

(11) Publication number:

09232685 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number:

08039646

(51) Intl. CI.:

H01S 3/18 H01L 33/00

(22) Application date: 27.02.96

(30) Priority:

(84) Designated contracting states:

(43) Date of application

05.09.97

publication:

(71)Applicant:

TOSHIBA CORP

(72) Inventor: OBA YASUO

Representative:

(54) SEMICONDUCTOR LIGHT EMITTING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a GaN LD with low noise and a stable lateral mode capable of a long-life continuous operation by forming a contact layer made of BP or GaN or SiC between a double heterostructure part and an electrode surface feeding a heterojunction strutured part with an operating current.

SOLUTION: A buffer layer 3 is formed on a substrate 2 and after annealing step, a contact layer 4 made of Si doped n-GaN is formed. Next, the first clad layer 5, a waveguide layer 6, a light emitting layer 7, the second clad layer 8, a saturation absorbable layer 9, the third clad layer 10 are formed furthermore, the second waveguide layer 11, the fourth clad layer 12 and an Mg doped intermediate contact layer 13 are successively formed. Next, the other contact layer 14 made of Mg doped p-BP is formed on the intermediate contact layer 13 between the projecting striped waveguide layer 11 and the fourth clad layer 12. The thickness of this contact layer 14 is equivalent to the distance from the surface of the projecting stripe to the bottom of a current feeding electrode 15 on the topmost part.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-232685

(43)公開日 平成9年(1997)9月5日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

H01S 3/18 H01L 33/00 H01S 3/18

H01L 33/00

C

審査請求 未請求 請求項の数7 OL (全 10 頁)

(21)出願番号

特願平8-39646

(22)出顧日

平成8年(1996)2月27日

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 大場 康夫

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(74)代理人 弁理士 鈴江 武彦

(54) 【発明の名称】 半導体発光装置

(57)【要約】

【課題】低雑音で安定な横モードを備え、かつ長寿命の 連続動作が可能な、青色から近紫外の波長領域のG a N 系のLD、及び同じ波長領域のG a N系の高輝度、長寿 命なLEDを実現すること。

【解決手段】高濃度の不純物添加により比抵抗を大幅に 低減したBP、GaN又はSiCをコンタクト層として 用いること、またこれらの材料を電流阻止層として用い ることにより、電流阻止機能と同時に横モード制御機能 を有する低雑音で高密度な光読みだしが可能なLD、及 び高輝度青色LEDを得ることができる。

【特許請求の範囲】

【請求項1】 Al_x GaIn_{1-x-y} N (0≤x+y≤ 1、0 ≤ x 、y ≤ 1)から構成された、第1導電形の第 1閉じ込め層と、発光層と、第2導電形の第2閉じ込め 層から成るダブルヘテロ接合構造部とを有し、

このダブルヘテロ構造部と前記ダブルヘテロ接合構造部 に動作電流を供給する電極面との間に、BP又はGaN 又はSiCより成るコンタクト層が形成されたことを特 徴とする半導体発光装置。

【請求項2】 第1導電形の第1閉じ込め層と、発光層 と、ストライプ状の凸部又は凹部を有する第2導電形の 第2閉じ込め層から成るダブルヘテロ接合構造部と、 前記第2導電形の第2閉じ込め層の、前記凸部の頂上面 又は凹部の底面をなす動作電流供給面を除いて形成され た電流阻止層とを具備し、

前記第2導電形の第2閉じ込め層の前記凸部の頂上面又 は凹部の底面と、前記電流阻止層の上に第2導電形のコ ンタクト層が形成された半導体発光装置において、

前記第1導電形の第1閉じ込め層、発光層、及び第2導 電形の第2閉じ込め層が、Alx GaIn_{1-x-v} N(0 20 $\leq x + y \leq 1$ 、 $0 \leq x$ 、 $y \leq 1$) から構成され、前記第 2導電形のコンタクト層がBP又はGaN又はSiCか ら成ることを特徴とする半導体発光装置。

【請求項3】 前記電流阻止層はBP、又はSiC、又 は高濃度のMn添加により発光波長における光吸収が増 大したGaN、又は高濃度のZnとSiの添加により発 光波長における光吸収が増大したGaN、又は高濃度の 2族不純物の添加により発光波長における光吸収が増大 したGaNであることを特徴とする請求項2に記載した 半導体発光装置。

【請求項4】 前記第2導電形の第2閉じ込め層の前記 凸部の頂上面又は凹部の底面をなす動作電流供給面上 に、第2導電形のGaNから成る中間コンタクト層を設 けた後に、前記電流阻止層と前記中間コンタクト層上 に、前記第2導電形のコンタクト層を形成することを特 徴とする請求項2又は請求項3に記載の半導体発光装 置。

【請求項5】 前記第2導電形の第2閉じ込め層は、第 2 導電形の可飽和吸収層を含むものであることを特徴と する請求項2乃至請求項4のいずれかに記載した半導体 40 発光装置。

【請求項6】 前記閉じ込め層の少なくとも一方はGa NとAl_x Ga_{1-x}N (0≤x≤1) の2層構造から成 ることを特徴とする請求項1乃至5のいずれかに記載し た半導体発光装置。

前記可飽和吸収層はGal-x Inx N 【請求項7】 (0≤x≤1)であることを特徴とする請求項5記載の 半導体発光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は多層の化合物半導体 より構成され、青色から近紫外の波長領域において、低 雑音でかつ長時間の連続動作が可能なレーザーダイオー ド、及び高輝度で長寿命な発光ダイオード等の半導体発 光装置に関するものである。

[0002]

【従来の技術】窒素を含むIII-V族化合物半導体で あるGaN及びGaN系混晶は、禁制帯幅が3.4eV 以上と大きく、また直接遷移形であるため短波長の半導 体レーザーダイオード(以下LDと略称)の材料として 期待されている。発光ダイオード(以下LEDと略称) としても、GaNを用いた青色LEDの開発が従来から 行われている。しかし、GaN及びGaN系混晶を用い たLDにおいては、パルス動作が報告されているのみで あり連続動作は実現していない。短波長のLDを高密度 記録用の光源として使用するためには、連続動作が可能 であるばかりでなく横モードが単峰に制御され、かつ低 雑音でなくてはならないが、まだこれらの事項について は、何等の検討もなされていない。またGaNを用いた 青色LEDについても、高輝度で長寿命のものは得られ

【0003】図9に発光層と第1、第2のとじ込め層を 具備する従来の代表的な可視領域LDの構造を示す。G a InP (以下特に必要な場合のほかAx B_{1-x} C、0-≤x≤1の化合物をABCと略称する。4元系も同じ) から成る発光層37の下部にn-AlGaAsから成る 第1のとじ込め層36が設けられ、前記発光層37の上 部に凸状に加工されたp-AlGaInPから成る第2 のとじ込め層38が形成される。凸状に加工された前記 第2のとじ込め層38の両側面に接して、基板34と同 じ格子定数を有するn-GaAs又はn-AlGaAs から成る電流阻止層39を設ける。凸状に加工された第 2のとじ込め層38の頂上面にp⁺ −GaInPから成 る中間コンタクト層40が形成され、前記中間コンタク ト層40及び前記電流阻止層39の上部と電流供給用電 極42との間にp-GaAsから成るコンタクト層41 が形成される。なお35はn-GaAs基板34上への 多層成長を容易にするためのn-G a A s バッファ層、 43は前記基板に設けた電流電極である。

【0004】図9に示す従来の可視領域のLDにおいて は、横モード制御は発光層37からの発光エネルギーが 前記電流阻止層39の禁制帯幅よりも大きいことによる 光吸収効果を利用して行われる。またこの構造では、最 後に成長するコンタクト層41として、成長基板34及 び前記電流阻止層39と同じ材料が用いられているため に装置全体として格子整合がとり易く、凸状にエッチン グ加工された第2の光とじ込め層38の両側面に接して 再成長により形成される前記電流阻止層39も高品質と することができる。しかし上記のようなLDの構成では

50 横モード制御が以下に述べるように光吸収により行われ

る。図9のLDの構成は、格子整合の立場からは優れて いるが、光吸収の効果が大きいために、レーザ発光のし きい値電流が大きくなる欠点がある。

【0005】上記の従来例の説明に用いたように、閉じ 込め層とは、キャリヤを発光層内に集中し、またLD発 光が高い効率で安定に生ずるよう光の導波モードを前記 発光層と整合させるため、前記発光層の上下両面に構成 される多層構造をいう。電流阻止層とは、前記発光層と これに電流を供給する上部電極との間に、一部の領域を 除いて電流を阻止することができる構造を構成し、これ 10 を用いて前記発光層の面内に、LDの横モード制御に適 した電流の集中を生じさせることをいう。この時前記電 流阻止層は、同時にLD発光の横モードを制御するよう に構成することができる。

【0006】とくに発光層へのキャリヤ集中のみ着目し たヘテロ障壁によるキャリヤ閉じ込め層、ヘテロ界面の 屈折率の差を用いた光閉じ込め層、導波層、クラッド層 等の通常の技術用語は必要に応じて随時使用する。

[0007]

【発明が解決しようとする課題】本発明は低雑音で安定 20 な横モードを備え、かつ長寿命の連続動作が可能な、青 色から近紫外の波長領域のGaN系のLD、及び同様な 波長領域のGaN系の高輝度、長寿命なLEDを実現す ることを目的としている。

【0008】図9を用いて説明したように、従来の代表 的な可視領域LDの構造においては、電流阻止層39の 禁制帯幅がGaInP発光層37の発光エネルギーより も小さいために、電流阻止層39の屈折率がAlGaI nP閉じ込め層38の屈折率よりも大きく、屈折率差に 基づく電流阻止層39の横モード制御機能を期待するこ とはできない。

【0009】発明者の研究によれば、このとき横モード 制御に対して有効となるのは、屈折率の虚数部に相当す る光吸収係数であることが判明した。すなわち従来の代 表的な可視領域LDの構造において、横モード制御は、 n-GaAsから成る電流阻止層39の大きな光吸収に 基づくものであることが明らかとなった。

【0010】従来の可視領域のLDに比べてはるかに発 光波長の短い、青色から近紫外の波長領域のG a N系の LD、LEDでは、LD動作を行うために約3倍から4 40 倍の励起キャリヤ密度が必要である。このため、LDの しきい値電流を大きくする光吸収の効果を小さくしなけ ればならない。GaN系のLDでは、基板に相当する材 料がGaNとなるために、GaNよりも禁制帯幅の小さ いGaInNを発光層とし、電流阻止層としてGaNを 用いれば電流阻止層による光吸収が小さく、かつ格子整 合のとれた構成となるが、一方電流阻止層の光吸収が小 さいため横モードの不安定や雑音の増加が予想される。 このように、従来の可視領域LD構成の考え方を単に延

得ることができない。

【0011】上記のようにGaN及びGaN系混晶を用 いたLD、LEDの装置構成として、サファイヤ、Si C等の基板上にGaN系混晶材料から成る発光層、光及 びキャリヤ閉じ込めのための閉じ込め層から成る多層構 造を形成したものが、候補として考えられる。しかし前 記多層構造と、これを成長するサファイヤ、SiC等の 成長基板との間の格子不整合、あるいは多層構造を構成 する化合物半導体薄層間の格子不整合が存在するため に、前記多層構造中に高密度の転位が発生し、発光強度 の低下や寿命の低下を生ずる。

【0012】室温で連続動作するLDを実現するには、 動作電流を低減するために発光層の厚さを0.001~ 0. 01 μ m程度にしなければならない。またキャリヤ と光の十分な閉じ込め効果を発揮させるためには、閉じ 込め層の膜厚が十分に厚いことと、活性層と閉じ込め層 の禁制帯幅の差が大きく、かつ発光層と閉じ込め層の間 のヘテロ接合介面が平坦であることが要求される。

【0013】発明者の研究によれば、Alx Gal-x N (0≤x≤1)を用いて閉じ込め層を形成するには、A 1組成xとして最低0.1、望ましくは0.15から 0. 3の値を有することが必要であり、また発光層との 格子整合の関係からは0.15以下とすることが望まし い。しかし、xの値を0.15以下とすれば、光の閉じ 込め効果が低下するために、動作電流の増加が避けられ ない。前記光閉じ込め効果の低下を回復するためには、 発光層と光閉じ込め層との間に両者の中間の禁制帯幅を 有する光導波層を挿入することが有効な方法であるが、 このとき前記発光層へのキャリヤ閉じ込め効果が低下す るため、その対策として前記発光層を、光導波層を構成 するAlGaNより禁制帯幅の小さいGaInNにしな ければならない。

【0014】一方閉じ込め層の膜厚は、青色から近紫外 の波長領域では少なくともO. 2 μm、望ましくはO. $3 \mu m h 60$. $5 \mu m b l b t h l t t t b b l$. Al組成の高いAlGaNは、とくにp形の比抵抗が高 く、このため閉じ込め層の膜厚が大であれば、発光装置 の動作電圧が大となり、実用的な装置を得ることができ ない。

【0015】従って本発明の解決しようとする課題は、 GaN系青色LDにおいて、しきい値電流低減につなが る発光層の厚さ方向の光とじ込めを屈折率差で行い、低 雑音化と髙密度記録につながる横モード制御を、電流阻 止層に不純物を添加して適度な光吸収係数を生じさせる ことにより達成することにある。すなわちGaInN発 光層を中心として、これらの諸機能を具備し、かつ格子 整合のとれた化合物半導体材料の最適な組み合わせを見 い出だすことにある。高輝度LEDは、LDと同様な構 造のものを、しきい値電流以下で動作することにより達 長するのみでは、実用的なGaN系背色LD、LEDを 50 成されるので、技術的課題は基本的にはLDと同様であ

る。

[0016]

【課題を解決するための手段】前記の課題を解決する手段は次の通りである。高濃度の不純物添加により比抵抗を大幅に低減したGaN又はBPをコンタクト層として用いることにより、GaN系LD、LEDの動作電圧を低減することができる。また従来の可視LDのように、電流阻止層と発光層との禁制帯幅の差に基づく電流阻止層の極めて大きな光吸収により、横モードを制御するのではなく、高濃度に不純物を添加する方法で電流阻止層の光吸収を適度に増加することにより、電流阻止層に横モード制御機能を付与し、GaN系青色LDの低雑音化と高密度な光読取りを可能とすることができる。

【0017】光及びキャリヤを閉じ込めるための閉じ込め層としては、GaInN発光層と格子整合するGaN、AlGaNを用いることにより、屈折率の差に基づく光とじ込めとヘテロ界面によるキャリヤのとじ込めを行う。また光閉じ込め層にGaInNから成る可飽和吸収層を含ませることにより、自己間欠動作する低雑音高密度光読取り用LDを得ることができる。

[0018]

【発明の実施の形態】以下図面を参照して本発明の第1の実施の形態を説明する。図1に本発明の第1の実施の形態の半導体発光装置である青色LDの断面構造を示す。ドナー濃度1-5×10¹⁸/cm³、望ましくは3-5×10¹⁸/cm³の面指数(0001)を有するn-SiC基板2のSi面上に、Siドープn-AlNから成る電子濃度1-5×10¹⁹/cm³、厚さ1-100nmのバッファ層3を1350℃の温度で形成する。次に格子不整合による歪みを除去するために、NH3と水素の混合気流中で1400℃で30分アニールした後、Siドープn-GaNから成るドナー濃度1-5×10¹⁸/cm³、厚さ1-5μmの第1コンタクト層4を成長する。

【0019】引き続き装置の主要部を構成するSiドー プn-Alo.2 Gao.8 Nから成るドナー濃度5×10 $^{17}/cm^3 - 3 \times 10^{18}/cm^3$ 、厚さ0. 2-0. 5 μmの第1クラッド層5と、Siドープn-GaNから 成るドナー濃度 5×10¹⁷/cm³-1×10¹⁸/cm 3 、厚さ0. 1-0. 2 µmの第1導波層6と、意識的 には不純物を添加しない厚さ0.001-0.05 µm のGao.85 Ino.15 Nから成る発光層7と、Mgドープ p-Alo.2 Gao.8 Nから成るアクセプタ濃度1-5 $\times 10^{18}/cm^3$ 、厚さ0.01-0.05 μ mの第2 クラッド 個8と、Mgドープp-Gao.8 Ino.2 Nか ら成るアクセプタ濃度1-5×10¹⁸/cm³、厚さ 0. 001-0. 05μmの可飽和吸収層9と、Mgド ープp-Alo.2 Gao.8 Nから成るアクセプタ濃度1 $-5 \times 10^{18} / \text{cm}^3$ 、厚さ0. 01-0. 05 μ mの 第3クラッド層10を形成する。

. . .

【0020】次に凸形のストライプ状に加工したMgド ープp-GaNから成るアクセプタ濃度1-5×10¹⁸ /cm³、厚さ0.01-0.1μmの第2導波層11 と、Mgドープp-Alo2 Gao8 Nから成るアクセ プタ濃度 $1-3\times10^{19}/cm^3$ 、厚さ0.2-0.5μmの第4クラッド層12と、Mgドープp-GaNか ら成るアクセプタ濃度 $2-9\times10^{19}/cm^3$ 、厚さ 0. 01-0. 1 μ mの中間コンタクト層13を順に形 成する。凸形のストライプ状に加工した前記第2導波層 11と第4クラッド層12と中間コンタクト層13の上 にはMgドープp-BPから成るアクセプタ濃度1-9 $\times 10^{19}/cm^3$ 、厚さ0. $55\mu m$ のコンタクト層1 4を形成する。ここでコンタクト層の厚さとは、凸形ス トライプの頂上面から、PaZn/Auから成る最上部 の電流供給用電極15の下面までの距離である。なおT i/Pt/Auから成る電流供給用の対向電極1がn-SiC基板2に設けられている。

【0021】この構造では、電流狭窄はBPとAlGaN混晶及びGaNとの間の高いへテロ障壁と、高濃度M20gドープ中間コンタクト領域での実効障壁高さの低下により達成される。AlGaN混晶及びGaNでは、正孔の有効質量が極めて大きいので、わずかな障壁高さで正孔電流を阻止することができる。また第4クラッド層12と中間コンタクト層13の間の障壁を実質的に消失させるには、両者の間に構成原子の相互拡散が誘発されるよう、Mgのドーピング濃度を1×10¹⁹/cm³以上とすることが望ましい。

【0022】第2クラッド層8は発光層7からの電子の 漏れを抑制するものであり、第2導波層11は第1導波 30 層6とほぼ同程度の厚さにすることにより、導波される 光強度の最大値を発光層7の位置に制御することによ り、動作電流を低減する効果がある。この効果は0.0 1μm以下の極薄発光層の場合に重要である。

【0023】またp-A1GaN第3クラッド層10は、凸形のストライプをエッチング加工をする時、エッチング自己停止層としても機能する。すなわち、塩素イオンを用いた気相エッチングによりp-GaN第2光導波層11の途中まで除去した後、p-BPコンタクト層14を有機金属気相成長法で成長する直前に、水素中で約1000℃の熱処理をすることにより、残存するGaN層のみを選択的に除去することができる。この方法は前記エッチング後、p-BPコンタクト層14を再成長する時の表面清浄化工程としても有効であり、p-BPコンタクト層14と第3クラッド層10の表面及び2導波層11、第4クラッド層12の側面との間のヘテロ接合界面に良好な障壁を形成することにより、優れた電流阻止機能を発揮することができる。

【0024】p-GaInN可飽和吸収層9は、本実施の形態のLD装置を光記録の読取り光源として用いる 50 時、繰り返し周期数GHz以上の自己間欠動作を行うこ とにより戻り光による雑音を防止するため挿入されたものである。従って、本第1の実施の形態の発光装置を、 高輝度青色LEDとして用いるときには、前記可飽和吸収層9は省略することができる。

【0025】BPは間接遷移形半導体であるため比較的 光吸収係数が小さい。また直接遷移に対応する禁制帯幅 がGaNより大きいために屈折率がGaNより小さく、屈折率による光の導波効果と閉じ込め効果が期待できる。このため、AlGaN、GaN層を薄くすることができる利点がある。またBPはAlGaN、GaNとのヘテロ接合界面で電流狭窄を行うと同時に、前記不純物 添加により生じた $10^2 \sim 10^3$ / cmの適度な光吸収 損失により、LDのしきい値電流を増加することなく安定した基本横モードの制御を行うことができる。従って低雑音で波面歪み等の少ない高密度の光ディスク用読取り光源に適した良好な特性が実現される。

【0027】なおA1Nバッファ層3の成長に際しては、他の窒化化合物層の成長時に比べて、 NH_3 流量を1/10から1/100に減少した。これは成長初期にSiC基板2の表面が窒化し、高抵抗の膜を形成するのを防止するためである。A1Nバッファ層の膜厚は $0.001\sim0.1$ μ mとするのが適切である。これ以下ではバッファ層が完全な連続膜にならないため、その上に成長する窒化化合物層の結晶品質が低下する。また膜厚が厚すぎる場合にはひび割れが発生し、電気抵抗が増加する。

【0028】図2は本発明の第1の実施の形態の変形例を示す青色LDの断面図である。本変形例では凸形に加工されたp-GaN第2導波層11、p-AlGaN第4クラッド層12、p+GaN中間コンタクト層13の両側の面上にn-BP電流阻止層16を設け、前記13と16の上にp-BPコンタクト層17を形成したものである。この時電流狭窄は、n-BP16とp-BP17及びp-AlGaN10等の間に形成されるヘテロpn接合により行われるため障壁高さが大となり、第3、第4のp形クラッド層10、12及び第2導波層11のドーピング濃度をより高くしてLDの動作抵抗を低減することができる。

【0029】図3はBPが厚膜成長可能でありかつ安定であることを利用して、図2に示すLD構造を形成の後、バッファ層3を含めてn-SiC基板2を研磨により除去した他の変形例である。この時n-GaNの電流

供給電極18としてTi/Alを用いる。この様にn-SiC基板2及びバッファ層3を除去することにより、 LDの動作電圧を低減し、長寿命の連続動作に必要な熱 抵抗の大幅な低減を達成することができる。

【0030】図4は図2の凸形に加工されたp形層の両脇に、n-SiC電流阻止層19を設けた他の変形例である。n-SiCを用いる場合には、アルミナをマスクとしてp形層を凸に加工した後、選択成長により電流阻止層を自己整合的に形成することができる利点がある。

【0031】図5は、本発明の第2の実施の形態を示す利得ガイド形青色LDの断面図である。参照番号1~8までは図1と同様であるため説明を省略する。p-AlGaN第2クラッド8の上にp-GaN第2導波層2の、p-AlGaN第3クラッド層21を形成する。p-GaInN過飽和吸収層(図示されていない)は、必要に応じて前記第2、第3のクラッド層の間に挿入する。平坦な第3クラッド層上に凹状に加工したp-GaN第3導波層22と、その両側の上面に電流阻止用のn-GaN23を形成する。前記凹状に加工したp-GaN第3導波層22及び電流阻止用のn-GaN23の上に凹面を埋め込むようにp-BPコンタクト層24が形成される。

【0032】この時電流阻止はn-GaN23とp-BP24との間のヘテロpn接合により行われる。また横モード制御は前記BPにより埋め込まれた発光層上部の凹状の閉じ込め層により生じた横方向の実効屈折率の変化に基づき行われる。本変形例はLD動作のしきい値電流以下で、このまま高輝度青色LEDとして動作することもできるが、とくに高輝度青色LED又はパルス動作の青色LDとして用いる場合には、p-GaN第3導波層22の凹状加工と、電流阻止用のn-GaN23を省略し、BPを含めて全て平坦な多層構造とすることができる。

【0033】次に図6に示す青色LDの断面図に基づ き、本発明の第3の実施の形態を説明する。本実施の形 態ではn-SiC基板2への電流電極としてAuGe/ Au25を用いている他、GaInN発光層7まで第1 の実施の形態と同じであるため、説明を省略する。Ga InN発光層7の上にMgドープp-GaNから成る厚 さ0. 05μmの第2光導波層26、p-GaInN過 飽和吸収層9、凸形ストライプ状に加工したMgドープ p-Alo.2 Gao.8 Nから成る厚さ0.3 μmの第2 クラッド層28、Mgドープp-GaNから成る厚さ 0. 5 μmの中間コンタクト層 2 8 が順次形成される。 【0034】凸形のストライプ状に加工した第2クラッ ド層27と中間コンタクト層28の両側には、10¹⁹~ 10²⁰/cm³と高濃度にMnをドープすることにより 光吸収を増加させたGaN電流阻止層29が、酸化シリ コン又は窒化シリコンをマスクとして、選択成長により 形成される。最後にMgドープp-GaNから成る厚さ

0. 5 μ mのコンタクト層30が形成される。

【0035】上記の構造において、第1 導波層6 の厚さ $0.1\sim0.2\mu$ mが、第2 導波層26 の厚さ0.05 μ mよりも厚いのは、GaInN発光層内の正孔の有効質量が大きいために、第<math>1 導波層6 と発光層7 との間のへテロ障壁により十分な正孔の閉じ込め効果が得られ、第1 導波層6 での正孔の再結合を無視することができることによる。p-GaN から成る第2 導波層26 は比抵抗が高いので、これを薄くすることによりコンタクト層との間の電圧降下を低減することができる。

【0036】可飽和吸収層9の働きで繰返し数GHz以上の自己間欠動作を生じ、光読取りの際の戻り光による雑音の増大が防止される。なお図6の構成をパルス動作の青色LD又は高輝度青色LEDとして用いるときには、前記可飽和吸収層9と電流阻止層29を省略し、全て平面の多層構造により前記LD、LEDを構成することができる。

【0037】電流電極はn側の電極25にAuGe: $0.1 \mu m$ 、 $Au:0.5 \mu m$ 、p側の電極31に $Pd:0.5 \mu m$ 、 $Cr:0.1 \mu m$ 、 $Au:0.5 \mu m$ 、を形成の後不活性ガス又は窒素ガス中で $400 \sim 800$ で熱処理することによりオーミックコンタクトが形成される。

【0038】上記のようにGaN電流阻止層29には不純物として高濃度のMnをドープするが、MnをドープすることによりGaNが高抵抗となり、動作電流を阻止することができる。同時に前記GaN電流阻止層29は102~103/cmの適度な光吸収係数を示すようになり、LD発光の横モードを制御することができる。この時電流阻止層29への添加不純物は、Mn以外にも遷移金属Cr、Vなどを用いることができる。ドナーとアクセプタを同時に高濃度に添加してもよい。ドナーとしてはSi、Se、アクセプタとしてはZn、Cdなどがある。CとHの同時添加も同様な効果がある。例えばプロパン等の炭化水素を、不純物として添加することにより、同程度のCとHが取り込まれるため、製造上有利である。

【0039】図7、図8は前記第3の実施の形態の変形例である。図7においてはコンタクト層としてp-BP17を用いている。また図8においてはコンタクト層としてA1を高濃度に添加したp-SiCを用いている。BPもSiCも共に間接遷移形であるため比較的光吸収が小さく、かつ正孔の移動度が大きいのでp-A1GaN第2クラッド層27、p-GaN中間コンタクト層28の厚さを薄くしても、コンタクト層32の光吸収の影響が小さいので、動作電圧を大幅に低減することができる。前述の通りBPではGaNよりも屈折率が小さいために、コンタクト層としての機能のほかに光閉じ込めにも寄与するので、前記第2クラッド層27、中間コンタクト層28の厚さを更に薄くできる利点がある。なお図

8に示す変形例では、SiCコンタクト層32を厚く成長した後、SiC基板2とバッファ層3を研磨により除去することができる。このようにして、動作電圧と熱抵抗を大幅に低減することができる。

10

【0040】図10は本発明のLD、LEDを作製するのに用いた製造装置の構成を示す断面図である。石英反応管61のガス導入口62から、気相成長の原料となる混合ガスが導入される。図の63はガスの排気口である。反応管61の内部には、カーボンサセプタ64が配置され、SiC成長基板67が前記カーボンサセプタ64の上に載置される。カーボンサセプタ64は高周波コイル65により誘導加熱される。基板67の温度は熱電対66を用いて測定され、温度コントローラ(図示されていない)により制御される。本発明のLD、LEDは前記図10の製造装置を用いて次のような方法で作製される。

【0041】SiC成長基板67をカーボンサセプタ64に載置した後、ガス導入口62から高純度水素を11/min導入し、反応管61の大気を置換する。次にガ20 ス排気口63をロータリポンプに接続し、反応管内部の圧力を10~100torrの範囲に設定する。

【0042】SiC成長基板67を水素中で1500℃に加熱し表面を清浄化する。次に基板温度を1050~1400℃に低下し、水素ガスにNH3 ガス、N $_2$ H $_4$ ガス、又はNを含む有機化合物、例えば(CH_3) $_2$ N $_2$ H $_2$ を導入すると共に、有機金属化合物を導入し気相成長を行う。Ga 化合物としては、例えばGa (CH_3) $_3$ 又はGa (C_2 H $_5$) $_3$ を導入して成長を行う。A1 化合物としては、例えばA1 (CH_3) $_3$ 又はA1 (C_2 H $_5$) $_3$ 、In 化合物としては、例えばIn (CH_3) $_3$ 又はIn (C_2 H $_5$) $_3$ を導入してA1、In の添加を行う。不純物を添加する場合には不純物原料を同時に導入する。

【0044】p形不純物の活性化率を増加するためには、結晶中への水素の混入を抑制することが重要である。このため、成長温度から冷却する際、700~850℃まではNH3ガス中で冷却して窒素の解離を抑え、それ以下の温度では不活性ガス中で冷却することにより水素の混入を抑制する。p形不純物の活性化率を高める

50

ためには、RFプラズマにより生成した窒素ラジカル中で熱処理する。この方法によれば、結晶中からの窒素原子の離脱を完全に防止することができるため、900~1200℃での高温熱処理が可能であるばかりでなく、窒素空孔等の格子欠陥を除去することもできる。

【0045】高温熱処理の具体例は次の通りである。原料として NH_3 を 1×10^{-3} mol/min、Ga(CH_3) $_3$ を 1×10^{-5} mol/min、Al(CH_3) $_3$ を 1×10^{-6} mol/min導入して成長を行う。基板温度は1050℃、圧力76torr、原料ガスの総 10流量は11/min、n形不純物としてSiとSe、p形不純物としてMgと炭素を用いる。この時の不純物の原料ガスは SiH_4 、 H_2 Se、 Cp_2 Mg、プロパンを使用する。

【0046】GaN系へテロ構造部を成長後、3塩化硼素を用いたプラズマエッチングにより、図1に示した中間コンタクト層13、第4クラッド層12、GaN第2導波層11を凸形に加工する。この時前述のように、前記GaN第2導波層11を途中までエッチングして凸形のメサストライプを形成した後、有機金属気相成長の炉20内で、NH3と水素を含む雰囲気中で温度約1000~1200℃で30分熱処理する。この熱処理により表面が清浄化されると共に、前記プラズマエッチングで故意に残されたGaN第2導波層が選択的に除去される。この熱処理工程により再現性よく前記凸形構造が形成され、良好なモード制御が達成される。

【0047】次に基板温度を1100~1250℃に設定し、反応管にジボランとホスフィンを導入してp-BPコンタクト層14を成長する。p形不純物としてはMg、Zn、n形不純物としてはSi、Seを用いる。図306に示すように最後にp-GaNコンタクト層30を成長する場合には、ウエハを窒素ラジカル中で温度400~1000℃、好ましくは600~800℃で熱処理することにより、熱処理中の窒素の抜けを抑え、p形層をより低抵抗とすることができる。

