Часть 1. Тест.

Вопрос 1 🐥

Рассмотрим модель $Y=X\beta+\varepsilon$. Условия теоремы Гаусса-Маркова выполнены, причём ${\rm Var}(\varepsilon_i)=\sigma_\varepsilon^2,\,\hat Y=PY,\,P=X(X'X)^{-1}X'$ и I - единичная матрица. Ковариационная матрица случайного вектора $\hat Y$ равна

 \bigcap $\sigma_{\varepsilon}^2(I-P)$

 \Box $\sigma_{\varepsilon}^{2}I$

 $\sigma_{s}^{2}P$

 $\boxed{\mathsf{C}} \ \sigma_{\varepsilon}^2(I+P)$

F Нет верного ответа.

Вопрос 2 \clubsuit Для регрессии $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\varepsilon$, оцененной по 32 наблюдениям с $R^2=0.9$, значение тестовой статистики для проверки гипотезы об адекватности регрессии равно

- А невозможно вычислить по имеющимся данным
- C 36/27

E 81

84

D 243/4

F Нет верного ответа.

Вопрос 3 🐥

Если в уравнение регрессии не включена константа, то

- \mathbb{R}^2 не является показателем качества подгонки регрессии
- \fbox{B} R^2_{adi} в этой модели всегда неотрицательный
- С К этой модели неприменима теорема Гаусса-Маркова
- D Значимость коэффициентов регрессии нельзя проверять при помощи t-статистики
- Е К этой модели неприменим МНК
- **F** Нет верного ответа.

Вопрос 4 🐥

По 546 наблюдениям за 1987 г. оценили зависимость стоимости частных домов в канаде price (измеряемой в долларах США) от общей площади square (измеряемой в кв. м.) и наличия системы кондиционирования aircond (1 — если есть, 0 — если нет):

переменная	коэффициент	ст. ошибка	<i>t</i> -статистика	<i>P</i> -значение
square	5.017	.488	10.26	0.000
aircon	7613.352	5544.33	1.37	0.170
square*aircon	2.254	.932	2.42	0.016
const	35683.87	2587.205	13.79	0.000

Согласно полученным результатам, при уровне значимости 5%, наличие кондиционера увеличивает стоимость каждого квадратного метра жилья на

2.254 \$

B 5.017 \$

D 7.271\$

E 7613.352 \$

F Нет верного ответа.

Вопрос 5 🦂

Оценена зависимость расходов потребителей на газ и электричество Y в США в 1977-1999 г. в постоянных ценах I квартала 1977 г. от времени (t=1 для 1977, t=2 для 1978 и т.д.) с учётом сезонных факторов ($D_i=1$, если наблюдение относится к i-ому кварталу и 0 иначе, $i=1,\ldots,4$): $\hat{Y}=8+0.1t-3D_2-2.6D_3-2D_4$

Если в качестве базовой категории будет принят не первый квартал, а второй, уравнение регрессии примет вид

$$|A| \hat{Y} = 8 + 0.1t - 3D_1 - 2.6D_3 - 2D_4$$

$$\hat{Y} = 5 + 0.1t + 3D_1 + 0.4D_3 + D_4$$

$$\hat{\mathbf{C}}$$
 $\hat{Y} = 5 + 0.1t - 3D_1 - 0.4D_3 - D_4$

$$\boxed{\mathbf{D}} \hat{Y} = 8 + 0.1t + 3D_1 - 2.6D_3 + D_4$$

$$\boxed{\text{E}} \hat{Y} = 5 + 0.1t - 3D_1 - 2.6D_3 - 2D_4$$

F Нет верного ответа.

Вопрос 6 🦂

Для выбора между линейной и линейной в логарифмах моделями (где EARNINGS — почасовая заработная плата в S, S — длительность обучения, ASVABC - результаты тестов, характеризующие успеваемость) был проведен тест Дэвидсона, Уайта и МакКиннона и получены следующие результаты:

	Зависимая: $EARNINGS$	Зависимая: $\ln EARNINGS$		
(Intercept)	-28.23	-1.941		
	(4.85)	(3.2499)		
S	2.127			
	(0.303)			
ASVABC	0.4107			
	(0.0848)			
lin_add	-18.822			
	(8.174)			
lnS		0.8809		
		(0.716)		
lnASVABC		0.612		
		(0.445)		
log_add		0.015		
		(0.094)		
R^2	0.2052	0.2140		
F	46.05	48.63		
$\operatorname{Adj} olimits_1^2$	0.2008	0.2096		
Num. obs.	539	540		
RSS	91194	149.5		
$\hat{\sigma}$	13.056	0.5281		

Где lin_add = ln(\hat{Y}) — l̂nY, log_add = \hat{Y} — exp(l̂nY) и в скобках указаны стандартные ошибки. На уровне значимости 5% можно сделать вывод, что

- А Лучше полулогарифмическая модель
- Лучше линейная в логарифмах модель
- С Лучше линейная модель
- П Невозможно выбрать лучшую модель
- Е Между линейной и линейной в логарифмами моделями нет статистической разницы
- **F** Нет верного ответа.

Вопрос 7 🦺

По данным для 27 фирм была оценена зависимость выпуска Y от труда L и капитала K с помощью моделей:

$$\ln Y_i = b_1 + b_2 \ln L_i + b_3 \ln K_i + \varepsilon_i$$
 (1)

$$\ln Y_i = b_1 + b_2(\ln L_i + \ln K_i) + \varepsilon_i$$
 (2)

Суммы квадратов остатков в этих моделях известны, $RSS_1 = 4$ и $RSS_2 = 6$. F-статистика для проверки гипотезы о равенстве эластичностей по труду и по капиталу равна

A 8

C

E 2

B 6

12

F Нет верного ответа.

Вопрос 8 🦺

По одним и тем же наблюдениям оценили две регрессии: $\hat{Y}=1+3X_1$ и $\hat{Y}=2+5X_2$. Известно, что $\widehat{\text{Cov}}(X_1,X_2)=0$. Оценки МНК коэффициентов регрессии $Y=\beta_0+\beta_1X_1+\beta_2X_2+\varepsilon$:

- $\boxed{\mathsf{A}}$ \hat{eta}_1,\hat{eta}_2 найти невозможно, $\hat{eta}_0=3$
- D оценки всех коэффициентов невозможно найти по имеющимся данным
- \hat{eta}_0 найти невозможно, $\hat{eta}_1=3, \hat{eta}_2=5$
- $\hat{\beta}_0 = 3, \hat{\beta}_1 = 3, \hat{\beta}_2 = 5$

 \hat{C} $\hat{\beta}_0 = 1.5, \hat{\beta}_1 = 3, \hat{\beta}_2 = 5$

F Нет верного ответа.

Вопрос 9 🦺

По данным для 27 фирм исследована зависимость прибыли Y от числа работников X вида $Y=\beta_0+\beta_1X+\varepsilon$ и получено $\hat{\beta}_0=7, \hat{\beta}_1=3, \hat{\sigma}^2=25$ и матрица $(X'X)^{-1}=\begin{pmatrix} 0.36 & -0.03\\ -0.03 & 0.09 \end{pmatrix}$. 95% доверительный интервал для β_0 :

A [1.12; 12.88]

C [5.04; 8.96]

[0.82; 13.18]

- В невозможно вычислить по имеющимся данным
- D [-0.09; 6.09]

F Нет верного ответа.

Вопрос 10 ૈ

Исследователь Анатолий оценил параметры нескольких моделей:

Модель Уравнение

- $1 \quad Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$
- $2 \quad Y = \beta_1 + \beta_4 X_4 + \beta_5 X_5 + u$
- $3 \quad Y/X_2 = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$
- 4 $\ln Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$

 $\overline{\mbox{C}}$ помощью R^2_{adj} можно выбрать лучшую из моделей

А 2 и 4

С 1 и 3

Е 1 и 4

В 2и3

1и2

F Нет верного ответа.

Имя, фамилия и номер группы:

Вопрос 1 : A B C D **F**

Вопрос 3 : **В** С D E F

Вопрос 4 : **В** В С D Е F

Вопрос 7: А В С Е Е

Вопрос 9 : A B C D **F**

Вопрос 10 : А В С Е Е

Часть 2. Задачи.

