

Bioorganic & Medicinal Chemistry Letters 8 (1998) 1525-1530

SYNTHESIS AND IN VITRO CYTOTOXICITY OF LIPOPHILIC PLATINUM(II) **COMPLEXES**

George Kokotos,* Vassiliki Theodorou

Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece

Violetta Constantinou-Kokotou

Chemical Laboratories, Agricultural University of Athens, Greece

William A. Gibbons

Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, U.K.

Christos Roussakis

Laboratoire de Pharmacologie Marine, Faculté de Pharmacie, Université de Nantes, France

Received 9 March 1998; accepted 14 May 1998

Abstract: A number of lipophilic platinum(II) complexes of the general structures cis-[Pt(LA)2Cl2] and [Pt(LD)Cl₂] were synthesised. Long chain amines (LA) and diamines (LD), prepared from lipidic amino acids, were used as ligands. The in vitro cytotoxicity of the complexes was evaluated against four cell lines (P388, NSCLC-N6, E39, M96). cis-Dichloro-bis(2-aminohexadecanol)platinum(II) was the most active against P388, NSCLC-N6 and E39 (IC₅₀: 11 µg/ml, 25 µg/ ml, 31 µg/ml), while dichloro(1,3-heptadecanediamine)platinum(II) presented the highest activity against M96 (IC₅₀: 13 μg/ml). © 1998 Elsevier Science Ltd. All rights reserved.

cis-Diamminedichloroplatinum(II) (cisplatin, cis-DDP) is an anticancer drug widely used to treat a variety of tumours, especially those of the testes, ovaries, head and neck. 1,2 However, the clinical usefulness of cis-DDP is limited by its severe side effects^{3,4} (nephrotoxicity, nausea and vomiting, ototoxicity, neurotoxicity and myelosuppression), low activity for certain tumours and development of acquired resistance⁵. To overcome these drawbacks a great deal of effort has been focused on the preparation and evaluation of new complexes². A designing strategy, that may produce polyfunctional drugs with synergistic action, includes the use of biomolecules or chemotherapeutic agents as platinum ligands. Based on this strategy we have recently prepared and studied the cytotoxic activity of cis-dichloro[bis(aminocoumarin)]platinum(II) complexes⁶.

PII: S0960-894X(98)00256-X

fax: +301 7249101, e-mail: gkokotos@atlas.uoa.gr

Sphingosine, a breakdown product of sphingolipids, as well as its analogues, have been found to inhibit protein kinase C, an enzyme that has been implicated in cell replication, tumour promotion, oncogenesis and signal transduction⁷. Structure-activity relationship studies showed that a long hydrophobic chain and a free amino group are the structural requirements for the inhibition of protein kinase C⁸. Long chain saturated amines (C12 to C18) and the unsaturated oleyl amine (C18:0) were found to inhibit the growth of *ras*-transformed NIH 3T3 cells (PAP2 cells)⁹. However, such a cell growth inhibition was attributed not only to protein kinase C inhibition but also to other factors⁹.

In this paper the synthesis and the *in vitro* cytotoxic activity of lipophilic platinum(II) complexes with long chain amines as ligands are described. The presence of the long chains confers lipophilicity to these complexes that may facilitate transport across the cellular membrane and increase intracellular drug accumulation thus improving drug effectiveness. It has been shown that hydrophobicity parameters for platinum complexes influence the activity¹⁰, while there are indications that transportation may be associated to the problem of resistance to *cis*-DDP¹¹.

The long chain amines (LA) tetradecylamine (1), hexadecylamine (2), octadecylamine (3), methyl 2-aminohexadecanoate (4) and 2-aminohexadecanol (5) were used as ligands for the complexes *cis*-[Pt(LA)₂Cl₂] 6a-e. The bidentate chelating amines (LD) 1,2-hexadecanediamine (7) and 1,3-heptadecanediamine (8) were used for the synthesis of chelates [Pt(LD)Cl₂] 9a (five-membered ring) and 9b (six-membered ring) respectively.

