(54) MANUFACTURE OF SEMICO

(11) 4-53131 (A)

(43) 20.2.1992 (19) JP

- (21) Appl. No. 2-158248 (22) 16.6.1990
- (71) NEC CORP (72) TATSURO SAKAI
- (51) Int. Cl⁵. H01L21/288

PURPOSE: To prevent shorts from occuring in adjoining electrodes even when the electrodes are located very close to each other and to prevent the peeling of the electrodes with the help of an insulated film by etching the insulated film formed on a conductive path metal anisotropically to leave it over at the sides of the electrodes.

CTOR DEVICE

CONSTITUTION: An insulated film 6 is deposited on the whole surface of a conductive path metal 5 and then photoresist is applied to the insulated film 6 to make a pattern. A part of the insulated film 6 which is exposed in windows made on the photoresist 7 is etched by the reactive dry etching method to be removed. At the insulated-film removed sections, the conductive path metal 5 located below is exposed. Nextly, a current is caused to flow through the conductive path metal 5 and a gold-plated film 8 is deposited on the conductive path metal 5. After removing the photoresist 7, the insulated film 6 and the conductive path metal 5 are etched by the reactive ion etching method with electrodes 8a, 8b used as masks. Since the electrodes 8a, 8b are in the shape of an inverse-trapezoid, a part of the insulated film 6 is left over at the side faces of the electrodes 8a, 8b. Thus, the side faces of the electrodes 8a, 8b are protected by the left-over insulated film 6.

1: semiconductor substrate, 2: base diffusion layer, 3: emitter diffusion layer

(54) METAL THIN FILM FORMATION METHOD

- (11) 4-53132 (A)
- (43) 20.2.1992 (19) JP
- (21) Appl. No. 2-159087 (22) 18.6.1990
- (71) TOSHIBA CORP (72) TSUNETOSHI ARIKADO(1)
- (51) Int. Cl⁵. H01L21/288,C23C18/08,H01L21/28

PURPOSE: To obtain a high-quality and high-reliability thin film pattern by a method wherein a metal compound which will melt at the decomposition temperature or lower is placed on a substrate and is heated to temperatures a little higher than a melting point to be melted and then the molten metal compound is poured into the recessed sections or other part and after that metal is generated by thermal decomposition or photodissociation.

CONSTITUTION: A copper stearate solution saturated with chloroform is applied to the surface of a silicon substrate 1 on which a pattern 12 of a silicon oxide film is formed. With the substrate 1 placed on a plate heated to 40°C, chloroform is evaporated to form a copper stearate film. This sample is placed inside a vacuum container. The inside of the vacuum container is evacuated once and then is kept at 760Torr. Then, the sample is started to be heated. The substrate is gradually heated for 30 minutes to 370°C and then is heated for 30 minutes at 370°C. Then, heating of the substrate by a heater is stopped and the sample is cooled down naturally. By this method, a metal thin film is obtained with a copper film 13 buried excellently in the recessed sections.

(54) CDE APPARATUS FOR GLASS SUBSTRATE

- (11) 4-53133 (A)
- (43) 20.2.1992 (19) JP
- (21) Appl. No. 2-157662 (22) 18.6.1990
- (71) TOSHIBA CORP (72) NORIYUKI HIRATA
- (51) Int. Cl⁵. H01L21/302

PURPOSE: To prevent etching gas from penetrating between the rear surface of a glass substrate and a substrate holder by letting the substrate holder have an inactive gas bring-in section and an inactive gas blow-off section.

CONSTITUTION: Air is drawn out from a vacuum container by an air exhauster 2 until the pressure of the inside of tone vacuum container reaches the specified value and a glass substrate 7 is placed on the upper surface of a substrate holder 4. Then, the predetermined flow rate of Ar is brought in to the inside of the container from an inactive gas bring-in section 6 and Ar is jetted from shower holes which are made on the upper surface of the substrate holder. Where the pressure of the inside of the vacuum container 1 get steadied, the specified flow rate of activated etching gas is brought in to the inside of the vacuum container 1 from an etching gas bring-in section. With the pressure of the inside of the vacuum container 1 being kept at constant by the air exhauster 2, the glass substrate 7 is etched for the specified span of time. By making the partial pressure of the inactive gas and the etching gas optimum, the glass substrate can be etched with the rear surface never exposed to the etching gas and the rear surface of the glass substrate is prevented from being cloudy.

