SEQUENCE LISTING

<110>	THE REGENTS OF THE UNIVERSITY OF CALIFORNIA GILL, Gordon N. YEO, Michele LIN, Patrick S. DAHMUS, Michael E.	
<120>	PHOSPHATASE REGULATION OF NUCLEIC ACID TRANSCRIPTION	
<130>	00015-041US1	
<140> <141>	US/10/552,298 2005-09-30	
<150> <151>	US 60/459,786 2003-04-01	
<160>	69	
<170>	PatentIn version 3.5	
<210> <211> <212> <213>	1 783 DNNA Homo sapiens	
<400>	1	
	eaget eggeegteat tacteagate ageaaggagg aggetegggg eeegetgegg	60
	aggtg accagaagtc agcagcttcc cagaagcccc gaagccgggg catcctccac	120
tcacto	ettet getgtgtetg eegggatgat ggggaggeee tgeetgetea eageggggeg	180
cccctg	gettg tggaggagaa tggegeeate eetaagaeee eagteeaata eetgeteeet	240
gaggee	caagg cccaggactc agacaagatc tgcgtggtca tcgacctgga cgagaccctg	300
gtgcac	eaget cettcaagee agtgaacaac geggaettea teateeetgt ggagattgat	360
ggggtg	ggtcc accaggtcta cgtgttgaag cgtcctcatg tggatgagtt cctgcagcga	420
atgggc	cgage tetttgaatg tgtgetgtte actgetagee tegecaagta egeagaeeea	480
gtaget	gace tgetggacaa atggggggee tteegggeee ggetgttteg agagteetge	540
gtcttc	ccacc gggggaacta cgtgaaggac ctgagecggt tgggtcgaga cctgeggegg	600
gtgctc	catco tggacaatto acctgootoo tatgtottoo atocagacaa tgotgtacog	660
gtggcc	etegt ggtttgacaa catgagtgac acagagetee acgaecteet eccettette	720
gagcaa	actoa geogtgtgga egaegtgtae teagtgetea ggeageeaeg geeagggage	780
tag		783

<210> 2 <210> 2 <211> 260 <212> PRT <213> Homo sapiens

<400> 2

Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg 1 5 10 15

Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys $20 \\ 25 \\ 30$

Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg 35 40 45

Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro 65 70707575

Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Asp Leu 85 90 95

Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val 115 \$120\$

Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu 130 135 140

Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro 145 150 155 160

Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe 165 170 175

Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser 180 185 190

Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro

Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp 210 215 220

Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe 225 230 235 240

Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro 245 250 Arg Pro Gly Ser 260 <210> 3 <211> 852 <212> DNA <213> Homo sapiens <400> 3 atggaacacg gctccatcat cacccaggcg cggagggaag acgcctggt gctcaccaag 60 caaggeetgg tetecaagte eteteetaag aageetegtg gaegtaacat etteaaggee cttttctgct gttttcgcgc ccagcatgtt ggccagtcaa gttcctccac tgagctcgct 180 240 gcgtataagg aggaagcaaa caccattgct aagtcggatc tgctccagtg tctccagtac cagttctacc agatcccagg gacctgcctg ctcccagagg tgacagagga agatcaagga 300 aggatotgtg tggtcattga cotogatgaa accottgtgc atagctcott taagccaatc 360 aacaatgctg acttcatagt gcctatagag attgagggga ccactcacca ggtgtatgtg 420 ctcaagaggc cttatgtgga tgagttcctg agacgcatgg gggaactctt tgaatgtgtt 480 ctcttcactg ccagcctggc caagtatgcc gaccctgtga cagacctgct ggaccggtgt 540 ggggtgttee gggecegeet atteegtgag tettgegtgt teeaceaggg etgetaegte 600 aaggacctca gccgcctggg gagggacctg agaaagaccc tcatcctgga caactcgcct 660 gettettaca tattecacce egagaatgea gtgeetgtge agteetggtt tgatgacatg 720 qcaqacactq aqttqctqaa cctqatccca atctttqaqq aqctqaqcqq aqcaqaqqac 780 qtctacacca qccttqqqqc aqctqcqqqc cccttaqcct qcctqcttc caaqcqacqq 840 ccateccagt ag 852

<210> 4 <211> 283 <212> PRT <213> Homo sapiens

<400> 4

Met Glu His Gly Ser Ile Ile Thr Gln Ala Arg Arg Glu Asp Ala Leu 1 5 10 10 15

Val Leu Thr Lys Gln Gly Leu Val Ser Lys Ser Ser Pro Lys Lys Pro 20 25 30

Arg	Gly	Arg 35	Asn	Ile	Phe	Lys	Ala 40	Leu	Phe	Cys	Cys	Phe 45	Arg	Ala	Gln
His	Val 50	Gly	Gln	Ser	Ser	Ser 55	Ser	Thr	Glu	Leu	Ala 60	Ala	Tyr	Lys	Glu
G1u 65	Ala	Asn	Thr	Ile	Ala 70	Lys	Ser	Asp	Leu	Leu 75	Gln	Cys	Leu	Gln	Tyr 80
Gln	Phe	Tyr	Gln	Ile 85	Pro	Gly	Thr	Cys	Leu 90	Leu	Pro	Glu	Val	Thr 95	Glu
Glu	Asp	Gln	Gly 100	Arg	Ile	Суз	Val	Val 105	Ile	Asp	Leu	Asp	Glu 110	Thr	Leu
Val	His	Ser 115	Ser	Phe	Lys	Pro	Ile 120	Asn	Asn	Ala	Asp	Phe 125	Ile	Val	Pro
Ile	Glu 130	Ile	Glu	Gly	Thr	Thr 135	His	Gln	Val	Tyr	Val 140	Leu	Lys	Arg	Pro
Tyr 145	Val	Asp	Glu	Phe	Leu 150	Arg	Arg	Met	Gly	G1u 155	Leu	Phe	Glu	Cys	Val 160
Leu	Phe	Thr	Ala	Ser 165	Leu	Ala	Lys	Tyr	Ala 170	Asp	Pro	Val	Thr	Asp 175	Leu
Leu	Asp	Arg	Cys 180	Gly	Val	Phe	Arg	Ala 185	Arg	Leu	Phe	Arg	Glu 190	Ser	Cys
Val	Phe	His 195	Gln	Gly	Cys	Tyr	Val 200	Lys	Asp	Leu	Ser	Arg 205	Leu	Gly	Arg
Asp	Leu 210	Arg	Lys	Thr	Leu	Ile 215	Leu	Asp	Asn	Ser	Pro 220	Ala	Ser	Tyr	Ile
Phe 225	His	Pro	Glu	Asn	Ala 230	Val	Pro	Val	Gln	Ser 235	Trp	Phe	Asp	Asp	Met 240
Ala	Asp	Thr	Glu	Leu 245	Leu	Asn	Leu	Ile	Pro 250	Ile	Phe	Glu	Glu	Leu 255	Ser
Gly	Ala	Glu	Asp 260	Val	Tyr	Thr	Ser	Leu 265	Gly	Ala	Ala	Ala	Gly 270	Pro	Leu

Ala Cys Pro Ala Ser Lys Arg Arg Pro Ser Gln

- <210> 5 <211> 798
- <212> DNA <213> Homo sapiens
- <400> 5

atggacggcc cggccatcat cacccaggtg accaacccca aggaggacga gggccggttg ccqqqcqcqq qcqaqaaaqc ctcccaqtqc aacqtcaqct taaaqaaqca qaqqaqccqc agcatectta geteettett etgetgette egtgattaca atgtggagge ecetecacee agcagcccca gtgtgcttcc gccactggtg gaggagaatg gtgggcttca gaagccacca gctaagtacc ttcttccaga ggtgacggtg cttgactatg gaaagaaatg tgtggtcatt gatttagatg aaacattggt gcacagttcg tttaagccta ttagtaatgc tgattttatt gttccggttg aaatcgatgg aactatacat caggtgtatg tgctgaagcg gccacatgtg gacgagttcc tccagaggat ggggcagctt tttgaatgtg tgctctttac tgccagcttg gccaagtatg cagaccctgt ggctgacctc ctagaccgct ggggtgtgtt ccgggcccgg ctettcagag aatcatgtgt ttttcatcgt gggaactacg tgaaggacet gagtegeett gggcgggagc tgagcaaagt gatcattgtt gacaattccc ctgcctcata catcttccat cctqaqaatq caqtqcctqt qcaqtcctqq ttcqatqaca tqacqqacac qqaqctqctq gacctcatcc ccttctttga gggcctgagc cgggaggacg acgtgtacag catgctgcac agactctgca ataggtag

120

180

240

300

360 420

480

540

600

660 720

780

798

- <210> 6
- <211> 265 <212> PRT
- <213> Homo sapiens
- <400> 6

Met Asp Glv Pro Ala Ile Ile Thr Gln Val Thr Asn Pro Lvs Glu Asp 5

Glu Gly Arg Leu Pro Gly Ala Gly Glu Lys Ala Ser Gln Cys Asn Val 20

Ser Leu Lys Lys Gln Arg Ser Arg Ser Ile Leu Ser Ser Phe Phe Cys 35 40

Cys Phe Arg Asp Tyr Asn Val Glu Ala Pro Pro Pro Ser Ser Pro Ser 50 55 60

Val Leu Pro Pro Leu Val Glu Glu Asn Gly Gly Leu Gln Lys Pro Pro 7.0 7.5 65 Ala Lys Tyr Leu Leu Pro Glu Val Thr Val Leu Asp Tyr Gly Lys Lys 8.5 90 Cys Val Val Ile Asp Leu Asp Glu Thr Leu Val His Ser Ser Phe Lys 100 105 Pro Ile Ser Asn Ala Asp Phe Ile Val Pro Val Glu Ile Asp Glv Thr 115 120 Ile His Gln Val Tyr Val Leu Lys Arg Pro His Val Asp Glu Phe Leu 135 Gln Arg Met Gly Gln Leu Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro Val Ala Asp Leu Leu Asp Arg Trp Gly Val 165 170 Phe Arg Ala Arg Leu Phe Arg Glu Ser Cys Val Phe His Arg Gly Asn 180 185 Tyr Val Lys Asp Leu Ser Arg Leu Gly Arg Glu Leu Ser Lys Val Ile 195 200 Ile Val Asp Asn Ser Pro Ala Ser Tyr Ile Phe His Pro Glu Asn Ala 210 215 220

Val Pro Val Gln Ser Trp Phe Asp Asp Met Thr Asp Thr Glu Leu Leu 225 230 235

Asp Leu Ile Pro Phe Phe Glu Glv Leu Ser Arg Glu Asp Asp Val Tvr 245 250

Ser Met Leu His Arg Leu Cys Asn Arg 260

<210> 7 <211> 642

<212> DNA

<213> Homo sapiens

<40.0> 7

atgatgggga ggecetgeet geteacageg gggegeeeet gettgtggag gagaatggeg 60

ccatccctaa qqcaqacccc aqtccaatac ctqctccctq aqqccaaqqc ccaqqactca 180 qacaaqatct qcqtqqtcat cqacctqqac qaqaccctqq tqcacaqctc cttcaaqcca gtgaacaacg cggacttcat catccctgtg gagattgatg gggtggtcca ccaggtctac 240 gtgttgaage gteeteaegt ggatgagtte etgeagegaa tgggegaget etttgaatgt 300 gtgctgttca ctgctagcct cgccaagtac gcagacccag tagctgacct gctggacaaa 360 tqqqqqqcct tccqqqcccq qctqtttcqa qaqtcctqcq tcttccaccq qqqqaactac 420 qtqaaqqacc tqaqccqqtt qqqtcqaqac ctqcqqcqqq tqctcatcct qqacaattca 480 cctgcctcct atgtcttcca tccagacaat gctgtaccgg tggcctcgtg gtttgacaac 540 atgagtgaca cagageteca egaceteete ecettetteg ageaacteag eegtgtggac 600 gacgtgtact cagtgctcag gcagccacgg ccagggagct ag 642

- <210> 8 <211> 213
- <212> PRT
- <213> Homo sapiens

<400> 8

Met Met Gly Arg Pro Cys Leu Leu Thr Ala Gly Arg Pro Cys Leu Trp 1 5 10 15

Arg Arg Met Ala Pro Ser Leu Arg Gln Thr Pro Val Gln Tyr Leu Leu 20 25 30

Pro Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Asp $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Asp Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala 50 60

Asp Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr 65 70 75 80

Val Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu 85 90 95

Leu Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu 115 120 125

Phe Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu

130 135 140

Ser Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser 150 155 Pro Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser 165 170 175 Trp Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe 180 185 Phe Glu Gln Leu Ser Arg Val Asp Asp Val Tvr Ser Val Leu Arg Gln 200 Pro Arg Pro Gly Ser 210 <210> 9 <211> 783 <212> DNA <213> Drosophila <400> 9 atggacaget eggeegteat tacteagate ageaaggagg aggetegggg eccqetgegg 60 ggcaaaggtg accagaagtc agcagettcc cagaagcccc gaagccgggg catcetccac 120 180 teactettet getgtgtetg eegggatgat ggggaggeee tgeetgetea eageggggeg cccctgcttg tggaggagaa tggcgccatc cctaagaccc cagtccaata cctgctccct 240 gaggccaagg cccaggactc agacaagatc tgcgtggtca tcgarctgaa cgagaccctg 300 gtgcacaget cettcaagee agtgaacaac geggaettea teatecetgt ggagattgat 360 qqqqtqqtcc accaqqtcta cqtqttqaaq cqtcctcatq tqqatqaqtt cctqcaqcqa 420 atgggcgage tetttgaatg tgtgetgtte actgetagee tegecaagta egcagaceca 480 gtagetgace tgetggacaa atggggggee tteegggeee ggetgttteg agagteetge 540 gtcttccacc gggggaacta cgtgaaggac ctgagccggt tgggtcgaga cctgcggcgg 600 gtgctcatcc tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtaccg 660 gtggcctcgt ggtttgacaa catgagtgac acagagctcc acgacctcct ccccttcttc 720 780 gagcaactca gccgtgtgga cgacgtgtac tcagtgctca ggcagccacg gccagggagc 783 tag

<210> 10 <211> 260

<212> PRT

- <213> Drosophila
- <400> 10
- Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg 1 5 10 15
- Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys 20 25 30
- Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg
- Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Val $50 \hspace{1.5cm} 60 \hspace{1.5cm}$
- Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro 65 70 70 75 75 80
- Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu Leu 85 90 95
- Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp 100 105 110
- Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val
- Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu 130 $$135\$
- Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro 145 150150155
- Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe 165 170 175
- Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser 180 185 190
- Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro $195 \hspace{0.5cm} 200 \hspace{0.5cm} 205 \hspace{0.5cm}$
- Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp 210 215 220
- Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe

Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro 245 250 255

Arg Pro Gly Ser 260

<210> 11

<211> 642

<212> DNA <213> Drosophila

<400> 11 atgatgggga ggccctgcct gctcacagcg gggcgcccct gcttgtggag gagaatggcg

ccatccctaa ggcagacccc agtccaatac ctgctccctg aggccaaggc ccaggactca gacaagatct gcgtggtcat cgarctgaac gagaccctgg tgcacagctc cttcaagcca gtgaacaacg cggacttcat catccctgtg gagattgatg gggtggtcca ccaggtctac gtgttgaage gteeteaegt ggatgagtte etgeagegaa tgggegaget etttgaatgt 60

180

240

300

360

420

600

642

gtgctgttca ctgctagcct cgccaagtac gcagacccag tagctgacct gctggacaaa tggggggct tccgggcccg gctgtttcga gagtcctgcg tcttccaccg ggggaactac

qtqaaqqacc tqaqccqqtt qqqtcqaqac ctqcqqcqqq tqctcatcct qqacaattca 480 cctgcctcct atgtcttcca tccagacaat gctgtaccgg tggcctcgtg gtttgacaac 540

atgagtgaca cagageteca egacetecte ecettetteg ageaacteag eegtgtggac

gacgtgtact cagtgctcag gcagccacgg ccagggagct ag

<210> 12 <211> 213

<212> PRT

<213> Drosophila

<400> 12

Met Met Gly Arg Pro Cys Leu Leu Thr Ala Gly Arg Pro Cys Leu Trp

Arg Arg Met Ala Pro Ser Leu Arg Gln Thr Pro Val Gln Tyr Leu Leu 20

Pro Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu 35 40

Leu Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala 50 55 60

Asp 65	Phe	Ile	Ile	Pro	Va1 70	Glu	Ile	Asp	Gly	Val 75	Val	His	Gln	Val	Tyr 80	
Val	Leu	Lys	Arg	Pro 85	His	Val	Asp	Glu	Phe 90	Leu	Gln	Arg	Met	Gly 95	G1u	
Leu	Phe	G1u	Cys 100	Va1	Leu	Phe	Thr	A1a 105	Ser	Leu	Ala	Lys	Tyr 110	Ala	Asp	
Pro	Val	Ala 115	Asp	Leu	Leu	Asp	Lys 120		G1y	Ala	Phe	Arg 125	Ala	Arg	Leu	
Phe	Arg 130	Glu	Ser	Cys	Va1	Phe 135	His	Arg	G1y	Asn	Tyr 140	Val	Lys	Asp	Leu	
Ser 145	Arg	Leu	G1y	Arg	Asp 150	Leu	Arg	Arg	Va1	Leu 155	Ile	Leu	Asp	Asn	Ser 160	
Pro	Ala	Ser	Tyr	Val 165		His	Pro	Asp	Asn 170	Ala	Val	Pro	Val	Ala 175	Ser	
Trp	Phe	Asp	Asn 180	Met	Ser	Asp	Thr	Glu 185	Leu	His	Asp	Leu	Leu 190	Pro	Phe	
Phe	Glu	G1n 195	Leu	Ser	Arg	Val	Asp 200	Asp	Val	Tyr	Ser	Va1 205	Leu	Arg	Gln	
Pro	Arg 210	Pro	G1y	Ser												
<210 <211 <212 <213	l> '	13 7020 DNA Drose	ophi:	la												
<400		13	7037	7330	00 0	~	7700		nt 00	na art	000	oot s	700	2020	eggtee	(
														-	ttaagg	12
ggga	igcci	ttg a	aaac	ggcg	cc t	gggti	tcca	t gt	ttgca	atcc	gcc	tege	ggg .	aagg	aaactc	18
cato	gttgi	taa (caaa	gttt	cc t	ccgc	gece	c ct	ecct	ccc	ctc	cccc	cta (gaac	ctggct	24
ccc	ctcc	ect (eegg	agct	eg e	gggg	atcc	e te	ecte	ccac	ccc	tece	ctc ·	cccc	ccgcgc	30
cccq	gatto	ccg (gece	cago	cg g	gggg	gagge	e ege	ggcg	cccg	ggc	caga	gtc	egge	eggage	36
agaa	reace	icc (caac	ccca	ta a	acad	et.ca	T CC	atcat	tac	tca	rate	age .	aagg.	aggagg	42

