Operativsystem

Föreläsning 1 - Introduktion

- Vad är ett operativsystem
 - Abstraktionsnivå, virualisering och resurshantering
 - Abstraktionsnivå
 - Hur skapar vi en abstraktionsnivå där vi kan programmera en process?
 - Virtualisering
 - Resurshantering
 - Tilldelar resurser på ett effektivt sätt, framförallt nödvändigt när flera olika resurser används samtidigt. Hur tilldelas dem mest effektivt mellan dessa program
- Abstraktion
 - När vi skriver ett program så gömmer operativsystemet komplexiteten och vi abstraherar komplexiteten med ett gränssnitt
 - Gränssnittet ger oss en miljö som är enklare att hantera
 - Vi kan då skriva program som arbetar mot operativsystemet, oberoende av hårdvaran, operativsystemet arbetar sedan med hårdvaran.
 - Operativsystemet kan dock hindra oss från att arbeta med hårdvaran på ett optimalt sätt
 - Vi abstraherar även från exakt vilken hårdvara det är till en instruktion set architecture
 - Ex: x86 64
 - Kernel i opsystemet arbetar mot hårdvaran
 - · Vårt program arbetar mot våra biliotek
 - Operativsystemet utgörs av kernel och libraries eller bibliotek
 - Det operativsystem vi kommer att fokusera på är POSIX (Linux, Unix...)
 - MacOS är POSIX-kompatibelt
 - · Vad består POSIX av:
 - Operating system API

- Process handling: fork, exec, wait
- Process communication: pipes
- Threads handling: pthreads_create
- Managing directory
- · Network handling
-
- The C standard library
 - · Memory allocation: malloc, free
 - · Signal handling
 - · File operations
 - ...
- Command line interpreter
 - Shell: text based interface
 - Scripting languages (kommer ej kolla på i kursen)
- Dessa tre ben utgör vår abstraktionsnivå
- Virtualisering
 - 2 processer som ligger och kör, båda tror att man kör på den faktiska hårdvaran men dem arbetar i en virtuell värld
 - Kan använda hårddisken och ramminnet för att skapa en illusion för programmet att den har mer RAM-minne att arbeta med än vad den har
 - Hypervisor: Kan alternera mellan olika operativsystem som är oberoende av varandra
 - Resursmanagement:
 - Time
 - Scheduling, dividing execution time among processes
 - Memory
 - · Efficient allocation/deallocation, malloc/free