⑫公開特許公報(A) 平4-53132

@Int.Cl.5 21/288 18/08 識別記号

庁内整理番号

@公開 平成4年(1992)2月20日

H 01 L C 23 C H 01 L

Z

7738-4M 6919-4K 7738-4M 7738-4M 301 301

審査請求 未請求 請求項の数 7 (全12頁)

金属薄膜の形成方法 60発明の名称

> 顧 平2-159087 ②特

顧 平2(1990)6月18日 **经**出

明者 門 経 @発 有

神奈川県川崎市幸区小向東芝町1 株式会社東芝総合研究

所内

@発 明 者 岡 雄 神奈川県川崎市幸区小向東芝町 1 株式会社東芝総合研究

所内

の出 願 人 株式会社東芝 神奈川県川崎市幸区堀川町72番地

弁理士 木村 70代理人 高久

明

1. 発明の名称

金属薄膜の形成方法

- 2. 特許請求の範囲
- (1) 基板表面に、分解温度以下で溶融する性質 を有する金属化合物を含む膜を形成する第1の工 程と、

前記憶を、密融温度を通過して分解温度を で昇湿し、前記金属化合物を熱分解して金属薄膜 を形成する第2の工程とを含むようにしたことを 特徴とする金属薄膜の形成方法。

(2)凹凸を有する基板表面に、分解温度以下で 溶融する性質を有する金属化合物を含む膜を形成 する第1の工程と、

前記職を、前記金属化合物の溶融温度を通 過して分解意度まで昇盛し、前記金属化合物を熱 分解して前記基板の凹部に金属薄膜のバターンを 形成する第2の工程とを含むようにしたことを特 徴とする金属薄膜の形成方法。

(3)凹凸を有する甚板表面に、分解温度以下で 溶融する性質を有する金属化合物を含む襞を形成 する化合物膜形成工程と、

前記願を、前記金属化合物の治敵温度以上、 分解温度以下の温度で加熱し、前記金属化合物を 溶融せしめる溶融工程と、

前紀金属化合物を分解温度以上に加熱し熱 分解して前記甚板の凹部に金属苺膜のパターンを 形成する熱分解工程とを含むようにしたことを特 徴とする金属薄膜の形成方法。

- (4) 前記熱分解工程は、週元性雰囲気中で行わ れる工程であることを特徴とする請求項(8) 記載 の金属薄膜の形成方法。
- (5) 前記溶艇工程と前記無分解工程は、少なく とも2回以上級り返しておこなわれることを特徴 とする請求項(3) または請求項(4) 記載の金属簿 膜の形成方法。
- (6) 凹凸を有する基板表面に、分解温度以下で **治融する性質を有する金属化合物を含む膜を形成** する化合物職形成工程と、

前記録を、前記金属化合物の溶酸温度以上、分解温度以下の温度で加熱し、前記金属化合物を溶融せしめる溶融工程と、

前記金属化合物を光を照射しながら加熱し 光分解して前記基板の凹部に金属薄膜のパターン を形成する光分解工程とを含むようにしたことを 特徴とする金属薄膜の形成方法。

(7) 凹凸を有する基板設面に、分解温度以下で 溶融する性質を有する金属化合物を含む膜を形成 する離形成工程と、

前記基板を真空容器内に設置し、気相から前記金属の存腹を成長させながら、前記験を、前記金属化合物の溶験温度以上、分解温度以下の温度で加熱する溶験工程と、

前記金属化合物の分解温度以上に前記膜を加無し無分解して前記基板の凹部に金属薄膜のパターンを形成する無分解工程とを含むようにしたことを特徴とする金属薄膜の形成方法。

3. 発明の詳細な説明

(発明の目的)

クトロマイグレーションおよびストレスマイグレーションに使れた飼めるいは飼を主成分とする配線が検討され始めている。

従来、鍋あるいは銅合金薄膜の形成は、アルミニウムと同様スパッタ法により行われてきた。しかしながら、銅配線の散細化および多層化がますます造んできた現状では、スパッタ法における本質的な段差被覆性の悪さのために配線の断線が生じ易くなり、半導体装置の信頼性低下の原因となるという問題があった。

