Lista Exercícios

- 1. Faça as conversões de base pedidas, mostrando as divisões/multiplicações efetuadas, caso sejam necessárias.
 - (a) (43)₁₀ p/ binário
 - (b) $(10111110)_2$ p/ decimal
 - (c) (10111110)₂ p/ base 16
 - (d) (10111110)₂ p/ base 8
 - (e) (DAAD)₁₆ p/ binário
 - (f) (BEFE)₁₆ p/ decimal
- 2. Efetue as operações abaixo em binário.
 - (a) 11010 + 1a110 + 1110
 - (b) 10101 1100
 - (c) 1011001 1100011
- **3.** Considere duas variáveis lógicas, C que indica se **chove** e F que indica se faz **frio**, e as funções lógicas abaixo:
 - P o tempo está **péssimo** quando **chove e faz frio**;
 - R o tempo está **ruim** quando **chove ou faz frio**;
 - M o tempo está mais ou menos quando chove mas não faz frio, ou vice-versa;
 - B o tempo está bom quando não chove nem está frio;
 - S o tempo está **seco** quando **não chove**.
 - (a) Complete as tabelas verdade abaixo, onde 1 representa verdadeiro e 0 representa falso.

С	F	Р	R	М	В	S
0	0					
0	1					
1	0					
1	1					

- (b) Deduza expressões lógicas para as funções, P/R/M/B/S.
- (c) Qual o contrário de R tempo ruim? E de M tempo mais ou menos?

- **4.** Escreva a tabela verdade de cada uma das expressões abaixo e represente-as na forma padrão de soma-de-produtos.
 - (a) X+Y+Z
 - (b) $X(\overline{Y+Z})+XY$
 - (c) $\overline{X}+Y+Z$
- 5. Construa o mapa de Karnaugh de:
- (a) $X = AB + \overline{BC} + AC$
- (b) $Z = \overline{ABD} + \overline{BCD} + \overline{BCD} + \overline{ABD}$
- **6.** Escreva na forma mínima de soma-de-produtos:

- 7. Mostre que as operações lógicas NOT, AND e OR podem ser construídas usando-se apenas portas NAND.
- 8. Idem, usando portas NOR.
- 9. Para cada um dos circuitos abaixo: (a) Determine uma expressão lógica para X a partir do circuito digital abaixo. (b) Simplifique a expressão lógica e construa um circuito equivalente a partir da expressão simplificada.

10. Construa o circuito para as expressões abaixo

(a)
$$X = AB + CDE$$

(b)
$$X = A + (B + CD) \cdot (B + A)$$

(c)
$$F = (A+B) \cdot (C+D) \cdot E$$

(d)
$$Y = A \cdot B \cdot (C + D) + E$$

(e)
$$Y = (A + B) \cdot (C + D) + E$$

(f)
$$Z = A + (BC + DE) + FG + H$$

(g)
$$X = A(B \oplus C)$$

(h)
$$X = (\overline{A+B})(C \oplus (A+\overline{D}))$$

(i)
$$X = B\overline{C}A + \overline{(\overline{C} \oplus D)}$$

(j)
$$X = ((A + \overline{B} \oplus D) \cdot (\overline{C} + A) + B) \cdot \overline{A + B}$$

(k)
$$X = A \oplus B + \overline{C}B + \overline{A}$$

11. Simplifique os seguintes mapas de Karnaugh

	$\begin{array}{c} yz \\ x \end{array}$	00	01	11	10
(a)	0	1	0	0	1
	1	1	0	1	1

	$\begin{bmatrix} zw \\ xy \end{bmatrix}$	00	01	11	10
	00	1	1	0	1
(b)	01	1	0	0	1
	11	1	0	0	1
	10	1	1	0	1

`	cd ab	00	01	11	10
	00	1	0	0	1
(c)	01	0	0	1	0
	11	0	1	0	0
	10	1	0	0	1

`	j gh	00	01	11	10
	00	0	1	1	0
(d)	01	1	0	0	1
	11	1	0	0	1
	10	0	1	1	0

`	gh	00	01	11	10
	00	0	1	1	0
(e)	01	1	1	1	1
	11	1	1	1	1
	10	0	1	1	0

12. Junte somadores completos de 4 bits para fazer um somador completo de 32 bits?

- 13. Monte um somador binário para números de 5 bits, usando 5 somadores completos de 1 bit.
- **14.** Na figura a seguir é apresentado um demultiplexador 1-para-4. E é a entrada de dados, a qual será conectada a Dx quando S1S0 = x e os demais Di serão zerados. Use este demultiplexador como componente para construir um demultiplexador 1-para-8.

- **15.** Partindo da simplificação de um somador de 4-bits, construa um incrementador-de-5 sem saída de "vaium", que soma o valor binário 0101 à entrada de 4-bits. A função a ser implementada é S = A + 0101. Lembrete do funcionamento de um somador completo: Si = A ⊕ Bi ⊕ Ci e Ci+1 = AiBi + AiCi + BiCi.
- **16.** Projete um Flip-Flop J-K usando somente Flip-Flops D e portas lógicas.
- **17.** Um flip-flop T possui apenas uma entrada (T), além do clock, e apresenta o seguinte comportamento. Se a entrada T for 0, a saída mantém- se no valor atual. Se a entrada T for 1, o novo estado será o complemento do estado atual. Projete um flip-flop T utilizando um flip-flop JK. E se for com Flip-Flop D?