

Center for Statistics and Analytical Research

INTRODUCTION

Artificial neural networks are statistical learning models, inspired by biological neural networks (central nervous systems, such as the brain), that are used in machine learning. These networks are represented as systems of interconnected "neurons", which send messages to each other. The connections within the network can be systematically adjusted based on inputs and outputs, making them ideal for supervised learning. ANNs are heavily used in image and speech recognition and their applications are reflected in other fields such as weather prediction, financial and transportation.

In this project, we used real dataset provided by a financial company. The company requested us to build an algorithm for Network in Base SAS. This data contains observations and 500+ attributes.

METHODS

Training a neural network basically means calibrating all of the "weights" by repeating two key steps, forward propagation and back propagation. In forward propagation, we apply a set of weights to the input data and calculate an output. For the first forward propagation, the set of weights is selected randomly. In back propagation, we measure the margin of error of the output and adjust the weights accordingly to decrease the error. Neural networks repeat both forward and back propagation until the weights are calibrated to accurately predict an output. Each repetition of forward and back propagation to adjust weights is called an iteration or an epoch.

In this project we developed code in SAS (Macros) to implement standard neural network with one hidden layer (Fig 1). Three separate macros were created for forward propagation, backward propagation and to control the iterations (epochs). In this model, we used sigmoid activation function to transform the input signal into an output signal and weights are adjusted with learning rate 0.1. With the random weights, first observation was forward propagated, error was calculated and weights were adjusted through backward propagation. The adjusted weights of the first observation were transferred to second observation and the process is repeated until the last observation (Fig 2 & Fig 3). Once the weights are updated for last observation, those weights are used to forward propagate on train and test data to generate ASE and misclassification rate. This whole process is termed as one iteration. The weights of first iteration are fed into the second iteration and the process is repeated until the desired number of iterations. Running iterations in batches is another unique feature in this algorithm. This feature enables us to stop and start the iterations as needed without sacrificing the time.

Standardizing the data and shuffling the input data are two steps that are critical for this algorithm to perform as expected. This model is scalable to increase the input variables and any number of hidden nodes. Hundred iterations were run on train and test data and the accuracy, misclassification rate and ASE were compared with the same model ran in Python (Fig 4).

Building Neural Network Model in BASE SAS® (From Scratch)

Soujanya Mandalapu Department of Statistics & Analytical Sciences

Advisor: Dr. Sherry Ni

Kennesaw State I JNIVERSITY ... College of Science and Mathematics Department of Statistics and **Analytical Sciences**

Implementing Neural Network Algorithm

1 0.62249 1.0143 0.7190 1.1830 0.92087 0.70797 0.62601 0.90365 0.11236 0.64727

OutputZ | NNetError | Predicted

Varl H2 Var2 H2 Var3 H2 Var4 H2 Var5 H2 Bias H2 Varl H3 Var2 H3 Var3 H3

0.17533 | 0.58943 | 0.13338 | 0.52636 | 0.24904 | 0.18099 | 0.91941 | 0.31108 | 0.36089

Step 3: NODE values (H1,H2,H3, OutputZ) and NNetError

are updated after Front Propagation

Varl | Var2 | Var3 | Var4 | Var5 | Varl H1 | Var2 H1 | Var3 H1 | Var4 H1 | Var5 H1 | Bias H1

1 0.62249 1.0143 0.7190 1.1830 0.92087 0.70797 0.62601 0.90365 0.11236 0.64727

OutputZ NNetError Predicted

Varl H2 Var2 H2 Var3 H2 Var4 H2 Var5 H2 Bias H2 Var1 H3 Var2 H3 Var3 H3

0.17533 | 0.58943 | 0.13338 | 0.52636 | 0.24904 | 0.18099 | 0.91941 | 0.31108 | 0.36089

Var4 H3 Var5 H3 Bias H3 H1 Output H2 Output H3 Output Bias Output

0.98716 | 0.44222 | 0.98709 | 0.13747 | 0.33574 | 0.89631 | 0.44536

Var4 H3 Var5 H3 Bias H3 H1 Output H2 Output H3_Output Bias_Output

0.98716 | 0.44222 | 0.98709 | 0.13747 | 0.33574 | 0.89631 | 0.44536

Forward **One Iteration Complet** Update weights

Fig 2. Neural Network Algorithm

Fig 1. Neural Network Architecture

Step 1: Standardized Data before being fed into model Step 4: Updating weights using Back Propagation Algorithm

