Connected-homogeneous graphs

Robert Gray

British Combinatorial Conference July 2007

Homogeneous graphs

Definition

A graph Γ is called homogeneous if any isomorphism between finite induced subgraphs extends to an automorphism of the graph.

Homogeneity is the *strongest* possible symmetry condition we can impose on a graph.

Example

The line graph $L(K_{3,3})$ of the complete bipartite graph $K_{3,3}$ is a finite homogeneous graph.

Classification of finite homogeneous graphs

Gardiner classified the finite homogeneous graphs.

Theorem (Gardiner (1976))

A finite graph is homogeneous if and only if it is isomorphic to one of the following:

- 1. finitely many disjoint copies of a complete graph K_r (or its complement, complete multipartite graph)
- 2. the pentagon C_5
- 3. *line graph* $L(K_{3,3})$ *of the complete bipartite graph* $K_{3,3}$.

An infinite homogeneous graph

Definition (The random graph R)

Constructed by Rado in 1964. The vertex set is the natural numbers (including zero).

For $i, j \in \mathbb{N}$, i < j, then i and j are joined if and only if the ith digit in j (in base 2, reading right-to-left) is 1.

Example

Since $88 = 8 + 16 + 64 = 2^3 + 2^4 + 2^6$ the numbers less that 88 that are adjacent to 88 are just $\{3, 4, 6\}$.

Of course, many numbers greater than 88 will also be adjacent to 88 (for example 2^{88}).

The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

The random graph

Consider the following property of graphs:

(*) For any two finite disjoint sets U and V of vertices, there exists a vertex w adjacent to every vertex in U and to no vertex in V.

Theorem

There exists a countably infinite graph R satisfying property (*), and it is unique up to isomorphism. The graph R is homogeneous.

Existence. The random graph R defined above satisfies property (*).

Uniqueness and homogeneity. Both follow from a back-and-forth argument. Property (*) is used to extend the domain (or range) of any isomorphism between finite substructures one vertex at a time.

Building homogeneous graphs: Fraïssé's theorem

- ▶ The age of a graph Γ is the class of isomorphism types of its finite induced subgraphs.
- e.g. the age of the random graph R is the class of all finite graphs.

Building homogeneous graphs: Fraïssé's theorem

- ▶ The age of a graph Γ is the class of isomorphism types of its finite induced subgraphs.
- \triangleright e.g. the age of the random graph *R* is the class of *all* finite graphs.

Fraïssé (1953) - gives necessary and sufficient conditions for a class C of finite graphs to be the age of a countably infinite homogeneous graph M. The key condition is the amalgamation property.

If Fraïssé's conditions hold, then M is unique, C is called a Fraïssé class, and M is called the Fraïssé limit of the class C.

Countable homogeneous graphs

Examples

- ► The class of all finite graphs is a Fraïssé class. Its Fraïssé limit is the random graph *R*.
- ▶ The class of all finite graphs not embedding K_n (for some fixed n) is a Fraïssé class. We call the Fraïssé limit the countable generic K_n -free graph.

Theorem (Lachlan and Woodrow (1980))

Let Γ be a countably infinite homogeneous graph. Then Γ is isomorphic to one of: the random graph, a disjoint union of complete graphs (or its complement), the generic K_n -free graph (or its complement).

Connected-homogeneous graphs

Definition

A graph Γ is connected-homogeneous if any isomorphism between *connected* finite induced subgraphs extends to an automorphism.

Connected-homogeneity...

- 1. is a natural weakening of homogeneity;
- gives a class of graphs that lie between the (already classified) homogeneous graphs and the (not yet classified) distance-transitive graphs.

 $homogeneous \Rightarrow connected-homogeneous \Rightarrow distance-transitive$

Finite connected-homogeneous graphs

Gardiner classified the finite connected-homogeneous graphs.

Theorem (Gardiner (1978))

A finite graph is connected-homogeneous if and only if it is isomorphic to a disjoint union of copies of one of the following:

- 1. a finite homogeneous graph
- 2. bipartite "complement of a perfect matching" (the complement of the line graph $L(K_{2,n})$)
- 3. cycle C_n
- 4. the line graph $L(K_{s,s})$ of a complete bipartite graph $K_{s,s}$
- 5. Petersen's graph
- 6. the graph obtained by identifying antipodal vertices of the 5-dimensional cube Q₅

Tree-like examples

Definition (Tree)

A tree is a connected graph without cycles. A tree is regular if all vertices have the same degree. We use T_r to denote a regular tree of valency r.

Fact. A regular tree T_r ($r \in \mathbb{N}$) is an example of an infinite locally-finite connected-homogeneous graph.

Definition (Semiregular tree)

 $T_{a,b}$: A tree $T = X \cup Y$ where $X \cup Y$ is a bipartition, all vertices in X have degree a, and all in Y have degree b.

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N} \ (l \ge 2)$

Take the bipartite semiregular tree $T_{r+1,l}$.

The graph $X_{r,l}$ is given by:

Vertices = bipartite block of $T_{r+1,l}$ of vertices of degree l.

Edges = adjacent in $X_{r,l}$ if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Locally finite infinite connected-homogeneous graphs

Let
$$r, l \in \mathbb{N} \ (l \ge 2)$$

Take the bipartite semiregular tree $T_{r+1,l}$.

The graph $X_{r,l}$ is given by:

Vertices = bipartite block of $T_{r+1,l}$ of vertices of degree l.

Edges = adjacent in $X_{r,l}$ if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Locally finite infinite connected-homogeneous graphs

Let $r, l \in \mathbb{N} \ (l \ge 2)$

Take the bipartite semiregular tree $T_{r+1,l}$.

The graph $X_{r,l}$ is given by:

Vertices = bipartite block of $T_{r+1,l}$ of vertices of degree l.

Edges = adjacent in $X_{r,l}$ if their distance in the tree is 2.

(Macpherson (1982) proved that every connected infinite locally-finite distance transitive graph has this form)

Infinite connected-homogeneous graphs

Theorem (RG, Macpherson (2007))

A countable graph is connected-homogeneous if and only if it is isomorphic to the disjoint union of a finite or countable number of copies of one of the following:

- 1. a finite connected-homogeneous graph;
- 2. a homogeneous graph;
- 3. the random bipartite graph;
- 4. bipartite infinite complement of a perfect matching;
- 5. the line graph of the infinite complete bipartite graph K_{\aleph_0,\aleph_0} ;
- 6. a treelike graph X_{κ_1,κ_2} with $\kappa_1,\kappa_2 \in (\mathbb{N} \setminus \{0\}) \cup \{\aleph_0\}$.

Possible future work

Consider connected-homogeneity for other kinds of relational structure.

Posets

Schmerl (1979) classified the countable homogeneous posets.

Theorem (RG, Macpherson (2007))

A countable poset is connected-homogeneous if and only if it is isomorphic to a disjoint union of a countable number of isomorphic copies of some homogeneous countable poset.

Digraphs

Open problem. Classify the countably infinite connected-homogeneous digraphs.