Announcements

Assignments

- HW4
 - Wed, 10/14, 11:59 pm

Survey

- Thanks!
- We'll talk more Wednesday

Plan

Last Time

- Feature engineering
- Regularization with added penalty term

Today

- Wrap-up regularization
- Neural Networks
 - Perceptron
 - Multilayer perceptron
 - Building blocks
 - Objective
 - Optimization

Wrap-up Regularization

Example: Linear Regression

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

у	х	X ²	•••	x ⁹	
2.0	1.2	(1.2)2	•••	(1.2)9	
1.3	1.7	(1.7)2	•••	(1.7)9	
0.1	2.7	(2.7)2	•••	(2.7)9	у
1.1	1.9	(1.9)2	•••	(1.9)9	

true "unknown"
target function is
linear with
negative slope
and gaussian
noise

Over-fitting

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{\theta_0}$	0.19	0.82	0.31	0.35
$ heta_1$		-1.27	7.99	232.37
$ heta_2$			-25.43	-5321.83
$ heta_3$			17.37	48568.31
$ heta_4$				-231639.30
$ heta_5$				640042.26
$ heta_6$				-1061800.52
$ heta_7$				1042400.18
$ heta_8$				-557682.99
$ heta_9$				125201.43

Regularization

Given objective function: $J(\theta)$

Goal is to find:
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

- Example: q-norm (usually p-norm)
$$r(\theta) = ||\theta||_q = \left[\sum_{m=1}^M ||\theta_m||^q\right]^{(\frac{1}{q})}$$

	•	$r(oldsymbol{ heta})$	yields parame- name optimization notes ters that are	
1	0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values sparse Lo reg. no good computational solutions	nonzeros
-	1	$ oldsymbol{ heta} _1 = \sum heta_m $ $(oldsymbol{ heta} _2)^2 = \sum heta_m^2$	zero values L1 reg. subdifferentiable small values L2 reg. differentiable	

Regularization

$$J(\theta_1,\theta_2) = ||\vec{\theta} - \vec{\mu}|| \qquad \mu = \begin{bmatrix} 3\\5 \end{bmatrix}$$

min
$$J(\theta, \theta_1)$$

 θ
 $s.t.$ $||\theta||_2 \leq 1$

Previous Piazza Poll

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As λ increases, the minimum of J'(θ) will...

- A. ... move towards the midpoint between $J'(\theta)$ and $r(\theta)$
- B. ... move towards the minimum of $J(\theta)$
- \mathbb{C} ... move towards the minimum of $r(\theta)$
 - D. ... move towards a theta vector of positive infinities
 - E. ... move towards a theta vector of negative infinities
 - F. ... stay the same

Regularization Exercise

In-class Exercise

- 1. Plot train error vs. regularization weight (cartoon)
- 2. Plot test error vs . regularization weight (cartoon)

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Piazza Poll 1

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As we increase λ from zero, the **validation** error will...

- A. ...increase
- B. ...decrease
- C. ... first increase, then decrease
- D. ... first decrease, then increase
- E. ... stay the same

Regularization

Don't Regularize the Bias (Intercept) Parameter!

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 that is, the parameter for which we fixed $x_0=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

Logistic Regression with Nonlinear Features

Jupyter notebook demo

- For this example, we construct nonlinear features
 (i.e. feature engineering)
- Specifically, we add
 polynomials up to order 9 of
 the two original features x₁
 and x₂
- Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in low-dimensions (i.e. the original two dimensions)

Regularization

Given objective function: $J(\theta)$

Goal is to find:
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

– Example: q-norm (usually p-norm)
$$r(\theta) = ||\theta||_q = \left[\sum_{m=1}^M ||\theta_m||^q\right]^{(\frac{1}{q})}$$

\overline{q}	$r(oldsymbol{ heta})$	yields parame- ters that are	name	optimization notes
0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computa- tional solutions
	$ oldsymbol{ heta} _1 = \sum heta_m \ (oldsymbol{ heta} _2)^2 = \sum heta_m^2$	zero values small values	L1 reg. L2 reg.	subdifferentiable differentiable

Regularization

$$J(\theta_1,\theta_2) = ||\vec{\theta} - \vec{\mu}|| \qquad \mu = \begin{bmatrix} 3\\5 \end{bmatrix}$$

min
$$J(\theta, \theta_2)$$

 θ
 $s.t.$ $||\theta||_2 \leq 1$

L2 vs L1 Regularization

Combine original objective with penalty on parameters

Figures: Bishop, Ch 3.1.4

Predict housing price from several features

Regularization as MAP

- L1 and L2 regularization can be interpreted as maximum aposteriori (MAP) estimation of the parameters
- To be discussed later in the course...

Takeaways

- 1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- Nonlinear features require no changes to the model (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4.** (Regularization and MAP estimation are equivalent for appropriately chosen priors)

Feature Engineering / Regularization Objectives

You should be able to...

- Engineer appropriate features for a new task
- Use feature selection techniques to identify and remove irrelevant features
- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
- Describe feature engineering in common application areas

"Dollar fifty in late charges at the public library"

https://www.youtube.com/watch?v=e1DnltskkWk

Breakout rooms: Why is a CMU course better than a library card?

Introduction to Machine Learning

Neural Networks

Instructor: Pat Virtue

Perceptron

$$sign(\mathbf{z}) = \begin{cases} 1, & if \ z \ge 0 \\ -1, & if \ z < 0 \end{cases}$$

Classification: Hard threshold on linear model

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$$

Piazza Poll 2

Which of the following perceptron parameters will perfectly classify this data?

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$$

$$sign(\mathbf{z}) = \begin{cases} 1, & if \ z \ge 0 \\ -1, & if \ z < 0 \end{cases}$$

A.
$$w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $b = 0$

B.
$$w = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
, $b = 0$

C.
$$w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $b = 0$

D.
$$w = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
, $b = 0$

E. None of the above

Piazza Poll 3

Which of the following perceptron parameters will perfectly classify this data?

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b)$$

$$sign(\mathbf{z}) = \begin{cases} 1, & if \ z \ge 0 \\ -1, & if \ z < 0 \end{cases}$$

A.
$$w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $b = 0$

B.
$$w = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
, $b = 0$

C.
$$w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $b = 0$

$$D. \ w = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, b = 0$$

E. None of the above

Classification Design Challenge

How could you configure three specific perceptrons to classify this data?

$$h_A(\mathbf{x}) = sign(\mathbf{w}_A^T \mathbf{x} + b_A)$$

$$h_B(\mathbf{x}) = sign(\mathbf{w}_B^T \mathbf{x} + b_B)$$

$$h_C(\mathbf{x}) = sign(\mathbf{w}_C^T \mathbf{x} + b_C)$$

Piazza Poll 4

Which of the following parameters of $h_{\mathcal{C}}(\mathbf{z})$ will perfectly classify this data?

$$h_C(\mathbf{z}) = sign(\mathbf{w}_C^T \mathbf{z} + b_C)$$

$$sign(\mathbf{x}) = \begin{cases} 1, & if \ x \ge 0 \\ -1, & if \ x < 0 \end{cases}$$

A.
$$w_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $b_C = 0$

B.
$$w_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $b_C = 1$

C.
$$w_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $b_C = -1$

D. None of the above

Classification Design Challenge

How could you configure three specific perceptrons to classify this data?

$$h_A(\mathbf{x}) = sign(\mathbf{w}_A^T \mathbf{x} + b_A)$$

$$h_B(\mathbf{x}) = sign(\mathbf{w}_B^T \mathbf{x} + b_B)$$

$$h_C(\mathbf{x}) = sign(\mathbf{w}_C^T \mathbf{x} + b_C)$$

Multilayer Perceptrons

A *multilayer perceptron* is a feedforward neural network with at least one *hidden layer* (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Very Loose Inspiration: Human Neurons

Simple Model of a Neuron (McCulloch & Pitts,

1943)

Inputs a_i come from the output of node i to this node j (or from "outside")

Each input link has a weight wi,i

There is an additional fixed input a_0 with **bias** weight $w_{0,i}$

The total input is $in_j = \sum_i w_{i,j} a_i$

The output is
$$a_i = g(in_i) = g(\sum_i w_{i,i} a_i) = g(\mathbf{w.a})$$

Neural Networks Inspired by actual human brain

Input Signal

Output

Signal

Image: https://en.wikipedia.org/wiki/Neuron