

Risposta corretta.

The correct answer is: -20

Calcolare il volume del solido limitato delimitato da  $\{(x,y,z): y=x^2\}$  e dai piani x=0, y=0, z=0, y=1, x+z=1.

Select one:

- $\bigcirc \text{ a. } \frac{5}{12}$
- ob. Altro
- $\bigcirc \ \mathsf{d.} \ \ \frac{2}{3}$
- O e. 0
- $\bigcirc$  f.  $-5\sqrt{3}$
- $\odot$  g.  $3\sqrt{5}$

Risposta errata.

The correct answer is:  $\frac{5}{12}$ 

Sia  $\Sigma$  la superficie cartesiana  $z=x^2+y^2$ , con  $x^2+y^2-y\leq 0, x\geq 0$ . Calcolare  $\int_{\Sigma}rac{x}{\sqrt{4z+1}}\,d\sigma$ .

$$\int_{\Sigma} \frac{x}{\sqrt{4z+1}} \, d\sigma.$$

- Select one:  $-2\frac{\sqrt{2}}{6}$  Altro  $\frac{\pi}{4}$   $\frac{\pi}{2}$ Non voglio rispondere  $\stackrel{\bigstar}{}$   $\frac{1}{12}$   $\frac{\pi}{2}$

Risposta errata.

The correct answer is:  $\frac{1}{12}$ 

Sia  $f:\mathbb{R}^2 o\mathbb{R}$  di classe  $\mathcal{C}^1$ , con

 $f(0,1) = 3, \, \partial_x f(0,1) = -5, \, \partial_y f(0,1) = 2.$ 

Determinare l'ordinata z nel punto (0.1,0.9) del piano tangente al grafico di f nel punto (0,1,f(0,1))

Select one:

- (a. 3.6
- O b. altro
- oc. non voglio rispondere
- (d. 0.7
- ⊚ e. 3.7×
- O f. 2.3

Your answer is incorrect.

$$f(0,1) + \partial_x f(0,1) \times (0.1-0) + \partial_y f(0,1) \times (0.9-1) = 2(0.1) - 5(-0.1) = 0.7$$

The correct answer is: 2.3

| Si dispone di due monete apparentemente identiche. La <b>moneta 1</b> è equilibrata e dà testa con probabilità del 50%. La <b>moneta 2</b> dà testa con probabilità del 57%. Si sceglie a caso una delle due monete e si effettuano <b>10 lanci</b> consecutivi con la stessa moneta: vengono esattamente <b>6 Teste</b> .  Qual è la probabilità che sia stata usata la moneta 2? Esprimere il risultato in decimali troncando a 4 decimali (es. 0.4768)  I lanci sono indipendenti, una volta che la moneta è stata scelta. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>0.6141</li> <li>Altro</li> <li>0.5999</li> <li>0.5700</li> <li>Non voglio rispondere X</li> <li>0.4300</li> <li>0.0087</li> <li>0.5455</li> <li>0.9913</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
| Your answer is incorrect. The correct answer is: 0.5455                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Question 6
Incorrect
P Flag question

Sia (X,Y) congiunta continua con densità congiunta  $f_{X,Y}(x,y) = \begin{cases} cx+1 \text{ se } x \geq 0, y \geq 0, x+y \leq 1, \\ 0 \text{ altrimenti.} \end{cases}$ 

Dopo aver determinato c , calcolare la proballità dell'evento  $\{Y \leq 2X^2\}$  .

Select one:

a. Non voglio rispondere

O b. 1/24

 $\frac{53}{96}$ 

 $\bigcirc$  e.  $\frac{1}{24} (51 - 8\sqrt{2})$ 

 $\circ$  f.  $\frac{1}{3}(3-\sqrt{2})$ 

Your answer is incorrect.

The correct answer is:  $\frac{53}{96}$ 

Siano  $X_1,\ldots,X_{64}$  delle variabili i.i.d. ciascuna con valore atteso  $\mu$  e varianza  $\sigma^2=16$ . Quanto deve valere al massimo  $\mu$  affinché  $P(X_1+\cdots+X_{64}<760)$  sia maggiore di 0.8. LO SPAZIO PER LA RISPOSTA SI TROVA SOTTO LA TABELLA: scroilare lo schermo con FRECCIA GIU

## **Standard Normal Distribution**



$$p(z \le z_1) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_1} e^{-\frac{1}{2}z^2} dz$$

| Z1  | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0,5239 | 0.5279 | 0.5319 | 0,5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0,6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0,9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0,9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0,9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0,9997 | 0.9997 | 0.9997 | 0.9998 |
| 3.5 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0,9998 |
| 3.6 | 0.9998 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
| 3.7 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
| 3.8 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
| 3.9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

Answer:

11.475

| Sia $(X,Y)$ variabile congiunta continua con densità congiunta continua $f_{X,Y}$ e densità marginali continue $f_X$ , $f_Y$ . Quale delle seguenti affermazione è vera? Ci possono essere più risposte esatte: selezionare tutte quelle corrette.                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select one or more:  a. Per ogni $(a,b)$ si ha $f_{X,Y}(a,b) = f_X(a)f_Y(b)$ se e solo se $X,Y$ sono indipendenti $\checkmark$ b. Dalle densità marginali si può ricavare la densità conglunta $*$ c. Dalla densità conglunta si possono ricavare le densità marginali  d. Per ogni $(a,b)$ si ha $f_{X,Y}(a,b) = f_X(a)f_Y(b)$ e. Nessuna delle altre risposte |
| Your answer is partially correct.<br>You have correctly selected 1.<br>The correct answers are: Dalla densità conglunta si possono ricavare le densità marginali. Per ogni $(a,b)$ si ha $f_{X,Y}(a,b)=f_X(a)f_Y(b)$ se e solo se $X,Y$ sono indipendenti                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                 |