

Code: 15CE-3	

Register				
Number			300	

III Semester Diploma Examination, April/May-2017

ENGINEERING MECHANICS AND STRENGTH OF MATERIALS

Tin	ne : 3	Hours	til		Max. Marks : 1	00
Not	e :	Answer any si	x questions f	from Part-A, and Seven	questions from Part-B.	
				PART – A		
L.	Diff	erentiate betwe	en coplanar	and non-coplanar force	system with neat sketches.	5
2.	Defi	ine the following	ng terms :			5
	(a)	Ductility				
	(b)	Resilience				
	(c)	Creep	型 煮			
	(d)	Fatigue				
	(e)	Endurance				
		75				
3.	Fine	the centroid of	f a T-section	with a flange of 150 ×	50 mm, web of 50 × 150 mm.	5
4.	Giv	e the classifica	tion of beam	s with sketches.		5
5.	Dra	w SFD and B	MD for a car	ntilever beam, which c	arries two point loads of 5 kN	
	and	2 kN @ a di:	stance of 2 n	n and 4 m respectively	from fixed end. The length of	f
	bear	m = 4 m.				5
				1 of 4	[Turn ov	er

6. What are the assumptions made in theory of simple bending?

5

Derive an equation for section modulus of a rectangular section.

5

5

- A cantilever beam 2.4 m long carries a point load of 30 kN at its free end, find the slope of the beam, under the load. Take flexural rigidity for the beam section 20 × 10¹² N-mm².
- Define column, write the Euler's crippling load formula for different end conditions.

PART - B

 Fig. shows four forces acting at a point, determine the magnitude and direction of the resultant force.

A rod when subjected to an axial load develops a longitudinal strain of 0.0025 and lateral strain of 0.00075 and a stress of 500 N/mm². Calculate, Young's modulus, Poisson's ratio, modulus of rigidity and bulk modulus.

10

An axial pull of 30 kN is acting on a bar consisting of three lengths, as shown in fig. if E = 2.1 × 10⁵ N/mm². Determine the stresses in each section and the total elongation of bar.

13. Find the centroid of the plane figure shown.

 Find the M.I. of I-Section shown in figure, about the horizontal axis passing through the centroid.

- A simply supported beam of 7 m carries a udl of 5 kN/m over 4 m length from the left support and a point load of 40 kN at 2 m from right support, draw SFD and BMD.
- 16. Draw SFD and BMD for a single over hanging beam of span 2 m, with a overhanging portion of 1 m, on right side, carries a udl of 2 kN/m over entire beam, with a point load of 1 kN at free end.
- A simply supported beam has a span of 6 m carrying udl of 3 kN/m over entire span.
 If the maximum bending stress not to exceed 10 N/mm². Calculate the width and depth of beam.

Take depth of beam is twice of its width.

10

- 18. A beam 4 m long simply supported at its ends carries a point load of 10 kN at its centre. It the slope at the ends of the beam not to exceed one degree, find the deflection at its centre.
- 19. An alloy tube 4 m long extends 6 mm under a tensile load of 50 kN. Calculate the safe load with a factor of safety of 04 for a tape, when it is used at strut with both ends being fixed. The inner and outer diameter of this tube is 25 mm and 40 mm respectively.