Hamdard University Department of Computing Final Year Project

GlucoPredict: Al-Powered Diabetes Predictor (FYP-017/FL24)

Software Requirements Specifications

Submitted by:
M. Moiez Siddiqui (2270-2021)
M. Hassan bin Sabih (2203-2021)
Supervisor:
Dr. Khurram Iqbal

Fall 2024

Document Sign off Sheet

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Document Information

Project Title	GlucoPredict: AI-POWERED DIABETES PREDICTOR
Project Code	FYP-017/FL24
Document Name	Software Requirements Specifications
Document Version	1.0
Document Identifier	FYP-017/FL24-SRS
Document Status	Draft
Author(s)	Muhammad Hassan bin Sabih M. Moiez Siddiqui
Approver(s)	Dr. Khurram Iqbal
Issue Date	13/08/2024

Name	Role	Signature	Date
M. Moiez Siddiqui	Team Lead		
M. Hassan bin Sabih	Team Member 2		
-	Team Member 3		
Dr. Khurram Iqbal	Supervisor		
-	Co-Supervisor		
-	Project Coordinator		

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Revision History

Date	Version	Description	Author
14/08/2024	1.0	Prepared Draft of SRS	M. Hassan
22/12/2024	1.1	Made changes related to Req.	M. Hassan

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Definition of Terms, Acronyms, and Abbreviations

Term	Description	
EHR (Electronic Health	Digital versions of patients' paper charts, providing real-time, patient-centered	
Records)	records that make information available instantly and securely.	
GDPR (General Data	A legal framework that sets guidelines for the collection and processing of	
Protection Regulation)	personal information	
GCP (Google Cloud	A suite of cloud computing services that runs on the same infrastructure that	
Platform)	Google uses for its end-user products.	
Logistic Regression	A statistical method for analyzing datasets in which there are one or more	
	independent variables that determine an outcome	
Random Forest	An ensemble learning method for classification, regression, and other tasks that	
	operates by constructing multiple decision trees	
Flutter/Dart	A UI toolkit for crafting natively compiled applications for mobile, web, and	
	desktop from a single codebase (Flutter), and its programming language (Dart).	
Docker A platform used to develop, ship, and run applications inside containers to		
	ensure they work seamlessly across environments.	
Jupyter Notebook	An open-source web application that allows users to create and share	
	documents containing live code, equations, visualizations, and narrative text.	
AWS (Amazon Web	A subsidiary of Amazon providing on-demand cloud computing platforms and	
Services)	APIs.	
Decision Tree	A decision support tool that uses a tree-like model of decisions and their	
	possible consequences.	

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Table of Contents

	Document Information	2
Γable	e of Contents	5
l. I	Introduction	7
1.1	Purpose of Document	7
pro all clea	e purpose of this document is to provide a comprehensive overview of the GlucoPredict oject, detailing its objectives, scope, and requirements. This document serves as a guide stakeholders, including developers, healthcare professionals, and researchers, ensuring ar understanding of the system's functionality, constraints, and interfaces. It aims to indardize communication among all parties involved in the project's lifecycle.	for
1.2	2 Intended Audience	7
Thi	is project is intended for the following audience:	7
1.3	B Abbreviations	7
2. (Overall System Description	8
2.1	Project Background	8
2.2	Problem Statement	10
exte esp pre	rrent diabetes detection methods are reactive and resource-intensive, often requiring tensive diagnostic tests and clinical visits. These limitations hinder early intervention, becially in underserved populations. GlucoPredict addresses this gap by offering a edictive, accessible, and user-friendly tool to assess diabetes risk and enable preventative assures.	e 10
2.3	B Project Scope	10
The	e scope of this project includes:	10
2.4	Not In Scope	10
The	e following aspects are excluded from the current scope of the project:	10
2.5	5 Project Objectives	10
2.6	Stakeholders & Affected Groups	10
2.7	7 Operating Environment	13
2.8	3 System Constraints	13
• T	he model's performance depends on the quality and diversity of input data.	13
• L	imited access to comprehensive datasets could affect prediction accuracy.	13
	trict adherence to data protection laws may impose constraints on data handling and rage.	13

