Aim

- 1. This notebook is aimed towards doing bi-variate and multivariate analysis
- 2. as number of combinations for bi-variate analysis are high selecting a few variables to do bi-variate analysis on

```
In [1]: import os
         import matplotlib.pyplot as plt
         import numpy as np
         import pandas as pd
         import seaborn as sns
In [2]: DATA ROOT = "../data"
        df = pd.read csv(f"{DATA ROOT}/eda/clean-data.csv")
In [3]:
        df.head(2)
Out[3]:
                 Source
                        TMC Severity Start_Time End_Time
                                                           Start_Lat
                                                                     Start_Lng Distance(n
                                        2016-02- 2016-02-
              MapQuest 201.0
                                        08 08 39.865147 -84.058723
                                                                                      0.
                                        05:46:00
                                                11:00:00
                                        2016-02-
                                                 2016-02-
              MapQuest 201.0
                                                  08 39.928059 -82.831184
                                   2
                                                                                      0.
                                         80
                                        06:07:59
                                                 06:37:59
       2 rows × 45 columns
```

Bivariate analysis

Severity - Distance(mi)

```
In [20]: _ = df[["Distance(mi)", "Severity"]]

plt.figure(figsize=[10, 7])
plt.title("Box plot of Severity vs Distance(mi)")
sns.boxplot(x="Severity", y="Distance(mi)", data=_)
plt.grid()
plt.show()
```


- 1. Distance of road affected by different severities of accidents show long tailed distribution
- 2. We can see that accidents of severity 3 have the longest tail

Severity - Side

```
In [10]: df["Side"].value_counts().reset_index()
Out[10]:
            index
                     Side
               R 2879797
                   633819
          2
                        1
In [31]: pd.options.mode.chained_assignment = None
         ix = df[df["Side"] == " "].index
          # filling with mode (as only one value is empty)
         df.loc[ix, "Side"] = "R"
In [32]: df_temp = df[["Side", "Severity"]]
         df_temp["per_Side_severity_sum"] = 1
         df_temp = df_temp.groupby(["Side", "Severity"], as_index=False).sum()
         df_temp
```

Out[32]:		Side	Severity	per_Side_severity_sum
	0	L	1	6252
	1	L	2	561020
	2	L	3	41486
	3	L	4	25061
	4	R	1	22922
	5	R	2	1812190
	6	R	3	957427
	7	R	4	87259

```
In [33]: plt.figure(figsize=[12, 7])
   plt.title("Box plot of Severity vs Side")
   sns.barplot(
        y="per_Side_severity_sum", x="Side", data=df_temp, hue="Severity",
   )
   plt.grid()
   plt.show()
```


Severity - City

```
In [53]: topk = 10
    df_temp = df[["Severity", "City"]]
    topk_cities = df_temp["City"].value_counts().head(topk).reset_index()["index
    df_temp = df_temp[df_temp["City"].isin(topk_cities)]

    df_temp["per_city_severity_sum"] = 1

    df_temp = df_temp.groupby(["City", "Severity"], as_index=False).sum()
    df_temp.head()
```

Out[53]:		City	Severity	per_city_severity_sum
	0	Atlanta	1	121
	1	Atlanta	2	14950
	2	Atlanta	3	24422
	3	Atlanta	4	1633
	4	Austin	1	17

- 1. In top 10 cities Houston has maximum numbers of Severity 2 accidents
- 2. Severity 4 accidents are comparitively lower in these top 10 cities as compared to other severities

Severity - State

```
In [81]: topk = 10
    df_temp = df[["Severity", "State"]]
    topk_states = df_temp["State"].value_counts().head(topk).reset_index()["inde
    df_temp = df_temp[df_temp["State"].isin(topk_cities)]

df_temp["per_state_severity_sum"] = 1
```

```
df_temp = df_temp.groupby(["State", "Severity"], as_index=False).sum()
df_temp.head()
```

Out[81]: State Severity per_state_severity_sum 0 CA 5801 1 CA 2 576742 2 CA 3 225820 3 CA Δ 8462 4 FL 1 3014

- 1. California has highest number of severity 2 accidents
- 2. Severity 2 cases are high in top 10 states of most occuring accidents
- 3. Severity 3 and 4 accidents are comparitively lower in these top 10 states

Severity - Temperature

```
In [71]: pd.options.mode.chained_assignment = None # default='warn'
df_temp = df[["Temperature(F)", "Severity"]]
df_temp["Temperature(C)"] = (df_temp["Temperature(F)"] - 32) / 1.8
df_temp
```

	Temperature(F)	Severity	Temperature(C)
0	36.9	3	2.722222
1	37.9	2	3.277778
2	36.0	2	2.222222
3	35.1	3	1.722222
4	36.0	2	2.222222
•••		•••	
3513612	86.0	2	30.000000
3513613	70.0	2	21.111111
3513614	73.0	2	22.777778
3513615	71.0	2	21.666667
3513616	79.0	2	26.111111

3513617 rows × 3 columns

Out[71]:

```
In [72]: plt.figure(figsize=[12, 7])
   plt.title("Box plot of Severity vs Temperature(C)")
   sns.boxplot(
        y="Temperature(C)", x="Severity", data=df_temp,
)
   plt.grid()
   plt.show()
```


- 1. IQR of temperatures across all severities is more or less similar
- 2. Tails of box plots of severity 2 and 3 seem longer than others

Severity - Humidity

```
In [74]: df_temp = df[["Humidity(%)", "Severity"]]

plt.figure(figsize=[12, 7])
plt.title("Box plot of Severity vs Humidity(%)")
sns.boxplot(
    y="Humidity(%)", x="Severity", data=df_temp,
)
plt.grid()
plt.show()
```


- 1. accidents with severity 1 are seen in between humidity percentage of ≈25-75
- 2. accidents with severity 2,3,4 are observed between humidity percentage of ≈50-80

Severity - Wind_Speed(mph)

```
In [76]: df_temp = df[["Severity", "Wind_Speed(mph)"]]

plt.figure(figsize=[12, 7])
plt.title("Box plot of Severity vs Wind_Speed(mph)")
sns.boxplot(
    y="Wind_Speed(mph)", x="Severity", data=df_temp,
)
plt.grid()
plt.show()
```


- 1. IQR of wind speed for severity 1,2,3,4 are in very similar ranges
- 2. whereas long tails are observed for wind speed across severity 2,3

Severity - POI variables

In [96]: def poi_charts(df, poi_var):

"Traffic_Signal",

```
# prepare data
              df temp = df[[poi var, "Severity"]]
              var = f"per_{poi_var}_severity_sum"
              df temp[var] = 1
              df_temp = df_temp.groupby([poi_var, "Severity"], as_index=False).sum()
              display(df_temp)
              # plot
              plt.figure(figsize=[8, 5])
              plt.title(f"Box plot of Severity vs {i}")
              sns.barplot(
                  y=var, x=poi var, data=df temp, hue="Severity", order=[True, False],
              plt.grid()
              plt.show()
In [109... poi list = [
              "Amenity",
              "Bump",
              "Crossing",
              "Give_Way",
              "Junction",
              "No_Exit",
              "Railway",
              "Roundabout",
              "Station",
              "Stop",
              "Traffic_Calming",
```

```
"Turning_Loop",
]
```

```
In [110... for i in poi_list:
                  poi_charts(df, i)
print("\n\n")
```

	Amenity	Severity	per_Amenity_severity_sum
0	False	1	28682
1	False	2	2335907
2	False	3	995745
3	False	4	111201
4	True	1	492
5	True	2	37303
6	True	3	3168
7	True	4	1119

	e 1	
0 Fals		29164
1 Fals	e 2	2372704
2 Fals	е 3	998830
3 Fals	e 4	112313
4 Tru	e 1	10
5 Tru	e 2	506
6 Tru	е 3	83
7 Tru	e 4	7
		•

	Crossing	Severity	per_Crossing_severity_sum
0	False	1	20250
1	False	2	2132468
2	False	3	979387
3	False	4	106986
4	True	1	8924
5	True	2	240742
6	True	3	19526
7	True	4	5334

	Give_Way	Severity	per_Give_Way_severity_sum
0	False	1	29101
1	False	2	2365889
2	False	3	997114
3	False	4	111949
4	True	1	73
5	True	2	7321
6	True	3	1799
7	True	4	371

