Задания к лабораторным работам для группы $N_2117152$

дата генерации документа 14 ноября 2020 г.

Содержание

Лабораторная работа N 9 «Моделирование реакций в реакторах с различной структурой потоков»

3

Лабораторная работа № 9 «Моделирование реакций в реакторах с различной структурой потоков»

Вариант 1

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=258K, теплоемкость смеси $c_p=2650_{\overline{K}}$, состав подаваемой смеси: $c_A=18.8$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=11.1$, $E_{a2}=13.9$, $E_{a3}=8.6$, предэкспоненциальный множитель $k_{01}=9$, $k_{02}=30$, $k_{03}=4$, тепловой эффект $\Delta H_1=9.7$, $\Delta H_2=-21.6$, $\Delta H_3=-33.2$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 2

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=390K, теплоемкость смеси $c_p=2315_{\overline{K}}$, состав подаваемой смеси: $c_A=30.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=22.4$, $E_{a2}=47.9$, $E_{a3}=36.9$, предэкспоненциальный множитель $k_{01}=152, k_{02}=75250, k_{03}=8291$, тепловой эффект $\Delta H_1=-33.8$, $\Delta H_2=-11.3$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 3

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=391K, теплоемкость смеси $c_p=3613_{\overline{K}}$, состав подаваемой смеси: $c_A=15.3$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=23.0$, $E_{a2}=45.3$, $E_{a3}=41.2$, предэкспоненциальный множитель $k_{01}=127, k_{02}=37763, k_{03}=15232$, тепловой эффект $\Delta H_1=14.0$, $\Delta H_2=-43.6$.

Вариант 4

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=379K, теплоемкость смеси $c_p=3308_{\overline{K}}$, состав подаваемой смеси: $c_A=33.1$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=21.0$, $E_{a2}=44.6$, $E_{a3}=31.0$, предэкспоненциальный множитель $k_{01}=138,k_{02}=58595,k_{03}=2233$, тепловой эффект $\Delta H_1=-39.6$, $\Delta H_2=-28.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 5

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=396K, теплоемкость смеси $c_p=2389_{\overline{K}}$, состав подаваемой смеси: $c_A=22.1$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=31.3$, $E_{a2}=49.7$, $E_{a3}=28.4$, предэкспоненциальный множитель $k_{01}=1622,k_{02}=115088,k_{03}=653$, тепловой эффект $\Delta H_1=-18.7$, $\Delta H_2=16.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 6

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=296K, теплоемкость смеси $c_p=3356_{\overline{K}}$, состав подаваемой смеси: $c_A=26.9$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=20.2$, $E_{a2}=35.0$, $E_{a3}=26.3$, предэкспоненциальный множитель $k_{01}=494,k_{02}=37081,k_{03}=2427$, тепловой эффект $\Delta H_1=-26.6$, $\Delta H_2=-7.4$, $\Delta H_3=-44.7$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 7

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=319K, теплоемкость смеси $c_p=2648_{\overline{K}}$, состав подаваемой смеси: $c_A=25.5$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.2$, $E_{a2}=26.0$, $E_{a3}=22.7$, предэкспоненциальный множитель $k_{01}=159, k_{02}=585, k_{03}=289$, тепловой эффект $\Delta H_1=-37.9$, $\Delta H_2=-38.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 8

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=225K, теплоемкость смеси $c_p=2685_{\overline{K}}$, состав подаваемой смеси: $c_A=32.9$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=8.4$, $E_{a2}=16.8$, $E_{a3}=12.0$, предэкспоненциальный множитель $k_{01}=14, k_{02}=335, k_{03}=70$, тепловой эффект $\Delta H_1=-43.0$, $\Delta H_2=28.3$, $\Delta H_3=15.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 9

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=400K, теплоемкость смеси $c_p=3900_{\overline{K}}$, состав подаваемой смеси: $c_A=16.1$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=28.7$, $E_{a2}=33.2$, $E_{a3}=29.5$, предэкспоненциальный множитель $k_{01}=423,k_{02}=1207,k_{03}=591$, тепловой эффект $\Delta H_1=17.4$, $\Delta H_2=-29.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 10

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=207K, теплоемкость смеси $c_p=3948_{\overline{K}}$, состав подаваемой смеси: $c_A=25.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=8.3$, $E_{a2}=13.0$, $E_{a3}=14.4$, предэкспоненциальный множитель $k_{01}=14, k_{02}=97, k_{03}=162$, тепловой эффект $\Delta H_1=27.1$, $\Delta H_2=-30.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 11

