This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION ITREATY (PCT)

(51) International Patent Classification 6:		710 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	١	(11) International Publication Number: WO 99/49741
A23L 1/305, 1/30	A1	(43) International Publication Date: 7 OOctober 1999 (07.10.99)
(21) International Application Number: PCT/EP (22) International Filing Date: 22 February 1999 (MX, US, European patent (AT, BE, (CH, CY, DE, DK, ES,
(30) Priority Data: 98201016.7 31 March 1998 (31.03.98)	E	Published With international search report.
(71) Applicant (for all designated States except US): S DES PRODUITS NESTLE S.A. [CH/CH]; P.O. 1 CH-1800 Vevey (CH).	OCIET Box 35	E 3,
(72) Inventors; and (75) Inventors/Applicants (for US only): BOZA, Julio [ES chemin de la Colline, CH-1093 La Conversion-Lu BALLEVRE, Olivier [FR/CH]; 16B, route de CH-1000 Lausanne 25 (CH). FINOT, Paul-André [12, chemin Emile Javelle, CH-1800 Vevey (CH).	try (CH Cojonne). x,
(74) Common Representative: SOCIETE DES PRODUIT TLE S.A.; McConnell, Bruce, P.O. Box 353, (Vevey (CH).		
(54) Title: METHOD FOR PROVIDING GLUTAMINE		

(57) Abstract

A method of providing glutamine to a patient. A nutritional composition which includes whey protein, or a a protein mixture which simulates the amino acid profile of whey protein, as a protein source is enterally administered to the patient. The whey protein may be a hydrolyzed whey protein. The patient may be a stressed patient, pre-term baby, or athlete.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho-	· SI	Slovevenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovavakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegegal
ΑÜ	Australia	GA	Gabon .	LV	Larvia	SZ	Swazaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chadid
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togoto
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikikistan
BE	Beigium	GN	Guinea	MK	The former Yugoslav	TM	Turkrkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkekey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinicidad and Tobago
BJ	Benin	æ	Ireland	MN	Mongolia	UA	Ukraraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganenda .
BY	Belarus	IS	Iceland	MW	Malawi	US	Uniteted States of America
CA	Canada	IT	Ítaly	MIX	Mexico	UZ	Uzbelekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet It Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugogoslavia
CH	Switzerland	KG	Kyrgyzstan	, NO	Norway	zw	Zimbibabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ.	New Zealand	2	Zmiotoaowe ,
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU .	Russian Pederation .		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden .		
EE	Estonia	LR'	Liberia	SG	Singapore		

WO 99/49741 PCT/EEP99/01274

Method For Providing Glutamine

This invention relates to a method for providing glutamine to a human or animal; for example to maintain or increase plasma glutamine levels. Thee invention also relates to a method for the treatment of humans and animals requiring supplemental glutamine and to a method of increasing glutaminee body stores in humans and animals.

5

10

15

20

25

30

35

The amino acid glutamine has many important functions in the bodyy. For example, glutamine acts as the primary vehicle for transfer of amino nitrogen from skeletal muscle to visceral organs, as a fuel for the rapidly dividing ccells of the gastrointestinal tract and immune system, and as a substrate that permitts the kidneys to excrete acid loads and protect the body against acidosis. Further, there is increasing evidence that glutamine is essential to the proper functitioning of host defence mechanisms and wound healing.

Despite these functions, glutamine is traditionally classified as non-eessential amino acid. The reason is that the body is generally able to synthesise suffficient glutamine for its needs from glutamate and glutamic acid. Also, glutamine is the most abundant amino acid in the blood and free amino acid pool of the boody. However, this is only true in periods of good health and does not apply too preterm babies. During periods of illness, the metabolic rate of glutamine increases and the body is not able to synthesise sufficient glutamine to meet its needs. This is particularly true during episodes of stress such as sepsis, injury, burns, inflammation, diarrhoea and surgery. During episodes of stress, there is aa marked increase in glutamine consumption by the gastrointestinal tract, immune cells, inflammatory tissue and the kidney. This consumption may far outstrip the endogenous rate of synthesis of glutamine. As the deficiency becomes manifest, tissue function alters, morphological changes may be observed, and a neggative nitrogen balance arises. Similarly, pre-term babies have a lower rate of glutamine synthesis; often insufficient for needs. Further, it is found that t athletes, after intense exercise, have reduced levels of glutamine in their pplasma.

