Handoff Management

Handoff

September 30, 2005

Girish Kumar Patnaik

BS Coverage Area

- BS coverage area: irregular
- In the cell boundary
 - Signal from a neighboring BS
 - Signal from the serving BS
- Otherwise: Forced termination

Issues for Handoff Management

- Handoff detection
 - Who and how
- Channel assignment
- Radio link transfer

Handoff Detection

- Handoff detection:
 - Who initiates the handoff process?
 - How is the need for handoff detected?
- Handoffs are expensive.
- Overlap of adjacent coverage area is desired
- Handoff criteria
 - If not chosen appropriately, then the call might be handed back and forth several times between two adjacent BSs
 - If too conservative, then the call may be lost before the handoff
- Unreliable and inefficient handoff procedures will reduce the quality and reliability of the system

Link Measurement

- Handoff detection is based on link measurement.
- Signal measurements used to determine the quality of a channel:
 - WEI (Word Error Indicator)
 - Metric that indicates whether the current burst was demodulated properly in the MS
 - RSSI (Received Signal Strength Indication)
 - QI (Quality Indicator)
 - Signal to interference and noise (S/I) ratio
- To make the handoff decision accurately and quickly, it is desirable to use both WEI (over a period of time) and RSSI (instantaneously)
- RSSI measurements are affected by Fading

Fading

- Distance-dependant Fading or Path Loss
 - Occurs when the received signal becomes weaker due to increasing distance between MS and BS
- Lognormal Fading or Shadow Fading
 - Occurs when there are physical obstacles (e.g. hills, towers, and buildings) between the BS and MS, which can decrease the received signal strength
- Rayleigh Fading or Multipath Fading
 - Occurs when two or more transmission paths exist between MS and BS
 - Two types of Multipath Fading
 - Rayleigh Fading: when obstacles are close to the receiving antenna
 - Time Dispersion: when the object is far away from the receiving antenna

Handoff Detection

- Ideally, the Handoff decision should be based on distance-dependent fading and, to some extent, on shadow fading
- Handoff decision is independent of Rayleigh Fading
- This can be accomplished by averaging the received signal strength for a sufficient time period

Channel Comparison

- MS must also measure or sample all frequencies in the band of interest to find suitable handoff candidate
- Channel comparisons for handoff are based on RSSI and QI metrics
- Since multipath environment tends to make the RSSI and QI metric vary widely in the short term
- Since it is preferable not to perform handoff to mitigate brief multipath fades
- Such handoff could cause unnecessary load on the network
- Hence the MS should average or filter these measurements before using them to make decision

Channel Comparison

- Handoff should be initiated whenever the channel has the best filtered RSSI exceeding that of the current channel.
- Filtering process applied to the RSSI and QI metrics will reduce their usefullness in mitigating sudden "shadow" fades, such as when rounding a corner or closing a door.
- The downlink WEI can be used to detect and correct these trouble situations on an "override" basis.
- C_{down}: number of downlink word errors that is reset by every complete measurement cycle
- If C_{down} exceeds some threshold, the MS should initiate a handoff when an appropriate channel can be found September 30, 2005

Dwell Timer

- To reduce the potential tendency of an MS to request a large number of handoffs in quick succession
- This timer prevents the MS from requesting another handoff until some reasonable period of time after a successful handoff.
- Adaptive measurement interval for handoffs:
 - Uses Dopler frequency to estimate the velocity of the vehicle
 - Then averaging measurement interval

Handoff detection

- As the MS moves away from one BS toward another, the signals received from the first BS become weaker, and from the second BS become stronger
- This slow effect is often masked by the multipath Rayleigh fading and the lognormal shadow fading
- Short-term Rayleigh fading is handled in mobile system designs by techniques:
 - Diversity techniques such as Frequency hopping, multiple receivers
 - Signal Processing techniques such as bit interleaving, equalizers
- Rayleigh fading is frequency dependent
- Longer-term shadow fading is compensated by increasing transmitter power and the co-channel reuse distance

