14 | Trees

Ivan Corneillet Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Understand and build decision tree models for classification and regression
- Understand and build random forest models for classification and regression
- Know how to extract the most important predictors in a random forest model

Decision Trees

The 2008 Democratic Primaries

Decision Tree: The Obama-Clinton Divide

Published in The New York
 Time on April 16, 2008 while
 the Democratic Primaries
 were still running

Decision trees are like the game "20 questions." They make decision by answering a series of questions, most often binary questions. (yes or no) (cont.)

- We want the smallest set of questions to get to the right answer
- Each question should reduce the search space as much as possible

Using decision trees to make predictions is great but how do we build them in the first place?

Open questions from the previous activity

- • How to choose the split conditions? (variables and threshold values)
 - E.g., why is the threshold for African-American population set at 20%?
- When to choose the order of the conditions?
 - E.g., why is the first split on African-American population vs. the voters' education level?
- ▶ **3** When to stop?
 - E.g., why didn't we include other factors such as voters' age?

Because it isn't computationally feasible to consider every possible partition of the feature space, we take a *top-down*, *greedy* approach known as recursive binary splitting

Top-Down

 The approach begins at the top of the tree and then successively splits the predictor space; each split is indicated via two new branches further down on the tree

Greedy

At each step of the tree-building process, the *best* split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step

Decision trees can be applied to both classification and regression problems

We first consider
 classification problems to
 address ② (How to choose the
 order of the conditions?)

 We'll then move on to regression problems when addressing • (How to choose the split conditions?)

Decision Trees

Entropy

Entropy (H) is a measure of disorder

What to remember about entropy

$$H = -\sum_{i=1}^{k} p_i \cdot log_2(p_i)$$

(p_i represents the proportion of observations in the region that are from the $i^{\rm th}$ class)

Decision Trees

Training a Classification Decision Tree

2 How to choose the order of the conditions?

Our first classifiers (class 5) were in fact decision trees

```
def my_second_classifier(row):
  if row.PetalLength <= 2:</pre>
    return 'Setosa'
  elif row.PetalLength <= 5:</pre>
    return 'Versicolor'
  else:
    return 'Virginica'
```


Our first classifiers (class 5) were in fact decision trees (cont.)

Decision Tree

Feature Space

• What's the entropy of the dataset/root node before the first split? What's your intuition of its level?

What's the entropy after split 1? Intuition?

What's the entropy after split 1'? Intuition? (Note: 9 "blues" on the left, 1 "green" on the right)

Most common occurring class

In practice, we don't expect each terminal region to hold a single class

 Instead, we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs

Regression decision trees

 Just as in the classification setting, we use recursive binary splitting to grow a regression tree

For every observation that falls into the region R_j , we make the prediction \hat{y}_{R_j} , which is the mean of the response values for the training observations in R_j

In the regression setting, we cannot use entropy for making the binary splits. A natural alternative to *H* is *RSS* (residual sum of squares)

$$\sum_{j=1}^{k} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

We first select the feature and the cutpoint such that splitting the feature space into the regions $\{x \mid feature \leq cutpoint\}$ and $\{x \mid feature > cutpoint\}$ leads to the greatest possible reduction in RSS

Source: The Elements of Statistical Learning

Top-down greedy approach (a.k.a., recursive binary splitting)

- Once the first cut is made, we recursively repeat the process in the two previously identified regions
- ► For *regression* trees, we would be looking for the best predictor and the best cutpoint in order to split the data further so as to minimize the RSS within each of the resulting regions
- For classification trees, we would be looking for the best predictor and the *highest* information gain in order to split the data further so as to minimize the *entropy* within each of the resulting regions

An fully-grown (i.e., unconstrained) decision tree can memorize a dataset (e.g., below)

Overfitting

- Decision trees tend to be weak models because they can easily memorize or overfit to a dataset
 - A model overfit when it
 memorizes or bends to a few
 specific data points rather than
 picking up general trends in the
 data

- We can limit our decision trees using a few methods
 - Limit the number of questions (nodes) a tree can have
 - Limit the number of samples in the leaf nodes

Decision Trees | Pros and cons

Pros

- Very easy to explain to people; even easier to explain than linear regression
- Mirror more closely human decision-making than do the regression and classification methods seen so far
- Can be displayed graphically and are easily interpreted even by non-experts
- Can easily handle qualitative predictors without the need to create binary variables

Cons

Do not generally have the same level
 of predictive accuracy as some of the
 other regression and classification
 methods seen so far (higher
 variance). However, by aggregating
 many decision trees, the predictive
 performance of trees can be
 substantially improved

How can we avoid overfitting and increase predictability?

Random Forests

Random forests are an *ensemble* or collection of individual decision trees

- Random forest models are
 one of the most widespread
 classifiers used
- They are relatively simple to use and help avoid overfitting

Random Forests | Pros and cons

- Pros
 - Easy to tune
 - Built-in protection against overfitting
 - Non-linear
 - Built-in interaction effects

- Cons
 - Slow
 - No "coefficients"
 - Black-box
 - Harder to explain

Random Forests | Training

- Training a random forest model involves training many decision tree models
- Since decision trees easily
 overfit, we use many decision
 trees together and randomize
 the way they are created

- Random Forest Training Algorithm
 - Take a bootstrap sample (random sample with replacement) of the dataset
 - Train a decision tree on the bootstrap sample
 - For each split/feature selection, only evaluate a *limited* number of features to find the best one
 - Repeat this for a number of trees

Random Forests | Predicting

- Predictions for a random forest model come from each decision tree
- Make an individual prediction with each decision tree
- Combine the individual predictions and take the majority vote

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission