Support Vector Machines

Hongning Wang CS@UVa

Today's lecture

- Support vector machines
 - Max margin classifier
 - Derivation of linear SVM
 - Binary and multi-class case
 - Different types of losses in discriminative models
 - Kernel method
 - Non-linear SVM
 - Popular implementations

Review: Bayes risk minimization

Risk – assign instance to a wrong class

Discriminative v.s. generative models

All instances are considered for probability density estimation

Generative model

More attention will be put onto the boundary points

Logistic regression

Summary

$$-P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1) + P(X|y = 0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}}$$
Binomial
$$P(y = 1) = \alpha$$

$$0.75$$

$$P(X|y = 0) = N(\mu_0, \delta^2)$$

$$0.50$$

$$0.00$$
Normal with identical variance of the property of

Logistic regression

Decision boundary for binary case

$$-\hat{y} = \begin{cases} 1, p(y=1|X) > 0.5 \\ 0, & otherwise \end{cases}$$
 Discriminative model
$$w^Tx > 0$$

$$p(y=1|X) = \frac{1}{1 + \exp(-w^TX)} > 0.5$$
 i.f.f.
$$\exp(-w^TX) < 1$$
 i.f.f.
$$w^Tx > 0$$
 A linear model!
$$0, otherwise$$

Which linear classifier do we prefer?

Choose the one with maximum separation margin

Instances are linearly separable

Parameterize the margin

• Margin =
$$\min_{i} \frac{y_i w^T x_i}{\sqrt{w^T w}}$$

Distance from a point to a line $\frac{|w^T x|}{\sqrt{w^T w}}$

Since
$$y = sgn(w^Tx)$$

Max margin classifier

•
$$w^* = \underset{w}{\operatorname{argmax}} \min_{i} \frac{y_i w^T x_i}{\sqrt{w^T w}}$$

Max margin classifier

- $\underset{w}{\operatorname{argmax}} \min_{i} \frac{y_i w^T x_i}{\sqrt{w^T w}}$ is difficult to be optimized in general
 - Insight: $\frac{y_i w^T x_i}{\sqrt{w^T w}}$ is invariant to scaling of w
 - Define $y_i w^T x_i = 1$ for the point that is closest to the surface
 - Then, $\forall i, y_i w^T x_i \geq 1$

Max margin classifier

What if the instances are not linearly separable?

 Maximize the margin while minimizing the number of errors made by the classifier?

Linear classifier $y = sgn(w^Tx)$

Soft-margin SVM

Relax the constraints and penalize the misclassification error

What kind of loss is SVM optimizing?

$$argmin_{w,\xi}w^{T}w + C\sum_{i} \xi_{i}$$

$$s.t. \ \forall i, y_{i}w^{T}x_{i} \geq 1 - \xi_{i}$$

$$\xi_{i} \geq 0$$

$$argmin_w w^T w + C \sum_i \underline{\max(0, 1 - y_i w^T x_i)}$$

What kind of error is SVM optimizing?

Hinge loss

Think about logistic regression

Optimized by maximum a posterior estimator

$$- \operatorname{argmax}_{w} \sum_{x} \log p_{w}(y|x) - \frac{w^{T}w}{2\sigma^{2}} \quad \text{Note: } y = \{-1, +1\}$$

$$\Rightarrow argmin_{w}w^{T}w - C \sum_{x} \log p_{w}(y|x) \text{ Note: } C = 2\sigma^{2}$$

$$\downarrow p_{w}(y|x) = \frac{1}{1 + \exp(-yw^{T}x)}$$

$$\Rightarrow argmin_{w}w^{T}w + C \sum_{x} \frac{\log(1 + \exp(-yw^{T}x))}{1 + \exp(-yw^{T}x)}$$

$$argmin_{w} \underline{w^{T}w} + C \sum_{x} \underline{\log(1 + \exp(-yw^{T}x))}$$
Pegularization

Regularization Logistic loss

Different types of classification loss

Discriminative classifiers aim at optimizing

What about multi-class classification?

- One v.s. All
 - Simultaneously learn a set of classifiers

What about multi-class classification?

- One v.s. All
 - Simultaneously learn a set of classifiers

For binary classification, we have:

$$argmin_{w}w^{T}w + C\sum_{i} \xi_{i}$$

$$s.t. \ \forall i, y_{i}w^{T}x_{i} \geq 1 - \xi_{i}$$

$$\xi_{i} \geq 0$$
Generalize it!

