Approximate Computation with Topaz

Sara Achour and Martin Rinard MIT EECS & CSAIL

The world contains a lot of approximate hardware

What is approximate hardware?

- Hardware that crashes often
- Sometimes produces wildly inaccurate results,
- Often produces slightly inaccurate results

Approximate hardware exists today

- Manufacturing defects
- Old machines
- Aggressive operating conditions
- Relaxed hardware mechanisms
- Emerging hardware technologies

Approximation is a hardware design point

Energy and performance savings

Why is using approximate hardware hard?

- Prior techniques require error model
 - Assumptions on fault characteristics
 - Narrow applicability
- In the wild, hardware faults can be complex
 - Correlated with other faults
 - Dependent on hardware state
 - Yield small errors, large errors or crashes
- Fault characteristics of future hardware unknown
- Need system that generalizes broadly across many approximate computing platforms.

Topaz

- Topaz is a enables the deployment of programs on approximate hardware with no hardware specification
 - Operates on <u>hardware</u> with *complex* fault characteristics
 - Targets <u>programs</u> that are robust and tolerant of error

Topaz: Key Features

- Computational Model and Language
 Ensures computation runs to completion
- Outlier Detection
 Computation yields an acceptable result
- Optimizations
 Savings from using approximate hardware

Topaz: Computational Model

- Task: approximateable, self contained unit of work
- Precise and approximate machine
- Precise machine:
 - Executes main computation
 - Dispatch tasks
 - Integrates results into state
 - Reexecutes failed tasks
- Approximate machine:
 - Performs task computation
 - returns a task result

Topaz: Taskset Construct

```
taskset name(int i = I; i < u; i++) {
  compute in   (d1 x1 = e1, ..., dn xn = en)
      out (o1 y1, ..., oj yj) {
      <task body>
    }
  combine { <combine body> }
}
```

- Taskset: a set of u tasks, where i refers to its task
- Compute: the task definition. Comprised of n inputs and j outputs
 - The kth input: has name xk, type dk and is assigned to expression ek
 - The kth result: has name vk, type ok
 - The \(\task\) body\> describes the task computation
- Combine: the routine for integrating the task into the main computation.

- Computation: find the pose that best fits the person in each camera frame
- <u>Target Routine</u>: compute the weight for all poses, given an image
 - <u>Task</u>: compute the weight of one pose, given image
 - Integration: write computed weight to global weight array

Pose is good fit

weight = 1.03

Pose is bad fit

weight = 0.12

```
// computes the weights for each valid pose.
taskset calcweights(i=0; i<particles.size(); i+=1){
  compute in (
     float tpart[P_SIZE] = (float*) particles[i],
     float tmodel[M_SIZE] = (float*) mdl_prim,
     char timg[I_SIZE] = (char *) img_prim,
     int nCams = mModel->NCameras(),
     int nBits = mModel->getBytesPerPixel(),
     int width = mModel->getWidth(),
     int height =mModel->getHeight()
    out (float tweight) {
       tweight = CalcWeight(tpart,
           tmodel, timg, nCams, width, height, nBits);
  } combine {
       mWeights[i] = tweight;
```


Basic Outlier Detection: Overview

- Outlier Detection
- Precise machine performs outlier detection on result tuple
 - On accept:
 - Integrate task result
 - On reject:
 - Reexecute task on reliable hardware
 - Train outlier detector
 - Integrate task result

Testing results using outlier detection

Algorithm

Given result tuple of n elements

In acceptance region:

Accept

Otherwise:

Reject

Model: Acceptance Region

- N-dim hyper rectangle
- Result tuple distribution
- Dim: min, max of an element

Training the outlier detector

The Training Process

- Online learning
- "Learn from failure"
- Use reexecuted task results

Algorithm

If test(x) = reject:

Reexecute task to obtain x'
Update r to include x'
Integrate x'

Otherwise:

Integrate x

Receive Task Result for Task 1

Reject task result for task 1

Reexecute task result for task 1

Training: Expand acceptance region to include result for task 1

Receive task result for task 2

Reject task result for task 2

Reexecute task result for task 2

Training: expand acceptance region to include result for task 2

Receive task result for task 3

Accept task result for task 3

Receive task result for task 4

Reject task result for task 4

Reexecute task result for task 4

Outlier detection: possible outcomes

Correct result accepted

Error rejected

Correct result rejected

Incurs overhead

Error accepted

Error integrated into main computation

The basic outlier detector catches obvious task errors outside the result envelope

But, it **cannot** catch errors **between** the modes of a multimodal result distribution

Multi-region outlier detection

Multiple regions

- N: maximum number
- R: set of hyperrectangle regions.

Algorithm

Given result tuple x:

If exists r in R s.t. x in r:

Accept

Otherwise

Reject

Training the outlier detector

Algorithm: given rejected, reexecuted result x'

If dne r in R s.t. x' in r:

Create region r' where x' in r'

Add r' to R

If IRI > N

Find two close regions r1,r2

Merge r1 and r2

Training on Reexecuted Result (N=2)

create

find

merge

The multi-region outlier detector catches errors multimodal distributions

But, it **does not** catch errors in distributions that are **sparse** or **dynamic**

Adaptive Outlier Detection

Adaptive Outlier Detector

- Vt: target rejection rate
- **Va**: actual rejection rate
- C: control system
- COM(r): center of mass of region r
- Unlearn if we can reject more tasks

Contract Algorithm

Update COM(r) where x in r, r in R

Update Va, C

If Va < Vt:

get factor f from C

Contract all r in R by f

Adaptive Outlier Detection: PID Control System

$$K_t \cdot e + K_d \cdot e' + K_i \cdot \int e$$

- Proportional-integral-derivative (PID) control
- Error "value" (e): difference between measured (m), desired (d) value
 - measured value: Va, actual reexecution rate
 - <u>desired value</u>: Vt, target reexecution rate

Pass <u>result</u> from <u>rejected</u> and <u>reexecuted</u> task into contraction routine

Update center of mass of region

Update Va to reflect rejected task. update C.

Va < Vt: shrink the region by 19% about center of mass

$$C(Va,Vt) = 0.19$$

Va: 3.8% tasks rejected

Vt: 7% tasks rejected

Region successfully contracted

$$C(Va,Vt) = 0.19$$

Va: 3.8% tasks rejected Vt: 7% tasks rejected

Topaz mitigates **crashes** *Language & computational model*

Topaz corrects **unacceptable** task results

Outlier detection

Optimization 1: Stable Data

- Stable Data
 - data that is unchanged for all tasks in taskset
- Optimization: selectively send stable data
- Reduce overhead if task contains large unchanging inputs

```
// computes the weights for each valid pose.
taskset calcweights(i=0; i<particles.size(); i+=1){
  compute in (
   float tpart[P_SIZE] = (float*) particles[i],
   const float tmodel[M_SIZE] = (float*) mdl_prim,
   const char timg[I_SIZE] = (char *) img_prim,
   const int nCams = mModel->NCameras(),
   const int nBits = mModel->getBytesPerPixel(),
   const int width = mModel->getWidth(),
   const int height =mModel->getHeight()
  ) out (float tweight) {
       tweight = CalcWeight(tpart,
           tmodel, timg, nCams, width, height, nBits);
     const stable data annotation for
                     inputs
```

Optimization 2: Abstract Output Vector (AOV)

- Abstract output vector (AOV)
 - Programmer defined result tuple abstraction.
- Optimization: perform detection on smaller AOV.
- Aside: handle input dependence using AOV
- Reduces outlier detector overhead if AOV smaller than result tuple

```
taskset name(int i = I; i < u; i++) {
  compute in (d1 x1 = e1, ..., dn xn = en)
      out (o1 y1, ..., oj yj) {
      <task body>
  }
  transform out (v1, ..., vk) {
      <output abstraction>
  }
  combine { <combine body> }
}
```

Does Topaz perform well in **practice**?

Experimental Setup

- Hardware Model
- No-refresh DRAM
 Protections removed
 - Bit, time dependent errors
- Dual-voltage L1, L2 caches
 Aggressive conditions
 - Per-read / per-write errors
- Benefit: saves energy

- Benchmarks
- Barnes: planet simulation
- Bodytrack: machine vision
- Water: water simulation
- Blackscholes: financial analysis
- Streamcluster: k-means clustering

Question: What sorts of energy savings do we observe with this system

Energy savings

			Detect &	Full	
Benchmarks	Model	Baseline	Reexecute	Topaz	
barnes	basic	asic 17.47% 14.77%		13.02%	
blackscholes	basic	16.20%	14.62%	9.94%	
bodytrack	basic	12.70%	8.60%	7.69%	
streamcluster	basic	16.87%	15.62%	11.03%	
water	basic	18.41%	15.12%	12.43%	
barnes	ddep	17.47%	14.76%	13.02%	
blackscholes	ddep	16.02%	14.41%	9.70%	
bodytrack	ddep	12.88%	6.51%	5.02%	
streamcluster	ddep	16.89%	15.58%	11.03%	
water	ddep	18.41%	15.37%	12.82%	

Table 4: Energy Savings, basic andddep Hardware Models

Energy savings

Question: Are the end-to-end results acceptable?

Expected Result

Approximate Result with Outlier Detection

Approximate Result without Outlier Detection

Quantitative Analysis of Final Result Quality

		No Outlier	Outlier	
Benchmark	Model	Detector	Detector	
barnes	basic	inf	0.158229%	
blackscholes	basic	inf	0.135584%	
bodytrack	basic	73.6327%	0.161024%	
streamcluster	basic	0.6219	0.6344	
water	basic	nan	0.000469%	
barnes	ddep	inf	0.075927%	
blackscholes	ddep	inf	0.025791%	
bodytrack	ddep	73.6327%	0.317984%	
streamcluster	ddep	0.6321	0.6344	
water	ddep	nan	0.000383%	

Table 2: End-to-End Output Quality

Question: Is the outlier detector adequately detecting outliers?

Quantitative Outlier Detector Efficacy

	Hardware	Correct	Correct	Error	Error	Rejection	Errors
Benchmark	Model	Accepted (%)	Rejected (%)	Accepted (%)	Rejected (%)	Accuracy (%)	Detected (%)
barnes	basic	94.48%	0.19%	2.94%	2.38%	92.58%	44.74%
bodytrack	basic	87.58%	0.16%	7.67%	4.58%	96.62%	37.39%
water-interf	basic	95.30%	0.32%	1.71%	2.67%	89.37%	60.96%
water-poteng	basic	99.51%	0.26%	0.02%	0.20%	43.59%	89.47%
blackscholes	basic	98.57%	0.04%	1.06%	0.33%	90.00%	24.06%
streamcluster	basic	98.34%	0.14%	0.37%	1.15%	89.15%	75.66%
barnes	ddep	94.22%	0.20%	3.11%	2.47%	92.59%	44.26%
bodytrack	ddep	77.34%	0.15%	16.04%	6.46%	97.67%	28.71%
water-interf	ddep	95.44%	0.33%	1.62%	2.61%	88.81%	61.71%
water-poteng	ddep	99.49%	0.26%	0.04%	0.21%	44.54%	85.48%
blackscholes	ddep	98.70%	0.04%	0.94%	0.33%	89.80%	25.88%
streamcluster	ddep	62.24%	0.11%	36.68%	0.98%	89.90%	2.59%

Table 3: Overall Outlier Detector Effectiveness

- Some tasks are rejected: 0.5-7% tasks rejected
- Most rejections are errors: 87%-98% rejections are errors
- Some errors are undetected: 2%-90% errors are rejected

Qualitative Error Characteristics and Detection

Blackscholes: 24% of errors detected

Qualitative Error Characteristics and Detection

barnes
water
bodytrack
blackscholes
streamcluster

Question: Is the adaptive outlier detector behaving as expected?

