Table of Contents

简介 基础安装 固件		1.1
		1.2
	analysis	1.4.1
	anaroot	1.4.2
	checkcnt	1.4.3
	cutpedo	1.4.4
	DAQConfig	1.4.5
	httponline	1.4.6
	online	1.4.7
	r2root	1.4.8
	statistics	1.4.9

README

本程序为北京大学实验核物理组当前使用的 VME 获取。

该获取基于 RIKEN 的获取发展而来。我们已经对原本程序进行较大的修改。如果使用本程序,请严格使用本程序包内的程序,请勿随意升级/替换内部程序/固件。

版本

我们建议用户下载稳定版本

稳定版本

稳定版本 2018.12.03

下载最新版本,请点击: VMEDAQ stable

网页版说明书请访问: 说明书

准预览版本

准预览版本 2018.12.03

程序下载请访问: VMEDAQ

网页版说明书请访问: 说明书

关于

本程序历史维护:

- 李智焕
- 李晶
- 臧宏亮
- 吴鸿毅(wuhongyi@qq.com)

性能介绍

- 本获取经过Scientific Linux 6/7 系统测试。
- 支持多个机箱同步获取。将插件分散在多个机箱,可大大减少数据传输的死时间。
- 本获取分软件 busy 跟硬件 busy 两种模式。
- 对软件 busy 模式
 - 该模式下,一个事件的死时间由 trigger 门宽,7 us左右模数转换时间,20 us 数据传输中断请求及数据传输时间组成。其中除了数据传输时间,其它三个时间是固定的,大约为 30 us。
 - 限制该模式下计数率的因素为数据传输时间,数据越大,所需传输时间也就越长。
 - o 以一个机箱,300-500 路左右输入为例,平均10000 个触发能够记录5000-6000 个事件,效率在50-60%

- 如果以两三个插件为例,则能够达到70%+以上
- 对硬件 busy 模式
 - 。 该模下式,一个事件的死时间由 trigger 门宽,7 us 左右模数转换时间两部分组成。
 - 。 意味着该模式下一个事件的死时间大约在 11 us 左右。
 - 。 该模式模数转换及数据传输同步进行,因而数据高速传输产生的高频信号会对前放/主放的信号带来微小的影响。
 - 。 通过适当抬高阈值可消除该影响。
 - 。 该模式下获取效率及高,平均 10000 个触发能够记录 9000+ 个事件,效率达到90%

目录

文件夹内有以下文件/文件夹:

- analysis (一些用来辅助分析的代码)
- anaroot (底层库,用来将原始数据转为ROOT及在线统计)
- checkcnt (自动检查数据事件关联情况)
- cutpedo (自动拟合推荐合适pedo)
- DAQConfig (获取控制包)
- firmware (固件)
- httponline (基于网页的在线监视)
- online (在线监视能量,能谱)
- r2root (数据转换)
- source (babirl源码,将会配置自动化安装脚本)
- statistics(时时监视每路信号的计数率,每10ns更新一次)
- README.md (本文件)
- docs(网页版说明书)
- README (md版说明书)
- README.pdf (pdf说明书)

© Hongyi Wu updated: 2018-12-03 23:17:55

软件安装

- 系统要求
- CAEN Lib
- 检查CAENVMELib安装
- 检查CAENUpgrader安装
- V1718
- A2818驱动
- A3818驱动
- RIKEN babirl
- 其它配置

本页面安装软件放置在 source 文件夹内,里面包括获取驱动、依赖库等以及自动安装脚本。

系统要求

本获取经过 Scientific Linux 6/7 系统测试。建议采用 CentOS 6/7 或者 Scientific Linux 6/7。

本获取要求 CERN ROOT 5/6,建议优先选择 ROOT 6。

如果没有合适的系统,可参考我们的获取系统安装 Install Scientific 7。安装好系统之后,还需要对基础依赖工具做一些安装及升级,可以下载执行自动化安装脚本自动配置或者按照教程手动安装。

CAEN Lib

本程序依赖 CAENVMELib/CAENComm/CAENUpgrader 三个库文件。

其中 CAENVMELib/CAENComm 为获取运行必须的库。CAENUpgrader 用来更新固件。

进入 source 文件夹内,在 ROOT 权限下执行 setup.sh 脚本,将会自动安装以上三个依赖库。

```
# 在 source 文件夹内,ROOT 权限下执行以下命令
sh setup.sh #需要ROOT权限
```

