Spatial Suppression Messmodelle

Kongenerisches- und fixed-links Modelle im Vergleich 12 February, 2016

1 Zusammenhänge der Bedingungen

```
## Call:corr.test(x = resultsSupp2[12:15])
## Correlation matrix
##
          S1mean S2mean S3mean S4mean
            1.00 0.83
                          0.65
                                  0.44
## S1mean
## S2mean
            0.83
                   1.00
                           0.79
                                  0.57
## S3mean
            0.65
                   0.79
                           1.00
                                  0.83
                                  1.00
## S4mean
            0.44
                   0.57
                           0.83
## Sample Size
## [1] 179
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
          S1mean S2mean S3mean S4mean
## S1mean
               0
                      0
## S2mean
               0
                      0
                              0
                                     0
## S3mean
               0
                      0
                              0
                                     0
## S4mean
               0
                              0
##
```

To see confidence intervals of the correlations, print with the short=FALSE option

2 Kongenerisches Modell

			CFI		SRMR	
Chi-Square	df	p		RMSEA		parsimony ratio
46.8	2	< .001	.63	.3041	.09	.33

$3\ fixed\text{-}links$ Modelle

Hier werden alle gerechneten fixed-links Modelle tabelliert. Die Faktorladungen der Variable C sind alle auf 1 fixiert. Die Faktorladungen der Variable exp sind in der Tabelle notiert.

Nr.					CFI		SRMR	
	Kategorie	Verlauf von exp	CS	df	p		RMSEA	
1	logarithmisch	$\log(1:4)$ (neg. Var!)						
2	linear	1 2 3 4	17.4	4	< .01	.89	.1117	.34
3	monoton steig.	0 1 2 4 (neg. Var!)						
4	monoton steig.	1 2 4 8	6.7	4	.153	.98	.0210	.12
5	\exp	1 4 9 16	4.2	4	.375	.99	.0007	.06

- Modell 1 weist auf Prädiktor 1 eine **negative** Residualvarianz auf
- Modell 3 weist auf Prädiktor 1 eine **negative** Residualvarianz auf
- Modelle 2, 4 und 5 konvergieren normal: alle Faktorladungen und Varianzen sind signifikant
- Modell 5 repräsentiert die Daten am besten

4 Stabilität der Faktorwerte

4.1 Faktorwerte der C-Variable

Die Faktorwerte der konstanten Variable wurden für die Modelle 2, 4 und 5 extrahiert. Hier abgebildet sind die Korrelationen dieser Faktorwerte.

• Die Faktorwerte hängen stark miteinander zusammen

4.1 Faktorwerte der exp-Variable

Die Faktorwerte der experimentellen Variable wurden für die Modelle 2, 4 und 5 extrahiert. Hier abgebildet sind die Korrelationen dieser Faktorwerte.

• Die Faktorwerte hängen stark miteinander zusammen

5 Schlussfolgerung

Die Analyse der Faktorwerte deutet darauf hin, dass es für spätere Zusammenhänge der *C*- und *exp*-Variable mit Drittvariablen nicht so entscheidend ist, welches Modell gewählt wird. Aufgrund der Modelltests wähle ich **Modell 5** für meine weiteren Berechnungen.