$\mathrm{M42}-\mathrm{Algèbre}$ linéaire/bilinéaires et espaces euclidiens

Maxence Defraiteur

$6~\mathrm{mars}~2021$

§1. *

Tа	ble de	es matieres	
	2.1	Formes linéaires et espace dual	2
	2.2	Hyperplans	2
	2.3	Base duale et anté-duale	2
	2.4	Le double dual \ldots	2
	2.5	Les annulateurs	2
	2.6	La transposée	2
	2.7	Formes bilinéaires	3
	2.8	Formes quadratiques	3
	2.9	Ecriture d'une forme quadratique ds une base	3
	2.10	Bases Orthogonales	4
	2.11	Formes quadratiques positives	4
	2.12	Classification des formes quadratiques dans \mathbb{C} et \mathbb{R}	4
		2.12.1 Classification sur \mathbb{C}	4
		2.12.2 Classification sur \mathbb{R}	4
	2.13	Orthogonalite	5
		2.13.1 Projections orthogonales	5
		2.13.2 Calcul projection orthogonale $\dots \dots \dots \dots \dots \dots$	5
	2.14	Groupe orthogonal	5
	2.15	Caractérisation de $f \in \mathcal{O}(E)$ par matrices	6
	3.1	Norme, distance, angles, volumes \dots	7
	3.2	Angles	7
	3.3	Volumes	8
	3.4	Groupe or htogonale d'un espace euclidien $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	8
		ument évoluera au cours du semestre. De ce fait il n'est pas destiné à un on. Ce document contient :	ne
		itions;	
3 l	emme	es;	
8	corolla	uires;	
		mes;	

```
Prop ► 24 propositions;
```

§2. Dualité

2.1 Formes linéaires et espace dual

Déf 01
$$\blacktriangleright$$
 Application bilinéaire $\mathcal{L}(E, \mathbb{K}) = E^*$
 $\mathcal{L}(E, F) \rightarrow \mathcal{M}_{m,n}(\mathbb{K})$
 $\varphi \mapsto Mat_{\mathcal{E},\mathcal{F}}(\varphi)$

2.2 Hyperplans

Prop 02
$$\blacktriangleright Mat_{\mathcal{E}'}(\varphi) = Mat_{\mathcal{E}}(\varphi).T$$

$$Mat_{\mathcal{E}'}_{\mathcal{F}'}(\varphi) = S^{-1}Mat_{\mathcal{E},\mathcal{F}}(\varphi)$$

Déf 03 \blacktriangleright Un hyperplan : $\forall x \in E, \varphi(l) = 0$. Ker(l) est un hyperplan.

$$E^* = \mathcal{L}(E,K) \longrightarrow \varphi \in E^*$$
 signifie $\begin{array}{ccc} \varphi : E & \to & \mathbb{K} \\ x & \mapsto & \varphi(x) \end{array}$. (Ainsi $\forall \ x \in E$)

Déf 04 \blacktriangleright Le delta de Kromecker $\mathcal{E}_i(e_j) = \delta_{ij}$.

2.3 Base duale et anté-duale

Déf 05 \triangleright $(\mathcal{E}_1, \dots, \mathcal{E}_n)$ de E^* base duale $/(e_1, \dots, e_n)$ base anté duale.

2.4 Le double dual

Prop 06
$$\triangleright$$
 $P_{\mathcal{E}^* \to \mathcal{E}'^*} = ({}^t P_{\mathcal{E} \to \mathcal{E}'})^{-1}$

Cor $07 \triangleright AL$, $\varphi : E \rightarrow E^{**}$ avec dim $E < \infty \longrightarrow \varphi$ isomorphisme canonique entre E et E^{**} .

2.5 Les annulateurs

Déf
$$08 > F^{\perp} = \{l \in E^* | \forall v \in F, l(v) = 0\}$$

Déf $10 \triangleright F^{\perp}$: ens équations linéaires de F

Prop 11
$$\blacktriangleright$$
 $F \subset G \longrightarrow G^{\perp} \subset F^{\perp}$
 $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$
 $F \subset F^{\perp \perp}$
 $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp})$
 $\dim F + \dim F^{\perp} = \dim E$

2.6 La transposée

Déf 12
$$\triangleright$$
 On def la transposee : ${}^t\varphi \in \mathcal{L}(F^*, E^*)$: $\forall l \in F^*, {}^t\varphi(l) = l \circ \varphi$.

Prop 13
$$\triangleright$$
 $Mat_{\mathcal{F}^*,\mathcal{E}^*}({}^t\varphi) = {}^t(Mat_{\mathcal{E},\mathcal{F}}(\varphi))$

Prop 14
$$\blacktriangleright$$
 $(\operatorname{Im}(\varphi))^{\perp} = (\operatorname{Ker}(t^{\varphi}))$
 $(\operatorname{Ker} \varphi)^{\perp} = \operatorname{Im}((t^{\varphi}))$

Prop 15
$$\triangleright$$
 rg φ = rg t^{φ} (si E identifie à E^{**} et veversa pr F)

Prop 16 \triangleright $^{t}(\varphi \circ \psi) = {}^{t}\varphi \circ {}^{t}\psi$
 $^{t}\varphi^{-1} = ({}^{t}\varphi)^{-1}$

Prop
$$17 \triangleright \varphi_F \circ \varphi = {}^{t} {}^{t} \varphi \circ \varphi_E$$

2.7 Formes bilinéaires

Prop 18 > Forme bilinéaire

$$si \forall x \in E, \begin{cases}
E \to K \\
y \mapsto \varphi(x,y)
\end{cases} \varphi(x,.) est . f \mathbf{1}$$

$$si \forall y \in E, \begin{cases}
E \to K \\
x \mapsto \varphi(x,y)
\end{cases} \varphi(.,y) est . f \mathbf{1}$$

Prop 19
$$\triangleright$$
 \forall $x,y \in E$, **f b**. symétrique $\varphi(y,x) = \varphi(x,y)$ et **f b**. alt. $\varphi(y,x) = -\varphi(x,y)$

Déf 20
$$\blacktriangleright X = \sum x_i e_i$$
, $Y = \sum y_j e_j \ \varphi(X,Y) = \varphi(\sum x_i e_i, \sum x_j e_j) = \sum_{1 \le i \le j \le n} x_i x_j \varphi(e_i, e_j)$

Déf 21
$$\blacktriangleright$$
 mat $(\varphi(e_i e_j))_{1 \le i \le j \le n} := Mat_{\mathcal{E}(\varphi)}$

Déf 22
$$\triangleright$$
 $a_{ij} = \varphi(e_i, e_j), A = (a_{ij} = Mat_{\mathcal{E}}(\varphi))$

Déf 23
$$\triangleright \forall x, y \in E, \varphi(X,Y) = \sum a_{ij} x_i x_j = (x_1 \cdots x_n) A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Prop 24
$$\blacktriangleright$$
 dim $\mathcal{B}(E) = n^2$, dim $\mathcal{S}(E) = \frac{n(n+1)}{2}$, dim $\mathcal{A}(E) = \frac{n(n-1)}{2}$

Prop 25
$$\triangleright$$
 $\mathcal{B}(E) = \mathcal{S}(E) \oplus \mathcal{A}(E)$

Prop 26
$$\triangleright$$
 $P = P_{\mathcal{E} \to \mathcal{E}'}, A = Mat_{\mathcal{E}(\varphi)} \longrightarrow A' = {}^{t}P.A.P$

2.8 Formes quadratiques

Déf 27
$$\triangleright$$
 $Q: E \rightarrow K$ forme quadratique si

$$\begin{split} \bullet Q(\lambda v) &= \lambda^2 \; Q(v) \\ b_Q : E \times E \; \; \to \; \; K \\ (x,y) \; \; \mapsto \; \; \frac{1}{2} (Q(x+y) - Q(x) - Q(y)) \text{ est f 1} \; . \end{split}$$

Déf 28
$$\triangleright$$
 b_Q : f l sym associé à Q ou forme polaire de Q .

