实验四交流串、并联电路研究

一、实验目的

- 1、研究串联电路各部分电压关系及串联谐振。
- 2、研究并联电路各支路电流关系及并联谐振。
- 3、电路功率因数提高的方法。

二、仪器设备

1、函数发生器一台2、双踪数字示波器一台3、交流数字电流表、电压表各一只4、电阻、电容、电感元件若干

三、实验简介

1、串联电路

当交流电加在 R、L、C 串联电路上,则各元件上通过相同电流。由于电感、电容的阻抗均为频率的函数,且电感电压超前电流 90°、电容电压滞后电流 90°,所以,当改变电路参数或改变交流电的频率时,若满足 $\dot{U}_L = -\dot{U}_C$ 、则电容和电感的作用相互抵消,电路呈电阻性,这时电路中阻抗最小、电流最大,即电路出现串联谐振。本实验是通过调整交流电的频率实现谐振的。

实际电路中,因元件为非理想元件,特别是电感元件包含有一定量的电阻,一般将电感元件看着一个电阻与理想电感串联的形式,这时测得的电感两端电压包含有电阻电压分量,称其为 \dot{U}_{rL} 。显然 \dot{U}_{rL} 超前电流小于 90°,但只要 \dot{U}_{rL} 在虚轴上的投影等于一 \dot{U}_C 时,电路同样出现谐振。此时 $I=\frac{U}{R+r}$ (r为电感元件中所含的电阻)。

2、并联谐振

电路中当交流电加在 L、C 并联电路两端,由于两元件电压相同,流过电感的电流 \dot{I}_L 与流过电容的电流 \dot{I}_C 分别滞后和超前电压 90°,即 \dot{I}_L 与 \dot{I}_C 相位相反。当改变电路参数或改变电源频率,满足 $\dot{I}_L=-\dot{I}_C$ 时,电路出现并联谐振。

实际电路中,由于电感元件含有电阻,称流过电感的电流为 \dot{I}_{rL} ,显然 \dot{I}_{rL} 滞后电压小于 90°,但只要 \dot{I}_{rL} 在虚轴上的投影等于一 \dot{I}_{C} 时,电路同样出现谐振。这时电路

呈阻性, 从端钮看, 表现在阻抗最大, 电流最小。

3、功率因数的提高

实际使用的电器多为感性负载,如电机、日光灯等。感性负载可等效成理想电感与理想电阻串联的形式,其功率因数较低。提高功率因数的方法通常是在感性负载上并联一个适当大小的电容。

四、实验内容及步骤

1、串联谐振

- (1) 实验电路如图 4-1 所示。具体在实验台上连线方法参照前面实验,即借助测试孔和电流插座,这样,接线和测量都很方便。
- (2)调节函数发生器的输出电压为正弦波,保证 a、b 两端电压有效值为 5V。 按表 4-1 逐步改变频率,并保持 a、b 两端电压有效值为 5V 不变,记下不同频率时的电流,填入表 4-1 中。

提示: 这里 "5V" 由示波器或交流电压表测得,不是函数发生器的显示 U₄,值。 本次实验的所有电压、电流均以交流电压表、电流表读数为准。

(3) 根据 *u*、*i* 波形同相方法寻找谐振频率(200 Ω 电阻波形与电流波形同相)。 按表 4-1 规定的频率调节函数发生器的输出频率,观察波形,确定谐振频率, 并记录谐振时的电流。

表4-1

法 ***	f(Hz)	200	300	f_{o} =	300	400	500
读数	I(mA)	1 (2)	1877				
计 算	$ Z (\Omega)$	1 11 2	11.57 12	EN EL ON		16-75-8	

(4) 在谐振时,测出 $U_{\rm R}$ 、 $U_{\rm rL}$ 、 $U_{\rm C}$ 各值,填在表 4-2 中。

表4-2

f	U	I_0	$U_{ m R}$	U_{rl}	$U_{\rm C}$
f	5V				

2、并联谐振

(1) 实验电路如图 4-2 所示。具体在实验台上连线方法参照前面实验,即借助测试孔和电流插座。

(2) 根据并联谐振时,阻抗最大,电流最小方法寻找谐振频率。 调节函数发生器的输出电压为正弦波,按表 4-3 逐步改变频率,并保持 a、 b 两端电压有效值为 5V 不变,记下不同频率时的电流,填入表 4-3 中。注 意寻找谐振频率。

3、功率因数的提高

(1) 实验电路如图 4-3 实线部分。在实验台上连线方法如图 4-4 所示。

- (2)调节函数发生器的输出电压为正弦波,保持 a、b 两端电压有效值为 5V 不变,完成表 4-4 规定的各项测量数据。
 - 提示:由于实验台元件参数的分散性,表 4-4 中,电容 $2 \mu F$ 、 $10 \mu F$ 仅为参考值。例如,有部分实验台将 $2 \mu F$ 改为 $1 \mu F$ 时,功率因数提高较明显。同样,也可将 $10 \mu F$ 电容改为 $4.7 \mu F$ 尝试。