The administration of glutamine supplemented diets to pre-term babbies, during periods of stress, or to athletes has resulted in improvement of the: person's condition. For example, glutamine supplemented diets have been shown to regenerate muco-proteins and intestinal epithelium, support gut t barrier function, shorten hospital stay, improve immune function, and enhance poatient survival (Stehle et al; 1989; Lancet, 1:231-3; Hammerqvist et al: 1989; A4nn.

10

15

20

25

30

35

Surg.; 209:455-461; Li et al; 1995; J. Parenter. Enteral Nutr., 18, 303-307 aand Gianotti et al; 1995; J. Parenter. Enteral Nutr., 19, 69-74). Therefore glutamine is now considered to be a conditionally essential amino acid for critically ill1 and other stressed patients (Lacey et al; 1990; Nutrition Review, 48:297-309).

The additional need for glutamine during periods of stress must come i from an exogenous source such as diet. However the supplementation of nutritionnal formulas with glutamine has traditionally not been performed because glutamine has long been considered to be a non-essential amino acid. Also glutamine i is only slightly soluble in water and, more importantly, is relatively unstable inn solution. To overcome the stability problem, it has been proposed to supplement powdered formulas with L-glutamine. These formulas are then reconstituted immediately prior to administration. However, for enteral formulas, this approach has not proved to be particularly successful since glutamine in its ffree form may be converted to pyroglutamate by stomach acids prior to absorptioon. Also, health care professionals prefer ready-to-consume liquid formulas as opposed to powdered formulas.

Another method of supplementing diet with glutamine has centred on the use of gluten or gluten hydrolysates as a protein source for nutritional compositions. Gluten is particularly rich in glutamine and is hence a good scource of glutamine. Also, the use of gluten or a gluten hydrolysate offers the advanntage of providing the glutamine in a form which is stable and relatively soluble. However gluten is potentially allergenic and this has severely limited its use: in nutritional formulas. This problem may be ameliorated to some extent by ussing a gluten hydrolysate instead of gluten and a nutritional composition based on gluten hydrolysate are commercially available under the trade names Nutricomp® Immun, Reconvan® and Glutasorb®. However, although the rrisk from allergenic reaction is much reduced, it has not been removed entirely.

A yet further approach has been to supplement nutritional formulas with synthetic dipeptides such as L-alanyl-L-glutamine or L-glycyl-L-glutamine. These dipeptides are stable in solution and have been shown to be an effective form of glutamine supplementation. However, synthetic peptides of this nature may significantly increase the cost of the nutritional formulas.

Therefore there is a need for an acceptable method of providing glutamaine to a patient in need thereof.

Accordingly, in one aspect, this invention provides a method of providing glutamine to a mammal, the method comprising enterally administering to three

10

15

20

25

30

35

mammal a nutritional composition which includes whey protein, or a pprotein mixture which simulates the amino acid profile of whey protein, as a pprotein source.

It has been surprisingly discovered that the administration of nutrritional compositions which contain whey protein, or a protein mixture which simulates the amino acid profile of whey protein, as a protein source increases pblasma glutamine levels in humans or animals. This is despite the fact that whhey protein contains relatively low amounts of glutamine. Further, nutritional compositions which contain whey protein as a protein source provide glutamine levels much higher than those provided by nutritional compositions containing freee amino acids as protein source.

Preferably the patient, human or animal is a stressed patient, pre-1-term baby, or athlete. Examples of stressed patients are patients who are critically ill, or who are suffering from sepsis, injury, burns, or inflammation, or patients recovering from surgery.

In another aspect, this invention provides a method of increasing; the muscular glutamine levels of a mammal, the method comprising entercally administering to the mammal an effective amount of a nutritional composition which includes whey protein, or a protein mixture which simulates thee amino acid profile of whey protein, as a protein source.

