Stock Price Prediction Utilizing LSTM Techniques

A stock price prediction project using Long Short-Term Memory model.

Import Libraries

In [1]:

```
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
import warnings
warnings.filterwarnings('ignore')
```

Access Data

Enter the stock ticker, date, and the epoch times. Noted that the first 80% of the date will be used for training, and the remaining 20% will be used for validation.

Example Inputs: "googl", "2010-01-01", "2023-08-20"

In [2]:

```
Company = input("Ticker of the Stock:")
Date1 = input("Start(YYYY-MM-DD):")
Date2 = input("End(YYYY-MM-DD):")
```

Data Exploration

In [3]:

```
Data = yf.download(Company,Date1, Date2)
Data =Data.reset_index()
Data
```

[********** 100%********** 1 of 1 completed

Out[3]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-01-04	15.689439	15.753504	15.621622	15.684434	15.684434	78169752
1	2010-01-05	15.695195	15.711712	15.554054	15.615365	15.615365	120067812
2	2010-01-06	15.662162	15.662162	15.174174	15.221722	15.221722	158988852
3	2010-01-07	15.250250	15.265265	14.831081	14.867367	14.867367	256315428
4	2010-01-08	14.814815	15.096346	14.742492	15.065566	15.065566	188783028
3425	2023-08-14	129.389999	131.369995	128.960007	131.330002	131.330002	24695600
3426	2023-08-15	131.100006	131.419998	129.279999	129.779999	129.779999	19770700
3427	2023-08-16	128.699997	130.279999	127.870003	128.699997	128.699997	25216100
3428	2023-08-17	129.800003	131.990005	129.289993	129.919998	129.919998	33446300
3429	2023-08-18	128.509995	129.250000	126.379997	127.459999	127.459999	30491300

3430 rows × 7 columns

In [4]:

Data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3430 entries, 0 to 3429 Data columns (total 7 columns): Non-Null Count Dtype Column ---------3430 non-null datetime64[ns] Date 0 1 0pen 3430 non-null float64 2 float64 High 3430 non-null 3 Low 3430 non-null float64 4 Close 3430 non-null float64 5 Adj Close 3430 non-null float64 Volume 3430 non-null int64 dtypes: datetime64[ns](1), float64(5), int64(1) memory usage: 187.7 KB

In [5]:

```
Data.isnull().sum()
```

Out[5]:

Date 0
Open 0
High 0
Low 0
Close 0
Adj Close 0
Volume 0
dtype: int64

Data Visualization

Stock Price

In [6]:

```
fig, ax = plt.subplots(figsize=(12,6))
plt.title("Stock Price", fontsize="20")
ax.plot(Data["Date"], Data["Close"], color="Blue")
ax.set_ylabel("Stock Price")
plt.grid()
plt.show()
```


Moving Average

In [7]:

```
MA60=Data.Close.rolling(60).mean()
MA250=Data.Close.rolling(250).mean()
fig, ax = plt.subplots(figsize=(12,6))
plt.title("Stock Price", fontsize= 20)
plt.plot(Data.Close, color="Blue", label="Close")
plt.plot(MA60, color = 'Red', label = "MA5")
plt.plot(MA250, color = 'Orange', label = "MA20")
plt.legend()
```

Out[7]:

<matplotlib.legend.Legend at 0x1c431346b20>

Volume

In [8]:

```
fig, ax = plt.subplots(figsize=(12,6))
plt.title("Volume Chart", fontsize="20")
ax.bar(Data["Date"], Data["Volume"])
ax.set_ylabel("Volumes")
plt.grid()
plt.show()
```


Daily Return

In [9]:

```
Data["Daily Return"] = Data["Close"].pct_change(1)
Data["Daily Return"]
```

Out[9]:

```
0
             NaN
1
       -0.004404
2
       -0.025209
3
       -0.023280
4
        0.013331
          . . .
3425
        0.013662
3426
       -0.011802
3427
       -0.008322
3428
        0.009479
3429
       -0.018935
Name: Daily Return, Length: 3430, dtype: float64
```

In [10]:

```
fig, ax = plt.subplots(figsize=(12,6))
plt.title("Stock Price Daily Return", fontsize="20")
ax.plot(Data["Date"], Data["Daily Return"], color="Darkviolet")
ax.set_ylabel("Daily Return")
plt.grid()
plt.show()
```


In [11]:

```
#Distribution of Daily Return(Volatility)
Data.iloc[Data["Daily Return"].argmax()]
Data["Daily Return"].hist(bins=100, color='Darkviolet')
```

Out[11]:

<AxesSubplot:>

Cumulative Return

In [12]:

```
Data["Cumulative Return"] = (1+Data["Daily Return"]).cumprod()
Data["Cumulative Return"]
```

Out[12]:

```
0
              NaN
1
        0.995596
2
        0.970499
3
        0.947906
4
        0.960543
           . . .
3425
        8.373270
3426
        8.274446
3427
        8.205588
3428
        8.283372
3429
        8.126528
```

Name: Cumulative Return, Length: 3430, dtype: float64

In [13]:

```
#Cumulative Return of the stock during the given period
fig, ax = plt.subplots(figsize=(12,8))
plt.title("Stock Cumulative Return",fontsize="20")
ax.plot(Data["Date"], Data["Cumulative Return"], color="Darkcyan")
ax.set_ylabel("Cumultative Return")
plt.grid()
plt.show()
```


Data Preprocessing

Splitting Data into Training and Validation Sets

```
In [14]:

Data['Date'] = pd.to_datetime(Data['Date'])
Data.set_index('Date',inplace=True)
Close = Data.filter(['Close'])
CloseValue = Close.values
TrainingDataLength = math.ceil(len(CloseValue)*.8)
TrainingDataLength
```

```
Out[14]:
```

2744

Scaling Data

```
In [15]:
```

```
scaler = MinMaxScaler(feature_range=(0,1))
PriceData = scaler.fit_transform(CloseValue)
PriceData
## Customized the function:
# def Rank(data):
# feature_range = data.max() - data.min()
# scaled_data = (data - data.min()) / feature_range
# return scaled_data
# PriceData = Rank(CloseValue)
# Rank(CloseValue)
```

Out[15]:

Creating Sequences

```
In [16]:
```

```
X_train, Y_train = [],[]
Backcandles = 60
TrainData = PriceData[0:TrainingDataLength]
for i in range(Backcandles,len(TrainData)):
    X_train.append(TrainData[i-Backcandles:i, 0])
    Y train.append(TrainData[i,0])
    if i<= Backcandles:</pre>
        print("X_train:",X_train,"\nY_train:",Y_train)
X_train,Y_train = np.array(X_train), np.array(Y_train)
X_train: [array([0.03434761, 0.03385045, 0.03101697, 0.02846629, 0.0298929
       0.02972903, 0.02781422, 0.02720357, 0.02770073, 0.02592643,
       0.02729904, 0.02600028, 0.02646323, 0.02052427, 0.01872114,
       0.01915706, 0.01909942, 0.01769259, 0.01690901, 0.01746381,
       0.01712157, 0.01886885, 0.01633979, 0.01715219, 0.01754487,
       0.01807987, 0.01772141, 0.01807266, 0.01748183, 0.01895531,
       0.0183987, 0.01930117, 0.01885804, 0.01922551, 0.01783308,
       0.01718461, 0.01627675, 0.01634339, 0.01740437, 0.01891208,
       0.01967945, 0.02134927, 0.02308214, 0.02277051, 0.02235801,
       0.02528697, 0.02613178, 0.02584357, 0.02289661, 0.02326047,
       0.02332532, 0.02347663, 0.02232379, 0.02187345, 0.02034233,
       0.02184283, 0.02284257, 0.02280834, 0.02276511, 0.02353248])]
Y_train: [0.023606326054810806]
In [17]:
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_train.shape
Out[17]:
(2684, 60, 1)
```

