

ZHCS177D - APRIL 2011 - REVISED NOVEMBER 2011

混合信号微控制器

特性

- 低电源电压范围: 1.8V 至 3.6V
- 超低功耗
 - 运行模式: 230 μA (在1 MHz 频率下), 2.2
 - 待机模式: **0.5μA**
 - 关断模式 (RAM 保持): 0.1µA
- 5 种节能模式
- 可在不到 1us 的时间里超快速地从待机模式唤醒
- 16 位 RISC 架构、62.5ns 指令周期
- 基本时钟模块配置
 - 高达16 MHz 的内部频率,具有4 种校准频率
 - 内部超低功耗低频 (LF) 振荡器
 - 32-kHz 晶体
 - 外部数字时钟信号源
- 具有3个捕获/比较寄存器的两个16位 Timer_A
- 最多 24 个支持触感的 I/O 引脚

- · 通用串行通信接口(USCI)
 - 增强型 UART 可支持自动波特率检测 (LIN)
 - IrDA 编码器和解码器
 - 同步 SPI
 - **I**²C™
- 带内部基准、采样与保持以及自动扫描功能的 10 位 200-ksps 模数 (A/D) 转换器(见表 1)
- 欠压检测器
- 串行板上编程, 无需从外部进行电压编程, 利用安全熔丝实现可编程代码保护
- 具有两线制JTA (SBW) 接口的片载仿真逻辑电路
- 系列成员汇总于表 1
- 封装选项
 - TSSOP: 20 引脚, 28 引脚
 - PDIP: 20 引脚
 - QFN: 32 引脚
- 如需了解完整的模块说明, 请查阅 *MSP430x2xx* 系列用户指南 (文献编号**SLAU144**)

说明

德州仪器 (TI) MSP430 系列超低功耗微控制器包含多种器件,它们具有面向各种应用的不同外设集。 这种架构与 5 种低功耗模式相组合,专为在便携式测量应用中延长电池的使用寿命而进行了优化。 该器件具有一个强大的 16 位 RISC CPU、16 位寄存器和有助于获得最大编码效率的常数发生器。 数字控制振荡器 (DCO) 可在不到 1 μs 的时间里完成从低功耗模式至运行模式的唤醒。

MSP430G2x03 和 MSP430G2x33 系列是超低功耗混合信号微控制器,具有内置的 16 位计时器、最多 24 个支持触摸感测的 I/O 引脚、以及采用通用串行通信接口的内置通信能力。 此外,MSP430G2x33 系列成员还具有一个 10 位 A/D 转换器。 有关配置的详情请见 表 1。

典型应用包括低成本传感器系统,此类系统负责捕获模拟信号、将之转换为数字值、随后对数据进行处理以进行显示或传送至主机系统。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

表 1. 提供的选项⁽¹⁾⁽²⁾

器件	BSL	EEM	闪存 (KB)	RAM (B)	Timer_A	10 通道 ADC	USCI A0/B0	时钟	I/O	封装类型		
MSP430G2533IRHB32									24	32 引脚 QFN 封装		
MSP430G2533IPW28		1	40	540	O., TAO		4	LF, DC	24	28 引脚 TSSOP 封装		
MSP430G2533IPW20	1	'	16	512	2x TA3	8	1	O, VL O	16	20 引脚 TSSOP 封装		
MSP430G2533IN20									16	20 引脚 PDIP 封装		
MSP430G2433IRHB32									24	32 引脚 QFN 封装		
MSP430G2433IPW28		4	0	540	0 TA 0		4	LF, DC	24	28 引脚 TSSOP 封装		
MSP430G2433IPW20	1	1	8	512	2x TA3	8	1	O, VL O	16	20 引脚 TSSOP 封装		
MSP430G2433IN20					16	20 引脚 PDIP 封装						
MSP430G23331RHB32	1								24	32 引脚 QFN 封装		
MSP430G2333IPW28		1	1	1	4	256	2x TA3	8	1	LF, DC	24	28 引脚 TSSOP 封装
MSP430G2333IPW20			'	4	250	23 143	o o	'	0, 12	16	20 引脚 TSSOP 封装	
MSP430G2333IN20									16	20 引脚 PDIP 封装		
MSP430G2233IRHB32								16 24 LF, DC O, VL O 16 16	32 引脚 QFN 封装			
MSP430G2233IPW28	1	1	2	2 256	2x TA3	8	1		24	28 引脚 TSSOP 封装		
MSP430G2233IPW20		1	2						16	20 引脚 TSSOP 封装		
MSP430G2233IN20									16	20 引脚 PDIP 封装		
MSP430G2403IRHB32									24	32 引脚 QFN 封装		
MSP430G2403IPW28	1	1	8	512	2x TA3	_	1	LF, DC	24	28 引脚 TSSOP 封装		
MSP430G2403IPW20	'	'	8	312	28 183	-	'	O, VL O	16	20 引脚 TSSOP 封装		
MSP430G2403IN20									16	20 引脚 PDIP 封装		
MSP430G2303IRHB32	- 1								24	32 引脚 QFN 封装		
MSP430G2303IPW28		1	4	256	2x TA3	-	1	LF, DC O, VL O	24	28 引脚 TSSOP 封装		
MSP430G2303IPW20		1							16	20 引脚 TSSOP 封装		
MSP430G2303IN20									16	20 引脚 PDIP 封装		

⁽¹⁾ 有关最新的封装和订购信息,请参阅本文档结尾的"封装选项附录",或访问 TI 网站: www.ti.com。 (2) 封装图样、散热数据和符号可登录 www.ti.com/packaging 获取。

表 1. 提供的选项⁽¹⁾⁽²⁾ (接下页)

器件	BSL	EEM	闪存 (KB)	RAM (B)	Timer_A	10 通道 ADC	USCI A0/B0	时钟	I/O	封装类型	
MSP430G2203IRHB32	1									24	32 引脚 QFN 封装
MSP430G2203IPW28		1	0	250	O., TA2		4	LF, DC	24	28 引脚 TSSOP 封装 20 引脚 TSSOP 封装	
MSP430G2203IPW20			2	256	2x TA3	-	1	O, VL O	16		
MSP430G2203IN20									16	20 引脚 PDIP 封装	

Device Pinout, MSP430G2x03 and MSP430G2x33, 20-Pin Devices, TSSOP and PDIP

NOTE: ADC10 is available on MSP430G2x33 devices only.

NOTE: The pulldown resistors of port P3 should be enabled by setting P3REN.x = 1.

Device Pinout, MSP430G2x03 and MSP430G2x33, 28-Pin Devices, TSSOP

NOTE: ADC10 is available on MSP430G2x33 devices only.

Device Pinout, MSP430G2x03 and MSP430G2x33, 32-Pin Devices, QFN

NOTE: ADC10 is available on MSP430G2x33 devices only.

Functional Block Diagram, MSP430G2x33

NOTE: Port P3 is available on 28-pin and 32-pin devices only.

Functional Block Diagram, MSP430G2x03

NOTE: Port P3 is available on 28-pin and 32-pin devices only.

www.ti.com.cn

Table 2. Terminal Functions

	TERMINA								
NAME		NO.	T	1/0	DESCRIPTION				
NAME	PW20, N20	PW28	RHB32						
P1.0/					General-purpose digital I/O pin				
TA0CLK/	0	0	24	I/O	Timer0_A, clock signal TACLK input				
ACLK/	2	2	31		ACLK signal output				
A0					ADC10 analog input A0 ⁽¹⁾				
P1.1/					General-purpose digital I/O pin				
TA0.0/					Timer0_A, capture: CCI0A input, compare: Out0 output / BSL transmit				
UCA0RXD/	3	3	1	I/O	USCI_A0 receive data input in UART mode				
UCA0SOMI/					USCI_A0 slave data out/master in SPI mode				
A1					ADC10 analog input A1 ⁽¹⁾				
P1.2/					General-purpose digital I/O pin				
TA0.1/					Timer0_A, capture: CCl1A input, compare: Out1 output				
UCA0TXD/	4	4	2	I/O	USCI_A0 transmit data output in UART mode				
UCA0SIMO/					USCI_A0 slave data in/master out in SPI mode				
A2					ADC10 analog input A2 ⁽¹⁾				
P1.3/					General-purpose digital I/O pin				
ADC10CLK/					ADC10, conversion clock output ⁽¹⁾				
A3/	5	5	3	I/O	ADC10 analog input A3 ⁽¹⁾				
VREF-/VEREF-					ADC10 negative reference voltage ⁽¹⁾				
P1.4/					General-purpose digital I/O pin				
SMCLK/					SMCLK signal output				
UCB0STE/					USCI_B0 slave transmit enable				
UCA0CLK/	6	6	4	I/O	USCI_A0 clock input/output				
A4/					ADC10 analog input A4 ⁽¹⁾				
VREF+/VEREF+					ADC10 positive reference voltage ⁽¹⁾				
тск					JTAG test clock, input terminal for device programming and test				
P1.5/					General-purpose digital I/O pin				
TA0.0/					Timer0_A, compare: Out0 output / BSL receive				
UCB0CLK/					USCI_B0 clock input/output				
UCA0STE/	7	7	5	I/O	USCI_A0 slave transmit enable				
A5/					ADC10 analog input A5 ⁽¹⁾				
TMS					JTAG test mode select, input terminal for device programming and test				
P1.6/					General-purpose digital I/O pin				
TA0.1/					Timer0_A, compare: Out1 output				
A6/					ADC10 analog input A6 ⁽¹⁾				
UCB0SOMI/	14	22	21	I/O	USCI_B0 slave out/master in SPI mode,				
UCB0SCL/				USCI_B0 SCL I2C clock in I2C mode					
TDI/TCLK					JTAG test data input or test clock input during programming and test				
P1.7/					General-purpose digital I/O pin				
A7/					ADC10 analog input A7 ⁽¹⁾				
UCB0SIMO/					USCI_B0 slave in/master out in SPI mode				
UCB0SDA/	15	23	22	I/O	USCI_B0 SDA I2C data in I2C mode				
TDO/TDI					JTAG test data output terminal or test data input during programming and				
150/151					test (2)				

⁽¹⁾ MSP430G2x33 devices only(2) TDO or TDI is selected via JTAG instruction.

Table 2. Terminal Functions (continued)

TERMINAL						
		NO.		I/O	DESCRIPTION	
NAME	PW20, N20	PW28	RHB32	1/0	DESCRIPTION	
P2.0/	0	10	0	I/O	General-purpose digital I/O pin	
TA1.0	8	10	9	2	Timer1_A, capture: CCI0A input, compare: Out0 output	
P2.1/	9	11	10	I/O	General-purpose digital I/O pin	
TA1.1	9	11	10	1/0	Timer1_A, capture: CCl1A input, compare: Out1 output	
P2.2/	10	12	11	I/O	General-purpose digital I/O pin	
TA1.1	10	12	''	20	Timer1_A, capture: CCI1B input, compare: Out1 output	
P2.3/	11	16	15	I/O	General-purpose digital I/O pin	
TA1.0				., 0	Timer1_A, capture: CCI0B input, compare: Out0 output	
P2.4/	12	17	16	I/O	General-purpose digital I/O pin	
TA1.2				., 0	Timer1_A, capture: CCI2A input, compare: Out2 output	
P2.5/	13	18	17	I/O	General-purpose digital I/O pin	
TA1.2					Timer1_A, capture: CCl2B input, compare: Out2 output	
XIN/					Input terminal of crystal oscillator	
P2.6/	19	27	26	I/O	General-purpose digital I/O pin	
TA0.1					Timer0_A, compare: Out1 output	
XOUT/	18	26	25	I/O	Output terminal of crystal oscillator ⁽³⁾	
P2.7					General-purpose digital I/O pin	
P3.0/	-	9	7	I/O	General-purpose digital I/O pin	
TA0.2					Timer0_A, capture: CCI2A input, compare: Out2 output	
P3.1/	-	8	6	I/O	General-purpose digital I/O pin	
TA1.0					Timer1_A, compare: Out0 output	
P3.2/	-	13	12	I/O	General-purpose digital I/O pin	
TA1.1 P3.3/					Timer1_A, compare: Out1 output General-purpose digital I/O	
TA1.2	-	14	13	I/O	Timer1_A, compare: Out2 output	
P3.4/					General-purpose digital I/O	
TA0.0	-	15	14	I/O	Timer0_A, compare: Out0 output	
P3.5/					General-purpose digital I/O	
TA0.1	-	19	18	I/O	TimerO_A, compare: Out1 output	
P3.6/					General-purpose digital I/O	
TA0.2	-	20	19	I/O	Timer0_A, compare: Out2 output	
P3.7/					General-purpose digital I/O	
TA1CLK	-	21	20	I/O	Timer1_A, clock signal TACLK input	
RST/					Reset	
NMI/	16	24	23	ı	Nonmaskable interrupt input	
SBWTDIO					Spy-Bi-Wire test data input/output during programming and test	
TEST/	17	25	24	ı	Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.	
SBWTCK				-	Spy-Bi-Wire test clock input during programming and test	
AVCC	NA	NA	29	NA	Analog supply voltage	
DVCC	1	1	30	NA	Digital supply voltage	
DVSS	20	28	27, 28	NA	Ground reference	
NC	NA	NA	8, 32	NA	Not connected	

⁽³⁾ If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset.

www.ti.com.cn

Table 2. Terminal Functions (continued)

	TERMINA	L					
	NO. VO	DESCRIPTION					
NAME	PW20, N20	PW28	RHB32	1/0	DEGGAIFTION		
QFN Pad	NA	NA	Pad	NA	QFN package pad connection to VSS recommended.		

SHORT-FORM DESCRIPTION

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

Instruction Set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 3 shows examples of the three types of instruction formats; Table 4 shows the address modes.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 3. Instruction Word Formats

INSTRUCTION FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5> R5
Single operands, destination only	CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

Table 4. Address Mode Descriptions⁽¹⁾

ADDRESS MODE	S	D	SYNTAX	EXAMPLE	OPERATION
Register	✓	✓	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	✓	✓	MOV X(Rn),Y(Rm)	MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)> I	
Symbolic (PC relative)	1	✓	MOV EDE,TONI	M(EDE)> M(TC	
Absolute	1	✓	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	✓		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	✓		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	✓		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

⁽¹⁾ S = source, D = destination

www.ti.com.cn

Operating Modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - DCO's dc generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator is disabled
 - Crystal oscillator is stopped

Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed), the CPU goes into LPM4 immediately after power-up.

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TACCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TACCR2 TACCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
			0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TACCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer0_A3	TACCR2 TACCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2) (6)	maskable	0FFECh	22
ADC10 (MSP430G2x33 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See ⁽⁷⁾			0FFDEh	15
See ⁽⁸⁾			0FFDEh to 0FFC0h	14 to 0, lowest

A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.

⁽²⁾ Multiple source flags

^{(3) (}non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

⁽⁴⁾ Interrupt flags are located in the module.

⁽⁵⁾ In SPI mode: UCBORXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.

⁽⁶⁾ In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.

⁽⁷⁾ This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.

⁽⁸⁾ The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

Special Function Registers (SFRs)

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

Legend Bit can be read and written. rw:

> rw-0,1: Bit can be read and written. It is reset or set by PUC. Bit can be read and written. It is reset or set by POR. rw-(0,1):

> > SFR bit is not present in device.

Table 6. Interrupt Enable Register 1 and 2												
Address	7	6	5	4	3	2	1	0				
00h			ACCVIE	NMIIE			OFIE	WDTIE				
			rw-0	rw-0			rw-0	rw-0				
WDTIE	Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode.											
OFIE	Oscillator	Oscillator fault interrupt enable										
NMIIE	(Non)mas	(Non)maskable interrupt enable										
ACCVIE	Flash acc	ess violation in	terrupt enable									
Address	7	6	5	4	3	2	1	0				
01h					UCB0TXIE	UCB0RXIE	UCA0TXIE	UCA0RXIE				
					rw-0	rw-0	rw-0	rw-0				
UCA0RXIE	USCI_A0	receive interru	pt enable									
UCA0TXIE	USCI_A0	transmit interr	upt enable									
UCB0RXIE	USCI_B0	receive interru	pt enable									
UCB0TXIE	USCI BO	transmit interr	upt enable									
			•									

Table 7. Interrupt Flag Register 1 and 2

Address	7	6	5	4	3	2	1	0			
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG			
				rw-0	rw-(0)	rw-(1)	rw-1	rw-(0)			
WDTIFG		Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V_{CC} power-on or a reset condition at the RST/NMI pin in reset mode.									
OFIFG	Flag set of	on oscillator fau	lt.								
PORIFG	Power-O	Power-On Reset interrupt flag. Set on V _{CC} power-up.									
RSTIFG	External i	External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V _{CC} power-up.									

Address	7	6	5	4	3	2	1	0
03h					UCB0TXIFG	UCB0RXIFG	UCA0TXIFG	UCA0RXIFG
					rw-1	rw-0	rw-1	rw-0

UCAORXIFG USCI_A0 receive interrupt flag **UCA0TXIFG** USCI_A0 transmit interrupt flag **UCBORXIFG** USCI_B0 receive interrupt flag **UCB0TXIFG** USCI_B0 transmit interrupt flag

Set via RST/NMI pin

NMIIFG

Memory Organization

Table 8. Memory Organization

		MSP430G2233 MSP430G2203	MSP430G2333 MSP430G2303	MSP430G2433 MSP430G2403	MSP430G2533
Memory	Size	2kB	4kB	8kB	16kB
Main: interrupt vector	Flash	0xFFFF to 0xFFC0	0xFFFF to 0xFFC0	0xFFFF to 0xFFC0	0xFFFF to 0xFFC0
Main: code memory	Flash	0xFFFF to 0xF800	0xFFFF to 0xF000	0xFFFF to 0xE000	0xFFFF to 0xC000
Information memory	Size	256 Byte	256 Byte	256 Byte	256 Byte
	Flash	010FFh to 01000h	010FFh to 01000h	010FFh to 01000h	010FFh to 01000h
RAM	Size	256 Byte	256 Byte	512 Byte	512 Byte
		0x02FF to 0x0200	0x02FF to 0x0200	0x03FF to 0x0200	0x03FF to 0x0200
Peripherals	16-bit	01FFh to 0100h	01FFh to 0100h	01FFh to 0100h	01FFh to 0100h
	8-bit	0FFh to 010h	0FFh to 010h	0FFh to 010h	0FFh to 010h
	8-bit SFR	0Fh to 00h	0Fh to 00h	0Fh to 00h	0Fh to 00h

Bootstrap Loader (BSL)

The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319).

Table 9. BSL Function Pins

BSL FUNCTION	20-PIN PW PACKAGE 20-PIN N PACKAGE	28-PIN PACKAGE PW	32-PIN PACKAGE RHB
Data transmit	3 - P1.1	3 - P1.1	1 - P1.1
Data receive	7 - P1.5	7 - P1.5	5 - P1.5

Flash Memory

The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- · Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also called *information memory*.
- Segment A contains calibration data. After reset segment A is protected against programming and erasing. It
 can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is
 required.

Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).

Oscillator and System Clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO). The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals:

- · Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.
- · Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.

Calibration Data Stored in Information Memory Segment A

Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value structure.

Table 10. Tags Used by the ADC Calibration Tags

NAME	ADDRESS	VALUE	DESCRIPTION
TAG_DCO_30	0x10F6	0x01	DCO frequency calibration at V_{CC} = 3 V and T_A = 30°C at calibration
TAG_ADC10_1	0x10DA	0x10	ADC10_1 calibration tag
TAG_EMPTY	-	0xFE	Identifier for empty memory areas

Table 11. Labels Used by the ADC Calibration Tags

LABEL	ADDRESS OFFSET	SIZE	CONDITION AT CALIBRATION / DESCRIPTION		
CAL_ADC_25T85	0x0010	word	INCHx = 0x1010, REF2_5 = 1, T _A = 85°C		
CAL_ADC_25T30	0x000E	word	INCHx = 0x1010, REF2_5 = 1, T _A = 30°C		
CAL_ADC_25VREF_FACTOR	0x000C	word	REF2_5 = 1, T _A = 30°C, I _{VREF+} = 1 mA		
CAL_ADC_15T85	0x000A	word	INCHx = 0x1010, REF2_5 = 0, T _A = 85°C		
CAL_ADC_15T30	0x0008	word	INCHx = 0x1010, REF2_5 = 0, T _A = 30°C		
CAL_ADC_15VREF_FACTOR	0x0006	word	REF2_5 = 0, $T_A = 30^{\circ}$ C, $I_{VREF+} = 0.5$ mA		
CAL_ADC_OFFSET	0x0004	word	External VREF = 1.5 V, f _{ADC10CLK} = 5 MHz		
CAL_ADC_GAIN_FACTOR	0x0002	word	External VREF = 1.5 V, f _{ADC10CLK} = 5 MHz		
CAL_BC1_1MHZ	0x0009	byte	-		
CAL_DCO_1MHZ	0x0008	byte	-		
CAL_BC1_8MHZ	0x0007	byte	-		
CAL_DCO_8MHZ	0x0006	byte	-		
CAL_BC1_12MHZ	0x0005	byte	-		
CAL_DCO_12MHZ	0x0004	byte	-		
CAL_BC1_16MHZ	0x0003	byte	-		
CAL_DCO_16MHZ	0x0002	byte	-		

Brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

Digital I/O

Up to three 8-bit I/O ports are implemented:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt condition (port P1 and port P2 only) is possible.
- Edge-selectable interrupt input capability for all bits of port P1 and port P2 (if available).
- · Read/write access to port-control registers is supported by all instructions.
- Each I/O has an individually programmable pullup/pulldown resistor.
- Each I/O has an individually programmable pin oscillator enable bit to enable low-cost touch sensing.

WDT+ Watchdog Timer

The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals.

Timer_A3 (TA0, TA1)

Timer0_A3 and Timer1_A3 are 16-bit timers/counters with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 12. Timer0_A3 Signal Connections

INPL	JT PIN NUME	BER	DEVICE	MODULE	MODULE	MODULE	OUTPUT PIN NUMBER		IBER			
PW20, N20	PW28	RHB32	INPUT SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PW20, N20	PW28	RHB32			
P1.0-2	P1.0-2	P1.0-31	TACLK	TACLK								
			ACLK	ACLK	T:	NIA						
			SMCLK	SMCLK	Timer	NA						
PinOsc	PinOsc	PinOsc	TACLK	INCLK								
P1.1-3	P1.1-3	P1.1-1	TA0.0	CCI0A	CCR0		P1.1-3	P1.1-3	P1.1-1			
			ACLK	CCI0B		CCRO	CCDO	0000	TA0	P1.5-7	P1.5-7	P1.5-5
			V _{SS}	GND		JCRU TAU	-	P3.4-15	P3.4-14			
			V _{CC}	V _{CC}								
P1.2-4	P1.2-4	P1.2-2	TA0.1	CCI1A				P1.2-4	P1.2-4	P1.2-2		
			CAOUT	CCI1B	CCD4	T 4 4	P1.6-14	P1.6-22	P1.6-21			
			V _{SS}	GND	CCR1	TA1	P2.6-19	P2.6-27	P2.6-26			
			V _{CC}	V _{CC}			-	P3.5-19	P3.5-18			
-	P3.0-9	P3.0-7	TA0.2	CCI2A			-	P3.0-9	P3.0-7			
PinOsc	PinOsc	PinOsc	TA0.2	CCI2B	CCR2	T40	-	P3.6-20	P3.6-19			
			V _{SS}	GND		TA2						
			V _{CC}	V _{CC}								

Table 13. Timer1_A3 Signal Connections

INP	JT PIN NUME	BER	DEVICE	MODULE	MODULE	MODULE	OUTPUT PIN NUMBER		IBER	
PW20, N20	PW28	RHB32	INPUT SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PW20, N20	PW28	RHB32	
-	P3.7-21	P3.7-20	TACLK	TACLK						
			ACLK	ACLK	Timer	NIA				
			SMCLK	SMCLK	Timer	NA				
-	P3.7-21	P3.7-20	TACLK	INCLK						
P2.0-8	P2.0-10	P2.0-9	TA1.0	CCI0A	CCR0 TA		P2.0-8	P2.0-10	P2.0-9	
P2.3-11	P2.3-16	P2.3-12	TA1.0	CCI0B		CCD0 TAO	T40	P2.3-11	P2.3-16	P2.3-15
			V _{SS}	GND		TAU		P3.1-8	P3.1-6	
			V _{CC}	V _{CC}						
P2.1-9	P2.1-11	P2.1-10	TA1.1	CCI1A			P2.1-9	P2.1-11	P2.1-10	
P2.2-10	P2.2-12	P2.2-11	TA1.1	CCI1B	0004		P2.2-10	P2.2-12	P2.2-11	
			V _{SS}	GND	CCR1	TA1		P3.2-13	P3.2-12	
			V _{CC}	V _{CC}						
P2.4-12	P2.4-17	P2.4-16	TA1.2	CCI2A			P2.4-12	P2.4-17	P2.4-16	
P2.5-13	P2.5-18	P2.5-17	TA1.2	CCI2B	CCR2	T40	P2.5-13	P2.5-18	P2.5-17	
			V _{SS}	GND		TA2		P3.3-14	P3.3-13	
			V _{CC}	V _{CC}						

Universal Serial Communications Interface (USCI)

The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. Not all packages support the USCI functionality.

USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.

USCI B0 provides support for SPI (3 or 4 pin) and I2C.

ADC10 (MSP430G2x33 Only)

The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion result handling, allowing ADC samples to be converted and stored without any CPU intervention.

Peripheral File Map

Table 14. Peripherals With Word Access

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
ADC10	ADC data transfer start address	ADC10SA	1BCh
(MSP430G2x33 devices only)	ADC memory	ADC10MEM	1B4h
	ADC control register 1	ADC10CTL1	1B2h
	ADC control register 0	ADC10CTL0	1B0h
Timer1_A3	Capture/compare register	TACCR2	0196h
	Capture/compare register	TACCR1	0194h
	Capture/compare register	TACCR0	0192h
	Timer_A register	TAR	0190h
	Capture/compare control	TACCTL2	0186h
	Capture/compare control	TACCTL1	0184h
	Capture/compare control	TACCTL0	0182h
	Timer_A control	TACTL	0180h
	Timer_A interrupt vector	TAIV	011Eh
Timer0_A3	Capture/compare register	TACCR2	0176h
	Capture/compare register	TACCR1	0174h
	Capture/compare register	TACCR0	0172h
	Timer_A register	TAR	0170h
mer1_A3 mer0_A3 ash Memory	Capture/compare control	TACCTL2	0166h
	Capture/compare control	TACCTL1	0164h
	Capture/compare control	TACCTL0	0162h
	Timer_A control	TACTL	0160h
	Timer_A interrupt vector	TAIV	012Eh
Flash Memory	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
Watchdog Timer+	Watchdog/timer control	WDTCTL	0120h

Table 15. Peripherals With Byte Access

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
USCI_B0	USCI_B0 transmit buffer	UCB0TXBUF	06Fh
	USCI_B0 receive buffer	UCB0RXBUF	06Eh
	USCI_B0 status	UCB0STAT	06Dh
	USCI B0 I2C Interrupt enable	UCB0CIE	06Ch
	USCI_B0 bit rate control 1	UCB0BR1	06Bh
	USCI_B0 bit rate control 0	UCB0BR0	06Ah
	USCI_B0 control 1	UCB0CTL1	069h
	USCI_B0 control 0	UCB0CTL0	068h
	USCI_B0 I2C slave address	UCB0SA	011Ah
	USCI_B0 I2C own address	UCB0OA	0118h

Table 15. Peripherals With Byte Access (continued)

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
USCI_A0	USCI_A0 transmit buffer	UCA0TXBUF	067h
	USCI_A0 receive buffer	UCA0RXBUF	066h
	USCI_A0 status	UCA0STAT	065h
	USCI_A0 modulation control	UCA0MCTL	064h
	USCI_A0 baud rate control 1	UCA0BR1	063h
	USCI_A0 baud rate control 0	UCA0BR0	062h
	USCI_A0 control 1	UCA0CTL1	061h
	USCI_A0 control 0	UCA0CTL0	060h
	USCI_A0 IrDA receive control	UCA0IRRCTL	05Fh
	USCI_A0 IrDA transmit control	UCA0IRTCTL	05Eh
	USCI_A0 auto baud rate control	UCA0ABCTL	05Dh
ADC10	ADC analog enable 0	ADC10AE0	04Ah
(MSP430G2x33 devices only)	ADC analog enable 1	ADC10AE1	04Bh
	ADC data transfer control register 1	ADC10DTC1	049h
	ADC data transfer control register 0	ADC10DTC0	048h
Basic Clock System+	Basic clock system control 3	BCSCTL3	053h
	Basic clock system control 2	BCSCTL2	058h
	Basic clock system control 1	BCSCTL1	057h
	DCO clock frequency control	DCOCTL	056h
Port P3	Port P3 selection 2. pin	P3SEL2	043h
(28-pin PW and 32-pin RHB only)	Port P3 resistor enable	P3REN	010h
	Port P3 selection	P3SEL	01Bh
	Port P3 direction	P3DIR	01Ah
	Port P3 output	P3OUT	019h
	Port P3 input	P3IN	018h
Port P2	Port P2 selection 2	P2SEL2	042h
	Port P2 resistor enable	P2REN	02Fh
	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 selection 2	P1SEL2	041h
	Port P1 resistor enable	P1REN	027h
	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h
Special Function	SFR interrupt flag 2	IFG2	003h
•	SFR interrupt flag 1	IFG1	002h
	SFR interrupt enable 2	IE2	001h
	SFR interrupt enable 1	IE1	000h

Absolute Maximum Ratings(1)

Voltage applied at V _{CC} to V _{SS}		–0.3 V to 4.1 V
Voltage applied to any pin ⁽²⁾	-0.3 V to V _{CC} + 0.3 V	
Diode current at any device pin	±2 mA	
Ct (3)	Unprogrammed device	–55°C to 150°C
Storage temperature range, T _{stg} ⁽³⁾	Programmed device	–55°C to 150°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.
- (3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
		During program execution	1.8		3.6	
V _{CC}	Supply voltage	During flash programming/erase	2.2		3.6	V
V_{SS}	Supply voltage			0		V
- 0 (On another a fine a rise to make a section.	I version	-40		85	°C
T _A	Operating free-air temperature	T version	-40		105	C
		V _{CC} = 1.8 V, Duty cycle = 50% ± 10%	dc dc		6	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency using the USART module) (1) (2)	V _{CC} = 2.7 V, Duty cycle = 50% ± 10%			12	MHz
		V _{CC} = 3.3 V, Duty cycle = 50% ± 10%	dc		16	

- (1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
- (2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.

Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.2 V.

Figure 1. Safe Operating Area

Electrical Characteristics

Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)(2)

I	PARAMETER	TEST CONDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
	$f_{DCO} = f_{MCLK} = f_{SMCLK} = 1 \text{ MHz},$		2.2 V		230			
I _{AM,1MHz}	Active mode (AM) current at 1 MHz	f _{ACLK} = 0 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V		330	420	μА

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.

Typical Characteristics, Active Mode Supply Current (Into V_{CC})

Figure 3. Active Mode Current vs DCO Frequency

Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

P	ARAMETER	TEST CONDITIONS	T _A	v_{cc}	MIN	TYP	MAX	UNIT
I _{LPM0,1MHz}	Low-power mode 0 (LPM0) current ⁽³⁾	$ \begin{aligned} &f_{\text{MCLK}} = 0 \text{ MHz,} \\ &f_{\text{SMCLK}} = f_{\text{DCO}} = 1 \text{ MHz,} \\ &f_{\text{ACLK}} = 32768 \text{ Hz,} \\ &\text{BCSCTL1} = \text{CALBC1_1MHZ,} \\ &\text{DCOCTL} = \text{CALDCO_1MHZ,} \\ &\text{CPUOFF} = 1, \text{SCG0} = 0, \text{SCG1} = 0, \\ &\text{OSCOFF} = 0 \end{aligned} $	25°C	2.2 V		56		μΑ
I _{LPM2}	Low-power mode 2 (LPM2) current ⁽⁴⁾	$\begin{split} &f_{\text{MCLK}} = f_{\text{SMCLK}} = 0 \text{ MHz}, \\ &f_{\text{DCO}} = 1 \text{ MHz}, \\ &f_{\text{ACLK}} = 32768 \text{ Hz}, \\ &\text{BCSCTL1} = \text{CALBC1_1MHZ}, \\ &\text{DCOCTL} = \text{CALDCO_1MHZ}, \\ &\text{CPUOFF} = 1, \text{SCG0} = 0, \text{SCG1} = 1, \\ &\text{OSCOFF} = 0 \end{split}$	25°C	2.2 V		22		μΑ
I _{LPM3,LFXT1}	Low-power mode 3 (LPM3) current ⁽⁴⁾	$ \begin{aligned} f_{DCO} &= f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}, \\ f_{ACLK} &= 32768 \text{ Hz}, \\ CPUOFF &= 1, SCG0 = 1, SCG1 = 1, \\ OSCOFF &= 0 \end{aligned} $	25°C	2.2 V		0.7	1.5	μA
I _{LPM3,VLO}	Low-power mode 3 current, (LPM3) ⁽⁴⁾	$ \begin{aligned} f_{DCO} &= f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}, \\ f_{ACLK} &\text{from internal LF oscillator (VLO),} \\ CPUOFF &= 1, SCG0 = 1, SCG1 = 1, \\ OSCOFF &= 0 \end{aligned} $	25°C	2.2 V		0.5	0.7	μΑ
		$f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz},$	25°C			0.1	0.5	
I _{LPM4}	Low-power mode 4 (LPM4) current ⁽⁵⁾	f _{ACLK} = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	85°C	2.2 V		0.8	1.7	μΑ

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.
- (3) Current for brownout and WDT clocked by SMCLK included.
- (4) Current for brownout and WDT clocked by ACLK included.
- (5) Current for brownout included.

Typical Characteristics, Low-Power Mode Supply Currents

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Figure 4. LPM3 Current vs Temperature

Figure 5. LPM4 Current vs Temperature

Schmitt-Trigger Inputs, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
\/	Desitive gains input threshold valtage			0.45 V _{CC}		0.75 V _{CC}	V
V_{IT+}	Positive-going input threshold voltage		3 V	1.35		2.25	V
.,	No motive make a local through and value as			0.25 V _{CC}		0.55 V _{CC}	.,
V _{IT} –	V _{IT} Negative-going input threshold voltage		3 V	0.75		1.65	V
V_{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.3		1	V
R _{Pull}	Pullup/pulldown resistor	For pullup: V _{IN} = V _{SS} For pulldown: V _{IN} = V _{CC}	3 V	20	35	50	kΩ
Cı	Input capacitance	V _{IN} = V _{SS} or V _{CC}			5		pF

Leakage Current, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
I _{lkg(Px.y)}	High-impedance leakage current	(1) (2)	3 V	±50	nA

- The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

Outputs, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{(OHmax)} = -6 \text{ mA}^{(1)}$	3 V	\	V _{CC} – 0.3		V
V_{OL}	Low-level output voltage	$I_{(OLmax)} = 6 \text{ mA}^{(1)}$	3 V	,	V _{SS} + 0.3		V

⁽¹⁾ The maximum total current, I_(OHmax), and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop

Output Frequency, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{Px.y}	Port output frequency (with load)	Px.y, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega^{(1)}$ (2)	3 V		12		MHz
f _{Port_CLK}	Clock output frequency	$Px.y, C_L = 20 pF^{(2)}$	3 V		16		MHz

- A resistive divider with two 0.5-k Ω resistors between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the
- The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

Typical Characteristics, Outputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TYPICAL LOW-LEVEL OUTPUT CURRENT vs

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

Figure 7.

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

Figure 9.

Pin-Oscillator Frequency – Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	v_{cc}	MIN TYP	MAX	UNIT	
40	Dort output appillation from your	P1.y, $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	1400		kHz	
fo _{P1.x} Port output oscillation frequency		P1.y, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	900		KHZ	
4-	Don't autout appillation from	P2.0 to P2.5, $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	2.1/	1800		kHz	
fo _{P2.x}	Port output oscillation frequency	P2.0 to P2.5, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	1000		kHz	
fo _{P2.6/7}	Port output oscillation frequency	P2.6 and P2.7, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	700		kHz	
fo	Dort output appillation fraguency	P3.y, $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	2.1/	1800		kHz	
fo _{P3.x}	Port output oscillation frequency	P3.y, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	1000		KΠZ	

A resistive divider with two 0.5-kΩ resistors between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

Typical Characteristics, Pin-Oscillator Frequency

A. One output active at a time.

A. One output active at a time.

Figure 11.

⁽²⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

POR/Brownout Reset (BOR)(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
V _{CC(start)}	See Figure 12	dV _{CC} /dt ≤ 3 V/s		0.7 × V _(B_IT)		V
V _(B_IT-)	See Figure 12 through Figure 14	dV _{CC} /dt ≤ 3 V/s		1.35		V
V _{hys(B_IT-)}	See Figure 12	dV _{CC} /dt ≤ 3 V/s		140		mV
t _{d(BOR)}	See Figure 12			2000		μs
t _(reset)	Pulse length needed at RST/NMI pin to accepted reset internally		2.2 V	2		μs

(1) The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level $V_{(B_IT-)}$ + $V_{hys(B_IT-)}$ is $\leq 1.8 \text{ V}$.

