l U	مارع تولى 13 × 19 × 19	ریامنا ما میدسی	دسروس مس فروس مشد در ۱۹۶۴ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸	
	f(x) = 1/11+11 LL = 5LL		-1	
	$\Delta o = \frac{1}{2} \int_{0}^{\infty} f(x)dy = \int_{0}^{\infty} \frac{1}{u^{-1}} dy = \int_{0}^{\infty} \frac{1}{u^{-1}} dy$	N=1	+ /n(n+x)/= 2/N2	
	U9 = 1/15	آن را دارد به گول ما بع زوج اس.	حیلی له صورت سرال می گویر معندم	
	an= 1 Jillan Cosnxdy	$\lambda \longrightarrow \alpha_n = \frac{2}{n} \int_0^n \frac{1}{X+n}$	Cosnxdx	
	$I = \int_{0}^{\pi} \frac{1}{n+x} \sum_{n=1}^{\infty} C_{n+1} dx$	$x = \int_{a}^{\pi} \frac{1}{n+x} \cos x dx + \int_{0}^{\pi} -\frac{1}{n+x} \cos x dx$	$\frac{y+x}{1} \cos x dx + \int_{1}^{2} \frac{d+x}{1} \cos x dx + \cdots$	
	-> = 1 (a, +a2+ 1)	$\frac{1}{2}q_1$	T202 1201	
	$\frac{1}{2}(x) = \frac{5}{10-x} 0 < x < 10$	$Q_0 = \frac{L}{l} \int_0^{\infty} \left(\frac{3}{U - X} \right) dX =$	$\frac{1}{n}\left(\frac{3}{n^2}-\frac{n}{n}\right)=\frac{1}{n}$	
	$u = \frac{1}{2} \int_{0}^{\infty} \left(\frac{3}{1-x} \right) \cos 3ux dx$			
	$\int_{\Omega} x (e s) w dx - (x = 0 - 1) dx$ $Cosynydx = dy$	Y=90 - TXO WX	$\frac{1}{2}x = -\frac{su}{l} \int_{0}^{\infty} g(u) u dx$	
	$= -\frac{3\nu}{l} \left(-\frac{3\nu}{l} \cos 3\nu x \right)^{2} = 0$		-	
	$pu = \frac{L}{L} \int_{-L}^{L} (x_1 - x_1) g_{\mu\nu} sux qx$	= -1 S(x-r) Sinenydx	$0 = x - R - dv = dy$ $Sinny + dy - iv = -\frac{1}{2} Ciny$	
	= - (X-N) (GCNN) / M	CESUN JX - 1 PW =	$\frac{(X-I) Cossux}{(X-I) Cossux} = \frac{1}{2}$	
	$f(x) = \frac{1}{1-x} = \frac{1}{1-x} + \frac{1}{x}$	Sinner X=1 17-1	n Sinz Siny Sing	
	pi) co: (8m1+ Sin2 + Sins +	$= \frac{\pi}{n} = \frac{\sin n}{n} = \frac{1}{n}$	8+A	
			Scanned by CamScanner	

Scanned by CamScanner

$$\frac{9/8/3}{f(x)} = \frac{1}{2\pi i} \left(\frac{1}{2\pi i} + \frac{1}{2\pi i} \right) \left(\frac{1}{2\pi i} + \frac{1}{2\pi i} + \frac{1}{2\pi i} + \frac{1}{2\pi i} \right) \left(\frac{1}{2\pi i} + \frac{1}{$$

1	المعدوش عسد ريا ساحة مست المارة حدث على المراه المارة حدث المارة المارة حدث المارة المارة المارة حدث المارة المارة حدث المارة المارة حدث المارة الما
	$\sum_{n=-\infty}^{\infty} \frac{\left(-1\right)^{n} e^{n} - 1}{n^{2} + 1} = \left(e^{n} - 1\right)^{2} + 2 \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n} e^{n} - 1}{n^{2} + 1}$
	$-) \frac{1}{n!} = (e^{-1} \frac{1}{2} - 1) = (e^{-1} \frac{1} - 1) = (e^{-1} \frac{1}{2} - 1) = (e^{-1} \frac{1}{2} - 1) = (e^{-1} \frac$
	$-\frac{2(-1)^{n}e^{\frac{2}{n}}}{n^{2}+1} = \frac{2(e^{\frac{2}{n}}-1)^{2}}{n^{2}+1} = \frac{2(e^{\frac{2}{n}}-1)^{2}}{2}$
	$Cax = \frac{1}{2\pi} \int_{0}^{\infty} e^{(\alpha - jn)x} dx = \frac{1}{2\pi} \left(\frac{1}{\alpha - jn} e^{(\alpha - jn)x} \right)^{-\frac{1}{2}}$
	$=\frac{1}{2n}\left(\frac{1}{a-jn}e^{\alpha n},e^{jn\pi}e^{-\alpha n}e^{jn\pi}\right)e^{jn\pi}e^{-\beta n}e^{-\beta n}=cosn\pi+iSinp\pi=cN$ $e^{-jnn}=cosn\pi-iSinn\pi=cN$
	$- C_{n} = (-1)^{n} \frac{Sinhan}{Sinhan} \qquad e^{\alpha x} = \frac{\delta}{\sum_{n=-\infty}^{\infty} \frac{(-1)^{n} Sinhan}{n (\alpha^{2} + in^{2})}} (\alpha + in) e^{inx}$
	$\frac{1}{1+1} = \frac{1}{1+1} = \frac{1}$
	$\sum_{N=-\infty}^{\infty} \frac{Sinhorn}{(a^2-1n^2)} (azjn) = \frac{Sinhon}{a} + 2a Sinhon \sum_{N=1}^{\infty} \frac{1}{a^2+n^2}$
	Tream Tr
	1 = 1 = 1 = 1 = 20 x - Sinton 202
	$2\sum_{n=1}^{\infty}\frac{1}{a^{2}m^{2}}-\frac{n(e^{\alpha\eta}+e^{\alpha\eta})}{2a\sinh\theta\eta}-\frac{1}{a^{2}}$ $\sum_{n=1}^{\infty}\frac{1}{a^{2}m^{2}}-\frac{\pi\cosh \ln 1}{2a}$ $\sum_{n=1}^{\infty}\frac{1}{a^{2}m^{2}}-\frac{\pi\cosh \ln 1}{2a}$