- finding eigenvalues is mathematically equivalent to finding zeros of polynomials
 - Abel-Ruffini Theorem: general polynomial equations of degree higher than 4 do not admit solutions by radicals (i.e., solutions via rational numbers using the addition, subtraction, multiplication, division, and kth roots)
 - all eigenvalue solvers must be iterative
- power iteration/method: a method of numerically computing an eigenvalue and an eigenvector of a given matrix
- simple but provides the idea for a bunch of eigenvalue algorithms
- not the best in convergence speed
- suitable for large-scale sparse eigenvalue problems, e.g., PageRank (similar to cases in linear systems and LS, solving eigenvalue problems for large sparse matrices is an important topic)
- a comprehensive coverage of various computational methods for the eigenvalue problem can be found in the textbook [Golub-Van Loan'13]

- assumptions:
 - A admits an eigendecomposition ${\bf A}={\bf V}{\bf \Lambda}{\bf V}^{-1}$
 - λ_i 's are ordered such that $|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_n|$
 - we have an initial guess $\mathbf{q}^{(0)}$ that satisfies $[\mathbf{V}^{-1}\mathbf{q}^{(0)}]_1 \neq 0$ (random guess should do)
- ullet consider $\mathbf{A}^k\mathbf{x}$. Let $oldsymbol{lpha}=\mathbf{V}^{-1}\mathbf{q}^{(0)}$, and observe

$$\mathbf{A}^{k}\mathbf{q}^{(0)} = \mathbf{V}\mathbf{\Lambda}^{k}\mathbf{V}^{-1}\mathbf{q}^{(0)} = \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}\mathbf{v}_{i} = \alpha_{1}\lambda_{1}^{k}\left(\mathbf{v}_{1} + \sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}\mathbf{v}_{i}\right)$$

where \mathbf{r}_k is a residual and has

$$\|\mathbf{r}_k\|_2 \le \sum_{i=2}^n \left| \frac{\alpha_i}{\alpha_1} \right| \left| \frac{\lambda_i}{\lambda_1} \right|^k \|\mathbf{v}_i\|_2 \le \left| \frac{\lambda_2}{\lambda_1} \right|^k \sum_{i=2}^n \left| \frac{\alpha_i}{\alpha_1} \right|$$

• convergence: let $c_k = \frac{|\alpha_1||\lambda_1|^k}{\alpha_1\lambda_1^k}$, i.e., the sign of $\alpha_1\lambda_1^k$ (note $|c_k|=1$). We have

$$\lim_{k \to \infty} c_k \frac{\mathbf{A}^k \mathbf{q}^{(0)}}{\|\mathbf{A}^k \mathbf{q}^{(0)}\|_2} = \mathbf{v}_1$$

```
Algorithm: Power Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} and a starting vector \mathbf{q}^{(0)} \in \mathbb{C}^n k = 0 repeat  \tilde{\mathbf{q}}^{(k+1)} = \mathbf{A}\mathbf{q}^{(k)} \\ \mathbf{q}^{(k+1)} = \tilde{\mathbf{q}}^{(k+1)} / \|\tilde{\mathbf{q}}^{(k+1)}\|_2 \quad \text{% normalization} \\ \lambda^{(k+1)} = R(\mathbf{q}^{(k+1)}) = (\mathbf{q}^{(k+1)})^H \mathbf{A}\mathbf{q}^{(k+1)} \\ k := k+1 \\ \text{until a stopping rule is satisfied} \\ \mathbf{output:} \quad \mathbf{q}^{(k)}, \lambda^{(k)}
```

- by induction on k, it can be verified that $\mathbf{v}^{(k)} = \frac{\mathbf{A}^k \mathbf{q}^{(0)}}{\|\mathbf{A}^k \mathbf{q}^{(0)}\|_2}$
- it finds the dominant eigen-pair, i.e., dominant eigenvalue λ_1 (largest eigenvalue in modulus) and dominant eigenvector \mathbf{v}_1 only, unless $\alpha_1 = 0$
- ullet complexity per iteration: $\mathcal{O}(n^2)$, or $\mathcal{O}(\operatorname{nnz}(\mathbf{A}))$ for sparse \mathbf{A}

- ullet convergence rate depends on $\left|\frac{\lambda_2}{\lambda_1}\right|$
 - $\|\mathbf{q}^{(k)} \mathbf{v}_1\|_2 = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \text{ and } |\lambda^{(k)} \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \left(\mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right) \text{ for }$ Hermitian \mathbf{A})
 - slower if $|\lambda_2|$ is closer to $|\lambda_1|$, i.e., $\left|\frac{\lambda_2}{\lambda_1}\right|$ is closer to 1
 - reduction per iteration is a constant, i.e., linear convergence
- now what if $|\lambda_1| = |\lambda_2| = \ldots = |\lambda_K| \geq \ldots \geq |\lambda_n|$ for some K?
 - by extending the convergence analysis, it can be shown $\mathbf{q}^{(k)}$ will converge to a vector in the subspace of $\mathrm{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_K\}$
 - an important special case: for $\mathbf{A} \in \mathbb{R}^{2 \times 2}$, if its complex eigenvalues come in conjugate pairs, then $\mathbf{q}^{(k)}$ will always be in the subspace spanned by the eigenvectors corresponding to the two eigenvalues

Power Iteration With Deflation

- the power method finds the largest eigenvalue (in modulus) and the correponding eigenvector only
- how can we compute all the eigenvalues and eigenvectors?
- there are many ways and let's first consider a simple method called deflation
- consider a Hermitian ${\bf A}$ with $|\lambda_1|>|\lambda_2|>\ldots>|\lambda_n|$, and note the outer-product representation

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^H.$$

• Hotelling's deflation: use the power iteration to obtain v_1, λ_1 , do the subtraction

$$\mathbf{A} := \mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^H = \sum_{i=2}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^H,$$

and repeat until all the eigenvectors and eigenvalues are found

 there are more deflation techniques which are not just for Hermitian matrices (learn by yourself)

Power Iteration With Shift

- ${\bf A} \mu {\bf I}$ is with eigenvalue $(\lambda_i \mu)$'s and the same eigenvector ${\bf v}_i$'s as ${\bf A}$
- if λ_1 is known (approximately), convergence can be made faster by applying power iteration for $\mathbf{A} \mu \mathbf{I}$ s.t.
 - $(\lambda_1 \mu)$ is the largest eigenvalue in modulus for $\mathbf{A} \mu \mathbf{I}$
 - $-\max_{i=2,...,n}\left|\frac{\lambda_i-\mu}{\lambda_1-\mu}\right|$ is as smaller as possible than $\left|\frac{\lambda_2}{\lambda_1}\right|$
- ullet obviously, in practice hard to decide μ ; the extent of acceleration is limited
- shift technique is commonly used together with inverse iteration and QR iteration to be introduced later

Inverse Iteration

- $(\mathbf{A} \mu \mathbf{I})^{-1}$ is with eigenvalue $(\lambda_i \mu)^{-1}$'s and the same eigenvector \mathbf{v}_i 's as \mathbf{A}
- inverse (power) iteration with shift: apply power iteration on $(\mathbf{A} \mu \mathbf{I})^{-1}$
- if $\mu \approx \lambda_J$ for some J, $|(\lambda_J \mu)^{-1}|$ may be far larger than $|(\lambda_i \mu)^{-1}|$ for $i \neq J$, so power iteration can converge rapidly

```
Algorithm: Inverse Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} and a starting vector \mathbf{q}^{(0)} \in \mathbb{C}^n k = 0 repeat  \tilde{\mathbf{q}}^{(k+1)} = (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{q}^{(k)} \qquad \text{% solve } (\mathbf{A} - \mu \mathbf{I}) \tilde{\mathbf{q}}^{(k+1)} = \mathbf{q}^{(k)}  \mathbf{q}^{(k+1)} = \tilde{\mathbf{q}}^{(k+1)} / \| \tilde{\mathbf{q}}^{(k+1)} \|_2 \qquad \text{% normalization}  \lambda^{(k+1)} = R(\mathbf{q}^{(k+1)}) = (\mathbf{q}^{(k+1)})^H \mathbf{A} \mathbf{q}^{(k+1)}  k := k+1 until a stopping rule is satisfied output: \mathbf{q}^{(k)}, \lambda^{(k)}
```

- ullet $\mathbf{q}^{(k)}$ converges to eigenvector \mathbf{v}_J if parameter μ is close to λ_J
- complexity per iteration: $\mathcal{O}(n^2)$ (matrix $(\mathbf{A} \mu \mathbf{I})$ is processed in advance)

Inverse Iteration

convergence rate with

-
$$\|\mathbf{q}^{(k)} - \mathbf{v}_J\|_2 = \mathcal{O}\left(\left(\max_{i=1,...,n} \left| \frac{\lambda_J - \mu}{\lambda_i - \mu} \right| \right)^k\right)$$

- $|\lambda^{(k)} - \lambda_J| = \mathcal{O}\left(\left(\max_{i=1,...,n} \left| \frac{\lambda_J - \mu}{\lambda_i - \mu} \right| \right)^k\right)$
where λ_J is the closest eigenvalue to μ

