(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081749 A2

(51) International Patent Classification7:

C12Q 1/68

- (21) International Application Number: PCT/US01/51652
- (22) International Filing Date: 26 October 2001 (26.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/699,243

27 October 2000 (27.10.2000) US

- (71) Applicant (for all designated States except US): UNIVER-SITY OF SOUTHERN CALIFORNIA [US/US]; 3716 Hope Street #313, Los Angeles, CA 90007-4344 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MARKL, Isabel [US/US]; 1005 Rashford Drive, Placentia, CA 92870 (US). JONES, Peter, A. [US/US]; 4645 Lasheart Drive, La Canada, CA 91011 (US). TOMIGAHARA, Yoshitaka [JP/JP]; 2-10-2-246, Sonehigashi-machi, Toyonaka, Osaka 561-0802 (JP). LIANG, Gangning [CN/US]; 3436 Ashbourne Place, Rowland Heights, CA 91748 (US). FU, Hualin [CN/US]; 500 Norht Atlantic Boulevard, Apt. 310, Alhanbra, CA 91801 (US). CHEN, Jonathan [—/US]; 1008 South Marguerita Avenue, Apt. 1, Alhambra, CA 91803 (US).

- (74) Agent: DAVISON, Barry, L.; Davis Wright Tremaine, LLP, 2600 Century Square, 1501 Fourth Avenue, Seattle, WA 98101-1688 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: METHYLATION ALTERED DNA SEQUENCES AS MARKERS ASSOCIATED WITH HUMAN CANCER

(57) Abstract: There is disclosed (103) novel methylation-altered DNA sequences ("marker sequences") that have distinct methylation patterns in cancer, compared to normal tissue. In many instances, these marker sequences represent novel sequences not found in the GenBank data base, and none of these marker sequences have previously been characterized with respect to their methylation pattern in human cancers including, but not limited to those of bladder and prostate. These (103) sequences have utility as diagnosis, prognostic and therapeutic markers in the treatment of human cancer, and as reagents in kits for detecting methylated CpG-containing nucleic acids.

METHYLATION ALTERED DNA SEQUENCES AS MARKERS ASSOCIATED WITH HUMAN CANCER

5 Cross-Reference to Related Applications

This application claims priority to U.S. Patent Application Serial No. 09/699,243, filed October 27, 2000.

Technical Field of the Invention

10

15

20

25

30

35

The present invention relates to novel human DNA sequences that exhibit altered methylation patterns (hypermethylation or hypomethylation) in cancer patients. These novel methylation-altered DNA sequences are useful as diagnostic, prognostic and therapeutic markers for human cancer.

Background of the Invention

The identification of early genetic changes in tumorigenesis is a primary focus in molecular cancer research. Characterization of the nature and pattern of cancer-associated genetic alterations will allow for early detection, diagnosis and treatment of cancer. Such genetic alterations in vertebrates fall generally into one of three categories: gain or loss of genetic material; mutation of genetic material; or methylation at cytosine residues in CpG dinucleotides within "CpG islands." Among these, DNA methylation is uniquely reversible, and changes in methylation state are known to affect gene expression (e.g., transcriptional initiation of genes where CpG islands located at or near the promoter region) or genomic stability.

Methylation of CpG dinucleotides within CpG islands. DNA, in higher order eukaryotic organisms, is methylated only at cytosine residues located 5' to guanosine residues in CpG dinucleotides. This covalent modification of the C-5 position of the cytosine base by the enzyme DNA (cytosine-5)-methyltransferase results in the formation of 5-methylcytosine (5-mCyt), and gives this base unique properties (e.g., susceptibility to undergo spontaneous deamination). This enzymatic conversion is the only epigenetic modification of DNA known to exist in vertebrates, and is essential for normal embryonic development (Bird, A.P., Cell 70:5-8, 1992; Laird & Jaenisch, Human Molecular Genetics 3:1487-1495, 1994; Li et al., Cell 69:915-926, 1992).

The presence of 5-mCyt at CpG dinucleotides has resulted in the 5-fold depletion of this sequence in the genome during the course of vertebrate evolution (Schroderet & Gartler, *Proc. Nat. Acad. Sci. USA* 89:957-961, 1992), presumably due to spontaneous deamination of 5-mCyt to Thymidine. Certain areas of the genome, however, do not show such depletion,

5

10

15

20

25

30

35

and are referred to as "CpG islands" (Bird, A.P., Nature 321:209-213, 1986; Gardiner-Garden & Frommer, J. Mol. Biol. 196:261-282, 1987). These CpG islands comprise only approximately 1% of the vertebrate genome, yet account for about 15% of the total number of genomic CpG dinucleotides (Antequera & Bird, Proc. Nat. Acad. Sci. USA 90:11995-11999, 1993). CpG islands contain the expected (i.e., the non-evolutionarily depleted) frequency of CpGs (with an Observed/Expected Ratio¹ >0.6), are GC-rich (with a GC Content² >0.5) and are typically between about 0.2 to about 1 kb in length.

Methylation within CpG islands affects gene expression. CpG islands are located upstream of many housekeeping and tissue-specific genes, but may also extend into gene coding regions (Cross & Bird, Current Opinions in Genetics and Development 5:309-314, 1995; Larsen et al., Genomics 13:1095-1107, 1992). The methylation of cytosines within CpG islands in somatic tissues is believed to affect gene expression. Methylation has been inversely correlated with gene activity and may lead to decreased gene expression by a variety of mechanisms including inhibition of transcription initiation (Bird, A.P., Nature 321:209-213, 1986; Delgado et al., EMBO Journal 17:2426-2435, 1998), disruption of local chromatin structure (Counts & Goodman, Molecular Carcinogenesis 11:185-188, 1994; Antequera et al., Cell 62:503-514, 1990), and recruitment of proteins that interact specifically with methylated sequences and thereby directly or indirectly prevent transcription factor binding (Bird, A.P., Cell 70:5-8, 1992; Counts & Goodman, Molecular Carcinogenesis 11:185-188, 1994; Cedar, H., Cell 53:3-4, 1988). Many studies have demonstrated the effect of methylation of CpG islands on gene expression (e.g., the CDKN2A/p16 gene; Gonzalez-Zulueta et al., Cancer Research 55:4531-4535, 1995), but most CpG islands on autosomal genes remain unmethylated in the germline, and methylation of these islands is usually independent of gene expression. Tissue-specific genes are typically unmethylated in the respective target organs but are methylated in the germline and in non-expressing adult tissues, while CpG islands of constitutively expressed housekeeping genes are normally unmethylated in the germline and in somatic tissues.

Methylation within CpG islands affects the expression of genes involved in cancer. Data from a group of studies show the presence of altered methylation in cancer cells relative to non-cancerous cells. These studies show not only alteration of the overall genomic levels of DNA methylation, but also changes in the distribution of methyl groups. For example, abnormal methylation of CpG islands that are associated with tumor suppressor genes or oncogenes within a cell may cause altered gene expression. Such altered gene expression may provide a population of cells with a selective growth advantage and thereby result in selection of these cells to the detriment of the organism (i.e., cancer).

¹ Calculated as: [number of CpG sites / (number of C bases X number of G bases)] X band length for each fragment.

² Calculated as: (number of C bases + number of G bases) / band length for each fragment.

Insufficient correlative data. Unfortunately, the mere knowledge of the basic existence of altered methylation of CpG dinucleotides within CpG islands of cancer cells relative to normal cells, or of the fact that in particular instances such methylation changes result in altered gene expression (or chromatin structure or stability), is inadequate to allow for effective diagnostic, prognostic and therapeutic application of this knowledge. This is because only a limited number of CpG islands have been characterized, and thus there is insufficient knowledge, as to which particular CpG islands, among many, are actually involved in, or show significant correlation with cancer or the etiology thereof. Moreover, complex methylation patterns, involving a plurality of methylation-altered DNA sequences, including those that may have the sequence composition to qualify as CpG islands, may exist in particular cancers.

Therefore there is a need in the art to identify and characterize specific methylation altered DNA sequences, and to correlate them with cancer to allow for their diagnostic, prognostic and therapeutic application.

Summary of the Invention

5

10

15

20

25

30

35

The present invention provides for a diagnostic or prognostic assay for cancer, comprising: obtaining a tissue sample from a test tissue; performing a methylation assay on DNA derived from the tissue sample, wherein the methylation assay determines the methylation state of a CpG dinucleotide within a DNA sequence of the DNA, and wherein the DNA sequence is a sequence selected from the group consisting of sequences of SEQ ID NOS:1-103, sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof, wherein the CpG island sequence associated with the sequence of the particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5; and determining a diagnosis or prognosis based, at least in part, upon the methylation state of the CpG dinucleotide within the DNA sequence. Preferably, the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof. Preferably, the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS: 2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90, and combinations thereof. Preferably, the methylation assay procedure is selected from the group

consisting of MethyLight, MS-SnuPE (methylation-sensitive single nucleotide primer extension), MSP (methylation-specific PCR), MCA (methylated CpG island amplification), COBRA (combined bisulfite restriction analysis), and combinations thereof. Preferably, the methylation state of the CpG dinucleotide within the DNA sequence is that of hypermethylation, hypomethylation or normal methylation. Preferably, the cancer is selected from the group consisting of bladder cancer, prostate cancer, colon cancer, lung cancer, renal cancer, leukemia, breast cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma. Preferably, the cancer is bladder cancer, or prostate cancer.

The present invention further provides a kit useful for the detection of a methylated CpG-containing nucleic acid comprising a carrier means containing one or more containers comprising: a container containing a probe or primer which hybridizes to any region of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103; and additional standard methylation assay reagents required to affect detection of methylated CpG-containing nucleic acid based on the probe or primer. Preferably, the additional standard methylation assay reagents are standard reagents for performing a methylation assay from the group consisting of MethyLight, MS-SNuPE, MSP, MCA, COBRA, and combinations thereof. Preferably, the probe or primer comprises at least about 12 to 15 nucleotides of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103.

The present invention further provides an isolated nucleic acid molecule comprising a methylated or unmethylated polynucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:97, and SEQ ID NO:100. Preferably the nucleic acid is methylated. Preferably, the nucleic acid is unmethylated.

Detailed Description of the Invention

35 **Definitions:**

5

10

15

20

25

30

"GC Content" refers, within a particular DNA sequence, to the [(number of C bases + number of G bases) / band length for each fragment].

"Observed/Expected Ratio" ("O/E Ratio") refers to the frequency of CpG

dinucleotides within a particular DNA sequence, and corresponds to the [number of CpG sites / (number of C bases X number of G bases)] X band length for each fragment.

"CpG Island" refers to a contiguous region of genomic DNA that satisfies the criteria of (1) having a frequency of CpG dinucleotides corresponding to an "Observed/Expected Ratio" >0.6), and (2) having a "GC Content" >0.5. CpG islands are typically, but not always, between about 0.2 to about 1 kb in length. A CpG island sequence associated with a particular SEQ ID NO sequence of the present invention is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6), and a GC Content >0.5.

5

10

15

20

25

30

35

"Methylation state" refers to the presence or absence of 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence.

"Hypermethylation" refers to the methylation state corresponding to an *increased* presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

"Hypomethylation" refers to the methylation state corresponding to a decreased presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

"Methylation assay" refers to any assay for determining the methylation state of a CpG dinucleotide within a sequence of DNA.

"MS.AP-PCR" (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction) refers to the art-recognized technology that allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides, and described by Gonzalgo et al., Cancer Research 57:594-599, 1997.

"MethyLight" refers to the art-recognized fluorescence-based real-time PCR technique described by Eads et al., Cancer Res. 59:2302-2306, 1999.

"Ms-SNuPE" (Methylation-sensitive Single Nucleotide Primer Extension) refers to the art-recognized assay described by Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997.

"MSP" (Methylation-specific PCR) refers to the art-recognized methylation assay described by Herman et al. *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996, and by US Patent No. 5,786,146.

"COBRA" (Combined Bisulfite Restriction Analysis) refers to the art-recognized methylation assay described by Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997.

"MCA" (Methylated CpG Island Amplification) refers to the methylation assay described by Toyota et al., Cancer Res. 59:2307-12, 1999, and in WO 00/26401A1.

Overview

5

10

15

20

25

30

35

The present invention provides for 103 DNA sequences (i.e., "marker sequences") having distinct methylation patterns in cancer, as compared to normal tissue. These methylation-altered DNA sequence embodiments correspond to 103 DNA fragments isolated from bladder and prostate cancer patients, and in many instances, represent novel sequences not found in the GenBank database. *None* of the instant sequence embodiments have previously been characterized with respect to their methylation pattern in human cancers including, but not limited to, those of the bladder and prostate. The significance of such methylation patterns lies in the value of altered fragments as potential prognostic, diagnostic and therapeutic markers in the treatment of human cancers.

Identification of Methylation-altered Marker Sequences in Genomic DNA

The MS.AP-PCR technique was used to scan the genomes of bladder or prostate cancer patients for DNA methylation changes relative to normal individuals, because the pattern is known to be highly conserved. A total of 103 DNA sequence embodiments (methylation-altered DNA sequences; "marker sequences") were isolated and characterized as having distinct methylation patterns in cancer, as compared to normal tissue.

Methods for the Identification of Marker Sequences in Genomic DNA. There are a variety of art-recognized genome scanning methods that have been used to identify altered methylation sites in cancer cells. For example, one method involves restriction landmark genomic scanning (Kawai et al., Mol. Cell. Biol. 14:7421-7427, 1994), another involves MCA (methylated CpG island amplification; Toyota et al., Cancer Res. 59:2307-12, 1999), and yet another involves MS.AP-PCR (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction; Gonzalgo et al., Cancer Res. 57:594-599, 1997), which allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides. The MS.AP-PCR technique used in the present invention is a rapid and efficient method to screen ("scan") for altered methylation patterns in genomic DNA and to isolate specific sequences associated with these changes.

Briefly, genomic DNA from the tissue of bladder or prostate cancer patients was prepared using standard, art-recognized methods. Restriction enzymes (e.g., HpaII) with different sensitivities to cytosine methylation in their recognition sites were used to digest these genomic DNAs prior to arbitrarily primed PCR amplification with GC-rich primers. Fragments that showed differential methylation (e.g., hypermethylation or hypomethylation, based on the methylation sensitivity of the restriction enzyme, or upon DNA sequence analysis or Ms-SNuPE analysis; Gonzalgo & Jones, Nucleic Acids Res 25:2529-2531, 1997) were cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments were used as probes for Southern blot analysis to

confirm differential methylation of these regions in the tissue. Methods for DNA cloning, sequencing, PCR, high-resolution polyacrylamide gel resolution and Southern blot analysis are well known by those of ordinary skill in the relevant art.

Results. A total of 500 DNA fragments that underwent either hypermethylation (an increase in the level of methylation relative to normal) or hypomethylation (a decrease in the level of methylation relative to normal) were isolated from the scanned patients genomic DNA. A total of 178 of these fragments were sequenced, of which 103 were novel in that they corresponded to DNA loci whose methylation pattern had not previously been characterized. The corresponding sequences are disclosed as [SEQ ID NOS:1-103], wherein for certain sequences, the letter "n" refers to an undetermined nucleotide base.

5

10

15

20

25

30

Novel marker sequences identified by MS.AP-PCR. Table I shows an overall summary of methylation patterns and sequence data corresponding to the 103 DNA fragments identified by MS.AP-PCR. A total of 103 fragments were sequenced following identification as becoming either hypermethylated (gain of methylation; noted as having a hypermethylation pattern) or hypomethylated (loss of methylation; noted as having a hypomethylation pattern) relative to normal tissue. For the fragments of each category, the "Average GC Content" is shown, calculated as (number of C bases + number of G bases)/band length for each fragment, as well as the average Observed/Expected Ratio ("O/E Ratio"), calculated as [number of CpG sites/(number of C bases X number of G bases)] X band length for each fragment. Additionally, the percent of fragments that qualify as CpG islands is listed, and corresponds to the percentage of all fragments within each category that have sequence compositions that satisfy the criteria of having a "GC Content" >0.5 and an "O/E Ratio" >0.6.

Thus, of these 103 fragments identified by MS.AP-PCR, 60 showed hypermethylation (Table I, upper row; Table II, [SEQ ID NOS:1-60]) while 43 showed hypomethylation (Table I, lower row; Table II, [SEQ ID NOS:61-103]). Moreover, 55 (43 hypermethylated, and 12 hypomethylated) of the 103 fragments correspond to CpG islands (*i.e.*, fulfill the criteria of a GC content >0.5 and an Observed/Expected Ratio >0.6;), whereas the other 48 (17 hypermethylated and 31 hypomethylated) fragments do not meet the criteria for CpG islands (*see* Table II).

TABLE I. Summary of 103 DNA Fragments Identified by MS.AP-PCR

DNA Fragment Type	Methylation Pattern (relative to normal)	Number of Fragments (103 total)	Average GC Content	Average O/E Ratio	Percent that correspond to CpG Islands
Hypermethylated Fragments	Hyper- methylation	60	0.54	0.72	72%
Hypomethylated Fragments	Hypo-methylation	43	0.52	0.48	28%

Table II shows a summary of methylation pattern and sequence data for each individual sequence embodiment ([SEQ ID NOS:1-103]), corresponding to the 103 DNA fragments identified by MS.AP-PCR. Data for the 103 fragments was divided into either hypermethylated ([SEQ ID NOS:1-60]) or hypomethylated ([SEQ ID NOS:61-103]) categories. Table II also lists, for each sequence embodiment, the corresponding "Fragment Name," fragment "Size" (in base pairs; "bp"), "GC Content," Observed/Expected Ratio ("O/E Ratio"), "Description" (i.e., as a CpG island if criteria are met), "Inventor Initials" (IDCM = Isabel D.C. Markl, JC = Jonathan Cheng, GL = Gangning Liang, HF = Hualin Fu, YT = Yoshitaka Tomigahara), "Cancer Source," and "Chromosome Match" to the GenBank database. A dash ("-") indicates that no GenBank chromosome match existed, or that only a low-scoring partial match was found. Averages of the "GC Content" and "O/E Ratio," along with the percent of fragments that are CpG islands, are listed after the last member of both the hypermethylated and hypomethylated categories.

5

10

15

20

25

Therefore, the present invention provides for 103 DNA fragments and corresponding marker sequence embodiments (i.e., methylation-altered DNA sequences) that are useful in cancer prognostic, diagnostic and therapeutic applications.

Additionally, at least 55 of these 103 sequences correspond to CpG islands (based on GC Content and O/E ration); namely [SEQ ID NOS:2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90]. Thus, based on the fact that the methylation state of a portion of a given CpG island is generally representative of the island as a whole, the present invention further encompassed the novel use of the 55 CpG islands associated with [SEQ ID NOS:2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90] in cancer prognostic, diagnostic and therapeutic applications, where a CpG island sequence associated with the sequence of a particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5.

TABLE II. Summary of MS.AP-PCR Fragments Sequenced

Methylation Pattern	Fragment Name	Size (bp)	GC Content	O/E Ratio	Description	Inventor Initials	Cancer Source	Chromosome Matches	[SEQ ID NO]
Hyper- methylation									
Category	11-1A	510	0.44	0.74		IDCM	Bladder	-	1
	14-3B	313	0.58	0.74	CpG Island	IDCM	Bladder	2	2
	18-2B	165	0.57	0.45	^	IDCM	Bladder	7	3
)	24-1B	601	0.51	0.72	CpG Island	IDCM	Bladder	Xp11	4
	26-1B	801	0.48	0.56	•	IDCM	Bladder	-	5
	26-2C	204	0.50	0.63	CpG Island	IDCM	Bladder	-	6
	30-3D	205	0.55	1.25	CpG Island	IDCM	Bladder	14	7
	32-3E	597	0.57	0.10	1	IDCM	Bladder	20q12-13.1	8
	34-2B	500	0.62	0.66	CpG Island	IDCM	Bladder	20	9
	34-4B	343	0.70	0.81	CpG Island	IDCM	Bladder	-	10

Methylation	Fragment	Size	GC	O/E	Description	Inventor	Cancer	Chromosome	[SEQ
Pattern	Name	(bp)	Content	Ratio		Initials	Source	Matches	ID NO]
	34-5D	291	0.62	0.96	CpG Island	IDCM	Bladder	. 9	11
	34-6A	266	0.64	0.93	CpG Island	IDCM	Bladder	-	12
	35-1C	553	0.64	0.63	CpG Island	IDCM	Bladder	-	13
	36-2D	156	0.60	0.58	CpG Island	IDCM	Bladder	10	14
-	38-1A	300	0.70	0.80	CpG Island	IDCM	Bladder	10	15
	38-2B	196	0.56	0.89	CpG Island	IDCM	Bladder	15	16 17
	7-8E 83-4B	299 363	0.59 0.54	0.39 0.49		IDCM IDCM	Bladder Bladder	17q21-22	18
	84-1D	322	0.55	0.49	CpG Island	IDCM	Bladder	7	19
·	101-3E	255	0.57	0.83	CpG Island	IDCM	Bladder	17	20
	M1-5A	406	0.45	0.96	Орозыша	IDCM	Bladder	1	21
	U2-8E	210	0.56	0.61	CpG Island	IDCM	Bladder	2 .	22
	U12-1A	310	0.56	0.81	CpG Island	IDCM	Bladder	2	23
	U7-4A	305	0.59	0.80	CpG Island	IDCM	Bladder	-	24
•	NU9-5A	379	0.67	0.83	CpG Island	1C	Bladder	•	25
	3-17-8-B	625	0.48	0.72	CpG Island	GL	Bladder	18	26
	4-10-4-A	499	0.55	0.30	CpG Island	GL	Bladder	7	27
	1-1-1-A	561	0.58	0.98	CpG Island	GL	Bladder	20	28
	3-17-8-A	717	0.50	0.68	CpG Island	GL	Bladder	17	29 30
	G145-H	280 270	0.50 0.50	1.10 0.60	CpG Island CpG Island	GL GL	Bladder Bladder	11 2	31
	1-1-1-D 1-1-1-C	347	0.65	1.25	CpG Island	GL	Bladder	-	32
	G178-A	342	0.55	0.85	CpG Island	GL	Bladder	2	33
	34-A'	370	0.62	0.44		HF	Prostate	_	34
	34-D	213	0.53	0.74	CpG Island	HF	Prostate	2	35
	35-D	173	0.56	0.66	CpG Island	HF	Prostate	3	36
	36-A	369	0.67	0.70	CpG Island	HF	Prostate	- .	37
	40-A	123	0.60	1.16	CpG Island	HF ·	Prostate	-	38
	91-1	450	0.64	0.86	CpG Island	YT	Bladder	5 or 16q24.3	39
	93-2	593	0.51	0.68	CpG Island	YT	Bladder	Xp11	40
	93-3	457	0.52	0.94	CpG Island	YT	Bladder	Xp22.1-22.3	. 41
	94-8	211	0.66	0.96	CpG Island	YT	Bladder	-	42
	95-5	141	0.63	0.79	CpG Island	YT.	Bladder	14	43
	97-5	559	0.56	0.40		YT	Bladder	-	44
	98-1	433	0.46	0.96		YT	Bladder	1	45
	100-1	487	0.59	0.58	1	YT	Bladder	14	46
	100-2	403	0.60	0.47	Con C. Zolom d	YT	Bladder Bladder	3 20	47 48
	100-6 4 - 2	155 256	0.57 0.57	0.99	CpG Island	YT YT	Bladder	7	49
	5-8	224	0.37	0.40		YT	Bladder	5	50
	6-4	313	0.70	0.82	CpG Island	ŶŤ	Bladder	_	51
•	7-6	385	0.70	0.88	CpG Island	YT	Bladder	_	52
	13-3	307	0.59	0.89	CpG Island	YT	Bladder	10	53
	15-2	182	0.62	0.92	CpG Island	YT	Bladder	13	54
	23-2	523	0.54	0.87	CpG Island	YT	Bladder	Xp22.1-22.3	55
	39-2	795	0.46	0.64	1	YT	Bladder	13	56
•	40-2	438	0.62	0.51	1	YT	Bladder	10	57
	41-3	611	0.47	0.70	C-C T-1	YT	Bladder	18	58
	105-4	291	0.58	0.71	CpG Island	YT	Bladder Bladder	5 11	59 60
	107-8	226	0.53	0.96	CpG Island	YT	Diadder	''	, 00
AVERAGE			0.54	0.72	72% islands				
Hypo- methylation]	<u> </u>			}]		<u> </u>
Category	14-2B	580	0.55	0.51		IDCM	Bladder	2	61
Category	14-2B 16-1B	633	0.56	0.39		IDCM	Bladder	[~	62
	18-1B	703	0.45	0.35		IDCM	Bladder	17	63

Methylation	Fragment	Size	GC	O/E	Description	Inventor	Cancer	Chromosome	[SEQ
Pattern	Name	(bp)	Content	Ratio	_ 00 40 -p 00 1	Initials	Source	Matches	ID NO
	19-1B	420	0.66	0.87	CpG Island	IDCM	Bladder		64
	20-1B	496	0.61	0.59	opo isiano	IDCM	Bladder	_	65
	21-2C	637	0.60	0.33		IDCM	Bladder	9q34	66
	29-1A	595	0.55	0.27		IDCM	Bladder	Xp11.23	67
	29-2B	580	0.47	0.77		IDCM	Bladder	-	68
	32-1A	589	0.59	0.48		IDCM	Bladder	· <u>-</u>	69
	34-1B	450	0.42	0.46		IDCM	Bladder	-	70
	34-3B	432	0.70	0.61	CpG Island	IDCM	Bladder	-	71
	32-2B	748	0.47	0.24	. •	IDCM	Bladder	2	72
	32-4B	599	0.57	0.15		IDCM	Bladder	20q12-13.1	73
	32-5B	614	0.58	0.20		IDCM	Bladder	-	74
	33-1A	552	0.54	0.32		IDCM	Bladder	10	. 75
	5-1E	501	0.61	1.04	CpG Island	IDCM	Bladder	-	76
·	6-1A	826	0.55	0.36	•	IDCM	Bladder	22q13.32-	77
]	,				- 13.33	
	7-5D	433	0.59	0.85	CpG Island	IDCM	Bladder	5	78
	8-7C	424	0.58	0.83	CpG Island	IDCM	Bladder	5	79
	30-ഞ	285	0.63	0.72	CpG Island	IDCM	Bladder	1	80
1	66-2E ·	401	0.54	0.82	CpG Island	IDCM	Bladder	16	81
	78-1C	268	0.54	0.41		IDCM	Bladder	-	82
	97-2E	989	0.53	0.16		IDCM	Bladder] -	83
	M1-8C	250	0.64	0.99	CpG Island	IDCM	Bladder	-	84
	M2-5A	402	0.50	0.45		IDCM	Bladder	5	85
	M1-4P	595	0.43	0.41		IDCM	Bladder	-	86
	M12-10A	304	0.53	0.76	CpG Island	IDCM	Bladder	7	87
·	M12-12C	296	0.51	0.64	CpG Island	IDCM	Bladder	17	88
	M2-8M	220	0.67	0.62	CpG Island	IDCM	Bladder	6q27	89
·	NU4-3A	273	0.63	1.02	CpG Island	JC	Bladder	-	90
	NU5-2A	361	0.44	0.73		JC	Bladder	6q14.3-15	91
	88-5	462	0.62	0.39		YT	Bladder	• •	92
	90-1	591	0.66	0.45		YT	Bladder	19	93
	91-3	279	0.58	0.45		YT	Bladder	5 or 16q24.3	94
	91-4	351	0.55	0.30		YT	Bladder	18q23	95
	91-7	171	0.61	0.59		YT	Bladder	11	96
	89-3	743	0.55	0.43		YT	Bladder	-	97
	94-2	589	0.53	0.41		YT	Bladder	22q13.31- 13.32	98
	94-3	538	0.53	0.49		YT	Bladder	5 or 18	99
	94-4	486	0.61	0.57	İ	YT	Bladder	_	100
	94-5	450	0.60	0.45		YT	Bladder	1p36.2-36.3	101
	94-6	292	0.58	0.32	·	YT	Bladder	8 or 9	102
	96-4	395	0.63	0.54		YT	Bladder	9	103
AVERAGE			0.52	0.48	28% islands				

Diagnostic and Prognostic Assays for Cancer. The present invention provides for diagnostic and prognostic cancer assays based on determination of the methylation state of one or more of the disclosed 103 methylation-altered DNA sequence embodiments. Typically, such assays involve obtaining a tissue sample from a test tissue, performing a methylation assay on DNA derived from the tissue sample, and making a diagnosis or prognosis based thereon.

The methylation assay is used to determine the methylation state of one or a plurality of CpG dinucleotide within a DNA sequence of the DNA sample. According to the present invention, possible methylation states include *hypermethylation* and *hypomethylation*, relative to a normal state (*i.e.*, non-cancerous control state). Hypermethylation and hypomethylation refer to the methylation states corresponding to an *increased* or *decreased*, respectively, presence 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence of the test sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

5

10

15

20

25

30

35

A diagnosis or prognosis is based, at least in part, upon the determined methylation state of the sample DNA sequence compared to control data obtained from normal, non-cancerous tissue.

Methylation Assay Procedures. Various methylation assay procedures are known in the art, and can be used in conjunction with the present invention. These assays allow for determination of the methylation state of one or a plurality of CpG dinucleotides (e.g., CpG islands) within a DNA sequence. Such assays involve, among other techniques, DNA sequencing of bisulfite-treated DNA, PCR (for sequence-specific amplification), Southern blot analysis, use of methylation-sensitive restriction enzymes, etc.

For example, genomic sequencing has been simplified for analysis of DNA methylation patterns and 5-methylcytosine distribution by using bisulfite treatment (Frommer et al., *Proc. Natl. Acad. Sci. USA* 89:1827-1831, 1992). Additionally, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used, *e.g.*, the method described by Sadri & Hornsby (*Nucl. Acids Res.* 24:5058-5059, 1996), or COBRA (Combined Bisulfite Restriction Analysis) (Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997).

COBRA. COBRA analysis is a quantitative methylation assay useful for determining DNA methylation levels at specific gene loci in small amounts of genomic DNA (Xiong & Laird, Nucleic Acids Res. 25:2532-2534, 1997). Briefly, restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfite-treated DNA. Methylation-dependent sequence differences are first introduced into the genomic DNA by standard bisulfite treatment according to the procedure described by Frommer et al. (Proc. Natl. Acad. Sci. USA 89:1827-1831, 1992). PCR amplification of the bisulfite converted DNA is then performed using primers specific for the interested CpG islands, followed by restriction endonuclease digestion, gel electrophoresis, and detection using specific, labeled hybridization probes. Methylation levels in the original DNA sample are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples. Typical reagents (e.g., as might be found in a typical COBRA-based kit) for

COBRA analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); restriction enzyme and appropriate buffer; gene-hybridization oligo; control hybridization oligo; kinase labeling kit for oligo probe; and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

5

10

15

20

25

30

35

Preferably, assays such as "MethyLight" (a fluorescence-based real-time PCR technique) (Eads et al., *Cancer Res.* 59:2302-2306, 1999), Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reactions (Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997), methylation-specific PCR ("MSP"; Herman et al., *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996; US Patent No. 5,786,146), and methylated CpG island amplification ("MCA";Toyota et al., *Cancer Res.* 59:2307-12, 1999) are used alone or in combination with other of these methods.

MethyLight. The MethyLight assay is a high-throughput quantitative methylation assay that utilizes fluorescence-based real-time PCR (TaqMan ®) technology that requires no further manipulations after the PCR step (Eads et al., Cancer Res. 59:2302-2306, 1999). Briefly, the MethyLight process begins with a mixed sample of genomic DNA that is converted, in a sodium bisulfite reaction, to a mixed pool of methylation-dependent sequence differences according to standard procedures (the bisulfite process converts unmethylated cytosine residues to uracil). Fluorescence-based PCR is then performed either in an "unbiased" (with primers that do not overlap known CpG methylation sites) PCR reaction, or in a "biased" (with PCR primers that overlap known CpG dinucleotides) reaction. Sequence discrimination can occur either at the level of the amplification process or at the level of the fluorescence detection process, or both.

The MethyLight may assay be used as a quantitative test for methylation patterns in the genomic DNA sample, wherein sequence discrimination occurs at the level of probe hybridization. In this quantitative version, the PCR reaction provides for unbiased amplification in the presence of a fluorescent probe that overlaps a particular putative methylation site. An unbiased control for the amount of input DNA is provided by a reaction in which neither the primers, nor the probe overlie any CpG dinucleotides. Alternatively, a qualitative test for genomic methylation is achieved by probing of the biased PCR pool with either control oligonucleotides that do not "cover" known methylation sites (a fluorescence-based version of the "MSP" technique), or with oligonucleotides covering potential methylation sites.

The MethyLight process can by used with a "TaqMan®" probe in the amplification process. For example, double-stranded genomic DNA is treated with sodium bisulfite and subjected to one of two sets of PCR reactions using TaqMan® probes; e.g., with either

biased primers and TaqMan® probe, or unbiased primers and TaqMan® probe. The TaqMan® probe is dual-labeled with fluorescent "reporter" and "quencher" molecules, and is designed to be specific for a relatively high GC content region so that it melts out at about 10 °C higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan® probe to remain fully hybridized during the PCR annealing/extension step. As the Taq polymerase enzymatically synthesizes a new strand during PCR, it will eventually reach the annealed TaqMan® probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan® probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system.

5

10

15

20

25

30

35

Typical reagents (e.g., as might be found in a typical MethyLight-based kit) for MethyLight analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); TaqMan® probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

Ms-SNuPE. The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, Nucleic Acids Res. 25:2529-2531, 1997). Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest. Small amounts of DNA can be analyzed (e.g., microdissected pathology sections), and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites. Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for specific gene; reaction buffer (for the Ms-SNuPE reaction); and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

MSP. MSP (methylation-specific PCR) allows for assessing the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes (Herman et al. Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996; US Patent No. 5,786,146). Briefly, DNA is modified by sodium bisulfite converting all unmethylated, but not methylated cytosines to uracil, and subsequently amplified with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and

can be performed on DNA extracted from paraffin-embedded samples. Typical reagents (e.g., as might be found in a typical MSP-based kit) for MSP analysis may include, but are not limited to: methylated and unmethylated PCR primers for specific gene (or methylationaltered DNA sequence or CpG island), optimized PCR buffers and deoxynucleotides, and specific probes.

methylation patterns in genomic DNA, and to isolate specific sequences associated with these changes (Toyota et al., Cancer Res. 59:2307-12, 1999). Briefly, restriction enzymes with different sensitivities to cytosine methylation in their recognition sites are used to digest genomic DNAs from primary tumors, cell lines, and normal tissues prior to arbitrarily primed PCR amplification. Fragments that show differential methylation are cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments are then used as probes for Southern analysis to confirm differential methylation of these regions. Typical reagents (e.g., as might be found in a typical MCA -based kit) for MCA analysis may include, but are not limited to: PCR primers for arbitrary priming Genomic DNA; PCR buffers and nucleotides, restriction enzymes and appropriate buffers; gene-hybridization oligos or probes; control hybridization oligos or probes.

Kits for Detection of Methylated CpG-containing Nucleic Acid. The reagents required to perform one or more art-recognized methylation assays (including those identified above) are combined with primers or probes comprising the sequences of SEQ ID NOS:1-103, or portions thereof, to determine the methylation state of CpG-containing nucleic acids. For example, the MethyLight, Ms-SNuPE, MCA, COBRA, and MSP methylation assays could be used alone or in combination, along with primers or probes comprising the sequences of SEQ ID NOS:1-103, or portions thereof, to determine the methylation state of a CpG dinucleotide within a genomic sequence corresponding to SEQ ID NOS:1-103, or to CpG island sequences associated with sequences of SEQ ID NOS:1-103, where the CpG island sequence associated with the sequence of the particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5.

PCT/US01/51652 WO 02/081749

We claim:

5

20

25

30

35

A diagnostic or prognostic assay for cancer, comprising: 1.

