

# Krumning og vendepunkter

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORRYLINIVERSITETET



### Krumning og vendepunkter

1 Funksjonsdrøfting

- 2 Krumning og vendepunkter
  - Høyeregradsderiverte
  - Krumning

Om vi deriverer  $f(x) = x^3 - 2x^2 + x - 1$  får vi  $f'(x) = 3x^2 - 4x + 1$ .



- Om vi deriverer  $f(x) = x^3 2x^2 + x 1$  får vi  $f'(x) = 3x^2 4x + 1$ .
- Vi kan derivere på nytt, og får

$$f''(x)=6x-4.$$



- Om vi deriverer  $f(x) = x^3 2x^2 + x 1$  får vi  $f'(x) = 3x^2 4x + 1$ .
- Vi kan derivere på nytt, og får

$$f''(x)=6x-4.$$

Funksjonen f''(x) kalles den andrederiverte til f.



- Om vi deriverer  $f(x) = x^3 2x^2 + x 1$  får vi  $f'(x) = 3x^2 4x + 1$ .
- Vi kan derivere på nytt, og får

$$f''(x)=6x-4.$$

- Funksjonen f''(x) kalles den andrederiverte til f.
- Vi kan også finne den tredjederiverte f'''(x).



- Om vi deriverer  $f(x) = x^3 2x^2 + x 1$  får vi  $f'(x) = 3x^2 4x + 1$ .
- Vi kan derivere på nytt, og får

$$f''(x)=6x-4.$$

- Funksjonen f''(x) kalles den andrederiverte til f.
- Vi kan også finne den tredjederiverte f'''(x).
- Etter tredjederiverte, gidder vi ikke lenger skrive fnutter, og får

$$f^{(4)}(x), \quad f^{(5)}(x), \quad \dots$$



- Om vi deriverer  $f(x) = x^3 2x^2 + x 1$  får vi  $f'(x) = 3x^2 4x + 1$ .
- Vi kan derivere på nytt, og får

$$f''(x)=6x-4.$$

- Funksjonen f''(x) kalles den andrederiverte til f.
- Vi kan også finne den tredjederiverte f'''(x).
- Etter tredjederiverte, gidder vi ikke lenger skrive fnutter, og får

$$f^{(4)}(x), f^{(5)}(x), \ldots$$

Merk parentesen rundt tallet!



Dersom vi foretrekker å skrive deriverte som  $\frac{df}{dx}$ , trenger i en måte å skrive andrederiverte, tredjederiverte, og så videre.



- Dersom vi foretrekker å skrive deriverte som  $\frac{df}{dx}$ , trenger i en måte å skrive andrederiverte, tredjederiverte, og så videre.
- Vi skriver

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}, \qquad f'''(x) \frac{\mathrm{d}^3 f}{\mathrm{d}x^3}, \qquad \dots$$



- Dersom vi foretrekker å skrive deriverte som  $\frac{df}{dx}$ , trenger i en måte å skrive andrederiverte, tredjederiverte, og så videre.
- Vi skriver

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d} x^2}, \qquad f'''(x) \frac{\mathrm{d}^3 f}{\mathrm{d} x^3}, \qquad \dots$$

■ Merk at over brøkstreken opphøyer vi d, og under brøkstreken opphøyer vi dx.



- Dersom vi foretrekker å skrive deriverte som  $\frac{df}{dx}$ , trenger i en måte å skrive andrederiverte, tredjederiverte, og så videre.
- Vi skriver

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}, \qquad f'''(x) \frac{\mathrm{d}^3 f}{\mathrm{d}x^3}, \qquad \dots$$

- Merk at over brøkstreken opphøyer vi d, og under brøkstreken opphøyer vi dx.
- Idéen er at vi kan skrive

$$\frac{\mathrm{d}^2 f}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} x} \left( \frac{\mathrm{d}}{\mathrm{d} x} f \right).$$



- Dersom vi foretrekker å skrive deriverte som  $\frac{df}{dx}$ , trenger i en måte å skrive andrederiverte, tredjederiverte, og så videre.
- Vi skriver

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}, \qquad f'''(x) \frac{\mathrm{d}^3 f}{\mathrm{d}x^3}, \qquad \dots$$

- Merk at over brøkstreken opphøyer vi d, og under brøkstreken opphøyer vi dx.
- Idéen er at vi kan skrive

$$\frac{\mathrm{d}^2 f}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} x} \left( \frac{\mathrm{d}}{\mathrm{d} x} f \right).$$

Merk at  $\frac{d}{dx}$  betyr "Deriver funksjonen som kommer etter."



- Dersom vi foretrekker å skrive deriverte som  $\frac{df}{dx}$ , trenger i en måte å skrive andrederiverte, tredjederiverte, og så videre.
- Vi skriver

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}, \qquad f'''(x) \frac{\mathrm{d}^3 f}{\mathrm{d}x^3}, \qquad \dots$$

- Merk at over brøkstreken opphøyer vi d, og under brøkstreken opphøyer vi dx.
- Idéen er at vi kan skrive

$$\frac{\mathrm{d}^2 f}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} x} \left( \frac{\mathrm{d}}{\mathrm{d} x} f \right).$$

- Merk at  $\frac{d}{dx}$  betyr «Deriver funksjonen som kommer etter.»
- Vi kan derfor skrive

$$\frac{d}{dx}(x^2 - 3x + 2) = (x^2 - 3x + 2)'$$



# Krumning og vendepunkter

1 Funksjonsdrøfting

- 2 Krumning og vendepunkter
  - Høyeregradsderiverte
  - Krumning



Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.
- Grafen vender den hule siden ned når  $x > \frac{1}{3}$ .





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.
- Grafen vender den hule siden ned når  $x > \frac{1}{3}$ .
- Vi sier at grafen har negativ krumning.





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.
- Grafen vender den hule siden ned når  $x > \frac{1}{3}$ .
- Vi sier at grafen har negativ krumning.
- Punktet hvor vi bytter fra positiv til negativ krumning kalles et vendepunkt.





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.
- Grafen vender den hule siden ned når  $x > \frac{1}{3}$ .
- Vi sier at grafen har negativ krumning.
- Punktet hvor vi bytter fra positiv til negativ krumning kalles et vendepunkt.
- Der grafen har positiv krumning ser vi at vekstfarten øker.





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.
- Grafen vender den hule siden ned når  $x > \frac{1}{3}$ .
- Vi sier at grafen har negativ krumning.
- Punktet hvor vi bytter fra positiv til negativ krumning kalles et vendepunkt.
- Der grafen har positiv krumning ser vi at vekstfarten øker.
- Der grafen har negativ krumning ser vi at vekstfarten minker.





- Grafen vender den hule siden opp når  $x < \frac{1}{3}$ .
- Vi sier at grafen har positiv krumning.
- Grafen vender den hule siden ned når  $x > \frac{1}{3}$ .
- Vi sier at grafen har negativ krumning.
- Punktet hvor vi bytter fra positiv til negativ krumning kalles et vendepunkt.
- Der grafen har positiv krumning ser vi at vekstfarten øker.
- Der grafen har negativ krumning ser vi at vekstfarten minker.
- Vi kan derfor finne krumningen ved å se på den deriverte.

Positiv krumning er der den deriverte øker.



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.
- Det betyr at den dobbelderiverte er negativ.



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.
- Det betyr at den dobbelderiverte er negativ.
- Vi kan finne vendepunktet ved å se hvor den dobbelderiverte skifter fortegn.



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.
- Det betyr at den dobbelderiverte er negativ.
- Vi kan finne vendepunktet ved å se hvor den dobbelderiverte skifter fortegn.
- Det er typisk der den dobbelderiverte er null.



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.
- Det betyr at den dobbelderiverte er negativ.
- Vi kan finne vendepunktet ved å se hvor den dobbelderiverte skifter fortegn.
- Det er typisk der den dobbelderiverte er null.
- For å huske hvordan positiv/negativ krumning ser ut, har vi denne huskeregelen:



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.
- Det betyr at den dobbelderiverte er negativ.
- Vi kan finne vendepunktet ved å se hvor den dobbelderiverte skifter fortegn.
- Det er typisk der den dobbelderiverte er null.
- For å huske hvordan positiv/negativ krumning ser ut, har vi denne huskeregelen:
  - Positiv krumning gir blid graf: ©



- Positiv krumning er der den deriverte øker.
- Det betyr at den dobbelderiverte er positiv.
- Negativ krumning er der den deriverte synker.
- Det betyr at den dobbelderiverte er negativ.
- Vi kan finne vendepunktet ved å se hvor den dobbelderiverte skifter fortegn.
- Det er typisk der den dobbelderiverte er null.
- For å huske hvordan positiv/negativ krumning ser ut, har vi denne huskeregelen:
  - Positiv krumning gir blid graf: ©
  - Negativ krumning gir sur graf: 😊





#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .



#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .

■ Vi begynner med å dobbelderivere funksjonen.

$$f'(x) = 4x^3 + 6x^2 - 24x + 4$$
  
$$f''(x) = 12x^2 + 12x - 24$$



#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .

■ Vi begynner med å dobbelderivere funksjonen.

$$f'(x) = 4x^3 + 6x^2 - 24x + 4$$
  
$$f''(x) = 12x^2 + 12x - 24$$

■ Vi løser f''(x) = 0 og får x = 1 og x = -2.



#### Oppgave

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .

■ Vi begynner med å dobbelderivere funksjonen.

$$f'(x) = 4x^3 + 6x^2 - 24x + 4$$
  
$$f''(x) = 12x^2 + 12x - 24$$

- Vi løser f''(x) = 0 og får x = 1 og x = -2.
- Vi må sjekke at den dobbelderiverte bytter fortegn i disse punktene.



#### Oppgave

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .

■ Vi begynner med å dobbelderivere funksjonen.

$$f'(x) = 4x^3 + 6x^2 - 24x + 4$$
  
$$f''(x) = 12x^2 + 12x - 24$$

- Vi løser f''(x) = 0 og får x = 1 og x = -2.
- Vi må sjekke at den dobbelderiverte bytter fortegn i disse punktene.
- Vi kan tegne en fortegnslinje.



#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .



#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .



#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .





#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .





#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .





#### **Oppgave**

Finn eventuelle vendepunkter til  $f(x) = x^4 + 2x^3 - 12x^2 + 4x - 3$ .





■ Vi tegnet en representant for funksjonen under fortegnslinjen.

- Vi tegnet en representant for funksjonen under fortegnslinjen.
- Det gir oss en idé om hvordan funksjonen ser ut.

- Vi tegnet en representant for funksjonen under fortegnslinjen.
- Det gir oss en idé om hvordan funksjonen ser ut.
- Vi ser fra fortegnslinjen at f(x) har vendepunkter når x = -2 og x = 1.

- Vi tegnet en representant for funksjonen under fortegnslinjen.
- Det gir oss en idé om hvordan funksjonen ser ut.
- Vi ser fra fortegnslinjen at f(x) har vendepunkter når x = -2 og x = 1.
- Vi ser også at dersom f(x) har et ekstremalpunkt med x < -2 eller x > 1, må det være et bunnpunkt.

- Vi tegnet en representant for funksjonen under fortegnslinjen.
- Det gir oss en idé om hvordan funksjonen ser ut.
- Vi ser fra fortegnslinjen at f(x) har vendepunkter når x = -2 og x = 1.
- Vi ser også at dersom f(x) har et ekstremalpunkt med x < -2 eller x > 1, må det være et bunnpunkt.
- Og et ekstremalpunkt på  $\langle -2, 1 \rangle$  må være et toppunkt.

- Vi tegnet en representant for funksjonen under fortegnslinjen.
- Det gir oss en idé om hvordan funksjonen ser ut.
- Vi ser fra fortegnslinjen at f(x) har vendepunkter når x = -2 og x = 1.
- Vi ser også at dersom f(x) har et ekstremalpunkt med x < -2 eller x > 1, må det være et bunnpunkt.
- Og et ekstremalpunkt på  $\langle -2, 1 \rangle$  må være et toppunkt.
- Generelt har vi:

- Vi tegnet en representant for funksjonen under fortegnslinjen.
- Det gir oss en idé om hvordan funksjonen ser ut.
- Vi ser fra fortegnslinjen at f(x) har vendepunkter når x = -2 og x = 1.
- Vi ser også at dersom f(x) har et ekstremalpunkt med x < -2 eller x > 1, må det være et bunnpunkt.
- Og et ekstremalpunkt på  $\langle -2, 1 \rangle$  må være et toppunkt.
- Generelt har vi:

#### Regel

Dersom f'(a) = 0 og f''(a) < 0 har funksjonen et toppunkt i x = a.

Dersom f'(a) = 0 og f''(a) > 0 har funksjonen et bunnpunkt i x = a.

Dersom f''(a) = 0 kan funksjonen ha toppunkt, bunnpunkt, eller terrassepunkt.

#### Oppgave



#### **Oppgave**

Finn topp- og bunnpunkt til  $f(x) = -x^3 + 18x^2 - 105x - 10$ .

■ Vi deriverer og får  $f'(x) = -3x^2 + 36x - 105$ .



#### **Oppgave**

- Vi deriverer og får  $f'(x) = -3x^2 + 36x 105$ .
- Vi løser f'(x) = 0 og får x = 5 og x = 7.



#### **Oppgave**

- Vi deriverer og får  $f'(x) = -3x^2 + 36x 105$ .
- Vi løser f'(x) = 0 og får x = 5 og x = 7.
- Vi dobbelderiverer og får f''(x) = -6x + 36.



#### **Oppgave**

- Vi deriverer og får  $f'(x) = -3x^2 + 36x 105$ .
- Vi løser f'(x) = 0 og får x = 5 og x = 7.
- Vi dobbelderiverer og får f''(x) = -6x + 36.
- Setter vi inn x = 5 og x = 7 får vi

$$f''(5) = 6$$
 og  $f''(7) = -6$ .



#### **Oppgave**

Finn topp- og bunnpunkt til  $f(x) = -x^3 + 18x^2 - 105x - 10$ .

- Vi deriverer og får  $f'(x) = -3x^2 + 36x 105$ .
- Vi løser f'(x) = 0 og får x = 5 og x = 7.
- Vi dobbelderiverer og får f''(x) = -6x + 36.
- Setter vi inn x = 5 og x = 7 får vi

$$f''(5) = 6$$
 og  $f''(7) = -6$ .

■ Vi har derfor at x = 5 gir et bunnpunkt og x = 7 gir et toppunkt.





# OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET