

Bringing it together Multimedia in IP

(Web view)

1

- Fundamental characteristics:
- . Classes of multimedia applications:
- → Typically delay sensitive Streaming stored
 - end-to-end delay
 - delay jitter

delay tolerant.

- But loss tolerant: infrequent losses cause
- **<u>Jitter</u>** is the variability of packet delays within the same packet stream, which are loss intolerant but
- audio and video
- Streaming live audio and video
- Real-time interactive audio and video

Streaming Stored Multimedia

- Application-level streaming techniques for making the best out of best effort service:
 - Client side buffering.
 - Use of UDP versus TCP.
 - Multiple encodings of multimedia.
- Multimedia Player
 - Jitter removal,
 - Decompression,
 - Error concealment,
 - Graphical user interface with controls for interactivity.
- Network
 - Close to client content (multi-content) buffering for faster interactivity
 - Only viable in network operator proprietary services.

11

- VCR-like functionality: client can pause, rewind, fast-foward, push slider bar.
 - 10 sec initial delay OK.
 - 1-2 sec until command effect OK.
 - Timing constraint for still-to-be transmitted data: in time for playout.

Streaming Live Multimedia

• Examples:

- **▶** Internet TV/radio show.
- Live sporting event.

Streaming

- Playback buffer.
- Playback can lag tens of seconds after transmission.
- Still have timing constraint.

• Interactivity

- Fast forward impossible.
- Rewind, pause possible!

13

- IP telephony, video conference, online-game multimedia actions, distributed interactive worlds.
- End-end delay requirements:
 - Audio: < 150 msec good, < 400 msec OK
 - Includes application-level (packetization) and network delays.
 - Higher delays noticeable, impair interactivity.
- Requires session initialization
 - Advertise its IP address, port number, encoding algorithms, required contents, available contents

DP Streaming vs. TCP Streaming

UDP

- Server sends at rate appropriate for client.
 - Often send rate = encoding rate = constant rate.
 - Then, fill rate = constant rate packet loss.
- Short playout delay (2-5 seconds) to compensate for network delay jitter.
- Error recover: time permitting.

• TCP

- Send at maximum possible rate under TCP.
- Fill rate fluctuates due to TCP congestion control.
- Larger playout delay: smooth TCP delivery rate.
- HTTP/TCP passes more easily through firewalls.

15

HTTP/TCP Streaming

- Multiple versions with distinct/complementary characteristics are generated for the same content
 - With different bitrates, resolutions, frame rates.
- Each version is divided into time segments.
 - e.g., two seconds.
- Each segment is provided on a web server and can be retrieved through standard HTTP GET requests.
- **.** Examples of protocols:
 - MPEG's Dynamic Adaptive Streaming over HTTP (DASH).
 - Standard ISO/IEC 23009-1. YouTube's default.
 - Adobe HTTP Dynamic Streaming (HDS).
 - Apple HTTP Live Streaming (HLS).
 - → Microsoft Smooth Streaming (MSS).

ser Control of Streaming Media: RTSP

- RTSP (Real Time Streaming Protocol): RFC 2326
 - Client-server application layer protocol.
 - For user to control display: rewind, fast forward, pause, resume, repositioning, etc...
- Does not define how audio/video is encapsulated for streaming over network.
- Does not restrict how streamed media is transported.
 - Can be transported over UDP or TCP.
- Does not specify how the media player buffers audio/video.
- . RTSP messages are also sent out-of-band:
 - RTSP control messages use different port numbers than the media stream: out-of-band
 - Port 554
 - The media stream is considered "in-band"

17

WebRTC

- Peer-to-peer connections.
 - An instance allows an application to establish peer-topeer communications with another instance in another browser, or to another endpoint implementing the required protocols.
- RTP Media.
 - Allow a web application to send and receive media stream over a peer-to-peer connection (discussed in a minute)
- Peer-to-peer Data
 - Allows a web application to send and receive generic application data over a peer-to-peer connection.
- Peer-to-peer DTMF.

23

CDNs

Everyone in the same network?

Overlay Networks: Overview

• Networks built using an existing network as substrate (Virtual Networks)

Internet

- Initially an overlay on the POTS (Plain Old Telephone System) network
- Overlays are a (quasi) structured virtual topology above the basic transport protocol level that facilitates deterministic search and guarantees convergence
 - Overlays could consist of routing software installed at selected sites, connected by encapsulation tunnels or direct links
- Examples of overlays:
 - MBone, 6Bone
 - P2P (Napster, FreeNet, Gnutella, Bittorrent)
 - Cooperating Caches
 - Server Farms
 - Content Distribution Networks (CDNs)

More about Web caching

- Proxy server acts as both client and server
- typically proxy server is installed by ISP (university, company, residential ISP)

Why Web caching?

- reduce response time for client request
- reduce traffic on an institution's access link.

31

Optimizing performance

- Where to cache content?
 - Popularity of Web objects is Zipf-like
 - a few elements that score *very* high (the left tail in the diagrams)
 - a medium number of elements with middle-of-the-road scores (the middle part of the diagram)
 - a huge number of elements that score very low (the right tail in the diagram)
 - Small number of sites cover large fraction of requests
- Given this observation, how should care replacement work?

AOL visitors to sites fit with $\alpha = 1$

37

- Integrating file caching in proxies
 - Optimized for 10KB objects
 - $-10GB = 1.000.000 \times 10KB$
- Memory pressure
 - Disk access is 1000 times slower
 - Working sets do not fit in memory
- Waste of resources
 - More servers needed
 - Provisioning is a must

Problems with Server farms and Caching proxies

- Server farms do nothing about problems due to network congestion, or to improve latency issues due to the network
- Caching proxies serve only their clients, not all users on the Internet
- Content providers (say, Web servers) cannot rely on existence and correct implementation of caching proxies
- Accounting issues with caching proxies.
 For instance, www.cnn.com needs to know the number of hits to the webpage for advertisements displayed on the webpage

Motivation

- IP based networks
- Web based applications have become the norm for corporate internal networks and many business-tobusiness interactions
- Large acceptance and explosive growth
 - Serious performance problems
 - Degraded user experience

For a large set of applications, including VIDEO access

- Improving the performance of networked applications
 - Use many sites at different points within the network
 - Stand alone servers
 - Routers

52

CDNs basics

- · What is a CDN?
 - A network of servers delivering content on behalf of an origin site
 - · A number of CDN companies well established now
 - E.g. Akamai, Digital Island, Speedera, CDN77, Cloudfare, Stackpat
 - Many companies are exploring CDNs
 - Avoid congested portions of the Internet
- Consist of
 - Edge servers deployed at several ISP (Internet Service Provider) access locations and network exchange points
- · Large-file service with no custom client, no custom server, no prepositioning
- Improve the response time of an Internet site
 - Offloading the delivery of bandwidth-intensive objects, such as images and video clips
- Intelligent Internet infrastructure that improves the performance and scalability of distributed applications by moving the bulk of their computation to servers located at the edge of the network
 - Applications are logically split into two components
 - Executed at an edge server close to the user
 - Executed on a traditional application server

Flash crowd solution: CDNs..

What is a CDN?

A network of servers delivering content on behalf of an origin site

Large-file service with

- No custom client
- No custom server
- No prepositioning
- No rehosting
- No manual provisoning

61

Piercia pileria Fra dia

Model

• Application offload (1st generation concern)

Content distribution networks

• Client attempts to access the main server site for an application

- It is redirected to one of the other sites
- Each site caches information
 - Avoid going to the main server to get the information/application
- Access a closelly located site
 - Avoid congestion on the path to the main server
- Set of sites used to improve the performance of web-based applications collectivelly
 - Content distribution network

63

Inside a CDN

- · Servers are deployed in clusters for reliability
 - Some may be offline
 - Could be due to failure
 - Also could be "suspended" (e.g., to save power or for upgrade)
- Could be multiple clusters per location (e.g., in multiple racks)
- Server locations
 - Well-connected points of presence (PoPs)
 - Inside of ISPs

Advantages

- Better scalability
- Higher availability
- Improved response time from a centrally managed solution
- Nodes constituting the distribution network are designed to be
 - Self-configuring
 - Self-managing
 - Self-diagnosing
 - Self-healing

to ensure easy management and operational convenience

65

Challenges

- Keep consistency among the enterprise data hosted by the offloaded applications
- Share session state among edge and origin application servers
- Distribution, configuration, and management
- Develop programming models consistent with current industry standards such as J2EE
- Application security.
- There is active research into general frameworks to be used to support distributed applications, as well as prototyping the ideas for specific application instances

With CDNs

- Overlay network to distribute content from origin servers to users
 - Avoids large amounts of same data repeatedly traversing potentially congested links on the Internet
 - · Reduces Web server load
 - Reduces user perceived latency
 - Tries to route around congested networks
- CDN is not a cache!
 - Caches are used by ISPs to reduce bandwidth consumption, CDNs are used by content providers to improve quality of service to end users
 - Caches are reactive, CDNs are proactive
 - Caching proxies cater to their users (web clients) and not to content providers (web servers), CDNs cater to the content providers (web servers) and clients
 - CDNs give control over the content to the content providers, caching proxies do not

CDN Components

Content Delivery Infrastructure: Delivering content from producer to clients by surrogates

- Request Routing Infrastructure: Steering or directing content request from a client to a suitable surrogate Origin Server
- Distribution
 Infrastructure: Moving or replicating content from content source (origin server, content provider) to surrogates
- Accounting Infrastructure: Logging and reporting of distribution and delivery activities

73

Mapping clients to servers

- CDNs need a way to send clients to the "best" server
 - The best server can change over time
 - And this depends on client location, network conditions, server load, ...
 - What existing technology can we use for this?
- DNS-based redirection
 - Clients request www.foo.com
 - DNS server directs client to one or more IPs based on request IP
 - Use short TTL to limit the effect of caching

DNS Redirection Considerations

- Advantages
 - Uses existing, scalable DNS infrastructure
 - URLs can stay essentially the same
- Limitations
 - DNS servers see only the DNS server IP
 - Assumes that client and DNS server are close. Is this accurate?
 - Content owner must give up control
 - Unicast addresses can limit reliability

Offloading a portal

- Portal servers allow users to access content and applications from a single access point
 - Users can create persistent, customized views of applications and content chosen from the set of applications and content by the portal administrators
- Portal server pages are personalized
- Often include dynamic content
- Significant amount of computation required for page assembly
 - Application offload

