LINEAR 8 - Data set: ANTROP

INTRODUZIONE

Il dataset è costituito da alcune misure antropometriche rilevate su 248 uomini.

- 1. ETA': età in anni compiuti
- 2. PESO: peso rilevato in libbre
- 3. ALTEZ: altezza (cm)
- 4. COLLO: circonferenza del collo (cm)
- 5. TORACE: circonferenza toracica (cm)
- 6. ADDOM: circonferenza addominale (cm)
- 7. ANCA: circonferenza dell'anca (cm)
- 8. COSCIA: circonferenza della coscia (cm)
- 9. GINOCCH: circonferenza del ginocchio (cm)
- 10. CAVIGLIA: circonferenza della caviglia (cm)
- 11. BICIPITE: circonferenza del bicipite in estensione (cm)
- 12. AVANBR: circonferenza dell'avambraccio (cm)
- 13. POLSO: circonferenza del polso (cm)

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione lineare
- 3. Diagnostiche ed analisi dei residui

```
#-- R CODE
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 ~ y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
}
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x \ge mean(x) + sd_factor * sd(x) | x \le mean(x) - sd_factor * sd(x))
}
#-- import dei dati
ABSOLUTE PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
```

```
d <- read.csv(paste0(ABSOLUTE_PATH,"\\F. Esercizi(22) copia\\4.tutto(4)\\2.tutto\\ANTROP.TXT"),sep="\t"
d$bmi <- ((d$peso/2.2046)/(d$altez/100)^2)

#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- c("bmi","addom","coscia","bicipite")

#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")</pre>
```

Table 1: Table continues below

id_sogg	eta	peso	altez	collo	torace	addom	anca	coscia
1	23	154.2	172.1	36.2	93.1	85.2	94.5	59
2	22	173.2	183.5	38.5	93.6	83	98.7	58.7
3	22	154	168.3	34	95.8	87.9	99.2	59.6
4	26	184.8	183.5	37.4	101.8	86.4	101.2	60.1
5	24	184.2	181	34.4	97.3	100	101.9	63.2
6	24	210.2	189.9	39	104.5	94.4	107.8	66

ginocch	caviglia	bicipite	avanbr	polso	bmi
37.3	21.9	32	27.4	17.1	23.63
37.3	23.4	30.5	28.9	18.2	23.33
38.9	24	28.8	25.2	16.6	24.67
37.3	22.8	32.4	29.4	18.2	24.88
42.2	24	32.2	27.7	17.7	25.52
42	25.6	35.7	30.6	18.8	26.46

STATISTICHE DESCRITTIVE

Si presentano innanzitutto le statistiche descrittive

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

bmi	addom	coscia	bicipite
Min. :18.02	Min.: 69.40	Min. :47.20	Min. :24.80
1st Qu.:23.03	1st Qu.: 84.47	1st Qu.:56.00	1st Qu.:30.20
Median:25.02	Median: 90.95	Median: 59.00	Median $:32.00$
Mean $:25.30$	Mean: 92.31	Mean $:59.27$	Mean $:32.22$
3rd Qu.:27.31	3rd Qu.: 99.20	3rd Qu.:62.30	3rd Qu.:34.33
Max. :39.08	Max. :126.20	Max. :74.40	Max. :39.10

```
pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione
```

	bmi	addom	coscia	bicipite
bmi	1	0.9142	0.7886	0.726
addom	0.9142	1	0.7373	0.6568
coscia	0.7886	0.7373	1	0.7459
bicipite	0.726	0.6568	0.7459	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,2))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```



```
par(mfrow=c(2,2))
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


REGRESSIONE - Esempio 1

Si effettua ora la regressione multipla di "bmi" su "addom", "coscia" e "bicipite".

