Circular Trajectory Approach (CTA) for Sine Wave Distortion Monitoring and Visualization

Haoyuan Sun, Fangxing Li The University of Tennessee, Knoxville

Christopher Sticht, Srijib Mukherjee Power Systems Resilience Group, ORNL

Main Idea

To transpose a fluctuating <u>Sine Wave</u> into a <u>Static Shape</u> so that its distortions are easier to monitor.

Workflow

Applications

Advantages

- High-resolution
- Adjustable sensitivity
- Easy computation
- Immediate detection
- Apply to all distortions
- Suitable for online use

Revelation of Small Distortions

Revelation of Distorted Sections

Resistance to Frequency Variations

Theory

Origin of This Idea

$$\sin^2(\omega t) + \cos^2(\omega t) = 1$$

Ideal Case

Perfect Continuous Sine Wave

$$x(t) = A\sin(\omega t + \varphi)$$

$$\dot{x}(t) = A\omega\cos(\omega t + \varphi)$$

$$x(t)^{2} + \left(\frac{\dot{x}(t)}{\omega}\right)^{2} = A^{2}$$

Real Case

Discrete Signal + Frequency Fluctuation

$$x[n] = A\sin(\sum_{0}^{n} \omega[n]\Delta t + \varphi)$$

$$\dot{x}[n] = A\omega[n] \cdot \cos(\sum_{n=0}^{n} \omega[n] \Delta t + \varphi)$$

$$x[n]^{2} + \left(\frac{\dot{x}[n]}{\omega[n]}\right)^{2} = A^{2} \qquad \dot{x}[n] = \frac{x[n+1] - x[n-1]}{2\Delta t}$$

Theoretical Basis

Proposition: Equation \Rightarrow holds \Leftrightarrow x(t) is a Sine Wave. *Proof*:

$$\frac{dx(t)}{dt} = \pm \omega \sqrt{A^2 - x(t)^2} \qquad \arcsin\left(\frac{x(t)}{A}\right) = \pm \omega t + C_1$$

$$\frac{dx(t)}{\sqrt{A^2 - x(t)^2}} = \pm \omega dt \qquad x(t) = \pm A \sin\left(\omega t + \varphi\right). \quad \blacksquare$$

Conclusion

- This work provides a general solution for sine wave distortion monitoring and visualization the Circular Trajectory Approach (CTA).
- <u>Future works</u> include how CTA may help with anomaly classification.

