

Saint-Petersburg Electrotechnical University «LETI»

ЛЕКЦИЯ 15

Передаточная функция цепи и ее связь с временными характеристиками

China

СОДЕРЖАНИЕ

- 1. Передаточная функция цепи.
- 2. Элементы операторной схемы замещения цепи.
- 3. Расчёт передаточной функции цепи.
- 4. Проверка *H*(*s*) по схемам замещения цепи.
- 5. Задание №1 на расчёт.
- 6. Расчёт временных характеристик цепи.
- 7. Задание №2 на расчёт.

1. Передаточная функция цепи

Определение

- 1) Динамическая цепь RC или RL.
- 2) С одним источником.
- 3) $u_C(0^+) = 0$, $i_L(0^+) = 0$

 $F_2(s)$

Передаточная функция (ПФ):

$$H(s) = \frac{F_2(s)}{F_1(s)}$$

Свойства передаточной функции:

$$H(s) \div h(t)$$
, где $h(t)$ - импульсная характеристика

$$H_1(s) = \frac{H(s)}{s} \div h_1(t)$$
, где $h_1(t)$ - импульсная характеристика

характеристика

$$F_2(s) = H(s) \cdot F_1(s);$$

2. Элементы операторной схемы замещения цепи

Элементы операторной схемы замещения цепи

L - элемент

$$Z_L = s \cdot L$$

$$\begin{array}{c}
i_L(t) & L \\
+ u_L(t) & -
\end{array}$$

$$I_{L}(s) = Z_{L} + U_{L}(s) -$$

С - элемент

$$Z_C = \frac{1}{C \cdot s}$$

$$\begin{array}{c|c}
i_C(t) & C \\
+ & C \\
- & U_C(t)
\end{array}$$

$$I_{C}(s) \qquad Z_{C} \qquad + U_{C}(s) - \qquad$$

3. Расчёт передаточной функции цепи

Цепь имеет нулевые начальные условия.

Дано:

Сопротивления: R_1 =2, R_2 =1, R_3 =2

Конденсатор: *C*=0,25

Воздействие (входной сигнал): $u_0(t)$

Реакция (выходной сигнал): $u_2(t)$

Определить

1) Передаточную функцию: H(s)

(вычислить):

2) Выполнить её проверку

Решение

Переход к операторной схеме замещения цепи

Элементы цепи в операторной области:

$$Z_{R_1} = R_1 = 2$$

$$Z_{R_2} = R_2 = 1$$

$$Z_{R_3} = R_3 = 2$$

$$Z_C = \frac{1}{Cs} = \frac{4}{s}$$

Операторная схема замещения цепи:

Расчёт реакции (выходного сигнала) цепи

Полагаем:
$$U_{ex}(s) = 1$$
,

тогда

$$H(s) = \frac{F_2(s)}{F_1(s)} = \frac{U_2(s)}{U_{ex}(s)} = \frac{U_2(s)}{1} = U_2(s)$$

Находим (определяем): $U_2(s) = ?$

Находим входное сопротивление.

$$Z_{ex} = Z_{R_1} + (Z_{R_2} IIZ_C) + Z_{R_3}$$

$$Z_{R_2C} = \frac{Z_{R_2} \cdot Z_C}{Z_{R_2} + Z_C} = \frac{1 \cdot \frac{4}{S}}{1 + \frac{4}{I}} = \frac{4}{s + 4}$$

$$Z_{ex} = 2 + \frac{4}{s+4} + 2 = \frac{4s+16+4}{s+4} = \frac{4s+20}{s+4}$$

Определяем входной ток.

По закону Ома:

$$I_{ex} = \frac{U_{ex}}{Z_{ex}} = \frac{s+4}{4s+20}$$

Определяем $U_2(s)=H(s)$.

По формуле делителя тока

находим:

$$I_2(s) = I_{ex} \frac{Z_C}{Z_C + Z_{R_2}} = \frac{(s+4)}{4s+20} \cdot \frac{4}{(s+4)} = \frac{1}{s+5}$$

По закону Ома

находим:

$$U_2(s) = I_2 \cdot Z_{R_2} = \frac{1}{s+5}$$

Передаточная функция: $H(s) = \frac{1}{s+5}$

$$H(s) = \frac{1}{s+5}$$

4. Проверка *H*(*s*) по схемам замещения цепи

Передаточная функция, при s=0:

$$H(s) = \frac{1}{s+5} \bigg|_{s=0} = \frac{1}{5}$$

Схема замещения при *s*=0:

$$Z_C = \frac{1}{Cs}\Big|_{s=0} = \infty \Longrightarrow C \longrightarrow X.X.$$

$$U_{ex} = 1$$

$$U_2 = \frac{1}{5}$$

$$H(s) = \frac{U_2}{U_{ex}} = \frac{1}{5}$$

Проверка *H*(*s*) (продолжение)

Передаточная функция, при
$$s=\infty$$
 : $H(s)=\frac{1}{s+5}\bigg|_{s=\infty}=0$

Схема замещения при
$$s=\infty$$
 : $Z_C = \frac{1}{Cs}\bigg|_{s=\infty} = 0 \Rightarrow C \rightarrow \text{K.3.}$

$$U_{ex} = 1$$

$$U_2 = 0$$

$$H(s) = \frac{U_2}{U_{ex}} = 0$$

5. Задание №1 на расчёт

- 1) Определить (найти) *H(s)*.
- 2) Выполнить её проверку.