Varl	Var2	Var3	Var4	Var5	Varl_H1	Var2_H1	Var3_H1	Var4_H1	Var5_H	l Bias_H1	Varl	Var2	Var3	Var4	Var5	Varl_H1	Var2_H1	Var3_H	Var4_H1	Var5_H
1	0.62249	1.0143	0.7190	1.1830	0	0	0	0	0	0	1	0.62249	1.0143	0.7190	1.1830	0.92082	0.70794	0.62596	0.90361	0.11230
Varl_E	I2 Var2_	H2 Va	ır3_H2	Var4_E	12 Var5_1	H2 Bias _	H2 Var	1_H3 Var	2_H3 Va	ar3_H3	Varl_	H2 Var2	2_H2 V	ar3_H2	Var4_F	H2 Var5_	H2 Bias	_H2 Var	1_H3 Var2	_H3 Va
0	0		0	0	0	0		0	0	0	0.174	0.58	910	0.13284	0.5259	7 0.248	41 0.18	0.9	1919 0.31	093 0.
Var4_H	3 Var5_	H3 Bia	as _H3	H1_Out	out H2_O	ıtput H3_	Output I	Bias _Outp	ut		Var4_				H1_Out	put H2_O	utput H3	_Output	Bias _Outpu	t
0	0		0	0	0		0	0			0.9870	0 0.44	195 0).98686	0.1269	4 0.32	680 (0.88571	0.43449	
					_		•		<u> </u>										1	\neg
Hl	H2	1	H3	Actual	Outpu	tZ NN	etError	Predicte	i l		Hl	I	H2	Н3	Actu	ıal Ou	tputZ N	NetError	Predicted	
						$\overline{}$		+	_		0.9683	ാ വഴ	2225	0.97586	1 0	1 0	4931	0.84931	1 4	- 1

Step 5: Front Propagation was run using weights updated from back propagation. Step 2: Initial Weights are randomly generated This completes one iteration. Varl Var2 Var3 Var4 Var5 Var1 H1 Var2 H1 Var3 H1 Var4 H1 Var5 H1 Bias H1

Varl	V	ar2	Vai	r3 \	Var4	Var5	Vai	r 1_H1	Var	2_H1	Var	3_H1	Var4	_H1	Var5	5_H1	Bias
1	0.6	52249	1.01	43 0	0.7190	1.1830	0.9	2087	0.7	0797	0.6	2601	0.90	365	0.11	236	0.64
Varl_E	H2	Var2	Н2	Var	3_H2	Var4_	H2	Var5_	Н2	Bias _	H2	Var	L_H3	Var	2_H3	Vai	r3_H3
0.1753	3	0.589	943	0.13	3338	0.5263	36	0.249	04	0.180	99	0.91	1941	0.3	1108	0.3	6089
Var4_H	[3	Var5_	нз	Bias	_Н3	H1_Ou	tput	H2_O	utpu	ıt H3_	Out	put I	Bias _	Outp	ut		
Var4_H 0.98716	\rightarrow	Var5 _ 0.442			_H3	H1_Ou	-		utpu 3574	+	Out	-		Outp	ut		
0.98716	\rightarrow	0.442	222		8709	0.1374	47	0.33	574	0.	.8963	1	0.44	1536			
	\rightarrow	0.442				0.1374	-	0.33		0.	.8963	-	0.44				

Step 6: After 100 iterations error is reduced substantially Varl Var2 Var3 Var4 Var5 Var1_H1 Var2_H1 Var3_H1 Var4_H1 Var5_H1 Bias_H1 1 0.62249 1.0143 0.7190 1.1830 0.92369 0.70972 0.62887 0.90567 0.11569 0.65009

Varl_H2 V	Var2_H2	Var3_H2	Var4_H2	Var5_H2	Bias _H2	Varl_H3	Var2_H3	Var3_H3
0.17843	0.59136	0.13653	0.52859	0.25270	0.18409	0.91554	0.30867	0.35696

Var4_H3	Var5_H3	Bias _H3	H1_Output	H2_Output	H3_Output	Bias _Output
0.98438	0.43764	0.98322	-0.71269	-0.45459	0.043792	-0.41526
Hl	H2	Н3	Actual	OutputZ	NNetErro	r Predicted

Fig 3. Implementation of Neural Network

Performance of Our Algorithm vs Python Algorithm

SUMMARY

- ➤ Best Accuracy (80.66%) was found at 80th iteration and the performance is similar to Python Neural Network
- > The nuts and bolts of Neural Networks has been shown
- ➤ No such algorithm exist in Base SAS using Macros
- > This algorithm is beneficial for companies using Base SAS

Future Work

Model can be trained with more number of variables and observations to achieve better accuracy.

