Szimmetrikus bolyongás Valószínűségi változók Eloszlásfüggvény Független valószínűségi változók Várható érték

Valószínűségszámítás

2. előadás

Arató Miklós

2020.02.18.

Tartalomjegyzék

- Szimmetrikus bolyongás
- Valószínűségi változók
- 3 Eloszlásfüggvény
 - Sűrűségfüggvény
 - Példák
 - Normális eloszlás
- Független valószínűségi változók
 - Meghatározás
 - Konvolúció
- Várható érték
 - Diszkrét valószínűségi változók várható értéke
 - Abszolút folytonos eloszlású változók várható értéke
 - Feltételes várható érték

Tönkremenési feladat

Péter és Gábor úgy játszanak, hogy mindketten 1 valószínűséggel nyernek egy játszmában a másiktól 1 forintot.

A játék addig megy, amíg valaki a másik összes pénzét el nem nyeri. Péternél a játék kezdeténél 10 forint, Gábornál pedig 16 forint van.

Mekkora valószínűséggel megy tönkre Péter?

Tönkremenési feladat (folytatás)

Legyen k = 10 és n = 26.

Ekkor n - k = 16.

A :=Péter k forintról tönkremegy

p(k) := P(A).

Ekkor p(0) = 1 és p(n) = 0.

 B_1 : az első lépésben Péter nyer,

 B_2 : az első lépésben Gábor nyer.

Szimmetrikus bolyongás

Egy számegyenesen lépegetünk az egészeken 0-ból kiindulva, minden lépésben ugyanakkora eséllyel lépünk balra, mint jobbra. Kérdés: mekkora valószínűséggel térünk vissza a 0-ba? (ezt az eseményt jelöljük *C*-vel)

Definíció: $\xi: \Omega \to \mathbb{R}$ valószínűségi változó, ha minden $x \in \mathbb{R}$ számra $\{w: \xi(w) < x\} \in \mathcal{A}$.

Definíció: $\xi: \Omega \to \mathbb{R}$ valószínűségi változó, ha minden $x \in \mathbb{R}$ számra $\{w: \xi(w) < x\} \in \mathcal{A}$.

Definíció: A ξ valószínűségi változó **diszkrét**, ha értékkészlete véges vagy megszámlálható, azaz léteznek olyan x_i valós számok és A_i teljes eseményrendszer, hogy $\xi = \sum_i x_k \cdot \chi_{A_k}$.

Példák:

- indikátor
- 2 Binomiális, B(n, p)

Geometriai

Geometriai (Pascal-)eloszlás: Független kísérleteket végzünk, amelyek p valószínűséggel sikeresek, η az első sikeres kísérlet sorszáma ($k=1,2,\ldots$).

Geometriai

Geometriai (Pascal-)eloszlás: Független kísérleteket végzünk, amelyek p valószínűséggel sikeresek, η az első sikeres kísérlet sorszáma ($k=1,2,\ldots$).

$$P(\eta = k) = (1 - p)^{k-1} \cdot p$$

Példa: Kockadobásoknál első 6-os dobás sorszáma.

Állítás: A Pascal-eloszlás örökifjú tulajdonságú, azaz

$$P(\xi > k + l \mid \xi > k) = P(\xi > l).$$

Bizonyítás:
$$P(\xi > k + l \mid \xi > k) = \frac{P(\xi > k + l \land \xi > k)}{P(\xi > k)} = \frac{P(\xi > k + l)}{P(\xi > k)} = \frac{P(\xi > k +$$

$$\frac{(1-p)^{k+l}}{(1-p)^k} = (1-p)^l = P(\xi > l).$$

Hipergeometrikus

Hipergeometriai eloszlás: Adott egy dobozban M piros és N-M fehér golyó, ezekből húzunk véletlenszerűen n darabot. Jelölje ξ a kihúzott piros golyók számát (visszatevés nélkül), és legyen $k=0,1,\ldots,\min(M,n)$.

Hipergeometrikus

Hipergeometriai eloszlás: Adott egy dobozban M piros és N-M fehér golyó, ezekből húzunk véletlenszerűen n darabot. Jelölje ξ a kihúzott piros golyók számát (visszatevés nélkül), és legyen $k=0,1,\ldots,\min(M,n)$.

$$P(\xi = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}.$$

Poisson

Poisson-eloszlás: Legyen $0 < \lambda$ fix paraméter, továbbá

$$k = 0, 1, 2, \dots$$

$$P(\eta = k) = \frac{e^{-\lambda \cdot \lambda^k}}{k!}$$

$$\sum_{k=0}^{\infty} \frac{e^{-\lambda \cdot \lambda^k}}{k!} = e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = 1.$$

Negatív binomiális

Negatív binomiális eloszlás: Független kísérleteket végzünk, amelyek *p* valószínűséggel sikeresek.

