Predicting California House Prices

May 13, 2024

```
[2]: import tensorflow as tf import pandas as pd
```

0.1 The Data

Import the cal_housing_clean.csv file with pandas. Separate it into a training (70%) and testing set(30%).

[3]:	${\tt housing Median Age}$	totalRooms	totalBedrooms	population	households	\
0	41.0	880.0	129.0	322.0	126.0	
1	21.0	7099.0	1106.0	2401.0	1138.0	
2	52.0	1467.0	190.0	496.0	177.0	
3	52.0	1274.0	235.0	558.0	219.0	
4	52.0	1627 0	280 0	565 0	259 0	

```
medianIncomemedianHouseValue08.3252452600.018.3014358500.027.2574352100.035.6431341300.043.8462342200.0
```

Separate your features and target data (medianHouseValue) into training and testing sets, with 33% reserved for testing.

0.2 Scale the Feature Data

Use sklearn preprocessing to create a MinMaxScaler for the feature data. Fit this scaler only to the training data. Then use it to transform X_test and X_train.

```
[5]: from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler().fit(X_train)
    X_train = scaler.transform(X_train)
    X_test = scaler.transform(X_test)
```

0.3 Fit a Densely Connected Neural Network to the Training Data

Construct a Densely Connected Neural Network with 3 hidden layers, each having 6 neurons to predict the Median House Value.

[7]: <keras.src.callbacks.history.History at 0x109cf9650>

0.4 Compute the RMSE on the Test Data

```
[8]: mse = model.evaluate(X_test, y_test, verbose=0)
print("Root Mean Squared Error on Test Data:", mse**0.5)
```

Root Mean Squared Error on Test Data: 115438.0119024925

```
[]:
```