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

2.9	Assumptions & Dependencies	13
3. Ex	sternal Interface Requirements	14
3.1	Hardware Interfaces	14
3.2	Software Interfaces	14
3.3	Communications Interfaces	14
4. Ris	sk Analysis	16
5. Sy	stem Functions / Functional Requirements	19
5.1	System Functions	19
5.2	Use Cases	19
5.2	2.1 List of Actors	19
5.2	2.2 List of Use Cases	19
5.2	2.3 Use Case Diagram	20
5.2	2.4 Description of Use Cases	21
6. No	on - Functional Requirements	23
6.1	Performance Requirements	23
6.2	Safety Requirements	23
6.3	Security Requirements	23
6.4	Reliability Requirements	23
6.5	Usability Requirements	23
6.6	Supportability Requirements	24
6.7	User Documentation	24
7. Re	eferences	25

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

1. Introduction

1.1 Purpose of Document

The purpose of this document is to provide a comprehensive overview of the GlucoPredict project, detailing its objectives, scope, and requirements. This document serves as a guide for all stakeholders, including developers, healthcare professionals, and researchers, ensuring a clear understanding of the system's functionality, constraints, and interfaces. It aims to standardize communication among all parties involved in the project's lifecycle.

1.2 Intended Audience

This project is intended for the following audience:

- **Project Team**: Developers, designers, and testers involved in building and maintaining the GlucoPredict system.
- **Stakeholders**: Sponsors, project champions, and healthcare providers who oversee the project's progress and ensure alignment with its goals.
- **End-Users**: At-risk individuals and healthcare providers who will use the system for predicting diabetes risks and monitoring health outcomes.
- **Researchers**: Individuals exploring advancements in AI-driven healthcare solutions and predictive analytics related to diabetes and chronic disease management.

1.3 Abbreviations

Abbreviation	Description
SRS	Software Requirements Specification
UI	User Interface
JSON	JavaScript Object Notation
ML	Machine Learning
SQL	Structured Query Language
LLM	Large Language Model

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

2. Overall System Description

2.1 Project Charter

GENERAL PROJECT INFORMATION				
PROJECT NAME	GlucoPredict: Al-Powered Diabetes Predictor			
PROJECT SPONSOR	Muhammad Moiez Siddiqui Muhammad Hassan bin Sabih			
PROJECT MANAGER	Muhammad Moiez Siddiqui			
STAKEHOLDERS	Patients, Health Care Providers, Institutions			
EXPECTED START DATE	14/08/2024			
EXPECTED COMPLETION DATE				

PROJECT DETAILS			
EXECUTIVE SUMMARY	GlucoPredict is a predictive healthcare platform designed to assess an individual's risk of developing diabetes based on their medical and lifestyle data. By integrating advanced machine learning algorithms, health data analytics, and an intuitive user interface, GlucoPredict empowers users and healthcare professionals to make informed decisions for early intervention and prevention. The system simplifies diabetes risk prediction through real-time analysis, personalized recommendations, and report generation, making healthcare management more accessible and data-driven.		
AUTHORIZATION	This project has been officially authorized by Hamdard University , with the approval of the Final Year Project Supervisor and academic evaluation committee. The project aligns with the university's mission to promote technology-driven healthcare solutions and contributes to public health awareness through predictive analytics and AI integration.		
OBJECTIVES	 To develop a reliable system for predicting the risk of diabetes using patient medical and lifestyle data. To provide a user-friendly platform for healthcare professionals and individuals to access risk assessments and recommendations. To enable secure storage and management of patient records for continuous monitoring and decision-making. To facilitate early diagnosis and preventive healthcare actions through Alpowered risk analysis 		

