CS 33

Architecture and the OS (2)

Creating Your Own Processes

Creating a Process: Before

parent process

Creating a Process: After

fork() // returns 0 child process

Quiz 1

The following program

- a) runs forever
- b) terminates quickly

```
int flag;
int main() {
  while (flag == 0) {
    if (fork() == 0) {
        // in child process
        flag = 1;
        exit(0); // causes process to terminate
    }
}
```

Process IDs

```
int main() {
                              parent prints:
 pid t pid;
                                 27355, 27342, 27342
 pid t ParentPid = getpid();
                               child prints:
 if ((pid = fork()) == 0) {
                                 0, 27342, 27355
     printf("%d, %d, %d\n",
            pid, ParentPid, getpid());
      return 0;
 printf("%d, %d, %d\n",
            pid, ParentPid, getpid());
 return 0;
```

Putting Programs into Processes

```
/* prog */
                                        int main() {
if (fork() == 0){
                          fork
  execv("prog", argv);
```

Exec

- Family of related system functions
 - -we concentrate on one:

Loading a New Image

A Random Program ...

```
int main(int argc, char *argv[]) {
if (argc != 2) {
    fprintf(stderr, "Usage: random count\n");
    exit(1);
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
   printf("%d\n", rand());
 return 0;
```

Passing It Arguments

From the shell

```
$ random 12
```

From a C program

```
if (fork() == 0) {
   char *argv[] = {"random", "12", (void *)0};
   execv("./random", argv);
}
```

Quiz 2

```
if (fork() == 0) {
   char *argv[] = {"random", "12", (void *)0};
   execv("./random", argv);
   printf("random done\n");
}
```

The *printf* statement will be executed

- a) only if execv fails
- b) only if execv succeeds
- c) always

Receiving Arguments

```
int main(int argc, char *argv[]) {
  if (argc != 2) {
    fprintf(stderr, "Usage: random count\n");
    exit(1);
  int stop = atoi(argv[1]);
  for (int i = 0; i < stop; i++)
    printf("%d\n", rand());
  return 0;
                                                 \0
                                   d
                         a
                              n
                                            m
                         2
                              \0
    argv
```

Not So Fast ...

How does the shell invoke your program?

```
if (fork() == 0) {
   char *argv = {"random", "12", (void *)0};
   execv("./random", argv);
}
/* what does the shell do here??? */
```

Wait

```
#include <unistd.h>
#include <sys/wait.h>
 pid t pid;
  int status;
  if ((pid = fork()) == 0) {
    char *argv[] = {"random", "12", (void *)0};
    execv("./random", argv);
 waitpid(pid, &status, 0);
```

Exit

```
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
 pid t pid;
  int status;
  if ((pid = fork()) == 0) {
    if (do work() == 1)
      exit(0); /* success! */
                                    exit code
    else
      exit(1); /* failure ... *
 waitpid(pid, &status, 0);
  /* low-order byte of status contains exit code.
     WEXITSTATUS (status) extracts it */
```

Shell: To Wait or Not To Wait ...

```
$ who
   if ((pid = fork()) == 0) {
      char *argv[] = {"who", 0};
      execv("who", argv);
   waitpid(pid, &status, 0);
   • • •
$ who &
   if ((pid = fork()) == 0) {
      char *argv[] = {"who", 0};
      execv("who", argv);
```

System Calls

- Sole direct interface between user and kernel
- Implemented as library function that execute trap instructions to enter kernel
- Errors indicated by returns of –1; error code is in global variable errno

```
if (write(fd, buffer, bufsize) == -1) {
    // error!
    printf("error %d\n", errno);
    // see perror
}
```

System Calls

Multiple Processes

CS 33

Shells and Files

Shells

- Command and scripting languages for Unix
- First shell: Thompson shell
 - sh, developed by Ken Thompson
 - released in 1971
- Bourne shell
 - also sh, developed by Steve Bourne
 - released in 1977
- C shell
 - csh, developed by Bill Joy
 - released in 1978
 - tcsh, improved version by Ken Greer

More Shells

Bourne-Again Shell

- bash, developed by Brian Fox
- released in 1989
- found to have a serious security-related bug in 2014
 - » shellshock

Almquist Shell

- ash, developed by Kenneth Almquist
- released in 1989
- similar to bash
- dash (debian ash) used for scripts in Debian Linux
 - » faster than bash
 - » less susceptible to shellshock vulnerability

Roadmap

- We explore the file abstraction
 - what are files
 - how do you use them
 - how does the OS represent them
- We explore the shell
 - how does it launch programs
 - how does it connect programs with files
 - how does it control running programs

shell 1

shell 2

The File Abstraction

- A file is a simple array of bytes
- A file is made larger by writing beyond its current end
- Files are named by paths in a naming tree
- System calls on files are synchronous
- Files are permanent

Naming

- (almost) everything has a path name
 - files
 - directories
 - devices (known as special files)
 - » keyboards
 - » displays
 - » disks
 - » etc.

I/O System Calls

- int file_descriptor = open(pathname, mode [, permissions])
- int close (file descriptor)
- ssize_t count = read(file_descriptor, buffer address, buffer size)
- ssize_t count = write(file_descriptor, buffer address, buffer size)
- off_t position lseek(file_descriptor, offset, whence)

Standard File Descriptors

```
int main() {
  char buf[BUFSIZE];
  int n;
  const char *note = "Write failed\n";

while ((n = read(0, buf, sizeof(buf))) > 0)
  if (write(1, buf, n) != n) {
      write(2, note, strlen(note));
      exit(1);
  }
  return(0);
}
```

Standard I/O Library

Standard I/O

Buffered Output

```
printf("xy");
printf("zz");
printf("y\n");
```


x y z z y

display

Unbuffered Output

```
fprintf(stderr, "xy");
fprintf(stderr, "zz");
fprintf(stderr, "y\n");
```

xyzzy

display

A Program

```
int main(int argc, char *argv[]) {
 if (argc != 2) {
    fprintf(stderr, "Usage: echon reps\n");
   exit(1);
 int reps = atoi(argv[1]);
 if (reps > 2) {
    fprintf(stderr, "reps too large, reduced to 2\n");
   reps = 2;
  char buf[256];
 while (fgets(buf, 256, stdin) != NULL)
    for (int i=0; i<reps; i++)
      fputs (buf, stdout);
 return(0);
```

From the Shell ...

- \$ echon 1
 - stdout (fd 1) and stderr (fd 2) go to the display
 - stdin (fd 0) comes from the keyboard
- \$ echon 1 > Output
 - stdout goes to the file "Output" in the current directory
 - stderr goes to the display
 - stdin comes from the keyboard
- \$ echon 1 < Input
 - stdin comes from the file "Input" in the current directory

Redirecting Stdout in C

```
if ((pid = fork()) == 0) {
   /* set up file descriptor 1 in the child process */
   close(1);
   if (open("/home/twd/Output", O WRONLY) == -1) {
      perror("/home/twd/Output");
     exit(1);
   char *argv[] = {"echon", "2", NULL};
   execv("/home/twd/bin/echon", argv);
   exit(1);
/* parent continues here */
waitpid(pid, 0, 0); // wait for child to terminate
```

File-Descriptor Table

File Location

File Location

File Location

Allocation of File Descriptors

 Whenever a process requests a new file descriptor, the lowest-numbered file descriptor not already associated with an open file is selected; thus

```
#include <fcntl.h>
#include <unistd.h>

close(0);
fd = open("file", O_RDONLY);
```

 will always associate file with file descriptor 0 (assuming that open succeeds)

Redirecting Output ... Twice

```
if (fork() == 0) {
   /* set up file descriptors 1 and 2 in the child process */
   close(1);
   close(2);
   if (open("/home/twd/Output", O WRONLY) == -1) {
      exit(1);
   if (open("/home/twd/Output", O WRONLY) == -1) {
      exit(1);
   char *arqv[] = {"echon", 2, NULL};
   execv("/home/twd/bin/echon", argv);
   exit(1);
/* parent continues here */
```

From the Shell ...

- \$ echon 1 >Output 2>Output
 - both stdout and stderr go to Output file

Redirected Output

Redirected Output After Write

Quiz 3

- Suppose we run
 - \$ echon 3 >Output 2>Output
- The input line is

X

- What is the final content of Output?
 - a) reps too large, reduced to 2\nX\nX\n
 - b) X\nX\nreps too large, reduced to 2\n
 - c) X\nX\n too large, reduced to 2\n

Sharing Context Information

```
if (fork() == 0) {
   /* set up file descriptors 1 and 2 in the child process */
   close(1);
   close(2);
   if (open("/home/twd/Output", O WRONLY) == -1) {
      exit(1);
   dup(1); /* set up file descriptor 2 as a duplicate of 1 */
   char *argv[] = {"echon", 2};
   execv("/home/twd/bin/echon", argv);
  exit(1);
/* parent continues here */
```

Redirected Output After Dup

From the Shell ...

- \$ echon 3 > Output 2 > & 1
 - stdout goes to Output file, stderr is the dup of fd 1
 - with input "X\n" it now produces in Output:

reps too large, reduced to 2\nX\nX\n

Fork and File Descriptors

```
int logfile = open("log", O WRONLY);
if (fork() == 0) {
   /* child process computes something, then does: */
   write(logfile, LogEntry, strlen(LogEntry));
  exit(0);
/* parent process computes something, then does: */
write(logfile, LogEntry, strlen(LogEntry));
```

File Descriptors After Fork

Quiz 4

```
int main() {
   if (fork() == 0) {
      fprintf(stderr, "Child");
      exit(0);
   }
   fprintf(stderr, "Parent");
}
```

Suppose the program is run as:

```
$ prog >file 2>&1
```

What is the final content of file? (Assume writes are "atomic".)

- a) either "Childt" or "Parent"
- b) either "Child" or "Parent"
- c) either "ChildParent" or "ParentChild"