CENTER FOR ECONOMIC BEHAVIOR & INEQUALITY

Consumption-Saving

Mini-Course: Heterogenous Agent Macro

Jeppe Druedahl 2025

Introduction

Introduction

- Generations of models:
 - Permanent income hypothesis (PIH) (Friedman, 1957) or life-cycle model (Modigliani and Brumburg, 1954)
 - Buffer-stock consumption model
 Deaton (1991, 1992); Carroll (1992, 1997, 2019)
 - Multiple-asset buffer-stock consumption models
 e.g. Kaplan and Violante (2014); Harmenberg and Öberg (2021)
- Consumption-and-saving over the life-cycle dynamic
 e.g. Gourinchas and Parker (2002); Druedahl and Martinello (2022)
- Empirical MPCs and income risk
 e.g. Fagereng et. al. (2021); Guvenen et. al. (2021)

Book: The Economics of Consumption, Jappelli and Pistaferri (2017)

Plan

- 1. Introduction
- 2. PIH
- 3. Buffer-stock
- 4. 3-periods
- 5. EGM
- 6. NEGM
- 7. Extra
- 8. Portfolio choice
- 9. Summary

PIH

Consumption-saving

$$v_0 = \max_{\{c_t\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t u(c_t)$$
 s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t$ $a_{T-1} \geq 0$

Variables:

Consumption: c_t

Productivity: z_t

End-of-period savings: a_t (no debt at death)

Parameters:

Discount factor: β

Wage: w

Interest rate: r (define $R \equiv 1 + r$ as interest factor)

It is a static problem

$$v_0 = \max_{\{c_t\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t u(c_t)$$
 s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t$ $a_{T-1} \ge 0$

It is a static problem:

- 1. **Information:** z_t is known for all t at t = 0
- 2. **Target:** Discounted utility, $\sum_{t=0}^{T-1} \beta^t u(c_t)$
- 3. **Behavior:** Choose $c_0, c_1, \ldots, c_{T-1}$ simultaneously
- 4. **Solution:** Sequence of consumption *choices* $c_0^*, c_1^*, \ldots, c_{T-1}^*$

Substitution implies Intertemporal Budget Constraint (IBC)

$$a_{T-1} = Ra_{T-2} + wz_{T-1} - c_{T-1}$$

$$= R^2 a_{T-3} + Rwz_{T-2} - Rc_{T-2} + wz_{T-1} - c_{T-1}$$

$$= R^T a_{-1} + \sum_{t=0}^{T-1} R^{T-1-t} (wz_t - c_t)$$

• Use **terminal condition** $a_{T-1} = 0$ (equality due utility max.)

$$R^{-(T-1)}a_{T-1} = 0 \Leftrightarrow s_0 + h_0 - \sum_{t=0}^{T-1} R^{-t}c_t = 0$$

where $s_0 \equiv Ra_{-1}$ (after-interest assets) and $h_0 \equiv \sum_{t=0}^{T-1} R^{-t} w z_t$ (human capital)

FOC and **Euler-equation**

$$\mathcal{L} = \sum_{t=0}^{T-1} \beta^t u(c_t) + \lambda \left[\sum_{t=0}^{T-1} R^{-t} c_t - s_0 - h_0 \right]$$

First order conditions:

$$\forall t: 0 = \beta^t u'(c_t) - \lambda (1+r)^{-t} \Leftrightarrow u'(c_t) = -\lambda (\beta R)^{-t}$$

• **Euler-equation** for $k \in \{1, 2, \dots\}$:

$$\frac{u'(c_t)}{u'(c_{t+k})} = \frac{-\lambda (\beta R)^{-t}}{-\lambda (\beta R)^{-(t+k)}} = (\beta R)^k$$

Consumption choice

• CRRA: $u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$ imply Euler-equation

$$\frac{c_0^{-\sigma}}{c_t^{-\sigma}} = (\beta R)^t \Leftrightarrow c_t = (\beta R)^{\frac{t}{\sigma}} c_0$$

Insert Euler into IBC to get consumption choice

$$\sum_{t=0}^{T-1} \left((\beta R)^{1/\sigma} R^{-1} \right)^t c_0 = s_0 + h_0 \Leftrightarrow$$

$$c_0^* = \frac{1 - (\beta R)^{1/\sigma} R^{-1}}{1 - \left((\beta R)^{1/\sigma} R^{-1} \right)^T} (s_0 + h_0)$$

Infinite horizon

■ Infinite horizon for $(\beta R)^{1/\sigma}R^{-1} < 1$: Let $T \to \infty$ to get

$$c_0^* = \left(1 - rac{(eta R)^{1/\sigma}}{R}
ight)(s_0 + h_0)$$
if $\forall z_t = 1: c_0^* = \left(1 - rac{(eta R)^{1/\sigma}}{R}
ight)\left(Ra_{-1} + rac{R}{R-1}w
ight)$

- Consume annuity value: $\beta R = 1, z_t = 1 \Rightarrow c_0^* = ra_{-1} + w$
- Intertemporal elasticity of substitution (IES $=\frac{1}{\sigma}$):

$$\log c_{t+1} - \log c_t = \frac{1}{\sigma} \log \beta R$$

Constant consumption if:

- 1. $\beta R = 1$
- 2. $\sigma \to \infty$ (zero elasticity of substitution)

Propensities to consume ($\beta R \approx 1, z_t \approx 1$)

$$c_0^* \approx \frac{r}{1+r} \left((1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{wz_t}{(1+r)^t} \right) \approx ra_{-1} + w$$

Different types of shocks:

- 1. MPC of windfall income: $\frac{\partial c_0}{\partial s_0} \approx \frac{r}{1+r}$
- 2. MPC of *future* income change: $\frac{\partial c_0}{\partial w z_t} \approx \frac{r}{1+r} (1+r)^{-t}$
- 3. MPC of *permanent* income change: $\frac{\partial c_0}{\partial w} \approx \frac{r}{1+r} \frac{1}{1-(1+r)^{-1}} = 1$

Dynamic affects: The same when $\beta R = 1$, for all k > 0

$$\frac{\partial c_k}{\partial s_0} = \frac{\partial c_0}{\partial s_0}$$
$$\frac{\partial c_k}{\partial w z_t} = \frac{\partial c_0}{\partial w z_t}$$
$$\frac{\partial c_k}{\partial w} = \frac{\partial c_0}{\partial w}$$

Savings ($\beta R = 1$)

• Constant savings $z_t = 1$:

$$c_t = ra_{t-1} + w \Rightarrow a_t = Ra_{t-1} + w - c_t = a_{t-1}$$

- 1. Decreasing savings with $\beta R < 1 : c_t \uparrow \Rightarrow a_t < a_{t-1}$
- 2. Increasing savings with $\beta R > 1$: $c_t \downarrow \Rightarrow a_t > a_{t-1}$
- Same consumption if NPV of wz_t is unchanged

$$\frac{r}{1+r}\sum_{t=0}^{\infty}\frac{z_t}{(1+r)^t}=1$$

⇒ savings change with income

Initial liquidity/borrowing constraint

- Implied period 0 savings are: $a_0 = s_0 + wz_0 c_0$
- Hard borrowing constraint: $a_0 \ge -wb$
- Maximum consumption: $\overline{c}_0 = s_0 + wz_0 + wb$
- Optimal consumption: Constrained or unconstrained.

$$c_0^* = \min\left\{\overline{c}_0, \left(1 - rac{(eta R)^{1/\sigma}}{R}
ight)(s_0 + h_0)
ight\}$$

Empirical realism. MPC of constrained is one

$$c_0^* = \overline{c}_0 \Rightarrow \frac{\partial c_0^*}{\partial s_0} = \frac{\partial \overline{c}_0}{\partial s_0} = 1$$

 Technical issue: Borrowing constraints further in the future complicates the analytical solution considerably.

Empirical MPCs

Source: Fagereng et. al. (2021)

Buffer-stock

Uncertainty and always borrowing constraint

$$egin{aligned} v_0(z_0,a_{-1}) &= \max_{\{c_t\}_{t=0}^\infty} \mathbb{E}_0\left[\sum_{t=0}^\infty eta^t u(c_t)
ight] \ & ext{s.t.} \ a_t &= (1+r)a_{t-1} + wz_t - c_t \ z_{t+1} &\sim \mathcal{Z}(z_t) \ a_t &\geq -wb \ \lim_{t o\infty} (1+r)^{-t} a_t &\geq 0 \quad ext{[No-Ponzi game]} \end{aligned}$$

- Stochastic income from 1st order Markov-process, $\mathcal Z$
- A true dynamic problem:
 - 1. **Information:** z_t is revealed period-by-period
 - 2. Target: Expected discounted utility, $\mathbb{E}_0\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$
 - 3. **Behavior:** Choose c_t sequentially as information is revealed
 - 4. **Solution:** Sequence of consumption functions, $c_t^*(z_t, a_{t-1})$

IBC

Substitution still implies:

$$R^{-(T-1)}a_{T-1} = 0 \Leftrightarrow s_0 + h_0 - \sum_{t=0}^{T-1} R^{-t}c_t = 0$$

- What if $T \to \infty$? We must have $\lim_{T \to \infty} R^{-(T-1)} a_{T-1} = 0$
 - 1. $\lim_{T\to\infty} R^{-(T-1)}a_{T-1} > 0$: Consumption can be increased
 - 2. $\lim_{T\to\infty} R^{-(T-1)}a_{T-1} < 0$: Violates No-Ponzi game condition
- For $T \to \infty$ we have the **IBC**:

$$\sum_{t=0}^{\infty} R^{-t} c_t = Ra_{-1} + \sum_{t=0}^{\infty} R^{-t} w z_t$$

Natural borrowing limit

- Denote minimum possible productivity by <u>z</u>
- Consumption must be non-negative ⇒ interest payments must be less than minimum income

$$c_t \ge 0 \Rightarrow r(-a_t) \le w\underline{z} \Leftrightarrow a_t \ge -\frac{w\underline{z}}{r}$$

If debt was larger it would in the worst case $(\forall z_t = \underline{z})$ grow without bound even with zero consumption $(\forall c_t = 0)$

$$a_0 = -\frac{w\underline{z}}{r} - \Delta$$

$$a_1 = (1+r)a_0 + w\underline{z} = a_0 - (1+r)\Delta$$

$$a_2 = (1+r)a_1 + w\underline{z} = a_0 - (1+r)^2\Delta$$

$$\vdots$$

• Natural borrowing constraint: $a_t \ge \underline{a} = -w \min \left\{ b, \frac{z}{r} \right\}$

Euler-equation from variation argument

- Case I: If $u'(c_t) > \beta R \mathbb{E}_t [u'(c_{t+1})]$: Increase c_t by marginal $\Delta > 0$, and lower c_{t+1} by $R\Delta$
 - 1. **Feasible:** Yes, if $a_t > \underline{a}$
 - 2. Utility change: $u'(c_t) + \beta(-R) \mathbb{E}_t [u'(c_{t+1})] > 0$
- Case II: If $u'(c_t) < \beta R \mathbb{E}_t [u'(c_{t+1})]$: Lower c_t by marginal $\Delta > 0$, and increase c_{t+1} by $R\Delta$
 - 1. Feasible: Yes (always)
 - 2. Utility change: $u'(c_t) + \beta R \mathbb{E}_t \left[u'(c_{t+1}) \right] > 0$
- Conclusion: By contradiction
 - 1. Constrained: $a_t = \underline{a}$ and $u'(c_t) \ge \beta R \mathbb{E}_t [u'(c_{t+1})]$, or
 - 2. Unconstrained: $a_t > \underline{a}$ and $u'(c_t) = \beta R \mathbb{E}_t [u'(c_{t+1})]$
- **Sufficiency:** Harder (~ convexity of the choice set)

Special case I: Quadratic utility

- Quadratic utility: $u(c_t) = -\frac{1}{2}(\overline{c} c)^2$ with $\beta R = 1$ and »large« \overline{c}
- **Euler-equation:** Consumption = expected future consumption

$$(\overline{c} - c_t) = \mathbb{E}_t \left[(\overline{c} - c_{t+k}) \right] \Leftrightarrow c_t = \mathbb{E}_t \left[c_{t+k} \right]$$

Use IBC in expectation to get consumption function:

$$\sum_{t=0}^{\infty} R^{-t} \mathbb{E}_0 \left[c_t \right] = R a_{-1} + \sum_{t=0}^{\infty} R^{-t} w \mathbb{E}_0 \left[z_t \right] \Rightarrow$$

$$c^*(z_t, a_{t-1}) = c_0 = ra_{-1} + \frac{r}{R} \sum_{t=0}^{T} R^{-t} w \mathbb{E}_0[z_t]$$

where we formally disregard the borrowing constraint

• Certainty equivalence: Only expected income matter.

Special case II: CARA utility

- CARA utility: $u(c_t) = -\frac{1}{\alpha}e^{-\alpha c}$
- Productivity is absolute random walk:

$$z_t = z_{t-1} + \psi_t$$
$$\psi_t \sim \mathcal{N}(0, \sigma_{\psi}^2)$$

Consumption function (see proof):

$$c^*(a_{t-1}, z_t) = ra_{t-1} + wz_t - \frac{\log(\beta R)^{\frac{1}{\alpha}} + \alpha \frac{\sigma_{\psi}^2}{2}}{r^2}$$

where we formally disregard the borrowing constraint

■ **Precautionary saving:** $\sigma_{\psi}^2 \uparrow$ implies $c_t^* \downarrow$ for given z_t and a_{t-1} \Rightarrow accumulation of buffer-stock

Dynamic solution: Bellman's Principle of Optimality

- Origin: Bellman, 1957, Chap. III.3.
- Value function, v_t : Defined recursively from $v_T(\bullet) = 0$

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

• Policy function, c_t^* : Is the same as

$$c_t^*(z_t, a_{t-1}) = \arg\max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

- Euler-equation:
 - 1. FOC: $c_t^{-\sigma} = \beta \mathbb{E}_t \left[v_{t,a}(z_{t+1}, a_t) \right]$
 - 2. Envelope: $v_{t,a}(z_t, a_{t-1}) = (1+r)c_t^{-\sigma}$ (fix a_t)

Vocabulary

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

- 1. State variables: z_t and a_{t-1}
- 2. Control (choice) variable: c_t
- 3. Continuation value: $\beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$
- 4. **Parameters:** r, w, and stuff in $u(\bullet)$

Note: Straightforward to extend to more goods, more assets or other states, more complex risk, bounded rationality etc.

Infinite horizon: $T \to \infty$?

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

- Contraction mapping result: If β is low enough (strong enough impatience) then the value and policy functions converge to $v(z_t, a_{t-1})$ and $c^*(z_t, a_{t-1})$ for large enough T
- In practice:
 - 1. Make arbitrary initial guess (e.g. $v_{t+1} = 0$)
 - 2. Solve backwards until value and policy functions does not change anymore (given some tolerance)

3-periods

3-period model

- Expected discounted utility: $v(z_0, a_{-1}) = \mathbb{E}_0 \sum_{t=0}^2 \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$
- Income = wage × productivity + transfer:

$$y_t = wz_t + \chi_t$$

Cash-on-hand, savings and borrowing constraint:

$$m_t = (1+r)a_{t-1} + y_t$$

$$a_t = m_t - c_t$$

$$a_t \ge \underline{a}$$

• Stochastic transition: $\Pr[z_{t+1}|z_t] = \pi_t(z_t, z_{t+1})$ such that

$$\begin{split} \Pr[z_{t+1} = 1 \,|\, z_t = 1] = \pi \\ \Pr[z_{t+1} = 1 - \Delta \,|\, z_t = 1] = \Pr[z_{t+1} = 1 + \Delta \,|\, z_t = 1] = \frac{1 - \pi}{2} \\ \Pr[z_{t+1} = z_t \,|\, z_t \in \{1 - \Delta, 1 + \Delta\}] = 1 \end{split}$$

Bellman equation

$$egin{aligned} v_t(z_t, a_{t-1}) &= \max_{c_t} rac{c_t^{1-\sigma}}{1-\sigma} + eta \mathbb{E}_t \left[v_{t+1}(z_{t+1}, a_t)
ight] \ & ext{s.t.} \ y_t &= wz_t + \chi_t \ m_t &= (1+r)a_{t-1} + y_t \ a_t &= m_t - c_t \ & ext{Pr} \left[z_{t+1} | z_t
ight] &= \pi_t(z_t, z_{t+1}) \ a_t &\geq \underline{a} \end{aligned}$$

where

$$v_3(z_3,a_2)=0$$

Discretization

Discretization: All state variables belong to discrete sets ≡ grids,

$$z_t \in \mathcal{G}_z = \{z^0, z^1, \dots, z^{\#z-1}\}$$

 $a_t \in \mathcal{G}_a = \{a^0, a^1, \dots, a^{\#_a-1}\}$
 $a^0 = \underline{a}$

Expectation: Numerical integration by

$$\mathbb{E}_{t}\left[v_{t+1}(z_{t+1}, a_{t})\right] = \sum_{z_{t+1} \in \{1-\Delta, 1, 1+\Delta\}} \pi_{t}(z_{t}, z_{t+1}) v_{t+1}(z_{t+1}, a_{t})$$

- ConSav: grids.nonlinspace, grids.equilogspace
- ConSavNotebook: 04. Tools/03. Grids.ipynb