Chemistry The lipidic α -amino acids are non-natural α -amino acids with long aliphatic side chains and together with their derivatives represent a class of biologically interesting compounds¹². 2-Aminohexadecanoic acid, a representative example of lipidic amino acids, was chosen as starting material for the amines 4, 5, 7 and 8. Methyl 2-aminohexadecanoate was prepared by esterification of the free acid¹³ and the sphingosine analogue 2-aminohexadecanol by the reduction of 2-(*tert*-butoxycarbonylamino)hexadecanoic acid and subsequent deprotection¹⁴.

2-(*tert*-Butoxycarbonylamino)hexadecanol (10) was used for the preparation of the diamines 7 and 8. Compound 7 was prepared following reactions sequence described in literature¹⁴. Compound 8 was prepared as described in Scheme 1. The hydroxyl group of 10 was activated as the mesylate and the methanesufonate was converted directly into the nitrile 11^{15} by treatment with sodium cyanide in *N,N*-dimethylformamide at 60 °C. Selective reduction of 11 with sodium borohydride-transition metal system (NiCl₂ or CoCl₂) led to N^3 -monoprotected diamine 12. Free 1,3-heptadecanediamine 8^{16} was obtained by treatment of 12 with HCl in tetrahydrofuran.

Scheme 1

The complexes cis-[Pt(LA)₂Cl₂] 6a-e were prepared by the following general method: A mixture of lipidic amine (0.4 mmmol) and K₂PtCl₄ (0.2 mmol) in water (25 ml) containing 10 drops of 0.1 N HCl was stirred for 24-48 hours at room temperature until the colour of the precipitate became yellow¹⁷. The yellow precipitate was filtered, washed with ice-cold 0.1 N HCl (5 ml), water and dried over P₂O₅ under vacuum. Yield 90-95 %. For the synthesis of complexes [Pt(LD)Cl₂] 9a,b 0.2 mmol of diamine were used and acetone (5 ml) was added to the reaction mixture. The organic solvent was removed before the precipitation of the yellow product.

All platinum complexes were characterised by elemental analysis, IR and ¹H NMR spectroscopy¹⁸. Elemental analysis data clearly established that the ratio ligand to metal atom was 2:1 for complexes **6a-e** and 1:1 for complexes **9a,b**. The amino group participation in binding with Pt (II) was confirmed by the examination of

the vNH_2 and the δNH_2 frequencies in IR spectra, which were shifted to lower frequencies (v_{NH} 3270-3100cm⁻¹ and δ_{NH} 1590-1580cm⁻¹), due to Pt(II)-NH₂ coordination. The complexes also showed two medium intensity bands (310-330 cm⁻¹), which were assigned to the two v(Pt-Cl) motions expected for a *cis* configuration¹⁹. In the ¹H NMR spectra of the complexes the protons attached to carbon atoms near the binding site appeared at different chemical shifts compared to the free ligand. Thus, the methylene protons (CH_2NH_2) of **6a-c** were shifted upfield by 0.2-1.0 ppm. The methylene protons of **9a,b** were also shifted upfield by 0.3-1.1 ppm, while their methine proton ($CHNH_2$) was shifted upfield by 0.3 ppm.

All complexes were highly soluble in chloroform and other organic solvents. The molar conductances of the complexes in *N,N*-dimethylformamide (DMF) solutions showed that they were non-electrolytes²⁰, as expected²¹.

Cytotoxicity Assays Experiments were performed in 96-wells microtiter plates (2x10⁵ cells/ml). Cell growth was estimated by a colorimetric assay based on the conversion of 3-(4,5-dimethyl-2-thiazolyl)2,5-diphenyl-tetrazolium (MTT) to a blue formazan product using live mitochondria²². Optical density at 570 nm, corresponding to the solubilized formazan, was read for each well on a Titertek Multiskan MKII. Eight determinations were performed for each concentration. Control growth was estimated by 16 determinations.

Results and Discussion The platinum(II) complexes 6a-e and 9a,b were tested for their cytotoxicity against four cell lines (leukemia P388²³, lung NSCLC-N6²⁴, renal E39, melanoma M96) by MTT assay²². This is a rapid colorimetric assay for cellular growth and survival, which determines the mitochondrial cell activity after treatment of cells with varying doses of the compounds tested.

