Deep Optimal Stopping & Pricing of American-Style Options

Applied Quantitative Finance Seminar

Sabina Georgescu, Konrad Müller

Overview

- 1. Introduction to Bermudan Options
- 2. Least-Squares Monte Carlo
- 3. Deep LSM
- 4. Deep Optimal Stopping
- 5. Dual LSM
- 6. Results

1. Introduction to Bermudan Options

Context

- European Option: Exercisbale on a single date
- Bermudan Option: Exercisable on several dates
- American Option: Exercisable on any date before expiration

\$\therefore \quad\$ Bermudan contracts lie between European & American

Bermudan Max-Call Option

- Call Option on the maximum of \$d\$ underlying assets \$S^{1,...,d}\$
- Finitely many exercise dates \$0 = t_0 < t_1 < ... < t_N = T\$
- Discounted payoff at exercise time \$t_n\$:

 $S G_{t_n} = e^{-r t_n}\max_{i = 1, ..., d} \left(S_{t_n}^i - K\right)^+$

Pricing & Dynamics

Multi-dimensional Black-Scholes model under risk-neutral dynamics

• \$d\$-dimensional Brownian Motion \$W\$ with uncorrelated instantaneous components:

 $$\ dS^i_t = S_0^i \exp{\left(\left(\frac{r - delta - \frac{sigma^2}{2}\right)}{t + sigma dW^i_t\right)}}$

• Pricing formula with \$\sup\$ attained at \$\tau_n\$:

 $\$ V_{t_n} = \sup_{\tau\in{t_n,...,t_N}} \mathbb{E}[G_\tau \m \m d \mathbb{F}_{t_n}] \$

2. Least-Squares Monte Carlo

Longstaff & Schwartz, Valuing American Options by Simulation: A Simple Least-Squares Approach (2001)

LSM Method

Estimate **continuation values** by regressing simulated discounted cash flows on the linear span of finitely many basis functions \$L_0,...,L_B\$ of ITM paths:

 $F(\omega; t_n) \approx \int_{[-\infty, t_n]} \| \int_{[-\infty, t_n]} \|$

where the discounted cash flows vector and basis functions matrix are given by: $t_n = \left[Y(\omega_0; t_n), ..., Y(\omega_m; t_n)\right]^T, $$ \textbf{B}_m(t_n) = \\left[L_0(X(\omega_m; t_n)), ..., L_B(X(\omega_m; t_n))\\right]^T, \\forall m\\in{1,...,M}.\$\$

Optimal Stopping Value captured with the backwards recursion:

 $\$ \textit{Snell Envelope}\quad V_{t_n} = \begin{dcases} G_T \quad\text{if } n=N,\ \max {G_{t_n}, F_{t_n}} \quad\text{if } n<N; \end{dcases} \$\$

Optimal Stopping Rule: $\$ \textit{Dynamic Programming Eqn.} \quad\tau_n = \begin{dcases} t_n \quad\text{if } G_{t_n} \ge F_{t_n}, \tau_{n+1} \quad\text{if } G_{t_n} < F_{t_n}; \end{dcases} \$\$

\$\therefore\$ Bermudan Max-Call valuation: \$\$ V_{LSM} := \sum_{i=1}^{m}V_{t_0}(\omega_m).\$\$

Continuation Values

- Conditional expected payoffs obtained from continuing the option
- Borel-measurable functions in the Hilbert space \$L^2(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{F})\$
- \$L^2(\Omega, \mathcal{F}, \mathbb{F}), \mathbb{F})\$ admits **orthonormal bases**, e.g. Laguerre polynomials
- Write the continuation values in such a basis

\$\therefore\$ OLS-regression with polynomial features on the linear span of the chosen basis

Choice of Basis Functions

Regression Features for multi-asset Bermudan options: not restricted to basis functions

- Longstaff-Schwartz \$(2001)\$, \$d=5\$ asets:
 - First \$5\$ Hermite polynomials in the value of the most expensive asset
 - Value and square of the other \$4\$ assets
 - Selected products between individual asset prices
- Broadie & Cao \$(2008)\$:
 - Between \$12 18\$ polynonmial basis functions, up to \$5^{th}\$ order

