Measure Theory

Hadar Tal

Hebrew University of Jerusalem, Israel, 2024

Chapter 1

Measure Theory

1.1 σ -algebras and measures

Definition 1.1.1

 $(\sigma$ -algebra)

Let Ω be a set. A collection \mathcal{F} of subsets of Ω is called a σ -algebra if:

- 1. $\Omega \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- 3. If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Definition 1.1.2

(Measure)

Let Ω be a set and \mathcal{F} be a σ -algebra on Ω . A function $\mu: \mathcal{F} \to [0, \infty]$ is called a measure if:

- 1. $\mu(\emptyset) = 0$.
- 2. If $A_1, A_2, \ldots \in \mathcal{F}$ are pairwise disjoint, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

Definition 1.1.3

(Measure Space)

A measure space is a triple $(\Omega, \mathcal{F}, \mu)$, where Ω is a set, \mathcal{F} is a σ -algebra on Ω , and μ is a measure on \mathcal{F} .

1.2 Order of spaces

1.2.1 1. Topological Space (Most General)

Axioms: A topological space is a set X together with a collection \mathcal{T} of subsets of X (called open sets) such that:

- 1. The empty set and X itself are in \mathcal{T} .
- 2. Any union of sets in \mathcal{T} is also in \mathcal{T} .
- 3. Any finite intersection of sets in \mathcal{T} is also in \mathcal{T} .

Why it's more general: Topological spaces are the most general because they only require a definition of open sets, without any need for distances or measures. They provide a flexible framework for discussing continuity, compactness, and connectedness.

2. Measurable Space

Axioms: A measurable space is a set X together with a collection \mathcal{F} of subsets of X (called measurable sets) such that:

- 1. The empty set and X itself are in \mathcal{F} .
- 2. \mathcal{F} is closed under complements: if $A \in \mathcal{F}$, then $X \setminus A \in \mathcal{F}$.
- 3. \mathcal{F} is closed under countable unions: if $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Why it's less general than a topological space: Measurable spaces are less general because they require the collection of measurable sets to be closed under complements and countable unions, forming a σ -algebra. This imposes more structure compared to the open sets in a topological space, which only need to be closed under arbitrary unions and finite intersections.

3. Metric Space (Most Specific)

Axioms: A metric space is a set X together with a function $d: X \times X \to \mathbb{R}$ (called a metric) such that:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$ (non-negativity).
- 2. d(x,y) = 0 if and only if x = y (identity of indiscernibles).
- 3. d(x,y) = d(y,x) for all $x, y \in X$ (symmetry).
- 4. $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$ (triangle inequality).

Why it's less general than a measurable space: Metric spaces are less general because they require the existence of a metric that defines distances between points. This metric induces a topology, where open sets are defined in terms of open balls around points. While every metric space is a topological space (with the topology induced by the metric), not every topological space can be given a metric that defines its open sets. Furthermore, metric spaces do not inherently involve measurable sets or σ -algebras.

1.3 Borel σ -algebra

Definition 1.3.1

(Borel σ -algebra)

Let X be a topological space. The Borel σ -algebra on X, denoted by $\mathcal{B}(X)$, is the smallest σ -algebra that contains all the open sets of X. Formally, $\mathcal{B}(X)$ is the σ -algebra generated by the collection of open sets \mathcal{T} in X:

$$\mathcal{B}(X) = \sigma(\mathcal{T}),$$

where $\sigma(\mathcal{T})$ denotes the σ -algebra generated by \mathcal{T} . This means that $\mathcal{B}(X)$ is the smallest collection of subsets of X that contains all open sets and is a σ -algebra.

Examples of Borel σ -algebras include:

- Borel σ -algebra on \mathbb{R} : The Borel σ -algebra on the real line \mathbb{R} , denoted by $\mathcal{B}(\mathbb{R})$, is the σ -algebra generated by all open intervals in \mathbb{R} . This includes:
 - All open intervals (a, b) where a < b.
 - All closed intervals [a, b] where a < b.

- All half-open intervals (a, b] and [a, b) where a < b.
- All singletons $\{a\}$ where $a \in \mathbb{R}$.
- All countable unions and intersections of such sets.
- Borel σ -algebra on \mathbb{R}^n : The Borel σ -algebra on \mathbb{R}^n , denoted by $\mathcal{B}(\mathbb{R}^n)$, is the σ -algebra generated by all open sets in the Euclidean space \mathbb{R}^n . This includes:
 - All open balls $B(x,r) = \{ y \in \mathbb{R}^n \mid ||y-x|| < r \}$ where $x \in \mathbb{R}^n$ and r > 0.
 - All open rectangles $(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ where $a_i < b_i$ for each i.
 - All closed sets and other sets formed by countable unions and intersections of open sets in \mathbb{R}^n .

Measurable Functions 1.4

Definition 1.4.1

(Measurable Function)

Let $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ be measurable spaces. A function $f: \Omega_1 \to \Omega_2$ is called measurable (with respect to A_1 and A_2) if:

$$f^{-1}(A_2) \in \mathcal{A}_1$$
 for all $A_2 \in \mathcal{A}_2$.

1.4.1Examples

- 1. $(\Omega, \mathcal{A}), (\mathbb{R}, \mathcal{B}(\mathbb{R}))$
 - Characteristic Function:

$$\chi_A:\Omega\to\mathbb{R},$$

where

$$\chi_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$

For all measurable $A \in \mathcal{A}$, χ_A is a measurable map.

- $-\chi_A^{-1}(\varnothing) = \varnothing \subset \Omega$ $-\chi_A^{-1}(\mathbb{R}) = \Omega \in A$ $-\chi_A^{-1}(1) = A \in \mathcal{A}$

- $-\chi_A^{-1}(0) = A^c \in \mathcal{A}$ by the closure of \mathcal{A} under complements.
- 2. $(\Omega_1, \mathcal{A}_1), (\Omega_2, \mathcal{A}_2), (\Omega_3, \mathcal{A}_3)$ are measurable spaces
 - If $f: \Omega_1 \to \Omega_2$ is measurable and $g: \Omega_2 \to \Omega_3$ is measurable, then $g \circ f: \Omega_1 \to \Omega_3$ is measurable.

$$(g \circ f)^{-1}(A_3) = f^{-1}(g^{-1}(A_3)) \in \mathcal{A}_1 \text{ for all } A_3 \in \mathcal{A}_3$$

Important

 $(\Omega, \mathcal{A}), (\mathbb{R}, \mathcal{B}(\mathbb{R}))$

- f, g measurable $\Rightarrow f + g, f \cdot g$ measurable
- |f| measurable