Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project

Abstract #405

Vannucchi AM

Background - I

- In primary myelofibrosis (PMF), survival from time of diagnosis is predicted by the International Prognostic Scoring System (IPSS).
- Variables included are age, leukocytosis, blasts, anemia, constitutional symptoms.

 The dynamic IPSS (DIPSS) or DIPSS-plus provide survival estimates from time of patient referral.

Background - II

 The mutational status of JAK2, MPL and CALR and the presence and number of other prognostically-relevant mutations (ASXL1, SRSF2, EZH2, IDH1/2) provide IPSS/DIPSS-plus independent prognostic information.

HR: 2.3 for *JAK2*V617F (P<.001) 2.6 for *MPL* (*P* = .009) 6.2 for TN (*P*<.001)

High risk: Any mutation in ASXL1, EZH2, SRSF2, IDH1/2

Aim and Design

- The objective of the current study was to devise a new score by including clinical and mutation-relevant prognostic information.
- The prognostic model (MIPSS) was developed through a stepwise selection process, based on a z-test of the regression coefficients, and its relative quality was measured by means of the Akaike information criterion.
- We used a "learning cohort" (European; n = 588 PMF patients at diagnosis) and a "validation cohort" (Mayo Clinic, Rochester; n = 398 PMF patients at the time of referral)
- Mutations were analyzed by deep target resequencing (Ion PGM platform), RTQ-PCR, bidiretional Sanger sequencing, as appropriate

Patients' Characteristics

Variables		European cohort (n = 588)	
Age in years; median (range)		61.9 (14-90)	
Males (%)		361 (61.4%)	
Hemoglobin, g/L; median (range)		117 (40-155)	
Leukocytes, x 10 ⁹ /L; median (range)		8.9 (1.4-109)	
Platelets, x 10 ⁹ /L; median (range)		309 (19-3279)	
Circulating blasts ≥1%; n (%)		102 (17.3%)	
Constitutional symptoms; n (%)		168 (28.6%)	
Palpable splenomegaly; n (%)		440 (74.8%)	
>10 cm from LMC; n (%)		104 (17.7%)	
Unfavorable karyotype 8(n = 252)*		24 (9.5%)	
IPSS Risk categories N (%)	Low	126 (25.5%)	
Intermediate-1 Intermediate-2		147 (29.8%)	
		116 (23.5%)	
	High	104 (21.1%)	
Progression to leukemia; n (%)		67 (11.4%)	
Death; n (%)	E/E	196 (33.3%)	

^{*}Unfavorable karyotype: +8,-7/7q-,i(17q),inv(3), -5/5q-,12p-, 11q23 rearr

Learning Cohort: Survival by IPSS Score

Overall Survival

IPSS Stratification

Time, years

Time, years

Proportion

Mutation Profile in the Learning Cohort

Mutation	% Mutated
<i>JAK2</i> V617F	63.1
CALR	19.7
MPL W515	6.0
ASXL1	21.8
SRSF2	9.01
EZH2	7.14
IDH1/2	2.55

Variables Associated With Reduced OS (Univariate Analysis)

Variables	HR (95% CI)	Р	
Age >60yrs	5.19 (3.71-7.23)	<0.0001	IPSS
WBC >25x10 ⁹ /L	4.4 (2.89-6.71)	<0.0001	
Hb <100g/L	3.20 (2.37-4.33)	<0.0001	
PB Blasts ≥1%	2.4 (1.7-3.4)	<0.0001	
Constitutional Symptoms	2.33 (1.7-3.1)	<0.0001	
PLT <200x10 ⁹ /L	3.79 (2.79-5.15)	<0.0001	DIPSS-plus
Unfavorable Karyotype	2.9 (1.7-5.0)	<0.0001	
Splenomegaly >10 cm from LCM	2.0 (1.4-2.8)	<0.0001	
Grade 2-3 BM fibrosis	9.6 (3.0-30.3)	<0.0001	
Triple negativity	3.39 (2.40-4.79)	<0.0001	
CALR mutation	0.34 (0.22-0.52)	<0.0001	HMR
ASXL1 mutation	1.95 (1.45-2.63)	<0.0001	
SRSF2 mutation	3.15 (2.14-4.63)	<0.0001	
EZH2 mutation	1.8 (1.13-3.0)	0.014	
IDH1/2 mutation	2.9 (1.3-6.2)	0.006	

MIPSS: Molecular International Prognostic Score System

MULTIVARIATE ANALYSIS			
Variables	HR (95% CI)	Р	
Age >60yrs	3.8 (2.60-5.51)	<0.0001	
Hb <100g/L	1.4 (1.01-1.99)	0.04	
Constitutional symptoms	1.5 .(1.13-2.16)	0.007	
PLT <200x10 ⁹ /L	2.5 (1.77-3.42)	<0.0001	
Triple Negativity	3.9 (2.20-6.80)	<0.0001	
JAK2/MPL mutation	1.8 (1.11-2.90)	0.016	
ASXL1 mutation	1.4 (1.06-1.99)	0.02	
SRSF2 mutation	1.7 (1.08-2.58)	0.02	

MIPSS: Molecular International Prognostic Score System

MULTIVARIATE ANALYSIS			Wei
Variables	HR (95% CI)	Р	Va
Age >60yrs	3.8 (2.60-5.51)	<0.0001	1
Hb <100g/L	1.4 (1.01-1.99)	0.04	C
Constitutional symptoms	1.5 .(1.13-2.16)	0.007	C
PLT <200x10 ⁹ /L	2.5 (1.77-3.42)	<0.0001	1
Triple Negativity	3.9 (2.20-6.80)	<0.0001	1
JAK2/MPL mutation	1.8 (1.11-2.90)	0.016	C
ASXL1 mutation	1.4 (1.06-1.99)	0.02	C
SRSF2 mutation	1.7 (1.08-2.58)	0.02	

Weighted value
1.5
0.5
0.5
1.0
1.5
0.5
0.5
0.5

Development of the MIPSS Score in the Learning Cohort

HR

1

4.7

9.9

36.5

26.4

9.7

6.4

1.9

Development of the MIPSS Score in the Learning Cohort

Score	% of pts	OS (y)	HR
0-0.5	27	26.4	1
1-1.5	14	9.7	4.7
2-3.5	46	6.4	9.9
<u>≥</u> 4	13	1.9	36.5
	0-0.5 1-1.5 2-3.5	pts 0-0.5 27 1-1.5 14 2-3.5 46	pts 0-0.5 27 26.4 1-1.5 14 9.7 2-3.5 46 6.4

Akaike information criterion

indicated that MIPSS performed better than IPSS in predicting survival (1611.6 *vs* 1649.0).

Performance of the MIPSS Score in the "Mayo" Validation Cohort

Comparison of IPSS and MIPSS

Vannucchi AM, et al. Blood. 2014;124: Abstract 405.

MIPSS Permits to Refine Prognostic Stratification Within the IPSS Categories

MIPSS

Conclusions

- MIPSS, a novel clinico-molecular score for patients with PMF, incorporates 4 clinical variables (age, HB, platelet count, constitutional symptoms) and 4 molecular variables (Triple negativity, JAK2/MPL mutation, ASXL1 and SRSF2 mutations)
- MIPSS proved better performing than IPSS for predicting survival in PMF patients by Akaike information criterion
- MIPSS allows to identify subgroups of patients with less favorable prognosis within the conventional IPSS categories

MIPSS: When and for Whom?

- A) in the setting of HSCT:
 - For potential candidates falling in the Int-1 and Int-2 IPSS risk category

- **B)** in the setting of clinical trials:
 - For "personalized" medicine approach