(I) Publication number:

0 070 698 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 13.11.85

(§) Int. Cl.⁴: **C 07 D 403/12,** A 01 N 47/36 // C07D209/30

(2) Application number: 82303730.4

(2) Date of filing: 15.07.82

- (4) Herbicidal indole sulfonamides.
- (3) Priority: 16.07.81 US 283928 01.06.82 US 382876
- 4 Date of publication of application: 26.01.83 Bulletin 83/04
- (4) Publication of the grant of the patent: 13.11.85 Bulletin 85/46
- Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE
- (S) References cited: EP-A-0 039 239 EP-A-0 045 196 US-A-4 127 405

- (3) Proprietor: E.I. DU PONT DE NEMOURS AND COMPANY
 1007 Market Street
 Wilmington Delaware 19898 (US)
- (7) Inventor: Zimmerman, Donna Frieze R.D.1 Box 200 A Landenberg Pennsylvania 19350 (US)
- (7) Representative: Hildyard, Edward Martin et al Frank B. Dehn & Co. European Patent Attorneys Imperial House 15-19 Kingsway London WC2B 6UZ (GB)

8 B1

> The file contains technical information submitted after the application was filed and not included in this specification

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

Background of the Invention

This invention relates to novel N-(heterocyclicaminocarbonyl)indole sulfonamides which are useful as agricultural chemicals and, in particular, as herbicidal agents.

Canadian Patent 747,920 (issued 12/6/66, Upjohn) discloses 3-(alkylcarbamoylsulfamoyl)-1-alkylindole-2-caboxylic acids and esters (i) as sedatives, diuretics, antifungal agents and/or sun screens

(i)

SO₂NHCONHR₂

CO₂R₁

where

15

25

35

45

55

R and R₂ are C₁—C₄ alkyl, and

R₁ is H or C₁—C₄ alkyl.

20 U.S Patent 4,127,405 teaches compounds which are useful for controlling weeds in wheat having the formula

wherein

30 R₁ is

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\$

R₃ and R₆ are independently hydrogen, fluorine, chlorine, bromine, iodine, alkyl of 1—4 carbon atoms, alkoxy of 1—4 carbon atoms, nitro, trifluoromethyl, cyano, CH₃S(O)_n— or CH₂CH₂S(O)_n—;

R₄ is hydrogen, fluorine, chlorine, bromine or methyl;

R₅ is hydrogen, fluorine, chlorine, bromine, methyl or methoxy;

R₇ is hydrogen, fluorine, chlorine, bromine, alkyl of 1—2 carbon atoms or alkoxy of 1—2 carbon atoms;

R₈ is hydrogen, methyl, chlorine or bromine;

 R_{9} and R_{10} are independently hydrogen, methyl, chlorine or bromine;

W and Q are independently oxygen or sulfur;

n is 0, 1 or 2;

X is hydrogen, chlorine, bromine, methyl, ethyl, alkoxy of 1—3 carbon atoms, trifluoromethyl, CH₃S or CH₃OCH₂—; and

Y is methyl or methoxy; or their agriculturally suitable salts; provided that:

(a) when R_5 is other than hydrogen, at least one of R_3 , R_4 , R_6 and R_7 is other than hydrogen and at least two of R_3 , R_4 , R_6 and R_7 must be hydrogen;

(b) when R_5 is hydrogen and all of R_3 , R_4 , R_6 and R_7 are other than hydrogen, then all of R_3 , R_4 , R_6 and R_7 must be either chlorine or methyl; and

(c) when R_3 and R_7 are both hydrogen, at least one of R_4 , R_5 or R_8 must be hydrogen.

French Patent No. 1,468,747 discloses the following *para*-substituted phenylsulfonamides, useful as antidiabetic agents:

 $R \longrightarrow SO_2 - NH - C - NH \longrightarrow N$

65 wherein R = H, halogen, CF₃ or alkyl.

Logemann et al. Chem. Ab., 53, 18052 g (1959), disclose a number of sulfonamides, including uracil derivatives and those having the formula:

wherein R is butyl, phenyl or

5

10

15

20

25

30

35

40

50

55

65

and R₁ is hydrogen or methyl. When tested for hypoglycemic effect in rats (oral doses of 25 mg/100 g), the compounds in which R is butyl and phenyl were most potent. The others were of low potency or inactive.

Wojciechowski, J. Acta. Polon. Pharm. 19, p. 121-5 (1962) [Chem Ab., 59 1633 e] describes the synthesis of N-[(2,6-dimethoxypyrimidin-4-yl)aminocarbonyl]-4-methylbenzenesulfonamide:

Based upon similarity to a known compound, the author predicted hypoglycemic activity for the foregoing

Netherlands Patent 121,788, published September 15, 1966, teaches the preparation of compounds of Formula (i), and their use as general or selective herbicides,

$$R_{4} \xrightarrow{R_{3}} SO_{2}NHCN \xrightarrow{N} NNR_{1}$$

wherein

R₁ and R₂ may independently be alkyl of 1-4 carbon atoms; and

R₃ and R₄ may independently be hydrogen, chlorine or alkyl of 1—4 carbon atoms.

Compounds of Formula (ii), and their use as antidiabetic agents, are reported in J. Drug. Res. 6, 123 (1974),

wherein R is pyridyl.

U.S. Patent application 244,172 discloses herbicidal compounds of formulae

55
$$R_2$$
 R_3 R_3 R_4 R_4 R_5 R_4 R_5 R_5 R_4 R_5 R_5 R_5 R_6 R

R₃ is H, C₁—C₄ alkyl, Cl or Br;

R₄ is H, C₁—C₄ alkyl, cyanoethyl, C₅—C₆ cycloalkyl, benzyl, phenyl substituted with Cl or NO₂, or C(O)R₆:

 R_5 is C_1 — C_4 alkyl or C_1 — C_4 alkoxy; R_6 is C_1 — C_4 alkyl, C_1 — C_4 alkoxy, or NR_7R_8 ;

R₇ and R₈ are independently C₁—C₂ alkyl;

R₉ is H, CH₃ or OCH₃;

R₁₁ is C₁---C₄ alkyl;

R₁₀ is

5

20

10 or 15

X is CH₃ or OCH₃;

Y is H, CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CF₃, CI, CH₂OCH₃, CH₂OCH₂CH₃ or CF₃;

Y1 is H, CH3, OCH3, CI or OCH3CH3; and

Z is CH, N, CCH₃, CCH₂CH₃, CCH₂CH₂CI, CCI, CBr or CF; and their agriculturally suitable salts.

The presence of undesired vegetation causes substantial damage to useful crops, especially agricultural products that satisfy man's basic food and fiber needs, such as cotton, rice, corn, wheat, and the like. The current population explosion and concomitant world food and fiber shortage demand improvements in the efficiency of producing these crops. Prevention or minimizing the loss of a portion of such valuable crops by killing, or inhibiting the growth of undesired vegetation is one way of improving this efficiency. A wide variety of materials useful for killing, or inhibiting (controlling) the growth of undesired vegetation is available; such materials are commonly referred to as herbicides. The need still exists however, for more effective herbicides.

30 Summary of the Invention

This invention relates to novel compounds of Formula I and Formula II, suitable agricultural compositions containing them, and their method of use as general, as well as selective, pre-emergence or postemergence herbicides.

35 SO2NHCONA 1 11 40

where

45

50

60

R is H, C_1 — C_4 alkyl, $(CH_2)_mCO_2R_3$, $CH_2OC_2H_5$, SO_2R_{10} , CHO, $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$ or CH_2OCH_3 ;

 R_1 is H, C_1 — C_4 alkyl, CO_2R_6 , $C(O)NR_7R_8$, $C(O)R_{10}$, SO_2R_{10} , or $SO_2NR_{11}R_{12}$; R_2 is H, C_1 — C_3 alkyl or $SO_2C_6H_5$;

R₃ is H, F, Cl, Br, C₁—C₃ alkyl, C₁—C₃ alkoxy or NO₂;

R4 is H, Cl or Br;

R₅ is H or CH₃;

R₆ is C₁—C₄ alkyl, C₃—C₄ alkenyl, CH₂CH₂Cl or CH₂CH₂OCH₃;

R7 and R8 are independently H or C1-C4 alkyl, provided that the total number of carbon atoms is less than or equal to 4;

 R_9 is H or C_1 — C_3 alkyl;

R₁₀ is C₁—C₃ alkyl;

55 R_{11} and R_{12} are independently C_1 — C_3 alkyl, provided that the total number of carbon atoms is less than or equal to 4.

m is 0, 1 or 2;

A is

X is CH₃ or OCH₃; 65

Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI, H, C₂H₅ or N(CH₃)₂; and Z is CH or N;

provided that

5

15

20

30

35

40

45

- 1) when R₂ is SO₂C₆H₅, then R₁ and R are H or C₁—C₄ alkyl.
- 2) when Y is Cl, then Z is CH; and
- 3) when m is 0, then R₉ is C₁—C₃ alkyl.

Preferred Compounds

Preferred for reasons of higher herbicidal activity and/or more favorable ease of synthesis are:

- .10 (1) Compounds of the generic scope of Formula I where R₁ is H, C₁—C₃ aklyl, CO₂R₆, C(O)NR₇R₈, SO₂NR₁₁R₁₂ or SO₂R₁₀; and R₅ is H;
 - (2) Compounds of Preferred (1) where R₃ and R₄ are H;
 - (3) Compounds of Preferred (2) where R₂ is H or CH₃;
 - (4) Compounds of Preferred (3) where R₁ is H, CO₂CH₃ SO₂CH₃ or SO₂N(CH₃)₂;
 - (5) Compounds of Preferred (4) where Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl;
 - (6) Compounds of the generic scope of Formule II where R is H, C_1 — C_3 alkyl, $(CH_2)_mCO_2R_9$, SO_2R_{10} or $SO_2NR_{11}R_{12}$; and R_5 is H;
 - (7) Compounds of Preferred (6) where R₃ and R₄ are H;
 - (8) Compounds of Preferred (7) where R2 is H or CH3;
 - (9) Compounds of *Preferred (8)* where R is H, CH₃ or (CH₂)_mCO₂—(C₁—C₃ alkyl); and
 - (10) Compounds of Preferred (9) where Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl.

Specifically Preferred for highest herbicidal activity and/or most favorable ease of synthesis are:

- 3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;
- 25 3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;
 - 3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;
 - 3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;
 - 3-[[(4,6-dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;
 - 3-[[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;
 - N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;
 - N-[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;
 - N-[(4-methyl-6-methoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;
 - N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;
 - N-[(4.6-dimethyl-1,3,5-triazin-2-vl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;
 - N-[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;
 - 3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester;
 - 3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester:
 - 3-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester;
 - 3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester:
- 3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl so ester.

Detailed Description of the Invention

A general process for the preparation of compounds of Formule I is illustrated by the following equation:

More specifically, the compounds of this invention of Formula I are prepared by contacting a heterocyclic amine of Formula V and chlorosulfonyl isocyanate to prepare the intermediate of Formula III. These

compounds are preferably generated *in situ* and used without isolation in the synthesis of compounds of Formule I. The aminocarbonyl sulfamoyl chloride of Formula III is then contacted with an indole of Formula IV, preferably in the presence of a Friedel-Crafts catalyst, to afford herbicidal indole sulfonamides of Formula I.

5

10

15

65

The heterocyclic amine of Formula V is dissolved or suspended in an inert organic solvent, including but not limited to, dichloromethane, nitroethane, nitropropanes, tetrahydrofuran and nitroethane. The reaction mixture is maintained in an inert atmosphere at a temperature of -80° C to 0° C. When tetrahydrofuran is the solvent, the preferred temperature range is -80° C to -50° C; for nitromethane, the preferred range is -20° to 0° . One equivalent of chlorosulfonyl isocyanate, either neat or, if tetrahydrofuran is not the solvent, dissolved in the solvent, is contacted with the amine at such a rate as to maintain the reaction temperature within the preferred range. The reaction proceeds rapidly and the reaction mixture is maintained within the preferred temperature range for a period of 0.1 to 1.0 hour to insure complete formation of intermediate III. Compound III is then contacted at a temperature within the preferred range for the solvent employed with an equimolar amount of indole IV, either neat or dissolved in the solvent.

From this point on, the reaction conditions employed depend of the nature of the substituents on the pyrrole ring of the indole nucleus. For reactions with indoles IV in which R_1 is H or C_1 — C_4 alkyl and R_2 is H or C_1 — C_3 alkyl, a Friedel-Crafts catalyst may optionally be added at a temperature within the preferred range. Friedel-Crafts catalysts are extensively defined in Volume I, Chapter IV of "Friedel-Crafts and Related Reactions", ed. G. A. Olah, Interscience Publ., New York, 1963. Preferred catalysts are those acidic halides, typified by aluminum chloride and bromide, which possess an electron deficient central metal atom capable of electron acceptance from basic reagents. More preferred is the use of aluminum (III) chloride in catalytic quantity, the exact amount of which would be apparent to one skilled in the art. The reaction mixtuer is allowed to warm to ambient temperatures and is maintained under an inert atmosphere until completion, usually for a period of from 0.5 to 24 hours. Tetrahydrofuran and nitroethane are the preferred solvents for these reactions.

For reactions with indoles IV in which R_1 is other than H or C_1 — C_4 alkyl or in which R_2 is $SO_2C_6H_5$, an equimolar amount of a Friedel-Crafts catalyst, preferably aluminum (III) chloride, is added to the reaction mixture at this point. The reaction is allowed to warm to ambient temperature and is then maintained under an inert atmosphere at temperatures ranging from ambient to the boiling point of the solvent employed, with nitromethane being the preferred solvent. The reaction proceeds to completion within 0.5 to 24 hours. In general, higher reaction temperatures and shorter reaction times (0.5 to 4 hours) afford the highest yield. In all cases, the intermediate III is preferably prepared in the same solvent in which the reaction with indole IV is to be carried out.

The compounds of the invention of Formula I may be isolated by partitioning the reaction mixture between dilute aqueous alkali and an organic solvent such as dichloromethane or chloroform. The products are soluble in the squeous phase and may be precipitated from it after separation of the layers by the addition of a slight excess of an acid such as acetic acid or hydrochloric acid. If the products do not precipitate on acidification they may be isolated by extraction into an organic solvent such as dichloromethane, nitromethane or ethyl acetate followed by evaporation of the solvent. This procedure is most useful in cases in which tetrahydrofuran is the reaction solvent.

When the reaction is carried out in a water-immiscible solvent such as dichloromethane or nitromethane, isolation of the products may best be carried out by contacting the reaction mixture with water, followed by separation of the organic phase and further extraction of the products into an organic solvent such as dichloromethane, nitromethane, nitroethane or ethyl acetate. Evaporation of the organic solution affords the crude products of Formula I.

Purification of the raction products may be accomplished by trituration with an appropriate solvent, recrystallization or chromatography.

The procedures described generally be Equation 1 are preferred for the preparation of indole sulfonamides of Formula I in which R_1 is CO_2R_6 , $C(O)R_{10}$, SO_2R_{10} or $SO_2NR_{11}R_{12}$ and R_2 is H or C_1 — C_3 alkyl or in which R_1 is H or C_1 — C_4 alkyl and R_2 is C_1 — C_3 alkyl or $SO_2C_6H_5$. For cases in which R_1 is H, isomeric products of Formulae I and II ($R=R_1=H$) are generally obtained by these methods and may be separated by column chromatography, preparative high pressure or medium pressure chromatography or similar methods.

Indole sulfonamides of Formula I in which R₁ is C(O)NR₇R₈ are preferably prepared from the

corresponding compounds in which R_1 is CO_2CH_3 by reaction with dialkylaluminum-N-alkylamide derivatives as shown in Equation 2. This method is disclosed in E.P.A. 7687, filed February 6, 1980.

5 (2)
$$R_3$$
 $SO_2NHCNA + (CH_3)_2AIN-R_7$

10 R_4 R_5 SO_2CH_3 SO_2NHCNA R_5 SO_2NHCNA SO_2NHC

Indole sulfonamides of Formula I in which R_1 is H or C_1 — C_4 alkyl and R_2 is H are preferably prepared by alkaline hydrolysis of the corresponding compounds in which R_2 is $SO_2C_6H_5$ as shown by equation 3. The reaction is carried out in an excess of aqueous alkali, preferably in the presence of a water-miscible cosolvent such as ethanol, dioxane or tetrahydrofuran at temperatures ranging from ambient to the reflux temperature of the solvent mixture employed. After 1 to 24 hours, the reaction mixture is diluted with water and acidified, at 0—5°, with aqueous hydrochloric acid to precipitate the product.

30

40

The compounds of this invention of Formula II can be prepared by one of the two methods illustrated below in Equations 4 and 5.

As shown in Equation 4, compounds of Formula II can be prepared by reacting an amino-heterocycle V with an appropriately substituted sulfonyl isocyanate of Formula VI. The reaction is best carried out in inert, aprotic organic solvents such as acetonitrile, methylene chloride or tetrahydrofuran at ambient

temperature. The mode of addition is not critical; however it is often convenient to add a solution of the sulfonyl isocyanate VI to a stirred solution of amino-heterocycle V. The reaction is generally exothermic. In some cases, the desired product is insoluble in the reaction medium and crystallizes from it in pure form. Products soluble in the reaction medium are isolated by evaporation of the solvent, trituration of the residue with solvents such as 1-chlorobutane, methylene chloride or ethyl ether, and filtration.

The intermediate sulfonyl isocyanates of Formula VI are prepared by reacting the corresponding sulfonamides of Formula VII with phosgene and n-butyl isocyanate at reflux in a solvent such as xylenes and in the presence of a catalytic amount of a non-nucleophilic base such as 1,4-diazabicyclo(2,2,2)octane. Useful procedures are reported by H. Ulrich and A. A. Y. Sayigh, Newer Methods of Preparative Organic Chemistry, Vol. VI, pp. 223—241, Academic Press, New York, W. Foerst, Ed.

Compounds of Formula II can also be prepared as shown in Equation 5 by reaction of a sulfonamide of Formula VIII with an appropriate methyl carbamate of Formula VIII in the presence of trimethylaluminum. More specifically, the reaction mixture containing sulfonamide VII and an inert, aprotic solvent such as methylene chloride or toluene is reacted under an inert atmosphere with trimethylaluminum and the resulting mixture stirred at ambient temperature until gas evolution ceases. The methyl carbamate VIII is added, generally neat, and the reaction is allowed to proceed at temperatures ranging from ambient to reflux for 16 to 96 hours. The product can be isolated after addition of aqueous hydrochloric acid to the reaction mixture followed by the partitioning of the product into methylene chloride. The product may be purified by crystallization from solvents such as 1-chlorobutane, ethyl ether or methylene chloride or by chromatography.

Either of the methods shown by Equations 4 and 5 is suitable for the preparation of compounds of Formula II in which R is H, C_1 — C_4 alkyl, SO_2R_{10} , $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$, $CH_2OCH_2CH_3$ or CH_2OCH_3 and R_2 is C_1 — C_3 alkyl or $SO_2C_6H_5$. The method of Equation 4 is more preferred for preparation of Compounds II with the above listed values of R where R_2 is H. This method is also preferred for preparation of Compounds II in which R is $(CH_2)_mCO_2R_9$, R_9 is other than H and R_2 is H or C_1 — C_3 alkyl.

Compounds of Formula II in which R is $(CH_2)_mCO_2R_9$, R_9 is H and R_2 is H or C_1 — C_3 alkyl may best be prepared from the corresponding compounds in which R_9 is C_1 — C_3 alkyl by alkaline hydrolysis. Compounds of Formula II in which R is CHO may be prepared from the corresponding compounds in which R is $(CH_2)_mCO_2R_9$, m is 0 and R_9 is CH_3 (Compound IX) by partial reduction with a reducing agent such as diisobutylaluminium hydride. Procedures for these conversions would be apparent to one skilled in the art.

Preparation of Reactants

50

The synthesis of heterocyclic amine derivatives such as those of Formula V has been reviewed in "The Chemistry of Heterocyclic Compounds", a series published by Interscience Publ., New York and London. 2-Amino-pyrimidines are described by D. J. Brown in "The Pyrimidines", Vol. XVI of the above series. 2-Amino-1,3,5-triazines are reviewed by E. M. Smolin and L. Rapoport in "s-Triazines and Derivatives," Vol. XIII of the same series. The synthesis of triazines is also described by F. C. Schaeffer, U.S. 3,154,547 and by K. R. Huffman and F. C. Schaeffer, J. Org. Chem., 28, 1812—1821 (1963).

The heterocyclic amines of Formula V in which R_5 is CH_3 may be prepared by the following procedure, or by modifications thereof apparent to one skilled in the art:

55
$$H_2N$$
 H_{CI} H_{CI}

A solution of the amine X in concentrated hydrochloric acid is reacted with an aqueous sodium nitrite solution and the chloro compound XI is isolated in the usual manner by filtration of the acidic solution (see for example, Bee and Rose, *J. Chem. Soc. C.*, 2051 (1966) for the case in which Z is CH and X and Y are

OCH₃). Displacement of the chlorine may be accomplished by heating with an excess of methylamine in water to obtain them ethylaminoheterocycle XII.

Pyrimidinyl and triazinyl methyl carbamates of Formule VIII may be prepared by the method illustrated in Equation 6. A heterocyclic amine of Formula V is reacted with one or two equivalents of sodium hydride, when R⁵ is CH₃ or H, respectively, and excess dimethyl carbonate to form VIII.

(6) ANH +
$$CH_3OCOCH_3$$
 \xrightarrow{NaH} ANCOCH₃

$$|R_5|$$

$$V$$
VIII

15

20

35

This reaction takes place in an inert solvent such as tetrahydrofuran at 25 to 70°C for 1 to 24 hours. The product is isolated by (a) addition of two equivalents of concentrated hydrochloric acid and aqueous saturated sodium chloride and (b) separation of the organic phase followed by concentration to dryness *in vacuo*.

The preparation of indole derivatives has been extensively reviewed in "Indoles", Parts One-Four, Vol. XXV of the series "The Chemistry of Heterocyclic Compounds" and in "The Chemistry of Indoles", by R, J. Sundberg, Academic Press, New York and London (1970). Two other particularly useful procedures are desribed by P. G. Gassman in U.S. 3,901,899 and U.S. 3,960,926.

Indoles of Formula IV in which R_1 is H, C_1 — C_4 alkyl or CO_2R_6 and R_2 is H or C_1 — C_3 alkyl are well-known in the literature. Indoles of Formula IV in which R_1 is H or C_1 — C_4 alkyl and R_2 is $SO_2C_6H_5$ are prepared from the corresponding compounds in which R_2 is H by reaction with one equivalent of a base, such as sodium methylsulfonylmethide or n-butyllithium, in ether or tetrahydrofuran, followed by reaction with phenylsulfonyl chloride (see, for example, Sundberg and Russell, *J. Org. Chem. 38*, 3324 (1973) and Saulnier and Gribble, *J. Org. Chem. 47*, 747 (1982)).

Indoles of Formula IV in which R_1 is COR_{10} , may be prepared via the method of Equation 7. Reaction of N-phenylsulfonyl indoles of Formula XIII in tetrahydrofuran with a slight excess of lithium diisopropylamine (LDA) at low temperature, followed by warming to ambient temperature, recooling and quenching the anion thus formed with an acid chloride $R_{10}COCI$ results in the formation of compounds of Formula XIV (see, for example, Saulnier and Gribble, *ibid.*).

Indoles of Formule IV in which R₁ is SO₂R₁₀ may be prepared as illustrated by Equation 8.

Lithiation of XIII as described above followed by quenching with a dialkyl disulfide ($R_{10}S$)₂ affords N-phenyl-sulfonyl-2-alkylthioindoles which may be oxidized to alkyl sulfonyl indoles of Formule XV by methods described by Wieland, et. al., *Justus Liebigs Ann. Chem. 713*, 186 (1968) and Hino, et. al., *J. Chem. Soc., Sect. D* 473 (1972).

Equation (9) represents a method of preparation for indoles of Formula IV in which R₁ is SO₂NR₁₁R₁₂. Lithiation in this method is carried out under an inert atmosphere by the slow addition of an ether solution of XIII to 1.1 equivalents of LDA at 0° followed by stirring at 0° for 0.5 to 2 hours. The resulting slurry is

added to a solution of 2 equivalents of sulfonyl chloride in an equal volume of hexanes at -20° to -30° . After 0.5 to 1 hour at -20° to -30° , the reaction mixture is allowed to warm to ambient temperature, stirred until completion (generally 2 to 8 hours), then diluted with water. The N-phenylsulfonyl-2-chlorosulfonyl indoles are isolated by extraction into ethyl acetate and purified by trituration with ether or similar solvents. Reaction of these products with an excess of amine $\text{HNR}_{11}\text{R}_{12}$ using procedures that would be obvious to one skilled in the art affords indole sulfonamides XVI.

10
$$R_3$$
 1) LDA R_3 2) SO_2CI_2 3) $HNR_{11}R_{12}$ R_4 $SO_2\phi$ $SO_2NR_{11}R_{12}$ $SO_2\phi$ $SO_2NR_{11}R_{12}$ $SO_2\phi$ $SO_2NR_{11}R_{12}$

Indoles of Formula IV in which R_1 is COR_{10} , SO_2R_{10} or $SO_2NR_{11}R_{12}$ and R_2 is H are prepared from the corresponding indoles in which R_2 is $SO_2C_6H_5$ (compounds XIV, XV and XVI respectively) by alkaline hydrolysis, acording to the procedures of Equation 3. In cases in which the product does not precipitate upon acidification, it may be isolated by extraction into ethyl acetate or ether. Alkylation of these indoles or nitrogen by procedures well-known in the literature affords compounds of Formula IV in which R_1 is COR_{10} , SO_2R_{10} or $SO_2NR_{11}R_{12}$ and R_2 is C_1 — C_3 alkyl.

Indole-2-sulfonamides of Formula VII in which R is H,m C₁—C₄ alkyl, CH₂OCH₃ or CH₂OCH₂CH₃ and R₂ is SO₂C₆H₅ may be prepared by the method of Equation 10 according to the procedures of Equation 9. The corresponding compounds of Formula VII in which R₂ is H may be prepared by alkaline hydrolysis in XVII according to the procedures of Equation 3.

30 (10)
$$R_3$$
 R 1) LDA R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_5

Preparation of the corresponding compounds in which R₂ is C₁—C₃ alkyl may be carried out by the method illustrated below.

(11)
$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{5}$$

The protected indole-2-sulfonamide of Formula XVIII in which R is H, C_1 — C_4 alkyl, CH_2OCH_3 or $CH_2OCH_2CH_3$ is prepared by the method of Equation 9. Alkaline hydrolysis as described above affords XIX which may be

alkylated on the more nucleophilic indole nitrogen after dianion formation by procedures which would be known to one skilled in the art. The t-butyl protecting group is then removed with trifluoroacetic acid to afford the desired indole-2-sulfonamides in which R_2 is C_1 — C_3 alkyl.

Lithiation of protected indole-2-sulfonamides of Formula XVIII in which R is H (compound XX) provides access to compound of Formula VII in which R is SO_2R_{10} or $(CH_2)_mCO_2R_9$ and m is 0 or 1. Reaction of indole XX under an inert atmosphere with 2 equivalents of n-butyl lithium in ether or tetrahydrofuran at -20° to 0° , optionally in the presence of tetraethylenediamine, affords the 3-lithio deriative.

10
$$\begin{array}{c}
R_{3} \\
R_{4} \\
\end{array}$$

$$\begin{array}{c}
R_{3} \\
SO_{2} \phi
\end{array}$$

$$\begin{array}{c}
R_{3} \\
SO_{2} \phi
\end{array}$$

$$\begin{array}{c}
R_{3} \\
SO_{2} \phi
\end{array}$$

$$\begin{array}{c}
C_{15} \\
C_{15}$$

Quenching this anion with a C_1 — C_3 alkyl chloroformate, a C_1 — C_3 alkyl α bromoacetate or a C_1 — C_3 dialkyl disulfide, followed in the last case by oxidation, affords indole-2-sulfonamides of Formula XVIII in which R is $(CH_2)_0CO_2R_9$, $(CH_2)_1CO_2R_9$ or SO_2R_{10} respectively. Suitable procedures for these conversions would be known to one skilled in the art. Indole-2-sulfonamides of Formula VII in which R_2 is H or C_1 — C_3 alkyl, R is SO_2R_{10} or $(CH_2)_mCO_2R_9$ and m is 0 or 1 may then be prepared, using procedures already described or well-known in the literature, by alkaline hydrolysis of the N-phenylsulfonyl group, re-esterification when R is $(CH_2)_mCO_2R_9$, N-aklylation if desired, and removal of the t-butyl protecting group.

Indoles of Formula VII in which R is SO₂NR₁₁R₁₂ are prepared from the corresponding compounds of Formula XXI, obtained by alkaline hydrolysis of XX, by the procedure shown in Equation 12.

Reaction of XXI with thionyl chloride affords the indole-3-sulfonyl chloride, which is converted to the sulfonamide and oxidized to the sulfonamide using procedures described by J. Szmuszkovicz in Canadian Patent 747,920 and in *J. Org. Chem. 29*, 179 (1964). Optional alkylation of the indole nitrogen followed by trifluoracetic acid hydrolysis as described above afford indolesd VII in which R is $SO_2NR_{11}R_{12}$ and R_2 is H or C_1 — C_3 alkyl.

Reaction of indole XXI with acrylic acid in the presence of acetic acid affords the indole-3-propionic acid. Esterification, alkylation of the indole nitrogen, if desired, and trifluoroacetic acid hydrolysis gives rise to indoles of Formula VII in which R is $(CH_2)_mCO_2R_9$, m is 2 and R_2 is H or C_1 — C_3 alkyl.

Reaction of indole XXI with formaldehyde and dimethylaine under Mannich reaction conditions followed by optional alkylation of the indole nitrogen and removal of the t-butyl protecting group affords indoles of Formula VII in which R is $CH_2N(CH_3)_2$ and R_2 is H or C_1 — C_3 alkyl.

Agriculturally suitable salts of Formula I and II are also useful herbicides and can be prepared by a number of ways known to the art.

The compounds of the invention and their preparation are further illustrated by the following samples. Unless otherwise indicated, all parts are by weight and all temperatures are in °C.

Example 1

Preparation of Methyl 3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylate.

To a stirred suspension of 2.59 g (0.021 mole) of 2-amino-4,6-dimethylpyrimidine in 75 ml dry nitromethane at -10° was added dropwise under nitrogen via syringe 2.0 ml (0.023 mole) of chlorosulfonyl isocyanate at such a rate as to maintain the temperature below 0° . The resulting clear solution was stirred for 0.5 hour at -5° to -10° and then contacted dropwise with a solution of 3.97 g (0.021 mole) of methyl 1-methyl-1H-indole-2-carboxylate dissolved in 40 ml of dry nitromethane. Upon completion of the addition, 2.95 g (0.022 mole) of aluminum (III) chloride was added in one portion. The reaction mixture was stirred at reflux for 3 hours, then cooled to room temperature and poured into 300 ml H_2O . Methylene chloride was added and the layers separated. The aqueous solution was extracted with two additional portions of CH_2Cl_2 and the combined organic solutions were washed with H_2O , dried over MgSO₄ and evaporated *in vacuo*. Trituration of the residue with minimal CH_2Cl_2 afforded 2.02 g of the desired product as a white solid, m.p. 212—215° (d).

The infrared spectrum of the product included absorptions at 3215 and 3150 (NH), 1730 (C=O), 1710 (C=O), 1345 and 1150 (SO₂) cm⁻¹, 'H NMR (CDCl₃/DMSO-d₆) δ 2.43 (s, 6H, pyrimidine CH₃), 3.88 (s, 6H, ester CH₃ and N—CH₃), 6.90 (s, 1H, pyrimidine CH), 7.23—7.75 (m, 3H, indole CH), 8.16—8.47 (m, 1H, indole CH), 10.30 (s, 1H, NH), 13.26 (br s, 1H, NH), Mass spectral analysis showed m/e 123.

15

55

Example 2

Preparation Methyl 3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylate.

To a stirred suspension of 2.92 g (0.021 mole) of 2-amino-4-methoxy-6-methylpyrimidine in 75 ml dry CH₃NO₂ at −10° was added dropwise under nitrogen via syringe 2.0 ml (0.023 mole) of chlorosulfonyl isocyanate at such a rate as to maintain the temperature below 0°. The resulting clear solution was stirred 0.5 hour at −5° to −10° and then contacted dropwise with a solution of 3.97 g (0.021 mole) of methyl 1-methyl-1H-indole-2-carboxylate dissolved in 25 ml of dry nitromethane. Upon completion of the addition, 2.95 g (0.022 mole) of aluminum (III) chloride was added in one portion. The reaction mixture was stirred at reflux for 3 hours, then cooled to room temperature and poured into 300 ml H₂O. Dichloromethane was added and the layers were separated. The aqueous solution was extracted with two additional portions of CH₂Cl₂ and the combined organic solutions washed with H₂O, dried over MgSO₄ and evaporated *in vacuo*. Chromatography on silica gel with 5% acetone in CH₂Cl₂ afforded 1.63 g of the desired porduct as a white solid, m.p. 200—203° (d). The infrared spectrum of the product included absorptions at 3190 (NH), 1715 (C=O), 1703 (C=O), 1340 and 1150 (SO₂) cm⁻¹, 'H NMR (CDCl₃/DMSO-d₆) δ 2.45 (s, 3H, pyrimidine CH₃), 3.95 (s, 3H, OCH₃), 4.0 (s, 6H, OCH₃ and N—CH₃), 6.37 (s, 1H, pyrimidine CH), 7.23—7.56 (m, 3H, indole CH), 8.18—8.47 (m, 1H, indole CH), 9.50 (s, 1H, NH), 13.08 (br s, 1H, NH). Mass spectral analysis showed m/e 139.

$$CH_3^O$$
 and m/e 294 $CO_2^{CH_3}$ $CO_2^{CH_3}$

Example 3

Preparation of 1-phenylsulfonyl-1H-indole-2-sulfonyl chloride

To a stirred solution of lithium diisopropylamine (prepared from .124 mole diisopropylamine in 50 ml ether and 82 ml of 1.6 M n-butyllithium in hexanes) at 0° was added dropwise under nitrogen over 40 minutes a solution of 29.2 g (.1135 mole) of 1-phenylsulfonyl-1H-indole in 400 ml dry ether. The resulting slurry was stirred 30 minutes at 0°, then transferred via canula to a solution of 18.3 ml (.227 mole) of sulfuryl chloride in 400 ml hexanes at -20° to -30° (dry ice/CCl₄ bath). Near the end of the addition there was a gradual 5° exotherm. After 30 min. additional cooling, the ice bath was removed and stirring continued for 4 hours at ambient temperature. The slurry was poured into water and ethyl acetate was added with stirring until all solids dissolved. The layers were separated and the aqueous phase extracted 2 times with ethyl

acetate. The combined organic solutions were washed with water, dried over MgSO₄ and evaporated *in vacuo* to a dark semisolid. Ether trituration afforded 25.07 g of tan solid, m.p. 118—120° and a second crop of 3.60 g tan solid, m.p. 115—118°. 1 H NMR (CDCl₃) δ 7.17—7.84 (m, 7H), 8.03—8.21 (m, 2H), 8.36 (d, 1H, J=9hz, C—3 proton). The infrared spectrum of the product included absorptions at 1385, 1180 and 1185 cm⁻¹ for sulfonyl chloride.

Example 4

Preparation of 1-phenylsulfonyl-1H-indole-2-sulfonamide.

To a stirred solution of 10 g (.0281 mole) of 1-phenylsulfonyl-1H-indole-2-sulfonyl chloride in 150 ml anhydrous THF was added at -78° 4 ml (.192 mole) of anhydrous ammonia. The resulting slurry was allowed to warm to room temperature over 30 minutes, then was sparged with nitrogen to remove excess ammonia. The slurry was filtered and the filtrate evaporated *in vacuo* to afford 9.19 g of tan solid, m.p. 199—200.5°, 1 H NMR (CDCl₃/DMSO-d₆) δ 7.23—7.77 (m, 9H), 8.1—8.28 (m, 3H, C—3 proton and SO₂NH₂). The infrared spectrum of the product included absorptions at 3400 and 3280 cm⁻¹ (SO₂NH₂).

Example 5

Preparation of 1H-indole-2-sulfonamide.

To a stirred solution of 2.4 g (7.13 mmole) of 1-phenylsulfonyl-1H-indole-2-sulfonamide in 50 ml THF was added 0.86 g (21 mmol) of sodium hydroxide dissolved in 5 ml $\rm H_2O$. The mixture was refluxed for 5 hours, then cooled to room temperature, poured into water and acidified slightly with 1N HCl. This solution was extracted 2 times with ethyl acetate and the combined organic layers were dried over MgSO₄ and evaporated *in vacuo* to afford 0.58 g of a pale tan solid, m.p. 190—192° 1 H NMR (CDCl₃/DMSO-d₆) 1 O 6.92—7.72 (m, 7H), 11.59 (br, 1H, indole NH). The infrared spectrum of the product included absorptions at 3385, 3280, 1310 and 1140 (SO₂NH₂) and at 3340 cm⁻¹ (indole NH).

Example 6

Preparation of N-[(4.6-dimethylpyrimidin-2-yl)aminocarbonyl]-1H-indole-2-sulfonamide.

A mixture of 5.0 g (.0255 mole) of 1H-indole-2-sulfonamide, 2.9 ml (.0255 mole) of n-butylisocynate, a catalytic amount of 1,4-diazabicyclo[2,2,2] octane and 75 ml of xylenes was heated under nitrogen to 138°. Phosgene was condensed into the reaction mixture until the temperature fell to 130°. As phosgene was consumed, the temperature gradually increased to 138°.

Further additions of phosgene were made until the reaction temperature failed to return to 138°. Unreacted phosgene was removed with a nitrogen stream (2N NaOH trap) and heating was continued for 15 minutes. The reaction mixture was cooled to room temperature, filtered under nitrogen and evaporated in vacuo to afford the sulfonylisocyanate intermediate which was used without purification in the second step of the reaction.

A solution of 1.0 g (4.47 mmol) of the above isocyanate in 5 ml dry acetonitrile was added under nitrogen to a mixture of 0.5 g (4.06 mmol) of 2-amino-4.6-dimethylpyrimidine in 5 ml dry acetonitrile and the mixture allowed to stir overnight at ambient temperature. The precipitate was collected by filtration and washed with ether to afford the desired material.

Example 7

Preparation of N-[(4.6-dimethylpyrimidin-2-yl)aminocarbonyl]-1-phenysulfonyl-1H-indole-2-sulfonamide.

To a slurry of 1.0 g (3.0 mmol) of 1-phenylsulfonyl-1H-indole-2-sulfonamide in 20 ml methylene chloride was added under nitrogen at ambient temperature 1.65 ml (3.3 mmol) of a 2M trimethylaluminum solution in toluene. The resulting mixture was stirred until gas evolution had ceased, then 0.54 g (3 mmol) of methyl (4.6-dimethylpyrimidin-2-yl) carbamate was added in one portion. The mixture was stirred at reflux overnight, then cooled to room temperature, poured into 50 ml of ice-cold 5% HCl and stirred 5 minutes. The layers were separated and the aqueous phase extracted 2 times with ethyl acetate. The combined organic layers were washed with H₂O, dried over MgSO₄ and evaporated *in vacuo* to afford the desired product.

By using methods described generally above and illustrated in Examples 1 through 7, compounds as shown in the following tables can similarly be prepared. These tables are not meant to be all inclusive but only illustrative of the breadth of the invention.

60

15

25

0 070 698

TABLE I

$$\begin{array}{c|c} R_3 & & & \\ & & \\ 5 & & \\ 6 & & 7 & \\ R_4 & & \\ R_2 & & \\ \end{array} \begin{array}{c} SO_2NHCON - \\ & \\ R_5 & \\ \end{array} \begin{array}{c} X \\ \\ X \\ \\ Y \end{array}$$

R ₁	R ₂	R ₃	R ₄	R ₅	×	Y	z	m.p. (°C)
Н	Н	н	н	Н	СН3	снз	СН	
н	н	н	н	н	СН3	OCH3	СН	
н	СНз	н	Н	н	снз	осн3	N	
н .	C ₃ H ₇	н	Н	CH ₃	OCH3	och3	CH	
Н	C ₂ H ₅	5-NO ₂	н	н	CH ₃	сн ₂ осн ₃	N	
Н	Н	Н	6-C1	Н	OCH3	CI	СН	
н	Н	н	н	Н	och3	N(CH ₃) ₂	СН	
Н	so ₂ c ₆ H ₅	н	н	н	СН3	сн ₃	СН	
н	^{SO} 2 ^C 6 ^H 5	Н	н	Н	оснз	снз	N	
н	so ₂ c ₆ H ₅	5-CI	7∸C1	Н	CH ₃	OCH ₂ CH ₃	СН	
н	so ₂ c ₆ H ₅	6-CH ₃	н	снз	снз	н	СН	
СН3	н	н	н	н	оснз	сн ₃	СН	
СН3	Н	н	Н	Н	осн3	СНЗ	N	
CH _{3.}	Н	н	н	н	снз	сн ₃	N	
СН3	Н	H.	Н	Н	снз	CH ₃	СН	
CH ₃	н	н	н	СН3	осн ₃	оснз	СН	
снз	CH ₃	н	Н	Н	оснз	CH ₃	N	
CH ₃	сн ₃	, н	Н	н	осн ₃	CH ₃	СН	
сн _з	CH ₃	Hı	Н	н	CH ₃	CH ₃	СН	
СНЗ	CH ₃	н	н	н	OCH ₃	осн ₃	СН	
CH ₃	C ₂ H ₅	5-C1	н	н	снз	снз	N	
C ₂ H ₅	н	6-OCH3	н	Н	осн ₃	снз	СН	
C ₂ H ₅	С ₂ Н ₅	н	н	н	осн ₃	осн ₃	N	
С ₂ Н ₅	Н	н	н	н	CH ₃	сн ₂ осн ₃	СН	

0 070 698TABLE I (Continued)

R ₁	R ₂	R ₃	R ₄	R ₅	x	Y	z	m.p. (°C)
n-C ₄ H ₉	Н	Н	Н	Н	CH ₃	снз	N	
s-C ₄ H ₉	Н	7C ₂ H ₅	н	н	сн ₃	оснз	N	
i-C ₃ H ₇	снз	н	н	н	осн3	сн ₃	СН	
1-C ₃ H ₇	сн ₃	н	н	н	оснз	сн ₃	N	
I-C ₃ H ₇	сн ₃	н	Н	Н	осн3	осн ₃	СН	
i-C ₃ H ₇	CH ₃	н	н	Н	снз	снз	СН	
L-C3H7	н	н	Н	н	СН3	СНЗ	N	
i-C ₃ H ₇	Н	Н	н	снз	осн3	CH3	N	
i-C ₃ H ₇	Н	н	н	Н	OCH ₃	СН _{3;}	СН	
i-C ₃ H ₇	Н	4-0C ₃ H ₇	н	Н	CH ₃	CH3	СН	
-i-C ₃ H ₇	Н	н	Н	Н	OCH ₃	OCH ₃	СН	
i-C ₃ H ₇	CH ₃	н	Н	Н	CH3	CH3	N	
i-C ₃ H ₇	i-C ₃ H ₇	н	7 . Br	н	снз	сн ₂ осн ₃	N	
CO ₂ CH ₃	CH ₃	H:	н	Н	снз	сн ₃	СН	212-215(d)
CO ₂ CH ₃	C ₂ H ₅	7 - C1	5-CI	Н	снз	сн ₂ осң	CH	
CO ₂ CH3	C ₂ H ₅	Н	н	Н	снз	сн ₃	СН	
CO ₂ CH ₃	С ₃ Н ₇	н .	Н	Н	OCH ₃	сн ₃	N	
co ₂ cH ₃	с ₃ н ₇	н	н	Н	OCH3	сн ₃	N	
$CO_2C_2H_5$	Н	Н	Н	Н	OCH3	CH ₃	N	205-207
$co_2c_2H_5$	Н	Н	Н	Н	оснз	снз	СН	143-145(d)
CO ₂ C ₂ H ₅	Н	Н	Н	Н	CH ₃	CH3	СН	134-138(d)
CO ₂ C ₂ H ₅	Н	Н	Н	Н	CH3	CH ₃	N	
CO ₂ C ₂ H ₅	Н	Н	Н	Н	OCH3	осн ₃	N	165-169(d)
CO ₂ C ₂ H ₅	Н	Н	Н	Н	осн ₃	OCH3	СН	197-201
CO ₂ C ₂ H ₅	Н	н	Н	Н	снз	'N(CH ₃) ₂	СН	
CO ₂ C ₂ H ₅	Н	5-00 ₂ H ₅	Н	Н	OCH3	OCH ₃	N	
CO ₂ C ₂ H ₅	Н	Н	н	СНЗ	оснз	осн ₃	СН	
CO ₂ C ₂ H ₅ .	Н	5-C ₂ H ₅	Н	н	CH3	сн ₃	СН	123-217(d)
со ₂ с ₂ н ₅	сн3	Н	4-Br	н	CH3	осн ₃	N	

0 070 698

R ₁	R ₂	R ₃	TABLE R4	I (Conti R ₅	inued) X	Y	Z m.p. (°C)
CO ₂ C ₂ H ₅	CH ₃	Н	н	Н	СНЗ	OCH ₃	CH
CO ₂ C ₂ H ₅	CH ₃	Н	Н	н	СНЗ	сн ₂ осн ₃	СН
co ₂ -<	Н	4-F	Н	н	осн3	och ₃	N
co ₂ <	н	н	н	н	оснз	оснз	СН
co ₂ <	Н	н	Н	н	осн ₃	СНЗ	СН
co ₂ <	Н	6OC ₂ H ₅	н	Н	осн3	СНЗ	N
co ₂ -<	Н	н	H,	H	СНЗ	CH ₃	CH
co ₂ <	н	6–Br	н	Н	CH3	снз	N
co ₂ -<	CH3	н	н	н	снз	осн ₃	N
co ₂ <	н	н	н	Н	снз	осн ₃	СН
co ₂ -<	Н	н	н	н	снз	снз	СН
co ₂ <	CH3	н	6 - Br	СН3	снз	снз	N
co ₂ -<	СН3	, H	н	н	och ₃	осн ₃	СН
co ₂ -<	снз	н	Н	н	осн з	осн ₃	N
co ₂ <	C ₂ H ₅	5СН _З	Н	н	осн ₃	oc ₂ H ₅	N
co ₂ -<	i-C ₃ H ₇	7-C ₃ H ₇	н	н	оснз	Н	N
co2	н	н	н	н	осн _з	оснз	N
CO2	Н	н	Н	Н	осн ₃	осн ₃	СН
CO2	Н	н	Н	н	оснз	CH ₃	N
CO2	Н	Н .;	н	Н	осн3	СН3	СН
co2	Н	5–Br	Н	снз	снз	сн ₂ сн ₃	N
CO2 -	Н	Н	Н	н	снз	сн ₃	СН
CO2	CH3	н	Н	н	CH ₃	осн _з	N
CO ₂	СН3	н	н	н	снз	och ₃	.CH
CO2	сн₃	н	н	н	CH ₃	CH ₃	N
CO2	CH ₃	н	Н	Н	CH ₃	СН3	СН
CO ₂	снз	н	н	н	осн ₃	осн ₃	СН
CO ₂	снз	н	Н	н	осн ₃	осн ₂ сн ₃	N
CO ₂ CO ₂ CO ₂ CO ₂	С ₃ Н ₇	н	Н	н	OCH3.	осн3	N

0 070 698

D .	· R ₂	. R ₃	ABLE I	(Continue	ed) X	Y	z	m.p. (°C)
R ₁	112			*				
CO ₂	i-C ₃ H ₇	Н	Н	CH ₃	och3	CI	CH	
CO ₂	C ₂ H ₅	Н	Н	Н	OCH3	CH ₃	N	
CO2	Н	4-0CH ₃	H _.	Н	OCH3	сн ₂ сн ₃	CH	
CO2	Н	6-NO ₂ ·	н	Н	CH ₃	CH ₃	CH	
CO2	СНЗ	Н	Н	H	CH3	сн ₂ осн ₃	СН	
CO ₂ -t-C ₄ H ₉	Н	¹ H	Н	н	СНЗ	OCH3	N	
со ₂ п-С ₄ Н ₉	н	н	Н	Н	оснз	OCH3	СН	
CO ₂ s-C ₄ H ₉	н	н	н	н	OCH ₃	CH ₃	СН	
CO ₂ (CH ₂) ₂ C1	H.	н	н	Н	OCH3	сн ₃	N	
CO ₂ (CH ₂) ₂ CI	н	4-C ₂ H ₅	Н	н	OCH3	CH ₃	СН	
CC2(CH2)2CI	СНз	н	н	н	СН3	oc ₂ H ₅	СН	
CO2(CH2)2CI	Н	н	н	снз	сн ₃	оснз	СН	
CO ₂ (CH ₂) ₂ CI	Н	н	н	Н	CH ₃	CH ₃	СН	
CO ₂ (CH ₂) ₂ OCH ₃	Н	Н	Н	н	CH ₃	CI	СН	
CO ₂ (CH ₂) ₂ OCH ₃	Н	Н	Н	Н	OCH ₃	сн ₂ осн ₃	N	
CO ₂ (CH ₂) ₂ OCH ₃	Н	7-00 ₃ H ₇	Н	Н .	OCH ₃	Н	СН	
CO ₂ (CH ₂) ₂ OCH ₃	i-C ₃ H ₇	н	н	Н	осн ₃	снз	СН	
CO ₂ (CH ₂) ₂ OCH ₃	н	Н	Н	Н	осн ₃	сн ₃	СН	
CO ₂ (CH ₂) ₂ OCH ₃	н	н	Н	Н	осн ₃	N(CH ₃) ₂	N	
CON(CH ₃) ₂	Н	н	6–Br	Н	осн₃	OCH3	N	
CON(CH ₃) ₂	Н	7-F	Н	Н	снз	сн ₃	N	
CON(CH ₃) ₂	Н	н	Н	Н	СНЗ	сн ₃	СН	
CON(CH ₃) ₂	Н	Н	Н	н	СН3	осн ₃	CH	
CON(CH ₃) ₂	Ħ	н	н	н	CH ₃	och3	N	
CON(CH ₃) ₂	Н	Н	Н	СНЗ	осн ₃	осн ₃	СН	
CON(CH ₃) ₂	СНЗ	н	н	н	och3	сн ₃	N	
CON(CH ₃) ₂	СНз	Ħ	н	Н	och3	Н	CH	
CON(CH ₃) ₂	снз	н	н	н	СНЗ	СН3	СН	
CON(CH ₃) ₂	снз	6-OCH3	Н	н	och3	OCH3	СН	

0 070 698TABLE I (Continued)

R ₁	R ₂	R ₃	R ₄	R ₅	×	Y	Z m.p. (°C)
CON(CH ₃) ₂	CH ₃	Н	Н	Н	OCH ₃	осн3	N
CON(CH3)2	СНЗ	н	Н	н	CH ₃	сн ₃	N
CON(CH3)2	С ₂ Н ₅	н	Н	Н	CH ₃	осн ₂ сн ₃	N
CON(CH ₃) ₂	i-C ₃ H ₇	н	Н	Н	CH ₃	оснз	N
CON(CH3)2	С ₃ Н ₇	н	Н	Н	CH ₃	och ₃	СН
CONHCH3	н	н	н	Н	СН3	N(CH ₃) ₂	СН
CONHCH3	н	н	7-CI	СН3	осн3	CH ₃	СН
CONHC ₂ H ₅	н	н	Н	Н	осн3	СНЗ	N
CONHC ₂ H ₅	сн _з	н	Н	Ή,	OCH ₃	сн ₂ осн ₃	CH
$CON(CH_3)C_2H_5$	сн _з	н	Н	Н	OCH3	OCH3	N
CON(CH3)C2H5	н	5-F	Н	н	och3	сн ₂ сн ₃	N
CONHC3H7	н	н	Н	Н	СН3	снз	СН
CONH-t-C ₄ H ₉	н	5-00 ₃ H ₇	Н	Н	осн ₃	CH ₃	N
CON(CH3)C3H7	Н	н	Н	н	СН3	снз	N
CONH-i-C4H9	Н	н	н	СНЗ	OCH ₃	СН _З	СН
CONH-i-C3H7	Н	Н	Н	Н	CH ₃	©CH ₃	N
COCH3	н	н	Н	Н	OCH ₃	OCH ₃	СН
COCH3	СНЗ	н	Н	н	снз	снз	N
COC ₂ H ₅	Н	н	Н	CH ₃	снз	осн ₃	N
COC ₂ H ₅	Н	Н	Н	Н	CH ₃	сн ₃	СН
COC ₂ H ₅	н	. н	Н	Н	CH ₃	CH ₂ OCH ₃	СН
COC ₃ H ₇	н	6-NO ₂	Н	Н	CH ₃	осн ₃	N
COC ₃ H ₇	i-C ₃ H ₇	4–Br	н	н	OCH ₃	снз	N
COC ₃ H ₇	н	н	Н	н	OCH ₃	сн ₃	N
CO-i-C3H7	Н	Н	Н	Н	och3	сн ₃	СН
CO-I-C ₃ H ₇	н∙	Н	н	Н	осн ₃	осн ₃	N
so ₂ сн ₃	Н	н	Н	н	осн ₃	осн ₃	N
so ₂ сн ₃	Н	н	н	н	осн ₃	осн _з	СН
so ₂ ch ₃	Н	7-00 ₂ H ₅	н	СНЗ	СНЗ	осн ₃	N

0 070 698TABLE ! (Continued)

R ₁	R ₂	R ₃	R ₄	R ₅	×	Y	z	m.p. (°C)
SO ₂ CH ₃	Н	H	н	Н	СНз	OCH ₃	СН	
so ₂ cH ₃	н	н	Н	H	CH ₃	осн ₃	N	
SO ₂ CH ₃	н	н	Н	н	сн _з	CH ₃	СН	
so ₂ cH ₃	СН ₃	н	н	н	CH ₃	CH ₃	СН	
SO ₂ CH ₃	CH ₃	н	н	н	CH ₃	CH ₃	N	
SO ₂ CH ₃	СН _З	5-0CH ₃	Н	Н	CH ₃	OCH ₃	N	
SO ₂ CH ₃	CH ₃	н	Н	Н	CH ₃	OCH ₃	СН	
SO ₂ CH ₃	CH ₃	н	н	н	OCH ₃	OCH ₃	СН	
SO ₂ CH ₃	CH ₃	н	н	Н	OCH ₃	OCH ₃	N	
SO ₂ CH ₃	Н	н	н	н	CH ₃	С ₂ Н ₅	СН	
SO ₂ CH ₃	н	н	н	н	CH ₃		СН	
SO ₂ CH ₃	н	4CI	6-C1	н	сн _з	CI	СН	
SO ₂ CH ₃	CH ₃	4C1	н	н	CH ₃	N(CH ₃) ₂	СН	
SO ₂ CH ₃	CH ₃	4-C1	н	н	OCH ₃	OCH ₃	СН	
SO ₂ CH ₃	сн ₃ ″	4C1	н	н	OCH ₃	CI	СН	
SO ₂ C ₂ H ₅	н	Н	н	СНз	OCH ₃	оснз	N	
SO ₂ C ₂ H ₅	н	н	6–Br	Н	OCH ₃	OCH ₃	СН	
SO ₂ C ₂ H ₅	н	н	н	н	осн3	СНз	N	
so ₂ c ₂ H ₅	н	н	н	н	осн _з	CH ₃	СН	
SO ₂ C ₂ H ₅	н	н	н	н	СН3	СНЗ	N	
SO ₂ C ₂ H ₅	н	7 – Br	н	н	СНЗ	СН3	СН	
so ₂ c ₂ H ₅	снз	Н	н	н	снз	снз	СН	
so ₂ c ₂ H ₅	сн _з	н	Н	н	СН3	снз	N	
SO ₂ C ₂ H ₅	СНЗ	н	н	н	снз	OCH ₃	N	
80 ₂ C ₂ H ₅	СНЗ	н	н	н	СН3	оснз	СН	
SO ₂ C ₂ H ₅	CH ₃	н	н	н	осн _з	осн ₃	N	
so ₂ c ₂ H ₅	сн _з	н	Н	Н	осн ₃	осн ₃	СН	
so ₂ c ₂ H ₅	с ₃ н ₇	н	н .	н	осн _з	снз	 CH	
so ₂ c ₃ H ₇	н	H	. н	н	осн ₃	осн ₃	СН	

0 070 698

R ₁	R ₂	R ₃	TABLE R ₄	l (Conti R ₅	nued) X	Y	Z m.	p. (°C)
so ₂ c ₃ H ₇	Н	н	Н	н	осн3	осн ₃	N	
so ₂ c ₃ H ₇	н	н	н	н	осн ₃	снз	СН	
so ₂ c ₃ н ₇	Н	4-C1	н	Н	оснз	снз	N	
so ₂ с ₃ н ₇	Н	н	н	н	снз	снз	N	
so ₂ c ₃ H ₇	Н	н	н	Н	СН3	CH3	CH	
so ₂ c ₃ H ₇	СН3	н	Н	€Н3	СН3	CH ₃	СН	
so ₂ c ₃ H ₇	снз	Н	н	Н	CH ₃	снз	N	
so ₂ c ₃ H ₇	СН3	Н	Н	н	СН3	осн ₃	СН	
so ₂ c ₃ H ₇	снз	5-0CH ₃	н	Н	CH ₃	осн ₃	N	
so ₂ c ₃ H ₇	сн ₃	Н	н	Н	och3	OCH3	CH	
so ₂ c ₃ H ₇	CH3	н	Н	Н	och ₃	och ₃	N	
so ₂ c ₃ H ₇	C ₂ H ₅	н	Н	Н	OCH ₃	OCH3	N	
so ₂ c ₃ H ₇	i-C ₃ H ₇	4-NO ₂	Н	Н	СН3	och³	СН	
so ₂ N(CH ₃) ₂	Н	H	Н	Н	CH ₃	осн3	N	
SO ₂ N(CH ₃) ₂	н	н	Н	н	СНЗ	СНЗ	N	
\$0 ₂ N(CH ₃) ₂	Н	H	Н	снз	CH ₃	С ₂ Н ₅	N	
SO ₂ N(CH ₃) ₂	н	н	Н	н	CH ₃	осн ₃	СН	
so ₂ N(CH ₃) ₂	Н	5-C1	7CI	н	снз	CI	СН	
so ₂ n(CH ₃) ₂	CH ₃	н	Н	Н	OCH3	ос ₂ н ₅	СН	
SO ₂ N(CH ₃) ₂	с ₂ н ₅	Н	н	Н	OCH3	осн ₃	СН	
SO ₂ N(CH ₃) ₂	С ₃ Н ₇	Н	Н	Н	OCH ₃	снз	СН	
SO ₂ N(CH ₃) ₂	Н	н	Н	Н	OCH ₃	сн ₃	N	
so ₂ N(CH ₃)C ₂ H ₅	Н	Н	Н	Н	осн _з	снз	N	
SO ₂ N(CH ₃)C ₂ H ₅	н	н	Н	Н	осн3	CH ₃	N	
so ₂ N(CH ₃)C ₂ H ₅	н	6-C1	н	н	осн ₃	N(CH ₃) ₂	N	
so ₂ N(CH ₃)C ₂ H ₅	Н	6-C1	Н	н	снз	осн _з	N	
SO ₂ N(CH ₃)C ₂ H ₅	Н	6-C1	н	СНЗ	снз	осн3	N	
so ₂ n(cH ₃)c ₂ H ₅	н	6-C1	н	н	снз	оснз	СН	
so ₂ n(cH ₃)c ₂ H ₅	CH ₃	5-C ₂ H ₅	н	Н	СН3	OCH ₃	СН	

0 070 698

R ₁	R ₂	R ₃	TABLE	l (Contir R ₅	nued) X	Y	. Z	m.p. (°C)
so ₂ N(CH ₃)C ₂ H ₅		— н	Н	Н	CH ₃	CH ₂ OCH ₃	CH	
SO ₂ N(CH ₃)C ₂ H ₅	CH ₃	н	н	н	CH ₃	CH ₃	СН	
SO ₂ N(CH ₃)C ₂ H ₅	С ₂ Н ₅	н	н	н	CH ₃	CH ₃	N	
SO ₂ N(CH ₂ CH ₃) ₂	о ₂ , 15 Н	5-NO ₂	н	 СН ₃	OCH ₃	•		
SO ₂ N(CH ₂ CH ₃) ₂	Н	3-NO ₂	н	∪⊓3 H	•	CH ₃	N	
	н	Н	6–Br		OCH3	OCH3	N	
SO ₂ N(CH ₂ CH ₃) ₂				н 	och3	осн ₃	N	
SO ₂ N(CH ₂ CH ₃) ₂	СН _{3.}	н	Н	н	OCH3.	CI	CH	
SO ₂ N(CH ₂ CH ₃) ₂		Н	Н	Н	снз	^{₁CH} 3	СН	
so ₂ n CH ₃ CH (CH ₃) ₂	Н	н	Н	Н	снз	СН3	СН	
so ₂ N CH(CH ₃) ₂	н	н,	Н	Н	сн ₃	н	СН	
so ₂ N CH ₃ CH(CH ₃) ₂	Н	н	н	Н	CH3	OCH ₃	N	
so ₂ N CH ₃ CH(CH ₃) ₂		н	н	н	СН3	N(CH ₃) ₂	N	
SO ₂ N CH(CH ₃) ₂	i-C ₃ H ₇	Н	5–Br	н	OCH ₃	OCH ₃	N	
so ₂ N CH(CH ₃) ₂	н	7 – F	н	н	осн ₃	ос ₂ н ₅	N	
so ₂ N CH(CH ₃) ₂	н	Н	Н	H	OCH3	CH ₃	N	
CH ₃	60 ₂ C ₆ H ₅	6-F	н	CH ₃	СН3	оснз	СН	
CH ₃ s	C ₂ C ₆ H ₅	н	н	н	осн ₃	снз	N	
CH ₃ S	ю ₂ с ₆ н ₅	Н	н	н	снз	снз	СН	
C ₂ H ₅ S	⁶⁰ 2 ^C 6 ^H 5	Н	Н	Н	снз	N(CH ₃) ₂	N	
C ₂ H ₅ S	ю ₂ С ₆ Н ₅	Н	H	н	оснз	снз	N	
i-C ₃ H ₇	60 ₂ C ₆ H ₅	н	Н	Н	СНЗ	ос ₂ н ₅	СН	

