Exercise 3 — Statistical Learning and Data Analysis Norms, Matrix Derivatives, and Regularized Regression

Note: Questions marked with * are not mandatory for submission.

1. Norms

Let $x \in \mathbb{R}^n$, and define the p-norm as:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \tag{1}$$

- a. Show that equation (1) defines a norm for $p \geq 1$.
- b. Show that equation (1) does not define a norm for p < 1.
- c. Does the triangle inequality hold for p = 0? (Does it define a norm?)
- d. Show that for $p \geq 1$, the unit ball

$$B_p := \{x \mid ||x||_p \le 1\}$$

is convex. In other words, if $x_1, x_2 \in B_p$, then for any $0 < \alpha < 1$,

$$\alpha x_1 + (1 - \alpha)x_2 \in B_p.$$

- e. Show that for $0 \le p < 1$, the unit ball B_p is not convex.
- f. Show that $||A||_F^2 = \text{Tr}(A^T A) = \text{Tr}(AA^T)$.
- g. * Provide a closed-form expression for the operator norm of a matrix $A \in \mathbb{R}^{m \times n}$ with respect to p = 1.
- h. Provide a closed-form expression for the operator norm of a matrix $A \in \mathbb{R}^{m \times n}$ with respect to $p = \infty$.
- i. * Provide a closed-form expression for the operator norm of a matrix $A \in \mathbb{R}^{m \times n}$ with respect to p = 2.

j. * Show that the operator norm can equivalently be defined as:

$$||A||_{op} = \sup_{\nu \neq 0, \nu \in V} \frac{||A\nu||}{||\nu||} = \sup_{||\nu|| = 1, \nu \in V} ||A\nu||.$$

k. Show sub-multiplicativity for square matrices $A, B \in \mathbb{R}^{n \times n}$:

$$||AB||_{op} \le ||A||_{op} \cdot ||B||_{op}.$$

2. Least Squares and Matrix Derivatives

- a. Show that $\nabla_{\beta}(z^T\beta) = z$, where $z, \beta \in \mathbb{R}^{n \times 1}$.
- b. Show that $\nabla_{\beta}(\beta^T H \beta) = 2H\beta$, where $H \in \mathbb{R}^{n \times n}$ is symmetric.
- c. Given a sample $\{x_i\}_{i=1}^n \subset \mathbb{R}$, find the empirical loss minimizer:

$$c_1^* = \arg\min_{c \in \mathbb{R}} \sum_{i=1}^n |x_i - c|.$$

d. Given a sample $\{x_i\}_{i=1}^n \subset \mathbb{R}$, find the empirical loss minimizer:

$$c_2^* = \arg\min_{c \in \mathbb{R}} \sum_{i=1}^n (x_i - c)^2.$$

e. * Given a sample $\{x_i\}_{i=1}^n \subset \mathbb{R}^d$, find the empirical loss minimizer (no closed-form solution):

$$\bar{c}_1^* = \arg\min_{c \in \mathbb{R}^d} \sum_{i=1}^n ||x_i - c||.$$

f. Given a sample $\{x_i\}_{i=1}^n \subset \mathbb{R}^d$, find the empirical loss minimizer:

$$\bar{c}_2^* = \arg\min_{c \in \mathbb{R}^d} \sum_{i=1}^n ||x_i - c||^2.$$

3. Regularized Least Squares Regression

We define Ridge and Lasso regression:

$$\hat{\beta}_{\text{Ridge}} = \arg\min_{\beta} \|X\beta - y\|_2^2 + \lambda_{\text{Ridge}} \|\beta\|_2^2$$
 (2)

$$\hat{\beta}_{\text{Lasso}} = \arg\min_{\beta} \|X\beta - y\|_2^2 + \lambda_{\text{Lasso}} \|\beta\|_1$$
 (3)

a. Show that the closed-form solution to equation (2) is:

$$\hat{\beta}_{\text{Ridge}} = (X^T X + \lambda I)^{-1} X^T y,$$

where I is the identity matrix.

b. Provide sufficient conditions for the invertibility of $X^TX + \lambda I$.