Multivariable Calculus

Avery Karlin Fall 2015

Contents

1	\mathbf{Seq}	quence Theorems	3
	1.1	Sunrise Lemma	
		1.1.1 Well-Ordering Property	
		1.1.2 Proof	
	1.2	Bolzano-Weierstrass Theorem	
2	\mathbf{Ext}	treme Value Theorem	:

1 Sequence Theorems

1.1 Sunrise Lemma

The Sunrise Lemma states for any sequence $(a_n)_n^{\infty} = 1$ in \mathbb{R} , \exists monotone subsequence $(a_(n_k))_{(k)}^{\infty} = 1$, where $(n_k)_{(k)}^{\infty} = 1$ is a strictly increasing sequence in \mathbb{R} and $n_k \geq k$ for all $k \in \mathbb{R}$

Vistas are points in a sequence, a_n , where $N \in \mathbb{N}$, such that $a_N > a_n$ for all n > N

This means that for any sequence, there exists a subset of points within, such that within that sequence, the sequence is monotone

1.1.1 Well-Ordering Property

For any set $A \subseteq \mathbb{N}, A \neq \emptyset, min(A)$ exists

1.1.2 **Proof**

<u>Case I:</u> The set V of vistas, is infinite, such that $n_1 = min(v)$ and $n_k = min(V \cap (n_(k-1)^{\infty}))$, $where k \geq 2$, then $a_(n_k)$ is strictly decreasing <u>Case II:</u>

$$n_1 = \begin{cases} 1 & if v = \emptyset \\ 1 + max(v) & if v \neq \emptyset \end{cases}$$

 $n_k = choice\{n > n_(k-1) | a_n \ge a_(n_(k-1)), \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_(n_k) \text{ is increasing } n_k = choice\{n > n_(k-1) | a_n \ge a_(n_(k-1)), \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_(n_k) \text{ is increasing } n_k = choice\{n > n_0(k-1) | a_n \ge a_0(n_0(k-1)), \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_0(n_k) \text{ is increasing } n_k = choice\{n > n_0(k-1) | a_n \ge a_0(n_0(k-1)), \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_0(n_k) \text{ is increasing } n_0(n_0(k-1)), \text{ thus } n_0(k-1), \text{ thus } n_0(k-1)$

1.2 Bolzano-Weierstrass Theorem

Every bounded sequence in \mathbb{R} has at least one convergent subsequence

2 Extreme Value Theorem

For some function f : [a, b]