```
#-- R CODE
mod1 <- lm(bmi ~ addom + coscia + bicipite,d)
pander(summary(mod1),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-7.866	0.9545	-8.241	1.051e-14
addom	0.2281	0.01139	20.02	2.105e-53
coscia	0.1152	0.02684	4.292	2.558e-05
bicipite	0.1639	0.04035	4.062	6.555 e-05

Table 6: Fitting linear model: bmi \sim addom + coscia + bicipite

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
248	1.204	0.8731	0.8715

pander(anova(mod1),big.mark=",")

Table 7: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
addom	1	2,329	2,329	1,607	2.363e-109
coscia	1	80.07	80.07	55.26	1.783e-12
bicipite	1	23.91	23.91	16.5	6.555e-05
Residuals	244	353.6	1.449	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
34.82	2.749e-08

pander(dwtest(mod1),big.mark=",")

Table 9: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.84	0.09524	true autocorrelation is greater than 0

Il modello risulta significativo e tutti i parametri risultano significativi. Si effettua ora una diagnostica sugli errori cominciando da rappresentazioni grafiche.

```
#-- R CODE
plot(mod1, which=1, pch=19)
```


plot(mod1, which=2, pch=19)

plot(mod1,which=3,pch=19)

plot(mod1,which=4,pch=19)
abline(h=2*4/nrow(d),col=2,lwd=3,lty=2)

plot(mod1,which=5,pch=19)


```
#-- R CODE
par(mfrow=c(2,2))
plot(d$addom,resid(mod1),pch=19,xlab="Addom",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(d$coscia,resid(mod1),pch=19,xlab="Coscia",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(d$bicipite,resid(mod1),pch=19,xlab="Bicipite",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(1:nrow(d),rstudent(mod1),pch=19,xlab="Observation Index",ylab="Residual Studentized",type="h")
abline(h=2,lwd=3,lty=2,col=2)
abline(h=-2,lwd=3,lty=2,col=2)
```


Nel Q-Q plot e dalla distribuzione teorica dei residui si vede una distribuzione normale poiché i quantili della distribuzione teorica normale si sovrappongono a quelli della distribuzione empirica. Tuttavia nella parte superiore del Q-Q plot si osserva la presenza di valori anomali in quanto i quantili della distribuzione teorica normale in questa parte non si sovrappongono a quelli della distribuzione empirica.

La presenza di valori anomali è confermata dal grafico residui-valori previsti.

Per verificare se effettivamente esistono tali outlier si considera nel grafico il grafico dei leverage e delle distanze di Cook che mostrano con chiarezza la presenza di valori al di fuori dei limiti di tolleranza. Per ulteriore verifica si considera quindi il grafico dei DFFITS.

```
#-- R CODE

plot(covratio(mod1),pch=19,ylab="Covratio")
abline(h=1-3*7/nrow(d),lwd=3,col=2,lty=2)
abline(h=1+3*7/nrow(d),lwd=3,col=2,lty=2)
```



```
plot(dffits(mod1),pch=19,ylab="DFFITS",type="h")
abline(h=2*sqrt(4/nrow(d)),lwd=3,col=2,lty=2)
abline(h=-2*sqrt(4/nrow(d)),lwd=3,col=2,lty=2)
```


dfbetaPlots(mod1,pch=19,main="DFBETA")

DFBETA

Anche in questo caso si vedono punti al di fuori delle soglie di tolleranza. Facendo riferimento a questa misura dei DFFITS si elencano i punti influenti o outlier: 19, 29, 35, 38, 39, 51, 76, 104, 124, 136, 174, 188, 204, 212, 236, 238.

```
#-- R CODE
d1 <- d[-c(19, 29, 35, 38, 39, 51, 76, 104, 124, 136, 174, 188, 204, 212, 236, 238),]
mod1 <- lm(bmi ~ addom + coscia + bicipite,d1)

pander(summary(mod1),big.mark=",")
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-7.215	0.8374	-8.616	1.168e-15
addom	0.2042	0.01087	18.79	3.343e-48
coscia	0.1139	0.02486	4.583	7.544e-06
bicipite	0.2127	0.03824	5.562	7.443e-08

Table 11: Fitting linear model: bmi \sim addom + coscia + bicipite

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
232	1.01	0.8892	0.8878

pander(anova(mod1),big.mark=",")

Table 12: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
addom	1	1,748	1,748	1,714	5.06e-108
coscia	1	87.71	87.71	85.99	1.428e-17
bicipite	1	31.55	31.55	30.94	7.443e-08
Residuals	228	232.6	1.02	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
3.984	0.1364

pander(dwtest(mod1),big.mark=",")

Table 14: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.824	0.08216	true autocorrelation is greater than 0

#-- R CODE
plot(mod1,which=1,pch=19)

plot(mod1, which=2, pch=19)

plot(mod1, which=3, pch=19)

plot(mod1,which=4,pch=19)
abline(h=2*4/nrow(d1),col=2,lwd=3,lty=2)

plot(mod1,which=5,pch=19)


```
#-- R CODE
par(mfrow=c(2,2))
plot(d1$addom,resid(mod1),pch=19,xlab="Addom",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(d1$coscia,resid(mod1),pch=19,xlab="Coscia",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(d1$bicipite,resid(mod1),pch=19,xlab="Bicipite",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(1:nrow(d1),rstudent(mod1),pch=19,xlab="Observation Index",ylab="Residual Studentized",type="h")
abline(h=2,lwd=3,lty=2,col=2)
abline(h=-2,lwd=3,lty=2,col=2)
```


Per verificare più precisamente la normalità dei residui si propongono i test sulla normalità dei medesimi. Tutti i test accettano l'ipotesi nulla di normalità dei residui.

```
#-- R CODE
hist(resid(mod1),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)),col=2,lwd=2)
```


pander(shapiro.test(resid(mod1)))

Table 15: Shapiro-Wilk normality test: resid(mod1)

Test statistic	P value
0.9907	0.1472

pander(ks.test(resid(mod1), "pnorm"))

Table 16: One-sample Kolmogorov-Smirnov test: resid(mod1)

Test statistic	P value	Alternative hypothesis
0.03307	0.9615	two-sided

Si verifica l'omoschedasticità e l'incorrelazione dei residui. Già i grafici fanno intuire che i residui sono omoschedastici e l'incorrelati tuttavia si effettua comunque una verifica con gli appositi test.

```
#-- R CODE
pander(white.test(mod1),big.mark=",")
```

Test.statistic	P.value
3.984	0.1364

pander(dwtest(mod1),big.mark=",")

Table 18: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.824	0.08216	true autocorrelation is greater than 0

REGRESSIONE - Esempio 2

In un secondo esempio si considerano 5 variabili "peso" (var.dip) e "eta", "altezza", "circonferenza toracica", "circonferenza addominale".

```
#-- R CODE
VAR_NUMERIC <- c("eta","peso","altez","torace","addom")
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive</pre>
```

eta	peso	altez	torace	addom
Min. :22.00	Min. :118.5	Min. :162.6	Min.: 79.30	Min.: 69.40
1st Qu.:35.75	1st Qu.:158.2	1st Qu.:173.4	1st Qu.: 94.15	1st Qu.: 84.47
Median $:43.00$	Median: 176.1	Median $:177.8$	Median: 99.60	Median: 90.95
Mean $:44.85$	Mean : 178.1	Mean : 178.6	Mean $:100.67$	Mean: 92.31
3rd Qu.:54.00	3rd Qu.:196.8	3rd Qu.:183.5	3rd Qu.:105.30	3rd Qu.: 99.20
Max. $:81.00$	Max. :262.8	Max. :197.5	Max. $:128.30$	Max. $:126.20$

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

	eta	peso	altez	torace	addom
eta	1	-0.01269	-0.2363	0.1848	0.2452
peso	-0.01269	1	0.5136	0.8914	0.8742
altez	-0.2363	0.5136	1	0.2241	0.1886
torace	0.1848	0.8914	0.2241	1	0.9103
addom	0.2452	0.8742	0.1886	0.9103	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
par(mfrow=c(2,3))
```



```
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


Si osserva la forte correlazione esistente tra circonferenza torace e addominale. Si regrediscono ora le 4 variabili esplicative sulla variabile dipendente.

