Homework 6

- 1 Calculate the derivatives of the functions $f = x^2 + y^2$, $g = e^{-(x^2 + y^2)}$ and $h = q \log |r| = q \log \left(\sqrt{x^2 + y^2}\right)$ (q is a constant) along vector fields $\mathbf{A} = x \partial_x + y \partial_y$ and $\mathbf{B} = x \partial_y y \partial_x$, i.e. calculate $\partial_{\mathbf{A}} f, \partial_{\mathbf{A}} g, \partial_{\mathbf{A}} h, \partial_{\mathbf{B}} f, \partial_{\mathbf{B}} g, \partial_{\mathbf{B}} h$.
 - 2 Perform the calculations of the previous exercise using polar coordinates.
- **3** Consider in \mathbf{E}^2 vector fields $\mathbf{A} = x\partial_x + y\partial_y$, $\mathbf{B} = x\partial_y y\partial_x$, $\mathbf{C} = \partial_x$, $\mathbf{D} = \partial_y$. Calculate the values of 1-forms df, dg on these vector fields if $f = (x^2 + y^2)^n$ and $g = \frac{y}{x}$. For vector fields \mathbf{A}, \mathbf{B} perform calculations also in polar coordinates.
- 4 Calculate the integrals of the form $\omega = \sin y \, dx$ over the following three curves. Compare answers.

$$C_1: \mathbf{r}(t) \begin{cases} x = 2t^2 - 1 \\ y = t \end{cases}, \ 0 < t < 1, \qquad C_2: \mathbf{r}(t) \begin{cases} x = 8t^2 - 1 \\ y = 2t \end{cases}, \ 0 < t < 1/2,$$

$$C_3: \mathbf{r}(t) \begin{cases} x = \cos 2t \\ y = \cos t \end{cases}, \ 0 < t < \frac{\pi}{2}$$

- **5** Calculate the integral of the form $\omega = e^{-y}dx + \sin xdy$ over the segment of straight line which connects the points A = (1,1), B = (2,3). At what extent an answer depends on a chosen parameterisation?
- 6 Calculate the integral of the form $\omega = xdy$ over the upper arc of the unit circle starting at the point A = (1,0) and ending at the point (0,1).
- 7 Solve the previous problem for the arc of the ellipse $x^2 + y^2/9 = 1$ defined by the condition $y \ge 0$.

Exact forms

- **8** Calculate the integral $\int_C \omega$ where $\omega = xdx + ydy$ and C is
- a) the straight line segment $x = t, y = 1 t, 0 \le t \le 1$
- b) the segment of parabola x = t, $y = 1 t^n$, $0 \le t \le 1$, $n = 2, 3, 4, \dots$
- c) the segment of the sinusoid $x=t,\,y=\cos\frac{\pi}{2}t,\,0\leq t\leq 1$
- d)Show that 1-form $\omega = xdx + ydy$ is an exact form and for **an arbitrary** curve starting at the point (0,1) and ending at the point (1,0) calculate the integral $\int_C \omega$.
- **9** Show that the form 1-form $\omega = 2xydx + x^2dy$ is an exact 1-form. Calculate integral of this form over the curves considered in exercises 6) and 7) (upper half of the circle and ellipse)
 - 10. Calculate the differentials of the following 1-forms:
 - a) xdx, b) xdy c) xdx + ydy, d)xdy + ydx, e) xdy ydx
 - f) $x^4 dy + 4x^3 y dx$, g) x dy + y dx + dz, h) x dy y dx + dz.

For each 1-forms listed above find a function f (0-form) such that $df = \omega$, if possible, i.e. if this form is an exact form. If it is not exact form, explain why.

All the exercises below are not compulsory

11[†] Consider one-form

$$\omega = \frac{xdy - ydx}{x^2 + y^2} \tag{1}$$

This form is defined in $\mathbf{E}^2 \setminus 0$.

Calculate differential of this form.

Write down this form in polar coordinates

Find a function f such that $\omega = df$.

Is this function defined in the same domain as ω ?

 $\mathbf{12}^{\dagger}$ Calculate the integral of the form $\omega = \frac{xdy - ydx}{x^2 + y^2}$ over the curves a), b), c) from the previous exercise.

13[†] What values can take the integral $\int_C \omega$ if C is an arbitrary curve starting at the point (0,1) and ending at the point ((1,0)) and $\omega = \frac{xdy - ydx}{x^2 + y^2}$.

14[†] Let $\omega = a(x,y)dx + b(x,y)dy$ be a closed form in \mathbf{E}^2 , $d\omega = 0$.

Consider the function

$$f(x,y) = x \int_0^1 a(tx, ty)dt + y \int_0^1 b(tx, ty)dt$$
 (2)

Show that

$$\omega = df$$
.

This proves that an arbitrary closed form in \mathbf{E}^2 is an exact form.

Why we cannot apply the formula (2) to the form ω defined by the expression (1)?