Supplementary Material to "TI-FPCA: Effective and Interpretable Dimensionality Reduction with Transform-Invariant Functional Principal Component Analysis"

Florian Heinrichs $^{1[0009-0003-9134-2646]}$

FH Aachen - University of Applied Sciences, Jülich, 52428, Germany f.heinrichs@fh-aachen.de

1 Additional Experimental Results

Table 1. NormMSE of various models for oscillating data and varying number of components.

num. comp.	1	2	3	4	5	6	7	8	9	10
Weight length	h 512									
TI-FPCA	0.630	0.462	0.399	0.344	0.301	0.265	0.238	0.217	0.200	0.185
Autoencoder	0.884	0.715	0.571	0.486	0.454	0.439	0.430	0.423	0.417	0.412
FAE	0.904	0.750	0.623	0.517	0.433	0.428	0.426	0.427	0.426	0.424
FPCA	0.920	0.842	0.768	0.696	0.625	0.553	0.499	0.446	0.424	0.405
PCA	0.920	0.842	0.768	0.696	0.625	0.553	0.498	0.445	0.424	0.404
VAE	0.882	0.709	0.572	0.484	0.458	0.440	0.431	0.423	0.417	0.413
Weight length	h 256									
TI-FPCA	0.927	0.851	0.781	0.708	0.633	0.559	0.502	0.449	0.426	0.404
Autoencoder	0.875	0.710	0.572	0.485	0.452	0.444	0.432	0.425	0.417	0.412
FAE	0.897	0.740	0.623	0.513	0.433	0.428	0.428	0.428	0.425	0.426
FPCA	0.926	0.855	0.778	0.706	0.633	0.560	0.505	0.449	0.426	0.405
PCA	0.926	0.855	0.779	0.706	0.633	0.560	0.504	0.449	0.426	0.404
VAE	0.880	0.699	0.560	0.491	0.457	0.440	0.433	0.425	0.419	0.414

Table 2. NormMSEs and accuracies of various models for spiking data and varying number of components in the classification setting.

num. comp.	1	2	3	4	5	6	7	8	9	10
NormMSEs -	(i) T	= 128.	$w_{\ell} = 2$	56						
TI-FPCA	. ` ′				0.042	0.039	0.037	0.034	0.032	0.030
Autoencoder	0.494	0.123	0.069	0.056	0.054	0.052	0.052	0.051	0.051	0.051
FAE	0.478	0.086	0.074	0.063	0.059	0.060	0.061	0.057	0.057	0.057
FPCA	0.866	0.764	0.668	0.581	0.507	0.432	0.367	0.309	0.254	0.210
PCA	0.866	0.764	0.668	0.581	0.507	0.432	0.367	0.309	0.254	0.210
VAE	0.491	0.104	0.072			0.052	0.052	0.051	0.051	0.051
NormMSEs -	(ii) T	= 256	$= w_{\ell}$	= 256						
TI-FPCA	. ` /				0.514	0.433	0.369	0.309	0.259	0.214
Autoencoder	ı				0.055			0.053		0.052
FAE					0.054			0.053	0.053	0.053
FPCA	0.859				0.500				0.259	0.213
PCA	1	0.757			0.500					
VAE		0.134			0.054					
NormMSEs -	' - (iii) 7	$^{7} = 256$	$m_{\ell} =$	128						
TI-FPCA	. ` ′		, -		0.068	0.060	0.056	0.054	0.051	0.050
Autoencoder									0.055	0.055
FAE	ı				0.057				0.057	0.055
FPCA	0.857			0.590		0.446			0.265	0.219
PCA	0.857	0.759	0.673	0.590		0.446			0.265	0.219
VAE	0.533				0.056					0.055
Accuracies –	(i) T -	- 198 1	na — 2F	 56						
TI-FPCA	$ \overset{(1)}{\bf 99.7} $	99.8	$egin{array}{c} egin{array}{c} 2 & 0 \\ 99.8 \end{array}$	99.8	99.8	99.7	99.8	99.8	99.7	99.7
Autoencoder	93.5	99.0	99.7	99.9	99.8	99.8	99.7	99.8	99.8	99.8
FAE	95.0	99.5	99.6	99.6	99.8	99.8	99.5	99.7	99.7	99.8
FPCA	87.1	93.5	95.9	97.5	98.2	97.5	98.2	98.7	99.1	99.4
PCA	92.0	98.0	98.1	99.4	99.1	99.6	99.6	99.6	99.7	99.8
VAE	92.5	99.0	98.8	99.4	99.1	99.5	98.7	99.5	99.5	98.9
				00.1	00.1			00.0	00.0	
Accuracies –	` ′	-		07.6	00.0	00.4	00.5	00.0	00.0	100.0
TI-FPCA	82.0	90.6	95.3	97.6	98.8	99.4	99.5	99.9	99.9	100.0
Autoencoder	94.5	98.2		100.0		99.8	99.8	99.8	99.6	99.8
FAE	94.5	98.6	99.8	99.7	99.5	99.4	99.6	99.4	99.5	99.5
FPCA	86.1	93.2	94.7	95.9	96.1	97.1	97.5	98.4	98.6	98.8
PCA	91.9	98.1	99.0	99.2	99.1	99.4	99.5	99.8	99.6	99.7
VAE	95.5	98.4	99.1	98.9	98.6	99.4	97.7	98.8	99.0	99.6
Accuracies –		= 256,			00.0	00.0	100 -	06.5	06.3	00.0
TI-FPCA	83.9	97.1		100.0		99.8	100.0		99.8	99.8
Autoencoder	92.4	99.0	99.8	99.9		100.0			100.0	
FAE	94.0	98.7	100.0		99.7	99.6	99.8	99.9	99.8	99.8
FPCA	87.8	94.3	95.3	96.6	97.2	97.6	98.1	98.7	99.2	99.6
PCA	93.5	98.0	98.9	99.7	99.3	99.6	99.6	99.6	99.8	99.9
VAE	90.5	98.3	99.6	99.0	99.4	99.3	99.3	99.6	98.7	99.6

Table 3. NormMSEs and accuracies of various models for spiking data and varying number of components in the outlier detection setting.

num. comp.	1	2	3	4	5	6	7	8	9	10
NormMSEs -	(i) T	= 128.	$w_{\ell} = 2$	256						
	. ` ′				0.023	0.022	0.021	0.019	0.018	0.017
Autoencoder	0.503	0.091	0.059	0.036	0.033	0.031	0.030	0.031	0.030	0.029
FAE	0.446	0.072	0.055	0.047	0.043	0.041	0.042	0.040	0.038	0.038
FPCA	0.805	0.708	0.618	0.526	0.440	0.371	0.305	0.253	0.208	0.172
PCA	0.805	0.708	0.618	0.526	0.440	0.371	0.305	0.253	0.208	0.171
VAE	0.503	0.113	0.049	0.037	0.034	0.031	0.031	0.030	0.029	0.029
NormMSEs -	(ii) T	$= w_{\ell}$	= 256							
TI-FPCA	. ` /			0.604	0.515	0.435	0.361	0.296	0.241	0.196
Autoencoder	ı						0.029			0.029
FAE	l	0.083					0.033		0.032	0.032
FPCA	0.817	0.723	0.622	0.531	0.454	0.379	0.314	0.260	0.214	0.175
PCA	0.817	0.723	0.622	0.531	0.454	0.378	0.314	0.260	0.214	0.175
VAE	0.521	0.103	0.046	0.035	0.031	0.030	0.029	0.029	0.029	0.028
NormMSEs -	(iii) <i>T</i>	$\overline{} = 256$	$\vec{b}, w_{\ell} =$	128						
TI-FPCA	. ` /	0.183	, -		0.042	0.036	0.033	0.030	0.028	0.027
Autoencoder	l			0.035	0.030	0.030	0.029	0.029	0.029	0.029
FAE	0.441	0.079	0.054				0.031		0.031	0.031
FPCA	I	0.714		0.531			0.312		0.211	0.172
PCA	0.808	0.714	0.622				0.312			0.172
VAE	0.490	0.114	0.049	0.034	0.031	0.029	0.029	0.029	0.028	0.028
Accuracies –	(i) T =	= 128, i	$v_{\ell} = 25$	56						
TI-FPCA	100.0		99.8	99.9	99.8	99.7	99.7	99.6	99.8	99.8
Autoencoder	92.2	99.1	99.8	99.8	99.8	99.8	100.0	99.9	99.8	99.8
FAE	91.6	97.9	99.6	99.6	99.6	99.8	99.6	99.9	99.9	99.8
FPCA	85.8	92.3	94.3	96.4	96.9	97.0	96.5	97.5	97.7	97.3
PCA	90.0	96.9	97.9	98.9	99.0	99.0	99.5	99.5	99.7	99.7
VAE	92.8	98.9	99.3	99.2	99.4	99.6	99.4	98.3	98.7	99.6
Accuracies –	(ii) T	$= w_{\ell} =$	256							
TI-FPCA	80.6	88.4	94.0	97.4	98.1	98.9	99.6	99.4	99.6	99.6
Autoencoder	89.0	97.9	99.8	99.8	99.8	99.6	99.6	99.8	99.6	99.9
FAE	91.6	97.0	99.2	99.4	99.4	99.2	99.0	99.3	99.5	99.6
FPCA	84.5	93.1	95.2	95.3	96.6	96.2	97.3	97.7	97.5	97.5
PCA	91.1	97.4	98.5	99.1	99.2	99.3	99.5	99.3	99.5	99.5
VAE	94.1	98.9	99.0	99.6	99.2	99.2	99.6	99.0	99.2	99.4
Accuracies –	(iii) T	= 256,	$w_{\ell} = 1$	128						
TI-FPCA	84.2	95.8	99.8	99.9	99.9	99.9	99.8	99.8	99.8	99.8
Autoencoder	91.0	98.4	99.8	100.0	99.9	99.8	100.0	99.8	99.8	99.6
FAE	94.8	97.5	99.7	99.5	99.8	99.6	99.4	99.8	99.8	99.9
FPCA	89.1	91.8	95.8	97.0	97.4	97.9	98.5	98.7	98.7	98.7
PCA	93.6	96.7	98.0	99.2	99.3	99.5	99.7	99.6	99.8	99.6
VAE	95.9	98.6	99.6	99.7	99.8	99.8	99.1	99.7	94.1	99.6
, , , , , ,										

Table 4. NormMSEs of various models for handwriting data and varying number of components.

num. comp.	1	2	3	4	5	6	7	8	9	10
Window leng	th T = 700)								
TI-FPCA	0.19678	0.07352	0.06074	0.05701	0.05557	0.05453	0.05353	0.05274	0.05209	0.05140
Autoencoder	0.33396	0.27798	0.22390	0.17056	0.19546	0.13699	0.13331	0.13047	0.13089	0.11474
FAE	0.33177	0.25203	0.20505	0.18767	0.13284	0.14730	0.13745	0.13098	0.12464	0.13046
FPCA	0.58668	0.46507	0.29278	0.19991	0.12351	0.09727	0.08003	0.06252	0.05897	0.05035
PCA	0.55888	0.42417	0.28315	0.18654	0.11854	0.09520	0.07898	0.06152	0.05816	0.04860
VAE	0.44787	0.29972	0.24056	0.20145	0.18606	0.16859	0.16071	0.17557	0.17893	0.17488
Window leng	th T = 140	00								
TI-FPCA	0.00591	0.00590	0.00589	0.00589	0.00587	0.00587	0.00586	0.00585	0.00584	0.00584
Autoencoder	0.00684	0.00638	0.00653	0.00614	0.00647	0.00653	0.00576	0.00605	0.00635	0.00564
FAE	0.00653	0.00619	0.00605	0.00602	0.00563	0.00539	0.00525	0.00570	0.00513	0.00523
FPCA	0.00585	0.00480	0.00405	0.00373	0.00338	0.00324	0.00306	0.00294	0.00289	0.00273
PCA	0.00586	0.00484	0.00412	0.00374	0.00339	0.00318	0.00302	0.00291	0.00283	0.00271
VAE	0.00671	0.00665	0.00668	0.00668	0.00667	0.00667	0.00700	0.00721	0.00768	0.00690