LSM Algorithm: Pseudo-Code

```
def lsm(paths):
payoff_at_stop = payoff_fn(N, paths[:, -1])
for n in np.arange(start=N, stop=0, step=-1):
    x_n = paths[:, n]
    payoff_now = payoff_fn(n, x_n)

    features = feature_map(x_n, payoff_now)
    model = LinearRegression()
    model.fit(features, payoff_at_stop)
    continuation_values = model.predict(features)

    idx = payoff_now >= continuation_values
    payoff_at_stop[idx] = payoff_now[idx]

    biased_price = payoff_at_stop.mean()
```

Feature Engineering: Issues

- Feature maps not rich enough to accurately price complex options
- Potentially over-engineered to payoff specifics or market dynamics
- Curse of Dimensionality: \$#\$ basis functions grows "only" polynomially in \$d\$, but rapidly becomes infeasible

\$\therefore\$ Solution: Learn the feature maps \$\rightarrow\$ Deep LSM

3. Deep LSM

Becker et al., Pricing and Hedging American-Style Options with Deep Learning (2020)

Candidate Optimal Stopping Strategy

Estimate **continuation values** with a feedforward Deep Neural Network. Project G_{τ} on a subset $c^{t_n}}$ on Borel-measurable functions c^{t_n} parameterised by t_n as:

 $\boldsymbol{E}\left[G_{\hat{t}_n}\right] = c^{t_n}\right] = c^{t_n}$

Learn optimal hyperparameter \$\theta_n\$ by employing SGD to mimise over \$\theta\$:

 $$\mathrm{C}_{\left(G_{\hat{x}_{n+1}} - c^\hat{X}_{t_n}\right)\right)^2\left(\frac{x_{t_n}}{c}\right)^2\left(\frac{x$

\$\therefore\$ Summarise all continuation values along the path with: \$\$\Theta := \left(\theta_0,...,\theta_N\right).\$\$

Optimal Stopping Value via the *Snell Envelope*: $\$ V_{t_n} = \begin{dcases} G_T \quad\text{if } n=N,\ \max {G_{t_n}, c^{t_n}} \quad\text{if } n<N; \end{dcases} \$\$

 $\theta = \min {n \in \mathcal{O},...,N} \mod G_{t_n} \ge C^{\theta}.$

Lower Bound

Lower Bound estimate: \$\$L \approx \mathbb{E} \left[G_{\tau^\Theta}\right]\$\$

where \$G_{\tau^\Theta}\approx g^k\$ by the Optimal Stopping Rule \$\tau^\Theta\$ applied to a further \$K_L\$ independently generated underlying paths. Approximate \$L\$ with Monte Carlo averaging.

 $\star \$ \therefore **Lower Bound**: \$\$ \hat{L} = \frac{1}{K_U} \sum_{k=K+1}^{K+L} g^k.\$\$

Upper Bound

Upper Bound estimate via **Doob-Mayer Decomposition Theorem**:

 $\$ U \approx \mathbb{E} \left[\max_{0}\le n \le N} \left(G_{t_n} - M^Theta_{t_n} - \ensuremath{\mathbb}(E) \right]. \$\$

Refer to *Deep Optimal Stopping* for the nested simulation, with another \$K_U\$ independently generated underlying paths, of the martingale realisations \$m^k_n.\$ Monte Carlo average:

 $\theta = \frac{1}{K_U} \sum_{k=K+K_L+1}^{K+K_L+1}^{K+K_U} \max_{i\le N} (g^k_n - m^k_n). $$

Point Estimate & Confidence Interval

Point Estimate: \$\$ \hat{V} = \frac{\hat{L}+\hat{U}}{2}\$\$

Sample standard deviations of the bounds by the Central Limit Theorem:

 $\frac{1}{K_L-1}\sum_{k=K+1}^{K+K_L} \left(g^k-\hat{L}\right)^2,$

 $\frac{1}{K_U-1} \sum_{k=K+K_L+1}^{K+K_U} \left(\frac{1}{K_U-1} \sum_{k=K+K_L+1}^{K+K_U} \left(\frac{1}{K_U-1} \right) - m^k_n\right)^2.$$

Confidence Interval: By the CLT, the Optimal Stopping Value from the Snell admits the asymptotically valid two-sided \$1-\alpha\$ interval:

 $\left[\hat L - z_{\alpha/2} \frac{L}{\ C_L}, \hat U + z_{\alpha/2} \frac{L}{\ C_L}\right]$

where $z_{\alpha/2}$ is the $(1-\alpha/2)^{th}$ quantile of the standard Gaussian.

4. Deep Optimal Stopping

Becker et al., Deep Optimal Stopping (2019a)

Motivation

- Deep Learning solution to the Optimal Stopping Problem, circumventing the traditional estimation of continuation values \$\rightarrow\$ DOS
- The immediate payoff & continuation value comparison is inherent through the choice of reward/loss function, thus performed indirectly
- Method based on an explicit parameterisation of the stopping decision
- Decompose the **optimal stopping rule** in a sequence of **binary decisions**, estimated recursively with a sequence of feedforward DNNs

Parameterising the Stopping Decision

 $\star _{n+1} = \sum_{m=n+1}^{N} \left[m \cdot f^{\theta_{j=n+1}^{m-1}(1-f^{\theta_{j}}(X_j))\right]$

Parameter Optimisation

• Reward (Loss) calculated using the **soft** stopping decision

 $\ r^k_n(\theta) = g(n,x^k_n)\cdot F^\theta(x^k_n) + g(I^k_{n+1},x^k_{I^k_{n+1}})\cdot (1-F^\theta(x^k_n))$

5. Dual LSM

Rogers, Monte Carlo Valuing of American Options (2002)

Dual Valuation

% will keep it real short

6. Results

Results: LSM

Features	d	\$S_0\$	\$P_{\text{biased}}\$	s.e.	L	U	Point Est.	95 % CI
base	5	90	16.33	0.03	16.54	16.89	16.72	[16.30, 16.93]
ls	5	90	16.56	0.04	16.41	16.57	16.49	[16.17, 16.59]
r-NN	5	90	16.63	0.04	16.56	16.78	16.67	[16.33, 16.81]
base	5	100	25.71	0.06	25.72	26.28	26.00	[25.43, 26.32]
ls	5	100	26.01	0.02	26.03	26.21	26.12	[25.75, 26.24]
r-NN	5	100	25.94	0.04	26.00	26.32	26.16	[25.72, 26.35]

Results: DLSM

d	\$S_0\$	L	U	Point Est.	95 % CI
5	90	16.62	16.66	16.64	[16.60, 16.66]
5	100	26.10	26.18	26.14	[26.09, 26.20]
5	110	36.69	36.79	36.74	[36.67, 36.81]
10	90	26.05	26.33	26.19	[26.03, 26.37]
10	100	38.09	38.40	38.24	[38.06, 38.43]
10	110	50.60	50.99	50.80	[50.57, 51.03]

Results: DOS

d	\$S_0\$	L	U	Point Est.	95 % CI
5	90	16.60	16.65	16.62	[16.59, 16.66]
5	100	26.11	26.18	26.15	[26.10, 26.19]
5	110	37.78	37.86	37.82	[37.76, 37.88]
10	90	26.14	26.30	26.22	[26.13, 26.33]
10	100	38.23	38.45	38.34	[38.21, 38.49]
10	110	50.95	51.17	51.06	[50.93, 51.22]

Comparison to the Literature

d	\$S_0\$	DOS	DLSM	Literature
5	90	16.62	16.64	16.64
5	100	26.15	26.14	26.15
5	110	37.82	36.74	36.78
10	90	26.22	26.19	26.28
10	100	38.34	38.24	38.37
10	110	51.06	50.80	50.90

References

Literature

- Valuing American Options by Simulation: A Simple Least-Squares Approach
- Deep optimal stopping
- Pricing and Hedging American-Style Options with Deep Learning
- Optimal Stopping via Randomized Neural Networks
- Monte Carlo Valuing of American Options

C	o	d	e

https://github.com/konmue/american_options

Q&A