Prøveeksamen i MAT 1100, H-03

Denne prøveeksamenen har samme format som den virkelige eksamenen og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen består av 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 10 poeng. Den totale poengsummen er altså 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet frem til resultatene dine. Svar som ikke er begrunnet, får 0 poeng selv om de er riktige!

KALKULATOR ER ENESTE TILLATTE HJELPEMIDDEL PÅ EKSAMEN. FORMELARKET VIL BLI DELT UT SAMMEN MED OPPGAVESETTET!

DEL 1: FLERVALGSOPPGAVER

1.	Integralet $\int \frac{\cos x}{1+\sin^2 x} dx$ er lik:
	$\ln(1+\sin^2x)+C$
	$\cot(1+\sin^2 x) + C$
	$\arctan(\sin x) + C$
	$\arccos(\sin x) + C$
	$-\frac{1}{1+\sin x} + C$
2.	Hvis $a > 0$ er en konstant, så er $\int_0^2 x^{a-1} e^{x^a} dx$ lik:
	$\frac{1}{a}(e^{2^a}-1)$
	$\frac{1}{a} \left(e^{2^a} - 1 \right) \\ 2^a e^{2^a}$
	$\frac{1}{2}(e^{2a}-1)$
	integralet divergerer
	integralet divergerer $\frac{e^{2^a}}{a}$
	Dersom vi skal bruke delbrøkoppspalting på uttrykket $\frac{x^2+4x+5}{(x+1)(x^2+2x+5)^2}$,
	r vi sette det lik:
	$\frac{Ax+B}{x+1} + \frac{Bx+C}{x^2+2x+5}$
	$\frac{Ax+B}{x+1} + \frac{Bx+C}{x^2+2x+5}$ $\frac{A}{x+1} + \frac{Bx+C}{x^2+2x+5}$
	$\frac{A}{x+1} + \frac{Bx+C}{(x^2+2x+5)^2}$
	$\frac{A}{x+1} + \frac{Bx+C}{(x^2+2x+5)^2}$ $\frac{A}{x+1} + \frac{B}{x^2+2x+5} + \frac{C}{(x^2+2x+5)^2}$ $\frac{A}{x+1} + \frac{Bx+C}{x^2+2x+5} + \frac{Dx+E}{(x^2+2x+5)^2}$
	$\frac{A}{x+1} + \frac{Bx+C}{x^2+2x+5} + \frac{Dx+E}{(x^2+2x+5)^2}$

$ \Box \int_{1}^{9} 2(u-1) \arctan u $ $ \Box \int_{2}^{4} \arctan u \ du $ $ \Box \int_{1}^{4} 2(u-1) \arctan u $ $ \Box \int_{1}^{9} \arctan u \ du $ $ \Box \int_{2}^{4} \frac{1}{2\sqrt{u}} \arctan u \ du $	$\ln u \ du$
5. Det uegentlige int □ divergerer □ konvergerer og et □ konvergerer og et □ konvergerer og et □ konvergerer og et	r lik $\frac{\pi}{2}$ r lik 2 r lik $\sqrt{5}$
	funksjonen $F(x) = \int_0^{\sqrt{x}} e^{t^2} dt$, $x > 0$, er lik: ordi integralet ikke lar seg regne ut
7. Gradienten til $f(x)$	$(x^{xy}, 2xe^{-xy} - x^3e^{-xy})$ $(x^{xy}, -x^3e^{-xy})$
8. Når $f(x,y) = 2xy$ $f'(\mathbf{a}, \mathbf{r})$ lik: $\frac{1}{2}$	$\mathbf{r}+y^2,\mathbf{a}=(1,2)$ og $\mathbf{r}=(3,-1)$ er den retningsderiverte
9. Når vi står i punk i retningen: □ (1,2) □ (-18,4) □ (3,-4) □ (-21,4) □ (-7,1)	tet (1,-3), stiger funksjonen $f(x,y) = 3x^2y + xy$ raskest

10. Grenseverdien $\lim_{(x,y)\to(0,0)}\frac{x^2+3xy}{\sqrt{x^2+y^2}}$ er lik: \square 0 \square 2 \square ∞ \square eksisterer ikke fordi vi får forskjellige svar når vi nærmer oss 0 fra forskjellige retninger \square $-\frac{1}{2}$

DEL 2

Husk at i denne delen må alle svar begrunnes!

Oppgave I. Finn kvadratrøttene til det komplekse tallet $z = -2 + 2i\sqrt{3}$.

Oppgave II. Løs integralet $\int x \ln(x+1) dx$.

Oppgave III. Funksjonen f er gitt ved $f(x,y) = x^3 + 5x^2 + 3y^2 - 6xy$.

- a) Finn de stasjonære punktene til f.
- b) Avgjør om de stasjonære punktene er lokale maksimumspunkter, lokale minimumspunkter eller sadelpunkter.

Oppgave IV.

- a) La a være et tall mellom 0 og 5. Området avgrenset av x-aksen, y-aksen, grafen til funksjonen $f(x) = \sqrt{25 x^2}$ og linjen x = a dreies om x-aksen. Finn volumet til omdreiningslegemet uttrykt ved a.
- b) En kuleformet tank med radius 5 meter tømmes for vann. Når vanndybden i tanken er 2 meter, tømmes tanken med en fart på 0.5 kubikkmeter i minuttet. Hvor fort avtar vanndybden ved dette tidspunktet?

Oppgave V. En funksjon f av én variabel kalles en Lipschitz-funksjon på intervallet I dersom det finnes et tall K slik at $|f(x) - f(y)| \le K|x - y|$ for alle $x, y \in I$. Vis først at dersom f er en Lipschitz-funksjon på intervallet I, så er f kontinuerlig på I. Vis deretter følgende påstand:

"Dersom den deriverte g' er kontinuerlig på et lukket, begrenset intervall I, så er g en Lipschitz-funksjon på I."

LYKKE TIL!