TECHNICAL UNIVERSITY OF DENMARK

CONSTRAINED OPTIMIZATION

Course 02612

Assignment 1

 $\begin{array}{c} Authors: \\ {\rm Jakub~Czerny,~s99999} \end{array}$

Oskar Hint, s161559

Joachim Finn Jensen, s134052

March 13, 2017

Contents

1	Intr	roduction	1
2	Assignment		1
	2.1	Problem 1 - Quadratic Optimization	1
	2.2	Problem 2 - Equality Constrained Quadratic Optimization	1
	2.3	Problem 3 - Inequality Constrained Quadratic Programming	1
	2.4	Problem 4 - Markowitz Portfolio Optimization	3
	2.5	Problem 5 - Interior-Point Algorithm for Convex Quadratic Programming $$.	3
9	Cox	aglusion	3
J	Conclusion		J

1 Introduction

this is some report

2 Assignment

2.1 Problem 1 - Quadratic Optimization

blablablablbal

2.2 Problem 2 - Equality Constrained Quadratic Optimization

blablablablbal

2.3 Problem 3 - Inequality Constrained Quadratic Programming

From page 475 in Nocedal and Wright the following system is given.

$$\min_{x} q(x) = (x_{1} - 1)^{2} + (x_{2} - 2.5)^{2}$$

$$s.t.x_{1} - 2x_{2} + 2 >= 0,$$

$$-x_{1} - 2x_{2} + 6 >= 0,$$

$$-x_{1} + 2x_{2} + 2 >= 0,$$

$$x_{1} >= 0,$$

$$x_{2} >= 0.$$
(1)

in MatLab a contour plot of this is made and seen in figure 1.

2 Assignment

Figure 1: A contour plot of the problem.

From the line it is seen that the feasible region is a pentagon. The problem can be written in the standart martix way as:

$$H = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$g = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 \\ -2 & -2 & 2 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} -2 \\ -6 \\ -2 \\ 0 \\ 0 \end{bmatrix}$$

Then the general KKT system can be written as:

$$\begin{bmatrix} H & -A \\ A^T & 0 \end{bmatrix}$$

*

$$\begin{bmatrix} x \\ \lambda \end{bmatrix}$$

=

$$\begin{bmatrix} -g \\ b \end{bmatrix}$$

2.4 Problem 4 - Markowitz Portfolio Optimization

blablablablbal

2.5 Problem 5 - Interior-Point Algorithm for Convex Quadratic Programming

blablablablbal

3 Conclusion

Some conclusions things