

ileam: DZ68nQB=

1.) Wie beschreiben Sie die Schaltfunktion und Schaltung der Theoreme für 2 Variablen

- · oder
- · 701

$$y = x_1 + x_2$$
 $y = A v B$

X	X2	У	χ,	
0	0	0	Y ₂	21
0	1	1		
1	0	1		
1				

A	B	17	A	t	-	
0	0	0			= 1 -	
0	1	1	J.	.	'	
1	0	Λ				
1	1	0				

2., Schreiben Sie die

Kommutative: ANB = BNA; AVB = BVA

assoziative: Av(Bvc) = (AvB)vc; An(Bnc) = (AnB)nc

distributive: An(BVC) = AnBVANC; AV(BNC) = (AVB) n(AVC)

gesetze auf!

3., Welche Absorptionsgesetze konnen Sie in folgenden Fallen Oenwenden?

a, AVA1B=A

by AvA B=AvB

C) A 1 B V A 1 B = A 1 (B VB) = A 1 1 = A

dy y = ABC + ABC + ABC + ABC

$$= (A + \overline{A}) \overline{BC} + AB(\overline{C} + C) = \overline{BC} + AB$$

e) AB(B++)+ AB (B++)

 $= AB + (\overline{A} + B) \overline{B} \overline{A}$

= AB + ABA + BBA

 $0 + \overline{\mathcal{E}} + \overline{\mathcal{E}} +$

 $= (A + \overline{A}) \overline{B}$

- B

4., Wie seht das Karnaugh-Veith-Diagramm für zwei Engangs-Variablen nit den eingetragenen Dezimalagnivalenten aus?

		7,	γ _o	d
	0 2	D	0	0
γ_0	1 ,3	0	1	1
		1	0 1	2
		1	Λ	3

5., Gegeben sei folgendes KV-Diagramm. Zeichnen Sie die Primimphikanten ein und sehreiben Sie die minimierk Form der Funktion auf!

Χ2	
O (1 XI X	$\gamma(x_2,x_1,x) = x_1 \vee x_0 \wedge \overline{x_2}$
x0 [1 [X] 1 0	$= x_1 + x_0 = x_2$
*,	

NAND

	A	B	AB	AB	
A = B ->	0	0	0	1	
	0	1	0	1	
	1	0	0	1	
->	1	Λ	1	O	

1 Flip-Flop (FF), Bistabile Trigger

1.1 Einteilung der Flip-Flop

Zustandsfolgetabelle

S	R	Q	^{1}Q	$^{1}\overline{Q}$
0	0	0	0	1
0	0	1	~	0
0	1	0	0	1
0	1	1	0	7
1	0	0	1	0
1	0	1	1	0
1	1	0	X	×
1	1	1	X	X

Kurzform

S	R	^{1}Q
0	0	Q
0	1	0
1	0	1
1	1	X

Synthesetabelle

Q	^{1}Q	S	R
0	0	0	0
		0	1
0	1	7	0
1	0	0	1
			•
Λ	1	0	0
		1	0

Kurzform

Q	^{1}Q	S	R
0	0	0	X
0	1	Λ	0
1	0	0	~
Λ	7	X	0

$$XOR$$
 mif $4NANI$) mif 5 :
$$A\overline{B} + \overline{AB} = A\overline{B} + \overline{AB} = A\overline{B} \overline{AB}$$

$$\overrightarrow{AB} + \overrightarrow{AB} = \overline{\overrightarrow{A}} + \overline{B} + \overline{A} + \overline{\overline{B}}$$

$$=\overline{\overline{A}+B}+\overline{A+B}$$

$$= AAB + \overline{ABB} = \overline{AAB} + \overline{ABB} = \overline{\overline{AAB}} \overline{\overline{ABB}}$$

