UNIT 2: BIODIVERSITY REVIEW SHEET

AP UNIT 2 LIVING WORLD: BIODIVERSITY

- Explain levels of biodiversity and their importance to ecosystems (2.1)
 - ecosystem stability
 - resistance Handle disturbance and change without having to change themselves
 - resilience Able to bounce back from change
 - Genetic diversity (Differences in DNA among individuals)
 - Species diversity (Variety of species in a given area)
 - Species richness -vs- species evenness (richness total # of species, evenness - how even the species are distributed)
 - Ecosystem diversity (Variety of habitats, ecosystems and communities)
 - Specialist -vs- generalist (3.1) Specialists are good at one thing and generalists are relatively good at a variety of things
- Describe ecosystem services (2.2) Help People
 - Provisional services Food, Fiber, Wood, Clean Water, Medicine
 - Regulating services Climate regulation, Pollination of crops, Stored carbon, Control flooding
 - Supporting Services Soil formation, Biodiversity, Primary production, Habitat
 - Cultural services Cultural preservation, Inspiration, Recreation,
 Aesthetic, Education
- Describe the results of human disruptions to ecosystem services (2.2)
- Describe island biogeography (2.3)
 - endemic species
 - competitive exclusion (from unit 1)
 - extinction
 - evolution
 - genetic drift
 - bottleneck effect (genetic diversity gets low)
 - founder effect
- Describe ecosystem tolerance/ species range of tolerance (2.4)
 - range of tolerance
 - limiting factors (from unit 1)
 - Ecological niche
 - fundamental niche -vs- realized niche
 - geographic range
 - mass extinction
- Explain how natural disruptions, both short- and long-term, impact an ecosystem (2.5)
 - periodic, episodic, or random changes
 - ice ages
- Describe how organisms adapt to their environment (2.6)
 - Adaptions

- selective pressure
- relative fittness
- Ecological niche
- range shifts
- migration patterns
- Describe ecological succession (2.7)
 - primary succession
 - secondary succession
 - o pioneer species
 - disturbance
 - keystone species species with a niche who are essential to ecosystem
 - indicator species
 - climax community

AP UNIT 3: POPULATION

Determine population size and health

- Conservation biology
 - tag and recapture
 - transects/ quadrat sampling
 - wildlife camera
- Identify differences between generalist and specialist species (3.1)
- Identify differences between K and r-selected species (3.2)
 - o population density How many are concentrated in a certain area
 - Density-dependent factor
 - Density-independent factor
 - population growth rate = Crude birth rate/1000 crude death rate/1000
 x 100. If immigration, add to CBR, emigration add to CDR
 - biotic potential
 - o if given change, do percent change formula
 - reproductive strategies
 - K-selected species (few babies) carrying capacity
 - Logistical growth curve/S-shaped curve (carrying capacity)
 - \rightarrow resources, disease
 - r-selected species (lots of babies) rate of Growth of population
 - Exponential growth curve/ J-shaped curve
- Explain survivorship curves (3.3)
 - Survivorship curve (Typel, II, and III) be able to interpret graph
- Describe carrying capacity; and its impact on ecosystems (3.4)
 - carrying capacity
 - Overshoot Species fluctuate around carrying capacity
 - Dieback/die-off

- Explain how resource availability affects population growth (3.5)
 - limiting factors (Density Dependent, Density independent)
 - Dependant based on pop size (Competition, food, disease)
 - Independent not based on population (natural disasters)

AP UNIT 9: GLOBAL CHANGE:

- Explain the environmental problems associated with invasive species and strategies to control them (9.8)
- Explain how species become endangered and strategies to combat the problem. (9.9)
 - endangered species
 - Threatened species
 - HIPPOC
 - Habitat loss/destruction
 - Invasive species
 - Pollution
 - Overexploitation (over harvesting, poaching-
 - Climate change
- Explain how human activities affect biodiversity and strategies to combat the problem. (9.10)
 - Endangered species Act
 - (Endangered species list)
 - CITES (Convention on the International Trade of Endangered Species)
 - IUNC (International Union for Conservation of Nature)
 - (Redlist)

Restoration (of habitats)
Biosphere reserves
Edge effect
Willife corridor

UNIT 2: BIODIVERSITY

• Levels of biodiversity and their importance to ecosystems (2.1): Biodiversity has three main levels: genetic, species, and ecosystem diversity,

