Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-60 (cancelled)

- 61. (previously presented) A method for transfecting a cell with a nucleic acid molecule comprising contacting said cell with a sphingoid-polyalkylamine conjugate together with said nucleic acid molecule, wherein said sphingoid-polyalkylamine conjugate comprises a sphingoid backbone carrying, via a carbamoyl bond, at least one polyalkylamine.
- 62. (previously presented) The method of Claim 61, wherein said nucleic acid is associated with said sphingoid-polyalkylamine conjugate.
- 63. (previously presented) The method of Claim 61, wherein said nucleic acid molecule is a plasmid DNA.
- 64. (previously presented) The method of Claim 61, wherein said nucleic acid molecule is a small interference RNA (siRNA).
- 65. (previously presented) The method of Claim 61, wherein said nucleic acid molecule is an oligodeoxynucleotide (ODN).
- 66. (previously presented) The method of Claim 62, wherein said sphingoid-polyalkylamine conjugate forms lipid assemblies.

67. (previously presented) The method of Claim 66, wherein said sphingoid-polyalkylamine conjugate forms vesicles, micelles or a mixture of same.

- 68. (previously presented) The method Claim 61, wherein the sphingoid backbone is selected from ceramide, dihydroceramide, phytoceramide, dihydrophytoceramide, ceramine, dihydroceramine, phytoceramine, dihydrophytoceramine.
- 69. (previously presented) The method of Claim 61, wherein said sphingoid backbone is a ceramide.
- 70. (previously presented) The method of Claim 61, wherein said one or more polyalkylamine chains are independently selected from spermine, spermidine, a polyalkylamine analog or a combination thereof.
- 71. (previously presented) The method of Claim 61, wherein said sphingoid-polyalkylamine conjugate has the following formula (I):

$$R_2$$
— W

CH₂OR₄

NHR₁

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-C(O)\,R_5$;

 R_2 and R_5 represent, independently, a branched or linear $C_{10}-C_{24}$ alkyl, alkenyl or polyenyl groups;

 $\mathbf{R_3}$ and $\mathbf{R_4}$ are independently a group -C(O)-NR₆ R₇, $\mathbf{R_6}$ and $\mathbf{R_7}$ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or $\mathbf{R_3}$ is a hydrogen; or

 ${f R}_3$ and ${f R}_4$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)-$, ${f R}_8$ represents a saturated or unsaturated C_1-C_4 alkyl and ${f R}_9$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n-$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and

- **n** and **m**, represent independently an integer from 1 to 10; $\mbox{W represents a group selected from -CH=CH-, -CH_2-CH(OH)- or -CH_2-CH_2-. }$
- 72. (previously presented) The method of Claim 71, wherein R_1 represents a $-C(0)R_5$ group, R_5 being as defined.
- 73. (previously presented) The method of Claim 71, wherein said R_2 and R_5 represent, independently, a linear or branched C_{12} - C_{18} alkyl or alkenyl chain.
- 74. (previously presented) The method of Claim 71, wherein W represents -CH=CH-.
- 75. (previously presented) The method of Claim 71, wherein $\mathbf{R_1}$ represents a -C(0)R₅ group; $\mathbf{R_5}$ represents a C₁₂-C₁₈ linear or branched alkyl or alkenyl; \mathbf{W} represents -CH=CH-; $\mathbf{R_2}$ represents a C₁₂-C₁₈ linear or branched alkyl or alkenyl; $\mathbf{R_3}$ and $\mathbf{R_4}$ represent,

independently, a group $C(O)-NR_6R_7$, and R_3 may also represent a hydrogen, wherein R_6 and R_7 represent, independently, a hydrogen or a polyalkylamine having the general formula (II):

$$+$$
R₈ $-$ NR₉ $+$ n

wherein

 $\mathbf{R_8}$ represent a C_1-C_4 alkyl;

 R_9 represents a hydrogen or a polyalkylamine branch of formula (II), said R_8 and R_9 may be the same or different for each alkylamine unit, $-R_8NR_9-$, in the polyalkylamine of formula (II); and

n represents an integer from 3 to 6.

76. (previously presented) The method of Claim 71, wherein R_3 is a hydrogen atom.

77. (previously presented) The method of Claim 71, wherein both R_3 and R_4 represent the same or different polyalkylamine.

78. (previously presented) The method of Claim 71, wherein $\mathbf{R_1}$ represents a $-C(O)\,R_5$ group; $\mathbf{R_5}$ represents a $C_{12}-C_{18}$ linear or branched alkyl or alkenyl; \mathbf{W} represents -CH=CH-; $\mathbf{R_2}$ represents a $C_{12}-C_{18}$ linear or branched alkyl or alkenyl; $\mathbf{R_3}$ and $\mathbf{R_4}$ represent independently a group $C(O)-NR_6R_7$, wherein $\mathbf{R_6}$ and $\mathbf{R_7}$ represent, independently, an alkylamine or a polyalkylamine having the general formula (II):

$$+$$
R₈ $-$ NR₉ $+$ _nH

wherein

 $\mathbf{R_8}$ represent a C_1-C_4 alkyl;

 R_9 represents a hydrogen or a polyalkylamine branch of formula (II), said R_8 and R_9 may be the same or different for

each alkylamine unit, $-R_8NR_9-$, in the polyalkylamine of formula (II); and

n represents an integer from 3 to 6.

79. (previously presented) The method of Claim 71, wherein $\mathbf{R_1}$ represents a C(0) R_5 group; $\mathbf{R_5}$ represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; \mathbf{W} represents -CH=CH-; $\mathbf{R_2}$ represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bonded a heterocyclic ring comprising -C(0)-[NH-R₈]_n-NH-C(0)-,

wherein

 $\mathbf{R_8}$ represents a C_1-C_4 alkyl, wherein for each alkylamine unit -NH-R₈-, said R₈ may be the same or different; and \mathbf{n} represents an integer from 3 to 6.

- 80. (previously presented) The method of Claim 71, wherein said R_8 is a C_3-C_4 alkyl.
- 81. (previously presented) The method of Claim 71, wherein said sphingoid-polyalkylamine conjugate is N-palmitoyl D-erythro sphingosyl-1-carbamoyl spermine (CCS).
- 82. (previously presented) The method of Claim 61, wherein said sphingoid-polyalkylamine conjugate associated with the nucleic acid molecule is also associated with a targeting substance.

83. (canceled)

84. (previously presented) A method for the treatment of a disease or disorder, the method comprises providing a subject in need of said treatment an amount of a sphingoid-polyalkylamine conjugate associated with a nucleic acid molecule, wherein said

sphingoid-polyalkylamine conjugate comprises a sphingoid backbone carrying, via a carbamoyl bond, at least one polyalkylamine and the amount of said nucleic acid molecule is effective to achieve a desired biochemical effect once in said target cell.

- 85. (previously presented) The method of Claim 84, wherein said sphingoid backbone is ceramide.
- 86. (previously presented) The method of Claim 84, wherein said sphingoid-polyalkylamine conjugate has the following formula (I):

$$R_2$$
— W
 CH_2OR_4
 NHR_1

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-C\left(O\right)R_5$;

 R_2 and R_5 represent, independently, a branched or linear $C_{10}-C_{24}$ alkyl, alkenyl or polyenyl groups;

 ${f R_3}$ and ${f R_4}$ are independently a group -C(O)-NR₆ R₇, ${f R_6}$ and ${f R_7}$ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or ${f R_3}$ is a hydrogen; or

 $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)$, $\mathbf{R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and

n and **m**, represent independently an integer from 1 to 10; **W** represents a group selected from -CH=CH-, -CH₂-CH(OH)- or -CH₂-CH₂-.

- 87. (previously presented) The method of Claim 84, wherein said sphingoid-polyalkylamine conjugate is N-palmitoyl D-erythro sphingosyl carbamoyl-spermine (CCS).
- 88. (previously presented) A transfection composition comprising: a sphingoid-polyalkylamine conjugate comprising a sphingoid backbone carrying, via a carbamoyl bond, at least one polyalkylamine; and a nucleic acid molecule.
- 89. (previously presented) The transfection composition of Claim 88, comprising a physiologically acceptable carrier.
- 90. (previously presented) The transfection composition of Claim 88, wherein said nucleic acid molecule has, at a physiological pH, a net negative dipole moment, at least one area carrying a negative charge or a net negative charge.
- 91. (previously presented) The transfection composition of Claim 88, wherein said nucleic acid molecule is a plasmid DNA.

- 92. (previously presented) The transfection composition of Claim 88, wherein said nucleic acid molecule is a small interference RNA (siRNA).
- 93. (previously presented) The transfection composition of Claim 88, wherein said nucleic acid molecule is an oligodeoxynucleotide (ODN).
- 94. (previously presented) The transfection composition of Claim 88, wherein the sphingoid-polyalkylamine conjugate forms lipid assemblies.
- 95. (previously presented) The composition of Claim 94, wherein the sphingoid-polyalkylamine conjugate forms vesicles and/or micelles.
- 96. (previously presented) The transfection composition of Claim 88, wherein the sphingoid backbone is selected from ceramide, dihydroceramide, phytoceramide, dihydrophytoceramine, ceramine, dihydroceramine, phytoceramine, dihydrophytoceramine.
- 97. (previously presented) The transfection composition of Claim 94, wherein said sphingoid is a ceramide.
- 98. (previously presented) The transfection composition of Claim 88, wherein said one or more polyalkylamine chains are independently selected from spermine, spermidine, a polyalkylamine analog or a combination thereof.
- 99. (previously presented) The transfection composition of Claim 88, wherein said sphingoid-polyalkylamine conjugate has the following formula (I):

$$R_2$$
— W
 CH_2OR_4
 NHR_1

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group $-C(O)R_5$;

 R_2 and R_5 represent, independently, a branched or linear $C_{10}-C_{24}$ alkyl, alkenyl or polyenyl groups;

 ${f R_3}$ and ${f R_4}$ are independently a group -C(0)-NR₆ R₇, ${f R_6}$ and ${f R_7}$ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or ${f R_3}$ is a hydrogen; or

 $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(0)-NR_9-[R_8-NR_9]_m-C(0)$, $\mathbf{R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n$, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and

 ${\bf n}$ and ${\bf m}$, represent independently an integer from 1 to 10; ${\bf W} \text{ represents a group selected from -CH=CH-, -CH_2-CH(OH)- or -CH_2-CH_2-.}$

100. (previously presented) The transfection composition of Claim 88, wherein said sphingoid-polyalkylamine conjugate is N-palmitoyl D-erythro sphingosyl carbamoyl-spermine (CCS).

101-106. (canceled)