In a further aspect, this invention provides a method of improvingg glutamine status of mammals suffering from injured, diseased or under-developed i intestines or to maintain the physiological functions of the intestine, the method coomprising enterally administering to the mammal an effective amount of a nutritional composition which includes whey protein, or a protein mixture which simulates the amino acid profile of whey protein, as a protein source.

The mammal may be a pre-term infant.

Embodiments of the invention are now described by way of example only. The invention is based on the finding that enterally administering a nuttritional composition which includes whey protein, or a protein mixture which simulates the amino acid profile of whey protein, as a protein source results in high plasma glutamine levels. This makes the composition extremely useful for nuttritionally managing glutamine levels in mammals.

The whey protein in the protein source may be may be in the forrm of intact protein or may be hydrolyzed protein, or mixtures of intact and hydrolyzed protein. The protein source may, if desired, further include amounts oof other

10

15

20

25

30

35

suitable types of protein. For example, the protein source may further innelude minor amounts of casein protein, soy protein, rice protein, pea protein, ccarob protein, oat protein, caseino-glyco-macropeptide or mixtures of these prroteins. Further, if desired, the protein source may further include amounts of free amino acids. The other suitable types of protein preferably comprise less than about 20% by weight of the protein source; more preferably less than about 100% by weight. It is also possible to provide a protein source which simulates thhe amino acid profile of whey protein. For example, the protein source may compprise about 80% to about 90% by weight of casein, about 0.5 to about 2% by weight of isoleucine, about 2% to about 8% by weight of leucine, about 1% to about 5% by weight of cysteine, and about 1% to about 5% by weight of lysine.

Preferably however, the protein source comprises a whey protein hydrolysate; either based upon sweet whey or acid whey. Whey protein hydrolysates are particularly suitable for patients suffering from compromised gastro-intestinal functions, malabsorption or intolerance. The whey protein hydrolysates may be produced using procedures which are well known in the art. Alternatively, nutritional compositions which contain whey protein hydrolysates may be obtained commercially. For example, clinical nutritional compositions containing whey hydrolysates are commercially available from Nestlé Nilutrition Company under the trade mark PEPTAMEN®, or Nutrition Medical, Incc under the trade mark PROPEPTIDES®. Similarly, infant nutritional composititions containing whey hydrolysates are commercially available from Nestlé Allete GmbH under the trade mark ALFARE®.

For infant applications, the whey protein hydrolysate preferably additionally contains the free amino acids arginine, tyrosine and histidinee.

For adult applications, whey protein hydrolysates which have a deggree of hydrolysis of about 10% to about 20% are particularly preferred. In this specification, the term "degree of hydrolysis" (DH) means the percentagge of nitrogen in the form of amino nitrogen as compared to total nitrogen. It i is a measure of the extent to which the protein has been hydrolyzed. Whey pprotein hydrolysates having a degree of hydrolysis of about 10% to about 20% ccontain less than about 5% of free amino acids, about 15% to about 55% of peptides having a molecular weight of less than 1000 Da, about 20% to about 55% of peptides having a molecular weight of 1000 Da to 5000 Da, and about 155% to about 35% of peptides having a molecular weight of greater than 5000 Da.

For adult applications, the protein source preferably provides about 10% to about 20% of the energy of the nutritional composition. For example, thee protein source may provide about 15% to about 18% of the energy of the nutritional composition. For infant applications, the protein source preferably provides about 50% to about 30% by dry weight of the nutritional composition. For example, full term infant formulas, the protein source may provide about 18% to about 20% by dry weight of the nutritional composition. Further, for pre-term infant formulas, the protein source may provide about 15% to about 25%, by dry weight of the nutritional composition.

10

15

5

The nutritional composition may also include a carbohydrate source. For adult applications, the carbohydrate source preferably provides about 35% t to about 65% of the energy of the nutritional composition; especially 40% to 60% obf the energy of the nutritional composition. For example, the carbohydrate source may provide about 51% of the energy of the composition. For infant applications, the carbohydrate source preferably provides about 35% to about 70% by dry weeight of the nutritional composition; more preferably about 45% to about 65% by drry weight. Several carbohydrates may be used including maltodextrin, corn staarch, modified starch, lactose, or sucrose, or mixtures thereof. Preferably the composition is free from lactose.

