Devoir surveillé n°09: corrigé

Problème 1 – D'après ESCP 1988

Partie 1 - Étude d'un endomorphisme

- 1. Évident.
- 2. Notons a_n le coefficient dominant de P. On a donc $a_n \neq 0$. Le coefficient de X^n dans $(X^2 1)P'' + 4XP'$ est alors $n(n-1)a_n + 4na_n$. Puisque $f(P) = \lambda P$, $n(n-1)a_n + 4na_n = \lambda$ et donc $\lambda = n(n+3)$ puisque $a_n \neq 0$.
- 3. Soit $P \in \mathbb{R}[X]$ non nul tel que $f(P) = \lambda_n P$. En notant d son degré, la question précédente montre que $\lambda_n = d(d+3)$ i.e. n(n+3) = d(d+3). La fonction $x \mapsto x(x+3)$ est strictement croissante et donc injective sur \mathbb{R}_+ de sorte que n=d.
- **4.** Soit $P \in \mathbb{R}_n[X]$. Alors deg $P \le n$ donc deg $P \le n-1$ et deg $P'' \le n-2$. On en déduit que deg $XP' \le n$ et deg $(X^2-1)P'' \le n$ puis que deg $f(P) \le n$. Ainsi $f(P) \in \mathbb{R}_n[X]$. $\mathbb{R}_n[X]$ est donc stable par f et f induit alors un endomorphisme f_n de $\mathbb{R}_n[X]$.
- 5. **a.** Soit $P \in \mathbb{R}_n[X]$ et notons \mathfrak{a} le coefficient de X^n dans P (éventuellement nul). Alors le coefficient de X^n dans $f_n(P) \lambda_n P$ est $\mathfrak{n}(n-1)\mathfrak{a} + 4\mathfrak{n}\mathfrak{a} \mathfrak{n}(n+3)\mathfrak{a} = 0$. Ainsi $f_n(P) \lambda_n P \in \mathbb{R}_{n-1}[X]$. On en déduit que

$$G_n \subset \mathbb{R}_{n-1}[X]$$

Puisque $f_n - \lambda_n I_n \in \mathcal{L}(\mathbb{R}_n[X])$,

$$\dim \mathbb{R}_n[X] = \operatorname{rg}(f_n - \lambda_n I_n) + \dim \operatorname{Ker}(f_n - \lambda_n I_n) = \dim F_n + \dim G_n$$

d'après le théorème du rang. Or $\dim \mathbb{R}_n[X]=n+1$ et $\dim G_n\leqslant \dim \mathbb{R}_{n-1}[X]=n$ puisque $G_n\subset \mathbb{R}_{n-1}[X]$. On en déduit que $\dim F_n=\geqslant 1$.

b. Soit $P \in F_n \cap \mathbb{R}_{n-1}[X]$. Supposons P non nul. Puisque $f(P) = \lambda_n P$, la question 3 montrer que deg P = n, ce qui est absurde puisque $P \in \mathbb{R}_{n-1}[X]$. Ainsi P = 0 et $F_n \cap \mathbb{R}_{n-1}[X] = \{0\}$. On peut alors affirmer que

$$\dim(F_n \oplus \mathbb{R}_{n-1}[X]) = \dim F_n + \dim \mathbb{R}_{n-1}[X] \geqslant 1 + n = n + 1$$

Par ailleurs, $F_n \oplus \mathbb{R}_{n-1}[X] \subset \mathbb{R}_n[X]$ donc $\dim(F_n \oplus \mathbb{R}_{n-1}[X]) \leqslant n$. Finalement, $\dim(F_n \oplus \mathbb{R}_{n-1}[X]) = n$ et donc $F_n \oplus \mathbb{R}_{n-1}[X] = \mathbb{R}_n[X]$.

