SSN College of Engineering Department of Computer Science and Engineering UCS1512 – Microprocessors Lab 16 BIT ARITHMETIC OPERATIONS

Name: Prasanna Kumaran D Registration Number: 185001110

01 September 2020

Semester: V

1 **AIM**:

To write and execute 8086 programs for arithmetic operations of 16 numbers like addition, subtraction, multiplication and division.

2 PROCEDURE:

- ullet Write the program in a text editor and save it as a .asm file under the MASM directory.
- Launch DOSBOX application and mount the MASM folder using the command prompt.
- Use the following syntax for mounting: 'mount [LOCAL DRIVE] FILEPATH'. Enter into the local drive('LOCAL DRIVE:').
- The code file can be edited using the command **edit FILENAME.asm**. Save the changes and exit.
- Assemble the code using the command 'masm FILENAME.asm' to generate the object file. The object file is in the format 'FILENAME.obj'
- Add dynamic libraries using the syntax 'link FILENAME.obj' to generate the executeable(.exe) file.
- Enter the debug mode using debug FILENAME.exe to execute and analyse the memory contents. The various commands used in debug mode are as follows:-
 - U :- Displays unassembled code.
 - D: Refers to the offset from which contents in the memory are displayed.
 - E :- Change the value in memory.
 - G :- execute the code.
 - Q :- Quit debug mode.

3 Algorithm & Program

INITIALIZATION:

• Declare and initialize the operands and the code and data segments.

3.1 16 BIT ADDITION:

- Move the data segment to the AX register and then move it to the DS register.
- Move the first operand to AX register and the second to BX register.
- Initialize CH register to 0000h.(hexadecimal)
- Add the operands using ADD AX, BX.
- Check for carry bit using JNC instruction.
 - Increment CX by 1 if there is a carry.
- Move the contents of AX and CX to RESULT and CARRY operands respectively.

3.1.1 16 BIT ADDITION: Program

PROGRAM	COMMENTS
mov ax,opr1	Transfers contents of operand 1 to AX register.
mov bx,opr2	Transfers contents of operand 2to BX register.
mov cx,0000h	Initialises CH register with 0000h.
add ah,bh	AX = AX + BX.
jnc here	Jumps to "Here Label if carry bit is not generated.
inc cx	CX = CX + 1(Increment CH by 1).
here: mov result,ax	Transfers contents of AX register to RESULT.
mov carry,cx	Transfers contents of CX register to CARRY.
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45,process is terminated

```
?:\>debug 16bitadd.exe
976B:0100 B86A07
                                   AX,076A
                          MOV
076B:0103 8ED8
                          MOU
                                   DS.AX
                                   AX,[0000]
976B:0105 A10000
                          MOV
976B:0108 8B1E0200
                          MOV
                                   BX,[0002]
976B:010C B500
                                   CH,00
                          MOV
976B:010E 02E7
                          ADD
                                   AH, BH
976B:0110 7302
                                   0114
                          JNB
976B:0112 FEC5
                          INC
                                   CH
076B:0114 A30400
                          MOV
                                   [0004],AX
976B:0117 882E0600
                                   [00061,CH
                          MOV
076B:011B B44C
                          MOV
                                   AH,4C
976B:011D CD21
                          INT
                                   21
976B:011F 40
                          INC
                                   ΑX
```

Figuur 1: 16 bit ADD Unassembled

```
076B:011F 40
                     INC
                           ΑX
-d 076a:0000
076A:0000
         11 11 39 92 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
         00 00 00 00 00 00 00 00-00 00 00 00
                                        00 00 00 00
         00 00 00 00 00 00 00 00-00 00 00 00
076A:0020
                                        00 00 00 00
076A:0030
         076A:0040
         00 00 00
                 00 00 00 00 00-00 00 00 00 00
                                           \mathbf{00}
                                              00 \ 00
976A:0050
         00 00 00
                 \mathbf{00}
                   00 00 00
                           00-00 00
                                   00
                                      00
                                        00
                                           00
                                              00 \ 00
076A:0060
         00 00 00
                 00 00 00 00 00-00 00 00 00 00
                                           00
                                              00 - 00
076A:0070
         g
Program terminated normally
-d 076a:0000
076A:0000
         11 11 39 92 11 A3 00 00-00 00 00 00 00 00 00 00
076A:0010
         076A:0020
         076A:0030
         00 00 00 00 00 00 00
                           00-00 00 00 00 00 00
                                              00 \ 00
076A:0040
         00 00 00
                 00 00 00
                         \mathbf{00}
                           00-00 00 00 00
                                        00 \ 00
                                              00 \ 00
076A:0050
         00 \ 00
              \mathbf{00}
                 00 \ 00 \ 00
                         \mathbf{00}
                           00-00 00 00 00
                                        \mathbf{00}
                                           \mathbf{00}
                                              00 \ 00
076A:0060
         00 \ 00
              \mathbf{00}
                 00 00 00 00 00-00 00 00 00
                                        00 00 00 00
         076A:0070
```

