Linear Regression, Part 3

Ivan Corneillet

Data Scientist

Today, we will go deeper in a few linear regression topics, each with a different dataset:

- Model Fit and Customer Retention
- One-Hot Encoding for Categorical Variables and SF Housing
- Interaction Effects and Advertising
 - Hierarchy Principle

Review

Underfit, optimal fit, and overfit

Activity | Underfit, optimal fit, and overfit

DIRECTIONS (5 minutes)

- 1. Classify the following polynomial regressions according to their fit:
 - 1. Underfit
 - 2. Optimal fit
 - 3. Overfit
- 2. When finished, share your answers with your table

DELIVERABLE

Answers to the above questions

Linear Regression

Model Fit and Customer Retention

Activity | Customer Retention

DIRECTIONS (20 minutes)

- 1. The following dataset documents the "survival" pattern over seven years for a sample of 1000 customers who were all "acquired" in the same period
- 2. Build one or more models to capture this pattern, then use each model to project the survival curve over the next five years
- 3. When finished, share your answers with your table

DELIVERABLE

Answers to the above questions

Year	Retention Rate
0	1
1	.869
2	.743
3	.653
4	.593
5	.551
6	.517
7	.491
Source: Data Mining Technique	es: For Marketing, Sales, and Customer Relationship Management

Source: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management

Activity | Retention rate (y) as a function of the year (x)

Year (x)	Retention Rate (y)
0	1
1	.869
2	.743
3	.653
4	.593
5	.551
6	.517
7	.491

Activity | Linear Model: y = .6771

Dep. Variable:	у	R-squared:	0.000
Model:	OLS	Adj. R-squared:	0.000
Method:	Least Squares	F-statistic:	nan
Date:		Prob (F-statistic):	nan
Time:		Log-Likelihood:	2.8580
No. Observations:	8	AIC:	-3.716
Df Residuals:	7	BIC:	-3.637
Df Model:	0		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.6771	0.064	10.583	0.000	0.526 0.828

Omnibus:	1.441	Durbin-Watson:	0.211
Prob(Omnibus):	0.486	Jarque-Bera (JB):	0.904
Skew:	0.717	Prob(JB):	0.636
Kurtosis:	2.192	Cond. No.	1.00

Activity | Linear Model: $y = .9254 - .0709 \cdot t$

Dep. Variable:	У	R-squared:	0.922
Model:	OLS	Adj. R-squared:	0.909
Method:	Least Squares	F-statistic:	70.91
Date:		Prob (F-statistic):	0.000153
Time:		Log-Likelihood:	13.061
No. Observations:	8	AIC:	-22.12
Df Residuals:	6	BIC:	-21.96
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.9254	0.035	26.258	0.000	0.839 1.012
x	-0.0709	800.0	-8,421	0.000	-0.092 -0.050

Omnibus:	1.277	Durbin-Watson:	0.634
Prob(Omnibus):	0.528	Jarque-Bera (JB):	0.711
Skew:	0.310	Prob(JB):	0.701
Kurtosis:	1.678	Cond. No.	7.95

Activity | Quadratic Model: $y = .9211 - .0729 \cdot t + .0032 \cdot t^2$

Dep. Variable:	у	R-squared:	0.923
Model:	OLS	Adj. R-squared:	0.892
Method:	Least Squares	F-statistic:	30.03
Date:		Prob (F-statistic):	0.00164
Time:		Log-Likelihood:	13.121
No. Observations:	8	AIC:	-20.24
Df Residuals:	5	BIC:	-20.00
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.9211	0.041	22.274	0.000	0.815 1.027
x	-0.0729	0.012	-6.252	0.002	-0.103 -0.043
x ^ 2	0.0032	0.012	0.275	0.795	-0.027 0.033

Omnibus:	1.491	Durbin-Watson:	0.630
Prob(Omnibus):	0.474	Jarque-Bera (JB):	0.769
Skew:	0.342	Prob(JB):	0.681
Kurtosis:	1.644	Cond. No.	11.6

Activity | Exponential Model: $ln(y) = -.0621 - .1020 \cdot t$

Dep. Variable:	log_y	R-squared:	0.964
Model:	OLS	Adj. R-squared:	0.958
Method:	Least Squares	F-statistic:	159.1
Date:		Prob (F-statistic):	1.52e-05
Time:		Log-Likelihood:	13.389
No. Observations:	8	AIC:	-22.78
Df Residuals:	6	BIC:	-22.62
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	-0.0621	0.034	-1.836	0.116	-0.145 0.021
x	-0.1020	0.008	-12.615	0.000	-0.122 -0.082

