Analysis and modelling of stress concentration on riveted zones of thin structures

AEA 2024/2025 - Presentation 2

Group 4 Alexandre Silva- 107957 Magner Gusse-110180 Martim Correia- 107661 Rúben Abreu- 107421

+

Introdução

Casos de Falha

Rivet shear

Bearing pressure

$$P = \frac{\pi d^2 \tau_1}{4b}$$

$$P = \frac{p_b t d}{b}$$

Shear failure in a plate

$$P = \frac{2at\tau_2}{h}$$

au_1 - Tensão de Corte no rebite

Plate failure in tension

$$P = \frac{\sigma_{ult}t(b-d)}{b}$$

 p_b - Tensão de Cedência σ_{ult} - Tensão Última na placa τ_2 - Tensão de corte na placa P- Força por Unidade de comprimento[N/M]

Megson, T. H. G. (2021). Aircraft Structures for Engineering Students. In Aircraft Structures for Engineering Students. Elsevier.

Casos de Falha

Rivet shear

Bearing pressure

$$P = \frac{\pi d^2 \tau_1}{4b} \Longrightarrow P = 159 \text{kN}$$
 $P = \frac{p_b t d}{b} \Longrightarrow P = 189 \text{kN}$

$$P = \frac{p_b t d}{b} \Longrightarrow P = 189 \text{kN}$$

Shear failure in a plate

$$P = \frac{2at\tau_2}{h} \Longrightarrow P = 435$$
kN

Plate failure in tension

$$P = \frac{\sigma_{ult}t(b-d)}{b} \Longrightarrow P = 933\text{kN}$$

AL6061 T6
$$\tau_1 = \tau_2 = 207MPa$$

$$p_b = 276 MPa$$

$$\sigma_{ult} = 310MPa$$

Casos de Falha Aproximação placa infinita

- → Aumento do comprimento e distância do rebite a extremidade da placa
- → Aplicação de força limite
- → Validação da distância mínima para aproximar a uma placa infinita

Megson, T. H. G. (2021). Aircraft Structures for Engineering Students. In Aircraft Structures for Engineering Students. Elsevier

Equações de Kirsch

- → Capazes de aproximar os fatores de concentração de tensões em zonas furadas.
- → Usadas quando temos apenas um único furo circular numa placa infinita.

$$\sigma_{rr} = \frac{\sigma}{2} \left(1 - \frac{a^2}{r^2} \right) + \frac{\sigma}{2} \left(1 + 3 \frac{a^4}{r^4} - 4 \frac{a^2}{r^2} \right) \cos(2\theta)$$

$$\sigma_{\theta\theta} = \frac{\sigma}{2} \left(1 + \frac{a^2}{r^2} \right) - \frac{\sigma}{2} \left(1 + 3 \frac{a^4}{r^4} \right) \cos(2\theta)$$

$$\sigma_{r\theta} = -\frac{\sigma}{2} \left(1 - 3\frac{a^4}{r^4} + 2\frac{a^2}{r^2} \right) \sin\theta$$

F = 1000N
L = 200mm
$$\sigma_i = 2.5 MPa$$

t = 2mm

$$\sigma_{result} = \sqrt{\sigma_{rr}^2 + \sigma_{\theta\theta}^2 + 2\sigma_{r\theta}^2}$$

$$\begin{array}{c|c} \underline{P1} \\ a = 5 \text{mm} \\ r = 100 \text{mm} \\ \theta = 0^{\circ} \end{array} \qquad \begin{array}{c|c} \sigma_{rr} = 2,484 \ MPa \\ \sigma_{\theta\theta} = 0,0031 \ MPa \end{array} \qquad \begin{array}{c|c} \sigma = 2,484 \\ \sigma_{\theta\theta} = 0,0031 \ MPa \end{array}$$

$$\sigma_{\theta\theta} = 0.0031 \, MPa$$

$$\sigma_{r\theta} = 0 \, MPa$$

$$\sigma_{r\theta} = 0 \, MPa$$

$$\begin{array}{c|c}
\underline{P2} \\
a = 5mm \\
r = 50mm \\
\theta = 60^{\circ}
\end{array}$$
 $\sigma_{rr} = 0,6373 \, MPa$
 $\sigma_{\theta\theta} = 1,8877 \, MPa$
 $\sigma_{\theta\theta} = 1,1039 \, MPa$
 $\sigma_{r\theta} = -1,1039 \, MPa$

