Final Presentation Master Thesis

Frederike Duembgen

July 26, 2016

Outline

Introduction

Motivation

Project Goals

Methodology

Methods

Results

Mapping And Localization Datasets

Mapping Results

Localization Results

Conclusion

Dense SLAM with B-Splines

Motivation

Sparse **SLAM** (PTAM, [1])

Dense **SLAM** (DTAM, [2])

Dense SLAM with Splines [3]

Visual Terrain Estimation For Legged Robots

Project Goals

Create framework for surface reconstruction and localization using moving stereo camera

- Createing spline surface reprensentation from static stereo camera.
- Localizing new stereo camera position using obtained map.

Visual Terrain Estimation For Legged Robots Methodology

- Simulation environment: ROS with rviz for pointcloud and opency for image handling.
- Optimization: own implementation of optimization algorithm using Eigen 's sparse matrix solvers.
- Hardware: rovio sensor for stereo camera data. MacBook Pro with Intel Core 2.7MHz. 4 cores.

B-Splines for Surface Representation

Methods

Splines: piecewise polynomial function of degree < d.

B(asis)-Splines: Specific choice of finite-support splines for basis.

$$h(x_j) = \sum_{i=0}^{M} a_i h_i(x_j)$$

= $\sum_{i=k}^{k+s} a_i h_i(x_j)$, for $j = 1 \dots N$

Stereo Camera Setup

Methods

Camera poses described by ${}_{M}\boldsymbol{r}_{MC_k}$ and \boldsymbol{C}_{C_kM} for k=1,2 or

$$oldsymbol{\xi}_{\mathcal{C}_k} := \left[_{M} oldsymbol{r}_{M \mathcal{C}_k}, \Phi_{\mathcal{C}_k M}
ight]^T \ oldsymbol{\xi}_{\mathcal{S}} := \left[_{M} oldsymbol{r}_{M \mathcal{S}}, \Phi_{\mathcal{S} M}
ight]^T$$

with $\Phi_{\textit{C}_{\textit{k}}\textit{M}},\;\Phi_{\textit{SM}}\in\mathbb{R}^{3}$ [4]

Relative position of $\{\xi_{C_1}, \xi_{C_2}, \xi_S\}$ stays fixed.

Photometric errors for mapping

Methods

Photometric error of grid point x_i, y_i :

$$r_j = I_1(\mathbf{u}_{j,1}) - I_2(\mathbf{u}_{j,2})$$
,

with I_1 , I_2 interpolated intensities at the locations $\boldsymbol{u}_{i,k}$ in camera k=1 and k=2.

$$egin{aligned} oldsymbol{u}_{j,k} &= oldsymbol{K}_k D_k (oldsymbol{T}_k (_M oldsymbol{r}_{MX_j}))) \ oldsymbol{T}_k (_M oldsymbol{r}_{MX_j}) &= \pi (oldsymbol{C}_{C_k M} (_M oldsymbol{r}_{MX_j} -_M oldsymbol{r}_{MC_k})) \end{aligned}$$

3D point given by spline map:

$$_{M}\mathbf{r}_{MX_{j}}=\left[x_{j},y_{j},h(x_{j},y_{j})\right]^{T}$$

Photometric errors for mapping

Methods

X, ... X,

$$oldsymbol{J}_r(oldsymbol{a}) = rac{\partial oldsymbol{r}(oldsymbol{a})}{\partial oldsymbol{a}} \in \mathbb{R}^{ extit{N} imes M}$$

$$egin{aligned} m{J_r(a)} &= (m{J_{pixel,1}}m{J_{camera,1}}(_Mm{r_{MX_j}}) \ &- m{J_{pixel,2}}m{J_{camera,2}}(_Mm{r_{MX_j}}))m{J_{splines}} \ . \end{aligned}$$

$$oldsymbol{J}_{pixel,k} = rac{\partial I_k(oldsymbol{u}_k)}{\partial ilde{oldsymbol{u}}_k}, \quad oldsymbol{J}_{camera,k}({}_Moldsymbol{r}_{MX_j}) = rac{\partial ilde{oldsymbol{u}}_k}{\partial {}_Moldsymbol{r}_{MX_j}}$$

Optimization problem for mapping

Methods

$$\hat{\boldsymbol{a}} = \arg\min_{\boldsymbol{a} \in \mathbb{R}^M} f(\boldsymbol{a}) = \arg\min_{\boldsymbol{a} \in \mathbb{R}^M} \frac{1}{2} \left(\sum_{j=0}^N w_j r_j(\boldsymbol{a})^2 + \beta \boldsymbol{a}^T \boldsymbol{B} \boldsymbol{a} + \gamma \boldsymbol{a}^T \boldsymbol{G} \boldsymbol{a} \right),$$

with

- bending and gradient energy regularization terms and
- weight representing the average visibility of point j.

Solved using Gauss-Newton iterations:

$$egin{aligned} oldsymbol{a}_{k+1} &= oldsymbol{a}_k + lpha_k oldsymbol{\mathsf{p}}_k^{GN} \ oldsymbol{J}_f(oldsymbol{a})^\mathsf{T} oldsymbol{J}_f(oldsymbol{a}) oldsymbol{\mathsf{p}}_k^{GN} &= - oldsymbol{J}_f(oldsymbol{a})^\mathsf{T} oldsymbol{\mathsf{r}}_k(oldsymbol{a}) \end{aligned}$$

Photometric errors for localization Methods

Photometric error of grid point x_j, y_j :

$$r_{j,1} = l_1(\mathbf{u}_{j,1}) - \hat{l}(x_j, y_j)$$

 $r_{j,2} = l_2(\mathbf{u}_{j,1}) - \hat{l}(x_j, y_j)$,

with I_1 , I_2 interpolated intensities at pixels $\boldsymbol{u}_{j,k}$ in camera k=1 and k=2 and $\hat{I}(x_j,y_j)$ the estimated intensity from previous step.

Photometric errors for localization Methods

$$oldsymbol{J}_r(oldsymbol{\xi}) = rac{\partial oldsymbol{r}(oldsymbol{\xi})}{\partial oldsymbol{\xi}} \in \mathbb{R}^{N imes 6}$$

$$oldsymbol{J}_r(oldsymbol{\xi}) = oldsymbol{J}_{ extit{pixel}} oldsymbol{J}_{ extit{camera}}(oldsymbol{\xi})$$

with

$$oldsymbol{J}_{ extit{pixel}} = rac{\partial \emph{I}(oldsymbol{u})}{\partial ilde{oldsymbol{u}}}, \;\; oldsymbol{J}_{ extit{camera}}(oldsymbol{\xi}) = rac{\partial ilde{oldsymbol{u}}}{\partial oldsymbol{\xi}}$$

Optimization problem for localization Methods

$$\hat{\boldsymbol{\xi}} = \operatorname*{arg\ min}_{\hat{\boldsymbol{\xi}} \in \mathbb{R}^6} \frac{1}{2} \sum_{j=0}^N r_j(\boldsymbol{\xi})^2$$

Solved using Gauss-Newton iterations:

$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_k \boxplus \alpha_k \mathbf{p}_k^{GN}$$
$$\boldsymbol{J}_r(\boldsymbol{\xi})^T \boldsymbol{J}_r(\boldsymbol{\xi}) \mathbf{p}_k^{GN} = - \boldsymbol{J}_r(\boldsymbol{\xi})^T \mathbf{r}_k(\boldsymbol{\xi})$$

Overview

Mapping And Localization Datasets

Dataset	Plane test	Middlebury [5]	Inhouse
Ground truth	analytical	structured light	pattern matching
Images	rectified	rectified	non rectified
Calibration	+++	++	+
Mapping	yes	yes	yes
Localization	yes	no	no
Map dimensions [m]	0.9 x 1.2	1.5 × 2.0	
Spline resolution	20 × 20	75 × 100	
Residuals resolution	90 × 120		

Plane Test

Middlebury Dataset

groundtruth

$$\beta = 10$$

Middlebury Dataset

Inhouse Dataset

Mapping Results

"close" $\beta = 10$ $\gamma = 1e5$

Autonomous Systems Lab

Inhouse Dataset

Plane Test

Localization Results

Achievements

- Created versatile stereo surface reconstruction package for
 - variable spline degrees and resolution,
 - entirely customizable optimization parameters and
 - rectified and unrectified images.
- Implemented photometric localization algorithm based on one stereo measurement.
- Tested functionalities on real and simulated datasets.

Future Work

- Implement sequence of mapping and localization steps to improve map accuracy by solving recursively over multiple measurements.
- Integrate measurements to extend map and create wider camera baseline.
- Test framework in realistic sceneries.

Questions?

References I

► Georg Klein and David Murray.

Parallel tracking and mapping for small AR workspaces.

In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pages 225–234. IEEE, 2007.

► Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison.

DTAM: Dense tracking and mapping in real-time.

In 2011 international conference on computer vision, pages 2320–2327. IEEE, 2011.

Dominik Schindler.

Visual Terrain Estimation for Legged Robots.

Master Thesis, 2015.

References II

 Michael Bloesch, Hannes Sommer, Tristan Laidlow, Michael Burri, Gabriel Nuetzi, and R.O. Jun.

A Primer on the Differential Calculus of 3D Orientations. 2016.

 Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić, Xi Wang, and Porter Westling.

High-resolution stereo datasets with subpixel-accurate ground truth.

In German Conference on Pattern Recognition, pages 31-42. Springer International Publishing, 2014.

