

Lagrange Interpolation

- Fit (or interpolate) a curve through a given set of points.
- Polynomials p(x) passing through $(x_1, y_1), \dots, (x_k, y_k)$.

Aim: Search for p(x) with the lowest degree such that $p(x_i) = y_i^{-1}$

$$k = 1$$
: $p(x) = y_1$ (degree 0)
graph of $p(x)$ is a horizontal line

k = 2: (x, p(x)) defines a line through (x_1, y_1) and (x_2, y_2)

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \implies y = y_1 \frac{x - x_2}{x_1 - x_2} + y_2 \frac{x - x_1}{x_2 - x_1}$$

Set p(x) = y (degree at most 1)

¹It is assumed that the x_i 's are distinct.

k = 3: If (x_i, y_i) 's are collinear, then p(x) is of degree 1 graph of p(x) is a line

k = 3: In general p(x) is of degree 2 graph of p(x) is a parabola

Setup of the problem: Given $a_0 < a_1 < \cdots < a_n$ and $b_0 \dots, b_n$, find

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

such that $p(a_i) = b_i$.

First Proof: The equations $p(a_i) = b_i$ can be written as

$$c_0 + c_1 a_i + c_2 a_i^2 + \dots + c_n a_i^n = b_i$$

Rewrite these as

$$\begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & & \ddots & & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix}$$

The $(n+1) \times (n+1)$ matrix² has non-zero determinant as the a_j 's are distinct. There are unique scalars c_j 's satisfying our need.

Consider the evaluation map

ev:
$$P_n(\mathbb{R}) \to \mathbb{R}^{n+1}, \ q(x) \mapsto (q(a_0), q(a_1), \dots, q(a_n)).$$

This is a linear map between vector spaces of dimension n + 1.

By Rank-Nullity Theorem, ev is one-to-one if and only if it is onto.

Second Proof (constructive): We show that ev is onto. This ensures that there is a unique polynomial of degree at most n for our purposes. Suppose we have $p_i(x) \in P_n(\mathbb{R})$ such that

$$p_j(a_i) = \delta_{ij}.$$

²It is often called a Vandermonde matrix.

The polynomial

$$p(x) = b_0 p_0(x) + \dots + b_n p_n(x)$$

is the required polynomial. To construct p_i , consider

$$p_{j}(x) = \frac{(x - a_{0}) \cdots (x - a_{j-1})(x - a_{j+1}) \cdots (x - a_{n})}{(a_{j} - a_{0}) \cdots (a_{j} - a_{j-1})(a_{j} - a_{j+1}) \cdots (a_{j} - a_{n})}$$

Each p_j has degree n. Thus, degree of p is at most n.

The p_i 's form a basis of $P_n(\mathbb{R})$.

The cover graph is that of the cubic satisfying

$$p(1) = 2$$
, $p(2) = 1$, $p(3) = 4$, $p(4) = 3$.

Figure: The interpolating cubic $p(x) = -\frac{4}{3}x^3 + 10x^2 - \frac{65}{3}x + 15$

Third Proof (existential): We show that ev is one-to-one. This ensures that there is a unique polynomial of degree at most n for our purposes. If ev(p) = ev(q), then p-q has n+1 distinct roots (a_0, \ldots, a_n) while its degree is at most n. This is possible only when p=q.