ctcggggccc	gctgcggggc	aaaggtaccg	gggctgcggg	gagggggccg	aagccggggc	480
gccgtgggag	gagagaaggg	gccgggatct	tececagggg	agccgccgcc	gccgccccgg	540
gcggccgcct	tagctgtgcc	cgaagctccc	agcccgagag	ggagcaggga	gagagtttga	600
actcagagga	ggctcagaga	cgcggggcgg	ggcctggcgc	ctttggggcg	ctcctgtccg	660
ctcgaggtga	ggaaactgag	gcaggaatag	agagggaact	ccttcggggg	tttcctggca	720
ggcattgcgt	ggtgcatggg	cgcccccca	ccattggcgc	caatggggct	gtgagatggg	780
ggagctgagg	agggcgccta	tgggccaccc	gctgagactc	cgccccaccc	cccaccccca	840
ccccccggg	ctgcggtccg	gtagggtctt	gggaggggc	gccgaggtga	cagcaggetg	900
gggaggettg	gagggatete	ccgccaacac	acagctacgt	tccccacaaa	cttcgcgtca	960
cgcgtggagg	cgccgacccc	ctcggaggca	cagagaggac	ggccggcact	tccaagagtc	1020
gcttggcgcc	cgcggggaga	gtcgtgcgcc	tagtgggcac	gcaccacccc	gcaaagcctc	1080
gccgccccga	cgaggctgcg	tcccccagcg	tggctgggcc	ggggtggggg	ggtctgtctt	1140
ctccttttcc	ccgtgtggac	ctcaggatct	ggacgctgcc	cccaggtctg	cccaccctcg	1200
cctgggtctg	gctgccccgg	aactgagggc	aaggtggaaa	ggctagttgc	agggggccgg	1260
aggggggtgg	ggtgggaggg	gtatctgtca	atcaggctgc	tgggctccag	gtcggaggtc	1320
tgggcggggc	agggcaaaca	gatggccact	ggacactggc	cccaggccgc	gggactgcac	1380
ccctgcctct	gggcccagcc	gcagtgagga	cttcgtaccc	acgggggtgg	agaggatgga	1440
gggagggcag	gggtggactg	ccctgggtcc	caggccctgg	ctgtcctgag	caggggtgct	1500
caggtaaggt	ggggtcagga	ggcaccgcaa	tggggctgat	cagcagcagt	catggaggct	1560
gtgagaggca	gggagagagc	accccaggac	ctccttctcc	aggccacgca	ctccctatgt	1620
gggcgcctta	atacctgcta	gacctatttg	tctgggagct	gcaggagcct	tggagttgat	1680
tgtggagccc	tgacaggggc	gtttcagaga	aagtcaggag	ctgccttcgt	gtgtctggat	1740
gaaggggcca	cggcaagatc	ctcctggccc	aggggttcac	acctgggcac	acatgcagga	1800
ttctgcaggc	cagtgtgcac	cgagcctcca	acttgtgcct	ccctacttca	ggtgaccaga	1860
agtcagcagc	ttcccagaag	ccccgaagcc	ggggcatcct	ccactcactc	ttctgctgtg	1920
tetgeeggga	tgatggggag	gccctgcctg	ctcacagcgg	ggcgcccctg	cttgtggagg	1980
agaatggege	catccctaag	gtgcgtgggg	gccaggtggg	gccacggggg	cacctggact	2040
cagtettcag	ggetttaggg	gaaggggctc	ctgactgage	ttttcaggat	ggacttgcag	2100
acctgaaagt	gcagagtagg	agggtggcag	cctcccctgc	caggccctgc	ccactgtggg	2160
gaaactgaat	teteceteat	aagtggaagc	ttttttctac	cttggttttt	agagaggtet	2220

caaagagcca	agaggcctac	ccaagcccta	gagctggcag	gggcaaagct	gggaaggggg	2280
aagtatctgt	tcctggggcc	tggggttcct	ctggagacgg	ctagggggag	aagcctgcgt	2340
gggaggaagg	accaggcccg	gagagaggca	ccccagccag	ccccgccctc	cctacagcag	2400
accccagtcc	aatacctgct	ccctgaggcc	aaggcccagg	actcagacaa	gatctgcgtg	2460
gtcatcgacc	tggacgagac	cctggtgcac	agctccttca	aggtgggccc	tgctcaacag	2520
ccctcagccc	gggtctcggg	gggcatcccc	caccctggcc	tgggagggag	gtgtgtgctg	2580
gaccccatgc	cctggggctc	ctcctccaac	tccagcagct	cttttccccc	cacagccagt	2640
gaacaacgcg	gacttcatca	tccctgtgga	gattgatggg	gtggtccacc	aggtgagggc	2700
caggaagagg	cagtggtggg	cttggcatct	gcctccagac	cctaggctct	tcccaccaat	2760
ccggagcgcc	tcggatggga	attggataca	tgtggaatgt	cagaggccca	gagagggtgt	2820
gagacttgtc	ccaaagtcac	acagaacctc	aagggcttgt	gctgactcca	agcctgcaga	2880
gtgggctcct	cctctaggct	cccccgtgct	gtgctccctc	gccccaccct	gcccgggacc	2940
cagttcaagt	aattcaggat	aggttgtgtg	ctgtccagcc	tgttctccat	tacttggctc	3000
ggggaccggt	gccctgcagc	cttggggtga	gggggctgcc	cctggattcc	tgcactaggc	3060
tgaggttgag	gcaggggaag	ggattgggaa	ttagggacct	cgtgaggtag	gactggccag	3120
tggagtggaa	gttttgatcg	ttttctggcg	gggggtgggt	acagtttccc	cagcagtggt	3180
cagggtagct	ggccaagcgg	agcctgcggg	cccagtctcc	ttcctgtgcg	cctctgcctc	3240
cctggcccat	gccctgccag	ccctcggcca	ccccacact	gccccactgg	cccgcagccc	3300
cctcactggc	ccgcccccca	ggtctacgtg	ttgaagcgtc	ctcatgtgga	tgagttcctg	3360
cagcgaatgg	gcgagctctt	tgaatgtgtg	ctgttcactg	ctagcctcgc	caaggtgagc	3420
cccacagggg	tcccggggca	accetgeest	cctacctacc	tecegeatge	agcccagtga	3480
acctgcgggc	cccaggatga	cccacctcct	gctcccagta	cgcagaccca	gtagctgacc	3540
tgctggacaa	atggggggcc	ttccgggccc	ggctgtttcg	agagtcctgc	gtcttccacc	3600
gggggaacta	cgtgaaggac	ctgagccggt	tgggtcgaga	cctgcggcgg	gtgctcatcc	3660
tggacaattc	acctgcctcc	tatgtcttcc	atccagacaa	tgctgtgagt	gegggetgga	3720
ctgggactgg	gacaggaget	gagacccagg	aaggggtcag	tccattcagg	ccaccttggc	3780
ctcttggatc	cccagttggg	gggtgggtgc	cctcccagtc	cttcctgcat	tcattgcctg	3840
tgcctgccgc	ccactcccct	catccacctg	ccctgtagcc	atatggtctt	ttecectege	3900
acaaagcaga	gcatctgcca	tgcacagggg	ccccacagg	gcaacggagt	ttggaaagtt	3960
tcaatttttc	gaattgccag	ttgtgaccta	ctgatggccc	acagaattaa	tttagtgggt	4020
tctgattggg	aattttaaca	aaatgaaata	gaatagaaaa	tatccggtcg	ggtgcagtgg	4080