SAS CODE

```
%macro neuraltest(dsn=, hiddenextension=, hiddennodes=, outextension=,
outputnodes=, LR=, StartIteration=, EndIteration=);
 %let dsid=%sysfunc(open(&dsn));
 %let nvar=%sysfunc(attrn(&dsid, nvars));
%GENERATEVARLIST(DSN=SOU_FOR.curnnetvar_stdtrain, exclude=RESP_DV MK);
%let inputvarname = &varname;
/*********** Preparing the data for Front Propagation********/
data hidden weights (drop=&inputvarname);
  %do p=1 %to &nvar;
   %let var=%sysfunc(varname(&dsid, &p));
      %do g=1 %to &hiddennodes;
       &var=&var&hiddenextension&q;
       &var&hiddenextension&g=rand('uniform');
/* Close the data set
%let rc=%sysfunc(close(&dsid));
/************************ Macro for FRONT PROPAGATION *******************/
%MACRO FRONTPROPAGATION (fpdsn=, fpdsnout=);
 data &fpdsnout(drop=k l a b);
 set &fpdsn;
 array inputdata(*) &inputvarname;
 array hiddenweights(&nvar, &hiddennodes) &hidden_weights_name;
 array hiddenintercepts(*) &hidden interceptname;
  array hiddennodes(*) &hidden nodename;
  array outweights (&hiddennodes, &outputnodes) &output_weights_name;
  array outintercepts(*) &out interceptname;
  array outputnodes(*) &output nodename;
   do k=1 to &hiddennodes;
        hiddennodes(k) = hiddennodes(k) + hiddenintercepts(k);
      do l=1 to &nvar;
         put k=l=hiddennodes(k)=;
        hiddennodes(k)=hiddennodes(k)+(inputdata(l) * hiddenweights(l, k));
       hiddennodes (k) = 1/(1+exp(-hiddennodes(k)));
       put k=l=hiddennodes(k)=;
 NNetError=RESP_DV-OutputZ; NNetErrorSQ = NNetError*NNetError;
 NNetPred1 = OutputZ;
 NNetPred0=1-NNetPred1;
 if NNetPred1 > NNetPred0 then NNPrediction= 1;
 else NNPrediction= 0;
 NNCorrect = (NNPrediction=RESP_DV);
/* ***********BACKPROPAGATION Macro ************** */
 %MACRO BACKPROPAGATION (bpdsn=, bpdsnout= );
 data &bpdsnout(drop=k 1);
array inputdata(*) &inputvarname;
array hiddennodes(*) &hidden nodename;
Array deltahiddennodes(*) &deltahidden nodename;
Array deltahiddenoutweight(*) &deltaoutput weightname;
Array deltahiddenintercept(*) &deltahidden interceptname;
Array hiddenintercepts(*) &hidden interceptname;
Array outweightsbp (*) &output weights name;
Array hiddenweights(&nvar, &hiddennodes) &hidden weights name;
 Array deltahiddenweights(&nvar, &hiddennodes) &deltahidden weightname;
DELTAZ= OutputZ*(1-OutputZ)*(Resp DV-OutputZ);
deltaBIAS RESP DV = LR*DELTAZ*1;
BIAS RESP DV=(BIAS RESP DV) + (deltaBIAS RESP DV);
do k=1 to &hiddennodes;
deltahiddennodes(k) = hiddennodes(k) * (1-hiddennodes(k)) *outweightsbp (k) *DELTAZ;
deltahiddenoutweight(k)=LR*DELTAZ*hiddennodes(k);
 do k=1 to &hiddennodes;
    do l=1 to &nvar;
     deltahiddenweights(1,k) = LR* deltahiddennodes(k)*inputdata(1);
 do k=1 to &hiddennodes
    do l=1 to &nvar
     hiddenweights(1, k) = hiddenweights(1, k) +deltahiddenweights(1, k);
 %do ITER= &StartIteration %to &EndIteration;
   %do loop=1 %to &TRAINNUMOBS;
 data curnnetvar_s;
 set SOU_FOR.curnnetvar_stdtrain (firstobs=&loop obs=&loop);run;
 data neuraltestdataFP;
 merge curnnetvar s neuraltestdataFP;
 %FRONTPROPAGATION(fpdsn=neuraltestdataFP, fpdsnout=neuraltestdataFP);
 %BACKPROPAGATION(bpdsn=neuraltestdataFP, bpdsnout=neuraltestdataBP);
 /* Front propogating the last observation weight on whole training dataset*/
  data neuraltestdataFPTRAIN ITR1(drop=i);
  set neuraltestdataFPTRAIN ITR1;
  do i = 1 to &TRAINNUMOBS;
  output;
 data neuraltestdataFPTRAIN ITR1;
 /* set neuraltestdataFPTRAIN ITR1;*
 merge SOU_FOR.curnnetvar_stdtrain neuraltestdataFPTRAIN_ITR1;
 %FRONTPROPAGATION(fpdsn=neuraltestdataFPTRAIN ITR1, fpdsnout=neuraltestdataFPTRAIN Fi
 /* calculating the Fit statisics on training dataset*****/
  select mean (nneterrorsq) as NNASE, sum (NNCorrect )/count(*) as NNAccuracy,
  (1-(sum(NNCorrect )/count(*))) as NNMCR from neuraltestdataFPTRAIN_FinaLITR&ITER;
  /*Running the main macro by passing all parameters*/
 %neuraltest(dsn=curnnetvar1, hiddenextension= H, hiddennodes=3,
```

outextension=_RESPONSE, outputnodes=1, LR=0.1, StartIteration=4, EndIteration=6);