- reduction per iteration is a constant, i.e., linear convergence
- standard method for determining any eigenvector given an eigenvalue
- a linear system needs to be solved; similar to power iteration, can only compute one eigenpair
- inverse iteration without shift: taking $\mu=0$ the algorithm converges to the eigenvector corresponding to the smallest eigenvalue of ${\bf A}$ (in modulus)

Rayleigh Quotient Iteration

- ullet parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- ullet improvement: setting μ as the last computed Rayleigh quotient at each iteration

```
 \begin{array}{lll} \textbf{Algorithm:} & \text{Rayleigh Quotient Iteration} \\ \textbf{input:} & \mathbf{A} \in \mathbb{C}^{n \times n} \text{ and a starting vector } \mathbf{q}^{(0)} \in \mathbb{C}^n \\ k = 0 \\ \mu^{(k)} = R(\mathbf{q}^{(k)}) \\ \text{repeat} & \tilde{\mathbf{q}}^{(k+1)} = (\mathbf{A} - \mu^{(k)}\mathbf{I})^{-1}\mathbf{q}^{(k)} & \text{% solve } (\mathbf{A} - \mu^{(k)}\mathbf{I})\tilde{\mathbf{q}}^{(k+1)} = \mathbf{q}^{(k)} \\ \mathbf{q}^{(k+1)} = \tilde{\mathbf{q}}^{(k+1)}/\|\tilde{\mathbf{q}}^{(k+1)}\|_2 & \text{% normalization} \\ \mu^{(k+1)} = \lambda^{(k+1)} = R(\mathbf{q}^{(k+1)}) = (\mathbf{q}^{(k+1)})^H\mathbf{A}\mathbf{q}^{(k+1)} \\ k := k+1 \\ \text{until a stopping rule is satisfied} \\ \textbf{output:} & \mathbf{q}^{(k)}, \, \lambda^{(k)} \\ \end{array}
```

- at least quadratic convergence, but uncertain to which eigenvalue it will converge
- ullet complexity per iteration: $\mathcal{O}(n^3)$ (solving a different linear system each iteration)

- for the previous methods, only find one eigenpair each time
 - what if we want more eigenvalues rather than λ_1
 - what if λ_1 and λ_2 are close or equal and we cannot decide shift μ ; in this case, we might want to look for an invariant subspace associated with λ_1 and λ_2
- subspace iteration: starting with a set of linearly independent vectors or a subspace $\mathcal{Q}^{(0)} = \operatorname{span}\{\mathbf{q}_1^{(0)}, \mathbf{q}_2^{(0)}, \cdots, \mathbf{q}_r^{(0)}\}, \ \mathcal{Q}^{(k)} = \mathbf{A}^k \mathcal{Q}^{(0)}$ will converge (under suitable assumptions) to a subspace spanned by eigenvectors associated with the r largest eigenvalues in magnititude, i.e., the dominant invariant subspace
 - in contrast, the power iteration is sometimes called vector iteration
 - use thin QR to get the bases $\mathbf{Q}^{(k)}$ as $\mathbf{Q}^{(k)}\mathbf{R}^{(k)} = \mathbf{A}^k \big[\mathbf{q}_1^{(0)} \ \mathbf{q}_2^{(0)} \ \cdots \ \mathbf{q}_r^{(0)} \big]$
- the above subspace iteration is an unnormalized simultaneous (power) iteration; since all of $\{\mathbf{A}^k\mathbf{q}_1^{(0)},\ \mathbf{A}^k\mathbf{q}_2^{(0)},\ \cdots,\mathbf{A}^k\mathbf{q}_r^{(0)}\}$ will converge to a multiple of \mathbf{v}_1 , columns of $\mathbf{Q}^{(k)}$ will form an extremely ill-conditioned basis for $\mathcal{Q}^{(k)}$
- in practice, we use the orthogonal (simultaneous power) iteration also called block power iteration

• suppose there is a gap between the r $(1 \le r \le n)$ largest eigenvalues and λ_{r+1} in magnititude, i.e, $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_r| > |\lambda_{r+1}|$

```
Algorithm: Orthogonal Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} and a starting semi-unitary matrix \mathbf{Q}^{(0)} \in \mathbb{C}^{n \times r} k=0 repeat  \tilde{\mathbf{Q}}^{(k+1)} = \mathbf{A}\mathbf{Q}^{(k)} \\ \mathbf{Q}^{(k+1)}\mathbf{R}^{(k+1)} = \tilde{\mathbf{Q}}^{(k+1)} \text{ % orthogonalization; perform thin QR} \\ \left\{\lambda_1^{(k+1)},\lambda_2^{(k+1)},\ldots,\lambda_r^{(k+1)}\right\} = \sigma\left((\mathbf{Q}^{(k+1)})^H\mathbf{A}\mathbf{Q}^{(k+1)}\right) \\ k:=k+1 \\ \text{until a stopping rule is satisfied} \\ \text{output: } \mathbf{Q}^{(k)},\left\{\lambda_1^{(k+1)},\lambda_2^{(k+1)},\ldots,\lambda_r^{(k+1)}\right\}
```

- it can be verified that $\mathcal{R}ig(\mathbf{Q}^{(k)}ig) = \mathcal{R}ig(\tilde{\mathbf{Q}}^{(k)}ig) = \mathcal{R}ig(\mathbf{A}\mathbf{Q}^{(k-1)}ig)$ (recall QR Topic)
- then $\mathcal{R}(\mathbf{Q}^{(k)}) = \mathcal{R}(\mathbf{A}^k \mathbf{Q}^{(0)})$ (verify by yourself)

- denote the Schur decomposition of \mathbf{A} by $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$, s.t. $|t_{11}| \ge |t_{22}| \ge \cdots \ge |t_{rr}| > |t_{r+1,r+1}| \ge \cdots \ge |t_{nn}|$
- $\mathbf{Q}^{(k)}$ converges linearly to an orthonormal basis for the dominant invariant subspace associated with the r largest eigenvalues in magnitude $\mathcal{R}(\mathbf{U}(:,1:r))$

•
$$\left[\lambda_1^{(k)} \ \lambda_2^{(k)} \ \cdots \ \lambda_r^{(k)}\right] = \operatorname{diag}\left(\left(\mathbf{Q}^{(k)}\right)^H \mathbf{A} \mathbf{Q}^{(k)}\right) \to \left[\lambda_1 \ \lambda_2 \ \cdots \ \lambda_r\right]$$

•
$$\left|\lambda_i^{(k)} - \lambda_i\right| = \mathcal{O}\left(\left(\max_{i=1,\dots,r} \left|\frac{\lambda_{i+1}}{\lambda_i}\right|\right)^k\right)$$
, $i = 1, 2, \dots, r$

- ullet let's take a look at the span of the columns in ${f Q}^{(k)}$
- given $\mathbf{Q}^{(k+1)}\mathbf{R}^{(k+1)}=\mathbf{A}\mathbf{Q}^{(k)}$, notice that the first p $(p=1,\ldots,r)$ columns $\mathbf{Q}^{(k+1)}$ satisfies the recurrence

$$\mathbf{Q}^{(k+1)}\mathbf{R}^{(k+1)}(:,1:p) = \mathbf{Q}^{(k+1)}(:,1:p)\mathbf{R}^{(k+1)}(1:p,1:p) = \mathbf{A}\mathbf{Q}^{(k)}(:,1:p)$$
then $\mathcal{R}(\mathbf{Q}^{(k)}(:,1:p)) = \mathcal{R}(\mathbf{A}^k\mathbf{Q}^{(0)}(:,1:p))$

- ullet over iterations, the first p columns of ${f Q}^{(k)}$ converge to a basis for the dominant p-dimensional invariant subspace
- setting the initial $\mathbf{Q}^{(0)} \in \mathbb{C}^{n \times n}$, directly get a n-dimensional invariant subspaces
 - when r = n, orthogonal iteration resembles the QR iteration (or QR algorithm)

LR Iteration

• The QR iteration was preceded by the LR iteration (or LR algorithm), which uses LU (a.k.a. LR) decomposition instead of QR decomposition as building blocks.

```
Algorithm: LR Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} \mathbf{A}^{(0)} = \mathbf{A} k = 0 repeat \mathbf{L}^{(k+1)}\mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} \qquad \text{\% perform LU decomp. for } \mathbf{A}^{(k)} \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)}\mathbf{L}^{(k+1)} k := k+1 until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

- $\mathbf{A}^{(k)}$ is similar to $\mathbf{A}^{(k+1)}$ in that $\mathbf{A}^{(k+1)} = \mathbf{L}^{-(k+1)} \mathbf{A}^{(k)} \mathbf{L}^{(k+1)}$ - and hence to $\mathbf{A}^{(0)}$ since $\mathbf{A}^{(0)} = (\mathbf{L}^{(1)} \cdots \mathbf{L}^{(k)}) \mathbf{A}^{(k)} (\mathbf{L}^{-(k)} \cdots \mathbf{L}^{-(1)})$
- ullet under some mild assumptions, ${f A}^{(k)}$ converges linearly to an upper-triangular matrix with eigenvalues on its diagonal

QR Iteration

```
Algorithm: QR Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} \mathbf{A}^{(0)} = \mathbf{A} k = 0 repeat \mathbf{Q}^{(k+1)}\mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} % perform QR decomp. for \mathbf{A}^{(k)} \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)}\mathbf{Q}^{(k+1)} k := k+1 until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

- $\mathbf{A}^{(k)}$ is unitarily similar to $\mathbf{A}^{(k+1)}$ in that $\mathbf{A}^{(k+1)} = (\mathbf{Q}^{(k+1)})^H \mathbf{A}^{(k)} \mathbf{Q}^{(k+1)}$ and hence to $\mathbf{A}^{(0)}$ since $\mathbf{A}^{(0)} = (\mathbf{Q}^{(1)} \cdots \mathbf{Q}^{(k)}) \mathbf{A}^{(k)} (\mathbf{Q}^{(1)} \cdots \mathbf{Q}^{(k)})^H$
- ullet denote the Schur decomposition of ${f A}$ by ${f A}={f U}{f T}{f U}^H$; under some mild assumptions, ${f A}^{(k)}$ converges linearly to ${f T}$
 - if our problem is to compute all the eigenvalues of A, picking the diagonal elements of $A^{(k)}$ for a sufficiently large k would do

QR Iteration

- QR iteration is equivalent to orthogonal iteration with $\mathbf{Q}^{(0)} = \mathbf{I}$ (verify by yourself)
- the most popular method for computing all the eigenvalues of a general A
 - the practical QR algorithm used in modern software is more sophisticated
- how to find the eigenvectors?
 - for λ_i , solve the eigen-equation $(\mathbf{T} \lambda_i \mathbf{I})\mathbf{v} = \mathbf{0}$, which is an upper-triangular linear system
 - for λ_i , use the inverse iteration
- as a counterpart to power iteration, to accelerate the convergence speed of orthogonal iteration there exist orthogonal simultaneous inverse iteration, orthogonal simultaneous iteration with shift, etc.
 - in the next we investigate QR iteration with shift

QR Iteration With Shift

Example: consider matrix
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{A}^{(0)}$$

$$\underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\mathbf{Q}^{(0)}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{R}^{(0)}} = \mathbf{A}^{(0)}$$

$$\mathbf{A}^{(1)} = \mathbf{R}^{(0)} \mathbf{Q}^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{A}^{(0)}$$

no convergence of $\mathbf{A}^{(k)}$ observed

ullet shift can also help to make QR iteration converge, i.e., ${f A}^{(k)}$ converge to a upper triangular matrix

