Instructor: Dušan Djukić Date: 26.11.2021.

- 1. Given n positive integers, denote by d_k the greatest common divisor of all product of k of these integers. Prove that $d_k^2 \mid d_{k-1}d_{k+1}$ for $2 \le k \le n-1$.
- 2. Find all triples of positive integers (x, y, z) such that each of the numbers $x^2 1$, $y^2 2$, $z^2 4$ is divisible by x + y + z.
- 3. If $n \in \mathbb{N}$, prove that $\sum_{i=1}^{n} [\frac{n}{i}]^2 = \sum_{i=1}^{n} (2i-1)[\frac{n}{i}]$.
- 4. Let n and a be given positive integers. Suppose that for every $m \in \mathbb{N}$ there is an integer x such that $x^n \equiv a \pmod{m}$. Prove that $a = y^n$ for some integer y.
- 5. Prove that there exist infinitely many positive integers k for which the equation $\frac{x}{\tau(x)} = k$ has no solutions in \mathbb{N} .
- 6. We are given two integers a and b of different parities. Prove that there is an integer c such that c + a, c + b and c + ab are all perfect squares.
- 7. Find all pairs of positive integers a and b such that $lcm(a+1,b+1) = a^2 b^2$.
- 8. Find all triples of positive integers a, b, c such that $a^2 + b^2 = c^2$ and $a^3 + b^3 = (c-1)^3 1$. (HW)
- 9. Prove that for every $n \in \mathbb{N}$ there exist n pairwise disjoint integers whose sum of squares equals their sum of cubes. (HW)
- 10. Let a_i, b_i $(1 \le i \le k)$ be real numbers. Define $x_n = [a_1n + b_1] + \cdots + [a_kn + b_k]$. If x_1, x_2, \ldots is an arithmetic sequence, prove that $a_1 + a_2 + \cdots + a_k$ is an integer. (HW)

Instructor: Dušan Djukić Date: 27.11.2021.

- 8. Find all triples of positive integers a, b, c such that $a^2 + b^2 = c^2$ and $a^3 + b^3 = (c-1)^3 1$.
- 9. Prove that for every $n \in \mathbb{N}$ there exist n distinct integers whose sum of squares equals their sum of cubes.
- 10. Let a_i, b_i $(1 \le i \le k)$ be real numbers. Define $x_n = [a_1n + b_1] + \cdots + [a_kn + b_k]$. If x_1, x_2, \ldots is an arithmetic sequence, prove that $a_1 + a_2 + \cdots + a_k$ is an integer.
- 11. Suppose that all divisors of n have been divided into pairs so that the sum in each pair is a prime. Prove that all these sums are distinct.
- 12. Find all positive integers x for which $3x^4 + 10x^2 + 3$ is a square.
- 13. Find all positive integers n for which $n^4 + 1$ has a divisor d satisfying $n^2 \leqslant d \leqslant n^2 + 3n + 7$.
- 14. Denote by $\omega(n)$ the number of distinct prime divisors of n. Given any three positive integers a, b, c, prove that there exists a positive integer n for which $\omega(an + c) \ge \omega(bn + c)$.
- 15. Find all $n \in \mathbb{N}$ for which the sum of digits of n! is equal to 9. (HW)
- 16. Given a positive integer n, we write down the fraction $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}$, each in lowest terms. Define f(n) to be the sum of the numerators of these fractions. Find all n for which f(n) and f(999n) have opposite parities. (HW)
- 17. Prove that there are infinitely many integers n > 0 for which $[\sqrt[3]{n^2}] + [\sqrt[3]{n}]$ divides n. (HW)

Instructor: Dušan Djukić Date: 28.11.2021.

- 15. Find all $n \in \mathbb{N}$ for which the sum of digits of n! is equal to 9.
- 16. Given a positive integer n, we write down the fraction $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}$, each in lowest terms. Define f(n) to be the sum of the numerators of these fractions. Find all n for which f(n) and f(999n) have opposite parities.
- 17. Prove that there are infinitely many integers n > 0 for which $[\sqrt[3]{n^2}] + [\sqrt[3]{n}]$ divides n.
- 18. Let $1 = d_1 < d_2 < d_3 < \cdots < d_k = 4n$ be all divisors of 4n, where $n \in \mathbb{N}$. Prove that there is an index i for which $d_{i+1} d_i = 2$.
- 19. Denote by $d_k(n)$ the number of divisors of n that are not less than k. Evaluate $d_1(2021) + d_2(2022) + \cdots + d_{2020}(4040)$.
- 20. If n > 1 is an integer, prove that $4^n + 2^n + 1$ cannot be divisible by $3^n 2^n$.
- 21. Given a prime p, find all triples of positive integers a, b, c such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{p}$ and $a + b + c < 2p^{3/2}$.
- 22. Let p be a prime. Consider all pairs (a, b) of positive integers with $a < b < \frac{p}{2}$ for which $p \mid a^2 + b^2$. Prove that the sum $\sum a$ over all such pairs (a, b) equals $\frac{p^2 1}{24}$. (HW)
- 23. Find all pairs of positive integers (a,b) for which a is odd, b is a power of 2, and $a^2 ab + b^2$ is a perfect square. (HW)
- 24. Is there a positive integer n such that both n-2015 and $\frac{n}{2015}$ are positive integers having exactly 2015 divisors? (HW)

