3-2: Ideals

#MathematicalPhysics

设 A 是一个代数,A 的子空间 B 称为是 A 的一个左理想,如果它包含 ab, $\forall a \in A, b \in B$,也可写成 $AB \subset B$ 。同理,右理想可以定义为 $BA \subset A$ 。若 B 既是 A 的左理想,又是 A 的右理想,我们称 B 是 A 的双侧理想,简称理想。显然,理想 自动成为 A 的子代数

Note

设 $\phi: \mathcal{A} \to \mathcal{B}$ 是代数同态,那么 $\ker \phi \in \mathcal{A}$ 的理想。这很容易证明。

交换代数的左理想很容易构造: 取元素 $x \in A$, 考虑 $Ax = \{ax | a \in A\}$, 容易检查它是 A 的左理想,而 xA 则是右理想,AxA 是双侧理想。这些称为由 x 生成的理想。

一个代数 A 的理想 M 被称为极小理想,如果每个包含在 M 中的理想都与之重合。最小理想有性质:

Notes

设 \mathcal{L} 是 \mathcal{A} 的左理想,那么以下命题等价:

- £ 是 A 的极小左理想
- $\mathcal{A}x = \mathcal{L}, \forall x \in \mathcal{L}$
- $\mathcal{L}x = \mathcal{L}, \forall x \in \mathcal{L}$

给出一些证明:

1) 推 2):

根据理想的定义,我们知道 $\mathcal{A}x\subseteq L$,不妨设 $\mathcal{A}x=\mathcal{L}'\subset\mathcal{L}, \forall x\in\mathcal{L}$,则对于 $x'\in\mathcal{L}'$,必有 $\mathcal{A}x'\subseteq\mathcal{L}', \forall x\in\mathcal{L}'$,因此 \mathcal{L}' 也是 \mathcal{A} 的左理想,则 \mathcal{L} 不是 \mathcal{A} 的极小左理想,与

- 1) 矛盾。因此必有 $Ax = \mathcal{L}$ 成立。
- 2) 推3):

首先 $\mathcal{L}x \subseteq \mathcal{L}, \forall x \in \mathcal{L}$,由 2),需要一个高人来证明

Note

设 A 和 B 是代数, $\phi: A \to B$ 是满射, \mathcal{L} 是 A 的 (极小) 左理想, 那么 $\phi(\mathcal{L})$ 是 \mathcal{B} 的 (极小) 左理想。特别地, 一个代数的自同态是极小理想间的同构。

证明: 取 $b \in \mathcal{B}, y \in \phi(\mathcal{L})$, 那么可以找到 $a \in \mathcal{A}, x \in \mathcal{L}$, 使得 $b = \phi(a), y = \phi(x)$, 从而:

$$by = \phi(a)\phi(x) = \phi(ax) \in \phi(\mathcal{L})$$

因此 $\phi(\mathcal{L})$ 是 \mathcal{B} 的左理想。现在假设 \mathcal{L} 是极小的,我们要证明 $\phi(\mathcal{L})$ 是 \mathcal{B} 的极小理想,那么我们只需利用上面的等价关系,证明 $\mathcal{B}u = \phi(\mathcal{L}), u \in \phi(\mathcal{L})$ 。注意到存在 $t \in \mathcal{L}$:

$$\mathcal{B}u = \phi(\mathcal{A})\phi(t) = \phi(\mathcal{A}t) = \phi(\mathcal{L})$$

得证。

下面我们继续研究代数的直和。若 $A = \mathcal{B} \oplus \mathcal{C}$,且 $\mathcal{BC} = \mathcal{CB} = 0$,那么 A 是其子代数 \mathcal{B}, \mathcal{C} 的直和。如果一个代数可以写成其子代数的直和,那么这个代数是可约的。

Note

一个中心代数是不可约的。

如果 $A = \mathcal{B} \oplus \mathcal{C}$,两侧乘以 \mathcal{B} 得到: $A\mathcal{B} = \mathcal{B}\mathcal{B} \oplus 0 = \mathcal{B}\mathcal{B} \subset \mathcal{B}$,这意味着 $\mathcal{B} \not \in \mathcal{A}$ 的左理想,同理可得 $\mathcal{B} \not \in \mathcal{A}$ 的右理想。对于 \mathcal{C} 来说也一样。又由于 \mathcal{B}, \mathcal{C} 中不能有共同的非零元素(注意,这里的 $\mathcal{B} \not \in \mathcal{B} \oplus \{0\}$, \mathcal{C} 同理),否则 $\mathcal{B}\mathcal{C} = 0$ 将不成立,那么 \mathcal{A} 的其他非平凡理想均包含在 \mathcal{B} 或 \mathcal{C} 中。

我们可以根据一个代数的理想情况对其分类。如果一个代数除了 A 和 $\{0\}$ 之外没有其他的(双侧)理想,则称这个代数是简单的。

Note

一个简单代数 A 和任意代数 B 间的非平凡同态是单射。

对于 $\phi: A \to \mathcal{B}$, $\ker \phi \neq A$ 的理想。若 ϕ 非平凡,那么 $\ker \phi = 0$,从而 $\phi \neq A$ 是单射。

接下来我们将商空间的概念推广到代数中。设 \mathcal{A} 是一个代数, \mathcal{B} 是 \mathcal{A} 的一个子空间,那么设 $[a], [a'] \in \mathcal{A}/\mathcal{B}$,自然地可以定义元素间的乘积:[a][a'] = [aa']。由于 [a] = [a+b], [a'] = [a'+b'],为了使得这个乘积有意义,我们必须有 $bb' = b'' \in \mathcal{B}$ (取 a=a'=0),这意味着 \mathcal{B} 必须是 \mathcal{A} 的子代数。若设 a'=0,那么我们得到:

$$ab' + bb' = b''$$

这意味着 \mathcal{B} 必须是 \mathcal{A} 的左理想。若设 a=0,则得到 \mathcal{B} 是 \mathcal{A} 的右理想。因此, \mathcal{B} 是 \mathcal{A} 的理想。