### **Atoms and Electrons**





Electrons orbit the nucleus

Some electrons break free of the nucleus and can move freely through the metal. Conduction electrons

### **Electric Circuits**



Current moves from + to - (positive to negative)

Actually, electrons travel from - to +



Ohm's Law: V = I R voltage = current times resistance

If you have constant voltage: small resistance gives big current big resistance gives small current

### **Power**

Power is energy released per time

Big power, lots of energy released per second Small power, little energy released per second

```
P = V I
power = voltage times current
```

```
remember
V = I R
```

lower temperatures in materials mean less electron movement which means less likely charges collide -> lower resistance EXCEPT in semi-conductors. If no electrons are able to move, then resistance increases as well

$$P = I^2R$$
  
power = current squared times resistance

Units of power are watts (W), 1 watt is 1 volt times 1 amp

### **Direct / Alternate Current**



#### Magnetic field lines



Permanent Magnet

# Magnets

Current in a coil



Electromagnet

## **Magnets and Electricity**

Electric current makes a magnetic field

Strength of field depends on current and number of windings





Iron bar has magnetic domains that are normally randomly oriented. They can be oriented by an external magnetic field.

This amplifies the total magnetic strength of the electromagnet

## **Magnets and Electricity**

Changing magnetic field induces an electric field.

Move permanent magnet in and out of coil to change magnetic field inside coil

Changing magnetic field inside coil induces voltage across the coil. This voltage (and current) can power an electrical load (light bulb)

### Lenz's Law

Lenz's Law: Current induced by a changing magnetic field always produces a magnetic field that opposes the change.

If I push the magnet into the coil, the coil will try to push back.

I need to do work on the magnet, this work gets transferred into electrical energy.

Use this to make a generator

### Generator



### **Transformer**



The ratio of the two voltages is the same as the ratio of the number of turns on the coils

Vin / Vout = Number of turns in primary

Number of turns in secondary



### **Fuses**







### **Circuit Breaker**



# **Ground Fault Circuit Interrupter (GFCI)**



Live and neutral wires pass through a coil. If there is no leakage current (no short), the two currents cancel out and no magnetic field is induced in the coil.

If the currents are not perfectly balanced (5mA difference), the coil will sense the difference and activate the solenoid, opening the switch and turning off the power. There are also mechanical pieces that make certain the power can not turn on again unless the reset button has been pushed.