

Statistical Thinking (ETC2420/ETC5242)

Regression models

Week 9

Learning Goals for Week 9

- Recognise when transformations may be required
- Review frequentist simple linear regression
- Diagnose problems with a regression model

Recommended reading for Week 9:

Chapter 5 in ISRS

Simple linear regression model

- Simple linear regression uses a line to predict value of y_i for a given value of x_i
- Explains how response variable, y, changes (linearly) in relation to explanatory variable, x, on average.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- What happens in SLR follows through to multiple regression
- The regression line is an average it balances out the dots above and below the line

Fitting a regression model using least squares

- Minimise the sum of squared residuals produces the best fitting line
- i.e. Minimise $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i b_0 b_1 x_i)^2$
- This is Ordinary least squares (OLS)
- Fitted line has smallest average vertical squared distance, at available observed points
- **Observed** values *y_i* are points on plot
- **Fitted** (or **Predicted**) values $\hat{y}_i = b_0 + b_1 x_i$ are values that lie on the regression line

5

Fitting a regression model using least squares

Parameter interpretation

- Line of best fit: $\hat{y} = b_0 + b_1 x$, for any value of x
- **b**₀ is the **y-intercept** of the fitted line with y-axis
- **\blacksquare** b_1 is the **slope** of the fitted line

Slope coefficient of fitted regression line satisfies

$$b_1=r\frac{s_y}{s_x}$$

- s_x is sample standard deviation of x_i 's
- \blacksquare s_y is sample standard deviation of y_i 's
- \blacksquare r is sample correlation, found using x_i and y_i pairs

Given sample means \bar{x}, \bar{y} , fitted regression line **y-intercept** coefficient is

$$b_0 = \bar{y} - b_1 \bar{x}$$

Does the point \bar{x}, \bar{y} lie on the regression line?

7

Standard errors

- We have estimated β_0 and β_1 using b_0 and b_1 , respectively
- What are the (estimated) standard errors for b₀ and b₁ in hypothetical repeated samples?

$$SE(b_0) = \sqrt{\frac{MSE \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

and

$$SE(b_1) = \sqrt{\frac{MSE}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

where

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{(n-2)} = \frac{\sum_{i=1}^{n} e_i^2}{(n-2)}$$

8

Simple linear regression using maximum likelihood estimation

- Simple linear regression (SLR) uses only a single regressor
- The SLR model for observation i is

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- If we assume:
 - $\triangleright \ \varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$ and x_i 's are fixed and uncorrelated (independent) of the ε_i
- Then, the likelihood function is

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$

And 2 times the log-likelihood is

$$2I(\beta_0, \beta_1, \sigma^2) = -n \ln(2\pi) - n \log(\sigma^2) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

- This is **maximised** at the OLS estimator, with $\hat{\sigma}^2 = rac{\sum_{i=1}^n e_i^2}{n}$
- (We typically use **MSE** based on (n-2) rather than n when estimating σ^2)

Multiple linear regression using maximum likelihood estimation

- Multiple linear regression (or just linear regression) uses more than regressor
 - ▶ We will assume there are *p* regressors, including the intercept
- Linear regression model for observation i is

$$y_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

- Assuming $\varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$ and $x_{k,i}$'s are fixed and independent of the errors
- Then, the likelihood function is

$$L(\beta_0, \beta_1, ..., \beta_{p-1}, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_{1,i} - \dots - \beta_{p-1} x_{p-1,i})^2 \right\}$$

And 2 times the log-likelihood is

$$2I(\beta_0, \beta_1, ..., \beta_{p-1}, \sigma^2) = -n \ln(2\pi) - n \log(\sigma^2) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1,i} - \dots - \beta_{p-1} x_{p-1,i})^2$$

- This is **maximised** at the OLS estimator, with $\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n}$
- (We typically use MSE based on (n-p) rather than n when estimating σ^2)

R-squared for goodness of fit

"R-squared" (R^2) is the **proportion of variation** in the observed y_i 's **explained** by the regression line.

$$R^2 = 1 - rac{\sum_{i=1}^{n} e_i^2}{\sum_{i=1}^{n} (y_j - \bar{y})^2} \ = \ rac{SSR}{SSTo} \ = \ 1 - rac{SSE}{SSTo}$$

where

$$SSR = \sum_{i=1}^{n} (\hat{y_i} - \bar{y})^2$$
 Regression sum of squares
 $SSE = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$ Error sum of squares
 $SSTo = \sum_{i=1}^{n} (y_i - \bar{y})^2$ Total sum of squares

Look at the SLR again

What is R^2 doing?

It is giving us an idea of how much better our estimate of a "typical" value of y is if we used x instead of just the mean of y.

R-squared for goodness of fit

- In general, $\hat{y}_i = b_0 + b_1 x_{1,i} + \cdots + b_{p-1} x_{p-1,i}$
- The b_i coefficients are the OLS estimators of the corresponding β_i unknowns
- \blacksquare R^2 is just one available numerical summary measure of model fit
- Note that R-squared will never decrease when additional regressors are added
- So **R-squared is only good** for comparing regressions
 - For the same response variable y
 - ► And for models with the **same number** of regressors (predictors)

CLT-based tests and confidence intervals

 Use the Im() function in R for estimated coefficients and their (estimated) standard errors

Due to the availability of an appropriate CLT result

- lacksquare Can undertake **hypothesis test** for individual regression coefficient eta_k
- lacktriangle Can construct **confidence interval** for individual regression coefficient β_k
- for for any k = 0, ..., p 1.