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

EXPECTED BENEFITS	 For Patients: Early awareness of potential health risks. Access to personalized preventive healthcare guidance. For Healthcare Providers: Improved decision-making support through data-driven risk predictions. Faster and more efficient patient screening and monitoring. For Institutions: Contribution to public health management initiatives. Adoption of Al-based solutions for proactive disease prevention.
SCOPE	 Diabetes risk prediction using machine learning models based on patient data. User-friendly web-based interface with secure login and patient profile management. Al-powered result analysis, recommendations, and report generation. Integration of a database for patient record storage and retrieval. Scalability for potential integration of additional health risk predictions in the future.
MILESTONES	 Initial requirement Gathering – August 18, 2024 Prototype Development – Nov 7, 2024 Backend and Frontend Integration – December 18, 2024 Final Testing and Deployment – March 16, 2025
SUCCESS METRICS	 87% accuracy in Predictive Analytics 94% user satisfaction rate during testing. Detection of diabetes in no longer than a minute
ESTIMATED COST & RESOURCES	 Budget – Rs 1,40,000 Human Resources – 2 developers Tools – Visual Studio Code, Jupiter Notebook, Colabs, SQL Server Materials – AWS, Laptops, Mobiles for testing and supporting software.
Date	August 14, 2024

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

2.2 Project Background

Diabetes affects millions globally, and early detection remains a challenge due to limited diagnostic accessibility. The **GlucoPredict** project leverages AI and machine learning to predict diabetes risk using health, demographic, and lifestyle data, empowering proactive measures and data-driven healthcare decisions.

2.3 Problem Statement

Current diabetes detection methods are reactive and resource-intensive, often requiring extensive diagnostic tests and clinical visits. These limitations hinder early intervention, especially in underserved populations. GlucoPredict addresses this gap by offering a predictive, accessible, and user-friendly tool to assess diabetes risk and enable preventative measures.

2.4 Project Scope

The scope of this project includes:

- Developing an AI-powered system to predict diabetes risk.
- Integrating multiple data sources, such as electronic health records (EHR), demographic information, and lifestyle inputs.
- Providing an intuitive user interface for at-risk individuals and healthcare providers.
- Delivering actionable insights for early intervention and better disease management.

2.5 Not In Scope

The following aspects are excluded from the current scope of the project:

- Direct medical treatment or therapeutic interventions.
- Integration with wearable devices or continuous monitoring hardware.
- Real-time glucose level tracking.

2.6 Project Objectives

- Develop a robust predictive model for diabetes risk assessment.
- Ensure data privacy and compliance with relevant regulations, such as GDPR and HIPAA.
- Deliver a scalable and maintainable software solution.
- Facilitate accessibility through a web-based and mobile-friendly interface.

2.7 Project Plan

Phase Name	Description	Start	End	Duration	Responsible Person
		Date	Date		
Project Initiation	Proposal drafting, problem identification, supervisor approval	16/08/24	20/8/24	4 Days	Hassan bin Sabih
Requirement	Collect and finalize	22/8/24	30/8/24	8 Days	Hassan bin Sabih
Gathering and	functional and non –				
Analysis	functional requirements				

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

System	Design system architecture,	2/9/24	9/9/24	7 Days	Hassan bin Sabih
Architecture &	data flow diagrams, and				
Design	database schema				
ML Model	Data preprocessing, model	10/9/24	4/10/24	27 Days	Moiez Siddiqui
Development	selection, training and				
	evaluation				
Integration & API	Connect app with backend	1/1/25	30/1/25	30 Days	Moiez Siddiqui
Development	APIs, Firebase, and				
	prediction server				
Testing &	Perform unit, integration,	1/2/25	15/2/25	15 Days	Moiez Siddiqui
Debugging	system, and UAT tests				
Deployment	Finalize app, hosting, and	1/3/25	20/3/25	20 Days	Moiez Siddiqui
Preparation	database setup for				
	production				
Document	Prepare final FYP report,	1/7/25	2/7/25	1 Day	Hassan bin Sabih
Finalization	coding standards, policies,				
	and manuals				
Final Presentation	Prepare slides, project	2/7/25	3/7/25	1 Day	Hassan bin Sabih
& Submission	demonstration, and final			-	
	submission				

2.8 Stakeholders & Affected Groups Stakeholders Register

Stakeholder	Role	Interest	Influence
At-Risk Individuals	End-User	Accurate diabetes predictions and	High
		health insights	
Healthcare	End-User	Reliable data to support	High
Providers		preventive care	
Project Supervisor	Advisor	Alignment with Project goals and	Medium
		progress	
Development Team	Implementation	Successful delivery of a	High
		functional system	
Researchers	Evaluator	Exploring advancements in	Medium
		predictive healthcare tools	

