Magnetic neutron diffraction

Rob McQueeney

Physics 590

Magnetic moment-Rare earths

Progressive filling of 4f levels

- Strong Hund's rules
- Strong spin-orbit interaction
- Weak CEF

Unpaired electrons

• Total angular momentum J = L + 2S

$$\mu = g_J \mu_B J \approx g_J J \frac{e\hbar}{2m_e}$$

1	12 -	3,	2,	1,	(),	-1,	-2,	-3	S	$L = \Sigma l_z $	J	
		1							1/2	3	5/2)	2 F 5
1		4	1						1	5	4	3H.
ı		4	1	4					3/2	6	9/2 $I = I = SI$	4/9
ı		1	1	1	1				2	- 6	A = L - S	5/4
ı		1	1	1	1	4			5/2	5	5/2	6H,
ı		1	1	1	1	4	1		3	3	0	7F_0
ı		1	1	4	1	4	1	1	7/2	0	7/2	RST.
ı		11	1	1	1	- 1	1	†	3	3	6)	1F.
ı		27	2	†	1	†	1	+	5/2		15/2	*H,
ı		1	11	át.	1	†	1	1	2	6	8	3/4
l		It.	17	11	11	1	1	1	3/2	6	15/2 $J = L + S$	4/11
ı		11	11	47	41	41	Ť	Ť	1	5	6	3H6
l		17	11	11	ž?	2	11	†	1/2	3	7/2	2F1
ı		17	41	41	45	27	41	11	0	0	0	$^{1}S_{0}$

Transition metals

Progressive filling of 3d levels

- Strong Hund's rules interactions
- Strong CEF
- Weak spin-orbit interaction

Unpaired electrons

- Spin moment
- Orbital moment (quenched)

$$\mu = g\mu_B S \approx 2S \frac{e\hbar}{2m_e}$$

$$\uparrow$$
 —

transition metal

oxygen

Phys
$$Mn^{4+}$$
 (3d³) Mn^{3+} (3d⁴) Fe^{3+} (3d⁵) Fe^{2+} (3d⁶)

$$\uparrow \uparrow \uparrow$$

Magnetic structures

- Exchange coupling between moments leads to ordering
 - Direct exchange
 - Superexchange (insulators)
 - RKKY (metals)
 - Dipolar
- Magnetic anisotropy leads to moment direction
- Magnetic structures defined by
 - Propagation vector(s)
 - Moment size
 - Moment direction(s)

Elastic scattering - Bragg's Law $2d\sin\theta = n\lambda$

1-D cartoons

Neutron magnetism

- Spin-1/2 particle
- Magnetic moment

$$\mu_n = -\gamma \mu_N = -1.913 \frac{e\hbar}{2m_p}$$

$$\mu_n/\mu_e \approx m_e/m_p = 1/2000$$

Dipole interaction

Interaction between neutron and electron

$$U = -\mu_{n} \cdot \mathbf{B} = \frac{\mu_{0}}{4\pi} \frac{\gamma e^{2}}{m_{e}} \mathbf{\sigma} \cdot \mathbf{B} = \gamma r_{0} \mathbf{\sigma} \cdot \mathbf{B}$$

$$U^{uv} = \langle u|b - p\mathbf{S}_{\perp} \cdot \mathbf{\sigma}|v \rangle$$

$$p = \gamma r_{0} g S f(\mathbf{Q}) \qquad \mathbf{S}_{\perp} = \hat{S} - (\hat{S} \cdot \hat{Q}) \hat{S}$$
strength

Only moment projection perp. to **Q** will scatter neutrons

 $(\gamma r_0)^2 = 291$ millibarns/steradian

Magnetic form factor

f(Q): Fourier transform of the atomic magnetization density

Physics 590

Magnetic structure factor

Magnetic structure factor is actually a vector quantity, but for collinear structure, can be simplified

$$F_{M}(\mathbf{\tau}) = \sum_{d} \frac{1}{2} g_{d} \langle S_{d} \rangle \sigma_{d} F_{d}(Q) \exp(-W_{d}) \exp(i\mathbf{\tau} \cdot \mathbf{d})$$
ordered form factor DW factor phase factor moment direction

Scattering differential cross-section for unpolarized beam

$$\frac{d\sigma}{d\Omega} = Nr_0^2 (1 - \hat{\tau}_z^2) |F_M(\tau)|^2$$
strength scattering

More generally

$$\frac{d\sigma}{d\Omega} = Nr_0^2 \sum_{\tau} \delta(\mathbf{Q} - \mathbf{\tau}) |\hat{\mathbf{Q}} \times \{\mathbf{M}(\mathbf{\tau}) \times \hat{\mathbf{Q}}\}|^2$$

10

Fourier transform of magnetization

density

1-D Cartoons

Determine magnetic structure

Prescription

- Measure the magnetic propagation vector(s)
- Magnetic space group
 - Limits the possible structures
 - You need to know the crystal structure
- Determine moment direction(s) (refinement)

Potential problems

- Magnetic domains
- Crystallographic twinning
- Multiple wavevectors/multi-q structures

Confirmation of AF structure

In 1949, Clifford Shull observed additional magnetic reflections in MnO which led to the confirmation of antiferromagnetism

Shull and J. S. Smart, Phys Rev **76**, 1256 (1949).

C. G. Shull et al., Phys. Rev. **83**, 333 (1951).

Physics 590

Table II. Comparison between observed MnO antiferromagnetic intensities and those calculated for various models of magnetic orientation with respect to crystallographic axes.

	Calcı or	Observed		
	(a)	(b)	(c)	(neutrons/min
(111)	1038	0	1560	1072
(311)	460	675		308
(331)	129	109		132
(511) (333)	54	24		70

Cone structure of Er

FIG. 6. Diffraction pattern from the $q=(5/21)c^*$ phase at 0 T and 10 K along the [00l] direction. The insert shows the first eight layers of the basal-plane spin-slip model for this structure.

- Alternating cone structure
- Spin slips from magnetoelastic effect

H. Lin et al., Phys. Rev B 45, 12873 (1992).

Physics 590

Cone structure of Er

Neutron polarization analysis

• Why use polarization?

- Separate magnetic/nuclear scatt. (q=0 structures)
- Refine structure determination (eg. canting)
- Separate coherent/incoherent (diffuse scattering, mag. densities)

$$U^{++} = b - pS_{\perp z}$$

$$U^{--} = b + pS_{\perp z}$$

$$U^{+-} = -p(S_{\perp x} + iS_{\perp y})$$

$$U^{+-} = -p(S_{\perp x} - iS_{\perp y})$$

Instrumentation

Monochromator

Useful modes

- P || Q (in-plane polarization): All magnetic scattering is SF
- P⊥ Q (vertical polarization): magnetic scattering can be SF & NSF

Polarized experiments

5000 4000 3000 UNPOLARIZED BEAM ₹ 2000 1000 2000 1600 POLARIZED BEAM WITH NSF POLARIZATION ANALYSIS 1200 PHK 800 FLIPPER OFF per 400 600 400 200 FLIPPER ON -BACKGROUND SCATTERING ANGLE (deg)

Fig. 5. MnF₂ powder pattern—separation of paramagnetic scattering through polarization analysis. No analyzer was used in the unpolarized-beam experiment. Note the loss of intensity in the polarization analysis experiment.

Separation of magnetic/nuclear

Paramagnetic scattering

Polarization @ pulsed source

Heusler mono won't work for wide angle scattering

³He polarizers

Further references

Magnetic neutron scattering

- G. Squires, "Intro to theory of thermal neutron scattering", Dover, 1978.
- S. Lovesey, "Theory of neutron scattering from condensed matter", Oxford, 1984.
- Moon, Koehler, Riste, Phys. Rev 181, 920 (1969).
- R. Pynn, http://www.mrl.ucsb.edu/~pynn/.

Structural refinements

- GSAS http://www.ncnr.nist.gov/xtal/software/gsas.html
- FullProf http://www.ill.eu/sites/fullprof/

Magnetic space groups

- Izyumov, Ozerov, "Neutron diffraction of magnetic materials"
- Sarah program (representational analysis)