ÚLOHY Z VÝROKOVÉ LOGIKY

Logika s konečně prvovýroky.

UV.1.1. Počty výroků, pravdivých výroků a teorií.

Buď $|\mathbb{P}| = l$ přirozené nenulové, $T \subseteq VF_{\mathbb{P}}$ nechť má model.

- 1. Existuje 2^{2^l} neekvivalentních $\mathbb P$ -teorií a právě 2^l kompletních neekvivalentních $\mathbb P$ -teorií.
- 2. Teorie T má $2^{2^l-|\mathsf{M}(T)|}$ neekvivalentních pravdivých a také lživých výroků a dále má $(2^{|\mathsf{M}(T)|}-2)\cdot 2^{2^l-|\mathsf{M}(T)|}$ neekvivalentních nezávislých výroků.
- 3. Existuje právě $|\mathsf{M}(T)|$ neekvivalentních kompletních jednoduchých extenzí T a $2^{|\mathsf{M}(T)|}$ neekvivalentních jednoduchých extenzí T (z nichž jediná je sporná).
 - 4. Kolik je \sim_T -neekvivalentních nezávislých výroků teorie T? Řešení: $2^{\mathsf{M}(T)}-2$.
 - 5. Buď $\varphi \in VF_{\mathbb{P}}$. Kolik je neekvivalentních výroků φ' takových, že $\varphi' \sim_T \varphi$. Řešení: Pro uvažované φ' musí právě platit: $\mathsf{M}(T) \cap \mathsf{M}(\varphi') = \mathsf{M}(T) \cap \mathsf{M}(\varphi)$. Je jich tedy tolik, kolik je různých podmnožin množiny $\mathbb{P}2 \mathsf{M}(T)$, tj. $2^{2^t |\mathsf{M}(T)|}$.

UV.1.2. Počty výroků a teorií.

Buď $|\mathbb{P}| = l$ přirozené nenulové.

1. Nechť φ je výrok. Kolik je neekvivalentních výroků ψ takových, že $\varphi \models \psi$ nebo $\psi \models \varphi$?

Návod: Spočtěte, kolik je množin $\mathsf{M}(\psi)$ pro uvažovaná ψ .

Řešení: $2^m+2^{2^l-m}-1$, kde $m=|\mathsf{M}(\varphi)|$. Je to počet množin $K\subseteq {}^{\mathbb{P}}\!2$ takových, že $K\subseteq \mathsf{M}(\varphi)$ nebo $\mathsf{M}(\varphi)\subseteq K$.

2. Nechť $\{\varphi,\psi\}$ nemá model. Kolik je neekvivalentních pravdivých výroků teorie $\{\varphi\vee\psi\}?$

Návod: Hledané číslo vyjádřete pomocí $l, |\mathsf{M}(\varphi)|, |\mathsf{M}(\psi)|.$

Řešení: $2^{2^l - (|\mathsf{M}(\varphi)| + |\mathsf{M}(\psi)|)}$. Je totiž $|\mathsf{M}(\varphi \vee \psi)| = |\mathsf{M}(\varphi) \cup \mathsf{M}(\psi)| = |\mathsf{M}(\varphi)| + |\mathsf{M}(\psi)|$; poslední rovnost plyne z $\mathsf{M}(\varphi) \cap \mathsf{M}(\psi) = \mathsf{M}(\varphi \ \& \ \psi) = \emptyset$.

UV.1.3.

Buď $\mathbb{P} = \{p,q,r\}$ množina všech prvovýroků.

1. a) Ekvivalentními úpravami najděte disjunktivně normální tvar následujícího výroku $\chi\colon$

$$(p \to \neg q) \ \& \ (\neg p \to q) \ \& \ r.$$

Řešení: $(p \& \neg q \& r) \lor (\neg p \& q \& r)$. Možný postup:

$$(p \rightarrow \neg q) & (\neg p \rightarrow q) & r \sim (\neg p \lor \neg q) & (p \lor q) & r \\ \sim (((\neg p \lor \neg q) & p) \lor ((\neg p \lor \neg q) & q)) & r$$

$$\sim ((p \& \neg q) \lor (\neg p \& q)) \& r \sim (p \& \neg q \& r) \lor (\neg p \& q \& r)$$

Užilo se tvrzení o ekvivalenci a "booleovská pravidla".

- b) Uveďte počet neekvivalentních nezávislých výroků teorie $\{\chi\}$. Řešení: $|\mathbb{P}|=3, \, |\mathsf{M}(\chi)|=2, \, \mathrm{tedy}$ hledané číslo je $2^{2^3-2}(2^2-2)=2^7.$
- c) Uveďte počet neekvivalentních jednoduchých extenzí teorie $\{\chi\}$. Řešení: $|\mathsf{M}(\chi)| = 2$. Uvažovaná teorie $\{\chi'\}$ musí právě splňovat $\mathsf{M}(\chi') \subseteq \mathsf{M}(\chi)$; uvažovaných χ' je tedy právě tolik, kolik je podmnožin $\mathsf{M}(\chi)$, tj. $2^2 = 4$.

2. a) Ekvivalentními úpravami najděte disjunktivně normální tvar následujícího výroku $\chi\colon$

$$\neg (p \& q) \& (p \lor q) \& r.$$

Řešení: $(p \& \neg q \& r) \lor (\neg p \& q \& r)$.

- b) Uveďte počet neekvivalentních pravdivých výroků teorie $\{\chi\}$. Řešení: $2^{2^3-2}=2^6=64$.
- c) Kolik je neekvivalentních jednoduchých kompletních extenzí teorie $\{\chi\}$? Řešení: 2.

Různé výrokové spojky.

UV.1.4. Dualita \vee a &.

 $Duální \,výrok\,\varphi^*$ k výroku $\varphi,$ zapsanému jen pomocí $\neg,\vee,\&,$ se získá z φ nahrazením každého výskytu prvovýroku v něm jeho negací a záměnou \vee a &. Platí

$$\models \neg \varphi \leftrightarrow \varphi^*$$
.

Návod: Užijte indukci na výrocích.

UV.1.5. Pierceova spojka.

Zkratka za $\neg(\neg\varphi\to\psi)$ buď $\varphi\downarrow\psi$; je to tzv. *Pierceova spojka*, značící "ani-ani".

- 1. $\varphi \downarrow \psi$ je ekvivalentní s $\neg \varphi \& \neg \psi$.
 - 2. K výroku φ najděte výrok s ním ekvivalentní a napsaný jen pomocí \downarrow .
 - 3. K výroku $\varphi \to \psi$ najděte výrok s ním ekvivalentní a napsaný jen pomocí \downarrow .

UV.1.6. Výlučná disjunkce.

Buď $\varphi \doteq \psi$ zkratka za $(\varphi \& \neg \psi) \lor (\psi \& \neg \varphi)$; je to logická spojka zvaná *výlučná disjunkce* čili XOR.

- 1. Dokažte pomocí "booleovských" úprav:
 - a) $\varphi \doteq \psi \sim \psi \doteq \varphi$.
 - b) $\varphi \doteq \psi \sim (\varphi \lor \psi) \& \neg (\varphi \& \psi) \sim (\varphi \lor \psi) \& (\neg \varphi \lor \neg \psi).$
 - c) $\neg(\varphi \dot{-} \psi) \sim \varphi \leftrightarrow \psi \sim \neg(\neg\varphi \dot{-} \neg\psi)$.
- 2. Najděte disjunktivně normální a konjunktivně normální ekvivalenty k $p \doteq q.$
- 3. Asociativitu $\dot{-}$.
 - a) Dokažte $\models \varphi \dot{} (\psi \dot{} \chi) \leftrightarrow (\varphi \dot{} \psi) \dot{} \chi$.
 - b) Dokažte $\vdash \varphi \mathrel{\dot{-}} (\psi \mathrel{\dot{-}} \chi) \leftrightarrow (\varphi \mathrel{\dot{-}} \psi) \mathrel{\dot{-}} \chi$ syntakticky.

Návod: Užívejte "booleovských pravidel", tj. komutativitu $\vdash \varphi \leftrightarrow \psi$, asociativitu $\vdash \varphi \lor (\psi \lor \chi) \leftrightarrow (\varphi \lor \psi) \lor \chi$ atd.

