Análise de dados com Pvtho cdiv class="column">

cform action="|search.html" id="sear

ue="Search">K | fol

"round"><input type="text" name="q

"Type text to find" kinput type="

e Machine Learning

Rafael Silva Pinto

Análise de dados!

- Busca por redução de custos, aumento de receita e entendimento de problemas.
- Atualmente, uma das áreas de maior destaque dentro das empresas
- Poucos profissionais que realmente sabem aplicar na prática
- Você pode:
 - Entender o real problema de uma empresa
 - Definir setores e produtos que geram maior receita ou menor
 - Identificar defeitos
 - Direcionar ações
 - E muito mais

Análise de dados!

Excel

BI

Python + ML

O que você vai aprender

- Instalação do Python
- Começar com Python
- Definição de um caso de estudo
- Leitura de bases
- Tratamento dos dados
- Análise de dados, gráficos e buscar respostas
- Introdução a Machine Learning
- Técnicas de Machine Learning
 - Regressão Logística
 - Árvore de decisão
 - Redes Neurais
 - XGBoost
- Framework de trabalho
- Como continuar e manter a prática

Framework de Trabalho (resumo)

Análises

- Extrair os dados
- Data Cleaning
- **Data Fusion**
- Feature Engineering
- **Gere Perguntas**
- Interagir e Visualizar

Ache informações e tire ideias

Machine Learning

- Crie sua base com dados os relevantes
- Defina ou crie uma coluna alvo (target)
- Normalize os dados
- Trate os dados categóricos
- Separe base treino e teste
- Teste modelos de ML!

Gere dinheiro ou salve vidas!

Gere métricas

Um problema

e dados

Instalando o Python

- Instalação do Python: https://www.python.org/
- Instalando Bibliotecas: pip install <biblioteca>
- IDE Spyder: *pip install spyder*no prompt de comando: *spyder*
- Jupyter Lab: pip install jupyterlab
 no prompt de comando: jupyter lab

Começando com Python

- Lista, tuplas e dicionários
- Laços condicionais: FOR, WHILE e IF
- Functions
- Numpy e Pandas
- Pandas: ler Excel e algumas funções
- Gráficos

Etapas para Análise Dados e Data Science

- Entenda o contexto do problema e o que representam os dados
- Extraia os dados
- Faça a limpeza dos dados (data cleanning)
- Conecte e mescle os dados (data fusion)
- Gere novas informações (feature engineering)
- Interagir, interagir, interagir... visualizar...
- Crie modelos de machine learning

Tipos de Variáveis

```
# Inteiros
a = 28
print(a)
# Saída: 28
# Ponto flutuante
pi = 3.1415
print(pi)
# Saída: 3.14.15
# String
name = 'Alexsandro Felix'
print(name)
# Saída: Alexsandro Felix
# Boolean
b = True
print(b)
# Saída: True
```

type(var)

Caso de estudo

- Bases do caso de estudo
- Leitura das bases com Python
- Análise preliminar das bases

Data Cleanning

- Lidar com os dados Nulos
- Busca por Outliers e tratativas
- Busca por inconsistência entre bases (ex.: alguma venda para cliente inexistente?)
- Busca por dados duplicados
- Tratativas com formato de dados (ex.: datas)
- Identificação de chave primária
- Normalizar?

Juntar bases (Data Fusion)

Criando novos dados (Feature Engineering)

- Faça perguntas que você gostaria de responder!
 - Quais lojas mais vendem?
 - Quais produtos mais vendem?
 - Quais lojas geram maior receita?
 - Quais produtos geram maior receita?
 - Existe algum cliente que mais realiza compras?
 - Existe alguma relação entre loja e cliente?
 - Qual o tempo médio entre compra e pagamento?
 - Existe alguma loja em que esse tempo é menor? E produto?
 - Qual produto mais gera inadimplência?
 - Qual loja tem mais inadimplências?
 - Existe alguma relação entre idade e inadimplência?
 - É possível prever inadimplência através dos dados idade, cidade e produto?
- Gere novos dados ou transforme!

Criando novos dados (Feature Engineering)

- Faça perguntas que você gostaria de responder!
 - Quais lojas mais vendem?
 - Quais produtos mais vendem?
 - Quais lojas geram maior receita?
 - Quais produtos geram maior receita?
 - Existe algum cliente que mais realiza compras?
 - Existe alguma relação entre loja e cliente?
 - Qual o tempo médio entre compra e pagamento? (tempo_pg)
 - Existe alguma loja em que esse tempo é menor? E produto?
 - Qual produto mais gera inadimplência? (pg)
 - Qual loja tem mais inadimplências?
 - Existe alguma relação entre idade e inadimplência? (cliente_idade)
 - É possível prever inadimplência através dos dados idade, cidade e produto?
- Gere novos dados ou transforme!

Como iniciar a análise de dados??

Como iniciar a análise de dados??

- Quais lojas mais vendem?
- Quais produtos mais vendem?
- Quais lojas geram maior receita?
- Quais produtos geram maior receita?
- Existe algum cliente que gera maior receita?
- Qual o tempo médio entre compra e pagamento?
- Existe alguma loja em que esse tempo é menor? E produto?
- Existe alguma receita usando combinação entre produto e loja que mais se destaca?
- Qual produto gera maior inadimplência?
- Qual loja tem maior inadimplência?

- Existe sazonalidade? por loja? por produto?
- As vendas estão crescendo a cada ano?
- A loja que mais vende é a que mais gera inadimplência?
- Existe alguma relação entre idade e inadimplência?
- É possível prever inadimplência através dos dados idade, cidade e produto?

Gráficos

Barras

Usado para categoria ou tempo contra dado numérico

Bom para mostrar comportamentos de anomalias

Linhas

Usado para tempo contra dado numérico Ou análise de 2 dados numéricos Bom para mostrar tendência ou ruídos

Dispersão

Normalmente usado para análise de 2 dados numéricos (ou tempo em um eixo) Bom para mostrar correlação entre dados

Pizza

Usado para comparar porcentagens de um dado categórico.

Somente usar com porcentagem!

Boxplot

Usado para categoria contra dado numérico Mostra a variação do dados e outliers Bom para buscar outliers e avaliar se uma variável impacta no comportamento de outra

Histograma e Curva de Distribuição Normal

Normalmente usado para análise de 2 dados numéricos

Um dos dados deve ter uma média ou valor esperado

Gráficos

Bolhas

Similar ao gráfico de dispersão, porém uma terceira dimensão é adicionada.

Pareto

Usado para categoria contra dado numérico. Ótimo para identificar se existem categorias que são muito significativas

Dendograma

Mostra a frequência de um dado dentro de diversas categorias

Diagrama de Sankey

Mostra o relacionamento entre 2 variáveis

Mapa de calor

Mostra o comportamento de uma variável comparada a outras 2.

Conceitos de ML

- Definição de um alvo
- Normalizar dados
- Dados categóricos
- Dados de treinamento e de teste
- Escolher um modelo
- Matriz de confusão

			Valor Predito		
			Sim	Não	
	Real	Sim	Verdadeiro Positivo	Falso Negativo	
			(TP)	(FN)	
		Não	Falso Positivo	Verdadeiro Negativo	
			(FP)	(TN)	

Conceitos de ML

Dado 1	Dado 2	Dado 3	Target
А	D	G	0
В	Е	Н	1
С	F	I	1

model = modelo(parâmetros)

model.fit(X, y)

Dado 1	Dado 2	Dado 3	Target
А	Е	I	???

model.predict(X)

Target = 1

Regressão Linear e Regressão Logística

Árvore de decisão

Redes Neurais

XGBoost

Framework de Trabalho (resumo)

Análises

- Extrair os dados
- Data Cleaning
- **Data Fusion**
- Feature Engineering
- **Gere Perguntas**
- Interagir e Visualizar

Ache informações e tire ideias

Machine Learning

- Crie sua base com dados os relevantes
- Defina ou crie uma coluna alvo (target)
- Normalize os dados
- Trate os dados categóricos
- Separe base treino e teste
- Teste modelos de ML!

Gere dinheiro ou salve vidas!

Gere métricas

