

Statistik II

Einheit 2: Einfaktorielle Varianzanalyse (2)

24.04.2025 | Prof. Dr. Stephan Goerigk

Determinanten der ANOVA

- Determinanten = Größen, welche die Signifikanz der ANOVA beeinflussen:
 - \circ Signifikanzniveau (α)
 - \circ Teststärke (1β)
 - Effektgröße (Unterschied zwischen Mittelwerten)
 - \circ Stichprobengröße (N)
- ightarrow Wir testen gegen die Nullhypothese (H_0) und verwerfen diese bei einem signifikanten Ergebnis

Determinanten der ANOVA

Exkurs: Beziehung zwischen F-Wert und t-Wert

- Für den t-Test gelernte Konzepte können vollständig auf die Varianzanalyse übertragen werden
- t-Test = Vergleich 2er Mittelwerte \rightarrow entspricht ANOVA mit 2-stufigem Faktor (UV)

Beispiel aus Einheit 1 (2 Stufen):

Vergleich Placebo vs. Medikament 1

Determinanten der ANOVA

Exkurs: Beziehung zwischen F-Wert und t-Wert

```
t.test(Symptome ~ Gruppe,
       data = df[df$Gruppe == "Placebo" | df$Gruppe == "Medikament.1",],
       var.equal = T)
##
      Two Sample t-test
##
## data: Symptome by Gruppe
## t = 6.0718, df = 98, p-value = 2.403e-08
## alternative hypothesis: true difference in means between group Medikament.1 and group Placebo is not equal to 0
## 95 percent confidence interval:
## 2.994253 5.901785
## sample estimates:
## mean in group Medikament.1
                                  mean in group Placebo
                   11.585633
                                                7.137614
```


Determinanten der ANOVA

Exkurs: Beziehung zwischen F-Wert und t-Wert

Determinanten der ANOVA

Exkurs: Beziehung zwischen F-Wert und t-Wert

$$F_{(1;98)} = rac{\hat{\sigma}^2_{zwischen}}{\hat{\sigma}^2_{innerhalb}} = rac{494.62}{13.42} = 36.87$$
 $t_{(98)} = 6.0718$ $6.0718^2 = 36.87$

- Das Quadrat des t-Werts entspricht dem F-Wert einer einfaktoriellen ANOVA mit zwei Stufen
- \rightarrow Die Varianzanalyse ist eine Verallgemeinerung des t-Tests

Determinanten der ANOVA

Effektstärke

ullet Das Maß für den Populationseffekt in der Varianzanalyse heißt Ω^2

$$\Omega^2 = rac{\sigma_{systematisch}^2}{\sigma_{Gesamt}^2}$$

- Ω^2 Gibt den Anteil systematischer Varianz an der Gesamtvarianz an
- Schätzer für den Populationseffekt Ω^2 ist ω^2 (klein Omega-Quadrat)
- ullet Die Schätzung erfolgt über f^2

$$f^2 = rac{(F_{df_{Z\ddot{a}hler};df_{Nenner}}-1)\cdot df_{Z\ddot{a}hler}}{N}$$
 $\omega^2 = rac{f^2}{1+f^2}$

Determinanten der ANOVA

Effektstärke

Determinanten der ANOVA

Effektstärke

$$\omega^2 = rac{f^2}{1+f^2} = rac{0.26}{1+0.26} = 0.2063$$

- Der Anteil der Effektvarianz des Faktors Gruppe beträgt 20.63%
- Anders ausgedrückt: der Faktor Gruppe klärt circa 21% der Gesamtvarianz auf
- Dies entspricht einem großen Effekt.

Cut-offs:

Effektstärke	Omega-Quadrat
Kleiner Effekt	0.01
Mittlerer Effekt	0.06
Großer Effekt	0.14

Determinanten der ANOVA

Effektstärke

- ullet Ein weiteres, häufig verwendetes Effektmaß ist η^2 (Eta-Quadrat)
- Es gibt den Anteil der aufgeklärten Varianz der Messwerte auf Ebene der Stichprobe an
- Es wird aus dem Verhältnis von Quadratsummen, anstelle von Varianzen berechnet

$$\eta^2 = rac{QS_{zwischen}}{QS_{zwischen} + QS_{innerhalb}}$$

ullet Berechnung kann ebenfalls über f^2 erfolgen (wir schreiben für die Stichprobe f^2_s)

$$f_s^2 = rac{(F_{df_{Z\ddot{ ext{a}hler}};df_{Nenner}}) \cdot df_{Z\ddot{ ext{a}hler}}}{df_{Nenner}}$$

$$\eta^2=rac{f_s^2}{1+f_s^2}$$

Determinanten der ANOVA

Effektstärke

$$f_s^2 = rac{20.558 \cdot 2}{147} = 0.2797$$

$$\eta^2 = rac{0.2797}{1+0.2797} = 0.2185$$

 Wert fällt im Vergleich zum wahren Effekt auf Populationsebene zu groß aus (Überschätzung)

Cut-offs:

- ω^2 liefert genauere Schätzung (Daten innerhalb der Stichprobe sind überangepasst)
- Auf der Stichprobenebene klärt der Faktor Gruppe ca. 22% der Varianz der Messwerte auf
- Cut-offs für η^2 entsprechen denen für Ω^2

Effektstärke	Omega-Quadrat
Kleiner Effekt	0.01
Mittlerer Effekt	0.06
Großer Effekt	0.14

Determinanten der ANOVA

Residualvarianz

- Je kleiner die Residualvarianz, desto größer die Teststärke (Wahrscheinlichkeit, dass Test signifikant wird)
- ullet Schätzung der Residualvarianz durch die Varianz innerhalb steht im Nenner des F-Bruchs ullet bei kleineren Werten wird F-Wert größer
- Die Größe der Residualvarianz wird häufig auch "Rauschen" genannt

Analogie aus der Akustik:

- Bei lauten Nebengeräuschen sind leise Töne schwerer zu hören
- Das Signal wird vom Rauschen verdeckt
- → ANOVA: Rauschen = Residualvarianz; Signal = gesuchter Effekt (z.B. Gruppenunterschied)

Determinanten der ANOVA

Größe des Effekts

- Umso größer der gesuchte Populationseffekt, desto größer die Teststärke
- Je mehr sich die Populationsmittelwerte der Gruppen unterscheiden (systematischer Einfluss auf die AV), desto wahrscheinlicher ist ein signifikantes Ergebnis
- Dies entspricht einem deutlichen Signal, welches auch noch bei starkem Rauschen hörbar ist

Determinanten der ANOVA

Stichprobenumfang

• Umso größer der Stichprobenumfang, desto größer die Teststärke

Gründe:

- 1. Varianz zwischen
 - o Varianz zwischen hängt proportional von der Anzahl der Personen in einer Bedingung ab
 - \circ Die größer N, desto größer die Varianz zwischen (steht im Zähler des F-Bruchs)
 - \circ größere Varianz zwischen o größerer F-Wert o signifikanteres Ergebnis
- 2. Freiheitsgrade Varianz innerhalb
 - ∘ Erhöhen sich mit steigenden Stichprobenumfang → Verkleinerung des kritischen F-Werts (man kommt leichter über die Signifikanzschwelle)

Determinanten der ANOVA

lpha-Fehler

- Je größer (weniger streng) das a priori festgelegte Signifikanzniveau, desto größer die Teststärke
- Durch die Erhöhung des α -Fehlers steigt die Wahrscheinlichkeit die Alternativhypothese fälschlich zu wählen (Fehler 1. Art).

ABER:

• Gleichzeitig erhöht sich die Wahrscheinlichkeit, einen Effekt zu finden, falls er wirklich existiert.

Determinanten der ANOVA

Stichprobenumfangsplanung

- Einer der wichtigsten Schritte vor der Durchführung einer Untersuchung
- Nur so kann gewährleistet werden, dass die Interpretation eines Untersuchungsergebnisses korrekt ablaufen kann

Probleme bei Auslassen der Stichprobenumfangsplanung:

- Stichprobenumfang zu klein. Teststärke ist so klein, dass ein nicht signifikantes Ergebnis nicht interpretierbar ist (underpowered)
- Stichprobenumfang zu groß. Auch kleine Effekte werden signifikant, die für eine vernünftige inhaltliche Interpretation zu klein sind (overpowered)

Determinanten der ANOVA

Stichprobenumfangsplanung (in R)

```
pwr::pwr.anova.test(k=3, f= 0.2, sig.level = 0.05, power = 0.9)

##

## Balanced one-way analysis of variance power calculation

##

## k = 3

## n = 106.455

## f = 0.2

## sig.level = 0.05

power = 0.9

##

## NOTE: n is number in each group
```

• Bei Annahme eines Signifikanzniveaus von $\alpha=0.05$ wären für eine ANOVA mit 3 Gruppen und einer großen Effektstärke (0.20) wären für eine Teststärke $(1-\beta)$ von 90% lediglich N=106 Personen zum Nachweisen eines signifikanten Effekts notwendig gewesen.

Determinanten der ANOVA

Stichprobenumfangsplanung (in GPower)

Post-Hoc-Analysen

- H_0 der ANOVA: Alle Mittelwerte sind gleich. (Soll verworfen werden)
- ullet Signifikantes Ergebnis führt zur Ablehnung der H_0 und zur vorübergehende Annahme der H_1
 - ABER: Alternativhypothese ist vollkommen unspezifisch
 - $\circ H_1$ macht keine Aussage darüber, welche der Gruppen sich voneinander unterscheiden
 - $\circ H_1$ umfasst alle Möglichkeiten, welche nicht der H_0 entsprechen
- Signifikante ANOVA: Es ist lediglich gesichtert, dass Gruppe mit kleinstem Mittelwert sich signifikant von Gruppe mit größtem Mittelwert unterscheidet.
- ullet ABER: Global formulierte H_1 erlaubt viele Kombinationen (bei 3 Gruppen bereits 18 Möglichkeiten)
- ightarrow In den meisten Untersuchungen ist jedoch die **genaue Struktur** der H_1 von Interesse
- ightarrow **Post-Hoc Verfahren** analysieren die genaue Struktur der H_1 (welche Gruppen sich genau unterscheiden)

Post-Hoc-Analysen

- Die meisten Post-Hoc Verfahren ermöglichen einen paarweisen Vergleich der Gruppenmittelwerte.
- Post-Hoc Tests sind mehr oder weniger streng.
- Es gibt zahlreiche Verfahren, die sich vor allem durch unterschiedliche Risiken für den Fehler 1. und 2. Art auszeichnen (Auswahl):
 - Bonferroni
 - ∘ Tukey HSD
 - Holm
 - Sidak
 - Games-Howell
 - Benjamini & Hochberg (aka False Discovery Rate Correction, FDR)
 - Benjamini & Yekutieli

Post-Hoc-Analysen

Tukey HSD

- Tukey HSD Test ermöglicht paarweisen Mittelwertsvergleich ohne α -Fehlerkumulierung und Verringerung der Teststärke
- Wie groß muss die Differenz zwischen zwei Gruppenmittelwerten sein, damit diese auf einem kumulierten α -Niveau signifikant ist, das nicht die zuvor festgelegte Grenze überschreitet (i.d.R. 0.05)?
- Die Teststärke des Tukey HSD Tests ist mindestens so hoch wie die des getesteten Haupteffekts der ANOVA.
- HSD = "Honest significant difference"

ightarrow Ist die tatsächliche Differenz zwischen den Gruppen größer als der kritische Wert des Tukey HSD Tests besteht ein signifikanter Unterschied

Post-Hoc-Analysen

Tukey HSD

- ullet Die HSD ergibt sich über den Wert q
- *q* hat beim Vergleich mehrerer Mittelwerte die Funktion des t-Werts (ist auch ähnlich definiert)

Für jeden paarweisen Vergleich gilt:

$$q_{r;df_{innerhalb}} = rac{ar{x}_2 - ar{x}_1}{\sqrt{rac{\hat{\sigma}_{innerhalb}^2}{n}}}$$

• r = Zahl der Mittelwerte

Post-Hoc-Analysen

Tukey HSD

Bestimmung der kleinsten noch signifikanten Differenz (Krit. Wert)

- q-Wert bezieht sich auf multiple Mittelwertsvergleiche \rightarrow hat eigene Verteilung (studentized range)
- studentized range: ermöglicht Bestimmung kritischen q-Werts in Abhängigkeit von der Anzahl der betrachteten Mittelwerte (t-Test kann dies nicht)
- Dadurch wird α -Fehlerkumulierung verhindert

$$HSD = q_{r;df_{innerhalb}} \cdot \sqrt{rac{\hat{\sigma}_{innerhalb}^2}{n}}$$

Post-Hoc-Analysen

Tukey HSD

Bestimmung der kleinsten noch signifikanten Differenz (Krit. Wert)

