Отчёт по лабораторной работе №8 Математическое моделирование

Модель конкуренции двух фирм. Вариант №38

Щербак Маргарита Романовна, НПИбд-02-21

2024

Содержание

Цель работы	4
Теоретическое введение	5
Выполнение лабораторной работы	8
Задание. Вариант 38	8
Julia	9
OpenModelica	13
Анализ и сравнение результатов	
Выводы	17
Список литературы	

Список иллюстраций

1	код на Julia для 1 случая	10
2	график конкуренции двух фирм для 1 случая, построенный на языке Julia	11
3	код на Julia для 2 случая	12
4	график конкуренции двух фирм для 2 случая, построенный на языке Julia	13
5	код в OpenModelica	14
6	график конкуренции двух фирм для 1 случая	15
7	график конкуренции двух фирм для 2 случая	15

Цель работы

Рассмотреть математическую модель конкуренции двух фирм. С помощью рассмотренной модели и теоретических сведений научиться строить модели такого типа.

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия
 - au длительность производственного цикла
 - р рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
 - δ доля оборотных средств, идущая на покрытие переменных издержек
 - k постоянные издержки, которые не зависят от количества выпускаемой продукции
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q(1 - \frac{p}{p_{cr}})$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член — спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{\rm cr}}) = 0$$

равновесное значение цены р равно

$$p=p_{cr}(1-\frac{M\delta}{\tau\tilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau}(\frac{p}{p_{cr}}-1) - M^2(\frac{\delta}{\tau\tilde{p}})^2\frac{p_{cr}}{Nq} - k$$

Данное уравнение имеет два стационарных решения, которые соответствуют условию $dM/dt=0 \label{eq:dm}$

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы.

При $b \ll a$ стационарные значения M равны

$$\tilde{M_+} = Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \tilde{M_-} = k\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так, что при $M<\tilde{M}_-$ оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного [@mathemodels of competition].

Выполнение лабораторной работы

Задание. Вариант 38

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} &\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \\ \text{где} \\ &a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}; \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}; \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}; \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}}; \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}} \end{split}$$
 Также введена нормировка $t = c_1 \theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изме-

нения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{array}{l} \frac{dM_1}{d\theta} = & M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} = & \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00083) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{array}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами: M_0^1 =3.9, M_0^2 =2.9, p_{cr} =25, N=39, q=1, τ_1 =29, τ_2 =19, \tilde{p}_1 =6.9, \tilde{p}_2 =15.9.

Замечание:

Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N – число потребителей производимого продукта.

au – длительность производственного цикла

р – рыночная цена товара

 \tilde{p} — себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q – максимальная потребность одного человека в продукте в единицу времени

M – оборотные средства предприятия

$$\theta = \tfrac{t}{c_1}$$

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с введенной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с введенной нормировкой для случая 2.

Julia

Julia — это высокоуровневый язык программирования с динамической типизацией, созданный для эффективных математических вычислений и написания программ общего назначения [@julialang]. Для решения дифференциального уравнения, описанного в постановке задачи лабораторной работы, можно использовать библиотеку Differential Equations. Для построения графиков можно воспользоваться библиотекой Plots.

Код программы для первого случая (рис.1):

```
С:\work\study\2023-2024\Математическое моделирование\mathmod\labs\lab8\lab8_1.jl - Notepad++
Файл Правка Поиск Вид Кодировки Синтаксисы Опции Инструменты Макросы Запуск Плагины
🕞 🖆 🗎 🖺 🥦 🧓 🚵 | 🔏 🐚 🖺 | Þ 🖒 | Þ 🖒 | 🗗 🖒 | 🗷 🖒 |
🔚 lab8_1.jl 🔣
        using Plots
        using DifferentialEquations
        # начальные параметры
  5
        kr = 25
        t1 = 29
  6
        p1 = 6.9
  8
        t2 = 19
        p2 = 15.9
  9
        N = 39
  10
        q = 1
 12
        al = kr / (t1 * t1 * p1 * p1 * N * q)
a2 = kr / (t2 * t2 * p2 * p2 * N *q)
 13
  14
        b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q)
 15
 16
       cl = (kr - pl) / (tl * pl)
        c2 = (kr - p2) / (t2 * p2)
  17
 18
 19
 20
       function f(du, u, p, t)
 21
           M1, M2 = u
           du[1] = u[1] - b / cl*u[1] * u[2] - al / cl*u[1] * u[1]
 22
            du[2] = c2 / c1*u[2] - b / c1*u[1] * u[2] - a2 / c1*u[2] * u[2]
 23
 24
 25
 26
        v0 = [3.9, 2.9] # начальные условия
 27
        tspan = (0.0, 60.0)
        prob = ODEProblem(f, v0, tspan)
        sol = solve(prob, dtmax = 0.05)
 29
        Ml = [u[l] \text{ for } u \text{ in sol.} u]
 30
 31
        M2 = [u[2] \text{ for } u \text{ in sol.} u]
 32
       T = [t for t in sol.t]
 33
  34
       plt = plot(
         dpi = 600,
 35
 36
         legend = true)
 37
        plot!(plt, T, Ml, label = "Оборотные средства фирмы 1", color = :green)
 38
 39
        plot!(plt, T, M2, label = "Оборотные средства фирмы 2", color = :red)
 40
  41
  42
       savefig(plt, "lab8 1.png")
```

Рис. 1: код на Julia для 1 случая

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется (рис.2).

