Laužtė

Azerbaidžanas garsėja savo kilimais. Būdamas puikus kilimų dizaineris, norite sukurti naują kilimų dizainą **laužtė**. Laužte vadinama dvimatėje plokštumoje esančių t atkarpų seka, kuri aprašoma (t+1) viršūnių seka: p_0, \ldots, p_t . Kiekvienam $0 \le j \le t-1$, sekoje yra atkarpa, jungianti viršūnes p_j ir p_{j+1} .

Norėdami sukurti šį dizainą, dvimatėje plokštumoje jau pažymėjote n taškų. i-ojo ($1 \le i \le n$) taško koordinatės yra (x[i],y[i]). Visų taškų x koordinatės yra skirtingos ir visų taškų y koordinatės yra skirtingos.

Jūs norite rasti viršūnių seką $(sx[0], sy[0]), (sx[1], sy[1]), \ldots, (sx[k], sy[k])$, kuri nusako tokią laužte, kad:

- laužtė prasideda viršūnėje (0,0) (t.y., sx[0] = 0 ir sy[0] = 0),
- laužtė eina per visus pažymėtus taškus (pažymėti taškai neprivalo būti laužtės atkarpų galuose), bei
- laužtę sudaro tik vertikalios ir horizontalios atkarpos (dvi atkarpa sujungtos laužtės viršūnės turi arba sutampančią x, arba sutampančią y koordinatę).

Laužtė gali bet kaip kirstis arba persidengti su savimi, t.y., kiekvienas plokštumos taškas gali priklausyti bet kokiam skaičiui laužtę sudarančių atkarpų.

Tai yra rezultatų uždavinys su daliniu vertinimu. Duota 10 įvesties failų, kuriuose nurodytos pažymėtų taškų koordinatės. Kiekvienam įvesties failui pateikite po išvesties failą, kuriame aprašyta laužtė, tenkinanti nurodytas sąlygas. Taškų, skiriamų už kiekvieną išvesties failą, skaičius priklauso nuo laužtę sudarančių **atkarpų skaičiaus** (žr. Vertinimas žemiau).

Šiam uždaviniui nereikia pateikti jokios jį sprendžiančios programos.

Įvesties formatas

Kiekvienas įvesties failas atitinka šį formatą:

- 1-oji eilutė: n
- (1+i)-oji $(1 \le i \le n)$ eilutė: x[i] y[i]

Išvesties formatas

Kiekvienas išvesties failas turi atitikti ši formata:

- 1-oji eilutė: k
- (1+j)-oji eilutė $(1 \leq j \leq k)$: sx[j] sy[j]

Atkreipkite dėmesį, kad antrojoje eilutėje turėtų būti sx[1] ir sy[1] (t.y., išvesties faile **neturėtų** būti pateikti sx[0] ir sy[0]). Visi sx[j] ir sy[j] turi būti sveikieji skaičiai.

Pavyzdys

Kai įvestis tokia:

4 2 1 3 3 4 4 5 2

galima korektiška išvestis:

6 2 0 2 3 5 3 5 2 4 2 4 4

Atkreipkite dėmesį, kad šis pavyzdys neatitinka jokios įvesties, kuriai turite pateikti sprendinį.

Ribojimai

- $1 \le n \le 100000$
- $1 \le x[i], y[i] \le 10^9$
- Visos x[i] ir y[i] reikšmės yra sveikieji skaičiai.
- Visų taškų x koordinatės yra skirtingos ir visų taškų y koordinatės yra skirtingos, t.y. $x[i_1] \neq x[i_2]$ ir $y[i_1] \neq y[i_2]$, kai $i_1 \neq i_2$.
- $-2 \cdot 10^9 \le sx[j], sy[j] \le 2 \cdot 10^9$
- Kiekvieno pateikiamo failo (tiek išvesties, tiek suarchyvuoto) dydis negali viršyti 15MB.

Vertinimas

Už kiekvieną testą galite gauti iki 10 taškų. Už testą gausite 0 taškų, jei jo išvestyje nebus aprašyta laužtė, atitinkanti nurodytas sąlygas. Priešingu atveju, gaunamų taškų skaičius apskaičiuojamas naudojant mažėjančią seką c_1, \ldots, c_{10} , kuri skirtingiems testams yra skirtinga.

Tarkime, jūsų sprendinys yra laužtė, sudaryta iš k atkarpų. Tuomet gausite

- i taškų, jei $k=c_i$ ($1 \leq i \leq 10$),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ taškų, jei $c_{i+1} < k < c_i$ ($1 \leq i \leq 9$),
- 0 taškų, jei $k>c_1$,
- 10 taškų, jei $k < c_{10}$.

Kiekvienam testui skirta seka c_1, \ldots, c_{10} paeikta žemiau.

Testai	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7 607	75336	108 430	138292	150475
c_3	40	674	5213	50671	72824	92801	100 949
c_4	37	651	5 125	50359	72446	92371	100 500
c_5	35	640	5 081	50 203	72257	92156	100275
c_6	33	628	5037	50 047	72067	91 941	100 050
c_7	28	616	5 020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100 015
c_9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Vizualizatorius

Tarp šiam uždaviniui skirtų pridėtų failų rasite skriptą, padedantį pavaizduoti įvesties ir išvesties failų turinius.

Norėdami pavaizduoti įvesties failo turinį, naudokite šią komandą:

```
python vis.py [input file]
```

Taip pat galite pavaizduoti ir savo sprendinį kokiai nors įvesčiai. Tam naudokite žemiau pateiktą komandą. Dėl ribotų techninių galimybių, vizualizatorius pavaizduoja tik **pirmas** 1000 **atkarpų**, aprašytų išvesties faile.

```
python vis.py [input file] --solution [output file]
```

Pavyzdys:

```
python vis.py examples/00.in --solution examples/00.out
```