20

25

The nutritional composition may further include a lipid source. For addult applications, the lipid source preferably provides about 20% to about 50% oof the energy of the nutritional composition; especially 25% to about 40% of the energy of the nutritional composition. For example, the lipid source may provide abbout 33% of the energy of the nutritional composition. For infant applications, thhe lipid source preferably provides about 15% to about 35% by dry weight of the nutritional composition; especially 20% to about 30% by dry weight of the nutritional composition. For example, the lipid source may provide about 26% by dry weight of the nutritional composition.

30

35

The lipid source may comprise a mixture of medium chain triglyceridees (MCT) and long chain triglycerides (LCT). If MCT's are included, the lipid I source preferably contains at least about 30% to about 80% by weight of medium chain triglycerides. For example, medium chain triglycerides may make up about 1 70% by weight of the lipid source. Suitable sources of long chain triglycerides anre sunflower oil, safflower oil, rapeseed oil, palm olein, soy oil, milk fat, corn ooil and soy lecithin. Fractionated coconut oils are a suitable source of medium chain triglycerides.

10

15

20

25

30

35

The lipid profile of the nutritional composition may be designed to hhave a polyunsaturated fatty acid omega-6 (n-6) to omega-3 (n-3) ratio of about 11:1 to about 12:1. For example, for adult applications, the n-6 to n-3 fatty acid reatio may be about 6:1 to about 9:1. For infant applications, the n-6 to n-3 fatty acid1 ratio may be about 9:1 to about 11:1. Also, for infant applications, the lipid sowurce may include long chain, polyunsaturated fatty acids such as arachidonic acid annot docosahexaenoic acid.

The nutritional composition preferably includes a complete vitamin and mineral profile. For example, sufficient vitamins and minerals may be provided to supply about 50% to about 250% of the recommended daily allowance of i the vitamins and minerals per 1000 calories of the nutritional composition.

For adult applications, the nutritional composition preferably has ann energy content of about 800 kcal/l to about 1200 kcal/l; for example an energy content of about 1000 kcal/l. For infant applications, the nutritional compositionn preferably has an energy content of about 600 kcal/l to about 1000 kcal/l'l; for example an energy content of about 650 kcal/l to about 850 kcal/l.

The nutritional composition may be in any suitable form. For exampple, the nutritional composition may be in the form of a soluble powder, a liquid concentrate, or a ready-to-drink formulation. Alternatively, the nutritional l composition may be in solid form; for example in the form of a ready-to-ezat bar or breakfast cereal. Ready to drink formulations are particularly preferred. The composition may be fed to a patient via a nasogastric tube, jejunum tube, oor by having the patient drink or eat it. Various flavours, fibres, sweeteners, and i other additives may also be present.

The nutritional composition may be produced as is conventional; for example, the nutritional composition may be prepared by blending together the prootein source, the carbohydrate source, and the lipid source. If used, the emulsifiers may be included in the blend. The vitamins and minerals may be added at this point but are usually added later to avoid thermal degradation. Any lipophilic: vitamins, emulsifiers and the like may be dissolved into the lipid source prior to blending. Water, preferably water which has been subjected to reverse ossmosis, may then be mixed in to form a liquid mixture. The temperature of the wwater is conveniently about 50°C to about 80°C to aid dispersal of the ingredients. Commercially available liquefiers may be used to form the liquid mixture.

The liquid mixture may then be thermally treated to reduce bacteriaal loads. For example, the liquid mixture may be rapidly heated to a temperature in the

10

15

20

25

30

range of about 80°C to about 110°C for about 5 seconds to about 5 minutes. This may be carried out by steam injection or by heat exchanger; for examplee a plate heat exchanger.

The liquid mixture may then be cooled to about 60°C to about 85°C; for example by flash cooling. The liquid mixture is then homogenised; for example in two stages at about 7 MPa to about 40 MPa in the first stage and about 2 MPa to about 14 MPa in the second stage. The homogenised mixture may theen be further cooled to add any heat sensitive components; such as vitamins annd minerals. The pH and solids content of the homogenised mixture is conveniently standardised at this point.

If it is desired to produce a powdered nutritional composition, the homogenised mixture is transferred to a suitable drying apparatus such aas a spray drier or freeze drier and converted to powder. The powder should have &a moisture content of less than about 5% by weight. If it is desired to prodduce a liquid nutritional composition, the homogenised mixture is preferably asseptically filled into suitable containers. Aseptic filling of the containers may be caarried out by pre-heating the homogenised mixture (for example to about 75 to 85°PC) and then injecting steam into the homogenised mixture to raise the temperature to about 140 to 160°C; for example at about 150°C. The homogenised mixxture may then be cooled, for example by flash cooling, to a temperature of about 775 to 85°C. The homogenised mixture may then be homogenised, further coobled to about room temperature and filled into containers. Suitable apparatus foor carrying out aseptic filling of this nature is commercially available.

The nutritional composition may be used as a nutritional support, especially for providing nutrition and glutamine to animals and humans. In particular, the nutrition composition may be used to provide nutrition and glutamine to surressed patients; for example for patients who are critically ill, or who are suffering from sepsis, injury, burns, or inflammation, or patients recovering from surgerry. Further, the nutritional composition may be used to provide glutamine to poatients suffering from injured or diseased intestines or to maintain the physiological functions of the intestine. Moreover, the nutritional composition may be ussed to raise plasma glutamine levels in humans and animals.

The nutritional composition may also be used to provide glutamine too athletes after intense exercise or to pre-term babies.

10

15

20

25

It is to be understood that, although the nutritional composition is intended primarily for patients who require supplemental glutamine, it may also be used as a source of nutrition for people who are not suffering from any illness or condition.

The nutritional composition may form the sole source of nutrition orr form a supplement to other nutritional sources; including parenterally administerced nutrition.

The amount of the nutritional composition required to be fed to a ppatient will vary depending upon factors such as the patient's condition, the patitient's body weight, the age of the patient, and whether the nutritional composition is the sole source of nutrition. However the required amount may be readily set by a medical practitioner. In general, sufficient of the nutritional composition is administered to provide the patient with about 1 g protein to about 4.0 gz protein per kg of body weight per day. For example, an adult, critically ill patieent may be administered about 1.5 g protein to about 2.0 g protein per kg of bodyy weight per day, a pre-term infant may be administered about 2.0 g protein to about 4.0 g protein per kg of body weight per day, and a infant may be administeredd about 2.0 g protein to about 3.0 g protein per kg of body weight per day. Furthher, for stressed patients, sufficient of the nutritional composition is preferably administered to provide the patient with about 10g to about 25 g of glutaamine per day. The nutritional composition may be taken in multiple doses, for exxample 2 to 5 times, to make up the required daily amount or may taken in a single dose. Alternatively, the nutritional composition may be fed to the patient contitinuously.

Specific examples of the invention are now described for further illustration.

Example 1

An isotonic liquid diet which is suitable for raising plasma glutamine levels in a patient is obtained from Nestlé Clinical Nutrition. The diet is commercialised under the trademark PEPTAMEN®. The diet has the foollowing components:

Nutrient	Amount per 1000 ml
Protein (hydrolyzed sweet whey)	40 g
Carbohydrate (maltodextrin, corn starch)	127
Lipid (medium chain triglycerides,	39
sunflower oil, soy lecithin)	·
Vitamin A	4000 IU
Vitamin D	280 IU
Vitamin E	28 IU
Vitamin K	80 µg
Vitamin C	140 mg
Thiamin	2 mg
Riboflavin	2.4 mg
Niacin	28 mg
Vitamin B ₆	4 mg
Folic acid	540 μg
Pantothenic acid	14 mg
Vitamin B ₁₂	8 μg
Biotin	400 μg
Choline	450 mg
Taurine	80 mg
L-carnitine	80 mg
Minerals	
Calcium, Phosphorus,	
Magnesium, Zinc, Iron, Copper,	
Manganese, Iodine, Sodium,	
Potassium, Chloride, Chromium,	
Molybdenum, Selenium	

The diet has an energy density of 1000 kcal/l and the protein provides 16% of energy, the carbohydrate provides 51% of energy, and the lipid provides 33% of energy. Glutamine provides about 6.2 % by weight of the protein source.