- obtaining a tissue sample from a test tissue; (a)
- performing a methylation assay on DNA derived from the tissue sample, (b) wherein the methylation assay determines the methylation state of a CpG dinucleotide within a DNA sequence of the DNA, and wherein the DNA sequence is a sequence selected from the group consisting of sequences of SEQ ID NOS:1-103, sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID 10 NOS:1-103, and combinations thereof, wherein the CpG island sequence associated with the sequence of the particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5; and 15
 - determining a diagnosis or prognosis based, at least in part, upon the methylation state of the CpG dinucleotide within the DNA sequence.
 - The diagnostic or prognostic assay of claim 1 wherein the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof.
 - The diagnostic or prognostic assay of claim 2 wherein the DNA sequence is a 3. sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS: 2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90, and combinations thereof.
 - The diagnostic or prognostic assay of claim 1 wherein the methylation assay 4. procedure is selected from the group consisting of MethyLight, MS-SNuPE, MSP MCA, COBRA, and combinations thereof.
 - The diagnostic or prognostic assay of claim 1 wherein the methylation state of 5. the CpG dinucleotide within the DNA sequence is that of hypermethylation, hypomethylation or normal methylation.
 - The diagnostic or prognostic assay of claim 1 wherein the cancer is selected 6. from the group consisting of bladder cancer, prostate cancer, colon cancer, lung cancer, renal cancer, leukemia, breast cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma.
 - A kit useful for the detection of a methylated CpG-containing nucleic acid 7. comprising a carrier means containing one or more containers comprising:

(a) a container containing a probe or primer which hybridizes to any region of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103; and

(b) additional standard methylation assay reagents required to affect detection of methylated CpG-containing nucleic acid based, at least in part, on the probe or primer.

5

10

- 8. The kit of claim 7, wherein the additional standard methylation assay reagents are standard reagents for performing a methylation assay from the group consisting of MethyLight, MS-SNuPE, MSP MCA, COBRA, and combinations thereof.
- 9. The kit of claim 7, wherein the probe or primer comprises at least about 12 to 15 nucleotides of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103.
- 10. An isolated nucleic acid molecule comprising a methylated or unmethylated polynucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:97, and SEQ ID NO:100.
 - 11. The nucleic acid of claim 10, wherein the nucleic acid is methylated.
 - 12. The nucleic acid of claim 10, wherein the nucleic acid is unmethylated.

PCT/US01/51652 WO 02/081749

SEQUENCE LISTING

<110> University of Southern California Markl, Isabel Tomigahara, Yoshitaka Liang, Gangning Fu, Hualin Jones, Peter

<120> Methylation Altered DNA Sequences as Markers Associated with Human Cancer

<130> 47465-14

<160> 103

<170> Word V. 97

<210> 1

<211> 510

<212> DNA <213> Homo sapiens

<220>

<221> unsure

<222> position is 15 nucleotides

<223> "n" refers to an undetermined base

<220>

<221> unsure

<222> position is 28 nucleotides

<223> "n" refers to an undetermined base

<220>

<221> unsure

<222> position is 77 nucleotides

<223> "n" refers to an undetermined base

<220>

<221> unsure

<222> position is 371 nucleotides <223> "n" refers to an undetermined base

<220>

<221> unsure

<222> position is 399 nucleotides

<223> "n" refers to an undetermined base

<220>

<221> unsure

<222> position is 410 nucleotides

<223> "n" refers to an undetermined base

<220>

<221> unsure

<222> position is 506 nucleotides <223> "n" refers to an undetermined base

·	
<220> <221> unsure <222> position is 508 nucleotides <223> "n" refers to an undetermined base	
<220> <221> unsure <222> position is 509 nucleotides <223> "n" refers to an undetermined base	
41005 1	
<pre><400> 1 ttgcaagecc cettngetet teetttgnee tegeetaeat atteagggga tegeaatete</pre>	60
actcgcgaaa taatttnttt ctgtaagagg aagccgcctt tcccctctcc caccgccaag	120
gtaaaggctg ctaaagtagc tcttcttgga aggaaaaata ttttaaaaaag cagctgggtt	180
gctctccaca agaagatggc agttttggga aaacccatta tgtgtccaaa tgccggtttc	240
cttttcttgt ttaacgcttt ttagagggca aaaatgacgc tcatgtgaag cccacaggct	300
cgagccaatg tcgctgggct aattatgagt ctgcttatcc cactcccaaa tatccgagac	360
gactcactca naagacattt ttactcttcc aagaattgng aattcagaan cagcttcccc	420
acattctaag agaaaaaaa acttgtttaa cgggcacgtt tttgattttt ttgccgctgg	480
cgaccttaat taaaagccgg gagctncnna	510
<210> 2 <211> 313 <212> DNA <213> Homo sapiens	
<400> 2 gcactettaa aacgeetete tgeagteeca ggteegeget eeceaagaae tggeeagate	60
gcgccgggct tggccctga caactetgcc tcctccacct gttgcgttta ctccgtttag	120
ttggctgtgc agtctctggc cccaggtgtg cttttaaaac tcgaggaacg cgggtgttgg	18.0
actcattcgc agcetettgc etetggttcc cgtgatecca cggtggcgag ettecagget	240
cagcgaggag atctgggttt gaacattcat ctcccatgtt actctttct tgctcctcgc	300
	313
gtccccaage cga	323
<210> 3 <211> 165 <212> DNA <213> Homo sapiens	
<400> 3	

gcttagc	aaa	tttccctttt	ttattgttgg	ttttgtctgt	tggctcttac	cccctttcct	60
tttcctg	rctt	cccctgagtc	agcaatgctg	agcccagcga	agcacagggg	gccaaaggga	120
gagacac	acg	gagegeeeeg	gggtccccca	gcctcggcgg	ccaaa		165
<210> <211> <212> <213>	4 601 DNA Homo	o sapiens					
<400> gggggga	4 igtc	gtgcgtgtca	gatttaggcc	aggaagcgga	agtcgccagc	agcgagagtt	60
taaccto	tgt	gggcgcagag	ggttgcgggg	attcagcgcc	cgggaccgtg	gatctgtgca	120
gggagto	cata	ggtgtgtgtg	acatcagtgg	tggaacattt	tggctcgttt	tcacaattca	180
gtċatta	tcc	tttctgcttt	cctcctggaa	gcattaaggt	tgaagttttc	ttctaaagat	240
caaagtt	ttg	atttgttata	ttagttcgga	tttgtttgat	ttttgtttgt	gttcggtttc	300
aagtgct	gat	ttgtaacttt	totoccccc	cacacacacg	ccttttgacc	cctgaattat	360
ttaaaag	gtcc	attgttggag	tggcaaacat	cctccgagac	tcaaagggca	aggccatggg	420
cgcttta	attc	cggctgctgc	tccaggaacg	tgggaaagca	gcggagtttt	attctagggg	480
aaggaaa	acaa	aggcggccga	gtgccagctg	cacgtttggt	gggatttggt	catcaggggt	540
ggacato	gctg	cccaatggag	ctgtcggcag	tttgacccag	cttggtccgt	cgcgtcccga	600
a							601
<210> <211> <212> <213>	5 801 DNA Home	o sapiens					
	-						
<222>	<220> <221> unsure <222> position is 477 nucleotides <223> "n" refers to an undetermined base						
<220> <221> <222> <223>	pos	ure ition is 51 refers to					
<400>	5						

gagtacgcgg ggcagaacc	a gcgcaataca	gcattctggt	aggggaacta	attttgacta	60
aaatatttgc caattctaa	t ccccaattcc	tggacctccg	ggtagctggc	aaggtatttt	120
atgttagatg tgtctggag	t aaggtgcacc	'ggagtatttc	gacaagagac	tcaattcaat	180
gcgtattaaa acttgattg	a gagagggaga	gagagaggtc	attttataaa	gaaagacctg	240
tgaacactgt agattggaa	a tttatgtttg	caaaataaaa	ggatgggttt	atcaagtgga	300
tgcatttaca aaatgtggc	a tccaggtttc	gtaaaattag	ctgaattcta	cgggtaagat	360
tatgaatgtg gctcataaa	t aattaatagg	tagtgaaaaa	gaatgtattt	tgcattaggc	420
agtgcattca atagtattt	c ggaaatgagc	acttcgattt	cctcggnttc	catgcgnggc	480
caccteteca gageaggge	a ggcacccagg	gnggtgccca	cacaaacaag	cgcgtgtggg	540
cattttcttg gctcgtgcg	c tgaagtgcac	gctgggcctt	ggtgcccgca	ccctcagcct	600
gggagatagg gaggtggtg	c tacctgcagg	ccgattgtgt	ccccgccata	ggacactagt	660
gggcggcaaa cctcacaag	a ctcttgcagc	cagccttcag	cagagccagc	aaacccagcc	720
gccaccgagg gaggactgc	t ccatgcagat	ggtcaggggc	tttcttctga	agacgcctcc	780
cccacgatct ctcaagttc	a C				801
<210> 6 <211> 204 <212> DNA <213> Homo sapiens					
<400> 6 ccggttgctg ctggaggat	g ggactacgaa	ggatggggac	teegetegge	caccgctcct	60
gaatggcctc taatctcgg	t gttaaatact	ttatgagagt	atcaatacca	cctaatcctt	120
tgctgagaat tactgctag	a aatgtagatt	ctgaggttcc	gaaagtttgt	ttttggttac	180
ccctccagc tcctcccgc	g gcaa	•			204
<210> 7 <211> 205 <212> DNA <213> Homo sapiens					
<400> 7 agacctttat cgggcgtga	a tassetaast	cattcatatt	tttcataaat	cttccaacca	60
					120
caggeegeet gagatggtt gacacagete ggeeeggat			•		. 180
atcettetga accegeace		Guilliaco	ccoggaacge	292922239	205

```
<210> 8
<211> 597
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222>
<223>
       position is 361 nucleotides
       "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 382 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 513 nucleotides
<223> "n" refers to an undetermined base
<400> 8
gaccatgaaa tcgtgtggct ctagcccctt ctgggcctct tgttggtaat gaagccactc
                                                                       60
taaagcgccc cctgttattc agagggctcc ccagctgcca tgatatgtgt atggggaggg
                                                                      120
catagoaggt cottttgccc cggcagccat tottctgctc acaaggggct ggctctgggg
                                                                      180
acagggatgt ctttgtcatc agtgaccact aatccccctc ctcattggcc tccagggctg
                                                                      240
                                                                      300
ctccccttca ctctcttggt tgaagttgta ggggctgagg ttaccctgag aaacacctgt
tottqqaqoo cataqaccca accttqqaqa tqcaqqqqqa qccactqqot qqqctetqca
                                                                      360
ngtggggcca gctgatcccc anctgctggc acctccaggc atccacagag cttggagtcc
                                                                      420
caqccacatt tcctccttqq ccttagaggg agaggaagtc ctttgattgc ctagtccaag
                                                                      480
atccctttat ttcctgccct gggattatgg ggnagcaagc catgcccttc atgggaagct
                                                                      540
                                                                      597
gttctccctt cctcggggtt gggtctggcc tcagctcggg caacagtcat gatgggc
<210> 9
<211> 500
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> position is 10 nucleotides
<223>
       "n" refers to an undetermined base
```

<400> 9

gccaaacgcn	ataccctctg	cggggtgaga	atgcgggccc	gcccggctcc	tcccgtgagg	60
ccagggcctc	ctgttctcct	agacacccca	aggagccaac	tcctccgcag	aagttccccg	120
cttctgctct	tatttccaag	cttcgcgctt	tctacaaact	ccctgttgcc	ttgactttga	180
tttccagccg	tggtgagggt	cagagtgaac	cccggcgcgc	tccccgacgg	cateceegea	240
caccaggata	ggagaaattg	gagggcctgg	ggcctcgggc	tccgcagtcg	tcggaggaag	300
aacccaccgc	ggggtccgca	agggaaagtg	aagaggcccg	ggatttttcc	aaagcgctgg	360
ccaggacccc	gaaggaaggg	gaggagtcac	ctgaagccgg	ggaaggcccc	ttgggtgctc	420
tgccttggat	ccttatgttc	actgactttc	gcgacccctg	gagggggca	aatccgcgct	480
gtttccccca	acttggcttc			•		500
~	o sapiens					
<400> 10 gccaacccac	accagtacct	gggaccgggg	ggagcccggt	ceggeegeta	aaccgggctg	60
gctggcgcca	gggctccggg	aggtgcggtc	cggcggggaa	gccgtgatgg	gaagcgacťc	120
tgtccaggga	gtgtccttca	ccaccacact	cctcacgtcc	aggcagtgat	cgacggcctg	180
gcggcaccct	cacagcgggc	ccatagcacg	gggccacaca	cgtcccctga	gcttagcctg	240
ggcacattcg	tctgccgccg	agggcttaag	ccagtctgca	gcccgcgccc	cgtcactcgg	300
acgcaagtcc	gtcgtccgct	ctgccacgcg	gccgctaagc	cga		343
<210> 11 <211> 291 <212> DNA <213> Homo	o sapiens			-		<i>'</i> .
<400> 11 gtcctacaca	ctccgcacac	aacgcggccg	gtgttaagtc	tccaaacgcc	ccgagagctc	6 <u>ć</u>
caaggaccgc	gcgcgcgaag	gcgccgtagc	aagtgggcac	acaccagaca	ccaccccggc	120
gtgttccgcg	ggagaagcca	gtgcacacat	cctcccgcaa	ggcggggttg	ccagtgcaac	180
acaggaatcc	tgcccttttt	ctagaaaagc	cccctccccc	actttccctc	caatacactc	240
acctgcgtct	caacagtttc	cttcttgcgc	tacacgcggc	cgctaagccg	a	291

<210> 12 <211> 266

<212> <213>	DNA Homo sapiens						
<400> gtccgga	12 atca gtttccccgg ccaggtcgct tcccggtctc aaccatttcg cgctctgctc	60					
tgtccg	ctgg tttgtccctg cccggttcct ctccccgggc ctgtcagcct ccgcttctct	120					
ggaggtt	tect gggaeteate tetgateeae egtettgegt tetetgggeg categaette	180					
tctccat	tett egggeteact cetgacteec tegetgeege eeeegggggt ttecaegegt	240					
gtctcta	aacc gcggccgcta agccga	266					
<210><211><211><212><213><223><220><221><222>	13 553 DNA Homo sapiens unsure position is 497 nucleotides						
<223>	"n" refers to an undetermined base						
<220> <221> <222> <223>	unsure position is 513 nucleotides "n" refers to an undetermined base						
<220> <221> <222> <223>	unsure position is 517 nucleotides "n" refers to an undetermined base						
<220> <221> <222> <223>	unsure position is 519 nucleotides "n" refers to an undetermined base						
<220> <221> <222> <223>	unsure position is 527 nucleotides "n" refers to an undetermined base						
<220> <221> <222> <223>	unsure position is 546 nucleotides "n" refers to an undetermined base	•					
<400>	13 ggtc catcgaaacc ttgtgtgcat cggttagtgc ttcctgggcg tttgcttcta	60					
	getg acagtggagt gecagaaaga gggagaggae egteatgget actetgeece	120					
	cacc atgegetete ecceggeace ggegaggega aaegtttege tagteeeegg	180					
	• •						

gaggccc	ctc	ggtcagggca	gcagcatccc	tgcaccctct	ccgcaggtgg	tctccccgac	240
gccacag	gtg	gccagcaggg	cgcgggtggg	ggcaggagcg	cctctcccct	gcccaggcct	300
cccgctc	ctt	ct.cggagcgc	tgtggcgggg	tggagagaca	gccttctaca	gctagtctag	360
ctcggcg	ıcgg	ttcccgtctg	tggcctccta	atcccacage	cacagcgcct	tcctctaacc	420
tccctcg	gtg	ggcttaaagc	ctcccgttcc	ttctgtctca	ttccttctgc	tccctcccc	480
cgaaacc	ccc	agatganagc	tgggaacctg	gcnccantna	ctgagcnaac	agtgttgacg	540
ggccgng	gcc	caa				7	553
<210> <211> <212> <213>		o sapiens					
<400> gcgcaca	14 acag	tgggtacaag	gatgagctcg	gtgtaaggaa	tggaaagccc	ccagtctaaa	60
ccaccgo	ccc	ctagacacgg	gtgaaaacct	gcctaaaagc	taactcaggc	agtgactcta	120
tcacccc	gaag	gggccctggg	ccgcggccca	agccga			156
<210> <211> <212> <213> <220> <221> <222> <223> <221> <222> <221> <222> <221> <222> <223> <221> <222> <223>	unsi pos: "n" unsi pos: "n"	ition is 11 refers to a ure ition is 15 refers to a	an undetermi	ined base es. ined base			
<400> gttcaca	15 agcc	cataaggtgg	gggtggcccg	aacctgaaac	ggagcctgag	ccaggatcct	60
gcaacca	aaag	tctgaagcgc	ccccggtgg	gggccgagag	cgctgcaggc	aggtggnggc	120
~caaaaa	ragg	caaacaaaca	aaggaagete	caantacaca	ganaacgcgg	agegeeect	180

teceaectge gegagggeat eetgeeeggg ggaggaaagg	cgggagtccg	aggcgggtcg.	240
gattcccagc cagetccctc ctcacaggag gcggcccatt	atccggcgtc	gcaaagccga	300
<210> 16 <211> 196 <212> DNA <213> Homo sapiens			
<400> 16	acat accasas	++aaaaaaa	60
ggcgcccagc aggggagcga gggaggaggg tgcagaaaga			
ctgacccgtg cttctctacc ttcggaggtg ggacagttgc			120
gatcagttgg aactgacgga ggactgcaaa gaagaaacta	aaatagacgt	cgaaagcctg	180
tcctcggcgt cgcaaa			196
<210> 17 <211> 299 <212> DNA <213> Homo sapiens <220> <221> unsure <222> position is 21 nucleotides <223> "n" refers to an undetermined base			
(223) If Terers to an undetermined sase		•	
<400> 17		at annanta	60
acaccaggag aggggaagaa nccagcacct accgacaggg			
gtgtggtccc tgctttgggg gaatgctggg gaggtagaaa			120
actgcaatta ctgcttcctc tttcccataa aactccccct	agtgtatcag	aacccccaag	180
gagtttcagt aagcggttct tctgttgtct ccggctgaga	ctccagggga	acctcaagct	240
cacatggccc tggccgggcc cctgggcagg agcaggcgag	aggtctgcgc	ggccgctaa	299
<210> 18 <211> 363 <212> DNA <213> Homo sapiens		·	
<400> 18 gggtatgtgt tacacatccg agataactac acaggcatcg	accetoteca	cccagaaata	60
	•		120
ctagaggggc tgcgctggtt ttactccagg ccatggtgag			
tctctcctct gagctgcaga agctctgtgc cctgtcccct			180
ttcatgtgtt ttacctcatg ttaatgaagg agatcttctc	as agagetta	atctactocc	240

aaacaga	agga gggggggatt	ttaaatttca	gtccgtccaa	ccctgtagat	ctgctgtcct	300
acagtaa	acgt aaaggatcac	caggtaaaac	gctgcttctc	ccggacgccg	ccccgcaagc	360
cga						363
	. ·					
<210> <211>	19 322					
<212> <213>	DNA Homo sapiens					
<400>	19					
	cgtc cctcttaata	tggcctcagt	tccgaaaacc	acagaataga	accgcggtcc	60
tattcca	atta ttcctagctg	aggtatccag	gcggctcgga	cctgctttga	acactctaat	120
tttttca	aaag taaacgcttc	gggctgcagg	acactcagct	aagagcatca	ggggggcgcc	180
aagagg	caag gggcggggat	gggtggtggc	tcgcctcgtg	gcagaccgcc	cgcccgctcc	240
caagat	ccaa ctacgagctt	tttaactgca	gcaactttaa	tatacgctat	tggagctgga	300
attacc	gegg cegetaagee	ga	~		·	322
		ı				•
<210> <211>	20 255					
<212> <213>	DNA Homo sapiens					
<400> taataa	20 gata ccaaatcggg	cgagaaacga	aaagctcctg	gcctccgtat	ttggggccag	60
agacac	cgca gggagtcagg	tccccgccga	caaatcggaa	gaggcctgcg	ggagttagcc	120
agataa	tgct ctccctgtcc	taccegtece	caccaatttg	ccttttacct	gccgcagagc	180
ttgctt	gaac caaaggggtt	tgcggtcttc	tcctcctcaa	cttgcgatcc	ccaggccttc	240
gcgtcc	cgaa gccga			•		255
<210> <211>						
<212>	DNA		•			
<213>	Homo sapiens			,		
<220>						
<221> <222>		nucleotides				-
<223>	"n" refers to		ined base			
<220>						
<221> <222>		nualectides				•
<223>	-		ined base		·	

<220>				
<221>	unsure position is 18 nucleotides			
	"n" refers to an undetermined b	ase		
<400>	21 naag getegetnte eatttetett tteet	cotto tocotototo	atatacaata	60
tecete	aaca tocaaaccaa cogagtgogt ctgag	gtgaa atcgtgccag	acttagagac	120
ggctgc	cagg tttctctcaa gtcttggctt aacaa	aagaa agcaaattac	aaaaatggaa	180
attttc	caaac tagcgttcag tggtattcaa atcga	cgttt gggtagcgca	caggcacaga	240
ccgcat	togt gotattttgt gattaaaatg ataco	aaaaa tacctccttg	ctttggtttt	300
cgtctt	cgaa aacgacttct ttccttcttc taatt	tocco cttacttttg	ggagcggcaa	360
acccct	gace actetagaat tgetaacatt tggac	eggeg tegeaa		406
.010.	22			
<210> <211>				
<211>				
<213>				
<220>				
<221>	unsure ·			
<222>				
<223>	"n" refers to an undetermined k	pase _	•	
<220>		•		
<221>				
<222>	position is 13 nucleotides			
<223>	"n" refers to an undetermined b	ase		
<220>	•			
<221>				
	position is 14 nucleotides			
<223>	"n" refers to an undetermined k	ase		
<220>				
_	unsure			
	position is 25 nucleotides "n" refers to an undetermined by	oase		
<220>				
	unsure			
	position is 40 nucleotides			
	"n" refers to an undetermined b	pase		
<220>				
	unsure			
	position is 46 nucleotides	222		

<220> <221> <222> <223>	unsure position is 47 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 50 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 76 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 95 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	position is 207 nucleotides	
<400> gcacgti	22 togn gennegtgta ceatnagetg ceaactggan geacennggn aagggtgggg	60
gcctcc	tgga gacttngggg agagggatag ccggntaaag ctcctgtcct ttctataggc	120
ataagc	gggt ggtcaccacg gattggggat cccgaatccc tggctccaga tagacttaat	180
gaagaa	gcac ctggatccgg gccgcgncaa	210
<210><211><211><212><213>	•	
<220> <221> <222> <223>	position is 9 nucleotides	
<220> <221> <222> <223>	position is 11 nucleotides	
<220> <221> <222> <223>	position is 32 nucleotides	

<220> <221> <222> <223>	unsure position is 79 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 80 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 120 nucleotides "n" refers to an undetermined base	
<400>	23	
tcacgct	ttnc naaggetetg aateetgagg gneagatete eaagaaggag ggaggetggt	60
cctagt	toco gaggtootnn actaggtota gatoactggg taaaagaagg ggagoggoan 12	20
cacgtat	tggg gtaggegete teactactea catetegaga cetttgeegg egtagggetg 1	80
tccggg	ggga acgacccgcc ttttccggta tcggttgtca tggcggcgcc cagcccagcc	40
tggtttt	tttc cggtagccaa ttgaactaac aaccccgttc cctttaggac taatctgtca 30	00
cgtcgg	cgca . 33	10
,		
<210> <211>	24 304	
<212> <213>	DNA Homo sapiens	
	nome saprens	
<220> <221>	unsure	
<222> <223>	position is 13 nucleotides "n" refers to an undetermined base	
<220> <221>	unsure	
<222> <223>	position is 74 nucleotides "n" refers to an undetermined base	
<220>		
<221>	unsure	
<222> <223>		
<220>		
<221>	unsure	
	position is 269 nucleotides "n" refers to an undetermined base	
<220>		
	unsure	

<222> <223>	"n" refers to an undetermined base	
<400> ctctggt	24 tctg tgntggatac gcgtgttctt ctgcggagtt aaagggtcgg ggacgggggt	60
tctggad	ctta ccanagcaat tccagccggt gggcgtttgg cagtcactta aggaggtagg	120
gaaagca	agcg agetteaceg ggegggetae gatgagtage atgaegggea geageageag	180
ccagcaa	aaag ccctcgcaaa gtgtccagct gctgcactgc cgcggggact cccacagcac	240
catgact	tagt tcgtgcgact ctgcancanc aaacggcttc cgaggaacac angatcgcgg	300
gggca	•	304
<210> <211>	25 379	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<221>	unsure	
<222> <223>	position is 6 nucleotides "n" refers to an undetermined base	
\223 /	Il lefets to all undetermined page	
<220>		
<221>	unsure	
<222> <223>	position is 10 nucleotides "n" refers to an undetermined base	
12237	I Tefers to all didecornation page	
<220>		
<221> <222>	unsure position is 13 nucleotides	
<223>	"n" refers to an undetermined base	
<220> <221>	unsure	
<222>	position is 19 nucleotides	
<223>	"n" refers to an undetermined base	
<220>		
<221>		
<222>		
<223>	"n" refers to an undetermined base	
<220>		
<221>	unsure	
<222> <223>	·	
<220×	-	
<220> <221>	unsure	
<222>		
<223>	-	

<220> <221> <222> <223>	unsure position is 184 nucleotides "n" refers to an undetermined base	
	unsure position is 206 nucleotides "n" refers to an undetermined base	·
<400> aaaacno	25 catn tgnagagene nteggeagag negeagetgg etgacecagg agaaggegeg	60
ctgggtg	gtgg ctgggacggc caaggccgcg gcttcccgcg tggggatgcg ctntggcgca	120
aagctgg	gtcc cggcggggcc aggcgtttgt gggcgggtga cggggatcta gggcttccgc	180
tcgngat	ttcc tcttgggctg tctttncggg tttggactcg cctgccaggc tgtgtgcagg	240
gttcccg	gctg cctctggccg gcaggcgtcc gggctgcagg tgggccggca ggcaggtgtt	300
agcggga	aagg gagcacaggt agcgaggtgg gatcggcgac ctggctaggg tgtcggcaga	360
atggaat	tgcg cggccgcta	379
<210> <211> <212> <213> <213> <220> <221>	26 625 DNA Homo sapiens	
<222>	position is 8 nucleotides	
<223> <220>	"n" refers to an undetermined base	
<221>	unsure position is 18 nucleotides "n" refers to an undetermined base	
<222>	unsure position is 50 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	position is 64 nucleotides	
<222>	unsure position is 609 nucleotides	

<220> <221> <222> <223>	unsure position is 616 nucleotides "n" refers to an undetermined base			
<220>, <221> <222> <223>	unsure position is 618 nucleotides "n" refers to an undetermined base		·	
<220> <221> <222> <223>	unsure position is 621 nucleotides "n" refers to an undetermined base			,
<400> gggacgo	26 cnag ccagggantt tgatccgttt tgaatgaaa	a gaaagagaan	ccaaaccaaa	60
cctntca	agtc atccaaaacc ttcaggcttc cagggaggt	t ttgctataat	tttctctaag	120
catgact	tgtt tctgggggag gggaaagggg tggttgtat	t tactgaaaat	tcaaatcgaa	180
ataataa	aatg gccaaatttg gacacttacg gacccaaac	a gttttgctca	cgccagagaa	240
accgaga	agca cagggettge gtgaageeta teteggeag	a aggcaacatt	ctaataaagc	300
ccgtgg	gaaa acagattaca ttttcgccat gaataagtc	a tgcagtgaaa	aatattgcct	360
acagcc	tgtc gacttatatt attatcacgt ttttcaact	c ggcgtgagga	gggagaggag	420
tgttca	tatt tgactaggaa ttgcaggatc gatgcaaac	t ccagggcagc	agccagactg	480
gcatate	gtgg ggctctccgg ttactttctc tgtatgtcg	c gggtgagagg	aacagcgagg	540
acaatt	tagc gcaaacacac gaagggtcgg atctcaagg	g ggcagcgctg	ggagaaaggt	600
tagggc	tgna gagcgnanag ncaaa			625
<210> <211> <212> <213>	27 499 DNA Homo sapiens			
<220> <221> <222> <223>	- · · · · · · · · · · · · · · · · · · ·			
<220><221><222><222><223>	unsure position is 7 nucleotides "n" refers to an undetermined base			

<400× 0	. 7					
	?7 egt teceeteggg	cggaacggag	gcaactttcc	ggagtctatt	tttgttaaga	60
caatcaac	tc caataactga	gctgaagttt	ttgtttaaaa	agaaaaaaat	ctgataagtg	120
atgatttt	ac ctacttgtgg	acactagatt	tcaattagga	aggtttttt	aaacggcttt	180
ttgtaact	tc gctgcaggaa	gcaggtttgt	ttctttttct	tttcttttta	agagaaggtg	240
tatttcac	tg gtgcaatggc	ttggcacctc	cggggcctgg	gaggacctca	gacctcccca	300
gccctggg	gtt teteegtett	caagaccaac	taggaagggt	caagcgggga	gagggagtgg	360
agggtcag	ggt gagatctcag	agctgcccg	gccggccccc	gtctctttct	acctccțctt	420
ccagagaa	acc agcggctcac	accettetea	acgcaggaca	tgctcggcgg	ccaaagccga	480
attctgca	nga tatccatca					499
<211> 5 <212> E <213> H <220> <221> E <222> F <223> E <222> F <223> E <220> <221> E <222> F <221> E <222> F	28 561 DNA Homo sapiens Insure Dosition is 20 'n" refers to a Insure Dosition is 21 'n" refers to a Insure Dosition is 23 'n" refers to a	nucleotides	ined base			
<221> u <222> p	unsure position is 26 'n" refers to a					
	unsure position is 39 'n" refers to a					
	insure position is 40 'n" refers to a				,	
<220S						

<221> <222> <223>	unsure position is 44 nucleotides "n" refers to an undetermined base	
<222>	unsure position is 49 nucleotides "n" refers to an undetermined base	
<222>	unsure ' position is 65 nucleotides "n" refers to an undetermined base	
	unsure position is 80 nucleotides "n" refers to an undetermined base	
	unsure position is 98 nucleotides "n" refers to an undetermined base	
	unsure position is 107 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 471 nucleotides "n" refers to an undetermined base	
	unsure position is 484 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 544 nucleotides "n" refers to an undetermined base	
	unsure position is 559 nucleotides "n" refers to an undetermined base	
<400> gggcga	28 ttgt tattcaaacn ngntanctct ctgcggggnn gagnaatgng ggcctcgcac	60
ggctnc	atcc ccgtcgagen cagggeetee etgttetnet agacatneea aggageeaae 1	20
tcctcc	gcag aagttccccg cttctgctct tatttccaag cttcgcgctt tctacaaact 1	.80

ccctgttgcc	ttgactttga	tttccagccg	tggtgagggt	cagagtgaac	cccggcgcgc	240
tccccgacgg	catccccgca	caccaggata	ggagaaattg	gagggcctgg	gcctcggctc	300
ccgcagtcgt	cggaggaaga	acccaccgcg	gggtccccaa	gggaaagtga	agaggcccgg	360
gatttttcca	aagcgctgcc	aggaccccga	aggaagggga	ggagtcacct	gaagccgggg	420
aagctccttg	ggtgctctcc	ttggatcctt	atgttcactg	actttcgcga	ngccccctgg	480
aggnggaaaa	tccgcgctgt	ttcccccaac	ttaacttcac	gcggccgcta	agccgaattc	540
tgcngaaatc	attacactng	C				561

<210> 29 <211> 717 <212> DNA <213> Homo sapiens <220> <221> unsure position is 643 nucleotides <222> "n" refers to an undetermined base <220> <221> unsure position is 651 nucleotides <222>

"n" refers to an undetermined base

<400> 29 actetecgeg gtntentggt geeteacagg aggtgggget ecetecacee ggteeceagg 60 cetetecete tgecegaget teceggteet gesteetteg estegeetge etgecegaet 120 ctgaaccctg ctcctcttct aactaaaagt cagtgtttta tttcctccgc agtccaatgc 180 ccgcgtttta ccttattcaa taagaagggc ttcatttatg gcaagacagg acagccaggt 240 aataagggcc tctgcacacg cgggcccatt ggaggggcgg aactgcgaag tcttcccgga 300 agagetteet ggagagaagg ggaacgagee agegtttatt gageatetat tatactaage 360 atctgcttgg cagttcacga cggtcgcatt ttttcatcct tacagcgatc cctattgtgt 420 cgcttgcttt aaagcctcac agctcacaaa gggctgggat ttattccaga tctctctct 480 agatgccatc tcacttccag gtgtctctgc tgctttgaac gcgggaaacc cacgcaaagg 540 agtgatttcc aaggccttct gtttggaata tctttaatcc tccccttatt aactggaaaa 600 actcccacgc atccttcagg gctcagctca aatgtccttt atntctgcag ngaaactttc 660 ccaaqqaaaa ttaqttacac aqctaatttt agataaattg agccagttga tagaatt 717

```
<210> 30
<211> 280
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> position is 30 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 189 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 192 nucleotides
<223> "n" refers to an undetermined base
<400> 30
tgatggatat ctgcagaatt cgggctttgn gacgccgggc acgcagtagg gaaaacagta
ttaaaacgcc ctacagaaaa tctcggcgaa gtccccggag aactctggtt tctaagatca
                                                                         120
getgggegea ettteteegg gaegteeett etteteggte teagegeett eetgeeetea
                                                                         180
gccgcgccng tnttgttttg gtggcaaact gaaataagaa atggaaatat attggccttt
                                                                         240
                                                                         280
qctqctqcca gggatgagag gttgttgacg tcggcgcaaa
<210> 31
<211> 270
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> position is 2 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 5 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 6 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 8 nucleotides
<223> "n" refers to an undetermined base
```

```
<220>
<221> unsure
<222> position is 9 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 11 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 12 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 24 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 26 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 27 nucleotides
<223> "n" refers to an undetermined base
<220> .
<221> unsure
<222> position is 29 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 33 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 36 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 227 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 244 nucleotides <223> "n" refers to an undetermined base
<220>
```

<221> <222> <223>	unsure position is 245 nucleotides "n" refers to an undetermined base
<220> <221> <222> <223>	unsure position is 264 nucleotides "n" refers to an undetermined base
<220> <221> <222> <223>	unsure position is 265 nucleotides "n" refers to an undetermined base
<400>	31
	gnna nncggcgatg gatntnngna ganttnggtg atggatatet gcagaattcg 60
gcttag	cggc cgcgaacaaa gagcgaacca aaggatgctt cgaattttta aaacggaatc 120
tctgca	ccca aatgcaggac tggtgactta aggagctgcg aagtctgatt taccgggcct 180
actctc	gace tgcccccac ccccagetca gggggacett tttatentga acgccagage 240
tacnna	ccaa gtcgggtggc cacnnccaaa
<210><211><211><212><213>	·
<220> <221> <222> <223>	unsure position is 7 nucleotides "n" refers to an undetermined base
<220> <221> <222> <223>	unsure position is 8 nucleotides "n" refers to an undetermined base
	unsure position is 11 nucleotides "n" refers to an undetermined base
<220> <221> <222> <223>	position is 50 nucleotides
<222>	unsure position is 309 nucleotides "n" refers to an undetermined base

```
<220>
<221> unsure
<222> position is 313 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 322 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 325 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 331 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 336 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 337 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 338 nucleotides
<223> "n" refers to an undetermined base
<400> 32
tttggannta ngggggggtg gcgtggatcc agtttccccc ggccaggtcn gcttcccggt
                                                                     60
ctcaaccatt tegegetetg ctetgteege tggtttgtee etgeeeggtt ceteteeeeg
                                                                    120
ggcctgtcag cctccgcttc tctggaggtt cctgggactc atctctgatc caccgtcttg
                                                                    180
cgttctctgg gcgcatcgac ttctctccat cttcgggctc actcctgact ccctcgctgc
                                                                    240
cgccccgggg gtttccacgc gtgtctctaa ccgcggccgc taagccgaat tctgcagata
                                                                    300
                                                                    347
tecateaeng aantetgeag anatheateg negaannnea eegeact
<210> 33
<211>
       342
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> position is 193 nucleotides
```

<223>	"n" refers to an undetermined base		
	unsure position is 299 nucleotides "n" refers to an undetermined base		}
<220> <221> <222> <223>	unsure position is 300 nucleotides "n" refers to an undetermined base	÷ ;	
<220> <221> <222> <223>	unsure position is 301 nucleotides "n" refers to an undetermined base	.	
<220> <221> <222> <223>	unsure position is 302 nucleotides "n" refers to an undetermined base	e	
<220> <221> <222> <223>	unsure position is 325 nucleotides "n" refers to an undetermined base	e	
<220> <221> <222> <223>	position is 328 nucleotides	e	
<220> <221> <222> <223>	position is 337 nucleotides	e	
<220><221><222><222><223>	unsure position is 338 nucleotides "n" refers to an undetermined base	e	
<220> <221> <222> <223>	· ·	e	·
<400> gtaggg	33 cgcc gccgtgacag attagtccta aagggaa	cgg ggttgttagt tcaattggct	60
accgga	aaaa accaggctgg gctgggcgcc cgccatg	aca accgataccg gaaaaggcgg	120
gtcgtt	cccc ccggacagcc ctacgccggc aaaggtc	tcg agatgtgagt agtgagagcg	180
cctacc	ccat acngtcggcc ggctcccctt cttttac	cca gtgatctaga cctagtctag	240
gacctc	ggga actaggacca gcctccctcc ttcttgg	aga tetgaceete aggatteann	300

nncttt	gete acgageteca accenaenca tecaaannne	aa		342
<210> <211> <212> <213>	34 370 DNA Homo sapiens			
<220> <221> <222> <223>	unsure position is 325 nucleotides "n" refers to an undetermined base			
<220> <221> <222> <223>	unsure position is 343 nucleotides "n" refers to an undetermined base			
<220> <221> <222> <223>	unsure position is 361 nucleotides "n" refers to an undetermined base			
<220> <221> <222> <223>	unsure position is 368 nucleotides "n" refers to an undetermined base			
<400> cattgt	34 ttac tttcgtctaa acgeggtgga ageceatgga	agaaagcggt	tagcagcaag	60
gcagag	ccct gctccctctg cagccccagc tcccagcgcc	ctgggctttc	caggcacctg	120
tccggg	tagg ggattgaggg ccgtggccag gcccgcactt	tcctgctagc	cgcagctggc	180
cacatg	ccca tctgaccctc cgagttctcc tctaaaaatg	gggctgacag	ccgctacctc	240
acaaag	teca cacegggete aaceegntge ettecteee	aacaggactc	tgccaccctc	300
cctcag	gatg cctgagggcc ccganctgca cctggccago	cantttgtga	atgaggcctg	360
nggggc	gntt			370
<210> <211> <212> <213>	DNA			
<220> <221> <222> <223>	unsure position is 8 nucleotides "n" refers to an undetermined base			
<220> <221>	unsure			

	position is 10 nucleotides "n" refers to an undetermined b	pase	•
<400> aaaatad	35 cnan taaagcgatg cttcgaattt ttaaa	acgga atctctgcac	ccaaatgcag 60
gactggt	tgac ttaaggagct gcgaagtctg attta	ccggc ctactctcga	cctgccccc 120
accccca	agct caggggacct tttgtctgaa cgcca	igaget actgaccagg	tcggggggcc 180
gcggcc	caag ccgaattctg cagatatcca tca	• ·	213
<210><211><211><212><213>	36 173 DNA Homo sapiens		
<220> <221> <222> <223>	-	oase ·	`
<220> <221> <222> <223>	position is 5 nucleotides	oase	
<220> <221> <222> <223>	unsure position is 100 nucleotides "n" refers to an undetermined b	oase	
<220> <221> <222> <223>	position is 109 nucleotides	Dase	
<220> <221> <222> <223>	unsure position is 123 nucleotides "n" refers to an undetermined b	oase	-
<220> <221> <222> <223>	position is 144 nucleotides	pase	
<220> <221> <222> <223>	position is 156 nucleotides	base	·
	unsure position is 160 nucleotides "n" refers to an undetermined b	base	

<220>	·	
	unsure	
<222> <223>	•	
\ZZJ/	ii lololo to dii dideteliilioa 2000	
<400>	36	٠.
gacnncg	gggt ttgtgtgtaa cagggtcagt ccccgtatct actttgcgaa agcttcgagg	60
cgagcgt	tgaa gtcaagggct gcggtggatg ggggtaaaan gcctcctcnt cccactgcct	120
aanaaat	tett ggggtaacee etaneeceea eeeggngttn enetttaatg ete	173
geneegt	tert ggggtaacee etaneeceea eeeggngeen eneceeaacg eee	1.0
<210> <211>	37 369	
<211>	DNA	
<213>		
<220×		
<220> <221>	unsure	
<222>	position is 22 nucleotides	
<223>	"n" refers to an undetermined base	
<400>	37	
	tgcc gggtctctcc tncccggtcc aactccctta cttgtcctca tctctgtccc	60
·	,	120
caaggto	ccgt gacccgcgga ggtgatgggg gggataggag agccccaggg accgcagagg	120
tgacaca	aatc gecegeeegt eeteeetege tgggageega tteageetgt geegageete	180
toggtt	cgcg tgcctctgcg cacagcggtg gcaccgcagg actccgggtc ccccccggct	240
LCCCCCC	cycy tycotolycy caeageggig gealogicagg according to electrony	_
ctccat	cggg aagccggcaa atgcgcttcc tcagccagac cgcggcgggg tgggggggggg	300
gggggc	ggaa gttgaaatac tgggacagaa acacctgccc gtcccaaggg acggaaaact	360
		369
ggatgc	caa	505
<210>		
<211> <212>		
-	Homo sapiens	
<220>	unsure	
	position is 20 nucleotides	
<223>	•	
<220>		
	unsure	
<222>	position is 29 nucleotides	
<223>	"n" refers to an undetermined base	
<220>		
	unsure	

<222> <223>			nucleotides an undetermi				
<220> <221> <222> <223>		tion is 87	nucleotides an undetermi				
<220> <221> <222> <223>	_	tion is 108	3 nucleotide an undetermi				
<400>	38	cccacttttn	ctttccccna	aateeeaaca	nccgaaccgg	caastatacs	60
				•			
cgaaaca	atag	ggcgagccgg	gggccangcg	gggccgtgta	aaatctcntg	tggtcatttt	120
gtg							123
<210> <211> <212> <213>	39 450 DNA Homo	sapiens					
<220> <221> <222> <223>		tion is 32	nucleotides an undetermi				
<400> ctagcco	39 ctgg	aagagaatcc	gaggctcagc	cntgctgcag	cacccaggac	actgcatccc	60
agcacct	tgcc	cgaagatcag	cccaggaccc	aaaggaaagc	aggctccaag	ctccccggaa	120
gccaag	gaaa	ataggaaaac	atatcctgcc	ccggggacac	cttctggaac	tatgaccaca	180
tgcactt	tgac	cttccggaac	aatcaccgca	tgcacctgac	ctcccggaac	tgtcaccacc	240
gcgcgca	acct	gacctcccgg	cactgtcacg	accgcgcgca	cctgacctcc	cggcactgtc	300
atcacco	gcgc	gcacctcacc	tcccggaact	gtcaccaccg	cgcgcacctg	acctcccggc	360
actgtca	acga	ccgcgcgcac	ctgacctccc	ggaactgtca	tcaccaggcg	cacctgaccc	420
cccggca	actg	tcacgaccgc	gcgcacctca				450
	40 593. DNA Homo	sapiens					
		gggtaaactg	ccgacagete	cattgggcag	catgtccacc	cctgatgacc	60

aaatcccacc	aaacgtgcag	ctggcactcg	gccgcctttg	tttccttccc	ctagaataaa	120
actccgctgc	tttcccacgt	tcctggagca	gcagccggaa	taaagcgccc	atggccttgc	180
cctttgagtc	tcggaggatg	tttgccactc	caacaatgga	cttttaaata	attcaggggt	240
caaaaggcgt	gtgtgtgggg	ggggagaaaa	gttacaaatc	agcacttgaa	accgaacaca	300
aacaaaaatc	aaacaaatcc	gaactaatat	aacaaatcaa	aactttgatc	tttagaagaa	360
aacttcaacc	ttaatgcttc	caggaggaaa	gcagaaagga	taatgactga	attgtgaaaa	420
cgagccaaaa	tgttccacca	ctgatgtcac	acacacctat	gactccctgc	acagatccac	480
ggtcccgggc	gctgaatccc	cgcaaccctc	tgcgcccaca	gaggttaaac	tctcgctgct	540
ggcgacttcc	gcttcctggc	ctaaatctga	cacgcacgac	tcccccgcg	gca	593
<210> 41 <211> 457 <212> DNA <213> Home	o sapiens	•				
	aaatagggcc	tttcctgtta	acgaccacgc	ggcaaggggg	ccgggccctc	60
gcacgcctcg	acggcctccc	ccactccaaa	gggactccga	tttcgcagga	tctcccgcct	120
cccgcctctg	ctcccaacac	cctacgtttt	tctcttcctc	ctcatttacg	tatttacaat	180
aaaacagcga	agctgcacag	tctgtctcta	aatcaaacgc	ggttaccatc	aaagcctcag	240
actctatgtc	tcaaccgcaa	aaggtctgac	aggaaatcaa	ctcgggagtt	tgtcaattct	300
ttaaactcaa	agctctgtta	acgaaatctg	gatctttcct	cgctccccac	ctgcctcccc	360
tgacaggaga	atgactgtaa	aaggatcctg	tcgtccccga	aagtcagcac	caagcacttc	420
acaaattgtc	aaatctcaaa	agcttacacg	cgcggca			457
<400> 42 gcctgacctg	aatgacgcgc	atgttgaggc	cggtctcctg	cgccagctgc	tcgcggatgt	60
ggcgggtggg	cttgggtgta	gcagcgaagg	cggccttcag	cgtctccagc	tgcttggctt	120
tgatggtggt	gcgcggtccc	cgccgcttgg	cgcccaggtt	ctggtcgtca	ttctcgttgc	180
tacccacttc	cttotccoac	acateggege	a			211

<210> <211> <212> <213>	43 141 DNA Homo	sapiens				•	
<400> aaatcat	43 ctc	cgggggccca	gcacggacac	gctccagacc	cgtgagttcc	ccagcgccgt	60
gccggga	aggt	caggggcgct	gaaagaagga	agaattcagc	cacctctcag	catccctgtt	120
acctcga	agga	cgcgcctctc	a ·				141
<210> <211> <212> <213>	44 559 DNA Homo	o sapiens				·	
<400>	44	anttangagt	2227222200	catccatgga	tttcctctcc	attecgagge	60
				ccctgaagct			120
agggtga	agga	agttagctgg	agctttttaa	agtgcatctc	caaagagaat	tttgctcaca	180
ccatgag	gagc	ccccaagaaa	caccagggcc	cccttagatg	ccggagacca	cgccctccag	240
gaataag	gccg	caccctctgc	ccagcagatc	cttgcgcgag	tagccctctt	tccctggggc	300
taatcaa	agtg	catgccacat	gtcaccactc	tcagctggca	attcttcctc	agaggcgcag	360
actttca	acgg	aatccccagc	agggggggtt	aagagattca	ggggaggccc	cgcccgtgcc	420
ttccaca	aaaa	gtcgctttac	cgtggctcgt	gtcctgcggc	cccaaggggg	tagcctggga	480
cgtgtat	ttgg	gagggcatag	aggctccttc	caggacaagc	tgccagcctc	cagtgggcaa	540
ccatgt	gaga	ggcaaaatt					559
<210> <211> <212> <213>	45 433 DNA Homo	o sapiens					
<400>	45	caaaggette	attectacea	gagattaagt	tttagaggaa	atodacacoa	. 60
-							
	_	_		ctgcattagc			120
acaggaa	acaa	ctccaactct	cggccatgcc	ctatttcatg	tctagatttg	tttaaccgac	180
ttacato	cata	atccaagaat	acgaactaca	gtatattctt	acagcaaagt	tattccttaa	240
aagcaaa	aacc	gagccacctt	tgaaaacacg	cacacacatt	atccacggca	ctaaaacccc	300
agtette	gacc	gagaaagacc	aacaacttgg	gggggaagaa	aacaacttca	gagccagagc	360

<212> DNA <213> Homo sapiens

tcccaaagca	gaaagcgctg	gcggctgaag	ggcacacgag	gttccgctcc	cgggcgaacg	420
ggcggcgtcg	caa					433
<210> 46 <211> 487 <212> DNA <213> Homo	o sapiens					
<400> 46 cccttagtat	tccatgagcc	accattttcc	ccacgatccc	tccagcctga	acgatcacat	60
cctactgtgg	accacgactc	tcccagcagc	gggcgtttaa	tatccagtta	gcaggttctc	120
accaccccct	cgctggctcg	aatacagcat	ctgcaccgag	ttcccgagaa	tcgtcaaccc	180
agcaaatccc	ttaattggtg	gacatgaaaa	tccagggctt	tgtgctgtaa	taacagagtc	240
ctgggggcct	ggggagtttg	tgccgcttgg	agctcaggtt	tctgggacag	aggctgagcg	300
cagggcaggg	aggcaggtct	cacctggcac	ctcccagagt	cctcgccgag	cagatggaag	360
cagaggctct	cacacccaac	ccccgccggg	agacctctct	ctctttccct	cggcctgctc	420
tgccctctcc	cgccttctcc	ctgtctgatc	cttctctgct	gtcatgttct	tigtcctcgc	480
gccccga	•					487
<210> 47 <211> 403 <212> DNA <213> Homo	o sapiens				•	
<400> 47 gtcatataag	cacaaccatt	cccagggcca	ccctggatgc	atcagatcag	tcccccact	60
ggtgaccaca	atggctggct	cagagtgcct	ttgaacagac	aggagaaaca	gacttcttgg	120
agggagggac	cttcccacag	ggaatggcca	aggagctagg	tcttcagggc	ttgcatggcg	180
tggagtgtgt	gctcaggtgc	acagtgaagc	aaacctgagg	ggacttgggc	cctgcgtcct	240
ccagcacaca	cgcacccttt	cgccgtcaca	tccggggcac	ccacccgtgg	aatatgtgag	300
ccgcacttgg	ccagccacga	gttccagggc	caggaagtcg	tgcttctcgt	tcaggcgccc	360
gttgtagaag	agcagcccgc	tctgctgcac	tgtcgcgtcc	cga		403
<210> 48 <211> 155	·					,

<400> 48					
ggcgtggaga ggagggggca	a gaaaċtcagc	cgcccctacg	tttgctaaac	tgcgtccgcc	60
agggggcgta ttttctaaa	a acgcacaaga	cgtttcgtgg	gttatcgatg	gtctcttgag	120
cctccttgac tgatggggat	tgacegggeg	ggata			155
<210> 49 <211> 256 <212> DNA <213> Homo sapiens					
<400> 49 totactgage ttttctttaa	a gtggaaccag	aagtgctggg	atgagaggga	aaggatggga	. 60
gtgcgtccaa aggtggacag					120
cccggaaag gtggtttgg					180
tgacacagtg cccctccgc		•	•		240
aaaaggccgc cccgca	5 -5-5-5		J. J		256
aaaaggoogo ooogoa					
<210> 50 <211> 224 <212> DNA <213> Homo sapiens					
<400> 50			aggat as at	aanat naan	60
tgcggggtcg tgggggaaco					
ttttagatga aactgagtco				•	120
tcatttaaaa agaaggaaaa				gaaaatttct	180
gttctcctcc gattccgct	g atcccgcttt	atccgcgcac	ctca		224
<210> 51 <211> 313 <212> DNA <213> Homo sapiens			w)		
<400> 51 gtggctggga cggcccaggo	c cgcggcttcc	cgcgtgggga	tgcgctgtgg	cgcagagctg	60
gtcccggcgg ggccaggcg	t ttgtgggcgg	gtgacgggga	tctagggctt	ccgctcgtga	120
ttcctcttgg gctgtcttt	c cgggtttgga	ctcgcctgcc	cggctgtgtg	cagggttccc	180
gctgcctctg gccggcagg	c gtccgggctg	caggtgggcc	ggcaggcagg	tgttagcggg	240
aagggagcac aggtagcga	g gtgggatcgg	cgacctggct	agggtgtcgg	cagaatggaa	300
tgcgcggccg cta	•	•			313

<210> <211> <212> <213>	52 385 DNA Homo	o sapiens					
<400> tacgtto	52 jege	attcattctg	ccgacaccct	ageeggtege	cgatgccacc	tegetacetg	60
tgctccc	ttc	ccgctaacac	ctgcctgccg	gcccacctgc	agcccggacg	cctgccggcc	120
agaggca	igcg	ggaaccctgc	acacagccgg	gcaggcgagt	ccaaacccgg	aaagacagcc	180
caagagg	gaat	cacgagcgga	agccctagat	ccccgtcacc	cgcccacaaa	cgcctggccc	240
cgccggg	gacc	agctctgcgc	cacagcgcat	ccccacgcgg	gaagccgcgg	cctgggćcgt	300
cccagco	caca	cccagcgcgc	cttctccagg	gtcagccagc	tgcggctctg	ccgaagcgct	360
cctccg	etce	tttctcgcgc	cccga				385
<210> <211> <212> <213>	53 307 DNA Homo	o sapiens				·	
<400> aacccgg	53 gctc	ggttcggcaa	ggttcaggga	gacaaggtag	agaaggetgg	ggtgagcaag	60
aagtcgg	ggcg	gccgatcgtc	agggccacga	gcctcgcctt	gccttcttgg	aatcccaccc	120
aacttta	aaag	gcccaaagat	cctgaaaatt	ccgaaagcga	aactgcgggc	tggtctccag	180
aagttto	gaga	acggtctccc	aggctttcca	gcgtcgtccc	gggattctcg	gacaccacaa	240
acgccat	caa	ccacgagcac	cggtgtccgt	ggctattgcc	ccgaatggtc	cccatccgcg	300
tccccta	a						307
	54 182 DNA Homo	o sapiens					
<400>		gccgtttgga	qqqaacaqcq	gtttccaagt	tcctgctgac	ttgagaaqcc	60
					tgcgggagct		120
		•			ttcgagttca		180
C2			- 5-75		<i>- -</i>	2 2223	182

<211> <212>	55 523 DNA Homo sapiens					
	55 tga teegeeceaa	ccaaataggg	cctttcctgt	taacgaccac	gcggcaaggg	60
ggccggg	ccc tcgcacgcct	cgacggcctc	ccccactcca	aagggactcc	gatttcgcag	120
gatctcc	ege ctcccgcctc	tgctcccaac	accctacgtt	tttctcttcc	tcctcattta	180
cgtattt	aca ataaaacagc	gaagctgcac	agtctgtctc	taaatcaaac	gcggttacca	240
tcaaagc	ctc agactctatg	tctcaaccgc	aaaaggtctg	acaggaaatc	aactcgggag	300
tttgtca	att ctttaaactc	aaagctctgt	taacgaaatc	tggatccttc	ctcgctcccc	360
acctgcc	tcc cctgacagga	gaatgactgt	aaaaggatcc	tgtcgtcccc	gaaagtcagc	420
accaago	act tcacaaattg	tcaaatctca	aaagcttaca	cgcgcgggca	ctccggaaag	480
gctgtgg	gga ccacccaaag	caccccctc	cacaccgcgg	gca		523
<211> <212> <213> <220> <221>	56 795 DNA Homo sapiens unsure position is 743	L nucleotide	es			
	"n" refers to a					
<222>	unsure position is 762 "n" refers to a					
<400>			h	00000000000	aaannaataa	60
	tct tccggctgac					120
	gcc tgcctttcta				•	
	aga agctgttatt	•				180
	tgc tgtcggtttc					240
tgttgtt	tgg gggccgggct	gtggagagtg	actgagccag	tatttttcat	ccaaaattct	300
gcaaatt	gaa ttaaccacaa	ttctagtctc	acctcccgtc	tttaaaaaaa	taagttgaag	360
aaaaggt	aaa tattagagat	aaggcagcat	ctagtgactg	cggagaggca	caagctggtg	420
ggcgagg	gtt gggggagtca	gcaaagccct	tcaaaacctc	cccgtttaat	tttctggctg	480

tctctgcatc	ctgttgccag	aattccaaat	gcttggagtc	atttanaggt	gcgagaactc	540
aaacgtcgtt	ccacttggaa	aggggaccgt	ttaacgttaa	attccattag	cacctaaatt	600
gtttcttaaa	gacatccgct	cagacacagg	actcgaaagc	gagcatttca	tgcaaataaa	660
tttctcaaat	tttaaacctt	gttaaaagct	tgtctcgcac	ctcggctccc	tcccttccc	720
cggaaganaa	caataggccg	ntggcgcatc	cccacttcgg	antaaatatt	gacgggggaa	780
gttgctaaaa	acatc	•			•	795
<210> 57 <211> 438 <212> DNA <213> Homo	o sapiens		· .			
<400> 57 gcctgtgtgt	aggggactgg	aggtgggga	acctgttctt	ttcttgtgtc	tgatcctggg _,	60
gctcgcttcc	tgggtcctag	aacagcagcc	aggacggaag	aaactgttca	cgttgcaccc	120
ctttctctaa	gattcccagg	ccaagagtag	ctgcagaagg	tggccctgaa	tctatggcct	180
ccttctctct	gcctgacccg	gctagtggat	ccggagaggg	gaccagggag	agctcctccg	240
agcaggggtc	cttcgggaga	cagagagggg	tccaggctga	gagaactctt	caagcatggc	300
gagtctgcgt	tatagaatcg	ggcgggcggc	tcaacttggg	ggaagcacca	agaagagetg	360
ggcgacctgg	agcgcagaac	cggctttggg	gagccacccg	gcggggcagg	ggtagcacgg	420
agcccgggcc	geggeeca					438
<210> 58 <211> 611 <212> DNA <213> Home	o sapiens					
<400> 58 gcttcccct	tcctttctcc	cgcgctgccc	ccttgagatc	cgacccttcg	tgtgtttgcg	60
ctaaattgtc	ctcgctgttc	ctctcacccg	cgacatacag	agaaagtaac	cggagagccc	120
tacatatgcc	agtctggctg	ctgccctgga	gtttgcatcg	atcctgcaat	tcctagtcaa	180
atatgaacac	tectetecet	cctcacgccg	agttgaaaaa	cgtgataata	atataagtcg	240
acaggctgta	ggcaatattt	ttcactgcat	gacttattca	tggcgaaaat	gtaaactgtt	300
ttcccacggg	ctttattaga	atgttgcctt	ctgccgagat	aggcttcacg	caagccctgt	360
gctctcagtt	tctctggcgt	gagcaaaact	gtttgggtcc	ataagtgtcc	acatttggcc	420

acagtcatgc ttagagaaaa ttatagcaaa acctccctgg aagcctgaag gttttactgagaggt ttggtttggt	
tcgcgtcccc a <210> 59 <211> 291 <212> DNA <213> Homo sapiens	-at-aaa 600
<210> 59 <211> 291 <212> DNA <213> Homo sapiens	ecgge 600
<211> 291 <212> DNA <213> Homo sapiens	611
<pre><400> 59 gagtttggca ggccccggat tccacaaagg agtaggcgcg gccagccgcc tccag</pre>	gccctg 60
ageteagtaa atteggtgte etgaatgete eetteetgte ettaceaetg egage	ctctct 120
tgggacaget ttctaggttc cactgcgace tactttccgc tccctgagtg cttct	tttgct 180
gaaactgcag gcgaaaagat ctctttccca gaccgcagcg cactttgaga agggg	geteaa 240
agtogocogo totgaatoog goacoggoaa ataggagtag cogoatgogo a	291
<210> 60 <211> 226 <212> DNA <213> Homo sapiens	
<400> 60 gaaaacagat aaaacgccct acagaaaatc tcggcgaagt cccggaggac tctgg	gtttct 60
aagatcagct gggcgcactt teteegggac gteeettett eteggtetea gegee	•
geceteagee gegegeaget ttgttttggt gacaaactga aataagaaat ggaaa	atatat 180
tggcctttgc tgctgccagg gatgagaggt tgttgacgtc ggcgca	226
<210> 61 <211> 580 <212> DNA <213> Homo sapiens	
<400> 61 ctgtgatgca ctcggcggat ctcggtggca gctgcctcct tcatctccag tgac	gcctgc 60
atgctgtcct aggcagtgtg aggagtgaag atgagatttg gcgcatcttt caac	
tgagcaaage taaagggete egattegtge aagceaaggg etgeecetee tate	
teettgagga cetgtgetaa ggetttetea teeaceagge caceatggge tgeg	
aggaatgete cetgteteat etgetttata gtaaagteat tgaegaggtg gtgg	

tcattgagat	tgctgtgcaa	cgagacacag	tcactctgat	acagcaaacc	ctgcagggtg	360
tátcagggtc	ccctctgcat	gccctgggac	ctctctatct	tgtcctacaa	gtaggggtca	420
taaaatacga	cgctgaatcc	aaaggccttg	gctcaaactg	caaccgcctg	cctcatgcaa	480
ccgaagccca	tgaggcctag	cgtcttccac	gaatgagggc	cactcccatg	gccacctcga	540
gaatctgctc	cacgctctga	acccgcgcac	ctcaagccga			580
<210> 62 <211> 633 <212> DNA <213> Homo	o sapiens					ì
<400> 62 gcccaggaga	agccctccac	ggtgggcgtc	ctcctagaca	accagcaccc	cctgcaggca	60
ccctcgtctg	gcagaatcag	ccctttccca	cctgcaggcc	cttctcagcg	cctctgactt	120
cccacacaca	gcacaggtta	caaactggtc	cctggcagtg	cactctagcg	ggcctctctc	180
acaagttctg	cgggcctcgt	ttcatggaaa	gcgggttgtg	gattcctgct	gcccttggat	240
ggcccctgcg	cacgeacace	tctgagcggg	cactgagcga	gcgtggggag	ctgctccctg	300
ggaactaggc	aggagctttt	aaacaccctt	acacacagcc	attctgcggg	aatacatgct	360
ttcccggtaa	ggcttttact	gttcattcca	ggtaaattgg	aagtcgcaca	ccccaagctc	420
caaatacaac	tcgttagctg	gcaggtctct	gaagccaatt	ccttctgagg	aaaatggaga	480
taatagcagc	taccctccca	ggtgactggg	ggagaataaa	gtggctgtgc	atagtggtgt	540
ttgcagctgg	tggctgctat	tatccttcat	tacagcttgt	aaaaagggtg	tctaggccat	600
ttacacacag	ataggccggg	tggggtaagc	cga			633
<210> 63 <211> 703 <212> DNA <213> Hom	o sapiens			,		
<400> 63 gcctatgaat	ggatttataa	ttgctttatt	tttgtcccat	ttagacagaa	gtcagagaca	60
gaggagagaa	ccaaaaaact	tggatgtttc	cgtaaactag	attcgtcaat	cctcgataat	120
tgaaagtagt	tccagtatgt	cagccaccgg	ggttccctgg	ggagctaacc	agtcctgaag	180
gaagtatgaa	gaggaagagg	aggtcttcag	ttaaggggat	gaatttgtgc	agtcctaagc	240
cctgcaaagg	tgctggaggg	aggaagaagg	gcaggaaata	aaagatggaa	gaaaatttgt	300
tttttatcca	cttagagttt	tatctttaat	gatgggaaac	agtgctgctc	tcaggaaact	360

cagtgtggag	atctaggagt	tcacggttca	tagtccatta	ggagcaggaa	aaggatagag	420
gacatttata	aagtaacatc	caagtccaaa	gtaaaatggt	ataaattgtt	tcccatgata	480
aaggctggct	gagtaggtca	ggaaaggtct	tgtcagacca	tatgtgctgt	ttcaggctgc	540
ttcaaattct	tttaggacag	tggtggatat	gagtgaagac	ggggcaggca	ggccacatct	600
cttagaagag	gaaggtgatt	gccacgtctc	cttcctccat	gctgatggca	aggcgtgcgg	660
gctgtgttct	cttgcagcca	gcgtcccatg	ctcggcggcc	aaa		703
<210> 64 <211> 420 <212> DNA <213> Homo	o sapiens					
<400> 64 gtgacgtgcg	gaatacacgt	gatgtcgggg	acaggagcgg	gctgaagagg	gcacgatccc	60
				acttgctgtc		120
				tcatgtgacg		180
				ctgccacccg		240
				geeggeeggt		300
			•	aaaagagcgt		360
				. ctggaacccc		420
<400> 65 gcgctgcacc	aatttagagg	gtagaaaaag	gagttagaaq	g caaagaggaa	aaaataaata	60
aacaggcaac	aaaaacccaa	cccagccago	ctgagccatt	tgcattagtg	g ttcatttagg	120
aaattagcag	acgggaaacg	g ctggggagtg	gagtgggcc	c cggccttggg	g gactgcagag	180
cccgctcagc	cctgggtgg	tgggcccaca	tggctgtcg	c caggagcaca	a ggaggaccca	240
gaggtggccg	agggagccto	geegggetee	ggtatgggt	c ctggcccct	acaggtgcga	300
gcctggccca	gtgactgtg	g acgctgtggg	g agagcaggc	c tccgatacgo	c agggctggga	360
ctgctgacct	ggaaggtggt	geegggegt	g tctggtgaa	g gcgccgttg	g cagctagaga	420
	tt-	a acceteeco	- acoutecca	g ttttgaggc	t tgacggtgac	480

ggaaaaggac gtcggc	496
<210> 66 <211> 637 <212> DNA <213> Homo sapiens	
<220> <221> unsure <222> position is 612 nucleotides <223> "n" refers to an undetermined base	
<220> <221> unsure <222> position is 627 nucleotides <223> "n" refers to an undetermined base	
<400> 66 cgccgagccg ggatgagcaa ggcttcctgg aggagaggc cggcctgagc ttggaaggat	60
ggggaggagc cactggctac aagggtgtag aggtgagaac cagtgtgacc tgcccatcgc	120
tggtcgtctc tgggtcattc agctgaaatg gcatctctga gctgagagga gtgttgcctg	180
taaggageta ggcatcagee eecagtagag gggeggeeca ggcacageee atageegeag	240
acttagtgag totagctagg gagacagtag aggggccaaa atgaggacac aggtcaccaa	300
aaatcctggc caggtcctgc cactacctgg ctcagcgacc tgcccccccg agcctcagtt	360
tececeattg gtggaatgga gtgaggaaga egegeeteee ggggetgega tggagaattg	420
agtcagagtc tgggggtgct gggagggctg gggagcagcc tccctgagcc tcagtttccc	480
tggctgggga atgaggacct tgctcgtccc ccctcataag gggaagctgt caggaaagtg	540
ctttcaacgc tgagccattt cccagtggtg cacaattagc tttccagagg attttggtgg	600
attctagagc tngagggctg ggggatnggc ggccaaa	637
<210> 67 <211> 595 <212> DNA <213> Homo sapiens	
<400> 67	60
gccctgagct cttgagggcc tctgcagttc ttgggacaat tctgggacta tatctttggg	
ccttggtgag atctagaggc tctaaagtct ttgggagggg tcctgagctc cgtggacggc	120
agggtcttgg gcactcactt gcattcttga ggggtgtgtt tggcctcgtc cgtgcaggtg	180
tagaatttcc cctgtagaga ggatgtctgt caagtaggtt cacccttcat cacactcccg	240
cccagacccc tgcctggcat tccctccagt gtttgcccca ccttgaagag ctgcaccccg	300

atgcaggcga	acataaattg	cagaagtgtg	gtgacaatca	tgatgtttcc	gatggtccgg	360
atggccacaa	atacacactg	caccacatge	tgcgggcacc	caagcatatg	gctactgaac	420
actacaggcc	acagtggtca	tggggcaggg	actctggtca	tagatgcagc	tgagggactt	480
gggctgggga	catgtggtga	tgggtcaggg	atgtatggtt	agcaacatgt	gttcaagagg	540
cagtgttatg	ggctagagac	gtgtgggcat	ccaccaggaa	taagtgtttg	ccggg	595
<210> 68 <211> 580 <212> DNA <213> Home	o sapiens			·	÷	
<400> 68 gagtcaggac	ggaggacgcg	gcaggtcaca	gagcccacca	agtccgaagc	tggaagttca	60
gattctttga	tattcaaagg	tggatcatct	gtgcttttt	ttttttatca	gtctctcact	120
ttttatccat	catctaattg	tgacagctta	tttgccttta	taccataaga	tggggagtag	180
ggttgagatg	aaatccaagc	atcgtttccc	ttccccgatg	gtcgcctccc	tggggtgaga	240
cgttcgacgt	gtcagacttc	acçaagagca	teteecgeet	cggtgcagta	atgaacttgg	300
aaacgattta	ctccggcact	tggttcctgt	ctccataaat	gcggctgctt	taaagggaat	360
gtaaaaaggg	ctgtaaattg	gtattgattg	ccggtggtct	tgaagaaccc	caactgagga	420
ttgaccgttc	cttggagtga	aggeteegea	ttcagacgcc	tttcgcctta	cgtcatcata	480
attgagaagg	gaaaggagac	gtgttagttt	cagtctgatt	atttaccatc	aaggcataaa	540
cacttctcag	aggcagcgga	acccattaaa	ccggcccgta			580
<210> 69 <211> 589 <212> DNA <213> Hom	o sapiens					
_	ition is 559	9 nucleotide an undeterm				
<400> 69				at account t	+0000000+0	60
		cacctggctc				60
		cagcctcgct				120
tggatgggcc	actctccatg	tatccacctg	tccctccgtg	getgetggge	tgagtcgctt	180
ctgatgctaa	caagaggcgt	ccggctggac	taaggccccg	gaagctgaga	actggagggc	240

aggtqcqqqc atcgggcaga gcagctccag cagqcaqqac ctqqqqcctc caccctqcac 300 ccctqtqccc cgcgtgtggc ggaaccgccc cgaggqqaqq ctqtcaccac qqtqacaggc 360 agececacge gageetgaga acceteagee cacettttte tgtaateaca geaggeatet 420 etceggeaag teaateeagt teeagetggt getgeeteee ttgeeteatg ggetttattt 480 tagaactctg agcaataata aaaaagacgc tacccgctac aatagatgtg gcagagaatc 540 589 tggctcttca cttcatcana gatcaccctg aaatgatggt tgttgttaa <210> 70 <211> 748 <212> DNA <213> Homo sapiens <220> <221> unsure <222> position is 10 nucleotides <223> "n" refers to an undetermined base <220> <221> unsure <222> position is 412 nucleotides "n" refers to an undetermined base <223> <400> gctacatctn ctctacattc taactaacac ttgttatttt ctgtttttgt ttgtttqttt 60 ttaatagcca ttctagtagg catgaagtgg tgtttgcctg ctttttttga tggaggtgga 120 ggaatagggt ggaattggtc cttaaccatc aattaagctg ggggccttag acctctgtga 180 attggctgtg acaatagcta aaggaggctg ctacctcata ctgaagagat gtttcctaag 240 300 tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa gcagcaaggc . agaagacttg aacttctcag agaaaaaaac agtctacaga cttcatttta tgctgtcctc 360 acacactact gaaageteta ecetggggae etggettgae ttetaaceta encetgtgtt 420 atttaggaag ageteecage tgetetgagt etcagtetee caateagtga aatggaggea 480 atagcacctg cctggctgca tcqccccaca gtgctgcaat gagcatccaa cgagagaaag 540 cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc tagaagaaaa 600 tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg cctcctccaa 660

720

748

aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt ccggcagctg

ctgacagaat gtatgttgcg gctgtccc

```
<210>
       71
       599
<211>
<212>
       DNA
<213>
       Homo sapiens
<220>
<221>
       unsure
<222>
       position is 491 nucleotides
<223>
       "n" refers to an undetermined base
<220>
<221>
      unsure
       position is 522 nucleotides
<222>
       "n" refers to an undetermined base
<223>
<220>
<221> unsure
<222> position is 538 nucleotides
       "n" refers to an undetermined base
<223>
<220>
<221> unsure
<222>
       position is 584 nucleotides
<223> "n" refers to an undetermined base
<220>
<221>
       unsure
       position is 596 nucleotides
<222>
       "n" refers to an undetermined base
<223>
<400>
gatgactgtt gcccgagctg aggccacgac ccaaccccga ggaagggaga acagcttccc
                                                                       60
atgaagggca tggctgctgc cccataatcc cagggcagga aataaaggga tcttggacta
                                                                      120
                                                                      180
ggcaatcaaa ggacttcctc tccctctaag gccaaggagg aaatgtggct gggactccaa
gctctgtgga tgcctggagg tgccagcagc tggggatcag ctggccccac ctgcagagcc
                                                                      .240
agccagtggt ccccctgcat ctccaaggtt gggtctatgg gctccaagaa caggtgtttc
                                                                      300
                                                                      360
tcagggtaac ctcagccct acaacttcaa ccaagagagt gaaggggagc agccctggag
                                                                      420
gccaatgagg agggggatta gtggtcactg atgacaaaga catccctgtc cccagagcca
gccccttgtg agcagaagaa tggctgccgg gcaaaaggac ctgctatgcc ctccccatac
                                                                      480
acatatcatq ncacctqqqq accctctgaa taacaggggg cngctttaga gtggcttnat
                                                                      540
taccaacaag aggcccagaa gggctagagc acacgatttc atgntcggcc gcatgncaa
                                                                      599
```

<210> 72 <211> 614 <212> DNA <213> Homo sapiens

<400> 72						
	acgactgttg	cccgagctga	ggccagaccc	aaccccgagg	aagggagaac	60
agcttcccat	gaagggcatg	gctgctgcca	ccataatccc	agggcaggaa	ataaagggat	120
cttggactag	gcaatcaaag	gacttcctct	ccctctaagg	ccaaggagga	aatgtggctg	180
ggactccaag	ctctgtggat	gcctggaggt	gccagcagct	ggggatcagc	tggccccacc	240
tgcagagccc	agccagtggc	tececetgea	tctccaaggt	tgggtctatg	ggctccaaga	300
acaggtgttt	ctcagggtaa	cctcagcccc	tacaacttca	accaagagag	tgaaggggag	360
cagccctgga	ggccaatgag	gagggggatt	agtggtcact	gatgacaaag	acatccctgt	420
ccccagagcc	agccccttgt	gagcagaaga	atggctgccg	gggcaaaagg	acctgctatg	480
ccctccccat	acacatatca	tggcagctgg	ggagccctct	gaataacagg	gggcgcttta	540
gagtggcttc	attaccaaca	agaggcccag	aaggggctag	agccacacga	tttcatggtc	600
ggccgcatgc	gcaa					614
	o sapiens					
<400> 73 aagcgcccac	agatggccaa	gcatgtggag	gagagcacaa	tattttattt	aaatatccaa	60
atacgaacac	attcccgcat	ggcaccaaca	gccgcctgaa	cacgcccgat	gccggcttgt	120
gctttttccg	ttttgtctag	aaatttgggt	tgcactaaat	tctcagctga	atgaagatga	180
gaaggggctg	gcagaggggg	tggctccagc	tctctgagaa	cctggctcct	tecegggtgg	240
cagggagaga	tggcccctgg	ggagacgggg	agggtgcact	gcctcatgcc	caaaccacca	300
gcttctagtt	gagaaatcag	aattttctct	gcagaataag	gaaaaagcat	tgtcaccatg	360
attcacgtgg	agctggccac	actcaggaaa	ttcaatgggg	tcccacaggg	gctccgaggg	420
ggaaggagag	ggcctgggac	atgcccctcc	agccatcatg	gaacaggatg	ggcagggccg	480
gccctcactg	ctctctaaca	gtgaaaagcc	acatctccac	tttggaaaac	acaggcatgt	540
gagagcctgg	gg					552

<210> 74

<211> 450 <212> DNA <213> Homo sapiens

<220>

<221> <222> <223>	position is 378 nucleotides					
<220> <221> <222> <223>	position is 403 nucleotides					
<220> <221> <222> <223>						
<222>	unsure position is 440 nucleotides					
<400>	74 gette gagggaagtg aggtteeete ggaeaceeta gtgggaagge teea	cacaat 60				
		-9-93-				
	aacca cgctgtgaaa cctttgcctt tgggtgtcat ggtggaagca aatc					
	ttaat ttaaaaaatt cagttttaaa aaatgttgac ttaaaaagca gttt					
acaacci	ctgga attagectga gategatgee aactettage agtetgtata etaa	acacag 240				
ttaaac	caact gtagctgctg gcaagctgga acctttttgt aaagaagcac ataa:	aaagga 300				
cagaactggt ggaaggtgca ctggtctttc cacatcgcca ccaggcgttt tgaagcgtgc 360						
tgctga	acacg ctactcanat gcttctggaa gccaaacaat aanaaaaanc ccca	ttgttt 420				
cccttg	gctgg gttttacccn ccatggtgga	450				
<210> <211> <212> <213>	432 DNA					
<220> <221> <222> <223>	unsure position is 417 nucleotides					
<220> <221> <222> <223>	<221> unsure <222> position is 421 nucleotides					
<400>	75					
ggacaa	atgag gagggggtgc acgtggaatc cccacggata ggccggacgc cggg	caggag 60				
cctttg	gcagg ggtgcacagc ctcctctgga agccctggtc gctgcctggt gcct	gctgca 120				

ccctgcgggc	teegeagegg	tggagccagg	cctgaactgc	ctgctcttgg	ccccgcctgc	180
ggccctctgc	cctttgtctt	gcccgtgggg	cccggggcct	caagctggcc	cggggttcct	240
gaagttagct	gacgatgggc	tggcctctgg	ggctgggtcg	tgggccttgt	gcactggccg	300
ccacgtcacc	agcgccaggc	ctacccgcgg	tgctgctgga	gacgcgggat	gcccgggctc	360
gggctgtgct	ggatcccctg	gcgctgcgaa	ccccgtaccc	ctttccaatc	gcgggcncgg	420
nttaaagccc	ga					432
<220> <221> unst <222> posi	sapiens ure ition is 18 refers to a					
<400> 76 gacgagacct	agccggcncc	atgcgcgcct	tgagcctggc	gaacagttcg	gctggcgcga	60
cgcgcctgat	gctcttcgtc	cagatcatcc	tgatcgacta	gaccggcttc	catccgagta	120
cgtgctcgct	cgatgcgatg	tttcgcttgg	tggcgaatgg	gcaggtagcc	ggatcaagcg	180
tatcgagccg	cccgattgca	tcagccatga	tggatacttt	ctcggcagga	gcaaggtggg	240
atgacaggag	atcctgcccc	ggcacttcgc	ccaatagcag	ccagtccctt	cccgcttcag	300
tgacaacgtc	gagcacagct	gcccaaggaa	cgcccgtcgt	ggccagccac	gatageegeg	360
ctgcctcgtc	ctgcagttca	ttcagggcac	cggacaggtc	ggtcttgaca	aaaagaaccg	420
ggcgcccctg	ccgttgacag	ccggaacacg	gcggcatcag	agcagccgat	tgtctcgttg	480
tgcccagtca	tagccgaatt	С				501
<210> 77 <211> 826 <212> DNA <213> Homo	o sapiens			·		
<400> 77	aaataaaa	a goat oot gt	ttgtttgcac	caactcattt	atotogtaca	60
	·					120
			tcatgtctgc		•	180
						240
gggggcattg	cccagccagt	aatttgaggg	acacctcgtg	gageeetagt	grggageegr	240

cagagcctgg	gtaggattct	ccgtggtgag	gtgctcaggg	agacacagga	gcattccggc	300
gcctgttcct	tgtgcacatc	cgcaagtgtc	tgcagtgaga	ggcatgggtc	ccatcttgaa	360
tgccaacaat	gtggcaccca	caccccactt	gatggggccg	agccacagct	ggccaggttg	420
accaccatgg	acgtgccaga	ggcatccgaa	acccagetet	tgcccagctg	ttccactgcc	48.0
aactccagcg	ttagcaaagc	agctctccct	tgctttgtct	tctacagcag	agaacagatt	540
aaaagagaag	ctgcaggcag	agaaatgcct	cttggagcca	gatgccccaa	aggatctctt	600
tgaacaaagg	gttgctcagg	tcagcgttag	ttcctggcat	caagcaacaa	aatcagagat	660
gctaacagtt	ctcagattca	ctccaagtga	agactcaaag	ctggatttat	aaatccccac	720
agagccgctg	tgcagaggta	gagggccggt	ttcaggatga	ggaagccctc	ttggaagcac	780
cgtcctccgg	ctaacaagcc	tccaacctac	tgtcggcagg	gagaac		826
<220> <221> unst <222> pos	o sapiens					
<400> 78						60
	cgcgangtgc					
_	gaccaggete					120
	taatcacaac	_			•	180
cgccgaccgg	gcagccccag	ttacccgata	acggctccca	aggccccgtg	tttacattct	240
ttcccactgg	aagcagaaat	tatcacgccc	aaattcctac	ctgccttccc	tggattcctg	300
gtttcctaag	aaacgggttt	ggcccacccc	tgggcgttcg	aacagtccac	agaagcgggc	360
aaaggaaaga	cgactcagtc	tttcccctcc	gccaatctct	tctccgggac	cacagatece	420
agaagtcacc	gcg					433
<210> 79 <211> 424 <212> DNA <213> Home <400> 79	o sapiens					
	accctcagac	tcgcttgtcc	ctggagacca	accctagcga	ccaggctctg	60

ccggatcccg tcgggtttca actcctattc cgaaggtcct ttctccccta atcacaacac	120
ccactcgcct ctttttcctc ctcttcctca gcttccaccg ccgaccgggc agccccagtt	180
acccgataac ggctcccaag gccccgtgtt tacattcttt cccactggaa gcagaaatta	240
tcacgcccaa attcctacct gccttccctg gattcctggt ttcctaagaa acgggtttgg	300
cccacccctg ggcgttcgaa cagtccacag aagcgggcaa aggaaagacg actcagtctt	360
teceeteege caatetette teegggaeca caaateecag aagteacege ggeegetaag	420
ccga	424
<210> 80 <211> 285 <212> DNA <213> Homo sapiens <220> <221> unsure <222> position is 14 nucleotides <223> "n" refers to an undetermined base <220> <221> unsure <222> position is 27 nucleotides <220> <221> unsure <222> position is 27 nucleotides <223> "n" refers to an undetermined base	
<400> 80	
caaccggggg gcanaggcga tcaaaantgg ggtgcgctgt ggtgggcgac acgtgtggcg	60
caaccggggg gcanaggcga tcaaaantgg ggtgcgctgt ggtgggcgac acgtgtggcg cgggtctcat tatccgccct tttcacttcc tggactggaa atggcagacc atatgatggc	60 120
egggteteat tateegeeet ttteacttee tggaetggaa atggeagace atatgatgge	120
cgggtctcat tatccgccct tttcacttcc tggactggaa atggcagacc atatgatggc aatgaaccac gggcgcttcc ccgacggcac caatgggctg caccatcacc ctgcccaccg	120 180
cgggtctcat tatccgcct tttcacttcc tggactggaa atggcagacc atatgatggc aatgaaccac gggcgcttcc ccgacggcac caatgggctg caccatcacc ctgcccaccg catgggcatg gggcagttcc cgagccccca tcaccaccag cagcagcagc cccagcacgc cttcaacgcc ctaatgggcg agcacataca ctacggcgcg ggcaa <210> 81 <211> 401 <212> DNA <213> Homo sapiens	120 180 240
cgggtctcat tatccgccct tttcacttcc tggactggaa atggcagacc atatgatggc aatgaaccac gggcgcttcc ccgacggcac caatgggctg caccatcacc ctgcccaccg catgggcatg gggcagttcc cgagccccca tcaccaccag cagcagcagc cccagcacgc cttcaacgcc ctaatgggcg agcacataca ctacggcgcg ggcaa <210> 81 <211> 401 <212> DNA	120 180 240
cgggtctcat tatccgccct tttcacttcc tggactggaa atggcagacc atatgatggc aatgaaccac gggcgcttcc ccgacggcac caatgggctg caccatcacc ctgcccaccg catgggcatg gggcagttcc cgagccccca tcaccaccag cagcagcagc cccagcacgc cttcaacgcc ctaatgggcg agcacataca ctacggcgcg ggcaa <210> 81 <211> 401 <212> DNA <213> Homo sapiens <400> 81	120 180 240 285
cgggtctcat tatccgcct tttcacttcc tggactggaa atggcagacc atatgatggc aatgaaccac gggcgcttcc ccgacggcac caatgggctg caccatcacc ctgcccaccg catgggcatg gggcagttcc cgagcccca tcaccaccag cagcagcagc cccagcacgc cttcaacgcc ctaatgggcg agcacataca ctacggcgcg ggcaa <210> 81 <211> 401 <212> DNA <213> Homo sapiens <400> 81 cagatatgta tcctcctctt tccaaccctg cgtccctttg aggcctggtc ggcgttccca	120 180 240 285

tcctgtt	cat acgaattaca	gctcggactt	cgggcccttt	tacactgcct	tttgtatctg	300
ttaactt	gcg ctaaaaacga	ttcggttctt	ttttttgagg	aagggggttg	gggggcggag	360
actctgt	ege ecagtectga	gggccgcggc	gcgcaagccg	a		401
<211> <212>	82 268 DNA Homo sapiens					
	82 gca caactgtgtc	tcttacccag	gcacatgcac	tatccctgat	cccggtgcat	['] 60
gatggga	atg tagtcctgca	gccctgtgac	caaagggctg	ggagtgttta	tgagacagca	120
tctctca	igca agcaaagcaa	ggcctgcaca	gccccgcctt	ttcctccagt	gaggcgcact	. 180
gttcatt	aag gagtgttcat	gagattacat	tttccatcaa	gcccagccag	tcacgcacag	240
ctctacc	etct teetetgeeg	ccccgcaa				268
<210> <211> <212> <213>	83 989 DNA Homo sapiens					·
<220> <221> <222> <223>	unsure position is 87 "n" refers to					
<220> <221> <222> <223>	unsure position is 88 "n" refers to	4 nucleotid an undeterm	es ined base			
	unsure position is 91 "n" refers to					
	unsure position is 92 "n" refers to	9 nucleotid an undeterm	es ined base			
<222>	unsure position is 97 "n" refers to					
<400>	83					

PCT/US01/51652 WO 02/081749

```
gggtaatggg ggtgaacaga gagggatgcc gaggccagct tgtagtgtgg ctgttggtct
                                                                       60
tgtccatcct atggcacaac cctgtcacca cccagatttt gttaggagtc ctccccaac
                                                                       120
ttgagagtgg aageteettt ggeacaaaaa ggggttetge atcateceee ageeeecage
                                                                       180
cctgagcctg ggtctggctc tgaactagac ctccatgaat gaatgcacag catcagtggg
                                                                       240
gatccaccat catggggaaa tagtagatac aggaatgatt ttccaaccag attacagact
                                                                       300
atttcaagec cagecagage ctaccaggec aacatteece aggettgtge eteteegage
                                                                       360
ctcaqattqc tcatccttca aacgagggac agctctgctg gcattacctg aactctaggg
                                                                       420
tcctttataa gctcagactc cagcttagag cacacattga gaggctgctg caccccagag
                                                                       480
ccacatacgt gcaacagagg gtggtccaga ccccttattg gtccccatgg ggtttgagag
                                                                       540
                                                                       600
agaageetee agaceagete aactteteee teateteact taggeetttg cacecagete
                                                                       660
ttaggaggtt gtcaggtcac agtgccccat ttcttttctc ttccccagaa atcatgcggg
                                                                       720
qqatacctqc tcaqacaqqa ccttcatgaa agccaggctg tgaggtgtgt tggggaatgc
ataattgata ggccatcgtt cggaggccct cctggaggac caaaatgtaa tcagcagtgg
                                                                       780
cgagcttgtt cacgacagga attcctttta catcctggtg aggccaaaga cctggcaagc
                                                                       840
                                                                       900
aagtecetet qqteattaaa qaageateet gaettgange aggneacett aggteactge
agccacaaaa atctttgntg ctggattcna aagtaggcat tggggctggg atctgggctc
                                                                       960
                                                                       989
tggcatcctt gancgtgtcg ggggccaaa
```

```
<210>
<211>
      250
<212>
      DNA
<213> Homo sapiens
<220>
<221> unsure
<222> position is 37 nucleotides
<223>
      "n" refers to an undetermined base
<220>
<221>
      unsure
      position is 40 nucleotides
<222>
<223> "n" refers to an undetermined base
<220>
<221>
      unsure
       position is 49 nucleotides
<222>
      "n" refers to an undetermined base
<223>
<220>
<221> unsure
       position is 75 nucleotides
<222>
       "n" refers to an undetermined base
<223>
<400>
cgggctcgaa acttcgaaga ccgcggaacc cgaagengen ettggctena atcgettegg
```

84

ctcgagg	ıcgc	ccgtncgggt	cacgtgaggt	gggggcgggc	cgaagagggg	ggeteceete	120
ctcctgo	cgc	agggttggcc	gcaagtgcgc	ttcaagaggc	gcttgatgac	ggttaatgtt	180
gcagccc	gga	agatgacttt	tttctcctcc	ttgggttgcg	gcaggccgtt	agtgggaggt	240
cgcgtcc	cga						250
<210>	85			•		٠	
<211>	402	•					
<212>	DNA						
<213>		sapiens					
<220>							
<221>	11201	120					
<222>	unsi						
			l nucleotide				
<223>	"n"	refers to a	n undetermi	ined base		•	
<220>							
<221>	unsu						
<222>			nucleotide				
<223>	"n"	refers to a	n undeterm	ined base			
<220>							
<221>	unsı	ire					
<222>			nucleotide	es.			
<223>	_		n undeterm				
<220> '							
<221>	นทรเ	ıre					
<222>) nucleotide	20			
<223>			n undetermi				•
<100>	85						
<400>		tastagaatt	accagageca	anannattat	cocteteces	tecettetee	60
tteteet	icig	Cateccett	accagageea	Cayadactat	ccctgtgggc	tecettgeet	00
tcactco	gcc	ttttctggag	ttaagagatc	caagccaact	actgggtctg	ttccctgcta	120
aaatctt	agg	ccggcgtccc	atccacccat	ccccatgcct	aggactttta	agctggcaac	180
ggtacct	:aaa	tttagttttc	ccttcgtata	tcactatctt	cotnocttac	cttcttatac	240
•				•			
ctaaagt	tcc	accgatgtgc	aaggngatta	accactaaag	tgcacctgac	actactcttg	300
acaaatt	gca	gttgggaggt	gagttgatga	ctggccggta	aatcaaaagt	gcttatttag	360
ggagtga	agg	adcccdcddc	anaagccgan	ttccagcaca	ct		402
				•			
<210>	86						
<211>	595						
<212>	DNA						
<213>		, caniene					
~ 213>	пошо	sapiens					
<220>							
<221>	unsı	ire					

```
<222> position is 157 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 377 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 410 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 441 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 444 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 456 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 461 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 473 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 490 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 525 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 532 nucleotides <223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 534 nucleotides
<223> "n" refers to an undetermined base
```

<220> <221> <222> <223>	-	tion is 541	nucleotide n undetermi				
<220> <221> <222> <223>	posi	nsure osition is 572 nucleotides n" refers to an undetermined base					
<220> <221> <222> <223>	posi	nsure Position is 575 nucleotides 'n" refers to an undetermined base					
<220> <221> <222> <223>		tion is 583	nucleotide n undetermi		·		
<400> gatccca	86 agaa	ggttctggag	ccgagtatca	gagtttgagc	agcgagtcca	gcctagcaga	60
agcgggt	tgtt	gaccggagac	ttttcaatgg	tgcaaaatga	cacactgctt	ttgacttggg	120
gatctgt	ccc	ttgtggcacc	agaagctaca	acaggtncac	ctggattcca	gctctagctg	180
gactcgg	gtaa	ttgctaagtg	ccagctctga	agtctgtgat	tccgtggaaa	tccctttcaa	240
gcccgaa	attc	tgtttttat	gggcctcttg	tccaaacagt	ttgacttgtg	aactctgttt	300
ctgtcaa	agtt	gacacttggg	cttggcaccc	attcatgagc	cagatgaaag	cggctaaatg	360
cccgaaa	aaaa	taaaggnttt	taccttttt	ttgaaccatt	ggtgagcatn	taaaaaaatt	420
agggaag	ggta	aaacccaacc	nggncaaacc	caactnaaca	ntttttttt	ccnaaacaag	480
gggggg	ctan	tttttcactt	ggaaaaacaa	acaatttaa	ttgantcttg	ananggtgga	540
naaccaa	aaat	tttttgttgg	gttgggttcc	gnagnccgaa	ttntgcaaat	ttctt	595
<210> <211> <212> <213>	87 304 DNA Homo	sapiens				·	
<220> <221> <222> <223>		tion is 279	nucleotide n undetermi				·
<400>	87 ccga	tocattcaoo	gagccctctg	tgttggccgc	ataqcaqqtq	tagttqccqq	60
				gaccccccga			120
		J J 5 5 5 -	, - ,	JJ-	, ,	- 5	

gaatccg	gac	agagccactg	gccagaatgt	ggttttctaa	agaacagtgg	agaaaagagg	180
catgtta	cag	tcgtaacgct	tgaaggaaat	gaagatagtg	gttagagcca	taagcaagta	240
atatggt	tcg	gctccgtgtc	cccacccaag	tctcgtctng	aattgcaatc	cccacgtcgg	300
cgca							304
<210> <211> <212> <213>	88 296 DNA Homo	o sapiens		·			
<220> <221> <222> <223>		ition is 9 m	nucleotides an undeterm:	ined base			
<220> <221> <222> <223>	-	ition is 31	nucleotide: an undeterm:				
<400> ggctttc	88 cgnt	aggaġttaat	ggggcattgg	ngggtgggat	ggcagggctg	ccagcatctg	60
acccago	gagg	ctgggaggag	gctgctgtgt	gaatacacgc	teggeetete	acagtggctg	120
ccgccgc	catt	agccccttgt	gcttcaggga	acagagcatc	cgtgatggat	gagactttaa	180
ttaaagt	aat	gagacattta	taatcgcggt	tatctccaaa	attaggcctt	ttagcaatta	240
ttcctgg	ggga	atattcctcc	ggtagatagc	tcccttttta	gaacaacgtc	ggcgca	296
<210> <211> <212> <213>	89 220 DNA Hom	o sapiens					
<220> <221> <222> <223>	-	ition is 10	nucleotide an undeterm				
	pos	ition is 24	nucleotide an undeterm				
<220> <221> <222> <223>	uns pos "n"	ition is 29	nucleotide an undeterm	s ined base			

<220> <221> <222> <223>	unsure position is 30 nucleotides "n" refers to an undetermined base	
<222>	unsure position is 31 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	· ·	
<220> <221> <222> <223>	position is 45 nucleotides	
<220> <221> <222> <223>	position is 87 nucleotides	
<220> <221> <222> <223>	position is 99 nucleotides	
<220> <221> <222> <223>	position is 134 nucleotides	
<220> <221> <222> <223>	position is 158 nucleotides	,
<400> attggc	89 ccgn caggcgggaa acangctgnn nttctctnac cgttntccag cactgcccag	60
accagg	agge geagggagag gaggggneag eggtteegng acegeteete eegetgteee	120
tgctct	ccag cctntgcctc tgcaggagcc cgcgggantt gccccaggcc cctgtcccca	180
cctgtg	gete cegtectggt egeteceggg geegeggeaa	220
<210> <211> <212> <213>	90 273 DNA Homo sapiens	
<220>	unsure	

	position is 2 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 7 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 10 nucleotides "n" refers to an undetermined base	
<400>	90 nggn ggtegeggae geeggtggge agttettgtt eggtgatgtg ggttaaaaag	60
	agog aggageeggg geggegeteg gagtaateae eggeggeate aaaaagegee	120
	geat egaggtegeg gtetgettgg gageeggtgg egeegeegeg caaggeagat	180
	agge geatatecag eteggtageg etecatacet eccaeaggat ttettecaea	240
	tggg cttgtatagc ctgccgccc gca	273
5-55		
<210> <211> <212> <213>	91 361 DNA Homo sapiens	
<220> <221> <222> <223>	unsure position is 10 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 12 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>	unsure position is 212 nucleotides "n" refers to an undetermined base	
	unsure position is 218 nucleotides "n" refers to an undetermined base	
<220> <221> <222> <223>		
<400>	91	60

ctgcgtctcc	ccgccagcta	aggaagttga	gtgaagggag	cgttgccgtc	tgggaatcgt	120
agtcctcaca	aaggcgtgag	taggcggcaa	ataaggattt	gggtttagcc	ttggggattc	180
actcctgtca	aagctgttag	agaagctccc	anaactenta	aagtaacaga	aactacttgc	240
gģcaacattt	gtaacttcca	cctggctcat	tatcttccac	tgttaccttg	tgttctagat	300
aagttataat	ttattctaca	tatcgttcag	aagtcttgtg	cctgttccat	attgtnagca	360
t				•		361
<210> 92 <211> 462 <212> DNA <213> Homo	o sapiens	·			·	
<400> 92 gctgcccaca	ctggatggga	aggaccggcg	cctgcagcat	ctgccctcca	agccttcgta	60
gctccctcct	tcctgcagga	taaactctaa	actccttagc	acaacgtggg	agccttctca	120
gagactgggt	ccaacccatc	tccagccgca	gcctcccctc	ctggccccac	tgccacaccc	180
ccgggcctcc	ggccacactg	agcctctccc	ggtttcccag	gatacaacac	tcgcccattc	240
atagtgtggt	gccttttgca	cgtgctgttc	ctctgcttgg	ggatgctgtt	ggtctttctc	300
agccaggtga	agaggacgct	gaatgtcacc	tgcttgagta	tcaggaccgg	ggactgggcg	360
ctggacctag	actcttggcc	ctggagagaa	gccctgcatg	gggccgcagc	ctgccccgt	420
ccctgctcac	agaaaagctc	agccttgcag	ccgcgtggga	ga		462
	o sapiens					
<400> 93 caaagtcacc	tccacggtgc	ggctcagcag	ctcggcacac	ttggtcatgg	tgtcggggaa	60
ggcgccctcc	agctgtaggt	gggtagtggc	agaacaggag	ggtgagggga	gagtccgaac	120
tgtccccact	tggccgttcc	ctccccactg	gggggccctg	agccagtggc	ctcctctctc	180
ggggcctccc	cggaaggagc	caaggtctgt	ctgcgaggca	ccggtccccg	gccacggcca	240
tcagccccca	gaggtggatc	agggcatcac	ccccactcca	cagctgaggc	cagggggtca	300
gggaggcaac	cagggcagac	ctggaacctg	gctctgagac	aggacggccg	agggcccctc	360
opetet coet	coctogggt	aaacsotass	ataasaass	aagatgtoot	cacactooto	420

acatttaaat	agggcccact	cggacatctg	gccctgcagc	aggttggtgc	agacggccat	480
						T 4 0
ctctccacat	gtcacatccg	ccccgaagcg	cttgcagatc	cgtcggaagg	gcaggttccc	.540
acactgcggg	gggagcagga	cagacacaca	tgctcttgca	cgcgcacctc	a	591
<210> 94 <211> 279 <212> DNA <213> Hom						
	ure ition is 3 r refers to a		ined base			
<400> 94 ttntgagttt	tggcctgccc	acagtctagc	cctggacaga	gaatccgagg	ctcagccatg	60
ctgcagcacc	caggacactg	cateceagea	cctgcccgaa	aatcagccca	gggacccaaa	120
ggaaagcagg	ctccaagctc	cccggaągcc	aaggaaaata	ggaaaacata	tcctgccccg	180
gggacacctt	ctggaactat	gaccacatgc	acttgacctt	ccggaacaat	caccgcatgc	240
acctgacctc	ccggaactgt	caccaccgcg	cgcacctca			279
<210> 95 <211> 351 <212> DNA <213> Hom <400> 95						
	tgttaaacgt [,]	cacccagaaa	accettaact	cttagacagc	ggctctcatt	60
aagcaaaagg	ggaggcacat	gaagctccag	gcagggccgg	gagggaaccg	tgaagccaaa	120
ggctctggga	gcccccaggc	acctgcgttt	gcattttcat	cctggaggag	accaggcctc	180
tggggctgct	ccccggggtg	cagagaggag	gggtctttct	tggtgtgtaa	catactcatt	240
gattcagtca	cctgaccttt	gactccatgt	attttgttga	gtctggatgt	gtggtgtgct	300
ctgcccagca	gctgggatcc	acatgagcac	agacatggtc	cccccgcggc	a	351
<210> 96 <211> 171 <212> DNA <213> Hom						
	cgtgaatacc	taggggacac	tcaggggaat	gatggctccc	ccgagaggta	60

aagggt	ggaa agaaggggcc tca	agcaggtt agg	tcttgct	gggtccttct	gtagggcgtc	120
tgggaga	atag atccgtgggg cto	cctagggt cgc	ccctacc	cggcgcgggc	a	171
<210> <211> <212> <213>	97 743 DNA Homo sapiens					
<220> <221> <222> <223>	unsure position is 155 nu "n" refers to an u		l base			
<220> <221> <222> <223>	unsure position is 181 no "n" refers to an o		l base			
<220> <221> <222> <223>	unsure position is 202 nu "n" refers to an u		l base			
<220> <221> <222> <223>	unsure position is 228 no "n" refers to an o		l base			
<220> <221> <222> <223>	unsure position is 259 no "n" refers to an o		d base			
<220> <221> <222> <223>	unsure position is 262 no "n" refers to an o		i base			
<220> <221> <222> <223>	unsure position is 293 no "n" refers to an		d base		•	
<220> <221> <222> <223>	unsure position is 366 nm "n" refers to an m		d base	,		
<220> <221> <222> <223>			d base			
<220>	uncure					

```
<222> position is 388 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 447 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 470 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 484 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 502 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 512 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 516 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 590 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 664 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 667 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 673 nucleotides
<223> "n" refers to an undetermined base
<220>
<221> unsure
<222> position is 695 nucleotides
<223> "n" refers to an undetermined base
```

<220> <221> <222> <223>		re tion is 717 refers to a					
<220> <221> <222> <223>		re tion is 742 refers to a					
<400> cctccct	97 ggc	ccttgttccc	aaggagcttc	ccttgtccca	gcctcttcgc	cagtgacttc	60
tcactg	gacc	attcctttac	aaggagcctg	ttttttgtgt	tttttttta	cacctttttt	120
cttctat	ttc	acagaaggaa	caccggacgt	ccctntgtga	tggcagcagc	catgctgcct	180
ntgttt	ccgc	tcaggggttc	tntgccacct	ccaattccac	ccagtctntt	ggcctcggct	240
gggctto	cggc	tecegeetnt	gngccaaaaa	ttgcaatgcc	cgcggtcagg	gcnctttgcg	300
gagtcto	cacc	gcctgcggag	gcttgattcc	ctcctcacag	gcagcagcgt	ttgatggccg	360
gtgacno	cccc	cctttccaag	cacatntntc	atggcccctg	aatgccactt	acagggcgtc	420
cctcccl	tgtg	ctaagtgctg	cctgganctt	tgggtgtggc	agcagcaaan	acctctaccc	480
ttgngga	atgt	tcgtttcggg	gnggaaagac	anatancaaa	gttggtcgta	aactgtaaag	540
tgtgct	ggga	ggaaactgag	gcagggaggg	cctggtgcca	ctggggagcn	ctgccccgac	600
cċcatg	tgct	tcccaggctc	ccttggagcc	acgtggatgg	cgacttcctg	accttggagg	660
ccgngg	ncct	cantcctcat	gctcgatggc	gtcanccccc	tcttggggaa	atccaancat	720
tcctga	cctg	aaaatgcacc	cnc				743
<210><211><211><212><213>	98 589 DNA Homo	o sapiens					
	98 cgct	gataaaggaa	gcgtctagaa	ggtctcccca	gccttcatca	tctgagactt	60
ggcttt	cagc	cccaaagcac	taggccctgc	tgttaacctt	ccaccattaa	cctttggtgc	120
tcttca	atta	gcagcagcca	ggggtccttg	gcaggtatga	gaatttggaa	ggacagcccc	180
agggca	tggc	ccccggctgc	agcaaaagtt	ctaagtgttc	ttctgttgga	aggaagccca	240
ggagat	attg	atcagctgca	ggtgggggag	gccccagatc	ccacccttgc	ctgcctccag	300
gagaag	gttc	tccatgggcc	aaaatggagg	cagagtccca	ctttgcctgg	gcagctccct	360

gagcatggct	ccctgtggac	ggagctgagt	gacgtcatga	ctctaggcct	caacaaaaga	420
gctttggaaa	atcccgatga	ttcgaattgt	attaaatcaa	caaacatcgg	gttgcacagt	480
tactagaaaa	cggagatctg	cgtcatcact	tactagacac	gtgaccttga	acggcggctt	540
ccccgtgtga	aacagcaaag	ttctgtaacc	cccatgaacg	cgcctctca		589
<210> 99 <211> 538 <212> DNA <213> Homo	o sapiens					
<400> 99 tgccgcgtct	gaccctactc	tcacaaagac	tttccaacta	gcataattga	gttaaatggt	60
cccccaact	cccttaattc	aagctaaact	tgcagtttaa	caactatagg	agtgatatct	120
acacattaat	gccacacttt	aacatgccta	acactacaca	tgaacacgct	tccgggtgct	180
gttacatccc	gctctctccc	aagcacgaga	cacaggcagg	atgctgacgt	cctgcttctc	240
tgctgcgggc	gggaagtcaa	gactccggat	ttgctgcagg	agttgccgtg	gggatcctga	300
cttcacgcag	gagatggtcg	gcctctggaa	gtgcctggcc	_cgtttatcct	tgaaatctac	360
ctgtgcaggt	ggtccttgcc	tcagcccctc	aggacaacac	aggtctttcc	taagttacag	420
ggagaccatc	agattgtcgt	gtccgagccc	cctgaagtgg	aacccacagt	ctccattcag	480
tctgccctca	gtttccctcc	cctctgcagg	gccattgctg	·ctgtggacgc	gcctctca	538
<210> 100 <211> 486 <212> DNA <213> Home	o sapiens					
<400> 100 agaggtagaa	aaaggagtta	gaagcaaaga	ggaaaaaata	aataaacagg	caacaaaaac	60
	cagcctgagc			•		120
	agtggagtgg					180
tggctgggcc	cacatgggct	gtgccccagg	agcacaggag	gacccagagg	gtggccgaga	240
gagcctcgcc	gggctccggt	atgggtcctg	gcccctcaca	ggtgcgagcc	tggcccagtg	300
actgtggacg	ctgtgggaga	gcaggcctcc	gatacgcagg	gctgggactg	ctgacctgga	360
aggtggtgcc	gggcgtgtct	ggtgaaggcg	ccgttggcag	ctagagagag	acggcggatg	420
gggtgacgcc	attacccacg	gtcccagttt	tgaggcttga	cggtgacgga	aaaggacgtc	480
qqcqca						486

<211> <212>	101 450 DNA Homo	o sapiens					
	101 cca	gggtgcacgg	ccagcgccag	acacagtgag	cttcatggca	actccagttt	60
accggtg	ıaga	accatggggc	cactcagaga	ggcaaagagc	ctcacccgag	tgagtcctct	120
ggcttct	ccc	cacctgggcc	gggccccagg	ccgcgctgtg	gttccctttc	cagccgtcat	180
ccctggg	rtga	tgggaggtgg	gcattctgtt	caaccttgtg	ggtcagggag	ccagggccag	240
tgtgcag	atg	agaagaggct	gcggttactg	gcgatgcgag	ggactgtccc	cttcgtgggc	300
actttct	ctt	ttgaggccag	tgaaatgtgt	tccctggggt	tgtattcctg	agaaggcctc	360
atttaaa	ggg	agccgccaaa	ccaagtgggc	ttagcaaaag	cagtttgtca	cctggcagca	420
cgtgtga	gcc	tegeceggae	gcgcctctca			÷	450
<210> <211> <212> <213>	102 292 DNA Homo	o sapiens					
<400>	102			;-1			
				aactcagtgg			60
cggatto	cca	ctcccgggg	gagggggtgg	aaatggcttc	ctccctctgc	ttccctacca	120
ccagtaa	atgg	ggagctcacc	atgcttagaa	gactcttcct	tgcatggagt	tcgggcctcc	180
tccctg	cacc	taccacccta	gtggccccaa	gtcttaaggc	tgaaggttaa	tcctgtgtcc	240
ttcagaa	agca	aaggctgcaa	ccgataccaa	acagaggtgg	ccagcgcggg	ca.	292
<210> <211> <212> <213>		o sapiens					
<220> <221> <222> <223>		ure ition is 34 refers to					
	pos	ure ition is 36 refers to					

<400> 103 agagcttatc	ccgcgagcac	aagggagccg	gggcctgggc	cgccgtggga	aggggctcct	60
gccttccggg	gacgcggtca	gggaagtcca	gccggggtgc	tctctgcact	gcgggtgccg	120
ggctcggcag	aggccaaccc	ggcaaaacga	gcaggatctc	ccggccccac	cctagtgggc	180
tccgcctgcc	ccaacaacca	tcctgccatc	ctccctgcga	gacaggtgac	tttcctctct	240
gatgcggtgc	atctgtcatc	tgtctaacgg	gcccattccc	cagtgaaaca	ccccaacca	300
aagacacgaa	ggggaaggcg	caagcttcta	ccaagctcan	tttgcccatc	tggtgcccac	360
ctgcctngta	tttggtgact	tggaggatag	gaagg		•	395