On the Self-supervised Learning of protein engineering

Boyuan Wang

2020-05-01

What is protein engineering?

- **Protein engineering** is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. *from Wikipedia*
- Common tasks in protein engineering:
 - Secondary structure prediction (1D)
 - Contact map prediction (2D)
 - Protein folding prediction (3D)

Secondary Structure Prediction

• Predict the position of alpha-helix (H) and beta-strand (E), coil region(C).

Contact map prediction

Predict the contact information of amino acid residue

Protein folding prediction

• Predict the 3D geometric folding shape of proteins like Google Alpha-fold. (Hardest)

Why Do We Care Self-supervised Learning?

- Old methods involves too much human engineering work from selecting features to define functions for specific tasks.
- Recent use of deep supervised learning in protein engineering alleviates human laboring and brings exciting improvement in many tasks.
- However, data is scarce and obtaining supervised dataset is extremely costly in protein domain.
- Unlabelled protein data is abundant and contains the fundamental knowledge of proteins.
- Self-supervised learning is able to utilize the massive unlabelled data and extract knowledge from it.

Overview

- BERT: An Brief Introduction
 - Bidirectional Encoder Representations from Transformers, which is a pertained masked language model.
- Unified rational protein engineering with sequence-based deep representation
 learning (Nature Method 2019)
 - Rational protein engineering requires a holistic understanding of protein function. This paper proposed to use RNN based model to learn the holistic knowledge of protein sequences.
- Evaluating Protein Transfer Learning with TAPE (NeurlPS 2019)
 - This paper implements a more extensive comparison work between three different selfsupervised models. It also provides 5 benchmark tasks and results.
- Generative models for graph-based protein design (NeurIPS 2019)
 - This paper introduces a conditional generative model for protein sequences given 3D structures based on graph representations.

BERT - Architecture

- A stack of Transformer Encoder. (red box in the right)
- Bidirectional representation.

BERT - Architecture

- A stack of Transformer Encoder.
- Bidirectional representation.

BERT - Input Features

• Token embedding + position embedding +. Segment embedding (sentence pairs)

BERT - Pretrain Task

- Masked Language Model (MLM)
 - Mask 15% of tokens. Amount this 15%, 10% replaced, 10% unchanged.
 - 80%: my dog is hairy -> my dog is [mask]
 - 10%: my dog is hairy -> my dog is apple
 - 10%: my dog is hairy -> my dog is hairy
- Next Sentence Prediction (NSP)
 - Input sentence pairs (A, B), 50% of time B is the next sentence of A.
 - For question answering and natural language inference.

BERT - Fine-Tuning

- Fine-tuning on your specific tasks.
- [CLS] or token-level representation.

Overview

- Unified rational protein engineering with sequence-based deep representation learning (Nature Method 2019)
 - Rational protein engineering requires a holistic understanding of protein function. This paper proposed to use RNN based model to learn the holistic knowledge of protein sequences.
- Evaluating Protein Transfer Learning with TAPE (NeurlPS 2019)
 - This paper implements a more extensive comparison work between three different selfsupervised models. It also provides 5 benchmark tasks and results.
- Generative models for graph-based protein design (NeurlPS 2019)
 - This paper introduces a conditional generative model for protein sequences given 3D structures based on graph representations.

Paper I - Motivation

- Protein sequence are sequential data. We want to learn the internal knowledge.
- Likewise, natural language process (NLP) also deal with sequential data. We can adopt the algorithms from NLP domain to protein domain.
- Self-supervision serves as pertaining scheme brings significant improvement to many NLP tasks because it learns some fundamental knowledge of language. It could also be the case for proteins.

- Self-supervision setup:
 - Architecture:
 - LSTM
 - Single-layer, 1900 hidden-size.
 - Loss:
 - Cross-entropy for all tokens.
 - Data:
 - UniRef: ~24 millions sequence.
 - Dictionary size: 20
 - Training Time:
 - ~770K steps, 1 epoch.

- Training process:
 - Self-supervision: language modeling.
 - Downstream tasks: supervised learning.

