Orthogonality

Sivakumar Balasubramanian

Linear Systems

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

References

- ► S Boyd, Applied Linear Algebra: Chapters 5.
- ▶ G Strang, Linear Algebra: Chapters 3.

Orthogonality

▶ Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$.

- ▶ If we have a set of non-zero vectors $V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_r\}$, we say this a set of mutually orthogonal vectors, if and only if, $\mathbf{v}_i^T \mathbf{v}_j = 0, \ 1 \le i, j \le r$ and $i \ne j$. V is also a linearly independent set of vectors.
- ▶ When the length of the vectors is 1, it is called an **orthonormal** set of vectors.
- A set of orthonormal vectors V also form an **orthonormal basis** of the subsapce span(V).

Orthogonality

▶ Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$.

- ▶ If we have a set of non-zero vectors $V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_r\}$, we say this a set of mutually orthogonal vectors, if and only if, $\mathbf{v}_i^T \mathbf{v}_j = 0, \ 1 \le i, j \le r$ and $i \ne j$. V is also a linearly independent set of vectors.
- ▶ When the length of the vectors is 1, it is called an **orthonormal** set of vectors.
- A set of orthonormal vectors V also form an **orthonormal basis** of the subsapce span(V).

Is
$$\left\{ \begin{bmatrix} 1\\-2\\4 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$$
 an orthonormal set?. If no, how will you make it one?

Orthogonal Subspaces

ightharpoonup Two subspaces V,W are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^T \mathbf{w} = 0, \ \forall \mathbf{v} \in V \text{ and } \mathbf{w} \in W$$

Both subspaces V,W are from the same space, e.g. \mathbb{R}^n

▶ Consider two subspaces $V, W \subset \mathbb{R}^n$, such that $V + W = \mathbb{R}^n$. If V and W are orthogonal subspaces, then V and W are **orthogonal complements** of each other.

$$W \perp V \rightarrow V^{\perp} = W \text{ or } W^{\perp} = V; \quad \left(V^{\perp}\right)^{\perp} = V$$

Orthogonal Subspaces

ightharpoonup Two subspaces V,W are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^T \mathbf{w} = 0, \ \forall \mathbf{v} \in V \text{ and } \mathbf{w} \in W$$

Both subspaces V, W are from the same space, e.g. \mathbb{R}^n

▶ Consider two subspaces $V, W \subset \mathbb{R}^n$, such that $V + W = \mathbb{R}^n$. If V and W are orthogonal subspaces, then V and W are **orthogonal complements** of each other.

$$W \perp V \rightarrow V^{\perp} = W \text{ or } W^{\perp} = V; \quad \left(V^{\perp}\right)^{\perp} = V$$

$$V = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}^T, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}^T \right\} \text{ and } W = span \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}^T \right\}. \text{ Is } V^\perp = W? \text{ If we add } \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}^T \text{ to } W$$

W, is $V^{\perp} = W$ still true?

Relationship between the Four Fundamental Spaces

 $C\left(\mathbf{A}\right),N\left(\mathbf{A}^{T}\right)\subseteq\mathbb{R}^{m}$ are orthogonal complements.

$$C\left(\mathbf{A}\right) \perp N\left(\mathbf{A}^{T}\right)$$

 $C\left(\mathbf{A}^{T}\right),N\left(\mathbf{A}\right)\subseteq\mathbb{R}^{n}$ are orthogonal complements.

$$C\left(\mathbf{A}^{T}\right) \perp N\left(\mathbf{A}\right)$$

- $\operatorname{dim} C(\mathbf{A}) + \operatorname{dim} N(\mathbf{A}^{T}) = m \implies C(\mathbf{A}) + N(\mathbf{A}^{T}) = \mathbb{R}^{m}$

Relationship between the Four Fundamental Spaces

 $\qquad \qquad C\left(\mathbf{A}\right), N\left(\mathbf{A}^{T}\right) \subseteq \mathbb{R}^{m} \text{ are orthogonal complements.}$

$$C\left(\mathbf{A}\right) \perp N\left(\mathbf{A}^{T}\right)$$

 $C\left(\mathbf{A}^{T}\right),N\left(\mathbf{A}\right)\subseteq\mathbb{R}^{n}$ are orthogonal complements.

$$C\left(\mathbf{A}^{T}\right)\perp N\left(\mathbf{A}\right)$$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 & 0 & 1 \\ 2 & -4 & 1 & -1 & -2 \\ -1 & 2 & 1 & 1 & 2 \\ 2 & -4 & -2 & -2 & -4 \end{bmatrix}$$

$$\mathbf{E} = \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 2 & 1 & 1 \\ \hline 2 & -4 & -2 & -2 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 0 & 1 \\ 0 & 0 & -1 & -1 & -4 \\ 0 & 0 & 0 & -1 & -5 \\ \hline 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Is
$$C(\mathbf{A}) \perp N(\mathbf{A}^T)$$
?

- Is
$$C\left(\mathbf{A}^{T}\right) \perp N\left(\mathbf{A}\right)$$
?

- What is dim $C(\mathbf{A})$, dim $N(\mathbf{A}^T)$, dim $C(\mathbf{A}^T)$, dim $N(\mathbf{A})$?

Relationship between the Four Fundamental Spaces

- \mathbf{x}_r and \mathbf{x}_n are the components of $x \in \mathbb{R}^n$ in the row and nullspaces of \mathbf{A} .
- Nullspace $N(\mathbf{A})$ is mapped to $\mathbf{0}$.

$$\mathbf{A}\mathbf{x}_n = \mathbf{0}$$

▶ Row space $C(\mathbf{A}^T)$ is mapped to the column space $C(\mathbf{A})$.

$$\mathbf{A}\mathbf{x}_r = \mathbf{A}\left(\mathbf{x}_r + \mathbf{x}_n\right) = \mathbf{A}\mathbf{x} = \mathbf{b}$$

- ▶ The mapping from the **row space** to the **column space** is invertible, i.e. every \mathbf{x}_r is mapped to a unique element in $C(\mathbf{A})$
- \blacktriangleright What sort of mapping does \mathbf{A}^T do?

 $\|\mathbf{e}\|$ is the distance of the point \mathbf{b} from the line along \mathbf{a} . This distance is shortest when, $\mathbf{e} \perp \mathbf{a}$.

$$\mathbf{a}^{T} (\mathbf{b} - \mathbf{p}) = \mathbf{a}^{T} (\mathbf{b} - \alpha \mathbf{a}) = \mathbf{a}^{T} \mathbf{b} - \alpha \mathbf{a}^{T} \mathbf{a} = 0$$

$$\alpha = \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}$$

$$\mathbf{p} = \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^{T}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

 $\mathbf{P} = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$ is the projection matrix onto the line \mathbf{a} .

 $\|\mathbf{e}\|$ is the distance of the point \mathbf{b} from the line along \mathbf{a} . This distance is shortest when, $\mathbf{e} \perp \mathbf{a}$.

$$\mathbf{a}^{T} (\mathbf{b} - \mathbf{p}) = \mathbf{a}^{T} (\mathbf{b} - \alpha \mathbf{a}) = \mathbf{a}^{T} \mathbf{b} - \alpha \mathbf{a}^{T} \mathbf{a} = 0$$

$$\alpha = \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}$$

$$\mathbf{p} = \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^{T}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

 $\mathbf{P} = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$ is the projection matrix onto the line \mathbf{a} .

Find the orthogonal projection matrix associated \mathbf{a} , and find the projection of \mathbf{b} on to $span\left(\{\mathbf{a}\}\right)$.

•
$$\mathbf{a} = \begin{bmatrix} -1\\2 \end{bmatrix}$$
; $\mathbf{b} = \begin{bmatrix} 2\\2 \end{bmatrix}$

•
$$\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
; $\mathbf{b} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$

•
$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
; $\mathbf{b} = \begin{bmatrix} 3 \\ -2 \\ 0 \end{bmatrix}$

- ▶ We can also project vectors onto other subspaces, which is the generalization of the projection to a 1 dimensional subspace, i.e. the line.
- Consider a vector $\mathbf{b} \in \mathbb{R}^n$ and a subspace $S \subseteq \mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_r\}$. \mathbf{b}_S the orthogonal projection of \mathbf{b} onto S is given by the following,

$$\mathbf{b}_S = \mathbf{U}\mathbf{U}^T\mathbf{b}; \ \ \mathbf{U} = egin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix
$$\mathbf{P}_S = \mathbf{U}\mathbf{U}^T$$

▶ A projection matrix is **idempotent**, i.e. $P^2 = P$. What does this mean in terms of projecting a vector on to a subspace?

- ▶ We can also project vectors onto other subspaces, which is the generalization of the projection to a 1 dimensional subspace, i.e. the line.
- ▶ Consider a vector $\mathbf{b} \in \mathbb{R}^n$ and a subspace $S \subseteq \mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_r\}$.

 \mathbf{b}_S – the orthogonal projection of \mathbf{b} onto S is given by the following,

$$\mathbf{b}_S = \mathbf{U}\mathbf{U}^T\mathbf{b}; \ \mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix $\mathbf{P}_S = \mathbf{U}\mathbf{U}^T$

A projection matrix is **idempotent**, i.e. $P^2 = P$. What does this mean in terms of projecting a vector on to a subspace?

Find the orthogonal projection matrix associated
$$U = \left\{ \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \right\}$$
, and find the projection

of
$$\mathbf{b} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
 on to $span(U)$.

- ► Consider two matrices $\mathbf{U}_1, \mathbf{U}_2$ whose columns form an orthonormal basis of the subspace $S \subseteq \mathbb{R}^m$, $C(\mathbf{U}_1) = C(\mathbf{U}_2)$.
- ▶ The projection matrix onto the subspace S, $\mathbf{U}_1\mathbf{U}_1^T = \mathbf{U}_2\mathbf{U}_2^T$. You get the same matrix irresptive of which orthonormal basis one uses.

- ▶ When to subspaces $V, W \subseteq \mathbb{R}^m$ are complementary, then any vector $\mathbf{x} \in \mathbb{R}^m$ can be uniquely represented as $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in V$ and $\mathbf{w} \in W$ and \mathbf{v}, \mathbf{w} are the components of \mathbf{x} in V and W respectively.
- ▶ When $V \perp W$, then $\mathbf{v}^T \mathbf{w} = 0$; \mathbf{v}, \mathbf{w} are orthogonal components.
- ▶ If P_S is the orthogonal projection matrix onto S, then what is the projection matrix onto S^{\perp} ?

- ▶ Consider two matrices $\mathbf{U}_1, \mathbf{U}_2$ whose columns form an orthonormal basis of the subspace $S \subseteq \mathbb{R}^m$, $C(\mathbf{U}_1) = C(\mathbf{U}_2)$.
- ▶ The projection matrix onto the subspace S, $\mathbf{U}_1\mathbf{U}_1^T = \mathbf{U}_2\mathbf{U}_2^T$. You get the same matrix irresptive of which orthonormal basis one uses.

Let
$$\mathbf{U}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{U}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$. Find the corresponding projection matrices.

- ▶ When to subspaces $V, W \subseteq \mathbb{R}^m$ are complementary, then any vector $\mathbf{x} \in \mathbb{R}^m$ can be uniquely represented as $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in V$ and $\mathbf{w} \in W$ and \mathbf{v}, \mathbf{w} are the components of \mathbf{x} in V and W respectively.
- ▶ When $V \perp W$, then $\mathbf{v}^T \mathbf{w} = 0$; \mathbf{v}, \mathbf{w} are orthogonal components.
- ▶ If P_S is the orthogonal projection matrix onto S, then what is the projection matrix onto S^{\perp} ?

- ► Consider two matrices $\mathbf{U}_1, \mathbf{U}_2$ whose columns form an orthonormal basis of the subspace $S \subseteq \mathbb{R}^m$, $C(\mathbf{U}_1) = C(\mathbf{U}_2)$.
- ▶ The projection matrix onto the subspace S, $\mathbf{U}_1\mathbf{U}_1^T = \mathbf{U}_2\mathbf{U}_2^T$. You get the same matrix irresptive of which orthonormal basis one uses.

Let
$$\mathbf{U}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{U}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}$. Find the corresponding projection matrices.

- ▶ When to subspaces $V, W \subseteq \mathbb{R}^m$ are complementary, then any vector $\mathbf{x} \in \mathbb{R}^m$ can be uniquely represented as $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in V$ and $\mathbf{w} \in W$ and \mathbf{v}, \mathbf{w} are the components of \mathbf{x} in V and W respectively.
- ▶ When $V \perp W$, then $\mathbf{v}^T \mathbf{w} = 0$; \mathbf{v}, \mathbf{w} are orthogonal components.
- ▶ If P_S is the orthogonal projection matrix onto S, then what is the projection matrix onto S^{\perp} ?