c. On déduit de la question précédente que

$$\dim F_n=\dim \mathbb{R}_n[X]-\dim \mathbb{R}_{n-1}[X]=1$$

Notamment, il existe un polynôme $P_n \in \mathbb{R}_n[X]$ non nul tel que $F_n = \text{vect}(P_n)$. Puisque $P_n \in F_n$, $f(P_n) = f_n(P_n) = \lambda_n P_n$. Quitte à diviser P_n par son coefficient dominant, on peut supposer P_n non nul. De plus, $P_n \notin \mathbb{R}_{n-1}[X]$, sinon $P_n \in F_n \cap \mathbb{R}_{n-1}[X] = \{0\}$. On en déduit que deg $P_n = n$. Reste à prouver l'unicité. Soit alors $Q \in \mathbb{R}[X]$ unitaire tel que $f(Q) = \lambda_n Q$. A nouveau, la question 3 montre que deg Q = n. Ainsi $Q \in \mathbb{R}_n[X]$ de sorte que $f_n(Q) = f(Q) = \lambda_n P$ et donc $Q \in F_n = \text{vect}(P_n)$. Finalement, $Q \in P_n$ sont donc colinéaires mais comme ils sont tous deux unitaires, ils sont égaux.

6. Remarquons que $Q_n'=-(-1)^nP_n'(-X)$ et $Q_n''=(-1)^nP_n''(-X).$ Or on sait que

$$(X^2 - 1)P''_n + 4XP'_n = n(n+3)P_n$$

donc en substituant -X à X,

$$(X^2 - 1)P_n''(-X) - 4XP_n'(-X) = n(n+3)P_n(-X)$$

puis en multipliant par $(-1)^n$

$$(X^{2}-1)(-1)^{n}P_{n}''(-X)-4X(-1)^{n}P_{n}'(-X)=n(n+3)(-1)^{n}P_{n}(-X)$$

ou encore $f(Q_n) = \lambda_n Q_n$. Or on vérifie aisément que Q_n est unitaire puisque P_n l'est. L'unicité du polynôme P_n montre alors que $P_n = Q_n$. Ceci signifie que P_n a la parité de n.

7. Soit un entier $n \geqslant 2$. Puisque P_n est unitaire, de degré n et de même parité que n, on peut affirmer qu'il existe un réel α_n et un polynôme $\tilde{P}_n \in \mathbb{R}[n-3]X$ tel que

$$P_n = X^n + \alpha_n X^{n-2} + \tilde{P}_n$$

Par linéarité de f,

$$f(P_n) = f(X^n) + \alpha_n f(X^{n-2}) + f(\tilde{P}_n)$$

Or

$$f(X^n) = n(n+3)X^n - n(n-1)X^{n-2}$$

$$f(X^{n-2}) = (n-2)(n+1)X^{n-2} - (n-2)(n-3)X^{n-4}$$

et $f(P_n) \in \mathbb{R}_{n-3}[X]$ car $\mathbb{R}_{n-3}[X]$ est stable par f d'après la question 4. Ainsi il existe un polynôme $\hat{P}_n \in \mathbb{R}_{n-3}[X]$ tel que

$$f(P_n) = n(n+3)X^n + (\alpha_n(n-2)(n+1) - n(n-1))X^{n-2} + \hat{P}_n$$

Mais on sait que

$$f(P_n) = \lambda_n P_n = \lambda_n X^n + \lambda_n \alpha_n X^{n-2} + \lambda_n \tilde{P}_n$$

En identifiant les coefficients de X^{n-2} , on obtient,

$$\alpha_n(n-2)(n+1) - n(n-1) = \lambda_n \alpha_n = n(n+3)\alpha_n$$

ou encore

$$\alpha_n = -\frac{n(n-1)}{2(2n+1)}$$

- 8. Puisque P_0 est unitaire et de degré 00, $P_0 = 1$. P_1 est impair, unitaire et de degré 1 donc $P_1 = X$. Enfin, P_2 est pair, unitaire, de degré 2 et son coeffificient constant est $-\frac{1}{5}$ d'après la question 7. Ainsi $P_2 = X^2 - \frac{1}{5}$.
- 9. a. Tout d'abord

$$R'_n = 2XP'_n + (X^2 - 1)P''_n - nP_n - nXP'_n = (X^2 - 1)P''_n - (n - 2)XP'_n - nP_n$$