Grids and transition probabilities

The size of risk is scaled by Δ

Baseline: $\Delta = 0.8$

Low risk: $\Delta = 0.4$

Linear interpolation

- Linear interpolation (function approximation):
 - 1. Assume v_{t+1} is known on $\mathcal{G}_z \times \mathcal{G}_a$ (tensor product)
 - 2. Evaluate $v_{t+1}(z^{i_z}, a)$ for arbitrary a by

$$egin{align*} reve{v}_{t+1}(z^{i_z},a) &= \mathsf{baseline} + \mathsf{slope} \times \mathsf{distance} \\ &= v_{t+1}(z^{i_z},a^\iota) + \omega(a-a^\iota) \\ &= \mathsf{where} \\ &\omega \equiv \frac{v_{t+1}(z^{i_z},a^{\iota+1}) - v_{t+1}(z^{i_z},a^\iota)}{a^{\iota+1}-a^\iota} \\ &\iota \equiv \mathsf{largest} \ i_{\scriptscriptstyle \mathcal{S}} \in \{0,1,\ldots,\#_{\scriptscriptstyle \mathcal{S}}-2\} \ \mathsf{such that} \ a^{i_{\scriptscriptstyle \mathcal{S}}} \leq a^\iota \end{cases}$$

- ConSav: linear_interp.interp1d
- ConSavNotebook:
 - 04. Tools/01. Linear interpolation.ipynb

Linear interpolation

Value function iteration (VFI)

Maximize value-of-choice:

$$egin{aligned} v_t(z^{i_z}, a^{i_{s-}}) &= \max_{c_t} v_t(z^{i_z}, a^{i_{s-}} | c_t) \ & ext{with } c_t \in [0, (1+r)a^{i_{s-}} + wz^{i_z} + \chi_t + \underline{a}] \end{aligned}$$
 $egin{aligned} v_t(z^{i_z}, a^{i_{s-}} | c_t) &= u(c_t) + eta \sum_{i_{z+1}=0}^{\#_z-1} \pi\left(i_z, i_{z+1}
ight) reve{v}_{t+1}(z^{i_z}, a_t) \end{aligned}$ with $a_t = (1+r)a^{i_{s-}} + wz^{i_z} + \chi_t - c_t$

- Inner loop: For each grid point in $\mathcal{G}_z \times \mathcal{G}_a$ find $c_t^*(z_t, a_{t-1})$ and therefore $v_t(z_t, a_{t-1})$ with a numerical optimizer
- Outer loop: Backwards from t = T 1 (note $\underline{v}_T = 0$, or known)
- ConSav+QuantEcon: Various optimizers in numba
- ConSavNotebook: 04. Tools/02. Optimization.ipynb

Consumption function

Savings function

Change in savings function

MPC

Intertemporal MPC

Note: No wealth effect as r = 0

Economic insights

- Notebook: 01. ConSavModel.ipynb
- Consumption lower than under PIH and concave in assets
 Intuition: Precautionary saving motive is relatively larger for asset poor households because income risk is the same for everybody
 Implications:
 - Windfall gives safety and increases average consumption
 ⇒ MPC decreasing in assets
 - 2. Attraction towards a buffer-stock target $a_t = a_{t-1}$ despite $\beta R < 1$
 - Larger effective discounting of future income (extreme: no effect of future income changes if constrained before)

Numerical Monte Carlo simulation

- Initial distribution: Draw $z_{i,-1}$ and $a_{i,-1}$ for $i \in \{0,1,\ldots,N-1\}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Draw z_{it} given transition probabilities
 - 2. Use linear interpolation to evaluate

$$c_{it} = \breve{c}_{t}^{*}(z_{it}, a_{it-1})$$

 $a_{it} = (1+r)a_{it-1} + wz_{it} - c_{it}$

Review:

- Pro: Simple to implement
- Con: Computationally costly and introduces randomness

Infinite horizon:

- 1. Assume z_{it} has an ergodic distribution
- 2. Ergodic distribution of a_{it} around buffer-stock target

Taking stock

Value Function Iteration (VFI)

- 1. Solve all consumption-saving models
- 2. Accurate with dense enough grids
- 3. Relatively simple code and easy to run in parallel
- 4. Finding optimal choices is the computational bottleneck (especially with multi-starts in non-convex models)

Potential technical improvements:

- More advanced interpolation methods (e.g. cubic) (typically slower per grid point and code more complex)
- 2. Howard improvement steps (Rendahl, 2024), only in infinite horizon
- 3. Adaptive sparse grids (Scheidegger, 2017)
- 4. (Analytical or automatic differentiation)
- 5. (Approximate value and policy function with global polynomials)
- Now: Use more model information

EGM

Time iteration

- Replace numerical optimization with root-finding
- **Time iteration:** For each a_{t-1} and z_t find c_t to solve the Euler-equation

$$c_t^{-\sigma} = \beta(1+r)\mathbb{E}_t[c_{t+1}^{-\sigma}]$$

Note: Necessary and sufficient (for interior choices, else $a_t = \underline{a}$)

• EGM: No need for any numerical optimization or root-finding

Endogenous grid-point method (EGM)

1. Calculate post-decision marginal value of cash:

$$q(z^{i_z}, a^{i_s}) = \sum_{i_{z_+}=0}^{\#_z-1} \pi_{i_z, i_{z_+}} c_+^* (z^{i_{z_+}}, a^{i_s})^{-\sigma}$$

2. Invert Euler-equation:

$$c(z^{i_z}, a^{i_a}) = (\beta(1+r)q(z^{i_z}, a^{i_a}))^{-\frac{1}{\sigma}}$$

3. Endogenous cash-on-hand:

$$m(z^{i_z}, a^{i_a}) = a^{i_a} + c(z^{i_z}, a^{i_a})$$

- 4. Consumption function: Calculate $m = (1+r)a^{i_{a-}} + wz^{i_z}$
 - 4.1 Binding constraint: If $m \le m(z^{i_z}, a^0)$ then

$$c^*(z^{i_z},a^{i_{a-}})=m+\underline{a}$$

4.2 Interior choice: Else

$$c^*(z^{i_z}, a^{i_{a-}}) = \text{interpolate } m(z^{i_z}, m) \rightarrow c(z^{i_z}, m)$$

NEGM

An illiquid asset

- Illiuid asset: Worth k in period T, else $(1 \gamma)k$ for $\gamma \in [0, 1]$ Note: You can sell, but never buy
- **Recursive problem:** For own_{t-1} $\in \{0,1\}$ and $y_t = 1$

$$\begin{aligned} v_t(\mathsf{own}_{t-1}, a_{t-1}) &= \max_{c_t, \mathsf{sell}_t \in \{0,1\}} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v_{t+1}(\mathsf{own}_t, a_t) \right] \\ \mathsf{s.t.} \ \ \mathsf{own}_t &= (1-\mathsf{sell}_t) \mathsf{own}_{t-1} \\ m_t &= a_{t-1} + y_t + \mathsf{sell}_t \mathsf{own}_{t-1} (1-\gamma) k \\ a_t &= m_t - c_t \\ a_t &\geq 0 \end{aligned}$$

- Terminal period: $v_T(own_{T-1}, a_{T-1}) = \frac{(a_{T-1} + y_T + own_{T-1}k)^{1-\sigma}}{1-\sigma}$
- **Euler-equation:** Fix end-of-period ownership, own_t
 - 1. Necessary: From variational argument conditional on $sell_{t+1}$
 - 2. Non-sufficient: Savings low with $sell_{t+1} = 1$, or high with $sell_{t+1} = 0$

Timing and nesting

- Beginning-of-period states: own_{t-1} and m_t
- Discrete choice: If $own_{t-1} = 1$ choose $sell_t \in \{0,1\}$

$$\underline{v}_t(m_t) = \max \left\{ v_t(0, m_t^{\text{sell}}), v_t(1, m_t) \right\} \ m_t^{\text{sell}} = m_t + (1 - \gamma)k$$

Continuous choice:

$$v_t(\mathsf{own}_t, m_t) = \max_{c_t \in [0, m_t]} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta w_t(\mathsf{own}_t, m_t - c_t)$$

Post-decision value function:

$$w_t(\mathsf{own}_t, a_t) = \mathbb{E}_t \left[egin{cases} v_{t+1}(\mathsf{own}_t, m_{t+1}) & \text{if } \mathsf{own}_t = 0 \text{ or } t = T-1 \\ \underline{v}_{t+1}(m_{t+1}) & \text{if } \mathsf{own}_t = 1 \text{ and } t < T-1 \end{bmatrix}
ight] \ m_{t+1} = a_t + y_{t+1}$$

Post-decision marginal value of cash

Post-decision marginal value of cash:

$$\begin{split} q_t(\mathsf{own}_t, \mathsf{a}_t) &= \mathbb{E}_t \left[\begin{cases} (m_T + \mathsf{own}_{T-1} k)^{-\sigma} & \text{if } t = T-1 \\ c_{t+1}^*(0, m_{t+1}^{\mathsf{sell}})^{-\sigma} & \text{else if sell}_{t+1} = 1 \\ c_{t+1}^*(1, m_{t+1})^{-\sigma} & \text{else} \end{cases} \right] \\ m_{t+1} &= \mathsf{a}_t + y_{t+1} \\ m_{t+1}^{\mathsf{sell}} &= m_{t+1} + (1-\gamma)k \\ \mathsf{sell}_{t+1} &= \begin{cases} 1 & \text{if } v_{t+1}(0, m_{t+1}^{\mathsf{sell}}) > v_{t+1}(1, m_{t+1}) \\ 0 & \text{else} \end{cases} \end{split}$$

• Euler-equation:

$$u'(c_t) = \beta q_t \Leftrightarrow c_t^{-\sigma} = \beta q_t$$

Solution method

For
$$t \in \{T-1, T-2, \dots, 0\}$$
:

- 1. Calculate $q_t(own_t, a_t)$ and $w_t(own_t, a_t)$
- 2. Use inverted Euler-equation to get $c_t(own_t, a_t)$ and $m_t(own_t, a_t)$
- 3. Use upper envelope (see below) to get $c_t(\text{own}_t, m_t)$ on common grid for m_t
- 4. Calculate $v_t(own_t, m_t)$
- 5. Calculate $\underline{v}_t(m_t)$ (simple look-up)

Conditional consumption function in t = T - 1

Step 1. Use formulas for $v_{T-1}(\bullet)$ and $q_{T-1}(\bullet)$

Step 2+3: Standard EGM (no upper envelope)

Unconditional owner behavior, t = T - 1

Candidate points (given own_{it})

Closer look at step 3: The generated candidate points from inverting the Euler-equation is

$$w^{i_a} = w_t(own_t, a^{i_a})$$

 $q^{i_a} = q_t(own_t, a^{i_a})$
 $c^{i_a} = u'^{-1}(\beta q^{i_a}) = (\beta q^{i_a})^{-\frac{1}{\sigma}}$
 $m^{i_a} = a^{i_a} + c^{i_a}$

Problem: Small increase in a_t when $sell_{t+1}$ goes from 1 to $0 \Rightarrow$

- 1. Downward jump c_{t+1} and upward jump in $q_t \Rightarrow$
- 2. Downward jump in c_t and m_t
- \Rightarrow the m_t 's will be overlapping which one to choose?

Problems with EGM

Step 1 in t = T - 2:

Step 2 in t = T - 2 for owners:

Reason: Non-sufficient Euler-equation!

