

ALGEBRA

Chapter 24 Sesion 1

FUNCIONES

RAZONEMOS

FUNCIONES

CONCEPTOS PREVIOS

1.- PAR ORDENADO

Es un conjunto de dos elementos, en la cual al elemento a se le conoce como la primera componente y al elemento b segunda componente

Igualdad de pares ordenados

$$(a;b)=(c;d)$$
 \iff $a=c \land b=d$

Ejemplo:

Hallar m y n si se cumple que

$$(m+1; n-3) = (4; 8)$$

$$m+1=4$$

$$m=3$$

$$n-3=8$$

$$n=11$$

2.- PRODUCTO CARTESIANO

Dados los conjuntos no vacíos A y B, se define el producto cartesiano A \times B como el conjunto de todos los pares ordenados (x, y) tal que $x \in A$ y $y \in B$.

Ejemplo: Dado los conjuntos:

$$A = \{1; 4; 7\}$$
 $B = \{2; 3\}$. Halla el $A \times B$

$$A \times B = \{(1; 2), (1; 3), (4; 2), (4; 3), (7; 2), (7; 3)\}$$

3.- RELACIONES

Dado el producto cartesiano $A \times B$, se define relación como un subconjunto de $A \times B$.

$$R: A \rightarrow B \Leftrightarrow R \subset A \times B$$

DEFINICIÓN

Dados dos conjuntos no vacíos A y B se define una función como una relación de $A \times B$, en la cual se cumple que a cada $x \in A$, le corresponde a lo más un elemento $y \in B$.

$$f = \{(x; y) \in A \times B \mid /y = f(x)\}$$

Ejemplos:

Identificar cuál de las siguientes relaciones representa una función

f3 no es función

Dominio de una función

Es el conjunto de las primeras componentes (x)

Rango de una función

Es el conjunto de las segundas componentes (y)

Ejemplos:

Dada la siguiente función:

$$f = \{(1;3), (5,7), (8;8), (9;8)\}$$

$$Dom(f) = \{1;5;8;9\}$$
 $Ran(f) = \{3;7;8\}$

Regla de correspondencia

Es la relación entre los elementos del dominio y rango

sea:
$$f: A \to B$$
; entonces $y = f(x)$

Ejemplo:

Dados
$$A = \{1; 3; 5\}$$
; $B = \{1; 4; 10; 12; 16\}$
Hallar la función $f = \{(x, y) \in A \times B / y = 3x+1\}$

Resolución

Debemos hallar pares ordenados (x, y) tales que y = 3x + 1

Tabulando

$$\begin{array}{c|ccccc}
x \in A & y = 3x + 1 \\
\hline
1 & 3(1) + 1 = 4 \\
3 & 3(3) + 1 = 10 \\
5 & 3(5) + 1 = 16
\end{array}$$

$$f = \{(1; 4), (3; 10), (5; 16)\}$$

Determinación de una función a partir de una gráfica

Se traza una recta vertical, si la gráfica es de una función le debe cortar a lo más en un punto

Ejemplo: ¿Cuál de las gráficas corresponde a una función?

No es Función

Si los pares ordenados (a - 3; 5) y (2; 2b - 3) son iguales, calcule a + b

$$(a-3;5) = (2;2b-3)$$
 $a-3=2$
 $2b-3=5$
 $a=5$
 $2b=8$
 $b=4$

$$a+b=9$$

En el siguiente diagrama, halle los pares ordenados de la relación de A en

Indique luego si F es función o no. Justifique su respuesta.

Resolución

$$f = \{(3; 9), (4; 8), (5; 7)\}$$

f es función porque a cada elemento del conjunto A le corresponde un único elemento del conjunto B


```
Dados los conjuntos A = \{3;6;7\}; B = \{9;10;8\}

¿Cuál de las siguientes relaciones no es función?

R1 = \{(3;8),(6;10),(7;9)\}

R2 = \{(3;9),(6;10),(7;8),(3;10)\}

R3 = \{(6;8),(3;9),(6;10),(3;8)\}

R4 = \{(7;9),(6;10),(3;8)\}
```

Resolución

Observación:

No será función cuando se presentan pares ordenados que tienen la misma primera componente pero distinta segunda componente.

R1: Es función

R2: NO es función

R3: NO es función

R4: Es función

Rpta: R2 y R3

Halle el valor de "b" para que F sea una función

$$F = \left\{ (3; b), (5; 7), \left(3; \frac{5b-4}{4} \right), (2; 8) \right\}$$

$$F = \{(3;b)(5;7), (3; \frac{5b-4}{4}), (2;8)\}$$

$$b = \frac{5b-4}{4}$$

$$4b = 5b-4$$

$$4 = b$$

$$b = 4$$

Halle el valor de a + b + c en la siguiente función:

$$Q = \{(3;7), (2;9), (3;1+a), (4;5), (2;b+c)\}$$

$$Q = \{(3;7), (2;9), (3;1+a), (4;5), (2;b+c)\}$$

$$1 + a = 7$$

$$a = 6$$

$$b + c = 9$$

$$a + b + c = 15$$

Sabiendo que

$$Q = \{(3; a), (7; b), (9; c), (1; c)\}$$

es una función, determine el área de una figura rectangular cuya altura está representado por el número de elementos del rango de la función y su base por la suma de los elementos del dominio.

$$Q = \{(3; (a), (7(b), (9; (c), (1; (c)))\}$$

$$Dom = \{3;7;9;1\}$$

$$Ran = \{ a; b; c \}$$

$$A = b \cdot h$$
20

$$A = 20 \cdot 3$$

$$\therefore A = 60 u^2$$

01

Del siguiente diagrama:

Efectúe

 $A = (Producto\ de\ elementos\ del\ dominio) + F(2) - 2F(3)$ Sabiendo que A+2 representa el número de canicas que tiene Luis, ¿cuántas canicas son?

$$A = (Producto\ de\ elementos\ del\ dominio) + F(2) - 2F(3)$$

$$A = (1 \times 2 \times 3 \times 4) + 7 - 2(10)$$

$$A = 24 + 7 - 20$$

$$A = 11$$

: Luis tiene 13 canicas