Homework 4

9

Let $V = \mathbb{R}^3$ be a vector space with standard addition and scalar multiplication. Use Theorem 3 of Lecture Note 8 to determine whether the following sets are subspaces of V.

b. The set of vectors of the form (a, 1, 1)

Proof.

c. The set of vectors of the form (a, b, c), where b = a + c

Proof.

d. The set of vectors of the form (a, b, 0)

Proof.

10

Let $V = P_3$ be the vector space of all polynomials with degree up to 3, with standard addition and scalar multiplication. Use Theorem 3 of Lecture Note 8 to determine whether the following sets are subspaces of V.

b. The set of polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which $a_0 + a_1 + a_2 + a_3 = 0$.

Proof.

c. The set of polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ in which a_0, a_1, a_2 , and a_3 are integers.

Proof.

11

Let $V = F(-\infty, \infty)$ be the vector space of all functions from \mathbb{R} to \mathbb{R} , with standard addition and scalar multiplication. Use Theorem 3 of Lecture Note 8 to determine whether the following sets are subspaces of V.

b. The set of functions f in $F(-\infty, \infty)$ for which f(0) = 1.

Proof.

c. The set of functions f in $F(-\infty, \infty)$ for which f(-x) = x

Proof.

13

Let V be a vector space. Let I be a nonempty set (often called the "index set"), and let W_i be a subspace of V for all $i \in I$. Prove that $\bigcap_{i \in I} W_i$, which addition and scalar multiplication inherited from V, is a subspace of V.

Proof.