

REDES DE COMPUTADORES SPOREDC

Prof. Paulo Abreu

Modelos de Comunicação em Redes

- Sistema de Comunicação
 - Fonte: gera a informação (dados) a transmitir.
 - Emissor: converte os dados em sinais adequados ao sistema de transmissão.
 - Sistema de transmissão: transporta os dados sob a forma de sinais.
 - Receptor: converte os sinais em dados.
 - Destino: consome os dados.

Modelos de Comunicação em Redes (comparação)

DTE (Data Terminal Equipment)
DCE (Data Communications Equipment)

CPE (Customer Premises Equipment) Raspberry PI (modelo de computador)

Funções do Sistema de Comunicação

- Utilização do sistema de transmissão.
- Interface com o sistema de transmissão.
- Geração de sinais a transmitir.
- Sincronização.
- Gestão da comunicação.
- Detecção e correção de erros.
- Controle de fluxo.
- Endereçamento e encaminhamento.
- Recuperação de anomalias.
- Formatação de mensagens.
- Segurança.
- Gestão de rede.

Meio transmissão

- Permite a comunicação propriamente dita, e a transmissão de uma cadeia de bits.
- É um dos níveis na estrutura básica de comunicação de dados, em diversas formas distintas no meio físico.
- Existem algumas características:
 - Mecânica (tamanho, pinagem, conectores...)
 - Elétricas (valores dos sinais elétricos p/ os bits)
 - Função (realizar o encaminhamento da interface de comunicação)

Protocolo

 Os protocolos de comunicações são conjuntos de regras (normas), que estão responsáveis em estabelecer a comunicação ("diálogo") entre os componentes de redes e máquinas, para manter a transmissão segura e pronta.

Alguns tipos:

- Sinalização do enlace (proprietários/firmware)
- Arquitetura de rede (serviços, residentes)
- Transmissão da tecnologia (proprietários/fabricante)

Transmissão Serial

- Permite efetuar a transferência de dados entre pontos remotos, e houve a necessidade de desenvolver a transmissão serial.
- É o método de transmissão de dados em que os bits representam um caracter e são enviados em sequência, um bit por vez, por um canal de comunicação único.
- A comunicação está limitada pela velocidade disponível do canal (link).
- Exemplo:

```
01000101 \Rightarrow 0 \Rightarrow 1 \Rightarrow 0 \Rightarrow 0 \Rightarrow 1 \Rightarrow 0 \Rightarrow 1 (mouse, RS-232, USB, etc)
```

Transmissão Paralela

- Define-se como uma transmissão simultânea, por diferentes canais, os bits são enviados em um conjunto.
- Então, cada ligação paralela transmite um grupo de bits de cada vez, que pode variar dependendo do dispositivo.
- Em comparação com a transmissão serial é possível transmitir dados mais rapidamente, mas há limitações também.
- Exemplo:

0 1 → 0 →

Impressora, Barramento de multivias (flat cable), etc

1 0 →

1 =

Transmissão Síncrona

- A transmissão dos dados enviados e recebidos trafegam na rede com velocidade e *throughput* constante.
- Os nós recebem da transmissão identificações quase imediatamente e se preparam para a troca com base em taxas e tamanhos ordenados de dados.
- Existem um tempo fixo de transmissão para cada caracter.
- O sinal que mantém o sincronismo é chamado de *clock* e opera entre o emissor e receptor.

Transmissão Assíncrona

- É uma transmissão sem o sincronismo, o espaço de tempo entre um carácter e o outro não é fixo.
- A comunicação é envolvida com bits especiais entre carácteres de início de parada (*start/stop*).
- Os bits do carácter são transmitidos em sequência, porém os carácteres podem seguir espaçados aleatoriamente uns dos outros de acordo com o volume de dados transmitidos.
- Um receptor não precisa saber quando há uma sequência de dados que será enviada e nem o comprimento da mensagem.

Transmissão de banda-base

- Rede que não sofre mudança de sinal.
- Atua em ambientes de redes locais.
- Transmissão de multisserviços em difusão.

Ex.: 100BASE-T, 1000BASE-F, etc

Transmissão de banda-larga

- Rede de ambiente local/remoto em alta velocidade de transmissão.
- A transmissão permite trafegar multisserviços em comutação por pacotes.
- O desempenho da rede é medido de duas formas:
 - Largura de banda (throughput)
 - Latência (retardo)
- Alocação (Determinística, Estatística)

Classificação do Meio de Transmissão

Simplex

O enlace é utilizado apenas em um dos dois possíveis sentidos de transmissão.

Classificação do Meio de Transmissão

Half-Duplex

O enlace é utilizado apenas nos dois possíveis sentidos de transmissão, porém apenas um por vez.

Classificação do Meio de Transmissão

Full-Duplex

O enlace é utilizado nos dois possíveis sentidos de transmissão simultaneamente.

Multiplexação

- É a técnica usada para possibilitar que dados de múltiplos canais de transmissão compartilhem uma ligação comum.
- A transmissão combina dados de diversos canais de entrada em baixa velocidade e os transmite através de um circuito de alta velocidade.
- Utiliza de um equipamento chamado de multiplex (multiplexer) para o afunilamento de diversos fluxos de dados.

Exemplo de um cenário:

- Existem vários tipos de multiplexação:
 - Multiplexação por Divisão de Frequência
 (Frequency Division Multiplexing)
 - Ocorre nessa técnica uma partição da faixa de frequência de transmissão disponível em faixas menores.
 - Realiza a divisão em subfrequências, cada uma ajustada para a largura de banda dos dados a serem transportados.

Multiplexação por Divisão de Tempo

(Time Division Multiplexing)

- Essa técnica possibilita transmitir mais de um sinal pelo mesmo canal em diferentes intervalos de tempo (time-slot).
- É associado a cada nó conectado um canal com número de identificação e um pequeno intervalo de tempo para transmissão.

 Os nós se revezam para transmitir por um canal com uma porção de tempo permanente e determinada para cada um

dos canais específicos.

Multiplexação por Divisão de Onda

(Wavelengh Division Multiplexing)

- Utilizada em cabos de fibra óptica
- Sinais elétricos provenientes de um computador emissor são convertidos em sinais ópticos com uso de uma fonte luminosa (laser, led)
- Transmissão simultânea de fontes luminosas no canal de F.O. com diferentes comprimentos de ondas.
- É uma das tecnologias remotas.

- Outras técnicas:
 - Multiplexação Estatística
 (Statistical Multiplexing)
 - Multiplexação por Acesso a Demanda (Demand Access Multiplexing)

Comutação

Conceito:

É um método de comunicação que usa conexões temporárias e/ou permanentes, para estabelecer uma transmissão no envio de informações.

Comutação por Circuito

- É a mais comum e ultrapassada (desuso).
- Interliga fisicamente o transmissor e receptor, enquanto manter a conexão em um circuito dedicado.
- Não existindo circuitos disponíveis ao longo da rede, não há estabelecimento de um sinal.
- O avanço proporcionou a otimização dos circuitos.

Comutação por Pacote

- As mensagens são primeiro subdivididas em unidades chamadas pacotes (packets).
- Possui uma determinada estrutura.
- Cada pacote possui um endereço de origem e destino mais um número sequencial, que são enviados ao receptor um por vez através de nós intermediários.
- O pacote representa a menor unidade de dados que pode ser transferida pela rede.

Comutação por Pacote - cont.

- Há o conceito "guardar-e-remeter", que requer o recebimento de todo o conteúdo da mensagem no ponto intermediário antes de ser remetido para o próximo nó.
- Redes chaveadas por pacotes também promovem compartilhamento de ligações, usando circuitos virtuais ou esquema de transporte de datagramas.

Comutação por Pacote - cont.

- Algumas conexões utilizadas:
 - Orientada-a-conexão exige uma conexão direta entre dois nós em uma ligação física ou virtual, ela é mantida mesmo quando há período sem transmissão.
 - Não-orientada-a-conexão não exige uma conexão direta entre os pontos, nenhum reconhecimento é estabelecido entre os nós receptor e emissor antes da transmissão dos dados.

Comutação por Pacote - cont.

- Sinônimos (quadro, datagrama, célula)
- Exemplo:

Os pacotes são transportados no interior dos quadros.

