Elliptic Curve Isogeny Based Cryptosystems

Frederik Vercauteren

Open Security Research (China)

KU Leuven ESAT/COSIC (Belgium)

frederik.vercauteren@gmail.com

23 August 2016

Elliptic curves and isogenies

Ordinary isogeny Diffie-Hellman

Supersingular isogeny Diffie-Hellman

Post-quantum cryptography

- Shor's algorithm: breaks RSA, DLP, ECDLP in polytime on quantum computer
- Post-quantum cryptographic systems:
 - Code-based crypto: McEliece, . . .
 - Lattice based crypto: NTRU, LWE, ...
 - Hash-based crypto: Merkle hash tree signatures, . . .
 - Multivariate crypto: Hidden Field Equations, . . .
- What about isogeny based crypto?

Isogeny based crypto: history

- Diffie-Hellman key agreement:
 - 1997: Couveignes: Talk at ENS about "Hard Homogeneous Spaces"
 - 2006: Rostovtsev, Stolbunov: ordinary isogeny Diffie-Hellman
 - 2010: Weiwei, Debiao: key agreement protocols
 - 2011: de Feo, Jao, Plût: supersingular isogeny Diffie-Hellman
 - 2016: Costello, Longa, Naehrig: efficient implementation of SIDH

Isogeny based crypto: history

- Diffie-Hellman key agreement:
 - 1997: Couveignes: Talk at ENS about "Hard Homogeneous Spaces"
 - 2006: Rostovtsev, Stolbunov: ordinary isogeny Diffie-Hellman
 - 2010: Weiwei, Debiao: key agreement protocols
 - 2011: de Feo, Jao, Plût: supersingular isogeny Diffie-Hellman
 - 2016: Costello, Longa, Naehrig: efficient implementation of SIDH
- Other cryptographic constructions:
 - 2003: Teske: elliptic curve trapdoor system
 - 2004: Rostovtsev, Makhovenko, Shemyakina: ordered digital signature scheme
 - 2009: Charles, Lauter, Goren: hash function based on isogeny graph
 - 2010-2011: Debiao, Jianhua and Jin: random number generator and key agreement
 - 2014: Sun, Tian, Wang: strong designated verifier signature
 - 2014: Jao, Soukharev: undeniable signatures

Idea 1: Diffie-Hellman from abelian group action

Let G be a finite abelian group and X a set with a group action ★

$$G \times X \rightarrow X : (g, x) \mapsto g \star x$$

- Recall $(gh) \star x = g \star (h \star x)$ and $e \star x = x$
- Key agreement:

Idea 1: instantiation

- Couveignes (1997), Rostovtsev, Stolbunov (2006)
- Set X consists of j-invariants of elliptic curves E/\mathbb{F}_q with $End(E) \simeq \mathcal{O}_K$, ring of integers of quadratic imaginary field
- Group G is class group $cl(\mathcal{O}_K)$
- Ideal a in O_K defines a subgroup E[a] and isogeny

$$\varphi_{\mathfrak{a}}: E \to E' = E/E[\mathfrak{a}]$$

• Action: $[a] \star j(E) = j(E')$

Elliptic curves

• Elliptic curve E over field k with char(k) > 3 can be defined by

$$y^2 = x^3 + ax + b$$
 $a, b \in k$, $4a^3 + 27b^2 \neq 0$

• For any field extension k'/k, E(k') set of k'-rational points forms an abelian group with \mathbb{O} as identity element

Elliptic curves

• Elliptic curve E over field k with char(k) > 3 can be defined by

$$y^2 = x^3 + ax + b$$
 $a, b \in k$, $4a^3 + 27b^2 \neq 0$

- For any field extension k'/k, E(k') set of k'-rational points forms an abelian group with \mathbb{O} as identity element
- The *j*-invariant $j(E) = j(a, b) = 1728 \frac{4a^3}{4a^3 + 27b^2}$ determines isomorphism class over \overline{k}
- Given $j_0 \in k$, easy to write down curve with j-invariant equal to j_0
 - j(0,b) = 0 and j(a,0) = 1728
 - General case: a = -3c and b = 2c with $c = j_0/(j_0 1728)$

