Problem Set #2

Chemistry 3A Fall 2025 (Secs 43957 & 43958)

2 pages

- 1. Convert these numbers to scientific notation:
- a. 0.2809
- b. 9200
- c. 9200.00
- d. -344.1
- e. 0.00024
- f. 0.00024001
- g. 0.0002400
- 2. Convert these to non-scientific notation (regular numbers)
- a. 2.3 × 10⁵
- b. 3.4768 × 10⁻⁵
- c. 5.99200×10^3
- 3. Evaluate the expressions. The answer should have the correct number of decimal places and/or significant digits.
- a. 24.12 + 43.04 23.943
- b. 5.72 × 3.34
- c. $2.4 \times 3.01 3.3 \div 4$
- d. $(2.4 \times 10^5) \times (4.9 \times 10^3)$

4. For each of the following, show your use of conversion factors and not just the answer. Remember: when you do conversions, you are multiplying one or more conversion factors to get a result where the final quantity has the units you are asked to produce, and the factors must cancel the units used in the conversion.
a. 5 milliliters (mL) = ? liters (L)
b. 0.023 grams (g) = ? micrograms (μg)
c. 5.2 × 10-2 g = ? milligrams (mg)
d. 50 mg/dL = ? g/L
5. True or False
a. The precision of the resulting number determined by addition and subtraction operations on numbers is determined by the fewest significant digits.
b. The precision of the resulting number determined by multiplication and division operations on numbers is determined by the fewest significant digits
c. A number expressed in scientific notation will sometimes not equal that number.
d. Scientific notation is a number whose format is a significand and a power of 10 with the appropriate exponent on the base 10.
e. The number "0.00024" has two significant digits
f. The number "240,000,000" has two significant digits
g. The number "240.00" has two significant digits
h. A measurement is a quantity that must have a number with units