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=214K, теплоемкость смеси $c_p=3897_{\overline{K}}$, состав подаваемой смеси: $c_A=24.0$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=10.5$, $E_{a2}=13.7$, $E_{a3}=15.7$, предэкспоненциальный множитель $k_{01}=48, k_{02}=99, k_{03}=424$, тепловой эффект $\Delta H_1=-19.2$, $\Delta H_2=14.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 12

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=299K, теплоемкость смеси $c_p=3780_{\overline{K}}$, состав подаваемой смеси: $c_A=31.1$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=14.9$, $E_{a2}=18.7$, $E_{a3}=13.7$, предэкспоненциальный множитель $k_{01}=26, k_{02}=94, k_{03}=18$, тепловой эффект $\Delta H_1=-41.3$, $\Delta H_2=-28.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 13

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=344K, теплоемкость смеси $c_p=2857_{\overline{K}}$, состав подаваемой смеси: $c_A=27.3$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=24.0$, $E_{a2}=28.6$, $E_{a3}=15.8$, предэкспоненциальный множитель $k_{01}=237, k_{02}=805, k_{03}=24$, тепловой эффект $\Delta H_1=-7.7$, $\Delta H_2=-41.5$.

Вариант 14

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=253K, теплоемкость смеси $c_p=2867_{\overline{K}}$, состав подаваемой смеси: $c_A=26.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=13.4$, $E_{a2}=10.7$, $E_{a3}=11.5$, предэкспоненциальный множитель $k_{01}=32,k_{02}=9,k_{03}=13$, тепловой эффект $\Delta H_1=-39.3$, $\Delta H_2=26.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 15

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=329K, теплоемкость смеси $c_p=3006_{\overline{K}}$, состав подаваемой смеси: $c_A=23.1$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=15.0$, $E_{a2}=34.9$, $E_{a3}=25.1$, предэкспоненциальный множитель $k_{01}=28,k_{02}=9090,k_{03}=799$, тепловой эффект $\Delta H_1=-8.3$, $\Delta H_2=18.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 16

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=308K, теплоемкость смеси $c_p=2840_{\overline{K}}$, состав подаваемой смеси: $c_A=25.3$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=15.0$, $E_{a2}=31.1$, $E_{a3}=27.9$, предэкспоненциальный множитель $k_{01}=54,k_{02}=10486,k_{03}=4053$, тепловой эффект $\Delta H_1=15.6$, $\Delta H_2=-24.7$, $\Delta H_3=-34.2$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 17

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=278K, теплоемкость смеси $c_p=2716_{\overline{K}}$, состав подаваемой смеси: $c_A=19.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=18.7$, $E_{a2}=20.6$, $E_{a3}=27.2$, предэкспоненциальный множитель $k_{01}=438,k_{02}=369,k_{03}=5252$, тепловой эффект $\Delta H_1=5.4$, $\Delta H_2=-39.8$, $\Delta H_3=-41.5$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 18

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=365K, теплоемкость смеси $c_p=2268_{\overline{K}}$, состав подаваемой смеси: $c_A=35.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=30.0$, $E_{a2}=55.6$, $E_{a3}=36.7$, предэкспоненциальный множитель $k_{01}=2804,k_{02}=1849174,k_{03}=8445$, тепловой эффект $\Delta H_1=-37.2$, $\Delta H_2=-24.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 19

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=336K, теплоемкость смеси $c_p=3558_{\overline{K}}$, состав подаваемой смеси: $c_A=15.0$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=19.3$, $E_{a2}=31.2$, $E_{a3}=26.8$, предэкспоненциальный множитель $k_{01}=68,k_{02}=2973,k_{03}=792$, тепловой эффект $\Delta H_1=13.3$, $\Delta H_2=-40.5$, $\Delta H_3=-31.9$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 20

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=377K, теплоемкость смеси $c_p=2844\frac{1}{16}K$, состав подаваемой смеси: $c_A=18.5$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=29.0$, $E_{a2}=28.1$, $E_{a3}=31.2$, предэкспоненциальный множитель $k_{01}=768,k_{02}=349,k_{03}=1432$, тепловой эффект $\Delta H_1=40.5$, $\Delta H_2=-7.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 21

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=351K, теплоемкость смеси $c_p=2645_{\overline{K}}$, состав подаваемой смеси: $c_A=30.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=19.9$, $E_{a2}=37.8$, $E_{a3}=31.2$, предэкспоненциальный множитель $k_{01}=127, k_{02}=19885, k_{03}=4776$, тепловой эффект $\Delta H_1=5.7$, $\Delta H_2=-37.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 22

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=297K, теплоемкость смеси $c_p=2601_{\overline{K}}$, состав подаваемой смеси: $c_A=30.1$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=12.3$, $E_{a2}=26.8$, $E_{a3}=32.4$, предэкспоненциальный множитель $k_{01}=19,k_{02}=2822,k_{03}=19803$, тепловой эффект $\Delta H_1=42.7$, $\Delta H_2=25.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 23

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=364K, теплоемкость смеси $c_p=3018_{\overline{K}}$, состав подаваемой смеси: $c_A=25.6$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=27.9$, $E_{a2}=43.6$, $E_{a3}=39.5$, предэкспоненциальный множитель $k_{01}=1752, k_{02}=105715, k_{03}=28220$, тепловой эффект $\Delta H_1=22.6$, $\Delta H_2=41.7$.

Вариант 24

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=321K, теплоемкость смеси $c_p=2744\frac{1}{2}K$, состав подаваемой смеси: $c_A=32.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=15.2$, $E_{a2}=36.4$, $E_{a3}=18.2$, предэкспоненциальный множитель $k_{01}=40,k_{02}=27742,k_{03}=101$, тепловой эффект $\Delta H_1=-5.6$, $\Delta H_2=-15.6$, $\Delta H_3=21.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 25

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=389K, теплоемкость смеси $c_p=2121_{\overline{K}}$, состав подаваемой смеси: $c_A=17.0$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=30.9$, $E_{a2}=49.4$, $E_{a3}=53.3$, предэкспоненциальный множитель $k_{01}=2257, k_{02}=190978, k_{03}=616905$, тепловой эффект $\Delta H_1=38.9$, $\Delta H_2=-26.7$, $\Delta H_3=39.5$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 26

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=367K, теплоемкость смеси $c_p=2235_{\overline{K}}$, состав подаваемой смеси: $c_A=25.4$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=29.7$, $E_{a2}=49.3$, $E_{a3}=27.6$, предэкспоненциальный множитель $k_{01}=2539, k_{02}=367987, k_{03}=770$, тепловой эффект $\Delta H_1=21.5$, $\Delta H_2=8.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 27

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \underset{k_3}{\overset{k_3}{\longleftrightarrow}} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=290K, теплоемкость смеси $c_p=2642_{\overline{K}}$, состав подаваемой смеси: $c_A=34.2$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=16.8$, $E_{a2}=33.4$, $E_{a3}=22.1$, предэкспоненциальный множитель $k_{01}=124,k_{02}=22439,k_{03}=888$, тепловой эффект $\Delta H_1=42.2$, $\Delta H_2=29.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 28

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \underset{k_3}{\overset{k_3}{\longleftrightarrow}} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=307K, теплоемкость смеси $c_p=3299_{\overline{K}}$, состав подаваемой смеси: $c_A=25.3$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=17.3$, $E_{a2}=27.3$, $E_{a3}=29.5$, предэкспоненциальный множитель $k_{01}=108, k_{02}=2297, k_{03}=5318$, тепловой эффект $\Delta H_1=-35.9$, $\Delta H_2=-17.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 29

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=329K, теплоемкость смеси $c_p=2036_{\overline{K}}$, состав подаваемой смеси: $c_A=34.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.6$, $E_{a2}=30.6$, $E_{a3}=25.8$, предэкспоненциальный множитель $k_{01}=172, k_{02}=3586, k_{03}=704$, тепловой эффект $\Delta H_1=-40.5$, $\Delta H_2=26.3$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 30

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=363K, теплоемкость смеси $c_p=3905_{\overline{K}}$, состав подаваемой смеси: $c_A=17.6$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=18.2$, $E_{a2}=33.5$, $E_{a3}=35.0$, предэкспоненциальный множитель $k_{01}=46,k_{02}=3877,k_{03}=5568$, тепловой эффект $\Delta H_1=-22.0$, $\Delta H_2=41.1$.