Algebraic Number Theory

Ikhan Choi

October 1, 2024

Contents

I	Algebraic numbers	2
1	Primes 1.1 Local fields	3
2	Adèles and idèles	4
3	Galois modules 3.1 Profinite groups	5 5 5
II	Class field theory	6
4	Local class field theory 4.1 Lubin-Tate theory	7 7 7
5	Global class field theory	8
6		9
II	Arithmetic geometry	10
IV	Langlands program	11
7	Modular forms	12
8	L-functions8.1 Dirichlet L-functions	13 13
9	Automorphic representations	14

Part I Algebraic numbers

Primes

an order defines a ring class group, a ring class group defines an abelian extension. the conductor of this abelian extension divides the conductor of the order.

1.1 Local fields

1.1 (Absolute value). Let K be a field. An *absolute value* or a *multiplicative valuation* on K is a function $|\cdot|: K \to [0, \infty)$ such that

- (i) x = 0 if |x| = 0,
- (ii) |xy| = |x||y|,
- (iii) $|x + y| \le |x| + |y|$.

Non-archimedean

1.2 (Local fields). A *local field* is a locally compact field with a non-trivial absolute value. The Ostrowski theorem states that a local field is one of the followings:

- (i) a finite extension of \mathbb{Q}_p for a rational prime p,
- (ii) a finite extension of $\mathbb{F}_p((T))$ for a rational prime p,
- (iii) \mathbb{R} or \mathbb{C} .

Let K be a non-archimedian local field. Then, the ring of integers \mathcal{O}_K is a discrete valuation ring, and a generator π of the principal maximal ideal \mathfrak{m}_K is called the *prime element* or the *uniformizer*.

Local reciprocity law: there is a unique homomoprhism

$$\phi_K: K^{\times} \to \operatorname{Gal}(K^{\operatorname{ab}}/K) = \varprojlim_{L} \operatorname{Gal}(L/K)$$

such that

- 1. for each finite unramified extension L over K, which is automatically cyclic, $\phi_{L/K}(\pi)$ is the Frobenius element in Gal(L/K),
- 2. for each finite abelian extension L over K, it induces an isomorphism $\phi_{L/K}: K^{\times}/\mathrm{Nm}_{L/K}(L^{\times}) \to \mathrm{Gal}(L/K)$.
- 1.3 (Places).
- **1.4** (Units in non-archimedean local fields). Let K be a non-archimedean local field. \mathcal{O}_K

Adèles and idèles

Galois modules

3.1 Profinite groups

3.2

- **3.1** (Galois modules). (a) $L, L^{\times}, \mathcal{O}_{L}, \mathcal{O}_{L}^{\times}$ are all Gal(L/K)-modules.
 - (b) The group of torsion points
- 3.2 (Normal basis theorem).

3.3 Galois cohomology

- 3.3 (Set of invariants).
- 3.4 (First cohomology groups).
- **3.5** (Hilbert 90). (a) $H^1(Gal(L/K), L^{\times}) \cong 0$.
 - (b) $H^1(Gal(\overline{K}/K), \overline{K}) \cong 0$.
 - (c) $H^1(Gal(\overline{K}/K), \overline{K}^{\times}) \cong 0$.
 - (d) $H^1(Gal(\overline{K}/K), \mu_m) \cong \overline{K}/\overline{K}^{\times}$.

Proof.

Part II Class field theory

Local class field theory

4.1 Lubin-Tate theory

4.2 Kronecker-Weber theorem

4.1 (Local Kronecker-Weber theorem). Let K/\mathbb{Q}_p be a finite abelian extension.

Let K/\mathbb{Q} be a finite abelian extension. A *conductor* $\mathfrak{f}(L/K)$ of K/\mathbb{Q} is the smallest non-negative integer n such that the higher unit group

$$U^{(n)} = 1 + \mathfrak{m}_K^n$$

is contained in $N_{L/K}(L^{\times})$.

