BASE DE DADOS

NORMALIZAÇÃO

Dependências Funcionais

Teóricas Rosa Reis

- É um processo que consiste em estruturar a informação em tabelas na forma mais adequada afim de evitar:
 - > redundâncias desnecessárias
 - > certos problemas associados à inserção, eliminação e atualização de dados
- > A redundância está na origem de vários problemas associados a esquemas relacionais
 - mau uso do espaço de armazenamento
 - inconsistência provocada por anomalias na manipulação dos dados

Benefícios:

- ➤ Mais fácil para o utilizador aceder e manter os dados;
- ➤ocupação de espaço mínimo de armazenamento

Problemas da Redundância dos dados

- > Armazenamento redundante
 - Mesmos dados gravados em vários locais
 - Menos espaço disponível para gravar outros dados
- Anomalias Incoerências que podem existir aquando da escrita de dados
 - Inserção
 - Pode não ser possível inserir dados, sem serem fornecidos outros, não relacionados
 - Uma alternativa seria usar NULL nos outros dados, mas nem sempre é possível
 - Atualização
 - Pode existir uma incoerência nos dados se apenas uma das cópias for atualizada
 - Eliminação
 - > Pode não ser possível apagar dados, sem apagar outros, não relacionados

Problemas da Redundância dos dados

Exemplo de redundância

Número Aluno	Nome Aluno	Sigla Curso	Número Disciplina	Nome Disciplina	Número Professor	Nome Professor	Grau Professor	Nota
21934	Antunes	INF	04	Álgebra	21	Gil	PA	15
			14	Análise	87	Ana	PC	12
			23	Estatística	43	Plínio	AS	16
42346	Bernardo	MAT	08	Topologia	32	Торо	AE	10
			04	Álgebra	21	Gil	PA	12
			12	Geometria	21	Gil	PA	18
			16	Lógica	32	Торо	AE	13
54323	Correia	EIO	04	Álgebra	21	Gil	PA	11
			08	Topologia	32	Торо	AE	10

Anomalias

- Inserção de um novo professor requer indicação de outros dados
- Atualização do grau de um professor tem de afetar várias linhas
- Remoção do professor Gil elimina os dados de Álgebra e Geometria

Processo de normalização

- Baseada nas Dependências funcionais (DFs);
- Garante consistência na construção do sistema: redução de anomalias.
- redução de redundância;
- Existem algumas regras para a normalização da base de dados.
 - Cada regra é chamada de " FORMA NORMAL (FN)".
 - Condição usando chaves e DFs de uma relação para certificar se um esquema de relação está numa forma normal específica

Do processo de normalização emergem três tipos de **dependências** entre os dados: **funcionais**, **multivalor** e de **junção**.

As dependências funcionais referem-se à semântica dos dados e não ao seu conteúdo.

Definição:

- Numa relação R, diz-se que o atributo y é funcionalmente dependente de x (x, y ∈ R), se e apenas se, em qualquer instante, cada valor de x em R tem associado apenas um valor de y em R
- Uma dependência funcional para R é uma expressão da forma R:

X → Y, onde X e Y são conjuntos de atributos de R

Exemplo:

número de aluno → nome de aluno

Lê-se : nome de aluno depende funcionalmente do número de aluno, ou, número de aluno determina o nome do aluno

A chave primária de uma relação determina sempre os restantes atributos, isto é, todos eles são dependentes funcionalmente da chave.

Exemplo 1 : Identificação de DFs

NrEmpregado	NomeProprio	Apelido	Departamento
1021	Ana	Silva	900
1022	Carlos	Silva	700
1023	Jóse	Fernandes	900

Departamento -> NrEmpregado ?

Não pois Departamento 900 => {1021,1023}

NrEmpregado -> Departamento?

Sim pois se conhecermos o NrEmpregado (atributo unívoco) é possível determinar o Departamento (um funcionário só pode pertencer a um departamento)

Definição: Numa relação R, diz-se que o atributo y é funcionalmente dependente de x (x, $y \in R$), se e apenas se, em qualquer instante, cada valor de x em R tem associado apenas um valor de y em R

Exemplo 2

Papelaria	Artigo	Preço
Fernandes	Borracha	1.50€
Papyrus	Fita cola	3.00€
Juvenil	Caderno	1.75€
Central	Borracha	1.80€
Juvenil	caneta	2.80€

1. O Preço é funcionalmente dependente de artigo (Artigo -> Preço)?

Não, o mesmo artigo pode ter preços distintos em diferentes papelarias

2. O preço é funcionalmente dependente de papelaria (Papelaria -> Preço)?

Não, para cada papelaria há tantos valores para o preço quantos os artigos vendidos

O preço depende de ambos (Papelaria, Artigo -> Preço)

Dependência funcional Total

Numa relação R, o atributo y é funcionalmente dependente total de x $(x, y \in R)$, no caso de x ser um atributo composto, se e apenas se, é funcionalmente dependente de x e não é funcionalmente dependente de qualquer subconjunto dos atributos de x

Exemplo:

NumAluno, CodDisciplina→Nota

Dependência funcional Transitiva

Uma dependência funcional R: $x \rightarrow y$ é transitiva, se existe um atributo z que não é um subconjunto de x, tal que $x \rightarrow z$ e $z \rightarrow y$

Exemplo: Considere o seguinte esquema com suas dependências funcionais:

Empregado= Nr_emp, Enome, DataNasc, Endereço, Dnumero, Dnome

DF's: Nr_emp ->Enome, DataNasc, Endereco, DNumero
Dnumero -> Dnome

A dependência funcional Nr_emp -> Dnome é transitiva para Dnumero, pois ambas as dependências NR_emp -> Dnumero e Dnumero-> Dnome são asseguradas e **Dnumero não é nem chave primária nem um subconjunto da chave da relação.**

Diagrama de DFs

Exercício -Diagrama de DF's

Considere:

As empresas do sector de construção civil integram muitos consórcios, por exemplo para executarem projetos ou para outras iniciativas conjuntas, tendo cada empresa em cada consórcio responsabilidade por uma certa percentagem do orçamento envolvido nas suas atividades. Cada consórcio é liderado por apenas uma única empresa.

Exercício -Diagrama de DF's

Para cada empresa interessa manter informação sobre a sua designação e sobre o endereço de correio electrónico.

Exercício -Diagrama de DF's

Sobre cada consórcio interessa manter informação sobre o nome, a data da sua constituição e o valor do orçamento total disponível para o consórcio (em euros).

Normalização - Dependências Multivalor

Dependência Multivalor

Uma dependência multivalor só se verifica nos casos em que a relação tem pelo menos 3 atributos

Numa relação R, o atributo y tem uma dependência funcional multivalor relativamente a x (x, $y \in R$), se para cada par de tuplos de R contendo os mesmos valores de x, também existe um par de tuplos de R correspondentes à troca dos valores de y no par original

- Os tuplos que não têm valores repetidos, satisfazem por redução esta regra
- Consideremos a relação R = {a, b, c}
 - Existem 2 dependências multivalor
 - ➤ R: a ->>b
 - ➤ R: a ->> c

a b c x1 y1 z1 x1 y1 z2 x1 y2 z1 x1 y2 z2 x3 y1 z1 x4 y3 z2			
x1 y1 z2 x1 y2 z1 x1 y2 z2 x3 y1 z1	а	b	С
x1 y2 z1 x1 y2 z2 x3 y1 z1	x1	y1	z1
x1 y2 z2 x3 y1 z1	x1	y1	z2
x3 y1 z1	x1	y2	z1
	x1	y2	z2
x4 y3 z2	x 3	y1	z1
	x4	уЗ	z2

Normalização - Dependências Multivalor

> Dependência Multivalor

Funcionário	Projeto	Dependente
Santos	xpto	Rita
Santos	xpto	Joana
Santos	xpto	Mario
Santos	хух	Rita
Santos	хух	Joana
Santos	хуг	Mario

Funcionário ->-> Projeto

Funcionário ->-> Dependente

е

Projeto e Dependente

Sem relacionamento

Numa relação R {A, B, C} se existe a DM $A \rightarrow B$, então também existe $A \rightarrow C$.

Como neste caso, as DM surgem sempre aos pares e representam-se por: $A \rightarrow B \mid C$

Normalização - Dependências Junção

Dependência de junção

Uma dependência de junção numa relação só existe quando, dadas algumas projeções sobre a relação, apenas é possível reconstruir a relação inicial através de algumas junções bem específicas, mas não de todas

- Consideremos a relação R = {a, b, c} e três projecções:
 - \triangleright P1 = {a, b}, P2 = {a, c}, P3 = {b, c}
 - Se não é possível reconstruir a relação com:
 - ➤ P1 e P2
 - ➤ P2 e P3
 - ➤ P1 e P3
 - E o for, por exemplo, apenas com P1, P2 e P3...
 - Diz-se que R possui uma dependência de junção