Impulsdiagramm

ugl. Skitze davor

1.2.2 RS-FF in NAND-Realisierung

A	B	CUAN
0	0	1
0 7 7	10 <	1 1 0

Zustandsfolgetabelle

$\frac{1}{1}$ $\frac{1}{0}$ $\frac{0}{0}$ $\frac{0}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{0}{1}$ $\frac{0}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{0}{1}$ $\frac{1}{1}$ $\frac{1}$	Sigg.
1 1 0 0 1 × ×)	
100102seze	U
01 1 0 0 0 1 ? lashe	4
00 1 1 0 0 1 2 speiche	N

Kurzform

\bar{S}	\overline{R}	^{1}Q
0	0	X
0	1	1
1	0	0
1	1	Ø

1.2.3 Anwendung des RS-FF für einen prellfreien Schalter

1.2.4 RS-FF mit besonderem Schaltverhalten

Ziel: Verhinderung der verbotenen Zustände durch ein vorgeschaltetes Schaltnetz

RS-FF mit Setzvorrang

Zustandstabelle

	S	R	S´	R´
	0 .	0	0	0
	0	1	Q	1
	1	0	1	0
د	1	1	1	0

Schaltung wit NAND Gatter

creignisgestenete/FF's reggieren auf jede Anderung ungstaktete

der Engangsparameter sofort

1.3 Flip-Flop mit Taktsteuerung

- 1.3.1 Taktzustandsgesteuerte Einspeicher-Flip-Flop
- 1.3.1.1 Taktzustandsgesteuertes RS-FF

Zuskandsanderung erfolgt synchron nit dem lakt

1.3.2 Taktzustandsgesteuerte Zweispeicher-Flip-Flop (Master-Slave-FF)

1.3.2.1 RS-Master-Slave-FF

Beispiel Signalverlauf

1.3.2.2 JK-Flip-Flop Wilferfahrung des PS-FF (das universellak FlipFlop)

Blockschaltbild

Zustandsfolgetabelle

J	K	Q	^{1}Q	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1]
1	1	1	0])

toggle

PS=11	=> JK =1/1:	toggle
		Ropper

Symbol

Kurzform

J	K	^{1}Q
0	0	Q
0	1	0
1	0	1
1	1	10

Charakteristische Gleichung

$$^{1}Q = J \wedge \overline{Q} \vee \overline{K} \wedge Q$$

Synthesetabelle

Q	^{1}Q	J	K
0	0	0	0
		O	~
0	1	~	0
	·	1	1
1	0	0	1
	·	1	7
1	1	0	0
		1	0

Kurzform

Q	^{1}Q	J	K
0	0	0	X
0	1	1	Χ
1	0	χ	1
1	1	Χ	0

Beispielsignalverlauf ##W#WFGABE

1.3.3 Taktflankengesteuerte Flip-Flop

asynchrone Steuersignale um das FF in einem genau definierten fusgangszustand zu setzen (bisherige synchron gesetzten Wert zu überschreiben)

Preset	Cler	10
0	0	nicht benutzt
0	1	1
1	0	pormale Funktion
1	1	I normale temeron

Zeichen Sie den Ausgang Q für folgende D-FF-Typen (Initialzustand Q=0):

- a) negativ flankengetriggert

b) positiv flankengetriggert c) zustandsgetriggert +

Aufgabe 3

Zeichen Sie den Ausgang Q für folgende JK-FF-Typen (Initialzustand Q=0):

- a) Master/Slave zustandsgetriggert
- b) negativ flankengetriggert
- c) positiv flankengetriggert

Interne Struktur eines JK-FFs

1.4 Dynamisches Verhalten

Set-up Time

Das Eingangssignal darf sich vor der aktiven Schalfflanke des Taketsignals für eine definiste Mindest dawer to nicht ändern.

Hold Time

Der Logik zustand am Eingang darf sich nach der aktiven Schalfflanke des Takt signals für eine definierte Mindestdame ty ebenfalls nicht andern

Beispiel D-FF

1.5 Konvertierung von Flip-Flop

Konvertierung eines RS- in ein JK-FF

Zustar	ndsta	bell	le
	14010		•

J	K	Q	^{1}Q	S	R
0	0	0	0	0	X
0	0	1	1	X	С
0	1	0	0	. 0	X
0	1	1	0	Q	٠ ح
1	0	0	1	1	. 0
1	0	1	1	X	Q
1	1	0	1	1) ည
1	1	1	0	0.) \

s=()Q		Q Q	J
	0	X	X	1
K	Ð	0	0	(1/
R = /	KQ	1		J
	×	ტ	Q O	6
K	X		1	0

Aufgabe 4

Gegeben ist ein getaktetes T-FF mit folgender Funktionstabelle:

Т	Q	¹ Q
0	0	0
0	1	1
1	0	1
1	1	0

Entwerfen Sie dieses T-FF auf Basis eines RS-FFs.

a) Stellen Sie die Wahrheitstabelle auf:

Т	Q	¹ Q	R	S
0	0	O	X	0
0	1	1	0	X
1	0	1	0	1
1	1	0	Λ	0

b) Geben Sie die minimierte Schaltfunktion der Zusatzbeschaltung an:

c) Zeichnen Sie die Schaltung.

1.6 Zusammenfassung der FFs

	RS-FF	JK-FF	D-FF
FF ohne Taktsteuerung	S	(Schwingt!)	(Leitende Verbindung!)
Einzustands- gesteuerte FF	- 1S	(Schwingt!)	1D — C1 —
Einflanken- gesteuerte FF	- 1S R	- 17 - 1K - QR - 17 - Oc1 - 1K - QR	-1D -0R -0R -1D -0C1 -0R

	RS-FF	JK-FF	D-FF
Zweizustands- gesteuerte FF	-15	17 7 	- 1D - C1 - C1 - CR
	-1S	13	- 1D
Zweiflanken- gesteuerte FF	-1S	17 7 ->c1 -1K 7 -QR	1D
gostede. te tr	1S ¬ -O>C1 -1R ¬ -OR	-13	-DC1 -OR

FF- Typ	Schaltbild (Beispiele)	reduzierte Wahrheitstabelle	Schaltfunktion
RS	- S	Q 1 Q S R 0 0 0 d 0 1 1 0 1 0 0 1 1 1 d 0	${}^{1}Q = S + \overline{R}Q$ $R \cdot S = 0$
D	C -> Q	Q ¹ Q D 0 0 0 0 1 1 1 0 0 1 1 1	$^{1}Q = D$
DV	$\begin{array}{c c} -D & Q \\ -V & Q \\ \hline C & \rightarrow & \rightarrow \end{array}$	Q 1 Q C V D 0 0 0 d d 0 0 d 0 d 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 d d 1 1 d 0 d	$^{1}Q = \overline{C}Q + \overline{V}Q + CVD$
Т	$\begin{array}{c c} - & T & Q \\ \hline C & > & Q \\ \hline \end{array}$	Q 1 Q T C 0 0 0 d 0 0 d 0 0 1 1 1 1 0 1 1 1 1 0 d 1 1 d 0	$^{1}Q = \overline{CQ} + \overline{TQ} + TC\overline{Q}$
JK	- J	Q 1 Q J K 0 0 0 d 0 1 1 d 1 0 d 1 1 1 d 0	${}^{1}Q = J\overline{Q} + \overline{K}Q$

2. Sequentielle Schaltungen, Schaltwerke, Automaten 2.1. Begriffsbestimmung – Schaltnetze und Schaltwerke

Schaltnetz

Schaltwerk

Für einen Eingangszustand sind mehre Ausgangszustände möglich, d.h der Ausgangszustand hängt von allen bisherigen Eingangszuständen ab.

2.2. Zähler: dos 24 Zahlende Signal ist der Takt für die FF's

Aufgaben für Zählerschaltungen:

- Umwandlung einer Anzahl von Zählimpulsen in einen vorgegeben Code
- Erzeugung spezieller Zählfolgen, z.B zur Steuerung von Abläufen
- Generierung von Zeitverzögerungen von vorgebbarer Dauer

2.2.1. Entwurf synchroner Zähler

Synchron:

Zählimpulse werden den Takteingängen aller FFs zugeführt (gemeinsames Taktsignal).

