Chapter 2, Adam P. and Josh F.

Theories

► What is a Theory?

- Uses First Order Logic(Variables, Logical symbols, Nonlogical symbols, Syntax) as a generic syntactic framework
- ► Each theory has its own restriction on Nonlogical symbols
- ► INTERPRETATION of Nonlogical symbols is also important
- ► Most of the theories we will see in this book are "quantifier-free", and the logical axioms(restrictions on the interpretation of logical symbols) are built-in: common to all FO theories

Theory 1: Propositional Logic

- ► Simple syntax: Or, Not, (), atom
- ► Three atoms: Boolean-identifiers, TRUE, FALSE
- ► Many applications: database queries, planning problems in Al, automated reasoning, circuit design, etc.

Motivation

- ► *n* radio stations
- ▶ k transmission frequencies, k < n</p>
- ► Two stations that are too close together cannot have the same frequency(call this set *E*)

Motivation

- Every station is assigned at least one frequency
- Every station is assigned not more than one frequency
- ► Close stations are not assigned the same frequency

Motivation - Discussion

- ► Example Consider three persons, *A*, *B*, and *C* who must be seated in a row, with the following constraints: *A* won't sit next to *C*, *A* won't sit it the left chair and *B* won't sit to the right of *C*. Write a propositional formula that is satisfiable *iff* there is a seat assignment which satisfies all constraints.
- ► **Example 2** Given the following programs, show they are equivalent:

```
!(a||b)?h :!(a == b)?f : g
!(!a||!b)?g : (!a\&\&!b)?h : f
```


SAT Solvers

- ▶ Given a Boolean formula β , a SAT solver decides whether β is satisfiable. If so, reports satisfying assignment
- ► REMEMBER: For this chapter, all inputs are in CNF
- ► Vast improvement of SAT solvers in recent years: learn from wrong assignments, prune large search spaces quickly, and focusing on "important" variables first

SAT Solvers

► DPLL framework

- Traversing and backtracking on a binary tree
- Internal nodes represent partial assignments, leaves represent full assignments
- Complete(terminates AND returns "Valid" when input formula is valid)

► Stochastic search framework

- Solver guesses a full assignment
- ► If the formula is evaluated to FALSE under this assignment, starts to flip values of variables according to some (greedy) heuristic
- ► Most are incomplete

DPLL-Definitions

- ► decision- assign a value to a variable
- ► **decision level-** depth in the binary decision tree in which a decision is made, starting from 1.
- ▶ ground level- decision level 0; clauses with a single literal
- satisfied clause- one or more of its literals are satisfied
- conflicting clause- all of its literals are assigned but not satisfied
- unit clause- not satisfied and all but one of its literals are assigned
- ► unresolved clause- otherwise

DPLL-Definitions

- unit clause rule- Given a partial assignment under which a clause becomes unit, it must be extended so that it satisfies the unassigned literal
- ► For a given unit clause *C* with an unassigned literal *I*, we say that "*C* implies *I*" and that *C* is the antecedent clause of *I*, denoted by *Antecedent(I)*.
- ▶ If more than one unit clause implies *I*, we refer to the clause that the **SAT solver used** in order to imply *I* as its antecedent
- ► High level diagrams on pg. 30

BCP

- ▶ Repeated application of unit clause rule until either a conflict or no more implications possible
- ► Best visualized(and modeled) with an **implication graph**
- ► A partial implication graph is a subgraph which illustrates the BCP at a specific decision level

BCP

- After reaching a conflict node k, the ANALYZE-CONFLICT function chooses a "smart" conflict clause to add to the list of formula constraints
- Most competitive solvers design ANALYZE-CONFLICT to generate asserting clauses only.
- ► ANALYZE-CONFLICT also choses the decision level to backtrack to. According to conflict-driven backtracking strategy, choose the second most recent decision level in the conflict clause

BCP

- ▶ Is this process guaranteed to terminate?
- ► Yes. It is never the case that the solver enters decision level DL again with the same partial assignment (See node x1 in figures on pg. 33)

Chapter 3, Adam P. and Paul K.

Theory 2: Equality Logic(and Uninterpreted Functions)

- ▶
- ▶
- ▶

References

D. Kroening and O. Strichman, Decision Procedures: An Algorithmic Point of View, Springer, 2008. ISBN: 978-3-540-74104-6

