Задача 2

Решим эквивалентную задачу:

$$\min -x_1 - 4x_2 - x_3$$

$$2x_1 + 5x_2 + x_3 = 4$$

$$2x_1 - 5x_2 - x_3 = 0$$

$$x_i \ge 0, \forall i$$

И еще раз приведем к эквивалентному виду:

$$\min -x_1 - 4x_2 - x_3$$
$$5x_2 + x_3 = 2$$
$$x_1 = 1$$
$$x_i > 0, \forall i$$

Угловая точка - $(1,0,2)^{\top}$, $\mathcal{B}=\{1,3\}$. Заметим, что матрица образуемая первым и третьим столбцом A не вырождена. Приведем ее к единичному виду и запишем таблицу для начальной итерации.

Таблица 1: Нулевая итерация

	x_1	x_2	x_3
$-\mathbf{c}^{T}\mathbf{x} = 3$	0	1	0
$x_1 = 1$	0	5	1
$x_3 = 2$	1	0	0

Значит, $(1,0,2)^{\top}$ дает минимум.

$$\min -x_1 - 4x_2 - x_3 = (-x_1 - 4x_2 - x_3)|_{\mathbf{x} = (1,0,2)^{\top}} = -3$$

Или возвращаясь к исходной задаче:

$$\max(x_1 + 4x_2 + x_3) = (x_1 + 4x_2 + x_3)|_{\mathbf{x} = (1,0,2)^{\top}} = 3$$

Задача 3

Составим вспомогательную задачу. Все $b_i>0$ поэтому никаких дополнительных преобразований не требуется. Начальная угловая точка $\mathbf{x}_0=(0,0,0,0,0,2,2,1)^{\top},~\mathcal{B}=\{6,7,8\}.$