Upper envelope (given own_t)

$$\begin{aligned} \text{Upper-envelope:} \ \forall i_m, \ c^*(m^{i_m}) &= c^{i_m,j^*} \\ j^* &= \arg\max_{j \in \{0,1,\dots\#_s-2\}} u\left(c^{i_m,j}\right) + w^{i_m,j} \\ \text{s.t.} \end{aligned}$$
 s.t.
$$\text{potential segment:} \ m^{i_m} \in \begin{cases} \left[m^j, m^{j+1}\right] & \text{if } j < \#_s - 2 \\ \left[m^j, \infty\right] & \text{if } j = \#_s - 2 \end{cases}$$

$$\text{interpolation} + \text{constraint } c^{i_m,j} &= \min\left\{c^j + \frac{c^{j+1} - c^j}{m^{j+1} - m^j}\left(m^{i_m} - m^j\right), m^{i_m}\right\}$$

$$\text{continuation value:} \ w^{i_m,j} &= \text{interpolation} \quad \left\{a^{i_s}\right\} \rightarrow \left\{w^{i_s}\right\} \text{ at } a^{i_m,j} \\ a^{i_m,j} &= m^{i_m} - c^{i_m,j} \end{aligned}$$

ConSav: upperenvelope

ConSavNotebook: 04. Tools/06. Upper envelope.ipynb

Illustration

- 1. **Numbering:** Different levels of end-of-period assets, a^{i_a}
- 2. **Problem:** Find the consumption function at m_1 and m_2
- 3. Largest value-of-choice: Denoted by the *triangles*

Source: Druedahl and Jørgensen (2017), G^2EGM Druedahl (2021), NEGM

Conditional consumption function in t = T - 2

Step 3: After applying upper envelope

Economic insights

Notebook: 02. Illiquid.ipynb

- 1. Simultaneous high total wealth and high MPC
 - 1.1 Poor hands-to-mouth households
 - 1.2 Wealthy hands-to-mouth households
- 2. The MPC is strongly size-dependent
- 3. Precautionary savings:
 - 3.1 Frequent shocks: Liquid assets important
 - 3.2 Infrequent shocks: Illiquid assets enough

(see Larkin (2024))

Empirical evidence for hands-to-mouth households

Poor HtM: Low liquid net worth, low total net worth

Wealthy HtM: Low liquid net worth, high total net worth

Source: Kaplan et. al. (2014)

Extra: Adding smoothing

Taste shocks: Following Iskhakov et. al., 2017)

$$\underline{v}_t(m_t) = \max \left\{ v_t(0, m_t^{\text{sell}}) + \sigma_{\varepsilon} \varepsilon(0), v_t(1, m_t) + \sigma_{\varepsilon} \varepsilon(1) \right\}$$
 $\varepsilon(x) \sim \text{Extreme value}$

Logit-formula:

$$\underline{v}_t(m_t) = \sigma_{\varepsilon} \log \left(\exp \frac{v_t(0, m_t^{\mathsf{sell}})}{\sigma_{\varepsilon}} + \exp \frac{v_t(1, m_t)}{\sigma_{\varepsilon}} \right)$$

in choice probabilities:

$$P_t^{\text{sell}}(1, m_t) = \frac{\exp \frac{v_t(0, m_t^{\text{sell}})}{\sigma_{\varepsilon}}}{\exp \frac{v_t(0, m_t^{\text{sell}})}{\sigma_{\varepsilon}} + \exp \frac{v_t(1, m_t)}{\sigma_{\varepsilon}}}$$

$$\overline{v}_t(m_t) = P_t^{\text{sell}} v_t(0, m_t^{\text{sell}}) + (1 - P_t^{\text{sell}}) v_t(1, m_t)$$

Extra

1. Permanent transitory income process

Persistent-transitory income process:

$$\begin{split} z_t &= \tilde{z}_t \xi_t, \ \log \xi_t \sim \mathcal{N}(\mu_\xi, \sigma_\xi) \\ \log \tilde{z}_{t+1} &= \rho_z \log \tilde{z}_t + \psi_{t+1}, \ \psi_{t+1} \sim \mathcal{N}(\mu_\psi, \sigma_\psi) \end{split}$$

- 1. Transitory shock: ξ_t
- 2. Persistent shock: ψ_t
- 3. Normalization using μ_{ψ} and $\mu_{\xi} \colon \mathbb{E}\left[z_{t}\right] = \mathbb{E}\left[\widetilde{z}_{t}\right] = 1$
- ConSav: qudarature.log_normal_gauss_hermite
- ConSavNotebook: 04. Tools/04. Quadrature.ipynb

1. Transition probabilities

• **Discretization of** ξ_t : Derive \mathcal{G}_{ξ} and $\pi_{i_{\xi}}$ given σ_{ξ} using Gauss-Hermite quadrature

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
: $\mathbb{E}[h(x)] \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^n \omega_i h(\sqrt{2}\sigma x_i + \mu)$

where nodes, x_i , and weights, ω_i , have analytical expressions

- **Discretization of** \tilde{z}_t : Derive $\mathcal{G}_{\tilde{z}}$ and $\pi_{i_{\tilde{z}-},i_{\tilde{z}}}$ given $\rho_z < 1$ and σ_ψ (using a method such as Tauchen (1986) or Rouwenhorst (1995)) If $\rho_z = 1$: Also use quadrature here.
- Combined: Derive $\mathcal{G}_z = \mathcal{G}_{\tilde{z}} \times \mathcal{G}_{\xi}$ (tensor product) and use independence of \tilde{z}_t and ξ_t to get transition probabilities π_{i_z,j_z} (kronecker product)
- ConSav: markov.log_rouwenhorst, markov.log_tauchen
- ConSavNotebook: 04. Tools/05. Markov.ipynb

1. Cash-on-hand formulation

Naive formulation:

$$\begin{aligned} v_t(\tilde{\boldsymbol{z}}_t, \xi_t, \boldsymbol{a}_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v_{t+1}(\tilde{\boldsymbol{z}}_{t+1}, \xi_{t+1}, \boldsymbol{a}_t) \right] \\ \text{s.t.} \\ z_t &= \tilde{\boldsymbol{z}}_t \xi_t \\ y_t &= w z_t \\ m_t &= (1+r)\boldsymbol{a}_{t-1} + y_t \\ \boldsymbol{a}_t &= m_t - c_t \\ \tilde{\boldsymbol{z}}_{t+1} &= \tilde{\boldsymbol{z}}_t^{\rho_z} \psi_{t+1} \\ \boldsymbol{a}_t &\geq -w b \tilde{\boldsymbol{z}}_t \end{aligned}$$

