Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety: notation

This document is written to reorganize the notations in Tomasz Przezdziecki's master thesis: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%2oThesis_Tomasz%2oPrzezdziecki.pdf

We changed some notation for the convenience of writing.

Task.

- 1. dimension vector
- 2. Weyl gp
- 3. alg group & Lie algebra
- 4. typical variety
- 5. (equivariant) stratifications
- 6 tangent space, Euler class
- 7. basis of Hecke alg

We may use two examples for the convenience of presentation. Readers can easily distinguish them by the dim vectors.

1 dimension vector

$$|d| = 5$$

$$d = (3,2)$$

$$\underline{d} = \begin{pmatrix} \frac{3}{2}, \frac{2}{3} \\ \frac{2}{3}, \frac{1}{3} \\ \frac{$$

2. Weyl group

$$0 \longrightarrow W_{d} \longrightarrow W_{|d|} \longrightarrow W_{|d|} W_{d} \longrightarrow 0 \qquad w = XX$$

$$u = XX$$

$$u = XX$$

$$w = XX$$

Another example:
$$d = (1,2)$$
 $a \longrightarrow b$ $\langle v_1 \rangle \longrightarrow \langle v_2, v_3 \rangle$

3. alg group & Lie algebra

Later we may twist the group actions.

1 # , 60" = Y = / Y as, 00"

E.g. $\underline{\underline{Y}}_{\varpi,\varpi'}:=\underline{Y}_{\varpi,\varpi\varpi'}$ $Y_{\varpi,\varpi''}=\underline{Y}_{\varpi,\varpi'}=\underline{Y}_{\varpi'}=\underline{Y}_{\varpi,\varpi'}=\underline{Y}_{\varpi,\varpi'}=\underline{Y}_{\varpi,\varpi'}=\underline{Y}_{\varpi,\varpi'}=\underline{Y}_{\varpi'}=\underline{Y}_{\varpi'}=\underline{Y}_{$

4 typical variety

Id corres to

$$F_{\infty} := \infty(F_{Id}) = F_{\{V_{\infty(1)}, V_{\infty(2)}, \dots, V_{\infty(1d)}\}}$$
$$= F_{\{V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}, V_{\infty}\}}$$

The action on Flag is not the same as in http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomas sz%20Przezdziecki.pdf

Fidi + II Fd

Two = Fd with different base pt. Base pt makes difference!

$$F_{Id1} \times F_{Id1}$$
 $F_{Id.Id}$ $F_{u.u'}$ $F_{u.u'}$

$$F_{\varpi,\varpi'}:=(F_{\varpi},F_{\varpi'})$$

 $\mu_{\underline{d}}^{-1}(M) \cong Flag_{\underline{d}}(M) \subseteq \mathcal{F}_{\underline{d}}$ is the Springer fiber.

$$Z_{\underline{a},\underline{a}'} \stackrel{C}{\underset{M_{\underline{a},\underline{a}'}}{\underbrace{C \ Repa(Q) \times F_{\underline{a}} \times F_{\underline{a}'}}}} \xrightarrow{\pi_{\underline{a},\underline{a}'}} \xrightarrow{\pi_{\underline{a},\underline{a}'}}$$
 $Repa(Q) \qquad F_{\underline{a}} \times F_{\underline{a}'}$

Zd
$$\subseteq$$
 Repd(Q) \times $F_d \times F_d$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$
 $\pi_{a,d}$

$$Z_{\alpha',\alpha'} = \widehat{Rep_{\alpha'}}(Q) \times_{Rep_{\alpha'}}(Q) \widehat{Rep_{\alpha'}}(Q)$$
 $Z_{\alpha'} = \bigcup_{\alpha',\alpha'} Z_{\alpha',\alpha'}$
 $= \widehat{Rep_{\alpha'}}(Q) \times_{Rep_{\alpha'}}(Q) \widehat{Rep_{\alpha'}}(Q)$

5. (equivariant) stratifications. In the following tables,

 $uw' = \widetilde{w}'\widetilde{u}$.

 $F_{\varpi} \in \widetilde{Rep}_{d}(\mathcal{Q})$ means (p_{o}, F_{ϖ}) ; $(F_{\varpi}, F_{\varpi'}) \in \mathbb{Z}_{d}$ means $(p_{o}, F_{\varpi}, F_{\varpi'})$. $\nabla G \times G$ acts on $\mathcal{F} \times \mathcal{F}$ in a twisted way e.g. $(q_{1}, q_{2}) F_{\varpi}, \varpi' = F_{q_{1}\varpi}, q_{1} \varpi q_{2} \varpi^{-1} \varpi'$

