1	What is claimed is:		
2	1.	In a disk drive comprising a base, a cover, a disk being formatted with	
3	embedded ser	vo sectors, a rotary actuator, a head affixed to the rotary actuator for reading	
4	the servo sectors, a sensor mounted for detecting acceleration of the disk drive, and a		
5	sampled serve	control system for processing the detected acceleration and the servo sectors	
6	read by the he	ad to control motion of the rotary actuator, a method for reducing the effects	
7	of rotational vibration in the disk drive, the method comprising:		
8		sensing vibration by the sensor and generating a corresponding sensor data;	
9		deriving a statistical sensor (SS) value based on the sensor data;	
10		deriving a statistical position error signal (SPES) value from the servo	
11	sectors	s read by the head;	
12		comparing the SS value to a SS-threshold value;	
13		comparing the SPES value to a SPES-threshold value; and	
14		generating a feed-forward command effort signal for reducing the effects	
15	of rota	tional vibration if the SS value exceeds the SS-threshold value and if the	
16	SPES	value exceeds the SPES-threshold value.	
1	2.	The method of claim 1, wherein deriving the SPES value comprises:	
2		receiving a series of position error signal (PES) values during a pre-selected	
3	interva	al based on a servo-sampling rate;	
4		determining an absolute value for each of the PES values; and	
5		calculating an average value of the determined absolute values.	
1	3.	The method of claim 1, wherein deriving the SPES value comprises:	
2		receiving a series of position error signal (PES) values during a pre-selected	
3	interva	al based on a servo-sampling rate, and	
4		calculating a root mean square (RMS) value of the PES values.	
1	4.	The method of claim 1, wherein deriving the SS value comprises:	
2		receiving a series of the generated sensor data during a pre-selected	
3	interva	al based on a servo-sampling rate; and	
4		determining an absolute value for each of the sensor data; and	
5		calculating an average value of the determined absolute values.	

The method of claim 1, wherein deriving the SS value further comprises:

5.

1

PATENT ATTY. DOCKET K35A1417

2		receiving a series of the generated sensor data during a pre-selected interval
3	based	on a servo-sampling rate; and
4		calculating a root mean square (RMS) value of the received sensor data.
1	6.	The method of claim 1, wherein the sensor comprises a rotary accelerometer
1	7.	The method of claim 1, wherein each of the SS-threshold and the SPES-
2	threshold valu	es are obtained from a characterization testing of a plurality of disk drives.
1	8.	The method of claim 1, wherein the disk drive further comprises a printed
2	circuit board a	assembly (PCBA) and wherein the sensor is mounted on the (PCBA).

PATENT ATTY. DOCKET K35A1417

1	9. In a disk drive comprising a base, a cover, a disk being formatted with		
2	embedded servo sectors, a rotary actuator, a head affixed to the rotary actuator for reading		
3	the servo sectors, first and second sensors mounted for detecting acceleration of the disk		
4	drive, and a sampled servo control system for processing the detected acceleration and the		
5	servo sectors read by the head to control motion of the rotary actuator, a method for		
6	reducing the effects of rotational vibration in the disk drive, the method comprising:		
7	sensing vibration by the first and second sensors and generating a		
8	corresponding first and second sensor data,		
9	deriving a statistical sensor (SS) value based on the first and second sensor day	ta;	
10	deriving a statistical position error signal (SPES) value from the servo		
11	sectors read by the head;		
12	comparing the SS value to a SS-threshold value;		
13	comparing the SPES value to a SPES-threshold value; and		
14	generating a feed-forward command effort signal for reducing the effects		
15	of rotational vibration if the SS value exceeds the SS-threshold value and if the		
16	SPES value exceeds the SPES-threshold value.		
1	10. The method of claim 9, wherein deriving the SPES value comprises:		
2	receiving a series of position error signal (PES) values during a pre-selected		
3	interval based on a servo-sampling rate;		
4	determining an absolute value for each of the PES values; and		
5	calculating an average value of the determined absolute values.		
1	11. The method of claim 9, wherein deriving the SPES value comprises:		
2	receiving a series of position error signal (PES) values during a pre-selected		
3	interval based on a servo-sampling rate; and		
4	calculating a root mean square (RMS) value of the PES values.		
1	12. The method of claim 9, wherein deriving the SS value comprises:		
2	receiving a series of the generated first and second sensor data during a		
3	pre-selected interval based on a servo-sampling rate, and		
4	generating a differential sensor value for each of the received first and		
5	second sensor data in the series.		
1	13. The method of claim 12, wherein deriving the SS value further comprises:		

PATENT ATTY. DOCKET K35A1417

2		determining an absolute value for each of the differential sensor values; and
3		calculating an average value of the determined absolute values.
1	14.	The method of claim 12, wherein deriving the SS value further comprises:
2		calculating a root mean square (RMS) value of the differential sensor values.
1	15.	The method of claim 9, wherein each of the first and second sensors
2	comprises a li	near accelerometer.
1	16.	The method of claim 9, wherein each of the SS-threshold and the SPES-
2	threshold valu	es are obtained from a characterization testing of a plurality of disk drives.
1	17.	The method of claim 9, wherein each of the first and second sensors has a
2	sensitivity axi	s, and wherein each sensor is oriented with its sensitivity axis at a pre-
3	selected angle	relative to an orthogonal axis of the disk drive.
1	18.	The method of claim 17, wherein the pre-selected angle is 45 degrees.
1	19.	The method of claim 9, wherein the disk drive further comprises a printed
2	circuit board a	ssembly (PCBA) and wherein the first and second sensors are mounted on
3	the (PCBA).	