Amend claims 7, 8, 12 and 15 as follows:

In claim 7, page 33, line 17, delete "6" and insert therefor -- 12 --.

In claim 8, page 34, line 16, delete "6" and insert therefor -- 12 --.

In claim 15, line 1, delete "6" and insert therefor -- 12 --.

12. (Amended) A process for the preparation of a polyolefin molding composition having a broad, bimodal or multimodal melting range in the DSC spectrum, where the melting range maximum is between 120 and 165°C, the half-intensity width of the melting peak is broader than 10°C and the width determined at quarter peak height is greater than 15°C, wherein such process comprises direct polymerization or copolymerization of at least two polyolefins of different melting point, where the melting points must differ by at least 5°C, and wherein the olefins have the formula R°CH = CHR°, in which R° and R° are identical or different and are a hydrogen atom or an alkyl radical having 1 to 14 carbon atoms, or R° and R°, together with the atoms connecting them, can form a ring, and are polymerized at a temperature of from –60 to 200°C, and a pressure of from 0.5 to 100 bar, in solution, in suspension or in the gas phase, in the presence of a catalyst, where the catalyst comprises at least two metallocenes as transition-metal components and an aluminoxane of the formula II

$$\begin{array}{c}
R \\
A & 1 \\
R
\end{array}$$

for the linear type and/or of the formula III

for the cyclic type, where, in the formulae II and III, the radicals R may be identical or different and are a C_1 – C_6 –alkyl group, a C_1 – C_6 –fluoroalkyl group, a C_6 – C_{18} –aryl group, a C_6 – C_{18} –fluoroaryl group or hydrogen, and n is an integer from 0 to 50, and the aluminoxane component may additionally contain a compound of the formula A1R₃.

where the transition-metal component used comprises at least two metallocenes of the formula I:

in which

M¹ is Zr. Hf or Ti.

 R^1 and R^2 are identical or different and are a hydrogen atom, a C_1-C_{10} -alkyl group, a C_1-C_{10} -alkoxy group, a C_6-C_{10} -aryl group, a C_6-C_{10} -aryloxy group,

a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom.

R³ and R⁴ are identical or different and are a monocyclic or polycyclic, unsubstituted or substituted hydrocarbon radical which, together with the metal atom M¹, can form a sandwich structure,

R⁵ is

 $=BR^{11}$, $=A1R^{11}$, -Ge-, -Sn-, -O-, -S-, =SO, $=SO_2$, $=NR^{11}$, =CO, $=PR^{11}$ or $=P(O)R^{11}$,

where

 R^{11} , R^{12} and R^{13} are identical or different and are a hydrogen atom, a halogen atom, a C_1 – C_{10} –alkyl group, a C_1 – C_{10} –fluoroalkyl group, a C_6 – C_{10} –aryl group, a C_6 – C_{10} –alkenyl group, a C_1 – C_{10} –alkoxy group, a C_2 – C_{10} –alkenyl group, a C_7 – C_{40} –arylalkyl group, a C_8 – C_{40} –arylalkenyl group or a C_7 – C_{40} –alkylaryl group, or R^{11} and R^{12} or R^{11} and R^{13} , in each case together with the atoms connecting them, form a ring, and