IMPERIAL

TS mode!

Víctor Ballester March 13, 2025

Summary

- I ran the case with w = $16.5\delta^*$ (remember that w = $16.35\delta^*$ is naturally stable as t $\to \infty$).
- So I needed to use SFD to get a good baseflow (accurate enough, up to residuals of 10^{-6}).
- Then, I ran the linearized solver to get the global modes. Interestingly, changing the number of steps for the Arnoldi iteration I got two different results.
 - With 'few" steps I got the TS mode with growth rate of -0.00543859 and frequency of ± 0.0260322 .
 - With more steps I got a greater-in-growth-rate mode, with growth rate of -0.00258415 and frequency of ± 0.00276843 . And I 'showed" this is the greatest growth rate.

Imperial College London TS mode! March 13, 2025

TS mode

u component

v component

 Imperial College London
 TS model
 March 13, 2025

TS mode

v component

 Imperial College London
 TS mode!
 March 13, 2025

Huge Mode

u component

 Imperial College London
 TS model
 March 13, 2025

Questions

• What is destabilizing my system if every global mode is stable?

Imperial College London TS model March 13, 2025