№1: Реакция (выходной сигнал): $I_3(s)$

№2: Реакция (выходной сигнал): *I*₁(*s*)

продолжение

- 1) Определить (найти) *H(s).*
- 2) Выполнить её проверку.

№3: Реакция (выходной сигнал): $U_1(s)$

№4: Реакция (выходной сигнал): $U_2(s)$

6. Расчёт временных характеристик цепи

Дано:

Сопротивления: $Z_{R_1} = Z_{R_3} = 2$,

$$Z_{R_2} = 1, \qquad Z_C = 4/s$$

Воздействие: $U_{ex}(s)$

Реакция: $U_2(s)$

Передаточная функция:

$$H(s) = \frac{1}{s+5}$$

Определить (вычислить):

- I) Импульсную характеристику h(t)
- 2) Переходную характеристику $h_{\!_{1}}(t)$ Выполнить проверку.
- 3) Построить графики $h(t), h_1(t)$

Расчёт импульсной характеристики

Используя таблицу преобразований Лапласа, переходим во временную область:

$$H(s) = \frac{1}{s+5} \div h(t) = 1 \cdot e^{-5t} \cdot \delta_1(t)$$

Проверка:

Теорема о начальном значении

$$h(0) = 1 \qquad \lim_{s \to \infty} (s \cdot H(s)) = 1$$

Теорема о конечном значении

$$h(\infty) = 0 \qquad \lim_{s \to 0} (s \cdot H(s)) = 0$$

Расчёт переходной характеристики

Записываем изображение переходной характеристики:

$$H_1(s) = \frac{H(s)}{s} = \frac{1}{s(s+5)} \div h_1(t)$$

Используем теорему разложения:

$$H_1(s) = \frac{1}{s(s+5)} = \frac{A_1}{s} + \frac{A_2}{(s+5)}$$

$$A_1 = s \cdot H(s)|_{s=0} = \frac{1}{5}$$

$$A_1 = (s+5) \cdot H(s) \Big|_{s=-5} = -\frac{1}{5}$$

продолжение расчёта

Используя таблицу преобразований Лапласа, переходим во временную область:

$$H_1(s) = \frac{1}{s(s+5)} \div h_1(t) = (\frac{1}{5} - \frac{1}{5}e^{-5t}) \cdot \delta_1(t)$$

Проверка:

Теорема о начальном значении

$$h_1(0) = 0 \qquad \lim_{s \to \infty} (s \cdot H_1(s)) = \lim_{s \to \infty} H(s) = 0$$

Теорема о конечном значении

$$h_1(\infty) = \frac{1}{5}$$
 $\lim_{s \to 0} (s \cdot H_1(s)) = \lim_{s \to 0} H(s) = \frac{1}{5}$

Проверка переходной характеристики по схемам замещения цепи

При t=0, C-K.3.

$$u_{ex}(0) = 1$$

$$u_2(0) = h_1(0) = 0$$

При
$$t = \infty$$
, $C - X.X$.

$$u_{ex}(\infty) = 1 \quad R_{ex} = 5$$

$$i = \frac{u_{ex}}{R_{ex}} = \frac{1}{5}$$

$$u_2 = h_1(\infty) = i \cdot R_2 = \frac{1}{5}$$

Графики характеристик цепи

Переходная характеристика

$$h_1(0) = 0$$

$$h_1(\infty) = \frac{1}{5}$$

Импульсная характеристика

$$h(0) = 1$$

$$h(\infty) = 0$$

Проверка h(t):

$$h(t) = h_1'(t)$$

$$h_1(t) = (\frac{1}{5} - \frac{1}{5}e^{-5t}) \cdot \delta_1(t)$$

$$h_1'(t) = e^{-5t} \cdot \delta_1(t) = h(t)$$

7. Задание №2 на расчёт

Дано: *H(s).*

Определить (найти): $h(t), h_1(t)$ Построить их графики.

Nº1

$$H(s) = \frac{2s}{(s+3)}$$

Nº2

$$H(s) = \frac{5}{3(s+4)}$$

Nº3

$$H(s) = \frac{7}{2(s+5)}$$

Nº4

$$H(s) = \frac{2(s+1)}{3(s+5)}$$