STAT 500

Two-Sample Inference: Interval Estimation

Scenario

- Randomized Experiment
 - Two treatments
 - Is there a difference in the mean value of the response variable between the two treatments?
- Observational Study
 - Two populations
 - One sample from each population
 - Is there a difference in the mean value of the variable between the two populations?

Interval estimation: confidence interval for $\mu_1 - \mu_2$

Researchers may be interested in estimating the mean difference between the two treatments/populations under study.

Assumptions

- $-Y_{11},Y_{12},\ldots,Y_{1n_1}$ are i.i.d. $N(\mu_1,\sigma^2)$
- $Y_{21},Y_{22},\ldots,Y_{2n_2}$ are i.i.d. $N(\mu_2,\sigma^2)$
- Y_{1j} and $Y_{2j^{\prime}}$ are independent for all j and j^{\prime}

• Based on the assumptions, we have the key result

$$rac{(ar{Y}_1 - ar{Y}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

• We can construct a confidence interval using this result.

• The idea is that, a $100(1-\alpha)\%$ confidence interval for $(\mu_1 - \mu_2)$ contains the values of $\mu_1 - \mu_2$ for which

$$\left|rac{(ar{Y}_1 - ar{Y}_2) - (\mu_1 - \mu_2)}{S_p\sqrt{rac{1}{n_1} + rac{1}{n_2}}}
ight| \leq t_{(n_1 + n_2 - 2), 1 - lpha/2}$$

ullet Solving for $\mu_1-\mu_2$ gives

$$(ar{Y}_1 - ar{Y}_2) \pm t_{n_1 + n_2 - 2, 1 - lpha/2} \,\, S_p iggert rac{1}{n_1} + rac{1}{n_2} \,\, .$$

$$egin{array}{lcl} 1-lpha &=& Pr\left(t_{n_1+n_2-2,lpha/2} \leq rac{(ar{Y}_1-ar{Y}_2)-(\mu_1-\mu_2)}{S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}} \leq t_{n_1+n_2-2,1-lpha/2}
ight) \ &=& Pr\left(t_{n_1+n_2-2,lpha/2}S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}} \leq (ar{Y}_1-ar{Y}_2)-(\mu_1-\mu_2) \leq
ight) \end{array}$$

$$\left(t_{n_1+n_2-2,1-lpha/2} S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}} \;
ight)$$

$$= \ Prigg(-(ar{Y}_1-ar{Y}_2)+t_{n_1+n_2-2,lpha/2}S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}} \le -(\mu_1-\mu_2) \le 1$$

$$-(ar{Y}_1 - ar{Y}_2) + t_{n_1 + n_2 - 2, 1 - lpha/2} S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}} \ igg)$$

$$egin{aligned} &= & Pr\left((ar{Y}_1 - ar{Y}_2) - t_{n_1 + n_2 - 2, 1 - lpha/2} S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}} \leq (\mu_1 - \mu_2) \leq
ight. \ & \left. (ar{Y}_1 - ar{Y}_2) + t_{n_1 + n_2 - 2, 1 - lpha/2} S_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}
ight.
ight) \end{aligned}$$

Relationship Between Tests and Confidence Intervals

- ullet Let $\delta=\mu_1-\mu_2$
- A two-sided t-test will reject $H_o: \mu_1 \mu_2 = 0$ at the α level if and only if 0 is not in $100(1-\alpha)\%$ confidence interval for $\delta = \mu_1 \mu_2$.
- A $100(1-\alpha)\%$ confidence interval can be constructed by including all values of δ such that data does not provide sufficient evidence to reject the null hypothesis $H_o: \mu_1 \mu_2 = \delta$ relative to the two-sided alternative $H_a: \mu_1 \mu_2 \neq \delta$ at the α significance level.

Frequentist Interpretation

- μ_1, μ_2, σ are fixed unknowns
- ullet $ar{Y}_1,ar{Y}_2,S_p$ are random variables
- A confidence interval is a random interval
- ullet Across a large number of repeated samples, 100(1-lpha)% of such intervals will contain the true value of $\mu_1-\mu_2$ (a long-term frequency property).
- ullet Any particular interval either contains the true value of $\mu_1 \mu_2$ or not.
- \bullet The $100(1-\alpha)\%$ probability describes the <u>process</u> of constructing the intervals.

Classical frequentist interpretation

- Confidence interval widths depend on
 - the confidence level
 - the value of σ
 - sample sizes n_1 and n_2

For the lizard study, a 95% confidence interval for $\mu_1-\mu_2$ is

$$-5.3733 \pm (2.048)(7.4649)(\sqrt{\frac{1}{15} + \frac{1}{15}}) \Rightarrow (-10.96, 0.21)$$

T-test for Mean Distance for Two Minute Runs Sceloporis Occidentalis Lizards

The TTEST Procedure

Variable: distance

infection	N	Mean	Std Dev	Std Err	Minimum	Maximum
yes	15	26.8600	6.8096	1.7582	16.4000	37.1000
no	15	32.2333	8.0672	2.0829	18.4000	45.5000
Diff (1-2)		-5.3733	7.4649	2.7258		

infection	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
yes		26.8600	23.0889	30.6311	6.8096	4.9855	10.7395
no		32.2333	27.7659	36.7008	8.0672	5.9062	12.7228
Diff (1-2)	Pooled	-5.3733	-10.9569	0.2102	7.4649	5.9240	10.0960
Diff (1-2)	Satterthwaite	-5.3733	-10.9640	0.2173			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	28	-1.97	0.0586
Satterthwaite	Unequal	27.233	-1.97	0.0589

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	14	14	1.40	0.5343	

Comparison of Randomization and Model Based Approaches

- Randomization tests
 - Require no model for population distributions
 - Are appropriate for randomized experiments
 - Require more computation
- Randomization CI's (based on test/interval relationship) require even more computation
- Model-based tests and CIs provide easily evaluated approximations to randomization inference
- Model-based approach can be useful for study design

Creative Writing Study t-values for 10000 Permutations

