Algorithm Engineering

April 27, 2015

1 Datentypen

Getränkeautomat

Automat akzeptiert 1E, ein Getränk kostet 3E Operatoren:

- 1. Init(Reset)
- 2. Akzeptiere1E

 $\mathrm{Init} \to \mathrm{Zustand}$

Semantik: Automat geht in Zustand 0

Akzeptiere1E: ZustandX $\{0,1\} \to \text{ZustandX}\{\text{tue nichts, gib Getänk}\}$ Semantik: Beschreibung durch einen endlichen Automaten.

Stadtplan

Übung 1

1.1 Bemerkungen

- Operatoren können partiell Definiert sein. Man gibt Definitionsbereich oft in einer Vorbedingung an.
- Operatoren, bei denen der Datentyp selbst auf der linken Seite nicht vorkommt, heißen <u>Konstruktoren</u>. Sie erzeugen ein neues Objekt (bzw. versetzen den Typ in einem bestimmten Zustand).
 - Create: \rightarrow stack<T>
 - Create: int \rightarrow vector (Vektor bestimmter Dimension)
- Objekt- und Zustandssicht sind beide nützlich. <u>Stack/Getränkeautomat</u> haben internen Zustand, Operatoren können ihn verändern.
 - Integer: Objektsicht besser, Operatoren erzeugen neue Objekte, exisitierende werden nicht geändert.
- stack
< T > ist ein parametrisierbarer Datentyp: Stack mit Elementen vom Typ T. Hat eventuell besondere Anforederungen an Typ T, z.B. $x \le y$ in Dictionaries.
- Man kann nun eigentlich schon programmieren, obwohl über die Interpretiernug noch nichts bekannt ist.

Anwendung von stack< T >

Auswertung von Postfix-Ausdrücken

Vereinfachungen: alle Operatoren binär (+-*/), Eingabe nur Zahlen 0-9

Bsp.: $(7-5)*(3+1) \rightarrow 75-31+*$

1.2 Defintion eines Datentyps

(In einer Objekt-Orientierten Programmiersprache)

```
class Typname {
     //Definition der Menge der Objekte bzw Zustaende
```

```
private: //Deklaration von Variablen zur Darstellung der Objekte/Zustaende
public: //Operatoren
//Kommentare z.B. ueber Effizienz
```

Operatoren

};

Methoden/Memberfunktionen Syntax: Ergebnistyp Name(Argumente...); Spezielle Methoden:

- Kein Ergebnistyp: stack(); stack(size);
- Destruktor: ~ Typname();

1.3 Beispiel

 $int_stack \rightarrow stack < T >$

```
class int_stack {
        /* Eine Instanz vom Typ int_stack ist eine Folge von ganzen Zahlen (int). Eine Fol
        private: //Implementierung
        public: stack(int sz); //Konstruktor
        //Erzeugt einen Stack mit maximaler Groesse sz
        stack() //Destruktor
        void push (int x);
        //fuegt x als letzes Element (top) an die Folge an.
        int top() const;
        //liefert das letzte (top) Element
        //Precondition: Stack nicht leer
        int pop();
        //entfernt letztes (top) Element der Folge und gibt es zurueck
        //Precondition: Stack nicht leer
        bool empty() const;
        //true, wenn Stack leer, false sonst.
```

In c++ Spezielle Header Datei, die die Deklarationen ohne Rumpf enthält. Implementierung in .cpp

Implementierung der Klasse int_stack

```
#include "int_stack.h"
int_stack::int_stack(int n) {
        sz=2;
        A = new int[sz];
        t = -1; //leer
int_stack: ~ int_stack(){
        delete [] A;
void int_stack::push(int x){
        if (t = sz-1){
                //stack voll
                int* B=new int [2*sz];
                sz \leftarrow 2*sz;
                for (int i=0; i \le ; i++){
                        B[i] ←
                delete [] A;
        int int_stack::pop(){
        if (t = -1){
                EXCEPTION("Leerer Stack")
        return A[t--];
}
```

Einschub: Variablen, Konstruktoren, Wertzuweisung

ablen Deklaration c++: Aufruf des Konstruktors generiert ein Objekt.

Java: Erst eine Referenz erstellen, dann ein Objekt generieren und auf dieses verweisen.

Wertzuweisung c++: $int_s tacks1, s2; s1 = s2$; Objekt wird kopiert, es gibt 2 Objekte.

Java: $int_s tacks1, s1; s1 = s2$; Referenzen zeigen auf ein einziges Objekt.

semantik in c++: Verwendet Pointer auf ein Objekt.

Test auf Gleichheit (==) Operator

Parameterübergabe sind Pointer

semantik in Java: Parameter by Value, gesamtes Objekt kopiert und dann übergeben.

Korrektheit einer Implementierung

(Hier der Array-Implementierung von int_stack) Eigentlich 2 Datentypen:

- 1. der abstrake Datentyp $int_s tack$
- 2. der konkrete Datentyp Array

Abstrakter Zustand: Folge von int's

Konkreter Zustand: Werte der Variable A,t,sz

Wir garantieren (Invariante), dass nicht die Kombination von A,t,sz möglich sind, sondern nur die mit:

- 1. A ist ein Feld der Länge sz
- 2. $-1 \le t \le sz 1$

Sei Z=Menge der konkreten Zustände und S = Menge der abstrakten Zustände

Um die Korrektheit zu zuigen, definieren wir eine Abbildung
$$F: Z \to S$$
 $(A, sz, t) \to \left\{ \begin{array}{ll} Folge \ A[0], ..., A[t] \ fallst \geq 0 \\ Leere \ Folge, t = -1 \end{array} \right.$ Und zeigen:

- 1. Konstruktoren erzeugen gültige konkrete Zustände
- 2. Für jede abstrakte Operation und die dazugehörige konkrete Operation f_{op} zeige $F(f_{op}(Z)) = op(F(Z))$ Bsp.: push: $S \times int \rightarrow S$ $f_{push}: Z \times int \to Z$

Kommutatives Diagramm:

$$z \xrightarrow{F} S$$

$$\downarrow f_{op} \uparrow op$$

$$z' \xrightarrow{F} S'$$