Table 5. NormMSEs and accuracies of various models for ErrP data and varying number of components in the classification setting.

num. comp.	1	2	3	4	5	6	7	8	9	10
NormMSEs-	(i) sampl	le length:	$0.5 \mathrm{s}$, we	ight lengt	th: 1 s					
TI-FPCA	0.622	0.429	0.365	0.318	0.282	0.255	0.233	0.217	0.203	0.191
Autoencoder	0.838	0.708	0.681	0.655	0.637	0.628	0.621	0.604	0.590	0.567
FAE	0.934	1.169	1.173	0.969	1.003	0.857	0.894	0.858	0.886	0.839
FPCA	0.840	0.727	0.660	0.583	0.523	0.466	0.437	0.415	0.397	0.348
PCA	0.839	0.726	0.658	0.581	0.526	0.470	0.437	0.414	0.396	0.347
VAE	0.850	0.781	0.747	0.717	0.683	0.650	0.627	0.631	0.592	0.582
NormMSEs -	(ii) samp	ole and we	eight leng	th: 0.5 s						
TI-FPCA	0.844	0.726	0.650	0.572	0.556	0.503	0.455	0.415	0.396	0.348
Autoencoder	0.848	0.711	0.688	0.665	0.640	0.620	0.608	0.594	0.574	0.568
FAE	0.891	1.057	0.907	1.215	1.080	0.766	0.824	0.840	0.843	0.787
FPCA	0.854	0.727	0.652	0.582	0.553	0.502	0.437	0.416	0.398	0.348
PCA	0.850	0.726	0.650	0.583	0.561	0.502	0.437	0.414	0.397	0.348
VAE	0.874	0.775	0.738	0.708	0.691	0.664	0.634	0.627	0.645	0.594
NormMSEs -	(iii) samı				h: 0.5 s					
TI-FPCA	0.784	0.679	0.609	0.562	0.515	0.479	0.455	0.430	0.404	0.384
Autoencoder	0.861	0.724	0.708	0.678	0.667	0.651	0.646	0.632	0.626	0.619
FAE	0.927	1.027	1.134	1.098	1.094	0.925	1.005	0.848	0.877	0.939
FPCA	0.863	0.753	0.666	0.572	0.529	0.472	0.423	0.403	0.385	0.368
PCA	0.862	0.752	0.664	0.583	0.551	0.472	0.422	0.406	0.385	0.372
VAE	0.890	0.795	0.770	0.711	0.725	0.671	0.696	0.672	0.627	0.647
Accuracies – (1									
TI-FPCA	97.0	83.4	97 .0	97.0	97.0	81.3	88.9	97.0	97.0	95.6
Autoencoder	97.0	96.5	96.8	96.4	95.9	90.3	92.6	95.1	84.7	93.3
FAE	97.0	97.0	94.6	92.8	95.1	95.5	94.9	96.3	91.4	93.2
FPCA	97.0	97.0	94.7	88.5	89.6	92.1	92.9	94.4	92.2	91.5
PCA	97.0	97.0	91.8	89.0	87.7	87.0	92.2	88.0	92.8	85.3
VAE	97.0	97.0	96.5	96.8	96.7	96.5	97.0	96.4	96.9	96.9
Accuracies – (ii) sampl	e and we		h: 0.5 s						
TI-FPCA	97.2	97.2	90.6	94.5	88.8	93.0	97.1	97.2	92.0	84.3
Autoencoder	97.2	97.2	96.9	94.5	90.8	90.7	87.8	94.0	94.6	92.6
FAE	97.2	96.6	94.9	93.3	94.9	93.4	93.3	92.1	90.2	85.5
FPCA	97.2	97.2	92.3	92.6	91.2	88.5	94.0	96.7	91.6	91.5
PCA	97.2	96.8	93.7	91.7	93.0	86.0	85.7	85.9	84.7	88.5
VAE	97.2	97.0	97.1	96.8	96.9	97.0	97.0	97.1	97.1	96.5
Accuracies – (00	00	01.1	0	00.0
TI-FPCA	93.7	93.6	93.7	93.7	93.6	91.7	93.7	93.3	89.5	93.7
Autoencoder	93.7	93.5	84.1	88.9	89.7	87.4	88.9	88.9	91.8	89.4
FAE	93.7	93.7	93.1	85.8	91.3	80.6	92.3	88.8	91.6	80.7
FPCA	93.7	93.7	91.1	91.0	89.0	86.6	90.1	88.4	91.3	92.3
PCA	93.7	92.6	86.5	81.7	79.8	82.8	84.0	86.3	80.9	87.1
VAE	93.3	89.5	92.7	85.9	93.2	92.7	92.8	93.1	93.1	93.6
1111	55.5	00.0	04.1	00.0	00.4	<i></i>	02.0	00.1	00.1	20.0

Table 6. NormMSEs and accuracies of various models for ErrP data and varying number of components in the outlier detection setting.

num. comp.										
num. comp.	1	2	3	4	5	6	7	8	9	10
NormMSEs -	(i) sampl	le length:	0.5 s, we	ight lengt	h: 1 s					
TI-FPCA	0.651	0.462	0.386	0.339	0.304	0.275	0.254	0.236	0.221	0.207
Autoencoder	0.877	0.762	0.728	0.693	0.675	0.664	0.629	0.616	0.606	0.583
FAE	0.960	0.974	0.923	0.884	0.922	0.924	0.864	0.803	0.867	0.728
FPCA	0.878	0.771	0.697	0.611	0.576	0.541	0.508	0.458	0.409	0.381
PCA	0.877	0.771	0.696	0.613	0.575	0.542	0.513	0.465	0.419	0.382
VAE	0.904	0.840	0.809	0.749	0.770	0.700	0.733	0.665	0.640	0.623
NormMSEs-	.` ′			_						
TI-FPCA	0.877	0.767	0.703	0.637	0.593	0.549	0.517	0.490	0.463	0.422
Autoencoder	0.869	0.765	0.737	0.704	0.681	0.657	0.644	0.634	0.602	0.580
FAE	0.943	0.877	0.967	0.887	0.837	0.787	0.835	0.807	0.825	0.761
FPCA	0.884	0.770	0.693	0.609	0.579	0.538	0.501	0.464	0.433	0.389
PCA	0.884	0.769	0.693	0.607	0.577	0.545	0.507	0.468	0.439	0.396
VAE	0.908	0.798	0.849	0.764	0.734	0.737	0.721	0.662	0.648	0.635
NormMSEs-	(iii) samj	ple length	n: 1 s, wei	ght lengt	h: 0.5 s					
TI-FPCA	0.813	0.710	0.649	0.606	0.564	0.530	0.502	0.474	0.450	0.429
Autoencoder	0.879	0.774	0.743	0.728	0.718	0.710	0.693	0.679	0.673	0.662
FAE	0.941	1.045	1.451	1.109	0.823	0.932	0.980	0.922	0.955	0.957
FPCA	0.880	0.778	0.707	0.636	0.595	0.539	0.476	0.443	0.420	0.405
PCA	0.879	0.778	0.706	0.632	0.612	0.540	0.486	0.446	0.422	0.403
VAE	0.930	0.860	0.830	0.827	0.786	NaN	0.759	0.738	0.737	0.706
Accuracies – (i) sample	e length:	0.5 s, weig	ght lengtl	n: 1 s					
TI-FPCA	97.1	97.1	97.1	97.1	97.1	96.1	97.1	89.6	97.1	97.1
		00 =	94.6	88.3	96.3	00.0	95.0	94.2	94.3	95.0
Autoencoder	97.1	96.7	94.0	00.0	90.5	93.8	00.0			
Autoencoder FAE	97.1 97.1	96.7 97.1	94.0 94.7	91.1	95.2	93.8 93.0	95.4	93.1	94.0	95.9
								93.1 93.3		
FAE	97.1	97.1	94.7	91.1	95.2	93.0	95.4		94.0	95.9
FAE FPCA	97.1 97.1	97.1 97.1	$94.7 \\ 95.0$	91.1 89.4	$95.2 \\ 91.8$	$93.0 \\ 95.1$	$95.4 \\ 96.4$	93.3	94.0 88.5	$95.9 \\ 94.9$
FAE FPCA PCA VAE	97.1 97.1 96.3 97.0	97.1 97.1 96.9 96.7	94.7 95.0 90.1 96.8	91.1 89.4 87.5 96.5	95.2 91.8 93.1	93.0 95.1 86.7	95.4 96.4 87.8	$93.3 \\ 87.4$	94.0 88.5 87.0	95.9 94.9 85.3
FAE FPCA PCA	97.1 97.1 96.3 97.0	97.1 97.1 96.9 96.7	94.7 95.0 90.1 96.8	91.1 89.4 87.5 96.5	95.2 91.8 93.1	93.0 95.1 86.7	95.4 96.4 87.8	$93.3 \\ 87.4$	94.0 88.5 87.0	95.9 94.9 85.3
FAE FPCA PCA VAE Accuracies – (97.1 97.1 96.3 97.0 (ii) sampl	97.1 97.1 96.9 96.7 e and we	94.7 95.0 90.1 96.8 ight lengt	91.1 89.4 87.5 96.5 th: 0.5 s	95.2 91.8 93.1 96.5	93.0 95.1 86.7 96.7	95.4 96.4 87.8 96.7	93.3 87.4 96.4	94.0 88.5 87.0 96.4	95.9 94.9 85.3 96.5
FAE FPCA PCA VAE Accuracies – (TI-FPCA	97.1 97.1 96.3 97.0 (ii) sampl	97.1 97.1 96.9 96.7 e and we	94.7 95.0 90.1 96.8 ight lengt 93.6	91.1 89.4 87.5 96.5 th: 0.5 s 96.9	95.2 91.8 93.1 96.5	93.0 95.1 86.7 96.7 95.0	95.4 96.4 87.8 96.7	93.3 87.4 96.4 94.7	94.0 88.5 87.0 96.4	95.9 94.9 85.3 96.5
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8	97.1 97.1 96.9 96.7 e and wei 96.9 96.7	94.7 95.0 90.1 96.8 ight lengr 93.6 95.4	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8	95.2 91.8 93.1 96.5 84.6 90.2	93.0 95.1 86.7 96.7 95.0 95.8	95.4 96.4 87.8 96.7 95.8 93.7	93.3 87.4 96.4 94.7 95.5	94.0 88.5 87.0 96.4 92.8 93.5	95.9 94.9 85.3 96.5 95.5 90.1
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder FAE	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8 96.9	97.1 97.1 96.9 96.7 e and wei 96.9 96.7 95.9	94.7 95.0 90.1 96.8 ight lengt 93.6 95.4 94.7	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4	95.2 91.8 93.1 96.5 84.6 90.2 85.8	93.0 95.1 86.7 96.7 95.0 95.8 90.8	95.4 96.4 87.8 96.7 95.8 93.7 92.3	93.3 87.4 96.4 94.7 95.5 92.5	94.0 88.5 87.0 96.4 92.8 93.5 96.4	95.9 94.9 85.3 96.5 95.5 90.1 93.6
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder FAE FPCA	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8 96.9 96.9	97.1 97.1 96.9 96.7 e and wei 96.9 96.7 95.9 96.9	94.7 95.0 90.1 96.8 ight lengt 93.6 95.4 94.7 92.9	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6	93.3 87.4 96.4 94.7 95.5 92.5 88.5	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder FAE FPCA PCA	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8 96.9 96.9 96.9 96.8	97.1 97.1 96.9 96.7 e and wei 96.9 96.7 95.9 96.8 96.6	94.7 95.0 90.1 96.8 ight length 93.6 95.4 94.7 92.9 85.4 96.5	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6 87.9 96.6	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6 89.0 96.4	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0 90.5	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6 88.0	93.3 87.4 96.4 94.7 95.5 92.5 88.5 87.7	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4 88.7	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5 88.4
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder FAE FPCA PCA VAE	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8 96.9 96.9 96.9 96.8	97.1 97.1 96.9 96.7 e and wei 96.9 96.7 95.9 96.8 96.6	94.7 95.0 90.1 96.8 ight length 93.6 95.4 94.7 92.9 85.4 96.5	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6 87.9 96.6	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6 89.0 96.4	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0 90.5	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6 88.0	93.3 87.4 96.4 94.7 95.5 92.5 88.5 87.7	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4 88.7	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5 88.4
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder FAE FPCA PCA VAE Accuracies – (97.1 97.1 96.3 97.0 ii) sampl 96.9 96.8 96.9 96.9 96.9 96.8 iii) samp	97.1 97.1 96.9 96.7 e and we 96.9 96.7 95.9 96.8 96.6	94.7 95.0 90.1 96.8 ight length 93.6 95.4 94.7 92.9 85.4 96.5	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6 87.9 96.6	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6 89.0 96.4 : 0.5 s	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0 90.5 96.4	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6 88.0 96.4	93.3 87.4 96.4 94.7 95.5 92.5 88.5 87.7 96.2	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4 88.7 95.7	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5 88.4 96.5
FAE FPCA PCA VAE Accuracies – (TI-FPCA Autoencoder FAE FPCA PCA VAE Accuracies – (TI-FPCA	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8 96.9 96.9 96.8 (iii) sampl 94.3	97.1 97.1 96.9 96.7 e and we 96.9 96.7 95.9 96.8 96.6	94.7 95.0 90.1 96.8 ight length 93.6 95.4 94.7 92.9 85.4 96.5	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6 87.9 96.6 ght length 92.8	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6 89.0 96.4 : 0.5 s 93.9	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0 90.5 96.4	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6 88.0 96.4	93.3 87.4 96.4 94.7 95.5 92.5 88.5 87.7 96.2	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4 88.7 95.7	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5 88.4 96.5
FAE FPCA PCA VAE Accuracies - (TI-FPCA Autoencoder FAE FPCA PCA VAE Accuracies - (TI-FPCA Autoencoder	97.1 97.1 96.3 97.0 (ii) sampl 96.9 96.8 96.9 96.9 96.8 (iii) sampl 94.3 94.3	97.1 97.1 96.9 96.7 e and we 96.9 96.7 95.9 96.8 96.6 le length: 94.3 93.0	94.7 95.0 90.1 96.8 ight lengr 93.6 95.4 94.7 92.9 85.4 96.5 1 s, weight specified and	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6 87.9 96.6 ght length 92.8 88.3	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6 89.0 96.4 : 0.5 s 93.9 88.5	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0 90.5 96.4	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6 88.0 96.4 94.2 89.8	93.3 87.4 96.4 94.7 95.5 92.5 88.5 87.7 96.2 94.3 82.2	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4 88.7 95.7	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5 88.4 96.5
FAE FPCA PCA VAE Accuracies - (TI-FPCA Autoencoder FAE FPCA PCA VAE Accuracies - (TI-FPCA Autoencoder FAE FPCA PCA VAE	97.1 97.1 96.3 97.0 ii) sampl 96.9 96.8 96.9 96.9 96.8 iii) sampl 94.3 94.3 94.3	97.1 97.1 96.9 96.7 e and we 96.9 96.7 95.9 96.8 96.6 le length: 94.3 93.0 94.3	94.7 95.0 90.1 96.8 ight length of the second of the s	91.1 89.4 87.5 96.5 th: 0.5 s 96.9 95.8 95.4 88.6 87.9 96.6 ght length 92.8 88.3 93.8	95.2 91.8 93.1 96.5 84.6 90.2 85.8 90.6 89.0 96.4 : 0.5 s 93.9 88.5 91.9	93.0 95.1 86.7 96.7 95.0 95.8 90.8 92.0 90.5 96.4 92.7 85.4 89.5	95.4 96.4 87.8 96.7 95.8 93.7 92.3 86.6 88.0 96.4 94.2 89.8 91.7	93.3 87.4 96.4 94.7 95.5 92.5 88.5 87.7 96.2 94.3 82.2 91.1	94.0 88.5 87.0 96.4 92.8 93.5 96.4 94.4 88.7 95.7	95.9 94.9 85.3 96.5 95.5 90.1 93.6 94.5 88.4 96.5 94.2 87.7 86.6

