1 Постановка задачи многомерно

Пусть ${m x}=(x_1,x_2,...,x_n)\in \Omega$ — вектор параметров оптимизации

 $\Omega \in \mathbb{R}^n$ – множество допустимых решений, n>1

$$f(x)$$
 – целевая функция, $f:\mathbb{R}^n o \mathbb{R}$

Тогда задачу многомерной безусловной оптимизации запишем следующим образом:

$$\min_{\mathbf{x}\in\Omega}f(\mathbf{x})$$

В зависимости от используемой информации о целевой функции, выделяют методы:

- Нулевого порядка (только значения функции);
- Первого порядка (значения функции и её частных производных первого порядка);
- в Второго порядка (значения функции и её частных производных первого и второго порядка).

Tomgeorbo... | > Rumhtaphing Kon-your | Chile 12=0 | C=D

2 Математические основы много

Пусть функция нескольких переменных $f:\mathbb{R}^n o\mathbb{R}$ в точке x имеет все частные производные первого

 $\operatorname{grad} f(x) = \nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right),$

составленный из производных первого порядка функции f(x) в точке x, называют градиентом функции в точке.

Градиент является направлением наискорейшего роста функции. Антиградиент – $\nabla f(x)$ — направлением наискорейшего убывания функции.

Точка $\boldsymbol{x}^* \in \mathbb{R}^n$, в которой градиент функции $f(\boldsymbol{x})$ обращается в нулевой вектор

$$\mathbf{grad}\; f\left(\boldsymbol{x}^{*}\right) = \overline{0} \Leftrightarrow \frac{\partial f\left(\boldsymbol{x}^{*}\right)}{\partial x_{1}} = \frac{\partial f\left(\boldsymbol{x}^{*}\right)}{\partial x_{2}} = \ldots = \frac{\partial f\left(\boldsymbol{x}^{*}\right)}{\partial x_{n}} = 0$$

называют стационарной точкой.

Tomographo. . | Frunchtaphed Kon-year |

Ngudeyout patr bo $\frac{1}{3}(x_1...x_n) = \sqrt{x_n^{d_1}...x_n^{d_n}}$ $\chi \in C_{\Gamma}(n)$

T. \$ \$1 => \$=CKHP.

премума первого порядка. Пусть функция $f(x): \mathbb{R}^* o \mathbb{R}$ дифференцируема x eR

grad
$$f(x^*) = \nabla f(x^*) = (0, 0, ..., 0)$$

Математические основы много

Пусть $A = (a_n)$: i, j = 1, 2, ..., n — симметричная матрица размером $n \times n$. Матрицу A называют положительно определенной, если для любого $h \in \mathbb{R}^n, h \neq 0$ выполнено условие:

$$(h,Ah) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} h_{i} h_{j} > 0$$

Если (h,Ah) < 0, то матрица A — отрицательно определенная.

Установить, является ли симметричная матрица положительно (отрицательно) определенной, можно по критерию Сильвестра:

Критерий Сильвестра. Симметричная матрица является положительно определенной тогда и только тогда,

det
$$A_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \end{vmatrix} > 0, \ k = 1, 2, \dots, l$$

Для отрицательной определенности необходимо и достаточно выполнения следующих условий:

$$(-1)^k \det A_k = (-1)^k \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} > 0, k = 1, 2, \dots, n$$

5 Математические основы много

Неотрицательная и неположительная определенность матрии

Теорема. Необходимым и достаточным условием неотрицательной определенности симметричной матрицы A (или квадратичной формы (h,Ah)) является выполнение следующих (2^n-1) неравенств:

$$\begin{aligned} &a_{11} \geq 0, a_{22} \geq 0, \dots, a_{nn} \geq 0; \\ &a_{11} \quad a_{12} \\ &a_{21} \quad a_{22} \\ \end{vmatrix} \geq 0, \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \\ \end{vmatrix} \geq 0, \dots, \begin{vmatrix} a_{n-1n-1} & a_{n-1n} \\ a_{nn-1} & a_{nn} \\ \end{vmatrix} \geq 0; \end{aligned}$$

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} \ge 0.$$

Соответственно, необходимым и достаточным условием неположительной определенности симметричной матрицы A (или квадратичной формы (h,Ah)) является выполнение (2^n-1) неравенств:

$$\begin{vmatrix} a_{11} \leq 0, a_{22} \leq 0, ..., a_{nn} \leq 0; \\ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \geq 0, \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} \geq 0, ..., \begin{vmatrix} a_{n-1n-1} & a_{n-1n} \\ a_{nn-1} & a_{nn} \end{vmatrix} \geq 0; \\ ...$$

$$(-1)^n \begin{vmatrix} a_{11} & \dots & a_{1s} \\ \dots & \dots & \dots \\ a_{s1} & \dots & a_{sn} \end{vmatrix} \ge 0.$$

rachon J-J. CUMT

1819=0

10=0

(00 = T)

Математические основы многом

Достаточные условие экстремума

Необходимое условие экстремума второго порядка. Пусть функция $f(x):\mathbb{R}^* \to \mathbb{R}$ двожды дифференцируемо в точке $x^* \in \mathbb{R}^n$.

Если x^* — точка безусловного локольного минимума функцииf(x) , то матрица Гессе:

 $H(x^*) = \left(\frac{\partial^2 f(x^*)}{\partial x_i \partial x_j}\right)_{i,j=1,2,...,n}$

неотрицательно определенная.

 \tilde{x} — точка безусловного локального максимума функции, то матрица fecce — неположительно определенная.