Рис. 2: график конкуренции двух фирм для 1 случая, построенный на языке Julia Код программы для второго случая (рис.3):

```
Файл Правка Поиск Вид Кодировки Синтаксисы Опции Инструменты Макросы Запуск Плагины
🕞 🖆 🗎 🖺 🥦 🧓 📥 | 🎸 🐚 🦍 🕽 🗲 🗗 🗷 🗷 🖎 🗀 😭 🗷 🗷 🖺 🖺 🗀
🔚 lab8_1.jl 🗵 🔚 lab8_2.jl 🗵
       using Plots
       using DifferentialEquations
  3
  4
       # начальные параметры
       kr = 25
       t1 = 29
  6
       p1 = 6.9
       t2 = 19
       p2 = 15.9
  9
       N = 39
 10
       q = 1
 11
       al = kr / (tl * tl * pl * pl * N * q)
 13
       a2 = kr / (t2 * t2 * p2 * p2 * N *q)
 14
       b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q)
 15
       cl = (kr - pl) / (tl * pl)
 16
       c2 = (kr - p2) / (t2 * p2)
 17
 18
 19
 20
      function f(du, u, p, t)
 21
          M1, M2 = u
           du[1] = u[1] - (b / c1 + 0.00083)*u[1] * u[2] - a1 / c1*u[1] * u[1]
 22
 23
           du[2] = c2 / c1*u[2] - b / c1*u[1] * u[2] - a2 / c1*u[2] * u[2]
 24
 25
 26
       v0 = [3.9, 2.9] # начальные условия
 27
       tspan = (0.0, 60.0)
       prob = ODEProblem(f, v0, tspan)
 28
       sol = solve(prob, dtmax = 0.05)
 29
       Ml = [u[l] \text{ for } u \text{ in sol.} u]
 30
       M2 = [u[2] \text{ for } u \text{ in sol.} u]
 31
       T = [t for t in sol.t]
 32
 33
      plt = plot(
 34
 35
        dpi = 600,
        legend = :topright)
 36
 37
 38
       plot!(plt, T, M1, label = "Оборотные средства фирмы 1", color = :green)
 39
       plot!(plt, T, M2, label = "Оборотные средства фирмы 2", color = :red)
 40
 41
      savefig(plt, "lab8_2.png")
 42
```

Рис. 3: код на Julia для 2 случая

По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне (рис.4).

Рис. 4: график конкуренции двух фирм для 2 случая, построенный на языке Julia

OpenModelica

OpenModelica — это свободное программное обеспечение для моделирования и анализа сложных динамических систем, основанное на языке Modelica. OpenModelica приближается по функциональности к таким инструментам, как Matlab Simulink и Scilab xCos, но обладает более удобным представлением системы уравнений [@modelica]. Написала код в OpenModelica (рис.5).

```
🖶 🊜 🧮 🐧 | Доступный на запись | Model | Вид Текст | lab8
                                            C:/work/lab8.mo
     model lab8
       parameter Real pcr = 25;
       parameter Real N = 39;
      parameter Real q = 1;
      parameter Real t1 = 29;
      parameter Real t2 = 19;
  6
      parameter Real pl = 6.9;
      parameter Real p2 = 15.9;
      parameter Real k = 0.00083;
 10
       Real Ml(start = 3.9);
       Real M2(start = 2.9);
 11
       Real M12 (start = 3.9);
 12
 13
       Real M22(start = 2.9);
 14
       Real al;
 15
      Real a2;
      Real b;
 16
 17
      Real cl;
    Real c2;
 18
 19
     equation
 20
      al = pcr/(tl*tl*pl*pl*N*q);
 21
      a2 = pcr/(t2*t2*p2*p2*N*q);
 22
      b = pcr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);
 23
      cl = (pcr-pl)/(tl*pl);
 24
       c2 = (pcr-p2)/(t2*p2);
 25
       der(M1) = M1-(b/c1)*M1*M2-a1/c1*M1*M1;
 27
      der(M2) = c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;
      der(M12) = M12-(b/cl+k)*M12*M22-a1/c1*M12*M12;
 28
      der(M22) = c2/c1*M22-b/c1*M12*M22-a2/c1*M22*M22;
 29
 30 end lab8;
```

Рис. 5: код в OpenModelica

Получила графики конкуренции двух фирм для двух случаев (рис.6 - рис.7).

Рис. 6: график конкуренции двух фирм для 1 случая

Рис. 7: график конкуренции двух фирм для 2 случая

Анализ и сравнение результатов

В результате работы я построила графики изменения оборотных средств для двух фирм для случаев, когда конкурентная борьба ведётся только рыночными методами и когда помимо экономического фактора влияния используются еще и социально-психологические факторы на языках Julia и Modelica. Графики идентичны.

Выводы

Таким образом, в ходе ЛР№8 я рассмотрела математическую модель конкуренции двух фирм. С помощью рассмотренной модели и теоретических сведений научилась строить модели такого типа.

Список литературы

- Mathematical models of the competitive environment [Электронный ресурс]. 2018.
 St. Petersburg State University. URL: https://clck.ru/39bh2e.
- 2. Julia 1.10 Documentation [Электронный ресурс]. JuliaLang, 2023. URL: https://docs.julialang.org/en/v1/.
- 3. OpenModelica User's Guide [Электронный ресурс]. Open Source Modelica Consortium, 2024. URL: https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/.