检查CAENVMELib安装

进入 CheckRegisterToolByV2718 文件夹,make 编译里面程序,如果生成一个名为 pku 的可执行文件,则软件安装成功。

```
cd CheckRegisterToolByV2718
make
```

检查CAENUpgrader安装

安装后在终端中输入

CAENUpgraderGUI

将会弹出 CAEN Upgrader GUI 的图形界面。

V1718

如果您使用 V1718,则需要安装 USB 驱动。

```
tar -xzvf CAENUSBdrvB-1.5.2.tgz
cd CAENUSBdrvB-1.5.2
make
make install #需要ROOT权限
```

A2818驱动

如果您使用 A2818,则安装以下驱动。

```
# A2818Drv-1.20-build20161118.tgz
#将该文件夹复制到 /opt 并安装在该位置
tar -zxvf A2818Drv-1.20-build20161118.tgz
cp -r A2818Drv-1.20 /opt #需要ROOT权限
cd /opt/A2818Drv-1.20 #需要ROOT权限
cp ./Makefile.2.6-3.x Makefile #需要ROOT权限
make #需要ROOT权限

#從置开机自动执行该脚本
#在文件 /etc/rc.d/rc.local 中添加以下一行内容
/bin/sh /opt/A2818Drv-1.20/a2818_load
#或者在开启电脑之后执行以上命令
```

重启机箱后,在终端内输入 dmesg|grep a2818 将会看到以下的A2818驱动加载信息

```
a2818: CAEN A2818 CONET controller driver v1.20s
a2818: Copyright 2004, CAEN SpA
pci 0000:05:02.0: enabling device (0000 -> 0003)
pci 0000:05:02.0: PCI INT A -> GSI 19 (level, low) -> IRQ 19
a2818: found A2818 adapter at iomem 0xf7800000 irq 0, PLX at 0xf7900000
a2818: CAEN A2818 Loaded.
a2818: CAEN A2818: 1 device(s) found.
```

A3818驱动

如果您使用 A3818,则安装以下驱动。安装该驱动时,电脑机箱必须插入 A3818 卡,否则将会报安装失败。

```
tar -zxvf A3818Drv-1.6.1.tgz
cd A3818Drv-1.6.1
make
make install #需要ROOT权限
```

然后在终端内输入 dmesg 将会看到以下的A3818驱动加载信息

```
fuse init (API version 7.14)
CAEN A3818 PCI Express CONET2 controller driver v1.6.0s
```

```
Copyright 2013, CAEN SpA
pci 0000:02:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16
alloc irq_desc for 33 on node -1
alloc kstat_irqs on node -1
pci 0000:02:00.0: irq 33 for MSI/MSI-X
pci 0000:02:00.0: setting latency timer to 64
Found A3818 - Common BAR at iomem ffffc900067d4000 irq 0
Found A3818 with 1 link(s)
found A3818 Link 0 BAR at iomem ffffc900067d6000 irq 0
CAEN A3818 Loaded.
CAEN PCIe: 1 device(s) found.
```

RIKEN babirl

babirl自动化安装方法

```
#在个人用户目录下安装理研babirl库
#在普通权限下执行以下脚本
sh autoinstallbabirl.sh
```

会自动添加环境变量

安装结束后查看.bashrc文件,最后将多了三行如下内容

```
PATH=$PATH:/home/wuhongyi/babirl/bin/
export TARTSYS=/home/wuhongyi/VMEDAQ/anaroot
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TARTSYS/lib:$TARTSYS/sources/Core

#在ROOT权限下执行以下脚本
sh afterinstallbabirl.sh [user name] #需要ROOT权限

#其中这里的 [user name] 换成你的帐号用户名,例如我的用户名为wuhongyi
# sh afterinstallbabirl.sh wuhongyi
```

其它配置

执行 DAQConfig 中的 StartDAQ.sh 开启进程

运行babicon(安装后第一次需输入以下初始化)

```
seteflist 10 add localhost localhost
sethdlist 0 path /home/wuhongyi/data #这里为数据存储路径
setclinfo 0 add localhost #localhost为本机器
setclinfo 0 id 0

#如果设置给远程电脑
setclinfo 0 add [ip] #[ip] 为接收端电脑IP
setclinfo 0 id 0
```

