

Sistemas Digitais

Sistemas Sequenciais

Análise de Sistemas Sequenciais Síncronos

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

Adaptado de R. Katz, "Contemporary Logic Design" e de J. Wakerly, "Digital Design Principles & practices"

Sistemas Digitais - AFS

uninervaluate de conicio unereta potente. Pro str

Sumário

- · Análise de Sistemas Sequenciais Síncronos
- · Máquinas de Mealy e de Moore
- · Limitações temporais

Sistemas Digitais - AFS

Metodologia de Análise

- O problema da análise: Dado o esquema lógico dum Sistema Sequencial Síncrono como caracterizar o seu funcionamento?
- Instrumentos:
 - Equações de excitação das estruturas elementares de memória (Flip/Flops)
 - Equações características
 - Tabelas de transição/saídas do sistema
 - Diagramas de estado
 - Diagramas temporais

Sistemas Digitais - AFS

3

Metodologia de Análise

- Etapa 1
 - Para cada F/F determinar a função de excitação
 - Usando a equação característica dos F/F, deduzir as **equações de transição** de estados (trivial com FF do tipo D).
 - Determinar as funções de saída
- · Etapa 2
 - Construir tabela de transição de estados
 - Para cada combinação estado/entrada, indicar o estado seguinte.
 - · Construir tabela de saídas
 - Para cada combinação estado/entrada, indicar os valores de saída (pode ser combinada com a tabela de transição de estados)
- · Etapa 3. Desenhar diagrama de estados

Sistemas Digitais - AFS

Etapa 1

• Equações de excitação (bloco combinatório F)

$$D0 = Q0 \cdot EN' + Q0' \cdot EN$$

$$D1 = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

• Equações características (dos flip-flops usados)

$$Q0* = D0$$

$$Q1* = D1$$

· Equações de transição

$$Q0* = Q0 \cdot EN' + Q0' \cdot EN$$

$$Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$$

· Equações de saída

Sistemas Digitais - AFS

Diagramas Temporais

- No primeiro caso a saída como depende directamente da entrada pode alterar-se de forma assíncrona
- No segundo caso como a dependência é apenas relativa ao estado a saída varia de forma síncrona com o clock

uni sersidude de conimo

Máquinas de Mealy e de Moore

- Esta pequena (grande) diferença no comportamento das saídas permite ilustrar na prática dois modelos de Máquinas de Estado Finitos (MEF):
- Modelo (ou máquina) de Mealy
 - Saídas podem podem ter comportamento assíncrono com o clock porque têm dependência combinatória com as entradas

$$y_i = f \left[x_{n-1}, \dots x_0, Q_{m-1}, \dots Q_0 \right]$$

- · Modelo (ou máquina) de Moore
 - Saídas têm um comportamento síncrono com relógio porque dependem exclusivamente das variáveis de estado

$$y_i = f[Q_{m-1}, \dots Q_0]$$

Sistemas Digitais - AFS

Exercício

- Dado o seguinte diagrama de estados duma máquina de Mealy
 - Elabore a respectiva tabela de estados
 - Elabore um diagrama de estados para uma máquina de Moore equivalente

Sistemas Digitais - AFS

Limitações temporais

- Dadas especificações temporais dos elementos de memória e dos tempos de propagação dos elementos combinatórios coloca-se o problema de determinar qual a frequência máxima de funcionamento dum sistema sequencial sícnrono.
- Parâmetros temporais:
 - F/Fs:
 - T_{setup} , T_{hold} , $\max(T_{\text{pHL}}, T_{\text{pLH}})$
 - Lógica combinatória associada à definição do estado seguinte (feedback)
 - · Atrasos de propagação de portas elementares
 - · Atrasos de propagação ao nível do bloco

Sistemas Digitais - AFS

