Deniz (1 9056241		
70 20 24 (
	ECE C247 HW3 with white	New York
1)	AND THE MEDITION OF THE MEDITI	
1)	a) We can think of the Wx operation as projecting the	1977
	X vector into another dimension as in PCA. Then, WWX	
	is singly the reconstruction. To minimize the error, the	
	reconstruction must be as close as possible to the original x.	
	In order to have this, the projection Wa must retain as	armalle en 194
ere e e e e e e e e e e e e e e e e e e	Much information about x as possible. Therefore, Minimizing	The second second
gender of the	the loss should find a W that ought to preserve information about x	· Douber con
		- court beginning to the court
b) WT.	and the transfer of the
No.	97"	and the state of
	W for en a som som som som L	
		Towns Apple to
	X 1/2	e de la companya del companya de la companya del companya de la co
		e sudingenium e etistico i
c)	From the law of total derivatives, we know that when the	
	variable we are taking the derivative for is affaled by other	
	variables, we should take the derivative with respect to these other	
	Variables and som the results. In other words:	
and the second	$\frac{1}{2} \frac{1}{2} \frac{1}$	
	dx 1:1 dq: dx	
,	9~	
all according to the second	= dL dq1 + dL da~	
	= dL, dq1 + dL, dq2	
So, we need	to take the derivative with respect to the two palks and sum them up.	and the same

17	looking at the g	Troph!	- (1) ()	V)		\ 1 \(\lambda\)
		The state of the s		1 1	1	
6L - 1	12 db.	d(c-x) - 1		1	· y	<u> </u>
da	JC	de	9.0			
da : 2	b vide -	- d(WTW) =	$\chi^{T} \mathcal{W}^{T}$			1
616	30	JWT	136	1 .	1 1 19	
die		21 D	211	5	再复	
dc = 21	(WTWX) = W	de - d(1	√x) - x ⁷			1 72.50
	d (Wx)	dW d	200	b y	e di	
a tage of		- delication	161 - VY	b	36	
JL .	1L. da. 16	de de		3 17		
dd ,	da di de	91	de et	1	1-16	-
	4.26.1.x7	W = bxTWT	26 26	80	JC.	
	2		So. 1 75	0-		
JL .	16, da, 16.	de		2		
Je	da de de	de	16 16		. 1	
<i>-</i> 1	2.26.1.W	Ab di abi	t st	16	16	
	L LSI ZI VV	31 100	11 1	V 0-		
dL	dL d.1 +	SL de		7	-	
J W	dd dw	de du		M v		
			A A A A A A A A A A A A A A A A A A A			
	hxT//T) + 1	NbxT	h has 25			
	WX67 + Wb		31 (0)	-181		
5			The state of the s	4		
	17 0: [$W^TW_X - X$)	· · · · · · · · · · · · · · · · · · ·			
JL			x-x) _x T			

e)	$\frac{dL}{dx} = \frac{dL_1}{dx} + \frac{dL_2}{dx}$
	=-aDK-tx +xK-TYYTK-Tx
17. 17.	LL K= XXXT+B-1I
	=- aD (axx + p-1) - x + a (axx + p-1) - yy (axx + p-1) - x

```
import numpy as np
import matplotlib.pyplot as plt
class TwoLayerNet(object):
  A two-layer fully-connected neural network. The net has an input dimension of
  N, a hidden layer dimension of H, and performs classification over C classes.
  We train the network with a softmax loss function and L2 regularization on the
  weight matrices. The network uses a ReLU nonlinearity after the first fully
  connected layer.
  In other words, the network has the following architecture:
  input - fully connected layer - ReLU - fully connected layer - softmax
  The outputs of the second fully-connected layer are the scores for each class.
  def __init__(self, input_size, hidden_size, output_size, std=le-4):
    Initialize the model. Weights are initialized to small random values and
    biases are initialized to zero. Weights and biases are stored in the
    variable self.params, which is a dictionary with the following keys:
    W1: First layer weights; has shape (H, D)
    b1: First layer biases; has shape (H,)
    W2: Second layer weights; has shape (C, H)
    b2: Second layer biases; has shape (C,)
    Inputs:
    - input size: The dimension D of the input data.
    - hidden size: The number of neurons H in the hidden layer.
    - output size: The number of classes C.
    self.params = {}
    self.params['W1'] = std * np.random.randn(hidden size, input size)
    self.params['b1'] = np.zeros(hidden size)
    self.params['W2'] = std * np.random.randn(output_size, hidden_size)
    self.params['b2'] = np.zeros(output size)
  def loss(self, X, y=None, reg=0.0):
    Compute the loss and gradients for a two layer fully connected neural
    network.
    Inputs:
    - X: Input data of shape (N, D). Each X[i] is a training sample.
    - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
      an integer in the range 0 \le y[i] < C. This parameter is optional; if it
      is not passed then we only return scores, and if it is passed then we
      instead return the loss and gradients.
    - reg: Regularization strength.
    Returns:
```

If y is None, return a matrix scores of shape (N, C) where scores[i, c] is

```
the score for class c on input X[i].
If y is not None, instead return a tuple of:
- loss: Loss (data loss and regularization loss) for this batch of training
 samples.
- grads: Dictionary mapping parameter names to gradients of those parameters
 with respect to the loss function; has the same keys as self.params.
# Unpack variables from the params dictionary
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
N, D = X.shape
# Compute the forward pass
scores = None
# YOUR CODE HERE:
# Calculate the output scores of the neural network. The result
# should be (N, C). As stated in the description for this class,
# there should not be a ReLU layer after the second FC layer.
# The output of the second FC layer is the output scores. Do not
# use a for loop in your implementation.
#b1 = b1.reshape([len(b1),1])
\#b2 = b2.reshape([len(b2),1])
layer10ut = W1.dot(X.T) + b1[:,None]
ReluOut = np.maximum(0,layer10ut)
layer20ut = W2.dot(Relu0ut) + b2[:,None]
scores = layer20ut.T
# END YOUR CODE HERE
# If the targets are not given then jump out, we're done
if v is None:
 return scores
# Compute the loss
loss = None
# YOUR CODE HERE:
# Calculate the loss of the neural network. This includes the
# softmax loss and the L2 regularization for W1 and W2. Store the
# total loss in teh variable loss. Multiply the regularization
# loss by 0.5 (in addition to the factor reg).
# scores is num examples by num classes
soft = np.exp(scores)
sums = np.sum(soft,axis=1)
probs = soft / sums[:,None]
predsForClass = probs[np.arange(y.shape[0]),y]
SoftmaxLoss = np.mean(-np.log(predsForClass))
```

```
l2regularization = np.sum(W1**2) + np.sum(W2**2)
 l2regularization = 0.5*reg*l2regularization
 loss=SoftmaxLoss+l2regularization
 # END YOUR CODE HERE
 qrads = \{\}
 # YOUR CODE HERE:
   Implement the backward pass. Compute the derivatives of the
 # weights and the biases. Store the results in the grads
 # dictionary. e.g., grads['W1'] should store the gradient for
 # W1, and be of the same size as W1.
 \#A1 = W1X+B1
 \#A2 = RELU(A1)
 #A3 = W2A2+B2
 #A4 = SOFTMAX(A3)
 #DL/DA3 = PREDICTIONS-LABELSONEHOT
 \#DA3/DW2 = A2
 \#DA3/DA2 = W2
 \#DA2/DA1 = 0 OR 1
 \#DA1/DW1 = A1
 grad = probs.copy()
 grad[np.arange(y.shape[0]),y] -= 1
 dLA3=grad/X.shape[0]
 dA3W2=ReluOut.copy()
 b2grad = np.sum(dLA3,axis=0)
 w2grad = np.dot(dLA3.T, dA3W2.T) + reg*W2
 dA3A2 = W2
 dA2dA1 = layer10ut.copy()
 dA2dA1[dA2dA1<0]=0
 dA2dA1[dA2dA1>0]=1
 dA1dW1 = X.copy()
 kronecker = ((dLA3.dot(dA3A2)).T*dA2dA1)
 blgrad = np.sum(kronecker.T,axis=0)
 wlgrad = (kronecker.dot(dA1dW1)) + reg*W1
 grads["W1"]=w1grad
 grads["b1"]=b1grad
 grads["W2"]=w2grad
 grads["b2"]=b2grad
 # END YOUR CODE HERE
 return loss, grads
def train(self, X, y, X_val, y_val,
       learning rate=1e-3, learning rate decay=0.95,
       reg=1e-5, num_iters=100,
       batch size=200, verbose=False):
 0.00
```

