ITE6004 Internet of Things

L T P J C 3 0 0 4 4

Pre-Requisite : Nil

Objectives:

- 1. To study the hardware design of IoT objects
- 2. To understand the software development framework for Internet of things.
- 3. To learn the cross platform enabling technologies in IoT

Expected Outcome:

- 1. To develop prototypes for domain specific IoTs.
- 2. To implement IoT applications for various domains.
- 3. To customize real time data for IoT applications.

	Topics	L Hrs	SLO
1	Building IoT: Characterization of IoT - Physical design- Things in IoT- IoT protocols- Logical Design. Enabling Technologies.	6	2
2	IoT Systems: IoT levels and deployment templates -six levels	5	2
3	Domain Specific IoTs: Smart home-smart city- Environment- Energy-Retail- Logistics- Industry- Agriculture- Health and Lifestyle	5	2
4	IoT platforms design methodology: Process Specification- Domain model specification- Information model specification- Service specification- IoT level specification- Functional view specification- Operational view specification- Device and component integration-Application development - Case Studies	6	2
5	Physical Devices and End points: Basic building blocks of IoT device- Examples - Raspberry PI interfaces - Arduino interfaces - programming Raspberry Pi with Python -Other IoT devices	6	6
6	IoT physical servers and cloud offerings: Introduction to cloud storage models and communication APIs- Xively cloud for IoT – Python web application framework – Django- Designing RESTful web API- Amazon web services for IoT	7	6
7	IoT Analytics: Batch Data Analysis-Real-time Data Analysis-Case Studies: Object Tracking, Anomaly Detection, Mobility Pattern Analytics, Crowd Analytics, Behavior Learning and Prediction	7	6
8	Expert Talk on IoT Applications	3	
# Mo	Total Lecture Hours ode: Flipped Class Room, [Lecture to be videotaped], Use	45	

of physical and computer models to lecture, Visit to Industry,			
Min of 2 lectures by industry experts			
Text Books			
1. Arshdeep Bahga, Vijay Madisetti "Internet of Things - A Hands-on Approach", Universities Press, First Edition,			
2015.			
Reference Books			
1. Dieter Uckelmann, Mark Harrison Florian, Michahelles "Architecting the Internet of things", Springer-Verlag Berlin Heidelberg, First Edition, 2011.			
Prepared by: Prof. Bhavani & Prof. Kavitha.B.R			

STUDENT LEARNING OUTCOMES (SLO)

- 1. Having an ability to apply mathematics and science in engineering applications
- 2. Having a clear understanding of the subject related concepts and of contemporary issues
- 3. Having an ability to be socially intelligent with good SIQ (Social Intelligence Quotient) and EQ (Emotional Quotient)
- 4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
- 5. Having design thinking capability
- 6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
- 7. Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning)
- 8. Having Virtual Collaborating ability
- 9. Having problem solving ability- solving social issues and engineering problems

- 10. Having a clear understanding of professional and ethical responsibility
- 11. Having interest in lifelong learning
- 12. Having adaptive thinking and adaptability
- 13. Having cross cultural competency exhibited by working in teams
- 14. Having an ability to design and conduct experiments, as well as to analyze and interpret data
- 15. Having an ability to use the social media effectively for productive use
- 16. Having a good working knowledge of communicating in English
- 17. Having an ability to use techniques, skills and modern Engineering tools necessary for engineering practice
- 18. Having critical thinking and innovative skills
- 19. Having a good cognitive load management skills
- 20. Having a good digital footprint