- 4. a) $\mathsf{M}^{\mathbb{P}}_{\underline{}}(\varphi \dot{} \neg \varphi) = \mathbb{P}_{2}.$
 - b) $\mathsf{M}^{\mathbb{P}}(\varphi \dot{-} \varphi) = \emptyset$.

UV.1.7. Výroky jen se spojkami $\vee, \&, \rightarrow$.

1. Je-li výrok φ napsaný jen pomocí spojek $\vee, \&, \rightarrow$ a v ohodnocení identicky rovné 1, tak $v(\varphi)=1$.

Řešení: Výrok φ je designátor z D($\mathbb{P} \cup \{\lor, \&, \to\}$); dokazujme tvrzení indukcí na D($\mathbb{P} \cup \{\lor, \&, \to\}$). Je-li φ z \mathbb{P} , platí to. Nechť φ je $\varphi_0 \diamond \varphi_1$ s \diamond rovným $\lor, \&, \to$ a pro φ_0, φ_1 nechť tvrzení platí. Pak ($\&_1$ značí \land_1) $v(\varphi) = v(\varphi_0) \diamond_1 v(\varphi_1) = 1 \diamond_1 1 = 1$.

2. Žádný z výroků $\neg p, \bot, \neg p \vee \neg q, p \dot{-} q$ není ekvivalentní výroku napsanému jen pomocí spojek $\vee, \&, \to.$

Řešení: v identicky rovné jedné je modelem každého výroku napsaného jen pomocí spojek \vee , &, \rightarrow , avšak není modelem žádného z výroků $\neg p, \bot, \neg p \lor \neg q, p \doteq q$.

Vlastnosti axiomatizovatelnosti.

UV.1.8.

1. Buď $K\subseteq \mathbb{P}$ 2. Pak existuje nejmenší množina $K',\ K\subseteq K'\subseteq \mathbb{P}$ 2, která je axiomatizovatelná.

Návod: Uvažujte průnik všech axomatizovatelných nadm
nožin K.

Řešení: Průnik všech axomatizovatelných nadmnožin množiny K je axiomatizovatelný.

2. Buď 0 < n přirozené. Pro n teorií $\{T_i; i < n\}$ nějakého jazyka definujme teorii

$$T = \{ \bigvee_{i < n} \varphi_i; \, \varphi_i \in T_i \text{ pro } i < n \}.$$
 (1)

- a) Platí $\bigcup_{i < n} M(T_i) = M(T)$.
 - Řešení: Pro $v \in \bigcup_{i < n} \mathsf{M}(T_i)$ je jistě $v \models T$. Když $v \in -\bigcup_{i < n} \mathsf{M}(T_i)$, tak $v \not\models T_i$ a existuje tedy $\varphi_i \in T_i$ tak, že $v(\varphi_i) = 0$ pro i < n. Pak $v(\bigvee_{i < n} \varphi_i) = 0$, tedy $v \not\models T$.
- b) Buď $\emptyset \neq K = \{v_0, \ldots, v_{n-1}\} \subseteq \mathbb{P}_2$. Pro každé $v_i \in K$ existuje teorie T_i s jediným modelem v_i . Je-li T jako v (1), tak K = M(T). Navíc není K konečně axiomatizovatelná, je-li \mathbb{P} nekonečné.
- UV.1.9. Teorie T se spočetným $\mathsf{M}(T)$ a algebrou AM_T rovnou algebře konečných duálně konečných množin.

Buď $\mathbb{P} = \{p_n; n \in \mathbb{N}\}$ (spočetné). Pro $k \in \mathbb{N}$ buď $v_k(p_n)$ rovno 1 pro n < k a 0 jinak. Buď $w = \mathbb{P} \times \{1\}$ (konstanta 1). Označme $K = \{p_n; n \in \mathbb{N}\} \cup \{w\}$. K je axiomatizovatelná; dále T značí nějakou její axiomatiku.

1. Dokažte, že K je uzavřená.

Návod: Užijte toho, že $v \notin K \Leftrightarrow$ existují i < j s $v(p_i) = 0$, $v(p_j) = 1$.

