TRANSISTORS:

Biploar Junction Transistor (BJT)

PART - A

MODULE 3: Bipolar Junction Transistor (5 L + 2 T)

- 3.1 Transistor configuration: common base, common emitter, and common collector
- 3.2 Transistor characteristics: input and output characteristics of CB and CE configurations
- 3.3 DC load line: quiescent (Q) point; cut-off, active, and saturation region
- 3.4 Amplifier: Principle of operation
- 3.5 Transistor as a switch
- 3.6 Transistor biasing
 - 3.6.1 Need of biasing
 - 3.6.2 Methods of biasing: base resistor or fixed bias, emitter feedback bias, and voltage divider bias
 - 3.6.3 Stability of Q-point (qualitative discussions)
 - 3.6.4 Numerical problems on biasing

Outline

- 4.1 Device Structure and Physical Operation
- 4.2 Current Voltage Characteristics
- 4.3 BJT Circuits at DC
- 4.4 Applying the BJT in Amplifier Design
- 4.5 Small-Signal Operation and Models
- 4.6 Basic BJT Amplifier Configurations
- 4.7 Biasing in BJT Amplifier Circuits
- 4.8 Discrete-Circuit BJT Amplifiers
- 4.9 Transistor Breakdown and Temperature Effects

4.1 Device structure and physical operation

Emitter and collector regions having identical physical dimensions (C > E > B) and doping concentrations (E > C > B)

BASE WIDTH MUST BE SMALLER THAN DIFFUSION LENGTH (W_B << L_Diff)

BJT modes operation

Mode	EBJ	CBJ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Reverse active	Reverse	Forward
Saturation	Forward	Forward

General Model of Transistor

Vertical NPN

Lateral NPN

Figure 5.3 Current flow in an *npn* transistor biased to operate in the active mode. (Reverse current components due to drift of thermally generated minority carriers are not shown.)

Figure 4.5 Large-signal equivalent-circuit models of the *npn* BJT operating in the forward active mode.

Figure 5.7 Model for the *npn* transistor when operated in the reverse active mode (i.e., with the CBJ forward biased and the EBJ reverse biased).

Figure 4.8 The i_C – v_{CB} characteristic of an *npn* transistor fed with a constant emitter current I_E . The transistor enters the saturation mode of operation for v_{CB} < -0.4 V, and the collector current diminishes.

Figure 4.10 Current flow in a *pnp* transistor biased to operate in the active mode.

Figure 4.11 Large-signal model for the *pnp* transistor operating in the active mode.

DC MODELS OF BJT

BJT Currents in Forward-Active Mode

$$I_E = I_B + I_C$$

 $I_C \sim \alpha I_E$ 0.95 < α < 0.995
 α is the emitter-to-collector gain

In addition, due to the reverse biased C-B junction, a small reverse saturation current flows, I_{CBO} (collector-to-base leakage current with emitter open)

$$\beta = \alpha/(1-\alpha)$$
 is the base-to-collector gain $20 < \beta < 200$

$$I_C = \alpha I_E + I_{CBO} = \alpha (I_C + I_B) + I_{CBO}$$

$$= > (1 - \alpha)I_C = \alpha I_B + I_{CBO}$$

$$= > I_C = (\alpha/1 - \alpha)I_B + (1/1 - \alpha)I_{CBO}$$

$$= > I_C = \beta I_B + (\beta + 1)I_{CBO}$$

BJT Amplifier/Circuit Configurations

- ✓ Common-Base Configuration
- ✓ Common-Emitter Configuration
- ✓ Common-Collector Configuration

Common-Base Configuration

The base terminal is common to the input and output ports

pnp transistor

The arrows in the graphics define the direction of current through the device.

Input dc characteristics in Common-Base configuration

Notation:

Input current (I_E) Input voltage (V_{BE}) Output voltage (V_{CB})

Modes of operation of *npn* transistor in Common-Base configuration

Cutoff region is defined as where the collector current $I_C = I_{CBO} \sim 0$ A The base-emitter and collector-base junctions are both reverse-biased.

Saturation region is defined as where $V_{CB} < 0$ V The base–emitter and collector–base junctions are both forward-biased.

Active region is defined as where $V_{CB} > 0$ V

The base-emitter junction is forward-biased and the collector-base junction is reverse-biased.

Common-Emitter Configuration

The emitter terminal is common to the input and output ports

The arrows in the graphics define the direction of current through the device.

Input dc characteristics in Common-Emitter

configuration

Notation:

Input current (I_B) Input voltage (V_{BE}) Output voltage (V_{CE})

Output dc characteristics in Common-Emitter configuration

Notation:

Output current (I_C) Output voltage (V_{CE}) Input current (I_B) Saturation region is defined as where $V_{CE} < V_{CE(sat)} \sim 0.2 \text{ V (i.e. } V_{CB} < 0 \text{ V)}$ The base-emitter and collector-base junctions are both forward-biased.

Active region is defined as where $V_{CE} > V_{CE(sat)} \sim 0.2 \text{ V (i.e. } V_{CB} > 0 \text{ V)}$ The base-emitter junction is forward-biased and the collector-base junction is reverse-biased.

Cutoff region is defined as where the collector current $I_{\rm C} = I_{\rm CEO} = \beta I_{\rm CBO}$ The base-emitter and collector-base junctions are both reverse-biased.

Common-Collector Configuration

The common-collector configuration is used primarily for impedance matching purposes: **High input impedance** and **low output impedance**

The arrows in the graphics define the direction of current through the device.

(b) *npn* transistor

(a) pnp transistor

• The collector is tied to ground even though the transistor is connected in a manner similar to the common-emitter configuration

• The output characteristics of the common-collector configuration are same as for the common-emitter configuration

Common-collector configuration used for impedance-matching purposes.

