

In The Claims

- ✓ 2. (Currently amended) A measurement system comprising:
a first log amp;
a second log amp; and
a differencing circuit coupled to the first and second log amps, wherein the differencing circuit is arranged to continuously process outputs from the first and second log amps;
wherein the first and second log amps are progressive compression log amps.
Mar 28 2013 2:40
- ✓ 3. (Previously amended) A measurement system according to claim 2 wherein:
the first log amp has a first logarithmic output coupled to a first input to the differencing circuit; and
the second log amp has a second logarithmic output coupled to a second input to the differencing circuit.
- 15
also 4. (Currently amended) A measurement system comprising:
a first log amp;
a second log amp; and
a differencing circuit coupled to the first and second log amps, wherein the differencing circuit comprises consists essentially of a summing node.
- ✓ 5. (Currently amended) A measurement system according to claim 2 further comprising an output interface circuit coupled to the differencing circuit. wherein the differencing circuit comprises an output interface circuit.
6. (Previously amended) A measurement system comprising:
a first log amp;
a second log amp;
a differencing circuit coupled to the first and second log amps; and
a phase detector core coupled to the first and second log amps.

7. (Original) A measurement system according to claim 6 wherein:
the first log amp has a first limiting output coupled to a first input of the phase detector core; and
the second log amp has a second limiting output coupled to a second input of the phase detector core.
8. (Original) A measurement system according to claim 7 wherein the detector core comprises a multiplier.
9. (Original) A measurement system according to claim 6 further comprising an output interface circuit coupled to the phase detector core.
- ✓ 10. (Currently amended) A measurement system comprising:
a first log amp; and
a second log amp;
wherein the first and second log amps are progressive compression log amps co-integrated on a substrate. *not in package*
- ✓ 11. (Currently amended) A measurement system ~~according to claim 10~~ comprising:
a first log amp; and
a second log amp;
wherein the first and second log amps are co-integrated on a substrate; and
wherein the first and second log amps are arranged symmetrically about a center line.
- ✓ 12. (Original) A measurement system circuit according to claim 10 wherein the substrate is mounted in a package.
- ✓ 13. (Currently amended) A measurement system ~~according to claim 12 further~~ comprising:
a first log amp;
a second log amp;
a first parasitic network coupled to the first log amp; and
a second parasitic network coupled to the second log amp;

wherein the first and second log amps are co-integrated on a substrate;
wherein the substrate is mounted in a package; and
wherein the first and second parasitic networks have similar frequency responses.

allow
14. (Currently amended) A measurement system comprising:
a first log amp;
a second log amp;
a differencing circuit having first and second inputs coupled to the first and second log amps, respectively; and
a third log amp coupled to a third input of the differencing circuit.

allow
15. (Currently amended) A measurement system comprising:
a first log amp;
a second log amp;
a differencing circuit having first and second inputs coupled to the first and second log amps, respectively; and
one or more additional log amps coupled to one or more additional inputs of the differencing circuit.

allow
16. (Original) A measurement system comprising:
a first log amp having a first limiting output;
a second log amp having a second limiting output; and
a phase detector core coupled to the first and second log amps to receive the first and second limiting outputs.

allow
17. (Original) A measurement system according to claim 16 wherein the phase detector core comprises a multiplier.

18. (Original) A measurement system according to claim 16 wherein the first and second log amps are co-integrated on a substrate.

✓
19. (Currently amended) An integrated circuit comprising two or more progressive compression log amps.

20. (Currently amended) An integrated circuit according to claim 19 further comprising a differencing circuit coupled to the two or more progressive compression log amps. *not in spec*

21. (Currently amended) An integrated circuit ~~according to claim 19 further comprising~~ comprising:

two or more log amps

a differencing circuit coupled to the two or more log amps; and

a phase detector core coupled to the two or more log amps.

✓ 22. (Currently amended) A method comprising:

logarithmically amplifying a first input signal, thereby generating a first output signal;
logarithmically amplifying a second input signal, thereby generating a second output signal; and

differentially and continuously processing the first and second output signals;

wherein logarithmically amplifying comprises progressively compressing. *not in spec*

✓ 23. (Original) A method according to claim 22 wherein:

the first and second output signals are logarithmic output signals; and
differentially processing the first and second output signals comprises differencing the first and second output signals.

✓ 24. (Previously amended) A method comprising:

logarithmically amplifying a first input signal, thereby generating a first output signal;
logarithmically amplifying a second input signal, thereby generating a second output signal; and

differentially processing the first and second output signals

wherein:

the first and second output signals are limiting output signals; and
differentially processing the first and second output signals comprises multiplying the first and second output signals.

25. (Previously amended) A method comprising:
logarithmically amplifying a first input signal, thereby generating a first output signal;
logarithmically amplifying a second input signal, thereby generating a second output
signal;

aln differentially processing the first and second output signals;
utilizing a signal to be examined as the first input signal; and
utilizing a reference signal as the second input signal.

aln 26. (Original) A method according to claim 25 wherein the reference signal has
the same waveform as the signal to be examined.

aln 27. (Previously amended) A method comprising:
logarithmically amplifying a first input signal, thereby generating a first output signal;
logarithmically amplifying a second input signal, thereby generating a second output
signal;
differentially processing the first and second output signals;
utilizing a modulated signal for the first input signal; and
utilizing a modulation signal for the second input signal.

aln 28. (Previously added) A measurement system according to claim 2 further
comprising a power amplifier having an input coupled to an input of the first log amp and an
output coupled to an input of the second log amp.

aln 29. (Currently amended) A measurement system according to claim 4 wherein the
log amps have current-mode outputs.