Category Theory

Definition: Category

A category C is a mathematical structure consisting of two classes:

- 1). obj(C) = class of objects of C
- 2). mor(C) = class of morphisms of C

Objects are typically denoted by A, B, C, \dots

Morphisms are disjoint sets, one per each pair of objects, denoted mor(A,B) for objects $A,B \in obj(C)$. An element $f \in mor(A,B)$, denoted $f:A \to B$ is called a morphism from A to B and is used to define structure between the objects.

Definition: Composition

Let C be a category and $A,B,C\in \mathrm{obj}(C)$. There exists a function:

$$mor(B, C) \times mor(A, B) \to mor(A, C)$$

defined by $(g,f)\mapsto g\circ f$, where $g\circ f$ is called the *composite* of f and g and is subject to the following two axioms:

1). Associativity: $\forall f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

- 2). *identity*: $\forall B \in \text{obj}(C), \exists \iota_B : B \to B \text{ such that:}$
 - $\forall f: A \to B, \iota_B \circ f = f$
 - $\forall g: B \to C, g \circ \iota_B = g$

Note that $mor(A, A) \neq \emptyset$ because at least $i_A \in mor(A, A)$.

Definition: Equivalence

Let C be a category, $A, B \in \text{obj}(C)$, and $f: A \to B$. To say that f is an equivalence means $\exists g: B \to A$ such that:

- $g \circ f = \iota_A$
- $f \circ g = \iota_B$

In this case, ${\cal A}$ and ${\cal B}$ are said to be equivalent.

Example

Let $\mathcal{G} = \text{category of groups}$, where $A = \text{obj}(\mathcal{G})$ is a group, and mor(A, B) is the (possibly empty) set of homomorphisms from A to B.

Definition: Product

Let C be a category and $S = \{A_i \mid i \in I\}$ be a family of objects in $\mathrm{obj}(C)$. A product of S, denoted $\prod_{i \in I} A_i$, is an object $P \in \mathrm{obj}(C)$ together with a family of morphisms $\{\pi_i : P \to A_i \mid i \in I\}$ such that $\forall B \in \mathrm{obj}(C)$ and family of morphisms $\{\phi_i : B \to A_i \mid i \in I\}$ there exists a unique morphism $\phi : B \to P$ such that $\forall i \in I, \pi_i \circ \phi = \phi_i$.

For the category of groups, define $\pi_i: G \to G_i$ by projection.

Theorem

Let $\{A_i \mid i \in I\}$ be a family of objects in a category C. If $\{A_i \mid i \in I\}$ has a product then that product is unique (up to equivalence).

Proof

Assume $\{A_i \mid i \in I\}$ has a product Let $(P, \{\pi_i\})$ and $(Q, \{\phi_i\})$ be two such products $\exists \, \phi : Q \to P, \pi_i \phi = \phi_i$ $\exists \, \pi : P \to Q, \phi_i \pi = \pi_i$ $\phi_i(\pi \phi) = \phi$, so $\pi \phi = \iota_Q$ $\pi_i(\phi \pi) = \pi_i$, so $\phi \pi = \iota_P$ $\therefore P$ and Q are equivalent.

Definition: Coproduct

Let C be a category and $S = \{A_i \mid i \in I\}$ be a family of objects in $\mathrm{obj}(C)$. A coproduct of S is an object $P \in \mathrm{obj}(C)$ together with a family of morphisms $\{\pi_i : P \to A_i \mid i \in I\}$ such that $\forall B \in \mathrm{obj}(C)$ and family of morphisms $\{\phi_i : B \to A_i \mid i \in I\}$ there exists a unique morphism $\pi : P \to B$ such that $\forall i \in I, \phi_i \circ \pi = \pi_i$.

In other words, a cofactor is a factor in the opposite direction.