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

• Stakeholder Analysis Matrix

High			
PO	University Administration	Project Supervisor Project Owners	
P W E R	External Reviewers	End Users (At-Risk Individuals) (Healthcare Provider)	
Low			
	_ow I	nterest High	

• Stakeholder Communication Plan

Stakeholder	Communication Medium	Frequency	Engagement Strategy
At-Risk Individual	Email, Surveys	Bi-Weekly	Regular feedback and usability testing
Healthcare Provider	Email Presentation	Bi-Weekly	Updates on progress and system features
Project Supervisor	Meetings, Reports	Weekly	Progress updates and milestones reviews
Development Team	Daily Standups	Daily	Collaborative sprints and team discussions
Researchers	Reports, Presentations	Quarterly	Sharing insights and research outcomes

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

2.9 Operating Environment

The system will operate in a cloud-based environment, utilizing secure and scalable infrastructure. It will support cross-platform functionality, including web browsers and mobile devices. The system ensures compliance with healthcare data privacy regulations.

2.10 System Constraints

- The model's performance depends on the quality and diversity of input data.
- Limited access to comprehensive datasets could affect prediction accuracy.
- Strict adherence to data protection laws may impose constraints on data handling and storage.

2.11 Assumptions & Dependencies

- Users will provide accurate and complete information for the system to generate predictions.
- Internet connectivity is required for the system to function effectively.
- The success of the project depends on the availability of appropriate datasets and cloud infrastructure.

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

3. External Interface Requirements

3.1 Hardware Interfaces

The hardware interface for GlucoPredict is designed to ensure optimal performance and reliability:

- **Laptop**: Features a multi-core Intel i9 processor, 16GB RAM, and a 500GB SSD, providing powerful computation, smooth multitasking, and ample storage for large datasets.
- **Backup Hard Drives**: Offer secure data redundancy, protecting against data loss and ensuring continuity of development.
- **Internet Dongle**: Ensures reliable high-speed connectivity, crucial for accessing cloud resources, online databases, and collaboration tools.
- **Multifunctional Printer**: Supports printing, scanning, and copying, facilitating documentation, presentations, and efficient record-keeping.

3.2 Software Interfaces

The GlucoPredict application interfaces with several software systems and tools to achieve its functionalities. The table below lists the applications, their external owners, and interface details:

Application	External Owner	Interface Details
Visual Studio Code	Microsoft	Used as the primary environment. Interfaces with
		GlucoPredict's source code repository and debugging
		tools via extensions and plugins.
Jupyter Notebook	Open Source Community	Utilized for prototyping and data analysis. Interfaces
		through Python kernel to test and debug machine learning
		algorithms.
Google Colab	Google	Cloud-based Jupyter environment. Used for collaborative
		development and testing, integrating with Python libraries
		for AI model training and evaluation
SQL Server	Microsoft	Stores user data and application configurations. Interfaces
		with the GlucoPredict backend through SQL queries using
		an ODBC/JDBC connection.

3.3 Communications Interfaces

The GlucoPredict application communicates with various systems and devices through the following interfaces:

1. Local Area Network (LAN):

- The application uses LAN for seamless communication between the development machine and SQL Server during testing and debugging.
- SQL Server communicates over standard TCP/IP protocols for database queries and management.

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

2. Cloud Environment (Google Colab):

- The application leverages the internet for connecting with Google Colab to train models on shared or cloud-based datasets.
- o HTTP/HTTPS protocols are used for data transfer and API integration.

3. Development Tools:

- Visual Studio Code connects via local file system APIs or Git for version control and collaboration.
- o **Jupyter Notebook** operates locally, communicating directly with Python environments and libraries installed on the system.

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

4. Risk Analysis

4.1 Risk Identification

Methods Used for Identifying Risks:

- Brainstorming Sessions: Conducted with stakeholders to identify potential risks.
- **SWOT Analysis**: Evaluating the strengths, weaknesses, opportunities, and threats of the project.
- **Expert Consultation**: Input from data security experts, healthcare professionals, and AI specialists.
- Historical Data Review: Analyzing similar projects for recurring risks.

List of Identified Risks:

- 1. Data Privacy Risks: Potential breaches of sensitive user data.
- 2. Model Accuracy: Inaccurate predictions due to biased or insufficient training data.
- 3. **Regulatory Compliance**: Non-adherence to GDPR, HIPAA, or other healthcare data laws.
- 4. **System Downtime**: Service disruptions caused by server overload or failure.
- 5. User Adoption Challenges: Users may hesitate to trust or adopt the technology.
- 6. **Development Delays**: Delays due to resource shortages or technical complexities.
- 7. **Integration Issues**: Challenges in integrating the system with external tools or APIs.

Risk Breakdown Strategy: Operational Risk

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Technical Risk

4.2 Risk Mitigation Strategy

1. Data Privacy Risks:

- o Employ end-to-end encryption and secure authentication mechanisms.
- o Regularly audit data security practices.

2. Model Accuracy:

- o Use diverse datasets and perform regular validation and retraining.
- o Implement explain ability features for transparency in predictions.

3. Regulatory Compliance:

- o Consult legal experts to ensure adherence to laws.
- Maintain detailed records of compliance measures.

4. System Downtime:

- o Utilize scalable cloud infrastructure and backup systems.
- Set up automated monitoring and failover mechanisms.

5. User Adoption Challenges:

- o Provide educational materials and a simple user interface.
- o Gather and implement user feedback to enhance trust.

6. **Development Delays**:

- o Use agile project management to adapt to challenges quickly.
- o Allocate resources effectively to high-priority tasks.

7. Integration Issues:

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

- Test system compatibility with external APIs during development. Maintain clear documentation for integrations.

Risk Register

Risk ID		Likelihood	Impact	Mitigation Strategy	Owner	Status
R1	Description Data privacy and security breaches	High	Critical	Implement robust encryption, comply with GDPR and HIPAA, and conduct regular audits	Project Manager (PM)	Open
R2	Inaccurate AI predictions leading to user mistrust	Medium	High	Continuously improve and validate the AI model using diverse datasets	AI Development Lead	Open
R3	Limited availability of comprehensive datasets	High	High	Partner with healthcare institutions and leverage public health data sources.	Data Acquisition	Open
R4	User resistance to adopting the system	Medium	Moderate	Conduct user education campaigns and design an intuitive user	UX/UI Designer	Open
R5	Integration challenges with healthcare workflows	Medium	High	Collaborate with healthcare providers during the development phase	System Integration Lead	Open
R6	Technical issues during deployment	Low	High	Conduct extensive testing and maintain a contingency plan for rollbacks	DevOps Engineer	Open
R7	High initial development and operational costs	Medium	High	Seek external funding and allocate resources efficiently.	Financial Manager	Open
R8	Regulatory compliance challenges	Medium	High	Engage legal experts and stay updated on healthcare regulations	Legal Advisor	Open
R9	Dependency on third-party services for data storage and processing	Low	Moderate	Diversify cloud providers and ensure service-level agreement	Infrastructure Lead	Open
R10	Lack of skilled personnel	Low	Moderate	Provide training programs and hire experience professionals	HR Manager	Open

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

5. System Functions / Functional Requirements

5.1 System Functions

The GlucoPredict system functions are listed below, arranged according to their logical functionalities, along with descriptions of their characteristics and limitations.

#	Functions	Category	Attributes	Constraints
R1.1	Collect user health data (e.g., age,	Evident	System Response Time	User data collection form
	weight, glucose levels).			should load within 2 seconds
R1.2	Train predictive models using	Hidden	Concurrent Processing	The system should handle up
	historical and real-time health data.		Load	to 5 training processes
				simultaneously
R1.3	Provide diabetes risk-predictions to	Evident	Response Time	Predictions must be
	users in an interpretable format			generated and displayed
				within 3 seconds
R1.4	Allow integration with SQL Server	Hidden	Database Access Latency	Queries should execute with
	for secure data storage and retrieval			a response time of less than 1
				second
R1.5	Enable collaboration via Google	Frill	Compatibility	Supports collaborative
	Colab for shared analysis and			editing in real time for up to
	testing.			3 users

System Attributes/ Nonfunctional Requirements

Attribute	Details & Boundary Constraints	Category
Response Time	Predictions delivered within 3 seconds	Mandatory
Concurrent User Load	Minimum of 10 users connected and querying simultaneously	Mandatory
Interface Metaphor	Graphical, web-based, intuitive dashboard	Optional
Usability	Designed for both technical and non-technical users	Mandatory

5.2 Use Cases

5.2.1 List of Actors

- End-User: An individual who inputs health data to receive diabetes risk predictions
- **Healthcare Provider:** A professional reviewing predictive results to make informed clinical decisions.
- Data Scientist: A researcher analyzing model outputs and refining predictive algorithms.

5.2.2 List of Use Cases

Use Case	Brief Description
Input User Data	Collect user health details for diabetes risk analysis
Generate Risk Prediction	Provides diabetes risk result based on user input.

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Visualize Prediction	Displays predictions and insights in an interpretable format (e.g., charts).
Results	
Model Training	Allows researchers to train and validate predictive models using new datasets.
Data Storage and	Stores and retrieves user health data securely in SQL Server.
Management	
Collaborative Model	Supports collaborative evaluation and tuning of AI models via Google Colab.
Analysis	

5.2.3 Use Case Diagram

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

5.2.4 Description of Use Cases

	Section: Main			
Name:		Input User Data		
Actors:		End User		
Purpose:		Collect user health information for diabetes risk analysis		
Description:		The end user provides their personal health-related data, such as age, weight, glucose levels, and other relevant metrics. The system validates the input and stores it securely in the database for further processing.		
Cross References:		Functions: R1.1, R1.5 Use Cases: Data must be stored in the system before generating risk predictions.		
	e-Conditions	User is authenticated and le		
Suc	ecessful Post-Conditions	Data is securely stored and		
Fai	lure Post-Conditions	Invalid data is flagged, and	the u	ser is prompted to errors.
		Typical Course of Events		
	Actor Actio	on		System Response
1 The user opens the data input form		m	2.	Displays a user-friendly form for entering personal and health data.
3. The user inputs the required data		ı fields	4	Validates the input and highlights any missing or invalid information.
5	User submits the form		6	Stores the data in the SQL Server database.
	Alternative Course			
Step 3:		User enters incomplete or invalid data. System displays an error message and highlights invalid fields.		
Step 5:		Database connection fails. System prompts the user to retry or contact support.		
Se	ction: Generate Risk Prediction			
Nai	me	Generate Risk Prediction		
Actors:		End use, Healthcare Provider		
Purpose:		Provide a diabetes risk assessment based on user input		
Description		The system analyzes the collected data using pre-trained AI models and returns a risk prediction score with relevant insights		
Cross References		Functions: R1.2, R1.3 Use Cases: User must have completed the Input User Data use case.		
Pre	e- Conditions	User data is present in the	systen	1
Successful Post-Conditions		Risk prediction and insights	Risk prediction and insights are displayed.	

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

Failure Post-Conditions	Displays an error message and prompts for retry.			
Typical Course of Events				
Actor Action	System Response			
1. User requests a risk prediction	2. Fetches the user data from the database			
3. System processes the data through the AI model.	4. Displays the risk prediction score and supporting insights.			
Alternative Course				
Step 1:	User data is incomplete or corrupted. System displays an error and requests updated data.			
Step 3:	Model processing fails due to a system error. Systems logs the error and notifies the user of a temporary issue.			
Section: Collaborative Model Analysis				
Name	Collaborative Model Analysis			
Actors	Data Scientist			
Purpose	Enable multiple data scientists to collaboratively train and refine models			
Description	The system provides an interface for collaborative model development using cloud-based platforms like Google Colab.			
Cross References	Functions: R1.4, R1.5			
	Use Cases: Data storage and user authentication must be functional			
Pre-Conditions	User is authenticated			
Successful Post-Conditions	Models changes are saved and synced			
Failure Post-Conditions	Collaborative session fails, and users are notified			
Typical Course of Events				
Actor Action	System Response			
1. User initiates a collaborative	2. Connects to Google Colab and sets up the environment			
3. Users make changes to the model	4. Syncs updates in real-time and logs changes			
Alternative Course				
Step 1:	Connection to Colab fails. System retires the connection or offers an offline option.			
Step 3:	Conflicting updates occur. System flags conflicts and prompts users to resolve them.			

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

6. Non - Functional Requirements

6.1 Performance Requirements

- **Prediction Response Time:** The system must deliver diabetes risk predictions within 3 seconds of receiving user input.
- Concurrent Users: The system should support a minimum of 10 simultaneous users performing queries.
- **Data Processing:** Training models should complete within a maximum of 30 minutes for datasets up to 1GB.

6.2 Safety Requirements

- **Data Accuracy:** The system must validate input data to prevent errors in predictions that could mislead users about their health status.
- **Model Interpretability:** Predictions must include confidence levels and clear explanations to ensure users understand the results and do not act on misleading or unclear information.
- **Health Disclaimer:** The system must display a disclaimer indicating that results are not a substitute for professional medical advice.

6.3 Security Requirements

- **Data Encryption:** All user data must be encrypted during transmission (TLS 1.2 or higher) and at rest (AES-256).
- **Authentication:** Multi-factor authentication (MFA) is required for access to administrative features and sensitive data.
- Access Control: Role-based access control must be implemented to restrict data scientist, healthcare provider, and end-user access levels.
- **Data Breach Response:** The system must have a breach notification system in compliance with relevant regulations (e.g., GDPR, HIPAA).

6.4 Reliability Requirements

- **Uptime:** The system should maintain an uptime of 99.9% annually.
- **Backup:** Automatic daily backups of the database are required, with a retention policy of 30 days.
- Error Handling: The system must provide meaningful error messages and fallback mechanisms for failures (e.g., database connection loss).

6.5 Usability Requirements

- **Intuitive Interface:** The user interface must be easy to navigate, with minimal training required for end users and healthcare providers.
- Accessibility: The system should meet accessibility standards (e.g., WCAG 2.1 Level AA).
- **Multilingual Support:** The system must support at least three languages, including English, to cater to diverse users.

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

6.6 Supportability Requirements

- **Scalability:** The system should be designed to scale horizontally to support increased user loads and data volumes.
- **Platform Compatibility:** Ensure compatibility with multiple environments, including Windows, macOS, and Linux for local use.
- **Documentation:** Comprehensive technical documentation must be provided for developers and system administrators.

6.7 User Documentation

- User Manual: A detailed guide for end users, explaining data input, prediction interpretation, and system navigation.
- FAQ: A repository of frequently asked questions and troubleshooting steps.
- **Training Resources:** Video tutorials and training materials for healthcare providers and researchers.
- **Support Portal:** An online portal for reporting issues, accessing updates, and requesting feature enhancements.

GlucoPredict: AI-POWERED DIABETES PREDICTOR	Version: 1.0
Software Requirements Specifications	Date: 14/08/2024
FYP-017/FL24-SRS	

7. References

• Research Papers and Articles

- [1] Diabetes Risk Prediction using Machine Learning Techniques. Journal of Medical Informatics, 2021.
- [2] World Health Organization. (2022). Diabetes Fact Sheet. [Online]. Available: https://www.who.int
- [3] American Diabetes Association. (2023). Standards of Medical Care in Diabetes. [Online]. Available: https://diabetes.org

• Tools and Technologies

- Visual Studio Code: https://code.visualstudio.com
- Jupyter Notebook: https://jupyter.org
- Google Colab: https://colab.research.google.com
- SQL Server Documentation: https://docs.microsoft.com/sql

• Standards and Guidelines

- GDPR Compliance Documentation: https://gdpr-info.eu
- HIPAA Compliance Guidelines: https://www.hhs.gov/hipaa
- Web Content Accessibility Guidelines (WCAG 2.1): https://www.w3.org/WAI/standards-guidelines/wcag

• Frameworks and Libraries

- Scikit-learn: https://scikit-learn.org
- TensorFlow: https://www.tensorflow.org

• Development and Testing Tools

- Github: https://github.com/Moiez-Siddiqui/Gluco Diabetes
- Pytest: https://docs.pytest.org

• Other References

- GlucoPredict Project Proposal Document (Internal).
- Requirements Gathering Interview Notes (Internal).
- Data Sources: https://www.kaggle.com for healthcare datasets.