Table 7. NormMSEs and accuracies of various models for MNIST data and varying number of components in the classification setting. "_" indicates that the gradients exploded for all repetitions.

num. comp.	1	2	3	4	5	6	7	8	9	10
NormMSEs -	(i) sample	es of size	16 × 16							
TI-FPCA	0.447	0.336	0.274	0.232	0.200	0.176	0.157	0.141	0.128	0.117
Autoencoder	0.560	0.518	0.463	0.411	0.361	0.315	0.282	0.256	0.229	0.208
FAE	0.562	0.503	0.462	0.424	0.397	0.371	0.358	0.347	0.338	0.339
FPCA	0.597	0.551	0.514	0.477	0.444	0.418	0.394	0.371	0.351	0.332
PCA	0.597	0.551	0.514	0.477	0.444	0.418	0.394	0.371	0.351	0.332
VAE	0.683	0.949	1.068	-	-	_	_	0.986	-	-
NormMSEs-										
TI-FPCA	0.557	0.507	0.463	0.426	0.395	0.370	0.348	0.331	0.314	0.301
Autoencoder	0.485	0.426	0.355	0.302	0.261	0.230	0.205	0.185	0.169	0.155
FAE	0.482	0.431	0.395	0.368	0.352	0.338	0.334	0.326	0.317	0.322
FPCA	0.533	0.489	0.453	0.420	0.391	0.366	0.346	0.329	0.312	0.299
PCA	0.533	0.489	0.453	0.420	0.391	0.365	0.346	0.329	0.312	0.299
VAE	0.581	0.581	0.621	0.618	0.454	0.806	0.448	-	-	
NormMSEs -	(iii) samp	les of size	e 56 × 56							
TI-FPCA	0.524	0.423	0.351	0.308	0.276	0.250	0.229	0.211	0.196	0.183
Autoencoder	0.703	0.590	0.524	0.487	0.444	0.393	0.362	0.326	0.301	0.275
FAE	0.702	0.595	0.551	0.520	0.498	0.482	0.468	0.458	0.446	0.436
FPCA	0.831	0.772	0.726	0.688	0.665	0.643	0.626	0.613	0.600	0.590
PCA	0.831	0.772	0.726	0.688	0.665	0.643	0.626	0.613	0.600	0.590
VAE	0.847	0.756	0.765	0.648	0.726	0.737	0.757	0.659	3.187	0.762
NormMSEs -	(iv) rando	omly rota	ted sampl	les						
TI-FPCA	0.460	0.376	0.318	0.281	0.253	0.232	0.214	0.199	0.185	0.174
Autoencoder	0.542	0.486	0.429	0.388	0.344	0.305	0.275	0.248	0.225	0.201
FAE	0.528	0.482	0.451	0.423	0.401	0.383	0.369	0.357	0.344	0.337
FPCA	0.560	0.432	0.431 0.476	0.423	0.427	0.406	0.386	0.366	0.344 0.347	0.337 0.332
PCA	0.560	0.518	0.476	0.448	0.427 0.427	0.406	0.386	0.366	0.347	0.332 0.332
VAE	0.566	0.518	0.641	0.448 0.575	0.410	7.330	0.380 0.425	-	-	0.332 0.998
Accuracies – (i) cample	e of cize 1	6 × 16							
TI-FPCA	19.5	27.4	30.8	32.2	32.7	32.7	31.9	33.4	35.0	34.6
Autoencoder	16.6	21.6	20.7	21.6	24.1	28.2	26.4	24.8	23.6	24.2
FAE	15.5	19.3	20.7	$\frac{21.0}{23.7}$	$\frac{24.1}{24.6}$	$\frac{26.2}{22.6}$	22.8	20.6	$\frac{23.0}{23.2}$	23.1
FPCA	15.7	20.3	22.1	25.7 25.3	27.9	30.8	34.6	34.5	35.5	36.5
PCA	14.1	15.5	16.9	$\frac{23.3}{17.1}$	18.9	20.6	22.1	21.6	24.1	23.4
VAE	13.9	10.9	10.9	9.8	9.8	9.8	9.8	9.8	9.8	9.8
Accuracies – (TI-FPCA	ii) sample 19.8	es of size 2 29.6	$28 \times 28 \\ 36.8$	39.0	43.5	47.5	50.1	51.6	53.7	53.8
	1									
Autoencoder	40.6	55.1	68.7	74.2	83.3	87.0	88.1	88.9	89.5	89.7
FAE	44.1	53.0	63.4	71.2	76.7	80.6	80.5	80.7	82.8	81.1
FPCA	31.4	46.1	50.9	63.2	72.8	79.1	82.6	84.4	84.7	85.7
PCA	29.2	41.7	44.1	54.9	64.5	70.4	74.7	76.2	77.1	79.5
VAE	26.3	23.9	21.2	19.6	14.5	14.0	16.2	9.8	9.8	9.8
Accuracies - (46 =	46 =			46 =		46.7
TI-FPCA	20.1	35.6	39.3	43.5	46.3	47.8	47.7	46.8	50.0	48.5
Autoencoder	12.4	13.0	24.4	18.7	18.1	18.8	20.7	21.2	19.7	21.8
FAE	11.1	11.8	18.3	20.5	19.4	20.5	23.4	27.2	26.5	30.9
FPCA	15.2	18.7	19.4	20.4	22.2	23.0	25.0	25.6	26.6	27.0
PCA	13.0	14.1	14.9	15.7	14.6	15.8	16.6	17.6	17.9	18.3
VAE	14.6	14.3	11.3	13.6	12.8	11.6	10.3	12.6	11.6	11.2
Accuracies – (iv) rando		ed sample							
TI-FPCA	19.4	32.2	36.9	39.0	42.6	43.4	44.1	45.9	46.0	44.6
Autoencoder	23.9	34.8	36.7	38.3	39.5	42.5	42.6	44.1	45.7	45.9
FAE	24.2	26.8	30.9	36.3	41.1	40.1	40.9	38.8	41.7	38.2
FPCA	28.2	30.8	35.7	44.7	47.1	48.1	53.4	56.0	57.4	57.5
PCA	26.8	27.2	27.4	34.4	34.6	36.2	45.4	43.4	45.1	44.7
VAE	17.1	15.9	15.8	13.0	12.9	10.5	12.2	9.8	9.8	9.8
	1									

Table 8. NormMSEs and accuracies of various models for MNIST data and varying number of components in the outlier detection setting. "—" indicates that the gradients exploded for all repetitions.

