Prepas π -internationales_Cycle ingénieur_ Janvier 2021

Première Année Cycle Ingenieur_Epreuve d'Algèbre

Durée: 2 heures

Exercice 1. (4 points).

- (1) Déterminer les racines carrées du nombre complexe u = 3 + 4i.
- (2) Résoudre dans \mathbb{C} l'équation $z^2 \sqrt{3}z i = 0$.
- (3) Déterminer les racines carrées de v = 1 + i.
- (4) Déduire une valeur exacte de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Exercice 2 (6 points). On considère le polynôme $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$ et le nombre complexe $j = e^{i\frac{2\pi}{3}}$. Le but de cet exercice est de factoriser le polynôme P dans $\mathbb{R}[X]$.

- (1) Montrer que $j^3 = 1$ et que $1 + j + j^2 = 0$.
- (2) Montrer que j est une racine multiple de P. Préciser son ordre de multiplicité.
- (3) Montrer que si α est une racine de P, alors $\alpha \neq 0$ et $-\alpha$ est une autre racine de P.
- (4) Déduire toutes les racines de P, puis déduire une factorisation de P dans $\mathbb{C}[X]$.
- (5) Déduire la forme factorisée de P dans $\mathbb{R}[X]$.

Exercice 3 (5 points). On considère l'équation

$$(E): (X+1)^2 A + (X-1)^2 B = 1$$

où $A, B \in \mathbb{R}[X]$ sont des polynômes inconnus. Soit (A, B) une solution de l'équation (E).

- (1) Montrer que A et B n'ont pas de racines communes. Peut-on déduire PGCD(A, B)?
- (2) On donne $A = X^4 3X^3 + 3X^2 3X + 2$ et $B = X^4 + 3X^3 + 3X^2 + 3X + 2$. Calculer PGCD(A, B)
- (3) Le couple (A, B) est-elle une solution de l'équation (E)?
- (4) Déduire une factorisation de A et B.

Exercice 4 (5 points).

(1) Décomposer dans \mathbb{C} la fraction rationnelle

$$F = \frac{X^4 - X + 2}{(X^2 - 1)(X - 1)^3}$$

(2) Décomposer dans \mathbb{R} la fraction

$$G = \frac{X^5 + X}{(X^2 + 1)^3}$$

(3) Décomposer dans \mathbb{R} la fraction

$$H = \frac{X^2}{(X^2 + 1)^{2021}}$$