```
#-- R CODE
mod1 <- lm(peso ~ eta + altez + torace + addom, d)
pander(summary(mod1),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-283.5	12.62	-22.47	2.998e-61
eta	-0.2886	0.03648	-7.912	8.958e-14
altez	1.221	0.06864	17.79	6.761e-46
torace	1.447	0.1266	11.43	1.678e-24
addom	1.201	0.102	11.77	1.273 e-25

Table 22: Fitting linear model: peso ~ eta + altez + torace + addom

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
248	6.674	0.9405	0.9395

pander(anova(mod1),big.mark=",")

Table 23: Analysis of Variance Table

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	$\Pr(>F)$
eta	1	29.29	29.29	0.6575	0.4182
altez	1	$50,\!209$	50,209	$1,\!127$	3.075e-93
torace	1	114,620	114,620	2,573	2.823e-131
addom	1	$6,\!176$	$6,\!176$	138.6	1.273e-25
Residuals	243	$10,\!825$	44.55	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
2.282	0.3195

pander(dwtest(mod1),big.mark=",")

Table 25: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
2.044	0.6072	true autocorrelation is greater than 0

E' respinta dal test F l'ipotesi nulla che il modello nel suo complesso non spieghi la variabile dipendente. Inoltre il modello ha un ottimo fitting (0.9405) e tutte le variabili risultano significative. Per quanto riguarda la collinearità vediamo che l'indice di tolleranza riporta valori bassi per le variabili circonferenza addominale e toracica; tuttavia la variance inflation si mantiene ampiamente sotto la soglia di 20. Per prendere una decisione analizziamo le altre diagnostiche di collinearità.

```
#-- R CODE
pander(ols_eigen_cindex(mod1),big.mark=",")
```

Table 26: Table continues below

Eigenvalue	Condition Index	intercept	eta	altez	torace
4.932	1	4.614e-05	0.002439	4.877e-05	4.499e-05
0.05751	9.261	0.0009619	0.8689	0.001506	0.0008409
0.008704	23.81	0.03046	0.0178	0.02893	0.01328
0.0007542	80.87	0.04577	0.001988	0.2561	0.7989
0.0005915	91.32	0.9228	0.1089	0.7134	0.1869

addom	
8.182e-05 0.001091 0.1027	

8	addom	
	0.6886 0.2075	

pander(ols_vif_tol(mod1),big.mark=",")

Variables	Tolerance	VIF
eta	0.8539	1.171
altez	0.8697	1.15
torace	0.168	5.953
addom	0.1652	6.052

Gli ultimi due autovalori hanno valori molto piccoli e condition index ampiamente oltre la soglia di 30. Il 4 autovalore spiega le varibili "circonf", "addom" e "torace" rispettivamente per il 68.8% e 79.8%. Se ne deduce che i due regressori sono correlati (è confermato il suggerimento dato dall'indice di tolleranza).

Si ristima quindi modello lineare escludendo la variabile esplicativa circonferenza toracica.

```
#-- R CODE
mod1 <- lm(peso ~ eta + altez + addom, d)
pander(summary(mod1),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-248.4	15.15	-16.4	2.968e-41
eta	-0.3139	0.04506	-6.967	2.995e-11
altez	1.304	0.08447	15.44	5.719e-38
addom	2.251	0.05483	41.05	1.525e-111

Table 30: Fitting linear model: peso \sim eta + altez + addom

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
248	8.26	0.9085	0.9073

pander(anova(mod1),big.mark=",")

Table 31: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
eta	1	29.29	29.29	0.4293	0.5129
altez	1	50,209	50,209	735.9	1.276e-75
addom	1	114,974	114,974	1,685	1.525e-111
Residuals	244	16,647	68.23	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
1.896	0.3875

pander(dwtest(mod1),big.mark=",")

Table 33: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.84	0.0901	true autocorrelation is greater than 0

#-- R CODE pander(ols_eigen_cindex(mod1),big.mark=",")

Eigenvalue	Condition Index	intercept	eta	altez	addom
3.937	1	7.688e-05	0.003864	7.73e-05	0.0006788
0.05444	8.504	0.001834	0.8623	0.00253	0.009936
0.007582	22.79	0.02601	0.03077	0.02159	0.9741
0.0006166	79.91	0.9721	0.1031	0.9758	0.01524

pander(ols vif tol(mod1),big.mark=",")

Variables	Tolerance	VIF
eta	0.8571	1.167
altez	0.8795	1.137
addom	0.8755	1.142

Il modello è ancora significativo con un elevatissimo R^2 (0.9085) e tutte le variabili risultano ancora significative. In questo caso però l'indice di tolleranza ha sempre valori prossimi a 1 e la variance inflation è molto bassa. Il condition index è elevato per gli ultimi 2 valori ma vediamo come ogni autovalore spieghi una proporzione di varianza elevata per variabili esplicative diverse (il 2° età, il 3° circonf. addom, il 4° altezza). Il problema di col inearità è quindi risolto.

Affrontiamo ora il problema della normalità degli errori. Si consideri innanzitutto la distribuzione dei residui

```
#-- R CODE
hist(resid(mod1),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)),col=2,lwd=2)
```


pander(shapiro.test(resid(mod1)))

Table 36: Shapiro-Wilk normality test: resid(mod1)

Test statistic	P value
0.9942	0.4596

pander(ks.test(resid(mod1), "pnorm"))

Table 37: One-sample Kolmogorov-Smirnov test: resid(mod1)

Test statistic	P value	Alternative hypothesis
0.3765	0 * * *	two-sided

Possiamo accettare l'ipotesi di normalità dei residui.

```
#-- R CODE
plot(mod1,which=1,pch=19)
```


plot(mod1,which=2,pch=19)

plot(mod1,which=3,pch=19)

plot(mod1,which=4,pch=19)
abline(h=2*4/nrow(d1),col=2,lwd=3,lty=2)

plot(mod1,which=5,pch=19)

#-- R CODE
plot(1:nrow(d),rstudent(mod1),pch=19,xlab="Observation Index",ylab="Residual Studentized",type="h")
abline(h=2,lwd=3,lty=2,col=2)
abline(h=-2,lwd=3,lty=2,col=2)

Si osserva tuttavia che vi sono osservazioni influenti come anche dai grafici dei residui studentizzati, della distanza di Cook e dei quantili dei residui.

REGRESSIONE - Esempio 3

Si propone un terzo esempio in cui la variabile dipendente è il "peso" e le variabili esplicative sono "circonferenza torace", "collo", "addome", "coscia" Si considerano innanzitutto le analisi descrittive.

```
#-- R CODE
VAR_NUMERIC <- c("peso","torace","collo","addom","coscia")
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive</pre>
```

peso	torace	collo	addom	coscia
Min. :118.5	Min.: 79.30	Min. :31.10	Min.: 69.40	Min. :47.20
1st Qu.:158.2	1st Qu.: 94.15	1st Qu.:36.38	1st Qu.: 84.47	1st Qu.:56.00
Median: 176.1	Median: 99.60	Median $:38.00$	Median: 90.95	Median: 59.00
Mean : 178.1	Mean $:100.67$	Mean $: 37.95$	Mean: 92.31	Mean $:59.27$
3rd Qu.:196.8	3rd Qu.:105.30	3rd Qu.:39.42	3rd Qu.: 99.20	3rd Qu.:62.30
Max. $:262.8$	Max. $:128.30$	Max. $:43.90$	Max. $:126.20$	Max. $:74.40$

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

	peso	torace	collo	addom	coscia
peso	1	0.8914	0.8099	0.8742	0.8528
torace	0.8914	1	0.7691	0.9103	0.7082
collo	0.8099	0.7691	1	0.7293	0.669
addom	0.8742	0.9103	0.7293	1	0.7373
coscia	0.8528	0.7082	0.669	0.7373	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
par(mfrow=c(2,3))
```



```
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-180	9.6	-18.75	4.185e-49
torace	1.212	0.1675	7.236	6.038e-12
collo	2.137	0.3734	5.722	3.079e-08
addom	0.3527	0.131	2.693	0.007582
coscia	2.065	0.1653	12.49	5.503e-28

Table 41: Fitting linear model: peso ~ torace + collo + addom + coscia

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
248	8.281	0.9084	0.9069

pander(anova(mod1),big.mark=",")

Table 42: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
torace	1	144,493	144,493	2,107	9.864e-122
collo	1	6,883	6,883	100.4	5.333e-20
addom	1	3,123	3,123	45.54	1.088e-10
coscia	1	10,698	10,698	156	5.503e-28
Residuals	243	16,663	68.57	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
4.156	0.1252

pander(dwtest(mod1),big.mark=",")

Table 44: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.758	0.02538 *	true autocorrelation is greater than 0

```
#-- R CODE
hist(resid(mod1),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)),col=2,lwd=2)
```


pander(shapiro.test(resid(mod1)))

Table 45: Shapiro-Wilk normality test: resid(mod1)

Test statistic	P value
0.994	0.4261

pander(ks.test(resid(mod1), "pnorm"))

Table 46: One-sample Kolmogorov-Smirnov test: resid(mod1)

Test statistic	P value	Alternative hypothesis
0.4134	0 * * *	two-sided

```
#-- R CODE
hist(resid(mod1),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)),col=2,lwd=2)
```


pander(shapiro.test(resid(mod1)))

Table 47: Shapiro-Wilk normality test: resid(mod1)

Test statistic	P value
0.994	0.4261

pander(ks.test(resid(mod1), "pnorm"))

Table 48: One-sample Kolmogorov-Smirnov test: resid(mod1)

Test statistic	P value	Alternative hypothesis
0.4134	0 * * *	two-sided

#-- R CODE
pander(ols_eigen_cindex(mod1),big.mark=",")

Table 49: Table continues below

Eigenvalue	Condition Index	intercept	torace	collo	addom
4.989	1	0.0001201	3.876 e - 05	5.505 e-05	7.48e-05
0.006611	27.47	0.2273	0.006842	0.008227	0.1158

Eigenvalue	Condition Index	intercept	torace	collo	addom
0.002341	46.17	0.05424	0.03962	0.01108	0.04392
0.001111	67.02	0.6577	0.0009945	0.8181	0.1508
0.000665	86.62	0.06058	0.9525	0.1625	0.6893

coscia	
0.0001147	
0.001077	
0.9623	
0.007978	
0.02852	

pander(ols_vif_tol(mod1),big.mark=",")

Variables	Tolerance	VIF
torace collo	0.1476 0.3772	6.774 2.651
addom coscia	$0.1541 \\ 0.4192$	$6.488 \\ 2.385$

Gli indici di tolleranza e varianza multifattoriale sono rispettivamente molto lontani da zero e molto al di sotto della soglia di 20. Tuttavia guardando il condition index si vede che per il 3, 4, 5 autovalore è superiore alla soglia di 30.

Si osserva poi guardando la proporzione di varianza associata ad ogni variabile che tale proporzione è molto elevata per "coscia" in corrispondenza dell'autovalore 3 (0.96), per "collo" in corrispondenza dell'autovalore 4 (0.81), per "torace" in corrispondenza dell'autovalore 5 (0.95). Il modello è quindi inficiato da multicollinearità: occorre riconcepirlo in un altro modo per superare il problema.