Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2011 – Cálculo I – 1º sem. 2015 Professor: Dr. José Ricardo G. Mendonça

2ª Lista de Exercícios — Gráficos e Curvas — 26 mar. 2015

Matemática é a arte de dar os mesmos nomes a coisas diferentes.

Jules Henri Poincaré (1884–1912)

I. Gráficos

- 1. Esboce os gráficos $G(f) = \{(x, f(x))\} \subset \mathbb{R} \times \mathbb{R}$ das seguintes funções $f : \mathbb{R} \to \mathbb{R}$ no plano ordenado. Escolha um intervalo $[a,b] \subset \mathbb{R}$ conveniente para apresentar cada gráfico e indique explicitamente pelo menos três pontos em cada gráfico. Repare que nem todas as funções estão definidas para todos os valores de $x \in \mathbb{R}$.
 - (a) x + 1;
 - (b) $5x + \frac{1}{2}$;
 - (c) |x| + x;
 - $(d) -\frac{x}{3} + 1;$
 - (e) $-3x^2+1$;
 - $(f) \frac{2}{x};$
 - (g) $\frac{-2}{x-1}$;
 - (h) \sqrt{x} ;
 - (i) x^4 ;
 - (*j*) $\frac{2}{x^2-4}$;
 - $(k) x^{-\frac{1}{2}};$
 - $(\ell) \frac{x}{|x|};$
 - $(m) \frac{x-1}{x+1};$
 - (n) f(x) = 0 se $x \le 0$ e f(x) = -2x se x > 0;
 - (o) f(x) = |x| + x se $-1 \le x \le 1$ e f(x) = 3 se x > 1; f(x) não está definida para outros valores de x:
 - (p) $f(x) = x^3 \text{ se } -1 \le x \le 1 \text{ e } f(x) = -x + 2 \text{ se } x \ge 1.$

II. A linha reta

- 1. Esboce os gráficos das seguintes retas:
 - (a) y = -2x + 5;
 - (b) y = 5x 3;
 - (c) $y = \frac{x}{2} + 7$;
 - (d) $y = -\frac{x}{3} + 1$.
- 2. Dê a equação das retas que passam pelos seguintes pontos:
 - (a) (-1,1) e (2,-7);
 - (b) $(3,\frac{1}{2})$ e (4,-1);
 - (c) $(\sqrt{2}, -1)$ e $(\sqrt{2}, 1)$;
 - (d) (-3,-5) e $(\sqrt{3},4)$.
- 3. Dê a equação da reta que possui a inclinações a e passa pelo ponto P indicado:
 - (a) m = 4 e P = (1,1);
 - (b) $m = -2 e P = (\frac{1}{2}, 1);$
 - (c) $m = -\frac{1}{2} e P = (\sqrt{2}, 3);$
 - (d) $m = \sqrt{3} e P = (-1,5)$.
- 4. Determine a inclinação das retas passando pelos seguintes pontos:

 - (a) $(1, \frac{1}{2})$ e (-1, 1); (b) $(\frac{1}{4}, 1)$ e $(\frac{1}{2}, -1)$?
- 5. Duas linhas retas são paralelas se possuem a mesma inclinação. Sejam y = ax + b e y = cx + d as equações de duas linhas retas com $b \neq d$. Mostre que:
 - (a) Se elas são paralelas, então não possuem nenhum ponto em comum;
 - (b) Se elas não são paralelas, então possuem exatamente um ponto em comum.

III. Círculos, parábolas e hipérboles

- 1. Mostre por substituição direta que as soluções da equação $ax^2 + bx + c = 0$ são dadas por $x = \frac{-b + \sqrt{b^2 4ac}}{2a}$ e $x = \frac{-b \sqrt{b^2 4ac}}{2a}$. Essas fórmulas costumam ser erroneamente atribuídas ao matemático e astrônomo indiano Bhāskara (1114–1185).
- 2. Esboce o gráfico das sequintes equações:
 - (a) $y = -x^2 + 2$:
 - (b) $y = 2x^2 + x 3$;
 - (c) $x-4y^2=0$:

- (d) $x y^2 + y + 1 = 0$.
- 3. Reduza as seguintes equações a uma das formas $x'^2 + y'^2 = r^2$, $y' = cx'^2$ ou $x' = cy'^2$ com constantes r e c adequadas:
 - (a) $x^2 + y^2 4x + 2y = 20$;
 - (b) $x^2 + y^2 2y 8 = 0$;
 - (c) $x^2 + y^2 + 2x 4y = -3$;
 - (d) $y-x^2-4x-2y=-3$;
 - (e) $y-x^2-4x-5=0$;
 - (f) $x-2y^2-y+3=0$.
- 4. Esboce o gráfico das sequintes equações:
 - (a) (x-1)(y-2) = 2;
 - (b) x(y+1) = 3;
 - $(c) \ y = \frac{2}{1 x};$
 - (*d*) (x-1)(y-1) = 1;
 - (e) $y = \frac{x-1}{x+1}$;
 - (f) $y^2 x^2 = 1$;
 - (g) $(y+1)^2 (x-2)^2 = 1$.