Boundary Value Problems

Initial value problem - all conditions at some X value (independent variables)

EXAMPLE Parachutist, jumps from airplane and approaches terminal velocity

$$V(0) = 0$$

EXAMPLE Oscillation of pendulum

$$\Theta(0) = \pi/4$$
 both conditions
 $\Theta(0) = 0$ both conditions
specified at
 $t=0$

Boundary value problem - conditions are opplied

1. Shooting method - convert BUP to an equivalent IVP, conduct a trial-ord-error solution (iterative)

EXAMPLE
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = e^{-x} \qquad y(0) = 2 \qquad y(1) = 1$$
reduce one to set of
frist order equations
$$\frac{dy}{dx} = V \quad , \quad y(0) = 2$$

$$\frac{dV}{dx} = e^{-x} \quad , \quad y(0) = 2$$

$$\frac{dV}{dx} = e^{-x} \quad , \quad y(0) = 2$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 2$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 2$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 2$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

$$\frac{dV}{dx} = v \quad , \quad y(0) = 0$$

4^{th} order RK with $\Delta x = 0.5$

X _i	y _i	V _i
0	2	0 gues
0.5	1.865	
1.0	1.499	

initial guess

$$V(0) = \frac{dy(0)}{dx} = 5/cpe$$
 at $x = 0$

change guessed value for V(0) to negative slope, V(0) = -1, repeat RK solution

Repeat RK with $\Delta x = 0.5$

X _i	y _i	V _i
0	2	+ new -1 guess
0.5	1.405	
1.0	0.774	

two approaches

Dicontinue iterations

② interpolate
$$\frac{1.499-1}{0.774-1} = \frac{0-1}{1-1} = \frac{0-1}{1-1} = \frac{0-0.6883}{0.774-1}$$

Repeat RK with $\Delta x = 0.5$

X _i	y _i	V _i	
0	2	-0.6883	
0.5	1.5484		
1.0	1.0001		
	9		

Value (orrest value)

compare.
values
values
independent

final step, check grid Convergence Use $\Delta X = 0.25$

Xi	y _i	V _i	, 1	
0	2	-0.6883	hal	Vai
0.25	1.7983			
0.5	1.5481			
0.75	1.2728			
1.0	0.9994			
	BC V			

2. Finite difference method - use approximetions for derivatives to generate a set of equations

EXAMPLE
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = e^{-x}$$
 $y(0) = 2$ $y(1) = 1$

sul divide regime
Using 1x = 0.2

Solve for discrete
Values y, -> y4

Step 2 - Substitute central difference approximations to derivatives at x_i

$$\frac{d^2y}{dx^2} = \frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} \qquad \frac{dy}{dx} = \frac{y_{i+1} - y_{i-1}}{Z\Delta x}$$

$$\frac{y_{c+1} - 2y_c + y_{c-1}}{\Delta x^2} + \chi_i \left(\frac{y_{c+1} - y_{c-1}}{2\Delta x} \right) + y_i = e^{-\chi_i}$$

and collect like terms

$$y_{i-1}\left(1-\frac{\chi_{i}}{2}\Delta x\right)+y_{i}\left(\Delta x^{2}-2\right)+y_{i+1}\left(\frac{\chi_{i}}{2}\Delta x+1\right)=\Delta x^{2}e^{-\chi_{i}}$$

Step 3 - Form finite difference equations at each non-boundary x_i value

$$i=1, \ \chi_{1}=0.2, \ \Delta \chi=0.2 \quad find \ \chi_{1}$$

$$\sqrt{0}(1-\frac{0.2}{2}(0.2)) + \ \chi_{1}(0.2^{2}-2) + \ \chi_{2}(\frac{0.2}{2}(0.2)+1) = (0.2)^{2}e^{-0.2}$$

$$5ubs \ boundard \ condition \ y(0)=2$$

$$-1.96 \ \chi_{1} + 1.02 \ \chi_{2} = -1.9273 \quad = -60$$

$$i=2 \ \chi_{2}=0.4 \ \Delta \chi=0.2 \ find \ \chi_{2}$$

$$0.96 \ \chi_{1} - 1.96 \ \chi_{2} + 1.04 \ \chi_{3} = 0.0268 \quad = 60$$

Step 4 - Solve equations

matrix

Results

$$y_1 = 1.844$$
 $y_2 = 1.654$ $y_3 = 1.441$ $y_4 = 1.218$

Exact solution
$$y_1 = 1.843$$
 $y_2 = 1.653$ $y_3 = 1.440$ $y_2 = 1.2176$

Repeat finite difference solution for $\Delta x = 0.1$ to improve accuracy and prove grid independence. Monitor

$$\mathcal{E}_{a} = \left(\frac{y_{new} - y_{old}}{y_{new}} \right) \times 100^{\circ},$$

for convergence