What about multi-class classification?

- One v.s. All
 - Simultaneously learn a set of classifiers

$$argmin_{w} \sum_{y} w_{y}^{T} w_{y} + C \sum_{i} \sum_{y \neq y_{i}} \xi_{i}^{y}$$

$$s.t. \ \forall i, y \neq y_{i}, w_{y_{i}}^{T} x_{i} \geq w_{y}^{T} x_{i} + 1 - \xi_{i}^{y}$$

$$\xi_{i}^{y} \geq 0$$

$$Scale the margin by the rest classes$$

Parameter estimation

A constrained optimization problem

$$argmin_{w}w^{T}w + C\sum_{i} \xi_{i}$$

$$s.t. \ \forall i, y_{i}w^{T}x_{i} \geq 1 - \xi_{i}$$

$$\xi_{i} \geq 0$$

- Can be directly optimized with gradient-based method
 - Chapelle, Olivier. "Training a support vector machine in the primal." Neural Computation 19.5 (2007): 1155-1178.

$$argmin_w w^T w + C \sum_i \underline{\max(0, 1 - y_i w^T x_i)}$$

CS@UVa

CS 6501: Text Mining

Just to simplify the follow-up derivations

A constrained optimization problem

Primal
$$argmin_w \frac{w^Tw}{2} + C\sum_i \xi_i$$
 Lagrangian multipliers $s.t. \ \forall i, y_i w^T x_i \geq 1 - \xi_i$ α_i $\xi_i \geq 0$ β_i

Lagrangian dual

$$L(w, \xi, \alpha, \beta) = \frac{w^T w}{2} + \sum_{i} (C\xi_i - \alpha_i(y_i w^T x_i - 1 + \xi_i) - \beta_i \xi_i)$$

s.t. $\forall i, \alpha_i \ge 0, \beta_i \ge 0$

Lagrangian dual

$$L(w, \xi, \alpha, \beta) = \frac{w^{T}w}{2} + \sum_{i} (C\xi_{i} - \alpha_{i}(y_{i}w^{T}x_{i} - 1 + \xi_{i}) - \beta_{i}\xi_{i})$$

s.t.
$$\forall i, \alpha_i \geq 0, \beta_i \geq 0$$

Lemma

$$\max_{\alpha \ge 0, \beta \ge 0} L(w, \xi, \alpha, \beta) = \begin{cases} f(w, \xi) & \text{if } (w, \xi) \text{ is feasible} \\ +\infty & \text{otherwise} \end{cases}$$

We need to maximize $L(w, \xi, \alpha, \beta)$ with respect to (α, β) and minimize it with respect to (w, ξ)

Lagrangian dual

$$L(w,\xi,\alpha,\beta) = \frac{w^Tw}{2} + \sum_i (C\xi_i - \alpha_i(y_iw^Tx_i - 1 + \xi_i) - \beta_i\xi_i)$$

$$s.t. \ \forall i,\alpha_i \geq 0, \beta_i \geq 0$$

$$\frac{\partial L(w,\xi,\alpha,\beta)}{\partial w} = w - \sum_i \alpha_i y_i x_i \qquad w = \sum_i \alpha_i y_i x_i$$
 take them back to dual form
$$\frac{\partial L(w,\xi,\alpha,\beta)}{\partial \xi_i} = C - \alpha_i - \beta_i \qquad \alpha_i + \beta_i = C$$

Lagrangian dual

$$L(\alpha) = \frac{1}{2} \left(\sum_{i} \alpha_{i} y_{i} x_{i} \right)^{T} \left(\sum_{i} \alpha_{i} y_{i} x_{i} \right)$$
$$- \sum_{i} \left(\alpha_{i} \left(y_{i} \left(\sum_{j} \alpha_{j} y_{j} x_{j} \right)^{T} x_{i} - 1 \right) \right)$$

s.t.
$$\forall i, 0 \leq \alpha_i \leq C$$

Lagrangian dual

In dual form, we need to maximize it!

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$s.t. \ \forall i, 0 \leq \alpha_i \leq C$$

QP again! Easy to optimize!

Complementary slackness

In the optimal solution: $\alpha_i(y_iw^Tx_i-1+\xi_i)=0$

which means $\alpha_i = 0$ is the constraint is satisfied (correct classification)

 $\alpha_i > 0$ is the constraint is not satisfied (misclassification)

Sparsity in dual SVM

• Only a few αs can be non-zero

Classification hyperplane $w = \sum_{i} \alpha_{i} y_{i} x_{i}$ $w^T x = 0$ That's why it is called Support Vector Machine Active constraints $\alpha > 0$ No contribution in Support vectors deciding the decision boundary **Inactive constraints** $\alpha_i(y_i w^T x_i - 1 + \xi_i) = 0$ $\alpha = 0$

Why dual form SVM?

- Primal SVM v.s. dual SVM
 - Primal: QP in feature space
 - Dual: QP in instance space
 - If we have a lot more features than training instances, dual optimization will be more efficient
 - More importantly, the kernel trick!

Non-linearly separable cases

Non-linear mapping to linear separable case

Polynomial mapping

Non-linearly separable cases

Non-linear mapping to linear separable case

Non-linearly separable cases

- Explore new features
 - Use features of features of features....

Rethink about dual form SVM

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

s.t.
$$\forall i, 0 \leq \alpha_i \leq C$$

What we need is only the inner product hetween instances!

Take order 2 polynomial as an example:

$$\phi(x,y) = (x^2, y^2, \sqrt{2}xy)$$

If we take the feature mapping first and then compute the inner product:

$$\phi(x_a, y_a)^T \phi(x_b, y_b) = x_a^2 x_b^2 + y_a^2 y_b^2 + 2x_a x_b y_a y_b$$

If we compute the inner product first:

$$[(x_a, y_a)^T (x_b, y_b)]^2 = x_a^2 x_b^2 + y_a^2 y_b^2 + 2x_a x_b y_a y_b$$

No need to take feature mapping at all!

Rethink about dual form SVM

Kernel SVM

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

$$s. t. \ \forall i, 0 \le \alpha_{i} \le C$$

Kernel function

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

 $\phi(x)$ is some high dimensional feature mapping, but never needed to be explicitly defined

Rethink about dual form SVM

Kernel SVM

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

s.t.
$$\forall i, 0 \leq \alpha_i \leq C$$

Decision boundary

•
$$f(x) = w^T \phi(x)$$

We still don't need this explicit feature mapping!

Similarity between a testing case and support vectors!

How to construct a kernel

- Sufficient and necessary condition for K(x, y) to be valid kernel
 - Symmetric
 - Semi-positive definite

- Operations that preserve kernel properties
 - $-K^{*}(x,y) = cK(x,y)$, where c > 0
 - $-K^*(x,y) = K_1(x,y) + K_2(x,y)$
 - $-K^*(x,y) = \exp(K(x,y))$
 - $-K^*(x,y) = K_1(x,y)K_2(x,y)$

Common kernels

ullet Polynomials of degree up to d

$$-K(x,y) = (x^Ty + 1)^d$$

Radial basis function kernel/Gaussian kernel

$$-K(x,y) = \exp\left(-\frac{(x-y)^T(x-y)}{2\sigma^2}\right)$$

Polynomials of all orders – recall series expansion

- String kernel
 - x and y are two text <u>sequences</u>

N-gram kernel (length n substrings)

$$-K(x,y) = \sum_{n} \sum_{u \in A^{n}} \sum_{i:u=x[i]} \sum_{j:u=y[j]} 1$$

• where A is an finite alphabet of symbols

All character sequence of length *n*

All occurrences of sequence u in y

All occurrences of sequence u in x

Insight of string kernel:

Counting the overlapping of all subsequences with length up to n in x and y

Lodhi, Huma, et al. "Text classification using string kernels." The Journal of Machine Learning Research 2 (2002): 419-444.

String kernel v.s. Ngram kernel v.s. word kernel

Category	Kernel	Length	F1		Precision		Recall	
			Mean	SD	Mean	SD	Mean	SD
earn	SSK	3	0.925	0.036	0.981	0.030	0.878	0.057
		4	0.932	0.029	0.992	0.013	0.888	0.052
		5	0.936	0.036	0.992	0.013	0.888	0.067
		6	0.936	0.033	0.992	0.013	0.888	0.060
		7	0.940	0.035	0.992	0.013	0.900	0.064
		8	0.934	0.033	0.992	0.010	0.885	0.058
		10	0.927	0.032	0.997	0.009	0.868	0.054
		12	0.931	0.036	0.981	0.025	0.888	0.058
		14	0.936	0.027	0.959	0.033	0.915	0.041
	NGK	3	0.919	0.035	0.974	0.036	0.873	0.062
		4	0.943	0.030	0.992	0.013	0.900	0.055
		5	0.944	0.026	0.992	0.013	0.903	0.051
		6	0.943	0.030	0.992	0.013	0.900	0.055
		7	0.940	0.035	0.992	0.013	0.895	0.064
		8	0.940	0.045	0.992	0.013	0.895	0.063
		10	0.932	0.032	0.990	0.015	0.885	0.053
		12	0.917	0.033	0.975	0.024	0.868	0.053
		14	0.923	0.034	0.973	0.033	0.880	0.055
	WK		0.925	0.033	0.989	0.014	0.867	0.057

SVM classification performance on Reuters categories

Tree kernel

Similar?

Barack Obama is the president of the United States.

Elon Musk is the CEO of Tesla Motors.

```
(ROOT
(ROOT
                                                             (S
 (S
                                                                              ) (NNP
                                                                                          ))
                                 ))
                                                                (NP (NNP
    (NP (NNP
                    ) (NNP
                                                                (VP (VBZ
    (VP (VBZ
                                                                  (NP
      (NP
                                     ))
                                                                    (NP (DT
                                                                                ) (NN
                                                                                           ))
                    ) (NN
        (NP (DT
                                                                    (PP (IN
        (PP (IN
                       ) (NNP
                                     ) (NNPS
                                                    )))))
                                                                      (NP (NNP
                                                                                      ) (NNPS
                                                                                                      )))))
          (NP (DT
    (..)))
```

Identical in their dependency parsing tree!

Tree kernel

Can be relaxed to allow subsequent computation under unlatching nodes

$$-K(x,y) = \begin{cases} 0 & \text{if } r_1 = r_2 \\ 1 + K(x[r_1], y[r_2]) & \text{otherwise} \end{cases}$$

Search through all the sub-trees starting from root node r

Culotta, Aron, and Jeffrey Sorensen. "Dependency tree kernels for relation extraction." Proceedings of the ACL. P423-429, 2004.

Tree kernel

Can be relaxed to allow subsequent computation under unlatching nodes

$$-K(x,y) = \begin{cases} 0 & \text{if } r_1 = r_2 \\ 1 + K(x[r_1], y[r_2]) & \text{otherwise} \end{cases}$$

Search through all the sub-trees starting from root node r

N_0	=	sparse kerner
K_1	=	contiguous kernel
K_2	=	bag-of-words kernel
K_3	=	$K_0 + K_2$
K_4	=	$K_1 + K_2$

W - charge karnel

	Avg. Prec.	Avg. Rec.	Avg. F1
K_1	69.6	25.3	36.8
K_2	47.0	10.0	14.2
K_3	68.9	24.3	35.5
K_4	70.3	26.3	38.0

Relation classification performance

Popular implementations

- General SVM
 - SVM^{light} (<u>http://svmlight.joachims.org</u>)
 - libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm)
 - SVM classification and regression
 - Various types of kernels

Popular implementations

- Linear SVM
 - LIBLINEAR (http://www.csie.ntu.edu.tw/~cjlin/liblinear)
 - Just for linear kernel SVM (also logistic regression)
 - Efficient optimization by coordinate descent

Popular implementations

LIBLINEAR v.s. general SVM

(b) rcv1, *l*: 677,399, *n*: 47,236, #nz: 156,436,656

Fan, Rong-En, et al. "LIBLINEAR: A library for large linear classification." The Journal of Machine Learning Research 9 (2008): 1871-1874.

What you should know

- The idea of max margin
- Support vector machines
 - Linearly separable case v.s. linearly non-separable case
 - Slack variable and dual form
 - Kernel method
 - Different types of kernels
 - Popular implementations of SVM

Today's reading

- Introduction to Information Retrieval
 - Chapter 15: Support vector machines and machine learning on documents
 - Chapter 14: Vector space classification
 - 14.4 Linear versus nonlinear classifiers
 - 14.5 Classification with more than two classes.