A számításelmélet alapjai 2.

10. gyakorlat

1.feladat:

Lássuk be, hogy az alábbi halmazok számossága megegyezik!

a)
$$|N| = |\{ 2*n \mid n \in N \}|$$

 $0,1,2,3,4,...,25,...$

b)
$$|N| = |N \times N|$$

(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)
(0,0)	(0,1)	(0,2)	(0,3)	(0,4)
x+v=k				

$$x+y=k$$

$$f(x,y)=(\sum_{i=1}^{x+y} i) + y+1$$

- c) |N| = |Q|
- d) $|\mathcal{A}(N)| > |N|$ //hatványhalmaz számossága nagyobb
- e) $|\{0,1\}^*| = |N|$ // véges bitsorozatok halmaza megszámlálható

ε, 0, 1, 00, 01, 10, 11, 000,, 111, 0000....., 1111,, 010101110111 //lexikografikus felsorolás $0, 1, 2, 3, \dots, 2^{3}-1, \dots, 14, 2^{4}-1, \dots, 30, \dots$

2. feladat:

Legyen D_{fin} azon végtelen hosszú bitsztringek (azaz 0-t és 1-et tartalmazó végtelen szavak) halmaza, melyekben véges sok 0 van. Mi a Dfin halmaz számossága?

Megoldás: Vegyük észre, hogy megadható egy bijekció Dfin és a következő halmaz között: $A = \{\varepsilon\} \cup \{u0 \mid u \in \{0,1\}*\}$ (azaz minden D_{fin} -beli szó azonosítható a leghosszabb olyan prefixével, ami nem 1-esre végződik). Mivel az A halmaz számossága megszámlálhatóan végtelen, ezért Dfin számossága is az.

Következmény: |TG| = |N| // megszámlálhatóan sok Turing gép van.