- krtische q-Werte stehen in eigener Tabelle
- Die Werte in der Tabelle sind abhängig von:
 - Anzahl der zu vergleichenden Gruppen (also der paarweisen Vergleiche)
 - o festgelegtem Signifikanzniveau
 - \circ den Fehlerfreiheitsgraden $(df_{innerhalb})$

Post-Hoc-Analysen (1. Wert für lpha = 0.05, 2. Wert für 0.01)

dfinnerhalb	k=Gruppen								
df for Error Term	2	3	4	5	6	7	3	9	10
5	3.64 5.70	4.60 6.98	5.22 7.80	5.67 8.42	6.03 8.91	6.33 9.32	6.58 9.67	6.80 9.97	6.99 10.24
6	3.46 5.24	4.34 6.33	4.90 7.03	5.30 7.56	5.63 7.97	5.90 8.32	6.12 8.61	6.32 8.87	6.49 9.10
7	3.34 4.95	4.16 5.92	4.68 6.54	5.06 7.01	5.36 7.37	5.61 7.68	5.82 7.94	6.00 8.17	6.16 8.37
8	3.26 4.75	4.04 5.64	4.53 6.20	4.89 6.62	5.17 6.96	5.40 7.24	5.60 7.47	5.77 7.68	5.92 7.86
9	3.20 4.60	3.95 5.43	4.41 5.96	4.76 6.35	5.02 6.66	5.24 6.91	5.43 7.13	5.59 7.33	5.74 7.49
10	3.15 4.48	3.88 5.27	4.33 5.77	4.65 6.14	4.91 6.43	5.12 6.67	5.30 6.87	5.46 7.05	5.60 7.21
11	3.11 4.39	3.82 5.15	4.26 5.62	4.57 5.97	4.82 6.25	5.03 6.48	5.20 6.67	5.35 6.84	5.49 6.99
12	3.08 4.32	3.77 5.05	4.20 5.50	4.51 5.84	4.75 6.10	4.95 6.32	5.12 6.51	5.27 6.67	5.39 6.81
13	3.06 4.26	3.73 4.96	4.15 5.40	4.45 5.73	4.69 5.98	4.88 6.19	5.05 6.37	5.19 6.53	5.32 6.67
14	3.03 4.21	3.70 4.89	4.11 5.32	4.41 5.63	4.64 5.88	4.83 6.08	4.99 6.26	5.13 6.41	5.25 6.54
15	3.01 4.17	3.67 4.84	4.08 5.25	4.37 5.56	4.59 5.80	4.78 5.99	4.94 6.16	5.08 6.31	5.20 6.44
16	3.00 4.13	3.65 4.79	4.05 5.19	4.33 5.49	4.56 5.72	4.74 5.92	4.90 6.08	5.03 6.22	5.15 6.35
17	2.98 4.10	3.63 4.74	4.02 5.14	4.30 5.43	4.52 5.66	4.70 5.85	4.86 6.01	4.99 6.15	5.11 6.27
18	2.97 4.07	3.61 4.70	4.00 5.09	4.28 5.38	4.49 5.60	4.67 5.79	4.82 5.94	4.96 6.08	5.07 6.20
19	2.96 4.05	3.59 4.67	3.98 5.05	4.25 5.33	4.47 5.55	4.65 5.73	4.79 5.89	4.92 6.02	5.04 6.14
20	2.95 4.02	3.58 4.64	3.96 5.02	4.23 5.29	4.45 5.51	4.62 5.69	4.77 5.84	4.90 5.97	5.01 6.09
24	2.92 3.96	3.53 4.55	3.90 4.91	4.17 5.17	4.37 5.37	4.54 5.54	4.68 5.69	4.81 5.81	4.92 5.92
30	2.89 3.89	3.49 4.45	3.85 4.80	4.10 5.05	4.30 5.24	4.46 5.40	4.60 5.54	4.72 5.65	4.82 5.76
40	2.86 3.82	3.44 4.37	3.79 4.70	4.04 4.93	4.23 5.11	4.39 5.26	4.52 5.39	4.63 5.50	4.73 5.60
60	2.83 3.76	3.40 4.28	3.74 4.59	3.98 4.82	4.16 4.99	4.31 5.13	4.44 5.25	4.55 5.36	4.65 5.45
120	2.80 3.70	3.36 4.20	3.68 4.50	3.92 4.71	4.10 4.87	4.24 5.01	4.36 5.12	4.47 5.21	4.56 5.30
infinity	2.77 3.64	3.31 4.12	3.63 4.40	3.86 4.60	4.03 4.76	4.17 4.88	4.29 4.99	4.39 5.08	4.47 5.16

Post-Hoc-Analysen

Tukey HSD

Bestimmung der kleinsten noch signifikanten Differenz (Krit. Wert)

In unserem Beispiel:

- Signifikanzniveau: $\alpha=.05$
- ullet Anzahl der zu vergleichenden Mittelwerte: r=3
- ullet Fehlerfreiheitsgrade: $df_{innerhalb}=147$
- o In der Tabelle der q_{krit} -Werte verwenden wir die nächst kleinere enthaltene Anzahl an Fehlerfreiheitsgraden $df_{innerhalb}=120$

$$q_{krit(lpha=.05;r=3;df_{innerhalb}=120)}=3.36$$

Post-Hoc-Analysen

Tukey HSD

Bestimmung der kleinsten noch signifikanten Differenz (Krit. Wert)

In unserem Beispiel:

- In jeder Gruppe wurden n=50 Patient:innen behandelt.
- ullet Die Varianz innerhalb betrug $\hat{\sigma}^2_{innerhalb}=14.165$ (siehe ANOVA Output, z.B. Folie 8)

$$HSD = q_{r;df_{innerhalb}} \cdot \sqrt{rac{\hat{\sigma}_{innerhalb}^2}{n}} = 3.36 \cdot \sqrt{rac{14.165}{50}} = 1.79$$

ightarrow Mittelwertspaare, deren Differenz HSD=1.79 überschreiten sind signifikant.

Post-Hoc-Analysen

Tukey HSD

Bestimmung der kleinsten noch signifikanten Differenz (Krit. Wert)

In unserem Beispiel:

Mittelwerte:

Mittelwertsvergleiche (Differenzen):

Gruppe	Mittelwert	Kontrast	Differenz
Medikament.1	11.59	Medikament.1 - Medikament.2	0.60
Medikament.2	10.98	Medikament.1 - Placebo	4.45
Placebo	7.14	Medikament.2 - Placebo	3.85

[→] Beide Medikamente sind signifikant besser als Placebo (Differenz > HSD=1.79), aber unterscheiden sich nicht signifikant voneinander.

Post-Hoc-Analysen

Tukey HSD

```
emmeans::emmeans(lm(Symptome ~ Gruppe, data = df), pairwise ~ Gruppe, adjust = "tukey")
## $emmeans
   Gruppe
                          SE df lower.CL upper.CL
                emmean
   Medikament.1 11.59 0.532 147
                                    10.53
                                             12.64
   Medikament.2 10.98 0.532 147
                                     9.93
                                             12.04
   Placebo
                  7.14 0.532 147
                                     6.09
                                              8.19
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                               estimate
                                           SE df t.ratio p.value
   Medikament.1 - Medikament.2
                                  0.601 0.753 147
                                                    0.799 0.7044
   Medikament.1 - Placebo
                                  4.448 0.753 147
                                                    5.909 <.0001
   Medikament.2 - Placebo
                                  3.847 0.753 147
                                                    5.111 <.0001
## P value adjustment: tukey method for comparing a family of 3 estimates
```


Post-Hoc-Analysen

Bonferroni

```
emmeans::emmeans(lm(Symptome ~ Gruppe, data = df), pairwise ~ Gruppe, adjust = "bonferroni")
## $emmeans
   Gruppe
                          SE df lower.CL upper.CL
                emmean
   Medikament.1 11.59 0.532 147
                                    10.53
                                             12.64
   Medikament.2 10.98 0.532 147
                                     9.93
                                             12.04
   Placebo
                  7.14 0.532 147
                                     6.09
                                              8.19
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                               estimate
                                           SE df t.ratio p.value
   Medikament.1 - Medikament.2
                                  0.601 0.753 147
                                                    0.799 1.0000
   Medikament.1 - Placebo
                                  4.448 0.753 147
                                                    5.909 <.0001
   Medikament.2 - Placebo
                                  3.847 0.753 147 5.111 <.0001
## P value adjustment: bonferroni method for 3 tests
```


