WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/57158 A1 C08B 31/18, 15/02, C07C 51/285, C07H (43) International Publication Date: 11 November 1999 (11.11.99)

EP

PCT/NL99/00272 (21) International Application Number:

(22) International Filing Date: 4 May 1999 (04.05.99)

7 May 1998 (07.05.98) (71) Applicant (for all designated States except US): NEDER-

LANDSE ORGANISATIE VOOR TOEGEPAST NATU-URWETENSCHAPPELIJK ONDERZOEK TNO [NL/NL]; Schoemakerstraat 97, P.O. Box 6080, NL-2600 JA Delft

(72) Inventors: and

(30) Priority Data:

98201495.3

(75) Inventors/Applicants (for US only): VAN DER LUGT, Jan, Pieter [NL/NL]; Schone van Boskoopgaarde 15, NL-3824 AA Amersfoort (NL). JETTEN, Jan, Matthijs [NL/NL]; Costerlaan 3B, NL-3701 JL Zeist (NL). BESEMER, Arie, Cornelis [NL/NL]; Burg. H. v.d. Boschstraat 111, NL-3958 CC Amerongen (NL). VAN DOREN, Hendrik, Arend [NL/NL]; Schrijnwerkerlaan 15, NL-3828 XB Hoogland

(74) Agent: DE BRUUN, Leendert, C.; Nederlandsch Octrooibureau, Scheveningseweg 82, P.O. Box 29720, NL-2502 LS The Hague (NL).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROCESS FOR SELECTIVE OXIDATION OF PRIMARY ALCOHOLS

(57) Abstract

Primary alcohols, especially in carbohydrates, can be selectively oxidised to aldehydes and carboxylic acids in a low-halogen process by using a peracid in the presence of a catalytic amount of a di-tertiary-alkyl nitroxyl (TEMPO) and a catalytic amount of halide. The halide is preferably bromide and the process can be carried out at nearly neutral to moderately alkaline pH (5-11). The peracid can be produced or regenerated by means of hydrogen peroxide or oxygen. The process is advantageous for producing uronic acids and for introducing aldehyde groups which are suitable for crosslinking and derivatisation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

10

15

20

25 .

30

Process for selective oxidation of primary alcohols

The invention relates to the selective oxidation of primary alcohols, using an oxidising agent in the presence of a catalytic amount of a di-tertiary-alkyl nitroxyl compound, especially 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO).

Such a process is known from *Tetrahedron Lett.* 34, 1181-1184 (1993), which describes the oxidation of monosaccharides wherein the non-primary hydroxyl groups are partly protected, using sodium hypochlorite, potassium bromide and TEMPO in a two-phase solvent system (dichloromethane and water) to produce the corresponding uronic acid. WO 95/07303 describes a process for oxidising carbohydrates with hypochlorite/TEMPO, using a pH of 9-13 in an aqueous medium. The oxidation of carboxymethyl and hydroxyethyl derivatives of starch and cellulose and other starch ethers with TEMPO is described in WO 96/38484.

These prior art oxidations have the advantage of being selective, in that oxidation of primary alcohol groups is strongly favoured over oxidation of secondary alcohol groups. However, the known processes use hypochlorite as the actual oxidising agent and thus produce chloride and some chlorinated byproducts: for complete oxidation of primary alcohols to carboxylic acids, two molar equivalents of hypochlorite are used and two molar equivalents of chloride are produced. This is serious drawback as there is an increasing need for low-chlorine or even chlorine-free oxidation processes.

It was found now that the oxidation of primary alcohol functions can be carried out without using equivalent amounts of chlorine compounds and with the possibility of using hydrogen peroxide as the ultimate oxidising agent. The process of the invention is defined by the characterising features of the appending claims.

In the following description, reference is made to TEMPO only for the sake of simplicity, but it should be understood that other di-tert-alkyl nitroxyls, such as 4,4-dimethyloxazolidine-N-oxyl (DOXYL), 2,2,5,5-tetramethylpyrrolidine-N-oxyl (PROXYL) and 4-hydroxy-TEMPO and derivatives thereof and those described in WO 95/07303 can be substituted for TEMPO. The catalytic amount of nitroxyl is preferably 0.1-2.5% by weight, based on the primary alcohol, or 0.1-2.5 mol% with respect to the primary alcohol.

The halide present in the process of the invention serves for regenerating TEMPO. The halide may be chloride, but preferably it is bromide. The halide may be

added to the reaction mixture as such, but it may also be added as an equivalent thereof or as molecular halogen. The halide ions are oxidised to molecular halogen by the peracid, and the molecular halogen regenerates TEMPO. Thus, both TEMPO and the halide need to be present in a catalytic amount only. The catalytic amount of halide may be 0.1-40, preferably from 0.5 to 10 mol%, with respect to the primary alcohol.

The peracid may be any peralkanoic acid such as peracetic acid, perpropionic acid, perlauric acid etc., a substituted alkanoic acid such as peroxytrifluoroacetic acid, an optionally substituted aromatic peracid such as perbenzoic acid or m-chloroperbenzoic acid, or an inorganic peracid such as persulphuric acid or salts of any of the above peracids, e.g. potassium peroxymonosulphate, commercially available under the name Oxone ®. The peracids may be formed in situ from a precursor such as the corresponding aldehyde, (carboxylic) acid, acid anhydride, ester or amide, e.g. tetra-acetylethylenediamine, with a suitable halogen-free oxidising agent, such as hydrogen peroxide or oxygen, either before the oxidation reaction or during the oxidation reaction.

15

20

10

5

The process of the invention results in oxidation of primary alcohols initially to the corresponding aldehydes, and eventually to the corresponding carboxylic acids. In general, the second oxidation step, from aldehyde to carboxylic acid, proceeds at a faster rate than the first step, i.e. the oxidation from alcohol to aldehyde. Under usual experimental conditions, the maximum fraction of aldehyde functions present will be between about 10 and 15% (based on the number of primary hydroxyls available for oxidation). The present process is especially favourable for the selective oxidation of primary hydroxyl groups in alcohols having a secondary alcohol function in addition to the primary alcohol, such as 1,6-octanediol, 1,9-octadecanediol, sugar alcohols, glycosides, and in particular carbohydrates having primary alcohol functions such as glucans (starch, cellulose), furanofructans, galactans, (galacto)mannans, and the like. A particular group of compounds suitable for oxidation with the present process are hydroxyalkylated, especially hydroxyethylated carbohydrates such as hydroxyethyl starch or hydroxyethyl inulin. These derivatives result in an alternative way for producing formylmethyl and carboxymethyl carbohydrates.

30

25

The oxidation of carbohydrates containing primary hydroxyl groups results in the corresponding carbohydrates containing aldehydes and/or carboxylic acids with intact ring systems. Examples include α -1,4-glucan-6-aldehydes, β -2,1-fructan-6-aldehydes and β -2,6-fructan-1-aldehydes, with the corresponding carboxylic acids. Where these products

WO 99/57158 PCT/NL99/00272

3

still contain the aldehydes, they are useful intermediates for functional carbohydrates wherein the aldehyde groups are further reacted with e.g. amine compounds and the like. They are also useful intermediates for crosslinked carbohydrates, in which the aldehyde groups are further reacted with e.g. diamine reagents.

5

10

15

20

25

30

Example 1: Oxidation of methyl \alpha-D-glucopyranoside (MGP)

One gram of MGP (5.15 mmol) was dissolved in 60 ml of water at room temperature. To this solution were added 200 mg NaBr (1.94 mmol), 20 mg TEMPO (0.13 mmol), 10 mg EDTA (for stabilising the oxidising agent) and 2.5 g NaI-CO₃. Peracetic acid (1.32 mmol/ml) was added at a rate of 200 µl per 10 minutes until an excess amount, calculated on a theoretical basis for 100% oxidation to 6-carboxylic acid (14.6 mmol), had been added. The pH was maintained at 7 by addition of 1 M NaOH using a pH-stat. The reaction time was 8 hr. The degree of oxidation, determined using the Blumenkrantz method with galacturonic acid as a reference, was 95%. High Performance Anion Exchange Chromatography (HPAEC) shows that the degree of oxidation is greater than 95%. No other peaks than the uronic acid and a trace of starting material were detected.

Example 2: Oxidation of a-D-glucopyranosyl phosphate (a-Glc-1-P)

1.97 g of α-Glc-1-P (2K⁺.C₆H₁₁O₉P²-.2H₂O, 5.5 mmol) was dissolved in 60 ml of water at room temperature. To this solution was added 210 mg KBr (1.76 mmol), 20 mg TEMPO (0.13 mmol), 10 mg EDTA, and 2.5 g KIICO₃. Peracetic acid (10 ml, 1.69 mmol/ml) was added at a rate of 200 μl per 10 minutes. The pH was maintained at 8 by addition of 2M KOH using a pH-stat. After 16 h the reaction was complete. The product crystallized from the mixture after addition of MeOH to obtain α-D-glucopyranuronic acid 1-phosphate (3K⁺.C₆H₈O₁₀P³⁻.5H₂O, 1.90 g, 4.0 mmol, 73%). NMR (500 Mhz, D₂O, in ppm): 1 H δ 3,32 (dd, H-4, J_{3,4} = 9.5 Hz, J_{4,5} = 9.9 Hz), 3.35 (m, H-2, J_{P,H2} = 1.8 Hz, J_{1,2} = 3.4 Hz, J_{2,3} = 9.5 Hz), 3.62 (dd, H-3, J_{2,3} = 9.5 Hz, J_{3,4} = 9.5 Hz)), 3.99 (d, H-5, J_{4,5} = 9.9 Hz,), 5.30 (dd, H-1, J_{P,H1} = 7.3 Hz, J_{1,2} = 3.4 Hz), 13 C δ 71.4 (C-2), 71.5 (C-3,C-4), 72.4 (C-5), 93.0 (C-1), 176.6 (C-6).

