东南大学学生会

Students' Union of Southeast University

09高A下期末试卷答案

一. 填空题(本题共9小题,每小题4分,满分36分)

1.
$$[-1,3)$$
; 2. $x-2y-2z+3=0$; 3. $m=\frac{1}{9}$;

4.
$$\int_{-1}^{0} dy \int_{0}^{y+1} f(x,y) dx + \int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx; \quad \textbf{5.} \quad \int_{0}^{\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \sin\theta d\theta \int_{0}^{2} f(r^{2}) r^{2} dr;$$

6.
$$\underline{25}$$
; **7.** $a = \underline{2}$, $b = \underline{-2}$; **8.** $\underline{e}^r(3+r)$; **9.** $\underline{2\pi}$

二. 计算下列各题(本题共 4 小题, 每小题 7 分, 满分 28 分)

10.
$$\mathbf{ff} \frac{\partial z}{\partial x} (1+z) e^z = e^y + y e^x, \quad \mathbf{(2 f)} \frac{\partial z}{\partial x} = \frac{e^{y-z} + y e^{x-z}}{1+z}, \quad \frac{\partial z}{\partial y} = \frac{e^{x-z} + x e^{y-z}}{1+z}$$

11. **AP**
$$\iint_{D} y dx dy = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \theta d\theta \int_{\sqrt{2}}^{2\sin \theta} \rho^{2} d\rho = \frac{2}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (8\sin^{3}\theta - 2\sqrt{2}) \sin \theta d\theta = \frac{\pi}{2}$$

12. **A**
$$D = \{(x, y) | x^2 + y^2 \le 4, 0 \le x \le y \}$$

原式

13.
$$\Re \sum_{y} : x^2 + z^2 \le 1 + y^2, 0 \le y \le 2$$

$$\iiint_{\Omega} e^{y} dx dy dz = \int_{0}^{2} e^{y} dy \iint_{\Sigma_{y}} dx dz = \pi \int_{0}^{2} (1 + y^{2}) e^{y} dy = 3\pi (e^{2} - 1),$$

 Ξ (14) 解 题中的立体记为 Ω ,则

$$I_z = \iiint_{\Omega} (x^2 + y^2) dv = \int_1^2 dz \iint_{x^2 + y^2 \le 2z} (x^2 + y^2) d\sigma = 2\pi \int_1^2 dz \int_0^{\sqrt{2z}} \rho^3 d\rho = \frac{14}{3}\pi$$

四 (15) 解 $(\cos \alpha, \cos \beta, \cos \gamma) = (x, y, z)$,

$$\iint_{S} x^{2} dy \wedge dz + y^{2} dz \wedge dx + z^{2} dx \wedge dy = \iint_{S} (x^{3} + y^{3} + z^{3}) dS$$

$$= \iint_{D_{yx}} \left(\frac{x^3 + y^3}{\sqrt{1 - x^2 - y^2}} + 1 - x^2 - y^2 \right) d\sigma = \frac{\pi}{8}$$

东南大学学生会

Students' Union of Southeast University

五(16)(本题满分 7 分) 计算 $\int_{C}^{\infty} \frac{(x-y)\mathrm{d}x + (x+y)\mathrm{d}y}{x^2 + y^2}$, 其中 C 为 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = \left(\frac{1}{\pi}\right)^{\frac{2}{3}}$, 方 向为逆时针.

解
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{y^2 - x^2 - 2xy}{\left(x^2 + y^2\right)^2}$$
,取正数 ε 很小,使 C_ε : $x^2 + y^2 = \varepsilon^2$ 含于

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = \left(\frac{1}{\pi}\right)^{\frac{2}{3}}$$
 $\forall y$, (1 \Rightarrow) $\iint_{C} \frac{(x-y)dx + (x+y)dy}{x^2 + y^2} = 2\varepsilon^{-2} \iint_{D_{\varepsilon}} dxdy = 2\pi$

⇒ (17) **#**
$$f(x) = \frac{3x}{x^2 + x - 2} = \frac{1}{x - 1} + \frac{2}{x + 2} = \frac{1}{1 + x - 2} + \frac{1}{2} \cdot \frac{1}{1 + \frac{x - 2}{4}}$$

$$= \sum_{n=0}^{\infty} (-1)^n \left(1 + \frac{1}{2^{2n+1}} \right) (x-2)^n , \quad x \in (1,3)$$

七(18)解 记 S_1 为锥面 $2z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 所截部分,其面积记为 A_1 ,记 S_2 为柱面 $x^2 + y^2 = 2x$ 被锥面 $2z = \sqrt{x^2 + y^2}$ 和xOy 平面所截部分,其面积记为 A_2 ,记 S_3 为底面,其面积记为 A_3 ,表面积 $A = A_1 + A_2 + A_3$

$$A = \iint_{x^2 + y^2 \le 2x} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2} d\sigma + \frac{1}{2} \iint_{x^2 + y^2 = 2x} \sqrt{x^2 + y^2} ds + \pi = \left(\frac{\sqrt{5}}{2} + 1\right) \pi + 2 \int_0^{\pi} \cos \frac{\theta}{2} d\theta$$

$$= \left(\frac{\sqrt{5}}{2} + 1\right)\pi + 4$$