ECN 200B—First Welfare Theorem Proof

William M Volckmann II

February 21, 2017

Preliminary Results

To begin with, we'll start with a lemma and a theorem.¹

Lemma. Suppose that $u^i(\cdot)$ is locally nonsatiated and x^* maximizes u(x) subject to $px \leq m$. Then $u(x') \geq u(x^*)$ implies that $px' \geq m$.

Proof. Suppose there exists some \hat{x} such that $u(\hat{x}) \geq u(x^*)$ and $p\hat{x} < m$. Because preferences are locally nonsatiated, we know that we can construct an ϵ -ball around \hat{x} and inside such a ball exists some x' such that $u(x') > u(\hat{x})$, and furthermore we can choose ϵ so that $px' \leq m$. This means that x' is affordable and is preferred to x^* , meaning that x^* is not actually the maximizer. This is a contradiction and the lemma is established.

Theorem. Suppose that x^* maximizes u(x) subject to $px \le m$. Then $u(x) > u(x^*)$ implies px > m.

Proof. Note that local nonsatiation has not been assumed. But in any case, this follows directly from the definition of a maximizer. If x is preferred to x^* and is also affordable, then x^* isn't even the maximizer. Thus it has to be the case that x is unaffordable.

First Fundamental Theorem of Welfare Economics

Theorem. Fix a production economy,

$$\{I, J, (Y_j)_{j \in J}, (u^i, w^i, s^{i,j})_{i \in I, j \in J}\}.$$

Suppose that all $u^i(\cdot)$ are locally nonsatiated. If (p, x, y) is a competitive equilibrium, then (x, y) is Pareto efficient.

¹No, I do not know why one qualifies as a lemma and the other a theorem.

The Setup. Suppose that (p, x, y) is a competitive equilibrium but (x, y) is not Pareto efficient. Since it is a competitive equilibrium, we know that

- (a) For all i, x^i maximizes $u^i(\tilde{x})$ subject to $p\tilde{x} \leq pw^i + \sum_{j \in J} s^{i,j} p \cdot y^j$.
- (b) For any j, y^j maximizes $p \cdot \tilde{y}$ subject to $\tilde{y} \in Y^j$.
- (c) $\sum_{i \in I} x^i = \sum_{i \in I} w^i + \sum_{j \in J} y^j$.

And because the allocation is not Pareto efficient, there exists some allocation (\hat{x}, \hat{y}) such that

- (i) for all $i, \hat{x}^i \in \mathbb{R}_+^L$,
- (ii) for all $j, \hat{y}^j \in Y^j$,
- (iii) $\sum_{i=1}^{I} \hat{x}^i = \sum_{i=1}^{I} w^i + \sum_{j=1}^{J} \hat{y}^j$,
- (iv) for all i, $u^i(\hat{x}^i) \geq u^i(x^i)$,
- (v) for some i^* , $u^{i^*}(\hat{x}^{i^*}) > u^i(x^i)$.

The Proof. By the previous theorem, it follows that x^{i^*} must not be affordable, that is,

$$p\hat{x}^{i^*} > pw^i + \sum_{i \in J} s^{i,j} p \cdot y^j.$$

For any of the other individuals, by the previous lemma we must have

$$p\hat{x}^i \ge pw^i + \sum_{j \in J} s^{i,j} p \cdot y^j,$$

and therefore for all i, we have

$$p\hat{x}^i \ge pw^i + \sum_{j \in J} s^{i,j} p \cdot y^j.$$

Summing over all i and taking prices out of the sums, we have

$$p\sum_{i=1}^{I} \hat{x}^{i} > p\sum_{i=1}^{I} w^{i} + p\sum_{i \in I, j \in J} s^{i,j} \cdot y^{j}.$$

When we sum over the shares in firm j, each $\sum_{i=1}^{I} s^{i,j} = 1$, and therefore

$$p\sum_{i=1}^{I} \hat{x}^{i} > p\sum_{i=1}^{I} w^{i} + p\sum_{j \in J} y^{j}.$$
 (1)

Because y^j was assumed to be the (feasible) profit maximizer, it must be the case for any j that $p \cdot \hat{y}^j \leq p \cdot y^j$. So if we sum over all j and take prices out the sums, we get

$$p \cdot \sum_{j=1}^{J} \hat{y}^j \le p \cdot \sum_{j=1}^{J} y^j.$$

Add the aggregate nominal value of endowments to both sides for

$$p \cdot \sum_{i=1}^{I} w^{i} + p \cdot \sum_{j=1}^{J} \hat{y}^{j} \le p \cdot \sum_{i=1}^{I} w^{i} + p \cdot \sum_{j=1}^{J} y^{j}.$$

Combining this with equation (1), it follows that

$$p \cdot \sum_{i=1}^{I} \hat{x}^{i} > p \cdot \sum_{i=1}^{I} w^{i} + p \cdot \sum_{j=1}^{J} \hat{y}^{j},$$

which contradicts point (iii) above. Thus the competitive equilibrium allocation must be Pareto efficient.