Figure 12. POR/Brownout Reset (BOR) vs Supply Voltage

Typical Characteristics, POR/Brownout Reset (BOR)

Figure 13. $V_{CC(drop)}$ Level With a Square Voltage Drop to Generate a POR/Brownout Signal

Figure 14. $V_{CC(drop)}$ Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

Main DCO Characteristics

- All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
- DCO control bits DCOx have a step size as defined by parameter S_{DCO}.
- Modulation control bits MODx select how often f_{DCO(RSEL,DCO+1)} is used within the period of 32 DCOCLK cycles. The frequency f_{DCO(RSEL,DCO)} is used for the remaining cycles. The frequency is an average equal to:

$$f_{average} = \frac{\frac{32 - DCO(RSEL,DCO) - DCO(RSEL,DCO+1)}{MOD \times f_{DCO(RSEL,DCO)} + (32 - MOD) \times f_{DCO(RSEL,DCO+1)}}$$

DCO Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		RSELx < 14		1.8		3.6	V
V _{CC}	Supply voltage	RSELx = 14		2.2		3.6	V
		RSELx = 15		3		3.6	V
f _{DCO(0,0)}	DCO frequency (0, 0)	RSELx = 0, $DCOx = 0$, $MODx = 0$	3 V	0.06		0.14	MHz
f _{DCO(0,3)}	DCO frequency (0, 3)	RSELx = 0, $DCOx = 3$, $MODx = 0$	3 V	0.07		0.17	MHz
f _{DCO(1,3)}	DCO frequency (1, 3)	RSELx = 1, $DCOx = 3$, $MODx = 0$	3 V		0.15		MHz
f _{DCO(2,3)}	DCO frequency (2, 3)	RSELx = 2, $DCOx = 3$, $MODx = 0$	3 V		0.21		MHz
f _{DCO(3,3)}	DCO frequency (3, 3)	RSELx = 3, $DCOx = 3$, $MODx = 0$	3 V		0.30		MHz
f _{DCO(4,3)}	DCO frequency (4, 3)	RSELx = 4, $DCOx = 3$, $MODx = 0$	3 V		0.41		MHz
f _{DCO(5,3)}	DCO frequency (5, 3)	RSELx = 5, $DCOx = 3$, $MODx = 0$	3 V		0.58		MHz
f _{DCO(6,3)}	DCO frequency (6, 3)	RSELx = 6, $DCOx = 3$, $MODx = 0$	3 V	0.54		1.06	MHz
f _{DCO(7,3)}	DCO frequency (7, 3)	RSELx = 7, $DCOx = 3$, $MODx = 0$	3 V	0.80		1.50	MHz
f _{DCO(8,3)}	DCO frequency (8, 3)	RSELx = 8, $DCOx = 3$, $MODx = 0$	3 V		1.6		MHz
f _{DCO(9,3)}	DCO frequency (9, 3)	RSELx = 9, $DCOx = 3$, $MODx = 0$	3 V		2.3		MHz
f _{DCO(10,3)}	DCO frequency (10, 3)	RSELx = 10, $DCOx = 3$, $MODx = 0$	3 V		3.4		MHz
f _{DCO(11,3)}	DCO frequency (11, 3)	RSELx = 11, DCOx = 3, MODx = 0	3 V		4.25		MHz
f _{DCO(12,3)}	DCO frequency (12, 3)	RSELx = 12, $DCOx = 3$, $MODx = 0$	3 V	4.30		7.30	MHz
f _{DCO(13,3)}	DCO frequency (13, 3)	RSELx = 13, DCOx = 3, MODx = 0	3 V	6.00		9.60	MHz
f _{DCO(14,3)}	DCO frequency (14, 3)	RSELx = 14, DCOx = 3, MODx = 0	3 V	8.60		13.9	MHz
f _{DCO(15,3)}	DCO frequency (15, 3)	RSELx = 15, DCOx = 3, MODx = 0	3 V	12.0		18.5	MHz
f _{DCO(15,7)}	DCO frequency (15, 7)	RSELx = 15, DCOx = 7, MODx = 0	3 V	16.0		26.0	MHz
S _{RSEL}	Frequency step between range RSEL and RSEL+1	$S_{RSEL} = f_{DCO(RSEL+1,DCO)}/f_{DCO(RSEL,DCO)}$	3 V		1.35		ratio
S _{DCO}	Frequency step between tap DCO and DCO+1	$S_{DCO} = f_{DCO(RSEL,DCO+1)}/f_{DCO(RSEL,DCO)}$	3 V		1.08		ratio
Duty cycle		Measured at SMCLK output	3 V		50		%

Calibrated DCO Frequencies, Tolerance

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
1-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
1-MHz tolerance over V _{CC}	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V	30°C	1.8 V to 3.6 V	-3	±2	+3	%
1-MHz tolerance overall	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V	-40°C to 85°C	1.8 V to 3.6 V	-6	±3	+6	%
8-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
8-MHz tolerance over V _{CC}	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V	30°C	2.2 V to 3.6 V	-3	±2	+3	%
8-MHz tolerance overall	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V	-40°C to 85°C	2.2 V to 3.6 V	-6	±3	+6	%
12-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
12-MHz tolerance over V _{CC}	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30°C and 3 V	30°C	2.7 V to 3.6 V	-3	±2	+3	%
12-MHz tolerance overall	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30°C and 3 V	-40°C to 85°C	2.7 V to 3.6 V	-6	±3	+6	%
16-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
16-MHz tolerance over V _{CC}	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V	30°C	3.3 V to 3.6 V	-3	±2	+3	%
16-MHz tolerance overall	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V	-40°C to 85°C	3.3 V to 3.6 V	-6	±3	+6	%

⁽¹⁾ This is the frequency change from the measured frequency at 30°C over temperature.

Wake-Up From Lower-Power Modes (LPM3/4)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
t _{DCO,LPM3/4}	DCO clock wake-up time from LPM3/4 ⁽¹⁾	BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz	3 V		1.5		μs
t _{CPU,LPM3/4}	CPU wake-up time from LPM3/4 ⁽²⁾			1	1/f _{MCLK} +		

⁽¹⁾ The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK).

Typical Characteristics, DCO Clock Wake-Up Time From LPM3/4

Figure 15. DCO Wake-Up Time From LPM3 vs DCO Frequency

⁽²⁾ Parameter applicable only if DCOCLK is used for MCLK.

Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V to 3.6 V		32768		Hz
LFXT1 oscillator logic level square wave input frequency, LF mode	XTS = 0, XCAPx = 0, LFXT1Sx = 3	1.8 V to 3.6 V	10000	32768	50000	Hz
Oscillation allowance for	XTS = 0, LFXT1Sx = 0, f _{LFXT1,LF} = 32768 Hz, C _{L,eff} = 6 pF			500		1.0
LF crystals	$XTS = 0$, $LFXT1Sx = 0$, $f_{LFXT1,LF} = 32768$ Hz, $C_{L,eff} = 12$ pF			200		kΩ
	XTS = 0, $XCAPx = 0$			1		
Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		"F
capacitance, LF mode (2)	XTS = 0, $XCAPx = 2$			8.5		pF
	XTS = 0, XCAPx = 3			11		
LF mode	XTS = 0, Measured at P2.0/ACLK, f _{LFXT1,LF} = 32768 Hz	2.2 V	30	50	70	%
Oscillator fault frequency, LF mode ⁽³⁾	XTS = 0, $XCAPx = 0$, $LFXT1Sx = 3(4)$	2.2 V	10		10000	Hz
	LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level square wave input frequency, LF mode Oscillation allowance for LF crystals Integrated effective load capacitance, LF mode LF mode Oscillator fault frequency,	LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level square wave input frequency, LF mode Oscillation allowance for LF crystals Integrated effective load capacitance, LF mode LF mode XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, LFXT1Sx = 0, $LFXT1Sx = 3$ XTS = 0, XCAPx = 0 XTS = 0, XCAPx = 2 XTS = 0, XCAPx = 3 XTS = 0, Measured at P2.0/ACLK, $LFXT1Sx = 32768$ Hz Oscillator fault frequency, $LFXT1Sx = 32768$ Hz	LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level square wave input frequency, LF mode Oscillation allowance for LF crystals Integrated effective load capacitance, LF mode LF mode $XTS = 0$, LFXT1Sx = 0, LFXT1Sx = 3 $XTS = 0$, LFXT1Sx = 0, $f_{LFXT1,LF} = 32768$ Hz, $G_{L,eff} = 6$ pF $XTS = 0$, LFXT1Sx = 0, $f_{LFXT1,LF} = 32768$ Hz, $G_{L,eff} = 12$ pF $G_{LFXT1,LF} = 32768$ Hz, G_{LFXT	LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level square wave input frequency, LF mode Oscillation allowance for LF crystals Integrated effective load capacitance, LF mode LF mode XTS = 0, LFXT1Sx = 0, LFXT1Sx = 3 $XTS = 0$, LFXT1Sx = 0, $IST = 0$, CAPx = 0 XTS = 0, XCAPx = 0 XTS = 0, XCAPx = 1 XTS = 0, XCAPx = 2 XTS = 0, XCAPx = 3 LF mode Oscillator fault frequency, STS = 0, YCAPx = 0 LFXT4Sx = 3(4) A 2 2 V 30	LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level square wave input frequency, LF mode Oscillation allowance for LF crystals $ \begin{array}{l} XTS = 0, \ LFXT1Sx = 0 \text{ or } 1 \\ XTS = 0, \ XCAPx = 0, \ LFXT1Sx = 3 \\ XTS = 0, \ LFXT1Sx = 3 \end{array} $ $ \begin{array}{l} XTS = 0, \ LFXT1Sx = 3 \\ XTS = 0, \ LFXT1Sx = 0, \\ LFXT1, LF = 32768 \ Hz, \ C_{L,eff} = 6 \ pF \end{array} $ $ \begin{array}{l} XTS = 0, \ LFXT1Sx = 0, \\ XTS = 0, \ ACAPx = 0 \end{array} $ $ \begin{array}{l} XTS = 0, \ ACAPx = 0 \\ XTS = 0, \ ACAPx = 2 \end{array} $ $ \begin{array}{l} XTS = 0, \ ACAPx = 2 \\ XTS = 0, \ ACAPx = 3 \end{array} $ $ \begin{array}{l} XTS = 0, \ ACAPx = 3 \end{array} $ $ \begin{array}{l} 1.8 \ V \ to \ 3.6 \ V $ $ \begin{array}{l} 10000 \ 32768 \ DSCAPx = 3 \end{array} $ $ \begin{array}{l} 200 \ DSCAPx = 3 \ DSCAPx = 3 \end{array} $ $ \begin{array}{l} 1.8 \ V \ to \ 3.6 \ V $ $ \begin{array}{l} 10000 \ 32768 \ DSCAPx = 3 \end{array} $ $ \begin{array}{l} 1.8 \ V \ to \ 3.6 \ V $ $ \begin{array}{l} 32768 \ DSCAPx = 3 \end{array} $ $ \begin{array}{l} 32768 \ DSCAPx = 3 \end{array} $ $ \begin{array}{l} 32768 \ DSCAPx = 3 \ DSCA$	LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator logic level square wave input frequency, LF mode Oscillation allowance for LF crystals Integrated effective load capacitance, LF mode XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 1.8 V to 3.6 V 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, XCAPx = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 XTS = 0, XCAPx = 0, LFXT1Sx = 0, $\frac{1}{1.8 \text{ V to } 3.6 \text{ V}}$ 10000 32768 50000 100000

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - (a) Keep the trace between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
 - (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
- (2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- (4) Measured with logic-level input frequency but also applies to operation with crystals.

Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	T _A	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	-40°C to 85°C	3 V	4	12	20	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	-40°C to 85°C	3 V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	25°C	1.8 V to 3.6 V		4		%/V

Timer A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP MA	X UNIT
f_{TA}	Timer_A input clock frequency	SMCLK, duty cycle = 50% ± 10%			f _{SYSTEM}	MHz
t _{TA,cap}	Timer_A capture timing	TAO, TA1	3 V	20		ns

USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, duty cycle = 50% ± 10%			f _{SYSTEM}		MHz
f _{max,BITCLK}	Maximum BITCLK clock frequency (equals baudrate in MBaud) ⁽¹⁾		3 V	2			MHz
t _T	UART receive deglitch time ⁽²⁾		3 V	50	100	600	ns

⁽¹⁾ The DCO wake-up time must be considered in LPM3/4 for baud rates above 1 MHz.

USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 16 and Figure 17)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
t _{SU,MI}	SOMI input data setup time		3 V	75			ns
t _{HD,MI}	SOMI input data hold time		3 V	0			ns
t _{VALID,MO}	SIMO output data valid time	UCLK edge to SIMO valid, C _L = 20 pF	3 V			20	ns

Figure 16. SPI Master Mode, CKPH = 0

Figure 17. SPI Master Mode, CKPH = 1

⁽²⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their width should exceed the maximum specification of the deglitch time.

USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 18 and Figure 19)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{STE,LEAD}	STE lead time, STE low to clock		3 V		50		ns
t _{STE,LAG}	STE lag time, Last clock to STE high		3 V	10			ns
t _{STE,ACC}	STE access time, STE low to SOMI data out		3 V		50		ns
t _{STE,DIS}	STE disable time, STE high to SOMI high impedance		3 V		50		ns
t _{SU,SI}	SIMO input data setup time		3 V	15			ns
t _{HD,SI}	SIMO input data hold time		3 V	10			ns
t _{VALID,SO}	SOMI output data valid time	UCLK edge to SOMI valid, $C_L = 20 \text{ pF}$	3 V		50	75	ns

Figure 18. SPI Slave Mode, CKPH = 0

Figure 19. SPI Slave Mode, CKPH = 1

USCI (I2C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 20)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		3 V	0		400	kHz
	Hold time (non-orted) CTART	f _{SCL} ≤ 100 kHz	3 V	4.0			
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	3 V	0.6			μs
	Cation times for a reported CTART	f _{SCL} ≤ 100 kHz	2.1/	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	3 V	0.6			μs
t _{HD,DAT}	Data hold time		3 V	0			ns
t _{SU,DAT}	Data setup time		3 V	250			ns
t _{SU,STO}	Setup time for STOP		3 V	4.0			μs
t _{SP}	Pulse width of spikes suppressed by input filter		3 V	50	100	600	ns

Figure 20. I2C Mode Timing

10-Bit ADC, Power Supply and Input Range Conditions (MSP430G2x33 Only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC}	Analog supply voltage	V _{SS} = 0 V			2.2		3.6	V
V_{Ax}	Analog input voltage (2)	All Ax terminals, Analog inputs selected in ADC10AE register		3 V	0		V_{CC}	V
I _{ADC10}	ADC10 supply current ⁽³⁾	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 1, REFON = 0, ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0	25°C	3 V		0.6		mA
	Reference supply current,	$\begin{split} f_{ADC10CLK} &= 5.0 \text{ MHz}, \\ ADC10ON &= 0, \text{ REF2_5V} = 0, \\ \text{REFON} &= 1, \text{ REFOUT} = 0 \end{split}$	25°C 2.V	2.1/	0.25			A
I _{REF+}	Reference supply current, reference buffer disabled ⁽⁴⁾	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0	25°C	3 V		0.25		mA
I _{REFB,0}	Reference buffer supply current with ADC10SR = 0 ⁽⁴⁾	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 0	25°C	3 V		1.1		mA
I _{REFB,1}	Reference buffer supply current with ADC10SR = 1 ⁽⁴⁾	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1	25°C	3 V		0.5		mA
C _I	Input capacitance	Only one terminal Ax can be selected at one time	25°C	3 V			27	pF
R _I	Input MUX ON resistance	$0 \text{ V} \leq \text{V}_{Ax} \leq \text{V}_{CC}$	25°C	3 V		1000		Ω

The leakage current is defined in the leakage current table with Px.y/Ax parameter.

The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results.

The internal reference supply current is not included in current consumption parameter I_{ADC10} . The internal reference current is supplied via terminal V_{CC} . Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.

10-Bit ADC, Built-In Voltage Reference (MSP430G2x33 Only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Positive built-in reference	I _{VREF+} ≤ 1 mA, REF2_5V = 0		2.2			V
$V_{CC,REF+}$	analog supply voltage range	I _{VREF+} ≤ 1 mA, REF2_5V = 1		2.9			V
V	Positive built-in reference	$I_{VREF+} \le I_{VREF+} max$, REF2_5V = 0	3 V	1.41	1.5	1.59	V
V_{REF+}	voltage	$I_{VREF+} \le I_{VREF+} max$, REF2_5V = 1	3 V	2.35	2.5	2.65	v
I _{LD,VREF+}	Maximum VREF+ load current		3 V			±1	mA
	VDEE , load regulation	I_{VREF+} = 500 μA ± 100 μA, Analog input voltage V_{Ax} ≉ 0.75 V, REF2_5V = 0	- 3 V			±2	LSB
	VREF+ load regulation	I_{VREF+} = 500 μA ± 100 μA, Analog input voltage V_{Ax} ≉ 1.25 V, REF2_5V = 1	3 V			±2	
	V _{REF+} load regulation response time	I_{VREF+} = 100 μA \rightarrow 900 μA, V_{Ax} # 0.5 × VREF+, Error of conversion result ≤ 1 LSB, ADC10SR = 0	3 V			400	ns
C _{VREF+}	Maximum capacitance at pin VREF+	I _{VREF+} ≤ ±1 mA, REFON = 1, REFOUT = 1	3 V			100	pF
TC _{REF+}	Temperature coefficient	I _{VREF+} = const with 0 mA ≤ I _{VREF+} ≤ 1 mA	3 V			±100	ppm/ °C
t _{REFON}	Settling time of internal reference voltage to 99.9% VREF	$I_{VREF+} = 0.5 \text{ mA}, REF2_5V = 0,$ REFON = $0 \rightarrow 1$	3.6 V			30	μs
t _{REFBURST}	Settling time of reference buffer to 99.9% VREF	l _{VREF+} = 0.5 mA, REF2_5V = 1, REFON = 1, REFBURST = 1, ADC10SR = 0	3 V			2	μs

10-Bit ADC, External Reference⁽¹⁾ (MSP430G2x33 Only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
VEREF+	Positive external reference input	VEREF+ > VEREF-, SREF1 = 1, SREF0 = 0		1.4		V _{CC}	V	
VLIXLIT	voltage range (2)	VEREF- \leq VEREF+ \leq V _{CC} - 0.15 V, SREF1 = 1, SREF0 = 1 (3)		1.4		3		
VEREF-	Negative external reference input voltage range ⁽⁴⁾	VEREF+ > VEREF-		0		1.2	V	
ΔVEREF	Differential external reference input voltage range, ΔVEREF = VEREF+ – VEREF-	VEREF+ > VEREF- (5)		1.4		V_{CC}	V	
I _{VEREF+}	Static input current into VEREF+	$0 \text{ V} \leq \text{VEREF+} \leq \text{V}_{CC},$ SREF1 = 1, SREF0 = 0	3 V	±1 0		^		
		$0 \text{ V} \le \text{VEREF+} \le \text{V}_{\text{CC}} - 0.15 \text{ V} \le 3 \text{ V},$ SREF1 = 1, SREF0 = 1 ⁽³⁾	3 V			μΑ		
I _{VEREF} _	Static input current into VEREF-	0 V ≤ VEREF- ≤ V _{CC}	3 V		±1		μΑ	

- (1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
- (2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
- (3) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current I_{REFB}. The current consumption can be limited to the sample and conversion period with REBURST = 1.
- (4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
- (5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

10-Bit ADC, Timing Parameters (MSP430G2x33 Only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	ONS	V _{CC}	MIN	TYP	MAX	UNIT
4	ADC10 input clock	For specified performance of	ADC10SR = 0	3 V	0.45		6.3	MHz
[†] ADC10CLK frequency		ADC10 linearity parameters	ADC10SR = 1	3 V	0.45		1.5	IVII IZ
f _{ADC10OSC}	ADC10 built-in oscillator frequency	ADC10DIVx = 0, ADC10SSELX fADC10CLK = fADC10OSC	3 V	3.7		6.3	MHz	
		ADC10 built-in oscillator, ADC10SSELx = 0, $f_{ADC10CLK} = f_{ADC10OSC}$		3 V	2.06		3.51	
t _{CONVERT}	Conversion time	f _{ADC10CLK} from ACLK, MCLK, or SMCLK: ADC10SSELx ≠ 0			13 × ADC10DIV × 1/f _{ADC10CLK}		μs	
t _{ADC10ON}	Turn-on settling time of the ADC	(1)	(1)				100	ns

⁽¹⁾ The condition is that the error in a conversion started after t_{ADC10ON} is less than ±0.5 LSB. The reference and input signal are already settled.