5 Example 2

i) Test Diets:-

The following diets are used in the test:

	•
- 1	ı
_	ı

Diet	Composition	Protein Source	Glutaminne
		1 rotom source	1 -
			Content
			(g/100g))
1	95% composition of example	Hydrolyzed	6.2
	1 and 5% cellulose	whey	
2	95% PROPEPTIDES product	Hydrolyzed	5.42
	and 5% cellulose	whey	
A	95% VIVONEX PLUS	Free amino	21.63
	product and 5% cellulose	acids	·
В	95% REABILAN product and	Hydrolyzed	8.09
	5% cellulose	casein & whey	
Control	soy protein isolate, sucrose,	Soy	8.99
	glucose, cellulose, com		
	starch, corn oil and vitamins		
	and minerals		·

The VIVONEX PLUS product is a product obtained from Sandoz Nutrition AG. The REABILAN product is a product obtained from Nestlé Clinical l Nutrition.

ii) Test Analytical Procedures

15

20

Plasma amino acids are analyzed by de-proteinising 200 μ l of plasma using 20 μ l of a solution containing sulfosalicylic acid (400 mg/ml) and vitamin C (60 mg/ml). The mixture is centrifuged at 10'000g for 3 minutes. D-glucosaaminic acid and S-(2-aminomethyl)-L-cysteine.HCl are added to the supernatant t as

10

20

25

30

35

internal standards and the supernatant is frozen at -80°C until analyzed. A Beckman 6300 amino acid analyzer is used for the analysis. To avoid gluutamine degradation, all samples are kept at 10°C before analysis. Amino acid concentrations are calculated for individual peak areas, external standards and the internal standards.

Muscle glutamine is analyzed by mixing 100 mg of muscle with an i ice cold solution of trichloroacetic acid (10% w/v) and homogenising the mixture: at 10'000 rpm for 1 minute. The mixture is then centrifuged at 10'000 g for 10 minutes at 4°C. D-glucosaminic acid is added to the supernatant as intermal standard and the supernatant is frozen at -80°C until analyzed. A Beckmaan 6300 amino acid analyzer is used for the analysis. To avoid glutamine degraddation, all samples are kept at 10°C before analysis. Amino acid concentrations aree calculated for individual peak areas, external standards and the internal standards.

15 iii) Test Procedure

Fifty six male Wistar rats, each weighing about 200g, are used. Thee rats are held in separate cages at 23°C. A 12 hour dark cycle is imposed. The rants have free access to water and the Control diet.

The rats are maintained on the Control diet for 3 days. On the fourth day, the amount of the Control diet for each rat is restricted to 80% of its conssumption on the previous three days. The Control diet is fed to the rats once a day. On the seventh day, the rats are placed in metabolic cages and randomised by weight into 7 groups of 8 rats. One group of rats, the control group, is maintaineed on the Control diet. The rats in the remaining groups are then starved for 72 hopurs. All rats have free access to water.

At the end of the starvation period, a 1 ml blood sample is taken from the eye of each rat of one group under anaesthesia; the control starved groupp. The blood sample is then analyzed for plasma amino acids as described abovve. The rats of this group are then sacrificed and the muscle tibialis of rat are removed and stored at -80°C until analyzed for muscle glutamine as described abovve.

The remaining tests rats are placed into new metabolic cages and aare again randomised by weight into five groups of 8.

