Institut de Financement du Développement du Maghreb Arabe CONCOURS DE RECRUTEMENT DES PROMOTIONS ASSURANCE et BANQUE (Finance)

Module 3 : Le choix d'investissement en avenir incertain

Exercice 1 (8 points) : <u>ÉNONCÉ</u>

Deux investisseurs (X et Y) sont intéressés par les deux projets d'investissement A et B dont les caractéristiques sont résumées dans le tableau suivant :

Projet A		
VAN Probabilité		
760 0,3		
800	0,5	
1400 0,2		

Projet B		
VAN Probabilité		
500	0,2	
800	0,5	
1300	0,3	

- 1) Quel est le projet le plus rentable ? Quel est le projet le plus risqué ? (3 points)
- 2) Les deux investisseurs ont des fonctions d'utilité appartenant à la même famille de forme générique :

$$U(W) = \begin{cases} \frac{1}{(1-\theta)} W^{(1-\theta)}, si \theta \neq 1\\ \ln(W), si\theta = 1 \end{cases}$$

- Quelle est la signification du paramètre θ ? (1 point)
- Le paramètre θ vaut 0,1 pour X et 0,9 pour Y, quel est l'investisseur le plus sensible au risque ? (2 points)
- 3) Quel est le projet qui sera retenu par chacun des deux investisseurs en fonction de son attitude vis à vis du rendement et du risque ? Leurs choix sont-ils convergents ? Commentez. (2 points)

Exercice 2 (10 points):

ÉNONCÉ

Un investisseur est intéressé par deux projets d'investissement A et B dont les coûts sont identiques :

Coût d'investissement de A = Coût d'investissement de B = 1000 Dinars.

Ils dégageraient sur leur durée de vie commune de deux ans les cash-flows aléatoires suivants :

Projet A		
Années	Cash-flows (en	Probabilité
	Dinars)	
1	500	0,5
1	600	0,5
2	750	0,5
	850	0,5

Projet B		
Années	Cash-flows (en	Probabilité
	Dinars)	
1	500	0,6
1	800	0,4
2	720	0,6
	800	0,4

Autres informations:

- Les cash-flows sont indépendants,
- Le taux d'actualisation est de 13%.

L'investisseur a une fonction d'Utilité appartenant à la famille de forme générique:

$$U(W) = \frac{1}{1 - \theta} W^{1 - \theta}, \text{avec } 0 \le \theta < 1$$

Questions

- 1) Quelle est la signification du paramètre θ ?
- 2) Le paramètre θ vaut 0,25 pour l'investisseur : Quel est le projet qu'il va choisir ?
- 3) Si le paramètre θ vaut 0,8 pour l'investisseur: le choix sera-t-il le même que dans la question 2 ? Commentez.

Exercice 3 (6 points):

ÉNONCÉ

La société V envisage d'investir ses excédents de trésorerie estimés à 200 000 u. m (unités monétaires).

Les opportunités d'investissement qui lui sont offertes sont caractérisées comme suit :(valeurs en u. m)

	Coût de l'Investissement	VAN espérée	Écart- type de la VAN
Projet A	100 000	28 000	14 000

Projet B	100 000	25 000	8 000
Projet C	100 000	16 000	6 000

VAN : Valeur Actuelle Nette ; VAN espérée : Espérance Mathématique de la VAN

- Les projets A et B sont indépendants
- Le Coefficient de Corrélation entre la VAN du projet A et la VAN du projet C est égal à 1
- Les projets B et C sont mutuellement exclusifs

Travail à faire :

La société devrait choisir deux (2) projets : Le choix devrait se faire sur la base du Coefficient de Variation de la VAN.

Indiquer les deux projets devant être choisis par la Société V

Exercice 4 (6 points) : <u>ÉNONCÉ</u>

1) Un entrepreneur de travaux publics doit préparer une soumission pour un projet d'autoroute. Le coût de préparation de la soumission est de 5.000 dinars. Si l'entrepreneur obtient le contrat, éventualité qui a une probabilité de 20% de se produire, il réalisera un gain net de 50.000 dinars.

<u>Question</u>: En utilisant le critère de l'espérance mathématique des gains monétaires, l'entrepreneur a-t-il intérêt à participer à la soumission ?

2) On tient compte maintenant de l'attitude de l'entrepreneur face au risque à travers sa fonction d'utilité. Les Valeurs d'utilité qu'il accorde aux gains monétaires sont résumées dans le tableau ci-après

Gain Monétaire : W	Utilité des Gains Monétaires : U(W)
-5.000	-75
0	0
5.000	30
10.000	55
20.000	95
30.000	120
40.000	150
50.000	175
60.000	195
70.000	200

<u>Question</u>: Dans cette situation, le critère de choix est l'espérance de l'utilité des gains monétaires : Quelle sera alors la décision de l'entrepreneur ?

Exercice 5 (12 points) : ÉNONCÉ

Un investisseur est intéressé par les deux projets d'investissement A et B dont les caractéristiques sont résumées dans le tableau suivant :

Projet A	
VAN	Probabilité
1180	0,4
2100	0,4
3110	0,2

Projet B		
VAN	Probabilité	
1520	0,3	
2000	0,3	
3800	0,4	

VAN: Valeur Actuelle Nette

Question 1:

Quel est le projet le plus rentable ? Quel est le projet le plus risqué ? (4 points) Justifier votre réponse.

Question 2:

En situation d'incertitude et de risque, le critère de choix est l'espérance de l'utilité de la VAN. L'attitude de l'investisseur à l'égard du couple rendement-risque peut être approximée par une fonction d'utilité de type : $U(W) = W^{\theta}$, $si\ 0 < \theta < 1$

- a) Quel est le comportement face au risque induit par cette fonction ? (4 points)
- b) Le coefficient θ vaut 0,2 pour l'investisseur : quel est le projet qui sera retenu ? (4 points)

Exercice 6 (6 points):

<u>ÉNONCÉ</u>

Un investisseur possède une richesse $W_0 = 100$

00~Dinars. Son comportement vis-à-vis du risque peut être décrit par une fonction d'utilité du type : $U(W)=W^{\theta}$

,
$$avec \ 0 < \theta < 1$$

On propose à cet investisseur un placement en Bourse dont les résultats se présentent comme suit :

Gain ou perte (en Dinars)	Probabilité
-20 000	0,50
20 000	0,50

Questions

- 1) L'investisseur va-t-il accepter ce placement ? Justifier votre réponse. (3 points)
- 2) Déterminer l'Équivalent Certain de la richesse finale pour $\theta = 1/2$

. En déduire la Prime de Risque. (3 points)

Exercice 7 (10 points):

<u>ÉNONCÉ</u>

Un investisseur doit choisir entre deux projets d'investissements risqués A et B dont les caractéristiques sont résumées ci-dessous.

- Durée de vie commune : 2ans
- Dépenses d'investissements (effectuées au début de la première année): IA = 1700; IB = 2500
- Cash-flows probables (supposés être obtenus en fin de période)

Projet A		
C	Cash-flows	
	1100	0,3
Ann é e 1	1350	0,5
	1500	0,2
	1300	0,2
Ann é e 2	1400	0,6
	1600	0,2

Projet B		
С	ash-flows	Probabilité
	1850	0,3
Ann é e 1	2000	0,4
	2450	0,3
	1700	0,2
Ann é e 2	1900	0,5
	2100	0,3

- Autres renseignements :
 - Les Cash-flows sont indépendants
 - Le rendement exigé par l'investissement compte tenu du risque (taux d'actualisation) est de 25%

Questions

- 1) **(5 points)**
 - a) Établir, pour chacun des deux projets :
 - ✓ La distribution de la valeur actuelle nette (VAN)
 - ✓ Son espérance mathématique : E(VAN)
 - ✓ Son écart-type $\sigma(VAN)$
 - b) Classer les deux projets selon :
 - ✓ L'espérance de la valeur actuelle E(VAN)
 - ✓ Le risque, mesuré par $\sigma(VAN)$

Les deux classements sont-ils convergents ? Cette situation vous paraît-elle normale ?

2) (2,5 points)

En situation d'incertitude et de risque, les investisseurs adoptent souvent comme critère de choix entre les projets d'investissement une fonction de type :

$$L[E(VAN), \sigma(VAN)] = E(VAN) - \alpha \sigma(VAN)$$

Qui tient compte à la fois de l'importance de la valeur actuelle nette espérée du projet E(VAN), de la taille de son risque $\sigma(VAN)$ et du comportement de l'investisseur visà-vis du risque que traduit le paramètre α

- a) Quelle condition doit respecter le paramètre α selon le type de comportement de l'investisseur vis-à-vis (préférence pour le risque, neutralité envers le risque et aversion pour le risque)
- b) A quelles notions classiques peut-on assimiler les deux expressions suivantes :
 - \checkmark $\alpha\sigma(VAN)$
 - \checkmark $E(VAN) \alpha\sigma(VAN)$
- 3) **(2,5 points)**

On se place dans le cadre de l'hypothèse habituelle d'aversion au risque :

- a) Étudier la fonction $L[E(VAN), \sigma(VAN)] = E(VAN) \alpha\sigma(VAN)$ en fonction des variables E(VAN) et $\sigma(VAN)$
- b) Déterminer, pour chacun des deux projets, la valeur de la fonction L en fonction du coefficient d'aversion au risque α de l'investisseur. Discuter en fonction de α le choix de l'investisseur.

Exercice 8 (3 points : 2+1) :

La Société X souhaite diversifier son activité. Sa direction a sélectionné 4 projets qui rentrent dans sa stratégie : (valeurs en u.m : unités monétaires)

	Coût de l'Investissement	VAN espérée	Ecart- type de la VAN
Projet A	100	30	20
Projet B	100	25	15
Projet C	100	20	10

VAN: Valeur Actuelle Nette

- Les projets A et B sont indépendants
- Les Projets A et C sont parfaitement et positivement corrélés.
- Les projets C et B sont mutuellement exclusifs
- 1. La Société X compte réaliser 2 des 3 projets : quelle combinaison conseillez-vous à la société : la décision est prise suivant le coefficient de variation de la VAN
- 2. Pour financer les deux projets retenus, la Société X s'est adressée à 2 banques de la place, qui lui offrent des conditions différentes :
- La banque 1 propose un taux d'intérêt de 11%, une durée de 2 ans et un remboursement en deux annuités constantes de fin de période.
- La banque 2 propose un taux d'intérêt de 12%, une durée de 2 ans et un remboursement in fine.

Compte tenu des conditions offertes, quelle banque lui conseillez-vous. Justifiez votre réponse.			