

Classe: TOP 1

Date: Décembre 2019

BTS Blanc Mathématiques

Durée: 2 H

Présentation et orthographe seront pris en compte dans le barème de notation. Les calculatrices graphiques sont autorisées pour ce sujet.

EXERCICE 1: (10 points)

La fonction f est définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{2x^2-x-6}{x-1}$ et on note C_f sa courbe représentative dans un repère orthogonal.

- 1. Déterminer les coordonnées du ou des point(s) d'intersection de C_f et de l'axe des abscisses.
- 2. Déterminer les coordonnées du point d'intersection de C_f et de l'axe des ordonnées.
- 3. Déterminer les images de 0 et de -2.
- 4. Déterminer les antécédents (s'ils existent ...) de 6.
- 5. Déterminer les points d'intersection de C_f avec la droite d'équation y=7x+4.
- 6. Étudier le signe de f(x)

EXERCICE 2: (4 points)

La courbe ${\it C}$ de la figure ci-dessous est la représentation graphique d'une fonction f définie sur ${\mathbb R}$ dans un repère orthogonal.

- 1. Déterminer graphiquement :
 - a) f(0)
 - b) f(1)
 - c) f(2)
- 2. Déterminer l'équation de la tangente T_1 au point d'abscisse 1 et celle de la tangente T_0 au point d'abscisse 0.
- 3. La droite T tangente à la courbe C au point d'abscisse -2 et d'ordonnée -1 passe par le point A de coordonnées (1 ; 26). Déterminer par le calcul une équation de T.

Classe : TOP 1 Date : Décembre 2019

EXERCICE 3: (4 points)

La responsable d'un magasin de petit matériel pour les laboratoires a relevé pendant une semaine, le montant en euros des achats de 200 clients. Les résultats figurent dans le tableau suivant.

Montant des achats x_i	Nombre de clients n_i
[5;15[10
[15;25[22
[25;35[52
[35 ; 45 [62
[45 ; 55 [36
[55 ; 65 [14
[65;75[4

- 1. Calculer la moyenne \bar{x} et l'écart type σ de la série statistique.
- 2. Déterminer graphiquement une valeur approchée de la médiane à 10⁻¹ près après avoir représenté les polygones des effectifs cumulés. (*Unités : 1 cm pour 5 euros en abscisses et 1 cm pour 20 clients en ordonnées*).
- 3. Déterminer, par le calcul, une valeur approchée, arrondie à 10⁻² près, de la médiane. *Le détail du raisonnement est demandé.*
- 4. Par lecture du graphique précédent, estimer le pourcentage de clients dont le montant d'achat est compris entre $\bar{x} \sigma$ et $\bar{x} + \sigma$.