This study analyzes the relationship between screen time (in hours) and daily step counts over a 30-day period. The analysis is performed using Python in the **Spyder IDE**. The data file is opened using a Tkinter-based file dialog to ensure flexibility during testing.

Data Source and Preprocessing

Step Count Data:

- The step count data was retrieved from Apple Health in XML format.
- The XML file was parsed using Python's xml.etree.ElementTree module.
- Relevant fields such as startDate, endDate, and value were extracted, while unnecessary metadata (e.g., device details) was excluded.
- The cleaned data was saved as a CSV file for further processing and eventually converted into an Excel file for analysis.

• Screen Time Data:

 Screen time data was recorded manually and included in the same Excel file alongside step count data.

Libraries Used:

- 1. **Pandas**: For data manipulation and analysis.
- 2. **Matplotlib**: For creating visualizations such as bar charts, scatter plots, and line graphs.
- 3. **Statsmodels**: For conducting statistical analysis, including regression modeling and hypothesis testing.
- 4. **Tkinter**: For file selection through a graphical interface.

1. Data Description

The dataset contains daily records of screen time (in hours) and step counts. Below is a statistical summary of the data:

Screen Time (Hours):

• **Mean:** 5.55 hours

Median: Approximately 5.60 hoursStandard Deviation: 2.69 hours

Minimum: 1.2 hoursMaximum: 9.5 hours

Step Count:

• **Mean:** 4895.62 steps

Median: Approximately 4900 stepsStandard Deviation: 2249.69 steps

Minimum: 900 stepsMaximum: 9800 steps

2. Bar Chart Insights

Screen Time by Day:

• Observations:

- Screen time fluctuates significantly between 1.2 hours and 9.5 hours.
- Peaks are observed on days 11, 14, 20, and 28.
- o There are no consistent patterns of high or low screen time.

Step Count by Day:

Observations:

- $_{\circ}$ Step counts vary between 900 and 9800 steps.
- o Peaks are observed on days 9, 19, and 25.
- No observable trend connects step counts to specific days.

3. Line Graph Insights

Screen Time Trends:

Observations:

- o Screen time exhibits significant day-to-day fluctuations.
- The highest screen time (9.5 hours) occurs on day 28, while the lowest (1.2 hours) occurs on day 12.

Step Count Trends:

Observations:

- Step counts show notable variability across the 30 days.
- The highest step count (9800 steps) occurs on day 25, while the lowest (900 steps) occurs on day 12.
- There is no alignment between peaks and troughs in step count and screen time.

4. Hypothesis Formulation

- Null Hypothesis (H₀): There is no correlation between screen time and step count.
- Alternative Hypothesis (H₁): There is a correlation between screen time and step count.

5. Statistical Overview

- Average Screen Time (Hours): 5.55 hours
- Standard Deviation (Screen Time): 2.69 hours
- Average Step Count: 4895.62 steps
- Standard Deviation (Step Count): 2249.69 steps
- Correlation Coefficient (Screen Time vs. Step Count): -0.09
 - The weak negative correlation suggests that as screen time increases, step count slightly decreases, but the relationship is extremely weak.

6. Hypothesis Testing

- **P-value:** 0.6405
 - Since the p-value is greater than 0.05, we fail to reject the null hypothesis. This indicates that there is no statistically significant correlation between screen time and step count.

7. Linear Regression Analysis

Regression Equation:

Steps=5316.08-75.74×Screen Time (Hours)Steps=5316.08-75.74×Screen Time (Hours)

- Intercept (Constant): 5316.08 steps (predicted step count when screen time is 0).
- **Slope:** For every additional hour of screen time, step count decreases by approximately 75.74 steps.
- R² Value: 0.01
 - o Only 1% of the variability in step count is explained by screen time, indicating a very poor fit.

8. Scatter Plot Insights

Observations:

- o The scatter plot shows data points with a regression line.
- The R² value of 0.01 confirms the weak explanatory power of screen time in predicting step count.
- The data points are widely scattered, supporting the lack of a meaningful relationship.

9. Conclusion

- Correlation Analysis: The weak negative correlation (-0.09) and high p-value (0.6405) indicate no significant linear relationship between screen time and step count.
- **Regression Model:** The R² value (0.01) demonstrates that screen time explains only a tiny fraction of the variation in step count.
- **Practical Implications:** Screen time and step count appear to be largely independent in this dataset. Other factors, such as exercise habits, weather, or personal schedules, may have a stronger influence on step count.