Generalized functions Exercise sheet 1

Solve the following exercises. Exercises marked with * are optional. A good additional reference is Terence Tao's notes, available at: https://terrytao.wordpress.com/2009/04/19/245c-notes-3-distributions/

Exercise 1. Fix $1 \le p < \infty$.

- (a) Show that $L^1(\mathbb{R}) * L^p(\mathbb{R}) \subset L^p(\mathbb{R})$.
- (b) Show that compactly supported bounded functions form a dense subset of $L^p(\mathbb{R})$, with respect to $\|\cdot\|_p$. Hint: Given $f \in L^p(\mathbb{R})$, consider the functions $f_n = f \cdot I_{\{x:|x| < n \ f(x) < n\}}$, where I_{\bullet} denotes the indicator function.
- (c) Prove that $C_c^{\infty}(\mathbb{R})$ is dense in $L^p(\mathbb{R})$, with respect to $\|\cdot\|_p$.
- (d) (*) Is the inclusion $C_c(\mathbb{R}) \hookrightarrow L^p(\mathbb{R})$ continuous with respect to the uniform convergence topology on the domain?

Exercise 2. Compute the generalised function $x^n \delta_0^{(m)}$, for any $n, m \in \mathbb{N}$.

Exercise 3. (*) We showed in class that given $f, g \in C_c^{\infty}(\mathbb{R})$, we have an inclusion $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g)$. Find an example of $f, g \in C_c^{\infty}(\mathbb{R})$ for which this inclusion is strict.

Exercise 4. Let $\xi \in C^{-\infty}(\mathbb{R})$. Given $U \subseteq \mathbb{R}$, the notation $\xi \mid_U \equiv 0$ means $\langle \xi, f \rangle = 0$ for all $f \in C_c^{\infty}(U)$.

- (1) Let $U_1, U_2 \subseteq \mathbb{R}$ be open. Show that if $\xi \mid_{U_1} \equiv \xi \mid_{U_2} \equiv 0$ the $\xi \mid_{U_1 \cup U_2} \equiv 0$.
- (2) Show that if $\{U_{\alpha}\}_{\alpha_I}$ is a collection of arbitrary cardinality of open subsets of \mathbb{R} with compact closures and $\xi \mid_{U_{\alpha}} \equiv 0$ for all $\alpha \in I$, then $\xi \mid_{\bigcup_{\alpha} U_{\alpha}} \equiv 0$.

Exercise 5.

(1) Given $D \subseteq \mathbb{R}$ compact and $k \geq 0$, the C^k -norm on $C^k(D)$ is defined by $||f||_{C^k} := \sup_{x \in D} \sum_{i=1}^k ||f^{(i)}(x)||$. Show that a functional $\xi : C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ is continuous if and only if there exists $k \geq 0$ and c > 0 such that

$$|\langle \xi, f \rangle| \le c \|f\|_{C^k}$$
 for all $f \in C^{\infty}(D)$.

Deduce that for any $\xi \in C^{-\infty}(\mathbb{R})$ and $D \subseteq \mathbb{R}$ compact, there exists $k_D \geq 0$ and $c_D > 0$ such that $|\langle \xi, f \rangle| \leq c_D \|f\|_{C^{k_D}}$, whenever $\operatorname{Supp}(f) \subseteq D$.

- (2) Let ξ be a distribution supported on $\{0\}$.
 - (a) Let $\psi \in C_c^{\infty}(\mathbb{R})$ with $\operatorname{Supp}(\psi) \subseteq [-1,1]$ and such that $\psi \mid_U \equiv 1$ for some open $U \ni 0$. Show that $\langle \xi, g \rangle \leq c \sup_{x \in [-1,1]} \sum_{i=1}^k \left| (g\psi)^{(i)}(x) \right|$, for all $g \in C_c^{\infty}(\mathbb{R})$, for suitable $k \geq 0$ and c > 0.
 - (b) Prove that there exist $k \geq 0$ such that $x^k \xi \equiv 0$. Hint: Use the previous item to bound the value $\langle x^k \xi, f \rangle = \langle \xi, x^k f \rangle$ using test functions of the form $\psi_{\epsilon}(x) = \psi(\epsilon^{-1}x)$, with ψ as above.

Exercise 6. Let $\xi \in C^{-\infty}(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R})$. Prove the following assertions.

- (1) If f has compact support then $\xi * f$ smooth.
- (2) If ξ has compact support then $\xi * f$ is smooth.

Exercise 7. Let A be a differential operator with constant coefficients.

- (1) Describe the Green function $(G_A \text{ such that } A(G_A) = \delta_0)$ without using generalized functions.
- (2) Set

$$A_{G_A}(g)(y) = \int_{-\infty}^{\infty} G_A(x,y)g(x)dx.$$

Show that $A(A_{G_A}(g)) = g$ for every $g \in C_c^{\infty}(\mathbb{R})$.