QR Iteration With Shift

```
Algorithm: QR Iteration With Shift input: \mathbf{A} \in \mathbb{C}^{n \times n} \mathbf{A}^{(0)} = \mathbf{A} k = 0 repeat choose a shift \mu^{(k)} \mathbf{Q}^{(k+1)}\mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} - \mu^{(k)}\mathbf{I} % perform QR for \mathbf{A}^{(k)} - \mu^{(k)}\mathbf{I} \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)}\mathbf{Q}^{(k+1)} + \mu^{(k)}\mathbf{I} until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

• similar to QR iteration, $\mathbf{A}^{(k)}$ is unitarily similar to $\mathbf{A}^{(k+1)}$

$$- \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)} \mathbf{Q}^{(k+1)} + \mu^{(k)} \mathbf{I} = (\mathbf{Q}^{(k+1)})^{H} (\mathbf{A}^{(k)} - \mu^{(k)} \mathbf{I}) \mathbf{Q}^{(k+1)} + \mu^{(k)} \mathbf{I} = (\mathbf{Q}^{(k+1)})^{H} \mathbf{A}^{(k)} \mathbf{Q}^{(k+1)}$$

ullet shift $\mu^{(k)}$ may differ from iteration to iteration

QR Iteration With Shift

- Rayleigh quotient shift
 - $\mu^{(k)} = \mathbf{A}^{(k)}(n,n)$ which will converge to the smallest eigenvalue in modulus
 - no guarantee on convergence
 - if converged, at least quadratic convergence
- Wilkinson shift
 - denote the lower-rightmost 2×2 matrix of $\mathbf{A}^{(k)}$ by

$$\bar{\mathbf{A}}^{(k)} = \begin{bmatrix} \mathbf{A}^{(k)}(n-1,n-1) & \mathbf{A}^{(k)}(n-1,n) \\ \mathbf{A}^{(k)}(n,n-1) & \mathbf{A}^{(k)}(n,n) \end{bmatrix}$$

- chose the eigenvalue of $\bar{\mathbf{A}}^{(k)}$ closer to $\mathbf{A}^{(k)}(n,n)$
- always converge with at least linear convergence [Wilkinson'68]

QR Iteration

• for $A \in \mathbb{C}^{n \times n}$, each iteration requires $\mathcal{O}(n^3)$ to compute the QR decomposition and the matrix multiplication; too computational expensive!

Question: can we directly transform A into an upper triangular matrix (i.e., introducing zeros below the diagonal) based on unitary similarity transformations?

• a naive try via Householder reflections: let $\mathbf{Q}_1 = \mathbf{I} - \frac{2}{\|\mathbf{v}_1\|_2^2} \mathbf{v}_1 \mathbf{v}_1^H$ with $\mathbf{v}_1 = \mathbf{a}_1 + \mathrm{sign}(a_{11}) \|\mathbf{a}_1\|_2 \mathbf{e}_1$ be the reflection matrix that reflects \mathbf{a}_1 to $-\mathrm{sign}(a_{11}) \|\mathbf{a}_1\|_2 \mathbf{e}_1$

Mission failed!

QR Iteration

• Power iteration with deflation: For a general **A** with $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$, and

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}.$$

• once the eigenvector \mathbf{v}_1 and λ_1 is found via power iteration, deflation can be carried out by constructing a Householder reflection \mathbf{Q}_1 so that $\mathbf{Q}_1\mathbf{v}_1=\mathbf{e}_1$, and then $\mathbf{Q}_1\mathbf{A}\mathbf{Q}_1$ is a matrix with block upper-triangular structure

• This decouples the problem of computing the eigenvalues of $\bf A$ into the (solved) problem of computing λ_1 , and computing the remaining eigenvalues by carrying out power iteration on the lower right $(n-1)\times (n-1)$ submatrix.

Property 6. Any $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitarily similar to an upper Hessenberg matrix \mathbf{H} (i.e., introducing zeros below the first subdiagonal), i.e., $\mathbf{Q}^H \mathbf{A} \mathbf{Q} = \mathbf{H}$.

Hessenberg Reduction

an upper Hessenberg matrix is given as

$$\mathbf{H} = egin{bmatrix} imes & imes & imes & imes & imes \\ imes & imes & imes & imes & imes \\ imes & imes & imes & imes & imes \\ imes & imes & imes & imes & imes \end{bmatrix}$$

• Hessenberg reduction via Householder reflections: let $\tilde{\mathbf{a}}_1 = \mathbf{A}(2:n,1)$ and \mathbf{Q}_1 be the Householder reflection matrix that reflects $\tilde{\mathbf{a}}_1$ to $-\text{sign}(\tilde{a}_{11})\|\tilde{\mathbf{a}}_1\|_2\mathbf{e}_1$

• repeat the above procedure: $(\mathbf{Q}_1 \cdots \mathbf{Q}_{n-2})^H \mathbf{A} \underbrace{\mathbf{Q}_1 \cdots \mathbf{Q}_{n-2}}_{\mathbf{Q}} = \mathbf{H}$

Hessenberg Reduction

• for any $\mathbf{A} \in \mathbb{C}^{n \times n}$, the following algorithm reduces \mathbf{A} to be upper Hessenberg

```
Algorithm: Householder Reduction to Upper-Hessenberg Form input: \mathbf{A} \in \mathbb{C}^{n \times n} for k = 1: n-2 \mathbf{x} = \mathbf{A}(k+1:n,k) \mathbf{v}_k = \mathbf{x} + \mathrm{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1 \mathbf{v}_k = \mathbf{v}_k / \|\mathbf{v}_k\|_2 \mathbf{A}(k+1:n,k:n) = \mathbf{A}(k+1:n,k:n) - 2\mathbf{v}_k(\mathbf{v}_k^H \mathbf{A}(k+1:n,k:n)) \mathbf{A}(1:n,k+1:n) = \mathbf{A}(1:n,k+1:n) - 2(\mathbf{A}(1:n,k+1:n)\mathbf{v}_k)\mathbf{v}_k^H end output: \mathbf{A}
```

• compexity: $\frac{10}{3}n^3 + \mathcal{O}(n^2)$

Property 7. Any $\mathbf{A} \in \mathbb{H}^n$ is unitarily similar to a tridiagonal matrix.

ullet for $\mathbf{A} \in \mathbb{H}^n$, the above algorithm reduces \mathbf{A} to be tridiagonal (i.e., Householder Reduction to Tridiagonal Form)

Hessenberg QR Iteration

