یادگیری تقویتی مصد I مصنور

(Reinforcement Learning)

- 1. فرایند تصمیم مارکوف (Markov Decision Processes)
 - 2. الگوریتم تکرار مقدار (Value Iteration)
 - (Policy Iteration) الگوريتم تكرار سياست .3
 - (Reinforcement Learning) يادگيري تقويتي .4

سودمندی (Utility) یک دنباله از عملیات

سودمندی یک دنباله از عملیات

عامل باید کدام دنباله از پاداشها را ترجیح دهد؟

[1, 2, 2] or [2, 3, 4] °کمتریا بیشتر

[0, 0, 1] or [1, 0, 0] الأيا بعدا؟

کاهش پاداشها (discounting)

□منطقی است که عامل بخواهد مجموع پاداشها رو بیشینه کند.

□همین طور منطقی است که پاداشهای الان رو به پاداشهای آینده ترجیح دهد.

□یکی از راه حلها این است که ارزش پاداشها با گذشت زمان به صورت نمایی کاهش پیدا کند.

1

ارزش کنونی

 γ

ارزش پس از یک مرحله

 γ^2

ارزش پس از دو مرحله

كاهش ياداشها

- 🗖 چگونگی کاهش پاداشها
- هر بار که یک سطح پایین تر می رویم (یعنی یک گام جلوتر در زمان)، یکبار ضریب کاهش را در پاداش ضرب می کنیم.
 - \square چرا باید مقدار پاداش را کاهش دهیم؟
 - چون گرفتن پاداش در حال حاضر بهتر از گرفتن همان
 پاداش در آینده است.
 - همچنین می توان این طور نگاه کرد که در هر گام، با احتمال γ ممکن است فرآیند تمام شود.
- کاهش مقدار پاداش به همگرایی الگوریتمها کمک میکند
 - \Box مثال: ضریب کاهش پاداش= 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

كوئيز: كاهش پاداشها

10 1 a b c d e

- دادههای مسئله:
- اعمال: شرق، غرب و خروج (فقط در حالتهای a و قابل انجام است)
- با انجام یک عمل قطعا به حالت مشخصی می رویم (Transitions deterministic)

10 <- <- 1

کوئیز ۱: برای $\gamma = 1$ سیاست بهینه چیست؟

کوئیز۲: برای $\gamma = 0.1$ سیاست بهینه چیست؟

10 <- <- -> 1

کوئیز γ : در حالت γ ، γ چه مقداری باشد تا به سمت شرق یا غرب حرکت شود سودمندی یکسان باشد؟

1=10
$$\gamma^2$$
 \longrightarrow $\gamma = \sqrt{\frac{1}{10}} \approx 0.316$

سودمندي نامتناهي؟!

□مسئله: اگر بازی تا ابد ادامه پیدا کند، آیا پاداش بینهایت دریافت خواهیم کرد؟

■ راهحلها:

- 1. افق متناهی
- مشابه جستجوی عمقی محدود
- عامل فقط براى تعداد مشخصى از مراحل (مثلاً 100 مرحله) تصميم گيرى مى كند.
 - $0 < \gamma < 1$ استفاده از ضریب کاهش پاداش: 1 > γ

$$U([r_0,\dots r_\infty])=\sum_{t=0}^\infty \gamma^t r_t \leq R_{\mathsf{max}}/(1-\gamma)$$
 ضریب γ کوچکتر = افق محدودتر = تمرکز بر پاداشهای نزدیکتر •

$$\gamma$$
 سری هندسی با قدر نسبت : $1+\gamma+\gamma^2+\cdots=rac{1}{1-\gamma}$

- 3. اطمینان حاصل می کنیم که تحت هر سیاستی، در نهایت به یک حالت پایانی خواهیم رسید.
 - مانند حالت «جوش» در مسابقهی اتومبیل رانی

s, a, s' s, a

مرور: فرایند تصمیم مارکوف

یک MDP به صورت زیر تعریف می شود: \Box

- یک مجموعه از حالتها S
- یک مجموعه از اعمال A
- (γ یک تابع پاداش (γ یک تابع پاداش (γ یک تابع پاداش γ
 - \mathbf{s}_0 يک حالت شروع lacktriangle

دو کمیت مهم MDP تا اینجا: \Box

- سیاست (Policy): انتخاب یک عمل برای هر حالت
- سودمندی (Utility): مجموع (کاهش یافته) پاداشها

حل مسائل MDP

كميتهاي بهينه

ارزش (یا سودمندی) یک حالت s

. و بهینه عمل کردن s سودمندی مورد انتظار با شروع از v

q ارزش (یا سودمندی) یک حالت

a و انتخاب عمل a و انتخاب عمل a و انتخاب عمل a و انتخاب عمل a بهینه عمل کردن

سیاست بهینه

s عمل بهینه در حالت = $\pi^*(s)$

V* Values

Q* Values

محاسبه *V و *Q

□تعریف بازگشتی *۷:

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]^{s'}$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

ارزشهای با زمان محدود

□ایده ی کلیدی: ارزشهای با زمان محدود!

k=0

○ ○ ○ Gridworld Display				
	0.00	0.00	0.00	0.00
	0.00		0.00	0.00
	0.00	0.00	0.00	0.00
VALUES AFTER 0 ITERATIONS				

k=1

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

For action = right

$$V^{(2)}(s) = 0.8 \cdot (0 + 0.9 \cdot 1.00) + 0.1 \cdot (0 + 0.9 \cdot 0.00) + 0.1 \cdot (0 + 0.9 \cdot 0.00) = 0.72$$

k=2

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

For action = right

 $V^{(3)}(s) = 0.8 \cdot (0 + 0.9 \cdot 1.00) + 0.1 \cdot (0 + 0.9 \cdot 0.72) + 0.1 \cdot (0 + 0.9 \cdot 0.00) = 0.7848$

k=3

k=4

k=5

k=7

k=8

k=9

$$k=10$$

k=11

k=12

k = 100

محاسبهی ارزشهای با زمان محدود

