

Irta: **LEITOLD ADRIEN**

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK

Egyetemi tananyag

2011

COPYRIGHT: © 2011–2016, Dr. Leitold Adrien, Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék

LEKTORÁLTA: Dr. Buzáné dr. Kis Piroska, Dunaújvárosi Főiskola Központi Oktatási Intézet Matematika Tanszék

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) A szerző nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthető, megjelentethető és előadható, de nem módosítható.

TÁMOGATÁS:

Készült a TÁMOP-4.1.2-08/1/A-2009-0008 számú, "Tananyagfejlesztés mérnök informatikus, programtervező informatikus és gazdaságinformatikus képzésekhez" című projekt keretében.

ISBN 978-963-279-513-3

KÉSZÜLT: a Typotex Kiadó gondozásában

FELELŐS VEZETŐ: Votisky Zsuzsa

AZ ELEKTRONIKUS KIADÁST ELŐKÉSZÍTETTE: Benkő Márta

KULCSSZAVAK:

az R^3 tér geometriája, n dimenziós euklideszi vektortér, mátrixok, lineáris egyenletrendszerek, lineáris leképezések és transzformációk.

ÖSSZEFOGLALÁS:

A példatár a *Lineáris algebra* c. tantárgy törzsanyagához szorosan kapcsolódó feladatokat tartalmaz. Az egyes fejezetekben számos, részletesen kidolgozott minta feladat és gyakorló feladatok találhatóak. Utóbbiak végeredményei megtalálhatóak *A gyakorló feladatok megoldásai* c. fejezetben.

A példatár *Vegyes feladatok a lineáris algebrai ismeretek alkalmazására* c. fejezete – a teljesség igénye nélkül – olyan problémákat gyűjt össze, amelyekkel az informatikus szakos hallgatók tanulmányaik során különböző szaktárgyakban találkoznak, és amelyeknek megoldásához alkalmazni kell a tanult lineáris algebrai ismereteket.

A példatár digitális mellékletének első része a *Lineáris algebra* tantárgy előadásain használt ppt file-okat tartalmazza. Ezekben megtalálhatóak az adott anyagrész fogalmai, állításai, az alkalmazott jelölések. A digitális melléklet második része néhány típusfeladat animált megoldását mutatja be.

Tartalomjegyzék

Bevezetés	4
Az <i>R</i> ³ tér geometriája	5
Vektorműveletek	
Egyenes és sík: illeszkedési feladatok	8
Térelemek kölcsönös helyzete, metszéspontja	
Térelemek távolsága és szöge	20
Vegyes feladatok	
Elméleti kérdések	31
Az R ⁿ vektortér	33
Elméleti kérdések	49
Mátrixok	51
Elméleti kérdések	67
Lineáris egyenletrendszerek	69
Elméleti kérdések	84
Lineáris leképezések	86
Elméleti kérdések	101
Skaláris szorzat az R^{n} vektortérben	103
Elméleti kérdések	110
Vegyes feladatok a lineáris algebrai ismeretek alkalmazására	111
A GYAKORLÓ FELADATOK MEGOLDÁSAI	122
Az <i>R</i> ³ tér geometriája	123
Vektorműveletek	123
Egyenes és sík: illeszkedési feladatok	123
Térelemek kölcsönös helyzete, metszéspontja	126
Térelemek távolsága és szöge	126
Vegyes feladatok	127
Elméleti kérdések	128
Az R ⁿ vektortér	129
Elméleti kérdések	
Mátrixok	
Elméleti kérdések	
Lineáris egyenletrendszerek	
Elméleti kérdések	
Lineáris leképezések	145
Elméleti kérdések	
Skaláris szorzat az R^n vektortérben	
Elméleti kérdések	
A digitális melléklet leírása	154

Bevezetés

A *Lineáris algebra* tantárgy az informatikus alapszakok tanterveinek egyik alapozó matematika tárgya. Ezen példatárban a Pannon Egyetemen oktatott törzsanyaghoz szorosan kapcsolódó feladatokat gyűjtöttem össze. Az egyes fejezetek számos, részletesen kidolgozott minta feladatot és gyakorló feladatokat tartalmaznak. Utóbbiak végeredményei megtalálhatóak *A gyakorló feladatok megoldásai* c. fejezetben.

A példatár fejezetei elméleti kérdésekkel zárulnak. Ezek a tananyag elméleti részéhez kötődően állításokat fogalmaznak meg, amelyekről el kell dönteni, hogy azok igazak, vagy hamisak. Ezek a kérdések egyrészt alkalmasak a hallgatók számára annak ellenőrzésére, hogy megértették-e az elméleti ismereteket, másrészt segítik a vizsgára való felkészülést.

A példatár érdekessége a *Vegyes feladatok a lineáris algebrai ismeretek alkalma zására* c. fejezet, amelyben – a teljesség igénye nélkül – olyan problémákat gyűjtöttem össze, amelyekkel az informatikus szakos hallgatók tanulmányaik során különböző szaktárgyakban találkoznak, és amelyeknek megoldásához alkalmazni kell a tanult lineáris algebrai ismereteket. Itt a problémák megfogalmazása olyan, hogy a még laikusnak számító első féléves hallgatók is megérthessék azokat, és a kiemelt részfeladatokon gyakorolhassák a tanult lineáris algebrai ismeretek alkalmazását. Ezen összeállítás célja kettős: egyrészt a hallgatók motiválása, tanulmányaik elején jelezve, hogy a matematikai ismeretek elsajátítása nem öncélú, másrészt néhány szaktárgyi probléma egyes részleteinek megoldása remélhetőleg könnyebbé teszi a sikeres feladatmegoldást a későbbi szaktárgyakban. Ezúton is köszönöm kollégáimnak, hogy segítették a szakmai ismeretek elmagyarázásával e fejezet problémáinak megfogalmazását.

A példatár digitális mellékletének első része a *Lineáris algebra* tantárgy előadásain használt ppt file-okat tartalmazza. Ezekben megtalálhatóak az adott anyagrész fogalmai, állításai, az alkalmazott jelölések. A példatárban mind a minta feladatok megoldása során, mind a gyakorló feladatok megfogalmazásában az itt bemutatott jelöléseket alkalmaztam és az összeállított elméleti ismeretekre támaszkodtam.

A példatár digitális mellékletének második része néhány feladat animált megoldását tartalmazza.

A példatár a TÁMOP – 4.1.2-08/1/A program keretében készült. Köszönöm a példatár elkészítéséhez nyújtott támogatást.

Bízom abban, hogy a példatárat hasznos segédeszközként használhatják mind az érintett hallgatók, mind a lineáris algebrai ismeretek iránt érdeklődők.

Veszprém, 2011. január 30.

*dr. Leitold Adrien*Pannon Egyetem
Matematika Tanszék

Az R³ tér geometriája

Vektorműveletek

1. Minta feladat:

Legyen $\underline{a} = (4, 2, 5)$ és $\underline{b} = (2, 0, -1)$ két térbeli vektor.

- a, Vázoljuk fel a fenti vektorok elhelyezkedését a térbeli koordináta-rendszerben!
- b, Határozzuk meg a 3<u>a</u>+5<u>b</u> vektort!
- c, Határozzuk meg az <u>a</u> és a <u>b</u> vektorok hosszát!
- d, Mekkora szöget zárnak be az <u>a</u> és <u>b</u> vektorok?
- e, Adjuk meg az <u>a</u> vektor ellentettjét! Adjunk meg <u>a</u>-val párhuzamos ill. <u>a</u>-ra merőleges vektorokat! Hol helyezkednek el ezek a koordináta-rendszerben?
- f, Adjuk meg az <u>a</u> vektorral megegyező irányú, egységnyi hosszúságú vektort!
- g, Adjuk meg az <u>a</u> vektorral megegyező irányú, 3 illetve 1/2 hosszúságú vektorokat!

Megoldás:

a, A vektorokat koordináta-rendszerben helyvektorokként helyezzük el, így az \underline{a} és \underline{b} vektorok kezdőpontja az origó, végpontja az A=(4, 2, 5) illetve B=(2, 0, -1) pont lesz (1. ábra). Mivel a \underline{b} vektor második koordinátája 0, így az az x-z koordináta-síkban helyezkedik el.

1. ábra: Helyvektorok a térbeli koordináta-rendszerben

b,
$$3\underline{a}+5\underline{b}=3\cdot(4,2,5)+5\cdot(2,0,-1)=(12,6,15)+(10,0,-5)=(22,6,10)$$

c, Az
$$\underline{a}$$
 vektor hossza: $|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{4^2 + 2^2 + 5^2} = \sqrt{45}$
A \underline{b} vektor hossza: $|\underline{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2} = \sqrt{2^2 + 0^2 + (-1)^2} = \sqrt{5}$

- d, Jelölje φ az \underline{a} és \underline{b} vektorok által bezárt szöget. Ekkor: $\cos \varphi = \frac{\underline{a} \cdot \underline{b}}{|a| \cdot |b|} = \frac{4 \cdot 2 + 2 \cdot 0 + 5 \cdot (-1)}{\sqrt{45} \cdot \sqrt{5}} = \frac{3}{\sqrt{225}} = \frac{1}{5}$, innen $\varphi \cong 78.5^{\circ}$
- e, Az \underline{a} vektor ellentettje: $-\underline{a} = (-1) \cdot \underline{a} = (-4, -2, -5)$ Az \underline{a} vektorral párhuzamos vektorok az \underline{a} vektor skalárszorosai, például $4 \cdot \underline{a} = (16, 8, 20), \ 1/2 \cdot \underline{a} = (2, 1, 2.5), \ -3 \cdot \underline{a} = (-12, -6, -15)$. Ezek a vektorok helyvektorként elhelyezve a koordináta-rendszerben, egy origón átmenő egyenesre illeszkednek, melynek irányvektora az \underline{a} vektor.

Az \underline{a} vektorra merőleges vektorok olyan $\underline{x} = (x_1, x_2, x_3)$ vektorok, melyeknek a skaláris szorzata az \underline{a} vektorral 0. Így teljesülnie kell az alábbi egyenlőségnek:

$$4x_1 + 2x_2 + 5x_3 = 0$$

A fenti feltételnek megfelelő \underline{x} vektort úgy találhatunk, hogy két koordinátát szabadon megválasztunk, a harmadikat pedig a fenti egyenlet alapján számoljuk. Például legyen $x_1 = 5$, $x_2 = 10$. Ekkor $4\cdot 5 + 2\cdot 10 + 5x_3 = 0$, innen $x_3 = -8$. Így az $\underline{x} = (5, 10, -8)$ vektor merőleges az \underline{a} vektorra. Hasonlóan további merőleges vektorokat is kaphatunk, pl. az $\underline{y} = (5, 0, -4)$ vagy a $\underline{z} = (10, 30, -20)$ vektor is merőleges \underline{a} -ra. Az \underline{a} –ra merőleges vektorok a koordináta-rendszerben egy olyan origón átmenő síkon helyezkednek el (helyvektorként), amely sík merőleges az \underline{a} vektorra.

f, Az \underline{a} vektorral megegyező irányú, egységnyi hosszúságú vektor: $\underline{a}_e = \frac{1}{|a|} \cdot \underline{a} = \frac{1}{\sqrt{45}} \cdot (4, 2, 5) = (\frac{4}{\sqrt{45}}, \frac{2}{\sqrt{45}}, \frac{5}{\sqrt{45}})$

g, Az <u>a</u> vektorral megegyező irányú, 3 egység hosszúságú vektor:

$$3 \cdot \underline{a}_e = 3 \cdot \frac{1}{|a|} \cdot \underline{a} = \frac{3}{\sqrt{45}} \cdot (4, 2, 5) = (\frac{12}{\sqrt{45}}, \frac{6}{\sqrt{45}}, \frac{15}{\sqrt{45}})$$

Az <u>a</u> vektorral megegyező irányú, 1/2 egység hosszúságú vektor:

$$\frac{1}{2} \cdot \underline{\alpha}_e = \frac{1}{2} \cdot \frac{1}{|\underline{\alpha}|} \cdot \underline{\alpha} = \frac{0.5}{\sqrt{45}} \cdot (4, 2, 5) = (\frac{2}{\sqrt{45}}, \frac{1}{\sqrt{45}}, \frac{2.5}{\sqrt{45}})$$

2. Minta feladat:

Legyen $\underline{v} = (3, -1, 2), \underline{a} = (1, 1, -2).$

- a, Határozzuk meg a <u>v</u> vektor <u>a</u> irányába eső merőleges vetületvektorát!
- b, Bontsuk fel a <u>v</u> vektort <u>a</u>-val párhuzamos és <u>a</u>-ra merőleges összetevőkre!

Megoldás:

a, Legyen \underline{x} a \underline{v} vektor \underline{a} irányába eső merőleges vetületvektora (2. ábra), amely az $\underline{x} = (\underline{v} \cdot \underline{a_e}) \cdot \underline{a_e}$ képlettel számolható, ahol $\underline{a_e}$ az \underline{a} vektorral megegyező irányú, egységnyi hosszúságú vektor.

2. ábra: Vetületvektor meghatározása

Az
$$\underline{a}$$
 vektor hossza: $|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{1^2 + 1^2 + (-2)^2} = \sqrt{6}$, így
$$\underline{a}_e = \frac{1}{|a|} \cdot \underline{a} = \frac{1}{\sqrt{6}} \cdot (1, 1, -2) = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}).$$

Továbbá $\underline{v} \cdot \underline{a_e} = 3 \cdot \frac{1}{\sqrt{6}} + (-1) \cdot \frac{1}{\sqrt{6}} + 2 \cdot \frac{-2}{\sqrt{6}} = \frac{-2}{\sqrt{6}}$, így a keresett vetületvektor:

$$\underline{x} = (\underline{v} \cdot \underline{a_e}) \cdot \underline{a_e} = \frac{-2}{\sqrt{6}} \cdot \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right) = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right).$$

b, A <u>v</u> vektor <u>a</u>-val párhuzamos összetevője éppen az <u>x</u> vetületvektor:

$$\underline{x} = (-1/3, -1/3, 2/3)$$

míg az *a*-ra merőleges összetevő:

$$y = y - x = (3, -1, 2) - (-1/3, -1/3, 2/3) = (10/3, -2/3, 4/3)$$
.

3. Minta feladat:

Legyen $\underline{a} = (1,-2,5)$, $\underline{b} = (4,2,3)$, $\underline{c} = (2,-4,10)$. Végezzük el az alábbi műveleteket!

$$\underline{a} + \underline{b}$$
, $3\underline{a} + 7\underline{b}$, $2\underline{a} + (-3)\underline{b} + 5\underline{c}$, $\underline{a} \cdot \underline{b}$, $\underline{a} \cdot \underline{c}$, $\underline{a} \times \underline{b}$, $\underline{b} \times \underline{a}$, $\underline{a} \times \underline{c}$, $\underline{c} \cdot (\underline{a} \times \underline{b})$

Megoldás:

$$\underline{a} + \underline{b} = (1, -2, 5) + (4, 2, 3) = (5, 0, 8)
3\underline{a} + 7\underline{b} = 3 \cdot (1, -2, 5) + 7 \cdot (4, 2, 3) = (3, -6, 15) + (28, 14, 21) = (31, 8, 36)
2\underline{a} + (-3)\underline{b} + 5\underline{c} = 2 \cdot (1, -2, 5) + (-3) \cdot (4, 2, 3) + 5 \cdot (2, -4, 10) =
= (2, -4, 10) + (-12, -6, -9) + (10, -20, 50) = (0, -30, 51)
\underline{a} \cdot \underline{b} = 1 \cdot 4 + (-2) \cdot 2 + 5 \cdot 3 = 15
\underline{a} \cdot \underline{c} = 1 \cdot 2 + (-2) \cdot (-4) + 5 \cdot 10 = 60$$

Emlékeztető: a vektoriális szorzat számolása koordinátásan az alábbi képlettel történik:

$$a \times b = (a_2b_3 - a_3b_2, -a_1b_3 + a_3b_1, a_1b_2 - a_2b_1)$$

Így:
$$\underline{a} \times \underline{b} = (1, -2, 5) \times (4, 2, 3) = (-2 \cdot 3 - 5 \cdot 2, -1 \cdot 3 + 5 \cdot 4, 1 \cdot 2 - (-2) \cdot 4) = (-16, 17, 10)$$

Ellenőrizhető, hogy az $a \times b$ vektor merőleges az \underline{a} és a \underline{b} vektorokra:

$$(\underline{a} \times \underline{b}) \cdot \underline{a} = -16 \cdot 1 + 17 \cdot (-2) + 10 \cdot 5 = 0$$
, illetve $(a \times b) \cdot b = -16 \cdot 4 + 17 \cdot 2 + 10 \cdot 3 = 0$

A vektoriális szorzás tulajdonságait felhasználva:

$$b \times a = -(a \times b) = -(-16, 17, 10) = (16, -17, -10)$$

Vegyük észre, hogy az \underline{a} és \underline{c} vektorok párhuzamosak (egymás skalárszorosai), így a vektoriális szorzás tulajdonságait felhasználva: $\underline{a} \times \underline{c} = \underline{o} = (0,0,0)$

$$c \cdot (a \times b) = 2 \cdot (-16) + (-4) \cdot 17 + 10 \cdot 10 = 0$$

Megjegyezzük, hogy ez az eredmény is "megsejthető" volt előre, hiszen az $\underline{a} \times \underline{b}$ vektor merőleges az \underline{a} vektorra, így az \underline{a} -val párhuzamos \underline{c} -re is. Ezért a \underline{c} és az $\underline{a} \times \underline{b}$ vektorok skaláris szorzata 0 kell hogy legyen.

Gyakorló feladatok:

- <u>1.</u> Legyen $\underline{v} = (2, 3, -1)$ és $\underline{u} = (0, -1, 4)$ két térbeli vektor.
 - a, Vázolja fel a fenti vektorok elhelyezkedését a térbeli koordináta-rendszerben!
 - b, Határozza meg a 2<u>v</u>-3<u>u</u> vektort!
 - c, Határozza meg a <u>v</u> és az <u>u</u> vektorok hosszát!
 - d, Mekkora szöget zárnak be a v és u vektorok?
 - e, Adja meg a <u>v</u> vektor ellentettjét! Adjon meg <u>v</u>-vel párhuzamos ill. <u>v</u>-re merőleges vektorokat!
 - f, Adja meg a <u>v</u> vektorral megegyező irányú, egységnyi hosszúságú vektort!
 - g, Adja meg a <u>v</u> vektorral megegyező irányú, 4 illetve 1/3 hosszúságú vektorokat!
- <u>2.</u> Legyen $\underline{v} = (4, 6, -2), \underline{a} = (2, 3, 0).$
 - a, Határozza meg a <u>v</u> vektor <u>a</u> irányába eső merőleges vetületvektorát!
 - b, Bontsa fel a <u>v</u> vektort <u>a</u>-val párhuzamos és <u>a</u>-ra merőleges összetevőkre!
- 3. Legyen $\underline{v} = (4, 7, 9), \underline{a} = (2, -1, 3).$
 - a, Határozza meg a <u>v</u> vektor <u>a</u> irányába eső merőleges vetületvektorát!
 - b, Bontsa fel a <u>v</u> vektort <u>a</u>-val párhuzamos és <u>a</u>-ra merőleges összetevőkre!
- 4. Legyen $\underline{a} = (2, -1, 4)$, $\underline{b} = (0, 5, -2)$, $\underline{c} = (1, 6, -4)$. Számítsa ki az alábbi vektorokat! $\underline{a} + \underline{b}$, $\underline{a} \underline{b}$, $3\underline{a}$, $-2\underline{c}$, $\underline{a} + 3\underline{b} + (-2)\underline{c}$, $\underline{a} \cdot \underline{b}$, $\underline{a} \cdot \underline{c}$, $\underline{a} \times \underline{b}$, $\underline{b} \times \underline{a}$, $\underline{a} \times \underline{c}$, $\underline{a} \times \underline{c}$, $\underline{a} \cdot (\underline{b} \times \underline{c})$
- 5. Legyen $\underline{a} = (4, -1, 3)$, $\underline{b} = (2, 2, -2)$, $\underline{c} = (8, -2, 6)$. Számítsa ki az alábbi vektorokat! $\underline{a} + \underline{b}$, $\underline{a} - \underline{b}$, $5\underline{a}$, $-3\underline{c}$, $2\underline{a} + \underline{b} + (-4)\underline{c}$, $\underline{a} \cdot \underline{b}$, $\underline{a} \cdot \underline{c}$, $\underline{a} \times \underline{b}$, $\underline{b} \times \underline{a}$, $\underline{a} \times \underline{c}$, $\underline{a} \times \underline{c}$)

Egyenes és sík: illeszkedési feladatok

4. Minta feladat:

Írjuk fel a P_0 ponton átmenő, \underline{v} irányvektorú egyenes paraméteres és paramétermentes egyenletrendszerét, ha

- a, $\underline{v} = (2, -1, 4)$ és $P_0 = (5, 0, 3)$;
- b, v = (1, 2, 0) és $P_0 = (5, 3, 4)$;
- c, $\underline{v} = (1,0,3)$ és $P_0 = (2,2,6)$;
- d, v = (2,0,0) és $P_0 = (-1,3,4)$.

Megoldás:

a, A paraméteres egyenletrendszer:

$$x = 5 + 2t$$

$$y = -t$$

$$z = 3 + 4t$$
 $t \in I$

A paramétermentes egyenletrendszer:

$$\frac{x-5}{2} = \frac{y}{-1} = \frac{z-3}{4}$$

b, A paraméteres egyenletrendszer:

$$x = 5 + t$$

$$y = 3 + 2t$$

$$z = 4$$

$$t \in R$$

A paramétermentes egyenletrendszer:

$$x - 5 = \frac{y - 3}{2}$$
, $z = 4$

Az irányvektor harmadik koordinátája nulla, így ez az egyenes párhuzamos az *x-y* koordináta-síkkal.

c, A paraméteres egyenletrendszer:

$$x = 2 + t$$

$$y = 2$$

$$z = 6 + 3t$$
 $t \in R$

A paramétermentes egyenletrendszer:

$$x-2=\frac{z-6}{3}, y=2$$

Az irányvektor második koordinátája nulla, így ez az egyenes párhuzamos az *x-z* koordináta-síkkal.

d, A paraméteres egyenletrendszer:

$$x = -1 + 2t$$

$$y = 3$$

$$z = 4$$

Mivel az irányvektornak két koordinátája is nulla, így paramétermentes egyenletrendszer nem írható fel.

Az irányvektor az x tengely irányába mutat, így ez az egyenes párhuzamos az x tengellyel.

5. Minta feladat:

Legyen A=(2, 5, 3) és B=(1, 0, 2) két térbeli pont. Írjuk fel az A és B pontokon átmenő egyenes paraméteres egyenletrendszerét!

Megoldás:

Először egy irányvektort kell felírnunk:

$$\underline{v} = \overrightarrow{AB} = (-1, -5, -1)$$

A <u>v</u> irányvektorú, *A* ponton átmenő egyenes paraméteres egyenletrendszere:

$$x = 2 - t$$

$$y = 5 - 5t$$

$$z = 3 - t \quad t \in R$$

6. Minta feladat:

Tekintsük az alábbi e egyenest!

$$x = 3 + 4t$$

$$y = 1 - t$$

$$z = 2t t \in R$$

Adjuk meg az e egyenes egy irányvektorát és az egyenes néhány pontját! Illeszkedik-e az e egyenesre a P=(11, -1, 4) és a Q=(-1, 1, 0) pont?

Megoldás:

Az egyenes egy irányvektorának koordinátáit a paraméteres egyenletrendszerből a t paraméter együtthatói adják: \underline{v} =(4, -1, 2).

Különböző t értékeket helyettesítve az egyenletrendszerbe, az egyenes pontjainak koordinátáit kapjuk:

Például t=0-ra: A=(3, 1, 0),

t=1-re: B=(7,0,2),

t=-2-re: C=(-5, 3, -4), ...

A P=(11, -1, 4) pont rajta van az e egyenesen, mert t=2-re az egyenletrendszerből éppen P koordinátáit kapjuk.

A Q=(-1, 1,0) pont nincs az e egyenesen, mert nincs olyan t érték, amely az egyenletrendszerből Q koordinátáit adná. Az x koordinátára ugyanis t=-1-re kaphatnánk -1-et, de t=-1-re y≠1 és z≠0.

7. Minta feladat:

Tekintsük az alábbi két egyenest:

e:
$$y-3 = \frac{z-4}{2}$$
, $x = 2$ és $f: 3x + 6 = \frac{1}{2}y - 1 = -z$

Adjuk meg mindkét egyenes egy irányvektorát és egy pontját! Illeszkedik-e az e illetve az f egyenesre a P=(2, 4, 6) pont?

Megoldás:

Az e egyenes paramétermentes egyenletrendszerének alakjából látható, hogy irányvektorának van nulla koordinátája. Mivel az egyenes pontjainak első koordinátája állandó (x=2), így $v_1=0$. A másik egyenlet $\frac{y-3}{1}=\frac{z-4}{2}$ alakra hozható, itt a nevezőkből olvasható ki az egyenes egy irányvektorának másik két koordinátája: $v_2=1$ és $v_3=2$. Így az e egyenes egy irányvektora: $\underline{v}_e=(0,1,2)$. Az e egyenes egy pontja: $P_e=(2,3,4)$. A P=(2,4,6) pont koordinátái kielégítik az e egyenes egyenletrendszerét, így P illeszkedik az e egyenesre.

Az f egyenes egyenletrendszerét először a "szabályos" $\frac{x-x_0}{v_1} = \frac{y-y_0}{v_2} = \frac{z-z_0}{v_3}$ alakra kell hozni. Ehhez az alábbi átalakításokat végezzük el:

$$3x + 6 = 3 \cdot (x + 2) = \frac{x+2}{1/2}, \quad \frac{1}{2}y - 1 = \frac{1}{2} \cdot (y - 2) = \frac{y-2}{2}, \quad -z = \frac{z}{-1}$$

Így az f egyenes egyenletrendszere az alábbi alakra hozható: $\frac{x+2}{1/3} = \frac{y-2}{2} = \frac{z}{-1}$

Az egyenes egy irányvektorának koordinátái a nevezőkből olvashatók ki:

 $\underline{v}_f = (1/3, 2, -1)$, míg egy pontnak a koordinátáit a számlálók alapján írhatjuk fel: $P_f = (-2, 2, 0)$.

A P=(2, 4, 6) pont koordinátái nem elégítik ki az f egyenes egyenletrendszerét, így P illeszkedik az f egyenesre.

8. Minta feladat:

Írjuk fel annak a síknak az egyenletét, amely illeszkedik a P = (2, -3, 4) pontra, és amelynek normálvektora az $\underline{n} = (5, 1, 2)$ vektor! Illeszkednek-e erre a síkra az A = (2, 5, 0) és a

B = (3, 4, 2) pontok?

Megoldás:

A sík egyenlete: $5 \cdot (x-2) + 1 \cdot (y+3) + 2 \cdot (z-4) = 0$, ami rendezés után az 5x + y + 2z = 15 alakra hozható. Az A pont koordinátái kielégítik ezt az egyenletet, így A illeszkedik a síkra. A B pont koordinátái nem elégítik ki a sík egyenletét, így B nincs a síkon.

9. Minta feladat:

Egy sík egyenlete 2x - 3y + 4z = 14. Adjuk meg a sík egy normálvektorát és néhány pontot a síkon!

Megoldás:

A sík egy normálvektorának koordinátáit adják az egyenletből x, y és z együtthatói: $\underline{n} = (2, -3, 4)$.

A sík pontjainak koordinátái kielégítik a sík egyenletét, így olyan *x*, *y* és *z* értékeket kell keresnünk, amelyek kielégítik a fenti egyenletet. Ehhez két ismeretlen értékét szabadon megválaszthatjuk, a harmadikat pedig az egyenlet alapján számoljuk ki.

Például: legyen x = 5, z = 1, ekkor az egyenlet alapján y = 0. Így a $P_1 = (5, 0, 1)$ pont illeszkedik a síkra.

Legyen x = 6, y = 2, ekkor az egyenlet alapján z = 2. Így a $P_2 = (6, 2, 2)$ pont illeszkedik a síkra.

Legyen y = 0, z = 0, ekkor az egyenlet alapján x = 7. Így a $P_3 = (7, 0, 0)$ pont illeszkedik a síkra.

10. Minta feladat:

Írjuk fel annak a síknak az egyenletét, amely merőleges az e: $\frac{x-4}{3} = \frac{y}{-2} = z$ egyenesre, és illeszkedik a P = (4, 0, -1) pontra!

Megoldás:

Mivel a keresett sík merőleges az e egyenesre, így a sík normálvektora egyben az e egyenes irányvektora. Így $\underline{n} = \underline{v}_e = (3, -2, 1)$.

A sík egyenlete: 3(x-4)-2y+z+1=0, ami rendezve: 3x-2y+z=11.

11. Minta feladat:

Írjuk fel annak a síknak az egyenletét, amely illeszkedik az e: $\frac{x-2}{2} = \frac{y-1}{-1}$, z = 2 egyenesre és a $P = \{4, 5, 3\}$ pontra!

Megoldás:

Az adatok alapján ellenőrizhető, hogy a P pont nincsen rajta az e egyenesen, így egyetlen olyan sík van a térben, amelyik a feltételeknek eleget tesz. A sík egyenletének felírásához szükségünk van egy normálvektorára. Keressünk először két olyan vektort, amelyek kifeszítik a síkot. Legyen egyik az e egyenes egy irányvektora: $\underline{v}_e = (2, -1, 0)$, a másik a $\overline{P_0P}$ vektor, ahol P_0 az e egyenes egy pontja: $P_0 = (2, 1, 2)$. Így $\overline{P_0P} = (2, 4, 1)$. A keresett normálvektor merőleges kell, hogy legyen a \underline{v}_e és a $\overline{P_0P}$ vektorokra. Ilyen vektor például a \underline{v}_e és a $\overline{P_0P}$ vektorok vektoriális szorzata:

$$\underline{n} = v_e \times \overrightarrow{P_0P} = (2, -1, 0) \times (2, 4, 1) = (-1, -2, 10)$$

Így a keresett sík egyenlete: -(x-4) - 2(y-5) + 10(z-3) = 0, ami rendezve:

$$-x - 2y + 10z = 16$$
.

Gyakorló feladatok:

- <u>6.</u> Legyen $P_0 = (2, -1, 5), \underline{v} = (1, 1, -3).$
 - a, Írja fel a P_0 ponton átmenő, \underline{v} irányvektorú egyenes paraméteres ill. paramétermentes egyenletrendszerét!
 - b, Adja meg a fenti egyenes néhány pontját!
 - c, Illeszkedik-e a fenti egyenesre az A = (3, 0, -2) ill. a B = (5, 5, 5) pont?
- 7. Legyen $P_0 = (3, 1, -4), \underline{v} = (4, 5, 0).$
 - a, Írja fel a P_0 ponton átmenő, \underline{v} irányvektorú egyenes paraméteres ill. paramétermentes egyenletrendszerét!
 - b, Adja meg a fenti egyenes néhány pontját!
- 8. Legyen $P_0 = (0, 2, -1), \quad \underline{v} = (0, 0, 5).$
 - a, Írja fel a P_0 ponton átmenő, \underline{v} irányvektorú egyenes paraméteres ill. paramétermentes egyenletrendszerét!
 - b, Adja meg a fenti egyenes néhány pontját!
- 9. Legyen $P_1 = (1, 4, 5), P_2 = (3, 6, -1).$
 - a, Írja fel a P_1 és P_2 pontokon átmenő egyenes paraméteres ill. paramétermentes egyenletrendszerét!
 - b, Adja meg a fenti egyenes néhány pontját!
- 10. Adja meg az alábbi egyenesek egy irányvektorát és egy pontját! Írja fel az egyenesek paramétermentes egyenletrendszerét!

$$x = 2 + 3t$$
 $x = 5t$ $x = 6$
 $e: y = -1 + 2t$, $f: y = -2 + 7t$, $g: y = 1 + 3t$
 $z = 5 - 4t$ $z = 4$ $z = 0$

11. Adja meg az alábbi egyenesek egy irányvektorát és egy pontját! Írja fel az egyenesek paraméteres egyenletrendszerét!

a,
$$\frac{x-3}{4} = \frac{y+5}{6} = \frac{z+3}{-2}$$

b,
$$\frac{x}{2} = \frac{z-1}{-2}$$
, $y = 4$

c,
$$x=1$$
, $\frac{y-3}{6} = \frac{z}{-2}$

d,
$$\frac{-x+5}{-2} = \frac{y}{3} = \frac{-z-6}{2}$$

e,
$$2x+4=-y=-\frac{1}{2}z+1$$

- 12. Legyen S: 2x-3y+5z-5=0.
 - a, Adja meg az S sík egy normálvektorát és néhány pontját!
 - b, Illeszkedik-e az *S* síkra a P = (-8, 3, 6) ill. a Q = (1, 4, -3) pont?
- 13. Hol helyezkednek el a térbeli koordinátarendszerben az alábbi síkok?

a,
$$S_1: x-y=0$$

b,
$$S_2$$
: $2x-y=1$

c,
$$S_3: y=4$$

- 14. Írja fel annak a síknak az egyenletét, melynek
 - a, egy pontja $P_0 = (2, -1, 4)$ és egy normálvektora $\underline{n} = (2, 3, -1)$;
 - b, egy pontja $P_0 = (0, 1, 5)$ és egy normálvektora $\underline{n} = (4, 0, 1)$;
 - c, egy pontja $P_0 = (3, 2, -1)$ és egy normálvektora $\underline{n} = (0, 5, 0)$!
- 15. Írja fel annak a síknak az egyenletét, amely merőleges az e: $\frac{x-4}{2} = y = \frac{z+2}{3}$ egyenesre és átmegy a $P_0 = (5, -1, 0)$ ponton!
- 16. Írja fel annak a síknak az egyenletét, amely merőleges az

e:
$$\frac{x+1}{-2} = \frac{z-4}{5}$$
, $y = -3$ egyenesre és átmegy a $P_0 = (2, 6, -1)$ ponton!

17. Írja fel annak a síknak az egyenletét, amely merőleges az

$$x = 2t + 1$$

$$e: y = -3t$$
 egyenesre és átmegy a $P_0 = (2, 4, 0)$ ponton!

$$z = t - 2$$

- 18. Írja fel annak a síknak az egyenletét, amely illeszkedik az e: $x-1=\frac{y+2}{2}=\frac{z+2}{-1}$ egyenesre és a $P_0=(1,-2,3)$ pontra!
- 19. Írja fel annak a síknak az egyenletét, amely illeszkedik a P_1 = (2, 4, -3), P_2 = (-1, 0, 2), és P_3 = (3, -2, 1) pontokra!
- 20. Írja fel annak az egyenesnek a paraméteres egyenletrendszerét, amely
 - a, merőleges az S: x-4y+z=10 síkra és áthalad a $P_0 = (2, 0, -3)$ ponton;
 - b, merőleges az S: 2x-y=6 síkra és áthalad a $P_0 = (-4, 5, 1)$ ponton!
- 21. Írja fel annak az egyenesnek a paramétermentes egyenletrendszerét, amely
 - a, merőleges az S: 3x-y+5z=0 síkra és áthalad a $P_0=(1,2,0)$ ponton;
 - b, merőleges az S: 2x+3z=10 síkra és áthalad a $P_0 = (0, 0, 4)$ ponton!

Térelemek kölcsönös helyzete, metszéspontja

12. Minta feladat:

Legyenek adottak a következő egyenesek:

$$x = 1 + 2t$$

 $e: y = 3 - t$
 $z = 2 + t$
 $f: \frac{x-3}{4} = \frac{y-2}{-2} = \frac{z-3}{2}$
 $f: \frac{x-3}{4} = \frac{y-2}{-2} = \frac{z-3}{2}$
 $x = -6t$
 $g: y = 5 + 3t$
 $z = 1 - 3t$

$$x = 4 + t$$

$$h: y = 2 - t$$

$$z = 1 + 3t$$

Határozzuk meg az e egyenesnek a többi egyeneshez viszonyított kölcsönös helyzetét, továbbá vizsgáljuk meg a g és h egyenesek kölcsönös helyzetét! Ahol van metszéspont, határozzuk meg!

Megoldás:

Két egyenes kölcsönös helyzetét a 3. ábrán látható módon vizsgálhatjuk.

3. ábra: Két egyenes kölcsönös helyzetének vizsgálata

Az e és f egyenesek kölcsönös helyzetének vizsgálata:

Először az egyenesek egyenletrendszereiből kiolvassuk azok egy irányvektorát: $\underline{v}_e = (2, -1, 1)$ és $\underline{v}_f = (4, -2, 2)$. Látható, hogy a két irányvektor skalárszorosa egymásnak, így párhuzamosak. Eszerint az e és f egyenesek vagy párhuzamosak, vagy azonosak. Ezután keresünk egy pontot az e egyenesen: $P_e = (1, 3, 2)$ (t = 0 paraméterértékhez tartozik), majd megvizsgáljuk, hogy ez a pont illeszkedik-e az f egyenesre. Mivel a $P_e = (1, 3, 2)$ pont koordinátái kielégítik az f egyenes egyenletrendszerét, így a pont rajta van az f egyenesen is. Következésképpen az e és f egyenesek azonosak, minden pontjuk közös pont.

Az e és g egyenesek kölcsönös helyzetének vizsgálata:

Az e egyenes irányvektora \underline{v}_e = (2, -1, 1), ami párhuzamos a g egyenes irányvektorával: \underline{v}_g = (-6, 3, -3). Így az e és g egyenesek vagy párhuzamosak, vagy azonosak. Megvizs gáljuk, hogy az e egyenes egy pontja illeszkedik-e a g egyenesre. A P_e = (1, 3, 2) pont nincs rajta a g egyenesen, ugyanis nincs olyan f0 paraméter, amely a f0 egyenes paraméteres egyenletrendszeréből a f0 pont koordinátáit adná. Következésképpen az f0 egyenesek párhuzamosak, nincsen közös pontjuk.

Az e és h egyenesek kölcsönös helyzetének vizsgálata:

Az e egyenes egy irányvektora $\underline{v}_e = (2, -1, 1)$, a h egyenes egy irányvektora $\underline{v}_h = (1, -1, 3)$. Ez a két vektor nem párhuzamos, így az e és a h egyenesek vagy metszők, vagy kitérők. Nézzük meg, hogy van-e a két egyenesnek közös pontja. Ehhez az egyenesek paraméteres egyenletrendszereit kell használnunk. Megkülönböztetjük a két egyenletrendszerben a paramétereket (t_1 és t_2), és megnézzük, hogy vannak-e olyan t_1 és t_2 paraméterértékek, amelyek ugyanazon x, y, z értékeket szolgáltatják a két egyenletrendszerből. Így a következő egyenletrendszerhez jutunk:

A második és harmadik egyenletet összeadva és rendezve t_2 = 1 értéket kapunk, amit visszahelyettesíthetünk a második egyenletbe, így t_1 = 2 adódik. A t_2 = 1 és t_1 = 2 értékek az első egyenletet is kielégítik, így a teljes egyenletrendszer megoldásai. Mivel a fenti egyenletrendszer megoldható, így az e és a h egyeneseknek van közös pontja, tehát metszők. A metszéspont koordinátáit megkapjuk, ha a t_1 = 2 értéket az e egyenes egyenletrendszerébe, illetve a t_2 = 1 értéket a h egyenes egyenletrendszerébe visszahelyettesítjük. Így az M = (5, 1, 4) metszéspont adódik.

A g és h egyenesek kölcsönös helyzetének vizsgálata:

A g egyenes egy irányvektora \underline{v}_g = (-6, 3, -3), a h egyenes egy irányvektora \underline{v}_h = (1, -1, 3). Ez a két vektor nem párhuzamos, így a g és h egyenesek vagy metszőek, vagy kitérőek. Megvizsgáljuk, hogy van-e a két egyenesnek közös pontja. Az egyenletrendszerekben a paraméterértékeket megkülönböztetve és közös x, y, z értékeket keresve az alábbi egyenletrendszert kapjuk:

$$\begin{array}{rclrcl}
-6t_1 & = & 4 & + & t_2 \\
5 & + & 3t_1 & = & 2 & - & t_2 \\
1 & - & 3t_1 & = & 1 & + & 3t_2
\end{array}$$

Itt az első és harmadik egyenlet felhasználásával a t_1 = -4/5, t_2 = 4/5 értékek adódnak, amik viszont nem elégítik ki a második egyenletet. Így az egyenletrendszer nem oldható meg, azaz nincs a két egyenesnek közös pontja. Következésképpen a g és h egyenesek kitérőek.

13. Minta feladat:

Legyenek

$$x = 2 + t$$

 $S: 2x - y + 3z = 16$ $e: y = 2t$ $f: \frac{x-3}{-1} = y + 5 = z - 4$

Milyen az e egyenes és az S sík, illetve az f egyenes és az S sík kölcsönös helyzete? Ha van közös pontjuk, akkor határozzuk meg a metszéspontot!

Megoldás:

Egyenes és sík kölcsönös helyzetét a 4. ábrán látható módon vizsgálhatjuk.

4. ábra: Egyenes és sík kölcsönös helyzetének vizsgálata

Az e egyenes és az S sík kölcsönös helyzete:

Az e egyenes egy irányvektora: $\underline{v}_e = (1, 2, 0)$, az S sík egy normálvektora: $\underline{n} = (2, -1, 3)$. Először megnézzük, hogy ez a két vektor merőleges-e. Skaláris szorzatuk:

 $\underline{v}_e \cdot \underline{n} = 1.2 + 2.(-1) + 0.3 = 0$, azaz a két vektor merőleges. Így az e egyenes vagy párhuzamos az S síkkal, vagy benne van az S síkban. Megnézzük, hogy az e egyenes egy pontja, a $P_e = (2, 0, 4)$ pont illeszkedik-e az S síkra. Mivel a P_e pont koordinátái kielégítik az S sík egyenletét, így a P_e pont és a teljes e egyenes is rajta van a síkon. Az e egyenes tehát része az S síknak és így az e egyenes minden pontja közös pontja a két alakzatnak.

Az f egyenes és az S sík kölcsönös helyzete:

Az f egyenes egy irányvektora: $\underline{v}_f = (-1, 1, 1)$, az S sík egy normálvektora: $\underline{n} = (2, -1, 3)$. Skaláris szorzatuk: $\underline{v}_f \cdot \underline{n} = -1 \cdot 2 + 1 \cdot (-1) + 1 \cdot 3 = 0$, azaz a két vektor merőleges. Így az f egyenes vagy párhuzamos az S síkkal, vagy benne van az S síkban. Megvizsgáljuk, hogy az f egyenes egy pontja, a $P_f = (3, -5, 4)$ pont illeszkedik-e az S síkra. Mivel a P_f pont koordinátái nem elégítik ki az S sík egyenletét, így a P_f pont nincs rajta az S síkon. Következésképpen az f egyenes és az S sík párhuzamos.

14. Minta feladat:

Legyenek

$$x = 1 - 2t$$

 $S: 3x+y-5z=12$
 $e: y = 4 + t$
 $z = 2$

Milyen az e egyenes és az S sík kölcsönös helyzete? Ha van közös pontjuk, akkor határozzuk meg a metszéspontot!

Megoldás:

Az e egyenes egy irányvektora: $\underline{v}_e = (-2, 1, 0)$, az S sík egy normálvektora: $\underline{n} = (3, 1, -5)$. Ez a két vektor nem merőleges, mert skaláris szorzatuk nullától különböző. Így az e egyenes és az S sík metszők.

A metszéspont meghatározásához az egyenes paraméteres egyenletrendszeréből x, y és z t-től függő kifejezését behelyettesítjük a sík egyenletébe:

$$3 \cdot (1-2t) + 4+t-5\cdot 2 = 12$$

Innen t = -3 adódik, amit visszahelyettesítve az egyenes paraméteres egyenletrend-szerébe, megkapjuk a metszéspont koordinátáit: M = (7, 1, 2).

15. Minta feladat:

Tekintsük az alábbi síkokat:

$$S_1$$
: $x-2y+5z=8$ S_2 : $3x+y-z=8$ S_3 : $2x-4y+10z=10$ S_4 : $3x-6y+15z=24$ Határozzuk meg az S_1 sík helyzetét a többi síkhoz képest!

Megoldás:

S₁ és S₂ kölcsönös helyzete:

Mivel az S_1 és S_2 síkok egyenleteiből kiolvasható normálvektorok \underline{n}_1 = (1, -2, 5) és \underline{n}_2 = (3, 1, -1) egymással nem párhuzamosak, így az S_1 és S_2 síkok metszők.

S₁ és S₃ kölcsönös helyzete:

Mivel az S_1 és S_3 síkok egyenleteiből kiolvasható normálvektorok \underline{n}_1 = (1, -2, 5) és \underline{n}_3 = (2, -4, 10) párhuzamosak egymással, így az S_1 és S_3 síkok vagy azonosak, vagy párhuzamosak. Az S_3 sík egyenletének baloldala kétszerese az S_1 sík egyenletében baloldalon álló kifejezésnek, ugyanakkor a jobboldalon álló konstansok aránya nem kettő, így a két sík párhuzamos.

S1 és S4 kölcsönös helyzete:

Mivel az S_1 és S_4 síkok egyenleteiből kiolvasható normálvektorok \underline{n}_1 = (1, -2, 5) és \underline{n}_4 = (3, -6, 15) párhuzamosak egymással, így az S_1 és S_4 síkok vagy azonosak, vagy párhuzamosak. Az S_4 sík egyenlete (bal- és jobboldal is) háromszorosa az S_1 sík egyenletének, így a két sík azonos.

16. Minta feladat:

Legyenek
$$S_1$$
 $2x-y+4z=9$ S_2 : $x+3y-z=2$

Határozzuk meg a két sík metszésvonalának paraméteres egyenletrendszerét!

Megoldás:

Ellenőrizhető, hogy a két sík normálvektora nem párhuzamos, tehát S_1 és S_2 metszők, metszésvonaluk egy egyenes. Ezen egyenes paraméteres egyenletrendszerének felírásához szükségünk van egy pontra és egy irányvektorra. A metszésvonal egy pontja rajta van az S_1 és S_2 síkok mindegyikén, így koordinátái mindkét sík egyenletét ki kell, hogy elégítsék.

Keressük tehát a következő egyenletrendszer egy megoldását:

$$2x - y + 4z = 9$$

 $x + 3y - z = 2$

Mivel a két egyenletből álló egyenletrendszer három ismeretlenes, így egy megoldásának megkereséséhez az egyik ismeretlent szabadon megválaszthatjuk, legyen például x = 1.

Ezt behelyettesítve az egyenletrendszerbe a másik két ismeretlenre y = 1 és z = 2 értékek adódnak. Tehát a $P_0 = (1, 1, 2)$ pont rajta van a metszésvonalon.

Keressünk ezután egy irányvektort! A metszésvonal irányvektora merőleges az S_1 sík normálvektorára is és az S_2 sík normálvektorára is. Ilyen vektor például a két normálvektor vektoriális szorzata:

$$\underline{v} = \underline{n}_1 \times \underline{n}_2 = (2, -1, 4) \times (1, 3, -1) = (-11, 6, 7)$$

Így a metszésvonal paraméteres egyenletrendszere:

$$x = 1 - 11t$$
 $e: y = 1 + 6t$
 $z = 2 + 7t$

Gyakorló feladatok:

22. Legyen

$$x = -1 + t$$
 $x = 3t$ $x = -2t$
 $e: y = 2t$, $f: y = 2 + t$, $g: y = 5 - 4t$.
 $z = 1 - 3t$ $z = -2 + 5t$ $z = 1 + 6t$

Vizsgálja meg az e és f, az e és g, valamint az f és g egyenesek kölcsönös helyzetét! A metsző egyeneseknél határozza meg a metszéspontot!

- 23. Legyen S: 2x-4y+6z=6 és $e: \frac{x-3}{2}=y=2z-3$. Milyen az S sík és az e egyenes kölcsönös helyzete? Ha van, adja meg a metszéspontjukat!
- 24. Legyen

$$S_1: 2x-y+3z=5$$

$$S_2: x+y-4z=1$$

$$S_3: 4x-2y+6z=10$$

$$S_4: 6x-3y+9z=2$$
.

Milyen az S₁ síknak a többi síkhoz viszonyított helyzete?

25. Legyen

$$S_1: 2x-5y+z=10$$

$$S_2$$
: $-3 x + y - 2z = 8$.

Határozza meg a két sík metszésvonalának az egyenletrendszerét!

Térelemek távolsága és szöge

17. Minta feladat:

Határozzuk meg a P = (4.1, 6) pont és az egyenes távolságát!

Megoldás:

Ellenőrizhető, hogy a *P* pont nincs rajta az *e* egyenesen.

5. ábra: Pont és egyenes távolsága

Pont és egyenes távolságát a

$$d = \frac{\left|\underline{v} \times \overline{P_0 P}\right|}{\left|v\right|}$$

összefüggéssel számolhatjuk (5. ábra), ahol \underline{v} az egyenes egy irányvektora, P_0 pedig az egyenes egy pontja. Az egyenes egyenletrendszeréből a \underline{v} = (3, 1, 0) irányvektort és a P_0 = (2, 0, 5) pontot olvashatjuk ki. Így $\overline{P_0P}$ = (2, 1, 1), továbbá

$$\underline{v}\times \overline{P_0P}=(3,1,0)\times (2,1,1)=(1,-3,1).$$

Innen

$$d = \frac{\left|\underline{v} \times \overline{P_0 P}\right|}{\left|\underline{v}\right|} = \frac{\sqrt{1+9+1}}{\sqrt{9+1+0}} = \frac{\sqrt{11}}{\sqrt{10}} \approx 1,05$$

A P pont és az e egyenes távolsága $\approx 1,05$.

18. Minta feladat:

Határozzuk meg az
$$e: \frac{x-5}{4} = y-2 = \frac{z}{3}$$
 és $f: y = 2 + 2t$ $z = 1 + 6t$

egyenesek távolságát!

Megoldás:

Ellenőrizhető, hogy a két egyenes párhuzamos. Két párhuzamos egyenes távolságának számolása visszavezethető pont és egyenes távolságának meghatározására: felveszünk egy pontot az egyik egyenesen, és meghatározzuk annak távolságát a másik egyenestől.

Az f egyenes egy pontja a P = (6, 2, 1) pont. Az e egyenes egy pontja a P_0 = (5, 2, 0) pont, egy irányvektora a \underline{v} = (4, 1, 3) vektor. Így $\overrightarrow{P_0P}$ = (1, 0, 1), továbbá

$$\underline{v} \times \overline{P_0P} = (4, 1, 3) \times (1, 0, 1) = (1, -1, -1).$$

Innen

$$d = \frac{|\underline{v} \times \overline{P_0 P}|}{|\underline{v}|} = \frac{\sqrt{1+1+1}}{\sqrt{16+1+9}} = \frac{\sqrt{3}}{\sqrt{26}} \approx 0.34$$

Tehát a két egyenes távolsága ≈ 0.34 .

19. Minta feladat:

x = 2 - 4t Határozzuk meg az e: y = 1 + t és $f: \frac{x-4}{2} = y+2 = z-1$ z = 3

egyenesek távolságát!

Megoldás:

Ellenőrizhető, hogy az e és f egyenesek kitérőek.

Vegyünk fel mindegyik egyenesen egy-egy pontot: az e egyenes egy pontja $P_1 = (2, 1, 3)$, az f egyenes egy pontja $P_2 = (4, -2, 1)$.

A két kitérő egyenes távolsága a $\overrightarrow{P_1P_2} = (2,-3,-2)$ vektornak a normáltranzverzális irányába eső merőleges vetületének hosszával egyenlő (6. ábra).

Keressünk egy a normáltranzverzális irányába mutató vektort! A normáltranzverzális az e és az f egyenesre is merőleges, így az $\underline{n} = \underline{v}_e \times \underline{v}_f$ vektor a normáltranzverzális irányába mutat:

$$\underline{n} = \underline{v}_e \times \underline{v}_f = (-4, 1, 0) \times (2, 1, 1) = ((1, 4, -6)$$

Határozzuk meg ezután az \underline{n} vektorral megegyező irányú, egységnyi hosszúságú vektort! Ehhez az \underline{n} vektor hossza: $|n| = \sqrt{1+16+36} = \sqrt{53}$, így

$$\underline{n}_e = \frac{1}{|n|} \cdot \underline{n} = \frac{1}{\sqrt{53}} \cdot (1, 4, -6) = (\frac{1}{\sqrt{53}}, \frac{4}{\sqrt{53}}, -\frac{6}{\sqrt{53}}).$$

A $\overrightarrow{P_1P_2}=(2,-3,-2)$ vektor normáltranzverzális irányába eső merőleges vetületének hossza:

$$d = \left| \overline{P_1 P_2} \cdot \underline{n_e} \right| = \left| 2 \cdot \frac{1}{\sqrt{53}} + (-3) \cdot \frac{4}{\sqrt{53}} + (-2) \cdot \left(-\frac{6}{\sqrt{53}} \right) \right| = \left| \frac{2}{\sqrt{53}} \right| \approx 0,275$$

Tehát az *e* és *f* egyenesek távolsága ≈0,275.

6. ábra: Két kitérő egyenes távolsága

20. Minta feladat:

Határozzuk meg a P = (1, -1, 2) pont és az S: 2x+y+3z = 21 sík távolságát!

Megoldás:

Ellenőrizhető, hogy a P pont nincs rajta az S síkon. Írjuk fel először annak az e egyenesnek a paraméteres egyenletrendszerét, amely átmegy a P ponton és merőleges az S síkra (7. ábra).

7. ábra: Pont és sík távolsága

Az e egyenes irányvektora egyben az S sík normálvektora: $\underline{v}_e = \underline{n} = (2, 1, 3)$, így az e egyenes paraméteres egyenletrendszere.

$$x = 1 + 2t$$

$$e: y = -1 + t$$

$$z = 2 + 3t$$

Ezután meghatározzuk az e egyenes és az S sík metszéspontját. Az egyenes egyenletrendszeréből a sík egyenletébe helyettesítve az alábbi egyenletet kapjuk:

 $2 \cdot (1+2t) + (-1+t) + 3 \cdot (2+3t) = 21$, innen t = 1. Ezt a paraméterértéket visszahelyettesítve az e egyenes egyenletrendszerébe, megkapjuk a metszéspont koordinátáit: M = (3.0, 5).

Ezután a keresett távolság a \overline{PM} vektor hosszával egyenlő:

$$d = |\overrightarrow{PM}| = |(2,1,3)| = \sqrt{4+1+9} = \sqrt{14}$$

Tehát a *P* pont és az *S* sík távolsága $\sqrt{14}$.

21. Minta feladat:

Legyenek:
$$x = 2t$$

 $x = 2t$
 $y = 1 - 2t$
 $z = 3 - t$
 $x - y + 4z = -7$

Határozzuk meg az f egyenes és az S sík távolságát!

Megoldás:

Ellenőrizhető, hogy az f egyenes és az S sík párhuzamos. Sík és vele párhuzamos egyenes távolságának meghatározása visszavezethető pont és sík távolságának számolására. Először felveszünk egy pontot az f egyenesen: P = (0, 1, 3). Ezután meghatározzuk P és az S sík távolságát.

Írjuk fel a P-n átmenő, S síkra merőleges e egyenes paraméteres egyenletrendszerét! Az e egyenes irányvektora: $\underline{v}_e = \underline{n} = (1, -1, 4)$, így:

$$\begin{array}{rcl}
x & = & t \\
e \colon & y & = & 1 & - & t \\
z & = & 3 & + & 4t
\end{array}$$

Ezután meghatározzuk az *e* egyenes és az *S* sík metszéspontját. Az egyenes egyenletrendszeréből a sík egyenletébe helyettesítve az alábbi egyenletet kapjuk:

 $t-(1-t)+4\cdot(3+4t)=-7$, innen t=-1. Ezt a paraméterértéket visszahelyettesítve az e egyenes egyenletrendszerébe, megkapjuk a metszéspont koordinátáit: M=(-1,2,-1). Így a keresett távolság a \overrightarrow{PM} vektor hosszával egyenlő:

$$d = |\overrightarrow{PM}'| = |(-1, 1, -4)| = \sqrt{1 + 1 + 16} = \sqrt{18}$$

Tehát az f egyenes és az S sík távolsága $\sqrt{18}$.

22. Minta feladat:

Határozzuk meg az S_1 : 2x - y + 4z = 25 és S_2 : 4x - 2y + 8z = 8 síkok távolságát!

Megoldás:

Ellenőrizhető, hogy a két sík párhuzamos. Párhuzamos síkok távolságának meghatározása visszavezethető pont és sík távolságának számolására. Vegyünk fel egy pontot az S_2 síkon: P = (2.0, 0), majd keressük a P pont és az S_1 sík távolságát.

Felírjuk a P-n átmenő, S_1 -re merőleges e egyenes paraméteres egyenletrendszerét. Ehhez $\underline{v}_e = \underline{n}_{S1} = (2, -1, 4)$, így:

$$x = 2 + 2t$$

$$e: y = -t$$

$$z = 4t$$

Az e egyenes és az S_1 sík metszéspontjának meghatározásához a sík egyenletébe helyettesítünk: $2 \cdot (2+2t) - (-t) + 4 \cdot 4t = 25$

Innen t = 1, amit az e egyenletrendszerébe visszahelyettesítve megkapjuk a metszéspontot:

M = (4, -1, 4). Így a keresett távolság a \overrightarrow{PM} vektor hosszával egyenlő:

$$d = |\overrightarrow{PM}| = |(2, -1, 4)| = \sqrt{4 + 1 + 16} = \sqrt{21}$$

Tehát a két sík távolsága $\sqrt{21}$.

23. Minta feladat:

Határozzuk meg az e és f egyenesek szögét, ha

a,
$$e: \frac{x-3}{2} = \frac{z-5}{3}$$
, $y=2$,
$$f: \begin{array}{rcl} x & = & 5 & - & t \\ y & = & 1 & + & 2t \\ z & = & 4 & + & 3t \end{array}$$

$$x = 3 - 2t$$

b, $e: y = 4t$
 $z = 1 + t$
 $f: \frac{x-2}{2} = -y = \frac{z-1}{3}$

Megoldás:

Két egyenes szögét irányvektoraik szögéből határozhatjuk meg (8. ábra).

8. ábra: Két egyenes szögének meghatározása

a, Jelölje α a két egyenes szögét.

A két egyenes irányvektora: $\underline{v}_e = (2, 0, 3)$ és $\underline{v}_f = (-1, 2, 3)$. Számoljuk ki először az irányvektorok szögét (φ) ! Ehhez:

$$\cos\phi = \frac{\frac{v_e \cdot v_f}{|v_e| \cdot |v_f|}}{\frac{|v_e| \cdot |v_f|}{|v_e| \cdot |v_f|}} = \frac{\frac{2 \cdot (-1) + \ 0 \cdot 2 + 3 \cdot 3}{\sqrt{4 + 0 + 9} \cdot \sqrt{1 + 4 + 9}}} = \frac{7}{\sqrt{13} \cdot \sqrt{14}} \approx 0,5189 \text{ ,innen } \varphi \approx 58,7^{\circ} \text{ .}$$

Mivel az irányvektorok szöge hegyesszög (8.a, ábra), így $\alpha = \varphi \approx 58.7^{\circ}$.

b, Jelölje α a két egyenes szögét.

A két egyenes irányvektora: $\underline{v}_e = (-2, 4, 1)$ és $\underline{v}_f = (2, -1, 3)$. Számoljuk ki először az irányvektorok szögét (φ) ! Ehhez:

$$\cos\phi = \frac{\frac{v_e \cdot v_f}{|v_e| \cdot |v_f|}}{\frac{|v_e| \cdot |v_f|}{|v_e| \cdot |v_f|}} = \frac{^{-2 \cdot 2 + \, 4 \cdot (-1) + 1 \cdot 3}}{^{\sqrt{4 + 16} + 1} \cdot \sqrt{4 + 1 + 9}} = \frac{^{-5}}{^{\sqrt{21} \cdot \sqrt{14}}} \approx \, -0.2916 \ \, \text{,innen} \, \varphi \, \approx \, 107^\circ \, .$$

Mivel az irányvektorok szöge tompaszög (8.b, ábra), így $\alpha=180^{\circ}-\ \varphi\approx73^{\circ}$.

24. Minta feladat:

Határozzuk meg az e egyenes és az S sík szögét, ha

$$x = 1 - t$$

a, $e: y = 3t$
 $z = 0$
 $s: -2x+3y-z=10$

$$x = 1 - t$$

b, e: $y = 2 + 2t$, $S: 4x-5z=0$
 $z = t$

Megoldás:

Egyenes és sík szögét az egyenes irányvektorának és a sík normálvektorának szögéből kiindulva kaphatjuk meg (9. ábra).

9. ábra: Egyenes és sík szögének meghatározása

a, Jelölje α az egyenes és a sík szögét. Az egyenes irányvektora: \underline{v} = (-1, 3, 0), a sík normálvektora: \underline{n} = (-2, 3, -1). Számoljuk ki a két vektor szögét (φ)! Ehhez:

$$\cos\phi = \frac{\underline{v \cdot n}}{|\underline{v}| \cdot |\underline{n}|} = \frac{-1 \cdot (-2) + 3 \cdot 3 + 0 \cdot (-1)}{\sqrt{1 + 9 + 0} \cdot \sqrt{4 + 9 + 1}} = \frac{11}{\sqrt{10} \cdot \sqrt{14}} \approx \ 0.9297 \ \text{,innen} \ \phi \approx 21.6^{\circ} \ .$$

Mivel az irányvektor és a normálvektor szöge hegyesszög (9.a, ábra), így $\alpha=90^{\circ}-\varphi\approx68.4^{\circ}$.

b, Jelölje α az egyenes és a sík szögét. Az egyenes irányvektora: $\underline{v} = (-1, 2, 1)$, a sík normálvektora: $\underline{n} = (4, 0, -5)$. Számoljuk ki a két vektor szögét (φ) ! Ehhez:

$$\cos\phi = \frac{\underline{v \cdot \underline{n}}}{|\underline{v}| \cdot |\underline{n}|} = \frac{-1 \cdot 4 + 2 \cdot 0 + 1 \cdot (-5)}{\sqrt{1 + 4 + 1} \cdot \sqrt{16 + 0 + 25}} = \frac{-9}{\sqrt{6} \cdot \sqrt{41}} \approx -0,5738 \text{ ,innen } \varphi \approx 125^{\circ} \text{ .}$$

Mivel az irányvektor és a normálvektor szöge tompaszög (9.b, ábra), így $\alpha = \varphi - 90^{\circ} \approx 35^{\circ}$.

25. Minta feladat:

Határozzuk meg az S_1 és S_2 síkok szögét, ha

a,
$$S_1$$
: $x - 2y + 3z = 5$ és S_2 : $2x - y + z = 10$;

b.
$$S_1$$
: $-3x + y - 4z = 2$ és S_2 : $x + y + z = 5$.

Megoldás:

Síkok szögére normálvektoraik szögéből következtethetünk.

a, Jelölje α a két sík szögét. Az S_1 sík normálvektora: \underline{n}_1 = (1, -2, 3), az S_2 sík normálvektora: \underline{n}_2 = (2, -1, 1). Határozzuk meg először a két normálvektor szögét (φ):

$$\cos\phi = \frac{\frac{n_1 \cdot n_2}{\left|\underline{n_1}\right| \cdot \left|\underline{n_2}\right|}}{\left|\underline{n_1}\right| \cdot \left|\underline{n_2}\right|} = \frac{1 \cdot 2 + (-2) \cdot (-1) + 3 \cdot 1}{\sqrt{1 + 4 + 9} \cdot \sqrt{4 + 1 + 1}} = \frac{7}{\sqrt{14} \cdot \sqrt{6}} \approx 0,7638 \text{ ,innen } \varphi \approx 40,2^{\circ} \,.$$

Mivel a normálvektorok szöge hegyesszög, így $\alpha = \varphi \approx 40.2^{\circ}$.

b, Jelölje α a két sík szögét.

Az S_1 sík normálvektora: \underline{n}_1 = (-3, 1, -4), az S_2 sík normálvektora: \underline{n}_2 = (1, 1, 1). Határozzuk meg először a két normálvektor szögét (φ):

$$\cos\phi = \frac{\frac{n_1 \cdot n_2}{|n_1| \cdot |n_2|}}{\frac{|n_1| \cdot |n_2|}{|n_2|}} = \frac{\frac{-3 \cdot 1 + 1 \cdot 1 + (-4) \cdot 1}{\sqrt{9 + 1 + 16} \cdot \sqrt{1 + 1 + 1}}}{\frac{-6}{\sqrt{26} \cdot \sqrt{3}}} \approx -0,6794 \text{ ,innen } \varphi \approx 132,8^{\circ} \text{ .}$$

Mivel a normálvektorok szöge tompaszög, így $\alpha = 180^{\circ} - \varphi \approx 47,2^{\circ}$.

Gyakorló feladatok:

$$x = 2t + 1$$

26. Legyen $P = (1, 1, 1)$ és $e: y = t$
 $z = -t + 3$

- a, Határozza meg a P pont és az e egyenes távolságát!
- b, Írja fel annak a síknak az egyenletét, amely tartalmazza a *P* pontot és az *e* egyenest!

27. Legyen

$$x = -t + 2$$
 $x = -t + 4$
 $e: y = 2t + 3$ és $f: y = 2t - 1$.
 $z = 3t - 5$ $z = 3t + 2$

- a, Ellenőrizze, hogy az *e* és az *f* egyenesek párhuzamosak!
- b, Határozza meg a két egyenes távolságát!

$$x = -2t + 1$$

 $e: y = t + 3$ és $f: \frac{x-3}{4} = \frac{y+2}{3} = \frac{z+1}{2}$.

- a, Ellenőrizze, hogy az *e* és az *f* egyenesek kitérők!
- b, Határozza meg a két egyenes távolságát!
- 29. Legyen S: x+y-3z=1 és Q = (4, 4, -5). Határozza meg a Q pont és az S sík távolságát!

$$x = 0$$
30. Legyen $S: x-2y+2z=1$ és $f: y = t - 3$.
$$z = t + 1$$

- a, Milyen helyzetű az f egyenes és az S sík?
- b, Határozza meg az f egyenes és az S sík távolságát!
- 31. Legyen S_1 : 2x-3y+z=5, S_2 : -4x+6y-2z=2.
 - a, Milyen a két sík kölcsönös helyzete?
 - b, Határozza meg a két sík távolságát!
- 32. Legyen

$$x = 4$$

 $e: y = 2t - 1$ és $f: x-2=\frac{y-3}{-1}=z$.
 $z = t + 1$

- a, Határozza meg az e és f egyenesek metszéspontját (ha van)!
- b, Határozza meg az e és f egyenesek szögét!

$$x = -t + 3$$

33. Legyen $S: 2x-y-4z+3=0$ és $e: y = 2t - 4$.
 $z = 5$

Határozza meg az S sík és az e egyenes szögét!

34. Legyen S:
$$2x-y-4z+3=0$$
 és e: $y = 2t - 4$.
$$z = 5$$

Határozza meg az S sík és az e egyenes szögét!

35. Legyen
$$S_1$$
: $2x-5y+z=10$, S_2 : $-3x+y-2z=8$. Határozza meg a két sík szögét!

Vegyes feladatok

Gyakorló feladatok:

$$x = 1 - 2t$$
 $x = 3t$
 $e: y = t$, $f: y = 1 - t$, $S: x+3y-z=10$.
 $z = 2 + t$ $z = 6 + 2t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az e egyenes és az S sík szögét!

37. Legyen

e:
$$\frac{x-2}{-3} = \frac{y+2}{4} = -z$$
, S_1 : $2x-y+5z=6$, S_2 : $x+y-2z=3$.

- a, Írja fel annak a síknak az egyenletét, amely merőleges az e egyenesre és tartalmazza a P = (1, 0, -5) pontot!
- b, Határozza meg az e egyenes és az S_1 sík szögét!
- c, Milyen az S_1 és S_2 sík kölcsönös helyzete? Ha párhuzamosak, akkor határozza meg a távolságukat, ha metszők, akkor adja meg a metszésvonal paraméteres egyenletrendszerét!
- d, Határozza meg az S_1 és S_2 sík szögét!

38. Legyen

S:
$$2x-3y+z=6$$
, $e: \frac{x+1}{2} = \frac{y}{4} = \frac{z-1}{-6}$, $f: y = 2 + t$.
 $z = -2 + 5t$

- a, Határozza meg a Q = (5, -6, 6) pont és az S sík távolságát!
- b, Írja fel annak a síknak az egyenletét, amely illeszkedik az *e* és *f* egyenesekre!
- c, Határozza meg az e egyenes és az S sík szögét!
- d, Határozza meg az e és f egyenesek szögét!

$$x = -1 + t$$

 $e: y = 2t$, $f: \frac{x}{3} = y - 2 = \frac{z+2}{5}$.

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az *e* és *f* egyenesek szögét!
- 40. Írja fel annak a síknak az egyenletét, amely illeszkedik a $P_1 = (1, 1, 4)$, $P_2 = (6, 0, 1)$ és $P_3 = (4, -2, 1)$ pontokra!

41. Legyen

$$x = 1 + 3t$$
 $x = 10 - 3t$
 $e: y = 4t$, $f: y = -2 + 3t$, $S: 2x-y+2z=18$.
 $z = -1 - t$ $z = -t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az *e* és *f* egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az *e* egyenes és az *S* sík szögét!

42. Legyen

$$x = 1 + 4t$$

 $e: y = 2t$, $S_1: 2x - y + 3z = 5$, $S_2: 4x - 2y + 6z = 38$. $z = 3$

- a, Milyen az e egyenes és az S_1 sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot!
- b, Határozza meg az e egyenes és az S1 sík szögét!
- c. Milven az S_1 és S_2 sík kölcsönös helvzete?
- d, Határozza meg a Q = (1, 2, -3) pont és az S_2 sík távolságát!
- e, Határozza meg az S_1 és S_2 síkok szögét!

$$x = 1 + 2t$$
 $x = 2 + t$
 $e: y = 3 - t$, $f: y = 4 - 2t$, $S: x-y-z+4=0$.
 $z = 2 + 3t$ $z = 3$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az *e* és *f* egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete?
- d, Határozza meg az *e* egyenes és az *S* sík szögét!
- e, Határozza meg a P = (4, 4, 5) pont f egyenestől való távolságát!

44. Legyen

$$x = 3 + 2t$$
 $x = 1 + 2t$
 $e: y = 1 + t$, $f: y = t$, $S: -x+2y+3z=5$.
 $z = 2$, $z = 4 - t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha van közös pontjuk, akkor határozza meg a metszéspontot!
- b, Határozza meg az *e* és *f* egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete?
- d, Határozza meg az *e* egyenes és az *S* sík szögét!
- e, Határozza meg a P = (4, 4, 3) pont e egyenestől való távolságát!

45. Legyen

$$x = 1 + 2t$$
 $x = 4t$
 $e: y = t$, $f: y = 3 + 2t$, $S: 2x-3y+z=4$.
 $z = 4 - 3t$ $z = 4 - 6t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Határozza meg az *e* és *f* egyenesek távolságát!
- b, Határozza meg az e és f egyenesek szögét!
- c, Milyen az *e* egyenes és az *S* sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az *e* egyenes és az *S* sík szögét!

46. Legyen

$$x = 2 + 3t$$
 $x = 5t$
 $e: y = 5 - 2t$, $f: y = 1 + 2t$, $S: x-2y-z=10$. $z = 1 + t$ $z = 6 + t$

- a, Milyen az *e* és *f* egyenesek kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot!
- b, Határozza meg az *e* és *f* egyenesek szögét!
- c, Milyen az *f* egyenes és az *S* sík kölcsönös helyzete? Ha metszők, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- d, Határozza meg az f egyenes és az S sík szögét!

Elméleti kérdések

Döntse el az alábbi állításokról, hogy igazak, vagy hamisak!

1. Ha két térbeli egyenesnek nincs közös pontja, akkor párhuzamosak.

- 2. Egy térbeli egyenest egyértelműen meghatározza egy irányvektora.
- 3. Egy térbeli egyenest egyértelműen meghatározza egy pontja és egy rá merőleges nem nulla vektor.
- 4. Ha az e_1 és e_2 térbeli kitérő egyenesek, akkor léteznek olyan S_1 és S_2 síkok, hogy $e_1 \subset S_1$, $e_2 \subset S_2$ és $S_1 \mid S_2$.
- <u>5.</u> Ha a térben egy sík normálvektorának és egy egyenes irányvektorának a vektoriális szorzata nullvektor, akkor az egyenes merőleges a síkra.
- <u>6.</u> Ha két sík párhuzamos, akkor a normálvektoraiknak a skaláris szorzata negatív.
- 7. Ha egy sík és egy vele párhuzamos térbeli egyenes távolsága d, akkor bármely $P \in S$ és $Q \in e$ esetén a P és Q pontok távolsága $\leq d$.
- 8. Egy térbeli síkot meghatározza egy pontja és egy vele párhuzamos nem nulla vektor.

Az R^n vektortér 33

Az Rn vektortér

1. Minta feladat:

Legyen $\underline{a} = (4, -1, 3, 6), \underline{b} = (5, 7, 8, -2), \underline{c} = (2, 3, -2, 4).$

a, Határozzuk meg az alábbi vektorokat!

$$\underline{a} + \underline{b}$$
, $\underline{a} - \underline{c}$, $4\underline{a}$, $-\underline{b}$, $2\underline{a} + 3\underline{b} - \underline{c}$

b, Adjuk meg az <u>a</u>, <u>b</u> és <u>c</u> vektorok 3, -1 és 4 skalárokkal vett lineáris kombinációját!

Megoldás:

a, Az R^4 vektortérben az összeadást, kivonást és skalárral való szorzást komponensenként végezzük el, így:

$$\underline{a} + \underline{b} = (4, -1, 3, 6) + (5, 7, 8, -2) = (9, 6, 11, 4)$$

$$\underline{a} - \underline{c} = (4, -1, 3, 6) - (2, 3, -2, 4) = (2, -4, 5, 2)$$

$$4\underline{a} = 4 \cdot (4, -1, 3, 6) = (16, -4, 12, 24)$$

$$-\underline{b} = -1 \cdot (5, 7, 8, -2) = (-5, -7, -8, 2)$$

$$2\underline{a} + 3\underline{b} - \underline{c} = 2 \cdot (4, -1, 3, 6) + 3 \cdot (5, 7, 8, -2) - (2, 3, -2, 4) = (8, -2, 6, 12) + (15, 21, 24, -6) - (2, 3, -2, 4) = (21, 16, 32, 2)$$

b, Az \underline{a} , \underline{b} és \underline{c} vektorok 3, -1 és 4 skalárokkal vett lineáris kombinációja: $3 \cdot \underline{a} + (-1) \cdot \underline{b} + 4 \cdot \underline{c} = 3 \cdot (4, -1, 3, 6) - (5, 7, 8, -2) + 4 \cdot (2, 3, -2, 4) = (12, -3, 9, 18) -$

$$-(5,7,8,-2)+(8,12,-8,16)=(15,2,-7,36)$$

2. Minta feladat:

Legyen $\underline{a} = (2, -1, 4), \underline{b} = (5, 0, 3).$

Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjaként az \underline{x} = (9, -2, 11), illetve az \underline{y} = (17, -1, 1) vektor? Geometriailag is értékeljük az eredményt!

Megoldás:

Olyan λ_1 és λ_2 skalárokat keresünk, amelyekre $\lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} = \underline{x}$ teljesül, azaz

$$\lambda_1$$
·(2, -1, 4) + λ_2 ·(5, 0, 3) = (9, -2, 11).

Ez a vektoregyenlet ekvivalens a megfelelő komponensekre felírt egyenlőségekkel, így:

$$2\lambda_1 + 5\lambda_2 = 9$$

$$-\lambda_1 = -2$$

$$4\lambda_1 + 3\lambda_2 = 11$$

A második egyenletből λ_1 = 2, ezt az első egyenletbe helyettesítve λ_2 = 1 adódik. Ezek az értékek kielégítik a harmadik egyenletet is, azaz a teljes egyenletrendszer megoldásai.

Így az \underline{x} vektor előáll az \underline{a} és \underline{b} vektorok lineáris kombinációjaként: $\underline{x} = 2\underline{a} + \underline{b}$. Ez geometriailag azt jelenti, hogy az \underline{x} vektor benne van az \underline{a} és \underline{b} vektorok által kifeszített síkban.

Ezután olyan λ_1 és λ_2 skalárokat keresünk, amelyekre $\lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} = \underline{y}$ teljesül, azaz

$$\lambda_1 \cdot (2, -1, 4) + \lambda_2 \cdot (5, 0, 3) = (17, -1, 1).$$

Ez a vektoregyenlet ekvivalens a megfelelő komponensekre felírt egyenlőségekkel, így:

$$2\lambda_1 + 5\lambda_2 = 17$$

$$-\lambda_1 = -1$$

$$4\lambda_1 + 3\lambda_2 = 1$$

A második egyenletből λ_1 = 1, ezt az első egyenletbe helyettesítve λ_2 = 3 adódik. Ezek az értékek azonban nem elégítik ki a harmadik egyenletet, azaz a teljes egyenletrendszernek nincs megoldása. Így az \underline{y} vektor nem állítható elő az \underline{a} és \underline{b} vektorok lineáris kombinációjaként. Geometriailag ez azt jelenti, hogy \underline{y} nincs benne az \underline{a} és \underline{b} vektorok által kifeszített síkban.

3. Minta feladat:

Legyen $\underline{a} = (2, -1, 4, 3)$, $\underline{b} = (-2, 1, 5, 0)$, $\underline{c} = (0, 1, 1, 1)$, $\underline{d} = (2, -1, 13, 6)$. $H_1 := \{\underline{a}, \underline{b}, \underline{c}\}$ és $H_2 := \{\underline{a}, \underline{b}, \underline{d}\}$. Állapítsuk meg, hogy lineárisan független, vagy lineárisan összefüggő a H_1 illetve a H_2 vektorhalmaz?

Megoldás:

Megvizsgáljuk, hogy milyen lineáris kombinációval lehet a H_1 vektorhalmaz elemeiből az R^4 vektortér nullvektorát előállítani: $\lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c} = \underline{o}$, azaz

$$\lambda_1$$
·(2, -1, 4, 3) + λ_2 ·(-2, 1, 5, 0) + λ_3 ·(0, 1, 1, 1) = (0, 0, 0, 0).

A vektoregyenletet átírjuk a komponensekre vonatkozó egyenlőségekre:

Az első egyenletből $\lambda_1 = \lambda_2$. Ezt a második egyenletbe behelyettesítve $\lambda_3 = 0$ adódik. Ezt a negyedik egyenletbe írva $\lambda_1 = 0$ -t kapunk, s így a korábbiak szerint $\lambda_2 = 0$. Ezek az értékek a még fel nem használt harmadik egyenletet is kielégítik. Így a teljes egyenletrendszer megoldása: $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Vagyis a H_1 vektorhalmaz elemeiből csak a triviális lineáris kombinációval lehet a nullvektort előállítani, azaz a H_1 vektorhalmaz lineárisan független.

A H_2 vektorhalmazt vizsgálva: $\lambda_1 \cdot a + \lambda_2 \cdot b + \lambda_3 \cdot d = 0$, azaz

$$\lambda_1$$
·(2, -1, 4, 3) + λ_2 ·(-2, 1, 5, 0) + λ_3 ·(2, -1, 13, 6) = (0, 0, 0, 0).

A vektoregyenletet átírjuk a komponensekre vonatkozó egyenlőségekre:

Az Rⁿ vektortér 35

A negyedik egyenletből $\lambda_1 = -2\lambda_3$ adódik. Ezt beírva az első egyenletbe a $\lambda_2 = -\lambda_3$ összefüggést kapjuk. Ezeket behelyettesítve a második és harmadik egyenletbe, mindkét esetben azonosságot kapunk. Ez azt jelzi, hogy az egyenletrendszernek végtelen sok megoldása van: $\lambda_1 = -2t$, $\lambda_2 = -t$, $\lambda_3 = t$, ahol $t \in R$.

Így a H_2 vektorhalmaz vektoraiból triviálisan és nem triviálisan is előáll a null vektor. Például egy nem triviális előállítás: $-2\underline{a} - \underline{b} + \underline{d} = \underline{o}$. Tehát a H_2 vektorhalmaz lineárisan összefüggő.

Megjegyezzük, hogy vektorhalmazok lineáris függetlensége, illetve összefüggősége a bázistranszformáció algoritmusával is vizsgálható (lásd 5. minta feladat).

Gyakorló feladatok:

- <u>1.</u> Legyen $\underline{a} = (2, -3)$, $\underline{b} = (0, 5)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával a $\underline{c} = (-2, 23)$ vektor?
- 2. Legyen $\underline{a} = (1, -2)$, $\underline{b} = (-2, 4)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával a $\underline{c} = (1, 0)$ vektor?
- 3. Legyen $\underline{a} = (5, 4, -2, 3), \underline{b} = (2, 0, -1, 5), \underline{c} = (3, 0, 4, -6).$
 - a, Végezze el az alábbi műveleteket! $\underline{a} + \underline{b}$, $-2\underline{c}$, $-a + 3\underline{b} + \underline{c}$
 - b, Adja meg azt a vektort, amely az \underline{a} , \underline{b} és \underline{c} vektorok 3, -1, 4 skalárokkal vett lineáris kombinációja!
 - c, Előállítható-e az \underline{a} , \underline{b} és \underline{c} vektorok lineáris kombinációjával az \underline{x} = (6, 4, 0, 19) vektor?
- <u>4.</u> Legyen $\underline{a} = (-1, 2, 0), \underline{b} = (3, 5, 2), \underline{c} = (-2, 1, 4).$
 - a, Állítsa elő a $2\underline{a} 3\underline{b} \underline{c}$ lineáris kombinációt!
 - b, Legyen $H = \{\underline{a}, \underline{b}, \underline{c}\}$. Hogyan állítható elő a H vektorhalmaz elemeiből az R^3 vektortér nullvektora? Lineárisan független, vagy lineárisan összefüggő a H vektorhalmaz?
 - c, Legyen $\underline{x} = (1, 9, 2)$, $\underline{y} = (0, -3, 4)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával az \underline{x} illetve az \underline{y} vektor? Geometriailag is értékelje az eredményt!

4. Minta feladat:

Legyen $\underline{a}_1 = (1, 0, 2, -1)$, $\underline{a}_2 = (0, 1, 0, 0)$, $\underline{a}_3 = (1, 1, 1, 1)$, $\underline{a}_4 = (2, 0, -1, 4)$. Bázist alkotnak-e az R^4 vektortérben az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 és \underline{a}_4 vektorok? Ha igen, akkor határozzuk meg a $\underline{v} = (3, 3, 5, -1)$ vektor ezen bázisra vonatkozó koordinátáit!

Megoldás:

Tekintsük az R^4 vektortér kanonikus bázisát. Elemi bázistranszformációk sorozatával próbáljuk meg kicserélni a kanonikus bázis vektorait az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 és \underline{a}_4 vektorokra. Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>v</u>
<u>e</u> 1	1	0	1	2	3
<u>a</u> 2 = <u>e</u> 2	0	1	1	0	3
<u>e</u> 3	2	0	1	-1	5
<u>@</u> 4	-1	0	1	4	-1

Észrevehetjük, hogy az \underline{a}_2 vektor azonos az \underline{e}_2 vektorral, így lényegében már induláskor a bázisban van. Válasszuk generáló elemnek az \underline{a}_1 vektor első koordinátáját, azaz vonjuk be a bázisba \underline{a}_1 -et az \underline{e}_1 vektor helyére (jelölés: $\underline{a}_1 \to \underline{e}_1$), és a bázistranszformációs képleteknek megfelelően számoljuk a vektorok új koordinátáit. Így az alábbi táblázathoz jutunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>v</u>
<u>a</u> 1	1	0	1	2	3
<u>a</u> 2	0	1	1	0	3
<u>e</u> 3	0	0	-1	-5	-1
<u>e</u> 4	0	0	2	6	2

Ezután hajtsuk végre az $\underline{a}_3 \rightarrow \underline{e}_3$ vektorcserét a bázisban, így a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>v</u>
<u>a</u> 1	1	0	0	-3	2
<u>a</u> 2	0	1	0	-5	2
<u>a</u> 3	0	0	1	5	1
<u>e</u> 4	0	0	0	-4	0

Végül bevonhatjuk a bázisba az \underline{a}_4 vektort az \underline{e}_4 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>v</u>	
<u>a</u> 1	1	0	0	0	2	-
<u>a</u> 2	0	1	0	0	2	
<u>a</u> 3	0	0	1	0	1	
<u>@</u> 4	0	0	0	1	0	

Mivel a kanonikus bázis vektorai kicserélhetőek voltak az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 és \underline{a}_4 vektorokkal, így azok bázist alkotnak az R^4 vektortérben. A végső táblázatból kiolvashatóak a \underline{v} vektor ezen bázisra vonatkozó koordinátái: 2, 2, 1 és 0.

Az Rⁿ vektortér 37

5. Minta feladat:

Legyen $\underline{a}_1 = (1, 1, 2), \ \underline{a}_2 = (2, 1, 0), \ \underline{a}_3 = (0, 1, 1), \ \underline{a}_4 = (8, 5, 4), \ \underline{a}_5 = (3, 5, 5).$

a, Bázist alkotnak-e az R^3 vektortérben az $\underline{a_1}$, $\underline{a_2}$ és $\underline{a_3}$ vektorok? Ha igen, akkor határozzuk meg az $\underline{a_4}$ és $\underline{a_5}$ vektorok ezen bázisra vonatkozó koordinátáit!

b, $H_1:=\{\underline{a}_1,\underline{a}_2,\underline{a}_3\}$ és $H_2:=\{\underline{a}_1,\underline{a}_2,\underline{a}_4\}$. Lineárisan független, vagy lineárisan összefüggő a H_1 , illetve a H_2 vektorhalmaz?

Megoldás:

a, Tekintsük az R^3 vektortér kanonikus bázisát. Elemi bázistranszformációk sorozatával próbáljuk meg kicserélni a kanonikus bázis vektorait az \underline{a}_1 , \underline{a}_2 és \underline{a}_3 vektorokra. Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	1	2	0	8	3
<u>e</u> 2	1	1	1	5	5
<u>e</u> 3	2	0	1	4	5

Válasszuk generáló elemnek az \underline{a}_1 vektor első koordinátáját, azaz vonjuk be a bázisba \underline{a}_1 -et az \underline{e}_1 vektor helyére (jelölés: $\underline{a}_1 \to \underline{e}_1$), és a bázistranszformációs képleteknek megfelelően számoljuk a vektorok új koordinátáit. Így az alábbi táblázathoz jutunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 1	1	2	0	8	3
<u>e</u> 2	0	-1	1	-3	2
<u>e</u> 3	0	-4	1	-12	-1

Ezután az $\underline{a}_3 \rightarrow \underline{e}_2$ vektorcserét végrehajtva a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 1	1	2	0	8	3
<u>a</u> 3	0	-1	1	-3	2
<u>e</u> 3	0	-3	0	-9	-3

Végül vonjuk be a bázisba az \underline{a}_2 vektort az \underline{e}_3 vektor helyére ($\underline{a}_2 \rightarrow \underline{e}_3$):

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 1	1	0	0	2	1
<u>a</u> 3	0	0	1	0	3
<u>a</u> 2	0	1	0	3	1

Mivel a kanonikus bázis vektorai kicserélhetőek voltak az \underline{a}_1 , \underline{a}_2 és \underline{a}_3 vektorokkal, így azok bázist alkotnak az R^3 vektortérben. A végső táblázatból kiolvashatóak az \underline{a}_4 és \underline{a}_5 vektorok ezen bázisra vonatkozó koordinátái:

- az \underline{a}_4 vektor koordinátái az $\underline{a}_{1,\underline{a}_2}$ és \underline{a}_3 vektorokra vonatkozóan: 2, 3, 0;
- az \underline{a}_5 vektor koordinátái az $\underline{a}_{1,\underline{a}_2}$ és \underline{a}_3 vektorokra vonatkozóan: 1, 1, 3.
- b, Mivel a H_1 vektorhalmaz vektorai bázist alkotnak az R^3 vektortérben, így H_1 lineárisan független.

A végső táblázatból kiolvasható, hogy $\underline{a}_4 = 2\underline{a}_1 + 3\underline{a}_2$, azaz az \underline{a}_4 vektor előáll az \underline{a}_1 és \underline{a}_2 vektorok lineáris kombinációjaként. Vagyis a H_2 vektorhalmazban található olyan vektor, amely előáll a többi vektor lineáris kombinációjaként, így H_2 lineárisan összefüggő.

6. Minta feladat:

Legyen $\underline{a}_1 = (2, 1, 0)$, $\underline{a}_2 = (3, 4, 2)$, $\underline{a}_3 = (1, 1, 1)$, $\underline{a}_4 = (4, 3, 2)$, $\underline{a}_5 = (9, 10, 5)$. $H := \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.

- a, Határozzuk meg a H vektorhalmaz rangját!
- b, Adjuk meg a *H* vektorhalmaz egy maximális, lineárisan független részhalmazát!
- c, Van-e olyan <u>x</u> vektor az *R*³ vektortérben, amely nem fejezhető ki *H*-beli vektorok lineáris kombinációjával?
- d, Van-e 1, 2, 3 illetve 4 vektorból álló lineárisan független részhalmaza H-nak?
- e, Van-e 1, 2, 3 illetve 4 vektorból álló lineárisan összefüggő részhalmaza H-nak?

Megoldás:

a, A rang a vektorhalmazból kiválasztható lineárisan független vektorok maximális számát jelenti. Bázistranszformációval a bázisba bekerülő vektorok – mivel bázis részhalmazát képezik – lineárisan függetlenek. Igazolható, hogy a bázisba bevonható vektorok maximális száma független a bevonandó vektorok konkrét kiválasztásától. Így igaz, hogy bármely vektorhalmaz esetén a rang egyenlő a bázisba bevonható vektorok maximális számával, függetlenül attól, hogy éppen melyik vektorokat vontuk be a bázisba.

Igyekezzünk tehát H vektorai közül minél többet bevonni a kanonikus bázis vektorainak helyébe. Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	2	3	1	4	9
<u>e</u> 2	1	4	1	3	10
<u>e</u> 3	0	2	1	2	5

Az $\underline{a}_1 \rightarrow \underline{e}_2$ vektorcsere végrehajtása után a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	0	-5	-1	-2	-11
<u>a</u> 1	1	4	1	3	10
<u>e</u> 3	0	2	1	2	5

Hajtsuk végre ezután az $a_3 \rightarrow e_3$ vektorcserét:

Az Rⁿ vektortér 39

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	0	-3	0	0	-6
<u>a</u> 1	1	2	0	1	5
<u>a</u> 3	0	2	1	2	5

Végül <u>a</u>2-t bevonva az <u>e</u>1 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 2	0	1	0	0	2
<u>a</u> 1	1	0	0	1	1
<u>a</u> 3	0	0	1	2	1

Mivel a kanonikus bázis mindhárom vektorát ki tudtuk cserélni H-beli vektorok-kal, így r(H) = 3.

- b, A *H* vektorhalmaz egy maximális lineárisan független részhalmaza: $H'=\{\underline{a}_1,\underline{a}_2,\underline{a}_3\}$.
- c, Mivel a fenti H' részhalmaz bázis R^3 -ban, így minden R^3 -beli vektor kifejezhető Hbeli vektorok lineáris kombinációjával. Így nincs olyan \underline{x} vektor az R^3 vektortérben, amely nem fejezhető ki H-beli vektorok lineáris kombinációjával.
- d, 1 vektorból álló lineáris független részhalmaz: van, pl. $\{\underline{a}_1\}$;
 - 2 vektorból álló lineáris független részhalmaz: van, pl. $\{\underline{a}_1, \underline{a}_2\}$;
 - 3 vektorból álló lineáris független részhalmaz: van, pl. $\{\underline{a}_1, \underline{a}_2, \underline{a}_3\}$;
 - 4 vektorból álló lineáris független részhalmaz: nincs, mert *R*³-ban négy vektor mindig lineárisan összefüggő.
- e, 1 vektorból álló lineáris összefüggő részhalmaz: nincs, mert egyik vektor sem nullvektor;
 - vektorból álló lineáris összefüggő részhalmaz: nincs, mert H-ban nincs két párhuzamos vektor;
 - 3 vektorból álló lineáris összefüggő részhalmaz: van, $\{\underline{a}_1, \underline{a}_3, \underline{a}_4\}$, mert a táblázatból látszik, hogy \underline{a}_4 előáll a másik két vektor lineáris kombinációjaként;
 - 4 vektorból álló lineáris összefüggő részhalmaz: pl. { \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 }, hiszen R^3 -ban négy vektor mindig lineárisan összefüggő.

7. Minta feladat:

Legyen $\underline{a}_1 = (1, 0, 2)$, $\underline{a}_2 = (2, 1, 5)$, $\underline{a}_3 = (-1, -1, -3)$, $\underline{a}_4 = (5, 2, 12)$, $\underline{a}_5 = (4, 2, 10)$.

- a, $H:=\{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}.$
 - Határozzuk meg a *H* vektorhalmaz rangját!
- b, Van-e a *H* vektorhalmaznak két vektorból álló lineárisan független, és két vektorból álló lineárisan összefüggő részhalmaza?
- c, Megadható-e olyan R³-beli vektor, amelyet H-hoz csatolva megnöveli a rangot?

Megoldás:

a, A bázistranszformáció során a bázisba bevonható vektorok maximális száma adja a rangot (lásd 6. minta feladat), így igyekezzünk minél több vektort a bázisba bevonni!

Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	1	2	-1	5	4
<u>e</u> 2	0	1	-1	2	2
<u>e</u> 3	2	5	-3	12	10

Hajtsuk végre az $\underline{a}_1 \rightarrow \underline{e}_1$ vektorcserét a bázisban:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 1	1	2	-1	5	4
<u>e</u> 2	0	1	-1	2	2
<u>e</u> 3	0	1	-1	2	2

Vonjuk be ezután \underline{a}_2 –t az \underline{e}_2 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 1	1	0	1	1	0
<u>a</u> 2	0	1	-1	2	2
<u>e</u> 3	0	0	0	0	0

Több vektort nem lehet bevonni a bázisba, így r(H) = 2.

- b, Két vektorból álló lineáris független részhalmaz: $\{\underline{a}_1, \underline{a}_2\}$, mivel bázis részhalmaza lineárisan független.
 - Két vektorból álló lineárisan összefüggő részhalmaz: $\{\underline{a}_2, \underline{a}_5\}$, mivel az \underline{a}_2 és \underline{a}_5 vektorok párhuzamosak.
- c, Igen, minden olyan vektor növeli a rangot, amely nem áll elő az \underline{a}_1 és \underline{a}_2 vektorok lineáris kombinációjával. Ilyen vektor például az \underline{e}_3 , hiszen \underline{e}_3 az \underline{a}_1 és \underline{a}_2 vektorokkal bázist alkot.

Gyakorló feladatok:

- 5. Legyen $\underline{a}_1 = (1, 3, 2)$, $\underline{a}_2 = (2, 1, 5)$, $\underline{a}_3 = (3, 4, 2)$. Bázist alkotnak-e az R^3 térben az \underline{a}_1 , \underline{a}_2 és \underline{a}_3 vektorok? Ha igen, akkor határozza meg a $\underline{v} = (14, 17, 18)$ vektor rájuk vonatkozó koordinátáit!
- <u>6.</u> Legyen $\underline{a} = (5, 2, 4)$, $\underline{b} = (-1, 0, 3)$, $\underline{c} = (6, -4, 5)$, $\underline{d} = (3, 2, 10)$.
 - a, Hogyan állítható elő az \underline{a} , \underline{b} és \underline{c} vektorokból az R^3 vektortér nullvektora?
 - b, Hogyan állítható elő az \underline{a} , \underline{b} és \underline{d} vektorokból az R^3 vektortér nullvektora?
 - c, Megadható-e olyan $\underline{x} \in R^3$ vektor, amely nem állítható elő az \underline{a} , \underline{b} és \underline{c} (illetve az \underline{a} , \underline{b} és \underline{d}) vektorok lineáris kombinációjaként?
 - d, Bázist alkotnak-e az R^3 térben az \underline{a} , \underline{b} és \underline{c} (illetve az \underline{a} , \underline{b} és \underline{d}) vektorok? Ha igen, akkor határozza meg a \underline{v} = (16, 0, 13) vektor rájuk vonatkozó koordinátáit!

Az R^n vektortér 41

- 7. Legyen $\underline{a}_1 = (1, 2, 0)$, $\underline{a}_2 = (0, 1, 1)$, $\underline{a}_3 = (2, 2, -2)$. Megadható-e olyan $\underline{x} \in R^3$ vektor, amely az \underline{a}_1 , \underline{a}_2 és \underline{a}_3 vektorok lineáris kombinációjával nem fejezhető ki? Ha igen, akkor adjon példát ilyen vektorra!
- 8. Legyen $H_1 = \{ (1, 1, 1), (1, 1, 0) \},$ $H_2 = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0) \},$ $H_3 = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1) \}.$

A fenti vektorhalmazokra mi illik az alábbi felsorolásokból?

- lineárisan független,
- lineárisan összefüggő,
- bázis.
- a vektorhalmaz vektoraiból lineáris kombinációval előállítható az *R*³ vektortér összes vektora.
- 9. Adjon példát az R⁴ vektortérben olyan vektorhalmazra, amely
 - lineárisan összefüggő és nem generátorrendszer,
 - lineárisan összefüggő és generátorrendszer,
 - lineárisan független és nem bázis,
 - lineárisan független és bázis.
- <u>10.</u> Legyen $\underline{a}_1 = (1, 2, 4)$, $\underline{a}_2 = (-3, 1, 2)$, $\underline{a}_3 = (-2, 3, 6)$, $\underline{a}_4 = (-1, 5, 10)$, $\underline{a}_5 = (4, 1, 2)$, $\underline{a}_7 = (4, 1, 2)$, $\underline{a$
- <u>11.</u> Legyen $\underline{a} = (1, 0, 2), \underline{b} = (3, 2, 1), \underline{c} = (-1, 4, 0), \underline{d} = (6, 2, 7).$
 - a, Bázist alkotnak-e a térben az \underline{a} , \underline{b} , és \underline{c} vektorok? Ha igen, akkor határozza meg az \underline{x} = (-8, -2, 1) vektor ezen bázisra vonatkozó koordinátáit!
 - b, Hogyan állítható elő az \underline{a} , \underline{b} , és \underline{d} vektorok lineáris kombinációjával az R^3 tér nullvektora?
 - c, Mennyi a $H = \{\underline{a}, \underline{b}, \underline{d}\}$ vektorhalmaz rangja?
- <u>12.</u> Legyen $\underline{a}_1 = (1, 2, -1, 0)$, $\underline{a}_2 = (-1, -3, -1, 3)$, $\underline{a}_3 = (3, 7, -1, -3)$, $\underline{a}_4 = (2, 5, 0, -3)$, $\underline{a}_5 = (0, 1, 2, -3)$, $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Adjon meg olyan $\underline{a} \neq \underline{o}$ vektort, amelyet a H vektorhalmazhoz csatolva nem növeli a vektorhalmaz rangját!
- 13. Legyen $\underline{a}_1 = (1, 2, 2, -1)$, $\underline{a}_2 = (0, -1, 1, -1)$, $\underline{a}_3 = (2, 5, 3, -1)$, $\underline{a}_4 = (1, 3, 1, 0)$, $\underline{a}_5 = (1, 4, 0, 1)$. $\underline{H} = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Adjon meg olyan $\underline{a} \in \mathbb{R}^4$ vektort, amely nem állítható elő a H vektorhalmaz vektorainak lineáris kombinációjaként!
- <u>14.</u> Legyen $\underline{a}_1 = (-3,4,2)$, $\underline{a}_2 = (1,0,0)$, $\underline{a}_3 = (1,2,-1)$, $\underline{a}_4 = (-5,0,7)$, $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Előállítható-e az \underline{a}_1 vektor az \underline{a}_3 és \underline{a}_4 vektorok lineáris kombinációjaként?
 - c, Előállítható-e az \underline{a}_2 vektor az \underline{a}_3 és \underline{a}_4 vektorok lineáris kombinációjaként?

- 15. Legyen $\underline{a}_1 = (1, -2, 3)$, $\underline{a}_2 = (-3, 1, -1)$, $\underline{a}_3 = (-4, -2, 4)$, $\underline{a}_4 = (-6, 0, -4)$, $\underline{a}_5 = (2, -1, -4)$, $\underline{a}_6 = (2, -1, -4)$, $\underline{a}_8 = (-4, -2, 4)$, $\underline{a}_8 = (-4, -2,$
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Van-e a *H* vektorhalmaznak olyan legalább 3 elemű részhalmaza, amelynek rangja kisebb a *H* rangjánál?
 - c, Van-e a *H* vektorhalmaznak 1, 2, 3 ill. 4 elemű lineárisan független részhalmaza? (Ha van, akkor adjon példát, ha nincs, akkor indoklást!)
 - d, Van-e a *H* vektorhalmaznak 1, 2, 3 ill. 4 elemű lineárisan összefüggő részhalmaza? (Ha van, akkor adjon példát, ha nincs, akkor indoklást!)
- <u>16.</u> Legyen $\underline{a}_1 = (1, 2, 1)$, $\underline{a}_2 = (-1, 0, 3)$, $\underline{a}_3 = (2, 1, 3)$, $\underline{a}_4 = (4, 1, -3)$, $\underline{a}_5 = (2, -1, -1)$, $\underline{H} = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Válasszon ki *H*-ból egy maximális lineárisan független részhalmazt, és annak elemeivel állítsa elő *H* elemeit!
 - c, Előállítható-e az R^3 vektortér minden vektora H elemeinek lineáris kombinációjaként? Ha igen: adjon meg olyan részhalmazt H-ban, amely bázis az R^3 térben! Ha nem: egészítse ki H-t úgy további vektorokkal, hogy az R^3 tér minden vektora előállítható legyen!
- <u>17.</u> Legyen $\underline{a}_1 = (1, 1, 2)$, $\underline{a}_2 = (1, 2, -1)$, $\underline{a}_3 = (2, 3, 1)$, $\underline{a}_4 = (0, -1, 3)$, $\underline{a}_5 = (3, 4, 3)$, $\underline{H} = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Válasszon ki *H*-ból egy maximális lineárisan független részhalmazt, és annak elemeivel állítsa elő *H* elemeit!
 - c, Előállítható-e az R^3 vektortér minden vektora H elemeinek lineáris kombinációjaként? Ha igen: adjon meg olyan részhalmazt H-ban, amely bázis az R^3 térben! Ha nem: egészítse ki H-t úgy további vektorokkal, hogy az R^3 tér minden vektora előállítható legyen!
- 18. Legyen $\underline{a}_1 = (1, 2, 0, -1)$, $\underline{a}_2 = (0, -1, 1, 3)$, $\underline{a}_3 = (1, 1, 1, 2)$, $\underline{a}_4 = (0, 3, -3, -9)$, $\underline{a}_5 = (1, -1, 3, 8)$, $\underline{H}_1 = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$, $\underline{H}_2 = \{\underline{a}_2, \underline{a}_4\}$, $\underline{H}_3 = \{\underline{a}_1, \underline{a}_2, \underline{a}_3\}$.
 - a, Mennyi a H_1 , H_2 és H_3 vektorhalmazok rangja?
 - b, Adjon meg egy maximális lineárisan független részhalmazt a H_1 , H_2 és H_3 vektorhalmazokban!
 - c, Adjon meg egy olyan $\underline{x} \in \mathbb{R}^4$ vektort, amely nem fejezhető ki a H_1 elemeivel!
 - d, Adjon meg egy olyan $\underline{x} \in \mathbb{R}^4$ vektort, amelyet H_1 -hez csatolva nem növeli meg a vektorhalmaz rangját!
- <u>19.</u> Legyen $\underline{a}_1 = (2, 1, 1)$, $\underline{a}_2 = (-1, 3, 0)$, $\underline{a}_3 = (0, 7, 1)$, $\underline{a}_4 = (-3, 2, -1)$, $\underline{a}_5 = (4, 2, 2)$, $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangia?
 - b, El lehet-e hagyni egy vektort a *H* vektorhalmazból úgy, hogy a maradék halmaz rangja kisebb legyen *H* rangjánál?
- <u>20.</u> Legyen $\underline{a}_1 = (-2, 3, -1)$, $\underline{a}_2 = (-1, 3, 2)$, $\underline{a}_3 = (4, -6, 2)$, $\underline{a}_4 = (2, -3, 1)$, $\underline{a}_5 = (6, -9, 3)$, $\underline{H} = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?

Az R^n vektortér 43

b, El lehet-e hagyni egy vektort a *H* vektorhalmazból úgy, hogy a maradék halmaz rangja kisebb legyen *H* rangjánál?

21. Legyen
$$\underline{a}_1 = (5, 3, -3)$$
, $\underline{a}_2 = (3, 1, -1)$, $\underline{a}_3 = (-2, -2, 2)$, $\underline{a}_4 = (6, 2, -2)$, $\underline{a}_5 = (0, -4, 4)$, $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.

- a, Mennyi a *H* vektorhalmaz rangja?
- b, Megadható-e *H*-nak 1, 2 ill. 3 vektorból álló lineárisan összefüggő részhalmaza? Ha igen, adjon meg ilyen(eke)t!

8. Minta feladat:

Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>a</u> 5
<u>a</u> 2			1	4	2
<u>e</u> 2			0	0	0
<u>e</u> 3			0	0	0
<u>a</u> 1			3	5	0

Számolás nélkül válaszoljunk az alábbi kérdésekre!

- a, Mely vektortér elemei az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 , \underline{a}_5 vektorok?
- b, Töltsük ki a táblázat hiányzó adatait!
- c, Mennyi a $H = \{\underline{a_1}, \underline{a_2}, \underline{a_3}, \underline{a_4}, \underline{a_5}\}$ vektorhalmaz rangja?
- d, Adjuk meg a H vektorhalmaz egy maximális lineárisan független részhalmazát!
- e, A H vektorhalmaz mely elemei állíthatók elő \underline{a}_1 és \underline{a}_2 lineáris kombinációjaként?
- f. Előállítható-e az a_4 vektor az a_1 és a_5 lineáris kombinációjaként?
- g, Előállítható-e az \underline{a}_4 vektor az \underline{a}_2 és \underline{a}_5 lineáris kombinációjaként?

Megoldás:

- a, Mivel négy vektor alkotja a bázist, ezért az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 , \underline{a}_5 vektorok az R^4 vektortér elemei.
- b. A hiányzó koordináták bázisban lévő vektorok koordinátái, így:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 2	0	1	1	4	2
<u>e</u> 2	0	0	0	0	0
<u>e</u> 3	0	0	0	0	0
<u>a</u> 1	1	0	3	5	0

- c, Maximálisan két vektort lehet H elemei közül bevonni a bázisba, így r(H) = 2.
- d, A H vektorhalmaz egy maximálisan lineárisan független részhalmaza: $\{a_1, a_2\}$.
- e, $\underline{a}_1 = 1\underline{a}_1 + 0\underline{a}_2$; $\underline{a}_2 = 0\underline{a}_1 + 1\underline{a}_2$; $\underline{a}_3 = 3\underline{a}_1 + 1\underline{a}_2$; $\underline{a}_4 = 5\underline{a}_1 + 4\underline{a}_2$; $\underline{a}_5 = 0\underline{a}_1 + 2\underline{a}_2$.
- f, A táblázatból látható, hogy az \underline{a}_4 vektor előáll az \underline{a}_1 és \underline{a}_2 vektorok lineáris kombinációjaként. Mivel az \underline{a}_2 és \underline{a}_5 vektorok párhuzamosak, így az \underline{a}_1 és \underline{a}_5 vektorokból pontosan azok a vektorok állíthatók elő lineáris kombinációval, mint az \underline{a}_1 és \underline{a}_2 vektorokból. Tehát az \underline{a}_4 vektor előáll az \underline{a}_1 és \underline{a}_5 vektorok lineáris kombinációjaként is.

g, Mivel az <u>a</u>² és <u>a</u>⁵ vektorok párhuzamosak, így az <u>a</u>² és <u>a</u>⁵ vektorokból pontosan azok a vektorok állíthatók elő lineáris kombinációval, mint amelyek csak az <u>a</u>² vektorból előállíthatóak. Mivel az <u>a</u>⁴ vektor nem állítható elő csak az <u>a</u>² vektor lineáris kombinációjaként, ezért nem áll elő az <u>a</u>² és <u>a</u>⁵ vektorokból sem.

Gyakorló feladatok:

<u>22.</u> Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 2			1		-3
<u>e</u> 2			0		0
<u>@</u> 4			2		4
<u>a</u> 1			3		0

Számolás nélkül válaszoljon az alábbi kérdésekre!

- a, Mely vektortér elemei az <u>a</u>₁, <u>a</u>₂, <u>a</u>₃, <u>a</u>₄, <u>a</u>₅ vektorok?
- b, Töltse ki a táblázat hiányzó adatait!
- c, Mennyi a $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ vektorhalmaz rangja?
- d, Adja meg a H vektorhalmaz egy maximális lineárisan független részhalmazát!
- e, A H vektorhalmaz mely elemei állíthatók elő \underline{a}_2 és \underline{a}_4 lineáris kombinációjaként?
- 23. Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>a</u> 5
<u>e</u> 1	3			2	0
<u>a</u> 2	2			-2	0
<u>a</u> 3	3			0	-2
<u>e</u> 4	0			0	0

Számolás nélkül válaszoljon az alábbi kérdésekre!

- a, Mely vektortér elemei az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 , \underline{a}_5 vektorok?
- b, Töltse ki a táblázat hiányzó adatait!
- c, Mennyi a $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ vektorhalmaz rangja?
- d, Adja meg a H vektorhalmaz egy maximális lineárisan független részhalmazát!
- e, A H vektorhalmaz mely elemei állíthatók elő \underline{a}_2 és \underline{a}_3 lineáris kombinációjaként?
- 24. Egy bázistranszformációs eljárás során a következő táblázathoz jutottunk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	0		0		0
<u>a</u> 2	1		3		-2
<u>@</u> 4	-2		0		0
<u>e</u> 4	0		0		0

Az Rⁿ vektortér 45

Számolás nélkül válaszoljon az alábbi kérdésekre!

- a, Mely vektortér elemei az <u>a</u>₁, <u>a</u>₂, <u>a</u>₃, <u>a</u>₄, <u>a</u>₅ vektorok?
- b, Töltse ki a táblázat hiányzó adatait!
- c, Mennyi a $H_1 = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$ vektorhalmaz rangja?
- d, Mennyi a $H_2 = \{\underline{a}_2, \underline{a}_3, \underline{a}_5\}$ vektorhalmaz rangja?
- e, Előállítható-e az \underline{a}_1 vektor az \underline{a}_2 és \underline{a}_4 vektorok lineáris kombinációjaként?
- f, Előállítható-e az a_1 vektor az a_3 és a_4 vektorok lineáris kombinációjaként?
- g, Előállítható-e az \underline{a}_1 vektor az \underline{a}_2 és \underline{a}_3 vektorok lineáris kombinációjaként?

9. Minta feladat:

- a, Az alábbi vektorhalmazok közül melyek alterek az R^3 térben? Az altereknél adjuk meg az altér dimenzióját és egy bázisát!
 - $H_1 = \{ (x, 0, z) \in \mathbb{R}^3 \mid x, z \in \mathbb{R} \},$
 - $H_2 = \{\lambda \cdot (2, 4, -3) \mid \lambda \geq 0\},$
 - $H_3 = \{ \lambda \cdot (2, 4, -3) \mid \lambda \in R \},$
 - $H_4 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = x_2 = 0 \}$
 - $H_5 = \{\lambda \cdot (1, 1, 0) \mid \lambda \in R \},$
 - $H_6 = \{\lambda \cdot (1, 1, 0) + (0, 1, 1) \mid \lambda \in R\},\$
 - $H_7 = \{\lambda_1 \cdot (1, 1, 0) + \lambda_2 \cdot (0, 1, 1) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_8 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1, x_2, x_3 \ge 0 \}.$
- b, Melyek azok az alterek a fentiek közül, amelyeknek direkt összege az R³ vektortér?

Megoldás:

- a, Az alterek olyan vektorhalmazok, amelyek zártak a vektorösszeadásra és a skalárral való szorzásra. Az R^3 vektortérben az 1 dimenziós alterek olyan vektorhalmazok, melyek vektorai egy origón átmenő egyenesre esnek, míg a 2 dimenziós alterek vektorai egy origón átmenő síkra esnek. Ezek alapján:
 - H_1 az x-z koordinátasík vektorait tartalmazza, **altér**, dim (H_1) = 2, egy bázis H_1 -ben: B_1 = {(1,0,0), (0,0,1)};
 - H_2 vektorai a (2, 4, -3) irányvektorú, origóból induló félegyenesre esnek, H_2 zárt az összeadásra, de nem zárt a skalárral való szorzásra, így **nem altér**;
 - H_3 vektorai a (2, 4, -3) irányvektorú, origón átmenő egyenesre esnek, **altér**, dim(H_3) = 1, egy bázis H_3 -ban: B_3 = {(2, 4, -3)};
 - H_4 vektorai a z tengelyre esnek, **altér**, dim (H_4) = 1, egy bázis H_4 -ban: B_4 = {(0, 0, 1)};
 - H_5 vektorai az (1, 1, 0) irányvektorú, origón átmenő egyenesre esnek, **altér**, dim $(H_5) = 1$, egy bázis H_5 -ban: $B_5 = \{(1, 1, 0)\}$;
 - H₆ vektorai nem zártak sem az összeadásra, sem a skalárral való szorzásra, nem altér;
 - H_7 vektorai az (1, 1, 0) és a (0, 1, 1) vektorok által kifeszített síkra esnek, **altér**, dim(H_7) = 2, egy bázis H_7 -ben: B_7 = {(1, 1, 0), (0, 1, 1)};
 - *H*₈ vektorai az első tér-nyolcadban helyezkednek el, az összeadásra zártak, de a skalárral való szorzásra nem, **nem altér**.

b, A fenti alterek közül egy 1 dimenziós és egy 2 dimenziós, vagy három 1 dimenziós altérnek lehet direkt összege az R^3 vektortér, feltéve, hogy a megfelelő alterek bázisainak uniója bázis R^3 -ban. Ez bázistranszformációval ellenőrizhető. Például a H_1 és H_3 alterek esetén a $B = B_1 \cup B_2 = \{(1, 0, 0), (0, 0, 1), (2, 4, -3)\}$ bázis R^3 -ban, hiszen az induló táblázatból látható, hogy az első két vektor eleve bázisban van, a harmadik pedig bevonható \underline{e}_2 helyére:

bázis	<u>b</u> 1	<u>b</u> 2	<u>b</u> 3
$\underline{b}_1 = \underline{e}_1$	1	0	2
<u>e</u> 2	0	0	4
<u>b</u> ₂= <u>e</u> ₃	0	1	-3

Így $R^3 = H_1 \oplus H_3$.

Ugyanakkor a H_1 és H_4 alterek esetén a $B = B_1 \cup B_4 = \{(1, 0, 0), (0, 0, 1)\}$, ami nem bázis R^3 -ban, így $R^3 \neq H_1 \oplus H_4$.

Hasonló vizsgálatokat elvégezve a többi esetben is, a következő altereknek lesz még direkt összege az R^3 vektortér: $R^3 = H_1 \oplus H_5$, $R^3 = H_7 \oplus H_3$, $R^3 = H_7 \oplus H_4$, $R^3 = H_3 \oplus H_4 \oplus H_5$.

10. Minta feladat:

Adjuk meg az alábbi alterek dimenzióját és egy bázisát! Igaz-e, hogy R^3 direkt összege a V_1 és V_2 altereknek? Ha igen, akkor bontsa fel az $\underline{x} = (4, -2, 5)$ vektort a megfelelő alterekbe eső összetevőkre!

a,
$$V_1 = \{\lambda_1 \cdot (1, -2, 3) + \lambda_2 \cdot (1, 0, 1) \mid \lambda_1, \lambda_2 \in R \}, V_2 = \{\lambda \cdot (1, 0, 0) \mid \lambda \in R \};$$

b,
$$V_1 = \{\lambda_1 \cdot (2, 3, 5) + \lambda_2 \cdot (0, 1, 0) \mid \lambda_1, \lambda_2 \in R \}, V_2 = \{\lambda_1 \cdot (1, 2, 3) + \lambda_2 \cdot (1, 4, 1) \mid \lambda_1, \lambda_2 \in R \};$$

c,
$$V_1 = \{\lambda_1 \cdot (1, 2, 1) + \lambda_2 \cdot (0, 1, 0) \mid \lambda_1, \lambda_2 \in R \}, V_2 = \{\lambda_1 \cdot (1, 1, 1) + \lambda_2 \cdot (3, 3, 3) \mid \lambda_1, \lambda_2 \in R \};$$

Megoldás:

a, $\dim(V_1) = 2$, $B_1 = \{ (1, -2, 3), (1, 0, 1) \}$ és $\dim(V_2) = 1$, $B_2 = \{ (1, 0, 0) \}$. A szükséges (de nem elégséges) feltétel teljesül: $\dim(V_1) + \dim(V_2) = 2 + 1 = \dim(R^3)$.

Ellenőrizzük ezután, hogy az alterek bázisainak uniója, $B = B_1 \cup B_2$ bázis-e R^3 -ban, és közben számoljuk az \underline{x} vektor koordinátáit is. Az induló táblázat:

bázis	<u>b</u> 1	<u>b</u> 2	<u>b</u> 3	<u>X</u>
<u>b</u> ₃= <u>e</u> ₁	1	1	1	4
<u>e</u> 2	-2	0	0	-2
<u>e</u> 3	3	1	0	5

A \underline{b}_3 vektor bent van a kanonikus bázisban ($\underline{b}_3 = \underline{e}_1$), vonjuk be \underline{b}_2 -t az \underline{e}_3 vektor helyére:

Az Rⁿ vektortér 47

bázis	<u>b</u> 1	<u>b</u> 2	<u>b</u> 3	<u>X</u>
<u>b</u> 3	-2	0	1	-1
<u>e</u> 2	-2	0	0	-2
<u>b</u> 2	3	1	0	5

Végül vonjuk be a \underline{b}_1 vektort az \underline{e}_2 helyére:

bázis	<u>b</u> 1	<u>b</u> 2	<u>b</u> 3	<u>X</u>
<u>b</u> 3	0	0	1	1
<u>b</u> 1	1	0	0	1
<u>b</u> 2	0	1	0	2

Mivel a $B = B_1 \cup B_2$ vektorhalmaz bázis R^3 –ban, így $R^3 = V_1 \oplus V_2$. Az \underline{x} vektor előállítása a B bázison: $\underline{x} = 1\underline{b}_1 + 2\underline{b}_2 + 1\underline{b}_3$. Mivel \underline{b}_1 és \underline{b}_2 a V_1 altér bázisvektorai, így az \underline{x} vektor V_1 -be eső összetevője: $\underline{v}_1 = 1\underline{b}_1 + 2\underline{b}_2 = (3, -2, 5)$. A \underline{b}_3 -vektor a V_2 altér bázisvektora, így az \underline{x} vektor V_2 -be eső összetevője: $\underline{v}_2 = 1\underline{b}_3 = (1, 0, 0)$.

- b, $\dim(V_1) = 2$, $B_1 = \{(2, 3, 5), (0, 1, 0)\}$ és $\dim(V_2) = 2$, $B_2 = \{(1, 2, 3), (1, 4, 1)\}$. A szükséges feltétel nem teljesül: $\dim(V_1) + \dim(V_2) = 2 + 2 \neq \dim(R^3)$, így $R^3 \neq V_1 \oplus V_2$.
- c, $\dim(V_1) = 2$, $B_1 = \{ (1, 2, 1), (0, 1, 0) \}$ és $\dim(V_2) = 1$, $B_2 = \{ (1, 1, 1) \}$. Utóbbi esetben vegyük észre, hogy az (1, 1, 1) és (3, 3, 3) vektorok párhuzamosak, így lineáris kombinációik 1 dimenziós alteret határoznak meg. Ellenőrizzük ezután, hogy az alterek bázisainak uniója, $B = B_1 \cup B_2$ bázis-e R^3 –ban, és közben számoljuk az X vektor koordinátáit is. Az induló táblázat:

bázis

$$\underline{b}_1$$
 \underline{b}_2
 \underline{b}_3
 \underline{x}
 \underline{e}_1
 1
 0
 1
 4

 $\underline{b}_2 = \underline{e}_2$
 2
 1
 1
 -2

 \underline{e}_3
 1
 0
 1
 5

A \underline{b}_2 vektor bent van a kanonikus bázisban ($\underline{b}_2 = \underline{e}_2$), vonjuk be \underline{b}_1 -t az \underline{e}_1 vektor helyére:

bázis	<u>b</u> 1	<u>b</u> 2	<u>b</u> 3	<u>X</u>
<u>b</u> 1	1	0	1	4
<u>b</u> 2	0	1	-1	-10
<u>e</u> 3	0	0	0	1

Látható, hogy \underline{b}_3 nem vonható be a bázisba az \underline{e}_3 vektor helyére, azaz a $B = B_1 \cup B_2$ vektorhalmaz nem bázis R^3 –ban, így $R^3 \neq V_1 \oplus V_2$.

Gyakorló feladatok:

- 25. a, Az alábbi vektorhalmazok közül melyek alterek az *R*³ térben? Az altereknél adja meg az altér dimenzióját és egy bázisát!
 - $H_1 = \{ \lambda_1 \cdot (1, 0, 0) + \lambda_2 \cdot (0, 1, 0) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_2 = \{\lambda \cdot (1, 2, -5) \mid \lambda \in R^+ \},$
 - $H_3 = \{ \lambda \cdot (1, 2, -5) \mid \lambda \in R \},$
 - $H_4 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1, x_2, x_3 < 0 \}$
 - $H_5 = \{\lambda \cdot (3, -4, 2) \mid \lambda \in R \},$
 - $H_6 = \{\lambda \cdot (3, -4, 2) + (1, 1, 1) \mid \lambda \in R\},$
 - $H_7 = \{ \lambda_1 \cdot (3, -4, 2) + \lambda_2 \cdot (1, 1, 1) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_8 = \{ (\lambda, 0, 0) \mid \lambda \in R \}.$
 - b, Melyek azok az alterek a fentiek közül, amelyeknek direkt összege az \mathbb{R}^3 vektortér?
- <u>26.</u> Legyen $V_1 = \{ (x, y, z) \in \mathbb{R}^3 \mid y = 0 \}$ és $V_2 = \{ \lambda \cdot (1, -5, 0) \mid \lambda \in \mathbb{R} \}$.
 - a. Igazolia, hogy $V_1 \oplus V_2 = R^3$!
 - b, Bontsa fel az \underline{x} = (3, 10, -4) vektort a V_1 és V_2 alterekbe eső összetevőkre!
- <u>27.</u> Legyen $V_1 = \{ (t, t, t) \in \mathbb{R}^3 \mid t \in \mathbb{R} \}$ és $V_2 = \{ \lambda_1 \cdot (1, 0, 2) + \lambda_2 \cdot (-1, 3, 0) \mid \lambda_1, \lambda_2 \in \mathbb{R} \}$.
 - a. Igazolia, hogy $V_1 \oplus V_2 = R^3$!
 - b, Bontsa fel az \underline{x} = (1, 10, 2) vektort a V_1 és V_2 alterekbe eső összetevőkre!
- <u>28.</u> Legyen $V_1 = {\lambda \cdot (1, 1, -2) \mid \lambda \in R}$ és $V_2 = {\lambda \cdot (1, 0, 0) + \mu \cdot (1, 1, 0) \mid \lambda, \mu \in R}$.
 - a. Igazolia, hogy $V_1 \oplus V_2 = R^3$!
 - b, Bontsa fel az \underline{x} = (10, 5, -6) vektort a V_1 és V_2 alterekbe eső összetevőkre!
- 29. Legyen $V_1 = \{ \lambda(1, 0, 2) \mid \lambda \in R \},$

```
V_2 = \{ \lambda \cdot (2, 1, -3) + \mu \cdot (1, 1, 1) \mid \lambda, \mu \in R \},\
```

$$V_3 = \{ \lambda \cdot (4, 5, -2) + \mu \cdot (2, 0, 5) \mid \lambda, \mu \in R \}.$$

- a, Adjon meg egy-egy bázist a V_1 , V_2 és V_3 alterekben!
- b, Igaz-e, hogy $V_1 \oplus V_2 = R^3$ illetve $V_2 \oplus V_3 = R^3$? (Indoklás!) Ha igen, akkor bontsa fel az $\underline{x} = (8, 3, 1)$ vektort a megfelelő alterekbe eső összetevőkre!
- 30. Legyen $V_1 = \{ \lambda \cdot (2, -1, 1, 0) \mid \lambda \in R \},$

$$V_2 = \{ \lambda \cdot (1, 1, 1, 1) + \mu \cdot (0, 1, 0, 0) \mid \lambda, \mu \in R \},$$

$$V_3 = \{ \lambda \cdot (1, 3, -1, 4) \} \mid \lambda \in R \}.$$

- a, Adja meg a fenti alterek dimenzióját és egy-egy bázisát!
- b, Igaz-e, hogy $V_1 \oplus V_2 = R^4$ illetve $V_1 \oplus V_2 \oplus V_3 = R^4$? (Indoklás!) Ha igen, akkor bontsa fel az x = (7, 10, 2, 11) vektort a megfelelő alterekbe eső összetevőkre!
- 31. Adjon meg az R^4 vektortérben 2, 3 illetve 4 db olyan alteret, amely altereknek direkt összege az R^4 vektortér!

Az R^n vektortér 49

Elméleti kérdések

Döntse el az alábbi állításokról, hogy igazak vagy hamisak!

- <u>1.</u> R^n -ben bármely vektorhalmaz rangja $\leq n$.
- 2. Ha egy *H* vektorhalmaz rangja *k*, akkor *H* nem tartalmazhat *k*-1 darab lineárisan összefüggő vektort.
- <u>3.</u> Ha egy vektorhalmaz rangja megegyezik az elemszámával, akkor a vektorhalmaz lineárisan független.
- 4. Ha a $H \subseteq R^n$ vektorhalmazra r(H) = r, akkor H-nak nem lehet r-nél kevesebb vektorból álló lineárisan összefüggő részhalmaza.
- <u>5.</u> Ha egy vektorhalmaz rangja r, akkor a vektorhalmazt egy vektorral bővítve a rang r+1-re nő.
- 6. Ha egy vektorhalmaz generátorrendszer, akkor az bázis is.
- 7. Ha $L \subseteq \mathbb{R}^n$ lineárisan független, $G \subseteq \mathbb{R}^n$ generátorrendszer, akkor G-ben legalább annyi vektor van, mint L-ben.
- 8. Egy lineárisan független vektorhalmazt további vektorokkal bővítve a függetlenség megőrződik.
- 9. Rⁿ –ben minden bázis generátorrendszer.
- <u>10.</u> Ha a $H \subseteq \mathbb{R}^n$ vektorhalmaz generátorrendszer, akkor H nem lehet lineárisan összefüggő.
- 11. R^n -ben n darab lineárisan független vektor bázist alkot.
- 12. Rⁿ -ben létezik *n*-nél kevesebb vektorból álló lineárisan független vektorhalmaz.
- 13. R^n -ben létezik n-nél kevesebb vektorból álló generátorrendszer.
- $14. R^n$ -ben létezik n-nél több vektorból álló generátorrendszer.
- 15. Ha a $H \subseteq R^n$ vektorhalmaz generátorrendszer és |H|>n, akkor H lineárisan összefüggő.
- 16. Ha a $H \subseteq R^n$ vektorhalmaz generátorrendszer és |H| = n, akkor H bázis.
- <u>17.</u> Ha a $H \subseteq \mathbb{R}^n$ vektorhalmaz lineárisan független és |H| = n, akkor H generátorrendszer.
- 18. Lineárisan összefüggő vektorhalmaz részhalmaza is lineárisan összefüggő.
- <u>19.</u> Ha egy R^n –beli generátorrendszer n vektorból áll, akkor az bázis.
- 20. Minden lineárisan összefüggő vektorhalmaz tartalmazza a nullvektort.
- 21. R^n –ben minden bázis n vektorból áll.
- <u>22.</u> Ha egy vektorhalmaz minimális generátorrendszer, akkor az lineárisan független.
- 23. Ha egy vektorhalmaz minimális generátorrendszer, akkor az lineárisan összefüggő.

- 24. Rn -ben minden bázis tartalmazza a nullvektort.
- $\underline{25}$. R^{n} –ben minden generátorrendszer legalább n vektorból áll.
- <u>26.</u> R^n -ben létezik olyan B bázis, hogy valamely $\underline{a} \in R^n$ vektorra $\underline{a} \in B$ és - $\underline{a} \in B$.
- 27. Ha H⊂ Rⁿ lineárisan összefüggő, és \underline{a} ∈ Rⁿ \ H, akkor H ∪ { \underline{a} } is lineárisan összefüggő.
- 28. Legyen $A=\{\underline{a}_1, ... \underline{a}_k\}$ ⊂ R^n lineárisan összefüggő. Ekkor r(A) < k.
- 29. Ha $A=\{\underline{a}_1, \dots \underline{a}_k\}$ ⊂ R^n lineárisan független, akkor $k \le n$.
- <u>30.</u> Ha a $H \subseteq \mathbb{R}^n$ vektorhalmaz lineárisan összefüggő, akkor van H-nak olyan részhalmaza, amely bázis \mathbb{R}^n -ben.
- 31. Ha a $H \subseteq \mathbb{R}^n$ vektorhalmaz lineárisan összefüggő, akkor van olyan \mathbb{R}^n -beli vektor, amely többféleképpen áll elő H-beli vektorok lineáris kombinációjaként.
- <u>32.</u> Van olyan R^n -beli generátorrendszer, amely nem tartalmaz bázist.
- 33. Rⁿ-ben nincs 0-dimenziós altér.
- 34. Ha $\dim(V)=k$, akkor a V altér vektorai közül maximálisan k darab lineárisan független vektor választható ki.
- 35. Rn minden altere tartalmazza a nullvektort.
- 36. Ha $R^n = V_1 \oplus V_2$, akkor dim (V_1) + dim $(V_2) = n$.
- 37. Ha dim (V_1) +dim (V_2) =n, akkor. R^n = $V_1 \oplus V_2$.
- 38. R és R^2 altere R^3 -nak.
- 39. Ha a V vektorhalmaz altér Rⁿ -ben, akkor V lineárisan független.
- <u>40.</u> Ha a V vektorhalmaz altér Rⁿ –ben, akkor V lineárisan összefüggő.
- 41. Két *R*³-beli vektor lineáris kombinációi mindig egy origón átmenő síkot határoznak meg.
- 42. Alterek metszete is altér.
- 43. Alterek uniója is altér.

Mátrixok

1. Minta feladat:

Adjuk meg azt a A 3×4 -es mátrixot, amelynek (i,j)-edik eleme: $a_{ij} = 3i-j$! Írjuk fel a fenti mátrix transzponáltját!

Megoldás:

Számoljuk ki a megadott összefüggést felhasználva a mátrix elemeit!

$$a_{11}=3\cdot 1-1=2, \ a_{12}=3\cdot 1-2=1, \ a_{13}=3\cdot 1-3=0, \ a_{14}=3\cdot 1-4=-1, \ a_{21}=3\cdot 2-1=5, \ a_{22}=3\cdot 2-2=4, \ a_{23}=3\cdot 2-3=3, \ a_{24}=3\cdot 2-4=2, \ a_{31}=3\cdot 3-1=8, \ a_{32}=3\cdot 3-2=7, \ a_{33}=3\cdot 3-3=6, \ a_{34}=3\cdot 3-4=5, \ \text{fgy az } A \text{ mátrix:}$$

$$A = \begin{pmatrix} 2 & 1 & 0 & -1 \\ 5 & 4 & 3 & 2 \\ 8 & 7 & 6 & 5 \end{pmatrix}$$

A fenti mátrix transzponáltját a sorok és oszlopok felcserélésével kapjuk:

$$A^T = \begin{pmatrix} 2 & 5 & 8 \\ 1 & 4 & 7 \\ 0 & 3 & 6 \\ -1 & 2 & 5 \end{pmatrix}$$

2. Minta feladat:

Legyen
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 4 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix}$.

- a, Írjuk fel a fenti mátrixok transzponáltjait!
- b, Határozzuk meg az A+B, A-B, $4A^T$, $-B^T$, 2A+3B, A^T-2B^T mátrixokat!

Megoldás:

- a, A transzponált mátrixok: $A^T = \begin{pmatrix} 2 & 3 \\ 1 & 4 \\ -1 & 0 \end{pmatrix}$, $B^T = \begin{pmatrix} 3 & 0 \\ -2 & 2 \\ 1 & 0 \end{pmatrix}$.
- b, A mátrixösszeadás definíciója szerint az azonos méretű mátrixokat elemenként adjuk össze, míg egy mátrix skalárszorosát úgy kapjuk meg, hogy minden mátrixelemet az adott skalárral megszorzunk. Így:

$$A+B = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 4 & 0 \end{pmatrix} + \begin{pmatrix} 3 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 0 \\ 3 & 6 & 0 \end{pmatrix}$$

$$A - B = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 4 & 0 \end{pmatrix} - \begin{pmatrix} 3 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3 & -2 \\ 3 & 2 & 0 \end{pmatrix}$$

$$4A^{T} = 4 \cdot \begin{pmatrix} 2 & 3 \\ 1 & 4 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 12 \\ 4 & 16 \\ -4 & 0 \end{pmatrix}, \quad -B^{T} = -\begin{pmatrix} 3 & 0 \\ -2 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 2 & -2 \\ -1 & 0 \end{pmatrix}$$

$$2A + 3B = \begin{pmatrix} 4 & 2 & -2 \\ 6 & 8 & 0 \end{pmatrix} + \begin{pmatrix} 9 & -6 & 3 \\ 0 & 6 & 0 \end{pmatrix} = \begin{pmatrix} 13 & -4 & 1 \\ 6 & 14 & 0 \end{pmatrix}$$

$$A^{T} - 2B^{T} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \\ -1 & 0 \end{pmatrix} - \begin{pmatrix} 6 & 0 \\ -4 & 4 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 5 & 0 \\ -3 & 0 \end{pmatrix}$$

3. Minta feladat:

Legyen
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 3 & 1 & 2 & 1 \\ 0 & 2 & 1 & 2 \end{pmatrix}$.

- a, Adjuk meg a fenti mátrixok méretét (típusát)!
- b, Írjuk fel a fenti mátrixok transzponáltját!
- c, Melyik létezik az alábbi mátrixszorzatok közül? Amelyik létezik, azt számítsuk ki!

$$A \cdot B$$
, $B \cdot A$, $B \cdot C$, $C \cdot D$, $C^T \cdot D$, $C \cdot C$, $C \cdot C^T$, $C^T \cdot C$, A^2 , A^3

Megoldás:

- a, Az A mátrix 2×2 -es, a B mátrix 2×3 -as, a C mátrix 3×1 -es, a D mátrix 3×4 -es.
- b, A transzponált mátrixok:

$$A^{T} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}, \quad B^{T} = \begin{pmatrix} 4 & 1 \\ 2 & 0 \\ 1 & 3 \end{pmatrix}, \quad C^{T} = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}, \quad D^{T} = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

c, Két mátrix összeszorozhatóságának feltétele, hogy az első mátrix oszlopainak a száma egyezzen meg a második mátrix sorainak a számával. Ez a fenti mátrix szorzatok közül a *B A*, *C D* és *C C* szorzatok esetén nem teljesül, így ezek a mátrix-szorzatok nem léteznek.

Ha az összeszorozhatóság feltétele teljesül, a szorzatmátrix (*i,j*)-edik elemét ún. sor-oszlop szorzással számoljuk, azaz az első mátrix *i*-edik sorát és a második mátrix *j*-edik oszlopát felhasználva a megfelelő elemeket rendre összeszorozzuk és a szorzatokat összeadjuk. (Számoláskor hasznos az ún. Falk-féle elrendezést használni.)

Ennek megfelelően:

$$A \cdot B = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 13 & 6 & 6 \\ 9 & 4 & 5 \end{pmatrix}$$

$$B \cdot C = \begin{pmatrix} 4 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 14 \\ 7 \end{pmatrix}$$

$$C^{T} \cdot D = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 2 & 0 \\ 3 & 1 & 2 & 1 \\ 0 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 9 & 12 & 8 \end{pmatrix}$$

$$C \cdot C^{T} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 \\ 4 & 16 & 8 \\ 2 & 8 & 4 \end{pmatrix}$$

$$C^T \cdot C = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \begin{bmatrix} 21 \end{bmatrix}$$

$$A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 4 \\ 8 & 3 \end{pmatrix}$$

$$A^{3} = A \cdot A \cdot A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 4 \\ 8 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 41 & 15 \\ 30 & 11 \end{pmatrix}.$$

4. Minta feladat:

Legyenek
$$A = \begin{pmatrix} 3 & -2 & 1 \\ 1 & 4 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Melyik létezik az alábbi szorzatok közül? Amelyik létezik, azt számítsuk ki!

$$B \cdot A^T C^T$$
, $C^T \cdot A \cdot B^T$, $C^T \cdot A \cdot B$

Megoldás:

Először is megjegyezzük, hogy a mátrixszorzás asszociatív művelet, azaz a többtényezős szorzatok tetszés szerint zárójelezhetőek, illetve a zárójelek el is hagyhatóak.

A $B \cdot A^T C^T$ szorzatban a B mátrix 3×1 -es, az A^T mátrix 3×2 -es, ezért a $B \cdot A^T$ szorzás nem végezhető el (első mátrix oszlopainak száma nem egyenlő a második mátrix sorainak számával). Így a $B \cdot A^T C^T$ szorzat sem létezik.

A $C^T \cdot A B^T$ szorzatban a C^T mátrix 1×2 -es, az A mátrix 2×3 -as, ezért a $C^T \cdot A$ szorzás elvégezhető és a szorzatmátrix 1×3 -as mátrix lesz. Ez a mátrix viszont nem szorozható meg jobbról a B^T 1×3 -as mátrixszal, így a $C^T \cdot A B^T$ szorzat sem létezik.

A $C^T \cdot A \cdot B$ szorzatot vizsgálva láttuk, hogy a $C^T \cdot A$ szorzás elvégezhető, és 1×3 -as mátrixot eredményez. Ez megszorozható jobbról a B 3×1 -es mátrixozal, és eredményül 1×1 -es mátrixot kapunk. A számolást elvégezve:

$$C^T \cdot A = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{pmatrix} 3 & -2 & 1 \\ 1 & 4 & 0 \end{pmatrix} = \begin{bmatrix} 11 & 2 & 3 \end{bmatrix}$$

$$C^{T} \cdot A \cdot B = \begin{bmatrix} 11 & 2 & 3 \end{bmatrix} \cdot \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix} = \begin{bmatrix} -11 \end{bmatrix}$$

5. Minta feladat:

Tekintsük az
$$A = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 3 & 1 & 2 & 1 \\ 0 & 2 & 1 & 2 \end{pmatrix}$$
 mátrixot! Határozzuk meg az A mátrix rangját!

Megoldás:

Bármely mátrixra az oszloprang, azaz az oszlopvektorok alkotta vektorhalmaz rangja megegyezik a sorranggal, azaz a sorvektorok halmazának rangjával. Ezt a közös értéket hívjuk röviden a mátrix rangjának. Jelölje \underline{a}_1 , \underline{a}_2 , \underline{a}_3 , \underline{a}_4 az A mátrix oszlopvektorait. Bázistranszformációval határozzuk meg az A mátrix oszloprangját. Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4
<u>e</u> 1	1	1	2	0
<u>e</u> 2	3	1	2	1
<u>e</u> 3	0	2	1	2

Az \underline{a}_1 vektort bevonva a bázisba az \underline{e}_1 helyére, a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4
<u>a</u> 1	1	1	2	0
<u>e</u> 2	0	-2	-4	1
<u>e</u> 3	0	2	1	2

Hajtsuk végre ezután az $\underline{a}_4 \rightarrow \underline{e}_2$ vektorcserét:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4
<u>a</u> 1	1	1	2	0
<u>@</u> 4	0	-2	-4	1
<u>e</u> 3	0	6	9	0

Végül az $\underline{a}_2 \rightarrow \underline{e}_3$ vektorcsere után a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4
<u>a</u> 1	1	0	0.5	0
<u>a</u> 4	0	0	-1	1
<u>a</u> 2	0	1	1.5	0

Mivel az A mátrix oszlopvektorai közül hármat lehetett a bázisba bevonni, így az A mátrix rangja: r(A) = 3.

Gyakorló feladatok:

1. Adja meg azt a 2×3 -as mátrixot, amelynek (i,j)-edik eleme: $a_{ij} = i+2j$!

2. Adja meg azt a 2×3 -as mátrixot, amelynek (i,j)-edik eleme:

$$a_{ij} = i+j$$
, ha $i \le j$,
 $a_{ij} = 0$, ha $i > j$.

3. Legyen $A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 4 & 0 & 2 & 1 \\ 2 & -5 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -4 & 1 & 2 \\ 1 & 5 & 0 & 3 \\ 2 & -2 & 3 & -1 \end{pmatrix}$.

Határozza meg az A+B, A-B, 3A, -B, 4A+5B mátrixokat!

4. Legyen $A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$.

Melyik létezik az AB és a BA szorzatok közül? Amelyik létezik, azt számítsa ki!

5. Legyen $A = \begin{pmatrix} 2 & -5 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 2 & 5 \\ 4 & 1 & -3 \end{pmatrix}$, $C = \begin{pmatrix} 2 \\ -4 \\ 7 \end{pmatrix}$.

Mutassa meg, hogy $(AB)\cdot C=A(BC)$!

6. Legyen $A = \begin{pmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$.

Mutassa meg, hogy a fenti mátrixokra:

- -AB=BA=0
- -AC=A
- CA=C.

7. Legyen
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 1 \end{pmatrix}$. $C = \begin{pmatrix} 2 & 3 & -4 \\ 5 & 0 & 1 \end{pmatrix}$.

Ellenőrizze az A(B+C)=AB+AC disztributív tulajdonságot!

- 8. Legyenek A és B nxn-es mátrixok. Igazolja, hogy általában
 - $(A+B)(A-B) \neq AA-BB$
 - $(A+B)(A+B) \neq AA+2AB+BB$

Adja meg mindkét esetben az egyenlőség teljesüléséhez szükséges feltételt!

9. Legyen
$$A = \begin{pmatrix} -1 & 0 & 4 \\ 3 & 2 & 0 \end{pmatrix}$$
. $B = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 5 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 4 \\ 2 & 5 \\ 0 & 6 \end{pmatrix}$,

$$E = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \qquad F = \begin{pmatrix} 3 & 0 & 2 & 1 \\ 4 & 5 & 0 & -1 \\ 6 & 0 & 1 & 1 \end{pmatrix}.$$

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

2A-C, 3C+D, $C+D^{T}$, 4B+2E, AB, AC, AD, EB, $B\cdot E$, B^{2} , E^{3} , $A\cdot E$, EA, $C\cdot F$, $D\cdot C$, $C\cdot D$, $D\cdot E$.

10. Legyen
$$A = \begin{pmatrix} 1 & 2 & -1 & -3 \\ 0 & 1 & 3 & 2 \\ 4 & 5 & 0 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 8 \\ -3 & 2 \\ 0 & 5 \\ -1 & -2 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 4 \\ 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix}$, $D = \begin{pmatrix} 5 \\ -2 \\ 4 \\ 3 \end{pmatrix}$,

$$E = \begin{pmatrix} -3 \\ 2 \end{pmatrix}, \qquad F = \begin{pmatrix} 5 & 2 \end{pmatrix}.$$

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

A+B, C+B, C+D, E+F, $E+F^{\mathrm{T}}$, 5A, 3F, B, C, B, C^{T} , B^{T} , C, B, A, A, B, B, D, B, C, A, D, D, D, D, E, E, E, E, F, E.

11. Megyálaszthatóak-e az a és b valós paraméterek úgy, hogy AA=A teljesüljön, ha

$$- A = \begin{pmatrix} a & -2 \\ 3 & b \end{pmatrix},$$

$$- A = \begin{pmatrix} a & 2 \\ 5 & b \end{pmatrix}.$$

www.tankonyvtar.hu

$$\frac{12.}{1} A = \begin{pmatrix} 3 & 4 & -2 \\ 1 & 0 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 3 & 0 \\ 0 & 4 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 6 & 10 & -4 \\ 0 & 2 & 2 & 0 \\ -1 & 4 & 2 & 2 \end{pmatrix}. \quad D = \begin{pmatrix} 1 & -2 \\ 2 & 5 \\ 4 & 1 \end{pmatrix},$$

$$E = \begin{pmatrix} 1 & -4 & -2 & 5 \\ 2 & 3 & 7 & -1 \\ 3 & 1 & 7 & 2 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 4 & 0 \\ 1 & 0 & 4 \\ 3 & 2 & 1 \end{pmatrix}$$

Határozza meg a fenti mátrixok rangját!

13. Mutassa meg, hogy általában $r(AB) \neq r(BA)$!

Útmutatás: 2×2-es mátrixokkal próbálkozzon!

5. Minta feladat:

Legyen
$$A = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$$
 és $B = \begin{pmatrix} 5/6 & -1/6 \\ -4/6 & 2/6 \end{pmatrix}$. Mutassuk meg, hogy az A és B mátrixok egymás inverzei!

Megoldás:

Elég megmutatni, hogy az AB illetve BA szorzat egységmátrixot ad eredményül:

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5/6 & -1/6 \\ -4/6 & 2/6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{tov} \text{bb\'a} \quad B \cdot A = \begin{pmatrix} 5/6 & -1/6 \\ -4/6 & 2/6 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

6. Minta feladat:

Invertálható-e az $A = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}$ mátrix? Ha igen, akkor bázistranszformációval határoz-

zuk meg az inverzét

Megoldás:

Egy $n \times n$ -es mátrix pontosan akkor invertálható, ha teljes rangú, azaz oszlopvektorai bázist alkotnak az R^n vektortérben. Továbbá, az inverz mátrix a kanonikus bázis vektorainak az A mátrix oszlopvektoraira – mint bázisra – vonatkozó koordinátáiból épül fel. Ennek megfelelően az inverz mátrix bázistranszformációval történő számolása a 10. ábrán látható séma szerint történhet.

10. ábra: Mátrix inverzének meghatározása bázistranszformációval

Ennek megfelelően az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3
<u>e</u> 1	3	2	1	1	0	0
<u>e</u> 2	4	3	1	0	1	0
<u>e</u> 3	3	4	1	0	0	1

A bázistranszformáció során az A mátrix oszlopvektorait igyekezünk a bázisba bevonni. Mátrixinvertálásnál a bázisba bekerülő \underline{a} vektorok oszlopát a következő táblázatból elhagyhatjuk. Vonjuk be az \underline{a}_3 vektort a bázisba az \underline{e}_1 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3
<u>a</u> 3	3	2	1	0	0
<u>e</u> 2	1	1	-1	1	0
<u>e</u> 3	0	2	-1	0	1

Hajtsuk végre ezután az $\underline{a}_1 \rightarrow \underline{e}_2$ vektorcserét:

bázis	<u>a</u> 2	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3
<u>a</u> 3	-1	4	-3	0
<u>a</u> 1	1	-1	1	0
<u>e</u> 3	2	-1	0	1

Végül vonjuk be az \underline{a}_2 vektort az \underline{e}_3 helyére. Megjegyezzük, hogy itt már látszik, hogy az A mátrix rangja 3, azaz teljes rangú, így invertálható.

bázis

$$\underline{e}_1$$
 \underline{e}_2
 \underline{e}_3
 \underline{a}_3
 3.5
 -3
 0.5

 \underline{a}_1
 -0.5
 1
 -0.5

 \underline{a}_2
 -0.5
 0
 0.5

A kapott táblázat alapján felírható az A mátrix inverze. Az inverzmátrix felírásánál arra kell figyelnünk, hogy a kanonikus bázis vektorainak az a_1 , a_2 és a_3 vektorokra

vonatkozó koordinátáit a megfelelő sorrendben kell az inverzmátrix oszlopaiba beírni, azaz a bázistranszformációs táblázat sorait kell a megfelelő módon rendezni:

$$A^{-1} = \begin{pmatrix} -0.5 & 1 & -0.5 \\ -0.5 & 0 & 0.5 \\ 3.5 & -3 & 0.5 \end{pmatrix}$$

Megjegyezzük, hogy a számolás helyességéről meggyőződhetünk az $AA^{-1} = E$ egyenlőség ellenőrzésével.

7. Minta feladat:

Invertálható-e az $A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 3 & 7 \\ 3 & 4 & 10 \end{pmatrix}$ mátrix? Ha igen, akkor bázistranszformációval hatá-

rozzuk meg az inverzét!

Megoldás:

Az előző minta példához hasonlóan az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3
<u>e</u> 1	1	0	2		0	0
<u>e</u> 2	2	3	7		1	0
<u>e</u> 3	3	4	10	0	0	1

Vonjuk be először az \underline{a}_1 vektort a bázisba az \underline{e}_1 helyére:

bázis	<u>a</u> 2	<u>a</u> 3	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3
<u>a</u> 1	0	2	1	0	0
<u>e</u> 2	3	3	-2	1	0
<u>e</u> 3	4	4	-3	0	1

Az \underline{a}_2 vektort az \underline{e}_2 helyére vonva a következő táblázatot kapjuk:

bázis	<u>a</u> 3	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3	
<u>a</u> 1	2	1	0	0	
<u>a</u> 2	1	-2/3	1/3	0	
<u>e</u> 3	0	-1/3	-4/3	1	

Látható, hogy az \underline{a}_3 vektort már nem tudjuk a bázisba bevonni az \underline{e}_3 vektor helyére. Tehát az *A* mátrix rangja 2, azaz nem teljes rangú, így nem invertálható.

Gyakorló feladatok:

- 14. Legyen $A = \begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix}$ és $B = \begin{pmatrix} 1/3 & 0 \\ 2/3 & -1 \end{pmatrix}$. Mutassa meg, hogy az A és B mátrixok egymás inverzei!
- 15. Legyen $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 6 \\ 1 & 3 & 2 \end{pmatrix}$ és $B = \begin{pmatrix} 2 & -1 & -1 \\ a & 1/4 & b \\ 1/8 & 1/8 & -1/8 \end{pmatrix}$. Megválaszthatóak-e az a és b

valós paraméterek úgy, hogy A és B egymás inverzei legyenek?

16. Legyen
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, $C = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 2 & -3 & -4 \\ -1 & 7 & 2 \\ 3 & 1 & -6 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 2 \\ -1 & 5 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 3 & 2 & 4 \end{pmatrix}$, $H = \begin{pmatrix} 3 & 1 & 2 & 4 \\ 7 & 1 & 0 & 1 \\ 2 & 1 & 2 & 3 \\ 4 & 1 & 2 & 2 \end{pmatrix}$.

Invertálhatóak-e a fenti mátrixok? Ha igen, akkor bázistranszformáció alkalmazásával határozza meg az inverzüket!

- 17. Legyen $A = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$. Mutassa meg, hogy $A^3 = E$! Ezt felhasználva keresse meg az A^{-1} inverzmátrixot!
- 18. Legyen $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ és $B = \frac{1}{12} \cdot \begin{pmatrix} a & b & 3 \\ 7 & -8 & 3 \\ 1 & b & -3 \end{pmatrix}$, ahol a és b valós számok.
 - a, Mutassa meg, hogy *a* és *b* megválaszthatóak úgy, hogy az *A* és *B* mátrixok egymás inverzei legyenek!
 - b, Határozza meg azt az X mátrixot, amelyre teljesül a DX= 2X+C egyenlet, ahol

$$D = \begin{pmatrix} 3 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 2 & 3 \end{pmatrix} \text{ és } C = \begin{pmatrix} 2 & 3 & 0 & 1 \\ 1 & 0 & 3 & 1 \\ 0 & 5 & -4 & 1 \end{pmatrix}.$$

Útmutatás: használja fel az a, pont eredményét!

8. Minta feladat:

Tekintsük a következő mátrixokat!

$$A = \begin{bmatrix} 5 \end{bmatrix}, \quad B = \begin{bmatrix} -7 \end{bmatrix}, \quad C = \begin{pmatrix} 6 & 3 \\ 2 & 5 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 2 & 1 & 4 \\ -2 & 3 & 1 \\ 4 & 2 & 1 \end{pmatrix}, \quad F = \begin{pmatrix} 3 & -1 & 5 \\ 1 & 1 & 3 \\ 5 & 2 & 12 \end{pmatrix}.$$

Határozzuk meg a fenti mátrixok determinánsát! Milyen egyéb mátrixtulajdonságokra következtethetünk a determináns értékéből?

Megoldás:

Az 1×1 -es mátrixok determinánsa egyenlő egyetlen elemükkel, így $\det(A) = 5$ és $\det(B) = -7$.

A 2×2-es mátrixok determinánsát a főátlóbeli elemek szorzatának és a mellékátlóbeli elemek szorzatának különbségeként kapjuk:

$$det(C) = 6.5 - 3.2 = 24$$
, $det(D) = 4.(-1) - (-2).2 = 0$.

Az *E* és *F* mátrix determinánsa az első sor szerint kifejtve:

$$\det(E) = +2 \cdot \det\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} - 1 \cdot \det\begin{pmatrix} -2 & 1 \\ 4 & 1 \end{pmatrix} + 4 \cdot \det\begin{pmatrix} -2 & 3 \\ 4 & 2 \end{pmatrix} = 2 \cdot (3 \cdot 1 - 1 \cdot 2) - 1 \cdot (-2 \cdot 1 - 1 \cdot 4) + 4 \cdot (-2 \cdot 2 - 3 \cdot 4) = 2 + 6 - 64 = -56$$

$$\det(F) = +3 \cdot \det\begin{pmatrix} 1 & 3 \\ 2 & 12 \end{pmatrix} - (-1) \cdot \det\begin{pmatrix} 1 & 3 \\ 5 & 12 \end{pmatrix} + 5 \cdot \det\begin{pmatrix} 1 & 1 \\ 5 & 2 \end{pmatrix} = 3 \cdot (1 \cdot 12 - 3 \cdot 2) + 1 \cdot (1 \cdot 12 - 3 \cdot 5) + 5 \cdot (1 \cdot 2 - 1 \cdot 5) = 18 - 3 - 15 = 0$$

 $det(A) \neq 0$, tehát az A mátrix nemszinguláris, így r(A) = 1 (teljes rangú), invertálható, oszlop- ill. sorvektora lineárisan független.

 $det(B) \neq 0$, tehát a B mátrix nemszinguláris, így r(B) = 1 (teljes rangú), invertálható, oszlop- ill. sorvektora lineárisan független.

 $det(C) \neq 0$, tehát a C mátrix nemszinguláris, így r(C) = 2 (teljes rangú), invertálható, oszlop- ill. sorvektorai lineárisan függetlenek.

det(D) = 0, tehát a D mátrix szinguláris, így r(D) < 2 (nem teljes rangú), nem invertálható, oszlop- ill. sorvektorai lineárisan összefüggőek.

 $\det(E) \neq 0$, tehát az E mátrix nemszinguláris, így r(E) = 3 (teljes rangú), invertálható, oszlop- ill. sorvektorai lineárisan függetlenek.

det(F) = 0, tehát az F mátrix szinguláris, így r(F) < 3 (nem teljes rangú), nem invertálható, oszlop- ill. sorvektorai lineárisan összefüggőek.

9. Minta feladat:

Tekintsük a következő mátrixot: $A = \begin{pmatrix} 2 & -3 & 4 \\ 1 & 0 & 4 \\ 0 & 0 & 5 \end{pmatrix}$.

Határozzuk meg az A mátrix determinánsát

- a, az első sor szerint kifejtve,
- b, a második sor szerint kifejtve,
- c, a második oszlop szerint kifejtve.

Megoldás:

a, Az első sor szerint kifejtve a determinánst:

$$\det(A) = +2 \cdot \det\begin{pmatrix} 0 & 4 \\ 0 & 5 \end{pmatrix} - (-3) \cdot \det\begin{pmatrix} 1 & 4 \\ 0 & 5 \end{pmatrix} + 4 \cdot \det\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 2 \cdot (0 \cdot 5 - 4 \cdot 0) + 3 \cdot (1 \cdot 5 - 4 \cdot 0) + 4 \cdot (1 \cdot 0 - 0 \cdot 0) = 0 + 15 + 0 = 15$$

b, A második sor szerinti kifejtés:

$$\det(A) = -1 \cdot \det\begin{pmatrix} -3 & 4 \\ 0 & 5 \end{pmatrix} + 0 \cdot \det\begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix} - 4 \cdot \det\begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix} = -1 \cdot (-3 \cdot 5 - 4 \cdot 0) + 0 - 4 \cdot (2 \cdot 0 - (-3) \cdot 0) = 15 + 0 + 0 = 15$$

c, A második oszlop szerint kifejtve:

$$\det(A) = -(-3) \cdot \det\begin{pmatrix} 1 & 4 \\ 0 & 5 \end{pmatrix} + 0 \cdot \det\begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix} - 0 \cdot \det\begin{pmatrix} 2 & 4 \\ 1 & 4 \end{pmatrix} = 3 \cdot (1 \cdot 5 - 4 \cdot 0) + 0 - 0 = 15$$

A fenti példából látható, hogy ha a mátrix elemei között vannak nullák, akkor a determináns számolásakor érdemes olyan sort vagy oszlopot választani a kifejtésre, amiben minél több nulla található.

10. Minta feladat:

Tekintsük a következő mátrixokat:
$$A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 8 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -6 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 & 5 & 2 \\ 1 & 1 & 7 & 3 \\ 4 & 1 & 6 & 6 \\ 2 & 0 & 5 & 2 \end{pmatrix}$,

$$D = \begin{pmatrix} 4 & 3 & 5 & 2 \\ 2 & 7 & 0 & 1 \\ 2 & 1 & 7 & 1 \\ 6 & 4 & -3 & 3 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 1 & 3 & 2 \\ 2 & 0 & 1 & 4 \\ 7 & 2 & 9 & 10 \\ 1 & -1 & -2 & 2 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 4 \\ 2 & 2 & 1 & 0 \\ 1 & 6 & 2 & 1 \end{pmatrix}.$$

Határozzuk meg minél egyszerűbben, a determináns tulajdonságaira vonatkozó állítások felhasználásával a fenti mátrixok determinánsát!

Megoldás:

Az A mátrix felsőháromszög-mátrix, így determinánsa a főátlóbeli elemek szorzata: $det(A) = 2 \cdot 4 \cdot 8 = 64$.

A *B* mátrixnál cseréljük fel a második és a harmadik oszlopot, ennek során a determináns előjelet vált. Az oszlopcsere után diagonális mátrixot kapunk, amelynek determinánsa a főátlóbeli elemek szorzata:

$$\det(B) = (-1) \cdot \det\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -6 \end{pmatrix} = (-1) \cdot 3 \cdot (-4) \cdot 2 \cdot (-6) = -144$$

A C mátrixnak van két azonos sora, így det(C) = 0.

A *D* mátrixnál használjuk ki, hogy a determináns számolásánál egy adott sorból vagy oszlopból konstanst ki lehet emelni. Emeljünk ki az első oszlop elemeiből 2-t! Az így kapott mátrixnak két azonos oszlopa van, tehát a determinánsa nulla:

$$\det(D) = 2 \cdot \det\begin{pmatrix} 2 & 3 & 5 & 2 \\ 1 & 7 & 0 & 1 \\ 1 & 1 & 7 & 1 \\ 3 & 4 & -3 & 3 \end{pmatrix} = 2 \cdot 0 = 0$$

Az *E* mátrixot a determináns kifejtése előtt alakítsuk át úgy, hogy a determinánsa ne változzon meg, de valamelyik sorában vagy oszlopában minél több nulla jöjjön létre. Ezt elemi sor- vagy oszlop átalakításokkal tudjuk elérni. Egy lehetséges átalakítás: Elemi sorátalakításokkal hozzunk létre olyan mátrixot, amelynek második oszlopában az alábbi elemek találhatóak: 1, 0, 0, 0. Ehhez a harmadik és negyedik soron kell elemi sorátalakítást végrehajtani. (Egy adott sorhoz hozzáadhatjuk egy másik sor konstansszorosát, ez az átalakítás nem változtatja meg a determináns értékét.) Először a harmadik sor elemeiből vonjuk ki az első sor elemeinek kétszeresét, majd második lépésként az átalakított mátrix negyedik sorához adjuk hozzá az első sort:

$$det(E) = det\begin{pmatrix} 1 & 1 & 3 & 2 \\ 2 & 0 & 1 & 4 \\ 7 & 2 & 9 & 10 \\ 1 & -1 & -2 & 2 \end{pmatrix} = det\begin{pmatrix} 1 & 1 & 3 & 2 \\ 2 & 0 & 1 & 4 \\ 5 & 0 & 3 & 6 \\ 1 & -1 & -2 & 2 \end{pmatrix} = det\begin{pmatrix} 1 & 1 & 3 & 2 \\ 2 & 0 & 1 & 4 \\ 5 & 0 & 3 & 6 \\ 2 & 0 & 1 & 4 \end{pmatrix}$$

Mivel az átalakítások után kapott mátrixnak van két azonos sora, így annak determinánsa – és így az E mátrix determinánsa is – nulla: det(E) = 0.

Az F mátrix esetén is alkalmazzunk először elemi átalakításokat. Egy lehetséges átalakítás:

Elemi oszlop átalakításokkal érjük el, hogy az első sorba kerülő elemek 1, 0, 0, 0 legyenek. Ehhez első lépésként a harmadik oszlop elemeiből vonjuk ki az első oszlop elemeinek kétszeresét. Második lépésként az átalakított mátrix negyedik oszlopából vonjuk ki az első oszlopot:

$$\det(F) = \det\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 4 \\ 2 & 2 & 1 & 0 \\ 1 & 6 & 2 & 1 \end{pmatrix} = \det\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 4 \\ 2 & 2 & -3 & 0 \\ 1 & 6 & 0 & 1 \end{pmatrix} = \det\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 3 \\ 2 & 2 & -3 & -2 \\ 1 & 6 & 0 & 0 \end{pmatrix}$$

Az átalakított mátrix determinánsát az első sor szerint fejtsük ki, majd az adódó részmátrix determinánsát a harmadik sora szerint kifejtve számoljuk:

$$\det(F) = \det\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 3 \\ 2 & 2 & -3 & -2 \\ 1 & 6 & 0 & 0 \end{pmatrix} = 1 \cdot \det\begin{pmatrix} 1 & 1 & 3 \\ 2 & -3 & -2 \\ 6 & 0 & 0 \end{pmatrix} = 1 \cdot 6 \cdot \det\begin{pmatrix} 1 & 3 \\ -3 & -2 \end{pmatrix} = 1 \cdot 6 \cdot (1 \cdot (-2) - 3 \cdot (-3)) = 42.$$

11. Minta feladat:

Tekintsük a következő mátrixot:
$$A = \begin{pmatrix} 2 & 1 & c \\ 1 & 2 & 0 \\ 3 & 7 & 1 \end{pmatrix}$$
.

Állapítsuk meg, hogy milyen $c \in R$ paraméter esetén lesz az A mátrix

- a, nem invertálható:
- b, invertálható!

Megoldás:

Tudjuk, hogy egy négyzetes mátrix pontosan akkor nem invertálható, ha determinánsa nulla, és pontosan akkor invertálható, ha determinánsa nem nulla. Így először határozzuk meg az *A* mátrix determinánsát a *c* paraméter függvényében! A determinánst a harmadik oszlop szerint kifejtve:

$$\det(A) = \det\begin{pmatrix} 2 & 1 & c \\ 1 & 2 & 0 \\ 3 & 7 & 1 \end{pmatrix} = c \cdot \det\begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix} + 1 \cdot \det\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = c \cdot (1 \cdot 7 - 2 \cdot 3) + 1 \cdot (2 \cdot 2 - 1 \cdot 1) = c + 3$$

Így az A mátrix pontosan akkor nem invertálható, ha $\det(A) = c + 3 = 0$, azaz c = -3. Továbbá az A mátrix pontosan akkor invertálható, ha $\det(A) = c + 3 \neq 0$, azaz $c \neq -3$.

12. Minta feladat:

Tekintsük a következő mátrixokat:
$$A = \begin{pmatrix} 4 & -1 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$.

- a, Határozzuk meg a fenti mátrixok adjungált mátrixát!
- b, Invertálhatóak-e a fenti mátrixok? Ha igen, akkor az adjungált mátrix felhasználásával adjuk meg az inverzmátrixot!

Megoldás:

a, A 2×2-es *A* mátrix adjungált mátrixát megkapjuk, ha a főátlóbeli elemeket megcseréljük és a mellékátlóban lévő elemeket szorozzuk -1-gyel:

$$\operatorname{adj}(A) = \begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix}.$$

A *B* mátrix esetén használjuk az adjungált mátrix definícióját:

annak (j, i)-edik eleme (-1)^{i+j}·det(B_{ij}), ahol B_{ij} a B mátrix (i,j)-edik eleméhez tartozó részmátrix determinánsa. Az adjungált mátrixot célszerű több lépésben elő-állítani.

Határozzuk meg először azt a B' mátrixot, amelynek (i, j)-edik eleme $\det(B_{ij})$, majd transzponáljuk ezt a mátrixot. Végül a sakktáblaszabálynak megfelelően min den mátrixelemet szorozzunk meg $(-1)^{i+j}$ -vel :

$$B' = \begin{pmatrix} \det\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} & \det\begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} & \det\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \\ \det\begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix} \\ \det\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix} \\ \det\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} & \det\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ -4 & -5 & 2 \\ -2 & -4 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -4 & -2 \\ 2 & -5 & -4 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{pmatrix} = \operatorname{adj}(B).$$

b, A mátrixok invertálhatóságát a determináns értéke alapján vizsgáljuk:

$$\det(A) = \det\begin{pmatrix} 4 & -1 \\ 2 & 3 \end{pmatrix} = 4 \cdot 3 - (-1) \cdot 2 = 14.$$

Mivel a determináns értéke nem nulla, így az *A* mátrix invertálható. Inverze az adjungált mátrix segítségével számolható:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) = \frac{1}{14} \cdot \begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} \frac{3}{14} & \frac{1}{14} \\ -\frac{2}{14} & \frac{4}{14} \end{pmatrix}.$$

A *B* mátrix determinánsát fejtsük ki az első sor szerint:

$$\det(B) = \det\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} = 1 \cdot (1 \cdot 1 - 0 \cdot 2) + 2 \cdot (2 \cdot 2 - 1 \cdot 3) = 3.$$

Mivel a determináns értéke nem nulla, így a *B* mátrix invertálható. Inverze az adjungált mátrix segítségével számolható:

$$B^{-1} = \frac{1}{\det(B)} \cdot \operatorname{adj}(B) = \frac{1}{3} \cdot \begin{pmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{4}{3} & \frac{-2}{3} \\ -\frac{2}{3} & -\frac{5}{3} & \frac{4}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}.$$

13. Minta feladat:

Legyenek $\underline{a} = (-2, 1, 3)$ és $\underline{b} = (1, -2, 4)$ R^3 -beli vektorok. Határozzuk meg az $\underline{a} \times \underline{b}$ vektoriális szorzatot!

Megoldás:

Az $\underline{a} \times \underline{b}$ vektoriális szorzat az alábbi determináns formális (első sor szerinti) kifejtésével kapható meg:

$$\underline{a} \times \underline{b} = \det\begin{pmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = \det\begin{pmatrix} \underline{i} & \underline{j} & \underline{k} \\ -2 & 1 & 3 \\ 1 & -2 & 4 \end{pmatrix} = \underline{i} \cdot \det\begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix} - \underline{j} \cdot \det\begin{pmatrix} -2 & 3 \\ 1 & 4 \end{pmatrix} + \underline{k} \cdot \det\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} = \underline{i} \cdot (4+6) - \underline{j} \cdot (-8-3) + \underline{k} \cdot (4-1) = 10\underline{i} + 11\underline{j} + 3\underline{k}$$

Így $\underline{a} \times \underline{b} = (10, 11, 3).$

Gyakorló feladatok:

19. Számítsa ki az alábbi mátrixok determinánsát! Milyen egyéb mátrixtulajdonságokra következtethetünk a determináns értékéből?

$$A = \begin{pmatrix} -2 & 5 \\ 4 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 \\ 10 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad E = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$F = \begin{pmatrix} 1 & 4 & 8 \\ -2 & 1 & 5 \\ -3 & 2 & 4 \end{pmatrix}, \quad G = \begin{pmatrix} 2 & 4 & -4 \\ 5 & -6 & 3 \\ 4 & 2 & -3 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 2 & 1 & 5 & -1 \\ -4 & 1 & 0 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$J = \begin{pmatrix} 2 & -1 & 0 & 2 \\ -4 & 2 & -9 & 3 \\ 2 & -6 & 4 & -2 \\ 1 & 3 & 2 & 2 \end{pmatrix}, \quad K = \begin{pmatrix} 3 & 0 & -4 & 2 & 5 \\ 0 & 1 & 7 & 5 & -2 \\ 0 & 0 & -3 & 4 & 2 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \quad L = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 6 & 3 & 5 & 0 & 0 \\ 1 & 1 & 3 & 0 & 0 \\ 2 & 7 & 4 & 3 & 5 \end{pmatrix}.$$

20. Legyen
$$A = \begin{pmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{pmatrix}$$
.

A determináns kifejtése nélkül igazolja, hogy det(A)=0!

21. Legyen
$$A = \begin{pmatrix} c & 0 & 2 \\ 1 & 3 & 1 \\ -1 & 2 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & c & 3 \\ 1 & -3 & -c \end{pmatrix}$, $C = \begin{pmatrix} 5 & 2 & -3 \\ 3 & -2 & 0 \\ 4 & 3 & c \end{pmatrix}$.

Milyen legyen a *c* valós paraméter értéke, hogy a fenti mátrixok invertálhatóak legyenek?

22. Legyen
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 5 & 7 \\ 0 & 0 & c \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 & 3 \\ -3 & 13 & c \\ 3 & -1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} c & 1 & 3 \\ -1 & 1 & 1 \\ -3 & 1 & -c \end{pmatrix}$.

Milyen legyen a c valós paraméter értéke, hogy a fenti mátrixok ne legyenek invertálhatóak?

23.
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 5 \\ -1 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 2 & -1 \\ 6 & -3 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 3 & 2 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 3 & 1 & 4 \\ 2 & 1 & 0 \\ 8 & 5 & 8 \end{pmatrix}$, $G = \begin{pmatrix} 3 & -2 & 1 \\ 4 & 1 & -3 \\ -6 & 4 & -2 \end{pmatrix}$

- a, Határozza meg a fenti mátrixok adjungált mátrixát!
- b, Invertálhatóak-e a fenti mátrixok? Ha igen, akkor az adjungált mátrix felhasználásával adja meg az inverzmátrixot!
- <u>24.</u> Legyenek $\underline{a} = (2, -3, 4)$, $\underline{b} = (0, 1, 5)$, $\underline{c} = (1, 1, -2)$, $\underline{d} = (-2, -2, 4)$. A determináns alkalmazásával határozza meg az $\underline{a} \times \underline{b}$, $\underline{b} \times \underline{a}$, $\underline{a} \times \underline{c}$, $\underline{a} \times \underline{d}$, $\underline{c} \times \underline{d}$ vektoriális szorzatokat!

Elméleti kérdések

Döntse el az alábbi állításokról, hogy igazak vagy hamisak!

- 1. Ha egy mátrix és a transzponáltja összeadható, akkor a mátrix négyzetes.
- 2. Ha az A és B mátrixok összeszorozhatóak, akkor a B és az A is összeszorozhatóak.
- 3. Ha az A és B mátrixok összeadhatóak, akkor az A és B^{T} mátrixok összeszorozhatóak.
- 4. Az $n \times n$ -es mátrixok körében a szorzás nem kommutatív.
- $\underline{\mathbf{5}}$. Ha az A és B mátrixokra létezik az A B és a B A mátrix, akkor A és B négyzetes mátrix.
- <u>6.</u> Ha az A mátrix speciálisan egy sorvektor, akkor az AB szorzat eredménye (ha létezik), szintén sorvektor.
- 7. Ha a *B* mátrix speciálisan egy oszlopvektor, akkor az *AB* szorzat eredménye (ha létezik), szintén oszlopvektor.

- 8. Ha az AB szorzat létezik, akkor A^TB^T is létezik és a két szorzat egyenlő.
- 9. Ha az AB szorzat létezik, akkor az $A^{T} \cdot B^{T}$ szorzat is létezik.
- 10. Ha az AB szorzat létezik, akkor a $B^{T} \cdot A^{T}$ szorzat is létezik.
- 11. Ha A egy 1xn-es mátrix, akkor AA^{T} és $A^{T} \cdot A$ is létezik.
- 12. Ha A nx1-es mátrix, akkor $A A^T$ és $A^T \cdot A$ is létezik.
- 13. Vannak olyan A és B 2×2 -es nem nulla mátrixok, hogy AB = 0.
- 14. Ha az A mátrix rangja 0, akkor minden eleme 0.
- 15. Ha A invertálható mátrix, akkor A négyzetes.
- 16. Minden négyzetes mátrix invertálható.
- <u>17.</u> Ha egy mátrix invertálható, akkor a rangja megegyezik a sorainak a számával.
- 18. Ha $A=A^{T}$, akkor az A mátrix invertálható.
- 19. Ha az A mátrix invertálható, akkor az A^{-1} mátrix is invertálható.
- **20**. $(A^{-1})^{-1} = A$.
- <u>21.</u> Ha az A és B négyzetes mátrixok invertálhatóak, akkor A+B is invertálható.
- 22. Ha az A és B azonos méretű négyzetes mátrixok invertálhatóak, akkor AB is invertálható.
- 23. det(A+B)=det(A)+det(B)
- 24. $\det(\lambda \cdot A) = \lambda \cdot \det(A)$
- $25. \det(A) = \det(A^{\mathrm{T}}).$
- **26.** $\det(A) = \det(A^{-1})$.
- 27. A determináns értéke -1-szeresére változik, ha a mátrixban felcserélünk két sort.
- 28. Ha A invertálható, akkor $det(A) \cdot det(A^{-1}) = 1$.
- 29. Ha A invertálható, akkor $det(A)+det(A^{-1})=1$.
- 30. A determináns értéke nem változik, ha a mátrixban valamelyik oszlopot megszorozzuk egy skalárral, majd ehhez hozzáadjuk egy másik oszlopot.
- 31. A determináns értéke nem változik, ha valamelyik oszlophoz hozzáadjuk egy másik oszlop skalárszorosát.
- 32. A determináns értéke nem változik, ha a mátrixban felcserélünk két oszlopot.
- 33. Ha egy mátrix determinánsa egyenlő a főátlóbeli elemek szorzatával, akkor a mátrix diagonális.
- <u>34.</u> Ha egy mátrix felsőháromszög mátrix, akkor determinánsa egyenlő a főátlóbeli elemek szorzatával.
- 35. Ha egy négyzetes mátrix nem teljes rangú, akkor a determinánsa negatív.
- <u>36.</u> Ha egy négyzetes mátrix teljes rangú, akkor a determinánsa pozitív.
- <u>37.</u> Vannak olyan A és B $n \times n$ -es mátrixok, hogy det(A) = 0 és $det(A \cdot B) \neq 0$.

Lineáris egyenletrendszerek

1. Minta feladat:

Oldjuk meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszereket! Adja meg az egyenletrendszerek homogén párjának a megoldáshalmazát is!

a,

b,

C,

$$x_1 + 2x_2 - x_3 = 3$$

 $x_1 + x_2 = 4$
 $3x_1 - x_2 + x_3 = 13$

d,

Megoldás:

a, Írjuk fel az egyenletrendszerhez tartozó induló bázistranszformációs táblázatot, amelyben feltüntetjük az egyenletrendszer együtthatómátrixának oszlopvektorait és a jobboldalon álló konstansokból felépülő \underline{b} vektort:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>b</u>
<u>e</u> 1	1	3	-2	11	4
<u>e</u> 2	2	1	1	7	3
<u>e</u> 3	0	1	-1	3	1

A bázistranszformáció során vonjunk be a bázisba az \underline{a} vektorok közül annyit, amennyit csak lehet, azaz határozzuk meg az együtthatómátrix rangját. Az $\underline{a}_1 \rightarrow \underline{e}_1$ vektorcsere után a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>b</u>	
<u>a</u> 1	1	3	-2	11	4	
<u>e</u> 2	0	-5	5	-15	-5	
<u>e</u> 3	0	1	-1	3	1	

Vonjuk be ezután az \underline{a}_2 vektort az \underline{e}_3 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>b</u>	
<u>a</u> 1	1	0	1	2	1	_
<u>e</u> 2	0	0	0	0	0	
<u>a</u> 2	0	1	-1	3	1	

További \underline{a} vektort nem lehet a bázisba bevonni, így az együtthatómátrix rangja: r(A) = 2.

A táblázatból az is látható, hogy nemcsak további \underline{a} vektort nem lehet a bázisba bevonni, hanem a \underline{b} vektort sem lehet az \underline{e}_2 helyére bevonni, így a kibővített mátrix rangja: $r([A,\underline{b}]) = 2$.

Mivel az együtthatómátrix és a kibővített mátrix rangja megegyezik, így teljesül a megoldhatóság szükséges és elégséges feltétele, azaz az egyenletrendszer megoldható.

Alkalmazzuk a "megoldó képletet"!

$$x_R = d - D \cdot x_R$$

Itt \underline{x}_B a kötött ismeretlenek vektora, \underline{x}_R pedig a szabad ismeretlenek vektora. A kötött ismeretlenek a végső bázistranszformációs táblázat alapján a bázisba bevont \underline{a} vektorokhoz tartozó ismeretlenek, míg a szabad ismeretlenek a bázisba nem bevont \underline{a} vektorokhoz tartozó ismeretlenek:

$$\underline{x}_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \underline{x}_R = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$$

A \underline{d} vektor a \underline{b} vektornak a bázisba bevont \underline{a}_1 és \underline{a}_2 vektorokra vonatkozó koordinátáit tartalmazza, míg a D mátrix a bázisba nem bevont \underline{a}_3 és \underline{a}_4 vektoroknak a bázisba bevont \underline{a}_1 és \underline{a}_2 vektorokra vonatkozó koordinátáiból épül fel:

$$\underline{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$$

Így:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} x_3 \\ x_4 \end{pmatrix},$$

azaz:

$$\begin{split} x_1 &= 1 - \left(1 \cdot x_3 + 2 \cdot x_4\right) = 1 - x_3 - 2x_4, \\ x_2 &= 1 - \left(-1 \cdot x_3 + 3 \cdot x_4\right) = 1 + x_3 - 3x_4. \end{split}$$

Tehát az egyenletrendszer megoldáshalmaza:

$$M = \left\{ \underline{x} \in R^4 \middle| x_3, x_4 \in R, x_1 = 1 - x_3 - 2x_4, x_2 = 1 + x_3 - 3x_4 \right\}$$

Az egyenletrendszer homogén párja:

A bázistranszformációs megoldás során az eredeti egyenletrendszerhez képest annyi a változás, hogy a <u>b</u> vektort nullvektorral cseréljük ki, amelynek a koordinátái minden bázison nullák. Így ebben az esetben a végső táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>o</u>
<u>a</u> 1	1	0	1	2	0
<u>e</u> 2	0	0	0	0	0
<u>a</u> 2	0	1	-1	3	0

A "megoldó képletbe" való helyettesítésnél csak a \underline{d} vektor változik, ami most a \underline{o} vektornak a bázisba bevont \underline{a}_1 és \underline{a}_2 vektorokra vonatkozó koordinátáit

tartalmazza:
$$\underline{d} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

Így:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} x_3 \\ x_4 \end{pmatrix},$$

azaz:

$$x_1 = 0 - (1 \cdot x_3 + 2 \cdot x_4) = -x_3 - 2x_4,$$

 $x_2 = 0 - (-1 \cdot x_3 + 3 \cdot x_4) = x_3 - 3x_4.$

Tehát a homogén egyenletrendszer megoldáshalmaza:

$$M_0 = \left\{ \underline{x} \in R^4 \middle| x_3, x_4 \in R, x_1 = -x_3 - 2x_4, x_2 = x_3 - 3x_4 \right\}$$

b, Írjuk fel az egyenletrendszerhez tartozó induló bázistranszformációs táblázatot, amelyben feltüntetjük az egyenletrendszer együtthatómátrixának oszlopvektorait és a jobboldalon álló konstansokból felépülő *b* vektort:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>
<u>e</u> 1	1	-1	0	2
<u>e</u> 2	2	1	6	1
<u>e</u> 3	0	2	4	-2
<u>e</u> 4	3	1	8	2

Vonjuk be a bázisba az \underline{a}_1 vektort az \underline{e}_1 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>
<u>a</u> 1	1	-1	0	2
<u>e</u> 2	0	3	6	-3
<u>e</u> 3	0	2	4	-2
<u>e</u> 4	0	4	8	-4

Hajtsuk végre az $\underline{a}_2 \rightarrow \underline{e}_2$ vektorcserét:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>
<u>a</u> 1	1	0	2	1
<u>a</u> 2	0	1	2	-1
<u>e</u> 3	0	0	0	0
<u>e</u> 4	0	0	0	0

További \underline{a} vektort nem lehet bevonni a bázisba. A táblázatból látható, hogy az egyenletrendszer együtthatómátrixának és a kibővített mátrixnak a rangja megegyezik: $r(A) = r([A,\underline{b}]) = 2$, így az egyenletrendszer megoldható. Alkalmazzuk a "megoldó képletet"!

$$\underline{x}_R = \underline{d} - D \cdot \underline{x}_R$$

Itt \underline{x}_B a kötött ismeretlenek vektora, \underline{x}_R pedig a szabad ismeretlenek vektora. A kötött ismeretlenek a végső bázistranszformációs táblázat alapján a bázisba bevont \underline{a} vektorokhoz tartozó ismeretlenek, míg a szabad ismeretlenek a bázisba nem bevont \underline{a} vektorokhoz tartozó ismeretlen:

$$\underline{x}_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \underline{x}_R = [x_3]$$

A \underline{d} vektor a \underline{b} vektornak a bázisba bevont \underline{a}_1 és \underline{a}_2 vektorokra vonatkozó koordinátáit tartalmazza, míg a D mátrix a bázisba nem bevont \underline{a}_3 vektornak a bázisba bevont \underline{a}_1 és \underline{a}_2 vektorokra vonatkozó koordinátáiból épül fel:

$$\underline{d} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad D = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Így:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot [x_3],$$

azaz:

$$x_1 = 1 - 2x_3$$
,
 $x_2 = -1 - 2x_3$.

Tehát az egyenletrendszer megoldáshalmaza:

$$M = \left\{ \underline{x} \in R^3 \middle| x_3 \in R, x_1 = 1 - 2x_3, x_2 = -1 - 2x_3 \right\}$$

Az egyenletrendszer homogén párja:

A bázistranszformációs megoldás során az eredeti egyenletrendszerhez képest annyi a változás, hogy a <u>b</u> vektort nullvektorral cseréljük ki, amelynek a koordinátái minden bázison nullák. Így ebben az esetben a végső táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>
<u>a</u> 1	1	0	2	0
<u>a</u> 2	0	1	2	0
<u>e</u> 3	0	0	0	0
<u>e</u> 4	0	0	0	0

A "megoldó képletbe" való helyettesítésnél csak a \underline{d} vektor változik, ami most a \underline{o} vektornak a bázisba bevont \underline{a}_1 és \underline{a}_2 vektorokra vonatkozó koordinátáit tartal-

mazza:
$$\underline{d} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

_ (0)

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot [x_3],$$

azaz:

Így:

$$x_1 = 0 - 2x_3,$$

$$x_2 = 0 - 2x_3.$$

Tehát a homogén egyenletrendszer megoldáshalmaza:

$$M_0 = \left\{ \underline{x} \in R^3 \middle| x_3 \in R, x_1 = -2x_3, x_2 = -2x_3 \right\}$$

- c, Írjuk fel az egyenletrendszerhez tartozó induló bázistranszformációs táblázatot:
- © Leitold Adrien, PE

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>	_
<u>e</u> 1	1	2	-1	3	-
<u>e</u> 2	1	1	0	4	
<u>e</u> 3	3	-1	1	13	

Vonjuk be az \underline{a}_1 vektort a bázisba az \underline{e}_2 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>
<u>e</u> 1	0	1	-1	-1
<u>a</u> 1	1	1	0	4
<u>e</u> 3	0	-4	1	1

Hajtsuk végre ezután az $\underline{a}_2 \rightarrow \underline{e}_1$ vektorcserét:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>	
<u>a</u> 2	0	1	-1	-1	_
<u>a</u> 1	1	0	1	5	
<u>e</u> 3	0	0	-3	-3	

Végül vonjuk be az \underline{a}_3 vektort az \underline{e}_3 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>b</u>
<u>a</u> 2	0	1	0	0
<u>a</u> 1	1	0	0	4
<u>a</u> 3	0	0	1	1

A táblázatból látható, hogy az egyenletrendszer mátrixának és a kibővített mátrixnak a rangja megegyezik: $r(A) = r([A,\underline{b}]) = 3$, így az egyenletrendszer megoldható. Mivel az összes \underline{a} vektor bekerült a bázisba, így az összes ismeretlen kötött. Nincs szabad ismeretlen, így a "megoldó képlet" az alábbi formára zsugorodik: $\underline{x}_{R} = \underline{d}$

A végső táblázat alapján, figyelembe véve a bázisban lévő vektorok sorrendjét:

$$\underline{x}_B = \begin{pmatrix} x_2 \\ x_1 \\ x_3 \end{pmatrix}$$

míg a \underline{d} vektor a \underline{b} vektor \underline{a} vektorokra vonatkozó koordinátáit tartalmazza:

$$\underline{d} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix},$$

figy:
$$\begin{pmatrix} x_2 \\ x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \qquad \Rightarrow \qquad \begin{aligned} x_1 &= 4 \\ x_2 &= 0 \\ x_3 &= 1 \end{aligned}$$

Az egyenletrendszernek egyértelmű megoldása (egy megoldásvektora) van: $M = \{(4, 0, 1)\}$

Az egyenletrendszer homogén párja:

Ha az inhomogén egyenletrendszer egyértelműen megoldható, akkor a homogén párjának csak triviális megoldása van: $M_0 = \{(0, 0, 0)\}$.

d, Az egyenletrendszerhez tartozó induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>b</u>	
<u>e</u> 1	1	3	-2	11	4	
<u>e</u> 2	2	1	1	7	3	
<u>e</u> 3	0	1	-1	3	3	

Az $\underline{a}_1 \rightarrow \underline{e}_1$ vektorcsere után a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>b</u>
<u>a</u> 1	1	3	-2	11	4
<u>e</u> 2	0	-5	5	-15	-5
<u>e</u> 3	0	1	-1	3	3

Vonjuk be ezután az \underline{a}_2 vektort az \underline{e}_3 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>b</u>
<u>a</u> 1	1	0	1	2	-5
<u>e</u> 2	0	0	0	0	10
<u>a</u> 2	0	1	-1	3	3

További \underline{a} vektort nem lehet a bázisba bevonni, ugyanakkor látható, hogy a \underline{b} vektort még be lehetne vonni a bázisba az \underline{e}_2 helyére. Így r(A) = 2 és $r([A,\underline{b}]) = 3$. Mivel $r(A) \neq r([A,\underline{b}])$, így az egyenletrendszer nem oldható meg.

Az egyenletrendszer homogén párja megegyezik az a, részben felírt homogén egyenletrendszerrel, amit már megoldottunk.

Gyakorló feladatok:

 Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszereket!

a,
$$2x_1 + 3x_2 - x_3 + 5x_4 = 15$$
$$x_1 + x_2 - x_3 - x_4 = -3$$
$$x_2 + x_3 + 7x_4 = 21$$

b,

$$x_{1} + 2x_{2} - x_{3} = -6$$

$$-x_{1} - 3x_{2} + 4x_{3} = 5$$

$$- x_{2} + 3x_{3} = -1$$

$$x_{1} + x_{2} + 2x_{3} = -7$$

c,

$$x_1 - x_2 + 3x_3 = 0$$

 $2x_1 + x_3 = 1$
 $6x_1 + 2x_2 - x_3 = 5$

d,

$$3x_1 + 2x_2 = 6$$

$$x_1 - 3x_2 = -20$$

$$x_1 + 8x_2 = 46$$

$$8x_1 + 9x_2 = 38$$

e,

$$5x_1 + 3x_2 + x_3 - 4x_4 = 1$$

$$x_1 + x_2 - x_3 - x_4 = 4$$

$$3x_1 + x_2 + 3x_3 - 2x_4 = 2$$

f,

$$5x_1 + 3x_2 + x_3 - 4x_4 = 0$$

$$x_1 + x_2 - x_3 - x_4 = 0$$

$$3x_1 + x_2 + 3x_3 - 2x_4 = 0$$

g,

$$x_1 - x_2 + x_3 = 0 \\
 -x_1 + 3x_2 + 2x_3 = 0 \\
 4x_1 - 2x_2 + 5x_3 = 0$$

- 2. Legyen $A=[\underline{a_1}\ \underline{a_2}\ ...\ \underline{a_5}]_{4x5}$ egy mátrix, $\underline{b}\in R^4$. Tekintsük az $A\ \underline{x}=\underline{b}$ lineáris egyenletrendszert. Az egyenletrendszer megoldása során bázistranszformációval az alábbi táblázatot nyertük.
 - Megoldható-e az $A\underline{x} = \underline{b}$ egyenletrendszer? Ha igen, akkor írja fel a megoldáshalmazt!
 - Adja meg az $A\underline{x} = \underline{o}$ homogén egyenletrendszer megoldáshalmazát!

a,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5	<u>b</u>
<u>e</u> 1	0	0	0	0	0	0
<u>a</u> 4	0	-2	2	1	0	2
<u>e</u> 3	0	0	0	0	0	0
<u>a</u> 1	1	3	1	0	0 0 0 5	3

b,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5	<u>b</u>
<u>a</u> 3	1	0 0 0 1	1	4	-1	2
<u>e</u> 2	0	0	0	0	0	3
<u>e</u> 3	0	0	0	0	0	0
<u>a</u> 2	-2	1	0	5	6	4

C,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5	<u>b</u>
<u>e</u> 1	0	0	0	0	0 3 0 0	0
<u>a</u> 3	-2	4	1	2	3	5
<u>e</u> 3	0	0	0	0	0	0
<u>e</u> 4	0	0	0	0	0	0

d,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5	<u>b</u>
<u>a</u> 2	0	1	0	-2	0	1
<u>a</u> 5	0	0	0	0	1	2
<u>a</u> 1	1	0	0	3	0	0
<u>a</u> 3	0 0 1 0	0	1	4	0	4

3. Legyen $A = [\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \underline{a}_4]_{4x4}$ egy mátrix, \underline{b}_1 , $\underline{b}_2 \in R^4$. Tekintsük az $A\underline{x} = \underline{b}_1$ és az $A\underline{x} = \underline{b}_2$ lineáris egyenletrendszereket.

Az egyenletrendszerek megoldása során bázistranszformációval az alábbi táblázatot nyertük.

- Megoldható-e az $A\underline{x} = \underline{b}_1$ és az $A\underline{x} = \underline{b}_2$ egyenletrendszer? Ha igen, akkor írja fel a megoldáshalmazokat!
- Adja meg az $A\underline{x} = \underline{o}$ homogén egyenletrendszer megoldáshalmazát!

a,

bázis	<u>a</u> 1	<u>a</u> 3	<u>b</u> 1	<u>b</u> 2
<u>a</u> 2	3	2	-1	1
<u>e</u> 2	0	0	0	1
<u>a</u> 4	-2	1	4	0
<u>e</u> 4	0	0	0	0

b,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 4	<u>b</u> 1	<u>b</u> 2
<u>e</u> 1	0	0	0 5	1	0
<u>a</u> 3	-1	3	5	2	1
<u>e</u> 3	0	0	0	0	0
<u>e</u> 4	0	0	0	0	0

C,

bázis	<u>a</u> 3	<u>b</u> 1	<u>b</u> 2
<u>a</u> 2	-1	1	-2
<u>e</u> 2	0	1	0
<u>a</u> 1	5	1	3
<u>a</u> 4	2	1	4

d,

bázis	<u>b</u> 1	<u>b</u> 2
<u>a</u> 3	-2	0
<u>a</u> 2	5	2
<u>a</u> 1	4	-1
<u>a</u> 4	3	6

4. Legyen $A=[\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \underline{a}_4]_{4x4}$ egy mátrix, $\underline{b} \in R^4$. Az alábbi táblázatot ismerjük:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>b</u>
<u>a</u> 1	1	0	0	6	0
<u>e</u> 2	0	0	0		
<u>a</u> 2	0	1	0	3	2
<u>a</u> 3	0	0	1	0	-1

A táblázat hiányzó helyeire válasszon számértékeket úgy, hogy

- az $Ax = \underline{b}$ lineáris egyenletrendszernek <u>ne</u> legyen megoldása;
- az Ax = b lineáris egyenletrendszernek pontosan egy megoldásvektora legyen:
- az Ax = b lineáris egyenletrendszernek végtelen sok megoldásvektora legyen!

Az utóbbi két esetben adja meg az egyenletrendszer megoldáshalmazát!

2. Minta feladat:

Oldjuk meg az alábbi lineáris egyenletrendszereket a Cramer szabály segítségével! a,

$$x_1 + x_3 = 1$$

 $2x_1 + x_2 - x_3 = 6$
 $x_1 + x_2 + 3x_3 = 5$

b,

$$2x_1 + x_2 = 3$$

 $x_1 + x_2 + x_3 = 5$
 $4x_1 + 3x_2 + 2x_3 = 13$

C,

Megoldás:

a, Határozzuk meg először az egyenletrendszer együtthatómátrixának determinánsát!

$$D = \det(A) = \det\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix} = 1 \cdot (1 \cdot 3 - (-1) \cdot 1) + 1 \cdot (2 \cdot 1 - 1 \cdot 1) = 5$$

Mivel az együtthatómátrix determinánsa nem nulla, így az egyenletrendszer egyértelműen megoldható és a megoldásvektor a Cramer szabállyal megkapható. Cseréljük ki az egyenletrendszer jobboldalán álló konstansok \underline{b} vektorával az együtthatómátrix egyes oszlopvektorait és határozzuk meg az így előálló mátrixok determinánsát!

$$D_{1} = \det\begin{pmatrix} 1 & 0 & 1 \\ 6 & 1 & -1 \\ 5 & 1 & 3 \end{pmatrix} = 1 \cdot (1 \cdot 3 - (-1) \cdot 1) + 1 \cdot (6 \cdot 1 - 1 \cdot 5) = 5$$

$$D_{2} = \det\begin{pmatrix} 1 & 1 & 1 \\ 2 & 6 & -1 \\ 1 & 5 & 3 \end{pmatrix} = 1 \cdot (6 \cdot 3 - (-1) \cdot 5) - 1 \cdot (2 \cdot 3 - (-1) \cdot 1) + 1 \cdot (2 \cdot 5 - 6 \cdot 1) = 20$$

$$D_{3} = \det\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 6 \\ 1 & 1 & 5 \end{pmatrix} = 1 \cdot (1 \cdot 5 - 6 \cdot 1) + 1 \cdot (2 \cdot 1 - 1 \cdot 1) = 0$$

Ezután az ismeretlenek értéke:

$$x_1 = \frac{D_1}{D} = \frac{5}{5} = 1$$
, $x_2 = \frac{D_2}{D} = \frac{20}{5} = 4$, $x_3 = \frac{D_3}{D} = \frac{0}{5} = 0$

Így az egyenletrendszer megoldáshalmaza: $M = \{(1, 4, 0)\}$.

b, Határozzuk meg először az egyenletrendszer együtthatómátrixának determinánsát!

$$D = \det(A) = \det\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 4 & 3 & 2 \end{pmatrix} = 2 \cdot (1 \cdot 2 - 1 \cdot 3) - 1 \cdot (1 \cdot 2 - 1 \cdot 4) = 0$$

Mivel az együtthatómátrix determinánsa nulla, így az egyenletrendszernek vagy végtelen sok megoldása van, vagy nincsen megoldása.

Cseréljük ki az egyenletrendszer jobboldalán álló konstansok <u>b</u> vektorával az együtthatómátrix egyes oszlopvektorait és határozzuk meg az így előálló mátrixok determinánsát!

$$D_1 = \det\begin{pmatrix} 3 & 1 & 0 \\ 5 & 1 & 1 \\ 13 & 3 & 2 \end{pmatrix} = 3 \cdot (1 \cdot 2 - 1 \cdot 3) - 1 \cdot (5 \cdot 2 - 1 \cdot 13) = 0$$

$$D_2 = \det\begin{pmatrix} 2 & 3 & 0 \\ 1 & 5 & 1 \\ 4 & 13 & 2 \end{pmatrix} = 2 \cdot (5 \cdot 2 - 1 \cdot 13) - 3 \cdot (1 \cdot 2 - 1 \cdot 4) = 0$$

$$D_3 = \det\begin{pmatrix} 2 & 1 & 3 \\ 1 & 1 & 5 \\ 4 & 3 & 13 \end{pmatrix} = 2 \cdot (1 \cdot 13 - 5 \cdot 3) - 1 \cdot (1 \cdot 13 - 5 \cdot 4) + 3 \cdot (1 \cdot 3 - 1 \cdot 4) = 0$$

Mivel $D=D_1=D_2=D_3=0$, így a Cramer szabállyal nem lehet eldönteni, hogy megoldható-e az egyenletrendszer, illetve ha megoldható, nem lehet a megoldásvektorokat előállítani.

Megjegyezzük, hogy a bázistranszformációs megoldási módszerrel megmutatható, hogy ennek az egyenletrendszernek végtelen sok megoldása van és megadható a megoldásvektorok jellemzése.

c, Határozzuk meg először az egyenletrendszer együtthatómátrixának determinánsát!

$$D = \det(A) = \det\begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 1 \\ 1 & 1 & -2 \end{pmatrix} = 1 \cdot (2 \cdot (-2) - 1 \cdot 1) - 1 \cdot (2 \cdot (-2) - 1 \cdot 1) + 3 \cdot (2 \cdot 1 - 2 \cdot 1) = 0$$

Mivel az együtthatómátrix determinánsa nulla, így az egyenletrendszernek vagy végtelen sok megoldása van, vagy nincsen megoldása.

Cseréljük ki az egyenletrendszer jobboldalán álló konstansok b vektorával az együtthatómátrix egyes oszlopvektorait és határozzuk meg az így előálló mátrixok determinánsát!

$$D_{1} = \det\begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & -2 \end{pmatrix} = 1 \cdot (2 \cdot (-2) - 1 \cdot 1) - 1 \cdot (1 \cdot (-2) - 1 \cdot 1) + 3 \cdot (1 \cdot 1 - 2 \cdot 1) = -5$$

Mivel D = 0 és $D_1 \neq 0$, így a többi determinánst már nem kell kiszámolnunk, a Cramer szabály következményeként megállapítható, hogy az egyenletrendszer nem oldható meg.

3. Minta feladat:

Tekintsük az alábbi homogén lineáris egyenletrendszert!

$$c \cdot x_1 + x_3 = 0$$

$$2x_1 + 3x_2 + x_3 = 0$$

$$x_1 + x_2 + 2x_3 = 0$$

Hogyan kell megválasztani a $c \in R$ paraméter értékét, hogy a fenti egyenletrendszernek

- a, csak triviális megoldása legyen;
- b, legyen triviálistól különböző megoldása is?

Megoldás:

Mivel az egyenletrendszer együtthatómátrixa négyzetes, annak determinánsa alapján következtethetünk a megoldásvektorok számára. Határozzuk meg tehát először az együtthatómátrix determinánsát a *c* paraméter függvényében!

$$D = \det(A) = \det\begin{pmatrix} c & 0 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix} = c \cdot (3 \cdot 2 - 1 \cdot 1) + 1 \cdot (2 \cdot 1 - 3 \cdot 1) = 5c - 1$$

- a, A fenti egyenletrendszernek pontosan akkor van csak triviális megoldása, ha $D\neq 0$, azaz $c\neq 1/5$.
- b, A fenti egyenletrendszernek pontosan akkor létezik triviálistól különböző megoldása is, ha D = 0, azaz c = 1/5. Megjegyezzük, hogy ebben az esetben az egyenletrendszernek végtelen sok megoldásvektora van, a megoldáshalmazt a bázistranszformációs megoldási módszer segítségével lehet felírni.

Gyakorló feladatok:

<u>5.</u> Oldja meg Cramer szabállyal az alábbi lineáris egyenletrendszereket!

$$\begin{array}{rclcrcr}
 & x & + & 4y & + & 2z & = & 5 \\
 & -3x & + & 2y & + & z & = & -1 \\
 & 4x & - & y & - & z & = & 2
 \end{array}$$

b,

$$x - 2y + z = 2$$

 $3x + 8y - 6z = -5$
 $6x + 10y + 3z = 4$

c,

$$x + y - z = 6$$

 $3x - 2y + 5z = 3$
 $6x + y + 2z = 21$

d,

$$x + y - z = 4$$

 $2x - 3y + z = -5$
 $4x - y - z = -3$

<u>6.</u> Hogyan kell megválasztani a *c* paraméter értékét, hogy az alábbi egyenletrendszernek csak triviális megoldása legyen?

$$x - y + z = 0$$

$$x + c \cdot y + 3z = 0$$

$$x - 3y - c \cdot z = 0$$

$$5x + 2y - 3z = 0$$

$$3x - 2y = 0$$

$$4x + 3y + c \cdot z = 0$$

 $\overline{2}$. Hogyan kell megválasztani a c paraméter értékét, hogy az alábbi egyenletrendszernek legyen a triviálistól különböző megoldása? A c paraméter ilyen értéke mellett oldja meg az egyenletrendszert!

a,

$$c \cdot x + y + 3z = 0$$

$$-x + y + z = 0$$

$$-3x + y - c \cdot z = 0$$

$$2x + 4y + 3z = 0
-3x + 13y + c \cdot z = 0
3x - y + 2z = 0$$

8. Melyik tanult módszert lehet alkalmazni az alábbi lineáris egyenletrendszer megoldására? Amelyik módszer használható, azzal oldja meg az egyenletrendszert!

$$x_1 + x_2 - 2x_3 + x_4 = 4$$

 $x_1 + 2x_2 + x_3 + x_4 = 5$
 $x_2 + 4x_3 + x_4 = 1$

a,

$$x_1 + x_2 + 2x_3 + x_4 = 2$$

 $x_1 + x_2 + 2x_3 + 3x_4 = 3$
 $x_1 + 2x_2 + 3x_3 + 5x_4 = 4$

$$x_1 + 2x_2 - x_3 + x_4 = 2$$

 $2x_1 + x_2 - 3x_4 = 3$
 $3x_1 + 3x_2 - x_3 - 2x_4 = 1$

d,

$$x_1 + 2x_2 + 3x_3 = 5$$

$$2x_1 + 4x_2 + 5x_3 = 10$$

$$3x_1 + 5x_2 + 6x_3 = 13$$

e,

$$x_1 + 2x_3 = 3$$

 $2x_1 + x_2 + x_3 = 4$
 $4x_1 + x_2 + 5x_3 = 10$

f,

$$x_1 + 2x_3 = 3$$

 $2x_1 + x_2 + x_3 = 4$
 $4x_1 + x_2 + 5x_3 = 6$

g,

$$x_{1} + 2x_{2} + x_{3} = 5$$

$$x_{1} - x_{2} = 1$$

$$-x_{1} + x_{2} + 2x_{3} = 1$$

$$x_{2} + x_{3} = 2$$

$$x_{1} + x_{2} + x_{3} = 4$$

Elméleti kérdések

Döntse el az alábbi állításokról, hogy igazak vagy hamisak!

- 1. Ha az $A\underline{x}=\underline{o}$ lineáris egyenletrendszer megoldható, akkor az inhomogén párja is megoldható.
- 2. Egy homogén lineáris egyenletrendszer mindig megoldható.
- 3. Egy homogén lineáris egyenletrendszernek csak triviális megoldása van.
- 4. Egy homogén lineáris egyenletrendszernek végtelen sok megoldása van.
- 5. Ha egy homogén lineáris egyenletrendszer mátrixának a rangja megegyezik az ismeretlenek számával, akkor létezik a triviálistól különböző megoldása.
- <u>6.</u> Ha egy homogén lineáris egyenletrendszer mátrixának a rangja kisebb az ismeretlenek számánál, akkor létezik a triviálistól különböző megoldása.
- 7. Ha a homogén lineáris egyenletrendszer együtthatómátrixának rangja kisebb, mint az ismeretlenek száma, akkor az egyenletrendszer nem oldható meg.
- 8. Egy homogén lineáris egyenletrendszer bármely véges számú megoldásának a lineáris kombinációi is megoldások.
- 9. Minden lineáris egyenletrendszernek van triviális megoldása.

- <u>10.</u> Ha az együtthatómátrix rangja kisebb, mint az ismeretlenek száma, akkor az egyenletrendszer nem oldható meg.
- 11. Van olyan 2 egyenletből álló, 3 ismeretlenes lineáris egyenletrendszer, amelynek pontosan egy megoldásvektora van.
- 12. Ha az együtthatómátrix rangja kisebb, mint az ismeretlenek száma, akkor az $A\underline{x}=\underline{o}$ egyenletrendszernek végtelen sok megoldásvektora van.
- 13. Ha egy inhomogén egyenletrendszer egyértelműen megoldható, akkor a homogén párjának csak triviális megoldása van.
- 14. Ha egy lineáris egyenletrendszernek pontosan egy megoldásvektora van, akkor a mátrixának a rangja megegyezik az ismeretlenek számával.
- 15. Ha egy homogén lineáris egyenletrendszer egyértelműen megoldható, akkor az inhomogén párjának is mindig egy megoldásvektora van.
- 16. Ha egy inhomogén egyenletrendszernek végtelen sok megoldásvektora van, akkor a homogén párjának is végtelen sok megoldásvektora van.
- <u>17.</u> Ha az A mátrix nxn-es, akkor az $A\underline{x}=\underline{b}$ egyenletrendszernek n különböző megoldásvektora van.
- <u>18.</u> Ha *A nxn*-es mátrix, akkor az *Ax*=*o* egyenletrendszernek *n* db különböző megoldása van.
- 19. Homogén-inhomogén egyenletrendszerpár esetén a homogén egyenletrendszer egy megoldásvektorához hozzáadva az inhomogén egyenletrendszer egy megoldásvektorát egy inhomogén megoldásvektort kapunk.
- <u>20.</u> A Cramer szabállyal bármely *n* egyenletből álló *n* ismeretlenes homogén lineáris egyenlet-rendszer megoldható.
- 21. Ha det(A) = 0, akkor az Ax = 0 lineáris egyenletrendszer nem oldható meg.
- <u>22.</u> Ha az Ax = o lineáris egyenletrendszer megoldható, akkor det(A) = 0.
- <u>23.</u> Ha det(A) = 0, akkor az $A\underline{x} = \underline{o}$ lineáris egyenletrendszernek végtelen sok megoldásvektora van.
- 24. Ha egy homogén lineáris egyenletrendszer együtthatómátrixának a determinánsa 0, akkor az egyenletrendszernek van triviálistól különböző megoldása.
- <u>25.</u> Ha det(A) = 0, akkor az $A\underline{x} = \underline{b}$ lineáris egyenletrendszernek végtelen sok megoldásvektora van.
- 26. Ha det(A) ≠0, akkor az $A\underline{x}=\underline{o}$ lineáris egyenletrendszernek csak triviális megoldása van.

Lineáris leképezések

1. Minta feladat:

Adjuk meg azt a leképezést, amely egy R^3 -beli vektorhoz hozzárendeli annak x-y koordináta-síkra vonatkozó merőleges vetületét! Igazoljuk, hogy a fenti leképezés lineáris! Adjuk meg a leképezés magterét, képterét és mátrixát!

Megoldás:

Ha egy térbeli koordináta-rendszerben egy helyvektort az x-y koordinátasíkra merőlegesen vetítünk, a vetítés során a vektor első két koordinátája nem változik, míg a harmadik koordináta nulla lesz. Így a vetítést megvalósító leképezés:

$$A: R^3 \to R^3$$
, $(x_1, x_2, x_3) \mapsto (x_1, x_2, 0)$

Annak igazolására, hogy a fenti leképezés lineáris, be kell látni, hogy additív és homogén.

Legyenek $\underline{x} = (x_1, x_2, x_3)$ és $\underline{y} = (y_1, y_2, y_3)$ tetszőleges térbeli vektorok, λ pedig tetszőleges valós szám. Ekkor:

$$A(\underline{x} + \underline{y}) = A((x_1 + y_1, x_2 + y_2, x_3 + y_3)) = (x_1 + y_1, x_2 + y_2, 0),$$

továbbá,

$$A(\underline{x}) + A(\underline{y}) = (x_1, x_2, 0) + (y_1, y_2, 0) = (x_1 + y_1, x_2 + y_2, 0).$$

Így

$$A(\underline{x} + \underline{y}) = A(\underline{x}) + A(\underline{y}),$$

azaz a leképezés additív.

Hasonlóan:

$$A(\lambda \cdot \underline{x}) = A((\lambda \cdot x_1, \lambda \cdot x_2, \lambda \cdot x_3)) = (\lambda \cdot x_1, \lambda \cdot x_2, 0),$$

továbbá

$$\lambda \cdot A(\underline{x}) = \lambda \cdot (x_1, x_2, 0) = (\lambda \cdot x_1, \lambda \cdot x_2, 0).$$

Igy

$$A(\lambda \cdot \underline{x}) = \lambda \cdot A(\underline{x}),$$

azaz a leképezés homogén. Tehát A lineáris leképezés.

Az A leképezés magterének felírásához azokat a térbeli vektorokat kell megkeresnünk, amelyekhez az A leképezés nullvektort rendel. Az x-y koordinátasíkra történő merőleges vetítés során a z tengelyre eső helyvektorok merőleges vetülete lesz nullvektor, így az A leképezés magtere:

$$\ker(A) = \left\{ \underline{x} \in R^3 \mid x_1 = x_2 = 0 \right\}$$

Az *A* leképezés képterébe az *x-y* koordinátasíkra eső vetületvektorok tartoznak. Minden, az *x-y* koordinátasíkra eső helyvektor előállhat valamely térbeli vektor vetületeként, így a képtér:

$$im(A) = \{\underline{x} \in R^3 \mid x_3 = 0\}$$

Az A leképezés mátrixa az a 3×3 -as mátrix lesz, amelynek oszlopvektorai az $A(\underline{e}_1) = (1, 0, 0), A(\underline{e}_2) = (0, 1, 0)$ és $A(\underline{e}_3) = (0, 0, 0)$ vektorok, így:

$$M(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

2. Minta feladat:

Tekintsük az alábbi lineáris leképezést:

$$A: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3) \mapsto (3x_1 + 2x_2 + 4x_3, x_1 + 2x_3)$.

- a, Adjuk meg az A lineáris leképezés mátrixát!
- b, Határozzuk meg az \underline{x} = (2, -1, 4) vektorhoz rendelt képvektort
 - a hozzárendelési szabály segítségével;
 - a leképezés mátrixának segítségével!
- c, Határozzuk meg az A lineáris leképezés rangját!
- d, Adjuk meg az A lineáris leképezés magterét! Injektív-e az A lineáris leképezés?

Megoldás:

a, Az *A* lineáris leképezés mátrixának oszlopvektorai az *R*³ vektortér kanonikus bázisának vektoraihoz rendelt képvektorok:

$$A(\underline{e}_1) = A((1,0,0)) = (3,1), \ A(\underline{e}_2) = A((0,1,0)) = (2,0), \ A(\underline{e}_3) = A((0,0,1)) = (4,2).$$
 fgy:

$$M(A) = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 0 & 2 \end{pmatrix}.$$

b, Az $\underline{x} = (2, -1, 4)$ vektorhoz rendelt képvektor a hozzárendelési szabály szerint $(3\cdot 2 + 2\cdot (-1) + 4\cdot 4, 2 + 2\cdot 4) = (20, 10)$, azaz $A(\underline{x}) = (20, 10)$.

Az \underline{x} = (2, -1, 4) vektorhoz rendelt képvektort úgy is megkaphatjuk, ha a leképezés mátrixát megszorozzuk az \underline{x} komponenseit tartalmazó oszlopvektorral. Ekkor a képvektort is oszlopvektorként felírva kapjuk meg:

$$M(A) \cdot \underline{x} = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 20 \\ 10 \end{pmatrix}.$$

- c, Az A lineáris leképezés rangja megegyezik mátrixának rangjával. Bázis transzformációval kiszámolható (lásd d, pont), hogy az M(A) mátrix rangja 2, így r(A) = r(M(A)) = 2.
- d, A magtér megadásához keressük azokat az R^3 -beli vektorokat, amelyekhez a leképezés nullvektort rendel. Így az alábbi homogén lineáris egyenletrendszer írható fel:

$$3x_1 + 2x_2 + 4x_3 = 0$$

$$x_1 + 2x_3 = 0$$

Oldjuk meg bázistranszformációval az egyenletrendszert! Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>o</u>
<u>e</u> 1	3	2	4	0
<u>e</u> 2	1	0	2	0

Az $\underline{a}_1 \rightarrow \underline{e}_2$ vektorcsere után az alábbi táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>o</u>	
<u>e</u> 1	0	2	-2	0	
<u>a</u> 1	1	0	2	0	

Vonjuk be ezután az \underline{a}_2 vektort az \underline{e}_1 helyére:

bázis

$$a_1$$
 a_2
 a_3
 a_2
 a_2
 0
 1
 -1
 0

 a_1
 1
 0
 2
 0

A "megoldó képletbe" helyettesítve:

$$\begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \end{pmatrix} \cdot [x_3],$$

azaz:

$$x_2 = 0 - (-1) \cdot x_3 = x_3$$
,
 $x_1 = 0 - 2x_3 = -2x_3$.

Tehát az A lineáris leképezés magtere:

$$\ker(A) = M = \left\{ \underline{x} \in R^3 \middle| x_3 \in R, x_1 = -2x_3, x_2 = x_3 \right\}$$

Egy lineáris leképezés pontosan akkor injektív, ha magterében csak a nullvektor található. Ez a fenti A leképezés esetén nem teljesül, így A nem injektív.

3. Minta feladat:

Tekintsük az alábbi lineáris leképezéseket:

$$A: R^2 \to R^3$$
, $(x_1, x_2) \mapsto (x_1 + 2x_2, x_1 + x_2, x_2)$,
 $B: R^2 \to R^2$, $(x_1, x_2) \mapsto (3x_1 + x_2, x_1 - x_2)$.

- a, Határozzuk meg az A lineáris leképezés magterét! Injektív-e az A leképezés?
- b, Legyen $\underline{b}_1 = (0, 1, -1)$ és $\underline{b}_2 = (3, 2, 2)$. Igaz-e, hogy $\underline{b}_1 \in \text{im}(A)$, illetve $\underline{b}_2 \in \text{im}(A)$? Ha igen, akkor adjuk meg azon vektorokat, amelyekhez az A lineáris leképezés a \underline{b}_1 , illetve a b_2 vektort rendeli!
- c, Melyik létezik az AoB, illetve BoA leképezések közül? Amelyik létezik, annak adjuk meg a mátrixát!

Megoldás:

A feladat a, és b, részét egyszerre, egy bázistranszformáció sorozatot végrehajtva érdemes megoldani.

A magtér meghatározásához olyan R^2 -beli vektorokat keresünk, amelyekhez az A leképezés nullvektort rendel. Így a keresett vektorok komponenseinek az alábbi homogén lineáris egyenletrendszert kell kielégíteniük:

A \underline{b}_1 illetve \underline{b}_2 vektorok akkor elemei a képtérnek, ha található olyan R^2 -beli vektor, amelynek képe \underline{b}_1 illetve \underline{b}_2 , azaz ha megoldhatóak az alábbi inhomogén lineáris egyenletrendszerek:

$$x_1 + 2x_2 = 0$$
 $x_1 + 2x_2 = 3$ $x_1 + x_2 = 1$ (1) $x_1 + x_2 = 2$ (2) $x_2 = -1$

Mivel a fenti három lineáris egyenletrendszer együtthatómátrixa azonos, a három egyenletrendszer egyszerre, egy bázistranszformáció sorozattal megoldható. Az induló táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>o</u>	<u>b</u> 1	<u>b</u> 2
<u>e</u> 1	1	2	0	0	3
<u>e</u> 2	1	1	0	1	2
<u>e</u> 3	0	1	0	-1	2

Az $\underline{a}_1 \rightarrow \underline{e}_1$ vektorcsere után a következő táblázatot kapjuk:

bázis	<u>a</u> 1	<u>a</u> 2	<u>o</u>	<u>b</u> 1	<u>b</u> 2
<u>a</u> 1	1	2	0	0	3
<u>e</u> 2	0	-1	0	1	-1
<u>e</u> 3	0	1	0	-1	2

Vonjuk be ezután \underline{a}_2 -t az \underline{e}_2 helyére:

bázis	<u>a</u> 1	<u>a</u> 2	<u>o</u>	<u>b</u> 1	<u>b</u> 2
<u>a</u> 1	1	0	0	2	1
<u>a</u> 2	0	1	0	-1	1
<u>e</u> 3	0	0	0	0	1

A táblázatból az alábbiak olvashatóak ki:

Mivel az egyenletrendszer együtthatómátrixának rangja 2, ami megegyezik az ismeretlenek számával, így a homogén egyenletrendszernek csak triviális megoldása van. Tehát az *A* lineáris leképezés magtere:

$$\ker(A) = M_0 = \{(0,0)\}.$$

Mivel A magtere csak a nullvektort tartalmazza, így az A leképezés injektív.

Az (1) inhomogén egyenletrendszer megoldható, hiszen az együtthatómátrix és a kibővített mátrix rangja egyaránt 2. Így $\underline{b}_1 \in \operatorname{im}(A)$. Az egyenletrendszernek egyértelmű megoldása van: $M_1 = \{(2,-1)\}$. Tehát egyetlen olyan R^2 -beli vektor van, mégpedig az $\underline{x} = (2,-1)$, amelynek a képe \underline{b}_1 .

A (2) inhomogén egyenletrendszer nem oldható meg, ugyanis a táblázatból látható, hogy a kibővített mátrix rangja nagyobb az együtthatómátrix rangjánál. Így $\underline{b}_2 \notin \operatorname{im}(A)$.

c, Összetett függvény létezésének feltétele, hogy a belső függvény képterének és a külső függvény értelmezési tartományának a metszete ne legyen üres halmaz. A fenti lineáris leképezések esetén ez az AoB összetétel esetén teljesül. Tudjuk, hogy lineáris leképezések összetétele is lineáris és $M(AoB) = M(A) \cdot M(B)$.

Írjuk fel először az A és B leképezések mátrixát:

$$M(A) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad M(B) = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}.$$

Így az AoB összetett leképezés mátrixa:

$$M(A \circ B) = M(A) \cdot M(B) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 4 & 0 \\ 1 & -1 \end{pmatrix}.$$

4. Minta feladat:

Tekintsük a következő mátrixokat!

$$A = \begin{pmatrix} 2 & -1 & 3 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}, \qquad C = \begin{bmatrix} 4 & -1 \end{bmatrix}$$

Adjuk meg azokat a lineáris leképezéseket (a leképezés típusát és hozzárendelési szabályát), amelyeknek a mátrixa *A*, *B* illetve *C*!

Megoldás:

Tudjuk, hogy egy $R^m \to R^n$ típusú lineáris leképezésnek a mátrixa $n \times m$ -es, így a leképezés típusa a mátrix mérete alapján azonosítható. A hozzárendelési szabály felírásához felhasználjuk, hogy az $A(\underline{x})$ képvektor az $M(A) \cdot \underline{x}$ mátrixszorzással is meghatározható.

Az A mátrix mérete 2×4 , így a hozzá tartozó lineáris leképezés típusa $R^4\to R^2$. Továbbá

$$M(A) \cdot \underline{x} = \begin{pmatrix} 2 & -1 & 3 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 + 3x_3 \\ x_3 + 4x_4 \end{pmatrix}.$$

Így a keresett lineáris leképezés:

$$A: \mathbb{R}^4 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3, x_4) \mapsto (2x_1 - x_2 + 3x_3, x_3 + 4x_4)$.

A B mátrix mérete 3×1 , így a hozzá tartozó lineáris leképezés típusa $R\to R^3$. Továbbá

$$M(B) \cdot \underline{x} = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} \cdot [x] = \begin{pmatrix} 2x \\ 5x \\ 3x \end{pmatrix}.$$

Így a keresett lineáris leképezés:

$$B: R \to R^3$$
, $x \mapsto (2x, 5x, 3x)$.

A C mátrix mérete 1×2 , így a hozzá tartozó lineáris leképezés típusa $R^2 \to R$. Továbbá

$$M(C) \cdot \underline{x} = \begin{bmatrix} 4 & -1 \end{bmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} 4x_1 - x_2 \end{bmatrix}$$

Így a keresett lineáris leképezés:

$$C: \mathbb{R}^2 \to \mathbb{R}$$
, $(x_1, x_2) \mapsto 4x_1 - x_2$.

5. Minta feladat:

Tekintsük a következő lineáris transzformációkat!

$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (2x_1 - x_2, -4x_1 + 2x_2)$,
 $B: R^2 \to R^2$, $(x_1, x_2) \mapsto (x_1 - 2x_2, 3x_1 + 4x_2)$.

- a, Adjuk meg a fenti lineáris transzformációk mátrixát!
- b, Adjuk meg az A+B, 3A, AoB lineáris transzformációkat és mátrixaikat!
- c, Injektívek-e a fenti lineáris transzformációk? Amelyik injektív, annak adjuk meg az inverzét (az inverz transzformáció típusát és hozzárendelési szabályát)!

Megoldás:

a, A transzformációk mátrixai:

$$M(A) = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}, \qquad M(B) = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}.$$

b, Lineáris transzformációk összege is lineáris, továbbá

$$M(A+B)=M(A)+M(B)=\begin{pmatrix} 2 & -1 \ -4 & 2 \end{pmatrix}+\begin{pmatrix} 1 & -2 \ 3 & 4 \end{pmatrix}=\begin{pmatrix} 3 & -3 \ -1 & 6 \end{pmatrix}.$$

Így az A+B leképezés:

$$A+B: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (3x_1 - 3x_2, -x_1 + 6x_2)$.

Lineáris transzformációk konstansszorosa is lineáris, továbbá

$$M(3A) = 3 \cdot M(A) = 3 \cdot \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ -12 & 6 \end{pmatrix}.$$

Így a 3*A* leképezés:

$$A+B: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (3x_1 - 3x_2, -x_1 + 6x_2)$.

Lineáris transzformációk kompozíciója is lineáris, továbbá

$$M(A \circ B) = M(A) \cdot M(B) = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -1 & -8 \\ 2 & 16 \end{pmatrix}.$$

Így az AoB leképezés:

$$3A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (6x_1 - 3x_2, -12x_1 + 6x_2)$.

 c, Lineáris transzformációk injektivitását determinánsuk segítségével is vizsgálhatjuk:

$$\det(A) = \det(M(A)) = 2 \cdot 2 - (-1) \cdot (-4) = 0$$
,

így az A lineáris transzformáció nem injektív. Továbbá

$$\det(B) = \det(M(B)) = 1 \cdot 4 - 2 \cdot (-3) = 10 \neq 0$$
,

így a B lineáris transzformáció injektív.

Lineáris transzformáció inverze is lineáris és

$$M(B^{-1}) = (M(B))^{-1} = \frac{1}{\det(M(B))} \cdot \operatorname{adj}(M(B)) = \frac{1}{10} \cdot \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 4/1 & 2/10 \\ -3/10 & 1/10 \end{pmatrix}$$

Ennek alapján a *B* lineáris transzformáció inverze:

$$B^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (\sqrt[4]{_{10}} \cdot x_1 + \sqrt[2]{_{10}} \cdot x_2, -\sqrt[3]{_{10}} \cdot x_1 + \sqrt[4]{_{10}} x_2)$.

Gyakorló feladatok:

- 1. Adja meg azt a leképezést, amely
 - a, egy R^2 -beli vektorhoz hozzárendeli annak x tengelyre vonatkozó tükörképét:
 - b, egy R²-beli vektorhoz hozzárendeli annak origóra vonatkozó tükörképét:
 - c, egy R^2 -beli vektorhoz hozzárendeli annak λ -szorosát ($\lambda \in R$ rögzített):
 - d, egy R^2 -beli vektorhoz hozzárendeli annak \underline{v} -vel való eltoltját ($\underline{v} \in R^2$, $\underline{v} \neq \underline{o}$ rögzített),
 - e, egy R^2 -beli vektorhoz hozzárendeli annak y tengelyre eső merőleges vetületét!

Melyek lineárisak a fenti leképezések közül?

A lineáris leképezéseknél adja meg azok magterét, képterét, mátrixát!

- 2. Adja meg azt a leképezést, amely
 - a, egy R³-beli vektorhoz hozzárendeli annak x-z síkra vonatkozó tükörképét:
 - b, egy R^3 -beli vektorhoz hozzárendeli annak y tengelyre vonatkozó tükörképét:
 - c. egy R³-beli vektorhoz hozzárendeli annak *y-z* síkra eső merőleges vetületét:
 - d, egy R³-beli vektorhoz hozzárendeli annak z tengelyre eső merőleges vetületét!

Igazolja, hogy a fenti leképezések lineárisak!

Adja meg a fenti lineáris leképezések magterét. képterét, mátrixát!

3. Tekintsük az alábbi leképezéseket!

$$A: R^{3} \to R^{2}, \quad (x_{1}, x_{2}, x_{3}) \mapsto (2x_{1} + 3x_{2}, x_{1} + x_{2} - 3x_{3})$$

$$A: R^{2} \to R^{2}, \quad (x_{1}, x_{2}) \mapsto (x_{1}^{3} + 2x_{2}, 4x_{2})$$

$$A: R^{2} \to R^{2}, \quad (x_{1}, x_{2}) \mapsto (x_{1} \cdot x_{2}, 4x_{1} + x_{2}^{4})$$

$$A: R \to R^{4}, \quad x \mapsto (2x + 1, 3x^{2}, x + 5, 4x)$$

$$A: R^{2} \to R^{3}, \quad (x_{1}, x_{2}) \mapsto (3x_{1} + 5x_{2}, 0, x_{1} + x_{2})$$

$$A: R^{2} \to R^{2}, \quad (x_{1}, x_{2}) \mapsto (5x_{1} + 2x_{2}, x_{1} + 4x_{2})$$

Melyik lineáris a fenti leképezések közül? Amelyik lineáris, ott adja meg a leképezés mátrixát!

<u>4.</u> Adja meg azon lineáris leképezések típusát és hozzárendelési szabályát, amelyeknek a mátrixa:

$$A = \begin{bmatrix} 2 & 0 & -1 & 4 \\ 3 & 5 & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 3 \\ -1 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, \qquad D = \begin{bmatrix} -2 \\ 5 \end{bmatrix},$$

$$E = \begin{bmatrix} -1 & 3 \\ 0 & 2 \\ 4 & 5 \end{bmatrix}, \qquad F = \begin{bmatrix} 3 & 4 & 0 \\ -1 & 1 & 2 \\ 5 & 0 & 1 \end{bmatrix}, \qquad G = \begin{bmatrix} 2 & 5 & 0 & 3 \end{bmatrix}, \qquad H = \begin{bmatrix} 4 \end{bmatrix}.$$

5. Tekintsük az alábbi lineáris leképezéseket!

$$A: R^3 \to R^2$$
, $(x_1, x_2, x_3) \mapsto (2x_1 - x_2 + 4x_3, x_1 + 3x_2 + 2x_3)$
 $B: R^3 \to R^3$, $(x_1, x_2, x_3) \mapsto (x_1 + 3x_3, 4x_2, 5x_2 + x_3)$

- a, Adja meg a fenti lineáris leképezések mátrixát!
- b, Legyen $\underline{x} = (2, -1, 3)$. Adja meg az $A(\underline{x})$ és a $B(\underline{x})$ képvektort!
- c, Melyik létezik az AoB és a BoA leképezések közül? Amelyik létezik, annak adja meg a mátrixát!
- 6. Határozza meg az alábbi lineáris leképezések rangját!

$$A: R^2 \to R^4, (x,y) \mapsto (3x,0,x+y,-3y),$$

$$B: R^3 \to R^3, (x, y, z) \mapsto (3x-y+2z, 2y, 3x+3y+2z),$$

$$C: R^3 \rightarrow R^2$$
, $(x, y, z) \mapsto (x+y-2z, 2x+z)$.

7. Tekintsük az alábbi lineáris transzformációkat:

$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (2x_1 + 3x_2, -x_1 + 4x_2)$,

$$B: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (4x_1+6x_2, -2x_1-3x_2)$.

- a, Írja fel a fenti lineáris transzformációk mátrixát!
- b, Adja meg az A+B, 5A, AoB, BoA lineáris leképezéseket és azok mátrixát!
- c, Invertálható-e az A, illetve a B lineáris transzformáció? Amelyik invertálható, annak adja meg az inverzét (az inverz transzformáció típusát és hozzárendelési szabályát)!
- 8. Tekintsük az alábbi lineáris transzformációkat:

$$A: R^2 \to R^2, (x_1, x_2) \mapsto (x_1+3x_2, 2x_1+x_2),$$

$$B: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (4x_1+6x_2, 2x_1+3x_2)$.

- a, Írja fel a fenti lineáris transzformációk mátrixát!
- b, Adja meg a fenti lineáris transzformációk magterét! Melyik invertálható? Az invertálható leképezések esetén adja meg az inverz leképezést!
- c, Legyen $\underline{b} = (7, 4)$. Igaz-e, hogy $\underline{b} \in \text{im}(A)$. illetve $\underline{b} \in \text{im}(B)$? Ha igen, akkor adja meg azon \underline{x} vektorokat, amelyekre $A(\underline{x}) = \underline{b}$, illetve $B(\underline{x}) = \underline{b}$ teljesül!
- 9. Tekintsük az alábbi lineáris leképezéseket!

$$A: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3) \mapsto (x_1 + 2x_2 + 3x_3, 4x_1 + 2x_2 - x_3)$ $\underline{b} = (2,2)$

$$A: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3) \mapsto (x_1 - 2x_2 + x_3, x_1 + x_2 + 2x_3)$ $\underline{b} = (4,5)$

$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (x_1 + 4x_2 + 2x_3, -3x_1 + 2x_2 + x_3, 4x_1 - x_2 - x_3)$ $\underline{b} = (5, -1, 2)$

$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (x_1 + 2x_3, 2x_1 + x_2 + x_3, 4x_1 + x_2 + 5x_3)$ $b = (3,4,6)$

$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (x_1 + 2x_3, 2x_1 + x_2 + x_3, 4x_1 + x_2 + 5x_3)$ $\underline{b} = (3,4,10)$

$$A: \mathbb{R}^4 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3, x_4) \mapsto (x_1 + x_3 + x_4, x_1 + 2x_2 + 3x_3 + 5x_4, x_1 + x_2 + 2x_3 + 3x_4) \quad \underline{b} = (2,4,3)$

$$A: \mathbb{R}^4 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3, x_4) \mapsto (x_1 + x_2 - 2x_3 + x_4, x_1 + 2x_2 + x_3 + x_4, x_2 + 4x_3 + x_4) = \underline{b} = (4,5,1)$

$$A: \mathbb{R}^4 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3, x_4) \mapsto (x_1 + 2x_2 - x_3 + x_4, 2x_1 + x_2 - 3x_4, 3x_1 + 3x_2 - x_3 - 2x_4) \quad \underline{b} = (2,3,1)$

- a, Adja meg a fenti lineáris leképezések magterét! Invertálható-e az A leképezés?
- b, Igaz-e, hogy $b \in \text{im}(A)$? Ha igen, akkor adja meg azokat az x vektorokat az A leképezés értelmezési tartományából, amelyekre A(x) = b!
- 10. Határozza meg az alábbi lineáris transzformációk determinánsát! Invertálható-e az A lineáris transzformáció?

$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (3x_1+6x_2, 2x_1+4x_2)$,

$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (-x_1+2x_2, 4x_1+3x_2)$,

$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (3x_1 + 4x_2 + 5x_3, x_1 + 2x_2 + 3x_3, -2x_1 + 5x_2 - 4x_3)$,

$$A: R^3 \to R^3$$
, $(x_1, x_2, x_3) \mapsto (x_1-2x_2+x_3, x_1+x_2+x_3, x_1+5x_2+x_3)$.

6. Minta feladat:

A definíció alapján ellenőrizzük, hogy a megadott vektorok közül melyik sajátvektora az A lineáris transzformációnak!

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (4x_1-x_2, x_1+6x_2)$, $\underline{v}_1=(1,1)$, $\underline{v}_2=(2,-2)$, $\underline{v}_3=(3,0)$, $\underline{v}_4=(-1,1)$

Megoldás:

Az A lineáris transzformáció sajátvektorán olyan nullvektortól különböző v vektort értünk, amelyre $A(\underline{v}) = \lambda \underline{v}$ teljesül valamely $\lambda \in R$ konstansra. Határozzuk meg a fenti vektorokhoz tartozó képvektorokat!

$$A(v_1) = A((1, 1)) = (3, 7) \neq \lambda \cdot (1, 1)$$
 $\Rightarrow v_1 \text{ nem saiátvektor}$:

$$A(\underline{v}_1) = A((1, 1)) = (3, 7) \neq \lambda \cdot (1, 1)$$
 $\Rightarrow \underline{v}_1$ nem sajátvektor; $A(\underline{v}_2) = A((2, -2)) = (10, -10) = 5 \cdot (2, -2)$ $\Rightarrow \underline{v}_2 \lambda = 5$ sajátértékhez tartozó

sajátvektor:

$$A(\underline{v}_3) = A((3,0)) = (12,3) \neq \lambda \cdot (3,0)$$
 $\Rightarrow \underline{v}_3$ nem sajátvektor;

$$A(\underline{\nu}_3) = A((3,0)) = (12,3) \neq \lambda \cdot (3,0)$$
 $\Rightarrow \underline{\nu}_3$ nem sajátvektor; $A(\underline{\nu}_4) = A((-1,1)) = (-5,5) = 5 \cdot (-1,1)$ $\Rightarrow \underline{\nu}_4 \lambda = 5$ sajátértékhez tartozó

sajátvektor.

7. Minta feladat:

A definíció alapján ellenőrizzük, hogy a megadott vektorok közül melyik sajátvektora az A négyzetes mátrixnak!

$$A = \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix}, \quad \underline{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \underline{v}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \underline{v}_3 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \quad \underline{v}_4 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Megoldás:

Az A négyzetes mátrix sajátvektorán olyan v nullvektortól különböző oszlopvektort értünk, amelyre $A \cdot v = \lambda \cdot v$ teljesül, valamely $\lambda \in R$ konstansra. Határozzuk meg az A mátrix és a fenti oszlopvektorok szorzatát!

$$A \cdot \underline{v}_1 = \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \neq \lambda \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \Rightarrow \underline{v}_1 \text{ nem sajátvektor};$$

$$A \cdot \underline{v}_2 = \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 15 \\ 5 \end{bmatrix} = 5 \cdot \begin{bmatrix} 3 \\ 1 \end{bmatrix},$$
 $\Rightarrow \underline{v}_2 \ \lambda = 5 \text{ sajátértékhez tartozó sajátvektor;}$

$$A \cdot \underline{v}_3 = \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -10 \\ 2 \end{bmatrix} \neq \lambda \cdot \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \Rightarrow \underline{v}_3 \text{ nem sajátvektor};$$

$$A \cdot \underline{v}_4 = \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix} = 2 \cdot \begin{bmatrix} 0 \\ 2 \end{bmatrix},$$
 $\Rightarrow \underline{v}_4 \ \lambda = 2 \text{ sajátértékhez tartozó sajátvektor.}$

8. Minta feladat:

Határozzuk meg az alábbi lineáris transzformációk sajátértékeit, sajátaltereit! Adjuk meg a sajátértékek algebrai és geometriai multiplicitását!

Adjunk példát egy sajátvektorra!

a,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1 - x_2, 5x_1 + 2x_2)$.

b,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 - 2x_2, 2x_1 + 6x_2)$.

c,
$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (5x_1, x_1 + 3x_2, 4x_1 + x_2 + 5x_3)$.

Megoldás:

a, Az A lineáris transzformáció mátrixa: $A = \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix}$.

A sajátértékeket a karakterisztikus egyenlet gyökeiként kapjuk meg:

$$P(\lambda) = \det(A - \lambda E) = \det\begin{bmatrix} 1 - \lambda & -1 \\ 5 & 2 - \lambda \end{bmatrix} = (1 - \lambda) \cdot (2 - \lambda) - (-5) = 2 - 2\lambda - \lambda + \lambda^2 + 5 = \lambda^2 - 3\lambda + 7 = 0$$

Innen

$$\lambda_{1,2} = \frac{3 \pm \sqrt{9 - 28}}{2}$$

Mivel a másodfokú egyenlet diszkriminánsa negatív, így nincs valós gyök. Következésképpen az *A* lineáris transzformációnak nincs sajátértéke és sajátvektora.

b, Az A lineáris transzformáció mátrixa: $A = \begin{bmatrix} 2 & -2 \\ 2 & 6 \end{bmatrix}$.

A sajátértékeket a karakterisztikus egyenlet gyökeiként kapjuk meg:

$$P(\lambda) = \det(A - \lambda E) = \det(\begin{bmatrix} 2 - \lambda & -2 \\ 2 & 6 - \lambda \end{bmatrix}) = (2 - \lambda) \cdot (6 - \lambda) - (-4) = 12 - 6\lambda - 2\lambda + \lambda^2 + 4 = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2 = 0$$

Innen $\lambda = 4$.

Mivel a fenti megoldás kétszeres gyöke a karakterisztikus egyenletnek, így a λ = 4 sajátérték algebrai multiplicitása 2.

A $\lambda = 4$ sajátértékhez tartozó sajátaltér az $(A-\lambda E)\cdot \underline{x} = \underline{o}$ homogén lineáris egyenletrendszer megoldáshalmazával egyenlő. Így meg kell oldanunk (általában bázis-transzformációval) az alábbi egyenletrendszert:

$$\begin{bmatrix} -2 & -2 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Az induló bázistranszformációs táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>o</u>
<u>e</u> 1	-2	-2	0
<u>e</u> 2	2	2	0

Hajtsuk végre az $\underline{a}_1 \rightarrow \underline{e}_1$ vektorcserét!

$$\begin{array}{c|ccccc} b\acute{a}zis & \underline{a}_1 & \underline{a}_2 & \underline{o} \\ \hline \underline{a}_1 & 1 & 1 & 0 \\ \underline{e}_2 & 0 & 0 & 0 \end{array}$$

A táblázat alapján a kötött és szabad ismeretlenek közti összefüggés:

$$x_1 = 0 - 1 \cdot x_2 = -x_2$$

Így a λ = 4 sajátértékhez tartozó sajátaltér:

$$H(4) = M_0 = \{ \underline{x} \in R^2 \mid x_2 \in R, x_1 = -x_2 \}.$$

A λ = 4 sajátérték geometriai multiplicitása a sajátaltér dimenziójával egyenlő. Ez megegyezik az M_0 megoldáshalmazban a szabad ismeretlenek számával, azaz itt 1. A λ = 4 sajátértékhez tartozó sajátvektorok a H(4) sajátaltér nullvektortól különböző vektorai, ilyen vektor például a \underline{v} = (1, -1) vektor.

c, Az A lineáris transzformáció mátrixa: $A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 3 & 0 \\ 4 & 1 & 5 \end{bmatrix}$.

A sajátértékeket a karakterisztikus egyenlet gyökeiként kapjuk meg:

$$P(\lambda) = \det(A - \lambda E) = \det\begin{pmatrix} 5 - \lambda & 0 & 0 \\ 1 & 3 - \lambda & 0 \\ 4 & 1 & 5 - \lambda \end{pmatrix} = (5 - \lambda) \cdot (3 - \lambda) \cdot (5 - \lambda) = (5 - \lambda)^2 \cdot (3 - \lambda) = 0$$
Let $A = A = A = A = A = A$.

Innen $\lambda_1 = 5$ és $\lambda_2 = 3$.

Mivel λ_1 kétszeres, λ_2 pedig egyszeres gyöke a karakterisztikus egyenletnek, így a λ_1 = 5 sajátérték algebrai multiplicitása 2, míg a λ_2 = 3 sajátérték algebrai multiplicitása 1.

A λ_1 = 5 sajátértékhez tartozó sajátaltér az $(A-\lambda_1 E)\cdot \underline{x} = \underline{o}$ homogén lineáris egyenletrendszer megoldáshalmazával egyenlő. Így meg kell oldanunk (általában bázistranszformációval) az alábbi egyenletrendszert:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 0 \\ 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Az induló bázistranszformációs táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>o</u>	
<u>e</u> 1	0	0	0	0	
<u>e</u> 2	1	-2	0	0	
<u>e</u> 3	4	1	0	0	

Hajtsuk végre az $\underline{a}_1 \rightarrow \underline{e}_2$ vektorcserét!

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>0</u>
<u>e</u> 1	0	0	0	0
<u>a</u> 1	1	-2	0	0
<u>e</u> 3	0	9	0	0

Vonjuk be ezután \underline{a}_2 -t az \underline{e}_3 helyére!

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>o</u>	
<u>e</u> 1	0	0	0	0	
<u>a</u> 1	1	0	0	0	
<u>a</u> 2	0	1	0	0	

A táblázat alapján a kötött és szabad ismeretlenek közti összefüggés:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdot x_3$$

Így a λ_1 = 5 sajátértékhez tartozó sajátaltér:

$$H(5) = M_0 = \{ \underline{x} \in \mathbb{R}^3 \mid x_3 \in \mathbb{R}, x_1 = x_2 = 0 \}.$$

A λ_1 = 5 sajátérték geometriai multiplicitása a sajátaltér dimenziójával egyenlő. Ez megegyezik az M_0 megoldáshalmazban a szabad ismeretlenek számával, azaz 1. A λ_1 = 5 sajátértékhez tartozó sajátvektorok a H(5) sajátaltér nullvektortól különböző vektorai, ilyen vektor például a \underline{v} = (0,0,1) vektor.

A λ_2 = 3 sajátértékhez tartozó sajátaltér az $(A-\lambda_2 E)\cdot \underline{x} = \underline{o}$ homogén lineáris egyenletrendszer megoldáshalmazával egyenlő. Így meg kell oldanunk (általában bázistranszformációval) az alábbi egyenletrendszert:

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 0 \\ 4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Az induló bázistranszformációs táblázat:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>o</u>
<u>e</u> 1	2	0	0	0
<u>e</u> 2	1	0	0	0
<u>a</u> ₂= <u>e</u> ₃	4	1	2	0

Hajtsuk végre az $\underline{a}_1 \rightarrow \underline{e}_2$ vektorcserét!

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>o</u>	
<u>e</u> 1	0	0	0	0	
<u>a</u> 1	1	0	0	0	
<u>a</u> 2	0	1	2	0	

A táblázat alapján a kötött és szabad ismeretlenek közti összefüggés:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \end{bmatrix} \cdot x_3$$

Így a λ_2 = 3 sajátértékhez tartozó sajátaltér:

$$H(3) = M_0 = \{\underline{x} \in R^3 \mid x_3 \in R, x_1 = 0, x_2 = -2x_3\}.$$

A λ_2 = 3 sajátérték geometriai multiplicitása a sajátaltér dimenziójával egyenlő. Ez megegyezik az M_0 megoldáshalmazban a szabad ismeretlenek számával, azaz 1. A λ_2 = 3 sajátértékhez tartozó sajátvektorok a H(3) sajátaltér nullvektortól különböző vektorai, ilyen vektor például a \underline{v} = (0, -2, 1) vektor.

9. Minta feladat:

Ellenőrizzük a Cayley-Hamilton tételt az alábbi négyzetes mátrixra!

$$A = \begin{bmatrix} 6 & 2 \\ -2 & 2 \end{bmatrix}$$

Megoldás:

A Cayley-Hamilton tétel szerint minden négyzetes mátrix gyöke a saját karakterisztikus polinomjának. Ez azt jelenti, hogy ha az A $n \times n$ -es mátrix karakterisztikus polinomja

$$P(\lambda) = a_n \lambda^n + \dots + a_1 \lambda + a_0,$$

akkor a karakterisztikus polinomba "behelyettesítve" az A mátrixot. a

$$P(A) = a_n A^n + ... + a_1 A + a_0 E$$

mátrix az $n \times n$ -es nullmátrixot adja eredményül. Írjuk fel tehát először az A mátrix karakterisztikus polinomját!

$$P(\lambda) = \det(A - \lambda E) = \det\begin{bmatrix} 6 - \lambda & 2 \\ -2 & 2 - \lambda \end{bmatrix} = (6 - \lambda) \cdot (2 - \lambda) - (-4) = 12 - 2\lambda - 6\lambda + \lambda^2 + 4 = \lambda^2 - 8\lambda + 16$$

"Helyettesítsük be" ebbe az A mátrixot!

$$P(A) = A^{2} - 8A + 16E = \begin{bmatrix} 6 & 2 \\ -2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 6 & 2 \\ -2 & 2 \end{bmatrix} - 8 \cdot \begin{bmatrix} 6 & 2 \\ -2 & 2 \end{bmatrix} + 16 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 32 & 16 \\ -16 & 0 \end{bmatrix} - \begin{bmatrix} 48 & 16 \\ -16 & 16 \end{bmatrix} + \begin{bmatrix} 16 & 0 \\ 0 & 16 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Tehát a Cayley-Hamilton tétel az *A* mátrixra igaz.

Gyakorló feladatok:

- 11. Van-e az alábbi geometriai transzformációknak sajátvektoruk illetve sajátalterük?
 - a, R^2 -ben az x tengelyre vonatkozó tükrözés;
 - b, R²-ben az origóra vonatkozó tükrözés;
 - c, R^2 -ben λ paraméterű nyújtás;
 - d. R^3 -ban az v tengelvre vonatkozó tükrözés:
 - e, R³-ban az x-y síkra való merőleges vetítés.
- 12. A definíció alapján ellenőrizze, hogy a megadott vektorok közül melyik sajátvektora az *A* lineáris transzformációnak!

a,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1 + 3x_2, 2x_2)$, $\underline{v}_1 = (3,1)$, $\underline{v}_2 = (5,2)$, $\underline{v}_3 = (3,3)$, $\underline{v}_4 = (2,-2)$

b,
$$A: R^2 \to R^2$$
, $(x_1, x_2) \mapsto (3x_1+x_2, 4x_2)$, $\underline{v}_1=(3,0)$, $\underline{v}_2=(5,1)$, $\underline{v}_3=(3,3)$, $\underline{v}_4=(2,-2)$.

13. A definíció alapján ellenőrizze, hogy a megadott vektorok közül melyik sajátvektora az *A* négyzetes mátrixnak!

a,
$$A = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$
 $\underline{v}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\underline{v}_3 = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, $\underline{v}_4 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

b,
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$
, $\underline{v}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\underline{v}_3 = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, $\underline{v}_4 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

c,
$$A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$$
, $\underline{v}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\underline{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\underline{v}_3 = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, $\underline{v}_4 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

14. Határozza meg az alábbi lineáris transzformációk sajátértékeit, sajátaltereit! Adja meg a sajátértékek algebrai és geometriai multiplicitását!

Adjon példát egy sajátvektorra!

a,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 - x_2, x_1 + 4x_2)$

b,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1 + 3x_2, 2x_2)$

c,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 + 2x_2, -2x_1 + 6x_2)$

d,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 + 3x_2, x_1 + 4x_2)$

e,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (-x_1 + x_2, 9x_1 + 7x_2)$

f,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (-x_1 + 2x_2, -10x_1 - 5x_2)$

g,
$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (x_1 + x_2, -2x_1 + 4x_2, x_1 + 2x_2)$

h,
$$A: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (x_1+x_2, x_2+x_3, x_1+x_3)$

i,
$$A: R^3 \to R^3$$
, $(x_1, x_2, x_3) \mapsto (3x_1-x_2-x_3, -x_1+3x_2-x_3, -x_1-x_2+3x_3)$

- 15. Legyen az A lineáris transzformáció injektív. Igazolja, hogy ha λ sajátértéke az A lineáris transzformációnak, akkor $1/\lambda$ sajátértéke az A^{-1} lineáris transzformációnak!
- 16. Ellenőrizze a Cayley-Hamilton tételt az alábbi lineáris transzformációkra!

a,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 - x_2, x_1 + 4x_2)$

b,
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1 + 3x_2, 2x_2)$

17. Ellenőrizze a Cayley-Hamilton tételt az alábbi négyzetes mátrixokra!

a,
$$A = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$
 b, $A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$

b,
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$

Elméleti kérdések

Döntse el az alábbi állításokról, hogy igazak vagy hamisak!

- Ha $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés, akkor im $(A) = \mathbb{R}^n$.
- Ha $A:R^m \to R^n$ típusú lineáris leképezés, akkor dim(im(A)) $\leq n$.
- Minden lineáris leképezés nullvektorhoz nullvektort rendel. 3.
- Minden lineáris leképezés magtere tartalmazza a nullvektort.
- Egy A lineáris leképezés mátrixának k-adik oszlopvektora $A(\underline{e}_k)$.
- Egy A lineáris leképezés mátrixának k-adik sorvektora $A(\underline{e}_k)$.
- Minden lineáris leképezés lineárisan összefüggő vektorokhoz lineárisan összefüggő képvektorokat rendel.
- <u>8.</u> Minden lineáris leképezés lineárisan független vektorokhoz lineárisan független képvektorokat rendel.
- 9. Ha az *A* lineáris leképezés injektív, akkor a magtere üres halmaz.
- <u>10.</u> Lineáris leképezések kompozíciója (ha létezik) lineáris.
- 11. Ha az A és B lineáris leképezésekre AoB létezik, akkor az M(A)M(B) szorzás elvégezhető.
- 12. Ha $A: \mathbb{R}^2 \to \mathbb{R}^4$ és $B: \mathbb{R}^4 \to \mathbb{R}^3$ típusú lineáris leképezés, akkor AoB létezik.
- 13. Minden $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformációnak létezik valós sajátértéke.
- <u>14.</u> Van olyan $R^n \to R^n$ típusú lineáris transzformáció, amelynek nincs sajátvektora.
- 15. Egy $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformációnak legfeljebb n különböző sajátvektora lehet.

- <u>16.</u> Egy lineáris transzformáció sajátalterének minden vektora sajátvektor.
- 17. Egy $A: R^n \to R^n$ lineáris transzformációnak létezhet olyan sajátértéke, amelyhez egyetlen sajátvektor tartozik.
- 18. Egy $A: R^n \to R^n$ lineáris transzformáció bármely sajátértékének az algebrai multiplicitása nem kisebb a sajátértékekhez tartozó sajátaltér dimenziójánál.
- 19. Egy $A: R^n \to R^n$ lineáris transzformáció karakterisztikus polinomjának az A gyöke.

Skaláris szorzat az Rⁿ vektortérben

1. Minta feladat:

Legyen $\underline{x} = (2, -1, 4, 5)$ és $\underline{y} = (1, 6, 0, 3)$ két R^4 vektortérbeli vektor.

- a, Határozzuk meg az <u>x</u> és <u>y</u> vektorok skaláris szorzatát!
- b, Határozzuk meg az x, valamint az y vektorok normáját (hosszát)!
- c, Adjuk meg az <u>x</u>, valamint az <u>y</u> vektorokkal egyirányú, egységre normált vektorokat!
- d, Határozzuk meg az x és y vektorok szögét!
- e, Ellenőrizzük a Cauchy- Bunyakovszkij-Schwarz egyenlőtlenséget az <u>x</u> és <u>y</u> vektorokra!
- f, Ellenőrizzük a Minkowsky egyenlőtlenséget az <u>x</u> és <u>y</u> vektorokra!

Megoldás:

a, Két vektor skaláris szorzata a megfelelő komponensek szorzatának összege:

$$\langle \underline{x}, y \rangle = 2 \cdot 1 + (-1) \cdot 6 + 4 \cdot 0 + 5 \cdot 3 = 11$$

b, Egy vektor normája (hossza) komponensei négyzetösszegének gyökével egyenlő:

$$\|\underline{x}\| = \sqrt{2^2 + (-1)^2 + 4^2 + 5^2} = \sqrt{46}$$

$$||y|| = \sqrt{1^2 + 6^2 + 0^2 + 3^2} = \sqrt{46}$$

c, Az <u>x</u> vektorral megegyező irányú, egységre normált vektor:

$$\underline{x}_e = \frac{1}{\|x\|} \cdot \underline{x} = \frac{1}{\sqrt{46}} \cdot (2,-1,4,5) = \left(\frac{2}{\sqrt{46}}, \frac{-1}{\sqrt{46}}, \frac{4}{\sqrt{46}}, \frac{5}{\sqrt{46}}\right)$$

Az y vektorral megegyező irányú, egységre normált vektor:

$$\underline{y}_{e} = \frac{1}{\|\underline{y}\|} \cdot \underline{y} = \frac{1}{\sqrt{46}} \cdot (1,6,0,3) = \left(\frac{1}{\sqrt{46}}, \frac{6}{\sqrt{46}}, \frac{0}{\sqrt{46}}, \frac{3}{\sqrt{46}}\right)$$

d, Jelölje φ az \underline{x} és \underline{y} vektorok szögét! Ekkor:

$$\cos \varphi = \frac{\langle \underline{x}, \underline{y} \rangle}{\|\underline{x}\| \cdot \|\underline{y}\|} = \frac{11}{\sqrt{46} \cdot \sqrt{46}} = \frac{11}{46} = 0,2391$$

Innen a φ szög (radiánban) megadható: φ = 1,33 rad.

e, A Cauchy- Bunyakovszkij-Schwarz egyenlőtlenség szerint az <u>x</u> és <u>y</u> vektorokra:

$$\left|\left\langle \underline{x},\underline{y}\right\rangle\right| \leq \left\|\underline{x}\right\| \cdot \left\|\underline{y}\right\|$$

A fenti két vektor esetén:

$$|11| \le \sqrt{46} \cdot \sqrt{46}$$

Tehát az <u>x</u> és <u>y</u> vektorokra teljesül a Cauchy- Bunyakovszkij-Schwarz egyenlőtlenség.

f, A Minkowsky egyenlőtlenség szerint az <u>x</u> és <u>y</u> vektorokra:

$$\|\underline{x} + y\| \le \|\underline{x}\| + \|y\|$$

Számoljuk ki az x+y vektort!

$$\underline{x} + \underline{y} = (2, -1, 4, 5) + (1, 6, 0, 3) = (3, 5, 4, 8)$$

Az x+y vektor normája:

$$\|\underline{x} + \underline{y}\| = \sqrt{3^2 + 5^2 + 4^2 + 8^2} = \sqrt{114}$$

A Minkowsky egyenlőtlenségbe helyettesítve:

$$\sqrt{114} \le \sqrt{46} + \sqrt{46}$$
$$10,68 \le 6,78 + 6,78$$
$$10.68 < 13.56$$

Tehát az <u>x</u> és <u>y</u> vektorokra teljesül a Minkowsky egyenlőtlenség.

2. Minta feladat:

Legyen $\underline{a} = (x, -3, -4, 5), \underline{b} = (6, 0, 2x, 2).$

Milyen $x \in R$ értékre lesznek ortogonálisak az \underline{a} és \underline{b} vektorok?

Megoldás:

Két vektor ortogonális, ha skaláris szorzatuk nulla. Így:

$$\langle \underline{a}, \underline{b} \rangle = x \cdot 6 + (-3) \cdot 0 + (-4) \cdot 2x + 5 \cdot 2 = 6x - 8x + 10 = -2x + 10 = 0$$

Innen x = 5.

3. Minta feladat:

Legyen $\underline{x} = (2, 0, -1, 1), \underline{y} = (1, 1, 1, 1).$

- a, Határozzuk meg az <u>x</u> vektor <u>v</u> -re vonatkozó Fourier-együtthatóját!
- b, Bontsuk fel az \underline{x} vektort \underline{y} -vel párhuzamos és \underline{y} -re merőleges összetevőkre!

Megoldás:

a, Az <u>x</u> vektor <u>v</u>-re vonatkozó Fourier-együtthatója:

$$\alpha = \frac{\langle \underline{x}, \underline{v} \rangle}{\langle \underline{v}, \underline{v} \rangle} = \frac{2 \cdot 1 + 0 \cdot 1 + (-1) \cdot 1 + 1 \cdot 1}{1^2 + 1^2 + 1^2 + 1^2} = \frac{2}{4} = \frac{1}{2}$$

b, Az x vektor v vektorral párhuzamos összetevője:

$$\alpha \cdot \underline{v} = \frac{1}{2} \cdot (1,1,1,1) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

Az <u>x</u> vektor <u>v</u> vektorra merőleges összetevője:

$$\underline{x} - \alpha \cdot \underline{v} = (2,0,-1,1) - (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = (\frac{3}{2}, -\frac{1}{2}, -\frac{3}{2}, \frac{1}{2})$$

4. Minta feladat:

Legyen
$$\underline{b}_1 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), \quad \underline{b}_2 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), \quad \underline{b}_3 = (0,0,1).$$

- a, Ellenőrizzük, hogy a $B = \{\underline{b}_1, \underline{b}_2, \underline{b}_3\}$ vektorhalmaz ortonormált bázis R^3 -ban!
- b, Határozzuk meg az \underline{x} =(1, 1, 1) vektor B bázisra vonatkozó koordinátáit!

Megoldás:

a, Egy vektorhalmaz ortogonális, ha elemei páronként ortogonálisak és nullvektortól különbözőek. Mivel

$$\langle \underline{b}_1, \underline{b}_2 \rangle = -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + 0 \cdot 0 = -\frac{1}{2} + \frac{1}{2} = 0,$$

$$\langle \underline{b}_1, \underline{b}_3 \rangle = -\frac{1}{\sqrt{2}} \cdot 0 + \frac{1}{\sqrt{2}} \cdot 0 + 0 \cdot 1 = 0, \quad \langle \underline{b}_2, \underline{b}_3 \rangle = \frac{1}{\sqrt{2}} \cdot 0 + \frac{1}{\sqrt{2}} \cdot 0 + 0 \cdot 1 = 0,$$

így a *B* vektorhalmaz ortogonális. Határozzuk meg a vektorok normáját!

$$\|\underline{b}_1\| = \sqrt{\left(-\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + 0^2} = 1$$

$$\|\underline{b}_2\| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + 0^2} = 1$$

$$\|\underline{b}_3\| = \sqrt{0^2 + 0^2 + 1^2} = 1$$

Tehát B vektorai egységre normáltak, így B ortonormált.

Ha egy vektorhalmaz ortogonális, akkor lineárisan független. Három lineárisan független vektor bázist alkot R^3 -ban, így B ortonormált bázis R^3 -ban.

b, Legyen az <u>x</u> vektor előállítása a *B* bázison a következő:

$$\underline{x} = \lambda_1 \underline{b}_1 + \lambda_2 \underline{b}_2 + \lambda_3 \underline{b}_3$$

Egy vektor ortonormált bázisra vonatkozó koordinátái egyszerű skaláris szorzással megkaphatóak:

$$\begin{split} \lambda_1 &= \left\langle \underline{x}, \underline{b}_1 \right\rangle = 1 \cdot \left(-\frac{1}{\sqrt{2}} \right) + 1 \cdot \frac{1}{\sqrt{2}} + 1 \cdot 0 = 0 \; , \\ \lambda_2 &= \left\langle \underline{x}, \underline{b}_2 \right\rangle = 1 \cdot \left(\frac{1}{\sqrt{2}} \right) + 1 \cdot \frac{1}{\sqrt{2}} + 1 \cdot 0 = \frac{2}{\sqrt{2}} = \sqrt{2} \; , \\ \lambda_3 &= \left\langle \underline{x}, \underline{b}_3 \right\rangle = 1 \cdot 0 + 1 \cdot 0 + 1 \cdot 1 = 1 \; . \end{split}$$

5. Minta feladat:

Adjuk meg a H altér ortogonális komplementerét!

a,
$$H = \{ \lambda \cdot (1, -1, 2) | \lambda \in R \}$$
,

b,
$$H = \{ \lambda_1 \cdot (-1, 2, 1) + \lambda_2 \cdot (1, 0, 1) \mid \lambda_1, \lambda_2 \in R \}$$

Megoldás:

a, A H altér 1 dimenziós altér R^3 -ban (vektorai egy origón átmenő egyenesre esnek), így H ortogonális komplementere 2 dimenziós (vektorai egy origón átmenő síkra esnek, amely sík ortogonális az előző egyenesre). A H^{\perp} altér felírásához szükségünk van annak két nem párhuzamos vektorára. Keresünk tehát két olyan vektort (legyenek \underline{a} és \underline{b}), amelyek merőlegesek a H altérre és egymással nem párhuzamosak. Az \underline{a} és \underline{b} vektorok pontosan akkor merőlegesek H-ra, ha merőlegesek a H altér megadásában szereplő $\underline{v} = (1, -1, 2)$ vektorra:

$$\langle \underline{a}, \underline{v} \rangle = a_1 \cdot 1 + a_2 \cdot (-1) + a_3 \cdot 2 = 0$$

$$\langle \underline{b}, \underline{v} \rangle = b_1 \cdot 1 + b_2 \cdot (-1) + b_3 \cdot 2 = 0$$

Ilyen vektorok például az $\underline{a} = (1, 1, 0)$ és a $\underline{b} = (2, 0, -1)$ vektorok. Így a H altér ortogonális komplementere:

$$H^{\perp} = \{ \lambda_1 \cdot (1, 1, 0) + \lambda_2 \cdot (2, 0, -1) \mid \lambda_1, \lambda_2 \in \mathbb{R} \}.$$

b, A H altér 2 dimenziós altér R^3 -ban (vektorai egy origón átmenő síkra esnek), így H ortogonális komplementere 1 dimenziós (vektorai egy origón átmenő egyenesre esnek, amely egyenes ortogonális az előző síkra). A H^{\perp} altér felírásához szükségünk van annak egy nullvektortól különböző vektorára. Keresünk tehát egy olyan nullvektortól különböző vektort (legyen $\underline{v}\neq\underline{o}$), amely merőleges a H altérre. A \underline{v} vektor pontosan akkor merőleges H-ra, ha egyidejűleg merőleges a H altér megadásában szereplő a = (-1, 2, 1) és b = (1, 0, 1) vektorokra:

$$\langle \underline{v}, \underline{a} \rangle = v_1 \cdot (-1) + v_2 \cdot 2 + v_3 \cdot 1 = 0$$

$$\langle \underline{v}, b \rangle = v_1 \cdot 1 + v_2 \cdot 0 + v_3 \cdot 1 = 0$$

Ilyen vektor például a $\underline{v} = (1, 1, -1)$ vektor. Így a H altér ortogonális komplementere:

$$H^{\perp} = \{ \lambda \cdot (1, 1, -1) \mid \lambda \in \mathbb{R} \}.$$

6. Minta feladat:

Legyen $H = \{ \lambda_1 \cdot (3, 0, 1) + \lambda_2 \cdot (0, 1, 0) \mid \lambda_1, \lambda_2 \in R \}.$

- a, Adjuk meg a *H* altér ortogonális komplementerét!
- b, Bontsuk fel az x = (8, 5, -4) vektort H-ba és H^{\perp} -be eső összetevőkre!
- c, Adjuk meg a fenti <u>x</u> vektor *H* altérre eső ortogonális vetületvektorát!
- d, Melyik az a vektor a *H* altérben, amelyik legközelebb van az *x* vektorhoz?

Megoldás:

a, A H altér 2 dimenziós altér R^3 -ban (vektorai egy origón átmenő síkra esnek), így H ortogonális komplementere 1 dimenziós (vektorai egy origón átmenő egyenesre esnek, amely egyenes ortogonális az előző síkra). A H^{\perp} altér felírásához szükségünk van annak egy nullvektortól különböző vektorára. Keresünk tehát egy olyan nullvektortól különböző vektort (legyen $\underline{v} \neq \underline{o}$), amely merőleges a H altérre. A \underline{v} vektor pontosan akkor merőleges H-ra, ha egyidejűleg merőleges a H altér megadásában szereplő $\underline{a} = (3, 0, 1)$ és $\underline{b} = (0, 1, 0)$ vektorokra:

$$\langle \underline{v}, \underline{a} \rangle = v_1 \cdot 3 + v_2 \cdot 0 + v_3 \cdot 1 = 0$$

 $\langle \underline{v}, \underline{b} \rangle = v_1 \cdot 0 + v_2 \cdot 1 + v_3 \cdot 0 = 0$

Ilyen vektor például a \underline{v} = (1, 0, -3) vektor. Így a H altér ortogonális komplementere:

$$H^{\perp} = \{ \lambda \cdot (1, 0, -3) \mid \lambda \in \mathbb{R} \}.$$

b, Az ortogonális felbontás tétele alapján $R^3 = H \oplus H^{\perp}$. Így a H és H^{\perp} alterek bázisainak uniója bázis az R^3 vektortérben. Tehát az \underline{a} , \underline{b} és \underline{v} vektorok bázist alkotnak R^3 -ban. Az \underline{x} vektor kívánt felbontásának meghatározásához számoljuk ki először az \underline{x} vektor fenti bázisra vonatkozó koordinátáit! Az induló bázistranszformációs táblázat:

bázis

$$\underline{a}$$
 \underline{b}
 \underline{v}
 \underline{x}
 \underline{e}_1
 3
 0
 1
 8

 $\underline{e}_2 = \underline{b}$
 0
 1
 0
 5

 \underline{e}_3
 1
 0
 -3
 -4

Vonjuk be az \underline{a} vektort az \underline{e}_3 helyére:

bázis	<u>a</u>	<u>b</u>	<u>v</u>	<u>X</u>
<u>e</u> 1	0	0	10	20
<u>b</u>	0	1	0	5
<u>a</u>	1	0	-3	-4

A $\underline{v} \rightarrow \underline{e}_1$ vektorcsere után:

bázis

$$\underline{a}$$
 \underline{b}
 \underline{v}
 \underline{x}
 \underline{v}
 0
 0
 1
 2

 \underline{b}
 0
 1
 0
 5

 \underline{a}
 1
 0
 0
 2

Tehát az x vektor előállítása:

$$\underline{x} = 2 \cdot \underline{a} + 5 \cdot \underline{b} + 2 \cdot \underline{v}$$

Figyelembe véve, hogy \underline{a} és \underline{b} a H altérnek, \underline{v} pedig a H^{\perp} altérnek a bázisvektorai, így az x vektor felbontása a következő:

- a *H* altérbe eső összetevő: $\underline{h} = 2 \cdot \underline{a} + 5 \cdot \underline{b} = 2 \cdot (3, 0, 1) + 5 \cdot (0, 1, 0) = (6, 5, 2),$ a H^{\perp} altérbe eső összetevő: $\underline{h}^{\perp} = 2 \cdot \underline{v} = 2 \cdot (1, 0, -3) = (2, 0, -6).$
- c, A H altérre vonatkozó ortogonális projekció definíciója szerint az \underline{x} vektor H altérre eső ortogonális vetületvektora: $\pi(\underline{x}) = \underline{h}$, ahol \underline{h} az \underline{x} vektor H altérbe eső összetevője. Így a keresett vetületvektor: $\pi(\underline{x}) = \underline{h} = (6, 5, 2)$.
- d, A legjobb approximáció tétele szerint a H altér vektorai közül a $\pi(\underline{x})$ vetületvektor van az \underline{x} vektorhoz legközelebb. Tehát az \underline{x} -hez legközelebbi H-beli vektor: $\pi(\underline{x}) = \underline{h} = (6, 5, 2)$.

Gyakorló feladatok:

- <u>1.</u> Legyen $\underline{x} = (2, 0, -3, 4), \underline{y} = (1, -1, 0, 2), \underline{z} = (0, 0, 1, 3).$
 - a, Határozza meg az \underline{x} és \underline{y} , az \underline{x} és \underline{z} valamint az \underline{y} és \underline{z} vektorok skaláris szorzatát!
 - b, Határozza meg az <u>x</u>, az <u>y</u> valamint a <u>z</u> vektorok normáját (hosszát)!
 - c, Adja meg az <u>x</u>, az <u>y</u> valamint a <u>z</u> vektorokkal egyirányú, egységre normált vektorokat!
 - d, Határozza meg az <u>x</u> és <u>y</u>, az <u>x</u> és <u>z</u> valamint az <u>y</u> és <u>z</u> vektorok szögét!
- <u>2.</u> Legyen $\underline{a} = (1, -2, -4), \underline{b} = (-1, 0, 3), \underline{c} = (2, -1, 1).$
 - a, Ellenőrizze a skaláris szorzatra vonatkozó tulajdonságokat a fenti vektorok esetén!
 - b, Számítsa ki a következő normákat! $||\underline{a}||$, $||\underline{b}||$, $||\underline{c}||$
 - c, Ellenőrizze a Cauchy- Bunyakovszkij-Schwarz egyenlőtlenséget az \underline{a} és \underline{b} illetve a \underline{b} és \underline{c} vektorokra!
 - d, Ellenőrizze a Minkowsky egyenlőtlenséget az <u>a</u> és <u>b</u> illetve a <u>b</u> és <u>c</u>vektorokra!
 - e, Számítsa ki az <u>a</u> és <u>b</u> illetve a <u>b</u> és <u>c</u> vektorok szögét!
- 3. Az alábbi vektorok közül melyek ortogonálisak?
 - (-4, 2) és (1, 2),
 - (2, 0, -3) és (3, 5, -1),
 - (0, 4, -5) és (6, 10, 8),
 - (1, -1, 0, 1) és (1, 0, 6, -1),
 - (2, 4, -3, 0) és (1, -5, 1, 1).
- 4. x mely értékeire lesznek ortogonálisak az alábbi vektorok?
 - -(x, 0, -3, 2x) és (4, 5, 2, 1),
 - (x, 4, 1) és (x, -x, 3),
 - (2, 3x, 2) és (5, -2, 3x).
- 5. Legyen $\underline{x} = (2, 5, -1, 4), \underline{y} = (-1, 0, -3, 1).$
 - a, Határozza meg az *x* vektor *v* –re vonatkozó Fourier-együtthatóját!
 - b, Bontsa fel az \underline{x} vektort \underline{y} -vel párhuzamos és \underline{y} -re merőleges összetevőkre!
- <u>6.</u> Legyen $\underline{x} = (3, -1, 0, 1), \underline{y} = (0, 2, 1, -1).$

- a, Határozza meg az <u>x</u> vektor <u>v</u> -re vonatkozó Fourier-együtthatóját!
- b, Bontsa fel az \underline{x} vektort \underline{y} -vel párhuzamos és \underline{y} -re merőleges összetevőkre!
- 7. Legyen $\underline{b}_1 = (0, 1), \underline{b}_2 = (-1, 0).$
 - a, Ellenőrizze, hogy a B = $\{\underline{b}_1, \underline{b}_2\}$ vektorhalmaz ortonormált bázis R^2 -ben!
 - b, Határozza meg az \underline{x} =(2, -3) vektor B bázisra vonatkozó koordinátáit!
- 8. Legyen $\underline{b}_1 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), \ \underline{b}_2 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$
 - a, Ellenőrizze, hogy a $B = \{\underline{b}_1, \underline{b}_2\}$ vektorhalmaz ortonormált bázis R^2 -ben!
 - b, Határozza meg az \underline{x} =(3, -1) vektor B bázisra vonatkozó koordinátáit!
- 9. Legyen $\underline{b}_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2}), \ \underline{b}_2 = (-\frac{\sqrt{3}}{2}, \frac{1}{2}).$
 - a, Ellenőrizze, hogy a $B = \{\underline{b}_1, \underline{b}_2\}$ vektorhalmaz ortonormált bázis R^2 -ben!
 - b, Határozza meg az \underline{x} =(1, 1) vektor B bázisra vonatkozó koordinátáit!
- 10. Adja meg azt a legbővebb alteret R³-ban, amelyre az x vektor ortogonális!
 - a, $\underline{x} = (1, -1, 2)$,
 - b, $\underline{x} = (0, 5, -1)$.
- 11. Adja meg a *H* altér ortogonális komplementerét!
 - a, $H = \{ (t, 0, t) \mid t \in R \}$,
 - b, $H = \{ (0, x_2, x_3) \mid x_2, x_3 \in R \},$
 - c, $H = \{ \lambda_1 \cdot (1, -1, 2) + \lambda_2 \cdot (0, 1, 1) \mid \lambda_1, \lambda_2 \in R \}$,
 - d. $H = R^3$.
- <u>12.</u> Adja meg az $\underline{x} \in \mathbb{R}^3$ vektor H és H^{\perp} alterekbe eső összetevőit!
 - a, $\underline{x} = (-5, 4, 2)$

$$H = \{ (x_1, x_2, 0) \mid x_1, x_2 \in R \},\$$

b, $\underline{x} = (3, 2, 2)$

$$H = \{ \lambda_1 \cdot (1, 1, 1) + \lambda_2 \cdot (0, 1, 1) \mid \lambda_1, \lambda_2 \in R \},\$$

c, $\underline{x} = (0, 5, 2)$

$$H = \{ \lambda_1 \cdot (-1, 0, 1) + \lambda_2 \cdot (1, 0, 1) \mid \lambda_1, \lambda_2 \in R \},$$

d, $\underline{x} = (2, 4, -1)$

$$H = \{ \lambda \cdot (1, 1, 1) \mid \lambda \in R \}.$$

- 13. Határozza meg a *H* altér azon vektorát, amely legközelebb van az <u>x</u> vektorhoz!
 - a, x = (4, 3, -1)

$$H = \{ \lambda \cdot (1, 0, 5) \mid \lambda \in R \},\$$

b, $\underline{x} = (5, -1, 2)$

$$H = \{ \lambda_1 \cdot (1, 1, 1) + \lambda_2 \cdot (1, 0, 1) \mid \lambda_1, \lambda_2 \in R \}.$$

Elméleti kérdések

Döntse el az alábbi állításokról, hogy igazak vagy hamisak!

- 1. Az (1, 2, 2), (0, 0, 0) és (4, -2, 0) vektorok ortogonális vektorhalmazt alkotnak.
- 2. Az (1, 0, 2), (0, 0, 0) és (-2, 5, 1) vektorok ortogonális vektorhalmazt alkotnak.
- 3. Az (1, 1, 1) vektor egységre normált.
- 4. A (-1, 0, 0) vektor egységre normált.
- 5. Az (1, 1, -1) vektor egységre normált.
- <u>6.</u> Az $(\frac{1}{2}, \frac{\sqrt{3}}{2})$ és $(-\frac{\sqrt{3}}{2}, \frac{1}{2})$ vektorok ortonormált bázist alkotnak R^2 -ben.
- 7. Az $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ és $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ vektorok ortonormált bázist alkotnak R^2 -ben.
- <u>8.</u> Minden ortogonális vektorhalmaz lineárisan független.
- 9. R^n -ben a kanonikus bázis ortonormált.
- <u>10.</u> Ha *H* altér R^n -ben, akkor dim(H) = dim(H^{\perp}).
- 11. Ha a $H \subseteq R^n$ altérre dim(H) = k, akkor dim $(H^{\perp}) = n-k$.
- 12. Ha H altér R^n -ben, akkor dim(H) + dim (H^{\perp}) = n.

Vegyes feladatok a lineáris algebrai ismeretek alkalmazására

1. [gyártórendszerek modellezése]

Adott az alábbi szétválasztási hálózat 1 darab 3 komponensű (A, B, C) betáplálással, ahol mindegyik komponens áramlási sebessége 10 kg/h. Feladat: olyan szétválasztási hálózat tervezése, amely ebből a betáplálásból két kevert terméket állít elő, melyekben a komponensek áramlási sebessége rendre 6, 4, és 2 kg/h, illetve 4, 6, és 8 kg/h. A hálózatban az S^1 éles szeparátor az A, B, C komponensű bemenetet csak A-t, illetve B-t és C-t tartalmazó áramokra választja szét, míg az S^2 éles szeparátor az A, B, C komponensű bemenetet A-t és B-t, illetve csak C-t tartalmazó áramokra bontja.

Jelölje x_1 , x_2 , x_3 , x_4 a D_1 megosztó kilépő áramait egységnyi belépő áram esetén. Ekkor a fenti szétválasztási hálózat az alábbi lineáris egyenletrendszerrel modellezhető:

Bázistranszformációt alkalmazva vizsgálja meg, megoldható-e a fenti lineáris egyenletrendszer? Ha igen, akkor hány megoldás van?

2. [gyártórendszerek modellezése]

Tekintsük eredő kémiai reakcióként a bután dehidrogénezését:

$$C_4H_{10} \leftrightarrow C_4H_8 + H_2$$

A feladat annak megállapítása, hogy az eredő kémiai reakció az alábbi elemi reakciólépések milyen együttműködésének eredményeként jöhet létre.

- (1) $C_4H_{10} + \ell \leftrightarrow C_4H_8 \ell + H_2$
- (2) $C_4H_8 \ell \leftrightarrow C_4H_8 + \ell$
- (3) $C_4H_8 \ell \leftrightarrow C_4H_6 \ell + H_2$
- $(4) C_4H_{10} + l + C_4H_6 \ell \leftrightarrow 2C_4H_8 \ell$

Az eredő reakció (\underline{E}) és az elemi reakciók ($\underline{e}_{1,\dots,\underline{e}_{4}}$) sztöchiometriai együtthatói az alábbi táblázatba rendezhetőek:

Résztvevők	Reakciók					
	<u>e</u> 1	<u>e</u> 2	<u>e</u> 3	<u>e</u> 4		<u>E</u>
C ₄ H ₁₀	-1	0	0	-1		-1
C ₄ H ₈	0	1	0	0		1
H ₂	1	0	1	0		1
ℓ	-1	1	0	-1		0
C ₄ H ₈ ℓ	1	-1	-1	2		0
C ₄ H ₆ ℓ	0	0	1	-1		0

Legyen $A = [\underline{e}_1 \ \underline{e}_2 \ \underline{e}_3 \ \underline{e}_4] 6 \times 4$ -es mátrix.