Omnibus:	1.695	Durbin-Watson:	0.610
Prob(Omnibus):	0.429	Jarque-Bera (JB):	0.739
Skew:	0.196	Prob(JB):	0.691
Kurtosis:	1.564	Cond. No.	7.95

Activity | Polynomial of degree 7


```
y = 1
-.100597619 \cdot t
-.0596777778 \cdot t^{2}
+.0380569444 \cdot t^{3}
-.0101944444 \cdot t^{4}
+.00153611111 \cdot t^{5}
-.0001277777 \cdot t^{6}
+.00000456349206 \cdot t^{7}
```


Activity | Training data's score (R^2) (using sklearn)

Model	Training score (R^2)
Mean	0
Linear	.999
Quadratic	.923
Exponential	.964
Polynomial	1

Activity | Test data and what happens to R^2 ?

Activity | Test data and what happens to R^2 ? (cont.) (using sklearn)

Model	Training score (R^2)
Mean	-90
Linear	-73
Quadratic	-68
Exponential	-11
Polynomial	-30140

Linear Regression

One-Hot Encoding for Categorical Variables and SF Housing

Back to the SF housing dataset and the issue of beds and baths (TODO)

- So far, we've considered *Beds* and
 Baths as ratio variables
 - Namely that the price premium
 between a property with 1 bathroom
 and another with 2 bathrooms was the
 same between a property with 3
 bathrooms and another with 4
 bathrooms
- Does this make sense?

Dep. Variable:	SalePrice	R-squared:	0.137
Model:	OLS	Adj. R-squared:	0.136
Method:	Least Squares	F-statistic:	146.6
Date:		Prob (F-statistic):	1.94e-31
Time:		Log-Likelihood:	-1690.7
No. Observations:	929	AIC:	3385.
Df Residuals:	927	BIC:	3395.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.3401	0.099	3.434	0.001	0.146 0.535
Baths	0.5242	0.043	12.109	0.000	0.439 0.609

Omnibus:	1692.623	Durbin-Watson:	1.582
Prob(Omnibus):	0.000	Jarque-Bera (JB):	2167434.305
Skew:	12.317	Prob(JB):	0.00
Kurtosis:	238.345	Cond. No.	5.32

m (# bathrooms)	$Bath = \begin{pmatrix} Bath_1, \\ Bath_2, \\ Bath_3, \\ Bath_4 \end{pmatrix}$ (one-hot encoding)
1	
2	
3	
4	

m (# bathrooms)	$Bath = \begin{pmatrix} Bath_1, \\ Bath_2, \\ Bath_3, \\ Bath_4 \end{pmatrix}$ (one-hot encoding)
1	(1,0,0,0)
2	
3	
4	

m (# bathrooms)	$Bath = \begin{pmatrix} Bath_1, \\ Bath_2, \\ Bath_3, \\ Bath_4 \end{pmatrix}$ (one-hot encoding)
1	(1, 0, 0, 0)
2	(0, 1, 0, 0)
3	
4	

m (# bathrooms)	$Bath = \begin{pmatrix} Bath_1, \\ Bath_2, \\ Bath_3, \\ Bath_4 \end{pmatrix}$ (one-hot encoding)
1	(1, 0, 0, 0)
2	(0, 1, 0, 0)
3	(0, 0, 1, 0)
4	

m (# bathrooms)	$Bath = \begin{pmatrix} Bath_1, \\ Bath_2, \\ Bath_3, \\ Bath_4 \end{pmatrix}$ (one-hot encoding)
1	(1, 0, 0, 0)
2	(0, 1, 0, 0)
3	(0, 0, 1, 0)
4	(0,0,0,1)

One-hot encoding for categorical variables

- This terminology from digital circuits where *one-hot* refers to a group of bits (here, our binary features) among which the legal combinations of values are only those with a single high (1) bit and all the others low (0)
- (Binary variables are also called dummy variables)

DIRECTIONS (10 minutes)

- 1. Run the 4 regressions highlighted in the codealong (Part A). Each regression includes only 3 out of the 4 binary variables we created
- 2. How do you interpret the β s in each regression?
- 3. Why do we only need 3 binary variables, not all 4?
- 4. When finished, share your answers with your table

DELIVERABLE

Answers to the above questions

$$SalePrice = \beta_1 \\ + \beta_{1,2} \cdot Bath_2 + \beta_{1,3} \cdot Bath_3 + \beta_{1,4} \cdot Bath_4$$
 (don't include $Bath_1$)

$$SalePrice = \beta_2 + \beta_{2,1} \cdot Bath_1 \\ + \beta_{2,3} \cdot Bath_3 + \beta_{2,4} \cdot Bath_4$$
 (don't include $Bath_2$)

$$SalePrice = \beta_3 + \beta_{3,1} \cdot Bath_1 + \beta_{3,2} \cdot Bath_2 \\ + \beta_{3,4} \cdot Bath_4$$
 (don't include $Bath_3$)

$$SalePrice = \beta_4 + \beta_{4,1} \cdot Bath_1 + \beta_{4,2} \cdot Bath_2 + \beta_{4,3} \cdot Bath_3$$
 (don't include $Bath_4$)

SalePrice	R-squared:	0.043
OLS	Adj. R-squared:	0.039
Least Squares	F-statistic:	11.78
	Prob (F-statistic):	1.49e-07
	Log-Likelihood:	-1314.2
794	AIC:	2636.
790	BIC:	2655.
3		
nonrobust		
	OLS Least Squares 794 790 3	OLS Adj. R-squared: Least Squares F-statistic: Prob (F-statistic): Log-Likelihood: 794 AIC: 790 BIC: 3

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.9914	0.070	14.249	0.000	0.855 1.128
Bath_2	0.2831	0.099	2.855	0.004	0.088 0.478
Bath_3	0.4808	0.142	3,383	0.001	0.202 0.760
Bath_4	1.2120	0:232	5.231	0.000	0.757 1.667

Omnibus:	1817.972	Durbin-Watson:	1.867
Prob(Omnibus):	0.000	Jarque-Bera (JB):	8069883.811
Skew:	19,917	Prob(JB):	0.00
Kurtosis:	495,280	Cond. No.	5.79

Dep. Variable:	SalePrice	R-squared:	0.043
Model:	OLS	Adj. R-squared:	0.039
Method:	Least Squares	F-statistic:	11.78
Date:		Prob (F-statistic):	1.49e-07
Time:		Log-Likelihood:	-1314.2
No. Observations:	794	AIC:	2636.
Of Residuals:	790	BICI	2655.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	1.2745	0.071	18.040	0.000	1.136 1.413
Bath_1	-0.2831	0.099	-2.855	0.004	-0.478 -0.088
Bath_3	0.1977	0.143	1,386	0.166	-0.082 0.478
Bath_4	0.9290	0.232	4.003	0.000	0.473 1.384

Omnibus:	1817.972	Durbin-Watson:	1.867
Prob(Omnibus):	0.000	Jarque-Bera (JB):	8069883.811
Skew:	19,917	Prob(JB):	0.00
Kurtosis:	495.280	Cond. No.	5.84

Dep. Variable:	SalePrice	R-squared:	0.043
Model:	OLS	Adj. R-squared:	0.039
Method:	Least Squares	F-statistic:	11.78
Date:		Prob (F-statistic):	1.49e-07
Time:		Log-Likelihood:	-1314.2
No. Observations:	794	AIC:	2636.
Of Residuals:	790	BIC	2655.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	1.4722	0.124	11.881	0.000	1,229 1,715
Bath_1	-0.4808	0.142	-3.383	0.001	-0.760 -0.202
Bath_2	-0.1977	0.143	-1.386	0.166	-0.478 0.082
Bath_4	0.7313	0.253	2.886	0.004	0.234 1.229

1017 073	Durble Wateres	1.867
0.000	Jarque-Bera (JB):	8069883.81
19.917	Prob(JB):	0.00
495.280	Cond. No.	7.52
	0.000 19.917	19.917 Prob(JB) :

Dep. Variable:	SalePrice	R-squared:	0.043
Model:	OLS	Adj. R-squared:	0.039
Method:	Least Squares	F-statistic:	11.78
Date:		Prob (F-statistic):	1.49e-07
Time:		Log-Likelihood:	-1314.2
No. Observations:	794	AIC:	2636.
Df Residuals:	790	BICI	2655.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	2.2035	0.221	9.969	0.000	1.770.2.637
Bath_1	-1.2120	0.232	-5.231	0,000	-1.687 -0.757
Bath_2	-0.9290	0.232	-4,003	0.000	-1.384 -0.473
Bath_3	-0.7313	0.253	-2.886	0.004	-1.229 -0.234

Omnibus:	1817.972	Durbin-Watson:	1.867
Prob(Omnibus):	0.000	Jarque-Bera (JB):	8069883.811
Skew:	19,917	Prob(JB):	0.00
Kurtosis:	495.280	Cond. No.	11.7

eta_1		$eta_{1,2}$	$eta_{1,3}$	$eta_{1,4}$
eta_2	$eta_{2,1}$		$eta_{2,3}$	$eta_{2,4}$
$oldsymbol{eta}_3$	$eta_{3,1}$	$eta_{3,2}$		$eta_{3,4}$
eta_4	$eta_{4,1}$	$eta_{4,2}$	$eta_{4,3}$	

eta_1		$eta_{1,2}$	$eta_{1,3}$	$eta_{1,4}$
0.9914		0.2831	0.4808	1.212
eta_2	$eta_{2,1}$		$eta_{2,3}$	$eta_{2,4}$
1.2745	-0.2831		0.1977	0.9290
eta_3	$eta_{3,1}$	$eta_{3,2}$		$eta_{3,4}$
1.4722	-0.4808	-0.1977		0.7313
eta_4	$eta_{4,1}$	$eta_{4,2}$	$eta_{4,3}$	
2.2025	-1.212	-0.9290	-0.7313	

eta_i	Value (Sale's price) of a property in SF with <i>i</i> bathrooms
$eta_{i,j}$ when $j>i$	Increase of value for a property when increasing the number of bathrooms from i to j (while keeping the rest of the same)
$eta_{i,j}$ when $j < i$	Decrease of value for a property when decreasing the number of bathrooms from i to j (while keeping the rest of the same)
$eta_{i,j} = -eta_{j,i}$	Going from i to j bathrooms has the opposite effect of going from j bathrooms to i bathrooms
$eta_j = eta_i + eta_{i,j}$ for any i and j	E.g., $\beta_4=\beta_1+\beta_{1,4}$. I.e., the value of a 4 bathrooms can be derived from a 1 bedroom house and by increasing the number of bathrooms for 1 to 4
$eta_{i,j} = eta_{i,k} + eta_{k,j}$ for any i,j and k	E.g., $\beta_{1,4}=\beta_{1,2}+\beta_{2,4}$. I.e., the increase in value from a 1 bathroom house to a 4 bathrooms house is identical to going from upgrading from 1 bathroom to 2 bathrooms and then from upgrading from 2 bathrooms to 4 bathrooms

Linear Regression

Interaction Effects and Advertising

Is there a relationship between advertising budget and sales?

Simple Linear Regressions on TV, Radio, and Newspaper

$Sales \sim TV$

Dep. Variable:	Sales	R-squared:	0.607
Model:	OLS	Adj. R-squared:	0.605
Method:	Least Squares	F-statistic:	302.8
Date:		Prob (F-statistic):	1.29e-41
Time:		Log-Likelihood:	-514.27
No. Observations:	198	AIC:	1033.
Df Residuals:	196	BIC:	1039.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	7.0306	0.462	15.219	0.000	6.120 7.942
TV	0.0474	0.003	17,400	0.000	0.042 0.053

Omnibus:	0.404	Durbin-Watson:	1.872
Prob(Omnibus):	0.817	Jarque-Bera (JB):	0.551
Skew:	-0.062	Prob(JB):	0.759
Kurtosis:	2.774	Cond. No.	338.

Sales ~ Radio

Dep. Variable:	Sales	R-squared:	0.333
Model:	OLS	Adj. R-squared:	0.329
Method:	Least Squares	F-statistic:	97.69
Date:		Prob (F-statistic):	5.99e-19
Time:		Log-Likelihood:	-566.70
No. Observations:	198	AIC:	1137.
Df Residuals:	196	BIC:	1144.
Df Model:	1		
Covariance Type:	nonrobust		

Į.	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	9.3166	0.560	16.622	0.000	8.211 10.422
Radio	0.2016	0.020	9.884	0.000	0.161 0.242

Omnibus:	20.193	Durbin-Watson:	1.923
Prob(Omnibus):	0.000	Jarque-Bera (JB):	23.115
Skew:	-0.785	Prob(JB):	9.56e-06
Kurtosis:	3.582	Cond. No.	51.0

Sales ~ Newspaper

Dep. Variable:	Sales	R-squared:	0.048
Model:	OLS	Adj. R-squared:	0.043
Method:	Least Squares	F-statistic:	9.927
Date:		Prob (F-statistic):	0.00188
Time:		Log-Likelihood:	-601.84
No. Observations:	198	AIC:	1208.
Df Residuals:	196	BIC:	1214.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	12.3193	0.639	19.274	0.000	11.059 13.580
Newspaper	0.0558	0.018	3.151	0.002	0.021 0.091

Omnibus:	5.835	Durbin-Watson:	1.916
Prob(Omnibus):	0.054	Jarque-Bera (JB):	5.303
Skew:	0.333	Prob(JB):	0.0706
Kurtosis:	2.555	Cond. No.	63.9

q-q plots of residuals. Are they normally distributed?

Scatterplots of residuals against advertising budget. Are they randomly distributed?

$Sales \sim TV + Radio + Newspaper$

Dep. Variable:	Sales	R-squared:	0.895
Model:	OLS	Adj. R-squared:	0.894
Method:	Least Squares	F-statistic:	553.5
Date:	20	Prob (F-statistic):	8.35e-95
Time:		Log-Likelihood:	-383.24
No. Observations:	198	AIC:	774.5
Of Residuals:	194	BIC:	787.6
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	2.9523	0.318	9.280	0.000	2.325 3.580
TV	0.0457	0.001	32.293	0.000	0.043 0.048
Radio	0.1886	0.009	21.772	0.000	0.171 0.206
Newspaper	-0.0012	0.006	-0.187	0.852	-0.014 0.011

Omnibus:	59.593	Durbin-Watson:	2.041
Prob(Omnibus):	0.000	Jarque-Bera (JB):	147.654
Skew:	-1.324	Prob(JB):	8.66e-33
Kurtosis:	6.299	Cond. No.	457.

$Sales \sim TV + Radio$. Are we done yet?

Dep. Variable:	Sales	R-squared:	0.895
Model:	OLS	Adj. R-squared:	0.894
Method:	Least Squares	F-statistic:	834.4
Date:		Prob (F-statistic):	2.60e-96
Time:		Log-Likelihood:	-383.26
No. Observations:	198	AIC:	772.5
Df Residuals:	195	BIC:	782.4
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	2.9315	0.297	9.861	0.000	2.345 3.518
TV	0.0457	0.001	32.385	0.000	0.043 0.048
Radio	0.1880	0.008	23.182	0.000	0.172 0.204

Omnibus:	59.228	Durbin-Watson:	2.038
Prob(Omnibus):	0.000	Jarque-Bera (JB):	145.127
Skew:	-1.321	Prob(JB):	3.06e-32
Kurtosis:	6.257	Cond. No.	423.

Sales $\sim TV + Radio$. What do you observe? Are we done yet?

$Sales \sim TV + Radio$

$$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$$

- This model assumes that the effect on sales of increasing one media (e.g., *TV*) is independent of the amount spent on the other media (e.g., *Radio*)
- More specifically, the model states that the average effect on sales of a one-unit increase (\$1,000) in TV is always $\underbrace{.0457}_{\widehat{\beta}_1} \times \underbrace{.\$1,000}_{TV} = \$45.7$), regardless of the amount spend on Radio

Interaction effects

- But suppose that spending money on radio advertising actually increases the effectiveness of *TV* advertising
 - ► the slope term for *TV* should increase as *Radio* increases
- E.g., given a fixed budget of \$100,000, spending half on TV and half on radio may increase sales more than allocating the entire amount to either TV or radio
- This is known as a synergy effect in marketing; in statistics it is referred to as an interaction effect

Sales ~ TV + Radio + TV * Radio

Dep. Variable:	Sales	R-squared:	0.968
Model:	OLS	Adj. R-squared:	0.967
Method:	Least Squares	F-statistic:	1934.
Date:		Prob (F-statistic):	3.19e-144
Time:		Log-Likelihood:	-267.07
No. Observations:	198	AIC:	542.1
Df Residuals:	194	BIC:	555.3
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	6.7577	0.247	27.304	0.000	6.270 7.246
TV	0.0190	0.002	12.682	0.000	0.016 0.022
Radio	0.0276	0.009	3.089	0.002	0.010 0.045
TV:Radio	0.0011	5.27e-05	20.817	0.000	0.001 0.001

Omnibus:	126.182	Durbin-Watson:	2.241
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1151.060
Skew:	-2.306	Prob(JB):	1.12e-250
Kurtosis:	13.875	Cond. No.	1.78e+04

Interaction effects (cont.)

$$Sales = \underbrace{6.76}_{\widehat{\beta}'_0} + \underbrace{.0190}_{\widehat{\beta}'_1} \times TV + \underbrace{.0276}_{\widehat{\beta}'_2} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_3} \times TV \times Radio$$

- The interaction is important
 - β_3' is statistically significant
 - R^2 with this model went up to 96.8% up from 89.5% for the model without interaction. This that $1 \frac{1 .968}{1 .895} = .70 = 70\%$ of the unexplained variability in the previous model has been explained by the interaction term

Activity | Interaction effects

DIRECTIONS (10 minutes)

- 1. Our TV budget is \$50,000 that we consider increasing it by \$5,000. What would be the corresponding increase in sales based on different levels of radio budget?
 - a. Consider the model without interactions first

$$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$$

b. Then consider the model with interactions

$$Sales = \underbrace{6.76}_{\widehat{\beta}'_0} + \underbrace{.0190}_{\widehat{\beta}'_1} \times TV + \underbrace{.0276}_{\widehat{\beta}'_2} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_3} \times TV \times Radio$$

2. When finished, share your answers with your table

DELIVERABLE

Answers to the above questions

	Model without interactions	Model with interactions	
Radio budget	$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$	$Sales = \underbrace{6.76}_{\widehat{\beta}'_{0}} + \underbrace{.0190}_{\widehat{\beta}'_{1}} \times TV + \underbrace{.0276}_{\widehat{\beta}'_{2}} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_{3}} \times TV \times Radio$	
Formula			
\$15,000			
\$10,000			
\$5,000			

	Model without interactions	Model with interactions
Radio budget	$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$	$Sales = \underbrace{6.76}_{\widehat{\beta}'_{0}} + \underbrace{.0190}_{\widehat{\beta}'_{1}} \times TV + \underbrace{.0276}_{\widehat{\beta}'_{2}} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_{3}} \times TV \times Radio$
Formula	$\underbrace{.0457}_{\widehat{\beta}_1} \times \Delta TV$	
\$15,000		
\$10,000		
\$5,000		

		Model without interactions	Model with interactions	
	Radio budget	$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$	$Sales = \underbrace{6.76}_{\widehat{\beta}'_{0}} + \underbrace{.0190}_{\widehat{\beta}'_{1}} \times TV + \underbrace{.0276}_{\widehat{\beta}'_{2}} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_{3}} \times TV \times Radio$	
	Formula	$\underbrace{.0457}_{\widehat{\beta}_1} \times \Delta TV$		
	\$15,000	$.0457 \times 5 = .228 = 229		
•	\$10,000	\$229		
•	\$5,000	\$229		

		Model without interactions	Model with interactions	
F	Radio budget	$Sales = \underbrace{2.93}_{\widehat{\beta}_0} + \underbrace{.0457}_{\widehat{\beta}_1} \times TV + \underbrace{.188}_{\widehat{\beta}_2} \times Radio$	$Sales = \underbrace{6.76}_{\widehat{\beta}'_{0}} + \underbrace{.0190}_{\widehat{\beta}'_{1}} \times TV + \underbrace{.0276}_{\widehat{\beta}'_{2}} \times Radio + \underbrace{.0011}_{\widehat{\beta}'_{3}} \times TV \times Radio$	
	Formula	$\underbrace{.0457}_{\widehat{\beta}_1} \times \Delta TV$	$\left(\underbrace{.0190}_{\widehat{\beta}'_{1}} + \underbrace{.0011}_{\widehat{\beta}'_{3}} \times Radio\right) \times \Delta TV$	
	\$15,000	$.0457 \times 5 = .228 = 229	$(.0190 + .0011 \times 15) \times 5$ = $.178 = 178	
	\$10,000	\$229	$(.0190 + .0011 \times 10) \times 5$ = $.150 = 150	
	\$5,000	\$229	$(.0190 + .0011 \times 5) \times 5$ = $.123 = 123	

Hierarchy Principle

Sometimes an interaction term x_i ·
 x_j is significant, but one or both of its main effects (in this case x_i
 and/or x_j) are not

- The hierarchy principle
 - If we include an interaction in a model, we should also include the main effects, even if they aren't significant

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission