

AI 기반 컴퓨터 비전 시스템의 영상처리 방식 별 응용 연구 • 기술 개발과 상용화 동향

씨드로닉스 김한근

hank05@seadronix.com

딥러닝을 이용한 영상 처리 분류 The reality of AI

The reality

딥러닝을 이용한 영상 처리 분류 Data Annotation Tools – **Polygon-RNN++**

Efficient Annotation of Segmentation Datasets with Polygon-RNN++

David Acuna^{* 1,3} Huan Ling^{* 1,2} Amlan Kar^{* 1,2} Sanja Fidler^{* 1,2}

University of Toronto¹ Vector Institute² NVIDIA³

{davidj, linghuan, amlan, fidler}@cs.toronto.edu

degoal contribution research done when D.A. at UofT

영상 출처: http://www.cs.toronto.edu/polyrnn/

딥러닝을 이용한 영상 처리 분류 Data Annotation Tools – Computer Vision Annotation Tool

영상 출처: https://github.com/opency/cvat

딥러닝을 이용한 영상 처리 분류 Data Annotation Tools − **VGG Image Annotator (VIA)**

영상 출처: http://www.robots.ox.ac.uk/~vgg/software/via/

딥러닝을 이용한 영상 처리 분류 Data Annotation Tools – **Uyuni (**우유니**)**

영상 출처: http://www.xiilab.com/brand/uyuni

딥러닝을 이용한 영상 처리 분류 Data Annotation Tools – **Brain Builder**

영상 출처: https://www.neurala.com

딥러닝을 이용한 영상 처리 분류 3D Object Detection / Segmentation 위주 연구

이미지 출처: https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/

딥러닝을 이용한 영상 처리 분류 Object Detection – KITTI Benchmark, 3D Object Detection

이미지 출처: http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

딥러닝을 이용한 영상 처리 분류 Object Detection – PointNet

Classification Network

Segmentation Network

딥러닝을 이용한 영상 처리 분류 Object Detection – PointNet

영상 출처: https://www.youtube.com/watch?v=cXLG vgXEO4

Object Detection – PointRCNN: 3D Object Proposal Generation and Detection from **Point Cloud**

Object Detection – Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection

이미지 출처: https://arxiv.org/pdf/1903.01864.pdf

딥러닝을 이용한 영상 처리 분류 Object Detection – Zoox

영상 출처: https://zoox.com/

딥러닝을 이용한 영상 처리 분류 Pixel-level Semantic Labeling Task

이미지 출처: https://www.cityscapes-dataset.com/dataset-overview/#features

딥러닝을 이용한 영상 처리 분류 Pixel-level Semantic Labeling Task - Benchmark

	name	fine	coarse	16- bit	depth	video	sub	loU class	iloU class \$	IoU \$	iIoU category	Runtime [s]	code
0	iFLYTEK-CV	yes	yes	no	no	no	no	83.6	64.7	92.1	82.3	n/a	no
0	NV-ADLR	yes	yes	no	no	no	no	83.2	64.2	92.1	82.2	n/a	no
0	GALD-net	yes	yes	no	no	no	no	83.1	63.5	92.2	81.4	n/a	yes
0	Tencent AI Lab	yes	yes	no	no	no	no	82.9	63.9	91.8	80.4	n/a	no
0	DRN_CRL_Coarse	yes	yes	no	no	no	no	82.8	61.1	91.8	80.7	n/a	yes
0	DPC	yes	yes	no	no	no	no	82.7	63.3	92.0	82.5	n/a	yes
0	SRC-B-MachineLearningLab	yes	yes	no	no	no	no	82.5	60.7	91.8	81.5	n/a	no
0	RelationNet_Coarse	yes	yes	no	no	no	no	82.4	61.9	91.8	81.4	n/a	no

이미지 출처: https://www.cityscapes-dataset.com/benchmarks/#scene-labeling-task

Pixel-level Semantic Labeling Task - Dense Relation Network: Learning Consistent and Context-Aware Representation For Semantic Image Segmentation

이미지 출처: https://2018.ieeeicip.org/Papers/ViewPapers.asp?PaperNum=1148

Pixel-level Semantic Labeling Task - Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

이미지 출처: https://arxiv.org/abs/1809.04184

Pixel-level Semantic Labeling Task – Video Object Segmentation using Non-local Memory Network

이미지 출처: GTC 2019

딥러닝을 이용한 영상 처리 분류 Pixel-level Semantic Labeling Task – Video Object Segmentation using Non-local **Memory Network**

영상 출처: https://www.youtube.com/watch?v=GPVx4Tg9EZ0&feature=youtu.be

딥러닝을 이용한 영상 처리 분류 ETC - SuperDepth

이미지 출처: GTC 2019

딥러닝을 이용한 영상 처리 분류 ETC - SuperDepth

SuperDepth Self-Supervised, Super-Resolved **Monocular Depth Estimation**

Sudeep Pillai, Rares Ambrus, Adrien Gaidon Toyota Research Institute (TRI)

영상 출처: https://www.youtube.com/watch?v=jKNgBeBMx0I&feature=youtu.be

딥러닝을 이용한 영상 처리 분류 ETC – Noise2Noise

영상 출처: https://www.youtube.com/watch?v=dlL2bfjmSoA, Paper: https://arxiv.org/pdf/1803.04189.pdf

딥러닝 연산 하드웨어 저가화 진행

\$99 \$149 \$99

영상 출처: https://www.youtube.com/watch?v=tBUlk7H9GyU&feature=youtu.be

감사합니다.