2. Popište podrobněji nějakou teorii, axiomatizující K.

Návod: Pro konečnou funkci
$$\sigma \subseteq \mathbb{P} \times 2$$
 je
$$\widetilde{\sigma} \cap K = \emptyset \Leftrightarrow \text{existují } i < j \text{ s } \sigma(p_i) = 0, \, \sigma(p_j) = 1.$$

- 3. a) $\mathsf{M}(T,\varphi)$ je buď konečná nebo duálně konečná podmnožina K.
 - Řešení: Když $w \in \mathsf{M}(T,\varphi)$ tak $\mathsf{M}(T,\varphi)$ je komplement konečné množiny. Je-li totiž $\bigwedge_{i < n} \psi_i$ disjunktivně normální tvar φ , tak $w \in \mathsf{M}(\varphi_i)$ pro některé i < n. Je ψ_i tvaru ε_σ , tj. $\bigwedge_{p \in \sigma} p^{\sigma(p)}$ s jistou konečnou funkcí $\sigma \subseteq \mathbb{P} \times 2$. Je $\mathrm{rng}(\sigma) = \{1\}$. Označme m maximální j takové, že p_j je v definičním oboru σ . Pak všechny funkce v_k s k > m leží v $\mathsf{M}(T,\psi_i)$. Když $w \notin \mathsf{M}(T,\varphi)$, je $\mathsf{M}(T,\varphi)$ konečná, neboť to je komplement $\mathsf{M}(T,\neg\varphi)$ a ten obsahuje w.
 - b) Pro každou konečnou $K'\subseteq K$ existuje φ s $\mathsf{M}(T,\varphi)=K'$. Řešení: Stačí pro každé k najít φ s $\mathsf{M}(T,\varphi)=\{v_k\}$. Nechť σ je v_k zúženo na $\{p_0,\ldots,p_k\}$; pak φ tvaru $\bigwedge_{i\le k} p_i^{\sigma(p_i)}$ má potřebnou vlastnost.
- 4. T, φ je jednoduché kompletní rozšíření $T \Leftrightarrow \mathsf{M}(T, \varphi) = \{v_k\}$ pro nějaké k. Řešení: T, φ je uvažované rozšíření, právě když má T, φ jediný model. Jelikož $\mathsf{M}(T, \psi)$ je konečné, právě když obsahuje některé v_k , tvrzení platí.
- UV.1.10. Algebry $AM_{\emptyset}^{\mathbb{P}} = \{M^{\mathbb{P}}(\varphi); VF_{\mathbb{P}}\}$. (Tzv. zobecněné Cantorovy algebry.)

- 1. a) Kolik prvků mají algebry $\mathrm{AM}_\emptyset^\mathbb{P}$ s \mathbb{P} konečným a s \mathbb{P} nekonečným. Řešení: Pro \mathbb{P} konečné, l-prvkové má $\mathrm{AM}_\emptyset^\mathbb{P}$ právě 2^{2^l} , pro \mathbb{P} nekonečné tolik, jako \mathbb{P} .
- 2. b) Které algebry $\mathrm{AM}_\emptyset^\mathbb{P}$ jsou atomární a které bezatomární. Řešení: Atomární jsou právě ty, které jsou konečné. Pro \mathbb{P} nekonečné jsou bezatomární. Když totiž $\mathsf{M}(\varphi) \neq \emptyset$, nechť prvovýrok p není v φ . Pak $\emptyset \neq \mathsf{M}(\varphi \ \& \ p) \subsetneq \mathsf{M}(\varphi)$. Tudíž $\mathsf{M}(\varphi)$ není atom.

Vlastnosti Thm(T).

- UV.1.11. Vlastnosti Thm(T), \cup , \cap . T, S jsou teorie a φ, ψ, χ výroky.
 - 1. a) $\operatorname{Thm}(\operatorname{Thm}(T) \cup \operatorname{Thm}(S)) = \operatorname{Thm}(T \cup S)$.

Řešení: Je jasně

 $\operatorname{Thm}(T) \cup \operatorname{Thm}(S) \subseteq \operatorname{Thm}(T \cup S) \subseteq \operatorname{Thm}(\operatorname{Thm}(T) \cup \operatorname{Thm}(S));$ aplikací Thm dostaneme požadované.