Достаточное условие. Пусть функция $f(x):\mathbb{R}^n\to\mathbb{R}$ дважды дифференцируема в т. x $\in \mathbb{R}^n$. Для того, чтобы т. x являлась точкой безусловного локального минимума функции f(x), достаточно выпалнения условий:

 $n \nabla f(x^*) = 0$

матрица Гессе Н(x*) положительно определенная.

Для того, чтобы т. являлась точкой безусловного локального максимума функции, достаточно

 $= \nabla f(x') = 0$

» матрица Гессе Н(x*) отрицательно определенная.

Пусть x^* — стационарная точка функции $f(x):\mathbb{R}^n \to \mathbb{R}$, причем функция f(x) дважды дифференцируема в некоторой окрестности точки $x^* \in \mathbb{R}^n$ и все её вторые частые производные непрерывны в точке x^* . Тогда:

- если второй дифференциал $d^2 f\left(x^*, \Delta x_1, \Delta x_2, ..., \Delta x_n\right) > 0$ для $\forall \Delta x_i$ из окрестности точки x^* , то точко x^* точка безусловного локального минимума функции f(x);
- если второй дифференциал $d^2 f(x^*, \Delta x_1, \Delta x_2, ..., \Delta x_n) < 0$ для $\forall \Delta x_i$ из окрестности точки x^* , то точко x^* точка безусловного локального максимума функции f(x);
- * если второй дифференциал $d^2 f\left(x^*, \Delta x_1, \Delta x_2, ..., \Delta x_n\right)$ знакопеременная функция $\Delta x_1, \Delta x_2, ..., \Delta x_n$, то есть принимает как положительные, так и отрицательные значения, то т. x^* не является точкой экстремума функции:
- $=ecnu\ d^2f\left(x^*,\Delta x_1,\Delta x_2,...,\Delta x_n\right)\geq 0$ или $d^2f\left(x^*,\Delta x_1,\Delta x_2,...,\Delta x_n\right)\leq 0$, причем существуют такие наборы значений $\Delta x_1,\Delta x_2,...,\Delta x_n$, не равных одновременно нулю, для которых значение второго дифференциаль обращается в нуль, то функция f(x) в т. x^* может иметь экстремум, но может и не иметь. В этом случае требуется дополнительное исследование.

Математические основы много

Алгоритм поиска безусловного экстремума

Рассмотрим алгоритм поиска безусловного экстремума функции нескольких переменных:

B

- 1. Найти точки возможного экстремума функции f(x) (критические):
 - точки, в которых $\nabla f(x) = 0$ стационарные точки функции f(x);
 - ullet точки, в которых частные производные $rac{\partial f(x)}{\partial x_i}, \ i=1,2,...,n$ не существуют.
- 2. Проверить выполнение достаточных условий экстремума.
- 3. Вычислить $f_{ext}(x)$.

8

9 Алгоритм поиска безусловного

Пример

Задание: исследовать на экстремум функцию $f(x) = f(x_1, x_2) = x_1^2 x_2^2 + \frac{x_1^2}{2} + \frac{x_2^2}{2} + x_1 x_2 + 1$

Решение

1) Определим градиент и матрицу Гессе функции f(x):

$$\nabla f(x) = \nabla f(x_1, x_2) = (2x_1x_2^2 + x_1 + x_2, 2x_1^2x_2 + x_1 + x_2)$$

$$H(x) = H(x_1, x_2) = \begin{pmatrix} 2x_2^2 + 1 & 4x_1x_2 + 1 \\ 4x_1x_2 + 1 & 2x_1^2 + 1 \end{pmatrix}$$

Найдем стационарные точки функции, в которых может быть экстремум:

$$\nabla f(x^*) = 0 \Rightarrow \begin{cases} 2x_1x_2^2 + x_1 + x_2 = 0 \\ 2x_1^2x_2 + x_1 + x_2 = 0 \end{cases} \Rightarrow x_1 = x_2 = 0$$

Притом нет точек, в которых частные производные не существуют. Таким образом, функция имеет одну критическую точку $x^* = (0,0)$.

10 Алгоритм поиска безусловного

Задание: исследовать на экстремум функцию $f(x) = f(x_1, x_2) = x_1^2 x_2^2 + \frac{x_1^2}{2} + \frac{x_2^2}{2} + x_1 x_2 + 1$

2) Матрица Гессе в критической точке $x^* = (0,0)$ имеет вид:

$$H(x^*) = H(0,0) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Определим главные миноры первого и второго порядка матрицы:

$$\det H_1(x^*) = 1 > 0;$$

$$\det H_2(x^*) = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$$

Следовательно, матрица неотрцательно определенная, требуется дополнительное исследование f(x) .

11 Алгоритм поиска безусловного экстремума

Задание: исследовать на экстремум функцию $f(x) = f\left(x_1, x_2\right) = x_1^2 x_2^2 + \frac{x_1^2}{2} + \frac{x_2^2}{2} + x_1 x_2 + 1$

3) Исследуем значения функции f(x):

$$f(x) = f(x_1, x_2) = x_1^2 x_2^2 + \frac{x_1^2}{2} + \frac{x_2^2}{2} + x_1 x_2 + 1 = (x_1 x_2)^2 + \frac{1}{2} (x_1 + x_2)^2 + 1,$$

то есть $f(x_1, x_2) > 1$ при $x_1 \neq 0, x_2 \neq 0$.

Тогда $f\left(x_1, x_2\right) > f\left(0, 0\right) \ \, \forall x \neq (0, 0)$ и, следовательно, в точке $x^* = \left(0, 0\right)$ функция имеет локальный минимум и принимает значение $f_{\min}\left(0, 0\right) = 1$.