

Dansgaard-Oeschger and Heinrich events: results from a 22-thousand-year transient climate simulation

Witold Bagniewski, Katrin Meissner, Laurie Menviel

Climate Change Research Centre, University of New South Wales

Marine Isotope Stage 3 (MIS3, 60-28 ka B.P.)

Marine Isotope Stage 3 (MIS3, 60-28 ka B.P.)

Heinrich Events

Thermohaline circulation

Thermohaline circulation

AMOC: Atlantic meridional overturning circulation

Heinrich Events

changes in ocean circulation and climate:

Marine Isotope Stage 3 (MIS3, 60-28 ka B.P.)

UVic Earth System Climate Model

- Coupled ocean, atmosphere, sea ice, sediment, vegetation components
- Includes oxygen isotopes (δ¹8O)
- 3.6° x 1.8° grid, 19 vertical levels in the ocean
- EMIC (Earth System Model of Intermediate Complexity)

UVic Earth System Climate Model

- Coupled ocean, atmosphere, sea ice, sediment, vegetation components
- Includes oxygen isotopes (δ¹8O)
- 3.6° x 1.8° grid, 19 vertical levels in the ocean
- EMIC (Earth System Model of Intermediate Complexity)

UVic ESCM: transient simulations

50 ka – 28 ka B.P.

Forcing:

- orbital parameters
- atmospheric CO₂
- ice sheet topography
- meltwater fluxes

Transient simulations

Climate response

Climate response

Ocean sediment cores

Ocean sediment δ^{18} O is measured in foraminiferal calcite shells

• Planktic: near the surface

Benthic: ocean bottom

• Foraminiferal $\delta^{18}O$ a function of water $\delta^{18}O$ and temperature:

$$\delta^{18}O_c = f(\delta^{18}O_w, T)$$

(Shackleton, 1974)

Ocean response

60°W

0°

Ocean response (Heinrich event)

Ocean response (Heinrich event)

Ocean response

MD95-2010 core

proxy
Model high volume, -20‰
Model no δ¹⁸O signal
Model low volume, -20‰

 $\Delta \delta^{18}O_c = f(\Delta temperature , \Delta circulation , \Delta meltwater)$

Factors for surface $\delta^{18}O_c$ anomalies in the North Atlantic:

Temperature effect: 26% Temperature effect: 47%

Factors for surface $\delta^{18}O_c$ anomalies in the North Atlantic:

Circulation & climate: 45% Circulation & climate: 27%

Factors for surface $\delta^{18}O_c$ anomalies in the North Atlantic:

Meltwater: 29% Meltwater: 26%

Factors for surface $\delta^{18}O_c$ anomalies in the North Atlantic:

Temperature effect: 26%

Temperature effect:

Circulation & climate: 45%

Circulation & climate: 27%

Meltwater: 29%

Meltwater: 26%

Current goals

- When studying paleoproxy records and comparing them with models, properly identifying the transition points (e.g. D-O events) is crucial
- Postdoc at ENS with Michael Ghil and Denis-Didier Rousseau:
- part of the TiPES project (Tipping Points in the Earth System, www.tipes.dk)
- create a method for objectively identifying abrupt transitions in paleoproxy records
- build a database of paleo-records including well defined tipping points
- collaborate with different teams of climate modelers

Summary

- The first transient simulations of Marine Isotope Stage 3, including its millennial-scale $\delta^{18}O$ variability
- compared with ice core and sediment core records
- Likely a strong link between stadial-interstadial changes and AMOC variability
- 30-50% weakening of the AMOC during Dansgaard-Oeschger stadials
- complete shutdown during Heinrich stadials
- Significant differences in $\delta^{18}O_c$ anomalies between Heinrich stadials and non-Heinrich stadials
- mainly due to different responses in sea surface temperature and ocean circulation
- Further details:
- Bagniewski, W., Meissner, K. J., and Menviel, L. (2017), Exploring the oxygen isotope fingerprint of Dansgaard-Oeschger variability and Heinrich events. *Quaternary Science Reviews*
- Bagniewski, W., Meissner, K. J., Menviel, L., and Brennan, C. E. (2015), Quantification of factors impacting seawater and calcite δ¹⁸O during Heinrich Stadials 1 and 4. *Paleoceanography*