30

Example 3: Oxidation of D-glucuronic acid

1.94 g of D-glucuronic acid (10 mmol) was dissolved in 50 ml water at room temperature. To this solution was added 196 mg KBr (1.65 mmol), 30 mg TEMPO (0.20 mmol), 10 mg EDTA, and 1.0 g KHCO₃. Peracetic acid (8 ml, 1.69 mmol/ml) was added at a rate of 200 µl per 10 minutes. The pH was maintained at 8 by addition of 2M KOH using a pH-stat. After 16 h the reaction was complete. The reaction mixture was acidified with conc. HCl to pH = 3.4 and the product was crystallized to obtain D-glucaric acid, mono potassium salt (K⁴.C₆H₉O₈.H₂O, 1.55 g, 0.62 mmol, 62%).

FT-IR (in cm-1): 3379 (s), 3261 (s), 2940 (m), 1738 (s), 1453 (m), 1407 (m), 1385 (m), 10 1342 (m), 1267 (m(, 1215 (m), 1108 (s), 1050 (m), 862 (m), 657 (m).

Example 4: Oxidation of starch at pl-15

1 gram of potato starch (6.17 mmol) was gelatinized in 60 ml water at 100°C. To this solution were added 200 mg NaBr (1.94 mmol), 20 mg TEMPO (0.13 mmol), 10 mg 15 EDTA and 2.5 g sodium acctate at room temperature. Peracetic acid (1.51 mmol/ml) was added at a rate of 200 µl per 10 minutes until an excess amount, calculated on a theoretical basis for 100% oxidation to 6-carboxylic acid (13.6 mmol) had been added. The pH was maintained at 5 with 1.0 M NaOH using a pH-stat. The reaction time was 8 hours. The degree of oxidation (Blumenkrantz - polygalacturonic acid) was 26% 6-carboxyl starch. 20

Example 5: Oxidation of starch at pH 6

1 gram of potato starch (6.17 mmol) was gelatinized in 60 ml water at 100°C. To this solution were added 200 mg NaBr (1.94 mmol), 20 mg TEMPO (0.13 mmol), 10 mg 25 EDTA, 1.25 g NaH₂PO₄ and 1.25 g Na₂HPO₄ at room temperature. Peracetic acid (1.30 mmol/ml) was added at a rate of 200 µl per 10 minutes until an excess amount, calculated on a theoretical basis for 100% oxidation to 6-carboxylic acid (13.8 mmol), had been added. The pH was maintained at 6 with 1.0 M NaOH using a pH-stat. The reaction time was 8 hours. The degree of oxidation (Blumenkrantz - polygalacturonic acid) was 40% 6carboxyl starch.

Example 6: Oxidation of starch at pH 7

I gram of potato starch (6.17 mmol) was geletinized in 60 ml water at 100°C. To this

solution were added 200 mg NaBr (1.94 mmol), 20 mg TEMPO (0.13 mmol), 10 mg EDTA and 2.5 g NaHCO₃. Peracetic acid (1.35 mmol/ml) was added at a rate of 200 µl per 10 minutes until an excess amount, calculated on a theoretical basis for 100% oxidation to 6-carboxylic acid (18.4 mmol), had been added. The pH was maintained at 7 with 1.0 M NaOH using a pH-stat. The reaction time was 11.5 hr. The degree of oxidation, determined using the Blumenkrantz method with polygalacturonic acid as a reference, was 95% 6-carboxyl starch. The degree of oxidation, determined with HPAEC was 86% 6-carboxyl starch.

10 Example 7: Oxidation of starch at pH 8

Example 6 was repeated, however maintaining the reaction pH at 8. The consumption of peracetic acid was 13.9 mmol. The degree of oxidation (Blumenkrantz - polygalacturonic acid) was 91 % 6-carboxyl starch.

15 Example 8: Oxidation of starch at pH 9

Example 6 was repeated, however maintaining the reaction pH at 9. The consumption of peracetic acid was 11.9 mmol. The degree of oxidation (Blumenkrantz - polygalacturonic acid) was 90 % 6-carboxyl starch.

20 Example 9: Oxidation of starch at pH 10

Example 6 was repeated (using 2.5 g of Na₂HPO₄ instead of NaHCO₃). The consumption of peracetic acid (1.42 mmol/ml) was 14.3 mmol. The degree of oxidation was 37% 6-carboxyl starch.

Claims

- 1. A process for oxidising a primary alcohol using an oxidising agent in the presence of a catalytic amount of a di-tertiary-alkyl nitroxyl, *characterised* in that the alcohol is oxidised using a peracid or a salt or precursor thereof in the presence of a catalytic amount of halide.
 - 2. A process according to Claim 1, wherein the halide is bromide.
- 3. A process according to Claim 1 or 2, wherein the di-tertiary-alkyl nitroxyl is 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO).
 - 4. A process according to any one of Claims 1-3, wherein a pH of 5-11, especially 7-10 is used.
 - 5. A process according to any one of Claims 1-4, wherein the peracid is a peralkanoic acid, especially peracetic acid.
- 6. A process according to any one of Claims 1-5, wherein the peracid is produced in situ from hydrogen peroxide.
 - 7. A process according to any one of Claims 1-6, wherein the primary alcohol is a carbohydrate.
- 8. A process according to any one of Claims 1-6, wherein the primary alcohol is a hydroxyalkylated carbohydrate.

INTERNATIONAL SEARCH REPORT

ini xilonal Application No PCT/NL 99/00272

	·	PUI/NE 9	9/002/2	
IPC 6	HFICATION OF SUBJECT MATTER C08B31/18 C08B15/02 C07C51	/285 C07H7/033		
According t	to International Patent Classification (IPC) or to both national class:	ification and IPC		
	SEARCHED			
IPC 6	ocumentation searched (classification system followed by classific COSB CO7C CO7H	ation symbols)		
	tion searched other than minimum documentation to the extent the			
Electronic o	tata base consulted during the international search (name of data	base and, where practical, search terms use	od)	
·				
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.	
Y	US 5 362 868 A (EUL ET AL.) 8 November 1994 (1994-11-08) example 9		1-8	
Υ	J. EINHORN ET AL.: "Efficient a selective oxidation of primary a aldehydes by N-chlorosuccinimide by oxoammonium salts." J. ORG. CHEM., vol. 61, 1996, pages 7452-7454, XP000627291 page 7452	1-8		
		-/		
	er documents are listed in the continuation of box C.	X Petent family members are listed	in annex.	
"A" documer	egories of cited documents: It defining the general state of the art which is not ened to be of particular relevance	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or th	the application but	
"L" documer	ocument but published on or after the international ate ate twhich may throw doubts on priority claim(s) or a cited to establish the publication date of another	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
CHERON	or other special reason (as specified) If referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an in document is combined with one or mo	ventive step when the	
"P" documer later the	nt published prior to the International filing date but an the priority date claimed	ments, such combination being obvior in the art. "&" document member of the same patent	•	
Date of the a	ctual completion of the international search	Date of mailing of the international ser		
26	July 1999	05/08/1999		
Name and ma	ailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Lensen, H		

INTERNATIONAL SEARCH REPORT

In Itional Application No PCT/NL 99/00272

Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/NL 9	9/002/2		
ategory *	Citation of document, with indication,where appropriate, of the relevant passages				
	appropriate, of the relevant passages		Relevant to daim No.		
	A.E.J. DE NOOY ET AL.: "Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides." RECEUIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 113, 3 March 1994 (1994-03-03), pages 165-166, XP000560836 page 165		1-8		
	US 5 334 756 A (PARFAIT J.M. LIKIBI ET AL.) 2 August 1994 (1994-08-02) column 7, line 8 - column 8, line 34		·		
	US 5 739 352 A (BRUCE ARMIN BARNER ET AL.) 14 April 1998 (1998-04-14)				
		·	•		
			٠		
	·				
		Į			
		ĺ			
			•		
	-				
	·				
ļ					

INTERNATIONAL SEARCH REPORT

information on patent family members

PCT/NL 99/00272

			<u> </u>			337 00272
	atent document d in search report		Publication date		stent family nember(s)	Publication date
US	5362868	Α	08-11-1994	BR	9402469 A	24-01-1995
				CA	2126126 A	19-12-1994
	·			EP	0630906 A	28-12-1994
•				FI	942939 A	19-12-1994
US	5334756	Α	02-08-1994	BE	1006771 A	06-12-1994
				CH	683525 A	31-03-1994
				DE	4209869 A	01-10-1992
				FR	2674528 A	02-10-1992
				GB	2257149 A.B	06-01-1993
				68	2281074 A,B	22-02-1995
				IT	1254313 B	14-09-1995
		•		JP	5194334 A	03-08-1993
	•			NL	9200556 A	16-10-1992
				US	5504246 A	02-04-1996
				US	5670685 A	23-09-1997
				US	5668261 A	16-09-1997
US	5739352	A	14-04-1998	NONE		

Form PCT/ISA/210 (patent family annex) (Arly 1992)

THIS PAGE BLANK (USPTO)

ß