The Machine Learning Canvas (v0.4) Designed for: Bike Sharing Dataset Data Set Designed by: R09631007 吳乙澤 Date: 2021/11

我們可以使用哪些原始數

本專案利用 UCI Machine Learning

Repository 網站所提供的開放資料

集, Bike Sharing Dataset Data Set。

資料集的網站連結為 http://archive.

ics.uci.edu/ml/datasets/Bike+Sharing

機器學習任務

預測的輸入和輸出是什麼? 機器學習任務的類型是什麼? 可選的演算法模型是什麼?

本機器學習任務的輸入資料是天氣狀況 (weathersit)、環境溫度(temp)、體感溫 度 (atemp) 、 濕 度 (hum) 、 風 速 (windspeed)、時間(hr)等,輸出則是當 天的腳踏車租賃總數(cnt)。

另外,本專案的類型為"預測(回歸)", 須根據輸入資料預測輸出。

演算法模型的部分, Regression 和 NN 兩種演算法都能做預測。但是,助教有 指定本次作業要用 Regression,因此不 能使用 NN 去做預測。

決策行動

模型預測如何變成決策行

可以透過模型來預測腳踏車租賃總數 (cnt),藉此幫助廠商決定當天所有客 戶需要的腳踏車數量,並規劃相對應 的貨車司機,以便將腳踏車分配到腳 踏車樁上。

問題定義

預測系統會為終端使用者 帶來什麼價值?我們選擇什麼指標來 解決問題?

該預測系統的最終用戶是腳踏車租賃 商。本系統可以預測腳踏車租賃總數 (cnt),幫助廠商決定需要的腳踏車數 量和運送司機。

若模型有一定的準度,則腳踏車運送 量和派出的司機會在適中的程度。如 此一來,不僅能應付當天租借腳踏車 的人流,也能節省貨車的燃油和司機 的人事成本。

數據來源

據?

+Dataset ∘

數據輸入輸出

來源的哪些資料作為訓 練?哪些作為測試?

訓練資料已經由助教從 UCI Machine Learning Repository 下載下來並放在 NTU COOL 裡。並且,訓練集和測試集 已經被切割好,不須自行切割。

打開並檢視 Bike_Sharing_test.csv 和 Bike_Sharing_train.csv兩個檔案,可以 發現測試集數量為 1000 筆,訓練集數 量為 1500 筆。

缐上預測

我們什麼時候會對輸入做 出預測?多久做一次預測?

本專案為資料礦掘的期中報告,因此, 不須做線上預測。若要實際上線的話, 我覺得至少一天做一次預測。具體預測 的時間點,是在當天腳踏車租賃開始 前,根據當天時間和感測器獲得的天氣 數據,來預測腳踏車的租賃總數,以供 後續的決策行動。

離線評估

部署之前,用什麼方法和指標來評估 預測系統?

可以利用 Bike_Sharing_test.csv 來評 估預測系統。也就是說,觀察訓練出 來的 Regression 模型, 預測 Bike_Sharing_test.csv 的能力。透過 比較 train 和 test 的 MAE 誤差,可以 得知模型是否有 Overfitting 或 Underfitting的情形。

特徵工程

從原始數據中提取什麼特 徵(feature)?如何處理這 些特徵?

一開始,我不做任何前處理,將所有 特徵都拿去做訓練。接著,視訓練結 果,再利用 InAnalysis 的離群值過濾 功能,對特徵做前處理,藉此來改善 訓練結果。

建立模型

如何建立模型?用什麼 演算法來訓練?

利用張瑞益教授團隊所開發的 InAnalysis 線上系統,對 Bike Sharing Dataset 做前處理和機器學習模型的訓 練。 InAnalysis 有提供三種不同的 Regression 演算法供我們訓練用,這些 演算法為 Linear Regression、Ridge Regression和Lasso Regression三種。

即時評估和監測

部署之後,用什麼方法和指標來評估 預測系統?

如何量化它帶來的價值?

本專案為資料礦掘的期中報告,因 此,不需要實際去部署模型。若有實 際上線的話,我想以 MAE 誤差函數來 評估預測系統。藉由比較預測系統的 MAE 及訓練集、測試集的 MAE,決定 訓練出來的模型是否具備實用性。

