Sheet

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn')
dataset = pd.read_csv("./Liver.csv")
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):
                                   Non-Null Count
 #
     Column
                                                     Dtype
 0
     Age
                                   583 non-null
                                                    int64
 1
     Gender
                                   583 non-null
                                                    object
 2
3
4
     Total_Bilirubin
                                   583 non-null
                                                     float64
     Direct_Bilirubin
                                   583 non-null
                                                    float64
     Alkaline_Phosphotase
                                   583 non-null
                                                    int64
 5
     Alamine_Aminotransferase
                                   583 non-null
                                                     int64
     Aspartate_Aminotransferase
                                   583 non-null
                                                    int64
 7
     Total Protiens
                                   583 non-null
                                                    float64
 8
     Albumin
                                   583 non-null
                                                    float64
 9
                                   579 non-null
     Albumin_and_Globulin_Ratio
                                                    float64
 10
                                   583 non-null
                                                    int64
     Dataset
dtypes: float64(5), int64(5), object(1)
memory usage: 50.2+ KB
dataset.hist(bins=50, color='blue', edgecolor='black', linewidth=1.0,
xlabelsize=16, ylabelsize=16, grid=False)
plt.tight_layout(rect=(0, 0, 1.2, 1.2))
```


dataset.isnull().sum()

Filling Null values

dataset['Albumin_and_Globulin_Ratio'].fillna(dataset['Albumin_and_Globuli

Changing Male and Female to class 0/1

dataset['Gender'].replace('Female',1,inplace=True)
dataset['Gender'].replace('Male',0,inplace=True)
dataset.head()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferas
0	65	1	0.7	0.1	187	16
1	62	0	10.9	5.5	699	64
2	62	0	7.3	4.1	490	60
3	58	0	1.0	0.4	182	14
4	72	0	3.9	2.0	195	27

dataset.describe()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.0000
mean	44.746141	0.243568	3.298799	1.486106	290.576329	80.71355
std	16.189833	0.429603	6.209522	2.808498	242.937989	182.6203
min	4.000000	0.000000	0.400000	0.100000	63.000000	10.00000
25%	33.000000	0.000000	0.800000	0.200000	175.500000	23.00000
50%	45.000000	0.000000	1.000000	0.300000	208.000000	35.00000
75%	58.000000	0.000000	2.600000	1.300000	298.000000	60.50000
max	90.000000	1.000000	75.000000	19.700000	2110.000000	2000.000

```
import seaborn as sns
df = dataset.corr()
plt.figure(figsize=(15, 15))
sns.heatmap(df, vmax=1, annot=True, linewidths=.5)
plt.show()
```


Actually we can remove more than 2 features from this dataset Since they don't have higher impact on our y value.

```
dataset.shape,type(dataset)

((583, 11), pandas.core.frame.DataFrame)

x = dataset.iloc[:,:-1]
y = dataset.iloc[:,-1]
```

```
x.shape,y.shape

((583, 10), (583,))

# Splitting the data

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.25)
```

Using Logistic Regression

```
from sklearn.linear_model import LogisticRegression
Lr = LogisticRegression(max_iter=1000)
Lr.fit(x_train, y_train)

LogisticRegression(max_iter=1000)

y_pred = Lr.predict(x_test)
from sklearn.metrics import accuracy_score
LR_accuracy = accuracy_score(y_test, y_pred)
LR_accuracy
0.7328767123287672
```

Using Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
dT = DecisionTreeClassifier(max_depth=10)

dT.fit(x_train,y_train)

DecisionTreeClassifier(max_depth=10)

dT_pred = dT.predict(x_test)

dT_accuracy = accuracy_score(y_test,dT_pred)
dT_accuracy
```

0.636986301369863

support vector machine

```
from sklearn.svm import SVC
svc = SVC()
svc.fit(x_train,y_train)

SVC()

svc_pred = svc.predict(x_test)

svc_accuracy = accuracy_score(y_test,svc_pred)
svc_accuracy
0.7397260273972602
```