ENGG104 Tutorial 6 Class Questions

Team Name:		

Question 1 [typical exam question]

For the circuit in Fig. 94, composed of standard values:

- a. Determine the time constant of the circuit.
- **b.** Write the mathematical equation for the voltage v_C following the closing of the switch.
- **c.** Determine the voltage v_C after one, three, and five time constants.
- **d.** Write the equations for the current i_C and the voltage v_R .
- **e.** Sketch the waveforms for v_C and i_C .

FIG. 94

Question 2 [typical exam question]

For the *R-C* circuit in Fig. 97, composed of standard values:

- **a.** Determine the time constant of the circuit when the switch is thrown into position 1.
- **b.** Find the mathematical expression for the voltage across the capacitor and the current after the switch is thrown into position 1.

- c. Determine the magnitude of the voltage v_C and the current i_C the instant the switch is thrown into position 2 at t = 1 s.
- **d.** Determine the mathematical expression for the voltage v_C and the current i_C for the discharge phase.
- e. Plot the waveforms of v_C and i_C for a period of time extending from 0 to 2 s from when the switch was thrown into position 1.

Question 3

- 26. For the network in Fig. 98, composed of standard values:
 - **a.** Write the mathematical expressions for the voltages v_C , and v_{R_1} and the current i_C after the switch is thrown into position 1.
 - **b.** Find the values of v_C , v_{R_1} , and i_C when the switch is moved to position 2 at t = 100 ms.
 - **c.** Write the mathematical expressions for the voltages v_C and v_{R_2} and the current i_C if the switch is moved to position 3 at t = 200 ms.
 - **d.** Plot the waveforms of v_C , v_{R_2} , and i_C for the time period extending from 0 to 300 ms.

