Lagrange Polynomial

- Useful when the grid points are fixed but function values may be changing (estimating the temperature at a point using the measured temperatures at nearby points)
- The value of the Lagrange polynomials at the desired point need to be calculated only once
- Then, we just need to multiply these values with the corresponding temperatures
- What if a new measurement is added?
- The polynomials will need to be recomputed

Interpolation: Newton's divided difference

$$f_n(x) = \sum_{j=0}^n c_j \phi_j(x)$$

• The basis function, ϕ_i , is an i^{th} -degree polynomial, which is zero at all "previous" points. $\phi_0 = 1$, and, for i > 0,

$$\phi_i(x) = \prod_{j=0}^{i-1} (x - x_j)$$

• For example, using the same data (x=0,1,2):

$$f_n(x) = \sum_{j=0}^n c_j \phi_j(x)$$

$$\phi_0(x) = 1; \phi_1(x) = x - x_0; \phi_2(x) = (x - x_0)(x - x_1)$$

$$\phi_3(x) = (x - x_0)(x - x_1)(x - x_2)$$

- Applying the equality of function value and the polynomial value at $x=x_0$: $c_0=f(x_0)$.
- At $x=x_1$:

$$f(x_1) = c_0 + c_1(x_1 - x_0) \Rightarrow c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

• At $x=x_2$:

$$f(x_{2}) = c_{0} + c_{1}(x_{2} - x_{0}) + c_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$\Rightarrow c_{2} = \frac{f(x_{2}) - f(x_{0}) - (x_{2} - x_{0}) \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$= \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$= \frac{x_{2} - x_{1}}{(x_{2} - x_{0})}$$

The divided difference notation:

$$f[x_{j}, x_{i}] = \frac{f(x_{j}) - f(x_{i})}{x_{j} - x_{i}} = f[x_{i}, x_{j}]$$

$$f[x_{k}, x_{j}, x_{i}] = \frac{f[x_{k}, x_{j}] - f[x_{j}, x_{i}]}{x_{k} - x_{i}} = f[x_{i}, x_{j}, x_{k}] = \dots$$

$$f[x_{n}, x_{n-1}, \dots, x_{2}, x_{1}, x_{0}] = \frac{f[x_{n}, x_{n-1}, \dots, x_{2}, x_{1}] - f[x_{n-1}, \dots, x_{2}, x_{1}, x_{0}]}{x_{n} - x_{0}}$$

• First divided difference, second,...,nth

The ith coefficient is then given by the ith divided difference:

$$c_0 = f(x_0); c_1 = f[x_1, x_0]; c_2 = f[x_2, x_1, x_0]; ...$$

$$c_n = f[x_n, x_{n-1}, ..., x_2, x_1, x_0]$$

If hand-computed: easier in a tabular form

X	f(x)	f[x1,x0]	f[x2,x1,x0]	
0	1			1
		2		$c_0 = 1; c_1 = 2; c_2 = 1$
1	3		1	
		4	$f_2(x) =$	=1+2(x-0)+1(x-0)(x-1)
2	7			
				$=1+x+x^{2}$

Newton's divided difference: Error

The remainder may be written as:

$$R_n(x) = f(x) - f_n(x) = \phi_{n+1}(x) f[x, x_n, x_{n-1}, ..., x_2, x_1, x_0]$$
 where

$$\phi_{n+1}(x) = (x - x_0)(x - x_1)(x - x_2)...(x - x_n)$$

• Since f(x) is not known, we may approximate it by using another point $(x_{n+1}, f(x_{n+1}))$ as

$$R_n(x) \cong f_{n+1}(x) - f_n(x) = \phi_{n+1}(x) f[x_{n+1}, x_n, x_{n-1}, \dots, x_2, x_1, x_0]$$

Interpolation: Runge phenomenon

- Using piece-wise polynomial interpolation
- Given $(x_k, f(x_k))$ k = 0,1,2,...,n
- Interpolate using "different" polynomials between smaller segments
- Easiest: Linear between each successive pair
- Problem: First and higher derivatives would be discontinuous

- Most common: Cubic spline
- Given $(x_k, f(x_k))$ k = 0,1,2,...,n
- Interpolate using the cubic splines:

$$S_i(x) = c_{0,i} + c_{1,i}(x - x_i) + c_{2,i}(x - x_i)^2 + c_{3,i}(x - x_i)^3$$

between the points x_i and x_{i+1} (i=0,1,2,...,n-1)

- 4 "unknown" coefficients. Two obvious conditions are: $S_i(x_i) = f(x_i)$ and $S_i(x_{i+1}) = f(x_{i+1})$
- 2 "degrees of freedom" in each "segment"