Instructor: Dušan Djukić Date: 29.11.2021.

- 22. Let p be a prime. Consider all pairs (a, b) of positive integers with $a < b < \frac{p}{2}$ for which $p \mid a^2 + b^2$. Prove that the sum $\sum a$ over all such pairs (a, b) equals $\frac{p^2 1}{24}$.
- 23. Find all pairs of positive integers (a, b) for which a is odd, b is a power of 2, and $a^2 ab + b^2$ is a perfect square.
- 24. Is there a positive integer n such that both n-2015 and $\frac{n}{2015}$ are positive integers having exactly 2015 divisors?
- 25. If a, b, c are positive integers, prove that $gcd(a, b 1) \cdot gcd(b, c 1) \cdot gcd(c, a 1) \le a(b 1) + b(c 1) + c(a 1) + 1$. Show that equality occurs for infinitely many triples (a, b, c).
- 26. Prove that there exist infinitely many positive integers that are less than the sum of their proper divisors (so, excluding 1 and itself), but cannot be written as a sum of several (distinct) divisors.
- 27. If a and b are positive integers such that $lcm[a, b] + lcm[a+2, b+2] = 2 \cdot lcm[a+1, b+1]$, prove that $a \mid b$ or $b \mid a$. (HW)
- 28. We are given $n \ge 3$ consecutive odd three-digit numbers. Prove that these n numbers can be ordered in a sequence b_1, b_2, \ldots, b_n so that the number $\overline{b_1 b_2 \ldots b_n}$, obtained by writing these numbers one after another in the decimal system, be composite. (HW)
- 29. Denote by P(n) the largest prime divisor of $n \in \mathbb{N}$. Prove that there are infinitely many positive integers n such that P(n) < P(n+1) < P(n+2). (HW)
- 30. Suppose that positive integers a_1, a_2, \ldots, a_n have the property that each of the quotients $k_i = \frac{a_{i-1} + a_{i+1}}{a_i}$ for $i = 1, 2, \ldots, n$ is an integer (here $a_0 = a_n$ and $a_{n+1} = a_1$). Prove that $2n \leqslant k_1 + k_2 + \cdots + k_n \leqslant 3n$. (HW)
- 31. Find all prime numbers p such that $\frac{p^2-p-2}{2}$ is a perfect cube. (HW)

Instructor: Dušan Djukić Date: 1.12.2021.

- 27. If a and b are positive integers such that $lcm[a,b] + lcm[a+2,b+2] = 2 \cdot lcm[a+1,b+1]$, prove that $a \mid b$ or $b \mid a$.
- 28. We are given $n \ge 3$ consecutive odd three-digit numbers. Prove that these n numbers can be ordered in a sequence b_1, b_2, \ldots, b_n so that the number $\overline{b_1 b_2 \ldots b_n}$, obtained by writing these numbers one after another in the decimal system, be composite.
- 29. Denote by P(n) the largest prime divisor of $n \in \mathbb{N}$. Prove that there are infinitely many positive integers n such that P(n) < P(n+1) < P(n+2).
- 30. Suppose that positive integers a_1, a_2, \ldots, a_n have the property that each of the quotients $k_i = \frac{a_{i-1} + a_{i+1}}{a_i}$ for $i = 1, 2, \ldots, n$ is an integer (here $a_0 = a_n$ and $a_{n+1} = a_1$). Prove that $2n \leq k_1 + k_2 + \cdots + k_n \leq 3n$.
- 31. Find all prime numbers p such that $\frac{p^2-p-2}{2}$ is a perfect cube.
- 32. Find all positive integers n with the following property: Whenever $n \mid xy+1$ for some integers x, y, it also holds that $n \mid x+y$.
- 33. Prove that for every positive integer n there exists a positive integer x such that $\varphi(x) = n!$.
- 34. Call an integer an *almost-square* if it is a product of two consecutive integers. Prove that every almost-square can be written as a quotient of two other almost-squares.
- 35. Find all pairs of positive integers a, b for which $(a^3 + b)(b^3 + a)$ is a power of 2.
- 36. Denote by b_n the number of binary unit digits of a positive integer n. We call n lively if $b_n \mid n$. Prove that (a) there are no 5 consecutive positive integers that are all lively; (b) there are infinitely many instances of 4 consecutive positive integers that are all lively.