Normalização - Dependências Junção

≻Dependência funcional de junção

Fornecedor	Peça	Projeto
F1	P1	J2
F1	P2	J1
F2	P1	J1
F1	P1	J1

{Fornecedor, Peça},

Fornecedor	Peça
F1	P1
F1	P2
F2	P1
F1	P1

{Peça, Projeto}

Peça	Projeto
P1	J2
P2	J1
P1	J1
P1	J1

{Projeto, Fornecedor}

Projeto	Fornecedor
J2	F1
J1	F1
J1	F2
J1	F1

Normalização - Dependências Junção

 ∞

≻Dependência de junção

{Fornecedor, Peça},

Fornecedor	Peça
F1	P1
F1	P2
F2	P1
F1	P1

{Peça, Projeto}

Peça	Projeto
P1	J2
P2	J1
P1	J1
P1	J1

 ∞

{Projeto, Fornecedor}

Projeto	Fornecedor
J2	F1
J1	F1
J1	F2
J1	F1

Fornecedor	Peça	Projeto
F1	P1	J2
F1	P1	J1
F1	P2	J1
F2	P1	J2
F2	P1	J1

TABELA ORIGINAL

Fornecedor	Peça	Projeto
F1	P1	J2
F1	P1	J1
F1	P2	J1
F2	P1	J1

Regras de Inferência de DF's

Dada uma relação R com um conjunto U de atributos e algumas dependências funcionais, é possível inferir outras dependências funcionais (triviais ou derivadas) usando os axiomas de Armstrong

Axiomas de Armstrong:

			.~	
_	- 1 1	n	ı	\cap
	U		ıa	v

$$-\operatorname{Se} X \to \operatorname{Ye} X \to \operatorname{Z}$$
, então $X \to \operatorname{YZ}$

$$-\operatorname{Se} X \to YZ$$
, então $X \to Y$ e $X \to Z$

$$-\operatorname{Se} X \to Y \text{ e } Y \to Z, \text{ então } X \to Z$$

$$- Se X \rightarrow Ye WY \rightarrow Z então XW \rightarrow Z$$

$$-\operatorname{Se} X \to YZ \subseteq U$$
, então $XZ \to YZ$

- Se
$$X \supseteq Y$$
, então $X \rightarrow Y$

Exemplificação

matrícula marca modelo cor

União

- Se X
$$\rightarrow$$
 Y e X \rightarrow Z, então X \rightarrow YZ

Ex: matricula -> modelo e matricula -> marca então matricula -> modelo,marca

Decomposição

– Se X
$$\rightarrow$$
 YZ , então X \rightarrow Y e X \rightarrow Z

Ex: matricula ->(marca, modelo) então matricula -> modelo e matricula -> marca

Transitividade

$$-$$
 Se X \rightarrow Y e Y \rightarrow Z, então X \rightarrow Z

Ex: matricula ->modelo e modelo ->marca então matricula -> marca

Pseudo-transitividade

-Se
$$X \rightarrow Y$$
 e $WY \rightarrow Z$ então $XW \rightarrow Z$

Ex: matricula ->modelo e (marca,modelo) -> potencia então (matricula, marca) -> potencia

Extensão (Aumento)

-Se X
$$\rightarrow$$
 Y e Z \subseteq U, então XZ \rightarrow YZ

Ex: modelo -> marca então (modelo,cor)->(marca,cor)

Reflexibilidade

- Se
$$X \supseteq Y$$
, então $X \rightarrow Y$

Ex: cor -> cor ou (marca,modelo) -> marc

Como determinar a chave primária a partir de DF's

- a) Seja a Relação R(A,B,C,D) e as seguintes DF: B-> D e AB->C
 - A chave primaria da relação é AB.

Aplicou-se os axiomas de Armstrong.

- 1. Aumento à DF B -> D => AB-> AD
- 2. União AB -> C e AB -> AD => AB -> CD
- b) Seja a Relação R(A,B,C,D,E) e as seguintes DF : AB -> CE ; E -> AB e C -> D
 - As chaves candidatas da relação é AB e E.

Aplicou-se os axiomas de Armstrong.

- 1. Decomposição AB -> CE => AB -> C e AB -> E
- 2. Transitividade AB -> C e C -> D => AB -> CD
- 3. Transitividade AB -> CD e AB-> E => AB-> CDE

ou

- 1. Decomposição AB -> CE => AB -> C e AB -> E
- 2. Transitividade AB -> C e C -> D => AB -> CD
- 3. Transitividade E -> AB e AB -> CD => E-> ABCD