また、配線を形成するためにはいうまでもないことであるが、イオンミリング法等を用いた不子ナングが必要である。イオンミリングは、不活性ガスのスパッタリング効果を利用したエッチングのあため、表面からスパッタリングされたの世帯と、パターン側壁に付着しバターン形成を阻害する。また、エッチングチャンパーの腰面にも付着し、剝がれてゴミの原因となる。

一方、 反応性イオンエッチングは、 ハロゲンを 含有する反応性ガスのプラズマを利用し、 無気圧 (産業上の利用分野)

本発明は、金属薄膜の形成方法に係り、特に、金属化合物から分解により金属薄膜を形成する方法に関する。

(従来の技術)

近年、半導体装置の高泉積化に伴い、回路の微 細化は進む一方であり、配線においても散細化お よび多層化が急速に進められている。

配線材料としては、比低抗が2.75μΩ・cm と低いことから、アルミニウムを主成分とするア ルミニウム合金が広く用いられている。

しかしながら、このようなアルミニウムを主成分とするアルミニウム合金等の配線材料においては、配線の散細化により電流密度が増加することに起因してエレクトロマイグレーションによる断線の問題がますます深刻となってきている。

また、配線にかかる無ストレスによるストレス マイグレーションも問題となってきている。

そこでアルミニウムよりも低い比低抗を有し、 かつアルミニウムよりも融点が高く、さらにエレ

の高い化合物に変えて系外に排気するエッチング 技術であるが、Cuの化合物には蒸気圧の高い材 料がない。最も蒸気圧の高い塩化物でさえも、通 常の意味でのエッチングを行うためには、基板を 350℃以上に加熱する必要がある(星野他、第 36回応用物理学会構演予稿集 p. 5701p - L - 1、千葉、(1989))。 しかし、35 ① で以上に加熱された基板から脱離したC u 塩化 物は、加熱されていないチャンパーの整面に付 して、イオンミリングと同様にゴミの問題が起こ る。これを避けるためには、チャンパーそのもの を加熱する必要があるが、基板の蝦送等を考慮し た場合、量産エッチング装置を実現するのは極め て困難である。さらに、このような高温に絶え得 るエッチングマスク材料の問題もあり、エッチン グでCu配練を形成するのは技術的に困難な問題 が多い。

そこで、エッチングによる配線形成に代わる方法として、必要な場所にだけCu膜を形成するいわゆる選択CVD法が提案されている。

特開平4-53132 (3)

この方法は、比較的蒸気圧の高い C u アセチルアセトン型錯体を用い、200℃~400℃に加熱した基板上で、酸化シリコン膜上にのみ C u 膜が堆積することが報告されている (Y. Hazuki, Proc. of 11th Symp.on Dry Process, p. 178, Tokyo, (1989))。

酸化シリコン製101上のみにCuが堆積する 性質を利用して、例えば次のようなパターン形成 方法が考えられる

まず、第10回(a) に示すように、シリコン基板100上に形成された酸化シリコン膜101上に多結品シリコン膜またはアモルファスシリコン膜102を堆積し、その上にレジストバターン103を形成する。

そして、第10図(b) に示すように、このレジストパターンをマスクとしてこの多結品シリコン 表またはアモルファスシリコン展102をエッチングし、レジストパターン103を除去する。

この状態で、第10図(c) に示すように、Cu アセチルアセトン型婚体を用い、200℃~40 ○でに加熱した基板上の酸化シリコン膜101上に選択的にCu薄膜104を形成する。ここで、Cu薄膜104は、多結晶シリコン膜またはアモルファスシリコン膜102上には形成されず、酸化シリコン膜101上にのみ選択的に形成されず。なっての後、弗雷(F)ラジカルを用いたドライエッチングにより多結晶シリコン膜またはアモルファスシリコン膜102をエッチングを行成することが可能である。

このように、選択性を維持することと、酸素を含有しない高品質のCu膜を得るということとがトレードオフの関係にあり、酸素を含有しない高

品質の C u 膜を選択的に堆積するのは本質的に函 難であるという問題があった。

この関係は、Cu薄膜に限定されることなく、 他の金属薄膜にもあてはまる問題であった。

(発明が解決しようとする課題)