将共享数据发送到Online电脑,需要做以下设置或者关闭防火墙

对Scientific Linux 6,终端ROOT权限下输入**setup**,选择防火墙配置,去掉启用。 对cientific Linux 7,ROOT权限下终端输入以下信息关闭firewall

```
systemctl stop firewalld.service #停止firewall systemctl disable firewalld.service #禁止firewall开机启动 firewall-cmd --state #查看默认防火墙状态 (关闭后显示notrunning, 开启后显示running)
```

如果机器不联网,可以不需要开启以下iptables防火墙,反正不会被黑

```
#在 /etc/sysconfig/iptables 添加以下一行 (不能放到最后一行 ,其中IP替换为发送DAQ电脑的IP)
-A INPUT -p udp -m state --state NEW -m udp --dport 17500:17510 -s 222.29.111.201 -j ACCEPT
```

之后在ROOT权限下执行以下命令

```
systemctl restart iptables.service #最后重启防火墙使配置生效
systemctl enable iptables.service #设置防火墙开机启动
```

© Hongyi Wu *updated*: 2018-12-05 20:51:16

固件要求

- 当前固件版本
- 查看固件版本
 - o V1718
 - o V2718
 - o A2818
 - o A3818
 - o V1x90
 - o MADC32

[warning] 注意

请确保所使用的所有插件固件版本与以下一致。

我们尽可能保证采用最新的固件。

当前固件版本

```
V2718 FW CONET2 Compliant 2.14_1.5

A2818 新版的CONET2 1.0 旧版的CONET1 0.8

A3818 0.5

V1190 1.1

MADC32 0224
```

查看固件版本

V1718/V2718/A2818/A3818 查看固件版本采用 CAENUpgraderGUI 程序,V1718/V2718/A2818/A3818/V1x90 升级固件版本同样采用 CAENUpgraderGUI 程序。即在终端中执行

```
CAENUpgraderGUI
```

升级固件时候,Browse 选择固件之后会弹出一个警告窗口,提示你"You have chosen to use a raw binary file",点击确认,然后点击右下角的 Upgrade。等待升级结束,将会有一个窗口提示你重启。

V1718

如下图,查看 V1718 的固件版本,点击 Get Fw Rel 按钮。

Figure: Get V1718 Version

如果该固件版本不是 当前固件版本 所列版本,则升级固件。

升级界面如下图所示:

Figure: Update V1718

V2718

V2718上固件包括主板V2718及子板上的A2719。

如下图,查看 V2718 主板的固件版本,点击 Get Fw Rel 按钮。

Figure: Get V2718 Version

如果该固件版本不是 当前固件版本 所列版本,则升级固件。

升级界面如下图所示:

Figure: Update V2718

如下图,查看子板 A2719 的固件版本,点击 Get Fw Rel 按钮。

Figure: Get A2719 Version

如果该固件版本不是 当前固件版本 所列版本,则升级固件。

升级界面如下图所示:

Figure: Update A2719

A2818

如下图,查看 A2818 的固件版本,点击 Get Fw Rel 按钮。

Figure: Get A2818 Version

如果该固件版本不是 当前固件版本 所列版本,则升级固件。

升级界面如下图所示:

Figure: Update A2818

A3818

如下图,查看 A3818 的固件版本,点击 Get Fw Rel 按钮。

Figure: Get A3818 Version

如果该固件版本不是 当前固件版本 所列版本,则升级固件。

升级界面如下图所示:

Figure: Update A3818

V1x90

- V1190/V1290
 - Firmware Revision Register(Base Address + 0x1026, read only, D16)
 - This register contains the firmware revision number coded on 8 bit.

