Weak Schur numbers P05 - Formation à la recherche

Romain Ageron, Paul Castéras, Thibaut Pellerin, Yann Portella

1 février 2021

En 1917, le russe Issai Schur pose le problème suivant :

En 1917, le russe Issai Schur pose le problème suivant :

- On se donne n > 1 un entier
- $k \ge 1$ un autre entier, qui correspond au nombre de **couleurs**

En 1917, le russe Issai Schur pose le problème suivant :

- On se donne $n \ge 1$ un entier
- $k \ge 1$ un autre entier, qui correspond au nombre de **couleurs**

Question

Peut-on colorier les entiers de 1 à n de sorte que si deux nombres ont la même couleur, leur somme n'est pas de cette couleur? Si oui, un tel coloriage est dit **sans sommes**.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Pour n = 13 et k = 3, le coloriage

vérifie cette propriété.

Définition

Pour k couleurs, on note S(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété. C'est le k-ième **nombre de Schur**.

Sur l'exemple, on peut vérifier que S(3)=13 : on ne peut colorier $[\![1,14]\!]$ avec trois couleurs.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres **différents** de même couleur, leur somme n'est pas de la même couleur. On définit de même WS(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété plus faible.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres **différents** de même couleur, leur somme n'est pas de la même couleur. On définit de même WS(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété plus faible.

Un coloriage sans sommes et en particulier faiblement sans somme, donc on a toujours $WS(k) \geq S(k)$.

Définition

Un coloriage est dit **faiblement sans sommes** lorsque pour deux nombres **différents** de même couleur, leur somme n'est pas de la même couleur. On définit de même WS(k) le plus grand entier n tel qu'on puisse colorier les entiers de 1 à n en vérifiant cette propriété plus faible.

Un coloriage sans sommes et en particulier faiblement sans somme, donc on a toujours $WS(k) \ge S(k)$.

$$S(2) = 4 \text{ mais } WS(2) = 8$$

• Pour montrer que S(k) = n, il faut trouver un coloriage sans sommes de [1, n] à k couleurs **et** montrer qu'on ne peut pas colorier [1, n+1].

- Pour montrer que S(k) = n, il faut trouver un coloriage sans sommes de [1, n] à k couleurs **et** montrer qu'on ne peut pas colorier [1, n + 1].
- En pratique, on se contente de **minorer** S(k). Si on exhibe un coloriage à k couleurs de [1, n], on a montré que $S(k) \ge n$.

- Pour montrer que S(k) = n, il faut trouver un coloriage sans sommes de [1, n] à k couleurs **et** montrer qu'on ne peut pas colorier [1, n + 1].
- En pratique, on se contente de **minorer** S(k). Si on exhibe un coloriage à k couleurs de [1, n], on a montré que $S(k) \ge n$.
- Comment effectuer cette minoration? On peut démontrer des inégalités récursives ou bien rechercher des coloriages par ordinateur.

La borne inférieure établie par I. Schur est plutôt grossière :

$$\forall n \in \mathbb{N}^*, S(n+1) \geqslant 3S(n) + 1 \Longrightarrow \forall n \in \mathbb{N}^*, S(n) \geqslant \frac{3^n - 1}{2}$$

Une première piste pour améliorer cette borne est proposée par H. L. Abbott et D. Hanson en 1972. Ils prouvent :

$$\forall (m,n) \in (\mathbb{N}^*)^2, S(n+m) \geqslant S(n)(2S(m)+1)+S(m)$$

Que font-ils concrètement?

Un exemple pour n = m = 2:

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40					

$$S(4) \geqslant S(2)(2S(2)+1)+S(2)=40$$

- F. Rowley améliore cette approche théorique en 2020.
- On conserve l'extension verticale est horizontale de "structures" intéressantes.
- Cependant, on ne considère plus la première ligne comme un assemblage mais comme une structure en elle même.
- On applique l'extension verticale à une structure plus générale : les SF-templates.

Recette : SF-template = Partition sans somme + condition suivante :

$$\forall i \in [1, n-1], \forall (x, y) \in A_i^2, x+y > p \Longrightarrow x+y-p \notin A_i$$

Unarticlefondateur : Abbottet Hanson
Une extension par Rowley : les SF-templates
Nouvellesbornes

En fait, l'exemple précédent faisait déjà apparaître un SF-template, en voici un autre :

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40					

Unarticlefondateur :AbbottetHanson Une extension par Rowley : les SF-templates

Nouvellesbornes

Quelques résultats!

n	8	9	10	11
33 S(n-3) + 6	5 286	17 694	55 446	174 444
111 S(n-4) + 43	4927	17 803	59 539	186 523
380 S(n-5) + 148	5 088	16 868	60 948	203 828
1140 S(n-6) + 528	5 088	15 348	50 688	182 928

n	12	13	14	15
33 S(n-3) + 6	587 505	2 011 290	6 726 330	21 072 090
111 S(n-4) + 43	586 789	1 976 176	6 765 271	22 624 951
380 S(n-5) + 148	638 548	2 008 828	6 765 288	23 160 388
1140 S(n-6) + 528	611 568	1 915 728	6 026 568	20 295 948

• premières inégalités obtenu par Rowley :

•
$$WS(n+1) \ge 4S(n) + 2$$

•
$$WS(n+2) \geqslant 13S(n) + 8$$

• Inégalité généralisé : Soit $(n, k) \in \mathbb{N}^2$,

$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

InégalitésentrelesnombresdeSchuretdeWeakSchur PrincipegénéraldutemplateWeakSchur Nouvellesvaleursobtenus

$$WS(n+k) \geqslant \underbrace{S(k)}_{p} \underbrace{\left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right)}_{a} + \underbrace{WS(n)}_{b}$$

					1	2		r	r+1	 b-1	b
a-l	a-l+1		a-1	a	a+1		a+r-1	a+r	a+r+1	 a+b-1	a+b
2a-l				2a				2a + r		 	2a + b
pa-l				pa				pa + r		 	pa + b

• On cherche un template à n couleurs de cardinal $WS^+(n)$ tel que : $WS(n+k) \ge S(k)WS^+(n) + b$

• Or
$$WS(n+k) \geqslant S(k) \left(WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1\right) + WS(n)$$

• Par conséquent,
$$WS^+(n) \geqslant WS(n) + \left\lceil \frac{WS(n)}{2} \right\rceil + 1$$

n	8	9	10	11
4S(n-1)+2	6722	21 146	71214	243794
13S(n-2)+8	6976	21 848	68 726	231 447
42 S(n-3) + 24	6744	22536	70584	222036
n	12	13	14	15
4S(n-1)+2	815 314	2554194	8 045 162	27061154
13S(n-2)+8	792332	2649772	8 301 132	26 146 778
42 S(n-3) + 24	747 750	2559840	8 560 800	25886224