Prop 29 ▶ Formes quadratiques sur
$$E: Q(E)$$

$$\mathcal{P}: Q(E) \rightarrow \mathcal{S}(E)$$
 $Q \mapsto b_Q \text{ est linéaire}$

Déf 30 \triangleright (\mathcal{P} : polarisation ou morphisme depolarisation)

Lemme 31 >
$$\mathcal{P}$$
 est un isomorphisme de $Q(E)$ sur $\mathcal{S}(\mathcal{E})$ d'inverse

$$\mathcal{D}: \mathcal{S}(E) \to \mathcal{Q}(E)$$
$$\varphi \mapsto q_{\varphi}$$

Déf 32
$$\triangleright q_{\phi} \in Q(E)$$
 forme quad associé à $\varphi(q_{\varphi=\mathcal{D}(\varphi)})$

Prop 33
$$\triangleright$$
 $Mat_{\mathcal{E}(Q):=Mat_{\mathcal{E}}(b_Q)}$

2.9 Ecriture d'une forme quadratique ds une base

Déf 34
$$\triangleright \mathcal{E} = (e_1, \dots, e_n), \ Mat_{\mathcal{E}}(Q) = (a_{ij})_{1 \le i \le j \le n}, \ a_{ji} = a_{ij}$$

 $Q(X) = \sum a_{ij} x_i \ x_j = \sum a_{ij} \ x_i^2 + 2 \sum a_{ij} \ x_i \ x_j$

TH 35 > E dimension finie toute forme quad. diagonalisable.

2.10 Bases Orthogonales

- Déf 36 $\triangleright x \perp_{\varphi} y \text{ si } \varphi(x,y) = 0 \qquad | x \perp_{\varphi} y \iff y \perp_{\varphi} x$
- Déf 37 \triangleright Base \mathcal{E} orthogonal si $e_i \perp e_j \ \forall i \neq j, \ 1 \leq i, j \leq n$, mat forme \mathcal{E} est diagonale.
- Cor 38 ▶ Toute forme quad. E, fini, admet des bases orthogonales.

2.11 Formes quadratiques positives

- Déf 39 \blacktriangleright Forme quad positive si $\forall x \in E, Q(x) \geq 0$
- Déf 40 \blacktriangleright Forme quad définie (positive) si $\forall x \in E, Q(x) = 0 \implies x = 0$
- Prop 41 \triangleright Q positive \iff pour toute base Q-orthogonal, $Q(e_i) \ge 0$
- Déf 42 \triangleright Un espace euclidien (E dim finie) avec forme quad. Q, ici b_Q est appelé produit scalaire.
- Déf 43 \triangleright Dans espace euclidien, base (e_1, \dots, e_n) orthonormée si orthogonale et $Q(e_1) = \dots = Q(e_n) = 1$
- Cor 44 ▶ Un espace euclidien admet bases orthonormées.

2.12 Classification des formes quadratiques dans $\mathbb C$ et $\mathbb R$

- Déf 45 \blacktriangleright Ker $Q = \text{Ker } \varphi = x \in E | \forall y \in E, \varphi(x, y) = 0$
- Lemme 46 \blacktriangleright Ker Q sev de E, dim Q = n r; $r = \operatorname{rang} Mat_{\mathcal{E}}(Q) \forall$ base.
 - Déf 47 \triangleright rang $Q = \operatorname{rang} Mat_{\epsilon}(Q)$ et rang $Q = \operatorname{rang} \varphi = n \dim \operatorname{Ker} \varphi$
 - Déf 48 \triangleright Q est une forme non-dégénérée si rang(Q) = n ou si Ker $\varphi = \{0\}$
 - Déf 49 $\triangleright Q$ et Q' sont équivalents si \exists isomorphisme $h: E' = E, Q' = Q \circ h$ \exists bases $\mathcal{E}, \mathcal{E}', Mat_{\mathcal{E}}(Q) = Mat_{\mathcal{E}'}(Q)$ \forall bases $Mat_{\mathcal{E}'}(Q') = {}^tT.Mat_{\mathcal{E}}(Q).T$

2.12.1 Classification sur $\mathbb C$

- TH 50 \blacktriangleright Toute forme quad. sur $\mathbb C$ s'écrit $\begin{pmatrix} \mathbb 1 & 0 \\ 0 & 0 \end{pmatrix}$ (où $r = \mathrm{rang}\ Q$)
- Cor 51 \triangleright 2 formes quadratiques sont équivalentes ssi dim $E=\dim E'$ et rang $Q=\operatorname{rang} Q'$
- Prop 52 \triangleright Sur \mathbb{C} , $\exists n+1$ classes d'équivalences de forme quad. distinguées par rang

2.12.2 Classification sur \mathbb{R}

- TH 53 \blacktriangleright Sur \mathbb{R} , \exists unique mat diagonale $\begin{pmatrix} \mathbb{1} & 0 & 0 \\ 0 & -\mathbb{1} & 0 \\ 0 & 0 & 0 \end{pmatrix}$ où $q=r-p, r=\mathrm{rang}\ Q$
- Prop 54 \triangleright $(p,q) = (p_Q,q_Q)$ signature de Q
- Cor $55 \triangleright 2$ formes quad. sont équivalentes ssi même signature.
- Déf 56 \triangleright $(p,q)=(p_Q,q_Q)$: signature de $\mathbb Q$ (invariant classifiant les formes quad sur ev réel $\dim n$

4

2.13Orthogonalite

Déf 58
$$\blacktriangleright$$
 soit E sur \mathbb{K} ev, $\varphi \mathcal{S}(E), Q = q_{\varphi}, q_{\varphi} \in Q(E)$
pour $A \subset E, A^{\perp} = \{x \in E | \varphi(x, y) = 0, \forall y \in A \}$

TH 59
$$\blacktriangleright$$
 $(i)A^{\perp}$ sev, Ker $\varphi \subset A^{\perp}: \varnothing^{\perp} = \{\varnothing\}^{\perp} = E, \ E^{\perp} = \operatorname{Ker} \varphi, A \subset (A^{\perp})^{\perp}$
 $(ii)\ A \subset B \subset E \longrightarrow \operatorname{Ker} \varphi\ B^{\perp} \subset A^{\perp}$
 $(iii)\ A \subset E, A \neq \varnothing \longrightarrow A^{\perp} = \operatorname{Vect}(A)^{\perp},$
 $siA = \{v_1, \dots, v_k\}, F = \operatorname{Vect}\{v_1, \dots, v_k\} \longrightarrow F^{\perp} = A^{\perp} = \bigcap_{i=1}^k \ v_i^k$

TH 60 Sur orthogonal, F sev de E, dim
$$F^{\perp} = n - \dim F + \dim(F \wedge \operatorname{Ker} \varphi)$$

 $(ii)n \leq \dim F + \dim F^{\perp} \leq n + \dim \operatorname{Ker} \varphi$
 $(iii)(F^{\perp})^{\perp} = F + \operatorname{Ker} \varphi, (F^{\perp})^{\perp} \iff \operatorname{Ker} \varphi \subset F$
De plus si φ non-dégénéré ie $\operatorname{Ker} \varphi = \{0\} \longrightarrow$

$$(i)\dim F^{\perp} = n - \dim F$$

$$(iii) \ (F^{\perp})^{\perp} = F$$

$$(iv)$$
 φ_F : restriction de φ à $F \times F$, φ_F : $\begin{picture}(0,0) \line(0,0) \put(0,0) \pu$

