$\Pi\Lambda H20$

ΕΝΌΤΗΤΑ 2: ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ

Μάθημα 2.2: Ταυτολογική Συνεπαγωγή

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β.Θεωρία

- 1. Σύνολα Τύπων
 - 1. Ικανοποιήσιμο Σύνολο Τύπων
 - 2. Αντιφατικό Σύνολο Τύπων
- 2. Ταυτολογική Συνεπαγωγή
 - 1. Συμβολισμός της ταυτολογίας
- 3. Ταυτολογικά Ισοδύναμοι Τύποι

Γ.Ασκήσεις

- 1. Ασκήσεις Κατανόησης
- 2. Ερωτήσεις
- 3. Εφαρμογές

Α. Σκοπός του Μαθήματος

Επίπεδο Α

- > Ικανοποίησιμο και αντιφατικό σύνολο τύπων
- > Ταυτολογική Συνεπαγωγή
- Ταυτολογικά Ισοδύναμοι Τύποι

Επίπεδο Β

> (-)

Επίπεδο Γ

> (-)

1. Σύνολα Τύπων

Ορισμός:

Σύνολο Τύπων Τ είναι ένα οποιοδήποτε υποσύνολο του Τ(Γ₀)

Ορισμός:

Ένα σύνολο τύπων Τ θα λέμε ότι είναι <u>ικανοποιήσιμο</u> αν υπάρχει αποτίμηση που κάνει όλους τους τύπους αληθείς ταυτόχρονα

• Πιο τυπικά αν υπάρχει αποτίμηση α: α(φ)=Α ∀φ∈ Τ

Ορισμός:

Ένα σύνολο τύπων Τ θα λέμε ότι είναι μη ικανοποιήσιμο (αντιφατικό) αν δεν υπάρχει αποτίμηση που κάνει όλους τους τύπους αληθείς ταυτόχρονα

• ...δηλαδή δεν είναι ικανοποίησιμο!

Εξετάζουμε ότι ένα σύνολο είναι ικανοποιήσιμο: Κατασκευάζουμε τον πίνακα αλήθειας όλων των τύπων και βρίσκουμε μια γραμμή που όλοι οι τύποι είναι Αληθείς

Εξετάζουμε ότι ένα σύνολο είναι αντιφατικό: Κατασκευάζουμε τον πίνακα αλήθειας όλων των τύπων και δεν πρέπει να υπάρχει γραμμή που είναι όλοι οι τύποι Αληθείς

Β. Θεωρία1. Σύνολα Τύπων

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν το σύνολο τύπων

$$T = \{p \to q, p \lor \neg q\}$$

είναι ικανοποίησιμο:

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων του συνόλου τύπων:

p	q	$p \rightarrow q$	$p \vee \neg q$
A	A	A	A
A	Ψ	Ψ	A
Ψ	A	A	Ψ
Ψ	Ψ	A	A

Παρατηρούμε ότι στην αποτίμηση p=A,q=A αληθεύουν όλοι οι τύποι του συνόλου τύπων, άρα είναι ικανοποίησιμο

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν το σύνολο τύπων

$$T = \{q \to p, p \land \neg q, p \leftrightarrow q\}$$

είναι ικανοποίησιμο:

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων του συνόλου τύπων:

p	q	$q \rightarrow p$	$p \land \neg q$	$p \leftrightarrow q$
A	A	A	Ψ	A
A	Ψ	A	A	Ψ
Ψ	A	Ψ	Ψ	Ψ
Ψ	Ψ	A	Ψ	A

Παρατηρούμε ότι δεν υπάρχει αποτίμηση που να κάνει όλους τους τύπους Α ταυτόχρονα, άρα είναι ένα μη ικανοποιήσιμο σύνολο τύπων.

2. Ταυτολογική Συνεπαγωγή

Ορισμός:

Έστω Σύνολο Τύπων Τ και τύπος φ . Θα λέμε ότι :

- το σύνολο τύπων Τ **ταυτολογικά συνεπάγεται** τον τύπο φ ή
- Ο φ είναι <u>σημασιολογική συνέπεια</u> του Τ
- και συμβολίζουμε με $\mathbf{T} \models \boldsymbol{\varphi}$ αν και μόνο αν
- για κάθε αποτίμηση που ικανοποιούνται οι τύποι του T ικανοποιείται και ο φ

Εξετάζουμε μία ταυτολογική συνεπαγωγή ως εξής:

- 1. Εξετάζουμε αν ο <u>φ είναι ταυτολογία</u>. Αν ναι, ισχύει η ταυτολογική συνεπαγωγή. Αλλιώς προχωράμε στο βήμα 2.
- 2. Εξετάζουμε αν <u>το σύνολο τύπων Τ είναι αντιφατικό</u>. Αν ναι, ισχύει η ταυτολογική συνεπαγωγή. Αλλιώς προχωράμε στο βήμα 3.
- 3. Εφαρμόζουμε τον ορισμό.
 - 1. Βρίσκουμε <u>όλες τις αποτιμήσεις</u> των μεταβλητών που ικανοποιούνται όλοι οι τύποι του Τ
 - 2. Ελέγχουμε αν ο φ αληθεύει <u>σε αυτές τις αποτιμήσεις</u>. Αν ναι, ισχύει η ταυτολογική συνεπαγωγή. Αλλιώς δεν ισχύει η ταυτολογική συνεπαγωγή

Πιο εποπτικά:

- 1. ... ⊨ A.
- 2. Ψ **⊨** ···.
- 3. Εφαρμογή του ορισμού

2. Ταυτολογική Συνεπαγωγή

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή:

$$\{p \to q, q \lor \neg p\} \vDash p \lor \neg p$$

Λύση: Ο τύπος $p \lor \neg p$ είναι ταυτολογία συνεπώς <u>ισχύει</u> η ταυτολογική συνεπαγωγή.

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή:

$$\{p \land \neg q, p \rightarrow q\} \vDash p \lor q$$

Λύση: Το σύνολο τύπων: $\{p \land \neg q, p \to q\}$ είναι αντιφατικό. Άρα <u>ισχύει</u> η ταυτολογική συνεπαγωγή

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή:

$$\{p \to \neg q, q \lor p, \neg p \leftrightarrow q\} \vDash \neg p \to q$$

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων:

	p	q	$p \rightarrow \neg q$	$q \lor p$	$\neg p \leftrightarrow q$		$\neg p \rightarrow q$
	A	A	Ψ	A	Ψ		A
Ī	A	Ψ	A	A	A	→	A
	Ψ	A	A	A	A	\longrightarrow	A
	Ψ	Ψ	A	Ψ	Ψ		Ψ

Στις αποτιμήσεις που ικανοποιείται το σύνολο τύπων, ό τύπος φείναι αληθής, άρα <u>ισχύει</u> η ταυτολογική συνεπαγωγή.

2. Ταυτολογική Συνεπαγωγή

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή:

$$\{p \land q \rightarrow r, r \lor q, r \leftrightarrow p\} \vDash p \rightarrow \neg q \land r$$

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων:

p	q	r	$p \wedge q \rightarrow r$	$r \lor q$	$r \leftrightarrow p$	$p \to \neg q \wedge r$
A	A	A	A	A	A	> Ψ
A	A	Ψ	Ψ	A	Ψ	Ψ
A	Ψ	A	A	A	A	> A
A	Ψ	Ψ	A	Ψ	Ψ	Ψ
Ψ	A	A	A	A	Ψ	A
Ψ	A	Ψ	A	A	A	A
Ψ	Ψ	A	A	A	Ψ	A
Ψ	Ψ	Ψ	A	Ψ	A	A

Στις αποτιμήσεις που ικανοποιείται το σύνολο τύπων, ό τύπος φ δεν αληθεύει πάντα, άρα δεν ισχύει η ταυτολογική συνεπαγωγή.

2. Ταυτολογική Συνεπαγωγή

1. Συμβολισμός της Ταυτολογίας

Όταν ισχύει μία ταυτολογική συνεπαγωγή, σημαίνει ότι:

- Όταν ισχύουν (αληθεύουν) οι τύποι του Τ (αναφέρονται και ως υποθέσεις της ταυτολογικής συνεπαγωγής)
- αληθεύει και ο τύπος φ (συμπέρασμα της ταυτολογικής συνεπαγωγής)
 Ή με πιο απλά λόγια:
- Κάτω από τις υποθέσεις του συνόλου τύπων Τ,
- αληθεύει ο τύπος φ.

Με αυτόν τον συλλογισμό ο συμβολισμός:

 $\models \varphi$

- Θα σημαίνει ότι ο τύπος φ αληθεύει ανεξαρτήτως υποθέσεων
- που σημαίνει ότι ο τύπος φ είναι ταυτολογία.
- (στην πραγματικότητα συντομογραφία της αναπαράστασης $\emptyset \vDash \boldsymbol{\varphi}$)

Πρακτικά:

Αν μας ζητηθεί να αποδείξουμε $\models \varphi$, αρκεί να δείξουμε ότι ο τύπος φ είναι ταυτολογία

3. Ταυτολογικά Ισοδύναμοι Τύποι

Ορισμός:

Έστω προτασιακοί τύποι φ,ψ.

Θα λέμε ότι οι δύο τύποι είναι ταυτολογικά ισοδύναμοι και θα συμβολίζουμε με $oldsymbol{\phi} \equiv oldsymbol{\psi}$

ανν ισχύει $φ \models ψ$ και $ψ \models φ$

(σημείωση: Μπορούμε να γράφουμε $φ \models \psi$ ως συντομογραφία της παράστασης $\{φ\} \models \psi$ όταν το σύνολο τύπων Τ είναι μονοσύνολο)

Πρακτικά:

Δύο τύποι θα είναι ταυτολογικά ισοδύναμοι αν έχουν τον ίδιο πίνακα αλήθειας, αφου:

 $φ \models ψ$ δηλαδή όταν φ=A, τότε ψ=A και

 $ψ \models φ$ δηλαδή όταν ψ=A, τότε φ=A

ΠΑΡΑΔΕΙΓΜΑ: Να μελετηθεί

αν ισχύει ότι $\neg p \lor q \equiv p \rightarrow q$

Λύση: Κατασκευάζοντας τον πίνακα αλήθειας των δύο τύπων παρατηρούμε ότι αληθεύουν στις ίδιες αποτιμήσεις, άρα είναι ταυτολογικά ισοδύναμοι

p	q	$\neg p \lor q$	$p \rightarrow q$
A	A	A	A
A	Ψ	Ψ	Ψ
Ψ	A	A	A
Ψ	Ψ	A	A

1. Ταυτολογική Συνεπαγωγή

ΜΕΘΟΔΟΛΟΓΙΑ:

Είναι ιδιαίτερα σημαντικό να εξάγουμε με ταχύτητα αν ισχύει ή όχι μία ταυτολογική συνεπαγωγή. Θα πρέπει να εντοπίζουμε γρήγορα αν ισχύει κάποιος από τους εμπειρικούς κανόνες: ... \models A ή Ψ \models ···

Αν αναγκαστούμε να εφαρμόσουμε τον τυπικό ορισμό (δηλαδή δεν εμπίπτει η άσκηση σε κάποιον από τους εμπειρικούς κανόνες, ενδείκνυται η αποφυγή της κατασκευής του πίνακα αλήθειας, δηλαδή θα πρέπει να προσπαθούμε να βρίσκουμε τις αποτιμήσεις των μεταβλητών που αληθεύουν όλοι οι τύποι του συνόλου τύπων με παρατηρήσεις.

ΠΑΡΑΔΕΙΓΜΑ:

Α) Να μελετηθούν τα σύνολα τύπων

$$\begin{split} \mathbf{T}_1 &= \{q \land \neg p, q \rightarrow p, p \rightarrow r\} \\ \mathbf{T}_2 &= \{p \land \neg q, q \rightarrow r\} \\ \mathbf{T}_3 &= \{p \rightarrow q, q \rightarrow p\} \end{split}$$

Συγκεκριμένα να εξεταστεί αν είναι ικανοποιήσιμα ή αντιφατικά και σε περίπτωση που είναι ικανοποιήσιμα να βρεθούν όλες οι αποτιμήσεις των μεταβλητών που ικανοποιούν τους τύπους

1. Ταυτολογική Συνεπαγωγή

```
(...συνέχεια...)
Λύση:
```

$$T_1 = \{q \land \neg p, q \to p, p \to r\}$$

Για να αληθεύει ο $1^{o\varsigma}$ τύπος $q \land \neg p$ πρέπει $p = \Psi$ και q = A. Ωστόσο με την αποτίμηση αυτή, ο $2^{o\varsigma}$ τύπος $q \to p$ είναι ψευδής. Άρα το σύνολο τύπων T_1 είναι αντιφατικό.

$$T_2 = \{p \land \neg q, q \to r\}$$

Για να αληθεύει ο 1°ς τύπος: $p \wedge \neg q$ πρέπει p = A και $q = \Psi$. Άρα ο 2°ς τύπος γίνεται $q \to r = \Psi$ τ που αληθεύει είτε αν r = A, είτε αν $r = \Psi$. Συνεπώς το σύνολο τύπων T_2 είναι ικανοποιήσιμο και συγκεκριμένα ικανοποιείται με τις αποτιμήσεις των μεταβλητών:

$$p = A, q = \Psi, r = A$$
 και

$$p = A, q = \Psi, r = \Psi$$

$$T_3 = \{p \to q, q \to p, \neg r\}$$

Ο 1^{ος} τύπος δεν αληθεύει στην αποτίμηση p = A και $q = \Psi$ και ο 2^{ος} τύπος δεν αληθεύει στην αποτίμηση $p = \Psi$ και q = A. Άρα αληθεύουν στις υπόλοιπες αποτιμήσεις. Λόγω του 3^{ου} τύπου πρέπει $r = \Psi$. Άρα είναι ικανοποιήσιμο και ικανοποιείται με τις αποτιμήσεις των μεταβλητών:

$$p = A, q = A, r = Ψ$$
 και

$$p = \Psi, q = \Psi, r = \Psi$$

1. Ταυτολογική Συνεπαγωγή

```
(...συνέχεια...)
```

Β) Δίδονται και οι τύποι:

$$\phi_1 = p \lor q \to r$$

$$\phi_2 = (q \to r) \lor \neg (q \to r)$$

$$\phi_3 = (p \to q \lor r) \land \neg (p \to q \lor r)$$

Να εξάγετε χωρίς αληθοπίνακα αν είναι ταυτολογίες ή αντιφάσεις.

Λύση:

Ο τύπος $φ_1$ είναι ικανοποιήσιμος. Π.χ. με την αποτίμηση p=A, q=A, r=A. Δεν είναι ταυτολογία, διότι βγαίνει ψευδής με την αποτίμηση p=A, q=A, $r=\Psi$.

Ο τύπος φ_2 είναι ταυτολογία, διότι είναι της μορφής $\varphi \vee \neg \varphi$

Ο τύπος φ_3 είναι αντίφαση, διότι είναι της μορφής $\varphi \land \neg \varphi$

1. Ταυτολογική Συνεπαγωγή

(...συνέχεια...)

- Γ) Εξετάστε αν ισχύουν οι ταυτολογικές συνεπαγωγές:
- 1) $T1 \models \varphi_1$
- 2) $T1 \vDash \varphi_2$
- 3) $T1 \models \varphi_3$
- 4) $T2 \models \varphi_1$
- 5) $T2 \models \varphi_2$
- 6) T2 $\vDash \varphi_3$
- 7) T3 $\vDash \varphi_1$
- 8) T3 $\vDash \varphi_2$
- 9) T3 $\vDash \varphi_3$

Από την μελέτη μας έχουμε:

Τ₁ αντιφατικό

 T_2 ικαν/μο για τις αποτιμήσεις:

$$p = A, q = \Psi, r = A \kappa \alpha I$$

$$p = A, q = \Psi, r = \Psi$$

Τ₃ ικαν/μο για τις αποτιμήσεις

$$p = A$$
, $q = A$, $r = Ψ$ και

$$p = \Psi, q = \Psi, r = \Psi$$

ΛΥΣΗ:

- 1) Ισχύει διότι το T_1 αντιφατικό (Ψ $\models \cdots$)
- 2) Ισχύει διότι το T_1 αντιφατικό (Ψ $\models \cdots$)
- 3) Ισχύει διότι το T_1 αντιφατικό ($\Psi \models \cdots$)
- 4) Εξετάζω τον ορισμό. Στις αποτιμήσεις που αληθεύουν οι τύποι του Τ₂
 - 1) $p = A, q = \Psi, r = A.$ Ο τύπος $\phi_1 = p \lor q \rightarrow r = A \lor \Psi \rightarrow A = A \rightarrow A = A$
 - 2) $p = A, q = \Psi, r = \Psi$. Ο τύπος $\phi_1 = p \lor q \rightarrow r = A \lor \Psi \rightarrow \Psi = A \rightarrow \Psi = \Psi$

Συνεπώς δεν ισχύει η ταυτολογική συνεπαγωγή.

- 5) Ισχύει διότι $φ_2$ ταυτολογία (... \models A)
- 6) Δεν ισχύει διότι Τ₂ ικανοποιήσιμο και φ₃ αντίφαση (δεν ισχύει ο ορισμός)
- 7) Εξετάζω τον ορισμό. Στις αποτιμήσεις που αληθεύουν οι τύποι του Τ₃

1)
$$p = A, q = A, r = \Psi O$$
 τύπος $\phi_1 = p \lor q \rightarrow r = A \lor A \rightarrow \Psi = A \rightarrow \Psi = \Psi$

Συνεπώς δεν ισχύει η ταυτολογική συνεπαγωγή.

- 8) Ισχύει διότι $φ_2$ ταυτολογία (... \models A)
- 9) Δεν ισχύει διότι Τ₃ ικανοποιήσιμο και φ₃ αντίφαση (δεν ισχύει ο ορισμός)

Δ. Ασκήσεις Άσκηση Κατανόησης 1

Ελέγξτε αν τα παρακάτω σύνολα τύπων είναι ικανοποιήσιμα

$$T_1 = \{p \to q, \neg p\}$$

$$T_2 = \{p, p \to \neg q, q\}$$

$$T_3 = \{p \to q, p \lor q, p \land q\}$$

$$T_4 = \{ p \to q, q \to p, \neg p \lor q \}$$

Δ. Ασκήσεις Άσκηση Κατανόησης 2

Ελέγξτε αν ισχύουν οι ακόλουθες ταυτολογικές συνεπαγωγές

1.
$$\{p \lor q, p \to q\} \vDash p \land q$$

2.
$$\{p \lor \neg q, q \lor \neg q\} \vDash p \rightarrow p \lor q$$

3.
$$\{q \rightarrow p, \neg p \lor \neg q\} \vDash p \rightarrow (q \rightarrow q)$$

Δ. Ασκήσεις Άσκηση Κατανόησης 3

Έστω ότι ο τύπος φ είναι ταυτολογία, ο τύπος ψ είναι αντίφαση και ο τύπος χ είναι ικανοποιήσιμος (αλλά όχι ταυτολογία). Να εξετάσετε αν ισχύουν οι ταυτολογικές συνεπαγωγές:

1.
$$\varphi \vDash \varphi$$

2.
$$\varphi \models \psi$$

3.
$$\varphi \vDash \chi$$

4.
$$\psi \models \varphi$$

5.
$$\psi \models \psi$$

6.
$$\psi \models \chi$$

7.
$$\chi \vDash \varphi$$

8.
$$\chi \models \psi$$

9.
$$\chi \models \chi$$

Δ. Ασκήσεις Ερωτήσεις 1

Θεωρούμε το σύνολο προτασιακών τύπων $T = \{ p_1 \lor \neg p_2, p_1 \land p_2, p_1 \lor p_3 \}$ Ποιες από τις παρακάτω ταυτολογικές συνεπαγωγές αληθεύουν και ποιες όχι;

1.
$$T = \neg p_1 \rightarrow (p_1 \wedge p_2)$$

2.
$$T = (p_1 \land p_2) \to p_3$$

3.
$$T = (p_2 \vee p_3) \rightarrow (p_1 \wedge p_3)$$

4.
$$T = (p_1 \vee p_2) \to (\neg p_1 \to \neg p_3)$$

Δ. Ασκήσεις Ερωτήσεις 2

Ο τύπος $\neg p_1 \rightarrow (p_1 \rightarrow p_2)$ είναι:

- 1. Ταυτολογία
- 2. Ταυτολογικά ισοδύναμος με τον p_2
- 3. Ταυτολογικά ισοδύναμος με τον $\neg p_1 \land p_1 \rightarrow p_2$
- 4. Ταυτολογικά ισοδύναμος με τον $p_1 o (p_2 o p_1)$

Δ. Ασκήσεις Ερωτήσεις 3

Έστω p_1 και p_2 προτασιακές μεταβλητές. Ποιες από τις παρακάτω δηλώσεις είναι σωστές;

- 1. Ο προτασιακός τύπος $(p_1 \rightarrow p_2) \rightarrow (\neg p_2 \rightarrow \neg p_1)$ είναι ταυτολογία.
- 2. Ο προτασιακός τύπος $(p_1 \rightarrow p_2) \rightarrow (\neg p_1 \land \neg p_2)$ είναι αντίφαση.
- 3. $p_1 \wedge \neg p_1 = p_2 \wedge \neg p_2$
- 4. $(p_1 \land \neg p_1) \rightarrow p_2 \models p_2$

Δ. Ασκήσεις Εφαρμογή 1

Να δείξετε ότι:

$$\{p_1 \rightarrow p_2, p_2 \rightarrow p_3, \dots, p_{10} \rightarrow p_1\} \vDash (p_1 \land p_2 \land \dots \land p_{10}) \lor (\neg p_1 \land \neg p_2 \land \dots \land \neg p_{10})$$

χωρίς την χρήση αληθοπίνακα

Δ. Ασκήσεις Εφαρμογή 2

Έστω Τ σύνολο τύπων και φ, ψ προτασιακοί τύποι για τους οποίους ισχύει: $T \models φ$ και $T \models ψ$.

Να αποδείξετε ότι ισχύει: $T \models \neg \phi \rightarrow (\psi \rightarrow \phi)$

Δ. Ασκήσεις Εφαρμογή 3

Έστω προτασιακοί τύποι φ,ψ,χ για τους οποίους ισχύουν $\varphi \models \psi$, $\psi \models \chi$, $\chi \models \varphi$ Να αποδείξετε διαδοχικά ότι ισχύουν:

- 1. $\varphi \vDash \chi$
- 2. $\psi \models \varphi$
- 3. $\chi \models \psi$
- 4. $\varphi \equiv \psi$
- 5. $\psi \equiv \chi$
- 6. $\varphi \equiv \psi \equiv \chi$