Torsion subgroups

- Multiplication by n map: $[n]: E \rightarrow E: P \mapsto nP$
- n-torsion subgroup is kernel of [n]

$$E[n] = \{P \in E(\overline{k}) : nP = \mathbb{O}\}$$

- If $char(k) \nmid n$, then structure of $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$
- If char(k) = p, then either:
 - Supersingular: $E[p^e] = \{\mathbb{O}\}$ or
 - Ordinary: $E[p^e] \simeq \mathbb{Z}/p^e\mathbb{Z}$

Isogenies

- An **isogeny** $\varphi: E_1 \to E_2$ is a morphism (rational map) that preserves identity
- The degree of an isogeny is its degree as rational map
- If isogeny is separable, then $\deg(\varphi) = \# \ker(\varphi)$
- For isogeny $\varphi: E_1 \to E_2$ of degree n we have **dual isogeny** $\hat{\varphi}: E_2 \to E_1$ with

$$\hat{\varphi} \circ \varphi = [n]_{E_1}$$
 and $\varphi \circ \hat{\varphi} = [n]_{E_2}$

Isogenies

- An **isogeny** $\varphi: E_1 \to E_2$ is a morphism (rational map) that preserves identity
- The degree of an isogeny is its degree as rational map
- If isogeny is separable, then $\deg(\varphi) = \# \ker(\varphi)$
- For isogeny $\varphi: E_1 \to E_2$ of degree n we have **dual isogeny** $\hat{\varphi}: E_2 \to E_1$ with

$$\hat{\varphi} \circ \varphi = [n]_{E_1}$$
 and $\varphi \circ \hat{\varphi} = [n]_{E_2}$

Theorem

- For every finite subgroup $H \subset E_1(\overline{k})$, there exists elliptic curve E_2 and separable isogeny $\varphi : E_1 \to E_2$ with $\ker \varphi = H$
- **Vélu's formulae**: compute curve E_2 and isogeny φ given H

ℓ-Isogenies and modular polynomial

- Let $\ell \neq char(k)$ be prime, then isogeny of degree ℓ has cyclic kernel of order ℓ
- Recall: $E[\ell] = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$, so there are $\ell + 1$ cyclic subgroups
- Each subgroup is kernel of isogeny
- Isogeny is defined over k iff its kernel is Galois invariant under $Gal(k(E[\ell])/k)$
- So there are: 0, 1, 2 or $\ell + 1$, k-rational isogenies

ℓ-Isogenies and modular polynomial

- Let $\ell \neq char(k)$ be prime, then isogeny of degree ℓ has cyclic kernel of order ℓ
- Recall: $E[\ell] = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$, so there are $\ell + 1$ cyclic subgroups
- Each subgroup is kernel of isogeny
- Isogeny is defined over k iff its kernel is Galois invariant under $Gal(k(E[\ell])/k)$
- So there are: 0, 1, 2 or $\ell + 1$, k-rational isogenies
- Modular polynomial: $\Phi_{\ell}(X, Y)$
 - Symmetric in X, Y and of degree $\ell + 1$
 - Two elliptic curves E_1, E_2 are ℓ -isogenous iff $\Phi_{\ell}(j(E_1), j(E_2)) = 0$

ℓ-Isogenies and modular polynomial

- Let $\ell \neq char(k)$ be prime, then isogeny of degree ℓ has cyclic kernel of order ℓ
- Recall: $E[\ell] = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$, so there are $\ell + 1$ cyclic subgroups
- Each subgroup is kernel of isogeny
- Isogeny is defined over k iff its kernel is Galois invariant under $Gal(k(E[\ell])/k)$
- So there are: 0, 1, 2 or $\ell + 1$, k-rational isogenies
- Modular polynomial: $\Phi_{\ell}(X, Y)$
 - Symmetric in X, Y and of degree $\ell + 1$
 - Two elliptic curves E_1, E_2 are ℓ -isogenous iff $\Phi_{\ell}(j(E_1), j(E_2)) = 0$
- Elkies algorithm: isogeny and its kernel given $j(E_1)$ and $j(E_2)$

Endomorphism ring

- Endomorphism is an isogeny from E to itself
- The set of endomorphisms End(E) forms a ring

$$(\varphi + \psi)(P) = \varphi(P) + \psi(P)$$
 $(\varphi \psi)(P) = \varphi(\psi(P))$

Endomorphism ring

- Endomorphism is an isogeny from E to itself
- The set of endomorphisms End(E) forms a ring

$$(\varphi + \psi)(P) = \varphi(P) + \psi(P)$$
 $(\varphi \psi)(P) = \varphi(\psi(P))$

Theorem

End(E) of a curve E/k can be:

- End(E) $\simeq \mathbb{Z}$
- ② $End(E) \simeq$ an order $\mathcal O$ in imaginary quadratic extension of $\mathbb Q$
- lacktriangledown $End(E) \simeq$ an order $\mathcal O$ in quaternion algebra over $\mathbb Q$
- If End(E) is strictly larger than \mathbb{Z} , then E is said to have **complex** multiplication
- Case 3 occurs if and only if E is supersingular (see later)

Endomorphism rings of isogenous curves

- The endomorphism algebra $End^0(E) = End(E) \otimes \mathbb{Q}$
- End⁰(E) is isogeny invariant:
 - so if E₁ is supersingular then also E₂
- In general $End(E_1) \neq End(E_2)$, but for ℓ -isogenies we have
 - $End(E_1) = End(E_2)$ (horizontal)
 - End(E₁) has index ℓ in End(E₂) (ascending)
 - $End(E_2)$ has index ℓ in $End(E_1)$ (descending)

Frobenius endomorphism

- Let *E* be elliptic curve over finite field $k = \mathbb{F}_q$
- The Frobenius endomorphism

$$\pi_E: E \to E: (x,y) \mapsto (x^q,y^q)$$

Theorem

The characteristic equation of π_E is given by

$$X^2 - tX + q = 0, \quad |t| \le 2\sqrt{q}$$

and $\#E(\mathbb{F}_q) = q + 1 - t$

• $\Delta = t^2 - 4q \le 0$, so $\mathbb{Q}(\pi_E)$ is imag quad field K for $|t| \ne 2\sqrt{q}$

Ordinary curves over finite fields

- Curve E/\mathbb{F}_q is ordinary iff $E[p] \neq \{\mathbb{O}\}$ with $p = char(\mathbb{F}_q)$
- ullet End(E) is order in imaginary quadratic field $K=\mathbb{Q}(\pi_E)$

$$\mathbb{Z}[\pi_{\mathsf{E}}] \subset \mathsf{End}(\mathsf{E}) \subset \mathcal{O}_{\mathsf{K}}$$

• Write $\Delta = t^2 - 4q = f^2 D_K$ with D_K fundamental discriminant of K

$$f = [\mathcal{O}_K : \mathbb{Z}[\pi_E]]$$

- Vertical isogenies can only occur for $\ell \mid f$
- So if Δ is squarefree then $End(E) = \mathbb{Z}[\pi_E] = \mathcal{O}_K$, and only horizontal isogenies exist

- For simplicity assume: $End(E) = \mathbb{Z}[\pi_E] = \mathcal{O}_K$
- For an ideal $\mathfrak{a} \in \mathcal{O}_K$ define the \mathfrak{a} -torsion subgroup

$$E[\mathfrak{a}] = \{P \in E(\overline{k}) : \alpha(P) = \mathbb{O} \text{ for all } \alpha \in \mathfrak{a}\}$$

- For simplicity assume: $End(E) = \mathbb{Z}[\pi_E] = \mathcal{O}_K$
- For an ideal $\mathfrak{a} \in \mathcal{O}_K$ define the \mathfrak{a} -torsion subgroup

$$E[\mathfrak{a}] = \{ P \in E(\overline{k}) : \alpha(P) = \mathbb{O} \text{ for all } \alpha \in \mathfrak{a} \}$$

Properties

- $E[\mathfrak{a}]$ is kernel of separable horizontal isogeny $\phi_{\mathfrak{a}}: E \to E_{\mathfrak{a}} = E/E[\mathfrak{a}]$
- If $char(k) \nmid N(\mathfrak{a})$, then $deg(\phi_{\mathfrak{a}}) = N(\mathfrak{a}) = [\mathcal{O}_K : \mathfrak{a}]$
- For two ideals $\mathfrak{a},\mathfrak{b}$ of \mathcal{O}_K we have: $\phi_{\mathfrak{a}\mathfrak{b}} = \phi_{\mathfrak{a}}\phi_{\mathfrak{b}}$
- For principal ideal $\mathfrak a$ we have $E\simeq E_{\mathfrak a}$

- Define $Ell_{\mathcal{O}_K}(k) = \{j(E) : E/k \text{ with } End(E) \simeq \mathcal{O}_K\}$
- Then class group $cl(\mathcal{O}_K)$ acts on $Ell_{\mathcal{O}_K}$ where $[\mathfrak{a}] \star j(E) = j(E_{\mathfrak{a}})$
- The action of $cl(\mathcal{O}_K)$ on $Ell_{\mathcal{O}_K}$ is simply transitive
- Conclusion: $\#Ell_{\mathcal{O}_K}(k) = \#h(\mathcal{O}_K)$ (or $Ell_{\mathcal{O}_K}(k)$ is empty)

- Define $Ell_{\mathcal{O}_K}(k) = \{j(E) : E/k \text{ with } End(E) \simeq \mathcal{O}_K\}$
- Then class group $cl(\mathcal{O}_K)$ acts on $Ell_{\mathcal{O}_K}$ where $[\mathfrak{a}] \star j(E) = j(E_{\mathfrak{a}})$
- The action of $cl(\mathcal{O}_K)$ on $Ell_{\mathcal{O}_K}$ is simply transitive
- Conclusion: $\#Ell_{\mathcal{O}_K}(k) = \#h(\mathcal{O}_K)$ (or $Ell_{\mathcal{O}_K}(k)$ is empty)
- For prime $\ell \neq char(k)$, require ideal of norm ℓ in $\mathcal{O}_K = \mathbb{Z}[\pi_E]$
 - If ℓ splits, then $\ell\mathcal{O}_K=\mathfrak{lm},$ two horizontal isogenies $\mathfrak l$ and $\mathfrak m$
 - If ℓ ramifies, then $\ell \mathcal{O}_K = \mathfrak{l}^2$ so one horizontal isogeny \mathfrak{l}
 - If ℓ is inert, no horizontal isogenies
 - Ideals are of the form $\mathfrak{l}=\langle\ell,\pi_{E}-\lambda\rangle$, so kernel is λ -eigenspace of Frobenius in $E[\ell]$

Example

- Let p = 241 and consider $E/\mathbb{F}_p : y^2 = x^3 + x + 3$, j(E) = 188
- Then $\#E(\mathbb{F}_p) = 231$ and t = 11
- $\Delta = t^2 4p = -843$ which is squarefree
- Define $K = \mathbb{Q}(\pi_E) = \mathbb{Q}[x]/(x^2 tx + p)$, then $\mathcal{O}_K = \mathbb{Z}[\pi_E]$

Example

- Let p = 241 and consider $E/\mathbb{F}_p : y^2 = x^3 + x + 3, j(E) = 188$
- Then $\#E(\mathbb{F}_p) = 231$ and t = 11
- $\Delta = t^2 4p = -843$ which is squarefree
- Define $K = \mathbb{Q}(\pi_E) = \mathbb{Q}[x]/(x^2 tx + p)$, then $\mathcal{O}_K = \mathbb{Z}[\pi_E]$
- Class group $cl(\mathcal{O}_K)$ is cyclic of order 6
- Generator can be taken: $[g] = [\langle 11, \pi_E 1 \rangle]$
- Small representatives:

$$\begin{array}{ll} [g] : \langle 11, \pi_E - 1 \rangle & [g^4] : \langle 7, \pi_E - 1 \rangle \\ [g^2] : \langle 7, \pi_E - 3 \rangle & [g^5] : \langle 11, \pi_E - 10 \rangle \\ [g^3] : \langle 3, \pi_E - 1 \rangle & [g^6] : \langle 1 \rangle \\ \end{array}$$

Example

• *j*-invariants having same endomorphism ring

$$\{160, 161, 188, 195, 65, 191\}$$

- For primes $\ell \in \{2, 3, 5, 7, 11\}$:
 - No horizontal isogenies of degree 2 and 5
 - For $\ell = 3$, precisely one horizontal isogeny per *j*-invariant
 - For $\ell = 7, 11$, precisely two horizontal isogenies per *j*-invariant

Isogeny graph on $Ell_{\mathcal{O}_{\kappa}}(k) \ \ell = 3$

Isogeny graph on $Ell_{\mathcal{O}_K}(k) \ \ell = 7$

Isogeny graph on $Ell_{\mathcal{O}_{K}}(k) \ell = 11$

Isogeny graph on $Ell_{\mathcal{O}_K}(k)$ $\ell=3,5,11$

Computing class action

- System setup: curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q)=q+1-t$ points
- $\Delta=t^2-4q$ squarefree so $End(E)=\mathbb{Z}[\pi_E]$ with $\pi_E^2-t\pi_E+q=0$
- If $f(x) = x^2 tx + q$ has two roots λ, μ modulo ℓ , then $\ell \mathcal{O}_K = \mathfrak{m}\mathfrak{l}$ with $\mathfrak{m} = \langle \ell, \pi_E \lambda \rangle$ and $\mathfrak{l} = \langle \ell, \pi_E \mu \rangle$

Computing class action

- System setup: curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q)=q+1-t$ points
- ullet $\Delta=t^2-4q$ squarefree so $\mathit{End}(E)=\mathbb{Z}[\pi_E]$ with $\pi_E^2-t\pi_E+q=0$
- If $f(x) = x^2 tx + q$ has two roots λ, μ modulo ℓ , then $\ell \mathcal{O}_K = \mathfrak{m}\mathfrak{l}$ with $\mathfrak{m} = \langle \ell, \pi_E \lambda \rangle$ and $\mathfrak{l} = \langle \ell, \pi_E \mu \rangle$
- Given *j*-invariant j(E) and ideal $\mathfrak{l} = \langle \ell, \pi_E \lambda \rangle$ in \mathcal{O}_K of norm ℓ
 - Compute possible j-invariants j_1, j_2 as roots of $\Phi_{\ell}(x, j(E)) = 0$
 - For j_1 use Elkies' algorithm to compute curve E' with $j(E') = j_1$ and kernel H of isogeny
 - If H eigenspace corresponding to λ , then correct
 - Otherwise select j₂

Sampling elements in $cl(\mathcal{O}_K)$

- Do not want to compute $h(\mathcal{O}_K)$ nor the structure of $cl(\mathcal{O}_K)$
- Under GRH there exists constant c_0 such that degree one ideals of norm smaller than $\ell_{\sf max} = c_o \log^2 |\Delta|$ generate $cl(\mathcal{O}_K)$

$$\textit{L} = \{ \mathfrak{l}_i \text{ degree one } \textit{N}(\mathfrak{l}_i) = \ell_i \text{ and } \textit{l}_i \leq \ell_{\text{max}} \}$$

 To select a "random" element, select exponents e_i for i = 1,...,#L and set

$$\mathfrak{a} = \prod_{i=1}^{\#L} \mathfrak{l}_i^{e_i}$$

- Box containing exponents should have volume $\gg h(\mathcal{O}_K)$
- Very slow: Stolbunov for 428-bit prime p requires 230s

Ordinary isogeny computation: hardness

- Given two ordinary elliptic curves E_1/\mathbb{F}_q and E_2/\mathbb{F}_q with $End(E_1) = End(E_2)$
- Classical computers: algorithm of Galbraith, Hess, Smart (optimized by Stolbunov) computes isogeny in time $\tilde{O}(q^{1/4+o(1)})$
- Quantum computers: Childs, Jao, Soukharev algorithm runs in time

$$L_q(\frac{1}{2},\frac{\sqrt{3}}{2})$$

Ordinary isogeny computation: hardness

- Given two ordinary elliptic curves E_1/\mathbb{F}_q and E_2/\mathbb{F}_q with $End(E_1)=End(E_2)$
- Classical computers: algorithm of Galbraith, Hess, Smart (optimized by Stolbunov) computes isogeny in time $\tilde{O}(q^{1/4+o(1)})$
- Quantum computers: Childs, Jao, Soukharev algorithm runs in time

$$L_q(\frac{1}{2},\frac{\sqrt{3}}{2})$$

Abelian hidden shift problem

- Let A be a finite abelian group and $f_0: A \to R$ an injective function
- Let $f_1: A \to R$ be defined by $f_1(x) = f_0(xs)$ for some unknown s
- Problem: find s
- Isogeny setting: $f_0([\mathfrak{a}]) = [\mathfrak{a}] \star E_1$ and $f_1([\mathfrak{a}]) = [\mathfrak{a}] \star E_2$
- We know that for some secret $[\mathfrak{s}]$ we have $E_2 = [\mathfrak{s}] \star E_1$

Supersingular curves

- E over \mathbb{F}_q with $q = p^n$ is supersingular iff $E[p] = \{\mathbb{O}\}$
- End(E) isomorphic to an order in a quaternion algebra
- All supersingular curves can be defined over \mathbb{F}_{p^2}
- ullet Let S_{p^2} be the set of all supersingular j-invariants in \mathbb{F}_{p^2}

Theorem

$$\#S_{p^2} = \left\lfloor \frac{p}{12} \right\rfloor + \begin{cases} 0 & \text{if } p \equiv 1 \text{ mod } 12\\ 1 & \text{if } p \equiv 5,7 \text{ mod } 12\\ 2 & \text{if } p \equiv 11 \text{ mod } 12 \end{cases}$$

Supersingular isogeny graph

• $E[\ell] \simeq (\mathbb{Z}/\ell) \times (\mathbb{Z}/\ell)$, so subgroup H_i of order ℓ gives isogeny

$$\psi_i: E \to E_i \simeq E/H_i$$

- Isogenous curve E_i is supersingular so has j-invariant in S_{p^2}
- Immediately leads to $\ell+1$ directed regular graph $X(S_{p^2},\ell)$

Theorem

The graph $X(S_{p^2}, \ell)$ is connected.

Supersingular isogeny graph

• $E[\ell] \simeq (\mathbb{Z}/\ell) \times (\mathbb{Z}/\ell)$, so subgroup H_i of order ℓ gives isogeny

$$\psi_i: E \to E_i \simeq E/H_i$$

- Isogenous curve E_i is supersingular so has j-invariant in S_{p^2}
- Immediately leads to $\ell+1$ directed regular graph $X(S_{p^2},\ell)$

Theorem

The graph $X(S_{n^2}, \ell)$ is connected.

- Edges (j_1, j_2) not incident to 0 or 1728 have same multiplicity as (j_2, j_1)
- Obtain undirected graph $X(S_{p^2}',\ell)$ with $S_{p^2}'=S_{p^2}\setminus\{0,1728\}$
- ullet For $p\equiv 1$ mod 12, we have $S_{p^2}'=S_{p^2}$

Supersingular isogeny graph: example

- Let p = 241, then $\#S_{p^2} = 20$
- $\mathbb{F}_{\rho^2} = \mathbb{F}_{\rho}[w] = \mathbb{F}_{\rho}[x]/(x^2 + 238x + 7)$
- $S_{p^2} = \{93,51w + 30,190w + 183,240,216,45w + 211,196w + 105,64,155w + 3,74w + 50,86w + 227,167w + 31,175w + 237,66w + 39,8,23w + 193,218w + 21,28,49w + 112,192w + 18\}$

Supersingular isogeny graph $\ell=2$

Supersingular isogeny graph $\ell=3$

Expander graphs

- An undirected graph G = (V, E) is an **expander graph** with expansion constant c > 0, if for any subset $U \subset V$ and $|U| \le |V|/2$, its boundary $\Gamma(U)$ has size $|\Gamma(U)| \ge c|U|$.
- An expander graph is connected.
- Diameter of G is maximal distance between any two vertices in a graph.
- For expander graph:

$$Diam(G) \leq \frac{2\log(|V|)}{\log(1+c)}$$

Theorem

For $p \equiv 1 \mod 12$, the graph $X(S_{p^2}, \ell)$ is a Ramanujan graph, i.e. an expander graph with "optimal" expansion factor.

Idea 2: a commutative diagram

- ullet de Feo, Jao, Plût derive Diffie-Hellman type key agreement on \mathcal{S}_{p^2}
- Basic idea: commutative diagram

Idea 2: a commutative diagram

- ullet de Feo, Jao, Plût derive Diffie-Hellman type key agreement on \mathcal{S}_{p^2}
- Basic idea: commutative diagram

- Common key will be *j*-invariant of curve $E/\langle P, Q \rangle$
- P and Q should be kept secret
 - Should also be impossible to derive from E and $E/\langle P \rangle$ and $E/\langle Q \rangle$
- Need to know $\phi(Q)$ to be able to compute $E/\langle P \rangle$
 - But at the same time $\phi(Q)$ should be secret ...

SIDH: de Feo, Jao, Plût

• Take prime $p=\ell_A^{e_A}\ell_B^{e_B}\cdot f\pm 1$ and supersingular curve E over \mathbb{F}_p with

$$\#E(\mathbb{F}_{p^2})=(p\mp 1)^2=(\ell_A^{e_A}\ell_B^{e_B}\cdot f)^2$$

- With $E[\ell_A^{e_A}]$ rational over \mathbb{F}_{p^2} (similarly for ℓ_B)
- ullet Contains $\ell_A^{e_A} + \ell_A^{e_A-1}$ cyclic subgroups of order $\ell_A^{e_A}$
- Any point P of order $\ell_A^{e_A}$ defines path of length e_A in $X(S_{p^2}, \ell_A)$ starting from j(E)

SIDH: de Feo, Jao, Plût

• Let $\{P_A,Q_A\}$ and $\{P_B,Q_B\}$ be public bases of $E[\ell_A^{e_A}]$ and $E[\ell_B^{e_B}]$

 $E_A, \phi_A(P_B), \phi_A(Q_B)$

 $E_B, \phi_B(P_A), \phi_B(Q_A)$

Alice

$$m_A, n_A \in_R \mathbb{Z}/\ell_A^{e_A} \ P = m_A P_A + n_A Q_A \ \phi_A : E o E_A = E/\langle P
angle$$

$$\phi_B(P) = m_A \phi_B(P_A) + n_A \phi_B(Q_A)
onumber \ E_{AB} = E_B / \langle \phi_B(P) \rangle$$

Bob

$$m_B, n_B \in_R \mathbb{Z}/\ell_B^{e_B} \ Q = m_B P_B + n_B Q_B \ \phi_B : E o E_B = E/\langle Q
angle$$

$$\phi_A(Q) = m_B \phi_A(P_B) + n_B \phi_A(Q_B)
onumber \ E_{BA} = E_A / \langle \phi_A(Q)
angle$$

Computing power ℓ isogenies

- Let P be a point of order ℓ^e , and isogeny $\phi: E \to E/\langle P \rangle$
- Decompose ϕ as $\phi_{e-1} \circ \phi_{e-2} \circ \cdots \circ \phi_0$ with $E_0 = E$ and $P_0 = P$

$$\phi_i: E_i \to E_{i+1}$$
 $E_{i+1} = E_i/\langle \ell^{e-i-1}P_i \rangle$ $P_{i+1} = \phi_i(P_i)$

- Multipilication based strategy:
 - compute $\ell^{e-i-1}P_i$, then ϕ_i and then P_{i+1}
- Isogeny based strategy:
 - compute all powers once $Q_i = \ell^i P$, compute ϕ_0 and apply ϕ_0 to all Q_i for $0 \le i \le (e-2)$ and repeat for $\phi_1, \ldots, \phi_{e-1}$
- de Feo, Jao, Plût: optimal strategy that uses a mix of both

SIDH implementation

- Costello, Longa, Naehrig: curve $y^2 = x^3 + x$ over field \mathbb{F}_p with $p = 2^{372}3^{239} 1$
- Security: classical 192 bits, post-quantum 128 bits
- Large number of optimizations in curve model, base points, isogeny computation
- Full key agreement in 10⁸ cycles (roughly 30 per second on PC)

Supersingular isogeny computation: hardness

Classical computers

- Given two supersingular elliptic curves E_1 and E_2 over \mathbb{F}_{p^2} , can compute isogeny in time $\tilde{O}(p^{1/4})$
- But: problem is much less general, since degree is known $\ell_A^{e_A}$ and $<\sqrt{p}$, so both curves are not that far apart in isogeny graph
- Claw problem: given two functions $f: A \to C$ and $g: B \to C$ find pair (a, b) with f(a) = g(b)
- Let A (resp. B) be subgroups of order $\ell_A^{e_A/2}$ on E_1 (resp. on E_2) and f and g maps induced by isogeny
- Again $O(p^{1/4})$ attack

Supersingular isogeny computation: hardness

Quantum computers

- Claw problem can be solved in time $O(p^{1/6})$
- Abelian hidden shift problem?
 - de Feo, Jao, Plût argue this does not apply since End(E) is not abelian
 - Do we need full End(E)?
 - Is there a natural group action in this case?

Supersingular isogeny computation: hardness

Quantum computers

- Claw problem can be solved in time $O(p^{1/6})$
- Abelian hidden shift problem?
 - de Feo, Jao, Plût argue this does not apply since End(E) is not abelian
 - Do we need full End(E)?
 - Is there a natural group action in this case?

Can people in this room do better?