# Chapter 4 - Methods of Analysis of Resistive Circuits

Lecture 11 Section 4.4

MEMS 0031 Electrical Circuits

 $\begin{tabular}{ll} Mechanical Engineering and Materials Science Department \\ University of Pittsburgh \end{tabular}$ 

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

1.4 Node Voltage Analysis with ndependent Voltage Sources



# Student Learning Objectives

At the end of the lecture, students should be able to:

▶ Apply Node Voltage Analysis (NVA) to circuits with dependent sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources

ımmary



# NVA with Independent VS

- ▶ By adding an dependent source, we must express behavior (voltage) in terms of node voltages.
- ► The number of KCL equations still holds as:

$$\#$$
 KCL Eqns. =  $N - \#$  VS  $- 1$ 

► "Supernode" formulation is still valid

Chapter 4 -Methods of Analysis of Resistive Circuits

#### MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources





Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources





Chapter 4 -Methods of Analysis of Resistive Circuits

#### MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources

ımmary





Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources

ımmary





Chapter 4 -Methods of Analysis of Resistive Circuits

#### MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources





Chapter 4 Methods of Analysis
of Resistive Circuits

### MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources





Chapter 4 -Methods of Analysis of Resistive Circuits

### MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources



Chapter 4 -Methods of Analysis of Resistive Circuits

#### MEMS 0031

Learning Objectives

4.4 Node Voltage Analysis with Independent Voltage Sources

- At the end of the lecture, students should be able to:
  - ▶ Apply Node Voltage Analysis (NVA) to circuits with independent current sources
    - NVA requires the sole use of KCL. We construct N-1-#VS KCL equations, applied at non-zero and non-specified, and relate the currents to voltages using Ohm's law.
    - ▶ A voltage source (independent and dependent) between two non-zero nodes creates a supernode, i.e. an equation that relates two node voltages apply KCL here!
    - ► A voltage source between a non-zero and zero-voltage nodes specifies the non-zero node voltage.



# Suggested Problems

At the end of the lecture, students should be able to:

▶ 4.4-1, 4.4-2, 4.4-3, 4.4-4, 4.4-5, 4.4-6, 4.4-7, 4.4-13, 4.4-14

Chapter 4 -Methods of Analysis of Resistive Circuits

#### MEMS 0031

Learning Objectives

.4 Node Voltage analysis with adependent Voltage Sources