・このように、従来の方法では、酸素を含有しない高品質の金属薄膜を選択的に堆積するのは本質的に困難であるという問題があった。

本発明は、前記実情に鑑みてなされたもので、 設案を含有しない高品質の金属薄膜を形成する方 法を提供することを目的とする。

また本処明は、高品質の金属薄膜で凹部を選択的に埋め込む方法を提供することを目的とする。
〔発明の構成〕

(謀題を解決するための手段)

そこで本発明では、分解温度以下で溶融する性質を持つ金属化合物を出発物質として選び、この物質を溶剤に溶かして溶液の状態で塗布するか、無虧するかまたはそのまま、基板上にのせ、不活性ガス、窒素または水素や一酸化炭素等還元性が

ス雰囲気下で、まず融点より僅かに高い程度の選 度に加熱して溶酸し、基板表面凹部等に流し込み、 その後熱分解または光分解により金属を生成する ようにしている。

すなわち本発明の第1では、基板表面に、分解 温度以下で溶融する性質を有する金属化合物を含む膿を形成し、この膜を、溶融温度を通過して分解温度まで昇温し、前記金属化合物を無分解して金属薄膜を形成するようにしている。

また本発明の第2では、凹凸を有する基板裏面に、分解温度以下で溶融する性質を有する金属化合物を含む膿を形成し、この膿を、金属化合物の溶酸温度を通過して分解温度まで昇温し、金属化合物を熱分解して凹部に金属薄膜のパターンを形成するようにしている。

本発明の第3では、凹凸を有する基板表面に、分解温度以下で溶散する性質を有する金属化合物を含む膿を形成し、この膿をまず、金属化合物の溶散温度以上、分解温度以下の温度で加熱して金属化合物を溶散せしめ、さらに分解温度以上に加

無し無分解して基板の凹部に金属薄膜のパターン を形成するようにしている。

望ましくは、この無分解工程は、還元性雰囲気 中で行うようにしている。

さらに望ましくはこの溶験工程と無分解工程は、 少なくとも2回以上繰り返しておこなうようにしている。

さらに本発明の第4では、金属化合物を含む酸を溶散温度以上、分解温度以下の温度で加熱し、溶散せしめたのち、金属化合物を光を照射しながら加熱し光分解して前記基板の凹部に金属薄膜のパターンを形成するようにしている。

本処明の第5では、凹凸を有する基板数面に、凹凸を有する基板数面に、凹凸を有する基板数面に、砂点に立つ、砂点に立つ、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を、砂点を放射を表が、シーンを形成するようにしている。

このような作用に加え、個々の発明では以下のような作用を有する。

すなわち本発明の第1では、金属化合物を含む 腰を形成した後、溶酸温度を過過して分解温度まで料温し徐々に加熱するようにしているため、溶 酸温度で一旦溶酸し、さらに分解温度に到達して 金属化合物が分解する。

また本発明の第2では、凹凸のある基板を用いることにより、凹部に選択的に金属膜パターンを 形成することができる。

望ましくは、この無分解工程は、還元性雰囲気 中で行うことにより、腹中への酸素等の混入を抑 (作用)

本発明において重要なのは、分解温度以下で溶験する性質を持つ金属化合物を選定することである。

すなわち、加熱によっていきなり分解するようなものではなく、低い温度で一旦融解するような 材料を用いる。

このような材料を基板表面に塗布などの方法で 載量し、まず、融点よりもやや高い温度での加熱 により材料が融解すると、凹凸のある基板では凹 部等に流れ込む。

この状態で分解温度以上に加熱すると、無分解により、この凹部内等に金属が折出する。

したがって、コンタクトホールやピアホールに 作業性よく金属を埋め込むことが可能であるし、 また、あらかじめ構を形成しておくようにすれば、 それにそって金属膜を形成することも可能である。

またこの熱分解条件等を最適にすることにより、 極めて選択性よく、酸素や炭素の含有量の少ない 高品質の金属膜を形成することができる。

割することができる。

きらに望ましくはこの溶験工程と無分解工程と を、少なくとも2回以上繰り返しておこなうこと により、クラックの発生を抑制し、下地との密替 性の高い金属膜を形成することができる。

また本発明の第4では、金属化合物を含む膜を溶験では、金属化合物を発起した。 会属化合物を照射を解析の いっち 、会 前記 を 仮の凹部に金属 薄膜の いっち と 形成 することにより、 特定の 前に して 取射 放長を 選択することにより、 特定の 前能 合を る。また、 光エネルギーによる 励起を 行った かできる。

本発明の第5では、金属化合物の複融工程で、 同時に、CVD法などにより気相からこの金属の 薄膜を成長させながら、金属化合物の熔融を行い、 この後金属化合物の分解温度以上に前起膜を加熱 し熱分解するようにしているため、この場合も膜 の数間をCVD膜でうめることができクラックの ない良好な金属験を形成することができる。 (実施例)

以下、本発明の実施例について図面を参照しつっ詳細に説明する。

第1図は本発明の薄膜形成方法の一実施例方法 に用いられる薄膜形成装置の概略図である。

この薄膜形成装置は、真空容器1と、この真空容器内に設置されヒータ2等の加熱機構を具備した試料支持台3と、バルブ4を介して真空容器1内を真空排気する排気系5と、ガス導入系7とを具備し、試料支持台上に截覆された基板6の表面に飼薄膜を形成するものである。

まず、被処理基板を作成する。

シリコン基板11に対して水素燃焼酸化を行い、 膜厚8000人の酸化シリコン膜12を形成した これをフォトリソグラフィ法により形成したレジストパターンをマスクとしてCHF3を用いた反 広性イオンエッチングを用いて酸化シリコン膜1 2をパターニングしライン&スペースパターン、 コンタクトホールなどを有するパターンを形成す

C u の他に C が観察され、不純物を含有するものの、銅纂が良好に形成されていることが分かる。

さらに、この膜のX線回折チャートを第4図に 示す。この結果、回折ピークが認められ、この膜 は多結晶銅膜であることがわかる。

次に、この実施例で用いたステアリン酸酮の熱 特性を測定した。この結果を第5図に示す。

曲線 a は D T A 曲線であり、下向きのピークは 吸熱反応を示す。この結果から、ステアリン酸網 は 1 2 0 ℃で溶散し、180℃で分解が始まるこ とがわかる。

曲線 b は T C 曲線であり、分析試料の重量は少を示す。この結果から、ステアリン酸網は、 1 8 0 ℃付近から重量減少が始まり、 3 0 0 ℃付近での重量減少は停止し、それ以上では穏やかな重量減少となる。このことは、 1 8 0 ℃以上で熱分解が始まることを示す。 3 2 0 ℃で分解しても、なお 7 %の不純物が鉄密することがわかる。

る。この後酸素プラズマアッシングによってレジストパターンを除去する (第 2 図(a)) 。

このようにして酸化シリコン酸のパターン12の形成されたシリコン基板1の表面に、ステアリン酸銅(Cu(C:7月:5COO)ェ)のクロロホルム的和溶液を塗布し、40℃に加熱された熱板上でクロロホルムを蒸発させステアリン酸鋼膜を形成して、第1図に示した薄膜形成装置のは料載置台3に設置する。

まず、真空容器1内を一旦真空にしたのち、ガス導入系7から一酸化炭素を導入し760Torrの保持して、試料台の加熱を開始する。

そして、ヒータ2を用いて基板を370℃まで30分かけて徐々に加熱した後、370℃で30分間加熱したのち、ヒータ2の加熱を停止しては料台3を自然に冷却した。

このようにして、第2図(b) に示すように凹部内に銅膜13が良好に埋め込まれる。

この膜3を二次イオン質量分析器で分析した結 巣を第3図に示す。この図からも明らかなように、

この結果から、ステアリン酸鋼を溶験させるための第1の加無温度は120℃以上、180℃以下であることが必要であり、無分解をさせるための第2の加熱温度は320℃以上であることが望ましいことがわかる。

・また、この実施例において、溶融および分解により金属機を形成した後、さらに金属薄膜の溶散 湿度以上に加熱し、一旦溶験せしめて隙間等を埋め、下地との密着性を高めることができる。

事施例 2

次に本発明の第2の実施例として、第6図に示すように、真空容器にマイクロ波放電機構を設けた薄膜形成装置を用いた方法について説明する。

この装置では、第1図に示した薄膜形成装置の 構成に加え、薄膜形成室としての真空容器1の一 増にボート10を介してアルミナ製の放電管8の 設けられており、この放電管8の一端に設けられ たガス導入系7から水素を導入しつつ、放電管8 のまわりを囲むエベンソン型空洞共振器9にマイ クロ源 2 0 から供給されるマイクロ波によってマイクロ波放電を起こして、水素を励起し、発生した水素プラズマを、真空容器 1 内の試料 載量台 3 に載置された被処理基板 6 上に導くようにした 6 のである。他部については、第 1 図に示した 淳健形成装置と同様に形成されている。