The five groups are then each fed an experimental diet; the diets differing from group to group. The diets are as follows:

Group	Diet	
Control Re-fed	Control	
. 1'	1	
2	2	· · · · · · · · · · · · · · · · · · ·
Α	A	
В	В	

The rats are fed the diets for 3 days. At the end of the three days, as 1 ml blood sample is taken from the eye of each rat of one group under anaestthesia. Plasma samples are then analyzed for plasma amino acid concentrations: as described above. The rats are then sacrificed and the muscle tibialis of raats are removed. The muscle is analyzed for muscle glutamine as described above.

iv) Test Results

5

15

The plasma glutamine concentrations are as follows:

Group	Diet	Glutamine Intake (µmol/l)	Plasma glutamine (µmol/l)	Muscle glutamine (μmol/g)
Control	Control	733	829.1	4
Control starved	Control	-	758.6	2.7
Control re-fed	Control	734	742.5	3.6
1	1	392	1025.6	5.3
2	1	336	1031.1	4.9
A	A	1501	738.7	3.3
В	В	424	881.7	3.9

The results indicate that the rats fed diets 1 and 2, the whey protein based diets, have plasma glutamine concentrations of at least 25% higher than thee other rats. This is despite the fact that the rats fed diets 1 and 2 received less glutamine in the diet; and significantly less than the free amino acid diet A. Similarly, thhe results indicate that the rats fed diets 1 and 2 have higher muscle glutamine concentrations; significantly higher than the control rats in the case of diet 1.

Further, the rats fed diets 1 and 2 recovered better after starvation in 1 terms of weight gain, food conversion efficiency, retained nitrogen to ingested nitrogen, retained nitrogen to absorbed nitrogen and protein efficiency ratio.

<u>Claims</u>

5

10

15

20

30

- 1. The use of whey protein, or a protein mixture which simulates the armino acid profile of whey protein, as a protein source in the preparation of a ennterally administrable nutritional composition for increasing plasma glutamine concentration in a stressed mammal.
- 2. The use of whey protein, or a protein mixture which simulates the anmino acid profile of whey protein, as a protein source in the preparation of a ennterally administrable nutritional composition for increasing muscle glutamine concentrations in a mammal.
 - 3. The use of whey protein, or a protein mixture which simulates the anmino acid profile of whey protein, as a protein source in the preparation of a enterally administrable nutritional composition for providing glutamine to a mammal suffering from injured, diseased or under-developed intestines.
 - 4. The use according to claim 3 in which the mammal is a pre-term infannt having an under-developed intestine.
 - 5. The use according to claim 4 in which the whey protein is hydrolyzedd and the protein source further comprises arginine, tyrosine and histidine.
- 6. The use according to claim 1 in which the whey protein is hydrolyzedd whey protein.
 - 7. The use according to claim 6 in which the hydrolyzed whey protein ccontains less than about 5% by weight of free amino acids, about 15% to about 555% by weight of peptides having a molecular weight of less than 1000 Da, about 20% to about 55% by weight of peptides having a molecular weight of 1000 Da 1 to 5000 Da, and about 15% to about 35% by weight of peptides having a molecular weight of greater than 5000 Da.
- 8. The use according to any of claims 1 to 3 in which the protein sources provides about 10% to about 20% of the energy of the nutritional composition.

- 9. The use according to any of claims 1 to 3 in which the nutritional composition further includes a lipid source which provides about 20% to about 50% of the energy of the nutritional composition, the lipid source comprising a mixturee of medium chain and long chain fatty acids.
- 10. The use according to any of claims 1 to 3 in which the nutritional composition further includes a carbohydrate source which provides about 35% to about 65% of the energy of the nutritional composition.

