Topology Note

Alex

June 19, 2022

Contents

1	Top	pology Spaces and Continuous Function
	1.1	Basic Definition of Topology
	1.2	Basis for a Topology
		1.2.1 Exercise
	1.3	The Order Topology
	1.4	The Product Topology

4 CONTENTS

Definitions

K	O
K-topology on R, 6	open set, 5
L larger, 5	open sets, 5 order topology, 7
strictly larger, 5 lower limit topology on R, 6	I interval, 7
B basis, 6	closed interval, 7 half-open interval, 7 open interval, 7
${f T}$	_
topology, 5 topology generated by basis, 6	D discrete topology, 5
topology space, 5 trivial topology, 5	\mathbf{F} finer, 5
\mathbf{C}	strictly finer, 5
coarser, 5	finite complement topology, 5
strictly coarser, 5	\mathbf{S}
\mathbf{R}	smaller, 5
ray, 8	strictly smaller, 5
closed ray, 8	standard topology on R, 6
open ray, 8	subbasis, 7

Chapter 1

Topology Spaces and Continuous Function

1.1 Basic Definition of Topology

Definition 1.1.1 (topology). A topology on a set X is a collection T of subsets of X having the following properties:

- \emptyset and \mathbb{X} are in \mathbb{T}
- The union of the elements of any sub collection of \mathbb{T} is in \mathbb{T}
- The intersection of the elements of any finite sub collection of $\mathbb T$ is in $\mathbb T$

Definition 1.1.2 (topology space). A topological space is a set X for which a topology T has been specified.

Definition 1.1.3 (open set). A open set \mathbb{U} is a subset of \mathbb{X} that belongs to a topology \mathbb{T} of \mathbb{X} .

Definition 1.1.4 (open sets). A topology can also be called a open sets

Definition 1.1.5 (discrete topology). The set of all subsets of a set X formed a topology called discrete topology

Definition 1.1.6 (trivial topology). The set consisting the set X and \emptyset only formed a topology of X called **trivial topology**

Definition 1.1.7 (finite complement topology). Let \mathbb{X} be a set. Let \mathbb{T}_f be the collection of all subsets \mathbb{U} of \mathbb{X} such that $\mathbb{X} - \mathbb{U}$ either if a **finite** 1 of is all of \mathbb{X} . Then \mathbb{T}_f is a topology on \mathbb{X} , called the .

Definition 1.1.8 (finer, larger, strictly finer, strictly larger, coarser, smaller, strictly coarser, strictly smaller, comparable). Let \mathbb{T} and \mathbb{T}' be two topology on a given set \mathbb{X} . If \mathbb{T} is a subset of \mathbb{T}' , we say that \mathbb{T}' is finer or larger than \mathbb{T} . If \mathbb{T} is a proper subset of \mathbb{T}' , we say that \mathbb{T}' is strictly finer or strictly larger than \mathbb{T} . We also say that \mathbb{T} is coarser or smaller or strictly coarser or strictly smaller than \mathbb{T}' . We say that \mathbb{T} and \mathbb{T}' is comparable if either \mathbb{T} is a subset of \mathbb{T}' or \mathbb{T}' is a subset of \mathbb{T} .

¹The set \mathbb{U} can form a topology because of the definition of topology is intersection of finite sub collection. If this can be intersection of infinite sub collection, \mathbb{U} will not be a topology.

1.2 Basis for a Topology

Definition 1.2.1 (basis). If X is a set, a **basis** for a topology on X is a collection B of subsets of X (called **basis elements**) such that:

- For each $x \in \mathbb{X}$, there is at least one basis element B containing x
- If x belongs to the intersection of two basis elements B_1 and B_2 , then there is another element $x \in B_3 \in \mathbb{B}$ such that $B_3 \subseteq B_1 \cap B_2$

Definition 1.2.2 (topology generated by basis). Let \mathbb{B} be a basis on \mathbb{X} . Let \mathbb{U} be a set containing all subsets U of \mathbb{X} such that for each element $x \in U$, there is $B \in \mathbb{B}$ that $x \in B \subseteq U$. Such \mathbb{U} formed a topology on \mathbb{X} , called **topology** \mathbb{T} **generated by** \mathbb{B}

Lemma 1.2.1. Let X be a set. Let \mathbb{B} be a basis for a topology \mathbb{T} on X. Then \mathbb{T} equals to the set of all possible unions of elements of \mathbb{B} .

Proof. Let set \mathbb{U} be the set of all possible unions of elements of \mathbb{B} . For any $U \in \mathbb{U}$. $U = \cup B^2$ for some $B \in \mathbb{B}$. Thus, for every $x \in U$, there exist a $B' \in \mathbb{B}$ that $x \in B' \subseteq U$. Thus, $U \in \mathbb{T}$.

