Lab 3

To determine the relationshi between shear load and shear strain

G=(Shear stress)/(Shear Strain)

Observation

Least Count (mm) 0.05 Length (L) mm 303 Thickness (t) mm 26.1 Width (W) mm 103.1 Area (L*t) 7908.3

Serial No	Mass	(kg) Loa	ad (N) I	Deflection Upon Loading (mm)
	1	0	0	
	2	5	49	
	3	10	98	
	4	12	1170	

		$\gamma = \left(\frac{\delta l}{\delta w}\right) = \frac{Mean}{Width}$
Mea	n (mm) Angl	e of Distortion= change in width/original widtl
0.3	0.15	

$\tau = \frac{F}{A}$	
Shear stress=(force/Area)	Modulus of Rig

0.006196022

0.012392044

0.014870453

1.45E-03

3.93E-03

1.60E-03

1.84E-03

 $G = \frac{\tau}{\gamma}$ Modulus of Rigidity=Shear Stress/ Angle of Distortion

1.577308291

7.743149794

8.069177154

	1	0	0
	2	5	49
	3	10	98
	4	12	117.6
Group 1:			

Mohammad Abubakar Atiq Barira Qasim Zunaria Ramzan Hannan Ahmed Siddiqui

0.7

0.15

0.19

Shear Deformation

Deflection Upon Unloading (mm)

0.11

0.18

0.19

0.405

0.165

0.19