Embedded Bandits for Large-Scale Black-Box Optimization

Abdullah Al-Dujaili and Suresh Sundaram

School of Computer Science and Engineering, Nanyang Technological University

Large-Scale Black-Box Optimization

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathcal{X}$

$$f: \mathcal{X} = [-1, 1]^n \to \mathbb{R}$$

$$n \gg 10^2$$

- $\bullet \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) = f(\mathbf{x}^*) = f^*$
- High-order information (e.g., derivatives) are unavailable.

Related Work

- Algorithmic work has been based on either decomposition or embedding techniques.
- Decomposition algorithms break the problem into several subproblems, and solutions for the original problem are recognized in a coordinated manner.
- Embedding algorithms exploit the assumption/empirical observation of low effective dimensionality
- Recent works presented Random Embedding (RE) techniques based on the random matrix theory and provided probabilistic theoretical guarantees [3, 2, 1].
- Multiple runs are employed for RE to substantiate the probabilistic theoretical performance.

Motivation

Breaking away from the *multiple-run* framework and follow the optimism in the face of uncertainty principle via stochastic hierarchical bandits over a low-dimensional search space \mathcal{Y} .

Notation

- \bullet $\mathcal N$ denotes the Gaussian distribution with zero mean and 1/n variance.
- $\{A_p\}_p \subseteq \mathbb{R}^{n \times d}$, with $d \ll n$, is a sequence of realization matrices of the random matrix **A** whose entries are sampled independently from \mathcal{N} .
- The Euclidean random projection of the *i*th coordinate $[\mathbf{y}]_i$ to $[\mathcal{X}]_i$ is defined as follows.

$$[\mathcal{P}_{\mathcal{X}}(A\mathbf{y})]_{i} = \begin{cases} 1, & \text{if } [\mathbf{y}]_{i} \geq 1; \\ -1, & \text{if } [\mathbf{y}]_{i} \leq -1; \\ [A\mathbf{y}]_{i} & \text{otherwise.} \end{cases}$$

• $g_P(\mathbf{y})$ is a random (stochastic) function such that $g_P(\mathbf{y}) \stackrel{\text{def}}{=} f(\mathcal{P}_{\mathcal{X}}(\mathbf{A}\mathbf{y}))$ and $g_p(\mathbf{y}) = f(\mathcal{P}_{\mathcal{X}}(A_p\mathbf{y}))$ is a realization (deterministic) function, where $\mathbf{y} \in \mathcal{Y} \subseteq \mathbb{R}^d$.

Contribution I

- The mean variation in the objective value for a point y in the low-dimensional space $\mathcal{Y} \subseteq \mathbb{R}^d$ projected randomly into the decision space \mathcal{X} of Lipschitz-continuous problems is bounded.
- Mathematically, $\forall y \in \mathcal{Y} \subseteq \mathbb{R}^d$, we have

$$E[|g_p(\mathbf{y}) - g_q(\mathbf{y})|] \le \sqrt{8} \cdot L \cdot ||\mathbf{y}||.$$

Contribution II

- EmbeddedHunter is a \mathcal{Y} -partitioning tree-search algorithm.
- The partitioning is represented by a K-ary tree \mathcal{T} , where nodes of the same depth hcorrespond to a partition of K^h subspaces / cells.
- For each node (h, i), f is evaluated at the center point $\mathbf{y}_{h,i}$ of its cell $\mathcal{Y}_{h,i}$ once or more times with different projections based on $||\mathbf{y}_{h,i}||$.

