BÀI 5

KŸ THUẬT ĐẾM NÂNG CAO

Giáo viên: TS. Nguyễn Văn Hiệu

Email: nvhieuqt@dut.udn.vn

Nhắc lại!

Quy tắc nhân

Quy tắc cộng

HV, CH, TH

Chỉnh hợp lặp

Tổ hợp lặp

Nguyên lý bù trừ

Nội dung

- 5.1. Giới thiệu
- 5.2. Một số khái niệm
- 5.5. Mô hình hóa
- 5.4. Định nghĩa
- 5.5. Phương pháp
 - Phương pháp thể
 - Phương trình đặc trưng
- 5.6. Bài tập

5.1. Giới thiệu

- Khó định nghĩa đối tượng một cách tường minh
- Có thể định nghĩa đối tượng qua chính nó
- Kỷ thuật = đệ quy.

5.1. Giới thiệu

• Ví dụ 5.1

Xác định một hay nhiều số hạng đầu tiên

Xác định số hạng tiếp theo từ số hạng đi trước

 $a_n = 2 a_{n-1}$

Đệ quy dãy số {a_n}

Hệ thức truy hồi

- *Hệ thức truy hồi* của {a_n} là công thức biểu diễn a_n qua một hay nhiều số hạng đi trước của dãy.
- *Nghiệm htth* là dãy {b_n} nếu các số hạng thỏa mản hệ thức truy hồi.
- Giải htth là đi tìm công thức biểu diễn các số hạng của dãy mà không thông qua các số hạng phía trước

- $a_n = 3n$ với mọi n nguyên không âm, **có là lời giải của hệ thức truy hồi** $a_n = 2$ $a_{n-1} a_{n-2}$ với n = 2, 3, 4, ...hay không?
- HD:

Giả sử $a_n = 3n$ với mọi $n, n \ge 2$; $2a_{n-1} - a_{n-2} =$

- $a_n = 5$ với mọi n nguyên không âm, **có là lời giải của hệ thức truy hồi** $a_n = 2a_{n-1} a_{n-2}$ với n = 2, 3, 4, ... hay không?
- HD

 $2a_{n-1}-a_{n-2} =$

- 5.3.1. Tổ hợp C(n,k), $k \le n$,
- 5.3.2. Bài toán tháp Hà nội,
- 5.3.3. Bài toán họ nhà thỏ

5.3.1. Tính C(n,k)

• C(n,k) = ?

```
 \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix}
```

Xây dung

5.3.1. Tính C(n,k)

- Cố định a trong n phần tử
- Chia số cách chọn tập con k pt của tập n pt thành 2 lớp:
 - Lóp chứa a: C(n-1,k-1)
 - Lóp không chứa a: C(n-1,k)
- Nguyên lý cộng

$$C(n,k) = C(n-1,k-1) + C(n-1,k)$$

 $C(n,0) = C(n,n) = 1$

5.3.1. Tính C(n,k)

```
int c(int m,int n)
{
    if(m==0) return 1;
    else if(m==n) return 1;
    else return (c(m-1,n-1)+c(m,n-1));
}
```

Nhược điểm đệ quy

5.3.2. Bài toán tháp Hà nội

- Mô tả bài toán toán:
 - Cho 3 cái cọc A, B, C và tập n đĩa có kích cỡ khác nhau;
 - Đĩa được bố trí theo thứ tự đường kính giảm dần từ dưới lên trên
 - Số đĩa ban đầu được đặt trên cọc A;
 - Mục đích: xếp được tất cả đĩa lên cọc C