num. comp.	1	2	3	4	5	6	7	8	9	10
NormMSEs -	(i) comple	ne of eizo	16 × 16				· ·			
TI-FPCA	0.340	0.267	0.220	0.189	0.166	0.148	0.133	0.121	0.111	0.102
Autoencoder	0.470	0.438	0.355	0.311	0.288	0.260	0.234	0.218	0.210	0.191
FAE	0.475	0.427	0.392	0.370	0.356	0.349	0.338	0.330	0.328	0.326
FPCA	0.506	0.461	0.429	0.406	0.384	0.364	0.347	0.332	0.318	0.304
PCA	0.506	0.461	0.429	0.406	0.383	0.364	0.347	0.331	0.317	0.304
VAE	0.473	0.457	0.368	-	-	-	-	-	-	-
	1									
NormMSEs -										
TI-FPCA	0.412	0.358	0.329	0.302	0.285	0.269	0.258	0.246	0.234	0.225
Autoencoder	0.370	0.333	0.294	0.253	0.227	0.203	0.183	0.164	0.144	0.131
FAE	0.394	0.349	0.321	0.295	0.297	0.285	0.277	0.274	0.276	0.263
FPCA	0.387	0.352	0.325	0.299	0.283	0.267	0.256	0.244	0.233	0.224
PCA	0.387	0.352	0.325	0.299	0.283	0.267	0.256	0.244	0.233	0.223
VAE	0.610	0.508	0.351	0.254	0.233	0.403	-	-	-	-
NormMSEs -	(iii) samr	les of size	2 56 × 56							
TI-FPCA	0.390	0.319	0.270	0.238	0.214	0.195	0.179	0.166	0.154	0.144
Autoencoder	0.637	0.482	0.415	0.358	0.330	0.306	0.287	0.261	0.243	0.229
FAE	0.615	0.496	0.461	0.438	0.428	0.421	0.414	0.411	0.407	0.403
FPCA	0.800	0.736	0.675	0.630	0.601	0.577	0.554	0.539	0.524	0.514
PCA	0.800	0.736	0.675	0.630	0.601	0.577	0.554	0.539	0.524	0.514
VAE	0.777	0.657	0.600	0.526	0.648	0.661	0.513	0.454	0.385	0.439
	1									
NormMSEs -										
TI-FPCA	0.325	0.277	0.242	0.219	0.200	0.184	0.171	0.160	0.150	0.141
Autoencoder	0.440	0.383	0.324	0.290	0.254	0.231	0.211	0.190	0.175	0.150
FAE	0.426	0.386	0.354	0.334	0.325	0.318	0.310	0.309	0.301	0.294
FPCA	0.472	0.416	0.386	0.367	0.349	0.333	0.317	0.302	0.286	0.275
PCA	0.472	0.416	0.386	0.367	0.349	0.333	0.317	0.302	0.286	0.275
VAE	0.468	0.510	0.392	0.305	0.301	0.358	0.377	_	0.482	1.413
Accuracies – (i) sample	s of size 1	6×16							
TI-FPCA	90.2	91.0	91.1	91.4	91.9	92.0	92.1	92.1	92.2	92.1
Autoencoder	90.3	89.8	88.9	88.8	89.7	89.3	90.4	89.7	90.8	89.9
FAE	90.2	89.4	89.8	88.7	89.8	89.8	89.9	89.4	89.5	89.4
FPCA	90.2	90.2	90.1	90.1	90.1	90.1	90.2	90.2	90.2	90.3
PCA	89.8	88.3	88.4	87.6	89.3	89.2	89.6	87.9	89.0	89.5
VAE	90.3	90.2	90.3	90.3	90.3	90.3	90.3	90.3	90.3	90.3
Accuracies – (ii) sample	es of size :	28×28							
TI-FPCA	89.9	90.7	90.5	90.5	90.6	90.6	90.8	91.0	91.0	91.4
Autoencoder	90.3	91.3	91.7	91.5	92.7	93.7	93.3	94.4	94.2	94.7
FAE	90.3	90.0	90.8	91.3	90.6	90.8	92.3	93.6	92.6	94.9
FPCA	90.8	90.8	93.2	93.5	94.5	94.4	94.7	95.0	95.1	95.8
PCA	89.9	88.8	91.7	92.4	92.7	93.7	94.0	94.0	94.4	94.5
VAE	89.3	90.7	90.7	90.5	90.6	91.1	90.3	90.3	90.3	90.3
Accuracies – (iii) sampl	os of siro	56 × 56							
TI-FPCA	90.4	90.7	91.1	91.7	91.8	92.8	93.3	93.8	94.1	94.3
	90.4	90.7								
Autoencoder FAE	90.3	90.3 88.7	89.7 89.1	89.6 89.8	$89.4 \\ 89.7$	89.8 90.1	90.1 90.0	89.3 89.0	$89.8 \\ 90.2$	90.0 90.1
FPCA	90.0	90.3	90.2	89.8 90.1	89.7 90.2	90.1	90.0	90.2	90.2	90.1
PCA PCA	89.1	90.3 89.7	90.2 87.2	90.1 87.9	90.2 87.6	90.2 89.6	90.2 89.7	90.2 89.1	90.1 89.7	90.1 89.6
VAE	89.0	86.1	88.9	89.5	89.9	88.3	90.2	89.6	90.3	90.1
	1				03.3	00.0	30.2	03.0	<i>5</i> 0.5	<i>5</i> 0.1
Accuracies – (. /	U								
TI-FPCA	90.1	91.0	91.3	92.2	93.0	93.4	93.8	94.1	94.2	94.4
Autoencoder	90.3	89.8	89.0	89.4	88.4	90.1	90.3	90.2	90.6	87.6
FAE	90.2	89.9	89.6	90.0	89.8	89.9	90.0	89.8	90.3	90.5
FPCA	90.2	90.0	90.0	90.5	91.1	91.2	91.4	91.5	91.5	91.6
PCA	89.7	88.4	87.3	89.0	90.1	89.5	89.4	90.8	91.0	91.2
VAE	90.2	90.2	89.8	90.3	90.2	90.3	90.2	90.3	90.3	90.3

2 Running Times of Model Trainings

Table 9. Mean running times of various models for oscillating data and varying number of components (standard deviation in brackets).

um. comp. 1	2	3	4	22	9	7	8	6	10
Veight length 512									
T-FPCA 7.79 (±1.08)	$11.96 (\pm 1.55)$	$16.58 (\pm 2.43)$	$0.63 (\pm 2.41)$	$25.50 (\pm 3.43)$	$29.62 (\pm 4.07)$	34.30 (±4.99)	$38.87 (\pm 5.38)$	$43.13 (\pm 6.24)$	$48.06 (\pm 7.19)$
Autoencoder 16.15 ± 2.93	$9.94 \ (\pm 1.40)$	$9.23 (\pm 0.71)$.33 (±0.77)	$9.34 \ (\pm 0.73)$	$9.95 (\pm 1.77)$	$10.20 (\pm 1.88)$	$9.32 (\pm 0.71)$	$9.51 (\pm 0.75)$	$9.78 \ (\pm 0.75)$
$18.85 (\pm 2.48)$	15.8	$14.66 (\pm 0.49)$	$5.26 (\pm 1.22)$	$14.64 (\pm 0.48)$	$14.93 (\pm 0.71)$	$15.08 (\pm 1.26)$	$15.35\ (\pm 1.10)$	$14.88 (\pm 0.93)$	$14.71 (\pm 0.71)$
	0.2	$0.29 \ (\pm 0.17)$	$(.35\ (\pm0.25)$	$0.36 (\pm 0.26)$	$0.36 \ (\pm 0.15)$	$0.36 \ (\pm 0.22)$	$0.33 (\pm 0.14)$	$0.46 \ (\pm 0.27)$	$0.37 (\pm 0.16)$
$0.05 (\pm 0.02)$	0.0	$0.06 (\pm 0.05)$	$(.05\ (\pm0.02)$	$0.05 (\pm 0.03)$	$0.05 (\pm 0.04)$	$0.06 (\pm 0.05)$	$0.06 (\pm 0.02)$	$0.05 (\pm 0.03)$	$0.06 (\pm 0.03)$
VAE 10.70 (±1.85)	9.7	$0\ (\pm 0.66)\ 9.85\ (\pm 0.73)\ 9$.81 (±0.71)	$10.83\ (\pm 1.36)$	$10.15\ (\pm0.92)$	$10.16 (\pm 1.82)$	$10.83\ (\pm 1.36)\ 10.15\ (\pm 0.92)\ 10.16\ (\pm 1.82)\ 10.18\ (\pm 1.00)\ 9.93\ (\pm 0.74)\ 9.91\ (\pm 0.70)$	$9.93 (\pm 0.74)$	$9.91 \ (\pm 0.70)$
length 256									
$\Gamma I - \widetilde{F}PCA = 5.11 (\pm 0.56)$	(± 2.22)	$6.03 (\pm 2.29)$	$6.20 (\pm 1.81)$	$6.62 (\pm 2.18)$	$7.04 (\pm 2.66)$	7.68 (±2.77)	$7.64 (\pm 2.67)$	$7.98 (\pm 3.25)$	$8.03 (\pm 2.70)$
Autoencoder 13.54 (± 0.37)	(± 1.25)	$9.03 (\pm 0.48)$	$8.61 (\pm 0.11)$	$8.73 (\pm 0.11)$	$8.67 (\pm 0.11)$	$8.70 (\pm 0.13)$	$8.65 (\pm 0.13)$	$8.76 (\pm 0.12)$	$9.11 (\pm 0.12)$
$16.50 (\pm 0.23)$	(± 0.80)	$14.41 (\pm 0.40)$	$(4.22\ (\pm0.25)$	$14.23 (\pm 0.24)$	$14.32 (\pm 0.67)$	$(4.10\ (\pm0.40)$	$14.35 (\pm 0.57)$	$14.14 (\pm 0.49)$	$14.33 (\pm 0.78)$
$0.35 (\pm 0.10)$	(± 0.14)	$0.36 (\pm 0.19)$	$0.34 (\pm 0.15)$	$0.41 (\pm 0.11)$	$0.36 \ (\pm 0.16)$	$0.38 (\pm 0.12)$	$0.38 (\pm 0.08)$	$0.41 (\pm 0.10)$	(60.07)
$0.05 (\pm 0.03)$	$0.05 (\pm 0.02)$	$0.06 (\pm 0.03)$	$0.05\ (\pm0.02)$	$0.05 (\pm 0.02)$	$0.05\ (\pm0.02)$	$0.05 (\pm 0.02)$	$0.06 (\pm 0.02)$	$0.06 (\pm 0.02)$	$0.08 \ (\pm 0.04)$
$9.21\ (\pm0.10)$	(± 0.15)	$9.11 (\pm 0.13)$	$9.03 (\pm 0.13)$	$9.07 (\pm 0.13)$	$9.18 (\pm 0.17)$	$9.13 (\pm 0.12)$	$9.57 (\pm 0.21)$	$9.33 (\pm 0.14)$	$9.27 (\pm 0.13)$

Table 10. Mean running times of various models for spiking data (standard deviation in brackets).

