- 5 $x \ge 0$ で定義された微分可能な関数 y = f(x) のグラフ C は,上に凸であって, $f(0) \ge 0$ とする.グラフ C 上に定点 $A(\alpha,\,f(\alpha))$ と点 $P(x,\,f(x))$ $(x>\alpha)$ をとるとき,原点 O と A,P を結ぶ線分 OA,OP とグラフ C とによって囲まれる部分の面積を S(x) とするとき,次の (1),(2),(3) に答えよ.
- (1) S(x) を定積分 $\int_{\alpha}^{x} f(t)dt$ と x , f(x) , α , $f(\alpha)$ とで表せ .
- (2) $f(x)=\frac{b}{a}\sqrt{a^2-x^2}\;(a,\,b>0)\;$ の場合に,変数 x を $x=a\sin\theta\;\left(0\le\theta\le\frac12\pi\right)$ と おいて,面積 S(x) の θ に関する変化率を求めよ.
- (3) $\alpha=0$ のとき , $S(x)=x^3\log(x+1)$ になる f(x) を f(x)=xg(x) とおいて求めよ .