Intro Real Analysis

Rosenlicht

April 2022

Contents

Not	ions from Set Theory	3
1.1	Sets and Elements. Subsets	3
1.2	Operations on Sets	3
1.3		3
1.4	Finite and Infinite Sets	3
The	Real Number System	3
2.1	The Field Properties	3
2.2		3
2.3		3
2.4	The Existence of Square Roots	3
Met	ric Spaces	3
3.1	Definition of Metric Spaces. Examples	3
3.2		7
3.3	-	7
3.4		7
3.5		7
3.6	Connectedness	7
Con	tinuous Functions	7
4.1	Definition of Continuity. Examples	7
4.2		7
4.3		
	E^n	7
4.4	Continuous Functions on a Compact Metric Space	7
4.5	Continuous Functions on a Connected Metric Space	7
4.6	Sequences of Functions	7
	1.1 1.2 1.3 1.4 The 2.1 2.2 2.3 2.4 Met 3.1 3.2 3.3 3.4 3.5 3.6 Con 4.1 4.2 4.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5	Diff	erentiation		
	5.1	Definition of the Derivative		
	5.2	Rules of Differentiation		
	5.3	The Mean Value Theorem		
	5.4	Taylor's Theorem		
6	Rier	nann Integration		
	6.1	Definition and Examples		
	6.2	Linearity and Order Properties of the Integral		
	6.3	Existence of the Integral		
	6.4	The Fundamental Theorem of Calculus		
	6.5	The Logarithmic and Exponential Functions		
	6.6	Definition of Continuity. Examples		
7	Interchange of Limit Operations 7			
	7.1	Integration and Differentiation of Sequences of Functions		
	7.2	Infinite Series		
	7.3	Power Series		
	7.4	The Trigonometric Functions		
	7.5	Differentiation under the Integral Sign		
8	The	Method of Successive Approximations		
	8.1	The Fixed Point Theorem		
	8.2	The Simplest Case of the Implicit Function Theorem		
	8.3	Existence and Uniqueness Theorems for Ordinary Differential		
		Equations		
9	Part	ial Differentiation		
	9.1	Definitions and Basic Properties		
	9.2	Higher Derivatives		
	9.3	The Implicit Function Theorem		
10	Mul	tiple Integrals		
	10.1	Riemann Integration on Closed Intervals of E^n . Examples and		
		Basic Properties		
	10.2	Existence of the Integral. Integration on Arbitrary Subsets of		
		E^n . Volume		
		Iterated Integrals		
	10.4	Change of Variable		

1 Notions from Set Theory

- 1.1 Sets and Elements. Subsets
- 1.2 Operations on Sets
- 1.3 Functions
- 1.4 Finite and Infinite Sets

2 The Real Number System

- 2.1 The Field Properties
- 2.2 Order
- 2.3 The Least Upper Bound Property
- 2.4 The Existence of Square Roots
- 3 Metric Spaces

3.1 Definition of Metric Spaces. Examples

Definition 3.1 (Metric Space). A Metric Space is an ordered pair (E, d) where E is some set along with a metric function $d: E \times E \to \mathbb{R}$ such that:

- 1. Identity of Indiscernibles: $d(p,q) = 0 \Leftrightarrow p = q, \forall p,q \in E$
- 2. Symmetry: $d(p,q) = d(q,p), \forall p,q \in E$
- 3. Subadditivity: $d(p,q) \leq d(p,r) + d(r,q), \forall p,q,r \in E$

Theorem 3.1. Metric functions are non-negative

Proof. Let d be a metric function with points $p, q \in E$. So,

$$0 = d(p, p) \qquad \text{(Identity of Indiscernibles)}$$

$$= \frac{d(p, p)}{2}$$

$$\leq \frac{d(p, q) + d(q, p)}{2} \qquad \text{(Subadditivity)}$$

$$= \frac{d(p, q) + d(p, q)}{2} \qquad \text{(Symmetry)}$$

$$= 2 \cdot \frac{d(p, q)}{2}$$

$$= d(p, q) \qquad \square$$

Theorem 3.2. $d(p_1, p_n) \leq \sum_{k=1}^{n-1} d(p_k, p_{k+1}), \ \forall p_1, \dots, p_n \in E$

Proof. We show the above statement via Induction. Note the case for n=2 is trivial so we omit it:

Base case (n=3)

$$d(p_1, p_3) \le d(p_1, p_2) + d(p_2, p_3) = \sum_{k=1}^{3-1} d(p_k, p_{k+1})$$

Inductive Step $(n \longrightarrow n+1)$

$$d(p_1,p_{n+1}) \leq d(p_1,p_n) + d(p_n,p_{n+1}) \leq \sum_{k=1}^{n-1} d(p_k,p_{k+1}) + d(p_n,p_{n+1}) = \sum_{k=1}^{(n+1)-1} d(p_k,p_{k+1})$$

Theorem 3.3. $|d(p,r) - d(q,r)| \le d(p,q), \ \forall p,q,r \in E$

Proof. Let $p, q, r \in E$. Then:

$$\begin{aligned} d(q,r) & \leq d(q,p) + d(p,r) & \text{(Subadditivity)} \\ d(q,r) & \leq d(p,q) + d(p,r) & \text{(Symmetry)} \\ -d(q,r) & \geq -d(p,q) - d(p,r) & \\ d(p,r) - d(q,r) & \geq -d(p,q) & \end{aligned}$$

We also have:

$$d(p,r) \leq d(p,q) + d(q,r) \tag{Subadditivity}$$

$$d(p,r) - d(q,r) \leq d(p,q)$$

Which gives us:

$$-d(p,q) \le d(p,r) - d(q,r) \le d(p,q)$$
$$|d(p,r) - d(q,r)| \le d(p,q)$$

Definition 3.2 (Dot Product). The Dot Product of vectors $x, y \in \mathbb{R}^n$ is

$$\boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$

Definition 3.3 (Euclidean Norm). The Euclidean norm of $x \in \mathbb{R}^n$ is

$$||\boldsymbol{x}|| = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$$

Theorem 3.4 (Cauchy Schwarz Inequality). $|x \cdot y| \leq ||x|| \cdot ||y||$, $\forall x, y \in \mathbb{R}^n$

Proof. Let $x, y \in \mathbb{R}^n$. Then,

$$||t \cdot \mathbf{y} + \mathbf{x}||^2 \ge 0, \quad \forall t \in \mathbb{R}^n$$

$$\sum_{i=1}^n (t \cdot y_i + x_i)^2 \ge 0$$

$$\sum_{i=1}^n (t^2 \cdot y_i^2 + 2x_i y_i t + x_i^2) \ge 0$$

$$t^2 \sum_{i=1}^n y_i^2 + 2t \sum_{i=1}^n x_i y_i + \sum_{i=1}^n x_i^2 \ge 0$$

$$t^2 ||\mathbf{y}||^2 + 2t (\mathbf{x} \cdot \mathbf{y}) + ||\mathbf{x}||^2 \ge 0$$

The above is a quadratic in t that is non-negative. Therefore it must have a non-positive discriminant.

$$(2(\boldsymbol{x} \cdot \boldsymbol{y}))^{2} - 4||\boldsymbol{y}||^{2}||\boldsymbol{x}||^{2} \leq 0$$

$$4(\boldsymbol{x} \cdot \boldsymbol{y})^{2} - 4||\boldsymbol{y}||^{2}||\boldsymbol{x}||^{2} \leq 0$$

$$(\boldsymbol{x} \cdot \boldsymbol{y})^{2} - ||\boldsymbol{y}||^{2}||\boldsymbol{x}||^{2} \leq 0$$

$$(\boldsymbol{x} \cdot \boldsymbol{y})^{2} - (||\boldsymbol{x}|| \cdot ||\boldsymbol{y}||)^{2} \leq 0$$

$$(\boldsymbol{x} \cdot \boldsymbol{y})^{2} \leq (||\boldsymbol{x}|| \cdot ||\boldsymbol{y}||)^{2}$$

$$|\boldsymbol{x} \cdot \boldsymbol{y}| \leq ||\boldsymbol{x}|| \cdot ||\boldsymbol{y}||$$

Corollary 3.4.1. The Euclidean Norm is Subadditive.