BJT Configurations in pnp Transistor

BJT amplifier configurations: Summary

Characteristics	Common Base	Common Emitter	Common Collector
Input Impedance	Low	Medium	High
Output Impedance	Very high	High	Low
Phase shift	O_0	180^{0}	O_0
Voltage gain	High	Medium	Low
Current Gain	Low	Medium	High
Power gain	Low	Very High	Medium
Application	Preamplifier	Most Common	Buffer

Q1: In an npn transistor, 10^8 holes/ μ s move from the base to the emitter region while 10^{10} electrons/ μ s move from the emitter to the base region.

An ammeter reads the base current as $I_B = 16 \mu A$. Determine the emitter current I_E and the collector current I_C

Solution:

 $I_B = 16 \,\mu\text{A}$ (corresponding to 10^8 positive electronic charges/sec)

 $I_E = (100 \times 16) \,\mu\text{A}$ (corresponding to 10^{10} negative electronic charges/sec)

+ 16 μA (corresponding to 10⁸ positive electronic charges/sec)

=
$$(101 \times 16) \mu A = 1616 \mu A = 1.616 mA$$

$$I_C = I_E - I_B = 1.6 \text{ mA}$$

Q2: For the previous question (data given below), find the transistor α and β values, if the reverse collector-base leakage current is considered negligible

Transistor: npn transistor

Base current: $I_B = 16 \mu A$

Emitter current: $I_E = 1.616 \text{ mA}$

Collector current: $I_C = 1.6 \text{ mA}$

Solution:

If we assume $I_{CBO} = I_{CEO} = 0$, then

Emitter-collector current gain $\alpha = I_C / I_E = 1.6/1.616 = 0.99$

Base-collector current gain $\beta = I_C / I_B = 1.6 / 0.016 = 100$

Q3: A BJT has $\alpha = 0.99$, $I_B = 25 \mu A$, $I_{CBO} = 200 nA$.

Find the following parameters:

- a) the dc collector current,
- b) the dc emitter current, and
- c) the percentage error in the emitter current when the leakage current is neglected.

Solution:

a)
$$\beta = \frac{\alpha}{1-\alpha} = \frac{0.99}{1-0.99} = 99$$

 $I_C = \beta I_B + (\beta + 1)I_{CBO} = 99(25 \times 10^{-6}) + (99 + 1)(200 \times 10^{-9}) = 2.495 mA$

b)
$$I_E = I_C + I_B = 2.495 + 0.025 = 2.52 \text{ mA}$$

c) Neglecting the leakage current, we have

$$I_C = \beta I_B = 99(25 \times 10^{-6}) = 2.475 mA$$

$$I_E = \frac{I_C}{\alpha} = \frac{2.475}{0.99} = 2.5 mA$$

giving an emitter current error of

$$\frac{2.52 - 2.5}{2.52} \times 100\% = 0.793\%$$

Q4: A Si transistor connected in the common-emitter configuration (see fig.) has base current of 40 μ A and $I_{CBO} = 0$. If $V_{BB} = 6$ V, $R_E = 1$ k Ω , and $\beta = 80$, find

(a) I_E , (b) R_B , (c) If $V_{CC} = 15$ V and $R_C = 3$ k Ω , find V_{CE} .

Solution:

a)
$$I_E = (\beta + 1)I_B = 81 \times 0.04 = 3.24 \text{ mA}$$

b) KVL in input (B-E) loop:

$$V_{BB} = I_B R_B + V_{BE} + I_E R_E$$

 $\Rightarrow R_B = (V_{BB} - V_{BE} - I_E R_E) / I_B$
 $= (6 - 0.7 - 3.24 \times 1) / (0.04) \text{ k}\Omega$
 $= 51.85 \text{ k}\Omega$

b) KVL in output (C-E) loop:

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$
 $(I_C = \beta I_B = 80 \times 0.04 = 3.2 \text{ mA})$
=> $V_{CE} = V_{CC} - I_E R_E - I_C R_C = 15 - (3.24 \times 1) - (3.2 \times 3) = 2.16 \text{ V}$

Q5: Using the characteristics shown below, determine

- a. the resulting collector current if $I_E = 3$ mA and $V_{CR} = 10$ V.
- b. the resulting collector current if I_E remains at 3 mA but V_{CR} is reduced to 2 V.

Solution:

- a. The output characteristics clearly indicate that $I_C \sim I_E = 3$ mA.
- b. The effect of changing V_{CB} is negligible and I_C continues to be 3 mA.
- c. From output characteristics, $I_E = I_C = 4 \text{ mA}$. From input characteristics, for $I_E = 4 \text{ mA}$ and $V_{CB} = 20 \text{ V}$, the resulting value of V_{RE} is ~0.75 V.

Q6: Using the characteristics shown below, determine

a. I_C at $I_B = 30 \mu A$ and $V_{CE} = 10 \text{ V}$.

b. I_C at $V_{BE} = 0.7 \text{ V}$ and $V_{CE} = 15 \text{ V}$.

Solution:

- a. From output characteristics, for $I_B = 30 \,\mu\text{A}$ and $V_{CE} = 10 \,\text{V}$, $I_C \sim 3.4 \,\text{mA}$.
- b. From input characteristics, $I_B \sim 20 \,\mu\text{A}$ for $V_{BE} = 0.7 \,\text{V}$ and $V_{CE} = 15 \,\text{V}$. From output characteristics, $I_C \sim 2.5 \,\text{mA}$ for $I_B = 20 \,\mu\text{A}$ and $V_{CE} = 15 \,\text{V}$.