KRISTÁLYHITEIESITÉSŰ LABCRATÓRIUMI SZIGNÁLGENERÁTOR Tip. TR-0503 /EMG-1168/

Gyártja:

EMG ELEKTRONIKUS MERŐKÉSZÜLÉKEK GYÁRA Budapest, XVI., Cziráky u. 26-32. Telex: 33-50 Telefon: 837-950

Forgalomba hozza:

MIGERT MÜSZER- ÉS IRODAGÉP ÉRTÉKESITŐ VÁLLALAT Villamos- és Elektronikus Mérőmüszorek Osztálya Budapest, VI., Bejcsy-Zsiligszky út. 37.

"51-16-80-VFTpr.s». 1976. április

TARVALGMJEGYZĚK

		01081
4.	AITALANOS LEIRAS	1
	1.1 Uzembehelyezés	1/a
	1.11 Kicsomagolás	1/a
	1.12 Bekapcsolás	1/8
2.	MUSZAKI ADATOK	2
2	MUKODĖSI ELV	6
-	3.1 A készülék főbb részel	6
	3.2 A készülék működése	7
	3.2.1 Rádiófrekvenciás oszcillátor és szint- szabályozó	7
	3.2.2 Rédiéfrekvenciás erősítő	7
	3.2.3 Rédiófrekvenciás visszacsatoló és nzabá- lyczó áramkör	8
	3.2.4 Differencial erosito	8
	3.2.5 Modulator	10
	3.2.6 Feszültségosztő	10
	3.2.7 Kristályhitelesítő	11
	3.2.8 Hangirekvenciás oszcillátor	11
	3.2.9 Woduláció	11
4.	KEZELÍSI UTASITÁS	12
	4.1 Kimenőszint	12
	4.2 Frekvercieskála	12
	4.3 Kimeneti feszültségosztó	13
	4.4 A 3 V tertomány használeta	13
	4.5 Külső moduláció	13
	4.6 Szinkronizáló jel	1/1
	4.7 "RF.B+" /B1/ biztositék	14
	4.8 Általános mikodés	14
	4.9 Frekvencis-hitolesités	15
	4. lo Külső moduláció	16

		Oldal
5	KARBANTARTÁS	17
1.	5.1 Kidobozolás	17
	5.2 Arnyékolóbura eltávolitása	17
	5.3 Ceocsere	18
	5.4 Ellenősző mérés	18
	5.5 "PERCENT MODULATION" /M2/ miszer	18
	5.6 Prekvencis ellenőrzés	19
	5.7 Szintingadozás ellenőrzése	20
	5.8 Hibakereads	20
6.	SERVICE UTASITÁS	1
	6.1 Stabilizált tápegység	32
	6.2 Hangirekvenniás generátor	32
	6.3 Kristelyhitelesitő	32
	6.4 RF oszcillátor és RF erősitő behan- golása	33
	6.5 Maximális oszcillátor-ársm teállitása	33
	6.6 Viv5hullám zórusra állitása	33
	6.7 "PERCENT MODULATION" /K2/ müszer be- állítása	34
	6.8 Kaximális vivőhullám beállitás és modulációs null-állitás	34
	6.9 "VOLTS LEVEL" /Ml/ miszer beallitasa	35
	6, lo Caócsere	35
7.	ALKATRÉSZJEGYZÉK	36

B. RAJZOK

1. ALTALANOS LEIRAS

A TR-0503 /EMG-1168./ tipusu szignálgenerátor több alkalmazási területen használható, mint pl. RF. hidak táplálása, rádic-vevőkészülékek behangolása, erősítők frekvenciamenetének felvétele stb. A laboratóriumi igényeket jobb specifikációval olégiti ki, mint az eddig forgalomba került szignálgenerátoraink.

A frekvenciatartománya 50 kHz-től 65 MHz-ig terjed. Ezt a frekvenciatartományt a készülék /1300:1 frekvenciaátfogás/ 6 sávban fogja át. A közvetlen leolvasásu frekvencia skálájs 1 % pontosságu.

A kimenőfeszültség 0,1 µV és 3 V között ± 1 d3-en bolül állandó és folyanatosan állitható 50 ohm terhelés mellett.

A beépitett kristályhitelesítő segítségével a készülék frekvenciája 7 MHz-ig 100 kHz-enként, 65 MRz-ig podig 1 MHz-enként hitelesíthető, 0,01 % pontossággal.

Külön műszerrel olvasható le - a generátor modulációs sávszélességén belüli frekvenciákon - a moduláció mélysége.

A készüléknek nagypontosságu AM rendszere van, mely lahetővé teszi - 90 % mélységig - a modulációt kis torzitással és minimális káros frekvenciamodulációval. A készülék belsőleg modulálható 400 vagy 1000 Hz-en.

Külső modulációs tertománya DC-20 kHz-ig terjed, a használt hordozó frekvendától függően. Ezenkivül kivülről modulálható, négyszög vagy egyéb összetett hullámalakkal is.

1.1 UZEMBETELYEZES

1.11 Kicsomagolás

A külső ládából történt kiemelés után a ragasztások mentén az ITA papirburkolatot fol kell tépni. Igy a hullámpapir doboz hozzáférhetővé válik, amelyet szintén a ragasztások mentén lehet felbontani. A gépnek a hullámpapirdobozból történt kiema - lésa után a légmentesen zárt /mslegragesztott, hegesztett/ mű-anyag hártya eltávolitható és a készülék szuperior papirbori - tásból kibontható. A krómozott, nikkolezett alkatrészekről a parafinpapirt legöngyölve és a vékony vazelinréteget ronggyal, vattával letörölve, a készülék üzembehalyezhető.

1.12 Bekapcsolfs

A készüléket 220 V hálózati feszültségre beállitva szállitja n gyár; llo vagy 127 V feszültségre való átkapcsolás ugy történik, hogy a készülék hátoldalán levő feszültségválasztó dugót /9/ a kivánt üzemfeszültségnok megfelelően kell beállitani. A készülék üzembehelyezése előtt védőföldelést kell alkalmaz – ni. Erre a célra a készülék hálózati csatlakozójához kivezetett harmadik /földelő/ vezeték, valamint az előlapon levő földelő csavar szolgál.

A KÉSZÜLÉK VÉDŐFOLDELÉS NELKÜLI HASZNÁLATA ÉLETVESZELES I

Bekapcsolás előtt ellenőrizzük, hogy az előlepen található M müszer mutatója nullán áll-c. Az esetleg szükséges korrektió a müszerházon tslálható csavarral /l. ábra/ történik. Ezek után a készüléket az 58 hálózati kapcsolóval "ON" állásba kapcsol juk. A bekapcsolt állapotot a V19 jelzőlámpa /l. ábra/ kigyulladása jelzi.

2. MUSZAKI ADATOX

Prekvencistartomány:

Prekvonciasávok:

50 kHz-től 65 MHz-ig 6 sávban

50 kHz - 17c kHz

165 " - 560 "

530 " - 1,8 MHz

1,76 MHz - 6,0 "

5,80 " -19,2 "

19,00 " -65,0 "

+ 1%

Frekvenciaportosság:

Prokvencia-beállitás finomsága:

Kristályhitelesités:

1 osztás = 0,1%

7 MHz-ig loo kHz-enkent

65 m 1 MHz-enkent

lo pontossággal

Fejhallgató kimenet:

Prekvencis stabilitás:

lo mV 5 kohm terhelés mellett

max. 5.10 vagy 5 Hz /amelyik nagyobb/ 2 órai bemelegedés után lo parc időtartamra, max. 1 V kimenőszintnél

50 ohm

Kimenő impedancia:

Kimenöszint:

o 1/uV-tól 3 V-ig /lo dB-es fokozatokban/

VSWR < 1,1 1/uV-tól o,3 V osztó állásig

VSWR < 1,1 1 6s 3 V osztó állásoknál 20 MHz-ig

VSWR < 1,2 1 és 3 V osztó állásoknál 20 MHz fölött

Peszültségfokozatok:

az egyes sávokon belül folysmatosan szabályozható Rimonoreszültség pontossúgo:

Sminttertée /lineária torzitás/:

Kimeno harmonikus:

AMPLITUDO MODULÁCIO 1/ Kula6 modulació:

> loo % mod .létesi téséhaz szükséges feszíltség:

Bemens impedancia: Egyab mod .lehetőség:

Max.mod.frokvencia:

A burkológorbe torzitása:

2/ Belső moduláció:

Bels5 mod .frekvencia;

Burkolégorbe torzitása:

± 1 dB ssját müszeren leolvasva, 50 ohm terhelősen

± 1 dB
a taljes frekvenciatartománytan a kimenőszint bármely állása mellett 50 ohm
terhelőellenálláson
lo 5

O-loo % szinuszos moduláló jellel O-tól 20 kHz-ig lehetséges

max. 4,5 V Ca-28

600 ohm

négyszéghullám vagy más Baszetett jel

30 % szinuszcs modulációnál:
0,06 f.vivő, max. 20 kHz
70 % szinuszcs modulációnál:
0,02 f.vivő, max. 20 kHz
négyszoghullámu modulációnál:
0,003 % f.vivő max. 3 kHz

≤3% a megadott szinuszos moduláción belül

O-loo% szinuszes moduláló jellel folyamatosan szabályozható

400 Hz ± 5 %

≦1 %: 50 % modulác ibnál ≤3 %: 70 % modulác ibnál 1 v vagy ennől kisebb f.vivő esetén. Modulációmérő müszer meresnatara:

0 - 100%

Modulációmérő műszer

+ 5%

pontossage:

o-90% moduláció között, végkitérésre vonatkoztatva, max. 1 V

kimonőszint esetén

Modulációs szint változása:

4 + 0,5 dB

s kimenőszint és a vivőfrekvencia bármilyen változtatása mellett, saját műszeren leolvasva

Kárcs frekvencia moduláció:

5. 10-5 Vagy max. 200 Hz

/amelyik negyobb/

1 V vagy ennél kisebb kimenő szintnél és 30% AM esetén

Vivohullanu zajrivó:

min. 5c dB

30% AM-hoz kepest

Sugárzás 1 m távolságban:

A térerő kisebb, mint 1,uV/m

A müantenna müszaki adetai TR-0503-1 /ENG-1169-4/ tip.

Gaztoállások:

- 1, 20 dB + 1 dB
- 2. 0 dB + 1 dB
- DA muartenna állásában Uba 1 V esetén, Uki 50 mV ± 5 dB 600 ohm lezáron 2 - 65 MHz-ig

HALÓZATI ADATOK

110, 127, 220 V Peszultseg:

/atkapcsolható/ + 10 %

50/60 Pariodus:

kb. 170 VA Fogyasztás:

EGYEB ADATOK

lakkozott fémlemezdoboz Kivitel: 2 db hordfcgantyuval

Mérotok kb.

/forgatogomo es egyab ki-500 mm széles álló alkatrészek nélkül/: 300 mm magas

390 mm mely

kb. 30 kg. Suly:

Beeritett müszerek szint-

mero: mod. mer6:

Chatlakozók tipusa:

Elektronesevek:

Diodák:

Potoizzó: Jalzolampa:

Biztositék a készülékben 220 7-ra:

1 db 100 µA 1,5 osztályu 1 db 200 jul 1,5 osztályu

BNC ill. a fejhallgató

részéro banánhűvely

5xPCL84, 2xPCC88, 2x6CL6, PL81, 2xNCC85, 5xPL82, PL85, 2x85A2

3x0Al160, 3xCAl161, 4xSieK4, 4xSiEK7, 4xSiEK3

22 V/15 W

6,5 V/o,1 A

2 db 1 A 1 db 200 mA

az elektroncsövek és diódák váltostatásának jogát fenntartjukl

TARTOZEROK

"A"	terto	zěkok		
7A-1	kes201	éR aréban bennfoglalt/		
Typ	1004	Hálózsti csatlakozóvezeték, csatlakozó- dugókkal	1	db
Typ	1024	Roax. árnyékolt kábel mindkét végén "RYC" csatlakozó dugó	1	31
Тур	1027	Koax. árnyékolt kábel kettős árny. /mindkét végén "BNC" csatlakozó dugó	1	**
		Használsti utasitás	1	
Csi	ves ol	vadóbiztositó betétek		-
1014	22	0 7 - 1000 mA	2	db
		0 111. 127 V - 2000 mA	4	17
	nn	odfeszhez - 200 mA	1	**
				-
	tarto			
	keszül lett./	ékkel együtt rendelendő, külön ár felszá	ni	táue
TYP	TR-05	03-1 /EMG-1169-4/ Müsntenna		
		2 db "BNC" csatlakozó		

dugaszvégződéssel 1 db

5. MUKODESI ELV

5.1 A készülék fébb részei.

A készülékek előlapját a kezelőszervekkel és csatlakozókkal az 1. ábra, a készülék hátlapját a 2. ábra, a készülék belső szabályozószorveit valamint a diódák és az elektróncsővek elrendezését a 3. 3/a és 4. ábrák szemléltetik.

A készülék kapcsolási rajza az 5. ébrán, a TR-o505-1 /EKG -1169-4/ tip. miantenna kapcsolási rajza a 6. ábrán látható.

A készülék elektromos felépítés szempontjából a következő több részekre tagozódik:

- Rédiófrekvenciás oszcillátor
- 2. Demodulátor I.
- Rádiófrekvenciás szintszabályozó
- 4. Rádiófrokvenciás erősitő
- 5. Demodulator II.

- 6. Differencialorosito
- 7. Modulator
- 8. Feszültségosztó
- 9. Kristályhitelesítő
- 10. Hangfrokvenciás oszcillátor
- 11. Katódkövotő

Az RF oszcillátor színtját visszacsatolt áramkör stabilizálja, amely összeköti sz RF oszcillátort az őt szabályzó csővel. Hasonló módon az RP kimenetet és a modulációs szintet egy visszacsatoló hurok tartja állandó értéken, amely az RF kimenettől detektoron és differenciál erősitőn keresztől a modulátorhoz vezet.

3.2 A kószülék működőse

3.2.1 Rádiofrekvenciás oszcillátor és szintszabályozó

Az RF cszcillátor V3 hangolt anódkörös ellenütemű oszcillátor. A rádiofrekvenciás szintszabályozó /Vlb/ a V3 cső katódellonállásként működik az RF szintszabályozás céljáhól. A Vlb pentoda vszérlőrácsa az RF oszcillátor kimeneténsk egyenirányitott jelét kapja. Ez a foszültség csökkenti a Vlb cső áramát, amikor az RF oszcillátor szintje emelkedik és megforditva. Minthogy ez az áram az RF oszcillátor katódárama is, ez RF szint állandó marad. A Vla trioda katódkövetőt kópoz, amely előfeszültséget szolgáltat az RF oszcillátor és az RF erősitő cső vezérlőrácsa számára. S7 mikrokapcsoló az S1 ralé átkapcsolásával a szabályzó pentóm /Vl/b/ segédrács feszültségét kikapcsolja kiváltott dobállásnál - nehogy a megszakadt anódkör miatt tönkre monjen a cső.

3.2.2 Rádiofrekvenciás er5sit5

Az RF oszcillátor jelőt a V4 és V5 csövekből álló ellenütemű RF erősitő vezérlőrácsára vezetjük. Az árnyékolórácsok közvetlenül +300 V-ra kapcsolódnak. Az RF erősitő katódáramát a V6 cső szabályozza, amely változtatható katódellenállásként működik.

3.2.3 Rádinfrekvenciás visszacsetoló és szatályozó áramkör

A modulált rádiofrekvenciás kimenőjel az RF kimenő transzformátor szekundertekercséről a GeD2-GeD3 diodákra jut, amolyek azt egyenirányitják. Az RC időállandó nagysását a RANGE /S5/ kepcsoló segitsógóvel váltjuk. Ez sz RC szürő az RF komponens kiszűrésére szolgál, de nem jelent söntöt s moduláló és egyenáramu jel számára. A demodulált rádiofrekvenciás jelet szután a differenciál szósítő vezérlőrácsára vezetjük. Ennek a demodulált jelnek az egyenáramu sanzetevője szányon az RF szint csucsértékével, szért ezt az egyenfeszültséget használjuk fel a Volts Level /Ml/ műszer működtetésére. Az áram R6 (47, C48, L4 szürőn keresztül jut el e Volts Level /Ml/ műszerre.

Kátállásu feszültségosztót iktatunk a demodulátor II. /5/
és a differenciál erősitő /5/ közé, emely a visszecsatolás
mórtékót szabályozza. Az "l V" és az alecsonyabb kimenőfeszültség állásoknál a visszacsatolást sz R28 és R61 osztón
keresztül kapjuk. Csupán a "3 V"-os boállitástan söntöli
R61 ellenállást az R30 ellenállás. Ez az RF erősitő kimenőfeszültségét lo dB-el emeli. Ezt az átkapcsolást az S2 relé önműködően végzi, valahányszor az ATTENUATOR /S5/ kapcsolót "3 V" állásba kapcsoljuk.

3.2.4 Differencial erosito

A "MODULATION INPUT-OUTPUT" /2/ cestlekozóra táplált külső moduláló jel ugyanolyan módon van rálltetve sz egyen-áramu referencia szintre, mint a bolső modulácio.

Az egyenáremra szuperponált váltófeszültség sz ATTENUATOR VERNIER /P2/ potenciométeren jelenik meg. Ez a P2 potenciométor egyenlő mértőkben változtatja mind az egyenáramu, mind s váltóársmu összetevőt. Igy a modulációs-mólysóg állandó mrad, tekintet nólkül a vivőhullám szintjére. A szuperponált jelet a VSs differenciál orðsitő rácsára vezetjük és baszehasonlitjuk a differenciál orðsitő másik csövének /VSb/ rácsára vezetett damodulált jellel. Mindkét jel váltéáramu baszetevőinek szintje arányos a medulációval. A modulációs jel képezi a referenciafeszültséget és a kimon5-jel tönyleges modulációját hasonlitjuk basze ezzel a referenciával. A kimeneten dotektált egyenáramu szintot hasonlitjuk basze egy egyenáramu referenciaszinttel, amely arányos a kivánt rádiofrekvencia szintjével, az ATTENUATOR VEPNTER /P2/ potonciométer baállitásának mogfelelően.

Minthogy a V8a de V8t differencial er5mit5-csdvek katódjal Essze vannsk kötve, a trioda részre /V8a/ adott referenciajel ugyanczak meg fog jelozni a pantoda rész /VSb/ katódján. Ezt a jelst összehasonlítjuk a kimenet demodulált jelével, amelyet a pentoda /VSb/ rácsára adunk. E két jel eltórése egy kimeneti jelet ad, amelynek olysn polaritása van. hogy saját magát csökkentení igyekszik a visszacsatoló hurkon keresztűl. Pl. ha a rádiofrekvoncia szintje csökken, a differencial erosito pentoda részének /V8b/ rácsán a feszültség negativabbá válik, csökken a csövön átfolyó áram és anódja pozitivabb lesz. A Vó modulátor rácsfeszül tsége erányos a VBb erősitő anódfeszültségével. Amint ez a rácsfeszültség pozitivabbá válik, a V6 modulátoron áthaladó áram novekedni fog. De ez az áram a rádiofrakvenciás erősito /V4, V5/ katodároma is és igy a kimenőjel mindaddig emelkedni fog, amig az eredeti feltőtelek helyre nem állnak.

Ezzel a művelettel a kimenőfeszültség szintjét stabilizáljuk +1 dB-nél kisebb ingadozás mellett. A rádiofrekvencia szintjének változtatása az ATTENUATOR VERNIER /P2/ potenciométer segítségével - a referencieszint változtatása utján - történik. Hesonló módon a modulációt is állandó szinten tertjuk.
Minthogy a demodulátor áramköre elegendő gyors időállandóval rendelkezik, a modulácio burkológörbójónek követésére,
a kimenő modulációt a moduláló frekvenciával hasonlitjuk
basze és igy a torzitás minimálisra csökken.

A V7a cső mint stabil feszültség-generátor szerepel V8a cső részére.

A V7 cső másik fele a differenciál crősitő pentoda részének /V8b/ szolgáltat segédrács feszültséget. Az ATTENUATOR
VERNIEK /P2/ potenciométer beszabályozott állása mellett
/O V kimenészint/ a P3 potenciométerrel, ugy állítjuk be a
differenciálerősitő pentodájának /V8b/ segédrács feszültségét, hogy az RF erősitő V4. 75 csöveit lezárjuk.

3.2.5 Modulator

A V6 cső - triodának kapcsolt pontoda - az RF erősitő katódáramkörébe van beiktatva, katodmodulácio létrehozása céljából. A cső belső ellenállása a vezérlőrácsára adott modulálo jelnek megfelelően változik. Igy sz RF erősitő katódárama is változik, mely amplitudojában modulálja a rádiofrekvenciás szintet.

3.2.6 Feszilltségosztő

A rádiefrekvenciás kimenőjelet az RF kimenőtranszformátor leágazásáról vesszük le és vezetjük a kimeneti caztó bemenetére /6/. Ez a feszültségosztó maximálisan 120 dB-t oszt le lo dB-ea lépésekben.

A kimenőfeszültség nagyságának folysmatos beállítása - u differenciál erősítő referenciajelének változtatásával - uz ATTENUATOR VERNIER /PZ/ potenciomóter állításával történik.

3.2.7 Kristalyhitelesita

Az osztó bemenstéről /6/ egy kis kapacitáson keresztul /kb. o.7 pF/ csatlakoztatjuk az RF jelet a keverőszitő rácsáre. Ugyancsak erre a rácsra csatlakoztatjuk a kristályoszcillátor torzitott kimenőjelét. A V9 csőről a kevert jelet a Vlob triodás erősitőbe tápláljuk. A Vlob cső
kimenetét az előlapon lévő PHONES /4-5/ hlivelypárra kapcsoljuk.

A kristályoszcillátor elektroncsatolásu oszcillátorként működik. A vezérlőrács pozitiv visszscsutolását a kristályon keresztil a segédrácsról kapjuk. Az oszcillátor két frekvencián rezeg, a CRYSTAL CALIBRATOR /S3/ kapcsoló állásától függően. Az oszcillátor anódjáról jut a jel a keverőtripde rácsára.

3.2.8 Hangfrekvenciás oszcillátor

Izzólámpás stabilizálásu Wien-hidas cszcillátor. A visszacsatolt jelet a T2 kimenőtranszformátor azekundertekercsőről kapjuk. Két különböző frekvoncián működhet: 400 Hz és lood Hz. A frekvenciát ellemállások átkapcsolásával változtathatjuk. A jel szintje a P5 potenciométer sogitségével állitható be. A MODULATION SELECTOR /S4/ kapcsoló "INT-400 c/s" ill. "INT-lood c/s" állásten a moduláló faszúltséget egy 85 kohm-os ellenállás sorbaiktatámával a "MODULATION INPUT JUTPUT" /2/ csatlakozó húvolyen vezetjük ki a szinkronizálás céljára.

3.2.9 Modulácio

A moduláló jel egyrészt a differenciál orósitó triodájának /VSa/ rácsára jut. A jel ezintje a MODULATION VERNTER /P2/ potenciométerrel szabályozható. A jel amplitudójának változtatása esetén a modulációs mélység váltomik. Amint a RANGE /S5/ kapcsolót átváltjuk az S7 mikrokapmoló kikapcsolja a +300 V feszültséget, ennek következtében a V8 cső rácsa földpotenoiálra kerül és V6 csővön ke resztül lezárja az RF erősítő V4, V5 csővoit. Erre azért
van szükség, mort a V4 és V5 csővek segédrácsa közvetlenül
+300 V feszültségro kapcsolódik és a tekercsek kiváltása
esetén a szakadt anódáramkörű cső segédrácsa tuldisszipálna
és a cső tönkremenne.

A moduláló jel másrészt a VlOa katódkövető rácsára jut. A katódról a jelet egy parallel dioda GeD5 cgyenirányitja.

Ezt a modulációs szintnek megfelelő ogyonfeszültséget vezetjűk a PERCENT MODULATION /M2/ műszerre. A GeD4 dioda a VlOa cső katódjának négativba menését akudályozza meg, a C45 kondenzátor védelme céljából.

4. KEZELÉSI UTASTTÁS

-. 1 Kinenőszint

A készülék Volts Level /MI/ müszere csak akkor hiteles, ha az RF OUTPUT /1/ csatlakozót 50 ohm-os terhelőellenállácsal lezárjuk. Ajánlátos a TR-0503-1 /RMG-1169-4/ tipusu mérőfej használata, mert az tartalmazza áz 50 ohm-os lezárást is. A készülékhez használható a tartozékként szereplő koaxiális kábel BNC csatlakozókkal a végén. Az "egy réteges" árnyékolásak kábel rondolkező kábel a maximális kimonészinttől -80 dB /30 pV/ szintig haszálhátó. "A két réteges" árnyékolásu kábelt 50 pV-nál kisebb kimenészint esetében ajánlatos használni.

4.2 Frekvenciaskálu

Allitsuk a CAL. /12/ gomb segitségével a skálaablak függőlegen vonásának két végét a skálaablak keretén - a FREQUENCY felirat alatt - lévő alsó és felső jelzéssel egy vonalba. Csak így hiteles 1 %-on belül a skálatárcsa

1168.

felirata a teljes frekvencistartományban, mert ebben a helyzetben tortent a frekvencisskála felvétele.

4.3 Kimmeti feszültségosztó

AZ ATTENUATOR /S6/ kapcsoló megrongálódhat, ha a "3 7-os" állásában a kimenetet /l/ rövidrezárjuk, vegy külső feszültség jut a kimenetre.

4.4 A 3 V tartomány hastnálete

Az ATTENUATOR /S6/ kepcsoló "5 V"-os állása RF hid vegy mas olyan készülék táplálására szolgál, amely hitelesített magasszintű RF feszültséget igényel. Ezt a negy kimenőszintet ugy érjük al, hogy az RF kimenőfokozat csöveit a dicszipáció határán vesszük igénybe. Ezeknok a csöveknek hosszabb élettartamát ugy biztosíthatjuk, ha a generátort nem hagyjuk a 5 V tartományban hosszabb ideig, mint amennyi a mérés alvégzőséhez szükséges. No hagyjuk a "5 V"-os tartományt bokapcsoltun a bemelegítés ideje slatt.

4.5 Külső moduláció alkalmazása

Csek kellő vigyázattal használjuk a MODULATION SELECTOR /S4/ kepcsoló "EXT.-DC" állását. A bemenő moduláló jel egyenársmu szintje pofolyásolja az átlagos RF szintet. Ha a moduláló jelmek csupán váltóársmu összetevője van, kepcsoljuk a MODULATION SELECTOR /S4/ kepcsoló "EXT.-AC" állásba. Felhivjuk a figyolmet arra, hogy "EXT-AC" állásban a loo%-os modulációhoz szükséges moduláló feszültség kh. 50 Hz-nél kisebb frekvenciáju moduláció csatén nagyobb a muszaki adatokban közölt max. 4,5 V feszültségnél, valamint kb. 200 Hz-nél kisebb frekvenciáju négyszögmoduláció esetén a tetőcsés mértéke már meghaladhatja a lo%-ot is. lo V-nál nagyobb cgycm- vagy váltófeszültséget ne adjunk s "MODULATION EMPUT-CUTPUT" /2/ csatlakozóra, mert ez megröviditi a "MODULATION EMPUT-CUTPUT" /2/ csatlakozóra, mert ez megröviditi a "MODULATION EMPLICUDE" /P6/ potencióméter élettartamút.

4.6 Szinkronizáló jel

Ha a generátort balső jellel moduláljuk, akkor a "MODULATION INPUT-OUTPUT" /2/ hűvelyről - szinkronizálás céljeira - jel vehető ki. Ez a jel frekvencfában megegyezik a belső moduláló jellel. Amplitudoja kb. 3 V. Ennek a kimenetnek, mint generátornak a belső ellenállása kb. 82 kohm.

4.7 "FF.B+" /Bl/ biztositók

Az "RF.B+" /Bl/ biztositék az előlapon /l.ábra/ van.
Es esotleg tul nagy moduláló feszültság jut a "MODULATION
INPUT-OUTPUT" /2/ csatlakozórs, a hangolt áramkörök forgókondenzátorsi /C6-C9/ átivelhetnek. Ez az "RF.B+" /Bl/ biztositékot kiolvasztja. A készüléknek nem lesz kimenőfeszültságe és a VOLTS LEVEL /Ml/ müszer mutatója a "O" állástól balra tér ki. Ezesetbon a Bl biztositékot ki kell
cserélni.

4.8 Altelanos mukodes

Móresnél a következő beállitások végzendők el:

- a/ állitsuk a "RANCE" /S5/ kapcsolót a kivánt állásba.
- b/ Porgassuk a "PREQUENCY /C6-C9/ forgókondenzátorokat a kivánt frekvenciára.
- c/ Allitsuk a "MOLULATION SELECTOR" /S4/ kmpcselőt
 "INT.-400 c/s" vagy "INT.-1000 c/s" állásba.
- d/ Allitsuk a modulációs szintet a "MODULATION AMPLITUDE" /P6/ potenciométerrel a "PERCENT MODULATION" /N2/ müszer leolvasása mellett a mogfelelő órtókre.
- e/ Allitauk az "ATTENUATOR" /S6/ kapcsolót a kivánt állásba.
- f/ Allitsuk az "ATTEN ATOR VERNIER" /P2/ potenciométert a megfelelő kimenőszintre.

Kimenet lezárása

A generátor feszültségosztójs csak 50 chm-os terhelés alkalmazása esetén hitolos. A TR-0503-1 /EMC-1189-4/ tipusu mérőfej kimeneté három állással - lezárással - rendelkezik.

- 1. "DUMNY ANTENNA" /müantenna/: A kimenő impedancia változik, a szabváhýos müantenna kapcsolás impedanciajának megfelelőem. A"VOLAS LEVEL" /ML/ müszer által mutatott szint 20 dB leosztásbál jut a műsntennára.
- 2. "O dB ATTENUATION": 25 ohm kimenő impedancia /1:1 fesziltségosatás/.
- 3. "20 dB ATTENUATION": 20 dB feszültségosztás, 5 chm kinonőimpedancia mellett.

Megjagyzés

A regengedhető maximális bemenőenergia a mérőfejhez 180 mW

4.9 Frekvencia-hitelesités

- 1. Kapcsoljuk a "CRYSTAL CALIBRATOR" /S3/ kapcsolót
 "1 Mo/o"-ra.
- 2. Dugaszojunk egy nagy impedanciáju fejhallgatót /2000 oht/ a "PHONES" /4-5/ csatlakozókra.
- 3. Állitsunk be füttymélypontot a mérőfrekvenciához /"l Mc/s"/ legközelebb oső kerek "Mc/s" frekvencián.
- 4. Állitsuk a skálasblak függőleges jelzését a CAL. /12/ gombbal pontosan a "Mc/s" jelzésre. Ugyanez végezhető el a 100 kHz-es kristály segitségévol 7 MHz slatt, 100 kHzenkénti kalibráció esetén.
- 5. Állitsuk a"CRYSTAL CALIBRATOR" /S3/ kapcsolót "OFF" állásba. Ha bekapcsolva hagyjuk, akkor az üttetett jel visszahat a kimenetre és modulálni fogja.

4.10 Kils5 modulácio

- 1. Kapcsoljuk a "MODULATION SELECTOR" /S4/ kapcsolót "EXT.-AC" vagy "EXT.-DC" állásba.
- 2. Csatlakoztassuk a kulső generátort a "KODULATION INPUT-AUTPUT" /2/ csatlakozóra.
- 3. Porgassuk a "MODULATION AMPLITUDE" /P6/ potenciométert jobbra ütközésig.
- 4. Noveljuk a kulső gonerátorból jövő jelet addig, amig a "PERCENT MODULATION" /M2/ műszor mutatója lon %-ot nem mutat.
- 5. Ceškkentsuk a moduláció százalókot a "MODULATION AMPLITUDE" /P6/ poterciométerrel a megfelelő szintre.

A moduláló frekvencia felső hutáru függ a burkológörbe torzitásától.

Woduláció: 30 % AM 70 % AM Nógyszöghullám WivShullám: 0,05 fc 0,02 fc 0,003 fc Mod.frokv.max. 20 kHz 20 kHz 3 kHz

A képletek alkalmazásárál a 3 % AM torzitáshoz tartozó sávszélességek a következők:

Vivohullam /fc/	Moduláló frekvencia								
	30 9	6 AM	70	% AM	Nógyszöghul I á				
50 kHz	3 1	kHz	1	kHz	150	Hz			
200 kHz	15 1	cH7	4	kHz	600	Hz			
500 kHz	20 1	(Hz	10	kHz	1500	Hz			
1 Miz és felette	20 1	cHz	20	kHz	3	kHz			

Megjegyzés:

- a/ A külső gemerátor torzitása kisebb kell hogy legyen 1 %-nál.
- b/ A 3 V kimeneti tartományban a 30 %-on tul tortonó moduláció nem ajánlaton.

5. KARBANTARTÁS

Ez a rész a készülék beállitására és karbantartására vonatkozó utbaigazitásokat tartalmazza. Ezonfelül tartalmazza a készülék specifikált jellemzőinek ellenőrzését. A specifikált jellemzők ellenőrzéséhez kidobozolás vagy belső állitások nem szükcégesek.

5.1 Kidobozolás

- a/ Távolitsuk el u hálózatból kikapcsolt kószülék 16 db felerősítő csavarját.
- b/ Huzzuk ki a készüléket a dobozából.

5.2 Árnyékolábura eltávolitása

- a/ Forditsuk a készülőkeket az ol5lapjával lefelő.
- b/ Huzzuk ki az árnyékolódoboz hátulján /2.ábra/ lévő osatlakozóból a dugaazt /7/.
- c/ Távolitsuk el az árny ékolódobozt leszoritó összes csavart.
- d/ mávolitsuk al az árnyékolóburát felfelé huzással.

Vizzgalethoz szűks ges miszerek

- a/ Csővoltmérő ± 3 % pontossággal, nagyfrekvenciás mérőfejjel
- b/ Hangfrekvenciás csővoltmérő
- c/ Milliampermord /EAW/ 300 mA
- d/ Elektronikus számláló
- e/ Oszcilloszkóp loo MHz
- f/ Torold /198-242 V között szabályozható/
- g/ Négyszög generátor

5.3 CsScsere

A legtübb esetben a készülőkben előforduló hiba elháritható a gyonge vagy meghibásodott csövek kicserőlésével. Bármilyen belső szabályozászerv elállitása előtt ellenőrizzük a csöveket /3, 3/a és 4. ábra/.

Leghelyesebb, ha a hitásnak vált csövet kicseráljük, mert ez sokkal kevesebb időt vesz igénybe, mint ogy csőmérőben velő vizsgálat. Búrmilyen gyártmányu, de azonos tipusu cső relhasználható a meghitásodott cső pótlására, ahol azonban s cső-szórásból adódó karakterisztikaváltozás az áramkörben változást időzhot elő, utánállitást kell elvégeznünk.

5.4 Ellenőrző mérés

- s/ Kapcsoljuk be a készüléket lezúrás nélkül és hagyjuk melegedni lo-15 percig.
- b/ Ha a "VOLTS LEVEL" /Ml/ müszer mutatója a O-állásból belra tér ki, akkor sz "RF.B+" /Bl/ biztosítók égett ki, azt kell kicserőlni /160 mA/.

5.5 "PERCENT KODHLATION" /M2/ miszer

- a/ Csatlakoztassunk a generátor "RF OUTPUT" /1/ csatlakozójáról oszcilloszkópra, amely legalább lo MHz-es sávszólcssógű.
- b/ Kapcsoljuk a "RANGE" /S5/ kapcsolót 530-1800 kHz sávra.
- c/ Allitauk be a generatort 1 MHz-es frekvensiára.
- d/ Knecseljuk a "MODULATION SELECTOR" /S4/ kn posolót "OFS" állásta.
- o/ Alliteunk bo ex osseillosshopon 40 ma-es abrát.
- t/ Kapcsoljuk a "M. DULATION SELECTOR" /S./ kapcsolot

- g/ Állitsuk a "MODULATION AMPLITUDE" /P6/ potenciómétert addig, amig az oszcilloszkópon a modulációs ábra 60 mm-ig nő. A "PERCENT MODULATION" /M2/ műszernek 45 és 55% érték között kell mutatnia.
- h/ Ellenőrizzük a "PFRCENT MODULATION" /M2/ hitelesítést 0 és 90% között. A valos és a müszer által mutatott modulációs mélység közötti eltérésnek <u>+</u> 5%-on belül kell maradni.

5.6 Freavencia ellenorzes

- Az ellenőrzést legegyszorűbb digitális frekvenciamérő segitségével végezni.
- s/ a készüléket 15-20 porcig előmelegitjük.
- b/ Cuatlakozzunk a generátorral az "ATTENUATOR" /S6/ "1 V +lo dB" állásban - 1 V kirenőszint mellett digitális frek venciamérőre.
- c/ Kapesoljuk be a "CRISTAL CALIBRATORT" /S3/ "1 No/s" állásou.
- d/ Hangoljuk a készüléket 1 MHz-re.
- o/ Allitaunk be fejhallgatóval hallgatva füttymélypontot.
- f/ Olvassuk le a frekvanciemérő által mutatott értéket. Ha ez az érték 999.9000 kHz és 1,000.100 kHz között van, ugy a kristály megfelel a specifikációnsk.
- g/ Ugyanezt ismételjük meg a "CRISTAL CALIBRATOR" /S5/ "loo kc/s" állásnál 1s.
- h/ Állitsuk a "CAL." /12/ gomb segitségével a skálasblak függőleges vonslát a skálatárcsa l Miz osztásával egy vonalba.
- 1/ Az előző beállitás mollett ellenőrizzük valamennyi "WHz-es frekvenciát" az ősezes sávon. A füttymálypont beállitása mellett a skálatárcsa által mutatott frekvenciának 1%-on belül kell maradnia.
- j/ Negy frekvesoiastabilitást megkívánó mérésok esetében a bemelsgedett készüléknél /2 óra bemelegedési idő/ sávváltás esetén lo perc ujrastabilizálódási idő szükséges.

5.7 Szintingadozás ellenőrzése

- a/ Caetlakozzunk nagyfrekvenciás csővoltmérővel a készülék "RF. OUT PUT" /1/ hűvelyőro.
- b/ Allitsuk a frekvenciát I MHz-re.
- c/ Alljunk a "VOLTS LEVEL" /M1/ muszerrel 1 V-ra.
- d/ Hangoljuk a készüléket a teljes frekvenciatartoményon keresztül. A kimenőfeszültségnek I V ± 11 % /I dB/ értékek között kell maradnia.

5.8 Hibakoresés

A belső szabályozószervek állithetósága korlátolt mértékü és az egyes áramköri elemek gyártási szórásainak kiegyenlitósóre szolgálnak.

Ha a kószülék részlegesen vagy egyáltalán nem működik, a telső szabályozószervek utánállításával a készülék működését helyreállitani nem lehet.

Mielőtt a belső szabályozószorveket elállitanánk, előbb állapitsuk meg a hiba okát.

A hitakereséshez segitséget nyujt az I. Hibakeresési táblázat. Ha egy rész hibásnak mutatkozik, ugy nézzük meg az I. Hibakeresési táblázat idevonatkozó részét.

Amennyiben a hiba az "ATTENUATOR" /S6/ kapcsolóban van, ugy a készülék csak szervizben javítható.

A hibás készülék javitásakor ajánlatos a tápfeszültségek ellenőrzésével kezdeni. Ellenőrizzük a hálózati zsinért,a biztositékokat és a tápegység kimeneti feszültségeit.

Ha a stabil tápegységben hibás csövet találunk, kicserélése esetén rendszerint nem kell a belső szabályozószervekhoz nyulni /csőcsere esetén ellenőrizzük a stabil feazültségeket/. A hálózati biztosítékok /B2, B3/ mellett ollenőrizzük le BZ "RF.B." /B1/ biztosítékot is. Kiolvadása esetén s "VOLTS LEVEL" /M1/ műszer mutatója a O-állásbál balra tér ki.

Kiolvadást okozhat pl. a forgókondenzátor /C6-C9/ lemezei közé került zárlatot vagy átvezetést okozó anyag. Ezért sjánlatos az árnyékolóburák eltávolitása esetén a lemezközöket süritett levegővel vagy hajszáritóval kifuvatni.

A következő táblázat alapján vizsgáljuk a hibús készüléket elektromos egységekro bontva.

I. HTBAKERESÉSI TÁBLÁZAT

Az elektroncsövek lábain mért egyen- és váltófeszültségeket a IV. Táblázat tartalmazza.

Mérjük meg a feszültséget a földhöz képest az elébbi pontokon, amennyiben a mért feszültség eltér az előirt értéktől, agy a hiba oka a következő:

-200 V-os tápceyság

Holyezzük üzemen kivül a +300 V-os tápegységet az Riol ellenállás egyik végének kiforrasztásával. Ideiglencson kősalk össze a Vi6 elektroncső 2. és 7. lábát egy 1 Mohm I W-os ellenállással.

V18 /2, 4, 7/ cső. /V18 cső 2.4. és 7. lába/ Szakatt, vagy átűtött a CloS kondenzátor.

Clos kondenzátor /+195 V + lo \$/
A V16 cső hibás. Ellenőrizzük le a fütőfeszültséget: 15 V.

718 /1,5/ cs6.

A VIS cső hibás. Ellenőrizzük a narancsszinű izzást.

117 /3.7/ 090

A V17 cső vagy a hozzákapczolódó alkatrószek hibásak.

A hibs kijavítása után távolitsuk el az ideiglenesen boiktatott 1 Mohm 1 W-os ellenillást.

+300 V-os tapegység

A -200 V-os tápegységet műkődésképesnek tekintűük.

71 /7/ transzformátor /165 V + 10%/ Szakadt, vagy zárlatos menetsk.

Clo5 és Clo6 kondenzátor /225 V. egy-egy kondenzátoror/ à Clo5, Clo6 kondenzátorok, vagy a SiDlo1, SiDlo2, SiDlo3 és SiDlo4 diódák zárlatosak, vagy szakadtak.

712 /7/, V13 /7/, V14 /7/ csövek

A Clo5, Clo6 kondenzátorok, vagy a SiDlo1, SiDlo2, SiDlo3 és SiDlo4 diódák zárlatosak, vagy szakadbak. Ellenőrizzük le a Vl2, Vl3, Vl4 és Vl5 csöveket.

V15 /6.7. AB 9/ CHÔ

A V15 cső vagy az Rlog, R114 ellemállások hibásak.

RF oszcillátor

Ezt a mérést csak akkor végezhetjük el, ha előbb meggyőződtünk a stabilizált tápegységek /-200 V, +300 V/ biztos mű ködéséről.

Zárjuk rövidre az R22 ellenállást és végezzük el a következő máráseket.

V3 /5/ cső

A soros fütésű csővek közül valamelyik fütészála makadt.

11 /4.4-5/ CBO

Silenőrizzük le a feszültséget a Clll elektrolytkondensátoron /+48 V/.

V1 /2./ cs5

Ellenőrizzük le az "RF.B+" /Bl/ biztositékot, továbba a C7,

C8a, C8b, Clo, Cll, Cl2 és Cl3 kondenzátorokat zárlatra és az L2 tekercset szakadásra.

VI /1./ csi

Ellenoriszük le az RI, RZ ellenállásokat a GeDl diódát és a Cl kondenzátort.

VI /3./000

Ellenőrizzük le az R4 ellenállást a V1 csövet, ill. a V4 és V5 csövek 2. és 9. lábaira menő vezetéket.

V5 /1. 6./ CB6

Elenőrizzűk le az R9 ellenállást és a C6a, C6b kondenzáto - rokat.

¥3 /2. 7/ ced

Ellenőrizzük le a VI csövet és a hozzákapcsolódó alkatrészeket.

73 /3.8./ CRO

Ellenőrizzük le a VI csövet és a hozzákapcsolódó alkatrészeket.

13 /2.7./ cső /19 Mc/s-on: 6 Veff ; 65 Mc/s-on: 5,5 Veff/
Bliendrizzük le a V3 csövet a GeDl diddát és a C6a, C6b kondenzátorokat.

79 eilemállás /3,3 kOhm + 10%/ Ellemárizzük le a C6a, C6b kondenzátorokat, ill. a V1, V3 csoveket zárlatre.

RF erosito

E mérésnél feltételezzük, hogy a stabilizált tápegységek és ERF oszcillátor működik. Szüntessük meg az R22 ellenállás Edvidzérját és mérjünk feszültséget az alábbi pontokon:

Cill kondenzator /+ 48 V +10%/

Ellenörizzük le a Clll, Cll2, Cll3, Cll4 és Cl24 kondenzá torokat, valamint a Vl. V3, V4, V5, V6 és V8 esőveket.

₹4 /4-5/, ¥5 /4-5/ csövek

Ellenőrizzük le s Clll, Cll2, Cll3, Cll4 és Cl24 kondenzátorokat, valamint a Vl, V3, V4, V5, V6 és V8 csöveket.

¥6 /4-5/ cs8

Ellenőrizzük le a Clll, Cll2, Cll3, Cll4 és Cl24 kondenzátorokat, valamint a Vl, V3, V4, V5, V6 és V8 csöveket.

V4 /3. 8./, V5 /3. 8./ csovek

Az R15 ellenállás szakadt, a C7, Clo kondenzátorok zárlatosak.

V8 /1./ cen

Ellenőrizzük le az R17, R50, R53, R54, R55, R56, R57 és R60 ellenállásokat, valamint a P7, P9 potenciómétereket és a C44 kondenzátort.

V8 /2./ cs5

Ellenőrizzük le az R2o, R21 és R25 ellenállásokat, valamint a P5 potenciómétert és a C28 kondenzátort.

V8 /3. 7./ cBδ

Bliendrizzük le az Rlö, R19, R2o és R21 ellenállásokat, a P3 potenciómétert, valamint a C16 kondenzátort és a V7, V8 csöveket.

V8 /6./ cs8

Ellenőrizzük le az R22, R23, R25, R26 és R27 ellenállásokat, velamint a V8 csövet.

78 /9./ 088

Ellenőrizzük le az R2o, R21 és R23 ellenállásokat, valamint a P3 potenciómétert és a C28 kondenzátort.

V8 /8. / C86

Ellenorizzük le az R28, R29, R30 és R61 ellenállásokat, a GeD2, GeD3 diodakat, valazint a C24, C25 és C26 kondenzátorokat és a V8 csövet.

V6 /2./ us5

Ellenőrizsük le az R22, R23, R25, R26 és R27 ellenállásokat, valamint a C17 kondenzátort és a V7, V8 csöveket.

V6 /8./ cs8

Ellenőrizzük le az Rlo, R24 ellenállásokat, valamint a V4, V5 és V6 csöveket.

V4 /6./, V5 /6./ csövek

Záriatos a C9a-b forgókondenzátor, vagy a forgódob hibásan triatkezik.

73.8./, V5 /3.8./ csovek

Ellenőrizzük le az Rlo, R15 ellenállásokat, valamint a C7, C8a, C8b és C9a-b kondenzátorokat.

V4 /2.9./, V5 /2.9./ csovek

Ha ez a feszültség nem egyezik a IV. Táblázatban feltüntetett ertékkel /+loo V/, akkor az RF oszcillátor nem működik.

73 /1./ és V5 /1./ csövek

Ellenőrizzük le az R13 és R14 ellenállásokat, valamint a V6 cső 8. lábán a feszültséget.

GeD2 /+/ dióda /l V kimenőszint esetén: 6 Veff/ Ellenőrizzük le a V4 és V5 cső anód /6./ es kimenőfeszültségét a III. Táblázat alapján.

"RF. B+" /B1/ biztositék kiégett

Ellenőrizzük le a C8a, C8b, C11, C12 és C13 kondenzátorokat. Idegen, zárlatot előidéző anyag van a C6 és C9a-b forgókondenzátorok lemezei között. Hibás az S7 mikro-kapcsoló. Hibás a visszacsatoló hurok.

Az RIS ellenállás leégett /loo Ohm + 5%/

1 09a-b forgókondenzátor zárlatos. A GeD2 és GeD3 diódák szakudtak, vogy zárlatosak. A C24, C25 és C26 kondenkátorok, vagy s RANGE /S5/ kepcsoló zárlatos. He ez a hiba csak egy sávnál fordul elő, ugy ellenőrizzük a forgódob érintkezőit ezen a sávon. Továbbá ellenőrizzük le a "EANGE" /S5/ kepcsolót zárlatra. Ha ez a hiba valamennyi sávon fennáll, akkor a II. Táblázat alapján keressük a hibát.

Leszivás a kimenőfeszültség szintjén vagy az RF eszcillátor 111. az RF erésitő áramfelvétele rohamosan megnő és rezonanciaszerden visolkedik.

Ellenőrizzük la a forgódob érintkezőit és a rövidrezáró rugós érintkezőt. Ez a rugós érintkező akadályozzu meg, hogy a szomszádos alacsonyabb sáv tekercse leszívást okozzon.

Hengfrekvenciás oszcillátor

VII /1, 2, 3, 5, 7, 8./ cs6

Feszültségmérés sz alábbi beállités mellett történik:

MODULATION SELECTOR /S4/: "INT.-loop c/8"
MODULATION AMPLITUDE /P5/: jobbra ütközésig.

A C39 kondenzátor és a P5 potenciométer közös pontja. /20 Veff./

A T2 transzformátorról a MODULATION SELECTOR /S4/ kapcsolóra monő vezetők.

Modulácio-mélysépmér5 fokozat

Mo /2.3./ cs5

Poszultségmérés az alábbi beállitás mellett történik:

MODULATION SELECTOR /S4/: "INT.-looo c/a"
yobulation AMPLITUDE /P6/: jobbra Utközésig.

Kristály hitelesitő

Foszültségmérés az alábbi beállitás mellett történik: CRISTAL CALIBRATOR /S5/: "Luo Kc/s"

C	e6	1	2	3	4	5	4 6	7	8	9
79	AC DC	33V -46V	0,55V +90 V	0 V		5 V	33 V +235 V	0 V	41 V -55 V	34 V +115 ∀

CRISTAL CALIBRATOR /S3/: "I Mc/s"

C	86	1	2	3	4	5	6	7	8	9
79	AC DC	37¥ -62¥	0,2V +185V	0 V		5 V	37 V +155V	0 V	16 V -24 V	10 V +130 V

II. HIBAKERESÉSI TÁBLÁZAT

A visszscsatoló hurok hibakerosése

Hibajelenség: Egyik sávon sincs kimenőszint, vagy az RIS ellenállás minden sávon leóg.

Ennél a műveletnél a következő előfeltételeket kell teljesitenis a készüléknek:

- a/ A -200 V-os és a +300 V-os stabilizált tápegységek hibátlanul működnek.
- b/ Az bsszes fütőfeszültségek rendten vannak.
- c/ A készülők összss csőve 16.
- d/ Az RF oszcillátor ez összes sávon működik és megközelitően a III. Tátlázatban feltüntetett feszültség és áramórtékek mérhetők.
- e/ A C6sb forgókondenzátor vozetékei nem zárlatosak.

Mérési eljárás:

- 1./ Helyezzük üzemen kivül a visezacsatolást ugy, hogy az R22 ellenállást rövidrezárjuk. /Ezáltal a V6 cső 2. lába -200 V-os feszültségértékre kerül./ Ez lezárja a V6 csövet és az nem enged át áramot a V4 ós V5 csöveken sem. Ezesetben az R15 ellenálláson nem folyhat át áram. Ezt ellenőrizzük le mA mérővel.
- 2./ Csatlakoztassunk egy 5 kohm /5 W/ ellenállásból ás
 egy 2 kohm /2 W/ potenciomáterből álló osztót a V6
 cső anódja és a föld köző.
 Zárjuk le az RF OUTPUT /1/ csatlakozót 50 ohmos ellenállással. Állitsuk be a 2 kohmos potenciomátert ugy,
 hogy az RP OUTPUT /1/ csatlakozón 1 MHz frekvencián I V feszíltságet kapjunk.
 Márjünk feszültságet ós áramot az alábbi pontokon:

Arammeres;

V6 cső katódáramkörében /3föld/	I	19,0	mA
Rlo ellenállás áramköróben		5,6	
R24 ellenállás áramköróben /1-5 sávban/	I =	5,6	mā
R24 allenállás úramkörében /6. sávban/		0	mA

Peszültségmérés:

RI3 ellenálláson	U = +0,15 V
R14 ellenálláson	U = +0,15 V
GeD 2 dioda anódján	U = +5,7 ₹
GeD 3 dioda katódján	U = -7, I V
V8 cső 8. lábán	U = +3,1 V /AC = OV/

3./ Ismételjük meg a móróst az előző pontban /2./ leirt beállitás mellett - az 1, 2, 4, 5. ós 6. aávon is.

A feszültség és áramértékeket a III. Táblázat adatai alapján ellenőrizzük le.

A GeD2, GeD3 diodákra és a V8 csőre vonstkozó feszültsógadatok megegyeznek ez előző ponttan /2/ felsoroltekksl.

- 4./ Alliterk a 2 kohmos potenciométert mindaddig, smig a V8 caő 8. lábán mérhető feszültség 5,1 V losz.

 Az ATTENUATOR VERNIER /P2/ potenciomæert forgassuk balra ütközésig. /P2 = 0°/.

 Mérjünk feszültséget a V8 cső elsktrodáin a IV.Táblázat adatsi alapján.
- 5./ Az ATTENUATOR VERNIER /P2/ potenciométert forgassuk jobbra ütközésig. /P2 = 270°/. Mérjunk feszültséget a V8 cső elektrodáin a IV.Táblázat adatai alapján.
- 6./ Távoliteuk el a rövidzárt az R22-es ellenállásról, ezáltal lekapcsolódik a V6 cső 2. lábáról /vezőrlőrács/ a -200 V-os feszültség. Kapcsoljuk le a V6 cső anódja és a föld köző helyezett osztít /R = 5 kohm, P = 2 kohm/. A készüléknek helyeson kell mikodnio.
- 7./ Hangoljuk ismét össze az RP oszcillátort és sz RP erősitőt, ha valamelyik alkatrészt vagy csovet kicseréltűk.

List a SERVICE UTASITÁS következő fejezeteit:

- 6.7 "PERCENT MODULATION /M2/ muszer beallitása."
- 6.8 "Maximális vivóhullám-beállitás és modulációs null-állitás."
- 6.9 "VOLTS level /Ml/ miszer beállitása."

TII. Táblázat

RF OSZCILLÁTOR:

Frekvo	oncia	I.oszc.	v3/2,7/ Ue	V3 /1,6/ U _a	C6ab U _c
94 1	kHz	2.0 mA	9 ₹	76 V	174 ¥
310	kHz	4,4 mA	8,8 V	27 ₹	60 ₹
1 :	MCHZ	2,5 mA	9,1 ₹	96 ₹	96 ₹
3,3	MHz	4,0 mA	9,2 V	70 ₹	70 Y
11 1	MHz	6,0 mA	8,8 V	40 V	40 V
36,3 1	MHZ	17,0 mA	9,0 ₹	27 V	27 ¥
	-				

RF ERÓSITÓ:

Frek	/ercla	I. e.	rősitő	V4, V5 /2,9/	1	75 /6/ U _a	C9ab U _c
94	kHz	6	mA	9 V	9	٧	56 V
310	kliz	9	mA	8,8 V	7	V	25 V
1	MHz	lo	mA	9,1 V	8	V	18,4 Y
3,3	MHz	9	mA	9,15 ₹	10	V	lo V
11	MGfz	5	mA	8,75 ¥	9	v	9 V
36,3	Miz	7	mA	8,1 V	9	v	9 V

Y		1	2	3	4	5	6	7	8	9	6
VI PCL84		+991	+2951	+1001	+5,58	+205V	+11oV	07			
¥2 8542		+295N	+21oV		•21oV	•295V		+S10¥	-	-	
V3 POC88		+2801	+100V	+11oV	OV	+74	+28e¥	•looV	+1101	-	
FOL6	DC AC	+112V 2V		+295V	41,70	3 7/ +48V	+295V 7,8V	+lloV	+295¥	+1007	
¥5 6015	DC AC	+1127		+295V	35.5	W/ +41,78	•295Y 7,87	•lloV	+295V	+100%	
TE PLOI			-1oV- -25V	0 4	·14	5 V/ •35,5V	0 4		+11eV	0 ¥	•lloV
V7 POC88		+295Y	+8oV	+83V	•77	*197	+295V	•145¥	+15oV	-	
1	U _{k1} =0 V P2=0°	0 4	+1507	+3,97	+35,5V		•10V	•3.9₹	+3,10	+859	
ya PCL84	Uki=1 V P2=270°	+3,37	+145V	+4,5V	+35,5V		+50V	44,57	0 V	¥68+	
	Uk103 V P202700	0 - +3,5V	+150V	+4,17		+20,5V	◆86V	++,1V	0 -	+837	
W9	83 = DC looks AC	-46V	+90V 0,55V	0 V	~15	A	+235V	0 V	-55V 41V	+115V 34V	
PCL64	85 a DC 1 MHs AC	-62V 37V	+185V 0,2V	0 V	~15	A	+155¥ 37¥	0 V	-24V 16V	+150V 10V	
710 BCC85	DC AC	+500V	0 V	+3,87 2,87	~ 6,3	Y	+14oV		o v		
V11 ECC85	DC AO	+160Y 4V	0 V 7,5V	+2 V 7,27	~ 6,3	٧	+295V 87V	4 A 0 A	44,5Y 2V		
V12 PL62			•28o¥	+3coY	~16,5	A		+450¥		•45oV	
VI.º PLE2			+28eV	+500V	16,5	Ý		->5oV		+45°V	
V14 P182			+28oV	Yoot+	w16,5	٧		+450¥		₩50V	
V15 PCE64		0 4	+3coV	+3,17	~ 15	v	+28oV	+3,10	+2,2V	+36Y	
716 FL83		+195V	-8V	0 4	~15	٧	+195V	•195V			
717 CL84		-1167	0 7	-1127	w 15	A	-8V	-115A	-1127		
118		-11oV	-200¥	-	-200V	-lloV	-	-200V	-		

6. SERVICE UTASITÁS

5.1 Stabilizált tápogysóg

A készülék tápegyadgei rendkivül stabilak, ezért csak ritkán lgényelnek beszsbályozást. A tápegységek szabályos időküzökben - vagy első hibakoresési lópásként - mérendők, de a ezükségtelen utánállitás kerülendő.

Mérjük meg a tápegység feszültségeit, a két feszültség értéke: -200 V ± 1 % és 300 V ± 1 %. Amennyiben eltérnek a megadott értéktől, ugy a Plo /+300 V/ ill. a Pll /-200V/poten iométerekkel utánállithatjuk. Ezek a potenciométerek a kidobozolt készülékben a Tl transzformátortól balra eső penel oldalán találhatók /3.ábra/. A zagófeszültség max. Ertéke egyik feszültségnél sem haladhatja meg a lo mV effektiv értéket.

A fonti műveletet cső és egyőb alkatrészek cseréje ssotón feltétlenül el kell végezni.

5.2 Hangfrekvenciás generátor

A "RANGE" /S5/ kapcsolét állitsuk 550-1800 kHz sávrs.
Allitsuk a "MODULATION SELECTOR" /S4/ kapcsolót
"IMT. -400 r/s" állásba. Castlakozzunk hangfrekvenciás
csővoltmórővel a hangfrekvenciás transzformátor /T2/ S4
kapcsolóra menő leágazásara és állitsunk be ezen a ponton - P5 potenciométer segitsőgővel - 3,2 V feszültséget.
/A P5 potenciométer a modulációs szerelvénylap tetején
lévő 5 potenciométer kozül a közécső, lásd a 3.ábrát/.

6.3 Kristályhitelositő

állitsuk a "CRYSTAL CALIBRATOR" /S3/ kapcsolót "loo kc/s" állásba. Csatlakoztassunk elektronikus számlálót a T9 cső anódjára /6/.

Állitsuk be C50 trimmerrel a frokvenciát loo Hz-re. Kajd kapcsoljuk át az S5 kupcsolót "looo kc/s"-ra. A C33 trimmer segitségével állitsunk be loop kHz-t. A frekvenciánsk /digitális frekvenciamérővel mérve/ az siábbi értékek között kell lennie:

loo kHz 99.990 - 100.010 looo kHz 999.900 - 1,000.100

Caccere esetén ajánlatos ellenorzo morést végrehajtani.

6.4 RF oszcillétor és RF erősitő behangolása

Ezt a műveletet cssk akkor végezzük, ha határozott jelét tapasztaljuk sunak, hogy az RF oszcillátor frekvenciája türésen kivül esik. Az RF oszcillátor frekvenciájának beállítását I V vagy ennél kisebb kimenőszintnél végezzük. A sáv elején /slacsonyabb frekvencia/ vasmaggal, a sáv végén /magasabb frekvencia/ trimmerrel végezzük a behangolást. Az RF erősítő utánállítását ugy végezhetjük, hogy bontjuk az RI5 ellenállás áramkörét, majd árammóró czatlakoztatásával zárjuk /30 mA állásban/. A sáv alsó végén vasmaggal, felső végén pedig kondenzátorral állítsunk be áram minimumot. A kondenzátor állítására használt rsavarhuzó végére huzzunk szigetelő műanyagcsövet, hogy a csavarhuzó fémrészéből csak kb. 1-2 mr rósz álljon ki szigeteletlenül a zárlat elkerülése céljábál.

5.5 Maximális oszcillátor-árum beállitása

Allitsuk a RANGE /S5/ kepcsolot a 19-65MHz aávra.
Bontsuk sz R9 ellenáliás áramközét, majd zárjuk mA mórő-vel /30 mA állásban/. Porgassuk a skálatárcsát a legnaeyobb áramu helyre, majd a Pl csavarhozó-allitásu potenciomóterrel /3.ábra/ állitsunk be 30 mA anódársmot.

6.6 Vivohullam zeruara állitása

Csatlakozzunk - 1 MHz frekvencia állásnál - oszcilloszkópra, csavarjuk az "ATTENUATOR VERNIER" /P2/ poterciométert teljesen balra. Kapcsoljuk az oszcilloszkopot legárzékenyebb állásba.

A P3 csavarhuzó-állitásu potenciométerrel álljunk be ugy, hogy az oszcilloszkópon a jel éppen eltünjók. Ennak elvégzése után a "RANGE" /S5/ kapcsolót 19-65 MHz sávra állitva a kimenőfeszültség nem haladhatja meg a 30 mV órtékat.

6.7 "PERCENT MODULATION' / M2/ miszer beallitass.

Alljunk i Mhz frekvenciára. Csatlskozzunk i v kimenőszintnől oszcilloszkópra. Kapcsoljuk a "MODULATION
SELECTOR /S4/ kapcsolót "INT.-400 c/s" állásba. Állitsunk
ba az oszcilloszkópon 50 % modulációt. /A maximális ós
sinimális jel viszonya 5:1/. Állitsuk a "PERCENT MODULATION"
/W2/ műszer mutatóját "50 %" vonásra. A beállitást a P8
potenciomóter segitsógóvel vécezzük. /A P8 potenciométer
s modulációs szerelvénylap tetején lévő 5 potenciométer
közül a második az előlap felől számolva, lásd a 3.ábrát/.

5.8 Maximális vivőhullán beállitás és modulációs null-állitás.

Forgassuk az "ATTENUATOR VERNIER" /P2/ potenciomótert teljesen jobbra. Csatlakozzunk az RF "OUTPUT" /l/ hävely-re nagyfrokvenciás szintmérővel. Állitsuk az "ATTENUATOR" /S6/ kapcsolót "l V" állásba. Csatlakozzunk a "MODULATION IMPUT-OUTPUT" /2/ csatlakozóra nagy belső ellenállásu DC feszültségmérővel /1341/E tip. CRIVOHM II./ Kapcsoljuk a "MODULATION SELECTOR" /S4/ kapcsolót "EXT.-D2" állásba. Forgassuk teljesen jobbra a "MODULATION AMPLITUDE" /P6/ potenciométert. A készüléket végighangolva 50 kHz - 65 MHz-ig, jegyezzük fel a kimenő RF-szintet. Álljunk a minimális kimenő RF-szintű pontra. Állitsuk be a P7 potenciométerrel 1,02 V kimenő RF-szintet. /A P7 potenciométer a modulációs szerelvénylapon lóvő 5 potenciométer közül a negyedik, lásd a 3. ábrát./ Majd a P9 po-

tenciométerrel /P7 potenciométert követő potenciométer, lásd a 3. ábrát/ állitsunk be 0 V feszültséget az Orivohm II. legérzékenyebb állásánál. A P9 potenciométer kieső elviszi a P7 potenciométer által beállitott szintet, ezért a beállitást a két szabályozószerv változtatott állitásával kell elvégezni. Helyes beállitás esetén a "MODULATION SELECTOR" /S4/ kapcsolót átkapcsolva "EXT.-AC" állásba, a kimenőszint nem változik.

6.9 "VOLTS LEVEL" /Ml/ muszer beallitása

Ellenőrizzük a "VOLTS LEVEL" /M1/ miszer nullállását, a készülők kikapcsolt állapotában. Csatlakoztassunk RF feszültségmérőt - 1 V kimenőszintnél - az 50 ohm-mal lezárt RF "OUTPUT" /1/ hűvelyre.

Változtatva a frekvenciát 50 kHz és 60 Mhz között tartauk a külső RF-szintmérőt 0,9 V álláson és olvassuk le a "VOLTS LEVEL" /Ml/ müszer minimális és maximális állását. Határozzuk meg a két állás számtani közepét, majd álljunk egy olyan pontra, ahol a számtani középnek megfelelő értékre tér ki a "VOLTS LEVEL" /Ml/ müszer, majd ennél az állásnál állitsuk a "VOLTS LEVEL" /Ml/ müszert a P4 potenciométer segítségével 0,9 V kitérésre. /P4 potenciométer s modulációs szerelványlap tetején lévő 5 potenciométer közül az első /lásd a 3.ábrát/.

6.10 Csocsore

A V7, V9, Vlo, V11, V12, V13 és V16 csövek cseréje itánállitás nélkül elvégezhető.

A VI, V2 és V3 csövek cseréje esetén a 6.5 pontban leirt utánállitás végzendő el.

A V4, V5, V6 és V8 csövek cseréje esetőn a 6.8 pontban leirt beállitás vógzendő el.

A V15, VT7 és V18 csövek cseréjénél a 6.1 pontban leirt ellenőrző mórós és - szükség esetén - beállitás végzendő el.

ALKATHTED MESINER

As alkatroszjegyzek bettjelejnek magyarazata

Jol	Eivite1	Jo2	Fivetel .
	KLLENALLASON	R	
11 13 11	Kristalyos anemrétez ellentilás Bórkarbon rétog ellentilás Zománc bevenstu huzel ellentilás	RF0	Pénrétog ellonéllés Pénoxid rétog ellenéllés
	VÁLTOSTA MATÓ BILLE	MALLASON P	-125-
PR PR	Mussi potenciónéter Réteg potenciónéter	P82	Boállitható rétag potenciómótor
	KOWDENZATOR	ок С	-
DIG-25	Yémezett papirkondenzátor fásházas, bengerelaku Kerksia kondenzátor,	CC-st	Colling kondensator, mlanyagbe présent, téglesleku lég trismer kondensator
oz-ra	Riektrolit kondensator fernassa, hargoralsku	CIN CIN	Keramia trimer kondensator taresa Forgókondensator
	V - 🖨	D	-14-
T-RE	Nettés triéda	r	Fotolezó
Y-19 Y-19	Pentóda Trióda-pentóda	GeD SiRes	Germánium dióda Szilicium ogyonirányitő
	Kgrka	ADATOR	
r fr ; a gr fm j	Everchristaly Relé Jelsölánya Mutatón miszer Fokozatkepuselő Mikrokepuselő Jvagomövas biztomitő betőt	T Tx L PoSel PoSe So	Hálózati transzformátor Kimfrekvonciás transzformátor Tekeros Hálózati feszültssgválasztó dugó Hálózati csatlakozó aljzat Egyszku csatlakozó aljzat Földelő csatlakozó hűvely

Eloisz mérőkénzülék - a megbizhatóság os a műszeki adatokban előirt határértékeken belüli nagyobt pontosság érdekében - gondos egyedi néréssel és baszabályozászal ké-nző. Binek követheztében előforfulhat, hogy a készülékek a mellékelt elkatrészjegyzéktől eltérő értékű alketolomoket is tartalmazzak.

		Ω	- 5	-R	1		Ω	1 8	1 -
24	2K	390 k	10.	1	R47.	28	Bo k	-	
R 2.	RE	150 "	10	0,5	849.	RE	1 "	10	0,5
23.	3KB	56 M	10	0.5	P49.	RIC	68e "	lo	0,1
B4.	RB	56 A	10	0,5	R50.	RB	82 *	10	0.5
234	RB	56 H	20	0,5	E91.	RB	150 "	10	0,5
P 6.	RX	100 "	10	0,1	R52.	R3	680	10	0.5
R. 7-	RK	270	10	0,1	H53.	23	1 k	5	0,25
R.B.	RK	270	lo	6,1	1	1	1	1	
Æ D.	RZ	5.5 k	10	7.5	255.	RB	22 **	5	10
225.	RE	33 *	10	2	R56.	RB	22 **	5	3
811.	RX.	220	10	0,1	R57.	RE	680	1	
SIT.	RE	220	10	0,1	R58.	RB	47 k	la	0,5
R15.	na na	39		0,25	R60.	83	35 **	5	2 2
ElA.	28	39	5 5	0,25	R61.	RX	25 **	i	0,5
2150	DB	100	5	1	R62.	RX	1 "	10	0.1
R250	RX.	50	1	0,25	R65.	RK	100	10	0.1
217.	RK	47 k	10	0,25	R64.	RE	1 k	5	0,5
RIS.	RB.	12 H	1	5	R65.	RE	150 M	5	0,5
225.	RB	10 "	1	2	Riot.	RZ.	5	10	7.5
E2C.	RX	350 "	10	1	R102.	RFo	82a k	.5	0.5
C1.	RK	186 "	le .	0,5	RLo3.	RX	1 "	10	0,1
122.	RE	220 *	20	0,5	Rlos.	23	22	20	0.5
123.	RE	120 *	lo	0,5	3205.	270	620 k	5	0,5
24,	RB	33 "	20	2	R106.	RFo	390 "	5	0,5
الما	RB	1,6 =	5	0.5	R107.	RE	1 -	20	0,1
126.	RB	33 "	1	2	Rios.	RB	10 "	20	0.5
27.	EN	1 "	5	0,5	R109.	RB	22	20	0,5
28.	RK	33 "	1	0,5	Bilo.	RPo	58 k	5	1
32.	RK	68 *	5	0,5	Ritt.	RX	1 *	10	100
30.	FUE	6,46 *	2	0,5	R112.	RFo	1 11	5	0,1
SEC	508	1,5 "	20	2	R113.	RFo	150 k	5	0.5
57.	RX	220 *	10	0,5	R114.	RB	22	20	0,5
25.	KK	1 11	10	0,5	R115.	RFo	390 k	5	0,5
54.	RK	33 k	10	0,5	R116.	RFo	270 "	5	0,5
35.	RK	82 W	10	0,5	2117.	RYO	47 *	5	0,5
35.	RI	5'5 W	lo	0,5	R118.	RFo	100 =	5	0.5
20	RE	470 k	10	0,5	R119.	RFo	820 **	5	0,5
7.	RB	35 k	10	2	R12c.	RFo	47 "	5	0,5
F.	RK	350 "	10	0,5	R121.	RFo	100 =	5	0,5
4	NOC .	200 *	1	0,5	R122.	RFo	47 "	5	0,5
2	DE.	Bo **	2	0,5	R124.	RB	685	20	2
3.	RE	1 "	10	0,1	R125.	93	16	10	2
4.	RE	1,5 "	10	0,5	B127.	RF	53,27		
56	RK	56 H	10	0,5	R128.	RF	790	0,5	0,25
6.	EX	200 "	1	0,5	R129.	RF	26,63	0.5	0,25

_		Ω		Y			Ω		8	1
11.30¢	RF	790	0.	5 0,25	3202	R.F	220		5	1
2131 ·	RP	53,27	0.		1205		2,2		10	1
M35.	EP	96,25			R204		39		2	84
20.33-	KF	71,15	0,		1/20b		39		2	0,
2134.	R?	96,25		William III (ACC) COLOR	R206		1,5		5	0,
R135.	RY	61,11	0,		R207		15		20	0,
\$150.	37	247,5	2,	COLUMN TO THE REAL PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSO	R208		15		20	0,
8197.	7.7	61,11			R209				~	0.
R138.	27	53,27	0,	COLUMN TO THE REAL PROPERTY.	R210		1,8		10	0,
MIN.	23	790	0,		2211		100		10	0,5
B)40.	27	53,27	0,		3212		330		16	0,
2201.	EF	5%0	5	1	Acto	AA	36		10	0,1
	1			D -	1	_	_		-	-
		-	-	-		_		-	_	-
F	PR	50		0,1	F 7.	Pit	10		10	1
F 2.	PH	1	" 10	1	P 8.	PR	50	30	20	0,1
F3.	PR	100	20	2,5	P 9.	PH	10	* 1	lo	1
P 4.	58	100	20	0,1	Flo.	PR.	200		30	0,2
P. le	PH	1	. 50	0.7	Pil.	PR	100		50	5,2
Phi	78	1	20	0,5	P12.	PR	33		20	2
				C	- 11				-	
					1					
		2	*	V	+		¥	8	T	A
01.	OK-10	lo n	\$ +50~20	1-				-	Ŧ	
_				A	C19.	che-ch	100 n	10	Ŧ	900
C 2.		lo n	+5020	₹ 506 500	C19.	Cher-ch	loo n	10 10	T	900 900
62.	CK-lo	10 n	+50~20 +50~20	500 500 400	C19. C20. C21.		100 m 100 m	10 10 5	T	400 500
03.	CE-10	lo # 10 *	+50-20 +50-20 10	500 500 400 500	C19. 020. C21. C22.	CMP-ch CC-st	loo n loo " 1 " 2,2 "	10 10 5 5	T	400 500 500
0 3. 0 3. 0 4. 0 5.	CK-10 CKP-7h CK-10	lo = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 1	+50-20 +50-20 10 +50-20 +50-20	500 500 400	C19. C20. C21. C22.	CMF-ch cc-st	100 m 100 " 1 " 2,2 "	10 10 5 5	1	400 400 500 500 250
03.	CK-10 CK-10 CK-10 CT-10	10 m 10 m 100 m 10 m 10 m 420 p	+50-20 +50-20 10 +50-20 +50-20	500 500 400 500 500	C19. C20. C21. C22. C23. C24.	CNG-ch CC-et	lee n lee " 1 " 2,2 " le " 220 p	10 10 5 5 5	T	400 400 500 500 250 250
0 3 4 5 60 6	CK-10 CKP-7h CK-10	lo = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 1	+50-20 +50-20 10 +50-20 +50-20	500 500 400 500	C19. C20. C21. C22. C23. C24.	CMF-ch CC-est	loo n loo " 1 " 2,2 " lo " 220 p 750 "	10 10 5 5		400 400 500 500 250 250 250
01. 02. 03. 05. 05. 05.	CK-10 CK-10 CK-10 CT-10	lo n lo " lo " lo " lo "	+50-20 +50-20 10 +50-20 +50-20	\$00 500 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26.	CNF-Sh	loo n loo " 1 " 2.2 " lo " 220 p 750 "	10 10 5 5 5 5 5		400 500 500 500 250 250 250 250
0 3. 0 4. 0 5. 0 60 0 7. 0 60	CK-10 CK-10 CK-10 CTL CMP-70 CK-70	10 m 10 m 10 m 10 m 10 m 420 p 10e m	+50-20 +50-20 10 +50-20 +50-20 1	500 500 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26.	CMF-Ch	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 "	10 10 5 5 5 5 5 5 5		400 400 500 500 250 250 250 250 400
C 2.	CK-10 CK-10 CK-10 CK-10 CTL CMP-11 CK-11 CVL	lo n lo " lo " lo " lo "	+50-20 +50-20 10 +50-20 +50-20	\$00 500 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88.	CMF-Sh CC-et	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 "	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 250 400 500
C 2.	CK-10 CK-10 CK-10 CTL CMP-70 CK-70	10 m 10 m 10 m 10 m 10 m 420 p 10e m	+50-20 +50-20 10 +50-20 +50-20 1	\$00 500 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88.	CMP-th CMP-th CK-1so	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 "	10 10 5 5 5 5 5 5 5		400 400 500 500 250 250 250 250 400 500 250
C 2.	CK-10 CK-10 CK-10 CK-10 CTL CMP-11 CK-11 CVL	10 m 10 m 10 m 10 m 10 m 420 p 10c m 20+20 A	+50-20 +50-20 10 +50-20 +50-20 1	500 500 400 500 500 250	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88. C29.	CMP-Th CC-st " " CMP-Th CK-1so CC-st CTE-t	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 " loo p lo-40"	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 400 500 250 250
C 2.	CK-10 CK-10 CK-10 CK-10 CK-10 CK-10 CK-10 CK-10 CK-10	10 m 10 " 10 " 10 " 420 p 10e m 20+20 & 420 p	+50-20 +50-20 10 +50-20 +50-20 1 10	500 500 400 500 500 250 350	C19. C20. C21. C22. C25. C26. C27. C28. C29. C30.	CMP-Ch CC-et "" CMP-Cb CK-1so CC-et CTK-t CK-1c	loo n loo " 1 " 2.2 " lo " 220 p 750 " loo n 2 " loo p lo-40" 5 n	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 400 500 250 250 500 500
5. 5. 60 5. 60 60 7. 60 7.	CK-10	lo n lo " lo " lo " 420 p loe n 20+20/4 420 p	+50-20 +50-20 10 +50-20 +50-20 1 10	500 500 400 500 500 500 350	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88. C29. C30.	CMF-Th CMF-Th CK-1so CC-at CK-1sc CC-at CK-1c	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 " loo p lo-40" 5 n 82 p	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 400 500 250 250 250 250 250
5. 5. 50 50 50 50 50 50 50 50 50 50 50 50 50	CK-10 CK-10 CK-10 CK-10 CK-10 CK-10 CK-10 CK-10	lo n lo " lo " lo " 420 p loc n 20-20 4 420 p los n los " los " 2 "	+50-20 +50-20 10 +50-20 +50-20 1 10 10 10 +50-20	500 500 400 500 500 350 400 400 500	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88. C29. C30. C31.	CMF-Th CMF-Th CMF-Th CK-1so CC-at CK-1c CC-at CTE-t CC-at	loo n loo " 1 " 2,2 " lo " 220 p 750 " 150 " loo n 2 " loo p lo-40" 5 n 82 p	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		\$00 \$00 500 500 250 250 250 250 250 250 250 2
0 3. 0 3. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5. 0 5	CK-lac CK-lac CK-lac CK-lac	10 m 10 " 10 " 10 " 420 p 100 m 100 " 100 " 100 "	+50-20 +50-20 10 +50-20 +50-20 1 10	\$500 500 500 500 500 500 400 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88. C29. C30. C31. C32.	CMP-Th CC-st " CMP-Th CK-1so CC-st CK-1c CK-1c CK-1c CK-1c	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 " loo p lo-40" 5 n 82 p lo-10" 5 n	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 250 250 250 250 2
C 2.	CK-lac	lo n lo " lo " lo " lo " lo n	+50-20 +50-20 10 +50-20 +50-20 1 10 10 10 +50-20 •50-20 10	\$500 500 500 500 500 350 400 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26. C27. C28. C29. C30. C31. C32. C33. C34. C35.	CMF-Th CC-st "" CMF-Th CK-1so CC-st CK-1c CK-1c CK-1c CK-1c CK-1c CK-1c	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 " loo p lo-40" 5 n 82 p lo-0" 5 n	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 250 250 250 250 2
C 2.	CK-lac CK-lac CK-lac CK-lac CK-lac	10 m 10 " 10 " 10 " 420 p 100 m 100 " 100 " 100 "	+50-20 +50-20 10 +50-20 +50-20 1 10 10 10 +50-20 +50-20	\$500 500 500 500 500 500 400 400 500 500	C19. C20. C21. C22. C23. C24. C25. C26. C27. G88. C29. C30. C31. C32.	CMP-Th CC-st " CMP-Th CK-1so CC-st CK-1c CK-1c CK-1c CK-1c	loo n loo " 1 " 2.2 " lo " 220 p 750 " 150 " loo n 2 " loo p lo-40" 5 n 82 p lo-10" 5 n	10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		400 400 500 500 250 250 250 250 250 250 250 2

C -II-									
Ko		7	*		10		7	- 5	1
15.	CK-lac	300 p	10	500	C31.	CZ-10	5.0	-50-E0	500
16.	CK-1c	lo n	+50-20	500	C32.	CC-st	82 p	5	250
117.	и.	26 p	5	500	E35.	CIX-t	10-60"		250
10%	CK-1sc	2	+90-20	500	0.34.	CK-10	5 D	+50-20	500
89.	CMP-Fo	100 n	10	400	¢35.	CXP-Th	17 =	10	400
24	15	100 *	10	400	C36.	23	10 "	+50-20	500
m.	OC-at	1 "	5	500	C37.		100 34		N-00
22.	N.	2,2 "	5	500	¢38.	CX-10	10.00	+50-20	500
23.		20 #	5	250	C39.	DC-mt	2 *	2	500
204		500 P	2	250	C40.	- 10	2 ×	2	500
145.	11	750 "	5	250	C4	DZ-10	10 "	+50-20	500
100	er.	150 "	5	250	042.	CMP-2P	1/4	10	160
100	CMP-fb	100 B	le,	400	C45.		100 n	10	400
D.	CK-lac	2 "	+50-20	500	0444	CE-lac	2 "	+50-00	500
14.	OC-at	100 p	5	250	C+5.	CE-Th	50 Vr		25/30
25.	CTI-t	10-40#	100	250	046.	CAL-LP	100 D	10	400

		F	*	V			y	3	V
¢39.	CC-30	2 n	2	500	G111.	CE-fo	500,4		70/8
C40.	94	2 "	2	500	C112.	CMP-IN	loo n	10	900
041.	CK-1c	15.4	+50-20	500	0113.	. 14	100 =	lo	900
242	OMP-FA	1,41	20	160	C114.	OX-lao	2 *	+50-20	500
C43.		100 b	10	400	C115.	C2-50	100/0		6
G44.	CK-lao	2 "	+50-20	500	C116.		100 M		6
C45.	OB-FA	20/10	200	25/30	0.17.	CK-lo	lo n	+50-20	500
C46.	SAR	loo n	20	400	C118.	CE-lo	10 "	+50-20	500
C47.	5.6	100 "	10	400	C201.	CZL-1	2-11 p		500
C48.	CK-lac	2 4	+50-20	500	CZoZ.	26	2-11 *		500
349.	CC-et	220 p	5	250	C203.	4	2-11 "		500
Clol.	CMP-Fb	4,7 2	20	250	C204.		2-11 "		500
0102.		6,7 "	20	250	C205.		2-11 "		500
C103.	CK-lac	510 p	20	2500	C2o6.		2-11 "		500
0104.		510 "	20	2500	C207.	C77t	4 "	30 p	500
C105.	CE-50	100,4		350	C268.		4 4	30 "	500
Cle6.		100 "		350	C209.		4 "	30 N	500
C107.	0P-5b	47 n	20	400	czio.		8 *	30 *	500
Clos.	0E-20	50,0		450	0211.	44	4 "	30 "	500
C109.	CP-50	47 n	20	250	C212.			30 "	500
the second second	n	47 "	20		100 100 100 100 100	100000000000000000000000000000000000000		5 .	500
0110.				250	C213.	CK-lf	27 "	> -	200
0110.			V -@) - 		, ,	200
¥ 1.		Y-tp	V -@	72.84	GeD1.		GeD	041	160
¥ 1.		Y-tp Y8	V - (2)))1.84 5.42	GeD1. 3eD2.		-	0A1 0A1	16e 16o
¥ 1. ¥ 2. ¥ 3.		V-tp Y8 V-tt	V -C	71.84 542 568	GoDl. SeD2. GeD3.		GeD	DAI DAI DAI	16e 16o 16o
¥ 1. ¥ 2. ¥ 3. ¥ 4.		V-tp V8 V-tt	V - (2)	51.84 51.2 50.88 51.6	GeD1. SeD2. GeD3. GeD4.		GeD	0A1 0A1 0A1	160 160 160
¥ 1. ¥ 2. ¥ 3. ¥ 4.		V-tp V8 V-tt V-p	V -6	5.42 3.688 3.66 3.66	GoD1. SeD2. SeD3. SeD4. GoD5.		GeD	DAI OAI OAI OAI	160 160 160 161
¥ 1. ¥ 2. ¥ 3. ¥ 4. ¥ 5.		V-tp V8 V-tt V-p V-p	V -C	51.84 51.2 52.8 51.6 51.6 51.6	GeD1. SeD2. GeD3. GeD4.		GeD	0A1 0A1 0A1	16e 16e 16e 161
¥ 1. ¥ 2. ¥ 3. ¥ 4. ¥ 5. ¥ 6.		V-tp V8 V-tt V-p V-p V-p	V - C 85 85 86 66 66 87 87 86 86	542 542 5688 516 516 516 516 516	GeD1. 3eD2. GeD3. GeD4. GeD5. GeD6.) -14	GeD	DAI OAI OAI OAI OAI OAI	160 160 160 161 161
¥ 1. ¥ 2. ¥ 3. ¥ 4., ¥ 5. ¥ 6. ¥ 7.		V-tp Y8 V-tt V-p V-p V-tt V-sp	V - 60	51.64 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6	GeD1. 3eD2. GeD3. GeD4. GeD5. GeD6.) -14	GeD	DA1 OA1 OA1 OA1 OA1	160 160 160 161 161 161
¥ 1. ¥ 2. ¥ 3. ¥ 4. ¥ 5. ¥ 6.		V-tp V8 V-tt V-p V-p V-p	V - 60	542 542 5688 516 516 516 516 516	GeD1. 3eD2. GeD3. GeD4. GeD5. GeD6.) -14	GeD	DAI OAI OAI OAI OAI OAI	160 160 160 161 161 161
¥ 1. ¥ 2. ¥ 3. ¥ 5. ¥ 6. ¥ 7. ¥ 8. ¥ 9. ¥ 10.		V-tp Y8 V-tt V-p V-p V-tp V-tp V-tp	V - 60	51.64 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6	GeD1. 3eD2. GeD3. GeD4. GeD5. GeD6.) - 	GeD	DA1 OA1 OA1 OA1 OA1	160 160 160 161 161 161
¥ 1. ¥ 2. ¥ 3. ¥ 5. ¥ 6. ¥ 7. ¥ 8. ¥ 9. ¥ 10.		V-tp V8 V-tt V-p V-p V-tt V-tp	V - C 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	01.84 5.42 00.88 01.6 01.6 01.6 01.84	GeD1. 3eD2. 5eD3. 5eD4. GeD5. 5eD6. 81D1c1) - 	GoD	DAI OAI OAI OAI OAI OAI SIE	160 160 161 161 161 161
Y 1. Y 2. Y 3. Y 5. Y 6. Y 7. V 8. V 9. V10. V11.		A-bb A-bb A-bb A-cc A-cc A-cc A-cc A-cc	V - C - S - S - S - S - S - S - S - S - S	71.84 51.2 51.6 51.6 51.6 51.6 51.84 51.84 51.84 51.84 51.84	GoD1. 3eD2. GeD3. GeD5. GeD6. BiD1o2 BiD1o3 SiD1o4 GiD1o5) -14	GoD " " " BlReo	CA1	160 160 160 161 161 161 44 10 16
Y 1. Y 2. Y 4. Y 5. Y 6. Y 7. V 8. V 9. V10. V11. V12.		A-pb A-pb A-pb A-pb A-bb A-bb A-bb A-bb	V - 60 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	71.84 5.42 5.48 71.6 5.46 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	GoD1. SeD2. SeD3. SeD4. GeD5. GeD6. BiDlo2 BiDlo3 SiDlo4 GiDlo5 BiDlo5) - 	GoD 	CAI CAI CAI CAI CAI SES SES SES SES SES	160 160 160 161 161 161 64 16 16 16 16 16 16 16 16 16 16 16 16 16
¥ 1. ¥ 2. ¥ 3. ¥ 4. ¥ 5. ¥ 7. ¥ 8. ¥ 7. ¥ 9. ¥ 10. ¥ 11. ¥ 12. ¥ 12.		V-tp Y-tp Y-p Y-p Y-p Y-p Y-p Y-p Y-p Y-	V - 60 80 80 80 80 80 80 80 80 80 80 80 80 80	71.84 5.42 20.88 71.6 21.6 28.8 21.84 20.85 20.85 20.85 20.82	GeD1. 3eD2. 5eD3. 5eD4. GeD5. 6eD6. 8iD1c2 8iD1c3 8iD1c6 8iD1c5 8iD1c6 8iD1c6) - 	GeD	CA1 CA1 CA1 CA1 CA1 CA1 CA1 SIE SIE SIE SIE SIE SIE SIE	160 160 161 161 161 161 40 16 16 16 16 16 16 16 16 16 16 16 16 16
Y 1. Y 2. Y 3. Y 5. Y 6. Y 7. V 8. V 9. V10. V11. V12. V13. V15.		V-tp Y8 V-tt Y-p V-p V-tp V-tp V-tp V-tp V-tp V-p V-p V-p V-p V-p V-p V-p V-p V-p V-	V - 60 80 80 80 80 80 80 80 80 80 80 80 80 80	71.84 5.42 30.88 71.6 71.6 71.6 71.6 71.84 71.84 71.84 71.84 71.84 71.84 71.84 71.84	GoD1. 3eD2. 5eD3. 5eD4. GeD5. 5eD6. 81D1c2 81D1c3 81D1c5 81D1c5 81D1c6 81D1c7) - 	GoD 	CAI CAI CAI CAI CAI SES SES SES SES SES	160 160 161 161 161 161 40 16 16 16 16 16 16 16 16 16 16 16 16 16
Y 1. Y 2. Y 3. Y 5. Y 6. Y 7. Y 8. Y 10. Y11. Y15. Y15.		V-tp Y8 V-tt V-p V-p V-tp V-tp V-pp V-pp V-pp V-pp V-pp V-pp V-pp V-pp V-pp V-pp	V - 60 80 80 80 80 80 80 80 80 80 80 80 80 80	71.84 5.42 20.88 71.6 21.6 28.8 21.84 20.85 20.85 20.85 20.82	GeD1. 3eD2. 5eD3. 5eD4. GeD5. 6eD6. 8iD1c2 8iD1c3 8iD1c6 8iD1c5 8iD1c6 8iD1c6) - 	GeD	CA1 CA1 CA1 CA1 CA1 CA1 CA1 SIE SIE SIE SIE SIE SIE SIE	160 160 161 161 161 161 40 16 16 16 16 16
Y 1. Y 2. Y 4. Y 5. Y 6. Y 7. V 8. V 9. V10. V11. V12.		V-tp Y8 V-tt Y-p V-p V-tp V-tp V-tp V-tp V-tp V-p V-p V-p V-p V-p V-p V-p V-p V-p V-	V C	71.84 5.42 30.88 71.6 71.6 71.6 71.6 71.84 71.84 71.84 71.84 71.84 71.84 71.84 71.84	GoD1. 3eD2. 3eD3. 5eD4. GeD5. GeD6. SiDlo2 SiDlo3 SiDlo6 SiDlo5 SiDlo6) -14	GoD 	DAI OAI OAI OAI CAI CAI SIE SIE SIE SIE SIE	160 160 161 161 161 161 64 16 16 16 16 16 16 16 16 16 16 16 16 16
Y 1. Y 2. Y 3. Y 5. Y 6. Y 7. V 8. V 10. V 11. V 15. V		V-tp Y8 V-tt V-p V-p V-tp V-tp V-pp V-pp V-pp V-pp V-pp V-pp V-pp V-pp V-pp V-pp	V - 60 85 85 85 85 85 85 85 85 85 85 85 85 85	71.84 54.2 56.88 51.6 51.6 51.6 51.84 51.84 51.84 51.84 51.84 51.85 51.82 51.82	GoD1. 3eD2. 5eD4. 5eD4. GeD5. 5eD6. 81D1c2 81D1c3 81D1c5 81D1c5 81D1c6 81D1c6 81D1c6) -14	GeD	CA1	160 160 160 161 161 161 64 16 16 16 16 16 16 16 16 16 16 16 16 16
Y 1. Y 2. Y 4. Y 5. Y 6. Y 7. V 8. V 9. V 10. V 13. V 15. V 15. V 17.		V-tp Y-tp Y-tp Y-p Y-p Y-p Y-p Y-p	V - 60 80 80 80 80 80 80 80 80 80 80 80 80 80	71.84 51.2 20.88 71.6 20.85 20.85 20.85 20.85 20.85 20.82 20.82 20.82 20.83 71.84 20.83 71.84	GoD1. 3eD2. 3eD3. 5eD4. GeD5. GeD6. SiDlo2 SiDlo3 SiDlo6 SiDlo5 SiDlo6) -14	GoD 	CA1	160 160 160 161 161 161 161 64 16 16 16 16 16 16 16 16 16 16 16 16 16

			h 1.	L	1
5 2.	RY		L 2.		1
3 3.	EW		5.3.		
8 9a	**	1	2:54	*	
8 4b	95	1 3	Llol		
3 54	*	1	LleZ.	- 90	
555		1	11034		
5 5c	н.	1	1201.		
3.6.	6m		1202.	w .	
8 7.	94		1203.	*	1
B.	PoS		1.204.	W .	
Blol.	Sm		1205.		
Bio2.			1206.		
53.034		1	1207.		
104.			L208.	**	
8105+		1	L209.		
81.06.	89		L210.		
81.07.			F57.1*		
5105.	10		1212.	-	
X 1. X 2.	E.				
7.2.	2		l.	0080	BMG
2.2	230		2.		- **
			3.		
11.	E	1	4,	80	
W 2.	M	1	5.		
			6.	CoSo	2010
9 1.	y.	160 mA	9.	PoSel	
B. 2.	Y	1.4	10.	PeSe	
8 3.	9	1.4	21.	808	

TM-0503-1 /EMG-1169-4/ Müantenna alkatrészjegyzéke

Szám	Megnevezés	Értékek	Toler.	Uzemi fesz. V	Ternol- hetosus
		45 ohm	0,5		0,25
	Rétegellenállás	5 "	0,5		0,25
R 2.	n	320 "	0,5		0,25
R 3.	21	75 "	0,5		0,25
	Ceillámkondenzátor	120 pF	5	250	
	CBTITOWN	390 "	5	250	
C 2.		200 "	5	250	

L 1. Tekercs

1167. 197. aprilla Fk.Kiskapusi László

TR-0503(EME- 4168)

TR-0503(EMG-1168)

TR-0503-1 (EMG-1169-4)