INTERNATIONAL SEARCH REPORT

Inter nai Application h No
PCT/FP 99/012774

		. 10	1/67 99/012//4
A. CLASS	SIFICATION OF SUBJECT MATTER A23L1/305 A23L1/30		
	to International Patent Classification (IPC) or to both national class	ification and IPC	
	SSEARCHED		
170.6	ocumentation searched (classification system followed by classific A23L		·
Cocumente	ation searched other than minimum documentation to the extent the	at such documents are included in	n the fields searched
,			
Electronic o	data base consulted during the international search (name of data	base and, where practical searc	th terms used)
	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	RRelevant to daim No
X	DE 297 11 429 U (A.REICHENAUER- 6 November 1997 see page 2, paragraph 1 see page 3, paragraph 3 see page 6; table see claims 1-4,9	FEIL)	11,2
х А	EP 0 022 019 A (INSTITUT NATIONARECHERCHE AGRONOMIQUE(INRA)) 7 January 1981 see page 22, line 31 - page 23, see examples 2,3,5,6 see claims 1,15-20		14-7 83-10
	· · · · · · · · · · · · · · · · · · ·	-/	
X Furth	er documents are listed in the continuation of box C.	X Patent family member	rs are listed in annex
"A" documer conside	egories of cited documents: It defining the general state of the art which is not predicted to be of particular relevance occument but published on or after the international	or priority date and not in cited to understand the pri invention	fter the international fi filing date conflict with the applicication but inciple or theory undeterlying the
"L" documen which is citation	tte it which may throw doubts on priority claim(s) or sided to establish the publication date of another or other special reason (as specified)	involve an inventive step v "Y" document of particular relev	el or cannot be consididered to when the document is a taken alone
oiner m P* documen	nt referring to an oral disclosure, use, exhibition or eans it published prior to the international filing date but In the priority date claimed	document is combined wit ments, such combination I in the art.	h one or more other is such docu- being obvious to a iperarson skilled
	ctual completion of the international search	"&" document member of the sale of mailing of the inter	
	May 1999	04/06/1999	oan seatar rapultit
Name and ma	atting address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 MV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 apo nt.	Authorized officer	
	Fax: (+31-70) 340-3016	Van Moer, A	

INTERNATIONAL SEARCH REPORT

Inte Inal Application No
PCT/EP 99/012274

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevarant to claim No.
X	DATABASE WPI Section Ch, Week 9317 Derwent Publications Ltd., London, GB; Class B04, AN 93-136778 XP002103442 -& JP 05 065295 A (SNOW BRAND MILK PROD CO LTD), 19 March 1993 see abstract	1,3
A	EP 0 705 542 A (SANDOZ NUTRITION) 10 April 1996 see page 2, line 55-58 see page 8, line 5-11 see claims 1-6,8	1-10
A	EP 0 418 593 A (MILUPA) 27 March 1991 see page 3, line 3-51 see page 4, line 18-21 see page 4, line 43-46 see page 5, line 21-29 see page 5, line 55-58 see claims; example 1	:1-10
	PATENT ABSTRACTS OF JAPAN vol. 096, no. 002, 29 February 1996 & JP 07 255398 A (SNOW BRAND MILK PROD CO LTD), 9 October 1995 see abstract	11
		
	·	
	*	
	•	
- 1	,	

INTERNATIONAL SEARCH REPORT

...formation on patent family members

inter nal Application n No PCT/EP 99/012774

Patent document		Publication			99/012//4
cited in search repo	rt	date		Patent family member(s)	Pubblication c date
DE 29711429	U 	06-11-1997	DE	19717195 A	2910-1998
EP 22019	Α	07-01-1981	FR	2459620 A	1601-1981
			AR	231376 A	3011-1984
			AU	53 560 1 A	2903-1984
			AU	5966780 A	0801-1981
			BR	8003974 A	1301-1981
			CA	1150564 A	2607-1983
		•	DK	273480 A	27-12-1980
			FI	802011 A,B,	27-12-1980
			JP	1666661 C	29-05-1992
			JP	56032488 A	01-04-1981
			JP	62061039 B	18-12-1987
			US	4427658 A	2401-1984
			ZA	8003749 A	2406-1981
EP 705542	Α	10-04-1996	US	5719133 A	1702-1998
			AT	161397 T	1501-1998
			CA	2158635 A,C	2203-1996
			DE	69501306 D	0502-1998
			DE	69501306 T	1806-1998
			ES	2111384 T	0103-1998
			GR	3026072 T	2905-1998
		•	HK	1005768 A	2201-1999
			SG	33502 A	1810-1996
			SI	705542 T	3004-1998
			US	5719134 A	17-⊢02-1998
EP 418593	Α	27-03-1991	AT	96621 T	1511-1993
			DD	297304 A	09-+01-1992
			DE	59003330 D	0912-1993
			DK	418593 T	1312-1993
			ES	2062231 T	1612-1994
•			GR	3026131 T	29-+05-1998
•			PΤ	95114 A,B	18-+04-1991
			TR	24775 A	01-+05-1992