Homework Week 3 - Jon Workman

```
In [263]: from datetime import date import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from matplotlib import pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import roc_curve %matplotlib inline
```

In [264]: df = pd.read_csv('seattleWeather_1948-2017.csv').dropna()

Clean data and add feature

```
In [265]: df.RAIN = df.RAIN.astype(int)
    df['DATE'] = pd.to_datetime(df['DATE'], format='%Y-%m-%d')
    df['DAY'] = df['DATE'].apply(date.isoweekday)
```

In [266]: df.head()

Out[266]:

	DATE	PRCP	TMAX	TMIN	RAIN	DAY
0	1948-01-01	0.47	51	42	1	4
1	1948-01-02	0.59	45	36	1	5
2	1948-01-03	0.42	45	35	1	6
3	1948-01-04	0.31	45	34	1	7
4	1948-01-05	0.17	45	32	1	1

Visualisation


```
In [268]: g = sns.lmplot(x='TMAX', y= 'PRCP', data=df, fit_reg=False, hue='RAIN', size=6)
```


Split dataset

Train and test

```
In [276]: print(confusion_matrix(y_test,logpredictions))
sns.heatmap(confusion_matrix(y_test, logpredictions) / len(y_test), cmap='Blues', annot=True)
[[3769 21]
[ 467 2317]]
```

Out[276]: <matplotlib.axes. subplots.AxesSubplot at 0x1a23553cc0>


```
In [277]: fpr, tpr, thresholds = roc_curve(y_test, logpredictions)

fig, ax = plt.subplots(1, figsize=(10, 5))
plt.plot(fpr, tpr, color='darkorange', label='Model Performace')
plt.plot([0, 1], [0, 1], color='gray', label='Random Performace')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Rain ROC Curve')
plt.legend(loc="lower right")
```

Out[277]: <matplotlib.legend.Legend at 0x1a23465198>

In [278]: print(classification_report(y_test,logpredictions))

support	f1-score	recall	precision	
3790	0.94	0.99	0.89	0
2784	0.90	0.83	0.99	1
6574	0.92	0.93	0.93	avg / total

Validation

```
In [279]: X_train2, X_test2, y_train2, y_test2 = train_test_split(df_validation.drop(['DATE', 'DAY', 'RAI
N'],axis=1),df_validation['RAIN'],
test_size=0.30,random_state=0)
```



```
In [284]: fpr, tpr, thresholds = roc_curve(y_test2, logpredictions2)

fig, ax = plt.subplots(1, figsize=(10, 5))
  plt.plot(fpr, tpr, color='darkorange', label='Model Performace')
  plt.plot([0, 1], [0, 1], color='gray', label='Random Performace')
  plt.xlabel('False Positive Rate')
  plt.ylabel('True Positive Rate')
  plt.title('Rain ROC Curve')
  plt.legend(loc="lower right")
```

Out[284]: <matplotlib.legend.Legend at 0x1a2163eda0>

In [285]: print(classification_report(y_test2,logpredictions2))

support	f1-score	recall	precision	
461	0.87	0.92	0.83	0
411	0.84	0.78	0.90	1
872	0.86	0.86	0.86	avg / total