III Roots increased by a given constant k.

Theory Let α be a root of a polynomial equation f(x) = 0, then $\alpha + h$ is a root of a polynomial equation f(y - h) = 0.

That is to say, change $x \rightarrow y - h$

Class Work III.1

Given $x^3 + 6x^2 + 2x + 1 = 0$. Transform it into a new equation in y for which the coefficient of y^2 is 0.

Change $x \to y - h$, then

$$(y^{3} + 6(y^{2} + 2(y^{2} + 1) + 1) = 0$$

$$y^{3} - (y^{2} + (3h^{2} - 12h + 2)y - h^{3} + 6h^{2} - 2h + 1) = 0$$
Let _____ = 0 \Rightarrow h = 2

Class Work III.2

If α , β and γ are the roots of $x^3 + px^2 + qx + r = 0 \cdots (*)$

(a) Prove that $\alpha^2 - \beta \gamma = -(p\alpha + q)$

Proof: If
$$\alpha \neq 0$$
, $\alpha^2 - \beta \gamma = \frac{1}{\alpha} (\alpha^3 - \alpha \beta \gamma) \cdots (1)$

$$\alpha\beta\gamma$$
 = product of roots = _____

Put
$$x = \alpha$$
 in (*) $\Rightarrow \alpha^3 =$ _____

Sub. into (1)
$$\Rightarrow \alpha^2 - \beta \gamma = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

If
$$\alpha = 0$$
, $\alpha\beta + \beta\gamma + \alpha\gamma = q$

$$\beta \gamma = q$$

$$\alpha^2 - \beta \gamma = -\beta \gamma = -q$$

$$\therefore \alpha^2 - \beta \gamma = -(p\alpha + q)$$

(b) If $p \neq 0$, construct a cubic equation whose roots are $\alpha^2 - \beta \gamma$, $\beta^2 - \gamma \alpha$, $\gamma^2 - \alpha \beta$.

The new roots are $-(p\alpha+q), -(p\beta+q), -(p\gamma+q)$

New equation is
$$(x + p\alpha + q)$$
 ()

Change old equation by
$$x \to \frac{-y-q}{p}$$
 (Note: $x = -\frac{y}{p} - q$ is wrong!)

Exercise: Substitute x = y + 1 into $x^4 - 4x^3 - 2x^2 + 12x + 8 = 0$ and hence solve it.

[Ans.
$$1\pm\sqrt{3}$$
, $1\pm\sqrt{5}$]