Introduction to Machine Learning

Advanced Risk Minimization Bernoulli Loss

Learning goals

- Bernoulli (log, logistic, binomial, cross-entropy) loss
- Risk minimizer
- Optimal constant
- Complete separation problem

ON PROBABILITIES

Likelihood of Bernoulli RV:

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)^{y^{(i)}} \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{1 - y^{(i)}} \qquad y \in \{0, 1\}$$

Transform into NLL:

$$-\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) - \left(1 - y^{(i)}\right) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

• Bernoulli loss: loss on single sample

$$L(y, \pi(\mathbf{x})) = -y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$$
 $y \in \{0, 1\}$

ON PROBABILITIES

Bernoulli loss

$$L(y, \pi(\mathbf{x})) = -y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$$
 $y \in \{0, 1\}$

Confidently wrong predictions are harshly penalized

- A.k.a. Binomial, log, or cross-entropy loss
- Can also write for $y \in \{-1, +1\}$

$$L(y, \pi(\mathbf{x})) = -\frac{1+y}{2} \log (\pi(\mathbf{x})) - \frac{1-y}{2} \log (1-\pi(\mathbf{x})) \qquad y \in \{-1, +1\}$$

ON DECISION SCORES

- Transform probs into scores (log-odds): $f(\mathbf{x}) = \log \left(\frac{\pi(\mathbf{x})}{1 \pi(\mathbf{x})} \right)$
- Then $\pi(\mathbf{x}) = (1 + \exp(-f(\mathbf{x})))^{-1}$
- Yields equivalent loss formulation

$$L(y, f(\mathbf{x})) = -y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))$$
 for $y \in \{0, 1\}$

• For these and other simple derivations, see deep dive

LOSS IN TERMS OF MARGIN

• For $y \in \{-1, +1\}$, loss becomes:

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-y \cdot f(\mathbf{x})))$$

All loss variants convex, differentiable

RISK MINIMIZER ON PROBS

• For probs and $y \in \{0, 1\}$, the risk minimizer is

$$\pi^*(\tilde{\mathbf{x}}) = \eta(\tilde{\mathbf{x}}) = \mathbb{P}(y = 1 \mid \mathbf{x} = \tilde{\mathbf{x}})$$

Proof: We have seen before

$$\mathcal{R}(f) = \mathbb{E}_{x} \left[L(1, \pi(\mathbf{x})) \cdot \eta(\mathbf{x}) + L(0, \pi(\mathbf{x})) \cdot (1 - \eta(\mathbf{x})) \right]$$

For fixed **x**, minimize inner part pointwise, use $c \in (0, 1)$ for best value:

$$\frac{d}{dc} \left(-\log c \cdot \eta(\mathbf{x}) - \log(1-c) \cdot (1-\eta(\mathbf{x})) \right) = 0$$

$$-\frac{\eta(\mathbf{x})}{c} + \frac{1-\eta(\mathbf{x})}{1-c} = 0$$

$$\frac{-\eta(\mathbf{x}) + \eta(\mathbf{x})c + c - \eta(\mathbf{x})c}{c(1-c)} = 0$$

$$c = \eta(\mathbf{x})$$

RISK MINIMIZER ON SCORES

• For $y \in \{-1, 1\}$ and scores $f(\mathbf{x})$: RM is pointwise log-odds

$$f^*(\mathbf{x}) = \log(\frac{\eta(\mathbf{x})}{1 - \eta(\mathbf{x})})$$

- Undefined for $\eta(\mathbf{x}) \in \{0, 1\}$
- Monotonously increasing in $\eta(\mathbf{x})$, with $f^*(\mathbf{x}) = 0$ if $\eta(\mathbf{x}) = 0.5$

EMPIRICAL OPTIMAL CONSTANT MODELS

 \bullet Optimal constant probability model for labels $\mathcal{Y} = \{0,1\}$ is

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \mathcal{R}_{\mathsf{emp}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)}$$

- Fraction of class-1 observations in observed data
- Optimal constant score model:

$$\hat{ heta} = rg \min_{ heta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \log rac{n_+}{n_-} = \log rac{n_+/n}{n_-/n}$$

 n_{-} and n_{+} are nr. of neg. and pos. observations

Again shows connection to log-odds

OPTIMIZATION PROPERTIES: CONVERGENCE

- In case of complete separation, optimization might fail
- Loss strictly decreasing in margin $y \cdot f(\mathbf{x})$:

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-yf(\mathbf{x})))$$

$$y^{(i)} f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) = y^{(i)} \boldsymbol{\theta}^T \mathbf{x}^{(i)} > 0 \ \forall \mathbf{x}^{(i)}$$

ullet Can now construct a strictly better $oldsymbol{ heta}$

$$\mathcal{R}_{\mathsf{emp}}(2 \cdot oldsymbol{ heta}) = \sum_{i=1}^n \mathit{L}(2\mathit{y}^{(i)}oldsymbol{ heta}^\mathsf{T} \mathbf{x}^{(i)}) < \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$$

- As $||\theta||$ increases, sum strictly decreases, as argument of L is strictly larger
- Loss is bounded from below, but no global optimium, cannot converge

OPTIMIZATION PROPERTIES: CONVERGENCE

• Geometrically, this translates to an ever steeper slope of the logistic/softmax function, i.e., increasingly sharp discrimination:

- In practice, data are rarely linearly separable and misclassified examples act as counterweights to increasing parameter values
- Can also use **regularization** for robust solutions