	Junction	Severity	per_Junction_severity_sum
0	False	1	26649
1	False	2	2209455
2	False	3	893591
3	False	4	99473
4	True	1	2525
5	True	2	163755
6	True	3	105322
7	True	4	12847

	No_Exit	Severity	per_No_Exit_severity_sum
0	False	1	29075
1	False	2	2369927
2	False	3	998039
3	False	4	112192
4	True	1	99
5	True	2	3283
6	True	3	874
7	True	4	128

	Railway	Severity	per_Railway_severity_sum
0	False	1	28636
1	False	2	2348621
2	False	3	993678
3	False	4	111507
4	True	1	538
5	True	2	24589
6	True	3	5235
7	True	4	813

	Roundabout	Severity	per_Roundabout_severity_sum
0	False	1	29173
1	False	2	2373032
2	False	3	998911
3	False	4	112317
4	True	1	1
5	True	2	178
6	True	3	2
7	True	4	3

	Station	Severity	per_Station_severity_sum
0	False	1	28215
1	False	2	2314019
2	False	3	990321
3	False	4	110741
4	True	1	959
5	True	2	59191
6	True	3	8592
7	True	4	1579

	Stop	Severity	per_Stop_severity_sum
0	False	1	28696
1	False	2	2325825
2	False	3	996302
3	False	4	110818
4	True	1	478
5	True	2	47385
6	True	3	2611
7	True	4	1502

	Traffic_Calming	Severity	per_Traffic_Calming_severity_sum
0	False	1	29162
1	False	2	2372039
2	False	3	998730
3	False	4	112285
4	True	1	12
5	True	2	1171
6	True	3	183
7	True	4	35

	Traffic_Signal	Severity	per_Traffic_Signal_severity_sum
0	False	1	16717
1	False	2	1833400
2	False	3	938661
3	False	4	101216
4	True	1	12457
5	True	2	539810
6	True	3	60252
7	True	4	11104

	Turning_Loop	Severity	per_Turning_Loop_severity_sum
0	False	1	29174
1	False	2	2373210
2	False	3	998913
3	False	4	112320

Following observations can be made from severity - poi variables plots:

- 1. in most of the cases absence of POIs have more occurences of accidents of varying severity e.g:
 - A. absence of traffic signal
 - B. turning loop
 - C. stop signs
- 2. in some of the cases even presence of POIs have some occurences of accidents of varying severity e.g:
 - A. Traffic signal
 - B. Crossing
 - C. Junction
- 3. Accidents with severity 2 are most occuring accidents in all of the POIs

Multivariate analysis

Severity - Humidity - Temperature

```
In [115... df_temp = df[["Severity", "Humidity(%)", "Temperature(F)"]]
df_temp["Temperature(C)"] = (df_temp["Temperature(F)"] - 32) / 1.8
```

Contour plots of Humidity, Temperature with varying severity

- 1. for severity of accidents 1
 - humidity % range between 0-20
 - and temperature(C) between 20-40
 - · show high over lap
- 2. similar observation can be made for another fairly dense region
 - humidity % range between 60-90
 - and temperature(C) between 10-20
 - show high over lap

- 1. for severity of accidents 2
 - humidity % range between 90-100
 - and temperature(C) between 0-30
 - show high over lap

- 2. similar observation can be made for another dense region
 - humidity % range between 50-100
 - and temperature(C) between 25-35
 - show high over lap

- 1. for severity of accidents 3
 - humidity % range between 90-100
 - and temperature(C) between 10-30
 - show high over lap
- 2. similar observation can be made for another dense region
 - humidity % range between 40-100
 - and temperature(C) between 20-35
 - show high over lap

- 1. for severity of accidents 4
 - humidity % range between 90-100
 - and temperature(C) between 0-30
 - show high over lap
- 2. similar observation can be made for another dense region
 - humidity % range between 50-100
 - and temperature(C) between 20-35
 - show high over lap

Concluding EDA

- 1. There is a skew in distribution/ occurences of accidents across variables
- 2. Severities of accidents also has a skew across multiple variables
- 3. Interesting patterns can be observed w.r.t Weather variables and Severity
- 4. Combination of multiple POI variables might give some interesting results while modelling
- 5. Occurence of accidents across different cities and states vary
- 6. Text features such as description hold informative keywords which could be leveraged to build features