Instructor: Dušan Djukić Date: 3.12.2021.

- 33. Prove that for every positive integer n there exists a positive integer x such that $\varphi(x) = n!$.
- 34. Call an integer an *almost-square* if it is a product of two consecutive integers. Prove that every almost-square can be written as a quotient of two other almost-squares.
- 35. Find all pairs of positive integers a, b for which $(a^3 + b)(b^3 + a)$ is a power of 2.
- 36. Denote by b_n the number of binary unit digits of a positive integer n. We call n lively if $b_n \mid n$. Prove that (a) there are no 5 consecutive positive integers that are all lively; (b) there are infinitely many instances of 4 consecutive positive integers that are all lively.
- 37. Find all pairs of positive integers x, y such that $[\sqrt{x}] = [\sqrt{y}], x \mid y^4 + 1$ and $y \mid x^4 + 1$.
- 38. Find all positive integers n for which $2^n 1$ has exactly n divisors.
- 39. There are n > 2 integers on the board with the GCD equal to 1. In each step we are allowed to increase or decrease one of the numbers by a multiple of another number. Find the smallest k for which it is always possible to obtain number 1 by a sequence of k such steps.
- 40. Find all values of n for which there are positive integers a, b, c, d for which a+b+c+d=n and abc+abd+acd+bcd is divisible by n.
- 41. Denote by S(x) the sum of decimal digits of a positive integer x. Prove that there exist 50 distinct positive integers n_1, n_2, \ldots, n_{50} such that $n_1 + S(n_1) = n_2 + S(n_2) = \cdots = n_{50} + S(n_{50})$.
- 42. We perform a sequence of operations of the following types: if the number is even, we divide it by 2, and if it is odd, we multiply it by some power of 3 (we choose one) and add 1. Prove that, starting from any number, we can reach number 1 in finitely many such operations.

Instructor: Dušan Djukić Date: 4.12.2021.

- 37. Find all pairs of positive integers x, y such that $[\sqrt{x}] = [\sqrt{y}], x \mid y^4 + 1$ and $y \mid x^4 + 1$.
- 38. Find all positive integers n for which $2^n 1$ has exactly n divisors.
- 39. There are n > 2 integers on the board with the GCD equal to 1. In each step we are allowed to increase or decrease one of the numbers by a multiple of another number. Find the smallest k for which it is always possible to obtain number 1 by a sequence of k such steps.
- 40. Find all values of n for which there are positive integers a, b, c, d for which a+b+c+d=n and abc+abd+acd+bcd is divisible by n.
- 41. Denote by S(x) the sum of decimal digits of a positive integer x. Prove that there exist 50 distinct positive integers n_1, n_2, \ldots, n_{50} such that $n_1 + S(n_1) = n_2 + S(n_2) = \cdots = n_{50} + S(n_{50})$.
- 42. We perform a sequence of operations of the following types: if the number is even, we divide it by 2, and if it is odd, we multiply it by some power of 3 (we choose one) and add 1. Prove that, starting from any number, we can reach number 1 in finitely many such operations.
- 43. Does there exist a surjective function $f: \mathbb{Q}^+ \to \mathbb{Q}$ such that f(xy) = f(x) + f(y) for all rational x, y > 0?
- 44. A sequence of positive integers a_1, a_2, \ldots is such that $n \leq a_n \leq n + 2021$ for all n and $(a_m, a_n) = 1$ whenever (m, n) = 1. If a prime p divides a_n , prove that also $p \mid n$.
- 45. Positive integers x and y < x are such that $x^2 + y^2 2$ is divisible by $x^2 y^2$. Prove that $x^2 + y^2 2$ and $x^2 y^2$ have the same sets of prime divisors.

Solutions – group L4

Instructor: Dušan Djukić Nov.26–Dec.4, 2021

- 1. We will prove that $v_p(d_{k-1}d_{k+1}) \ge v_p(d_k^2)$ for every prime p. Let the exponents at p in the given numbers be $r_1 \le r_2 \le \cdots \le r_n$. Then $v_p(d_i) = r_1 + \cdots + r_i$, so $v_p(d_{k-1}d_{k+1}) = 2(r_1 + \cdots + r_{k-1}) + r_k + r_{k+1}$ and $v_p(d_k^2) = 2(r_1 + \cdots + r_k) \le v_p(d_{k-1}d_{k+1})$.
- 2. Denote s = a + b + c. Modulo s we have $x^2 \equiv 1$, $y^2 \equiv 2$ and $(x + y)^2 \equiv z^2 \equiv 4$. It follows that $2xy = (x + y)^2 x^2 y^2 \equiv 1 \pmod{s}$, so $4 \cdot 1 \cdot 2 \equiv 4x^2y^2 = (2xy)^2 \equiv 1 \pmod{s}$. Therefore $s \mid 7$, and for s = 7 we have a unique solution (x, y, z) = (1, 4, 2).
- 3. Use induction on n (base n = 1). For the inductive step, when n 1 increases to n, only the summands corresponding to $i \mid n$ change, as then $\left[\frac{n}{i}\right] = \left[\frac{n-1}{i}\right] + 1$. Verify that both sides of the equality get exactly the same increment.
- 4. Take $m = a^2$. There is $x \in \mathbb{Z}$ such that $a^2 \mid x^n a$. So if p is any prime divisor of a and $v_p(a) = k$, then $v_p(x^n a) \ge 2k$, which implies $v_p(x^n) = k$. Thus $n \mid k$, and since this holds for all p, number a must be an n-th power.
- 5. We will prove that if $k=p^{p-1}$, where $p\geqslant 5$ is a prime, the given equation has no solutions. Suppose that $x=p^{p-1}\tau(x)$ for some $x\in\mathbb{N}$. Clearly, $r=v_p(x)\geqslant p-1$. Moreover, $p^{p-1}=\frac{x}{\tau(x)}=\frac{p^r}{\tau(p^r)}\cdot\frac{x/p^r}{\tau(x/p^r)}$, which implies $\frac{x/p^r}{\tau(x/p^r)}=\frac{r+1}{p^{r+1-p}}$. If r=p-1, then $\frac{x/p^r}{\tau(x/p^r)}=p$, which is impossible because $p\nmid x/p^r$. On the other hand, if $r\geqslant p+1$, then $\frac{x/p^r}{\tau(x/p^r)}\leqslant \frac{p+2}{p^2}<1$, which is also impossible. Finally, we have a contradiction for r=p as well: $\frac{x/p^r}{\tau(x/p^r)}=\frac{p+1}{p}$ indeed, note that $\tau(y)\leqslant \frac{y}{2}+1<\frac{p}{p+1}y$ for $y\geqslant p+1$.
- 6. We will set c so that $c+a=k^2$ and $c+b=(k+1)^2$ are two consecutive squares. Then b-a=2k+1, so the corresponding c will be $c=k^2-a=\frac{a^2+b^2+1-2ab-2a-2b}{4}$. Luckily, then $c+ab=(\frac{a+b-1}{2})^2$.
- 7. Let a+1=dx and b+1=dy, where d,x,y are positive integers with x>y and $\gcd(x,y)=1$. Then $\operatorname{lcm}(a+1,b+1)=dxy=(dx-1)^2-(dy-1)^2=d(x-y)(dx+dy-2)$ and hence $dx+dy-2=\frac{xy}{x-y}$. Since x-y is coprime to both x and y, we must have x-y=1. The previous equality becomes d(2x-1)-2=x(x-1), so $2x-1\mid x^2-x+2\mid (2x-1)^2+7$ and consequently $2x-1\mid 7$, i.e. x=1 or x=4. The first option fails and the second one yields d=2 and (a,b)=(7,5).
- 8. Fix c and assume a < b. If a+b=x, then $a^3+b^3=x(3c^2-x^2)$ is increasing in x, and x is itself increasing in b. Since $b \le c-2$, we have $(c-1)^3-1=a^3+b^3 \le \sqrt{4c-4}^3+(c-2)^3$. Solving this inequality will give us $c \le 10$. Now it is easy to manually check the small cases. The only solution is (a,b,c)=(6,8,10).

- 9. For n=3 we can find infinitely many examples (x,y,z) by setting y=-z: setting $\frac{y}{x}=k$ we easily find $(x,y,z)=(2k^2+1,k(2k^2+1),-k(2k^2+1))$. An example for n=3r can be constructed as a union of r such triples. For n=3r+1 or 3r+2 it suffices to append this 3r-tuple by a 0 and/or 1.
- 10. Let $x_n = an + b$ for some constants $a, b \in \mathbb{Z}$. Denote $A = a_1 + \cdots + a_k$ and $B = b_1 + \cdots + b_k$. Summing the inequalities $a_i n + b_i 1 \le [a_i n + b_i] \le a_i n + b_i$ over $1 \le i \le k$ yields $An + B k \le x_n \le An + B$, i.e. $B b k \le (a A)n \le B b$ for all n, and this is only possible if A = a.
- 11. Hint: prove that if (a, b) is one such pair, then ab cannot exceed n, Deduce that in fact ab = n in all such pairs. Now all pars look like $(a, \frac{n}{a})$, but these sums are distinct for all pairs.
- 12. We have $3x^4 + 10x^2 + 3 = (3x^2 + 1)(x^2 + 3)$. The GCD of $3x^2 + 1$ and $x^2 + 3$ divides $3(x^2 + 3) (3x^2 + 1) = 8$, so it is 1, 2, 4 or 8. Therefore $3x^2 + 1$ and $x^2 + 3$ are either squares, or squares multiplied by 2. However, $x^2 + 3 = 2a^2$ is impossible modulo 3, so both factors must be squares. Then $x^2 + 3 = a^2$, which is only possible for x = 1. This is a solution indeed.
- 13. Denoting $d=n^2+a$, we see that d also divides a^2+1 , so let $a^2+1=kd$. Then $a=\frac{k}{2}+\sqrt{kn^2+\frac{k^2}{4}-1}$; if $k\geqslant 13$, then automatically a>3n+7. On the other hand, for k<13, $k\mid a^2+1$ is possible only for k=1,2,5,10. The discriminant $kn^2+\frac{k^2}{4}-1$ cannot be a square if k=1,2,5 (modulo 2 or 3). Only k=10 remains, and then $a\leqslant 3n+7$ is equivalent to $n\leqslant 10$. And indeed, n=2 and n=10 are solutions, with the corresponding divisors d=17 and d=137 (note that $10001=73\cdot 137$).
- 14. Suppose, to the contrary, that $\omega(an+c) < \omega(bn+c)$ for every n. Then for any $k \in \mathbb{N}$, substituting the numbers $a^{k-1}, a^{k-2}b, \ldots, b^{k-1}$ for n, we have $\omega(a^k+c) < \omega(a^{k-1}n+c) < \omega(a^{k-2}b^2+c) < \cdots < \omega(b^k+c)$, and hence $\omega(b^k+c) \geqslant k+1$. However, the product of first k+1 primes is bigger than k!, so $k! \leqslant b^k+1 < (b+1)^k$, which is false for k big enough.
- 15. Hint: Can a number whose sum of digits is 9 be divisible by 11?
- 16. Let $n=2^km$ with m odd. The numerator in $\frac{a}{n}$ in lowest terms is even if and only if $2^{k+1} \mid a$, and there are $\left[\frac{n}{2^{k+1}}\right] = \frac{m-1}{2}$ such values of a. In the remaining $n-\frac{m-1}{2}$ fractions the numerator is odd, so $f(n) \equiv n-\frac{m-1}{2} \pmod{2}$. Then $f(999n) \equiv 999n-\frac{999m-1}{2} \pmod{2}$, so $f(999n)-f(n) \equiv 499m \equiv 1 \pmod{2}$. Hence f(n) and F(999n) have opposite parities for every n.
- 17. Denote $f(n) = [\sqrt[3]{n^2}] + [\sqrt[3]{n}]$. We will prove that for every positive integer k there exists $n \in \mathbb{N}$ such that $n = k \cdot f(n)$. Fix k and consider g(n) = n kf(n). Increase n one by one. In each step, f(n) increases by 0, 1 or 2, so g(n) either increases by 1 or decreases. However, g(1) < 0 and g(n) grows to infinity as $n \to \infty$, so it cannot skip zero.

- 18. Suppose the statement is false. Consider the largest pair of even divisors (a, a + 2) of 4n (there is one such pair: (2, 4)). Then a + 1 must also be a divisor and it is odd, so 2a + 2 is a divisor. Moreover, either 2a or 2a + 4 is not divisible by 8 and hence is a divisor of 4n. Thus we find a larger pair, namely (2a, 2a + 2) or (2a + 2, 2a + 4).
- 19. The summand $d_i(2020+i)$ counts the divisors not less than i, so a possible divisor $k \leq 2020$ would be counted only through the summands $d_1(2021), \ldots, d_k(2020+k)$. Since k divides exactly one of the numbers $2021, 2022, \ldots, 2020+k$, it follows that it has been counted exactly once. Thus the divisors from 1 to 2020 have been counted 2020 times in total.

Additionally, the divisors from 2021 to 4040 have been counted once each. This gives the sum of 4040.

- 20. If n is even, then $3^n 2^n$ is divisible by 5, but $4^n + 2^n + 1$ is not. Now assume n is odd. The number $9^n + 3^n + 1 = 4^n + 2^n + 1 + (3^n 2^n) + (9^n 4^n)$ is also divisible by $3^n 2^n$. However, $9^n + 3^n + 1 = (3^n 1)^2 + (3^{\frac{n+1}{2}})^2$ is a sum of two squares, and $3^n 2^n \equiv 3 \pmod{4}$ for n > 1, so this is impossible. This leaves n = 1 as the only possibility.
- 21. Some of a, b, c are multiples of p. If it is only one, say $p \mid a = pu$, then $\frac{u-1}{pu} = \frac{1}{p} \frac{1}{pu} = \frac{1}{b} + \frac{1}{c}$, so $p \mid u 1$, which makes $a \ge p(p+1)$ too big.

If exactly two are multiples of p, say a = pu, b = pv, then $\frac{u+v}{uv} = \frac{c-p}{c}$, so $p \mid uv - u - v$, but then $u + v \ge 2\sqrt{p}$ and a + b is again too big.

Therefore a = pu, b = pv, c = pw are all multiples of p. Then $\frac{1}{u} + \frac{1}{v} + \frac{1}{w} = 1$, which has the only solutions (3,3,3), (2,4,4), (2,3,6).

22. If (a, b) is one of the pairs, then either (b - a, b + a) or (b - a, p - b - a) is also one of the pairs. In particular, b - a is the smaller element in some pair as well.

Moreover, if two pairs (a, b) and (c, d) give the same difference d - c = b - a, then also $c + d \equiv \pm (a + b)$, so the pairs are the same.

It follows that the differences b-a are precisely a permutation of elements a. Therefore the sum of a over all pairs is half the sum of b and equals $\frac{1}{3}(1+2+\cdots+\frac{p-1}{2})$.

23. Let $b = 2^n$ and $a^2 - ab + b^2 = c^2$. We can rewrite this as $3 \cdot 2^{2n-2} = \frac{3}{4}b^2 = c^2 - (a - \frac{b}{2})^2 = (c + a - 2^{n-1})(c - a + 2^{n-1})$.

We easily check the cases $n \le 2$ and find no solutions. Assume that $n \ge 3$. Then the factors $c+a-2^{n-1}$ and $c-a+2^{n-1}$ are even and not both multiples of 4, so one of them equals ± 2 or ± 6 . Assuming c is positive, both factors are positive as well. Checking all four possibilities we find only two possibilities for $n \ge 3$: $a = 2^{2n-4} + 2^{n-1} - 3$ or $a = 3 \cdot 2^{2n-4} + 2^{n-1} - 1$, and in addition, a = 3 for n = 3.

24. Both $n-2015=(2015a)^2$ and $\frac{n}{2015}=b^2$ are squares, so $(b+1)(b-1)=2015a^2$. Since $2015=5\cdot 13\cdot 31$, none of these squares can have more than three prime divisors, so each in fat consists only of the primes 5,13,31. So do b+1 and b-1 and their difference is 2, but modulo 13 this is easily checked to be impossible.

25. The given product of GCD's divides both abc and (b-1)(c-1)(a-1), so it divides the difference, which is a(b-1)+b(c-1)+c(a-1)+1.

We find an equality case by setting (a, b, c) = (n, n = 1, n + 2), with $3 \mid n - 1$.

- 26. We can take e.g. $n = 2^k p$, where p is a prime with $2^k . The sum of its proper divisors is <math>n + 2^{k+1} p 2$. However, if some of them add up to n, then the remaining ones add up to p 2, and this is not possible, because all proper divisors less than p are even.
- 27. Case a=b is trivial. Assume w.l.o.g. that a>b and let [a,b]=ka, $[a+1,b+1]=\ell(a+1)$ and [a+2,b+2]=m(a+2). Reducing the equality $ka+m(a+2)=2\ell(a+1)$ modulo a+1 we get $a+1\mid m-k$, but $k,m\leqslant b+2\leqslant a+1$, so we must have k=m. Then $\ell=k=m$, and since $k\mid b$ and $\ell\mid b+1$, we obtain k=1, that is, $b\mid a$.
- 28. If n = 5, one of b_1, \ldots, b_n is divisible by 5, so put it on the last place. If n = 4, order them as b_1, b_2, b_4, b_3 to get a number divisible by 11. And if n = 3, they will always yield a multiple of 3.
- 29. Given an arbitrary odd prime p, we will try to find n of the form $n = p^k 1$. We want to find k for which $P(p^k 1) < P(p^k) = p < P(p^k + 1)$.

 Suppose there is no such k. Since $p^2 1 = (p 1)(p + 1)$, we have $P(p^2 1) < p$, so we must have $P(p^2 + 1) < p$ as well. Now, since $p^4 1 = (p^2 1)(p^2 + 1)$, we have $P(p^4 1) < p$, which forces $P(p^4 + 1) < p$ as well. Next, $P(p^8 1) < p$, forcing $P(p^8 + 1) < p$ as well, etc. Inductively, $P(f_i) < p$ for each $i \in \mathbb{N}_0$, where $f_i = p^{2^i} + 1$.

 $P(p^8+1) < p$ as well, etc. Inductively, $P(f_i) < p$ for each $i \in \mathbb{N}_0$, where $f_i = p^{2^i} + 1$. However, since $f_i = (p-1)f_0f_1 \cdots f_{i-1} + 2$, the numbers $P(f_i)$ are pairwise distinct, and this is a finishing contradiction.

- 30. The LHS is easy: $k_1 + k_2 + \dots + k_n = \left(\frac{a_1}{a_2} + \frac{a_2}{a_1}\right) + \left(\frac{a_2}{a_3} + \frac{a_3}{a_2}\right) + \dots + \left(\frac{a_n}{a_1} + \frac{a_1}{a_n}\right) \geqslant 2n$. For the right-hand side we induct on n. The base case n=1 is trivial, so assume n>1 and $a_{n-1}< a_n=\max\{a_1,a_2,\dots,a_n\}$. Then we must have $k_n=1$ and $a_n=a_{n-1}+a_1$. It follows that $\frac{a_{n-2}+a_1}{a_{n-1}}=k_{n-1}-1$ and $\frac{a_{n-1}+a_2}{a_1}=k_1-1$ are integers as well, so by the inductive hypothesis for n-1 numbers a_1,a_2,\dots,a_{n-1} we have $(k_1-1)+k_2+\dots+k_{n-2}+(k_{n-1}-1)<3(n-1)$, which immediately implies $k_1+\dots+k_n<3n$.
- 31. One solution is p = 2, but there is also an unexpected solution.
- 32. Denote by x^{-1} the multiplicative inverse of x modulo n. We are given that $n \mid x x^{-1} \pmod{n}$, i.e. $n \mid x^2 1$ whenever (x, n) = 1.

If n has a prime factor $p \ge 5$, we can take x so that $x \equiv 2 \pmod{p}$ and $x \equiv 1$ modulo all other prime divisors of n. Then (x,n) = 1, but $p \nmid x^2 - 1$, contradicting the condition. Hence $n = 2^a 3^b$. But if $n \nmid 24$, the condition fails for x = 5. It follows that $n \mid 24$, and these n actually work because $24 \mid x^2 - 1$ whenever (x,6) = 1.

- 33. Take $x = n \prod_{p} \frac{p}{p-1}$, where the product is over the primes $p \leq n+1$. Prove that it works.
- 34. Note that $(x-1)x = \frac{(x^2-1)x^2}{x(x+1)}$.

35. If a = b, the only solution is (1,1). Also, if a and b are even and $v_2(a) < v_2(b)$, then $v_2(b^3 + a) = v_2(a)$, so $b^3 + a$ cannot be a power of 2.

Assume a and b are odd and a < b. Then $a^3 + b < b^3 + a$ and both are powers of 2, so $a^3 + b \mid b^3 + a$. Hence $a^3 + b \mid (a^9 + b^3) - (b^3 + a) = a(a^8 - 1)$. However, by the LTE lemma, $v_2(a^3 + b) \le v_2(a^8 - 1) = v_2(a^2 - 1) + 2$, so $a^3 + b$ also divides $4(a^2 - 1)$. It follows that $a^3 + b \le 4(a^2 - 1)$, so $a \le 3$, and the only solution is (a, b) = (3, 5).

36. (a) The numbers 4k + 1 and 4k + 2 have the same number of binary unit digits, so they cannot both be lively. However, in every five consecutive numbers one can find 4k + 1 and 4k + 2.

For (b), set n so that $b_n = 6$, $b_{n+1} = 7$, $b_{n+2} = 4$ and $b_{n+3} = 5$. We can take e.g. $n = 2^a + 2^b + 2^c + 14$ with a > b > c > 4. Then see how to make n, n + 1, n + 2, n + 3 all lively.