A problémához kapcsolódóan keressük az $A \underline{x} = \underline{E}$ lineáris egyenletrendszer úgynevezett bázismegoldásait. Bázismegoldást úgy kaphatunk, hogy az egyenletrendszert bázistranszformációval megoldva a végső táblázat alapján olyan megoldásvektort írunk fel, ahol a szabad ismeretlenek értékét nullának választjuk.

Oldja meg a fenti egyenletrendszert több változatban (többféle módon választva generáló elemet), és a végső táblázatok alapján keressen több bázismegoldást!

3. [irányítástechnika]

Legyen adott az $\underline{\dot{x}} = A\underline{x} + B\underline{u}$ $y = C\underline{x}$ állapottér modell az alábbi paraméterekkel:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$$

- a, Stabil-e a fenti modell? (A modell pontosan akkor stabil, ha az *A* mátrix sajátértékeinek valós része negatív.)
- b, Határozza meg az <u>x</u>-beli állapotváltozók, <u>u</u>-beli bementi változók és <u>y</u>-beli kimeneti változók számát!
- c, Határozza meg a modell irányíthatóságát!

Az irányíthatóság feltétele, hogy az ún. irányíthatósági mátrix:

$$C = \begin{bmatrix} B & AB \end{bmatrix}$$

teljes rangú legyen, azaz r(C) = 2 teljesüljön.

4. [irányítástechnika]

Legyenek az alábbiak az $\dot{x} = Ax + Bu$ y = Cx állapottér modell együttható mátrixai:

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 4 \end{bmatrix}$$

- a, Adja meg az állapotváltozók, bemeneti és kimeneti változók számát!
- b, Határozza meg a modell megfigyelhetőségét!

A megfigyelhetőség feltétele, hogy az ún. megfigyelhetőségi mátrix:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \end{bmatrix}$$

teljes rangú legyen, azaz r(0) = 2 teljesüljön.

5. [irányítástechnika]

Határozza meg a
$$G(s) = \frac{1}{5s^3 + 2s^2 + 3s + 1}$$
 tag stabilitását!

Az ún. Hurwitz-kritérium szerint a tag stabilitásához az alábbi két feltételnek kell teljesülnie:

- a nevezőben szereplő valamennyi együttható legyen pozitív;
- a nevező együtthatóiból képezzük az alábbi mátrixot:

$$H = \begin{bmatrix} 2 & 1 & 0 \\ 5 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

Írjuk fel a főátlóra támaszkodó alábbi mátrixokat:

$$\Delta_1 = [2], \qquad \Delta_2 = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, \qquad \Delta_3 = \begin{bmatrix} 2 & 1 & 0 \\ 5 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

A rendszer stabil, ha ezeknek a mátrixoknak a determinánsa pozitív. Ellenőrizze, hogy teljesülnek-e a Hurwitz-kritérium feltételei!

- 6. [irányítástechnika]
 - a, Határozza meg az állapot, a bementi és a kimeneti változók számát az alábbi modellben:

$$\dot{\underline{x}} = \begin{bmatrix} 3 & 2 \\ 10 & 3 \end{bmatrix} \underline{x} + \begin{bmatrix} 3 \\ 2 \end{bmatrix} \underline{u}$$

$$y = \begin{bmatrix} 3 & 1 \end{bmatrix} \underline{x}$$

- b, Határozza meg az állapottér modell irányíthatóságát és megfigyelhetőségét!
- 7. [irányítástechnika]

Határozza meg az $\dot{x} = Ax + Bu$ y = Cx állapottér modell átviteli függvényét, ha a mátrixok a következők:

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

Az állapottér modellhez tartozó átviteli függvényt a következő képlet szerint lehet meghatározni:

$$G(s) = C(sI - A)^{-1}B,$$

ahol az invertálást a következő módon végezhetjük el:

$$(sI - A)^{-1} = \frac{adj(sI - A)}{det(sI - A)}$$

8. [irányítástechnika]

Adja meg, hogy milyen K értékre lesz az alábbi rendszer aszimptotikusan stabil!

A megoldás során az alábbi eredő átviteli függvényt nyerjük:

$$G_e(s) = \frac{Ks}{s^3 + 2s^2 + (2+K)s + 1}$$

Határozza meg, hogy milyen *K* értékekre lesz az alábbi Hurwitz-mátrixnak és a részmátrixainak a determinánsa pozitív!

$$H = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 + K & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$\Delta_1 = [2], \qquad \Delta_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 + K \end{bmatrix}, \qquad \Delta_3 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 + k & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

9. [irányítástechnika]

Adja meg, hogy milyen K értékre lesz az alábbi rendszer aszimptotikusan stabil!

A megoldás során az alábbi eredő átviteli függvényt nyerjük:

$$G_e(s) = \frac{Ks+1}{s^3+s^2+(1+K)s+1}$$

Határozza meg, hogy milyen *K* értékekre lesz az alábbi Hurwitz-mátrixnak és a részmátrixainak a determinánsa pozitív!

$$\Delta_1 = [1], \qquad \Delta_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 + K \end{bmatrix}, \qquad \Delta_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 + k & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

10. [képfeldolgozás]

Színkomponensek transzformációja

Egy standard felbontású digitális videokamera RGB színrendszerben, azaz egy (R, G, B) számhármassal jellemezve rögzíti a képpontok értékeit. Kódolási szempontból nem hatékony az RGB értékek tárolása és hálózati átvitele, ezért az ITU-R BT.601 szabvány szerint egy világossági és két krominanica értékre kell konvertálni a kamera által rögzített RGB értékeket. (Egy későbbi lépésben a színi csatornák felbontását felére csökkentve jelentősen csökkenthető a tárolandó adatmennyiség, miközben az emberi szem nem érzékeny a C_B és C_R csatornák degradációjára.). A kódolás a fenti szabvány szerint az alábbi összefüggéssel történik:

$$\begin{bmatrix} Y' \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 65.481 & 128.553 & 24.966 \\ -37.797 & -74.203 & 112.0 \\ 112.0 & -93.786 & -18.214 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 16 \\ 128 \\ 18 \end{bmatrix}$$

Számolja ki, hogy 8 bites bemenet esetén, azaz ha Y', C_B és $C_R \in \{0, ..., 255\}$, mekkora lehet minimálisan és maximálisan a világosság Y'(luma), és a két kroma csatorna C_B és C_R értéke!

11. [képfeldolgozás]

Két kép hasonlósága igazított keresztkorrelációval

Adottak az A és B normalizált 4×4 -es szürke skálás képrészletek (ahol egy pixel egy számmal van jelölve), amelyeknek átlagértékük nulla. Melyik hasonlít jobban a C képrészletre?

$$A = \begin{bmatrix} -5 & -4 & 3 & 7 \\ -8 & -6 & -2 & 8 \\ = -4 & -2 & 5 & 7 \\ -3 & 0 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} -5 & -8 & -8 & -2 \\ -4 & -7 & -4 & -2 \\ 2 & 3 & 2 & 3 \\ 8 & 8 & 8 & 6 \end{bmatrix} \quad C = \begin{bmatrix} -4 & -5 & -2 & 8 \\ -6 & -8 & 7 & 5 \\ -4 & -1 & 7 & 3 \\ -4 & 0 & 2 & 2 \end{bmatrix}$$

Első lépésként fejtse oszlopvektorba a képek pixeleit, azaz a 4×4 -es mátrixok oszlopvektorait összefűzve állítsa elő a nekik megfelelő $\underline{a},\underline{b}$ és $\underline{c}\in R^{16}$ vektorokat! Ezután a hasonlóságot kétféle módon vizsgálhatjuk:

- A két vektor különbségének a normáját vesszük. Ebben az esetben a két kép annál inkább hasonlít, minél közelebb van a számolt érték a nullához.
- A két vektor skaláris szorzatát számoljuk ki. Ebben az esetben a két kép annál inkább hasonlít, minél nagyobb a skaláris szorzat értéke.

Hasonlítsa össze az *A* illetve a *B* képeket a *C* képpel a fenti módszereket alkalmazva!

12. [képfeldolgozás]

Képtorzulás korrekciója

A 3D képalkotás feladata, hogy a térben lévő pontok koordinátáit határozza meg és ábrázolja grafikai eszközökkel. Sok esetben a térbeli - \underline{X} =(X, Y, Z) - objektumok geometriai torzulása leírható ún. affin transzformációval. Az affin transzformációk lehetővé teszik a képi objektumok kicsinyítését-nagyítását, eltolását, tükrözését, elforgatását, nyírását (míg az euklideszi transzformációk csak az eltolást, tükrözést és elforgatást teszik lehetővé). Ha az \underline{x} =(X, Y, Z, 1) homogén koordinátákkal írjuk le a 3D pontokat, akkor a torzulás az alábbi

$$T = \begin{bmatrix} A & \underline{b} \\ \mathbf{0} & \underline{1} \end{bmatrix}$$

mátrixszal írható le (ahol T 4x4-es, A 3x3-as, \underline{b} pedig 3x1-es mátrix), míg a torzult pontok homogén koordinátái az

$$\underline{x}' = T\underline{x}$$

összefüggéssel kaphatóak meg.

Legyen adott a T affin transzformációs mátrix, valamint az \underline{x}_1' , \underline{x}_2' , \underline{x}_3' torzult mérési adatok:

$$T = \begin{bmatrix} 2 & 2 & 3 & 2 \\ 6 & 2 & 3 & 2 \\ 4 & 4 & 3 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad \underline{x}'_1 = \begin{bmatrix} 2 \\ 3 \\ 3 \\ 1 \end{bmatrix}, \qquad \underline{x}'_2 = \begin{bmatrix} 6 \\ 4 \\ 3 \\ 1 \end{bmatrix}, \qquad \underline{x}'_3 = \begin{bmatrix} 6 \\ 4 \\ 6 \\ 1 \end{bmatrix}$$

Keressük a megfelelő 3D-s pontok pontos helyzetét. Ez az alábbi módokon tehető meg:

– A T mátrix inverzét felhasználva: $\underline{x} = T^{-1} \cdot \underline{x}'$ Megjegyezzük, hogy a T mátrix inverze felírható az alábbi formában:

$$T^{-1} = \begin{bmatrix} A^{-1} & -A^{-1} \cdot \underline{b} \\ 0 & 1 \end{bmatrix}.$$

A fenti összefüggést felhasználva elegendő a T 4×4-es mátrix helyett a belőle kiolvasható A 3×3-as mátrixot invertálni.

 Sok esetben nem magára a T-1 mátrixra van szükségünk, hanem csak a visszaállított koordinátákra. Ebben az esetben az inverz koordináták még gyorsabban meghatározhatók:

$$\left[\frac{X}{1}\right] = \underline{x} = T^{-1}\underline{x}' = \begin{bmatrix} A^{-1}(\underline{X}' - \underline{b}) \\ 1 \end{bmatrix},$$

ahol \underline{X}' az \underline{X} =(X, Y, Z) pont torzított változata.

Alkalmazza a 3D-s pontok pontos helyzetének megállapítására mindkét ismertetett módszert!

13. [robotika]

Adja meg annak a lineáris transzformációnak a típusát és hozzárendelési szabályát, amely egy térbeli vektorhoz hozzárendeli

- a, annak z tengely körüli α szöggel való elforgatottját;
- b, annak x tengely körüli α szöggel való elforgatottját!

Adja meg a fenti transzformációk (kanonikus bázisokra vonatkozó) mátrixát!

14. [robotika]

Adja meg a mátrixát a következő lineáris transzformációknak:

- a, forgatás a z tengely körül π / 2-vel;
- b, forgatás a z tengely körül π / 2-vel, majd forgatás az x tengely körül π / 2-vel.

Mutassa meg, hogy a fenti forgatási mátrixok ortogonálisak, azaz $A^{-1} = A^{T}$!

A fenti eredményt felhasználva adja meg a forgatási mátrixok inverzeit!

15. [villanytan]

<u>Feladat:</u> A hurokáramok módszerét alkalmazva a hálózat ágáramainak a meghatározása az alábbi hálózatban:

A megoldás során az alábbi részfeladatot kapjuk:

$$100 = 2J_1 + 5(J_1 - J_2)$$

$$360 = 5(J_2 - J_1) + 10(J_1 + J_3) + 8J_2$$

$$J_3 = 80mA$$

Írja fel a fenti lineáris egyenletrendszert mátrixos írásmóddal $Ax = \underline{b}$ alakban és oldja azt meg!

16. [villanytan]

<u>Feladat:</u> A Kirchhoff és Ohm törvények mátrixos formalizmusának felírása az alábbi hálózatra:

A megoldás során az alábbi mátrixok nyerhetők:

$$\label{eq:Avagatmatrix: Q = } A \ v \'agatm \'atrix: \ Q = \begin{pmatrix} -1 & 1 & 0 & -1 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 \end{pmatrix}, \ a \ hurokm \'atrix: \ B = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & -1 & -1 & 0 \end{pmatrix},$$

az ellenállásmátrix: R =
$$\begin{bmatrix} 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 & 0 & 0 \\ 0 & 0 & 15 & 0 & 0 & 0 \\ 0 & 0 & 0 & 20 & 0 & 0 \\ 0 & 0 & 0 & 0 & 17 & 0 \\ 0 & 0 & 0 & 0 & 0 & 40 \end{bmatrix}.$$

Az áramvektor:
$$\underline{i}_A = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 3 \\ 0 \\ -5 \end{pmatrix}$$
, továbbá a feszültségvektor: $\underline{u}_V = \begin{pmatrix} -120 \\ 0 \\ 100 \\ 0 \\ -30 \\ 0 \end{pmatrix}$.

A fenti mátrixok és vektorok felhasználásával írja fel az ágáramok vektorát az alábbi formában $\underline{i} = -\binom{Q}{B \cdot R}^{-1} \cdot \binom{Q \cdot \underline{i}_A}{B \cdot \underline{u}_V} \, !$

17. [villanytan]

Feladat: Az alábbi hálózat állapotegyenletének megadása, ha a gerjesztés feszültség.

A megoldás során az alábbi egyenletek írhatók fel:

$$\begin{split} &C \cdot \dot{\mathbf{u}}_{C} = \mathbf{i}_{C} \\ &\mathbf{i}_{C} + \mathbf{i}_{L} = \mathbf{i}_{V} \\ &\mathbf{u}_{V} = R(\mathbf{i}_{C} + \mathbf{i}_{L}) + \mathbf{u}_{C} \\ &\mathbf{u}_{C} = L \dot{\mathbf{i}}_{L} \\ &\dot{\mathbf{u}}_{C} = -\frac{1}{RC} \mathbf{u}_{C} - \frac{1}{C} L \dot{\mathbf{i}}_{L} + \frac{1}{RC} \mathbf{u}_{V} \\ &\dot{\mathbf{i}}_{L} = \frac{\mathbf{u}_{C}}{L} \end{split}$$

Legyen az állapotváltozók vektora: $\underline{x} = \begin{pmatrix} u_C \\ i_L \end{pmatrix}$, a gerjesztés: $\underline{e} = \begin{bmatrix} u_V \end{bmatrix}$.

Rendezze a fenti egyenletrendszert $\underline{\dot{x}} = A \cdot \underline{x} + B \cdot \underline{e}$ formára!

18. [villanytan]

Feladat: Az alábbi hálózat állapotegyenletének megadása, ha a gerjesztés feszültség.

A megoldás során az alábbi egyenletek írhatók fel:

$$\begin{split} L\frac{di_{L}}{dt} &= u_{L} = u_{R1} = i_{R1} \cdot R_{1} \\ u_{C2} + u_{C1} + u_{L} &= u_{V} \\ \frac{di_{L}}{dt} &= -\frac{1}{L}u_{C1} - \frac{1}{L}u_{C2} + \frac{1}{L}u_{V} \\ C_{1}\frac{du_{C1}}{dt} &= i_{C} \\ i_{C} + \frac{u_{C1}}{R_{2}} &= i_{V} \\ C_{2}\frac{du_{C2}}{dt} &= i_{V} \\ C_{1}\frac{du_{C1}}{dt} + \frac{u_{C1}}{R_{2}} &= C_{2}\frac{du_{C2}}{dt} = i_{V} = i_{L} + i_{R1} = i_{L} + \frac{L}{R_{1}} \cdot \frac{di_{L}}{dt} = i_{L} - \frac{1}{R}u_{C1} - \frac{1}{R}u_{C2} + \frac{1}{R}u_{V} \end{split}$$

Legyen az állapotváltozók vektora:
$$\underline{x} = \begin{pmatrix} i_L \\ u_{C1} \\ u_{C2} \end{pmatrix}$$
, a gerjesztés: $\underline{e} = \begin{bmatrix} u_V \end{bmatrix}$.

Rendezze a fenti egyenletrendszert $\dot{x} = A \cdot x + B \cdot e$ formára!

19. [villanytan]

Feladat: Az alábbi két tárolós hálózatban a sajátértékek meghatározása.

A megoldás során az alábbi mátrixhoz jutunk:
$$A = \begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}$$

Határozza meg a fenti mátrix sajátértékeit a komplex számok körében, adja meg a sajátértékek valós és képzetes részét, valamint abszolút értékét!

20. [villanytan]

<u>Feladat:</u> Az alábbi kéttárolós hálózat állapotegyenletének felírása és a sajátértékek meghatározása.

A megoldás során az alábbi egyenletek írhatók fel:

$$i_{C} = C \cdot \dot{u}_{C}$$

$$i_{R} = \frac{1}{R} \cdot L \cdot \dot{i}_{L}$$

ahol C = 1nF, L = 10mH, R = 1k Ω .

Írja fel a hálózat állapotegyenletét $\underline{\dot{x}} = A \cdot \underline{x}$ formában, ahol az állapotváltozók vektora:

$$\underline{x} = \begin{pmatrix} i_L \\ u_C \end{pmatrix}$$

Határozza meg az A mátrix sajátértékeit!

21. [villanytan]

 $\underline{Feladat}$: Határozza meg R értékét úgy, hogy az alábbi másodrendű hálózatnál kriti kusan csillapított rezgés jöjjön létre!

A megoldás során az alábbi A mátrixhoz jutunk: $A = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{pmatrix}$, ahol L = 0.1H és $C = 50 \mu$ F.

Határozza meg az *R* értékét úgy, hogy a fenti mátrixnak 1 darab (kétszeres algebrai multiplicitású) valós sajátértéke legyen!

A GYAKORLÓ FELADATOK MEGOLDÁSAI

Az R³ tér geometriája

Vektorműveletek

- 1. b, $2\underline{v}-3\underline{u}=(4, 9, -14)$
 - c, $|v| = \sqrt{14}$, $|u| = \sqrt{17}$
 - d. $\varphi \cong 117^{\circ}$
 - e, a \underline{v} vektor ellentettje: $-\underline{v}$ = (-2, -3, 1) \underline{v} -vel párhuzamos vektorok: (4, 6, -2), (10, 15, -5), ... \underline{v} -re merőleges vektorok: (3, -2, 0), (0, 1, 3), ...
 - f, \underline{v} vektorral megegyező irányú, egységnyi hosszúságú vektor:

$$\underline{v}_e = \left(\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, -\frac{1}{\sqrt{14}}\right)$$

g, <u>v</u> vektorral megegyező irányú, 4 egységnyi hosszúságú vektor:

$$\left(\frac{8}{\sqrt{14}}, \frac{12}{\sqrt{14}}, -\frac{4}{\sqrt{14}}\right)$$

 \underline{v} vektorral megegyező irányú,1/3 hosszúságú vektor: $\left(\frac{2}{3\sqrt{14}},\frac{1}{\sqrt{14}},-\frac{1}{3\sqrt{14}}\right)$

- 2. a, a \underline{v} vektor \underline{a} irányába eső merőleges vetületvektora: $\underline{x} = (4, 6, 0)$
 - b, <u>a</u>-val párhuzamos összetevő: $\underline{x} = (4, 6, 0)$, <u>a</u>-ra merőleges összetevő: $\underline{y} = (0, 0, -2)$
- 3. a, a <u>v</u> vektor <u>a</u> irányába eső merőleges vetületvektora: $\underline{x} = (4, -2, 6)$
 - b, <u>a</u>-val párhuzamos összetevő: $\underline{x} = (4, -2, 6)$, <u>a</u>-ra merőleges összetevő: $\underline{y} = (0, 9, 3)$
- 4. $\underline{a} + \underline{b} = (2, 4, 2), \quad \underline{a} \underline{b} = (2, -6, 6), \quad 3\underline{a} = (6, -3, 12), \quad -2\underline{c} = (-2, -12, 8), \\ \underline{a} + 3\underline{b} + (-2)\underline{c} = (0, 2, 6), \quad \underline{a} \cdot \underline{b} = -13, \quad \underline{a} \cdot \underline{c} = -20, \quad \underline{a} \times \underline{b} = (-18, 4, 10), \\ \underline{b} \times \underline{a} = (18, -4, -10), \quad \underline{a} \times \underline{c} = (-20, 12, 13), \quad \underline{a} \cdot (\underline{b} \times \underline{c}) = -34$
- 5. $\underline{a} + \underline{b} = (6, 1, 1), \quad \underline{a} \underline{b} = (2, -3, 5), \quad 5\underline{a} = (20, -5, 15), \quad -3\underline{c} = (-24, 6, -18), \\ 2\underline{a} + \underline{b} + (-4)\underline{c} = (-22, 8, -20), \quad \underline{a} \cdot \underline{b} = 0, \quad \underline{a} \cdot \underline{c} = 52, \quad \underline{a} \times \underline{b} = (-4, 14, 10), \\ \underline{b} \times \underline{a} = (4, -14, -10), \quad \underline{a} \times \underline{c} = (0, 0, 0), \quad \underline{a} \cdot (\underline{b} \times \underline{c}) = 0$

Egyenes és sík: illeszkedési feladatok

6. a, A paraméteres egyenletrendszer:

$$x = 2 + t$$

$$v = -1 + t$$

$$z = 5 - 3t$$
 $t \in R$

A paramétermentes egyenletrendszer:

$$x-2=y+1=\frac{z-5}{-3}$$

- b, $P_1 = (3, 0, 2), P_2 = (4, 1, -1), P_3 = (1, -2, 8), ...$
- c, Az A = (3, 0, -2) és a B = (5, 5, 5) pont nem illeszkedik az egyenesre.
- 7. a, A paraméteres egyenletrendszer:

$$x = 3 + 4t$$

$$y = 1 + 5t$$

$$z = -4 \qquad t \in R$$

A paramétermentes egyenletrendszer:

$$\frac{x-3}{4} = \frac{y-1}{5}, \ z = -4$$

- b, $P_1 = (7, 6, -4)$, $P_2 = (-1, -4, -4)$, $P_3 = (11, 11, -4)$, ...
- 8. a, A paraméteres egyenletrendszer:

$$x = 0$$

$$y = 2$$

$$z = -1 + 5t t \in R$$

A paramétermentes egyenletrendszer nem létezik.

b,
$$P_1 = (0, 2, 4)$$
, $P_2 = (0, 2, -6)$, $P_3 = (0, 2, 9)$, ...

9. a, A paraméteres egyenletrendszer:

$$x = 1 + 2t$$

$$y = 4 + 2t$$

$$z = 5 - 6t t \in R$$

A paramétermentes egyenletrendszer:

$$\frac{x-1}{2} = \frac{y-4}{2} = \frac{z-5}{-6}$$

b, A = (5, 8, -7), B = (-1, 2, 11), ...

10. e:
$$P_0 = (2, -1, 5), \quad \underline{v} = (3, 2, -4), \quad \frac{x-2}{3} = \frac{y+1}{2} = \frac{z-5}{-4}$$

$$f: P_0 = (0, -2, 4), \quad \underline{v} = (5, 7, 0), \quad \frac{x}{5} = \frac{y+2}{7}, \quad z = 4$$

 $g:\ P_0=(6,1,0),\ \underline{v}=(0,3,0)$, paramétermentes egyenletrendszer nem írható fel

11. a,
$$\underline{v} = (4, 6, -2), P_0 = (3, -5, -3),$$

 $x = 3 + 4t$
 $y = -5 + 6t$
 $z = -3 - 2t$ $t \in R$

b,
$$\underline{v} = (2, 0, -2), P_0 = (0, 4, 1),$$

 $x = 2t$
 $y = 4$
 $z = 1 - 2t$ $t \in R$

c,
$$\underline{v} = (0, 6, -2), P_0 = (1, 3, 0),$$

 $x = 1$
 $y = 3 + 6t$
 $z = -2t$ $t \in R$

d,
$$\underline{v} = (2, 3, -2), P_0 = (5, 0, -6),$$

$$x = 5 + 2t$$

$$y = 3t$$

$$z = -6 - 2t t \in R$$
e,
$$\underline{v} = \left(\frac{1}{2}, -1, -2\right), P_0 = (-2, 0, 2),$$

$$x = -2 + \frac{1}{2}t$$

$$y = -t$$

$$z = 2 - 2t t \in R$$

- 12. a, $\underline{n} = (2, -3, 5)$, $P_1 = (3, 2, 1)$, $P_2 = (0, 0, 1)$, ... b, $\overline{A} P = (-8, 3, 6)$ pont rajta van a síkon, a Q = (1, 4, -3) pont nincs rajta a síkon.
- 13. a, <u>Útmutatás</u>: A térbeli koordináta-rendszer x-y koordináta-síkjában keressük meg az y = x egyenletű egyenest, a keresett sík ezen egyenesre merőlegesen helyezkedik el a térben.
 - b, <u>Útmutatás</u>: A térbeli koordináta-rendszer x-y koordináta-síkjában keressük meg az y = 2x-1 egyenletű egyenest, a keresett sík ezen egyenesre merőlegesen helyezkedik el a térben.
 - c, <u>Útmutatás</u>: A térbeli koordináta-rendszer x-y koordináta-síkjában keressük meg az y = 4 egyenletű egyenest, a keresett sík ezen egyenesre merőlegesen helyezkedik el a térben.

14. a,
$$2x + 3y - z = -3$$

b, $4x + z = 5$
c, $y = 2$

15.
$$2x + y + 3z = 9$$

$$16. -2x + 5z = -9$$

$$17.\ 2x - 3y + z = -8$$

18.
$$10x-5y=20$$

$$19.\ 14x + 17y + 22z = 30$$

20. a,
$$x = 2 + t$$
$$y = -4t$$
$$z = -3 + t \quad t \in \mathbb{R}$$
b,
$$x = -4 + 2t$$
$$y = 5 - t$$
$$z = 1 \qquad t \in \mathbb{R}$$

21. a,
$$\frac{x-1}{3} = \frac{y-2}{-1} = \frac{z}{5}$$
 b,
$$\frac{x}{2} = \frac{z-4}{3}, \quad y = 0$$

Térelemek kölcsönös helyzete, metszéspontja

- 22. e és f: metszők, M = (0, 2, -2) e és g: párhuzamosak f és g: kitérők
- 23. metszők, M = (-3, -3, 0)
- 24. Az S_1 és S_2 metsző, az S_1 és S_3 azonos, az S_1 és S_4 párhuzamos.
- 25. A metszésvonal paraméteres egyenletrendszerének egy lehetséges alakja:

$$x = 28 + 9t$$

$$e: y = t$$

$$z = -46 - 13t$$

Térelemek távolsága és szöge

26. a,
$$d = \sqrt{\frac{7}{2}}$$

b, $-x + 4y + 2z = 5$

27.
$$d \approx 7,77$$

28.
$$d = \frac{4}{\sqrt{5}}$$

29.
$$d = \sqrt{44}$$

30. a, Azf egyenes és az S sík párhuzamos.

b,
$$d \cong 2,3$$

31. a, A két sík párhuzamos.

b,
$$d \cong 1.6$$

32. a,
$$M = (4, 1, 2)$$

b, $\alpha = 75^{\circ}$

- 34. $\alpha = 18.8^{\circ}$
- 35. $\alpha = 50.6^{\circ}$

Vegyes feladatok

- 36. a, Az e és f egyenesek metszők, M = (-3, 2, 4).
 - b, $\alpha = 57^{\circ}$
 - c, Az *e* egyenes és az *S* sík párhuzamos, $d = \sqrt{11}$.
 - d, $\alpha = 0^{\circ}$
- 37. a, -3x + 4y z = 2
 - b, $\alpha = 32.5^{\circ}$
 - c, Az S_1 és S_2 síkok metszők. A metszésvonal paraméteres egyenletrendszere:
 - x = 2 3t
 - y = 3 + 9t
 - z = 1 + 3t
 - d. $\alpha = 47.9^{\circ}$
- 38. a, $d = \sqrt{56}$
 - b, 13x 14y 5z + 18 = 0
 - c, $\alpha = 30^{\circ}$
 - d, $\alpha = 63.1^{\circ}$
- 39. a, Az e és f egyenesek metszők, M = (0, 2, -2).
 - b, $\alpha = 63.1^{\circ}$
- 40. x y + 2z = 8
- 41. a, Az e és f egyenesek metszők, M = (4, 4, -2).
 - b, $\alpha = 79.6^{\circ}$
 - c, Az e egyenes és az S sík párhuzamos, d = 6.
 - d. $\alpha = 0^{\circ}$
- 42. a, Az e egyenes és az S_1 sík metsző, M = (-3, -2, 3).
 - b, $\alpha = 21^{\circ}$
 - c, Az S₁ és S₂ síkok párhuzamosak.
 - d, $d = \sqrt{56}$
 - e, $\alpha = 0^{\circ}$
- 43. a, Az e és f egyenesek kitérőek.
 - b, $\alpha = 61.4^{\circ}$
 - c, Az e egyenes az S síkban fekszik.
 - d, $\alpha = 0^{\circ}$
 - e, $d = \frac{6}{\sqrt{5}}$

- 44. a, Az e és f egyenesek metszők, M = (5, 2, 2).
 - b, $\alpha = 24.1^{\circ}$
 - c, Az e egyenes az S síkban fekszik.
 - d, $\alpha = 0^{\circ}$
 - e, $d = \sqrt{6}$
- 45. a, Az e és f egyenesek párhuzamosak. $d \cong 3,15$
 - b, $\alpha = 0^{\circ}$
 - c, Az e egyenes és az S sík metsző, M = (3, 1, 1).
 - d, $\alpha = 8.2^{\circ}$
- 46. a, Az e és f egyenes kitérő.
 - b, $\alpha = 54.2^{\circ}$
 - c, Az f egyenes és az S sík párhuzamos. $d=\sqrt{54}$
 - d, $\alpha = 0^{\circ}$

Elméleti kérdések

- 1. hamis
- 2. hamis
- 3. hamis
- 4. igaz
- 5. igaz
- 6. hamis
- 7. hamis
- 8. hamis

Az R^n vektortér 129

Az Rn vektortér

- 1. Igen, c = -a + 4b
- 2. Nem.
- 3. a, $\underline{a} + \underline{b} = (7, 4, -3, 8)$, $-2\underline{c} = (-6, 0, -8, 12)$, $-\underline{a} + 3\underline{b} + \underline{c} = (4, -4, 3, 6)$
 - b, (25, 12, 11, -20)
 - c, Nem.
- 4. a, $2\underline{a} 3\underline{b} \underline{c} = (-9, -12, -10)$
 - b, Csak triviális lineáris kombinációval, így *H* lineárisan független.
 - c, Az \underline{x} vektor előáll az \underline{a} és \underline{b} vektorok lineáris kombinációjaként: $\underline{x} = 2\underline{a} + \underline{b}$, azaz az \underline{x} vektor benne van az \underline{a} és \underline{b} által kifeszített síkban. Az \underline{y} nem áll elő az \underline{a} és \underline{b} vektorok lineáris kombinációjaként, azaz \underline{y} nincs benne az \underline{a} és \underline{b} által kifeszített síkban.
- 5. Igen. A \underline{v} vektor koordinátái az \underline{a}_1 , \underline{a}_2 , \underline{a}_3 bázisra vonatkozóan 1, 2, 3.
- 6. a, Csak a triviális lineáris kombinációval.
 - b, Triviális és nem triviális lineáris kombinációval is, pl. $\underline{a} + 2\underline{b} 1\underline{d} = \underline{o}$.
 - c, Nincs olyan $\underline{x} \in R^3$ vektor, amely nem állítható elő az \underline{a} , \underline{b} és \underline{c} vektorok lineáris kombinációjával. Van olyan $\underline{x} \in R^3$ vektor, amely nem állítható elő az \underline{a} , \underline{b} és \underline{d} vektorok lineáris kombinációjával, ilyen vektor pl. $\underline{x} = \underline{e}_3$.
 - d, Az \underline{a} , \underline{b} és \underline{c} vektorok bázist alkotnak, a \underline{v} vektor koordinátái ezen a bázison: 2, 0, 1. Az \underline{a} , \underline{b} és \underline{d} vektorok nem alkotnak bázist. A \underline{v} vektor nem állítható elő ezen vektorok lineáris kombinációjával.
- 7. Igen, pl. $x = e_3$.
- 8. H_1 : lineárisan független,

 H_2 : lineárisan független, bázis, a vektorhalmaz vektoraiból lineáris kombinációval előállítható az R^3 vektortér összes vektora,

 H_3 : lineárisan összefüggő, a vektorhalmaz vektoraiból lineáris kombinációval elő-állítható az R^3 vektortér összes vektora.

- 9. Például:
 - lineárisan összefüggő és nem generátorrendszer: {(1, 1, 0, 0), (2, 2, 0, 0)}
 - lineárisan összefüggő és generátorrendszer:

```
\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)\}
```

- lineárisan független és nem bázis: {(1, 0, 0, 0), (0, 1, 0, 0)}
- lineárisan független és bázis:

$$\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$$

10. r(H) = 2

- 11. a, Igen, <u>x</u> koordinátái ezen a bázison: 2, -3, 1.
 - b, Triviálisan és nem triviálisan is, pl. $3\underline{a} + 1\underline{b} 1\underline{d} = \underline{o}$
 - c, r(H) = 2
- 12. a, r(H) = 2
 - b, Pl. $a = a_1 + a_5 = (1, 3, 1, -3)$
- 13. a, r(H) = 2
 - b, Pl. $\underline{a} = \underline{e}_2 = (0, 1, 0, 0)$
- 14. a, r(H) = 3
 - b, Nem.
 - c, Nem.
- 15. a, r(H) = 3
 - b, Igen, $H_1 = \{\underline{a}_1, \underline{a}_2, \underline{a}_3\}$. $r(H_1) = 2$
 - c, 1 vektorból álló lineárisan független részhalmaz: van, pl. $\{\underline{a}_1\}$.
 - 2 vektorból álló lineárisan független részhalmaz: van, pl. $\{a_1, a_2\}$.
 - 3 vektorból álló lineárisan független részhalmaz: van, pl. $\{\underline{a}_1, \underline{a}_2, \underline{a}_4\}$.
 - 4 vektorból álló lineárisan független részhalmaz: nincs, mert \mathbb{R}^3 -ban minden
 - 4 elemű vektorhalmaz lineárisan összefüggő.
 - d, 1 vektorból álló lineárisan összefüggő részhalmaz: nincs, mert *H*-ban minden vektor nullvektortól különböző.
 - 2 vektorból álló lineárisan összefüggő részhalmaz: nincs, mert *H*-ban nincs két olyan vektor, amely skalárszorosa lenne egymásnak.
 - 3 vektorból álló lineárisan összefüggő részhalmaz: van, $\{\underline{a}_1, \underline{a}_2, \underline{a}_3\}$.
 - 4 vektorból álló lineárisan összefüggő részhalmaz: R^3 -ban minden 4 elemű vektorhalmaz lineárisan összefüggő, pl. $\{\underline{a}_1, \underline{a}_2, \underline{a}_4, \underline{a}_5\}$.
- 16. a, r(H) = 3
 - b, Egy maximális lineárisan független részhalmaz: $\{\underline{a_1}, \underline{a_2}, \underline{a_3}\}$.
 - $\underline{a}_1 = 1\underline{a}_1 + 0\underline{a}_2 + 0\underline{a}_3$
 - $a_2 = 0a_1 + 1a_2 + 0a_3$
 - $\underline{a}_3 = 0\underline{a}_1 + 0\underline{a}_2 + 1\underline{a}_3$
 - $\underline{a}_4 = 0\underline{a}_1 + (-2)\underline{a}_2 + 1\underline{a}_3$
 - $\underline{a}_5 = (-1)\underline{a}_1 + (-1)\underline{a}_2 + 1\underline{a}_3$
 - c, Igen, mivel H-ban van 3 darab lineárisan független vektor, amely bázist alkot R^3 -ban.
 - Ilyen részhalmaz: $\{a_1, a_2, a_3\}$.
- 17. a, r(H) = 2
 - b, Egy maximális lineárisan független részhalmaz: $\{a_1, a_2\}$.
 - $\underline{a}_1 = 1\underline{a}_1 + 0\underline{a}_2$
 - $\underline{a}_2 = 0\underline{a}_1 + 1\underline{a}_2$
 - $\underline{a}_3 = 1\underline{a}_1 + 1\underline{a}_2$
 - $\underline{a}_4 = 1\underline{a}_1 + (-1)\underline{a}_2$
 - $\underline{a}_5 = 2\underline{a}_1 + 1\underline{a}_2$

Az Rⁿ vektortér

c, Nem, mivel nincs olyan részhalmaza H-nak, amely bázis R^3 -ban. Pl.: $H \cup \{\underline{e}_3\}$ generátorrendszer R^3 -ban.

18. a,
$$r(H_1) = 2$$
, $r(H_2) = 1$, $r(H_3) = 2$.

- b, Egy maximális lineárisan független részhalmaz H_1 -ben: $\{\underline{a}_1, \underline{a}_2\}$. Egy maximális lineárisan független részhalmaz H_2 -ben: $\{\underline{a}_2\}$. Egy maximális lineárisan független részhalmaz H_1 -ben: $\{\underline{a}_1, \underline{a}_2\}$.
- c, Pl.: $\underline{x} = \underline{e}_2$, mivel ez a vektor az \underline{a}_1 és \underline{a}_2 és \underline{e}_4 vektorokkal együtt bázist alkot R^4 hen
- d, Pl.: $\underline{x} = 2\underline{a}_1 + 0\underline{a}_2 = (2, 4, 0, -2)$.
- 19. a, r(H) = 2
 - b, Nem, mert ehhez az kellene, hogy legyen *H*-ban olyan négy vektorból álló részhalmaz, amelynek a rangja 1, azaz a négy vektor párhuzamos. Ilyen részhalmaz viszont nincs *H*-ban.
- 20. a, r(H) = 2
 - b, Igen, az \underline{a}_2 vektor elhagyásával olyan részhalmazt kapunk, amelynek a rangja 1, azaz a négy megmaradó vektor párhuzamos.
- 21. a, r(H) = 2
 - b, 1 vektorból álló lineárisan összefüggő részhalmaz nincsen, mivel *H*-nak egyetlen eleme sem nullvektor.
 - 2 vektorból álló lineárisan összefüggő részhalmaz: $\{\underline{a}_2, \underline{a}_4\}$, mivel a két vektor párhuzamos.
 - 3 vektorból álló lineárisan összefüggő részhalmaz: pl.: $\{\underline{a}_1, \underline{a}_2, \underline{a}_3\}$. Bármelyik 3 vektor lineárisan összefüggő, hiszen a vektorhalmaz rangja 2.
- 22. a. Az R⁴ vektortér elemei.

b,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>a</u> 2	0	1	1	0	-3
<u>e</u> 2	0	0	0	0	0
<u>@</u> 4	0	0	2	1	4
<u>a</u> 1	1	0	3	0	0

- c, r(H) = 3
- d, Egy maximális lineárisan független részhalmaz: $\{a_1, a_2, a_4\}$.
- e, $\underline{a}_2 = 1\underline{a}_2 + 0\underline{a}_4$, $\underline{a}_4 = 0\underline{a}_2 + 1\underline{a}_4$, $\underline{a}_5 = -3\underline{a}_2 + 4\underline{a}_4$,

23. a, Az R^4 vektortér elemei.

b,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>@</u> 4	<u>a</u> 5
<u>e</u> 1	3	0	0	2	0
<u>a</u> 2	2	1	0	-2	0
<u>a</u> 3	3	0	1	0	-2
<u>e</u> 4	0	0	0	0	0

- c, r(H) = 3, mert az \underline{a}_1 vektort még be lehet vonni a bázisba.
- d, Egy maximális lineárisan független részhalmaz: $\{\underline{a}_1, \underline{a}_2, \underline{a}_3\}$.
- e, $\underline{a}_2 = 1\underline{a}_2 + 0\underline{a}_3$, $\underline{a}_3 = 0\underline{a}_2 + 1\underline{a}_3$, $\underline{a}_5 = 0\underline{a}_2 + (-2)\underline{a}_3$,
- 24. a, Az R⁴ vektortér elemei.

b,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>a</u> 5
<u>e</u> 1	0	0	0	0	0
<u>a</u> 2	1	1	3	0	-2
<u>a</u> 4	-2	0	0	1	0
<u>e</u> 4	0	0	0	0	0

- c, $r(H_1) = 2$
- d, $r(H_2) = 1$
- e, Igen, $a_1 = 1a_2 + (-2)a_4$.
- f, A táblázatból látható, hogy az <u>a</u>₃ vektor az <u>a</u>₂ skalárszorosa, így az <u>a</u>₂ és <u>a</u>₄ vektorokból lineáris kombinációval előállítható vektorok előállíthatóak az <u>a</u>₃ és <u>a</u>₄ vektorok lineáris kombinációjaként is. Mivel az <u>a</u>₁ vektor előáll az <u>a</u>₂ és <u>a</u>₄ vektorokból lineáris kombinációval, így előállítható az <u>a</u>₃ és <u>a</u>₄ vektorokból is.
- g, Mivel az <u>a</u>₃ vektor az <u>a</u>₂ skalárszorosa, így az <u>a</u>₂ és <u>a</u>₃ vektorokból lineáris kombinációval előállítható vektorok előállíthatóak csak az <u>a</u>₂ vektor lineáris kombinációjaként is. Az <u>a</u>₁ vektor viszont nem állítható elő csak az <u>a</u>₂ vektor lineáris kombinációjaként, így nem állítható elő az <u>a</u>₂ és <u>a</u>₃ vektorokból sem.
- 25. a,
- H_1 az x-y koordinátasík vektorait tartalmazza, **altér**, dim (H_1) = 2, egy bázis H_1 -ben: B_1 = {(1,0,0), (0,1,0)};
- H₂ vektorai az (1, 2, -5) irányvektorú, origóból induló félegyenesre esnek,
 H₂ zárt az összeadásra, de nem zárt a skalárral való szorzásra, így nem altér;
- H_3 vektorai az (1, 2, -5) irányvektorú, origón átmenő egyenesre esnek, **altér**, dim(H_3) = 1, egy bázis H_3 -ban: B_3 = {(1, 2, -5)};
- H4 vektorai a térbeli koordináta-rendszerben egy tér-nyolcadban helyezkednek el, az összeadásra zártak, de a skalárral való szorzásra nem, nem altér.
- H_5 vektorai a (3, -4, 2) irányvektorú, origón átmenő egyenesre esnek, **altér**, dim $(H_5) = 1$, egy bázis H_5 -ban: $B_5 = \{(3, -4, 2)\}$;

Az R^n vektortér 133

- H₆ vektorai nem zártak sem az összeadásra, sem a skalárral való szorzásra, nem altér;
- H_7 vektorai a (3, 4, -2) és az (1, 1, 1) vektorok által kifeszített síkra esnek, **altér**, dim(H_7) = 2, egy bázis H_7 -ben: B_7 = {(3, -4, 2), (1, 1, 1)};
- H_8 vektorai az x tengelyre esnek, H_8 **altér**, dim (H_8) = 1, egy bázis H_8 -ban: B_8 = {(1, 0, 0)};
- b, $R^3 = H_1 \oplus H_3$, $R^3 = H_1 \oplus H_5$, $R^3 = H_7 \oplus H_3$, $R^3 = H_7 \oplus H_8$, $R^3 = H_3 \oplus H_5 \oplus H_8$.
- 26. a, <u>Útmutatás</u>: Mutassa meg bázistranszformációval, hogy a V_1 és V_2 alterek bázisainak uniója bázis R^3 -ban.
 - b, $\underline{v}_1 = (5, 0, -4) \text{ és } \underline{v}_2 = (-2, 10, 0).$
- 27. a, <u>Útmutatás</u>: Mutassa meg bázistranszformációval, hogy a V_1 és V_2 alterek bázisainak uniója bázis R^3 -ban.
 - b, $\underline{v}_1 = (4, 4, 4) \text{ és } \underline{v}_2 = (-3, 6, -2).$
- 28. a, <u>Útmutatás:</u> Mutassa meg bázistranszformációval, hogy a V_1 és V_2 alterek bázisainak uniója bázis R^3 -ban.
 - b, $\underline{v}_1 = (3, 3, -6)$ és $\underline{v}_2 = (7, 2, 0)$.
- 29. a, $B_1 = \{(1, 0, 2)\}, B_2 = \{(2, 1, -3), (1, 1, 1)\}, B_3 = \{(4, 5, -2), (2, 0, 5)\}.$
 - b, $R^3 = V_1 \oplus V_2$, mert a V_1 és V_2 alterek bázisainak uniója bázis R^3 -ban. Az \underline{x} vektor felbontása: $\underline{v}_1 = (3, 0, 6)$ és $\underline{v}_2 = (5, 3, -5)$. $R^3 \neq V_2 \oplus V_3$, mert dim (V_2) + dim (V_3) \neq dim (R^3) .
- 30. a, dim $(V_1) = 1$, $B_1 = \{(2, -1, 1, 0)\}$; dim $(V_2) = 2$, $B_2 = \{(1, 1, 1, 1), (0, 1, 0, 0)\}$; dim $(V_3) = 1$, $B_3 = \{(1, 3, -1, 4)\}$.
 - b, $R^4 \neq V_1 \oplus V_2$, mert dim (V_1) + dim $(V_2) \neq$ dim (R^4) . $R^4 = V_1 \oplus V_2 \oplus V_3$, mert a V_1 , V_2 és V_3 alterek bázisainak uniója bázis R^4 -ben. Az \underline{x} vektor felbontása: $\underline{v}_1 = (2, -1, 1, 0)$, $\underline{v}_2 = (3, 5, 3, 3)$ és $\underline{v}_3 = (2, 6, -2, 8)$.
- 31. Egy lehetőség, hogy az R^4 vektortér kanonikus bázisából kiindulva konstruáljuk meg a kívánt altereket.
 - 2 altér, melyek direkt összege az R⁴ vektortér:

$$V_1 = \{\lambda_1 \cdot (1, 0, 0, 0) + \lambda_2 \cdot (0, 1, 0, 0) \mid \lambda_1, \lambda_2 \in R\},\$$

$$V_2 = \{\lambda_1 \cdot (0, 0, 1, 0) + \lambda_2 \cdot (0, 0, 0, 1) \mid \lambda_1, \lambda_2 \in R\}.$$

3 altér, melyek direkt összege az R⁴ vektortér:

$$V_1 = \{\lambda_1 \cdot (1, 0, 0, 0) + \lambda_2 \cdot (0, 1, 0, 0) \mid \lambda_1, \lambda_2 \in R\},\$$

$$V_2 = \{\lambda \cdot (0, 0, 1, 0) \mid \lambda \in R\},\$$

 $V_3 = \{\lambda \cdot (0, 0, 0, 1) \mid \lambda \in R\}.$

4 altér, melyek direkt összege az R⁴ vektortér:

$$V_1 = \{\lambda \cdot (1, 0, 0, 0) \mid \lambda \in R\},\$$

$$V_2 = \{\lambda \cdot (0, 1, 0, 0) \mid \lambda \in R\},\$$

$$V_3 = \{\lambda \cdot (0, 0, 1, 0) \mid \lambda \in R\},\$$

$$V_4 = \{\lambda \cdot (0, 0, 0, 1) \mid \lambda \in R\}.$$

Elméleti kérdések

- 1. igaz
- 2. hamis
- 3. igaz
- 4. hamis
- 5. hamis
- 6. hamis
- 7. igaz
- 8. hamis
- 9. igaz
- 10. hamis
- 11. igaz
- 12. igaz
- 13. hamis
- 14. igaz
- 15. igaz
- 16. igaz
- 17. igaz
- 18. hamis
- 19. igaz
- 20. hamis
- 21. igaz
- 22. igaz
- 23. hamis
- 24. hamis
- 25. igaz
- 26. hamis
- 27. igaz
- 28. igaz
- 29. igaz
- 30. hamis
- 31. igaz
- 32. hamis

Az Rⁿ vektortér

- 33. hamis
- 34. igaz
- 35. igaz
- 36. igaz
- 37. hamis
- 38. hamis
- 39. hamis
- 40. igaz
- 41. hamis
- 42. igaz
- 43. hamis

Mátrixok

1.
$$A = \begin{pmatrix} 3 & 5 & 7 \\ 4 & 6 & 8 \end{pmatrix}$$

$$2. \quad A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 4 & 5 \end{pmatrix}$$

3.
$$A+B=\begin{pmatrix} 4 & -2 & 0 & 2 \ 5 & 5 & 2 & 4 \ 4 & -7 & 4 & 1 \end{pmatrix}$$
, $A-B=\begin{pmatrix} -2 & 6 & -2 & -2 \ 3 & -5 & 2 & -2 \ 0 & -3 & -2 & 3 \end{pmatrix}$, $3A=\begin{pmatrix} 3 & 6 & -3 & 0 \ 12 & 10 & 6 & 3 \ 6 & -15 & 3 & 6 \end{pmatrix}$, $-B=\begin{pmatrix} -3 & 4 & -1 & -2 \ -1 & -5 & 0 & -3 \ -2 & 2 & -3 & 1 \end{pmatrix}$, $4A+5B=\begin{pmatrix} 19 & -12 & 1 & 10 \ 21 & 25 & 8 & 19 \ 18 & -30 & 19 & 3 \end{pmatrix}$

4.
$$A \cdot B = \begin{pmatrix} 4 & -3 & -1 \\ 8 & 0 & -2 \\ -4 & -1 & 1 \\ 0 & -2 & 0 \end{pmatrix}$$
, $B \cdot A$ nem létezik.

- 5. <u>Útmutatás</u>: az egyenlőség mindkét oldalán elvégezve a szorzásokat, eredményül az alábbi 1×1-es mátrixot kapjuk: [–179].
- 6. <u>Útmutatás</u>: a megadott szorzások elvégzésével ellenőrizhetőek az egyenlőségek.
- 7. <u>Útmutatás</u>: az egyenlőség mindkét oldalán elvégezve a kijelölt műveleteket, eredményül az alábbi 2×3 -as mátrixot kapjuk: $\begin{pmatrix} 4 & 2 & -6 \\ 6 & 12 & 6 \end{pmatrix}$.
- 8. <u>Útmutatás</u>: mindkét esetben a mátrixszorzás azon tulajdonságát kell felhasználni, hogy a mátrixszorzás nem kommutatív. Az egyenlőség olyan A és B mátrixokra teljesülne, ahol $A \cdot B = B \cdot A$.

9.
$$2A-C = \begin{pmatrix} -5 & 0 & 7 \\ 7 & -1 & -2 \end{pmatrix}$$
, $3C+D$ nem létezik, $C+D^T = \begin{pmatrix} 6 & 2 & 1 \\ 3 & 10 & 8 \end{pmatrix}$, $4B+2E = \begin{pmatrix} 0 & 22 \\ 8 & 14 \end{pmatrix}$,

Mátrixok 137

AB nem létezik, AC nem létezik, $A \cdot D = \begin{pmatrix} -3 & 20 \\ 13 & 22 \end{pmatrix}$, $E \cdot B = \begin{pmatrix} 0 & 13 \\ 2 & 3 \end{pmatrix}$, $B \cdot E = \begin{pmatrix} -2 & 4 \\ 4 & 5 \end{pmatrix}$, $B^2 = \begin{pmatrix} 11 & 10 \\ 4 & 19 \end{pmatrix}$, $E^3 = \begin{pmatrix} 8 & 7 \\ 0 & 1 \end{pmatrix}$, AE nem létezik, $E \cdot A = \begin{pmatrix} 1 & 2 & 8 \\ 3 & 2 & 0 \end{pmatrix}$, $C \cdot F = \begin{pmatrix} 15 & 0 & 7 & 4 \\ 29 & 25 & 0 & -4 \end{pmatrix}$, $D \cdot C = \begin{pmatrix} 5 & 20 & 11 \\ 1 & 25 & 12 \\ -6 & 30 & 12 \end{pmatrix}$, $C \cdot D = \begin{pmatrix} 9 & 18 \\ 7 & 33 \end{pmatrix}$, $D \cdot E = \begin{pmatrix} 6 & 7 \\ 4 & 7 \\ 0 & 6 \end{pmatrix}$.

10.
$$A+B$$
 nem létezik, $C+B=\begin{pmatrix}1&12\\-2&7\\2&11\\2&5\end{pmatrix}$, $C+D$ nem létezik, $E+F$ nem létezik,

$$E + F^{T} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
, $5A = \begin{pmatrix} 5 & 10 & -5 & -15 \\ 0 & 5 & 15 & 10 \\ 20 & 25 & 0 & 30 \end{pmatrix}$, $3F = \begin{bmatrix} 15 & 6 \end{bmatrix}$, BC nem létezik,

$$B \cdot C^{T} = \begin{pmatrix} 32 & 41 & 50 & 59 \\ 8 & 7 & 6 & 5 \\ 20 & 25 & 30 & 35 \\ -8 & -11 & -14 & -17 \end{pmatrix}, \quad B^{T} \cdot C = \begin{pmatrix} -6 & -18 \\ 6 & 58 \end{pmatrix}, \quad BA \text{ nem létezik,}$$

$$A \cdot B = \begin{pmatrix} -2 & 13 \\ -5 & 13 \\ -17 & 30 \end{pmatrix}$$
, $B \cdot D$ nem létezik, $B \cdot E = \begin{pmatrix} 13 \\ 13 \\ 10 \\ -1 \end{pmatrix}$, $A \cdot D = \begin{pmatrix} -12 \\ 16 \\ 28 \end{pmatrix}$, $D \cdot E$ nem létezik,

$$E \cdot E$$
 nem létezik, $E \cdot F = \begin{pmatrix} -15 & -6 \\ 10 & 4 \end{pmatrix}$, $F \cdot E = \begin{bmatrix} -11 \end{bmatrix}$,

- 11. $A \cdot A = A$ teljesül, ha
 - a = 3 és b = -2 vagy a = -2 és b = 3;
 - nincs ilyen *a* és *b* valós paraméter.

12.
$$r(A) = 2$$
, $r(B) = 3$, $r(C) = 2$, $r(D) = 2$, $r(E) = 2$, $r(F) = 3$

- 13. Például: $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ és $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ esetén r(AB) = 1 és r(BA) = 0.
- 14. Útmutatás: Ellenőrizze az AB = E és BA = E egyenlőségeket!
- 15. Igen, $a = -\frac{3}{4}$ és $b = \frac{3}{4}$.

16.
$$A^{-1} = \begin{pmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{pmatrix}$$
, *B* nem invertálható, $C^{-1} = C$, *D* nem invertálható, *F* nem

invertálható,
$$G^{-1} = \begin{pmatrix} -\frac{2}{13} & -\frac{10}{13} & \frac{5}{13} \\ -\frac{3}{13} & \frac{11}{13} & \frac{1}{13} \\ \frac{3}{13} & \frac{2}{13} & -\frac{1}{13} \end{pmatrix}$$
, $H^{-1} = \begin{pmatrix} \frac{2}{6} & 0 & -\frac{4}{6} & \frac{2}{6} \\ -3 & 1 & 5 & -2 \\ \frac{1}{6} & -\frac{3}{6} & -\frac{5}{6} & \frac{7}{6} \\ \frac{4}{6} & 0 & -\frac{2}{6} & -\frac{2}{6} \end{pmatrix}$.

17. <u>Útmutatás</u>: Mátrixszorzással ellenőrizze az $A^3 = E$ egyenlőséget. Ennek alapján

$$A^{-1} = A^{2} = \begin{pmatrix} -\frac{1}{2} & \sqrt{3}/2 \\ -\sqrt{3}/2 & -\frac{1}{2} \end{pmatrix}.$$

- 18. a, Az AB = E egyenlőség a = -5 és b = 4 paraméterértékek esetén teljesül.
 - b, <u>Útmutatás:</u> A mátrix-egyenletet rendezve: $X = (D 2E)^{-1} \cdot C = A^{-1} \cdot C$.
- 19. $\det(A) = -32$, $\det(B) = 0$, $\det(C) = 5$, $\det(D) = 0$, $\det(E) = -1$, $\det(F) = -42$, $\det(G) = -4$, $\det(H) = 10$, $\det(I) = 62$, $\det(J) = -174$, $\det(K) = 72$, $\det(L) = 0$. A mátrixokra jellemző tulajdonságok:
 - ha a determináns értéke nullától különböző ⇒ a mátrix invertálható, teljes rangú, oszlop- és sorvektorai lineárisan függetlenek
 - ha a determináns értéke nulla ⇒ a mátrix nem invertálható, nem teljes rangú, oszlop- és sorvektorai lineárisan összefüggőek.
- Útmutatás: adjuk hozzá a mátrix első sorához rendre a második, harmadik, negyedik és ötödik sort!

21.
$$c \neq -\frac{10}{13}$$

$$c \neq 1 \quad \text{és} \quad c \neq -3$$

$$c \neq -\frac{51}{16}$$

22.
$$c = 0$$

$$c = \frac{16}{7}$$

$$c = 1 \quad \text{vagy} \quad c = -3$$

23. a, Az adjungált mátrixok:

$$\operatorname{adj}(A) = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}, \quad \operatorname{adj}(B) = \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix}, \quad \operatorname{adj}(C) = \begin{pmatrix} 2 & -5 \\ 1 & 0 \end{pmatrix}, \quad \operatorname{adj}(D) = \begin{pmatrix} -3 & 1 \\ -6 & 2 \end{pmatrix},$$

Mátrixok 139

$$\operatorname{adj}(F) = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}, \ \operatorname{adj}(G) = \begin{pmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{pmatrix}, \ \operatorname{adj}(H) = \begin{pmatrix} 2 & 10 & -5 \\ 3 & -11 & -1 \\ -3 & -2 & 1 \end{pmatrix},$$

$$\operatorname{adj}(I) = \begin{pmatrix} 8 & 12 & -4 \\ -16 & -8 & 8 \\ 2 & -7 & 1 \end{pmatrix}, \ \operatorname{adj}(J) = \begin{pmatrix} 10 & 0 & 5 \\ 26 & 0 & 13 \\ 22 & 0 & 11 \end{pmatrix}$$

b, Az inverz mátrixok:

$$A^{-1} = \begin{pmatrix} 4/5 & -3/5 \\ -1/5 & 2/5 \end{pmatrix}, B \text{ nem invertálható, } C^{-1} = \begin{pmatrix} 2/5 & -1 \\ 1/5 & 0 \end{pmatrix}, D \text{ nem invertálható, }$$

$$F^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}, G^{-1} = \begin{pmatrix} -6/7 & -1/7 & 5/7 \\ 2/7 & 5/7 & -4/7 \\ 3/7 & -3/7 & 1/7 \end{pmatrix}, H^{-1} = \begin{pmatrix} -2/13 & -10/3 & 5/13 \\ -3/13 & 11/3 & 1/3 \\ -3/13 & 1/3 & 1/3 \\ 3/13 & 2/13 & -1/13 \end{pmatrix},$$

$$I^{-1} = \begin{pmatrix} 1/2 & 3/4 & -1/4 \\ -1 & -1/2 & 1/2 \\ 1/2 & -7/4 & 1/4 \end{pmatrix}, J \text{ nem invertálható, }$$

24.
$$\underline{a} \times \underline{b} = (-19, -10, 2), \quad \underline{b} \times \underline{a} = (19, 10, -2), \quad \underline{a} \times \underline{c} = (2, 8, 5), \quad \underline{a} \times \underline{d} = (-4, -16, -10), \\ \underline{c} \times \underline{d} = (0, 0, 0),$$

Elméleti kérdések

- 1. igaz
- 2. hamis
- 3. igaz
- 4. igaz
- 5. hamis
- 6. igaz
- 7. igaz
- 8. hamis
- 9. hamis
- 10. igaz
- 11. igaz
- 12. igaz
- 13. igaz

- 14. igaz
- 15. igaz
- 16. hamis
- 17. igaz
- 18. hamis
- 19. igaz
- 20. igaz
- 21. hamis
- 22. igaz
- 23. hamis
- 24. hamis
- 25. igaz
- 26. hamis
- 27. igaz
- 28. igaz
- 29. hamis
- 30. hamis
- 31. igaz
- 32. hamis
- 33. hamis
- 34. igaz
- 35. hamis
- 36. hamis
- 37. hamis

Lineáris egyenletrendszerek

1. a, \underline{a}_1 és \underline{a}_2 bázisba vonása után:

$$M = \left\{ \underline{x} \in R^4 \middle| x_3, x_4 \in R, x_1 = -24 + 2x_3 + 8x_4, x_2 = 21 - x_3 - 7x_4 \right\}$$

b, \underline{a}_1 és \underline{a}_2 bázisba vonása után:

$$M = \left\{ \underline{x} \in R^3 \middle| x_3 \in R, x_1 = -8 - 5x_3, x_2 = 1 + 3x_3 \right\}$$

c, \underline{a}_1 , \underline{a}_2 és \underline{a}_3 bázisba vonása után:

$$M = \{(0, 3, 1)\}$$

d, a_1 és a_2 bázisba vonása után:

$$M = \left\{ \begin{pmatrix} -2, & 6 \end{pmatrix} \right\}$$

e, \underline{a}_1 és \underline{a}_4 bázisba vonása után:

$$M = \emptyset$$

f, a_1 és a_4 bázisba vonása után:

$$M_0 = \{ \underline{x} \in R^4 | x_2, x_3 \in R, x_1 = x_2 - 5x_3, x_4 = 2x_2 - 6x_3 \}$$

g, \underline{a}_1 , \underline{a}_2 és \underline{a}_3 bázisba vonása után:

$$M_0 = \{ (0, 0, 0) \}$$

2. a,

$$M = \left\{ \underline{x} \in R^5 \middle| x_2, x_3, x_5 \in R, x_1 = 3 - 3x_2 - x_3 - 5x_5, x_4 = 2 + 2x_2 - 2x_3 \right\}$$

$$M_0 = \left\{ \underline{x} \in R^5 \middle| x_2, x_3, x_5 \in R, x_1 = -3x_2 - x_3 - 5x_5, x_4 = 2x_2 - 2x_3 \right\}$$

b,

$$M = \emptyset$$

$$M_0 = \left\{ \underline{x} \in R^5 \middle| x_1, x_4, x_5 \in R, x_2 = 2x_1 - 5x_4 - 6x_5, x_3 = -x_1 - 4x_4 + x_5 \right\}$$

C,

$$M = \left\{ \underline{x} \in R^5 \middle| x_1, x_2, x_4, x_5 \in R, x_3 = 5 + 2x_1 - 4x_2 - 2x_4 - 3x_5 \right\}$$

$$M_0 = \left\{ \underline{x} \in R^5 \middle| x_1, x_2, x_4, x_5 \in R, x_3 = 2x_1 - 4x_2 - 2x_4 - 3x_5 \right\}$$

d,

$$M = \left\{ \underline{x} \in R^5 \middle| x_4 \in R, x_1 = -3x_4, x_2 = 1 + 2x_4, x_3 = 4 - 4x_4, x_5 = 2 \right\}$$

$$M_0 = \left\{ \underline{x} \in R^5 \middle| x_4 \in R, x_1 = -3x_4, x_2 = 2x_4, x_3 = -4x_4, x_5 = 0 \right\}$$

3. a,

$$\begin{split} \boldsymbol{M}_{1} = & \left\{ \underline{x} \in \boldsymbol{R}^{4} \middle| x_{1}, x_{3} \in \boldsymbol{R}, x_{2} = -1 - 3x_{1} - 2x_{3}, x_{4} = 4 + 2x_{1} - x_{3} \right\} \\ & \boldsymbol{M}_{2} = \varnothing \\ \\ \boldsymbol{M}_{0} = & \left\{ \underline{x} \in \boldsymbol{R}^{4} \middle| x_{1}, x_{3} \in \boldsymbol{R}, x_{2} = -3x_{1} - 2x_{3}, x_{4} = 2x_{1} - x_{3} \right\} \end{split}$$

b,

$$\begin{split} \boldsymbol{M}_{1} &= \varnothing \\ \boldsymbol{M}_{2} &= \left\{ \underline{x} \in R^{4} \middle| x_{1}, x_{2}, x_{4} \in R, x_{3} = 1 + x_{1} - 3x_{2} - 5x_{4} \right\} \\ \boldsymbol{M}_{0} &= \left\{ \underline{x} \in R^{4} \middle| x_{1}, x_{2}, x_{4} \in R, x_{3} = x_{1} - 3x_{2} - 5x_{4} \right\} \end{split}$$

C,

$$M_{2} = \left\{ \underline{x} \in R^{4} \middle| x_{3} \in R, x_{1} = 3 - 5x_{3}, x_{2} = -2 + x_{3}, x_{4} = 4 - 2x_{3} \right\}$$

$$M_{0} = \left\{ \underline{x} \in R^{4} \middle| x_{3} \in R, x_{1} = -5x_{3}, x_{2} = x_{3}, x_{4} = -2x_{3} \right\}$$

 $M_1 = \emptyset$

d,

$$M_1 = \{ (4, 5, -2, 3) \}$$

 $M_2 = \{ (-1, 2, 0, 6) \}$
 $M_0 = \{ (0, 0, 0, 0) \}$

- 4. Legyen az \underline{a}_4 vektor hiányzó koordinátája c_1 és a \underline{b} vektor hiányzó koordinátája c_2 !
 - Nincs megoldás: $c_1 = 0$, $c_2 \neq 0$,
 - Pontosan egy megoldásvektor: $c_1 \neq 0$, $c_2 \in R$,
 - Végtelen sok megoldásvektor: $c_1 = 0$, $c_2 = 0$.

5. a,
$$M = \{(1, 0, 2)\}$$

b,
$$M = \left\{ \left(\frac{2}{3}, -\frac{1}{4}, \frac{5}{6} \right) \right\}$$

c, Nem oldható meg Cramer szabállyal.

d,
$$M = \emptyset$$

6. a,
$$c \neq 1$$
 és $c \neq -3$

b,
$$c \neq -51/16$$

7. a,
$$c = 1 \text{ vagy } c = -3$$

c =1 esetén:
$$M = \{(x, y, z) \in R^3 | z \in R, x = -z, y = -2z\}$$

c =-3 esetén:
$$M = \{(x, y, z) \in R^3 | x \in R, y = 0, z = x\}$$

b,
$$c = \frac{16}{7}$$
 esetén: $M = \left\{ (x, y, z) \in R^3 | z \in R, x = -\frac{11}{14}z, y = -\frac{5}{14}z \right\}$

8. a, bázistranszformációval

$$M = \left\{ \underline{x} \in R^4 \middle| x_4 \in R, x_1 = 3 - 6x_4, x_2 = 1 + 3x_4, x_3 = -x_4 \right\}$$

b, bázistranszformációval

$$M = \left\{ \underline{x} \in R^4 \middle| x_3, x_4 \in R, x_1 = 2 - x_3 - x_4, x_2 = 1 - x_3 - 2x_4 \right\}$$

c, bázistranszformációval

$$M = \emptyset$$

d, bázistranszformációval, Cramer szabállyal

$$M = \left\{ \begin{pmatrix} 1, & 2, & 0 \end{pmatrix} \right\}$$

e, bázistranszformációval, a Cramer szabály nem használható ($D=D_1=D_2=D_3=0$)

$$M = \left\{ \underline{x} \in R^3 \middle| x_3 \in R, x_1 = 3 - 2x_3, x_2 = -2 + 3x_3 \right\}$$

f, bázistranszformációval, Cramer szabállyal

$$M = \emptyset$$

g, bázistranszformációval

$$M = \{(2, 1, 1)\}$$

Elméleti kérdések

- 1. hamis
- 2. igaz
- 3. hamis
- 4. hamis
- 5. hamis
- 6. igaz
- 7. hamis
- 8. igaz
- 9. hamis
- 10. hamis

- 11. hamis
- 12. igaz
- 13. igaz
- 14. igaz
- 15. hamis
- 16. igaz
- 17. hamis
- 18. hamis
- 19. igaz
- 20. hamis
- 21. hamis
- 22. hamis
- 23. igaz
- 24. igaz
- 25. hamis
- 26. igaz

Lineáris leképezések

- 1. a, $A: R^2 \to R^2$, $(x_1, x_2) \mapsto (x_1, -x_2)$ lineáris, $\ker(A) = \{\underline{o}\}$, $\operatorname{im}(A) = R^2$, $M(A) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - b, $A: R^2 \to R^2$, $(x_1, x_2) \mapsto (-x_1, -x_2)$ lineáris, $\ker(A) = \{\underline{o}\}$, $\operatorname{im}(A) = R^2$, $M(A) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
 - c, $A: \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (\lambda \cdot x_1, \lambda \cdot x_2)$
 - ha $\lambda \neq 0$: lineáris, $\ker(A) = \{\underline{o}\}$, $\operatorname{im}(A) = R^2$, $M(A) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$
 - ha $\lambda = 0$: lineáris, $\ker(A) = R^2$, $\operatorname{im}(A) = \{\underline{o}\}$, $M(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 - d, $A: \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (x_1 + v_1, x_2 + v_2)$ nem lineáris
 - e, $A: R^2 \to R^2$, $(x_1, x_2) \mapsto (0, x_2)$ lineáris, $\ker(A) = \{(x_1, x_2) | x_2 = 0\}$, $\operatorname{im}(A) = \{(x_1, x_2) | x_1 = 0\}$, $M(A) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
- 2. <u>Útmutatás:</u> a linearitás ellenőrzéséhez az additivitás és homogenitás teljesülését kell vizsgálni.
 - a, $A: \mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (x_1, -x_2, x_3)$

$$\ker(A) = \{\underline{o}\}, \ \operatorname{im}(A) = R^3, \ M(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b, $A: \mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (-x_1, x_2, -x_3)$

$$\ker(A) = \{\underline{o}\}, \ \operatorname{im}(A) = R^3, \ M(A) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

c, $A: \mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (0, x_2, x_3)$

$$\ker(A) = \left\{ (x_1, x_2, x_3) \mid x_2 = x_3 = 0 \right\}, \quad \operatorname{im}(A) = \left\{ (x_1, x_2, x_3) \mid x_1 = 0 \right\}, \quad M(A) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

d, $A: \mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (0, 0, x_3)$

$$\ker(A) = \left\{ (x_1, x_2, x_3) \mid x_3 = 0 \right\}, \quad \operatorname{im}(A) = \left\{ (x_1, x_2, x_3) \mid x_1 = x_2 = 0 \right\}, \quad M(A) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.

$$A: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3) \mapsto (2x_1 + 3x_2, x_1 + x_2 - 3x_3)$ lineáris, $M(A) = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & -3 \end{pmatrix}$

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1^3 + 2x_2, 4x_2)$ nem lineáris

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (x_1 \cdot x_2, 4x_1 + x_2^4)$ nem lineáris

$$A: R \to R^4$$
, $x \mapsto (2x+1, 3x^2, x+5, 4x)$ nem lineáris

$$A: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x_1, x_2) \mapsto (3x_1 + 5x_2, 0, x_1 + x_2)$ lineáris, $M(A) = \begin{pmatrix} 3 & 5 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (5x_1 + 2x_2, x_1 + 4x_2)$ lineáris, $M(A) = \begin{pmatrix} 5 & 2 \\ 1 & 4 \end{pmatrix}$

4.

$$A: \mathbb{R}^4 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3, x_4) \mapsto (2x_1 - x_3 + 4x_4, 3x_1 + 5x_2 + x_4)$

$$B: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (2x_1 + 3x_2, -x_1 + 6x_2)$

$$C: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3) \mapsto (x_1 + x_2, 2x_1 - 3x_2 + 4x_3)$

$$D: R \to R^2$$
, $x \mapsto (-2x, 5x)$

$$E: \mathbb{R}^2 \to \mathbb{R}^3, \ (x_1, x_2) \mapsto (-x_1 + 3x_2, 2x_2, 4x_1 + 5x_2)$$

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (3x_1 + 4x_2, -x_1 + x_2 + 2x_3, 5x_1 + x_3)$

$$G: \mathbb{R}^4 \to \mathbb{R}, \ (x_1, x_2, x_3, x_4) \mapsto 2x_1 + 5x_2 + 3x_4$$

$$H: R \to R, x \mapsto 4x$$

5. a,
$$M(A) = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 3 & 2 \end{pmatrix}$$
, $M(B) = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 4 & 0 \\ 0 & 5 & 1 \end{pmatrix}$,

b,
$$A(\underline{x}) = (17,5)$$
, $B(\underline{x}) = (11,-4,-2)$

c,
$$A \circ B$$
 létezik, $M(A \circ B) = \begin{pmatrix} 2 & 16 & 10 \\ 1 & 22 & 5 \end{pmatrix}$,

6.
$$r(A) = 2$$
, $r(B) = 2$, $r(C) = 2$,

7. a,
$$M(A) = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}$$
, $M(B) = \begin{pmatrix} 4 & 6 \\ -2 & -3 \end{pmatrix}$,

b,

$$A+B:R^{2} \to R^{2}, (x_{1},x_{2}) \mapsto (6x_{1}+9x_{2}, -3x_{1}+x_{2}), M(A+B) = \begin{pmatrix} 6 & 9 \\ -3 & 1 \end{pmatrix},$$

$$5A:R^{2} \to R^{2}, (x_{1},x_{2}) \mapsto (10x_{1}+15x_{2}, -5x_{1}-20x_{2}), M(5A) = \begin{pmatrix} 10 & 15 \\ -5 & -20 \end{pmatrix},$$

$$A \circ B:R^{2} \to R^{2}, (x_{1},x_{2}) \mapsto (2x_{1}+3x_{2}, -12x_{1}-18x_{2}), M(A \circ B) = \begin{pmatrix} 2 & 3 \\ -12 & -18 \end{pmatrix},$$

$$B \circ A:R^{2} \to R^{2}, (x_{1},x_{2}) \mapsto (2x_{1}+36x_{2}, -x_{1}-18x_{2}), M(B \circ A) = \begin{pmatrix} 2 & 36 \\ -1 & -18 \end{pmatrix},$$

c, Az A lineáris transzformáció invertálható, az inverze:

$$A^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto (\frac{4}{11}x_1 - \frac{3}{11}x_2)$, $\frac{1}{11}x_1 + \frac{2}{11}x_2$

A B lineáris transzformáció nem invertálható.

8. a,
$$M(A) = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
, $M(B) = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix}$,
b, $\ker(A) = \{\underline{o}\}$, $\ker(B) = \{(x_1, x_2) \in R^2 \mid x_2 \in R, x_1 = -\frac{3}{2}x_2 \}$,
Az A lineáris transzformáció invertálható, inverze:
 $A^{-1} : R^2 \to R^2$, $(x_1, x_2) \mapsto (-\frac{1}{5}x_1 + \frac{3}{5}x_2, \frac{2}{5}x_1 - \frac{1}{5}x_2)$
c, $\underline{b} \in \operatorname{im}(A) \Rightarrow M = \{(1, 2)\}$
 $\underline{b} \notin \operatorname{im}(B)$

9. a,

-
$$\ker(A) = \left\{ (x_1, x_2, x_3) \mid x_3 \in R, \ x_1 = \frac{8}{6} x_3, \ x_2 = -\frac{13}{6} x_3 \right\} \Rightarrow A \text{ nem injektív}$$

- $\ker(A) = \left\{ (x_1, x_2, x_3) \mid x_2 \in R, \ x_1 = 5x_2, \ x_3 = -3x_2 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ e \right\} A \text{ injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3) \mid x_3 \in R, \ x_1 = -2x_3, \ x_2 = 3x_3 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3) \mid x_3 \in R, \ x_1 = -2x_3, \ x_2 = 3x_3 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3, x_4) \mid x_3, x_4 \in R, \ x_1 = -x_3 - x_4, \ x_2 = -x_3 - 2x_4 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3, x_4) \mid x_4 \in R, \ x_1 = -6x_4, \ x_2 = 3x_4, \ x_3 = -x_4 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3, x_4) \mid x_3, x_4 \in R, \ x_1 = -6x_4, \ x_2 = 3x_4, \ x_3 = -x_4 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3, x_4) \mid x_3, x_4 \in R, \ x_1 = -\frac{1}{3} x_3 + \frac{7}{3} x_4, \ x_2 = \frac{2}{3} x_3 - \frac{5}{3} x_4 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3, x_4) \mid x_3, x_4 \in R, \ x_1 = -\frac{1}{3} x_3 + \frac{7}{3} x_4, \ x_2 = \frac{2}{3} x_3 - \frac{5}{3} x_4 \right\} \Rightarrow A \text{ nem injektív}$

- $\ker(A) = \left\{ (x_1, x_2, x_3, x_4) \mid x_3, x_4 \in R, \ x_1 = -\frac{1}{3} x_3 + \frac{7}{3} x_4, \ x_2 = \frac{2}{3} x_3 - \frac{5}{3} x_4 \right\} \Rightarrow A \text{ nem injektív}$

b,
-
$$\underline{b} \in \text{im}(A) \Rightarrow M = \left\{ \left(x_1, x_2, x_3 \right) \middle| x_3 \in R, x_1 = \frac{8}{6}, x_3, x_2 = \frac{1}{6}, \frac{13}{6}, x_3 \right\}$$

$$- \underline{b} \in \operatorname{im}(A) \Longrightarrow M = \left\{ \left(x_1, x_2, x_3 \right) \mid x_2 \in R, x_1 = 3 + 5x_2, x_3 = 1 - 3x_2 \right\}$$

$$- \underline{b} \in \operatorname{im}(A) \Rightarrow M = \{(1,0,2)\}$$

$$\underline{b} \notin \text{im}(A)$$

$$- \underline{b} \in \operatorname{im}(A) \Rightarrow M = \left\{ \left(x_1, x_2, x_3 \right) \mid x_3 \in R, x_1 = 3 - 2x_3, x_2 = -2 + 3x_3 \right\}$$

$$- \quad \underline{b} \in \text{im}(A) \implies M = \left\{ \left(x_{1}, x_{2}, x_{3}, x_{4} \right) \mid x_{3}, x_{4} \in R, \ x_{1} = 2 - x_{3} - x_{4}, \ x_{2} = 1 - x_{3} - 2x_{4} \right\}$$

$$- \quad \underline{b} \in \text{im}(A) \implies M = \left\{ \left(x_{1}, x_{2}, x_{3}, x_{4} \right) \mid x_{4} \in R, \ x_{1} = 3 - 6x_{4}, \ x_{2} = 1 + 3x_{4}, \ x_{3} = -x_{4} \right\}$$

- $\underline{b} \notin \operatorname{im}(A)$

10. A transzformációk determinánsa:

- det(A) = 0 ⇒ az A lineáris transzformáció nem invertálható
- $det(A) = -11 \Rightarrow az A lineáris transzformáció invertálható$
- det(A) = -32 ⇒ az A lineáris transzformáció invertálható
- $det(A) = 0 \Rightarrow az A$ lineáris transzformáció nem invertálható

11. a,
$$H(1) = \{ \underline{x} \in R^2 \mid x_1 \in R, x_2 = 0 \}$$
., $H(-1) = \{ \underline{x} \in R^2 \mid x_2 \in R, x_1 = 0 \}$.

b,
$$H(-1)=R^2$$

c,
$$H(\lambda) = R^2$$

d,
$$H(1) = \{ \underline{x} \in R^3 \mid x_2 \in R, x_1 = x_3 = 0 \}$$
., $H(-1) = \{ \underline{x} \in R^3 \mid x_1, x_3 \in R, x_2 = 0 \}$.

e,
$$H(0) = \{\underline{x} \in R^3 \mid x_3 \in R, x_1 = x_2 = 0\}$$
., $H(1) = \{\underline{x} \in R^3 \mid x_1, x_2 \in R, x_3 = 0\}$.

Sajátvektorok a fenti sajátalterek nullvektortól különböző elemei.

- 12. a, \underline{v}_1 sajátvektor, \underline{v}_2 , \underline{v}_3 , \underline{v}_4 nem sajátvektor
 - b, <u>v₁,v₃</u> sajátvektor, <u>v₂</u>, <u>v₄</u> nem sajátvektor
- 13. a, $\underline{v}_{2},\underline{v}_{4}$ sajátvektor, \underline{v}_{1} , \underline{v}_{3} nem sajátvektor
 - b, $\underline{v}_{2},\underline{v}_{4}$ sajátvektor, $\underline{v}_{1},\underline{v}_{3}$ nem sajátvektor
 - c, <u>v2,v3</u> sajátvektor, <u>v1</u>, <u>v4</u> nem sajátvektor
- 14. a, λ = 3, algebrai multiplicitás: 2

$$H(3) = \{\underline{x} \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}, x_1 = -x_2\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{y} = (1, -1)$

b, λ_1 = 1, algebrai multiplicitás: 1, λ_2 = 2, algebrai multiplicitás: 1,

$$H(1) = \{\underline{x} \in \mathbb{R}^2 \mid x_1 \in \mathbb{R}, x_2 = 0\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (1, 0)$

$$H(2) = \{\underline{x} \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}, x_1 = 3x_2\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (3,1)$

c, $\lambda = 4$, algebrai multiplicitás: 2

$$H(4) = \{\underline{x} \in \mathbb{R}^2 \mid x_1 \in \mathbb{R}, x_2 = x_1\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (1, 1)$

d, λ_1 = 1, algebrai multiplicitás: 1, λ_2 = 5, algebrai multiplicitás: 1,

$$H(1) = \{\underline{x} \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}, x_1 = -3x_2\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (3, -1)$

$$H(5) = \{\underline{x} \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}, x_1 = x_2\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (1, 1)$

e, λ_1 = -2, algebrai multiplicitás: 1, λ_2 = 8, algebrai multiplicitás: 1,

$$H(-2) = \{\underline{x} \in \mathbb{R}^2 \mid x_2 \in \mathbb{R}, x_1 = -x_2\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (1, -1)$

$$H(8) = \{\underline{x} \in \mathbb{R}^2 \mid x_1 \in \mathbb{R}, x_2 = 9x_1\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{y} = (1, 9)$

- f, nincs valós sajátérték, nincs sajátvektor
- g, λ_1 = 0, algebrai multiplicitás: 1, λ_2 = 2, algebrai multiplicitás: 1, λ_3 = 3, algebrai multiplicitás: 1,

$$H(0) = \{\underline{x} \in \mathbb{R}^3 \mid x_3 \in \mathbb{R}, x_1 = x_2 = 0\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{y} = (0, 0, 1)$

$$H(2) = \{\underline{x} \in R^3 \mid x_1 \in R, x_2 = x_1, x_3 = \frac{3}{2}x_1\}$$
., geometriai multiplicitás: 1,

sajátvektor: pl.: \underline{v} = (2, 2, 3)

$$H(3) = \{\underline{x} \in \mathbb{R}^3 \mid x_1 \in \mathbb{R}, x_2 = 2x_1, x_3 = \frac{5}{3}x_1\}.$$
, geometriai multiplicitás: 1,

sajátvektor: pl.:<u>v</u> = (3, 6, 5)

h, $\lambda = 2$, algebrai multiplicitás: 1

$$H(2) = \{\underline{x} \in \mathbb{R}^3 \mid x_3 \in \mathbb{R}, x_1 = x_2 = x_3\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{v} = (1, 1, 1)$

i, λ_1 = 4, algebrai multiplicitás: 2, λ_2 = 1, algebrai multiplicitás: 1,

$$H(4) = \{\underline{x} \in R^3 \mid x_2, x_3 \in R, x_1 = -x_2 - x_3\}$$
., geometriai multiplicitás: 2, sajátvektor: pl.: $\underline{y} = (-2, 1, 1)$

$$H(1) = \{\underline{x} \in \mathbb{R}^3 \mid x_3 \in \mathbb{R}, x_1 = x_3, x_2 = x_3\}$$
., geometriai multiplicitás: 1, sajátvektor: pl.: $\underline{y} = (1, 1, 1)$

- 15. <u>Útmutatás</u>: használja fel az inverz függvény, illetve a sajátérték, sajátvektor definícióját!
- Útmutatás: a transzformációk mátrixával is elvégezhető az ellenőrzés, lásd 9. minta feladat.
- 17. Útmutatás: lásd 9. minta feladat.

Elméleti kérdések

- 1. hamis
- 2. igaz
- 3. igaz

- 4. igaz
- 5. igaz
- 6. hamis
- 7. igaz
- 8. hamis
- 9. hamis
- 10. igaz
- 11. igaz
- 12. hamis
- 13. hamis
- 14. igaz
- 15. hamis
- 16. hamis
- 17. hamis
- 18. igaz
- 19. igaz

Skaláris szorzat az Rⁿ vektortérben

- 1. a, $\langle \underline{x}, y \rangle = 10$, $\langle \underline{x}, \underline{z} \rangle = 9$, $\langle y, \underline{z} \rangle = 6$,
 - b, $\|\underline{x}\| = \sqrt{29}$, $\|y\| = \sqrt{6}$, $\|\underline{z}\| = \sqrt{10}$,

c,
$$\underline{x}_e = \left(\frac{2}{\sqrt{29}}, 0, -\frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}\right), \quad \underline{y}_e = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}\right), \quad \underline{z}_e = \left(0, 0, \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right),$$

- d, \underline{x} és \underline{y} szöge: $\varphi = 0.71$ rad, \underline{x} és \underline{z} szöge: $\varphi = 1.01$ rad, \underline{y} és \underline{z} szöge: $\varphi = 0.68$ rad,
- 2. a, c, d, Útmutatás: helyettesítsen be a megfelelő azonosságokba, képletekbe!
 - b, $\|\underline{a}\| = \sqrt{21}$, $\|\underline{b}\| = \sqrt{10}$, $\|\underline{c}\| = \sqrt{6}$,
 - e, \underline{a} és \underline{b} szöge: φ = 2,68 rad, \underline{b} és \underline{c} szöge: φ = 1,44 rad,
- 3. A skaláris szorzat értéke alapján:
 - (-4, 2) és (1, 2) \Rightarrow ortogonális
 - (2, 0, -3) és (3, 5, -1) \Rightarrow nem ortogonális
 - (0, 4, -5) és $(6, 10, 8) \Rightarrow$ ortogonális
 - (1, -1, 0, 1) és (1, 0, 6, -1) \Rightarrow ortogonális
 - (2, 4, -3, 0) és (1, -5, 1, 1) \Rightarrow nem ortogonális
- 4. A skaláris szorzat értéke alapján:
 - (x, 0, -3, 2x) és (4, 5, 2,1) vektorokra: x = 1
 - -(x, 4, 1) és (x, -x, 3) vektorokra: x = 3 vagy x = 1
 - (2, 3x, 2) és (5, -2, 3x) vektorokra: nincs ilyen x
- 5. a, Az <u>v</u> vektor <u>v</u>-re vonatkozó Fourier-együtthatója: $\alpha = \frac{5}{11}$,
 - b, Az \underline{x} vektor \underline{v} vektorral párhuzamos összetevője: $\alpha \cdot \underline{v} = \left(-\frac{5}{11}, 0, -\frac{15}{11}, \frac{5}{11}\right)$,

Az <u>x</u> vektor <u>v</u> vektorra merőleges összetevője: $\underline{x} - \alpha \cdot \underline{v} = \left(\frac{27}{11}, 5, \frac{4}{11}, \frac{39}{11}\right)$.

- 6. a, Az <u>x</u> vektor <u>v</u>-re vonatkozó Fourier-együtthatója: $\alpha = -\frac{1}{2}$,
 - b, Az \underline{x} vektor \underline{v} vektorral párhuzamos összetevője: $\alpha \cdot \underline{v} = \left(0, -1, -\frac{1}{2}, \frac{1}{2}\right)$,

Az <u>x</u> vektor <u>v</u> vektorra merőleges összetevője: $\underline{x} - \alpha \cdot \underline{v} = \left(3, 0, \frac{1}{2}, \frac{1}{2}\right)$.

- 7. a, <u>Útmutatás:</u> mutassa meg, hogy \underline{b}_1 és \underline{b}_2 ortogonális, továbbá mindkét vektor egységre normált.
 - b, $\lambda_1 = -3$ és $\lambda_2 = -2$
- 8. a, <u>Útmutatás:</u> mutassa meg, hogy \underline{b}_1 és \underline{b}_2 ortogonális, továbbá mindkét vektor egységre normált.

b,
$$\lambda_1 = \frac{4}{\sqrt{2}}$$
 és $\lambda_2 = \frac{2}{\sqrt{2}}$

- 9. a, <u>Útmutatás:</u> mutassa meg, hogy \underline{b}_1 és \underline{b}_2 ortogonális, továbbá mindkét vektor egységre normált.
 - b, $\lambda_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}$ és $\lambda_2 = \frac{1}{2} \frac{\sqrt{3}}{2}$
- 10. a, $H = \{ \lambda_1 \cdot (1, 1, 0) + \lambda_2 \cdot (2, 0, -1) \mid \lambda_1, \lambda_2 \in R \}$
 - b, $H = \{ \lambda_1 \cdot (0, 1, 5) + \lambda_2 \cdot (1, 1, 5) \mid \lambda_1, \lambda_2 \in R \}$
- 11. a, $H^{\perp} = \{ \lambda_1 \cdot (1, 0, -1) + \lambda_2 \cdot (1, 1, -1) \mid \lambda_1, \lambda_2 \in R \}$
 - b, $H^{\perp} = \{ (x_1, 0, 0) \mid x_1 \in R \}$
 - c, $H^{\perp} = \{ \lambda \cdot (-3, -1, 1) \mid \lambda \in \mathbb{R} \}$
 - $d, \quad H^{\perp} = \{ \, \underline{o} \, \}$
- 12. a, $\underline{h} = (-5, 4, 0), \underline{h}^{\perp} = (0, 0, 2)$
 - b, $\underline{h} = (3, 2, 2), \underline{h}^{\perp} = (0, 0, 0)$
 - c, $\underline{h} = (0, 0, 2), \underline{h}^{\perp} = (0, 5, 0)$
 - d, $\underline{h} = \left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right)$, $\underline{h}^{\perp} = \left(\frac{1}{3}, \frac{7}{3}, -\frac{8}{3}\right)$,
- 13. a, $\pi(\underline{x}) = \left(-\frac{1}{26}, 0, -\frac{5}{26}\right)$,
 - b, $\pi(\underline{x}) = \left(\frac{7}{2}, -1, \frac{7}{2}\right)$,

Elméleti kérdések

- 1. hamis
- 2. hamis
- 3. hamis
- 4. igaz

- 5. hamis
- 6. igaz
- 7. igaz
- 8. igaz
- 9. igaz
- 10. hamis
- 11. igaz
- 12. igaz

A digitális melléklet leírása

A digitális melléklet első része a *Lineáris algebra* tantárgy előadásain használt ppt file-okat tartalmazza. Ezekben megtalálhatóak az adott anyagrész fogalmai, állításai, az alkalmazott jelölések. A példatárban mind a minta feladatok megoldásai, mind a gyakorló feladatok megfogalmazásai az itt bemutatott jelöléseket használják és az összeállított elméleti ismeretekre támaszkodnak. Az m1, ..., m6 sorszámú ppt file-ok a példatár fejezeteinek megfelelően az alábbi anyagrészeket tartalmazzák:

m1: Az R3 tér geometriája

m2: Az Rⁿ vektortér

m3: Mátrixok

m4: Lineáris egyenletrendszerek

m5: Lineáris leképezések

m6: Skaláris szorzat az Rⁿ vektortérben

Az m7, m8 és m9 sorszámú mellékletek – az elméleti anyagból kiemelve – néhány lineáris algebrai fogalom geometriai szemléltetését mutatják az *R*³ térben:

m7: A lineáris kombináció szemléltetése az R3 térben

m8: A lineáris függetlenség, összefüggőség geometriai szemléltetése

m9: Vektorhalmazok összege; alterek összege, direkt összege

A digitális melléklet második része néhány alapvető lineáris algebrai feladat részletes, lépésről lépésre történő megoldását mutatja be animált változatban. A megoldások részletes magyarázatokat, útmutatásokat tartalmaznak. Az animációk a következő feladattípusok megoldását mutatják be:

m10: <u>Bázistranszformáció alkalmazása vektorhalmaz rangjának</u> meghatározására

m11: Mátrix inverzének meghatározása bázistranszformációval

m12: Lineáris egyenletrendszerek megoldása bázistranszformációval

m13: Mátrixszorzás a Falk elrendezés alkalmazásával