1. Cash-on-hand formulation

Cash-on-hand formulation (1 less state variable)

$$\begin{aligned} v_t(\tilde{\boldsymbol{z}}_t, m_t) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v_{t+1}(\tilde{\boldsymbol{z}}_{t+1}, a_t) \right] \\ \text{s.t.} \\ a_t &= m_t - c_t \\ \tilde{\boldsymbol{z}}_{t+1} &= \tilde{\boldsymbol{z}}_t^{\rho_z} \psi_{t+1} \\ m_{t+1} &= (1+r)a_{t+1} + w \tilde{\boldsymbol{z}}_{t+1} \xi_{t+1} \\ a_t &\geq -w b \tilde{\boldsymbol{z}}_t \end{aligned}$$

1. Normalization if $\rho_z = 1$

- Assumption: $\rho_z = 1 \Leftrightarrow \tilde{\mathbf{z}}_{t+1} = \tilde{\mathbf{z}}_t \psi_{t+1}$
- Define normalized variables: $x_t = x_t/\tilde{z}_t$ and $v_t(m_t) = \frac{v_t(\tilde{z}_t, m_t)}{\tilde{z}_t^{1-\sigma}}$
- Normalized Bellman equation:

$$egin{aligned} oldsymbol{v}_t(oldsymbol{m}_t) &= \max_{oldsymbol{c}_t} rac{oldsymbol{c}_t^{1-\sigma}}{1-\sigma} + eta \mathbb{E}_t \left[\psi_{t+1}^{1-\sigma} oldsymbol{v}_{t+1}(oldsymbol{m}_{t+1})
ight] \ & ext{s.t.} \quad oldsymbol{a}_t &= oldsymbol{m}_t - oldsymbol{c}_t \ oldsymbol{m}_{t+1} &= rac{1+r}{\psi_{t+1}} oldsymbol{a}_t + w \xi_{t+1} \ oldsymbol{a}_t &\geq -w b \end{aligned}$$

Normalized Euler-equation:

$$c_t^{-\sigma} = \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\sigma}\right] \Leftrightarrow c_t^{-\sigma} = \beta(1+r)\mathbb{E}_t\left[\left(\psi_{t+1}c_{t+1}\right)^{-\sigma}\right]$$

• Simulation speed-up: Harmenberg (2021)

2. Life-cycle (I)

Basically:

- 1. Born, working, retied, die
- 2. Age-varying parameters (esp. income)

Add-ons:

- 1. Labor supply, human capital, occupation
- 2. Portfolio choice and entrepreneurship
- 3. Family formation
- 4. Health, mortality etc.
- Good starting example: »Life-Cycle Consumption and Children: Evidence from a Structural Estimation «, Jørgensen (2017)

2. Life-cycle (II)

Paper: Gourinchas and Parker (2021) *Life-cycle consumption-saving model with retirement*

- Young households:
 Save for precautionary reasons (buffer)
- Older households:
 Save for retirement (life-cycle)

Panel A: Life Cycle and Buffer Saving

Thousands

of 1987 dollars

FIGURE 7.—The role of risk in saving and wealth accumulation.

2. Life-cycle (III)

- Natural experiment: Wealth depletion after sudden inheritance
- Results:
 - Life-cycle profile of wealth fitted for many levels of risk-aversion (by varying the discount factor)
 - Fast wealth depletation requires high risk-aversion (or high perceived risk)

Source: Druedahl and Martinello (2022)

3. More realistic income risk (I)

Annual earnings-changes are far from log-normal:

Source: Guvenen et. al. (2021)

3. More realistic income risk (II)

Many with zero-growth month-month:

Source: Druedahl et. al. (2021)

4. Epstein-Zin

$$\begin{aligned} v_t \left(z_t, m_t \right) &= & \max_{c_t} \left[(1 - \beta) \cdot c_t^{1 - \sigma} + \beta \cdot w_{t+1}^{1 - \sigma} \right]^{\frac{1}{1 - \sigma}} \\ \text{s.t.} && w_{t+1} \equiv \mathbb{E}_t \left[v_{t+1} \left(z_{t+1}, m_{t+1} \right)^{1 - \rho} \right]^{\frac{1}{1 - \rho}} \\ && m_{t+1} = (1 + r) (m_t - c_t) + y_{t+1} \end{aligned}$$

Preferences:

- 1. Patience: β
- 2. Intertemporal substitution: σ
- 3. Risk-aversion: ρ
- Euler-equation: $c_t^{-\sigma} = \beta R \cdot \mathbb{E}_t \left[c_{t+1}^{-\sigma} \cdot \left(\frac{w_{t+1}}{v_{t+1}} \right)^{\rho \sigma} \right]$
 - 1. FOC: $0 = v_t^{\sigma} \cdot \left[(1 \beta) \cdot c_t^{-\sigma} \beta R \cdot w_{t+1}^{\rho \sigma} \cdot \mathbb{E}_t \left[v_{t+1}^{-\rho} \cdot \frac{\partial v_{t+1}}{\partial m_{t+1}} \right] \right]$
 - 2. Envelope condition: $\frac{\partial v_t(z_t, m_t)}{\partial m_t} = v_t^{\sigma} \cdot (1 \beta) \cdot c_t^{-\sigma}$

5. Deep learning

- Curse of dimensionality:
 - 1. Many states
 - 2. Many choices
 - 3. Many shocks
- Deep (reinforcement) learning:
 - 1. Approximate value and policy functions with neural networks
 - 2. Approximate on simulation sample rather than on grid
 - 3. Automatic differentiation (backpropagation) and GPUs for speed
- Examples: Maliar and Maliar (2021) and Azinovic and Scheidegger (2022)
- Working paper: Druedahl and Røpke (2025)