Strategies for Handoff detection

- Who makes a decision for handoff?
- Three handoff detection schemes:
 - Mobile-controlled handoff (MCHO)
 - MS continuously monitors the signals of the surrounding BSs and initiates handoff process when some criteria are met
 - Network-controlled handoff (NCHO)
 - The surrounding BSs measure the signal from the MS, and the network initiates the handoff process when some criteria are met
 - Mobile-assisted handoff (MAHO)
 - The network asks the MS to measure the signal from the surrounding BSs. The network makes the handoff decision based on reports from the MS
- Advanced mobile systems follow MAHO

Mobile-Controlled Handoff (MCHO)

- Popular for low-tier radio systems
- MS continuously monitors the signal strength and quality from the accessed BS and several handoff candidate BSs
- When some handoff criteria are met, the MS checks the best candidate BS for an available traffic channel and launches a handoff request
- Two common handoffs:
 - automatic link transfer (ALT) transfer between two base stations
 - time slot transfer (TST) transfer between channels of a single
 BS

Mobile-Controlled Handoff (MCHO)

- Automatic link transfer control requires the MS to make quality measurements of the current and candidate channels in the surrounding BSs.
- The MS's handoff control between channels on the same BS is made possible by passing uplinkquality information, in the form of word-error indicator, back to the MS on the downlink
- As a part of the demodulation process, the MS obtains two pieces of information: RSSI and QI

Mobile-Controlled Handoff (MCHO)

MS-quality maintenance processing

Network-Controlled Handoff (NCHO)

- Used by low-tier CT-2 plus and by high-tier AMPS
- BS monitors the signal strength and quality from the MS
- When deteriorate below some threshold, the network arranges for a handoff to another BS
- The network asks all surrounding BSs to monitor the signal from the MS and the measurement results back to the network
- The network then chooses a new BS for the handoff and informs both the MS (through old BS) and the new BS

Network-Controlled Handoff (NCHO)

- Network uses multiple (current and surrounding) BSs to supervise the quality of all current connections by making measurements of RSSI
- MSC will command surrounding BSs to occasionally make measurements of these links
- MSC makes the decision when and where to effect the handoff
- Heavy network signaling traffic and limited radio resources at BSs prevent frequent measurements of neighboring links ⇒ long handoff times
- Handoff time: upto 10sec or more

Mobile-Assisted Handoff (MAHO)

- Used in GSM, IS-136 and IS-95
- The network asks the MS to measure the signal from the surrounding BSs and report back to old BS
- The network makes the handoff decision based on the reports from the MS.
- Handoff process is more decentralized
- The MS and the BS supervise the quality of the link, RSSI and WEI values
- In GSM the MS transmits measurements twice a second
- GSM handoff execution time ~ 1sec
- In both NCHO and MAHO if the network can't tell the mobile about the new channel/time slot/... to use before the link quality has decayed too far, the call may be terminated

Handoff Failures

- No channel on selected BS
- Insufficient resources as determined by the network (for example, no available bridge, no suitable channel card {for example, none supporting the voice CODEC or radio link coding}
- It takes too long for the network to set up the new link
- Target link fails during handoff

Channel Assignment

Goals:

- to achieve a high degree of spectrum utilization for a given grade of service
- use a simple algorithm
- require a minimum number of database lookups
- Unfortunately it is hard to do all of these at once!
- If there is no available channel, then
 - new calls are blocked
 - existing calls that can't be handed over \Rightarrow forced terminations

Channel Assignment Strategies

- Schemes introduced to reduce the number of forced terminations, at the cost of increased block or decreased efficiency:
 - Nonprioritized scheme (NPS) handoff call treated the same as a new call
 - Reserved Channel scheme (RCS)- reserves some resources for handoffs
 - Queuing Priority scheme (QPS) exploit the over lap (handoff area)
 - Subrating scheme (SRS) switching codes of one or more calls to free resources

Flowchart for Non-prioritized Scheme

Flowchart for Reserved Channel Scheme

September 30, 2005

Girish Kumar Patnaik

Flowchart for Queuing Priority Scheme (for Handoff Calls)

Girish Kumar Patnaik September 30, 2005

Queuing Priority Scheme (for Handoff Calls)