1. По 29 наблюдениям оценили функцию спроса на яблоки

$$\widehat{\ln}Q = 14 - 5 \ln P_{apple} + 2.4 \ln P_{orange} + 2 \ln P_{banana},$$

где Q — спрос на яблоки, а P_{apple} — цена яблок, P_{orange} — цена апельсинов и P_{banana} — цена бананов.

Известна оценка ковариационной матрицы коэффициентов регрессии:

$$\widehat{\text{Var}}(\hat{\beta}) = \begin{pmatrix} 1 & 0.1 & 0.2 & 0.3 \\ 0.1 & 2 & 0.5 & 0.7 \\ 0.2 & 0.5 & 3 & 0.6 \\ 0.3 & 0.7 & 0.6 & 4 \end{pmatrix}$$

На уровне значимости 5% проверьте гипотезу о том, что $\beta_{apple} + 2\beta_{orange} = 0$.

2. По ежемесячным данным за 2 года была оценена зависимость Y - количества покупаемых автомобилей Honda, от цены P и дохода покупателя I с помощью трёх моделей:

$$\hat{Y} = -7.04 + 1.01_{(25.53)}P + 0.52I_{(0.09)}R^2 = 0.88$$

$$\hat{Y} = -63.8 + 4.5 P, R^2 = 0.34$$

$$\hat{Y} = \underset{(4.2)}{15.2} + \underset{(0.07)}{0.57}I, R^2 = 0.87$$

Известно, что $\widehat{\mathrm{Corr}}(P,I)=0.52$, в скобках указаны стандартные отклонения коэффициентов.

Какую модель Вы предпочтёте и почему?

3. Для регрессии в отклонениях $y=\beta_1 x + \beta_2 z + \varepsilon$, оцененной по 100 наблюдениям, известны следующих суммы:

$$\sum y_i^2 = \frac{493}{3}, \sum x_i^2 = 30, \sum z_i^2 = 3, \sum x_i y_i = 30, \sum z_i y_i = 20, \sum x_i z_i = 0$$

Найдите оценки МНК коэффициентов β_1,β_2 и коэффициент детерминации $R^2.$

- 4. Приведены результаты оценки зависимости логарифма арендной платы жилья в России, lnPRICE, от общей площади, GENSQUARE (кв. м.), наличия газа, GAS, (1 есть, 0 нет), наличия телефона, PHONE (1 есть, 0 нет).
 - Модели 1 и 2 оценены для городов с численностью населения более миллиона человек, модель 3- для сёл, модель 4- для обеих выборок. В скобках в таблице приведены стандартные ошибки.
 - а) Проверьте значимость коэффициентов в модели 2 при уровне значимости 5% и дайте интерпретацию полученным результатам.
 - б) Проверьте гипотезу о равенстве 0.02 коэффициента при переменной GENSQUARE при уровне значимости 0.01 в модели 2.
 - в) Можно ли утверждать, что наличие газа и телефона в крупном городе не влияет на стоимость аренды? Ответ обоснуйте формулировкой и проверкой подходящей гипотезы.
 - г) Опираясь на результаты оценки моделей 2, 3 и 4, можно ли утверждать, что зависимость стоимости жилья от рассмотренных выше факторов едина для крупного города и села? Ответ обоснуйте подходящим тестом.

	Модель 1	Модель 2	Модель 3	Модель 4
(Intercept)	7.168	6.884	5.413	5.422
-	(0.1334)	(0.2398)	(0.0372)	(0.0385)
GENSQUARE	0.012	0.012	0.0038	0.00305
	(0.002687)	(0.0027)	(0.000506)	(0.00052)
GAS		0.119	0.217	0.301
		(0.166)	(0.035)	(0.0355)
PHONE		0.197	0.334	0.4937
		(0.123)	(0.0372)	(0.0385)
R^2	0.1330	0.1541	0.0661	0.0976
F	19.95	7.78	73.14	116.55
Adj. \mathbb{R}^2	0.1264	0.1343	0.0652	0.0968
Num. obs.	132	132	3104	3236
RSS	23.05	22.494	2801.506	3138.69
$\hat{\sigma}$	0.42113	0.41921	0.95064	0.98546