Mathematical Notation and Definitions

1. Definitions

- (a) Set: well defined collection of objects, consisting of elements. Denoted by capital letters. Order of elements does not matter.
- (b) Cardinality: size of a set, |A|, can be any number from 0 to infinity. Empty set B has cardinality of 0, |B| = 0
- (c) Equal Sets: two sets that have the same elements
- (d) Subset A: every element in A is contained in B. Proper subset A: every element in A is contained in B and B has elements that are not in A, |B| > |A| since A excludes at least one element of B.
- (e) Complement of A: all the elements that are in the universal set but not in A Relative complement of A in B: all elements in B that are not in A.

2. Notation and Important Properties

- (a) subset: $A \subset B$
- (b) proper subset: $A \subseteq B$
- (c) intersection: $A \cap B$

i.
$$A \cap B = B \cap A$$

- ii. $A \cap B = \emptyset$, then A and B are disjoint (no common elements)
- iii. $A \cap B = A$, then A is a subset of B

iv.
$$A \cap \emptyset = \emptyset$$

- v. $A \cap U = A$ where U is the universal set
- (d) union: A \(\) B

i.
$$A \bigcup B = B \bigcup A$$

ii.
$$A \cup \emptyset = A$$

- iii. $A \mid U = U$ where U is the universal set
- iv. $A \bigcup B = A$, then B is a subset of A (A contains all elements in B and possibly more)
- (e) relative complement: $A \setminus B$
 - i. If relative complement of A in B has cardinality of non zero, then A is a proper subset of B.

ii.
$$A \setminus A = \emptyset$$

iii.
$$A \setminus \emptyset = A$$

iv.
$$\emptyset \backslash A = \emptyset$$

3. Important Sets

- (a) N: natural numbers $(0,1,2,3,\ldots)$
- (b) Z: integers (... -3, -2, -1, 0, 1, 2, 3, ...)
- (c) Q: rational numbers $(\frac{a}{b}$ such that $a, b \in \mathbb{Z}$)
- (d) R: real numbers
- (e) C: complex numbers

Quantifiers

- 1. $\forall x$: universal quantifier, "for all x" $\forall x, P(x) \equiv P(x_1) \bigwedge P(x_2) \bigwedge P(x_3) \bigwedge \dots$ for all x_i values
- 2. $\exists x$: existential quantifier, "there exists x", can refer to one or more x (at least one) $\exists x, P(x) \equiv P(x_1) \bigvee P(x_2) \bigvee P(x_3) \bigvee \dots$ for all x_i values