Let m be a conductor of a finite abelian extension K/\mathbb{Q} . Then, we have a surjective group homomorphism

$$\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \to \operatorname{Gal}(K/\mathbb{Q})$$

by the Kronecker-Weber theorem. For a prime $p\in\mathbb{Z}$ that does not divide m so that p is not ramified, then the decomposition group $G_p\leq \operatorname{Gal}(K/\mathbb{Q})$ is a cyclic group generated by the Frobenius element $x\to x^p$, denoted by Frob_p or $\left(\frac{K/\mathbb{Q}}{p}\right)$. Artin map $I^m_{\mathbb{Q}}\to\operatorname{Gal}(K/\mathbb{Q})$ of K/\mathbb{Q} maps each prime $p\nmid m$ to the Frobenius element Frob_p . Artin map factors through $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})\to\operatorname{Gal}(K/\mathbb{Q})$!

Global class field theory

Part III Arithmetic geometry

Part IV Langlands program

Modular forms

modular forms are sections of some line bundles over a moduli stack \mathcal{M} of complex elliptic curves. By modular forms, we can investigate the algebraic nature of \mathcal{M} .

Let $N \ge 1$ and $k \ge 2$. Let $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Let Γ be a congruence subgroup which acts on \mathbb{H} . The vector space of all cusp forms and modular forms weight k with respect to Γ is denoted by $S_k(\Gamma) \subset M_k(\Gamma)$.

Since $\Gamma_1(N)$ acts trivially on $S_k(\Gamma_1(N))$, we have an action of $\Gamma_0(N)/\Gamma_1(N) \cong (\mathbb{Z}/N\mathbb{Z})^{\times}$ on $S_k(\Gamma_1(N))$, and we define $S_k(N,\chi)$ by the decomposition

$$S_k(\Gamma_1(N)) = \bigoplus_{\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}} S_k(N, \chi).$$

We also define $S_k(N) := S_k(N, 1) = S_k(\Gamma_0(N))$.

The Hecke operators are defined as a commuting family of endomorphisms $(T_n)_{n=1}^{\infty}$ on $S_k(\Gamma_1(N))$. Let $f = \sum_{n \geq 1} a_n q^n \in S_k(\Gamma_1(N))$ be a cusp form. We say f is a normalized eigenform if $a_1 = 1$ and it is an eigenvector of Hecke operators, and in this case we have $T_n f = a_n f$. It is known that the field $\mathbb{Q}(f) := \mathbb{Q}(a_n : n \geq 1)$ is a finite extension of \mathbb{Q} . We have an L-function given by

$$L(f,s) := \sum_{n>1} a_n n^{-s}.$$

 $G_{\mathbb{Q}_n}$ is a subgroup of $G_{\mathbb{Q}}$, called the decomposition group, well-defined up to conjugacy.

Let $f \in S_k(N,\chi)$ be a normalized eigenform, and let $\lambda \mid \ell$ be a place. Then, there is a two-dimensional representation $V_{f,\lambda}$ over an ℓ -adic field $\mathbb{Q}(f)_{\lambda}$ of $G_{\mathbb{Q}}$ such that

$$\operatorname{Tr}_{V_{f,\lambda}}(\operatorname{Frob}_p) = a_p$$

for every prime p such that $p \nmid N\ell$ and $V_{f,\lambda}$ is unramified at p.

L-functions

Riemann $\zeta(s)$ Dedekind $\zeta_K(s)$ Hasse-Weil $\zeta_X(s)$

8.1 Dirichlet *L*-functions

By the Kronecker-Weber theorem, a continuous one-dimensional complex representation $G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ of the absolute Galois group factors through the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ of some cyclotomic extension to be a Dirichlet character.

We also want to study ℓ -adic Galois representations.

8.1 (Hecke character). Let $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. In order to construct an L-function from a character, we need to extend a character as a function of ideals. We interpret $(\mathbb{Z}/n\mathbb{Z})^{\times}$ as the ray class group modulo \mathfrak{m} .

To extend the order of a character to possibly infinite cases, Hecke character is defined a character of an idele class group $C_K := \mathbb{A}_K^\times/K^\times$.

Dirichlet (Hecke) *L*-functions for ray-class characters $\chi: C_K \to \mathbb{C}$:

$$L(\chi,s) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{ prime}} \frac{1}{1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-s}}$$

Artin *L*-functions for a Galois representation $\rho : \operatorname{Gal}(L/K) \to GL_n(\mathbb{C})$:

$$L(\rho,s) = \prod_{\mathfrak{p} \text{ prime}} \frac{1}{\det(1 - \rho(\operatorname{Frob}_{\mathfrak{p}})N(\mathfrak{p})^{-s})}$$

Elliptic curves L(E,s)Modular forms L(f,s)

Automorphic representations