Paper I - Experimental Results

- UniRep Feature:
 - averages all hidden states across time axis to make it more longterm dependent.
- Some results:

Paper I - Conclusion

- UniRep learns from raw data.
- It is unconstrained by a specific task, so features can be used in many tasks.
- It shows that protein informatics can potential go well directly from sequence to design.

Overview

- Unified rational protein engineering with sequence-based deep representation learning (Nature Method 2019)
 - Rational protein engineering requires a holistic understanding of protein function. This paper proposed to use RNN based model to learn the holistic knowledge of protein sequences.
- Evaluating Protein Transfer Learning with TAPE (NeurlPS 2019)
 - This paper implements a more extensive comparison work between three different selfsupervised models. It also provides 5 benchmark tasks and results.
- Generative models for graph-based protein design (NeurlPS 2019)
 - This paper introduces a conditional generative model for protein sequences given 3D structures based on graph representations.

Paper II - Motivation

- The first attempt for systematically evaluating semi-supervised learning on protein sequences.
- TAPE includes a set of five biologically relevant supervised tasks that evaluate the performance of learned protein embeddings across diverse aspects of protein understanding.
- A framework for multi-tasks benchmark.

Paper II - Tasks

- Task 1: Secondary Structure (SS) Prediction
 - Impact: understanding the function of a protein. Important for high level of structure prediction.
- Task 2: Contact Prediction
 - Impact: global information. Important for final 3D structure prediction.
- Task 3: Remote Homology Detection
 - Type: multilabel classification
 - Impact: detection of emerging antibiotic resistant genes and discovery of new enzymes.
- Task 4: Fluorescence Landscape Prediction
 - Type: regression
 - Impact: efficient exploration of the landscape.
- Task 5: Stability Landscape Prediction
 - Type: regression
 - Impact: important to ensure that drugs are delivered before they are degraded.

Paper II - Datasets

Table S1: Dataset sizes

Task	Train	Valid	Test
Language Modeling	32,207,059	N/A	2,147,130 (Random-split) / 44,314 (Heldout families)
Secondary Structure	8,678	2,170	513 (CB513) / 115 (TS115) / 21 (CASP12)
Contact Prediction	25,299	224	40 (CASP12)
Remote Homology	12,312	736	718 (Fold) / 1,254 (Superfamily) / 1,272 (Family)
Fluorescence	21,446	5,362	27,217
Stability	53,679	2,447	12,839

Paper II - Models

- Self-supervised Learning Setup:
 - LSTM (RNN)
 - forward 3-layer LSTM+ backward 3-layer LSTM, 1024 hidden size.
 - loss: language modeling + task fine-tune.
 - Bert (SAN)
 - 12-layer, 512 hidden size, 8 attention head.
 - loss: Masked language modeling + fine-tune.
 - ResNet (CNN)
 - 35*(2 conv-layer with 256 filter), kernel size 9, dilation rate 2.
 - loss: language model + fine-tune.

Paper II - Experiment Results

Table 1: Language modeling metrics

	Random Families			Hele	dout Families	•
	Accuracy	Perplexity	ECE	Accuracy	Perplexity	ECE
Transformer	0.45	8.89	6.01	0.30	13.04	10.04
LSTM	0.40	8.89	6.94	0.16	14.72	15.21
ResNet	0.41	10.16	6.86	0.29	13.55	10.32
Supervised LSTM [11]	0.28	11.62	10.17	0.14	15.28	16.02
UniRep mLSTM [12]	0.32	11.29	9.08	0.12	16.36	16.92
Random	0.04	25	25	0.04	25	25

Paper II - Experiment Results

Table 2: Results on downstream supervised tasks

Method		Str	ructure	Evolutionary	Engineering	
		SS	Contact	Homology	Fluorescence	Stability
	Transformer	0.70	0.32	0.09	0.22	-0.06
No Pretrain	LSTM	0.71	0.19	0.12	0.21	0.28
	ResNet	0.70	0.20	0.10	-0.28	0.61
	Transformer	0.73	0.36	0.21	0.68	0.73
Pretrain	LSTM	0.75	0.39	0.26	0.67	0.69
	ResNet	0.75	0.29	0.17	0.21	0.73
Supervised [11]	LSTM	0.73	0.40	0.17	0.33	0.64
UniRep [12]	mLSTM	0.73	0.34	0.23	0.67	0.73
Baseline	One-hot	0.69	0.29	0.09	0.14	0.19
	Alignment	0.80	0.64	0.09	N/A	N/A

