Course code	Course Name	L-T-P -Credits	Year of	
			Introduction	
CS207	ELECTRONIC DEVICES &	3-0-0-3	2016	
	CIRCUITS			

Pre-requisite: BE101-04 Introduction to Electronics Engg.

Course Objectives:

- 1. To introduce to the students the fundamental concepts of electronic devices and circuits for engineering applications
- 2. To develop the skill of analysis and design of various analog circuits using electronic devices
- 3. To provide comprehensive idea about working principle, operation and applications of electronic circuits
- 4. To equip the students with a sound understanding of fundamental concepts of operational amplifiers
- 5. To expose to the diversity of operations that operational amplifiers can perform in a wide range of applications
- 6. To expose to a variety of electronic circuits/systems using various analog ICs

Syllabus

RC Circuits, Diode Circuits, Regulated power supplies, **Field effect transistor**, DC analysis of BJT, RC Coupled amplifier, MOSFET amplifiers, Feedback amplifiers, Power amplifiers, Oscillators, Multivibrators, Operational Amplifier and its applications, Timer IC.

Expected Outcome:

Students will be able to

- 1. explain, illustrate, and design the different electronic circuits using electronic components
- 2. design circuits using operational amplifiers for various applications

Text Books:

- 1. David A Bell, Electronic Devices and Circuits, Oxford University Press, 2008
- 2. Salivahanan S. and V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008

References:

- 1. Neamen D., Electronic Circuits, Analysis and Design, 3/e, TMH, 2007
- 2. Robert Boylestad and L Nashelsky, Electronic Devices and Circuit Theory, Pearson.
- 3. Bogart T. F., Electronic Devices Circuits, 6/e, Pearson, 2012.
- 4. Maini A. K. and V. Agrawal, Electronic Devices and Circuits, Wiley India, 2011.
- 5. K.Gopakumar, Design and Analysis of Electronic Circuits, Phasor Books, Kollam, 2013
- 6. Millman J. and C. Halkias, Integrated Electronics, 2/e, McGraw-Hill, 2010.

Course Plan				
Module	Contents	Hou	Sem	
		rs	Exam	
		(40)	Marks	
1	Wave shaping circuits: Sinusoidal and non-sinusoidal wave shapes, Principle and working of RC differentiating and			
	integrating circuits, Conversion of one non-sinusoidal wave shape into another.	5	15%	
	Clipping circuits - Positive, negative and biased clipper.			

	1			
	Clamping circuits - Positive, negative and biased clamper.			
	Voltage multipliers- Voltage doubler and tripler.			
	Simple sweep circuit using transistor as a switch.			
2	Regulated power supplies: Review of simple zener voltage regulator, Shunt and series voltage regulator using transistors, Current limiting and fold back protection, 3 pin regulators-78XX and 79XX, IC 723 and its use as low and high voltage regulators, DC to DC conversion, Circuit/block diagram and working of SMPS.	4	4 15 %	
	Field effect transistors: JFET – Structure, principle of operation and characteristics, Comparison with BJT. MOSFET- Structure, Enhancement and Depletion types, principle of operation and characteristics.	3		
	FIRST INTERNAL EXAM			
4	Amplifiers: Introduction to transistor biasing, operating point, concept of load line, thermal stability, fixed bias, self bias, voltage divider bias. Classification of amplifiers, RC coupled amplifier - voltage gain and frequency response. Multistage amplifiers - effect of cascading on gain and bandwidth. Feedback in amplifiers - Effect of negative feedback on amplifiers. MOSFET Amplifier- Circuit diagram and working of common source MOSFET amplifier. Oscillators: Classification, criterion for oscillation, analysis of Wien bridge oscillator, Hartley and Crystal oscillator. Non-sinusoidal oscillators: Astable, monostable and bi-stable	7	15 % 15 %	
	multivibrators using transistors (Only design equations and working of circuit are required, Analysis not required).	3	13 /0	
	SECOND INTERNAL EXAM	1		
5	Operational amplifiers: Differential amplifier, characteristics of op-amps(gain, bandwidth, slew rate, CMRR, offset voltage, offset current), comparison of ideal and practical op-amp(IC741), applications of op-amps- scale changer, sign changer, adder/summing amplifier, subtractor, integrator, differentiator, Schmitt trigger, Wien bridge oscillator.	8	20 %	

6	Integrated circuits: Active filters – Low pass and high pass			
	(first and second order) active filters using op-amp with gain (No			
	analysis required).			
	D/A and A/D convertors – important specifications, Sample and			
	hold circuit.			
	Binary weighted resistor and R-2R ladder type D/A convertors.			
	(concepts only).	8	20 %	
	Flash, dual slope and successive approximation type A/D			
	convertors.	A		
	Circuit diagram and working of Timer IC555, astable and	1		
	monostablemultivibrators using 555.			
END SEMESTER EXAM				

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module I and II; All four questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering module I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module III and IV; All <u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering module III and IV; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.