forme linéaire symétriq

$$\varphi_F \in \mathcal{S}_F : \bullet \operatorname{Ker} \varphi_F = F \wedge F^{\perp} = \operatorname{Ker} \varphi^{\perp}$$

$$\varphi_F \in \mathcal{S}_F : \bullet \operatorname{Ker} \varphi_F = F \wedge F^{\perp} = \operatorname{Ker} \varphi^{\perp}$$

$$\bullet E = F \oplus F^{\perp} \iff F^{\wedge F^{\perp}} \iff \{0\} \iff \varphi_F \text{ non dégénéré} \iff \varphi_F^{\perp} \text{ non-dégénéré}.$$

2.13.1 Projections orthogonales

- Déf 61 $\blacktriangleright E = K \oplus L, \forall v \in E, \exists (x,y) \in E \ K \times L | s = x + y \text{ et proj-linéaire } p_K^L \text{ ou } pr_K^L \text{ de } S$ par S sur K parallèlement à $L: p_K^L(v) = x$.
- Prop 62 $\triangleright p = p_K^L : E \longrightarrow E$ satisfait : (i) $p \in \mathcal{L}(E)$, Ker p = L, Im(K), $p_K = id_K$ (restriction de $p \ \text{à} \ K \ (ii)p^2 = p(p^2 = p \circ p)$ (iii) $q = id_E - p \longrightarrow p + q = id_E, p^2 = p, q^2 = q, pq = qp = 0$ Réciproquement : p endormophisme linéaire $p \in \mathcal{L}(E)$ tq $p^2 = p \longrightarrow p$ est projection linéaire p_K^L où K = Im(p) et L = Ker p
- Déf 63 \triangleright Une projection linéaire p_K^L est orthogonale $\iff K \perp L$. De façon équivalente, un endomorphisme linéaire $p \in \mathcal{L}(E)$ est proj. orthogonale $\iff p^2 = p$ et $E = \operatorname{Ker} p \oplus^{\perp} \operatorname{Im}(p)$ (somme directe orthogonale)
- Déf 64 \triangleright F sev de E est non dégénéré si $Q_F = Q_{|F|}$ (ou $\varphi_F = \varphi_{|F \times F|}$) est forme non dégénéré. F non dégénéré $\iff F \wedge F^{\perp} = \{0\} \iff E = F \oplus F^{\perp}$
- Prop 65 \triangleright F sev de E, (i)siF non-deg $\longrightarrow \exists !$ proj. orhtogonale p d'image $F := p_F(\sup_{n \neq i}^R p_i)$ (ii)si en plusQest forme non-deg \longrightarrow réciproque est vraie

2.13.2 Calcul projection orthogonale

Prop 66 \triangleright F sev non-deg, (a_1, \dots, a_k) base orthogonale de F. Alors $Q(\omega_i) = \varphi(u_i, u_i) \neq 0 \quad \forall i = 1, \dots, k$ $1, \dots, k \text{ est } \forall x \in E, p_F^r(x) = \sum_{i=1}^k \frac{\varphi(u_i, x)}{\varphi(u_i, u_i)}$

2.14 Groupe orthogonal

- Déf 67 Un endomorphisme $f \in \mathcal{L}(E)$, est def **orthogonal** (ou Q-orthogonal ou φ orthogonal) s'il préserve Q ou (φ): $\forall x \in E, Q(f(x)) = Q(x)$ (ou $\forall x, y \in E, \varphi(f(x), f(y)) = \varphi(x, y)$. On note $\mathcal{O}(E)$ ou $\mathcal{O}(E,Q), \mathcal{O}(E,\varphi), \mathcal{O}(\varphi)$, l'ens des endom, orthogonaux de (E,Q)
- Prop 68 \triangleright (i) $f \in \mathcal{O}(E) \longrightarrow f$ inversible (ii) $\mathcal{O}(E)$ est un groupe.
 - Déf 69 \triangleright soit F un ss-espace non-deg de E $\longrightarrow E = F \oplus F^{\perp}$ et les 2 projections orthogonales $p_F, p_{F^{\perp}}$ sont def, tq $p_F + p_{F^{\perp}} = id_E$. On def la **symétrie orthogonale** s_F par : $\forall v, \in E, \exists ! (x, y) \in F \times F^{\perp}, v = x + y$ et on pose $s_F(v) = x y$
 - 70 $ightharpoonup s_F = p_F p_{F^{\perp}} = id_E 2p_{F^{\perp}} = 2p_F id_E$ Lorsque F est un **hyperplan**, s_F :réflexion orthogonale Toute symétrie orthogonale est un endom. orthogonal Quand $F \subsetneq E, p_F$ proj orthogonale n'est pas endom orthog.