0 070 698TABLE I (Continued)

R ₁	R ₂	R ₃	R ₄	- R ₅	x	Y	z	m.p. (°C)
CH ₃	so ₂ c ₆ H ₅	7-NO ₂	Н	Н	оснз	C ₂ H ₅	·N	
со ₂ сн ₃	н	н	н	н	снз	осн ₃	СН	
со ₂ сн ₃	н	Н	н	Н	СН3	СН3	СН	
CO ₂ CH ₃	н	н	Н	н	оснз	оснз	СН	
со ₂ сн ₃	Н	5-0CH ₃	Н	н	осн ₃	осн ₃	N	
CO ₂ CH ₃	н	н	Н	Н	OCH3	¢H ₃	N	
со ₂ сн ₃	Н	Н	н	СНЗ	снз	СН3	N	
CO ₂ CH ₃	CH ₃	Н	Н	CH3	CH ₃	сн ₃	N	
CO ₂ CH ₃	СН3	. 6C ₂ H ₅	н	Н	CH ₃	OCH3	N	
CO ₂ CH ₃	СНЗ	Н	Н	Н	OCH3	OCH3	N	
со ₂ сн ₃	CH ₃	н	Н	Н	осн ₃	осн3	СН	
CO ₂ CH ₃	сн ₃	Н	Н	Н	OCH ₃	снз	СН	200-203°(d)
CO ₂ CH ₃	Н	Н	Н	Н	осн ₃	CI	СН	
CO ₂ CH ₃	н	н	Н	Н	осн ₃	N(CH ₃) ₂	СН	
CO ₂ CH ₃	Н	н	Н	Н	OCH ₃	C ₂ H ₅	СН	
CO ₂ CH ₃	Н	н	Н	Н	OCH3	OC ₂ H ₅	N	

0 070 698

TABLE II

$$\begin{array}{c|c} R_3 & & \\ & 5 & & \\ & 6 & & 7 & \\ & &$$

R	R ₂	F ₃	R ₄	R ₅	X	Y	Z	m.p. (°C)
Н	Н	4-F	Н	СНз	СНЗ	снз	N	
Н	Н	н	Н	Н	снз	сн _з	CH	
н	• н	н	Н	Н	снз	осн ₃	N	
н	н	н	н	Н	снз	осн ₃	СН	
н	н	н	Н	н	оснз	осн ₃	СН	
н	Н	н	Н	н	овн ₃	осн ₃	N	
н	СН3	н	н	н	осн ₃	осн ₃	СН	
Н	CH ₃	5-CI	Н	Н	OCH ₃	OCH3	N	•
н	СНЗ	н	Н	Н	оснз	CH3	N	
н	снз	н	Н	Н	оснз	CH3	СН	
н	CH3	н	4Br	· H-	СН3	CH ₃	N	
н	CH ₃	н	Н	Н	CH3	CH ₃	СН	
Н	C ₂ H ₅	н	Н	СНЗ	CH ₃	CH3	Ν	
н	i-C ₃ H ₇	н	Н	Н	СНЗ	ос ₂ н ₅	СН	
Н	so ₂ c ₆ H ₅	Н	н	Н	снз	сн ₃	СН	
н	so ₂ c ₆ H ₅	Н	Н	Н	снз	оснз	N	
Н	^{SO} 2 ^C 6 ^H 5	н	Н	Н	сн _{3.}	OCH ₃	СН	
Н	so ₂ c ₆ H ₅	н	н	н	оснз	och ₃	N	•
н	$\mathrm{SO_2C_6H_5}$	Н	Н	.Н	осн3	och ₃	СН	
н .	so ₂ c ₆ H ₅	6-NO ₂	· н	н	оснз	CI	СН	
н	so ₂ c ₆ H ₅	. Н	н	н	сн ₃	N(CH ₃) ₂	СН	
СН ₃	н	Н	5–Br	н	осн3	OCH3.	СН	

0 070 698TABLE II (Continued)

R	FI ₂	R ₃	R ₄	R ₅	X	Υ	z	m.p. (°C)
CH ₃	н	Н	Н	Н	оснз	OCH3	N	
СН3	н	6CH ₃	Н	н	оснз	сн ₂ осн ₃	N	
сн ₃	н	н	н	н	оснз	сн _з	N	
сн ₃	н	н	н	н	OCH3	сн _з	СН	
CH ₃	Н	н	Ħ	н	СН3,	снз	N	-
сн ₃	Н	6-C ₃ H ₇	Н	н	СН3:	снз	СН	
сн ₃	сн ₃	н	н	н	СН3	СН3	СН	
сн ₃	сн ₃	Н	Н	снз	снз	сна	N	
CH ₃	CH ₃	н	Н	Н	оснз	сн _{3:}	N	
сн ₃	CH3	н	Н	н	осн3	сн ₃	СН	
сн ₃	снз	5-00 ₃ H ₇	Н	н	осн3	осн ₃	N	
сн ₃	снз	н	н	Н	OCH3	оснз	СН	
CH ₃	С ₂ Н ₅	н	н	СН3	осн ₃	СНЗ	СН	
сн _з	n-C ₃ H ₇	н	Н	н	осн ₃	сн ₃	N	
сн _з	с ₂ н ₅	4Br	н	н	снз	н	СН	
CH ₃	CH ₃	4CI	6-CI	Н	снз	CI	СН	
CH ₃	so ₂ c ₆ H ₅	н	н	н	снз	OCH3	СН	
СН ₃	so ₂ c ₆ H ₅	н	н	н	снз	och ₃	N	
CH ₃	so ₂ c ₆ H ₅	Н	Н	н	осн3	OCH ₃	СН	
сн ₃	so ₂ c ₆ н ₅	Н	Н	н	осн ₃	och ₃	N	
СНЗ	so₂c ₆ H ₅	н	н	н	снз	СН3	N	
CH ₃	so ₂ c ₆ H ₅	Н	Н	снз	СН3	C ₂ H ₅	N	
сн ₃	so ₂ c ₆ H ₅	5-NO ₂	Н	Н	СН3	осн ₃	N	
С ₂ Н ₅	н	н	Н	Н	CH ₃	OCH3	N	
C ₂ H ₅	Н	Н	Н	Н	CH ₃	осн3	СН	
C ₂ H ₅	Н	н	Н	Н	CH ₃	осн ₃	СН	
С ₂ Н ₅	C ₂ H ₅	4-0CH ₃	Н	н	CH ₃	ос ₂ н ₅	СН	
С ₂ Н ₅	C ₂ H ₅	Н	н	снз	CH ₃	оснз	СН	
C ₂ H ₅	i-C ₃ H ₇	н	н	Н	СН3	N(CH ₃) ₂	N	

0 070 698TABLE II (Continued)

R	R ₂	R ₃	R ₄	R ₅	X	Υ	z	m.p. (°C)
С ₂ Н ₅	so ₂ c ₆ H ₅	Н	Н	Н	оснз	осн3	N	
C ₂ H ₅	so ₂ c ₆ H ₅	Н	Н	н	осн3	осн ₃	N	
C ₂ H ₅	so ₂ c ₆ H ₅	н	Н	н	осн3	снз	N	
C ₂ H ₅	so ₂ c ₆ H ₅	н	5CI	Н	OCH ₃	СН3,	N	
n-C ₃ H ₇	н	н	н	н	осн ₃	сн ₃	N	
n-C ₃ H ₇ ,	н	н	н	н	OCH3	CH3	СН	
n-C ₃ H ₇	сн _з	н	н	н	осн3	CH ₂ OCH ₃	СН	
n-C ₃ H ₇	C ₃ H ₇	6-F	Н	Н	осн ₃	OCH3	СН	
h-C ₃ H ₇	sо ₂ с ₆ н ₅	Н	Н	снз	OCH3	осн _з	СН	
п-С ₃ Н ₇	so ₂ c ₆ H ₅	н	Н	Н	снз	N(CH ₃) ₂	СН	
i-C ₃ H ₇	н	н	н	CH ₃	OCH3	C ₂ H ₅	N	
i-C ₃ H ₇	н	н	н	Н	OCH3	CH _{3:}	N	
i-C ₃ H ₇	Н	Н	Н	Н	осн3	сн ₃	N	
i-C ₃ H ₇	СНЗ	н	н	Н	OCH3	CH ₃	N	
n-C ₃ H ₇	Н	Н	Н	Н	СН3	CH3	СН	
n-C ₃ H ₇	н	н	Н	н	сн3	N(CH 3)2.	СН	
п-С ₃ Н ₇	н	5-Br	7-Br	H'	снз	CH3	СН	
n-C ₃ H ₇	i-C ₃ H ₇	н	Н	Н	СН3	снз	СН	
n-C ₄ H ₉	н	н	н	Н	снз	oc ₂ H ₅	N	
n-C ₄ H ₉	Н	Н	Н	Н	осн ₃	OCH3.	N	
n-C ₄ H ₉	с ₂ н ₅	Н	Н	н	осн ₃	OCH3	N	
s-C ₄ H ₉	н	Н	Н	Н	och3	CI	СН	
s-C ₄ H ₉	Н	6-OC ₂ H ₅	Н	снз	оснз	СНЗ	СН	
s-C ₄ H ₉	н	Н	н	H	осн ₃	снз	СН	
t-C ₄ H ₉	н	Н	н	Н	осн3	Н	СН	
t-C ₄ H ₉	СНЗ	Н	4-CI	Н	OCH3	СН ₃	N	
t-C ₄ H ₉	so ₂ c ₆ H ₅	Н	H • -	Н	снз	OCH3	N	
i-C ₄ H ₉	so ₂ c ₆ H ₅	н	Н	Н	CH ₃	сн ₂ осн ₃	N	
n-C ₄ H ₉	so ₂ c ₆ H ₅	Н	Н	Н	снз	СН3	N	

0 070 698TABLE II (Continued)

R·	R ₂	R ₃	R ₄	R ₅	x	Y	z	m.p. (°C)
s-C ₄ H ₉	so ₂ c ₆ H ₅	Н	Н	Н	осн ₃	CH3	СН	
t-C ₄ H ₉	so ₂ c ₆ H ₅	н	Н	н	осн3	осн3	СН	
i	so ₂ c ₆ H ₅	Н	н	Н	осн3	осн _з	СН	
сн ₂ со ₂ сн ₃	Н	н	Н	Н	OCH ₃	осн ₃	СН	
сн ₂ со ₂ сн ₃	н	н	н	СН3	OCH ₃	осн ₃	N	
сн ₂ со ₂ сн ₃	Н	н	н	Н	осн3	сн ₃	СН	
CH ₂ CO ₂ CH ₃	Н	н	Н	н	осн3	СН3	N	
сн ₂ со ₂ сн ₃	н	н	Н	н	CH ₃	снз	N	
сн ₂ со ₂ сн ₃	Н	6-осн ₃	Н	Н	СН _{3.}	сн ₃	СН	
сн ₂ со ₂ сн ₃	н	н	Н	н	СНЗ	снз	СН	
сн ₂ со ₂ сн ₃	снз	н	н	н	CH3	CH ₃	N	
сн ₂ со ₂ сн ₃	снз	н	Ĥ	Н	СНЗ	снз	СН	
сн ₂ со ₂ сн ₃	сн ₃	н	Н	Н	СНЗ	сн ₂ осн ₃	N	
CH ₂ CO ₂ CH ₃	снз	н	Н	Н	осн ₃	осн3	N	
сн ₂ со ₂ сн ₃	снз	н	н	н	осн ₃	осн ₃	СН	
сн ₂ со ₂ сн ₃	сн ₃	Н	Н	н	осн ₃	СН3	N	
сн ₂ со ₂ сн ₃	СНЗ	5-Me	н	н	осн ₃	сн ₃	СН	
сн ₂ со ₂ сн ₃	С ₂ Н ₅	Н	7 – CI	CH3	осн ₃	oc ₂ H ₅	СН	
CH ₂ CO ₂ CH ₃	С ₂ Н ₅	н	Н	Н	CH3	CI	СН	
сн ₂ со ₂ сн ₃	<i>i-</i> C ₃ H ₇	Н	н	Н	снз	och3	СН	
сн ₂ со ₂ сн ₃	n-C ₃ H ₇	7-F	Н	Н	CH3	осн ₃	N	
CH ₂ CO ₂ C ₂ H ₅	Н	н	Н	Н	СНЗ	сн ₃	СН	
CH ₂ CO ₂ C ₂ H ₅	Н	Н	Н	Н	осн3	СНЗ	СН	
CH ₂ CO ₂ C ₂ H ₅	Н	Н	Н	Н	OCH ₃	CH ₃	N	
CH ₂ CO ₂ C ₂ H ₅	С ₂ Н ₅	н	6-Br	CH ₃	оснз	снз	N	
СH ₂ СО ₂ С ₂ Н ₅	С ₂ Н ₅	Н	Н	Н	осн3	сн _з	N	
сн ₂ со ₂ <i>i-</i> с ₃ н ₇	н	н	н	н	осн ₃	сна	N	
СН ₂ СО ₂ <i>i-</i> С ₃ Н ₇	н	н	Н	н	CH ₃	C ₂ H ₅	СН	
СН ₂ СО ₂ <i>i-</i> С ₃ Н ₇	н	4-NO ₂	н	н	CH ₃	N(CH ₃) ₂	СН	

0 070 698TABLE II (Continued)

R	R ₂	R ₃	R ₄	R ₅	X	Y	Z m.p. (°C)
CH ₂ CO ₂ i-C ₃ H ₇	CH ₃	н	н	Н	СНз	Н	СН
CH ₂ CO ₂ n-C ₃ H ₇	Н	н	Н	н	СН3	OCH3	СН
CH₂CO₂n €3H7	н	Н	Н	снз	осн3	OCH3	N
CH ₂ CO ₂ H	н	Н	Н	снз	OCH ₃	OCH ₃	N
CH ₂ CO ₂ H	Н	н	Н	Н	och₃	осн ₃	CH
сн ₂ со ₂ н	Н	н	Н	Н	оснз	сн ₃	CH
сн ₂ со ₂ н	Н	6-0C ₂ H ₅	Н	н	осн ₃	сн ₃	N
сн ₂ со ₂ н	н	н	Н	Н	снз	сн ₃	СН
сн ₂ со ₂ н	н	н	Н	н	осн ₃	сн ₃	N
·CH ₂ CO ₂ H	снз	н	н	Н	снз	OCH3	СН
сн ₂ со ₂ н	снз	Н	Н	Н	оснз	OCH3	N
сн ₂ со ₂ н	сн ³	Н	Н	н	och ₃	осн3	CH
сн ₂ со ₂ н	с ₂ н ₅	7-NO ₂	Н	СН3	оснз	осн ₃	СН
со ₂ сн ₃	н	Н	Н	Н	осн3	CH ₃	N
со ₂ сн ₃	н	н	Н.	Н	och3	CH ₃	CH
со ₂ сн ₃	н	н	Н	Н	осн ₃	OCH ₃	СН
CO ₂ CH ₃	н	Н	Н	Н	och ₃	OCH3	N
CO ₂ CH ₃	н	Н	Н	Н	сн _з	CH ₃	СН
CO ₂ CH ₃	H	7-Br	6–Br	Н	снз	CI	СН
CO ₂ CH ₃	сн ₃	Н	Н	CH ₃	СНЗ	C ₂ H ₅	CH
CO ₂ CH ₃	CH3	н	Н	Н	снз	OCH3	CH
со ₂ сн ₃	с ₂ н ₅	Н	Н	Н	сн ₃	och ₃	CH
CO ₂ CH ₃	i-C ₃ H ₇	Н	Н	Н	оснз	Н	CH
CO ₂ C ₂ H ₅	Н	Н	Н	Н	OCH3	OCH3	N
CO ₂ C ₂ H ₅	Н	Н	Н	Н	OCH3	OCH3	Ν.
со ₂ с ₃ н ₅	Н	Н	Н	Н	och3	och3	N
co ₂ c ₂ H ₅	H	н	Н	СНЗ	OCH _{3.}	och3	N
co ₂ c ₂ H ₅	Н	4-C ₂ H ₅	Н	Н	CH ₃	сн ₂ осн ₃	СН
CO ₂ C ₂ H ₅	CH3	Н	Н	Н	CH3	осн ₃	CH

0 070 698TABLE II (Continued)

			•	•	•			
R	R ₂	R ₃	R ₄	R ₅	×	Y	Z	m.p. (°C)
CO ₂ C ₂ H ₅	снз	Н	Н	Н	СН3	OCH3	СН	
CO ₂ C ₂ H ₅	n-C ₃ H ₇	н	н	Н	осн _з	осн ₃	СН	
co ₂ <i>i-</i> c ₃ H ₇	н	н	Н	Н	осн _з	С ₂ Н ₅	N	
со ₂ <i>i-</i> С ₃ Н ₇	н	н	Н	н	осн _з	СН3	N	
CO ₂ <i>i-</i> C ₃ H ₇	H -	н	5–C1	н	осн ₃	ос ₂ н ₅	N	
CO ₂ <i>i-</i> C ₃ H ₇	Н	7-OCH3	Н	Н	осн ₃	CI	СН	
CO ₂ /-C ₃ H ₇	СН _{3:}	н	Н	Н	CH ₃	н	СН	
CO ₂ <i>i-</i> C ₃ H ₇	снз	Н	н	Н	СН3	сн _з	СН	
CO ₂ -n-C ₃ H ₇	Н	н	н	СНЗ	СН3	сн ₃	СН	
CO ₂ n-C ₃ H ₇	Н	Н	Н	Н	СНЗ	снз	N	
CO ₂ -71-C ₃ H ₇	Н	н	н	Н	CH ₃	N(CH ₃) ₂	N	
CO ₂ 11-C ₃ H ₇	Н	H	н	Н	СНз	осн ₃	N	
CO ₂ -n-C ₃ H ₇	€ ₂ H ₅	6 – C1	Н	Н	снз	осн ₃	N	
CO ₂ 11-C ₃ H ₇	n-C ₃ H ₇	н	н	Н	снз	осн ₃	N	
CO ₂ H	Н	н	Н	Н	och3	CH ₃	N	
CO ₂ H	н	н	Н	Н	осн ₃	СН3	СН	
со ₂ н	н	н	Н	Н	осн ₃	осн ₃	N	
СО ₂ Н	Н	Н	Н	Н	осн ₃	осн3	СН	
со ₂ н	Н	Н	Н	СН3	CH3	CI	СН	
со ₂ н	C ₂ H ₅	н	Н	н	СН3	с ₂ н ₅	СН	
CO ₂ H	1-C ₃ H ₇	6-C1	н	Н	снз	OCH ₃	СН	
со ₂ н	n-C ₃ H ₇	н	5 – Br	н	сн ₃	Н	СН	
(CH ₂) ₂ CO ₂ CH ₃	н	н	н	Н	осн3	осн ₃	N	
(CH ₂) ₂ CO ₂ CH ₃	Н	н	Н	Н	осн _З	осн ₃	СН	
(CH ₂) ₂ CO ₂ CH ₃	Н	Н	Н	Н	осн _з	сн ₃	СН	
(CH ₂) ₂ CO ₂ CH ₃	Н	н	Н	Н	осн _з	СН ₃	N	
(CH ₂) ₂ CO ₂ CH ₃	н	н	H	Н	оснз	OC ₂ H ₅	N	
(CH ₂) ₂ CO ₂ CH ₃	н	7-NO ₂	Н	н	CH3	CH ₃	СН	
(CH ₂) ₂ CO ₂ CH ₃	н	н	6-C1	CH ₃	CH ₃	CH ₃	N	

0 070 698TABLE II (Continued)

R	R ₂	R ₃	R ₄	R ₅	X	. Y	z	m.p. (°C)
(CH ₂) ₂ CO ₂ CH ₃	CH ₃	Н	Н	Н	СН3	СН3	N	· · · · · · · · · · · · · · · · · · ·
(CH ₂) ₂ CO ₂ CH ₃	CH3	Н	н	н	СН3	сн ₃	N	
(CH ₂) ₂ CO ₂ CH ₃	С ₂ Н ₅	Н	Н	Н	CH ₃	сн ₂ осн ₃	N	
(CH ₂) ₂ CO ₂ CH	H	н	н	н	OCH ₃	CI	СН	
(CH ₂) ₂ CO ₂ CH ₃	Н	Н	н	н	OCH ₃	N(CH ₃) ₂	СН	
(CH ₂) ₂ CO ₂ CH ₃	Н	н	Н	н	осн ₃	осн ₃	СН	
(CH ₂) ₂ CO ₂ CH ₃	H	Н	Н	Н	OCH3	осн ₃	СН	
(CH ₂) ₂ CO ₂ CH ₃	Н	Н	н	снз	осн _{3.}	осн ₃	N	
(CH ₂) ₂ CO ₂ CH ₃	с ₂ н ₅	7-C1	Н	Н	снз	осн ₃	N	
(CH ₂) ₂ CO ₂ CH ₃	С ₃ Н ₇	Н	Н	н	СН3	OCH3.	N	
(CH ₂) ₂ CO ₂ i-C ₃ H ₇	Н	Н	Н	Н	CH ₃	С ₂ Н ₅	N	
(CH ₂) ₂ CO ₂ i-C ₃ H ₇	Н	Н	н	Н	СН3	C ₂ H ₅	СН	
(CH ₂) ₂ CO ₂ i-C ₃ H ₇	Н	Н	Н	Н	осн3	CH _{3.}	СН	
$(\mathrm{CH_2})_2\mathrm{CO_2}$ i- $\mathrm{C_3H_7}$	н	Н	Н	Н	осн ₃	CH3	СН	
(CH ₂) ₂ CO ₂ n C ₃ H ₇	Н	Н	Н	CH ₃	OCH3	OC ₂ H ₅	СН	
(CH ₂) ₂ CO ₂ n € ₃ H ₇	Н	5-F	Н	Н	осн ₃	ос ₂ н ₅	N	
(CH ₂) ₂ CO ₂ -n-C ₃ H ₇	i-C ₃ H ₇	Н	6-Br	Н	осн ₃	N(CH ₃) ₂	N	
(CH ₂) ₂ CO ₂ ::n-C ₃ H ₇	CH ₃	Н	Н	Н	осн3	сн ₃	N	
(CH ₂) ₂ CO ₂ H	Н	н	Н	Н	осн3	осн ₃	N	
(CH ₂) ₂ CO ₂ H	H _.	Н	Н	H	осн ₃	осн ₃	СН	
(CH ₂) ₂ CO ₂ H	Н	Н	Н	Н	осн3	сн ₃	СН	
(CH ₂) ₂ CO ₂ H	н	Н	н	Н	осн3	CH³	N	
(CH ₂) ₂ CO ₂ H	Н	6-Br	н	Н	осн ₃	сн ₃	N	
(CH ₂) ₂ CO ₂ H	СН ₃	н	Н	Н	СН3	CH ₃	N	
(CH ₂) ₂ CO ₂ H	n € ₃ H ₇	Н	н	СНЗ	СН3,	снз	N	
СH ₂ ОС ₂ H ₅	н	н	н	н	СН3	сн ₃	СН	
сн ₂ ос ₂ н ₅	Н	Н	Н	н	снз	OCH3	СН	
сн ₂ ос ₂ н ₅	н	Н	н	н	снз	осн ₃	N	
CH ₂ OC ₂ H ₅	Н	н	н	н	осн3	осн ₃	N	

0 070 698TABLE II (Continued)

R	R ₂	R ₃	R ₄	R ₅	×	Y	z	m.p. (°C)
CH ₂ OC ₂ H ₅	Н	Н	Н	Н	осн _з	N(CH ₃) ₂	N	
CH ₂ OC ₂ H ₅	Н	Н	5Br	н	OCH ₃	С ₂ Н ₅	N	
CH ₂ OC ₂ H ₅	СНз	н	н	Н	осн3	н	N	
CH ₂ OC ₂ H ₅	CH3	н	н	н	осн ₃	сн ₂ осн _з	N	
CH ₂ OC ₂ H ₅	i-C ₃ H ₇	7.4C ₃ H ₇	Н	н	снз	CI	СН	
CH ₂ OCH ₃	н	н	Н	снз	снз	осн ₃	СН	
CH ₂ OCH ₃	Н	Н	н	н	СН3	осн3	N	
сн ₂ осн ₃	н	Н	н	H	снз	снз	N	
сн ₂ осн ₃	Н	Н	н	н	снз	сн _з	СН	
CH ₂ OCH ₃	н	Н	Н	н	осн ₃	осн ₃	СН	
сн ₂ осн ₃	Н	н	н	Н	осн ₃	оснз	N	
сн ₂ осн ₃	н	н	Н	Н	оснз	оснз	N	
сн ₂ осн ₃	С ₂ Н ₅	4-0-i-C H ₇	н	н	осн _з	ос ₂ н ₅	N	
сн ₂ осн ₃	C ₂ H ₅	Н	н	н	OCH ₃	осн ₃	N	
СНО	Н	н	н	н	СН3	осн ₃	N	
СНО	Н	н	Н	н	СНЗ	OCH3	СН	
СНО	Н	Н	Н	Н	СНЗ	СНЗ	СН	
СНО	Н	· н	Н	снз	снз	осн3	СН	
СНО	Н	Н	Н	снз	СНЗ	сн ₂ осн ₃	СН	
СНО	CH3:	Н	7-CI	Н	осн3	CI	СН	
СНО	CH ₃	Н	Н	Н	OCH3	OCH3	СН	
СНО	CH ₃	5-0CH ₃	Н	Н	осн3	N(CH ₃) ₂	СН	
so ₂ cH ₃	H	Н	н	Н	оснз	сн ₃	N	
so ₂ ch ₃	Н	Н	Н	Н	осн3	снз	СН	
so ₂ ch ₃	Н	Н	н	Н	осн ₃	осн ₃	СН	
so ₂ ch ₃	Н	Н	Н	Н	осн ₃	осн ₃	N	
so ₂ сн ₃	Н	5-C ₂ H ₅	Н	н	CH3	ос ₂ н ₅	N	
so ₂ cH ₃	Н	н	Н	снз	снз	CI	СН	
so ₂ сн ₃	снз	н	Н	н	снз	С ₂ Н ₅	СН	

0 070 698TABLE II (Continued)

R	R_2	R ₃	R_4	R ₅	x	Y	z	m.p. (°C)
so ₂ cH ₃	i-C ₃ H ₇	Н	7–Br	Н	сн	Н	СН	
so ₂ c ₂ H ₅	i-C ₃ H ₇	н	Н	Н	OCH ₃	CH ₃	СН	
so ₂ c ₂ H ₅	i-C ₃ H ₇	н	Н	Н	оснз	СН	N	
so ₂ c ₂ H ₅	i-C ₃ H ₇	н	н	н	осн3	CH ₃	N	
so ₂ c ₂ H ₅	С ₂ Н ₅	н	Н	н	осн3	СН ₂ ОСН ₃	N	
so ₂ c ₂ H ₅	с ₂ н ₅	н	Н	Н	OCH3	осн3	N_	
SO ₂ i-C ₃ H ₇	н	н	н	СН3	снз	N(CH ₃) ₂	N	
SO ₂ i-C ₃ H ₇	н .	н	Н	Н	снз	оснз	N	
so ₂ i-c ₃ H ₇	Н	н	н	н	снз	OCH ₃	СН	
so ₂ i-c ₃ H ₇	n-C ₃ H ₇	6-0CH ₃	н	Н	СН3	осн3	СН	
so ₂ -n-C ₃ H ₇	н	н	н	Н	снз	осн ₃	сн -	•
so ₂ -n-C ₃ H ₇	н	н	н	Н	CH3	C ₂ H ₅	N	
`so ₂ - <i>n</i> -C ₃ H ₇	н	н	н	Н	осн3	CH ₃	N	
so ₂ -n-C ₃ H ₇	СНЗ	н	н	Н	OCH3	CH _{3.}	N	
so ₂ N(CH ₃) ₂	Н	Н	Н	Н	осн ₃	CH3	N	
so ₂ n(CH ₃) ₂	н	Н	Н	Н	осн _з	CH3	N	
so ₂ n(CH ₃) ₂	н	н	н	Н	осн3	CH ₂ OCH ₃	СН	
SO ₂ N(CH ₃) ₂	н	н	Н	Н	осн3	осн ₃	СН	
SO ₂ N(CH ₃) ₂	н	н	Н	н	снз	осн ₃	СН	
SO ₂ N(CH ₃) ₂	снз	Н	н	СН3	CH ₃	OCH3	СН	
so ₂ N(CH ₃) ₂	CH3	н	Н	Н	СН3	осн ₃	N	
so ₂ N(CH ₃) ₂	i-C ₃ H ₇	4-CH ₃	Н	Н	снз	OCH3	N	
so ₂ N(CH ₃) ₂	с ₂ н ₅	6-C1	4C1	Н	CH ₃	N(CH ₃) ₂	N	
SO ₂ N(CH ₃)C ₂ H ₅	Н	Н	Н	Н	OCH ₃	C ₂ H ₅	N	
SO ₂ N(CH ₃)C ₂ H ₅	Н	н	Н	Н	OCH3	OCH ₃	N	
$\mathrm{SO}_2\mathrm{N}(\mathrm{CH}_3)\mathrm{C}_2\mathrm{H}_5$	Н	н	Н	Н	CH ₃	OCH3	N	
$\mathrm{SO}_2\mathrm{N}(\mathrm{CH}_3)\mathrm{C}_2\mathrm{H}_5$	н	н	Н	Н	снз	OCH ₃	N	
so ₂ N(CH ₃)C ₂ H ₅	Н	Н	H _.	н	снз	©CH3	СH	
$\mathrm{SO}_2\mathrm{N}(\mathrm{CH}_3)\mathrm{C}_2\mathrm{H}_5$	C ₂ H ₅	7-01C ₃ H ₇	Н	Н	CH3	OCH3	СН	

0 070 698TABLE II (Continued)

R	R ₂	R ₃	R ₄	R ₅	X	Y	z	m.p. (°C)
SO ₂ N(CH ₃)C ₂ H ₅	n-C ₃ H ₇	Н	н	н	СН3	N(CH ₃) ₂	СН	
SO ₂ N(C ₂ H ₅) ₂	н	н	Н	Н	осн3	CH ₃	СН	
so ₂ N(C ₂ H ₅) ₂	Н	н	Н	СН3	осн ₃	CH ₃	СН	
SO ₂ N(C ₂ H ₅) ₂	н	Н	Н	Н	осн3	CH ₃	N	
SO ₂ N(C ₂ H ₅) ₂	н	н	н	Н	осн ₃	н	N	
so ₂ N(C ₂ H ₅) ₂	C ₂ H ₅	н	н	н	осн ₃	C ₂ H ₅	N	
SO ₂ N(C ₂ H ₅) ₂	CH3	Н	5–Br	Н	снз	oc ₂ H ₅	N	
SO ₂ N(C ₂ H ₅) ₂	снз	4-CH ₃	н	н	СН3	оснз	N	
SO ₂ N(CH ₃)C ₃ H ₇	н	н	н	Н	снз	сн ₂ осн ₃	N	
so ₂ n(cH ₃)c ₃ H ₇	Н	н	н	Н	CH ₃	OCH3	N	
SO ₂ N(CH ₃)C ₃ H ₇	н	н	Н	снз	осн ₃	осн ₃	N	
SO ₂ N(CH ₃)C ₃ H ₇	H	Н	Н	Н	осн ₃	CH ₃	СН	
so ₂ n(cH ₃)c ₃ H ₇	n-C ₃ H ₇	Н	Н	Н	осн ₃	CI	СН	
so ₂ n(cH ₃) <i>i-</i> C ₃ H ₇	n-C ₃ H ₇	Н	Н	Н	оснз	CH3	СН	
so ₂ N(CH ₃) <i>i-</i> C ₃ H ₇	n-C ₃ H ₇	Н	7-CI	Н	CH ₃	снз	СН	
so ₂ N(CH ₃) <i>i-</i> C ₃ H ₇	п-С _З Н ₇	Н	Н	Н	СН3	осн ₃	N	
SO ₂ N(CH ₃) <i>i-</i> C ₃ H ₇	C ₂ H ₅	5-NO ₂	Н	н	CH ₃	OCH3	N	
CH ₂ N(CH ₃) ₂	н	н	н	Н	CH ₃	осн ₃	N	
CH ₂ N(CH ₃) ₂	Н	н	Н	Н	СНЗ	осн ₃	СН	
CH ₂ N(CH ₃) ₂	н	н	н	н	осн3	оснз	СН	
CH ₂ N(CH ₃) ₂	н	Н	Н	Н	оснз	осн3	N	
CH ₂ N(CH ₃) ₂	н	н	н	н	осн ₃	N(CH ₃) ₂	N	
CH ₂ N(CH ₃) ₂	н	н	Н	снз	осн ₃	сн ₃	N	
CH ₂ N(CH ₃) ₂	СНз	H	н	снз	осн _з	CH ₃	Ŋ	
CH ₂ N(CH ₃) ₂	с ₂ н ₅	н	н	н	осң _з	CI	СН	
CH ₂ N(CH ₃) ₂	i-С ₃ Н ₇	Н	н	Н	осн ₃	oc ₂ H ₅	СН	

Formulations

55

65

Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray volumes of from a few liters to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain about 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% sufactant(s) and (b) about 1% to 99.9% solid or liquid diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

TABLE 3

		Active	Weight Percent*		
15		Ingredient	Diluent(s)	Surfactant(s)	
	Wettable Powders	2090	0—74	1—10	
20	Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates	350	40—95	015	
	Aqueous Suspension	1050	40—84	120	
25	Dusts	1—25	70—99	0—5	
	Granules and Pellets	0.1—95	599.9	0—15	
30	High Strength Compositions	90—99	0—10	02	

^{*}Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent.

Lower or higher levels of active ingredient can, of course, be present depending on the intended use and the physical properties of the compound. Higher ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, New Jersey, but other solids, either mined or manufactured, may be used. The more absorptive diluents are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide", 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable against phase separation at 0°C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publishing Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, microbiological growth, etc.

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, Littler, U.S. Patent 3,060,084). Granules and pellets may be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp. 147ff. and "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York, 1973, pp. 8—57ff.

For further information regarding the art of formulation, see for example:

- H. M. Loux, U.S. Patent 3,235,361, February 15, 1966, Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41;
- R. W. Luckenbaugh, U.S. Patent 3,309,192, March 14, 1967, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138—140, 162—164, 166, 167 and 169—182;
- H. Gysin and E. Knusli, U.S. Patent 2,891,855, June 23, 1959, Col. 3, line 66 through Col. 5, line 17 and Examples 1—4;
- G. C. Klingman, "Weed Control as a Science", John Wiley & Sons, Inc., New York, 1961, pp. 81—96; and
- J. D. Fryer and S. A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pp. 101—103.
 - In the following examples, all parts are by weight unless otherwise indicated.

Example 8

3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminoca

Wettable Powder

arbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester 80%

sodium alkylnaphthalenesulfonate 2%

sodium ligninsulfonate 2%

synthetic amorphous silica 3%

kaolinite 13%

The ingredients are blended, hammer-milled until all the solids are essentially under 50 microns reblended, and packaged.

Example 9

Wettable Powder

5

10

15

20

25

35

3-[[(4,6-dimethyl-1,3,5-triazin-2-yl)-aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl e5@%

> sodium alkylnaphthalenesulfonate 2%

low viscosity methyl cellulose 2%

diatomaceous earth 46%

The ingredients are blended, coarsely hammer-milled and then air-milled to produce particles 30 essentially all below 10 microns in diameter. The product is reblended before packaging.

Example 10

Granule

Wettable Powder of Example 9 5%

attapulgite granules 95%

(U.S.S. 20-40 mesh; 0.84-0.42 mm) 40

A slurry of wettable powder containing 25% solids is sprayed on the surface of attapulgite granules in a double-cone blender. The granules are dried and packaged.

Extruded Pellet

3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester 25%

50 anhydrous sodium sulfate 10%

> crude calcium ligninsulfonate 5%

sodium alkylnaphthalenesulfonate 1%

> calcium/magnesium bentonite 59%

The ingredients are blended, hammer-milled and then moistened with about 12% water. The mixture is extruded as cylinders about 3 mm diameter which are cut to produce pellets about 3 mm long. These may be used directly after drying, or the dried pellets may be crushed to pass a U.S.S. No. 20 sieve (0.84 mm openings). The granules held on a U.S.S. No. 40 sieve (0.42 mm openings) may be packaged for use and the fines recycled.

Example 12

Suspe	

10

<i>5</i>	3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester	25%
	polyoxyethylene sorbitol hexaoleate	5%
	highly aliphatic hydrocarbon oil	70%

The ingredients are ground together in a sand mill until the solid particles have been reduced to under about 5 microns. The resulting thick suspension may be applied directly, but preferably after being extended with oils or emulsified in water.

15	Example 13 <i>Wettable Powder</i>	
	N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]- 3-methyl-1H-indole-2-sulfonamide	20%
20	sodium alkylnaphthalenesulfonate	4%
	sodium ligninsulfonate	4%
25	low viscosity methyl cellulose	3%
	attapulgite	69%

The ingredients are thoroughly blended. After grinding in a hammer-mill to produce particles essentially all below 100 microns, the material is rebended and sifted through a U.S.S. No. 50 sieve (0.3 mm opening) and packaged.

Example 14

	Low Strength Granule	1115
35	N-[(4-methyl-6-methoxypyrimidin-2-yl) aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide	1%
	N,N-dimethylformamide	9%
40	attapulgite granules	90%
	(U.S.S. 20—40 sieve 0.84 mm—0.42 mm)	

The active ingredient is dissolved in the solvent and the solution is sprayed upon dedusted granules in a double cone blender. After spraying of the solution has been completed, the blender is allowed to run for a short period and then the granules are packaged.

	Example 15	
50	Aqueous Suspension	
	N-[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]- 3-methyl-1H-indole-2-sulfonamide	40%
55	polyacrylic acid thickener	0.3%
	dodecylphenol polyethylene glycol ether	0.5%
	disodium phosphate	1%
60	monosodium phosphate	0.5%
	polyvinyl alcohol	1.0%
65	water	56.7%

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

Example 16

5 Solution

N-[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]-

3-methyl-1H-indole-2-sulfonamide, sodium salt

10 water 95%

The salt is added directly to the water with stirring to produce the solution, which may then be packaged for use.

5%

15 Example 17

Low Strength Granule

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-

3-methyl-1H-indole-2-sulfonamide 0.1%

attapulgite granules 99,9%

(U.S.S. 20-40 mesh 0.84-0.42 mm)

The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

Example 18

30 Granule

20

3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminodulgonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester 80%

35 wetting agent 1%

crude ligninsulfonate salt (containing 5—20% of the natural sugars) 10%

40 attapulgite clay 9%

The ingredients are blended and milled to pass through a 100 mesh (149 microns) screen. This material is then added to a fluid bed granulator, the air flow is adjusted to gently fluidize the material, and a fine spray of water is sprayed onto the fluidized material. The fluidization and spraying are continued until granules of the desired size range are made. The spraying is stopped, but fluidization is continued, optionally with heat, until the water content is reduced to the desired level, generally less than 1%. The material is then discharged, screened to the desired size range, generally 14—100 mesh (1410—149 microns), and packaged for use.

50 Example 19

High Strength Concentrate

3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]amino-

sulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester 99%

silica aerogel 0.5%

synthetic amorphous silica 0.5%

The ingredients are blended and ground in a hammer-mill to produce a material essentially all passing a U.S.S. No. 50 screen (0.3 mm opening). The concentrate may be formulated further if necessary.

65

Example 20

Wettable Powder

5	3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester	90%
	dioctyl sodium sulfosuccinate	0.1%
10	synthetic fine silica	9.9%

The ingredients are blended and ground in a hammer-mill to produce particles essentially all below 100 microns. The material is sifted through a U.S.S. No. 50 screen (0.3 mm) and then packaged.

Example 21

15	Wettable Powder	•
	3-[[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]- aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester	40%
20	sodium ligninsulfonate	20%
	montmorillonite clay	40%

The ingredients are thoroughly blended, coarsely hammer-milled and then air-milled to produce 25 particles essentially all below 10 microns in size. The material is reblended and then packaged.

Evernela 22

30	Oil Suspension	· · · · · · · · · · · · · · · · · · ·		
	N-[(4,6-dimethoxy-1,3,5-triazin-2-yl-aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide	35%		
<i>35</i>	blend of polyalcohol carboxylic esters and oil soluble petroleum sulfonates	6%		
	xviene	59%		

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

The compounds of the present invention are active herbicides. They have utility for broad-spectrum pre- and/or post-emergence weed control in areas where complete control of all vegetation is desired, such as around fuel storage tanks, ammunition depots, industrial storage areas, parking lots, drive-in theaters, around billboards, highway and railroad structures. Alternatively, the subject compounds are useful for the selective weed control in crops, such as wheat, cotton and soybeans.

The rates of application for the compounds of the invention are determined by a number of factors, including their use as selective or general herbicides, the crop species involved, the types of weeds to be controlled, weather and climate, formulations selected, mode of application, amount of foliage present etc. In general terms, the subject compounds should be applied at levels of around 0.03 to 10 kg/ha, the lower rates being suggested for use on lighter soils and/or those having a low organic matter content, for selective weed control or for situations where only short-term persistence is required.

The compounds of the invention may be used in combination with any other commercial herbicide examples of which are those of the triazine, triazole, uracil, urea, amide, diphenylether, carbamate and bipyridylium types.

The activity of these compounds was discovered in greenhouse tests. The tests are described and the data resulting from them are shown below.

Seeds of crabgrass (Digitaria spp.), barnyard grass (Echinochloa crusgalli), wild oats (Avena fatua), cassia (Cassia tora), morningglory (Ipomoea sp.), cocklebur (Xanthium spp), sorghum, corn, soybean, rice, wheat and nutsedge tubers (Cyperus rotundus) were planted in a growth medium and treated preemergence with the chemicals dissolved in a non-phytotoxic solvent solution of the compounds of Table A. At the same time, cotton having five leaves (including cotyledonary ones), bush beans with the third

trifoliate leaf expanding, crabgrass, barnyardgrass and wild oats with two leaves, cassia with three leaves (including cotyledonary ones), morningglory and cocklebur with four leaves (including the cotyledonary ones), sorghum and corn with four leaves, soybean with two cotyledonary leaves, rice with three leaves, wheat with one leave, and nutsedge with three to five leaves were sprayed with a non-phytotoxic solvent solution of the compounds of Table A. Treated plants and controls were maintained in a greenhouse for sixteen days, whereupon all species were compared to controls and visually rated for response to treatment. The ratings for the compounds tested by this procedure are presented in Table A. It will be seen the compounds tested possess high herbicidal activity and that certain compounds are useful for weed control in wheat and soybeans. The ratings are based on a numerical scale extending from 0 = no injury to 10 = complete kill. The accompanying descriptive symbols have the following meanings:

G= growth retardation;

C= chlorosis/netrosis;

6Y= abscised buds or flowers;

U= unusual pigmentation;

E= emergence inhibition; and

H= formative effects

U= unusual pigmentation

B= terminal bud injury.

TABLE A

	TABLE A	
	SO ₂ -NH-C-NH (O) SO ₂ -NH-C-NH (O) CH ₃ CH ₃	SO ₂ —NH-C-NH (O) N COOCH ₃ CH ₃
Rate, kg/ha	0.4	0.4
POST-EMERGENCE		
Bushbean	6C, 9G, 6Y	6C, 9G, 6Y
Cotton	6C, 9G	5C, 9G
Morningglory	2C, 4G	10C
Cocklebur	10C	10C
Cassia	6C, 9G	9C
Nutsedge	1C, 8G	4C, 8G
Crabgrass	2C, 9G	5C, 9G
Barnyardgrass	9C	10C
Wild Oats	5C, 9H	6C, 9G
Wheat	5C, 9H	5C, 9G
Corn	9C	9C
Soybean	9C	6C, 9G
Rice	2C, 9G	6C, 9G
Sorghum	9C	4C, 9G
PRE-EMERGENCE		
Morningglory	8G	9G
Cocklebur	9H	9H
Cassia	8H	8G
Nutsedge	10年	10E
Crabgrass	5C	6C, 9G
Barnyardgrass	5C	6C, 9H
Wild Oats	5C	4C, 9G
Wheat	2C	9H
Corn	10H	9G .
Soybean	2C	9Н
Rice	10E	10E
Sorghum	6C	5C, 9H
		·····

	$\begin{array}{c c} & & & & \\ & &$	SO ₂ NHCNH (O) (OCH ₃)	SO ₂ NHCNH CO ₁ CH ₃ CO ₂ C ₂ H ₅ H
Rate, kg/ha	0.4	0.4	0.4
POST-EMERGENCE			
Bushbean	9C	7C, 9G, 6Y	9C
Cotton	9C	6C, 9H	9C
Sorghum	5C, 9G	5C, 9G	10C
Corn	9C	3C, 9G	2U, 9H
Soybean	9C	9C	6C, 9G
Wheat	5C, 9G	2C, 9G	2C, 9G
Wild Oats	5C, 9G	2C, 9G	5C, 9G
Rice	6C, 9G	6C, 9G	5C, 9G
Barnyardgrass	9C	5C, 9H	5C, 9H
Crabgrass	6C, 9G	5C, 9G	5C, 9G
Morningglory	9C	6C, 9G	3C, 9G
Cocklebur	6C, 9G	6C, 9G	9C
Cassia	6C, 9G	9C	5C, 9G
Nutsedge	4C, 9G	4C, 9G	2C, 9G
PRE-EMERGENCE			
Sorghum	7C, 9H	5C, 9G	6C, 9H
Corn	9H	9G	2C, 9G
Soybean	9H	3C, 8H	3C, 9H
Wheat	9H	1C, 9G	9H
Wild Oats	3C, 9G	4C, 9G	6C, 9G
Rice	10E	10E	5C, 9H
Barnyardgrass	6C, 9G	5C, 9H	5C, 9H
Crabgrass	4C, 9G	3C, 8G	3C, 3G
Morningglory	9G	9G	9G
Cocklebur	9H	9H	-
Cassia	9G	9G	8G
Nutsedge	9G	4C, 9G	9G

·	SO ₂ NHCNH (ON CO ₂ C ₂ H ₅	SO ₂ NHCNH CH ₃	SO ₂ NHCNH (O) H ₅ C ₂
Rate, kg/ha	0.4	0.4	0.05
POST-EMERGENCE			
Bushbean	9C .	1B	2C, 2H
Cotton	9C	1B	0
Sorghum	9C	2B	0
Corn	3C, 8H	2B	3G
Soybean	9C	1B	1H, 5G
Wheat	3U, 9G	1B	0
Wild Oats	6C, 9G	1B	0
Rice	9C	1B	1C, 5G
Barnyardgrass	5C, 9H	5B	0
Crabgrass	6C, 9G	2B	0
Morningglory	9C	3B	1C
Cocklebur	9C	2B	1C
Cassia	9C	2B	1C
Nutsedge	5C, 9G	0	0
PRE-EMERGENCE			
Sorghum	7C, 9H	2C	2C, 7G
Corn	2U, 9G	3G	2C, 6G
Soybean	8H	3G	1H
Wheat	2C, 9G	1C	3G
Wild Oats	5C, 9G	1C	8G
Rice	10E	5G	2C, 4G
Barnyardgrass	5C, 9H	6C	3G
Crabgrass	4C, 9G	0	0
Morningglory	9G	5G	2H
Cocklebur	9H	1	_
Cassia	2C, 9G	2C	1C
Nutsedge	10E	0	0

0 070 698

·	SO ₂ NHCNH (O) CO ₂ C ₂ H ₅ CH ₃	SO ₂ NHCNH (CH ₃	·
Rate, kg/ha	0.05	0.4	
POST-EMERGENCE			
Bushbean	4C, 8G, 6Y	2C,3G	
Catton	2C, 5G	0	
Sorghum	4C, 9G	0	
Corn	2C, 9H	0	
Soybean	3C, 8G	0	
Wheat	3C, 9H	0	
Wild Oats	2C, 9H	0	
Rice	5C, 9G	0	
Barnyardgrass	3C, 8H	0	
Crabgrass	2C, 7G	0	
Morningglory	2C, 6G	0	
Cocklebur	2C, 8G	0	
Cassia	3C	0	
Nutsedge	9G	0	
PRE-EMERGENCE			
Sorghum	2C, 9H	4G	
Corn	1C, 9H	1C, 5G	
Soybean	2C, 7H	0	
Wheat	1C, 9G	1C, 6G	
Wild Oats	3C, 9G	2C, 5G	
Rice	5C, 9H	3G	
Barnyardgrass	4C, 8H	0	
Crabgrass	1C, 6G	0	
Morningglory	1C, 4H	0	
Cocklebur	9H	-	
Cassia	4G	0	
Nutsedge	4G, 1C	0	

Test B

Two plastic bulb pans were filled with fertilized and limed Fallsington silt loam soil. One pan was planted with corn, sorghum, Kentucky bluegrass and several grassy weeds. The other pan was planted with cotton, soybeans, purple nutsedge (Cyperus rotundus), and several broadleaf weeds. The following grassy and broadleaf weeds were planted: crabgrass (Digitaria sanguinalis), barnyardgrass (Echinochloa crusgalli), wild oats (Avena fatua), johnsongrass (Sorghum halepense), dallisgrass (Paspalum dilatatum), giant foxtail (Setaria faberii), cheatgrass (Bromus secalinus), mustard (Brassica arvensis), cocklebur (Xanthium pensylvanicum), pigweed (Amaranthus retroflexus), morningglory (Ipomoea hederacea), cassia (Cassia tora), teaweed (Sida spinosa), velvetleaf (Abutilon theophrasti), and jimsonweed (Datura stramonium). A 12.5 cm diameter plastic pot was also filled with prepared soil and planted with rice and wheat. Another 12.5 cm pot was planted with sugarbeets. The above four containers were treated preemergence with two of the test compounds within the scope of the invention.

Twenty-eight days after treatment, the plants were evaluated and visually rated for response to the chemical treatments utilizing the rating system described previously for Test A. The data are summarized in Table B. Note that the compounds are useful for weed control in crops such as soybeans, wheat and cotton.

TABLE B

TABLE B		
PRE-EMERGENCE ON FALLSINGTON SILT LOAM		
PRE-EMERGENCE ON FALLSINGTON SILT LOAM OF THE SO T		
Rate, kg/ha	0.03	0.12
Crabgrass	3G	6G
Barnyardgrass	3G	
Sorghum	10C	7G, 3H 10C
Wild Oats	7G, 3H	7G, 5H
Johnsongrass	4G, 2H	6G, 5H
Dallisgrass	0	4G
Giant Foxtail	3G	5G, 3H
Ky. bluegrass	7G, 5H	8G, 5H
Cheatgrass	5G, 3H	8G, 8C
Sugarbeets	7G, 3C	7G, 7C
Corn	4G, 4U	6G, 5H
Mustard	7G, 5C	9G, 9C
Cocklebur	6G, 3H	8G, 5H
Pigweed	5G	10E
Nutsedge	0	7G, 2C
Cotton	0	3G
Morningglory	0	2G
Cassia	4G	4G
Teaweed	5G	-6G
Velvetleaf	2G	8G, 5H
Jimsonweed	3G	6G, 6C
Soybean	0	3G
Rice	6G, 5H	8G, 8C
Wheat	4G	5G

TABLE B (Continued)

	TABLE B (Continue	d)
PRE	E-EMERGENCE ON FALLSINGTO	ON SILT LOAM
	SO ₂ -NH-C-NH -N COOCH ₃	CH ₃
Rate, kg/ha	0.03	0.12
Crabgrass	3G	4G
Barnyardgrass	6G	8G, 3H
Sorghum	8G, 5H	10C
Wild Oats	7G, 3H	7G, 3H
Johnsongrass	6G, 5H	7G, 5H
Dallisgrass	3G	5G
Giant Foxtail	4G, 3H	7G, 3H
Ky. bluegrass	8G, 3H	8G, 8C
Cheatgrass	4G	8G, 3H
Sugarbeets	5G, 3C	7G, 7C
Corn	5G, 5H	6G, 5H
Mustard	7G, 8C	7G, 7C
Cocklebur	4G, 3H	5G, 3H
Pigweed	5G	8G, 8C
Nutsedge	0	3G
Cotton	0	3G
Morningglory	0	4G
Cassia	. 0	3G
Teaweed	6G, 2C	7G, 2C
Velvetleaf	5G, 5H	7G, 5H
Jimsonweed	3G	6G, 2C
Soybean	0	4G, 2C
Rice	8G, 5H	8G, 5H
Wheat	2C	3G, 3C

or

Claims for the Contracting States: BE CH DE FR GB IT LI LU NL SE

1. A compound of the formula:

5 SO₂NHCONA R₃ SO₂NHCONA R₅ R₅

 R_3 S_0 R_4 R_2 R_3 R_4 R_2 R_5

15

20

.where

R is H, C_1 — C_4 alkyl, $(CH_2)_mCO_2R_9$, $CH_2OCH_2H_6$, SO_2R_{10} , CHO, $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$ or CH_2OCH_3 ; R_1 is H, C_1 — C_4 alkyl, CO_2R_6 , $C(O)NR_7R_8$, $C(O)R_{10}$, SO_2R_{10} , or $SO_2NR_{11}R_{12}$;

 R_2 is H, C_1 — C_3 alkyl or $SO_2C_6H_5$;

R₃ is H, F, Cl, Br, C₁—C₃ alkyl, C₁—C₃ alkoxy or NO₂;

T

R4 is H, Cl or Br;

R₅ is H or CH₃;

R₆ is C₁—C₄ alkyl, C₃—C₄ alkenyl, CH₂CH₂Cl or CH₂CH₂OCH₃;

 R_7 and R_8 are independently H or C_1 — C_4 alkyl, provided that the total number of carbon atoms is less 25 than or equal to 4;

R₉ H or C₁—C₃ alkyl;

R₁₀ is C₁-C₃ alkyl;

 R_{11} and R_{12} are independently C_1 — C_3 alkyl, provided that the total number of carbon atoms is less than or equal to 4;

m is 0, 1 or 2;

A is

 $\sqrt{\frac{N}{\sqrt{2}}}$

35

40

45

50

55

30

X is CH₃ or OCH₃;

Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI, H, C₂H₅ or N(CH₃)₂; and

Z is CH or N:

provided that

1) when R₂ is SO₂C₆H₅, then R₁ and R are H or C₁—C₄ alkyl.

2) when Y is Cl, then Z is CH; and

3) when m is 0, then R₉ is C₁—C₃ alkyl.

2. A compound of Claim 1, Formula I where R_1 is H, C_1 — C_3 alkyl, CO_2R_6 , $C(O)NR_7R_8$, $SO_2NR_{11}R_{12}$ or SO_2R_{10} ; and R_5 is H.

3. A compound of Claim 2 where R₃ and R₄ are H.

4. A compound of Claim 3 where R₂ is H or CH₃.

5. A compound of Claim 4 where R₁ is H, CO₂CH₃, SO₂CH₃ or SO₂N(CH₃)₂.

6. A compound of Claim 5 where Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl.

7. A compound of Claim 1, Formula II where R is H, C_1 — C_3 alkyl, $(CH_2)_mCO_2R_9$, SO_2R_{10} or $SO_2NR_{11}R_{12}$; and R_5 is H.

8. A compound of Claim 7 where R₃ and R₄ are H.

9. A compound of Claim 8 where R2 is H or CH3.

10. A compound of Claim 9 where \bar{R} is H, CH_3 or $(CH_2)_mCO_2$ — $(C_1$ — C_3 alkyl).

11. A compound of Claim 10 where Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl.

12. The compound of Claim 1, 3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester.

13. The compound of Claim 1, 3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester.

14. The compound of Claim 1, 3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester.

15. The compound of Claim 1, 3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester.

- 16. The compound of Claim 1, 3-[[(4,6-dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1methyl-1H-indole-2-carboxylic acid, methyl ester.
- 17. The compound of Claim 1, 3-[[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester.
- 18. The compound of Claim 1, N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2sulfonamide.
- 19. The compound of Claim 1, N-[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2sulfonamide.
- 20. The compound of Claim 1, N-[(4-methyl-6-methoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1Hindole-2-sulfonamide.
 - 21. The compound of Claim 1, N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide.
 - 22. The compound of Claim 1, N-[(4,6-dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2sulfonamide.
- 23. The compound of Claim 1, N-[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-15 indole-2-sulfonamide.
 - 24. The compound of Claim 1, 3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-aminosulfonyl]-1Hindole-2-carboxylic acid, ethyl ester.
 - 25. The compound of Claim 1, 3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosuifonyl]-1Hindole-2-carboxylic acid, ethyl ester.
 - 26. The compound of Claim 1, 3-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester.
 - 27. The compound of Claim 1, 3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester.
- 25 28. The compound of Claim 1, 3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1Hindole-2-carboxylic cid, ethyl ester.
 - 29. A compound selected from

where 40

30

35

R is H, C_1 — C_4 alkyl or $(CH_2)_m CO_2 R_9$;

R₃ is H, F, Cl, Br, C₁—C₃ alkyl, C₁—C₃ alkoxy or NO₂;

R₄ is H, Cl or Br; 45

R₅ is H or CH₃;

R₆ is C₁—C₄ alkyl, C₃—C₄ alkenyl, CH₂CH₂Cl or CH₂CH₂OCH₃;

R₇ and R₈ are independently H or C₁—C₄ alkyl, provided that the total number of carbon atoms is less than or equal to 4;

R₉ is H or C₁—C₃ alkyl;

R₁₀ is C₁---C₃ alkyl;

m is 1 or 2;

A is

60

50

55

X is CH₃ or OCH₃; Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, Cl or H; and Z is CH or N; provided that

when Y is CI then Z is CH. 65

- 30. A composition suitable for controlling the growth of undesired vegetation comprising an effective amount of a herbicidal compound and at least one of the following: surfactant, solid or liquid diluent, characterised in that said herbicidal compound comprises a compound of any one of the preceding claims.
- 31. A method for controlling the growth of undesired vegetation by applying to the locus to be protected an effective amount of a herbicidal compound, characterised in that said herbicidal compound comprises a compound of any one of claims 1 to 28.
 - 32. A process for the preparation of a compound as claimed in claim 1 which comprises:—
 a) for the preparation of a compound of formula I, the reaction of a compound of the formula:

(wherein R_1 , R_2 , R_3 and R_4 are as defined in claim 1) with a compound of the formula:

25 (wherein A and R_s are as defined in claim 1); or

b) for the preparation of a compound of formula I wherein R_1 represents the group —CONR₇R₈ (in which R_7 and R_8 are as defined in claim 1), the reaction of a compound of the formula:

(wherein A, R₂, R₃, R₄ and R₅ are as defined in claim 1) with a compound of the formula:--

(wherein R7 and R8 are as defined in claim 1) or

c) for the preparation of a compound of formula I in which R_1 is H or C_1 — C_4 alkyl and R_2 is H, the alkaline hydrolysis of a compound of the formula:

(wherein R₁ is H or C₁—c₄ alkyl and A, R₃, R₄ and R₅ are as defined in claim 1); or

d) for the preparation of a compound of formula II, the reaction of a compound of the formula:

65

60

10

15

20

30

35

40

50

(wherein R, R₂, R₃ and R₄ are as defined in claim 1) with a compound of the formula:

HNA V

(wherein A and R₅ are as defined in claim 1); or

e) for the preparation of a compound of formula II, the reaction of a compound of the formula:

R₃ SO₂NH₂

(wherein R, R_2 , R_3 and R_4 are as defined in claim 1) with a compound of the formula:

O ∥ CH₃OCNA ↓ R₅

(wherein A and R_{s} are as defined in claim 1) in the presence of an appropriate catalyst.

Claims for the Contracting State: AT

1. A process for the preparation of a compound of formula:

where

5

10

15

20

25

30

35

40

45

50

60

R is H, C_1 — C_4 alkyl, $(CH_2)_mCO_2R_9$, $CH_2OC_2H_5$, SO_2R_{10} , CHO, $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$ or CH_2OCH_3 ;

 R_1 is H, C_1 — C_4 alkyl, CO_2R_6 , $C(O)NR_7R_8$, $C(O)R_{10}$, SO_2R_{10} , or $SO_2NR_{11}R_{12}$;

 R_2 is H, C_1 — C_3 alkyl or $SO_2C_6H_5$;

 R_3 is H, F, Cl, Br, C_1 — C_3 alkyl, C_1 — C_3 alkoxy or NO_2 ;

R4 is H, CI or Br;

R₅ is H or CH₃;

R₆ is C₁—C₄ alkyl, C₃—C₄ alkenyl, CH₂CH₂Cl or CH₂CH₂OCH₃;

 R_7 and R_8 are independently H or C_1 — C_4 alkyl, provided that the total number of carbon atoms is less than or equal to 4;

R₉ H or C₁—C₃ alkyl;

R₁₀ is C₁—C₃ alkyl;

 R_{11} and R_{12} are independently C_1 — C_3 alkyl, provided that the total number of carbon atoms is less than or equal to 4;

m is 0, 1 or 2;

A is

 $-\langle O_z^z :$

65 X is CH₃ or OCH₃;

Y is CH_3 , OC_2H_5 , CH_2OCH_3 , CI, H, C_2H_5 or $N(CH_3)_2$; and Z is CH or N;

provided that

5

10

15

20

25

30

35

40

50

55

60

65

1) when R_2 is $SO_2C_6H_5$, then R_1 and R are H or C_1-C_4 alkyl.

2) when Y is CI, then Z is CH; and

3) when m is 0, then R₉ is C₁—C₃ alkyl.

which process comprises:-

a) for the preparation of a compound of formula I, the reaction of a compound of the formula:

R₃

(wherein R₁, R₂, R₃ and R₄ are as defined in claim 1) with a compound of the formula:

(wherein A and R₅ are as defined in claim 1); or

b) for the preparation of a compound of formula I wherein R_1 represents the group —CONR₇R₈ (in which R_7 and R_8 are as defined in claim 1), the reaction of a compound of the formula:

R₃ SO₂NHCNA CO₂CH₃

(wherein A, R2, R3, R4 and R5 are as defined in claim 1) with a compound of the formula:—

(CH₃)₂AINR₇R₈

(wherein R_{7} and R_{8} are as defined in claim 1) or

c) for the preparation of a compound of formula I in which R_1 is H or C_1 — C_4 alkyl and R_2 is H, the alkaline hydrolysis of a compound of the formula:

(wherein R_1 is H or C_1 — C_4 alkyl and A, R_3 , R_4 and R_5 are as defined in claim 1); or

d) for the preparation of a compound of formula II, the reaction of a compound of the formula:

(wherein R, R2, R3 and R4 are as defined in claim 1) with a compound of the formula:

HNA V | R₅

(wherein A and R₅ are as defined in claim 1); or

5

10

15

20

25

30

35

e) for the preparation of a compound of formula II, the reaction of a compound of the formula:

R₄ SO₂NH₂

(wherein R, R₂, R₃ and R₄ are as defined in claim 1) with a compound of the formula:

O · # CH₃OCN/ R_e

(wherein A and R_s are as defined in claim 1) in the presence of an appropriate catalyst.

2. A process as claimed in claim 1 for the preparation of a compound of formula I where R_1 is H, C_1 — C_3 alkyl, CO_2R_6 , $C(O)NR_7R_8$, $SO_2NR_{11}R_{12}$ or SO_2R_{10} ; and R_5 is H.

- 3. A process as claimed in claim 2 where R₃ and R₄ are H.
- A process as claimed in claim 3 wherein R₂ is H or CH₃.
 - 5. A process as claimed in claim 4 wherein R₁ is H, CO₂CH₃, SO₂CH₃ or SO₂N(CH₃)₂.
 - 6. A process as claimed in claim 5 where Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl.

7. A process as claimed in claim 1 for the preparation of a compound of formula II where R is H, C_1 — C_3 alkyl, $(CH_2)_mCO_2R_9$, SO_2R_{10} or $SO_2NR_{11}R_{12}$; and R_5 is H.

- 8. A process as claimed in claim 7 where r₃ and R₄ are H.
- 9. A process as claimed in claim 8 where R₂ is H or CH₃.
- 10. A process as claimed in claim 9 where R is H, CH₃ or (CH₂)_mCO₂—(C₁—C₃ alkyl).
- 11. A process as claimed in claim 10 where Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl.
- 12. The process of claim 1 wherein the product is a compound selected from:

 3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;

3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester.

3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;

3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;

3-[[(4,6-dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;

3-[[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indole-2-carboxylic acid, methyl ester;

N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;

N-[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;

N-[(4-methyl-6-methoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;

N-[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;

N-[(4,6-dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;

N-[(4-methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indole-2-sulfonamide;

3-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester;

3-[[(4,6-dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl

3-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester;

3-[[(4-methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester; and

65 3-[[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylic acid, ethyl ester.

13. The process of claim 1 wherein the product is a compound selected from

where

15

R is H, C_1 — C_4 alkyl or $(CH_2)_mCO_2R_9$; R₁ is H, C_1 — C_4 alkyl, CO_2R_9 , $C(O)NR_7R_8$, CN, $C(O)R_9$ or SO_2R_{10} ; R₂ is H, C_1 — C_3 alkyl;

R₃ is H, F, Cl, Br, C₁—C₃ alkyl, C₁—C₃ alkoxy or NO₂;

R4 is H, Cl or Br;

R₅ is H or CH₃; 20

R₆ is C₁—C₄ alkyl, C₃—C₄ alkenyl, CH₂CH₂Cl or CH₂CH₂OCH₃;

R₇ and R₈ are independently H or C₁—C₄ alkyl, provided that the total number of carbon atoms is less than or equal to 4;

R₉ is H or C₁—C₃ alkyl;

 R_{10} is C_1 — C_3 alkyl; 25

m is 1 or 2;

A is

30

35

$$-\langle O \rangle_{z}^{x}$$

X is CH3 or OCH3;

Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, Cl or H; and

Z is CH or N:

provided that

when Y is Cl then Z is CH.

14. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a herbicidal compound, characterised in that said herbicidal compound comprises a compound of formula I or II as defined in any one of claims 1 to 12.

15. A method as claimed in claim 14 wherein said compound of formula I or II is a compound as defined in claim 13.

45 Patentansprüche für die Vertragsstaaten: BE CH DE FR GB IT LI LU NL SE

1. Eine Verbindung der Formel

SO2NHCONA 50 SO, NHCOŅA oder 55 1 11

60 worin bedeutet

R H, C_1 — C_4 -Alkyl, $(CH_2)_mCO_2R_9$, $CH_2OC_2H_5$, SO_2R_{10} , CHO, $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$ oder CH_2OCH_3 ;

R₃ H, F, Cl, Br, C₁—C₃-Alkyl, C₁—C₃-Alkoxy oder NO₂;

65 R₄ H, Cl oder Br;

Rs H oder CH3;

R₈ C₁—C₄-Alkyl; C₃—C₄-Alkenyl, CH₂CH₂Cl oder CH₂CH₂OCH₃;

R₇ und R₈ unabhängig H oder C₁—C₄-Alkyl, vorausgesetzt, dass die Gesamtzahl von C-Atomen weniger als oder gleich 4 beträgt:

R₉ H oder C₁—C₃-Alkyl;

R₁₀ C₁--C₃-Alkyl;

R₁₁ und R₁₂ unabhängig C₁—C₃-Alkyl, vorausgesetzt, dass die Gesamtzahl von C-Atomen weniger als oder gleich 4 beträgt;

m 0, 1 oder 2;

10 A

15

5

X CH₃ oder OCH₃;

Y CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI, H, C₂H₅ oder N(CH₃)₂; und

Z CH oder N:

20 vorausgesetzt, dass

- 1) wenn R₂ SO₂C₆H₅ ist, R₁ und R H oder C₁—C₄-Alkyl sind;
- 2) wenn Y Cl ist, Z CH ist; und
- 3) wenn m 0 ist, R₉ C₁---C₃-Alkyl ist.
- 2. Eine Verbindung nach Anspruch 1, Formel I, worin R_1 H, C_1 — C_3 -Alkyl, CO_2R_6 , $C(O)NR_7R_8$, $SO_2NR_{11}R_{12}$ oder SO_2R_{10} und R_5 H ist.
 - 3. Eine Verbindung nach Anspruch 2, worin R3 und R4 H sind.
 - 4. Eine Verbindung nach Anspruch 3, worin R2 H oder CH3 ist.
 - 5. Eine Verbindung nach Anspruch 4, worin R₁ H, CO₂CH₃, SO₂CH₃ oder SO₂N(CH₃)₂ ist.
 - 6. Eine Verbindung nach Anspruch 5, worin Y CH₃, OCH₃, OC₂H₅, CH₂OCH₃ oder Cl ist.
- 7. Eine Verbindung nach Anspruch 1, Formel II, worin R H, C₁—C₃-Alkyl, (CH₂)_mCO₂R₉, SO₂R₁₀ oder SO₂NR₁₁R₁₂ und R₅ H ist.
 - 8. Eine Verbindung nach Anspruch 7, worin R₃ und R₄ H sind.
 - 9. Eine Verbindung nach Anspruch 8, worin R₂ H oder CH₃ ist.
 - 10. Eine Verbindung nach Anspruch 9, worin R H, CH₃ oder (CH₂)_mCO₂-(C₁—C₃-Alkyl) ist.
 - 11. Eine Verbindung nach Anspruch 10, worin Y CH₃, OCH₃, OC₂H₅, CH₂OCH₃ oder CI ist.
 - 12. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester.
 - 13. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester.
 - 14. Die Verbindung nach Anspruch 1, nämlich 3-[[(4-Methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester.
 - 15. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester.
 - 16. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester.
 - 17. Die Verbindung nach Anspruch 1, nämlich 3-[[(4-Methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester.
 - 18. Die Verbindung nach Anspruch 1, nämlich N-[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid.
 - 19. Die Verbindung nach Anspruch 1, nämlich N-[(4,6-Dimethylpyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid.
 - 20. Die Verbindung nach Anspruch 1, nämlich N-[(4-Methyl-6-methoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid.
 - 21. Die Verbindung nach Anspruch 1, nämlich N-[(4,6-Dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid.
 - 22. Die Verbindung nach Anspruch 1, nämlich N-[(4,6-Dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid.
 - 23. Die Verbindung nach Anspruch 1, nämlich N-[(4-Methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid.
 - 24. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester.
 - 25. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester.
- 26. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Methoxy-6-methyl-1,3,5-triazin-2yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester.

27. Die Verbindung nach Anspruch 1, nämlich 3-[[(4-Methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester.

28. Die Verbindung nach Anspruch 1, nämlich 3-[[(4,6-Dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester.

29. Eine Verbindung, ausgewählt aus

R₃
SO₂NHCONA
R₅
R₇
R₁
oder

 R_3 S_2 R_4 R_2 R_3 R_5 R_5

worin bedeutet

5

10

15

20

30

35

R H, C₁-C₄-Alkyl oder (CH₂)_mCO₂R₉;

R₁ H, C₁—C₄-Alkyl, CO₂R₆, C(O)NR₇R₈, CN, C(O)R₉ oder SO₂R₁₀;

R₂ H, C₁—C₃-Alkyl;

R₃ H, F, Cl, Br, C₁—C₃-Alkyl, C₁—C₃-Alkoxy oder NO₂;

R4 H, Cl oder Br;

R₅ H oder CH₃;

R₆ C₁—C₄-Alkyl, C₃—C₄-Alkenyl, CH₂CH₂Cl oder CH₂CH₂OCH₃;

25 R₇ und R₈ unabhängig H oder C₁—C₄-Alkyl, vorausgesetzt, dass die Gesamtzahl von C-Atomen weniger als oder gleich 4 beträgt;

R₈ H oder C₁-C₃-Alkyl;

R₁₀ C₁-C₃-Alkyl;

m 1 oder 2;

Δ

X CH₃ oder OCH₃;

Y CH₃, OCH₃, OC₂H₅, CH₂OCH₃, Cl oder H; und

Z CH oder N;

40 vorausgesetzt, dass

wenn Y Cl ist, Z CH ist.

30. Eine Zusammensetzung, geeignet für die Kontrolle des Wachstums unerwünschter Vegetation, enthaltend eine wirksame Menge einer herbiziden Verbindung und mindestens einen der folgenden Zusätze: oberflächenaktives Mittel, festes oder flüssiges Verdünnungsmittel, dadurch gekennzeichnet, dass die herbizide Verbindung eine Verbindung nach einem der vorhergehenden Ansprüche enthält.

31. Verfahren zur Kontrolle des Wachstums unerwünschter Vegetation durch Aufbringung einer wirksamen Menge einer herbiziden Verbindung auf die zu schützende Stelle, dadurch gekennzeichnet, dass die herbizide Verbindung eine Verbindung nach einem der Ansprüche 1 bis 28 enthält.

32. Verfahren zur Herstellung einer Verbindung gemäss Anspruch 1, bei dem man

a) für die Herstellung einer Verbindung der Formel I eine Verbindung der Formel

60 (worin R1, R2, R3 und R4 wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

65

50

55

(worin A und R_s wie in Anspruch 1 definiert sind) umsetzt; oder

5

10

15

25

35

40

50

55

60

65

b) für die Herstellung einer Verbindung der Formel I, worin R₁ die Gruppe —CONR₇R₈ (in welcher R₇ und R₈ wie in Anspruch 1 definiert sind) bedeutet, eine Verbindung der Formel

R₃ SO₂NHCNA CO₂CH₃

(worin A, R2, R3, R4 und R5 wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

(CH₃)₂AINR₇R₈

(worin $\ensuremath{R_{7}}$ und $\ensuremath{R_{8}}$ wie in Anspruch 1 definiert sind) umsetzt; oder

c) für die Herstellung einer Verbindung der Formel I, in der R₁ H oder C₁—C₄-Alkyl und R₂ H ist, eine Verbindung der Formel

 $\begin{array}{c|c} R_3 & O \\ & & \\ & & \\ R_4 & & \\ &$

(worin R₁ H oder C₁—C₄-Alkyl und A, R₃, R₄ und R₅ wie in Anspruch 1 definiert sind) der alkalischen Hydrolyse unterwirft; oder

d) für die Herstellung einer Verbindung der Formel II eine Verbindung der Formel

R₃
N
SO₂NCO
VI

(worin R, R₂, R₃ und R₄ wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

HNA V | 45 R₌

(worin A und Rs wie in Anspruch 1 definiert sind) unsetzt; oder

e) für die Herstellung einer Verbindung der Formel II eine Verbindung der Formel

R₄ SO₂NH₂

(worin R, R₂, R₃ und R₄ wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

(worin A und R₅ wie in Anspruch 1 definiert sind) in Anwesenheit eines zweckentsprechenden Katalysators umsetzt.

Patentansprüche für den Vertragsstaat: AT

1. Verfahren zur Herstellung einer Verbindung der Formel

5 SO2NHCONA 10 oder 1 15.

SO NHCONA <u>11</u>

worin bedeutet

20

30

35

R H, C_1 — C_4 -Alkyl, $(CH_2)_mCO_2R_9$, $CH_2OC_2H_5$, SO_2R_{10} , CHO, $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$ oder CH_2OCH_3 ;

 R_1 H, C_1 — C_4 -Alkyl, CO_2R_6 , $C(O)NR_7R_8$, $C(O)R_{10}$, SO_2R_{10} oder $SO_2NR_{11}R_{12}$; R_2 H, C_1 — C_3 -Alkyl oder $SO_2C_6H_5$;

R₃ H, F, Cl, Br, C₁—C₃-Alkyl, C₁—C₃-Alkoxy oder NO₂;

R4 H, Cl oder Br;

R₅ H oder CH₃;

R₆ C₁—C₄-Alkyl; C₃—C₄-Alkenyl, CH₂CH₂Cl oder CH₂CH₂OCH₃;

R₇ und R₈ unabhängig H oder C₁—C₄-Alkyl, vorausgesetzt, dass die Gesamtzahl von C-Atomen weniger 25 als oder gleich 4 beträgt;

R₉ H oder C₁—C₃-Alkyl;

R₁₀ C₁—C₃-Alkyl;

R₁₁ und R₁₂ unabhängig C₁—C₃-Alkyl, vorausgesetzt, dass die Gesamtzahl von C-Atomen weniger als oder gleich 4 beträgt;

m 0, 1 oder 2;

X CH₃ oder OCH₃;

Y CH_3 , OCH_3 , OC_2H_5 , CH_2OCH_3 , CI, H, C_2H_5 oder $N(CH_3)_2$; und

Z CH oder N;

vorausgesetzt, dass

1) wenn R₂ SO₂C₆H₅ ist, R₁ und R H oder C₁—C₄-Alkyl sind;

2) wenn Y Cl ist, Z CH ist; und

3) wenn m 0 ist, R₉ C₁-C₃-Alkyl ist,

bei dem man

a) für die Herstellung einer Verbindung der Formel I eine Verbindung der Formel

50

45

55

(worin R₁, R₂, R₃ und R₄ wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

60

(worin A und R₅ wie in Anspruch 1 definiert sind) umsetzt; oder

b) für die Herstellung einer Verbindung der Formel I, worin R_1 die Gruppe —CONR $_7R_8$ (in welcher R_7 und R_8 wie in Anspruch 1 definiert sind) bedeutet, eine Verbindung der Formel

(worin A, R₂, R₃, R₄ und R₅ wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

 $(CH_3)_2AINR_7R_8$

5

10

25

35

45

50

55

60

(worin R7 und R8 wie in Anspruch 1 definiert sind) umsetzt; oder

c) für die Herstellung einer Verbindung der Formel I, in der R_1 H oder C_1 — C_4 -Alkyl und R_2 H ist, eine Verbindung der Formel

(worin R_1 H oder C_1 — C_4 -Alkyl und A, R_3 , R_4 und R_5 wie in Anspruch 1 definiert sind) der alkalischen O Hydrolyse unterwirft; oder

d) für die Herstellung einer Verbindung der Formel II eine Verbindung der Formel

(worin R, R₂, R₃ und R₄ wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

(worin A und R₅ wie in Anspruch 1 definiert sind) unsetzt; oder

e) für die Herstellung einer Verbindung der Formel II eine Verbindung der Formel

(worin R, R2, R3 und R4 wie in Anspruch 1 definiert sind) mit einer Verbindung der Formel

(worin A und R_s wie in Anspruch 1 definiert sind) in Anwesenheit eines zweckentsprechenden Katalysators umsetzt.

- 2. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel I, in der R_1 H, C_1 — C_3 -Alkyl, CO_2 — R_6 , $C(O)NR_7R_8$, $SO_2NR_{11}R_{12}$ oder SO_2R_{10} und R_5 H ist.
 - 3. Verfahren nach Anspruch 2, bei dem R₃ und R₄ H sind.
 - 4. Verfahren nach Anspruch 3, bei dem R₂ H oder CH₃ ist.
 - 5. Verfahren nach Anspruch 4, bei dem R₁ H, CO₂CH₃, SO₂CH₃ oder SO₂N(CH₃)₂ ist.
 - 6. Verfahren nach Anspruch 5, bei dem Y CH₃, OC₂H₅, CH₂OCH₃ oder Cl ist.
- 7. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel II, in der R H, C_1 — C_3 -Alkyl, $(CH_2)_mCO_2R_9$, SO_2R_{10} oder $SO_2NR_{11}R_{12}$ und R_5 H ist.
 - 8. Verfahren nach Anspruch 7, bei dem R3 und R4 H sind.
 - 9. Verfahren nach Anspruch 8, bei dem R₂ H oder CH₃ ist.
 - 10. Verfahren nach Anspruch 9, bei dem R H, CH₃ oder (CH₂)_mCO₂-(C₁—C₃-Alkyl) ist.
 - 11. Verfahren nach Anspruch 10, bei dem Y CH₃, OCH₃, OC₂H₅, CH₂OCH₃ oder Cl ist.
 - 12. Verfahren nach Anspruch 1, bei dem das Produkt eine Verbindung ist, ausgewählt aus:
- 3-[[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsāure-methylester:
- 3-[[(4,6-Dimethylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester;
- 3-[[(4-Methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbon-säure-methylester;
- 20 3-[[(4,6-Dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester;
 - 3-[[(4,6-Dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbonsäure-methylester;
- 3-[[(4-Methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-methyl-1H-indol-2-carbon-25 säure-methylester;
 - N-[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid;
 - N-[(4,6-Dimethylpyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid;
 - N-[(4-Methyl-6-methoxypyrimidin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid;
 - N-[(4,6-Dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid;
- 30 N-[(4,6-Dimethyl-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid;
 - N-[(4-Methyl-6-methoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-methyl-1H-indol-2-sulfonamid;
 - 3-[[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester;
 - 3-[[(4,6-Dimethoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester:
- 35 3-[[(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäureethylester:
 - 3-[[(4-Methoxy-6-methylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester; und
 - 3-[[(4,6-Dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indol-2-carbonsäure-ethylester.
 - 13. Verfahren nach Anspruch 1, bei dem das Produkt eine Verbindung ist, ausgewählt aus

SO₂NHCONA
$$R_{3}$$

$$R_{3}$$

$$R_{5}$$

$$R_{5}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

55 worin bedeutet

5

10

40

R H, C_1 — C_4 -Alkyl oder $(CH_2)_m CO_2 R_9$;

R₁ H, C₁---C₄-Alkyl, CO₂R₆, C(O)NR₇R₈, CN, C(O)R₉ oder SO₂R₁₀;

R₂ H, C₁—C₃-Alkyl;

R₃ H, F, Cl, Br, C₁—C₃-Alkyl, C₁—C₃-Alkoxy oder NO₂;

60 R₄ H, Cl oder Br;

R₅ H oder CH₃;

R₆ C₁—C₄-Alkyl, C₃—C₄-Alkenyl, CH₂CH₂Cl oder CH₂CH₂OCH₃;

R₇ und R₈ unabhängig H oder C₁—C₄-Alkyl, vorausgesetzt, dass die Gesamtzahl von C-Atomen weniger als oder gleich 4 beträgt;

65 R₉ H oder C₁—C₃-Alkyl;

R₁₀ C₁—C₃-Alkyl; m 1 oder 2; A

5

10

N X

X CH₃ oder OCH₃;

Y CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI oder H; und

Z CH oder N;

vorausgesetzt, dass

wenn Y Cl ist, Z CH ist.