CLT-based hypothesis tests

$$H_0: \beta_k = 0 \text{ vs } H_1: \beta_k \neq 0$$

■ Under H_0 , $\frac{b_k}{s(b_k)}$ has (approximately) a t_{n-p} distribution

CLT-based confidence intervals

A $(1 - \alpha) \times 100\%$ Confidence interval for β_k is given by:

$$b_k \pm t_{\alpha/2,n-p} SE(b_k)$$

What are we looking at??

- \blacksquare $(1 \alpha \times 100)\%$ CI is an interval for the true or population β .
- \blacksquare So for example, we are 95% confident that the true β lies within the interval
- The interpretation is that we are 95% confident that if x increased by one unit (remember the units must be in context!), y would increase, on average, by β units.
- It is not an estimation or prediction.
- Same for the hypothesis test.
- If our null is that $\beta = 0$, then if we reject the null, we are saying that x helps predict y.
- If we do not reject the null.....

Randomisation?

Bootstrap-based CI for a regression coefficient

- As before, we can simulate the sampling distribution of the coefficient estimates.
- we do many samples WITH replacement
- Just this time, we estimate the regression and store the coefficients.
- we will re-visit this later

Permutation tests for regression

We used a **permutation test** previously (with two independent samples) to formally decide if

- two groups have the same mean
- two groups have the same proportion
- The idea was to break the connection between group and promotion outcome
- To **force null hypothesis** (H_0 : no difference between groups) **to hold**
- \blacksquare And generate an approximate sampling distribution of the test statistic $\bar{X}_1 \bar{X}_2$

For a **regression**, we test $H_0: \beta_k = 0$ vs $H_1: \beta_k \neq 0$

- We do the same thing and break the associations
- It is a little trickier we shuffle one column only
- Again we will re-visit this later

Residual plots

- If we have done a "good" job with our regression, the independent variable capture all of the patterns in y
- So our residuals will be random and "well-behaved".

Check your residuals using visualisation techniques

Critical plots to assess model fit include

- Histogram of residuals
 - ▶ for a good fit the shape should be relatively **symmetric and bell-shaped**
- Do a QQplot of theoretical normal quantiles against residuals
 - ("Normal probability plot of the residuals")
- Plot the residuals against fitted values
- Plot the residuals against available regressors (any x's included or not included)
 - a good fit means should there should not be any obvious patterns

Residual plots to check model fit - what to look for

Residuals vs explanatory variable

Plot exhibits heteroskedasticity, suggests that tip variability depends size of the bill.

- Consider possible need to transform y using logarithm or other function
 - Shift values first, then take logarithm to avoid log of a negative number
 - Other transformations are possible (e.g. power transform y^c or y^{-c})
 - ▶ The linear regression just needs to be linear in parameters ($\beta's$)
 - ▶ We can do anything to *x* &/or *y* to capture non-linear patterns

- Consider adding other regressors
- If our residuals show patterns, it tells us that we haven't adequately captured pattern in y.
- Maybe there is another variable that influences y as well.
- This may be difficult of course.

- Consider alternative loss function (e.g. "Weighted least squares") for selecting parameters
 - ▶ May be equivalent to assuming different error distribution
- Logit/probit model for probabilities

- Consider whether if you have any **influential observations**
 - Check Leverage and Cook's D (See below)

 h_{ii} is the i^{th} diagonal element of the **hat matrix** H:

$$H = X(X^T X)^{-1} X^T$$

where X is the **design matrix** containing all of the regressors

SLR:
$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$
 general LR: $X = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & \cdots & x_{p-1,2} \\ \vdots & \vdots & & & \\ 1 & x_{1,n} & \cdots & x_{p-1n1} \end{bmatrix}$

- Intuitively, observations far from \bar{x} will have higher **leverage**
- lacktriangle \Rightarrow They have greater influence on the fitted regression function
- \blacksquare \Rightarrow Changing their y value a little can **substantially effect** the fitted line

About that hat matrix...

Where does the hat matrix *H* come from?

In general (multiple) linear regression, using vector notation, we have

$$Y = X\beta + \varepsilon$$

where

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & \cdots & x_{p-1,2} \\ \vdots & \vdots & & & \\ 1 & x_{1,n} & \cdots & x_{p-1n1} \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

■ The OLS estimator is $\hat{\beta} = (X'X)^{-1}X'Y$, and predictions at the observed X is given by

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

■ Notice that $\hat{Y} = HY$. This is why H is called the "hat" matrix!

Cook's D

 Another influence measure for observations that uses the response variable

$$D_i = \frac{e_i^2}{pMSE} \frac{h_{ii}}{(1 - h_{ii})^2}$$

- \blacksquare e_i is the i^{th} residual
- p = number of explanatory variables (regressors, including the intercept)
- lacksquare MSE is the mean squared error of the linear model (MSE = SSE/(n-p))
- As a **rule of thumb** check any point with Cook's D value greater than 2p/n (same as for leverage)

How to get all this out of R?

- Fit models using the *lm*() function
- Use *summary*() to extract from fitted results
 - e.g. MSE, regression coefficients and standard errors, t-stats and MSE
- Use the **broom** package to augment() your tibble with fitted values, leverage, Cook's D
 - Other useful broom package functions: tidy() and glance() to organise model output

Next time...

- Multiple Linear Regression (MLR)
- We will look at selecting models with multiple regressors
- We will introduce some new tools, and use some from today
- Need to follow the process explain what you see and what you think is a good option to take
- Enjoy the break (and do Task 5 and the assignment!)
- Make sure that you have contacted your group members!