2.15 Caractérisation de $f \in \mathcal{O}(E)$ par matrices

- 71 \triangleright \mathcal{E} , base $f \in \mathcal{L}(E)$, $G = Mat_{\mathcal{E}}(Q)$ alors $f \in \mathcal{O}(E) \iff {}^{t}AGA = G \iff \varphi(f(e_{i}), f(e_{j})) = \varphi(e_{i}, e_{j}) \ \forall i, j = 1, \cdots, n, \mathcal{E} = (e_{1}, \cdots, e_{n})$ Cas particulier: $\begin{pmatrix} 1 & . & O \\ . & \ddots & . \\ O & . & 1 \end{pmatrix}$, (E, Q) est un espace euclidien muni base orthornormée
 - \mathcal{E} , on a $f \in \mathcal{O}(E) \iff {}^t AA = \mathbb{1}_n \iff A^{-1} = {}^t A \iff A$ mat orthogonale
- TH 72 \triangleright (Cartau-Dieudonné) Tout élément de $\mathcal{O}(Q)$ est produit d'au plus n réflexions orthogonales

3) φ est def négative $\iff \forall i = 1, \dots, n, \Delta_i = (-1)^i | \Delta_i \neq 0$

- TH 73 (Orthogonalisation de Graur-Schmidt) $(v_1, \cdots, v_n) \text{ base de } E, \ \forall i=1,\cdots,n-1, E_i = \mathrm{Vect}(v_1,\cdots,v_i) \text{ est } \mathbf{non\text{-}d\acute{e}g\acute{e}n\acute{e}r\acute{e}} \text{ alors les } n \text{ vecteurs :} \\ u_1 = v_1, \ u_2 = v_1 \frac{\varphi(u_1,v_2)}{\varphi(u_1,u_1)} u_1, \cdots, u_k = v_k \sum_{i=1}^{k-1} \frac{\varphi(u_1,v_k)}{\varphi(u_i,u_i)} u_i \text{ sont bien def et forment base orthogonale.} \\ \mathcal{U} = (u_1,\cdots,u_k) \text{ de E, dans cette base } Q \text{ s'\acute{e}crit :} \\ Q(\sum_{i=1}^n) = \Delta_1 x_1^2 + \frac{\Delta_2}{\Delta_1} x_2^2 + \cdots + \frac{\Delta_n}{\Delta_{n-1}} x_n^2, \text{ où } \Delta_k = \det A_k, \ A_k = Mat_{(v_1,\cdots,v_k)}(Q|_{F_k}.$
 - $74 \triangleright \mathcal{U}$ s'apelle orthogonalisée G S
 - 75 $\triangleright Q|_{F_{n-1}}$ non-dég \longrightarrow le rang de Q est au moins $n-1 \longrightarrow \operatorname{Rang} Q = n-1$ ou n, on ne suppose pas que $\Delta \neq 0$
- Cor 76 (Critère de Sylvester) $E, \mathbb{K} ev, \dim E = n, \varphi \in \mathcal{L}(E), \varphi = b_Q, Q \in Q(E), (v_1, \dots, v_n) \text{ base de } E, a_{ij} = \varphi(v_i, v_j) \text{ pour } 1 \leq i, j \leq n, F_k = \text{Vect}(v_1, \dots, v_k), A_k = (a_{ij})_{1 \leq i, j \leq k}, A_k = Mat_{(v_1, \dots, v_k)}(Q|_{F_k}), \Delta_k = det A_k \text{ alors :} 1)\varphi(ouQ) \text{ est def } \textbf{positive} \iff \Delta_1 > 0, \dots, \Delta_n > 0$ Supposons $\Delta_1 \neq 0, \dots, \Delta_{n-1} \neq 0, \Delta_0 = 1 \text{ alors : l'indice négatif } q \text{ de } Q \text{ (c'est la 2° composante de la signature } (p, q) deQ \text{ est le } \textbf{nbr de changements de signe } \text{ dans la suite } \Delta_0, \dots, \Delta_n \text{ (on dit } (\Delta_i) \text{ possède un changement de signe au rang } i \text{ si } \Delta_i.\Delta_{i-1} < 0$

