

หน้า 1 / 11

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นักศึกษามีทักษะในการวัดแรงดันของคลื่น เพื่อคำนวณหาค่า พารามิเตอร์ต่าง ๆ จำพวก Γ , VSWR, V_{max} , V_{min} ภายในท่อนำคลื่น
- 2. เพื่อให้นักศึกษามีทักษะในการใช้เครื่อง Vector Voltmeter
- 3. เพื่อให้นักศึกษามีทักษะในการใช้เครื่อง RF Generator
- 4. เพื่อให้นักศึกษามีความรู้ความเข้าใจเกี่ยวกับการเดินทางของคลื่นที่เคลื่อนที่ภายในท่อนำคลื่น

<u>ทฤษฎี</u>

VSWR (\underline{V} oltage \underline{S} tanding \underline{W} ave \underline{R} atio) คือ อัตราส่วนระหว่างแรงดันสูงสุดของคลื่นนิ่งและแรงดัน ต่ำสุดของคลื่นนิ่ง ดังรูป

$$VSWR = \frac{V_{max}}{V_{min}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

โดย V_{max} คือ จุดที่คลื่นมีแอมพลิจูดมีค่าสูงที่สุด V_{min} คือ จุดที่คลื่นมีแอมพลิจูดมีค่าต่ำที่สุด

หน้า 2 / 11

การหา Guide Wavelength หาได้จากสูตร

$$\lambda_{guide} = \frac{c}{f} \times \frac{1}{\sqrt{1 - \left(\frac{c}{2a \times f}\right)^2}}$$

โดย f คือ ความถี่ที่ใช้

- c คือ ความเร็วของแสง 3x10⁸ m/s
- a คือ ความกว้างของท่อนำคลื่น 0.248 m

เมื่อเกิด Standing Wave ภายในท่อนำคลื่น Wavelength ของ Standing Wave จะมีค่าเป็นครึ่งหนึ่งของ Guide Wavelength

$$\frac{1}{2}\,\lambda_{guide} = \lambda_{\rm Standing\ Wave}$$

<u>อุปกรณ์การทดลอง</u>

หน้า 3 / 11

1. Waveguide (ท่อน้ำคลื่น)

2. RF Signal Generator

4. Vector Voltmeter

5. Directional Coupler

หน้า 4 / 11

6. Power Divider

7. สาย RG-8

ลักษณะการต่อ

1. กรณีใช้ Vector Voltmeter

ขั้นตอนการเตรียมความพร้อมเครื่อง RF Signal Generator

- 1. เปิดเครื่อง RF Signal Generator
- 2. กดปุ่ม [INSTR PRESET] เพื่อทำการคืนค่า Default ต่างๆของเครื่องส่ง
- เลือกช่วงความถี่ที่จะใช้ส่งโดยกดปุ่ม [CW] (Continuous Wave) แล้วทำการเลือกความถี่ที่
 กรณีใช้ รุ่น 8657A ให้ใช้ความถี่ 700 + 200(S-1) + 20G MHz

หน้า 5 / 11

- 3.2 กรณีใช้ รุ่น 8350B และรุ่น 8362B ให้ใช้ความถี่ 1000 + 200(S-1) +20G MHz
- 4. จากนั้นทำการเลือก Power ที่ต้องการส่งโดยกดปุ่ม [POWER LEVEL] แล้วทำการเลือกค่าที่ 0 dBm หรือน้อยกว่า

(หมายเหตุ: S = section, G = group)

ขั้นตอนการเตรียมความพร้อมเครื่อง Vector Voltmeter

- 1. เปิดเครื่อง Vector Voltmeter
- 2. ทำการคาลิเบรท Vector Voltmeter ตามขั้นตอนดังต่อไปนี้
 - 2.1 ใช้สาย RG-8 เชื่อมต่อระหว่าง RF Generater กับ Port input ของ Directional Coupler โดยตั้ง ค่าแหล่งจ่าย (RF Generator) ให้มีค่ากำลังส่งเท่ากับ 0dBm และเลือกความถี่ที่แหล่งจ่ายตาม ความถี่ที่ได้ จากโจทย์ที่กำหนดข้อ 3 หน้า 5/16
 - 2.2 ต่อโหลดลัดวงจรมาตรฐาน เข้าที่ port output ของ Directional Coupler
 - 2.3 ต่อสายจาก port input A เข้าที่ Port Incident ของ Directional Coupler
 - 2.4 ต่อสายจาก port input B เข้าที่ Port Reflected ของ Directional Coupler
 - 2.5 กดปุ่ม [PRESET] ที่ Vector Voltmeter เพื่อให้เครื่องกลับไปมีค่าตั้งต้น แล้วกดปุ่ม[REFL MEAS] **rho, angle** เพื่อทำการวัดค่าสัมประสิทธิ์การสะท้อน
 - 2.6 กดปุ่ม[REF SELECT] **SHORT** เพื่อที่จะใช้โหลดลัดวงจรมาตรฐานเป็น Reference
 - 2.7 กดปุ่ม[SHIFT] และ [SAVE REF] เพื่อบันทึกค่า Reference เพื่อนำไปใช้

หมายเหตู เมื่อตั้งค่าตามขั้นตอนทั้งหมดแล้ว เครื่องควรแสดงค่า $1 \angle 180^\circ$

<u>ขั้นตอนการทดลอง</u>

1. นำโพรบป้อนสัญญาณจาก RF Generator ทำการป้อนสัญญาณที่ความถี่ที่กำหนด โดยเชื่อมต่อเข้ากับ หัว N type ที่อยู่ปลายด้านA ของท่อนำคลื่น

หน้า 6 / 11

- 2. ส่วนหัวโพรบ connector N type ที่อยู่ตรงกลางของท่อนำคลื่นให้เชื่อมต่อเข้ากับ Spectrum Analyzer เพื่อทำการวัดค่าต่าง ๆ
- 3. หัวโพรบ N Type ที่อยู่ปลายด้าน B ของท่อนำคลื่นให้นำโหลดชนิดต่างๆ มาต่อเพื่อทดลองวัดค่า พารามิเตอร์ต่าง ๆ ออกมา
- 4. ทำการวัดค่า โดยการเลื่อน หัวโพรบ connector N type ที่อยู่ตรงกลางของท่อนำคลื่นจากตำแหน่ง 10 ไปเรื่อยๆ
- 5. นำค่าแรงดันที่วัดได้มาบันทึกลงในตาราง แล้วนำมา Plot เป็นกราฟและคำนวณหาค่า VSWR
- 6. เปลี่ยนโหลดแล้วทำตามขั้นตอนที่ 5
- 7. นำค่า VSWR ที่ได้จากการทดลองมาเปรียบเทียบกับค่า VSWR ที่ได้จากการคำนวณ

*** ระยะที่วัดในตารางอาจไม่ต้องวัดครบตามที่ปรากฏในตาราง แต่อย่างน้อยขอให้ข้อมูลที่วัดมานั้น สังเกตเห็นการเปลี่ยนแปลงของคลื่นนิ่งภายในท่อนำคลื่น สัก 2-3 cycles ***

หน้า 7 / 11

คำสั่ง ให้นักศึกษาทำการวัดค่าพารามิเตอร์ของ waveguide ที่ Load ต่าง ๆ ใส่ในตาราง

Load <u>75</u> ohms

ระยะ(cm)	Г	ระยะ(cm)	Г	ระยะ(cm)	Г	ระยะ(cm)	Г
10	0.07	30	0.12	50	0.15	70	0.14
11	0.08	31	0.11	51	0.16	71	0.15
12	0.09	32	0.11	52	0.18	72	0.19
13	0.11	33	0.13	53	0.20	73	0.19
14	0.12	34	0.15	54	0.17	74	0.15
15	0.11	35	0.19	55	0.15	75	0.12
16	0.10	36	0.20	56	0.15	76	0.09
17	0.09	37	0.20	57	0.13	77	0.07
18	0.08	38	0.18	58	0.11	78	0.06
19	0.07	39	0.14	59	0.13	79	0.06
20	0.07	40	0.10	60	0.15	80	0.06
21	0.08	41	0.08	61	0.18	81	0.07
22	0.10	42	0.07	62	0.20	82	0.10
23	0.13	43	0.04	63	0.17	83	0.13
24	0.15	44	0.04	64	0.12	84	0.16
25	0.17	45	0.03	65	0.11	85	0.14
26	0.20	46	0.02	66	0.10	86	0.15
27	0.19	47	0.02	67	0.09	87	0.13
28	016	48	0.06	68	0.09	88	0.11
29	0.14	49	0.11	69	0.10	89	0.10

หน้า 8 / 11

Load 100 ohms

ระยะ(cm)	Г	ระยะ(cm)	Г	ระยะ(cm)	Г	ระยะ(cm)	Г
10	0.06	30	0.13	50	0.15	70	0.15
11	0.08	31	0.12	51	0.19	71	0.17
12	0.10	32	0.12	52	0.17	72	0.20
13	0.12	33	015	53	0.14	73	0.18
14	0.13	34	0.18	54	0.10	74	0.15
15	0.12	35	0.20	55	0.10	75	0.10
16	0.11	36	0.23	56	0.08	76	0.08
17	0.09	37	0.22	57	0.08	77	0.07
18	0.08	38	0.18	58	0.10	78	0.06
19	0.08	39	0.15	59	0.12	79	0.06
20	0.08	40	0.11	60	0.15	80	0.07
21	0.09	41	0.08	61	0.15	81	0.08
22	0.11	42	0.04	62	0.14	82	0.11
23	0.15	43	0.04	63	0.12	83	0.15
24	0.19	44	0.04	64	0.10	84	0.17
25	0.20	45	0.03	65	0.09	85	0.18
26	0.20	46	0.02	66	0.09	86	0.16
27	0.19	47	0.02	67	0.09	87	0.13
28	0.16	48	0.07	68	0.10	88	0.11
29	0.14	49	0.11	69	0.12	89	0.10

หน้า 9 / 11

คำสั่ง ให้นักศึกษานำข้อมูลจากตารางข้างต้นมาทำการคำนวณค่า VSWR ของสายนำสัญญาณ เมื่อต่อกับโหลด ค่าต่างๆ

$$VSWR = \frac{V_{max}}{V_{min}}$$

Load 75 Ohm:

$$VSWR = \frac{1 + |0.20|}{1 - |0.02|} = 1.224$$

Load 100 Ohm:

$$VSWR = \frac{1 + |0.23|}{1 - |0.02|} = 1.255$$

คำสั่ง ให้นักศึกษาทำการคำนวณค่า Wavelength ของ Standing Wave เมื่อต่อกับโหลดค่าต่างๆ

$$\lambda_{\text{Standing Wave}} = |L_{\text{max}1} - L_{\text{max}2}|$$

โดย $L_{
m max\, 1}$ คือ ระยะที่มีแรงดันมากที่สุดจุดที่ 1 $L_{
m max\, 2}$ คือ ระยะที่มีแรงดันมากที่สุดจุดที่ 2

Load 75 Ohm:

$$\lambda_{\text{Standing Wave}} = |25 - 36| = 11$$

Load 100 Ohm:

$$\lambda_{\text{Standing Wave}} = |24 - 36| = 12$$

หน้า

10 / 11

จากนั้นจงหา Guide Wavelength โดยการเทียบกับ Wavelength ของ Standing Wave

$$\frac{1}{2}\lambda_{guide} = \lambda_{\text{Standing Wave}}$$

Load 75 Ohm:

Guide Wavelength = $2 \times 11 = 22 \text{ cm} = 0.22 \text{ m}$

Load 100 Ohm

Guide Wavelength = $2 \times 12 = 24 \text{ cm} = 0.24 \text{ m}$

คำสั่ง ให้นักศึกษาทำการคำนวณค่าความถี่ (f) ภายในท่อนำคลื่น

$$\lambda_{guide} = \frac{c}{f} \times \frac{1}{\sqrt{1 - \left(\frac{c}{2a \times f}\right)^2}}$$

โดย f คือ ความถี่ที่ใช้

c คือ ความเร็วของแสง 3x10⁸ m/s

a คือ ความกว้างของท่อนำคลื่น 0.248m

 λ_{guide} คือ Guide Wavelength

Load 75 Ohm:

$$0.22 = \frac{3 \times 10^8}{f} \times \frac{1}{\sqrt{1 - \left(\frac{3 \times 10^8}{2 \times 0.248 \times f}\right)^2}}$$

EQN; f = 1.49176 GHz (Default 1.4 GHz)

Load 100 Ohm:

$$0.24 = \frac{3 \times 10^8}{f} \times \frac{1}{\sqrt{1 - \left(\frac{3 \times 10^8}{2 \times 0.248 \times f}\right)^2}}$$

EQN; f = 1.3886 GHz (Default 1.4 GHz)

หน้า 11 / 11

<u>สรุปผลการทดลอง</u>

จากการทดลองพบว่า เมื่อความยาวของการเดินสายสัญญาณถึงจะจุด ๆ หนึ่งจะทำให้เกิดแรงดันสูงสุด และ ต่ำสุดเป็นลักษณะของ Sine wave เรียกว่า ลูกคลื่นนิ่ง แต่จากการทดลองโดยกำหนดความถี่ในการส่ง ที่ 1.4 GHz พบว่า กราฟของ VSWR ไม่เป็นไปตามทฤษฎีข้างต้น ซึ่งอาจเกิดได้หลายปัจจัย ทั้งนี้ได้ทำการทดสอบซ้ำ ๆ เป็นจำนวน 4 ครั้ง ปรากฏว่าได้ผลลัพธ์เหมือนเดิมทุกประการ แม้ว่าจะลองเปลี่ยน Load หรือ สายที่ใช้เดินสาย รวมทั้งทำการ Calibration ใหม่ทุกครั้งเมื่อทำการทดลอง อีกทั้งได้สอบถามไปยังเพื่อนสมาชิกที่ทำการทดลอง โดยใช้ความถี่เดียวกัน นั่นคือ 1.4 GHz ผลปรากฏว่าได้ผลลัพธ์ที่คล้ายคลึงกัน นั่นคือ กราฟ VSWR ไม่เป็นไป ตามทฤษฎี ทั้งนี้ขอสันนิษฐานว่าเป็นเพราะความถี่ดังกล่าวทำให้ไม่เกิด Standing Wave ภายในท่อนำคลื่น นั่นเอง