ctcatgcctg	taatcccagc	actttgggaa	gctgaggtgg	gcaggtagct	gageceagta	4140
gttcaagacc	agcctcggca	acatagtgaa	accttatgtc	tacaaaaaat	acaaaaacta	4200
gccaggcgtg	gtggcgcatg	cctggagtcc	cggctatgca	gaaggctgag	gtaggagtat	4260
cgcttgagcc	ctggaggcag	aggctgtggt	gagccaagat	tgtgccactg	cactctagcc	4320
tgggcaacag	agcaagaccc	tgcctcaaaa	aaaaaaaaa	gtatccaagt	gcttcgcaca	4380
gataaggtta	ggaattgtga	agcttttgca	ttgttacgtt	ataaatgtgt	tttcctgggg	4440
attgctgtca	aaaaagtttg	aacactgtgg	gtgaggggtt	ttcagaaact	gcatgatctg	4500
agtagtggct	acatagggct	ggcctggaaa	ttctgcaccc	aggaccacct	gccccctca	4560
tcttcctaca	cccacttccc	caggtaccgg	tggcctcgtg	gtttgacaac	atgagtgaca	4620
cagageteca	cgacctcctc	cccttcttcg	agcaactcag	ccgtgtggac	gacgtgtact	4680
cagtgctcag	gcagccacgg	ccagggagct	agtgagggtg	atggggccag	gacctgcccc	4740
tgaccaatga	tacccacacc	tcctcccagg	aagactgccc	aggcctttgt	taggaaaacc	4800
catgggccgc	cgccacactc	agtgccatgg	ggaagcgggc	gtctccccca	ccagccccac	4860
caggcggtgt	aggggcagca	ggctgcactg	aggaccgtga	getecaggee	ccgtgtcagt	4920
gccttcaaac	ctcctcccct	attctcaggg	gacctggggg	gccctgcctg	ctgctccctt	4980
tttctgtctc	tgtccatgct	gccatgtttc	tctgctgcca	aattgggccc	cttggcccct	5040
teeggttetg	cttcctgggg	gcagggttcc	tgccttggac	ccccagtctg	ggaacggtgg	5100
acatcaagtg	ccttgcatag	agccccctct	teccegecea	gctttcccag	gggcacagct	5160
ctaggctggg	aggggagaac	cageceetee	ccctgcccca	cctcctccct	tgggactgag	5220
agggccccta	ccaacctttg	cctctgcctt	ggagggaggg	gaggtetgtt	accactgggg	5280
aaggcagcag	gagtetgtee	ttcaggcccc	acagtgcagc	ttctccaggg	ccgacagctg	5340
agggetgete	cctgcatcat	ccaagcaatg	acctcagact	tetgeettaa	ccagccccgg	5400
ggettggete	ccccagetet	gagcgtgggg	gcataggcag	gacccccctt	gtggtgccat	5460
ataaatatgt	acatgtgtat	atagattttt	aggggaagga	gagagggaag	ggtcagggta	5520
gagacacccc	tecettgeee	ctttcctggg	cccagaagtt	ggggggaggg	agggaaagga	5580
tttttacatt	ttttaaactg	ctattttctg	aatggaacaa	gctgggccaa	ggggcccagg	5640
ccctgtcctc	tgtccctcac	acccctttgc	tccgttcatt	cattcaaaaa	aacatttett	5700
gagcaccttc	tgtgcccagc	atatgctagg	cccaccagct	aagtgtgtgt	ggggggtctc	5760
tacgccagct	catcagtgcc	tccttgccca	tccttcaccg	gtgcctttgg	gggatctgta	5820
ggaggtggga	ccttctgtgg	ggtttgggga	tctccaggaa	gcccgaccaa	gctgtcccct	5880

teccetgtge caacceatet	cctacagccc	cctgcctgat	cccctgctgg	ctgggggcag	5940
ctcccaggat atcctgcctt	ccaactgttt	ctgaagcccc	tcctcctaac	atggcgattc	6000
cggaggtcaa ggccttgggc	tctccccagg	gtctaacggt	taaggggacc	cacataccag	6060
tgccaagggg gatgtcaagt	ggtgatgtcg	ttgtgctccc	ctccccaga	gcgggtgggc	6120
ggggggtgaa tatggttggc	ctgcatcagg	tggccttccc	atttaagtgc	cttctctgtg	6180
actgagagcc ctagtgtgat	gagaactaaa	gagaaagcca	gacccctatc	ctgcttctgt	6240
ggttattgcg ggggacttca	gcaagtgggg	tgtgtgcctt	gcacctgcgg	ctgccgtggg	6300
ccccccccc gcttcagcac	acctagaggg	ctgttggtgg	agggagggc	tgcccggccc	6360
tcgacacttc aggtgggaag	ggcagcgtca	gagcacaaat	ttgagcctcc	aggctgtgct	6420
cgtctacgtc ttcccgcctc	gggtatgtgg	tctgcaaaat	ggagatgtgc	cctattggca	6480
ggactaatta agtgcctgga	cacagacgac	aggatactag	tagctggaaa	gcaaaattcg	6540
aaggeetggg taggggeagt	cctggaatgc	ggcgggggag	ggggcgtggc	ctctgccctg	6600
gagcagaggg geggggettg	tgcggctccg	aaggcagagg	cggggagcgg	ggcgaggctc	6660
tgggtggagg ctccagcggc	agaacttgtt	ggcctgggtg	cggcgggctc	cggcgcctgg	6720
ctctgccggg cggcctgggt	ggggccggcg	ccggggctcg	gcccccccg	cccctctgcg	6780
gcctctgagc agccattggc	cgcgccccg	cccacttcc	cgccccgccc	cgcgtccggg	6840
aggcacttcc tttgcgaaac	cgcgcggccc	caggcgccgg	caggaaatgc	cctcccgccg	6900
tecceageca geetttgett	gcttcccacg	ccagccgcta	gaggcctccc	tgtcctcgcg	6960
gacgcaggaa ctccccgggg	gctggaaaga	tggggcccac	ctcactcacc	cctttcccgg	7020
<210> 14 <211> 4833 <212> DNA <213> Homo sapiens <400> 14					
gccatttcct cctcttgttt	tcactccgga	ttctccatgt	tggacccaaa	ctgaggagcc	60
cggagctgcc gctgggggat	cggggccggg	ggcacccggg	ggagccgctg	cccgggccgc	120
ccgccctttg tacaggccgc	ctcccttccc	ggtccgggga	ggaaacgaga	ggggggatgt	180
gaacagctgt ggaagtcgga	gtctcgggag	ccggagcggg	cccccgccca	ggccccccag	240
cccageccag cccgegegec	egecegteet	cccgtccagc	cageeeggge	ccgcgggatt	300
gttagatgga acacggetee	atcatcaccc	aggcgcggag	ggaagaegee	ctggtgctca	360
ccaagcaagg cctggtctcc	aagtcctctc	ctaagaagcc	tcgtggacgt	aacatcttca	420
aggccctttt ctgctgtttt	cgcgcccagc	atgttggcca	gtcaagttcc	tecaetgage	480