5.3.2. Bài toán tháp Hà nội

- Quy tắc chơi
 - Mỗi lần chuyển chỉ được chuyển 1 đĩa và chỉ được xếp đĩa có đường kính nhỏ lên trên đĩa có đường kính lớn hơn.
 - Mỗi đĩa có thể chuyển từ cọc này sang cọc khác;
 - Trong quá trình chuyển được phép sử dụng cọc B làm trung gian.
- Bài toán đặt là: Tìm số lần dịch chuyển đĩa ít nhất cần thực hiện để thực hiện xong nhiệm vụ đặt ra trong trò chơi tháp Hà Nôi

$$H_n = 2H_{n-1} + 1$$
, $n \ge 2$; $H_1 = 1$

Towers of Hanoi Problem

- Nhập số nguyên n
- Xuất ra chuổi cách chuyển n-đĩa

```
void THN(int n,char a, char b,
    char c){
    if(n==1) Move(a,b);
    else {
        THN(n-1,a,c,b);
        Move(a,b);
        THN(n-1,c,b,a);}
}
```

```
void Move(char a, char b){
   printf("\t%c ---> %c\n",a,b);
}
```

5.3.3. Bài toán họ nhà thổ (population of rabbits)

Đôi tái tạo (từ hai tháng tuổi)	Đôi thỏ con (dưới hai tháng tuổi)	Th án g	Đôi tái tạo	Đôi thỏ con	Tổ ng
		1	0	1	1
	0 to	2	0	1	1
04 40	0 40	3	1	1	2
04 40	242	4	1	2	3
2424	040040	5	2	3	5
经存储存储的	2424	6	3	5	8
	at to at to				

5.3.3. Bài toán họ nhà thỏ

$$f_{n} = f_{n-1} + f_{n-2}, n \ge 3$$

Số đôi thỏ sau n-1 tháng

số đôi thỏ mới sinh

Số đôi thỏ trên đảo sau *n* tháng

số đôi thỏ sau n-2 tháng

Fibonacci Problem

- Nhập số nguyên n
- Xuất ra số Fibonacci thứ n

RECURSIVEFIBONACCI(n)

1 **if**
$$n = 1$$
 or $n = 2$

return 1

else

 $a \leftarrow \text{RECURSIVEFIBONACCI}(n-1)$ 3 for $i \leftarrow 3$ to n

 $b \leftarrow \text{RecursiveFibonacci}(n-2)$

return a+b

FIBONACCI(n)

1
$$F_1 \leftarrow 1$$

2
$$F_2 \leftarrow 1$$

3 for
$$i \leftarrow 3$$
 to n

$$4 F_i \leftarrow F_{i-1} + F_{i-2}$$

return F_n

5.4. Định nghĩa

 Hệ thức truy hồi tuyến tính thuần nhất bậc k hệ số hàng có dạng:

$$a_{n} = c_{1} a_{n-1} + c_{2} a_{n-2} + ... + c_{k} a_{n-k}$$

$$c_{1}, c_{2}, ..., c_{k} - h \mathring{a} ng s \acute{o}, c_{k} \neq 0.$$

Hệ thức truy hồi bậc k với k giá đầu:

$$a_0 = I_0$$
, $a_1 = I_1$, ..., $a_{k-1} = I_{k-1}$

sẽ xác định duy nhất một dãy {a_n}

5.4. Định nghĩa

• Hệ thức truy hồi tuyến tính thuần nhất có hệ số hằng

$$P_n = (1.11) P_{n-1}$$

$$f_n = f_{n-1} + f_{n-2}$$

$$a_n = a_{n-5}$$

bậc năm

- 1. Thường xuyên tồn tại trong các mô hình hóa các bài toán
- 2. Có thể giải một cách có hệ thống

• Hệ thưc truy hồi không tuyến tính, không thuần nhất, không hệ

số hằng

$$H_n = 2H_{n-1} + 1$$

Không thuần nhất

$$B_n = nB_{n-1}$$

→ Không có hệ sô hằng

$$a_n = a_{n-1} + a_{n-2}^2$$

→ Không tuyến tính

- Giải hệ thức truy hồi
 - Tìm công thức tổng quát cho số hạng a_n
 - Số hạng a_n không phải tính qua k phần tử trước nó.
- Phương pháp giải:
 - Phương pháp thế
 - Phương pháp phương trình đặc trưng

5. 5.1 Phương pháp thể:

- Dùng để giải hệ thức truy hồi bậc 1
- Các bược giải:
 - ► Thay a_n bởi a_{n-1}
 - \triangleright Thay a_{n-1} bởi a_{n-2}
 - >---
 - ightharpoonupThay a_0 bởi I_0
- Thu được công thức trực tiếp cho a_n
- Chứng minh tính đúng đắn

5.5.1. Phương pháp thể:

 Gọi H_n là số lần chuyển đĩa ít nhất của bài toán tháp Hà nội.

-
$$H_n = 2H_{n-1} + 1$$
, $n \ge 1$, $v\acute{o}i H_1 = 1$
- $H_n = 2H_{n-1} + 1$
= $2(2H_{n-2} + 1) + 1 = 2^2 H_{n-2} + 2 + 1$
= $2^2 (2H_{n-3} + 1) + 2 + 1 = 2^3 H_{n-3} + 2^2 + 2 + 1$
K
= $2^{n-1}H_1 + 2^{n-2} + 2^{n-3} + K + 2 + 1$
= $2^{n-1} + 2^{n-2} + 2^{n-3} + K + 2 + 1$
= $2^n - 1$ Chứng minh

5.5.2. Phương pháp phương trình đặc trưng

 Dùng giải hệ thức truy hồi bậc 2 tuyến tính thuần nhất hệ số hằng.

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}, n \ge 2$$
 (1)

 c_1 , c_2 - hằng số, $c_2 \neq 0$.

- Có phương trình đặc trưng:

$$r^2 = c_1 r + c_2 \tag{2}$$

r - hằng số.

5.5.2. Phương pháp phương trình đặc trưng

Nếu (2) có hai nghiệm thực phân biệt r_1, r_2 và có $a_0 = I_0, a_1 = I_1$, thì tồn tại duy nhất hằng số d_1, d_2 :

$$a_n = d_1 r^n_1 + d_2 r^n_2$$

là nghiệm của (1)

Nếu (2) có nghiệm thực kép $r_{1,}$ có $a_1 = I_0$, $a_1 = I_1$ thì tồn tại duy nhất hằng số d_1 , d_2 :

$$a_n = (d_1 + d_2 n) r_1^n$$

là nghiệm của (1)

5.5.2. Phương pháp phương trình đặc trưng

- · Cần chứng minh:
 - $a_n = d_1 r^n_1 + d_2 r^n_2$ là nghiệm của (1)
 - tồn tại d₁ d₂ duy nhất không?
- · chứng minh:
 - $c_1 a_{n-1} + c_2 a_{n-2} = d_1 r^n_1 + d_2 r^n_2 \text{ v\'oi moi } n \ge 2$

• Bài toán họ nhà thỏ có hệ thức truy hồi $a_n = a_{n-1} + a_{n-2}$, $n \ge 2$; $a_0 = 1$, $a_1 = 1$

Giải:

Bước 1: Tìm nghiệm tổng quát

Bước 2: Tìm hệ số hằng

Bước 3: Nghiệm của hệ thức truy hồi

Bước 1: Tìm nghiệm tổng quát

- Phương trình đặc trưng: $r^2 = r + 1$
- Nghiệm của pt đặc trưng: $r_1 = (1+\sqrt{5})/2$, $r_2 = (1-\sqrt{5})/2$
- Nghiệm tổng quát: $a_n = d_1((1+\sqrt{5})/2)^n + d_2((1+\sqrt{5})/2)^n$

Bước 2: Tìm hằng số d_1 và d_2 :

- Sử dụng điều kiện đầu:

$$\begin{cases} 1 = d_1 + d_2 \\ 1 = d_1 (1 + \sqrt{5})/2 + d_2 (1 + \sqrt{5})/2 \end{cases}$$

Bước 2 (t.):

$$d_1 = (1+\sqrt{5}) / 2\sqrt{5}$$

$$d_2 = -(1-\sqrt{5}) / 2\sqrt{5}$$

Bước 3: Nghiệm của hệ thức truy hồi

$$a_n = \frac{1}{\sqrt{5}} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}, n \ge 0$$

