little o notation

 $\Rightarrow \left| \frac{g(x)}{g(x)} \right| \Rightarrow 0 \text{ as } x \Rightarrow q$ $f(x) = o(g(x)) as x \rightarrow a$

Capital O

$$\int_{(x)} = \Theta(g(x)) \text{ as } x \to \alpha \quad \Longrightarrow \quad \int_{x} = O(g) \quad \& \quad g = O(g)$$

Asymptotic definitions

Servey:
$$J(x) \sim \sum_{j=1}^{N} J_j(x)$$
 or $x \rightarrow a$

$$\forall \text{ finde } m \in N, \quad J(x) - \sum_{j=1}^{M} J_j(x) = o\left(J_m(x)\right)$$

Sequence:
$$(\alpha_n)_{n\geq 1}$$
 S.1. $\alpha_{n+1}(x) = o(\alpha_n(x))$ as $x \rightarrow a$

Given a sequence $(a_n)_{n>1}$, the asymptotic serves

$$j \sim \sum_{j=1}^{8} j_j \alpha_j(x)$$
, then j_j coeff. unique

$$J(x, E) \sim \sum_{i=1}^{N} J_i(x) a_i(E)$$
 as $E \to 0$ is a pormeré expansion

Poincere expansions have unreque coefficients di, given (an),,,,

Singular Expensions (all pretty general, particular to internals)

- · Reseale 1st. (include terms left out when set E=0)
- · For non-linear problems, reside both of & x
- · Foo some problems, need different residings in different places.

 use correct sealing in correct place & match

Matching Matching Motobrog M

If we have diperent ex possions in disperent places, read to match:

- (a) Ad how: loostrat it by ease (fen checks bould be mong)
- 1 Von Oytees Matchery Rule (Sheet 4 QS) EpHaja Ha Epj
- @ intermediate vocables (did his w/ integrals (Sheet 2 Q Z 3), but non-exam for ODEs).

Composite expensions: C= Epj + Hej - Ep Hej (not poincere =) not unique, sheet 4 @s)

Endpoints:

interior:

neutron's Umma $I(\lambda) \sim \frac{1}{\lambda} J(A) e^{-\lambda} g^{(A)}$ (simple cosos)

loplace's method: g'(x0)=0 $I(\lambda) \sim \sqrt{\frac{2\pi}{2\pi}} \left\{ (x_0) e^{\lambda g(x_0)} \right\}$ Regular Expansions

- 1) Iteration method
- Successive approximation
- set E=0, solve for jo
 - Set j= j, + e, , journel esact som for e,
 - Appoor some for e, (by setting $\varepsilon=0$), to get \hat{e}_1 , \hat{e}_1 + \hat{e}_1 + \hat{e}_2 , ...
- 3 Series Exporsion - Guess series f = do(E) fo + d,(E) f, + ...
 - Substitue in & some for each 10, 11, 12, ...

a regular problem. De me abore & it will not. Adolem for Singular Situations.

If you set &=0, lose

) so RESCALT 10 trep Drose important terms

Choice of reseating

- Balance terms in equations or integrals (sheet 1 @ 4)
- · Some for E=0 8 look for where terms are larger or Smaller Man expected (Sheet 4 @ 3 & @ 4)
 - Some leading of 1st order & see where he consection term becomes large.

General $x = \Theta(\frac{1}{\epsilon}) \rightarrow correction lem)$ Asymptotic

Integrals w/ exponentials

$$I(\lambda) = \int_{\beta}^{\beta} J(x) e^{\lambda g(x)} dx \quad \text{os} \quad \lambda \to \infty$$

W/ integral, more information Tran you need. Deperent intergrands give the Same number (the integral - more degrees of freedom).

look at where integral exponentially dom Steepost descent:

deporm contour s.t. g'(2.) = 0 (saddle pt) Then use laplace's method

I(x) = \(\int \frac{\hat{\gamma} \hat{\gamma} \hat{\gamm => set ig(x) = g(x) & use steapert descent

Integral Transforms by zero axtending gle)= { Ilt) t>0

Fourier Transforms

('Jonad'	j(ω)=	$\int_{-\infty}^{\infty} f(t)e^{-iut}$	dt
inere) (E) = =	$\frac{1}{2\pi}\int_{0}^{\infty} \tilde{f}(\omega) e$	iwtdw

Fourier Properties

	hame	9(६)	g (ω)
	Shing 1	}(t-α)	e-iwa J(w)
	Sh.M.S	eint j(t)	J(m-2)
	Scaling	j(at)	1) (w/a)
	0.A)'le)	ίω ζ (ω)
	×t	t }(+)	i dj i dw (w)
U	oondul a s	5 1 (T) g(t-T)de	โ(w)จึเพ)

Plancherol's Pressem

1 5 J(w) 2 dw =	J 2 t
enery in trequency	onegy in trave

Laplace Transpoons

$\hat{j}(s) = \int_{0}^{\infty}$	J(t)e-st dt
	iæru ∫ j(s)est ds
-6	i@fd
x past all	Singularities

Loplace Properties

nome) g(t)	ĝ (s)		
Shiopy (J(E-a)	e-sa j(s)		
Sh:N+≥	e ^{at} j(t)	ĵ(s-a)		
sealing)(at)	1 j(s)		
0.N)'(t)	- } (0) + 5 f(s)		
	الم (الم			
×t	t](t)	$-\frac{d\hat{J}}{ds}(s)$		
	t ⁿ	$\frac{n!}{S^{n+1}}$		
Corndhiteon	5 117) glt-	र) बेर हैं(इ) है(इ)		
	-	l .		

Examples

) (+)	ĝ(s)
l	5
eat	<u> s-q</u>
cos(at)	$\frac{5}{S^2 + \alpha^2}$
Sim(at)	<u>S² + a²</u>
ŧ"	5 ⁿ⁺¹

$$\frac{d\hat{y}}{dt} = -y(0) + S\hat{y}(s) \qquad \text{DIFF}$$

$$\frac{d^2\hat{y}}{dt^2} = -\dot{y}(0) + S\frac{d\hat{y}}{dt}$$

$$= -\dot{y}(0) + S(-y(0) + S\hat{y}(s))$$

$$= -\dot{y}(0) - Sy(0) + S^2\hat{y}(s)$$