37. Let $x = n^2 + a$, $y = n^2 + b$ with $0 \le a, b \le 2n$. We have that $k = \frac{(x-y)^4 + 1}{xy} = \frac{(a-b)^4 + 1}{(n^2 + a)(n^2 + b)}$ is an integer, but clearly $k \le 16$ and k divides a fourth power plus 1. Such k has no odd prime factors that are not 1 (mod 8), and also $4 \nmid k$, so we must have $k \in \{1, 2\}$.

Finally, it is easy to see that k = 2 is impossible due to parity and k = 1 is impossible for n > 1 due to size. The only solution is $\{x, y\} = \{1, 2\}$.

38. Let $n = 2^k m$ with m odd. Then $n = \tau(2^n - 1) = \tau(2^m - 1)\tau(2^m + 1)\cdots\tau(2^{2^{k-1}m} + 1)$ is divisible by 2^{k+1} (each factor is even) unless some of the k+1 factors is a square. But $2^x + 1$ is a square only for x = 3 and $2^x - 1$ is a square only for x = 1, so we must have m = 1 or 3.

If m=1, then $\tau(2^m+1)=\cdots=\tau(2^{2^{k-1}m}+1)=2$, so all these factors are primes, but $2^{2^5}+1$ is composite, so We must have $k \leq 5$,

Similarly, if m = 3, we must have k = 1 for $2^6 + 1$ is composite. Hence the solutions are n = 1, 2, 4, 6, 8, 16, 32.

39. We start with a lemma:

Lemma. If a, b, m are nonzero integers with (a, b) = 1, then there exists $k \in \mathbb{Z}$ such that (a + kb, m) = 1. \square

We claim that n steps always suffice. If $(a_1, \ldots, a_{n-1}) = 1$, then for some integers x_i we have $x_1a_1 + \cdots + x_{n-1}a_{n-1} = 1 - a_n$, so by adding the multiples x_ia_i to a_n we obtain 1 in n-1 steps. We proceed to the general case: $d=(a_{n-1},a_n)$ and $e=(a_1,\ldots,a_{n-2})$. Clearly, $(d,e)=(\frac{a_{n-1}}{d},\frac{a_n}{d})=1$, so by the Lemma there exists k such that $\frac{a_{n-1}+ka_n}{d}$ is coprime to e. Then we also have $(a_1,\ldots,a_{n-2},a_{n-1}+ka_n)=1$. As before, we need further n-1 steps to replace the number a_n by 1.

Let us prove that n-1 may not be enough. Suppose $p_1, \ldots, p_n > 2$ are different primes. By the Chinese remainder theorem there exist integers a_1, \ldots, a_n such that $a_i \equiv 0 \pmod{p_j}$ for $j \neq i$ and $a_i \equiv 2 \pmod{p_i}$. Suppose that we have applied n-1 steps. Then there exists i such that no multiple of a_i was ever added. Thus the given numbers did not change modulo p_i , so none of them could become 1.

- 40. We have that $abc + (ab + ac + bc)(n a b c) \equiv -(a + b)(b + c)(c + a)$ is divisible by n, so n cannot be prime. On the other hand, if n = xy (x, y > 1) is composite, then one can take (a, b, c, d) = (1, x 1, y 1, (x 1)(y 1)).
- 41. For an arbitrary $k \in \mathbb{N}$, consider the numbers

$$a_k = 1 \underbrace{00...0}_{10^k + k + 1}$$
 and $b_k = \underbrace{99...9}_{10^k} 1 \underbrace{00...0}_k$.

Then $a_k + S(a_k) = b_k + S(b_k) = 10^{10^k + k + 1} + 1$. Define the sequence $k_0 = 0$ and $k_{i+1} = 10^{k_i} + k_i + 2$. Now consider any of the numbers $n = x_0 + x_1 + \cdots + x_5$, where $x_i \in \{a_{k_i}, b_{k_i}\}$. The digits of x_0, \ldots, x_5 do not interfere mutually, so $S(n) = S(x_0) + \cdots + S(x_5)$. Hence $n + S(n) = (10^{10^{k_0} + k_0 + 1} + 1) + \cdots + (10^{10^{k_5} + k_5 + 1} + 1)$, which is the same for each of the 64 possible choices of number n.

- 42. Don't use the Collatz conjecture.
- 43. There is a bijection between the primes and the rationals. Thus we can define f on the set P of primes so that f(P) is the entire \mathbb{Q} . Finally, f(P) determines f on all of \mathbb{Q} as $f(\prod p_i^{n_i}) = \sum n_i f(p_i)$.