Def:
$$V$$
, W K -vector spaces, $B = (\omega_1, \omega_2, ..., \omega_m)$ basis for V

$$B' = (\omega_1, \omega_2, ..., \omega_m)$$
 basis for V'

$$+ to - get basis$$

$$V \Rightarrow W \quad K - line map. We have:$$

$$[(\omega_1)]_{B'} = [(\omega_1)]_{B'} \quad [(\omega_m)]_{B'}$$

2. Let $f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^2)$ be defined by

$$f(x, y, z) = (y, -x)$$

and consider the bases $B = (v_1, v_2, v_3) = ((1, 1, 0), (0, 1, 1), (1, 0, 1))$ of \mathbb{R}^3 , $B' = (v'_1, v'_2) = ((1, 1), (1, -2))$ of \mathbb{R}^2 and let $E' = (e'_1, e'_2)$ be the canonical basis of \mathbb{R}^2 . Determine the matrices $[f]_{BE'}$ and $[f]_{BB'}$.

Sol:
$$f(u_1) = f(0,1,1) = (1,0)$$

 $f(u_2) = f(0,1,1) = (1,0)$
 $f(u_3) = f(1_10,1) = (0,-1)$
=) $f(u_3) = (f(u_1))_{E'} [f(u_2)]_{E'} [f(u_3)]_{E'}$
To $f(u_1) = (f(u_1))_{E'} [f(u_2)]_{E'} [f(u_3)]_{E'}$
 $f(u_1) = (f(u_1))_{E'} [f(u_2)]_{E'}$
 $f(u_3) = (f(u_1))_{E'} [f(u_2)]_{E'}$
=) $f(u_3) = (f(u_3))_{E'} [f(u_3)]_{E'}$
=) $f(u_3) = (f(u_3))_{E'} [f(u_3)]_{E'}$
=) $f(u_3) = (f(u_3))_{E'} [f(u_3)]_{E'}$
=) $f(u_3) = (f(u_3))_{E'} [f(u_3)]_{E'}$

$$f(v_2) = (1,0) = T(v_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$f(v_3) = (0,-1) = T(v_3) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$f(v_3) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\begin{array}{lll}
\mathcal{L}(\lambda_{1}) &= & (1, -1) \\
(1, -1) &= & k_{1} & (0, -1) \\
(1, -1) &= & k_{2} & (0, -1) \\
&= & (1, -1) &= & k_{1} & (1, -1) & k_{2} & (2, -2) \\
&= & (2, -1) &= & (k_{1} + k_{2} + k_{3} + 2k_{2}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + 2k_{3} + 2k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + 2k_{3} + 2k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + 2k_{3} + 2k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + 2k_{3} + 2k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + 2k_{3} + 2k_{3} + 2k_{3} + 2k_{3} + 2k_{3}) \\
&= & (k_{1} + k_{2} + 2k_{3} + 2k_{3}$$

$$\begin{cases}
(u_{2}) = (1,0) & T((u_{2})) = (k_{1}) \\
k_{2} & k_{2}
\end{cases}$$

$$= 7 \quad (1,0) = k_{1} \cdot (1,1) + k_{2} \cdot (1,-2)$$

4. Let $f \in End_{\mathbb{R}}(\mathbb{R}^4)$ with the following matrix in the canonical basis E of \mathbb{R}^4 :

$$[f]_E = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 1 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix}.$$

(i) Show that $v = (1, 4, 1, -1) \in Ker f$ and $v' = (2, -2, 4, 2) \in Im f$.

(ii) Determine a basis and the dimension of Ker f and Im f.

(iii) Define f.

4. Let $f \in End_{\mathbb{R}}(\mathbb{R}^4)$ with the following matrix in the canonical basis E of \mathbb{R}^4 :

$$[f]_E = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 1 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix}.$$

- (i) Show that $v = (1, 4, 1, -1) \in Ker f$ and $v' = (2, -2, 4, 2) \in Im f$.
- (ii) Determine a basis and the dimension of Ker f and Im f.
- (iii) Define f.

(i)
$$k \in K_{1-1}$$
 (ii) $l \in K_{1-1}$ (iii) $l \in K_{1-1}$ (iv) $l \in K_$

$$= \begin{pmatrix} x + y - 3 & 2 + 2 + 1 \\ - y + y + z + 4 + 1 \\ 2 & y + y - 5 & z + t \end{pmatrix}$$

$$= \begin{pmatrix} 1, 9, 90 \end{pmatrix} \qquad (9,1,30)$$

$$= \begin{pmatrix} (9,1,30) \\ (1, 9, 90) \\ (1, 19, 90) \end{pmatrix} \qquad (9,1,30)$$

$$= \begin{pmatrix} (9,1,30) \\ (1, 19, 90) \\ (1, 19, 90) \end{pmatrix} \qquad (9,1,30)$$

$$= \begin{pmatrix} (9,1,30) \\ (1, 19, 10) \\ (1, 19, 10) \end{pmatrix} \qquad (9,1,30)$$