Or $f(P_n) = \lambda_n P_n$ donc

$$(X^2 - 1)P''_n = \lambda_n P_n - 4XP'_n = n(n+3)P_n - 4XP'_n$$

Ainsi

$$R'_n = n(n+3)P_n - 4XP'_n - (n-2)XP'_n - nP_n = n(n+2)P_n - (n+2)XP'_n = (n+2)(nP_n - XP'_n)$$

On en déduit ensuite que

$$R''_n = (n+2)(nP'_n - P'_n - XP''_n) = (n+2)(n-1)P'_n - (n+2)XP''_n$$

puis que

$$(X^2 - 1)R_n'' = (n + 2)(n - 1)(X^2 - 1)P_n' - (n + 2)X(X^2 - 1)P_n''$$

Or on rappelle que

$$(X^2 - 1)P_n'' = n(n + 3)P_n - 4XP_n'$$

donc

$$\begin{split} (X^2-1)R_n'' &= (n+2)(n-1)(X^2-1)P_n' - (n+2)X(n(n+3)P_n - 4XP_n') \\ &= (n+2)(n-1)(X^2-1)P_n' - n(n+2)(n+3)XP_n + 4(n+2)X^2P_n' \end{split}$$

Or

$$4XR'_{n} = 4X(n+2)(nP_{n} - XP'_{n}) = 4n(n+2)XP_{n} - 4(n+2)X^{2}P'_{n}$$

donc

$$\begin{split} f(R_n) &= (X^2 - 1)R_n'' + 4XR_n' \\ &= (n+2)(n-1)(X^2 - 1)P_n' - n(n+2)(n+3)XP_n + 4n(n+2)XP_n \\ &= (n+2)(n-1)(X^2 - 1)P_n' - n(n+2)(n-1)XP_n \\ &= (n+2)(n-1)((X^2 - 1)P_n' - nXP_n) = (n+2)(n-1)R_n = \lambda_{n-1}R_n \end{split}$$

b. Soit $n \in \mathbb{N}^*$. La question **5.c** montrer que R_n est colinéaire à P_{n-1} . Il existe donc $\beta_n \in \mathbb{R}$ tel que $R_n = \beta_n P_{n-1}$. Puisque P_{n-1} est unitaire, β_n est en fait le coefficient de X^{n-1} dans R_n . En reprenant les notations de la question 7,

$$P_n = X^n + \alpha_n X^{n-2} + \tilde{P}_n$$

où l'on rappelle que $\tilde{P}_n \in \mathbb{R}_{n-3}[X]$. Cette relation est valable même si n=1, puisque $\alpha_1=0$. Un calcul donne alors

$$R_n = -(n+2\alpha_n)X^{n-1} - (n-2)X^{n-3} + (X^2-1)\tilde{P}'_n - nX\tilde{P}_n$$

ou encore, en posant $\hat{P}_n = -(n-2)X^{n-3} + (X^2-1)\tilde{P}'_n - nX\tilde{P}_n$

$$R_n = -(n+2\alpha_n)X^{n-1} + \hat{P}_n$$

avec deg $\hat{P}_n\leqslant n-2.$ Ainsi le coefficient de X^{n-1} dans R_n est

$$\beta_n = -(n+2\alpha_n) = -n + \frac{n(n-1)}{2n+1} = -\frac{n(n+2)}{2n+1}$$

On en déduit donc bien que

$$R_n + \frac{n(n+2)}{2n+1}P_{n-1} = 0$$

c. En dérivant la relation de la question précédente, on obtient

$$R'_n + \frac{n(n+2)}{2n+1}P'_{n-1} = 0$$

Or on a vu que $R'_n = (n+2)(nP_n - XP'_n)$ de sorte que

$$(n+2)(nP_n - XP'_n) + \frac{n(n+2)}{2n+1}P'_{n-1} = 0$$

ou même, en simplifiant par n+2

$$nP_n - XP'_n + \frac{n}{2n+1}P'_{n-1} = 0$$

En multipliant par $(X^2 - 1)$, on obtient

$$n(X^2-1)P_n-X(X^2-1)P_n'+\frac{n}{2n+1}(X^2-1)P_{n-1}'=0$$

Or

$$(X^{2}-1)P'_{n} = R_{n} + nXP_{n} = -\frac{n(n+2)}{2n+1}P_{n-1} + nXP_{n}$$

et

$$(X^{2}-1)P'_{n-1} = R_{n-1} + (n-1)XP_{n-1} = -\frac{(n-1)(n+1)}{2n-1}P_{n-2} + (n-1)XP_{n-1}$$

donc

$$n(X^{2}-1)P_{n} + \frac{n(n+2)}{2n+1}XP_{n-1} - nX^{2}P_{n} - \frac{(n-1)n(n+1)}{4n^{2}-1}P_{n-2} + \frac{n(n-1)}{2n+1}XP_{n-1} = 0$$

En simplifiant par n

$$(X^{2}-1)P_{n} + \frac{n+2}{2n+1}XP_{n-1} - X^{2}P_{n} - \frac{(n-1)(n+1)}{4n^{2}-1}P_{n-2} + \frac{n-1}{2n+1}XP_{n-1} = 0$$

ce qui donne

$$-P_n + XP_{n-1} - \frac{n^2 - 1}{4n^2 - 1}P_{n-2} = 0$$

et enfin, en passant à l'opposé,

$$P_n - XP_{n-1} + \frac{n^2 - 1}{4n^2 - 1}P_{n-2} = 0$$

Partie 2 - Comportement asymptotique d'une suite

10. On a clairement

$$\frac{1}{4X^2-1} = \frac{1}{(2X-1)(2X+1)} = \frac{1}{2} \frac{(2X+1)-(2X-1)}{(2X+1)(2X-1)} = \frac{1}{2} \left(\frac{1}{2X-1} - \frac{1}{2X+1} \right)$$

On en déduit par télescopage que

$$S_n = \frac{1}{2} \sum_{k=2}^n \frac{1}{2k-1} - \frac{1}{2k+1} = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{2n+1} \right)$$

puis que

$$\lim_{n\to+\infty}S_n=\frac{1}{6}$$

11. a. On a clairement $u_1 \geqslant u_0 \geqslant 1$. Supposons que $u_{n-1} \geqslant u_{n-2} \geqslant 1$ pou un certain entier $n \geqslant 2$. Alors

$$\frac{1}{9} \left[u_{n-1} - u_{n-2} + \frac{3}{4n^2 - 1} \right] \geqslant 0$$

donc $u_n \geqslant u_{n-1}$. Mais on sait déjà que $u_{n-1} \geqslant 1$ donc $u_n \geqslant u_{n-1}$. Par récurrence, ceci est vrai pour tout $n \in \mathbb{N}^*$

b. Soit un entier $n \ge 2$. Pour tout $k \in [2, n]$,

$$u_k = u_{k-1} + \frac{1}{9} \left[u_{k-1} - u_{k-2} + \frac{3}{4k^2 - 1} u_{k-2} \right]$$

En additionnant ces inégalités et en télescopant, on obtient le résultat voulu.

c. On a clairement $u_0 \le u_1 \le \frac{6}{5}$. De plus, pour $n \ge 2$,

$$u_n = u_1 + \frac{1}{9} \left[u_{n-1} - u_0 + \sum_{k=2}^n \frac{3}{4k^2 - 1} u_{k-2} \right] \leqslant u_1 + \frac{1}{9} (u_n - u_0 + S_n u_n) = 1 + \frac{1}{9} u_n + \frac{1}{3} S_n u_n$$

par croissance de la suite (u_n) et car (S_n) est positive. Par ailleurs, la suite (S_n) est également croissante (évident) et converge vers $\frac{1}{6}$ donc elle est majorée par $\frac{1}{6}$. On en déduit

$$u_n \le 1 + \frac{1}{9}u_n + \frac{1}{18}u_n = 1 + \frac{1}{6}u_n$$

On en déduit immédiatement que $u_n \leqslant \frac{6}{5}$.

