MAC 239 – Introdução á Lógica e Verificação de Programas (2016)

Prof: Ana C. V. de Melo

Auxiliar didático: Marcelo Amorim

Grupos: até 4 pessoas

Prazo de Entrega: até dia 15/10/2016

Cálculo Proposicional - Implementação de Tableaux Semânticos

Este trabalho tem como objetivo a implementação de um sistema de provas para o cálculo proposicional, usando a técnica de tableaux semânticos, para provar a validade (ou não) de um seqüente:

$$A_1, A_2, ... A_n \vdash B$$

Linguagem a ser utilizada:

• Átomos: p, q,... (representados por 1 letra)

• Valores: **T** (true), **F** (false)

• Exemplos: (p .I. q), (((a .O. b) .I. q) .A. (.N. s)), etc.

O seu programa terá como

- Entrada: Um conjunto de premissas $(A_1, A_2, ... A_n)$ e uma conseqüência lógica (B). Cada fórmula no cálculo proposicional (premissas e conseqüente) deverá estar completamente parentetizada.
- Saída: Se o seqüente é válido ou não. No caso de não ser válido, mostrar um contra-exemplo, dado pelos átomos e seus respectivos valores.

Para realizar tais tarefas, V. precisará de:

- 1. Estruturas apropriadas para armazenar as fórmulas, bem como cada ramo do tableau.
- 2. Ler as fórmulas e armazená-las nas estruturas apropriadas.
- 3. Um conjunto de regras de expansão do tableau:

	α	α_1	α_2
$\alpha \wedge$	TC.A.B	TC	TB
$\alpha \vee$	FC.O.B	$\mathbf{F}C$	$\mathbf{F}B$
$\alpha \rightarrow$	$\mathbf{F}C.I.B$	$\mathbf{T}C$	$\mathbf{F}B$
$\alpha \neg$	T.N.C	$\mathbf{F}C$	$\mathbf{F}C$

	β	β_1	β_2
$\beta \wedge$	$\mathbf{F}C.A.B$	$\mathbf{F}C$	$\mathbf{F}B$
$\beta \vee$	$\mathbf{T}C.O.B$	$\mathbf{T}C$	TB
$\beta \rightarrow$	TC.I.B	$\mathbf{F}C$	TB
$\beta \neg$	$\mathbf{F}.N.C$	$\mathbf{T}C$	$\mathbf{T}C$

- 4. Uma estratégia de busca para a escolha dos ramos a serem expandidos.
- 5. Uma estratégia para a escolha de qual regra de expansão aplicar em um dado ramo.

Um algoritmo base, bem como uma discussão sobre as estratégias de busca, escolha das regras a serem aplicadas e possíveis estruturas de dados a serem utilizadas estão no material complementar fornecido (cópia de partes do livro).

O que dever ser entregue:

- 1. Implementação do provador de teoremas como descrito acima na linguagem C ou Java.
- 2. Instruções de como utilizar o seu programa.
- 3. Um conjunto de seuqentes que foram utilizados como teste do programa.
- 4. Um relatório sobre as estruturas e as estratégias utilizadas na implementação, e dificuldades encontradas na implementação.