【0048】図11に熱処理装置の構成の概要を示す。 ガス導入口からアルゴンと窒素の混合ガスを導入し、排 気口よりロータリポンプを用いて排気することにより、 石英管71の内部の圧力をプラズマ発生部で安定なガス プラズマが維持されるよう調整する。図の75はプラズ 40 マ発生用の高周波電源である。支持台73上に被処理体 を載置して前記の熱処理を行う。例えば図1に示すよう に、最後に成長するコンタクト層がp-BPである場合 には、前記熱処理を加えなくてもコンタクト層として十 分低抵抗の特性を得ることができる。

[0049]

【発明の効果】以上述べたように高濃度の不純物添加により比抵抗を大幅に低減したBP、GaN又はSiCをコンタクト層として用いることにより、GaN系背色LD、LEDの動作電圧を低減し、長寿命の連続動作を実 50

現することができる。

【0050】BP、GaN又はSiCから成る電流阻止層に、高濃度の不純物を添加することにより、電流阻止層としての機能と横モード制御機能を有する低雑音で高密度な光読み出しが可能なLDを得ることができる。

【0051】また発光層にGaInN混晶を用い、電流阻止層及びコンタクト抵抗低減のための材料にBP、GaN又はSiCを用いて、発光層との間の禁制帯幅の差を小さくし、前記禁制帯幅の差に基づく過大な光吸収による損失を防止することにより、動作電流の小さい青色LD、又は高輝度の青色LEDを得ることができる。また光閉じ込め層にGaInN混晶から成る過飽和吸収層を含ませることにより、自己間欠動作する低雑音高密度記録用LDを得ることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態のLDの構造を示す 断面図。

【図2】本発明の第1の実施の形態の変形例を示す断面 図.

【図3】基板を除去した本発明のLD構造の変形例を示す断面図。

【図4】本発明の第1の実施の形態の他の変形例を示す 断面図。

【図5】本発明の第2の実施の形態のLDの構造を示す 断面図。

【図6】本発明の第3の実施の形態のLDの構造を示す 断面図。

【図7】本発明の第3の実施の形態の変形例を示す断面 図

【図8】本発明の第3の実施の形態の他の変形例を示す 断面図。

【図9】従来の可視光領域のLDの構造を示す断面図。

【図10】本発明のLD、LEDの製造装置の構成を示す断面図。

【図11】本発明のLD、LED熱処理装置の構成を示す略図。

【符号の説明】

- 1 Ti/Pt/Au電極
- 2 n-SiC基板
- 3 n-AlNバッファ層
 - 4 n-GaN第1コンタクト層
 - 5 n-AlGaN第1クラッド層
 - 6 n-GaN第1導波層
 - 7 GaInN発光層
 - 8 p-AlGaN第2クラッド層
 - 9 p-GaInN可飽和吸収層
 - 10 p-AlGaN第3クラッド層
 - 11 p-GaN第2導波層
 - 12 p-AlGaN第4クラッド層
- 0 13 p⁺ GaN中間コンタクト層

14 p-BPコンタクト層

15 PdZn/Au電極

16 n-BP電流阻止層

17 p-BPコンタクト層

18 Ti/N電極

19 n-SiCで電流阻止層

20 p-GaN第2導波層

21 p-AlGaN第3クラッド層

22 p-GaN第3導波層

23 n-GaN電流阻止層

24 p-BPコンタクト層

25 AuGe/Au電極

26 p-GaN第2導波層

27 p-AlGaN第2クラッド層

28 p+ GaN中間コンタクト層

29 GaN: Mn電流阻止層

30 p-GaNコンタクト層

31 Pd/Cr/Au電極

32 p-SiC:Alコンタクト層

33 Ni/Au電極

34 n-GaAs基板

35 n-GaAsバッファ層36 n-AlGaAs第1閉じ込め層

37 GaInP発光層

38 p-AlGaInP第2閉じ込め層

14

39 n-GaAs電流阻止層

40 p⁺ GaInP中間コンタクト層

41 p-GaAsコンタクト層

42 上部電極

43 下部電極

10 61 石英容器

62 ガス導入口

63 排気口

64 カーボンサセプター

65 髙周波コイル

6 6 熱電対

67 気相成長基板

71 石英容器

72 被熱処理基板

7.3 支持台

20 74 高周波コイル

75 高周波源

【図1】

【図2】

【図11】

【図3】

【図5】

【図7】

【図4】

【図6】

[図8]

【図9】

【図10】

