Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação
Departamento de Ciências de Computação
Rodrigo Fernandes de Mello

Rodrigo Fernandes de Mello mello@icmc.usp.br

- Classificador que armazena exemplos de treinamento:
 - Exemplos são também denominados instâncias
- Generaliza informações com base em exemplos de treinamento:
 - Para inferir a classe de novas instâncias (ou instâncias de consulta)
 - Assim cada vez que uma instância é recebida, computa-se uma função objetivo com base no conhecimento oferecido pela base de exemplos de treinamento
- Estimam a classe da nova instância com base em comportamentos locais
- É uma técnica incremental

Aprendizado Baseado em Instâncias

• Exemplo (em que a classe, ou atributo de saída, é dada pelas cores):

Atributo de Entrada 2

Aprendizado Baseado em Instâncias

· Exemplo:

Aprendizado Baseado em Instâncias

Atributo de Entrada 1

K-Nearest Neighbors

- · Técnica mais comum de IBL (Instance-Based Learning)
- Calcula-se a distância Euclidiana da nova instância em função de cada instância na base de conhecimento
- Seleciona-se as K instâncias de treinamento mais próximas
- Define-se o atributo de saída na forma:
 - Discreta:
 - Por exemplo, por maior número de votos, decide-se se a cor é vermelha ou verde
 - Contínua:
 - Define-se o atributo de saída pela ponderação das saídas das K instâncias mais próximas

Aprendizado Baseado em Instâncias

· K-Nearest Neighbors

Forma Discreta:

· K-Nearest Neighbors

Forma Contínua:

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k f(x_i)}{k}$$

Considera uma média do atributo de saída de seus k vizinhos mais próximos

· Distance-Weighted Nearest Neighbors

- Um refinamento ou variação do KNN
- Considera uma ponderação da influência de cada vizinho em função de sua distância à nova instância
- Para o caso discreto:

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k w_i \delta(v, f(x_i))$$

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

Se nova instância é exatamente igual a uma instância de treinamento, então d(.) = 0, logo deve-se prever essa situação e o algoritmo deve retornar f(x)

Aprendizado Baseado em Instâncias

- · Distance-Weighted Nearest Neighbors
- Para o caso contínuo:

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

Se nova instância é exatamente igual a uma instância de treinamento, então d(.) = 0, logo deve-se prever essa situação e o algoritmo deve retornar f(x)

Aprendizado Baseado em Instâncias

· Distance-Weighted Nearest Neighbors

- Essas duas variantes de KNN consideram os k vizinhos mais próximos
 - No entanto, para o Distance-Weighted, podemos considerar todas as instâncias de treinamento pois as mais distantes terão pouca ou nenhuma influência na instância de consulta
 - A desvantagem dessa abordagem é que nosso classificador irá executar de maneira mais lenta
- Se somente os k mais próximos forem considerados:
 - Algoritmo é denominado local
- Se todas as instâncias de treinamento forem consideradas:
 - Algoritmo é denominado global

Aprendizado Baseado em Instâncias

Aprendizado Baseado em Instâncias

- · Questões importantes:
 - · As duas versões do KNN sempre:
 - Computam a saída em função de todos atributos de entrada
 - Logo, se atributos de entrada não forem bem definidos o resultado pode ser ruim:
 - Por exemplo, instâncias são representadas por 10 atributos de entrada e 1 de saída
 - Mas somente 2 atributos de entrada são relevantes
 - Os 8 outros podem influenciar a saída, mas nem deveriam existir na base de aprendizado!
 - Uma abordagem para resolver esse problema é dar um peso para cada atributo:
 - · Assim os mais relevantes serão mais considerados!
 - Outra é remover os atributos menos significativos

- Função kernel
 - Função de distância utilizada para determinar o peso de cada exemplo de treinamento na saída da instância de consulta
 - Por exemplo, considere a função kernel K:

$$w_i = K(d(x_i, x_a))$$

- K(.) pode ser linear, exponencial, etc.

- Estime (Exemplos de uso de IBL):
 - O consumo de CPU de um processo com base em histórico
 - O consumo de memória de um processo com base em histórico
 - O volume de transações de um banco de dados com base em histórico
 - O volume de requisições de um Servidor Web com base em histórico
 - A carga de uma requisição web com base em histórico

- · Implementação
 - · Vamos implementar com função kernel Radial

$$g(x_q) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

$$w_i = e^{-\frac{E(x_q, x_i)^2}{2 \cdot \sigma^2}}$$

- Em que:
 - X é uma instância de consulta

Aprendizado Baseado em Instâncias

· Case-Based Reasoning:

- O aprendizado é baseado em duas condições:
 - Decisões são emitidas assim que uma nova instância ou instância de consulta chega ao sistema
 - Decisões dependem de instâncias de treinamento similares
- Nesses dois aspectos são similares às duas variações de KNN
 - No entanto não considera o caso contínuo

Aprendizado Baseado em Instâncias

Case-Based Reasoning:

- Abordando com exemplo:
 - Considere uma base de instâncias de treinamento que descrevem o funcionamento de uma peça mecânica por exemplo, o motor de um carro
 - Cada instância de treinamento é formada por uma descrição simbólica que conecta duas peças
 - Por exemplo:
 - Câmara de combustão X → Pistão Y
 - Mangueira de alimentação do radiador Z → Radiador T
 - Cada instância na base representa as conexões entre peças tal como em um grafo
 - Podem também apresentar um termo (aptidão) para tal conexão

Aprendizado Baseado em Instâncias

Aprendizado Baseado em Instâncias

· Case-Based Reasoning:

- · Abordando com exemplo:
 - Assim, quando um projetista deseja criar um novo motor:
 - Entrada com partes das condições
 - · Solicita maior aptidão
 - CBR
 - Faz um "match" das várias condições que satisfazem o conceito de entrada, oferecido pelo projetista, e pode prover diversas saídas e suas aptidões relativas
 - Tem alto custo computacional, pois considera a associação de regras armazenadas para montar um único sistema
 - A forma de combinação dessas regras difere do KNN que, em geral, faz uma soma ponderada

- · Case-Based Reasoning:
 - · Abordando com exemplo:

$$A \stackrel{+}{\rightarrow} B$$

$$A \stackrel{+}{\rightarrow} x \stackrel{+}{\rightarrow} B$$

- Cria-se uma série de grafos conectando as várias regras e mede-se o custo ou aptidão de cada grafo
 - Cada grafo funciona como uma solução candidata
- Pode ser que n\u00e3o haja um grafo para representar o sistema todo
 - Então uma solução parcial é retornada

Exercícios Referências

- Implemente IBL
 - Com Kernel Radial
- Execute para:
 - Classificação:
 - Iris
 - Predição:
 - Mapa Logístico

• Tom Mitchell, Machine Learning, 1997