$$A=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{23}&a_{33}\end{pmatrix}$$
les $A_k=det A_k$ s'appellent mineurs principaux domi-

§3. Espaces euclidiens

3.1 Norme, distance, angles, volumes

- Déf 01 Un \mathbb{R} ev-E muni FB sym φ est appelé **espace euclidien** si dim $E < \infty$ et φ def positive. φ est appelé **produit scalaire.** $\langle x|y\rangle := \varphi(x,y) \ \forall x,y \in E$. Par def, $\forall x \in E, \langle x,x| \geq \rangle 0$ et $\langle x|x\rangle = 0 \iff x = 0$. On note $\sqrt{\langle x|x\rangle} = ||x||$. On a $\forall x \in E, ||x|| = 0 \iff x = 0$
- Prop $02 \triangleright \forall x, y \in E, \lambda \in \mathbb{R}$, on a:

$$(i)||\lambda x|| = |\lambda|||x||$$

$$(ii)||x+y||^2 = ||x||^2 + 2\langle x|y\rangle + ||y||^2$$

(si
$$x \perp y \longrightarrow ||x+y||^2 = ||x||^2 + ||y||^2$$
 (TH de Pythagore)

$$(iii)||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 (inégalité du parallélogramme)

$$(iv)|\langle x|y\rangle)| \leq ||x||||y||$$
 (Inégalité de Cauchy-Scwhartz)

$$|(v)||x+y|| \le ||x|| + ||y||$$
 (inégalité de Minkowski)

- Déf 03 \triangleright Norme classique N(x)
- Déf 04 \blacktriangleright soit $X \neq$. On appelle distance (ou métrique) sur X toute fonction $d: X \times X \longrightarrow R \geq 0$ tq:

$$(i)\forall x, y \in X, d(x, y) = d(y, x)$$

$$(ii)d(x,y) = 0 \iff x = y$$

$$(iii) \forall (x, y, z) \in X^3, d(x, z) \le d(x, y) + d(y, z)$$

Un espace métrique est un ens. muni d'une métrique. La fonction $E \times E \longrightarrow \mathbb{R} \ge 0, (x,y) \longrightarrow ||x-y||$ est une distance.

- Déf 05 \blacktriangleright soit $(E, \langle .|.\rangle)$, un espace euclidien, la fonction $E \longrightarrow \mathbb{R}_{>0}, x \longrightarrow ||x||$ s'appelle norme euclidienne sur E et la fonction $d: E \times E \longrightarrow \mathbb{R}_{>0}, (x,y) \longrightarrow ||x-y||$ s'appelle distance euclidienne sur E.
 - 06 > Tout espace euclidien possède une base orthonormée et est donc isomorphe à \mathbb{R}^n muni de son porduit scalaire standard

3.2 Angles

Cor 07
$$\blacktriangleright$$
 $\forall x, y \in E \setminus \{0\}$ par Cauchy-Schwarz, $\mid \frac{\langle x | y \rangle}{||x||||y||} \mid \leq 1$

Déf 08 L'angle $(\widehat{x,y})$ entre deux vecteurs non nuls de E est def comme unique réel $\theta \in [0,\pi]$ tq $\cos \theta = \frac{\langle x|y\rangle}{||x||||y||}$. On peut écrire $(\widehat{x,y}) = \arccos \frac{\langle x|y\rangle}{||x||||y||}$ (arccos désigne la valeur principale de arccos comprise entre 0 et π). $\arccos t = \pm \arccos t + 2k\pi, k \in \mathbb{Z}$.

