Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Inteligencia Artificial

Algoritmos Genéticos Plants vs Zombies vs Evolution

Plants vs Zombies es un juego muy conocido donde un grupo de zombies intenta atacar a una persona que vive en los suburbios, el cual utiliza unas plantas para protegerse. Se recomienda ver el juego (https://www.youtube.com/watch?v=RmXB07gB-pc) para obtener mejores referencias.

Crazy Dave es el vecino excéntrico del dueño de la casa y ha notado que los zombies se están volviendo más inteligentes, de manera que decide planear un contra-ataque y decide pedir ayuda de los alumnos de la materia Inteligencia Artificial para lograrlo. Nuestro traductor experto se encargo de traducir las locuras de Crazy Dave en las condiciones del problema:

- El jardín se encuentra representado por una matriz, la cual mide W x H.
- Las plantas pueden estar en cualquier coordenada entre (1,1) y (4,H).
- Los zombies inician en cualquier coordenada entre (W,1) y (W,H).
- Los zombies tienen solo dos posibles movimientos:
 - 1. Moverse una posición a la izquierda.
 - 2. Atacar a una planta que se encuentre en la misma casilla que él y moverse una posición a la izquierda.
- Los zombies están obligados a atacar cuando se encuentran en la misma casilla que una planta.
- Los zombies entran al jardín en un orden determinado, cada zombie entra un turno después del otro, exceptuando el 1er zombie el cual entra al jardín apenas comienza la partida.
- Existen varios tipos de plantas:
 - 1. Peashooter: Disparan un guisante cada turno, muere con un ataque.
 - 2. Repeater: Dispara 2 guisante cada turno, muere con un ataque.
 - 3. Potato Mine: Explota cuando un zombie pasa sobre él, provocando la muerte de la planta y el zombie que estuviera pasando en ese momento.
- Se tiene una cantidad limitada de cada tipo de planta.
- Los zombies mueren luego de 4 ataques o si son explotados.
- Los zombies ganan si logran llegar a cualquier coordenada entre (1,1) y (1,H).
- Las plantas ganan si logran eliminar a todos los zombies.

Representación

Luego de realizar un extenso estudio sobre el problema que aqueja a los zombies hemos creado una representación sencilla del problema.

- El jardín será representado por una matriz de 4xH, el cual representa las posiciones del jardin en el rango (1,1) y (4,H).
- Cada posición de la matriz corresponde a la posición de una de las plantas en el jardín. Cada tipo de planta tiene un identificador:
 - 0. Vacio.
 - 1. Peashooter.
 - 2. Repeater.
 - 3. Potato Mine.
- Los zombies serán representados por **Z** enteros. Donde Z es la cantidad de zombies que

- atacan al jardín. La posición del zombie indica cual aparecerá en el i-ésimo turno.
- Cada zombie será representado por un entero que corresponde a la fila en la que aparece.
- El objetivo es conseguir una buena distribución de las plantas de manera que los zombies pierdan.

Entrada

Se recibirá por entrada 3 enteros **W, H y Z** que representan el tamaño del jardín y la cantidad de zombies respectivamente. La siguiente linea contendrá **Z** enteros **ZFi**, el cual representa la fila en la que aparece el i-ésimo zombie.

Salida

Se debe imprimir la mejor distribución de las plantas encontrada por el Algoritmo Genético.

Entrada	Salida
10 1 3	1 3 3 3
111	

Nota. Esta permitido utilizar variantes del AG para resolver el problema, sin embargo se puede resolver sin problemas utilizando **Cruce** y **Mutación Clásicos**.

Puntos Extras

Se le entregaran puntos extras a aquellos que además realicen una o varios de estos requisitos extra:

- Representación visual del AG, donde pueda observarse la gráfica de Mejor Aptitud y Aptitud Promedio. Además de permitir el ingreso de los datos a través de la interfaz.
- Agregar la siguiente restricción al problema:
 - Cada planta tiene un costo para ser colocado en el jardín:
 - 1. Peashooter (100)
 - 2. Repeater (200)
 - 3. Potato Mine (50)
 - La suma de costos de las plantas en el jardín no deben exceder un costo máximo C.
 - En este caso la entrada en la primera linea se agregaría **C** luego del valor para **Z**.

Reglas de Entrega:

Para la entrega se debe tomar los siguientes aspectos en cuenta:

- El proyecto puede ser realizado en cualquier lenguaje, pero se sugiere utilizar java, c o c++.
- El proyecto puede ser realizado por grupos de **máximo** 2 personas.
- Los proyectos deben ser entregados en un archivo comprimido el cual debe seguir el siguiente formato:
 - NombreApellido1_NombreApellido2_Proyecto1
- No está permitido usar librerías que ya implementen herramientas para el desarrollo de AG.
- Está estrictamente prohibido la copia del proyecto. Cualquier indicio de ello será sancionado. **Sin Excepciones**.

Fecha de Entrega: 29 de Enero del 2014

Alejandro Rafael Monascal Caso