Figuur 2: 16 bit ADD OUTPUT

3.2 16 BIT SUBTRACTION:

- Move the data segment to AX register and then move it to the DS register.
- Move the first and second operand to AX and BX register respectively.
- Initialize CH register to 0000h.
- Subtract the operands using SUB AX, BX.
- Check for carry bit using JNC instruction.
 - If AX; BX carry bit is generated and take 2's complement of AH using NEG AX and increment CX by 1.
- Move the contents of AX and CX to RESULT and CARRY operands respectively.

3.2.1 16 BIT SUBTRACTION: Program

Program	Contents
mov ax,opr1	Transfers contents of operand 1 to AX register.
mov bx,opr2	Transfer contents of operand 2 to BX register.
mov cx,0000h	Intialize CX register with 0000h
sub ax,bx	AX = AX - BX
jnc here	Jumps to "Here Label if carry bit is not generated
neg ax	AX = 2's complement of AH
inc cx	CX = CX + 1
here: mov result,ax	Transfer contents from AX to RESULT
mov carry,cx	Transfer contents from CX to CARRY.
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45,process is terminated

```
P:N>debug 16bitsub.exe
ш
                                  AX,076A
076B:0000 B86A07
                          MOV
076B:0003 8ED8
                          MOV
                                  DS,AX
076B:0005 A10000
                          MOU
                                  AX,[0000]
076B:0008 8B1E0200
                          MOU
                                  BX.[0002]
076B:000C B500
                          MOV
                                  CH,00
076B:000E 2BC3
                         SHR
                                  AX.BX
076B:0010 7304
                          JNB
                                  0016
076B:0012 F7D8
                                  ΑX
                         NEG
076B:0014 FEC5
                          INC
                                  CH
076B:0016 A30400
                          MOV
                                  [0004],AX
076B:0019 882E0600
                          MOV
                                  [0006],CH
076B:001D B44C
                          MOU
                                  AH,4C
076B:001F CD21
                                  21
                          INT
```

Figuur 3: 16 bit SUB Unassembled

```
-d 076a:0000
076A:0000
           11 15 35 42 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
           B8 6A 07 8E D8 A1 00 00-8B 1E 02 00 B5 00 2B
                                                         C3
076A:0020
           73 04 F7
                    D8 FE
                          C5 A3 04-00 88 ZE 06 00 B4 4C CD
076A:0030
           21 B7 00 D1 E3 8B 87 AE-16 3B 46 FE 77 09 89 46
076A:0040
           FE 8A 46 F9 88
                          46 F8 FE-46 F9 EB C9 8A 5E F8 B7
076A:0050
           00 8A 87 48 2F
                          DO D8 73-17 E8 B6 OO 8A 5E F8 B7
076A:0060
           00 8A 87 48 2F
                          DO D8 73-07 53 BO 01 50 E8 73 01
076A:0070
           AO B6 2C 3A 46 F8 74 7E-C7 46 FA 00 00 8A 46 F8
g
Program terminated normally
-d 076a:0000
076A:0000
           11 15 35 42 24 2D 01 00-00 00 00 00 00 00 00 00
076A:0010
           B8 6A 07 8E D8 A1 00 00-8B 1E 02 00 B5 00 2B C3
076A:0020
           73 04 F7 D8 FE C5 A3 04-00 88 ZE
                                             06 00 B4 4C CD
076A:0030
           21 B7 00
                    D1 E3 8B 87 AE-16 3B 46 FE
                                                77 09 89 46
076A:0040
           \mathbf{FE}
              8A 46 F9
                       88
                          46 F8 FE-46 F9
                                          EB C9
                                                8A 5E
                                                      F8
                                                         B7
076A:0050
           00 8A 87 48
                       2F
                          DΘ
                             D8 73-17
                                       E8
                                          B6 00
                                                8A 5E
                                                      F8
                                                         В7
076A:0060
           00 8A 87
                    48 2F
                          D\Theta
                             D8 73-07
                                       53
                                          BO 01
                                                50
                                                      73
                                                         01
                                                   E8
076A:0070
           AO B6 2C 3A 46 F8 74 7E-C7 46 FA 00 00 8A 46 F8
```