Conversely, for any $U \in \mathbb{T}$. For any $x \in U$, let $x \in B_x \in U$. Then, $U = \bigcup_{x \in U} B_x$. Thus, $U \in \mathbb{U}$.

Therefore, \mathbb{U} equals to \mathbb{T} .

Lemma 1.2.2. ³ Let \mathbb{X} be a topological space. Suppose that \mathbb{C} is a collection of open sets of \mathbb{X} such that for each open set U of \mathbb{X} and each $x \in U$, there is an element $C \in \mathbb{C}$ such that $x \in C \subseteq C$. Then \mathbb{C} is a basis for the topology of \mathbb{X} .

Lemma 1.2.3. ⁴ Let \mathbb{B} and \mathbb{B}' be basis for the topologies \mathbb{T} and \mathbb{T}' , respectively, on \mathbb{X} . Then the following are equivalent:

- \mathbb{T}' is finer than \mathbb{T}
- For each $x \in \mathbb{X}$ and each basis element $B \in \mathbb{B}$ containing X, there is a basis element $B' \in \mathbb{B}'$ such that $x \in B' \subseteq B$.

Definition 1.2.3 (standard topology on the real line). Let be $\mathbb{B} = \{B | B = \{x | a < x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. \mathbb{B} formed a basis on real line. The topology generated by \mathbb{B} is called the standard topology on the real line ⁵.

Definition 1.2.4 (lower limit topology on the real line). Let be $\mathbb{B} = \{B | B = \{x | a \leq x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. \mathbb{B} formed a basis on real line. The topology generated by \mathbb{B} is called the **lower** limit topology on the real line. When \mathbb{R} is given this topology, we denote it by \mathbb{R}_l .

Definition 1.2.5 (K-topology on the real line). Let be $\mathbb{B} = \{B|B = \{x|a < x < b\}, a < b, a \in \mathbb{R}, b \in \mathbb{R}\}$. Let $K = \{x|x = \frac{1}{n}, n \in \mathbb{Z}_+\}$. $\mathbb{B} \cup \{B - K|B \in \mathbb{B}\}$ formed a basis on real line. The topology generated by \mathbb{B} is called the **K-topology on the real line**. When \mathbb{R} is given this topology, we denote it by $\mathbb{R}_{\mathbb{K}}$.

Lemma 1.2.4. ⁶ The topologies \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is strictly finer than the standard topology on \mathbb{R} .

²Note that this expression may not be unique.

 $^{^3}$ We omit the proof of this lemma as it is obvious.

⁴We omit the proof of this lemma as it is obvious.

 $^{^{5}}$ Whenever we consider \mathbb{R} , we shall suppose it is given this topology unless we specifically state otherwise.

⁶We omit the proof of this lemma as it is obvious.

Lemma 1.2.5. The topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is not comparable.

Proof. Let \mathbb{T}_l and $\mathbb{T}_{\mathbb{K}}$ be topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ respectively. Let $K = \{x | x = \frac{1}{n}, n \in \mathbb{Z}_+\}$. We first proof that \mathbb{T}_l is not finer than $\mathbb{T}_{\mathbb{K}}$. Let $U = \{x | -1 < x < 1\} - K, x = 0$. If there exist $B = \{x | a \le x < b\} \in \mathbb{T}_l$ such that $x \in B \subseteq U$, then 0 < b < 1. Thus, there exist $n \in \mathbb{Z}_+$ that $0 < \frac{1}{n} < b$. Thus B is not a subset of U.

Then we proof that $\mathbb{T}_{\mathbb{K}}$ is not finer than \mathbb{T}_{l} . Let $U' = \{x | a' \leq x < b'\}$. If there exist $B' = \{x | a'' < x < b''\} or \{x | a'' < x < b''\} - K \text{ such that } a' \in B \subseteq U. \text{ Thus } a'' < a < b''. \text{ Thus } a'' < a < b''.$ there exist c that $a'' < x < a, x \in B, x \notin U'$. Thus $B' \nsubseteq U'$.

Thus the topologies of \mathbb{R}_l and $\mathbb{R}_{\mathbb{K}}$ is not comparable.

Definition 1.2.6 (subbasis). A subbasis \mathbb{S} for a topology on \mathbb{X} is a collection of subsets of $\mathbb X$ whose union equals $\mathbb X$. The topology generated by the subbasis $\mathbb S$ is defined to be the collection \mathbb{T}^7 of all unions of finite intersections of elements of \mathbb{S} .

