PROJECT 5

MACHINE LEARNING

Exploratory Data Analysis

> dim(data)

[1] 444 9

We have 444 observations and 9 variables.

- We have 2, factor variables Engineering, MBA, License needs to be converted into a factor variable.
- Also, we need to convert Transport to have binary outputs, Car = 1, 2wheeler and public transport = 0. As we are only want to know if employees are using a car or not.
- We will also convert, Gender into binary. Male =1 and Female =0.

While checking for NA and unique values we find that there is one NA present in the MBA column. We will get rid of that row.

> #Removing NA > data = na.omit(data)

We now have 443 observations.

```
> # Converting Transport values to 0 or 1
> data$Transport = ifelse(data$Transport == 'Car', 1,0)
> # Male = 1 , Female = 0
> data$Gender = ifelse(data$Gender == 'Male', 1,0)
> table(data$Transport)

0  1
382  61
> 
> sum(data$Transport == 1)/nrow(data)
[1] 0.1376975
> sum(data$Gender == 1)/nrow(data)
[1] 0.7133183
```

After converting Gender and TRansport into binary we see that:

- 13.76% of Employees use a car.
- 71.33% of Employees are Males.
- We will apply SMOTE to synthetically increase our minority class.

Univariate Analysis

> hist(data\$Age)

Histogram of data\$Age

Age is slightly right-skewed.

> hist(data\$Work.Exp)

Histogram of data\$Work.Exp

- Work.Exp is very right-skewed and tailed. Outlies might be present.
- Also, we can clearly see that there are more juniors that seniors in the firm.

> hist(data\$Salary)

Histogram of data\$Salary

Salary is not evenly distributed.

> hist(data\$Distance)

Histogram of data\$Distance

Distance is slightly right-skewed but the distribution is almost even.

Bivariate Analysis

> boxplot(Age~Engineer, main = "Age vs Eng.")

Age vs Eng.

> boxplot(Age~MBA, main = "Age vs MBA")

Age vs MBA

> boxplot(Work.Exp~Gender, main = "Work Exp. vs Gender")

Work Exp. vs Gender

There is not a lot of difference between the work experience in the two genders, with mean work experience being 5 years for both.

Salary vs Transport

Plot clearly shows as the salary increases the chance of using a car also increases.

> boxplot(Age~Salary, main = "Age vs Salary")

Age vs Salary

As expected, with Age, Salary clearly increase.

> boxplot(Age~Transport, main = "Age vs Transport")

Age vs Transport

> boxplot(Work.Exp~Transport, main = "Work Exp. vs Transport")

Work Exp. vs Transport

The plot is similar to the previous plot, as the work experience increases, the chances of using a car also increase.

Distance vs Transport

For greater distances of more than 20, a car is preferred. For shorter distances, employees prefer using 2wheeler or public transport.

Checking for Co-relation

- We will use, corrplot as well as run a logistic regression model to compute the Variance Inflation Factor (VIF) based on which we will decide if we need to drop a variable.
- From the analysis above it is clearly visible that MBA and Engineering show similar patterns.
- Work Experience and Age plots are very similar.

library(corrplot)
correlations = cor(data[,-9])
summary(correlations)
corrplot(correlations, type="lower", method = 'number', diag = FALSE)

- There is a high negative correlation between Age and Work. Experience.
- There is a high positive correlation between work experience and Salary.
- Based on the VIF values we will decide which variable to drop.

#Logisticregression(VIF check)
vif_logistic = glm(Transport~., data=data, family=binomial(link="logit"))
summary(vif logistic)

VIF library(car) vif(vif_logistic)

- Work Experience and Age have VIF values above 10.
- For future modeling, we will drop work experience.

```
#After removing Work Experience
vif_logistic01 = glm(Transport~., data=data[,-5], family=binomial(link="logit"))
summary(vif_logistic01)
vif(vif_logistic01)
```

```
> vif(vif_logistic01)
    Age Gender Engineer MBA Salary Distance license
1.762831 1.175206 1.064623 1.304329 1.546412 1.229332 1.258074
> |
```

All the VIF values are below 5 after removing the variable Work Experience. Good to proceed.

SMOTE

Using the SMOTE function, we will synthetically increase the minority class (1). For testing purpose, the values of prec.under was varied to find the best split.

```
#SMOTE (Increase minority rate to 50%)
library(DMwR)
```

```
smote.train = subset(data, split == TRUE)
smote.test = subset(data, split == FALSE)
```

str(data\$Transport)

smote.train\$Transport = as.factor(smote.train\$Transport)

```
balanced.gd = SMOTE(Transport ~., smote.train, perc.over = 4800, k = 5, perc.under = 100) table(balanced.gd$Transport) sum(balanced.gd$Transport == 1)/nrow(balanced.gd)
```

```
> balanced.gd = SMOTE(Transport ~., smote.train, perc.over = 4800, k = 5, perc.under = 100)
> 
> table(balanced.gd$Transport)

0   1
2208 2254
> sum(balanced.gd$Transport == 1)/nrow(balanced.gd)
[1] 0.5051546
> smote_logistic01 = glm(Transport~., data=balanced.gd01, family=binomial(link="logit"))
```

We have increased the minority class to 50%

Applying this data to logistic regression

```
#Logistic Regression(with SMOTE)
smote logistic = glm(Transport~., data=balanced.gd, family=binomial(link="logit"))
summary(smote logistic)
smote.test$log.pred = predict(smote_logistic, smote.test[1:7], type="response")
table(smote.test$Transport,smote.test$log.pred>0.5)
   smote.test$log.pred = predict(smote_logistic, smote.test[1:7], type="response")
  table(smote.test$Transport,smote.test$log.pred>0.5)
     FALSE TRUE
Interpretation:
TPR - 12/15 - 80%
FPR - 93/96 - 96.85%
#SMOTE (Increase minority rate to 30%)
smote.train01 = subset(data, split == TRUE)
smote.test01 = subset(data, split == FALSE)
balanced.gd01 = SMOTE(Transport ~., smote.train, perc.over = 4800, k = 5, perc.under = 200)
table(balanced.gd01$Transport)
sum(balanced.gd01$Transport == 1)/nrow(balanced.gd01)
 > sum(balanced.gd01$Transport == 1)/nrow(balanced.gd01)
[1] 0.337931
```

We have increased our minority class to 34%

```
#Logistic Regression(with SMOTE)
smote_logistic01 = glm(Transport~., data=balanced.gd01, family=binomial(link="logit"))
summary(smote_logistic01)
smote.test01$log.pred = predict(smote_logistic01, smote.test01[1:7], type="response")
```

table(smote.test01\$Transport,smote.test01\$log.pred>0.5)

```
> table(smote.test01$Transport,smote.test01$log.pred>0.5)

FALSE TRUE
0 93 3
1 5 10
> 1
```

```
TPR - 10/15 - 66.66%
FPR - 93/96 - 96.85%
```

We can clearly see that we got better results, in the first case when our minority class was at 50%. So we will be using the same in future models.

Logistic Regression

```
#Logistic Regression(with SMOTE)
smote_logistic = glm(Transport~., data=balanced.gd, family=binomial(link="logit"))
summary(smote_logistic)
smote.test$log.pred = predict(smote_logistic, smote.test[1:7], type="response")
table(smote.test$Transport,smote.test$log.pred>0.5)
smote.test$log.pred = ifelse(smote.test$log.pred>0.5, 1,0)
smote.test$log.pred = as.factor(smote.test$log.pred)
confusionMatrix(smote.test$Transport,smote.test$log.pred, positive = '1')
```

```
> summary(smote_logistic)
glm(formula = Transport ~ ., family = binomial(link = "logit"),
   data = balanced.gd)
Deviance Residuals:
                          3Q
   Min
       1Q Median
                                  Max
-3.2618 -0.0289
                       0.0777
                              2.8078
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -46.396718 2.263401 -20.499 < 2e-16 ***
Age
           1.327173 0.068780 19.296 < 2e-16 ***
Gender1
          -0.406815 0.230397 -1.766 0.077445 .
          -0.203106 0.219868 -0.924 0.355611
Engineer1
         MBA1
Salary
          Distance
license1
          1.330047 0.198771 6.691 2.21e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 6185.17 on 4461 degrees of freedom
Residual deviance: 813.36 on 4454
                               degrees of freedom
AIC: 829.36
Number of Fisher Scoring iterations: 9
```

Inference:

From the logistic regression output (screenshot above), we can conclude that Age, Distance, License and MBA are important variables.

```
> confusionMatrix(smote.test$Transport,smote.test$log.pred, positive = '1')

Confusion Matrix and Statistics

Reference

Prediction 0 1
0 93 3
1 3 12

Accuracy: 0.9459
95% CI: (0.8861, 0.9799)
No Information Rate: 0.8649
P-Value [Acc > NIR]: 0.004961

Kappa: 0.7687

Mcnemar's Test P-Value: 1.000000

Sensitivity: 0.8000
Specificity: 0.9688
Pos Pred Value: 0.9688
Pos Pred Value: 0.9688
Prevalence: 0.1351
Detection Rate: 0.1081
Detection Prevalence: 0.1351
Balanced Accuracy: 0.8844

'Positive' Class: 1
```

KNN

```
### KNN
library(class)
knn.train = subset(data, split == TRUE)
knn.test = subset(data, split == FALSE)

for_out = vector()
k = c(1,3,5,6,9,10,11,14)
for (i in k) {
   knn_fit = knn(train = balanced.gd[,1:7], test = knn.test[,1:7], cl= balanced.gd[,8],k = i,prob=TRUE)
   for_out = cbind(for_out,sum(knn.test$Transport==1 & knn_fit==1))
}
for_out
```

```
> for_out

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 14 14 14 14 13 13 13 13
```

Looking at the For loop output above we will keep the value of k = 3

```
knn_fit = knn(train = balanced.gd[,1:7], test = knn.test[,1:7], cl= balanced.gd[,8],k = 3,prob=TRUE)
table(knn.test[,8],knn_fit)
confusionMatrix(knn.test[,8],knn_fit, positive = '1')
```

```
ConfusionMatrix(knn.test[,8],knn_fit, positive = '1')

Confusion Matrix and Statistics

Reference

Prediction 0 1
0 93 3
1 1 1 14

Accuracy: 0.964
95% CI: (0.9103, 0.9901)
No Information Rate: 0.8468
P-Value [Acc > NIR]: 7.694e-05

Kappa: 0.854

Mcnemar's Test P-Value: 0.6171

Sensitivity: 0.8235
Specificity: 0.9894
Pos Pred Value: 0.9333
Neg Pred Value: 0.9687
Prevalence: 0.1532
Detection Rate: 0.1261
Detection Prevalence: 0.1351
Balanced Accuracy: 0.9064
'Positive' Class: 1
```

Naive Bayes

```
nv.train = subset(data, split == TRUE)
nv.test = subset(data, split == FALSE)

nb_gd = naiveBayes(x=balanced.gd[,1:7], y=balanced.gd[,8])
nb_gd

pred_nb = predict(nb_gd,newdata = nv.test[,1:7])

table(nv.test[,8],pred_nb)
confusionMatrix(nv.test[,8],pred_nb, positive = '1')

> nb_gd

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = balanced.gd[, 1:7], y = balanced.gd[,
```

A-priori probabilities: balanced.gd[, 8] 0 0.4948454 0.5051546 Conditional probabilities: Age balanced.gd[, 8] [,1] [,2] 0 26.33062 2.859071 1 35.32094 2.760111 Gender balanced.gd[, 8] 0 1 0 0.2939312 0.7060688 1 0.3141083 0.6858917 Engineer balanced.gd[, 8] 1 0 0 0.2490942 0.7509058 1 0.1796806 0.8203194 MBA balanced.gd[, 8] 0 0 0.7576993 0.2423007 1 0.6628217 0.3371783 Salary balanced.gd[, 8] [,1] [,2] 0 12.7966 4.760753 1 32.2631 11.021359 Distance balanced.gd[, 8] [,1] [,2] 0 10.71363 3.211990 1 15.41038 2.951743 license balanced.gd[, 8] 0 1 0 0.8614130 0.1385870 1 0.3811003 0.6188997

```
> confusionMatrix(nv.test[,8],pred_nb, positive = '1')
Confusion Matrix and Statistics
            Reference
Prediction 0 1
0 92 4
           1 3 12
                  Accuracy : 0.9369
                    95% CI: (0.8744, 0.9743)
     No Information Rate : 0.8559
P-Value [Acc > NIR] : 0.006451
                      Kappa: 0.7376
 Mcnemar's Test P-Value : 1.000000
           Sensitivity: 0.7500
Specificity: 0.9684
Pos Pred Value: 0.8000
           Neg Pred Value : 0.9583
                Prevalence : 0.1441
           Detection Rate: 0.1081
    Detection Prevalence: 0.1351
        Balanced Accuracy: 0.8592
         'Positive' Class : 1
Bagging
bag.train = subset(data, split == TRUE)
bag.test = subset(data, split == FALSE)
Bagging = bagging(Transport~., data=balanced.gd, control=rpart.control(maxdepth=5,
minsplit=4))
bag.test$pred.class = predict(Bagging, bag.test)
confusionMatrix(data=factor(bag.test$pred.class),reference=factor(bag.test$Transport),positive
```

='1')

table(bag.test\$Transport,bag.test\$pred.class)

Boosting

```
boo.train = subset(data, split == TRUE)
boo.test = subset(data, split == FALSE)
features train = data.matrix(balanced.gd[,1:7])
label train = data.matrix(balanced.gd[,8])
features test = data.matrix(boo.test[,1:7])
tp xgb<-vector()
Ir = c(0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1)
md = c(1,3,5,7,9,15,18,20,25)
nr = c(2, 50, 100, 1000, 10000, 200000)
for (i in md) {
 xgb.fit <- xgboost(
  data = features train,
  label = label train,
  eta = 0.5,
  max depth = i,
  min child weight = 3,
  nrounds = 50,
  nfold = 5,
  objective = "binary:logistic",
  verbose = 0,
  early stopping rounds = 10
```

```
boo.test$xgb.pred.class = predict(xgb.fit, features_test)
tp_xgb = cbind(tp_xgb,sum(boo.test$Transport==1 & boo.test$xgb.pred.class>=0.5))
tp xgb
Using For loop the model is tuned by varying factors like eta, max depth, nrounds.
Varying eta:
> tp xgb
   [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 12 12 13 13 14 12 11
Varying nrounds:
> tp xgb
   [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 14 14 14 14 14 14
> tp xgb
   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 12 13 14 13 13 13 13 13 13
Varying min chil weight:
> tp xgb
   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 12 13 11 12 13 11 13 12 14
### Tuned Boosting
xgb.fit <- xgboost(
 data = features train,
label = label train,
 eta = 0.5,
 max depth = 5,
 min child weight = 3,
 nrounds = 50,
 nfold = 5,
 objective = "binary:logistic",
 verbose = 0,
 early stopping rounds = 10
```

xgb.fit summary(xgb.fit) xgb.importance(model = xgb.fit)

Inference:

We can clearly see that Age, Salary and Distance are important features in out model.

```
boo.test$xgb.pred.class = predict(xgb.fit, features_test)
table(boo.test$Transport,boo.test$xgb.pred.class>=0.5)
```

```
boo.test$xgb.pred.class = ifelse(boo.test$xgb.pred.class>0.5 ,1,0)
boo.test$xgb.pred.class = as.factor(boo.test$xgb.pred.class)
confusionMatrix(boo.test$Transport,boo.test$xgb.pred.class, positive = '1')
```

Conclusion and model comparison:

Model	Sensitivity	Specificity	Accuracy
Logistic Regression	80%	96.88%	94.59%
KNN	82.35%	98.94%	96.40%
Naive Bayes	75%	96.84%	93.69%
Bagging	80%	96.88%	94.59%
Boosting	82.35%	98.94%	96.40%

- After creating and comparing 5 models namely, Logistic Regression, KNN, Naive Bayes,
 Bagging and boosting. We conclude that KNN and Boosting give us best results.
- Naive Bayes, proves to be the worst predictor, Boosting and KNN give pretty similar results.
- Surprising results of KNN could be as the training data set (SMOTE Data) provided to the model, like every other model had minority at 50%. This might not be the case, when the minority is below 50%.
- As expected, boosting shows high Specificity and Accuracy, as it is an Ensemble method and I would recommend Boosting as the model to be used for future predictions. Which has an accuracy of 96.4%.

Conclusion:

- Important variables are Age, Distance, Salary and License.
- Employees travelling a distance more that 15 are more likely to use a Car.
- Probability of using a car increases with Age and Work Experience. We haven't used work experience in or model and age and work ex. Were highly correlated.
- As the value of Salary goes above 30, employees are more likely to use a car.