La suite (u_n) étant croissante et majorée, elle converge.

12. a. On rappelle que $P_0 = 1$ et $P_1 = X$. Ainsi, pour tout $t \in \mathbb{R}$,

$$f_0(t) = 1$$
 $f_1(t) = \frac{2 \operatorname{ch} t}{e^t} = 1 + e^{-2t}$

Soit maintenant un entier $n \ge 2$. On rappelle que

$$P_{n} - XP_{n-1} + \frac{n^{2} - 1}{4n^{2} - 1}P_{n-2} = 0$$

En fixant $t \in \mathbb{R}$ et en évaluant en cht, on obtient

$$P_n(\operatorname{ch} t) - \operatorname{ch}(t)P_{n-1}(\operatorname{ch} t) + \frac{n^2 - 1}{4n^2 - 1}P_{n-2}(\operatorname{ch} t) = 0$$

ou encore

$$\frac{e^{nt}}{2^n}f_n(t)-ch(t)\frac{e^{(n-1)t}}{2^{n-1}}f_{n-1}(t)+\frac{n^2-1}{4n^2-1}\frac{e^{(n-2)t}}{2^{n-2}}f_{n-2}(t)=0$$

En multipliant par $\frac{2^n}{e^{nt}}$, on obtient

$$f_n(t) - 2 \operatorname{ch}(t) e^{-t} f_{n-1}(t) + \frac{4(n^2 - 1)}{4n^2 - 1} e^{-2t} f_{n-2}(t) = 0$$

ou encore

$$f_n(t) - (1 + e^{-2t})f_{n-1}(t) + \left(1 - \frac{3}{4n^2 - 1}\right)e^{-2t}f_{n-2}(t) = 0$$

puis

$$f_n(t) - f_{n-1}(t) = e^{-2t} \left[f_{n-1}(t) - f_{n-2}(t) + \frac{3}{4n^2 - 1} f_{n-2}(t) \right]$$

13. Tout d'abord, $f_0: t \mapsto 1$ et $f_1 - f_0: t \mapsto e^{-2t}$ sont bien positives et décroissantes sur \mathbb{R} . Supposons que f_{n-2} et $f_{n-1} - f_{n-2}$ soient positives et décroissantes sur \mathbb{R} pour un certain entier $n \ge 2$.

Tout d'abord, $f_{n-1} = f_{n-2} + (f_{n-1} - f_{n-2})$ est positive et décroissante sur \mathbb{R} en tant que somme de telles fonctions.

Puisque pour tout $t \in \mathbb{R}$,

$$f_n(t) - f_{n-1}(t) = e^{-2t} \left[f_{n-1}(t) - f_{n-2}(t) + \frac{3}{4n^2 - 1} f_{n-2}(t) \right]$$

 f_n-f_{n-1} est bien positive sur $\mathbb R$. De plus, les fonctions $t\mapsto e^{-2t}$ et $f_{n-1}-f_{n-2}+\frac{3}{4n^2-1}f_{n-2}$ sont décroissantes sont décroissante et *positives* sur $\mathbb R$ (la seconde est une somme de fonctions décroissantes) : leur produit f_n-f_{n-1} est donc décroissant sur $\mathbb R$.

Par récurrence, f_{n-1} et $f_n - f_{n-1}$ sont bien positives et décroissantes sur $\mathbb R$ pour tout $n \in \mathbb N^*$.

- 14. ch est continue et strictement croissante sur \mathbb{R}_+ . Puisque $\mathrm{ch}(0) = 1$ et $\lim_{+\infty} \mathrm{ch} = +\infty$, elle induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. Sa bijection réciproque est également strictement croissante.
- **15. a.** Par définition, ch $\alpha = \frac{e^{\alpha} + e^{-\alpha}}{2} = \frac{5}{3}$. Ainsi $e^{\alpha} + e^{-\alpha} = \frac{10}{3}$ ou encore $e^{2\alpha} \frac{10}{3}e^{\alpha} + 1 = 0$. Les racines du polynôme $X^2 \frac{10}{3}X + 1$ sont $\frac{1}{3}$ et 3. Or $\alpha \geqslant 0$ par définition de argch de sorte que $e^{\alpha} \geqslant 1$. Ainsi $e^{\alpha} = 3$. On a clairement $u_1 = 1 = f_0(\alpha)$. De plus, $f_1(\alpha) = 1 + e^{-2\alpha} = 1 + \frac{1}{9} = \frac{10}{9}$. Supposons que $u_{n-1} = f_{n-1}(\alpha)$ et $u_{n-2} = f_{n-2}(\alpha)$ pour un certain entier $n \geqslant 2$. Alors