 ξ az r-edik sikeres kísérlet sorszáma (ahol r rögzített).

$$P(\xi = k) = {k-1 \choose r-1} \cdot (1-p)^{k-r} \cdot p^r$$
, ahol $k = r, r+1, ...$

Megjegyzés: r = 1-re pont a Pascal-eloszlást kapjuk.

Definíció: A ξ valószínűségi változó **eloszlásfüggvénye** $F_{\xi}(x) = P(\xi < x)$, ahol $x \in \mathbb{R}$.

Definíció: A ξ valószínűségi változó **eloszlásfüggvénye** $F_{\xi}(x) = P(\xi < x)$, ahol $x \in \mathbb{R}$.

$$\lim_{y \downarrow x} F_{\xi}(y) - F(x) = P(\xi = x)$$

Definíció: A ξ valószínűségi változó **eloszlásfüggvénye**

$$F_{\xi}(x) = P(\xi < x)$$
, ahol $x \in \mathbb{R}$.

$$\lim_{y \downarrow x} F_{\xi}(y) - F(x) = P(\xi = x)$$

Diszkrét esetben
$$P(\xi = x_k) = F_{\xi}(x_{k+1}) - F_{\xi}(x_k)$$

Eloszlásfüggvény tulajdonságai

Állítás: Az $F_{\mathcal{E}}$ eloszlásfüggvényre teljesülnek az alábbiak:

- F_{ε} monoton növő.
- $\lim_{\substack{x\to -\infty\\F_{\mathcal{E}}}}F_{\xi}(x)=0 \text{ és } \lim_{\substack{x\to +\infty\\F_{\mathcal{E}}}}F_{\xi}(x)=1$ $F_{\xi}(x)=1$ határértéke minden $x \in \mathbb{R}$ helyen.

Definíció: A ξ valószínűségi változó abszolút folytonos eloszlású, ha $F_{\xi}(x)=P(\xi< x)=\int_{-\infty}^{x}f(s)\;ds$ minden $x\in\mathbb{R}$, ahol f véges sok ponttól eltekintve folytonos

f: sűrűségfüggvény

Definíció: A ξ valószínűségi változó abszolút folytonos eloszlású, ha $F_{\xi}(x)=P(\xi< x)=\int_{-\infty}^{x}f(s)\;ds$ minden $x\in\mathbb{R}$, ahol f véges sok ponttól eltekintve folytonos

f: sűrűségfüggvény

$$\int_{-\infty}^{\infty} f(s) \ ds = 1, f(x) \ge 0$$

$$F'(x) = f(x)$$
 véges sok pontot kivéve

Egyenletes eloszlás intervallumon

Tekintsünk [a, b]-n geometriai valószínűségi mezőt.

$$\xi(w) = w$$
.

$$P(\xi < x) = \begin{cases} 0 : x \le a \\ \frac{x-a}{b-a} : a < x < b \\ 1 : b \le x \end{cases}.$$

Az ilyen eloszlásfüggvényű valószínűségi változót egyenletes eloszlásúnak nevezzük az [a,b] intervallumon.

Jelölés:
$$E(a, b)$$
 vagy $U(a, b)$.

Sűrűségfüggvény:
$$f_{\xi}(x) = \begin{cases} 0 : x \notin [a, b] \\ \frac{1}{b-a} : x \in [a, b] \end{cases}$$

λ -exponenciális eloszlás

au: egy izzó élettartama

örökifjú tulajdonság:
$$P(au>t+s\mid au>s)=P(au>t)$$
 , ahol

$$G(t)=P(au>t)$$
, így $rac{G(t+s)}{G(s)}=rac{P(au>t+s\;,\; au>s)}{P(au>s)}=G(t)$, azaz

$$G(t+s)=G(t)\cdot G(s)\Rightarrow$$
.

$$G(t) = e^{-\lambda t}$$
 alakú. Mivel $G(t)$ valószínűség, ezért $\lambda > 0$.

Az eloszlásfüggvény balról folytonossága miatt

$$P(\tau < t) \ge \lim_{\varepsilon \searrow 0} P(\tau \le t - \varepsilon) \ge \lim_{\varepsilon \searrow 0} P(\tau < t - \varepsilon) = P(\tau < t) \Rightarrow$$

$$P(\tau < t) = \lim_{\varepsilon \searrow 0} P(\tau \le t - \varepsilon) = \lim_{\varepsilon \searrow 0} (1 - e^{-\lambda(t - \varepsilon)}) = 1 - e^{-\lambda t}.$$

λ -exponenciális eloszlás (folyt.)

 λ -exponenciális eloszlású:

$$F_{ au}(t) = egin{cases} 0 &: & t \leq 0 \ 1 - e^{-\lambda t} &: & 0 < t \end{cases}$$
sűrűségfüggvény: $f_{ au}(t) = egin{cases} 0 &: & t \leq 0 \ \lambda \cdot e^{-\lambda t} &: & 0 < t \end{cases}$

Könnyen látható a fordított irány is, tehát, hogy egy exponenciális eloszlású valószínűségi változó örökifjú eloszlású.

Gamma-eloszlás

$$\xi \sim \Gamma(\lambda, \alpha) \text{ eloszlású, ha sűrűségfüggvénye:}$$

$$f_{\xi}(x) = \begin{cases} 0 : x \leq 0 \\ \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot x^{\alpha - 1} \cdot e^{-\lambda x} : 0 < x \end{cases}$$

$$\text{ahol } \Gamma(\alpha) = \int\limits_{0}^{\infty} x^{\alpha - 1} \cdot e^{-x} \ dx.$$

$$(\text{Megj.: } \Gamma(n) = (n - 1)!.)$$

Standard normális eloszlás

A ξ valószínűségi változó standard normális eloszlású, ha sűrűségfüggvénye:

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} \ (x \in \mathbb{R}).$$

$$\left(\int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} \ dt\right)^2 = \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} \ dt \cdot \int_{-\infty}^{\infty} e^{-\frac{s^2}{2}} \ ds =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{t^2+s^2}{2}} \ dt \ ds \stackrel{(\varphi,r)}{=} \int_{0}^{2\pi} d\varphi \cdot \int_{0}^{\infty} e^{-\frac{r^2}{2}} \cdot r \ dr =$$

$$2\pi \cdot \left[-e^{-\frac{r^2}{2}}\right]_{0}^{\infty} = 2\pi \Rightarrow. \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{t^2}{2}} \ dt = 1$$
 eloszlásfüggvény:
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{t^2}{2}} \ dt.$$
 Jelölése:
$$N(0,1).$$

Normális eloszlás

 ξ valószínűségi változó standard normális eloszlású $\Rightarrow \eta = m + \sigma \xi$ normális eloszlású.

Eloszlásfüggvénye:

$$P(m + \sigma \xi < x) = P(\xi < \frac{x-m}{\sigma}) = \Phi(\frac{x-m}{\sigma}).$$

A sűrűségfüggvény:
$$f_{m+\sigma\xi}(x) = \frac{1}{\sqrt{2\pi\cdot\sigma}} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}$$
.

Ez a normális eloszlás m és σ^2 paraméterekkel, jelölése: $N(m, \sigma^2)$.

Fordítva, ha
$$\eta \sim N(m, \sigma^2)$$
, akkor $\frac{\eta - m}{\sigma} \sim N(0, 1)$.

Haranggörbe

Figure: Normális sűrűségfüggvények

2

Táblázat

FÜGGELÉK

A standard normális eloszlásfüggvény táblázata

х	$\Phi(x)$											
0,00	0,5000	0,45	0,6736	0,90	0,8159	1,35	0,9115	1,80	0,9641	2,50	0,9938	
0,01	0,5040	0,46	0,6772	0,91	0,8186	1,36	0,9131	1,81	0,9649	2,52	0,9941	
0,02	0,5080	0,47	0,6808	0,92	0,8212	1,37	0,9147	1,82	0,9656	2,54	0,9945	
0,03	0,5120	0,48	0,6844	0,93	0,8238	1,38	0,9162	1,83	0,9664	2,56	0,9948	
0,04	0,5160	0,49	0,6879	0,94	0,8264	1,39	0,9177	1,84	0,9671	2,58	0,9951	
0,05	0,5199	0,50	0,6915	0,95	0,8289	1,40	0,9192	1,85	0,9678	2,60	0,9953	
0.06	0.5239	0.51	0.6950	0.96	0.8315	1,41	0.9207	1.86	0.9686	2.62	0.9956	
0,07	0,5279	0,52	0,6985	0,97	0,8340	1,42	0,9222	1,87	0,9693	2,64	0,9959	
0,08	0,5319	0,53	0,7019	0,98	0,8365	1,43	0,9236	1,88	0,9699	2,66	0,9961	
0.09	0.5359	0.54	0.7054	0.99	0.8389	1,44	0.9251	1.89	0.9706	2.68	0.9963	
0,10	0,5398	0,55	0,7088	1,00	0,8413	1,45	0,9265	1,90	0,9713	2,70	0,9965	
0.11	0.5438	0.56	0.7123	1.01	0.8438	1,46	0.9279	1.91	0.9719	2,72	0.9967	
0.12	0.5478	0.57	0.7157	1.02	0.8461	1,47	0.9292	1.92	0.9726	2,74	0.9969	
0,13	0,5517	0,58	0,7190	1,03	0,8485	1,48	0,9306	1,93	0,9732	2,76	0,9971	
0.14	0.5557	0.59	0.7224	1.04	0.8508	1,49	0.9319	1.94	0.9738	2.78	0.9973	
0.15	0.5596	0.60	0.7257	1.05	0.8531	1,50	0.9332	1.95	0.9744	2,80	0.9974	
0,16	0,5636	0,61	0,7291	1,06	0,8554	1,51	0,9345	1,96	0,9750	2,82	0,9976	
0.17	0.5675	0.62	0.7324	1.07	0.8577	1.52	0.9357	1.97	0.9756	2.84	0.9977	
0.18	0.5714	0.63	0.7357	1.08	0.8599	1,53	0.9370	1.98	0.9761	2,86	0.9979	
0.19	0.5753			1.09	0.8621			1.99	0.9767	2,88	0.9980	
0.90	0.5793	0.65	0.7499	1 10	0.8643	1.55	0.0304	2.00	0.9772	2.90	0.0081	

Definíció: A ξ_1, \ldots, ξ_n valószínűségi változók **függetlenek**, ha

$$P(\xi_1 < x_1, \dots, \xi_n < x_n) = \prod_{i=1}^n F_{\xi_i}(x_i) \text{ minden } x_1, \dots, x_n\text{-re.}$$

Definíció: A ξ_1, ξ_2, \ldots valószínűségi változók **függetlenek**, ha minden n-re ξ_1, \ldots, ξ_n függetlenek.

Legyenek ξ_1, \ldots, ξ_n függetlenek és g_i Borel-mérhető. Ekkor $g_1(\xi_1), \ldots, g_n(\xi_n)$ is függetlenek.

Legyenek ξ_1,\ldots,ξ_n diszkrétek. Ekkor pontosan akkor függetlenek,

ha
$$P(\xi_1 = x_1, ..., \xi_n = x_n) = \prod_{i=1}^n P(\xi_i = x_i)$$
 minden x_i -re.

Diszkrét konvolúciós formula

Legyenek ξ és η függetlenek, értékkészletük pedig $\{x_k\}$ és $\{y_l\}$. $P(\xi + \eta = z) = P(\bigcup_{\substack{x_k + y_l = z \\ x_k + y_l = z}} \{\xi = x_k, \eta = y_l\}) = \sum_{\substack{x_k + y_l = z \\ x_k + y_l = z}} P(\xi = x_k, \eta = y_l) = \sum_{\substack{x_k + y_l = z \\ x_k + y_l = z}} P(\xi = x_k) \cdot P(\eta = y_l).$

Binomiálisak konvolúciója

Legyenek $\xi \sim B(n_1, p)$ és $\eta \sim B(n_2, p)$ függetlenek. Ekkor $\xi + \eta \sim B(n_1 + n_2, p).$ Ugyanis $\xi + \eta$ értékkészlete $0, 1, \ldots, n_1 + n_2$, így $P(\xi + \eta = k) = \sum_{i=1}^{n} P(\xi = l) \cdot P(\eta = k - l) = 0$ $\min\{k, n_1\}$ $\sum_{l=1}^{n_1} \binom{n_1}{l} \cdot p^l \cdot (1-p)^{n_1-l} \cdot \binom{n_2}{k-l} \cdot p^{k-l} \cdot (1-p)^{n_2-k+l} =$ $l=\max\{k-n_2,0\}$ $\min\{k, n_1\}$ $\sum_{k=1}^{n_1} \binom{n_1}{k} \cdot \binom{n_2}{k-1} \cdot p^k \cdot (1-p)^{n_1+n_2-k} =$ $l=\max\{k-n_2,0\}$ $p^k \cdot (1-p)^{n_1+n_2-k} \cdot \binom{n_1+n_2}{k}$, azaz $\xi + \eta \sim B(n_1+n_2,p)$.