Proof. Let $x, y \in \mathbf{R}^n$. Then,

$$||\mathbf{x} + \mathbf{y}||^{2} = \sum_{i=1}^{n} (x_{i} + y_{i})^{2}$$

$$= \sum_{i=1}^{n} (x_{i}^{2} + 2x_{i}y_{i} + y_{i}^{2})$$

$$= \sum_{i=1}^{n} x_{i}^{2} + 2\sum_{i=1}^{n} x_{i}y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$= ||\mathbf{x}||^{2} + 2(\mathbf{x} \cdot \mathbf{y}) + ||\mathbf{y}||^{2}$$

$$\leq ||\mathbf{x}||^{2} + 2||\mathbf{x}|| \cdot ||\mathbf{y}| + ||\mathbf{y}||^{2} \qquad \text{(Cauchy Schwarz Inequality)}$$

$$= (||\mathbf{x}|| + ||\mathbf{y}||)^{2}$$

$$||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}|| \qquad \Box$$

Theorem 3.5. \mathbb{R}^n along with $d(\mathbf{p}, \mathbf{q}) = ||\mathbf{p} - \mathbf{q}||$ forms a Metric Space.

Proof. Let $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n$

Identity of Indiscernibles: $d(p, p) = ||p - p|| = ||\mathbf{0}|| = 0$

Symmetry: d(p, q) = ||p - q|| = ||q - p|| = d(q, p)

Subadditivity:

$$\begin{split} d(\boldsymbol{p},\boldsymbol{q}) &= ||\boldsymbol{p} - \boldsymbol{q}|| \\ &= ||(\boldsymbol{p} - \boldsymbol{r}) + (\boldsymbol{r} - \boldsymbol{q})|| \\ &\leq ||(\boldsymbol{p} - \boldsymbol{r})|| + ||(\boldsymbol{r} - \boldsymbol{q})|| \\ &= d(\boldsymbol{p},\boldsymbol{r}) + d(\boldsymbol{r},\boldsymbol{q}) \end{split} \qquad \qquad \Box$$
 (Subadditivity of $||\cdot||$)

Corollary 3.5.1. \mathbb{R} along with d(p,q) = |p-q| forms a Metric Space.

Proof. Let n = 1. Then by Theorem 3.5 we obtain a metric space

Theorem 3.6 (Taxicab metric space). Let E be some set along with

$$d(p,q) = \begin{cases} 1 & p \neq q \\ 0 & p = q \end{cases}$$

Then (E,d) forms a Metric Space.

Proof. Let $p, q, r \in E$

Identity of Indiscernibles: d(p,p) = 0

Symmetry:

Let $p \neq q$

$$d(p,q) = 1 = d(q,p)$$

Let p = q

$$d(p,q) = 0 = d(q,p)$$

Subadditivity:

$$d(p,r) + d(r,q) = \begin{cases} 2 & p \neq r \neq q \\ 0 & p = q = r \\ 1 & else \end{cases}$$

Therefore we have $d(p,q) \leq d(p,r) + d(r,q)$

- 3.2 Open and Closed Sets
- 3.3 Convergent Sequences
- 3.4 Completeness
- 3.5 Compactness
- 3.6 Connectedness

4 Continuous Functions

- 4.1 Definition of Continuity. Examples
- 4.2 Continuity and Limits
- 4.3 The Continuity of Rational Operations. Functions with values in E^n
- 4.4 Continuous Functions on a Compact Metric Space
- 4.5 Continuous Functions on a Connected Metric Space
- 4.6 Sequences of Functions
- 5 Differentiation
- 5.1 Definition of the Derivative
- 5.2 Rules of Differentiation
- 5.3 The Mean Value Theorem
- 5.4 Taylor's Theorem

6 Riemann Integration

- 6.1 Definition and Examples
- 6.2 Linearity and Order Properties of the Integral
- 6.3 Existence of the Integral
- 6.4 The Fundamental Theorem of Calculus
- 6.5 The Logarithmic and Exponential Functions
- 6.6 Definition of Continuity. Examples

7 Interchange of Limit Operations

- 7.1 Integration and Differentiation of Sequences of Functions 7
- 7.2 Infinite Series
- 7.3 Power Series
- 7.4 The Trigonometric Functions
- 7.5 Differentiation under the Integral Sign