BRAC UNIVERSITY

BRAC University

Department of Computer Science and Engineering (CSE)

CSE230: Discrete Mathematics

SET - B

Semester: **Spring 2024** Examination: **Quiz 5**

Time: 20 minutes
Full marks: 20

Name:	ID:	Section:	
	10.	Deciron.	

(There are 2 questions total. You must answer both.

Feel free to use the back of the question paper, if needed.)

- Q1. Assume that the population of the world in 2013 was 6.7 billion and is growing at the rate of 1.2% per year.
 - (a) Set up a recurrence relation for the population of the world n years after 2013.
 - (b) Find an explicit formula for the population of the world n years after 2015.

[3+7=10 Marks]

- **Q2.** For the following list of integers: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, ...
 - (a) Provide a simple formula that generates the terms of this integer sequence. $(a_n = ?)$
 - **(b)** Using your formula for a_n , calculate $\sum_{i=10}^{14} a_i$ by evaluating the individual terms.

[7+3=10 Marks]

End

Formulation in general after 2013 is denoted by an $a_1 = 6.7 \times (1.2)$, $a_2 = 6.7 \times (1.2) \times (1.2)$.

i. $a_1 = a_{n-1} \times (1.2)$

a)
$$a_0 = 0 = 0+0$$
 = $0+0$
 $a_1 = 2 = 1+1 = 1+1^2$
 $a_2 = 6 = 2+4 = 2+2^2$
 $a_3 = 12 = 3+9 = 3+3^2$
 $a_4 = 20 = 4+16 = 4+4^2$
 $a_5 = 30 = 5+25 = 5+5^2$
 $a_m = m+m^2$

6)
$$\alpha_{10} = 10 + 10^{2} = 110$$
 $\alpha_{11} = 11 + 11^{2} = 132$
 $\alpha_{12} = 12 + 12^{2} = 156$
 $\alpha_{13} = 13 + 13^{2} = 182$
 $\alpha_{14} = 14 + 14^{2} = 210$

$$\sum_{i=0}^{14} \alpha_i^2 = \sum_{i=0}^{14} i + i^2 = 110 + 132 + 156 + 182 + 210$$

$$= \boxed{790}$$