Séries trigonométriques

$$\alpha 10 - MP^*$$

Généralités sur les fonctions périodiques

1.1 Questions liées à la classe C^k

 $f: \mathbb{R} \longrightarrow \mathbb{C} T$ – périodique (T > 0). f est \mathcal{C}_m^k ssi $f|_{[a,a+T]}$ est \mathcal{C}_m^k $(a \in \mathbb{R})$.

1.2 Dérivées et primitives des fonctions périodiques

 $f: \mathbb{R} \xrightarrow{\mathcal{C}_m^k} \mathbb{C}$ est dite réqulière (au sens de Dirichlet) ou satisfait la convention de Dirichlet si pour tout $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2} (\lim_{y \stackrel{>}{\to} x} f(y) + \lim_{y \stackrel{>}{\to} x} f(y)).$$

Si f est \mathcal{C}^1 , f' n'est pas définie en les points où elle est discontinue.

1.3 Séries trigonométriques

Soit T>0, on appelle série trigonométrique toute série de fonctions $\mathbb{R} \longrightarrow \mathbb{C}$ de la forme $\{u_n\}_{n\geq 0}$, où :

- u_0 est une constante $u_0 = \frac{a_0}{2}$
- Pour $n \ge 1$, u_n est de la forme $x \longmapsto a_n \cos(\frac{2\pi}{\pi}nx) + b_n \sin(\frac{2\pi}{\pi}nx)$ où $a_n, b_n \in \mathbb{C}^{\mathbb{N}}$.

Si cette série converge simplement sur \mathbb{R} , sa fonction-somme S est de période T. Si $\{a_n\}$ et $\{b_n\}$ sont absolument convergentes, alors $\{u_n\}$ converge normalement et S est de plus \mathcal{C}^0 .

De la même façon, on peut considérer une série de fonctions de la forme $\forall n \in \mathbb{Z}, \, u_n(x) = C_n e^{inx}$. On appelle somme à l'ordre N de cette série la suite $S_N = \sum_{k=1}^{N} C_k e^{ikx}$. Si cette somme admet une limite, on dit que la série $\{C_n e^{inx}\}$ converge et on note

$$\sum_{n=-\infty}^{+\infty} C_n e^{inx} \text{ sa somme.}$$

 $\begin{array}{l} n=-\infty \\ \text{On peut passer de l'une à l'autre de ces représentations an posant}: \ a_n=C_n+C_{-n} \ \text{et} \ b_n=i(C_n-C_{-n}). \ \{C_n\}_{n\in\mathbb{Z}} \ \text{est sommable ssi} \ \{C_n\}_{n\in\mathbb{N}} \ \text{et} \ \{C_n\}_{n\in(-\mathbb{N}^*)} \ \text{sont absolument convergentes}. \\ Séries \ de \ Fourier: \ \text{si} \ f:\mathbb{R} \ \xrightarrow{C^0} \mathbb{C}, \ \text{on définit} \ C_n(f)=\frac{1}{T}\int_{\alpha}^{\alpha+T} f(t)e^{-\frac{2\pi}{T}nit}\mathrm{d}t, \ a_n(f)=\frac{2}{T}\int_{\alpha}^{\alpha+T} f(t)\cos(\frac{2\pi}{T}nt)\mathrm{d}t \ (n\geqslant 0) \ \text{et} \end{array}$

 $b_n(f) = \frac{2}{T} \int_0^{\alpha+T} f(t) \sin(\frac{2\pi}{T}nt) dt \ (n \geqslant 1)$ (ces valeurs ne dépendent pas du choix de α). La série de Fourier de f est alors par exemple $\{C_n e^{\frac{2\pi}{T}nix}\}_{n\in\mathbb{Z}}$, ou $\{u_n\}_{n\in\mathbb{N}}$ où $u_0 = \frac{a_0}{2}$ et $\forall n \geq 1$, $u_n = a_n(f)\cos(\frac{2\pi}{T}nx) + b_n(f)\sin(\frac{2\pi}{T}nx)$.

2 Convergence des séries de Fourier

2.1 Théorème de Dirichlet

 $f: \mathbb{R} \xrightarrow{C_n^1} \mathbb{C} T$ – périodique, on peut lui associer ses coefficients de Fourier a_n, b_n et C_n qui en découlent. Avec ces hypothèses,

- 1. La série de Fourier de f converge pour tout $x \in \mathbb{R}$.
- 2. Pour tout $x \in \mathbb{R}$, la somme de cette série est $\frac{1}{2}(\lim_{y \to x} f(y) + \lim_{y \to x} f(y))$. En particulier cette somme est f en tout point où fest continue

2.2 Cas de la convergence normale

 $f: \mathbb{R} \longrightarrow \mathbb{C}$ T – périodique où f est \mathcal{C}^0 , \mathcal{C}^1_m . La série de Fourier de f est alors normalement convergente. Plus précisément, les séries $\{|C_n|\}_{n\in\mathbb{N}}, \{|C_{-n}|\}_{n\in\mathbb{N}^*}, \{|a_n|\}_{n\in\mathbb{N}} \text{ et } \{|b_n|\}_{n\in\mathbb{N}^*} \text{ sont convergentes.}$

2.3 Dérivation des séries de Fourier

 $f: \mathbb{R} \longrightarrow \mathbb{C} T$ – périodique où f est \mathcal{C}^0 , \mathcal{C}^1_m , et f' \mathcal{C}^0_m . Alors:

- $\forall n \in \mathbb{Z}, C_n(f') = \frac{2\pi}{T} ni C_n(f)$
- $\forall n \in \mathbb{N}^*, \begin{cases} a_n(f') = \frac{2\pi}{T} n b_n(f) \\ b_n(f') = -\frac{2\pi}{T} n a_n(f) \end{cases}$

2.4 Primitivation

 $f: \mathbb{R} \xrightarrow{C_{\infty}^{o}} \mathbb{C} T$ – périodique, on suppose que $\int_{a}^{a+T} f(t) dt = 0$. (Cela ssi $a_0(f) = 0$ et $C_0(f) = 0$). Soit $a \in \mathbb{R}$ fixé, $F: x \in \mathbb{R} \mapsto \int_{-x}^{x} f(t) dt$ est alors C^0 , C_{∞}^1 et T – périodique vu l'hypothèse. Alors :

- $\forall n \in \mathbb{Z}^*, C_n(F) = \frac{T}{2} \frac{C_n(f)}{f}$
- $\forall n \in \mathbb{N}^*$, $a_n(F) = -\frac{T}{2} \frac{b_n(f)}{a}$ et $b_n(f) = \frac{T}{2} \frac{a_n(f)}{a}$

2.5 Identification

Une série trigonométrique qui converge uniformément est égale à sa série de Fourier. Autrement dit, si $\{\gamma_n e^{nix}\}_{n\in\mathbb{Z}}$ cvu vers f, alors $\gamma_n = C_n(f)$ pour tout $n \in \mathbb{Z}$.

Résultats quadratiques

3.1 Généralités

T>0 fixé, E_m désigne le \mathbb{C} – ev des fonctions $\mathbb{R} \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$ 2π – périodiques; E_0 est le sev de E_m formé des applications régulières, E le sev de E_0 formé des applications continues, E le sev de E formé des polynômes trigonométriques. Sur $E_0 \times E_0$, on définit le produit scalaire hermitien $(f \mid g) = \frac{1}{T} \int_0^T \overline{f}g$. Sur $E_m \times E_m$, ce n'est pas un vrai produit scalaire. Pour $f \in E_m$. $||f||_2 = \sqrt{(f | f)} \in \mathbb{R}^+.$

3.2 Formule de Bessel-Parseval

 $f \in E_m$, soit a_n, b_n, C_n ses coefficients de Fourier.

- 1. La suite $(C_n)_{n\in\mathbb{Z}}$ est de carré sommable et $\sum_{n=0}^{+\infty}|C_n|^2=\|f\|_2^2=\frac{1}{T}\int_0^T|f(t)|^2\mathrm{d}t$
- 2. Les séries $\{|a_n|\}_{n\in\mathbb{N}}$ et $\{|b_n|\}_{n\in\mathbb{N}^*}$ sont convergentes et $\left|\frac{a_0}{2}\right|^2 + \frac{1}{2}\sum(|a_n|^2 + |b_n|^2) = \|f\|_2^2$

3.3 Convergence en movenne quadratique

 $f \in E_m$, elle admet des coefficients de Fourier a_n , b_n et C_n . $S_n : x \longmapsto \sum_{k=1}^{N} C_k e^{\frac{2\pi}{T}ikx}$. Alors $||f - S_N||_2 \underset{N \to +\infty}{\longrightarrow} 0$. Corollaire: \mathcal{P} est dense dans E_m au sens de $\|\cdot\|_2$.