- b) $\operatorname{Thm}(\operatorname{Thm}(T) \cap \operatorname{Thm}(S)) = \operatorname{Thm}(T) \cap \operatorname{Thm}(S).$ Řešení: Je jasně $\operatorname{Thm}(\operatorname{Thm}(T) \cap \operatorname{Thm}(S)) \subseteq \operatorname{Thm}(T), \operatorname{Thm}(S),$ tedy platí také $\operatorname{Thm}(\operatorname{Thm}(T) \cap \operatorname{Thm}(S)) \subseteq \operatorname{Thm}(T) \cap \operatorname{Thm}(S) \subseteq \subseteq \operatorname{Thm}(\operatorname{Thm}(T) \cap \operatorname{Thm}(S))$
 - a odtud dostaneme požadovanou rovnost.
- 2. Thm $(T, \varphi \lor \psi) = \text{Thm}(T, \varphi) \cap \text{Thm}(T, \psi)$. Řešení: Tvrzení plyne z $T, \varphi \lor \psi \vdash \chi \Leftrightarrow T, \varphi \vdash \chi \text{ a } T, \psi \vdash \chi$.
- 3. a) $\operatorname{Thm}(T) \cup \operatorname{Thm}(S) \subseteq \operatorname{Thm}(T \cup S)$.
 - b) Rovnost v a) platí \Leftrightarrow Thm $(T) \cup$ Thm(S) je uzavřeno na &. Řešení: Platí-li rovnost, plyne z uzavřenosti Thm $(T \cup S)$ na & uzavřenost Thm $(T) \cup$ Thm(S). Nechť naopak je Thm $(T) \cup$ Thm(S) uzavřeno na &. Buď $T \cup S \vdash \varphi$. Pak pro jisté $\psi \in T$ a $\chi \in S$ je ψ & $\chi \vdash \varphi$. Je ψ & $\chi \in$ Thm $(T) \cup$ Thm(S). Když ψ & $\chi \in$ Thm(T), je $\varphi \in$ Thm(T). Když ψ & $\chi \in$ Thm(S), je $\varphi \in$ Thm(S).
 - c) $\operatorname{Thm}(T) \cup \operatorname{Thm}(S)$ je uzavřeno na & $\Leftrightarrow T \subseteq \operatorname{Thm}(S)$ nebo $S \subseteq \operatorname{Thm}(T)$. Řešení: Platí-li pravá strana \Leftrightarrow , je $\operatorname{Thm}(T) \cup \operatorname{Thm}(S)$ buď $\operatorname{Thm}(S)$ nebo $\operatorname{Thm}(T)$ a ty jsou uzavřeny na &. Nechť naopak existuje $\psi \in T \operatorname{Thm}(S)$ a $\chi \in S \operatorname{Thm}(T)$. Kdyby ψ & $\chi \in \operatorname{Thm}(T)$, tak $T \vdash \chi \operatorname{spor}$. Stejně vede ke sporu ψ & $\chi \in \operatorname{Thm}(S)$. Tedy ψ & $\chi \notin \operatorname{Thm}(T) \cup \operatorname{Thm}(S)$.
- 4. a) $\operatorname{Thm}(\varphi) \cup \operatorname{Thm}(\psi) = \operatorname{Thm}(\varphi \& \psi) \Leftrightarrow \varphi \vdash \psi \text{ nebo } \psi \vdash \varphi.$ Řešení: Inkluze \subseteq platí vždy. Nechť platí rovnost. Pak $\varphi \& \psi \in \operatorname{Thm}(\varphi) \cup$ $\operatorname{Thm}(\psi)$. Když $\varphi \& \psi \in \operatorname{Thm}(\varphi)$, tak $\varphi \vdash \varphi \& \psi$, tedy $\varphi \vdash \psi$. Když $\varphi \& \psi \in \operatorname{Thm}(\psi)$, plyne stejně $\psi \vdash \varphi$. Nechť naopak platí $\varphi \vdash \psi$ nebo $\psi \vdash \varphi$. Když $\varphi \& \psi \vdash \chi$, tak $\varphi \vdash \chi$ nebo $\psi \vdash \chi$ a tedy $\chi \in \operatorname{Thm}(\varphi) \cup \operatorname{Thm}(\psi)$.
 - b) Thm $(p) \cup$ Thm $(p') \subseteq$ Thm(p & p') pro různé prvovýroky p, p'. Řešení: $p \not\vdash p \& p', p' \not\vdash p \& p'$.