10-Bit ADC, Linearity Parameters (MSP430G2x33 Only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
E _I	Integral linearity error		3 V			±1	LSB
E _D	Differential linearity error		3 V			±1	LSB
Eo	Offset error	Source impedance R_S < 100 Ω	3 V			±1	LSB
E _G	Gain error		3 V		±1.1	±2	LSB
E _T	Total unadjusted error		3 V		±2	±5	LSB

10-Bit ADC, Temperature Sensor and Built-In V_{MID} (MSP430G2x33 Only)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
I _{SENSOR}	Temperature sensor supply current ⁽¹⁾	REFON = 0, INCHx = 0Ah, $T_A = 25$ °C	3 V		60		μA
TC _{SENSOR}		ADC10ON = 1, INCHx = 0Ah (2)	3 V		3.55		mV/°C
t _{Sensor(sample)}	Sample time required if channel 10 is selected (3)	ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB	3 V	30			μs
I _{VMID}	Current into divider at channel 11	ADC10ON = 1, INCHx = 0Bh	3 V			(4)	μΑ
V _{MID}	V _{CC} divider at channel 11	ADC10ON = 1, INCHx = 0Bh, $V_{MID} \neq 0.5 \times V_{CC}$	3 V		1.5		٧
t _{VMID(sample)}	Sample time required if channel 11 is selected ⁽⁵⁾	ADC10ON = 1, INCHx = 0Bh, Error of conversion result ≤ 1 LSB	3 V	1220			ns

⁽¹⁾ The sensor current I_{SENSOR} is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, I_{SENSOR} is included in I_{REF+}. When REFON = 0, I_{SENSOR} applies during conversion of the temperature sensor input (INCH = 0Ah).

The following formula can be used to calculate the temperature sensor output voltage:

V_{Sensor,typ} = TC_{Sensor} (273 + T [°C]) + V_{Offset,sensor} [mV] or

- $V_{Sensor,typ} = TC_{Sensor} T [^{\circ}C] + V_{Sensor} (T_{A} = 0^{\circ}C) [mV]$ The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor-on time $t_{SENSOR(on)}$.
- No additional current is needed. The V_{MID} is used during sampling.
- The on-time $t_{VMID(on)}$ is included in the sampling time $t_{VMID(sample)}$; no additional on time is needed.

Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC(PGM/ERASE)}	Program and erase supply voltage			2.2		3.6	V
f _{FTG}	Flash timing generator frequency			257		476	kHz
I _{PGM}	Supply current from V _{CC} during program		2.2 V/3.6 V		1	5	mA
I _{ERASE}	Supply current from V _{CC} during erase		2.2 V/3.6 V		1	7	mA
t _{CPT}	Cumulative program time ⁽¹⁾		2.2 V/3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time		2.2 V/3.6 V	20			ms
	Program/erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	$T_J = 25^{\circ}C$		100			years
t _{Word}	Word or byte program time	(2)			30		t _{FTG}
t _{Block, 0}	Block program time for first byte or word	(2)			25		t _{FTG}
t _{Block, 1-63}	Block program time for each additional byte or word	(2)			18		t _{FTG}
t _{Block, End}	Block program end-sequence wait time	(2)			6		t _{FTG}
t _{Mass Erase}	Mass erase time	(2)			10593		t _{FTG}
t _{Seg Erase}	Segment erase time	(2)			4819		t _{FTG}

The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.

These values are hardwired into the Flash Controller's state machine ($t_{FTG} = 1/f_{FTG}$).

www.ti.com.cn

RAM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
V _(RAMh) RAM retention supply voltage ⁽¹⁾	CPU halted	1.6	V

⁽¹⁾ This parameter defines the minimum supply voltage V_{CC} when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition.

JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT		
f _{SBW}	Spy-Bi-Wire input frequency		2.2 V	0		20	MHz		
t _{SBW,Low}	Spy-Bi-Wire low clock pulse length		2.2 V	0.025		15	μs		
t _{SBW,En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge (1))		2.2 V			1	μs		
t _{SBW,Ret}	Spy-Bi-Wire return to normal operation time		2.2 V	15		100	μs		
f _{TCK}	TCK input frequency ⁽²⁾		2.2 V	0		5	MHz		
R _{Internal}	Internal pulldown resistance on TEST		2.2 V	25	60	90	kΩ		

⁽¹⁾ Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t_{SBW,En} time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge.

JTAG Fuse⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		• •			
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	T _A = 25°C	2.5		V
V_{FB}	Voltage level on TEST for fuse blow		6	7	V
I _{FB}	Supply current into TEST during fuse blow			100	mA
t _{FB}	Time to blow fuse			1	ms

Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to bypass mode.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

PORT SCHEMATICS

Port P1 Pin Schematic: P1.0 to P1.2, Input/Output With Schmitt Trigger

^{*} Note: MSP430G2x33 devices only. MSP430G2x03 devices have no ADC10.

Table 16. Port P1 (P1.0 to P1.2) Pin Functions

PIN NAME				CONTROL BIT	S / SIGNALS ⁽¹⁾	
(P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.y = 1) ⁽²⁾
P1.0/		P1.x (I/O)	I: 0; O: 1	0	0	0
TA0CLK/		TA0.TACLK	0	1	0	0
ACLK/	0	ACLK	1	1	0	0
A0 ⁽²⁾ /		A0	Х	Х	Х	1 (y = 0)
Pin Osc		Capacitive sensing	Х	0	1	0
P1.1/		P1.x (I/O)	I: 0; O: 1	0	0	0
TA0.0/		TA0.0	1	1	0	0
		TA0.CCI0A	0	1	0	0
UCA0RXD/	1	UCA0RXD	from USCI	1	1	0
UCA0SOMI/		UCA0SOMI	from USCI	1	1	0
A1 ⁽²⁾ /		A1	X	X	Х	1 (y = 1)
Pin Osc		Capacitive sensing	X	0	1	0
P1.2/		P1.x (I/O)	I: 0; O: 1	0	0	0
TA0.1/		TA0.1	1	1	0	0
		TA0.CCI1A	0	1	0	0
UCA0TXD/	2	UCA0TXD	from USCI	1	1	0
UCA0SIMO/		UCA0SIMO	from USCI	1	1	0
A2 ⁽²⁾ /		A2	Х	Х	Х	1 (y = 2)
Pin Osc		Capacitive sensing	Х	0	1	0

⁽¹⁾ X = don't care(2) MSP430G2x33 devices only

Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger

^{*} Note: MSP430G2x33 devices only. MSP430G2x03 devices have no ADC10.

www.ti.com.cn

Table 17. Port P1 (P1.3) Pin Functions

DINI NIAME	x		CONTROL BITS / SIGNALS ⁽¹⁾						
PIN NAME (P1.x)		FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.x = 1) ⁽²⁾			
P1.3/		P1.x (I/O)	I: 0; O: 1	0	0	0			
ADC10CLK ⁽²⁾ /		ADC10CLK	1	1	0	0			
A3 ⁽²⁾ /	2	A3	Х	X	Х	1 (y = 3)			
VREF-(2)/	3	VREF-	Х	Х	Х	1			
VEREF-(2)/		VEREF-	Х	Х	Х	1			
Pin Osc		Capacitive sensing	Х	0	1	0			

⁽¹⁾ X = don't care(2) MSP430G2x33 devices only

Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger

^{*} Note: MSP430G2x33 devices only. MSP430G2x03 devices have no ADC10.

www.ti.com.cn

Table 18. Port P1 (P1.4) Pin Functions

		FUNCTION		CONTR	ROL BITS / SIGN	IALS ⁽¹⁾	
PIN NAME (P1.x)	X		P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.x = 1) ⁽²⁾	JTAG Mode
P1.4/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
SMCLK/		SMCLK	1	1	0	0	0
UCB0STE/		UCB0STE	from USCI	1	1	0	0
UCA0CLK/		UCA0CLK	from USCI	1	1	0	0
VREF+(2)/	4	VREF+	X	X	X	1	0
VEREF+(2)/		VEREF+	X	X	X	1	0
A4 ⁽²⁾ /		A4	X	X	X	1 (y = 4)	0
TCK/		TCK	Х	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0

⁽¹⁾ X = don't care(2) MSP430G2x33 devices only

Port P1 Pin Schematic: P1.5 to P1.7, Input/Output With Schmitt Trigger

^{*} Note: MSP430G2x33 devices only. MSP430G2x03 devices have no ADC10.

Table 19. Port P1 (P1.5 to P1.7) Pin Functions

				CONT	ROL BITS / SIG	NALS ⁽¹⁾	
PIN NAME (P1.x)	х	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.x = 1) ⁽²⁾	JTAG Mode
P1.5/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
TA0.0/		TA0.0	1	1	0	0	0
UCB0CLK/		UCB0CLK	from USCI	1	1	0	0
UCA0STE/	5	UCA0STE	from USCI	1	1	0	0
A5 ⁽²⁾ /		A5	Х	Х	Х	1 (y = 5)	0
TMS		TMS	Х	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0
P1.6/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
TA0.1/		TA0.1	1	1	0	0	0
UCB0SOMI/		UCB0SOMI	from USCI	1	1	0	0
UCB0SCL/	6	UCB0SCL	from USCI	1	1	0	0
A6 ⁽²⁾ /		A6	Х	Х	Х	1 (y = 6)	0
TDI/TCLK/		TDI/TCLK	Х	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0
P1.7/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
UCB0SIMO/		UCB0SIMO	from USCI	1	1	0	0
UCB0SDA/	7	UCB0SDA	from USCI	1	1	0	0
A7 ⁽²⁾ /	/	A7	X	Х	Х	1 (y = 7)	0
TDO/TDI/		TDO/TDI	X	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0

⁽¹⁾

X = don't care MSP430G2x33 devices only

Port P2 Pin Schematic: P2.0 to P2.5, Input/Output With Schmitt Trigger

Table 20. Port P2 (P2.0 to P2.5) Pin Functions

PIN NAME		FUNCTION	CONTR	ROL BITS / SIGI	NALS ⁽¹⁾
(P2.x)	х	FUNCTION	P2DIR.x	P2SEL.x	P2SEL2.x
P2.0/		P2.x (I/O)	I: 0; O: 1	0	0
TA1.0/	0	Timer1_A3.CCI0A	0	1	0
	0	Timer1_A3.TA0	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P2.1/		P2.x (I/O)	I: 0; O: 1	0	0
TA1.1/	1	Timer1_A3.CCl1A	0	1	0
	'	Timer1_A3.TA1	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P2.2/		P2.x (I/O)	I: 0; O: 1	0	0
TA1.1/	2	Timer1_A3.CCI1B	0	1	0
	2	Timer1_A3.TA1	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P2.3/		P2.x (I/O)	I: 0; O: 1	0	0
TA1.0/	3	Timer1_A3.CCI0B	0	1	0
	3	Timer1_A3.TA0	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P2.4/		P2.x (I/O)	I: 0; O: 1	0	0
TA1.2/	4	Timer1_A3.CCI2A	0	1	0
	4	Timer1_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P2.5/		P2.x (I/O)	I: 0; O: 1	0	0
TA1.2/	5	Timer1_A3.CCl2B	0	1	0
	5	Timer1_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	Х	0	1

⁽¹⁾ X = don't care

Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger

Table 21. Port P2 (P2.6) Pin Functions

PIN NAME			CONTR	ROL BITS / SIGN	IALS ⁽¹⁾
(P2.x)	X	FUNCTION	P2DIR.x	P2SEL.6 P2SEL.7	P2SEL2.6 P2SEL2.7
XIN		XIN	0	1 1	0 0
P2.6	6	P2.x (I/O)	I: 0; O: 1	0 X	0 0
TA0.1	0	Timer0_A3.TA1	1	1 0	0 0
Pin Osc		Capacitive sensing	Х	0 X	1 X

⁽¹⁾ X = don't care

Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger

www.ti.com.cn

Table 22. Port P2 (P2.7) Pin Functions

PIN NAME (P2.x)			CONTROL BITS / SIGNALS ⁽¹⁾						
	X	FUNCTION	P2DIR.x	P2SEL.6 P2SEL.7	P2SEL2.6 P2SEL2.7				
XOUT/		XOUT	1	1 1	0				
P2.7/	7	P2.x (I/O)	I: 0; O: 1	0 X	0				
Pin Osc		Capacitive sensing	Х	0 X	1 X				

⁽¹⁾ X = don't care

Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger (RHB Package Only)

Table 23. Port P3 (P3.0 to P3.7) Pin Functions (RHB Package Only)

PIN NAME		FUNCTION	CONTR	ROL BITS / SIGI	NALS ⁽¹⁾
(P3.x)	Х	FUNCTION	P3DIR.x	P3SEL.x	P3SEL2.x
P3.0/		P3.x (I/O)	I: 0; O: 1	0	0
TA0.2/	0	Timer0_A3.CCI2A	0	1	0
	0	Timer0_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.1/		P3.x (I/O)	I: 0; O: 1	0	0
TA1.0/	1	Timer1_A3.TA0	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.2/		P3.x (I/O)	I: 0; O: 1	0	0
TA1.1/	2	Timer1_A3.TA1	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.3/		P3.x (I/O)	I: 0; O: 1	0	0
TA1.2/	3	Timer1_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.4/		P3.x (I/O)	I: 0; O: 1	0	0
TA0.0/	4	Timer0_A3.TA0	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.5/		P3.x (I/O)	I: 0; O: 1	0	0
TA0.1/	5	Timer0_A3.TA1	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.6/		P3.x (I/O)	I: 0; O: 1	0	0
TA0.2/	6	Timer0_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	X	0	1
P3.7/		P3.x (I/O)	I: 0; O: 1	0	0
TA1CLK/	7	Timer1_A3.TACLK	0	1	0
Pin Osc		Capacitive sensing	X	0	1

⁽¹⁾ X = don't care

REVISION HISTORY

REVISION	DESCRIPTION
SLAS734	Production Data release
SLAS734A	Corrections to Control Bits / Signals column in Table 18 Corrections to Pin Name and Function columns in Table 23
SLAS734B	Changed Storage temperature range limit in Absolute Maximum Ratings Added BSL functions to P1.1 and P1.5 in Table 2 Port P1 Pin Schematic, corrected pin name
SLAS734C	Changed T _{stg} , Programmed device, to -55°C to 150°C in Absolute Maximum Ratings. Changed TAG_ADC10_1 value to 0x10 in Table 10.
SLAS734D	Added AVCC (RHB package only, pin 29) to Table 2 Terminal Functions. Correct typo in P3.7/TA1CLK description in Table 2. Corrected pin number for PW28 Input and Output columns in Table 13. Changed all port schematics (added buffer after PxOUT.y mux) in Port Schematics.

30-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430G2203IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2203	Samples
MSP430G2203IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2203	Samples
MSP430G2203IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2203	Samples
MSP430G2203IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2203	Samples
MSP430G2203IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2203	Samples
MSP430G2203IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2203	Sample
MSP430G2233IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2233	Sample
MSP430G2233IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2233	Sample
MSP430G2233IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2233	Sample
MSP430G2233IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2233	Sample
MSP430G2233IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2233	Samples
MSP430G2233IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2233	Samples
MSP430G2233IRHB32T	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2233	Sample
MSP430G2303IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2303	Sample
MSP430G2303IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2303	Sample
MSP430G2303IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2303	Sample
MSP430G2303IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2303	Samples

30-Apr-2015

Orderable Device	Status (1)	Package Type	Package Drawing	Pins I	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sampl
MSP430G2303IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2303	Sampl
MSP430G2303IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2303	Sampl
MSP430G2303IRHB32T	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2303	Samp
MSP430G2333IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2333	Samp
MSP430G2333IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2333	Samp
MSP430G2333IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2333	Samp
MSP430G2333IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2333	Samp
MSP430G2333IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2333	Samp
MSP430G2333IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2333	Samp
MSP430G2333IRHB32T	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2333	Samp
MSP430G2403IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2403	Samp
MSP430G2403IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2403	Samp
MSP430G2403IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2403	Samp
MSP430G2403IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2403	Samp
MSP430G2403IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2403	Samp
MSP430G2403IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2403	Samp
MSP430G2403IRHB32T	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2403	Samp
MSP430G2433IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2433	Samp

30-Apr-2015

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430G2433IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2433	Samples
MSP430G2433IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2433	Samples
MSP430G2433IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2433	Samples
MSP430G2433IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2433	Samples
MSP430G2433IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2433	Samples
MSP430G2433IRHB32T	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2433	Samples
MSP430G2533IN20	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M430G2533	Samples
MSP430G2533IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2533	Samples
MSP430G2533IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2533	Samples
MSP430G2533IPW28	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2533	Samples
MSP430G2533IPW28R	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	430G2533	Samples
MSP430G2533IRHB32R	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2533	Samples
MSP430G2533IRHB32T	ACTIVE	VQFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	MSP430 G2533	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

30-Apr-2015

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSP430G2333:

Automotive: MSP430G2333-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Oct-2015

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430G2203IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2203IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2203IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2203IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2203IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2233IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2233IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2233IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2233IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2233IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2233IRHB32T	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2303IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2303IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2303IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2303IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2303IRHB32T	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2333IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2333IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Oct-2015

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430G2333IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2333IRHB32T	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2403IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2403IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2403IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2403IRHB32T	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2433IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2433IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2433IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2433IRHB32T	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2533IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430G2533IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2533IPW28R	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
MSP430G2533IRHB32R	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
MSP430G2533IRHB32T	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430G2203IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2203IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Oct-2015

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430G2203IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2203IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2203IRHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2233IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2233IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2233IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2233IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2233IRHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2233IRHB32T	VQFN	RHB	32	250	210.0	185.0	35.0
MSP430G2303IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2303IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2303IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2303IRHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2303IRHB32T	VQFN	RHB	32	250	210.0	185.0	35.0
MSP430G2333IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2333IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G23331RHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2333IRHB32T	VQFN	RHB	32	250	210.0	185.0	35.0
MSP430G2403IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2403IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2403IRHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2403IRHB32T	VQFN	RHB	32	250	210.0	185.0	35.0
MSP430G2433IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2433IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2433IRHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2433IRHB32T	VQFN	RHB	32	250	210.0	185.0	35.0
MSP430G2533IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430G2533IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2533IPW28R	TSSOP	PW	28	2000	367.0	367.0	38.0
MSP430G2533IRHB32R	VQFN	RHB	32	3000	367.0	367.0	35.0
MSP430G2533IRHB32T	VQFN	RHB	32	250	210.0	185.0	35.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for any larger diameter vias placed in the thermal pad.

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

は田

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

立 口

	产品	巡用	
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP®产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated