Secondo parziale di Geometria (Ing. Informatica) 21-12-2009-A

- 1) Determinare:
 - a) gli eventuali valori di $\alpha, \beta \in \mathbf{R}$ per i quali la minima distanza tra le rette

$$r \equiv \begin{cases} x = 2z - 4 \\ y = 3z + 1 \end{cases} \quad \text{e} \quad s \equiv \begin{cases} x = 2z + \alpha \\ y = 4z + \beta \end{cases}$$

sia uguale a $\sqrt{5}$;

- b) le equazioni delle eventuali sfere S aventi il centro C sulla retta $r \equiv \begin{cases} x = -z 1 \\ y = 2z + 5 \end{cases}$ e tangenti i piani $\pi \equiv 2x + 3y 6z 19 = 0$ e $\pi_1 \equiv 2x + 3y 6z 15 = 0$.
- **2)** Data la matrice $A = \begin{pmatrix} 3 & -1 & \beta \\ 0 & -1 & 8 \\ 0 & 0 & \alpha \end{pmatrix}$,
 - a) determinare gli eventuali valori di $\alpha, \beta \in \mathbf{R}$ per i quali A è diagonalizzabile,
 - b) per $\alpha = 3$ esprimere A^3 come combinazione lineare di A^2, A, I_3 .
- 3) Sia $A = \begin{pmatrix} -14 & 0 & 4 \\ 0 & 2 & 0 \\ 4 & 0 & 1 \end{pmatrix}$ (A è simmetrica).
 - a) Trovare una base ortonormale $\beta = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ di \mathbf{R}^3 formata da autovettori di A.
 - b) Diagonalizzare A con una matrice ortogonale U.
 - c) Trovare $M_{\beta}((x,y,z))$.
 - d) Detta f_A la funzione lineare associata ad A, trovare $< f_A((1,1,1)), (1,0,1) > .$
- 4) Sia f l'operatore lineare in \mathbb{R}^3 per il quale

$$f((1,0,0)) = (1,1,2), f((0,1,0)) = (-1,1,0), f((0,0,1)) = (1,-2,-1).$$

- a) Trovare f((x, y, z))
- b) Trovare una base e la dimensione del nucleo e dell'immagine di f (N_f, I_f) .
- c) Dire se f è iniettiva o suriettiva.

Facoltativo. Dimostrare che se $f: V \to V'$ è una funzione lineare e $\beta = (\mathbf{v}_1,, \mathbf{v}_n)$ è una base di V, allora $S' = (f(\mathbf{v}_1), ..., f(\mathbf{v}_n))$ genera I_f .

Secondo parziale di Geometria (Ing. Informatica) 21-12-2009-B

- 1) Determinare:
 - a) gli eventuali valori di $\alpha, \beta \in \mathbf{R}$ per i quali la minima distanza tra le rette

$$r \equiv \begin{cases} x = 4z - 1 \\ y = 3z - 5 \end{cases}$$
 e $s \equiv \begin{cases} x = 4z + \alpha \\ y = z + \beta \end{cases}$

sia uguale a $\sqrt{17}$;

- sia uguale a $\sqrt{1}i$;
 b) le equazioni delle eventuali sfere S aventi il centro C sulla retta $r \equiv \begin{cases} x = z 1 \\ y = 2z 5 \end{cases}$ e tangenti i piani $\pi \equiv 2x - 3y + 6z - 19 = 0$ e $\pi_1 \equiv 2x - 3y + 6z - 15 = 0$
- **2)** Data la matrice $A = \begin{pmatrix} 3 & 0 & 0 \\ \beta & -1 & 0 \\ 2 & 8 & \alpha \end{pmatrix}$,
 - a) determinare gli eventuali valori di $\alpha, \beta \in \mathbf{R}$ per i quali A è diagonalizzabile,
 - b) per $\alpha = -1$ esprimere A^3 come combinazione lineare di A^2, A, I_3 .
- 3) Sia $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 4 & -14 \end{pmatrix}$ (A è simmetrica).
 - a) Trovare una base ortonormale $\beta = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ di \mathbf{R}^3 formata da autovettori di A.
 - b) Diagonalizzare A con una matrice ortogonale U.
 - c) Trovare $M_{\beta}((x,y,z))$.
 - d) Detta f_A la funzione lineare associata ad A, trovare $\langle f_A((1,1,1)), (1,0,1) \rangle$.
- 4) Sia f l'operatore lineare in \mathbb{R}^3 per il quale

$$f((1,0,0)) = (1,1,2), f((0,1,0)) = (-1,1,0), f((0,0,1)) = (1,-2,-1).$$

- a) Trovare f((x, y, z))
- b) Trovare una base e la dimensione del nucleo e dell'immagine di $f(N_f, I_f)$.
- c) Dire se f è iniettiva o suriettiva.

Facoltativo. Dimostrare che se $f:V\to V'$ è una funzione lineare e $\beta=(\mathbf{v}_1,....,\mathbf{v}_n)$ è una base di V, allora $S' = (f(\mathbf{v}_1), ..., f(\mathbf{v}_n))$ genera I_f .