Multi-channel Communications Fall 2022

Lecture 10 Generalized Diversity and Generalized Fading

Dr. R. M. Buehrer

Overview

- In this lecture we will look at three items related to diversity
 - Generalized selection combining
 - Generalized fading
 - o Impact of spatial correlation
- Again, although the analysis is targeted towards spatial diversity, it applies equally well to any form of diversity

Generalized Selection Combining

- The most general form of diversity combining
 - o Given L diversity branches, select the strongest L_c and combine them using MRC
 - o If $L = L_c$, we have standard MRC
 - o If $L_c = 1$, we have standard selection diversity

Go to the board....

Generalized Selection Diversity

o Average SNR Gain

Generalized Selection Diversity

- $_{\text{th}} = 10 \text{dB}$
- o L = 4
- Diversitygainremainsthe same
- o Avg. SNR gain improves with L_c

Generalized Selection Diversity

- $_{\text{o}}$ $\gamma_{\text{th}} = 10 \text{dB}$
- $_{\rm c}$ $_{\rm c}$ = 2
- Diversitygainincreaseswith L

Generalized Fading

- To this point we have assumed Rayleigh fading – a fairly severe type of fading
- A more general distribution for fading signal amplitude is the Nakagami distribution

$$f_{\alpha}(\alpha) = \frac{2}{\Gamma(m)} \left(\frac{m}{2\sigma^{2}}\right)^{m} \alpha^{2m-1} e^{-m\alpha^{2}/2\sigma^{2}}$$

where $E(\alpha^2) = 2\sigma^2$ and m is the fading parameter defined as

$$m = \frac{2\sigma^2}{E\left(\left(\alpha^2 - \sqrt{2\sigma^2}\right)^2\right)}$$
 Go to the board....

Outage Probability versus m

Multi-Channel Communications ECE 6634 Fall 2022

$$o L = 1$$

$$\circ$$
 $\gamma_{th} = 10dB$

$$_{o}$$
 P_{out} = 1%

\boxed{m}	$\frac{-}{\gamma}$
1	30 <i>dB</i>
2	22 <i>dB</i>
4	17 <i>dB</i>
10	14 <i>dB</i>

Diversity with Nakagami Fading

 Like with Rayleigh fading, the best performance is achieved with Maximal Ratio Combining

Go to the board....

MRC Diversity Gain

Gains not quite as big as with Rayleigh fading

Multi-Channel Communications ECE 6634 Fall 2022

$$om = 2$$

$$_{o}$$
 $\gamma_{th} = 10dB$

$$_{o}$$
 P_{out} = 1%

L	$\frac{-}{\gamma}$	
1	21 <i>dB</i>	
2	14 <i>dB</i>	
4	8 <i>dB</i>	
8	4 <i>dB</i>	10

MRC Diversity Gain

Gains reduced due to nearly the array gain due to lack of ECE 6634 Fall 2022

0	m	=	10
0	γ_{th}	=	10dB
0	Pou	ıt =	= 1%

$oxed{L}$	$\frac{-}{\gamma}$
1	14 <i>dB</i>
2	9.5 <i>dB</i>
4	5.5 <i>dB</i>
8	2.5dB

Bit Error Rate for BPSK

o The bit error rate can be found to be

$$P_{b} = \frac{1}{2} \sqrt{\frac{\overline{\gamma}/m}{\pi(1+\overline{\gamma}/m)}} \frac{\Gamma(Lm+\frac{1}{2})}{\Gamma(Lm+1)} \left(\frac{1}{1+\overline{\gamma}/m}\right)^{Lm} \times \dots$$

$${}_{2}F_{1}\left(1,\Gamma\left(Lm+\frac{1}{2}\right);\Gamma\left(Lm+\frac{1}{2}\right),\frac{1}{1+\overline{\gamma}/m}\right)$$

o Which simplifies to a form identical to Rayleigh fading with Lm diversity branches but γ/m SNR per branch when Lm is an integer.

Nakagami vs. Ricean

- Nakagami is more general than Ricean
 - o Ricean with $K = 0 \rightarrow Rayleigh$
 - o Fading can't be worse than Rayleigh
 - o Nakagami with $m = 1 \rightarrow Rayleigh$
 - o $m = 0.5 \rightarrow$ One-sided Gaussian (worse than Rayleigh)

$$K = \frac{2K+1}{M-\sqrt{m^2-m}}$$

$$K = \frac{\sqrt{m^2-m}}{m-\sqrt{m^2-m}}$$

Correlated Rayleigh Fading

- To this point we have assumed that all branches observe independent signals
- Clearly if the signals are correlated, the usefulness of diversity is reduced
 - o Consider the case where the branches are perfectly correlated → No diversity!

Go to the board....

Correlated Rayleigh Fading – Two Antennas

- o BER of BPSK
- Diversity gain diminishes with increasing correlation
- o Even with a correlation of 0.95, there is substantial diversity gain at 10⁻³ BER
- Correlation of 0.7 is very close to independent branches

Conclusions

- We considered three new topics in the area of diversity
 - Generalized selection combining
 - Generalized fading distribution
 - o Correlated Rayleigh fading