```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    %matplotlib inline

from sklearn.model_selection import train_test_split
    from sklearn import metrics
    from sklearn.metrics import accuracy_score,confusion_matrix,
    precision_score,recall_score,f1_score,auc,precision_recall_curve
    from sklearn import preprocessing

import tensorflow as tf
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
    from tensorflow.keras import optimizers
```

In [3]: data=pd.read\_csv('Churn\_Modelling.csv')
data.head(10)

Out[3]:

|   | RowNumber | CustomerId | Surname  | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMembe |  |
|---|-----------|------------|----------|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|---------------|--|
| 0 | 1         | 15634602   | Hargrave | 619         | France    | Female | 42  | 2      | 0.00      | 1             | 1         |               |  |
| 1 | 2         | 15647311   | Hill     | 608         | Spain     | Female | 41  | 1      | 83807.86  | 1             | 0         |               |  |
| 2 | 3         | 15619304   | Onio     | 502         | France    | Female | 42  | 8      | 159660.80 | 3             | 1         | (             |  |
| 3 | 4         | 15701354   | Boni     | 699         | France    | Female | 39  | 1      | 0.00      | 2             | 0         | (             |  |
| 4 | 5         | 15737888   | Mitchell | 850         | Spain     | Female | 43  | 2      | 125510.82 | 1             | 1         |               |  |
| 5 | 6         | 15574012   | Chu      | 645         | Spain     | Male   | 44  | 8      | 113755.78 | 2             | 1         | (             |  |
| 6 | 7         | 15592531   | Bartlett | 822         | France    | Male   | 50  | 7      | 0.00      | 2             | 1         |               |  |
| 7 | 8         | 15656148   | Obinna   | 376         | Germany   | Female | 29  | 4      | 115046.74 | 4             | 1         | (             |  |
| 8 | 9         | 15792365   | Не       | 501         | France    | Male   | 44  | 4      | 142051.07 | 2             | 0         |               |  |
| 9 | 10        | 15592389   | H?       | 684         | France    | Male   | 27  | 2      | 134603.88 | 1             | 1         |               |  |
|   |           |            |          |             |           |        |     |        |           |               |           |               |  |

In [4]: data.tail(10)

Out[4]:

|      | RowNumber | CustomerId | Surname     | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiv€ |
|------|-----------|------------|-------------|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|----------|
| 9990 | 9991      | 15798964   | Nkemakonam  | 714         | Germany   | Male   | 33  | 3      | 35016.60  | 1             | 1         |          |
| 9991 | 9992      | 15769959   | Ajuluchukwu | 597         | France    | Female | 53  | 4      | 88381.21  | 1             | 1         |          |
| 9992 | 9993      | 15657105   | Chukwualuka | 726         | Spain     | Male   | 36  | 2      | 0.00      | 1             | 1         |          |
| 9993 | 9994      | 15569266   | Rahman      | 644         | France    | Male   | 28  | 7      | 155060.41 | 1             | 1         |          |
| 9994 | 9995      | 15719294   | Wood        | 800         | France    | Female | 29  | 2      | 0.00      | 2             | 0         |          |
| 9995 | 9996      | 15606229   | Obijiaku    | 771         | France    | Male   | 39  | 5      | 0.00      | 2             | 1         |          |
| 9996 | 9997      | 15569892   | Johnstone   | 516         | France    | Male   | 35  | 10     | 57369.61  | 1             | 1         |          |
| 9997 | 9998      | 15584532   | Liu         | 709         | France    | Female | 36  | 7      | 0.00      | 1             | 0         |          |
| 9998 | 9999      | 15682355   | Sabbatini   | 772         | Germany   | Male   | 42  | 3      | 75075.31  | 2             | 1         |          |
| 9999 | 10000     | 15628319   | Walker      | 792         | France    | Female | 28  | 4      | 130142.79 | 1             | 1         |          |
|      |           |            |             |             |           |        |     |        |           |               |           |          |

In [5]: data=data.drop(['RowNumber','CustomerId','Surname'],axis=1)
 data.head()

Out[5]:

| • | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited |
|---|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|----------------|-----------------|--------|
| 0 | 619         | France    | Female | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | 1      |
| 1 | 608         | Spain     | Female | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       | 0      |
| 2 | 502         | France    | Female | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | 1      |
| 3 | 699         | France    | Female | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | 0      |
| 4 | 850         | Spain     | Female | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        | 0      |

In [6]: data.shape

Out[6]: (10000, 11)

```
In [7]: data.isnull().sum()
Out[7]: CreditScore
                           0
        Geography
        Gender
        Age
        Tenure
        Balance
        NumOfProducts
        HasCrCard
        IsActiveMember
        EstimatedSalary
        Exited
                           0
        dtype: int64
In [8]: data.isna().sum()
Out[8]: CreditScore
                           0
        Geography
        Gender
        Age
        Tenure
        Balance
        NumOfProducts
        HasCrCard
        IsActiveMember
                           0
        EstimatedSalary
                           0
        Exited
        dtype: int64
In [9]: data.duplicated().sum()
Out[9]: 0
```

```
In [10]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 11 columns):
              Column
                              Non-Null Count Dtype
              CreditScore
                              10000 non-null int64
                              10000 non-null object
             Geography
          1
              Gender
                              10000 non-null object
              Age
                              10000 non-null int64
              Tenure
                              10000 non-null int64
              Balance
                              10000 non-null float64
              NumOfProducts
                              10000 non-null int64
             HasCrCard
                              10000 non-null int64
             IsActiveMember
                             10000 non-null int64
             EstimatedSalary 10000 non-null float64
          10 Exited
                              10000 non-null int64
         dtypes: float64(2), int64(7), object(2)
         memory usage: 859.5+ KB
```

## In [11]: data.describe()

## Out[11]:

|    | CreditScore          | Age          | Tenure       | Balance       | NumOfProducts | HasCrCard   | IsActiveMember | EstimatedSalary | Exited      |
|----|----------------------|--------------|--------------|---------------|---------------|-------------|----------------|-----------------|-------------|
| со | unt 10000.000000     | 10000.000000 | 10000.000000 | 10000.000000  | 10000.000000  | 10000.00000 | 10000.000000   | 10000.000000    | 10000.00000 |
| m  | ean 650.528800       | 38.921800    | 5.012800     | 76485.889288  | 1.530200      | 0.70550     | 0.515100       | 100090.239881   | 0.20370     |
|    | std 96.653299        | 10.487806    | 2.892174     | 62397.405202  | 0.581654      | 0.45584     | 0.499797       | 57510.492818    | 0.40276     |
| 1  | nin 350.000000       | 18.000000    | 0.000000     | 0.000000      | 1.000000      | 0.00000     | 0.000000       | 11.580000       | 0.00000     |
| 2  | <b>5%</b> 584.00000  | 32.000000    | 3.000000     | 0.000000      | 1.000000      | 0.00000     | 0.000000       | 51002.110000    | 0.00000     |
| 5  | <b>0%</b> 652.000000 | 37.000000    | 5.000000     | 97198.540000  | 1.000000      | 1.00000     | 1.000000       | 100193.915000   | 0.00000     |
| 7  | <b>5%</b> 718.000000 | 44.000000    | 7.000000     | 127644.240000 | 2.000000      | 1.00000     | 1.000000       | 149388.247500   | 0.00000     |
| r  | nax 850.000000       | 92.000000    | 10.000000    | 250898.090000 | 4.000000      | 1.00000     | 1.000000       | 199992.480000   | 1.00000     |

```
In [12]: data['Exited'].value counts(normalize=True)
Out[12]: 0
              0.7963
              0.2037
         Name: Exited, dtype: float64
In [13]: data['Geography'].value counts(normalize=True)
Out[13]: France
                    0.5014
                    0.2509
         Germany
         Spain
                    0.2477
         Name: Geography, dtype: float64
In [14]: data[data['Geography']=='France']['Exited'].value counts(normalize=True)
Out[14]: 0
              0.838452
              0.161548
         Name: Exited, dtype: float64
In [15]: data[data['Geography']=='Germany']['Exited'].value counts(normalize=True)
Out[15]: 0
              0.675568
              0.324432
         Name: Exited, dtype: float64
In [16]: data[data['Geography']=='Spain']['Exited'].value_counts(normalize=True)
Out[16]: 0
              0.833266
              0.166734
         Name: Exited, dtype: float64
In [17]: data['Gender'].value counts(normalize=True)
Out[17]: Male
                   0.5457
                   0.4543
         Female
         Name: Gender, dtype: float64
```

