Nonlinear Spacecraft Control

ASEN 5010

Prof. H. Schaub hanspeter.schaub@colorado.edu

Outline

- Stability Definitions
- Lyapunov Functions
 - Velocity-based feedback
 - Position-based feedback
 - Lyapunov's Direct Method
- Nonlinear Feedback of Spacecraft Attitude
 - Full-state feedback for regulator and tracking problems
 - Feedback Gain Selection
- Lyapunov Optimal Feedback
- Linear Closed-Loop Dynamics

Stability Definitions

Why isn't stable just stable?

Definitions

State Vector:
$$\boldsymbol{x} = (x_1 \cdots x_N)^T$$

EOM:
$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t)$$
 —— Non-Autonomous System

$$\dot{m{x}} = m{f}(m{x})$$
 — Autonomous System

Control Vector:
$$oldsymbol{u} = oldsymbol{g}(oldsymbol{x})$$

Closed-Loop
$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)$$
 System:

Equilibrium State: A state vector point \mathbf{x}_e is said to be an equilibrium state (or equilibrium point) of a dynamical system described by $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ at time t_0 if

$$\boldsymbol{f}(\boldsymbol{x}_e, t) = 0 \qquad \forall \ t > t_0$$

$$\dot{\boldsymbol{x}}_e = 0$$
 $\boldsymbol{x}_e = \text{constant}$

Neighborhood: Given $\delta > 0$, a state vector $\mathbf{x}(t)$ is said to be in the neighborhood $B_{\delta}(\mathbf{x}_r(t))$ of the state $\mathbf{x}_r(t)$ if

$$||m{x}(t)-m{x}_r(t)||<\delta$$
 then $m{x}(t)\in B_\delta(m{x}_r(t))$

Doesn't depend on initial condition

Lagrange Stability: The motion x(t) is said to be Lagrange stable (or bounded) relative to $\mathbf{x}_r(t)$ if there exists a $\delta > 0$ such that

$$\boldsymbol{x}(t) \in B_{\delta}(\boldsymbol{x}_r(t)) \qquad \forall \ t > t_0$$

Depend on initial condition

Lyapunov Stability: The motion x(t) is said to be Lyapunov stable (or stable) relative to $\mathbf{x}_r(t)$ if for each ε >0 there exists a $\delta(\varepsilon)$ >0 such that

$$\mathbf{x}(t_0) \in B_{\delta}(\mathbf{x}_r(t_0)) \Longrightarrow \mathbf{x}(t) \in B_{\epsilon}(\mathbf{x}_r(t))$$

$$\forall t > t_0$$

Asymptotic Stability: The motion $\mathbf{x}(t)$ is asymptotically stable relative to $\mathbf{x}_r(t)$ if $\mathbf{x}(t)$ is Lyapunov stable and there exists a $\delta>0$ such that

$$\boldsymbol{x}(t_0) \in B_{\delta}(\boldsymbol{x}_r(t_0)) \Longrightarrow \lim_{t \to \infty} \boldsymbol{x}(t) = \boldsymbol{x}_r(t)$$

Global Stability: The motion $\mathbf{x}(t)$ is globally stable relative to $\mathbf{x}_r(t)$ if $\mathbf{x}(t)$ is stable for any initial state vector $\mathbf{x}(t_0)$.

(Show Mathematica Example)

Linearization of Dynamical System

Reference motion

Feedforward control

$$\dot{oldsymbol{x}}_r = oldsymbol{f}(oldsymbol{x}_r, oldsymbol{u}_r^{'})$$

Nonlinear EOM:

$$\dot{m{x}} = m{f}(m{x}, m{u})$$

Feedback control:

$$\delta oldsymbol{u} = oldsymbol{u} - oldsymbol{u}_r$$

Departure motion:

$$\delta \boldsymbol{x} = \boldsymbol{x} - \boldsymbol{x}_r$$

Performing a Taylor Series expansion of \boldsymbol{x} about $(\boldsymbol{x}_r, \boldsymbol{u}_r)$ we obtain

$$\delta \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}_r, \boldsymbol{u}_r) + \frac{\partial \boldsymbol{f}(\boldsymbol{x}_r, \boldsymbol{u}_r)}{\partial \boldsymbol{x}} \delta \boldsymbol{x}$$

$$+ \frac{\partial \boldsymbol{f}(\boldsymbol{x}_r, \boldsymbol{u}_r)}{\partial \boldsymbol{u}} \delta \boldsymbol{u} + H.O.T - \boldsymbol{f}(\boldsymbol{x}_r, \boldsymbol{u}_r)$$

$$\delta \dot{\boldsymbol{x}} \simeq \frac{\partial \boldsymbol{f}(\boldsymbol{x}_r, \boldsymbol{u}_r)}{\partial \boldsymbol{x}} \delta \boldsymbol{x} + \frac{\partial \boldsymbol{f}(\boldsymbol{x}_r, \boldsymbol{u}_r)}{\partial \boldsymbol{u}} \delta \boldsymbol{u}$$

Let us define:

$$[A] = rac{\partial oldsymbol{f}(oldsymbol{x}_r, oldsymbol{u}_r)}{\partial oldsymbol{x}} \ \partial oldsymbol{f}(oldsymbol{x}_r, oldsymbol{u}_r)$$

The linearized system is then written in standard form as

$$\delta \dot{m{x}} \simeq [A] \delta m{x} + [B] \delta m{u}$$

If the nominal reference motion is an equilibrium state \mathbf{x}_e , then the linearized EOM simplify to:

$$\dot{\boldsymbol{x}} \simeq [A]\boldsymbol{x} + [B]\boldsymbol{u}$$