Networks and Random Processes

Problem sheet 2

Sheet counts 60/100 homework marks, [x] indicates weight of the question. Please put solutions in my pigeon hole or give them to me by **Friday**, **28.10.2016**, **2pm**.

2.1 Kingman's coalescent

[11]

Consider a system of L well mixed, coalescing particles. Each of the $\binom{L}{2}$ pairs of particles coalesces independently with rate 1. This can be interpreted as generating an ancestral tree of L individuals in a population model, tracing back to a single common ancestor.

- (a) Let N_t be the number of particles at time t with $N_0 = L$. Give the transition rates of the process $(N_t : t \ge 0)$ on the state space $\{1, \ldots, L\}$, write down the generator $(\mathcal{L}f)(n)$ for $n \in \{1, \ldots, L\}$ and the master equation.
 - Is the process ergodic? Does it have absorbing states? Give all stationary distributions.
- (b) Show that the mean time to absorption is given by $\mathbb{E}(T) = 2(1 \frac{1}{L})$.
- (c) Write the generator of the rescaled process N_t/L and Taylor expand up to second order. Show that the slowed down, rescaled process $X_t^L:=\frac{1}{L}N_{t/L}\to X_t$ converges to the process $(X_t:t\geq 0)$ with generator

$$ar{\mathcal{L}}f(x) = -rac{x^2}{2}\,f'(x)$$
 and state space $\ (0,1]$ with $\ X_0=1$.

Convince yourself that this process is 'deterministic', i.e. $X_t = \mathbb{E}(X_t)$ for all $t \geq 0$, and compute X_t explicitly. How is your result compatible with the result from (b)?

(d) Generate sample paths of the process X_t^L for L=10,100,1000 and compare to the solution X_t from (c) in a single plot.

2.2 Geometric Brownian motion

[11]

Let $(X_t : t \ge 0)$ be a Brownian motion with constant drift on \mathbb{R} with generator

$$(\mathcal{L}f)(x) = \mu f'(x) + \frac{1}{2}\sigma^2 f''(x), \quad \mu \in \mathbb{R}, \sigma^2 > 0,$$

with initial condition $X_0 = 0$. Geometric Brownian motion is defined as

$$(Y_t: t > 0)$$
 with $Y_t = e^{X_t}$.

- (a) Show that $(Y_t: t \ge 0)$ is a diffusion process on $[0, \infty)$ and compute its generator.
- (b) Use the evolution equation of expectation values of test functions $f: \mathbb{R} \to \mathbb{R}$

$$\frac{d}{dt}\mathbb{E}\big[f(Y_t)\big] = \mathbb{E}\big[\mathcal{L}f(Y_t)\big] ,$$

to derive ODEs for the mean $m(t) := \mathbb{E}[Y_t]$ and the variance $v(t) := \mathbb{E}[Y_t^2] - m(t)^2$. Is $(Y_t : t \ge 0)$ a Gaussian process?

- (c) Under which conditions on μ and σ^2 is $(Y_t: t \ge 0)$ a martingale? Justify your answer. Under which conditions on μ and σ^2 does the process have a stationary distribution, and what is it? Does it converge to the stationary distribution with $Y_0 = 1$?
- (d) For $\sigma^2=1$ choose $\mu=1/2$ and two other values $\mu<1/2$ and $\mu>1/2$. Simulate and plot a sample path of the process with $Y_0=1$ up to time t=10, by numerically integrating the corresponding SDE with time steps $\Delta t=0.1$ and 0.01.

2.3 Moran model and Wright-Fisher diffusion

[14]

Consider a fixed population of L individuals. At time t=0 each individuum i has a different type $X_0(i)$, for simplicity we simply put $X_0(i)=i$. In continuous time, each individuum independently, with rate 1, imposes its type on another randomly chosen individuum (or equivalently, kills it and puts its own offspring in its place).

- (a) Give the state space of the Markov chain $(X_t : t \ge 0)$. Is it irreducible? What are the stationary distributions?
- (b) Let $N_t = \sum_{i=1}^L \delta_{X_t(i),k}$ be the number of individuals of a given type $k \in \{1,\ldots,L\}$ at time t, with $N_0 = 1$. Is $(N_t : t \ge 0)$ a Markov process? Give the state space and the generator. Is the process irreducible? What are the stationary distributions? What is the limiting distribution as $t \to \infty$ for the initial condition $N_0 = 1$?
- (c) From now on consider general initial conditions $N_0 = n \in \{0, \dots L\}$. Show that N_t is a martingale. Compute $m_2(t) := \mathbb{E}[N_t^2]$. What happens in the limit $t \to \infty$? Use this to compute the absorption probabilities as a function of the initial condition n, and to deduce how the absorption time scales with the system size L.
- (d) Consider the rescaled process $M_t^L := \frac{1}{L} N_{tL^{\alpha}}$ on the state space [0,1]. For which value of $\alpha>0$ does M_t^L have a (non-trivial) scaling limit $(M_t:t\geq 0)$? Compute the generator of this process, write down the Fokker-Planck equation and show that it is a martingale. (The scaling limit is called **Wright-Fisher diffusion**).
- (e) For the limit process $(M_t : t \ge 0)$ in (d) compute $m(t) := \mathbb{E}[M_t]$ and $v(t) := \mathbb{E}[M_t^2] m(t)^2$. Is it a Gaussian process?
- (f) Simulate the **original process** $(X_t : t \ge 0)$ and plot N_t for each type as a function of time in a single plot. Reasonable parameter values are to be specified in class.