Quantitative Efficacy of Adaptive Outlier Detector

(a) Actual Reexecution Rate

1% target reexecution rate

2% target reexecution rate

4% target reexecution rate

8% target reexecution rate

16% target reexecution rate

Conclusion

- Topaz is an important result for approximate computing:
 - Programs are not tied to a specific approximate hardware model
 - Approximate hardware models are changing rapidly and specific to physical hardware

Questions?

Backup Slide

Key goals

- 1. Computation runs to completion
- 2. Computation yields an acceptable result
- 3. Savings from using approximate hardware

Optimization 1: Stable Data

- Stable Data: Data that is unchanged for all tasks in taskset
 - e.g. images, data structures
- Optimization: Selectively send stable data
 - with first task in taskset
 - with task following approximate machine crash
 - with task following n rejected errors
- Reduce overhead if task contains large unchanging inputs

```
// computes the weights for each valid pose.
taskset calcweights(i=0; i<particles.size(); i+=1){
  compute in (
   float tpart[P_SIZE] = (float*) particles[i],
   const float tmodel[M_SIZE] = (float*) mdl_prim,
   const char timg[I_SIZE] = (char *) img_prim,
   const int nCams = mModel->NCameras(),
   const int nBits = mModel->getBytesPerPixel(),
   const int width = mModel->getWidth(),
   const int height =mModel->getHeight()
  ) out (float tweight) {
      tweight = CalcWeight(tpart,
           tmodel, timg, nCams, width, height, nBits);
     const stable data annotation for
                      inputs
```

Optimization 2: Abstract Output Vector (AOV)

- Abstract Output Vector

 (AOV): Programmer defined result tuple abstraction.
- **Optimization**: Outlier detector performs detection on AOV.
 - AOV smaller than result tuple
 - lower dimensionality outlier detection
- Aside: Handle input dependence using AOV
- Reduces outlier detector overhead if AOV smaller than result tuple

AOV: Two Examples

```
transform out(float ea, float ev,float ephi)
{
  ephi=ev=ea=0; int k=0;
  for(int b=0; b < BATCH; b++){
    for(int d=0; d < NDIMS; d++, k++){
      ev += square(vel[k]);
      ea += square(acc[k]);
    }
  ephi += phi[b];
}</pre>
```

```
transform out (bweight, bp1, bp2, bp3) {
    bweight = tweight;
    bp1=tpart[3]; bp2=tpart[4]; bp3=tpart[5];
}
```

transform block for water simulation reduces output dimensionality

transform block for bodytrack accounts for input dependence

The world contains a lot of **approximate** hardware

- Hardware with manufacturing defects
- Older, heavily used machines
- Hardware in aggressive conditions
- Hardware with protections removed
- Novel hardware created from immature fabrication processes
- Hardware intentionally engineered to occasionally produce errors for energy and performance savings

Key Question

Can we use approximate hardware?

Key Question

Can we use approximate hardware?

Yes!

How Can we Use Approximate Hardware?

- Just Use It: crashes, unacceptable results
- Static Analysis: statically derive probabilistic error bounds
 - requires hardware specification / fault model
 - fine grain control over approximate hardware faults
 - no runtime overhead and probabilistic guarantee
- Dynamic Systems: adjust to faults that occur during runtime
 - weaker guarantees and runtime overhead
 - adaptive, robust

When is it acceptable for approximations to occur?

- forgiving and critical code and data
- if an error occurs in code or data:
 - critical: program failure
 - forgiving: different answer
- target programs that spend most of computation in forgiving regions

