Exercici 29. Siguin p, q dos nombres naturals primers diferents. Demostreu que $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Solucio 29.

- 1. Sabem que, pel Petit Teorema de Fermat, sigui $a \in \mathbb{Z}$ no divisble per p i p primer, es compleix que $a^{p-1} \equiv 1 \pmod{p}$, per tant com p i q, son dos primers, i son diferents cap d'ells es divisible per l'altre. I per tant, tenim que pel Petit Teorema de Fremat es compleix que $q^{p-1} \equiv 1 \pmod{p}$ i $p^{q-1} \equiv 1 \pmod{q}$, d'aqui per la definicio de "ser congruent amb", sabem que $p|q^{p-1}-1$, i $q|p^{q-1}-1$.
- 2. Veure que $p^{q-1}+q^{p-1}\equiv 1 \pmod{pq}$ equival a veure que $pq|p^{q-1}+q^{p-1}-1$. Com $p|q^{p-1}-1$ i $p|p^{q-1},\implies p|p^{q-1}+q^{p-1}-1$. També podem veure que $q|p^{q-1}-1$ i $q|q^{p-1},\implies q|p^{q-1}+q^{p-1}-1$.
- 3. Per tant, com p i q son dos nombres primers, es compleix que $pq|p^{q-1}+q^{p-1}-1$. Com $p|q^{p-1}-1$ i $p|p^{q-1}$ i per tant, $p^{q-1}+q^{p-1}\equiv 1 \pmod{pq}$.