UNIVERSITY OF TORONTO

Faculty of Arts and Sciences DECEMBER EXAMINATIONS 2006 Math 240H1 Algebra I — Final Exam

Dror Bar-Natan December 13, 2006

Solve all of the following 5 questions. The questions carry equal weight though different parts of the same question may be weighted differently.

Duration. You have 3 hours to write this exam.

Allowed Material. Basic calculators, not capable of displaying text or sounding speech.

Good Luck!

Problem 1. Prove the "replacement lemma": Let G be a set of g vectors in some vector space V and let L be some set of l linearly independent vectors in V (where g and l are both finite). Assume that Span $L \subset \text{Span } G$. Then $g \geq l$ and there is a subset R of G, consisting of r := g - l vectors, so that $\operatorname{Span}(R \cup L) = \operatorname{Span} G$.

Problem 2.

- **roblem 2.**1. Let $L: P_3(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformation given by $L(p) = \begin{pmatrix} p(-2) \\ p(0) \\ p(2) \end{pmatrix}$. Find the matrix A representing L relative to the basis $\{1, x, x^2, x^3\}$ of $P_3(\mathbb{R})$ and the standard basis of \mathbb{R}^3 .
- 2. Let w = a + bi be a complex number and let $T : \mathbb{C} \to \mathbb{C}$ be defined by $T(z) = w \cdot z$. Considering \mathbb{C} as a vector space over \mathbb{R} , find the matrix B representing T relative to the basis $\{1,i\}$ of \mathbb{C} .

Problem 3. Find all the solutions (if any exist) of the following two systems of linear equations:

$$\begin{pmatrix} -1 & 2 & -2 & -7 \\ -1 & 2 & 2 & 1 \\ -2 & 4 & 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -1 & 2 & -2 & -7 \\ -1 & 2 & 2 & 1 \\ -2 & 4 & 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \\ -6 \end{pmatrix}.$$

Problem 4. Let $A \in M_{n \times n}(F)$ have the form

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & a_0 \\ -1 & 0 & 0 & \cdots & 0 & a_1 \\ 0 & -1 & 0 & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & a_{n-1} \end{pmatrix}.$$

- 1. Compute $\det(A+tI)$, where I is the $n\times n$ identity matrix.
- 2. (3 point bonus). What does your result tell you about characteristic polynomials?

Problem 5. Let A be the matrix $A = \begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix}$.

- 1. Find a matrix P for which $P^{-1}AP$ is diagonal.
- 2. Compute A^7 .

Good Luck!