Machine Learning Package

Portfolio de algoritmos de Machine Learning

Sumário

- Iremos continuar a implementação do modelo de rede neuronal genérico - NN
- Iremos implementar parte da segunda fase do algoritmo Backpropagation que permite treinar um modelo de redes neuronais – backward propagation
- Iremos implementar uma medida de cálculo do erro e a sua derivada – mse e mse_derivative

Objeto NN

- Considera agora todo algoritmo de treino Backpropagation!
- Que parâmetros devemos adicionar ao objeto NN?
 - Algoritmo iterativo
 - Cálculo do erro entre valores previstos e valores reais
 - Podemos modificar a taxa de aprendizagem do algoritmo?
- Que atributos devemos adicionar ao objeto NN?
 - Talvez seja interessante acompanhar a diminuição do erro?
- Como podemos treinar um modelo de redes neuronais?
 - Considera a primeira fase do algoritmo *Backpropagation forward propagation*
 - Considera a segunda fase do algoritmo Backpropagation backward propagation
 - Algoritmo iterativo que ajusta os pesos de cada layer tendo em conta o erro entre os valores previstos e os valores reais
- Como podemos obter o erro entre os valores reais e os valores previstos pelo modelo?

mse metric

- Consulta a medida de erro mse no metrics sub-package
- def mse
 - assinatura/argumentos:
 - y true valores reais de Y
 - Y_pred valores estimados de Y
 - ouput esperado:
 - O valor do erro entre <u>y_true</u> e <u>y_pred</u>
 - Confirma que a função implementada respeita a seguinte formula da mse
 - Sendo que:
 - y_i valores reais
 - $\widehat{y_i}$ valores previstos
 - -n número de exemplos

$$\frac{\sum_{i=1}^{n}(y_i-\widehat{y_i})^2}{2n}$$

mse metric

Adiciona a função mse_derivative que permite calcular o erro usando a derivada da mse

- •def mse_derivative
 - assinatura/argumentos:
 - y_true valores reais de Y
 - Y_pred valores estimados de Y
 - ouput esperado:
 - O valor do erro entre y_true e y_pred
 - algoritmo:
 - Calcula o erro usando a derivada da mse em ordem a $\widehat{y_i}$

Avaliação

- Exercício 11: Medidas de erro
 - 11.1) Adiciona uma nova medida de erro chamada *cross* entropy
 - Deves adicionar a função cross_entropy ao módulo cross_entropy.py no sub-package metrics
 - Considera a seguinte formula para implementares a medida de erro *cross entropy*:
 - Sendo que:
 - y_i valores reais
 - $\widehat{y_i}$ valores previstos
 - n número de exemplos

$$\frac{-\sum_{i=1}^{n} y_i * \ln \widehat{y_i}}{n}$$

Avaliação

Exercício 11: Medidas de erro

• 11.2) Adiciona agora a derivada da medida de erro *cross* entropy

- Deves adicionar uma nova função chamada
 cross_entropy_derivative ao módulo cross_entropy.py
- Considera a formula da cross entropy apresentada no slide anterior.
- Deriva a $cross\ entropy$ em ordem a $\widehat{y_i}$

