Prof. Dr. Bernhard Drabant Duale Hochschule Baden-Württemberg Mannheim Fakultät Wirtschaft

Wissensgewinnung und Modelle

Data Science als Prozess

2

Data-Science-Plattform

Wissensgewinnung und Modellbildung

Zentraler Schritt im Data-Science-Prozess

- Ziel
 - Identifizierung von (bisher unbekannten) aussagekräftigen Mustern und Zusammenhängen in (aufbereiteten) Daten
 - Darstellung dieses Wissens in Modellen und Berichten
 - Modelle auf Daten (z. B. in operativen Systemen) anwenden
- Methoden
 - abhängig von Anwendungsfällen, Anforderungen, Datenstrukturen
 - aus den Bereichen
 - Freie Datenrecherche
 - Analytik
 - Data Mining, Machine & Deep Learning, ...

Prof. Dr. Bernhard Drabant Wissensgewinnung 4

Vergleich: Klassische Programmierung – Maschinelles Lernen

Prof. Dr. Bernhard Drabant Wissensgewinnung

Analysesysteme

- Tools zur Wissensgewinnung und Modellbildung
- Teil der Data-Science-Plattform
- Arten
 - Freie Datenrecherche
 - OLAP
 - Data Mining
- Auswahl gemäß der Anwendungsfälle und Anforderungen

- (Automatisierte) Anwendung von Lernmethoden und Lernalgorithmen, um in (großen) Datenmengen
 - bisher unbekannte, aussagekräftige, potenziell nützliche Strukturen und Beziehungen zwischen Datenobjekten zu identifizieren
 - und diese einem Konsumenten in Form von Modellen zur Verfügung zu stellen
- Sehr häufig: statistische Lernmethoden

⇒ (Automatisierte, statistische) Gewinnung von Wissen aus Daten

Data Mining als Wissenschaft der Daten

Hypothesenfreie Erkennung von Strukturen und Zusammenhängen

Validierung von Hypothesen

8 Prof. Dr. Bernhard Drabant Wissensgewinnung

Methodiken des Data Mining / der Wissensgewinnung

Taxonomie des Lernens (Data Mining / Machine Learning)

- Kategorien von Lernproblemen
 - Arten des Lernens
 - Klassen / Typen des Lernens
 - Methoden des Lernens
 - » Anwendungsfelder des Lernens

Data Mining – Problemkategorien

Problemkategorien des Lernens

- **■** Entscheidungs- und Prognoseprobleme
- Beschreibungs- und Strukturierungsprobleme

Wissensgewinnung/Unterstützung durch Data Mining

- bei Entscheidungs- und Prognoseproblemen
 - Unterstützung bei Entscheidungen oder autonome Entscheidungsfindung
 - Prognose und Wahrscheinlichkeiten von Ereignissen, Zuständen, Prozessabläufen bestimmen
 - Prozesse auf Basis erkannter Muster zu optimieren
- bei Beschreibungs- und Strukturierungsproblemen
 - Unterstützung bei der Beschreibung oder Bewertung von Eigenschaften von Datenobjekten oder komplexeren Datenzusammenhängen
- durch Lernalgorithmen
 - Ermöglichen das Erlernen von Wissen und das Generieren von Modellen anhand von Daten

Data Mining – Problemkategorien

Problemkategorien des Lernens und Wissensgewinnung/Unterstützung durch Data Mining

■ Generell: Datenobjekte O durch Variablen X₁, X₂, ..., X_n charakterisierbar.

Grundannahme: Durch Data Mining erlerntes Wissen i. d. R. durch Modelle darstellbar

- Entscheidungs- und Prognoseprobleme
 - Entweder: Finde Zuordnung von Variablen X₁, X₂, ..., X_n eines Datenobjekts O auf Zielvariable Y
 - Oder: Finde Zuordnung von Variablen X⁽¹⁾, X⁽²⁾, ..., X^(m) von m Datenobjekten O⁽¹⁾, ..., O^(m) (ggf. verschiedenen Typs) auf Zielvariable Y
 - Modell **M** ist eine Funktion: $Y = M(X_1, X_2, ..., X_n)$ bzw. $Y = M(X^{(1)}, X^{(2)}, ..., X^{(m)})$
 - Wert Y aus Wert X ermittelbar (i. d. R. mit gewisser Wahrscheinlichkeit → Zufallsvariable)
- Beschreibungs- und Strukturierungsprobleme
 - Finde Zusammenhang zwischen den Variablen X₁, X₂, ..., X_n bzw. zwischen **X**⁽¹⁾, **X**⁽²⁾, ..., **X**^(m)
 - Modell **M** ist eine neue Struktur: **M** $(X_1, X_2, ..., X_n)$ bzw. **M** $(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, ..., \mathbf{X}^{(m)})$

