Generating ROCs in Practice

$$P_{CR}(\beta) = \frac{\#H_o \ \lambda's < \beta}{\#H_o \ \lambda's}$$

$$P_{FA}(\beta) = \frac{\#H_o \ \lambda's \ge \beta}{\#H_o \ \lambda's}$$

Copyright © 2014-2022 by Stacy Tantum. All rights reserved. Not to be distributed without express written consent of the author.

$$P_{D}(\beta) = \frac{\#H_{1} \ \lambda' s \ge \beta}{\#H_{1} \ \lambda' s}$$

Have a list of λ 's

λ	truth
0.56	0
0.35	0
0	0
0.21	0
0.11	0

Have a list of his

λ	truth
0.18	1
0.92	1
0.42	1
0.88	I
0.82	I

[linearly span from $min(\lambda)$ to $max(\lambda)$]

Need decision thresholds that span the range of decision statistics

λ	truth	β = 0	β = 0.09	β = 018	β = 0.27	β = 0.36	β = 0.45	β = 0.54	β = 0.63	β = 0.72	β = 0.81	β = 0.90	β = 0.99
0.18	I	√	√	√									
0.56	0	√	√	√	√	√	√	√					
0.35	0	√	√	✓	✓								
H ₁ 0.92	I	√	√	√	√	√	√	√	√	√	√	✓	
HD 0	0	✓											
0.42	I	√	√	√	√	√							
0.88	I	√	√	√	√	√	√	√	√	√	√		
0.82	I	√	√	√	√	√	√	√	√	√	√		
0.21	0	√	√	√			-						
0.11	0	√	√	(-									
	P _D	5/5	5/5	5/5	4/5	4/5	3/5	3/5	3/5	3/5	3/5	1/5	0/5
	P _{FA}	5/5	4/5	3/5	2/5	1/5	1/5	1/5	0/5	0/5	0/5	0/5	0/5

[sort λ 's, choose every $n^{th} \lambda$ as a β (n=1 for finest resolution]

Need decision thresholds that span the range of decision statistics AND appropriately sample the decision statistics

	λ	truth	$\beta = 0$	β=	β=	β=	β=	β=
				018	0.35	0.56	0.88	0.99
-	0	0	✓					
	0.11	0	✓					
-	0.18	I	✓	√				
	0.21	0	✓	√				
7	0.35	0	✓	√	√			
	0.42	I	✓	√	√			
7	0.56	0	✓	√	√	√		
	0.82	I	✓	√	√	√		
7	0.88	I	✓	√	√	√	√	
	0.92	I	✓	√	√	√	√	
		P _D	5/5	5/5	4/5	3/5	2/5	0/5
		P _{EA}	5/5	3/5	2/5	1/5	0/5	0/5

61	$\beta = 0.35$	$\beta = 0.18$	3	$\beta = 0$
1			!	
0.9				/
$\beta = 0.56$ 0.8			,	/
0.7				_
0.6	6		/	
<u>م</u> 0.5				
$\beta = 0.88$,	.′		
0.3				_
0.2	/			_
$\beta = 0.99$ 0.1				
0 0.1 0	0.2 0.3 0.4	4 0.5 0.6 P _{FA}	6 0.7 0	.8 0.9 1

[sort λ 's, choose every $n^{th} \lambda$ as a β (n=1 for finest resolution]

Need decision thresholds that span the range of decision statistics AND appropriately sample the decision statistics

λ	truth	β = -0.1	β = 0.11	β = 0.21	β = 0.42	β = 0.82	β = 0.92	β = 0.99
-0.1								
0	0	√						
0.11	0	√	✓					
0.18	I	√	✓					
0.21	0	√	√	√				
0.35	0	√	√	√				
0.42	-	√	✓	√	√			
0.56	0	√	√	√	√			
0.82	Т	√	✓	√	✓	√		
0.88		√	✓	√	√	√		
0.92	Ι	√	✓	√	√	√	√	
	P_{D}	5/5	5/5	4/5	4/5	3/5	1/5	0/5
	P _{FA}	5/5	4/5	3/5	1/5	0/5	0/5	0/5

2014-2022 by Stacy

The ROC may vary a lot depending on how thresholds are selected

λ	truth
0	0
0.11	0
0.18	I
0.21	0
0.35	0
0.42	I
0.56	0
0.82	I
0.88	I
0.92	I

-2025

Limited data (small number of observations) amplifies differences between ROCs

ROCs become very similar with large number of data points (large number of observations)

-2022 by Stacy

How Should We Select Decision Thresholds?