540 togotgogta taaggaggaa gcaaacacca ttgctaagtc ggatetgctc cagtgtctcc 600 agtaccagtt ctaccagatc ccagggacct gcctgctccc agaggtgaca gaggaagatc aaggaaggat ctgtgtggtc attgacctcg atgaaaccct tgtgcatagc tcctttaagc 660 caatcaacaa tgctgacttc atagtgccta tagagattga ggggaccact caccaggtgt 720 atgtgctcaa gaggccttat gtggatgagt teetgagacg catgggggaa etetttgaat 780 qtqttctctt cactqccaqc ctqqccaaqt atqccqaccc tqtqacaqac ctqctqqacc 840 ggtgtggggt gttccgggcc cgcctattcc gtgagtcttg cgtgttccac cagggctgct 900 acqtcaaqqa cctcaqccqc ctqqqqaqqq acctqaqaaa qaccctcatc ctqqacaact 960 egectgette ttacatatte eacceegaga atgeagtgee tgtgeagtee tggtttgatg 1020 acatggcaga cactgagttg ctgaacctga teccaatett tgaggagetg ageggageag 1080 1140 aggacgtcta caccagcctt ggggcagctg cgggcccctt agcctgccct gcttccaagc 1200 gacggccatc ccagtagggg actttcccac actgtgcctt tacgatcagc gtgacagagt agaagctgga gtgcctcacc acacggcccg gaaacagcgg gaagtaactg gaaagagctt 1260 1320 taggacaget tagatgeega gtgggegaat gecagaceaa tgataceeag agetacetge cgccaacttg ttgagatgtg tgtttgactg tgagagagtg tgtgtttgtg tgtgtgtttt 1380 qccatqaact qtqqccccaq tqtataqtqt ttcaqtqqqq qaqaaqctqa aaqaccaaqa 1440 1500 ctcttcccaa qttaqcttqt ctcctctcct qtcaccctaa qaqccactqa qttqtqtaqq gatgaaract attgaagact ccattgccaa accatggcct ttcctcagtg ttgtaaggcc 1560 tatgccaagg ataaaggaag ggtatgcctt tgggtactcc aggcatacac ctttctgaaa 1620 teetteteea geeagetget geagacaaaa gateacattt etgggaagat gagaacttgt 1680 1740 ttccaqacca qcatccaqtq qccatcaqqt cttqtqqccc aaaqqctatq cttqcctccq getgagtgee tgggatagge ettttetatg tetecceaag getggggtge tgageetgee 1800 ttecteacea ectagecata gteteaaace tgtggggaag gaggttttet eeetgeegg 1860 gaagaggaca gataactgat ttccgttctt ttgactgtgt tttaaaattc tctttctaaa 1920 cacagagtgt tgggcctggt ttgtttctga caaagttaca gtcctgggcc tgtaatgaat 1980 2040 gteggeggeg etggggttge agggaaaaga caaateetea aagegtggae gtgtgteeee atggcttgtg gatcagctaa gctcgggatc atttccataa gtctgctttt cagggattct ctgctggtgc tggtgcaagg acttctgttc caaaggctgg gaaaaactaa gctgtcccag 2160 cccctcccat ttcttgggca gggctctttt cctgttgtgt cttcccccag ggcctgtcct 2280 qtaccqagct ctgtctgttc cagcctacat ccttcctggg tgttgctttt cctcttaagg 2340 qcctcaqaac tcttqctctt cctqqqqtqa qqqqqaatqa qtqttcttqa catqtqacaq

cctaatgcgc	atgctttctg	cctctggtaa	caggagtgag	tgagcccctc	agacctgcac	2400
tetgggtgte	tectgettae	aaaggttctt	aatagtgaat	gctttaaaat	taaagtcatc	2460
acgaaatgga	agttttccca	gggtggaaaa	taagaggaag	tgctgctgta	attgggagca	2520
caaggggcct	cccaaaaagg	agccccacct	cagcatcact	gccttaatcg	tggcctccct	2580
ggggtgggtg	gggttctctc	ctccctccct	ccctcctcct	ggggtgggag	ggcgctcctg	2640
ttcccatctc	tgtgttccct	ggaggcaggt	atcacaaagc	atttgtgaat	tgctttaggt	2700
gcagggacac	cacccactca	ggactcttcc	ccatcatccc	ttccattgcc	acaccctaga	2760
tccagcctca	ggaactaaca	agttktgaga	aaagcaggtg	gtagagcagc	agcttcgtgc	2820
tctcagcggt	ggctggctgg	catttttctc	tagcgttgtg	gtgccacctt	cccttcttgt	2880
cccaaggtta	taaggccttg	tctttctctt	tggaatcata	aagtggaaca	gagtccccag	2940
aactcatgtg	ghcatttccg	acagcatcac	tccccggtgc	ctatggggtc	ccggtgtacc	3000
taaagggaga	aggaccccat	gtgctagcca	gaaatatact	gtctcttgaa	ggaaagcagg	3060
agctcagact	cttagagcca	gctgtggctt	cggacccaag	gcctgaccta	ggctgctatc	3120
ctaatattgg	aggagggcc	tctcttccaa	gcccaccct	aagggttagc	ccttggacaa	3180
atcttgtgcc	gtctaggccc	agccaggctt	ttctgactaa	ataagcaata	agaggeteta	3240
agctgactga	gttgcaagga	ccctttccgc	cctcccttgg	atctccatgt	ttctccagat	3300
ggcggaagag	catgtgccac	cccctttcct	aacagacttg	tccaagtgct	tggcgtggga	3360
cccatgacca	aagcccagga	tggcttggtg	ggagtgtccc	tgctgcatct	gcatgaagcc	3420
cctgcttttt	aggcctcact	cccatcagaa	ccctgcctgc	ccacctgcaa	ctcccccca	3480
acaatgccat	teccaettge	cccagagaag	ctactcggcc	aaacctagcc	agggtctgtt	3540
cttgtggacc	agagccagcc	tagtcattat	ttgctgtcgg	gtttccagtt	tcaccgtgtg	3600
ttagggtgag	ggatgattgt	aaaatttgct	cctcaaagga	atcaggccag	actcaatttt	3660
gggagggcaa	gacagggagg	aggccgcttc	atcccagact	ctcttctagg	gcttcccacc	3720
atcagcccct	cccacttgag	actggtcttt	gggaggcaat	aggccaccat	gcctggtcag	3780
caccaattca	agccatgcca	ggaatctgcc	tacctgccag	gttcagttct	tttaaggtgc	3840
ctcttcaggg	acacagtgtg	tctctctgat	tgggcttcta	aatcaaaagc	ctgatgttcg	3900
tgtccctctc	atagggggag	ctttggacac	aggaccagtt	tggaaaaggg	tcaggtaagg	3960
gtttccactc	tgcacattgt	agagggaaca	ctctgtaggc	ccatgggtcc	cttactagag	4020
aggttgagtg	aatttgcctt	cagttaacat	gggacettet	gtttagcttc	ctcttgcttc	4080
ccaaagattt	taagcatttt	gtaaatgtat	aaactcacct	ctggtaacag	tggcccagac	4140

gctgctttgt	gctaaaagca	tgggaaatgt	aaaggcagtc	tttctctggg	aaatggatgc	4200
tattctattc	tgctgcccct	acctgttcct	gaggcctcat	ttagaaagaa	aatcccctca	4260
gaaggctgtc	tggcacccag	tgtcctagcc	aggccaagta	tatgagaaag	gtaagtccat	4320
tttccccttc	aggtcctcag	tggattactt	aaccactgct	gtccctcggt	ccctttttcc	4380
taaacgggtt	tagttctgtc	ttttttctcc	ttttttctaa	atgctggtaa	atatttacat	4440
tcagccaggg	aagaggaggc	cagaggtcgg	gccagctgcc	ccattctttt	aacgttgtag	4500
ggcctgccca	tggagcggac	cctcctcttt	gggcctcgtg	agcttttttg	cttatcatgt	4560
tccatttcgt	gccgctttcc	cccttcaaga	tgccatttgg	agggtagggg	atctgcttcc	4620
cactgtgact	gggctatggg	attctgacta	ccttgcttac	agattcatgg	tttgataaat	4680
ttgttgtatt	ccaaaacttg	aaatgcagga	cgccattaag	tgtctgttta	tatttttgga	4740
atatttgtat	tacttacaat	taattaataa	aagtgggttt	aaaaaacctt	tccaggaaaa	4800
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa			4833
	o sapiens					
<400> 15 atggacggcc	cggccatcat	cacccaggtg	accaacccca	aggaggacga	gggccggttg	60
ccgggcgcgg	gcgagaaagc	ctcccagtgc	aacgtcagct	taaagaagca	gaggageege	120
agcatcctta	gctccttctt	ctgctgcttc	cgtgattaca	atgtggaggc	ccctccaccc	180
agcagcccca	gtgtgcttcc	gccactggtg	gaggagaatg	gtgggcttca	gaagccacca	240
gctaagtacc	ttetteeaga	ggtgacggtg	cttgactatg	gaaagaaatg	tgtggtcatt	300
gatttagatg	aaacattggt	gcacagttcg	tttaagccta	ttagtaatgc	tgattttatt	360
gttccggttg	aaatcgatgg	aactatacat	caggtgtatg	tgctgaagcg	gccacatgtg	420
gacgagttcc	tccagaggat	ggggcagctt	tttgaatgtg	tgctctttac	tgccagcttg	480
gccaagtatg	cagaccctgt	ggctgacctc	ctagaccgct	ggggtgtgtt	ccgggcccgg	540
ctcttcagag	aatcatgtgt	ttttcatcgt	gggaactacg	tgaaggacct	gagtegeett	600
gggcgggagc	tgagcaaagt	gatcattgtt	gacaattccc	ctgcctcata	catcttccat	660
cctgagaatg	cagtgcctgt	gcagtcctgg	ttcgatgaca	tgacggacac	ggagetgetg	720
gacctcatcc	ccttctttga	gggcctgagc	cgggaggacg	acgtgtacag	catgctgcac	780
agactctgca	ataggtagcc	ctggcctctg	cctgcctccc	gcctgtgcac	tctggaacct	840
ctggcctcag	gggacctgc					859

<210> 16 <211> 754 <212> DNA <213> Homo sapiens	
<400> 16 atgatgggga ggccctgcct gctcacagcg gggcgcccct gcttgtggag gagaatggcg	60
ccatccctaa ggcagacccc agtccaatac ctgctccctg aggccaaggc ccaggactca	120
gacaagatet gegtggteat egacetggae gagaceetgg tgeacagete etteaageea	180
gtgaacaacg cggacttcat catccctgtg gagattgatg gggtggtcca ccaggtctac	240
gtgttgaagc gtcctcacgt ggatgagttc ctgcagcgaa tgggcgagct ctttgaatgt	300
gtgctgttca ctgctagcct cgccaagtac gcagacccag tagctgacct gctggacaaa	360
tggggggcct tccgggcccg gctgtttcga gagtcctgcg tcttccaccg ggggaactac	420
gtgaaggacc tgagccggtt gggtcgagac ctgcggcggg tgctcatcct ggacaattca	480
cctgcctcct atgtcttcca tccagacaat gctgtaccgg tggcctcgtg gtttgacaac	540
atgagtgaca cagageteca egacetecte ecettetteg ageaacteag eegtgtggac	600
gacgtgtact cagtgctcag gcagccacgg ccagggagct agtgagggtg atggggccag	660
gacctgcccc tgaccaatga tacccacacc tecteccagg aagactgccc aggeetttgt	720
taggaaaacc catgggccgc cgccacactc agtg	754
<210> 17 <211> 27 <212> DNA <213> Artificial sequence <220> <223> Synthetic construct: polymerase binding site	
<400> 17 gaattaatac gactcactat agggaga	27
gaattaatat gatteattat aygyaga	2,
<210> 18 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Primer	
<400> 18 atgggcgaac tatacgagtg cgttc	25
<210> 19 <211> 25 <212> DNA	

<213>	Artificial sequence	
<220> <223>	Primer	
<400> atcaac	19 gaca acttegagat egteg	25
<210> <211> <212> <213>		
<220> <223>	Primer	
<400> atgtcg	20 etet tgeaaaaact aage	24
<210> <211> <212> <213>	25	
<220> <223>	Primer	
<400> tgaaga	21 teet eacegagege ggeta	25
<212>	25	
<220> <223>	Primer	
<400> cagctg	22 gtgc gggagtacgg cttcc	25
<210> <211> <212> <213>	22	
<220> <223>	Primer	
<400> gagetg	23 tcgt tgagctttgg cg	22
<210> <211> <212> <213>	24 23 DNA Artificial sequence	

```
<220>
<223> Primer
<400> 24
actgggccta ttactactgg ctc
                                                                             23
<210> 25
<210  25
<211>  25
<212>  DNA
<213>  Artificial sequence
<220>
<223> Primer
<400> 25
caacqaaqcc gagcgagcca tccag
                                                                             25
<210> 26
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 26
gcaacaactg ggccaagggt cattac
                                                                             26
<210> 27
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 27
                                                                             26
gccttccaag agcacgacgt acaaag
<210> 28
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 28
ctegecaate aagtacettg tgetge
                                                                             26
<210> 29
<211> 25
<212> DNA
<213> Artificial sequence
```

<220> <223>	Primer	
<400>		
cttcgc	etege aceteagaaa egate	2
<210>	30	
<211> <212>		
<213>	Artificial sequence	
<220>	Primer	
<400> caacgg	30 Baact aacggccgct ccgag	2
<210> <211>		
<211>		
	Artificial sequence	
<220>	Puince	
	Primer	
<400>		2
etegee	attg tteteetggt gg	_
<210>		
<211> <212>		
	Artificial sequence	
<220>	Puince	
	Primer	
<400>	32 etgot gotggttcaa catgg	2
cergee	reget getggtteau eutgg	-
<210>		
<211> <212>		
	Artificial sequence	
<220>		
	Primer	
<400>	33 ggag tagccaaact cgttg	2
gogget	ggag vagovaaavu bybby	-
<210>	34	
<211> <212>		
	Artificial sequence	
<220>		

<223>	Primer	
<400>		0.5
ttatag	gata tettegattt tegge	25
<210>		
<211> <212>		
<212>		
.000	-	
<220> <223>	Primer	
<400>	35 acto gtoatactoo tgottg	26
332		
<210>	36	
<211>		
<212>	DNA Artificial sequence	
	Incitional bodacino	
<220> <223>	Primer	
\223 <i>></i>	FILMEL	
<400>		0.5
tgcgca	gctc gcccatgtag acctg	25
<210>	37	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>		
cgcgtg	gatt ggggaagaag gtc	23
<210>	38	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	38	
ccgtaa	aacc gegegeatta aagt	24
<210> <211>	39 24	
<211>		
<213>		
<220>		
	Primer	

<400> tggtca	39 tggt cacgaatccg aatc	24
<210> <211> <212> <213>	27	
<220> <223>	Primer	
<400> cttggc	40 atcg aacatctgct gggtcag	27
<210> <211> <212> <213>		
<220> <223>	Primer	
<400> cgatca	41 kgaag tggatcgcgg tcctta	26
<210> <211> <212> <213>	24	
<220> <223>	Primer	
<400> ccctgg	42 potga agcagaactt catg	24
<210> <211> <212> <213>	25	
<220> <223>	Primer	
<400> tatggc	43 ataa aaggtgtggc cattc	25
<210> <211> <212> <213>	24 DNA	
<220> <223>	Primer	

<400> 44 gttetegeca tegttgagat etge	24
<210> 45 <211> 22 <212> DNA <213> Artificial sequence	
<220> <223> Primer	
<400> 45 cgtacatgag gtagaccctg ga	22
<210> 46 <211> 27 <212> DNA <213> Artificial sequence	
<220> <223> Primer	
<400> 46 eggeegteat tacteagate ageaagg	27
<210> 47 <211> 22 <212> DNA <213> Artificial sequence	
<220> <223> Primer	
<400> 47 tccaccaccc tgtgttgctg ta	22
<210> 48 <211> 27 <212> DNA <213> Artificial sequence	
<220> <223> Primer	
<400> 48 catctctgat ctcgactgct ccagcag	27
<210> 49 <211> 30 <212> DNA <213> Artificial sequence	
<220> <223> Primer	
<400> 49	

tgccctcacc caaggtetet gacactgtgg		30
<212>	50 30 DNA Artificial sequence	
<220> <223>	Primer	
<400> ctgtgg	50 ccat ggagggaaac agtggcttcc	30
<210> <211> <212> <213>		
<220> <223>	Primer	
<400> gcaacc	51 gcag gcacgactgt ttacggag	28
<210> <211> <212> <213>		
<220> <223>	Primer	
<400> ccatcg	52 cctg cgaaacctcc ccaggtaga	29
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400> gcagtg	53 aaca gcacacattc aaagagct	28
<210> <211> <212> <213>		
<22 0> <22 3>	Primer	
<400> accaca	54 gtcc atgccatcac	20

<212>	55 27 DNA Artificial sequence	
<220> <223>	Primer	
<400> gggtca	55 gaga gtggtgatge cacagtg	27
<210> <211> <212> <213>	56 28 DNA Artificial sequence	
<220> <223>	Primer	
<400> cttgaa	56 eage teetggatgg eagtgetg	28
<210> <211> <212> <213>		
<220> <223>	Primer	
<400> agaagt	57 ccag gagcagctga gggagcac	28
<212>	58 30 DNA Artificial sequence	
<220> <223>	Primer	
<400> agatga	58 ccat ccggaagaag ttggccttgt	30
<210> <211> <212> <213>	59 30 DNA Artificial sequence	
<220> <223>	Primer	
	59	30

```
<210> 60
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 60
                                                                        30
tgcggtttat attatcctgc acgccgggag
<210> 61
<210> 01
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 61
ggagccctat gcagggtaag ggaataa
                                                                        27
<210> 62
<211> 28
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 62
                                                                        28
aactatttct gggtcactcc ttagacac
<210> 63
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 63
ctggataagt tactgaagag tgggctttgg
                                                                        30
<210> 64
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 64
                                                                        29
caccagttcg agtccccqqa qaqqatatc
```

```
<210> 65
<211> 28
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 65
                                                                          28
gggctttgat ttttggagcc accttgtg
<210> 66
<210> 66
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 66
gctgggagga atgctttcta atgcatttg
                                                                          29
<210> 67
<211> 25
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 67
                                                                          25
cagacgacaa gttacatgca acatg
<210> 68
<211> 150
<212> PRT
<213> Homo Sapiens
<400> 68
Asn Arg Lvs Leu Val Leu Met Val Asp Leu Asp Gln Thr Leu Ile His
Thr Thr Glu Gln His Cys Gln Gln Met Ser Asn Lys Gly Ile Phe His
                                 25
Phe Gln Leu Gly Arg Gly Glu Pro Met Leu His Thr Arg Leu Arg Pro
His Cys Lys Asp Phe Leu Glu Lys Ile Ala Lys Leu Tyr Glu Leu His
                        55
    50
Val Phe Thr Phe Gly Ser Arg Leu Tyr Ala His Thr Ile Ala Gly Phe
65
                                         7.5
```

```
Leu Asp Pro Glu Lys Lys Leu Phe Ser His Arg Ile Leu Ser Arg Asp
                                  90
               85
Glu Cys Ile Asp Pro Phe Ser Lys Thr Gly Asn Leu Arg Asn Leu Phe
           100
                              105
                                                  110
Pro Cys Gly Asp Ser Met Val Cys Ile Ile Asp Asp Arg Glu Asp Val
        115
Trp Lvs Phe Ala Pro Asn Leu Ile Thr Val Lvs Lvs Tvr Val Tvr Phe
                       135
Gln Gly Thr Gly Asp Met
<210> 69
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus sequence
<220>
<221> MISC FEATURE
<222> (1)..(3)
<223> Xaa at 1, 2, or 3 is a hydrophobic residue
<220>
<221> MISC FEATURE
<222> (5)..(5)
<223> Xaa is any amino acid
<220>
<221> MISC FEATURE
<222> (7)..(7)
<223> Xaa is any amino acid
<220>
<221> MISC FEATURE
<222> (8)..(8)
<223> Xaa is T or V
<220>
<221> MISC FEATURE
<222> (9)..(10)
<223> Xaa is a hydrophobic amino acid
<400> 69
Xaa Xaa Xaa Asp Xaa Asp Xaa Xaa Xaa
              .5
```