

Projektupdate vom 19. Oktober 2025

Woche 1: Organisation & Zielsetzung

GitHub-Repository

Discord-Server

Worum geht's im Projekt?

- Entwicklung einer Plattform, die parametrisierbare PL-Interaktionen modelliert, berechnet, visuell darstellt und deren Analyse sowie Vergleich ermöglicht
- Welche Use-Cases existieren, welche Daten sollten für Nutzer bereitgestellt werden?
- Welche Interaktionen sollten modelliert werden, wie sollten sie parametrisierbar sein, entstehen dadurch Komplikationen?
- Wie kann man die Interaktionen sinnvoll darstellen?
- Wie kann man Interaktionen oder Interaktionsmuster sinnvoll vergleichen?
- Wie l\u00e4sst sich der Einfluss auf Follow-up-Methoden wie Maschinelles Lernen oder Molekulares Docking evaluieren?
- Wie lassen sich die Interaktionsmodelle mit experimentellen Daten validieren ?

Liste der vorgeschlagenen TP:

Interaktionen definieren und finden

Testszenarien und Use-Cases.

- Interaktionen visualisieren (SmartChemist für bessere Beschreibung)
- Interaktionen aus großen Datenbeständen (CSD) ableiten, speichern und visualisieren
- Interaktionsgeometrien im Anwendungskontext von Maschinellem Lernen evaluieren

Organisation & Teilgruppen

- NAOMI oder RDKIT?
 - Vorschlag: Hauptentwicklung mit NAOMI, ML-Features mit RDKit
- Welche Teilprojekte wollen wir realisieren?
- Wer macht welche Teilprojekte? Wer ist Ansprechpartner*in des TP?
 - TP 1: Interaktionen definieren und finden
 - •
 - TP 2: Interaktionen visualisieren
 - •
 - TP 3: Statistiche Auswertung von Interaktionsgeometrien in CSD und PDB
 - •
 - TP4/5: ML-Evaluation, Testszenarien & Use cases:
 - Bauen auf TP 1 / 2 / 3 auf ggf. zu einem späteren Zeitpunkt

Projektstruktur

(vielleicht als tikz Image)

- Input:
 - co-kristallisierte Protein-Ligand-Komplexe (PDB), insbesondere muss der Bindungsmodus **nicht** gefunden werden?!
 - 3D-Strukturen kleiner organischer Moleküle (CSD)
- Output:
 - Visualisierung von PL-Interaktionen (wie bei PoseView, Maestro, PLIP)
 ⇒ 2D oder 3D?
 - Parametrisierung, d. h. der Nutzer soll das Interaktionsmodell definieren.
 - ⇒ Wollen wir basierend auf CSD ein geeignetes Interaktionsmodell vorschlagen, was die maximale Zahl an Interaktionen vorschlägt? Enthalpische Optimierung
 - Ableitung von Interaktionsgeometrien aus PDB und CSD ⇒ Beispiel: Wie ist die Verteilung des DHA-Abstand einer hydrogen bond für N-H-O? Können wir anhand dieser Verteilung in TP1 gefundene Interaktionen bewerten / scoren?

Klärung der Forschungsfragen

- Welche Use-Cases existieren, welche Daten sollten für Nutzer bereitgestellt werden?
- Welche Interaktionen sollten modelliert werden, wie sollten sie parametrisierbar sein, entstehen dadurch Komplikationen?
- Wie kann man die Interaktionen sinnvoll darstellen?
- Wie kann man Interaktionen oder Interaktionsmuster sinnvoll vergleichen?
- Wie lässt sich der Einfluss auf Follow-up-Methoden wie Maschinelles Lernen oder Molekulares Docking evaluieren?
- Wie lassen sich die Interaktionsmodelle mit experimentellen Daten validieren ?

Projektablauf - Zeitplan

- Erstellen eines Zeit- und Entwicklungsplans
 - Wie strukturieren und organisieren Sie ihr Projekt?
 - Welche Funktionalität soll umgesetzt werden?
 - Welche Verfahren sollen angewandt werden?
 - Wie soll die Funktionalität getestet werden?
 - Wie erfolgt die Gesamtvalidierung der erstellen Methode?
 - Wie definieren sie den erfolgreichen Abschluss der Entwicklung?
 - Wie gliedern sie das Problem in Teilprobleme und Teilaufgaben?
 - Wie sieht ihr Zeitplan aus, welche Abhängigkeiten existieren?
 - Welche Meilensteine können Sie definieren?