linear models

prashant ullegaddi vidit bansal

linear regression

What's the problem?

- Given a set of m training examples $\{X^{(i)},y^{(i)}\}_{i=1}^m$ where $X^{(i)}\in\mathbb{R}^{n+1}$ with $X_0^{(i)}=1$ and $y^{(i)}\in\mathbb{R}$.
- Learn a hypothesis function $h(\cdot)$ such that for any new test example $x^{(t)}$, y can be predicted as $y^{(t)} = h(x^{(t)})$.
- Fit a hyperplane $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n = \sum_{i=0}^n \theta_i x_i = \theta^T x$

ordinary least squares method

Optimization

Find parameters θ that:

minimize_{\theta}
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(X^{(i)}) - y^{(i)})^2$$

gradient descent method

Update rule

$$\theta := \theta - \alpha \nabla_{\theta} J(\theta)$$

where α is the learning rate, $\nabla_{\theta}J(\theta)$ is the gradient of cost function $J(\theta)$.

derivation of gradient

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(X^{(i)}) - y^{(i)})^2$$
$$\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^{m} (h_{\theta}(X^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta_j} (\theta^T X^{(i)} - y^{(i)})$$

Gradient

$$\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^m (h_{\theta}(X^{(i)}) - y^{(i)}) X_j^{(i)}$$

$$\nabla_{\theta} J(\theta) = \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\theta) & \frac{\partial}{\partial \theta_1} J(\theta) & \cdots & \frac{\partial}{\partial \theta_n} J(\theta) \end{bmatrix}^T$$

stochastic gradient method

```
\begin{array}{ll} \mathbf{Data:} \ \alpha, \ m \ \mathrm{training} \ \mathrm{examples} \ \{X^{(i)}, y^{(i)}\}_{i=1}^m \\ \mathbf{Result:} \ \theta[0 \cdots n] \ \mathrm{parameters} \\ \theta := \mathbf{0} \ ; \\ \mathbf{for} \ i = 1 \cdots m \ \mathbf{do} \\ \Big| \ \mathbf{for} \ j = 0 \cdots n \ \mathbf{do} \\ \Big| \ \theta_j := \theta_j - \alpha(h_{\theta}(X^{(i)}) - y^{(i)}) X_j^{(i)} \ ; \\ \mathbf{end} \\ \mathbf{end} \end{array}
```

Algorithm 1: Stochastic gradient algorithm

closed form: add derivation involving trace

closed form solution

Solution

$$\theta = (X^T X)^{-1} X^T y$$

where X is an $m \times (n+1)$ data matrix with X[:,1]=1 and y is a $m \times 1$ vector of labels

locally weighted linear regression

logistic regression

What's the problem?

- Given a set of m training examples $\{X^{(i)},y^{(i)}\}_{i=1}^m$ where $X^{(i)}\in\mathbb{R}^{n+1}$ with $X_0^{(i)}=1$ and $y^{(i)}\in\{0,1\}$ is a label.
- Learn a hypothesis function $h(\cdot)$ such that for any new test example $x^{(t)}$, label for it can be predicted as $y^{(t)} = h(x^{(t)})$.
- In logistic regression, we assume:

$$h(x) = \operatorname{sigmoid}(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Let
$$g(x) = \frac{1}{1 + e^{-x}}$$

Then, $g'(x) = -\frac{1}{(1 + e^{-x})^2} \frac{d}{dx} (1 + e^{-x})$

$$= \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$= \left(\frac{1}{1 + e^{-x}}\right) \left(\frac{e^{-x}}{1 + e^{-x}}\right)$$

$$= \left(\frac{1}{1 + e^{-x}}\right) \left(1 - \frac{1}{1 + e^{-x}}\right)$$

Thus,

$$g'(x) = g(x)(1 - g(x))$$
 (1

optimization—maximize likelihood of the parameters heta

Assume

$$p(y = 1|x; \theta) = h_{\theta}(x)$$

$$p(y = 0|x; \theta) = 1 - h_{\theta}(x)$$
or more generally
$$p(y|x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{(1-y)}$$

Likelihood of parameters

$$L(\theta) = p(\mathbf{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|X^{(i)};\theta)$$
$$= \prod_{i=1}^{m} (h_{\theta}(X^{(i)}))^{y^{(i)}} (1 - h_{\theta}(X^{(i)}))^{(1-y^{(i)})}$$

It's easier to maximize loglikelihood $\log(L(\theta))$ which is the same as maximizing likelihood $L(\theta)$

Optimization

$$l(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(X^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(X^{(i)}))]$$

$$\max_{\theta} l(\theta)$$

Gradient ascent

Update rule:

$$\theta := \theta + \alpha \nabla_{\theta} l(\theta)$$

derivation of gradient of l(heta)

$$\frac{\partial}{\partial \theta_{j}} l(\theta) = \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(X^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(X^{(i)}))]$$

$$= \sum_{i=1}^{m} [y^{(i)} \frac{1}{h_{\theta}(X^{(i)})} \frac{\partial}{\partial \theta_{j}} h_{\theta}(X^{(i)})$$

$$+ (1 - y^{(i)}) \frac{1}{(1 - h_{\theta}(X^{(i)}))} \frac{\partial}{\partial \theta_{j}} (1 - h_{\theta}(X^{(i)}))]$$

$$= \sum_{i=1}^{m} [y^{(i)} \frac{1}{h_{\theta}(X^{(i)})} h'_{\theta}(X^{(i)}) \frac{\partial}{\partial \theta_{j}} \theta^{T} X^{(i)}$$

$$+ (1 - y^{(i)}) \frac{1}{(1 - h_{\theta}(X^{(i)}))} (-h'_{\theta}(X^{(i)})) \frac{\partial}{\partial \theta_{j}} \theta^{T} X^{(i)}]$$

derivation of gradient of $l(\theta)$

Using Eq. 1,

$$\begin{split} \frac{\partial}{\partial \theta_{j}} l(\theta) = & \sum_{i=1}^{m} [y^{(i)} \frac{1}{h_{\theta}(X^{(i)})} h_{\theta}(X^{(i)}) (1 - h_{\theta}(X^{(i)}) \frac{\partial}{\partial \theta_{j}} \theta^{T} X^{(i)} \\ + & (1 - y^{(i)}) \frac{1}{(1 - h_{\theta}(X^{(i)}))} (-h_{\theta}(X^{(i)}) (1 - h_{\theta}(X^{(i)}))) \frac{\partial}{\partial \theta_{j}} \theta^{T} X^{(i)}] \\ = & \sum_{i=1}^{m} [y^{(i)} (1 - h_{\theta}(X^{(i)}) X_{j}^{(i)} + (1 - y^{(i)}) (-h_{\theta}(X^{(i)}) X_{j}^{(i)}] \end{split}$$

Derviative

$$\frac{\partial}{\partial \theta_j} l(\theta) = \sum_{i=1}^m (y^{(i)} - h_{\theta}(X^{(i)})) X_j^{(i)}$$

Exponential family of distributions

<u>f</u>orm

$$p(y; \eta) = b(y) \exp (\eta^T T(y) - a(\eta))$$