CS150 Discussion 12

Jiachun Jin

```
K-means Clustering

The optimization problem

notations

goal

objective function

the iterative procedure

Proof of convergence

convergence of the objective function

convergence of the \mu_k's
```

K-means Clustering

The optimization problem

notations

- Data points: $\mathbf{x}_i \in \mathbb{R}^D, i=1,2,\ldots,N$
- *K*: number of clusters
- Centers of clusters: $\mu_k, k = 1, 2, \dots, K$
- indicator variables: $r_{nk} = \mathbb{I}[\mathbf{x}_i \text{ is assigned to the } k^{th} \text{cluster}] \in \{0,1\}$

goal

Find an assignment of data points to clusters, as well as a set of vectors $\{\mu_k\}$, such that the sum fo the squares of the distances of each data point to its closest vector μ_k is minimum.

objective function

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \|\mathbf{x}_i - m{\mu}_k\|_2^2$$

the iterative procedure

- 0. choose initial values for the μ_k
- 1. minimize J w.r.t. r_{ik} , $\forall i, k$, keeping the μ_k fixed
 - J involving different $i=1,2,\ldots,N$ are independent, so we can optimize for each i separately
 - choose r_{ik} to be 1 for whichever value of k gives the minimum value of $\|\mathbf{x}_i \boldsymbol{\mu}_k\|_2^2$
 - in other words, we simply assign the i^{th} data point to the closest cluster center
 - $lackbox{lack} r_{ik} = egin{cases} 1 & ext{if } k = rg\min_{j} \left\| \mathbf{x}_i oldsymbol{\mu}_j
 ight\|^2 \ 0 & ext{otherwise}. \end{cases}$
- 2. minimize J w.r.t. μ_k , keeping the r_{ik} fixed
 - J is convex w.r.t. $\mu_k, \forall k = 1, 2, \dots, K$
 - $lacksquare rac{\partial J}{\partial oldsymbol{\mu}_k} = 2 \sum_{i=1}^N r_{ik} \left(\mathbf{x}_i oldsymbol{\mu}_k
 ight)$
 - lacksquare By setting, the gradient to 0, $m{\mu}_k = rac{\sum_i r_{ik} \mathbf{x}_i}{\sum_i r_{ik}}$

repeat 1, 2 until convergence

Proof of convergence

convergence of the objective function

- $J \ge 0$ because it is a sum of squares
- Every iteration, *J* is strictly decreasing before the convergence
 - when μ_k 's are fixed, optimize over r_{ik} will reduce the value of J
 - when r_{ik} fixed, optimize over μ_k will reduce the value of J

ullet By the monotone convergence theorem, we know J will converge

convergence of the μ_k 's

- Because N and K are limited, the number of the partitions is limited
 - *J* has only limited number of values
 - $\exists T$, when the number of iterations > T, J is a constant \Rightarrow any μ_k will not change