ここで、導入されるマイクロ彼の周波数は2. 45GHzである。

この装置を用いて銅の薄膜を形成する方法について説明する。

まず、実施例1で用意したのと同様の第2図(a)に示したような被処理基板を用意する。すれたシリコン臓のパターン2の形成は1の表面に、ステアリン酸銅(C C ru H s s C O O O) 2)のクロロホルム的和溶液でなった。40℃に加熱された熱板上でクロロホルムを蒸発させステアリン酸銅を形成も10℃に対象を形成装置の試料数度台3に設置する。

そしてまず、真空容器1内を一旦真空にしたの

平板型プラズマ装置を用いたプラズマ中で加熱分解するようにしてもよい。

実施例3

次に、本発明の第3の実施例について説明する。 前記第1の実施例では、ステアリン酸解膜を形成したのち、溶酸温度を通過するように昇温してい金属化合物の分解温度まで加熱した例について説明したが、以下の例では一旦、融点以上分解温度以下で所定の時間加熱し、その後、長時間分解温度以上に加熱する2股階の加熱工程を行う例について説明する。

すなわち、実施例1 および2 と同様にして、酸化シリコン膜のパターン2 の形成されたシリコン基板 1 の表面に、ステアリン酸鋼(C u (C in H in C O O) 2)のクロロホルム的和溶液を塗布し、5 0 でに加熱された熱板上でクロロホルムを蒸発させステアリン酸銅膜を形成して、第 1 図に示した薄膜形成装置の試料銀電台3に設置する。

まず、真空容器1内を一見10°'Torrまで真空

ち、ガス導入系7から水素を導入し圧力を3 Torrの保持して、100Wのマイクロ波を供給し、放磁させた。

そして、ヒータ2を用いて甚板を370℃まで30分かけて徐々に加熱した後、370℃で30分間維持し、ヒータ2の加熱を停止して試料台3を自然に冷却した。

このようにして、第2図(b) に示したのと同様の銅膜3が良好に埋め込まれる。

この様にして得られた膜をSIMS分析した結果、前記一酸化炭素雰囲気で分解した結果に比較して、炭素の含有量が数分の1に減少した。

このように、この方法ではより高品質の膜を得ることができる。

このように不執物の含有量が低減されるのは、 活性な水素原子がステアリン酸銅中の酸素や炭素 原子と反応しやすいためである。

なお、この例では、ダウンフロー型装置を用いてマイクロ波放電により発生した水素原子を作用させる方法について説明したが、パレル型や平行

排気したのち、ガス導入系でから水素を導入して 6 O Torrの保持する。

そして、ヒータ2の加熱を開始し基板温度を130でまで上昇させこの状態で10分加熱した後、再びヒータ2を昇温し、370でで30分間加熱したのち、ヒータ2の加熱を停止して試料台3を自然に冷却した。

このようにして、第7図に示すように凹部内に 銅雕3が良好に埋め込まれる。

凹凸の埋め込み形状は、一時に分解温度まで加 熱した場合に比較してほとんど登はないが、メモ リデバイスのセル部分と周辺回路部との壊目のよ うな広い領域での埋め込み形状が改善されている。

また、静殿工程と熱分解工程とを、少なくとも2回以上繰り返して行うことにより、クラックの発生を抑制し、下地との密着性の高い金属膜工程の存むできる。また、このとき、熔殿工程の存むですると前記第1の実施例と同様に下地との密着性を高めることができる。さらにまた、ステフリン酸銅薄膜にAL、Gaなどの低酸点金属を

融解しながら分解し、膜の隙間を低触点金属で埋めて、クラックのない良好な金属膜を形成することができる。

実施例4

次に、本発明の第4の実施例について説明する。この例では、銅膜の密着性を向上させるために、銅膜形成後、さらに銅の融点まで加無する工程を付加するものである。

まず、第8図(a)に示すように、シリコン基板80の表面にタングステンシリサイド(WS1)膜からなる配線パターン81を形成したのち、層間絶縁酸82としての酸化シリコン膜を堆積し、平均化する。そしてこの上に、減圧CVD法により膜厚6000人の多結品シリコン膜83を堆積し、反応性イオンエッチングにより断面垂直形状となるようにパターニングした。レジストの除去は酸素プラズマアッシングによって行った。

