Search...

Support Vector Machine (SVM) Algorithm

Last Updated: 27 Jan, 2025

Support Vector Machine (SVM) is a supervised machine learning algorithm used for classification and regression tasks. While it can handle regression problems, SVM is particularly well-suited for classification tasks.

SVM aims to find the optimal hyperplane in an N-dimensional space to separate data points into different classes. The algorithm maximizes the margin between the closest points of different classes.

Support Vector Machine (SVM) Terminology

- **Hyperplane**: A decision boundary separating different classes in feature space, represented by the equation wx + b = 0 in linear classification.
- **Support Vectors**: The closest data points to the hyperplane, crucial for determining the hyperplane and margin in SVM.
- Margin: The distance between the hyperplane and the support vectors. SVM aims to maximize this margin for better classification performance.
- **Kernel**: A function that maps data to a higher-dimensional space, enabling SVM to handle non-linearly separable data.
- **Hard Margin**: A maximum-margin hyperplane that perfectly separates the data without misclassifications.
- **Soft Margin**: Allows some misclassifications by introducing slack variables, balancing margin maximization and misclassification penalties when data is not perfectly separable.
- **C**: A regularization term balancing margin maximization and misclassification penalties. A higher C value enforces a stricter penalty for misclassifications.
- **Hinge Loss**: A loss function penalizing misclassified points or margin violations, combined with regularization in SVM.

We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our <u>Cookie Policy</u> & <u>Privacy Policy</u>

Got It!

How does Support Vector Machine Algorithm Work?

The key idea behind the SVM algorithm is to find the hyperplane that best separates two classes by maximizing the margin between them. This margin is the distance from the hyperplane to the nearest data points (support vectors) on each side.

Multiple hyperplanes separate the data from two classes

The best hyperplane, also known as the "hard margin," is the one that maximizes the distance between the hyperplane and the nearest data points from both classes. This ensures a clear separation between the classes. So, from the above figure, we choose L2 as hard margin.

Let's consider a scenario like shown below:

Here, we have one blue ball in the boundary of the red ball.

How does SVM classify the data?

It's simple! The blue ball in the boundary of red ones is an outlier of blue balls. The SVM algorithm has the characteristics to ignore the outlier and finds the best hyperplane that maximizes the margin. SVM is robust to outliers.

Hyperplane which is the most optimized one

A soft margin allows for some misclassifications or violations of the margin to improve generalization. The SVM optimizes the following equation to balance margin maximization and penalty minimization:

Objective Function =
$$(margin) + \lambda \sum penalty$$

The penalty used for violations is often **hinge loss**, which has the following behavior:

- If a data point is correctly classified and within the margin, there is no penalty (loss = 0).
- If a point is incorrectly classified or violates the margin, the hinge loss increases proportionally to the distance of the violation.

Till now, we were talking about linearly separable data(the group of blue balls and red balls are separable by a straight line/linear line).

When data is not linearly separable (i.e., it can't be divided by a straight line), SVM uses a technique called **kernels** to map the data into a higher-dimensional space where it becomes separable. This transformation helps SVM find a decision boundary even for non-linear data.

Original 1D dataset for classification

A **kernel** is a function that maps data points into a higher-dimensional space without explicitly computing the coordinates in that space. This allows SVM to work efficiently with non-linear data by implicitly performing the mapping.

For example, consider data points that are not linearly separable. By applying a kernel function, SVM transforms the data points into a higher-dimensional space where they become linearly separable.

- Linear Kernel: For linear separability.
- Polynomial Kernel: Maps data into a polynomial space.
- Radial Basis Function (RBF) Kernel: Transforms data into a space based on distances between data points.

Mapping 1D data to 2D to become able to separate the two classes

In this case, the new variable y is created as a function of distance from the origin.

Mathematical Computation: SVM

Consider a binary classification problem with two classes, labeled as +1 and -1. We have a training dataset consisting of input feature vectors X and their corresponding class labels Y.

The equation for the linear hyperplane can be written as:

$$w^T x + b = 0$$

Where:

- w is the normal vector to the hyperplane (the direction perpendicular to it).
- b is the offset or bias term, representing the distance of the hyperplane from the origin along the normal vector w.

Distance from a Data Point to the Hyperplane

The distance between a data point x_i and the decision boundary can be calculated as:

$$d_i = \frac{w^T x_i + b}{||w||}$$

where ||w|| represents the Euclidean norm of the weight vector w. Euclidean norm of the normal vector W

Linear SVM Classifier

Distance from a Data Point to the Hyperplane:

$$\hat{y} = \begin{cases} 1 & : \ w^T x + b \ge 0 \\ 0 & : \ w^T x + b < 0 \end{cases}$$

Where \hat{y} is the predicted label of a data point.