num. comp.	1	2	3	4	2	9	1-	∞	6	10
Classification TI-FPCA Autoencoder FAE FPCA PCA	- setting (i) - 7.21 (±0.08) 12.44 (±0.38) 15.73 (±0.12) 0.05 (±0.00) 0.01 (±0.00) 12.59 (±0.42)	$T = 128, w_{\ell} = 9.58 (\pm 0.14)$ 12.24 (±0.13) 15.93 (±0.07) 0.06 (±0.00) 0.02 (±0.00) 12.58 (±0.20)	256 11.26 (±0.17) 12.42 (±0.10) 16.70 (±0.09) 0.05 (±0.00) 0.01 (±0.00) 12.57 (±0.13)	13.08 (±0.17) 12.32 (±0.10) 16.48 (±0.14) 0.05 (±0.00) 0.01 (±0.00) 12.46 (±0.07)	15.29 (±0.18) 12.25 (±0.06) 16.34 (±0.10) 0.05 (±0.00) 0.01 (±0.00) 12.41 (±0.08)	17.16 (±0.26) 12.14 (±0.05) 16.23 (±0.17) 0.06 (±0.00) 0.01 (±0.00) 12.70 (±0.14)	21.56 (±0.48) 12.19 (±0.07) 16.32 (±0.37) 0.06 (±0.01) 0.01 (±0.00) 12.63 (±0.09)	23.09 (±0.70) 12.23 (±0.03) 16.26 (±0.08) 0.06 (±0.00) 0.01 (±0.00) 12.48 (±0.06)	25.62 (±1.08) 12.53 (±0.06) 16.16 (±0.08) 0.06 (±0.00) 0.01 (±0.00) 12.50 (±0.07)	31.76 (±1.45) 12.33 (±0.08) 16.29 (±0.29) 0.06 (±0.00) 0.02 (±0.00) 12.72 (±0.29)
Classification TI-FPCA Autoencoder FAE FPCA PCA	- setting (ii) - 4.76 (±0.64) 16.48 (±4.16) 23.74 (±3.89) 0.15 (±0.04) 0.02 (±0.01) 16.07 (±1.51)	$-T = 256 = w_{\ell}$ 4.94 (±0.66) 16.75 (±4.15) 25.28 (±4.77) 0.16 (±0.05) 0.02 (±0.01) 15.96 (±1.30)	$\begin{array}{c} z = 256 \\ 5.06 (\pm 0.73) \\ 17.53 (\pm 4.39) \\ 25.81 (\pm 4.41) \\ 0.14 (\pm 0.04) \\ 0.02 (\pm 0.02) \\ 16.04 (\pm 1.19) \end{array}$	5.14 (±0.72) 16.90 (±3.68) 25.59 (±4.14) 0.15 (±0.04) 0.02 (±0.01) 16.20 (±1.56)	5.26 (±0.75) 16.84 (±3.26) 25.58 (±4.61) 0.18 (±0.09) 0.03 (±0.02) 16.22 (±1.68)	5.46 (±0.82) 16.78 (±3.52) 25.62 (±4.46) 0.14 (±0.04) 0.02 (±0.01) 16.35 (±1.47)	5.60 (±0.83) 16.65 (±3.19) 25.34 (±4.41) 0.48 (±1.02) 0.02 (±0.01) 16.40 (±2.04)	5.76 (±0.88) 15.95 (±1.90) 25.83 (±4.37) 0.16 (±0.04) 0.03 (±0.02) 16.99 (±2.68)	5.94 (±0.99) 15.88 (±1.10) 25.71 (±4.71) 0.17 (±0.07) 0.02 (±0.02) 16.82 (±2.69)	6.07 (±1.01) 16.07 (±1.80) 25.75 (±4.67) 0.31 (±0.46) 0.03 (±0.01) 16.68 (±3.05)
Classification - setti TI-FPCA 9.68 (Autoencoder 41.32 FAE 22.72 FPCA 0.14 (PCA 0.02 (VAE 15.51 (- setting (iii) 9.68 (±6.05) 14.32 (±0.59) 22.72 (±3.48) 0.14 (±0.06) 0.02 (±0.01) 15.51 (±0.93)	$-T = 256, w_{\ell} = 13.89 (\pm 8.91)$ $14.65 (\pm 0.75)$ $23.66 (\pm 3.61)$ $0.14 (\pm 0.05)$ $0.02 (\pm 0.01)$ $15.51 (\pm 1.07)$	$= 128$ $19.79 (\pm 11.88)$ $15.74 (\pm 2.11)$ $29.89 (\pm 16.60)$ $0.13 (\pm 0.05)$ $0.02 (\pm 0.01)$ $15.25 (\pm 0.57)$	$18.91 (\pm 5.47)$ $15.09 (\pm 0.78)$ $30.16 (\pm 18.14)$ $0.13 (\pm 0.04)$ $0.02 (\pm 0.01)$ $15.91 (\pm 1.87)$	20.17 (±2.97) 14.91 (±0.38) 30.18 (±17.93) 0.14 (±0.05) 0.02 (±0.01) 15.35 (±0.70)	23.86 (±3.61) 15.03 (±0.32) 29.85 (±17.61) 0.13 (±0.06) 0.02 (±0.02) 16.03 (±2.14)	26.85 (±4.61) 15.16 (±0.50) 29.19 (±17.38) 0.16 (±0.08) 0.02 (±0.01) 16.60 (±3.11)	30.27 (±5.08) 15.03 (±0.50) 29.93 (±17.94) 0.15 (±0.06) 0.02 (±0.02) 16.15 (±2.61)	35.85 (±7.93) 15.72 (±1.21) 29.95 (±16.41) 0.17 (±0.10) 0.02 (±0.01) 16.15 (±2.59)	36.80 (±5.48) 17.21 (±5.60) 33.09 (±17.96) 0.19 (±0.12) 0.03 (±0.01) 16.49 (±3.25)
Outlier detection – TI-FPCA 5.12 Autoencoder 7.84 FAE 0.03 PCA 0.05 VAE 8.12	setting (±0.08) (±0.08) (±0.11) (±0.11) (±0.03) (±0.03) (±0.08)	$\begin{array}{c} (1) - T = 128, w \\ 6.75 (\pm 0.13) \\ 7.96 (\pm 0.26) \\ 10.38 (\pm 0.31) \\ 0.09 (\pm 0.03) \\ 0.05 (\pm 0.03) \\ 8.10 (\pm 0.07) \end{array}$	$v_{p} = 256$ $7.94 (\pm 0.38)$ $8.01 (\pm 0.09)$ $10.71 (\pm 0.14)$ $0.09 (\pm 0.03)$ $0.05 (\pm 0.03)$ $8.13 (\pm 0.10)$	9.10 (±0.24) 7.82 (±0.10) 10.52 (±0.18) 0.09 (±0.03) 0.05 (±0.03) 8.24 (±0.30)	10.65 (±0.19) 7.84 (±0.08) 10.43 (±0.19) 0.09 (±0.03) 0.05 (±0.03) 8.15 (±0.09)	11.95 (±0.16) 7.81 (±0.05) 10.40 (±0.14) 0.09 (±0.03) 0.05 (±0.03) 8.20 (±0.10)	14.64 (±0.33) 7.84 (±0.11) 10.42 (±0.16) 0.09 (±0.03) 0.05 (±0.03) 8.18 (±0.09)	15.67 (±0.46) 7.91 (±0.12) 10.44 (±0.20) 0.09 (±0.03) 0.05 (±0.03) 8.15 (±0.06)	17.61 (±0.98) 8.20 (±0.09) 10.41 (±0.23) 0.09 (±0.03) 0.05 (±0.03) 8.18 (±0.09)	20.66 (±0.56) 8.01 (±0.08) 10.44 (±0.23) 0.09 (±0.02) 0.05 (±0.02) 8.17 (±0.11)
Outlier detection – TI-FPCA 3.40 Autoencoder 8.93 FAE 12.78 PCA 0.08 VAE 9.45	setting (±0.19) (±0.17) (±0.20) (±0.12) (±0.07) (±0.013)	$\begin{array}{c} (ii) - T = w_{\ell} = \\ 3.51 \ (\pm 0.11) \\ 8.94 \ (\pm 0.17) \\ 13.39 \ (\pm 0.41) \\ 0.25 \ (\pm 0.21) \\ 0.08 \ (\pm 0.07) \\ 9.40 \ (\pm 0.15) \end{array}$	256 3.60 (±0.09) 9.14 (±0.12) 13.65 (±0.32) 0.21 (±0.13) 0.09 (±0.08) 9.40 (±0.15)	3.66 (±0.07) 9.01 (±0.16) 13.49 (±0.24) 0.21 (±0.09) 0.10 (±0.08) 9.42 (±0.14)	3.73 (±0.03) 9.04 (±0.15) 13.47 (±0.24) 0.20 (±0.09) 0.10 (±0.08) 9.40 (±0.14)	3.82 (±0.04) 9.25 (±0.33) 13.47 (±0.22) 0.20 (±0.08) 0.10 (±0.08) 9.46 (±0.12)	3.95 (±0.07) 9.26 (±0.15) 13.55 (±0.27) 0.20 (±0.09) 0.10 (±0.08) 9.47 (±0.15)	4.06 (±0.10) 9.26 (±0.20) 13.42 (±0.23) 0.19 (±0.09) 0.09 (±0.08) 9.58 (±0.27)	4.17 (±0.05) 9.48 (±0.16) 13.51 (±0.25) 0.20 (±0.09) 0.10 (±0.08) 9.46 (±0.14)	4.26 (±0.05) 9.43 (±0.32) 13.48 (±0.21) 0.20 (±0.08) 0.10 (±0.08) 9.48 (±0.15)
Outlier detection – TI-FPCA 4.79 Autoencoder 9.05 FAE 12.42 FPCA 0.17 PCA 0.05 VAE 9.15	setting (±0.05) (±0.25) (±0.27) (±0.08) (±0.06) (±0.16)	(iii) $-T = 256$, $6.75 (\pm 0.13)$ $8.99 (\pm 0.18)$ $12.91 (\pm 0.29)$ $0.16 (\pm 0.08)$ $0.06 (\pm 0.06)$ $0.01 (\pm 0.01)$	$w_{\ell} = 128$ $8.62 (\pm 0.14)$ $9.17 (\pm 0.16)$ $13.27 (\pm 0.29)$ $0.16 (\pm 0.08)$ $0.06 (\pm 0.07)$ $9.16 (\pm 0.15)$	$\begin{array}{c} 10.53 \; (\pm 0.16) \\ 8.97 \; (\pm 0.17) \\ 13.20 \; (\pm 0.24) \\ 0.16 \; (\pm 0.08) \\ 0.07 \; (\pm 0.08) \\ 9.21 \; (\pm 0.14) \end{array}$	12.61 (±0.48) 9.03 (±0.16) 13.03 (±0.25) 0.16 (±0.08) 0.06 (±0.07) 9.20 (±0.12)	14.78 (±0.38) 8.99 (±0.16) 13.10 (±0.22) 0.17 (±0.08) 0.06 (±0.08) 9.22 (±0.13)	16.35 (±0.26) 8.99 (±0.17) 13.07 (±0.20) 0.16 (±0.08) 0.06 (±0.08) 9.20 (±0.17)	18.19 (±0.35) 9.02 (±0.21) 12.94 (±0.26) 0.17 (±0.09) 0.06 (±0.07) 9.33 (±0.25)	$\begin{array}{c} 20.52 \; (\pm 0.32) \\ 9.31 \; (\pm 0.15) \\ 13.10 \; (\pm 0.49) \\ 0.16 \; (\pm 0.07) \\ 0.06 \; (\pm 0.07) \\ 9.26 \; (\pm 0.13) \end{array}$	$\begin{array}{c} 22.26 \; (\pm 0.61) \\ 9.10 \; (\pm 0.15) \\ 13.14 \; (\pm 0.25) \\ 0.16 \; (\pm 0.07) \\ 0.07 \; (\pm 0.07) \\ 9.21 \; (\pm 0.17) \end{array}$

Table 11. Mean running times of various models for handwriting data (standard deviation in brackets).