この後、実施例3と同様に、この基板の表面に

度に加熱する工程を付加しているため、膜と下地 基板との密着性を向上し、剥がれやクラックの発 生を低減することができる。

実施例 5

次に、本発明の第5の実施例について提明する。 第9図は本発明第5の実施例の薄膜形成方法に 用いられる薄膜形成装置の概略図である。

この薄膜形成装置は、長い石夾管からなる真空容器の外側の一端近傍に巻回された第1のヒータ928と、 試料支持台93と、 真空存器の 3 と、 試料支持台93と、 真空外 3 を異像し、 試料支持台上に 教置された 3 を異像し、 試料支持台上に 教置された 3 を収めまる 5 を収めまる 6 を収めまる 6 を収めまる 6 を収めまる 6 を収める 6 をしまる 6 をしまる

スチアリン酸銅(Cu(CirHinoCO),)の クロロホルム飽和溶液を塗布し、50℃に加熱された無板上でクロロホルムを蒸発させステアリン 酸銅膜を形成して、第1図に示した薄膜形成装置 の試料載置台3に設置する。

そして同様に、真空容器 1 内を一旦 1 0 ⁻³ Torr まで真空辞気したのち、ガス導入系 7 から水素を 導入し 7 6 O Torrに保持する。

そして、ヒータ2の加熱を開始し基板温度を130でまで上昇させこの状態で10分加熱した後、再びヒータ2を昇進し、370℃で30分間加熱したのち、ヒータ2の加熱を停止しては料台3を自然に冷却した(第8図(b))。

この後、さらに拡散炉に導入し、水素雰囲気下で1100℃60分の加熱を行う。

このようにして形成された銅膜84は極めて密 着性の高いものとなっている。

なお、比較のために、1100℃60分の加熱 前に取り出したものは銅膜の剥がれが生じている。

この方法では、銅膜形成後、銅の融点以上の温

次に、この装置を用いて銅薄膜を形成する方法について説明する。

まず、実施例3および4と同様に、この甚仮の表面にスチアリン酸銅(Cu(CirH35COO)。)のクロロホルム飽和溶液を塗布し、50℃に加無された熱板上でクロロホルムを底免させステアリン酸銅膜を形成して、第9図に示した薄膜形成鉄量の試料載量台93に設置する。

そして同様に、真空容器1内を一旦10°*Torr まで真空排気したのち、ガス導人系7から水素を 導入し760Torrに保持する。

そして、第1のヒータ92 a および第2のヒータ92 b の加無を開始し、それぞれ130 ℃および370℃まで上昇させる。この状態で前記基板の数置された試料数置台93を第1のヒータ92 a の領域に移動し、まず5分間放置する。

ついで、試料収置台93を第2のヒータ92bの領域に移動し、10分間放置する。

この操作を3回線り返す。

このようにして形成された銅膜はクラックの発

生もなく極めて密着性の高いものとなっている。

爽施例6

実施例4では顧勝の形成後、銅の融点以上に加 熱し、密着性を高める方法について説明したが、 既にアルミニウムのような低融点金属が形成され ているような場合には、この処理は不可能である。 このように高温処理を行うことのできない場合 の方法について説明する。

まず実施例4と同様基板の表面にステアリン酸銅(Cu(C,¬H,¬COO)。)のクロロホルム 飽和溶液を塗布し、50℃に加熱された熱板上で クロロホルムを蒸発させステアリン酸銅膜を形成 して、第1図に示した薄膜形成装置の試料軟置台 3に設置する。

そして回様に、真空容器 1 内を一旦 1 0 ⁻³Torr まで真空排気したのち、ガス導人系 7 から水素希 駅された 5 %のシラン (SiH4) を導入し 7 0 O Torrに保持する。

そして、ヒータ2の加熱を開始し基板温度を1

実施例 7

最後に本発明の第7の実施例として、無分解に 代えて光分解を用いた例について説明する。

この例では、チオフェニル網(CuC6 H6 S)を材料として用い、以下の実施例と同様に基板の表面に有機溶剤に溶かした溶液を堕布し、50℃に加熱された熱板上で溶媒を蒸発させチオフェニル銅膜を形成して、第1図に示した薄膜形成装置の試料軟置台3に設置する。