variety base point	patification type tabilizer	B-orbit	B×B-orbit	B×G -ovbit	G×B-orbit	· Remark
\mathcal{B}	$\mathcal{B} \times \mathcal{B}$	Ω_{g}	$\Omega_{g,g'}$	$\operatorname{pr}_{i}^{-1}(\Omega_{g})$	$\Omega_{\mathfrak{g}'}$	
Fg	(Fg, Fgg [,])	BAgBg-1	(BngBg") x(BngBg"-1)		aβq-1×(βΛgβg-1)	
Fidi	Fid1 × Fid1	V _w	V),,,,,,	pr;"(V5)	<i>¹</i>) _∞ ,	
F,	(Fo, Foo)	BIN 1B€	(Bull UBm) × (Bull UBm)	(IBMINIB∞) × IBW'	IB∞ × (1B1011 N 1B10)	
Fu	$F_u \times F_{u'}$	Δů	DL u,u'	pr., μ. (Ω ω)	$\Omega^{\omega,\omega'}$	
Fwu	(Fww.Fwwid)	BunBw	(Bd 1 Bm) × (Bd 1 Bm)	$(B^{q} \cup B^{m}) \times B^{m}$	Bu × (Bd \Bu)	
Fa	$F_d \times F_d$	Ω_{ω}^{v}	$\Omega_{\alpha,\alpha'}^{\alpha,\alpha'}$	pr: , ~ (\(\Omega_{\omega}^{\omega} \)	$\mathcal{O}_{\alpha}^{\omega'} = \Omega_{\alpha, \alpha \alpha'}^{\omega'}$	
F	(F., F.,)	BunBw	$(B^{\alpha} \cup B^{\alpha}) \times (B^{\alpha} \cup B^{\alpha})$	(BYUB™)× B®,	Bw × (Bd∩Bor)	compatability
Fuu	(Fun Fairar)					' '
	The	following n	pay not be sir	igle orbit, but o	derived from the ab	pove definition.
Fa	$F_d \times F_d$	O	O)00,00'	pr. (<i>O</i> σ)	O)	preimage of
F	(F, F, F, 0, 0')	Ωω	Du, w.	L. prin(Nw)	L. O. 6,	Fd×Fd -> Fld1×Fld1
Repta)	$\mathbf{S}^{\mathbf{q},\mathbf{q}_{i}}$	Sugar Sugar	Ωw,w'	$\operatorname{pr}_{i,u}(\widetilde{\Omega}_{\omega}^{u})$	$\widetilde{\Omega}_{\omega'}^{\kappa,\alpha'}$	preimage of
Fuu	(Fww.Fww)				~	Zdd -> FdxFd'
Repula)					<u> </u>	preimage of
F	(F _w , F _w ,)				11 12 12 12 12 12 12 12 12 12 12 12 12 1	Zd -> Fd×Fd
Repula)	Z_d	O _{to}	\widetilde{O} l ω , ω	pv. ((((())))		preimage of
[- _m	(For, Fore)	ñ.	Slu, w'	L. Pr. u. (\Du)	M Oly	Za -> FaxFa

[w (w)	JLW	5 L w. W'	", P", u' (32W)	- U/60'	Ed Tra	ra
,	į	Zav-	loc sub v.b.?	$Z_{\omega'} = \widehat{O}_{\omega'} \subseteq \widehat{O}_{\omega'}$ $Z_{\omega'} = \widehat{O}_{\omega'} \subseteq \widehat{O}_{\omega'}$	2 Zd, d' = Z	Zor NZd, d
real case:	\int_{π}^{π}	r-> l in	table: \(\frac{\pi_1}{\pi}	π_{2} quotient	(g,g') T	(g,ggʻ)
We want gp Therefore.we	action to would do	be compatible	with π , and	d the quotient n		
V			π ,		(g;g ⁻¹ g')	(g,g')

The following tables may help you to understand the notations.

Bin Bin Ford	16(v_t	\vartheta_s	\rangle_{ts}	Vst	3 V _{sts}
V _{Id}	1) _{Id.Id}	1) _{IJ.t}	VII.s	U _{Id.ts}	U _{Iol,st}	VI _{Id,sts}
, V _t	V _{t.t}	19 _{t,Id}	کار _{ط با} ده	V _t ,s	V _{t,sts}	7 t, st
U _s	1) _{s,s}	Vs,st	Us, Id	Us,sts	V _{s,t}	3 Vs.ts
U _{ts}	U _{ts,st}	3 V) _{ts,s}	U _{ts,sts}	Uts.Id	V _{ts,ts}	3 Vits,t
V _{st}	4 1) _{st,ts}	V) _{st,sts}	3 J _{5t,t}	U _{st.st}	Vst. Id	7) _{st,s}
3 Vsts	Usts.sts	V sts, ts	VI _{sts,st}	Usts,t	Usus,s	Vsts.Id