- Scheduling policies for the QPS waiting queue:
 - FIFO
 - Measured-based priority scheme (MBPS)
 - A nonpreemptive dynamic priority policy
 - Priorities are defined by the power level that the MS receives from the BS of the new cell

Flowchart for Subrating Scheme (for Handoff Calls)

September 30, 2005 Girish Kumar Patnaik 27

Implementation Issues

- RCS is easy to implement
- It reduces the forced termination probability more effectively than NPS
- New call-blocking probability for RCS is larger than that of NPS
- RCS is desirable when reducing forced termination is much more important than reducing new call blocking

Implementation Issues

- Implementation for the measurement-based priority scheme (MBPS) is more complex than that for the FIFO scheme, but performance is identical
- QPS reduce forced terminations, at the expense of increased new call blocking
- Probability of incomplete calls for FIFO and MBPS is slightly lower than that for NPS
- QPS add hardware/software complexity for both BSs and MSs to manage waiting queues

Implementation Issues

- SRS has the least forced termination probability and the probability of incomplete calls when compared with other schemes.
- This benefit is gained at the expense of the extra hardware/software complexity required to subrate a channel.

Implementation Issues: Conclusion

- Trade-off between implementation complexity and performance
- If reducing forced termination is more important than reducing total call incompletion, then RCS, QPS, and SRS are all better than NPS
- If implementation cost is major concern, then RCS and NPS should be considered.
- To achieve the best performance with a slight voice quality degradation, SRS should be selected.
- If BS density is high in a given PCS service area, then QPS may be good choice.

Handoff Management: Radio Link Transfer

Link Transfer Procedure

- Hard Handoff-Oriented
 - MS connects with only one BS at a time
 - Some interruption in the conversation during the link transition
 - Used in TDMA and FDMA systems
- Soft Handoff-Oriented
 - MS receives/transmits the same signal from/to multiple
 BS simultaneously
- Soft Handoff is more complicated than Hard Handoff

Link Transfer Types

- Two Operations
 - The radio link is transferred from the old BS to the new BS.
 - The network bridges
 the trunk to the new
 BS and drop the trunk
 to the old BS.

Link Transfer Types

- Link transfer cases:
 - 1. Intracell
 - Link transfer is between two time slots or channels in the same BS
 - In TDMA system, this is referred as Time Slot Transfer (TST)
 - 2. Intercell or inter-BS
 - 3. Inter-BSC
 - 4. Intersystem or inter-MSC
 - 5. Intersystem between two PCS networks
- Focus on Inter-BS Handoff

Link Transfer Types

Handoffs, mobile moves within PCS1 and then on to PCS2

Hard Handoff

MCHO Link Transfer

- New radio channel is selected by MS
- Handoff request message is transmitted by the MS to the new BS
- MS is responsible to choose the best BS

MCHO Inter-BS handoff message flow

MAHO/NCHO Link Transfer

MAHO Inter-BS handoff message flow

Subrating MCHO Link Transfer

- Procedure of subrating a full-rate channel into subrated channels for handoff request consists of three parts:
 - 1. Requesting the Handoff
 - 2. Subrating an existing call
 - 3. Assigning the newly created subrated channel to the MS requesting the Handoff

Message flow for subrating automatic link transfer

Soft Handoff

- CDMA allows many users to share a common frequency/time channel for transmission, and the user signals are distinguished by spreading them with different PN sequences.
- Also, an MS can transmit/receive the same information to/from several BSs if they have same PN sequence
- Signaling and voice information from multiple BSs are combined (or bridged) at the MSC, and the MSC selects the highest-quality signals from the BSs.
- Signaling and voice information must be sent from the MSC to multiple BSs, and the MS must combine the results
- Thus, within the overlap area of two cells, an MS can simultaneously connect to both the old and new BSs, and the link transfer procedure is no longer time-critical
- Focus on adding and removing BSs with MAHO soft handoff

Adding a new BS

Dropping the old BS

Acknowledgement

- Slides obtained from home page of Prof.Phone Lin
- Slides obtained from home page of Prof.Gerald Q. Maguire Jr.