Ecole Supérieure Privée d'Ingénierie et de Technologies

Théorie des graphes

Série 2 (Correction): Problème de plus court chemin

Exercice 1.

On considère le réseau social décrit ci-dessous:

- 1. Déterminer le parcours de *A* vers *H* composé d'un nombre minimal de liens.
- 2. Déterminer le parcours de *A* vers *H* composé d'un nombre minimal de sommets.

- 1. Il s'agit d'un graphe orienté valué dont la valeur de chaque arc est unité.
- \implies Algorithme de DIJKSTRA pour déterminer le plus court chemin de A à H.

	Itéra	ation 0	l Itérat	ion 1	l Itérat	ion 2	Itérat	ion 3	l Itérar	tion 4	Itérat	ion 5	Itérati	ion 6	Itératio	ın 7 .
*j	d(A,xi)	PCC(A,xj)	d(A,xj)	PCC(A,xj)	d(A,xj)	PCC(A,xj)	d(A,xj)	PCC(A,xj)	d(A,xj)	PCC(A,xj)	d(A,Xi)	PCC(A,xj)	d(A,xj)	PCC(A,xj)	d(A,xj)	PCC(A,xj)
8	1	(A,B)	-	-	-	-	-	-	-	-		-	-	-	-	-
c	**	(A,C)	2	(A,B,C)	2	(A,B,C)	2	(A,B,C)	-	-	-	-	-	-	-	-
D	1	(A,D)	1	(A,D)	-	-	-	-	-	-	-	-	-	-	-	-
E	100	(A,E)	2	(A,B,E)	2	(A,B,E)	2	(A,B,E)	2	(A,B,E)	-	-	-	-	-	-
F	1	(A,F)	1	(A,F)	1	(A,F)	-	-	-	-	-	-	-	-	-	-
G	40	(A,G)	40	(A,G)	2	(A,D,G)	2	(A,D,G)	2	(A,D,G)	2	(A,D,G)	-	-	-	-
н	60	(A,H)	40	(A,H)	80	(A,H)		(A,H)	3	(A,B,C,H)	3	(A,B,C,H)	3	(A,B,C,H)	-	-
P		(A)		(A,B)		(A,B,D)		(A,B,D,F)		(A,B,D,F,C)		{A,B,D,F,C,E}		{A,B,D,F,C,E,G}	{A,B,D,	F,C,E,G,H)
T	{(,C,D,E,F,G,H}		(C,D,E,F,G,H)		(C,E,F,G,H)		{C,E,G,H}		{E,G,H}		(G,H)		{H}		0

Le plus court chemin pour aller de A vers H est composé de 3 arêtes: 4 sommets (pour répondre à la question 2).

Exercice 2.

Une société offshore a besoin d'une voiture pour ses 5 années des activités. Au début de sa première année (t = 0), la société achète une voiture neuve et au début de chaque année t, elle a la possibilité soit de la garder durant l'année [t, t + 1] ou de la vendre au prix v(i)où i est l'âge de la voiture au moment de la vente, et acheter une nouvelle au prix p(t). À la fin de sa dernière année des activités, la société revendra sa voiture sans en racheter d'autre. Le coût annuel de maintenance dune voiture dépend de son âge i au début de chaque année t, et il est désigné par m(i). Les valeurs p(t), v(i) et m(i) étant supposées actualisées à la date t, l'objectif est de déterminer une politique qui permet à la société de bénéficier d'une voiture durant les 5 années des activités avec un coût global minimal.

- 1. Montrer que l'objectif revient à déterminer un plus court chemin entre deux sommets particuliers dans un graphe qu'on précisera.
- 2. Résoudre ce problème avec les données suivantes.

Age de la voiture (ans) i /Année t	0	1	2	3	4	5
Prix d'achat p(t)	22000	24000	25000	25000	26000	-
Prix de vente : v(i)	-	19000	16000	12000	9000	5000
Coût annuel de maintenance : m(i)	2000	3000	5000	6000	8000	-

Objectif : Minimiser les charges durant les 5 années d'activités de l'entreprise Modélisation du problème :

Sommets: les années $(t_0 \rightarrow t_5)$

Arcs : les charges : coût de passage d'une année à une autre

Déterminons le coût $C_{i,j}$ de l'arc (t_i,t_j) , $0 \le t_i,t_j \le 5$.

En t_i : achat d'une voiture au prix $p(t_i)$

De t_i à t_j : maintenance de la voiture

$$\sum_{k=0}^{t_j-t_i-1} m(k)$$

En t_j : vente de la voiture au prix $v(t_j - t_i)$

$$\Longrightarrow \mathcal{C}_{i,j} = p(t_i) + \sum_{k=0}^{t_j - t_i - 1} m(k) - v(t_j - t_i)$$

Le problème se ramène à la recherche d'un plus court chemin de $t_0=0$ à $t_5=5$. Pour ce faire, nous déterminons d'abord les coûts $C_{i,j}, 0 \le i, j \le 5$.

L

Les coûts sont donne	és ci-d	essous :					
	t_0	t_1	t_2	t_3	t_4	t_5	
t_0	_	5000	11000	20000	29000	41000	
	t_1	_	7000	13000	22000	31000	
		t_2	_	8000	14000	23000	
			t_3	_	8000	14000	
				t_4	_	9000	
					t_5	_	

Nous pouvons ainsi donner le graphe décrivant le problème en question.

Représentation graphique du problème:

Nous appliquons l'algorithme de DIJKSTRA sur ce graphe pour déterminer le chemin le plus courts de t_0 à t_5 .

		Itération 0		Itéra	stion 1	Itéra	ation 2	Ité	ration 3	Itération 4		Itération 5	
1	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	t_1	5000	(t_0, t_1)	-	-	-	-	-	-	-	-	-	-
3	t_2	11000	(t_0, t_2)	11000	(t_0, t_2)	-	-	-	-	-	-	-	-
4	t_3	20000	(t_0, t_3)	18000	(t_0, t_1, t_3)	18000	(t_0, t_1, t_3)	-	-	-	-	-	-
5	t_4	29000	(t_0, t_4)	27000	(t_0, t_1, t_4)	25000	(t_0, t_2, t_4)	25000	(t_0, t_2, t_4)	-	-	-	-
6	t_5	41000	(t_0, t_5)	36000	(t_0, t_1, t_5)	34000	(t_0, t_2, t_5)	32000	(t_0, t_1, t_3, t_5)	32000	(t_0, t_1, t_3, t_5)	-	-
P	{t ₀ }		t_0, t_1		t_0, t_1, t_2		t_0, t_1, t_2, t_3		t_0, t_1, t_2, t_3, t_4		to, t1, t2, t3, t4, t5		
T		$\{t_1, t_2, t_3, t_4, t_5\}$		1, 12, 13, 14, 15			14,15		t ₅		Ø		

Le plus court chemin de t_0 à t_5 est donné par: t_0 , t_1 , t_3 , t_5 . Cela implique que l'entreprise bénéficiera d'une voiture de service pour 5 ans avec un coût global minimal si elle achète 3 voitures en t_0 , t_1 , et t_3 .

Exercice 3.

Algorithme de FORD-BELLMAN

	k = 1		k =	= 2	k	= 3	k = 4		
j	x_j	$dist^{1}(x_{j})$	$Pcc(x_j)$	$dist^2(x_j)$	$Pcc(x_j)$	$dist^3(x_j)$	$Pcc(x_j)$	$dist^4(x_j)$	$Pcc(x_j)$
1	1	0	(1, 1)	0	(1,1)	0	(1,1)	0	(1, 1)
2	2	5	(1, 2)	5	(1, 2)	5	(1, 2)	5	(1, 2)
3	3	-4	(1, 3)	-4	(1, 3)	-4	(1,3)	-4	(1, 3)
4	4	2	(1, 4)	2	(1, 4)	2	(1, 4)	2	(1, 4)
5	5	6	(1, 5)	-7	(1, 3, 5)	-7	(1, 3, 5)	-7	(1, 3, 5)
6	6	∞	(1, 6)	0	(1, 4, 6)	-12	(1, 3, 5, 6)	-12	(1, 3, 5, 6)

Le problème se ramène ainsi à la détermination d'un plus court chemin de la source *A* vers la destination *H*.

L'algorithme de DIJKSTRA

Le plus court chemin de A à H est: A, C, D, F, H.

Appliquer l'algorithme de Floyd sur les deux graphes suivants.

1)

$$A^0 = \begin{pmatrix} 0 & 2 & \infty & 3 \\ \infty & 0 & 0 & \infty \\ \infty & \infty & 0 & 3 \\ 1 & 2 & -1 & 0 \end{pmatrix}$$

$$A^{1} = \begin{pmatrix} 0 & 2 & \infty & 3 \\ \infty & 0 & 0 & \infty \\ \infty & \infty & 0 & 3 \\ 1 & 2 & -1 & 0 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 0 & 2 & 2 & 3 \\ \infty & 0 & 0 & \infty \\ \infty & \infty & 0 & 3 \\ 1 & 2 & -1 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 0 & 2 & 2 & 3 \\ \infty & 0 & 0 & 3 \\ \infty & \infty & 0 & 3 \\ 1 & 2 & -1 & 0 \end{pmatrix}$$

$$A^{4} = \left(\begin{array}{cccc} 0 & 2 & 2 & 3 \\ 4 & 0 & 0 & 3 \\ 5 & 5 & 0 & 3 \\ 1 & 2 & -1 & 0 \end{array}\right)$$

2)

$$A^{1} = \begin{pmatrix} 0 & 2 & \infty & 3\\ \infty & 0 & -1 & \infty\\ \infty & \infty & 0 & -1\\ -1 & 1 & 1 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 0 & 2 & 1 & 3 \\ \infty & 0 & -1 & \infty \\ \infty & \infty & 0 & -1 \\ -1 & 1 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ \infty & 0 & -1 & -2 \\ \infty & \infty & 0 & -1 \\ -1 & 1 & 0 & -1 \end{pmatrix}$$

Il existe un circuit absorbant: 4 - 1 - 2 - 3 - 4.