Was soll der Ramsey RESET Test prüfen?

Regression Equation Specification Error Test von James Ramsey (1969)

Was soll der Ramsey RESET Test prüfen?

Regression Equation Specification Error Test von James Ramsey (1969) Ist die Modellgleichung im Regressionsmodell fehlspezifiziert?

Welches Modell ist richtig?

Wir können das quadratische Modell schätzen und mit dem t-Test überprüfen, ob β_2 signifikant (von Null verschieden) ist:

```
formula <- y ~ x + I(x^2)
quadratic_model <- lm(formula, data)</pre>
```

Welches Modell ist richtig?

Wir können das quadratische Modell schätzen und mit dem t-Test überprüfen, ob β_2 signifikant (von Null verschieden) ist:

```
formula <- y ~ x + I(x^2)
quadratic_model <- lm(formula, data)</pre>
```

summary(quadratic_model)\$coefficients

Welches Modell ist richtig?

Wir können das quadratische Modell schätzen und mit dem t-Test überprüfen, ob β_2 signifikant (von Null verschieden) ist:

```
formula <- y ~ x + I(x^2)
quadratic_model <- lm(formula, data)</pre>
```

summary(quadratic_model)\$coefficients

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.27 0.816 -1.6 0.13864997
## x 2.95 0.345 8.5 0.00000015
## I(x^2) -0.11 0.031 -3.5 0.00258782
```

Hier ist der p-value für H_0 : $\beta_2=0$ ziemlich klein, also wird H_0 verworfen. Wir würden uns also für das quadratische Modell entscheiden.

Funktioniert dieses Vorgehen auch bei mehreren Regressoren?

Bei $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ gegen $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$ hat das gut funktioniert. Und wenn wir mehr als nur einen Regressor haben?

Funktioniert dieses Vorgehen auch bei mehreren Regressoren?

Bei $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ gegen $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$ hat das gut funktioniert. Und wenn wir mehr als nur einen Regressor haben?

$$\mathsf{Hauspreis}_i = \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i + \epsilon_i$$

Funktioniert dieses Vorgehen auch bei mehreren Regressoren?

Bei $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ gegen $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$ hat das gut funktioniert. Und wenn wir mehr als nur einen Regressor haben?

$$\mathsf{Hauspreis}_i = \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i + \epsilon_i$$

Hier gibt es viel mehr Möglichkeiten:

- Quadratische Terme: Wohnfläche², Schlafzimmeranzahl², Baujahr²
- Interaktionsterme: Wohnfläche_i · Schlafzimmeranzahl_i, . . .
- Kubische Terme: Wohnfläche³, . . .

Für jede Möglichkeit einen t-Test durchzuführen ist zu aufwendig.

1 Schätze das Ausgangsmodell:

Hauspreis_i = $\beta_0 + \beta_1$ Wohnfläche_i + β_2 Schlafzimmeranzahl_i + β_3 Baujahr_i + ϵ_i

1 Schätze das Ausgangsmodell:

$$\mathsf{Hauspreis}_i = \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i + \epsilon_i$$

2 Berechne die Prognosen:

$$\widehat{\mathsf{Hauspreis}}_i = \hat{eta}_0 + \hat{eta}_1 \mathsf{Wohnfläche}_i + \hat{eta}_2 \mathsf{Schlafzimmeranzahl}_i + \hat{eta}_3 \mathsf{Baujahr}_i$$

1 Schätze das Ausgangsmodell:

$$\mathsf{Hauspreis}_i = \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i + \epsilon_i$$

2 Berechne die Prognosen:

$$\widehat{\mathsf{Hauspreis}}_i = \hat{eta}_0 + \hat{eta}_1 \mathsf{Wohnfläche}_i + \hat{eta}_2 \mathsf{Schlafzimmeranzahl}_i + \hat{eta}_3 \mathsf{Baujahr}_i$$

3 Schätze erneut, aber diesmal mit Potenzen der Prognosen als Regressoren:

$$\begin{aligned} \mathsf{Hauspreis}_i &= \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i \\ &+ \beta_4 \mathsf{Hauspreis}_i^{\ 2} + \beta_5 \mathsf{Hauspreis}_i^{\ 3} + \epsilon_i \end{aligned}$$

1 Schätze das Ausgangsmodell:

$$\mathsf{Hauspreis}_i = \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i + \epsilon_i$$

2 Berechne die Prognosen:

$$\widehat{\mathsf{Hauspreis}_i} = \hat{\beta_0} + \hat{\beta_1} \mathsf{Wohnfläche}_i + \hat{\beta_2} \mathsf{Schlafzimmeranzahl}_i + \hat{\beta_3} \mathsf{Baujahr}_i$$

3 Schätze erneut, aber diesmal mit Potenzen der Prognosen als Regressoren:

$$\begin{aligned} \mathsf{Hauspreis}_i &= \beta_0 + \beta_1 \mathsf{Wohnfl\"{a}che}_i + \beta_2 \mathsf{Schlafzimmeranzahl}_i + \beta_3 \mathsf{Baujahr}_i \\ &+ \beta_4 \mathsf{Hauspreis}_i^{\ 2} + \beta_5 \mathsf{Hauspreis}_i^{\ 3} + \epsilon_i \end{aligned}$$

Teste H_0 : $\beta_4 = \beta_5 = 0$ mit einem F-Test.

Warum nicht auch die erste Potenz der Prognosen?

Die Hauspreis Werte sind bereits eine Linearkombination der Regressoren. Würden sie

zusätzlich aufgenommen werden, würde das zu Multikollinearität führen.

Warum nicht auch die erste Potenz der Prognosen?

Die Hauspreis Werte sind bereits eine Linearkombination der Regressoren. Würden sie zusätzlich aufgenommen werden, würde das zu Multikollinearität führen.

Bis zur wievielten Potenz?

Dafür gibt es keine allgemeine Regel, meistens wählt man die 2. und 3. Potenz.

Warum nicht auch die erste Potenz der Prognosen?

Die Hauspreis Werte sind bereits eine Linearkombination der Regressoren. Würden sie zusätzlich aufgenommen werden, würde das zu Multikollinearität führen.

Bis zur wievielten Potenz?

Dafür gibt es keine allgemeine Regel, meistens wählt man die 2. und 3. Potenz.

Vor- und Nachteile des Verfahrens?

- Kann auch bei einer Vielzahl an Regressoren effizient angewendet werden. Wir brauchen kein Alternativmodel definieren.
- S Es kann zwar aufgezeigt werden, *ob* eine Fehlspezifikation vorliegt, aber nicht welcher Art