Data Mining – Arten des Lernens

Arten des Lernens

- Supervised Learning (Überwachtes Lernen)
- Unsupervised Learning (Unüberwachtes Lernen)
- Self-taught Learning / Semi-supervised Learning
 (Autodidaktisches Lernen / teilüberwachtes Lernen)
- Reinforcement Learning (Verstärkendes Lernen)

Wissensgewinnung: Supervised Learning

Ausgangslage / Annahme

- Datenobjekte O haben Daten $X = (X_1, X_2, ..., X_n)$ (= Eingangsvariablen)
- Jedem Datenobjekt O wird Zielvariable Y zugeordnet
- Wert Y aus Wert X ermittelbar (Zufallsvariable)

Wissensgewinnung: Supervised Learning

Ziel

• Erlerne Funktion/Modell **M**, womit aus Wert **X** der Zielwert **Y** bestimmt werden kann:

$$Y = M(X)$$

Vorgehensweise

- Lernen von Funktion/Modell M mit k Trainingsdatensätzen (Stichprobe / Sample) { (X¹, Y¹), (X², Y²), ..., (Xk, Yk) }
- Lernen endet, wenn ein Modell M mit ausreichender Güte bestimmt wurde
 - Güte wird in der Regel mit annotierten Testdaten gemessen

Zentrale Probleme des Supervised Learning

- **M** a priori nicht bekannt
- Welche Methoden wendet man an, um Modell M zu bestimmen?
- Was bedeutet "möglichst genau" und "ausreichende Güte"?

Wissensgewinnung: Supervised Learning

Klassen des Supervised Learning

- Klassifikation: Zielvariable Y endlich, nominal oder ordinal
- Regression: Zielvariable Y metrisch, diskret oder kontinuierlich
- Mischformen möglich

Methoden des Supervised Learning

- Lineare Regression, logistische Regression, ...
- Entscheidungsbaumverfahren, Random Forest
- Support-Vektor-Maschinen
- Neuronale Netze

Anwendungsfelder des Supervised Learning

- Empfehlungen
- Zeitreihenvorhersage
- Predictive Analytics / Predictive Maintenance
- ...

Wissensgewinnung: Unsupervised Learning

Ausgangslage / Annahme

- Datenobjekte O haben Daten X (= Eingangsvariablen)
- Den Datenobjekten sind keine Zielvariablen zugeordnet

Wissensgewinnung: Unsupervised Learning

3 Gruppen: gelb / hellgrün / grün

Ziel

• Finde Modell **M** (Struktur, Beziehungen in den Daten)

Vorgehensweise

- Lernen oder Finden der relevanten Strukturen mit (nicht-annotierten) *Trainingsdaten*
- Lernen ohne Anleitung!
- Lernen endet, wenn Strukturen mit ausreichender G\u00fcte oder Aussagekraft bestimmt wurde
 - Güte oder Aussagekraft wird unter anderem mit *Testdaten* gemessen

Zentrale Probleme des Unsupervised Learning

- Welche Methoden wendet man an, um die relevanten Strukturen zu ermitteln?
- Was bedeutet "ausreichende Güte oder Aussagekraft"?

Wissensgewinnung: Unsupervised Learning

Klassen des Unsupervised Learning

- Gruppierung/Clustering: Gruppierungsmerkmale und -strukturen in Daten ermitteln
 - Ähnlichkeiten von Objekten / Funktionen auf Objekt-Daten
- Dimensions- oder Datenreduktion
 - Vereinfachung der Datenstruktur oder Reduktion der Datenmenge / Reduktion auf wesentlichen Parameter oder Merkmale
- Assoziationsanalyse
 - Regeln ermitteln, die Zusammenhänge zwischen Daten beschreiben
- Muster- und Abweichungserkennung / Anomaly Detection

Methoden des Unsupervised Learning

- Frequent Item Set Analysis
- k-means-Methoden
- Principal Component Analysis (PCA)
- Neuronale Netze

Anwendungsfelder des Unsupervised Learning

- Warenkorbanalyse / Kunden, die Ware X kaufen, neigen auch dazu, Produkt Y zu kaufen
- Aufdeckung betrügerischen Verhaltens (Kreditkartenbetrug)
- Gesichtserkennung

Wissensgewinnung: Self-taught und Semi-supervised Learning

Ausgangslage / Annahme

- Datenobjekte O haben Daten X (= Eingangsvariablen)
- Trainingsobjekte sind nur teilweise mit Zielvariablenwerten Y annotiert

In der Praxis: Daten mit annotierten Zielvariablen in der Unterzahl

Wissensgewinnung: Self-taught und Semi-supervised Learning

Ziel

• Erlerne Funktion/Modell **M**, womit aus **X** der Zielwert **Y** bestimmt werden kann:

$$Y = M(X)$$

Vorgehensweise

- Lernen der Funktion/Modell M erfolgt mit Trainingsdaten (in mehreren Schritten)
- Lernen endet, wenn ein Modell M mit ausreichender Güte bestimmt wurde
 - → Güte wird in der Regel mit Testdaten gemessen

Nebenbedingungen (!)

- Nicht alle Trainingsobjekte müssen in Lernphase eingebunden werden
- Nicht alle Daten müssen durch M klassifiziert werden können

Wissensgewinnung: Self-taught und Semi-supervised Learning

Szenarien

- Alle Trainingsobjekte sind un-annotiert → Self-taught
 - 1. Unsupervised Learning mit Gruppenbildung auf den Trainingsdaten
 - 2. Annotation einiger Trainingsobjekten mit entsprechenden Gruppen-Indizes
 - 3. Supervised Learning auf allen annotierten Trainingsobjekten → Modell M₁
 - 4. Annotation restlicher Trainingsobjekte (oder Teilmenge davon) mit Hilfe von Modell M₁
 - 5. Supervised Learning auf allen annotierten Trainingsobjekten → Modell M₂
 - 6. Gegebenenfalls Iteration der Schritte (4) und (5)
 - 7. Gütebestimmung des Modells auf Testdaten
 - 8. Anwendung des Modells
- Einige Trainingsobjekte sind annotiert → Semi-supervised
 - Vorgehensweise wie im ersten Szenario ab Schritt (3)

Wissensgewinnung

Vergleich: supervised, unsupervised, semi-supervised

Prof. Dr. Bernhard Drabant Wissensgewinnung 23

Wissensgewinnung: Reinforcement Learning

Ausgangslage

- Lernsystem (= Agent) beobachte seine Umgebung
- System wählt kontextabhängige Aktionen aus und führt diese durch

Vorgehensweise

- Je nach Auswahl der Aktion wird das System mehr oder weniger belohnt
- System findet selbst heraus, welche Aktionen in welchem Kontext die höchste Belohnung erbringen
- System erzeugt im Lernprozess eine Ausführungsstrategie (Policy)

Ziel

Optimierung der Policy

Wissensgewinnung: Reinforcement Learning

Anwendungsfelder

- Roboter
- Autonome oder selbstfahrende Fahrzeuge
 - ▶ teilweise, neben anderen Technologien wie NNs, ...
- KI und Spiel-Programme
 - Beispiel: AlphaGo von DeepMind schlägt Go-Weltmeister im Jahr 2017 und erlernt/entdeckt bis dahin unbekannte Strategien

Reinforcement Learning nicht Teil der Vorlesung

Data Mining – Prozesse der Wissensgewinnung

Prozesse der Wissensgewinnung

- Batch-Verfahren
- Online-Verfahren

Batch-Verfahren

- Alle Trainingsdaten werden für Training verwendet → Daten-Pool
 - ▶ in der Regel in separater offline-Umgebung durchgeführt
- Nach Training (und Test) steht erlerntes Wissen zur Verfügung
 - in Produktivsystemen eingesetzt
 - keine weiteres Lernen in Produktivsystem
- Alternative Bezeichnung: Offline-Verfahren

Batch-Verfahren

- Eigenschaften
 - Zeit- und ressourcenintensives Lernen auf gesamtem Trainingsdaten-Pool
 - Herausforderung! Je nach Größe der Datenmenge und Art der Berechnungen
 - Wie wird aus neuen Daten gelernt?
 - Neuer Trainingslauf in offline-Umgebung mit neuen Trainingsdaten
 - Re-Deployment des Wissens (Modell, ...) in Produktivumgebung

Online-Verfahren

- Inkrementelles Training durch Hinzufügen
 - einzelner Datensätze
 - kleiner Datenpakete (Mini-Batches)
- Mögliche Lernszenarien
 - auf Produktivdaten
 - aber auch auf separaten Trainingsdaten
 - in Mischform auf Trainings- und Produktivdaten

Online-Verfahren

- Eigenschaften
 - schnelles, inkrementelles Lernen in Echtzeit möglich
 - ▶ auf transienten oder auf persistenten Daten möglich je nach Anwendung
- Anwendungsszenarien
 - Lernen aus sich schnell ändernden Daten wie Aktienkursen etc.
 - Roboter und autonome Maschinen
 - Umgebungen mit geringer Rechen- und Ressourcenkapazität
 - Batch-Systeme mit riesigem (Trainings-)Daten-Pool
 - Inkrementelles Lernen auf kleineren Batches
 - » z. B. in Form von Out-of-Core Learning (im Hauptspeicher)

Online-Verfahren

- Herausforderung beim Online-Verfahren:
 - ▶ Allmähliche Verschlechterung der Lernleistung durch fortlaufende Einspeisung minderwertiger Daten
 - ▶ Beispiel: Defekter Sensor, Ranking-Bot, ...

Trainingsdaten, Testdaten, Batch, Epoche, Lernrate

Trainingsdatensatz

 Zufällig gewählter Datensatz (Stichprobe) zum Erlernen eines (statistischen) Wissensmodells mit Hilfe eines gegebenen (parametrisierten) Lernalgorithmus → maschinelles Lernen / Machine Learning

Testdatensatz

- Zufällig gewählter Datensatz (Stichprobe) zum Testen der Güte eines (statistischen)
 Wissensmodells
- Disjunkt von Trainingsdatensatz

Zusammenfassung: Trainingsdaten, Testdaten, Batch, Epoche, Lernrate

- Training/Lernen des Modells
 - Erlernen eines Modells durch Trainingsdatensatz
 - Lernen kann in mehreren Phasen iterativ erfolgen

- Test/Validierung des Modells
 - Bestimmung der Güte des Modells durch Testdatensatz
 - Gütebestimmung abhängig vom Modell bzw. vom Lernverfahren
 - supervised: Abweichung zwischen Vorhersage und Annotation
 - unsupervised: Abweichung von der in der Lernphase ermittelten Struktur

Zusammenfassung: Trainingsdaten, Testdaten, Batch, Epoche, Lernrate

- Batch
 - Batchdatensatz: Untermenge eines Trainingsdatensatzes
 - Batch: Partition des Trainingsdatensatzes in möglichst gleich große Batchdatensätze
 - Verwendung: Sukzessives Training eines Wissensmodells.
 - Nach jedem Batchdatensatz wird die Güte des erlernten Modells ermittelt und die Parameter des Lernalgorithmus / Modells angepasst bzw. optimiert
- Epoche: Training eines Modells mit einem vollständigen Durchlauf des Trainingsdatensatzes
 - Training kann über mehrere Epochen erfolgen mit dem selben Trainingsdatensatz
 - Gütebestimmung nach jeder Epoche

Zusammenfassung: Trainingsdaten, Testdaten, Batch, Epoche, Lernrate

Lernrate

- Ziel: Güte eines Modells durch Anpassung/Optimierung der Parameter des Lernalgorithmus in der nächsten Epoche erhöhen
- Lernrate: Maß der Anpassung/Optimierung der Parameter
- Lernrate hoch:
 - System lernt schnell
 - Aber:
 - Gelerntes aus den alten Daten "schneller vergessen"
 - System kann "über das Ziel hinaus schießen"
- Lernrate niedrig:
 - System hat höhere Trägheit beim Lernen und lernt somit langsamer
 - ▶ Aber: weniger anfällig für *Rauschen* oder nicht repräsentative Datenobjekte in neuen Daten

Machine Learning (ML)

Machine Learning (ML)

- ML = Wissenschaft und Methodologie, IT-Systeme mithilfe bestimmter ML-Algorithmen so zu programmieren, dass sie anhand vorgegebener Daten eigenständig lernen
- Die IT-Systeme können dann auf Basis vorhandener Trainingsdaten
 - Muster und Gesetzmäßigkeiten erlernen
 - Lösungen (z. B. Modelle) entwickeln

- Eigenständiges Lernen der IT-Systeme bedarf der Vorbereitung durch Menschen
 - Systeme müssen mit relevanten Lernalgorithmen und Daten ausgestattet werden
 - Algorithmen müssen für Analyse der Daten und Erkennen der Muster konfiguriert werden
 - Dieses Verfahren muss iterativ "orchestriert" werden
 - Hohe Kunst des ML!

Machine Learning (ML)

- Ein zentraler Bereich im Data Mining
- Sehr wichtiger Teil der Studienrichtung Data Science @ DHBW
- Deep Learning (DL): Fortgeschrittene Methoden des modernen ML
 - in späteren Semestern ...

Fragen?

