Question Number	Answer		Mark
3 (a)	$\log Z = \log k + n \log f$	(1)	
	Is in the form $y = c + mx$ with a constant gradient $(= n)$	(1)	
	Or		
	$\log Z = n \log f + \log k$	(1)	
	Is in the form $y = mx + c$ with a constant gradient $(= n)$	(1)	2
	MP2 dependent on MP1		
3 (b)(i)	Values of log Z correct to 2 d.p. [Accept ln values, 3 d.p.]	(1)	
	Values of log f correct to 2 d.p. [Accept ln values, 3 d.p.]	(1)	
	Axes labelled: y as $\log Z$ and x as $\log (f/10^{15} \text{Hz})$ [Accept In for	(4)	
	ln values]	(1)	
	Appropriate scales chosen	(1)	
	log values plotted accurately	(1)	
	Best fit line drawn	(1)	6
3 (b)(ii)	Gradient calculation using correct data and large triangle shown	(1)	
	Value of n in range 0.45 to 0.49,	(1)	
	to 2 or 3 s.f, no unit	(1)	3
	Example of calculation		
	n = (1.92 - 0.5) / (2.250.75) = 1.42 / 3 = 0.47		
3 (b)(iii)	Correct value of y intercept shown	(1)	
	Value of k in range 6.9 to 7.3 [e.c.f. for value of n in (b)(ii)]	(1)	
	Value given to 2 or 3 s.f.,	(1)	3
	Example of calculation		
	$\log k = 0.86$		
	$k = 10^{0.86} = 7.24$		
3 (c)	Either		
	States mathematical relationship using calculated values of n (and k)	(1)	
	Conclusion based on comparison with $Z \propto f^{0.5}$	(1)	
	Or		
	A graph of $\log Z$ against $\log f$ would be a straight line with a gradient of 0.5	(1)	
	Conclusion based on comparison with calculated <i>n</i>	(1)	2
	Total for question 3		16