- Zähler sind einfacher und übersichtlicher aufgebaut und leichter erweiterbar,
- Es treten keine Laufzeitprobleme auf.

Mod-5-Vorwärtszähler mit RS-FF

Zustandsgraph

Zustandstabelle

Anzahl der FFs : 3

Dez. Zählerstand	Y ₂	Y ₁	Y ₀	Ü
0	0	0	0	
1	9	Ð	1	
2	0	7	0	
3	0	7	1	
4	1	0	0	1

_ beins Zalelechochststand "Tekslant"

Impulsdiagramm

Entwurf des Übergangsnetzes

Q Q SR 0 0 0x 0 1

Zustandsfolgetabelle des Übergangsnetzes

1 0 01 1 1 × 0

Dez. Zählerstand	Q ₂	Q ₁	Q_0	$^{1}Q_{2}$	$^{1}Q_{1}$	$^{1}Q_{0}$	S ₂	R ₂	S ₁	R ₁	S ₀	R ₀
0	0	0	0	0	0	1	0	Χ	0	X	1	0
1	0	0	1	0	7	Q	0	X	1	0	0	1
2	0	1	0	Ð	7	1	0	×	X	0	1	0
3	0	1	1	7	G	0	^	0	.0	7	0	1
4	1	0	0	0	0	0	0	<	0	4	0	X
5	1	0	1	X	χ	X	X	×	X	X	X	X
6	1	1	0	X	Х	X	X	У	Х	۲	*	Х
7	1	1	1	X	X	X	۴	メ	X	۴	*	7

$$S_2 = Q_0 Q_1$$
 Q_2 Q_0 Q_0 Q_1 Q_2 Q_3 Q_4 Q_5 Q_1 Q_5 Q_7 Q_7 Q_7 Q_8 Q_8

$ \begin{array}{c cccc} & & & & Q_0 \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & & \\$	$R_2 =$	Q_2	-	Q ₂				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rz =	Q,		Qo_				
$Q_1 \times O \times X$		(X	X	(X	1			
	Q_1	×	0	\x	×)			

$$\begin{array}{c|cccc} R_1 = Q_0 Q_1 & Q_2 \\ \hline Q_0 & Q_0 \\ \hline X & O & X & X \\ \hline Q_1 & O & A & X & X \\ \hline \end{array}$$

Kontrolle der Nebenbedingung

Wegen RS=0 dürfen Blöcke von R_i und S_i nicht das gleiche x-Feld enthalten.

$$S_{2}P_{2} = Q_{0}Q_{1}Q_{2}$$

$$S_{1}P_{2} = Q_{0}Q_{1}Q_{2}$$

$$S_{1}P_{2} = Q_{0}Q_{1}Q_{1}Q_{2}$$

$$S_{2}P_{2} = Q_{0}Q_{1}Q_{1}$$

$$S_{3}P_{4} = Q_{0}Q_{1}Q_{2}Q_{3}$$

$$S_{4}P_{5}P_{6} = Q_{0}Q_{1}Q_{2}Q_{3}$$

$$S_{5}P_{6} = Q_{6}Q_{2}Q_{6}$$

$$S_{6}P_{6} = Q_{6}Q_{2}Q_{6}$$

Entwurf des Ausgangsnetzes

Dez. Zählerstand	Q ₂	Q ₁	Qo	Ü
0	O	0	0	0
1	0	0	7	0
2	\circ	1	0	n
3) (C	/) ر	00
4	/	0	0	Ň

Untersuchung der Pseudozustände :

	Q ₂	Q ₁	Q_0	S ₂	R ₂	S ₁	R ₁	S ₀	R_0	$^{1}Q_{2}$	$^{1}Q_{1}$	$^{1}Q_{0}$	
5	1	0	1										
6	1	1	0										
7	1	1	1										