10	$\begin{array}{c} (\pm 6.11) \\ (\pm 0.17) \\ (\pm 0.78) \\ (\pm 0.02) \\ (\pm 0.00) \\ (\pm 0.12) \end{array}$	(±0.45) (±0.17) (±0.56) (±0.03) (±0.00) (±0.00)
	193.37 24.18 30.79 0.18 0.01 24.47	19.84) 27.47) 41.47 0.70 (
6	$\begin{array}{c} 2 \ (\pm 5.71) \\ 5 \ (\pm 0.43) \\ (\pm 10.24) \\ (\pm 0.02) \\ (\pm 0.00) \\ (\pm 0.00) \\ \end{array}$	(±0.04) (±0.05) (±0.04) (±0.00) (±0.00)
) 175.22) 24.45) 34.22 (0.18 (0.01 (19.55 (1) (27.31 (1) (27.31 (1) (27.31 (1) (27.38 (1) (
∞	161.23 (±4.89) 24.31 (±0.41) 33.53 (±8.11) 0.18 (±0.02) 0.01 (±0.00) 24.61 (±0.42)	(±0.01) (±0.09) (±0.09) (±0.09) (±0.00)
	161.25 24.31 33.53 0.18 0.01 24.61	19.36 27.19 40.91 0.73 0.01
7	142.63 (±4.40) 24.39 (±0.66) 32.33 (±4.70) 0.18 (±0.01) 0.01 (±0.00) 24.69 (±0.60)	$ \begin{array}{c} (\pm 0.24) \\ (\pm 0.11) \\ (\pm 0.43) \\ (\pm 0.14) \\ (\pm 0.00) \\ \pm 0.00 \\ \end{array} $
	142.63 24.39 32.33 0.18 (0.01 (19.30 27.34 40.77 0.71 (0.01 (
9	(±2.64) (±0.38) (±0.35) (±0.01) (±0.00) (±0.00)	(±0.23) (±0.36) (±0.56) (±0.15) (±0.15) ±0.00)
	124.67 24.40 30.90 0.17 0.01 24.52	19.11 27.36 41.16 0.74 (0.01 (
	±26.93) ±0.37) ±0.37) ±0.02) ±0.00)	$ \begin{array}{c} (\pm 0.32) \\ (\pm 0.21) \\ (\pm 0.49) \\ (\pm 0.03) \\ (\pm 0.00) \\ (\pm 5.77) \end{array} $
5	118.14 (±26.93) 24.46 (±0.37) 30.34 (±0.37) 0.18 (±0.02) 0.01 (±0.00) 24.47 (±0.44)	18.99 () 27.60 () 41.02 () 0.67 (= 0.01 (= 0.01) (= 0.01) (= 0.01)
	$ \begin{array}{c} (\pm 1.62) \\ (\pm 0.17) \\ (\pm 0.53) \\ (\pm 0.02) \\ (\pm 0.00) \\ (\pm 0.00) \\ (\pm 0.31) \end{array} $	$ \begin{array}{c} (\pm 0.13) \\ (\pm 0.34) \\ (\pm 1.01) \\ (\pm 0.02) \\ (\pm 0.00) \\ (\pm 0.00) \\ (\pm 0.00) \end{array} $
4	93.45 (3.24.23 (3.30.45 (0.018 (±0.01	18.84 (3.27.64 (3.41.86 (3.001 (3.001 (3.27.52 (3.001 (3.25.52 (3.25) (3.25.52 (3.25.52 (3.25.52 (3.25
3	±1.59) ±0.34) ±0.50) ±0.02) ±0.02)	$ \begin{array}{c} (\pm 0.16) \\ (\pm 0.57) \\ (\pm 0.55) \\ (\pm 0.02) \\ (\pm 0.00) \\ (\pm 1.32) \end{array} $
	75.44 (±1.59) 24.38 (±0.34) 30.36 (±0.50) 0.17 (±0.02) 0.01 (±0.00) 24.81 (±0.62)	18.86 (27.59 (40.96 (0.64 (3.98.28))
2		18.58 (±0.15) 27.65 (±0.23) 40.90 (±0.58) 0.63 (±0.03) 27.23 (±0.03)
) 60.54 (±1.06) 24.70 (±0.58) 30.07 (±0.21 0.19 (±0.02 0.01 (±0.00)) 24.81 (±0.06	18.58 (±0.15 27.65 (±0.23 40.90 (±0.58 0.63 (±0.03) 0.01 (±0.00)
1	h $T = 700$ $46.78 \pm 0.40) \pm 0.54 \pm 1.06$ $25.55 \pm 0.49) \pm 24.70 \pm 0.58$ $29.07 \pm 0.28) \pm 30.07 \pm 0.21$ $0.19 \pm 0.04) \pm 0.19 \pm 0.09$ $0.00 \pm 0.00) \pm 0.10 \pm 0.00$ $24.49 \pm 0.49) \pm 24.81 \pm 0.68$	$\begin{array}{c} h \ T = 1400 \\ 18.21 \ (\pm 0.18) \\ 28.34 \ (\pm 0.33) \\ 99.34 \ (\pm 1.05) \\ 0.63 \ (\pm 0.03) \\ 0.01 \ (\pm 0.00) \\ 0.01 $
_	gth T = 46.78 46.78 29.07 0.19 (0.00 (24.49)	$ \begin{array}{c c} \text{gth } T = \\ 18.21 \\ 18.34 \\ 39.34 \\ 0.63 \\ 0.01 \\ 0.7 27 \end{array} $
um. comp.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Vindow length $T=1400$ IT-FPCA 18.21 (± 0.18) 18.58 (± 0.15) Autoencoder 28.34 (± 0.33) 27.65 (± 0.23) AAE 39.34 (± 1.05) 40.90 (± 0.58) PPCA 0.63 (± 0.03) 0.63 (± 0.03) 0.01 (± 0.00) 0.01 (± 0.00) AAE 27 (± 0.00) 27 23 (± 0.10)
num	Windo TL-FP- Autoei FAE FPCA PCA VAE	Windo TI-FP Autoer FAE FPCA PCA VAE

Table 12. Mean running times of various models for ErrP data (standard deviation in brackets).

num. comp.	1	23	3	4	70	9	1-	∞	6	10
Classification TT-FPCA Autoencoder FAE FPCA PCA	1 – setting (i) – 7.75 (±0.13) 7.24 (±0.05) 10.02 (±0.16) 0.38 (±0.09) 0.05 (±0.00) 8.09 (±0.40)	- sample length: 1.33 (± 0.23) 7.38 (± 0.06) 10.73 (± 0.14) 0.31 (± 0.04) 0.05 (± 0.00) 8.00 (± 0.21)	0.5 s, weight length: 15.38 (±0.28) 19.66 7.67 (±0.10) 7.52 10.61 (±0.12) 10.58 0.34 (±0.02) 0.28 0.06 (±0.00) 0.06 8.09 (±0.22) 8.00	ength: 1s 19.66 (±0.23) 7.52 (±0.11) 10.58 (±0.12) 0.28 (±0.02) 0.06 (±0.00) 8.00 (±0.00)	24.66 (±1.46) 7.67 (±0.20) 10.57 (±0.14) 0.34 (±0.02) 0.06 (±0.00) 8.28 (±0.28)	34.53 (±1.38) 7.83 (±0.14) 10.54 (±0.11) 0.33 (±0.04) 0.06 (±0.00) 8.08 (±0.24)	37.20 (±0.93) 8.02 (±0.29) 10.55 (±0.14) 0.34 (±0.03) 0.06 (±0.00) 7.99 (±0.08)	39.89 (±2.00) 7.90 (±0.29) 10.56 (±0.24) 0.31 (±0.04) 0.06 (±0.00) 8.12 (±0.40)	45.67 (±2.51) 8.08 (±0.35) 10.52 (±0.15) 0.34 (±0.03) 0.06 (±0.00) 8.05 (±0.15)	55.51 (±2.04) 7.93 (±0.13) 11.01 (±0.12) 0.35 (±0.04) 0.08 (±0.00) 8.07 (±0.11)
Classification TI-FPCA Autoencoder FAE FPCA PCA	1 - setting (ii) - 1.33 (±0.00) 7.31 (±0.08) 9.93 (±0.04) 0.34 (±0.01) 0.05 (±0.00) 7.89 (±0.09)	- sample and w 1.43 (±0.01) 7.40 (±0.12) 10.66 (±0.15) 0.33 (±0.03) 0.05 (±0.00) 7.88 (±0.04)	and weight length: 0.01) 1.52 ± 0.01) 0.12) 7.67 ± 0.11) 0.012) 7.67 ± 0.04) 0.03 0.03 0.32 ± 0.03) 0.00 0.00 0.06 ± 0.00) 0.06 ± 0.00) 0.06 0.00) 0.06 0.00) 0.06 0.00)	.5s 1.62 (±0.01) 7.53 (±0.10) 10.41 (±0.06) 0.30 (±0.04) 0.06 (±0.00) 7.90 (±0.05)	1.72 (± 0.02) 7.54 (± 0.08) 10.52 (± 0.07) 0.34 (± 0.02) 0.06 (± 0.00) 8.18 (± 0.09)	1.87 (±0.11) 7.56 (±0.10) 10.50 (±0.06) 0.33 (±0.03) 0.06 (±0.00) 8.00 (±0.03)	2.05 (±0.14) 7.84 (±0.12) 10.51 (±0.06) 0.37 (±0.09) 0.06 (±0.00) 7.96 (±0.06)	2.10 (±0.15) 7.73 (±0.04) 10.55 (±0.20) 0.32 (±0.03) 0.07 (±0.00) 7.96 (±0.08)	2.11 (±0.03) 7.81 (±0.08) 10.51 (±0.09) 0.35 (±0.03) 0.07 (±0.00) 7.98 (±0.12)	2.54 (±0.15) 7.82 (±0.07) 11.05 (±0.28) 0.35 (±0.03) 0.08 (±0.00) 8.01 (±0.11)
Classification TI-FPCA Autoencoder FAE FPCA PCA	$\begin{array}{c} 1 - \mathrm{setting} \; (iii) \\ 5.94 \; (\pm 0.06) \\ 9.90 \; (\pm 0.07) \\ 14.52 \; (\pm 0.21) \\ 0.69 \; (\pm 0.02) \\ 0.09 \; (\pm 0.00) \\ 11.02 \; (\pm 0.20) \end{array}$	$\begin{array}{c} - \text{ sample length: } 1.8, \\ 8.57 \ (\pm 0.09) \ 11.29 \\ 10.21 \ (\pm 0.20) \ 15.65 \\ 15.86 \ (\pm 0.24) \ 15.65 \\ 0.64 \ (\pm 0.02) \ 0.09 \\ 0.09 \ (\pm 0.00) \ 0.09 \\ 11.06 \ (\pm 0.13) \ 11.03 \end{array}$		weight length: 0.5s (±0.19) 13.96 (±0.25) (±0.20) 10.69 (±0.06) (±0.20) 15.53 (±0.21) (±0.02) 0.65 (±0.03) (±0.00) 0.09 (±0.00) (±0.01) 10.95 (±0.13)	$16.43 (\pm 0.43) 10.69 (\pm 0.08) 15.52 (\pm 0.22) 0.64 (\pm 0.01) 0.09 (\pm 0.00) 11.19 (\pm 0.15)$	18.86 (±0.04) 10.74 (±0.11) 15.53 (±0.26) 0.65 (±0.02) 0.10 (±0.00) 11.14 (±0.20)	21.39 (±0.15) 10.89 (±0.21) 15.68 (±0.25) 0.65 (±0.01) 0.10 (±0.00) 11.01 (±0.12)	$\begin{array}{c} 23.92 \; (\pm 0.10) \\ 10.90 \; (\pm 0.06) \\ 15.66 \; (\pm 0.40) \\ 0.65 \; (\pm 0.01) \\ 0.10 \; (\pm 0.00) \\ 11.02 \; (\pm 0.08) \end{array}$	26.52 (±0.14) 10.97 (±0.08) 16.09 (±0.23) 0.67 (±0.03) 0.10 (±0.00) 11.13 (±0.09)	29.11 (±0.22) 10.88 (±0.10) 15.87 (±0.18) 0.68 (±0.02) 0.12 (±0.00) 11.15 (±0.10)
Outlier detection TI-FPCA 1.7 FACE 2.7 FACE 0.1 PCA 0.0 VAE 2.7	- setting 2 (±1.18) 6 (±1.21) 3 (±1.59) 8 (±0.05) 2 (±0.01) 6 (±1.31)	(i) – sample length: 0.5 s, weight length: 1 s 2.79 (±2.01) 3.88 (±2.72) 5.77 (±5.51) 2.03 (±1.23) 2.05 (±1.23) 2.06 (±1.22) 3.00 (±1.60) 2.00 (±1.71) 2.77 (±1.69) 0.16 (±0.05) 0.16 (±0.06) 0.16 (±0.06) 0.16 (±0.06) 0.16 (±0.06) 2.15 (±1.38) 2.12 (±1.30) 2.12 (±1.26)	gth: 0.5 s, weig 3.88 (±2.72) 2.05 (±1.23) 2.80 (±1.71) 0.16 (±0.06) 0.02 (±0.01) 2.12 (±1.30)	th length: 1s 5.77 (±5.51) 2.06 (±1.22) 2.77 (±1.69) 0.16 (±0.06) 0.02 (±0.01) 2.12 (±1.26)	6.47 (±5.04) 2.05 (±1.25) 2.79 (±1.75) 0.24 (±0.05) 0.02 (±0.01) 2.32 (±1.18)	8.49 (±5.58) 2.07 (±1.29) 2.77 (±1.68) 0.19 (±0.05) 0.02 (±0.01) 2.12 (±1.26)	$9.02 (\pm 6.70)$ $2.08 (\pm 1.27)$ $2.84 (\pm 1.82)$ $0.22 (\pm 0.10)$ $0.02 (\pm 0.01)$ $2.11 (\pm 1.27)$	11.18 (±9.93) 2.18 (±1.48) 2.78 (±1.73) 0.17 (±0.06) 0.02 (±0.01) 2.12 (±1.28)	12.21 (±10.13) 2.08 (±1.33) 2.82 (±1.78) 0.17 (±0.07) 0.03 (±0.01) 2.18 (±1.41)	14.07 (±10.96) 2.07 (±1.31) 3.21 (±1.98) 0.17 (±0.07) 0.03 (±0.02) 2.14 (±1.29)
Outlier detection – TL-FPCA 0.57 Autoencoder 2.04 FAE 0.180 PFCA 0.02 VAE 2.16	setting (±0.18) (±1.17) (±1.71) (±0.04) (±0.01) (±1.32)	(ii) sample and 0.63 (±0.18) 2.02 (±1.18) 3.06 (±1.75) 0.17 (±0.04) 0.02 (±0.01) 2.16 (±1.41)	weight length: 0.70 (±0.20) 2.07 (±1.28) 2.84 (±1.83) 0.27 (±0.15) 0.03 (±0.02) 2.14 (±1.35)	0.5s 0.78 (±0.23) 2.05 (±1.22) 2.84 (±1.86) 0.17 (±0.04) 0.02 (±0.01) 2.12 (±1.33)	0.84 (±0.22) 2.07 (±1.31) 2.84 (±1.86) 0.18 (±0.04) 0.02 (±0.01) 2.31 (±1.27)	0.91 (±0.23) 2.09 (±1.38) 2.86 (±1.87) 0.19 (±0.02) 0.03 (±0.03) 2.14 (±1.34)	0.98 (±0.24) 2.07 (±1.32) 2.86 (±1.91) 0.18 (±0.03) 0.02 (±0.01) 2.17 (±1.40)	1.04 (±0.25) 2.06 (±1.32) 2.85 (±1.89) 0.19 (±0.01) 0.02 (±0.01) 2.14 (±1.32)	1.12 (±0.25) 2.07 (±1.31) 2.87 (±1.89) 0.19 (±0.01) 0.02 (±0.01) 2.19 (±1.42)	1.51 (±0.13) 2.08 (±1.35) 3.12 (±1.77) 0.20 (±0.02) 0.03 (±0.01) 2.16 (±1.36)
Outlier detection – TI-FPCA 1.50 Autoencoder 2.60 FAE 3.99 FPCA 0.34 PCA 0.03	setting (±1.15) (±1.92) (±2.45) (±0.10) (±0.01) (±1.98)	(iii) sample length: 1 2.22 (±1.49) 2.99 2.66 (±2.08) 2.68 4.35 (±2.60) 3.3 0.33 (±0.05) 0.33 0.03 (±0.02) 0.03 2.71 (±2.06) 2.70	yth: 1 s, weight 2.99 (±1.95) 2.68 (±2.08) 4.12 (±2.73) 0.33 (±0.07) 0.03 (±0.02) 2.70 (±2.05)	length: 0.5 s 3.74 (±2.38) 2.67 (±2.09) 4.10 (±2.74) 0.33 (±0.09) 0.03 (±0.02) 2.71 (±2.03)	4.82 (±2.69) 2.67 (±2.11) 4.12 (±2.69) 0.34 (±0.06) 0.03 (±0.02) 2.91 (±1.93)	5.26 (±3.22) 2.69 (±2.18) 4.15 (±2.78) 0.36 (±0.09) 0.03 (±0.02) 2.74 (±2.02)	6.03 (±3.79) 2.64 (±2.04) 4.13 (±2.78) 0.33 (±0.09) 0.03 (±0.02) 2.73 (±2.01)	6.71 (±4.10) 2.63 (±2.01) 4.13 (±2.76) 0.34 (±0.07) 0.03 (±0.02) 2.72 (±2.05)	7.58 (±4.67) 2.66 (±2.03) 4.15 (±2.72) 0.35 (±0.07) 0.04 (±0.02) 2.77 (±2.10)	8.31 (±5.17) 2.64 (±2.00) 4.15 (±2.73) 0.35 (±0.08) 0.04 (±0.02) 2.85 (±2.29)

Table 13. Mean running times of various models for MNIST data and varying number of components in the classification setting (standard deviation in brackets).

num. comp.	1	2	3	4	5	9	2	∞	6	10
(i) samples of size 16 × 16 TL-FPCA 31.73 (±0.7 Autoencoder 60.65 (±0.8 FAE 67.20 (±0.3 FPCA 0.23 (±0.2) PCA 0.23 (±0.2) VAE 62.42 (±0.4)	size 16 × 16 31.73 (±0.79) 60.65 (±0.85) 67.20 (±0.38) 0.58 (±0.01) 0.23 (±0.22) 62.42 (±0.45)	49.35 (±1.77) 61.72 (±0.28) 67.26 (±0.76) 0.59 (±0.01) 0.16 (±0.00) 62.39 (±0.33)	60.63 (±2.53) 61.71 (±0.43) 67.51 (±0.54) 0.59 (±0.01) 0.17 (±0.00) 62.11 (±0.30)	74.49 (±2.87) 62.82 (±0.68) 68.89 (±1.17) 0.60 (±0.01) 0.18 (±0.01) 62.25 (±0.37)	89.84 (±3.31) 62.30 (±0.70) 67.86 (±0.53) 0.61 (±0.01) 0.19 (±0.01) 62.20 (±0.33)	132.92 (±8.41) 61.95 (±0.50) 67.90 (±0.65) 0.62 (±0.01) 0.19 (±0.01) 63.68 (±0.58)	144.46 (±10.59) 61.68 (±0.30) 67.33 (±0.78) 0.62 (±0.01) 0.19 (±0.01) 62.92 (±0.65)	166.55 (±15.01) 61.79 (±0.38) 67.35 (±0.54) 0.63 (±0.01) 0.20 (±0.01) 62.53 (±0.96)	244.62 (±9.69) 62.02 (±0.67) 67.41 (±0.88) 0.69 (±0.14) 0.21 (±0.01) 62.65 (±0.51)	237.56 (±15.26) 62.89 (±1.07) 68.26 (±0.94) 0.70 (±0.02) 0.25 (±0.01) 62.98 (±0.39)
(ii) samples of TI-FPCA Autoencoder FAE FPCA PCA VAE	(ii) samples of size 28 × 28 IT-FPCA 11.81 (±0.17) Autoencoder 83.75 (±0.81) EAE 2.15 (±0.01) PCA 0.36 (±0.00) VAE 85.56 (±0.68)	12.51 (±0.15) 84.02 (±0.66) 83.39 (±2.34) 2.14 (±0.02) 0.38 (±0.01) 85.21 (±0.85)	13.50 (±0.29) 84.85 (±0.75) 86.41 (±2.08) 2.19 (±0.03) 0.39 (±0.00) 85.08 (±0.86)	$\begin{array}{c} 13.24 \; (\pm 0.13) \\ 86.71 \; (\pm 0.81) \\ 86.14 \; (\pm 2.31) \\ 2.22 \; (\pm 0.10) \\ 0.40 \; (\pm 0.00) \\ 84.96 \; (\pm 0.82) \end{array}$	13.93 (±0.23) 90.61 (±14.22) 84.52 (±1.39) 2.25 (±0.12) 0.41 (±0.00) 85.27 (±0.79)	14.36 (±0.25) 85.10 (±0.84) 85.28 (±2.23) 2.19 (±0.01) 0.42 (±0.00) 87.18 (±0.54)	15.07 (±0.43) 85.18 (±0.75) 84.53 (±1.52) 2.23 (±0.04) 0.42 (±0.01) 86.58 (±0.68)	15.69 (±0.17) 84.69 (±0.68) 83.77 (±1.71) 2.23 (±0.02) 0.43 (±0.09) 85.91 (±0.69)	16.16 (±0.27) 85.11 (±1.18) 83.78 (±1.61) 2.39 (±0.37) 0.44 (±0.00) 85.96 (±0.71)	16.67 (± 0.19) 85.84 (± 1.00) 83.36 (± 1.75) 2.40 (± 0.05) 0.53 (± 0.01) 86.13 (± 0.62)
(iii) samples of TI-FPCA Autoencoder FAE FPCA FPCA PCA VAE	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 228.42 \; (\pm 9.93) \\ 204.23 \; (\pm 26.80) \\ 134.83 \; (\pm 22.13) \\ 25.18 \; (\pm 2.99) \\ 1.62 \; (\pm 0.24) \\ 205.34 \; (\pm 26.56) \end{array}$	$\begin{array}{c} 278.45 \; (\pm 8.34) \\ 204.25 \; (\pm 26.33) \\ 141.14 \; (\pm 15.72) \\ 25.51 \; (\pm 3.12) \\ 1.65 \; (\pm 0.20) \\ 204.43 \; (\pm 28.36) \end{array}$	329.19 (±16.02) 209.59 (±27.44) 137.23 (±19.04) 33.06 (±25.44) 1.70 (±0.25) 204.46 (±28.01)	379.76 (±22.39) 206.88 (±26.71) 138.07 (±20.55) 24.77 (±2.83) 1.80 (±0.26) 206.33 (±27.56)	428.18 (±18.60) 203.42 (±26.45) 136.73 (±21.57) 25.71 (±3.26) 1.70 (±0.22) 212.79 (±28.40)	482.44 (±23.82) 203.21 (±23.95) 136.71 (±22.30) 25.06 (±2.63) 1.72 (±0.23) 207.03 (±25.23)	550.70 (±55.78) 202.49 (±26.51) 137.09 (±20.96) 25.64 (±3.07) 1.72 (±0.23) 207.45 (±27.90)	593.93 (±43.96) 203.69 (±25.40) 137.43 (±19.07) 25.34 (±3.00) 1.77 (±0.24) 205.29 (±26.91)	755.55 (±286.26) 207.78 (±26.03) 137.55 (±19.29) 26.00 (±3.10) 2.22 (±0.34) 205.39 (±27.26)
(iv) randomly TL-FPCA Autoencoder FAE FPCA PCA VAE	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	72.18 (±4.71) 133.53 (±17.76) 124.90 (±7.88) 14.15 (±28.47) 0.58 (±0.07) 128.95 (±8.44)	108.55 (±10.05) 134.39 (±13.41) 123.97 (±10.47) 15.24 (±31.59) 0.63 (±0.07) 135.32 (±16.61)	129.46 (±18.42) 134.44 (±12.56) 126.12 (±9.45) 4.09 (±0.27) 0.61 (±0.06) 134.17 (±14.31)	$197.18 \; (\pm 26.39) \\ 127.09 \; (\pm 6.55) \\ 122.12 \; (\pm 6.64) \\ 4.01 \; (\pm 0.60) \\ 0.60 \; (\pm 0.08) \\ 129.17 \; (\pm 5.92)$	$\begin{array}{c} 301.70 \; (\pm 43.66) \\ 132.91 \; (\pm 16.52) \\ 123.29 \; (\pm 4.66) \\ 4.37 \; (\pm 0.54) \\ 0.61 \; (\pm 0.08) \\ 129.09 \; (\pm 10.81) \end{array}$	336.16 (±49.98) 132.22 (±21.79) 121.74 (±2.86) 4.02 (±0.67) 0.64 (±0.08) 125.98 (±14.08)	365.56 (±70.56) 129.72 (±15.73) 121.91 (±6.00) 5.70 (±3.40) 1.43 (±2.07) 124.46 (±10.39)	$\begin{array}{c} 618.93 \; (\pm 61.27) \\ 134.75 \; (\pm 16.37) \\ 121.71 \; (\pm 6.92) \\ 4.28 \; (\pm 0.33) \\ 0.70 \; (\pm 0.13) \\ 128.24 \; (\pm 8.85) \end{array}$	$\begin{array}{c} 755.12 \; (\pm 71.04) \\ 138.24 \; (\pm 17.68) \\ 123.27 \; (\pm 44.55) \\ 4.71 \; (\pm 0.34) \\ 1.89 \; (\pm 2.50) \\ 128.89 \; (\pm 6.70) \\ \end{array}$

Table 14. Mean running times of various models for MNIST data and varying number of components in the outlier detection setting (standard deviation in brackets).

num. comp.	1	2	33	4	то	9	2	∞	6	10
(i) samples of TL-FPCA Autoencoder FAE FPCA PCA VAE	(i) samples of size 16×16 TI-FPCA 32.81 (±0.35) Autoencoder 62.57 (±1.12) FAE 68.77 (±0.49) PCA 0.03 (±0.00) PCA 64.58 (±0.00) VAE 64.58 (±0.00)	45.94 (±0.61) 62.91 (±0.92) 69.09 (±0.75) 0.16 (±0.01) 0.03 (±0.00) 64.26 (±0.74)	66.83 (±0.80) 62.89 (±0.75) 69.06 (±0.44) 0.19 (±0.09) 0.03 (±0.00) 64.16 (±0.52)	73.87 (±1.09) 64.24 (±0.95) 69.14 (±0.50) 0.21 (±0.15) 0.03 (±0.00) 64.17 (±0.49)	89.17 (±1.16) 63.10 (±0.46) 70.37 (±0.53) 0.03 (±0.01) 64.11 (±0.48)	106.76 (±6.84) 62.62 (±0.25) 69.86 (±0.83) 0.21 (±0.14) 0.03 (±0.01) 64.10 (±0.49)	147.96 (±11.45) 62.62 (±0.27) 69.63 (±0.73) 0.17 (±0.01) 0.03 (±0.00) 64.60 (±0.80)	155.02 (±14.01) 62.75 (±0.38) 69.39 (±1.60) 0.17 (±0.01) 0.03 (±0.00) 64.43 (±0.55)	173.05 (±21.16) 62.84 (±0.49) 69.53 (±0.78) 0.16 (±0.01) 0.03 (±0.00) 64.20 (±0.45)	229.10 (±22.92) 63.75 (±0.56) 70.23 (±0.43) 0.22 (±0.12) 0.04 (±0.00) 64.13 (±0.49)
(ii) samples or TI-FPCA Autoencoder FAE FPCA PCA PCA	(ii) samples of size 28 × 28 TT-FPCA 16.45 (±3.27) Autoencoder 89.18 (±8.14) FAE 85.66 (±9.72) PCA 0.06 (±0.28) PCA 92.31 (±10.24)	17.17 (±3.56) 91.86 (±10.40) 85.46 (±10.26) 0.62 (±0.28) 0.05 (±0.00) 90.96 (±9.32)	17.65 (±3.73) 89.00 (±9.17) 85.62 (±9.99) 0.64 (±0.30) 0.05 (±0.00) 90.75 (±9.36)	18.71 (±3.96) 93.42 (±11.73) 85.94 (±9.03) 0.59 (±0.24) 0.06 (±0.01) 90.79 (±9.53)	19.13 (±3.51) 90.30 (±9.48) 89.46 (±10.64) 0.76 (±0.48) 0.06 (±0.01) 90.70 (±9.41)	19.62 (±3.54) 89.61 (±9.12) 87.38 (±10.31) 0.70 (±0.45) 0.06 (±0.00) 90.86 (±9.65)	19.65 (±2.83) 90.03 (±9.83) 88.51 (±9.75) 0.82 (±0.78) 0.06 (±0.00) 91.19 (±9.13)	19.85 (±2.73) 90.04 (±9.92) 92.30 (±16.58) 0.72 (±0.36) 0.07 (±0.01) 90.75 (±9.00)	20.56 (±2.66) 90.16 (±9.88) 93.49 (±20.43) 0.60 (±0.20) 0.07 (±0.01) 91.10 (±9.48)	20.97 (±2.68) 94.19 (±12.38) 88.51 (±10.39) 0.58 (±0.22) 0.08 (±0.01) 91.63 (±9.95)
(iii) samples TI-FPCA Autoencoder FAE FPCA PCA VAE	$ \begin{array}{ll} \text{(iii) samples of size } 56 \times 56 \\ \text{TI-FPCA} & 173.62 \; (\pm 1.13) \\ \text{Autoencoder } 166.55 \; (\pm 2.69) \\ \text{FAE} & 11.134 \; (\pm 1.11) \\ \text{FPCA} & 2.53 \; (\pm 0.12) \\ \text{PCA} & 0.14 \; (\pm 0.01) \\ \text{VAE} & 170.94 \; (\pm 1.20) \\ \end{array} $	300.60 (±1.86) 169.78 (±0.50) 113.15 (±0.91) 2.71 (±0.68) 0.13 (±0.00) 171.72 (±1.38)	$273.67 (\pm 0.91)$ $169.50 (\pm 0.74)$ $113.77 (\pm 1.45)$ $2.71 (\pm 0.53)$ $0.14 (\pm 0.00)$ $170.58 (\pm 1.22)$	327.75 (±3.94) 172.04 (±0.88) 118.60 (±0.86) 2.52 (±0.03) 0.14 (±0.00) 170.18 (±1.38)	$433.89 (\pm 10.67)$ $170.58 (\pm 0.85)$ $116.58 (\pm 0.13)$ $2.54 (\pm 0.04)$ $0.14 (\pm 0.00)$ $170.66 (\pm 1.21)$	$471.29 (\pm 8.56)$ $169.80 (\pm 0.67)$ $115.66 (\pm 1.39)$ $2.54 (\pm 0.07)$ $0.14 (\pm 0.01)$ $171.13 (\pm 1.37)$	$463.20 (\pm 1.17) \\ 169.72 (\pm 0.83) \\ 116.78 (\pm 0.95) \\ 2.51 (\pm 0.03) \\ 0.14 (\pm 0.00) \\ 171.91 (\pm 0.95)$	505.72 (±2.56) 169.33 (±0.59) 116.07 (±0.88) 2.88 (±1.08) 0.15 (±0.01) 171.94 (±1.05)	555.49 (±1.98) 169.94 (±0.93) 115.71 (±1.77) 2.54 (±0.04) 0.15 (±0.00) 171.69 (±1.06)	$\begin{array}{c} 596.01 \; (\pm 4.38) \\ 172.72 \; (\pm 1.14) \\ 116.07 \; (\pm 1.51) \\ 2.57 \; (\pm 0.03) \\ 0.18 \; (\pm 0.00) \\ 172.37 \; (\pm 1.57) \end{array}$
(iv) randomly TI-FPCA Autoencoder FAE FPCA PCA VAE		rotated samples $38.94 (\pm 11.96) 54.54 (\pm 15.61)$ $85.04 (\pm 0.31) 85.67 (\pm 0.18)$ $82.90 (\pm 1.48) 82.97 (\pm 0.89)$ $0.40 (\pm 0.02) 0.40 (\pm 0.01)$ $0.05 (\pm 0.00)$ $0.05 (\pm 0.00)$ $87.03 (\pm 0.52) 87.29 (\pm 0.65)$	80.83 (±22.48) 87.93 (±0.47) 82.80 (±1.94) 0.40 (±0.01) 0.05 (±0.00) 86.67 (±0.69)	$102.24 \ (\pm 21.49) \\ 87.16 \ (\pm 1.04) \\ 82.99 \ (\pm 1.08) \\ 0.41 \ (\pm 0.02) \\ 0.05 \ (\pm 0.00) \\ 86.92 \ (\pm 0.88)$	163.24 (±46.91) 85.78 (±0.35) 83.60 (±1.32) 0.42 (±0.01) 0.06 (±0.00) 87.06 (±0.65)	216.14 (±74.89) 85.67 (±0.44) 83.89 (±1.08) 0.06 (±0.01) 87.73 (±0.82)	$\begin{array}{c} 252.39 \; (\pm 72.71) \\ 85.94 \; (\pm 0.39) \\ 84.23 \; (\pm 1.07) \\ 0.42 \; (\pm 0.01) \\ 0.06 \; (\pm 0.00) \\ 87.70 \; (\pm 0.94) \end{array}$	324.30 (±112.47) 85.53 (±0.48) 84.37 (±2.36) 0.43 (±0.01) 0.06 (±0.00) 86.82 (±0.55)	422.06 (±101.15) 87.63 (±0.56) 83.65 (±1.54) 0.41 (±0.01) 0.06 (±0.00) 87.59 (±0.89)	535.58 (±138.15) 86.95 (±0.43) 83.60 (±1.20) 0.41 (±0.02) 0.07 (±0.00) 87.36 (±0.58)

3 Projection of MNIST data onto TI-FPCs

Fig. 1. Projections of 1024 samples from the MNIST data set onto the first two TI-FPCs in the outlier detection setting, i. e., fitted to images of the digit "8". Orange: Images of the digit "8". Blue: Images of other digits.