

fundamental theorem of space curves

 ${\bf Canonical\ name} \quad {\bf Fundamental Theorem Of Space Curves}$

Date of creation 2013-03-22 13:23:28 Last modified on 2013-03-22 13:23:28

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 5

Author rmilson (146)
Entry type Theorem
Classification msc 53A04
Related topic SpaceCurve

Informal summary. The curvature and torsion of a space curve are invariant with respect to Euclidean motions. Conversely, a given space curve is determined up to a Euclidean motion, by its curvature and torsion, expressed as functions of the arclength.

Theorem. Let $\gamma: I \to \mathbb{R}$ be a regular, parameterized space curve, without points of inflection. Let $\kappa(t), \tau(t)$ be the corresponding curvature and torsion functions. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a Euclidean isometry. The curvature and torsion of the transformed curve $T(\gamma(t))$ are given by $\kappa(t)$ and $\tau(t)$, respectively.

Conversely, let $\kappa, \tau: I \to \mathbb{R}$ be continuous functions, defined on an interval $I \subset \mathbb{R}$, and suppose that $\kappa(t)$ never vanishes. Then, there exists an arclength parameterization $\gamma: I \to \mathbb{R}$ of a regular, oriented space curve, without points of inflection, such that $\kappa(t)$ and $\tau(t)$ are the corresponding curvature and torsion functions. If $\hat{\gamma}: I \to \mathbb{R}$ is another such space curve, then there exists a Euclidean isometry $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\hat{\gamma}(t) = T(\gamma(t))$.