- Total n segments => 2n d.o.f
- Equality of first and second derivative at interior nodes: 2(n-1) constraints
- Need 2 more constraints (discussed later)!
- How to obtain the coefficients?
- The second derivative of the cubic spline is linear within a segment. Write it as

$$S_i''(x) = \frac{1}{x_{i+1} - x_i} \left[(x_{i+1} - x) S_i''(x_i) + (x - x_i) S_i''(x_{i+1}) \right]$$

Integrate it twice:

$$S_i(x) = \frac{1}{6(x_{i+1} - x_i)} \left[(x_{i+1} - x)^3 S_i''(x_i) + (x - x_i)^3 S_i''(x_{i+1}) \right] + C_1 x + C_2$$

and equating the function values at nodes:

$$f(x_i) = \frac{(x_{i+1} - x_i)^2 S_i''(x_i)}{6} + C_1 x_i + C_2$$
$$f(x_{i+1}) = \frac{(x_{i+1} - x_i)^2 S_i''(x_{i+1})}{6} + C_1 x_{i+1} + C_2$$

Resulting in

$$S_{i}(x) = \frac{(x_{i+1} - x)^{3} S_{i}''(x_{i}) + (x - x_{i})^{3} S_{i}''(x_{i+1})}{6(x_{i+1} - x_{i})} + \left[\frac{f(x_{i})}{x_{i+1} - x_{i}} - \frac{(x_{i+1} - x_{i})S_{i}''(x_{i})}{6}\right](x_{i+1} - x) + \left[\frac{f(x_{i+1})}{x_{i+1} - x_{i}} - \frac{(x_{i+1} - x_{i})S_{i}''(x_{i+1})}{6}\right](x - x_{i})$$

How to find the nodal values of S"?

• Continuity of first derivatives: $S'_i(x_i) = S'_{i-1}(x_i)$

$$S'_{i}(x_{i}) = -\frac{(x_{i+1} - x_{i})S''_{i}(x_{i})}{3} - \frac{(x_{i+1} - x_{i})S''_{i}(x_{i+1})}{6} + \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}}$$

$$S'_{i-1}(x_{i}) = \frac{(x_{i} - x_{i-1})S''_{i-1}(x_{i})}{3} + \frac{(x_{i} - x_{i-1})S''_{i-1}(x_{i-1})}{6} + \frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}$$

- Second derivative is also continuous
- We get a tridiagonal system

$$(x_{i} - x_{i-1})S''_{i-1} + 2(x_{i+1} - x_{i-1})S''_{i} + (x_{i+1} - x_{i})S''_{i+1}$$

$$= 6 \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}} - 6 \frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}$$

- What are the 2 more required constraints?
 - \triangleright Clamped: The function is clamped on each corner node forcing both ends to have some **known** fixed slope, say, s_0 and s_n . This implies $S_0' = s_0$ and $S_n' = s_n$
 - Natural: Curvature at the corner nodes is zero, i.e.,

$$S_0'' = S_n'' = 0$$

➤ Not-a-knot: The first and last **interior** nodes have C³ continuity, i.e., these do not act as a knot, i.e.,

$$S_0(x) \equiv S_1(x)$$
 and $S_{n-2}(x) \equiv S_{n-1}(x)$

For periodic functions, $S'_0 = S'_n$ and $S''_0 = S''_n$

Spline Interpolation: Example

• From the following data, estimate f(2.6)

 x
 0
 1
 2
 3
 4

 f(x)
 1
 0.5
 0.2
 0.1
 0.05882

• The tridiagonal equations are (using natural spline, $S_0'' = S_4'' = 0$):

$$\begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} S_1'' \\ S_2'' \\ S_3'' \end{bmatrix} = \begin{bmatrix} 1.2 \\ 1.2 \\ 0.35294 \end{bmatrix}$$

• Solution : $S_1'' = 0.2420; S_2'' = 0.2319; S_3'' = 0.03025$

Spline Interpolation: Example

The desired spline (between 2 and 3) is

$$S_2(x) = \frac{(x_3 - x)^3 S_2'' + (x - x_2)^3 S_3''}{6(x_{i+1} - x_i)}$$

$$+ \left[\frac{f(x_2)}{x_3 - x_2} - \frac{(x_3 - x_2)S_2''}{6} \right] (x_3 - x)$$

Putting values

$$+ \left[\frac{f(x_3)}{x_3 - x_2} - \frac{(x_3 - x_2)S_3''}{6} \right] (x - x_2)$$

$$S_2(x) = \frac{(3-x)^3 \cdot 0.2319 + (x-2)^3 \cdot 0.03025}{6} + \left[0.2 - \frac{0.2319}{6}\right](3-x) + \left[0.1 - \frac{0.03025}{6}\right](x-2)$$

• At x=2.6, f(x)=0.1251