1.2.1 Exercise

1. Show that if \mathbb{A} is a basis for a topology on \mathbb{X} , then the topology generated by \mathbb{A} equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.

Proof. As a subbasis is also a basis, we will directly prove the case of subbasis here.

Let $\mathbb{S} = \{\mathbb{T}_{\alpha}\}$ be set contain all the topologies that contain A. Let \mathbb{T} be the topology that A generated. Let $\mathbb{T}' = \cap \mathbb{T}_{\alpha}$.

First, $\mathbb{A} \subseteq \mathbb{T}_{\alpha}$. Thus, $\mathbb{T} \subseteq \mathbb{T}_{\alpha}$. Thus, $\mathbb{T} \subseteq \mathbb{T}'$.

Also, $\mathbb{A} \subseteq \mathbb{T}$. Thus, $\mathbb{T} \in \mathbb{S}$. Thus, $\mathbb{T}' \subseteq \mathbb{T}$.

Thus, $\mathbb{T} = \mathbb{T}'$

The Order Topology

Definition 1.3.1 (interval). Let \mathbb{X} is a set having a simple order relation <. Given elements a and b of X such that a < b, there are four subsets of X that are called **intervals** determined by a and b:

- $(a,b) = \{x | a < x < b\}$
- $(a,b] = \{x | a < x \le b\}$
- $[a,b) = \{x | a \le x < b\}$
- $[a,b] = \{x | a \le x \le b\}$

(a,b) is called an **open interval** on \mathbb{X} . [a,b] is called an **closed interval** on \mathbb{X} . (a,b] and [a, b) is called **half-open intervals**.

Definition 1.3.2 (order topology). ⁹ Let \mathbb{X} be a set with a simple order relation; assume \mathbb{X} has more than one element. Let \mathbb{B} be the collection of all sets of the following types:

• All open intervals (a, b) in X.

⁷It is obvious that \mathbb{T} is a topology, we just omit the proof here.

⁸It is obvious that \mathbb{T}' is also a topology, we just omit the proof here.

⁹The standard topology on \mathbb{R} is an order topology derived from the usual order on \mathbb{R} .

- All intervals of the form $[a_0,b)$, where a_0 is the smallest element (if exist) of \mathbb{X} .
- All intervals of the form $(a, b_0]$, where b_0 is the largest element (if exist) of \mathbb{X} .

The collection \mathbb{B} formed a basis for a topology on \mathbb{X} , which is called the order topology.

Definition 1.3.3 (ray). ¹⁰¹¹ If X is an ordered set, and a is an element of X, there are four subsets of X that are called **rays** determined by a:

- $(a, +\infty) = \{x | x > a\}$
- $(-\infty, a) = \{x | x < a\}$
- $[a, +\infty) = \{x | x \ge a\}$
- $(-\infty, a] = \{x | x \le a\}$

 $(a, +\infty)$ and $(-\infty, a)$ are called **open rays**. $[a, +\infty)$ and $(-\infty, a]$ are called **closed rays**.

1.4 The Product Topology

Definition 1.4.1 (product topology). Let X and Y be topological spaces. The **product topology** on $X \times Y$ having a basis B containing all sets of the form $U \times V$, where U and V is open sets of X and Y respectively.

Theorem 1.4.1. ¹² If \mathbb{B} and \mathbb{C} is basis for the topology of \mathbb{X} and \mathbb{Y} respectively, then the collection

$$\mathbb{D} = \{B \times C | B \in \mathbb{B} and C \in \mathbb{C}\}$$

is a basis for the topology of $\mathbb{X} \times \mathbb{Y}$

Definition 1.4.2 (projection). Let $\pi_1 : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ be defined by the equation:

$$\pi_1(x,y) = x$$

Let $\pi_2: \mathbb{X} \times \mathbb{Y} \to \mathbb{Y}$ be defined by the equation:

$$\pi_1(x,y) = y$$

The maps π_1 and π_2 are called the **projections** of $\mathbb{X} \times \mathbb{Y}$ onto its first and second factors, respectively.

Theorem 1.4.2. ¹³ The collection

$$\mathbb{S} = \{\pi_1^{-1}(U)|Uopenin\mathbb{X}\} \cup \{\pi_2^{-1}(V)|Vopenin\mathbb{Y}\}\$$

is a subbasis for the product topology on $\mathbb{X} \times \mathbb{Y}$.

 $^{^{10}}$ open rays are always open sets in the order topology

¹¹the open rays also formed a subbasis of the order topology

 $^{^{12}\}mathrm{We}$ omit the proof of this lemma as it is obvious.

¹³We omit the proof of this lemma as it is obvious.