そして、ヒータ2の加熱を開始し基板温度を上昇させこの状態で10分加熱した後、再びヒータ2を昇退し、チオフェニル網を分解せしめるための波及の光を30分間照射して加熱したのち、ヒータ2の加熱を停止して試料台3を自然に冷却した

このようにして形成された銅膜は極めて高品質のものとなっている。

これは、分解工程で、光励起を行い、膜を形成 するようにしているためである。 30でまで上昇させこの状態で10分加熱した後、再びヒータ2を昇湿し、450で30分間加熱したのち、ヒータ2の加熱を停止して試料台3を自然に冷却した。

このようにして形成された銅膜は極めて密着性 の高いものとなっている。

これは、分解工程で、シランを導入しCVDを 行いシリコン合金でクラックを埋めながら、膜を 形成するようにしているためである。

また、生成する金属膜中に残留する不純物をできるだけ少なく抑えるためには、フェニル銅、チオフェニル銅など、金属原子に大きな有機置が結合した化合物の方が望ましい。大きな有機置換器が結合した金属化合物の場合、金属原子と有機置換器の間で結合が切れやすいためである。

このように、照射光の波長を選択することにより、適切な位置で結合を切断することができ、所登の組成の課を形成することができる。

さらにまた、金属原子もCuに限定されるもののはななに、同様な性質を有する化合物が存在ではなったががのというというというないでは、例えばステアリン酸で、ステアリンを開いったのは、カーステアリンがあったができる。ようにはでいる。なり、カースケーの無分解をシライドやコバルトシリサイドを形成できる。

(発明の効果)

以上説明してきたように、本発明の方法によれば、分解温度以下で溶験する金属化合物を出発物質として選び、この物質を基板上にのせ、まず融点より優かに高い程度の温度に加熱して溶融し、凹部等に流し込み、こののち熱分解または光分解により金属を生成するようにしているため、高品

特開平4-53132 (9)

質で信頼性の高い薄膜バターンを形成することが 可能となる。

4. 図面の簡単な説明

第1回は本発明の第1の実施例で用いられる 聴 腰形成装置を示す図、第3回の 薄膜形成工程を示す図の 薄膜 形成工程 要 を 別の 薄膜 形成工程 観 を 示す 図 の 薄膜 形成工 網膜 図 で 形 れた 網膜 図 さ れた 網膜 図 で イオン質量分析 器 で の で 形 む 果 を 示す 図 図 は この 実 施 例 で た な 果 を 示す 図 図 は この 実 施 例 で た な 天 デ す 図 は 本 発 明 の の の 実 施 例 で 第 3 の 実 施 例 で 別 は 本 発 明 の の の 海膜 形 成 工程を 示す 図 は 本 発 明 の の の 海膜 形 成 五程 を 示す 図 に 第 9 図 は 本 発 明 の の の 海膜 形 成 五程 を 示す 図 に 第 9 図 は 本 発 明 の の の 海膜 形 成 五程 を 示す 図 に 第 9 図 は な 発 明 の の の 海膜 形 成 五程 を 示す 図 に 第 9 図 は な 発 明 の の の の 海膜 形 成 五程 を 示す 図 の 海膜 形 成 五程 を 示す 図 で ある。

1 … 真空容器、 2 … ヒータ、 3 … 試料支持台、 4 … バルブ、 5 … 排気系、 6 … 基板、 7 … ガス導 人系、 8 … 放電管、 9 … エベンソン壁空洞共振器、 1 0 … ポート、 1 1 … シリコン基板、 1 2 … 酸化シリコン膜、 1 3 … 銅膜、 2 0 … マイクロ源、 8 0 … シリコン基板、 8 1 … 配線パターン、 8 2 … 層間絶縁策、 8 3 … 多結晶シリコン膜、 8 4 … 銅膜、 9 1 … 真空容器、 9 2 a … 第 1 のヒータ、 9 2 b … 第 2 のヒータ、 9 3 … 試料支持台、 9 5 … 俳気系、 9 7 … ガス導入系、 9 8 a 、 9 8 b … 電源。

代理人弁理士 木 村 高 久辰(年)

第 2 図

第3図

第7図

第 4 図

第 5 図

第 10 図