[sort λ 's, choose every n^{th} H_o λ as a β (n=1 for finest resolution]

Need decision thresholds that span the range of decision statistics, appropriately sample the decision statistics, AND appropriately sample the ROC

λ	truth	$\beta = 0$	β = 0.11	$\beta = 0.21$	$\beta = 0.35$	β = 0.56	β = 0.99	
7 0	0	✓						
0.11	0	✓	√					
0.18	I	√	√					
0.21	0	✓	√	√				
0.35	0	✓	√	√	√			
0.42	I	✓	√	√	√			
0.56	0	✓	√	√	√	√		
0.82	I	✓	√	√	√	√		
0.88	I	✓	√	√	√	√		
0.92	I	√	√	√	√	√		
0.99	P_{D}	5/5	5/5	4/5	4/5	3/5	0/5	
	P _{FA}	5/5	4/5	3/5	2/5	1/5	0/5	

add β =0.99 to complete the ROC

[sort λ 's, choose every n^{th} ($H_o \lambda + eps$) as a β (n=1 for finest resolution]

Need decision thresholds that span the range of decision statistics, appropriately sample the decision statistics, AND appropriately sample the ROC

λ	truth	$\beta = -0.1$	$\beta = 0.01$	$\beta = 0.12$	$\beta = 0.22$	$\beta = 0.36$	$\beta = 0.57$	$\beta = 0.99$
-0.1								
0	0	√						
0.11	0	√	√					
0.18	I	√	✓	✓				
0.21	0	✓	✓	✓			-	
0.35	0	✓	✓	✓	✓		-	
0.42	I	√	✓	✓	√	√	-	
0.56	0	√	√	✓	√	√		
0.82	I	√	✓	✓	√	√	√	
0.88	I	√	✓	✓	√	√	√	
0.92	I	√	√	√	√	√	√	
0.99	P _D	5/5	5/5	5/5	4/5	4/5	3/5	0/5
	P _{FA}	5/5	4/5	3/5	2/5	1/5	0/5	0/5

2014-2022

add $\beta = -0.1$ to complete the ROC

add β =0.99 to complete the ROC $\beta = 0.01$

 $\beta = -0.1$

The ROC may vary a lot depending on how thresholds are selected

λ	truth
0	0
0.11	0
0.18	I
0.21	0
0.35	0
0.42	I
0.56	0
0.82	I
0.88	I
0.92	I

Plotting ROCs

Plot the lines between the P_{FA}/P_D data points

Symbols alone can be difficult to interpret if there are only a few P_{FA}/P_{D} points on the ROC

Some ROC functions assume $\lambda \in [0,1]$ \rightarrow Make sure you know what a function is assuming!

As threshold increases

- P_{FA} cannot increase
- P_D cannot increase

2014-2022 by Stacy Tantum

• If you see either P_{FA} or P_{D} increase when you increase the threshold, something is very wrong

Ensure (P_{FA}, P_D) pairs are in order of increasing or decreasing threshold!

Decision Statistic pdfs & ROCs

Advice: λ distributions

2014-2022

insight ↔

ROC shape

Common artifact of cross-validation when normalizing constants are not properly accounted for

Plot the decision statistic on the x-axis and class (target) on the y-axis

- Similar to plotting pdfs, but it may be easier to tell where individual decision statistics are falling in regions where there aren't many of them
- A few high H₀ decision statistics or low H₁ decision statistics can make the ROC look weird – this can help you understand that weirdness

Stacy Tantum.

2014-2022

 Can add a small amount of noise to the class variable to separate similar decision statistics

Sort the decision statistics from smallest to largest, and plot each one in a symbol that corresponds to its class

- Similar to plotting cdfs, but it may be easier to tell where individual decision statistics are falling in regions where there aren't many of them
- A few very high H₀ decision statistics or very low H₁ decision statistics can make the ROC look weird – this can help you understand that weirdness

Stacy Tantum.

2014-2022

Visualizing Decision Statistics: pdfs

Copyright © 2014-2022 by Stacy Tantum. Not to be distributed without express wri

Visualize distributions for each class separately

Smaller overlap between decision statistic pdfs:

- Fewer opportunities for mis-classification in overlap region (better performance)
- Higher ROC (closer to top-left corner of axes)

Visualizing Decision Statistics Can Help Make Sense of "Weird" ROCs

Comparing Classifier Performance

<u>A</u>rea <u>U</u>nder <u>C</u>urve (AUC): higher \rightarrow ROC more toward upper left

 $P_{FA} @ P_{D}$: lower $\rightarrow ROC$ more toward left @ fixed P_{D} $P_D @ P_{FA}$: higher $\rightarrow ROC$ more toward top @ fixed P_{FA}

Calculating AUC

Trapezoidal integration (trapz) is a robust numerical method

- Provides an exact calculation for piece-wise linear curves – which is exactly what our ROC curve is
- Appropriate when variable of integration (P_{FA} or P_D) is not precisely evenly spaced
- Appropriate when the variable of integration is repeated, as for a "stair-step" ROC