表4-4

f(Hz)	U(V)	C	I(mA)	Irl(mA)	$I_{\rm c}({ m mA})$
200	5	未接			
200	5	2μF	18	-	
200	5	10μF	Jh .7	乘沙山	110%

实验报告

专业	班号	_组号	实验日期

姓名______ 同组人_____ 指导教师___

一、实验原理图及数据

1. 串联谐振原理图及数据

附图 4-1

-t	
3E./	- 7
774	- 1
	-

读 数	f(Hz)	200 300	f_{o} =	400 500 600
以 剱	I(mA)	BSTE AL	e illin fine	料文和思西班图郑串
计算	$ Z (\Omega)$	0 4.3863.3	Marine Marine	中国各项下问题。

表4-2

f	U	I_0	$U_{ m R}$	U_{rL}	$U_{\rm c}$
$f_{\rm o}$	5V				

2. 并联联谐振原理图及数据

表4-3

7610						
生 粉	f(Hz)	200	250	f_{o} =	350	400
读数	I(mA)					
计算	$ z _{(\Omega)}$					

3. 功率因数的提高原理图及数据

= 1_	_ /\
7/4	-4

-		77	T	Ε.	I .
f(Hz)	U(V)	C	I(mA)	$I_{TL}(mA)$	$I_{\rm c}({ m mA})$
200	5	未接	1		
200	5	2μF	4		
200	5	10μF	d		

二、实验报告要求

- 1. 完成所有表格中规定的数据。
- 2. 根据表 4-2 的数据,画出串联谐振时各电压相量图并计算电感元件中所含的电阻 r 之值。
- 3. 画出串联谐振时串联支路总电压和电流波形图。
- 4.思考并回答如下问题:
 - (1) 串联谐振、并联谐振电路各有什么特点?
 - (2) 串联谐振时 I 最大,这时串联电路的总电压和电流从波形上看是否同相?
 - (3) 在图 4-3 中, 当在感性负载上并联 2 μ F 电容后, 线路的功率因数是否提高了? 功率因数提高的意义是什么? 当将并联电容由 2 μ F 改为 10 μ F 时, 功率因数提高了吗? 为什么?

实验五 三相电路研究

一、实验目的

- 1、三相负载作星形接法时电路中各电压、电流的研究及中线的作用。
- 2、用两表法测试三相三线制电路功率(仅以负载接成星形为例)。
- 3、三相负载作三角形接法时电路中各电压、电流的研究。

二、仪器设备

 1、三相电路实验负载挂件
 一块

 2、对称可调三相交流电源
 一台

 3、多功能交流数字表
 二只

 4、电流插头
 一个

三、实验简介

1、 实验负载挂件

实验负载挂件为三相负载,其中A相、B相负载完全相同,如图 5-1 (a) 所示。 C相负载如图 5-1 (b) 所示。

图 5-1

当改变负载上的开关状态(通、断)时,可使三相负载对称(例如,让各相负载 灯全亮),也可使负载不对称(有些相负载灯全亮,另些相则不然);可使负载为阻性 (让电容断开),也可使负载为容性(让电容合上);还可使负载为星形时有中线、无 中线等等。

2、电源及负载的连接方式

本实验中,电源均采用星形连接。负载有星形、三角形两种连接方式。

当负载为星形连接时,可以有中线——即三相四线制;也可以无中线——即三相三线制。三相四线制与三相三线制间的切换,通过中线上的开关状态实现。当负载为

三角形连接时,只有三相三线制。

3、两表法测试三相三线制电路的总功率

从理论上说,在三相三线制中无论负载接成何种形式,都可以用两个功率表测得 三相负载总功率。本实验仅仅是在负载为星形接法且为阻性负载情况下进行测试。

四、实验内容及步骤

- 1. 将三相电源接成星形
- (1) 断开三相调压器开关,将三相调压器手柄旋转到 0V 位置。
- (2) 按图 5-2 原理图接线。图 5-2 在实验台上接线方法如图 5-3 所示。

提示: 本实验各项内容电源均按星形接法

提示:

- 1、本实验中,三相电源电压较高,必须严格遵守安全操作规定。
- (1)身体不要接触带电部分。
- (2) 接线时必须切断电源。
- (3) 在带电测量时,必须先插仪表插线,再插电路插线,不可反向操作。
- 2、负载为纯电阻时,要断开负载上的电容。
- 3、电源中线接在"N"端,通过切换开关 S₁₀,可将中线连到负载的 N'点,而不是将中线直接接到负载的 N'点。
- 2. 负载为星形接法
- (1) 三相电源仍处于断开状态。
- (2)图 5-4为原理电路。图 5-4在 实验台上的接线方法如图 5-5 所示。
- (3) 合上三相调压器开关,按 RESRT 键, 用交流多功能表测量电源**线电压**, 通过调节手柄,使**线电压**为 220V。
- (4) 按表 5-1 所示的各要求测试对应

图 5-5

表5-1 负载为星形接法

数	值				读		数					计	算
负载连接		$U_{ m AB}$	$U_{ m BC}$	U_{CA}	U _{AX}	$U_{\mathtt{BY}}$	$U_{\rm CZ}$	I_A	I_B	I_C	Inn	$U_{ m BC}/U_{ m BY}$	P
对称	有中线												
(各相灯全亮)	无中线		4				1						
不对称 (A相灯全亮, B、	有中线		100	7									
C相各熄二盏灯)	无中线	-		/									

2. 两表法测功率

- (1) 断开三相调压器开关,电源接法保持不变,负载接法保持不变但断开中线 N-N'。
- (2) 按图 5-6 所示原理电路连线。图 5-6 在实验台上的连线方法如图 5-7 所示。
- (3) 合上三相调压器开关,按表 5-2 所示的各要求测量对应功率。

表5-2 负载为星形接法

数值	读	数	计 算
负载连接	P_1	P_2	P
对称			
(各相灯全亮)		1836	
不对称 (<i>A</i> 相灯全亮, <i>B</i> 、 C相各熄二盏灯)		26. 13	1 2 3 3

图 5-7

3、负载为三角形接法

- (1) 断开三相调压器开关,电源接法保持不变,拆下功率表,中线仍断开。
- (2) 负载按图 5-8 所示的原理电路连线。图 5-8 在实验台上的连线方法如图 5-9 所示。
- (3) 按表 5-3 所示的各要求测试对应数据。

表5-3 负载为三角形接法

数值	读数								计	计 算		
负载连接	<i>U</i> _{AB}	$U_{ m BC}$	U_{CA}	$U_{ m AX}$	$U_{ m BY}$	$U_{ m cz}$	I_{B}	$I_{ m BY}$	$I_{ m B}/I_{ m BY}$	P		
对称			39-1						14			
(各相灯全亮)			State Se									
不对称 (A相灯全亮, B、 C相各熄二盏灯)		10%	PER			及			/	/		

实验报告

专业	班号	\rightarrow	_组号	实验日期
姓名	同组人	100	旨导教师	
一、实验原理图及数	据		A	a
1. 负载为星形接法	原理图及数据		6-3 PHW	$\mathfrak{J}_{\mathbf{z}_{A}}$
			NS10	N'
			C	S ₄
			В ———	

表5-1 负载为星形接法

数	值				读		数					计	算
负载连接		$U_{ m AB}$	$U_{ m BC}$	U_{CA}	U_{AX}	$U_{ m BY}$	$U_{\rm CZ}$	I_A	I_B	I_C	$I_{\rm NN'}$	$U_{ m BC}/U_{ m BY}$	P
对称	有中线												/
(各相灯全亮)	无中线		Land To	30.10						-78.7	/	EC MES	
不对称 (A相灯全亮, B、	有中线						,		jej	1494	1411	表表	
C相各熄二盏灯)	无中线			TA:	BF	11 /113		141	i ak	7,54	/	-(1)	

2. 两表法测功率原理图及数据

附图 5-2

表5-2 负载为	星形接法	=			
数值	读	数	计 算		
负载连接	P_1	P_2	P		
对称					
(各相灯全亮)					
不对称 (A相灯全亮, B, C相各熄二盏灯)					

附图 5-1

3. 负载为三角形接法原理图及数据

表5-3 负载为三角形接法

数 值	读数						计	算		
负载连接	<i>U</i> _{AB}	$U_{ m BC}$	U_{CA}	$U_{\!\scriptscriptstyle m AX}$	$U_{\mathtt{BY}}$	$U_{ m cz}$	I_{B}	$I_{ m BY}$	$I_{ m B}/I_{ m BY}$	P
对称	4a									
(各相灯全亮)	LIM.									
不对称 (<i>A</i> 相灯全亮, <i>B</i> 、 <i>C</i> 相各熄二盏灯)			\$ U	Į.		- 2	18:50	EVA	/	/

二、实验报告要求

- 1.整理并完成表 5-1、表 5-2、表 5-3 的各项数据。
- 2. 思考并回答如下问题:
 - (1) 负载为星形接法时,中线的作用是什么?
 - (2) 负载为三角形时,当负载对称时,线电流与相电流有何关系?