15. 14. Verfahren zur Kontrolle des Wachstums unerwünschter Vegetation, bei dem man auf die zu schützende Stelle eine wirksame Menge einer herbiziden Verbindung aufbringt, dadurch gekennzeichnet, dass die herbizide Verbindung eine Verbindung der Formel I oder II enthält, wie in einem der Ansprüche 1 bis 12 definiert ist.

15. Verfahren nach Anspruch 14, bei dem die Verbindung der Formel I oder II eine Verbindung wie in Anspruch 13 definiert ist.

Revendications pour les Etats contractants: BE CH DE FR GB IT LI LU NL SE

1. Un composé de la formule:

25

 R_3 R_4 R_2 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_2

35

40

30

où R est H, un radical alcoyle en C_1 — C_4 , $(CH_2)_mCO_2R_9$, $CH_2OC_2H_5$, SO_2R_{10} , CHO, $SO_2NR_{11}R_{12}$, $CH_2N(CH_3)_2$ ou CH_2OCH_3 :

 R_1 est H, un radical alcoyle en C_1 — C_4 , CO_2R_6 , $C(O)NR_7R_8$, $C(O)R_{10}$, SO_2R_{10} , ou $SO_2NR_{11}R_{12}$;

 R_2 est H, un radical alcoyle en C_1 — C_3 ou $SO_2C_6H_5$;

 R_3 est H, F, Cl, Br, un radical alcoyle en C_1 — C_3 , alcoxy en C_1 — C_3 ou NO_2 .

R4 est H, Cl ou Br;

R₅ est H ou CH₃;

R₆ est un radical alcoyle en C₁—C₄, alcényle en C₃—C₄, CH₂CH₂Cl ou CH₂CH₂OCH₃;

 R_7 et R_8 sont indépendamment H ou un radical alcoyle en C_1 — C_4 , avec la condition que le nombre total d'atomes de carbone doit être inférieur ou égal à 4;

R₉ est H ou un radical alcoyle en C₁—C₃;

R₁₀ est un radical alcoyle en C₁—C₃;

 R_{11} et R_{12} sont indépendamment des radicaux alcoyle en C_1 — C_3 , avec la condition que le nombre total d'atomes de carbone doit être inférieur ou égal à 4;

m est 0, 1 ou 2;

A est

 $-\bigvee_{N}^{N} \bigvee_{v}^{X}$

55

60

65

X est CH₃ ou OCH₃;

Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI, H, C₂H₅ ou N(CH₃)₂; et

Z est CH ou N;

avec les conditions que:

- 1) quand R₂ est SO₂C₆H₅, alors R₁ et R sont H ou un radical alcoyle en C₁—C₄,
- 2) quand Y est CI, alors Z est CH; et
- quand m est 0, alors R₉ est un radical alcoyle en C₁—C₃.

- 2. Un composé selon la revendication 1, de formule I où R est H, un radical alcoyle en C_1 — C_3 , CO_2R_6 , $C(O)NR_7R_8$, $SO_2NR_{11}R_{12}$ ou SO_2R_{10} ; et R_5 est H.
 - 3. Un composé selon la revendication 2, dans lequel R₃ et R₄ sont H.
 - 4. Un composé selon la revendication 3, dans lequel R2 est H ou CH3.
 - 5. Un composé selon la revendication 4, dans lequel R₁ est H, CO₂CH₃, SO₂CH₃ ou SO₂N(CH₃)₂.
 - 6. Un composé selon la revendication 5, dans lequel Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃ ou Cl.
- 7. Un composé selon la revendication 1, de formule II où R est H, un radical alcoyle en C₁—C₃, (CH₂)_mCO₂R₉, SO₂R₁₀ ou SO₂NR₁₁R₁₂; et R₈ est H.
 - 8. Un composé selon la revendication 7, dans lequel R₃ et R₄ sont H.
 - 9. Un composé selon la revendication 8, dans lequel R₂ est H ou CH₃.
- 10. Un composé selon la revendication 9, dans lequel R est H, CH_3 ou un radical $(CH_2)_mCO_2$ -(alcoyle en C_1 — C_3).
 - 11. Un composé selon la revendication 10, dans lequel Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃ ou Cl.
- 12. Le composé selon la revendication 1, l'ester méthylique de l'acide 3-[[(4,6-diméthoxy-pyrimidin-2-15 yl)aminocarbonyl]aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique.
 - 13. Le composé selon la revendication 1, l'ester méthylique de l'acide 3-[[(4,6-diméthyl-pyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique.
 - 14. Le composé selon la revendication 1, l'ester méthylique de l'acide 3-[[(4-méthoxy-6-méthylpyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique.
 - 15. Le composé selon la revendication 1, l'ester méthylique de l'acide 3-[[(4,6-diméthoxy-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique.
 - 16. Le composé selon la revendication 1, l'ester méthylique de l'acide 3-[[(4,6-diméthyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique.
 - 17. Le composé selon la revendication 1, l'ester méthylique de l'acide 3-[[(4-méthyl-6-méthoxy-1,3,5-triazin-2-yl)aminocarbonyl]-aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique.
 - 18. Le composé selon la revendication 1, le N-[(4,6-diméthoxy-pyrimidin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide.
 - 19. Le composé selon la revendication 1, le N-[(4,6-diméthyl-pyrimidin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide.
- 20. Le composé selon la revendication 1, le N-[(4-méthyl-6-méthoxypyrimidin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide.
 - 21. Le composé selon la revendication 1, le N-[(4,6-diméthoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide.
 - 22. Le composé selon la revendication 1, le N-[(4,6-diméthyl-1,3,5-triazin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide.
 - 23. Le composé selon la revendication 1, le N-[(4-méthyl-6-méthoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide.
 - 24. Le composé selon la revendication 1, l'ester éthylique de l'acide 3-[[(4,6-diméthoxy-pyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylique.
 - 25. Le composé selon la revendication 1, l'ester éthylique de l'acide 3-[[(4,6-diméthoxy-1,3,5-triazin-2-yl)aminocarbonyl]-aminosulfonyl]-1H-indole-2-carboxylique.
 - 26. Le composé selon la revendication 1, l'ester éthylique de l'acide 3-[[(4,6-méthoxy-6-méthyl-1,3,5-triazin-2-yl)aminocarbonyl]-aminosulfonyl]-1H-indole-2-carboxylique.
- 27. Le composé selon la revendication 1, l'ester éthylique de l'acide 3-[[(4-méthoxy-6-méthylpyrimidin-45 2-yl)aminocarbonyl]-aminosulfonyl]-1H-indole-2-carboxylique.
 - 28. Le composé selon la revendication 1, l'ester éthylique de l'acide 3-[[(4,6-diméthyl-pyrimidin-2-yl)aminocarbonyl]aminosulfonyl]-1H-indole-2-carboxylique.
 - 29. Un composé choisi parmi

5

10

20

40

50 R_3 $SO_2NHCONA$ R_5 R_5 R_4 R_2 R_5 R_4 R_2 R_5 R_4 R_5 R_5 R_4 R_5 R_5 R_5

R est H, un radical alcoyle en C₁—C₄ ou (CH₂)_mCO₂R₉;

R₁ est H, un radical alcoyle en C₁—C₄, CO₂R₆, C(O)NR₇R₈, CN, C(O)R₉ ou SO₂R₁₀;

R₂ est H ou un radical alcoyle en C₁—C₃;

65 R₃ est H, F, Cl, Br, un radical alcoyle en C₁—C₃, alcoxy en C₁—C₃ ou NO₂;

R4 est H, Cl ou Br;

R₅ est H ou CH₃;

R₆ est un radical alcoyle en C₁—C₄, alcényle en C₃—C₄, CH₂CH₂Cl ou CH₂CH₂OCH₃;

R₇ et R₈ sont indépendamment H ou un radical alcoyle en C₁—C₄, avec la condition que le nombre total d'atomes de carbone doit être inférieur ou égal à 4;

R₉ est H ou un radical alcoyle en C₁—C₃;

R₁₀ est un radical alcoyle en C₁—C₃;

m est 1 ou 2;

A est

10

15

X est CH₃ ou OCH₃;

Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃, Cl ou H; et

Z est CH ou N;

avec la condition que quand Y est Cl, alors Z est CH.

30. Une composition utilisable pour lutter contre la croissance de végétation indésirable comprenant une quantité efficace d'un composé herbicide et au moins un des ingrédients suivants: agent tensio-actif, diluant solide ou liquide, caractérisée en ce que le composé herbicide comprend un composé selon l'une quelconque des revendications précédentes.

31. Un procédé de lutte contre la croissance de végétation indésirable en appliquant au lieu à protéger une quantité efficace d'un composé herbicide, caractérisé en ce que le composé herbicide comprend un composé selon l'une quelconque des revendications 1 à 28.

32. Un procédé de préparation d'un composé tel que défini dans la revendication 1, qui comprend: a) pour la préparation d'un composé de formule I, la réaction d'un composé de la formule:

30

(où R₁, R₂, R₃ et R₄ sont tels que définis dans la revendication 1) avec un composé de la formule:

40

35

45

(où A et R_s sont tels que définis dans la revendication 1); ou

b) pour la préparation d'un composé de formule I où R₁ représente le groupe —CONR₇R₈ (où R₇ et R₈ sont tels que définis dans la revendication 1), la réaction d'un composé de la formule:

50

--

55

(où A, R₂, R₃, R₄ et R₅ sont tels que définis dans la revendication 1) avec un composé de la formule:

(CH₃)₂AINR₇R₈

65 (où R7 et R8 sont tels que définis dans la revendication 1); ou

c) pour la préparation d'un composé de formule I où R_1 est H ou un radical alcoyle en C_1 — C_4 et R_2 est H, l'hydrolyse alcaline d'un composé de la formule:

(où R_1 est H ou un radical alcoyle en C_1 — C_4 et A, R_3 , R_4 et R_5 sont tels que définis dans la revendication 1); ou

d) pour la préparation d'un composé de formule II, la réaction d'un composé de la formule:

5 (où R, R₂, R₃ et R₄ sont tels que définis dans la revendication 1) avec un composé de la formule:

(où A et R₅ sont tels que définis dans la revendication 1); ou

5

10

15

20

30

35

40

45

e) pour la préparation d'un composé de formule II, la réaction d'un composé de la formule:

(où R, R₂, R₃ et R₄ sont tels que définis dans la revendication 1) avec un composé de la formule

50 (où A et R₅ sont tels que définis dans la revendication 1) en présence d'un catalyseur approprié.

Revendications pour l'Etat contractant: AT

1. Un procédé pour la préparation d'un composé de formule:

0 070 698 οù R est H, un radical alcoyle en C₁—C₄, (CH₂)_mCO₂R₉, CH₂OC₂H₅, SO₂R₁₀, CHO, SO₂NR₁₁R₁₂, CH₂N(CH₃)₂ ou CH₂OCH₃; R_1 est H, un radical alcoyle en C_1 — C_4 , CO_2R_6 , $C(O)NR_7R_8$, $C(O)R_{10}$, SO_2R_{10} , ou $SO_2NR_{11}R_{12}$; R_2 est H, un radical alcoyle en C_1 — C_3 ou $SO_2C_6H_5$; 5 R₃ est H, F, Cl, Br, un radical alcoyle en C₁—C₃, alcoxy en C₁—C₃ ou NO₂. R4 est H, Cl ou Br; R_s est H ou CH₃; R_6 est un radical alcoyle en C_1 — C_4 , alcényle en C_3 — C_4 , CH_2CH_2CI ou $CH_2CH_2OCH_3$; R_7 et R_8 sont indépendamment H ou un radical alcoyle en C_1 — C_4 , avec la condition que le nombre total 10 d'atomes de carbone doit être inférieur ou égal à 4; R₉ est H ou un radical alcoyle en C₁—C₃; R₁₀ est un radical alcoyle en C₁—C₃; R₁₁ et R₁₂ sont indépendamment des radicaux alcoyle en C₁—C₃, avec la condition que le nombre total d'atomes de carbone doit être inférieur ou égal à 4; m est 0, 1 ou 2; A est 20 X est CH₃ ou OCH₃; Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI, H, C₂H₅ ou N(CH₃)₂; et 25 Z est CH ou N; avec les conditions que: 1) quand R₂ est SO₂C₆H₅, alors R₁ et R sont H ou un radical alcoyle en C₁—C₄, 2) quand Y est Cl, alors Z est CH; et quand m est 0, alors R₉ est un radical alcoyle en C₁—C₃. 30 procédé qui comprend: a) pour la préparation d'un composé de formule I, la réaction d'un composé de la formule: 35

(où R₁, R₂, R₃ et R₄ sont tels que définis dans la revendication 1) avec un composé de la formule:

45

55

(où A et R₅ sont tels que définis dans la revendication 1); ou

b) pour la préparation d'un composé de formule I où R1 représente le groupe —CONR7R8 (où R7 et R8 sont tels que définis dans la revendication 1), la réaction d'un composé de la formule:

(où A, R2, R3, R4 et R5 sont tels que définis dans la revendication 1) avec un composé de la formule:

(CH₃)₂AINR₇R₈

65 (où R₇ et R₈ sont tels que définis dans la revendication 1); ou

c) pour la préparation d'un composé de formule I où R_1 est H ou un radical alcoyle en C_1 — C_4 et R_2 est H, l'hydrolyse alcaline d'un composé de la formule:

(où R_1 est H ou un radical alcoyle en C_1 — C_4 et A, R_3 , R_4 et R_5 sont tels que définis dans la revendication 1);

d) pour la préparation d'un composé de formule II, la réaction d'un composé de la formule:

25 (où R, R₂, R₃ et R₄ sont tels que définis dans la revendication 1) avec un composé de la formule:

(où A et R_s sont tels que définis dans la revendication 1); ou

5

10

20

30

35

40

55

60

e) pour la préparation d'un composé de formule II, la réaction d'un composé de la formule:

(où R, R2, R3 et R4 sont tels que définis dans la revendication 1) avec un composé de la formule

50 (où A et R₅ sont tels que définis dans la revendication 1) en présence d'un catalyseur approprié.

2. Un procédé selon la revendication 1 pour la préparation d'un composé de formule I où R_1 est H, un radical alcoyle en C_1 — C_3 , CO_2R_6 , $C(O)NR_7R_8$, $SO_2NR_{11}R_{12}$ ou SO_2R_{10} ; et R_5 est H.

3. Un procédé selon la revendication 2, où R3 et R4 sont H.

4. Un procédé selon la revendication 3, où R2 est H ou CH3.

5. Un procédé selon la revendication 4, où R₁ est H, CO₂CH₃, SO₂CH₃ ou SO₂N(CH₃)₂.

6. Un procédé selon la revendication 5, où Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃ ou Cl.

7. Un procédé selon la revendication 1, pour la préparation d'un composé de formule II où R est H, un radical alcoyle en C_1 — C_3 , $(CH_2)_mCO_2R_9$, SO_2R_{10} ou $SO_2NR_{11}R_{12}$; et R_5 est H.

8. Un procédé selon la revendication 7, où R₃ et R₄ sont H.

9. Un procédé selon la revendication 8, où R₂ est H ou CH₃.

10. Un procédé selon la revendication 9, où R est H, CH₃ ou un radical (CH₂)_mCO₂-(alcoyle en C₁—C₃).

11. Un procédé selon la revendication 10, où Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃ ou Cl.

12. Le procédé selon la revendication 1, dans lequel le produit est un composé choisi parmi:

l'ester méthylique de l'acide 3-[[(4,6-diméthoxypyrimidin-2-yl)aminocarbonyl] aminosulfonyl]-1-

65 méthyl-1H-indole-2-carboxylique;

l'ester méthylique de l'acide 3-[[(4,6-diméthylpyrimidin-2-yl)aminocarbonyl] aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique;

l'ester méthylique de l'acide 3-[[(4-méthoxy-6-méthylpyrimidin-2-yl)-aminocarbonyl]aminosulfonyl]-1méthyl-1H-indole-2-carboxylique;

l'ester méthylique de l'acide 3-[[(4,6-diméthoxy-1,3,5-triazin-2-yl)-aminocarbonyl]aminosulfonyl]-1méthyl-1H-indole-2-carboxylique:

l'ester méthylique de l'acide 3-[[(4,6-diméthyl-1,3,5-triazin-2-yl)-aminocarbonyl]aminosulfonyl]-1méthyl-1H-indole-2-carboxylique;

l'ester méthylique de l'acide 3-[[(4-méthyl-6-méthoxy-1,3,5-triazin-2-yl)-aminocarbonyi]aminosulfonyl]-1-méthyl-1H-indole-2-carboxylique;

le N-[(4,6-diméthoxypyrimidin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide;

le N-[(4,6-diméthylpyrimidin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide;

le N-[(4-méthyl-6-méthoxypyrimidin-2-yl)-aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide;

le N-[(4,6-diméthoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide;

le N-[(4,6-diméthyl-1,3,5-triazin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide;

le N-[(4-méthyl-6-méthoxy-1,3,5-triazin-2-yl)aminocarbonyl]-3-méthyl-1H-indole-2-sulfonamide;

l'ester éthylique de l'acide 3-[[(4,6-diméthoxypyrimidin-2-yl)aminocarbonyl] aminosulfonyl]-1H-indole-2-carboxylique:

l'ester éthylique de l'acide 3-[[(4,6-diméthoxy-1,3,5-triazin-2-yl)aminocarbonyl] aminosulfonyl]-1Hindole-2-carboxylique;

l'ester éthylique de l'acide 3-[[(4,6-méthoxy-6-méthyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonvil-1H-indole-2-carboxvlique;

l'ester éthylique de l'acide 3-[[(4-méthoxy-6-méthylpyrimidin-2-yl)aminocarbonyl] aminosulfonyl]-1Hindole-2-carboxylique; et

l'ester éthylique de l'acide 3-[[(4,6-diméthylpyrimidin-2-yl)aminocarbonyl] aminosulfonyl]-1H-indole-2carboxylique.

13. Le procédé selon la revendication 1, dans lequel le produit est un composé choisi parmi:

$$R_3$$
 SO_2 NHCONA
 R_5
 R_5
 R_4
 R_2
Ou

SO NHCONA 11

40 οù

5

15

25

30

35

45

50

R est H, un radical alcoyle en C_1 — C_4 ou $(CH_2)_mCO_2R_9$; R_1 est H, un radical alcoyle en C_1 — C_4 , CO_2R_6 , $C(O)NR_7R_8$, CN, $C(O)R_9$ ou SO_2R_{10} ;

R₂ est H ou un radical alcoyle en C₁—C₃;

T

R₃ est H, F, Cl, Br, un radical alcoyle en C₁—C₃, alcoxy en C₁—C₃ ou NO₂;

R4 est H, CI ou Br;

R₅ est H ou CH₃;

R₆ est un radical alcoyle en C₁—C₄, alcényle en C₃—C₄, CH₂CH₂Cl ou CH₂CH₂OCH₃;

R7 et R8 sont indépendamment H ou un radical alcoyle en C1-C4, avec la condition que le nombre total d'atomes de carbone doit être inférieur ou égal à 4;

R₉ est H ou un radical alcoyle en C₁—C₃;

R₁₀ est un radical alcoyle en C₁—C₃;

m est 1 ou 2;

A est

55

$$\begin{pmatrix} N \\ O \\ Z \end{pmatrix}$$
 $\begin{pmatrix} X \\ X \\ Y \end{pmatrix}$

60

X est CH₃ ou OCH₃;

Y est CH₃, OCH₃, OC₂H₅, CH₂OCH₃, CI ou H; et

Z est CH ou N;

avec la condition que quand Y est Cl, alors Z est CH.

0 070 698 .

14. Un procédé de lutte contre la croissance de végétation indésirable en appliquant au lieu à protéger une quantité efficace d'un composé herbicide, caractérisé en ce que le composé herbicide comprend un composé de formule I ou II tel que défini dans l'une quelconque des revendications 1 à 12.

15. Un procédé selon la revendication 14, dans lequel le composé de formule I ou II est un composé tel

que défini dans la revendication 13.