LSTM Model Building, Compiling, and Training

In [18]:

```
Model = Sequential([
   LSTM(50, return_sequences = True, input_shape = (X_train.shape[1], 1)),
   (Dropout(0.2)),
   LSTM((50)),
   (Dropout(0.2)),
   (Dense(32)),
   (Dense(1))
])
Model.compile(optimizer="adam", loss="mean_squared_error")
Model.fit(X_train, Y_train, batch_size=32, epochs=10)
Model.summary()
Epoch 1/10
84/84 [=============== ] - 7s 38ms/step - loss: 0.0036
84/84 [============ ] - 3s 38ms/step - loss: 4.3697e-04
Epoch 3/10
Epoch 4/10
84/84 [============= ] - 3s 40ms/step - loss: 4.2687e-04
Epoch 5/10
84/84 [============= ] - 3s 41ms/step - loss: 3.1408e-04
Epoch 6/10
84/84 [=============== ] - 3s 41ms/step - loss: 2.9001e-04
Epoch 7/10
84/84 [============== ] - 3s 40ms/step - loss: 2.9207e-04
Epoch 8/10
Epoch 9/10
84/84 [=============== ] - 3s 38ms/step - loss: 2.2306e-04
Epoch 10/10
Model: "sequential"
Layer (type)
                     Output Shape
                                        Param #
______
1stm (LSTM)
                     (None, 60, 50)
                                        10400
dropout (Dropout)
                     (None, 60, 50)
1stm 1 (LSTM)
                     (None, 50)
                                        20200
dropout_1 (Dropout)
                     (None, 50)
dense (Dense)
                     (None, 32)
                                        1632
dense_1 (Dense)
                     (None, 1)
                                        33
______
Total params: 32265 (126.04 KB)
Trainable params: 32265 (126.04 KB)
Non-trainable params: 0 (0.00 Byte)
```

In [19]:

(686, 60, 1)

```
test_data= PriceData[TrainingDataLength-Backcandles:, :]
x_test, y_test = [], CloseValue[TrainingDataLength:,:]
for i in range(Backcandles,len(test_data)):
    x_test.append(test_data[i-Backcandles:i,0])
x_test = np.array(x_test)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1],1))
x_test.shape

Out[19]:
```

Results of the Prediction

Root-Mean-Square Error

A higher RMSE value generally indicates poorer predictive performance. Hence, our training objective is to "minimize RMSE".

In [20]:

```
Pred = Model.predict(x_test)
Pred = scaler.inverse_transform(Pred)
RMSE = np.sqrt(np.mean(Pred - y_test)**2)
RMSE
```

```
22/22 [=======] - 1s 14ms/step Out[20]:
```

0.9098903778343089

Prediction Results

In [21]:

```
TrainingSet,ValidationSet = Close[:TrainingDataLength],Close[TrainingDataLength:]
ValidationSet["Predictions"] = Pred
ValidationSet
```

Out[21]:

	Close	Predictions
Date		
2020-11-25	88.206497	89.604225
2020-11-27	89.350998	89.595543
2020-11-30	87.720001	89.695320
2020-12-01	89.767998	89.730164
2020-12-02	91.248497	89.878944
2023-08-14	131.330002	131.449432
2023-08-15	129.779999	131.544281
2023-08-16	128.699997	131.547073
2023-08-17	129.919998	131.413315
2023-08-18	127.459999	131.300659

686 rows × 2 columns

Visualization

In [22]:

```
plt.figure(figsize=(12,8))
plt.title("Stock Price Prediction During the Validation Period", fontsize = 20)
plt.ylabel("Close Price")
plt.plot(ValidationSet["Close"],linewidth=1,color = "Darkviolet")
plt.plot(ValidationSet["Predictions"],linewidth=1,color = "Red")
plt.legend(["Stock Price","Predictions"])
```

Out[22]:

<matplotlib.legend.Legend at 0x1c434f4c280>

In [23]:

```
plt.figure(figsize=(20,8))
plt.title("Stock Price Prediction", fontsize=20)
plt.ylabel("Close Price" )
plt.plot(TrainingSet["Close"], color = "Darkblue")
plt.plot(ValidationSet["Close"],color = "Blue")
plt.plot(ValidationSet["Predictions"],linewidth=0.75,color = "Red")
plt.legend(["Train", "Stock Price", "Predictions"])
```

Out[23]:

<matplotlib.legend.Legend at 0x1c4335d2370>

Please note that using LSTM with raw stock price data is impractical and using min-max scaler to scale the price data is also unreasonable, since the raw stock price data is neither stationarity nor extrapolation. You'll find out it doesn't work in real-life (The prediction seems accurate because it's nothing but a delay curve :P).

When utilizing LSTM for financial data prediction, forecasting "Log Return" might be a better option. This project is better suited as a programming example for basic machine learning rather than a precise stock price prediction.