Project

Amirhossein Moazzeni 40030478 MohammadReza Naziri 40030505

February 3, 2025

1 Preliminaries

1.1 Hyperbolic Functions

Hyperbolic functions are analogs of ordinary trigonometric functions but are defined using the hyperbola rather than the circle. Mathematically, they are defined as:

$$\sinh(x) = \frac{e^x - e^{-x}}{2},$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2},$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

In this paper, we use $tanh(\theta)$ as an activation function for our neural network.

1.2 CORDIC Algorithm

Coordinate Rotation Digital Computer (CORDIC) is an efficient machine for computing trigonometric and hyperbolic functions without multipliers. The recursive equations are given by:

$$x_{n+1} = x_n - m d_n y_n 2^{-\sigma(n)},$$

$$y_{n+1} = y_n + d_n x_n 2^{-\sigma(n)},$$

$$z_{n+1} = z_n - d_n w_{\sigma(n)}.$$

1.3 Multi-level Perceptron

A Multi-Level Perceptron (MLP) consists of an input layer, one or more hidden layers, and an output layer. Each neuron applies a nonlinear activation function to a weighted sum of its inputs.

FIGURE 1 – Plot of hyperbolic tangent function $y = \tanh(x)$.

2 Implementation

2.1 CORDIC Implementation

To compute $\tanh(\theta)$ using CORDIC, we first calculate $\sinh(\theta)$ and $\cosh(\theta)$ and then compute:

$$\tanh(\theta) = \frac{\sinh(\theta)}{\cosh(\theta)}.$$

2.2 Resolution

The design uses Q4.16 fixed-point representation for precision.

2.3 Preprocessor

A C program generates initial values for LUTs, adhering to the fixed-point representation.

2.4 Node

We implement two Nodes:

- 3-input
- 5-input

Each perceptron computes weighted sums and applies activation functions.

2.5 Single-layer Implementation

Each layer consists of multiple perceptrons, taking inputs and producing outputs accordingly.

2.6 Multi-layer Implementation

Multiple layers are connected sequentially, with outputs from one layer serving as inputs to the next.