Kriptosistem

 $\mathcal{B}\dots$ besedila

 $\mathcal{C}\dots$ kriptogrami

 $\mathcal{K} \dots ključi$

 $\mathcal{E} = \{E_k : \mathcal{B} \to \mathcal{C}; k \in \mathcal{K}\} \dots$ kodirne f. $\mathcal{D} = \{D_k : \mathcal{C} \to \mathcal{B}; k \in \mathcal{K}\} \dots$ dekodirne f.

Za vsak $e \in \mathcal{K}$ obstaja $d \in \mathcal{K}$

$$D_d(E_e(x)) = x \quad \forall x \in \mathcal{B}$$

Vsaka kodrirna funkcija $E_k \in \mathcal{E}$ je injektivna.

Produkt kriptosistemov

Naj bosta $S_1 = (\mathcal{B}_1, \mathcal{C}_1, \mathcal{K}_1, \mathcal{E}', \mathcal{D}')$ in $S_2 = (\mathcal{B}_2, \mathcal{C}_2, \mathcal{K}_2, \mathcal{E}'', \mathcal{D}'')$ kriptosistema za katera je $\mathcal{C}_1 = \mathcal{B}_2$.

$$S_1 \times S_2 = (\mathcal{B}_1, \mathcal{C}_2, \mathcal{K}_1 \times \mathcal{K}_2, \mathcal{E}, \mathcal{D})$$

$$E_{(k_1,k_2)}(x) = E_{k_2}''(K_{k_1}'(x))$$

$$D_{(k_1,k_2)}(y) = D_{k_1}'(D_{k_2}''(y))$$

Prevedljivost kriptosistemov

Kripto sistem $\mathcal{S}=(\mathcal{B},\mathcal{C},\mathcal{K},\mathcal{E},\mathcal{D})$ je prevedljiv na $\mathcal{S}'=(\mathcal{B},\mathcal{C},\mathcal{K}',\mathcal{E}',\mathcal{D}')$, če obstaja $f:\mathcal{K}\to\mathcal{K}'$, da za vsak $k\in\mathcal{K}$ velja:

$$E_k = E'_{f(k)} \qquad D_k = D'_{f(k)}$$

Tedaj pišemo $S \to S'$.

Kriptosistema sta **ekvivalentna**, če velja $S \to S'$ in $S' \to S$.

Tedaj pišemo $S \equiv S'$.

Idempotentnost kriptosistemov

Kriptosistem S je idempotenten, če

$$S \times S \equiv S$$

Klasični kriposistem so vsi idempotentni.

Klasični kriptosistem

Cezarjeva šifra

$$\mathcal{B} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{25}$$

$$E_k(x) \equiv x + k \mod 25$$

$$D_k(y) \equiv y - k \mod 25$$

Substitucijska šifra

$$\mathcal{B} = \mathcal{C} = \mathbb{Z}_{25}, \quad \mathcal{K} = S(\mathbb{Z}_{25})$$

Ključ je permutacija $\pi \in \mathcal{K}$

$$E_k(x) = \pi(x)$$

$$D_k(y) = \pi^{-1}(y)$$

Afina šifra

$$\mathcal{B} = \mathcal{C} = \mathbb{Z}_{25}, \quad \mathcal{K} = \mathbb{Z}_{25}^* \times \mathbb{Z}_{25}$$

Ključ $(a,b) \in \mathcal{K}$

$$K_{(a,b)}(x) = ax + b \mod 25$$

$$D_{(a,b)}(y) = a^{-1}(y-b) \mod 25$$

Vigenerjeva šifra

$$\mathcal{B} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{25}^n$$

Ključ $k \in \mathcal{K}$

$$K_k(x) = x + k \mod 25$$

$$D_k(y) = y - \underline{k} \mod 25$$

Permutacijska šifra

Simbolov ne nadomeščamo, ampak jih premešamo

$$\mathcal{B} = \mathcal{C} = \mathbb{Z}_{25}^n, \quad \mathcal{K} = S_n$$

$$K_{\pi}(\underline{x}) = \underline{x}_{\pi(1)} + \cdots + \underline{x}_{\pi(n)}$$

$$D_{\pi}(\underline{x}) = \underline{x}_{\pi^{-1}(1)} + \dots + \underline{x}_{\pi^{-1}(n)}$$

Hillova šifra

$$\mathcal{B} = \mathcal{C} = \mathbb{Z}_{25}^n, \quad \mathcal{K} = \{ A \in \mathbb{Z}_{25}^{n \times n} | \det(A) \in \mathbb{Z}_{25}^* \}$$

Ključ je matrika $A \in \mathcal{K}$

$$K_A(\underline{x}) = A\underline{x} \mod 25$$

$$D_A(y) = A^{-1}y \mod 25$$

Bločne šifre

Kripotsistem $(\mathcal{B}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ je bločna šifra dolžine n, če je $\mathcal{B} = \mathcal{C} = \Sigma^n$, kjer je Σ končna abeceda.

Vsaka kodirna funkcija je ekvivalentna neki permutaciji Σ^n , njena dekodirna funkcija pa inverzu te permutacije.

Afina bločna šifra

$$\Sigma = \mathbb{Z}_m$$

$$\mathcal{K} = \left\{ (A, \underline{b}); \ A \in \mathbb{Z}_m^{n \times n}, \det(A) \in \mathbb{Z}_m^*, \underline{b} \in \mathbb{Z}_m^n \right\}$$

$$E_{(A,\underline{b})}(\underline{x}) \equiv A\underline{x} + \underline{b} \mod m$$
$$D_{(A,b)}(\underline{x}) \equiv A^{-1}\underline{x} - \underline{b} \mod m$$

Teorija števil

Eulerjeva funkcija

Eulerjeva funkcija nam pove koliko je obr
nlivih elementov v $\mathbb{Z}_m.$

$$|\mathbb{Z}_m^*| = \varphi(m)$$

Za $n \in \mathbb{N}$ s paraštevilskim razcepom $n = p_1^{\alpha_1} \cdot \ldots \cdot p_m^{\alpha_m}$ velja:

$$\varphi(n) = \varphi(p_1^{\alpha_1}) \cdot \ldots \cdot \varphi(p_m^{\alpha_m}) = n \prod_{p_k \in \mathbb{P}} \left(1 - \frac{1}{p_k}\right)$$

Euljerjev izrek:

$$\gcd(a, m) = 1 \Leftrightarrow a^{\varphi(m)} \equiv_m 1; a \in \mathbb{Z}_m^*$$
$$a, m \in \mathbb{N} \land \gcd(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv_m 1$$
$$a^{\varphi(m)} = 1 \text{ v } \mathbb{Z}_m^*$$

Mali Fermatov izrek: če je $m \in \mathbb{P} (\varphi(m) = m-1)$ in $\gcd(a, m) = 1$, potem:

$$a^{m-1} \equiv_m 1$$

Razširjen evklidov algoritem

$$(r_0, x_0, y_0) = (a, 1, 0)$$

 $(r_1, x_1, y_1) = (b, 0, 1)$
 $i = 1$
 $dokler \ r_i \neq 0$:
 $i = i+1$
 $k_i = r_{i-2}//r_{i-1}$

 $(r_i,x_i,y_i)=(r_{i-2},x_{i-2},y_{i-2})-k_i(r_{i-1},x_{i-1},y_{i-1})$ konec zanke vrni: $(r_{i-1},x_{i-1},y_{i-1})$

vhod: (a, b)

Naj bosta $a,b\in\mathbb{Z}$. Tedaj trojica (d,x,y), ki jo vrne razširjen evklidov algoritem z vhodnim podatkomk (a,b), zadošča:

$$ax + by = d$$
 in $d = \gcd(a, b)$