

Kernel quadrature with determinantal point processes.

Ayoub Belhadji*, Rémi Bardenet*, Pierre Chainais*

*Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, 59651 Villeneuve d'Ascq, France

Abstract

We study the design of nodes for kernel quadrature. We relate the approximation error for a given design to geometric quantities that translates relative positions of functional spaces. This geometric analysis allows to bound the approximation error when the nodes follow the distribution of a projection DPP tailored to the RKHS. This bound depends on the spectrum of the kernel and has been validated by simulations.

Kernel quadrature

Let \mathcal{X} be a topological space equipped with a Borel measure $d\omega$. Let $f, g \in \mathbb{L}_2(d\omega)$, we are interested in the approximations

$$\int_{\mathcal{X}} f(x)g(x)d\omega(x) \approx \sum_{j \in [N]} w_j f(x_j), \qquad (1$$

where $x_j \in \mathcal{X}$ are the nodes and the $w_j \in \mathbb{R}$ are the weights that depends only on g. We assume that f belongs to an RKHS \mathcal{F} represented by a kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$. We have

$$\left|\int_{\mathcal{X}} f(x)g(x)d\omega(x) - \sum_{j\in[N]} w_j f(x_j)\right| \leq \left\|\mu_g - \sum_{j\in[N]} w_j k(x_j,.)\right\|_{\mathcal{F}} \|f\|_{\mathcal{F}},$$

with μ_g is the mean element of the distribution of density $x \mapsto g(x) d\omega(x)$.

The problem of nodes design for kernel quadrature

How to construct a design of nodes $(x_j)_{j\in[N]}$, with a provable bound on the approximation error for the optimal weights

$$\|\mu_{g} - \Pi_{\mathcal{T}(x)}\mu_{g}\|_{\mathcal{F}} = \|\mu_{g} - \sum_{j \in [N]} \hat{w}_{j}k(x_{j},.)\|_{\mathcal{F}}.$$

Figure 1: The influence of the design on the approximation quality.

We propose to sample the nodes according to a projection determinantal point process.

Projection Determinantal Point Process

We assume that the RKHS kernel satisfies the conditions for Mercer decompositions

$$k(x,y) = \sum_{m \in \mathbb{N}^*} \sigma_m e_m(x) e_m(y), \qquad (2)$$

with the $(e_m)_{m\in\mathbb{N}^*}$ is an orthonormal basis in $\mathbb{L}_2(\mathrm{d}\omega)$ and $0\leq\sigma_{m+1}\leq\sigma_m, \forall m\in\mathbb{N}^*$.

Definition

Define the repulsion kernel

$$\mathfrak{K}(x,y) = \sum_{n \in [N]} e_n(x)e_n(y). \tag{3}$$

The set $\mathbf{x} = \{x_1, \dots x_N\}$ is said to be a projection DPP with reference measure $\mathrm{d}\omega$ and kernel $\mathfrak K$ if it follows the distribution of density

$$\frac{1}{N!}\operatorname{Det}(\mathfrak{K}(x_i,x_j)_{i,j\in[N]})\prod_{i\in[N]}\omega(x_i). \tag{4}$$

A geometric characterization of "good" quadrature nodes

Define the saturated kernel

$$\tilde{k}(x,y) = \sum_{n \in [N]} \sigma_1 e_n(x) e_n(y) + \sum_{n \geq N+1} \sigma_n e_n(x) e_n(y). \tag{5}$$

Theorem

Define
$$\|g\|_{d\omega,1} = \sum_{n \in [N]} |\langle e_n, g \rangle_{d\omega}|$$
. Assume that $\|g\|_{d\omega} \le 1$ then
$$\|\mu_g - \Pi_{\mathcal{T}(x)}\mu_g\|_{\mathcal{F}}^2 \le 2\left(\sigma_{N+1} + \|g\|_{d\omega,1}^2 \tan^2 \theta_N(\tilde{\mathcal{T}}(x), \mathcal{E}_N^{\tilde{\mathcal{F}}})\right). \tag{6}$$

- The "filtering" error $\|\Pi_{\mathcal{E}_N^{\mathcal{F}}}\mu_{\mathbf{g}}\|_{\mathcal{F}}^2$
- ullet The sparsity of the coefficients of $oldsymbol{g}$
- The angle between $\tilde{\mathcal{T}}(x)$ and $\mathcal{E}_{N}^{\tilde{\mathcal{F}}}$.

Main result

Theorem

Let $\mathbf{x} = \{x_1, \dots, x_N\}$ be a projection DPP $(d\omega, \mathfrak{K})$. Define $r_N = \sum_{m \geq N+1} \sigma_m$, then $\mathbb{E}_{\text{DPP}} \|\mu_g - \Pi_{\mathcal{T}(\mathbf{x})} \mu_g\|_{\mathcal{F}}^2 \leq 2 \left(\frac{\sigma_{N+1} + \|g\|_{d\omega, 1}^2 \left(Nr_N + o(Nr_N) \right)}{\sigma_{N+1}} \right). \tag{7}$

Examples:

$ m RKHS/d\omega$	Periodic Sobolev (s)/ Uniform	Korobov (d,s)/Uniform	Gaussian (d)/Gaussian
σ_{N+1}	$\mathcal{O}(s^{-2s})$	$\mathcal{O}((\log N)^{2s(d-1)}s^{-2s})$	$\mathcal{O}(e^{-\gamma d!^{1/d} \mathcal{N}^{1/d}})$

The Christoffel function and the inclusion probability of projection DPP

Figure 2:The inclusion probability $\mathbb{P}_{\mathrm{DPP}}(. \in \mathbf{x})$ in the Gaussian case $\mathbf{x} \mapsto \frac{\Re(\mathbf{x}, \mathbf{x})}{N} \mathrm{d}\omega(\mathbf{x})$ compared to the tensor product of the zeros of the Hermite polynomials.

Numerical experiments

A comparison of several kernel quadrature algorithms in three different RKHSs: periodic Sobolev spaces of order $s \in \{1,3\}$, Korobov space in dimension d=2 and for s=1, Gaussian space in dimension d=1. The square of the worst case error $\|\mu_g - \Pi_{\mathcal{T}(x)}\mu_g\|_{\mathcal{F}}$ is plotted with $g: x \mapsto 1$. The squared error is averaged on 50 samples for randomized algorithms.

Figure 5: Korobov space, d = 2, s = 1

Figure 6: Gaussian space, d = 1

Take Home Messages

- A general analysis of kernel quadrature for nodes sampled according to a projection DPP,
- A new geometric interpretation of "good" quadrature nodes using principal angles
- Empirical validation on different RKHSs.

Perspectives

- Bridging the gap between the theoretical rates and the empirical rates for polynomialy decreasing spectrum.
- Theoretical bounds under regularization.
- Lower bounds for unregularized kernel quadrature.

We have an ERC grant coming up. If you are interested in DPPs and would be into a PhD/postdoc in France, feel free to contact Rémi Bardenet http://rbardenet.github.io.