待补充

MADC32

- madc32
 - 0x600E firmware_revision

待补充

© Hongyi Wu *updated*: 2018-12-05 20:52:51

获取配置

程序修改建议顺序

- anaroot/CBLT.hh
- DAQConfig/babies/bbmodules.h
- DAQConfig/babies/start.c
- DAQConfig/babies/evt.c
- DAQConfig/babies/clear.c
- DAQConfig/babies/stop.c
- DAQConfig/init/daqinitrc.sh

V2718

V2718PCB板上DIP开关: Prog: 0 off, 1 off, 2 off, 3 on, 4 off, I/O NIM

V2718前面板5个输出PORT,分别为0-4

通电时候PORT0-3处于高电平,PORT4处于低电平。因此软件BUSY模式时候采用PORT4,硬件BUSY模式采用PORT3。

© Hongyi Wu updated: 2018-12-03 11:04:46

analysis

存放辅助分析程序,当前只放置一个MakeProcess模板。

© Hongyi Wu updated: 2018-12-03 11:02:23

anaroot

如果采用CBLT模式读取数据,则先修改CBLT.hh文件,不采用CBLT模式则不用修改。设置好之后,执行该目录下的自动编译、安装脚本 autoPKU.sh 即可

```
sh autoPKU.sh
```

修改 CBLT.hh 文件,其中设置应该与CBLT模式下的插件设置顺序一致。

当前CBLT chain支持v830、v7xx、v1190、v1290、madc五种类型的插件,如下所示:

```
#define v830m
#define v7xxm
#define v1190m
#define v1290m
#define madcm
```

获取中如果没有哪一种类型插件,则需注释掉该类型的定义!!!

以下xxxn为启用插件的数据顺序,从0开始编码,如果五种类型插件都有,则为以下设置:

```
#define v830n 0
#define v7xxn 1
#define v1190n 2
#define v1290n 3
#define madcn 4
```

如果只含有v7xx、madc两种类型的插件,则定义如下:

```
#define v7xxn 0
#define madcn 1
```

如果只含有v830、v7xx、madc三种类型的插件,则定义如下:

```
#define v830n 0
#define v7xxn 1
#define madcn 2
```

以下定义用来指定每种类型插件的个数

```
#define v830num

#define v7xxnum

#define v1190num

#define v1290num

#define madcnum
```

以下是v830的其它设置

```
#define v830chn 8 // 这里设置830开启路数
#define v830head 1 // 不要修改
#define v830geo 0 // 不要修改
```

© Hongyi Wu updated: 2018-12-03 11:01:56

checkcnt

用来辅助检查文件中事件是否关联。执行程序之后将会在该文件夹内生成一个pdf文件,检查该文件内每张图数值是否有异常。

© Hongyi Wu updated: 2018-12-03 11:02:47

cutpedo

用来辅助设置pedo数值。高斯拟合pedo,并给出三倍sigma的上限作为推荐数值,并生成初始文件夹init内脚本。

© Hongyi Wu updated: 2018-12-03 11:03:11

DAQConfig

修改bbcaenvme文件夹下babies、init文件夹内文件

babies/bbmodules.h

修改ADCADDR、MADCADDR、V1190ADDR、SCAADDR使之与硬件地址匹配(可以多余设置,不可少设置)。其它不要修改。

babies/start.c

根据文件内提示设置,有该类型插件则开启对应代码,开启对应类型busy代码。其它不要修改。

babies/evt.c

根据文件内提示设置。其它不要修改。

babies/clear.c

根据文件内提示设置,有该类型插件则开启对应代码,开启对应类型busy代码。其它不要修改。

babies/stop.c

根据文件内提示设置,有该类型插件则开启对应代码,开启对应类型busy代码。其它不要修改。

init/daqinitrc.sh

修改该文件内对应脚本,使之与获取插件对应,用来初始化插件。

重点是修改 cblt.hh 文件,对启用的插件设置CBLT ADDR 为0xbb,其中MADC还得设置MCST ADDR为0xdd。还得设置每一个插件在CBLT中的顺序,first、mid、last。至少得两个插件才能组成CBLT

© Hongyi Wu updated: 2018-12-03 11:03:53

httponline

基于网页的在线监视。

© Hongyi Wu updated: 2018-12-03 11:10:32

online

时时监视每路信号的能量信息。

按照提示修改 Online.cc 文件

图形化界面开发中。。。

© Hongyi Wu *updated:* 2018-12-03 11:04:38

r2root

仅仅需要修改插件定义即可,无需修改其它代码。

修改文件 UserDefine.hh,按照提示修改即可。

© Hongyi Wu *updated*: 2018-12-03 11:05:18

statistics

用来监视每路的计数率。

© Hongyi Wu updated: 2018-12-03 11:05:42