

Aldehyder og ketoner: Nukleofile addisjonsreaksjoner

Utvalgte typer karbonylforbindelser

Stoffklasse

Etterstavelse

Karbonylgruppen

UNIVERSITETET I OSLO

- Geometri
 - sp² hybridisert C-atom
 - sp² hybridisert O-atom
 - Plan struktur, 120° bindingsvinkler
 - Ledige elektronpar i planet
 - med π -bindingen over/under planet

- Elektroniske egenskaper
 - Polar gruppe
 - To resonansformer
 - Elektrofilt karbon
 - Nukleofilt oksygen

Karbonylgruppens reaksjoner

- Aldehyder og ketoner
 - Nukleofil addisjon
 - Etterfulgt av et proton
 - R/H ingen utgående gruppe

- Karboksylsyrers derivater
 - Nukleofil acyl substitusjon
 - Addisjon + eliminasjonsubstitusjon
 - X utgående gruppe δ- ˙ρ:

Aldehyder og ketoner

Navnsetting

- Lokaliser den lengste kjeden med karbonylgruppen
- For aldehyder: Karbonyl-C er pr.definisjon posisjon 1
 - Etterstavelse -al
- For ketoner: Kjeden nummereres fra den enden som gir karbonyl-C lavest mulig nummer (n)
 - Etterstavelse –on med posisjonsangivelse alkan-n-on
- Sykliske aldehyder angis som substituenter på ringen
 - karbaldehyd
- Karbonylgruppen må i nærvær av andre funksjonelle grupper av og til betraktes som en substituent i en gitt posisjon n på kjeden
 - n-okso-

Fremstilling av aldehyder og ketoner

- Kjent fra før:
 - Aldehyder oksidasjon av primære alkoholer (Dess-Martin)
 - Ketoner oksidasjon av sekundære alkoholer
 - Ketoner Friedel-Crafts acylering av aromater
- Ny metode:
 - Aldehyder selektiv reduksjon av estere
 - LiAlH₄ reduserer ester til alkohol, men
 - DIBAH stopper etter reduksjon til aldehyd

diisobutylaluminiumhydrid DIBAH

Oksidasjon av aldehyder og ketoner

- Oksidasjon av aldehyder
 - Mange vanlige oksidasjonsmidler oksiderer aldehyder til karboksylsyrer
 - KMnO₄, CrO₃, HNO₃, etc.

- Oksidasjon av ketoner
 - Vanskelige å oksidere
 - Langsom reaksjon under oppvarming med basisk KMnO₄
 - Mindre ofte brukt

Addisjon av vann til aldehyder og ketoner

- Addisjon av vann er gunstigere for aldehyder enn for ketoner
- Addisjonen er langsom under nøytrale betingelser
- Addisjon av vann katalyseres av Brønsted syrer
 - Syra øker karbonylgruppens elektrofilisitet
- Addisjon av vann katalyseres av Brønsted baser
 - Basen skaper en bedre nukleofil

Addisjon av alkoholer til aldehyder og ketoner

Acetal-dannelse, via hemiacetal

- Reaksjonen katalyseres av syrer
- Hvert trinn i mekanismen, og derfor totalreaksjonen, er en likevektsreaksjon,
- Dyktige kjemikere kan manipulere posisjonen til likevekten i ønsket retning!
- Karbohydrater i ringform er hemiacetaler!

 β -D-glukose - et syklisk hemiacetal

Reduksjon av aldehyder og ketoner

Hydrid-reagenser (oftest LiAlH₄ eller NaBH₄) reduserer karbonylgruppen og gir

Primær alkohol fra et aldehyd

Sekundær alkohol fra et keton

Alkohol fra aldehyd eller keton Universitetet og Grignard-reagenser (repetisjon)

Grignard-reaksjon på aldehyd eller keton gir

Sekundær alhohol fra aldehyd

O 1. R'MgX HO H

$$C$$
 R C R C R

Tertiær alkohol fra keton

11 KJM 1110 - Mats Tilset

Wittig-reaksjonen

Georg Wittig (1897-1987) Nobelpris1979

Viktig metode for å gjøre et keton eller et aldehyd om til et alken

1.

BuLi = butyllitium "Bu⁻Li⁺"
- en meget sterk base!

2.

Wittig-reaksjonen

Wittig-reaksjonen: Eksempel

Illustrerer behovet for å ha et stort arsenal av syntesemetoder tilgjengelig!