Table 1. Cytotoxic Activity of Lipophilic Platinum Complexes

Compound	IC ₅₀ (μg/ml) ^a			
	P388	NSCLC-N6	E39	M96
6а	inactive	36	45	48
6b	58	42	89	92
6c	46	38	43	58
6d	46	36	42	39
6e	11	25	31	26
7	0.1	1.1	5.3	7.8
9a	39	35	48	16
9 b	inactive	36	86	13

^a Mean values of 8 experiments. SD < 12 % of the mean value.

The IC₅₀ values exhibited by the complexes are summarised in Table 1. Compound 6e, with 2-aminohexadecanol as ligand, proved to be the most active complex in this study against P388, NSCLC-N6 and E39 (IC₅₀: 11 μg/ml, 25 μg/ml, 31 μg/ml respectively). It was also the most active among the complexes 6a-e against M96. Complex 6d, with methyl 2-aminohexadecanoate as ligand, exhibited higher activity against all cell lines studied than complexes 6a-c containing linear long chain amines as ligands. It seems that the presence of the substituent (COOCH₃ or CH₂OH) at the carbon atom bearing the amino group increases the cytotoxic activity of the complexes.

The chelates **9a** and **9b** were more potent than the other complexes in the case of M96 cell line (IC₅₀: 16 µg/ml and 13 µg/ml respectively). Complex **9a** presented similar activity with **9b** against M96 and NSCLC-N6 but significantly higher activity than **9b** against P388 and E39. Surprisingly, the most interesting results were obtained when the free ligand of **9a** was tested. As is shown in Table 1 the compound 1,2-hexadecanediamine (7) showed the greatest activity against all the cell lines tested. Based on these promising data, a project concerning the synthesis and study of lipidic diamine analogues is in progress.

References and Notes

- Comess, K. M.; Lippard, S. J. In Molecular Aspects of Anticancer Drug-DNA Interactions; Neidle, S., Waring, M., Eds.; MacMillan: London, 1993; p 134.
- 2. Pasini, A.; Zunino, F. Angew. Chem. Int. Ed. Engl. 1987, 26, 615.
- 3. Krakoff, I. H. Cancer Treat. Rep. 1979, 63, 1523.
- Von Hoff, D. D.; Schilsky, R.; Reichert, C. M.; Reddick, R. L.; Rozencweig, M.; Young, R. C.; Muggia,
 F. M. Cancer Treat. Rep. 1979, 63, 1527.
- 5. Eastman, A.; Schulte, N.; Sheibani, N.; Sorenson, C. M. In *Platimum and Other Coordination Complexes in Cancer Chemotherapy*; Nicolini, M., Ed.; Martinus Nijhoff: Boston, 1988; p 178.
- Kokotos, G.; Theodorou, V.; Tzougraki, C.; Deforce, D. L. D; Van den Eeckhout, E. G. Bioorg. Med. Chem. Lett. 1997, 7, 2165.
- 7. Nishizuka, Y. Science 1992, 258, 607.
- 8. Merrill, A. H. Jr; Nimkar, S.; Menaldino, D.; Hannun, Y. A.; Loomis, C.; Bell, R. M.; Tyagi, S. R.; Lambeth J. D.; Stevens, V. L.; Hunter, R.; Liotta, D. C. Biochemistry 1989, 28, 3138.
- 9. Kothapalli, R.; Lui, E. M. K.; Guthrie, N.; Chambers, A. F.; Carroll, K. K. Biochem. Pharm. 1994, 47, 1909.
- 10. Souchard, J.-P.; Cros, T.; Johnson, N. P. J. Med. Chem. 1991, 34, 863.
- 11. Colombo, A.; Di Gioia, R.; Pasini, A.; Dasdia, T.; Zunino, F. Inorg. Chim. Acta 1986, 125, L1.
- 12. Kokotos, G.; Martin, V.; Constantinou-Kokotou, V.; Gibbons, W. A. Amino Acids 1996, 11, 329.

- Gibbons, W. A.; Hughes, R. A.; Charalambous, M.; Christodoulou, M.; Szeto, A.; Aulabaugh, A. E.;
 Mascani, P.; Toth, I. Liebigs Ann. Chem. 1990, 1175.
- Kokotos, G.; Constantinou-Kokotou, V.; del Olmo Fernandez, E.; Toth, I.; Gibbons, W. A. Liebigs Ann. Chem. 1992, 961.
- 15. Compound 11: m.p. 55-56 °C. ¹H NMR (200 MHz, CDCl₃) δ ppm: 0.87 (t, 3H, *J*=7 Hz, CH₃), 1.20-1.40 (m, 24H, 12xCH₂), 1.44 [s, 9H, C(CH₃)₃], 1.59 (m, 2H, CH₂CHCH₂CN), 2.51 (dd, 1H, *J*=4 Hz, *J*=17 Hz, CHHCN, 2.75 (dd, 1H, *J*=5 Hz, *J*=17 Hz, CHHCN), 3,78 (m, 1H, α-CH), 4.60 (d, 1H, *J*=8 Hz, OCONH). FAB MS: m/e 367 (M+H⁺, 10 %), 311 (100), 267 (25), 226 (34). Analysis for C₂₂H₄₂N₂O₂ (366.59): Calc C 72.08, H 11.55, N 7.64 %; Found C 71.91, H 11.51, N 7.32 %.
- 16. Compound 8: ¹H NMR (200 MHz, CD₃OD) δ ppm: 0.84 (t, 3H, *J*=7 Hz, CH₃), 1.00-1.50 (m, 24H, 12xCH₂), 1.62 [m, 2H, CH₂(CH₂)₁₂CH₃], 2.00 (m, 2H, CH₂CH₂NH₃⁺), 3.08 (m, 2H, CH₂NH₃⁺), 3.35 (m, 1H, α-CH). FAB MS: m/e 271 (M-2HCl+H⁺, 100 %), 254 (8), 226 (11). Analysis for C₁₇H₃₈N₂ 2HCl 0.5H₂O (352.43): Calc C 57.94, H 11.73, N 7.95 %; Found C 57.91, H 11.77, N 7.93 %.
- 17. The flask has to be kept under aluminium foil. Heating up to 40 °C accelerates the reaction. However, increase of temperature has to be avoided in the case of 2-aminohexadecanol.
- 18. For example: Compound 6b: ¹H NMR (200 MHz, CDCl₃) δ ppm: 0.88 (m, 6H, 2xCH₃), 1.18-1.43 (m, 52H, 26xCH₂), 1.60 (b, 4H, 2xNH₂), 1.70-1.80 (m, 6H, 2xCH₂CH₂NH₂, 2xCHHNH₂), 2.78 (m, 2H, 2xCHHNH₂) Analysis for C₃₂H₇₀N₂Cl₂Pt (748.91): Calc C 51.32, H 9.42, N 3.74 %; Found C 51.48, H 9.49, N 3.61 %. Compound 9a: ¹H NMR (200 MHz, CDCl₃) δ ppm: 0.88 (t, 3H, *J*=7 Hz, CH₃), 1.12-1.40 (m, 24H, 12xCH₂), 1.45-1.62 [m, 6H, CH₂CHCH₂NH₂, 2xNH₂), 2.10 (m, 1H, CHHNH₂), 2.58 (m, 1H, CHHNH₂), 3.00 (m,1H, α-CH). Analysis for C₁₆H₃₆N₂Cl₂Pt H₂O (540.48): Calc C 35.56, H 7.09, N 5.18 %; Found C 35.82, H 6.70, N 5.08 %.
- 19. Theodorou, V.; Photaki, I.; Hadjiliadis, N.; Gellert, R. W.; Bau, R. Inorg. Chim. Acta 1982, 60, 1.
- 20. Compound 1d: $\Lambda_{M}(\text{ohm}^{-1}\text{cm}^{2}\text{mole}^{-1}) \sim 22 \text{ (DMF)}.$
- 21. Theodorou, V.; Hadjiliadis, N. Polyhedron 1985, 4, 1283.
- 22. Mosmann, T. J. Immunol. Methods 1983, 65, 55.
- 23. Geran, R. J.; Greenbeg, N. H.; McDonald, H. M.; Schumacher, A. M.; Abbot, B. J. Cancer Chemother. Rep. 1972, 3, 1.
- 24. Roussakis, C.; Gratas, C.; Audouin, A. F.; Le Boterff, J.; Dabouis, G.; Verbist, J. F. Anticancer Research 1991, 11, 2239.