Optimization Problem for SVM

For a linearly separable dataset, the goal is to find the hyperplane that maximizes the margin between the two classes while ensuring that all data points are correctly classified. This leads to the following optimization problem:

$$\underset{w,b}{\mathsf{minimize}}\, _{2}^{1}\left\Vert w\right\Vert ^{2}$$

Subject to the constraint:

$$y_i(w^Tx_i + b) \ge 1 \ for \ i = 1, 2, 3, \cdots, m$$

Where:

- y_i is the class label (+1 or -1) for each training instance.
- x_i is the feature vector for the i-th training instance.
- *m* is the total number of training instances.

The condition $y_i(w^Tx_i + b) \ge 1$ ensures that each data point is correctly classified and lies outside the margin.

Soft Margin Linear SVM Classifier

In the presence of outliers or non-separable data, the SVM allows some misclassification by introducing slack variables ζ_i . The optimization problem is modified as:

$$\underset{w,b}{\mathsf{minimize}} \ _{2}^{1}\|w\|^{2} + C\sum_{i=1}^{m}\zeta_{i}$$

Subject to the constraints:

$$y_i(w^Tx_i+b) \geq 1-\zeta_i$$
 and $\zeta_i \geq 0$ for $i=1,2,\ldots,m$

Where:

- *C* is a regularization parameter that controls the trade-off between margin maximization and penalty for misclassifications.
- ζ_i are slack variables that represent the degree of violation of the margin by each data point.

Dual Problem for SVM

The dual problem involves maximizing the Lagrange multipliers associated with the support vectors. This transformation allows solving the SVM optimization using kernel functions for non-linear classification.

The dual objective function is given by:

maximize
$$\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_{i}\alpha_{j}t_{i}t_{j}K(x_{i},x_{j})-\sum_{i=1}^{m}\alpha_{i}$$

Where:

- α_i are the Lagrange multipliers associated with the *i*-th training sample.
- t_i is the class label for the iii-th training sample (+1+1+1 or -1-1-1).
- $K(x_i, x_j)$ is the kernel function that computes the similarity between data points x_i and x_j . The kernel allows SVM to handle non-linear classification problems by mapping data into a higher-dimensional space.

The dual formulation optimizes the Lagrange multipliers α_i , and the support vectors are those training samples where $\alpha_i > 0$.

SVM Decision Boundary

Once the dual problem is solved, the decision boundary is given by:

$$w = \sum_{i=1}^{m} \alpha_i t_i K(x_i, x) + b$$

Where w is the weight vector, x is the test data point, and b is the bias term.

Finally, the bias term b is determined by the support vectors, which satisfy:

$$t_i(w^Tx_i-b) = 1 \quad \Rightarrow \quad b = w^Tx_i-t_i$$

Where x_i is any support vector.

This completes the mathematical framework of the Support Vector Machine algorithm, which allows for both linear and non-linear classification using the dual problem and kernel trick.

Types of Support Vector Machine

Based on the nature of the decision boundary, Support Vector Machines (SVM) can be divided into two main parts:

• Linear SVM: Linear SVMs use a linear decision boundary to separate the

line (in 2D) or a hyperplane (in higher dimensions) can entirely divide the data points into their respective classes. A hyperplane that maximizes the margin between the classes is the decision boundary.

Non-Linear SVM: Non-Linear SVM can be used to classify data when it cannot be separated into two classes by a straight line (in the case of 2D).
 By using kernel functions, nonlinear SVMs can handle nonlinearly separable data. The original input data is transformed by these kernel functions into a higher-dimensional feature space, where the data points can be linearly separated. A linear SVM is used to locate a nonlinear decision boundary in this modified space.

Implementing SVM Algorithm in Python

Predict if cancer is Benign or malignant. Using historical data about patients diagnosed with cancer enables doctors to differentiate malignant cases and benign ones are given independent attributes.

- Load the breast cancer dataset from sklearn datasets
- Separate input features and target variables.
- Build and train the SVM classifiers using RBF kernel.
- Plot the scatter plot of the input features.

```
P
# Load the important packages
from sklearn.datasets import load breast cancer
import matplotlib.pyplot as plt
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.svm import SVC
# Load the datasets
cancer = load_breast_cancer()
X = cancer.data[:, :2]
y = cancer.target
#Build the model
svm = SVC(kernel="rbf", gamma=0.5, C=1.0)
# Trained the model
svm.fit(X, y)
# Plot Decision Boundary
DecisionBoundaryDisplay.from estimator(
```

Output:

Breast Cancer Classifications with SVM RBF kernel

Advantages of Support Vector Machine (SVM)

- 1. **High-Dimensional Performance**: SVM excels in high-dimensional spaces, making it suitable for **image classification** and **gene expression analysis**.
- 2. **Nonlinear Capability**: Utilizing **kernel functions** like **RBF** and **polynomial**, SVM effectively handles **nonlinear relationships**.
- 3. **Outlier Resilience**: The **soft margin** feature allows SVM to ignore outliers, enhancing robustness in **spam detection** and **anomaly detection**.
- 4. **Binary and Multiclass Support**: SVM is effective for both **binary classification** and **multiclass classification**, suitable for applications in **text classification**.
- 5. **Memory Efficiency**: SVM focuses on **support vectors**, making it memory efficient compared to other algorithms.

