No of enclaves in C++ #include <iostream> #include <vector> using namespace std; void dfs(vector<vector<int>>& arr, int i, int j) { if (i < 0 | | j < 0 | | i >= arr.size() | | j >= $arr[0].size() | | arr[i][j] == 0) {$ return; } arr[i][j] = 0;dfs(arr, i + 1, j);dfs(arr, i - 1, j); dfs(arr, i, j + 1);dfs(arr, i, j - 1); int numEnclaves(vector<vector<int>>& arr) { int m = arr.size();int n = arr[0].size();// Marking connected components touching the boundaries for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if $((i == 0 \mid | j == 0 \mid | i == m - 1 \mid | j == n -$ 1) && arr[i][j] == 1) { dfs(arr, i, j); // Counting remaining land cells int count = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { $if (arr[i][j] == 1) {$ ++count; return count; int main() { int m = 4, n = 4; vector<vector<int>> arr = { $\{0, 0, 0, 0\},\$ $\{1, 0, 1, 0\},\$ $\{0, 1, 1, 0\},\$ $\{0, 0, 0, 0\}$ **}**; int result = numEnclaves(arr); cout << result << endl;

return 0;

}

Input Grid:

	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	0	1	1	0
3	0	0	0	0

III Dry Run Table – Step-by-Step

Step 1: Mark boundary-connected 1s using **DFS**

Check all boundary cells and run DFS from any land (1) on the edge:

Cell	Is Boundary?	Is Land?	DFS Run?	Action
(0,x)/(x,0)/(3,x)/(x,3)	∜ Y es	Mixed	∜ If land	DFS removes (1,0) only

 \checkmark Only (1,0) is a boundary land \rightarrow DFS marks it and its connected land 0.

After DFS update, grid becomes:

	0	1	2	3
0	0	0	0	0
1	0	0	1	0
2	0	1	1	0
3	0	0	0	0

Step 2: Count remaining 1s (enclaves)

Cell	Value	Is Land (1)?	Count += 1?
(1,2)	1	<	⟨✓ (count=1)
(2,1)	1	<	⟨✓ (count=2)

Cell	Value	Is Land (1)?	Count += 1?
(2,2)	1	$ \checkmark $	⟨ (count=3)

Total enclave land cells = 3

∜ Final Output:

3

Summary Table:

Phase	Operation	Result
Boundary DFS	Remove all 1s connected to boundary	(1,0) set to 0
Enclave Counting	Count remaining 1s in the grid	3
Final Return Value	numEnclaves()	3

Output:-

3