```
Algorithm: Hessenberg QR Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} \mathbf{H} = \mathbf{Q}^H \mathbf{A} \mathbf{Q}, \mathbf{A}^{(0)} = \mathbf{H} % Hessenberg reduction for \mathbf{A} k = 0 repeat \mathbf{Q}^{(k+1)} \mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} % perform QR for \mathbf{A}^{(k)} \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)} \mathbf{Q}^{(k+1)} k := k+1 until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

- ullet Fact: ${f A}^{(k)}$ preserves the upper-Hessenberg property over iterations
 - Proof: $\mathbf{A}^{(k)}$ is upper Hessenberg and $\mathbf{R}^{(k+1)}$ is upper triangular, then $\mathbf{Q}^{(k+1)}$ is upper Hessenberg; since $\mathbf{R}^{(k+1)}$ is upper triangular, $\mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)}\mathbf{Q}^{(k+1)}$ is upper Hessenberg
 - for $\mathbf{A} \in \mathbb{H}^n$, $\mathbf{A}^{(k)}$ preserves the tridiagonal property over iterations

Hessenberg QR Iteration

• for $\mathbf{A} \in \mathbb{C}^{n \times n}$, QR decomposition step for $\mathbf{A}^{(k)}$ and the matrix multiplication step requires $\mathcal{O}(n^2)$

– using Givens rotations to compute $\mathbf{A}^{(k+1)} = \left(\mathbf{Q}^{(k+1)}\right)^H \mathbf{A}^{(k)} \mathbf{Q}^{(k+1)}$

• for $A \in \mathbb{H}^n$, QR factorization and the matrix multiplication requires $\mathcal{O}(n)$ flops

Hessenberg QR Iteration With Shift

PageRank: A Case Study

- PageRank is an algorithm used by Google to rank the pages of a search result.
- the idea is to use counts of links of various pages to determine pages' importance.

Source: Wiki.

• further reading: [Bryan-Tanya2006]

PageRank Model

• Model:

$$\sum_{j \in \mathcal{L}_i} \frac{v_j}{c_j} = v_i, \quad i = 1, \dots, n,$$

where c_j is the number of outgoing links from page j; \mathcal{L}_i is the set of pages with a link to page i; v_i is the importance score of page i.

• example:

_		A		_	v		v	
$\int ($)	$\frac{1}{2}$	1	$\frac{1}{3}$	$\lceil v_1 \rceil$		$\lceil v_1 \rceil$	
)	0	0	$\frac{1}{3}$	v_2		v_2	
)	$\frac{1}{2}$	0	$\frac{1}{3}$	v_3	_	v_3	•
)	0	0	0	$\lfloor v_4 \rfloor$		$\lfloor v_4 \rfloor$	

- A is a "weighted adjacency matrix" that contains the structure of the network.
- can be solved as a sparse linear system

PageRank Problem

- let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a matrix such that $a_{ij} = 1/c_j$ if $j \in \mathcal{L}_i$ and $a_{ij} = 0$ if $j \notin \mathcal{L}_i$
- Problem: find a non-negative v such that Av = v
 - A is extremely large and sparse, and we want to use the power method

• Questions:

- does a solution to $\mathbf{A}\mathbf{v} = \mathbf{v}$ exist? Or, is $\lambda = 1$ an eigenvalue of \mathbf{A} ?
- does $\mathbf{A}\mathbf{v} = \mathbf{v}$ have a non-negative solution? Or, does a non-negative eigenvector associated with $\lambda = 1$ exist?
- is the solution to $\mathbf{A}\mathbf{v}=\mathbf{v}$ unique? Or, would there exist more than one eigenvector associated with $\lambda=1$?
 - * a unique solution is desired for this problem
- is $\lambda=1$ the only eigenvalue that is the largest in modulus?
 - * this is required for the power method

Some Notations and Conventions

• notation:

- $-\mathbf{x} \geq \mathbf{y}$ means that $x_i \geq y_i$ for all i
- $-\mathbf{x} > \mathbf{y}$ means that $x_i > y_i$ for all i
- $\mathbf{x} \not\geq \mathbf{y}$ means that $\mathbf{x} \geq \mathbf{y}$ does not hold
- the same notations apply to matrices

• conventions:

- ${f x}$ is said to be non-negative if ${f x} \geq {f 0}$, and non-positive if $-{f x} \geq {f 0}$
- x is said to be positive if x > 0, and negative if -x > 0
- the same conventions apply to matrices
- a square ${f A}$ is said to be column-stochastic (or a Markov matrix) if ${f A} \geq {f 0}$ and ${f A}^T {f 1} = {f 1}$
 - * a column-stochastic **A** has every column \mathbf{a}_i satisfying $\mathbf{a}_i^T \mathbf{1} = \sum_{j=1}^n a_{ji} = 1$

PageRank Matrix Properties

- in PageRank, A is column-stochastic if all pages have outgoing links
 - see the literature to see how to deal with cases where some pages do not have outgoing links (dangling nodes)

Property 8. Let A be column-stochastic. Then,

- 1. $\lambda = 1$ is an eigenvalue of **A**
- 2. $|\lambda| \leq 1$ for any eigenvalue λ of **A**
- Implications:
 - a solution to $A\mathbf{v} = \mathbf{v}$ does exist, though it doesn't say if $\mathbf{v} \geq \mathbf{0}$ or not
 - $\lambda=1$ is an eigenvalue that has the largest modulus, but we don't know if it is the *only* eigenvalue that has the largest modulus
- we resort to non-negative matrix theory to answer the rest of the questions

Non-Negative Matrix Theory

Theorem 8 (Perron-Frobenius Theorem). Let A be square positive. There exists an eigenvalue ρ of A such that

- 1. ρ is real and $\rho > 0$
- 2. $|\lambda| < \rho$ for any eigenvalue λ of **A** with $\lambda \neq \rho$
- 3. there exists a positive eigenvector (and also left eigenvector) associated with ρ
- 4. the algebraic multiplicity of ρ is 1 (so the geometric multiplicity of ρ is also 1)

A weaker result for general non-negative matrices:

Theorem 9. Let A be square non-negative. There exists an eigenvalue ρ of A such that

- 1. ρ is real and $\rho \geq 0$
- 2. $|\lambda| \leq \rho$ for any eigenvalue λ of **A**
- 3. there exists a non-negative eigenvector (and left eigenvector) associated with ρ

PageRank Matrix Properties

- further implication by Theorem 9:
 - a non-negative solution to $\mathbf{A}\mathbf{v}=\mathbf{v}$ exists, though it doesn't say if there exists another solution
 - even worse, it is not known if there exists another solution ${f v}$ such that ${f v} \not \geq {f 0}$

PageRank Matrix Properties

PageRank actually considers a modified version of A

$$\tilde{\mathbf{A}} = (1 - \beta)\mathbf{A} + \beta \begin{bmatrix} 1/n & \dots & 1/n \\ \vdots & & \vdots \\ 1/n & \dots & 1/n \end{bmatrix}$$

where $0 < \beta < 1$ (typical value is $\beta = 0.15$)

- ullet $ilde{\mathbf{A}}$ is positive
- further implications by Theorem 8:
 - $\lambda = 1$ is the *only* eigenvalue that has the largest modulus
 - there exists *only* one eigenvector associated with $\lambda=1$; that eigenvector is either positive or negative
 - so the power method should work

Generalized Eigenvalue Problem

Problem: given a $A, B \in \mathbb{C}^{n \times n}$, find a vector $\mathbf{v} \in \mathbb{C}^n$ with $\mathbf{v} \neq \mathbf{0}$ such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{B}\mathbf{v}, \qquad \text{for some } \lambda \in \mathbb{C}$$
 (*)

or, equivalently,

find
$$\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$$
 and $\lambda \in \mathbb{C}$

s.t.
$$\mathbf{A}\mathbf{v} = \lambda \mathbf{B}\mathbf{v}$$

- ullet (*) is called a generalized eigenvalue problem for matrix pair (matrix pencil) $({f A},{f B})$
- let (\mathbf{v}, λ) be a solution to (*). We call
 - (\mathbf{v}, λ) an generalized eigen-pair of (\mathbf{A}, \mathbf{B})
 - λ an generalized eigenvalue of (\mathbf{A}, \mathbf{B}) ; \mathbf{v} an generalized eigenvector of (\mathbf{A}, \mathbf{B}) associated with λ

References

[Golub-Van Loan'13] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 4th edition, JHU Press, 2013.

[Bryan-Tanya2006] K. Bryan and L. Tanya, "The 25,000,000,000 eigenvector: The linear algebra behind Google," SIAM Review, vol. 48, no. 3, pp. 569–581, 2006.

[Wilkinson'68] J. H. Wilkinson, "Global convergence of tridiagonal QR algorithm with origin shifts," *Linear Algebra and its Applications*, vol. 1, no. 3, pp. 409–420, 1968.