





- IPv6 é a versão mais atual do Protocolo de Internet
- Originalmente oficializada em 6 de junho de 2012, é fruto do esforço do IETF para criar a "nova geração do IP" (IPng: Internet Protocol next generation), cujas linhas mestras foram descritas por Scott Bradner e Allison Marken, em 1994, na RFC 1752
- Sua principal especificação encontra-se na RFC 2460
- O protocolo está sendo implantado gradativamente na Internet e deve funcionar lado a lado com o IPv4, numa situação tecnicamente chamada de "pilha dupla" ou "dual stack", por algum tempo





- A longo prazo, o IPv6 tem como objetivo substituir o IPv4, que suporta somente cerca de 4 bilhões<sup>(escala curta)</sup>/mil milhões(escala longa) (4x10<sup>9</sup>) de endereços IP, contra cerca de 340 undecilhões<sup>(escala curta)</sup>/sextilhões<sup>(escala longa)</sup> (3,4x10<sup>38</sup>) de endereços do novo protocolo
- Um aperfeiçoamento é que o IPv6 utiliza 128 bits para representar seus endereços, contra os 32 bits do IPv4
- Um segundo aperfeiçoamento importante no IPv6 é a simplificação do cabeçalho, sendo que ele contém apenas sete campos (contra os 13 do IPv4)
- Essa mudança permite aos roteadores processar os pacotes com mais rapidez e, dessa forma, melhorar o throughput e o atraso





- Os endereços foram ao longo do tempo otimizado, para que nos casos onde haja a presença de 0, esses possam ser omitidos
- Endereço completo
- 8000:0000:0000:0000:0123:4567:89AB:CDEF

- Endereço novo (otimizado)
- 8000::123:4567:89AB:CDEF



## Comparação

#### IPv4

Implantado em 1981

Endereço IP de 32-bit

4,3 bilhões de endereços Endereços precisam ser reutilizados e mascarados

Notação numérica decimal com ponto 192.168.5.18

DHCP ou configuração manual

#### IPv6

Implantado em 1998

Endereço IP de 128-bit

340 undecilhões de endereços Cada dispositivo tem um endereço exclusivo

Notação hexadecimal alfanumérica

50b2:6400:0000:0000:6c3a:b17d:0000:10a9

(Simplificado - 50b2:6400::6c3a:b17d:0:10a9)

Compatível com configuração automática



### Comparação





#### **Traceroute**

- Traceroute é uma ferramenta de diagnóstico que rastreia a rota de um pacote através de uma rede de computadores
- Ele utiliza os protocolos IP e o ICMP, implementada pela primeira vez por Van Jacobson em 1988
- Atualmente está disponível em diversos sistemas operacionais como Linux, FreeBSD, NetBSD, MacOS X e Windows
- Seu funcionamento está baseado no uso do campo Time to Live (TTL) do pacote IPv4 destinado a limitar o tempo de vida dele
- Este valor é decrementado a cada vez que o pacote é encaminhado por um roteador



#### Traceroute

- Ao atingir o valor zero o pacote é descartado e o originador é alertado por uma mensagem ICMP TIME\_EXCEEDED
- Através da manipulação do campo TTL de uma série de datagramas UDP é possível receber esta mensagem de cada um dos roteadores no caminho do pacote
- Para o caso do IPv6 é utilizado o campo hop limit, o limite de saltos dos datagramas desta versão do protocolo
- A implementação disponível no Microsoft Windows utiliza apenas pacotes ICMP



#### Traceroute

- O traceroute pode ser limitado (quantidade de saltos), pois um rastreamento pode ter muitos saltos
- Para executar o Traceroute dentro do Windows basta digitar no CMD o comando tracert + o endereço desejado
- tracert google.com



# Outros protocolos



### **DHCP**

- DHCP é siglda para Dynamic Host Configuration Protocol (protocolo de configuração dinâmica de host)
- É um protocolo de serviço TCP/IP que oferece configuração dinâmica de terminais, com concessão de endereços IP de host, máscara de sub-rede, default gateway (gateway padrão), número IP de um ou mais servidores DNS, sufixos de pesquisa do DNS e número IP de um ou mais servidores WINS
- Este protocolo é o sucessor do BOOTP que, embora mais simples, tornouse limitado para as exigências atuais. O DHCP surgiu como um padrão em outubro de 1993
- O RFC 2131 (1997) contém as especificações mais atuais. O último standard para a especificação do DHCP sobre IPv6 (DHCPv6) foi publicado como RFC 3315 (2003)





- O DHCP usa um modelo cliente-servidor
- Resumidamente, o DHCP opera da seguinte forma:
  - Quando um computador (ou outro dispositivo) se conecta a uma rede, o host/cliente DHCP envia um pacote UDP em broadcast (destinado a todas as máquinas) com uma requisição DHCP (para a porta 67);
  - Qualquer servidor DHCP na rede pode responder a requisição. O servidor DHCP mantém o gerenciamento centralizado dos endereços IP usados na rede e informações sobre os parâmetros de configuração dos clientes como gateway padrão, nome do domínio, servidor de nomes e servidor de horário
  - Os servidores DHCP que capturarem este pacote responderão (se o cliente se enquadrar numa série de critérios) para a porta 68 do host solicitante com um pacote com configurações onde constará, pelo menos, um endereço IP e uma máscara de rede, além de dados opcionais, como o gateway, servidores de DNS, etc





- Protocolo de Controle de Transmissão
- Transmission Control Protocol (TCP)
- É um dos protocolos de comunicação, da <u>camada de transporte</u> da rede de computadores do Modelo OSI, que dão suporte a rede global Internet, verificando se os dados são enviados na **sequência** correta e sem erros via rede
- É complementado pelo protocolo da Internet, normalmente chamado de, TCP/IP





- Neste protocolo da camada de transporte (camada 4 OSI) se assentam a maioria das aplicações cibernéticas, como o SSH, FTP, HTTP — portanto, a World Wide Web, devido sua versatilidade e robustez
- O Protocolo de controle de transmissão provê confiabilidade, entrega na sequência correta e verificação de erros dos pacotes de dados, entre os diferentes nós da rede, para a camada de aplicação
- Aplicações que não requerem um serviço de confiabilidade de entrega de pacotes podem se utilizar de protocolos mais simples como o User Datagram Protocol (UDP), que provê um serviço que enfatiza a redução de latência da conexão





- O User Datagram Protocol (UDP) é um protocolo simples da camada de transporte
- Ele é descrito na RFC 768 e permite que a aplicação envie um datagrama encapsulado num pacote IPv4 ou IPv6 a um destino, porém sem qualquer tipo de garantia que o pacote chegue corretamente (ou de qualquer modo)
- O protocolo UDP não é confiável
- Caso garantias sejam necessárias, é preciso implementar uma série de estruturas de controle, tais como timeouts, retransmissões, acknowledgements, controle de fluxo, etc





- Cada datagrama UDP tem um tamanho e pode ser considerado como um registro indivisível, diferentemente do TCP, que é um protocolo orientado a fluxos de bytes sem início e sem fim
- Também dizemos que o UDP é um serviço sem conexão, pois não há necessidade de manter um relacionamento longo entre cliente e o servidor
- Assim, um cliente UDP pode criar um socket, enviar um datagrama para um servidor e imediatamente enviar outro datagrama com o mesmo socket para um servidor diferente





- Da mesma forma, um servidor poderia ler datagramas vindos de diversos clientes, usando um único socket
- O UDP também fornece os serviços de broadcast e multicast, permitindo que um único cliente envie pacotes para vários outros na rede





- Em comparação ao TCP, é possível entendê-lo como um envio de cartas pelo correio:
- Onde o usuário escreve a carta, envelopa como o endereço de origem e destino, envia, mas não consegue ter a confirmação imediata se aquilo chegou ou não ao destino, ele só tem certeza do envio
- Já o TCP pode ser tido como um telefone, onde é possível saber de imediato se o destinatário está ou não recebendo as informações





| ТСР                                                                                                                                           | UDP                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Keeps track of lost packets. Makes sure that lost packets are re-sent                                                                         | Doesn't keep track of lost packets                                                                 |
| Adds sequence numbers to packets and reorders any packets that arrive in the wrong order                                                      | Doesn't care about packet arrival order                                                            |
| Slower, because of all added additional functionality                                                                                         | Faster, because it lacks any extra features                                                        |
| Requires more computer resources, because the OS needs to keep track of ongoing communication sessions and manage them on a much deeper level | Requires less computer resources                                                                   |
| Examples of programs and services that use TCP:  - HTTP - HTTPS - FTP - Many computer games                                                   | Examples of programs and services that use UDP:  - DNS - IP telephony - DHCP - Many computer games |





| TCP                                       | UDP                              |
|-------------------------------------------|----------------------------------|
| Secure                                    | Unsecure                         |
| Connection-Oriented                       | Connectionless                   |
| Slow                                      | Fast                             |
| Guaranteed transmittion                   | No Guarantee                     |
| Used by crtical applications              | Used by real-time applications   |
| Packet reorder mechanism                  | No reorder mechanism             |
| Flow control                              | No flow control                  |
| Error Checking                            | No Error Checkin                 |
| 20 Bytes Header                           | 8 Bytes Header                   |
| Acknowledgement Mechanism                 | No Acknowledgement               |
| Three-way handshake (SYN, SYN-ACK, ACK)   | No hanshake                      |
| DNS, HTTP, HTTPs, FTP, SMTP, Telnet, SNMP | DNS, DHCP, TFTP, SNMP, RIP, VOIP |











- Sistema de Nomes de Domínio
- Em inglês Domain Name System (DNS)
- É um sistema hierárquico e distribuído de gestão de nomes para computadores, serviços ou qualquer máquina conectada à Internet ou a uma rede privada
- Ele faz a associação entre várias informações atribuídas a nomes de domínios e cada entidade participante
- A sua utilização mais convencional associa nomes de domínios mais facilmente memorizáveis a endereços IP numéricos, necessários à localização e identificação de serviços e dispositivos, processo esse denominado por: resolução de nome





- O desempenho não se degrada substancialmente quando se adicionam mais servidores
- Por padrão, o DNS usa o protocolo User Datagram Protocol (UDP) na porta 53 para servir as solicitações e as requisições
- O DNS apresenta uma arquitetura cliente/servidor, podendo envolver vários servidores DNS na resposta a uma consulta
- O servidor DNS resolve nomes para os endereços IP e de endereços IP para os nomes respectivos, permitindo a localização de hosts num determinado domínio





- Existem centenas de servidores-raiz DNS (root servers) no mundo todo, agrupados em 13 zonas DNS raiz, das quais sem elas a Internet não funcionaria
- Destes, dez estão localizados nos Estados Unidos da América, dois na Europa e um na Ásia
- Para aumentar a base instalada destes servidores foram criadas réplicas localizadas por todo o mundo, inclusive no Brasil desde 2003