Arytmetyka binarna - wykład 6

Adam Szmigielski aszmigie@pjwstk.edu.pl

Naturalny kod binarny (NKB)

pozycja 7 6 5 4 3 2 1 0 wartość
$$2^7$$
 2^6 2^5 2^4 2^3 2^2 2^1 2^0 wartość 128 64 32 16 8 4 2 1 bity b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0

- System pozycyjny o podstawie systemu 2
- Liczby określone są bez znaku
- Wartość liczby binarnej (N- długość słowa kodowego) $Wartosc = \sum_{i=0}^{N-1} 2^i \cdot b_i$
- Wartość cyfry zależy od pozycji $b_i = 2^i$ (numerowanie od zera)
- 2^N różnych wartości kodu (kod pełny)

Sumowanie

• Sumowanie dwóch a, b bitów:

$$a_i, b_i, c_i \Rightarrow s_i, c_{i+1}$$

(c - przeniesienie, s - wynik sumowania)

Przekroczenie zakresu

- Przeniesienie z najstarszego bitu ($c_{N-1}=1$) oznacza przekroczenie zakresu dla słowa N-bitowego,
- Alternatywnie: Wystąpienie przeniesienia oznacza, że wynik jest liczbą bitową o długości N+1. Przeniesienie bitu należy wówczas traktować jako N+1 bit wyniku.

Reprezentacja "znak-moduł" ZM

Najstarszy bit słowa b_{N-1} (MSB - ang. *Most Significant Bit*) pełni rolę znaku (tj. jeśli $b_{N-1} = 1$ to liczna jest ujemna, gdy $b_{N-1} = 0$ dodatnia) np.:

$$-24_{10} = 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0$$

$$118_{10} = 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0$$

$$-14_{10} = 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0$$

$$wrtosc = (-1)^{b_{N-1}} \cdot \sum_{i=0}^{N-2} 2^{i} \cdot b_{i}$$

- Ze względu na najstarszy bit kod nie jest wagowy,
- zakres kodu $< -(2^{N-1}-1), 2^{N-1}-1>$,
- $2^N 1$ kombinacji zero posiadałoby dwie reprezentacje (kombinacja 10000000 (minus zero) jest zabroniona),
- Kłopotliwe sprawdzanie bitu znaku i wykonywanie operacji na modułach,
- Idea bitu znaku jest wykorzystywana w innych reprezentacjach (np. w eksponencie liczb zmiennoprzecinkowych).

kod uzupełnień do 1 (U1) (ang. 1's complement)

- W zapisie tym najbardziej znaczący bit jest także bitem znaku (0 liczba dodatnia, 1 liczba ujemna), ale w zależności od jego wartości dalsze bity zapisu maja różne znaczenie,
 - Jeśli bit znaku jest 0 (liczba dodatnia), to dalsze bity reprezentują liczby dodatnie w ZM,
 - Natomiast gdy bit znaku jest 1 (liczba ujemna), to dalsze bity reprezentują moduł liczby ujemnej, w taki sposób, że zanegowane ich wartości odpowiadają modułowi tej liczby w kodzie ZM,
- Zapis U1 dla liczb dodatnich jest taki sam jak zapis ZM,
- Różnice w zapisie występują jedynie dla liczb ujemnych,
- Zakres liczb tego zapisu jest taki sam jak dla zapisu ZM.

Kod uzupełnień do 1

- W zapisie U1 występują także dwie reprezentacje zera: 000000...00 i 111111...11,
- Sposób przeliczenia liczby ujemnej w zapisie ZM na zapis U1: Zanegować bity oznaczające moduł liczby (bit znaku pozostaje 1). Np. dla liczb 8-bitowych:

zapis ZM: 11010110 (dziesiętnie -86)

zapis U1: 10101001

Kod uzupełnień do 2 (U2) (ang. 2's complement)

Najstarszy bit MSB ma wartość ujemną pozostałe bity są dodatnie tj.:

$$wartosc = -2^{N-1} \cdot b_{N-1} + \sum_{i=0}^{N-2} 2^{i} \cdot b_{i}$$

- Najstarszy bit identyfikuje czy liczba jest dodatnia czy ujemna,
- Zakres kodu: $< -2^{N-1}, 2^{N-1} 1 >$,
- \bullet 2^N kombinacji (kod pełny), zero ma tylko jedną reprezentację,
- Liczby dodatnie z przedziału $<0,2^{N-1}-1>$ mają identyczną reprezentacje w U2 co w NKB, tj.:

$$(0, b_{N-2}, \dots, b_1, b_0)_{U2} = \sum_{i=0}^{N-2} 2^i \cdot b_i$$

• kod wagowy, najstarszy bit na wartość ujemną. Liczby ujemne można interpretować jako sumę:

$$(1, b_{N-2}, \dots, b_1, b_0)_{U2} = -2^{N-1} + \sum_{i=0}^{N-2} 2^i \cdot b_i$$

- wada kodu U2: zakres kodu jest niesymetryczny, negacja liczby -2^{N-1} prowadzi do błędu (np. dla N=128 liczba -128 mieści się w zakresie, ale 128 już nie),
- Przekroczenie zakresu przy sumowaniu, np. dla N=8: $(127)_{U2}+(4)_{U2}=(-125)_{U2}\text{ błąd,}$
- Inkrementacja liczby 127 daje wynik -128.

Negowanie liczb w kodzie U2

$$-(wartosc)_{U2} = \overline{(wartosc)_{U2}} + 1$$

Aby obliczyć liczbę przeciwną do danej w kodzie U2 należy zanegować wszystkie bity i do wyniku dodać jedynkę np.:

7_{10}		(00000111)
negacja bitów		(11111000)
dodać bit	+	(00000001)
wynik -7_{10}	=	$(111111001)_{U2}$

Dodawanie i odejmowanie w kodzie U2

- **Dodawanie** wykonywane jak w NKB, niezależnie od znaków argumentów
- Wartość przeniesienia z najstarszego bitu jest ignorowana,
- Przekroczenie zakresu może wystąpić w dwóch przypadkach:
 - gdy suma dwóch liczb dodatnich przekracza zakres,
 - gdy suma dwóch liczb ujemnych przekracza zakres,
- Odejmowanie w U2 dodanie negacji odjemnika tj.:

$$a - b = a + (-b)$$

- wystarczą operacje negowania i dodawania.

Odejmowanie w kodzie U2 - przykłady

• Sumowanie liczby dodatniej i ujemnej - wynik dodatni,

$$25 + (-1):$$

$$25: 00011001$$

$$-1: + 11111111$$

$$(c_7 = 1): = 00011000_{U2} = 24_{10}$$

• Sumowanie liczby dodatniej i ujemnej - wynik ujemny

$$25 + (-56)$$
:
 25 : 00011001
 -56 : $+ 11001000$
 $(c_7 = 0)$: $= 11100001_{U2} = -31_{10}$

Dodawanie w kodzie U2 - przykłady

• Sumowanie dwóch liczb dodatnich bez przekroczenia zakresu,

$$25 + 1:$$

$$25: 00011001$$

$$+1: + 00000001$$

$$(c_7 = 0): = 00011010_{U2} = 26_{10}$$

• Sumowanie dwóch liczb ujemnych bez przekroczenia zakresu,

$$(-25) + (-56)$$
:
$$-25: 11100111$$

$$-56: + 11001000$$

$$(c_7 = 1): = 10101111_{U2} = -81_{10}$$

Przekroczenie zakresu w kodzie U2 - przykłady

• Sumowanie dwóch liczb dodatnich z przekroczeniem zakresu,

$$112 + 113:$$
 $112:$
 01110000
 $113:$ + 01110001

 $(c_7=0,c_6=1): = 11100001$ - przekroczeniem zakresu

• Sumowanie dwóch liczb ujemnych z przekroczeniem zakresu,

$$(-75)+(-56):$$
 $-75:$ 10110101 $-56:$ $+$ 11001000 $(c_7=1,c_6=0):$ = 011111101 - przekroczeniem zakresu

Sprzętowe wykrywanie przekroczenia zakresu w U2

• Przekroczenie zakresu w U2 można zidentyfikować analizując przeniesienia:

przychodzące C_{IN} i generowane C_{OUT} przez najstarszy bit,

A B C _{IN}	C _{OUT}	S	OFL
0 0 0	0	0	0
0 0 1	0	1	1
0 1 0	0	1	0
0 1 1	1	0	0
1 0 0	0	1	0
1 0 1	1	0	0
1 1 0	1	0	1
1 1 1	1	1	0

$$\Rightarrow$$
 OFL = $C_{IN} \oplus C_{OUT}$

• Przekroczenie zakresu występuje wtedy i tylko wtedy, gdy oba przeniesienia C_{IN} i C_{OUT} są przeciwnego znaku.

Kod BCD

Packed Binary Coded Decimal w dwóch tetrada przechowywane są dwie cyfry dziesiętne (0, ..., 9)

wartość	80	40	20	10	8	4	2	1
bity	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0

$$wartosc = \sum_{i=0}^{7} 10^{\frac{i}{4}} \cdot 2^{imod4} \cdot b_i$$

- np. $0011\ 1001 = 39_{HEX} \Leftrightarrow 39_{10}$,
- Kod niepełny $2^8 10^4 = 156$ kombinacji zabronionych,
- Używany ze względu na prostotę konwersji liczb zapisanych dziesiętnie.

Reprezentacja liczb rzeczywistych

- Reprezentacja stałoprzecinkowa (ang. fixed point)
- Reprezentacja zmiennoprzecinkowa (ang. floating point)

Reprezentacja stałoprzecinkowa

- W sposób arbitralny przyjmuje się, że część słowa jest *częścią całkowitą*, a pozostała część słowa *część ułamkową*,
- Przykładowo, dla słowa ośmiobitowego przyjmijmy część całkowitą jako 5 bitów a część ułamkową jako 3 bity:

pozycja:	7	6	5	4	3	2	1	0
wartość:	2^4	2^3	2^2	2^1	2^0	2^{-1}	2^{-2}	2^{-3}
wartość:	16	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$
bity:	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0

Reprezentacja stałoprzecinkowa

- Liczby stałoprzecinkowe można również interpretować w kodach U1, U2 czy ZM najstarszy bit będzie miał znaczenie jak w tych kodowaniach,
- Kodowanie stałoprzecinkowe może powodować błąd,
- Dokładność kodowania zależna jest od długości słowa,
- Niektóre liczby całkowite i wymierne nie mają swojej dokładnej reprezantacji w skończonym kodowaniu,
- Liczby niewymierne zawsze kodowane są z błędem.

Reprezentacja stałoprzecinkowa - przykład

Podtrzymując założenie że, 5 najstarszych bitów przeznaczone jest na część całkowitą a pozostałe 3 bity na część ułamkową.

Dodatkowo przyjmujemy, że liczba jest zapisana w kodzie U2:

wartość:
$$-2^4$$
 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} wartość: -16 8 4 2 1 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$

• Przykładowy ciąg bitów 11001110 jest wówczas równy:

$$-16 + (8 + 1 + \frac{1}{2} + \frac{1}{4}) = -6\frac{1}{4},$$

- Zakres reprezentowanych liczb mieści się w przedziale $<-16,15\frac{7}{8}>$,
- Liczby rzeczywiste są reprezentowane z błędem nie większym od $\frac{1}{8}$.

Reprezentacja zmiennoprzecinkowa

• Liczba zmiennoprzecinkowa jest reprezentowana jako *mantysa* i *eksponent* przy podstawie 2:

$$mantysa \cdot 2^{wykladnik}$$

- *Mantysa* może mieć różne interpretacje (co może być przyczyną nieporozumień),
- *Eksponent* jest liczbą całkowitą dodatnią albo ujemną. Mnożeniu lub dzieleniu przez 2 odpowiada przesuwanie przecinka odpowiednio w prawo i lewo.

Standard reprezentacja zmiennoprzecinkowej IEEE 754

- Standard IEEE 754 reguluje: format zapisu, sposób konwersji z danego formatu, algorytmy zaokrąglające, operacje arytmetyczne i obsługę wyjątków (np. dzielenie przez zero),
- Przykład Standard *IEEE 754-1985*

- *Mantysa* w kodzie ZM jest ułamkiem. <u>Najbardziej znaczący bit zawsze = 1</u> nie zapisywany (jest pomijany),
- *Eksponent* Od liczby zapisanej kodzie NKB odejmuje się stałą wartość (połowa zakresu NKB). W ten sposób mogą eksponent może przyjmować wartości ujemne i dodatnie.

Zadania na ćwiczenia

- 1. Zbuduj z bramek NAND sumator jednobitowy. Sprawdź jego działanie.
- 2. Za pomocą sumatora czterobitowego przeprowadź operację sumowania dwóch czterobitowych liczb dwójkowych $^{\rm a}$. Wynik zinterpretuj w kodzie NKB i U2,
- 3. Za pomocą sumatora czterobitowego wykonaj sumowanie liczb w kodzie U2 takie, że:
 - suma dwóch liczb dodatnich powoduje przekroczenie zakresu,
 - suma dwóch liczb ujemnych powoduje przekroczenie zakresu.

Odczytaj i zinterpretuj otrzymany wynik.

4. Dla przypadków z poprzedniego punktu zrealizuj układ identyfikujący przekroczenie zakresu. Układ powinien również sprawdzać, czy przepełnienie wystąpiło wskutek sumowania dwóch liczb dodatnich czy ujemnych.

^awskazanych przez prowadzącego

5. Posługując się kodem U2 zaproponuj sposób reprezentacji liczb z częścią ułamkową na ośmiu bitach. Określ przedział, który może być reprezentowany oraz dokładność reprezentacji. Za pomocą sumatora 8-bitowego wykonaj sumowanie dwóch liczb^b. Określ błąd reprezentacji obu liczb oraz wyniku.

^bwskazanych przez prowadzącego