Proposta de Projeto: Análise Comparativa de Métodos de Extração de Características para Busca por Similaridade Visual no Dataset HAM10000

Resumo Executivo

Este projeto propõe uma análise comparativa de três métodos de extração de vetores de características para busca por similaridade visual no dataset HAM10000, com foco em imagens dermatoscópicas. O objetivo é avaliar a eficácia e o desempenho computacional de técnicas de complexidade crescente — desde uma abordagem simples baseada em cor média até uma solução avançada de deep learning — combinadas com algoritmos de ordenação. O estudo visa identificar os trade-offs entre custo computacional, simplicidade de implementação e relevância semântica dos resultados, fornecendo insights valiosos para aplicações em dermatologia assistida por inteligência artificial.

1 Objetivo Técnico

Desenvolver e comparar três técnicas de geração de vetores de características para medir similaridade visual no dataset HAM10000, avaliando:

- Eficácia: Qualidade semântica dos resultados de busca por similaridade.
- Desempenho: Custo computacional (tempo de extração e ordenação).
- Escalabilidade: Viabilidade para datasets de grande escala.

As técnicas serão integradas a algoritmos de ordenação para organizar o dataset com base em uma imagem de referência, produzindo uma análise detalhada dos trade-offs.

2 Escopo e Metodologia

O projeto está estruturado em duas etapas principais:

2.1 Etapa 1: Extração de Vetores de Características

Três técnicas serão implementadas para extrair vetores de características:

1. Técnica 1: Cor Média (Baseline)

- Descrição: Método simples que captura a tonalidade média da imagem.
- Processo: Calcula os valores médios dos canais RGB.
- Saída: Vetor de 3 dimensões: $[R_{\text{médio}}, G_{\text{médio}}, B_{\text{médio}}]$.
- Complexidade: O(n), onde n é o número de pixels.

2. Técnica 2: Segmentação com K-Means

- Descrição: Abordagem intermediária que segmenta a lesão do fundo da pele.
- Processo:
 - (a) Aplica K-Means (k = 2 ou k = 3) para agrupar pixels por cor.
 - (b) Identifica o cluster da lesão (baseado em escuridão/centralidade).
 - (c) Gera uma máscara binária da lesão.
 - (d) Calcula a cor média e a área relativa da lesão.
- Saida: Vetor de 4 dimensões: $[R_{lesão}, G_{lesão}, B_{lesão}, Area_{relativa}]$.
- Complexidade: $O(n \cdot i \cdot k)$, onde i é o número de iterações do K-Means.

3. Técnica 3: Deep Learning com CNN Pré-Treinada

- Descrição: Abordagem avançada que utiliza conhecimento semântico de redes neurais profundas.
- Processo:
 - (a) Carrega uma CNN pré-treinada (e.g., ResNet50 ou MobileNetV2) no dataset ImageNet.
 - (b) Remove a camada de classificação final.
 - (c) Extrai características da penúltima camada durante inferência.
- Saída: Vetor de alta dimensão (e.g., 2048 para ResNet50).
- Complexidade: Depende da arquitetura da CNN, geralmente $O(n \cdot d)$, onde dé a dimensionalidade da camada.

2.2 Etapa 2: Similaridade, Ordenação e Análise de Performance

- Entrada: Imagem de referência I_{ref} , dataset D, e vetores de características.
- Processo:
 - 1. Calcular scores de similaridade:
 - Técnicas 1 e 2: Distância Euclidiana.
 - Técnica 3: Similaridade de Cosseno.
 - 2. Ordenar os scores usando:
 - Insertion Sort $(O(n^2))$.
 - Quick Sort $(O(n \log n))$ em média).

3. Medir:

- $-T_{\rm extracão}$: Tempo total para gerar vetores de características.
- T_{ordenação}: Tempo de execução de cada algoritmo de ordenação.
- Saída: Lista ordenada de IDs das imagens (da mais similar à menos similar) e relatório de performance.

3 Entregáveis

1. Código-Fonte:

- Repositório Git com código em Python, modular, comentado e estruturado.
- Módulos: Extração de características (Técnicas 1, 2 e 3), ordenação e visualização.

2. Relatório Técnico (PDF, máx. 7 páginas):

- Introdução: Contexto do problema e objetivos.
- Metodologia: Detalhamento técnico das técnicas e algoritmos.
- Resultados e Análise:
 - Tabelas/gráficos comparando $T_{\text{extração}}$ e $T_{\text{ordenação}}$.
 - Análise da complexidade teórica (Big-O) vs. prática.
 - Visualização das 5 imagens mais similares por técnica, com discussão sobre relevância semântica.
- Conclusão: Síntese dos trade-offs entre simplicidade, custo e qualidade.

4 Critérios de Avaliação

- Funcionalidade: Implementação correta de todas as técnicas e algoritmos.
- Análise Comparativa: Clareza e profundidade na análise de desempenho e resultados.
- Qualidade do Código: Organização, modularidade e documentação.
- Relevância dos Resultados: Discussão crítica sobre a eficácia semântica das técnicas.

5 Impacto Esperado

Este projeto contribuirá para o avanço de sistemas de busca por similaridade visual em imagens médicas, com aplicações potenciais em triagem dermatológica assistida por IA. A análise comparativa oferecerá insights sobre a viabilidade de diferentes abordagens, equilibrando precisão e eficiência, e pavimentará o caminho para soluções escaláveis em diagnósticos visuais.