SQL, which stands for **Structured Query Language**, is a programming language that is used to communicate with and manage databases. SQL is a standard language for manipulating data held in relational database management systems (RDBMS), or for stream processing in a relational data stream management system (RDSMS). It was first developed in the 1970s by IBM.

SQL consists of several components, each serving their own unique purpose in database communication:

- Queries: This is the component that allows you to retrieve data from a database. The SELECT statement is most commonly used for this purpose.
- **Data Definition Language (DDL):** It lets you create, alter, or delete databases and their related objects like tables, views, etc. Commands include CREATE, ALTER, DROP, and TRUNCATE.
- Data Manipulation Language (DML): It lets you manage data within database objects. These commands include SELECT, INSERT, UPDATE, and DELETE.
- **Data Control Language (DCL):** It includes commands like GRANT and REVOKE, which primarily deal with rights, permissions and other control-level management tasks for the database system.

SQL databases come in a number of forms, such as Oracle Database, Microsoft SQL Server, and MySQL. Despite their many differences, all SQL databases utilise the same language commands - SQL.

What Are Relational Databases?

Relational databases are a type of database management system (DBMS) that stores and provides access to data points that are related to one another. Based on the relational model introduced by **E.F. Codd in 1970**, they use a structure that allows data to be organized into tables with rows and columns. Key features include:

- Use of SQL (Structured Query Language) for querying and managing data
- Support for ACID transactions (Atomicity, Consistency, Isolation, Durability)
- Enforcement of data integrity through constraints (e.g., primary keys, foreign keys)

DAY - I

SQL BY M. ROHIT MCA, M. TECH

- Ability to establish relationships between tables, enabling complex queries and data retrieval
- Scalability and support for multi-user environments

Examples of popular relational database systems include MySQL, PostgreSQL, Oracle, and Microsoft SQL Server. They are widely used in various applications, from small-scale projects to large enterprise systems, due to their reliability, consistency, and powerful querying capabilities.

RDBMS Benefits and Limitations

Here are some of the benefits of using an RDBMS:

- Structured Data: RDBMS allows data storage in a structured way, using rows and columns in tables. This makes it easy to manipulate the data using SQL (Structured Query Language), ensuring efficient and flexible usage.
- ACID Properties: ACID stands for Atomicity, Consistency, Isolation, and Durability. These properties ensure reliable and safe data manipulation in a RDBMS, making it suitable for missioncritical applications.
- Normalization: RDBMS supports data normalization, a process that organizes data in a way that reduces data redundancy and improves data integrity.
- Scalability: RDBMSs generally provide good scalability options, allowing for the addition of more storage or computational resources as the data and workload grow.
- Data Integrity: RDBMS provides mechanisms like constraints, primary keys, and foreign keys to enforce data integrity and consistency, ensuring that the data is accurate and reliable.
- Security: RDBMSs offer various security features such as user authentication, access control, and data encryption to protect sensitive data.

Here are some of the limitations of using an RDBMS:

- **Complexity**: Setting up and managing an RDBMS can be complex, especially for large applications. It requires technical knowledge and skills to manage, tune, and optimize the database.
- **Cost**: RDBMSs can be expensive, both in terms of licensing fees and the computational and storage resources they require.
- **Fixed Schema**: RDBMS follows a rigid schema for data organization, which means any changes to the schema can be time-consuming and complicated.
- Handling of Unstructured Data: RDBMSs are not suitable for handling unstructured data like multimedia files, social media posts, and sensor data, as their relational structure is optimized for structured data.
- Horizontal Scalability: RDBMSs are not as easily horizontally scalable as NoSQL databases. Scaling horizontally, which involves adding more machines to the system, can be challenging in terms of cost and complexity.

1. What is PostgreSQL?

- PostgreSQL (often called *Postgres*) is a powerful open-source relational database management system (RDBMS).
- It stores data in **tables** (rows and columns) and uses **SQL** (**Structured Query Language**) to query and manage data.
- It is known as the "most advanced open-source database" because it supports not just SQL, but also advanced features like JSON, full-text search, geospatial data, and more.

Think of PostgreSQL as a **library** where books (data) are stored in an organized way, and SQL is the **librarian** that helps you find, update, or add new books.

Why Should Learn PostgreSQL?

- Foundational Skill → SQL is the backbone of Data Science, Web Development, and Software Engineering.
- Industry Usage → Many companies use PostgreSQL in production systems.

- Free & Open Source → You can practice without paying (unlike Oracle/SQL Server).
- Job Relevance → Skills in PostgreSQL directly apply to roles like Data Analyst, Backend Developer, ML Engineer, Cloud Engineer.

Key Features of PostgreSQL

- 1. Open Source & Free No license fees.
- 2. Cross-Platform Works on Windows, Linux, macOS.
- 3. **ACID Compliance** Ensures data accuracy (Atomicity, Consistency, Isolation, Durability).
- 4. **Support for Advanced Data Types** JSON, XML, arrays, GIS (Geographic data).
- 5. **Scalability** Can handle small student projects or enterprise-level big data.
- 6. **Extensibility** You can create your own functions, operators, and even data types.

Real-Time Industry Applications

- Banking & Finance Used for secure transactions.
 - Example: ICICI Bank might use PostgreSQL to store customer account details and handle millions of transactions with accuracy.
- E-commerce Platforms Handling products, customers, and orders.
 - Example: Flipkart or Amazon might use PostgreSQL for **order management**, inventory tracking, and customer profiles.
- ♦ **Healthcare Systems** Storing patient records and hospital management.
 - Example: Apollo Hospitals could use PostgreSQL for **patient history**, **doctor schedules**, **and billing**.
- Startups & Tech Companies Popular for apps/websites.
 - Example: **Instagram originally used Postgres** to store user data like posts, comments, likes.
- ♦ Data Science & Machine Learning Used for data warehousing and integrating with tools like Python, R, Power BI.

 Example: In your Job Placement Prediction project, you could store student academic records in PostgreSQL and run ML models on it.

PostgreSQL in the Cloud (Industry Perspective)

- Companies now use PostgreSQL on cloud platforms like:
 - Amazon RDS (AWS)
 - Google Cloud SQL
 - Azure Database for PostgreSQL
- Advantage → No need to manage servers, just focus on data.

☆ PostgreSQL Installation Process in Windows

Step 1: Download the Installer

- Go to the official PostgreSQL website → https://www.postgresql.org/download/windows
- Click Download the installer (by EDB).
- Choose the version (latest stable version, e.g., PostgreSQL 16).
- · Download .exe file.

Step 2: Run the Installer

- Double-click the .exe file.
- The PostgreSQL setup wizard opens.

Click **Next** \rightarrow Accept default options unless you want custom settings.

Step 3: Choose Installation Directory

- By default: C:\Program Files\PostgreSQL\<version>
- You can change, but recommended to keep default.

Step 4: Select Components

The installer usually includes:

- **PostgreSQL Server** Main database engine.
- **pgAdmin 4** Graphical tool to manage PostgreSQL.
- Command Line Tools To run SQL commands in terminal.
- StackBuilder For add-ons (optional).

Keep all selected and click Next.

Step 5: Set Database Superuser Password

- Default user is postgres.
- Enter a strong password (remember it, you'll need it every time).
- Example: admin123 (not recommended in real-world, but okay for practice).

Step 6: Choose Port Number

• Default: 5432

Leave it as default unless already in use.

Step 7: Locale Selection

- Usually set to system default.
- Leave as it is and click Next.

Step 8: Install

- Click Next → Install.
- · Wait until setup completes.

Step 9: Verify Installation

- Go to Start Menu \rightarrow PostgreSQL \rightarrow pgAdmin 4.
- Open pgAdmin.
- Enter password (set in Step 5).
- If you see **Server** → **Databases**, installation is successful.

"To install PostgreSQL in Windows, download installer \rightarrow run setup \rightarrow select components \rightarrow set superuser password \rightarrow choose port \rightarrow finish \rightarrow verify using pgAdmin."