Figuur 4: 16 bit SUB OUTPUT

3.3 16 BIT MULTIPLICATION:

- Move the data segment to the AX register and then move it to DS register.
- \bullet Move the first and second operands to AX and BX registers respectively.
- \bullet Multiply the operands using $\mathbf{MUL}\ \mathbf{BX}$
 - Note: AX is default operand register for MUL instruction and specifying the second operand register is sufficient.
- The lower and higher order result bits are stored in AX and DX. They are transferred to RESULT1 RESULT2 respectively.

3.3.1 16 BIT MULTIPLICATION: Program

Program	Contents
mov al, opr1	Transfers contents of operand 1to AL register
mov bl, opr2	Transfer contents of operand 2 to BL register
mul bx	BX = BX * AX
mov result1,ax	Transfer contents of AX to RESULT1
mov result2,dx	Transfer contents of DX to RESULT2
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45,process is terminated

```
P:N>debug 16bitmul.exe
076B:0000 B86A07
                                  AX,076A
                         MOV
076B:0003 8ED8
                         MOV
                                  DS,AX
076B:0005 BA0000
                         MOV
                                  DX,0000
076B:0008 A10000
                         MOU
                                  AX.[0000]
076B:000B 8B1E0200
                         MOV
                                  BX,[0002]
076B:000F F7E3
                         MUL
                                  BX
076B:0011 A30400
                         MOV
                                  [0004].AX
076B:0014 8BC2
                         MOU
                                  AX.DX
                                  [0006],AX
076B:0016 A30600
                         MOV
076B:0019 B44C
                         MOV
                                  AH,4C
076B:001B CD21
                         INT
                                  21
076B:001D 1E
                         PUSH
                                  DS
076B:001E 8A5EF9
                         MOV
                                  BL,[BP-07]
```

Figuur 5: 16 bit MUL Unassembled

```
d 076a:0000
076A:0000
          00 15 00 30 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
           B8 6A 07 8E D8 BA 00 00-A1 00 00 8B 1E 02 00 F7
076A:0020
           E3 A3 04 00 8B C2 A3 06-00 B4 4C CD 21 1E 8A 5E
076A:0030
          F9 B7 00 D1 E3 8B 87 AE-16 3B 46 FE 77 09 89 46
          FE 8A 46 F9 88 46 F8 FE-46 F9 EB C9 8A 5E F8 B7
076A:0040
076A:0050
          00 8A 87 48 2F
                         DO D8 73-17 E8 B6 00 8A 5E F8 B7
076A:0060
          00 8A 87 48 2F
                          DO D8 73-07 53 BO 01 50 E8 73 01
          AO B6 2C 3A 46 F8 74 7E-C7 46 FA 00 00 8A 46 F8
076A:0070
Program terminated normally
-d 076a:0000
076A:0000
          00 15 00 30 00 00 F0 03-00 00 00 00 00 00 00 00
076A:0010
           B8 6A 07 8E D8 BA 00 00-A1 00 00 8B 1E 02 00 F7
076A:0020
          E3 A3 04 00 8B C2 A3 06-00 B4 4C CD 21
                                                  1E 8A 5E
076A:0030
          F9 B7 00 D1 E3 8B 87 AE-16 3B 46 FE 77 09 89 46
076A:0040
          FE 8A 46 F9 88 46 F8 FE-46 F9 EB C9 8A 5E
                                                     F8 B7
076A:0050
          00 8A 87 48 2F DO D8 73-17 E8 B6 00 8A 5E F8 B7
          00 8A 87 48 2F DO D8 73-07 53 BO 01 50 E8 73 01
076A:0060
076A:0070
          AO B6 2C 3A 46 F8 74 7E-C7 46 FA 00 00 8A 46 F8
```

Figuur 6: 16 bit MUL OUTPUT

3.4 16 BIT DIVISION

- Move the data segment to the AX register and then move it to the DS register.
- Now, set DX register to 0000h and move first operand to AX register. (Since we cant directly divide a 16 bit number by 16 bit number in 8086, we now make our dividend 32 bit by storing 0000h in DX register and the 16-bit operand 1 in AX register).
- Move the second operand to the BX register.
- Now divide using DIV BX.(It will perform DXAX / BX. what actually happens is the division of a 32 bit number by a 16 bit number.)
- The quotient and remainder stored in AL and AH should be moved to QUOTIENT and REMAINDER respectively.

