Control Theory

Controllability (reachability) part 1

Robert Szalai

Department of Engineering Mathematics University of Bristol

Controllability: definition (1)

Consider the system

$$\dot{x} = Ax + Bu$$

We know the solution

$$\begin{bmatrix} \mathbf{x}(t) = \exp(\mathbf{A}t)\mathbf{x}(0) \\ + \int_0^t \exp(\mathbf{A}(t-\tau))\mathbf{B}\mathbf{u}(\tau)\mathrm{d}\tau \end{bmatrix}$$

We know the stability, but

- How does the system react to control input?
- ls it possible to choose $u: [0, t_1] \to \mathbb{R}^m$ such that it brings $\underline{x(0) = x_0}$ to $\underline{x(t)} = \underline{x_1}$ in a finite time $0 < t_1 < \infty$?

Controllability: definition (2)

Definition

The system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

with initial condition $\mathbf{x}(0) = \mathbf{x}_0$ is **controllable** (or **reachable**) if there exists a final time $0 < \underline{t_1} < \infty$ and a control input $\mathbf{u} : [0, t_1] \to \mathbb{R}^m$, such that for any $\mathbf{x}_0, \mathbf{x}_1 \in \mathbb{R}^n$ we have $\mathbf{x}(t_1) = \mathbf{x}_1$.

$$\dot{\mathbf{x}} = \begin{pmatrix} -a_1 & 0 & 0 \\ 0 & -a_2 & 0 \\ 0 & 0 & -a_3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mathbf{u}$$

$$\dot{\mathbf{x}}_3 = -a_3 \times_3 \qquad A$$

$$+ 2 M$$

O means this not controllable

Controllability test

Theorem

The system

$$\dot{x} = Ax + Bu \qquad \times 6 \mathbb{R}^{N}$$

is controllable (or reachable) if and only if the matrix

$$\mathbf{W_r} = \begin{bmatrix} \mathbf{B} & \mathbf{AB} & \cdots & \mathbf{A^{n-1}B} \end{bmatrix}$$

has full rank.

range
$$W_r = IK^n$$
column vectors
of W_r span IR^n
Rer $W_r^T = 203$
Use Gaass eliminah

Notes:

- 1. Size of $\mathbf{W_r}$ is $n \times (n m) t$
- 2. If **B** is a vector, i.e., m=1, $\mathbf{W_r}$ is square, hence $\det(\mathbf{W_r}) \neq \mathbf{0}$ means controllability.

Example: controllability test (1)

lwel
$$x_1(t)$$
 S_1

$$Wel x_2(t)$$

$$R_2x_2(t)$$

$$W_{r} = \begin{bmatrix} B & ABJ = \begin{pmatrix} \frac{1}{S_{1}} & -\frac{R_{1}}{S_{1}^{2}} \\ 0 & \frac{12_{1}}{S_{1}^{2}S_{2}} \end{pmatrix}$$
Reach children matrix.

$$\frac{1}{d+}(S_{1}x_{1}) = M - R_{1}x_{1}$$

$$\frac{d}{d+}(S_{2}x_{2}) = R_{1}x_{1} - R_{2}x_{2}$$

$$\overset{\times}{\times} = \begin{pmatrix} x_1, x_2 \\ \frac{R_1}{S_1} & O \\ \frac{R_2}{S_2} & \frac{R_2}{S_2} \end{pmatrix} \times + \begin{pmatrix} \frac{1}{S_1} \\ O \\ O \end{pmatrix} M$$

Example: controllability test (2)
$$\dot{x} = \begin{pmatrix} \frac{R_1}{S_2} & 0 \\ \frac{R_1}{S_2} & -\frac{R_2}{S_2} \end{pmatrix} \times + \begin{pmatrix} 0 \\ \frac{1}{S_2} \\ \frac{1}{S_2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \frac{1}{S_2} & -\frac{R_2}{S_2} \\ \frac{1}{S_2} & -\frac{R_2}{S_2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \frac{1}{S_2} & -\frac{R_2}{S_2} \\ \frac{1}{S_2} & -\frac{R_2}{S_2} \\ \frac{1}{S_2} & -\frac{R_2}{S_2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \frac{1}{S_2} & -\frac{R_2}{S_2} \\ \frac{1}{S_2} & -\frac{R_2}{$$

The End