also ist s ein Polynom, dessen Koeffizieten alle in $5\mathbb{Z}$ liegen, weiterhin gilt aber für $x \in [1,2]$:

$$\begin{aligned} |q(x^5) - x| &= |q(x^5) - \sqrt[5]{x^5}| \\ &\leq ||q - \sqrt[5]{\cdot}||_{C[1,32]} \\ &\leq \delta \end{aligned}$$

damit folgt nach Wahl von δ , dass $p(x^5) \in [0,3]$ und damit:

$$\begin{split} |s(x) - f(x)| &= |q\left(p(x^5)\right) - f\left(p(x^5)\right)| + |f\left(p(x^5)\right) - f(x)| \\ &\leq ||f - q||_{C[0,3]} + \frac{\varepsilon}{2} \\ &< \varepsilon. \end{split}$$

Damit ist alles gezeigt.

7.1.3 Sei $\varphi : \mathbb{R} \to [0, +\infty[$ eine stetige Funktion mit $\int_{\mathbb{R}} \varphi(x) dx = 1$; es soll $\varphi(x) = 0$ für |x| > 1 sein.

Man definiere $f_n(x) := n\varphi(nx)$ für $x \in \mathbb{R}$ und $n \in \mathbb{N}$. Dann ist (f_n) eine Diracfolge. Zunächst ist für $n \in \mathbb{N}$:

$$\int_{\mathbb{R}} f_n(x) dx = \int_{\mathbb{R}} n\varphi(nx) dx$$

$$= \int_{\mathbb{R}} n\varphi\left(n \cdot \frac{x}{n}\right) d\left(\frac{x}{n}\right)$$

$$= \int_{\mathbb{R}} n\varphi(x) \cdot \frac{1}{n} dx$$

$$= \int_{\mathbb{R}} \varphi(x) dx$$

Desweiteren sind die f_n stetig und nichtnegativ, da φ stetig und nichtnegativ ist. Seien nun $\varepsilon, \delta > 0$, wähle $n_0 \in \mathbb{N}$ mit $\frac{1}{n} < \delta$ für $n \ge n_0$, dann ist für diese n:

$$\int_{\delta}^{\infty} f_n(x) \, dx + \int_{-\infty}^{-\delta} f_n(x) \, dx \qquad \stackrel{\text{wie oben}}{=} \qquad \int_{n\delta}^{\infty} \varphi(x) \, dx + \int_{-\infty}^{-n\delta} \varphi(x) \, dx$$

$$\stackrel{1 < n\delta, \ \varphi(x) \equiv 0 \text{ für } |x| \ge 1}{=} \qquad \int_{n\delta}^{\infty} 0 \, dx + \int_{-\infty}^{-n\delta} 0 \, dx$$

$$= \qquad 0 < \varepsilon.$$

Also ist f_n eine Diracfolge, q.e.d.

Zu Abschnitt 7.2

7.2.1 Zeigen Sie für eine stetig differenzierbare Funktion, dass aus f'(x) > 0 (alle x) die strenge Monotonie folgt, und zwar einmal mit Hilfe des Mittelwertsatzes der Differentialrechnung und dann unter Verwendung der Gleichung (7.1) aus Abschnitt 7.2.

Sei also $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine C^1 -Funktion mit f'(x) > 0 für $x \in I$. Seien weiter $x, y \in I$ mit x < y.

• (mit Hilfe des Mittelwertsatzes) Nach dem Mittelwertsatz exisiter
t $\xi\in\]\,x,y\,[,$ so dass

$$f(y) - f(x) = f'(\xi)(y - x)$$

Nun ist y - x > 0 und $f'(\xi) > 0$, also

$$f(x) < f(x) + f'(\xi)(y - x) = f(y),$$

was die strenge Monotonie zeigt.

• (mit Gleichung 7.1) Für $\xi \in [x, y]$ gilt nach (7.1):

$$f(\xi) = f(x) + \int_{x}^{\xi} f'(t) dt$$

Auf der Kompakten Menge [x,y] nimmt f' als stetige Funktion sein Minimum an, es sei $\eta:=\inf_{x\leq t\leq y}f'(t)>0.$

Damit folgt

$$f(x) < f(x) + \eta(y - x)$$

$$= f(x) + \int_{x}^{y} \eta dt$$

$$\leq f(x) + \int_{x}^{y} f'(t) dt$$

$$= f(y),$$

also erneut die strenge Monotonie von f.

7.2.2 Sei $f:]a,b[\to \mathbb{R}$ konvex. Dann ist f stetig. Muss f auch eine Lipschitzabbildung sein?

Wir zeigen sogar etwas mehr, nämlich das f in jedem Punkt links– und rechtsseitig differenzierbar ist, dazu zeigen wir zunächst, dass für $x \in \]a,b \ [$ und h < k mit $x+h,x+k \in \]a,b \ [$ stets

$$\frac{f(x+h) - f(x)}{h} \le \frac{f(x+k) - f(x)}{k}$$

gilt. Dazu unterscheidet man drei Fälle:

• Es ist 0 < h < k, dann gilt $0 \le (k-h)/k$, $h/k \le 1$ und damit wegen der Konvexität von f:

$$f(x+h) = f\left(\frac{k-h}{k}x + \frac{h}{k}(x+k)\right)$$

$$\leq \frac{k-h}{k}f(x) + \frac{h}{k}f(x+k)$$

$$\iff kf(x+h) \leq (k-h)f(x) + hf(x+k)$$

$$\iff k\left(f(x+h) - f(x)\right) \leq h\left(f(x+k) - f(x)\right)$$

$$\iff \frac{f(x+h) - f(x)}{h} \leq \frac{f(x+k) - f(x)}{k}$$

• Es ist h < 0 < k, dann gilt $0 \le k/(k-h), -h/(k-h) \le 1$ und so

$$f(x) = f\left(\frac{k}{k-h}(x+h) - \frac{h}{k-h}(x+k)\right)$$

$$\leq \frac{k}{k-h}f(x+h) - \frac{h}{k-h}f(x+k)$$

$$\iff (k-h)f(x) \leq kf(x+h) - hf(x+k)$$

$$\iff k(f(x) - f(x+h)) \leq -h(f(x+k) - f(x))$$

$$\stackrel{h < 0}{\iff} \frac{f(x+h) - f(x)}{h} \leq \frac{f(x+k) - f(x)}{k}$$

• Es ist h < k < 0, dann ist $0 \le (h - k)/h, k/h \le 1$ und es folgt

$$f(x+k) = f\left(\frac{k}{h}(x+h) + \frac{h-k}{h}x\right)$$

$$\leq \frac{k}{h}f(x+h) + \frac{h-k}{h}f(x)$$

$$\iff hf(x+k) \leq kf(x+h) + (h-k)f(x)$$

$$\iff -k(f(x+h) - f(x)) \leq -h(f(x+k) - f(x))$$

$$\iff \frac{f(x+h) - f(x)}{h} \leq \frac{f(x+k) - f(x)}{k}$$

Sei nun $x \in]a,b[$ und $\varepsilon > 0$ mit $K_{\varepsilon}(x) \subset]a,b[$. Es ist nach obigem für h > 0 die Funktion $h \mapsto h^{-1}(f(x+h)-f(x))$ monoton steigend und nach unten durch $-\varepsilon^{-1}(f(x-\varepsilon)-f(x))$ beschränkt, also existiert

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} =: D^+ f(x)$$

analog schließt man, dass

$$\lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h} =: D^{-} f(x)$$

existiert. Also ist f rechts– und linksseitig diff'bar, damit links– und rechtsseitig stetig, also stetig.

Nein f muss keine Lipschitzabbildung sein, als Gegenbeispiel betrachte $f:]0,1[\to \mathbb{R}, x \mapsto x^{-1}.$ f ist konvex, da f zweimal stetig differenzierbar ist und

$$f''(x) = \frac{2}{x^3} > 0$$

für alle 0 < x < 1 gilt, f ist aber keine Lipschitzabbildung, da

$$f'(x) = -\frac{1}{x^2}$$

auf] 0,1 [unbeschränkt ist und die Lipschitzeigenschaft für stetig differenzierbare Funktionen zur Beschränktheit der Ableitung äquivalent ist.

7.2.3 Zeigen Sie unter Verwendung der Gleichung (7.1), dass jede stetig differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ als Differenz zweier monoton steigender Funktionen geschrieben werden kann.

Es sei $f: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar. Definiere für $x \in \mathbb{R}$:

$$f_{+}(x) := f(0) + \int_{0}^{x} \max\{0, f'(t)\} dt$$

und

$$f_{-}(x) := \int_{0}^{x} \max\{0, -f'(t)\} dt.$$

Nach dem Hauptsatz der Differential
– und Integralrechnung sind $f_\pm:\mathbb{R}\to\mathbb{R}$ stetig differenzierbar mit Ableitungen

$$f'_{+}(x) = \max\{0, f'(x)\} \ge 0, \quad f'_{-}(x) = \max\{0, -f'(x)\} \ge 0$$

also monoton steigend.

Weiter gilt nach Gleichung 7.1, dass für $x \in \mathbb{R}$:

$$f(x) = f(0) + \int_0^x f'(t) dt$$

$$= f(0) + \int_0^x (\max\{0, f'(t)\} + \min\{0, f'(t)\}) dt$$

$$= f(0) + \int_0^x (\max\{0, f'(t)\} - \max\{0, -f'(t)\}) dt$$

$$= f(0) + \int_0^x \max\{0, f'(t)\} dt - \int_0^x \max\{0, -f'(t)\} dt$$

$$= f_+(x) - f_-(x)$$

Damit ist f als Differenz monoton steigender Funktionen dargestellt.

7.2.4 Mit Hilfe von Korollar 7.2.1 ist zu zeigen, dass jede zweimal stetig differenzierbare Funktion Differenz konvexer Funktionen ist.

Sei also $f:\mathbb{R}\to\mathbb{R}$ zweimal stetig differenzierbar, dann ist $f':\mathbb{R}\to\mathbb{R}$ stetig differenzierbar, nach Aufgabe 7.2.3 gibt es also monoton steigende stetig differenzierbare Funktionen $g,h:\mathbb{R}\to\mathbb{R}$ mit f'=g-h, wähle Funktionen $G,H:\mathbb{R}\to\mathbb{R}$ mit G(0)=f(0),H(0)=0 und $G'=g,\,h'=h$.

Dann ist $H'' = h' \ge 0$, $G'' = g' \ge 0$, da g,h monoton steigend sind, also sind H und G nach Korollar 7.2.1 konvex, weiterhin ist f(0) = G(0) - H(0) und

$$(f - G + H)' = f' - G' + H' = q - h - q + h = 0$$

also f = G - H.

Damit ist f als Differenz konvexer Funktionen dargestellt.

Zu Abschnitt 7.3

- **7.3.1** Wir haben in Abschnitt 7.3 die Länge für Kurven definiert, die als Graphen geschrieben werden können. Zeigen Sie, das diese Länge linear ist: Wird eine Kurve mit dem Faktor a>0 multipliziert, so ist auch die Länge mit a zu multiplizieren. Außerdem ist die Längendefinition translationsinvariant: Ersetzt man f durch f+c für eine Konstante c, so ergibt sich die gleiche Länge.
 - (Streckungsverträglichkeit) Es sei also $f: [\alpha, \beta] \to \mathbb{R}$ eine Funktion, streckt man ihren Graphen

$$\Gamma_f = \left\{ \left(x, f(x) \right) \mid x \in [\alpha, \beta] \right\}$$

mit a > 0, so erhält man

$$\begin{array}{rcl} a\Gamma_f & = & \Big\{ \left(ax, af(x)\right) \mid x \in [\alpha, \beta] \Big\} \\ & = & \Big\{ \left(\xi, af(\xi/a) \mid \xi \in Ia\alpha a\beta \right\} \end{array}$$

also den Graphen der Abbildung $f_a:[a\alpha,a\beta]\to\mathbb{R}$, $x\mapsto af(x/a)$, nun gilt für die Längen L(f) resp. $L(f_a)$ der Grahpen wegen

$$f'_a(x) = a \frac{d}{dx} f\left(\frac{x}{a}\right) = a \cdot \frac{1}{a} f'\left(\frac{x}{a}\right) = f'\left(\frac{x}{a}\right)$$

$$L(f_a) = \int_{a\alpha}^{a\beta} \sqrt{1 + f'_a(x)^2} \, dx$$

$$= \int_{a\alpha}^{a\beta} \sqrt{1 + f'\left(\frac{x}{a}\right)^2} \, dx$$

$$= \int_{\alpha}^{\beta} \sqrt{1 + f'\left(\frac{ax}{a}\right)^2} \, d(ax)$$

$$= a \int_{\alpha}^{\beta} \sqrt{1 + f'(x)^2} \, dx$$

$$= aL(f),$$

quod erat demonstrandum.

• (Verschiebung) Verschiebt man f um c, so haben wir wegen (f+c)'=f', dass

$$L(f+c) = \int_{\alpha}^{\beta} \sqrt{1 + (f+c)'(x)^2} dx$$
$$= \int_{\alpha}^{\beta} \sqrt{1 + f'(x)^2} dx$$
$$= L(f).$$

Damit ist alles gezeigt.

7.3.2 Die Längendefinition ist verträglich: Zeigen Sie, dass sich für Strecken der richtige Wert ergibt.

Sei also Γ die Strecke von $x=(x_1,x_2)$ nach $y=(y_1,y_2)$ (mit $x,y\in\mathbb{R}^2$), wobei o.E. $x_1< y_1$ sei¹⁾, dann lässt Γ als Graph der Funktion

$$f: [x_1, y_1] \to \mathbb{R}, \quad t \mapsto x_2 + \frac{y_2 - x_2}{y_1 - x_1}(x - x_1)$$

auffassen, es ist für $t \in [x_1, y_1]$:

$$f'(t) = \frac{y_2 - x_2}{y_1 - x_1}$$

Also ist

$$L(f) = \int_{x_1}^{y_1} \sqrt{1 + f'(t)^2} dt$$

$$= \int_{x_1}^{y_1} \sqrt{1 + \frac{(y_2 - x_2)^2}{(y_1 - x_1)^2}} dt$$

$$= (y_1 - x_1) \sqrt{1 + \frac{(y_2 - x_2)^2}{(y_1 - x_1)^2}} dt$$

$$= \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}$$

Das ist aber genau dieselbe Länge, die sich elementargeometrisch nach dem Satz des Pythagoras ergibt.

7.3.3 Berechnen Sie die Länge des Graphen der durch $f(x) := x^{3/2}$ definierten Funktion $f:[1,2] \to \mathbb{R}$. (Das ist eines der ganz wenigen Beispiele, für die das zur Länge führende Integral wirklich ausgerechnet werden kann.)

Wir haben für $x \in [1, 2]$, dass

$$f'(x) = \frac{3}{2}x^{1/2},$$

 $^{^{1)}}$ Im Fall $y_1 < x_1$ tausche x und y, im Fall $x_1 = y_1$ vertausche die erste mit der zweiten Komponente, d.h. führe auf \mathbb{R}^2 eine Spiegelung an der ersten Winkelhalbierenden durch.

also:

$$L(f) = \int_{1}^{2} \sqrt{1 + f'(x)^{2}} dx$$

$$= \int_{1}^{2} \sqrt{1 + \frac{9}{4}x} dx$$

$$= \frac{4}{9} \int_{9/4}^{18/4} \sqrt{1 + x} dx$$

$$= \frac{4}{9} \cdot \frac{2}{3} \cdot (1 + x)^{3/2} \Big|_{9/4}^{18/4}$$

$$= \frac{8}{27} \cdot \left(\left(\frac{11}{2} \right)^{3/2} - \left(\frac{13}{4} \right)^{3/2} \right)$$

$$= \frac{8}{27} \cdot \left(\left(\frac{1331}{8} \right)^{1/2} - \left(\frac{2197}{64} \right)^{1/2} \right)$$

$$= \frac{8}{27} \cdot \left(\frac{11}{4} \sqrt{22} - \frac{13}{8} \sqrt{13} \right)$$

$$= \frac{1}{27} \cdot (22\sqrt{22} - 13\sqrt{13}).$$

Zu Abschnitt 7.4

7.4.1 Sei f einen Funktion, für die $\mathcal{L}f$ definiert ist. Zeigen Sie, dass $(\mathcal{L}f)(s) \to 0$ für $s \to \infty$.

Es sei also $f: [0, +\infty [\to \mathbb{R} \text{ stetig und } M, s_0 \text{ so, dass}]$

$$|f(t)| < Me^{s_0 t}$$

für $t \in [0, +\infty[$ gilt. Dann ist $(\mathcal{L}f)$ auf $] s_0, \infty[$ erklärt. Es sei $\varepsilon > 0$, wähle T > 0, so dass

$$\int_{T}^{\infty} e^{-(s_0+1)t} |f(t)| dt < \frac{\varepsilon}{2}$$

das ist möglich, da

$$(\mathcal{L}f)(s_0+1) = \int_0^\infty e^{-(s_0+1)t} |f(t)| dt$$

nach Voraussetzung exisitiert. Wähle nun weiter $s_1 > s_0$ so, dass

$$M\left(\frac{\mathrm{e}^{(s_0-s_1)T}-1}{s_0-s_1}\right)<\frac{\varepsilon}{2},$$

was möglich ist, da dieser Term für $s_1 \to \infty$ gegen Null geht. Es folgt, dass für $s \ge s_1$ gilt:

$$\begin{split} |(\mathcal{L}f)(s)| & \leq \int_0^\infty \mathrm{e}^{-st}|f(t)|\,dt \\ & \stackrel{s \geq s_1}{\leq} \int_0^\infty \mathrm{e}^{-s_1t}|f(t)|\,dt \\ & = \int_0^T \mathrm{e}^{-s_1t}|f(t)|\,dt + \int_T^\infty \mathrm{e}^{-s_1t}|f(t)|\,dt \\ & \leq \int_0^T M\mathrm{e}^{(s_0-s_1)t}\,dt + \int_T^\infty \mathrm{e}^{-(s_0+1)t}|f(t)|\,dt \\ & \leq M\left(\frac{\mathrm{e}^{(s_0-s_1)T}-1}{s_0-s_1}\right) + \frac{\varepsilon}{2} \\ & < \varepsilon. \end{split}$$

Damit ist $(\mathcal{L}f)(s) \to 0$ für $s \to \infty$ gezeigt.

7.4.2 Finden Sie die Laplacetransformation von $t \mapsto e^{at}$.

Siehe Seite 195 im Buch (das war ein Fehler beim Stellen der Aufgaben).

7.4.3 Bestimmen Sie eine Lösung des Anfangswertproblems

$$y'' - 3y' + 2y = e^{3t}, \quad y(0) = 1, \ y'(0) = 0$$

mit der Methode der Laplacetransformation.

Unter der Annahme, daß die Lösungsfunktion der gegebenen Differentialgleichung höchstens exponentiell wächst, kann man auf die Differentialgleichung

$$y'' - 3y' + 2y = e^{3t}$$

die Laplacetransformation anwenden. Seien $s_0, M \in \mathbb{R}$ Wachstumskonstanten für die Lösung.

Man erhält aufgrund der Linearität folgende Gleichung für die Laplacetransformierte $\mathcal{L}y(s)$ für $s > \max\{s_0, 3\}$:

$$\mathcal{L}y''(s) - 3\mathcal{L}y'(s) + 2\mathcal{L}y(s) = \frac{1}{s-3}$$

$$\stackrel{\text{(b)}}{\Rightarrow} s^2 \mathcal{L}y(s) - sy(0) - y'(0) - 3s\mathcal{L}y(s) + 3y(0) + 2\mathcal{L}ys = \frac{1}{s-3}$$

$$\stackrel{\text{geg. AW}}{\Rightarrow} s^2 \mathcal{L}y(s) - s - 0 - 3s\mathcal{L}y(s) + 3 + 2\mathcal{L}ys = \frac{1}{s-3}$$

$$\iff (s^2 - 3s + 2)\mathcal{L}y(s) - s + 3 = \frac{1}{s-3}$$

$$\iff (s-1)(s-2)\mathcal{L}y(s) = \frac{1}{s-3} + s - 3$$

$$\iff \mathcal{L}y(s) = \frac{1 + (s-3)^2}{(s-1)(s-2)(s-3)}$$

$$\iff \mathcal{L}y(s) = \frac{s^2 - 6s + 10}{(s-1)(s-2)(s-3)}$$

Die rechte Seite obiger Gleichung zerlegt man nun in Partialbrüche. Man macht den Ansatz

$$\frac{s^2 - 6s + 10}{(s - 1)(s - 2)(s - 3)} = \frac{a}{s - 1} + \frac{b}{s - 2} + \frac{c}{s - 3}$$

und erhält:

$$\frac{s^2 - 6s + 10}{(s - 1)(s - 2)(s - 3)} = \frac{a}{s - 1} + \frac{b}{s - 2} + \frac{c}{s - 3}$$

$$= \frac{a(s^2 - 5s + 6) + b(s^2 - 4s + 3) + c(s^2 - 3s + 2)}{(s - 1)(s - 2)(s - 3)}$$

$$= \frac{(a + b + c)s^2 + (-5a - 4b - 3c)s + (6a + 3b + 2c)}{(s - 1)(s - 2)(s - 3)}$$

Durch Koeffizientenvergleich erhält man ein LGS in a,b,c:

$$\begin{array}{rclrcrcr}
a & + & b & + & c & = & 1 \\
-5a & - & 4b & - & 3c & = & -6 \\
6a & + & 3b & + & 2c & = & 10
\end{array}$$

Dies löst man mittels elmentarer Umformungen:

		I	1	1	1	1
		II	-5	-4	-3	-6
		III	6	3	2	10
		I	1	1	1	1
II + 5I	=	IV	0	1	2	-1
III - 6I	=	V	0	-3	-4	4
		I	1	1	1	1
		IV	0	1	2	-1
V + 3IV	=	VI	0	0	2	1
		I	1	1	1	1
IV - VI	=	VII	0	1	0	-2
$\frac{1}{2}$ VI	=	VIII	0	0	1	$\frac{1}{2}$
I - VII - VIII	=	IX	1	0	0	$\begin{array}{r} \frac{1}{2} \\ \frac{5}{2} \\ -2 \end{array}$
		VII	0	1	0	-2
		VIII	0	0	1	$\frac{1}{2}$

Also ist $a=\frac{5}{2}, b=-2, c=\frac{1}{2}$ die Lösung des Gleichungsystems. Also gilt

$$\mathcal{L}y(s) = \frac{5}{2} \cdot \frac{1}{s-1} - \frac{2}{s-2} + \frac{1}{2} \cdot \frac{1}{s-3}$$

Wegen (a) und der Linearität der Laplacetransformation ist dies die Laplacetransformierte von

$$y(t) = \frac{5}{2}e^{t} - 2e^{2t} + \frac{1}{2}e^{3t}$$

Da diese Funktion tatsächlich nur exponentiell wächst, durfte man die Laplacetransformation auf die DGL anwenden. Man muß nun noch überprüfen, ob y(t) tatsächlich Lösung des gegebenen AWP ist:

Dazu leitet man zunächst zweimal ab:

$$y'(t) = \frac{5}{2}e^{t} - 4e^{2t} + \frac{3}{2}e^{3t}$$
$$y''(t) = \frac{5}{2}e^{t} - 8e^{2t} + \frac{9}{2}e^{3t}$$

Durch Einsetzen in die Differentialgleichung erhält man:

$$y''(t) - 3y'(t) + 2y(t) = \left(\frac{5}{2} - 3 \cdot \frac{5}{2} + 2 \cdot \frac{5}{2}\right) e^{t} + (-8 + 3 \cdot 4 - 2 \cdot 2) e^{2t} + \left(\frac{9}{2} - 3 \cdot \frac{3}{2} + 1\right) e^{3t}$$

$$= e^{3t}$$

Also genügt y(t) der geg. DGL, da y(t) wegen

$$y(0) = \frac{5}{2}e^{0} - 2e^{0} + \frac{1}{2}e^{0}$$

$$= 1$$

$$y'(0) = \frac{5}{2}e^{0} - 4e^{0} + \frac{3}{2}e^{0}$$

$$= 0$$

auch den Anfangswertbedingungen genügt, ist

$$y(t) = \frac{5}{2}e^{t} - 2e^{2t} + \frac{1}{2}e^{3t}$$

eine Lösung des geg. AWP.

Zu Abschnitt 7.5

7.5.1 Sei $m \in \mathbb{N}$. Die Zahlen, die für jedes m zu m-ter Ordnung rational approximierbar sind, liegen dicht in \mathbb{R} .

Das ist klar, da rationale Zahlen zu jeder Ordnung rational approximierbar sind (vgl. Bem. 3 nach Definition 7.5.1 auf Seite 202), und \mathbb{Q} in \mathbb{R} dicht liegt.

7.5.2 Es seien a > 0 und b > 0 mit Zirkel und Lineal konstruierbar. Zeigen Sie, dass dann auch ab, a + b, a/b und \sqrt{a} konstruierbar sind.

Seien also Strecken der Länge a,b>0 und 1 vorgegeben, wir haben Strecken der Länge $a+b,\,ab,\,a/b$ und \sqrt{a} zu konstruieren:

- a+b: Zeichne einen Punkt P und von ihm Ausgehend einen Strahl g. Schlage einen Kreis um P mit dem Radius a, dieser Schneidet g in genau einem Punkt Q (die Strecke PQ hat die Länge a), schlage nun um Q einen Kreis mit Radium b, er schneidet g in mindestens einem Punkt, nenne den Punkt, der nicht auf der Seite von P liegt R, dann hat QR die Länge b und somit PR die Länge a+b.
- ab: Zeichne einen Punkt P und von ihm ausgehend zwei nicht kollineare Strahlen g_a und g_b , trage mit dem Zirkel auf g_a einen Punkt P_a an, so dass PP_a die Länge a hat und einen Punkt P_1 , so dass PP_1 die Länge 1 hat, trage auf g_b einen Punkt P_b an, so dass PP_b die Länge b hat. Vebinde P_1 und P_b durch eine Gerade g und konstruiere die Parallele h zu g, die durch P_a geht, sie scheidet g_b in genau einem Punkt Q. Nach dem Strahlensatz hat PQ die Länge ab, denn:

$$PQ = PP_b \frac{PQ}{PP_b} = PP_b \frac{PP_a}{PP_1} = b \cdot \frac{a}{1} = ab.$$

• a/b: Zeichne einen Punkt P und von ihm ausgehend zwei nicht kollineare Strahlen g_a und g_b , trage mit dem Zirkel auf g_a einen Punkt P_a an, so dass PP_a die Länge a hat und auf g_b Punkte P_1 , P_b , so dass PP_1 die Länge 1 und PP_b die Länge b hat. Vebinde P_a und P_b durch eine Gerade g und konstruiere die Parallele h zu g, die durch P_1 geht, sie scheidet g_a in genau einem Punkt Q. Nach dem Strahlensatz hat PQ die Länge a/b, denn:

$$PQ = PP_a \frac{PQ}{PP_a} = PP_a \frac{PP_1}{PP_b} = a \cdot \frac{1}{b} = \frac{a}{b}.$$

• \sqrt{a} : Zeichne einen Punkt P und durch ihn eine Gerade g, trage auf den Seiten von P Strecken der Länge a und 1 an, erhalte so Punkte P_1 , P_a auf verschieden Seiten von P, so dass PP_1 die Länge 1 und PP_a die Länge a hat. Schlage um den Mittelpunkt von P_1P_a den Kreis k, der durch P_1 und P_a geht, und errichte in P die Senkrechte zu g. k und g schneiden sich in zwo Punkten, sei R derjenige von ihnen, für den P_1P_aR in mathematisch positiver Reihenfolge stehen. Nach dem Satz des Thales ist ΔP_1P_aR ein rechtwinkliges Dreieck mit Höhe PR und Hypotenusenabschnitten PP_1 und PP_a . Nach dem Höhensatz gilt

$$PR = \sqrt{PP_1 \cdot PP_a} = \sqrt{1 \cdot a} = \sqrt{a}.$$

7.5.3 Die Zahl $\sqrt[22]{\pi}$ ist nicht mit Zirkel und Lineal konstruierbar.

Wäre $\alpha := \sqrt[22]{\pi}$ mit Zirkel und Lineal konstruierbar, so wäre α insbesondere algebraisch, da die algebraischen Zahlen einen Körper bilden, wäre dann auch $\alpha^{22} = \pi$ algebraisch. Widerspruch.

Also ist α nicht konstruierbar.

Zu Abschnitt 7.6

7.6.1 Man betrachte das Anfangswertproblem $y'=3|y|^{2/3},\ y(0)=0$. Prüfen Sie nach, dass sowohl y=0 als auch $y=x^3$ Lösungen sind. Warum widerspricht das nicht dem Satz von Picard-Lindelöf?

• $y_1(x) = 0$ ist Lösung, da $y_1(0) = 0$ und

$$y_1'(x) = 0 = 3|0|^{2/3} = 3|y_1(x)|^{2/3}$$

gelten.

• $y_2(x) = x^3$ ist Lösung, da $y_2(0) = 0^3 = 0$ und

$$y_2'(x) = 3x^2 = 3|x^3|^{2/3} = 3|y_2(x)|^{2/3}$$

Diese Nicht–Eindeutigkeit ist kein Widerspruch zum Satz von Picard–Lindelöf, da $f(x) = 3|x|^{2/3}$ in keiner Umgebung der Null Lipschitz–stetig ist:

Denn für jedes $\varepsilon>0$ ist die beste Lipschitzkonstante für f auf $[\varepsilon/2,\varepsilon]$ durch

$$\sup_{\varepsilon/2 \leq x \leq \varepsilon} |f'(x)| = \sup_{\varepsilon/2 \leq x \leq \varepsilon} 2x^{-1/3} = 2^{4/3} \varepsilon^{-1/3}$$

gegeben, insbesondere gibt es kein $\varepsilon \geq 0$, so dass f auf $[-\varepsilon, \varepsilon]$ Lipschitzabbildung ist.

7.6.2 Wir verwenden die Bezeichnungen aus Abschnitt 7.6, betrachtet wird das Anfangswertproblem $y'=y,\ y(0)=1$. Für jede Funktion y konvergieren die Iterationen y,Ty,T^2y,\ldots auf einem genügend kleinen Intervall gegen eine Lösung. Berechnen Sie diese Funktionen²⁾ für den Fall, dass y die konstante Funktion $\mathbf 1$ ist. Wir behaupten, dass

$$(T^n\mathbf{1})(x) = \sum_{k=0}^n \frac{1}{k!} x^k$$

für $n \in \mathbb{N}_0$ und $x \in \mathbb{R}$ und beweisen dies durch vollständige Induktion:

• Induktionsanfang Für n = 0 ist für jedes $x \in \mathbb{R}$:

$$(T^0\mathbf{1})(x) = \mathbf{1}(x) = 1$$

und

$$\sum_{k=0}^{0} \frac{1}{k!} x^k = \frac{1}{0!} x^0 = 1,$$

was zu zeigen war.

• Induktionsvoraussetzung Für ein $n \in \mathbb{N}$ gelte für alle $x \in \mathbb{R}$:

$$(T^{n-1}\mathbf{1})(x) = \sum_{k=0}^{n-1} \frac{1}{k!} x^k$$

• Induktionsschluss Es sei $x \in \mathbb{R}$, dann gilt

$$(T^{n}\mathbf{1})(x) = (T(T^{n-1}\mathbf{1}))(x)$$

$$= \int_{\text{Def. von } T} (T^{n-1}\mathbf{1})(t) dt$$

$$= \int_{0}^{x} \sum_{k=0}^{n-1} \frac{1}{k!} t^{k} dt$$

$$= \int_{0}^{x} \sum_{k=0}^{n-1} \frac{1}{k!} \int_{0}^{x} t^{k} dt$$

$$= \int_{0}^{x} \sum_{k=0}^{n-1} \frac{1}{k!} \int_{0}^{x} t^{k} dt$$

$$= \int_{0}^{x} \sum_{k=0}^{n-1} \frac{1}{k!} \frac{x^{k+1}}{x^{k+1}}$$

$$= \int_{0}^{x} \sum_{k=0}^{n-1} \frac{1}{(k+1)!} x^{k+1}$$

$$= \int_{0}^{x} \sum_{k=0}^{n-1} \frac{1}{k!} x^{k}.$$

Das war aber zu zeigen.

 $^{^{2)} \}mathrm{Sie}$ heißen die Picard-Iterationen.

7.6.3 Sei $x_0 \in \mathbb{R}$ und $\delta > 0$. Geben Sie eine Differentialgleichung an, für die der Satz von Picard-Lindelöf anwendbar ist, die eine Lösung auf] $x_0 - \delta, x_0 + \delta$ [, aber auf keinem Intervall] $x_0 - \eta, x_0 + \eta$ [mit $\eta > \delta$ besitzt.

Betrachte das AWP

$$y(x_0) = -\frac{1}{\delta^2}, \quad y'(x) = -2(x - x_0)y(x)^2$$

Die Funktion $f(x,y)=-2(x-x_0)y^2$ ist in y stetig differenzierbar, also insbesondere lokal Lipschitz-stetig in y. Nach dem Satz von Picard-Lindelöf ist also das AWP in einer Umgebung von x_0 eindeutig lösbar. Auf $|x_0-\delta,x_0+\delta|$ ist eine Lösung durch

$$y(x) := \frac{1}{(x - x_0 - \delta)(x - x_0 + \delta)}$$

gegeben, denn

$$y(x_0) = \frac{1}{(x_0 - x_0 - \delta)(x_0 - x_0 + \delta)} = -\frac{1}{\delta^2}$$

und

$$y'(x) = -\frac{1}{(x - x_0 - \delta)^2} \cdot \frac{1}{(x - x_0 + \delta)} - \frac{1}{(x - x_0 - \delta)} \cdot \frac{1}{(x - x_0 + \delta)^2}$$
$$= -\frac{x - x_0 + \delta + x - x_0 - \delta}{(x - x_0 - \delta)^2 (x - x_0 + \delta)^2}$$
$$= -2(x - x_0)y(x)^2$$

Gäbe es eine Lösung $y:]x_0 - \eta, x_0 + \eta, \rightarrow [\mathbb{R} \text{ mit } \eta > \delta, \text{ so müsste diese auf }]x_0 - \delta, x_0 + \delta [$ mit obiger übereinstimmen, was $\eta > \delta$ widerspricht, da obige Lösung in $x_0 \pm \delta$ Pole hat und so nicht über $x_0 \pm \delta$ hinaus stetig fortgesetzt werden kann.