Design and Modeling of Fluid Power Systems ME 597/ABE 591 Lecture 12

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University

Contents

- Classification of power supply systems
- Pump control systems
- Modeling of pump control
- Load sensing systems

Classification of hydraulic actuators

Overview pressure supply systems

Fixed displacement pumps

Flow source

Pressure source

Pressure controlled systems

Variable displacement pumps

Classification pump control systems

Open and closed loop control

Manual actuation

Electro-hydraulic actuation

© Dr. Monika Ivantysynova

Hydraulic control

Electro-mechanical actuation

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pump control

Pressure compensated pump – direct hydraulically operated & controlled

Axial piston pump – force analysis

 F_{SK} ... reaction force of swash plate

Slipper friction force:

Pressure force: $F_{DK} = A_K \cdot (p - p_e) = \frac{\pi \cdot d_k^2}{4} \cdot (p - p_e)$ Inertia force: $F_{aK} = -m_K \cdot a_K = m_K \cdot \omega^2 \cdot R \cdot \tan \beta \cdot \cos \varphi$

Piston friction force:
$$F_{TK} = f_K \cdot F_{RK} \cdot sign(-v_K)$$

with f_K friction coefficient

$$F_{TG} = \int_{r_G}^{R_G} \tau \cdot 2 \cdot \pi \cdot r \cdot dr$$

Forces applied on the piston

F_{SK} ... reaction force of swash plate

Resultant axial piston force:

$$F_{AK} = F_{DK} + F_{aK} + F_{TK}$$

Reaction force of swash plate:

$$F_{SK} = -\frac{F_{AK}}{\cos \beta}$$

Resultant radial force:
$$F_{RK} = \sqrt{\left(F_{SKy} + F'_{\omega Ky} + F_{TGy}\right)^2 + \left(F'_{\omega Kx} + F_{TGx}\right)^2}$$

Forces exerted on swash plate

© Dr. Monika Ivantysynova

9

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

Pressure forces dependent on cylinder pressure

Normal force F_N changes its origin during one shaft rotation

$$F_{AKi} = F_{DKi} + F_{aKi} + F_{TKi}$$

Pressure force F_{DKi} depends on instantaneous cylinder pressure p_i

$$F_{Sy} = \sum_{i=1}^{z} F_{Syi} = -\tan \beta \cdot \sum_{i=1}^{z} F_{AKi}$$

$$F_{Sz} = \sum_{i=1}^{z} F_{AKi}$$

Moments acting on swash plate

$$F_{Sx} = 0 \quad F_{Sy} = \sum_{i=1}^{z} F_{Syi} = -\tan \beta \cdot \sum_{i=1}^{z} F_{AKi}$$

$$F_{Sz} = \sum_{i=1}^{z} F_{AKi}$$

$$M_{Sx} = \sum_{i=1}^{z} \left(F_{Szi} \cdot y_{Si} - F_{Syi} \cdot z_{Si}\right)$$

$$M_{Sx} = \sum^{z} R \cdot F_{AKi} \cdot \cos \varphi_{i} \cdot (1 + \tan^{2} \beta)$$

$$n^2 \beta$$

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cdot \cos \varphi_i$$

$$M_{Sy} = -\sum_{i=1}^{z} F_{Szi} \cdot x_{Si} = -R \cdot \sum_{i=1}^{z} F_{AKi} \cdot \sin \varphi_{i}$$

$$x_{Si} = R \cdot \sin \varphi_i$$

$$y_{Si} = R \cdot \cos \varphi_i$$

$$z_{Si} = y_{Si} \tan \beta = R \cdot \tan \beta \cdot \cos \varphi_i$$

 $\overline{i=1}$ Moment due to friction force of slipper F_{TG}

$$M_{Sz} = \sum_{i=1}^{z} F_{Syi} \cdot x_{Si} + M_{TSz} = -R \cdot \tan \beta \cdot \sum_{i=1}^{z} F_{AKi} \cdot \sin \varphi_i + M_{TSz}$$

Moments acting on swash plate

Friction forces F_{TS} exerted on swash plate due to slipper slipper

movement:

$$F_{TSi} = -F_{TGi}$$

$$F_{TSxi} = F_{TSi} \cdot \cos \varphi_i$$

$$F_{TSyi} = -F_{TSi} \cdot \sin \varphi_i$$

$$F_{TSzi} = 0$$

$$M_{TSz} = \sum_{i=1}^{z} \left(F_{TSyi} \cdot x_{TSi} - F_{TSxi} \cdot y_{TSi} \right)$$

$$M_{TSz} = -R \cdot \sum_{i=1}^{z} F_{TSi} \left(\sin^2 \varphi_i + \cos^2 \varphi_i \right) = -R \cdot \sum_{i=1}^{z} F_{TSi}$$

$$x$$

$$x_{Si} = R \cdot \sin \varphi_i$$

$$y_{Si} = R \cdot \cos \varphi_i$$

$$z_{Si} = R \cdot \tan \beta \cdot \cos \varphi_i$$

$$M_{Sz} = \sum_{i=1}^{z} F_{Syi} \cdot x_{Si} + M_{TSz} = -R \cdot \left(\sum_{i=1}^{z} F_{TSi} + \tan \beta \cdot \sum_{i=1}^{z} F_{AKi} \cdot \sin \varphi_i \right)$$

F_{TG} **↑**F_{TGy}

Forces exerted on swash plate

Resulting force F_S exerted on swash plate:

$$F_{S} = \sqrt{F_{Sy}^2 + F_{Sz}^2}$$

and moments about y- and z-axis:

$$M_{Sy} = -\sum_{i=1}^{z} F_{Szi} \cdot x_{Si} = -R \cdot \sum_{i=1}^{z} F_{AKi} \cdot \sin \varphi_i$$

$$M_{Sz} = -R \cdot \left(\sum_{i=1}^{z} F_{TSi} + \tan \beta \cdot \sum_{i=1}^{z} F_{AKi} \cdot \sin \varphi_i \right)$$

Moment M_{Sx}

$$M_{Sx} = \frac{R}{\cos^2 \beta} \cdot \sum_{i=1}^{z} F_{AKi} \cdot \cos \varphi_i$$

must be carried by swash plate bearing

In case of variable displacement pumps $M_{Sx} = \frac{K}{\cos^2 \beta} \cdot \sum_{i=1}^{\infty} F_{AKi} \cdot \cos \varphi_i$ M_{Sx} must be overcome by the swash plate control system

Swash plate control system

Electrohydraulic swash plate control system

Pressure compensated pump using one variable hydraulic resistance

Pressure compensated pump using two variable hydraulic resistances

Load sensing

with variable displacement pump

with fixed displacement pump

Load sensing

Hydraulic-mechanical LS – pump control

Load Sensing Pump Control

Electric closed loop control & hydraulically operated

Hydraulically operated and controlled

19

LS-Valve

Classification power supply

Systems with fixed displacement pump

Classification power supply

Systems with variable pumps