$$\begin{split} f_n(\alpha) &= f_{n-1}(\alpha) + e^{-2\alpha} \left[f_{n-1}(\alpha) - f_{n-2}(\alpha) + \frac{3}{4n^2 - 1} f_{n-2}(t\alpha) \right] \\ &= u_{n-1} + \frac{1}{9} \left[u_{n-1} - u_{n-2} + \frac{3}{4n^2 - 1} u_{n-2} \right] = u_n \end{split}$$

Par récurrence double, $u_n=f_n(\alpha)$ pour tout $n\in\mathbb{N}.$

b. Soit $n \in \mathbb{N}^*$. Comme la fonction $f_n - f_{n-1}$ est positive sur \mathbb{R} , $f_n(\operatorname{argch} x) \geqslant f_{n-1}(\operatorname{argch} x)$. La suite de terme général $f_n(\operatorname{argch} x)$ est donc croissante.

Soit $n \in \mathbb{N}$. Par croissance de argch, argch $x \ge \alpha$. Par décroissance de f_n ,

$$f_n(\operatorname{argch} x) \leqslant f_n(\alpha) = u_n \leqslant \frac{6}{5}$$

La suite de terme général $f_n(\operatorname{argch} x)$ est donc également majorée par $\frac{6}{5}$.

Cette suite étant croissante et majorée, elle converge vers un réel $\ell(x)$. Par ailleurs, la croissance de la suite de terme général $f_n(\operatorname{argch} x)$ montre que pour tout $n \in \mathbb{N}$, $f_n(\operatorname{argch} x) \geqslant f_0(\operatorname{argch} x) = 1$. Par passage à la limite, $\ell(x) \geqslant 1 > 0$.

Par définition de f_n,

$$P_n(x) = \frac{e^{n \operatorname{argch} x}}{2^n} f_n(\operatorname{argch} x)$$

Comme $\ell(x) \neq 0$, on peut alors affirmer que

$$P_n(x) \sim_{n \to +\infty} \frac{\ell(x)e^{n \operatorname{argch} x}}{2^n}$$

Si on pose $u = \operatorname{argch} x$, alors $x = \operatorname{ch}(u) = \frac{e^u + e^{-u}}{2}$. Ainsi e^u est racine du polynôme $X^2 - 2xX + 1$. Ses racines sont $x + \sqrt{x^2 - 1}$ et $x - \sqrt{x^2 - 1}$. Ces deux racines sont positives et leur produit vaut 1. Or $u \ge 0$ donc $e^u \ge 1$: e^u est la plus grande de ces deux racines, c'est-à-dire $x + \sqrt{x^2 - 1}$. Finalement,

$$e^{n \operatorname{argch} x} = (e^{u})^{n} = \left(x + \sqrt{x^{2} - 1}\right)^{n}$$

Finalement,

$$P_n(x) \underset{_{n \to +\infty}}{\sim} \left(\frac{x + \sqrt{x^2 - 1}}{2}\right)^n \ell(x)$$

SOLUTION 1.