On def aussi les angles entre 2 sous-espaces vectoriels $F_1, F_2 \neq 0$ de E:

 $(\widehat{F_1}, \widehat{F_2}) = \inf\{(\widehat{v_1}, \widehat{v_2} | v_1 \in F_1 \setminus \{0\}, v_2 \in F_2 \setminus \{0\}\} \text{ et l'angle entre un vecteur non nul est un sous-espace vectoriel de } F : (\widehat{v, F}) = \inf\{(\widehat{v, w}) | w \in F \setminus 0\}$

09 \blacktriangleright Par exemple, l'angle entre 2 droites F_1, F_2 de vecteurs directeurs v_1, v_2 : $(\widehat{F_1, F_2}) = \min\{(\widehat{v_1, v_2}), (\widehat{v_1, -v_2})\} = \min\{\theta, \pi - \theta\}$ $o\theta = (\widehat{v_1, v_2})$

3.3 Volumes

Déf 10 \triangleright (i)Pour une famille $\mathcal{V} = (v_1, \dots, v_k)$ de vecteurs de E, le parallélépipède engendré par v est def par :

 $\Pi = \Pi(\mathcal{V}) = \{ \sum_{i=1}^{k} t_i v_i \mid (t_1, \dots, t_{\alpha}) \in [0, 1]^{\alpha} \}$

(ii) Le k-volume $v \circ l_k(\Pi(\mathcal{V}))$ est def par :

1) si \mathcal{V} est **liée** , $v \circ l_k(\Pi(\mathcal{V})) = 0$

2) si \mathcal{V} est libre, $v \circ l_k(\Pi(\mathcal{V})) = |\det P_{\mathcal{E}_F \longrightarrow v}|$ où \mathcal{E}_F est base orthonormée qq de $F = \operatorname{Vect}(v)$ et $P_{\mathcal{E}_F \longrightarrow v}$ désigne la mat de passage de \mathcal{E}_F à v.

 $P_{\mathcal{E}_{F \longrightarrow v}} = (p_{ij})_{1 \le i,j \le k} \forall j = 1, \cdots, k, \ v_j = \sum_{i=1}^k p_{ij} e_i$

Lemme 11 \blacktriangleright | det $P_{\mathcal{E}_F \to v}$ | ne dépend pas choix de \mathcal{E}_F

Cor 12 ▶ (de la démo du lemme)

La mat de passage A entre 2 bases orthorn, est une mat **orthogonale**: A est **inversible** et $A^{-1} = {}^tA$. Le **déterminant d'une mat orthogonale** ne peut prendre que deux valeurs : 1 et -1.

3.4 Groupe orhtogonale d'un espace euclidien

Déf 13 \triangleright soit E un ee dim E=n. On note $\mathcal{O}(E)$ l'ens des endomorphismes orthogonaux de E. $\mathcal{O}(E)=\mathcal{O}(E,\langle.|.\rangle)=\{x\in\mathcal{L}(E)\ | (x,y)\in E\times E, \langle u(x)|u(y)\rangle=\langle x|y\rangle\}$. C'est un groupe. L'ens des mat orhtogonales de taille n est def par : $\mathcal{O}(n)=\{A\in\mathcal{M}_n(\mathbb{R})\ |\ ^tAA=1_n\}\subset GL(n,\mathbb{R})$ un sous-groupe du groupe $GL(n,\mathbb{R})$ des mat inversibles de taille n.

