Corso di Crittografia

Prova in Itinere del 19 Novembre 2021

- 1. Definire formalmente il concetto di perfetta sicurezza.
- 2. Sia SE=(KeyGen,Enc,Dec) un cifrario simmetrico e siano $\mathcal{M}, \mathcal{K}, \mathcal{C}$ gli insiemi dei messaggi, delle chiavi e dei crittotesti, rispettivamente.

Si considerino adesso i seguenti insiemi $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$ con n parametro pubblico. Supponiamo di voler cifrare un solo messaggio $m \in \mathcal{M}$, utilizzando una chiave (random) $k \in \mathcal{K}$, come segue

$$C = (m \vee k)$$

dove \vee rappresenta l'operazione OR bit a bit (es. 1100 \vee 1001 = 1101) E' tale sistema sicuro in senso perfetto? Giustificare la risposta fornita.

3. In classe, parlando del cifrario a blocchi AES, abbiamo discusso il campo di Galois GF(2^8). Abbiamo visto che, in tale insieme, ogni byte può essere rappresentato come un polinomio di grado (al più) 7. Ricordando che $m(x) = x^8 + x^4 + x^3 + x + 1$ è il polinomio irriducibile discusso a lezione, si calcoli la somma ed il prodotto dei seguenti due byte:

$$x^7 + x^5 + x^3 + x + 1$$
 $x^6 + x^4 + x^3 + x$

- 4. Definire formalmente il concetto di funzione pseudocasuale.
- 5. Sia $F: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ una funzione pseudocasuale. Vogliamo utilizzare F per costruire una funzione $G: \{0,1\}^k \times \{0,1\}^{2\ell} \to \{0,1\}^{2\ell}$, nel seguente modo (il simbolo || denota l'operazione di concatenazione):

$$G_k(x)$$
Sia $x = x_1 || x_2$

$$y \leftarrow F_k(x_1) \bigoplus F_k(F_k(x_2))$$
return y

Dimostrare formalmente che G non è una funzione pseudo-casuale.