Disadvantages of Support Vector Machine (SVM)

- 2. Parameter Tuning Difficulty: Selecting the right kernel and adjusting parameters like C requires careful tuning, impacting SVM algorithms.
- 3. **Noise Sensitivity**: SVM struggles with noisy datasets and overlapping classes, limiting effectiveness in real-world scenarios.
- 4. **Limited Interpretability**: The complexity of the **hyperplane** in higher dimensions makes SVM less interpretable than other models.
- 5. **Feature Scaling Sensitivity**: Proper **feature scaling** is essential; otherwise, SVM models may perform poorly.

Support Vector Regression Intuition Comment More info Advertise with us

Visit Course

Next Article

Classifying data using Support Vector Machines(SVMs) in Python

Similar Reads

Machine Learning Algorithms

Machine learning algorithms are essentially sets of instructions that allow computers to learn from data, make predictions, and improve their performance over time without being explicitly programmed. Machine learning...

9 min read

Machine Learning (ML) Algorithms are the backbone of everything from Netflix recommendations to fraud detection in financial institutions. These algorithms form the core of intelligent systems, empowering...

Linear Model Regression

Linear Model Classification

Regularization

K-Nearest Neighbors (KNN)

Support Vector Machine (SVM) Algorithm

Support Vector Machine (SVM) is a supervised machine learning algorithm used for classification and regression tasks. While it can handle regression problems, SVM is particularly well-suited for classification...

10 min read

Support Vector Machines

Classifying data using Support Vector Machines (SVMs) in Python

Introduction to SVMs: In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification...

4 min read

Support Vector Regression (SVR) using Linear and Non-Linear Kernels in Scikit Learn

Support vector regression (SVR) is a type of support vector machine (SVM) that is used for regression tasks. It tries to find a function that best predicts the continuous output value for a given input value. SVR can use...

5 min read

Major Kernel Functions in Support Vector Machine (SVM)

In previous article we have discussed about SVM(Support Vector Machine) in Machine Learning. Now we are going to learn in detail about SVM Kernel and Different Kernel Functions and its examples. Types of SVM...

4 min read

ML | Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is an optimization algorithm in machine learning, particularly when dealing

-			۰		0						
n		-	п	C	П	\cap	n	Т	r	Δ	
┙	$\overline{}$	•	ш	2	н	u		- 1		┖	$\overline{}$

Ensemble Learning

Corporate & Communications Address:

A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)

Registered Address:

K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305

Advertise with us

Company

About Us

Legal

Privacy Policy

In Media

Contact Us

Advertise with us

GFG Corporate Solution

Placement Training Program

DSA

Data Structures
Algorithms

Languages

Python

Java

C++

PHP

GoLang

SQL

R Language

Android Tutorial

Tutorials Archive

Data Science & ML

Data Science With Python

Data Science For Beginner

Top 100 DSA Interview Problems

DSA Roadmap by Sandeep Jain

All Cheat Sheets

Pandas NumPy NLP Deep Learning

Web Technologies

HTML
CSS
JavaScript
TypeScript
ReactJS
NextJS
Bootstrap

Python Tutorial

Python Programming Examples
Python Projects
Python Tkinter
Python Web Scraping
OpenCV Tutorial
Python Interview Question
Django

Computer Science

Web Design

Operating Systems
Computer Network

Database Management System
Software Engineering
Digital Logic Design
Engineering Maths
Software Development
Software Testing

DevOps

Git
Linux
AWS
Docker
Kubernetes
Azure
GCP
DevOps Roadmap

System Design

High Level Design
Low Level Design
UML Diagrams
Interview Guide
Design Patterns
OOAD
System Design Bootcamp

Inteview Preparation

Competitive Programming
Top DS or Algo for CP
Company-Wise Recruitment Process
Company-Wise Preparation
Aptitude Preparation
Puzzles

School Subjects

Interview Questions

Mathematics
Physics
Chemistry
Biology
Social Science
English Grammar
Commerce
World GK

GeeksforGeeks Videos

DSA
Python
Java
C++
Web Development
Data Science
CS Subjects