Statistical Methods in AI (CSE/ECE 471)

Lecture-15: Bias-Variance, Model Selection, Regularization

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

ML workflow

- Gather data
- Select model (based on task)
- Measure performance [using validation/test data]
- Deploy model

ML workflow

- Gather data ["Data bias"]
- Select model (based on task) ["Model bias"]
- Measure performance [using validation/test data]
 - Deploy model

Sample vs Population

Statistics: Sample vs Population

Statistics: Sample vs Population

A good model should generalize well

Data Collection Bias

 We place a huge amount of blind faith in the quality of datasets when training ML models.

- Quality
 - Coverage
 - Representative of Population
 - Label coverage
 - Noise
 - Input
 - Output [label noise]

Data Representation Bias

- Input representation
- Output representation

Model Bias

- Which 'type' of model?
- Within the model 'type'
 - Model-specific choices

Recall: Statistics 101

- Let X be a random variable with possible values $x_i, i = 1 \dots n$ and with probability distribution P(X)
- The expected value or mean of X is:

$$E[X] = \sum_{i=1}^{n} x_i P(x_i)$$

- ullet If X is continuous, roughly speaking, the sum is replaced by an integral, and the distribution by a density function
- The *variance* of X is:

$$Var[X] = E[(X - E(X))^{2}]$$

= $E[X^{2}] - (E[X])^{2}$

The variance lemma

$$Var[X] = E[(X - E[X])^2]$$

$$= \sum_{i=1}^{n} (x_i - E[X])^2 P(x_i)$$

$$= \sum_{i=1}^{n} (x_i - E[X])^2 P(x_i)$$

$$\sum_{i=1}^{n} (si)^{-1} (si)^{-1}$$

$$= \sum_{i=1}^{n} (x_i^2 - 2x_i E[X] + (E[X])^2) P(x_i)$$

$$= \sum_{i=1}^{\infty} (x_i^2 - 2x_i E[X] + (E[X])^2) P(x_i)$$

$$i=1$$

$$\sum_{i=1}^{n} 2\pi(i) = 2\pi[X] \sum_{i=1}^{n} \pi(i)$$

$$P(x_i) = 2E[X] \sum_{i=1}^{n} x_i P(x_i) + Q(x_i)$$

$$= \sum_{i=1}^{n} x_i^2 P(x_i) - 2E[X] \sum_{i=1}^{n} x_i P(x_i) + (E[X])^2 \sum_{i=1}^{n} P(x_i)$$

$$= E[X^{2}] - 2E[X]E[X] + (E[X])^{2} \cdot 1$$
$$= E[X^{2}] - (E[X])^{2}$$

We will use the form:

$$E[X^2] = (E[X])^2 + Var[X]$$

The learning diagram - including noisy target

- 1 . How well ${\mathcal H}$ can approximate f
- **2**. How well we can zoom in on a good $h \in \mathcal{H}$

Applies to real-valued targets and uses squared error

$E_{\text{out}}(g^{(\mathcal{D})}) \qquad \left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2$

$$E_{\text{out}}(g^{(\mathcal{D})}) \qquad \left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2$$

$$E_{\text{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[\big(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \big)^2 \Big]$$

$$E_{\text{out}}(g^{(\mathcal{D})}) \qquad \left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2$$

$$E_{\text{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[\big(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \big)^2 \Big]$$

$$\mathbb{E}_{\mathcal{D}}\left[E_{\text{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathbf{x}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right]$$

$$= \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

we define the 'average' hypothesis $\bar{g}(\mathbf{x})$:

$$\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\mathbf{x})\right]$$

Imagine many data sets $\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_K$

$$\bar{g}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\text{bias}(\mathbf{x})}$$

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{out}}(g^{(\mathcal{D})})\right] &= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right] \\ &= \mathbb{E}_{\mathbf{x}}[\mathrm{bias}(\mathbf{x}) + \mathrm{var}(\mathbf{x})] \\ &= \mathrm{bias} + \mathrm{var} \end{split}$$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\text{bias}(\mathbf{x})}$$

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{out}}(g^{(\mathcal{D})})\right] &= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right] \\ &= \mathbb{E}_{\mathbf{x}}[\mathrm{bias}(\mathbf{x}) + \mathrm{var}(\mathbf{x})] \\ &= \mathrm{bias} + \mathrm{var} \end{split}$$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\mathsf{bias}(\mathbf{x})}$$

$$\mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})]$$

The tradeoff

$$\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right] \qquad \mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[\left. \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$

 \mathcal{H}_0

Bias and variance - \mathcal{H}_0

Bias and variance - \mathcal{H}_1

- Bias-Variance decomposition provides insight into model complexity issue
- Limited practical value since it is based on ensembles of data sets
 - In practice there is only a single observed data set
 - If there are many training samples then combine them
 - which would reduce over-fitting for a given model complexity

Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to *penalize hypothesis complexity*:

$$J(\mathbf{w}) = J_D(\mathbf{w}) + \lambda J_{pen}(\mathbf{w})$$

This is called *regularization* in machine learning and *shrinkage* in statistics

ullet λ is called *regularization coefficient* and controls how much we value fitting the data well, vs. a simple hypothesis

Regularization for linear models

• A squared penalty on the weights would make the math work nicely in our case:

$$\frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$$

- ullet This is also known as L_2 regularization, or weight decay in neural networks
- By re-grouping terms, we get:

$$J_D(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^T (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}) \mathbf{w} - \mathbf{w}^T \mathbf{\Phi}^T \mathbf{y} - \mathbf{y}^T \mathbf{\Phi} \mathbf{w} + \mathbf{y}^T \mathbf{y})$$

ullet Optimal solution (obtained by solving $abla_{\mathbf{w}}J_D(\mathbf{w})=0$)

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{v}$$

What L_2 regularization does

$$\arg\min_{\mathbf{w}} \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^T (\mathbf{\Phi} \mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

- ullet If $\lambda=0$, the solution is the same as in regular least-squares linear regression
- If $\lambda \to \infty$, the solution $\mathbf{w} \to 0$
- ullet Positive λ will cause the magnitude of the weights to be smaller than in the usual linear solution
- This is also called *ridge regression*, and it is a special case of Tikhonov regularization
- A different view of regularization: we want to optimize the error while keeping the L_2 norm of the weights, $\mathbf{w}^T \mathbf{w}$, bounded.

L_2 Regularization for linear models revisited

• Optimization problem: minimize error while keeping norm of the weights bounded

$$\min_{\mathbf{w}} J_D(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$
 such that $\mathbf{w}^T \mathbf{w} \leq \eta$

• The Lagrangian is:

$$L(\mathbf{w}, \lambda) = J_D(\mathbf{w}) - \lambda(\eta - \mathbf{w}^T \mathbf{w}) = (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^T (\mathbf{\Phi} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w} - \lambda \eta$$

ullet For a fixed λ , and $\eta=\lambda^{-1}$, the best ${\bf w}$ is the same as obtained by weight decay

Pros and cons of L_2 regularization

- If λ is at a "good" value, regularization helps to avoid overfitting
- Choosing λ may be hard: cross-validation is often used
- If there are irrelevant features in the input (i.e. features that do not affect the output), L_2 will give them small, but non-zero weights.
- Ideally, irrelevant input should have weights exactly equal to 0.

Visualizing regularization (2 parameters)

$$\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi} \mathbf{y}$$

L_1 Regularization for linear models

• Instead of requiring the L_2 norm of the weight vector to be bounded, make the requirement on the L_1 norm:

$$\min_{\mathbf{w}} J_D(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$
 such that $\sum_{i=1}^n |w_i| \leq \eta$

• This yields an algorithm called Lasso (Tibshirani, 1996)

Solving L_1 regularization

- The optimization problem is a quadratic program
- There is one constraint for each possible sign of the weights (2^n) constraints for n weights)
- For example, with two weights:

$$\min_{w_1,w_2} \qquad \sum_{j=1} (y_j - w_1 x_1 - w_2 x_2)^2$$
 such that $w_1 + w_2 \leq \eta$ $w_1 - w_2 \leq \eta$ $-w_1 + w_2 \leq \eta$ $-w_1 - w_2 \leq \eta$

 Solving this program directly can be done for problems with a small number of inputs

Visualizing L_1 regularization

- ullet If λ is big enough, the circle is very likely to intersect the diamond at one of the corners
- ullet This makes L_1 regularization much more likely to make some weights exactly 0

A nice property of L₁

Gradients of L₂- and L₁-norm

Negative gradient of L_2 -norm always points directly toward 0

"Negative gradient" of L₁-norm (direction of steepest descent) points toward coordinate axes

Pros and cons of L_1 regularization

- If there are irrelevant input features, Lasso is likely to make their weights 0, while L_2 is likely to just make all weights small
- Lasso is biased towards providing *sparse solutions* in general
- ullet Lasso optimization is computationally more expensive than L_2
- More efficient solution methods have to be used for large numbers of inputs (e.g. least-angle regression, 2003).
- \bullet L_1 methods of various types are very popular

Example of L1 vs L2 effect

- ullet Note the sparsity in the coefficients induces by L_1
- ullet Lasso is an efficient way of performing the L_1 optimization

More on overfitting

- Overfitting depends on the amount of data, relative to the complexity of the hypothesis
- With more data, we can explore more complex hypotheses spaces, and still find a good solution

Leave One Out Cross Validation

	✓ total samples →
iteration 1/N:	
iteration 2/N:	
iteration 3/N:	
	_
	•
iteration N/N:	

Leave One Out Cross Validation

High variance

K-fold Cross Validation

Fold \rightarrow bias

Assess model's bias-variance characteristics using k-fold Cross Validation?

- With *k*-fold CV , you get *k* different estimates of your model's error- [1, [2], [3], ..., [4],
- Mean(errors) ~ 0 → low bias
- Variance(errors) ~ 0 → low variance