Train this neural network using stochastic gradient descent.

```
Inputs:
- X: A numpy array of shape (N, D) giving training data.
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that
 X[i] has label c, where 0 \le c < C.
- X val: A numpy array of shape (N val, D) giving validation data.
- y val: A numpy array of shape (N val,) giving validation labels.
- learning rate: Scalar giving learning rate for optimization.
- learning rate decay: Scalar giving factor used to decay the learning rate
 after each epoch.
- reg: Scalar giving regularization strength.
- num iters: Number of steps to take when optimizing.
- batch size: Number of training examples to use per step.
- verbose: boolean; if true print progress during optimization.
num train = X.shape[0]
iterations per epoch = max(num train / batch size, 1)
# Use SGD to optimize the parameters in self.model
loss history = []
train acc history = []
val acc history = []
for it in np.arange(num iters):
 X batch = None
 y batch = None
 # YOUR CODE HERE:
 # Create a minibatch by sampling batch size samples randomly.
 indices = np.random.choice(np.arange(num train),batch size)
 X batch = X[indices]
 y batch = y[indices]
 # END YOUR CODE HERE
 # Compute loss and gradients using the current minibatch
 loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
 loss history.append(loss)
 # YOUR CODE HERE:
 # Perform a gradient descent step using the minibatch to update
 # all parameters (i.e., W1, W2, b1, and b2).
 self.params['W1'] = self.params['W1'] - grads['W1']* learning_rate
 self.params['b1'] = self.params['b1'] - grads['b1']* learning_rate
 self.params['W2'] = self.params['W2'] - grads['W2']* learning rate
 self.params['b2'] = self.params['b2'] - grads['b2']* learning rate
 # END YOUR CODE HERE
```

```
if verbose and it % 100 == 0:
     print('iteration {} / {}: loss {}'.format(it, num iters, loss))
   # Every epoch, check train and val accuracy and decay learning rate.
   if it % iterations per epoch == 0:
     # Check accuracy
     train acc = (self.predict(X batch) == y batch).mean()
     val acc = (self.predict(X val) == y val).mean()
     train acc history.append(train acc)
     val acc history.append(val acc)
     # Decay learning rate
     learning rate *= learning rate decay
 return {
   'loss history': loss history,
   'train acc history': train acc history,
   'val acc history': val acc history,
 }
def predict(self, X):
 Use the trained weights of this two-layer network to predict labels for
 data points. For each data point we predict scores for each of the C
 classes, and assign each data point to the class with the highest score.
 Inputs:
 - X: A numpy array of shape (N, D) giving N D-dimensional data points to
   classify.
 Returns:
 - y pred: A numpy array of shape (N,) giving predicted labels for each of
   the elements of X. For all i, y pred[i] = c means that X[i] is predicted
   to have class c, where 0 \ll c < C.
 y pred = None
 # YOUR CODE HERE:
 # Predict the class given the input data.
 layer10ut = self.params['W1'].dot(X.T) + self.params['b1'][:,None]
 ReluOut = np.maximum(0,layer10ut)
 layer20ut = self.params['W2'].dot(ReluOut) + self.params['b2'][:,None]
 y pred = np.argmax(layer20ut,axis = 0)
 # END YOUR CODE HERE
 return y_pred
```

This is the 2-layer neural network notebook for ECE C147/C247 Homework #3

Please follow the notebook linearly to implement a two layer neural network.

Please print out the notebook entirely when completed.

The goal of this notebook is to give you experience with training a two layer neural network.

```
In [5]:
          1 import random
          2 import numpy as np
          3 from utils.data_utils import load_CIFAR10
            import matplotlib.pyplot as plt
          6
            %matplotlib inline
          7
            %load ext autoreload
            %autoreload 2
          9
         10 def rel error(x, y):
                 """ returns relative error """
         11
         12
                 return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

Toy example

Before loading CIFAR-10, there will be a toy example to test your implementation of the forward and backward pass

```
In [2]:
             from nndl.neural_net import TwoLayerNet
In [6]:
            # Create a small net and some toy data to check your implementations.
            # Note that we set the random seed for repeatable experiments.
          2
          3
          4 input size = 4
            hidden size = 10
            num classes = 3
          7
            num inputs = 5
          8
            def init toy model():
          9
         10
                 np.random.seed(0)
         11
                 return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)
         12
         13
            def init toy data():
         14
                 np.random.seed(1)
         15
                 X = 10 * np.random.randn(num_inputs, input_size)
         16
                 y = np.array([0, 1, 2, 2, 1])
         17
                 return X, y
         18
         19 net = init toy model()
         20 X, y = init_toy_data()
```

Compute forward pass scores

```
In [7]:
            ## Implement the forward pass of the neural network.
          1
          2
          3 # Note, there is a statement if y is None: return scores, which is why
          4 # the following call will calculate the scores.
          5 scores = net.loss(X)
          6 print('Your scores:')
          7 print(scores)
          8 print()
          9 print('correct scores:')
         10 correct scores = np.asarray([
                 [-1.07260209, 0.05083871, -0.87253915],
         11
         12
                 [-2.02778743, -0.10832494, -1.52641362],
                 [-0.74225908, 0.15259725, -0.39578548],
         13
         14
                 [-0.38172726, 0.10835902, -0.17328274],
                [-0.64417314, -0.18886813, -0.41106892]])
         15
         16 print(correct scores)
         17 print()
         18
         19 # The difference should be very small. We get < 1e-7
         20 print('Difference between your scores and correct scores:')
         21 print(np.sum(np.abs(scores - correct_scores)))
        Your scores:
        [[-1.07260209 0.05083871 -0.87253915]
         [-2.02778743 -0.10832494 -1.52641362]
         [-0.74225908 0.15259725 -0.39578548]
         [-0.38172726 0.10835902 -0.17328274]
         [-0.64417314 -0.18886813 -0.41106892]]
        correct scores:
        [[-1.07260209 0.05083871 -0.87253915]
         [-2.02778743 -0.10832494 -1.52641362]
         [-0.74225908 0.15259725 -0.39578548]
         [-0.38172726 0.10835902 -0.17328274]
         [-0.64417314 -0.18886813 -0.41106892]]
        Difference between your scores and correct scores:
        3.381231248461569e-08
```

Forward pass loss

0.0

Backward pass

Implements the backwards pass of the neural network. Check your gradients with the gradient check utilities provided.

```
In [11]:
             from utils.gradient_check import eval_numerical_gradient
           1
             # Use numeric gradient checking to check your implementation of the backward
             # If your implementation is correct, the difference between the numeric and
             # analytic gradients should be less than 1e-8 for each of W1, W2, b1, and b2
           7
             loss, grads = net.loss(X, y, reg=0.05)
           9
             # these should all be less than 1e-8 or so
          10
             for param name in grads:
          11
                  f = lambda W: net.loss(X, y, reg=0.05)[0]
                  param_grad_num = eval_numerical_gradient(f, net.params[param_name], verb
          12
          13
                  print('{} max relative error: {}'.format(param_name, rel_error(param_gra
         W1 max relative error: 1.2832874456864775e-09
         b1 max relative error: 3.1726806716844575e-09
         W2 max relative error: 2.9632227682005116e-10
         b2 max relative error: 1.2482660547101085e-09
```

Training the network

Implement neural_net.train() to train the network via stochastic gradient descent, much like the softmax.

```
In [12]:
              net = init_toy_model()
              stats = net.train(X, y, X, y,
           2
           3
                          learning_rate=1e-1, reg=5e-6,
           4
                          num iters=100, verbose=False)
           5
           6
              print('Final training loss: ', stats['loss_history'][-1])
           8
             # plot the loss history
              plt.plot(stats['loss_history'])
           9
          10 plt.xlabel('iteration')
          11 plt.ylabel('training loss')
             plt.title('Training Loss history')
              plt.show()
```

Final training loss: 0.014497864587765957

Classify CIFAR-10

Do classification on the CIFAR-10 dataset.