In [18]: sns.pairplot(data,diag\_kind='kde')

Out[18]: <seaborn.axisgrid.PairGrid at 0x1d8aa4368e0>





In [20]: data1 = pd.get\_dummies(data, columns=['Geography', 'Gender'])
 data1.head()

### Out[20]:

| _ |   | CreditScore | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited | Geography_France | Geography |
|---|---|-------------|-----|--------|-----------|---------------|-----------|----------------|-----------------|--------|------------------|-----------|
|   | 0 | 619         | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | 1      | 1                |           |
|   | 1 | 608         | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       | 0      | 0                |           |
|   | 2 | 502         | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | 1      | 1                |           |
|   | 3 | 699         | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | 0      | 1                |           |
|   | 4 | 850         | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        | 0      | 0                |           |

#### In [21]: data1.dtypes

Out[21]: CreditScore int64
Age int64

Tenure int64
Balance float64

NumOfProducts int64 HasCrCard int64

IsActiveMember int64

EstimatedSalary float64 Exited int64

Geography\_France uint8 Geography\_Germany uint8

Geography\_Spain uint8 Gender\_Female uint8

Gender\_Male uint8

dtype: object



In [23]: x=data1.drop('Exited',axis=1)
x.head()

# Out[23]:

|   | CreditScore | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Geography_France | Geography_Germa |
|---|-------------|-----|--------|-----------|---------------|-----------|----------------|-----------------|------------------|-----------------|
| 0 | 619         | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | 1                |                 |
| 1 | 608         | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       | 0                |                 |
| 2 | 502         | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | 1                |                 |
| 3 | 699         | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | 1                |                 |
| 4 | 850         | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        | 0                |                 |

```
In [24]: x.dtypes
Out[24]: CreditScore
                                int64
                                int64
         Age
                                int64
         Tenure
                              float64
         Balance
         NumOfProducts
                                int64
                                int64
         HasCrCard
         IsActiveMember
                                int64
                              float64
         EstimatedSalary
         Geography France
                                uint8
         Geography Germany
                                uint8
         Geography Spain
                                uint8
         Gender Female
                                uint8
         Gender Male
                                uint8
         dtype: object
In [25]: x=x.astype('float64')
         x.dtypes
Out[25]: CreditScore
                              float64
                              float64
         Age
         Tenure
                              float64
                              float64
         Balance
         NumOfProducts
                              float64
         HasCrCard
                              float64
         IsActiveMember
                              float64
         EstimatedSalary
                              float64
         Geography_France
                              float64
         Geography_Germany
                              float64
         Geography_Spain
                              float64
         Gender_Female
                              float64
                              float64
         Gender_Male
         dtype: object
```

```
In [26]: y=data1['Exited']
         y.head()
Out[26]: 0
              1
              1
         4
         Name: Exited, dtype: int64
In [27]: # Split the data up in train and test sets
         x train, x test, y train, y test = train test split(x, y, test size=0.30, random state=75)
         print(x train.shape)
         print(x test.shape)
         print(y train.shape)
         print(y test.shape)
         (7000, 13)
         (3000, 13)
         (7000,)
         (3000,)
In [28]: from sklearn.preprocessing import StandardScaler
         # Define the scaler
         scaler = StandardScaler().fit(x train)
         # Scale the train set
         x_train = scaler.transform(x_train)
         # Scale the test set
         x_test = scaler.transform(x_test)
```

```
In [39]: model = Sequential()
         # Adding the layres with 13 inputs and fully connected neurons.
         # usina 'ELU' and 'ReLU' activation functions in the hidden layers
         # using one sigmoid function at the output as it's a classification model
         model.add(Dense(128, input shape = (13,), activation = 'elu'))
         model.add(Dense(64, activation = 'relu'))
         model.add(Dense(32, activation = 'swish'))
         model.add(Dense(16, activation = 'elu'))
         model.add(Dense(64, activation = 'relu'))
         model.add(Dense(32, activation = 'swish'))
         model.add(Dense(16, activation = 'elu'))
         model.add(Dense(8, activation = 'relu'))
         model.add(Dense(4, activation = 'swish'))
         model.add(Dense(1, activation = 'sigmoid'))
         # choose the optimizer, learning rate, loss function, metrics
         optm=optimizers.Adam(lr=0.0015)
         model.compile(optimizer = optm, loss = 'binary crossentropy', metrics=['accuracy'])
         model.summary()
```

Model: "sequential 1"

| Layer (type)     | Output | Shape | Param # |
|------------------|--------|-------|---------|
| dense_10 (Dense) | (None, | 128)  | 1792    |
| dense_11 (Dense) | (None, | 64)   | 8256    |
| dense_12 (Dense) | (None, | 32)   | 2080    |
| dense_13 (Dense) | (None, | 16)   | 528     |
| dense_14 (Dense) | (None, | 64)   | 1088    |
| dense_15 (Dense) | (None, | 32)   | 2080    |
| dense_16 (Dense) | (None, | 16)   | 528     |
|                  |        |       |         |

| dense_17 (Dense) | (None, 8) | 136 |
|------------------|-----------|-----|
| dense_18 (Dense) | (None, 4) | 36  |
| dense_19 (Dense) | (None, 1) | 5   |

------

Total params: 16,529 Trainable params: 16,529 Non-trainable params: 0

C:\Users\DRISTI\anaconda3\lib\site-packages\keras\optimizers\optimizer\_v2\adam.py:114: UserWarning: The `lr` argu ment is deprecated, use `learning\_rate` instead.

super().\_\_init\_\_(name, \*\*kwargs)

```
In [40]: epoch=850
      model hist=model.fit(x train, v train.batch size = 1000.validation split = 0.2, epochs=epoch, verbose = 1)
      model hist
      hist = pd.DataFrame(model hist.history)
      hist['epoch'] = model hist.epoch
      print(hist)
      plt.plot(hist['accuracy'])
      plt.plot(hist['val accuracy'])
      plt.plot(hist['val loss'])
      plt.plot(hist['loss'])
      plt.legend(("train" , "valid", "val loss", "loss") , loc =0)
      Epoch 1/850
      curacy: 0.7879
      Epoch 2/850
      curacy: 0.7879
      Epoch 3/850
      curacy: 0.7879
      Epoch 4/850
      6/6 [=========] - 0s 10ms/step - loss: 0.4783 - accuracy: 0.7907 - val loss: 0.4558 - val ac
      curacy: 0.7879
      Epoch 5/850
      6/6 [==========] - 0s 13ms/step - loss: 0.4546 - accuracy: 0.7907 - val loss: 0.4381 - val ac
      curacy: 0.7879
      Epoch 6/850
      6/6 [==========] - 0s 14ms/step - loss: 0.4407 - accuracy: 0.7907 - val loss: 0.4216 - val ac
      curacy: 0.7879
      Enoch 7/850
      -'1- F
```