# The Structure of Mathematical Expressions

An ArXiv Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 21, 2012



# **Contents**

| C | onter                          | nts                | 2  |  |  |
|---|--------------------------------|--------------------|----|--|--|
| 1 | Intr                           | roduction          | 3  |  |  |
|   | 1.1                            | Motivation         | 3  |  |  |
|   | 1.2                            | Related Resources  | 4  |  |  |
|   | 1.3                            | Experimental Setup | 4  |  |  |
| 2 | A Study of Mathematical Syntax |                    |    |  |  |
|   | 2.1                            | Basics             | 7  |  |  |
|   | 2.2                            | Discrete math      | 7  |  |  |
|   | 2.3                            | Continuous math    | 9  |  |  |
|   | 2.4                            | Other fields       | 10 |  |  |
| 3 | Disc                           | cussion            | 11 |  |  |
| 4 | Cor                            | nclusion           | 13 |  |  |

### Chapter 1

### Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

#### 1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").<sup>1</sup>

EdN:1

<sup>&</sup>lt;sup>1</sup>EDNOTE: expand

#### 1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and EdN:2 FMathL have examples, but no real systematic study.<sup>2</sup>

### 1.3 Experimental Setup

The primary corpus on which we base this investigation is the Cornel preprint archive "ARXIV"<sup>3</sup>, consisting of over 700,000 articles in 37 scientific subfields.

#### arXiv Sandbox

EdN:4

EdN:5

EdN:3

As a secondary resource, we we will also consult entry-level literature on highschool mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors.<sup>5</sup>

Deyan's thesis

<sup>&</sup>lt;sup>2</sup>EDNOTE: expand <sup>3</sup>EDNOTE: cite here

 $<sup>^4\</sup>mathrm{EdNote}$ : Say that, on the  $^4\mathrm{RXIV}$  front, we first start with the train sandbox from

<sup>&</sup>lt;sup>5</sup>EDNOTE: Wikipedia? PEMDAS?

| Train1  | Differential Geometry http://arxmliv.kwarc.info/files/9609/dg-ga.9609012                     |
|---------|----------------------------------------------------------------------------------------------|
| Train2  | Quantum Physics<br>http://arxmliv.kwarc.info/files/0910/0910.5733/                           |
| Train3  | <pre>High Energy Physics - Theory http://arxmliv.kwarc.info/files/9407/hep-th.9407125/</pre> |
| Train4  | Commutative Algebra http://arxmliv.kwarc.info/files/0809/0809.4873/                          |
| Train5  | Statistics Theory http://arxmliv.kwarc.info/files/0905/0905.1486/                            |
| Train6  | General Relativity and Quantum Cosmology http://arxmliv.kwarc.info/files/0807/0807.2507/     |
| Train7  | Cosmology and Extragalactic Astrophysics http://arxmliv.kwarc.info/files/0908/0908.2548      |
| Train8  | Exactly Solvable and Integrable Systems http://arxmliv.kwarc.info/files/0905/0905.2033       |
| Train9  | Geometric Topology http://arxmliv.kwarc.info/files/0809/0809.4477                            |
| Train10 | Algebraic Geometry http://arxmliv.kwarc.info/files/0704/0704.0537                            |

Table 1.1: Sandbox of Ten Random  $\mbox{\sc arX{\sc iv}}$  Papers from Diverse Scientific Subfields

## Chapter 2

# A Study of Mathematical Syntax

#### 2.1 Basics

#### **Foundations**

EdN:6
EdN:7
EdN:8 **High School**9 10
EdN:9
EdN:10

#### 2.2 Discrete math

#### **Set Theoretic Notations**

 $\begin{array}{c} \text{11 12} \\ \hline \\ \text{EdN:11} \end{array}$  EdN:12

 $<sup>^6\</sup>mathrm{Ed}\mathrm{Note}$  arithmetic, grouping fences and equality

 $<sup>^7\</sup>mathrm{EdNote}$ : basic relations and orderings

 $<sup>^8\</sup>mathrm{EdNote}\colon$  arithmetic and algebraic sequences?

 $<sup>^9\</sup>mathrm{EdNote}$  geometry here, otherwise a separate geometry subsection

 $<sup>^{10}\</sup>mathrm{EdNote}$ : trigonometry, complex and rational numbers

 $<sup>^{11}\</sup>mathrm{EdNote}$ : elementhood, inclusions, set constructors, overloaded arith ops

 $<sup>^{12}\</sup>mathrm{EdNote}$ : also maps : domains -¿ codomains, xRy notations

#### **Logical Operators**

EdN:13 <sup>13</sup>

#### **Combinatorics**

EdN:14

 $14\ 15$ 

EdN:15

### Number Theory

EdN:16 16 17 18 19

EdN:17

EdN:18

EdN:19 Graph Theory

EdN:20 <sup>20</sup> 21 22

EdN:21

EdN:22

#### Algebra

EdN:23 23 24 25 26

EdN:24

EdN:25

EdN:26 Functions Theory

EdN:27  $^{27}$ 

 $^{13}\mathrm{EdNote}$ : classic logic, HOL, type theories

<sup>14</sup>EDNOTE: Infinite sums

<sup>15</sup>EdNote: binomials, combinations, permutations,

 $^{16}\mathrm{EdNote}$ : modulo modifiers

<sup>17</sup>EdNote: tuples

<sup>18</sup>EDNOTE: divisibility notations  $a \mid b$  and b/a

 $^{19}{
m EDNOTE}$ : DLMF sneaky notations  $^{20}{
m EDNOTE}$ : edge and vertex notations

<sup>21</sup>EDNOTE: incidence and adjacency notations

<sup>22</sup>EdNote: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary\_of\_graph\_

theory

 $^{23}\mathrm{EdNote}$ : vectors

<sup>24</sup>EDNOTE: maps and complements

 $^{25}$ EdNote: groups  $^{26}$ EdNote: lattices

 $^{27}\mathrm{EdNote}$ : talk about associativity of application and composition, ";" and "o" as notation variants, discuss complex examples

| 1. | $(\mathcal{V}/\mathcal{Z},k\omega)$ | symplectic torus                              |
|----|-------------------------------------|-----------------------------------------------|
|    | Discussion:                         | circumfix constructor                         |
| 2. | ${\mathcal Z}$                      | self-dual lattice                             |
|    | Discussion:                         | atom abbreviation                             |
| 3. | $(\mathcal{V},\omega)$ Discussion:  | symplectic vector space circumfix constructor |

Table 2.1: Differential Geometry Notations

#### 2.3 Continuous math

#### Calculus

Probability

29 30 EdN:29
EdN:29
EdN:30

Interval Notation and Arithmetic

31 EdN:31

Topology

EdN:32

#### Differential Geometry

Some intro text?

32

 $<sup>^{28}\</sup>mathrm{EdNote}$ : differentials, integrals, limits, remember brownian motion integral notations!

 $<sup>^{29}\</sup>mathrm{EdNote}\colon$  Bayes formula with multiple denotations of P

<sup>&</sup>lt;sup>30</sup>EdNote: Various conditional and joint probability notations

 $<sup>{\</sup>rm ^{31}EDNote:}$  introduce interval notations, then move to interval arithmetic

 $<sup>^{32}\</sup>mathrm{EdNote}$ : manifold constructors and notations

## 2.4 Other fields

### Quantum Physics

EdN:33 EdN:34 33 34 :

 $<sup>^{33}\</sup>rm EDNote:$  Bra-ket notation  $^{34}\rm EDNote:$  computer science, biology, chemistry...

# Chapter ${\it 3}$

# **Discussion**

# Chapter 4

# Conclusion