Binomiálisak konvolúciója

Legyenek $\xi \sim B(n_1, p)$ és $\eta \sim B(n_2, p)$ függetlenek. Ekkor $\xi + \eta \sim B(n_1 + n_2, p).$ Ugyanis $\xi + \eta$ értékkészlete $0, 1, \ldots, n_1 + n_2$, így $P(\xi + \eta = k) = \sum_{i=1}^{n} P(\xi = l) \cdot P(\eta = k - l) = 0$ $\min\{k, n_1\}$ $\sum_{l=1}^{n_1} \binom{n_1}{l} \cdot p^l \cdot (1-p)^{n_1-l} \cdot \binom{n_2}{k-l} \cdot p^{k-l} \cdot (1-p)^{n_2-k+l} =$ $l=\max\{k-n_2,0\}$ $\min\{k, n_1\}$ $\sum_{k=1}^{n_1} \binom{n_1}{k} \cdot \binom{n_2}{k-1} \cdot p^k \cdot (1-p)^{n_1+n_2-k} =$ $l=\max\{k-n_2,0\}$ $p^k \cdot (1-p)^{n_1+n_2-k} \cdot \binom{n_1+n_2}{k}$, azaz $\xi + \eta \sim B(n_1+n_2,p)$.

Binomiálisak konvolúciója (folyt.)

egyszerűbben is kiszámítható: legyenek X_1, X_2, \ldots független, azonos eloszlású p-indikátorok, ekkor $X_1 + \ldots + X_n \sim B(n, p)$, $X_{n+1} + \ldots + X_{n+m} \sim B(m, p)$, és így $X_1 + \ldots + X_{n+m} \sim B(n+m, p)$.

Poisson eset

Legyenek $\xi\sim\lambda$ -Poisson és $\eta\sim\mu$ -Poisson függetlenek. Ekkor $\xi+\eta\sim(\lambda+\mu)$ -Poisson.

Ugyanis
$$P(\xi + \eta = k) = \sum_{l=0}^{k} P(\xi = l) \cdot P(\eta = k - l) =$$

$$\sum_{l=0}^{k} \frac{\lambda^{l} \cdot e^{-\lambda}}{l!} \cdot \frac{\mu^{k-l} \cdot e^{-\mu}}{(k-l)!} = \frac{e^{-(\lambda+\mu)}}{k!} \cdot \sum_{l=0}^{k} {k \choose l} \cdot \lambda^{l} \cdot \mu^{k-l} = \frac{e^{-(\lambda+\mu)}}{k!} \cdot (\lambda+\mu)^{k},$$

 $(\lambda + \mu)$ paraméterű Poisson-eloszlást kapunk.

Konvolúciós formula

Legyenek ξ és η független, abszolút folytonos valószínűségi változók. Ekkor $\xi+\eta$ is abszolút folytonos eloszlású, és sűrűségfüggvénye

$$f_{\xi+\eta}(x) = \int_{-\infty}^{+\infty} f_{\xi}(x-y) \cdot f_{\eta}(y) \ dy = \int_{-\infty}^{+\infty} f_{\xi}(y) \cdot f_{\eta}(x-y) \ dy.$$

Exponenciálisak konvolúciója

 ξ_1, \dots, ξ_n független λ -exponenciális valószínűségi változók $\eta_n = \xi_1 + \ldots + \xi_n \Rightarrow$.

Állítás:
$$η_n$$
 sűrűségfüggvénye $g_n(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^{n-1} \cdot \lambda^n \cdot e^{-\lambda x}}{(n-1)!} & x > 0 \end{cases}$

Bizonyítás: *n*-re vonatkozó teljes indukció n=1 rendben. Tegyük fel, hogy n-ig igaz az állítás. $\Rightarrow (n+1)$ -re:

$$g_{n+1}(x) = f_{(\xi_1 + \dots + \xi_n + \xi_{n+1})}(x) = \int_{-\infty}^{\infty} \underbrace{f_{\xi_1 + \dots + \xi_n}(x - y)}_{g_n(x - y)} \cdot \underbrace{f_{\xi_{n+1}}(y)}_{g_1(y)} dy =$$

$$= \int_{0}^{\infty} \underbrace{\frac{(x - y)^{n-1} \lambda^n e^{-\lambda(x - y)}}{(n - 1)!} \lambda e^{-\lambda y} dy =$$

$$\underbrace{\frac{\lambda^{n+1} e^{-\lambda x}}{(n - y)^{n-1}} \int_{0}^{x} n(x - y)^{n-1} dy = \underbrace{\frac{x^n \lambda^{n+1}}{(n - y)^{n-1}} e^{-\lambda x}}_{0} = \underbrace{\frac{x^n \lambda^{n+1}}{(n - y)^{n-1}} e^{-$$