Paper II - Conclusion

- The improve over labelled data shows promising future for self-supervision in protein prediction.
- No single self-supervised model performs best across all protein tasks. Needs the
 extensive benchmark to evaluate the models.
- Structure prediction still is inferior to the alignment method. In need for better selfsupervision design and studying the relationship between alignment and learnedbased representation.

Overview

- Unified rational protein engineering with sequence-based deep representation learning (Nature Method 2019)
 - Rational protein engineering requires a holistic understanding of protein function. This paper proposed to use RNN based model to learn the holistic knowledge of protein sequences.
- Evaluating Protein Transfer Learning with TAPE (NeurlPS 2019)
 - This paper implements a more extensive comparison work between three different self-supervised models. It also provides 5 benchmark tasks and results.
- Generative models for graph-based protein design (NeurIPS 2019)
 - This paper introduces a conditional generative model for protein sequences given 3D structures based on graph representations.

Paper III - Motivation

- Protein design takes a protein and its structural information to predict its sequential form.
- Traditional methods depends on complex energy functions which are unreliable and hard to analyze the unreliability.
- This paper proposed a top-down framework that directly learns generative model from the proteins' 3D structural information, which represented as graph, to generate sequences.

- Structured Transformer: (Graph structural features + sequence features)
 - Encoder: node feature + edge feature (only structure)
 - Decoder: node + edge + sequence feature (structure and sequence)

- Presentation structure as a graph G = (V, E)
 - V: node feature describing each residue (amino acid).
 - E: edge feature relationships between edges and a node.
- For 3D cases, graph representation needs two properties:
 - Invariance to rotation and translation.
 - Locally informative, neighbor edge features contains sufficient information to reconstruct their coordinates. E.g. for a node with coordinate x_i, the pairwise distance D_ia, D_ib can not determine whether x_a and x_b are on the same side or not.

- Based on the two properties, the structural features are designed as:
 - Relative spatial encodings:

$$oldsymbol{e}_{ij}^{(s)} = \left(\mathbf{r} \left(||oldsymbol{x}_j - oldsymbol{x}_i||
ight), \quad oldsymbol{O}_i^T rac{oldsymbol{x}_j - oldsymbol{x}_i}{||oldsymbol{x}_j - oldsymbol{x}_i||}, \quad \mathbf{q} \left(oldsymbol{O}_i^T oldsymbol{O}_j
ight)
ight)$$

The three terms are distance, direction, and orientation(quaternion) respectively.

$$oldsymbol{O}_i = \left[oldsymbol{b}_i \; oldsymbol{n}_i \; oldsymbol{b}_i imes oldsymbol{n}_i
ight], \ oldsymbol{u}_i = rac{oldsymbol{x}_i - oldsymbol{x}_{i+1}}{||oldsymbol{x}_i - oldsymbol{x}_{i+1}||}, \; oldsymbol{h}_i = rac{oldsymbol{u}_i imes oldsymbol{u}_{i+1}}{||oldsymbol{u}_i - oldsymbol{u}_{i+1}||}, \; oldsymbol{n}_i = rac{oldsymbol{u}_i imes oldsymbol{u}_{i+1}}{||oldsymbol{u}_i imes oldsymbol{u}_{i+1}||}$$

- O_i defines a local coordinate system at x_i
- Relative positional encodings:
 - Represent the sequential position of each neighbor relative to a node.
 - Defined as sin(gap_i,j). Note, relative position is different from original transformer's global position.
- Edge encoding = spatial encoding + positional encoding
- Node encoding: three dihedral angles of the protein backbone (φ_i, ψ_i, ω_i) and embed these on the 3-torus (三环) as {sin, cos}×(φ_i, ψ_i, ω_i).

- Structural Transformer (Encoder)
 - Node embeddings:
 - h_i = W_h(v_i)
 - Self-attention:
 - query: q_i = W_q(h_i)
 - key: z_ij = W_z(r_ij), r_ij = (h_j, e_ij)
 - value: v_ij = W_v(r_ij)
 - j belongs to N(i, k), k neighbors of i.
 - Attention a_ij:

$$a_{ij}^{(\ell)} = rac{\exp(m_{ij}^{(\ell)})}{\displaystyle\sum_{j' \in \mathrm{N}(i,k)}} \,, \qquad ext{where} \quad m_{ij}^{(\ell)} = rac{oldsymbol{q}_i^{(\ell)}^ op oldsymbol{z}_{ij}^{(\ell)}}{\sqrt{d}}$$

• Self-attention output:

$$egin{aligned} m{h}_i^{(\ell)} &= \sum_{j \in N(i,k)} a_{ij}^{(\ell)} m{v}_{ij}^{(\ell)}, \ \Delta m{h}_i &= m{W}_o \operatorname{Concat}\left(m{h}_i^{(1)}, \dots, m{h}_i^{(L)}
ight) \end{aligned}$$

- Structural Transformer (Decoder)
 - The same with the encoder with augmented relational information r_ij,

$$m{r}_{ij}^{(ext{dec})} = egin{cases} (m{h}_{j}^{(ext{dec})}, m{e}_{ij}, m{g}(s_{j})) & i > j \ (m{h}_{j}^{(ext{enc})}, m{e}_{ij}, m{0}) & i \leq j \end{cases}$$

- g(s_j) is a sequence embedding of amino acid
 s_j prior to node i.
- Historical sequential information + overall structural information of the neighbors.

Paper III - Experiments

Training

- Architecture: 3-layers, hidden_size = 128.
- Optimization: learning and initialization same with transformer, dropout = 10%, label_smoothing = 10%.

Dataset:

- CATH 4.2, 18024 train, 608 valid, 1120 test.
- Zero overlap.
- Main result: in terms of perplexity, the lower the better.

Test set	Short	Single chain	All
Structure-conditioned models			
Structured Transformer (ours)	8.54	9.03	6.85
SPIN2 [8]	12.11	12.61	-
Language models			
LSTM ($h = 128$)	16.06	16.38	17.13
LSTM ($h = 256$)	16.08	16.37	17.12
LSTM ($h = 512$)	15.98	16.38	17.13
Test set size	94	103	1120

Paper III - Experiments

Ablation study

Table 3: Ablation of graph features and model components. Test perplexities (lower is better).

Node features	Edge features	Aggregation	Short	Single chain	All
Rigid backbone					
Dihedrals	Distances, Orientations	Attention	8.54	9.03	6.85
Dihedrals	Distances, Orientations	PairMLP	8.33	8.86	6.55
C_{α} angles	Distances, Orientations	Attention	9.16	9.37	7.83
Dihedrals	Distances	Attention	9.11	9.63	7.87
Flexible backbone					
C_{α} angles	Contacts, Hydrogen bonds	Attention	11.71	11.81	11.51

Paper III - Experiments

Compare with SOTA Rosetta model:

Method	Recovery (%)	Speed (AA/s) CPU	Speed (AA/s) GPU
Rosetta 3.10 fixbb	17.9	4.88×10^{-1}	N/A
Ours $(T = 0.1)$	27.6	$\boldsymbol{2.22\times10^2}$	$oldsymbol{1.04 imes 10^4}$

(a) Single chain test set (103 proteins)

Method	Recovery (%)
Rosetta, fixbb 1	33.1
Rosetta, fixbb 2	38.4
Ours $(T = 0.1)$	39.2

(b) Ollikainen benchmark (40 proteins)

Paper III - Conclusion

- New generative model with 3D graph representation.
- Augment original transformer with structural encoding to leverage spatial locality of dependencies in molecular structures.
- Improves perplexity, accuracy and speed.
- Underscores the importance of modeling sparse, long-range dependencies in biological sequences.