1. a. Pour tout $r \in \mathbb{R}_+$,

$$f'(r) = (p+1)r^p - p(M+1)r^{p-1} = r^{p-1}((p+1)r - p(M+1))$$

Ainsi l'unique zéro strictement positif de f' est

 $r_0 = \frac{p(M+1)}{p+1}$

Or

$$r_0 - 1 = \frac{p(M+1)}{p+1} - 1 = \frac{Mp-1}{p+1}$$

Ainsi

- $r_0 > 1 \text{ lorsque } M > 1/p$;
- $r_0 < 1$ lorsque M < 1/p;
- $r_0 = 1 \text{ lorsque } M = 1/p.$
- **b.** On remarque que f(1) = 0.

r	0	r_0	1	+∞
f'(r)	0 -	O	+	
f(r)	M	$f(r_0)$	0	+∞

On en déduit que f(r) > 0 lorsque r > 1.

c. On remarque que $r_0=\frac{M+1}{1+1/p}>M+1.$

r	0	1	r_0	M + 1	+∞
f'(r)	0	_	0	+	
f(r)	M	0	$f(r_0)$	M	+∞

On en déduit que $f(r) \geqslant M > \frac{1}{p} > 0$ lorsque $r \geqslant M+1$.

2. a. Soit z une racine complexe de p de module différent de 1. Alors

$$z^{\mathfrak{p}} = -\sum_{k=0}^{\mathfrak{p}-1} a_k z^k$$

puis, par inégalité triangulaire,

$$|z|^p \leqslant \sum_{k=0}^{p-1} |\alpha_k| |z|^k \leqslant M \sum_{k=0}^{p-1} |z|^k = M \frac{|z|^p - 1}{|z| - 1}$$

Si |z| > 1, on obtient en multipliant cette inégalité par |z| - 1 > 0,

$$|z|^{p+1} - |z|^p \le M|z|^p - M$$

c'est-à-dire

$$|z|^{p+1} - (M+1)|z|^p + M \le 0$$

c'est-à-dire $f(|z|) \leq 0$.

- **b.** Soit z une racine de P et supposons $M \le \frac{1}{p}$. D'après la question **1.b**, f(r) > 0 lorsque r > 1. Or si |z| > 1, la question **2.a** montre que $f(|z|) \le 0$. C'est donc que $|z| \le 1$.
- c. Soit z une racine de P et supposons $M > \frac{1}{p}$. Supposons que $|z| \ge M+1$. D'après la question 1.c, f(|z|) > 0. Mais comme on a également $|z| \ge M+1 > \frac{1}{p}+1 > 1$, la question 2.a montre que $f(|z|) \le 0$, ce qui est contradictoire. C'est donc que |z| < M+1.
- 3. Remarquons que dans cette question $M = \frac{1}{n}$.
 - **a.** Puisque $M = \frac{1}{p}$, la question **2.b** montrer que toutes les racines de P sont de module inférieure ou égal à 1.
 - b. On vérifie que

$$P(1) = 1 - \frac{1}{p} \sum_{k=0}^{p-1} 1 = 0$$

donc 1 est racine de P. De plus,

$$P'(1) = p - \frac{1}{p} \sum_{k=0}^{p-1} k = p - \frac{1}{p} \cdot \frac{p(p-1)}{2} = \frac{p+1}{2} \neq 0$$

Ainsi 1 est racine simple de P.

- **4.** Remarquons que dans cette question M = 1.
 - **a.** Puisque $p\geqslant 2$, $M=1>\frac{1}{2}\geqslant \frac{1}{p}$. La question **2.c** montre que les racines de P sont de module strictement inférieur à M+1=2.
 - **b.** Supposons que z soit racine de p. Alors

$$z^{p} - \sum_{k=0}^{p-1} z^{k} = 0$$

En mutipliant par z - 1, on obtient

$$z^{p+1} - z^p - (z^p - 1) = 0$$

donc z est racine du polynôme $X^{p+1} - 2X^p + 1$.

c. Pour tout $r \in \mathbb{R}_+$,

$$g'(r) = (p+1)r^p - 2pr^{p-1} = (p+1)r^{p-1}\left(r - \frac{2p}{p+1}\right)$$

Remarquons que $1 < \frac{2p}{p+1} < 2$. On en déduit le tableau de variation suivant.

r	0	1	2p p+1	2	+∞
g'(r)	0	-	0	+	
g(r)	1	0	$g\left(\frac{2p}{p+1}\right)$	11	+∞

Puisque g(1)=0, g(2p/(p+1))<0. De plus, g(2)=1>0. En appliquant le théorème des valeurs intermédiaires sur l'intervalle [2p/(p+1),2], on montre donc que g s'annule sur cet intervalle en un réel x_p . Ainsi x_p est une racine de $X^{p+1}-2X^p+1=(X-1)P$. Comme $x_p\neq 1$, x_p est également une racine de P.

Pour tout entier $p \ge 2$, $\frac{2p}{p+1} \le x_p \le 2$ donc le théorème des gendarmes montre que la suite (x_p) converge vers 2.

d. On a déjà montré que x_p était racine du polynôme $X^{p+1}-2X^p+1$. On en déduit imédiatement que $(2-\kappa_p)x^p=1$, c'est-à-dire $\epsilon_px_p^p=1$ ou encore $\epsilon_p=(2-\epsilon_p)^{-p}=\kappa_p^{-p}$. Or pour tout entier $p\geqslant 2$,

$$\frac{4}{3} = 2 - \frac{2}{3} \leqslant 2 - \frac{2}{p+1} = \frac{2p}{p+1} \leqslant x_p \leqslant 2$$

donc

$$0 \leqslant p \varepsilon_p \leqslant \frac{p}{(4/3)^p}$$

Par croissances comparées, $\lim_{p\to+\infty}\frac{p}{(4/3)^p}=0$ donc la suite $(p\epsilon_p)$ converge vers 0 par encadrement. Enfin,

$$\epsilon_{\mathfrak{p}} = (2 - \epsilon_{\mathfrak{p}})^{-\mathfrak{p}} = \frac{1}{2^{\mathfrak{p}}} \Big(1 - \frac{\epsilon_{\mathfrak{p}}}{2} \Big)^{-\mathfrak{p}} = \frac{1}{2^{\mathfrak{p}}} \exp \Big(-\mathfrak{p} \ln \Big(1 - \frac{\epsilon_{\mathfrak{p}}}{2} \Big) \Big)$$

Or comme la suite (ε_p) converge vers 0,

$$\ln\left(1-\frac{\varepsilon_p}{2}\right) \underset{p\to+\infty}{\sim} -\frac{\varepsilon_p}{2}$$

et don

$$-p \ln \left(1 - \frac{\varepsilon_p}{2}\right) \underset{p \to +\infty}{\sim} \frac{p \varepsilon_p}{2}$$

Comme la suite $(p \varepsilon_p)$ converge également vers 0,

$$\lim_{p\to +\infty} -p\ln\Bigl(1-\frac{\epsilon_p}{2}\Bigr)=0$$

et donc

$$\exp\left(-p\ln\left(1-\frac{\varepsilon_p}{2}\right)\right) \underset{p\to+\infty}{=} 1+o(1)$$

puis

$$\epsilon_{\mathfrak{p}} = \frac{1}{2^{\mathfrak{p}}} \exp \left(-\mathfrak{p} \ln \left(1 - \frac{\epsilon_{\mathfrak{p}}}{2} \right) \right) \underset{\scriptscriptstyle \mathfrak{p} \to +\infty}{=} \frac{1}{2^{\mathfrak{p}}} + o \left(\frac{1}{2^{\mathfrak{p}}} \right)$$

Comme $x_p = 2 - \varepsilon_p$,

$$x_p \underset{p \to +\infty}{=} 2 - \frac{1}{2^p} + o\left(\frac{1}{2^p}\right)$$

e. Soit z une racine de P. Alors $z \neq 0$ puisque 0 n'est clairement pas racine de p. On en déduit que $Q(1/z) = -\frac{P(z)}{z^p} = 0$ et donc 1/z est racine de Q.

Le nombre M associé au polynôme Q est encore 1, de sorte que les racines de Q sont encore toutes de module strictement inférieur à 2. Donc 1/z est de module strictement inférieur à 2, ce qui signifie que z est de module strictement supérieur à $\frac{1}{2}$.

Les racines de P sont donc toutes de module strictement compris entre $\frac{1}{2}$ et 2.