Post-Hoc-Analysen

Benjamini & Hochberg (aka False Discovery Rate Correction, FDR)

```
emmeans::emmeans(lm(Symptome ~ Gruppe, data = df), pairwise ~ Gruppe, adjust = "fdr")
## $emmeans
   Gruppe
                          SE df lower.CL upper.CL
                emmean
   Medikament.1 11.59 0.532 147
                                    10.53
                                             12.64
   Medikament.2 10.98 0.532 147
                                     9.93
                                             12.04
   Placebo
                  7.14 0.532 147
                                     6.09
                                              8.19
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                               estimate
                                           SE df t.ratio p.value
   Medikament.1 - Medikament.2
                                  0.601 0.753 147
                                                    0.799 0.4257
   Medikament.1 - Placebo
                                  4.448 0.753 147
                                                    5.909 <.0001
   Medikament.2 - Placebo
                                  3.847 0.753 147 5.111 <.0001
## P value adjustment: fdr method for 3 tests
```


Voraussetzungen der ANOVA

• ANOVA gehört zur den sog. parametrischen Verfahren (wie auch der t-Test)

Es gelten folgende Voraussetzungen:

- 1. Die abhängige Variable ist intervallskaliert
 - messtheoretisch abgesichert (muss man durch Kenntnis des Messinstruments wissen)
- 2. Das untersuchte Merkmal ist in der Population normalverteilt
- 3. Varianzhomogenität (Varianzen sind innerhalb der verglichenen Gruppen ungefähr gleich)
- 4. Messwerte in allen Bedingungen sind unabhängig voneinander
 - o Durch randomisierte Zuweisung der Personen zu den Faktorstufen
 - o Falls nicht möglich gegebenenfalls Kontrolle von Störvariablen

Voraussetzungen der ANOVA

Varianzhomogenität

```
car::leveneTest(Symptome ~ Gruppe, data = df, center = "mean")

## Levene's Test for Homogeneity of Variance (center = "mean")

## group 2 0.2909 0.748

## 147
```

- Ein signifikanter Levene's Test weist auf Verletzung der Varianzhomogenität hin
- In unserem Beispiel: p=.748>.05
- \rightarrow Varianzhomogenität kann als gegeben angesehen werden

Voraussetzungen der ANOVA

Normalverteilung

- NV muss in allen Gruppen gegeben sein (hier 3x geprüft)
- Ein signifikanter Shapiro-Wilk Test weist auf Verletzung der NV-Annahme hin
- ullet In unserem Beispiel: alle p>.05 (Tests nicht signifikant)
- \rightarrow NV-Annahme kann als gegeben angesehen werden

```
by(df$Symptome, df$Gruppe, shapiro.test)
## df$Gruppe: Medikament.1
      Shapiro-Wilk normality test
## data: dd[x,]
  W = 0.99073, p-value = 0.9618
## df$Gruppe: Medikament.2
      Shapiro-Wilk normality test
## data: dd[x, ]
## W = 0.97211, p-value = 0.2814
## df$Gruppe: Placebo
      Shapiro-Wilk normality test
## data: dd[x, ]
## W = 0.98928, p-value = 0.9279
```


Take-aways

- Der t-Test ist ein **Spezialfall der Varianzanalyse**, daher gelten bekannte Zusammenhänge zwischen Stichprobengröße, Effektstärke, Teststärke und Signifikanzniveau auch hier.
- Für eine gut geplante ANOVA ist eine Stichprobenumfangsplanung (Poweranalyse) notwendig.
- Ein **signifikantes Ergebnis** der ANOVA bedeutet lediglich, dass sich zumindest eine Stufe des Faktors von einer anderen unterscheidet.
- Post-Hoc-Analysen werden zur Untersuchung genutzt, wo genau die Mittelwertsunterschiede liegen.
- Der **Tukey-HSD Test** determiniert die kleinste noch signifikante Differenz, somit ist der paarweise Vergleich der Gruppen im Anschluss an die Durchführung der ANOVA möglich.
- Außer dem Tukey-HSD Test gibt es noch zahlreiche **weitere Optionen** für Post-Hoc-Tests, welche mehr/weniger streng für Fehler 1. und 2. Art kontrollieren.