$$\begin{array}{c|c} \underline{P3} \\ a = 5 \text{mm} \\ r = 20 \text{mm} \\ \theta = 80^{\circ} \end{array} \qquad \begin{array}{c|c} \sigma_{rr} = 0.2771 \, MPa \\ \sigma_{\theta\theta} = 2.5165 \, MPa \end{array} \qquad \qquad \sigma = 3.1884 \, MPa \\ \sigma_{r\theta} = -1.3705 \, MPa \end{array}$$

$$\begin{array}{c|c} \underline{P4} \\ a=5\text{mm} \\ r=20\text{mm} \\ \theta=230^{\circ} \end{array} \qquad \begin{array}{c} \sigma_{rr}=1{,}0218\,MPa \\ \sigma_{\theta\theta}=1{,}5023\,MPa \\ \sigma_{r\theta}=1{,}0085\,MPa \end{array} \qquad \boldsymbol{\sigma}=3{,}8937\,MPa$$

Análise Computacional - Ansys

		Máx Node 10463
	Analítico (MPa)	Ansys (MPa)
P1	2,484	2,5208
P2	2,5311	2,5398
P3	3,1884	2,8932
P4	2,3097	2,5383
P5	3 8937	3 8574

$$\theta = 0^{\circ} \longrightarrow \sigma_{\theta\theta} = \sigma_i = 2,4578 MPa$$

$$\theta = 90^{\circ}$$
 $\sigma_{\theta\theta} = 3\sigma_i = 7,4415 MPa$

Tensão num Rebite

$$K_{in} = 0.288 - 8.820 \left(\frac{d}{H}\right) - 23.169 \left(\frac{d}{H}\right)^2 + 29.167 \left(\frac{d}{H}\right)^3$$

$$\sigma_{m\acute{a}x} = K_{in}.\sigma_{nom}$$

GREMEN, Tom A.W. Stress concentrations in riveted plate girders due to fatigue loading: defining a new stress range parameter to accurately describe the life prediction of riveted bridge girders. 2021.

H = 100mm d = 10mm t = 5mm F = 1000N

<u>Método Analítico:</u> $K_{in} = 0.7965$ $\sigma_{max} = 1.593 MPa$

Método Computacional:

Efeito da distribuição dos rebites

→ Considerou-se 5 casos

Resultados

Tensão Máx (MPa)	242,15
Rebite T.Máx (MPa)	130,15
Rebite D.Máx (mm)	0,0036196

Caso2

Tensão Máx (MPa)	104,3	
Rebite T.Máx (MPa)	(1) 68,362	(2) 66,336
Rebite D.Máx (mm)	(1) 0,0018511	(2) 0,0018511

Caso3

Tensão Máx (MPa)	70,335		
Rebite T.Máx (MPa)	(1) 41,892	(2) 37,192	(3) 43,349
Rebite D.Máx (mm)	(1) 0,0012465	(2) 0,0011354	(3) 0,0012640

Caso4

Tensão Máx (MPa)	48,38			
Rebite T.Máx (MPa)	(1) 30,769	(2) 28,032	(3) 29,489	(4) 29,639
Rebite D.Máx (mm)	(1) 0,00099413	(2) 0,00088067	(3) 0,00092543	(4) 0,00097243

Tensão Máx (MPa)	83,485			
Rebite T.Máx (MPa)	(1) 41,094	(2) 27,889	(3) 27,133	(4) 42,365
Rebite D.Máx (mm)	(1) 0,001355	(2) 0,00091267	(3) 0,00089161	(4) 0,0013499

Efeito do espaçamento entre rebites

- 1
- •
- 0 3

- → 2 placas iguais: 300x150 mm
- → Diâmetro dos furos: 8mm
- → Fixação nas faces do rebite
- → Força aplicada: 2000N

Efeito do Diâmetro na concentração de tensões

- → 2 placas iguais: 500x250 mm
- → Diâmetro dos furos: 12<D<18mm
- → Distância entre furos: 100mm
- → Força aplicada: 15000N

Efeito do Diâmetro na concentração de tensões

Outro teste realizado

Fig. 4. The tensile test of T-specimens and the loading conditions: (a) T-specimen in the holder; (b) joint after tensile test.

Geometria

Condições Fronteira

1º Caso

Caso usado no estudo

Rebite fixo
F aplicado em cada lado
com sentidos diferentes

2º Caso

Caso usado na simulação

Rebite livre
Face debaixo fixa
2F aplicado na face
superior

Foi escolhido por ser mais estável e porque energeticamente e mecanicamente é similar ao outro caso

Análise de convergência de malha

Resposta para uma força de 1000N

	1º Caso	2ºCaso	3ºCaso
Nº de nós	36969	83796	122422
Nº de elementos	23075	55965	83176
Tensão Máx de Von Mises	1580MPa	1735MPa	1800MPa

Foi escolhida a malha do caso 2, por ter um resultado similar (diferença de 3%) e ser mais eficiente

Malha Final

Exemplo de simulação

Resultados - Stress

2F=250N

2F=1500N

2F=4000N

2F=12000N

2F (N)	σmax(Mpa)	
250	433	
500	867	
1000	1735	
1500	2602	
2000	3470	
4000	6940	
8000	14500	
12000	23166	

Aço estrutural

$$\sigma_y = 250MPa$$

Resultados - Displacement

2F=500N

Control 1000N
| Total Deformation | Type: Type:

Apenas alguns exemplos

Observações

Em nenhuma das forças apresentadas o sistema rompeu Muito contrário ao que é encontrado na literatura para esta geometria

Mucha, J., & Witkowski, W. (2015). Mechanical behavior and failure of riveting joints in tensile and shear tests. Strength of Materials, 47(5), 1–9. https://doi.org/10.1007/s11223-015-9712-5

Ensaio de tra

Displacement Fixed

Similar ao anterior

Aplicado displacement, invés

+

Ensaio de tração

Comparação de Resultados

Mucha, J., & Witkowski, W. (2015). Mechanical behavior and failure of riveting joints in tensile and shear tests. Strength of Materials, 47(5), 1–9. https://doi.org/10.1007/s11223-015-9712-5

Impossível ir depois dos 16mm de displacement, o computador não tinha RAM e apareciam erros

26

Observações

-Em nenhum dos casos o sistema rompeu

-Apesar de realizar um bom trabalho os resultados obtidos não foram correspondentes com os obtidos na literatura

-Uma das razões para isso ter acontecido, foi do material utilizado não ter sido o mesmo que no teste experimental

-A geometria dos rebites usadas no teste experimental não totalmente iguais às usadas na simulação no Ansys porque estas não foram encontradas

Caso de aplicação

Longarina de uma asa

Dimensões utilizadas sem furos (light aircraft / UAV)

doi.org/10.1016/j.ijfatigue.2019.02.013.

No nosso caso:

- Viga em I com alma ligada aos banzos por uma fila de rebites (d=5mm)
- Sem Fillets visto não haver concentração de tensões nestas áreas aquando da simulação

Longarina de uma asa

Simulação de todo o conjunto não foi possível por limite de elementos (depois de aplicado plano de simetria)

Simulação da secção inicial com 10 rebites

Definição do problema

- Material: Alluminum Alloy (Ansys)
- Viga encastrada num lado
- Força de 3000 N nas faces superiores e inferiores da viga
- Contactos entre sólidos do tipo frictionless
- Elementos viga nos furos para simular os rebites

Análise de Convergência de malha

	1º Caso	2ºCaso	3ºCaso	4ºcaso
Nº de nós	25433	56903	102060	110360
Nº de elementos	12276	30366	56187	61360
Tensão Máx de Von Mises	0,91 GPa	1,02 GPa	1,616 GPa	1,617 GPa

Selecionada a malha do 3ºcaso

Malha

Nível de refinement máximo (3) à volta dos rebites

+

Resultados da simulação

Variação da posição dos rebites

Diâmetro, espaçamento e posição longitudinal constante Variação da posição transversal

Comparação

	Cima	Centro	Baixo
Deslocamento máximo	0,55 mm	0,70 mm	0,47 mm
Tensão Máx de Von Mises	2,28 GPa	1,63 GPa	0,21 GPa

Rebites colocados mais próximos do centro da viga demonstraram menores tensões máximas

É o melhor local?

Observações/Pontos de melhoria

Elementos viga como rebites

Contemplar o esforço provocado pelo restante da spar

Outras variações nos rebites

Frequências naturais

Conclusão

Obrigado!

Questões?

Additional Bibliography

Mucha, J., & Witkowski, W. (2015). Mechanical behavior and failure of riveting joints in tensile and shear tests. Strength of Materials, 47(5), 1–9. https://doi.org/10.1007/s11223-015-9712-5

GREMEN, Tom A.W. Stress concentrations in riveted plate girders due to fatigue loading: defining a new stress range parameter to accurately describe the life prediction of riveted bridge girders. 2021.

Aleksandar Grbović, Gordana Kastratović, Aleksandar Sedmak, Igor Balać, Mihajlo D. Popović, Fatigue crack paths in light aircraft wing spars,International Journal of Fatigue, Volume 123, 2019,Pages 96-104, ISSN 0142-1123, doi.org/10.1016/j.ijfatigue.2019.02.013.

ScienceDirect, Lift Distribution, www.sciencedirect.com/topics/engineering/lift-distribution