### **Battle of Neighborhoods in Japan**

Description of the Problem and Discussion of the Background

### (Introduction Section)

# Exploring the neighborhoods of Tokyo to obtain the 10 most frequently occurring venues in the top 5 districts of Tokyo.

Tokyo, the most populous metropolitan area in the world. Currently ranked 3rd in the global economic power index, Tokyo is definitely one of the best places to start up a new business.

During the daytime, especially in the morning and lunch hours, office areas provide huge opportunities for restaurants. Reasonably priced (one lunch meal 8\$) shops are usually always full during the lunch hours

(11 am -- 2 pm) and, given this scenario, we will go through the benefits and pitfalls of opening a breakfast cum lunch restaurants in highly dense office places. Usually the profit margin for a decent restaurant lie within 15 - 20% range but, it can even go high enough to 35%, as discussed. The core of Tokyo is made of 23 wards (municipalities) but, we concentrate on 5 busiest business wards of Tokyo – Chiyoda, Chuo, Shinjuku, Shibuya and Shinagawa, to target daily office workers.



We will go through each step of this project and address them separately.

#### **Target Audience**

- 1. Business personnel who wants to invest or open a restaurant. This analysis will be a comprehensive guide to
  - start or expand restaurants targeting the large pool of office workers in Tokyo during lunch hours.
- 2. Freelancer who loves to have their own restaurant as a side business. This analysis will give an idea, how
  - beneficial it is to open a restaurant and what are the pros and cons of this business.
- 3. New graduates, to find reasonable lunch/breakfast place close to office.
- 4. Budding Data Scientists, who wants to implement some of the most used Exploratory Data Analysis techniques to
  - obtain necessary data, analyze it and, finally be able to tell a story out of it.

### 2. Initial Data Preparation:

### 2.1. Web-Scrapping and Cleaning (Week 1)

### 2.1.1. Get the Names of Wards, Major Districts and Population from Wikipedia

The Wikipedia page of Tokyo Wards contains the table of 23 wards of Tokyo, area, population and major districts. I have used Beautifulsoup4 and pandas library to create the initial data-frame. For a clean and understandable data-frame some of the wards are renamed for example 'Chiyoda, Tokyo' to 'Chiyoda'. Here I have taken the first entry of the major districts column in the Wikipedia table to concentrate on. Even though not complete but it gives us quite a detailed picture of the corresponding ward, as later on I have considered top most venues within 1 kilometer radius of the major district. After this initial preparation, I moved on to the next step to obtain coordinates using Geopy library.

#### 2.1.2. Get the Coordinates of the Major Districts

Some of the coo-ordinates of the major districts returned by Geopy are wrong and I have figured out the reason for this is the name of the major districts in the data-frame are different from their actual names, for example Hongō to Hongo. In these cases (4 of them), I had to google search and replace using pandas library. After little manipulation the obtained data-frame looks as below

|    | Ward       | Area_SqKm | Population | Major_District | Dist_Latitude | Dist_Longitude            |
|----|------------|-----------|------------|----------------|---------------|---------------------------|
| 1  | Chiyoda    | 5100      | 59441      | Nagatacho      | 35.675618     | 139.743469                |
| 2  | Chuo       | 14460     | 147620     | Nihonbashi     | 35.684058     | 139.774501                |
| 3  | Minato     | 12180     | 248071     | Odaiba         | 35.619128     | 139.779403                |
| 4  | Shinjuku   | 18620     | 339211     | Shinjuku       | 35.693763     | 139.703632                |
| 5  | Bunkyō     | 19790     | 223389     | Hongo          | 35.708800     | 139.760100                |
| 6  | Taitō      | 19830     | 200486     | Ueno           | 35.711788     | 139.776096                |
| 7  | Sumida     | 18910     | 260358     | Kinshicho      | 35.696752     | 139.814151                |
| 8  | Koto       | 12510     | 502579     | Kiba           | 35.672200     | 139.806100                |
| 9  | Shinagawa  | 17180     | 392492     | Shinagawa      | 35.599252     | 139.738910                |
| 10 | Meguro     | 19110     | 280283     | Meguro         | 35.621250     | 139.688014                |
| 11 | Ota        | 11910     | 722608     | Omori          | 35.588400     | 139.727900                |
| 12 | Setagaya   | 15690     | 910868     | Setagaya       | 35.646096     | 139.656270                |
| 13 | Shibuya    | 15080     | 227850     | Shibuya        | 35.664596     | 139.6987 <mark>1</mark> 1 |
| 14 | Nakano     | 21350     | 332902     | Nakano         | 35.718123     | 139.664468                |
| 15 | Suginami   | 16750     | 570483     | Koenji         | 35.704942     | 139.649909                |
| 16 | Toshima    | 22650     | 294673     | Ikebukuro      | 35.730103     | 139.711884                |
| 17 | Kita       | 16740     | 345063     | Akabane        | 35.778139     | 139.720800                |
| 18 | Arakawa    | 21030     | 213648     | Arakawa        | 35.737529     | 139.781310                |
| 19 | Itabashi   | 17670     | 569225     | Itabashi       | 35.774143     | 139.681209                |
| 20 | Nerima     | 15120     | 726748     | Nerima         | 35.748360     | 139.638735                |
| 21 | Adachi     | 12660     | 674067     | Ayase          | 35.446369     | 139.430925                |
| 22 | Katsushika | 12850     | 447140     | Tateishi       | 34.176335     | 132.226020                |
| 23 | Edogawa    | 13750     | 685899     | Kasai          | 35.663400     | 139.873100                |

### 2.1.3. Obtain the Average Land Price Data from Web-Scrapping

The average land-price data for each ward of Tokyo was obtained from Tokyo land market value page. Even though this data wasn't used for clustering but it definitely helps us to compare different districts of Tokyo for potentially opening a restaurant.

### 2.2. Foursquare Data (Week 2)

Finally, I make use of Foursquare API to obtain the 100 most common venues within 1 kilometer of each major district.

## 3.1. Exploring the Data and Major Districts of Tokyo

From the Foursquare data, we could see that there are \$134\$ unique categories, but for this analysis

I mostly later on concentrated in Restaurant category. As the focus is on 5 major business districts (Nagatacho, Nihombashi, Shibuya. Shinjuku, and Shinagawa), we found that there are 193 restaurants (searching for keyword Restaurant) among the 500 top venues in these 5 districts. I have used Folium library to plot a leaflet map of only these restaurants in these 5 major districts of Tokyo which is as shown below, where the colors representations are the follwing-- Nihombashi- Green, Nagatacho- Red, Shibuya- Orange, Shinjuku- Magenta, Shinagawa- Blue.



Here we have found out that

- Ramen restaurants top the charts of most common venues in the 5 districts, followed by Japanese restaurants and BBQ joints.
- A plot of the ten most frequent venues in these 5 districts are as below



### 4. Conclusion

Finally, to conclude this project, we have got a small glimpse of how real-life data-science projects look like. I have made use of some frequently used python libraries to scrap web-data, use Foursquare API to explore the major districts of Tokyo and saw the results of segmentation of districts using Folium leaflet map. Potential for this kind of analysis in a real-life business problem is discussed in great detail. Also, some of the drawbacks and chance for improvements to represent even more realistic pictures are mentioned. Finally, since my analysis were mostly concentrated exploring the neighborhoods of Tokyo to obtain the most frequently occurring venues, some of the results obtained are listed as per the data given at the time of analysis.