CAB FARE PREDICTION Project

Problem Statement:

The Goal of this project is to predict the cab fare based on the given Information.

In this Problem, historical train data is given to us which has 16067 observations and 7 variables.

If we see the variable in data set, there are:

'pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year', 'month', 'day', 'hour', 'weekday', 'distance', 'fare_amount']

Where fare amount is our target variable

Data Pre processing:

I have pre-process the train data to prepare it for modelling and will use different techniques

To preprocess the data, first I have created new variables like weekday, date, month, year, hour, from pickup_datetime and calculated distance between two geolocation using haversine formula.

After this, I have new variables:

['pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year', 'month', 'day', 'hour', 'weekday', 'distance', 'fare_amount']

Now the statistics of data:

	pickup_longi	pickup_lati	dropoff_longi	dropoff_lati	passenger_c	distan	fare_amo
	tude	tude	tude	tude	ount	ce	unt
cou	15906	15906	15906	15906	15906	15906	15906
nt							
me	-72.4754	39.89899	-72.4656	39.89953	1.649467	15.068	15.06429
an						22	
std	10.53715	6.185843	10.56508	6.185468	1.265771	311.69	432.2966
						32	
min	-74.4382	-74.0069	-74.4293	-74.0064	0.12	0	0.01
25%	-73.9921	40.73494	-73.9912	40.73471	1	1.2158	6
						48	
50%	-73.9817	40.75263	-73.9802	40.75356	1	2.1268	8.5
						09	
75%	-73.9668	40.76738	-73.9636	40.76801	2	3.8557	12.5
						17	
max	40.76613	41.36614	40.80244	41.36614	6	8667.5	54343
						42	

There are some anomalies we need to remove

- Longitude valid range should be +/-180 degree
- Latitude range should be +/- 90, but in pickup latitude max is 401.08 which is invalid
- Passenger count minimum is 0 which is not possible and maximum is 5345 which is also unreal
- so let's assume maximum passenger count be 200 (assume cab can be is a mini bus too)
- fare amount cannot be negative

So we need to remove these anomalies

After removing above anomalies we have data size of (15906, 7)

Now check for outliers in "distance"

If we assume maximum distance available to book a cab is 200 then there are 23 outliers which is very small so we can remove them.

Now see outliers in fare_amount

Lets assume maximum fare amount be 200 then there are 4 outliers which is very small so we can remove them too

Now there are some conditions which are unreal:

- if distance = 0, fare_amount canot be greater than 0
- Remove observations where passenger_count = 0
- Remove observations where distance = 0 and fare amount =0
- After that there is only 1 missing data So we can remove that too

So Now the final observations are 15424

	pickup_longi	pickup_lati	dropoff_longi	dropoff_lati	passenger_c	distan	fare_amo
	tude	tude	tude	tude	ount	ce	unt
cou							
nt	15424	15424	15424	15424	15424	15424	15424
me						3.4427	
an	-73.9109	40.6886	-73.9099	40.6891	1.651776	76	11.31444
						4.5973	
std	2.679344	2.633265	2.679454	2.632917	1.267724	16	9.472102
						0.0001	
min	-74.4382	-74.0069	-74.227	-74.0064	0	11	0.01
						1.2778	
25%	-73.9924	40.73657	-73.9914	40.7363	1	61	6
						2.1913	
50%	-73.9821	40.75334	-73.9806	40.75424	1	22	8.5
						3.9378	
75%	-73.9682	40.7678	-73.9655	40.76831	2	6	12.5

						129.95	
max	40.76613	41.36614	40.80244	41.36614	6	05	165

Now data looks much clearer

Feature Selection

Hypothesis:

Now the next step to solve the problem should be hypothesis

We have following hypothesis

- More the distance, more the fare
- Fare amount may be different for weekdays and weekends
- During Peak hours, fares may be high

If we see the heat map of Numerical variables, we can see that fare_amount is highly corelated with distance.

Also We have calculated distance from pickup and dropoff longitude/latitude, so we can remove these variables

We see that passenger and distance are highly independent

Now let's see if weekday or time affects fare_amount or not,

For this see the below scatter plot in which 0-Monday, 6-Sunday

We see that the fare amount is almost same but on Monday, Tuesday and Friday it goes very high

Scatter Plot Analysis weekday vs fare

Now Lets see the impact of hours on fare_amount

we can see that fare amount is less in the nights when weekdays but on weekends the fare amount is high in the night but very less from 5:00AM to 9:00 AM

If I see on weekdays, the fare_amount are high from 9:00 AM to 11:00AM and 2:00PM to 8:00 PM

Scatter Plot Analysis hour vs fare

Lets analyse distance vs fare_amount

We can see that maximum rides were on Sunday

Scatter Plot Analysis distance vs fare

Feature Scaling:

We know feature scaling need to be done on Numerical variables and we have two independent numerical data here, passenger_count and distance

If we see the histogram of these Numerical data we can see that they are not normally distributed, So we should use normalization method to do feature scaling.

Passenger Count Analysis

Modelling

Now we have train data with 15424 observations and we are ready to model our data

For that I have sampled train data into train, test

As My problem is not related to classification, but a prediction problem, So We can use following Algorithms

- 1) Linear Regression
- 2) Decision Tree Algorithm
- 3) Random Forest Algorithm and
- 4) KNN Algorithm

As this is Regression (Prediction) problem, We van use RMSE/MAPE error Metrics. Here I am using RMSE to see the model performance.

Since the errors are squared before they are averaged, the RMSE gives a relatively high weight to large errors. This means the RMSE should be more useful when large errors are particularly undesirable

And here we need a fare prediction to expand our business and we have to predict correctly

Now lets see RMSE for different Models

1) Linear Regression Model

R-squared = .797 (79.7 % of dependent variable can be explained by independent variables)

RMSE = 6.058

2) Decision Tree Algorithm

RMSE = 4.488

3) Random Forest Algorithm (with 150 tree/estimators)

RMSE = 3.986

4) KNN Algorithm

RMSE = 9.275

Now we can see that Random Forest Algorithm is best match for this problem