Shape Bu Fee Bu Fee Bu Fee		Fid		Fs		\mathcal{F}_{st}	
			_ O+	Os	$-\mathcal{O}_{ts}$	Ost	Osts
9	\mathcal{O}_{Id}	$\mathcal{O}_{\mathrm{Id}}$ $\Omega^{\mathrm{Id},\mathrm{Id}}_{\mathrm{Id},\mathrm{Id}}$	Uj ^{Iq't} —	Id,s [Id,Id]	Ully't	Id, st \(\Omega_{\text{Id}.\text{Id}}\)	$U^{\mathrm{Id.t}}_{\mathrm{Id}}$
Fid	\mathcal{O}_{t}	Ω, 4.4 19′19	Id.Id 12 t.Id	Ω ^{1ds}	Dit.Id	Ω ^{Id,st}	D't.Id
T _s	Q	S, Id 11d.Id	$\Omega^{\mathrm{s.Id}}_{\mathrm{Id.t}}$	Urigity s's	$\Omega^{\mathrm{IMt}}_{\mathrm{c}}$	S.st Sl _{Id.Id}	$\Omega^{\rm s,st}_{\rm Id,t}$
Ps 1	O _{ts}	Ω 4.4 ∞ 5.1d	S, Id Lt.Id	Ω _{ε,τ}	DI t.Id	Ω _{t,t}	s.st Mt.Id
4	\mathcal{O}_{ts}	St, Id	$\Omega^{\rm st.Id}_{ m Id.t}$	$\Omega_{Id.Id}^{\text{st.s}}$	$U^{\mathrm{I}^{\eta,\mathrm{t}}}$	St.st P _{Id.Id}	$\Omega^{\rm lot}$
\mathcal{F}_{st}	\mathcal{O}_{sts}	W st'iq	St.Id 12t.Id	Ω _{t,t}	Det.Id	Ū ^{4,4}	st.st At.Id

The following tables may help you to understand the notations. w = ts, w' = s

dim Bin Bin (For Ford)	1 Faw 0	id V _t	\vartheta_{\sigma}	1 9 _{ts}	V _{st}	3 V _{sts}	pr."(10ts)
0	Id OI	JId, t	VI _{Id.s}	U _{Id.ts}	U _{Id,st}	VI _{Id,sts}	V)s
1	7 _t 1/ _t	t Vt.Id	J _{t,ts}	V _{t.s}	U _{t,sts}	**************************************	
' 1	s Us	s 3/s,st	VI _{s, Id}	Us,sts	$\mathcal{V}_{s,t}$	V _{s,ts}	
1	ts 4	3 1) ts,s	VI _{ts,sts}	Uts.Id	Vts,ts	VI _{ts,t}	
1) 4 1) _{s+}	t,ts 50/st,sts	3) st, t	U _{st.st}	Vst. Id	<i>V_{st,s}</i>	
3	rsts Usts	usts Vists, ts	VI _{sts,st}	Usts,t	V _{sys,s}	V _{sts.Id}	

Shape Bd. Food		Fid		\mathcal{F}_{s}		\mathcal{F}_{st}	
	B _{al} ·F _{ar} bo		_ O _t	Os	$-\mathcal{O}_{ts}$	Ost	Osts
<i>a</i>	\mathcal{O}_{Id}	Id, Id Id, Id	∪] ^{I9'f} —	Id,s	Ul''' I''''s	Id, st \(\Omega_{\text{Id},\text{Id}}\)	Ulast —
Fid	\mathcal{O}_{t}	Ω ^{Id,Id}	Id.Id Dt.Id	Ωl4.t	Did.s	Ω ^{Id,st}	DI t.Id
T _s	·Q	S, Id	$\Omega_{\mathrm{Id,t}}^{\mathrm{s.Id}}$	Uz'rq	$U^{\mathrm{l'l't}}_{\mathrm{l'l't}}$	s.st SL _{Id.Id}	Ul ^{s.st}
rs .	\mathcal{O}_{ts}	M t.t	Dit.Id	$\mathcal{U}_{s,z}^{t,t}$	A t.Id	Ω _{t,t}	s,st Mt.Id
	\mathcal{O}_{ts}	$\Omega^{\mathrm{st,Id}}_{\mathrm{Id,Id}}$	$U_{\mathrm{st.Iq}}^{\mathrm{Iqt}}$	St.s \$\int_{\text{Id.Id}}\$	$U^{\mathrm{I}^{\gamma,\mathrm{t}}}_{c_{f},\mathrm{z}}$	O ^{st.st}	Uldt DIdt
\mathcal{F}_{st}	\mathcal{O}_{sts}	Ω) t∙t	St.Id 12t.Id	Ω t,t	Ω ^{st,s} Ω _{t,Id}	Ω t,t	St.st Mt.Id

 $Pr_{1}^{-1}(\mathcal{O}_{ts}) \qquad Pr_{1,Icl}^{-1}(\Omega_{t}^{s})$ $\mathcal{O}_{t} \qquad \Omega_{t,Id}^{s,Id} = \mathcal{O}_{ts,s}$

b. tangent space, Euler class.