Attention (cont.)

Arush Iyer

Review

- Attention ets models to selectively focus on the most important parts of input data
- Types
 - Self attention
 - Channel attention (what feature channels matter most)
 - Spatial attention (which regions are most important)
 - o Post-hoc visualization methods
- Implementations in our code
 - CBAM (implements spatial and channel attention through two sequential sub-models)
 - Grad-CAM (post-hoc visualization method)

- High level:
 - Like CBAM, integrates spatial and channel attention
 - Unlike CBAM, applies attention streams in parallel (vs sequentially)

Input Feature Map

Channel Spatial
Attention Attention

(Element-wise addition, then sigmoid)

Output Refined Feature Map

- F: Input feature map (CxHxW)
- M(F): Output attention map,
- $M_c(F)$: channel branch,
- M_s(F'): spatial attention map

- Hyperparameters
 - o d: dilation value
 - r: reduction factor

- Math
 - Channel Branch
 - Perform global pooling (implemented as average here but can also do max)
 - Pass it through an MLP
 - Reduction factor r reduces number of channels used to train MLP
 - Eventually restored to original number of channels
 - Apply Batch Normalization: normalize to align it with the scale of the Spatial Branch

$$\mathbf{M_c(F)} = BN(MLP(AvgPool(\mathbf{F})))$$

= $BN(\mathbf{W_1}(\mathbf{W_0}AvgPool(\mathbf{F}) + \mathbf{b_0}) + \mathbf{b_1}),$

- Math
 - Spatial Branch
 - Reduce the number of channels by the reduction factor r
 - Apply two dilated convolutions
 - Basically: introduce holes between elements
 - \circ d = 3 => skip every 3 pixels
 - Use dilation factor d to increase the receptive field
 - Each output sees a larger part of the input, allowing the model to capture longer-range spatial dependencies
 - Re-compress to a single attention map and apply batch normalization

$$\mathbf{M_s}(\mathbf{F}) = BN(f_3^{1\times 1}(f_2^{3\times 3}(f_1^{3\times 3}(f_0^{1\times 1}(\mathbf{F}))))),$$

- Math
 - Combining the two
 - Authors chose element wise summation
 - Take a sigmoid to get everything between 0 and 1

$$M(F) = \sigma(M_c(F) + M_s(F)),$$

- Performance
 - Generally, subtle performance changes compared to CBAM
 - Possibly faster computation because spatial and channel attention are implemented in parallel
- Hyperparameter tuning
 - r: reduction ratio
 - Higher = stronger compression, using fewer parameters, potential risk of underfitting
 - Lower = more parameters but much slower
 - o d: dilation value
 - Higher = potential to miss local features but capture more global context and vice versa
- Implementation
 - Github repos that have <u>BAM</u> modules

- Quick review
 - Channel submodule
 - Apply average and max pooling across each channel
 - Run those through an MLP
 - Apply a sigmoid activation function to get weights between 0 and 1

$$\mathbf{M_c}(\mathbf{F}) = \sigma(MLP(AvgPool(\mathbf{F})) + MLP(MaxPool(\mathbf{F})))$$

- Spatial submodule
 - Apply average and max pooling
 - Stack average and max maps together
 - Apply a convolutional layer (usually a 7x7 filter size)
 - Apply the sigmoid function

$$\mathbf{M_s}(\mathbf{F}) = \sigma(f^{7\times7}([AvgPool(\mathbf{F}); MaxPool(\mathbf{F})]))$$

Code from ResNet_CBAM _4_27_patches.ipynb

```
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self). init ()
        self.avg pool = nn.AdaptiveAvgPool2d(1)
        self.max pool = nn.AdaptiveMaxPool2d(1)
        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()
   def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        return self.sigmoid(avg out + max out)
```

```
class ChannelAttention(nn.Module):
    def init (self, in planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg pool = nn.AdaptiveAvgPool2d(1)
        self.max pool = nn.AdaptiveMaxPool2d(1)
        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()
   def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        return self.sigmoid(avg_out + max_out)
```

- Channel sub-module
 - o self.avg_pool/self.max_pool: implementation of average and max pooling
 - self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
 - First layer of the neural network
 - Reduces the number of channels from in_planes to in_planes/ratio
 - Can change ratio number (smaller = less compression = more expressive)
 - o self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
 - Second layer of the neural network
 - Returns the number of channels back to in planes
 - Essentially, MLP compresses input, learns, and then reprojects back to its original size
 - Using ReLu to add nonlinearity so model can learn more complex relationships and sigmoid so the weights are between 0 and 1

```
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        padding = 3 if kernel_size == 7 else 1
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
       max_out, = torch.max(x, dim=1, keepdim=True)
       x = torch.cat([avg out, max out], dim=1)
        return self.sigmoid(self.conv1(x))
```

- Spatial sub-module
 - kernel size: how big the convolutional filter is (higher means bigger)
 - Basically, how large the view is when we're looking over the image,
 - Can change this (smaller = see finer details)
 - o padding: how much padding you need so the output size is the same
 - Not super important
 - o self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
 - First number (2) is the input channel. Need 2 because you are feeding it average and max pooling maps
 - Second number (1) is the output channel. You are outputting 1 map
 - Again have sigmoid function

```
class ResNetCBAM(nn.Module):
    def __init__(self, num_classes=2):
        super(ResNetCBAM, self).__init__()
        base = models.resnet50(pretrained=True)
        self.features = nn.Sequential(
            base.conv1,
            base bn1,
            base relu,
            base maxpool,
            base.layer1,
            CBAM(256),
            base layer2,
            CBAM(512),
            base layer3,
            CBAM(1024),
            base.layer4,
            CBAM(2048),
        self.avgpool = base.avgpool
        self.fc = nn.Linear(2048, num_classes)
```

- Adding CBAM modules after each ResNet block
- Refining features at each layer
- Potential tweak: try just adding
 CBAM after layers 3 and 4
 - Logic: early layer capture basic features, attention might not be helpful

- Summary of what we can tune
 - Decrease the ratio in Channel submodule
 - Decrease kernel size in Spatial submodule
 - Add CBAM just after layers 3 and 4
 - Get rid of max pooling and just add average pooling in Channel submodule

Next steps

- End-to-end, contextualized example of attention
- Grad-CAM explanation
- Do more research on vision transformers
- Other?

Additional Sources

Park, Jongchan, et al. BAM: Bottleneck Attention Module. arXiv preprint arXiv:1807.06514, 2018. https://arxiv.org/abs/1807.06514.