

SILVER OAK UNIVERSITY EDUCATION TO INNOVATION

SILVER OAK COLLEGE OF COMPUTER APPLICATION

SUBJECT: MACHINE LEARNING

TOPIC: Unit:-2 Supervised Learning (Linear Regression)

Linear Regression Equation

Linear regression is a way to model the relationship between two variables. You might also recognize the equation as the **slope formula**. The equation has the form Y= a + bX, where Y is the dependent variable (that's the variable that goes on the Y axis), X is the independent variable (i.e. it is plotted on the X axis), b is the slope of the line and a is the y-intercept.

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

Step 1: Make a chart of your data, filling in the columns in the same way as you would fill in the chart if you were finding the Pearson's Correlation Coefficient.

14399425718499801325791975625624155787495932497569

Subject	Age x	Glucose Level y	ху	x ²	y ²
2	21	65	1365	441	4225
4	42	75	3150	1764	5625
6	59	81	4779	3481	6561
Σ	247	486	20485	11409	40022

Step 2: Use the following equations to find a and b.

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b = .385225$$

Find a:

```
((486 × 11,409) – ((247 × 20,485)) / 6 (11,409) – 247<sup>2</sup>)
484979 / 7445
=65.14
```

Find b:

```
(6(20,485) - (247 \times 486)) / (6 (11409) - 247^2)

(122,910 - 120,042) / 68,454 - 247^2

2,868 / 7,445

= .385225
```

Step 3: Insert the values into the equation.

$$y' = a + bx$$

$$y' = 65.14 + .385225x$$

Solved Examples

1. Find a linear regression equation for the following two sets of data:

X	2	4	6	8
у	3	7	5	10

X	у	X ²	ху
2	3	4	6
4	7	16	28
6	5	36	30
8	10	64	80
Σx = 20	Σy = 25	$\Sigma x^2 = 120$	Σxy = 144

$$\mathbf{a} = \frac{\left(\sum_{Y}\right)\left(\sum_{X^{2}}\right) - \left(\sum_{X}\right)\left(\sum_{XY}\right)}{n\left(\sum_{x^{2}}\right) - \left(\sum_{x}\right)^{2}}$$

Now put the values in the equation

$$a = rac{25 imes 120 - 20 imes 144}{4 imes 120 - 400}$$

$$a = \frac{120}{80}$$

$$a = 1.5$$

$$\mathbf{b=} \; \frac{n \left(\sum_{XY}\right) - \left(\sum_{X}\right) \left(\sum_{Y}\right)}{n \left(\sum_{x^2}\right) - \left(\sum_{x}\right)^2}$$

Put the values in the equation

$$b = \frac{4 \times 144 - 20 \times 25}{4 \times 120 - 400}$$

$$b = \frac{76}{80}$$

$$b = 0.95$$

Hence we got the value of a = 1.5 and b = 0.95

The linear equation is given by

$$Y = a + bx$$

Now put the value of a and b in the equation

Hence equation of linear regression is y = 1.5 + 0.95x

Polynomial Regression

$$y=a_0+a_1*x+a_2*x^2+....++a_n*x^n$$

Problem Deninition:

Find a quadratic regression model for the following data:

X	Υ
3	2.5
4	3.2
5	3.8
6	6.5
7	11.5

Solution:

Let the quadratic polynomial regression model be

$$y=a_0+a_1*x+a_2*x^2$$

The values of a_0 , a_1 , and a_2 are calculated using the following system of equations:

$$\sum y_i = na_0 + a_1(\sum x_i) + a_2(\sum x_i^2)$$

$$\sum y_i x_i = a_0(\sum x_i) + a_1(\sum x_i^2) + a_2(\sum x_i^3)$$

$$\sum y_i x_i^2 = a_0(\sum x_i^2) + a_1(\sum x_i^3) + a_2(\sum x_i^4)$$

First, we calculate the required variables and note them in the following table.

	x	у	x ²	x ³	x ⁴	y*x	y*x²
	3	2.5	9	27	81	7.5	22.5
s.	4	3.2	16	64	256	12.8	51.2
	5	3.8	25	125	625	19	95
	6	6.5	36	216	1296	39	234
	7	12	49	343	2401	80.5	563.5
Σ	25	27.5	135	775	4659	158.8	966.2

Using the given data we,

$$27.5 = 5a_0 + 25a_1 + 135a_2$$

$$158.8 = 25a_0 + 135a_1 + 775a_2$$

$$966.2 = 135a_0 + 775a_1 + 4659a_2$$

Solving this system of equations we get

$$a_0 = 12.4285714$$

$$a_1 = -5.5128571$$

$$a_2 = 0.7642857$$