Tehnička škola Ruđe	ra Boškovića	
Elektronička instrumentacija		
Ime i prezime	Obrazovni odjel	
Ime i prezime partnera	Nadnevak	
Opaska	Ocjena	

Sinusni oscilatori

Sinusni signal

Za mjerenje, testiranje i rad elektroničkih sklopova i sustava → standardni signali određnih valnih oblika (sinusni, pravokutni, trokutasti ili pilasti)

Spektar sinusnog signala → sadrži samo jednu frekvenciju

$$u(t) = U_m \sin \omega_0 t \qquad f_0 = \omega_0 / (2\pi)$$

Oscilatori

Oscilatori → sklopovi koji generiraju napone periodičkih valnih oblika

Dvije grupe

- **sinusni** ili **harmonijski oscilatori** → generiraju sinusne napone →koriste pozitivnu povratnu vezu
- **relaksacijski oscilatori** → generiraju periodičke napone ostalih valnih oblika → (astabili, komparatori)

Blok shema sinusnog oscilatora

Povratni signal x_f vraća se na ulaz pojačala s pozitivnim predznakom

Barkhausenov kriterij osciliranja

Na frekvenciji osciliranja ω_0 se bez prisutnosti ulaznog signala, uz x_{ul} =0, na izlazu oscilatora dobiva signal x_{iz} . Energiju izlaznog signala osigurava istosmjerni izvor napajanja.

Barkhausenov kriterij osciliranja $\rightarrow T(j\omega_o) = \beta(j\omega_o) A(j\omega_o) = 1$

- dva uvjeta osciliranja
 - 1. $\varphi[T(j\omega_o)] = \theta^o \rightarrow$ prolaskom kroz pojačalo i granu povratne veze signal se na ulaz pojačala mora vratiti s istom fazom
 - 2. $|T(j\omega o)| = 1 \rightarrow \text{prolaskom kroz pojačalo i granu povratne veze signal se na ulaz pojačala mora vratiti s istom amplitudom$

Barkhausenov kriterij osciliranja primjenjen na osnovne vrste RC oscilatora

1. Oscilator s Wienovim mostom (Sl 1.)

Pojačalo je u operacijsko pojačalo u neinvertirajućem spoju čije je pojačanje neovisno o frekvenciji

$$A(\boldsymbol{j}\boldsymbol{\omega}_0) = A_{v} = 1 + \frac{\boldsymbol{R}_2}{\boldsymbol{R}_1}$$

Na frekvenciji osciliranja $\omega_0 \to T(j\omega_0) = \beta(j\omega_0)$ $A_V = 0^\circ \to \beta(j\omega_0)$ je pozitivan realan broj \to imaginarni član $\beta(j\omega_0)$ isčezava pa je stoga

$$\omega RC - \frac{1}{\omega RC} = 0$$
 \rightarrow $\omega_0 = \frac{1}{RC}$ \rightarrow $f_0 = \frac{1}{2\pi RC}$

 $\beta(j\omega_0) = 1/3$

Da bi
$$|T(j\omega_0)| = I \rightarrow A_V = \frac{1}{\beta(j\omega_0)} = 3 \rightarrow \frac{R_2}{R_1} = 2$$

Zadatak

Odredi elemente oscilatora s Wienovim mostom da bi frekvencija osciliranja iznosila 440 Hz

2. Oscilator s faznim pomakom (sl 2.)

Pojačalo je u operacijsko pojačalo u invertirajućem spoju čije je pojačanje neovisno o frekvenciji

$$A(j\omega_0) = A_v = -\frac{R_1}{R}$$
, dakle pojačalo stvara fazni pomak od – 180°.

Na frekvenciji osciliranja $\omega_0 \to T(j\omega_0) = \beta(j\omega_0)$ $A_V = 0^\circ \to \beta(j\omega_0)$ mora stvoriti fazni pomak od +180°. Za to su neophodne 3 CR mreže jer svaka CR mreža može stvoriti fazni pomak od 0 do +90° tj. sve tri zajedno fazni pomak od 0 do +270°.

Uvjet da na frekvenciji ω_o grana pozitivne povratne veze β sastavljena od 3 RC mreže istih vrenenskih konstanti ($\tau_1 = \tau_2 = \tau_3 = R \cdot C$) stvori fazni pomak +180° iznosi.

$$6 - \frac{1}{(\boldsymbol{\omega}_0 \boldsymbol{R} \boldsymbol{C})^2} = 0 \qquad \rightarrow \qquad \boldsymbol{\omega}_0 = \frac{1}{\boldsymbol{R} \boldsymbol{C} \sqrt{6}} \qquad \rightarrow \qquad \boldsymbol{f}_0 = \frac{1}{2 \boldsymbol{\pi} \boldsymbol{R} \boldsymbol{C} \sqrt{6}}$$

$$\boldsymbol{\beta}(\boldsymbol{j}\boldsymbol{\omega}_0) = \frac{1}{1 - \frac{5}{(\boldsymbol{\omega}_0 \boldsymbol{R} \boldsymbol{C})^2}} = -\frac{1}{29} \qquad \rightarrow |\boldsymbol{A}_{\nu}| \ge 29 \rightarrow \boldsymbol{R}_1 \ge 29 \boldsymbol{R}$$

Zadatak

Odredi elemente oscilatora s faznim pomakom da bi frekvencija osciliranja iznosila 440 Hz.

Rad u laboratoriju

1. Vježba

A. OPIS VJEŽBE

Koristi se shema RC oscilatora s Wienovim mostom prikazana na slici 1. Sklop se napaja iz dvaju izvora za napajanje U_{CC} =12 V i V_{EE} = - 12 V, koje treba priključiti na univerzalnu radnu ploču (protoboard).

Mjerenje izlaznog napona oscilatora obavlja se pomoću osciloskopa.

Slika 1 Shema RC oscilatora s Wienovim mostom

B. POTREBAN PRIBOR, INSTRUMENTI I MATERIJAL

- katodni osciloskop
- izvori za napajanje ± 12 V
- univerzalna radna ploča (protoboard)
- integrirani krug 741, LF351 ili TL071
- otpornici $-10 \text{ k}\Omega$, (3 kom)
 - 22 k Ω , (2 kom)
 - $-100 \text{ k} \Omega$ (2 kom),
- kondenzatori 10 nF, (2 kom), – 100 nF (2 kom)
- otpornička dekada 1 Ω ...9999999 Ω
- spojne žice

C. ZADATAK

- 1. Realizirati RC oscilator s Wienovim mostom prema slici 1..
- 2. Vrijednost kondenzator je C=10~nF, a otpornici su $R=100~k\Omega$ Uočiti pojačalo u okviru oscilatora, koje se sastoji od operacionog pojačala OP, otpornika R_1 i otpornička dekada R_2 . Pojačanje ovog pojačala izmjeriti kao omjer amplituda izlaznog napona i napona na + priključku operacijskog pojačavala OP_1 .
 - a) Uočititi dva područja vrijednosti otpora otporničke dekade. U jednom području oscilator oscilira, dok u drugoj oscilator ne oscilira.
 - b) Podesiti vrijednost otpora otporničke dekade tako da sigurno nastupe oscilacije. Zapisati vrijednost otpora otporničke dekade i izmjeriti pojačanje pojačala pomoću oscilograma.

A = _____

 $R_2 =$

VOLTS/DIV ___ TIME/DIV

f =____

 $f_0 =$ _____

c) Podesiti vrijednosti otpora otporničke dekade u granični položaj izmedu te dvije vrijednosti oblasti, tako da oscilator oscilira s najmanjim mogućim izobličenjem. Zapisati vrijednost otpora otporničke dekade i izmjeriti pojačanje pojačala pri tom.

A =

 $R_2 =$ _____

VOLTS/DIV ___

TIME/DIV ____

f = ____

 $f_0\!=\!\underline{\hspace{1cm}}$

d) Nacrtati oscilograme i izmjeriti frekvencije osciliranja i pojačanja pojačala za slijedeće vrijednosti otpora R_1 : 10 k Ω , 22 k Ω i 100 k Ω . Otpor otporničke dekade R_2 mora uvijek biti na graničnoj vrijednosti između dva područja, tako da oscilator oscilira.

- e) Zamijeni kondenzatore C od 10 nF kondenzatorima od 100 nF.
- f) Nacrtati oscilograme i izmjeriti frekvencije osciliranja i pojačanja pojačala za taj slučaj. Otpor otporničke dekade R₂ mora uvijek biti na graničnoj vrijednosti između dva područja, tako da oscilator oscilira.

A =______ $R_2 =$ ______

VOLTS/DIV ____

TIME/DIV ____

f =____

 $f_0 =$ _____

Je li se zbog promjene otpora R ili kondenzatora C morala mijenjati vrijednost otpora otporničke dekade , da bio oscilator oscilirao? Objasniti.

D. REZULTATI MJERENJA

2. Vježba

E. OPIS VJEŽBE

Koristi se shema RC oscilatora s faznim pomakom prikazana na slici 1. Mjerenje izlaznog napona oscilatora obavlja se pomoću osciloskopa.

Slika 2. Shema RC oscilatora s faznim pomakom

F. POTREBAN PRIBOR, INSTRUMENTI I MATERIJAL

- katodni osciloskop
- izvori za napajanje 12 V
- univerzalna radna ploča (protoboard)
- integrirani krug 741, LF351 ili TL071
- otpornici $-10 \text{ k}\Omega$, (3 kom) $-22 \text{ k}\Omega$, (3 kom)
- $\begin{array}{ccc} & & 100 \text{ k}\Omega & (3 \text{ kom}) \\ \bullet \text{ kondenzatori} & 10 & \text{nF}, & (3 \text{ kom}), \end{array}$
 - 100 nF (3 kom)
- otpornička dekada 1 Ω ...9999999 Ω
- spojne žice

G. ZADATAK

- 3. Realizirati RC oscilator s s faznim pomakom prema slici 2...
- 4. Vrijednost kondenzator je C = 10 nF, a otpornici su R = 100 k Ω Uočiti pojačalo u okviru oscilatora, koje se sastoji od operacionog pojačala OP, otpornika R i otpornička dekada R_1 .

Pojačanje ovog pojačala izmjeriti kao omjer amplituda izlaznog napona i ulaznog napona priključku operacijskog pojačavala. .

- a) Podesiti otporničku dekadu na R_1 =29 R i postepeno povećvati otpor po 1 k Ω dok ne nastupe oscilacije ukoliko ih pri R_1 =29 R nema
- b) Uočiti dva područja vrijednosti otpora otporničke dekade. U jednom području oscilator oscilira, dok u drugoj oscilator ne oscilira.
- c) Podesiti vrijednoost otpora otporničke dekade tako da sigurno nastupe oscilacije. Zapisati vrijednost otpora otporničke dekade i izmjeriti pojačanje pojačala.

A = _____ R₁ = ____ VOLTS/DIV ____

TIME/DIV ____ f = ____

 $f_0 =$

d) Podesiti vrijednosti otpora otporničke dekade u granični položaj između te dvije vrijednosti oblasti, tako da oscilator oscilira s najmanjom mogućom amplitudom. Zapisati vrijednost otpora otporničke dekade i izmjeriti pojačanje pojačala.

A = _____ R₁ = ____ VOLTS/DIV

TIME/DIV ____

f = ____

 $f_0 = \underline{\hspace{1cm}}$

e) Izmjeriti i nacrtati ovisnost frekvencije osciliranja i pojačanja pojačala o vrijednosti otpornosti R, za slijedeće vrijednosti R: $100 \text{ k}\Omega$, $22 \text{ k}\Omega$ i $10 \text{ k}\Omega$. Otpor otporničke dekade R_1 mora uvijek biti na graničnoj vrijednosti između dva područja, tako da oscilator oscilira.

Je li se zbog promjene otpora R morala mijenjati vrijednost otpora otporničke dekade , da bio oscilator oscilirao? Objasniti.

- f) Zamijeni kondenzatore C od 10 nF kondenzatorima od 100 nF.
- g) Nacrtati oscilograme i izmjeriti frekvencije osciliranja i pojačanja pojačala za taj slučaj. Otpor otporničke dekade R₁ mora uvijek biti na graničnoj vrijednosti između dva područja, tako da oscilator oscilira.

A =______ $R_2 =$ ______

VOLTS/DIV ____

TIME/DIV ____

f =

 $f_0 =$ _____

A = _____

 $R_2 =$

VOLTS/DIV

TIME/DIV ____

f = ____

 $f_0 =$ _____

a) Za neku od mjerenih frekvencija skiciraj oscilograme faznihe i amplitudnih odnose između pojedinih RC mreža u odnosu na izlazni napon.

(2 oscilograma)

VOLTS/DIV

TIME/DIV ___

f =____

 $f_0 =$ _____

VOLTS/DIV	
	TIME/DIV

\mathbf{f}	=					
--------------	---	--	--	--	--	--

$I_0 = $	

H. REZULTATI MJERENJA