Vi du 5.1

Giải hệ thức truy hồi sau:

$$a_n = 6a_{n-1} - 9a_{n-2}, a_0 = 1, a_1 = 6.$$

- Vi dụ 5.1
 - Bước 1: Tìm nghiệm tổng quát
 - Phương trình đặc trưng: $r^2 = 6r 9$
 - pt đặc trưng có nghiệm kép: $r_1 = r_2 = 3$
 - Nghiệm tổng quát: $a_n = (d_1 + d_2 n) 3^n$
 - Bước 2: Tìm hằng số d₁ và d₂
 - Sử dụng điều kiện đầu:

$$\begin{cases} 1 = d_1 \\ 6 = (d_1 + d_2) 3 \end{cases} \begin{cases} d_1 = 1 \\ d_2 = 1 \end{cases}$$

- Bước 3: Nghiệm của hệ thức truy hồi

$$a_n = (1 + n) 3^n, n \ge 0$$

5.5. Giải hệ thức truy hồi bậc $k \ge 3$

* Hệ thức truy hồi tuyến tính thuần nhất bậc k:

$$a_{n} = c_{1} a_{n-1} + c_{2} a_{n-2} + \dots + c_{k} a_{n-k}$$
 (*)

trong đó, $c_1, c_2, ..., c_k$ - hằng số, $c_k \neq 0$.

Phương trình đặc trưng:

$$r^{k} = c_{1} r^{k-1} + c_{2} r^{k-2} + ... + c_{k}$$
 (**)

5.5. Phương pháp giải hệ thức truy hồi bậc ≥ 3

- Người ta chứng minh được kết quả sau:
 - Nếu (*) có nghiệm thực phân biệt $r_1, r_2, ..., r_k$, thì (**) có nghiệm tổng quát sau:

$$a_n = d_1 \cdot r_1^n + d_2 \cdot r_2^n + \dots + d_k \cdot r_k^n$$

Nếu (*) có t nghiệm thực phân biệt $r_1, r_2, ..., r_t$ tương ứng với các tính bội $m_1, m_2, ..., m_t$, thì (**) có nghiệm tổng quát:

$$a_{n} = (d_{10} + d_{11}n + \dots + d_{1m_{1}-1}n^{m_{1}-1}) \cdot r_{1}^{n} + \dots$$
$$+ (d_{t0} + d_{t1}n + \dots + d_{tm_{t}-1}n^{m_{t}-1}) \cdot r_{t}^{n}$$

5.5. Giải hệ thức truy hồi bậc $k \ge 5$

Ví dụ 5.2
 Giải hệ thức truy hồi sau:

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3},$$
 $a_0 = 1,$
 $a_1 = -2,$
 $a_2 = -1.$

• Ví dụ 5.2

Bước 1: Tìm nghiệm tổng quát

- Phương trình đặc trưng: $r^3 = -3r^2 3r 1$
- Nghiệm của pt đặc trưng: $\mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_3 = -1$
- Nghiệm tổng quát: $a_n = (d_{10} + d_{11} n + d_{12} n^2)(-1)^n$

Bước 2: Tìm hằng số d_{10} , d_{11} và d_{12}

• Sử dụng điều kiện đầu:

$$\begin{cases}
1 = d_{10}, \\
-2 = (d_{10} + d_{11} + d_{12})(-1), \\
-1 = d_{10} + d_{11}2 + d_{12}4
\end{cases}$$

Ví dụ 5.2

Bước 2 (t.):

$$d_{10} = 1$$
 $d_{11} = 3$
 $d_{12} = -2$

Bước 3: Nghiệm của hệ thức truy hồi

$$a_n = (1 + 3 n - 2 n^2) (-1)^n, n \ge 0$$

5. 6. Bài tập

1.
$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$
,
 $a_0 = 2$, $a_1 = 5$, $a_2 = 15$.

• DS:
$$a_n = 1 - 2^n + 2.3^n$$
.

• WHAT NEXT?

BÀI TOÁN TỘN TẠI