Python package: EconDLSolvers

Portfolio choice

Portfolio choice model

- Risk-free asset: a_t with return r_f
- Risky asset: b_t with return $r_f + \nu_t$
- Recursive formulation:

$$v_{t}(z_{t}, \nu_{t}, a_{t-1}, b_{t-1}) = \max_{a_{t}, b_{t}} \frac{c_{t}^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_{t} \left[v_{t+1} \left(z_{t+1}, a_{t}, b_{t} \right) \right]$$
s.t.
$$m_{t} = (1 + r_{f}) a_{t-1} + (1 + r_{f} + \nu_{t}) b_{t-1} + w z_{t}$$

$$c_{t} = m_{t} - a_{t} - b_{t}$$

$$z_{t+1} \sim F_{z}(z_{t})$$

$$\nu_{t+1} \sim F_{\nu}$$

$$a_{t}, b_{t}, c_{t} \geq 0$$

Optimality conditions

Envelope conditions:

$$\frac{\partial v_t}{\partial a_{t-1}} = (1+r_f)c_t^{-\sigma}, \quad \frac{\partial v_t}{\partial b_{t-1}} = (1+r_f+\nu_t)c_t^{-\sigma}$$

FOCs

$$-c_t^{-\sigma} + \beta \mathbb{E}_t \left[\frac{\partial v_{t+1}}{\partial a_t} \right] = 0$$
$$-c_t^{-\sigma} + \beta \mathbb{E}_t \left[\frac{\partial v_{t+1}}{\partial b_t} \right] = 0$$

Combined:

$$\begin{aligned} c_t^{-\sigma} &= \beta (1 + r_f) \mathbb{E}_t \left[c_{t+1}^{-\sigma} \right] \\ 0 &= \mathbb{E}_t \left[\nu_{\nu+1} c_{t+1}^{-\sigma} \right] \end{aligned}$$

Reformulation with fewer states

Consumption-decision value function:

$$v_t(z_t, m_t) = \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta w_t(z_t, a_t)$$
s.t.
$$a_t = m_t - c_t$$

$$a_t \ge 0$$

Portfolio-decision value function:

$$\begin{aligned} w_t\left(z_t, a_t\right) &= \max_{\alpha_t \in [0, 1]} \mathbb{E}_t\left[v_{t+1}\left(z_{t+1}, m_{t+1}\right)\right] \\ \text{s.t.} \\ m_{t+1} &= R_{t+1} a_t + z_{t+1} \\ R_{t+1} &= 1 + r_f + \nu_{t+1} \alpha_t \end{aligned}$$

Solution method

1. Solve for $\alpha_t^*(z_t, a_t)$ by root-finding on

$$0 = \mathbb{E}_{t} \left[\nu_{v+1} c_{t+1}^{-\sigma} \right]$$
s.t.
$$c_{t+1} = c_{t+1}^{*} \left(z_{t+1}, m_{t+1} \right)$$

$$m_{t+1} = R_{t+1} a_{t} + z_{t+1}$$

$$R_{t+1} = 1 + r_{f} + \nu_{t+1} \alpha_{t}^{*} \left(z_{t}, a_{t} \right)$$

2. Compute

$$q_t\left(z_t, a_t\right) = \mathbb{E}_t\left[R_{t+1}c_{t+1}^{-\sigma}\right]$$

3. Find $c_t^*(m_t, z_t)$ using EGM

$$c_t(a_t, z_t) = (\beta q_t(z_t, a_t))^{-\frac{1}{\sigma}}$$

$$m_t(a_t, z_t) = c_t + a_t$$

Extension with participation costs κ

$$\begin{split} v_t(z_t, m_t, \iota_{t-1}) &= \max_{c_t \in [0, m_t]} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \underline{w}_t \left(z_t, m_t - c_t, \iota_{t-1} \right) \\ \underline{w}_t \left(z_t, a_t, \iota_{t-1} \right) &= \max_{\iota_t} w_t \left(z_t, a_t, \iota_t \right) - \kappa \mathbf{1} \left\{ \iota_t = 1 \wedge \iota_{t-1} = 0 \right\} \\ \text{s.t.} \\ \iota_t &\in \{1\} \ \text{if} \ \iota_{t-1} = 1 \ \text{else} \ \left\{ 0, 1 \right\} \\ w_t \left(z_t, a_t, \iota_t \right) &= \max_{\alpha_t} \beta \mathbb{E}_t \left[v_{t+1} \left(z_{t+1}, m_{t+1}, \iota_t \right) \right] \\ \text{s.t.} \\ m_{t+1} &= R_{t+1} a_t + z_{t+1} \\ R_{t+1} &= 1 + r_f + \nu_{t+1} \alpha_t \\ \alpha_t &\in [0, 1] \ \text{if} \ \iota_t = 1 \ \text{else} \ \left\{ 0 \right\} \end{split}$$

Solution method with participation costs κ

- Participation is an absorbing state
 - 1. If $\iota_{t-1}=1$ then $\iota_t=1$
 - 2. The same solution method as before can be used
- **Before participation,** $\iota_t = 0$: The post-decision marginal value of cash no longer needs to be monotone

$$\begin{split} \underline{w}_t\left(\mathbf{z}_t, \mathbf{a}_t, 0\right) &= \mathbb{E}_t\left[w_t\left(\mathbf{z}_t, \mathbf{a}_t, \iota_t\right) - \kappa \mathbf{1}\left\{\iota_t = 1\right\}\right] \\ q_t\left(\mathbf{z}_t, \mathbf{a}_t, \iota_t\right) &= \mathbb{E}_t\left[R_{t+1}c_{t+1}^{-\sigma}\right] \\ \iota_t &= \begin{cases} 1 & \text{if } w_t\left(\mathbf{z}_t, \mathbf{a}_t, 1\right) - \kappa > w_t\left(\mathbf{z}_t, \mathbf{a}_t, 0\right) \\ 0 & \text{else} \end{cases} \end{split}$$

Same solution as before: Apply an upper envelope

Summary

Summary and what's next

This lecture:

- Consumption-saving models (intertemporal MPCs, precautionary-saving, buffer-stock target, wealthy hands-to-mouth)
- Basic numerical dynamic programming (discretization, numerical integration, interpolation, VFI)
- EGM and NEGM (time iteration, invert Euler-equation, nesting, upper envelope)
- Next: Stationary equilibrium
- You should:
 - 1. Study the code from this lecture
 - Glance at Aiyagari (1994), »Uninsured Idiosyncratic Risk and Aggregate Saving«