TD 1: théorie des ensembles

Dans la suite U désigne un ensemble univers, i.e. :

$$-A, B, C, D, E \subseteq U;$$

$$-$$
 et $x, y, a, b, c, a_1, \dots, a_n, 0, 1 \in U$.

Exercice 1. Compréhension du cours.

- 1. Dans chacun des cas suivants, dire si A = B:
 - (a) $A := \{1, 3, 3, 3, 5, 5, 5, 5, 5\}$ et $B := \{5, 3, 1\}$
 - (b) $A := \{\{1\}\} \text{ et } B = \{1, \{1\}\}$
- 2. Lesquelles des affirmations suivantes sont vraies?

(a)
$$x \in \{x\}$$

(c) $\{x\} \in \{x\}$

(b)
$$\{x\} \subseteq \{x\}$$

(d) $\{x\} \in \{\{x\}\}$

3. Donner l'ensemble des parties des ensembles suivants :

(a)
$$\{a, b\}$$

(c) $\{\emptyset\}$

(d)
$$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$$

- 4. Soit $A := \{a_1, a_2, \dots, a_n\} \subseteq U$. Donner une définition en intension/compréhension de A.
- 5. $\mathcal{P}(E)$ peut-il être une partition de E?
- 6. Ø peut-il être partitionné?
- 7. Soit $A := \{a, b, c\}, B := \{x, y\}$ et $C := \{0, 1\}$. Donner en extension :

(a)
$$A \times B$$

(c)
$$(A \times B) \times C$$

(e) $A \times B \times C$

(b)
$$B \times A$$

(d)
$$A \times (B \times C)$$

Exercice 2. Soient $A, B, C \subseteq U$. Montrer que :

1.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
 et $A \times (B \cup C) = (A \times B) \cup (A \times C)$

$$2. \ A \subseteq B \quad \Rightarrow \quad C \setminus B \subseteq C \setminus A$$

3.
$$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$$

4.
$$A \subseteq B \Leftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$$

5.
$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

6.
$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$$
. À quelle(s) condition(s) a-t-on l'égalité?

Exercice 3.

- 1. Si $A \cup B = A \cap B$, a-t-on A = B?
- 2. Si $A \cup B = C \cup D$ et $A \cap B = C \cap D$ a-t-on $\{A, B\} = \{C, D\}$?
- 3. Est-il vrai que si $\mathcal{P}(A) = \mathcal{P}(B)$ alors A = B?

Exercice 4. Soit A un ensemble. Trouver un ensemble B tel que $A \in B$ et $A \subseteq B$.

Exercice 5. Les nombres ordinaux.

Soit $B \subseteq U$. On définit la famille des ensembles X_i suivants :

$$\begin{cases} X_0 := B \\ X_{n+1} := X_n \cup \{X_n\} \end{cases}$$

Dans cette première partie, on pose $B := \emptyset$.

- 1. Donner alors X_i en extension pour i de 0 à 4.
- 2. Montrer que $\forall n \in \mathbb{N} \quad X_n \in X_{n+1} \text{ et } X_n \subset X_{n+1}$.
- 3. En déduire que, quels que soient m et n, les trois assertions suivantes sont équivalents :

1.
$$n < m$$
;

2.
$$X_n \in X_m$$
;

3.
$$X_n \subset X_m$$
.

On vient d'encoder les entiers naturels munis d'une structure d'ordre par des ensembles en utilisant comme base l'ensemble vide \emptyset . Notons $\omega := \bigcup_{i \in \mathbb{N}} X_i$ la réunion de cette famille d'ensembles.

4. Montrer que $\forall n \in \mathbb{N} \quad X_n \in \omega$.

D'après la question 3 ci-dessus, et en identifiant l'entier naturel n à l'ensemble X_n , on peut interpréter l'expression $X_n \in \omega$ par $n < \omega$. On a donc construit un *nombre* plus grand que tous les entiers! En réitérant le processus avec $B := \omega$ on construit la suite des *nombres* $\omega, \omega + 1, \ldots, \omega + \omega$ que l'on peut énumérer dans l'ordre :

$$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega = \omega \times 2$$

Ce processus peut encore être réitéré. Ces *nombres* sont appelés les nombres ordinaux et ont été introduits par Cantor lors des développements de la théorie des ensembles.