Exercises from Chapter 5

Wesley Basener

July 14, 2025

Problem 1. Suppose (X, \mathcal{A}) is a measurable space, f is a real-valued function, and $\{x: f(x) > r\} \in \mathcal{A}$ for each rational number r. Prove that f is measurable.

Proof. We need to show that $\{x: f(x) > q\} \in \mathcal{A}$ holds for any irrational q. Let q be any irrational number. Define the sequence of rational numbers $a_0, a_1, a_2, ...$ such that $a_i > a_j$ for i > j and $\lim a_i = q$. Then, $\bigcup_{0}^{\infty} \{x: f(x) > a_i\}$ is equivalent to $\{x: f(x) > q\}$ and is the countable union of elements in \mathcal{A} , hence is an element of \mathcal{A} . Therefore, $\{x: f(x) > r\} \in \mathcal{A}$ for all real r, meaning f is measurable.

Problem 3. Suppose f is a measurable function and f(x) > 0 for all x. Let g(x) = 1/f(x). Prove that g is a measurable function.

Proof. By proposition 5.5, f being measurable implies that $\{x: f(x) \leq r\} \in \mathcal{A}$ for all real r. But each set $\{x: f(x) \leq r\}$ is equal to $\{x: g(x) > r\}$. Hence, $\{x: g(x) > r\} \in \mathcal{A}$ for all r and g is measurable.

Problem 5. If $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable, prove that there exists a Borel measurable function g such that f = g a.e.

Proof. Since the Lebesgue algebra is the closure of the Borel algebra,