Tema

A8 [Axioma del continuo o de Dedekind] Dados subconjuntos no vacíos A y B de números reales tales que todo elemento de A es menor o igual que todo elemento de B, se verifica que existe un número real $z \in \mathbb{R}$ que es mayor o igual que todo elemento de A y menor o igual que todo elemento de B.

Simbólicamente:

$$\left. \begin{array}{l} \varnothing \neq A \subset \mathbb{R}, \ \varnothing \neq B \subset \mathbb{R} \\ a \leqslant b \ \forall a \in A, \ \forall b \in B \end{array} \right\} \Longrightarrow \ \exists z \in \mathbb{R} \ \text{verificando que} \ a \leqslant z \leqslant b \quad \forall a \in A, \ \forall b \in B$$

1.1.1. El principio del supremo. Intervalos

El axioma de Dedekind es muy intuitivo pero poco operativo. Usualmente se utilizan versiones equivalentes del mismo que vamos a exponer seguidamente.

- **1.8 Definición.** Sea E un conjunto no vacío de números reales.
- i) Un número $v \in \mathbb{R}$ se dice que es un *mayorante o cota superior* de E si $x \le v$ para todo $x \in E$.
- ii) Un número $u \in \mathbb{R}$ se dice que es un *minorante o cota inferior* de E si $u \leq x$ para todo $x \in E$.
- iii) Si hay algún elemento de E que también sea mayorante de E, dicho elemento es necesariamente único, se llama $m\acute{a}ximo$ de E y lo representaremos por $m\acute{a}x(E)$.
- iv) Si hay algún elemento de E que también sea minorante de E, dicho elemento es necesariamente único, se llama minimo de E y lo representaremos por min(E).
- v) Un conjunto de números reales que tiene algún mayorante se dice que está *mayorado o acotado superiormente*.
- vi) Un conjunto de números reales que tiene algún minorante se dice que está *minorado o acotado inferiormente*.
- vii) Un conjunto de números reales que está mayorado y minorado se dice que está acotado.
- **1.9 Teorema** (Principio del supremo). Para todo conjunto de números reales no vacío y mayorado se verifica que el conjunto de sus mayorantes tiene mínimo.

Demostración. Sea A un conjunto de números reales no vacío y mayorado. Sea B el conjunto de todos los mayorantes de A. Por hipótesis, B es no vacío. Para todos $a \in A$ y $b \in B$ se verifica que $a \le b$. En virtud del axioma del continuo, existe $z \in \mathbb{R}$ verificando que $a \le z \le b$ para todo $a \in A$ y todo $b \in B$. La desigualdad $a \le z$ para todo $a \in A$ nos dice que z es un mayorante de A, por lo que $z \in B$. La desigualdad $z \le b$ para todo $z \in B$, nos dice ahora que $z \in B$ mínimo de $z \in B$.

Razonando por analogía tú debes probar el siguiente resultado.

1.10 Teorema (Principio del ínfimo). Para todo conjunto de números reales no vacío y minorado se verifica que el conjunto de sus minorantes tiene máximo.

- **1.11 Definición.** Sea E un conjunto de números reales no vacío.
- i) Si E está mayorado se define el *supremo o extremo superior* de E, como el *mínimo mayorante* de E y lo representaremos por $\sup(E)$.
- ii) Si E está minorado se define el *infimo o extremo inferior* de E como el *máximo minorante* de E y lo representaremos por $\inf(E)$.
- **1.12 Observaciones.** Un número $\beta \in \mathbb{R}$ es el supremo de E quiere decir, por definición, que:
 - 1. $x \leq \beta$ para todo $x \in E$.
 - Ningún número menor que β es mayorante de E, es decir, para cada u < β hay algún x ∈ E tal que u < x.

Esto puede enunciarse de forma equivalente como sigue:

Para cada $\varepsilon > 0$ hay hay algún $x_{\varepsilon} \in E$ tal que $\beta - \varepsilon < x_{\varepsilon}$.

Observa que las desigualdades $z \ge x$ ($\forall x \in E$) son equivalentes a la desigualdad $z \ge \sup(E)$.

$$z \geqslant x \ (\forall x \in E) \iff z \geqslant \sup(E)$$
 (1.4)

Un número $\alpha \in \mathbb{R}$ es el ínfimo de E quiere decir, por definición, que:

- a) $\alpha \leq x$ para todo $x \in E$.
- b) Ningún número mayor que α es minorante de E, es decir, para cada $v > \alpha$ hay algún $x \in E$ tal que x < v.

Esto puede enunciarse de forma equivalente como sigue:

Para cada $\varepsilon > 0$ hay hay algún $x_{\varepsilon} \in E$ tal que $x_{\varepsilon} < \alpha + \varepsilon$.

Observa que las desigualdades $z \le x$ ($\forall x \in E$) son equivalentes a la desigualdad $z \le \inf(E)$.

$$z \leqslant x \; (\forall x \in E) \quad \Longleftrightarrow \quad z \leqslant \inf(E)$$

1.22 Proposición.

- a) Todo conjunto de números enteros no vacío y mayorado tiene máximo.
- b) Todo conjunto de números enteros no vacío y minorado tiene mínimo.

Demostración. Sea $E \subseteq \mathbb{R}$ no vacío y mayorado. En virtud del principio del supremo hay un número $\beta \in \mathbb{R}$ que es el mínimo mayorante de E. Puesto que $\beta - 1 < \beta$, debe haber algún $z \in E$ tal que $\beta - 1 < z$ y, claro está, $z \leqslant \beta$. Supongamos que los elementos de E son números enteros, $E \subseteq \mathbb{Z}$, y probemos que, en tal caso, debe ser $z = \beta$. Si fuera $z < \beta$ tendría que haber algún $w \in E$ tal que $z < w \leqslant \beta$ pero entonces el número w - z es un entero positivo tal que w - z < 1 lo cual es contradictorio. En consecuencia $z = \beta \in E$ y β es el máximo de E.

Análogamente se prueba, debes hacerlo, que un conjunto no vacío y minorado de enteros tiene mínimo.

Como consecuencia del apartado b) deducimos el siguiente resultado.

1.23 Proposición (Principio de buena ordenación de N). Todo conjunto no vacío de números naturales tiene mínimo.

Como $\mathbb N$ no tiene máximo, obtenemos como consecuencia inmediata del apartado a) el siguiente resultado.

- **1.24 Proposición** (Propiedad arquimediana). Dado cualquier número real se verifica que hay números naturales mayores que él.
- **1.33 Proposición.** Dados $k \in \mathbb{N}$, $k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.
- **1.34 Definición.** Un conjunto A de números reales se dice que es *denso* en un intervalo I, si entre dos números reales cualesquiera de I siempre hay algún número real que está en A. En particular, A es denso en \mathbb{R} si en todo intervalo abierto no vacío hay puntos de A.
- **1.35 Proposición.** Los conjuntos \mathbb{Q} y $\mathbb{R}\setminus\mathbb{Q}$ son densos en \mathbb{R} .

Demortzación de que a en olenso en IR

Sean X,7; X<2

$$x < \frac{m+1}{2} = \frac{m}{2} + \frac{1}{2} < x + (y-x) = y$$

RIQ en demo en IR

Sea rea : x- V2 < r < x+V2 = x < r+Vi < g The state of the state of the