Total 1	No of (Questions: [8] SEAT NO. :	
		[Total No. of Pag	es:1]
		S.E. 2012 (INFORMATION TECHNOLOGY)	
		DIGITAL ELECTRONICS & LOGIC DESIGN (214443)	
		(Semester - I)	
	Time	e: 2 Hours Max. Marks : 50	
Instru	ctions	to the candidates:	
1)	Answ	er Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 or Q.8.	
2)		diagrams must be drawn wherever necessary.	
3)		res to the right side indicate full marks.	
4)	Assun	ne Suitable data if necessary	
		SECTION I	
Q1)	a)	State conditions to be satisfied for interfacing, by driving & load gate. Draw and explain the interfacing of CMOS driving TTL	[6]
	b)	Minimize the following function using K-map and implement using basic logic	[6]
		gates $f(A,B,C,D) = \sum_{i=0}^{n} (0,1,2,4,8,9,12,13) + d(3,6,7)$	
		OR	
Q2)	a)	Convert the following Number into its equivalent Hexadecimal, Decimal &	[6]
		Binary Number (show step-by-step process of conversion):	
		i. (357.2) ₈ ii. (458.54) ₈	
	b)	Draw and explain the look ahead carry generator.	[6]
Q3)	a)	Explain the difference between asynchronous and synchronous counter &	[6]
G 22	88	Convert J- K flip- flop into D-FF. Show the design.	
	b)	Draw an ASM chart of 2 bit up - down counter having a mode control input.	[6]
		OR	
Q4)	a)	Draw and explain the behavior of M-S JK flip-flop with waveform.	[6]
	b)	Draw and explain Johnson counter with initial state "1110", from initial state	[6]
		explain all possible states.	
Q5)	a)	Explain the difference between CPLD and FPGA.	[6]
	b)	What is meant by CPLD? Draw & Explain the block diagram of CPLD	[7]
06)	T -x	OR	[/]
Q6)	a)	Give the comparison between PROM, PLA and PAL.	[6]
	b)	Design the full adder using PLA.	[7]
Q7)	a)	Explain with example Dataflow and behavioral modeling styles used in VHDL	[6]
	LA	programming. Evaluin with example (signal (and (variable) in VIII)	[7]
	b)	Explain with example 'signal 'and 'variable' in VHDL.	[7]
Q8)	a)	OR Define entity declaration for AND gate. Also write architecture of AND gate in	[6]
2 %		structural & Data modeling style.	Q =1)
	(b)	What is the difference between behavioral model and structural model in VHDL?	[7]