3.4.1 16 BIT DIVISION: Program

Program	Contents
mov dx, 0000h	Move the value 0000h to DX register.
mov ax, opr1	Transfers contents of operand 1 to AX register.
mov bx, opr2	Transfer contents of operand 2 to BX register.
div bx	Performs DXAX/BX.
mov quotient,ax	Transfer contents from AX to QUOTIENT
mov remainder,dx	Transfer contents from DX to REMAINDER
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45,process is terminated

```
P:N>debug 16bitdiv.exe
076B:0000 B86A07
                         MOV
                                  AX.076A
076B:0003 8ED8
                         MOV
                                  DS, AX
076B:0005 BA0000
                         MOV
                                  DX.0000
076B:0008 A10000
                         MOU
                                  AX,[0000]
076B:000B 8B1E0200
                         MOV
                                  BX,[0002]
076B:000F F7F3
                         DIU
                                  BX
076B:0011 A30400
                         MOV
                                  [0004],AX
076B:0014 89160600
                         MOV
                                  [00061.DX
076B:0018 B44C
                                  AH.4C
                         MOV
076B:001A CD21
                                  21
                         INT
076B:001C EB1E
                         JMP
                                  0030
076B:001E 8A5EF9
                         MOV
                                  BL,[BP-07]
```

Figuur 7: 16 bit DIV Unassembled

```
d 076a:0000
976A:0000
           00 25 20 10 00 00 00 00-00 00 00 00 00 00 00 00
           B8 6A 07 8E D8 BA 00 00-A1 00 00 8B 1E 02 00 F7
076A:0010
           F3 A3 04 00 89 16 06 00-B4 4C CD 21 EB 1E 8A 5E
076A:0020
076A:0030
          F9 B7 00 D1 E3 8B 87 AE-16 3B 46 FE 77 09 89 46
          FE 8A 46 F9 88 46 F8 FE-46 F9 EB C9 8A 5E F8 B7
076A:0040
076A:0050
           00 8A 87 48 2F DO D8 73-17 E8 B6 00 8A 5E F8 B7
076A:0060
           00 8A 87 48 2F DO D8 73-07 53 BO 01 50 E8 73 01
           AO B6 2C 3A 46 F8 74 7E-C7 46 FA 00 00 8A 46 F8
076A:0070
Program terminated normally
-d 076a:0000
976A:0000
           00 25 20 10 02 00 00 04-00 00 00 00 00 00 00 00
076A:0010
           B8 6A 07 8E D8 BA 00 00-A1 00 00 8B
                                                1E 02
                                                      00 F7
076A:0020
           F3 A3 04 00 89 16 06 00-B4 4C CD 21
                                                \mathbf{EB}
                                                    1E
                                                      8A 5E
076A:0030
              B7 00 D1
                       E3 8B 87
                                AE-16 3B 46 FE
           F9
                                                77
                                                   09 89 46
076A:0040
           FΕ
              8A 46 F9 88 46 F8 FE-46 F9 EB C9 8A 5E
                                                      F8 B7
                                                      F8 B7
076A:0050
           00 8A 87
                    48 ZF
                          DO D8
                                 73-17 E8 B6 00 8A 5E
              8A 87
076A:0060
                    48 2F
                          DO D8
                                 73-07 53 B0 01
                                                50 E8 73 01
           \mathbf{00}
076A:0070
           AO B6 2C 3A 46 F8 74 7E-C7 46 FA 00 00 8A 46 F8
```

Figuur 8: 16 bit DIV OUTPUT

4 RESULT:

Thus, 8086 programs for arithmetic operations of 16 bit numbers like addition, subtraction, multiplication and division have been executed successfully using MS - DOSBox