- all of which contribute to ecosystem stability, resilience, and the ability to withstand changes or disruptions.
- **Ecosystem stability, resistance, resilience:** Stability refers to an ecosystem's ability to remain balanced; resistance is its ability to withstand disturbances, while resilience is its ability to recover after disturbances.
- Genetic diversity: Variation in genes within a species, which helps populations adapt to environmental changes.
- **Species diversity:** The variety of species in an ecosystem, contributing to its resilience.
- Species richness vs. species evenness: Richness is the number of species; evenness is the relative abundance of each species. Both impact ecosystem stability.
- **Ecosystem diversity:** Variety in ecosystems within a region, supporting diverse habitats and species interactions.
- **Specialist vs. generalist (3.1):** Specialists thrive in specific environments with narrow niches, while generalists can survive in a wide range of conditions.

Ecosystem Services (2.2):

- **Provisioning services:** Resources directly obtained from ecosystems, like food, water, and timber.
- **Regulating services:** Benefits from ecosystem processes like climate regulation, water purification, and pollination.
- **Supporting services:** Basic ecosystem functions like soil formation and nutrient cycling that support other services.
- Cultural services: Non-material benefits, like recreation, aesthetics, and spiritual value.
- **Human disruptions to ecosystem services:** Pollution, deforestation, and climate change reduce the ability of ecosystems to provide essential services.

Island Biogeography (2.3):

- **Endemic species:** Species found only in a specific geographic location, often vulnerable to extinction.
- **Competitive exclusion:** When one species outcompetes another, leading to niche separation.
- Extinction, evolution, genetic drift, bottleneck effect, founder effect: Processes affecting species survival and genetic variation.
- Wind, Waves, Wind

Ecosystem Tolerance/Species Range of Tolerance (2.4):

 Range of tolerance: Conditions under which a species can survive and reproduce.

- **Limiting factors:** Environmental factors that limit species' growth, abundance, or distribution.
- Ecological niche, fundamental vs. realized niche: Role and position of species in an ecosystem, with the realized niche being narrower due to competition.

Natural Disruptions Impacting Ecosystems (2.5):

• **Periodic, episodic, random changes:** Disturbances occurring at different intervals that can alter ecosystems, like ice ages.

Adaptations and Environmental Change (2.6):

- **Adaptations, selective pressure, relative fitness:** Traits that improve survival and reproduction, influenced by environmental pressures.
- Range shifts, migration patterns: Movements or shifts in species distribution due to environmental changes.

Ecological Succession (2.7):

- Primary and secondary succession: The development of ecosystems over time; primary begins on barren land, secondary occurs after a disturbance.
- **Pioneer species, disturbance, climax community:** Initial colonizers, disruptions, and the final, stable stage of succession.

UNIT 3: POPULATION

- **Population size and health indicators:** Conservation biology techniques like tag-and-recapture, transects, and wildlife cameras help assess population health.
- **Generalist vs. specialist species (3.1):** Generalists adapt to varied environments, specialists need specific conditions.
- **K-selected vs. r-selected species (3.2):** K-selected species grow slowly, have fewer offspring, and stable populations, while r-selected species reproduce quickly with less parental care.
- Population density, density-dependent/independent factors:
 Density-dependent factors are influenced by population size, like disease; density-independent factors, like weather, affect populations regardless of size.
- Population growth rate, biotic potential, reproductive strategies: Rate of population increase, maximum reproductive capacity, and strategies vary by species.

- Logistic (S-shaped) vs. exponential (J-shaped) growth curves: Logistic growth stabilizes at carrying capacity; exponential growth increases rapidly without limit.
- Survivorship curves (Type I, II, III) (3.3):
- Graphs show survival rates by age; Type I has high early survival, Type II has medium Type III has high juvenile mortality.
- Carrying capacity and its impact (3.4):
- Maximum population an environment can support sustainably; overshoot leads to dieback.
- Resource availability and population growth (3.5):
- Limited resources restrict population growth; abundance allows it to thrive.

UNIT 9: GLOBAL CHANGE

- Invasive species and control (9.8): Invasive species disrupt ecosystems; strategies include physical removal, biological control, and prevention policies.
- Endangered species and protection strategies (9.9): Species face threats like habitat loss, pollution, and overexploitation; solutions include conservation laws and habitat restoration.
- Human impact on biodiversity and mitigation (9.10): Humans reduce biodiversity through habitat destruction and climate change; strategies include the Endangered Species Act, CITES, IUCN Red List, biosphere reserves, and wildlife corridors.