```
In [6]:
             from utils.data utils import load CIFAR10
          1
          2
          3
             def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000)
          4
          5
                 Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
          6
                 it for the two-layer neural net classifier.
          7
          8
                 # Load the raw CIFAR-10 data
                 cifar10 dir = 'dataset\cifar-10-batches-py'
          9
         10
                 X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
         11
                 # Subsample the data
         12
         13
                 mask = list(range(num_training, num_training + num_validation))
                 X val = X train[mask]
         14
         15
                 y val = y train[mask]
         16
                 mask = list(range(num_training))
         17
                 X_train = X_train[mask]
         18
                 y_train = y_train[mask]
         19
                 mask = list(range(num_test))
         20
                 X \text{ test} = X \text{ test[mask]}
         21
                 y_{\text{test}} = y_{\text{test}}[mask]
         22
         23
                 # Normalize the data: subtract the mean image
         24
                 mean_image = np.mean(X_train, axis=0)
         25
                 X_train -= mean_image
         26
                 X val -= mean image
         27
                 X test -= mean image
         28
         29
                 # Reshape data to rows
                 X_train = X_train.reshape(num_training, -1)
         30
         31
                 X val = X val.reshape(num validation, -1)
         32
                 X test = X test.reshape(num test, -1)
         33
         34
                 return X_train, y_train, X_val, y_val, X_test, y_test
         35
         36
         37 # Invoke the above function to get our data.
         38 X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data()
         39 | print('Train data shape: ', X_train.shape)
         40 print('Train labels shape: ', y_train.shape)
         41 print('Validation data shape: ', X_val.shape)
         42 print('Validation labels shape: ', y_val.shape)
             print('Test data shape: ', X_test.shape)
         44 print('Test labels shape: ', y_test.shape)
        Train data shape: (49000, 3072)
        Train labels shape: (49000,)
```

```
Train data snape: (49000, 3072)
Train labels shape: (49000,)
Validation data shape: (1000, 3072)
Validation labels shape: (1000,)
Test data shape: (1000, 3072)
Test labels shape: (1000,)
```

Running SGD

If your implementation is correct, you should see a validation accuracy of around 28-29%.

```
In [15]:
           1 input size = 32 * 32 * 3
           2 hidden size = 50
           3 num classes = 10
             net = TwoLayerNet(input_size, hidden_size, num_classes)
           5
           6
             # Train the network
              stats = net.train(X_train, y_train, X_val, y_val,
           7
           8
                          num iters=1000, batch size=200,
           9
                          learning_rate=1e-4, learning_rate_decay=0.95,
          10
                          reg=0.25, verbose=True)
          11
             # Predict on the validation set
          12
          13 | val acc = (net.predict(X val) == y val).mean()
          14 print('Validation accuracy: ', val acc)
          15
          16 | # Save this net as the variable subopt_net for later comparison.
             subopt net = net
```

```
iteration 0 / 1000: loss 2.302757518613176
iteration 100 / 1000: loss 2.302120159207236
iteration 200 / 1000: loss 2.2956136007408703
iteration 300 / 1000: loss 2.251825904316413
iteration 400 / 1000: loss 2.188995235046776
iteration 500 / 1000: loss 2.1162527791897747
iteration 600 / 1000: loss 2.064670827698217
iteration 700 / 1000: loss 1.9901688623083942
iteration 800 / 1000: loss 2.002827640124685
iteration 900 / 1000: loss 1.9465176817856495
Validation accuracy: 0.283
```

Questions:

The training accuracy isn't great.

- (1) What are some of the reasons why this is the case? Take the following cell to do some analyses and then report your answers in the cell following the one below.
- (2) How should you fix the problems you identified in (1)?

```
In [21]:    1 stats['train_acc_history']
Out[21]: [0.095, 0.15, 0.25, 0.315]
```

```
In [8]:
            #EXPERIMENT TO SEE IF ACCURACY CAN BE IMPROVED
            input size = 32 * 32 * 3
          2
          3 hidden size = 50
            num classes = 10
          4
          5
            net = TwoLayerNet(input size, hidden size, num classes)
          6
          7
             # Train the network
             stats = net.train(X train, y train, X val, y val,
          9
                         num iters=4000, batch size=300,
                         learning_rate=1e-3, learning_rate_decay=0.95,
         10
         11
                         reg=0.25, verbose=True)
         12
         13 # Predict on the validation set
         14 | val acc = (net.predict(X val) == y val).mean()
         15 print('Validation accuracy: ', val acc)
```

```
iteration 0 / 4000: loss 2.3028007351054924
iteration 100 / 4000: loss 1.8671721184198595
iteration 200 / 4000: loss 1.735052073342008
iteration 300 / 4000: loss 1.587012373398663
iteration 400 / 4000: loss 1.5551458368146491
iteration 500 / 4000: loss 1.572744830491382
iteration 600 / 4000: loss 1.5569265665437162
iteration 700 / 4000: loss 1.516355265953603
iteration 800 / 4000: loss 1.444393039034542
iteration 900 / 4000: loss 1.4491723548916906
iteration 1000 / 4000: loss 1.5424145271154444
iteration 1100 / 4000: loss 1.3685976268235942
iteration 1200 / 4000: loss 1.4015107602863033
iteration 1300 / 4000: loss 1.4242167509987038
iteration 1400 / 4000: loss 1.4396977624306249
iteration 1500 / 4000: loss 1.4379210168499643
iteration 1600 / 4000: loss 1.4099537449443924
iteration 1700 / 4000: loss 1.3280501659227353
iteration 1800 / 4000: loss 1.4715080321395446
iteration 1900 / 4000: loss 1.3520156785903574
iteration 2000 / 4000: loss 1.464624787212279
iteration 2100 / 4000: loss 1.4232469178947993
iteration 2200 / 4000: loss 1.4221963080109268
iteration 2300 / 4000: loss 1.4088913206433655
iteration 2400 / 4000: loss 1.2836177125029784
iteration 2500 / 4000: loss 1.3359247207809524
iteration 2600 / 4000: loss 1.3921218742224277
iteration 2700 / 4000: loss 1.349099685098755
iteration 2800 / 4000: loss 1.3981975882536557
iteration 2900 / 4000: loss 1.3972649069961904
iteration 3000 / 4000: loss 1.2974790933323546
iteration 3100 / 4000: loss 1.3364343953961237
iteration 3200 / 4000: loss 1.3796549823141266
iteration 3300 / 4000: loss 1.348516916662763
iteration 3400 / 4000: loss 1.2696567716283156
iteration 3500 / 4000: loss 1.2787863728490556
iteration 3600 / 4000: loss 1.3769728934640058
iteration 3700 / 4000: loss 1.3975589168530587
iteration 3800 / 4000: loss 1.2330940850486645
```

iteration 3900 / 4000: loss 1.2913398672506897

Validation accuracy: 0.514

```
In [18]:
         1
         2
           # YOUR CODE HERE:
         3
              Do some debugging to gain some insight into why the optimization
         4
              isn't great.
         5
           6
         7
           # Plot the loss function and train / validation accuracies
         8
         9
           plt.figure()
           plt.plot(stats['loss_history'])
        10
        11
          plt.xlabel('iteration')
           plt.ylabel('training loss')
        12
           plt.title('Training Loss vs Iteration')
        13
        14
        15
           plt.figure()
        16 plt.plot(stats['train_acc_history'],label='train acc')
           plt.plot(stats['val_acc_history'],label='validation acc')
        17
        18 plt.xlabel('iteration')
           plt.ylabel('accuracy')
        20 plt.title('accuracy vs iteration')
        21 plt.legend()
        22
           # END YOUR CODE HERE
```

Out[18]: <matplotlib.legend.Legend at 0x268a3959730>

Answers:

- (1) By examining the progression of the training and validation accuracies, we can determine the most obvious reason for the low accuracy as the small number of iterations the model is trained. Since both training and validation accuracies are in an increasing trend, allowing the model to run for more iterations will improve performance. After some time, we should observe that the training accuracy is increasing even if the validation accuracy does not improve. This implies overfitting and training must be stopped before this point. Furthermore, examination of training loss reveals that there is little improvement in the first 200 iterations. This implies a low learning rate. Increasing the learning rate should allow the model to improve faster and thus increase accuracy. Finally, towards the end we see a large fluctuation in loss. This can imply that because our chosen batch size is too small, we get noisy estimates of the gradient which causes the oscillations in the learning curve. Increasing the batch size should lead to a smoother loss curve, which can lead to a faster decrease in loss and increase in accuracy.
- (2) I would increase the number of iterations, increase the learning rate and increase the batch size. In fact, on 2 cells above it has been shown that doing so increases the validation accuracy to 51.4%. Further optimization such as changing the regularization coefficient can also be done to improve performance.

Optimize the neural network

Use the following part of the Jupyter notebook to optimize your hyperparameters on the validation set. Store your nets as best net.

```
In [31]:
            best net = None # store the best model into this
         1
          3
            4
            # YOUR CODE HERE:
               Optimize over your hyperparameters to arrive at the best neural
          5
               network. You should be able to get over 50% validation accuracy.
          6
          7
               For this part of the notebook, we will give credit based on the
          8
               accuracy you get. Your score on this question will be multiplied by:
         9
            #
                  min(floor((X - 28\%)) / \%22, 1)
               where if you get 50% or higher validation accuracy, you get full
            #
         10
            #
               points.
         11
         12
               Note, you need to use the same network structure (keep hidden size = 50)
         13
         14
            15
           input size = 32 * 32 * 3
         16 hidden size = 50
           num classes = 10
         17
         18 | learningRates = [1e-4,1e-3,1e-2,1e-1]
            regularizations = [0.3, 0.2, 0.1, 0.01, 0.001]
         19
         20 iterations = [10000,20000,30000]
         21
           #iterations=[10]
         22 best net = []
         23
            best val acc=0
            for lr in learningRates:
         24
         25
               for reg in regularizations:
                   for it in iterations:
         26
                       net = TwoLayerNet(input size, hidden size, num classes)
         27
         28
                       stats = net.train(X_train, y_train, X_val, y_val,
         29
                          num iters=it, batch size=200,
                          learning rate=lr, learning rate decay= 0.95,
         30
         31
                          reg=reg, verbose=False)
                       print("Training complete")
         32
                      val acc = (net.predict(X val) == y val).mean()
         33
                       print("When lr=%f, reg=%f, noIt = %d, validation accuracy=%f"%(1
         34
         35
                       if val_acc > best_val_acc:
                          best net=net
         36
         37
                          best val acc=val acc
         38
            print("SEARCH COMPLETE")
         40 # END YOUR CODE HERE
            42 | val_acc = (best_net.predict(X_val) == y_val).mean()
            print('Validation accuracy: ', val_acc)
        Training complete
        When lr=0.100000, reg=0.100000, noIt = 10000, validation accuracy=0.087000
        Training complete
        When lr=0.100000, reg=0.100000, noIt = 20000, validation accuracy=0.087000
        Training complete
        When lr=0.100000, reg=0.100000, noIt = 30000, validation accuracy=0.087000
        Training complete
        When lr=0.100000, reg=0.010000, noIt = 10000, validation accuracy=0.087000
        Training complete
        When lr=0.100000, reg=0.010000, noIt = 20000, validation accuracy=0.087000
        Training complete
        When lr=0.100000, reg=0.010000, noIt = 30000, validation accuracy=0.087000
        Training complete
                        nog 0 001000
                                    ~~T+
```

```
when ir=0.100000, reg=0.001000, noit = 10000, validation accuracy=0.087000 Training complete
When lr=0.100000, reg=0.001000, noIt = 20000, validation accuracy=0.087000 Training complete
When lr=0.100000, reg=0.001000, noIt = 30000, validation accuracy=0.087000 SEARCH COMPLETE
Validation accuracy: 0.528
```

```
In [32]: 1 val_acc = (best_net.predict(X_val) == y_val).mean()
    print('Validation accuracy: ', val_acc)
```

Validation accuracy: 0.528

```
In [33]:
              from utils.vis_utils import visualize_grid
           2
              # Visualize the weights of the network
           3
           4
           5
              def show_net_weights(net):
           6
                  W1 = net.params['W1']
                  W1 = W1.T.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)
           7
           8
                  plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))
           9
                  plt.gca().axis('off')
          10
                  plt.show()
          11
              show net weights(subopt net)
          12
          13
              show net weights(best net)
```


Question:

(1) What differences do you see in the weights between the suboptimal net and the best net you arrived at?

Answer:

(1)The weights of the subopimal net appear to be noisy and without any distinguishable characteristics. It is not easy to understand the features the weights are looking at and they all look averaged in terms of shape. On the other hand, the weights of the best net offer a clear shape which implies that they learned specific features to look at. The weights are discernible from each other with distint shapes and it is easy to uderstand what each weight looks at in an image.

Evaluate on test set

```
In [34]: 1 test_acc = (best_net.predict(X_test) == y_test).mean()
2 print('Test accuracy: ', test_acc)
```

Test accuracy: 0.51

```
import pdb
def affine forward(x, w, b):
 Computes the forward pass for an affine (fully-connected) layer.
 The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N
 examples, where each example x[i] has shape (d_1, ..., d_k). We will
 reshape each input into a vector of dimension \overline{D} = d \cdot 1 * \dots * d k, and
 then transform it to an output vector of dimension M.
 Inputs:
 - x: A numpy array containing input data, of shape (N, d 1, ..., d k)
 - w: A numpy array of weights, of shape (D, M)
 - b: A numpy array of biases, of shape (M,)
 Returns a tuple of:
 - out: output, of shape (N, M)
 - cache: (x, w, b)
 # YOUR CODE HERE:
 # Calculate the output of the forward pass. Notice the dimensions
 \# of w are D x M, which is the transpose of what we did in earlier
 # assignments.
                          # ========
 correctDimX = x.reshape(x.shape[0], -1)
 out = correctDimX.dot(w)+b
 # END YOUR CODE HERE
 cache = (x, w, b)
 return out, cache
def affine backward(dout, cache):
 Computes the backward pass for an affine layer.
 Inputs:
 - dout: Upstream derivative, of shape (N, M)
 - cache: Tuple of:
   - x: Input data, of shape (N, d_1, ... d_k)
   - w: Weights, of shape (D, M)
 Returns a tuple of:
 - dx: Gradient with respect to x, of shape (N, d1, ..., d k)
 - dw: Gradient with respect to w, of shape (D, M)
 - db: Gradient with respect to b, of shape (M,)
```

import numpy as np

```
x, w, b = cache
 dx, dw, db = None, None, None
 # YOUR CODE HERE:
 # Calculate the gradients for the backward pass.
 # dout is N x M
 \# dx should be N x d1 x ... x dk; it relates to dout through multiplication with w, which
 # dw should be D \times M; it relates to dout through multiplication with \times, which is N \times D at
 # db should be M; it is just the sum over dout examples
 correctDimX = x.reshape(x.shape[0], -1)
 dx = dout.dot(w.T)
 dx = dx.reshape(x.shape)
 dw = correctDimX.T.dot(dout)
 db = np.sum(dout,axis=0)
 # END YOUR CODE HERE
 return dx, dw, db
def relu forward(x):
 Computes the forward pass for a layer of rectified linear units (ReLUs).
 Input:
 - x: Inputs, of any shape
 Returns a tuple of:
 - out: Output, of the same shape as x
 - cache: x
 # YOUR CODE HERE:
 # Implement the ReLU forward pass.
 # _____ # ____ #
 out = np.maximum(x, 0)
 # END YOUR CODE HERE
 cache = x
 return out, cache
def relu backward(dout, cache):
 Computes the backward pass for a layer of rectified linear units (ReLUs).
 Input:
 - dout: Upstream derivatives, of any shape
 - cache: Input x, of same shape as dout
```

```
Returns:
 - dx: Gradient with respect to x
 x = cache
 # YOUR CODE HERE:
 # Implement the ReLU backward pass
 # ReLU directs linearly to those > 0
 correctDimX = x.reshape(x.shape[0], -1)
 correctDimX[correctDimX<0]=0
 correctDimX[correctDimX>0]=1
 dx = dout*correctDimX
 # END YOUR CODE HERE
 return dx
def svm loss(x, y):
 Computes the loss and gradient using for multiclass SVM classification.
 Inputs:
 - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
   for the ith input.
 - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
   0 \le y[i] < C
 Returns a tuple of:
 - loss: Scalar giving the loss
 - dx: Gradient of the loss with respect to x
 N = x.shape[0]
 correct class scores = x[np.arange(N), y]
 margins = np.maximum(0, x - correct class scores[:, <math>np.newaxis] + 1.0)
 margins[np.arange(N), y] = 0
 loss = np.sum(margins) / N
 num pos = np.sum(margins > 0, axis=1)
 dx = np.zeros like(x)
 dx[margins > \overline{0}] = 1
 dx[np.arange(N), y] -= num pos
 dx /= N
 return loss, dx
def softmax loss(x, y):
 Computes the loss and gradient for softmax classification.
 Inputs:
 - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
   for the ith input.
```

```
- y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
0 <= y[i] < C

Returns a tuple of:
- loss: Scalar giving the loss
- dx: Gradient of the loss with respect to x

probs = np.exp(x - np.max(x, axis=1, keepdims=True))
probs /= np.sum(probs, axis=1, keepdims=True)
N = x.shape[0]
loss = -np.sum(np.log(probs[np.arange(N), y])) / N
dx = probs.copy()
dx[np.arange(N), y] -= 1
dx /= N
return loss, dx</pre>
```

```
import numpy as np
from .layers import *
from .layer utils import *
class TwoLayerNet(object):
 A two-layer fully-connected neural network with ReLU nonlinearity and
 softmax loss that uses a modular layer design. We assume an input dimension
 of D, a hidden dimension of H, and perform classification over C classes.
 The architecure should be affine - relu - affine - softmax.
 Note that this class does not implement gradient descent; instead, it
 will interact with a separate Solver object that is responsible for running
 optimization.
 The learnable parameters of the model are stored in the dictionary
 self.params that maps parameter names to numpy arrays.
 def __init__(self, input_dim=3*32*32, hidden dims=100, num classes=10,
             dropout=0, weight scale=1e-3, reg=0.0):
   0.00
   Initialize a new network.
   Inputs:
   - input dim: An integer giving the size of the input
   - hidden dims: An integer giving the size of the hidden layer
   - num_classes: An integer giving the number of classes to classify
   - dropout: Scalar between 0 and 1 giving dropout strength.
   - weight scale: Scalar giving the standard deviation for random
     initialization of the weights.
   - reg: Scalar giving L2 regularization strength.
   self.params = {}
   self.req = req
   # YOUR CODE HERE:
   # Initialize W1, W2, b1, and b2. Store these as self.params['W1'],
     self.params['W2'], self.params['b1'] and self.params['b2']. The
   # biases are initialized to zero and the weights are initialized
   # so that each parameter has mean 0 and standard deviation weight scale.
     The dimensions of W1 should be (input dim, hidden dim) and the
   # dimensions of W2 should be (hidden dims, num classes)
   self.params['W1'] = np.random.normal(loc=0.0, scale=weight scale, size = (input dim, hide
   self.params['b1'] = np.zeros(hidden dims)
   self.params['W2'] = np.random.normal(loc=0.0, scale=weight_scale, size = (hidden_dims, num
   self.params['b2'] = np.zeros(num classes)
```

```
# END YOUR CODE HERE
 def loss(self, X, y=None):
 Compute loss and gradient for a minibatch of data.
 Inputs:
 - X: Array of input data of shape (N, d 1, ..., d k)
 - y: Array of labels, of shape (N,). y[i] gives the label for X[i].
 Returns:
 If y is None, then run a test-time forward pass of the model and return:
 - scores: Array of shape (N, C) giving classification scores, where
   scores[i, c] is the classification score for X[i] and class c.
 If y is not None, then run a training-time forward and backward pass and
 return a tuple of:
 - loss: Scalar value giving the loss
 - grads: Dictionary with the same keys as self.params, mapping parameter
   names to gradients of the loss with respect to those parameters.
 scores = None
 # YOUR CODE HERE:
 # Implement the forward pass of the two-layer neural network. Store
 # the class scores as the variable 'scores'. Be sure to use the layers
 # you prior implemented.
 W1 = self.params['W1']
 b1 = self.params['b1']
 W2 = self.params['W2']
 b2 = self.params['b2']
 a, fc_cache = affine_forward(X, W1, b1)
 out, relu cache = relu forward(a)
 cache hidden = (fc cache, relu cache)
 scores, cache z = affine forward(out, W2, b2)
 # END YOUR CODE HERE
 # ----- #
 # If y is None then we are in test mode so just return scores
 if y is None:
   return scores
 loss, grads = 0, {}
             #
 # YOUR CODE HERE:
   Implement the backward pass of the two-layer neural net. Store
   the loss as the variable 'loss' and store the gradients in the
    'grads' dictionary. For the grads dictionary, grads['W1'] holds
 # the gradient for W1, grads['b1'] holds the gradient for b1, etc.
 # i.e., grads[k] holds the gradient for self.params[k].
```

```
#
      Add L2 regularization, where there is an added cost 0.5*self.reg*W^2
   #
      for each W. Be sure to include the 0.5 multiplying factor to
      match our implementation.
   #
   #
     And be sure to use the layers you prior implemented.
   loss, dz = softmax loss(scores, y)
   loss = loss+ 0.5*self.reg*(np.sum(W1**2) + np.sum(W2**2))
   dhidden, dw2, db2 = affine backward(dz, cache z)
   fc cache, relu cache = cache hidden
   da = relu backward(dhidden, relu cache)
   dx, dw1, db1 = affine_backward(da, fc_cache)
   grads['W1'] = dw1 + self.reg * W1
   qrads['b1'] = db1
   qrads['W2'] = dw2 + self.req * W2
   grads['b2'] = db2
   # END YOUR CODE HERE
   # -----#
   return loss, grads
class FullyConnectedNet(object):
 A fully-connected neural network with an arbitrary number of hidden layers,
 ReLU nonlinearities, and a softmax loss function. This will also implement
 dropout and batch normalization as options. For a network with L layers,
 the architecture will be
 {affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax
 where batch normalization and dropout are optional, and the {...} block is
 repeated L - 1 times.
 Similar to the TwoLayerNet above, learnable parameters are stored in the
 self.params dictionary and will be learned using the Solver class.
 def init (self, hidden dims, input dim=3*32*32, num classes=10,
             dropout=0, use batchnorm=False, reg=0.0,
             weight scale=1e-2, dtype=np.float32, seed=None):
   Initialize a new FullyConnectedNet.
   Inputs:
   - hidden dims: A list of integers giving the size of each hidden layer.
```

- input dim: An integer giving the size of the input.
- num classes: An integer giving the number of classes to classify.
- dropout: Scalar between 0 and 1 giving dropout strength. If dropout=0 then the network should not use dropout at all.
- use batchnorm: Whether or not the network should use batch normalization.
- reg: Scalar giving L2 regularization strength.

```
- weight_scale: Scalar giving the standard deviation for random initialization of the weights.
```

- dtype: A numpy datatype object; all computations will be performed using this datatype. float32 is faster but less accurate, so you should use float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
 will make the dropout layers deteriminstic so we can gradient check the
 model.

```
self.use batchnorm = use batchnorm
self.use dropout = dropout > 0
self.reg = reg
self.num layers = 1 + len(hidden dims)
self.dtype = dtype
self.params = {}
# YOUR CODE HERE:
# Initialize all parameters of the network in the self.params dictionary.
# The weights and biases of layer 1 are W1 and b1; and in general the
# weights and biases of layer i are Wi and bi. The
# biases are initialized to zero and the weights are initialized
# so that each parameter has mean 0 and standard deviation weight scale.
for i in range(0, self.num_layers):
   name W = 'W' + str(i+1)
   name b = b'+str(i+1)
   if i == 0:
                        #First
       self.params[name_W] = np.random.normal(loc=0.0, scale=weight_scale, size = (input
       self.params[name_b] = np.zeros(hidden_dims[i])
   elif i == self.num layers-1:
                                #Last
       self.params[name W] = np.random.normal(loc=0.0,scale=weight scale,size = (hidde
       self.params[name b] = np.zeros(num classes)
   else:
                            #Between
       self.params[name W] = np.random.normal(loc=0.0,scale=weight scale,size = (hidde
       self.params[name b] = np.zeros(hidden dims[i])
# END YOUR CODE HERE
# When using dropout we need to pass a dropout param dictionary to each
# dropout layer so that the layer knows the dropout probability and the mode
# (train / test). You can pass the same dropout param to each dropout layer.
self.dropout param = {}
if self.use dropout:
 self.dropout_param = {'mode': 'train', 'p': dropout}
 if seed is not None:
   self.dropout param['seed'] = seed
# With batch normalization we need to keep track of running means and
# variances, so we need to pass a special bn param object to each batch
# normalization layer. You should pass self.bn_params[0] to the forward pass
# of the first batch normalization layer, self.bn params[1] to the forward
```

pass of the second batch normalization layer, etc.

```
self.bn params = []
 if self.use batchnorm:
   self.bn params = [{'mode': 'train'} for i in np.arange(self.num layers - 1)]
 # Cast all parameters to the correct datatype
 for k, v in self.params.items():
   self.params[k] = v.astype(dtype)
def loss(self, X, y=None):
 Compute loss and gradient for the fully-connected net.
 Input / output: Same as TwoLayerNet above.
 X = X.astype(self.dtype)
 mode = 'test' if y is None else 'train'
 # Set train/test mode for batchnorm params and dropout param since they
 # behave differently during training and testing.
 if self.dropout param is not None:
   self.dropout_param['mode'] = mode
 if self.use batchnorm:
   for bn param in self.bn params:
     bn param[mode] = mode
 scores = None
 # YOUR CODE HERE:
   Implement the forward pass of the FC net and store the output
    scores as the variable "scores".
 H = []
 cache_h = []
 for i in np.arange(0, self.num layers):
     name W = 'W' + str(i+1)
     name_b = b'+str(i+1)
     if i == 0:
                 #First
        a, fc cache = affine forward(X, self.params[name W], self.params[name b])
         out, relu cache = relu forward(a)
         cH = (fc cache, relu cache)
        H.append(out)
        cache h.append(cH)
     elif i == self.num layers-1:
                                     #Last
         scores = affine_forward(H[i-1], self.params[name_W], self.params[name_b])[0]
         cache_h.append(affine_forward(H[i-1], self.params[name_W], self.params[name_b])
             #Between
     else:
         a, fc cache = affine forward(H[i-1], self.params[name W], self.params[name b])
         out, relu cache = relu forward(a)
        cH = (fc cache, relu cache)
        H.append(out)
        cache_h.append(cH)
```

```
# END YOUR CODE HERE
# If test mode return early
if mode == 'test':
 return scores
loss, grads = 0.0, {}
# YOUR CODE HERE:
# Implement the backwards pass of the FC net and store the gradients
 in the grads dict, so that grads[k] is the gradient of self.params[k]
 Be sure your L2 regularization includes a 0.5 factor.
loss, dz = softmax_loss(scores, y)
for i in range(self.num_layers,0,-1):
  name W = 'W' + str(i)
  name b = 'b' + str(i)
  loss = loss + (0.5 * self.reg * np.sum(self.params[name W]*self.params[name W]))
  if i == self.num layers:
     dh1, grads[name W], grads[name b] = affine backward(dz, cache h[self.num layers
  else:
     fc cache, relu cache = cache h[i-1]
     da = relu_backward(dh1, relu_cache)
     dh1, grads[name W], grads[name b] = affine backward(da, fc cache)
  grads[name W] = grads[name W] + self.reg * self.params[name W]
# END YOUR CODE HERE
return loss, grads
```

Fully connected networks

In the previous notebook, you implemented a simple two-layer neural network class. However, this class is not modular. If you wanted to change the number of layers, you would need to write a new loss and gradient function. If you wanted to optimize the network with different optimizers, you'd need to write new training functions. If you wanted to incorporate regularizations, you'd have to modify the loss and gradient function.

Instead of having to modify functions each time, for the rest of the class, we'll work in a more modular framework where we define forward and backward layers that calculate losses and gradients respectively. Since the forward and backward layers share intermediate values that are useful for calculating both the loss and the gradient, we'll also have these function return "caches" which store useful intermediate values.

The goal is that through this modular design, we can build different sized neural networks for various applications.

In this HW #3, we'll define the basic architecture, and in HW #4, we'll build on this framework to implement different optimizers and regularizations (like BatchNorm and Dropout).

Modular layers

This notebook will build modular layers in the following manner. First, there will be a forward pass for a given layer with inputs (x) and return the output of that layer (out) as well as cached variables (cache) that will be used to calculate the gradient in the backward pass.

```
def layer_forward(x, w):
    """ Receive inputs x and weights w """
    # Do some computations ...
    z = # ... some intermediate value
    # Do some more computations ...
    out = # the output

cache = (x, w, z, out) # Values we need to compute gradients
    return out, cache
```

The backward pass will receive upstream derivatives and the cache object, and will return gradients with respect to the inputs and weights, like this:

```
def layer_backward(dout, cache):
    """

Receive derivative of loss with respect to outputs and cache,
    and compute derivative with respect to inputs.
    """

# Unpack cache values
    x, w, z, out = cache

# Use values in cache to compute derivatives
    dx = # Derivative of loss with respect to x
    dw = # Derivative of loss with respect to w
return dx, dw
```

```
In [1]:
            ## Import and setups
          1
          2
          3
            import time
          4 import numpy as np
          5 import matplotlib.pyplot as plt
          6 from nndl.fc net import *
          7 from utils.data_utils import get_CIFAR10_data
          8 from utils.gradient check import eval numerical gradient, eval numerical gra
            from utils.solver import Solver
         10
         11 %matplotlib inline
         12 | plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
         13 plt.rcParams['image.interpolation'] = 'nearest'
         14 plt.rcParams['image.cmap'] = 'gray'
         15
         16 # for auto-reloading external modules
         17 # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ip
         18 %load ext autoreload
         19 %autoreload 2
         20
         21 | def rel error(x, y):
         22
               """ returns relative error """
         23
               return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

```
X_train: (49000, 3, 32, 32)
y_train: (49000,)
X_val: (1000, 3, 32, 32)
y_val: (1000,)
X_test: (1000, 3, 32, 32)
y test: (1000,)
```

Linear layers

In this section, we'll implement the forward and backward pass for the linear layers.

The linear layer forward pass is the function affine_forward in nndl/layers.py and the backward pass is affine_backward.

After you have implemented these, test your implementation by running the cell below.

Affine layer forward pass

Implement affine forward and then test your code by running the following cell.

```
In [4]:
            # Test the affine forward function
          2
          3 num_inputs = 2
          4 input shape = (4, 5, 6)
            output dim = 3
          6
          7
            input_size = num_inputs * np.prod(input_shape)
            weight_size = output_dim * np.prod(input_shape)
          9
            x = np.linspace(-0.1, 0.5, num=input size).reshape(num inputs, *input shape)
         10
            w = np.linspace(-0.2, 0.3, num=weight size).reshape(np.prod(input shape), ou
            b = np.linspace(-0.3, 0.1, num=output_dim)
         12
         13
            out, _ = affine_forward(x, w, b)
            correct_out = np.array([[ 1.49834967, 1.70660132, 1.91485297],
         15
                                     [ 3.25553199, 3.5141327, 3.77273342]])
         16
         17
         18
            # Compare your output with ours. The error should be around 1e-9.
            print('Testing affine forward function:')
            print('difference: {}'.format(rel_error(out, correct_out)))
```

Testing affine_forward function: difference: 9.769849468192957e-10

Affine layer backward pass

Implement affine backward and then test your code by running the following cell.

```
In [5]:
             # Test the affine backward function
          2
          3 \times = \text{np.random.randn}(10, 2, 3)
            w = np.random.randn(6, 5)
          4
            b = np.random.randn(5)
          5
             dout = np.random.randn(10, 5)
            dx num = eval numerical gradient array(lambda x: affine forward(x, w, b)[0],
             dw num = eval numerical gradient array(lambda w: affine forward(x, w, b)[\emptyset],
          9
         db_num = eval_numerical_gradient_array(lambda b: affine_forward(x, w, b)[0],
         11
             _, cache = affine_forward(x, w, b)
         12
         13
             dx, dw, db = affine_backward(dout, cache)
         14
            # The error should be around 1e-10
         15
            print('Testing affine_backward function:')
         16
             print('dx error: {}'.format(rel error(dx num, dx)))
         17
         18 | print('dw error: {}'.format(rel_error(dw_num, dw)))
             print('db error: {}'.format(rel_error(db_num, db)))
```

Testing affine_backward function: dx error: 3.8090866555111607e-11 dw error: 1.7375717532082819e-10 db error: 4.787050739675008e-10

Activation layers

In this section you'll implement the ReLU activation.

ReLU forward pass

Implement the relu_forward function in nndl/layers.py and then test your code by running the following cell.

```
In [6]:
          1
            # Test the relu_forward function
            x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4)
          3
          4
            out, = relu forward(x)
          5
          6
            correct_out = np.array([[ 0.,
                                                   0.,
                                                                 0.,
                                                                              0.,
          7
                                                   0.,
                                                                 0.04545455,
                                                                              0.13636364,
                                     [0.22727273, 0.31818182, 0.40909091, 0.5,
          8
          9
            # Compare your output with ours. The error should be around 1e-8
         10
            print('Testing relu forward function:')
            print('difference: {}'.format(rel_error(out, correct_out)))
```

Testing relu_forward function: difference: 4.999999798022158e-08

ReLU backward pass

Implement the relu_backward function in nnd1/layers.py and then test your code by running the following cell.

Testing relu_backward function: dx error: 3.2756336458611084e-12

Combining the affine and ReLU layers

Often times, an affine layer will be followed by a ReLU layer. So let's make one that puts them together. Layers that are combined are stored in nndl/layer_utils.py.

Affine-ReLU layers

We've implemented affine_relu_forward() and affine_relu_backward in nndl/layer_utils.py . Take a look at them to make sure you understand what's going on. Then run the following cell to ensure its implemented correctly.

```
In [11]:
              from nndl.layer utils import affine relu forward, affine relu backward
           1
           3 \times = \text{np.random.randn}(2, 3, 4)
           4 w = np.random.randn(12, 10)
           5 b = np.random.randn(10)
             dout = np.random.randn(2, 10)
             out, cache = affine relu forward(x, w, b)
             dx, dw, db = affine relu backward(dout, cache)
           9
          10
          11 dx num = eval numerical gradient array(lambda x: affine relu forward(x, w, b
          12 | dw_num = eval_numerical_gradient_array(lambda w: affine_relu_forward(x, w, b
          db_num = eval_numerical_gradient_array(lambda b: affine_relu_forward(x, w, b
          14
          15 print('Testing affine relu forward and affine relu backward:')
          16 print('dx error: {}'.format(rel_error(dx_num, dx)))
          17 | print('dw error: {}'.format(rel error(dw num, dw)))
          18 | print('db error: {}'.format(rel_error(db_num, db)))
```

Testing affine_relu_forward and affine_relu_backward:

dx error: 6.382280630077004e-11 dw error: 7.413924268923301e-10 db error: 2.1600192477321958e-11

Softmax losses

You've already implemented it, so we have written it in layers.py. The following code will ensure its working correctly.

Testing softmax_loss: loss: 2.3026204658474767 dx error: 8.120600213352476e-09

Implementation of a two-layer NN

In nndl/fc_net.py , implement the class TwoLayerNet which uses the layers you made here. When you have finished, the following cell will test your implementation.

```
In [20]:
           1 N, D, H, C = 3, 5, 50, 7
           2 \mid X = np.random.randn(N, D)
           3 y = np.random.randint(C, size=N)
           4
           5
             std = 1e-2
             model = TwoLayerNet(input_dim=D, hidden_dims=H, num_classes=C, weight_scale=
           6
           7
             print('Testing initialization ... ')
             W1 std = abs(model.params['W1'].std() - std)
           9
          10 | b1 = model.params['b1']
          11 W2 std = abs(model.params['W2'].std() - std)
          12 | b2 = model.params['b2']
          13 | assert W1_std < std / 10, 'First layer weights do not seem right'</pre>
          14 | assert np.all(b1 == 0), 'First layer biases do not seem right'
          15 assert W2 std < std / 10, 'Second layer weights do not seem right'
          16 | assert np.all(b2 == 0), 'Second layer biases do not seem right'
          17
          18 print('Testing test-time forward pass ... ')
          19
             model.params['W1'] = np.linspace(-0.7, 0.3, num=D*H).reshape(D, H)
          20 model.params['b1'] = np.linspace(-0.1, 0.9, num=H)
             model.params['W2'] = np.linspace(-0.3, 0.4, num=H*C).reshape(H, C)
          21
          22 | model.params['b2'] = np.linspace(-0.9, 0.1, num=C)
          23 X = np.linspace(-5.5, 4.5, num=N*D).reshape(D, N).T
          24
             scores = model.loss(X)
          25
             correct scores = np.asarray(
                [[11.53165108, 12.2917344,
                                              13.05181771, 13.81190102, 14.57198434, 15.
          26
          27
                 [12.05769098, 12.74614105, 13.43459113, 14.1230412,
                                                                           14.81149128, 15.
          28
                 [12.58373087, 13.20054771, 13.81736455, 14.43418138, 15.05099822, 15.
          29
             scores diff = np.abs(scores - correct scores).sum()
             assert scores diff < 1e-6, 'Problem with test-time forward pass'
          30
          31
          32 print('Testing training loss (no regularization)')
          33 y = np.asarray([0, 5, 1])
          34 loss, grads = model.loss(X, y)
          35 correct_loss = 3.4702243556
             assert abs(loss - correct_loss) < 1e-10, 'Problem with training-time loss'</pre>
          36
          37
          38 | model.reg = 1.0
          39 loss, grads = model.loss(X, y)
          40 correct loss = 26.5948426952
          41
             assert abs(loss - correct_loss) < 1e-10, 'Problem with regularization loss'</pre>
          42
          43
             for reg in [0.0, 0.7]:
                print('Running numeric gradient check with reg = {}'.format(reg))
          44
          45
                model.reg = reg
          46
                loss, grads = model.loss(X, y)
          47
          48
                for name in sorted(grads):
          49
                  f = lambda : model.loss(X, y)[0]
          50
                  grad num = eval numerical gradient(f, model.params[name], verbose=False)
          51
                  print('{} relative error: {}'.format(name, rel error(grad num, grads[nam
```

```
Testing initialization ...

Testing test-time forward pass ...

Testing training loss (no regularization)

Running numeric gradient check with reg = 0.0

W1 relative error: 1.8336562786695002e-08
```

W2 relative error: 3.201560569143183e-10 b1 relative error: 9.828315204644842e-09 b2 relative error: 4.329134954569865e-10 Running numeric gradient check with reg = 0.7 W1 relative error: 2.5279152310200606e-07 W2 relative error: 2.8508510893102143e-08 b1 relative error: 1.564679947504764e-08 b2 relative error: 9.089617896905665e-10

Solver

We will now use the utils Solver class to train these networks. Familiarize yourself with the API in utils/solver.py. After you have done so, declare an instance of a TwoLayerNet with 200 units and then train it with the Solver. Choose parameters so that your validation accuracy is at least 50%.

```
In [21]:
         model = TwoLayerNet()
         solver = None
        2
       3
       4
         # ------ #
         # YOUR CODE HERE:
        5
        6
            Declare an instance of a TwoLayerNet and then train
            it with the Solver. Choose hyperparameters so that your validation
        7
        8
            accuracy is at least 50%. We won't have you optimize this further
       9
            since you did it in the previous notebook.
         #
       10
         11
       12
       13
         model = TwoLayerNet(hidden_dims=200, reg = 0.1)
         solver = Solver(model, data, update rule='sgd',
       14
       15
                      optim config={
       16
                        'learning_rate': 1e-3,
       17
                      }, lr decay=0.95, num epochs=10, batch size=200, print eve
       18
         solver.train()
       19
       21 # END YOUR CODE HERE
       (Iteration 1 / 2450) loss: 2.333385
```

```
(Epoch 0 / 10) train acc: 0.126000; val acc: 0.150000
(Iteration 101 / 2450) loss: 1.642614
(Iteration 201 / 2450) loss: 1.757910
(Epoch 1 / 10) train acc: 0.426000; val acc: 0.420000
(Iteration 301 / 2450) loss: 1.565339
(Iteration 401 / 2450) loss: 1.498052
(Epoch 2 / 10) train acc: 0.515000; val acc: 0.484000
(Iteration 501 / 2450) loss: 1.501815
(Iteration 601 / 2450) loss: 1.357544
(Iteration 701 / 2450) loss: 1.434842
(Epoch 3 / 10) train acc: 0.515000; val acc: 0.496000
(Iteration 801 / 2450) loss: 1.401399
(Iteration 901 / 2450) loss: 1.583114
(Epoch 4 / 10) train acc: 0.554000; val acc: 0.496000
(Iteration 1001 / 2450) loss: 1.467264
(Iteration 1101 / 2450) loss: 1.431473
(Iteration 1201 / 2450) loss: 1.303135
(Epoch 5 / 10) train acc: 0.554000; val_acc: 0.517000
(Iteration 1301 / 2450) loss: 1.271931
(Iteration 1401 / 2450) loss: 1.295709
(Epoch 6 / 10) train acc: 0.545000; val acc: 0.501000
(Iteration 1501 / 2450) loss: 1.234075
(Iteration 1601 / 2450) loss: 1.277352
(Iteration 1701 / 2450) loss: 1.159497
(Epoch 7 / 10) train acc: 0.589000; val acc: 0.498000
(Iteration 1801 / 2450) loss: 1.199592
(Iteration 1901 / 2450) loss: 1.333886
(Epoch 8 / 10) train acc: 0.565000; val acc: 0.488000
(Iteration 2001 / 2450) loss: 1.206221
(Iteration 2101 / 2450) loss: 1.153008
(Iteration 2201 / 2450) loss: 1.252871
(Epoch 9 / 10) train acc: 0.578000; val acc: 0.499000
(Iteration 2301 / 2450) loss: 1.359032
```

```
(Iteration 2401 / 2450) loss: 1.185255
(Epoch 10 / 10) train acc: 0.614000; val_acc: 0.527000
```

```
In [22]:
              # Run this cell to visualize training loss and train / val accuracy
           2
           3
             plt.subplot(2, 1, 1)
             plt.title('Training loss')
             plt.plot(solver.loss history, 'o')
             plt.xlabel('Iteration')
           7
             plt.subplot(2, 1, 2)
             plt.title('Accuracy')
           9
             plt.plot(solver.train_acc_history, '-o', label='train')
          10
             plt.plot(solver.val_acc_history, '-o', label='val')
          11
          12 plt.plot([0.5] * len(solver.val_acc_history), 'k--')
          13
             plt.xlabel('Epoch')
          14 plt.legend(loc='lower right')
          15 | plt.gcf().set_size_inches(15, 12)
             plt.show()
          16
```


Multilayer Neural Network

Now, we implement a multi-layer neural network.

Read through the FullyConnectedNet class in the file nndl/fc_net.py .

Implement the initialization, the forward pass, and the backward pass. There will be lines for batchnorm and dropout layers and caches; ignore these all for now. That'll be in HW #4.

```
In [23]:
             N, D, H1, H2, C = 2, 15, 20, 30, 10
           2 X = np.random.randn(N, D)
             y = np.random.randint(C, size=(N,))
           3
           4
           5
              for reg in [0, 3.14]:
           6
                print('Running check with reg = {}'.format(reg))
           7
                model = FullyConnectedNet([H1, H2], input dim=D, num classes=C,
                                          reg=reg, weight scale=5e-2, dtype=np.float64)
           8
           9
          10
                loss, grads = model.loss(X, y)
          11
                print('Initial loss: {}'.format(loss))
          12
          13
                for name in sorted(grads):
          14
                  f = lambda : model.loss(X, y)[0]
          15
                  grad_num = eval_numerical_gradient(f, model.params[name], verbose=False,
                  print('{} relative error: {}'.format(name, rel_error(grad_num, grads[nam
          16
```

```
Running check with reg = 0
Initial loss: 2.29898895452082
W1 relative error: 7.834318374346021e-08
W2 relative error: 1.8468443517067148e-06
W3 relative error: 1.5479893849745557e-06
b1 relative error: 9.868988656484848e-08
b2 relative error: 9.025216577061229e-09
b3 relative error: 1.1983247432319214e-10
Running check with reg = 3.14
Initial loss: 7.050918253913044
W1 relative error: 2.0816416576698898e-08
W2 relative error: 2.4808336653037244e-08
W3 relative error: 6.719881886242843e-09
b1 relative error: 4.6631644980123366e-08
b2 relative error: 2.171782017826178e-09
b3 relative error: 1.9404166927610103e-10
```

```
In [25]:
              # Use the three layer neural network to overfit a small dataset.
           1
           2
           3
              num train = 50
              small_data = {
           4
           5
                'X_train': data['X_train'][:num_train],
           6
                'y_train': data['y_train'][:num_train],
           7
                'X_val': data['X_val'],
           8
                'y_val': data['y_val'],
           9
              }
          10
          11
          12
             #### !!!!!!
          13 | # Play around with the weight_scale and learning_rate so that you can overfi
             # Your training accuracy should be 1.0 to receive full credit on this part.
          15
             weight scale = 1e-2
             learning_rate = 1e-2
          16
          17
          18
              model = FullyConnectedNet([100, 100],
          19
                            weight_scale=weight_scale, dtype=np.float64)
          20
              solver = Solver(model, small data,
          21
                              print every=10, num epochs=20, batch size=25,
          22
                              update rule='sgd',
          23
                              optim config={
          24
                                 'learning_rate': learning_rate,
          25
                              }
          26
          27
              solver.train()
          28
          29 plt.plot(solver.loss history, 'o')
          30 plt.title('Training loss history')
          31 plt.xlabel('Iteration')
          32 plt.ylabel('Training loss')
          33 plt.show()
```

```
(Iteration 1 / 40) loss: 2.300841
(Epoch 0 / 20) train acc: 0.300000; val_acc: 0.118000
(Epoch 1 / 20) train acc: 0.340000; val_acc: 0.125000
(Epoch 2 / 20) train acc: 0.420000; val acc: 0.163000
(Epoch 3 / 20) train acc: 0.480000; val acc: 0.161000
(Epoch 4 / 20) train acc: 0.580000; val acc: 0.144000
(Epoch 5 / 20) train acc: 0.780000; val acc: 0.188000
(Iteration 11 / 40) loss: 1.210870
(Epoch 6 / 20) train acc: 0.820000; val acc: 0.177000
(Epoch 7 / 20) train acc: 0.880000; val acc: 0.173000
(Epoch 8 / 20) train acc: 0.880000; val acc: 0.194000
(Epoch 9 / 20) train acc: 0.880000; val_acc: 0.185000
(Epoch 10 / 20) train acc: 0.960000; val acc: 0.163000
(Iteration 21 / 40) loss: 0.264498
(Epoch 11 / 20) train acc: 0.920000; val_acc: 0.165000
(Epoch 12 / 20) train acc: 0.960000; val acc: 0.176000
(Epoch 13 / 20) train acc: 0.900000; val acc: 0.168000
(Epoch 14 / 20) train acc: 0.760000; val_acc: 0.152000
(Epoch 15 / 20) train acc: 0.760000; val acc: 0.170000
(Iteration 31 / 40) loss: 0.635391
(Epoch 16 / 20) train acc: 0.940000; val_acc: 0.167000
(Epoch 17 / 20) train acc: 1.000000; val acc: 0.160000
```

```
(Epoch 18 / 20) train acc: 1.000000; val_acc: 0.174000 (Epoch 19 / 20) train acc: 1.000000; val_acc: 0.173000 (Epoch 20 / 20) train acc: 1.000000; val_acc: 0.166000
```



```
In [ ]: 1
```

In []: 1