Let
$$\mathbf{u} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$$
. Find out the projection matrices $\mathbf{P}_{\mathbf{u}}$ and $\mathbf{P}_{\mathbf{u}^{\perp}}$? Verify that $\mathbf{P}_{\mathbf{u}^{\perp}} = \frac{\mathbf{u}^{\perp} \left(\mathbf{u}^{\perp}\right)^T}{\left(\mathbf{u}^{\perp}\right)^T \mathbf{u}^{\perp}}$.

An orthogonal projection matrix \mathbf{P}_S onto a subspace S represents a linear mapping, $\mathbf{P}_S : \mathbb{R}^m \to \mathbb{R}^m$. What are the four fundamental subspaces of \mathbf{P}_S ?

$$C\left(\mathbf{P}_{S}\right) =$$

An orthogonal projection matrix \mathbf{P}_S onto a subspace S represents a linear mapping, $\mathbf{P}_S : \mathbb{R}^m \to \mathbb{R}^m$. What are the four fundamental subspaces of \mathbf{P}_S ?

$$C\left(\mathbf{P}_{S}\right) = S; \ N\left(\mathbf{P}_{S}\right) =$$

▶ An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, $P_S : \mathbb{R}^m \to \mathbb{R}^m$. What are the four fundamental subspaces of P_S ?

$$C(\mathbf{P}_S) = S; \ N(\mathbf{P}_S) = S^{\perp}$$

 $N(\mathbf{P}_S^T) = S^{\perp}; \ C(\mathbf{P}_S^T) = S$

▶ An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, $P_S : \mathbb{R}^m \to \mathbb{R}^m$. What are the four fundamental subspaces of P_S ?

$$C(\mathbf{P}_S) = S; \ N(\mathbf{P}_S) = S^{\perp}$$

 $N(\mathbf{P}_S^T) = S^{\perp}; \ C(\mathbf{P}_S^T) = S$

Let
$$\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{bmatrix}$$
. Find the orthogral projection matrix $\mathbf{P}_{\mathbf{U}}$ onto $C(\mathbf{U})$. Describe

the four foundamental subspaces of $\mathbf{P}_{\mathbf{U}}$.

▶ An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, $P_S : \mathbb{R}^m \to \mathbb{R}^m$. What are the four fundamental subspaces of P_S ?

$$C(\mathbf{P}_S) = S; \ N(\mathbf{P}_S) = S^{\perp}$$

 $N(\mathbf{P}_S^T) = S^{\perp}; \ C(\mathbf{P}_S^T) = S$

Let
$$\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{bmatrix}$$
. Find the orthognal projection matrix $\mathbf{P}_{\mathbf{U}}$ onto $C\left(\mathbf{U}\right)$. Describe

the four foundamental subspaces of $\mathbf{P}_{\mathbf{U}}$.

Now find $\mathbf{P}_{\mathbf{U}^{\perp}}$ and describe its four foundamental subspaces.

Gram-Schmidt Orthogonalization

- ▶ Given a linearly independent set of vectors $B = \{\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n\}$, where $\mathbf{x}_i \in \mathbb{R}^m, \ \forall i \in \{1, 2, \dots n\}$, how can we find a orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_n\}$ for span(B)? \longrightarrow Gram-Schmidt Algorithm
- ▶ Its an iterative procedure that can also detect if a given set B is linearly dependent.

```
 \begin{array}{l} \textbf{Data: } \left\{ \mathbf{x}_i \right\}_{i=1}^n \\ \textbf{Result: } \textbf{Return an orthonormal basis } \left\{ \mathbf{u}_i \right\}_{i=1}^n \textbf{ if the set } B \textbf{ is linearly independent,} \\ & \textbf{else return nothing.} \\ \textbf{for } i = 1, 2, \dots n \textbf{ do} \\ & 1. \ \ \tilde{\mathbf{q}}_i = \mathbf{x}_i - \sum_{j=1}^{i-1} \left( \mathbf{u}_j^T \mathbf{x}_i \right) \mathbf{u}_i \longrightarrow \textbf{(Orthogonalization step);} \\ & 2. \ \ \textbf{If } \ \tilde{\mathbf{q}}_i = 0 \textbf{ then return;} \\ & 3. \ \ \mathbf{u}_i = \tilde{\mathbf{q}}_i / \left\| \tilde{\mathbf{q}}_i \right\| \longrightarrow \textbf{(Normalization step);} \\ \textbf{end} \\ \textbf{return } \left\{ \mathbf{u}_i \right\}_{i=1}^n; \end{aligned}
```

Gram-Schmidt Orthogonalization

▶ The algorithm can also be conveniently represented in a matrix form.

$$B = \{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$$
Let $\mathbf{U}_1 = \mathbf{0}_{m \times 1}$ and $\mathbf{U}_i = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_{i-1} \end{bmatrix} \in \mathbb{R}^{m \times (i-1)}$

$$\mathbf{U}_i^T x_i = \begin{bmatrix} \mathbf{u}_1^T x_i \\ \mathbf{u}_2^T x_i \\ \vdots \\ \mathbf{u}_{i-1}^T x_i \end{bmatrix} \quad \text{and} \quad \mathbf{U}_i \mathbf{U}_i^T x_i = \sum_{j=1}^{i-1} \left(\mathbf{u}_j^T x_i \right) \mathbf{u}_j$$

$$\mathbf{u}_i = \frac{\left(I - \mathbf{U}_i \mathbf{U}_i^T\right) \mathbf{x}_i}{\left\| \left(I - \mathbf{U}_i \mathbf{U}_i^T\right) \mathbf{x}_i \right\|}$$

- Gram-Schmidt procedure leads us to another form of matrix decomposition QR decomposition.
- ▶ Given a matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$, whose columns form a linearly independent set. Gramm-Schmidt algorithm produces a orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_n\}$ for $C(\mathbf{A})$.

$$\mathbf{q}_1 = rac{\mathbf{a}_1}{r_1}$$
 and $\mathbf{q}_i = rac{\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j}{r_k}$

where, $r_1 = \|\mathbf{a}_1\|$ and $r_k = \left\|\mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j \right\|$.

$$\mathbf{a}_1 = r_1 \mathbf{q}_1$$
 and $\mathbf{a}_i = \sum_{j=1}^{i-1} \left(\mathbf{q}_j^T \mathbf{a}_i \right) + r_i \mathbf{q}_i$

$$\mathbf{A} = egin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \dots & \mathbf{a}_n \end{bmatrix} = egin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \dots & \mathbf{q}_n \end{bmatrix} egin{bmatrix} r_1 & \mathbf{q}_1^T \mathbf{a}_2 & \mathbf{q}_1^T \mathbf{a}_3 & \dots & \mathbf{q}_1^T \mathbf{a}_n \\ 0 & r_2 & \mathbf{q}_2^T \mathbf{a}_3 & \dots & \mathbf{q}_2^T \mathbf{a}_n \\ 0 & 0 & r_2 & \dots & \mathbf{q}_3^T \mathbf{a}_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & r_n \end{bmatrix} = \mathbf{Q} \mathbf{R}$$

Find the $\mathbf{Q}\mathbf{R}$ factorization for the following, if possible.

$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \\ -4 & 1 & 3 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & -1 & -7 \\ 1 & 2 & 0 & -5 \\ -4 & 1 & 0 & -16 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A} = \mathbf{Q}\mathbf{R}; \ \mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m \times n}, \ \mathbf{R} \in \mathbb{R}^{n \times n}$$

- ▶ The columns of \mathbf{Q} form an orthonormal basis for $C(\mathbf{A})$, and \mathbf{R} is upper-triangular.
- ▶ Similar to A = LU, A = QR can be used for used to solve Ax = b.

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \implies \mathbf{R}\mathbf{x} = \mathbf{Q}^{-1}\mathbf{b} = \mathbf{Q}^T\mathbf{b}$$

$$\mathbf{A} = \mathbf{Q}\mathbf{R}; \ \mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m \times n}, \ \mathbf{R} \in \mathbb{R}^{n \times n}$$

- ▶ The columns of \mathbf{Q} form an orthonormal basis for $C(\mathbf{A})$, and \mathbf{R} is upper-triangular.
- ▶ Similar to A = LU, A = QR can be used for used to solve Ax = b.

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \implies \mathbf{R}\mathbf{x} = \mathbf{Q}^{-1}\mathbf{b} = \mathbf{Q}^T\mathbf{b}$$

Solve the following through LU and QR factorization.

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \\ -4 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix} = \mathbf{b}$$