Algorithm 1 The Embedded Hunter Algorithm **Input:** stochastic function g_P , search space $\mathcal{Y} = [-d/\eta, d/\eta]^d$, evaluation budget v. **Initialization:** $t \leftarrow 1, \mathcal{T}_1 = \{(0,0)\}, \text{ Evaluate } g_P(\mathbf{y}_{0,0}).$ while evaluation budget is not exhausted do $\nu_{\min} \leftarrow \infty$ for l = 0 to min{depth(\mathcal{T}_t), h_{max} } do for j=1 to $|\Gamma_{l,t}|$ do Select $(l, o) = \operatorname{arg\,min}_{(h,i) \in \mathcal{L}_{t}^{j}} f_{h,i}^{*}$ if $f_{l,o}^* < \nu_{\min}$ then $\nu_{\min} \leftarrow f_{l,o}^*$ Expand (l, o) into its child nodes Evaluate (l, o)'s child nodes by g_P Add (l, o)'s child nodes to \mathcal{T}_t end if end for $\mathcal{T}_{t+1} \leftarrow \mathcal{T}_t$ $t \leftarrow t + 1$ end for 16: end while 17: **return** $f_v^* = \min_{(h,i) \in \mathcal{T}_t} f_{h,i}^*$

Assumptions

• f is Lipschitz-continuous, i.e., $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le L \cdot ||\mathbf{x}_1 - \mathbf{x}_2||,$$

where L > 0 is the Lipschitz constant.

• There exists a decreasing sequence δ in $h \geq 0$ such that for one (or more) optimal cell(s) \mathcal{Y}_{h,i_n^*} at depth h, we have

$$0 \le \sup_{q, \mathbf{y} \in \mathcal{Y}_{h, i_p^*}} |g_q(\mathbf{y}_{h, i}) - g_q(\mathbf{y})| \le \delta(h).$$

- There exists m > 0 such that $\forall (h, i) \in \mathcal{T}, \mathcal{Y}_{h,i}$ contains an ℓ -ball of radius $m\delta(h)$ centered in $\mathbf{y}_{h,i}$.
- There exists two non-decreasing sequences λ and τ in \mathbf{y} and h, respectively, such that for any depth $h \geq 0$, for any optimal cell \mathcal{Y}_{h,i_n^*} ,

$$0 \leq \sup_{s,t} |g_s(\mathbf{y}_{h,i_p^*}) - g_t(\mathbf{y}_{h,i_p^*})| \leq \lambda(\mathbf{y}_{h,i_p^*}),$$

and
$$\sup_{i_n^*} \lambda(\mathbf{y}_{h,i_p^*}) \leq \tau(h).$$

numerical experiments have validated EmbeddedHunter's in comparison with recent random-embedding methods.

• Besides its theoretically-proven performance,

Convergence Analysis

Define h(t) as the smallest $h \ge 0$ such that:

$$Ch_{max} \sum_{l=0}^{h(t)} (\hat{m}\delta(l))^{-\hat{d}} \geq t ,$$

where t is the number of iterations. Then EmbeddedHunter's regret is bounded as

 $r(t) \le \min_{h \le \min(h(t), h_{max} + 1)} \tau(h) + \delta(h) .$

Conclusion

over a low-dimensional search space \mathcal{Y} , where

stochasticity has shown to be proportional on

• EmbeddedHunter builds a stochastic tree

average with the norm of the nodes' base

points.

Acknowledgements

Derivative-free optimization of high-dimensional non-convex

In Proceedings of the 25th International Joint Conference on

Scaling simultaneous optimistic optimization for high-dimensional

Bayesian optimization in high dimensions via random embeddings.

In Proceedings of the 23rd International Joint Conference on

Artificial Intelligence (IJCAI'13), pages 1778–1784. AAAI

Press/International Joint Conferences on Artificial Intelligence,

In Proceedings of the 30th AAAI Conference on Artificial

[3] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. Freitas, et al.

functions by sequential random embeddings.

Artificial Intelligence (IJCAI'16), 2016.

non-convex functions with low effective dimensions.

The research was partially supported by the ST Engineering - NTU Corporate Lab, Singapore, through the NRF corporate lab@universty scheme.

Contact Information

- Web: https://ash-aldujaili.github.io/eh-lsopt/
- Email:

[1] H. Qian, Y.-Q. Hu, and Y. Yu.

Intelligence (AAAI'16), 2016.

[2] H. Qian and Y. Yu.

aldujail001@e.ntu.edu.sg ssundaram@ntu.edu.sg

