

Algoritmos e Programação II

Prof.^a Noeli A. Pimentel Vaz Prof. Joilson dos Reis Brito

MATRIZ PORQUE?


```
A11 A12 A13 ... A1n

A21 A22 A23 ... A2n

A31 A32 A33 ... A3n

A41 A42 A43 ... A4n

: : : : : : :

An1 An2 An3 ... Ann
```

Definição - Matriz

Os vetores têm como principal característica a necessidade de apenas um índice para endereçamento – são estruturas unidimencionais.

Quando uma estrutura precisar de mais de um índice de endereçamento, dizemos que é multidimensional, ou matriz.

O conceito de matriz que é utilizado para armazenar informações em informática é o mesmo conceito de matriz da álgebra linear, ou seja, uma tabela de elementos dispostos em linhas e colunas.

Definição - Matriz

Declaração de Matriz em C

int M[n1][n2];

Onde:

int - é o tipo dos elementos da matriz, ou seja, a matriz M será composta de números inteiros.

M - é o nome do matriz.

n1 e n2 representa o número de linhas e colunas da matriz, respectivamente. n1 e n2 devem ser Constantes da mesma forma que definimos no vetor.

Vamos declarar uma matriz para armazenar 3 idades para cada pessoa (idade que passou no vestibular, idade que se formou e a idade que começou no primeiro emprego com carteira assinada). Serão armazenadas as três idades para 10 pessoas.

Vamos declarar uma matriz que irá armazenar 4 notas de 6 alunos

Representa os alunos

Para acessarmos um elemento de uma matriz bidimensional precisamos utilizar dois índices, se a matriz for tridimensional precisaremos de três índices e assim por diante.

Abaixo estão relacionadas as operações básicas que podem ser feitas com uma matriz e seus elementos.

Operação	Exemplo
Definir uma matriz de notas de 20 linhas e 4 colunas	float NOTAS[20][4];
Atribuir valores aos elementos da matriz	NOTAS[0][1]=8.5; NOTAS[19][3]=4.6;
Ler o elemento da 5ª linha e 2ª coluna da matriz	scanf(" %f ", NOTAS[5][2]);
Escrever o elemento da 2ª linha e 4ª coluna da matriz.	printf(" %f ", NOTAS[2][4]);

Quando queremos realizar qualquer operação com um elemento de uma matriz devemos sempre utilizar o nome da matriz, que foi especificado quando a matriz foi declarada, e os números que representam a linha e a coluna do elemento. Para encontrar o elemento na matriz, basta encontrar a interseção da linha com a coluna.

O valor da linha e da coluna podem ser definidos por:

- Constantes numéricas (0,1,2,3);
- Conteúdo de uma variável, que deve ser inteira;
- Por uma expressão numérica que resulte em um número inteiro;
- Por um elemento da própria matriz ou de outra matriz, desde que a matriz seja de números inteiros.

Em C, podemos ter matrizes com mais de duas dimensões porém, nesta disciplina, trabalharemos apenas com matriz de duas dimensões (linha e coluna).

Os índices da matriz, no C, começam do 0, portanto se definirmos uma Matriz MAT de 2 linhas e 2 colunas, o elemento da primeira linha e primeira coluna será MAT[0][0].

Neste exemplo, consideramos que a matriz X, de 3 linhas e 3 colunas, contém os valores listados e que temos duas variáveis A e B que são do tipo **int** e contém os valores 1 e 2 respectivamente, ou seja, A=1 e B=2.

	0	1	2
0	3	1	45
MATRIZ X 1	4	-9	-10
amantaa ahaiya a	18	.80	50

Qual o valor dos elementos abaixo da matriz X ?

```
X[0][2]
45
X[A][B]
-10
X[A+1][B-1]
80
X[X[0][A]] [B-1]
```

MATRIZ

Vamos analisar como se comportam os indices de uma matriz A(4X4) com 4 linha e 4 colunas.

A00	A01	A02	A 03
A10	A11	A12	A 13
A20	A ₂₁	A22	A23
A 30	A31	A32	A33

Sempre que for necessário percorrer todos os elementos de uma matriz, para realizarmos operações de atribuição, escrita ou leitura, utilizaremos dois comandos de repetição **for**.

No primeiro comando colocamos como variável de controle aquela que será utilizada como linha da matriz;

No segundo comando **for** colocamos a variável que representará a coluna da matriz, conforme abaixo:

O programa do próximo slide define a matriz Numeros, atribui os valores listados abaixo para a matriz e escreve o conteúdo da matriz, utilizando os comandos for.

	0	1	2
0	10	14	15
1	-9	19	-1
2	8	0	10

```
#define LINHAS 3
#define COLUNAS 2
int main()
 int Numeros[LINHAS][LINHAS];
 int I,J;
 Numeros[0][0] = 10;
 Numeros[0][1] = 14;
 Numeros[0][2] = 15;
 Numeros[1][0] = -9;
 Numeros[1][1] = 19;
 Numeros[1][2] = -1;
 Numeros[2][0] = 8;
 Numeros[2][1] = 0;
 Numeros[2][2] = 10;
```

. . .

```
for(I = 0; I<LINHAS;I++)
for (J=0;J<LINHAS;J++)
printf("%i ", Numeros[I][J]);</pre>
```

```
printf("\n\nEste é o conteúdo da matriz Numeros:\n");
for(I=0;I<LINHAS;I++)
 for(J=0;J<LINHAS;J++)
   printf("%d"; NUMEROS[I][J]);
 printf("\n"); // Pular linha após imprimir uma linha inteira da matriz
system("PAUSE");
return 0;
```

Programa que define uma matriz 3X3, atribui o valor 10 para todos os elementos da matriz, depois imprime todos os elementos desta matriz.

```
#define DIM 3
int main()
 int Matriz10[DIM][DIM];
 int I,J;
 for(I=0;I<DIM;I++)
  for(J=0;J<DIM;J++)
    Matriz[I][J] = 10;
```

```
for(I=0;I<DIM;I++)
 for(J=0;J<DIM;J++)
   printf("%d"; Matriz10[I][J]);
 printf("\n"); // Pular linha após imprimir uma linha inteira da matriz
system("PAUSE");
return 0;
```

Programa que define uma matriz 5X6, solicita que o usuário informe os elementos da matriz, depois imprime todos os elementos lidos.

```
#define DIM1 5
#define DIM2 6
int main()
 int MatrizLida[DIM1][DIM2], I,J;
 printf( "INFORME OS ELEMENTOS DA MATRIZ( NUMEROS
                                                       INTEIROS)\n");
 for(I=0;I<DIM1;I++)
  for(J=0;J<DIM2;J++)
    printf("Linha: %i Coluna: %i ", I, J);
    scanf("%i", &MatrizLida[I][J]);
```

```
for(I=0;I<DIM1;I++)
 for(J=0;J<DIM2;J++)
   printf("%d"; MatrizLida[I][J]);
 printf("\n"); // Pular linha após imprimir uma linha inteira da matriz
system("PAUSE");
return 0;
```