Written Exercises

Tell whether a triangle with sides of the given lengths is acute, right, or obtuse.

1. 11, 11, 15

2. 9. 9. 13

3. 8. $8\sqrt{3}$. 16

4. 6, 6,
$$6\sqrt{2}$$

5. 8, 14, 17

6. 0.6. 0.8. 1

b. 5n, 12n, 13n where n > 0

b. 3n, 4n, 5n where n > 0

9. Given:
$$\angle UTS$$
 is a rt. \angle . Show that $\triangle RST$ must be a rt. \triangle .

Use the information to decide if $\triangle ABC$ is acute, right, or obtuse.

11.
$$AC = 13$$
, $BC = 15$, $CD = 12$

12.
$$AC = 10$$
, $BC = 17$, $CD = 8$

13.
$$AC = 13$$
, $BC = \sqrt{34}$, $CD = 3$

14.
$$AD = 2$$
, $DB = 8$, $CD = 4$

- 15. The sides of a triangle have lengths x, x + 4, and 20. Specify those values of x for which the triangle is acute with longest side 20.
- 16. Sketch $\Box EFGH$ with EF = 13, EG = 24, and FH = 10. What special kind of parallelogram is EFGH? Explain.
- 17. Sketch $\square RSTU$, with diagonals intersecting at M. RS = 9, ST = 20, and RM = 11. Which segment is longer, \overline{SM} or \overline{RM} ? Explain.
- 18. If x and y are positive numbers with x > y, show that a triangle with sides of lengths 2xy, $x^2 - y^2$, and $x^2 + y^2$ is always a right triangle.
- 19. a. Complete this statement of Theorem 8-5: If the square of the longest side of a triangle _?
 - **b.** Prove Theorem 8-5.

Given: $\triangle RST$; $l^2 > j^2 + k^2$

Prove: $\triangle RST$ is an obtuse triangle.

(*Hint*: Start by drawing right $\triangle UVW$ with legs j and k.

Compare lengths l and n.)

