Universidad Rafael Landívar.

Facultad De Ingeniería.

Licenciatura En Ingeniería En Informática Y Sistemas.

Laboratorio de Pensamiento Computacional, Sección 19.

Docente: Inga. Cindy García.

PROYECTO 01 (INCISO B)

"SIMULADOR DE VIAJE ESPACIAL – REGRESO A CASA"

Estudiante: Cucul Tut, Erik Carlos Omar

Carné: 1292625

Estudiante: Ajin Orellana, Davi`s Mauricio

Carné: 1270325

I. ACCIONES DEL PROGRAMA

El jugador debe elegir una de las siguientes acciones para intentar sobrevivir hasta llegar a su destino:

- 1. Explorar un planeta cercano:
 - Costo: -15 unidades de combustible.
 - · Si no tiene suficiente, no puede explorar
 - Eventos posibles:
 - Encontrar oxígeno (20-40 unidades) → 60% de probabilidad.
 - Encontrar combustible (10-30 unidades) → 25% de probabilidad.
 - Encontrar suministros (30-100 unidades) → 50% de probabilidad.
 - Tormenta eléctrica (daño a la nave: -10% a -20%) → 25% de probabilidad.
 - Aterrizaje forzado (daño a la nave: -10% a -20%) → 25% de probabilidad.
- 2. Reparar la nave:
 - Costo: Se gastan suministros.
 - Beneficio: Recupera la integridad de la nave.
 - Detalles:
 - Cada 1% de integridad reparada consume 10 unidades de suministros.
 - El jugador elige cuánto reparar.
 - La integridad de la nave no puede superar el 100%.
 - Si el jugador pide más del máximo, se ajusta automáticamente.
- 3. Enviar señales al espacio
 - Riesgo: Puede atraer ayuda o peligro.
 - Eventos posibles (50/50 de probabilidad):
 - Ayuda: +60 unidades de combustible.
 - Piratas espaciales: -15% de integridad de la nave y -20 suministros.
- 4. Fin del Día Consumo de recursos y eventos aleatorios.
 - Consumo automático:
 - Oxígeno: -20 unidades.
 - Suministros: -30 unidades.
 - Evento aleatorio nocturno (15% de probabilidad de ocurrir):
 - Tormenta cósmica: -10 unidades de oxígeno.
 - **Encuentro alienígena:** Puede ser amistoso (+20 de combustible) o hostil (-10% de integridad).
 - · Lluvia de meteoritos:
 - Si el jugador maniobra, gasta entre 10-30 de combustible.
 - · Si el jugador no maniobra, la nave recibe -15% a -25% de daño.

5. Fin del Juego

El juego termina cuando ocurre alguna de estas condiciones:

- Victoria:
 - El jugador sobrevive 10 días y llega a su destino.
- Derrota:
 - Se queda sin oxígeno, sin combustible o sin suministros.
 La integridad de la nave llega a 0%.
 El jugador decide rendirse.

II. DATOS DE ENTRADA

1. Selección de acción diaria:

Cada día, el jugador debe elegir entre las opciones disponibles:

- (1) Explorar un planeta.
- (2) Reparar la nave.
- (3) Enviar una señal.
- (4) Rendirse.
- Tipo de dato: Número entero (Int / Integer).
- 2. Cantidad de integridad a reparar:

Si el jugador elige reparar la nave, se le pedirá que indique cuántos puntos de integridad desea restaurar.

- La cantidad ingresada no puede hacer que la integridad supere el 100%.
- Tipo de dato: Número entero (Int / Integer).
- 3. Decisiones en eventos:

En eventos como la lluvia de meteoritos, el jugador debe decidir:

- Maniobrar.
- No maniobrar.
- Tipo de dato: Número entero (Int / Integer).

III. VARIABLES

- 1. Recursos del jugador:
 - **Combustible**: Cantidad de combustible disponible para avanzar.
 - Tipo de dato: Número entero (Int / Integer).
 - · Valor inicial: 30 unidades.
 - Oxígeno: Cantidad de oxígeno disponible para sobrevivir.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: 50 unidades.
 - **Suministros**: Cantidad de alimentos y herramientas para reparaciones.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: 40 unidades.
- 2. Estado de la nave:
 - Integridad de la nave: Porcentaje de integridad de la nave.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: 100%.
- 3. Contadores y control del juego:
 - Días transcurridos: Número de días que han pasado en el viaje.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: 0.
 - **Días totales**: Número máximo de días para llegar al destino.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: 10.
- 4. Generación de eventos aleatorios:
 - Random: Objeto para generar números aleatorios.
 - Tipo de dato: Random.
 - Valor inicial: Se inicializa una vez al inicio del programa.

- 5. Variables de Acciones y Eventos:
 - Accionvalida: Controla si la acción elegida es válida.
 - Tipo de dato: bool.
 - Valor inicial: false.
 - Accion: Almacena la opción del menú elegida.
 - Tipo de dato: string.
 - Valor inicial: null.
 - Entrada: Guarda el input temporal.
 - Tipo de dato: string.
 - Valor inicial: null.
 - Porcentaje: Porcentaje de reparación ingresado.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - Maxreparable: Máximo porcentaje reparable.
 - · Tipo de dato: int.
 - Valor inicial: 0.
 - Costo: Costo en suministros para reparar.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - Oxi: Recurso de oxígeno encontrado al explorar.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - Comb: Recurso de combustible encontrado al explorar.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - **Sum**: Recurso de suministro encontrado al explorar.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - Daño: Daño recibido en eventos.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - **Evento**: Tipo de evento nocturno.
 - Tipo de dato: int.
 - Valor inicial: 0.
 - Opción: Elección durante meteoritos.
 - Tipo de dato: string.
 - Valor inicial: null.
 - Gasto: Combustible gastado al esquivar meteoritos.
 - Tipo de dato: 0.
 - · Valor inicial: false.

IV. CONDICIONES Y CALCULOS

- 1. Cantidades iniciales:
 - Combustible: 30 unidades.
 - Fórmula: combustible = 30.
 - Oxígeno: 50 unidades.
 - Fórmula: oxigeno = 50.
 - Suministros: 40 unidades.
 - Fórmula: suministros = 40.
 - Integridad de la nave: 100%.
 - Fórmula: integridadNave = 100.
 - Días transcurridos: 0.
 - Fórmula: diasTranscurridos = 0.
 - Días totales: 10.
 - Fórmula: diasTotales = 10.
- 2. Consumo diario de recursos:
 - Oxígeno:
 - Formula: oxigeno -= 20.
 - Suministros:
 - Formula: suministros -= 30.
- 3. Acciones diarias:
 - Explorar un planeta:
 - · Gasta 15 unidades de combustible.
 - Formula: combustible -= 15
 - Eventos aleatorios:
 - Encontrar oxígeno:
 - Formula: oxigeno += random.Next(20, 41).
 - Encontrar combustible:
 - Formula: combustible += random.Next(10, 31).
 - Encontrar suministros:
 - Formula: suministros += random.Next(30, 101).
 - Tormenta eléctrica:
 - Formula: integridadNave -= random.Next(10, 21).
 - Aterrizaje forzado:
 - Formula: integridadNave -= random.Next(10, 21).

• Reparar la nave:

- Gasta suministros:
 - Formula: suministros -= (porcentaje * 10).
- Recupera integridad:
 - Formula: integridadNave += porcentajeReparar.
- La integridad no puede superar el 100%.
 - Formula: maxReparable = 100 integridadNave
 - Formula: porcentajeReparar > maxReparable
 - Formula: porcentajeReparar = maxReparable

• Enviar señales:

- · Ayuda con combustible:
 - Formula: combustible += 60.
- · Piratas espaciales:
 - Formula: integridadNave -= 15.
 - Formula: suministros -= 20.
- Rendirse

Termina el juego inmediatamente.

4. Eventos nocturnos:

- Tormenta cósmica:
 - Formula: oxigeno -= 10.
- Encuentro alienígena:
 - Amistoso:
 - Formula: combustible += 20.
 - Hostil:
 - Formula: integridadNave -= 10.
- Meteoritos:
 - Maniobrar:
 - Formula: combustible -= random.Next(10, 31).
 - Recibir impacto:
 - Formula: integridadNave -= random.Next(15, 26).

- 5. Condiciones de fin del juego:
 - Victoria: diasTranscurridos == 10.
 - Derrota:
 - oxigeno ≤ 0 .
 - combustible $\leq = 0$.
 - suministros $\leq = 0$.
 - integridadNave ≤ 0 .
 - Rendición: El jugador decide elegir la opción 4.

V. ALGORITMO

Enlace: https://drive.google.com/file/d/1-
HToq6qntjHyocE6UsC947nAbUXgQSVF/view?usp=sharing

Diagrama de flujo:

Parte A:

ParteB:

