Express Mail Label No.: EK611911256US

Date of Deposit: November 22, 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

FIRST-NAMED INVENTOR OR APPLICATION IDENTIFIER:

Richard A. Shimkets

For:

NUCLEIC ACIDS CONTAINING SINGLE NUCLEOTIDE POLYMORPHISMS AND METHODS OF USE THEREOF

November 22, 2000 Boston, Massachusetts

Box PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

REQUEST FOR FILING A NEW NONPROVISIONAL APPLICATION UNDER 37 C.F.R. §1.53(b)

1.	This is	s a request for filing a new nonprovisional application under 37 C.F.R. §1.53(b).		
2.	\boxtimes	Specification and Drawings (Total pages: 682); Specification (50 pages); Claims (10 pages); Abstract (1 page); Sequence Listing (431 pages); and Table 1 (190 pages).		
3.	\boxtimes	Declara	tion and Power of Attorney	
			Unsigned Signed	
4.		Informa	ation Disclosure Statement (IDS)	
			Copy of IDS and PTO-1449 (pages) Copies of references cited	
5.		Assignı	ment Papers	
			Recordation Form Cover Sheet (PTO–1595) Assignment Document	
6.		Stateme	ent Claiming Small Entity Status	
			Claiming Small Entity As Independent Inventor (37 C.F.R. §§1.9(f) & 1.27(b)). Claiming Small Entity As Small Business Concern (37 C.F.R. §§1.9(f) & 1.27(c)). Claiming Small Entity As Nonprofit Organization (37 C.F.R. §§1.9(f) & 1.27(d))	

10.

FIRST-NAMED INVENTOR OR

Richard A. Shimkets

APPLICATION IDENTIFIER:

Request for New Nonprovisional Application (37 C.F.R. §1.53(b))

7. Fee Calculation

CLAIMS AS FILED					
Claims	Number Filed	Basic Fee Allowance	Number Extra	Rate	Basic Fee 37 C.F.R. 1.16(a) \$ 710.00
Total Claims (37 C.F.R. 1.16(c))	44	- 20 =	24	\$ 18.00	\$ 432.00
Independent Claims (37 C.F.R. 1.16(b))	11	- 3 =	8	\$ 80.00	\$ 640.00
Multiple Dependent Claim(s), if any (37 C.F.R. 1.16(d))				\$260.00	0
			SUBTO	OTAL:	\$1,782.00
Reduction by 50% for filing by small entity:		891.00			
			TOTAL	FEE:	\$891.00

8. \triangleright	A check	in the amount	of \$891.00	is enclosed.
----------------------------	---------	---------------	-------------	--------------

9.	The Commissioner is hereby authorized to credit overpayments or charge the following fees to Deposit Account No. 50-0311, Ref. No. 15966-565 (CURA-65):		
		Fees required under 37 C.F.R. §1.16; Fees required under 37 C.F.R. §1.17;	
		Fees required under 37 C.F.R. §1.18.	

Return Receipt Postcard Enclosed. \boxtimes

Other Documents Enclosed: 11. Change of Attorney Address In Application. Limited Recognition under 37 C.F. § 10.9(b) for Michel Morency.

Dated: November 22, 2000

Ivor R. Elrffi Reg. No. 39,529 Shelby J. Walker, Reg. No. 45, 192

Attorney(s) for Applicants MINTZ, LEVIN, COHN, FERRIS,

GLOVSKY and POPEO, P.C.

Respectfully submitted,

One Financial Center

Boston, Massachusetts 02111

Tel: (617) 542-6000 Fax: (617) 542-2241

TRADOCS:1403439 1(%2WF01!.DOC)

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

PATENT APPLICATION

ATTORNEY DOCKET NO. 15966-599 (CURA-99)

NUCLEIC ACIDS CONTAINING SINGLE NUCLEOTIDE POLYMORPHISMS AND METHODS OF USE THEREOF

RELATED APPLICATIONS

This application claims priority to U.S.S.N. 60/167,383, filed November 24, 1999, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Sequence polymorphism-based analysis of nucleic acid sequences can augment or replace previously known methods for determining the identity and relatedness of individuals. The approach is generally based on alterations in nucleic acid sequences between related individuals. This analysis has been widely used in a variety of genetic, diagnostic, and forensic applications. For example, polymorphism analyses are used in identity and paternity analysis, and in genetic mapping studies.

One such type of variation is a restriction fragment length polymorphism (RFLP). RFLPS can create or delete a recognition sequence for a restriction endonuclease in one nucleic acid relative to a second nucleic acid. The result of the variation is an alteration in the relative length of restriction enzyme generated DNA fragments in the two nucleic acids.

Other polymorphisms take the form of short tandem repeats (STR) sequences, which are also referred to as variable numbers of tandem repeat (VNTR) sequences. STR sequences typically that include tandem repeats of 2, 3, or 4 nucleotide sequences that are present in a nucleic acid from one individual but absent from a second, related individual at the corresponding genomic location.

Other polymorphisms take the form of single nucleotide variations, termed single nucleotide polymorphisms (SNPs), between individuals. A SNP can, in some instances, be referred to as a "cSNP" to denote that the nucleotide sequence containing the SNP

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

originates as a cDNA.

SNPs can arise in several ways. A single nucleotide polymorphism may arise due to a substitution of one nucleotide for another at the polymorphic site. Substitutions can be transitions or transversions. A transition is the replacement of one purine nucleotide by another purine nucleotide, or one pyrimidine by another pyrimidine. A transversion is the replacement of a purine by a pyrimidine, or the converse.

Single nucleotide polymorphisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele. Thus, the polymorphic site is a site at which one allele bears a gap with respect to a single nucleotide in another allele. Some SNPs occur within, or near genes. One such class includes SNPs falling within regions of genes encoding for a polypeptide product. These SNPs may result in an alteration of the amino acid sequence of the polypeptide product and give rise to the expression of a defective or other variant protein. Such variant products can, in some cases result in a pathological condition, *e.g.*, genetic disease. Examples of genes in which a polymorphism within a coding sequence gives rise to genetic disease include sickle cell anemia and cystic fibrosis. Other SNPs do not result in alteration of the polypeptide product. Of course, SNPs can also occur in noncoding regions of genes.

SNPs tend to occur with great frequency and are spaced uniformly throughout the genome. The frequency and uniformity of SNPs means that there is a greater probability that such a polymorphism will be found in close proximity to a genetic locus of interest.

SUMMARY OF THE INVENTION

The invention is based in part on the discovery of novel single nucleotide polymorphisms (SNPs) in regions of human DNA.

Accordingly, in one aspect, the invention provides an isolated polynucleotide which includes one or more of the SNPs described herein. The polynucleotide can be, *e.g.*, a nucleotide sequence which includes one or more of the polymorphic sequences shown in Table 1 and the Sequence Listing (SEQ ID NOS: 1 - 1468) and which includes a polymorphic sequence, or a fragment of the polymorphic sequence, as long as it

20

25

5

10

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

includes the polymorphic site. The polynucleotide may alternatively contain a nucleotide sequence which includes a sequence complementary to one or more of the sequences (SEQ ID NOS: 1-1468), or a fragment of the complementary nucleotide sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence.

The polynucleotide can be, e.g., DNA or RNA, and can be between about 10 and about 100 nucleotides, e.g., 10-90, 10-75, 10-51, 10-40, or 10-30, nucleotides in length.

In some embodiments, the polymorphic site in the polymorphic sequence includes a nucleotide other than the nucleotide listed in Table 1, column 5 for the polymorphic sequence, *e.g.*, the polymorphic site includes the nucleotide listed in Table 1, column 6 for the polymorphic sequence.

In other embodiments, the complement of the polymorphic site includes a nucleotide other than the complement of the nucleotide listed in Table 1, column 5 for the complement of the polymorphic sequence, *e.g.*, the complement of the nucleotide listed in Table 1, column 6 for the polymorphic sequence.

In some embodiments, the polymorphic sequence is associated with a polypeptide related to one of the protein families disclosed herein. For example, the nucleic acid may be associated with a polypeptide related to an ATPase associated protein, a cadherin, or any of the other proteins identified in Table 1, column 10.

In another aspect, the invention provides an isolated allele-specific oligonucleotide that hybridizes to a first polynucleotide containing a polymorphic site. The first polynucleotide can be, *e.g.*, a nucleotide sequence comprising one or more polymorphic sequences (SEQ ID NOS:1 - 1468), provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for the polymorphic sequence. Alternatively, the first polynucleotide can be a nucleotide sequence that is a fragment of the polymorphic sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence, or a complementary nucleotide sequence which includes a sequence complementary to one or more polymorphic sequences (SEQ ID NOS:1 - 1468), provided that the complementary nucleotide

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

sequence includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5. The first polynucleotide may in addition include a nucleotide sequence that is a fragment of the complementary sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence.

In some embodiments, the oligonucleotide does not hybridize under stringent conditions to a second polynucleotide. The second polynucleotide can be, e.g., (a) a nucleotide sequence comprising one or more polymorphic sequences (SEQ ID NOS:1 - 1468), wherein the polymorphic sequence includes the nucleotide listed in Table 1, column 5 for the polymorphic sequence; (b) a nucleotide sequence that is a fragment of any of the polymorphic sequences; (c) a complementary nucleotide sequence including a sequence complementary to one or more polymorphic sequences (SEQ ID NOS:1 - 1468), wherein the polymorphic sequence includes the complement of the nucleotide listed in Table 1, column 5; and (d) a nucleotide sequence that is a fragment of the complementary sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence.

The oligonucleotide can be, *e.g.*, between about 10 and about 100 bases in length. In some embodiments, the oligonucleotide is between about 10 and 75 bases, 10 and 51 bases, 10 and about 40 bases, or about 15 and 30 bases in length.

The invention also provides a method of detecting a polymorphic site in a nucleic acid. The method includes contacting the nucleic acid with an oligonucleotide that hybridizes to a polymorphic sequence selected from the group consisting of SEQ ID NOS: 1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for the polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5. The method also includes determining whether the nucleic acid and the oligonucleotide hybridize. Hybridization of the oligonucleotide to the nucleic acid sequence indicates the presence of the polymorphic site in the nucleic acid.

20

25

5

10

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

In preferred embodiments, the oligonucleotide does not hybridize to the polymorphic sequence when the polymorphic sequence includes the nucleotide recited in Table 1, column 5 for the polymorphic sequence, or when the complement of the polymorphic sequence includes the complement of the nucleotide recited in Table 1, column 5 for the polymorphic sequence.

The oligonucleotide can be, *e.g.*, between about 10 and about 100 bases in length. In some embodiments, the oligonucleotide is between about 10 and 75 bases, 10 and 51 bases, 10 and about 40 bases, or about 15 and 30 bases in length.

In some embodiments, the polymorphic sequence identified by the oligonucleotide is associated with a polypeptide related to one of the protein families disclosed herein. For example, the nucleic acid may be associated polypeptide related to an ATPase associated protein, cadherin, or any of the other protein families identified in Table 1, column 10.

In another aspect, the method includes determining if a sequence polymorphism is the present in a subject, such as a human. The method includes providing a nucleic acid from the subject and contacting the nucleic acid with an oligonucleotide that hybridizes to a polymorphic sequence selected from the group consisting of SEQ ID NOS: 1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5. Hybridization between the nucleic acid and the oligonucleotide is then determined. Hybridization of the oligonucleotide to the nucleic acid sequence indicates the presence of the polymorphism in said subject.

In a further aspect, the invention provides a method of determining the relatedness of a first and second nucleic acid. The method includes providing a first nucleic acid and a second nucleic acid and contacting the first nucleic acid and the second nucleic acid with an oligonucleotide that hybridizes to a polymorphic sequence selected from the group consisting of SEQ ID NOS: 1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1,

20

25

5

10

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

column 5 for the polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5. The method also includes determining whether the first nucleic acid and the second nucleic acid hybridize to the oligonucleotide, and comparing hybridization of the first and second nucleic acids to the oligonucleotide. Hybridization of first and second nucleic acids to the nucleic acid indicates the first and second subjects are related.

In preferred embodiments, the oligonucleotide does not hybridize to the polymorphic sequence when the polymorphic sequence includes the nucleotide recited in Table 1, column 5 for the polymorphic sequence, or when the complement of the polymorphic sequence includes the complement of the nucleotide recited in Table 1, column 5 for the polymorphic sequence.

The oligonucleotide can be, *e.g.*, between about 10 and about 100 bases in length. In some embodiments, the oligonucleotide is between about 10 and 75 bases, 10 and 51 bases, 10 and about 40 bases, or about 15 and 30 bases in length.

The method can be used in a variety of applications. For example, the first nucleic acid may be isolated from physical evidence gathered at a crime scene, and the second nucleic acid may be obtained from a person suspected of having committed the crime. Matching the two nucleic acids using the method can establish whether the physical evidence originated from the person.

In another example, the first sample may be from a human male suspected of being the father of a child and the second sample may be from the child. Establishing a match using the described method can establish whether the male is the father of the child.

In another aspect, the invention provides an isolated polypeptide comprising a polymorphic site at one or more amino acid residues, and wherein the protein is encoded by a polynucleotide including one of the polymorphic sequences SEQ ID NOS:1-1468, or their complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for the polymorphic sequence, or the

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5.

The polypeptide can be, *e.g.*, related to one of the protein families disclosed herein. For example, polypeptide can be related to an ATPase associated protein, cadherin, or any of the other proteins provided in Table 1, column 10.

In some embodiments, the polypeptide is translated in the same open reading frame as is a wild type protein whose amino acid sequence is identical to the amino acid sequence of the polymorphic protein except at the site of the polymorphism.

In some embodiments, the polypeptide encoded by the polymorphic sequence, or its complement, includes the nucleotide listed in Table 1, column 6 for the polymorphic sequence, or the complement includes the complement of the nucleotide listed in Table 1, column 6.

The invention also provides an antibody that binds specifically to a polypeptide encoded by a polynucleotide comprising a nucleotide sequence encoded by a polynucleotide selected from the group consisting of polymorphic sequences SEQ ID NOS:1-1468, or its complement. The polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for the polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5.

In some embodiments, the antibody binds specifically to a polypeptide encoded by a polymorphic sequence which includes the nucleotide listed in Table 1, column 6 for the polymorphic sequence.

Preferably, the antibody does not bind specifically to a polypeptide encoded by a polymorphic sequence which includes the nucleotide listed in Table 1, column 5 for the polymorphic sequence.

The invention further provides a method of detecting the presence of a polypeptide having one or more amino acid residue polymorphisms in a subject. The

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

method includes providing a protein sample from the subject and contacting the sample with the above-described antibody under conditions that allow for the formation of antibody-antigen complexes. The antibody-antigen complexes are then detected. The presence of the complexes indicates the presence of the polypeptide.

The invention also provides a method of treating a subject suffering from, at risk for, or suspected of, suffering from a pathology ascribed to the presence of a sequence polymorphism in a subject, e.g., a human, non-human primate, cat, dog, rat, mouse, cow, pig, goat, or rabbit. The method includes providing a subject suffering from a pathology associated with aberrant expression of a first nucleic acid comprising a polymorphic sequence selected from the group consisting of SEQ ID NOS:1 - 1468, or its complement, and treating the subject by administering to the subject an effective dose of a therapeutic agent. Aberrant expression can include qualitative alterations in expression of a gene, e.g., expression of a gene encoding a polypeptide having an altered amino acid sequence with respect to its wild-type counterpart. Qualitatively different polypeptides can include, shorter, longer, or altered polypeptides relative to the amino acid sequence of the wild-type polypeptide. Aberrant expression can also include quantitative alterations in expression of a gene. Examples of quantitative alterations in gene expression include lower or higher levels of expression of the gene relative to its wild-type counterpart, or alterations in the temporal or tissue-specific expression pattern of a gene. Finally, aberrant expression may also include a combination of qualitative and quantitative alterations in gene expression.

The therapeutic agent can include, *e.g.*, second nucleic acid comprising the polymorphic sequence, provided that the second nucleic acid comprises the nucleotide present in the wild type allele. In some embodiments, the second nucleic acid sequence comprises a polymorphic sequence which includes nucleotide listed in Table 1, column 5 for the polymorphic sequence.

Alternatively, the therapeutic agent can be a polypeptide encoded by a polynucleotide comprising polymorphic sequence selected from the group consisting of SEQ ID NOS:1 - 1468, or by a polynucleotide comprising a nucleotide sequence that is

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

complementary to any one of polymorphic sequences SEQ ID NOS:1 - 1468, provided that the polymorphic sequence includes the nucleotide listed in Table 1, column 6 for the polymorphic sequence.

The therapeutic agent may further include an antibody as herein described, or an oligonucleotide comprising a polymorphic sequence selected from the group consisting of SEQ ID NOS:1 - 1468, or by a polynucleotide comprising a nucleotide sequence that is complementary to any one of polymorphic sequences SEQ ID NOS:1 - 1468, provided that the polymorphic sequence includes the nucleotide listed in Table 1, column 5 or Table 1, column 6 for the polymorphic sequence.

In another aspect, the invention provides an oligonucleotide array comprising one or more oligonucleotides hybridizing to a first polynucleotide at a polymorphic site encompassed therein. The first polynucleotide can be, *e.g.*, a nucleotide sequence comprising one or more polymorphic sequences (SEQ ID NOS:1 - 1468); a nucleotide sequence that is a fragment of any of the nucleotide sequences, provided that the fragment includes a polymorphic site in the polymorphic sequence; a complementary nucleotide sequence comprising a sequence complementary to one or more polymorphic sequences (SEQ ID NOS:1 - 1468); or a nucleotide sequence that is a fragment of the complementary sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence.

In preferred embodiments, the array comprises 10; 100; 1,000; 10,000; 100,000 or more oligonucleotides.

The invention also provides a kit comprising one or more of the herein-described nucleic acids. The kit can include, *e.g.*, a polynucleotide which includes one or more of the SNPs described herein. The polynucleotide can be, *e.g.*, a nucleotide sequence which includes one or more of the polymorphic sequences shown in Table 1 and the Sequence Listing (SEQ ID NOS: 1 - 1468) and which includes a polymorphic sequence, or a fragment of the polymorphic sequence, as long as it includes the polymorphic site. The polynucleotide may alternatively contain a nucleotide sequence which includes a sequence complementary to one or more of the sequences (SEQ ID NOS:1-1468), or a

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

fragment of the complementary nucleotide sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence. The invention provides an isolated allele-specific oligonucleotide that hybridizes to a first polynucleotide containing a polymorphic site. The first polynucleotide can be, *e.g.*, a nucleotide sequence comprising one or more polymorphic sequences (SEQ ID NOS:1 - 1468), provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for the polymorphic sequence. Alternatively, the first polynucleotide can be a nucleotide sequence that is a fragment of the polymorphic sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence, or a complementary nucleotide sequence which includes a sequence complementary to one or more polymorphic sequences (SEQ ID NOS:1 - 1468), provided that the complementary nucleotide sequence includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5. The first polynucleotide may in addition include a nucleotide sequence that is a fragment of the complementary sequence, provided that the fragment includes a polymorphic site in the polymorphic sequence.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

DETAILED DESCRIPTION OF THE INVENTION

The invention provides human SNPs in sequences which are transcribed, *i.e.*, are cSNPs. As is explained in more detail below, many SNPs have been identified in genes related to polypeptides of known function. For some applications, SNPs associated with various polypeptides can be used together. For example, SNPs can be group according to whether they are derived from a nucleic acid encoding a polypeptide related to a particular protein family or involved in a particular function. Thus, SNPs related to ATPase associated protein may be collected for some applications, as may SNPs associated with cadherin, or ephrin (EPH), or any of the other proteins recited in Table 1, column 10. Similarly, SNPs can be grouped according to the functions played by their gene products. Such functions include, e.g., structural proteins, proteins from which associated with metabolic pathways fatty acid metabolism, glycolysis, intermediary metabolism, calcium metabolism, proteases, and amino acid metabolism.

The SNPs are shown in Table 1 and the Sequence Listing. Both provide a summary of the polymorphic sequences disclosed herein. In the Table, a "SNP" is a polymorphic site embedded in a polymorphic sequence. The polymorphic site is occupied by a single nucleotide, which is the position of nucleotide variation between the wild type and polymorphic allelic sequences. The site is usually preceded by and followed by relatively highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations). Thus, a polymorphic sequence can include one or more of the following sequences: (1) a sequence having the nucleotide denoted in Table 1, column 5 at the polymorphic site in the polymorphic sequence; or (2) a sequence having a nucleotide other than the nucleotide denoted in Table 1, column 5 at the polymorphic site in the polymorphic sequence is a polymorphic sequence having the nucleotide denoted in Table 1, column 6 at the polymorphic site in the polymorphic sequence.

Nucleotide sequences for a referenced-polymorphic pair are presented in Table 1. Each cSNP entry provides information concerning the wild type nucleotide sequence as well as the corresponding sequence that includes the SNP at the polymorphic site. Since

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

the wild type sequence is already known, the Sequence Listing accompanying this application provides only the sequence of the polymorphic allele; its SEQ ID NO: is also cross referenced in the Table 1. A reference to the SEQ ID NO: giving the translated amino acid sequence is also given if appropriate. The Table includes thirteen columns that provide descriptive information for each cSNP, each of which occupies one row in the Table. The column headings, and an explanation for each, are given below.

"SEQ ID" provides the cross-reference to the nucleotide SEQ ID NO:, and, as explained below, an amino acid SEQ ID NO: as well, in the Sequence Listing of the application. Conversely, each sequence entry in the Sequence Listing also includes a cross-reference to the CuraGen sequence ID, under the label "CuraGen Sequence ID". The first SEQ ID NO: given in the first column of each row of the Table is the SEQ ID NO: identifying the nucleic acid sequence for the polymorphism. If a polymorphism carries an entry for the amino acid portion of the row, a second SEQ ID NO: appears in parentheses in the column "Amino acid after" (see below). This second SEQ ID NO: refers to an amino acid sequence giving the polymorphic amino acid sequence that is the translation of the nucleotide polymorphism. If a polymorphism carries no entry for the protein portion of the row, only one SEQ ID NO: is provided.

"CuraGen sequence ID" provides CuraGen Corporation's accession number.

"Base pos. of SNP" gives the numerical position of the nucleotide in the reference, or wild-type, gene at which the cSNP is found. This enumeration of bases is that found in the public database from which the reference gene is taken (see column headed "Name of protein identified following a BLASTX analysis of the CuraGen sequence") as of the filing date of the instant application.

"Polymorphic sequence" provides a 51-base sequence with the polymorphic site at the 26th base in the sequence, as well as 25 bases from the reference sequence on the 5' side and the 3' side of the polymorphic site. The designation at the polymorphic site is enclosed in square brackets, and provides first, the reference nucleotide; second, a "slash (/)"; and third, the polymorphic nucleotide. In certain cases the polymorphism is an

10

15

20

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

insertion or a deletion. In that case, the position which is "unfilled" (i.e., the reference or the polymorphic position) is indicated by the word "gap".

"Base before" provides the nucleotide present in the reference, or wild-type, gene at the position at which the polymorphism is found.

"Base after" provides the altered nucleotide at the position of the polymorphism.

"Amino acid before" provides the amino acid in the reference protein, if the polymorphism occurs in a coding region.

"Amino acid after" provides the amino acid in the polymorphic protein, if the polymorphism occurs in a coding region. This column also includes the SEQ ID NO: in parentheses if the polymorphism occurs in a coding region.

"Type of change" provides information on the nature of the polymorphism.

"SILENT-NONCODING" is used if the polymorphism occurs in a noncoding region of a nucleic acid.

"SILENT-CODING" is used if the polymorphism occurs in a coding region of a nucleic acid of a nucleic acid and results in no change of amino acid in the translated polymorphic protein.

"CONSERVATIVE" is used if the polymorphism occurs in a coding region of a nucleic acid and provides a change in which the altered amino acid falls in the same class as the reference amino acid. The classes are:

Aliphatic: Gly, Ala, Val, Leu, Ile;

Aromatic: Phe, Tyr, Trp;

Sulfur-containing: Cys, Met;

Aliphatic OH: Ser, Thr;

Basic: Lys, Arg, His;

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Acidic: Asp, Glu, Asn, Gln;

Pro falls in none of the other classes; and

End defines a termination codon.

"NONCONSERVATIVE" is used if the polymorphism occurs in a coding region of a nucleic acid and provides a change in which the altered amino acid falls in a different class than the reference amino acid.

"FRAMESHIFT" relates to an insertion or a deletion. If the frameshift occurs in a coding region, the Table provides the translation of the frameshifted codons 3' to the polymorphic site.

"Protein classification of CuraGen gene" provides a generic class into which the protein is classified. During the course of the work leading to the filing of this application, several classes of proteins were identified. Some are described further below.

"Name of protein identified following a BLASTX analysis of the CuraGen sequence" provides the database reference for the protein found to resemble the novel reference-polymorphism cognate pair most closely.

"Similarity (pvalue) following a BLASTX analysis" provides the pvalue, a statistical measure from the BLASTX analysis that the polymorphic sequence is similar to, and therefore an allele of, the reference, or wild-type, sequence. In the present application, a cutoff of pvalue $> 1 \times 10^{-50}$ (entered, for example, as 1.0E-50 in the Table) is used to establish that the reference-polymorphic cognate pairs are novel. A pvalue $< 1 \times 10^{-50}$ defines proteins considered to be already known.

"Map location" provides any information available at the time of filing related to localization of a gene on a chromosome.

The polymorphisms are arranged in the Table in the following order.

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

SEQ ID NOs: 1-722 are SNPs that are silent.

SEQ ID NOs: 723-797 are SNPs that lead to conservative amino acid changes.

SEQ ID NOs: 798-989 are SNPs that lead to nonconservative amino acid changes.

SEQ ID NOs: 990-1095 are SNPs that involve a gap. With respect to the reference or wild-type sequence at the position of the polymorphism, the allelic cSNP introduces an additional nucleotide (an insertion) or deletes a nucleotide (a deletion). An SNP that involves a gap generates a frame shift.

SEQ ID NOs: 1096-1170 are the amino acid sequences centered at the polymorphic amino acid residue for the protein products provided by SNPs that lead to conservative amino acid changes. These amino acid SEQ ID NOs: are derived from the corresponding nucleotide SEQ ID NOs: 723-797. 7 or 8 amino acids on either side of the polymorphic site are shown. The order in which these sequences appear mirrors the order of presentation of the cognate nucleotide sequences, and is set forth in the Table.

SEQ ID NOs: 1171-1362 are the amino acid sequences centered at the polymorphic amino acid residue for the protein products provided by SNPs that lead to nonconservative amino acid changes. These amino acid SEQ ID NOs: are derived from the corresponding nucleotide SEQ ID NOs: 798-989. 7 or 8 amino acids on either side of the polymorphic site are shown. The order in which these sequences appear mirrors the order of presentation of the cognate nucleotide sequences, and is set forth in the Table.

SEQ ID NOs: 1363-1468 are the amino acid sequences centered at the polymorphic amino acid residue for the protein products provided by SNPs that lead to frameshift-induced amino acid changes. These amino acid SEQ ID NOs: are derived from the corresponding nucleotide SEQ ID NOs: 990-1095. 7 or 8 amino acids on either side of the polymorphic site are shown. The order in which these sequences appear mirrors the order of presentation of the cognate nucleotide sequences, and is set forth in the Table.

20

25

5

10

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Provided herein are compositions which include, or are capable of detecting, nucleic acid sequences having these polymorphisms, as well as methods of using nucleic acids.

IDENTIFICATION OF INDIVIDUALS CARRYING SNPs

Individuals carrying polymorphic alleles of the invention may be detected at either the DNA, the RNA, or the protein level using a variety of techniques that are well known in the art. Strategies for identification and detection are described in *e.g.*, EP 730,663, EP 717,113, and PCT US97/02102. The present methods usually employ precharacterized polymorphisms. That is, the genotyping location and nature of polymorphic forms present at a site have already been determined. The availability of this information allows sets of probes to be designed for specific identification of the known polymorphic forms.

Many of the methods described below require amplification of DNA from target samples. This can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H.A. Erlich, Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, CA, 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Patent 4,683,202.

The phrase "recombinant protein" or "recombinantly produced protein" refers to a peptide or protein produced using non-native cells that do not have an endogenous copy of DNA able to express the protein. In particular, as used herein, a recombinantly produced protein relates to the gene product of a polymorphic allele, i.e., a "polymorphic protein" containing an altered amino acid at the site of translation of the nucleotide polymorphism. The cells produce the protein because they have been genetically altered by the introduction of the appropriate nucleic acid sequence. The recombinant protein will not be found in association with proteins and other subcellular components normally associated with the cells producing the protein. The terms "protein" and "polypeptide" are used interchangeably herein.

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

The phrase "substantially purified" or "isolated" when referring to a nucleic acid, peptide or protein, means that the chemical composition is in a milieu containing fewer, or preferably, essentially none, of other cellular components with which it is naturally associated. Thus, the phrase "isolated" or "substantially pure" refers to nucleic acid preparations that lack at least one protein or nucleic acid normally associated with the nucleic acid in a host cell. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as gel electrophoresis or high performance liquid chromatography. Generally, a substantially purified or isolated nucleic acid or protein will comprise more than 80% of all macromolecular species present in the preparation. Preferably, the nucleic acid or protein is purified to represent greater than 90% of all macromolecular species present. More preferably the nucleic acid or protein is purified to greater than 95%, and most preferably the nucleic acid or protein is purified to essential homogeneity, wherein other macromolecular species are not detected by conventional analytical procedures.

The genomic DNA used for the diagnosis may be obtained from any nucleated cells of the body, such as those present in peripheral blood, urine, saliva, buccal samples, surgical specimen, and autopsy specimens. The DNA may be used directly or may be amplified enzymatically in vitro through use of PCR (Saiki et al. Science 239:487-491 (1988)) or other in vitro amplification methods such as the ligase chain reaction (LCR) (Wu and Wallace Genomics 4:560-569 (1989)), strand displacement amplification (SDA) (Walker et al. Proc. Natl. Acad. Sci. U.S.A, 89:392-396 (1992)), self-sustained sequence replication (3SR) (Fahy et al. PCR Methods P&J& 1:25-33 (1992)), prior to mutation analysis.

The method for preparing nucleic acids in a form that is suitable for mutation detection is well known in the art. A "nucleic acid" is a deoxyribonucleotide or ribonucleotide polymer in either single-or double-stranded form, including known analogs of natural nucleotides unless otherwise indicated. The term "nucleic acids", as used herein, refers to either DNA or RNA. "Nucleic acid sequence" or "polynucleotide sequence" refers to a single-stranded sequence of deoxyribonucleotide or ribonucleotide

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

bases read from the 5' end to the 3' end. The direction of 5' to 3' addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA and which are beyond the 5' end of the RNA transcript in the 5' direction are referred to as "upstream sequences"; sequence regions on the DNA strand having the same sequence as the RNA and which are beyond the 3' end of the RNA transcript in the 3' direction are referred to as "downstream sequences". The term includes both self-replicating plasmids, infectious polymers of DNA or RNA and nonfunctional DNA or RNA. The complement of any nucleic acid sequence of the invention is understood to be included in the definition of that sequence. "Nucleic acid probes" may be DNA or RNA fragments.

The detection of polymorphisms in specific DNA sequences, can be accomplished by a variety of methods including, but not limited to, restriction-fragment-lengthpolymorphism detection based on allele-specific restriction-endonuclease cleavage (Kan and Dozy Lancet ii:910-912 (1978)), hybridization with allele-specific oligonucleotide probes (Wallace et al. Nucl. Acids Res. 6:3543-3557 (1978)), including immobilized oligonucleotides (Saiki et al. Proc. Natl. Acad. SCI. USA, 86:6230-6234 (1969)) or oligonucleotide arrays (Maskos and Southern Nucl. Acids Res 21:2269-2270 (1993)), allele-specific PCR (Newton et al. Nucl Acids Res 17:2503-2516 (1989)), mismatchrepair detection (MRD) (Faham and Cox Genome Res 5:474-482 (1995)), binding of MutS protein (Wagner et al. Nucl Acids Res 23:3944-3948 (1995), denaturing-gradient gel electrophoresis (DGGE) (Fisher and Lerman et al. Proc. Natl. Acad. Sci. U.S.A. 80:1579-1583 (1983)), single-strand-conformation-polymorphism detection (Orita et al. Genomics 5:874-879 (1983)), RNAase cleavage at mismatched base-pairs (Myers et al. Science 230:1242 (1985)), chemical (Cotton et al. Proc. Natl. w Sci. U.S.A, 8Z4397-4401 (1988)) or enzymatic (Youil et al. Proc. Natl. Acad. Sci. <u>U.S.A.</u> 92:87-91 (1995)) cleavage of heteroduplex DNA, methods based on allele specific primer extension (Syvanen et al. Genomics 8:684-692 (1990)), genetic bit analysis (GBA) (Nikiforov et al. &&I Acids 22:4167-4175 (1994)), the oligonucleotide-ligation assay (OLA) (Landegren et al. Science 241:1077 (1988)), the allele-specific ligation chain reaction (LCR) (Barrany Proc. Natl. Acad. Sci. U.S.A. 88:189-193 (1991)), gap-LCR (Abravaya et al. Nucl Acids Res 23:675-682 (1995)), radioactive and/or fluorescent

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

DNA sequencing using standard procedures well known in the art, and peptide nucleic acid (PNA) assays (Orum et al., Nucl. Acids Res, 21:5332-5356 (1993); Thiede et al., Nucl. Acids Res. 24:983-984 (1996)).

"Specific hybridization" or "selective hybridization" refers to the binding, or duplexing, of a nucleic acid molecule only to a second particular nucleotide sequence to which the nucleic acid is complementary, under suitably stringent conditions when that sequence is present in a complex mixture (e.g., total cellular DNA or RNA). "Stringent conditions" are conditions under which a probe will hybridize to its target subsequence, but to no other sequences. Stringent conditions are sequence-dependent and are different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter ones. Generally, stringent conditions are selected such that the temperature is about 5°C lower than the thermal melting point (Tm) for the specific sequence to which hybridization is intended to occur at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the target sequence hybridizes to the complementary probe at equilibrium. Typically, stringent conditions include a salt concentration of at least about 0.01 to about 1.0 M Na ion concentration (or other salts), at pH 7.0 to 8.3. The temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. For example, conditions of 5X SSPE (750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30°C are suitable for allele-specific probe hybridization.

"Complementary" or "target" nucleic acid sequences refer to those nucleic acid sequences which selectively hybridize to a nucleic acid probe. Proper annealing conditions depend, for example, upon a probe's length, base composition, and the number of mismatches and their position on the probe, and must often be determined empirically. For discussions of nucleic acid probe design and annealing conditions, see, for example, Sambrook et al., or Current Protocols in Molecular Biology, F. Ausubel et al., ed., Greene Publishing and Wiley-Interscience, New York (1987).

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

A perfectly matched probe has a sequence perfectly complementary to a particular target sequence. The test probe is typically perfectly complementary to a portion of the target sequence. A "polymorphic" marker or site is the locus at which a sequence difference occurs with respect to a reference sequence. Polymorphic markers include restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu. The reference allelic form may be, for example, the most abundant form in a population, or the first allelic form to be identified, and other allelic forms are designated as alternative, variant or polymorphic alleles. The allelic form occurring most frequently in a selected population is sometimes referred to as the "wild type" form, and herein may also be referred to as the "reference" form. Diploid organisms may be homozygous or heterozygous for allelic forms. A diallelic polymorphism has two distinguishable forms (i.e., base sequences), and a triallelic polymorphism has three such forms.

As used herein an "oligonucleotide" is a single-stranded nucleic acid ranging in length from 2 to about 60 bases. Oligonucleotides are often synthetic but can also be produced from naturally occurring polynucleotides. A probe is an oligonucleotide capable of binding to a target nucleic acid of a complementary sequence through one or more types of chemical bonds, usually through complementary base pairing via hydrogen bond formation. Oligonucleotides probes are often between 5 and 60 bases, and, in specific embodiments, may be between 10-40, or 15-30 bases long. An oligonucleotide probe may include natural (i.e. A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in an oligonucleotide probe may be joined by a linkage other than a phosphodiester bond, such as a phosphoramidite linkage or a phosphorothioate linkage, or they may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than by phosphodiester bonds, so long as it does not interfere with hybridization.

As used herein, the term "primer" refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and a

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

polymerization agent, such as DNA polymerase, RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not be perfectly complementary to the exact sequence of the template, but should be sufficiently complementary to hybridize with it. The term "primer site" refers to the sequence of the target DNA to which a primer hybridizes. The term "primer pair" refers to a set of primers including a 5' (upstream) primer that hybridizes with the 5' end of the DNA sequence to be amplified and a 3' (downstream) primer that hybridizes with the complement of the 3' end of the sequence to be amplified.

DNA fragments can be prepared, for example, by digesting plasmid DNA, or by use of PCR. Oligonucleotides for use as primers or probes are chemically synthesized by methods known in the field of the chemical synthesis of polynucleotides, including by way of non-limiting example the phosphoramidite method described by Beaucage and Carruthers, Tetrahedron Lett 22:1859-1862 (1981) and the triester method provided by Matteucci, et al., J. Am. Chem. Soc., 103:3185 (1981) both incorporated herein by reference. These syntheses may employ an automated synthesizer, as described in Needham-VanDevanter, D.R., et al., Nucleic Acids Res. 12:61596168 (1984). Purification of oligonucleotides may be carried out by either native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson, J.D. and Regnier, F.E., J. Chrom, 255:137-149 (1983). A double stranded fragment may then be obtained, if desired, by annealing appropriate complementary single strands together under suitable conditions or by synthesizing the complementary strand using a DNA polymerase with an appropriate primer sequence. Where a specific sequence for a nucleic acid probe is given, it is understood that the complementary strand is also identified and included. The complementary strand will work equally well in situations where the target is a double-stranded nucleic acid.

The sequence of the synthetic oligonucleotide or of any nucleic acid fragment can be can be obtained using either the dideoxy chain termination method or the Maxam-

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Gilbert method (see Sambrook et al. Molecular Cloning - a Laboratory Manual (2nd Ed.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1989), which is incorporated herein by reference. This manual is hereinafter referred to as "Sambrook et al."; Zyskind et al., (1988)). Recombinant DNA Laboratory Manual, (Acad. Press, New York). Oligonucleotides useful in diagnostic assays are typically at least 8 consecutive nucleotides in length, and may range upwards of 18 nucleotides in length to greater than 100 or more consecutive nucleotides.

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the SNP-containing nucleotide sequences of the invention, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, about 25, about 50, or about 60 nucleotides or an entire SNP coding strand, or to only a portion thereof.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a polymorphic nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. For example, the antisense nucleic acid molecule can generally be complementary to the entire coding region of an mRNA, but more preferably as

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

embodied herein, it is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of the mRNA. An antisense oligonucleotide can range in length between about 5 and about 60 nucleotides, preferably between about 10 and about 45 nucleotides, more preferably between about 15 and 40 nucleotides, and still more preferably between about 15 and 30 in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following section).

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polymorphic protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementary to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual -u nits, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: "reference sequence", "comparison window", "sequence identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing, or may comprise a

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

complete cDNA or gene sequence. Optimal alignment of sequences for aligning a comparison window may, for example, be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math., 2482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. U.S.A. 852444 (1988), or by computerized implementations of these algorithms (for example, GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, WI).

Techniques for nucleic acid manipulation of the nucleic acid sequences harboring the cSNP's of the invention, such as subcloning nucleic acid sequences encoding polypeptides into expression vectors, labeling probes, DNA hybridization, and the like, are described generally in Sambrook et al., The phrase "nucleic acid sequence encoding" refers to a nucleic acid which directs the expression of a specific protein, peptide or amino acid sequence. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein, peptide or amino acid sequence. The nucleic acid sequences include both the full length nucleic acid sequences disclosed herein as well as non-full length sequences derived from the full length protein. It being further understood that the sequence includes the degenerate codons of the native sequence or sequences which may be introduced to provide codon preference in a specific host cell. Consequently, the principles of probe selection and array design can readily be extended to analyze more complex polymorphisms (see EP 730,663). For example, to characterize a triallelic SNP polymorphism, three groups of probes can be designed tiled on the three polymorphic forms as described above. As a further example, to analyze a diallelic polymorphism involving a deletion of a nucleotide, one can tile a first group of probes based on the undeleted polymorphic form as the reference sequence and a second group of probes based on the deleted form as the reference sequence.

For assay of genomic DNA, virtually any biological convenient tissue sample can be used. Suitable samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair can be used. Genomic DNA is typically amplified before

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

analysis. Amplification is usually effected by PCR using primers flanking a suitable fragment e.g., of 50-500 nucleotides containing the locus of the polymorphism to be analyzed. Target is usually labeled in the course of amplification. The amplification product can be RNA or DNA, single stranded or double stranded. If double stranded, the amplification product is typically denatured before application to an array. If genomic DNA is analyzed without amplification, it may be desirable to remove RNA from the sample before applying it to the array. Such can be accomplished by digestion with DNase-free RNase.

DETECTION OF POLYMORPHISMS IN A NUCLEIC ACID SAMPLE

The SNPs disclosed herein can be used to determine which forms of a characterized polymorphism are present in individuals under analysis.

The design and use of allele-specific probes for analyzing polymorphisms is described by e.g., Saiki et al., Nature 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a segment of target DNA from one individual but do not hybridize to the corresponding segment from another individual due to the presence of different polymorphic forms in the respective segments from the two individuals. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles. Some probes are designed to hybridize to a segment of target DNA such that the polymorphic site aligns with a central position (e.g., in a 15-mer at the 7 position; in a 16-mer, at either the 7, 8 or 9 position) of the probe. This design of probe achieves good discrimination in hybridization between different allelic forms.

Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymorphisms within the same target sequence.

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

The polymorphisms can also be identified by hybridization to nucleic acid arrays, some examples of which are described in published PCT application WO 95/11995. WO 95/11995 also describes subarrays that are optimized for detection of a variant form of a precharacterized polymorphism. Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence. The second group of probes is designed by the same principles, except that the probes exhibit complementarity to the second reference sequence. The inclusion of a second group (or further groups) can be particularly useful for analyzing short subsequences of the primary reference sequence in which multiple mutations are expected to occur within a short distance commensurate with the length of the probes (e.g., two or more mutations within 9 to 21 bases).

An allele-specific primer hybridizes to a site on a target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acid Res. 17 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal site. Amplification proceeds from the two-primers, resulting in a detectable product which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).

Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution. Erlich, ed., PCR Technology, Principles and Applications for DNA Amplification, (W.H. Freeman and Co New York, 1992, Chapter 7).

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Alleles of target sequences can be differentiated using single-strand conformation polymorphism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita et al., Proc. Nat. Acad. Sci. 86, 2766-2770 (1989). Amplified PCR products can be generated and heated or otherwise denatured, to form single stranded amplification products. Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence. The different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence differences between alleles of target sequences.

The genotype of an individual with respect to a pathology suspected of being caused by a genetic polymorphism may be assessed by association analysis. Phenotypic traits suitable for association analysis include diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulinemia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von Willebrand's disease, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, osteogenesis imperfecta, and acute intermittent porphyria).

Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, system, diseases of the nervous and infection by pathogenic microorganisms. Some examples of autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non- independent), systemic lupus erythematosus and Graves disease. Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, oral cavity, ovary, pancreas, prostate, skin, stomach, leukemia, liver, lung, and uterus. Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic treatments.

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Determination of which polymorphic forms occupy a set of polymorphic sites in an individual identifies a set of polymorphic forms that distinguishes the individual. See generally National Research Council, *The Evaluation of Forensic DNA Evidence* (Eds. Pollard et al., National Academy Press, DC, 1996). Since the polymorphic sites are within a 50,000 bp region in the human genome, the probability of recombination between these polymorphic sites is low. That low probability means the haplotype (the set of all 10 polymorphic sites) set forth in this application should be inherited without change for at least several generations. The more sites that are analyzed the lower the probability that the set of polymorphic forms in one individual is the same as that in an unrelated individual. Preferably, if multiple sites are analyzed, the sites are unlinked. Thus, polymorphisms of the invention are often used in conjunction with polymorphisms in distal genes. Preferred polymorphisms for use in forensics are diallelic because the population frequencies of two polymorphic forms can usually be determined with greater accuracy than those of multiple polymorphic forms at multi-allelic loci.

The capacity to identify a distinguishing or unique set of forensic markers in an individual is useful for forensic analysis. For example, one can determine whether a blood sample from a suspect matches a blood or other tissue sample from a crime scene by determining whether the set of polymorphic forms occupying selected polymorphic sites is the same in the suspect and the sample. If the set of polymorphic markers does not match between a suspect and a sample, it can be concluded (barring experimental error) that the suspect was not the source of the sample. If the set of markers does match, one can conclude that the DNA from the suspect is consistent with that found at the crime scene. If frequencies of the polymorphic forms at the loci tested have been determined (e.g., by analysis of a suitable population of individuals), one can perform a statistical analysis to determine the probability that a match of suspect and crime scene sample would occur by chance.

p(ID) is the probability that two random individuals have the same polymorphic or allelic form at a given polymorphic site. In diallelic loci, four genotypes are possible: AA, AB, BA, and BB. If alleles A and B occur in a haploid genome of the organism with frequencies x and y, the probability of each genotype in a diploid organism are (see WO

10

15

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

95/12607):

Homozygote:
$$p(AA)=x^2$$

Homozygote:
$$p(BB)=y^2=(1-x)^2$$

Single Heterozygote:
$$p(AB)=p(BA)=xy=x(1-x)$$

Both Heterozygotes:
$$p(AB+BA)=2xy=2x(1-x)$$

The probability of identity at one locus (i.e, the probability that two individuals, picked at random from a population will have identical polymorphic forms at a given locus) is given by the equation:

$$p(ID)=(x^2)^{2+}(2xy)^{2+}(y^2)^2$$
.

These calculations can be extended for any number of polymorphic forms at a given locus. For example, the probability of identity p(ID) for a 3-allele system where the alleles have the frequencies in the population of x, y and z, respectively, is equal to the sum of the squares of the genotype frequencies:

$$p(ID)=x^{4+}(2xy)^{2+}(2yz)^{2+}(2xz)^{2+}z^{4+}y^{4}$$

In a locus of n alleles, the appropriate binomial expansion is used to calculate p(ID) and p(exc).

The cumulative probability of identity (cum p(ID)) for each of multiple unlinked loci is determined by multiplying the probabilities provided by each locus:

$$cum p(ID)=p(ID1)p(ID2)p(ID3) \dots p(IDn)$$

The cumulative probability of non-identity for n loci (i.e. the probability that two random individuals will be different at 1 or more loci) is given by the equation:

$$cum\ p(nonID)=1-cum\ p(ID).$$

10

15

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

If several polymorphic loci are tested, the cumulative probability of non-identity for random individuals becomes very high (e.g., one billion to one). Such probabilities can be taken into account together with other evidence in determining the guilt or innocence of the suspect.

The object of paternity testing is usually to determine whether a male is the father of a child. In most cases, the mother of the child is known and thus, the mother's contribution to the child's genotype can be traced. Paternity testing investigates whether the part of the child's genotype not attributable to the mother is consistent with that of the putative father. Paternity testing can be performed by analyzing sets of polymorphisms in the putative father and the child.

If the set of polymorphisms in the child attributable to the father does not match the putative father, it can be concluded, barring experimental error, that the putative father is not the real father. If the set of polymorphisms in the child attributable to the father does match the set of polymorphisms of the putative father, a statistical calculation can be performed to determine the probability of coincidental match.

The probability of parentage exclusion (representing the probability that a random male will have a polymorphic form at a given polymorphic site that makes him incompatible as the father) is given by the equation (see WO 95/12607):

$$p(exc)=xy(1-xy)$$

where x and y are the population frequencies of alleles A and B of a diallelic polymorphic site. (At a triallelic site p(exc)=xy(1-xy)+ yz(1-yz)+ xz(1-xz)+ 3xyz(1-xyz))), where x, y and z and the respective population frequencies of alleles A, B and C). The probability of non-exclusion is:

$$p(non-exc)=1-p(exc)$$

The cumulative probability of non-exclusion (representing the value obtained when n loci are used) is thus:

$$cum\ p(non-exc)=p(non-exc1)p(non-exc2)p(non-exc3)\dots p(non-excn)$$

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

The cumulative probability of exclusion for n loci (representing the probability that a random male will be excluded) is:

 $cum\ p(exc)=1-cum\ p(non-exc).$

If several polymorphic loci are included in the analysis, the cumulative probability of exclusion of a random male is very high. This probability can be taken into account in assessing the liability of a putative father whose polymorphic marker set matches the child's polymorphic marker set attributable to his/her father.

The polymorphisms of the invention may contribute to the phenotype of an organism in different ways. Some polymorphisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. For example, a heterozygous sickle cell mutation confers resistance to malaria, but a homozygous sickle cell mutation is usually lethal. Other polymorphisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymorphism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymorphisms in different genes. Further, some polymorphisms predispose an individual to a distinct mutation that is causally related to a certain phenotype.

Phenotypic traits include diseases that have known but hitherto unmapped genetic components. Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, diseases of the nervous system, and infection by pathogenic microorganisms. Some examples of autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non-independent), systemic lupus erythematosus and Graves disease. Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, leukemia, liver, lung, oral cavity, ovary, pancreas, prostate, skin, stomach and uterus. Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

treatments.

5

10

15

20

25

30

Correlation is performed for a population of individuals who have been tested for the presence or absence of a phenotypic trait of interest and for polymorphic marker sets. To perform such analysis, the presence or absence of a set of polymorphisms (i.e. a polymorphic set) is determined for a set of the individuals, some of whom exhibit a particular trait, and some of whom exhibit lack of the trait. The alleles of each polymorphism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest. Correlation can be performed by standard statistical methods and statistically significant correlations between polymorphic form(s) and phenotypic characteristics are noted. For example, it might be found that the presence of allele A1 at polymorphism A correlates with heart disease. As a further example, it might be found that the combined presence of allele A1 at polymorphism A and allele B1 at polymorphism B correlates with increased milk production of a farm animal.

Such correlations can be exploited in several ways. In the case of a strong correlation between a set of one or more polymorphic forms and a disease for which treatment is available, detection of the polymorphic form set in a human or animal patient may justify immediate administration of treatment, or at least the institution of regular monitoring of the patient. Detection of a polymorphic form correlated with serious disease in a couple contemplating a family may also be valuable to the couple in their reproductive decisions. For example, the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymorphism from her husband to her offspring. In the case of a weaker, but still statistically significant correlation between a polymorphic set and human disease, immediate therapeutic intervention or monitoring may not be justified. Nevertheless, the patient can be motivated to begin simple life-style changes (e.g., diet, exercise) that can be accomplished at little cost to the patient but confer potential benefits in reducing the risk of conditions to which the patient may have increased susceptibility by virtue of variant alleles. Identification of a polymorphic set in a patient correlated with enhanced receptiveness to one of several treatment regimes for a disease indicates that this

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

treatment regime should be followed.

For animals and plants, correlations between characteristics and phenotype are useful for breeding for desired characteristics. For example, Beitz et al., U.S. Pat. No. 5,292,639 discuss use of bovine mitochondrial polymorphisms in a breeding program to improve milk production in cows. To evaluate the effect of mtDNA D-loop sequence polymorphism on milk production, each cow was assigned a value of 1 if variant or 0 if wild type with respect to a prototypical mitochondrial DNA sequence at each of 17 locations considered.

The previous section concerns identifying correlations between phenotypic traits and polymorphisms that directly or indirectly contribute to those traits. The present section describes identification of a physical linkage between a genetic locus associated with a trait of interest and polymorphic markers that are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it. Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al., *Proc. Natl. Acad. Sci.* (USA) 83, 7353-7357 (1986); Lander et al., *Proc. Natl. Acad. Sci.* (USA) 84, 2363-2367 (1987); Donis-Keller et al., *Cell* 51, 319-337 (1987); Lander et al., *Genetics* 121, 185-199 (1989)). Genes localized by linkage can be cloned by a process known as directional cloning. See Wainwright, *Med. J. Australia* 159, 170-174 (1993); Collins, *Nature Genetics* 1, 3-6 (1992) (each of which is incorporated by reference in its entirety for all purposes).

Linkage studies are typically performed on members of a family. Available members of the family are characterized for the presence or absence of a phenotypic trait and for a set of polymorphic markers. The distribution of polymorphic markers in an informative meiosis is then analyzed to determine which polymorphic markers cosegregate with a phenotypic trait. See, e.g., Kerem et al., *Science* 245, 1073-1080 (1989); Monaco et al., *Nature* 316, 842 (1985); Yamoka et al., *Neurology* 40, 222-226 (1990); Rossiter et al., *FASEB Journal* 5, 21-27 (1991).

Linkage is analyzed by calculation of LOD (log of the odds) values. A lod value

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

is the relative likelihood of obtaining observed segregation data for a marker and a genetic locus when the two are located at a recombination fraction RF, versus the situation in which the two are not linked, and thus segregating independently (Thompson & Thompson, Genetics in Medicine (5th ed, W.B. Saunders Company, Philadelphia, 1991); Strachan, "Mapping the human genome" in The Human Genome (BIOS Scientific Publishers Ltd, Oxford), Chapter 4). A series of likelihood ratios are calculated at various recombination fractions (RF), ranging from RF=0.0 (coincident loci) to RF=0.50 (unlinked). Thus, the likelihood at a given value of RF is: probability of data if loci linked at RF to probability of data if loci unlinked. The computed likelihood is usually expressed as the log₁₀ of this ratio (i.e., a lod score). For example, a lod score of 3 indicates 1000:1 odds against an apparent observed linkage being a coincidence. The use of logarithms allows data collected from different families to be combined by simple addition. Computer programs are available for the calculation of lod scores for differing values of RF (e.g., LIPED, MLINK (Lathrop, Proc. Nat. Acad. Sci. (USA) 81, 3443-3446 (1984)). For any particular lod score, a recombination fraction may be determined from mathematical tables. See Smith et al., Mathematical tables for research workers in human genetics (Churchill, London, 1961); Smith, Ann. Hum. Genet. 32, 127-150 (1968). The value of RF at which the lod score is the highest is considered to be the best estimate of the recombination fraction.

Positive lod score values suggest that the two loci are linked, whereas negative values suggest that linkage is less likely (at that value of *RF*) than the possibility that the two loci are unlinked. By convention, a combined lod score of + 3 or greater (equivalent to greater than 1000:1 odds in favor of linkage) is considered definitive evidence that two loci are linked. Similarly, by convention, a negative lod score of -2 or less is taken as definitive evidence against linkage of the two loci being compared. Negative linkage data are useful in excluding a chromosome or a segment thereof from consideration. The search focuses on the remaining non-excluded chromosomal locations.

The invention further provides transgenic nonhuman animals capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated. Expression of an exogenous variant gene is usually achieved

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

by operably linking the gene to a promoter and optionally an enhancer, and microinjecting the construct into a zygote. See Hogan et al., "Manipulating the Mouse Embryo, A Laboratory Manual," Cold Spring Harbor Laboratory. (1989). Inactivation of endogenous variant genes can be achieved by forming a transgene in which a cloned variant gene is inactivated by insertion of a positive selection marker. See Capecchi, Science 244, 1288-1292 The transgene is then introduced into an embryonic stem cell, where it undergoes homologous recombination with an endogenous variant gene. Mice and other rodents are preferred animals. Such animals provide useful drug screening systems.

The invention further provides methods for assessing the pharmacogenomic susceptibility of a subject harboring a single nucleotide polymorphism to a particular pharmaceutical compound, or to a class of such compounds. Genetic polymorphism in drug-metabolizing enzymes, drug transporters, receptors for pharmaceutical agents, and other drug targets have been correlated with individual differences based on distinction in the efficacy and toxicity of the pharmaceutical agent administered to a subject. Pharmocogenomic characterization of a subjects susceptibility to a drug enhances the ability to tailor a dosing regimen to the particular genetic constitution of the subject, thereby enhancing and optimizing the therapeutic effectiveness of the therapy.

In cases in which a cSNP leads to a polymorphic protein that is ascribed to be the cause of a pathological condition, method of treating such a condition includes administering to a subject experiencing the pathology the wild type cognate of the polymorphic protein. Once administered in an effective dosing regimen, the wild type cognate provides complementation or remediation of the defect due to the polymorphic protein. The subject's condition is ameliorated by this protein therapy.

A subject suspected of suffering from a pathology ascribable to a polymorphic protein that arises from a cSNP is to be diagnosed using any of a variety of diagnostic methods capable of identifying the presence of the cSNP in the nucleic acid, or of the cognate polymorphic protein, in a suitable clinical sample taken from the subject. Once the presence of the cSNP has been ascertained, and the pathology is correctable by

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

administering a normal or wild-type gene, the subject is treated with a pharmaceutical composition that includes a nucleic acid that harbors the correcting wild-type gene, or a fragment containing a correcting sequence of the wild-type gene. Non-limiting examples of ways in which such a nucleic acid may be administered include incorporating the wild-type gene in a viral vector, such as an adenovirus or adeno associated virus, and administration of a naked DNA in a pharmaceutical composition that promotes intracellular uptake of the administered nucleic acid. Once the nucleic acid that includes the gene coding for the wild-type allele of the polymorphism is incorporated within a cell of the subject, it will initiate *de novo* biosynthesis of the wild-type gene product. If the nucleic acid is further incorporated into the genome of the subject, the treatment will have long-term effects, providing *de novo* synthesis of the wild-type protein for a prolonged duration. The synthesis of the wild-type protein in the cells of the subject will contribute to a therapeutic enhancement of the clinical condition of the subject.

A subject suffering from a pathology ascribed to a SNP may be treated so as to correct the genetic defect. (See Kren et al., Proc. Natl. Acad. Sci. USA 96:10349-10354 (1999)). Such a subject is identified by any method that can detect the polymorphism in a sample drawn from the subject. Such a genetic defect may be permanently corrected by administering to such a subject a nucleic acid fragment incorporating a repair sequence that supplies the wild-type nucleotide at the position of the SNP. This site-specific repair sequence encompasses an RNA/DNA oligonucleotide which operates to promote endogenous repair of a subject's genomic DNA. Upon administration in an appropriate vehicle, such as a complex with polyethylenimine or encapsulated in anionic liposomes, a genetic defect leading to an inborn pathology may be overcome, as the chimeric oligonucleotides induces incorporation of the wild-type sequence into the subject's genome. Upon incorporation, the wild-type gene product is expressed, and the replacement is propagated, thereby engendering a permanent repair.

The invention further provides kits comprising at least one allele-specific oligonucleotide as described above. Often, the kits contain one or more pairs of allele-specific oligonucleotides hybridizing to different forms of a polymorphism. In some kits, the allele-specific oligonucleotides are provided immobilized to a substrate. For

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

example, the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100, 1000 or all of the polymorphisms shown in the Table. Optional additional components of the kit include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate buffers for reverse transcription, PCR, or hybridization reactions. Usually, the kit also contains instructions for carrying out the hybridizing methods.

Several aspects of the present invention rely on having available the polymorphic proteins encoded by the nucleic acids comprising a SNP of the inventions. There are various methods of isolating these nucleic acid sequences. For example, DNA is isolated from a genomic or cDNA library using labeled oligonucleotide probes having sequences complementary to the sequences disclosed herein.

Such probes can be used directly in hybridization assays. Alternatively probes can be designed for use in amplification techniques such as PCR.

To prepare a cDNA library, mRNA is isolated from tissue such as heart or pancreas, preferably a tissue wherein expression of the gene or gene family is likely to occur. cDNA is prepared from the mRNA and ligated into a recombinant vector. The vector is transfected into a recombinant host for propagation, screening and cloning. Methods for making and screening cDNA libraries are well known, See Gubler, U. and Hoffman, B.J. Gene 25:263-269 (1983) and Sambrook et al.

For a genomic library, for example, the DNA is extracted from tissue and either mechanically sheared or enzymatically digested to yield fragments of about 12-20 kb. The fragments are then separated by gradient centrifugation from undesired sizes and are constructed in bacteriophage lambda vectors. These vectors and phage are packaged *in vitro*, as described in Sambrook, et al. Recombinant phage are analyzed by plaque hybridization as described in Benton and Davis, Science 196:180-182 (1977). Colony hybridization is carried out as generally described in M. Grunstein et al. Proc. Natl. Acad. Sci. USA. 72:3961-3965 (1975). DNA of interest is identified in either cDNA or

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

genomic libraries by its ability to hybridize with nucleic acid probes, for example on Southern blots, and these DNA regions are isolated by standard methods familiar to those of skill in the art. See Sambrook, et al.

In PCR techniques, oligonucleotide primers complementary to the two 3' borders of the DNA region to be amplified are synthesized. The polymerase chain reaction is then carried out using the two primers. See PCR Protocols: a Guide to Methods and Applications (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990). Primers can be selected to amplify the entire regions encoding a full-length sequence of interest or to amplify smaller DNA segments as desired. PCR can be used in a variety of protocols to isolate cDNAs encoding a sequence of interest. In these protocols, appropriate primers and probes for amplifying DNA encoding a sequence of interest are generated from analysis of the DNA sequences listed herein. Once such regions are PCR-amplified, they can be sequenced and oligonucleotide probes can be prepared from the sequence.

Once DNA encoding a sequence comprising a cSNP is isolated and cloned, one can express the encoded polymorphic proteins in a variety of recombinantly engineered cells. It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression of DNA encoding a sequence of interest. No attempt to describe in detail the various methods known for the expression of proteins in prokaryotes or eukaryotes is made here.

In brief summary, the expression of natural or synthetic nucleic acids encoding a sequence of interest will typically be achieved by operably linking the DNA or cDNA to a promoter (which is either constitutive or inducible), followed by incorporation into an expression vector. The vectors can be suitable for replication and integration in either prokaryotes or eukaryotes. Typical expression vectors contain initiation sequences, transcription and translation terminators, and promoters useful for regulation of the expression of a polynucleotide sequence of interest. To obtain high level expression of a cloned gene, it is desirable to construct expression plasmids which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

translational initiation, and a transcription/translation terminator. The expression vectors may also comprise generic expression cassettes containing at least one independent terminator sequence, sequences permitting replication of the plasmid in both eukaryotes and prokaryotes, i.e., shuttle vectors, and selection markers for both prokaryotic and eukaryotic systems. See Sambrook et al.

A variety of prokaryotic expression systems may be used to express the polymorphic proteins of the invention. Examples include *E. coli*, Bacillus, Streptomyces, and the like.

It is preferred to construct expression plasmids which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator. Examples of regulatory regions suitable for this purpose in *E. coli* are the promoter and operator region of the *E. coli* tryptophan biosynthetic pathway as described by Yanofsky, C., J. Bacterial. 158:1018-1024 (1984) and the leftward promoter of phage lambda as described by Λ, I. and Hagen, D., Ann. Rev. Genet. 14:399-445 (1980). The inclusion of selection markers in DNA vectors transformed in *E. coli* is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol. See Sambrook et al. for details concerning selection markers for use in *E. coli*.

To enhance proper folding of the expressed recombinant protein, during purification from *E. coli*, the expressed protein may first be denatured and then renatured. This can be accomplished by solubilizing the bacterially produced proteins in a chaotropic agent such as guanidine HCI and reducing all the cysteine residues with a reducing agent such as beta-mercaptoethanol. The protein is then renatured, either by slow dialysis or by gel filtration. See U.S. Patent No. 4,511,503. Detection of the expressed antigen is achieved by methods known in the art as radioimmunoassay, or Western blotting techniques or immunoprecipitation. Purification from *E. coli* can be achieved following procedures such as those described in U.S. Patent No. 4,511,503.

Any of a variety of eukaryotic expression systems such as yeast, insect cell lines, bird, fish, and mammalian cells, may also be used to express a polymorphic protein of the

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

invention. As explained briefly below, a nucleotide sequence harboring a cSNP may be expressed in these eukaryotic systems. Synthesis of heterologous proteins in yeast is well known. Methods in Yeast Genetics, Sherman, F., et al., Cold Spring Harbor Laboratory, (1982) is a well recognized work describing the various methods available to produce the protein in yeast. Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphogtycerate kinase or other glycolytic enzymes, and an origin of replication, termination sequences and the like as desired. For instance, suitable vectors are described in the literature (Botstein, et al., Gene 8:17-24 (1979); Broach, et al., Gene 8:121-133 (1979)).

Two procedures are used in transforming yeast cells. In one case, yeast cells are first converted into protoplasts using zymolyase, lyticase or glusulase, followed by addition of DNA and polyethylene glycol (PEG). The PEG-treated protoplasts are then regenerated in a 3% agar medium under selective conditions. Details of this procedure are given in the papers by J.D. Beggs, Nature (London) 275:104-109 (1978); and Hinnen, A., et al., Proc. Natl. Acad. Sci. USA, 75:1929-1933 (1978). The second procedure does not involve removal of the cell wall. Instead the cells are treated with lithium chloride or acetate and PEG and put on selective plates (Ito, H., et al., J. Bact, 153163-168 (1983)) cells and applying standard protein isolation techniques to the lysates:.

The purification process can be monitored by using Western blot techniques or radioimmunoassay or other standard techniques. The sequences encoding the proteins of the invention can also be ligated to various immunoassay expression vectors for use in transforming cell cultures of, for instance, mammalian, insect, bird or fish origin.

Illustrative of cell cultures useful for the production of the polypeptides are mammalian cells. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used. A number of suitable host cell lines capable of expressing intact proteins have been developed in the art, and include the HEK293, BHK21, and CHO cell lines, and various human cells such as COS cell lines, HeLa cells, myeloma cell lines, Jurkat cells, etc. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g.,

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

the CMV promoter, a HSV *tk* promoter or *pgk* (phosphoglycerate kinase) promoter), an enhancer (Queen et al. <u>Immunol. Rev.</u> 89:49 (1986)) and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site), and transcriptional terminator sequences.

Other animal cells are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7th edition, (1992)). Appropriate vectors for expressing the proteins of the invention in insect cells are usually derived from baculovirus. Insect cell lines include mosquito larvae, silkworm, armyworm, moth and Drosophila cell lines such as a Schneider cell line (See Schneider J. Embryol. Exp. Morphol., 27:353-365 (1987). As indicated above, the vector, e.g., a plasmid, which is used to transform the host cell, preferably contains DNA sequences to initiate transcription and sequences to control the translation of the protein. These sequences are referred to as expression control sequences. As with yeast, when higher animal host cells are employed, polyadenylation or transcription terminator sequences from known mammalian genes need to be incorporated into the vector. An example of a terminator sequence is the polyadenylation sequence from the bovine growth hormone gene. Sequences for accurate splicing of the transcript may also be included. An example of a splicing sequence is the VP1 intron from SV4O (Sprague, J. et a/., J. Virol. 45: 773-781 (1983)). Additionally, gene sequences to control replication in the host cell may be Saveria-Campo, M., 1985, "Bovine Papilloma virus DNA a Eukaryotic Cloning Vector" in DNA Cloning Vol. II a Practical Approach Ed. D.M. Glover, IRL Press, Arlington, Virginia pp. 213-238. The host cells are competent or rendered competent for transformation by various means. There are several well-known methods of introducing DNA into animal cells. These include: calcium phosphate precipitation, fusion of the recipient cells with bacterial protoplasts containing the DNA, treatment of the recipient cells with liposomes containing the DNA, DEAE dextran, electroporation and microinjection of the DNA directly into the cells.

The transformed cells are cultured by means well known in the art (Biochemical Methods in Cell Culture and Virology, Kuchler, R.J., Dowden, Hutchinson and Ross, Inc., (1977)). The expressed polypeptides are isolated from cells grown as suspensions or

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

as monolayers. The latter are recovered by well known mechanical, chemical or enzymatic means.

General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" refers to linkage of a promoter upstream from a DNA sequence such that the promoter mediates transcription of the DNA sequence. Specifically, "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the gene encoding the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression sequence. The term "vector", refers to viral expression systems, autonomous self-replicating circular DNA (plasmids), and includes both expression and nonexpression plasmids.

The term "gene" as used herein is intended to refer to a nucleic acid sequence which encodes a polypeptide. This definition includes various sequence polymorphisms, mutations, and/or sequence variants wherein such alterations do not affect the function of the gene product. The term "gene" is intended to include not only coding sequences but also regulatory regions such as promoters, enhancers, termination regions and similar untranslated nucleotide sequences. The term further includes all introns and other DNA sequences spliced from the mRNA transcript, along with variants resulting from alternative splice sites.

A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A43 1 cells, human Co10205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains,

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Candida or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include *Escherichia coli, Bacillus subtilis, Salmonella typhimurium*, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California, U.S.A. (the MaxBac© kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed." The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein.

The polymorphic protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein. The protein may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art.

The polymorphic proteins produced by recombinant DNA technology may be purified by techniques commonly employed to isolate or purify recombinant proteins. Recombinantly produced proteins can be directly expressed or expressed as a fusion protein. The protein is then purified by a combination of cell lysis (e.g., sonication) and affinity chromatography. For fusion products, subsequent digestion of the fusion protein with an appropriate proteolytic enzyme releases the desired polypeptide. The polypeptides of this invention may be purified to substantial purity by standard

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

techniques well known in the art, including selective precipitation with such substances as ammonium sulfate, column chromatography, immunopurification methods, and others. See, for instance, R. Scopes, Protein Purification: Principles and Practice, Springer-Verlag: New York (1982), incorporated herein by reference. For example, in an embodiment, antibodies may be raised to the proteins of the invention as described herein. Cell membranes are isolated from a cell line expressing the recombinant protein, the protein is extracted from the membranes and immunoprecipitated. The proteins may then be further purified by standard protein chemistry techniques as described above.

The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-Toyopearl@ or Cibacrom blue 3GA Sepharose B; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography. Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-Stransferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, MA), Pharmacia (Piscataway, NJ) and InVitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("Flag") is commercially available from Kodak (New Haven, CT). Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, *i.e.*, molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen, such as polymorphic. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} and $F_{(ab')2}$ fragments, and an F_{ab} expression library. In a specific embodiment, antibodies to human polymorphic proteins are disclosed.

The phrase "specifically binds to", "immunospecifically binds to" or is "specifically immunoreactive with", an antibody when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biological materials. Thus, for example, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. Of particular interest in the present invention is an antibody that binds immunospecifically to a polymorphic protein but not to its cognate wild type allelic protein, or vice versa. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, a Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.

Polyclonal and/or monoclonal antibodies that immunospecifically bind to polymorphic gene products but not to the corresponding prototypical or "wild-type" gene products are also provided. Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product.

An isolated polymorphic protein, or a portion or fragment thereof, can be used as an immunogen to generate the antibody that binds the polymorphic protein using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polymorphic protein can be used or, alternatively, the invention provides antigenic peptide fragments of polymorphic for use as immunogens. The antigenic peptide of a polymorphic protein of the invention comprises at least 8 amino acid residues of the amino acid sequence encompassing the polymorphic amino acid and encompasses an epitope of the polymorphic protein such that an antibody raised against the peptide forms a specific immune complex with the polymorphic protein. Preferably, the antigenic peptide comprises at least 10 amino acid residues, more preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of polymorphic that are located on the surface of the protein, *e.g.*, hydrophilic regions.

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by injection with the polymorphic protein. An appropriate immunogenic preparation can contain, for example, recombinantly expressed polymorphic protein or a chemically synthesized polymorphic polypeptide. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), human adjuvants such as *Bacille Calmette-Guerin* and *Corynebacterium parvum*, or similar immunostimulatory agents. If desired, the antibody molecules directed against polymorphic proteins can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography, to obtain the IgG fraction.

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that originates from the clone of a singly hybridoma cell, and that contains only one type of antigen binding site capable of immunoreacting with a particular epitope of a polymorphic protein. A monoclonal antibody composition thus typically displays a single binding affinity for a particular polymorphic protein with which it immunoreacts. For preparation of monoclonal antibodies directed towards a particular polymorphic protein, or derivatives, fragments, analogs or homologs thereof, any technique that provides for the production of antibody molecules by continuous cell line culture may be utilized. Such techniques include, but are not limited to, the hybridoma technique (see Kohler & Milstein, 1975 Nature 256: 495-497); the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to a polymorphic protein (see *e.g.*, U.S. Patent No. 4,946,778). In addition, methodologies can be adapted for the construction of F_{ab} expression libraries (see *e.g.*, Huse, *et al.*, 1989 *Science* 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a polymorphic protein or derivatives, fragments, analogs or homologs thereof. Non-human antibodies can be "humanized" by techniques well known in the art. See *e.g.*, U.S. Patent No. 5,225,539. Antibody fragments that contain the idiotypes to a polymorphic protein may be produced by techniques known in the art including, but not limited to: (*i*) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody molecule; (*ii*) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (*iii*) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (*iv*) F_v fragments.

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

Additionally, recombinant anti-polymorphic protein antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT International Application No. PCT/US86/02269; European Patent Application No. 184,187; European Patent Application No. 171,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application No. 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) PNAS 84:3439-3443; Liu et al. (1987) J Immunol. 139:3521-3526; Sun et al. (1987) PNAS 84:214-218; Nishimura et al. (1987) Cancer Res 47:999-1005; Wood et al. (1985) Nature 314:446-449; Shaw et al. (1988) J Natl Cancer Inst 80:1553-1559); Morrison(1985) Science 229:1202-1207; Oi et al. (1986) BioTechniques 4:214; U.S. Pat. No. 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J Immunol 141:4053-4060.

In one embodiment, methodologies for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme-linked immunosorbent assay (ELISA) and other immunologically-mediated techniques known within the art.

Anti-polymorphic protein antibodies may be used in methods known within the art relating to the detection, quantitation and/or cellular or tissue localization of a polymorphic protein (e.g., for use in measuring levels of the polymorphic protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies for polymorphic proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antibody-derived CDR, are utilized as pharmacologically-active compounds in therapeutic applications intended to treat a pathology in a subject that arises from the presence of the cSNP allele in the subject.

An anti-polymorphic protein antibody (e.g., monoclonal antibody) can be used to isolate polymorphic proteins by a variety of immunochemical techniques, such as

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

immunoaffinity chromatography or immunoprecipitation. An anti-polymorphic protein antibody can facilitate the purification of natural polymorphic protein from cells and of recombinantly produced polymorphic proteins expressed in host cells. Moreover, an anti-polymorphic protein antibody can be used to detect polymorphic protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polymorphic protein. Anti-polymorphic antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

EQUIVALENTS

From the foregoing detailed description of the specific embodiments of the invention, it should be apparent that unique compositions and methods of use thereof in SNPs in known genes have been described. Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims which follow. In particular, it is contemplated by the inventor that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims.

10

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide selected from the group consisting of:
 - a) a nucleotide sequence comprising one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 1468;
 - b) a fragment of said nucleotide sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence;
 - c) a complementary nucleotide sequence comprising a sequence complementary to one or more of said polymorphic sequences selected from the group consisting of SEQ ID NOS:1-1468; and
 - d) a fragment of said complementary nucleotide sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence.
- 2. The polynucleotide of claim 1, wherein said polynucleotide sequence is DNA.
- 15 3. The polynucleotide of claim 1, wherein said polynucleotide sequence is RNA.
 - 4. The polynucleotide of claim 1, wherein said polynucleotide sequence is between about 10 and about 100 nucleotides in length.
- The polynucleotide of claim 1, wherein said polynucleotide sequence is between about 10 and about 90 nucleotides in length.
 - 6. The polynucleotide of claim 1, wherein said polynucleotide sequence is between about 10 and about 75 nucleotides in length.
 - 7. The polynucleotide of claim 1, wherein said polynucleotide is between about 10 and about 50 bases in length.
 - 8. The polynucleotide of claim 1, wherein said polynucleotide is between about 10 and about 40 bases in length.

25

30

10

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- 9. The polynucleotide of claim 1, wherein said polynucleotide is between about 15 and about 30 bases in length.
- The polynucleotide of claim 1, wherein said polymorphic site includes a nucleotide other than the nucleotide listed in Table 1, column 5 for said polymorphic sequence.
 - 11. The polynucleotide of claim 1, wherein the complement of said polymorphic site includes a nucleotide other than the complement of the nucleotide listed in Table 1, column 5 for the complement of said polymorphic sequence.
 - 12. The polynucleotide of claim 1, wherein said polymorphic site includes the nucleotide listed in Table 1, column 6 for said polymorphic sequence.
- 13. The polynucleotide of claim 1, wherein the complement of said polymorphic site includes the complement of the nucleotide listed in Table 1, column 6 for said polymorphic sequence.
 - 14. An isolated allele-specific oligonucleotide that hybridizes to a first polynucleotide at a polymorphic site encompassed therein, wherein the first polynucleotide is selected from the group consisting of:
 - a) a nucleotide sequence comprising one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 - 1468 provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence;
 - b) a nucleotide sequence that is a fragment of said polymorphic sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence;
 - c) a complementary nucleotide sequence comprising a sequence complementary to one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 1468, provided that the

10

15

20

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- complementary nucleotide sequence includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5; and
- d) a nucleotide sequence that is a fragment of said complementary sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence.
- 15. The oligonucleotide of claim 14, wherein the oligonucleotide does not hybridize under stringent conditions to a second polynucleotide selected from the group consisting of:
 - a) a nucleotide sequence comprising one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 - 1468, wherein said polymorphic sequence includes the nucleotide listed in Table 1, column 5 for said polymorphic sequence;
 - b) a nucleotide sequence that is a fragment of any of said nucleotide sequences;
 - c) a complementary nucleotide sequence comprising a sequence complementary to one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 - 1468, wherein said polymorphic sequence includes the complement of the nucleotide listed in Table 1, column 5; and
 - d) a nucleotide sequence that is a fragment of said complementary sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence.
- 25 16. The oligonucleotide of claim 15, wherein the oligonucleotide is between about 10 and about 51 bases in length.
 - 17. The oligonucleotide of claim 15, wherein the oligonucleotide is between about 10 and about 40 bases in length.

10

15

20

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- 18. The oligonucleotide of claim 15, wherein the oligonucleotide is between about 15 and about 30 bases in length.
- 19. A method of detecting a polymorphic site in a nucleic acid, the method comprising:
 - a) contacting said nucleic acid with an oligonucleotide that hybridizes to a polymorphic sequence selected from the group consisting of SEQ ID NOS: 1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5; and
 - b) determining whether said nucleic acid and said oligonucleotide hybridize;

whereby hybridization of said oligonucleotide to said nucleic acid sequence indicates the presence of the polymorphic site in said nucleic acid.

- 20. The method of claim 19, wherein said oligonucleotide does not hybridize to said polymorphic sequence when said polymorphic sequence includes the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or when the complement of the polymorphic sequence includes the complement of the nucleotide recited in Table 1, column 5 for said polymorphic sequence.
- The method of claim 19, wherein said oligonucleotide is between about 10 and about 51 bases in length.
 - 22. The method of claim 19, wherein said oligonucleotide is between about 10 and about 40 bases in length.
- A method of detecting the presence of a sequence polymorphism in a subject, the method comprising:

10

15

20

25

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- a) providing a nucleic acid from said subject;
- b) contacting said nucleic acid with an oligonucleotide that hybridizes to a polymorphic sequence selected from the group consisting of SEQ ID NOS: 1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5; and
- c) determining whether said nucleic acid and said oligonucleotide hybridize;

whereby hybridization of said oligonucleotide to said nucleic acid sequence indicates the presence of the polymorphism in said subject.

- 24. A method of determining the relatedness of a first and second nucleic acid, the method comprising:
 - a) providing a first nucleic acid and a second nucleic acid;
 - b) contacting said first nucleic acid and said second nucleic acid with an oligonucleotide that hybridizes to a polymorphic sequence selected from the group consisting of SEQ ID NOS: 1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5;
 - c) determining whether said first nucleic acid and said second nucleic acid hybridize to said oligonucleotide; and
 - d) comparing hybridization of said first and second nucleic acids to said oligonucleotide, wherein hybridization of first and second nucleic acids to said nucleic acid indicates the first and second subjects are related.
- The method of claim 24, wherein said oligonucleotide does not hybridize to said polymorphic sequence when said polymorphic sequence includes the nucleotide

£.J

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

recited in Table 1, column 5 for said polymorphic sequence, or when the complement of the polymorphic sequence includes the complement of the nucleotide recited in Table 1, column 5 for said polymorphic sequence.

- 5 26. The method of claim 24, wherein the oligonucleotide is between about 10 and about 51 bases in length.
 - 27. The method of claim 24, wherein the oligonucleotide is between about 10 and about 40 bases in length.
 - 28. The method of claim 24, wherein the oligonucleotide is between about 15 and about 30 bases in length.
 - 29. An isolated polypeptide comprising a polymorphic site at one or more amino acid residues, wherein the protein is encoded by a polynucleotide selected from the group consisting of polymorphic sequences SEQ ID NOS:1-1468, or their complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5.
 - 30. The polypeptide of claim 29, wherein said polypeptide is translated in the same open reading frame as is a wild type protein whose amino acid sequence is identical to the amino acid sequence of the polymorphic protein except at the site of the polymorphism.
 - 31. The polypeptide of claim 29, wherein the polypeptide encoded by said polymorphic sequence, or its complement, includes the nucleotide listed in Table 1, column 6 for said polymorphic sequence, or the complement includes the complement of the nucleotide listed in Table 1, column 6.

20

25

30

5

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- 32. An antibody that binds specifically to a polypeptide encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of polymorphic sequences SEQ ID NOS:1-1468, or its complement, provided that the polymorphic sequence includes a nucleotide other than the nucleotide recited in Table 1, column 5 for said polymorphic sequence, or the complement includes a nucleotide other than the complement of the nucleotide recited in Table 1, column 5.
- 33. The antibody of claim 32, wherein said antibody binds specifically to a polypeptide encoded by a polymorphic sequence which includes the nucleotide listed in Table 1, column 6 for said polymorphic sequence.
 - 34. The antibody of claim 32, wherein said antibody does not bind specifically to a polypeptide encoded by a polymorphic sequence which includes the nucleotide listed in Table 1, column 5 for said polymorphic sequence.
 - 35. A method of detecting the presence of a polypeptide having one or more amino acid residue polymorphisms in a subject, the method comprising
 - a) providing a protein sample from said subject;
 - b) contacting said sample with the antibody of claim 34 under conditions that allow for the formation of antibody-antigen complexes; and
 - c) detecting said antibody-antigen complexes, whereby the presence of said complexes indicates the presence of said polypeptide.
 - 36. A method of treating a subject suffering from, at risk for, or suspected of, suffering from a pathology ascribed to the presence of a sequence polymorphism in a subject, the method comprising:
 - a) providing a subject suffering from a pathology associated with aberrant expression of a first nucleic acid comprising a polymorphic sequence

10

15

20

25

30

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

selected from the group consisting of SEQ ID NOS:1 - 1468, or its complement; and

b) administering to the subject an effective therapeutic dose of a second nucleic acid comprising the polymorphic sequence, provided that the second nucleic acid comprises the nucleotide present in the wild type allele,

thereby treating said subject.

- 37. The method of claim 36, wherein the second nucleic acid sequence comprises a polymorphic sequence which includes the nucleotide listed in Table 1, column 5 for said polymorphic sequence.
 - 38. A method of treating a subject suffering from, at risk for, or suspected of, suffering from a pathology ascribed to the presence of a sequence polymorphism in a subject, the method comprising:
 - a) providing a subject suffering from a pathology associated with aberrant expression of a polymorphic sequence selected from the group consisting of polymorphic sequences SEQ ID NOS:1 - 1468, or its complement; and
 - b) administering to the subject an effective therapeutic dose of a polypeptide,

wherein said polypeptide is encoded by a polynucleotide comprising a polymorphic sequence selected from the group consisting of SEQ ID NOS:1 - 1468, or by a polynucleotide comprising a nucleotide sequence that is complementary to any one of polymorphic sequences SEQ ID NOS:1 - 1468, provided that said polymorphic sequence includes the nucleotide listed in Table 1, column 6 for said polymorphic sequence.

39. A method of treating a subject suffering from, at risk for, or suspected of suffering from, a pathology ascribed to the presence of a sequence polymorphism in a subject, the method comprising:

20

5

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- a) providing a subject suffering from, at risk for, or suspected of suffering from, a pathology associated with aberrant expression of a first nucleic acid comprising a polymorphic sequence selected from the group consisting of SEQ ID NOS:1 1468, or its complement; and
- b) administering to the subject an effective dose of the antibody of claim 34,

thereby treating said subject.

- 40. A method of treating a subject suffering from, at risk for, or suspected of suffering from, a pathology ascribed to the presence of a sequence polymorphism in a subject, the method comprising:
 - a) providing a subject suffering from, at risk for, or suspected of suffering from, a pathology associated with aberrant expression of a nucleic acid comprising a polymorphic sequence selected from the group consisting of SEQ ID NOS:1 1468, or its complement; and
 - b) administering to the subject an effective dose of an oligonucleotide comprising a polymorphic sequence selected from the group consisting of SEQ ID NOS:1 1468, or by a polynucleotide comprising a nucleotide sequence that is complementary to any one of polymorphic sequences SEQ ID NOS:1 1468, provided that said polymorphic sequence includes the nucleotide listed in Table 1, column 5 or Table 1, column 6 for said polymorphic sequence,

thereby treating said subject.

- An oligonucleotide array, comprising one or more oligonucleotides hybridizing to a first polynucleotide at a polymorphic site encompassed therein, wherein the first polynucleotide is chosen from the group consisting of:
 - a) a nucleotide sequence comprising one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 1468;

10

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

- b) a nucleotide sequence that is a fragment of any of said nucleotide sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence;
- c) a complementary nucleotide sequence comprising a sequence complementary to one or more polymorphic sequences selected from the group consisting of SEQ ID NOS:1 1468; and
- d) a nucleotide sequence that is a fragment of said complementary sequence, provided that the fragment includes a polymorphic site in said polymorphic sequence.
- 42. The array of claim 41, wherein said array comprises about 10 oligonucleotides.
- 43. The array of claim 41, wherein said array comprises about 100 oligonucleotides.
- 15 44. The array of claim 41, wherein said array comprises about 1000 oligonucleotides.

Express Mail Label No.: EK611911256US Date of Deposit: November 22, 2000

ABSTRACT

The invention provides nucleic acids containing single-nucleotide polymorphisms identified for transcribed human sequences, as well as methods of using the nucleic acids.

10

TRADOCS:1402124.1(%1VW01!.DOC)

Table 1

	Г				10		
	13	Map location		17 (17p)	17 (17p)	-	18 (18q11.2)
	г		6.10E-68	4.00E-160	4.00E-160	9.40E-58	0.00E+00
,,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Protein Name of protein identified following a classifica BLASTX analysis of the CuraGen tion of sequence CuraGen	Human Gene Similar to SWISSPROT-ID:P55060 CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN - HOMO SAPIENS (HUMAN), 971 aa.	Human Gene SWISSPROT- ID:P14415 SODIUM/POTASSIUM- TRANSPORTING ATPASE BETA-2 CHAIN (EC 3.6.1.37) (SODIUM/POTASSIUM-DEPENDENT ATPASE) - HOMO SAPIENS (HIMAN) 290 aa	Human Gene SWISSPROT- ID:P14415 SODIUM/POTASSIUM- TRANSPORTING ATPASE BETA-2 CHAIN (EC 3.6.1.37) (SODIUM/POTASSIUM-DEPENDENT ATPASE) - HOMO SAPIENS (HIMAN) 290 aa		cadherin Human Gene SWISSPROT-ID:P19022 NEURAL-CADHERIN PRECURSOR (N-CADHERIN) -HOMO SAPIENS (HUMAN), 906 aa.
,	27.0	classifica tion of CuraGen	apoptosi s	ATPase_associat	ATPase_associat	ATPase_associat	cadherin
σ	Typoof	change	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
α	Amino	acid					
7	Amino						
9	Base	after	O	gap	gap	gap	gap
5	Base		 - -	-	 	ڻ ن	∢
4	Polymorphic	eouenbes	1030 GGGTTTGTATTG GCGCACCAAGA TC[T/C]CCAACA GCCAGTGTGTG TTTCCCAT	475 ATGGGTTTTTT GTTTTTGTTTTT G[T/gap]TTTTTTT TTAAAGGCAAAG GGGTCT	484 TTTGTTTTTTTTT TTGTTTTTTTTT T/gap]AAAGGCA AAGGGGTCTGA AGAGATG	200 CATGAGGTGGC ACGAGGCAGGA GTT[G/gap]GCGA TGCCACCTGGG GGTCACATTG	4698 ACATAATTTGTA CCAAAAAAAAA A[A/gap]GAAAGG AAAGAAAGGGG TGGCCTGA
3	Base	pos. of SNP	1030	475	484	200	4698
	CuraGen	sednence ID	1 cg43921971	3 cg43314087	4 cg43314087	5 cg43132502	cg43988460
	Sed ID		~	r	4	<u> </u>	9
_				······			1

18 ()	=	0	O	13)	13)
18 (18q11.2				5 (5p13)	5 (5p13)
0.00E+00	2.00E-80	3.10E-59	0.00E+00	0.00E+00	0.00E+00
0.00	2:00	3.10	0.00	0.00	0.00
cadherin Human Gene SWISSPROT-ID:P19022 NEURAL-CADHERINPRECURSOR (N-CADHERIN) -HOMO SAPIENS (HUMAN), 906 aa.	Human Gene Similar to SWISSPROT-ID:026534 CATHEPSIN LPRECURSOR (EC 3.4.22.15) (SMCL1) - SCHISTOSOMAMANSONI (BLOOD FLUKE), 319 aa.	Human Gene Similar to SWISSNEW-ID:015247 CHLORIDE INTRACELLULAR CHANNEL PROTEIN 2 (XAP121) - HOMO SAPIENS (HUMAN), 243 aa.jpds:SWISSPROT-ID:015247 CHLORIDE INTRACELLULAR CHANNEL PROTEIN 2 (XAP121) -	Human Gene SWISSPROT- ID:099715 COLLAGEN ALPHA 1(XII) CHAIN PRECURSOR - HOMO SAPIENS (HUMAN), 3063 aa.jpcls:SPTREMBL-ID:099715 COLLAGEN TYPE XII ALPHA-1 PRECURSOR - HOMO SAPIENS (HUMAN), 3063 aa.	complem Human Gene SWISSPROT- ID:P10643 COMPLEMENT COMPONENT C7 PRECURSOR - HOMO SAPIENS (HUMAN), 843 aa.	complem Human Gene SWISSPROT- ID:P10643 COMPLEMENT COMPONENT C7 PRECURSOR - HOMO SAPIENS (HUMAN), 843 aa.
cadherin	cathepsi n	channel channel	collagen	complem ent	complem ent
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
⋖	gap	gap	gap	U	ပ
O	O	ဖ	U	-	_
4708 TACCAAAAAAAA AAAGGAAAGGA AA[G/A]AAAGGG GTGGCCTGACA CTGGTGGC	460 GACACATGTCA GGCTGGGGCAG CAG[C/gap]CACT CTGATCAGCAC CAGGTCCCGA	96 GGGCGCTAGCG GGGGTGCACGG CGG[G/gap]CCG GTAGGCCGCCA GGATCTCGGCG	1126 GAAGGCACACA CACACACACAC ACA[C/gap]AGCA AAAGCTAAATCA TCACCCGCG	3195 TCATCTCCCTGC AACCTCCGCCT CC[T/C]GGGTTC AAGCGATTCTTG TGCCTCA	CCGCCTCCTGG GTTCAAGCGATT CT[T/C]GTGCCT CAGCCTCCCAA GCAGCTGG
4708	460	96	1126	3195	3212
7 cg43988460	8 cg43982945	9 cg43266931	10 cg43321451	11 cg43933757	12 cg43933757
			-	`	-

(5p13)	5 (5p13)	5 (5p13)	7.1
0.00E+00 5 (5p13)	7.70E-308 (7.70E-308	6.9E-129
complem Human Gene SWISSPROT- ID:P10643 COMPLEMENT COMPONENT C7 PRECURSOR - HOMO SAPIENS (HUMAN), 843 aa.	complem Human Gene SWISSPROT- ID:P02748 COMPLEMENT COMPONENT C9 PRECURSOR - HOMO SAPIENS (HUMAN), 559 aa.	complem Human Gene SWISSPROT- ent ID:P02748 COMPLEMENT COMPONENT C9 PRECURSOR - HOMO SAPIENS (HUMAN), 559 aa.	complem Human Gene Homologous to SWISSPROT-ID:Q07021 COMPLEMENT COMPONENT 1, Q SUBCOMPONENT BINDING PROTEIN PRECURSOR (GLYCOPROTEIN GC1QBP) (GC1Q-R PROTEIN) (HYALURONAN-BINDING PROTEIN 1) (PRE-MRNA SPLICING FACTOR SF2, P32 SUBUNIT) - HOMO SAPIENS (HUMAN), 282 aa.
			ent ent
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
∢	de6	gap	H
	F	∢	U
3346 TCCAACTCCTGA G CCTCAGGTAATC C[G/A]CCTGCCT TGGCCTCCCAA AGTGCTG	2224 CTTAGCTCTACG ATTTAAATCCAT G[T/gap]GTCCAA GGGGGAAAACA TATTATAT	2367 TAATATAGATAG TGTTCAGTAGCA G[A/gap]ATAGAA TGAACATAAACT ATTAGTT	265 GAATTGTCCAGA C AGACTTGGCTC AG[C/T]TGGAGG AGCTGATAGAC ATGGCTGT
13 cg43933757 3	14 cg42185571 2	15 cg42185571 2	16 cg43947909
13	14 0	15 (16 (

20	15 (15q22)		
1.9E-279	2.5E-279	6.6E-124	6.6E-124
Human Gene SWISSNEW-ID:Q07973 CYTOCHROME P450-CC24 MITOCHONDRIAL PRECURSOR (EC 1.14) (P450- CC24) (VITAMIN D(3) 24-HYDROXYLASE) (1,25- DIHYDROXYVITAMIN D(3) 24- HYDROXYLASE) (24-OHASE) - HOMO SAPIENS (HUMAN), 513 aa. pcls:SWISSPROT-ID:Q07973 CYTOCHROME P450-CC24 MITOCHONDRIAL PRECURSOR (EC 1.14) (P450- CC24) (VITAMIN D(3) 24-HYDROXYLASE) (1,25- DIHYDROXYVITAMIN D(3) 24- HYDROXYLASE) (24-OHASE) - HOMO SAPIENS (HUMAN), 513 aa.	Human Gene SWISSNEW-ID:P04798 CYTOCHROME P450 1A1 (EC 1.14.14.1) (CYPIA1) (P450-P1) (P450 FORM 6) (P450-C) - HOMO SAPIENS (HUMAN), 512 aa. pcls:SWISSPROT-ID:P04798 CYTOCHROME P450 IA1 (EC 1.14.14.1) (P450-P1) (P450 FORM 6) (P450-C) (TCDD-INDUCIBLE) - HOMO SAPIENS (HUMAN), 512 aa.		
cyto450	cyto450	cytochro me	cytochro me
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	ڻ ا	ပ	deb
2860 GTGTGTGTGTCT C GTGTGTGTGTG TC[C/G]GTGTAT GTGTGTGGG TTCTAATG	1746 AGCAGGCTGGC A CTATGTGGTCTA AG[A/G]TTCAGC CTGAAACTCATA GACACTG	376 CAGCACTTTGG T GAGGCCGAGGC GGG[T/C]GGATC ACCCGAGGTCA GGAGTTCGA	383 TTGGGAGGCCG C AGGCGGGTGGA TCA[C/gap]CCGA GGTCAGGAGTT CGAGACCAGC
17 cg43143315	18 cg43327428 '	19 cg32296860	20 cg32296860
,			

			4	<u> </u> 4	lio —
					15
6.6E-124	6.60E-124	6.60E-124	8.60E-240	8.60E-240	1.30E-190
cytochro Human Gene Homologous to SPTREMBL-ID:Q27524 CYTOCHROME C OXIDASE POLYPEPTIDE II (EC 1.9.3.1) - CAENORHABDITIS ELEGANS, 1647	Human Gene Homologous to SPTREMBL-ID:Q27524 CYTOCHROME C OXIDASE POLYPEPTIDE II (EC 1.9.3.1) - CAENORHABDITIS ELEGANS, 1647	cytochro Human Gene Homologous to SPTREMBL-ID:Q27524 CYTOCHROME C OXIDASE POLYPEPTIDE II (EC 1.9.3.1) - CAENORHABDITIS ELEGANS, 1647	dehydrog Human Gene TREMBLNEW- enase ID:G806944 UDP-GLUCOSE DEHYDROGENASE, UDPGDH=52 KDA SUBUNIT {EC 1.1.1.22} - BOS TAURUS, 468 aa.	dehydrog Human Gene TREMBLNEW. enase ID:G806944 UDP-GLUCOSE DEHYDROGENASE, UDPGDH=52 KDA SUBUNIT {EC 1.1.1.22} - BOS TAURUS, 468 aa.	dehydrog Human Gene SWISSPROT- enase ID:P50213 ISOCITRATE DEHYDROGENASE (NAD), MITOCHONDRIAL SUBUNIT ALPHA PRECURSOR (EC 1.1.1.41) (ISOCITRIC DEHYDROGENASE) (NAD+-SPECIFIC ICDH) - HOMO
	cytochro me	cytochro me	dehydrog enase	dehydrog enase	dehydrog enase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
dap	A	O	ပ	<	gap
O	-	-	⋖	O	
385 GGGAGGCCGAG GCGGGTGGATC ACC[C/gap]GAG GTCAGGAGTTC GAGACCAGCCT	397 CGGGTGGATCA CCCGAGGTCAG GAG[T/A]TCGAG ACCAGCCTGGC CAACATGGT	439 CAACATGGTGA AACCCTGTCTCT AC[T/C]AAAATA CAAAATTAGCT GGGTGC	199 GGGGCGCGGGGT/ GGAGAAGCTGC GGC[A/G]GCGCG GCCCGTAGGAA GGTGCTGTC	. (D	130 GAACCCAAGAG C CCACTGATAACT GG[C/gap]ACAAT CCAATGAAACA GAGGAAGCA
386	397	439	199	236	130
21 cg32296860	22 cg32296860	23 cg32296860	24 cg43264442	25 cg43264442	26 cg43998926
Ν	δ.	,	57	25	76

from from the state of the stat

<u>0</u>	ю <u>г</u>	(11q13.2	0			
1.30E-190	1.90E-137	5.10E-224	5 10F-224	J. 10L-224 4 05 342	10e-31	
dehydrog Human Gene SWISSPROT- enase ID:P50213 ISOCITRATE DEHYDROGENASE (NAD), MITOCHONDRIAL SUBUNIT ALPHA PRECURSOR (EC 1.1.1.41) (ISOCITRIC DEHYDROGENASE) (NAD+-SPECIFIC ICDH) - HOMO	dehydrog Human Gene Homologous to SWISSPROT-ID:P13707 GLYCEROL- 3-PHOSPHATE DEHYDROGENASE (NAD+), CYTOPLASMIC (EC 1.1.1.8) (GPD-C) (GPDH-C) - MUS MUSCULUS (MOUSE), 348 aa.	ID:P38935 DNA-BINDING PROTEIN SMUBP-2 (GLIAL FACTOR-1) (GF-1) HOMO SAPIENS (HUMAN), 993 aa.	ID:G2058493 TELOMERIC REPEAT DNA-BINDING PROTEIN - HOMO SAPIENS (HUMAN), 419 aa.	Human Gene I KEMBLNEW-ID:G2058493 TELOMERIC REPEAT DNA-BINDING PROTEIN - HOMO SAPIENS (HUMAN), 419 aa.	Human Gene SWISSPRUT- ID:Q63100 DYNEIN INTERMEDIATE CHAIN 1, CYTOSOLIC (DH IC-1) - RATTUS NORVEGICUS (RAT), 643 aa.	Human Gene Swisspract ID:@63100 DYNEIN INTERMEDIATE CHAIN 1, CYTOSOLIC (DH IC-1) - RATTUS NORVEGICUS (RAT), 643 aa.
enase C	dehydrog		dna_ma_	dna_rna _bind	dynein	dynein
SILENT- NONCODING	SING	SILENT- NONCODING	SILEN I- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	O	4	တ	O	Ø	4
560 CTCAGGCTGAG T TTGCCTCCAGTC TT[T/G]GGAATG TCATCTTATACT GGTACTG	GGTTATAAAAAT A AGATAACTCGCA G[A/G]GTCATAA ATATCTACAGTT AGTAGA	462 GCCACTCCCTG G CTCCCTGCCTG AGC[G/A]CCATT CGCAGTCTTGTT TCCTGTTT	671 CTTGTTTATTAT C CTATCATAGACA T[C/G]AAGATGA TCATAGTTAATA	737 ACTGTTTTAGGC A CCAATATTGATA T[A/G]TTAAATGA AGGTATCAGAG	206 CTAAAGATITCA A TGTCTTCAGTGG A[A/G]CTGGCAT ACTGTAATTGCT ATGTGG	231 ACTGGCATACT GGTAATTGCTATGT TG[G/A]AACTTAATTAACTTAAACTTAAACTCAACAACAGCAACCAAC
	499					
27 cg43998926	28 cg43941594	29 cg43962927	30 cg43991661	cg43991661	32 cg43310449	33 cg43310449
27 c	28 (29	30	31	32	33

	15 (15q15)	4 (Xq26)	_	-	_	7-
3.2E-99	9.30E-106	1.70E-103 4 (Xq26)	1.40E-197	1.40E-197	1.40E-197	1.40E-197
esterase Human Gene Similar to SPTREMBL-ID:P70665 SIALIC ACID-SPECIFIC 9-O-ACETYLESTERASE - MUSMUSCULUS (MOUSE), 541 aa.	Human Gene Homologous to SWISSPROT-ID:P21781 KERATINOCYTE GROWTH FACTOR PRECURSOR (KGF) (FIBROBLAST GROWTH FACTOR- 7) (FGF-7) (HBGF-7) - HOMO SAPIENS	Human Gene Homologous to SPTREMBL-ID:P78443 21 KD BASIC FIBROBLAST GROWTH FACTOR (BFGF) - HOMO SAPIENS (HUMAN), 196 aa.	glycoprot Human Gene SPTREMBL-ID:Q14245 ein ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.	glycoprot Human Gene SPTREMBL-ID:Q14245 ein ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.	glycoprot Human Gene SPTREMBL-ID:Q14245 ein ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.	glycoprot Human Gene SPTREMBL-ID:Q14245 ein ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.
esterase	fgf	fgf	glycoprot	glycoprot ein	glycoprot	glycoprot
SILENT- NONCODING	SILENT- NONCODING	SILENT. NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
U	A	Ą	9	Ą	ව	4
F	၅	ပ	⋖	F	∢ .	_
1227 TCAATGAGGCTT TCTATTAATTC C[I/C]TTAAAAGC AATGGTTATTAT TGAAA	2516 GGCCCTGAATG TTATGAAGGTTT GA[G/A]GTCAGC CTACAGATAACA GGATTAT	2973 CAGTGGCTCAC GCCTATAATCCC AG[C/A]ACTTTG GGAGGCCAAGG CAGGAGGA	222 CAGCTGAAGGA GATAATTGGTGT GA[A/G]CAGAAG CTGAAAGCTTCT AATGGAG	237 ATTGGTGTGAÁC AGAAGCTGAAA GC[T/A]TCTAATG GAGACACTCCT ACACATG		255 TGAAAGCTTCTA ATGGAGACACT CC[T/A]ACACAT GAAGACTTGAC CAAGAACA
122,	2516	2973	222	237	246	255
34 cg43984524	cg43248101	36 cg43974968	37 cg43074195	38 cg43074195	39 cg43074195	40 cg43074195
34	35	36	37	38	30	40

The first test of the color of

_∞	4	4	4	4	4	4
4E-192	-150	2.9E-150	2.9E-150	2.9E-150	2.9E-150	2.9E-150
4 E	2.9E-150	2.9巨	2.9E	2.9E	2.9E	2.9E
ein ID:Q01685 TRAM PROTEIN (TRANSLOCATING CHAIN-ASSOCIATING MEMBRANE PROTEIN) - CANIS FAMILIARIS (DOG), 373 aa.	glycoprot Human Gene Homologous to SWISSPROT-ID:P51674 MEMBRANE GLYCOPROTEIN M6-A-HOMO SAPIENS (HUMAN), 278 aa.	ein SWISSPROT-ID:P51674 MEMBRANE GLYCOPROTEIN M6-A-HOMO SAPIENS (HUMAN), 278 aa.	glycoprot Human Gene Homologous to ein SWISSPROT-ID:P51674 MEMBRANE GLYCOPROTEIN M6-A- HOMO SAPIENS (HUMAN), 278 aa.	glycoprot Human Gene Homologous to ein SWISSPROT-ID:P51674 MEMBRANE GLYCOPROTEIN M6-A HOMO SAPIENS (HUMAN), 278 aa.	glycoprot Human Gene Homologous to ein SWISSPROT-ID:P51674 MEMBRANE GLYCOPROTEIN M6-A-HOMO SAPIENS (HUMAN), 278 aa.	glycoprot Human Gene Homologous to ein SWISSPROT-ID:P51674 MEMBRANE GLYCOPROTEIN M6-A-HOMO SAPIENS (HUMAN), 278 aa.
glycoprot ein	glycoprot	glycoprot	glycoprot ein	glycoprot	glycoprot	glycoprot ein
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	 	ပ	gap	O	gap	gap
658 TAGCGATACAAA A TATATATATATAT [A/gap]TTTATCC AAAAATATGTTT TATACA	2457 AAGTTCTTGTAG C TAGGTAGGGGG TA[C/TJTACTAGG GATATCTGTGG	2464 TGTAGTAGGTA G GGGGGTACTAC TAG[G/C]GATAT CTGTGGCATGA	2491 ATATCTGTGGCA C TGATTATGCATT C[C/gap]GTAGTA TTATTTAATTAAT TTGGGG	GTAGTATTATTT T AATTAATTTGGG G[T/G]TCATTTTG CTTCCTTTTCTTTTG TATGC	2529 AATTAATTTGGG C GTTCATTTTGCT T[C/gap]CTTTTC TTTATGCTTAGA	2530 ATTAATTTGGGG C TTCATTTTGCTT C[C/gap]TTTTCT TTATGCTTAGAT TATCTTA
65(245,	2464	249.	2517	2528	253(
41 cg43988092	42 cg43953517	43 cg43953517	44 cg43953517	45 cg43953517	46 cg43953517	47 cg43953517
		•	,	,	,	,

14 (14q24.3	2		18	41
1.7E-97	4.3E-92	2.2E-72	2.6E-60	8.7E-67
glycoprot Human Gene Similar to SWISSPROT- ein ID:P52166 MEMBRANE PROTEIN SEL-12 - CAENORHABDITIS ELEGANS, 461 aa.	glycoprot Human Gene Similar to SWISSNEW-ID:Q13361 MICROFIBRIL-ASSOCIATED GLYCOPROTEIN 2 PRECURSOR (MAGP-2) (MP25) - HOMO SAPIENS (HUMAN), 173 aa.lpcls:SWISSPROT-ID:Q13361 MICROFIBRIL-ASSOCIATED GLYCOPROTEIN 2 PRECURSOR (MAGP-2) - HOMO SAPIENS	glycoprot Human Gene Similar to SPTREMBL- ein ID:004711 P-GLYCOPROTEIN-2 - ARABIDOPSIS THALIANA (MOUSE- EAR CRESS), 1233 aa.	glycoprot Human Gene Similar to SPTREMBL- iD:Q14245 ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.	Human Gene Similar to SWISSNEW-ID:070133 ATP-DEPENDENT RNA HELICASE A (NUCLEAR DNA HELICASE II) (NDH II) (DEAD BOX PROTEIN 9) (MHEL-5) - MUS MUSCULUS (MOUSE), 1380 aa.lpcis:TREMBLNEW-ID:G2961456 RNA HELICASE A - MUS
	glycopro ein	glycoprot ein	glycoprot ein	helicase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
		q		
<u>-</u>	<u>ტ</u>	gap	Q (,
GTGAACCICILG GTAACGGTAGT CC[T/C]GAGAGT TCGCAGTGTCA GTGAAATC	913 AGTAGAGAGTA GGGGTAAAAGC TGGAGICATTG CAAAAGGATTG GTTTAAGAA	884 GILALITGAAAA ATACCTATTTT TIVgapJCCAAAG TGTGTAAAAGAT TGTGTAAAAGAT TGTTTTG	CTA I I CATGTGCAAG C CTAAGTTATTCC T[C/A]TGGTCAAT CCTCTCCATCTT CTGGT	TCTCCTTCATAT C[C/T]AAGTCAT CAAACATCTGAA TGAGAG
	N	_	52 cc43994600	
2	1, C	2 2	2 2	,

the state of the second of the

_	_	
0	0	0
Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa.jpcls:SPTREMBL-ID:Q16666 IF116=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa ffragment).	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa.jpcls:SPTREMBL-ID:Q16666 IF116=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa fragment)	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. pcls:SPTREMBL-ID:Q16666 IF16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment).
interfero n	n n	n n
SILENT- NONCODING	NONCODING	NONCODING
U	F	<u></u>
2481 ATGTTCTTGTAT T TTTTTCCCATC T[I/C]TACAGACA TAAGTGAGCCT CACTGG	2488 TGTATTTTTTC C CCATCTTTACAG A[C/T]ATAAGTGA GCCTCACTGGA AATTTT	2501 CATCTTTACAGA C CATAAGTGAGC CT[C/T]ACTGGA AATTTTTCAAC AGTAGTC
2481	2488	2501
53 cg43925670	54 cg43925670	55 cg43925670

Human Gene SWISSPROI- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR)- HOMO SAPIENS (HUMAN), 729 aa. [pcls:SPTREMBL-ID:Q16666 IFI16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa HOMO SAPIENS (HUMAN), 729 aa	Human Gene SWISSPROI- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IF1-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. pcls:SPTREMBL-ID:Q16666 iF116=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa fframent)	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. pcls:SPTREMBL-ID:Q16666 IFI16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - TRANSCRIPTIONAL ACTIVATOR - TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment).
interfero H	n n	n n
SILENT- NONCODING	SILENT- NONCODING	NONCODING
SILENT- NONCOI	SILENT- NONCOI	NO N
O	O	<u> </u>
	F	O
2507 TACAGACATAAG A TGAGCCTCACT GG[AG]AATTTT TCAACAGTAGTC CAGATC	2513 CATAAGTGAGC CTCACTGGAAAT TT[/C]TTCAACA GTAGTCCAGAT CTTGAGA	2551 CCAGATCTTGA GATCTTCAGAAA TG[C/T]AGGAAT CAATGCTTATTT GTGTGAG
77 P P P P P P P P P P P P P P P P P P	2513 C	2551
56 cg43925670 25	57 cg43925670 2	58 cg43925670
26 cg	27 6	28

21 (21q22.1)	21 (21q22.1)	21 (21q22.1)	2 (2q14.2)	2 (2q14.2)
3.9E-281	3.9E-281	3.9E-281	8.8E-94	8.8E-94
Human Gene SWISSPROT- ID:P48551 INTERFERON- ALPHA/BETA RECEPTOR BETA CHAIN PRECURSOR (IFN-ALPHA- REC) (TYPE I INTERFERON RECEPTOR) (IFN-R) (INTERFERON ALPHA/BETA RECEPTOR- 2) - HOMO SAPIENS (HUMAN), 515 aa.	Human Gene SWISSPROT- ID:P48551 INTERFERON- ALPHA/BETA RECEPTOR BETA CHAIN PRECURSOR (IFN-ALPHA- REC) (TYPE I INTERFERON RECEPTOR) (IFN-R) (INTERFERON ALPHA/BETA RECEPTOR- 2) - HOMO SAPIENS (HUMAN), 515 aa.	Human Gene SWISSPROT- ID:P48551 INTERFERON- ALPHA/BETA RECEPTOR BETA CHAIN PRECURSOR (IFN-ALPHA- REC) (TYPE I INTERFERON RECEPTOR) (IFN-R) (INTERFERON ALPHA/BETA RECEPTOR- 2) - HOMO SAPIENS (HUMAN), 515 aa.		interleuki Human Gene Similar to SWISSPROT- nrecept ID:P18510 INTERLEUKIN-1 RECEPTOR ANTAGONIST PROTEIN PRECURSOR (IL-1RA) (ICIL- 1RA) (IRAP) - HOMO SAPIENS (HUMAN),
interfero n	interfero n	interfero n	interleuki nrecept	
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
<u> </u>	ပ	 	deb	gap
AGA C TTTG TGG GTC	AAG GATGT GGGCAACT	STTG C GGT CTC AAG	CCC A GGA VAAA VTGA	GGG A AAAA ATTT
2434 ATTTTTAGTAGA GACAAGGTTTTG C[C/T]ATGTTGG CCAGGCTGGTC TCGAACT	2441 GTAGAGACAAG GTTTTGCCATGT TG[G/C]CCAGGC TGGTCTCGAACT CCTGACC	2454 TTTGCCATGTTG GCCAGGCTGGT CT[C/T]GAACTC CTGACCTCAAG CGATCCGC	694 GAAGGGCTCTC CTTCACGGGGA CTG[A/gap]AAAA AAAAATCATGA AATCCTAAT	704 CCTTCACGGGG ACTGAAAAAAAAAAAAAAAAAAAAAAAA
2434	2441	2454	694	704
59 cg42489232	60 cg42489232	61 cg42489232	62 cg43926168	cg43926168
28	09	61	62	63

19					
0	1.3E-307	2.7E-282	1.7E-234	1.70E-234	1.70E-234
Human Gene TREMBLNEW- ID:G300258 MYOTONIC DYSTROPHY KINASE, DM-KINASE {C-TERMINAL, ALTERNATIVELY SPLICED, CLONE DELTA II} - HOMO SAPIENS, 616 aa.	Human Gene TREMBLNEW-ID:D1023392 INOSITOL 1,4,5-TRISPHOSPHATE 3-KINASEISOENZYME (EC 2.7.1.127) - HOMO SAPIENS (HUMAN), 604 aa (fragment).	Human Gene SWISSPROT-ID:Q00537 SERINE/THREONINE-PROTEIN KINASE PCTAIRE-2 (EC 2.7.1) - HOMO SAPIENS (HUMAN), 523 aa.	Human Gene SPTREMBL-ID:Q61399 CYCLIN-DEPENDENT PROTEIN KINASE - MUS MUSCULUS (MOUSE), 783 aa.	Human Gene SPTREMBL-ID:Q61399 CYCLIN-DEPENDENT PROTEIN KINASE - MUS MUSCULUS (MOUSE), 783 aa.	Human Gene SPTREMBL-ID:Q61399 CYCLIN-DEPENDENT PROTEIN KINASE - MUS MUSCULUS (MOUSE), 783 aa.
kinase	kinase	kinase	kinase	kinase	kinase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
∢	∢	O	∢	<u> </u>	O
o	ڻ ن	ڻ ت	<u>ပ</u>	ပ	- -
2889 AGCCGGGAATG G CTGCTGCTGCT GCT[G/A]CTGCT GCTGCTGCTGC TGGGGGGAT	1043 AGGGCAGCCCC TCAGAAGCCTTC CC[G/A]GCAGAT CCGGGGACCCC GTTCTGGT	TTTTCATCCTA TCAATTGAATGT G[G/C]CTTGAAA AATCCAGCAAG	2164 CTACTAAAAATA CAAAAAATTAGC C[G/A]GGCGTGG TGGCGCATGCC TGTAGTC	2175 ACAAAAAATTAG CCGGGCGTGGT GG[C/T]GCATGC CTGTAGTCCCA GCTACTCG	2179 AAAATTAGCCG GCGTGGTGGC GCA[T/C]GCCTG TAGTCCCAGCTA CTCGGGAG
2889	1043	2227	2164	2175	2179
64 cg43336163	65 cg43987164	66 cg43119489	67 cg43957170	68 cg43957170	69 cg43957170
64	65	99	67	89	69

10	10			
	-			
2.80E-216	2.80E-216	1.80E-196	6.10E-189	6.10E-189
Human Gene SWISSNEW-ID:070172 PHOSPHATIDYLINOSITOL-4- PHOSPHATE 5-KINASE TYPE II ALPHA (EC 2.7.1.68) (PIP5KII- ALPHA) (1- PHOSPHATIDYLINOSITOL-4- PHOSPHATE KINASE) (PTDINS(4)P- 5-KINASE B ISOFORM) (DIPHOSPHOINOSITIDE KINASE) - MUS MUSCULUS (MOUSE), 405 aa.	Human Gene SWISSNEW-ID:070172 PHOSPHATIDYLINOSITOL-4- PHOSPHATE 5-KINASE TYPE II ALPHA (EC 2.7.1.68) (PIP5KII- ALPHA) (1- PHOSPHATIDYLINOSITOL-4- PHOSPHATE KINASE) (PTDINS(4)P- 5-KINASE B ISOFORM) (DIPHOSPHOINOSITIDE KINASE) - MUS MUSCULUS (MOUSE), 405 aa.	Human Gene SPTREMBL-ID:Q92961 MAP KINASE KINASE MEK5B - HOMO SAPIENS (HUMAN), 448 aa.	Human Gene SWISSPROT-ID:Q00532 SERINE/THREONINE-PROTEIN KINASE KKIALRE (EC 2.7.1) - HOMO SAPIENS (HUMAN), 358 aa.	Human Gene SWISSPROT- ID:Q00532 SERINE/THREONINE- PROTEIN KINASE KKIALRE (EC 2.7.1) - HOMO SAPIENS (HUMAN), 358 aa.
kinase	kinase	kinase	kinase	kinase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	DING	SILENT- NONCODING
Q B B B	даб	A	⋖ .	∢
TGTGTGTGTGT TGTG/gapJTGTTG GGGGGGGTGA GTGTGTGCG	1769 TTTGTGTATATG G TGTGTGTGTGT GT[G/gap]TTGGG GGGGGGTGAGT GTGTGCGCG			CTGGGGTGTCC AG[G/A]CTCACC AGGGGAGTCAG AATCTTCT
	1769	123	1406	8
	71 cg38438124	72 cg42923882	74 CG43948037	
ļ		4	7	

How the state of t

			72	6	19
			-		_
68	68	68	87	64	26
6.10E-189	6.10E-189	6.10E-189	3.00E-187	1.10E-164	3.60E-159
Human Gene SWISSPROT- ID:Q00532 SERINE/THREONINE- PROTEIN KINASE KKIALRE (EC 2.7.1) - HOMO SAPIENS (HUMAN), 358 aa.	Human Gene SWISSPROT- ID:Q00532 SERINE/THREONINE- PROTEIN KINASE KKIALRE (EC 2.7.1) - HOMO SAPIENS (HUMAN), 358 aa.	Human Gene SWISSPROT- ID:Q00532 SERINE/THREONINE- PROTEIN KINASE KKIALRE (EC 2.7.1) - HOMO SAPIENS (HUMAN), 358 aa.	Human Gene SPTREMBL-ID:Q12792 PROTEIN TYROSINE KINASE - HOMO SAPIENS (HUMAN), 350 aa.	Human Gene SPTREMBL-ID:Q16205 MYOTONIN PROTEIN KINASE - HOMO SAPIENS (HUMAN), 625 aa.	Human Gene SWISSPROT- ID:P49615 CELL DIVISION PROTEIN KINASE 5 (EC 2.7.1) (TAU PROTEIN KINASE II CATALYTIC SUBUNIT) (TPKII CATALYTIC SUBUNIT) (KINASE PSSALRE) (CRK6) - MUS MUSCULUS (MOUSE), 292 aa.
kinase	kinase	kinase	Kinase	kinase	kinase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT. NONCODING	SILENT- NONCODING
υ	O	U	U	deb	⋖
ပ	⋖		ල	ပ	O
1115 TCCCTGGGGTG C TCCAGGCTCAC CAG[G/C]GGAGT CAGAATCTTCTG GTTCTCCC	1124 TGTCCAGGCTC A ACCAGGGGAGT CAG[A/G]ATCTT CTGGTTCTCCCT TTTCATCA	1134 CACCAGGGGAG 1 TCAGAATCTTCT GG[T/C]TCTCCC TTTTCATCAAGT CTTCTAA	2409 TGTGGGTTGAC C AGATTTTTAAAA TA(G/C)AATTTAG AGTATTTGGGGT TTGTT	SCTGCTG IGCTGGG MgapJATCA SCATTTCT TCGG	610 ACGCAGGGGTC C CCCGCGCGCCGC CGC[G/A]ATGCA GAAATACGAGA AACTGGAAA
1115	1124	1134	2406	5568	610
75 cg43948037	76 cg43948037	77 cg43948037	78 cg42703622	79 cg43336176	80 cg43982923
12)/	<u>'</u>	¥	7)8

How the state of the section of the

	17		4
124	68 	00	304
5.50E-124	3.20E-89	0.00E+00	1.90E-304
Human Gene Homologous to SWISSNEW-ID:P54619 5'-AMP- ACTIVATED PROTEIN KINASE, GAMMA-1 SUBUNIT (AMPK GAMMA- 1 CHAIN) - HOMO SAPIENS (HUMAN), 331 aa. Ipcis:SWISSPROT- ID:P54619 5'-AMP-ACTIVATED PROTEIN KINASE, GAMMA-1 SUBUNIT (AMPK GAMMA CHAIN) - HOMO SAPIENS (HUMAN), 331 aa.	Human Gene Similar to SWISSPROT-ID:Q15119 [PYRUVATE DEHYDROGENASE(LIPOAMIDE)] KINASE ISOZYME 2 PRECURSOR (EC 2.7.1.99) (PYRUVATE DEHYDROGENASE KINASE ISOFORM 2) - HOMO SAPIENS (HUMAN), 407 aa.lpcls:SPTREMBLID:Q15119 PYRUVATE DEHYDROGENASE KINASE - HOMO SAPIENS (HIMAN) 407 aa.lpcls:SPTREMBLUDEHYDROGENASE KINASE - HOMO SAPIENS (HIMAN) 407 aa.lpcls:SPTREMBLUMAN) SAPIENS (HIMAN) 407 aa.lpcls:SPTREMBLUMAN) SAPIENS (HIMAN) 407 aa.lpcls:SPTREMBLUMAN) 407 aa.lpcls:SPTREMBLUMAN AB.lpcls:SPTREMBLUMAN AB.lpcls	Human Gene SWISSNEW-ID:P04626 ERBB-2 RECEPTOR PROTEIN- TYROSINE KINASE PRECURSOR (EC 2.7.1.112) (P185ERBB2) (NEU PROTO-ONCOGENE) (C-ERBB-2) - HOMO SAPIENS (HUMAN), 1255 aa.lpcis:SWISSPROT-ID:P04626 ERBB-2 RECEPTOR PROTEIN- TYROSINE KINASE PRECURSOR (EC 2.7.1.112) - HOMO SAPIENS (HUMAN), 1255	Human Gene SWISSPROT- ID:Q07866 KINESIN LIGHT CHAIN (KLC) - HOMO SAPIENS (HUMAN), 569 aa.
Source to book	SWIS E POAN YTE NASE SAPIE SAPIE SPTR	EW-ID RECUI RECUI (C-ER IAN), D:P04 ROTE RECUI	SHT (SHL)
nologo 54619 54619 7EIN NIT (A NIT (A P-ACT E, GA GAM (HUM	iliar to SE(LII SE(LII SE 2 PF RUVA SE KI I pcls:	ISSNE SE PR SE PR SE PR (HUM) (CHUM) OR P SE PR	ISSPF SIN LIC
Human Gene Homologous to SWISSNEW-ID:P54619 5'-AMP- ACTIVATED PROTEIN KINASE, GAMMA-1 SUBUNIT (AMPK GA 1 CHAIN) - HOMO SAPIENS (HUMAN), 331 aa. pcis:SWISSPI ID:P54619 5'-AMP-ACTIVATED PROTEIN KINASE, GAMMA-1 SUBUNIT (AMPK GAMMA CHAI HOMO SAPIENS (HUMAN), 331	Human Gene Similar to SWISSP ID:Q15119 [PYRUVATE DEHYDROGENASE(LIPOAMIDE KINASE ISOZYME 2 PRECURSI (EC 2.7.1.99) (PYRUVATE DEHYDROGENASE KINASE ISOFORM 2) - HOMO SAPIENS (HUMAN), 407 aa. pcls:SPTREN ID:Q15119 PYRUVATE DEHYDROGENASE KINASE -	Human Gene SWISSNEW-ID:P04 ERBB-2 RECEPTOR PROTEIN- TYROSINE KINASE PRECURSOI (EC 2.7.1.112) (P185ERBB2) (NEI PROTO-ONCOGENE) (C-ERBB-2 HOMO SAPIENS (HUMAN), 1255 aa.lpcls:SWISSPROT-ID:P04626 ERBB-2 RECEPTOR PROTEIN- TYROSINE KINASE PRECURSOI (EC 2.7.1.112) - HOMO SAPIENS	Human Gene SWISSPROT- ID:Q07866 KINESIN LIGHT (KLC) - HOMO SAPIENS (H 569 aa.
IN GER SNEV VATEI VA-1 (MA-1 (AIN) - AIN), 3 TEIN M	5119 5119 7DRO 7DRO 7DRO 7DRO 7DRO 7DRO 7DRO 7DRO	in Ger SSINE SSINE 17.1.1 10-ON 5 SAF SISSW SINE SSINE	in Ger 7866 - HOI a.
Hume SWIS ACTIV GAMI 1 CHV (HUM ID:P5 PROJ SUBL	Huma DENO DENO KINA KINA CEC 2 DENO ISOF HUM HOM HOM	Huma FRBE (EC 2 PRO1 HOM aa.lpc ERBE ERBE (EC 2	Human ID:Q07a (KLC) - 569 aa.
<u>8</u>	951	ceptor	sin
kinase	kinase		kinesin
DING	DING	DING	DING
SILENT- NONCODING	NONCODING	NONCODING	SILENT- NONCODING
ω z	の Z		o z
U	U	⋖	—
4	∢	O	O
ACATTCAAGCTC GGTGTTGTTTCA C[A/C]CGCGGTGC GCCCGGCTG GGCGGTG	CGCTGCCCGCG CGGGGACCACA ACC[A/C]AAGTC GCGGCCGCCGC AGCCATGCG	CACCACGATGC GGACCCCACTG CCC[G/A]GCTCG ACCTCCTCGGG AGGGGGCGC	TCGGCGCACAG TCGCTGCTCCG CGC[G/T]CGCGC CCGGCGGCGCT CCAGGTGCT
ACATTCAA GGTGTTG1 C[A/C]CGC GCCCGG GGCGGTG	CGCTGCCCGCG CGGGGACCACA ACC[A/C]AAGTC GCGGCCGCCGC AGCCATGCG	CACCACGATGC GGACCCCACTG CCC[G/A]GCTCG ACCTCCTCGGG AGGGGGCGC	TCGGCGCACAG TCGCTGCTCCG CGC[G/T]CGCGC CCGGCGGCGCCCT
688 ACATTCAAGCTC GGTGTTGTTTCA C[A/C]CGCGTGC GCCCGGCTGC GGCGGTG	77 CGCTGCCCGCG CGGGGACCACA ACC[A/C]AAGTC GCGGCCGCCGC AGCCATGCG	CACC GGAC CCCIC ACCT AGGC	300 TCGGCGCACAG TCGCTGCTCCG CGC[G/T]CGCGC CCGGCGGCGCT
889	77	4772 CACCACGATGC GGACCCCACTG CCC[G/A]GCTCG ACCTCCTCGGG AGGGGGCGC	300
503	325	317	124
81 cg43265203	82 cg43966625	83 cg44004317	84 cg43925424
31 Cg/	32 cg ²	33 094	34 cg ²

the trial with the first and then offer it also after the trial the trial than the trial

9		15	σ
2.70E-60	3.50E-81	0.00E+00	9.40E-248
Human Gene Similar to SWISSPROT-ID:Q07866 KINESIN LIGHT CHAIN (KLC) - HOMO SAPIENS (HUMAN), 569 aa.	Human Gene Similar to SPTREMBL-ID:P91197 SIMILAR TO LIGAND-GATED IONIC CHANNEL PROTEIN -CAENORHABDITIS ELEGANS, 461 aa.		Human Gene SWISSNEW-ID:Q13451 51 KD FK506-BINDING PROTEIN (FKBP51) (PEPTIDYL-PROLYL CIS- TRANS ISOMERASE) (EC 5.2.1.8) (PPIASE) (ROTAMASE) (54 KD PROGESTERONE RECEPTOR- ASSOCIATED IMMUNOPHILIN) (FKBP54) (P54) (FF1 ANTIGEN)- HOMO SAPIENS (HUMAN), 457 aa. pcls::SWISSPROT-ID:Q13451 51 KD FK506-BINDING PROTEIN (FKBP51) (PEPTIDYL-PROLYL CIS- TRANS ISOMERASE) (EC 5.2.1.8) (PPIASE) (ROTAMASE) (54 KD PROGESTERONE RECEPTOR- ASSOCIATED IMMUNOPHILIN) (FKBP54) (P54) (FF1 ANTIGEN)- HOMO SAPIENS (HUMAN), 457 aa.
kinesin	misc_ch annel	nucl_rec pt	pt pt
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	NONCODING NONCODING
⋖	<	O	4
<u>ن</u>	O	⋖	 -
242 TAGAGGACCAC AGGGTGCAGAG AGG[G/A]TGTCC TGAGGGTCCTT CCTAAGAGG	2540 TTGAGCCTCCA GGCTTCTCCTTG AC[G/A]TCATTC CTCTCCTTCCTT GCTGCAA	2349 GAACTGCAGTC ATGCACAGGTG GCG[A/G]CCAGC CAAAGGCATTTT ACTGAGCA	1358 AAGCTTAGTACT AAAAAGTCAAAA T[T/A]TTTTGCA TGATAGAGGAG TGTAAA
242	2540	2349	1358
85 cg44002977	86 cg27803682	87 cg43971768	88 cg43987181

9			000	7.22
		11 (11q24)	22 (22q11.2 1)	22 (22q11.2 1)
4.70E-237	0.00E+00	4.70E-253	2.30E-205	2.30E-205
Human Gene SWISSPROT- ID:Q03181 PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR BETA (PPAR-BETA) (PPAR-DELTA) (NUCLEAR HORMONE RECEPTOR 1) (NUC1) (NUC1) - HOMO SAPIENS (HUMAN), 441 aa.	nuclease Human Gene SWISSNEW-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN [CONTAINS: REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE] - HOMO SAPIENS (HUMAN), 874 aa. pcls:SWISSPROT-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN (REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE) - HOMO SAPIENS (HUMAN), 874 aa.	oncogen Human Gene SWISSPROT- e ID:Q01543 FLI-1 ONCOGENE (ERGB TRANSCRIPTION FACTOR) - HOMO SAPIENS (HUMAN), 452 aa.	oncogen Human Gene SPTREMBL-ID:Q13746 e BCR-ABL MRNA OF ACUTE LYMPHOCYTIC LEUKAEMIA (ALL) PATIENTS - HOMO SAPIENS (HUMAN), 386 aa.	Human Gene SPTREMBL-ID:Q13746 BCR-ABL MRNA OF ACUTE LYMPHOCYTIC LEUKAEMIA (ALL) PATIENTS - HOMO SAPIENS (HUMAN), 386 aa.
nucl_rec pt	nuclease	oncogen e	oncogen	oncogen e
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	-	O	∢	ပ
<u></u>	O	<u></u>	o	⋖
143 GCCGGGGACAGT GTTGTACAGTGT TTTTCGGGGCATGGGCATGCACACAGATACACAGAGATACACACAGAGATACACACAGAGATACACACAGAGATACACACAGAGATACACACAGAGAGAG	3497 CGGTGATATTAC AAAACAATGAAT T[C/T]GGAACTAT TATAGATTGGGC ACCTC	153 GCACAGGGGAG TGAGGGCCAGGG CGCIT/CJCGCAG GGGGCACGCAG GGAGGGCCC	3136 CATCATAGAACT CCTTGTGGATCT C[G/A]TAGAGCT CAGGCACTTTG AAGAAGA	GACAGGACCCA TTTCTCATCTC CA[A/G]GCCCTT TTCCAAGTCCAG CTCACTC
143	3497	153	3136	3312
89 cg43263644	90 cg44131079	91 cg44031914	92 cg43932550	cg43932550
68	06	91	92	66

govern the right of the first well than order to the other man than the train of the state of th

	7	6	က	ო [3 (3p21)
25	00	00	06		
1.90E-52	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.00E-288
oncogen Human Gene Similar to SWISSPROT- ID:P24407 RAS-RELATED PROTEIN RAB-8 (ONCOGENE C-MEL) - HOMO SAPIENS (HUMAN), AND CANIS FAMILIARIS (DOG), 207 aa.		phosphat Human Gene SPTREMBL-ID:Q10728 ase SERINE/THREONINE PROTEIN PHOSPHATASE PP1 SMOOTH MUSCLE REGULATORY M110 SUBUNIT (110 KDA SUBUNIT) - RATTUS NORVEGICUS (RAT), 976 aa.	phosphat Human Gene SWISSPROT- ase ID:Q06190 PROTEIN PHOSPHATASE PP2A, 130 KD REGULATORY SUBUNIT (PR130) - HOMO SAPIENS (HUMAN), 1150 aa.		phosphat Human Gene SWISSNEW-ID:P30304 ase M-PHASE INDUCER PHOSPHATASE 1 (EC 3.1.3.48) - HOMO SAPIENS (HUMAN), 523 aa.lpcls:SWISSPROT-ID:P30304 M- PHASE INDUCER PHOSPHATASE 1 (EC 3.1.3.48) - HOMO SAPIENS (HUMAN), 523 aa.
oncogen e	phosphat ase	phosphat ase	phosphat ase	phosphat ase	phosphat ase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
4	G g D	gap	∢	∢	 -
O	 -	⋖	F	<u></u>	U
598 ACGGAGAAAGG AGCAGCTGAAA GTG[G/A]CCTGG ACTCCAGCCCT GGCTGTTGT	1076 CGTCACTATGTA CTTGGTTTTGCG C[T/gap]TTTTTTT CCTTAAAAAAAA AAGGCC	763 CTTCATAAAACC AATCGAGAGAG AG[A/gap]GGACT TAAAATCCTGCT TACCAAAA	1786 ATTGTTTTCAAC ATGAAGTAAAGA A[T/A]AACGTTGA GGCCTTTACTAT	1838 GTCTAATACTCC TGGGAGGAAGG AA[T/A]ATATCTA TCTAGTAAGAAT	2303 GAGCACCGTGT CAAGCTGCTCT GAG[C/T]CACAG TGGGATGAACC AGCCGGGGC
298	1076	763	1786	1838	2303
94 cg43967268	95 cg43920534	96 cg43920534	97 cg43926887	98 cg43926887	99 cg43088901
o	σ	6	0	တ	

17	16	ω		
6.00E-81	3.90E-59	4.00E-57	6.70E-185	6.70E-185
phosphat Human Gene Similar to SWISSPROT- ase ID:P51452 DUAL SPECIFICITY PROTEIN PHOSPHATASE 3 (EC 3.1.3.48) (EC 3.1.3.16) (DUAL SPECIFICITY PROTEIN PHOSPHATASE VHR) - HOMO SAPIENS (HUMAN), 185 aa.	polymera Human Gene Similar to SPTREMBL-se ID:Q15370 RNA POLYMERASE II TRANSCRIPTION FACTOR SIII P18 SUBUNIT - HOMO SAPIENS (HUMAN), 118 aa.	polymera Human Gene Similar to SPTREMBL-se ID:Q15369 RNA POLYMERASE II ELONGATION FACTOR SIII, P15 SUBUNIT - HOMO SAPIENS (HIJMAN) 112 aa	Human Gene SWISSPROT- ID:P48544 G PROTEIN-ACTIVATED INWARD RECTIFIER POTASSIUM CHANNEL 4 (GIRK4) (POTASSIUM CHANNEL, INWARDLY RECTIFYING, SUBFAMILY J, MEMBER 5) (HEART KATP CHANNEL) (KATP-1) (CARDIAC INWARD RECTIFIER) (CIR) (KIR3.4) HOMO SAPIENS (HI IMAN) 419 22	Human Gene SWISSPROT- ID:P48544 G PROTEIN-ACTIVATED INWARD RECTIFIER POTASSIUM CHANNEL, INWARDLY RECTIFYING, SUBFAMILY J, MEMBER 5) (HEART KATP CHANNEL) (KATP-1) (CARDIAC INWARD RECTIFIER) (CIR) (KIR3.4)
phosph ase	polyme se	polyme se	potassiu m_chann el	potassiu m_chann el
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
Q.	ab	Ω		
6)	e 6	deb	O	-
<u></u>	648 TGGGGGAAATG C GGCCTCTTGGG GGT[C/gap]TCAC TGCACGGCTTG TTCATTGGCA	331 TACGAATTGGCA C TATTTGTTTATTT [C/gap]TCAGTTT GTGAAAATGTCC TTAATT	4375 CGAGACCAGCC A TGGCCAACATG GTG[A/C]AACCC CATCTCTACTAA AAATACAA	4389 CCAACATGGTG C AAACCCCATCTC TA[C/T]TAAAAAT ACAAAAATTAGC CGGGCG
100 cg43920213	101 cg43969348	102 cg43966692	103 cg43265754	104 cg43265754

4	6 (6pter)	20 (20p11.2	φ	22 (22q12.2	-
7.70E-150	1.60E-124	0.00E+00	0.00E+00	5.40E-133	4.80E-123
reductas Human Gene Homologous to SWISSPROT-ID:P36959 GMP REDUCTASE (EC 1.6.6.8) (GUANOSINE 5'-MONOPHOSPHATE OXIDOREDUCTASE) - HOMO SAPIENS (HUMAN), 345 aa.	Human Gene Homologous to SWISSPROT-ID:P16083 NAD(P)H DEHYDROGENASE (QUINONE) 2 (EC 1.6.99.2) (QUINONE REDUCTASE) (DT-DIAPHORASE) (AZOREDUCTASE) (PHYLLOQUINONE REDUCTASE) (MENADIONE REDUCTASE) - HOMO SAPIENS (HUMAN), 231 aa.	Human Gene SWISSPROT- ID:P07204 THROMBOMODULIN PRECURSOR (FETOMODULIN) (TM) (CD141 ANTIGEN) - HOMO SAPIENS (HUMAN), 575 aa.	Human Gene TREMBLNEW- ID:G2304981 MYOSIN VI - HOMO SAPIENS (HUMAN), 1262 aa.	Human Gene Homologous to SWISSPROT-ID:P26044 RADIXIN (MOESIN B) - SUS SCROFA (PIG), 583 aa.	Human Gene Homologous to SPTREMBL-ID:000379 DELTA- CATENIN - HOMO SAPIENS (HUMAN), 792 aa.
reductas e	e e	struct	struct	struct	struct
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
			0		
<u> </u>	da B	<u>o</u>	gap	O	<u> </u>
538 ATGTTGTGTTGG C GTCCCCAGATT CC[C/T]ATTTGAT TTTCTTGCATCA TTTTCT	1020 GTAAGCAGCAC G ACTAGGAGGCC CAG[G/gap]CGC AGGCAAAGAGA AGATGGTGCTG	TGTATCATAGAA A ATGTAACTTTG T[A/G]AGACAAA GGTTTTCCTCTT	779 GACACTAGGAA A TTTCTTAAAAAG AA[A/gap]GATGT TGGAAGCAGAA CACTTACTA	2306 CTCTGACCTGA A GTCTTTGTTTTA AG[A/G]AGTATTT GTCTTCCTTTGT CTAATG	1006 GGACACCCTCG C GACCCTCGAAA ACG[C/T]CTCAG GAGCTATGAAG
538	1020	4041	779	2306	1006
105 cg43922227	106 cg43927549	107 cg43957486	108 cg43973080	109 cg42914441	110 cg43942318
105	106	107	108	109	110

<u> </u>	7 72	7	
1.80=-11/	1.80E-117	7.1.308.1	0.00E+00
Human Gene Homologous to SPTREMBL-ID:P97756 CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE IV KINASE ISOFORM - RATTUS NORVEGICUS (RAT), 505 aa.	Human Gene Homologous to SPTREMBL-ID:P97756 CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE IV KINASE ISOFORM - RATTUS NORVEGICUS (RAT), 505 aa.	Human Gene Homologous to SPTREMBL-ID:P97756 CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE IV KINASE ISOFORM - RATTUS NORVEGICUS (RAT), 505 aa.	synthase Human Gene SWISSPROT- ID:P35421 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE (EC 6.3.5.3) (FGAM SYNTHASE) (FORMYLGLYCINAMIDE RIBOTIDE AMIDOTRANSFERASE) (FGARAT) (ADENOSINE-2) (FGAMS) (FORMYLGLYCINAMIDE RIBOTIDE SYNTHETASE) - DROSOPHILA MELANOGASTER (FRUIT FLY),
struct	struct	struct	synthase
NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
		Q.	
O	<u> </u>	gap	⋖
431 CAGGCCAGGCC C TGTGTGCCAC CTG[C/G]ACAGG CATTCTCCTTGT TCCAGAAA	541 CGCAGCCCCAA C GTGTCAACAAG GGG[C/T]TCAAT AAGGCTTTCTG GGAGCCACT	590 CTGGCAGCTGG G TGGGATGGAAG GGG[G/gap]AGG TGGAAAAGGGC	7268 AGGTCAGGAGT G TTGAGACCAGC CTA[G/A]CCAAC ATGGTGAAACC CCATCTCTA
431	541	290	7268
111 cg43929933	112 cg43929933	113 cg43929933	114 cg43070037
111	112	113	117

0.00E+00	0.00E+00	0.00E+00
synthase Human Gene SWISSPROT- ID:P35421 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE (EC 6.3.5.3) (FGAM SYNTHASE) (FORMYLGLYCINAMIDE RIBOTIDE AMIDOTRANSFERASE) (FGARAT) (ADENOSINE-2) (FGAMS) (FORMYLGLYCINAMIDE RIBOTIDE SYNTHETASE) - DROSOPHILA MELANOGASTER (FRUIT FLY),	synthase Human Gene SWISSPROT- ID:P35421 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE (EC 6.3.5.3) (FGAM SYNTHASE) (FORMYLGLYCINAMIDE RIBOTIDE AMIDOTRANSFERASE) (FGARAT) (ADENOSINE-2) (FGAMS) (FORMYLGLYCINAMIDE RIBOTIDE SYNTHETASE) - DROSOPHILA MELANOGASTER (FRUIT FLY), 1354 aa.	synthase Human Gene SWISSPROT- ID:P35421 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE (EC 6.3.5.3) (FGAM SYNTHASE) (FORMYLGLYCINAMIDE RIBOTIDE AMIDOTRANSFERASE) (FGARAT) (ADENOSINE-2) (FGAMS) (FORMYLGLYCINAMIDE RIBOTIDE SYNTHETASE) - DROSOPHILA MELANOGASTER (FRUIT FLY), 1354 aa.
synthase	synthase	synthase
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
0	F	⊢ _
7269 GGTCAGGAGTT C TGAGACCAGCC TAG[C/G]CAACA TGGTGAAACCC CATCTCTAC	7352 GTGGGTGCCTG TAATCCCAGCTA CT[C/T]GGGAGG CTGAGGCAGGA GAATCACC	7365 ATCCCAGCTACT C CGGCAGCCTGA GG[C/T]AGGAGA ATCACCTGAACC TAGGAGG
726	7352	7365
115 cg43070037	116 cg43070037	117 cg43070037
14.	6 1	

graft for the state of the second sec

	8			o
0.00E+00	3.10E-59	2.20E-56	1.50E-254	3.50E-83
synthase Human Gene SWISSPROT- ID:P35421 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE (EC 6.3.5.3) (FGAM SYNTHASE) (FORMYLGLYCINAMIDE RIBOTIDE AMIDOTRANSFERASE) (FGARAT) (ADENOSINE-2) (FGAMS) (FORMYLGLYCINAMIDE RIBOTIDE SYNTHETASE) - DROSOPHILA MELANOGASTER (FRUIT FLY), 1354 aa.	synthase Human Gene Similar to SWISSPROT-ID:035696 ALPHA-2,8-SIALYLTRANSFERASE (EC 2.4.99) (ST8SIAII) (SIALYLTRANSFERASE X) (STX) (POLYSIALIC ACID SYNTHASE) - MUS MUSCULUS (MOUSE), 375 aa.	synthase Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.	Human Gene SWISSPROT- ID:P56159 GDNF RECEPTOR ALPHA PRECURSOR (GDNFR- ALPHA) (TGF-BETA RELATED NEUROTROPHIC FACTOR RECEPTOR 1) - HOMO SAPIENS (HUMAN), 464 aa.	Human Gene Similar to TREMBLNEW-ID:E307161 MITOCHONDRIAL VERY-LONG- CHAIN ACYL-COA THIOESTERASE - RATTUS NORVEGICUS (RAT), 453 aa.
synthase	synthase	synthase	tgfrecept or	thioester
NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
စ	O	O		deb
A	¥	—	ပ	⋖
7366 TCCCAGCTACTC GGGAGGCTGAG GC[A/G]GGAGAA TCACCTGAACCT AGGAGGC	240 AGTACGCCAGC CCGGGGGGCGCC CCG[A/C]ATGTA CATGTTCCACG CGGGATTCC	17 NACGCGTTGGC GTCGT[T/C]CTC GTTGAGCTCATC AATCCACCAC	811 ACACAGCCCCA GTTTGCTTTACA GC[C/G]CAAGTT ACAAACTGTCCC TTTAAAA	312 TCTAGATATTTA ACTGACCCACTA T[A/gap]TTCCTC AAGGATACTGC ATTTGGAC
7366	240	17	811	312
118 cg43070037	119 cg43123664	120 cg21428405	121 cg43982633	122 cg43054268
	•			

6	6 (6q14)	5 (5q13)	5 (5q13)	5 (5q13)	5 (5q13)	
3.50E-83	5.40E-252	4.40E-225 E	4.40E-225 5 (5q13)	4.40E-225 E	4.40E-225 5	2.50E-199
thioester Human Gene Similar to ase TREMBLNEW-ID:E307161 MITOCHONDRIAL VERY-LONG- CHAIN ACYL-COA THIOESTERASE - RATTUS NORVEGICUS (RAT), 453 aa.	Human Gene SWISSPROT- ID:P21554 CANNABINOID RECEPTOR 1 (CB1) (CB-R) (CANN6) - HOMO SAPIENS (HUMAN), 472 aa.	Human Gene SWISSPROT- ID:P25116 THROMBIN RECEPTOR PRECURSOR - HOMO SAPIENS (HUMAN), 425 aa.	Human Gene SWISSPROT- ID:P25116 THROMBIN RECEPTOR PRECURSOR - HOMO SAPIENS (HUMAN), 425 aa.	Human Gene SWISSPROT- ID:P25116 THROMBIN RECEPTOR PRECURSOR - HOMO SAPIENS (HUMAN), 425 aa.	Human Gene SWISSPROT- ID:P25116 THROMBIN RECEPTOR PRECURSOR - HOMO SAPIENS (HUMAN), 425 aa.	Human Gene SWISSPROT- ID:P35348 ALPHA-1A ADRENERGIC RECEPTOR (ALPHA 1A- ADRENOCEPTOR) (ALPHA-1C ADRENERGIC RECEPTOR) - HOMO SAPIENS (HUMAN), 466 aa.
thioester ase	tm7	tm7	tm7	tm7	tm7	tm7
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
дар	O	deb	dap	ď	_	O
448 GACTATATGATC A AAAGCCTTATAG C[A/gap]AAAAAA ATTTTTAATATT TGCAAA	259 TGAAGATTACCC / CCACACCTGTG TG[A/G]CAAGTG ATCAAAAAGGAA CAGGACC	3473 GGCAACAAAAG A CGAAACTCCATC TC[A/gap]AAAAA AAAGAGCTATAG GATCTTTA	3481 AAGCGAAACTC A CATCTCAAAAA AA[A/gap]GAGCT ATAGGATCTTTA CAATATAT	4462 TCCTCTGTCGG TGGCTGGCCGC GT[G/A]TATGAA GAAGACTAATTG GACACAG	4483 GCGTGTATGAA C GAAGACTAATTG GA[C/T]ACAGAG CCGTGATGAATT AAAGTCT	1796 GCCTCCCGGGT T TCAAGTGATTCT CC[T/C]GCCTCA GCCTCCCAGTA GCTGGGGAT
448	259	3473	3481	4462	4483	1796
123 cg43054268	124 cg43943775	125 cg42886565	126 cg42886565	cg42886565	128 cg42886565	129 cg43307001
123	124	125	126	127 0	128 (129

			19	19	lφ	10
			-	16	16	16
2.50E-199	2.50E-199	2.80E-190	4.50E-121	4.50E-121	4.50E-121	1.70E-51
Human Gene SWISSPROT- ID:P35348 ALPHA-1A ADRENERGIC RECEPTOR (ALPHA 1A- ADRENOCEPTOR) (ALPHA-1C ADRENERGIC RECEPTOR) - HOMO SAPIENS (HUMAN), 466 aa.	Human Gene SWISSPROT- ID:P35348 ALPHA-1A ADRENERGIC RECEPTOR (ALPHA 1A- ADRENOCEPTOR) (ALPHA-1C ADRENERGIC RECEPTOR) - HOMO	Human Gene SWISSPROT- ID:P21731 THROMBOXANE A2 RECEPTOR (TXA2-R) (PROSTANOID TP RECEPTOR) - HOMO SAPIENS (HUMAN), 369 aa.	Human Gene Homologous to SPTREMBL-ID:Q99732 TNF-ALPHA INDUCIBLE RESPONSIVE ELEMENT - HOMO SAPIENS (HUMAN), 228 aa.	Human Gene Homologous to SPTREMBL-ID:Q99732 TNF-ALPHA INDUCIBLE RESPONSIVE ELEMENT - HOMO SAPIENS (HUMAN), 228 aa.	Human Gene Homologous to SPTREMBL-ID:Q99732 TNF-ALPHA INDUCIBLE RESPONSIVE ELEMENT - HOMO SAPIENS (HUMAN), 228 aa.	Human Gene Similar to SWISSPROT- ID:Q13829 TUMOR NECROSIS FACTOR, ALPHA-INDUCED PROTEIN 1, ENDOTHELIAL (B12 PROTEIN) - HOMO SAPIENS
/ I II	tm7	tm7	tnf	tnf	tu l	<u> </u>
NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	OING	DING	NONCODING
<u> </u>			gap	gap	de	
	Ŋ		5	Ö .	Ď (0
ATGTTGGCCAG GCT[G/A]GTCTC GAACTCCTGAC CTCAAGTGA	. 0	2113 GGTGGATCACC C TGAGGTCACGA GTT[C/T]GAGAC CAGCCTGACCA ACATGGAGA		CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	AATGAAGGGGG AT[C/gap]AATGG TTACCACTATCG TTTTCAAC	CCCTTCCACC C[A/G]TCCCAAC CCCATTGCTAAC AACATG
190	2	211	- SS	034	633	
131 ca43307001		132 cg43047341	133 cg43903052 134 cc4306565	135 cn43965652	136 ca43985709	
3		132	32	35	36	

17	17	17	17	10 (10p15)	10 (10p15)	2
0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.40E-255	2.40E-255	6.40E-235
transcript Human Gene SWISSPROT- factor ID:Q02086 TRANSCRIPTION FACTOR SP2 (KIAA0048) - HOMO SAPIENS (HUMAN), 606 aa.	transcript Human Gene SWISSPROT- factor ID:Q02086 TRANSCRIPTION FACTOR SP2 (KIAA0048) - HOMO SAPIENS (HUMAN), 606 aa.	transcript Human Gene SWISSPROT- factor ID:Q02086 TRANSCRIPTION FACTOR SP2 (KIAA0048) - HOMO SAPIENS (HUMAN), 606 aa.	transcript Human Gene SWISSPROT- factor ID:Q02086 TRANSCRIPTION FACTOR SP2 (KIAA0048) - HOMO SAPIENS (HUMAN), 606 aa.	transcript Human Gene SWISSPROT- factor ID:P23771 TRANS-ACTING T-CELL SPECIFIC TRANSCRIPTION FACTOR GATA-3 - HOMO SAPIENS (HUMAN). 443 aa.	transcript Human Gene SWISSPROT- factor ID:P23771 TRANS-ACTING T-CELL SPECIFIC TRANSCRIPTION FACTOR GATA-3 - HOMO SAPIENS (HUMAN). 443 aa.	transcript Human Gene SWISSPROT- factor ID:Q60632 COUP TRANSCRIPTION FACTOR 1 (COUP-TF1) (COUP-TFI) - MUS MUSCULUS (MOUSE), 422 aa.
transcript factor	transcript factor	transcript factor	transcript factor	transcript factor	transcript factor	transcript factor
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	₹	∢	deb	gap	V	gap
1118 GCCACAGGGCT G CCTTTCCACCAG GG[G/gap]CCCA GGGAGGACACA GGTGGGGGGAC	1173 TCTTCAGGGCC G TCCCGCCGCAG TTG[G/A]CCTTA CAAGTTCTTCGT GACCAGGT	916 AAGGGTTCCCA G CGCGTCCTGGT TTA[G/A]AACGT CTCATTGGGCA CGGCCAGTG	930 GTCCTGGTTTAG G AACGTCTCATTG G[G/gap]CACGG CCAGTGTCCAC AGTCTGGGC	923 TATGCAATGTTC T AGCATTTTTTT T[T/gap]TCACAG CACTAGAGACC CTGTTAAA	937 CATTTTTTTTT G CACAGCACTAG A[G/A]ACCCTGT TAAATAGGGGAT ATGAGT	543 CAGACAGACAC T AAGGTTCTTTT TT[T/gap]GTTTG TTTTGTTTTTCC TCGCCAAC
137 cg44027791	138 cg44027791	139 cg44027791	140 cg44027791	141 cg43984418	142 cg43984418	143 cg43945210
13.	138	136	140	141	142	143

	9	16	16	K C	
		3 (3p25)	3 (3p25)	17 (17q21)	
6.90E-68	1.30E-115	0.00E+00	0.00E+00	0.00E+00	5.40E-52
9.0	1.30	0.0	0.0	0.0	
transcript Human Gene Similar to TREMBLNEW-ID:G2920821 TRANSCRIPTION FACTOR T-BOX 5 HOMO SAPIENS (HUMAN), 518 aa.	transfera Human Gene Homologous to TREMBLNEW-ID:G2738933 GLUTATHIONE TRANSFERASE (EC 2.5.1.18) - HOMO SAPIENS (HUMAN), 222 aa.	transport Human Gene SWISSPROT-ID:P31641 SODIUM- AND CHLORIDE-DEPENDENT TAURINE TRANSPORTER - HOMO SAPIENS (HUMAN), 620 aa.	transport Human Gene SWISSPROT-ID:P31641 SODIUM- AND CHLORIDE-DEPENDENT TAURINE TRANSPORTER - HOMO SAPIENS (HUMAN), 620 aa.	transport Human Gene SWISSNEW-ID:P02730 BAND 3 ANION TRANSPORT PROTEIN (ANION EXCHANGE PROTEIN 1) (AE 1) - HOMO SAPIENS (HUMAN), 911 aa.lpcis:SWISSPROT-ID:P02730 BAND 3 ANION TRANSPORT PROTEIN (ANION EXCHANGE PROTEIN 1) (AE 1) - HOMO SAPIENS (HUMAN), 911 aa.	transport Human Gene Similar to SWISSPROT-ID:Q15012 GOLGI 4-TRANSMEMBRANE SPANNING TRANSPORTER MTP (KIAA0108) -HOMO SAPIENS (HUMAN), 233 aa.
transcript factor	transfera se	transport	transport	transport	transport
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
dap	O	gap	deb	∢	⋖
O	A	ග	 -	ပ	ပ
915 TAGGGGCTGAA ACGCAGTCGGG GCC[G/gap]GGC ACTGCCCAGGA AGGGACTCCGG	510 TAGACAATACCA A TCTCTAGGAACA C[A/G]CTGTCAC TCACACATGGAT GTGTTG	TGTGCGTGCGT GTGTGTGTGT TGT[G/gap]TGTA TCGTGTGTGTGT GTTTTGTTT	2408 GTGCGTGCGTG TGTGTGTGTGT GTG[T/gap]GTAT CGTGTGTGTGT GTTTGTTTT	388 CCCAGTCAAGA TAAGGAGGATC CCA[G/A]CAGCT CCCTCCGAGG TTGGGCTCT	AGCAGCAGCTG TTGGAGTAGAA CCG[C/A]GTCCA GGGCGCGACCA TCTTCATCG
915	510	2407	2408	388	3322
144 cg43917396	145 cg43949162	146 cg41653463	147 cg41653463	148 cg43285429	149 cg43918636
144	145	146	147	148	149

					Ø	_
3.30E-101	3.30E-101	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ubiquitin Human Gene Homologous to SWISSPROT-ID:P51965 UBIQUITIN- CONJUGATING ENZYME E2-21 KD UBCH6 (EC 6.3.2.19) (UBIQUITIN- PROTEIN LIGASE) (UBIQUITIN CARRIER PROTEIN) - HOMO SAPIENS (HUMAN), 193 aa.	Human Gene Homologous to SWISSPROT-ID:P51965 UBIQUITIN- CONJUGATING ENZYME E2-21 KD UBCH6 (EC 6.3.2.19) (UBIQUITIN- PROTEIN LIGASE) (UBIQUITIN CARRIER PROTEIN) - HOMO SAPIENS (HUMAN), 193 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14162 KIAA0149 PROTEIN - HOMO SAPIENS (HUMAN), 830 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA25444 KIAA0518 PROTEIN -HOMO SAPIENS (HUMAN), 650 aa (fragment).	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA25444 KIAA0518 PROTEIN -HOMO SAPIENS (HUMAN), 650 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14511 ENHANCER OF FILMENTATION 1 - HOMO SAPIENS (HUMAN), 834 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q12996 CLEAVAGE STIMULATION FACTOR 77KDA SUBUNIT - HOMO SAPIENS (HUMAN), 717 aa.
ubiquitin	ubiquitin	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	∢	-	F	-	O	<u>-</u>
A	O	O	gap	gap	⊢	ပ
721 TAAGCAGCTCTC TTCTGTGACAGA C[A/gap]AATCAT GTAAGAACTGT GAAACCCC	743 GACAAATCATGT AAGAACTGTGAA A[C/A]CCCAGTT TATGTAGCGTAT CTCTTG	3075 ATTTTTAGTAGA GACGGGGTTTC AC[C/T]GTGTTA GCCAGGATGGT CTCGATCT			3972 CTTCTACCCCAT GGGTAAATGTAT T[T/C]ACATATTA CCAAGAGAAGA AGCACA	501 AGGAATCCTGG ACAGGAGTTTTC TG[C/T]AGAGGC GTTTAAAACCCT ACCGAAT
721	743	3075	1999	1999	3972	501
150 cg44005525	151 cg44005525	152 cg40986905	153 cg43303871	154 cg43303871	155 cg43918386	156 cg43923712
15(15.	152	153	154	155	156

greg greft with only grety with small sign only off small stand from greft that some stands were found that the stands and the small throughout the stands that the stands and the stands are stands

	17	17		21	21 (21q22.1)
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
UNCLAS Human Gene SPTREMBL- SIFIED ACC:015089 KIAA0385 - HOMO SAPIENS (HUMAN), 1370 aa.	Human Gene TREMBLNEW- ACC:AAD22032 THYROID HORMONE RECEPTOR- ASSOCIATED PROTEIN COMPLEX COMPONENT TRAP240 - HOMO SAPIENS (HUMAN), 2174 aa.	UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD22032 THYROID HORMONE RECEPTOR- ASSOCIATED PROTEIN COMPLEX COMPONENT TRAP240 - HOMO SAPIENS (HUMAN), 2174 aa.	Human Gene SPTREMBL- ACC:O60300 KIAA0553 PROTEIN - HOMO SAPIENS (HUMAN), 1095 aa (fragment).	UNCLAS Human Gene SWISSPROT- SIFIED ACC:P53794 SODIUM/MYO- INOSITOL COTRANSPORTER (NA(+)/MYO-INOSITOL COTRANSPORTER) - Homo sapiens (Human), 718 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q13009 T-LYMPHOMA INVASION AND METASTASIS INDUCING PROTEIN 1 (TIAM1 PROTEIN) - Homo sapiens (Human), 1591 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	deb	дар	∢	dap	∢
189 GCTAACTGGTG A ACAGTTATAAAA AC[AG]CAAAAA GGAGCCTGGGA AACAGCAA	382 AAAAACAAGTTT A CAGTAAAAAAA A[A/gap]ACTAAA ACAAACACTGAA GTAGAGT	383 AAAACAAGTTTC A AGTAAAAAAAAA A[A/gap]CTAAAA CAAACACTGAA GTAGAGTT	304 ACTGTATTATTT G ATTTACATGGGC T[G/A]AAAGCAA AGAAAATGAGT	10186 TAGTTTGTAAGA A ACTGTACAAAAA A[A/gap]TGCTTC TGGAGATTTCTT TGGCAGA	1956 TTTGGGATCCTG G ATCAATTCTTTC T[G/A]ATGTTGTT GAAAATGACAAA GTTGG
189	382	383	304	10186	1956
157 cg43936083	158 cg43936393	159 cg43936393	160 cg43940465	161 cg43940880	162 cg43950657
157	158	159	160	161	162

21 (21q22.1)	16 (12q12)	-		-	
	0.00E+00	0.00E+00	0.00E+00	0	0
UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q13009 T-LYMPHOMA INVASION AND METASTASIS INDUCING PROTEIN 1 (TIAM1 PROTEIN) - Homo sapiens (Human),	Human Gene SPTREMBL- ACC:Q61123 MATERNAL EMBRYONIC MESSAGE 3 (MEM3) - MUS MUSCULUS (MOUSE), 754 aa.	Human Gene TREMBLNEW- ACC:BAA20795 KIAA0337 PROTEIN - HOMO SAPIENS (HUMAN), 1510 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA20795 KIAA0337 PROTEIN-HOMO SAPIENS (HUMAN), 1510 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA20795 KIAA0337 PROTEIN HOMO SAPIENS (HUMAN), 1510 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:Q99743 NEURONAL PAS DOMAIN PROTEIN 2 (NEURONAL PAS2) (MEMBER OF PAS PROTEIN 4) (MOP4) - Homo sapiens (Human), 824 aa.
SIFIED	SIFIED	UNCLAS	UNCLAS		
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	gap	O	4	₹	O
				O	—
2033 CAGCTGCCAAA A ACCGTGTGTGC AAG[A/G]GCGCG ACCTAAGGGGA	485 TGAAGCAAACAA A ACAAACAAAAAA A[A/gap]GGAGAG CTTCATTAGTAG	1011 GCGCATGGGTC T CCTCCAGGAAG GCT[T/G]GGTTA GAGTCCCAGGG	CCCTCAGCTTTG G GGGGGTCCTTC CT[G/A]AAGGGG CTTCCCTTGGCA GAAGGGG	873 AGCATCTTGATC (TAGAGGACTGA GG[G/A]CAGCCC CATCAGGCTGG GGCTGG	3287 AGCTACACAGA GGAAATAACTTA GGIT/CJACTTTCT GTTTTTAAAA AAAATA
2033	485	1011	551	873	3287
163 cg43950657	164 cg43973740	165 cg43980521	166 cg43980521	167 cg43980521	168 cg44019839
163	164	165	166	167	168

m	m	-	-	2		
0	0	0	0	1.5E-303	2.7 E-299	4.3E-299
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q92560 BRCA1 ASSOCIATED PROTEIN 1 (MYELOBLAST KIAA0272) - HOMO SAPIENS (HUMAN), 729 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q92560 BRCA1 ASSOCIATED PROTEIN 1 (MYELOBLAST KIAA0272) - HOMO SAPIENS (HUMAN), 729 aa.	Human Gene SPTREMBL- ACC:Q13471 REPLICATION CONTROL PROTEIN 1 - HOMO SAPIENS (HUMAN), 861 aa.	- JN HOMO aa.	а.	I CALM NS	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075057 KIAA0469 PROTEIN - HOMO SAPIENS (HUMAN), 539 aa.
SIFIED	SIFIED	SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
∢	∢	ď	Ø	O	⋖	F
787 AGAAGACCTGG G CTTCCTTACAAC AG[G/A]GACAGG CTGGTGGCTGG	869 GCCCCCAGCTA GGGACCCTGTAGTTG[G/A]GACCGTTACATACATACAAGGACCTGATACAAGGACCTG	2876 TTCTGAGACAG G GGTCTTGCTCT GTC[G/A]CCCAG GCTGGAGTGCA ATGGCACGA	2955 GGGCTCAAGTG A ATCCTCCCACCT CA[A/G]CCTCCC GAGTAGCTGAG ACTACAGG	650 GGTCTCCTCAG T TGGTCTATTTTA GG[T/G]GTGGTT TTTTTTTTTTTTTTA TTACTG	2111 GAGCACAGATA T CAGTTTATGTAA CT[T/A]GATGGA AGAAATGGAAT	1142 GCTCAGCAGCC C CCTAGGAAGTTA AG[C/T]GAGAGC TACAGGGCAGG GGGGCTCC
169 cg44021891	170 cg44021891	171 cg44921773	172 cg44921773	173 cg43961485	174 cg43985955	175 cg44916647

		14	14	C)	22	22
4.3E-299	1E-297	5E-289	5E-289	7.2E-281	4.6E-279	4.6E-279
UNCLAS Human Gene SPTREMBL- SIFIED ACC:075057 KIAA0469 PROTEIN - HOMO SAPIENS (HUMAN), 539 aa.	Human Gene TREMBLNEW- ACC:AAC16046 FIP2 - HOMO SAPIENS (HUMAN), 577 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q13573 NUCLEAR PROTEIN SKIP (SNW1 PROTEIN) (NUCLEAR RECEPTOR COACTIVATOR NCOA- 62) - Homo sapiens (Human). 536 aa.			UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14776 LZTR-1 - HOMO SAPIENS (HUMAN), 552 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14776 LZTR-1 - HOMO SAPIENS (HUMAN), 552 aa.
UNCLAS SIFIED	SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	ပ	-	O	⊢	ď	-
U	⊢ -	O	_	4	၅	
494 TCTGTACATGTA ACATGTGGCCA TG[C/gap]CCAGG CATCCCAGCAT CTTCCTGA	2082 GGTCACTGTTTC CTCGGCATCGT GC[T/C]GCCTGG AGAGACTCCC GACCGGGA	372 TAGAATTTTCTA (TCCCCCCCATT T[C/T]TCCAGTAA TAAAAAGTAGTG CTGGG	412 GTAGTGCTGGG TATCTGGCACCC AGA[T/C]TTGGTT TTATCCTGACC ATTTACA	1415 AGCCATGTACG / TGAAATTGCTTG GE[AT]ACCTGA ACTCCGGTGG AATTTCTA	660 3016 160A 2100	4030 CATCTTTATAGG C CCACCACTGTG TG[C/I]TTGCTG CGCCGGGCACC CACGAACT
494	2082	372	412	1415	277	4030
176 cg44916647	177 cg44021459	178 cg43926814	179 cg43926814	180 cg43931431	181 cg44031765	182 cg44031765
176	177	178	179	180	181	182

52	50			ഹ	Ω	00
3.60E-270	6.30E-258	6.60E-255	6.60E-255	5.30E-253	5.30E-253	4.80E-252
Human Gene SPTREMBL- ACC:P78395 PREFERENTIALLY EXPRESSED ANTIGEN OF MELANOMA - HOMO SAPIENS (HUMAN), 509 aa.	Human Gene TREMBLNEW- ACC:BAA34492 KIAA0772 PROTEIN- HOMO SAPIENS (HUMAN), 468 aa.	Human Gene SPTREMBL- ACC:O76021 PBK1 PROTEIN - HOMO SAPIENS (HUMAN), 516 aa.	Human Gene SPTREMBL- ACC:O76021 PBK1 PROTEIN - HOMO SAPIENS (HUMAN), 516 aa.	Human Gene SPTREMBL- ACC:Q13283 GAP SH3 BINDING PROTEIN - HOMO SAPIENS (HUMAN), 466 aa.	Human Gene SPTREMBL- ACC:Q13283 GAP SH3 BINDING PROTEIN - HOMO SAPIENS (HUMAN), 466 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:O75455 HERPESVIRUS ENTRY PROTEIN B - HOMO SAPIENS (HUMAN), 479 aa.
UNCLAS I	UNCLAS I	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
						gap
<u>0</u>	⋖		O	⟨₽	0	0
331 TGCTTTGTTGCT A TCAAGATGCATG C[A/C]CATCCTG GCTTTAGTGTCC	1118 ACAAAATTAGC G CGGGCATGGTG GC[G/A]CACGCC TGTAGTCCCAG	534 GAGTGCAGTGG C CTCACTGCAAC CTCIC/TJGCCTC CCAGGTTCAAG	552 CAACCTCGGC A TCCCAGGTTCAA GC[A/G]ATTCTC CTGCCTCAGCC	2720 ACCATTGCTTTG G GTCAATTCAACC T[G/A]GGGGGAA AAGAGTCAAATA	2802 CTCTGCACCAC TAGCACCGGGGGA TAG[T/c]ACAAA CCCTCACGCG TCTGCGTCC	192 CGGGCTCCCCA C TGCAGCCCTAG AGA[C/gap]GGG AGAAGTCCAGT GTGCTGTTCCA
331	1118	534	552	2720	2802	192
183 cg43970492	184 cg42847874	185 cg43951020	186 cg43951020	187 cg43971614	188 cg43971614	189 cg43962954
183 c	184 0	185 (186	187	188	189

3	41		2		വ	O
3.50E-240	2.50E-230	3.50E-224	9.40E-224	2.30E-220	2.10E-219	1.40E-215
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q92551 MYELOBLAST KIAA0263 - HOMO SAPIENS (HUMAN), 441 aa.	Human Gene TREMBLNEW- ACC:AAC97961 S164 - HOMO SAPIENS (HUMAN), 735 aa (fragment).	Human Gene TREMBLNEW- ACC:AAD20347 NEBULIN - HOMO SAPIENS (HUMAN), 977 aa (fragment).	Human Gene TREMBLNEW- ACC:AAC68871 METHYL-CPG BINDING PROTEIN MBD2 - HOMO SAPIENS (HUMAN), 411 aa.	Human Gene SPTREMBL- ACC:O75177 KIAA0693 PROTEIN - HOMO SAPIENS (HUMAN), 404 aa (fragment).	Human Gene SWISSNEW- ACC:Q93088 BETAINE HOMOCYSTEINE S- METHYLTRANSFERASE (EC 2.1.1.5) - Homo sapiens (Human),	
SIFIED	SIFIED		UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
F	O	∢	O	U	F	deb
U		O	<u>.</u>	<u></u>	<	U
1684 AGGCAACACCT CGGGGGGGGGCTIGGGGGGGGGGGGGGGGGGGGGGG	2176 TCAGATGACTTT A ACAACCAAGGG AG[T/C]ACACAG GGCAACAACAA ATTAGAGG		1072 AGTGGAAACATT TTGTTCAATTT C[T/C]AGGAATTT TCTTTGGGGA AAGTCG	3078 TCCCGAGTAGC TGGGATTACAG GCA[T/C]GCGCC ACCACGCCCAG CTAATTTT	TGAAAAGTATTA TGGAAATCACTG C[A/T]GCACAGG AAAAGTAATTCA GATGTT	342 AGACTAGTGTG GGCCTTGGGCC CCC[C/gap]TCAT TTTGACATCCTT CCAGATGGT
1684	2176	307	1072	3078	1567	342
190 cg43917689	191 cg43916785	192 cg43287642	193 cg43986954	194 cg42882543	195 cg43062833	196 cg43959148
190	191	192	193	194	195	196

22	® (-			
	8 (8q24.1)					
5.30E-214	6.00E-206	6.90E-206	6.20E-204	2.7E-203	2.7E-203	2.7E-203
5.30	9.00		6.20	2.7	2.71	2.76
UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD44491 PTD004 - HOMOSAPIENS (HUMAN), 396 aa.	Human Gene SWISSPROT. ACC:P48745 NOV PROTEIN HOMOLOG PRECURSOR (NOVH) - Homo sapiens (Human), 357 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:CAB46373 HYPOTHETICAL 71.0 KD PROTEIN - HOMO SAPIENS (HUMAN), 653 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:P78545 ESE-1B - HOMO SAPIENS (HUMAN), 371 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:P27539 EMBRYONIC GROWTH/DIFFERENTIATION FACTOR 1 PRECURSOR (GDF-1) - Homo sapiens (Human), 372 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:P27539 EMBRYONIC GROWTH/DIFFERENTIATION FACTOR 1 PRECURSOR (GDF-1) - Homo sapiens (Human), 372 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:P27539 EMBRYONIC GROWTH/DIFFERENTIATION FACTOR 1 PRECURSOR (GDF-1) - Homo sapiens (Human), 372 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gab	೮	∢	∢	<u> </u>	<u> </u>	<u>ග</u>
O		<u>ග</u>	ഠ	∢	4	4
385 GTTCACATTTAG TGAACCTGCATT T[C/gap]ATGGGG GGGGGGGGGC TACACAGTA	1340 TCTGTCTTTTAT TTAACAAAAAT G[T/C]AATTAACT GTAAACTTGGAA TCAAG	1516 CTATAGCAGAG GGGGTTATGGG GGC[G/A]GGAGG GTAGACTGACAT ACAGAAGT	ACGCCAGTCCA GAAAGAAGGTG CTG[G/A]AGCCC CTGCTCTGTCCT CTCCATCA	1787 TAAGGGTGAGC AGCAGCAGGAG CGC[A/T]TTGAA GAAGAAGTAGA AGGGGATGT		2073 GTACCGGAAGG CGTAGGAGGAG ACGIAGITGAGG ATGAGAGTGAC CACGTGGTG
888	134(1516	825	1787	1834	2073
197 cg43950766	198 cg43958860	199 cg43968205	Z00 cg43950996	201 cg44924222	202 cg44924222	203 cg44924222
197	20 20 10 10	98	0007	201 c	202 0	50 50 70 80 80 80 80 80 80 80 80 80 80 80 80 80

			2	2
3.7E-197	2E-189	3E-188	7.3E-185	7.3E-185
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q16842 BETA-GALACTOSIDE ALPHA-2,3-SIALYLTRANSFERASE (EC 2.4.99.4) (CMP-N- ACETYLNEURAMINATE-BETA- GALACTOSAMIDE-ALPHA-2,3- SIALYL- TRANSFERASE) - HOMO SAPIENS (HUMAN), 350 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:Q10981 GALACTOSIDE 2-L- FUCOSYLTRANSFERASE 2 (EC 2.4.1.69) (GDP-L-FUCOSE:BETA- D- GALACTOSIDE 2-ALPHA-L- FUCOSYLTRANSFERASE 2) (ALPHA(1,2)FT 2) (ALPHA(1,2)FT 2) (ALPHA(1,2)FT 2) (ALPHA-2- FUCOSYLTRANSFERASE) (SECRETOR BLOOD GROUP ALPHA-2- FUCOSYLTRANSFERASE) (SECRETOR FACTOR) (SE) (SE2)- Homo sapiens (Human) 343 aa.	Human Gene SWISSPROT- ACC:P10658 PROBABLE PHOSPHOSERINE AMINOTRANSFERASE (EC 2.6.1.52) (PSAT) (ENDOMETRIAL PROGESTERONE-INDUCED PROTEIN) (EPIP) - Oryctolagus cuniculus (Rabbit), 370 aa.	Human Gene SPTREMBL- ACC:Q15435 YEAST SDS22 HOMOLOG - HOMO SAPIENS (HUMAN), 360 aa.	Human Gene SPTREMBL- ACC:Q15435 YEAST SDS22 HOMOLOG - HOMO SAPIENS (HUMAN), 360 aa.
UNCLAS	SIFIED	SIFIED	UNCLAS	UNCLAS
NONCODING	NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
<u></u>	⋖	O	4	O
⋖	ပ	ڻ ن	ပ	gap
1943 GAGGACAAAAA CAGAAAGCCCT GTG[A/T]GTGTG GGAAAACTCCG CTGCAGAGA	2321 GGCTGGAGTGC AGTGGCACGAT CTC[G/A]GCTCA CTGCAAGCCTC CGCCTCCCG	2163 CTGGGGGCGTC CATGGTGCGGC GGC[G/C]AGGGC GGTGAGTCAGC CAAGGAGGA	199 ATCTGAAAATGG TGTGTGGCGTC GC[G/A]CGCGCC AGCTATCGTCA GTGCCTTT	222 CGCGCGCCAGC TATCGTCAGTGC CT[gap/G]TTATT GCCATTGGGTTT GTGACTGT
1943	2321	2163	199	222
204 cg44916575	205 cg42650960	206 cg43947129	207 cg43922383	208 cg43922383
204	205	206	207	208

2	0	N	13	ω		
7.3E-185	7.3E-185	7.3E-185	2.4E-177	1.70E-176	6.60E-175	3.20E-168
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q15435 YEAST SDS22 HOMOLOG - HOMO SAPIENS (HUMAN), 360 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q15435 YEAST SDS22 HOMOLOG - HOMO SAPIENS (HUMAN), 360 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q15435 YEAST SDS22 HOMOLOG - HOMO SAPIENS (HUMAN), 360 aa.	Human Gene TREMBLNEW- ACC:AAD41634 LYSOSOMAL TRAFFICKING REGULATOR 2 - MUS MUSCULUS (MOUSE), 703 aa (fragment).	Human Gene SPTREMBL- ACC:Q18476 C35A5.8 - CAENORHABDITIS ELEGANS, 1078 aa.	Human Gene TREMBLNEW- ACC:AAD34394 NUCLEAR PORE COMPLEX INTERACTING PROTEIN NPIP - HOMO SAPIENS (HUMAN), 350 aa.	Human Gene SWISSPROT- ACC:P49752 HYPOTHETICAL PROTEIN ZAP113 - Homo sapiens (Human), 309 aa (fragment).
UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	ڻ ا	<u>ග</u>	O	gap	ပ	⋖
239 TCAGTGCCTTTA TTGCCATTGGGT TTGCCATTGGGT TT/gap]GTGACT GTTGATATAGTG ACGACCT	250 ATTGCCATTGG A GTTTGTGACTGT TG[A/G]TATAGT GACGACCTCAG GAGCAACA	263 TTGTGACTGTTG C ATATAGTGACGA C[C/G]TCAGGAG CAACAGGTGGG	10 4 H 4 H	ACATTTGGAATT TTAGGTTTTT TY GapJGCCTCTC TACTGTGTCACT	2329 CTGAGTAGCTG T GGATTACAGGC GTG[T/C]GCCAC CATGCCCAGCT AATTTTTG	1131 GGACAGGGGTG G CAGCTGGCAGC CGA[G/A]AAAGG GGACCACCTCG GAGGGCTGG
239	250	263	458	1167	2329	1131
209 cg43922383	210 cg43922383	211 cg43922383	212 cg43953935	213 cg43933591	214 cg43949875	215 cg43100840
209	210	211	212	213	214	215

<u> </u>		<u></u>	o	α	7	
7					22	
.30E-162		5.1E-161	5.1E-161	6.7E-159	7.70E-152	
1.30E-162		4,		9		
apiens	ATE SICUS	Human Gene SPTREMBL- ACC:Q63965 TRICARBOXYLATE CARRIER - RATTUS NORVEGICUS (RAT), 357 aa (fragment).	Human Gene SPTREMBL- ACC:Q63965 TRICARBOXYLATE CARRIER - RATTUS NORVEGICUS (RAT), 357 aa (fragment).	Human Gene TREMBLNEW- ACC:AAD39906 FH1/FH2 DOMAIN- CONTAINING PROTEIN FHOS - HOMO SAPIENS (HUMAN), 1164 aa.	Auman Gene SWISSPROT- ACC:P55040 GTP-BINDING PROTEIN GEM (GTP-BINDING MITOGEN-INDUCED T-CELL PROTEIN) (RAS-LIKE PROTEIN KIR) - Homo sapiens (Human), 296 aa.	Human Gene I KEMBLINEWY ACC:BAA76848 KIAA1004 PROTEIN HOMO SAPIENS (HUMAN), 496 aa (fragment).
COT- ETICAL Homo si	IBL- 30XYL 10RVE(nt).	ABL-BOXYL BOXYL NORVE	MBL- RBOXY NORVI ent).	Human Gene TREMBLNEW- ACC:AAD39906 FH1/FH2 DOM/ CONTAINING PROTEIN FHOS - HOMO SAPIENS (HUMAN), 116	Human Gene SWISSPROT-ACC:P55040 GTP-BINDING PROTEIN GEM (GTP-BINDING MITOGEN-INDUCED T-CELL PROTEIN) (RAS-LIKE PROTEII - Homo sapiens (Human), 296 3 - Homo	AA1002 HUMAN
VISSPF POTHI 3127 - F a.	PTREM RICARE TTUS N fragme	PTRENTER TATUS I	Human Gene SPTREMBL ACC:Q63965 TRICARBO CARRIER - RATTUS NOI (RAT), 357 aa (fragment)	TREMI 006 FH1 3 PROT ENS (H	SWISS GTP-E EM (GT NDUCE RAS-LI ens (Hu	6 I KEN 8848 KI.
ene SV 140 HY V KIAAC 314 a	sene SI 3965 TI R - RA 57 aa (Gene S 33965 T ER - RA 357 aa	Gene \$63965	Gene AD399 AINING SAPIE	n Gene P5504C TEIN GI GEN-IN TEIN) (I	Human Gen ACC:BAA76 HOMO SAP (fragment).
Human Gene SWISSPROT- ACC:Q14140 HYPOTHETICAL PROTEIN KIAA0127 - Homo sapiens (Human), 314 aa.	Human Gene SPTREMBL- ACC:Q63965 TRICARBOXYLATE CARRIER - RATTUS NORVEGICUS (RAT), 357 aa (fragment).	Human Gene SPTREMBL- ACC:Q63965 TRICARBOXYLATE CARRIER - RATTUS NORVEGICL (RAT), 357 aa (fragment).	Human Gene SPTREMBL- ACC:Q63965 TRICARBOXYLATE CARRIER - RATTUS NORVEGICU (RAT), 357 aa (fragment).	Humar ACC:A CONT HOMC		ACC HON (frag
S	Ø	UNCLAS Human Gene SPTREMBL SIFIED ACC:Q63965 TRICARBO; CARRIER - RATTUS NOF (RAT), 357 aa (fragment)	UNCLAS	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD39906 FH1/FH2 DC CONTAINING PROTEIN FHCHOMO SAPIENS (HUMAN),	UNCLAS	UNCLAS Human Gene I KEMBLNEVE SIFIED ACC:BAA76848 KIAA1004 PI HOMO SAPIENS (HUMAN), 4 (fragment).
					1 0,	OING
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
SILENT- NONCOI	SILENT- NONCOI	SILE	SILI	NO NO	<u> </u>	0 2
		0	gap	4	◀	gap
<			A	O	0	0
STA G	20 TTC	TACA A ACAT TCAT		AGGA GAGT GGGGC	CCCAC CCCCAC ACATA GGGA	GGACC GGGG/ apjGGC GGCCC
TGTATATGTGTA CGTAGGTAGAT GT[G/A]TGCAGC	ALGCCAGG TTGCCAGG CAGAATGAGCT GCAGAGGTTTC CTC[CT]CTGCT	TACAATCCCTTA TTGAAGT TAAACATCTACA GAGTTGAAACAT AĮAICJTCTGTCAT	ATTAAATATAII ATCTA TAGTCTCACTTC TTACCAAAAAA A[Agap]CAATGA	CCCACTCA GCAGTGCAGGA GATGACAGAGT GAGGAAJAGGGC CCAGAGCAGAA	AAACAATTTTTG AAACAATTTTTG TTCAATGCCCAC CG/AJAGACATA TAGAATTGGGAA	969 TGCTGGGGACC ATGGATGGGGA GGA[G/gap]GGG CACAGGGCCCA GTGCAGATGAA
2077 TGTATATGTGTA CGTAGGTAGAT GT[G/A]TGCAGGT	TIGCCAGG TIGCCAGG TA61 CAGAATGAGCT GCAGAGGTTTC CTC[C/T]CTGCT	TACAATCCCTTA TTGAAGT 384 TAAACATCTACA GAGTTGAAACAT	ATTAAATATAII ATCTA 624 TAGTCTCACTTC TTACCAAAAAA A[A/gap]CAATGA	CCCACTCA 996 GCAGTGCAGGA GATGACAGAGT GAGGAJAGGGC CCAGAGCAGAA	TTCTGGCCCC 1687 AAACAATTTTTG TTCAATGCCCAC C[G/A]AGACATA TAGAATTGGGAA	969 77 A Q Q Q
2077	1461	38				74
22270	93462	393462	219 cg43993462	220 cg43329741	221 cg42910688	222 cg43967474
216 cg43922270	217 cg43993462	218 cg43993462	9 cg43	20 cg4;	221 cg ⁴	222 cg
216	217	21	27	8		

Ø	м 	4	N	-		
1.10E-150	3.30E-150	7.80E-149	1.20E-145	1.30E-141	Z.60E-141	1.10E-140
UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:AAC69899 SACM21 - MUS MUSCULUS (MOUSE), 721 aa.	Human Gene Homologous to SPTREMBL-ACC:Q15024 MRNA (HA0800) FOR ORF - HOMO SAPIENS (HUMAN), 290 aa (fragment).	Human Gene Homologous to TREMBLNEW-ACC:CAB43230 HYPOTHETICAL 33.3 KD PROTEIN - HOMO SAPIENS (HUMAN), 290 aa (fragment).			Human Gene Homologous to SPTREMBL-ACC:Q99773 HYPOTHETICAL 30.9 KD PROTEIN - HOMO SAPIENS (HUMAN), 285 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q99769 HYPOTHETICAL 26.4 KD PROTEIN - HOMO SAPIENS (HUMAN), 255 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
						_
<u> </u>	∢	⋖	<u>-</u>	H-	gap	gap
160 GCTGAGATCTTA C GGTCAAAAAGC TA[C/T]AGAAAA GAAATCACTTTG	AAAAACA 325 CCGGTTTAAAAG C GAAAAGTAAAAA A[C/A]AATCCAC AGTTGAGCAGTT	682 TCACAGCTGGA G TTGAAAGAGTAT TT[G/A]GGAAAT GTGCAATGTT	503 GCAGGGGTGT C CAGGGGAACCA AGGC/TJTCAGA TCATTCCCCCTT CATCTACA	2109 TATAAGTGTATG G CAATAGAAATTT G[G/T]ATTTTGTA ATAGAAAATTTA	112 GGCCCAGTCCT C GGGGCTCTGGG AGG[C/gap]TCAC GCTCCCTCCTC	792 GACGATGTGGA T CGCTGGGAGGG ATC[T/gap]TGGC GTTGGTTTTCTG AAAGCCAGG
160	325	985	200	210	1	79
223 cg43964140	224 cg43990820	225 cg43930377	226 cg43969800	227 cg43973724	228 cg43258867	229 cg42907867
223	224	225	226	227	228	22,

		7				10 (10q11.2
1.40E-140	1.40E-140	1.70E-139	1.70E-139	1.70E-139	1.70E-139	4.20E-134
Human Gene Homologous to TREMBLNEW-ACC:AAD28325 LUMAN2 - HOMO SAPIENS (HUMAN), 272 aa.	Human Gene Homologous to TREMBLNEW-ACC:AAD28325 LUMAN2 - HOMO SAPIENS (HUMAN), 272 aa.	Human Gene Homologous to SPTREMBL-ACC:O14681 PIG8 - HOMO SAPIENS (HUMAN), 318 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:014681 PIG8 - HOMO SAPIENS (HUMAN), 318 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:O14681 PIG8 - HOMO SAPIENS (HUMAN), 318 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:O14681 PIG8 - HOMO SAPIENS (HUMAN), 318 aa.	UNCLAS Human Gene Homologous to SIFIED SWISSNEW-ACC:P11226 MANNOSE-BINDING PROTEIN C PRECURSOR (MBP-C) (MBP1) (MANNAN-BINDING PROTEIN) (MANNOSE-BINDING LECTIN) - Homo sapiens (Human), 248 aa.
	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS SIFIED
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
<u> </u>	<u> </u>	<u>o</u>	dap	₹	<u> </u>	deb
(D)	O	∢	O C	0	O	∢
2819 AAAGCTGCTTTG G TTAGGTTCCTTA T[G/T]TTTTATTA ACTGTCTTTTCT CAGTT	2909 ATTITGICATTI TTTACATCAACT T[C/T]ATGGTCTT GTTTTACATGG	856 CAAAATTAACAA ATTCACAAAATA C[A/G]ACAGCTA GAATTACAAAAT CCATTC	952 GGCACAGGGAG AAAAACAAAGTG TT[C/gap]CAATC AGTCCAGGCAC AGGGACTGG	391 ACATTGACCCCT TCAGTTCCTATA T[G/A]CAGCACC CAATATTCCTTT GAAATA	515 CAGGTTTAGTGT TGTTGTAGTGG CA[C/T]TTGTCCA GAATTGGTACCT	1317 CTCTATGAACTC TGTTTTCTTTCT A[A/gap]TGAGAT ATTAAACCATGT AAAGAAC
2819	2909	856	952	391	515	1317
230 cg43920176	231 cg43920176	232 cg43950100	233 cg43950100	234 cg43950100	235 cg43950100	236 cg43132640
230	231	232	233	234	235	236

- -	-	0		50	0
4.80E-129	4.80E-129	1.80E-126	3.70E-126	4.00E-122	2.20E-121
4.80	9.4	·			2.2
UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:O75035 KIAA0447 PROTEIN - HOMO SAPIENS (HUMAN), 254 aa.	Human Gene Homologous to SPTREMBL-ACC:O75035 KIAA0447 PROTEIN - HOMO SAPIENS (HUMAN), 254 aa.	Human Gene Homologous to SPTREMBL-ACC:O60499 SYNTAXIN 10 - HOMO SAPIENS (HUMAN), 249 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:AAD29690 PUTATIVE ZINC FINGER TRANSCRIPTION FACTOR OVO1 - MUS MUSCULUS (MOUSE), 267 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:AAD27724 CGI- 15 PROTEIN - HOMO SAPIENS (HUMAN), 329 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:BAA83010 KIAA1058 PROTEIN - HOMO SAPIENS (HUMAN), 1534 aa (fragment).
UNCLAS H	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	ڻ ن	gap	O	gap	4
1	<	O	O	O	ڻ ن
1310 TGAAAGTTAGAG AGCTGCAAATCT C[T/gap]TAAGTA TCAATGTAAAGA AGCAGAT	511 AATGCCACTTTC A AGATGGAAGGG AA[A/G]TGAGAT GGAAAACAACA AAAAAGGA	923 AGCACTTTGGA GCTGGCCTCGC CCC[C/gap]TAGG AGGAGAGGGTC CCTCCTGGGT	1067 GGGGGTGCTCC TGGAAGCCCCA AGA[G/C]CATCC AGGATTGCCTC CCAGCTGCC	990 CAGCTCCCAGC TACCATGATGAG CC[C/gap]TGGC GGCTTGAGCAC	1088 TCTCATCTAGTG CTGAAGTCTGA GG[G/A]CTCTGC AGCATCAGACC CACCTCTA
1310	511	923	1067	066	1088
237 cg44938448	238 cg44938448	239 cg43949897	240 cg42549778	241 cg44028574	242 cg44035718
237 c	238 (239	240	241	242

7		7				
2.20E-121	0.50E-120	8.50E-120	8.50E-120	5.40E-118	5.40E-118	6.90E-118
UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:BAA83010 KIAA1058 PROTEIN - HOMO SAPIENS (HUMAN), 1534 aa (fragment).	Human Gene Homologous to SPTREMBL-ACC:O75391 SPERM ACROSOMAL PROTEIN - HOMO SAPIENS (HUMAN), 293 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:075391 SPERM ACROSOMAL PROTEIN - HOMO SAPIENS (HUMAN), 293 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:075391 SPERM ACROSOMAL PROTEIN - HOMO SAPIENS (HUMAN), 293 aa.	Human Gene Homologous to SWISSNEW-ACC:O14530 PROTEIN 1-4 - Homo sapiens (Human), 226 aa.	UNCLAS Human Gene Homologous to SIFIED SWISSNEW-ACC:O14530 PROTEIN 1-4 - Homo sapiens (Human), 226 aa.	Human Gene Homologous to SPTREMBL-ACC:O75839 TSC501 PROTEIN - HOMO SAPIENS (HUMAN), 227 aa.
UNCLAS H	SIFIED	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	9 NIO	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	Ø	O	deb	∢	deb	4
	<u></u>	 -	O	o	∢	O
1172 GAAGAGAAAGA T TAGGTTTAATTT ATĮT/CJTGAAGTT TTCATGGTGTTA ATATTT	1212 CCCCGCAGAC AGAGGCCGGAG GCT[T/G]TCTGG TGCAGCGATGT TTAATGGCA	1213 CCCCGCAGACA GAGGCCGGAGG CTT[T/G]CTGGT GCAGCGATGTT TAATGGCAA	1402 ATGTTACAGTAT GTACAAGACCC CT[C/gap]CCCTC GGGGGACGGG	492 AAATAGAGAATC CAGACCCTTCC CA[G/A]ATAATTT AAGAACTGAGTT	11CCTC 670 ATTTAAATCTGA AGCAGAAAAAA A[A/gap]GACAAT TTACAAAGAATT ATTGAGC	907 TCCCTGCACGC CTTTACGTCAGA CT[G/A]TCACCA CAAGAGCCTTG AGTGTCCA
1172	1212	1213	1402	492	920	<u>1</u> 06
243 cg44035718	244 cg43963595	245 cg43963595	246 cg43963595	247 cg43992566	248 cg43992566	249 cg43067745
243 (244	245	246	247	248	249

4	72		4	10	N .	4
1.00E-114	2.70E-111	4.30E-109	1.70E-107	1.20E-104		4.40E-100
9	Human Gene Homologous to SPTREMBL-ACC:O00577 COSMID 6E5 CDK4, SAS AND KIAA0167 GENES, COMPLETE CDS, AND OS9 - HOMO SAPIENS (HUMAN), 227 aa.	RP1 ens	4	Human Gene Homologous to TREMBLNEW-ACC:BAA83057 KIAA1105 PROTEIN - HOMO SAPIENS (HUMAN), 730 aa (fragment).	Human Gene Homologous to SWISSNEW-ACC:P78560 DEATH DOMAIN CONTAINING PROTEIN CRADD (CASPASE AND RIP ADAPTATOR WITH DEATH DOMAIN) (RIP ASSOCIATED PROTEIN WITH A DEATH DOMAIN) -	ABL-
SIFIED	SIFIED	UNCLAS	UNCLAS	UNCLAS	SIFIED	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
O	F	⋖	O	∢	deb	O
552 ACGTGGTGCTG A GTAGTGTCTTGT TGIA/GJGTGTGA ATTCTCTCTCAT	1466 GTGCAATGGCA C TGATCTCGGCT CAC[C/T]GCAAC CTCTGCCTCCC GGGTTCAAG	404 AACTGCAGACA C AATTTTCAAATT CA[C/A]TTCTTTA CTTCTCCAAGAT	711 CTTTAATGAAAC A ACTTTGGATCGT C[A/G]GTGCTGA AGTGAAAAGAAT	936 GATGCTAAAAG G CTTCTGCGAAAT GT[G/A]TTCACG TTTAATGTTGGG	471 TTCAGCCCACAT A GACTCAGGGAC AC[A/gap]CTCCC CAGCGGTTGCT GGAGGCACC	791 AGTGGCCCCTT T TCCCGCCCTGA AGA[T/C]GTTTCA CACGAAAAGGC CGCTTTGTT
250 cg42697161	251 cg43957889	252 cg42391024	253 cg43976566	254 cg44001900	255 cg43954569	256 cg43925519

	×			^	9	0
20 20 20 20 20 20 20 20 20 20 20 20 20 2	7.1E-97	3.8E-95	6.8E-95	6.80E-95	9.20E-91	9.20E-91
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA81666 DNA POLYMERASE ETA - HOMO SAPIENS (HUMAN), 713 aa.	Human Gene Similar to SWISSPROT- ACC:Q16635 TAFAZZIN - Homo sapiens (Human), 292 aa.	Human Gene Similar to REMTREMBL-ACC:G1100182 T-CELL RECEPTOR BETA - HOMO SAPIENS (HUMAN), 311 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD43192 WUGSC:H_DJ0726N20.1 PROTEIN - HOMO SAPIENS (HUMAN), 191 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD43192 WUGSC:H_DJ0726N20.1 PROTEIN - HOMO SAPIENS (HUMAN), 191 aa (fragment).	Human Gene Similar to SPTREMBL-ACC:Q14206 ZAKI-4 MRNA IN HUMAN SKIN FIBROBLAST, COMPLETE CDS - HOMO SAPIENS (HUMAN), 192 aa.	
SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
1-	F	O	<u> -</u>	<u> </u>	∢	4
711 TGGCAAAACTG C CCAGCAGCGGT TGC[C/T]GAAAA TGCTGGGTTCG	GTGCCTACT 626 ACCAGCTCGGA G GAGGGCACTTG AGA[G/T]GGTCT ATGAACAAATCT	GTCTAAAA 1906 AGGCCTGATGC A ACATGTGCACA GGT[A/G]CCTAC ATGCTCTGTTCT TGTCAACA	1363 TGGCCAGGGAC C CTGAGCCCGAG ACA[C/T]CCCTG CATTTGATCCAA CCAGGTCA	1364 GGCCAGGGACC C TGAGCCCGAGA CACIC/TJCCTGC ATTTGATCCAAC CAGGTCAG	1080 TTGCATCTAAAG T TAATTCATTAAT G[T/A]ACAGGAG TAGATGAGGCC	1087 TAAAGTAATTCA G TTAATGTACAGG AGAJTAGATGA GGCCTGGCACA
711	626	1906	1363	1364	1080	1087
257 cg43145684	258 cg43981803	259 cg44006111	260 cg44924968	261 cg44924968	262 cg43977021	263 cg43977021
257	258	259	260	261	262	26.

9	9	ဖြ	9	-		
9.20E-91	9.20E-91	9.20E-91	9.20E-91	1.50E-89	4.5E-89	4.5E-89
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14206 ZAKI-4 MRNA IN HUMAN SKIN FIBROBLAST, COMPLETE CDS - HOMO SAPIENS (HUMAN). 192 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14206 ZAKI-4 MRNA IN HUMAN SKIN FIBROBLAST, COMPLETE CDS - HOMO SAPIENS (HUMAN), 192 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14206 ZAKI-4 MRNA IN HUMAN SKIN FIBROBLAST, COMPLETE CDS - HOMO SAPIENS (HUMAN), 192 aa.	Human Gene Similar to SPTREMBL-ACC:Q14206 ZAKI-4 MRNA IN HUMAN SKIN FIBROBLAST, COMPLETE CDS - HOMO SAPIENS (HUMAN), 192 aa.		UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	Human Gene Similar to SPTREMBL-ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.
UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS SIFIED
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
F	ڻ ن	∢	U	O	F	O
1098 ATTAATGTACAG C GAGTAGATGAG GC[C/T]TGGCAC ACATAGCAGAA GGTAATGG	1107 CAGGAGTAGAT A GAGGCCTGGCA CAC[A/G]TAGCA GAAGGTAATGG TTCTATAGG	1116 ATGAGGCCTGG G CACACATAGCA GAA[G/A]GTAAT GGTTCTATAGGT GTATCTTC	1169 TAATGCACTTTG G GGCTAGAGAAA TA[G/C]AAAAATC ACACGTAACAAA	303 CACAGAATTCAG G AACTTTTCACC C[G/C]GAACTGG AGAAGGAGCAC TCCGTCA	915 TTTGAGAGCTG G CAGCAGAAGCG GCT[G/T]TATCA CAGACTGGATTT AGTTATGA	936 GGCTGTATCAC T AGACTGGATTTA GT[T/G]ATGATG AAAATACTGGAC TGTATTT
264 cg43977021	265 cg43977021	266 cg43977021	267 cg43977021	268 cg43999373	269 cg43980889	270 cg43980889

		0	o			7
7.4E-89	3.4E-84	3.5E-82	4.50E-82	6.60E-81	2.60E-79	1.20E-75
Human Gene Similar to TREMBLNEW-ACC:AAD40853 SIRTUIN TYPE 5 - HOMO SAPIENS (HUMAN), 310 aa.	Human Gene Similar to SPTREMBL- ACC:073884 PUTATIVE PHOSPHATASE - GALLUS GALLUS (CHICKEN), 268 aa.	Human Gene Similar to SWISSPROT-ACC:P34624 HYPOTHETICAL 63.5 KD PROTEIN ZK353.1 IN CHROMOSOME III - Caenorhabditis elegans, 548 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB43239 HYPOTHETICAL 41.6 KD PROTEIN - HOMO SAPIENS (HUMAN), 383 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB45773 HYPOTHETICAL 18.0 KD PROTEIN - HOMO SAPIENS (HUMAN), 162 aa (fragment).	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:014684 PIG12 - HOMO SAPIENS (HUMAN), 153 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q94547 RGA AND ATU GENES, COMPLETE CDS - DROSOPHILA MELANOGASTER (FRUIT FLY), 579 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	Υ	A	O	gap	gap	⊢
∀	· —	ဖ	⋖	O	O	U
(D () \(\d () \)	GGCAACAGTT ACAGCGGCGGG AGA[T/A]GTTCCT TCTCTCACCTGC CGGGGGG	GCG NTAG NGAG AGTA	TAAGATCCTCCA TCCCACCAAAA T[A/G]ACCCACA ATGACTCCAAAT	512 CATTGGCAACG GCTGCCCACTA GGG[G/gap]CAC TGCCACTTGCCT GGCTCAAACT	845 CCAGGCTTGCC TCTAGATTGGCT GG[G/gap]CCAG AATTTCTGGGGT CAGTCTGAA	637 GGGAAGTAAAA TGAAGGAAGCA GAC[C/T]TCTTG CTCATCTTTCCA
611	317	684	537	512	845	637
271 cg44030196	272 cg40336929	273 cg43920571	274 cg43958980	275 cg43320682	276 cg42708544	277 cg43949796
271	272	273	274	275	276	277

The state of the s

_	10	Τ-	T—	T-	T -	T==
			=		7	
1.30E-75	1.90E-74	9.50E-73	9.50E-73	9.5E-73	9.5E-73	9.5E-73
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060896 MRNA ENCODING RAMP3 PRECURSOR - HOMO SAPIENS (HUMAN), 148 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:075272 R33729_1, PARTIAL CDS - HOMO SAPIENS (HUMAN), 152 aa (fragment).	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:P01225 FOLLITROPIN BETA CHAIN PRECURSOR (FOLLICLE-STIMULATING HORMONE) (FSH-B)-Homo saniens (Human) 129 as	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:P01225 FOLLITROPIN BETA CHAIN PRECURSOR (FOLLICLE-STIMULATING HORMONE) (FSH-B)-Homo sanians (Human) 129 as	UNCLAS Human Gene Similar to SWISSNEW- SIFIED ACC:P01225 FOLLITROPIN BETA CHAIN PRECURSOR (FOLLICLE- STIMULATING HORMONE) (FSH-B) -		Human Gene Similar to SWISSNEW-ACC:P01225 FOLLITROPIN BETA CHAIN PRECURSOR (FOLLICLE-STIMULATING HORMONE) (FSH-B)-Homo sapiens (Human), 129 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
de B	O	O	gap	⋖	-	ပ
⋖	A	F	∢	gap	ပ	ပ
843 TAAGGCCAGAG CTTGTGTGCTG GGC[A/gap]CAGA AATCACCTGCTG CATCCTGTG	607 CAGTGATGTGC TGGCCCTTTCA GGG[AC]CACAG GCCCTTCAGC TTCACCGGA	1328 CCAAACTATCTC ACCCTACCCTC CC[T/C]AGGATC CACTTCTTTGGA ATGACAA	1540 CTATTTTATCCA TCCATGTTCTCC C[A/gap]AATCTG TGCTTTCTTTCA ACAGGTT		1557 GTTCTCCCAAAT CTGTGCTTTCTT T[C/T]AACAGGTT ATATTTAAAAC TATTT	1562 CCCAAATCTGTG CTTTCTTTCAAC A[G/C]GTTATATA TTAAAACTATTT CATGA
843	607	1328	1540	1542	1557	1562
278 cg43298234	279 cg43926358	280 cg35060315	281 cg35060315	282 cg35060315	283 cg35060315	284 cg35060315
278	279	280	281	282	283	284

The first of the first out that out it also the first out that the

16	17	17		7	7	
1.1E-71	2E-71	2E-71	5.3E-69	1E-68	1.6E-67	1.6E-67
Human Gene Similar to SPTREMBL-ACC:P90839 F16A11.1 -CAENORHABDITIS ELEGANS, 673 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q23382 ZK1058.4 - CAENORHABDITIS ELEGANS, 442 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q23382 ZK1058.4 - CAENORHABDITIS ELEGANS, 442 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD43443 26S PROTEASOME SUBUNIT P40.5 - MUS MUSCULUS (MOUSE), 376 aa.	Human Gene Similar to SWISSPROT-ACC:P50636 GAMETOGENESIS EXPRESSED PROTEIN GEG-154 - Mus musculus (Mouse), 429 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD39844 HSPC028 - HOMO SAPIENS (HUMAN), 419 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD39844 HSPC028 - HOMO SAPIENS (HUMAN), 419 aa.
UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS	SIFIED	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
gap	gap	gap	-	O	gap	deb
∢	⋖	o	O	O	⊢	F
	719 CCTCTCCTCCAA, GAGTTGGTTCC GC[A/gap]AGAG GTGGAAAGAAC TCTCAATAGT	884 CACAGCCATAAT ATAGAGAACAG AG[C/gap]TTCTC CATGAACATCCA	65 AGCAGCCAGCT TCATTGGCTGCA AA[C/T]GCCTCT CTCAGGTGAGT CAAAGGAG	1101 TCACCTCAGATG AGTGTGGCTCC CC[C/G]CGCTCC CATACTGCAGC CTGCCCT	364 AAGGGAAGCCT ATCCTATTTTTT T[T/gap]TCCTTT GCGAAAACAGA AGCCAAGT	365 AGGGAAGCCTA TCCTATTTTTTT T[Ygap]CCTTTG CGAAAACAGAA GCCAAGTT
18	719	884	65	1101	364	365
285 cg44126579	286 cg43951096	287 cg43951096	288 cg43960676	289 cg43323149	290 cg43969533	291 cg43969533
285	286	287	288	289	290	291

		4-				
2.3E-66	2.3E-66	4.3E-66	8.8E-65	8.8E-65	8.8E-65	8.8E-65
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD39515 HERMES - MUS MUSCULUS (MOUSE), 197 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD39515 HERMES - MUS MUSCULUS (MOUSE), 197 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD29427 MYOMEGALIN - RATTUS NORVEGICUS (RAT), 2324 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060223 SSX3 - HOMO SAPIENS (HUMAN), 188 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC: O60223 SSX3 - HOMO SAPIENS (HUMAN), 188 aa.	Human Gene Similar to SPTREMBL-ACC:O60223 SSX3 - HOMO SAPIENS (HUMAN), 188 aa.	Human Gene Similar to SPTREMBL-ACC:060223 SSX3 - HOMO SAPIENS (HUMAN), 188 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
,						
F	F	Ø	O	O	—	—
O	ဖြ	A	 -	⊢	O	O
601 CCGGGGGAGGTG GTTCTGGTAATC TG[G/T]GGGGGA GCCGGGACAGG CGCCCCGA	604 GGGAGGTGGTT CTGGTAATCTG GGG[G/T]GGAGC CGGGACAGGCG CCCCGAGTT	210 CTCTCTTTCGC, CGCCGACGCAG AA[A/G]GGAGCT GGGGAGGAAAA AGCTGCTG	131 GTAAGGTAAAAT GTGAATCAATAT G[T/C]TAGTTCT GGGCAATTATTC TGCAAA	149 CAATATGTTAGT TCTGGGCAATTA T[T/C]CTGCAAAT TCTGCCAGATAA	150 AATATGTTAGTT CTGGGCAATTAT T[C/T]TGCAAATT CTGCCAGATAAT TAAAG	STTCTCA TTCGCCT TTTTAGA CCTGCTT
601	604	210	131	149	150	30
292 cg39376027	293 cg39376027	294 cg43976681	295 cg43085556	296 cg43085556	297 cg43085556	298 cg43085556
292	293	294	295	296	297	298

			-	-		
8.8E-65	8.8E-65	2E-63	7.8E-62	7.8E-62	1.7E-59	3.5E-59
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060223 SSX3 - HOMO SAPIENS (HUMAN), 188 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060223 SSX3 - HOMOSAPIENS (HUMAN), 188 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:014716 DNAJ PROTEIN -HOMO SAPIENS (HUMAN), 135 aa.	Human Gene Similar to SWISSNEW-ACC:095298 NADH-UBIQUINONE OXIDOREDUCTASE SUBUNIT B14.5B (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-B14.5B) (CI-B14.5B) - Homo sapiens (Human), 119 aa.	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:095298 NADH-UBIQUINONE OXIDOREDUCTASE SUBUNIT B14.5B (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-B14.5B) (CI-B14.5B) - Homo sapiens (Human), 119 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:035946 HYPOTHETICAL 14.9 KD PROTEIN - RATTUS NORVEGICUS (RAT), 137 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS SIFIED	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
<u> </u>	O	⋖	gap	O	O	O
O	A	တ	ပ	ڻ ن	H	gap
45 TTTTCGCCTACA TTTTAGACTAAC C[C/T]TGCTTATT CCTGTGAATCAA GTGGT	65 TAACCCTGCTTA TTCCTGTGAATC A[A/C]GTGGTGA TCTTCTGCAGCT TGGAAT	437 GCATTTGCTGCT TGTGCTTGATTT T[G/A]TTTGGCT CAATCCTTCCT GGCAGC	263 AAACATGTTCCA TCAAATTCAGAA A[C/gap]AGCAGG TATCAGTGAAAC TGGAGCA	736 AGGAAAACCAC GACGACCACTA CCC[G/C]GGCCT AAGCGGTCAGC	1012 CATCCGCGCTG ACGGCAGTCAC CGG[T/C]GAGAC CGGCGCCGGAA AGACCATGG	984 GACGCTCGCTG TCCCCGAGGGC CCG[gap/C]TGC GCCGCCTCGTG GGTACGAATAC
45	65	437	263	736	1012	984
299 cg43085556	300 cg43085556	301 cg43920089	302 cg43950850	303 cg43950850	304 cg44128084	305 cg43976473
299	300	301	302	303	304	305

Hard Till and the least time casts an unite added time from the little to the

				5		<u> </u>
4.3E-59	4.3E-59	4.30E-59	3.10E-58	4.20E-57	4.20E-57	2.30E-53
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q12773 GUANINE NUCLEOTIDE REGULATORY PROTEIN - HOMO SAPIENS (HUMAN), 460 aa.	Human Gene Similar to SPTREMBL-ACC:Q12773 GUANINE NUCLEOTIDE REGULATORY PROTEIN - HOMO SAPIENS (HUMAN), 460 aa.	Human Gene Similar to SPTREMBL- ACC:Q12773 GUANINE NUCLEOTIDE REGULATORY PROTEIN - HOMO SAPIENS (HUMAN), 460 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:035414 STATHMIN-LIKE PROTEIN B3 (RB3) - Rattus norvegicus (Rat), 189 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD29804 F26H11.12 PROTEIN - ARABIDOPSIS THALIANA (MOUSE- EAR CRESS), 323 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD29804 F26H11.12 PROTEIN - ARABIDOPSIS THALIANA (MOUSE- EAR CRESS), 323 aa.	Human Gene Similar to TREMBLNEW-ACC:CAB43298 HYPOTHETICAL 13.8 KD PROTEIN - HOMO SAPIENS (HUMAN), 118 aa (fragment).
SIFIED A	UNCLAS I	SIFIED	SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
4	O	O	<u>υ</u>	O	O	∢
546 GCTTCTGTCAGA G CGTTACTTTCAC C[G/A]TGCCTGC TGTTCCACAGG	558 CGTTACTITICAC T CGTGCCTGCTG TT[I/C]CCACAG GAAGAGTCTGT	755 ACCCCAGCTTG A CCCGGCAGCAC ACA[A/G]AACTG TTTCTTTGGCTT GACGAATA	222 ACACCACTGGT T ACTCACACCCC CTC[T/C]GGCTG GGTTCTCTGGT GCGCCTGC	628 CTGCATATGTTT A GCAGTTTTCCAT C[A/G]ACTTCTTC ATAAACAAACAA	574 ACATTITCTAGA A AACCAAAATATG T[A/G]GTGGCCC AAAGGAGCTCTT	198 GTTTGATCCTCA G GCCAGGACGCA CA[G/A]GCCCTA CAAGATCCCAG CCCTCCAA
546	558	755	222	528	574	198
306 cg44924858	307 cg44924858	308 cg44924858	309 cg43961591	310 cg43924285	311 cg43924285	312 cg43958224
306	307	308	309	310	311	312

						
4.20E-53	4.80E-52	1.90E-51	2.60E-51	5.00E-51	1.40E-50	1.40E-50
UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P31639 SODIUM/GLUCOSE COTRANSPORTER 2 (NA(+)/GLUCOSE COTRANSPORTER 2) (LOW AFFINITY SODIUM-GLUCOSE COTRANSPORTER) - Homo sapiens (Human), 672 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD34077 CGI- 82 PROTEIN - HOMO SAPIENS (HUMAN), 318 aa.	Human Gene Similar to SPTREMBL- ACC:015019 KIAA0301 - HOMO SAPIENS (HUMAN), 2047 aa (fragment).		Human Gene Similar to TREMBLNEW-ACC:CAB43363 HYPOTHETICAL 23.0 KD PROTEIN - HOMO SAPIENS (HUMAN), 204 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q92565 MYELOBLAST KIAA0277 - HOMO SAPIENS (HUMAN), 580 aa.	Human Gene Similar to SPTREMBL- ACC:Q92565 MYELOBLAST KIAA0277 - HOMO SAPIENS (HUMAN), 580 aa.
SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
deb	O	—	F	F	U	F
(0		O	ပ	O	4	o
502 AACGGCTTTAAA G CACAAGCTCAG GG[G/gap]CTTG GGGTTTATCCC GAGGGCACAG	2 TATTTTCATTG TACTTATTATC ALVOJTATACTTA CTATATATTT AAAAC	LAFF	Seceec[GAACGG CCCGCC	947 TGGGAGGCCTG (GTTGCCCCTCC CGGC/TJGTGCT GGGACACTCTG GGGACACTCTG	609 TTGAGCTCTCCT / ACAAGCTGGAG GC[A/C]AACAGT CAGTGAGAGCG GGGGGGCC	612 AGCTCTCCTACA AGCTGGAGGCA AA[C/T]AGTCAG TGAGAGCGGGG GGGCCAGT
207	342	7	_	94	09	61
313 cg43971060	314 cg44927952	315 cg19885484	316 cg42307356	317 cg44005017	318 cg43329819	319 cg43329819
31	34	34	34	<u>ج</u>	3,	က်

	-	11			
1.40E-50	8.7 6 -312	8.7e-312	9.16-313	9.1e-313	9.16-313
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q92565 MYELOBLAST KIAA0277 - HOMO SAPIENS (HUMAN), 580 aa.	Human Gene SPTREMBL-ACC:075148 KIAA0658 PROTEIN -HOMO SAPIENS (HUMAN), 589 aa (fragment).	UNCLAS Human Gene SPTREMBL-SIFIED ACC:075148 KIAA0658 PROTEIN -HOMO SAPIENS (HUMAN), 589 aa (fragment).	UNCLAS Human Gene SWISSNEW-SIFIED ACC:P14222 PERFORIN 1 PRECURSOR (P1) (LYMPHOCYTE PORE FORMING PROTEIN) (PFP) (CYTOLYSIN) - Homo sapiens	(Human), 555 aa. Human Gene SWISSNEW- ACC:P14222 PERFORIN 1 PRECURSOR (P1) (LYMPHOCYTE PORE FORMING PROTEIN) (PFP) (CYTOLYSIN) - Homo sapiens	UNCLAS Human Gene SWISSNEW- SIFIED ACC:P14222 PERFORIN 1 PRECURSOR (P1) (LYMPHOCYTE PORE FORMING PROTEIN) (PFP) (CYTOLYSIN) - Homo sapiens (Human), 555 aa.
UNCLAS H SIFIED A (t	UNCLAS H	UNCLAS	UNCLAS	UNCLAS	
NONCODING S	SILENT- NONCODING (SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING	SILENT- NONCODING
F	gap	gap	O	<u> </u>	O
625 GCTGGAGGCAA CACAGTCAGTGAGGGGGGGGGGGGGGG	CCCGACCAA 980 CAGCCTCATAG A CCACACACACA CAC[A/gap]CGTA CCACACACGCA	CACACACACA 1009 ACCACACACGC A ACACACACACA CAC[A/gap]CTTT GTGGCTCAAGT	GCAGGCCACA 3074 CAACACTTTGG T GAGGCCGAGGC AGGIT/CJGGATC ACCTGAGGTCA	GGAGTTCGA 3144 GTGAAACCCCG A TCTCTACTAAAA AT[AT]CAAAAAT TAGCCGGGCAT	3161 CTAAAAATACAA A AAATTAGCCGG GCJAGJTGGTGG CGGATGCCTGT AATCCCAG
625 6	086	1009			
320 cg43329819	321 cg44015618	322 cg44015618	323 cg40361678	324 cg40361678	325 cg40361678

		ω	∞ (ω	
1.6E-117	1.7E-175	5.6E-108	5.60E-108	5.60E-108	9.40E-58
Human Gene Homologous to SPTREMBL-ID:Q62627 CLONE PAR- 4 INDUCED BY EFFECTORS OF APOPTOSIS - RATTUS NORVEGICUS (RAT), 332 aa.	Human Gene SPTREMBL-ID:Q29466 VACUOLAR H+-ATPASE SUBUNIT (EC 3.6.1.34) (H(+)-TRANSPORTING ATP SYNTHASE) (H(+)- TRANSPORTING ATPASE) (MITOCHONDRIAL ATPASE) (CHLOROPLAST ATPASE) (COUPLING FACTORS (F(0), F(1) AND CF(1))) - BOS TAURUS (BOVINE), 838 aa.	Human Gene Homologous to SPTREMBL-ID:Q22494 SIMILAR TOS. CEREVISIAE VACUOLAR H(+)- ATPASE 54 KD SUBUNIT - CAENORHABDITIS ELEGANS, 470 aa.	Human Gene Homologous to SPTREMBL-ID:Q22494 SIMILAR TOS. CEREVISIAE VACUOLAR H(+)- ATPASE 54 KD SUBUNIT - CAENORHABDITIS ELEGANS, 470 aa.	Human Gene Homologous to SPTREMBL-ID:Q22494 SIMILAR TOS. CEREVISIAE VACUOLAR H(+)- ATPASE 54 KD SUBUNIT - CAENORHABDITIS ELEGANS, 470 aa.	Human Gene Similar to SPTREMBL-ID:Q15332 GAMMA SUBUNIT OF SODIUM POTASSIUM ATPASE LIKE - HOMO SAPIENS (HUMAN), 126 aa.
	ATPase_ associat ed	ATPase_associat	ATPase_associat	ATPase_associat	ATPase_associat
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Val	\alpha	Lys	Ser	Arg	ren
Val	\ \ 	Lys	Se di	Arg	Leu
 	<u> </u>	O	<u>o</u>	<u> </u>	۷
1287 AAAATAAAACTC G TTTTGAAAGTTG T[G/T]GGTCAGC TGACCAGGTAG AGGATTC	413 CAAAGGCGGCA C AAGATGGGGAC CAG[C/T]ACCAC AGCCGCCACGC CCACCTCCC	749 CATTCTCTCC T AAAATTTCTCAG A[T/C]TTGTGCA CAGGACTCCATT CCAACC	761 AAAATTTCTCAG A ATTTGTGCACAG G[A/G]CTCCATT CCAACCTTCCA GATTTAA	773 ATTTGTGCACAG C GACTCCATTCCA A[C/T]CTTCCAG ATTTAAGTTCTG AACTGT	371 AGTGGGTGGCA G CCGCCGAGGCT GCT[G/A]TTACG GCTCATCTTCAT TGATTTGC
1287	4 5.	745	76.		
326 cg43930957	327 cg43300636	328 cg43967912	329 cg43967912	330 cg43967912	331 cg43132502
326	327	328	329	330	331

(6q16)	1 (1p34)	9 (9q34.3)	(5q13.3	4
7.90E-77 6 (6q16)	1.30E-73	1.40E-104	Z.60E-172	0.00E+00
cadherin Human Gene Similar to SWISSPROT- ID:Q08345 EPITHELIAL DISCOIDIN DOMAIN RECEPTOR 1 PRECURSOR (EC 2.7.1.112) (TYROSINE-PROTEIN KINASE CAK) (CELL ADHESION KINASE) (TYROSINE KINASE DDR) (DISCOIDIN RECEPTOR TYROSINE KINASE) (TRK E) (PROTEIN- TYROSINE KINASE RTK 6) - HOMO	SAFIENS (LINE) Human Gene Similar to SWISSPROT- ID:Q07092 COLLAGEN ALPHA 1(XVI) CHAIN PRECURSOR - HOMO SAPIENS (HUMAN), 1603 aa.	complem Human Gene Homologous to SWISSPROT-ID:P07360 COMPLEMENT C8 GAMMA CHAIN PRECURSOR - HOMO SAPIENS (HUMAN), 202 aa.	Human Gene SWISSPROT- ID:P51946 CYCLIN H (MO15- ASSOCIATED PROTEIN) (P37) (P34) - HOMO SAPIENS (HUMAN), 323 aa.	dehydrog Human Gene SWISSPROT- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-Q0) (ETF- UBIQUINONE OXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN DEHYDROGENASE) - HOMO SAPIENS (HUMAN), 617 aa.
cadherin H	collagen	complem	cyclin	dehydrog
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Pro	Ser	Th Th	Ala	is I
G G	Ser	Th Th	Ala	宝 王
O	<u>U</u>	<u> </u>	<u> </u>	O
352 ACACGCCCAGC T AGCCGAATGAT GTT[T/G]GGGTC CTTGAGCCTCG ACATGATCT	2634 AGCACTCCCCT T GGCTCACCCTT CTC[T/C]CCTCG	ACCTGGTG 480 CTGTGCACGTG GTTGTCGCTGA GAC[C/T]GACTA CCAGAGTTTCG	CTGTCCTGT 286 GCAAATTCAGAT C GCAAAGCCGTG GCIC/TJAACGGG	AATGATC AATGATC AATGATC ACAACAAAGA T CACAGGACTC CA[7/G]GTAACT GAATATGAGGA CAATTTGA
332 cg44924856	333 cg43991318	334 cg41553795	335 cg43973728	336 cg43312829

	T	
4	4	4
0.00E+00	0.00E+00	0.00E+00
dehydrog Human Gene SWISSPROT- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-Q0) (ETF- UBIQUINONE OXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN DEHYDROGENASE) - HOMO SAPIENS (HUMAN), 617 aa.	dehydrog Human Gene SWISSPROT- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-QO) (ETF- UBIQUINONE OXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN DEHYDROGENASE) - HOMO SAPIENS (HUMAN), 617 aa	dehydrog Human Gene SWISSPROT- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-QO) (ETF- UBIQUINONE OXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN SAPIENS (HIMAN) 617 aa
dehydrog enase	dehydrog	dehydrog enase
SILENT- CODING	SILENT- CODING	SILENT- CODING
กุ	Vai	<a < td=""></a <>
กาย	\ \	Val
ပ	O	O
1422 AGACAACAGGA A CTCCATGTAACT GA[A/G]TATGAG GACAATTTGAAG AAATCAT	1452 AGGACAATTTGA A AGAAATCATGG GT[A/G]TGGAAA GAGCTATATTCT GTTAGAA	1473 GGGTATGGAAA T GAGCTATATTCT GT[I/C]AGAAATA TAAGGCCATCCT GCCACG
1422	1452	1473
337 cg43312829	338 cg43312829	339 cg43312829
337	338	33 9

4	1 7	=	
		2	
0.000 + 100	0.00	1.70E-113	1.80E-109
	_	-	
dehydrog Human Gene SWISSPROT- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-QO) (ETF- UBIQUINONE OXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN DEHYDROGENASE) - HOMO SAPIENS (HUMAN), 617 aa.	dehydrog Human Gene SWISSPROI- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-Q0) (ETF- UBIQUINONE OXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN DEHYDROGENASE) - HOMO SAPIENS (HUMAN), 617 aa.	dehydrog Human Gene Homologous to enase SPTREMBL-ID:000217 MITOCHONDRIAL NADH DEHYDROGENASE-UBIQUINONE FE-S PROTEIN 8, 23 KDA SUBUNIT PRECURSOR - HOMO SAPIENS (HUMAN), 210 aa.	Human Gene Homologous to SPTREMBL-ID:Q16797 NADP- DEPENDENT MALIC ENZYME (EC 1.1.1.40) (MALATE DEHYDROGENASE (OXALOACETATE DECARBOXYLATING) (NADP+)) (PYRUVIC-MALIC CARBOXYLASE) HOMO SAPIENS (HUMAN), 572 aa.
dehydrog enase	dehydrog enase	dehydrog	dehydrog enase
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Ord	Asp	Ser	- Sal
O.	Asp	Ser	
۷	0	∢	-
O	<u> </u>	O	O
1569 ACTGGATATTGA GAGGAATGGAG CC[G/A]TGGACT CTAAAACATAAA GGCTCTG	1623 TTGAACGGCTC AAGCCAGCCAA GGA[I/C]TGTAC ACCCATTGAGTA TCCAAAAC	652 TCGAGGGCCCC AACTTTGAGTTC TC[C/A]ACGGAG ACCCATGAGGA GCTGCTGT	965 TGGCTGTGGGC TTCACCAGCCTC ACIC/TJACCTCC TCCAGGGAGTT GACTTCAG
15.	0		
340 cg43312829	341 cg43312829	342 cg43307992	343 cg43969759
340	341	342	343

		,			
2.10E-76	2.10E-76	2.10E-76	2.10E-76	2.10E-76	2.40E-52
dehydrog Human Gene Similar to SWISSPROT- enase ID:P46703 ACYL-COA DEHYDROGENASE (EC 1.3.99) - MYCOBACTERIUM LEPRAE, 389 aa.	Human Gene Similar to SWISSPRÖT- ID:P46703 ACYL-COA DEHYDROGENASE (EC 1.3.99) - MYCOBACTERIUM LEPRAE, 389 aa.	dehydrog Human Gene Similar to SWISSPROT- enase ID:P46703 ACYL-COA DEHYDROGENASE (EC 1.3.99) - MYCOBACTERIUM LEPRAE, 389 aa.	dehydrog Human Gene Similar to SWISSPROT- enase ID:P46703 ACYL-COA DEHYDROGENASE (EC 1.3.99) - MYCOBACTERIUM LEPRAE, 389 aa.	dehydrog Human Gene Similar to SWISSPROT- enase ID:P46703 ACYL-COA DEHYDROGENASE (EC 1.3.99) - MYCOBACTERIUM LEPRAE, 389 aa.	dehydrog Human Gene Similar to SWISSPROT- enase ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37) - RATTUS NORVEGICUS (RAT), 338 aa.
dehydrog enase	dehydrog enase	dehydrog enase	dehydrog enase	dehydrog enase	dehydrog enase
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
ren	Asn	\alpha al	Leu	Val	\alpha
Leu	Asn	Vai	Leu	\all	\alpha al
—	<u> </u>	<u> </u>	O	∢	ڻ و
⋖	O	ပ	 	9	ပ
318 ATGCTGGATCA GATCCAGCTGC ACT[A/T]AAGTGT CGAGCCGACGA AGATGGGG	380 AAGATGGGGAC AGTTTCGTCCTG AA[C/T]GGCGTC AAGCTTGGGT CACGGAGG	366 GGGACAGTTTC GTCCTGAACGG CGT[C/T]AAGGC TTGGGTCACGG AGGCTGGCG	613 TCGAGGGCACG GTCTGAGTGTT GCT[T/C]TGGGT ACGCTTGACAA CTCTCGTGT	660 GTGTCTCGATTG G CTGCTCAAGCA GT[G/A]GGAATT GCCCAGGGAGC TTTAGACA	207 AGGCTCACACT CACTTCATGITC TT[C/G]ACAAAG TCCTCGCCTTTC TTGATGG
318	360	366	613	099	207
344 cg39523614	345 cg39523614	346 cg39523614	347 cg39523614	348 cg39523614	349 cg42717491
[0 1	U	0	0	

	T .	1	4	2
				α
25	25	252	15	09
2.40E-52	2.40E-52	2.40E-52	2.10E-115	3.30E-60
			<u> </u>	
PROT	PROT	PROJ PR (E	OTIC N AP(M (EC A (EC M) (A (EC M) (EC M
WISS URSC VEGIO	WISS URSC VEGIO	WISS URSC VEGIO	s to OSM(EAT OTE! OUSE	WISS REG, V) - IDEU A239 A239 N - IDEU
r to S	r to Si	r to S	94 (H 94 (H 1D PR	TTO STANCE TANCE TAID: TAID: TAID: AASE AAA
Simila LATE NASE NASE SIAL F	Simila LATE NASE NASE SIAL F	Simila LATE NASE SIAL F	Homol D:P44 TEIN LLATE CULL	STEF STEF STEF ASE UM D UM D), 793 SPRO SPRO STEF ASE I
sene Sene Sene Sene Sene Sene Sene Sene	ene 8 6 MA COGE ONDF - RA	Sene Sene Sene Sene Sene Sene Sene Sene	PRO PRO 70-RE	iene 3 7 3,5 7 3,5 7 3,5 0 0DIE 0 0DIE 0 0DIE 0 0DIE
Human Gene Similar to SWISSPROT-ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37) - RATTUS NORVEGICUS (RAT), 338 aa.	Human Gene Similar to SWISSPROT-ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 11.1.37) - RATTUS NORVEGICUS (RAT), 338 aa.	Human Gene Similar to SWISSPROT-ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 11.1.37) - RATTUS NORVEGICUS (RAT), 338 aa.	Human Gene Homologous to SWISSPROT-ID:P48722 OSMOTIC STRESS PROTEIN 94 (HEAT SHOCK 70-RELATED PROTEIN APG 1) - MUS MUSCULUS (MOUSE), 838	Human Gene Similar to SWISSNEW-ID:Q23917 3',5'-CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE REGA (EC 3.1.4.17) (PDEASE REGA) - DICTYOSTELIUM DISCOIDEUM (SLIME MOLD), 793 aa. [pcls:SWISSPROT-ID:Q23917 3',5':CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE REGA (EC 3.1.4.17) (PDEASE REGA) - DICTYOSTELIUM DISCOIDEUM (SLIME MOLD), 793 aa.
DEHUNT DEH MIT 1.1.	MIT MATA	MIT MET A.1.	STF STF STF SH(L
dehydrog Human Gene Similar to SWISSPROT- enase ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37) - RATTUS NORVEGICUS (RAT), 338 aa.	dehydrog Human Gene Similar to SWISSPROT- enase ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37) - RATTUS NORVEGICUS (RAT). 338 aa.	dehydrog Human Gene Similar to SWISSPROT- enase ID:P04636 MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37) - RATTUS NORVEGICUS (RAT). 338 aa.	ے	esterase
e de	e de	9 G	hq e	8
	. • (9	0	(5)	(9
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	CODING
<u>w</u> 0	<u> </u>	ळ ठ	<u> </u>	ଡି ଓ
Ala	Glu	Lys	革	Ala
		_		
Ala	n O	Lys	Thr	Ala
⋖	<u> </u>	O	ပ	O
ပ				
45 🗀	SFXE	75 & 57 75 A 50	T	AAG AG
SAGG JGCC JGCC CAT	ATGG VATC, CCTC	TCTC 16AG TGC(TATG YGT TGA AGTT	CCA6 CCT(CCT(CCT(CCT(CCT(CCT(CCT(CCT(CCT(CCT
TGATGGAGGCT TTCAGCTCAGG GAT[G/A]GCCTC GGCAATCATTT CTCCTCAA	CAGGGATGGCC TCGCCAATCATT TT[C/TJTCCTCAA AAGGAGTGATTT TGCCAA	TCATTTTCTCCT CAAAAGGAGTG AT[T/C]TTGCCAA TGCCTAGGTTCT TCTCCA	ATTTAGTATGCT GTGAGCTGTCTT T[T/G]GTTGAATC TGATTTAGTTTC AGTTC	AGAAGTCAGAA GGCCTTCCTGT GGC[A/C]CCGTT CATGGACCGAG ACAAAGTGA
252 TGATGGAGGCT TTCAGCTCAGG GAT[G/A]GCCTC GGCAATCATTTI CTCCTCAA	270 CAGGGATGGCC TCGGCAATCATT TT[C/T]TCCTCAA AAGGAGTGATTT TGCCAA	288 TCATTTTCTCCT CAAAAGGAGTG AT[T/C]TTGCCA TGCCTAGGTTC TCTCCA	1535 ATTTAGTATGCT GTGAGCTGTCT T[T/G]GTTGAATG TGATTTAGTTTC AGTTC	1557 AGAAGTCAGAA GGCCTTCCTGT GGCJA/CJCCGT1 CATGGACCGAG ACAAAGTGA
25	27	28	153	155
491	491	491	969	420
12717	12717	12717	12711	13319
350 cg42717491	351 cg42717491	352 cg42717491	353 cg42711596	354 cg43319420
35	36	35	35	35

-		8 8	τ	~
,	i.			
1.00E-234	2.60E-78	2.60E-60	2.90E-54	0.00E+00
glycoprot Human Gene SPTREMBL-ID:Q61003 ein T CELL SURFACE GLYCOPROTEIN CD6 - MUS MUSCULUS (MOUSE), 665 aa.	glycoprot Human Gene Similar to SWISSPROT- ein ID:Q07066 22 KD PEROXISOMAL MEMBRANE PROTEIN - RATTUS NORVEGICUS (RAT), 193 aa.	glycoprot Human Gene Similar to SPTREMBL- ein ID:Q14245 ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.	Human Gene Similar to SWISSPROT-ID:P25888 PUTATIVE ATP-DEPENDENT RNA HELICASE RHLE-ESCHERICHIA COLI, 454 aa.	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa.jpcls:SPTREMBL-ID:Q16666 IF16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment).
glycoprot	glycoprot	glycoprot	helicase	interfero n
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Thr	Gly	Val	Ser	Glu
Thr	Gly	Val	Ser	Glu
O	O	∢	∢	U
 	O	O	O	<u></u>
687 AGTGGGGATCA GTGTGCGATGA CACIT/CJTGGGA CCTGGAGGACG CCTGCACGTGG	860 GCGCCCGCCGC GGCAGCGCCCC GAG[G/C]CCGGC TTCGGCCCGCA GCCTGGACG	258 CTGGTGTGATCT CTGTCTCTTTAT G[G/A]ACCACTA CTTTGGTCACTG ACATGT	816 GGCTGAAAAGC ATATCTATACAT TC[G/A]GAGAAG TCGCAAATAGAA	2320 AACCAGCATCA CCTCGGAACTTT TC[T/C]TCCATCA AGTCAGCAATCT GAATTT
687	860	258	816	2320
355 cg41029366	356 cg42876034	357 cg43976227	358 cg43916642	359 cg43925670
355	356	357	358	359

-		_
		0
0.00E+00	0.00E+00	0.00E+00
0.0	0.0	
interfero Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. pcls:SPTREMBL-ID:Q16666 IFI16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment).	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa.jpcls:SPTREMBL-ID:Q16666 IF116=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment)	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa.[pcls:SPTREMBL-ID:Q16666 IFI16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment).
interfero n	n n	interfero n
SILENT- CODING	SILENT- CODING	SILENT- CODING
ne l	Ser	nej
nen_	୍ଦ୍ର ଜ	nen l
O	4	O
<	O	 -
2370 TTGTCATACTCT TCTCTCATTTT A[A/G]ATTAAGTT TTAAATCGTTGC TCAGT	2389 TTTTTAAATTAA GTTTTAAATCGT T[G/A]CTCAGTA AGGACTTAACCA TTCTAA	2446 AATCATTGATGA CCTCTAATCCTT T[7/C]AGTAGAA CAATGTTCTTGT ATTTTT
2370	2386	2446
360 cg43925670	361 cg43925670	362 cg43925670
36/	36	98.

	0		2 2	<u>ກ</u>	0
	_		20 (20q11)		
3.00E-123	0.00E+00	0.00E+00	9.20E-289	3.60E-159	3.60E-159
isomeras Human Gene Homologous to SPTREMBL-ID:Q13907 HOMOLOG OF YEAST IPP ISOMERASE - HOMO SAPIENS (HUMAN), 228 aa.	Q60680 4ELIX ia.	. ш	TEIN) (P59-)POIETIC PIENS	SSPROT- SIVISION PROTEIN TO (TAU EIL CATALYTIC CATALYTIC SE PSSALRE) ISCULUS	SSPROT- DIVISION PROTEIN (1) (TAU E II CATALYTIC CATALYTIC SE PSSALRE) ISCULUS
isomeras le	kinase	kinase	kinase	kinase	kinase
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
<u>e</u>	Glý	Cys	Ser	- Glu	Tyr
<u>e</u>	Giy	Cys	Ser	Glu	Tyr
4	O	o I	<u> -</u>	O	
1913 TTTTATTGTCAT G TTTCATCAATAA G[G/A]ATACACA TCTCTGCCAGG	AGITGAA 2144 CATGTGTGGTAA G CTCCTCAAGATG G[G/C]GAGACGT TAGCACAAATGA	2072 TTGGTGGTTCTT A TCCCAACCACAA A[A/G]CACTCCG GTGGTAAATACC	748 GGGGCTTCTAC C ATATCCCCCCG AAG[C/T]ACCTT CAGCACTCTGC AGGAGCTGG	634 CGATGCAGAAA A TACGAGAAACT GGA[AG]AAGAT TGGGGAAGGCA CCTACGGAA	655 TGGAAAAGATTG C GGGAAGGCACC TA[C/T]GGAACT GTGTTCAAGGC CAAAAACC
1913	2144	2072	748	634	655
363 cg44004587	364 cg43257400	365 cg43931272	366 cg42665067	367 cg43982923	368 cg43982923
363	364	365	366	367	368

0 0	0)	T	T		
<u>0</u>	-				
<u></u>	2	-	9	<u> </u>	Ç Q
3.60E-159	6.80E-158	Z./UE-51	7.80E-86	7.80E-86	7.8UE-80
3.60	ه				
Human Gene SWISSPROT- ID:P49615 CELL DIVISION PROTEIN KINASE 5 (EC 2.7.1) (TAU PROTEIN KINASE II CATALYTIC SUBUNIT) (TPKII CATALYTIC SUBUNIT) (KINASE PSSALRE) (CRK6) - MUS MUSCULUS (MOUSE), 292 aa.	Human Gene TREMBLNEW- ID:D1025880 ZIP-KINASE - HOMO SAPIENS (HUMAN), 454 aa.	Human Gene Similar to SWISSPROI- ID:P46546 GLUTAMATE 5-KINASE (EC 2.7.2.11) (GAMMA-GLUTAMYL KINASE) (GK) - CORYNEBACTERIUM GLUTAMICUM, 369 aa.	Human Gene Similar to SWISSPROT- ID:P42773 CYCLIN-DEPENDENT KINASE 6 INHIBITOR (P18-INK6) - HOMO SAPIENS (HUMAN), 168 aa.	Human Gene Similar to SWISSPROT-ID:P42773 CYCLIN-DEPENDENT KINASE 6 INHIBITOR (P18-INK6) - HOMO SAPIENS (HUMAN), 168 aa.	Human Gene Similar to SWISSPRO I- ID:P42773 CYCLIN-DEPENDENT KINASE 6 INHIBITOR (P18-INK6) - HOMO SAPIENS (HUMAN), 168 aa.
kinase	kinase	kinase	kinasein hibitor	kinasein hibitor	kinasein hibitor
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
<u>a</u>	Gly	Ńō	Thr	Arg	Olu Olu
<u>=</u>	Gly	Gly	Th T	Arg	Olu
F	<u>o</u>	∢	F	∢	
697 CCAAAAACCGG C GAGACTCATGA GAT[C/T]GTGGC TCTGAAACGGG TGAGGCTGG	576 CGCTCAGGAGG A ATATAGGTGATG ACIA/GICCGATG CTCCACATGTCC	407 GGGCGGCTTCA GATTTCGTGGTC ATG/AJCCGCCG GTTCCCACCCC CGAACCAG	514 GGTTCCGATGC C CCCACATTGCT GGC[C/T]GTGTG CTTCACCAGGA ACTCCACCA	541 TGTGCTTCACCA C GGAACTCCACC ACIC/AICGGAGG TGGCCTTCTTG	595 GCAAGGGCAGG C TTCCCTTCATTA TC[C/T]TCGATGT TAACATCAGCTT GAAACT
697	576	407	514	541	595
369 cg43982923	370 cg43919086	371 cg25143358	372 cg43105476	373 cg43105476	374 cg43105476
369	370	371	372	373	374

	15 (15q25)	15 (15q25)	15 (15q25)	15 (15q25)	15 (15q25)
7.80E-86	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Human Gene Similar to SWISSPROT-ID:P42773 CYCLIN-DEPENDENTKINASE 6 INHIBITOR (P18-INK6) -HOMO SAPIENS (HUMAN), 168 aa.	Human Gene SWISSPROT- ID:Q16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.112) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C) - HOMO SAPIENS (HUMAN), 839 aa.	Human Gene SWISSPROT- ID:Q16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.112) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C) - HOMO SAPIENS (HUMAN), 839 aa.	Human Gene SWISSPROT- ID:Q16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.112) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C) - HOMO SAPIENS (HUMAN), 839 aa.	Human Gene SWISSPROT-ID:Q16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.112) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C) - HOMO SAPIENS (HUMAN), 839 aa.	Human Gene SWISSPROT-ID:Q16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.112) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C) -HOMO SAPIENS (HUMAN), 839 aa.
kinasein hibitor	kinasere ceptor	kinasere ceptor	kinasere ceptor	kinasere ceptor	kinasere ceptor
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Phe	Ser	<u>e</u>	Arg		Thr
Phe	Ser	ell e	Arg	ren	Thr
O	O	<u> </u>	⋖	O	⋖
4		O	ပ	F	ග
616 TATCCTCGATGT TAACATCAGCTT G[A/G]AACTCCA GCAAAGTCTGTA	410 CAGGGAACAGC AATGGGAACGC CAG[T/C]ATCAA CATCACGGACA TCTCAAGGA	419 GCAATGGGAAC GCCAGTATCAA CAT[C/T]ACGGA CATCTCAAGGAA TATCACTT	467 CTTCCATACACA TAGAGAACTGG CG[C/A]AGTCTT CACACGCTCAA CGCCGTGG	473 TACACATAGAGA ACTGGCGCAGT CT[T/G]CACACG CTCAACGCCGT GGACATGG	479 TAGAGAACTGG CGCAGTCTTCA CAC[G/A]CTCAA CGCCGTGGACA TGGAGCTCT
616	410	419	467	473	479
375 cg43105476	376 cg43939695	377 cg43939695	378 cg43939695	379 cg43939695	380 cg43939695
375	376	377	378	379	380

(15q25) (15q25) (15q25) (15q25)	00
0.00E+00 0.00E+00 9.30E-280	0.00E+00
ALLANDON GENE SWISSPROT- D:0.16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.12) (TRKC TYROSINE AINASE) (GP145-TRKC) (TRK-C)- HOMO SAPIENS (HUMAN), 839 aa. HUMAN GENE SWISSPROT- HUMAN GENE SWISSPROT- HUMAN GENE SWISSPROT- HUMAN GENE SWISSPROT- ID:0.16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.12) (TRKC TYROSINE RICEPTOR PRECURSOR (EC 2.7.1.12) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C)- HUMAN GENE SWISSPROT- HUMAN GENE SWISSPROT- HUMAN GENE SWISSPROT- ID:P36896 SERINE/THREONINE- ID:P36	CHAIN) (UKHC) - HOMO SAFIEND (HUMAN), 963 aa. Human Gene SWISSPROT- ID:Q12756 KINESIN-LIKE PROTEIN KIF1A (AXONAL TRANSPORTER OF SYNAPTIC VESICLES) - HOMO SAPIENS (HUMAN), 1690 aa.
kinasere ceptor kinasere ceptor kinasere ceptor kinasere ceptor kinasere ceptor kinasere	Kinesin
SILENT- CODING CODING SILENT- CODING CODING CODING CODING	SILENT- CODING
Asn Thr Gln Gly	- Phe
Asn Gln Gly Lys	Ph
<u>⊢</u> <u>0</u> <u>0</u> <u><</u> <u>0</u>	Γ ()
485 ACTGGCGCAGT CTTCACACGCTC AA[C/T]GCCGTG GACATGGAGCT CTACACCG TCACACCG ATGGAGCTCTA CACCCGTGGACT TCAAAGCTCAA CATCACAGA TACACCGGACTT CA[A/G]AAGCTC ACATGGAGCT TCAGAAC TCAGAC TCAGAGCT ACACCGGACTT CA[A/G]AAGCTC ACCATCACGAC TCAGAC TCAGAC TCAGAC TCAGAC TCAGGAC ACCTGTAAAACTT CCTGTAAAACTT CCTGTAAAAACTT	2368 TCCGGAAGTGG CAAGTGCTICAAGTGCTACCAGTGCTACCTTCCTGCGGACCTGCGGACCTGCGGGACCTGCGGGACCT
485 AC C C C C C C C C C C C C C C C C C C	
381 cg43939695 382 cg43939695 383 cg43939695 384 cg29023997	386 cg43975720

8		ļ.	(pd77)			17 (17q23.1)
0.00E+00	8.80E-51	0.00	0.00E+00	9.80E-261	7.Z0E-173	0.00E+00
	Human Gene Similar to SWISSPROT-ID:Q05090 KINESIN LIGHT CHAIN (KLC) - STRONGYLOCENTROTUS PURPURATUS (PURPLE SEA URCHIN), 686 aa.	Human Gene Similar to SWISSPRUI- ID:Q05090 KINESIN LIGHT CHAIN (KLC) - STRONGYLOCENTROTUS PURPURATUS (PURPLE SEA URCHIN), 686 aa.	Human Gene SWISSPROT-ID:P24043 LAMININ ALPHA-2 CHAIN PRECURSOR (LAMININ M CHAIN) (MEROSIN HEAVY CHAIN) - HOMO SAPIENS (HUMAN), 3110 aa.	Human Gene SWISSPROT-ID:P54317 PANCREATIC LIPASE RELATED PROTEIN 2 PRECURSOR (EC 3.1.1.3) - HOMO SAPIENS (HUMAN), 469 aa.	Human Gene SPTREMBL-ID:P79457 MALE-SPECIFIC HISTOCOMPATIBILITY ANTIGEN H- YDB - MUS MUSCULUS (MOUSE), 1186 aa.	Human Gene SPTREMBL-ID:Q15478 SODIUM CHANNEL ALPHA SUBUNIT - HOMO SAPIENS (HUMAN), 1836 aa.
kinesin	Kinesin	kinesin	laminin	lipase	WHC WHC	misc_ch annel
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Asn	Ala	Lys	ren	Ser	nen	
Asn	Ala	Lys	ren	Ser	nen	<u>e</u>
<u> </u>	O	<u>o</u>		 -	O	<u> -</u>
O	o	⋖	O	O	A	U L
2398 CTCTGCGGGAC CTGCTGTGGGG CAA[C/T]GCCAT CTTCCTCAAGGA GGCCAATG	44 TCGGGCCCGAT GACCCCATGT GGC[G/C]AAGAC CAAGAACAACCT GGCTTCCT	80 ACAACCTGGCTT CCTGCTACCTG AA[A/G]CAGGGC AAGTACCAGGA TGCAGAGA	4764 TCTCTGGGGCC CGCTGAGGTGA CAG[C/T]AAGTG CTTTAGCTCCTG	304 ATCCTTTGAAAA TCTCATATTGTT T[C/T]GAGTTTTC ATTACTTCCATA	3848 GGAAGCCCCAG CTGCAGGAGCT GCT[A/G]AAGCT GCCGGCTTCA	955 ATGTGGAGTAC ACCTTCACAGG GAT[C/T]TACAC CTTTGAGTCCCT
2398 (44	80	4764	304	3848	955
387 cg43975720	388 cg43311943	389 cg43311943	390 cg43983535	391 cg42488873	392 cg43935885	393 cg44019843
387	388	389	390	391	392	390

High trip ways of these was then add in add on the first that that the

	n		
4.70E-214	0.00E+00	2.60E-50	2.60E-50
Human Gene TREMBLNEW-ID:E1216872 NERVE GROWTH FACTOR-INDUCIBLE PC4HOMOLOGUE - HOMO SAPIENS (HUMAN), 453 aa.	nuclease Human Gene SWISSPROT- ID:Q01831 DNA-REPAIR PROTEIN COMPLEMENTING XP-C CELLS (XERODERMA PIGMENTOSUM GROUP C COMPLEMENTING PROTEIN) (P125) - HOMO SAPIENS (HUMAN), 939 aa.	nuclease Human Gene Similar to SWISSNEW-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN [CONTAINS: REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE] - HOMO SAPIENS (HUMAN), 874 aa. pcls:SWISSPROT-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN (REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE) - HOMO SAPIENS (HUMAN), 874 aa.	
ngf	nuclease	nuclease	nuclease
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Arg	Arg	Gin	ତ୍ର
Arg	Arg	Gin	O D
⋖	∢	-	O
1266 ATGTCCTGAGG G GCAGTGGAGGA ACG[G/A]GATTT TCCAACAGAAAC CATTAAAT	1283 AGTCGATGTCC G AGCTTGCGGGC CAC[G/A]CGGTG TAGATTGGGCA GGTTCAGCT	282 GCCAGTTAATAT C TGCCTAGTAATT T[C/T]TGATAATC ATTTAAGGTATG TAAGT	387 AAGGATACTTCC T AAGGAGAGGAC ATĮT/CJTGTACTT TTTCAGGTGCAA TGATTA
394 cg44929972 12	395 cg44926604 12	396 cg38642684 Z	397 cg38642684 3
394 cg4	395 cg/	396 095	397 cgś

		(zp.qz) z
2.60E-50	2.60E-50	0.00
nuclease Human Gene Similar to SWISSNEW-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN [CONTAINS: REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE] - HOMO SAPIENS (HUMAN), 874 aa.jpcls:SWISSPROT-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN (REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE) - HOMO SAPIENS (HUMAN), 874 aa.	Human Gene Similar to SWISSNEW-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN [CONTAINS: REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE] - HOMO SAPIENS (HUMAN), 874 aa. [pcls:SWISSPROT-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN (REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE) - HOMO SAPIENS (HUMAN), 874 aa.	Human Gene SWISSPROT- ID:Q00918 LATENT TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN 1 PRECURSOR (TRANSFORMING GROWTH FACTOR BETA-1 BINDING PROTEIN 1) (TGF-BETA1- BP- 1) (TRANSFORMING GROWTH FACTOR BETA-1 MASKING PROTEIN, LARGE SUBUNIT) - RATTUS NORVEGICUS (RAT), 1712 aa.
nuclease	nuclease	oncogen e
CODING	SILENT- CODING	SILENT- CODING
<u>•</u>	ren	Thr
<u>•</u>	ren	Thr
<u> -</u>	O	∀
405 AGGACATTTGTA A CTTTTTCAGGTG C[A/T]ATGATTAA ACCACTTAACTG TGCAT	456 TCCTTATGACAG T AGGTATATAAAC TIT/CJAAAAGCA CTGGCTCCACT GGGGCTG	2577 TTGAAGTAGCTC G CTGAAGCTTCTA C[G/A]TCTAGTG CCAGCCAAGTG ATTGCTC
398 cg38642684	399 cg38642684	400 cg43919677

				12	(1p36.1)	4	
E 20E 220	27-500	5.30E-229	1.30E-149	0.00E+00	3.20E-286	1.20E-64	
	oncogen Human Gene SWISSPROT- ID:P12756 SKI-RELATED ONCOGENE SNOA - HOMO SAPIENS (HUMAN), 415 aa.	Human Gene SWISSPROT-ID:P12756 SKI-RELATEDONCOGENE SNOA - HOMOSAPIENS (HUMAN), 415 aa.	Human Gene Homologous to SWISSPROT-ID:P25689 URICASE (EC 1.7.3.3) (URATE OXIDASE) - PAPIO HAMADRYAS (HAMADRYAS	BABOON), 303 dar. phosphat Human Gene SWISSPROT- ase ID:Q06124 PROTEIN-TYROSINE PHOSPHATASE 2C (EC 3.1.3.48) (PTP-2C) (PTP-1D) (SH-PTP3) (SH-	pTP2) - HOMO SAPIENS (HUMAN), 593 aa. phosphat Human Gene SWISSPROT- ID:P05186 ALKALINE ase PHOSPHATASE, TISSUE- NONSPECIFIC ISOZYME	PRECURSOR (EC 3.1.3.1) (APTNAP) (LIVER/BONE/KIDNEY ISOZYME) (TNSALP) - HOMO SAPIENS (HUMAN). 524 aa. SAPIENS (HUMAN). 524 aa. TREMBLNEW-ID:D1024666 PROTEIN-TYROSINE-PROSPHATASE (EC 3.1.3.48) - MUSCULUS (MOUSE), 426 aa.	
	e e	e e	oxidase	phosphe	phosph	phosp	
	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	_
	Asp	Thr	Pro	Gly	Arg	Seg	-
	Asp	Thr	Pro	Gly	Arg	Ser	-
	0	<u> </u>	U	O	∢	<u>۸</u>	
	1384 CCTGTGGGCTG T ATTACATTAACT GAIT/CJGCACAA	AGATTATGTAAT GCTTTAT 1423 GTAATGCTTTAT T TGCGGCCACGA ACIT/GITTTCCTC	AAATGGTAGC GTACTTC STCAAGGACCAG TTCACTACCCTC CC[T/C]GAGGTG	AAGGACTGATG CTTTGCCA 750 AACTGAAATACG A ACGTTGGTGGTGGA	ACAGATCTTTG ACAGATC 1227 GGTGGTGGTGG C CCATCCAGATC	CTGLCAJSGRAGG AACCCCAAAGG CTTCTTCTT TTGGAAATGGTG TTGGAAATATTAT TTGGAAATGTTAT TTGCAAATGTTAT TTGCCATGATAA	CCAGAG
	1384		5 546				
	401 cg44005163	402 cg44005163	403 cg25334466	404 cg42535091	405 cg43302847	406 cg39728924	
	401 cg	402 cç	403 c	404	405	400	

print grief first that the first sold on the second sold of the second

15 (15q26)	2	3 (3927)		1 (1p31)	
0.00E+00	0.00E+00	0.00E+00	1.10E-228	1.10E-171	1.80E-51
protease Human Gene SWISSNEW-ID:P29122 SUBTILISIN-LIKE PROTEASE PACE4 PRECURSOR (EC 3.4.21) - HOMO SAPIENS (HUMAN), 969 aa.pcls:SWISSPROT-ID:P29122 SUBTILISIN-LIKE PROTEASE PACE4 PRECURSOR (EC 3.4.21) - HOMO SAPIENS (HUMAN), 969 aa.	Human Gene SPTREMBL-ID:000199 INTEGRAL MEMBRANE SERINE PROTEASE SEPRASE - HOMO SAPIENS (HUMAN), 760 aa.	proteasei Human Gene SWISSPROT- nhib ID:P01042 KININOGEN, HMW PRECURSOR (ALPHA-2-THIOL PROTEINASE INHIBITOR) (CONTAINS: BRADYKININ) - HOMO SAPIENS (HUMAN), 644 aa.	proteasei Human Gene SWISSPROT- ID:P29622 KALLISTATIN PRECURSOR (KALLIKREIN INHIBITOR) (PROTEASE INHIBITOR 4) - HOMO SAPIENS (HUMAN), 427 aa.		Human Gene Similar to SWISSNEW-ID:P37040 NADPH-CYTOCHROME P450 REDUCTASE (EC 1.6.2.4) (CPR) - MUS MUSCULUS (MOUSE), 677 aa. pcls:SWISSPROT-ID:P37040 NADPH-CYTOCHROME P450 REDUCTASE (EC 1.6.2.4) (CPR) - MUS MUSCULUS (MOUSE), 677 aa.
protease	protease	proteasei nhib	protease nhib	reductas e	reductas e
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
\ \ 	Val	Gln	Phe	Gly	nen
Nal	Val	Gin	Phe	Gļ	Leu
O	O	<u>ග</u>	<u> </u>	⋖	<u> </u>
1564 ACCTGAAAGCG A AGCGACTGGAA AGT[A/G]AACGG CGCGGGTCATA AAGTTAGCC	589 CTGTTCCGTGG TAGAGAAGATA GTC[T/C]ACATTT CTGAAATATTCT GCTCTTG	793 TTCGAATTACCT A ACTCAATTGTGC A[A/G]ACGAATT GTTCCAAAGAG AATTTC	899 CCTCAAGGACC C ACTCCCAAAGA CTT[C/T]TATGTT GATGAGAACAC AACAGTCC	905 ATCATCATAAGA T GAAGAATCATTT T[T/A]CCAGTAG CCCCACTACCAT GAATGA	142 CCCACAGGTC G TATGTCCAGCAC CT[G/T]CTGAAG AGAGACAAAGA ACACCTGT
407 cg42881873	408 cg42913398	409 cg44028327	410 cg43979831	411 cg43987538	412 cg42717608

print first right oil with with such all and and such with the first first total fault.

	0 6	(20p1	179	169	(11p15	1E-92 (11p15.5)
Human Gene SPTREMBL-ID:Q13459 0 MYOSIN-IXB - HOMO SAPIENS (HUMAN), 2022 aa.	- HOMO	Human Gene SWISSPROT- 1D:P07204 THROMBOMODULIN PRECURSOR (FETOMODULIN) (TM) (CD141 ANTIGEN) - HOMO SAPIENS (HUMAN), 575 aa.	Human Gene SPTREMBL-ID:Q63358 2.10E-179 MYOSIN HEAVY CHAIN - RATTUS NORVEGICUS (RAT), 1980 aa.	Human Gene SWISSPROT- 1.80E-169 ID:P02549 SPECTRIN ALPHA CHAIN, ERYTHROCYTE - HOMO SAPIENS (HUMAN), 2418 aa.	Human Gene Similar to SWISSPROT-16 ID:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.	Human Gene Similar to SWISSPROT- ID:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.
	struct Human ID:G296 SAPIEN	struct Human ID:P07 PRECI (CD14 SAPIE	struct Humai MYOS NORV	struct Huma ID:P0 CHAI SAPII	struct Hum: ID:P2 SKEI FAS' SAP	struct Hum ID:P SKE FAS SAF
SILENT- struct	SILENT- SCODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Val	Thr	Pro	Ser	Ala	Gly	Asp
Val	C Thr	O Pro	A	A	A Gly	G
4726 ATCTGATGGAG T C AACTACCAGATC GT[T/C]GTCAGC	F	1475 CTGGGGCTCCC A CGCTGCCAGTG CCC[A/G]GCCGG	AGGCAGACG 815 TGCTCGAGGAT G GTCGACCGCAT GTCIG/AICCTGG	GGCGCTGGCCA TTATCTTCG 320 AACGCCTAGAG C GGGGAGCTGGT GGCGCAJCATGA GCCTGCCATCC	AGAATGTGC 333 GGTCCATGCAC G ACCTTGTGCTTC GA[G/A]CCCAGC	CATGGCAI 411 GGGGCCGCTTG A AACTTGCCCCG CAGIA/GITCAAA TAGCTTCTGGTT CATGTCCT
413 cg43927378 47:	414 cg43945592 15	415 cg43957486 14	416 cg44932934	417 cg43100187	418 cg42930605	419 cg42930605

1E-92 11 (11p15.5	1E-92 (11p15.5)	(11p15.5) (11p15.5) 1E-92 11	(11p15.5)) 1E-92 11	(11p15.5)) 1E-92 11	(11p15	1E-92 (11p15.5)
SSPROT- ST ONIN 1, HOMO		SAPILING WITH THE SWISSPROT-Human Gene Similar to SWISSPROT-ID:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.	Human Gene Similar to Switch Thuman Gene Similar to Switch 10:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.	Human Gene Silling 10 Corrections 10:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa. SAPIENS (HUMAN), 181 aa.	Human Gene Similar to Switzer (1978) 10:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.	Human Gene Similar to SWISSPROT-ID:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.
	struct	struct	struct	struct	struct	struct
Glu Glu SILENT- struct	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
	Tyr	Ala	GIU	nlo	<u> </u>	Pro
Glu	Tyr	Ala	Glu	gn	His	Pro
F	<	<u> </u>		<u> </u>	0	< ∪
435 GATCAAATAGCT C TCTGGTTCATGT CIC/TJTCCAGCT	CCTTGCTGGTCT TCTGCA TCTTCTGCACCC TCACCTGT TCACCTCATGT	CTCTTCAGCCG CATCGA CATCGA 507 TCTCCTCTTCAG G CCGCATCGATC TT[G/C]GCGTGC AGCTGTTTGCA	GAGCTCCT 516 CAGCCGCATCG C ATCTTGGCGTG CAGIC/TJTGTTT GCAGAGCTCCT	GCACTTCAG 528 TCTTGGCGTGC C AGCTGTTTGCA GAG[C/T]TCCTG CACTTCAGACAT	6GAGCCCG 558 GCACTTCAGAC A ATGGAGCCCGG GAT[AG]TGCAG CGGCGGCAGT	GCTCCGCCA 564 CAGACATGGAG CCCGGGATATG CAG[C/A]GGCGG GCAGTGCTCCG
435 G, TC	77 77 T	507	516	528		
420 cg42930605	421 cg42930605	422 cg42930605	423 cg42930605	424 cg42930605	425 cg42930605	426 cg42930605
420 cc	421 c	422 (423	424	42;	42

11	11p15.5	<u> </u>			=	(11p15.5	^								7	(2q24.3)		·						
1E-92	<u> </u>				1E-92	<u> </u>				2.5E-89	-				7.3E-85	_				6E-55				
Human Gene Similar to SWISSPROT-	ID:P48788 TROPONIN I, FAST	SKELETAL MUSCLE (TROPONIN I,	FAST-TWITCH ISOFORM) - HOMO	SAPIENS (HUMAN), 181 aa.	Human Gene Similar to SWISSPROT-	ID:P48788 TROPONIN I, FAST	SKELETAL MUSCLE (TROPONIN I,	FAST-TWITCH ISOFORM) - HOMO	SAPIENS (HUMAN), 181 aa.	Human Gene Similar to SPTREMBL-	ID:Q01449 MYOSIN REGULATORY	LIGHT CHAIN, CARDIAC MUSCLE	ISOFORM - HOMO SAPIENS	(HUMAN), 175 aa.	Human Gene Similar to SPTREMBL-	ID:Q10466 TITIN, HEART ISOFORM	N2-B (EC 2.7.1) (CONNECTIN) -	HOMO SAPIENS (HUMAN), 26926	aa.	Human Gene Similar to SWISSPROT-	ID:P07313 MYOSIN LIGHT CHAIN	KINASE, SKELETAL MUSCLE (EC	2.7.1.117) (MLCK) - ORYCTOLAGUS	CUNICULUS (RABBIT), 607 aa.
struct					struct					struct					struct					struct				
SILENT-	CODING				SILENT-	CODING				SILENT-	CODING				SILENT-	CODING				SILENT-	CODING			
Glu					Lys					Arg					Lys					Asp				
Olu					Lys					Arg					Lys					Asp				
L					T					4					⋖					ပ				
ပ					၁					ပ					ග					⊢				
615 TCTGCTTCTCIG C	CCTCACGGCGG	ст[с/т]тсстсст	TCTCCAGCTCC	GTGGCCG	621 TCTCTGCCTCAC C	весеестстсс	TC[C/T]TTCTCCA	стссетеесс	GCTATCT	51 AATGGCCAGCA	GGAAGGCGGGG	Acc[c/A]GGGGC	AAGGTGGCAGC	CACCAAGCA	282 AATCAAGACAAA	CCCGAATTGAAA	A[G/A]AAGATTG	AAGCCCACTTTG	ATGCCA	337 TGAAGAACGTAA	AGGACCGGGAG	GA[T/C]GTGAAG	AATGAGGTCAA	CATCATGA
615					621					51					282					337				
427 cg42930605					428 cg42930605					429 cg42893961					430 cg42475816					431 cg42522566				
427					428					429					430					431				

10	10
00+	00+
0.00E+00	0.00E+00
Human Gene SWISSPROT- ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa. [pcis:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO	JAPILENS (HUMAN), 883 aa. Human Gene SWISSPROT- ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa. pcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883
LFAT LFAT (EC 2 SULF - HOI NYL NYL NYL P	PAT- LFAT EC 2 SULF SULF SULF SULF - HOI NYL N
SPRC N SU N SU ASE (RRIN & RRIN & ASE) SAMII	SPRC N SUI N SUI ASE (RRIN (RRIN (RR3), 883 SAMIR
Human Gene SWISSPROT- ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2 (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa. pcis:TREMBLNEW-ID:G279251 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO	Human Gene SWISSPROT- ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2 (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa. pcls:TREMBLNEW-ID:G279251 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883 AS A
Human Gene SWIS ID:P52849 HEPARI DEACETYLASE/N- SULFOTRANSFER SULFOTRANSFER GLUCOSAMINYL I DEACETYLASE/N- SULFOTRANSFER SAPIENS (HUMAN) aa.[pcls:TREMBLNE HEPARAN GLUCO DEACETYLASE/N- SULFOTRANSFER	Human Gene SWIS Human Gene SWIS ID:P52849 HEPARI DEACETYLASE/N- SULFOTRANSFER SULFOTRANSFER GLUCOSAMINYL DEACETYLASE/N- SULFOTRANSFER GALUCOSAMINYL DEACETYLASE/N- SULFOTRANSFER SULFOTRANSFER SULFOTRANSFER HEPARAN GLUCO DEACETYLASE/N- SULFOTRANSFER SULFOTRANSFER
nan G 5284 ACET FOT HSS1 HSS1 HSS1 HSS1 HSS1 FOT FOT PIENS PGET ACET FOT	ACET FOTF FOTF FOTF FOTF FOTF FOTF FOTF FO
sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULFA DEACETYLASE/N- SULFOTRANSFERASE (EC (N- HSST) (N-HEPARIN SUL SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - H SAPIENS (HUMAN), 883 aa.jpols:TREMBLNEW-ID:GX HEPARAN GLUCOSAMINYL DEACETYLASE/N- SULFOTRANSFERASE - H SAPIENS (HUMAN), 883 aa.jpols:TREMBLNEW-ID:GX HEPARAN GLUCOSAMINYL DEACETYLASE/N- SULFOTRANSFERASE-2 - H	SAPIENS (HUMAN), 883 aa. sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULF DEACETYLASE/N- SULFOTRANSFERASE (EC (N- HSST) (N-HEPARIN SUL SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - H SAPIENS (HUMAN), 883 aa. Ipcls:TREMBLNEW-ID:GŽ HEPARAN GLUCOSAMINYL DEACETYLASE/N- SULFOTRANSFERASE.2 - F SAPIENS (HIMAN), 883
sulfotran	sulfotran sferase
sfe ste	sulf
, cp	
CODING CODING	SILENT- CODING
18 99	
Val	Arg
>	<
Val	Arg
⋖	∢
<u>0</u>	0
361A (600 CAAC TTCT 60	AAGA AAGA GTTC AGCG
ATG	ATAG GAC GGG GGG GCC
953 GTAGATGGGTA GAATAGTAGCC AGG[G/A]ACAAG ACAGCGGTTCT GCAGGGAGC	TAGAATAGTAGC CAGGGACAAGA CA[G/A]CGGTTC TGCAGGGAGCG TAGTGCCA
953 (962 TAGAATAGTAGC G CAGGGACAAGA CAGGAJCGGTTC TGCAGGGAGCG TAGTGCCA
97806	37806
9432;	94326
432 cg43297806	433 cg43297806
	`

00	10
0.00E+000	0.00E+00
sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.jpcis:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883 aa	Human Gene SWISSPROT- ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.jpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883 aa.jpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883 aa.
sferase	sferase
SILENT- CODING	SILENT- CODING
nen	Ala
nel	N N N N N N N N N N N N N N N N N N N
⋖	∢
973 CCAGGGACAAG G ACAGCGGTTCT GCA[G/A]GGAGC GTAGTGCCAGA GGGGTCTGG	1004 GTAGTGCCAGA G GGGGTCTGGGA GGA[G/A]GCTGA AATCACCTGATA GAAGGTAT
434 cg43297806	435 cg43297806
434	435

10	10
0.00E+00	0.00E+00
0.00	0.00
sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.[pcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883 aa.	sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.jpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883
sulfotran	sulfotrar
SILENT- CODING	SILENT- CODING
ច	<u>አ</u>
<u>n</u>	TyT
<u> </u>	<u>စ</u>
O	<
1016 GGGTCTGGGAG C GAGGCTGAAAT CAC[C/T]TGATA GAAGGTATAGTT CAGAGCAA	TOTOGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA
1016	1018
436 cg43297806	437 cg43297806
436	437

10	10
0.00E+00	0.00E+00
ō. o	0.0
sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.lpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HIMAN), 883 aa.lpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO	sulfotran Human Gene SWISSPROT- sferase ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.jpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HUMAN), 883
sferase	sferase
SILENT- CODING	SILENT- CODING
ľ.	م
Tyr	<u>Р</u>
ပ	∢
ATC A GAA AGTT ACTG ATT ACTG ATT ACTG ATT ACTG ACTG	SGTATT GCCA STCT CTCG
1028 AGGCTGAAATC ACCTGATAGAA GGT[A/G]TAGTT CAGAGCAACTG GGTCTCCAT	GATAGAAGGTAT AGTTCAGAGCA AC[T/A]GGGTCT CCATGGGCTCG CTGATGCT
1028	1043
438 cg43297806	439 cg43297806
438	439

<u></u>			
10			
0.00E+00	2.80E-72	2.80E-72	2.80E-72
ran Human Gene SWISSPROT- se ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa. pcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE-2 - HOMO SAPIENS (HUMAN), 883 aa.	synthase Human Gene Similár to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.	synthase Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.	Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.
sferase	syntha	syntha	synthase
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Olu 	Leu	<u> </u>	Arg
Gin	ren	<u>e</u>	Arg
O	O	O .	O
926 CAGAGGGGTAG T TAAGTCAGCCA GCG[T/C]TGTAG ATGGGTAGAATA GTAGCCAG	445 CAGCCACATTC A CGGTAAGCCTC GCA[A/G]AGAGC CAGCTGGGCGC CAGCTGGGCGC	538 CGATGCCGAGG A TTGTCGTCAATA CG[A/G]ATCATG CCGCCATCATT CGGCTGAG	580 TCGGCTGAGCG A AGCACAGTATTG CC[A/G]CGCACG AACCGGTCATA CTGGTCGG
440 cg43297806	441 cg39515668	442 cg39515668	443 cg39515668
4	44	44	4

2.80E-72	2.20E-56	2.20E-56	2.20E-56	2.60E-53	2.60E-53
synthase Human Gene Similar to SWISSNEW- ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.		synthase Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.	synthase Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.	synthase Human Gene Similar to SWISSPROT-ID:P50004 ATP SYNTHASE BETA CHAIN (EC 3.6.1.34) - STREPTOMYCES LIVIDANS, 477 aa.	synthase Human Gene Similar to SWISSPROT-ID:P50004 ATP SYNTHASE BETA CHAIN (EC 3.6.1.34) - STREPTOMYCES LIVIDANS, 477 aa.
synthase	synthase	synthase	synthase	synthase	synthase
SILENT. CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Ala	<u>Val</u>	Glu	Gly	Arg	Olu
Ala	Val	Glu	Gly	Arg	Glu
ပ	A	O	۲	<u> </u>	O
655 GGGCGGAGCCA G ACAAGGGCCAG CAG[G/C]GCCCC AGCAAGACCCT CACCAGAGT	177 TGACCTCGCCA G ATGACAGTGGC AGC[G/A]ACACC CCAATGGGCGC AGATCTCCA	273 CCTGGGACTCG T CTCATGAGGAT CTC[T/C]TCAGG GGCGAGGTTCG GGTCGCGCA	327 GAACGCGGTCG G AGCTCGACGTG CAT[G/A]CCACC GTCGCCAGCAC TGGCCAGCT	301 TCTCGTTGATGA A GGTCGTTACCC TC[A/G]CGGGTA CGTTCACCGAC ACCGCGGA	310 TGAGGTCGTTA T CCCTCACGGGT ACG[T/C]TCACC GACACCGGCGA AAACCGAAG
444 cg39515668	445 cg21428405	446 cg21428405	447 cg21428405	448 cg38924050	449 cg38924050

synthase Human Gene Similar to SWISSPROT- D:P50004 ATP SYNTHASE BETA CHAIN (EC 3.6.1.34)- STREPTOMYCES LIVIDANS, 477 aa. Human Gene SPTREMBL-ID:O00348 PUTATIVE ENDOTHELIN RECEPTOR TYPE B-LIKE PROTEIN- HOMO SAPIENS (HUMAN), 613 aa. Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - HOMO SAPIENS (HUMAN), 387 aa. Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - HOMO SAPIENS (HUMAN), 387 aa. Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - HOMO SAPIENS (HUMAN), 387 aa. HOMO SAPIENS (HUMAN), 387 aa. HOMO SAPIENS (HUMAN), 387 aa.	
thase Human Gene Similar to SWISSPROT- ID:P50004 ATP SYNTHASE BETA CHAIN (EC 3.6.1.34) - STREPTOMYCES LIVIDANS, 477 aa. Human Gene SPTREMBL-ID:O00348 PUTATIVE ENDOTHELIN RECEPTOR TYPE B-LIKE PROTEIN - HOMO SAPIENS (HUMAN), 613 aa. Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - HOMO SAPIENS (HUMAN), 387 aa. Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - HOMO SAPIENS (HUMAN), 387 aa.	
nrthase Human Gene Similar to SWISSPROT- ID:P50004 ATP SYNTHASE BETA CHAIN (EC 3.6.1.34) - STREPTOMYCES LIVIDANS, 477 aa. ALIMEAN GENE SPTREMBL-ID:000348 PUTATIVE ENDOTHELIN RECEPTOR TYPE B-LIKE PROTEIN- HOMO SAPIENS (HUMAN), 613 aa. AT Human Gene SWISSPROT- ID:P49019 PROBABLE G PROTEIN- COUPLED RECEPTOR HM74 - HOMO SAPIENS (HUMAN), 387 aa.	
71 71 71 71 71 71 71 71 71 71 71 71 71 7	
tm7 tm7 tm7	
SILENT- CODING CODING SILENT- CODING SILENT- CODING SILENT- CODING CODING	
Ala Ser Val	
Arg Ser Gly	
0 4 0 1	
O F P	
352 AAACCGAAGTA G CCGCCGAAGTT GTG[G/C]GCGAT ACGGTAAATCAT CTCCTGAA 1703 GAGCACATAAG T GACT/A]CCCAG AGAAGCGACCT CTATATAGG AGAAGCGACT CTATATAGG TCT/C]GAACGC CCAAACTTCCAG TCT/C]GAACGC CCAAACTTCCAG TCT/C]GAACGC CCAAACTTCCAG TCT/C]GAACGC CCAAACTTCCAG TCT/C]GAACGC CCAAACTTCCAG TTT/CCCCAAACTTC GCACATCAAACGC CCGCACATCAACG CCGATCACATA GTAGTCCATCAC GAACGGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACGC AGTTCAAACAGC AGTTCAAACAGC AGTTCAAACAGC AGTTCAAACAGC AGTTCAAACAGCC AGTTCAAACAGCC AGTTCAAACAGCC AGTTCAAACAGCC AGTTCAAACAGCC AGTTCAAACAGCC AGGTTCAAACAGCC AGGTTCAAACAGCC	GAAAATCC
1703 1736 1744	
450 cg38924050 451 cg43925970 452 cg41616031 453 cg41616031	
451	

455 94/2488942 338 GGCTGGTCAAC C G Thr Thr SILENT Human Gene Homologous to SWISSPROTH-DGG03038 CAGGGTGTCATC CODING SWISSPROTH-DGG03038 CAGGGTGTCATC CAGATTGTTTG CAGAGTGTTCAGT CAGAGTGTTCAGT CAGAGTGTTCAGT CAGAGTGTTCAGT CAGAGTGTTCAGT CAGAGTGTTG CAGAGTGTTCAGT CAGAGTGTTCAGT CAGAGTGTTCAGT CAGAGTGTTTG CAGAGTGTTG CAGAGTG CAGAGTGTTG CAGAGTGT CAGAGTG CAG		T	
393 GGCTGGTCAAC C	30E-106	30E-106	30E-106
393 GGCTGGTCAAC			
393 GGCTGGTCAAC C G Thr Thr SILENT- ACAGGTCTTCTG ACAGGTCTTCTG ACCAAGG ACCAGGTCTTC ACACAGGTCTTC ACCAAGG ACCAAGG ACCAAGG ACCAAGG ACCAAGGTCTTC ACCAAGGTCTTC ACCAAGGTCTTC ACCAAGGTCTTC ACCAAGGTCTTC ACCAAGGTCTTT ACACAAGTT ACACAAGTT ACACAAGTT ACACAAAGTT ACACACAACTT ACACAAAGTT ACACAAAGTT ACACAAACTT ACACAAACTT ACATACCAAC ACATCGC ACACACAC ACACACAC ACATCGC ACACACAC ACACAC ACACACAC ACACACAC ACACAC ACACACAC ACACACAC ACACACAC ACACACAC ACACACAC ACACACAC ACACA	Human Gene Homologous to SWISSPROT-ID:Q02038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRÍAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDAS (MEP) (SOLUBLE ANGIOTENSIN BINDING PROTEIN) (SABP) - SUS	Human Gene Homologous to SWISSPROT-ID:002038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRIAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDASI (MEP) (SÖLUBLE ANGIOTENSIN- BINDING PROTEIN) (SABP) - SUS	Human Gene Homologous to SWISSPROT-ID:Q02038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRIAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDASI (MEP) (SOLUBLE ANGIOTENSIN- BINDING PROTEIN) (SABP) - SUS
393 GGCTGGTCAAC C G Thr Thr	tm7	tm7	tm7
393 GGCTGGTCAAC C G Thr ACAGGTCTTCTG AC[C/G]CTGCGC CAGATTGTTTTG AGCAAAG TGACCCTGCGC CA[G/A]ATTGTTT TGAGCAAAGTT GATCAGT TGAGCAAAGTT GATCAGT GATCAGT TGAGCAAAGTT GATCAGT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT CASD ASP ACATCGC ACATCGC ACATCGC ACATCGC	SILENT- CODING	SILENT- CODING	SILENT- CODING
393 GGCTGGTCAAC C G ACAGGTCTTCTG ACIC/GJCTGCGC CAGATTGTTTTG AGCAAAG TGACCCTGCGC CA[G/A]ATTGTTT TGAGCAAAGTT GATCAAGT GATCAAGT GATCAGT TGAGCAAAGTT GATCAAGT GATCAGT TGAGCAAAGTT CATCATACCAAC ACATCGC ACATGGTCT CTCATACCAAC ACATCGC	id.	Gin	Asp
402 ACAGGTCTTCTG ACAGGTCTTCTG ACAGGTTGTTTG ACCAAAG TGACCAGGTCTTC G TGACCAGGTCTTT TGACCAAAGTT TGAGCAAAGTT GATCAGT TGAGCAAAGTT GATCAGT CTTCATACCAAC ACATCGC ACATCGC ACATCGC ACATCGC ACATCGC ACATCGC ACATCGC ACATCGC ACATCGC	Th.	Gln	Asp
402 ACAGGTCTTCTG ACAGGTCTTCTG ACAGGTCTTCTG ACACATGTTTTG AGCAAAG TGACCAGGTCTTT TGACCCTGCGC CA[G/A]ATTGTTTT TGAGCAAAGTT GATCAGT TGAGCAAAGTT GATCAGT TGAGCAAAGTT TGAGCAAAGTT GATCAGT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT TGAGCAAAGTT TGATCGTCT CTTCATACCAAC ACATCGC	ဖ	∢	O
	GGCTGGTCAAC C ACAGGTCTTCTG AC[C/G]CTGCGC CAGATTGTTTTG AGCAAAG	ACACAGGTCTTC G TGACCCTGCGC CA[G/A]ATTGTTT TGAGCAAAGTT GATCAGT	GCCAGATTGTTT T TGAGCAAAGTT GA[T/C]CAGTCT CTTCATACCAAC ACATCGC
455 cg42489842 456 cg42489842 457 cg42489842	393	402	423
456	cg42489842	cg42489842	cg42489842
	455	456	457

7.30E-106	7.30E-106	7.30E-106	1.40E-71
Human Gene Homologous to SWISSPROT-ID:Q02038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRIAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDASE) (MEP) (SOLUBLE ANGIOTENSIN- BINDING PROTEIN) (SABP) - SUS SCROFA (PIG). 704 aa.	Human Gene Homologous to SWISSPROT-ID:Q02038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRIAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDASE) (MEP) (SOLUBLE ANGIOTENSIN- BINDING PROTEIN) (SABP) - SUS	Human Gene Homologus to SWISSPROT-ID:Q02038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRIAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDASE) (MEP) (SOLUBLE ANGIOTENSIN- BINDING PROTEIN) (SABP) - SUS SCROFA (PIG), 704 aa.	Human Gene Similar to SWISSPROT-ID:Q15391 PROBABLE G PROTEIN-COUPLED RECEPTOR KIAA0001 -HOMO SAPIENS (HUMAN), 338 aa.
tm7	tm7	tm7	tm7
SILENT- CODING	SILENT- CODING	CODING	SILENT- CODING
nen	Ala	Ala	Leu
nen	Ala	Ala	Leu
0	O	<u> </u>	⋖
432 TTTTGAGCAAAG T TTGATCAGTCTC TT/CjCATACCAA CACATCGCTGG ATGCTG	456 TTCATACCAACA T CATCGCTGGAT GC[T/C]GCAAGT GAATATGCCAAA TACTGCT	471 CGCTGGATGCT C GCAAGTGAATAT GC[C/T]AAATACT GCTCAGAAATAT TAGGAG	947 TTTTGTCTTTGC G CAAACATCATCC T[G/A]ACAAATG GTCAGCCAACA GAGGACA
458 cg42489842 45	459 cg42489842 445	460 cg42489842 47	461 cg42927358 94
4	4	4	4

	3 (3q21)				9
1.40E-71		2.30E-292	7.80E-54	1.70E-53	1.30E-115
Human Gene Similar to SWISSPROT-ID:Q15391 PROBABLE G PROTEIN-COUPLED RECEPTOR KIAA0001 - HOMO SAPIENS (HUMAN), 338 aa.	Human Gene Similar to SPTREMBL-ID:Q89609 G PROTEIN-COUPLED RECEPTOR - EQUINE HERPESVIRUS TYPE 2 (EHV-2), 383 aa.	transcript Human Gene SWISSPROT- factor ID:P32780 BASIC TRANSCRIPTION FACTOR 62 KD SUBUNIT (P62) - HOMO SAPIENS (HUMAN), 548 aa.	franscript Human Gene Similar to SWISSNEW- factor ID:Q61751 RENAL TRANSCRIPTION FACTOR KID-1 (TRANSCRIPTION FACTOR 17) - MUS MUSCULUS (MOUSE), 572 aa. pcls:SWISSPROT- ID:Q61751 RENAL TRANSCRIPTION FACTOR KID-1 (TRANSCRIPTION FACTOR 17) - MUS MUSCULUS (MOUSE), 572 aa.	transcript Human Gene Similar to SPTREMBL- factor ID:008996 MYELIN TRANSCRIPTION FACTOR 1-LIKE - MUS MUSCULUS (MOUSE), 1182 aa.	Human Gene Homologous to TREMBLNEW-ID:G2738933 GLUTATHIONE TRANSFERASE (EC 2.5.1.18) - HOMO SAPIENS (HUMAN), 222 aa.
tm7	tm7	transcript factor	transcript factor	franscript factor	transfera se
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Pro	Glý	卢	<u>=</u>	Th.	Gln
Pro	Gly	TT.	<u>=</u>	Thr	Gln
⋖	<u></u>	O	∢	O	-
ပ	O	F	ပ	U	O
544 ATGAATTTGACA CAATTGTCTTGC C[G/A]GTGCTTT ATCTCATTATAT TTGTGG	1056 CCCTCCTCCTG GCTGAGAAAA GTT[G/T]CCCTT GTGCAAAAACA CTAGGTACC	2389 TATGATTGGATG TGGAAGAACTAT C[T/C]GTTGCATT CACATTTAAACG ATTGG	800 CTCCTGTGTGT GTCCTTAAGTGT CT[G/A]ATGAGG TGTGACTTCTGG CTAAAGC	TGGAGGCGGCC CACATGGCGGC CAC[C/G]GCCAT CCTCAACCTGTC CACGCGCT	856 GGGCCATGTTA ACCACTTCCTTT TG[C/T]TGATCAT CTGGTTTTAAGA AAGGAT
544	1056	2389	800	301	856
462 cg42927358	463 cg32423505	464 cg43968711	465 cg43297259	466 cg20612302	cg43949162
462	463	464	465	466	467

Here first with the set of the se

7		00		01			101				-101				70,7	3.30E-101			
2.60E-87		0.00E+00		3.30E-101			3 30F-101)))			3 30F-101							_	
ZEMBL-	ID:009034 GLU I AHIONE 3- TRANSFERASE SUBUNIT 13 - RATTUS NORVEGICUS (RAT), 226 aa.	transport Human Gene SWISSPROT-	ID:Q15436 PROTEIN I KANSPON PROTEIN SEC23 HOMOLOG ISOFORM A - HOMO SAPIENS			UBCHG (EC 6.3.2.19) (UBIQUITIN- PROTEIN LIGASE) (UBIQUITIN	CARRIER PROTEIN) - nomo SAPIENS (HUMAN), 193 aa.		CONJUGATING ENZYME E2-21 KD	PROTEIN LIGASE) (UBIQUITIN	SAPIENS (HUMAN), 193 aa.	 	CONJUGATING ENZYME E2-21 KD	PROTEIN LIGASE) (UBIQUITIN	CARRIER PROTEIN) - HOWO SAPIFNS (HUMAN), 193 aa.	ubiquitin Human Gene Homologous to	SWISSPROT-ID:P31963 UBIQUITIN- CONJUGATING ENZYME E2-21 KD UBCH6 (EC 6.3.2.19) (UBIQUITIN- PROTEIN LIGASE) (UBIQUITIN	CARRIER PROTEIN) - HOWO SAPIENS (HUMAN), 193 aa.	
a	es es	ransport		diffi gid.	- Inchide			ubiquitin				ubiquitin				ubiduit			1
For the state of t		SII FNT-		1	SILENI- CODING			SILENT-				SILENT-	CODING			SIL ENT-	CODING		
	D	٩	Lys		을			Phe				Val				Sor	<u>, </u>		_
	n aa		Lys		lle			Phe				Val			. 	- 3	ğ O		-
	<u></u>	\dashv	<u> </u>		٧			0				U	<u> </u>			- -	∢		_
	SG CC ST	AICIGCAGG	1859 GACAGCTCATTC A GACTGTGTCAG AA[A/G]TTTGGA	GAATATCATAAA	975 CTTGACTGTTAA G	A[G/A]ATTCTTGT CCGAAATGTAAC	сттс	A VATICE GET GAT A	AAGTGATATCGA	GACCACCTCAT	ACACGG	TOTOV	1047 G1G1 AAAAG1GA TATCGAGAAAGA	ATT/GJACACCAC CCTCATACACG	GATCCTG		1065 GAAAGAATACAC G CACCCTCATACA C[G/A]GATCCTG GAGGCCCTAGA	ATGGTTG	
	449		1859	=	975												ļ		
	468 cg43928442		469 cg43976701		470 cg44005525				471 cg44005525				472 cg44005525				473 cg44005525		
	468		469		470				47				4						

3.30E-101	3.30E-101	3.30E-101	3.30E-101	3.30E-101
ubiquitin Human Gene Homologous to SWISSPROT-ID:P51965 UBIQUITIN- CONJUGATING ENZYME E2-21 KD UBCH6 (EC 6.3.2.19) (UBIQUITIN- PROTEIN LIGASE) (UBIQUITIN- CARRIER PROTEIN) - HOMO SAPIENS (HUMAN), 193 aa.			ubiquitin Human Gene Homologous to SWISSPROT-ID:P51965 UBIQUITIN- CONJUGATING ENZYME E2-21 KD UBCH6 (EC 6.3.2.19) (UBIQUITIN- PROTEIN LIGASE) (UBIQUITIN CARRIER PROTEIN) - HOMO SAPIENS (HUMAN), 193 aa.	
ubiquiti	ubiquitin	ubiquitin	ubiquiti	ubiquitin
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
	Ölü	Asp	Asn	Ser
Leu	Glu	Asp	Asn	Ser
O	ပ	ပ	9	ග
1080 CCTCATACACG T GATCCTGGAGG CCC[T/C]AGAAT GGTTGATCTCCA TTCATAGA	1098 GAGGCCCTAGA TAGGTTGATCTC CA[T/C]TCATAGA TGTTATCGCCTT TGGGAC	1110 TGGTTGATCTCC A ATTCATAGATGT T[A/G]TCGCCTTT GGGACCAGCAC TGCAAT	1134 TATCGCCTTTGG A GACCAGCACTG CA[A/G]TTAGGT GGAGGGTCTAA AGTGATGT	828 TGTTGGTCATAT A ACTGAGTGGCA AT[A/G]CTTCCC ACCAAAGGGTC GGCAGGAT
474 cg44005525	475 cg44005525	476 cg44005525	477 cg44005525	478 cg44005525
-	-	*	,	7

10 (10p11.2 3)	10 (10p11.2 3)	9 (9p12)	၉	-	12
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
UNCLAS Human Gene SWISSPROT- SIFIED ACC:Q05329 GLUTAMATE DECARBOXYLASE, 65 KD ISOFORM (EC 4.1.1.15) (GAD-65) (65 KD GLUTAMIC ACID DECARBOXYLASE) - Homo sapiens (Human), 585 aa.	Human Gene SWISSPROT- ACC:Q05329 GLUTAMATE DECARBOXYLASE, 65 KD ISOFORM (EC 4.1.1.15) (GAD-65) (65 KD GLUTAMIC ACID DECARBOXYLASE) - Homo sapiens (Human), 585 aa.	- · · ·	Human Gene SWISSPROT- ACC:Q93075 HYPOTHETICAL PROTEIN KIAA0218 - Homo sapiens (Human), 761 aa.	Human Gene SWISSPROT- ACC:Q14157 HYPOTHETICAL PROTEIN KIAA0144 - Homo sapiens (Human), 983 aa.	UNCLAS Human Gene SPTREMBL-SIFIED ACC:075176 KIAA0692 PROTEIN -HOMO SAPIENS (HUMAN), 783 aa (fragment).
UNCLAS	UNCLAS SIFIED	SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Ala	Gin	Ser	Ser	Ser	Ser
Ala	Gin	Ser	Ser	Ser	Ser
ပ	ڻ ا	⋖	∢	O	 -
U	⋖	ပ	O	٧	O
225 CCGAGAACCCG GGCACAGCGAG AGC[C/G]TGGTG CCAAGTGGCCC AAAAGTTCA	234 CGGGCACAGCG AGAGCCTGGTG CCA[A/G]GTGGC CCAAAGTTCAC GGGCGGCA	1501 AACCTGAAGGC CAAAGTGTTGAC TC[G/A]GACTCG GAGAGCACAGT CAGCCCCC	3795 CTCCATGGCTG GGATGCTCTGC TGC[G/A]CTTGG TTTTGCCCGAGT GGCAGCCT	1098 AGACACTGACC ACTGGGGGGGG TGC[A/G]GAGAC TGTGCTGGATG TGGTGGAAA	2645 CATCTTCATCTA GAAACGCCCTC AC[G/T]GAAATG GAATTGCTGCC AGACTGCTGC
225	234	1501	3795	1098	2645
479 cg17663981	480 cg17663981	481 cg42907760	482 cg43301812	483 cg43917756	484 cg43918356
479	480	481	482	483	484

12	4	(21922.1		-	
0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00
UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA31589 KIAA0614 PROTEIN-HOMO SAPIENS (HUMAN), 1630 aa (fragment).	Human Gene SWISSNEW- ACC:O14924 REGULATOR OF G- PROTEIN SIGNALING 12 (RGS12) - Homo sapiens (Human), 1447 aa.	Human Gene SWISSNEW- ACC:Q13009 T-LYMPHOMA INVASION AND METASTASIS INDUCING PROTEIN 1 (TIAM1 PROTEIN) - Homo sapiens (Human),	Human Gene SWISSNEW- ACC:P35573 GLYCOGEN DEBRANCHING ENZYME (GLYCOGEN DEBRANCHER) [INCLUDES: 4-ALPHA- GLUCANOTRANSFERASE (EC 2.4.1.25) (OLIGO-1,4-1,4- GLUCANTRANSFERASE) AMYLO- 1,6-GLUCOSIDASE (EC 3.2.1.33) (DEXTRIN 6-ALPHA-D- GLUCOSIDASE)] - Homo sapiens (Human), 1515 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q92845 SMAP - HOMO SAPIENS (HUMAN), 792 aa.	ÜNCLAS Human Gene SPTREMBL- SIFIED ACC:Q92845 SMAP - HOMO SAPIENS (HUMAN), 792 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	SIFIED
SILENT- CODING	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Val	Leu	Gly	<u>S</u>	Si Oi	Ala
Val	Leu	Gly	A O	Gly	Ala
<u> </u>	<u>o</u>	O	<u> </u>	⊢ -	0
1031 CTGTGGTCCTCT C CCACAGACAGG GT[C/T]CACATC AAACTGGGGGT	2157 CAAACTTCATGA C GATTGAAGATCT G[C/G]AGCTGCT GCTCCTTGAACA	2478 CCTTACCCATC A GGTCAGTGTCC CC[A/G]CCACCG GGGGGCTGCTG GGACTCTT	3560 CCCGACAATTGT C ATCTGGCATAAA T[C/T]CCTTCACC CAGTAGATTAG GAATGA	1374 CATTAGAGATCT C GGGCTGCAAGG TC[C/T]CCAACAT AATCAATAAACA	1629 TTAACTGTGGTA T TACAGTCAGTGT A[T/C]GCAAACA TTGATTTAAAGC GGTCAT
485 cg43924089	486 cg43926428	487 cg43950657	488 cg43955358	489 cg43970200	490 cg43970200
485	486	487	488	486	490

ern gring vide of the vide and a set of the vide and the set of th

491 6943999697 3898 GTAAAGCCTGG A G ASn Asn SILENT UNCLAS Human Gene SPTREMBL O.00E+00 GTATGGTAAAG	10		I		r	r
3688 GTACAGCCTIGG A SILENT UNCLAS Human Gene SPITEEMBL- TAATGGGGAATC Giu Giu SILENT UNCLAS Human Gene SWISSPROT- GCAGCAA GASPENS GASPENS GASPENS GASPENS GASPENS GASPENS GASPENS GCAGCAA GASPENS G	9		~	~	_	-
3688 GTACAGCCTIGG A SILENT UNCLAS Human Gene SPITEEMBL- TAATGGGGAATC Giu Giu SILENT UNCLAS Human Gene SWISSPROT- GCAGCAA GASPENS GASPENS GASPENS GASPENS GASPENS GASPENS GASPENS GCAGCAA GASPENS G	00E+00	00E+00	00E+00	00E+00	00E+00	00E+00
3888 GTACAGCCTGG A G Asn Asn SILENT- UNCLAS AANTGGAGAATC G Asn Asn CODING SIFIED AANTGGAGAATC G T GIU GIU SILENT- UNCLAS GGACTTGCTCC T GIU GIU SILENT- UNCLAS GGCACTCGGG CTGGAGA A Asp Asp SILENT- UNCLAS GGCACTCGGG CTGGAGA A Asp Asp SILENT- UNCLAS ATGATCCGAGTT A Asp Asp SILENT- UNCLAS ATGATCCGAGTT A G Leu Leu SILENT- UNCLAS ATGATCGCACTAGG G CODING SIFIED AACCAAACCATAG A T Thr Thr SILENT- UNCLAS GCCACAACCAAC A G GIV GIV SILENT- UNCLAS AGGAGCTG AGGAGTTG A G GIV GIV SILENT- UNCLAS AGGAGCTG AGGAGTTG A G GIV GIV SILENT- UNCLAS AGGAGCTG AGGAGTTG AGGAGTTG AGATACCTC AGGAGTTGTGTG AGGAGTTGTGTG AGGAGTTGTG AGGAGTTGTTG AGATACCTC AGGAGTTG AGATACCTC AGTACTC AGATACTC AGATACCTC AGGAGTTG AGATACTC AGATACTC	ō	ō	Ö	Ö	Ö	Ö
388 GTACAGCCTGG A G Asn SILENT- TAATGGAGAATC CODING CAACATTGCTAAG CODING GCAGCAA CODING CODING GCAGCAAG CODING CODING GCAGCAAG CODING CODING GCAGCAAG CODING CODING GCAGCAAG CODING CODING GCACAAGCAAG CODING CODING GCACAAACCATAG CODING CODING GCACAACCATAG CODING CODING GCACAACCAAG CODING CODING GCACAACCAAA CODING CODING GCACAACCCAAA CODING CODING GCACACACCCAAA CODING CODING GCACACACCCAACCCAAA CODING CODING GCACACACCCAACCCAAA CODING CODING GCACACACCCAACCCAAA CODING CODING GCACACACCCAACCAAA CODING CODING GCACACACCCAACCAAA CODING CODING GCACACACCCAACCAAA CODING CODING GCACACACCCAACCAAA CODING CODING GCACACACCCAACCAACCAAA CODING CODING GCACACACCCAACCAACCAACCAACCAACCAACCAACCA	Human Gene SPTREMBL-ACC:060281 KIAA0530 PROTEIN -HOMO SAPIENS (HUMAN), 1563 aa (fragment).		Human Gene SPTREMBL-ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa (fragment).	Human Gene SPTREMBL-ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa (fragment).		Human Gene SPTREMBL- ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa
3688 GTACAGCCTGG	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
3688 GTACAGCCTGG A SIN TAATGGAGAATC AA[A/G]TTTTGCT GTATCGTAAAG GCAGCAA GCAGCAA GGAGCTTGCTCC T Glu AGTAGGCCGCC GG[C/T]TCTGCA GGCAGCTCGGG CGAGTTGGTAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAAC AACCAAACCATAG GCACAACCAACCAA ACAAGTGGACTCGAA ACAAGTGGACTCGAA ACAAGTGGACTCGAA ACAAGTGGACTCGAA ACAAGTGGACTCCGAAGCAA ACAAGTGGACTCCCAAACCAAA ACAAGTGGACTCCAAACCAAACCAAACCAAACCAAACCA	SILENT. CODING	SILENT. CODING	SILENT. CODING	SILENT. CODING	SILENT. CODING	SILENT. CODING
3688 GTACAGCCTGG A G TAATGGAGAATC AA[AVG]TTTTGCT GTAAGG GCGCAA GTAGGCCGCC GG[C/T]TCTGCA GGCAGCTCGGG CTGGAAGA AT[G/A]TCCAAAG CCATAGGCCAC AACCAAAC AACCAAAC AACCAAAC AACCAAACGTG ACAAGTG GCCACAACCATAG ACAAGTG ACAAACCAAA ACAAATGTGGA ACAAACCAAAA ACAAATGTGGA ACAAACCAAAA ACAAATGTGGA ACAAATGTCGA ACAAACCAAAA ACAAATGTGGA ACAAATGTCGA ACAAACCAAAA ACAAATGTGGA ACAAATGTCCAAACCAAA	Asn	ng	Asp	ren	Thr	Gly
3688 GTACAGCCTGG A TAATGGAGAATC AA[A/G]TTTGCT GTATCGTAAAG GCAGCCAA GCAGCCAA GGCAGCTTGCTCC C AGTAGGCCGCC GG[C/T]TCTGCAA GGCAGCTCGGG CTGGAAGA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA AT[G/A]TCCAAA ACAAACCATAG GCCACAACCAAA ACAAACCATAG GCCACAACCAAA ACA[A/T]GTGGA ACAAACCAAA ACA[A/T]GTGGA ACAGACCAAA ACAGAGCG AGGGAGCTG AGGGAGCTC CAAGTGG AGGGAGCTC AGGAACCCAAA ACAGAGCCCAAA ACAGAGCCCAAA ACAGAGCCCCAAA ACAGAGCCCCAAA ACAGAGCCCCAAA ACAGACCCCAAA ACAGACCCCAAA ACAGACCCCAAA ACAGACCCCCAAA ACAGACCCCCAAA ACAGACCCCCAAA ACAGACCCCCAAA CCAAACCCCCAAA ACAGACCCCCCAAA CCAAGTGGACCCCCCAAA ACAGACCCCCCCCCC	Asn	n Gln	Asp	ren	Thr	Gly
3688 GTACAGCCTGG TAATGGAGAATC AA[A/G]TTTTGCT GTATCGTAAAG GCAGCCAA GCAGCCAA GGCAGTTTGGTAA GGCAGCTTGCTCC AGTAGGCCGCC GGIC/T]TCTGCA GGCAGCTTGCTAA GGCAGCTCGAA GCCACAACC AACCAAAC AI/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA ACCAAACCATAG GCCACAACCATAG GCCACAACCATAG ACA/AT/GTGGA CTCCAGACCAAA ACA/AT/GTGGA CTCCAGACCCAA ACA/AT/GTGGA CTCCAGACCCAA CCACAACCAAA ACA/AT/GTGGA CTCCAGACCCAA ACA/AT/GTGGA CTCCAGACCCGA GCCACAACCCAA ACAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGCTC	ပ	<u> </u>	∢	<u>o</u>	 -	<u>o</u>
3688 GTACAGCCTGG TAATGGAGAATC AA[A/G]TTTTGCT GTATCGTAAAG GCAGCCAA GCAGCCAA GGCAGTTTGGTAA GGCAGCTTGCTCC AGTAGGCCGCC GGIC/T]TCTGCA GGCAGCTTGCTAA GGCAGCTCGAA GCCACAACC AACCAAAC AI/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA AT/G/AJTCCAAA ACCAAACCATAG GCCACAACCATAG GCCACAACCATAG ACA/AT/GTGGA CTCCAGACCAAA ACA/AT/GTGGA CTCCAGACCCAA ACA/AT/GTGGA CTCCAGACCCAA CCACAACCAAA ACA/AT/GTGGA CTCCAGACCCAA ACA/AT/GTGGA CTCCAGACCCGA GCCACAACCCAA ACAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGGACTC CAAGTGCTC	4	O	(D	4	4	-
		TCAACTTGCTCC AGTAGGCCGCC GG[C/T]TCTGCA GGCAGCTCGGG	. 4	1 ()		<i>A</i> .
491 cg43999667 492 cg44020180 494 cg44020180 495 cg44020180	3688	6789	3172	3177	3199	3211
492 493 495 496 496	cg43999667	cg44009187	cg44020180	cg44020180	cg44020180	cg44020180
	491	492	493	494	495	496

_	7		7	<u> </u>	~
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa (fragment).	S	Ŋ	
UNCLA	UNCLA	UNCLA	SIFIED	UNCLAS SIFIED	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING
Ala	Tyr	Gly	Val	Val	Ser
Ala	Tyr	Gly	Val	\alpha	Ser
O	⋖	<u>ග</u>	Ø	Ø	O
3220 AACAAGTGGAC A TCCAGACCCGA GGG[A/C]GCTGT GTAGATACCTC GCATTCGAG	3226 TGGACTCCAGA G CCCGAGGGAGC TGT[G/A]TAGATA CCTCGCATTCG AGAAACTG	3232 CCAGACCCGAG A GGAGCTGTGTA GAT[A/G]CCTCG CATTCGAGAAAC TGTCTGGT	3247 CTGTGTAGATAC A CTCGCATTCGA GA[A/G]ACTGTC TGGTTATAGTTG ATGAATC	3289 TGATGAATCGCT T CTGCGTGTATCT G[7/G]ACATCTG GAGAATACGGG ATTAAGT	3298 GCTCTGCGTGT A ATCTGTACATCT GG[A/G]GAATAC GGGATTAAGTTC TCCTCTC
497 cg44020180	498 cg44020180	499 cg44020180	500 cg44020180	501 cg44020180	502 cg44020180

_	~	17 (17q11.2)		22		
0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.70E-304	2.70E-299	2.70E-299
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q14700 MRNA (KIAA0090) FOR ORF (RELATED TO YEAST GENE IN CHROMOSOME III) - HOMO SAPIENS (HUMAN), 905 aa (fragment).			UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD23581 CULLIN 2 - HOMO SAPIENS (HUMAN), 745 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:P46060 RAN-GTPASE ACTIVATING PROTEIN 1 - Homo sapiens (Human), 587 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Leu	<u>olo</u>	H:	Phe	Leu	or Pro	\al
Leu	ng O	H Si	Phe	ren	Pro	\ \
O	 -	-	∢	O	—	∢
3312 TGTACATCTGGA A GAATACGGGAT TA[A/G]GTTCTC CTCTCTGCTTTG TTCTGTT	3319 CTGGAGAATAC C GGGATTAAGTTC TC[C/T]TCTCTGC TTTGTTCTGTTG GGATCT	2080 AGCAGGCAGAT C AGAAGTTCCTGT CA[C/T]TTTCTCC TTTTTTACGGGG	1281 TGTCTTGGTTTT G TGATAAAATTGT T[G/A]AACTTATT GTTGAGATCAG CGCTGA	1266 TCTTGAGCAGA G CCCATGTGCAC GAG[G/C]AGCCT GGTGAGGAAGG TGTTGGAGT	1994 GCATGATAGGA A TATGGAATTCCT CC[A/T]CAAATG GGAAGTGTTCC TGTAATGA	2009 GAATTCCTCCAC T AAATGGGAAGT GT[T/A]CCTGTAA TGACGCAACCA ACCTTAA
331;	331	208	128	126		500
503 cg44020180	504 cg44020180	505 cg44928323	506 cg44932392	507 cg43991434	508 cg43985955	509 cg43985955
503	504	505	506	507	506	506

For the state and the state of the state of

		22				
2.70E-299	2.70E-299	4.60E-279	4.90E-278	1.80E-274	6.30E-266	2.70E-258
UNCLAS Human Gene SPTREMBL-SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	Human Gene SPTREMBL- ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	Human Gene SPTREMBL- ACC:Q14776 LZTR-1 - HOMO SAPIENS (HUMAN), 552 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA83037 KIAA1085 PROTEIN HOMO SAPIENS (HUMAN), 584 aa (fragment).	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD29670 DNA TOPOISOMERASE III BETA - HOMO SAPIENS (HUMAN), 862 aa.	Human Gene SPTREMBL- ACC:O60240 PERILIPIN - HOMO SAPIENS (HUMAN), 522 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q14449 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 14 (GRB14 ADAPTER PROTEIN) - Homo sapiens (Human), 540 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS SIFIED
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Thr	Pro	nen	Ser	<u> </u>	Val	Thr
Тh	Pro	ren	Ser	<u>e</u>	Val	Thr
4	O	∢	∢	∢	⋖	O
O	l-	O	O	<u>ග</u>	O	
2021 AAATGGGAAGT GTTCCTGTAATG AC[G/A]CAACCA ACCTTAATATA AGCCAGC	2060 TATACAGCCAG CCTGTCATGAG ACC[T/G]CCAAA CCCCTTTGGCC CTGTATCAG	2070 ACCTCGCCGTA GTAGATGTAGC GCA[G/A]CATGG ACTCGAAGGCC TGCCTGCTG	466 TGCAGCCCAGA GGTTCTTTTTAC TC[C/A]ATGGTA CCAAATGCAACT ATTCACC	2445 CGATGCCATGC TTCTCCATGAGC GT[G/A]ATGAGC TCGGCCTCCGT CAGGTAGT	1696 ACATGGCCCTC CCCTTGGTTGA GGA[G/A]ACAGC AGGGGCTGGTG TGAGGTGCA	340 TAAATCTTGTGT GGCCATCATCC AG[T/G]GTGTGG AACATTTCACCG TCATCTT
2021	2060	2070	466	2445	1696	340
510 cg43985955	511 cg43985955	cg44031765	513 cg43252100	514 cg43934178	515 cg43031103	cg43258841
510	511	512	513	514	515	516

2.70E-258	2.70E-258	Z.7.0E-2.00	Z./UE-238	Z./UE-230	2.70E-258		2./UE-258
UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q14449 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 14 (GRB14 ADAPTER PROTEIN) - Homo sapiens (Human), 540 aa.						Human Gene SWISSNEW- ACC:Q14449 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 14 (GRB14 ADAPTER PROTEIN) - Homo sapiens (Human), 540 aa.	UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q14449 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 14 (GRB14 ADAPTER PROTEIN) - Homo sapiens (Human), 540 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Asp	Pro	Lys	Lys	si .	Phe	<u>•</u>	Arg
Asp	Pro	Lys	Lys	His	Phe	<u> </u>	Arg
⋖	O	<u> </u>	O	O .	∢	<u>ග</u>	O
358 CATCCAGTGTGT G GGAACATTTCAC C[G/A]TCATCTTC TACTGGTATAAT TTGAA	370 GGACATTTCAC T CGTCATCTTCTA C[T/G]GGTATAA TTTGAAAGTGCT	388 CTTCTACTGGTA C TAATTTGAAAGT G[C/T]TTTATTT TTGTCCATGACT CATTG	394 CTGGTATAATTT T GAAAGTGCTTTA T[T/C]TTTTGTCC ATGACTCATTGA CAGTA	403 TTTGAAAGTGCT A TTATTTTTGTC C[A/G]TGACTCA TTGACAGTACGA	421 TTGTCCATGAC G TCATTGACAGTA C[G/A]AAAGTTTT GGGGTTACTCT GACTAT	484 AAACTCCATCCA A CAAGTCCTTGCT G[A/G]ATAATCA ATCGCTGAGCC TCATCTC	493 CCACAAGTCCTT T GCTGAATAATCA A[T/C]CGCTGAG CCTCATCTCTAG AAATTT
517 cg43258841	518 cg43258841	519 cg43258841	520 cg43258841	521 cg43258841	522 cg43258841	523 cg43258841	524 cg43258841

people grilly 1995 to 4, 4555 to 5055 to 3, to 4, to 3, to 4, to 3, to 4, to 3, to 4, to 4

2529 TGGTTTCCTGT T C Gly SILENT SI	5.30E-253 5		5.30E-253 5		8 20F-245				2.00E-237 12	(12922)			2.00E-237 12,022)			1.80E-236					3.10E-232				
2529 TCACTTTCCTGT T	NDING			CC:Q13283 GAP SH3 BINDING ROTEIN - HOMO SAPIENS		3153	PROTEIN - HOMO SAPIENS	HUMAN), 466 aa.	SWISSBROT-	Human Gene Swisser 105.	BETA AND GAMMA (TP BETA AND	TP GAMMA) - Homo sapiens	Human Gene SWISSPROT-	ACC:P42167 THYMOPOIETINS	TP GAMMA) - Homo sapiens	(Human), 453 aa.		SAPIENS (HUMAN), 1005 aa.			Spread SptREMBL-	ACC:099771 JIP-1 - HOMO	SAPIENS (HUMAN), 467 aa.		
2529 TCACTTTCCTGT T C Gly Gly GGATTTCTTTCT GGATTTCTTTCT GGATTTCTTCT GGCTTTC AATCCAATCC	AS	_	0 4	0	<u> </u>	S				UNCLAS			I INC. AS	SIFIED			UNCLAS	SIFIED				UNCLAS			
2529 TCACTTTCCTGT T C Gly Gly GGATTTCTTTCT GGATTTCCTTTG A CTGCATCGCT AAGAAGAGTTCT AAGAAGAGTTCT AAGAAGAGTTCT AAGAAGAGTTCT AAGAAGAGTTCT AAGAAGAGTTCT AAGAAGAGTTCT AGGCCTTCAC CTTGCGGG AGGCCTTCAC CTTGCGGG AGGCCTTCAC AGGCCTTCAC AGGCCTTCAC AGGCCTTCAC AGGCCTTCAC CTTGCGGG AGGCCTTCAC AGGCCTTCAC AGGCCTTTG G His His His HTCAT TTCCAT TTCCAT TTCCAT TTCCAGAAAT ACCCTTGAC TTTCCAGAAAT ACCCTTGAC TTTCCTG AATCTTCTTG TTCCTTG AACTTCTTG	SILENT-	CODING		SILENT- CODING		SILENT-	CODING			SILENT-	CODING		H. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	SILEN I -			SILENT-	CODING				SILENT-			
2529 TCACTITICCTGT T				His		Pro				Glu				<u> </u>			Leu					Glu			
2529 TCACTITCCTGT T				His		Pro	: 			Glu				Glu			Leu					픙			
2529 TCA GGG/ GG						U)			0	<u> </u>			O			0				_	0			
25 56 56 56 74 63	T-0.00	29 TCACTTTCCIGI II GGATTTCTTTCT G[T/C]CCGTAGA	CTGCATCTGCT		C[A/G]TGGACAT			GA[A/G]GGCAGG	CTTGGCGG	TACOACCAST	1667 1 ACT GGAGAAT CTATACGAAAAT	G[T/C]TCTGAAG	TTTCCACCCIII	1718 GAGTTCTTCTTG T	ACCCTCTTG1AG	TAATGCCTGCA	GAGGTC	102 CAAGAGAACAC	AAC[T/C]TAGCT	GAAACAGAAAAA	GAGACAGC	1709 GGCTCACCAGC T	TCCAGCTGCGT	CACCACCAGCG	TGTACTIGA
5 cg43971614 26 cg43971614 27 cg43320405 528 cg43922856 529 cg43922856 530 cg43991007		525 cg43971614 25		526 cg43971614 2!			527 cg43320405				528 cg43922856			9 6043922856	6			530 cg43991007					531 cg43940463		

the property of the color of the of the color of the first that

15	11 (11p15.5)	7	2	0		
5.90E-231	2.10E-224	3.30E-221	3.30E-221	3.30E-221	2.80E-218	2.80E-215
UNCLAS Human Gene SWISSPROT- SIFIED ACC:P08910 PROTEIN PHPS1-2 - Homo sapiens (Human), 425 aa.	Human Gene SWISSPROT-ACC:P04177 TYROSINE 3-MONOOXYGENASE (EC 1.14.16.2) (TYROSINE 3-HYDROXYLASE) (TH) Rattus norvegicus (Rat), 498 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:043813 SEVENTRANSMEMBRANE-DOMAIN PROTEIN - HOMO SAPIENS (HUMAN), 399 aa.	Human Gene SPTREMBL- ACC:043813 SEVENTRANSMEMBRANE-DOMAIN PROTEIN - HOMO SAPIENS (HUMAN), 399 aa.	Human Gene SPTREMBL- ACC:043813 SEVENTRANSMEMBRANE-DOMAIN PROTEIN - HOMO SAPIENS (HUMAN), 399 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:088473 RJS - MUS MUSCULUS (MOUSE), 4836 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:015417 CAGL79 - HOMO SAPIENS (HUMAN), 413 aa (fragment).
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Pro	Lys	Glý	Arg	Thr	ren	Ala
Pro	Lys	Gly	Arg	Thr	nen	Ala
⋖	∢	O	O	O	O	H-
O	O	ပ	∢	<	⋖	O
1712 GGAAGTAGAGG TCAGGTGGGGC TGT[G/A]GGGCT CTTCAGGTTCAA ACACCGGA	843 GGAAGGAGGTC TACACCACGCT GAA[G/A]GGCCT CTACGCCACGC ACGCCTGCG	566 ACGTACCAAATG G AAATGCTCTACG G[G/C]CGAATAG GCTACATCTATG CTCTGC	ATGAAA ACGGG ATGGC TATGCT	659 GCCATATTCAGC AGATTTGTGAAA C[A/C]ATTTTAAC CTCTGGAGAAA ACCTAT	1860 ACTTGACTTTCC AGACACGGTGA GG[A/G]AGGAGG AGGCTGTCGGG ACCAAACG	512 CAGGCATGGTG ATGAGGGGTGC TGG[G/T]GCCAG GGAGGTGCCAG GAGGTGCCAG
1712	843	566	569	659	1860	512
532 cg42676981	533 cg43918561	534 cg43999712	535 cg43999712	536 cg43999712	537 cg43922139	538 cg43955639
532	533	534	535	536	537	538

7	- 7		(2		1
-207	Z.00E-Z07	-207	8.805-203	2.70E-204	3.10E-202	2.80E-189
2.00E-207	Z.00E-207	2.00	8.80	2.70	3.10	2.80
UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD34036 CGI-40 PROTEIN - HOMO SAPIENS (HUMAN), 845 aa.	Human Gene TREMBLNEW- ACC:AAD34036 CGI-40 PROTEIN - HOMO SAPIENS (HUMAN), 845 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD34036 CGI-40 PROTEIN -HOMO SAPIENS (HUMAN), 845 aa.	UNCLAS Human Gene SPTREMBL-SIFIED ACC:Q16543 CDC37 HOMOLOG -HOMO SAPIENS (HUMAN), 378 aa.		Human Gene SWISSPROT- ACC:Q99733 NUCLEOSOME ASSEMBLY PROTEIN 1-LIKE 4 (NUCLEOSOME ASSEMBLY PROTEIN 2) (NAP2) - Homo sapiens (Human), 375 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:015268 SKAP55 PROTEIN - HOMO SAPIENS (HUMAN), 359 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Ser	Ala	<u> </u>	Arg	Lys	Геп	Gly
Ser	Ala	<u>e</u>	Arg	Lys	Leu	Gly
O	U	<u> -</u>	<u> </u>	O	O	O
	(1)	U	O	 -	4	⊢
1066 GCCTGGCCATT TO GTCATCTTC TCTIVITION TO GTCATCTTCTTC TCTIVITION TO GCCTGGTCTT TGGCAAAG	1102 TGGTCTTTGGCA G AAGGGAACACG GCG/CJTTCTGG ATCGTCTTCTCC	0.0	1439 CCTTGCGCTTG CACTCGCGGCA GCC[C/T]CTGTC CAGTTCCTCCTT	702 GCCCCACCTGA GTGACAATGAT GTAIT/CJTTGAC CCCACCGGGGG TCGGCTCCA	486 ACTTGGAAAGAA A AGTATGCAGCG CT[A/G]TACCAG CCTCTTTGAC AAGAGAA	1134 CACACCAGCGC TTCTGCCACTCC GA[T/C]CCAAAG AAACTATGATCT TTGCTTT
1066	1102	1111	1439	702	486	113,
539 cg41022625	540 cg41022625	541 cg41022625	542 cg44002669	543 cg43302693	544 cg43921081	545 cg42181143
539	540	541	542	543	544	545

The first condition of the condition of

	(1p36.33		2	13	7	7
1.10E-170	2.50E-168 (7.3E-165	5.1E-161	1.3E-155	1.9E-154	1.90E-154
UNCLAS Human Gene SPTREMBL- SIFIED ACC:060736 KE03 PROTEIN - HOMO SAPIENS (HUMAN), 367 aa (fragment).	Human Gene SWISSNEW- ACC:P23280 CARBONIC ANHYDRASE VI PRECURSOR (EC 4.2.1.1) (CARBONATE DEHYDRATASE VI) - Homo sapiens (Human). 308 aa.		UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q63965 TRICARBOXYLATE CARRIER - RATTUS NORVEGICUS (RAT), 357 aa (fragment).	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA32101 BCAP - HOMOSAPIENS (HUMAN), 331 aa.	Human Gene SPTREMBL- ACC:075323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING
Pro	Asn	卢	Asp	ren	Gin	Gly
Pro	Asn	Thr	Asp	Геп	Gin	Gly
U	—	 -	⋖	<u> </u>	—	υ
1667 TTTTCCAGATGC T GACAGACATCAT T[T/C]GGGCATA TTCTAGAAACCA AGGGCA	815 AGAATTCCTTAC C TGGATCACCGC AA[C/T]AAGACC ATCCACAACGAT TACCGCA	263 GTGCCAGCTTC C TCCATGGTGGC ATC[C/T]GTCAG GATGCTGGGGT AGGGAGGTT	2019 CCAACTCATTGA G CAGTGAGGGGT GC[G/A]TCTCCA CTTCTGTTGGTG TAATTGA	1180 CTATATTCTCTG C ATTGTGCAAAGT A[C/TJAGGACAT TATATTCGACAT CTTTGG	1319 GGTGCACCATG C TACAGCTGCCC AATIC/TJTGAGA GAAGAATCCTC CGACGGCTT	1334 GCTGCCCAATC T TGAGAGAAGAA TCC[T/C]CCGAC GGCTTCGTTAC CATCCTGTC
546 cg43918701	547 cg43926685	548 cg44927654	549 cg43993462	550 cg44010310	551 cg43950590	552 cg43950590

7	_	2	7	_	7	14
1.90E-154	1.90E-154	1.90E-154	1.90E-154	1.90E-154	1.90E-154	4.50E-152
UNCLAS Human Gene SPTREMBL-SIFIED ACC:075323 GBAS - HOMOSAPIENS (HUMAN), 286 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.	Human Gene SPTREMBL- ACC:O75323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.	Human Gene SPTREMBL- ACC:075323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.	Human Gene SPTREMBL- ACC:075323 GBAS - HOMO SAPIENS (HUMAN), 286 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD45179 RIBONUCLEOPROTEIN - HOMOSAPIENS (HUMAN), 346 aa.
UNCLAS	UNCLAS SIFIED	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT.	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING
Phe	Ala	Ala	<u>a</u>	Į. Į.	Pro	Τχ
Phe	Ala	Ala	<u>a</u>	T _y T	P70	Tyr
4	O	ڻ ن	<u>ن</u>	O	O	ဖ
1361 CGACGGCTTCG G TTACCATCCTGT CT[G/A]AAGCGG ATTGCACGAGC CCAGTAAT	1370 CGTTACCATCCT T GTCTGAAGCGG AT[T/G]GCACGA GCCCAGTAATT GCCCCATT	1376 CATCCTGTCTGA A AGCGGATTGCA CG[A/G]GCCCAG TAATTGCCCCAT	1397 CACGAGCCCAG A TAATTGCCCCAT TC[A/G]ATCATG GTTCCTGGTCG GAGTTGGT	1436 GTCGGAGTTGG A TAAGACCTGAGT TC[A/G]TATATAT TAGGTCCGGAT CTTGGCA	1445 GGTAAGACCTG A AGTTCATATAA TT[A/G]GGTCCG GATCTTGGCAC AGGCTCAT	1484 GAGTAGAATTCA A AGAAGAGTTCAA T[A/G]TATCGAT GTTGCATGTTAT
553 cg43950590	554 cg43950590	555 cg43950590	556 cg43950590	557 cg43950590	558 cg43950590	559 cg43951092

The first time will stuff allow the first time that the first time that the first time that

4	4	4	4	4	2	2
4.50E-152	4.50E-152	4.50E-152	4.50E-152	4.50E-152	3.30E-150	3.30E-130
UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD45179 RIBONUCLEOPROTEIN - HOMO SAPIENS (HUMAN), 346 aa.	UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD45179 RIBONUCLEOPROTEIN - HOMO SAPIENS (HUMAN), 346 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD45179 RIBONUCLEOPROTEIN - HOMOSAPIENS (HUMAN), 346 aa.	Human Gene TREMBLNEW- ACC:AAD45179 RIBONUCLEOPROTEIN - HOMO SAPIENS (HUMAN), 346 aa.	UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD45179 RIBONUCLEOPROTEIN - HOMO SAPIENS (HUMAN), 346 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q15024 MRNA (HA0800) FOR ORF - HOMO SAPIENS (HUMAN), 290 aa (fragment).	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q15024 MRNA (HA0800) FOR ORF - HOMO SAPIENS (HUMAN), 290 aa (fragment).
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Vai	Aia	Arg	ren	Asp	Tyr	Arg
Val	Ala	Arg	ren	Asp	Tyr	Arg
O	o	Ø	O	4	⋖	O
1526 TATTTTATCTTT T AGACATGGCAG C[T/C]ACTGCAT CTTCATGTGTCA	CAAACI 1583 CTGCTTCTCTG A TGGCTCTGCCA TC[A/G]GCTCCA ATATCAATATGA	1604 CATCAGCTCCAA T TATCAATATGAA C[T/G]CGTATTG GATTTAGTGGTG	1616 TATCAATATGAA T CTCGTATTGGAT T[T/G]AGTGGTG AGAAGAAATTAG	CAATGT 1640 TTAGTGGTGAG G AAGAAATTAGCA ATIG/AJTCATTTT CAGTTGCACGA	1135 CATCAGTITCCA G CTTCGACACATC G[G/A]TAGTCCT CACAGCCACGG	724 TCGACCCCTCTT T CATCCTCCAAAA C[T/C]CGAACCC TTGGTATCCTTG TATTGA
560 cg43951092 18	561 cg43951092 18	562 cg43951092 1	563 cg43951092 1	564 cg43951092 1	565 cg43990820 1	566 cg43990820
260 (561	562	563	564	565	566

	8 (8q22)	o		
2.10E-148	6.90E-141	2.50E-129	3.20E-127	3.20E-127
UNCLAS Human Gene Homologous to SIFIED SWISSNEW-ACC:Q99598 TRANSLIN-ASSOCIATED PROTEIN X (TRANSLIN-ASSOCIATED FACTOR X) - Homo sapiens (Human), 290 aa.	UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:P00915 CARBONIC ANHYDRASE I (EC 4.2.1.1) (CARBONATE DEHYDRATASE I) - Homo sapiens (Human), 260 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:BAA76379 TUDOR REPEAT ASSOCIATOR WITH PCTAIRE 2 - HOMO SAPIENS (HUMAN), 468 aa (fragment).	Human Gene Homologous to SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT). 1487 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT), 1487 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT. CODING	SILENT. CODING	SILENT- CODING	SILENT.	SILENT- CODING
Phe	Ser	Asp	nen	Ala
Phe	Ser	Asp	Leu	Ala
<u> </u>	U	<u>ග</u>	O	O
319 TCAGGAAAAGG C AAGCATGACAAT TT[C/T]CCACATA ACCAAAGAAGA	1245 AAGAAATTATCA T ATGTGGGGCAT TC[T/C]TTCCATG TAAATTTTGAGG ACAACG	681 CAGTGCCAGAG A TCCAGGAACTG AAC[A/G]TCAAG AGCCCGGCTGC TGTGAACAT	429 CCACACAGGAC TACTGTGGTGGC CCT[T/C]GATGC TCTGTCCAAATA CGGAGCAG	435 AGGACACTGTG T GTGGCCCTTGA TGC[T/C]CTGTC CAAATACGGAG CAGCTACTT
567 cg43986914	568 cg43119818	569 cg44027444	570 cg29351416	571 cg29351416
567	568	569	570	571

3.20E-127	3.20E-127	3.20E-127	2.40E-123
S Human Gene Homologous to SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT), 1487 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT), 1487 aa.	S	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:CAB45700 HYPOTHETICAL 32.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 287 aa (fragment).
SIFIED	SIFIED	UNCLA	UNCLA
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Arg	Tyr	Asn	Th
Arg	Tyr	Asn	rh r
<u> </u>		 - -	4
546 AGTTCCAAGTAG C ACAACAGTAATC G[C/T]CTGTTACT GCAGCAGGTCT CATTAC	645 TGTATGCTCAGA C CCACGCTGAGA TA[C/T]AACATGC CCTTGGAGAAG CAGCAGC	648 ATGCTCAGACC C ACGCTGAGATA CAA[C/T]ATGCC CTTGGAGAAGC AGCAGCCTG	530 GGTCTTCAATAA C AGTAGTTATGGC A[C/A]GTCCTGA TCCACATAGATA GCTGAA
		-	
572 cg29351416	573 cg29351416	574 cg29351416	575 cg43950273

3.10E-122	3.10E-122	3.10E-12Z	3.10E-122
UNCLAS Human Gene Homologous to SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos taurus (Bovine), 229 aa.		Human Gene Homologous to SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos taurus (Bovine), 229 aa.	
UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Lys	<u> </u>	Lys	Asn
Lys	\alpha \al	Lys	Asn
<u>o</u>	<u></u> დ	O	U
555 TCAACACAGGG A CAGCCACAGGC CAA[A/G]ATCATT GTATTGGGTTTG TTACCTC	564 GGCAGCCACAG A GCCAAAATCATT GT[A/G]TTGGGT TTGTTACCTCGA GGTGAGA	591 TGGGTTTGTTAC A CTCGAGGTGAG AA[A/G]CCCAAT CCTTTGAGGCA AAAGAACG	597 TGTTACCTCGAG T GTGAGAAACCC AA[T/C]CCTTTGA GGCAAAGAAC GCCAAGG
576 cg44930828	577 cg44930828	578 cg44930828	579 cg44930828
ي ا	21	လ	u)

profit strift for the strift for the south off and and for the string strip strift string strip strip

3.10E-122	3.10E-122	3.10E-122	3.10E-122
UNCLAS Human Gene Homologous to SIFIED SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos taurus (Bovine) 229 aa	UNCLAS Human Gene Homologous to SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos	UNCLAS Human Gene Homologous to SIFIED SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos	
UNCLAS	SIFIED	SIFIED	SIFIED
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
nen	Asn	Ö	Ser
nen	Asn	Gin	Ser
∢	H	<u>ග</u>	O
O	O	<	ග
603 CTCGAGGTGAG AAACCCAATCCT TT[G/A]AGGCAA AAGAACGCCAA GGTGAACC	615 AACCCAATCCTT TGAGGCAAAG AA[C/T]GCCAAG GTGAACCAACT CCTCAAGG	630 GGCAAAGAAC GCCAAGGTGAA CCA[A/G]CTCCT CAAGGTTTCGCT GCCGAAGC	645 AGGTGAACCAA CTCCTCAAGGTT TC[G/C]CTGCCG AAGCTTGCCAA CGTGCAGC
009	——————————————————————————————————————	630	645
580 cg44930828	581 cg44930828	582 cg44930828	583 cg44930828
280	286	582	02 03 03

	3.10E-122	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2.00E-118	
UNCLAS Human Gene Homologous to SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos tairins (Bovine), 229 aa.	Human Gene Homologous to SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos taurus (Bovine), 229		S Human Gene Homologous to SPTREMBL-ACC:Q63555 SP120 - RATTUS NORVEGICUS (RAT), 798 aa.	UNCLAS Human Gerie Florings 200 50 SIFIED SPTREMBL-ACC:P70582 NUCLEOPORIN P54 - RATTUS NORVEGICUS (RAT), 510 aa.
SIFIED	SIFIED	SIFIED	UNCLAS	SIFIED
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Asn	λ΄ Θ	Phe	Na	Asp
Asn	Gly	Phe	a	Asp
<u> </u>	O	υ	<u> -</u>	O
663 AGGTTTCGCTG C CCGAAGCTTGC CAA[C/T]GTGCA GCTCCTGGATA CCGACGGGG	690 TGCAGCTCCTG T GATACCGACGG GGG[I/C]TTGT GCACTCGGACG GTGCCATCT	693 AGCTCCTGGAT T ACCGACGGGGG TTT[I/C]GTGCAC TCGGACGTGC CATCTCCT	691 AAAACCCTGAG C AAAAGATACAAT GT[C/T]CTGGGA GCTGAGACTGT	601 GCATGCCCAGT T AATAAAGATGAA GA[T/C]GGGCTA GTGGTTTTAGTT TTCAACA
584 cg44930828	585 cg44930828	586 cg44930828	587 cg43975478	588 cg42530218

[2	7 .	27 5	<u>v</u>	Ž Z	72
1	-110	2.90E-110	2.90E-110	Z.80E-110	2.90E-110	2.90E-110
5.00E-115	2.90E-110	2.906	2.906	2.90	2.90	2.90
UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:043770 BCL7C PROTEIN - HOMO SAPIENS (HUMAN), 217 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	Human Gene Homologous to SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	Human Gene Homologous to SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Arg	Cys	His	Asp	ren	Arg	Ala
Arg	Cys	ਝ	Asp	ren	Arg	Ala
∢	∢	∢	O	O	O	⋖
	(1)	o	4	ပြ	 -	 -
248 AGTGGTGGATC C CCCAGGAGGAG GAG[C/A]GAAGG CGGGCAGGTGG	656 CTTTTGGCCCAT G ACTTCTTTCCGT A[G/A]CAGGATT TGCAGTAGATCT	TGCAGT CTTCAT SAATTG STTGTG	704 CATCGTGAATTG A CCACTGTTGTG CTA/GITCTAAAT TTTCCTGCAAA	TTTCC SCATG GAAAG CGGTG	757 AGAAAGCAGCA GCGGTGGAAGC TCC[T/G]GCCAT CACACTGCACC	779 TCCTGCCATCAC ACTGCACCTCTT C[T/A]GCGTGGT ACACGGTCCTC CCACAGG
248	656	683	704	731	751	77.
589 cg43122111	590 cg43986282	591 cg43986282	592 cg43986282	593 cg43986282	594 cg43986282	595 cg43986282
589	290	591	592	593	594	595

12	12	21	12		
2.90E-110	2.90E-110	2.90E-110	2.90E-110	1.70E-107	1.70E-107
UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P97314 DOUBLE LIM PROTEIN-1 - MUS MUSCULUS (MOUSE), 193 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:BAA82158 HCR PROTEIN - HOMO SAPIENS (HUMAN), 756 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:BAA82158 HCR PROTEIN - HOMO SAPIENS (HUMAN), 756 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS
SILENT. CODING	SILENT. CODING	SILENT. CODING	SILENT. CODING	SILENT- CODING	SILENT. CODING
Arg	Cys	Cys	Asn	Asp	Leu
Arg	Cys	Cys	Asn	Asp	Leu
<u> </u>	O	<u>ග</u>	⋖	O	-
O	4	∢	O	<u></u>	O
794 GCACCTCTTCTG C CGTGGTACACG GT[C/T]CTCCCA CAGGCCCACA CTGTTTC	800 CTTCTGCGTGG AT TACACGGTCCT CCC[A/G]CAGGC CCCACACTTGTT TCCACCTC	809 GGTACACGGTC / CTCCCACAGGC CCC[A/G]CACTT GTTTCCACCTCC CCAGACAG	815 CGGTCCTCCCA CAGGCCCCACA CTT[G/A]TTTCCA CCTCCCCAGAC AGGCATTC	651 GTCCCCTACCA CCACCGGTCAC AGA[7/C]GTGAG CCTTGAGTTGCA GCAGCTGC	673 AGATGTGAGCC (TTGAGTTGCAG CAG[C/T]TGCGG GAAGAACGGAA CCGCCTGGA
794	800	808	815	651	673
596 cg43986282	597 cg43986282	598 cg43986282	599 cg43986282	600 cg42723058	601 cg42723058
596	597	598	599	009	601

	7 (12q24.1)	(12q24.1	(12q24.1	7 (12q24.1	7 (12q24.1)	(12924.1)
4.50E-105	2.60E-102	2.60E-102	2.60E-102	2.60E-102	2.60E-102	2.60E-102
Human Gene Homologous to SPTREMBL-ACC:Q91579 RIBONUCLEOPROTEIN - XENOPUS LAEVIS (AFRICAN CLAWED FROG), 462 aa.	Human Gene Homologous to SPTREMBL-ACC:Q13845 BCL7B PROTEIN - HOMO SAPIENS (HUMAN), 202 aa.	Human Gene Homologous to SPTREMBL-ACC:Q13845 BCL7B PROTEIN - HOMO SAPIENS (HUMAN), 202 aa.	Human Gene Homologous to SPTREMBL-ACC:Q13845 BCL7B PROTEIN - HOMO SAPIENS (HUMAN), 202 aa.	Human Gene Homologous to SPTREMBL-ACC:Q13845 BCL7B PROTEIN - HOMO SAPIENS (HUMAN), 202 aa.		Human Gene Homologous to SPTREMBL-ACC:Q13845 BCL7B PROTEIN - HOMO SAPIENS (HUMAN), 202 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Phe	Ser	Lys	\alpha \a	Lys	Lys	Lys
Phe	Ser	Lys	Val	Lys	Lys	Lys
<u> </u>	⋖	 	O	<u> </u>	<u> -</u>	F
727 AGATGGCTGGC C CAGATGGGCAT GTT[C/T]AACCC CATGGCCATCC CATGGCGGG	1381 TAGGTTCTCGG C GCTGCTGAACT GTT[C/A]GATTTT GACTTTCTTTC	1390 GGGCTGCTGAA C CTGTTCGATTTT GA[C/T]TTTTCTT TCTCCTTGCTGT	1420 CTTTCTCCTTGC A TGTCTGTCACAG G[A/C]ACCCACT TAAATATCCTCA	1426 CCTTGCTGTCTG C TCACAGGAACC CA[C/T]TTAAATA TCCTCAGGGAC	1465 GGGACGTGTCA C CCCACAGTCAC CCA[C/T]TTCTTC TCCCATTTCCGC	1522 CCGCCATCACC C TTCTTGATGTCA TCC/TJTTGGCC CGGCTACGGGT CTCGGCCC
602 cg43981269	603 cg43972159	604 cg43972159	605 cg43972159	606 cg43972159	607 cg43972159	608 cg43972159

.30E-101	1.20E-100	2.40E-99	Z.40E-58	2.40E-99	2.40E-99	2.40E-99
UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q14499 SPLICING FACTOR - HOMO SAPIENS (HUMAN), 530 aa.			UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:P97434 P116RIP - MUS MUSCULUS (MOUSE), 1024 aa.	Human Gene Similar to SPTREMBL- ACC:P97434 P116RIP - MUS MUSCULUS (MOUSE), 1024 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:P97434 P116RIP - MUS MUSCULUS (MOUSE), 1024 aa.	UNCLAS Human Gene Similar to SPTREMBL- SIFIED ACC:P97434 P116RIP - MUS MUSCULUS (MOUSE), 1024 aa.
SIFIED S	UNCLAS P	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
<u>e</u>	Pro	Phe	Ser	Arg	Ty	His
<u> </u>	Pro	Phe	Ser	Arg	Tyr	H. Sign
<u> -</u>	<	<u> </u>	⋖	∢	<u> </u>	⊢ ∘
722 GCAAGGTTCGC C GATGTACGTATC AT[C/T]TCAGATC GGAACTCACGT	CGTTCTA 165 AAACGGAACTAT G TTCCAGATGAG GC[G/A]GGGTGT CTGGGAGGGGC TGTGGGAGGGGC	115 CCAAGGAGAAC C CCGTGCAGAAA ATT[C/T]CAGGC CAACATCTTCAA CAAGAGCA	277 ACTTTGACAACC T CAGTACACCGG TC[T/A]CGGAAA TGGCAGCGACG GTTCTTCA	295 ACCGGTCTCGG G AAATGGCAGCG ACG[G/A]TTCTT CATCCTTTACGA GCACGGCC	310 GGCAGCGACGG C TTCTTCATCCTT TA[C/T]GAGCAC GGCCTCTTGCG	CTACGCCC 316 GACGGTTCTTCA C TCCTTTACGAGC A[C/T]GGCCTCT TGCGCTACGCC CTGGATG
609 cg44911139 72	610 cg42539705 16	611 cg42028329 11	612 cg42028329 2	613 cg42028329 2	614 cg42028329 3	615 cg42028329
,609 609	610 cg	611 cg	612 cç	613	614 c	615.0

2.40E-99		2.40E-99		6.40E-99		00 100	0.400-33			6.40E-99			F- 1.20E-98		- 1	Т- 1.20Е-98			
INC. AS Human Gene Similar to SPTREMBL-	ACC:P97434 P116RIP - MUS MUSCULUS (MOUSE), 1024 aa.	Human Gene Similar to SPTREMBL-	ACC:P97434 P116KIP - MUS MUSCULUS (MOUSE), 1024 aa.	Human Gene Similar to	TREMBLNEW-ACC:CAB43370 HYPOTHETICAL 23.3 KD PROTEIN -	HOMO SAPIENS (TOWNS 1)	Human Gene Similar to	TREMBLNEW-ACC:CAB43575 HYPOTHETICAL 23.3 KD PROTEIN -	HOMO SAPIENS (TOWNS) CO	UNCLAS Human Gene Similar to	KD PROTEIN	HOMO SAPIENS (HUMAN), 206 aa.			lambda, 194 aa.	UNCLAS Human Gene Similar to SWISSPROT-	ACC:P03740 HYPOTHETTONE PROTEIN ORF194 - Bacteriophage	lambda, 194 aa.	
INCLASIN	SIFIED AC	UNCLAS	SIFIED A	AS ION I			UNCLAS	SIFIED		UNCLAS	SIFIED		UNCLAS	SIFIED		UNCLA	SIFIED		_
	SILENI- CODING	SII ENT-	CODING	<u> </u>	CODING		SII FINT-	CODING		OII ENT.	CODING		OII FINT.	CODING		FNT.	CODING		
	Arg	ž F	= 		Sig		-	<u> </u>			Asb			<u>a</u> >			}		
had had han han the	Arg	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ē		Gly			Asb			Asp			\			Asb		
35. 35.	A		υ		<u> </u>			<u>o</u>			<u>o</u>			∀			<u>∢</u> 		
	328 TCCTTTACGAGC C ACGGCCTCTTG CG[C/A]TACGCC CTGGATGAGAT		352 GCTACGCCCTG G GATGAGATGCC CAC[G/C]ACCCT	CCATCAACA	540 TCGCGAGAACG G GCCTCAGTGCC	AAG[G/T]CCCTT ACCCCTGCAGC	5 5 5 5 5 5 5 5	606 TCTCCCCCAAG A GTGGGGTCTTC	TAGIA/GITCTGT	GAGGAAGAGGI	627 CTAGATCTGTGA A	AC[A/G]TCTCCC	ACCATGCAGCT	597 ACGCGTCGCCG G	ATA[G/A]ACGGT	TTTACCCCGATG	ACG CCGA	TG[G/A]TCTTCAA CGAGATGCCAC	GATGCCT
	328 7		352		540			<u> </u>			-			-			-		
	616 cg42028329		617 cg42028329		618 cg42392719			619 cg42392719			620 cg42392719			621 cg39512856			622 cg39512856		
	616 Q		617 c		618			619			929			62			9		

						10
1.20E-98	1.20E-98	1.20E-98	1.20E-98	2.80E-96	3.20E-95	3.30E-94
Human Gene Similar to SWISSPROT-ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.		Human Gene Similar to SWISSPROT- ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.	Human Gene Similar to SPTREMBL-ACC:Q63615 VACUOLAR PROTEIN SORTING HOMOLOG R-VPS33A -RATTUS NORVEGICUS (RAT), 597 aa.	Human Gene Similar to SWISSNEW-ACC:P12346 SEROTRANSFERRIN PRECURSOR (SIDEROPHILIN) (BETA-1-METAL BINDING GLOBULIN) - Rattus norvegicus (Rat), 698 aa.	
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Phe	<u>=</u>	Pro	Th.	<u>⊕</u>	ren	His
Phe	<u>=</u>	Pro	Th	<u>=</u>	ren	His
O	O	 	—	<u> </u>	<u> </u>	O
663 CCTCATCACTGT A TGAAAACAGCC AC[A/G]AAGCCA GCCGGAATATC TGGCGGTG	690 AGCCAGCCGGA A ATATCTGGCGG TGC[A/G]ATATC GGTACTGTTTGC AGGCAGAC	708 GCGGTGCAATA A TCGGTACTGTTT GC[A/T]GGCAGA CCGGTATGAGG	717 TATCGGTACTGT G TTGCAGGCAGA CC[G/T]GTATGA GGCGGAATATA TGCGTCAC	599 CCCTGCAAGCT C CTGTATGGAAC GAT[C/T]CCCCA GATCTTTGGGAA AGGAGAAT	294 CAGATCCAGTG G GCCTTCCCCCA GCT[G/T]TGTCA ACTGTGTCCAG GCTGTGGCT	454 GTGAACAGTGT T AAATCAGTTTTT CA[T/C]TGGGAC ATGAAATCCAAG GATAAGG
623 cg39512856	624 cg39512856	625 cg39512856	626 cg39512856	627 cg37445474	628 cg30791729	629 cg42522690

term fifth with self origin calls at a self or all selfs arise than the first term than the first term.

10						8
3.30E-94	1.00E-90	4.50E-89	4.50E-89	4.50E-89	4.50E-89	1.10E-87
Human Gene Similar to SPTREMBL-ACC:035884 NEBULIN-RELATED ANCHORING PROTEIN (N-RAP) - MUS MUSCULUS (MOUSE), 1175 aa.		Human Gene Similar to SPTREMBL- ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD27745 CGI- 36 PROTEIN - HOMO SAPIENS (HUMAN), 165 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	SIFIED	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING
Tyr	His	Asp	Thr	Arg	Lys	Ser
Tyr	His	Asp	Thr	Arg	Lys	Ser
O	O	O	 -	O	o O	A
625 CTCGAAAGTCTC T TTGGTGAGGAA TA[T/C]ACAGAA GACTATGAGCA	561 AGGTCTACGTG T TTGAAGCGTCCT CA[T/C]GTGGAT GAGTTCCTGCA	755 AAGACCATTTAC T AAGTAGAAAATG A[T/C]GCTTACC CTGGTACCGAT	770 TAGAAAATGATG C CTTACCCTGGTA C[C/T]GATAGAA CAGAAAATGTTA	776 ATGATGCTTACC A CTGGTACCGAT AG[A/G]ACAGAA AATGTTAAATAT	791 GTACCGATAGA A ACAGAAAATGTT AAĮA/GJTATAGA CAAGTGGACCA	449 CTTCCACCACG G CCTGTGTTCTG GGC[G/A]CTGAC AAAGGCCACCT TGTTGGTGT
630 cg42522690	631 cg43982164	632 cg43980889	633 cg43980889	634 cg43980889	635 cg43980889	636 cg43955651
63(63	63	63	63	63	9

2					
1.10E-87	2.60E-86	1.20E-83	1.90E-83	1.90E-83	1.90E-83
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD27745 CGI- 36 PROTEIN - HOMO SAPIENS (HUMAN), 165 aa.	Human Gene Similar to SPTREMBL-ACC:075249 R26660_1, PARTIALCDS - HOMO SAPIENS (HUMAN), 291 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA76824 KIAA0980 PROTEIN - HOMO SAPIENS (HUMAN), 1406 aa (fragment).	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 189 aa.	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 189	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 189 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	SIFIED	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING
Pro	Ala	Ala	Arg	nen	Ala
Pro	Ala	Ala	Arg	Leu	Ala
4	O	O	F	O	_ග
O	F	-	O	۲	⋖
476 TGACAAAGGCC ACCTTGTTGGTG TC[G/A]GGCTTG AGGCGAATGAA GCCACACT	1516 GGCCTTCGATC CAGTCCATGAG CAA[T/C]GCCAT ATAGCGCGGCG CAGAGAGCT	258 GGGTTCTTCAAC TGGACAGGAG GC[T/C]TCTACC CACCAGGCCCA AAACGAGG	449 TCAACATAAGGT AGAATTTCATTA A[C/T]CTCAAGA AGCGAGCGTCA TAGTATA	454 ATAAGGTAGAAT TTCATTAACCTC A[AG]GAAGCGA GCGTCATAGTAT AAAGAA	461 AGAATTTCATTA ACCTCAAGAAG CG[AG]GCGTCA TAGTATAAAGAA GGCTTGA
476	1516	258	449	454	461
637 cg43955651	638 cg42353267	639 cg37027086	640 cg42688841	641 cg42688841	642 cg42688841
637	638	639	640	641	642

						_
1.90E-83	3.20E-79	3.20E-79	1.60E-77	1.60E-77	1.60E-77	7.00E-77
1.90	3.2(3.2(1.6	1.6	7.0	7.0
UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 189 aa.	kEMBL- N - 59 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q28282 C3VS PROTEIN -CANIS FAMILIARIS (DOG), 659 aa.	21 .T :4 - 147 aa.	21 \T 24 - 147 aa.	21 \T 24 - 147 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q62630 SM-20 - RATTUS NORVEGICUS (RAT), 355 aa.
o SWIS JBIQUIN SGDH DR (EC LEX I-SI JS (Bovi	Human Gene Similar to SPTREMBL ACC:Q28282 C3VS PROTEIN - CANIS FAMILIARIS (DOG), 659 aa.	Human Gene Similar to SPTREMBL ACC:Q28282 C3VS PROTEIN - CANIS FAMILIARIS (DOG), 659 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD25021 CALCIUM-REGULATED HEAT STABLE PROTEIN CRHSP-24 - HOMO SAPIENS (HUMAN), 147 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD25021 CALCIUM-REGULATED HEAT STABLE PROTEIN CRHSP-24 - HOMO SAPIENS (HUMAN), 147 aa.	Human Gene Similar to TREMBLNEW-ACC:AAD25021 CALCIUM-REGULATED HEAT STABLE PROTEIN CRHSP-24 - HOMO SAPIENS (HUMAN), 147 aa.	Human Gene Similar to SPTREI ACC:Q62630 SM-20 - RATTUS NORVEGICUS (RAT), 355 aa.
Human Gene Similar to SWI ACC:Q02380 NADH-UBIQU OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (E' (EC 1.6.99.3) (COMPLEX I- (CI-SGDH) - Bos taurus (Bor aa.	Similar t	Similar I C3VS P ARIS (I	Similar 1 -ACC:A 3ULATI TEIN CI NS (HU	Similar -ACC:A GULAT TEIN C NS (HU	Similar -ACC:A GULAT TEIN C NS (HU	Similar SM-20 S (RAT)
Gene 3 22380 N REDUC IIT PRE .99.3) (Gene S 28282 (FAMILI	Gene 3 28282 (FAMILI	Gene 3 3LNEW JM-RE(E PRO SAPIEI	Gene 3 3LNEW JM-REC E PRO SAPIE	Gene 3 3LNEW JM-RE(E PRO SAPIE	Gene (62630)
Human Gene Similar to SWISSNEV ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5. (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 11,	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q28282 C3VS PROTEIN -CANIS FAMILIARIS (DOG), 659 aa.	Human Gene Similar to SPTREI ACC:Q28282 C3VS PROTEIN - CANIS FAMILIARIS (DOG), 659		UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AA CALCIUM-REGULATEI STABLE PROTEIN CRI HOMO SAPIENS (HUM	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAI CALCIUM-REGULATEE STABLE PROTEIN CRH HOMO SAPIENS (HUM	Human ACC:Q NORVE
SIFIED	UNCLAS	UNCLAS	SIFIED	UNCLAS	UNCLAS SIFIED	UNCLAS
N E	N R	N N	N R	N	N III	AD SIS
-TN NG NG	-ING ING	-TN -NG -NG	NT- ING	-NT- ONI	SILENT- CODING	SILENT- CODING
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILE	SILENT- CODING
Ser	Leu	Val	Thr	Pro	<u>e</u>	Gly
Ser	nen	Val	고 보	Pro	9	Gly
O	U	4	O	∢	O	U
đ	⋖	g	∢	O	∢	F
CGA GGTAT GGGC AAAC		GTTT SCTG NCTTT SCAT	45.1	SATGT SATG SCCG STGG		CTCG TCTG CGGT CCGA ST
476 TCAAGAAGCGA GCGTCATAGTAT AA[A/G]GAAGGC TTGACGACAAAC AGTCTCT	1590 CACTGTGACCAT TTTGTACAGCAA G[A/C]AGCAGCG GTATATTCCCAT	1716 GTAAAGCTGTTI TCCCAGAGCTG TC[G/A]ACACTT CGGCTGGGCAT TTAGACT	320 CATGCTTGGTG CCTGGTGCCAG GTG[AG]GTGAT GACGACCTCCA CGGCCTGCA	449 CATCAGAGATGT GCAGGAAGATG TC[G/A]GGGCCG CCATCAGCTGG GGTAATGA	470 TGTCGGGGCCG CCATCAGCTGG GGT[A/G]ATGAA GCCATGGCCCT TGGACCGGC	1207 CGCGCACCTCG TCGCCGATCTG CTG[T/C]CCGGT CTCCTTGCCGA
STCA/ GCG AA[A TTG/ AGT(CACTGT TTTGTAC G[A/C]AC GTATAT CCAAAT	6 GTA 1 CC 1 CC 1 CG CG 1 TAC	0.00 CAT(0.00 CAT(0.00 CCT(0.00 CCT(0.0	GCA TC[G CCA GGT	0 TGT CCA GGT GCC TGG	7 CGC TCG CTG CTO GGA
47.	159(171	32	44	47	120
88841	82291	82291	03673	03673	03673	136941
643 cg42688841	644 cg43982291	645 cg43982291	646 cg44003673	647 cg44003673	648 cg44003673	649 cg44936941
643	644	645	646	647	648	649
· · · · · · · · · · · · · · · · · · ·					-	

				10	10
7.20E-75	7.2E-75	7.2E-75	7.2E-75	7.2E-75	7.2E-75
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Arg	Gly	Asp	Gl V	Ser	Olu
Arg	Gly	Asp	Gly	Ser	Glu
∢	U	O	Ø	o O	O
O		<u></u>	4	4	4
704 GGTCTGCCCGA O TCCGGGATGGC TGC[C/A]GGTGG GTGATCGACGG TAGGCCGGA	721 ATGGCTGCCGG 1 TGGGTGATCGA CGG[T/C]AGGCC GGACAATGCCC	772 GAGGACAGCCA TGGAAGGGCAC GGA[T/C]CGCCA GTGCCGCGGCG TGATTATGG	823 ACGTGGTGCGC AACAGCCCTCA CGG[A/G]GTGAA GGTCCAGATGG CTCTTTCCG	874 CCTGGCCCGAG CTCGATCAGGC ATC[A/G]AGGTG CCTGGAATCCTT ACTCGATG	886 TCGATCAGGCA TCAAGGTGCCT GGA[A/G]TCCTT ACTCGATGACG GTTTAGTGC
704	721	772	823	874	886
650 cg39523553	651 cg39523553	652 cg39523553	653 cg39523553	654 cg39523553	655 cg39523553
650	651	652	653	654	655

the second of the second secon

	7-	16	16	T	-	T-
			_			
1.3E-73	1.10E-71	1.10E-71	1.10E-71	4.90E-69	1.00E-68	1.00E-68
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83051 KIAA1099 PROTEIN - HOMO SAPIENS (HUMAN), 804 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	Human Gene Similar to SPTREMBL-ACC:P90839 F16A11.1 -CAENORHABDITIS ELEGANS, 673 aa.	Human Gene Similar to SPTREMBL-ACC:P90839 F16A11.1 -CAENORHABDITIS ELEGANS, 673 aa.	Human Gene Similar to SPTREMBL-ACC:075473 ORPHAN G PROTEIN-COUPLED RECEPTOR HG38 -HOMO SAPIENS (HUMAN), 907 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P50636 GAMETOGENESIS EXPRESSED PROTEIN GEG-154 - Mus musculus (Mouse), 429 aa.	Human Gene Similar to SWISSPROT-ACC:P50636 GAMETOGENESIS EXPRESSED PROTEIN GEG-154 - Mus musculus (Mouse), 429 aa.
SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING
<u>e</u>	\ \	T _y	Gly	Leu	Gly	Glu
e <u>e</u>	\al	r y	Gly	ren	Gly	Gln
⋖	<u> </u>	⋖	∢	₹	O	O
399 GCTGCTGCTTCT G TCCTTGTGGCAA C[G/A]ATCTTCT GGGCAACGTCC TGGAAGA	375 TTCAGTGCACAA G ATGAGATGAATG T[G/T]AACATCC CACAGTTGGCA GACAGTT	655 AGGAGTATTCAT G CATCCCCAATG CC[G/A]TAGCCT TCATGATTGAGG AATTTGC	712 GAGTGGCCCAG G CCAATCTGCATG AC[G/A]CCAGAA GTGACCACTGTT ACTTCAT	73 AGAATCTCACCA G GCCTTGTGGTG CT[G/A]CATTTG CATAACAACCG CATCCAGC	544 GCACCAGCGGA A AGCCCTACAGA CGG[A/G]CTCAG CGTCATGCAAG GGCCCTACA	559 CTACAGACGGA A CTCAGCGTCAT GCA[WG]GGGCC CTACAGCGAAA CAGCCAGCT
656 cg36728314	657 cg41677120	658 cg44126579	659 cg44126579	660 cg38925480	661 cg43323149	662 cg43323149
959	657	658	659	099	661	662

1.00E-68	1.3E-68	1.3E-68	1.3E-68	2.3E-68	2.3E-68
. 1	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:088552 CLAUDIN-2 - MUS MUSCULUS (MOUSE), 230 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:088552 CLAUDIN-2 - MUS MUSCULUS (MOUSE), 230 aa.	Human Gene Similar to SPTREMBL- ACC:088552 CLAUDIN-2 - MUS MUSCULUS (MOUSE), 230 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	Human Gene Similar to SPTREMBL- ACC:Q14676 KIAA0170 PROTEIN - HOMO SAPIENS (HUMAN), 2089 aa.
UNCLAS H SIFIED A	UNCLAS H	UNCLAS I	SIFIED	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Gin	Ser	Val	ren	ńö	ren
Gln	Ser	\\ \text{\sqrt{all}}	ren	Gly	ren
<u>o</u>	O	⋖	<u> </u>	∢	H
664 GAAAATACAGC A CGGTTAGAAGTT CA[A/G]GCCGAT GTCCAAAAGGA	263 CCACCACAGAG G ATAATGCAGGC CAG[G/C]GAGGA GATTGCACTGG ATGTCACCA	CAACTGCTGTCA GCAATGCTGGCACG(S/A)ACATAAGAACTTGTTTTC	482 GGAGCAGCATG C GCAACCAGTGT GCC[C/T]AAAAG CCCCAGAAGGC	231 AGCCCACATCT C CAGGCCACTAG GGG[C/A]AGAAC AAATAGGTCCTC TGTCAAGA	291 CAGTTGTCCCC C ACAGCCCCTGA GCT[C/T]CAGCC TTCCACCTCCAC AGACCAGC
663 cg43323149 66	664 cg34243633 26	665 cg34243633 4.	666 cg34243633 4	667 cg43942922 2	668 cg43942922 2
963 (664	665	999	299	899

The state of the s

2.3E-68 6.4F-68	L.	Z.5E-0.3	1.4E-62			JT- 5.1E-62
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	Human Gene Similar to Swidshoof ACC:P39194 !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! - Homo sapiens (Human), 593 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q07320 ZEIN-ALPHA PRECURSOR (ZSF4C4) - ZEA MAYS (MAIZE), 266 aa.	S Human Gene Similar to TREMBLNEW-ACC:AAD34051 CGI- 56 PROTEIN - HOMO SAPIENS (HUMAN), 317 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD34051 CGI- 56 PROTEIN - HOMO SAPIENS (HUMAN), 317 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:Q04205 TENSIN - Gallus gallus (Chicken), 1744 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:Q04205 TENSIN - Gallus gallus (Chicken), 1744 aa.
UNCLAS	SIFIED	UNCLAS	UNCLAS	UNCLA	UNCLA	SIFIED
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
<al><!-- A state of the state o</td--><td>Val</td><td>ren</td><td>Arg</td><td>Ser</td><td>Gly</td><td>Pro</td></al>	Val	ren	Arg	Ser	Gly	Pro
\ \	\ \ \	ren	Arg	Ser	Gly	Po
O	<u> </u>	Ø	<u> </u>	<u> </u>	U	<u>ح</u>
396 CTGTCAAGACC G CCTGAAACAGTT GT[G/C]CCCACA GCCCTGAGCT	1090 CCTGGCCAACA C TGGCAAAACCC CGT[C/T]TCTACT AAAAATACAAAA	401 CACTCACAAAAA A GGGCAAGAAGC GC[A/G]AGGAGG	GAAGCCA 397 TTGGTGAAGAG G GTTGTACAGCA CTC[G/T]TAGTG	TAGACTTCAGGT CACAGTTG 404 AGAGGTTGTAC A AGCACTCGTAG TGT[A/G]GACTT	CAGGTCACAGT TGACAATGT 1049 GCTTGGACCGG T CATGTGGCTAT GG[T/C]GGCTAT	TCTACCCCGGA GGATCGGA 452 CAGGCAGCCTG GGACAGCCCAG CCC[G/A]TCTGC CCAGAGAACT ACCAGAGCT
669 cg43942922 3	670 cg43955219 1	671 cg29142822	672 cg43988710	673 cg43988710	674 cg39516123	675 cg39516123

						:
5.1E-62	5.1E-62	2.6E-61	1.70E-59	1.70E-59	1.70E-59	1.70E-59
UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC: Q04205 TENSIN - Gallus gallus (Chicken), 1744 aa.	Human Gene Similar to SWISSPROT-ACC:Q04205 TENSIN - Gallus gallus (Chicken), 1744 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:Q99653 CALCIUM-BINDING PROTEIN P22 (CALCIUM-BINDING PROTEIN CHP) - Homo sapiens (Human), 194 aa.		Human Gene Similar to SPTREMBL-ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Ala	Arg	Gly	Phe	Arg	Ser	Val
Ala	Arg	Gly	Phe	Arg	Ser	<u>8</u>
<u> </u>	 	O	O	O	<u> </u>	⋖
563 TCAGCTCCTCTC C CGGAAAGCCAG GC[C/T]CGAGCT CAGTTCAGTGT GGCTGGCG	620 CGGTGCCTGGG C AGCCTCAGGC GCG[C/T]CACAG AACAGTGGGCA CCAACACTC	435 GGAAATGAGCC T AAAGTTCGCATG AA[T/C]CCACGG AAGTTTACCTGG TCCTCTC	440 CCGGACAACAC T CGTTGGAGTTCT TT[T/C]GCCGTC AACGAGTTGTCT CTGGAAA	665 TGAGCGCTCAC A GCTCTCTTTGCT CG[A/G]CCGCTG GTCATGAGCCC AGCTGCTC	680 TCTTTGCTCGAC C CGCTGGTCATG AG[C/T]CCAGCT GCTCGAGTGGA	695 TGGTCATGAGC G CCAGCTGCTCG AGT[G/A]GACCT TGACATCCAGC CAGACGGTT
676 cg39516123	677 cg39516123	678 cg42731307	679 cg44128084	680 cg44128084	681 cg44128084	682 cg44128084

fert first wife of the first wife of the order of the first first first of the order of the order of the first first first order of the order of the

				2		
1.70E-59	5.20E-58	5.20E-58	5.20E-58	1.70E-57	2.40E-57	2.40E-57
Human Gene Similar to SPTREMBL-ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.		Human Gene Similar to SPTREMBL-ACC:Q14185 DOCK180 PROTEIN -HOMO SAPIENS (HUMAN), 1865 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14185 DOCK180 PROTEIN -HOMO SAPIENS (HUMAN), 1865 aa.	Human Gene Similar to TREMBLNEW-ACC:CAB43289 HYPOTHETICAL 12.7 KD PROTEIN - HOMO SAPIENS (HUMAN), 116 aa (fragment).		
UNCLAS	UNCLAS	UNCLAS	SIFIED	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Ser	Phe	ren	Asn	Arg	Asn	Asp
Ser	Phe	Leu	Asn	Arg	Asn	Asp
O	F	<u> </u>	<u> </u>	O	<u> </u>	
728 ACATCCAGCCA A GACGGTTCAGA ATCIA/GIGCGGT TCTGTGGTGCG ACGGGCGCC	289 CCACATACACAA C CAGCATATACCT T[C/T]CCTGGGA TTCTCAAGTGGT	347 GATTTCAACAGA C AGAAATCAGCC CT[C/T]TGGAGA ATGCCATAGAAA	382 CCATAGAAACCA C TGGAGCTGACC AA[C/T]GAGAGG ATCAGCAACTGT GTTCAGC	827 AGCTCGGGAGT T ACAGGTGAAAC TTC[T/G]CGAATT GCCTGTTCCTTC	101 AAGGCCGACTT C TCTGTAGGAAGT AA[C/T]CGTGAC CGAGAGATCAG	107 GACTTTCTGTAG C GAAGTAACCGT GA[C/T]CGAGAG ATCAGCATGTCT GTCGGTC
683 cg44128084	684 cg30455661	685 cg30455661	686 cg30455661	687 cg43302460	688 cg43153425	689 cg43153425

The state of the s

-57	-57	-57	-57	-57	-57	-57
2.40E-57	2.40E-57	2.40E-57	2.40E-57	2.40E-57	2.40E-57	2.40E-57
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa (fragment).		UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa (fragment).
UNCLAS	UNCLA:	UNCLAS	UNCLAS	UNCLA	UNCLA	UNCLA
	SILENT-	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Val	Arg	Gin	Asp	Ser	ell e	Asp
Val	Arg	Gln	Asp	Ser	ell e	Asp
H-	∢	∢	 	<u> </u>	 -	<u> </u>
128 GTGACCGAGAG C ATCAGCATGTCT GT[C/T]GGTCTG GGAAGGTCACA	140 TCAGCATGTCTG G TCGGTCTGGGA AG[G/A]TCACAG TTAGACTCCAAA GGAGGAG	146 TGTCTGTCGGT G CTGGGAAGGTC ACA[G/A]TTAGA CTCCAAAGGAG	152 TCGGTCTGGGA C AGGTCACAGTTA GA[C/T]TCCAAA GGAGGAGTAGT TGGTGGGA	155 GTCTGGGAAGG C TCACAGTTAGAC TC[C/T]AAAGGA GGAGTAGTTGG TGGGACCA	251 CAAATCAGCAAC A CAAACCACAAAA T[A/T]CAAATTAC TATGGGTTCTAC TGAAT	287 TGGGTTCTACTG C AATCTCGGGTT GA[C/T]TACATG GGCTCAAGCAT CCTCATGG
690 cg43153425	691 cg43153425	692 cg43153425	693 cg43153425	694 cg43153425	695 cg43153425	696 cg43153425
139	10)	10)	1(3)	10)	102	103

5.30E-56	3.30E-54	3.30E-54	3.30E-54	3.30E-54	3.30E-54
Human Gene Similar to SWISSPROT- ACC:P44788 SUN PROTEIN (FMU PROTEIN) - Haemophilus influenzae, 451 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P91343 HYPOTHETICAL 49.0 KD TRP-ASP REPEATS CONTAINING PROTEIN F55F8.5 IN CHROMOSOME I - Caenorhabditis elegans, 439 aa.	UNCLAS Human Gene Similar to SWISSPROT- SIFIED ACC:P91343 HYPOTHETICAL 49.0 KD TRP-ASP REPEATS CONTAINING PROTEIN F55F8.5 IN CHROMOSOME I - Caenorhabditis elegans, 439 aa.	UNCLAS Human Gene Similar to SWISSPROT- SIFIED ACC:P91343 HYPOTHETICAL 49.0 KD TRP-ASP REPEATS CONTAINING PROTEIN F55F8.5 IN CHROMOSOME I - Caenorhabditis elegans, 439 aa.	UNCLAS Human Gene Similar to SWISSPROT- SIFIED ACC:P91343 HYPOTHETICAL 49.0 KD TRP-ASP REPEATS CONTAINING PROTEIN F55F8.5 IN CHROMOSOME I - Caenorhabditis elegans, 439 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P91343 HYPOTHETICAL 49.0 KD TRP-ASP REPEATS CONTAINING PROTEIN F55F8.5 IN CHROMOSOME I - Caenorhabditis elegans, 439 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Thr	Glu	Tyr	Glu	Ser	<u>=</u>
Thr	n ©	Tyr	n Ö	Ser	<u>=</u>
⋖	<u> </u>	∢	O	O	∢
40 CTTGCGCGGCA G CCAGGCGGTAA GAC[G/A]ACCCA TATTTTAGAACT GGCACCTC	1289 GCTCTGGCTGG C GGTGCAGTATA CTT[C/I]TCCAC GTATTCTATTC CACAACTT	1295 GCTGGGGTGCA G GTATACTTCTCC AC[G/A]TATTCTA TTTCCACAACTT CTTCTG	1313 TCTCCACGTATT T CTATTTCCACAA C[7/C]TCTTCTGA TGAGATGTTCTC CATTT	1319 CGTATTCTATTT T CCACAACTTCTT C[T/C]GATGAGA TGTTCTCCATTT CCATGT	1325 CTATTTCCACAA G CTTCTTCTGATG A[G/A]ATGTTCTC CATTTCCATGTG
697 cg30384142	698 cg44015614	699 cg44015614	700 cg44015614	701 cg44015614	702 cg44015614

	7		-	_	11	=
3.30E-54	1000 1000 1000 1000 1000 1000 1000 100	6.10E-54	6.10E-54	6.10E-54	6.10E-54	6.10E-54
1	milar to SP I REMBL- ABIN3 - RATTUS RAT), 460 aa.	Human Gene Similar to SPTREMBL-ACC:046082 EG:63B12.2 PROTEIN-DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	Human Gene Similar to SPTREMBL-ACC:046082 EG:63B12.2 PROTEIN -DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	Human Gene Similar to SPTREMBL-ACC:046082 EG:63B12.2 PROTEIN-DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:046082 EG:63B12.2 PROTEIN-DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:046082 EG:63B12.2 PROTEIN -DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.
SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
<u>=</u>	Arg	Ala	Ser	nen	Val	Glu
<u>=</u>	Arg	Ala	Ser	ren		n O
ს	O	O	o	<u> </u>	<u> </u>	U
1379 AGGGCATTCGC A AGAAACTGGCC CTT[A/G]ATAAG GAAATCAAACTC	406 AGTCCAGGCAG T GGGCCCACGTC CTC[T/C]CGGTA CACCTTTCCAG GAAGGGGC	425 TCTTCTCTAGAG A TCCCGCGGCTC AC[AG]GCCTTT GCTGCGAAGGG	CAACTTGT	463 AAGGGCAACTT C GTGGGCAACCT GGT[C/T]AAGGA AACCTTGACTTC	TTCAAATT 469 AACTTGTGGGC A AACCTGGTCAA GGA[A/CJACCTT GGACTTCTTCAAA	TTCACAAC 478 GCAACCTGGTC T AAGGAAACCTT GACĮT/CJTCTTCA AATTCACAACGC
703 cg44015614	704 cg42380652	705 cg43931038	706 cg43931038	707 cg43931038	708 cg43931038	709 cg43931038

=	T-	18		T	17	T
					-	
6.10E-54	6.10E-54	1.40E-53	3.50E-52	3.50E-52	1.60E-51	6.40E-51
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:046082 EG:63B12.2 PROTEIN - DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:046082 EG:63B12.2 PROTEIN - DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:045933 Y43F4B.4 - CAENORHABDITIS ELEGANS, 363 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:043168 KIAA0443 - HOMOSAPIENS (HUMAN), 1395 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:043168 KIAA0443 - HOMOSAPIENS (HUMAN), 1395 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:AAD37447 BAW - FUGU RUBRIPES (JAPANESE PUFFERFISH) (TAKIFUGU RUBRIPES), 402 aa.	Human Gene Similar to SWISSNEW-ACC:035775 SYNCOLLIN (SIP9) -Rattus norvegicus (Rat), 145 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT. CODING	SILENT- CODING	SILENT. CODING	SILENT. CODING
Gly	Giv	r r	Glu	Asn	Leu	Thr
Gly	Gly	Thr	gln	Asn	Leu	Thr
<u> </u>	⋖		⋖	U	⊢	O
496 CCTTGACTTCTT C CAAATTCACAAC G[C/T]CCACCCA TCTCTACAACAA GGCGGC	562 TCACGTAGTGG G TCAATAGCACCT TT[G/A]CCTCCC CCCATGCGATG CCCAACAC	360 CATCATCTCCTG C AAGATGCTAGC AC[C/T]GTTCCT GTTATATTCCAA CTCACTC	104 GAATTGGTTCTG G AGGAGTTTGAG GA[G/A]CTTCTTT TACTGATGGACA GAAATC	47 CCAGGGAAAGT T GCACAGCCAGA GAA[T/C]TGGTC TTGCAACTGCAT CCAGTGTG	458 CCTTCCGGATG C ACTTTCTCCGCA TC[C/T]TGCCCC AGCAGCTGGAC AGCAGTACA	320 I CAAGCACTCG T GACGGGACGCG CAC[T/C]TGCGC CAAGCTCTATGA CAAGAGCG
710 cg43931038	711 cg43931038	712 cg43338979	713 cg38450437	714 cg38450437	715 cg43314946	716 cg44010070
71	7	7	71.	7	7.15	

1.30E-50	1.30E-50	1.30E-50	1.40E-50	1.30E-163	1.30E-163
B42016 UCCINATE PTOMYCES	B42016 UCCINATE PTOMYCES		REMBL-	.IKE QPAP) - 342 aa.	.IKE QРАР) - 342 аа.
UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB42016 PUTATIVE ADENYLOSUCCINATE SYNTHETASE - STREPTOMYCES COELICOLOR, 427 aa.	Human Gene Similar to TREMBLNEW-ACC:CAB42016 PUTATIVE ADENYLOSUCCINATE SYNTHETASE - STREPTOMYCES COELICOLOR, 427 aa.	Human Gene Similar to TREMBLNEW-ACC:CAB42016 PUTATIVE ADENYLOSUCCINATE SYNTHETASE - STREPTOMYCES COELICOLOR, 427 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q92565 MYELOBLAST KIAA0277 - HOMO SAPIENS (HUMAN), 580 aa.	water_ch Human Gene SWISSPROT- annel ID:O14520 AQUAPORIN-7 LIKE (AQUAPORIN ADIPOSE) (AQPAP) - HOMO SAPIENS (HUMAN), 342 aa.	water_ch Human Gene SWISSPROT- annel ID:O14520 AQUAPORIN-7 LIKE (AQUAPORIN ADIPOSE) (AQPAP) - HOMO SAPIENS (HUMAN), 342 aa.
SIFIED T	UNCLAS H SIFIED T	SIFIED T	UNCLAS F SIFIED /	water_ch annel	water_ch annel
SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING	SILENT- CODING
Thr	Ser	Gly	Phe	Ser	Leu
Thr	Ser	Gly	Phe	Ser	Leu
<u> </u>	U	O	O	O	4
563 ACCTCATCACCC C CGTACCATCAG AC[C/T]CTCGAC AAGGTCACTGA GCGTTTTC	641 GTCGTGGCATC T GGGCCGACCTA CTC[T/C]GACAA GATCAATCGGAT GGGTATTC	662 ACTCTGACAAGA T TCAATCGGATG GG[T/C]ATTCGC GTCCAGGATCTT	585 TCATCGACAACC T AGAACCTCCTCT T[T/C]GAGCTCT CCTACAAGCTG GAGGCAA	138 CTGAAGATCTGT A TGGCAGGGCTC AC[A/G]GAGACG GGGGTGAGGGG	150 TGGCAGGGCTC G ACAGAGACGGG GGT[G/A]AGGGG AGAGATCGTGG GTTCATGAG
717 cg39380052	718 cg39380052	719 cg39380052	720 cg43329819	721 cg43298242	722 cg43298242
717	718	719	720	721	722

the state of the s

-	12	16	3 (3q13.1)
2.30E-212	2.20E-58	0.00E+00	1.20E-167
Human Gene SWISSNEW-ID:Q92785 ZINC-FINGER PROTEIN UBI-D4 (APOPTOSIS RESPONSE ZINC FINGER PROTEIN REQUIEM) - HOMO SAPIENS (HUMAN), 391 aa. pcls:SWISSPROT-ID:Q92785 ZINC-FINGER PROTEIN UBI-D4 (APOPTOSIS RESPONSE ZINC FINGER PROTEIN REQUIEM) - HOMO SAPIENS (HUMAN), 391 aa.	Human Gene Similar to SWISSPROT-ID:Q16864 VACUOLAR ATP SYNTHASE SUBUNIT F (EC 3.6.1.34) (V-ATPASE F SUBUNIT) (V- ATPASE 14 KD SUBUNIT) - HOMO SAPIENS (HUMAN), 119 aa.	Human Gene SPTREMBL-ID:Q15065 OB-CADHERIN-1 - HOMO SAPIENS (HUMAN), 796 aa.	Human Gene SWISSNEW-ID:Q08722 LEUKOCYTE SURFACE ANTIGEN CD47 PRECURSOR (ANTIGENIC SURFACE DETERMINANT PROTEIN OA3) (INTEGRIN ASSOCIATED PROTEIN) (IAP) (MER6) - HOMO SAPIENS (HUMAN), 323 aa.lpcls:SWISSPROT-ID:Q08722 LEUKOCYTE SURFACE ANTIGEN CD47 PRECURSOR (ANTIGENIC SURFACE DETERMINANT PROTEIN OA3) (INTEGRIN ASSOCIATED PROTEIN) (IAP) (MER6) - HOMO SAPIENS (HUMAN), 323 aa.
apoptosi s	ATPase_ associat ed	cadherin	cadherin
CONSERVATI apoptosi VE s	CONSERVATI VE	CONSERVATI cadherin VE	CONSERVATI cadherin VE
Val (1096)	Arg (1097)	Val (1098)	(1099)
Aia	H.S.	Ala	<u>=</u>
∢	O	4	<u>ග</u>
1501 GGAGTTCTGGT G TCTGGTAGATG GAA[G/A]CTTTCT CTTTCAACAGGT CCAGACA	460 GGAGTCCTTGG T CGGCGTCATAT GGG[T/C]GCTCC TTGGAGGGGAT CTCCAGGAC	2923 TGAGGGGAGCG G TCGCCGGCCGC GGA[G/A]CAGAT GCCGCGGGGGC CGCTCGCAG	613 ACTCCTGTTCTG A GGGACAGTTTG GT[A/G]TTAAAAC ACTTAAATATAG ATCCGG
723 cg43970780	724 cg43957906	725 cg43952088	726 cg43956666

1.10E-69 1 (1q32)	5 (5q13.3)	22	15	2	11
1.10E-69	2.60E-172	2.40E-52	0.00E+00	0.00E+00	1.00E-234
CONSERVATI complem Human Gene Similar to VE entrecept TREMBLNEW-ID:E246058 COMPLEMENT RECEPTOR 2 - MUS MUSCULUS (MOUSE), 651 aa (fragment).		hro Human Gene Similar to SPTREMBL- ID:000761 CYTOCHROME OXIDASE SUBUNIT VIA HEART ISOFORM PRECURSOR (EC 1.9.3.1) (CYTOCHROME-C OXIDASE) (CYTOCHROME A(3)) (CYTOCHROME AA(3)) SAPIENS (HUMAN). 97 aa.		CONSERVATI glycoprot Human Gene SWISSPROT- VE ein ID:P08183 MULTIDRUG RESISTANCE PROTEIN 1 (P- GLYCOPROTEIN 1) - HOMO SAPIENS (HUMAN), 1280 aa.	
comp	cyclin	cytocl	dna_n	glycor ein	glycop
CONSERVATI VE	CONSERVATI cyclin	CONSERVATI cytochro VE me	CONSERVATI dna_rna VEbind	CONSERVATI VE	CONSERVATI glycoprot VE
His (1100)	Ala (1101)	Val (1102)	Ala (1103)	Asp (1104)	Ala (1105)
Arg	Val	Ala	Gly	Asn	Val
<u> </u>	ပ	∢	O	<u>o</u>	ပ
1327 TTCCCCATGTGA C AACATCTGGCTT G[C/T]GACAGGT GATTTTTCACA GGTAGG	987 TATGAACCACCC T AGATCTGAAGAA G[T/C]TGCTGTT CTGAAACAGAA GTTGGAG	291 TCCTGCTCCTCC G GTGGCTCCTTT G[G/A]CAGCGCT GGCCAAGCCCC GGGTCAG	5428 CAAAAGAAGAAA G GACGACGTGAC TG[G/C]GGGTAA GAACCATTTCG TCCAGAG	485 GAAGAAGAACTT A TTTTAAACTGAA C[A/G]ATAAAAG TGAAAAGATAA GAAGGA	890 TGCGGCCACAA T AGAGGACGCGG GCG[T/C]GGTGT GCTCAGAGCAC CAGTCCTGG
132	86	58	542	48	88
727 cg43942011	728 cg43973728	729 cg44017721	730 cg43273880	731 cg43992911	732 cg41029366
727	728	729	730	731	732

2	I 	
-'		7
3.30E-307	0.00E+00	0.00E+00
CONSERVATI helicase Human Gene SWISSPROT-ID:014232 PUTATIVE HELICASE C6F12.16 IN CHROMOSOME I-SCHIZOSACCHAROMYCES POMBE (FISSION YEAST), 1117 aa.	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa.[pcls:SPTREMBL-ID:Q16666 IF116=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa	Human Gene SWISSPROT- Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. [pcls:SPTREMBL-ID:Q16666 IFI16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa
helicase	n n	
CONSERVATI	CONSERVATI interfero VE n	CONSERVATI interfero
Gly (1106)	Lys (1107)	Ala (1108)
Val	Arg	<u>\$</u>
O H		<u>ග</u>
2546 CGAGAACTGAA T GAAAGCAAGAA CAG[T/G]CCTAC AAATGGATGAAC TCAAATGT	GTCATACTOTIC T[C/T]TCATTIT AAATTAAGTTTT AAATC	2474 TAGAACAATGTT C CTTGTATTTTTT [C/G]CCATCTTTA CAGACATAAGT GAGCC
733 cg43931167		735 cg43925670
0 4	<u> </u>	5

	7	10	
00	187	173	-51
0.00E+00	3.00E-187	7.80E-173	2.70E-51
Human Gene SWISSNEW-ID:000329 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT, DELTA ISOFORM (EC 2.7.1.137) (PI3-KINASE P110 SUBUNIT DELTA) (PTDINS-3-KINASE P110) (PI3K) (PTDINS-3-KINASE P110) (PI3K) (PTDINS-3-KINASE P110) (PI3K) (PUMAN), 1044 aa. [pcis:SWISSPROT-ID:000329 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT, DELTA ISOFORM (EC 2.7.1.137) (PI3-KINASE P110 SUBUNIT DELTA) (PTDINS-3-KINASE P110) (PI3K) (PTDINS-3-KINASE P110) (PI3K) (PTDINS-3-KINASE P110) (PI3K) (PTDINS-3-KINASE P110) (PI3K) (PUMAN), 1044 aa. [pcis:SPTREMBL-ID:000329 PHOSPHOINOSITIDE 3-KINASE - HOMO SAPIENS (HUMAN), 1044 aa.	Human Gene SPTREMBL-ID:Q12792 PROTEIN TYROSINE KINASE - HOMO SAPIENS (HUMAN), 350 aa.	Human Gene SPTREMBL-ID:Q15599 TYROSINE KINASE ACTIVATOR PROTEIN 1 (TKA-1) - HOMO SAPIENS (HUMAN), 450 aa.	Human Gene Similar to SWISSPROT- ID:P46546 GLUTAMATE 5-KINASE (EC 2.7.2.11) (GAMMA-GLUTAMYL KINASE) (GK) - CORYNEBACTERIUM GLUTAMICUM, 369 aa.
Human Gene SWISSNEW-ID:000 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT, DELTA ISOFORM (EC 2.7.1.137) (P13-KINASE P110 SUBUNIT DEL (PTDINS-3-KINASE P110) (P13K) (P10DELTA) - HOMO SAPIENS (HUMAN), 1044 aa. pcls:SWISSPROT-ID:000329 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT, DELTA ISOFORM (EC 2.7.1.137) (P13-KINASE P110 SUBUNIT DEL (PTDINS-3-KINASE P110) (P13K) (P10DELTA) - HOMO SAPIENS (HUMAN), 1044 aa. pcls:SPTREM ID:000329 PHOSPHOINOSITIDE KINASE - HOMO SAPIENS (HUMAN), 1044 aa.	Human Gene SPTREMBL-ID:Q1 PROTEIN TYROSINE KINASE - HOMO SAPIENS (HUMAN), 350	Human Gene SPTREMBL-ID:Q15 TYROSINE KINASE ACTIVATOR PROTEIN 1 (TKA-1) - HOMO SAPIENS (HUMAN), 450 aa.	WISS 5-KIN 3LUT/
Human Gene SWISSNEW-ID: PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNI DELTA ISOFORM (EC 2.7.1.1 (P13-KINASE P110) (PI (P110DELTA) - HOMO SAPIEI (HUMAN), 1044 aa. pcis:SWISSPROT-ID:0003 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNI (P13-KINASE P110 SUBUNIT (P13-KINASE P110 SUBUNIT (P13-KINASE P110 SUBUNIT (P10DELTA) - HOMO SAPIE (HUMAN), 1044 aa. pcis:SPTF KINASE - HOMO SAPIENS KINASE - HOMO SAPIENS	EMBI IE KII UMA	Human Gene SPTREMBL-ID TYROSINE KINASE ACTIVA PROTEIN 1 (TKA-1) - HOMO SAPIENS (HUMAN), 450 aa.	r to S NATE MA-G JM aa.
WISS YTIO YTIO ASE HOM HOM HOM HOM HOM HOM HOM HOM HOM HOM	PTR OSIN IS (H	PTR VASE (A-1) VAN)	imila JTAN GAM - TERIU
Human Gene SWISS PHOSPHATIDYLING KINASE CATALYTIC DELTA ISOFORM (PI3-KINASE PT10) (PTDINS-3-KINASE (PT10DELTA) - HON (HUMAN), 1044 aa. pcls:SWISSPRC PHOSPHATIDYLING KINASE CATALYTIC (PT3-KINASE PT10) (PT0DELTA ISOFORM (PT0) (PT0	TYR PIEN	E KIN 1 (HUI	Human Gene Similar to ID:P46546 GLUTAMAT (EC 2.7.2.11) (GAMMA- KINASE) (GK) - CORYNEBACTERIUM GLUTAMICUM, 369 aa
an Ge SPH/ SPEC SPEC SPEC SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPEC SPH/ SPH/ SPH/ SPH/ SPH/ SPH/ SPH/ SPH/	an G TEIN 10 S/	an G OSIN TEIN IENS	Human Gene [§] ID:P46546 GL (EC 2.7.2.11) (KINASE) (GK) CORYNEBAC GLUTAMICUN
HUM PHOM KINA (P11- (P11	Hum PRO HON	Hum TYR PRO SAP	Hum ID:P. KIN/A COR GLU
88 B	lase	lase	lase
CONSERVATI kinase	CONSERVATI kinase	CONSERVATI kinase	CONSERVATI kinase VE
ZVAI	RVA	RVA	RVA
E CONTRACTOR OF THE CONTRACTOR	NSE	NS	SNS
S =	S N	8 #	8 %
(1109)	Val (1110)	Val (1111)	lle (1112)
(110)	(11 (11	(11 (11	(11)
Asp	<u>=</u>	Fen	Leu
F	O	ڻ ن	⊢
		O	ဖြ
0 4 7 4 0 4 7 4	1 2 4 F		
AATTGGCACATC TTGGCGCAAA GT[C/T]GTTCACT TCTGGGTCGCA CAAGGAG	GAAGAAGGAAT TTGGAGGTGGC CAC[A/G]TTAAA GATGAAGTATTT	CTCTGCGTGCT CGTCCCGAAGT GAC[C/G]TGCC1 GGTTCCGACAA GGACACTGA	CAGGTGGCCAT TCGGGCGGCTT CAA[G/T]TTTCG1 GGTCATGCCGC
AATTGGC/ TTGGCGC ST[C/T]GT TCTGGGT/ CAAGGAG	GAAG GAGG [A/G] GAAG	CTCTGCGTG CGTCCCGAA GAC[C/G]TGC GGTTCCGAC GGACACTGA	CAGGTGGC TCGGGCGG CAA[G/T]TT GGTCATGC CGGTTCCC
AATT TTGI GTTC CAAI	409 GAAGAAGGAAT TTGGAGGTGGC CAC[A/G]TTAAA GATGAAGTATT	925 CTCTGCGTGCT CGTCCCGAAGT GAC[C/G]TGCC7 GGTTCCGACAA GGACACTGA	394 CAGGTGGCCAT TCGGGCGGCTT CAA[G/T]TTTCG GGTCATGCCGC
4637 AATTGGCACATC TTGGCGCGAAA GT[C/T]GTTCACT TCTGGGTCGCA CAAGGAG	409	925	394
949	622	752	358
3928	2703	4131	5143
736 cg43928549	737 cg42703622	738 cg44131752	739 cg25143358
73(73.	73	73
		<u> </u>	<u> </u>

gril first side of the first and show only in the side of the side

			2	
7.80E-86	2.60E-50	0.00E+00	0.00E+00	1.20E-64
CONSERVATI kinasein Human Gene Similar to SWISSPROT-VE hibitor ID:P42773 CYCLIN-DEPENDENT KINASE 6 INHIBITOR (P18-INK6) - HOMO SAPIENS (HUMAN), 168 aa.		Human Gene SWISSPROT- ID:P15498 VAV PROTO-ONCOGENE - HOMO SAPIENS (HUMAN), 846 aa.	CONSERVATI phosphat Human Gene SWISSPROT- ase ID:Q16849 PROTEIN-TYROSINE PHOSPHATASE N PRECURSOR (EC 3.1.3.48) (R-PTP-N) (PTP IA-2) (ISLET CELL ANTIGEN 512) (ICA 512) (ISLET CELL AUTOANTIGEN 3) - HOMO SAPIENS (HUMAN), 979 aa.	phosphat Human Gene Similar to ase TREMBLNEW-ID:D1024666 PROTEIN-TYROSINE- PHOSPHATASE (EC 3.1.3.48) - MUS MUSCULUS (MOUSE), 426 aa.
kinasein hibitor	nuclease	e e	phosphat ase	phosphat ase
CONSERVATI VE	CONSERVATI nuclease	CONSERVATI oncogen VE e	CONSERVATI VE	CONSERVATI VE
Asn (1113)	(1114)	Val (1115)	(1116)	lle (1117)
Asp	Asp	Ala		Vai
<u> -</u>	<u> </u>	<u> </u>	∢	V
ST C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6A 6A 6G CG	66 6 66 6 67 76	AG G TT CA
702 GCGAAACCAGT TCGGTCTTTCAA AT[C/T]GGGATT AGCACCTCTAA GTAGCAGT	290 ATATTGCCTAGT AATTTCTGATAA T[C/T]ATTTAAGG TATGTAAGTTGC TAGTA	864 CACTTCCTAAAG GAGATGAAGGA AG[C/T]CCTGGG CACCCCTGGCG CAGCCAAT	176 CAGCCGCCCGG GGGGCTGCAGC GCC[G/A]TTAGT GCCCACGGCTG TCTATTTGA	365 CAATTGTGGAG AAGAGTATTTTT AT[G/A]TCGCTA CTCAAGGACCA CTGATGAG
702	290	864	176	365
740 cg43105476	741 cg38642684	742 cg39518465	743 cg43021380	744 cg39728924
740	741	742	743	744

		2 (2cen)	11 (11p15.5	
8.90E-172	0.00E+00	4.3E-188	1E-92	4E-80
CONSERVATI polymera Human Gene SWISSNEW-ID:054888 VE Se DNA-DIRECTED RNA POLYMERASE I 135 KD POLYPEPTIDE (EC 2.7.7.6) (RNA POLYMERASE I SUBUNIT 2) (RPA135) (RNA POLYMERASE I 127 KD SUBUNIT) - RATTUS NORVEGICUS (RAT), 1135 aa.jpcls:TREMBLNEW-ID:G2739048 RNA POLYMERASE I 127 KDA SUBUNIT - RATTUS NORVEGICUS (RAT), 1135	Human Gene TREMBLNEW- ID:G2920823 CARDIAC MYOSIN BINDING PROTEIN-C - HOMO SAPIENS (HUMAN), 1274 aa.	Human Gene SWISSNEW-ID:P40121 MACROPHAGE CAPPING PROTEIN (ACTIN-REGULATORY PROTEIN CAP-G) - HOMO SAPIENS (HUMAN), 348 aa. pcls:SWISSPROT-ID:P40121 MACROPHAGE CAPPING PROTEIN (ACTIN-REGULATORY PROTEIN CAP-G) - HOMO SAPIENS (HUMAN), 348 aa.	Human Gene Similar to SWISSPROT-ID:P48788 TROPONIN I, FAST SKELETAL MUSCLE (TROPONIN I, FAST-FAST MUSCLE (TROPONIN I, FAST-TWITCH ISOFORM) - HOMO SAPIENS (HUMAN), 181 aa.	Human Gene Similar to SWISSPROT- ID:Q28046 ADSEVERIN (SCINDERIN) (SC) - BOS TAURUS (BOVINE), 715 aa.
polymera se	struct	struct	struct	struct
CONSERVATI VE	CONSERVATI struct	CONSERVATI struct	CONSERVATI struct	CONSERVATI VE
(1118)	His (1119)	lle (1120)	Lys (1121)	Arg (1122)
Vai	Arg	Val	Arg	His
∢	<u> </u>	<u> </u>	 -	ග
851 CAACCAGCCTATIG TGGGGAAGAA AT[G/A]TCCAGG GTGGAATCCGT TTTGGGGA	316 GGTTATCAGGA C ACTTGGGATCTT CA[C/T]GGATTT CCATCTTGTTCT TCATCCA	1113 AGGTAGGAGTC C CCCCGAGAAGA AGA[C/T]GCCCT GGTTCTCTTGC GCCACAGGC	463 CAGCTCCTTGCT C GGTCTTCTGCA CC[C/T]TCACCT CCATGTCGTACT TCTCCTC	230 AAGACGAGCCG A AGGCTTCACCTA CC[A/G]CCTGCA CTTCTGGCTCG GAAAGGAG
745 cg42710490	746 cg44001078	747 cg43916919	748 cg42930605	749 cg36824552
745 c	746 c	747 c	748 c	749 c

			က		
6E-55	0E-55	7.3E-106	2.7E-202	1.7E-53	0
Human Gene Similar to SWISSPROT-ID:P07313 MYOSIN LIGHT CHAIN KINASE, SKELETAL MUSCLE (EC 2.7.1.117) (MLCK) - ORYCTOLAGUS CUNICULUS (RABBIT), 607 aa.	Human Gene Similar to SWISSPROT-ID:P07313 MYOSIN LIGHT CHAIN KINASE, SKELETAL MUSCLE (EC 2.7.1.117) (MLCK) - ORYCTOLAGUS CUNICULUS (RABBIT), 607 aa.	tm7 Human Gene Homologous to SWISSPROT-ID:Q02038 NEUROLYSIN PRECURSOR (EC 3.4.24.16) (NEUROTENSIN ENDOPEPTIDASE) (MITOCHONDRIAL OLIGOPEPTIDASE M) (MICROSOMAL ENDOPEPTIDASE) (MEP) (SOLUBLE ANGIOTENSIN-BINDING PROTEIN) (SABP) - SUS SCROFA (PIG), 704 aa.	Human Gene ŚWISSPROT-ID:Q14188 TRANSCRIPTION FACTOR DP-2 (E2F DIMERIZATION PARTNER 2) - HOMO SAPIENS (HUMAN), 385 aa.	transcript Human Gene Similar to SPTREMBL- factor ID:008996 MYELIN TRANSCRIPTION FACTOR 1-LIKE - MUS MUSCULUS (MOUSE), 1182 aa.	Human Gene TREMBLNEW- ID:G2827198 UBIQUITIN PROTEIN LIGASE - MUS MUSCULUS (MOUSE), 854 aa.
		tm7	transcript factor	transcript factor	ubiquitin
CONSERVATI struct	CONSERVATI struct	CONSERVATI tm7	CONSERVATI VE	CONSERVATI VE	CONSERVATI ubiquitin VE
lle (1123)	lle (1124)	(1125)	Val (1126)	Ser (1127)	Asn (1128)
\ \	\ \	Ser	9]	Th.	Asp
⋖	∢	4	O	Ø	4
377 CAACATCATGAA G CCAGCTCAGCC AC[G/A]TAAACTT GATCCAACTTTA	509 GTACCACCTCA G CTGAGTTGGAT GTG[G/A]TCTTG TTCACGAGGCA GATCTGTGA	481 TGCAAGTGAATA T TGCCAAATACTG C[T/A]CAGAAATA TTAGGAGTTGCA GCTAC	2201 GTTAGTCTCTGT T GGTGTGCTTATA A[T/C]CATTTGG GGTCCAACATTC ACATTT	300 ATGGAGGCGGC C CCACATGGCGG CCA[C/G]CGCCA TCCTCAACCTGT CCACGCGC	1474 GGCTCTGTTCC G ATGGGAAATTCA TA[G/A]ACACGG GTTTTCTTTAC CATTCTA
750 cg42522566	751 cg42522566	752 cg42489842	753 cg43919398	754 cg20612302	755 cg44928196
750	751	752	75.	75,	75

ဇ	4	12		12		2
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E-274	5.30E-253
0.0	0.0	0.0	0.0		1.00	5.3(
	Human Gene TREMBLNEW- ACC:BAA74849 KIAA0826 PROTEIN HOMO SAPIENS (HUMAN), 1236 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075176 KIAA0692 PROTEIN - HOMO SAPIENS (HUMAN), 783 aa (fragment).	Human Gene SPTREMBL- ACC:000566 M PHASE PHOSPHOPROTEIN 10 - HOMO SAPIENS (HUMAN), 672 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q15021 ORF - HOMO SAPIENS (HUMAN), 1401 aa.	CONSERVATI UNCLAS Human Gene SWISSNEW- VE SIFIED ACC:Q12774 PROBABLE GUANINE NUCLEOTIDE REGULATORY PROTEIN TIM (ONCOGENE TIM) (P60 TIM) (TRANSFORMING IMMORTALIZED MAMMARY ONCOGENE) - Homo sapiens (Human). 519 aa.	
UNCLAS	UNCLAS		UNCLAS		UNCLAS	UNCLAS
CONSERVATI UNCLAS VE SIFIED	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE
Arg (1129)	Asn (1130)	Val (1131)	Arg (1132)	Ser (1133)	Ala (1134)	Ala (1135)
His	Asp	Ala	Lys	Thr	Vai	\alpha
U	<u> </u>	⋖	O	O	O	O O
	O	C	<u></u>	ပ	∢	đ
3784 GGCTGGTCCTT 1 CTCCATGGCTG GGA[T/C]GCTCT GCTGCGCTTGG TTTTGCCCG	STA GT FCC	2637 GCTCATGTCATC C TTCATCTAGAAA C[G/A]CCCTCAC GGAAATGGAATT GCTGCC	1186 TCTTTTCAAGCT 1 TTCTTTATGTTG T[I/C]TATTGTCT TCATTTTTGA AGGTC	SAGGCT STAGAA SJTGGAT STTGGCT SGC	743 GCCTCGCTCCC // CGTCTGAGAGC CTC[AG]CGCCC TCCAGCCAGCC GTCACTGCT	2578 TCCATTTGAATC / CAATCCCCCAT GG[A/G]CATAAG AAGAGTTCTTTC CATAAAA
756 cg43301812	cg43917191	758 cg43918356	759 cg43932090	760 cg43950437	761 cg42935995	762 cg43971614
756 (757	758 (759 (760	761 (762 (

12 (12q22)	12 (12q22)		11	2		13
2.00E-237	2.00E-237	2.80E-215	2.00E-207	2.30E-190	1.90E-138	3.70E-133
CONSERVATI UNCLAS Human Gene SWISSPROT- VE SIFIED ACC:P42167 THYMOPOIETINS BETA AND GAMMA (TP BETA AND TP GAMMA) - Homo sapiens (Human), 453 aa.		UNCLAS Human Gene SPTREMBL- SIFIED ACC:015417 CAGL79 - HOMO SAPIENS (HUMAN), 413 aa (fragment).	Human Gene TREMBLNEW- ACC:AAD34036 CGI-40 PROTEIN - HOMO SAPIENS (HUMAN), 845 aa.	CONSERVATI UNCLAS Human Gene TREMBLNEW- VE SIFIED ACC:CAA75235 LACTOSYLCERAMIDE ALPHA-2,3- SIALYLTRANSFERASE (EC 2.4.99.9) - MUS MUSCULUS (MOUSE), 387		Human Gene Homologous to TREMBLNEW-ACC:BAA74876 KIAA0853 PROTEIN - HOMO SAPIENS (HUMAN), 967 aa (fragment).
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE
Ala (1136)	Val (1137)	Thr (1138)	Val (1139)	(1140)	Glu (1141)	His (1142)
Val	<u>@</u>	Ser	<u>a</u>	\ag{a}	uj0	Arg
<u> </u>	O	o O	©	—	O	<u> </u>
1581 CTTGAAATTTCC A AGTCACCCTATT G[A/G]CAACTAA GGATTCGTTGCT TGAAGC	1783 CCACTTGTCCAT T TCAGTCTCAGTT A[T/C]TCCAGCTT GAGAATAGCTCT GATTG	282 GGCCGCGGGG C GGATAGCTGCC CAGG[C/G]TCAG GAGGCTCTTGG GCTCCTGCCA	1121 CACGGCGTTCT A GGATCGTCTTCT CC[A/G]TCATTC ACATCATCGCCA CCCTGCT	1960 TGAGCATAGCT C CTGAGCTCTCTT TA[C/T]ACGGTC AGGGTCCACAT AATGCATT	1109 AGAACGAGAGA C GGCTGGAGAGA CTG[C/G]AACGG GAGAGGCAAGA AAGGGAGCG	531 GTCTTTGTCTTC C CCAATCCCTTTG G[C/T]GTTCTCG TTCTTTATCCCT
763 cg43922856	764 cg43922856	765 cg43955639	766 cg41022625	767 cg43119894	768 cg43303845	769 cg44927166
<u> </u>	12	Ĭ.	7	Z	12	<u> </u>

			20	7-	7 (12q24.1)
4.00E-129	3.20E-127	9.00E-111	4.80E-110	1.10E-108	2.60E-102
CONSERVATI UNCLAS Human Gene Homologous to VE SIFIED TREMBLNEW-ACC:AAD39906 FH1/FH2 DOMAIN-CONTAINING PROTEIN FHOS - HOMO SAPIENS (HUMAN), 1164 aa.	CONSERVATI UNCLAS Human Gene Homologous to VE SIFIED SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT), 1487 aa.		UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:AAD43195 PEROXISOMAL MEMBRANE PROTEIN PMP 24 - HOMO SAPIENS (HUMAN), 212 aa.	UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:P50461 LIM DOMAIN PROTEIN, CARDIAC (MUSCLE LIM PROTEIN) (CYSTEINE-RICH PROTEIN 3) (CRP3) (LIM-ONLY PROTEIN 4) - Homo sapiens (Human), 194 aa.	
UNCLAS	SIFIED	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS SIFIED
CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI UNCLAS VE SIFIED
Asp (1143)	Asp (1144)	Glu (1145)	Val (1146)	Val (1147)	Thr (1148)
- Glu	ก็เอ	Asp	Ala	Ala	Ser
 	<u> </u>	O	∢	4	 -
473 AGCTGTATAGCT G CCAGTGGTCCT GA[G/T]CTCCGC CGCTCCCTCTTC TCACTGA	333 CTGCCCAGCCA G GCCCCATCCCC TGA[G/T]GACCT GGCTTTGTCAAT GGGCACCA	987 CCATGTCTGGG A AGAATGGGAGC CTC[A/C]TCGCC CACTTGAAGTC AAAGTAGA	1098 GTGGATATATGT G GGCCTGCAGTA TG[G/A]CCCACA GCTTCTCCTGG AGGCTGCC	853 GCCACCTCCCA G TAACCTTCTCAG CA[G/A]CATAGA CTGACTTGCCA CATCGAGG	1374 AAGCCATTAGGT A TCTCGGGCTGC TG[A/T]ACTGTTC GATTTTGACTTT TCTTTC
770 cg38059286	771 cg29351416	772 cg43960639	773 cg43325007	774 cg42907145	775 cg43972159

	(4q21.1)				
1.20E-98	5.90E-96	6.30E-89	1.90E-83	7.20E-75	7.20E-75
CONSERVATI UNCLAS Human Gene Similar to SWISSPROT-VE SIFIED ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.	Human Gene Similar to SWISSPROT-ACC:P47710 ALPHA-S1 CASEIN PRECURSOR - Homo sapiens (Human), 185 aa.	Human Gene Similar to TREMBLNEW-ACC:BAA74913 KIAA0890 PROTEIN - HOMO SAPIENS (HUMAN), 1194 aa.	Human Gene Similar to SWISSNEW-ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 189 aa.	CONSERVATI UNCLAS Human Gene Similar to VE SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE
Phe (1149)	Val (1150)	Leu (1151)	(1152)	Val (1153)	Arg (1154)
Tyr	Ala	\alpha	 - 	Ala	His S
A	۲	∢	<u> </u>	 -	ပ
H	ග	O	O	O	∢
508 CCAGGCTGTGC CGTTCCACTTCT GA[T/A]ATTCCC CTCCGGCGAT AACCAGGT	584 TCTGCAAATTTG CTCCTGGGCAT GG[G/A]CAGCTT GCAGCTGAAGT TGGTTGTA	361 CGGCGCCCGTC ATCACGGATGT GCA[C/A]GTCCC CGTCGGTCAGC AGCAGCACA	487 GCGTCATAGTAT AAAGAAGGCTT GA[C/T]GACAAA CAGTCTCTTGCC ATGGTCC	603 GACGCGTTGGT TCCCGACGAAG ACG[C/T]CCGAG CGGCCAAGTGG GCGGTGGCG	819 ATGGACGTGGT GCGCAACAGCC CTC[A/G]CGGAG TGAAGGTCCAG ATGGCTCTT
508	584	361	487	09	819
776 cg39512856	777 cg28461713	778 cg43969092	779 cg42688841	780 cg39523553	781 cg39523553
776	111	778	779	780	781

			17			
7.20E-75	2.40E-74	1.10E-71	2.00E-71	1.40E-69	1.30E-68	1.30E-68
CONSERVATI UNCLAS Human Gene Similar to VE SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	Human Gene Similar to TREMBLNEW-ACC:BAA74845 KIAA0822 PROTEIN - HOMO SAPIENS (HUMAN), 1581 aa.	Human Gene Similar to SPTREMBL-ACC:Q13492 CALM (TYPE I CALMPROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	CONSERVATI UNCLAS Human Gene Similar to SPTREMBL-VE SIFIED ACC:Q23382 ZK1058.4 - CAENORHABDITIS ELEGANS, 442 aa.	Human Gene Similar to SWISSPROT-ACC:P55789 AUGMENTER OF LIVER REGENERATION (HERV1 PROTEIN) - Homo sapiens (Human), 125 aa.	Human Gene Similar to SPTREMBL- ACC:088552 CLAUDIN-2 - MUS MUSCULUS (MOUSE), 230 aa.	CONSERVATI UNCLAS Human Gene Similar to SPTREMBL-VE SIFIED ACC:088552 CLAUDIN-2 - MUS MUSCULUS (MOUSE), 230 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE
Gln (1155)	Tyr (1156)	Asn (1157)	Arg (1158)	Asp (1159)	Arg (1160)	lle (1161)
ng	Phe	Asp	Lys	Asn	Lys	/al
0	 	∢	O	O	O	
ഗ	⋖	ပ	F	⋖	F	U
857 CCAGATGGCTC TTTCCGCCTGG CCC[G/C]AGCTC GATCAGGCATC AAGGTGCCT	274 AACCACAGAGA ATACAGTGACAA CA[AT]AGAAAC AAAATGACCAAA TGCCACT	544 GTTGTTTAACTT AAGCAATTTTT G[G/A]ATAAAAG TGGATTGCAAG GATATGA	2850 AACATCAACAAT CGTTATTGGGTC T[T/C]TATTTTG CTAGAAGAAGTA	444 GCTGTGCCGCC / TTCACAATGAAG TG[A/G]ACCGGA AGCTGGCCAAG CCTGATTT	447 GCTGGCACCGA CATAAGAACTTG TT[T/C]TCCAGCT GGGGAGCAGCA TGGCAAC	472 TTCCAGCTGGG (GAGCAGCATGG CAA[C/T]CAGTG TGCCCAAAAGC CCCAAAAGC CCCAGAAGG
782 cg39523553	783 cg35933325	784 cg41677120	785 cg43951096	786 cg42696021	787 cg34243633	788 cg34243633
782	783	784	785	786	787	788

		×		(<u>8</u>)		
				2 (4q28)		
2.30E-68	2.30E-68	5.80E-66	5.10E-62		2.60E-61	2.60E-61
CONSERVATI UNCLAS Human Gene Similar to SPTREMBL-VE SIFIED ACC:Q14676 KIAA0170 PROTEIN - HOMO SAPIENS (HUMAN), 2089 aa.	Human Gene Similar to SPTREMBL-ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	CONSERVATI UNCLAS Human Gene Similar to SWISSNEW-VE SIFIED ACC:043182 RHO-GTPASE-ACTIVATING PROTEIN 6 (RHO-TYPE GTPASE-ACTIVATING PROTEIN RHOGAPX-1) - Homo sapiens (Human), 587 aa.	CONSERVATI UNCLAS Human Gene Similar to SWISSPROT-VE SIFIED ACC:Q04205 TENSIN - Gallus gallus (Chicken), 1744 aa.	CONSERVATI UNCLAS Human Gene Similar to SWISSPROT-VE SIFIED ACC:P07148 FATTY ACID-BINDING PROTEIN, LIVER (L-FABP) - Homo sapiens (Human), 127 aa.	Human Gene Similar to SWISSPROT-ACC:Q99653 CALCIUM-BINDING PROTEIN P22 (CALCIUM-BINDING PROTEIN CHP) - Homo sapiens (Human), 194 aa.	
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS
CONSERVATI VE	CONSERVATI UNCLAS VE SIFIED	CONSERVATI VE	CONSERVATI VE	CONSERVATI VE	CONSERVATI (VE	CONSERVATI UNCLAS VE SIFIED
lle (1162)	Asn (1163)	Val (1164)	Gly (1165)	Ala (1166)	Val (1167)	Asp (1168)
Val	Asp	<u>e</u>	<u>a</u>	Name	nen	Glu
∢	⋖	O	O .	O	O	O
268 GTCCTCTGTCAA G GACCCCTGAAA CA[G/A]TTGTCC CCACAGCCCCT GAGCTCCA	310 TGAGCTCCAGC G CTTCCACCTCCA CA[G/A]ACCAGC CTGTCACCTCTG AGCCCAC	1139 TTCTGTCAATGT A GGTCCGTGCCA TG[A/G]TTGATAA CTGGGATGTCC TCTTCCA	631 AGCCCTCAGGC T GCGCCACAGAA CAG[T/G]GGGCA CCAACACTCCC CCTAGTCCT	279 GATTATGTCGCC A GTTGAGTTCGG TC[A/G]CAGACT TGATGTTTTGA AAGTTGT	497 AAGGCATTGAT G GATCCGGTCCC CCA[G/C]TGGGT TGATGGCAAGTT CTGGAATC	534 CAAGTTCTGGAA T TCCTCTGGAAAT C[T/G]TCCCGGC TGAGAGTCCCA
268	310	1138	63	27.	49	53
789 cg43942922	790 cg43942922	791 cg44938009	792 cg39516123	793 cg44921974	794 cg42731307	795 cg42731307
78	62	62	62	79	79	79

				14 (14q11.2	1 (1p34)
3.30E-54	1.3E-163	1.40E-109	6.00E-115	1.7E-136	1.3E-73 1 (1p34)
CONSERVATI UNCLAS Human Gene Similar to SWISSPROT- VE SIFIED ACC:P91343 HYPOTHETICAL 49.0 KD TRP-ASP REPEATS CONTAINING PROTEIN F55F8.5 IN CHROMOSOME I - Caenorhabditis elegans. 439 aa.	CONSERVATI water_ch Human Gene SWISSPROT- VE ID:O14520 AQUAPORIN-7 LIKE (AQUAPORIN ADIPOSE) (AQPAP) - HOMO SAPIENS (HUMAN), 342 aa.	Human Gene Homologous to SWISSPROT-ID:P39986 PROBABLE CALCIUM-TRANSPORTING ATPASE 6 (EC 3.6.1.38) - SACCHAROMYCES CEREVISIAE (BAKER'S YEAST), 1215 aa.	Human Gene Homologous to SWISSPROT-ID:P79995 CADHERIN- 10 PRECURSOR - GALLUS GALLUS (CHICKEN), 789 aa.jpcls:SPTREMBL- ID:P79995 CADHERIN-10 - GALLUS GALLUS (CHICKEN), 789 aa.	Human Gene Homologous to SWISSPROT-ID:P08311 CATHEPSIN G PRECURSOR (EC 3.4.21.20) - HOMO SAPIENS (HUMAN), 255 aa.	Human Gene Similar to SWISSPROT-ID:Q07092 COLLAGEN ALPHA 1(XVI) CHAIN PRECURSOR - HOMO SAPIENS (HUMAN), 1603 aa.
UNCLAS	water_ch annel	ATPase_ associat ed	cadherin	cathepsi n	collagen
CONSERVATI	CONSERVATI VE	NON- ATPase_ CONSERVATI associat VE ed	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Asp (1169)	(1170)	Tyr (1171)	End (1172)	Asp (1173)	Gly (1174)
Asn	\alpha \al	His	Arg	Ala	Cys
O		<u> </u>	⋖	 -	O
1330 TCCACAACTTCT T TCTGATGAGATG T[I/C]CTCCATTT CCATGTGTTTGT CCAAG	143 GATCTGTTGGC C AGGGCTCACAG AGA[C/T]GGGGG TGAGGGGAGAG ATCGTGGGT	842 CTCCCAGTGCC CCCGCCGACTACCCACICATACATCCACCGAGATCCCCGGGAATCCCCGGGAATCCCCCGGGAATCCCCCGGGAATCCCCCGGGAATCCCCCGGGAATCCCCCGGGAATCCCCGGGAATCCCCGGGAATCCCCGGGAATCCCCGGGAATCCCCGGGAATCCCCCGGGAATCCCCCGGGAACCCCGGGAACCCCGGGAACCCCCGGGAACCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCGGGAACCCCCC	4 TTTCCTGAATGA T ATGTTAAAGATT C[T/A]GTCAAGG TCAGTATGGCG ATCCAAG	259 GCAATGAGCTG G CTGGCAGCACA AAG[G/T]CTTATC GCACCAGGAAA GATGCAGC	2521 TGGTCCGGGAA T TACCTGGTGGA CCC[T/G]GCGGG CCCGGCTGCCA GGAGCTGCC
			564		
796 cg44015614	797 cg43298242	798 cg43299610	799 cg42532480	800 cg42926989	801 cg43991318
796	797	798	799	800	801

the first way of the first was the state of the first was the first was the first way the first was the first was

4 (4q27)	10 (10q24.1		22	21
4.1E-231 4 (4q27)	3.2E-254	5.5E-69	2.4E-52	0
Human Gene SWISSPROT- ID:P20248 G2/MITOTIC-SPECIFIC CYCLIN A - HOMO SAPIENS (HUMAN), 432 aa.	Human Gene SWISSNEW-ID:P33259 CYTOCHROME P450 2C17 (EC 1.14.14.1) (CYPIIC17) (P450-254C) - HOMO SAPIENS (HUMAN), 468 aa. pcls:SWISSPROT-ID:P33259 CYTOCHROME P450 IIC17 (EC 1.14.14.1) (P450-254C) - HOMO SAPIENS (HUMAN), 468 aa.			Human Gene SPTREMBL-ID:000465 DSRNA ADENOSINE DEAMINASE DRADA2C - HOMO SAPIENS (HUMAN), 714 aa.
	cyto450	cytochro me	cytochro me	deamina se
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI me VE	NON- CONSERVATI me VE	NON- de CONSERVATI se VE
Pro (1175)	His (1176)	Leu (1177)	Thr (1178)	Pro (1179)
nen	Asn	Ser	Ala	Ser
Ų	O	<u> </u>	<u> </u>	O
1467 AATTCAAAGTAT T CATGGTGTTTCT C[T/C]CCTCAAC CCACCAGAGAC ACTAAAT	1763 AGAGATTGAAC A GTGTGGTTGGC AGA[A/C]ACCGG AGCCCTGCAT GCCCTGCAT GCAGGACAG	360 GGGTGAACTGT C CTATCCACCATT AT[C/T]ATCTATT CAGGCACATTC AGGACCT	217 AGATAGGAGTT C GAAGGTGCAGA GGG[C/T]CACGC TGGGCAGCGCC AGCACGCCC AGCACGAAG	1105 TGGTACTCCTTT A GCCGCCAGCTT GG[A/G]CTCATG GTACACGTTGG GTTTGGTA
802 cg43920512	803 cg43063374	804 cg21416244	805 cg44017721	806 cg43275625

4	4
0	0
dehydrog Human Gene SWISSPROT- enase ID:Q16134 ELECTRON TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE PRECURSOR (EC 1.5.5.1) (ETF-Q0) (ETF- UBIQUINONE ÓXIDOREDUCTASE) (ETF DEHYDROGENASE) (ELECTRON-TRANSFERRING- FLAVOPROTEIN DEHYDROGENASE) - HOMO SAPIENS (HUMAN), 617 aa.	dehydrog Human Gene SWISSNEW-ID:P11586 C-1-TETRAHYDROFOLATE SYNTHASE, CYTOPLASMIC (C1- THF SYNTHASE) (METHYLENETETRAHYDROFOLAT E DEHYDROGENASE (EC 1.5.1.5) / METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE (EC 3.5.4.9) / FORMYLTETRAHYDROFOLATE SYNTHETASE (EC 6.3.4.3)) - HOMO SAPIENS (HUMAN), 934 aa. jpcls:SWISSPROT-ID:P11586 C-1- TETRAHYDROFOLATE SYNTHASE, CYTOPLASMIC (METHYLENETETRAHYDROFOLATE CYCLOHYDROGENASE (EC 1.5.1.5) / METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE (EC 3.5.4.9) / FORMYLTETRAHYDROFOLATE SYNTHETASE (EC 6.3.4.3)) (C1-THF SYNTHASE) - HOMO SAPIENS
BO ₂	go
NON- CONSERVATI enase VE	NON- CONSERVATI enase VE
(1180)	Gln (1181)
卢	Arg
ى ت	<u> </u>
1402 TAGTGAAAATCT A CCAATCAAAGAC A[AG]CAGGACT CCATGTAACTGA ATATGA	GCTTGAGTGCG ATC[C/T]GGTCT GCAATGATGGA GGAATTGCC
807 cg43312829	808 cg43959136
807	808

-	1				
1.8E-109	2.10E-76	000 + H H H H H H H H H H H H H H H H H	2.20E-90	3.20E-57	3.20E-57
dehydrog Human Gene Homologous to enase SPTREMBL-ID:Q16797 NADP- DEPENDENT MALIC ENZYME (EC 1.1.1.40) (MALATE DEHYDROGENASE (OXALOACETATE DECARBOXYLATING) (NADP+)) (PYRUVIC-MALIC CARBOXYLASE) - HOMO SAPIENS (HUMAN), 572 aa.	Human Gene Similar to SWISSPROT-ID:P46703 ACYL-COA DEHYDROGENASE (EC 1.3.99) - MYCOBACTERIUM LEPRAE, 389 aa.	Human Gene SP I REMBL-ID:Q92804 PUTATIVE RNA BINDING PROTEIN RBP56 - HOMO SAPIENS (HUMAN), 592 aa.	Human Gene Similar to SWISSPROT-ID:P26599 POLYPYRIMIDINE TRACT-BINDING PROTEIN (PTB) (HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN I) (HNRNP I) (57 KD RNA-BINDING PROTEIN PPTB-1) - HOMO SAPIENS (HUMAN), 531 aa.	Human Gene Similar to SPTREMBL-ID:008872 PUTATIVE RNA BINDING PROTEIN 1 - RATTUS NORVEGICUS (RAT), 362 aa (fragment).	Human Gene Similar to SPTREMBL- ID:008872 PUTATIVE RNA BINDING PROTEIN 1 - RATTUS NORVEGICUS (RAT), 362 aa (fragment).
dehydrog enase	dehydrog enase	dna_rna _bind	dna_rna _bind	dna_rna _bind	dna_rna _bind
NON-dehydr	ERVATI	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
(1182)	His (1183)	Phe (1184)	Cys (1185)	Pro (1186)	Cys (1187)
<u>•</u>	Tyr	Vai	<u>ğ</u>	Ala	Ser
O	U	<u> </u>	∢	O	O .
648 TGTCAGGAGGA A AGATCTCATCTG GG[A/G]TGTGCC GGATCCCGCCG GCGATGAC	697 GGGAGCTTTAG T ACATTGCCACG GAT[T/C]ACGTC CAGAAGCGCAA GCAGTTTGG	1152 TGGAGACCCCCA G AAAGTGGGGAT TGG[G/T]TTTGC CCTAATCCGTCA TGCGGAAA	1352 GCAGAAGAGGT C GATTGTGAGAG GAC[C/A]AAGAG CTCCAGGAACA GCTGGAACT	108 GGAAACATTAA G TAAACAAGTAGA A[G/C]CCTACAG AGAGGAATCGC	133 GCCTACAGAGA C GGAATCGCAAA AAT[C/G]CCTGA AAGAATTCCAG GAAAACACA
809 cg43969759	810 cg39523614	811 cg42175288	812 cg43154217	813 cg39709402	814 cg39709402

3.20E-57	3.20E-57	3.20E-57		0.00E+00	2.40E-123	1.40E-53
Human Gene Similar to SPTREMBL-ID:008872 PUTATIVE RNA BINDING PROTEIN 1 - RATTUS NORVEGICUS (RAT), 362 aa (fragment).	Human Gene Similar to SPTREMBL-ID:008872 PUTATIVE RNA BINDING PROTEIN 1 - RATTUS	(fragment). Human Gene Similar to SPTREMBL- Human Gene Similar to SPTREMBL- ID:008872 PUTATIVE RNA BINDING PROTEIN 1 - RATTUS NORVEGICUS (RAT), 362 aa (fragment).	Human Gene Similar to SPTREMBL-ID:008872 PUTATIVE RNA BINDING PROTEIN 1 - RATTUS NORVEGICUS (RAT), 362 aa (fragment).	Human Gene TREMBLNEW-ID:G2865466 HEAT SHOCK PROTEIN 75 - HOMO SAPIENS (HUMAN), 649 aa.	Human Gene Homologous to SWISSPROT-ID:P25685 DNAJ PROTEIN HOMOLOG 1 (HDJ-1) (HEAT SHOCK PROTEIN 40) (HSP40) - HOMO SAPIENS (HUMAN), 340 aa.	Human Gene Similar to TREMBLNEW-ID:G2735762 HEAT SHOCK PROTEIN DNAJ - LEPTOSPIRA INTERROGANS, 369 aa.
dna_rna_h	dna_rna _bind	dna_rna _bind	dna_rna _bind	eph	hqq	ebh
NON- CONSERVATI	NON- CONSERVATI	NON- CONSERVATI	NON- CONSERVATI	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Val (1188) (1188)	Gly (1189)	Ser (1190)	Glu (1191)	End (1192)	Pro (1193)	Cys (1194)
Met	olo	Asn	Lys	Gin	Sec	Tyr
O	O	O	<u>o</u>	⋖	0	<u> </u>
57 GATGCTGGAGG A ACTTCAAGAAAG ACIAGJTGAAGA	AAACACATGAA A GAACTCCCTTAG AGIAGIAACACA	GGAAAACAA TAAACAA 94 CTTAGAGAAACA A CAGGAAAACATT A[A/G]TAAACAA GTAGAAGCCTA	CAGAGAGG 96 TAGAGAAACACA A GGAAAACATTAA TIA/GJAACAAGT AGAAGCCTACA	1949 TTTGCTATGTCC G TCCTTGACCTCC T[G/A]CTCGGTG GCGGTCACAAT	540 AAGACGAATGG T GTGGTGGTAGA GATIT/CJCTGAA GAAATGGAAATA	2250 AAAGCCAGCGG TAGCCAAAGCA TCATT/CJACTGCT TCACTTCACCT
815 cg39709402	816 cg39709402	817 cg39709402	818 cg39709402	819 cg43950268	820 cg43985169	821 cg43997616

21	7 (Xp21.2)		O	
3.30E-60	0.00E+00	1.50E-139	1.90E-114	3.30E-55
esterase Human Gene Similar to SWISSNEW- ID:Q23917 3',5'-CYCLIC- NUCLEOTIDE PHOSPHODIESTERASE REGA (EC 3.1.4.17) (PDEASE REGA) - DICTYOSTELIUM DISCOIDEUM (SLIME MOLD), 793 aa. pcls:SWISSPROT-ID:Q23917 3',5'- CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE REGA (EC 3.1.4.17) (PDEASE REGA) - DICTYOSTELIUM DISCOIDEUM (SLIME MOLD), 793 aa.	glycoprot Human Gene ŚWISSPROT- ein ID:P23276 KELL BLOOD GROUP GLYCOPROTEIN (EC 3.4.24) - HOMO SAPIENS (HUMAN), 732 aa.	glycoprot Human Gene Homologous to ein SWISSPROT-ID:P41217 OX-2 MEMBRANE GLYCOPROTEIN PRECURSOR - HOMO SAPIENS (HUMAN), 274 aa (fragment).	glycoprot Human Gene Homologous to ein SPTREMBL-ID:Q14245 ERYTHROID MEMBRANE PROTEIN 4.1 - HOMO SAPIENS (HUMAN), 641 aa.	glycoprot Human Gene Similar to SWISSPROT- ein ID:P04196 HISTIDINE-RICH GLYCOPROTEIN PRECURSOR (HISTIDINE-PROLINE RICH GLYCOPROTEIN) (HPRG) - HOMO SAPIENS (HUMAN), 525 aa.
esterase		glycoprot	glycoprot ein	glycoprot
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI ein VE	NON- CONSERVATI VE
Ser (1195)	Gly (1196)	Asp (1197)	Leu (1198)	Ser (1199)
Phe	nl	 \ 	P G	ren
O	O	∢	⋖	O
992 CACGACAACTA T CAGAAACAACC CCT[T/C]CCACA ACTTCCGGCAC TGCTTCTGC	382 GAGGTCCAGGC T TGGCAGGACA GTC[I/C]CCCCA TGGTGCCGTAA CAGCCTCTT	217 TCTCATCTGTCT T ACCTACAGCCT GG[T/A]TTGGGT CATGGCAGCAG	1824 TACCATCTCTGT G TTTTACCACTGG T[G/A]GCTCTGA ACAACAAATAAT TTGTGG	598 AAAGAGGAGAA T TGGTGACTTTGC CT[T/C]ATTCAGA GTGGAACGAGC TGAAAGG
822 cg43319420	823 cg44034764	824 cg43991224	825 cg44018623	826 cg38924741
85	82	82	82	85

12	10		-
3.30E-54	0.00E+00	1.00E-52	0.00E+00
glycoprot Human Gene Similar to SWISSPROT- ein ID:P13983 EXTENSIN PRECURSOR (CELL WALL HYDROXYPROLINE- RICH GLYCOPROTEIN) - NICOTIANA TABACUM (COMMON TOBACCO), 620 aa.	Human Gene TREMBLNEW- ID:G2801555 PUTATIVE ATP- DEPENDENT MITOCHONDRIAL RNA HELICASE - HOMO SAPIENS (HUMAN), 786 aa.	Human Gene Similar to SWISSPROT-ID:Q01477 UBIQUITIN CARBOXYLTERMINAL HYDROLASE 3 (EC 3.1.2.15) (UBIQUITIN SPECIFIC PROCESSING PROTEASE 3) (UBIQUITIN-SPECIFIC PROCESSING PROTEASE 3) (DEUBIQUITINATING ENZYME 3) - SACCHAROMYCES CEREVISIAE (BAKER'S YEAST), 912 aa.	Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. pcls:SPTREMBL-ID:Q16666 IFI16=INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa (fragment).
glycoprot	helicase	hydrolas e	n n
NON- CONSERVATI ein VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
(1200)	Phe (1201)	Pro (1202)	(1203)
Arg	Ser	e o	Arg
L	⊢	O .	ග
0	O (1)	4	0
13082 TTCCTGTTCTTC ACATGGTGAGC CC[C/T]GCCCTG CTGTCTGCTTGC ATTCGGG	2306 GAACACAACAAA GAAAAAACAGA GT[C/TJTGGGAC TCATCCAAAAGG GACGAGA	278 TTGGCCTCGAC ATCATTCCCTGA CG[A/G]GGACTT AAAGGGTAGCA ATTCGTAT	2309 TAGTTTGCCCAA ACCAGCATCAC CT[C/G]GGAACT TTCTTCCATCA AGTCAGC
13082	2306	278	2309
827 cg43322513	828 cg44913214	829 cg39529972	830 cg43925670
827	828	829	830

	0.00 =	0.00E+00
ERON- NN ATOR) - 729 666 SIBLE DN ATOR - 729 aa	Human Gene SWISSPROT- Human Gene SWISSPROT- ID:Q16666 GAMMA-INTERFERON- INDUCIBLE PROTEIN IFI-16 (INTERFERON-INDUCIBLE MYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR) - HOMO SAPIENS (HUMAN), 729 aa. pcls:SPTREMBL-ID:Q16666 iF116=INTERFERON-INDUCIBLE IMYELOID DIFFERENTIATION TRANSCRIPTIONAL ACTIVATOR - TRANSCRIPTIONAL ACTIVATOR - HOMO SAPIENS (HUMAN), 729 aa	, , ,
NON- CONSERVATI IN ID C	NON- CONSERVATI n VE	NON- CONSERVATI n VE
Leu Ser (1204)	T Asn Lys (1205)	G Lys Asn (1206)
2369 TTTGTCATACTC A TTCTCTCATTTT T[A/G]AATTAAGT TTTAAATCGTTG CTCAG	2458 CCTCTAATCCTT G TTAGTAGAACAA TIG/TITTCTTGTA TTTTTTCCCAT CTTTA	2467 CTTTTAGTAGAA T CAATGTTCTTGT A[T/G]TTTTTCC CATCTTTACAGA CATAA
831 cg43925670 2.	832 cg43925670	833 cg43925670

		10		1 (1941)
31	00	00		
5.60E-13	0.00E+00	0.00E+00	0.00E+00	3.80E-279
	Human Gene SWISSNEW-ID:P42338 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT, BETA ISOFORM (EC 2.7.1.137) (PI3- KINASE P110 SUBUNIT BETA) (PTDINS-3-KINASE P110) (PI3K) - HOMO SAPIENS (HUMAN), 1070 aa. [pcls:SWISSPROT-ID:P42338 PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT, BETA ISOFORM (EC 2.7.1.137) (PI3- KINASE P110 SUBUNIT BETA) (PTDINS-3-KINASE P110) (PI3K) - HOMO SAPIENS (HUMAN), 1070 aa.	Human Gene SPTREMBL-ID:Q60680 CONSERVED HELIX-LOOP-HELIX UBIQUITOUS KINASE - MUS MUSCULUS (MOUSE), 745 aa.	Human Gene SPTREMBL-ID:000114 HYPOTHETICAL HUMAN SERINE- THREONINE PROTEIN KINASE R31240_1 - HOMO SAPIENS (HUMAN), 1237 aa (fragment).	Human Gene SWISSPROT- ID:P27987 1D-MYO-INOSITOL- TRISPHOSPHATE 3-KINASE B (EC 2.7.1.127) (INOSITOL 1,4,5- TRISPHOSPHATE 3-KINASE) (IP3K) (IP3 3-KINASE) - HOMO SAPIENS (IPMAN), 505 aa (fragment).
isomeras e	kinase	Kinase	kinase	kinase
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
(1207)	(1208)	Pro (1209)	lle (1210)	Arg (1211)
Ser	Arg	Ser	Met	Gin
⋖	<u> </u>	U	<u> </u>	0
O	O		ڻ ن	H-
⊢ ∢	1812 GAATGGATCTT ATTTGGACTTTG C[G/T]ACAAGAC TGCCGAGAGAT TTTCCCA	2094 GACATCAGCAT GGCTGCCCCG ACTIT/OJCAGCA GAACATGACAT	686 TCACGGACTTTG GACTGTCCAAAA T[G/T]GGCCTCA TGAGCCTGACA ACGAACT	4337 CAAACCGGCTTT CTCCATGGTGC CCIT/CJGCCAAA CCCTGGAGTTC CCAGGCTG
845	1812	2094	686	4337
834 cg43331742	835 cg43253796	836 cg43257400	837 cg43974480	838 cg43922705
834	835	836	837	838

10	12	12			12
2.80E-216	3.00E-187	3.00E-187	2.705-76	2.70E-51	9.30E-280
Human Gene SWISSNEW-ID:O70172 PHOSPHATIDYLINOSITOL-4- PHOSPHATE 5-KINASE TYPE II ALPHA (EC 2.7.1.68) (PIP5KII- ALPHA) (1- PHOSPHATIDYLINOSITOL-4- PHOSPHATE KINASE) (PTDINS(4)P- 5-KINASE B ISOFORM) (DIPHOSPHOINOSITIDE KINASE) - MUS MUSCULUS (MOUSE), 405 aa.	Human Gene SPTREMBL-ID:Q12792 PROTEIN TYROSINE KINASE - HOMO SAPIENS (HUMAN), 350 aa.	Human Gene SPTREMBL-ID:Q12792 PROTEIN TYROSINE KINASE - HOMO SAPIENS (HUMAN), 350 aa.	Human Gene Similar to TREMBLNEW-ID:D1025880 ZIP- KINASE - HOMO SAPIENS (HUMAN), 454 aa.	Human Gene Similar to SWISSPROT- ID:P46546 GLUTAMATE 5-KINASE (EC 2.7.2.11) (GAMMA-GLUTAMYL KINASE) (GK) - CORYNEBACTERIUM GLUTAMICUM, 369 aa.	REONINE- SEPTOR R2 1.37) (SKR2) LIKE KINASE HOMO
kinase	kinase	kinase	kinase	kinase	kinasere ceptor
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Arg (1212)	Glu (1213)	Ser (1214)	Asn (1215)	Thr (1216)	Gly (1217)
Gly	Lys	Phe	Ser	Ala	Asp
U	ပ	ပ	∢	-	<u>ග</u>
©	⋖	-	o	ပ	4
1460 TGCAAAAACTGT TAAACATGGCG CT[G/C]GCGCGG AGATCTCCACC GTGAACCC	385 GTATGCAGCAA CAAGAGCAACT CTG[A/G]AGAAG GAATTTGGAGG TGGCCACAT	395 ACAAGAGCAAC TCTGAAGAAGG AAT[T/CJTGGAG GTGGCCACATT AAAGATGAA	96 GAGTACACCAT CAAGTCGCACT CCA[G/A]CTTGC CGCCCAACAC AGCTACGCC	GCTTTATGGGTA TCGACATCCAAT G[C/T]GTCGATG TCCTCCACAACC TCCTCCACAACC	179 TGCATGGTTTCC ATTTTCAATCTG G[A/G]TGGGATG GAGCACCATGT GCGCACC
1460	385	395	90	45/	6
839 cg38438124	840 cg42703622	841 cg42703622	842 cg41501665	043 cg/20143530	844 cg29023897
838	840	841	842	3	44

2			_		7-
0.00E+00	0.00E+00	0.00E+00	1.80E-198	7.20E-173	0.00E+00
Human Gene SWISSPROT- ID:Q12756 KINESIN-LIKE PROTEIN KIF1A (AXONAL TRANSPORTER OF SYNAPTIC VESICLES) - HOMO SAPIENS (HUMAN), 1690 aa.	Human Gene SWISSNEW-ID:043896 KINESIN-LIKE PROTEIN KIF1C - HOMO SAPIENS (HUMAN), 1103 aa.jpcls:TREMBLNEW-ID:G2738149 KINESIN-LIKE MOTOR PROTEIN KIF1C - HOMO SAPIENS (HUMAN), 1103 aa.	Human Gene SWISSPROT- ID:Q16787 LAMININ ALPHA-3 CHAIN PRECURSOR (EPILIGRIN 170 KD SUBUNIT) (E170) - HOMO SAPIENS (HUMAN), 1713 aa.	Human Gene SWISSPROT- ID:P07221 CALSEQUESTRIN, SKELETAL MUSCLE ISOFORM PRECURSOR (ASPARTACTIN) (LAMININ-BINDING PROTEIN) - ORYCTOLAGUS CUNICULUS (RABBIT), 395 aa.	Human Gene SPTREMBL-ID:P79457 MALE-SPECIFIC HISTOCOMPATIBILITY ANTIGEN H- YDB - MUS MUSCULUS (MOUSE), 1186 aa.	Human Gene TREMBLNEW-ID:G2465531 KIDNEY AND CARDIAC VOLTAGE DEPENDENT K+ CHANNEL - HOMO SAPIENS (HUMAN), 676 aa.
kinesin	kinesin	laminin	laminin	MHC	misc_ch annel
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Pro (1218)	Gly (1219)	His (1220)	Val (1221)	Leu (1222)	Phe (1223)
Thr	Glu	Tyr	Met	P 0	Ser
U	ပ	O	O	<u> </u>	-
3917 CATCCACCCAG A CCCAAGATGAC CGG[A/C]CCTTT TACCAATTTGAG GCTGCGTG	1710 GCCATGGAGAG A GCTGCAGGAGA CAG[A/G]GAAGA TTATAGCTGAGC TGAACGAG	2806 TITGGATCCTGA T AAATGTTGTATT T[T/C]ATGTTGGA GGTTACCCACC	1228 TGATGCGGATA A GCGTATGGATG GAA[A/G]TGGAC GATGAGGAGGA CCTGCCTTC	3745 CCAGACAGCAC C CACTGGAACCC CTC[C/T]TAGCA GCGCACCAGAC	1807 GAGCTGCAGAG C GAGGCTGGACC AGT[C/T]CATTG GGAAGCCCTCA CTGTTCATC
845 cg43975720	846 cg44013875	847 cg44009224	848 cg42930646	849 cg43935885	850 cg42928872

the third with the time that the second to the second the second that the seco

17 (17q23.1	2		
	1.60E-76	2.60E-50	2.60E-50
Human Gene SPTREMBL-ID:Q15478 SODIUM CHANNEL ALPHA SUBUNIT - HOMO SAPIENS (HUMAN), 1836 aa.	nuclease Human Gene Similar to SWISSPROT-ID:P54278 PMS1 PROTEIN HOMOLOG 2 (DNA MISMATCH REPAIR PROTEIN PMS2) - HOMO SAPIENS (HUMAN), 862 aa.	nuclease Human Gene Similar to SWISSNEW-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN [CONTAINS: REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE] - HOMO SAPIENS (HUMAN), 874 aa. pcls:SWISSPROT-ID:P10266 RETROVIRUS-RELATED POL POLYPROTEIN (REVERSE TRANSCRIPTASE (EC 2.7.7.49); ENDONUCLEASE) - HOMO SAPIENS (HUMAN), 874 aa.	
ਓ	nuclease	nuclease	nuclease
NON- misc_ CONSERVATI annel VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Tyr (1224)	Lys (1225)	(1226)	Arg (1227)
Asn	Glu	nen	Ser
<u> </u>	<u> </u>	 -	ļ a
929 GAGTGACCCGC A CTCCCTGGTCC AAG[A/T]ATGTG GAGTACACCTTC ACAGGGAT	1396 AGTGCACAGAG C TGAGCTCAGAG CTT[C/T]CCCCT GAAAACCGAAA GTTTCAACT	4 TTTCTGATAATC A ATTTAAGGTATG T[A/T]AGTTGCTA GTATTTAATTTA ACCTT	CTTTTCAGGTG A CAATGATTAAAC C[AT]CTTAACTG TGCATTCCTTAT GACAG
926	1396	304	417
851 cg44019843	852 cg44128805	853 cg38642684	854 cg38642684
851	852	853	854

11 (11p13)	-		20 (20p11.2	3 (3p)
2.70E-296	0.00E+00	2.40E-50	0.00E+00	2.90E-260
Human Gene SWISSPROT- ID:P04040 CATALASE (EC 1.11.1.6) - HOMO SAPIENS (HUMAN), 527 aa.	phosphat Human Gene SPTREMBL-ID:O00197 ase RECEPTOR PROTEIN TYROSINE PHOSPHATASE HPTP-J PRECURSOR - HOMO SAPIENS (HUMAN), 1436 aa.	Human Gene Similar to SWISSPROT-ID:P22072 3 BETA-HYDROXYSTEROID DEHYDROGENASE/DELTA 5>4-ISOMERASE TYPE II (3BETA-HSD II) (3-BETA-HYDROXY-DELTA(5)-STEROID DEHYDROGENASE (EC 1.1.1.145) (3-BETA-HYDROXY-5-ENE STEROID DEHYDROGENASE) (PROGESTERONE REDUCTASE) / STEROID DELTA-ISOMERASE (EC 5.3.3.1) (DELTA-5-3-KETOSTEROID ISOMERASE)) - RATTUS	Human Gene SWISSPROT- ID:P07204 THROMBOMODULIN PRECURSOR (FETOMODULIN) (TM) (CD141 ANTIGEN) - HOMO SAPIENS (HUMAN), 575 aa.	Human Gene SPTREMBL-ID:Q92777 SYNAPSIN IIB - HOMO SAPIENS (HUMAN), 478 aa.
peroxida se	phosphat ase	e e	struct	struct
NON- peroxida CONSERVATI se VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Gin (1228)	Gly (1229)	(1230)	Leu (1231)	His (1232)
Arg	Glu	Glu	Gin	- Gin
⋖	O	<u> -</u>	<u> </u>	O
1194 CCAGTTGGTAAA G CTGGTCTTAAAC C[G/A]GAATCCA GTTAATTACTTT	5005 CCTGCGGTCTG T GGGAGATGAGG GCCTT/CJCAAAC AGCACCTGATAT TCATTGGG	214 AAAGCTCAGAG A AGATCTGGGCT ATG[A/T]GCCAC TTGTCAGCTGG GAGGAAGCC	1528 CGCTCCTGCAC A CGCATCCGCGA CGC[AT]GTCCT GCAACGACCTC TGCGAGCAC	1462 CTCAGAGACCC G CTAACAACCCA GCA[G/C]CCACA GAGCGGAACAC TTAAGGATC
855 cg44913844 1	856 cg40084915 5	857 cg42720088	858 cg43957486	859 cg40148056
85	85	8	86	ι α

_				
(,	7.80E-113		0.00	
			m	\dashv
	Human Gene Homologous to SWISSPROT-ID:Q92176 CORONIN- LIKE PROTEIN P57 - BOS TAURUS (BOVINE), 461 aa.	Human Gene Similar to Swissar No. 10:P07313 MYOSIN LIGHT CHAIN KINASE, SKELETAL MUSCLE (EC 2.7.1.117) (MLCK) - ORYCTOLAGUS CUNICULUS (RABBIT), 607 aa.	Human Gene SWISSPROT- ID:P52849 HEPARIN SULFATE N- DEACETYLASE/N- SULFOTRANSFERASE (EC 2.8.2) (N- HSST) (N-HEPARIN SULFATE SULFOTRANSFERASE) (GLUCOSAMINYL N- DEACETYLASE/N- SULFOTRANSFERASE) - HOMO SAPIENS (HUMAN), 883 aa.lpcls:TREMBLNEW-ID:G2792518 HEPARAN GLUCOSAMINYL N- DEACETYLASE/N- DEACETYLASE/N-	SULFO I RAINST ELYNOL 2 SAPIENS (HUMAN), 883 aa
	struct S C C C C C C C C C C C C C C C C C C	struct		
We have how they the they had been	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI sferase VE	
	Glu (1233)	Ser (1234)	Ser (1235)	
Good April Acres Jane 40's West	Gly	Asn	Asn	
deal than	<u></u>	<u>o</u>	O	
	O	4	- (2) (2)	
	473 CACCTCCTCCA GCTTCCCAGCC TCC[C/T]CGGCT CTGGCCAGGCT GCCGCTGGG	318 GCAGCCAAGAT ACTCAAAGTCAAGAAGGAAGGCGGGAAGGGAA	966 ATAGTAGCCAG GGACAAGACAG CGG[T/C]TCTGC AGGGAGCGTAG TGCCAGAGG	
	473	318	99 05	
	860 cg43981852	861 cg42522566	862 cg43297806	
	860	861	862	

0	18 (1p34.1)	20 (20q11.2)		17
0.00E+00	0.00E+00	5.30E-240	2.80E-72	0.00E+00
C	nase Human Gene SWISSPROT- ID:P17812 CTP SYNTHASE (EC 6.3.4.2) (UTPAMMONIA LIGASE) (CTP SYNTHETASE) - HOMO SAPIENS (HUMAN), 591 aa.	synthase Human Gene SWISSPROT-ID:P48637 GLUTATHIONE SYNTHETASE (EC 6.3.2.3) (GLUTATHIONE SYNTHASE) (GSH SYNTHETASE) (GSH-S) - HOMO SAPIENS (HUMAN), 474 aa.	synthase Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS. 754 aa.	ript
sferas				transc Factor
NON- sulfotrar CONSERVATI sferase VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI factor VE
Ala (1236)	Ser (1237)	Ser (1238)	Asn (1239)	Gly (1240)
Thr	Arg	Pro	Thr	Glu
O	∢	∢	 - -	ပ
	1337 AGTAGTCTGCG C TCTCCATAGAGT TT[C/A]CTCATGA CTGAGTTCTTGG TCTGGA	633 GAAATGCACTG G GACCACTCGGG CAG[G/A]GCTGC CAGGCCGTAGC AGGCAATTC	605 ACGCACGAACC G GGTCATACTGG TCG[G/T]TGATC CAGGAACGGTC GCACAGCTG	1261 GAAGCGCTTCT T GACACTGGGCG CACIT/CJCGAAG CGTTTGTCCCCT GTGTGGGT
863 cg43297806	864 cg43987111 1	865 cg43976335	866 cg39515668	867 cg44027791 1

How the state of t

С		27	2 (2q21)
44	-54	8	
1.50E-144	7.80E-54	5.7e-31	0.00E+00
transcript Human Gene Homologous to SWISSNEW-ID:Q14469 TRANSCRIPTION FACTOR HES-1 (HAIRY AND ENHANCER OF SPLIT 1) (HAIRY-LIKE) (HHL) (HAIRY HOMOLOG) - HOMO SAPIENS (HUMAN). 280 aa.	transcript Human Gene Similar to SWISSNEW- ID:Q61751 RENAL TRANSCRIPTION FACTOR KID-1 (TRANSCRIPTION FACTOR 17) - MUS MUSCULUS (MOUSE), 572 aa. pcls:SWISSPROT- ID:Q61751 RENAL TRANSCRIPTION FACTOR KID-1 (TRANSCRIPTION FACTOR 17) - MUS MUSCULUS (MOUSE), 572 aa.	transcript Human Gene SWISSNEW-ID:Q61079 5.7e-312 SINGLE-MINDED HOMOLOG 2 (SIM TRANSCRIPTION FACTOR) (MSIM) - MUS MUSCULUS (MOUSE), 657 aa. pcls:SWISSPROT-ID:Q61079 SINGLE-MINDED HOMOLOG 2 (SIM TRANSCRIPTION FACTOR) (MSIM) - MUS MUSCULUS (MOUSE), 657 aa.	transfera Human Gene SWISSPROT- ID:Q09328 ALPHA-1,3(6)- MANNOSYLGLYCOPROTEIN BETA- 1,6-N-ACETYL- GLUCOSAMINYLTRANSFERASE V (EC 2.4.1.155) (ALPHA-MANNOSIDE BETA-1,6-N- ACETYLGLUCOSAMINYLTRANSFE RASE) (N-ACETYLGLUCOSAMINYL- TRANSFERASE V) (GNT-V) (GLCNAC-T V) - HOMO SAPIENS (HUMAN). 741 aa.
transcript factor	factor	factor	
NON- CONSERVATI factor VE	NON- CONSERVATI factor VE	NON- CONSERVATI factor VE	NON- CONSERVATI VE
Thr (1241)	Arg (1242)	Asp (1243)	(1244)
Ala	<u>ii</u>	SE SE	Tro G
<u> </u>	O	<u>ග</u>	A
O	⊢	O	Ø
6GAGGGGCCGCT GGAAGGTGACA CTG[C/T]GTTGG GGCCCACGGAG GTGCCGCTG	816 TAAGTGTCTGAT GAGGTGTGACT TC[T/C]GGCTAA AGCCTTGCTCA CACTCCCT	1594 CGAGAAGACCC TATACCATCACG TG[C/G]ACGGCT GCGACGTGTTC CACCTCCG	2828 AGAGCAATGGC TCTCTTCACTCC GT[G/A]GAAGTT GTCCTCTCAGAA GCTGGGC
578	816	1594	2828
868 cg43992817	869 cg43297259	870 cg42716761	871 cg42166807
898	698	870	871

13	0.		1 (1p31)	1 (1p31)
0.00E+00	0.00E+00			2.90E-237
	Human Gene SWISSPROT- ID:Q04671 P PROTEIN (MELANOCYTE-SPECIFIC TRANSPORTER PROTEIN) - HOMO SAPIENS (HUMAN), 838 aa.	transport Human Gene SWISSPROT-ID:Q15436 PROTEIN TRANSPORT PROTEIN SEC23 HOMOLOGISOFORM A - HOMO SAPIENS (HUMAN), 765 aa.	transport Human Gene SWISSPROT-ID:P22732 GLUCOSETRANSPORTER TYPE 5, SMALLINTESTINE (FRUCTOSETRANSPORTER) - HOMO SAPIENS (HUMAN), 501 aa.	transport Human Gene SWISSPROT- ID:P22732 GLUCOSE TRANSPORTER TYPE 5, SMALL INTESTINE (FRUCTOSE TRANSPORTER) - HOMO SAPIENS (HUMAN), 501 aa.
transport	transport	transport	transport	transport
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
(1245)	Trp (1246)	Pro (1247)	Arg (1248)	Gln (1249)
ren	Arg	Ala	Cys	Arg
U	<u> </u>	O	O	F
752 TTCACTTGTATT T AACGTCCTGGT CC[T/C]GGGCTT CATAATGGTGTC AGGATTT	3392 CAGAGAGGG C TGTCCATCAGCA TC[C/T]GGGCCT CCCTGCAGCAG	513 TGGTATATCTGA G ACTGAATCAGC CT[G/C]CTGAAC TTTTACCTCAGT	2024 GTAAGTCTCATT A GTAAAATTGTTG C[A/G]TGAGCAG TGCTGGGGAGT TGACAGC	2185 TGCTTGCTCTG C GAAGGGCAGAG TGC[C/T]GCTCA CCTCCTTTTAGC CAAAGTAA
872 cg38869466	873 cg42742340	874 cg43976701	875 cg43920728	876 cg43920728

5	10 (10p11.2 3)	12	12	4	
1.90E-105	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
transport Human Gene Homologous to SWISSNEW-ID:Q60714 LONG- CHAIN FATTY ACID TRANSPORT PROTEIN (FATP) - MUS MUSCULUS (MOUSE), 646 aa. pcls:SWISSPROT- ID:Q60714 LONG-CHAIN FATTY ACID TRANSPORT PROTEIN (FATP) - MUS MUSCULUS (MOUSE), 646 aa.	Human Gene SWISSPROT- ACC:Q05329 GLUTAMATE DECARBOXYLASE, 65 KD ISOFORM (EC 4.1.1.15) (GAD-65) (65 KD GLUTAMIC ACID DECARBOXYLASE) - Homo sapiens (Human), 585 aa.	Human Gene SPTREMBL- ACC:075176 KIAA0692 PROTEIN - HOMO SAPIENS (HUMAN), 783 aa (fragment).	Human Gene TREMBLNEW- ACC:BAA31589 KIAA0614 PROTEIN - HOMO SAPIENS (HUMAN), 1630 aa (fragment).	Human Gene TREMBLNEW- ACC:BAA20772 KIAA0313 PROTEIN HOMO SAPIENS (HUMAN), 1499 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:000237 HKF-1 - HOMO SAPIENS (HUMAN), 685 aa.
transport	UNCLAS	UNCLAS	UNCLAS	UNCLAS	
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Tyr (1250)	Asn (1251)	Glu (1252)	Tyr (1253)	Asn (1254)	Thr (1255)
E I	Ser	Öið	His	Ser	Met
⋖	⋖	<u> </u>	H	F	ပ
(5	ග	ပ	O	ပ	⋖
450 TCCTCCACCAG GGTCATTTTGCG GT[G/A]TTTAAAA GTTCCAGTGATC TCAATG	383 TGCACCTGCGA CCAAAAACCCT GCA[G/A]CTGCC CCAAAGGGGAT GTCAACTAC	GCTCCCGTGCA CGGGGCTGTAG CGC[C/T]CAGGA CTGCCCAGGCC TGGCTTTGC	1080 ACCTCCTGGAG CAGTCCTGGTG TTA[C/T]ATTCCC TGCCCTGGAG TTCCCACT	2459 TTCTTCCGTAGT CACAGACGTTA GG[C/T]TACTGC TTTCGGCTTCAA TGGAAAC	680 AACAACACATTC A AGTACAGTGCA GC[A/G]TATCAG CAGGCCAAGTT AACCAATC
450	383	1806	1080	2459	680
877 cg42339179	878 cg17663981	cg43918356	880 cg43924089	881 cg43930961	882 cg43966528
877	878	879	880	881	882

17	20		0			
0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.70E-299	8.10E-298	8.10E-298
UNCLAS Human Gene SWISSPROT- SIFIED ACC:P38432 P80-COILIN - Homo sapiens (Human), 576 aa.	Human Gene SPTREMBL- ACC:075882 ATTRACTIN - HOMO SAPIENS (HUMAN), 1198 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD23581 CULLIN 2 - HOMO SAPIENS (HUMAN), 745 aa.	Human Gene SPTREMBL- ACC:Q92574 HAMARTIN (MYELOBLAST KIAA0243) - HOMO SAPIENS (HUMAN), 1164 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	Human Gene TREMBLNEW- ACC:AAD21812 G9A - HOMO SAPIENS (HUMAN), 1001 aa.	Human Gene TREMBLNEW- ACC:AAD21812 G9A - HOMO SAPIENS (HUMAN), 1001 aa.
UNCLAS	UNCLAS		UNCLAS		UNCLAS	UNCLAS
NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Leu (1256)	Pro (1257)	End (1258)	Thr (1259)	Pro (1260)	Glu (1261)	Glu (1262)
Pro	Leu	면 다	Met	Ser	<u>G</u>	Lys
⋖	<u>ග</u>	 -	O	O	 -	O
1367 TCCTTCCTTGTA G GTCAGAGACAT CA[G/A]GAGAGT AACTGGATGTTA GCTCCAA	1540 TGACTGCATTAT A TCGCAGCTGCT TA[A/G]GGACAA ATTCTACCTTCT TCTGGGT	1200 TAGATGAAGGA C GCCTGAGTAAG AGG[C/T]CACGC ACCAGCCTGTA GAACATATA	2754 AACAGTGAGTC T GGTCCAGCAGC AGA[T/C]GGAGT TCTTGAACAGG CAGCTGTTG	2082 ACCTCCAAACC T CCTTTGGCCCT GTA[T/C]CAGGA GCACAGATACA GTTTATGTA	1373 GTCGCACTTGG C CAGCCAGCAGG ATC[C/T]CGGCT ATGTCCACGCA GCCGGAGAA	2870 TTTCCTTTCCTC T TTGAGAAATTTC T[T/C]CTTAATGC TGGATTCCGAA CTCAGG
883 cg43980727 13	884 cg43981483 15	885 cg44932392 12	886 cg44932924 27	887 cg43985955 20	888 cg44002507 13	cg44002507 28
883	884 0	882	988	887 c	888	888

	19	8				
8.10E-298	1.00E-290	2.00E-285	1.80E-274	1.80E-274	6.10E-268	2.30E-259
UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD21812 G9A - HOMO SAPIENS (HUMAN), 1001 aa.	S Human Gene SPTREMBL- ACC:015184 CDC42-INTERACTING PROTEIN 4 - HOMO SAPIENS (HUMAN), 545 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q15043 MRNA (KIAA0062) FOR ORF (NOVEL PROTEIN), PARTIAL CDS - HOMO SAPIENS (HUMAN), 531 aa (fragment).		S Human Gene TREMBLNEW-ACC:AAD29670 DNATOPOISOMERASE III BETA - HOMOSAPIENS (HUMAN), 862 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075907 ACAT RELATED GENE PRODUCT 1 - HOMO SAPIENS (HUMAN), 488 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:075475 LENS EPITHELIUM- DERIVED GROWTH FACTOR - HOMO SAPIENS (HUMAN), 530 aa.
UNCLA	UNCLAS		UNCLAS	UNCLAS	UNCLA	
NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE
Met (1263)	Pro (1264)	Thr (1265)	Leu (1266)	Leu (1267)	His (1268)	Pro (1269)
\alpha	Gln	Ala	Phe	Pro	-B	Thr
F	O	<u> </u>	Ø	4	⋖	O
O	4	O	4	O	O	F
507 CGCAGGTCCTG GTGGGCCATGA ACA[C/T]GCGCA CGGGCACCAGG TTGGGCTCG	1086 GAGCAGCAGCG AAAACGGCTTCA AC[A/C]GCAGTT GGAAGAACGCA GTCGTGAA	3315 TCATTCATCTCA GGGAACATATC AG[C/T]CAGAGA AATATACAAGAA	2180 ACAAAGTAGTG GAACTTCCTCTT GA[A/G]CACGTC CAGGGTGTGGC	2596 CCAGGGGCATGA CCTCCGTGAAG CCT[G/A]GTGAG AGGACGGTCTT CCCGGAGCA	378 GGACGTACATG AGGACGGCTAT TGG[C/A]TGTCC GATGATGAGCG ACAGCCACA	2097 CCTTCATCTTTA TTCTGCTGCTCA G[T/G]TTCCATTT GTTCCTCTTGAT TGCGT
507	1086	3315	2180	2596	378	2097
890 cg44002507	891 cg44128920	892 cg43968641	893 cg43934178	894 cg43934178	895 cg43949042	896 cg43916582
890	891	892	893	894	895	896

	16 (16p13.1			m	12 (12q22)	12 (12q22)
2.70E-258	5.60E-258	2.40E-256	8.20E-245	3.50E-240	2.00E-237	2.00E-237
UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q14449 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 14 (GRB14 ADAPTER PROTEIN) - Homo saniens (Human) 540 aa		Human Gene SPTREMBL-ACC:075926 PROTEIN INHIBITOR OF ACTIVATED STAT PROTEIN PIASY - HOMO SAPIENS (HUMAN), 510 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:CAB46424 DKFZP434G153 PROTEIN - HOMO SAPIENS (HUMAN), 466 aa.	Human Gene SPTREMBL- ACC:092551 MYELOBLAST KIAA0263 - HOMO SAPIENS (HUMAN), 441 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:P42167 THYMOPOIETINS BETA AND GAMMA (TP BETA AND TP GAMMA) - Homo sapiens (Human), 453 aa	Human Gene SWISSPROT- ACC:P42167 THYMOPOIETINS BETA AND GAMMA (TP BETA AND TP GAMMA) - Homo sapiens (Human) 453 aa
	UNCLAS	UNCLAS		UNCLAS	UNCLAS	UNCLAS
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE
Thr (1270)	End (1271)	Pro (1272)	ile (1273)	Tyr (1274)	Ser (1275)	Lys (1276)
<u>e</u>	드 드	Fen	Met	His Si	Pro	Met
<u>ග</u>	<u> </u>	O	⋖	<	∢	_
485 AACTCCATCCAC A AAGTCCTTGCTG A[A/G]TAATCAAT CGCTGAGCCTC ATCTCT	619 GAGAAGGAGCC C CGGGAAAGTGT GAC[C/T]AGGAG AAACCGGCACC CAGCTTTGC	887 TACCCCAATGGT A CTTCAGCCTCTG C[AG]GCAGCTC CGATGAGGTCA GCATGAGGTCA	994 CCAGGCCTCGA C ATGGACAGCAC CTT[C/A]ATGATG GGGTCGTGGTG GCTCAGGC	3689 TGACAACGCAG G GCTCCAGGGGT TGT[G/A]GCTGA TCTTCTCAGAAC TCAAGCCA	1546 GAGAATTCAGT G GATTGGCAGAA TAG[G/A]AGATG CATGCTTGAAAT	1608 AACTAAGGATTC A GTTGCTTGAAG CC[A/T]TTATAGT TTCAGCTATGG GAGTACT
897 cg43258841	898 cg43979679	899 cg42202923	900 cg43320405	901 cg43917689	902 cg43922856	903 cg43922856

	22	2		7	(1p36.2)	
2.80E-215	5.30E-214	1.30E-212	2.00E-207	8.80E-203	1.00=-201	5.60E-194
Q	UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD44491 PTD004 - HOMO SAPIENS (HUMAN), 396 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q15018 ORF - HOMO SAPIENS (HUMAN), 419 aa (fragment).	Human Gene TREMBLNEW- ACC:AAD34036 CGI-40 PROTEIN - HOMO SAPIENS (HUMAN), 845 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q16543 CDC37 HOMOLOG - HOMO SAPIENS (HUMAN), 378 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:P18615 RD PROTEIN - Homo sapiens (Human), 380 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:088466 ZINC FINGER PROTEIN 106 - MUS MUSCULUS (MOUSE), 1888 aa.
UNCLAS I	UNCLAS	S				
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Ser (1277)	Cys (1278)	Phe (1279)	Ser (1280)	Ser (1281)	Gly (1282)	Val (1283)
Pro	Tyr	ze.	Ala	Gly	Arg	Met
4	O	4	<u> -</u>	<u> </u>	<u>o</u>	O
505 CGTGTGGCAGG G CATGGTGATGA GGG[G/A]TGCTG GGGCCAGGGAG GTGGCAGGGA	991 AGGAATGACCA T AAGCACCTGGG TCA[T/C]ACTTGT CCACCCACTCTT	2102 ACTTCTGCCTTC G AGCTGCAAACC CA[G/A]AGGACG GCATCCGAGGA CTGAACGC	1136 CGTCTTCTCCAT G CATTCACATCAT C[G/T]CCACCT GCTCCTCAGCA	1438 ACCTTGCGCTT C GCACTCGCGGC AGC[C/T]CCTGT CCAGTTCCTCCT	675 CCGGGATCGAG ACAGAGACAGA GAG[C/G]GGGAC AGGGATCGGGA TCGGGATCG	1413 GGGTGTGGACT T GGCTGCAGATG TCA[T/C]TTGTAA TTCAGATTCTTT CTGGCGA
904 cg43955639	905 cg43950766	906 cg43985159	907 cg41022625	908 cg44002669	909 cg44128902	910 cg44129213

and the way of the first and of of one of the first for the first too.

2	15	8	7			
-189	-187	-158	-154	-154	-138	.137
2.60E-189	1.70E-187	7.70E-158	1.90E-154	5.00E-154	1.90E-138	2.20E-137
UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q12804 RECEPIN - HOMO SAPIENS (HUMAN), 451 aa.	Human Gene SPTREMBL- ACC:Q99963 PROTEIN CONTAINING SH3 DOMAIN, SH3GL3 - HOMO SAPIENS (HUMAN), 347 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:P55040 GTP-BINDING PROTEIN GEM (GTP-BINDING MITOGEN-INDUCED T-CELL PROTEIN) (RAS-LIKE PROTEIN KIR) - Homo sapiens (Human), 296 aa.		UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD34078 CGI-83 PROTEIN -HOMO SAPIENS (HUMAN), 288 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:093263 AVENA - GALLUS GALLUS (CHICKEN), 550 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:014777 RETINOBLASTOMA-ASSOCIATED PROTEIN HEC - HOMO SAPIENS (HUMAN), 642 aa.
UNCLAS	UNCLAS SIFIED		UNCLAS	UNCLAS	UNCLAS	
NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Cys (1284)	(1285)	Phe (1286)	Ser (1287)	Pro (1288)	Pro (1289)	End (1290)
Gly	Pro	Val	Glý	Leu	Leu	Glu
⋖	<u> </u>	F		ڻ ت	O	H
0	U	ဟ				(D
684 CTTCTCCGGCT C CCTTTCCTCCCT GC[C/A]GTGGCT TCTGCTGCTCC CCTCCTTT	1268 CGAATATCAGCT C GCATCCAGTGT CC[C/T]CAGACG AGAATACAAGC CAAGGCCT	778 GACAGAGGACA G TTCCCATAATTT TG[G/T]TTGGCA ACAAAAGTGACT TAGTGCG	1351 AAGAATCCTCC C GACGGCTTCGT TAC[C/T]ATCCTG TCTGAAGCGGA	945 TTTTAAAGAGTT A CATATAATCATA G[A/G]GGTCTTC AAATACCGTTGT	774 ACATTGCCTAGA T CAAAACTCACAA C[T/C]ACCTGCT CAAGTTCAAAAT GGCCCA	117 AGCTGAACAAC AGAAGTTGTGG AAT[G/T]AGGAG TTAAAATATGCC AGAGGCAA
89	126	77	135	94	12	
911 cg43996402	912 cg43984909	913 cg42910688	914 cg43950590	915 cg44931503	916 cg43303845	917 cg43973762
911	912	913	914	915	916	917
		<u> </u>				L

2.20E-137	2.20E-137	3.10E-132	3.20E-127	3.20E-127	1.50E-123
UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:014777 RETINOBLASTOMA-ASSOCIATED PROTEIN HEC - HOMO SAPIENS (HUMAN), 642 aa.			UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT), 1487 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:Q03626 ALPHA-1- INHIBITOR III PRECURSOR, ISOFORM 2 (RAT PLASMA PROTEINASE INHIBITOR ALPHA-1- INHIBITOR III GROUP 3 VARIANT 36A) (ALPHA-1 PROTEINASE INHIBITOR 3, EXONS 1-4) - RATTUS NORVEGICUS (RAT), 1487 aa.	
UNCLAS SIFIED	UNCLAS	UNCLAS			UNCLAS
NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- UNCLA CONSERVATI SIFIED VE
Pro (1291)	Gly (1292)	Arg (1293)	(1294)	Tyr (1295)	Glu (1296)
Ala	Glu	or	Asn	Asp	Gļ
O	O	O	ဖ	 -	
165 CAAAGAAGCGA G TTGAAACACAAT TA[G/C]CAGAGT ATCACAAATTGG CTAGAAA	376 GCCCTAAATAAA A AAAATGGGTTTG G[A/G]GGATACT TTAGAACAATTG AATGCA	443 CCATGGTGCCA G GGCCGTGCTCC CCA[G/C]GTGCC TCCGGGGTGCT GAAGATCTT	537 TTTCCCAAAAGT C TCCAAGTAGACA A[C/G]AGTAATC GCCTGTTACTG CAGCAGG	574 GTTACTGCAGC G AGGTCTCATTAC CA[G/T]ACATTC CTGGGAACTATA CCGTCAG	481 TTGTTTCCCACT C TAATTTATTTTT [C/T]CTGCTTGTT CTTCTTTCA
918 cg43973762	919 cg43973762	920 cg42910848	921 cg29351416	922 cg29351416	923 cg43938372

		N	C	V
122	77	-121	1.70E-120	3.30E-102
3.10E-122		2.20E-121	1.70E	3.30
CTOR -A JBUNIT)	Human Gene Homologous to SWISSNEW-ACC:Q29459 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT (EC 3.1.1.47) (PAF ACETYLHYDROLASE 30 KD SUBUNIT) (PAF-AH 30 KD SUBUNIT) (PAF-AH BETA SUBUNIT) - Homo sapiens (Human), and Bos taurus (Bovine), 229 aa.	Human Gene Homologous to TREMBLNEW-ACC:BAA83010 KIAA1058 PROTEIN - HOMO SAPIENS (HUMAN), 1534 aa (fragment).	UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:035682 MYELOID UPREGULATED PROTEIN - Mus musculus (Mouse), 296 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:CAB43382 HYPOTHETICAL 146.2 KD PROTEIN - HOMO SAPIENS (HUMAN), 1296 aa.
SIFIED	SIFIED	UNCLAS SIFIED	UNCLAS	UNCLAS
NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE
(1297)	(1298)	(1299)	Thr (1300)	Lys (1301)
Ala	Thr.	Ser	Ala	Glu
4	⊢		∢	
(n	O	O	ြ ပြ	O
658 CCTCAAGGTTTC G GCTGCCGAAGC TT[G/A]CCAACG TGCAGCTCCTG GATACCGA	CTTGCCAACGT GCAGCTCCTGG ATA[C/T]CGACG GGGGTTTGTG CACTCGGAC	GGAGGAGTACCA GGAAGAACTGA GGT[C/T]CCACT ACAAGGACATG CTCAGCGAA	571 TTGGCGCAACTT CCCCATCACCTT C[G/A]CCTGCTA TGCGGCCCTCT	461 GCCGTGATTTG CTCCAGTGCCA TCT[C/T]GTGCA GATGCTCATCTC GGCTCTCG
658	089	918	571	46.
924 cg44930828	925 cg44930828	926 cg44035718	927 cg44921277	928 cg43250166
924	925	926	927	928

					-	(11q23.3
1.20E-98	1.20E-98	1.20E-98	1.20E-98	2.60E-93	2.10E-90	6.50E-90
Human Gene Similar to SWISSPROT-ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.	Human Gene Similar to SWISSPROT-ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.	Human Gene Similar to SWISSPROT- ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.	Human Gene Similar to SWISSPROT- ACC:P03740 HYPOTHETICAL PROTEIN ORF194 - Bacteriophage lambda, 194 aa.		Human Gene Similar to SPTREMBL-ACC:Q15382 RAS-RELATED GTP-BINDING PROTEIN - HOMOSAPIENS (HUMAN), 184 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P47226 TESTIN 2 (TES2) [CONTAINS: TESTIN 1 (TES1)] - Musmusculus (Mouse), 423 aa.
UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS SIFIED	UNCLAS SIFIED		UNCLAS
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE
lle (1302)	Glu (1303)	Val (1304)	Ser (1305)	Gly (1306)	(1307)	Phe (1308)
Thr	Gly	Phe	Ala	nlo	ug Ug	Cys
∢	<u> </u>	O	⋖	O	⊢	<u> </u>
344 CTTTTTCCAGGC G TTCCAGCAACG AG[G/A]TTTCTTC CTTCGTTGCAAT	517 GCCGTTCCACTT C CTGATATTCCCC T[C/T]CCGCCGA TAACCAGGTAAA	536 TCCCTCCCGG A CGATAACCAGG TAA[A/C]ATTTTC CGGTAACGGAC CGAGTTCA	638 TGGTCTTCAACG C AGATGCCACGA TG[C/A]CTCATC ACTGTTGAAAAC AGCCACA	851 GCCTCCAGGAA A GTCGTTTGTGTT TG[A/G]GCTGAA CGAATGTGCGT	510 AGTAAATGGACA C AGAATATCATCT T[C/T]AACTTGTA GACACAGCCGG	991 TTCTGGAAGGAT G GGTGCACCCTG GT[G/T]CGGCCG CCATTACTGCGA GAGTCTG
929 cg39512856	930 cg39512856	931 cg39512856	932 cg39512856	933 cg39570960	934 cg43980391	935 cg43983527

8.10E-90	4.50E-89	4.50E-89	4.50E-89	2.00E-88	7.30E-84	7.30E-84
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060309 KIAA0563 PROTEIN -HOMO SAPIENS (HUMAN), 870 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	Human Gene Similar to SPTREMBL-ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.	Human Gene Similar to SPTREMBL-ACC:Q61081 CDC37 HOMOLOG -MUS MUSCULUS (MOUSE), 379 aa.	Human Gene Similar to SPTREMBL-ACC:P87891 GAG PROTEIN -HUMAN ENDOGENOUS RETROVIRUS K, 426 aa (fragment).	Human Gene Similar to SPTREMBL- ACC:P87891 GAG PROTEIN - HUMAN ENDOGENOUS RETROVIRUS K, 426 aa (fragment).
UNCLAS	SIFIED	-	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS
NON- UNCLA CONSERVATI SIFIED VE	NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Leu (1309)	Gln (1310)	End (1311)	Ala (1312)	Ser (1313)	Met (1314)	Phe (1315)
Pro	H:	Gln	nlo	Ala	Val	Leu
<u> </u>	<u>ග</u>	-	O	-	<u> </u>	ڻ ق
114 GATGAATATTCG C AGTACAGACAC AC[C/T]GTATCC CGGCAGCCTAC CTCCAGAA	737 CTTCTATTTTGA T ATTCTAAAGACC A[T/G]TTACAAGT AGAAATGATGC TTACC	741 TATTTTGAATTC C TAAAGACCATTT A[C/T]AAGTAGA AAATGATGCTTA CCCTGG	781 GCTTACCCTGG A TACCGATAGAAC AG[A/C]AAATGTT AAATATAGACAA	146 GCAGTTTTTCAC G CAAGATCAAGA CC[G/T]CTGACC ACCAGTACATG GAGGCTT	641 TCTATGGCATCA C TCCTGCATGAC CA[C/T]TTGTGC ATCTAAACCAGC CCAGCCG	651 CATCCTGCATGA T CCACTTGTGCAT C[T/G]AAACCAG CCCAGCCGCCA
		-				
936 cg42341305	937 cg43980889	938 cg43980889	939 cg43980889	940 cg29349483	941 cg43918287	942 cg43918287
936	937	938	939	940	941	942

					0	10
7.30E-84	7.30E-84	1.20E-83	1.90E-83	1.90E-83	3.10E-83	3.50E-82
	S		S Human Gene Similar to SWISSNEW-ACC:Q02380 NADH-UBIQUINONE OXIDOREDUCTASE SGDH SUBUNIT PRECURSOR (EC 1.6.5.3) (EC 1.6.99.3) (COMPLEX I-SGDH) (CI-SGDH) - Bos taurus (Bovine), 189 aa.		S	ACC:P34624 HYPOTHETICAL 63.5 KD PROTEIN ZK353.1 IN CHROMOSOME III - Caenorhabditis elegans, 548 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Ser (1316)	Met (1317)	Pro (1318)	(1319)	Gly (1320)	Gly (1321)	Phe (1322)
Leu	<u>e</u>	Ser	Met	Cys	Glu	Ser
9	O	O	∢	O	O	⋖
676 TAAACCAGCCC A AGCCGCCAACC CCC[A/G]AAAGT TGGTCTGCAGTT ATATAAT	693 CAACCCCCAAA T AGTTGGTCTGC AGT[T/C]ATATTA ATTTGAGGTTGG ACCTGGG	217 GAATCAGAACTA T CAAGGATCAATT A[T/C]CCCAGCT CAATGTCAGGG	430 ATTATAACTGGG T ATCCCAGTCAAC A[T/A]AAGGTAG AATTTCATTAAC CTCAAG	598 CCGAGCCTAGT A GCCAGCGCGGC GGC[A/C]AGACA GAGCTGTCAGA GCGGCGACC	339 ACTGCACAGGG T ACCGAATCTCTG CC[T/C]CCCGCT CTGCAGCCAGG	2059 GCGTTTTTCTCT G CACGTCCGTCT GA[G/A]ATTTACT GAGGAATATTGT GCTGGC
943 cg43918287	944 cg43918287	945 cg37027086	946 cg42688841	947 cg42688841	948 cg40332814	949 cg43920571

Print Till the said that and have been all all with this first that

1 (1p35)	×				-
	1.00E-75	7.20E-75	7.20E-75	2.40E-74	1.10E-71
UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P14555 PHOSPHOLIPASE A2, MEMBRANE ASSOCIATED PRECURSOR (EC 3.1.1.4) (PHOSPHATIDYLCHOLINE 2-ACYLHYDROLASE) (GROUP II PHOSPHOLIPASE A2) - Homo sapiens (Human), 144 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:015488 GLYCOGENIN-2ALPHA - HOMO SAPIENS (HUMAN), 501 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA74845 KIAA0822 PROTEIN - HOMO SAPIENS (HUMAN), 1581 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.
SIFIED	UNCLAS SIFIED	UNCLAS SIFIED		UNCLAS	UNCLAS
NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE
His (1323)	Gly (1324)	Ser (1325)	Pro (1326)	Lys (1327)	Glu (1328)
TyT	Glu	Giy	ren	Asn	Lys
O	O	∢	O	O	<u>ග</u>
451 GGAAGCCGCAC T TCAGTTATGGCT TC[T/C]ACGGCT GCCACTGTGGC GTGGGTGG	156 GATATGATAGCT A TGTCCTGAAACT G[A/G]GACTCCT GCCGTGATAAC GTGTGAC	698 GTGTGAGGTCT G GCCCGATCCGG GAT[G/A]GCTGC CGGTGGGTGAT CGACGGTAG	861 ATGGCTCTTTCC T GCCTGGCCCGA GC[T/C]CGATCA GGCATCAAGGT GCCTGGAA	312 ACCAAATGCCA A CTATTTTTCTC CC[A/C]TTGCGA AAAATGAAGGAA ATCACGT	325 CACGACCCACG A AGATCATGGGG CCC[A/G]AGAAA AAGCACCTGGA CTACTTAAT
950 cg44024149	951 cg43307245	952 cg39523553	953 cg39523553	954 cg35933325	955 cg41677120

-					
1.10E-71	1.10E-71	3.20E-70	1.40E-69	1.40E-69	1.30E-68
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q13492 CALM (TYPE I CALM PROTEIN) - HOMO SAPIENS (HUMAN), 652 aa.	Human Gene Similar to TREMBLNEW-ACC:BAA76807 KIAA0963 PROTEIN - HOMO SAPIENS (HUMAN), 1366 aa.	UNCLAS Human Gene Similar to SWISSPROI- SIFIED ACC:P55789 AUGMENTER OF LIVER REGENERATION (HERV1 PROTEIN) - Homo sapiens (Human), 125 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P55789 AUGMENTER OF LIVER REGENERATION (HERV1 PROTEIN) - Homo sapiens (Human), 125 aa.	Human Gene Similar to SPTREMBL- ACC:O88552 CLAUDIN-2 - MUS MUSCULUS (MOUSE), 230 aa.
SIFIED A	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
NON- UNCLA CONSERVATI SIFIED VE	NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI (VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE
Asn (1329) (Ser (1330)	Gin (1331)	Arg (1332)	Pro (1333)	Met (1334)
Lys	Pro	ren	Thr	ren	<u>e</u>
O		F	O	U	O
 	O	4	O	 -	O
330 CCCACGAGATC A ATGGGGCCCAA GAA[A/C]AAGCA CCTGGACTACTT AATTCAGT	382 CACAAATGAGAT GAATGCIO	CGT TCTG STCT	412 GACACCCGCAC CCGGGCATGCT TCA[C/G]ACAGT GGCTGTGCCGC	421 ACCCGGGCATG CTTCACACAGTG GC[T/C]GTGCCG CCTTCACAATGA AGTGAAC	269 CAGAGATAATG CAGGCCAGGGA GGA[G/C]ATTGC ACTGGATGTCA CCATCATGG
330	382	208	412	421	269
956 cg41677120	957 cg41677120	958 cg39648832	959 cg42696021	960 cg42696021	961 cg34243633
926	957 (958 (959	096	961

1.30E-68	2.30E-68	2.30E-68	2.30E-68	2.30E-68	2.10E-66
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:088552 CLAUDIN-2 - MUSMUSCULUS (MOUSE), 230 aa.	Human Gene Similar to SPTREMBL-ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	Human Gene Similar to SPTREMBL-ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q14676 KIAA0170 PROTEIN -HOMO SAPIENS (HUMAN), 2089 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060309 KIAA0563 PROTEIN -HOMO SAPIENS (HUMAN), 870 aa.
	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS
NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI (VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
Asn (1335)	Arg (1336)	Leu (1337)	Pro (1338)	Arg (1339)	Ala (1340)
Ser	ĀĒ.	Pro	Ser	Gin	Thr
<u>i-</u>	O	 -	O	O .	O
O	O	U	<u></u>	<	A
453 ACCGACATAAG AACTTGTTTTCC AG[C/T]TGGGGA GCAGCATGGCA ACCAGTGT	308 CCTGAGCTCCA GCCTTCCACCT CCA[C/G]AGACC AGCCTGTCACC TCTGAGCCC	317 CAGCCTTCCAC CTCCACAGACC AGC[C/T]TGTCA CCTCTGAGCCC ACATCTCAG	325 CACCTCCACAG ACCAGCCTGTC ACCIT/CICTGAG CCCACATCTCA GGCCACTAG	341 CCTGTCACCTCT, GAGCCCACATC TC[A/G]GGCCAC TAGGGGAAGAA AAAATAGG	291 TTCTCTAGTCCA / CCAGGAGGCTA CA[A/G]CTCGGC TCTCAGGGTCA GGTAATGA
453	308	317	325	341	291
962 cg34243633	963 cg43942922	964 cg43942922	965 cg43942922	966 cg43942922	967 cg35133436
962	963	964	965	996	296

find the first of the first into the same of the same into the same into the same that the

×					-	m
-99	70-	70	-61	-61	-61	
5.80E-66	3.00.6	9.10E-02	2.60E-61	2.60E-61	2.60E-61	2.60E-61
						Human Gene Similar to SPTREMBL-ACC:Q20716 F53B7.3 -CAENORHABDITIS ELEGANS, 267 aa.
SIFIED	UNCLAS	UNCLAS		UNCLAS	UNCLAS	UNCLAS
SERVATI	NON- CONSERVATI SIFIED VE	NON- CONSERVATI	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI VE
=	Cys (1342)	Ser (1343)	Gly (1344)	Trp (1345)	Gly (1346)	Asn (1347)
Asp	Arg	<u>و</u>	Ser	Arg	Arg	Lys
<u> </u>	∢		O	∢	O	—
o	ტ	O	 -	<u>ا</u> ن		ပ
1 1 -	-	681 TGGCTTCGGCT GGCGGGCCATC AAT[C/T]CCAGC ATGGCTGCCCC CAGCAGTCC	347 CGAAAAGCAAA GTGCAGTTTGTT GC[T/C]TCGGCT GTTGAGTGGTT	488 TCTGGAAAGAA GGCATTGATGAT CC[G/A]GTCCCC CAGTGGGTTGA	524 GGGTTGATGGC AAGTTCTGGAAT CC[T/C]CTGGAA ATCTTCCCGGCT	648 TGCCTTTGGAAC AGGAATATGAAA A[G/T]AAACTCA GAGCCGAGTTA GTGGAAA
1289	287	681	347	488	52,	64
968 cg44938009	969 cg43949821	970 cg39516123	971 cg42731307	972 cg42731307	973 cg42731307	974 cg44910937
996	696	970	971	972	973	974

Hardy office of the state of th

7.00E-61	3.90E-60		1.70E-59	5.20E-58	- 1.60E-57	2.40E-57	Z.50E-56 5
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q62184 T-COMPLEX PROTEIN	(MOUSE), 438 aa.	TREMBLNEW-ACC:AAD45423 EH DOMAIN-CONTAINING PROTEIN EHD1 - MUS MUSCULUS (MOUSE), 534 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.	Human Gene Similar to SPTREMBL- ACC:Q14185 DOCK180 PROTEIN - HOMO SAPIENS (HUMAN), 1865 aa.	UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:Q14693 HYPOTHETICAL PROTEIN KIAA0188 - Homo sapiens (Human), 899 aa (fragment).	Human Gene Similar to TREMBLNEW-ACC:BAA83061 KIAA1109 PROTEIN - HOMO SAPIENS (HUMAN), 1957 aa	(fragment). UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:060925 PREFOLDIN SUBUNIT 1 - HOMO SAPIENS (HUMAN), 122 aa.
AS	2 2)		UNCLAS I	S			UNCLAS VTI SIFIED
N- NSERVATI	VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI VE	NON- CONSERVATI SIFIED VE
48)		Ser (1349)	Gly (1350)	His (1351)	Thr (1352)	Ala (1353)	lle (1354)
S Lys Glu		Arg	n _O	n E	<u>=</u>	Ser	Ser
9		<	O	<u> </u>	O	<u> </u>	۷
149 TCGAAAGGAAG	TGAGI GCAGAI GGGAVGJAGACC ATCACTGTCACT TTCTTTAA	448 CGCTAATGCCA C AGAAGGAGATG GTG[C/A]GCTCC AAGCTGCCCAA	CAGIGICON 724 CTTGACATCCAG A CCAGACGGTTC AG[A/G]ATCAGC	GGTTCTGTGGT GCGACGGG 322 TTCTCAAGTGGT G TTGAAGTCAAAC AIG/TJATTTCAAC	AGAAGAAATCA GCCCTC 31 TGTGATAAAAGT T CACTTTCAGGC CACTTTCAGGC	CGAATCTTCAGA CACTITT 276 ACAAATTACTAT T GGGTTCTACTG AA[T/G]CTCGGG	TTGACTACATGG GCTCAAG 1093 TATTTTCTGCTT CTCTAACAGCTG A[C/A]TGTGAATT GCTTCCTTGGA
					7615		
975 cg43335624		976 cg43277268	977 cg44128084	978 cg30455661	979 cg42747615	980 cg43153425	981 cg43968980

	10		=		
5.30E-56	3.30E-54	6.10E-54	6.10E-54	4.20E-53	6.40E-51
UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:P44788 SUN PROTEIN (FMU PROTEIN) - Haemophilus influenzae, 451 aa.	Human Gene Similar to SPTREMBL-ACC:043914 DNAX ACTIVATION PROTEIN 12 - HOMO SAPIENS (HUMAN), 113 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:046082 EG:63B12.2 PROTEIN -DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:046082 EG:63B12.2 PROTEIN -DROSOPHILA MELANOGASTER (FRUIT FLY), 254 aa.	UNCLAS Human Gene Similar to SWISSPROT- SIFIED ACC:P31639 SODIUM/GLUCOSE COTRANSPORTER 2 (NA(+)/GLUCOSE COTRANSPORTER 2) (LOW AFFINITY SODIUM-GLUCOSE COTRANSPORTER) - Homo sapiens (Human), 672 aa.	
UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS
NON- UNCLA CONSERVATI SIFIED VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE	NON- CONSERVATI (VE	NON- CONSERVATI SIFIED VE	NON- CONSERVATI VE
End (1355)	Tyr (1356)	Тгр (1357)	Gly (1358)	Ser (1359)	Arg (1360)
Lys	Asp	Leu	Ser	Pro	ren
<u> </u>	⋖	O	U	<u> </u>	O
∢	O	∢		O	<u> </u>
173 GATAGTGGTGT GTGGTGATGCG AGT[AT]AACCT GACGAATGGTT	445 GGGCTCACCGT AGAGCAACTGC AAT[C/A]GCTCT GGGCCTGGGCC TGGACAGGA	464 AGGGCAACTTG TGGGCAACCTG GTC[A/C]AGGAA ACCTTGACTTCT TCAAATTC	588 CCTCCCCCCAT GCGATGCCCAA CACIT/CJTTTGC GAGTGATGGGC TTGAAAGGG	686 CCCACCTCGTT CGTGCTCCCAC CCT[C/T]CCCAG CTCCACCGCCT GGTCTTCAG	541 TTCTCTGCCGG CACCTACCCGC GCC[T/G]GGAGG AGTACCGCCGG GGCATCTTA
173	445	464	588	989	541
982 cg30384142	983 cg43957773	984 cg43931038	985 cg43931038	986 cg43971060	987 cg44010070
982	983	984	985	986	987

				10 (10q24)
1.30E-163	1.30E-163	1.70E-175	1.70E-175	1.40E-100
water_ch Human Gene SWISSPROT- annel ID:O14520 AQUAPORIN-7 LIKE (AQUAPORIN ADIPOSE) (AQPAP) - HOMO SAPIENS (HUMAN), 342 aa.	water_ch Human Gene SWISSPROT- annel ID:014520 AQUAPORIN-7 LIKE (AQUAPORIN ADIPOSE) (AQPAP) - HOMO SAPIENS (HUMAN), 342 aa.	Human Gene SPTREMBL-ID:Q29466 VACUOLAR H+-ATPASE SUBUNIT (EC 3.6.1.34) (H(+)-TRANSPORTING ATP SYNTHASE) (H(+)-TRANSPORTING ATPASE) (MITOCHONDRIAL ATPASE) (CHLOROPLAST ATPASE) (COUPLING FACTORS (F(O), F(1) AND CF(1))) - BOS TAURUS (BOVINE), 838 aa.	Human Gene SPTREMBL-ID:Q29466 VACUOLAR H+-ATPASE SUBUNIT (EC 3.6.1.34) (H(+)-TRANSPORTING ATP SYNTHASE) (H(+)-TRANSPORTING ATPASE) (MITOCHONDRIAL ATPASE) (CHLOROPLAST ATPASE) (COUPLING FACTORS (F(O), F(1) AND CF(1))) - BOS TAURUS (BOVINE), 838 aa.	Human Gene Similar to TREMBLNEW-ID:G2921585 ECTO- ATPASE - MUS MUSCULUS (MOUSE), 495 aa.
water_ch annel	water_ch annel	ATPase_associated	ATPase_associat_ed	ATPase_ associat ed
NON-water CONSERVATI annel VE	NON- water CONSERVATI annel VE	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Leu (1361)	Met (1362)	(1363)	Gly (1364)	Cys (1365)
Pro	Thr	G Q	Giy	Leu
⋖	4	gap	de6	gap
O	O	O	ပ	⋖
145 TCTGTTGGCAG GGCTCACAGAG ACG[G/A]GGGTG AGGGAGGATC CGTGGGTTC	163 AGAGACGGGGG TGAGGGGAGAG ATC[G/A]TGGGT TCATGAGATCCC ATCTTGGG	440 CCACAGCCGCC ACGCCCACCTC CCG[G/gap]CCC AGGCCCAGGCC TATGCGCATCA	446 CCGCCACGCCC ACCTCCCGGCC CAG[G/gap]CCCA GGCCTATGCGC ATCACCATGG	193 CTGTGGGGTTG ACCCAGAACAA AGC[A/gap]TTGC CAGAAAACGTTA AGTATGGGA
988 cg43298242	989 cg43298242	990 cg43300636	991 cg43300636	992 cg43250373
988	686	066	999	992

	19 (19p13.3	L	(0000) c	5 (5933)	
9.40E-58	8.40E-78	4.10E-183	3.90E-74	3.90E-74	5.60E-76
Human Gene Similar to SPTREMBL-ID:Q15332 GAMMA SUBUNIT OF SODIUM POTASSIUM ATPASE LIKEHOMO SAPIENS (HUMAN), 126 aa.	Human Gene Similar to SWISSPROT- ID:P05362 INTERCELLULAR ADHESION MOLECULE-1 PRECURSOR (ICAM-1) (MAJOR GROUP RHINOVIRUS RECEPTOR) (CD54) - HOMO SAPIENS (HUMAN), 532 aa.	Human Gene SWISSPROT- ID:P43235 CATHEPSIN K PRECURSOR (EC 3.4.22.38) (CATHESPIN O) (CATHEPSIN X) (CATHEPSIN O2) - HOMO SAPIENS (HUMAN), 329 aa.	Human Gene Similar to SWISSPROI-ID:P98119 SALIVARY PLASMINOGEN ACTIVATOR ALPHA 1 PRECURSOR (EC 3.4.21.68) (DSPA ALPHA-1) - DESMODUS ROTUNDUS (VAMPIRE BAT), 477 aa.	Human Gene Similar to SWISSPROT-ID:P98119 SALIVARY PLASMINOGEN ACTIVATOR ALPHA 1 PRECURSOR (EC 3.4.21.68) (DSPA ALPHA-1) - DESMODUS ROTUNDUS (VAMPIRE BAT), 477 aa.	glycoprot Human Gene Similar to SWISSPROTein ID:Q13491 NEURONAL MEMBRANE GLYCOPROTEIN M6-B - HOMO SAPIENS (HUMAN), 283 aa (fragment).
ATPase_ associat ed	cadherin	cathepsi n	cathepsi n	cathepsi	glycoprol
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Arg (1366)	Cys (1367)	Ala (1368)	Ala (1369)	Ala (1370)	Lys (1371)
Pro	Val	Gly	Gly	Gly	Lys
gap	gap	gap	gap 	gap	gap
360 GGCCCCAGTGC C AGTGGGTGGCA CCG[C/gap]CGA GGCTGCTTA CGGCTCATCTT	284 GCTCCTGCCTG G GGACAACCGG AAG[G/gap]TGTA TGAACTGAGCA ATGTGCAAGA	1150 TTTGCCAGTTTT C CTTCTTGAGTTG G[C/gap]CCTCCA GGGCACCCACA GAGCTAAA	1893 CGATGCGTGCC G AGGGTGATTCC GGA[G/gap]GCC CGCTGGTGTGT GAGGACCAAGC	1894 GATGCGTGCCA G GGGTGATTCCG GAG[G/gap]CCC GCTGGTGTGTG AGGACCAAGCT	198 AAAGCTAATTGA A GACCTATTTCTC C[A/gap]AAAACT ACCAAGACTATG
993 cg43132502	994 cg42528468	995 cg43264626	996 cg43132668	997 cg43132668	998 cg44924334

pring trilly step of after seeing steps of our old out steps to the steps of the step of the st

×	13	ro.			
4.10E-70	6.00E-118	0.00E+00	3.00E-123	2.70E-76	2.70E-76
Human Gene Similar to SWISSPROT-ID:P53973 HISTONE DEACETYLASE HDA1 - SACCHAROMYCES CEREVISIAE (BAKER'S YEAST), 706 aa.	FRAMESHIFT homeobo Human Gene Homologous to x SPTREMBL-ID:000503 CAUDAL- TYPE HOMEOBOX PROTEIN 2 - HOMO SAPIENS (HUMAN), 313 aa.	hydroxys Human Gene SWISSPROT- teroid ID:P51659 ESTRADIOL 17 BETA- DEHYDROGENASE 4 (EC 1.1.1.62) (17-BETA-HSD 4) (17-BETA- HYDROXYSTEROID DEHYDROGENASE 4) - HOMO SAPIENS (HUMAN), 736 aa.		Human Gene Similar to TREMBLNEW-ID:D1025880 ZIP- KINASE - HOMO SAPIENS (HUMAN), 454 aa.	Human Gene Similar to TREMBLNEW-ID:D1025880 ZIP- KINASE - HOMO SAPIENS (HUMAN), 454 aa.
histone	homeobo x	hydroxys teroid	isomeras e	kinase	kinase
FRAMESHIFT histone	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT kinase	FRAMESHIFT kinase
Gin (1372)	Thr (1373)	(1374)	Val (1375)	Gly (1376)	Cys (1377)
Ser	Ser	Ala	\ \ 	Ala	Leu
gap	gap	dap	gap	deb	gap
2549 GGCCCCCACTA C TCAGGGGCCCT GGC[C/gap]TCAA TCACTGAGACC ATCCAAGTCC	881 TGCGAGTGGAT G GCGGAACCGGC GCA[G/gap]CAGT CCCTCGGCAGC CAAGTGAAAA	483 TCTGGCTCAGC G ATGATGTTCCCT CT[G/gap]GCCTT CAGCCTGCCAC TAAAGAATG	1811 GCTTATTTTCGG G TGTTGAATAAGA A[G/gap]ACACTA AAAGCTCGATG CAATAATC	156 CGCTTCTCCAA C GGTGCTGGAGG AGG[C/gap]GGC GGCCGCCGAGG AGGCCTGCGC	184 CGGCCGCCGAG G GAGGGCCTGCG CGA[G/gap]CTGC AGCGCAGCCGG CGGCTCTGCC
999 cg43303165	1000 cg42489148	1001 cg43929210	1002 cg44004587	1003 cg41501665	1004 cg41501665
0 666	1000 c	1001	1002 c	1003 c	1004 (

70	0/		(15q25)	9.30E-280 12	0.00E+00 6 (6q22)	9.80E-261
	2.70E-70	2.70E-76	0.00E+00			
	Human Gene Similar to TREMBLNEW-ID:D1025880 ZIP- KINASE - HOMO SAPIENS (HUMAN), 454 aa.	Human Gene Similar to TREMBLNEW-ID:D1025880 ZIP- KINASE - HOMO SAPIENS (HUMAN), 454 aa.	Human Gene SWISSPROT-ID:Q16288 NT-3 GROWTH FACTOR RECEPTOR PRECURSOR (EC 2.7.1.112) (TRKC TYROSINE KINASE) (GP145-TRKC) (TRK-C)-		SAPIENS (HUMAN), 505 aa. Human Gene SWISSPROT- ID:P24043 LAMININ ALPHA-2 CHAIN PRECURSOR (LAMININ M CHAIN) (MEROSIN HEAVY CHAIN) - HOMO	Human Gene SWISSPROT- ID:P54317 PANCREATIC LIPASE ID:P54317 PANCREATIC LIPASE RELATED PROTEIN 2 PRECURSOR (EC 3.1.1.3) - HOMO SAPIENS (HUMAN), 469 aa.
7		kinase	kinasere ceptor	kinasere ceptor	laminin	lipase
The first first first see that the first see	FRAMESHIFT kinase	FRAMESHIFT KI	FRAMESHIFT k	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
	78)	Pro Fi (1379)	(1380)	Ala (1381)	Leu (1382)	Thr (1383)
		Ala (1	Pro	Arg	ren	Ξ. Ξ
	gap Leu	gap	gap	gap	gap	dag
and the second s	202 TGCGCGAGCTG G g CAGCGCAGCCG GCG[G/gap]CTCT	O	GAAGGAGGCCT 342 CAAGACTGAGA C TCAATTGCCGG CGG[C/gap]CGG	TCTCCCCCT 199 TCTGGATGGGA C TGGAGCACCAT GTGCATCCCCA CTGCATCCCCA	4377 CTCCAAACAGCT C TCTTCACTTTTT TCTTCACTTTTT	GCTTCTGCAGC TACCAACT 480 TTCCCCTTAAAT G TGGTCAGCATA GT[G/gap]CCCCA TTTGGGGCATC CTTCAGCT
	1005 cg41501665 2	1006 cg41501665	1007 cg43939695	1008 cg29023997	1009 cg43983535	1010 cg42488873

		17 (17q11.2	17	2 (2p12)
9.80E-261	9.80E-261	0.00E+00	0.00E+00	0
Human Gene SWISSPROT-ID:P54317 PANCREATIC LIPASE RELATED PROTEIN 2 PRECURSOR (EC 3.1.1.3) - HOMO SAPIENS (HUMAN), 469 aa.	Human Gene SWISSPROT- ID:P54317 PANCREATIC LIPASE RELATED PROTEIN 2 PRECURSOR (EC 3.1.1.3) - HOMO SAPIENS (HUMAN), 469 aa.	Human Gene SWISSPROT- ID:P20393 V-ERBA RELATED PROTEIN EAR-1 - HOMO SAPIENS (HUMAN), 614 aa.	Human Gene SPTREMBL-ID:Q60974 NUCLEAR RECEPTOR CO- REPRESSOR - MUS MUSCULUS (MOUSE), 2453 aa.	FRAMESHIFT oncogen Human Gene SWISSPROT- ID:Q00918 LATENT TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN 1 PRECURSOR (TRANSFORMING GROWTH FACTOR BETA-1 BINDING PROTEIN 1) (TGF-BETA1- BP- 1) (TRANSFORMING GROWTH FACTOR BETA-1 MASKING PROTEIN, LARGE SUBUNIT) - RATTUS NORVEGICUS (RAT), 1712 aa.
lipase	lipase	nucl_rec pt	nucl_rec pt	e e
FRAMESHIFT lipase	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Ser (1384)	Gly (1385)	Gly (1386)	Lys (1387)	(1388)
Cys	Ala	Arg	- Gin	Asn
gap	gap	gap	gap	dap
494 GTCAGCATAGT C GCCCCATTTTG GGG[C/gap]ATCC TTCAGCTGGAC AAGGGAAACA	923 CACGCGGCCCC G CCAGCCTCCTG CCC[G/gap]CCTC CGCGCCGTGT GCGCGCCCAG	2329 GGAGCAGCTCC C AGGAGACGCTG CTG[C/gap]GGG CTCTTCGGGCT CTGTTCGGGCT	6644 TCTTTCTTTTTTCTT C CTTCTTTTTTTTT C/gap/TGTTTTTT CTGCTTTATCCT CTTCTTATCCT	4055 GAAGAAAGAA A AGAATGCTACTA TA[A/gap]TCTCA ATGACGCCAGT CTCTGTGAT
1011 cg42488873	1012 cg42488873	1013 cg43249083	1014 cg43991048	1015 cg43919677
101	101.	101	101.	101

				13	13
2.9E-244	3.1E-98	3.1E-98	3.1E-98	1.3E-57	1.3E-57
oncogen Human Gene SPTREMBL-ID:Q60875 e LFC ONCOGENE - MUS MUSCULUS (MOUSE), 573 aa.	Human Gene Similar to TREMBLNEW-ID:G332185 TRANSFORMING PROTEIN (P21 HAS) - HARVEY MURINE SARCOMA VIRUS, 241 aa.	Human Gene Similar to TREMBLNEW-ID:G332185 TRANSFORMING PROTEIN (P21 HAS) - HARVEY MURINE SARCOMA VIRUS, 241 aa.	Human Gene Similar to TREMBLNEW-ID:G332185 TRANSFORMING PROTEIN (P21 HAS) - HARVEY MURINE SARCOMA VIRUS, 241 aa.	Human Gene Similar to SWISSPROT-ID:P25155 COAGULATION FACTOR X PRECURSOR (EC 3.4.21.6) (STUART FACTOR) (VIRUS ACTIVATING PROTEASE) (VAP) -GALLUS GALLUS (CHICKEN), 475 aa.	Human Gene Similar to SWISSPROT- ID:P25155 COAGULATION FACTOR X PRECURSOR (EC 3.4.21.6) (STUART FACTOR) (VIRUS ACTIVATING PROTEASE) (VAP) - GALLUS GALLUS (CHICKEN), 475 aa.
oncogen	oncogen	e e	oncogen	protease	protease
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT oncogen	FRAMESHIFT	FRAMESHIFT
Glu (1389)	Gly (1390)	Ala (1391)	Ala (1392)	Arg (1393)	Ala (1394)
Ala	Val	Gly	Gly	Ojn D	Ala
gap	gap	gap	gap	gap	U
3546 CATCAGCTCACT G GTAGATTACCTC T[G/gap]CTTCGT CAATGAGGGAT TCCACGGA	75 ATGACGGAATAT T AAGCTGGTGGT GG[T/gap]GGGC GCCGGCGTGT GGGCAAGGT	76 TGACGGAATATA G AGCTGGTGGTG GT[G/gap]GGCG CCGGCGGTGTG GGCAAGAGTG	77 GACGGAATATAA G GCTGGTGGTGG TG[G/gap]GCGC CGGCGGTGTGG GCAAGAGTGC	900 AGCTCCAGCAG C TGACAGGTCATT CT[C/gap]CCCCG CGTCCGCGTCA TACCGCATG	904 CAGCAGTGACA gap GGTCATTCTCCC CC[gap/C]GCGTC CGCGTCATACC GCGTCATACC GCATGTGCA
	3916615	3916615	3916615		
1016 cg43997978	1017 cg43916615	1018 cg43916615	1019 cg43916615	1020 cg43069905	1021 cg43069905

3 (3q27)	1	(15q21)	Z (zcen)		s (3925)
0	7.6E-56		4.3E-100	Z.ZE-50	2.2E-207
proteasei Human Gene SWISSPROT- nhib ID:P01042 KININOGEN, HMW PRECURSOR (ALPHA-2-THIOL PROTEINASE INHIBITOR) (CONTAINS: BRADYKININ) - HOMO SAPIENS (HUMAN), 644 aa.	ribosoma Human Gene Similar to SWISSPROT- Iprot ID:P49207 60S RIBOSOMAL PROTEIN L34 - HOMO SAPIENS (HUMAN), 116 aa.	Human Gene SWISSPROI - ID:Q02440 DILUTE MYOSIN HEAVY CHAIN, ISOFORM I (MYOSIN HEAVY CHAIN P190) (MYOSIN-V) - GALLUS GALLUS (CHICKEN), 1829 aa.	Human Gene SWISSNEW-ID:P40121 MACROPHAGE CAPPING PROTEIN (ACTIN-REGULATORY PROTEIN CAP-G) - HOMO SAPIENS (HUMAN), 348 aa. pcls:SWISSPROT-ID:P40121 MACROPHAGE CAPPING PROTEIN (ACTIN-REGULATORY PROTEIN CAP-G) - HOMO SAPIENS (HUMAN), 348 aa.	FRAMESHIFT synthase Human Gene Similar to SWISSNEW-ID:P54876 PHOSPHORIBOSYLFORMYLGLYCI NAMIDINE SYNTHASE II (EC 6.3.5.3) (FGAM SYNTHASE II) - MYCOBACTERIUM TUBERCULOSIS, 754 aa.	Human Gene SWISSPROT- ID:P26022 PENTAXIN-RELATED PROTEIN PTX3 PRECURSOR (TUMOR NECROSIS FACTOR- INDUCIBLE PROTEIN TSG-14) - HOMO SAPIENS (HUMAN), 381 aa.
proteasei nhib	ribosoma Iprot	struct	struct	synthase	tnf
		FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Leu (1395)	Val (1396)	Pro (1397)	(1398)	Thr (1399)	Lys (1400)
<u>=</u>	Gly	Pro	Ala	Asp	Arg
gap	gap	gap	gap	gap	gap
904 ATGCATACATCG A ATATTCAGCTAC G[A/gap]ATTGCT TCCTTCTCACAG AACTGTG	720 CCTCGAAGTCT C GCCTGGGCACA CAC[C/gap]ACAT GCAGATTTGGT GCTTCCCA	5050 GATTCAGGGCG C TGTCTGGGGTG AAG[C/gap]CCAC AGGGTTGAGAA AGCGAACCTC	1130 GAAGAAGACGC G CCTGGTTCTCTT GC[G/gap]CCACA GGCACCGGCTT CAGCTTCTC	293 ATCTCTTCAGGG C GCGAGGTTCGG GT[C/gap]GCGCA GCGGAACGCGG TCGAGCTCG	290 ATCATGCTGGA G GAACTCGCAGA TGA[G/gap]AGAG CGCATGCTGCT GCAAGCCACG
1022 cg44028327	1023 cg43940280	1024 cg43974196	1025 cg43916919	1026 cg21428405	1027 cg43336100

	8	~	4 (4q21)	12	
1.4E-237	1.1E-68	0	0	0	0
transcript Human Gene SWISSPROT- factor ID:Q14209 TRANSCRIPTION FACTOR E2F2 (E2F-2) - HOMO SAPIENS (HUMAN), 437 aa.		Human Gene SWISSPROT- ID:P41226 UBIQUITIN-ACTIVATING ENZYME E1 HOMOLOG (D8) - HOMO SAPIENS (HUMAN), 1011 aa.	Human Gene SWISSNEW- ACC:Q13563 POLYCYSTIN 2 (AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE TYPE II PROTEIN) (POLYCYSTWIN) (R48321) - Homo sapiens (Human), 968 aa.		UNCLAS Human Gene SWISSPROT- SIFIED ACC:P35446 F-SPONDIN PRECURSOR - Rattus norvegicus (Rat), 807 aa.
transcript factor	transfera se	ubiquitin	UNCLAS	UNCLAS	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Gly (1401)	(1402)	Gly (1403)	Lys (1404)	Met (1405)	Ser (1406)
Gly	Phe	Arg	Lys	Arg	Ser
gap	gap	gap	deb	⋖	gap
ပ	⋖	⋖	F-	gap	O
438 GGGCGCCTTAC TCGCTATGCTG CAA[G/gap]GGC CCGGGCCTTG GCTTCGGCCGC	1391 CCCACTGGAAG TGGAGGCTCCA GTC[A/gap]AACC CCCTCTGAGC TCCGAGGCAG	1227 GCGGACAGTCG CCCTAAGCAGT GCA[A/gap]GGTG TCTTGAGCCCTA TGGTGGCCA	2853 GAAATGTCATCC ACGGTATTTTT T[T/gap]CAGTTT TAGTTTGACCAA AGCTTTA	2640 ATGTCATCTTCA TCTAGAAACGC CC[gap/A]TCACG GAATGGAATTG CTGCCAGA	2812 CTTTCCCACATG ACTTGTTACATT C[C/gap]GACCAC TGGGACCACTC GGTGAGCT
438	1391	1227	2853	2640	2812
1028 cg39517655	1029 cg43954704	1030 cg43986426	1031 cg43917221	1032 cg43918356	1033 cg43918446
1028	1029	1030	1031	1032	1033

print first east of the self with a self of all of the self of the first first first that the self t

0 X (Xq28)		N	41	17	9	
) X	0	0	0	0	0	0
FRAMESHIFT UNCLAS Human Gene SWISSNEW- SIFIED ACC:Q13496 MYOTUBULARIN - Homo sapiens (Human), 603 aa.	Human Gene SWISSPROT- ACC:P49746 THROMBOSPONDIN 3 PRECURSOR - Homo sapiens (Human), 956 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:P13521 SECRETOGRANIN II PRECURSOR (SGII) (CHROMOGRANIN C) - Homo sapiens (Human), 617 aa.	UNCLAS Human Gene SPTREMBL-SIFIED ACC:060342 KIAA0602 PROTEIN -HOMO SAPIENS (HUMAN), 962 aa (fragment).	Human Gene SWISSPROT- ACC:P38432 P80-COILIN - Homo sapiens (Human), 576 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:060281 KIAA0530 PROTEIN - HOMO SAPIENS (HUMAN), 1563 aa (fragment).	Human Gene SPTREMBL- ACC:Q14692 KIAA0187 PROTEIN - HOMO SAPIENS (HUMAN), 1282 aa.
UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Pro (1407)	Ser (1408)	Asp (1409)	Ala (1410)	Pro (1411)	Glu (1412)	Pro (1413)
Pro	Ser	Glu	Arg	Ala	Glu	Pro
gap	gap	gap	gap	dab	gap	дар
2857 TAAAAGTTATTC G TCCAATGGTGAT T[G/gap]GGCAAG CCCTGCCTCCT	1344 GGGTAGGATTG G CTCATTTCAGGG CA[G/gap]CTGTC GCAAGCATCTC CCACCCGT	1192 CATCTAGGTCAA C CAGGAAGGTCA AG[C/gap]TCCCG CTCCGGTTCCA CTCCGATCCA	2979 GTTCTGTTCTTG G TAGCGCTTTCTG C[G/gap]CTGCAG CATGATCTGAAG	2673 CCCTCCAGGTA CGAGGCCTAGGAAGGCCTAAGGAGGCCAAGGCCAAGGCCAAGGCCAGAAGCCCAGAAGCCCGGAAGCCCTGG	3941 TTCTGTTTTGTC T AGGACTTTTTTT T[T/gap]CTACAA GTTGTTTTTCTG	3927 GTATCAAAGTGC T TCTTTCCAACTT T[T/gap]GGAGGC CCCATCACCACT ACCGGTA
1034 cg43927750	1035 cg43961075	1036 cg43961763	1037 cg43968223	1038 cg43980727	1039 cg43999667	1040 cg44022781
103	100	100	100	10,	10;	0

<u> </u>	0	22	-		10
0	0	1.7E-304	4.5E-280	6.10E-268	4.10E-221
FRAMESHIFT UNCLAS Human Gene SPTREMBL- SIFIED ACC:060624 CLASS CYTOKINE RECEPTOR - HOMO SAPIENS (HUMAN), 636 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:Q92574 HAMARTIN (MYELOBLAST KIAA0243) - HOMO SAPIENS (HUMAN), 1164 aa.	Human Gene SWISSNEW- ACC:P46060 RAN-GTPASE ACTIVATING PROTEIN 1 - Homo sapiens (Human), 587 aa.	Human Gene SPTREMBL- ACC:Q15830 MUTY HOMOLOG - HOMO SAPIENS (HUMAN), 535 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:O75907 ACAT RELATED GENE PRODUCT 1 - HOMO SAPIENS (HUMAN), 488 aa.	UNCLAS Human Gene SPTREMBL- SIFIED ACC:O60747 PUTATIVE G-BINDING PROTEIN - HOMO SAPIENS (HUMAN), 562 aa (fragment).
SIFIED	UNCLAS	UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Trp (1414)	Arg (1415)	Asp (1416)	Asp (1417)	Arg (1418)	His (1419)
Leu	Thr	Asp	Asp	Gln	His
gap	gap	gap	gap	gap	gap
571 CGTGGACTTTTC C CGAGGATGACC CC[C/gap]TGGAG GCCACTGTCCA TTGGGCCCC	2612 TCTACAACCAGA G GCCAGGAATTA CA[G/gap]ACGAA GCTGGAGGACT GCAGGAACA	1167 GGGGTGCAAGG G GCCTTGGGGAA ATA[G/gap]TCCT GCTGCACCATG	1264 CCTCCTCCAGG G GAAGCACTGGC CAG[G/gap]TCCT GCAGTGTAGGC CACTTCTGCA	427 CACAGCTGCGT T TGCCATAGTTGC CC[T/gap]GGAAA AAGCGGCCCAC GAACCAGGC	2313 TAAATTTGACTT A TTCTCATGTAAA A[A/gap]TGTCTA ATGCGATGTATT TGGTAAT
571 0	2612 7	1167 (1264	427	2313
1041 cg44919370	1042 cg44932924	1043 cg43991434	1044 cg44931278	1045 cg43949042	1046 cg43972066
1041	1042	1043	1047	104	104

2.80E-215	2.80E-215	7.20E-210	1.30E-192	1.80E-174	2.50E-161
FRAMESHIFT UNCLAS Human Gene SPTREMBL- SIFIED ACC:015417 CAGL79 - HOMO SAPIENS (HUMAN), 413 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:015417 CAGL79 - HOMO SAPIENS (HUMAN), 413 aa (fragment).	UNCLAS Human Gene SPTREMBL-SIFIED ACC:Q99541 ADIPOPHILIN - HOMOSAPIENS (HUMAN), 437 aa (fragment).	UNCLAS Human Gene SPTREMBL- SIFIED ACC:014877 FRPHE - HOMO SAPIENS (HUMAN), 346 aa.	UNCLAS Human Gene SWISSPROT- SIFIED ACC:P42081 T LYMPHOCYTE ACTIVATION ANTIGEN CD86 PRECURSOR (ACTIVATION B7-2 ANTIGEN) (CTLA-4 COUNTER- RECEPTOR B7.2) (B70) (FUN-1) (BU63) - Homo sapiens (Human), 329 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA74892 KIAA0869 PROTEIN HOMO SAPIENS (HÜMAN), 888 aa (fragment).
SIFIED	SIFIED	UNCLAS	UNCLAS	SIFIED	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Gin (1420)	Asn (1421)	Leu (1422)	Cys (1423)	Lys (1424)	Gly (1425)
Pro	Asn	Ser	Leu	Gin	Glu
gap	gap	gap	gap	deb	gap
723 GGGGGTACTGG G GGACCTCGTCT GTT[G/gap]GGTT CCCTCCTCCA GGGTAGCGGC	725 GGGTACTGGGG G ACCTCGTCTGTT GG[G/gap]TTCCC CTCCTCCAGGG TAGCGGCTC	391 CTGCCTATTCTG C AACCAGCCAAC AT[C/gap]TGAGA TTGTTGCCAATG CCCGAGGT	2370 TACATGGCACA G GAGGAAGAAGC GCGCTGCAGT TCACGTCCACC	334 CTCTGGTGCTG C CTCCTCTGAAGA TT[C/gap]AAGCT TATTTCAATGAG ACTGCAGA	251 GAGGAGGAGGA A GGTGGAGGAGG AGG[A/gap]GGG AGAAGAGGATG TTTTCACCGAG
1047 cg43955639	1048 cg43955639	1049 cg43965656	1050 cg43944615	1051 cg43323906	1052 cg44004690

	·		13	-	18
			~		7
-161	:-160	5-159	1.30E-155	3.00E-152	1.60E-150
2.50E-161	1.40E-160	6.70E-159	1.30E	3.006	1.60
FRAMESHIFT UNCLAS Human Gene TREMBLNEW-SIFIED ACC:BAA74892 KIAA0869 PROTEIN HOMO SAPIENS (HUMAN), 888 aa (fragment).	UNCLAS Human Gene TREMBLNEW- SIFIED ACC:AAD27734 CGI-25 PROTEIN - HOMO SAPIENS (HUMAN), 301 aa.	Human Gene TREMBLNEW- ACC:AAD39906 FH1/FH2 DOMAIN- CONTAINING PROTEIN FHOS - HOMO SAPIENS (HUMAN), 1164 aa.	UNCLAS Human Gene TREMBLNEW- SIFIED ACC:BAA32101 BCAP - HOMO SAPIENS (HUMAN), 331 aa.	UNCLAS Human Gene TREMBLNEW-SIFIED ACC:AAD42876 NY-REN-45 ANTIGEN - HOMO SAPIENS (HUMAN), 815 aa.	Human Gene Homologous to SWISSPROT-ACC:014732 MYO- INOSITOL-1(OR 4)- MONOPHOSPHATASE 2 (EC 3.1.3.25) (IMP 2) (INOSITOL MONOPHOSPHATASE 2) (MYO- INOSITOL MONOPHOSPHATASE A2) - Homo sapiens (Human), 288 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	SIFIED
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Gly (1426)	Pro (1427)	Arg (1428)	Lys (1429)	Val (1430)	Ser (1431)
Gly	Pro	Ala	Lys	Val	Leu
gap	gap	gap	L	H	gap
Ø	_တ	O	dap	gap	O
402 ACCGGAGAGTG CGCACCCCGTC CCA[G/gap]GGG CCATTCTTCGA GGGAGCACCA	322 TCGAGGGTGAC C CACAGCCCCAG AGG[G/gap]CCG CAGCACAGCGC AGGGGGTGGCG	336 GCTCTACCTGG (GCTACACCCG CAG[G/gap]CGG CCGTGAAGTG CGCATCATGCA	501 TTTGTTGAGATG (CATGAATTTTT T[gap/T]CTCTATT GCTGCTTGAAAA	STTCTTT AACCAG GGTGGC STCATA	861 AGATCTGTCTCC CCGCAGACCCG GA[G/gap]CCGCT GGCCATTGCAG AAGGCGCCC
402	322	336	501	981	861
1053 cg44004690	1054 cg43957283	1055 cg43329741	1056 cg44010310	1057 cg39729127	1058 cg43135797
1053	1054	1055	1056	1057	1058

gring gring thing will state the state of th

	9.00E-148	1.10E-140	4.90E-140	1.90E-138	2.20E-137
FRAMESHIFT UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:Q60936 HYPOTHETICAL HEART PROTEIN - Mus musculus (Mouse), 298 aa (fragment).	UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:Q60936 HYPOTHETICAL HEART PROTEIN - Mus musculus (Mouse), 298 aa (fragment).	Human Gene Homologous to SPTREMBL-ACC:Q99769 HYPOTHETICAL 26.4 KD PROTEIN - HOMO SAPIENS (HUMAN), 255 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:BAA74897 KIAA0874 PROTEIN - HOMO SAPIENS (HUMAN), 601 aa (fragment).	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:O93263 AVENA - GALLUS GALLUS (CHICKEN), 550 aa.	UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:014777 RETINOBLASTOMA-ASSOCIATED PROTEIN HEC - HOMO SAPIENS (HUMAN), 642 aa.
SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Ala (1432)	Ala (1433)	Arg (1434)	His (1435)	Lys (1436)	Lys (1437)
Gly	Gly	Arg	Ala	Gl	Arg
gap	gap	gap	gap	gap	gap
1704 ATCACTGTTGAT C GCTCTGGGCCA CG[C/gap]CAGG GTACTGGATCTT CATGGCCAC	1705 TCACTGTTGATG C CTCTGGGCCAC GC[C/gap]AGGG TACTGGATCTTC ATGGCCACC	1100 AGGGCCACGGG C GTGGGCCAGGG GGC[C/gap]GGG CCATTTCCAGTG GCTCGTGTG	126 TCTACCCAGCTA G AATACACATTAT G[G/gap]CATTTA GCAAACTAACTT	1073 GCAGGAACGCC C TGGATCGGGAG AGG[C/gap]AAGA AAGACAAGAAC	430 ATAACAGAAAGC G AAGAGAAGTGT GA[G/gap]AACTC TGAAAGAAGAA GTTCAAAAG
1059 cg43965796	1060 cg43965796	1061 cg42907867	1062 cg43922710	1063 cg43303845	1064 cg43973762

77					
3.00E-131	4.00E-129	3.70E-120	1.705-120		2.00E-118
8.3 KD F- no	Human Gene Homologous to TREMBLNEW-ACC:AAD39906 FH1/FH2 DOMAIN-CONTAINING PROTEIN FHOS - HOMO SAPIENS (HUMAN), 1164 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:AAD29690 PUTATIVE ZINC FINGER TRANSCRIPTION FACTOR OVO1 - MUS MUSCULUS (MOUSE), 267 aa.	UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:035682 MYELOID UPREGULATED PROTEIN - Mus musculus (Mouse), 296 aa.	UNCLAS Human Gene Homologous to SIFIED SWISSPROT-ACC:035682 MYELOID UPREGULATED PROTEIN - Mus musculus (Mouse), 296 aa.	Human Gene Homologous to SPTREMBL-ACC:P70582 NUCLEOPORIN P54 - RATTUS NORVEGICUS (RAT), 510 aa.
UNCLAS I	SIFIED	UNCLAS SIFIED	UNCLAS	UNCLAS	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Cys (1438)	Ser (1439)	Thr (1440)	Ala (1441)	Ser (1442)	Gln (1443)
Met	<u>e</u>	Ser	Cys	Cys	Gin
gap	gap	gap	gap	gap	<u>ن</u>
TCACAGATATCT G CCATTTGCCAG GA[G/gap]ATGCC CAGCCTGGAGG	GCCGCTCCCTC G TTCTCACTGAAG CA[G/gap]ATCTT CCAGGAGGACA AAGACCTGG	1014 ACTGTCACTTCC G CTGCTGCAGGG CA[G/gap]CCCCC ACCTGTGAGTG GCTCGAGCC	516 CCCTGATCATCC G TCATCGTGGAG CT[G/gap]TGCGG GCTCCAGGCCC	518 CTGATCATCCTC G ATCGTGGAGCT GT[G/gap]CGGG CTCCAGGCCCG CTCCAGGCCCG	327 GATTTAATACAC gap AGCAGCAGCAG CA[gap/G]AACTA CATTAGGTGGT CTTTCAGT
T 114	503	1014 /	516	518	327
1065 cg43918679	1066 cg38059286	1067 cg42549778	1068 cg44921277	1069 cg44921277	1070 cg42530218
1065	1066	1067	1068	1069	107(

ern grin rip of eth rip min of one of oil min min fire grin task of all other task and here other the other task than that the

	10		10		
	20				
2.00E-118	4.80E-110	4.50E-105	3.30E-102	1.00E-90	4.50E-89
FRAMESHIFT UNCLAS Human Gene Homologous to SIFIED SPTREMBL-ACC:P70582 NUCLEOPORIN P54 - RATTUS NORVEGICUS (RAT), 510 aa.	Human Gene Homologous to TREMBLNEW-ACC:AAD43195 PEROXISOMAL MEMBRANE PROTEIN PMP 24 - HOMO SAPIENS (HUMAN), 212 aa.	Human Gene Homologous to SPTREMBL-ACC:Q91579 RIBONUCLEOPROTEIN - XENOPUS LAEVIS (AFRICAN CLAWED FROG), 462 aa.	UNCLAS Human Gene Homologous to SIFIED TREMBLNEW-ACC:CAB43382 HYPOTHETICAL 146.2 KD PROTEIN - HOMO SAPIENS (HUMAN), 1296 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:015194 HYA22 - HOMO SAPIENS (HUMAN), 340 aa.	Human Gene Similar to SPTREMBL-ACC:000581 HYPOTHETICAL 20.5 KD PROTEIN - HOMO SAPIENS (HUMAN), 176 aa.
UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Leu (1444)	Trp (1445)	End (1446)	Asp (1447)	Thr (1448)	Pro (1449)
Thr	Leu	Leu	Ala	Asn	Ala
gap	gap	gap	gap	U	gap
329 ATTTAATACACA A GCAGCAGCAGC AA[A/gap]CTACA TTAGGTGGTCTC TTCAGTCA	979 AGGATACCCCC G GAGGAAGGCCG CCA[G/gap]GAAT GCGTGTGCTGG GTAGGTCTTG	776 GGCCTACGGCG C CCTACGCTCAG GCA[C/gap]TGAT GCAGCAGCAAG CGGCCTGAT	166 AGGTGGCCCTC G ACACCCAGTGC TGT[G/gap]CTGC GCGGAGGGCTG TACTGAAGGT	778 CTGCGGCGGGT gap GCTCATCCTGG ACA[gap/C]ATTC ACCTGCCTCCTA TGTCTTCCA	812 TTAAATATAGAC T AAGTGGACCATT T[T/gap]GCCTCA AATTCACAGGA GCCAGCAT
329 / C	979 6 0 0 0 0	776 0 0 0	166 A A A A A A A A A A A A A A A A A A A	778 C Q AC TC	812 812 7 7 1 9 9 1 9
1071 cg42530218	1072 cg43325007	1073 cg43981269	1074 cg43250166	1075 cg43982164	1076 cg43980889
1071	1072	1073	1074	1075	1076

12			1		T
1.00E-82	1.90E-81	6.60E-81	2.10E-77	8.00E-76	7.20E-75
Q	MUSCOLOS IMPODSE, 432 aa. S Human Gene Similar to TREMBLNEW-ACC:BAA76495 TYPE II MEMBRANE PROTEIN SIMILAR TO CD69 - HOMO SAPIENS (HUMAN), 149 aa.		UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB39700 CONSERVED HYPOTHETICAL PROTEIN - STREPTOMYCES COELICOLOR, 384 aa.	UNCLAS Human Gene Similar to SWISSNEW-SIFIED ACC:P50606 MAGO NASHI PROTEIN HOMOLOG - Homo sapiens (Human), and Mus musculus (Mouse), 146 aa.	Human Gene Similar to TREMBLNEW-ACC:CAB40855 PUTATIVE ADENINE GLYCOSYLASE - STREPTOMYCES COELICOLOR, 308 aa.
SIFIED	UNCLAS	UNCLAS	UNCLAS	UNCLAS	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Met (1450)	Thr (1451)	Ser (1452)	Ser (1453)	Ser (1454)	Ser (1455)
<u>•</u>	Туг	Glu	Phe	Glu	Gin
de G	gap	gap	gap	gap	gap
832 GI GGCCALI GG A TGAGACATCCAT CA[A/gap]TATTG CAAACCAAAAGT TTTATTTC		665 GGTGGCTCAGG C GGCTGGGGGAG GCT[C/gap]CCCT GGGGCTTCAGA CAGCACATAG	366 AAGGCACCATC AAGTCGGCGGT GGC[C/gap]TTCG GGCATCTCCTT GCCGAGGGTA	371 CTCCTCCTGAC G CGAGTGGGCCG GCA[G/gap]GAG CTTGAAATCGTC ATTGGAGATG	670 CACTGGTATGC G ACGGCGCGGTC TCC[G/gap]CAGT GTGAGGTCTGC CCGATCCGGG
.	_				67
. cg4.5870118	1078 cg44030987	1079 cg43320682	1080 cg25255686	1081 cg43988975	1082 cg39523553
	1078	1079	1080	1081	1082

	× ×	(N		
	1.30E-67	00.00000000000000000000000000000000000	4.00E-04	5.10E-62	1.50E-60
UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:023382 ZK1058.4 - CAENORHABDITIS ELEGANS, 442 aa.		SWISSNEW- ASE- 6 (RHO- TING) - Homo		UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:Q04205 TENSIN - Gallus gallus (Chicken), 1744 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:Q19498 SIMILAR TO MELIBIOSE CARRIER PROTEIN -CAENORHABDITIS ELEGANS, 501
SIFIED //		UNCLAS	UNCLAS SIFIED	UNCLAS	UNCLAS
FRAMESHIFT (FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
End (1456)	Thr (1457)	Ser (1458)	lle (1459)	Ala (1460)	Cys (1461)
Olu	Thr	Leu	Asp	Ala	ren
⋖	gap	deb	gap	gap	gap
2953 CTCCCTCCTGG gap GTATCTGCATCT TC[gap/A]AAAAT CTCCTTCTTGGT TTTCATCC	806 GGACACAGGCT C GCGGTGTAAGC CCG[C/gap]GTCA CCGCCGGCACC TGCAGGAACT	688 AATACTCCGTGC G AGCGAGTGCGT CA[G/gap]CTCCG TGAAGAATTTGA TCAAGGTC	315 CAAAATCACAGC G TGAAGAAATGTA T[G/gap]ATATAT TTGGGAAATATG GACCTAT	928 CCTGGGGCTCA C CCAAGGCAACC TGG[C/gap]CTCC GGTCTTCATAGC	713 GGAGGAGCCAG C GCGAGCACACC CCC[C/gap]TGTT GGCCCTGCCA CGGCCCAGCC
1083 cg43951096	1084 cg42831353	1085 cg44938009	1086 cg43054992	1087 cg39516123	1088 cg43983590

for the self of the for the self of the se

		-			
1.70E-59	1.70E-59	3.50E-59	4.10E-56	1.5E-51	1.3E-50
FRAMESHIFT UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:033196 HYPOTHETICAL 32.9 KD PROTEIN - MYCOBACTERIUM TUBERCULOSIS, 307 aa.	UNCLAS Human Gene Similar to SPTREMBL-SIFIED ACC:035946 HYPOTHETICAL 14.9 KD PROTEIN - RATTUS NORVEGICUS (RAT), 137 aa.	FRAMESHIFT UNCLAS Human Gene Similar to SWISSPROT-SIFIED ACC:Q60870 POLYPOSIS LOCUS PROTEIN 1 HOMOLOG (TB2 PROTEIN HOMOLOG) (GP106) - Mus musculus (Mouse), 185 aa.	FRAMESHIFT UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:BAA74896 KIAA0873 PROTEIN - HOMO SAPIENS (HUMAN), 466 aa (fragment).	UNCLAS Human Gene Similar to SIFIED TREMBLNEW-ACC:CAB42016 PUTATIVE ADENYLOSUCCINATE SYNTHETASE - STREPTOMYCES COELICOLOR, 427 aa.
UNCLAS	UNCLAS	SIFIED	UNCLAS	UNCLAS	UNCLAS
FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT	FRAMESHIFT
Gly (1462)	Ala (1463)	Glu (1464)	Gly (1465)	Leu (1466)	Ala (1467)
Ala	Arg	Gly	Gly	Leu	Sig.
gap	gap	gap	gap	gap	gap
O	4	U	U O O	0 0 0	0
499 CGGCGGCGCAT GCTCGACGTTC TGG[C/gap]GTCT GTCGACGGTT GCCGGTGCAA	624 CGTCTGTCGAC GAGTTGCCGGT GCA[A/gap]CGCT GGAGCTGCGAC	931 GGCCCTGTGCT TGGAGCCGTGG GCT[C/gap]CGTA GCCCGAGTGAT	385 TTCCGGCCGCC GCGTCCAGGGC TCG[C/gap]CCGC TGAGGTCGTTC ATGACCCCGC	184 AGATAGCTGAG AATATTCTGCGC AA[G/gap]CCTCA CAGCTTGTTTCC TGGCAGCC	497 ATGAGATCGAC GCCTTGCGCGG CCG[C/gap]GGC GTAGACATTCC GCACCCGCTCA
499	524	931	385	184	497
1089 cg44128084	1090 cg44128084	1091 cg43976473	1092 cg40309770	1093 cg42725664	1094 cg39380052
1089	1090	1091	1092	1093	1094

The state of the s

(6a14)	(: . F.>)								
lg 16-313 6 (6014)	2								
TOGODOL	FRAMESHIFT UNCLAS Human Gene SWISSFROT	SIFIED ACC:P21589 5'-NUCLEOTIDASE	DECTO: 2 4 3 5) (ECTO.	(C.S. 1.5 OE) ADSAUCHAL	NUCLEOTIDASE) (5'-NT) (CD73	(Hilman)	ANTIGEN = HOING SAPICIES (HELLING)	574 aa.	
	ONCLA	CHIFIED							
	FRAMESHIFT				-				
	Ala Ala	1160)	(1400)						
	Cvs	<u>}</u>							
	Can) -	_	-		_			
	TICTACTO TO TO TO TO TO TO		CCGCTTTAGAG	A A LT (asp) C. A A C.	Capable and a ca	ATGGGCAACCI	GATTTGTGA		
	1000001	1095 cg44928804							

Express Mail Label No.: EK611911256US
Date of Deposit: November 22, 2000

the specification of which:

COMBINED DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am an original, first and joint inventor which is claimed and for which a utility patent is sought on the invention entitled:

NUCLEIC ACIDS CONTAINING SINGLE NUCLEOTIDE POLYMORPHISMS AND METHODS OF USE THEREOF

was filed on, as United States non-provisional application U.S.S.N, bearing Attorney Docket No				
is attached hereto.				
•	ave reviewed and understand to ng the claims, as amended by a			
•	ty to disclose information which			this
I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT International application designating at least one country other than the United States listed below and have also identified below any foreign application for patent or inventor's certificate or PCT International application having a filing date before that of the application on which priority is claimed.				
Appln.	Country	Filing Date	Priority Claimed	
Number	(if PCT, so indicate)	(dd/mm/yy)	Yes	No
			<u> </u>	

I hereby claim the benefit under Title 35, United States Code, § 119(e) or §120 of any United States application(s), or §365(c) of any PCT International application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application:

Application No.	Filing Date	Status
(U.S.S.N.)	(dd/mm/yy)	(Patented, Pending, Abandoned)
60/167,383	November 24, 1999	Pending

PCT International Applications designative the United States:

PCT Appln No.	US Serial No.	PCT Filing Date	Status

I hereby appoint the following attorneys and/or agents to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

Attorney or Agent	Registration No.	Attorney or Agent	Registration No.
Kevin Ainsworth	39,586	Kristin E. Konzak	44,848
Ingrid Beattie	42,306	Cynthia Kozakiewicz	42,764
David B. Bernstein	32,112	Barry Marenberg	40,715
Naomi Biswas	38,384	William Marino	44,219
David F. Crosby	36,400	Robert Klauzinski	42,742
James G. Cullem	43,569	A. Jason Mirabito	28,161
Brett N. Dorny	35,860	Michel Morency	Limited Recognition
Marianne Downing	42,870	Bradley Olson	40,750
Ivor R. Elrifi	39,529	Carol H. Peters	45,010
Heidi A. Erlacher	45,409	Michael Renaud	44,299
Christina Gadiano	37,628	Brian Rosenbloom	41,276
John A. Harre	37,345	Thomas M. Sullivan	39,392
Shane Hunter	41,858	Howard Susser	33,556
David E. Johnson	41,874	Shelby J. Walker	45,192
Kris Kalidindi	41,461	Martin M. Zoltick	35,745
Christina Karnakis	45,899		

Address all telephone calls to Ivor R. Elrifi at telephone number 617/348-1747. Address all correspondence to:

Ivor R. Elrifi, Ph.D.

Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C.

One Financial Center

Boston, Massachusetts 02111

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or patent issued thereon.

Inventor's Signature	Date	
Full Name of Inventor: Richard A. Shimkets, Ph.D.		
Citizenship: USA		
Residence: USA		
Post Office Address: West Haven, CT 06516		
Inventor's Signature	Date	
Full Name of Inventor: Martin Leach		
Citizenship: USA		
Residence: USA		

TRADOCS:1403394.1(%2V601!.DOC)

Post Office Address: Webster, MA 01570

SEQUENCE LISTING

```
<110> Shimkets, Richard A.
      Leach, Martin D.
<120> NUCLEIC ACIDS CONTAINING SINGLE NUCLEIC ACID POLYMORPHISMS AND METHODS OF
      USE THEREOF
<130> 15966-599
<150> 60/163,783
<151> 1999-11-24
<160> 1468
<170> CuraGen Patent Formatter Version 0.9
<210> 1
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43921971
<400> 1
                                                                         51
gggtttgtat tggcgcacca agatccccaa cagccagtgt gtgtttccca t
<210> 2
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
 <223> Accession number cg43336508
 ccaggctact agaatgtttc agtggtattc aatcaaccca aagatgtaat g
                                                                         51
 <210> 3
 <211> 50
 <212> DNA
 <213> Homo sapiens
```

Li

```
<220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43314087
                                                                            50
    atgggttttt ttgttrttgt ttttgttttt ttttaaaggc aaaggggtct
    <210> 4
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
<221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43314087
    <400> 4
                                                                             50
    tttgtttttg tttttgtttt tttttaaagg caaaggggtc tgaagagatg
    <210> 5
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
   .<221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43132502
    <400> 5
                                                                             50
    catgaggtgg cacgaggcag gagttgcgat gccacctggg ggtcacattg
```

```
<210> 6
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43988460
     <400> 6
     acataatttg taccaaaaaa aaaaagaaag gaaagaaagg ggtggcctga
                                                                              50
     <210> 7
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
1.4
     <221> misc feature
ļ.
     <222> (0)...(0)
     <223> Accession number cg43988460
TD.
     <400> 7
     taccaaaaaa aaaaaggaaa ggaaaaaaaa gggtggcctg acactggtgg c
                                                                              51
     <210> 8
     <211> 50
     <212> DNA
     <213> Homo sapiens-
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43982945
```

```
<210> 9
      <211> 50
      <212> DNA
     <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
     <223> single nucleotide polymorphism
      <221> misc feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43266931
     <400> 9
     gggcgctagc gggggtgcac ggcggccggt aggccgccag gatctcggcg
*.J
     <210> 10
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
- 12 m
     <221> allele
37
     <222> (26)...(0)
     <223> single nucleotide polymorphism
<221> misc_feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
      <223> Accession number cg43321451
     <400> 10
     gaaggcacac acacacac acacaagcaa aagctaaatc atcacccgcg
     <210> 11
     <211> 51
      <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
```

gacacatgtc aggctggggc agcagcactc tgatcagcac caggtcccqa

50

50

50

<400> 8

<221> misc_feature <222> (0)...(0)

```
<223> Accession number cg43933757
      <400> 11
      teatetecet geaaceteeg ecteeeggt teaagegatt ettgtgeete a
                                                                              51
      <210> 12
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43933757
      <400> 12
      cogectectg ggttcaageg attetegtge etcagectee caageagetg g
                                                                               51
      <210> 13
      <211> 51
      <212> DNA
     <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
ld.
      <223> single nucleotide polymorphism
LA.
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43933757
TI.
      <400> 13
      tccaactcct gacctcaggt aatccacctg ccttggcctc ccaaagtgct g
                                                                               51
      <210> 14
      <211> 50
      <212> DNA
      <213> Homo sapiens -
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc_feature
      <222> (0)...(0)
```

<223> Accession number cg42185571

nalidi. Amerikan dilatan kanali dalam angan 1878 (1882) Salah (1882) Salah (1884) Salah (1884) Salah (1884) Salah (1884

```
<400> 14
                                                                              50
     cttagctcta cgatttaaat ccatggtcca agggggaaaa catattatat
     <210> 15
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
     <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg42185571
     <400> 15
50
     taatatagat agtgttcagt agcagataga atgaacataa actattagtt
£. [
     <210> 16
.
Besike
     <211> 51
n
     <212> DNA
     <213> Homo sapiens
TŲ.
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43947909
     <400> 16
                                                                               51
     gaattgtcca gaagacttgg ctcagttgga ggagctgata gacatggctg t
      <210> 17
      <211> 51
      <212> DNA
     <213> Homo sapiens
     <220>
      <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43143315
   <400> 17
     gtgtgtgtgt ctgtgtgtgt gtgtcggtgt atgtgtgtgt gggttctaat g
                                                                               51
```

```
<211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43327428
      <400> 18
      agcaggetgg cetatgtggt ctaaggttca geetgaaact catagacact g
                                                                               51
      <210> 19
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
ħö.
      <222> (26)...(0)
      <223> single nucleotide polymorphism
FU.
      <221> misc_feature
      <222> (0)...(0)
**
      <223> Accession number cg32296860
127
įš.
      <400> 19
                                                                               51
      cagcactttg ggaggccgag gcgggcggat cacccgaggt caggagttcg a
TU.
   <210> 20
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg32296860
      <400> 20
```

ttgggaggcc gaggcgggtg gatcaccgag gtcaggagtt cgagaccagc

50

<210> 18

<210> 21

```
The state of the s
```

```
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg32296860
<400> 21
gggaggccga ggcgggtgga tcaccgaggt caggagttcg agaccagcct
                                                                        50
<210> 22
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg32296860
<400> 22
cgggtggatc acccgaggtc aggagatcga gaccagcctg gccaacatgg t
                                                                         51
<210> 23
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg32296860
<400> 23
                                                                         51
caacatggtg aaaccctgtc tctaccaaaa atacaaaaat tagctgggtg c
<210> 24
<211> 51
<212> DNA
```

```
The first of the state of the s
```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43264442
<400> 24
ggggcgcggg tggagaagct gcggcggcgc ggcccgtagg aaggtgctgt c
                                                                        51
<210> 25
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43264442
<400> 25
                                                                         51
aggaaggtgc tgtccgaacg atcggaatag gagcggtccc tgcgcttgct g
<210> 26
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43998926
<400> 26
                                                                         50
gaacccaaga gccactgata actggacaat ccaatgaaac agaggaagca
 <210> 27
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

```
<220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43998926
      <400> 27
      ctcaggctga gttgcctcca gtcttgggaa tgtcatctta tactggtact g
                                                                              51
      <210> 28
      <211> 51
     <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
ij.
      <222> (0)...(0)
      <223> Accession number cg43941594
     <400> 28
                                                                               51
     ggttataaaa atagataact cgcagggtca taaatatcta cagttagtag a
TU.
     <210> 29
į...
     <211> 51
     <212> DNA
ļ.
     <213> Homo sapiens
Į.
FU.
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43962927
    <400> 29
                                                                               51
      qccactccct gctccctqcc tgagcaccat tcgcagtctt gtttcctgtt t
      <210> 30
     <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
```

```
Ţ
Ų
T
gazi.
Ē.
Là:
```

```
<222> (0)...(0)
     <223> Accession number cg43991661
     <400> 30
     cttgtttatt atctatcata gacatgaaga tgatcatagt taataccaat t
                                                                              51
     <210> 31
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43991661
     <400> 31
    . actgttttag gcccaatatt gatatgttaa atgaaggtat cagagaatct t
                                                                              51
ijĴ
     <210> 32
+ 1
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43310449
     <400> 32
     ctaaagattt catgtcttca gtggagctgg catactgtaa ttgctatgtg g
                                                                              51
     <210> 33
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43310449
     <400> 33
     actggcatac tgtaattgct atgtgaaact taatataacc tcaacagcag c
                                                                              51
```

```
<210> 34
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43984524
                                                                               51
      tcaatgaggc tttctattaa tttcccttaa aagcaatggt tattattgaa a
      <210> 35
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
70 g (
      <222> (26)...(0)
la.
      <223> single nucleotide polymorphism
II.
Į.
      <221> misc feature
      <222> (0)...(0)
F.
      <223> Accession number cg43248101
      ggccctgaat gttatgaagg tttgaagtca gcctacagat aacaggatta t
                                                                               51
Ls.
<210> 36
F.
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43974968
                                                                               51
      cagtggctca cgcctataat cccagaactt tgggaggcca aggcaggagg a
      <210> 37
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
```

Marian 1111

```
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43074195
                                                                         51
 cagctgaagg agataattgg tgtgagcaga agctgaaagc ttctaatgga g
 <210> 38
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43074195
 <400> 38
 attggtgtga acagaagctg aaagcatcta atggagacac tcctacacat g
                                                                         51
 <210> 39
 <211> 51
 <212> DNA
 <213> Homo sapiens
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43074195
                                                                         51
 aacagaagct gaaagcttct aatggggaca ctcctacaca tgaagacttg a
 <210> 40
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
 <222> (0)...(0)
```

```
<400> 40
      tgaaagcttc taatggagac actccaacac atgaagactt gaccaagaac a
                                                                              51
      <210> 41
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43988092
      <400> 41
                                                                              50
      tagcgataca aatatatata tatattttat ccaaaaatat gttttataca
      <210> 42
CO
      <211> 51
      <212> DNA
TI.
      <213> Homo sapiens
i.
2
      <220>
E i
      <221> allele
L.
      <222> (26)...(0)
      <223> single nucleotide polymorphism
M
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43953517
      <400> 42
      aagttottgt agtaggtagg gggtattact agggatatct gtggcatgat t
                                                                              51
      <210> 43
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
   <221> misc feature
      <222> (0)...(0)
```

<223> Accession number cg43074195

<223> Accession number cg43953517

```
<400> 43
   tgtagtaggt agggggtact actagcgata tctgtggcat gattatgcat t
                                                                           51
   <210> 44
   <211> 50
   <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (25)...(26)
  <223> Nucleotide deleted between bases 25 and 26
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43953517
  <400> 44
  atatctgtgg catgattatg cattcgtagt attatttaat taatttgggg
                                                                           50
  <210> 45
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
<221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43953517
  <400> 45
  gtagtattat ttaattaatt tgggggtcat tttgcttcct tttctttatg c
                                                                           51
  <210> 46
  <211> 50
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (25)...(26)
  <223> Nucleotide deleted between bases 25 and 26
  <221> misc feature
  <222> (0)...(0)
```

```
The state of the s
```

```
<223> Accession number cg43953517
<400> 46
                                                                        50
aattaatttg gggttcattt tgcttctttt ctttatgctt agattatctt
<210> 47
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43953517
<400> 47
                                                                        50
attaatttgg ggttcatttt gcttcttttc tttatgctta gattatctta
<210> 48
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43290087
<400> 48
cctaacctct tggtaacggt agtcccgaga gttcgcagtg tcagtgaaat c
                                                                        51
<210> 49
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43294632
```

```
<210> 50
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43056971
      <400> 50
                                                                              50
      gttatttgaa aaatacctat tttttccaaa gtgtgtaaaa gattgttttg
<210> 51
i.
      <211> 51
      <212> DNA
      <213> Homo sapiens
TU:
      <220>
j.
      <221> allele
ž
      <222> (26)...(0)
Ēź.
      <223> single nucleotide polymorphism
M
     <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43976227
<400> 51
      ttcatgtgca agctaagtta ttcctatggt caatcctctc catcttctgg t
                                                                              51
      <210> 52
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43994600
```

ccttgttccc actctccttc atatctaagt catcaaacat ctgaatgaga g

agtagagagt aggggtaaaa gctgggcatt gcaaaaggat tggtttaaga a

51

51

<400> 49

<400> 52

```
arms after might and after the sign of the state of the sign of th
```

```
<210> 53
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43925670
<400> 53
                                                                        51
atgttcttgt attttttcc catctctaca gacataagtg agcctcactg g
<210> 54
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43925670
 <400> 54
                                                                         51
 tgtatttttt tcccatcttt acagatataa gtgagcctca ctggaaattt t
 <210> 55
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43925670
 <400> 55
 catctttaca gacataagtg agccttactg gaaatttttt caacagtagt c
 <210> 56
  <211> 51
  <212> DNA
  <213> Homo sapiens
```

```
<221> allele
                    <222> (26)...(0)
                    <223> single nucleotide polymorphism
                    <221> misc feature
                    <222> (0)...(0)
                    <223> Accession number cg43925670
                    <400> 56
                    tacagacata agtgagcctc actgggaatt ttttcaacag tagtccagat c
                                                                                                                                                                                                                                                                        51
                    <210> 57
                    <211> 51
                    <212> DNA
                    <213> Homo sapiens
                    <220>
                    <221> allele
                    <222> (26)...(0)
                    <223> single nucleotide polymorphism
                    <221> misc feature
                    <222> (0)...(0)
                    <223> Accession number cg43925670
 ĩĐ.
                    <400> 57
                                                                                                                                                                                                                                                                        51
                    cataagtgag cctcactgga aatttcttca acagtagtcc agatcttgag a
 LJ.
                    <210> 58
 i i ·
                    <211> 51
                    <212> DNA
                    <213> Homo sapiens
i.d.
THE STATE OF THE S
                   <220>
                    <221> allele
                    <222> (26)...(0)
                    <223> single nucleotide polymorphism
                    <221> misc feature
                    <222> (0)...(0)
                    <223> Accession number cg43925670
                    <400> 58
                    ccagatcttg agatcttcag aaatgtagga atcaatgctt atttgtgtga g
                                                                                                                                                                                                                                                                         51
                    <210> 59
                    <211> 51
                    <212> DNA
                    <213> Homo sapiens
                    <220>
                    <221> allele
                     <222> (26)...(0)
                    <223> single nucleotide polymorphism
                    <221> misc_feature
```

<220>

```
Herst fifty days only and the second second of the second second
```

```
<222> (0)...(0)
<223> Accession number cg42489232
atttttagta gagacaaggt tttgctatgt tggccaggct ggtctcgaac t
                                                                        51
<210> 60
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42489232
<400> 60
gtagagacaa ggttttgcca tgttgcccag gctggtctcg aactcctgac c
                                                                        51
<210> 61
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42489232
<400> 61
tttgccatgt tggccaggct ggtcttgaac tcctgacctc aagcgatccg c
                                                                        51
<210> 62
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43926168
```

```
<400> 62
      gaagggctct ccttcacggg gactgaaaaa aaaaatcatg aaatcctaat
                                                                              50
      <210> 63
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43926168
ccttcacggg gactgaaaaa aaaaatcatg aaatcctaat tttcattttc
                                                                               50
* ....
i.i.
      <210> 64
<211> 51
     <212> DNA
      <213> Homo sapiens
žė.
     <220>
Ħ
      <221> allele
<222> (26)...(0)
j.a.
     <223> single nucleotide polymorphism
Fil
     <221> misc feature
     <222> (0)...(0)
      <223> Accession number cg43336163
      <400> 64
                                                                               51
      agccgggaat gctgctgctg ctgctactgc tgctgctgct gctgggggga t
      <210> 65
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0) ... (0)
      <223> Accession number cg43987164
     <400> 65
```

```
agggcagece etcagaagee tteecageag atceggggae eccettetgg t
                                                                          51
  <210> 66
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43119489
  tttttcatcc tatcaattga atgtgccttg aaaaatccag caagagcggg g
                                                                          51
  <210> 67
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43957170
<400> 67
  ctactaaaaa tacaaaaaat tagccaggcg tggtggcgca tgcctgtagt c
                                                                          51
  <210> 68
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43957170
  acaaaaaatt agccgggcgt ggtggtgcat gcctgtagtc ccagctactc g
                                                                          51
<210> 69
  <211> 51
  <212> DNA
  <213> Homo sapiens
```

```
<221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
     <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43957170
      <400> 69
      aaaattagcc gggcgtggtg gcgcacgcct gtagtcccag ctactcggga g
                                                                              51
      <210> 70
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
14
      <223> Nucleotide deleted between bases 25 and 26
Ţ
<221> misc feature
      <222> (0)...(0)
TÚ.
      <223> Accession number cg38438124
j.4.
ř.
      <400> 70
i.a.
      actttgtgta tatgtgtgtg tgtgttgttg ggggggggtg agtgtgtgcg
                                                                               50
TI.
     <210> 71
fu
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg38438124
                                                                               50
      tttgtgtata tgtgtgtgt tgtgtttggg ggggggtgag tgtgtgcgcg
```

<220>

<210> 72 <211> 51

```
Ш
₽
İ
W
```

```
<212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg42923882
      <400> 72
      agtgggcagg gaccctggga gcctcaattc tcaatgcccc accctttacc t
                                                                               51
      <210> 73
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43948037
      <400> 73
---
      aaagttctcg aaatgcttca tccccaacaa agcaaatttc atgtccgtca g
                                                                               51
      <210> 74
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature -
      <222> (0)...(0)
      <223> Accession number cg43948037
                                                                               51
      ctgttgcttt ccctggggtg tccagactca ccaggggagt cagaatcttc t
      <210> 75
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
```

```
The proof of the second of the
```

```
<223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43948037
 <400> 75
                                                                          51
 tocctggggt gtccaggctc accagcggag tcagaatctt ctggttctcc c
 <210> 76
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43948037
 <400> 76
 tgtccaggct caccagggga gtcaggatct tctggttctc ccttttcatc a
                                                                          51
 <210> 77
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43948037
 <400> 77
                                                                          51
 caccagggga gtcagaatct tctggctctc ccttttcatc aagtcttcta a
 <210> 78
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42703622
```

```
ųj
TU
hā.
2
j.á.
i di
TU:
Til.
```

```
<400> 78
tgtgggttga cagattttta aaatacaatt tagagtattt ggggttttgt t
                                                                        51
<210> 79
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43336176
<400> 79
tgctgctgct gctgctgctg gggggatcac agaccatttc tttctttcgq
                                                                         50
<210> 80
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43982923
<400> 80
acgcaggggt ccccgcggcc gccgcaatgc agaaatacga gaaactggaa a
                                                                        51
<210> 81
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43265203
<400> 81
acattcaagc tcggtgttgt ttcacccgcg tgcgccccgg ctgcggcggt g
                                                                         51
```

```
<210> 82
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
    <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43966625
      <400> 82
      cgctgcccgc gcggggacca caacccaagt cgcggccgcc gcagccatgc g
                                                                              51
      <210> 83
      <211> 51
      <212> DNA
      <213> Homo sapiens
     <220>
      <221> allele
     <222> (26)...(0)
10
      <223> single nucleotide polymorphism
14
     <221> misc_feature
<222> (0)...(0)
į.
      <223> Accession number cg44004317
      <400> 83
l.i.
     caccacgatg cggaccccac tgcccagctc gacctcctcg ggagggggcg c
                                                                              51
TJ.
      <210> 84
T
<211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43925424
      <400> 84
                                                                              51
      teggegeaca gtegetgete egegetegeg eceggeggeg etecaggtge t
      <210> 85
      <211> 51
      <212> DNA
```

<213> Homo sapiens

```
The state of the state and then the state at the state of ```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44002977
<400> 85
tagaggacca cagggtgcag agaggatgtc ctgagggtcc ttcctaagag g
 51
<210> 86
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg27803682
ttgagectec aggettetee ttgacateat teeteteett eettgetgea a
 51
<210> 87
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43971768
gaactgcagt catgcacagc tggcggccag ccaaaggcat tttactgagc a
 51
<210> 88
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
<222> (0)...(0)
 <223> Accession number cg43987181
 <400> 88
 aagcttagta ctaaaaagtc aaaatatttt tgcatgatag aggagtgtaa a
 51
 <210> 89
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43263644
 gccgggacag tgttgtacag tgtttcgggc atgcacgtga tactcacaca g
 51
 <210> 90
 <211> 51
 <212> DNA
ļ.ā.
 <213> Homo sapiens
<220>
fü
 <221> allele
₽÷.
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
THE STATE OF THE S
 <223> Accession number cg44131079
î.
 <400> 90
 51
 cggtgatatt acaaaacaat gaatttggaa ctattataga ttgggcacct c
 <210> 91
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44031914
```

gcacagggga gtgagggcag ggcgcccgca gggggcacgc agggagggcc c

51

<400> 91

```
<210> 92
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0) ... (0)
 <223> Accession number cg43932550
 <400> 92
 catcatagaa ctccttgtgg atctcataga gctcaggcac tttgaagaag a
 51
 <210> 93
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
ğ., 5.,
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43932550
 gacaggaccc attttctcat ctccaggccc ttttccaagt ccagctcact c
 51
 <210> 94
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cq43967268
 acggagaaag gagcagctga aagtgacctg gactccagcc ctggctgttg t
 51
 <210> 95
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
```

FU

Ŋ

```
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43920534
 <400> 95
 cgtcactatg tacttggttt tgcgcttttt ttccttaaaa aaaaaaggcc
 50
 <210> 96
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
L.S.
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
T.
 <221> misc_feature
 <222> (0)...(0)
<223> Accession number cg43920534
 <400> 96
 cttcataaaa ccaatcgaga gagagggact taaaatcctg cttaccaaaa
 50
FL.
 <210> 97
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43926887
 attgttttca acatgaagta aagaaaaacg ttgaggcctt tactattagc t
 51
 <210> 98
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43926887
 <400> 98
 gtctaatact cctgggagga aggaaaatat ctatctagta agaattttaa t
 51
 <210> 99
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
<223> Accession number cg43088901
 gagcaccgtg tcaagctgct ctgagtcaca gtgggatgaa ccagccgqgg c
 51
FU.
 <210> 100
L
 <211> 50
 <212> DNA
 <213> Homo sapiens
ļ.
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43920213
 <400> 100
 gtgagccata atatgatggc cagcagtggc gctgccttcc acccatggtg
 50
 <210> 101
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
```

```
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43969348
 <400> 101
 tgggggaaat gggcctcttg ggggttcact gcacggcttg ttcattggca
 50
 <210> 102
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
4
 <221> misc feature
ļ.
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43966692
 <400> 102
 tacgaattgg catatttgtt tattttcagt ttgtgaaaat gtccttaatt
 50
 <210> 103
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43265754
 <400> 103
 cgagaccagc ctggccaaca tggtgcaacc ccatctctac taaaaataca a
 51
 <210> 104
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

Ü

LJ.

M

Ti. Ŧij.

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43265754
<400> 104
ccaacatggt gaaaccccat ctctattaaa aatacaaaaa ttagccgggc g
 51
<210> 105
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43922227
<400> 105
atgttgtgtt gggtccccag attcctattt gattttcttg catcattttc t
 51
<210> 106
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43927549
<400> 106
 50
gtaagcagca cactaggagg cccagcgcag gcaaagagaa gatggtgctg
<210> 107
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
the first of the state of the s
```

```
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43957486
<400> 107
tgtatcatag aaatgtaact tttgtgagac aaaggttttc ctcttctatt t
<210> 108
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43973080
<400> 108
gacactagga atttcttaaa aagaagatgt tggaagcaga acacttacta
 50
<210> 109
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42914441
ctctgacctg agtctttgtt ttaaggagta tttgtcttcc tttgtctaat g
 51
<210> 110
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43942318
<400> 110
ggacaccctc ggaccctcga aaacgtctca ggagctatga agacatgatt g
 51
<210> 111
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43929933
<400> 111
caggecagge etgtgtgtee acetggacag geatteteet tgttecagaa a
 51
<210> 112
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43929933
<400> 112
cgcagcccca agtgtcaaca aggggttcaa taaggctttc tgggagccac t
 51
<210> 113
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
```

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43929933
<400> 113
 50
ctggcagctg gtgggatgga aggggaggtg gaaaagggca gaggaaatgg
<210> 114
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43070037
<400> 114
 51
aggtcaggag tttgagacca gcctaaccaa catggtgaaa ccccatctct a
<210> 115
<211> 51
<212> DNA
 <213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43070037
<400> 115
 ggtcaggagt ttgagaccag cctaggcaac atggtgaaac cccatctcta c
 51
 <210> 116
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43070037
 <400> 116
 51
gtgggtgcct gtaatcccag ctacttggga ggctgaggca ggagaatcac c
```

```
<210> 117
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43070037
<400> 117
atcccagcta ctcgggaggc tgaggtagga gaatcacctg aacctaggag g
 51
<210> 118
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43070037
<400> 118
 51
teccagetae tegggagget gaggegggag aateaeetga aeetaggagg e
<210> 119
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
 <223> Accession number cg43123664
<400> 119
 51
 agtacgccag cccgggggcg ccccgcatgt acatgttcca cgcgggattc c
 <210> 120
 <211> 42
 <212> DNA
 <213> Homo sapiens
```

```
The first state of the first state of the state of the first state of
```

```
<220>
 <221> allele
 <222> (17)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg21428405
 <400> 120
 42
 nacgcgttgg cgtcgtcctc gttgagctca tcaatccacc ac
 <210> 121
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43982633
 <400> 121
 acacagecce agtttgettt acagegeaag ttacaaactg teeetttaaa a
 51
 <210> 122
<211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43054268
 <400> 122
 50
 tctagatatt taactgaccc actatttcct caaggatact gcatttggac
 <210> 123
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43054268
gactatatga tcaaagcctt atagcaaaaa aatttttaa tatttgcaaa
 50
<210> 124
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43943775
tgaagattac ccccacacct gtgtggcaag tgatcaaaaa ggaacaggac c
 51
<210> 125
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42886565
<400> 125
ggcaacaaaa gcgaaactcc atctcaaaaa aaagagctat aggatcttta
 50
<210> 126
<211> 50
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42886565
<400> 126
 50
aagcgaaact ccatctcaaa aaaaagagct ataggatctt tacaatatat
<210> 127
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42886565
<400> 127
 51
tcctctgtct gctggctggc cgcgtatatg aagaagacta attggacaca g
<210> 128
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42886565
 <400> 128
 51
 gcgtgtatga agaagactaa ttggatacag agccgtgatg aattaaagtc t
 <210> 129
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43307001
<400> 129
gcctcccggg ttcaagtgat tctcccgcct cagcctccca gtagctggga t
 51
<210> 130
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43307001
<400> 130
ggggtttcac catgttggcc aggctagtct cgaactcctg acctcaagtg a
 51
<210> 131
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43307001
 51
atgttggcca ggctggtctc gaacttctga cctcaagtga tccgcccacc t
<210> 132
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43047341
```

```
<400> 132
 51
 ggtggatcac ctgaggtcac gagtttgaga ccagcctgac caacatggag a
 <210> 133
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43965652
 tccatttctt tttcttttt ttttttaagt gagactacat tggcaaatgg
13
 50
*_{
 <210> 134
į.
 <211> 50
 <212> DNA
 <213> Homo sapiens
T
<220>
8
 <221> allele
<222> (26)...(0)
fact.
 <223> single nucleotide polymorphism
 <221> misc_feature
Ti.
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43965652
 <400> 134
 ccatttcttt ttctttttt tttttaagtg agactacatt ggcaaatggg
 50
 <210> 135
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
```

```
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
 <223> Accession number cg43965652
 <400> 135
 50
 ttccaaacat caaatgaagg gggataatgg ttaccectat cgttttcaac
 <210> 136
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43985709
 <400> 136
 51
 agctcacttt ggcccttctc cacccgtccc aaccccattg ctaacaacat g
 <210> 137
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44027791
 <400> 137
 50
 gccacagggc tcctttccac cagggcccag ggaggacaca ggtgggggac
 <210> 138
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
```

```
The first first the first state of ```

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44027791
<400> 138
                                                                        51
tcttcagggc ctcccgccgc agttgacctt acaagttctt cgtgaccagg t
<210> 139
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44027791
aagggttccc acgcgtcctg gtttaaaacg tctcattggg cacggccagt g
                                                                        51
<210> 140
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44027791
<400> 140
                                                                        50
gtcctggttt agaacgtctc attggcacgg ccagtgtcca cagtctgggc
<210> 141
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
<222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43984418
     tatgcaatgt tcagcatttt ttttttcaca gcactagaga ccctgttaaa
                                                                              50
     <210> 142
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43984418
     <400> 142
     cattttttt tttcacagca ctagaaaccc tgttaaatag gggatatgag t
                                                                              51
     <210> 143
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
ini.
     <221> allele
     <222> (26)...(0)
M
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43945210
     <400> 143
                                                                              50
     cagacagaca caaggttctt tttttgtttg ttttgtttt cctcgccaac
     <210> 144
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
```

```
<221> misc_feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
   <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43917396
                                                                          50
     taggggctga aacgcagtcg gggccggcac tgcccaggaa gggactccgg
     <210> 145
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
1
     <222> (0)...(0)
     <223> Accession number cg43949162
ļš.
     <400> 145
                                                                          51
     tagacaatac catctctagg aacacgctgt cactcacaca tggatgtgtt g
     <210> 146
j.4.
     <211> 50
     <212> DNA
22
     <213> Homo sapiens
jå.
ļ.
     <220>
M
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg41653463
     <400> 146
     50
     <210> 147
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
```

<221> allele

```
<221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg41653463
     <400> 147
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43285429
     <400> 148
Fig.
     cccaqtcaaq ataaggagga tcccaacagc tcccctccga ggttgggctc t
Ļå.
     <210> 149
     <211> 51
La.
     <212> DNA
ķė.
     <213> Homo sapiens
ГЦ
fli
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43918636
     agcagcaget gttggagtag aaccgagtcc agggcgcgac catcttcatc g
     <210> 150
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
```

50

51

51

<222> (26)...(0)

<221> allele <222> (26)...(0)

<223> single nucleotide polymorphism

<223> single nucleotide polymorphism

```
<221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0) ... (0)
 <223> Accession number cg44005525
 <400> 150
 taagcagete tettetgtga cagacaatea tgtaagaact gtgaaaeeee
                                                                          50
 <210> 151
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0) ... (0)
 <223> Accession number cg44005525
 gacaaatcat gtaagaactg tgaaaaccca gtttatgtag cgtatctctt g
                                                                          51
 <210> 152
 <211> 51
 <212> DNA
 <213> Homo sápiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg40986905
 <400> 152
 atttttagta gagacggggt ttcactgtgt tagccaggat ggtctcgatc t
                                                                          51
 <210> 153
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc feature
```

```
<222> (0)...(0)
      <223> Accession number cg43303871
      <400> 153
     aataagggag aactactatt ttttttaaga tctcaaaata attaataata a
                                                                              51
     <210> 154
     <211> 51
      <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43303871
     aataagggag aactactatt ttttttaaga tctcaaaata attaataata a
                                                                              51
     <210> 155
     <211> 51
     <212> DNA
     <213> Homo sapiens
ļ.
     <220>
<221> allele
TU
     <222> (26)...(0)
ļ.
     <223> single nucleotide polymorphism
1.3
     <221> misc feature
<222> (0)...(0)
TŲ.
     <223> Accession number cg43918386
: FU
     cttctacccc atgggtaaat gtattcacat attaccaaga gaagaagcac a
                                                                              51
     <210> 156
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43923712
     <400> 156
     aggaatcctg gacaggagtt ttctgtagag gcgtttaaaa ccctaccgaa t
                                                                              51
```

```
<210> 157
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43936083
    <400> 157
    gctaactggt gacagttata aaaacgcaaa aaggagcctg ggaaacagca a
                                                                            51
  <210> 158
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
   <223> single nucleotide polymorphism
    <221> misc_feature
12
   <222> (25)...(26)
T#
    <223> Nucleotide deleted between bases 25 and 26
U
TU
    <221> misc feature
L.
    <222> (0)...(0)
3
    <223> Accession number cg43936393
į.
   <400> 158
aaaaacaagt ttcagtaaaa aaaaaactaa aacaaacact gaagtagagt
                                                                            50
1
   <210> 159
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43936393
    <400> 159
```

```
50
    aaaacaagtt tcagtaaaaa aaaaactaaa acaaacactg aagtagagtt
    <210> 160
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43940465
    <400> 160
    actgtattat ttatttacat gggctaaaag caaagaaaaa tgagtccctt c
                                                                             51
    <210> 161
    <211> 50
    <212> DNA
  <213> Homo sapiens
   <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
TO
L
    <221> misc feature
TU
    <222> (25)...(26)
ļģ.
    <223> Nucleotide deleted between bases 25 and 26
Ħ
lad.
   <221> misc_feature
ķš.
   <222> (0)...(0)
    <223> Accession number cg43940880
    <400> 161
    tagtttgtaa gaactgtaca aaaaatgctt ctggagattt ctttggcaga
                                                                             50
    <210> 162
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43950657
    <400> 162
    tttgggatcc tgatcaattc tttctaatgt tgttgaaaat gacaaagttg g
                                                                             51
```

```
<210> 163
     <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
     <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43950657
    <400> 163
    cagctgccaa aaccgtgtgt gcaagggcgc gacctaaggg gacattcttg t
                                                                              51
    <210> 164
     <211> 50
    <212> DNA
     <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
    <221> misc feature
=
    <222> (0)...(0)
Lá.
    <223> Accession number cg43973740
1.1.
    <400> 164
Πij
    tgaagcaaac aaacaaacaa aaaaaggaga gcttcattag tagccaagat
                                                                              50
TL
    <210> 165
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43980521
                                                                              51
    gcgcatgggt ccctccagga aggctgggtt agagtcccag ggtggtcccc a
    <210> 166
    <211> 51
```

```
<212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43980521
     <400> 166
     ccctcagctt tggggggtcc ttcctaaagg ggcttccctt ggcagaaggg g
                                                                             51
     <210> 167
     <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
<221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43980521
£D
L
    <400> 167
agcatcttga tctagaggac tgaggacagc cccatcaggc tggggccctg g
                                                                             51
<210> 168
Į...á.
    <211> 51
Lā.
    <212> DNA
ru:
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature-
    <222> (0)...(0)
    <223> Accession number cg44019839
    <400> 168
    agctacacag aggaaataac ttaggcactt tctgtttttt taaaaaaaaat a
                                                                             51
    <210> 169
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
```

≘

```
that are of mile that and tour into it refer the from that the
```

```
<223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44021891
 <400> 169
aguagacetg getteettae aacagagaca ggetggtgge tggggetaga g
                                                                         51
 <210> 170
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
<222> (0)...(0)
<223> Accession number cg44021891
<400> 170
gcccccaget aggaccctgt agttgagacc gtggcatgat acaaggacct g
                                                                         51
<210> 171
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44921773
<400> 171
ttctgagaca gggtcttgct ctgtcaccca ggctggagtg caatggcacg a
                                                                        51
<210> 172
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44921773
```

```
gggctcaagt gatcctccca cctcagcctc ccgagtagct gagactacag g
                                                                          51
     <210> 173
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43961485
     <400> 173
     51
     <210> 174
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
17
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
TU.
     <222> (0)...(0)
     <223> Accession number cg43985955
33
     <400> 174
in in
     qagcacagat acagtttatg taactagatg qaagaaaatg qaattactcc a
                                                                          51
Ē,Š.
fill.
     <210> 175
TU
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg44916647
     <400> 175
                                                                          51
     gctcagcagc ccctaggaag ttaagtgaga gctacagggc aggggggctc c
     <210> 176
     <211> 50
```

<400> 172

<212> DNA

```
Hard that many of the man with the other than the front food fault.
```

```
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44916647
 <400> 176
 tctgtacatg taacatgtgg ccatgccagg catcccagca tctatcctga
                                                                          50
 <210> 177
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44021459
 <400> 177
 ggtcactgtt tcctcggcat cgtgccgcct ggagagaact cccgaccgqq a
                                                                          51
 <210> 178
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43926814
 <400> 178
tagaattttc tatcccccc catttttcca gtaataaaaa gtagtgctgg g
                                                                          51
 <210> 179
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43926814
gtagtgctgg gatctggcac ccagacttgg tttttatcct gaccatttac a
                                                                         51
<210> 180
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43931431
<400> 180
agccatgtac gtgaaattgc ttgggtacct gaactcccgc tggaatttct a
                                                                         51
<210> 181
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44031765
<400> 181
atgcacctgg cccacatggc tgggcactgc agcctgcact ccacttccag q
                                                                         51
<210> 182
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
<211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43970492
      <400> 183
      tgctttgttg cttcaagatg catgcccatc ctggctttag tgtccaagta t
     <210> 184
     <211> 51
     <212> DNA
     <213> Homo sapiens
1.2
     <220>
     <221> allele
ПЩ
     <222> (26)...(0)
Ē.
     <223> single nucleotide polymorphism
Ξ
<221> misc_feature
    <222> (0)...(0)
     <223> Accession number cg42847874
TU:
     acaaaaatta gccgggcatg gtggcacacg cctgtagtcc cagctactta g
     <210> 185
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43951020
```

gagtgcagtg gctcactgca acctctgcct cccaggttca agcaattctc c

catctttata ggccaccact gtgtgtttgc tgcgccgggc acccacgaac t

51

51

51

51

<222> (0)...(0)

<400> 182

<210> 183

<400> 185

<223> Accession number cq44031765

```
<210> 186
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> aliele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43951020
<400> 186
caacctccgc ctcccaggtt caagcgattc tcctgcctca gcctccctag t
                                                                         51
<210> 187
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43971614
<400> 187
accattgctt tggtcaattc aacctagggg gaaaagagtc aaatatgtcc a
                                                                        51
<210> 188
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43971614
<400> 188
ctctgcacca cagcaccgag gatagcacaa acccctcacg cgtctgcgtc c
                                                                        51
<210> 189
<211> 50
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (25)...(26)
  <223> Nucleotide deleted between bases 25 and 26
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43962954
  <400> 189
  cgggctcccc atgcaqccct agagaggag aagtccagtg tgctgttcca
                                                                          50
  <210> 190
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
 <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43917689
<400> 190
  aggcaacacc tgtggaggaa gggcatgggg caaaagctca cctcagaagt g
                                                                          51
 <210> 191
 <211> 51
  <212> DNA
 <213> Homo sapiens
 <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature-
  <222> (0)...(0)
  <223> Accession number cg43916785
                                                                          51
  tcagatgact ttacaaccaa gggagcacac agggcaacaa caaattagag g
  <210> 192
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
```

```
<210> 193
      <211> 51
      <212> DNA
      <213> Homo sapiens
     <220>
      <221> allele
     <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43986954
      <400> 193
      agtggaaaca tttttgttca atttccagga attttctctt ggggaaagtc g
i.s
      <210> 194
<211> 51
      <212> DNA
TU
      <213> Homo sapiens
1.4
      <220>
ĿĠ
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
TU
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg42882543
      tcccgagtag ctgggattac aggcacgcgc caccacgccc agctaatttt t
      <210> 195
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
```

gcaacttatt ttaaaaccca aaggaaaaag gatggtacta ccataaatca c

51

51

51

<223> single nucleotide polymorphism

<223> Accession number cg43287642

<223> single nucleotide polymorphism

<223> Accession number cg43062833

<221> misc_feature <222> (0)...(0)

<221> misc_feature <222> (0)...(0)

<400> 192

```
Herth Ment with the control of the c
```

```
<400> 195
tgaaaaqtat tatggaaatc actgctgcac aggaaaagta attcagatgt t
                                                                        51
<210> 196
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43959148
<400> 196
agactagtgt gggccttggg ccccctcatt ttgacatcct tccagatggt
                                                                        50
<210> 197
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950766
                                                                        50
gttcacattt agtgaacctg catttatggg ggggggggg gtacacagta
<210> 198
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
```

```
<223> Accession number cg43958860
 <400> 198
tctgtctttt atttaacaaa aaatgcaatt aactgtaaac ttggaatcaa g
                                                                         51
<210> 1.99
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43968205
<400> 199
ctatagcaga gggggttatg ggggcaggag ggtagactga catacagaag t
                                                                         51
<210> 200
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950996
<400> 200
acgccagtcc agaaagaagg tgctgaagcc cctgctctgt cctctccatc a
                                                                        51
<210> 201
<211> 51
<212> DNA
<213> Homo sapiens -
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44924222
<400> 201
taagggtgag cagcagcagg agcgctttga agaagaagta gaaggggatg t
                                                                        51
<210> 202
```

```
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single rucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44924222
atgtcaggca ccgtgcgcag actgcggtga ctggtggcat acaggacctt g
                                                                         51
<210> 203
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44924222
<400> 203
gtaccggaag gcgtaggagg agacggtgag gatgagagtg accacgtggt g
                                                                         51
<210> 204
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44916575
<400> 204
                                                                         51
gaggacaaaa acagaaagcc ctgtgtgtgt gggaaaactc cgctgcagag a
<210> 205
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
```

```
<223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42650960
     <400> 205
     ggetggagtg cagtggcacg atctcagete actgcaagee tecgeeteee g
                                                                             51
     <210> 206
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43947129
     <400> 206
     ctgggggcgt ccatggtgcg gcggccaggg cggtgagtca gccaaggagg a
                                                                             51
     <210> 207
Ē. d.
     <211> 51
10
     <212> DNA
<213> Homo sapiens
<220>
    <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
TL:
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43922383
     <400> 207
     atctgaaaat ggtgtgtggc gtcgcacgcg ccagctatcg tcagtgcctt t
                                                                             51
     <210> 208
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43922383
```

<222> (26)...(0)

.... ·

```
<400> 208
cgcgcgccag ctatcgtcag tgcctgttat tgccattggg tttgtgactg t
                                                                        51
<210> 209
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43922383
tcagtgcctt tattgccatt gggttgtgac tgttgatata gtgacgacct
                                                                        50
<210> 210
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43922383
<400> 210
attgccattg ggtttgtgac tgttggtata gtgacgacct caggagcaac a
                                                                        51
<210> 211
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43922383
<400> 211
```

```
ttgtgactgt tgatatagtg acgacgtcag gagcaacagg tgggttaaaa a
                                                                             51
     <210> 212
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cq43953935
     <400> 212
     ctttttaaat aaatgactgc gagtgggtgt aaattctgag aaaattacat t
                                                                             51
    <210> 213
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
i.a.
    <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
FU
    <222> (25)...(26)
las.
    <223> Nucleotide deleted between bases 25 and 26
₽₽.
    <221> misc feature
    <222> (0)...(0)
ГШ
    <223> Accession number cg43933591
    <400> 213
    acatttggaa ttttagcttt tttttgcctc tctactgtgt cactaaatat
                                                                             50
    <210> 214
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43949875
    <400> 214
                                                                             51
    ctgagtagct gggattacag gcgtgcgcca ccatgcccag ctaatttttt g
```

S

```
<220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43100840
     <400> 215
     ggacaggggt gcagctggca gccgaaaaag gggaccacct cggagggctg g
     <210> 216
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
<u>I</u>D
     <222> (0)...(0)
     <223> Accession number cg43922270
ĪΨ
Bud.
     <400> 216
3
     tgtatatgtg tacgtaggta gatgtatgca gcatgcggca ggtttgccag g
lė.
b.
    <210> 217
FU:
    .<211> 51
     <212> DNA
ПJ
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43993462
     <400> 217
     cagaatgagc tgcagaggtt tcctctctgc tttacaatcc cttattgaag t
     <210> 218
     <211> 51
     <212> DNA
```

51

51

51

<210> 215 <211> 51 <212> DNA

<213> Homo sapiens

<213> Homo sapiens

<220>

```
<221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cq43993462
     <400> 218
     taaacatcta cagagttgaa acatactctg tcatattaaa tatattatct a
                                                                              51
     <210> 219
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
Ų.
     <221> misc feature
. 녹급
     <222> (0)...(0)
     <223> Accession number cg43993462
     <400> 219
IJ
     tagtctcact tcttaccaaa aaaaacaatg aactggattc agcccactca
                                                                              50
ŦŲ.
ļ.
     <210> 220
     <211> 51
l á
     <212> DNA
     <213> Homo sapiens
 TU
     <220>
 ΠŲ
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43329741
     <400> 220
     gcagtgcagg agatgacaga gtgagaaggg cccagagcag aattctggcc c
                                                                              51
     <210> 221
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
```

```
<222> (0)...(0)
     <223> Accession number cg42910688
     <400> 221
     aaacaatttt tgttcaatgc ccaccaagac atatagaatt gggaactgat a
     <210> 222
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43967474
     <400> 222
     tgctggggac catggatggg gaggaggca cagggcccag tgcagatgaa
FU
    <210> 223
ļ.
    <211> 51
Ξ
    <212> DNA
    <213> Homo sapiens
ğırdığı.
TU
    <220>
    <221> allele
ПÚ
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cq43964140
    gctgagatct taggtcaaaa agctatagaa aagaaatcac tttgaaaaac a
                                                                              51
    <210> 224
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
```

51

50

<223> single nucleotide polymorphism

<221> misc feature

<222> (26)...(0)

<223> single nucleotide polymorphism

```
grap (frig way) odd grap way baile off off odd way was a law frig gray.
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43990820
<400> 224
ccggtttaaa aggaaaagta aaaaaaaatc cacagttgag cagttgatgt g
                                                                        51
<210> 225
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43930377
<400> 225
tcacagctgg attgaaagag tatttaggaa atgtggcaat gttgtttata t
                                                                        51
<210> 226
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43969800
<400> 226
                                                                        51
gcaagacgtg tcaggggaac caaggttcag atcattcccc cttcatctac a
<210> 227
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43973724
<400> 227
                                                                         51
tataagtgta tgcaatagaa atttgtattt tgtaatagaa aatttacctt g
```

```
<210> 228
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43258867
    <400> 228
    ggcccagtcc tggggctctg ggaggtcacg ctccctcctc aggctgggga
                                                                              50
    <210> 229
    <211> 50
    <212> DNA
    <213> Homo sapiens
ļ.
    <220>
ij
    <221> allele
    <222> (26)...(0)
Ti.
    <223> single nucleotide polymorphism
14.
8
    <221> misc feature
₽ġ.
    <222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
TU.
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg42907867
    <400> 229
    gacgatgtgg acgctgggag ggatctggcg ttggttttct gaaagccagg
                                                                             50
    <210> 230
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43920176
```

```
<400> 230
     aaagctgctt tgttaggttc cttatttttt attaactgtc ttttctcagt t
                                                                              51
     <210> 231
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43920176
     <400> 231
     attttgtcat tttttacatc aactttatgg tcttgttttt acatggtaat t
                                                                              51
     <210> 232
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
LØ.
TI.
    <221> misc feature
gade.
    <222> (0)...(0)
    <223> Accession number cg43950100
lå.
    <400> 232
Lá.
    caaaattaac aaattcacaa aatacgacag ctagaattac aaaatccatt c
                                                                              51
    <210> 233
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (25) ... (26)
    <223> Nucleotide deleted between bases 25 and 26
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43950100
    <400> 233
    ggcacaggga gaaaaacaaa gtgttcaatc agtccaggca cagggactgg
                                                                             50
```

```
<210> 234
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43950100
     <400> 234
     acattgaccc cttcagttcc tatatacagc acccaatatt cctttgaaat a
                                                                              51
     <210> 235
     <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
<u>Lu</u>
    <222> (0)...(0)
    <223> Accession number cg43950100
    <400> 235
    caggittagt gitgitgtag tggcatttgt ccagaattgg tacctcccca t
                                                                              51
    <210> 236
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
    <221> misc_feature
    <222> (0) ... (0)
    <223> Accession number cg43132640
    ctctatgaac tctgttttct ttctatgaga tattaaacca tgtaaagaac
                                                                              50
    <210> 237
```

```
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44938448
<400> 237
tgaaagttag agagctgcaa atctctaagt atcaatgtaa agaagcagat
                                                                        50
<210> 238
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44938448
<400> 238
                                                                         51
aatgccactt tcagatggaa gggaagtgag atggaaaaca acaaaaaagg a
<210> 239
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43949897
<400> 239
                                                                         50
 agcactttgg agctggcctc gcccctagga ggagagggtc cctcctgggt
```

```
<210> 240
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42549778
 <400> 240
gggggtgctc ctggaagccc caagaccatc caggattgcc tcccagctgc c
                                                                         51
 <210> 241
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44028574
 <400> 241
                                                                         50
 cageteccag etaccatgat gageetggeg gettgageae agtgagtget
 <210> 242
 <211> 51
 <212> DNA
 <213> Homo sapiens-
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44035718
 <400> 242
                                                                          51
 teteatetag tgetgaagte tgaggaetet geageateag acceaectet a
 <210> 243
```

```
<212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg44035718
     gaagagaaag ataggtttaa tttatctgaa gttttcatgg tgttaatatt t
                                                                              51
     <210> 244
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
Bad.
     <223> Accession number cg43963595
1Ú
FI
     cccccgcaga cagaggccgg aggctgtctg gtgcagcgat gtttaatggc a
                                                                              51
<210> 245
     <211> 51
ķ4:
     <212> DNA
     <213> Homo sapiens
TI.
     <220>
<221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43963595
     <400> 245
     ccccgcagac agaggccgga ggcttgctgg tgcagcgatg tttaatggca a
                                                                             51
     <210> 246
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
```

<211> 51

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43963595
<400> 246
atgttacagt atgtacaaga cccctccctc gggggacggg gcggactccg
                                                                        50
<210> 247
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43992566
<400> 247
aaatagagaa tocagacoot toccaaataa tttaagaact gagttttoot c
                                                                        51
<210> 248
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43992566
<400> 248
atttaaatct gaagcagaaa aaaaagacaa tttacaaaga attattgagc
                                                                        50
<210> 249
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43067745
<400> 249
tecetgeacg cetttacgte agactateac cacaagagee ttgagtgtee a
                                                                         51
<210> 250
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42697161
<400> 250
acgtggtgct ggtagtgtct tgttgggtgt gaattctctc tcatacaaaa g
                                                                         51
<210> 251
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43957889
<400> 251
gtgcaatggc atgatctcgg ctcactgcaa cctctgcctc ccgggttcaa g
                                                                         51
<210> 252
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
<222> (0)...(0)
    <223> Accession number cg42391024
    aactgcagac aaattttcaa attcaattct ttacttctcc aagatcttcg a
                                                                             51
    <210> 253
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43976566
    ctttaatgaa acactttgga tcgtcggtgc tgaagtgaaa agaatgtgct g
                                                                             51
    <210> 254
    <211> 51
    <212> DNA
<213> Homo sapiens
1.1
£D:
    <220>
Į.J
    <221> allele
fij
    <222> (26)...(0)
    <223> single nucleotide polymorphism
la d
    <221> misc_feature
ļ.
    <222> (0)...(0)
ļ.
    <223> Accession number cg44001900
TU
    gatgctaaaa gcttctgcga aatgtattca cgtttaatgt tgggaaatcc c
                                                                             51
    <210> 255
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
   <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43954569
```

```
<211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43925519
    agtggcccct ttcccgccct gaagacgttt cacacgaaaa ggccgtttgt t
                                                                              51
    <210> 257
    <211> 51
    <212> DNA
    <213> Homo sapiens
£.A
    <220>
    <221> allele
T.
    <222> (26)...(0)
<223> single nucleotide polymorphism
fu
14
    <221> misc_feature
    <222> (0) ... (0)
    <223> Accession number cg43145684
TU
    tggcaaaact gccagcagcg gttgctgaaa atgctgggtt cggtgcctac t
                                                                              51
    <210> 258
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43981803
    <400> 258
```

accagetegg agagggeact tgagatggte tatgaacaaa tetgtetaaa a

ttcagcccac atgactcagg gacacctccc cagcggttgc tggaggcacc

50

51

<400> 255

<210> 256

<210> 259 <211> 51

```
Hard Hard was all the sails will all all all and was with the sails and the sails are sails and the sails and the sails are sails and the sails are sails
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44006111
<400> 259
aggectgatg cacatgtgca caggtgccta catgetetgt tertgtcaac a
                                                                         51
<210> 260
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44924968
<400> 260
tggccaggga cctgagcccg agacatccct gcatttgatc caaccaggtc a
                                                                         51
<210> 261
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44924968
<400> 261
ggccagggac ctgagcccga gacactcctg catttgatcc aaccaggtca g
                                                                        51
<210> 262
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43977021
<400> 262
ttgcatctaa agtaattcat taatgaacag gagtagatga ggcctggcac a
                                                                         51
<210> 263
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43977021
<400> 263
taaagtaatt cattaatgta caggaataga tgaggcctgg cacacatagc a
                                                                         51
<210> 264
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43977021
<400> 264
attaatgtac aggagtagat gaggcttggc acacatagca gaaggtaatg g
                                                                        51
<210> 265
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
```

L.

Щ

TU.

<223> Accession number cg43977021

```
<400> 265
     caggagtaga tgaggcctgg cacacgtagc agaaggtaat ggttctatag g
                                                                             51
     <210> 266
     <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
    <221> allele
    <222> (26) ... (0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cq43977021
    <400> 266
    atgaggcctg gcacacatag cagaaagtaa tggttctata ggtgtatctt c
                                                                             51
    <210> 267
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
TU.
    <221> misc_feature
la.
    <222> (0)...(0)
2
    <223> Accession number cg43977021
ħā.
    <400> 267
14
    taatgcactt tgggctagag aaatacaaaa atcacacgta acaaaaacaa a
51
    <210> 268
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43999373
    <400> 268
    cacagaattc agaacttttt caccccgaac tggagaagga gcactccgtc a
                                                                             51
    <210> 269
    <211> 51
    <212> DNA
```

```
<213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43980889
     tttgagagct gcagcagaag cggctttatc acaqactgga tttagttatg a
                                                                              51
     <210> 270
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
  <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43980889
     ggctgtatca cagactggat ttagtgatga tgaaaatact ggactgtatt t
                                                                              51
TU
     <210> 271
j.5:
     <211> 50
192
     <212> DNA
     <213> Homo sapiens
Į.
TŲ.
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg44030196
     <400> 271
                                                                              50
     tagattgttc agtactcagc tcacccccat aagaccattt ctcctctgcg
     <210> 272
     <211> 51
     <212> DNA
     <213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg40336929
<400> 272
ggcaacaagt tacagcggcg ggagaagttc cttctctcac ctgccggggg g
                                                                        51
<210> 273
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43920571
<400> 273
agaagacagc gcgcagaaat agtgcagaga gaaatgacca gtactattta t
                                                                        51
<210> 274
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43958980
<400> 274
                                                                         51
taagatcctc catcccacca aaaatgaccc acaatgactc caaatcttgt t
<210> 275
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43320682
<400> 275
                                                                        50
cattggcaac ggctgcccac tagggcactg ccacttgcct gyctcaaact
<210> 276
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42708544
<400> 276
                                                                        50
ccaggettge etctagattg getggecaga atttetgggg teagtetgaa
<210> 277
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43949796
<400> 277
                                                                         51
gggaagtaaa atgaaggaag cagacttctt gctcatcttt ccaaatgaaa t
<210> 278
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43298234
taaggccaga gcttgtgtgc tgggccagaa atcacctgct gcatcctgtg
                                                                        50
<210> 279
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43926358
cagtgatgtg ctggcccttt cagggccaca ggccccttca gcttcaccgg a
                                                                        51
<210> 280
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg35060315
ccaaactatc tcaccctacc ctccccagga tccacttctt tggaatgaca a
                                                                        51
<210> 281
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
<223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg35060315
  <400> 281
   ctattttatc catccatgtt ctcccaatct gtgctttctt tcaacaggtt
                                                                               50
     <210> 282
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg35060315
     <400> 282
     ttttatccat ccatgttctc ccaaaatctg tgctttcttt caacaggtta t
                                                                               51
12
     <210> 283
     <211> 51
LJ.
     <212> DNA
     <213> Homo sapiens
<u>L</u>a
Ξ
     <220>
Į....
    <221> allele
<222> (26)...(0)
The state of
     <223> single nucleotide polymorphism
N
     <221> misc_feature
     <222> (0) ... (0)
     <223> Accession number cg35060315
     <400> 283
     gttctcccaa atctgtgctt tcttttaaca ggttatatat taaaactatt t
                                                                               51
     <210> 284
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0) ... (0)
```

<223> Accession number cg35060315

<222> (25)...(26)

```
<212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (18)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (17)...(18)
     <223> Nucleotide deleted between bases 17 and 18
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg44126579
     <400> 285
     tgtacaactg attagaggtt tttttttttt tttttttc aa
     <210> 286
     <211> 50
     <212> DNA
     <213> Homo sapiens
W
<220>
ļ.
     <221> allele
2
     <222> (26)...(0)
    <223> single nucleotide polymorphism
ļ.
<221> misc_feature
    <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
    <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43951096
    <400> 286
    cctctcctcc aagagttggt tccgcagagg tggaaagaac tctcaatagt
    <210> 287
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
```

<223> single nucleotide polymorphism

<221> misc_feature

cccaaatctg tgctttcttt caacacgtta tatattaaaa ctatttcatg a

51

42

50

<400> 284

<210> 285 <211> 42

```
<210> 288
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43960676
     <400> 288
     agcagccagc ttcattggct gcaaatgcct ctctcaggtg agtcaaagga g
i.i
     <210> 289
<211> 51
<212> DNA
     <213> Homo sapiens
la dia.
2
    <220>
ļ.s
    <221> allele
ļ.
    <222> (26)...(0)
    <223> single nucleotide polymorphism
TU.
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43323149
    <400> 289
    tcacctcaga tgagtgtggc tccccgcgct cccatactgc agcctgcccc t
    <210> 290
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
```

<222> (25)...(26)

<221> misc_feature <222> (0)...(0)

<400> 287

<223> Accession number cg43951096

<223> single nucleotide polymorphism

<223> Nucleotide deleted between bases 25 and 26

<221> misc_feature <222> (25)...(26)

<223> Nucleotide deleted between bases 25 and 26

cacagocata atatagagaa cagagttoto catgaacato caccaggotg

50

51

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43969533
<400> 290
aagggaagcc tatcctattt ttttttcctt tgcgaaaaca gaagccaagt
                                                                        50
<210> 291
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43969533
<400> 291
agggaagcct atcctatttt tttttccttt gcgaaaacag aagccaagtt
                                                                         50
<210> 292
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39376027
<400> 292
ccggggaggt ggttctggta atctgtgggg gagccgggac aggcgccccg a
                                                                         51
<210> 293
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
grad grad write and after any trials of all and any trials of the second state of the
```

```
<222> (0)...(0)
<223> Accession number cg39376027
<400> 293
gggaggtggt totggtaato tggggtggag cogggacagg cgccccqagt t
                                                                        51
<210> 294
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43976681
<400> 294
                                                                        51
ctctctcttc gccgccgacg cagaagggag ctggggagga aaaagctgct g
<210> 295
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43085556
<400> 295
                                                                        51
gtaaggtaaa atgtgaatca atatgctagt tctgggcaat tattctgcaa a
<210> 296
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43085556
<400> 296
                                                                         51
caatatgtta gttctgggca attatcctgc aaattctgcc agataattaa a
```

```
<210> 297
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43085556
    <400> 297
    aatatgttag ttctgggcaa ttattttgca aattctgcca gataattaaa g
                                                                            51
 <210> 298
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
<223> Accession number cg43085556
TU.
                                                                             51
    ttgttgttct caagettttc gectatattt tagactaacc ctgettattc c
Ŀż.
    <210> 299
    <211> 51
fij
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43085556
                                                                             51
    ttttcgccta cattttagac taaccttgct tattcctgtg aatcaagtgg t
    <210> 300
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
```

ļ.

```
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43085556
<400> 300
taaccctgct tattcctgtg aatcacgtgg tgatcttctg cagettggaa t
                                                                        51
<210> 301
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43920089
<400> 301
gcatttgctg cttgtgcttg attttatttg gctcaatccc ttcctggcag c
                                                                         51
<210> 302
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43950850
                                                                         50
aaacatgttc catcaaattc agaaaagcag gtatcagtga aactggagca
<210> 303
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
<223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43950850
    <400> 303
    aggaaaacca cgacgaccac taccccggcc taagcggtca gettteteet c
                                                                             51
    <210> 304
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg44128084
    <400> 304
                                                                             51
    catecgeget gaeggeagte aceggegaga eeggegeegg aaagaecatg g
ļ.
    <210> 305
    <211> 51
    <212> DNA
FU:
    <213> Homo sapiens
    <220>
    <221> allele
Ŀ.
    <222> (26)...(0)
    <223> single nucleotide polymorphism
TU.
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43976473
     <400> 305
     gacgeteget gteecegagg geeegetgeg eegeetegtg ggtacgaata e
                                                                              51
     <210> 306
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
```

<223> Accession number cg44924858

```
gcttctgtca gacgttactt tcaccatgcc tgctgtttcc acaggaagag t
                                                                             51
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44924858
    <400> 307
    cgttactttc accgtgcctg ctgttcccac aggaagagtc tgtctgttcc a
                                                                             51
    <210> 308
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
FU
    <221> misc_feature
Ħ#.
    <222> (0)...(0)
    <223> Accession number cg44924858
<400> 308
    accccagett geeeggeage acacagaact gtttetttgg ettgacgaat a
                                                                             51
    <210> 309
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43961591
    <400> 309
    acaccactgg tactcacacc ccctccggct gggttctctg gtgcgccctg c
                                                                             51
    <210> 310
    <211> 51
    <212> DNA
```

<400> 306

```
<220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43924285
    <400> 310
    ctgcatatgt ttgcagtttt ccatcgactt cttcataaac aaacaaacat t
                                                                             51
    <210> 311
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43924285
Щ
    <400> 311
ŦIJ.
    acattttcta gaaaccaaaa tatgtggtgg cccaaaggag ctcttaagca a
                                                                             51
ļ.
    <210> 312
=
    <211> 51
    <212> DNA
    <213> Homo sapiens
Πij
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43958224
    <400> 312
                                                                             51
    gtttgatcct cagccaggac gcacaagccc tacaagatcc cagccctcca a
    <210> 313
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
     <223> single nucleotide polymorphism
```

<213> Homo sapiens

```
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43971060
aacggcttta aacacaagct cagggcttgg ggtttatccc gagggcacag
                                                                        50
<210> 314
<211.> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44927952
<400> 314
tatttttcat tgtacttatt attcactata cttactatat atatttaaaa c
                                                                        51
<210> 315
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg19885484
<400> 315
aaacaacaaa ataaccaaac ataaatcaac taatgctaca cagaatgtga t
                                                                         51
<210> 316
<211> 36
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (11)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
<222> (0)...(0)
    <223> Accession number cg42307356
    <400> 316
                                                                             36
    cggccgcggc tcggaacggc gcctcccgcc ccacca
    <210> 317
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> aliele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44005017
    <400> 317
                                                                             51
    tgggaggcct ggttgcccct cccggtgtgc tgggacactc tgggttcctg c
    <210> 318
    <211> 51
    <212> DNA
    <213> Homo sapiens
U
    <220>
TI.
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
227
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43329819
TU
    <400> 318
                                                                              51
    ttgagctctc ctacaagctg gaggccaaca gtcagtgaga gcgggggggc c
    <210> 319
    <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
     <221> allele
     <222> (26)...(0)
    <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43329819
     <400> 319
                                                                              51
     agctctccta caagctggag gcaaatagtc agtgagagcg ggggggccag t
```

```
<210> 320
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43329819
<400> 320
                                                                        51
gctggaggca aacagtcagt gagagtgggg gggccagtca gacccgacca a
<210> 321
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44015618
<400> 321
                                                                         50
cagoctcata gocacacaca cacacogtac cacacacgca cacacacaca
<210> 322
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44015618
<400> 322
```

```
accacacag cacacacaca cacacetttg tggctcaagt gcaggccaca
                                                                         50
 <210> 323
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg40361678
 <400> 323
caacactttg ggaggccgag gcaggcggat cacctgaggt caggagttcg a
                                                                         51
<210> 324
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg40361678
<400> 324
gtgaaacccc gtctctacta aaaattcaaa aattagccgg gcatggtggc g
                                                                        51
<210> 325
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg40361678
ctaaaaatac aaaaattagc cgggcgtggt ggcggatgcc tgtaatccca g
                                                                        51
<210> 326
<211> 51
<212> DNA
<213> Homo sapiens
```

1.1

T.

A.

FU

FL

```
find the first wife of the wife with the state of the state with the find that the state of the
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43930957
<400> 326
aaaataaaac tcttttgaaa gttgttggtc agctgaccag gtagaggatt c
                                                                         51
<210> 327
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43300636
<400> 327
caaaggcggc aaagatgggg accagtacca cagccgccac gcccacctcc c
                                                                         51
<210> 328
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43967912
<400> 328
cattetetet ccaaaattte teagaettgt geacaggaet ccatteeaac e
                                                                        51
<210> 329
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43967912
<400> 329
aaaatttete agatttgtge acagggetee attecaacet tecagattta a
                                                                        51
<210> 330
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43967912
<400> 330
                                                                         51
atttgtgcac aggactccat tccaatcttc cagatttaag ttctgaactg t
<210> 331
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43132502
<400> 331
agtgggtggc accgccgagg ctgctattac ggctcatctt cattgatttg c
                                                                         51
<210> 332
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0) ... (0)
 <223> Accession number cg44924856
 <400> 332
 acacgeceag cageegaatg atgttggggt cettgageet egacatgate t
                                                                         51
```

```
thing thing weight out afterly with sealing and out of out initial seals of the party thanks the sealor thanks that the seal of the s
```

```
<210> 333
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43991318
<400> 333
agcactcccc tggctcaccc ttctcccctc gtggtccttt ttcacctggt g
                                                                         51
<210> 334
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg41553795
<400> 334
                                                                         51
ctgtgcacgt ggttgtcgct gagactgact accagagttt cgctgtcctg t
<210> 335
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43973728
<400> 335
                                                                         51
gcaaattcag atgcaaagcc gtggctaacg ggaaggttct tccgaatgat c
<210> 336
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43312829
<400> 336
                                                                        51
tccaatcaaa gacaacagga ctccacgtaa ctgaatatga ggacaatttg a
<210> 337
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43312829
<400> 337
                                                                        51
agacaacagg actccatgta actgagtatg aggacaattt gaagaaatca t
<210> 338
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43312829
<400> 338
aggacaattt gaagaaatca tgggtgtgga aagagctata ttctgttaga a
                                                                        51
<210> 339
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
print print with the city with with the other with the third with print full that
```

```
<222> (0)...(0)
<223> Accession number cg43312829
<400> 339
gggtatggaa agagctatat tctgtcagaa atataaggcc atcctgccac g
                                                                        51
<210> 340
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43312829
<400> 340
                                                                        51
actggatatt gagaggaatg gagccatgga ctctaaaaca taaaggctct g
<210> 341
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43312829
<400> 341
                                                                        51
ttgaacggct caagccagcc aaggactgta cacccattga gtatccaaaa c
<210> 342
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43307992
<400> 342
                                                                         51
tcgagggccc caactttgag ttctcaacgg agacccatga ggagctgctg t
```

```
<210> 343
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43969759
    <400> 343
                                                                            51
    tggctgtggg cttcaccagc ctcactacct cctccaggga gttgacttca g
    <210> 344
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
14
    <222> (0)...(0)
    <223> Accession number cg39523614
IJ
N
    <400> 344
atgctggatc agatccagct gcacttaagt gtcgagccga cgaagatggg g
                                                                            51
፷
ini.
   <210> 345
    <211> 51
1.1
    <212> DNA
1
    <213> Homo sapiens
FL
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg39523614
    <400> 345
    aagatgggga cagtttcgtc ctgaatggcg tcaaggcttg ggtcacggag g
                                                                            51
    <210> 346
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
```

```
<221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg39523614
    <400> 346
    ggyacagttt cgtcctgaac ggcgttaagg cttgggtcac ggaggctggc g
                                                                             51
    <210> 347
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg39523614
    <400> 347
    tcgagggcac ggtctgagtg ttgctctggg tacgcttgac aactctcgtg t
                                                                             51
    <210> 348
    <211> 51
    <212> DNA
La.
    <213> Homo sapiens
   <220>
   <221> allele
fų.
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg39523614
    <400> 348
    gtgtctcgat tgctgctcaa gcagtaggaa ttgcccaggg agctttagac a
                                                                             51
    <210> 349
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
```

fill.

```
<223> Accession number cg42717491
 <400> 349
 aggeteacae teactteatg ttettgacaa agteetegee tttettgatg g
                                                                         51
 <210> 350
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42717491
 <400> 350
 tgatggaggc tttcagctca gggatagcct cggcaatcat tttctcctca a
                                                                         51
 <210> 351
<211> 51
 <212> DNA
 <213> Homo sapiens
<220>
<221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42717491
<400> 351
cagggatggc ctcggcaatc atttttcct caaaaggagt gattttgcca a
                                                                         51
<210> 352
<211> 51
<212> DNA
<213> Homo sapiens -
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42717491
<400> 352
tcattttctc ctcaaaagga gtgatcttgc caatgcctag gttcttctcc a
                                                                         51
<210> 353
```

2

```
<211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg42711596
    atttagtatg ctgtgagctg tctttggttg aatctgattt agtttcagtt c
                                                                              51
    <210> 354
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43319420
u
TL.
    <400> 354
Ŀģ.
    agaagtcaga aggccttcct gtggccccgt tcatggaccg agacaaagtg a
                                                                              51
   <210> 355
<u>L</u>
   <211> 51
   <212> DNA
    <213> Homo sapiens
TU.
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg41029366
   <400> 355
   agtggggatc agtgtgcgat gacacctggg acctggagga cgcccacgtg g
                                                                             51
   <210> 356
   <211> 51
   <212> DNA
   <213> Homo sapiens
   <220>
   <221> allele
```

```
<222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg42876034
    <400> 356
    gegeeegeeg eggeagegee eegageeegg etteggeeeg eageetggae g
                                                                           51
    <210> 357
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43976227
   <400> 357
   ctggtgtgat ctctgtctct ttatgaacca ctactttggt cactgacatg t
                                                                           51
   <210> 358
ļ.
   <211> 51
<212> DNA
   <213> Homo sapiens
T.
<220>
   <221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
Till the
   <221> misc_feature
TU.
   <222> (0)...(0)
   <223> Accession number cg43916642
   ggctgaaaag catatctata cattcagaga agtcgcaaat agaaaggaaa a
                                                                           51
   <210> 359
   <211> 51
   <212> DNA
   <213> Homo sapiens
   <220>
   <221> allele
   <222> (26)...(0)
   <223> single nucleotide polymorphism
   <221> misc_feature
   <222> (0)...(0)
   <223> Accession number cg43925670
```

```
aaccagcatc acctcggaac ttttcctcca tcaagtcagc aatctgaatt t
                                                                             51
    <210> 360
    <211> 51
     <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43925670
    <400> 360
    ttgtcatact cttctctcat ttttagatta agttttaaat cgttgctcag t
                                                                             51
    <210> 361
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
F13
l.A
    <221> misc feature
2
    <222> (0)...(0)
    <223> Accession number cg43925670
15.
Tij.
    tttttaaatt aagttttaaa tcgttactca gtaaggactt aaccattcta a
                                                                             51
    <210> 362
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cq43925670
    <400> 362
    aatcattgat gacctctaat cctttcagta gaacaatgtt cttgtatttt t
                                                                             51
```

<400> 359

<210> 363 <211> 51

```
<212> DNA
     <213> Homo sapiens
     <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44004587
    <400> 363
    ttttattgtc attttcatca ataagaatac acatctctgc caggagttga a
                                                                              51
    <210> 364
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0) ... (0)
ļ.ď
    <223> Accession number cg43257400
IJ
<400> 364
Tij:
    catgtgtggt aactcctcaa gatggcgaga cgttagcaca aatgatagaa g
                                                                              51
Ī.Š.
    <210> 365
3.2
    <211> 51
    <212> DNA
    <213> Homo sapiens
TU
<220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0) ... (0)
    <223> Accession number cg43931272
    ttggtggttc tttcccaacc acaaagcact ccggtggtaa ataccaataa g
                                                                             51
    <210> 366
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc feature
 <222> (0)...(0)
<223> Accession number cg42665067
<400> 366
ggggcttcta catatccccc cgaagtacct tcagcactct gcaggagctg g
                                                                         51
<210> 367
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43982923
<400> 367
cgatgcagaa atacgagaaa ctggagaaga ttggggaagg cacctacgga a
                                                                         51
<210> 368
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43982923
<400> 368
tggaaaagat tggggaaggc acctatggaa ctgtgttcaa ggccaaaaac c
                                                                         51
<210> 369
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
```

1.2

8

TU.

<223> Accession number cg43982923

```
<400> 369
     ccaaaaaccg ggagactcat gagattgtgg ctctgaaacg ggtgaggctg g
                                                                              51
     <210> 370
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43919086
    <400> 370
    cgctcaggag gatataggtg atgacgccga tgctccacat gtccgcctcc a
                                                                             51
    <210> 371
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
W
TU:
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg25143358
    <400> 371
13.
    gggcggcttc aagtttcgtg gtcataccgc cggttcccac ccccgaacca g
                                                                             51
TU
    <210> 372
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43105476
   <400> 372
   ggttccgatg ccccacattg ctggctgtgt gcttcaccag gaactccacc a
                                                                             51
   <210> 373
   <211> 51
   <212> DNA
```

Ш

```
george gerify evily edge gelig evily edge edge edge edge edge edge edge gelig gelig gelig
Roull vall of outle facilit med faces mills the mills edge edge edge edge gelig gelig
```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43105476
                                                                         51
tgtgcttcac caggaactcc accacacgga ggtggccttc tttggcagcc a
<210> 374
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43105476
<400> 374
gcaagggcag gttcccttca ttatcttcga tgttaacatc agcttgaaac t
                                                                         51
<210> 375
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43105476
<400> 375
                                                                         51
tatcctcgat gttaacatca gcttggaact ccagcaaagt ctgtaaagtg t
<210> 376
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
gring girth (1979) with grind with with only with only with mile grind girth that the state of the form of the final that
```

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 376
cagggaacag caatgggaac gccagcatca acatcacgga catctcaagg a
                                                                        51
<210> 377
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
gcaatgggaa cgccagtatc aacattacgg acatctcaag gaatatcact t
                                                                        51
<210> 378
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 378
cttccataca catagagaac tggcgaagtc ttcacacgct caacgccgtg g
                                                                         51
<210> 379
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 379
```

```
51
tacacataga gaactggcgc agtctgcaca cgctcaacgc cgtggacatg g
<210> 380
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
tagagaactg gcgcagtctt cacacactca acgccgtgga catggagctc t
                                                                        51
<210> 381
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 381
actggcgcag tettcacacg etcaatgccg tggacatgga getetacace g
                                                                         51
<210> 382
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 382
                                                                         51
acgccgtgga catggagctc tacacgggac ttcaaaagct gaccatcaag a
<210> 383
<211> 51
<212> DNA
 <213> Homo sapiens
```

```
How the first with the first with the state of the state with the first first for the state of t
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 383
                                                                        51
acatggaget ctacacegga etteagaage tgaceateaa gaaeteagga e
<210> 384
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg29023997
<400> 384
tggtttccat tttcaatctg gatggaatgg agcaccatgt gcgcacctgc a
                                                                        51
<210> 385
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43942537
<400> 385
                                                                         51
gttcttctag ggcctgtaaa acttccttca cttcttcttt agaggcatca t
<210> 386
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43975720
  <400> 386
                                                                          51
  teeggaagtg gaagtggtae eagtttaegt etetgeggga eetgetgtgg g
  <210> 387
 <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
 <221> allele
<222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43975720
  <400> 387
                                                                          51
  ctctgcggga cctgctgtgg ggcaatgcca tcttcctcaa ggaggccaat g
  <210> 388
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43311943
  <400> 388
                                                                           51
  tegggeeega tgaceccaat gtggeeaaga ccaagaacaa cetggettee t
  <210> 389
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43311943
  <400> 389
                                                                           51
  acaacctggc ttcctgctac ctgaagcagg gcaagtacca ggatgcagag a
```

```
print giving whys of giving which will not not up any man made giving giving that the stant made that made then make allow the stant that the stant the stant that the stant the stant that the stant the stant that the stant the
```

```
<210> 390
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43983535
<400> 390
tctctggggc ccgctgaggt gacagtaagt gctttagctc ctgagtcata t
                                                                         51
<210> 391
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42488873
<400> 391
atcctttgaa aatctcatat tgttttgagt tttcattact tccatacaaa g
                                                                         51
<210> 392
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43935885
<400> 392
                                                                         51
ggaagcccca gctgcaggag ctgctgaagc tgcccgcctt catgcgggta a
<210> 393
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44019843
<400> 393
atgtggagta caccttcaca gggatttaca cctttgagtc cctcatcaag a
                                                                         51
<210> 394
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44929972
<400> 394
atgtcctgag ggcagtggag gaacgagatt ttccaacaga aaccattaaa t
                                                                        51
<210> 395
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44926604
agtcgatgtc cagcttgcgg gccacacggt gtagattggg caggttcagc t
                                                                        51
<210> 396
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
<222> (0)...(0)
     <223> Accession number cg38642684
                                                                              51
     gccagttaat attgcctagt aatttttgat aatcatttaa ggtatgtaag t
     <210> 397
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg38642684
     <400> 397
     aaggatactt ccaaggagag gacatctgta ctttttcagg tgcaatgatt a
                                                                              51
     <210> 398
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
<221> allele
TU.
     <222> (26)...(0)
<223> single nucleotide polymorphism
5
į.
     <221> misc feature
ļ.J.
     <222> (0)...(0)
fij.
     <223> Accession number cg38642684
TU
     <400> 398
51
     aggacatttg tactttttca ggtgctatga ttaaaccact taactgtgca t
      <210> 399
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg38642684
      <400> 399
                                                                               51
      tccttatgac agaggtatat aaactcaaaa gcactggctc cactggggct g
```

```
<210> 400
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
   <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43919677
    <400> 400
    ttgaagtagc tcctgaagct tctacatcta gtgccagcca agtgattgct c
                                                                             51
    <210> 401
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
<222> (0)...(0)
LJ:
    <223> Accession number cg44005163
    <400> 401
    cctgtgggct gattacatta actgacgcac aaagattatg taatgcttta t
                                                                             51
    <210> 402
    <211> 51
FD.
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44005163
    <400> 402
    gtaatgcttt attgcggcca cgaacgtttc ctcaaaatgg tagcgtactt c
                                                                            51
    <210> 403
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
```

FU.

```
<223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg25334466
    <400> 403
    tcaaggacca gttcactacc ctccccgagg tgaaggactg atgctttgcc a
                                                                             51
    <210> 404
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg42535091
    <400> 404
    aactgaaata cgacgttggt ggaggggaac ggtttgattc tttgacagat c
                                                                             51
Į.
    <210> 405
    <211> 51
    <212> DNA
    <213> Homo sapiens
37
14
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43302847
                                                                             51
    ggtggtggtg gccatccaga tcctgaggaa gaaccccaaa ggcttcttct t
    <210> 406
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
```

<221> allele <222> (26)...(0)

<222> (0) ... (0)

```
gring gring with all this wife them with an add, and and the time that the this
```

```
<223> Accession number cg39728924
   <400> 406
   ggcaaatggt gttggaaaat aattcaaatg ttattgccat gataaccaga q
                                                                          51
   <210> 407
   <211> 51
   <212> DNA
   <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg42881873
  <400> 407
  acctgaaagc gagcgactgg aaagtgaacg gcgcgggtca taaagttagc c
                                                                          51
  <210> 408
  <211> 51
  <212> DNA
  <213> Homo sapiens
 <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
<222> (0)...(0)
  <223> Accession number cg42913398
<400> 408
  ctgttccgtg gatgagaaga tagtccacat ttctgaaata ttctgctctt g
                                                                          51
  <210> 409
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg44028327
  <400> 409
ttcgaattac ctactcaatt gtgcagacga attgttccaa agagaatttt c
                                                                          51
  <210> 410
```

```
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43979831
<400> 410
cctcaaggac cactcccaaa gacttttatg ttgatgagaa cacaacagtc c
                                                                         51
<210> 411
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43987538
<400> 411
atcatcataa gagaagaatc attttaccag tagccccact accatgaatg a
                                                                         51
<210> 412
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42717608
<400> 412
                                                                         51
cccacaaggt ctatgtccag caccttctga agagagacaa agaacacctg t
<210> 413
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43927378
atotgatgga gaactaccag atogtogtoa gcaacctggc cactgagogt g
                                                                        51
<210> 414
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43945592
<400> 414
gggctcgggc agggtacaca aactccgtgg ctgcaaaatc cccagaggag c
                                                                        51
<210> 415
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43957486
<400> 415
                                                                         51
ctggggctcc ccgctgccag tgcccggccg gcgccgccct gcaggcagac g
<210> 416
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44932934
```

```
<400> 416
                                                                        51
tgctcgagga tgtcaaccgc atgtcacctg gggcgctggc cattatcttc g
<210> 417
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43100187
<400> 417
aacgcctaga gggggagctg gtggcacatg agcctgccat ccagaatgtg c
                                                                        51
<210> 418
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42930605
<400> 418
                                                                         51
ggtccatgca caccttgtgc ttcgaaccca gcagggcctt gagcatggca t
<210> 419
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42930605
<400> 419
                                                                         51
ggggccgctt gaacttgccc cgcaggtcaa atagcttctg gttcatgtcc t
<210> 420
<211> 51
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42930605
<400> 420
gatcaaatag cttctggttc atgtcttcca gctccttgct ggtcttctgc a
                                                                        51
<210> 421
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42930605
tcttctgcac cctcacctcc atgtcatact tctcctcttc agccgcatcg a
                                                                        51
<210> 422
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42930605
<400> 422
                                                                         51
tetectette ageograteg atettegegt geagetgttt geagagetee t
<210> 423
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
<221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42930605
     <400> 423
     cagoogcato gatotiggog tgeagtigti tgeagagete etgeactica g
                                                                             51
     <210> 424
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42930605
     <400> 424
     tcttggcgtg cagctgtttg cagagttcct gcacttcaga catggagccc g
                                                                             51
<210> 425
ĮÜ.
     <211> 51
     <212> DNA
     <213> Homo sapiens
ķ.i.
     <220>
    <221> allele
    <222> (26)...(0)
14
     <223> single nucleotide polymorphism
<221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42930605
     gcacttcaga catggagccc gggatgtgca gcggcgggca gtgctccgcc a
                                                                              51
     <210> 426
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42930605
```

<223> single nucleotide polymorphism

```
- cagacatgga gcccgggata tgcagaggcg ggcagtgctc cgccaggtag t
                                                                            51
    <210> 427
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg42930605
    <400> 427
    tctgcttctc tgcctcacgg cggctttcct ccttctccag ctccgtggcc g
                                                                             51
    <210> 428
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg42930605
E
į.
    <400> 428
tetetgeete aeggeggete teetetttet ceageteegt ggeegetate t
                                                                             51
TU
    <210> 429
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cq42893961
    <400> 429
                                                                             51
    aatggccagc aggaaggcgg ggaccagggg caaggtggca gccaccaagc a
    <210> 430
    <211> 51
    <212> DNA
```

<400> 426

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42475816
<400> 430
aatcaagaca aacccgaatt gaaaaaaaga ttgaagccca ctttgatgcc a
                                                                        51
<210> 431
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42522566
<400> 431
tgaagaacgt aaaggaccgg gaggacgtga agaatgaggt caacatcatg a
                                                                        51
<210> 432
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
<400> 432
gtagatgggt agaatagtag ccaggaacaa gacagcggtt ctgcagggag c
                                                                        51
<210> 433
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
Head that with the first constraint of the terms who the meter from the first that
```

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
                                                                        51
tagaatagta gccagggaca agacaacggt tctgcaggga gcgtagtgcc a
<210> 434
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
<400> 434
ccagggacaa gacagcggtt ctgcaaggag cgtagtgcca gaggggtctg g
                                                                        51
<210> 435
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
<400> 435
gtagtgccag aggggtctgg gaggaagctg aaatcacctg atagaaggta t
                                                                         51
<210> 436
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
<400> 436
```

```
51
gggtctggga ggaggctgaa atcacttgat agaaggtata gttcagagca a
<210> 437
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
tctgggagga ggctgaaatc acctggtaga aggtatagtt cagagcaact g
                                                                        51
<210> 438
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43297806
aggctgaaat cacctgatag aaggtgtagt tcagagcaac tgggtctcca t
                                                                        51
<210> 439
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43297806
                                                                        51
qataqaaggt atagttcaga gcaacagggt ctccatgggc tcgctgatgc t
<210> 440
<211> 51
<212> DNA
<213> Homo sapiens
```

```
gring thing him you give you make all and and and and what with pring gring the state of the sta
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297806
<400> 440
                                                                        51
cagaggggta gtaagtcagc cagcgctgta gatgggtaga atagtagcca g
<210> 441
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39515668
<400> 441
                                                                        51
cagccacatt ccggtaagcc tcgcagagag ccagctgggc gccaagatac g
<210> 442
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39515668
cgatgccgag gttgtcgtca atacggatca tgccggcatc attcggctga g
                                                                         51
<210> 443
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39515668
<400> 443
                                                                        51
teggetgage gageacagta ttgccgegea egaaceggte atactggteg g
<210> 444
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39515668
<400> 444
                                                                        51
gggcggagcc aacaagggcc agcagcgccc cagcaagacc ctcaccagag t
<210> 445
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg21428405
<400> 445
                                                                        51
tgacctcgcc aatgacagtg gcagcaacac cccaatgggc gcagatctcc a
<210> 446
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg21428405
                                                                         51
cctgggactc gctcatgagg atctcctcag gggcgaggtt cgggtcgcgc a
```

```
Here the transfer of the trans
```

```
<210> 447
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg21428405
<400> 447
gaacgcggtc gagctcgacg tgcataccac cgtcgccagc actggccagc t
                                                                         51
<210> 448
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg38924050
<400> 448
tctcgttgat gaggtcgtta ccctcgcggg tacgttcacc gacaccggcg a
                                                                         51
<210> 449
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg38924050
 <400> 449
                                                                         51
 tgaggtcgtt accctcacgg gtacgctcac cgacaccggc gaaaaccgaa g
 <210> 450
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

```
<220>
<221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg38924050
aaaccgaagt accgccgaag ttgtgcgcga tacggtaaat catctcctga a
                                                                         51
<210> 451
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0) ... (0)
<223> Accession number cg43925970
<400> 451
gagcacataa ggtgaaggtg gtgacaccca gagaagcgac ctctatatag g
                                                                         51
<210> 452
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg41616031
<400> 452
aagggatgtc cccaaacttc cagtccgaac gccgcacata gtagtccatc a
                                                                         51
<210> 453
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
<222> (0)...(0)
<223> Accession number cg41616031
<400> 453
tocccaaact tocagtotga acgostoaca tagtagtoca toacgaacgg c
                                                                        51
<210> 454
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg41616031
<400> 454
ggcagatgat cagtagaaag tcagccactg ccaggttgaa caggaaaatc c
                                                                        51
<210> 455
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42489842
<400> 455
                                                                         51
ggctggtcaa cacaggtctt ctgacgctgc gccagattgt tttgagcaaa g
<210> 456
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42489842
<400> 456
                                                                         51
acacaggtet tetgaceetg egecaaattg ttttgageaa agttgateag t
```

```
<210> 457
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0) ... (0)
<223> Accession number cg42489842
gccagattgt tttgagcaaa gttgaccagt ctcttcatac caacacatcg c
                                                                        51
<210> 458
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42489842
                                                                         51
ttttgagcaa agttgatcag tctctccata ccaacacatc gctggatgct g
<210> 459
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42489842
<400> 459
                                                                         51
ttcataccaa cacatcgctg gatgccgcaa gtgaatatgc caaatactgc t
<210> 460
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42489842
<400> 460
cgctggatgc tgcaagtgaa tatgctaaat actgctcaga aatattagga g
                                                                         51
<210> 461
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42927358
<400> 461
ttttgtcttt gccaaacatc atcctaacaa atggtcagcc aacagaggac a
                                                                         51
<210> 462
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42927358
<400> 462
atgaatttga cacaattgtc ttgccagtgc tttatctcat tatatttgtg g
                                                                         51
<210> 463
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0) ... (0)
```

```
ccctcctcct ggctgagaaa aagtttccct tgtgcaaaaa cactaggtac c
                                                                               51
      <210> 464
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43968711
      <400> 464
      tatgattgga tgtggaagaa ctatccgttg cattcacatt taaacgattg g
                                                                               51
      <210> 465
      <211> 51
      <212> DNA
      <213> Homo sapiens
14
     <220>
70
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
=
     <221> misc_feature
l.i.
     <222> (0)...(0)
ļ.s.
     <223> Accession number cg43297259
FU
     <400> 465
     ctcctgtgtg tgtccttaag tgtctaatga ggtgtgactt ctggctaaag c
                                                                               51
     <210> 466
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg20612302
     <400> 466
     tggaggcggc ccacatggcg gccacggcca tcctcaacct gtccacgcgc t
                                                                              51
```

<223> Accession number cg32423505

<210> 467

```
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43949162
                                                                          51
 gggccatgtt aaccacttcc ttttgttgat catctggttt taagaaagga t
<210> 468
  <211> 51
  <212> DNA
  <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43928442
 <400> 468
                                                                          51
 catccacatg ggccacggtg atgggaagcc caaaggctcc gtatctgcag g
 <210> 469
 <211> 51
 <212> DNA
 <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43976701
  <400> 469
                                                                          51
  gacageteat tegactgtgt cagaagtttg gagaatatea taaagatgae e
  <210> 470
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
```

```
<222> (0)...(0)
      <223> Accession number cg44005525
      <400> 470
      cttgactgtt aatattacaa tgataaattc ttgtccgaaa tgtaaccttt g
      <210> 471
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg44005525
      <400> 471
     attctggtgt aaaagtgata tcgaggaaga atacaccacc ctcatacacg g
- [
     <210> 472
     <211> 51
     <212> DNA
     <213> Homo sapiens
£=$:
     <220>
<221> allele
     <222> (26)...(0)
ļ.
     <223> single nucleotide polymorphism
ГЦ
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg44005525
     <400> 472
     gtgtaaaagt gatatcgaga aagaagacac caccctcata cacggatcct g
                                                                              51
     <210> 473
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
```

51

51

<222> (26)...(0)

<221> misc feature

<221> misc feature <222> (0)...(0)

<223> Accession number cg44005525

<223> single nucleotide polymorphism

```
<400> 473
 gaaagaatac accacctca tacacagatc ctggaggccc tagaatggtt g
                                                                         51
 <210> 474
 <211> 51
 <212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44005525
<400> 474
cctcatacac ggatcctgga ggccccagaa tggttgatct ccattcatag a
                                                                         51
<210> 475
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cq44005525
<400> 475
gaggccctag aatggttgat ctccactcat agatgttatc gcctttggga c
                                                                        51
<210> 476
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44005525
<400> 476
tggttgatct ccattcatag atgttgtcgc ctttgggacc agcactgcaa t
                                                                        51
<210> 477
<211> 51
```

```
The first off of the second of the off of the second of th
```

```
<212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg44005525
  <400> 477
  tatcgccttt gggaccagca ctgcagttag gtggagggtc taaagtgatg t
                                                                          51
  <210> 478
  <211> 51
  <212> DNA
  <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44005525
 <400> 478
 tgttggtcat atactgagtg gcaatgcttc ccaccaaagg gtcggcagga t
                                                                          51
<210> 479
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg17663981
 <400> 479
 ccgagaaccc gggcacagcg agagcgtggt gccaagtggc ccaaaagttc a
                                                                         51
 <210> 480
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg17663981
<400> 480
cgggcacage gagageetyg tgecaggtgg cecaaaagtt caegggegge a
                                                                        51
<210> 481
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0) ... (0)
<223> Accession number cg42907760
<400> 481
aacctgaagg ccaaagtgtt gactcagact cggagagcac agtcagcccc c
                                                                         51
<210> 482
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43301812
<400> 482
ctccatggct gggatgctct gctgcacttg gttttgcccg agtggcagcc t
                                                                         51
<210> 483
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43917756
```

```
<400> 483
     agacactgac cactggggga ggtgcggaga ctgtgctgga tgtggtggaa a
                                                                              51
    <210> 484
     <211> 51
     <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43918356
    <400> 484
    catcttcatc tagaaacgcc ctcactgaaa tggaattqct gccaqacqtq q
                                                                              51
    <210> 485
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
Till-
    <221> misc feature
    <222> (0)...(0)
æ
    <223> Accession number cg43924089
Ērā.
    <400> 485
    ctgtggtcct ctccacagac agggttcaca tcaaactggg ggtgtctcca c
                                                                              51
    <210> 486
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43926428
    <400> 486
    caaacttcat gagattgaag atctggagct gctgctcctt gaacatgtct g
                                                                              51
    <210> 487
    <211> 51
    <212> DNA
```

```
goods grain where any string which will be an earlier at the string of the man of the first parties of the string ```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950657
<400> 487
cctctaccca tcggtcagtg tccccgccac cggggggctg ctgggactct t
 51
<210> 488
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43955358
cccgacaatt gtatctggca taaattcctt cacccagtag attaggaatg a
 51
<210> 489
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43970200
<400> 489
cattagagat ctgggctgca aggtctccaa cataatcaat aaacagattt t
 51
<210> 490
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43970200
<400> 490
ttaactgtgg tatacagtca gtgtacgcaa acattgattt aaagcggtca t
 51
<210> 491
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43999667
<400> 491
gtacagcctg gtaatggaga atcaagtttt gctgtatcgt aaaggcagca a
 51
<210> 492
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44009187
<400> 492
tcaacttgct ccagtaggcc gccggttctg caggcagctc gggctggaag a
 51
<210> 493
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cq44020180
<400> 493
```

```
<210> 494
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44020180
 <400> 494
 tagactcgag tttggtaaat gtccagacca taggccacaa ccaaacaagt q
 51
 <210> 495
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
13
 <221> misc feature
T)
 <222> (0)...(0)
<223> Accession number cg44020180
=
1, 3
 ccaaaccata ggccacaacc aaacatgtgg actccagacc cgagggagct g
 51
fl.
 <210> 496
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44020180
 <400> 496
 ccacaaccaa acaagtggac tccaggcccg agggagctgt gtagatacct c
 51
 <210> 497
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

atgggtagac tcgagtttgg taaatatcca aaccataggc cacaaccaaa c

51

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44020180
<400> 497
aacaagtgga ctccagaccc gagggcgctg tgtagatacc tcgcattcga g
 51
<210> 498
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44020180
<400> 498
\verb"tggactccag" accegaggga" getgtataga" tacctegcat tegagaaact g
 51
<210> 499
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44020180
ccagacccga gggagctgtg tagatgcctc gcattcgaga aactgtctgg t
 51
<210> 500
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44020180
 <400> 500
 ctgtgtagat acctcgcatt cgagagactg tctggttala gttgatgaat c
 51
 <210> 501
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44020180
 <400> 501
 tgatgaatcg ctctgcgtgt atctggacat ctggagaata cgggattaag t
 51
 <210> 502
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44020180
M
 <400> 502
 gctctgcgtg tatctgtaca tctggggaat acgggattaa gttctcctct c
 51
 <210> 503
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44020180
 <400> 503
 tgtacatctq qaqaatacqq qattaqqttc tcctctctqc tttgttctgt t
 51
```

```
<210> 504
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44020180
 <400> 504
 ctggagaata cgggattaag ttctcttctc tgctttgttc tgttgggatc t
 51
 <210> 505
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
i.ā.
 <223> single nucleotide polymorphism
 <221> misc feature
LJ.
 <222> (0)...(0)
<223> Accession number cg44928323
2
 <400> 505
 agcaggcaga tagaagttcc tgtcattttc tcctttttta cggggtagga t
 51
 <210> 506
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cq44932392
 <400> 506
 51
 tgtcttggtt tttgataaaa ttgttaaact tattgttgag atcagcgctg a
 <210> 507
 <211> 51
 <212> DNA
```

<213> Homo sapiens

```
gord grind with out first own to the second out of the second first grind that the second first grind that the second first with such a second first with such a second first the second first the second first that the second first that the second first the secon
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43991434
tettgageag acceatgige acgageagee tggtgaggaa ggtyttggag t
 51
<210> 508
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43985955
 51
gcatgatagg atatggaatt cctcctcaaa tgggaagtgt tcctgtaatg a
<210> 509
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43985955
<400> 509
gaatteetee acaaatggga agtgtacetg taatgacgca accaacetta a
 51
<210> 510
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
The first state of the state of
```

```
<222> (0)...(0)
 <223> Accession number cg43985955
 <400> 510
 aaatgggaag tgttcctgta atgacacaac caaccttaat atacagccag c
 51
 <210> 511
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43985955
 <400> 511
 tatacagcca gcctgtcatg agaccgccaa acccctttgg ccctgtatca g
 51
 <210> 512
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44031765
 <400> 512
 51
 acctcgccgt agtagatgta gcgcaacatg gactcgaagg cctgcctgct g
 <210> 513
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43252100
<400> 513
 51
 tgcagcccag aggttctttt tactcaatgg taccaaatgc aactattcac c
```

```
The first term and the first term that the fir
```

```
<210> 514
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43934178
<400> 514
cgatgccatg cttctccatg agcgtaatga gctcggcctc cgtcaggtag t
 51
<210> 515
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43031103
<400> 515
acatggccct ccccttggtt gaggaaacag caggggctgg tgtgaggtgc a
 51
<210> 516
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43258841
taaatcttgt gtggccatca tccagggtgt ggaacatttc accgtcatct t
 51
<210> 517
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43258841
<400> 517
catccagtgt gtggaacatt tcaccatcat cttctactgg tataatttga a
 51
<210> 518
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43258841
<400> 518
 51
ggaacatttc accgtcatct tctacgggta taatttgaaa gtgctttatt t
<210> 519
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43258841
 51
cttctactgg tataatttga aagtgtttta ttttttgtcc atgactcatt g
<210> 520
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
```

```
ctggtataat ttgaaagtgc tttatctttt gtccatgact cattgacagt a
 <210> 521
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43258841
 <400> 521
 51
 tttgaaagtg ctttattttt tgtccgtgac tcattgacag tacgaaagtt t
 <210> 522
 <211> 51
 <212> DNA
 <213> Homo sapiens
[]
 <220>
L
 <221> allele
TU
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc feature
å.
 <222> (0)...(0)
 <223> Accession number cg43258841
<400> 522
 tttgtccatg actcattgac agtacaaaag ttttggggtt actctgacta t
 <210> 523
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0) ... (0)
 <223> Accession number cg43258841
```

aaactccatc cacaagtcct tgctggataa tcaatcgctg agcctcatct c

51

51

51

<223> Accession number cg43258841

<400> 520

<400> 523

<210> 524

```
The first series of the series
```

```
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0) ... (0)
<223> Accession number cg43258841
<400> 524
 51
ccacaagtcc ttgctgaata atcaaccgct gagcctcatc tctagaaatt t
<210> 525
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43971614
<400> 525
tcactttcct gtggatttct ttctgcccgt agactgcatc tgctggcttt c
 51
<210> 526
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43971614
<400> 526
 51
gctttccatt tgaatccaat cccccgtgga cataagaaga gttctttcca t
<210> 527
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
```

```
The state of the s
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43320405
<400> 527
 51
tgttcttcaq qcccttcacc atggagggca ggagggcctt caccttggcg g
<210> 528
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43922856
<400> 528
 51
ttactggacc atctatacga aaatgctctg aagtttccac ccttttcctt g
<210> 529
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43922856
<400> 529
gagttcttct tgaccctctt gtagactccc tagttaatgc ctgcagaggt c
 51
<210> 530
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43991007
```

```
<400> 530
 51
caaqagaaca qcaaqtgcac caaacctagc tgaaacagaa aaagagacag c
<210> 531
<211> 51
<212> DNA
<213> Home sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43940463
ggctcaccag ctccagctgc gtgtgctcat ccaccaccag cgtgtacttg a
 51
<210> 532
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42676981
<400> 532
ggaagtagag gtcaggtggg gctgtagggc tcttcaggtt caaacaccgg a
 51
<210> 533
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43918561
<400> 533
 51
ggaaggaggt ctacaccacg ctgaaaggcc tctacgccac gcacgcctgc g
<210> 534
<211> 51
```

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43999712
 <400> 534
 51
 acqtaccaaa tgaaatgctc tacggccgaa taggctacat ctatgctctg c
 <210> 535
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43999712
 taccaaatga aatgctctac gggcgcatag gctacatcta tgctctgctt t
 51
<210> 536
 <211> 51
 <212> DNA
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature.
 <222> (0)...(0)
 <223> Accession number cg43999712
 51
 gccatattca gcagatttgt gaaaccattt taacctctgg agaaaaccta t
 <210> 537
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43922139
<400> 537
acttgacttt ccagacacgg tgagggagga ggaggctgtc gggaccaaac g
 51
<210> 538
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43955639
<400> 538
 51
caggcatggt gatgaggggt gctggtgcca gggaggtggc aggagctggc a
<210> 539
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg41022625
<400> 539
 51
gcctggccat tgtcatcttc ttctccgtgc tgggcgtggt ctttggcaaa g
<210> 540
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg41022625
```

```
<400> 540
tggtctttgg caaagggaac acggccttct ggatcgtctt ctccatcatt c
 51
<210> 541
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26) ... (0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg41022625
<400> 541
gcaaagggaa cacggcgttc tggattgtct tctccatcat tcacatcatc g
 51
<210> 542
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44002669
<400> 542
 51
cettgegett geactegegg cagectetgt ceagtteete etteteette t
 <210> 543
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43302693
 51
 gccccacctg agtgacaatg atgtacttga ccccaccggg ggtcggctcc a
 <210> 544
 <211> 51
 <212> DNA
```

```
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43921081
 <400> 544
 51
 acttggaaag aaagtatgca gcgctgtacc agcctctctt tgacaagaga a
 <210> 545
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42181143
 <400> 545
 51
 cacaccageg ettetgeeac teegacecaa agaaactatg atetttgett t
 <210> 546
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43918701
 <400> 546
 51
 ttttccagat gcgacagaca tcattcgggc atattctaga aaccaagggc a
 <210> 547
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
<222> (26)...(0)
 <223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43926685
<400> 547
 51
agaatteett aetggateae egcaataaga eeateeacaa egattaeege a
<210> 548
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44927654
<400> 548
 51
gtgccagctt ctccatggtg gcatctgtca ggatgctggg gtagggaggt t
<210> 549
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43993462
<400> 549
ccaactcatt gacagtgagg ggtgcatctc cacttctgtt ggtgtaattg a
 51
<210> 550
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44010310
<400> 550
```

```
<210> 551
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43950590
 <400> 551
 ggtgcaccat gtacagctgc ccaatttgag agaagaatcc tccgacggct t
 51
 <210> 552
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
gais:
 <223> Accession number cg43950590
 <400> 552
 getgeceaat etgagagaag aateeceega eggettegtt accateetgt e
 51
 <210> 553
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43950590
 cgacggcttc gttaccatcc tgtctaaagc ggattgcacg agcccagtaa t
 51
 <210> 554
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

ctatattctc tgattgtgca aagtatagga cattatattc gacatctttg g

51

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43950590
<400> 554
 51
cgttaccatc ctgtctgaag cggatggcac gagcccagta attgccccat t
<210> 555
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950590
 51
catcctgtct gaagcggatt gcacgggccc agtaattgcc ccattcaatc a
<210> 556
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950590
 51
cacgagecca gtaattgeec cattegatea tggtteetgg teggagttgg t
<210> 557
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
```

```
The state of the s
```

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950590
<400> 557
gtcggagttg gtaagacctg agttcgtata tattaggtcc ggatcttggc a
 51
<210> 558
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950590
<400> 558
 51
ggtaagacct gagttcatat atattgggtc cggatcttgg cacaggctca t
<210> 559
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43951092
<400> 559
gagtagaatt caagaagagt tcaatgtatc gatgttgcat gttattttta t
 51
<210> 560
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43951092
<400> 560
 51
 tatttttatc tttagacatg gcagccactg catcttcatg tgtcacaaac t
```

```
<210> 561
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43951092
<400> 561
ctgcttctcc tgtggctctg ccatcggctc caatatcaat atgaactcgt a
 51
<210> 562
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43951092
<400> 562
 51
catcagctcc aatatcaata tgaacgcgta ttggatttag tggtgagaag a
<210> 563
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43951092
<400> 563
tatcaatatg aactcgtatt ggattgagtg gtgagaagaa attagcaatg t
 51
<210> 564
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43951092
 <400> 564
 ttagtggtga gaagaaatta gcaatatcat tttcagttgc acgaaaaggc a
 51
 <210> 565
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43990820
 <400> 565
 catcagtttc cacttcgaca catcgatagt cctcacagcc acggccatcc a
 51
 <210> 566
 <211> 51
 <212> DNA
 <213> Homo sapiens
<220>
 <221> allele
 <222> (26)...(0)
 -<223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cq43990820
 <400> 566
 tcgacccctc ttcatcctcc aaaacccgaa cccttggtat ccttgtattg a
 51
 <210> 567
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
```

```
<222> (0)...(0)
 <223> Accession number cg43986914
 <400> 567
 tcaggaaaag gaagcatgac aatittccac ataaccaaag aagagaaggg a
 51
 <210> 568
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43119818
 <400> 568
 aagaaattat caatgtgggg cattccttcc atgtaaattt tgaggacaac g
 51
<210> 569
<211> 51
<212> DNA
 <213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44027444
cagtgccaga gtccaggaac tgaacgtcaa gagcccggct gctgtgaaca t
 51
<210> 570
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg29351416
ccacacagga cactgtggtg gccctcgatg ctctgtccaa atacggagca g
 51
```

```
and and the state of the state
```

```
<210> 571
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg29351416
<400> 571
aggacactgt ggtggccctt gatgccctgt ccaaatacgg agcagctact t
 51
<210> 572
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg29351416
agttccaagt agacaacagt aatcgtctgt tactgcagca ggtctcatta c
 51
<210> 573
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg29351416
 51
tgtatgctca gaccacgctg agatataaca tgcccttgga gaagcagcag c
<210> 574
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
<223> Accession number cg29351416
<400> 574
atgctcagac cacgctgaga tacaatatgc ccttggagaa gcagcagcct g
 51
<210> 575
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43950273
<400> 575
ggtcttcaat aaagtagtta tggcaagtcc tgatccacat agatagctga a
 51
<210> 576
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 576
tcaacacaag gcagccacag gccaagatca ttgtattggg tttgttacct c
 51
<210> 577
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
```

```
<223> Accession number cg44930828
 <400> 577
 ggcagccaca ggccaaaatc attgtgttgg gtttgttacc tcgaggtgag a
 51
 <210> 578
 <211> 51
 <212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 578
tgggtttgtt acctcgaggt gagaagccca atcctttgag gcaaaagaac g
 51
<210> 579
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 579
tgttacctcg aggtgagaaa cccaaccctt tgaggcaaaa gaacgccaag g
 51
<210> 580
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44930828
ctcgaggtga gaaacccaat cctttaaggc aaaagaacgc caaggtgaac c
 51
<210> 581
```

```
gring gring strip strip only again state strong off only off string terms gring gring that the string gring that the string gring that the string gring that the string gring ```

```
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44930828
 <400> 581
                                                                          51
 aacccaatcc tttgaggcaa aagaatgcca aggtgaacca actcctcaag g
 <210> 582
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44930828
 <400> 582
                                                                          51
 ggcaaaagaa cgccaaggtg aaccagctcc tcaaggtttc gctgccgaag c
 <210> 583
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44930828
 <400> 583
                                                                          51
 aggtgaacca actcctcaag gtttccctgc cgaagcttgc caacgtgcag c
 <210> 584
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 584
aggitteget geogaagett gecaatgige ageteetgga taeegaeggg g
                                                                        51
<210> 585
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 585
tgcagctcct ggataccgac gggggctttg tgcactcgga cggtgccatc t
                                                                         51
<210> 586
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 586
ageteetgga taccgaeggg ggtttegtge acteggaegg tgeeatetee t
                                                                         51
<210> 587
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43975478
```

```
<400> 587
 aaaaccctga gaaaagatac aatgttctgg gagctgagac tgtgctcaat c
                                                                          51
 <210> 588
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
  <223> Accession number cg42530218
 <400> 588
 gcatgcccag taataaagat gaagacgggc tagtggtttt agttttcaac a
                                                                          51
 <210> 589
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43122111
 <400> 589
 agtggtggat ccccaggagg aggagagaag gcgggcaggt ggcggggcag a
                                                                          51
 <210> 590
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
< <223> Accession number cg43986282
 <400> 590
 cttttggccc atacttcttt ccgtaacagg atttgcagta gatctcttca t
                                                                          51
 <210> 591
 <211> 51
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43986282
<400> 591
aggatttgca gtagatctct tcatcatgaa ttgccactgt tgtgctatct a
                                                                         51
<210> 592
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43986282
<400> 592
catcgtgaat tgccactgtt gtgctgtcta aatttttcct gcaaaccatg c
                                                                         51
<210> 593
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature -
<222> (0)...(0)
<223> Accession number cg43986282
<400> 593
ctaaattttt cctgcaaacc atgcacaqaa agcagcaqcq gtggaaqctc c
                                                                         51
<210> 594
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43986282
<400> 594
agaaagcagc agcggtggaa gctccggcca tcacactgca cctcttctgc g
                                                                        51
<210> 595
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43986282
<400> 595
tcctgccatc acactgcacc tcttcagcgt ggtacacggt cctcccacag g
                                                                        51
<210> 596
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43986282
<400> 596
gcacctette tgcgtggtac acggttetee cacaggeece acacttgttt e
                                                                        51
<210> 597
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43986282
```

```
<400> 597
  cttctgcgtg gtacacggtc ctcccgcagg ccccacactt gtttccacct c
                                                                          51
  <210> 598
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43986282
  <400> 598
                                                                          51
ggtacacggt cctcccacag gccccgcact tgtttccacc tccccagaca g
  <210> 599
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43986282
  <400> 599
  cggtcctccc acaggcccca cacttatttc cacctcccca gacaggcatt c
                                                                          51
  <210> 600
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg42723058
                                                                          51
  gtcccctacc accaccggtc acagacgtga gccttgagtt gcagcagctg c
  <210> 601
  <211> 51
  <212> DNA
```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42723058
<400> 601
agatgtgagc cttgagttgc agcagttgcg ggaagaacgg aaccgcctgg a
                                                                        51
<210> 602
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43981269
<400> 602
agatggctgg ccagatgggc atgtttaacc ccatggccat ccctttcggg g
                                                                        51
<210> 603
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43972159
<400> 603
taggttctcg ggctgctgaa ctgttagatt ttgacttttc tttctccttg c
                                                                        51
<210> 604
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43972159
<400> 604
gggctgctga actgttcgat tttgattttt ctttctcctt gctgtctgtc a
                                                                        51
<210> 605
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43972159
<400> 605
                                                                        51
ctttctcctt gctgtctgtc acaggcaccc acttaaatat cctcagggac g
<210> 606
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43972159
<400> 606
                                                                         51
ccttgctgtc tgtcacagga acccatttaa atatcctcag ggacgtgtca c
<210> 607
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0) ... (0)
<223> Accession number cg43972159
<400> 607
```

```
gggacgtgtc acceacagtc acceatttct teteceattt cegeacttte t
                                                                             51
     <210> 608
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43972159
     <400> 608
     ccgccatcac cttcttgatg tcatctttgg cccggctacg ggtctcggcc c
                                                                             51
     <210> 609
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
TÚ.
     <222> (0)...(0)
     <223> Accession number cg44911139
14
     <400> 609
     gcaaggttcg cgatgtacgt atcatttcag atcggaactc acgtcgttct a
     <210> 610
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42539705
     <400> 610
                                                                             51
     aaacggaact atttccagat gaggcagggt gtctgggagg ggctgtgggt g
     <210> 611
     <211> 51
     <212> DNA
     <213> Homo sapiens
```

```
gerig gring origin only the body state of the state of th
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42028329
<400> 611
ccaaggagaa cccgtgcaga aaatttcagg ccaacatctt caacaagagc a
                                                                         51
<210> 612
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42028329
<400> 612
actttgacaa cccagtacac cggtcacgga aatggcagcg acggttcttc a
                                                                        51
<210> 613
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42028329
accggtctcg gaaatggcag cgacgattct tcatccttta cgagcacggc c
                                                                        51
<210> 614
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<223> Accession number cg42028329
      <400> 614
      ggcagcgacg gttcttcatc ctttatgagc acggcctctt gcgctacgcc c
      <210> 615
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg42028329
      gacggttctt catcetttac gagcatggcc tettgegeta egecetggat g
                                                                               51
      <210> 616
      <211> 51
Ł.J.
      <212> DNA
ļ.ā.
      <213> Homo sapiens
<220>
N.
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymórphism
9
     <221> misc_feature
ga sis.
     <222> (0)...(0)
fl.
     <223> Accession number cg42028329
<400> 616
     tcctttacga gcacggcctc ttgcgatacg ccctggatga gatgcccacg a
                                                                               51
     <210> 617
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg42028329
     <400> 617
```

gctacgccct ggatgagatg cccaccaccc ttcctcaggg caccatcaac a

51

51

<221> misc_feature <222> (0)...(0)

```
<210> 618
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42392719
<400> 618
tcgcgagaac ggcctcagtg ccaagtccct tacccctgca gctgggctct g
                                                                        51
<210> 619
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cq42392719
<400> 619
tctcccccaa ggtggggtct tctaggtctg tgaggaagag gttcacatct c
                                                                        51
<210> 620
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42392719
<400> 620
ctagatctgt gaggaagagg ttcacgtctc ccaccatgca gctctcttca g
                                                                        51
<210> 621
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39512856
<400> 621
                                                                        51
acgcgtcgcc ggaagccacg tcataaacgg ttttaccccg atggtcttca a
<210> 622
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39512856
<400> 622
                                                                         51
cgtcatagac ggttttaccc cgatgatctt caacgagatg ccacgatgcc t
<210> 623
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39512856
<400> 623
                                                                         51
cctcatcact gttgaaaaca gccacgaagc cagccggaat atctggcggt g
<210> 624
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
```

```
<223> Accession number cg39512856
      <400> 624
      agccagccgg aatatctggc ggtgcgatat cggtactgtt tgcaggcaga c
                                                                              51
      <210> 625
      <211> 51
      <212> DNA
      <213> Homo sapiens
     <220>
     <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg39512856
     <400> 625
     gcggtgcaat atcggtactg tttgctggca gaccggtatg aggcggaata t
                                                                              51
     <210> 626
     <211> 51
     <212> DNA
Ļs.
     <213> Homo sapiens
Ð
     <220>
<221> allele
     <222> (26)...(0)
ļud.
     <223> single nucleotide polymorphism
3
i.
     <221> misc feature
L.
     <222> (0)...(0)
     <223> Accession number cg39512856
     tatcggtact gtttgcaggc agacctgtat gaggcggaat atatgcgtca c
                                                                              51
     <210> 627
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg37445474
     <400> 627
```

ccctgcaagc tctgtatgga acgattcccc agatctttgg gaaaggagaa t

51

<222> (0)...(0)

```
given the state of ```

```
<210> 628
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg30791729
cagatocagt ggccttcccc cagctttgtc aactgtgtcc aggctgtggc t
 51
<210> 629
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42522690
<400> 629
gtgaacagtg taaatcagtt tttcactggg acatgaaatc caaggataag g
 51
<210> 630
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42522690
<400> 630
 51
ctcgaaagtc tcttggtgag gaatacacag aagactatga gcaacccagg g
<210> 631
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
geng genig entigh voja genig entry entry only only only only only only entry genig genig genig
Graff only of outland only made them collect the safety than them than that that
```

```
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43982164
<400> 631
aggtctacgt gttgaagcgt cctcacgtgg atgagttcct gcagcgaatg g
 51
<210> 632
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43980889
<400> 632
aagaccattt acaagtagaa aatgacgctt accctggtac cgatagaaca g
 51
<210> 633
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43980889
tagaaaatga tgcttaccct ggtactgata gaacagaaaa tgttaaatat a
 51
<210> 634
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
```

```
<223> Accession number cg43980889
<400> 634
atgatgctta ccctggtacc gataggacag aaaatgttaa atatagacaa g
 51
<210> 635
<211> 51
<212> DNA
<213> Homo sapiens
<22.0>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43980889
<400> 635
gtaccgatag aacagaaaat gttaagtata gacaagtgga ccattttgcc t
 51
<210> 636
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43955651
<400> 636
cttccaccac gcctgtgttc tgggcactga caaaggccac cttgttggtg t
 51
<210> 637
<211> 51
<212> DNA
<213> Homo sapiens -
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43955651
<400> 637
tgacaaaggc caccttgttg gtgtcaggct tgaggcgaat gaagccacac t
 51
<210> 638
```

```
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42353267
 <400> 638
 ggccttcgat ccagtccatg agcaacgcca tatagcgcgg cgcagagagc t
 51
 <210> 639
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg37027086
 <400> 639
 gggttcttca actgggacag gaggcctcta cccaccaggc ccaaaacgag g
 51
 <210> 640
j.A.
 <211> 51
 <212> DNA
M
 <213> Homo sapiens
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42688841
 <400> 640
 tcaacataag gtagaatttc attaatctca agaagcgagc gtcatagtat a
 51
 <210> 641
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
```

<211> 51 <212> DNA

<221> allele

```
<222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42688841
 <400> 641
 ataaggtaga atttcattaa cctcaggaag cgagcqtcat agtataaaga a
 51
 <210> 642
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42688841
 <400> 642
 agaatttcat taacctcaag aagcgggcgt catagtataa agaaggcttg a
 51
Li.
 <210> 643
 <211> 51
 <212> DNA
Marie
 <213> Homo sapiens
TU.
ļ.
 <220>
22
 <221> allele
₽±.
 <222> (26)...(0)
14
 <223> single nucleotide polymorphism
ΓŲ
TI.
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42688841
 tcaagaagcg agcgtcatag tataaggaag gcttgacgac aaacagtctc t
 51
 <210> 644
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43982291
```

```
<400> 644
 51
cactgtgacc attttgtaca gcaagcagca gcggtatatt cccatccaaa t
<210> 645
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43982291
<400> 645
gtaaagctgt tttcccagag ctgtcaacac tttcggctgg gcatttagac t
 51
<210> 646
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44003673
<400> 646
catgcttggt gcctggtgcc aggtgggtga tgacgacctc cacggcctgc a
 51
<210> 647
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44003673
 51
catcagagat gtgcaggaag atgtcagggc cgccatcagc tggggtaatg a
<210> 648
<211> 51
```

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44003673
 tgtcggggcc gccatcagct ggggtgatga agccatggcc cttggaccgg c
 51
 <210> 649
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
٠. ا
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44936941
TU:
 <400> 649
land.
 51
 cgcgcacctc gtcgccgatc tgctgcccgg tctccttgcc gaggaagtcg t
 <210> 650
 <211> 51
ΓŲ
 <212> DNA
TJ.
 <213> Homo sapiens
D
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg39523553
 gqtctqcccq atccqqqatq gctgcaggtq ggtgatcgac ggtaggccgg a
 51
 <210> 651
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
```

```
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39523553
<400> 651
atygctgccg gtgggtgatc gacygcaggc cggacaatyc cccggcccgt c
 51
<210> 652
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39523553
<400> 652
gaggacagcc atggaagggc acggaccgcc agtgccgcgg cgtgattatg g
 51
<210> 653
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39523553
<400> 653
acgtggtgcg caacagccct cacggggtga aggtccagat ggctctttcc g
 51
<210> 654
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39523553
```

```
<400> 654
cctggcccga gctcgatcag gcatcgaggt gcctggaatc cttactcgat g
 51
<210> 655
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39523553
<400> 655
tcgatcaggc atcaaggtgc ctggagtcct tactcgatga cggtttagtg c
 51
<210> 656
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg36728314
<400> 656
gctgctgctt cttccttgtg gcaacaatct tctgggcaac gtcctggaag a
 51
<210> 657
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg41677120
ttcagtgcac aaatgagatg aatgttaaca tcccacagtt ggcagacagt t
 51
<210> 658
<211> 51
<212> DNA
```

```
from probability of the state of the second ```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0) ... (0)
<223> Accession number cg44126579
aggagtattc atcatcccca atgccatagc cttcatgatt gaggaatttg c
                                                                         51
<210> 659
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44126579
<400> 659
gagtggccca gccaatctgc atgacaccag aagtgaccac tgttacttca t
                                                                         51
<210> 660
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg38925480
<400> 660
agaatctcac cagcettgtg gtgctacatt tgcataacaa ccgcatccag c
                                                                         51
<210> 661
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43323149
<400> 661
gcaccagegg aageectaca gaegggetea gegteatgea agggeectae a
                                                                         51
<210> 662
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43323149
ctacagacgg actcagcgtc atgcaggggc cctacagcga aacagccagc t
                                                                        51
<210> 663
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43323149
<400> 663
gaaaatacag ccggttagaa gttcaggccg atgtccaaaa ggaaattttc c
                                                                        51
<210> 664
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg34243633
<400> 664
```

```
51
ccaccacaga gataatgcag gccagcgagg agattgcact ggatgtcacc a
<210> 665
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg34243633
<400> 665
                                                                        51
caactgctgt cacaatgctg gcaccaacat aagaacttgt tttccagctg g
<210> 666
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg34243633
<400> 666
                                                                         51
ggagcagcat ggcaaccagt gtgcctaaaa gccccagaag gcctaggatg t
<210> 667
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43942922
<400> 667
                                                                         51
agcccacatc tcaggccact aggggaagaa caaataggtc ctctgtcaag a
<210> 668
<211> 51
<212> DNA
<213> Homo sapiens
```

```
Here the state of the state and the state of the section of the se
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43942922
<400> 668
                                                                        51
cagttgtece cacagecect gagetteage ettecacete cacagaceag e
<210> 669
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43942922
<400> 669
ctgtcaagac ccctgaaaca gttgtcccca cagcccctga gctccagcct t
                                                                        51
<210> 670
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43955219
<400> 670
                                                                         51
cctggccaac atggcaaaac cccgtttcta ctaaaaatac aaaaagccgg g
<210> 671
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg29142822
     <400> 671
     cactcacaaa aagggcaaga agcgcgagga gggataatgt cttggaagcc a
                                                                            51
     <210> 672
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43988710
     <400> 672
     ttggtgaaga ggttgtacag cactcttagt gtagacttca ggtcacagtt g
                                                                            51
<210> 673
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
<222> (0)...(0)
     <223> Accession number cg43988710
ry
     <400> 673
     agaggttgta cagcactcgt agtgtggact tcaggtcaca gttgacaatg t
                                                                            51
     <210> 674
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
 <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg39516123
     <400> 674
    gcttggaccg gcatgtggcc tatggcggct attctacccc ggaggatcgg a
                                                                            51
```

```
<210> 675
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg39516123
    <400> 675
                                                                             51
    caggicagect gggacagece ageceatetg eccagagaaa etaceagage t
    <210> 676
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
٠...
    <222> (26)...(0)
ļ.s
    <223> single nucleotide polymorphism
10
    <221> misc_feature
<222> (0)...(0)
    <223> Accession number cg39516123
ģ.
    <400> 676
    tcagctcctc tccggaaagc caggctcgag ctcagttcag tgtggctggc g
                                                                              51
    <210> 677
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg39516123
    <400> 677
    cggtgcctgg gagccctcag gcgcgtcaca gaacagtggg caccaacact c
                                                                              51
     <210> 678
     <211> 51
     <212> DNA
     <213> Homo sapiens
```

```
thing thing with the state and those while the selfs after the state that the state of the state that the state of the sta
```

```
<220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg42731307
  <400> 678
  ggaaatgagc caaagttcgc atgaacccac ggaagtttac ctggtcctct c
                                                                           51
<210> 679
  <211> 51
 <212> DNA
  <213> Homo sapiens
  <220>
   <221> allele
   <222> (26)...(0)
   <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg44128084
  <400> 679
  ccggacaaca ccgttggagt tctttcgccg tcaacgagtt gtctctggaa a
                                                                           51
  <210> 680
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
   <223> single nucleotide polymorphism
   <221> misc feature
   <222> (0)...(0)
   <223> Accession number cg44128084
   <400> 680
   tgagcgctca cgctctcttt gctcggccgc tggtcatgag cccagctgct c
                                                                           51
   <210> 681
   <211> 51
   <212> DNA
   <213> Homo sapiens
   <220>
   <221> allele
   <222> (26)...(0)
   <223> single nucleotide polymorphism
   <221> misc_feature
```

```
<223> Accession number cg44128084
    <400> 681
    tctttgctcg accgctggtc atgagtccag ctgctcgagt ggaccttgac a
                                                                            51
    <210> 682
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
   <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44128084
    <400> 682
    tggtcatgag cccagctgct cgagtagacc ttgacatcca gccagacgqt t
                                                                            51
    <210> 683
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
<= <223> single nucleotide polymorphism
23
   <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44128084
    acatccagcc agacggttca gaatcggcgg ttctgtggtg cgacgggcgc c
                                                                            51
    <210> 684
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg30455661
    <400> 684
                                                                            51
    ccacatacac aacagcatat acctttcctg ggattctcaa gtggtttgaa g
```

<222> (0)...(0)

```
perty perty and the perty and and and an add and and are perty perty from that the fact that the fact that
```

```
<210> 685
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg30455661
<400> 685
gatttcaaca gaagaaatca gccctttgga gaatgccata gaaaccatgg a
                                                                        51
<210> 686
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg30455661
<400> 686
ccatagaaac catggagctg accaatgaga ggatcagcaa ctgtgttcag c
                                                                         51
<210> 687
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43302460
<400> 687
agctcgggag tacaggtgaa acttcgcgaa ttgcctgttc cttctttctg a
                                                                         51
<210> 688
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
Here the second of the second
```

```
<221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43153425
  <400> 688
  aaggccgact ttctgtagga agtaatcgtg accgagagat cagcatgtct g
                                                                          51
  <210> 689
  <211> 51
  <212> DNA
  <213> Homo sapiens
<220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
 <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43153425
 <400> 689
 gactttctgt aggaagtaac cgtgatcgag agatcagcat gtctgtcggt c
                                                                          51
 <210> 690
 <211> 51
  <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
  <223> Accession number cg43153425
 gtgaccgaga gatcagcatg tctgttggtc tgggaaggtc acagttagac t
                                                                          51
 <210> 691
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
```

```
<223> Accession number cg43153425
<400> 691
                                                                        51
tcagcatgtc tgtcggtctg ggaagatcac agttagactc caaaggagga g
<210> 692
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43153425
<400> 692
                                                                        51
tgtctgtcgg tctgggaagg tcacaattag actccaaagg aggagtagtt g
<210> 693
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43153425
<400> 693
tcggtctggg aaggtcacag ttagattcca aaggaggagt agttggtggg a
                                                                        51
<210> 694
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43153425
                                                                         51
gtctgggaag gtcacagtta gactctaaag gaggagtagt tggtgggacc a
```

ij

ļ,

The same state

<210> 695

```
<211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0) ... (0)
    <223> Accession number cg43153425
    <400> 695
    caaatcagca accaaaccac aaaattcaaa ttactatggg ttctactgaa t
                                                                              51
    <210> 696
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
ħ#.
    <221> misc feature
    <222> (0)...(0)
Li
    <223> Accession number cg43153425
TU
ļ.
    <400> 696
                                                                              51
    tgqgttctac tgaatctcgg gttgattaca tgggctcaag catcctcatg g
    <210> 697
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
     <221> allele
    <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg30384142
     <400> 697
     cttgcgcggc accaggcggt aagacaaccc atattttaga actggcacct c
                                                                              51
     <210> 698
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
```

```
<223> Accession number cg44015614
    <400> 698
    gctctggctg gggtgcagta tacttttcca cgtattctat ttccacaact t
    <210> 699
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44015614
    <400> 699
    gctggggtgc agtatacttc tccacatatt ctatttccac aacttcttct g
    <210> 700
    <211> 51
    <212> DNA
    <213> Homo sapiens
<220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44015614
    <400> 700
    tctccacgta ttctatttcc acaacctctt ctgatgagat gttctccatt t
    <210> 701
    <211> 51
     <212> DNA
    <213> Homo sapiens
    <220>
     <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
```

51

<222> (26)...(0)

<221> misc_feature <222> (0)...(0)

<221> misc_feature <222> (0)...(0)

<223> Accession number cg44015614

<223> single nucleotide polymorphism

```
<400> 701
cgtattctat ttccacaact tcttccgatg agatgttctc catttccatg t
                                                                         51
<210> 702
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44015614
<400> 702
ctatttccac aacttcttct gatgaaatgt tctccatttc catgtgtttg t
                                                                         51
<210> 703
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44015614
<400> 703
agggcattcg cagaaactgg cccttgataa ggaaatcaaa ctccacatgt t
                                                                         51
<210> 704
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42380652
<400> 704
                                                                         51
agtocaggca ggggcccacg tecteceggt acaceettte caggaagggg c
<210> 705
<211> 51
```

```
graf graf state og glass med state og og og og og state graf graf
had sit af odde flad med flam odle og odle odle blen blen flat flad
```

```
<212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43931038
  <400> 705
                                                                          51
  tottototag agtocogogg otcacggoot ttgctgcgaa gggcaacttg t
  <210> 706
  <211> 51
  <212> DNA
<213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43931038
  <400> 706
  gtcccgcggc tcacagcctt tgctgggaag ggcaacttgt gggcaacctg g
                                                                          51
  <210> 707
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg43931038
  <400> 707
  aagggcaact tgtgggcaac ctggttaagg aaaccttgac ttcttcaaat t
                                                                          51
  <210> 708
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
 <222> (26)...(0)
```

```
girig grid sings of grid with mile off off off only single sold grid find
fault with all with fault made flow mile. He wise other flow flow flow flow
```

```
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43931038
<400> 708
                                                                        51
aacttgtggg caacctggtc aaggacacct tgacttette aaartcacaa c
<210> 709
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43931038
<400> 709
                                                                        51
gcaacctggt caaggaaacc ttgacctctt caaattcaca acgcccaccc a
<210> 710
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43931038
                                                                         51
ccttgacttc ttcaaattca caacgtccac ccatctctac aacaaggcgg c
<210> 711
<211> 51
<212> DNA
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43931038
```

ccagggaaag tgcacagcca gagaactggt cttgcaactg catccagtgt g

tcacgtagtg gtcaatagca cctttacctc cccccatgcg atgcccaaca c

51

51

51

51

<400> 711

<210> 712 <211> 51 <212> DNA

<210> 715 <211> 51 <212> DNA

<213> Homo sapiens

```
<213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0) ... (0)
     <223> Accession number cg43314946
     ccttccggat gactttctcc gcatcttgcc ccagcagctg gacagcatac a
                                                                               51
     <210> 716
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
ij.
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg44010070
     tcaagcactc ggacgggacg cgcacctgcg ccaagctcta tgacaagagc g
                                                                              51
h#:
     <210> 717
臣
     <211> 51
     <212> DNA
     <213> Homo sapiens
TU.
    · <220>
    <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc_feature
     <222> (0)...(0)
    <223> Accession number cg39380052
    <400> 717
    acctcatcac cccgtaccat cagactctcg acaaggtcac tgagcgtttt c
                                                                              51
    <210> 718
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
```

```
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39380052
gtcgtggcat cgggccgacc tactccgaca agatcaatcg gatgggtatt c
                                                                        51
<210> 719
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39380052
<400> 719
actctgacaa gatcaatcgg atgggcattc gcgtccagga tcttttcgac g
                                                                        51
<210> 720
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43329819
<400> 720
                                                                        51
tcatcgacaa ccagaacctc ctcttcgagc tctcctacaa gctggaggca a
<210> 721
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43298242
<400> 721
```

```
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
```

```
51
ctgaagatct gttggcaggg ctcacggaga cgggggtgag gggagagatc g
<210> 722
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43298242
<400> 722
                                                                        51
tggcagggct cacagagacg ggggtaaggg gagagatcgt gggttcatga g
<210> 723
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43970780
<400> 723
                                                                        51
ggagttctgg ttctggtaga tggaaacttt ctctttcaac aggtccagac a
<210> 724
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43957906
<400> 724
                                                                         51
ggagtccttg gcggcgtcat atgggcgctc cttggagggg atctccagga c
<210> 725
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43952088
<400> 725
tgaggggagc gtcgccggcc gcggaacaga tgccgcgggg gccgctcgca g
                                                                        51
<210> 726
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43956666
                                                                         51
actcctgttc tggggacagt ttggtgttaa aacacttaaa tatagatccg g
<210> 727
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43942011
<400> 727
                                                                         51
ttccccatgt gaaacatctg gcttgtgaca ggtgattttt tcacaggtag g
<210> 728
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43973728
  <400> 728
  tatgaaccac ccagatctga agaagctgct gttctgaaac agaagttgga g
                                                                          51
 <210> 729
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
  <222> (0)...(0)
  <223> Accession number cg44017721
  <400> 729
                                                                          51
  tectgetect cegtggeete etttgacage getggeeaag eecegggtea g
  <210> 730
  <211> 51
  <212> DNA
  <213> Homo sapiens
 <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
  <223> Accession number cg43273880
  <400> 730
  caaaagaaga aagacgacgt gactgcgggt aagaaaccat ttcgtccaga g
                                                                          51
  <210> 731
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
 <221> misc feature
  <222> (0)...(0)
<223> Accession number cg43992911
  <400> 731
                                                                          51
  gaagaagaac ttttttaaac tgaacgataa aagtgaaaaa gataagaagg a
```

```
<220>
     <221> ailele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg41029366
     <400> 732
     tgcggccaca aagaggacgc gggcgcggtg tgctcagagc accagtcctg g
     <210> 733
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
<222> (26)...(0)
     <223> single nucleotide polymorphism
<221> misc feature
     <222> (0)...(0)
ļ.š.
     <223> Accession number cg43931167
     <400> 733
     cgagaactga agaaagcaag aacaggccta caaatggatg aactcaaatg t
f.J
     <210> 734
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43925670
     aatctgaatt ttgtcatact cttctttcat ttttaaatta agttttaaat c
```

51

51

<210> 732 <211> 51 <212> DNA

<210> 735 <211> 51 <212> DNA

<213> Homo sapiens

<213> Homo sapiens

```
<220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43925670
    tagaacaatg ttcttgtatt tttttgccat ctttacagac ataagtgagc c
                                                                             51
    <210> 736
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
<223> Accession number cg43928549
ijÌ.
    aattggcaca tcttggcgcg aaagttgttc acttctgggt cgcacaagga g
                                                                             51
O
    <210> 737
    <211> 51
    <212> DNA
    <213> Homo sapiens
æ
.
.
    <220>
Ē,Ē.
    <221> allele
<222> (26)...(0)
fu.
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg42703622
    <400> 737
    gaagaaggaa tttggaggtg gccacgttaa agatgaagta tttggaacag t
                                                                             51
    <210> 738
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
```

```
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
```

```
<222> (0)...(0)
 <223> Accession number cg44131752
 <400> 738
 ctctgcgtgc tcgtcccgaa gtgacgtgcc tggttccgac aaggacactg a
                                                                         51
 <210> 739
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg25143358
<400> 739
caggtggcca ttcgggcggc ttcaattttc gtggtcatgc cgccggttcc c
                                                                         51
<210> 740
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43105476
<400> 740
gcgaaaccag ttcggtcttt caaattggga ttagcacctc taagtagcag t
                                                                        51
<210> 741
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg38642684
<400> 741
atattgccta gtaatttctg ataattattt aaggtatgta agttgctagt a
                                                                        51
```

```
<210> 742
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg39518465
                                                                              51
     cacttectaa aggagatgaa ggaagteetg ggeaceeetg gegeageeaa t
     <210> 743
     <211> 51
     <212> DNA
     <213> Homo sapiens
<220>
1
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
ļudi
II.
     <221> misc feature
IJ
     <222> (0)...(0)
     <223> Accession number cg43021380
E.
. E
     cagccgcccg gggggctgca gcgccattag tgcccacggc tgtctatttg a
                                                                              51
     <210> 744
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg39728924
                                                                              51
     caattgtgga gaagagtatt tttatatcgc tactcaagga ccactgctga g
     <210> 745
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
```

```
<221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg42710490
     <400> 745
     caaccageet attgggggaa gaaatateea gggtggaate egttttgggg a
     <210> 746
     <211> 51
      <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
<223> Accession number cg44001078
٠...
     <400> 746
     ggttatcagg aacttgggat cttcatggat ttccatcttg ttcttcatcc a
CI.
     <210> 747
<211> 51
ķá.
     <212> DNA
     <213> Homo sapiens
å,
ļ.
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43916919
     <400> 747
     aggtaggagt cccccgagaa gaagatgccc tggttctctt gcgccacagg c
     <210> 748
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
```

51

51

<221> allele <222> (26)...(0)

<223> single nucleotide polymorphism

<223> single nucleotide polymorphism

<221> misc_feature <222> (0)...(0)

```
<223> Accession number cg42930605
     <400> 748
     cageteettg etggtettet geacetteac etceatgteg tactteteet e
                                                                              51
     <210> 749
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg36824552
     <400> 749
     aagacgagcc gaggcttcac ctaccgcctg cacttctggc tcggaaagga g
                                                                              51
     <210> 750
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
TU.
    <223> single nucleotide polymorphism
Ħ
    <221> misc feature
L.
    <222> (0)...(0)
     <223> Accession number cg42522566
N
    <400> 750
    caacatcatg aaccagctca gccacataaa cttgatccaa ctttatgatg c
                                                                              51
     <210> 751
     <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
     <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42522566
    <400> 751
    gtaccacctc actgagttgg atgtgatctt gttcacgagg cagatctgtg a
                                                                              51
```

<210> 752

```
<220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42489842
     tgcaagtgaa tatgccaaat actgcacaga aatattagga gttgcagcta c
     <210> 753
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
٠.[
     <221> misc_feature
į.
     <222> (0)...(0)
     <223> Accession number cg43919398
U
<400> 753
     gttagtctct gtggtgtgct tataaccatt tggggtccaa cattcacatt t
     <210> 754
     <211> 51
TU
     <212> DNA
     <213> Homo sapiens
<220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg20612302
     <400> 754
     atggaggcgg cccacatggc ggccagcgcc atcctcaacc tgtccacgcg c
     <210> 755
     <211> 51
     <212> DNA
     <213> Homo sapiens
```

51

51

<211> 51 <212> DNA

<220>

<221> allele

<213> Homo sapiens

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44928196
<400> 755
ggctctgttc catgggaaat tcataaacac gggtttttct ttaccattct a
                                                                        51
<210> 756
<211> 51
<212> DNA
<213> Hcmo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43301812
<400> 756
ggctggtcct tctccatggc tgggacgctc tgctgcgctt ggttttgccc g
                                                                        51
<210> 757
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43917191
<400> 757
                                                                        51
gcttctcttt tcacattgta tgtattcagg tgttcttgca actccaaaac a
<210> 758
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43918356
```

```
<400> 758
 getcatgtca tettcateta gaaacaceet caeggaaatg gaattgetge e
                                                                         51
 <210> 759
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43932090
 <400> 759
 tcttttcaag ctttctttat gttgtctatt gtcttcattt tcttgaaggt c
                                                                         51
 <210> 760
 <211> 51
 <212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43950437
<400> 760
agccagaggc tggtacctag aaccactgga tggtttcttg gctgatggcg c
                                                                         51
<210> 761
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42935995
gcctcgctcc ccgtctgaga gcctcgcgcc ctccagccag ccgtcactgc t
                                                                        51
<210> 762
<211> 51
```

```
<212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43971614
     <400> 762
     tocattigaa tocaatoooc catgggcata agaagagtto tittocataaa a
                                                                              51
     <210> 763
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43922856
     <400> 763
     cttgaaattt ccagtcaccc tattggcaac taaggattcg ttgcttgaag c
                                                                              51
L. ...
Ħ
     <210> 764
j.4.
     <211> 51
ļ.
     <212> DNA
FU
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43922856
     ccacttgtcc attcagtctc agttactcca gcttgagaat agctctgatt g
                                                                              51
     <210> 765
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
```

```
<223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43955639
    <400> 765
    ggccgcgggg ggatagctgc ccagggtcag gaggctcttg ggctcctgcc a
                                                                            51
    <210> 766
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg41022625
   <400> 766
    cacggcgttc tggatcgtct tctccgtcat tcacatcatc gccaccctgc t
                                                                            51
    <210> 767
    <211> 51
IJ.
   <212> DNA
    <213> Homo sapiens
LU:
fy.
    <220>
    <221> allele
₽
    <222> (26)...(0)
    <223> single nucleotide polymorphism
Ē.
<221> misc_feature
TU.
   <222> (0)...(0)
   <223> Accession number cg43119894
    <400> 767
    tgagcatagc tctgagctct ctttatacgg tcagggtcca cataatgcat t
                                                                            51
    <210> 768
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
   <221> misc feature
   <222> (0)...(0)
   <223> Accession number cg43303845
```

```
<400> 768
                                                                             51
    aqaacgaqaq aqqctqqaqa gactqgaacg ggaqaqqcaa gaaagggagc g
    <210> 769
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg44927166
    <400> 769
    gtetttgtet teccaateee tttggtgtte tegttettta teeetttete t
                                                                             51
    <210> 770
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
fy.
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg38059286
    <400> 770
112
    agetgtatag etceagtggt cetgatetee geegeteect etteteactg a
                                                                             51
    <210> 771
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg29351416
    <400> 771
    ctgcccagcc agccccatcc cctgatgacc tggctttgtc aatgggcacc a
                                                                             51
    <210> 772
    <211> 51
    <212> DNA
```

```
<213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43960639
  <400> 772
     ccatgtctgg gagaatggga gcctcctcgc ccacttgaaa gtcaaagtag a
                                                                             51
    <210> 773
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
1
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43325007
    <400> 773
                                                                             51
     gtggatatat gtggcctgca gtatgaccca cagcttctcc tggaggctgc c
i i
     <210> 774
    <211> 51
b.
    <212> DNA
    <213> Homo sapiens
Ni
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42907145
     <400> 774
     gccacctccc ataaccttct cagcaacata gactgacttg ccacatcgag g
                                                                             51
     <210> 775
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
```

```
<223> Accession number cg43972159
     aagccattag gttctcgggc tgctgtactg ttcgattttg acttttcttt c
    <210> 776
     <211> 51
     <212> DNA
    <213> Homo sapiens
    <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg39512856
     <400> 776
     ccaggctgtg ccgttccact tctgaaattc ccctcccggc gataaccagg t
     <210> 777
     <211> 51
     <212> DNA
Ш
     <213> Homo sapiens
54.
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg28461713
     <400> 777
     tctgcaaatt tgctcctggg catggacagc ttgcagctga agttggttgt a
     <210> 778
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
```

51

51

<221> misc_feature <222> (0)...(0)

<222> (0)...(0)

<400> 778

<223> Accession number cg43969092

```
<210> 779
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> aliele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42688841
     <400> 779
     gcgtcatagt ataaagaagg cttgatgaca aacagtctct tgccatggtc c
                                                                             51
     <210> 780
     <211> 51
     <212> DNA
<213> Homo sapiens
L
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
j.d.
    <222> (0)...(0)
=
     <223> Accession number cg39523553
    <400> 780
    gacgcgttgg ttcccgacga agacgtccga gcggccaagt gggcggtggc g
                                                                             51
     <210> 781
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg39523553
                                                                             51
     atggacgtgg tgcgcaacag ccctcgcgga gtgaaggtcc agatggctct t
     <210> 782
     <211> 51
     <212> DNA
     <213> Homo sapiens
```

eggegeeegt cateaeggat gtgcaagtee eegteggtea geageageae a

51

```
<220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg39523553
     <400> 782
                                                                             51
     ccagatggct ctttccgcct ggccccagct cgatcaggca tcaaggtgcc t
     <210> 783
     <211> 51
    <212> DNA
  <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
<221> misc_feature
     <222> (0)...(0)
ļ.
     <223> Accession number cg35933325
     <400> 783
LJ.
     aaccacagag aatacagtga caacatagaa acaaaatgac caaatgccac t
                                                                              51
Πů
i.e.
     <210> 784
757
     <211> 51
24
     <212> DNA
<213> Homo sapiens
TŲ.
TJ.
    <220>
   <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg41677120
     <400> 784
     gttgtttaac ttaagcaatt ttttgaataa aagtggattg caaggatatg a
                                                                              51
     <210> 785
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
    <222> (26)...(0)
     <223> single nucleotide polymorphism
```

```
<210> 786
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42696021
     gctgtgccgc cttcacaatg aagtggaccg gaagctgggc aagcctgatt t
٠,
    <210> 787
    <211> 51
    <212> DNA
IJ
     <213> Homo sapiens
řij.
    <220>
ļadī:
     <221> allele
Zi
    <222> (26)...(0)
    <223> single nucleotide polymorphism
FL.
    <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg34243633
     <400> 787
     gctggcaccg acataagaac ttgttctcca gctggggagc agcatggcaa c
     <210> 788
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
```

<223> single nucleotide polymorphism

<223> Accession number cg34243633

<221> misc feature <222> (0)...(0)

<400> 788

<221> misc_feature <222> (0)...(0)

<223> Accession number cg43951096

```
51
aacatcaaca atcgttattg ggtctctatt tttgctagaa gaagtatctg g
                                                                        51
                                                                        51
                                                                        51
ttccagctgg ggagcagcat ggcaatcagt gtgcccaaaa gccccagaag g
```

```
<210> 789
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43942922
 <400> 789
                                                                         51
 gtcctctgtc aagacccctg aaacaattgt ccccacagcc cctgagctcc a
 <210> 790
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43942922
 <400> 790
tgagetecag eettecaeet eeacaaacea geetgteaee tetgageeea e
                                                                          51
 <210> 791
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44938009
 <400> 791
 ttctgtcaat gtggtccgtg ccatggttga taactgggat gtcctcttcc a
                                                                          51
 <210> 792
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

IÜ Lü

```
gring gring derig volls gring volls gring warm of and and and gring grin
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39516123
                                                                         51
agcectcagg egegecacag aacaggggge accaacacte eccetagtee t
<210> 793
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44921974
<400> 793
                                                                         51
gattatgtcg ccgttgagtt cggtcgcaga cttgatgttt ttgaaagttg t
<210> 794
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42731307
<400> 794
                                                                         51
aaggcattga tgatccggtc ccccactggg ttgatggcaa gttctggaat c
<210> 795
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc_feature
```

```
<222> (0)...(0)
    <223> Accession number cg42731307
    <400> 795
                                                                             51
    caagttctgg aatcctctgg aaatcgtccc ggctgagagt cccattctct c
    <210> 796
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg44015614
    <400> 796
                                                                             51
    tccacaactt cttctgatga gatgtcctcc atttccatgt gtttgtccaa g
    <210> 797
    <211> 51
    <212> DNA
    <213> Homo sapiens
<220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
=
14
    <221> misc_feature
hā.
    <222> (0)...(0)
    <223> Accession number cg43298242
EU
                                                                             51
    gatctgttgg cagggctcac agagatgggg gtgaggggag agatcgtggg t
    <210> 798
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43299610
    <400> 798
    ctcccagtgc ccgcccgact accactacat ccacaccgag atctcccggg a
                                                                             51
```

```
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
```

```
<210> 799
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42532480
<400> 799
tttcctgaat gaatgttaaa gattcagtca aggtcagtat ggcgatccaa g
                                                                        51
<210> 800
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42926989
gcaatgagct gctggcagca caaagtctta tcgcaccagg aaagatgcag c
                                                                        51
<210> 801
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43991318
tggtccggga atacctggtg gacccggcgg gcccggctgc caggagctgc c
                                                                        51
<210> 802
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43920512
    aattcaaagt atcatggtgt ttctcccctc aacccaccag agacactaaa t
                                                                              51
    <210> 803
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0) ... (0)
    <223> Accession number cg43063374
*.
                                                                              51
    agagattgaa cgtgtggttg gcagacaccg gagcccctgc atgcaggaca g
<210> 804
N
    <211> 51
há.
    <212> DNA
    <213> Homo sapiens
åå.
į̃αrές.
    <220>
T.
    <221> allele
Ш
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg21416244
    gggtgaactg tctatccacc attattatct attcaggcac attcaggacc t
                                                                              51
    <210> 805
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
```

```
<223> Accession number cg44017721
     <400> 805
     agataggagt tgaaggtgca gagggtcacg ctgggcagcg ccagcacgaa g
                                                                             51
     <210> 806
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43275625
     <400> 806
     tggtactcct ttgccgccag cttgggctca tggtacacgt tgggtttggt a
                                                                             51
     <210> 807
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
<222> (26)...(0)
h.
     <223> single nucleotide polymorphism
     <221> misc_feature
<222> (0)...(0)
    <223> Accession number cg43312829
HJ.
FU.
     <400> 807
     tagtgaaaat ctccaatcaa agacagcagg actccatgta actgaatatg a
                                                                             51
     <210> 808
   <211> 51
     <212> DNA
     <213> Homo sapiens -
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43959136
     <400> 808
     tgggccaaca agcttgagtg cgatctggtc tgcaatgatg gaggaattgc c
                                                                             51
```

<210> 809

```
<212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43969759
     <400> 809
     tgtcaggagg aagatctcat ctggggtgtg ccggatcccg ccggcgatga c
     <210> 810
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg39523614
ļ4
     <400> 810
     gggagcttta gacattgcca cggatcacgt ccagaagcgc aagcagtttg g
14
ħ4.
     <210> 811
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg42175288
     <400> 811
     tggagacccc aaaagtgggg attggttttg ccctaatccg tcatgcggaa a
     <210> 812
     <211> 51
     <212> DNA
     <213> Homo sapiens
```

51

51

<211> 51

<220>

<221> allele

```
<222> (0)...(0)
    <223> Accession number cg43154217
    <400> 312
    gcagaagagg tgattgtgag aggacaaaga gctccaggaa cagctggaac t
                                                                             51
    <210> 813
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
     <221> allele
     <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg39709402
    <400> 813
    ggaaaacatt aataaacaag tagaacccta cagagaggaa tcgcaaaaat c
    <210> 814
     <211> 51
     <212> DNA
     <213> Homo sapiens
Ħ
   <220>
    <221> allele
    <222> (26)...(0)
     <223> single nucleotide polymorphism
FU.
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg39709402
     <400> 814
     gcctacagag aggaatcgca aaaatgcctg aaagaattcc aggaaaacac a
     <210> 815
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
```

51

<222> (26)...(0)

<221> misc feature

<221> misc_feature <222> (0)...(0)

<223> Accession number cg39709402

<223> single nucleotide polymorphism

```
<400> 815
     gatgctggag gacttcaaga aagacgtgaa gaactccctt agagaaacac a
                                                                             51
     <210> 816
     <211> 51
     <212> DNA
     <213> Homo sapiens
    <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg39709402
    <400> 816
    aaagacatga agaactccct tagaggaaca caggaaaaca ttaataaaca a
                                                                             51
    <210> 817
    <211> 51
    <212> DNA
    <213> Homo sapiens
4...
    <220>
Li.
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
fu
L.
    <221> misc_feature
¥
    <222> (0)...(0)
    <223> Accession number cg39709402
Ē.
La.
    <400> 817
cttagagaaa cacaggaaaa cattagtaaa caagtagaag cctacagaga g
                                                                             51
    <210> 818
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg39709402
    tagagaaaca caggaaaaca ttaatgaaca agtagaagcc tacagagagg a
                                                                            51
    <210> 819
    <211> 51
```

```
<212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43950268
   <400> 819
    tttgctatgt cctccttgac ctcctactcg gtggcggtca caatgccctc c
                                                                           51
    <210> 820
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
   <221> misc feature
    <222> (0)...(0)
   <223> Accession number cq43985169
   <400> 820
aagacgaatg ggtggtggta gagatcctga agaaatggaa atagatggtg a
                                                                           51
<210> 821
<u></u> <211> 51
<212> DNA
<213> Homo sapiens
   <220>
   <221> allele
   <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43997616
   <400> 821
                                                                           51
   aaagccagcg gagccgtaag catcacactg cttcctcttc acctcatcac t
   <210> 822
    <211> 51
    <212> DNA
   <213> Homo sapiens
   <220>
   <221> allele
    <222> (26)...(0)
```

```
<223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
    <223> Accession number cg43319420
    <400> 822
    cacgacaact acagaaacaa cccctcccac aacttccggc actgcttctg c
                                                                              51
    <210> 823
    <211> 51
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg44034764
    gaggtccagg ctgggcagga cagtccccc atggtgccgt aacagcctct t
                                                                             51
    <210> 824
    <211> 51
    <212> DNA
    <213> Homo sapiens
TU.
Ŀ
    <220>
    <221> allele
22
1.3
   <222> (26)...(0)
l.A.
   <223> single nucleotide polymorphism
TU:
    <221> misc feature
    <222> (0)...(0)
    <223> Accession number cg43991224
    <400> 824
    tctcatctgt ctacctacag cctggattgg gtcatggcag cagtggtgct g
                                                                             51
   <210> 825
   <211> 51
   <212> DNA
   <213> Homo sapiens
   <220>
   <221> allele
   <222> (26)...(0)
   <223> single nucleotide polymorphism
   <221> misc feature
   <222> (0)...(0)
   <223> Accession number cg44018623
```

```
from the term of string ring that one one of wife that the first first first for the first ```

```
<400> 825
 taccatetet gtttttacca etggtagete tgaacaacaa ataatttgtg g
 51
 <210> 826
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg38924741
 <400> 826
 aaagaggaga atggtgactt tgcctcattc agagtggaac gagctgaaag g
 51
 <210> 827
 <211> 51
 <212> DNA
 <213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43322513
<400> 827
ttcctgttct tcacatggtg agccctgccc tgctgtctgc ttgcattcgg g
 51
<210> 828
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44913214
<400> 828
gaacacaaca aagaaaaaac agagtttggg actcatccaa aagggacgag a
 51
<210> 829
<211> 51
<212> DNA
```

```
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg39529972
 ttggcctcga catcattccc tgacggggac ttaaagggta gcaattcgta t
 51
 <210> 830
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43925670
 <400> 830
 tagtttgccc aaaccagcat cacctgggaa cttttcttcc atcaagtcag c
Fij.
 51
1.4
 <210> 831
 <211> 51
44 <212> DNA
 <213> Homo sapiens
FU
 <220>
FU.
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43925670
 <400> 831
 tttgtcatac tcttctctca tttttgaatt aagttttaaa tcgttgctca g
 51
 <210> 832
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
```

```
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43925670
 <400> 832
 51
 cctctaatcc ttttagtaga acaattttct tgtatttttt tcccatcttt a
 <210> 833
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43925670
 <400> 833
 cttttagtag aacaatgttc ttgtagtttt ttcccatctt tacagacata a
 51
 <210> 834
 <211> 51
 <212> DNA
 <213> Homo sapiens
TW.
Ŀ£
 <220>
22
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
TU.
r.L
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43331742
 <400> 834
 tcctcgaggt gcttcccaca gactcaattt ctgagttttc cacagaaaag a
 51
 <210> 835
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43253796
 <400> 835
```

gaaatggatc ttatttggac tttgctacaa gactgccgag agattttccc a

51

```
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg38438124
 <400> 839
 tgcaaaaact gttaaacatg gcgctcgcgc ggagatctcc accgtgaacc c
 51
 <210> 840
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42703622
49
 <400> 840
LJ.
 gtatgcagca acaagagcaa ctctggagaa ggaatttgga ggtggccaca t
 51
TU
 <210> 841
<u>1</u>4
 <211> 51
21
 <212> DNA
 <213> Homo sapiens
FL
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42703622
 acaagagcaa ctctgaagaa ggaatctgga ggtggccaca ttaaagatga a
 51
 <210> 842
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220> '
 <221> allele
 <222> (26)...(0)
```

<223> single nucleotide polymorphism

<220>

```
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg41501665
 <400> 842
 gagtacacca tcaagtcgca ctccaacttg ccgcccaaca acagctacgc c
 51
 <210> 843
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg25143358
 <400> 843
 gctttatggg tatcgacatc caatgtgtcg atgtcctcca caacctccac g
 51
 <210> 844
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
ĸ
 <223> single nucleotide polymorphism
1.4
 <221> misc feature
H
 <222> (0)...(0)
 <223> Accession number cg29023997
 <400> 844
 tgcatggttt ccattttcaa tctgggtggg atggagcacc atgtgcgcac c
 51
 <210> 845
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43975720
 <400> 845
 catccaccca gcccaagatg accggccctt ttaccaattt gaggctgcgt g
 51
```

```
<210> 846
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44013875
<400> 846
 51
gccatggaga ggctgcagga gacagggaag attatagctg agctgaacga g
<210> 847
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44009224
<400> 847
tttggatcct gaaaatgttg tatttcatgt tggaggttac ccacctgatt t
 51
<210> 848
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42930646
 51
tgatgcggat agcgtatgga tggaagtgga cgatgaggag gacctgcctt c
<210> 849
<211> 51
<212> DNA
<213> Homo sapiens
```

```
<223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43935885
 ccagacagca ccactggaac ccctcttagc agcgcaccag acccgaagaa c
 <210> 850
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42928872
 <400> 850
l.
 gagctgcaga ggaggctgga ccagttcatt gggaagccct cactgttcat c
 <210> 851
 <211> 51
 <212> DNA
<213> Homo sapiens
<220>
 <221> allele
ГŲ
 <222> (26)...(0)
fly.
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44019843
 <400> 851
 gagtgacccg cctccctggt ccaagtatgt ggagtacacc ttcacaggga t
 <210> 852
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
```

<223> single nucleotide polymorphism

<221> misc feature

51

51

51

<220>

<221> allele <222> (26)...(0)

```
How the first way only 1972 with which will be the sales when the sales with the
```

```
<222> (0)...(0)
<223> Accession number cg44128805
agtgcacaca gtgagctcag agctttcccc tgaaaaccga aagtttcaac t
 51
<210> 853
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg38642684
<400> 853
tttctgataa tcatttaagg tatgttagtt gctagtattt aatttaacct t
 51
<210> 854
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg38642684
<400> 854
ctttttcagg tgcaatgatt aaacctctta actgtgcatt ccttatgaca g
 51
<210> 855
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44913844
<400> 855
ccagttggta aactggtctt aaaccagaat ccagttaatt actttgctga g
 51
```

```
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg40084915
 <400> 856
 cctgcggtct ggggagatga gggccccaaa cagcacctga tattcattgg g
 51
 <210> 857
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
17
 <221> misc feature
 <222> (0)...(0)
TU.
 <223> Accession number cg42720088
ļ.
35
 51
 aaagctcaga gagatctggg ctatgtgcca cttgtcagct gggaggaagc c
Ērads.
 <210> 858
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43957486
 cgctcctgca ccgcatccgc gacgctgtcc tgcaacgacc tctgcgagca c
 51
 <210> 859
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

<210> 856

<220>

```
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg40148056
<400> 859
 51
ctcagagacc cctaacaacc cagcacccac agageggaac acttaaggat c
<210> 860
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43981852
<400> 860
 51
cacctcctcc agcttcccag cctcctcggc tctggccagg ctgccgctgg g
<210> 861
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42522566
 51
gcagccaaga tcatcaaagt gaagagcgta aaggaccggg aggatgtgaa g
<210> 862
<211> 51
<212> DNA
<213> Homo sapiens
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
<222> (0)...(0)
```

```
<223> Accession number cg43297806
 <400> 862
 atagtagcca gggacaagac agcggctctg cagggagcgt agtgccagag g
 51
 <210> 863
 <211> 51
 <212> DNA
 <213> Home sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43297806
 <400> 863
 51
 tgcagggagc gtagtgccag aggggcctgg gaggaggctg aaatcacctg a
 <210> 864
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
TU
 <222> (26)...(0)
į.
 <223> single nucleotide polymorphism
=
 <221> misc feature
1.3
 <222> (0)...(0)
4
 <223> Accession number cg43987111
THE
 <400> 864
 51
 agtagtctgc gtctccatag agtttactca tgactgagtt cttggtctgg a
 <210> 865
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43976335
 51
 gaaatgcact ggaccactcg ggcagagctg ccaggccgta gcaggcaatt c
```

<210> 866

```
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> aliele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0) ... (0)
 <223> Accession number cg39515668
 <400> 866
 acgcacgaac cggtcatact ggtcgttgat ccaggaacgg tcgcacagct g
 51
 <210> 867
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
[]
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44027791
l
 <400> 867
 51
23
 gaagegette tgacactggg cgcacccgaa gegtttgtee cetgtgtggg t
 <210> 868
į.
 <211> 51
TU.
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43992817
 <400> 868
 51
 gaggggeege tggaaggtga cactgtgttg gggeecacgg aggtgeeget g
 <210> 869
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
```

```
The production of the control of the
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43297259
<400> 869
taagtytetg atgaggtgtg actteegget aaageettge teacacteee t
 51
<210> 870
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42716761
<400> 870
cgagaagacc.ctataccatc acgtggacgg ctgcgacgtg ttccacctcc g
 51
<210> 871
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42166807
<400> 871
agagcaatgg ctctcttcac tccgtagaag ttgtcctctc agaagctggg c
 51
<210> 872
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg38869466
```

```
<400> 872
 ttcacttgta ttaacgtcct ggtcccgggc ttcataatgg tgtcaggatt t
 51
 <210> 873
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <22.0>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42742340
 <400> 873
 51
 cagagagacg gtgtccatca gcatctgggc ctccctgcag cagacccagg c
 <210> 874
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
27
 <221> misc_feature
<222> (0)...(0)
 <223> Accession number cg43976701
THE
 <400> 874
 tggtatatct gaactgaatc agcctcctga acttttacct cagttttcta g
 51
 <210> 875
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43920728
 <400> 875
 51
 gtaagtctca ttgtaaaatt gttgcgtgag cagtgctggg gagttgacag c
 <210> 876
 <211> 51
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43920728
<400> 876
 51
tgcttgctct ggaagggcag agtgctgctc acctcctttt agccaaagta a
<210> 877
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42339179
<400> 877
 51
tcctccacca gggtcatttt gcggtattta aaagttccag tgatctcaat g
<210> 878
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg17663981
<400> 878
 51
tgcacctgcg accaaaaacc ctgcaactgc cccaaagggg atgtcaacta c
<210> 879
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
<210> 880
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43924089
 <400> 880
 acctcctgga gcagtcctgg tgttatattc cctgcccctg gagttcccac t
 <210> 881
į.
 <211> 51
 <212> DNA
 <213> Homo sapiens
ļ.
 <220>
3
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
N
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43930961
 <400> 881
 ttcttccgta gtcacagacg ttaggttact gctttcggct tcaatggaaa c
 <210> 882
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 (222> (26)...(0)
```

getecegtge aeggggetgt agegeteagg aetgeeeagg eetggetttg e

51

51

51

<223> single nucleotide polymorphism

<223> Accession number cg43918356

<223> single nucleotide polymorphism

<223> Accession number cg43966528

<221> misc\_feature <222> (0)...(0)

<221> misc\_feature <222> (0)...(0)

<400> 879

```
<400> 882
 51
aacaacacat tcagtacagt gcagcgtatc agcaggccaa gttaaccaat c
<210> 883
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43980727
<400> 883
tccttccttg tagtcagaga catcaagaga gtaactggat gttagctcca a
 51
<210> 884
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43981483
<400> 884
 51
tgactgcatt attcgcagct gcttagggac aaattctacc ttcttctggg t
<210> 885
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26) ...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44932392
 51
 tagatgaagg agcctgagta agaggtcacg caccagcctg tagaacatat a
 <210> 886
 <211> 51
 <212> DNA
```

```
Hardy from the state of the sta
```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44932924
aacagtgagt cggtccagca gcagacggag ttcttgaaca ggcagctgtt g
 51
<210> 887
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43985955
<400> 887
acctccaaac ccctttggcc ctgtaccagg agcacagata cagtttatgt a
 51
<210> 888
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44002507
 51
gtcgcacttg gcagccagca ggatctcggc tatgtccacg cagccggaga a
<210> 889
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
gring gring right of gring titles such out out out out in section of gring gring from the gring and gring gring that the gring title gring that the grind th
```

```
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44002507
 <400> 889
 tttcctttcc tcttgagaaa tttctcctta atgctggatt ccgaactcag g
 51
 <210> 890
. <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44002507
 <400> 890
 cgcaggtcct ggtgggccat gaacatgcgc acgggcacca ggttgggctc g
 51
 <210> 891
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg44128920
 <400> 891
 51
 gagcagcagc gaaaacggct tcaaccgcag ttggaagaac gcagtcgtga a
 <210> 892
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43968641
 <400> 892
```

```
tcattcatct cagggaacat atcagtcaga gaaatataca agaacattcc t
 51
 <210> 893
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43934178
<400> 893
acaaagtagt ggaacttcct cttgagcacg tccagggtgt ggcccaggac c
 51
<210> 894
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43934178
ccagggcatg acctccgtga agcctagtga gaggacggtc ttcccggagc a
 51
<210> 895
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43949042
ggacgtacat gaggacggct attggatgtc cgatgatgag cgacagccac a
 51
<210> 896
<211> 51
<212> DNA
<213> Homo sapiens
```

TU.

£.

THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S

F

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(C)
 <223> Accession number cg43916582
 <400> 896
 cetteatett tattetgetg etcaggttee atttgtteet ettgattgeg t
 51
 <210> 897
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43258841
 <400> 897
 aactccatcc acaagtcctt gctgagtaat caatcgctga gcctcatctc t
 51
 <210> 898
 <211> 51
 <212> DNA
 <213> Homo sapiens
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43979679
 gagaaggagc ccgggaaagt gtgactagga gaaaccggca cccagctttg c
 51
 <210> 899
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
```

FU.

Ēź

5

M.

```
<222> (0)...(0)
 <223> Accession number cg42202923
 <400> 899
 51
 taccccaatg gtcttcagcc tctgcggcag ctccgatgag gtcagctgcc g
 <210> 900
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43320405
 <400> 900
 51
 ccaggecteg aatggacage acettaatga tggggtegtg gtggeteagg e
 <210> 901
٠.,
 <211> 51
 <212> DNA
 <213> Homo sapiens
11.0
 <220>
Ē.Ē.
 <221> allele
 <222> (26)...(0)
Œ
 <223> single nucleotide polymorphism
L.
Ĭ.4.
 <221> misc_feature
FU.
 <222> (0)...(0)
FU
 <223> Accession number cg43917689
 <400> 901
 tgacaacgca ggctccaggg gttgtagctg atcttctcag aactcaagcc a
 51
 <210> 902
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43922856
 <400> 902
 51
 gagaattcag tgattggcag aatagaagat gcatgcttga aatttccagt c
```

<221> misc feature

```
from first with the strip way with all the other with the first with gray from
```

```
<210> 903
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43922856
<400> 903
aactaaggat tcgttgcttg aagcctttat agtttcagct atgggagtac t
 51
<210> 904
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43955639
<400> 904
cgtgtggcag gcatggtgat gagggatgct ggggccaggg aggtggcagg a
 51
<210> 905
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43950766
<400> 905
 51
aggaatgacc aaagcacctg ggtcacactt gtccacccac tctttaattt t
<210> 906
<211> 51
<212> DNA
<213> Homo sapiens
```

```
Fig. 17 of 17 of 17 of 17 of 18 of 18 of 19 of 19 of 19 of 18 of 1
```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43985159
 <400> 906
 acttctgcct tcagctgcaa acccaaagga cggcatccga ggactgaacg c
 51
 <210> 907
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg41022625
 <400> 907
 cgtcttctcc atcattcaca tcatctccac cctgctcctc agcacgcagc t
 51
 <210> 908
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
<223> Accession number cg44002669
 <400> 908
 accttgcgct tgcactcgcg gcagctcctg tccagttcct ccttctcctt c
 51
 <210> 909
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
```

```
<222> (0)...(0)
<223> Accession number cg44128902
ccgggatcga gacagagaca gagagggga cagggatcgg gatcgggatc g
 51
<210> 910
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> aliele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44129213
gggtgtggac tggctgcaga tgtcacttgt aattcagatt ctttctggcg a
 51
<210> 911
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43996402
cttctccggc tcctttcctc cctgcagtgg cttctgctgc tcccctcctt t
 51
<210> 912
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43984909
<400> 912
 51
cgaatatcag ctgcatccag tgtcctcaga cgagaataca agccaaggcc t
```

```
<210> 913
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26) ... (0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42910688
 <400> 913
 gacagaggac attcccataa ttttgtttgg caacaaaagt gacttagtgc g
 51
 <210> 914
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43950590
FIX.
i.
 <400> 914
 aagaatcctc cgacggcttc gttactatcc tgtctgaagc ggattgcacg a
 51
 <210> 915
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg44931503
 <400> 915
 ttttaaagag ttcatataat cataggggtc ttcaaatacc gttgttcctt c
 51
 <210> 916
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

<220>

```
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43303845
acattgccta gacaaaactc acaaccacct gctcaagttc aaaatggccc a
 51
<210> 917
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43973762
agctgaacaa cagaagttgt ggaattagga gttaaaatat gccagaggca a
 51
<210> 918
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43973762
caaagaagcg attgaaacac aattaccaga gtatcacaaa ttggctagaa a
 51
<210> 919
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
```

```
<223> Accession number cg43973762
<400> 919
gccctaaata aaaaaatggg tttgggggat actttagaac aattgaatgc a
 51
<210> 920
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42910848
<400> 920
 51
ccatggtgcc aggccgtgct ccccacgtgc ctccggggtg ctgaagatct t
<210> 921
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg29351416
<400> 921
 51
tttcccaaaa qttccaagta gacaagagta atcgcctgtt actgcagcag g
<210> 922
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg29351416
<400> 922
 51
gttactgcag caggtctcat taccatacat tcctgggaac tataccgtca g
<210> 923
```

```
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43938372
<400> 923
ttgtttccca cttaatttat ttttttctgc ttgttcttct tctttcatcc t
 51
<210> 924
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 924
 51
cctcaaggtt tcgctgccga agcttaccaa cgtgcagctc ctggataccg a
<210> 925
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44930828
<400> 925
 51
cttgccaacg tgcagctcct ggatatcgac gggggttttg tgcactcgga c
<210> 926
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44035718
<400> 926
ctggagtacc aggaagaact gaggttccac tacaaggaca tgctcagcga a
 51
<210> 927
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44921277
<400> 927
ttggcgcaac ttccccatca ccttcacctg ctatgcggcc ctcttctgcc t
 51
<210> 928
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43250166
<400> 928
gccgtgattt gctccagtgc catcttgtgc agatgctcat ctcggctctc g
 51
<210> 929
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39512856
```

```
<400> 929
ctttttccag gcttccagca acgagatttc ttccttcgtt gcaatttcca g
 51
<210> 930
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39512856
<400> 930
gccgttccac ttctgatatt ccccttccgg cgataaccag gtaaaatttt c
 51
<210> 931
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39512856
<400> 931
tcccctcccg gcgataacca ggtaacattt tccggtaacg gaccgagttc a
 51
<210> 932
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39512856
<400> 932
tggtcttcaa cgagatgcca cgatgactca tcactgttga aaacagccac a
 51
<210> 933
<211> 51
```

```
gray gray with the second of t
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg39570960
<400> 933
gcctccagga agtcgtttgt gtttgggctg aacgaatgtg cgtccagccg c
 51
<210> 934
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43980391
agtaaatgga caagaatatc atctttaact tgtagacaca gccgggcaag a
 51
<210> 935
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43983527
ttctggaagg atggtgcacc ctggttcggc cgccattact gcgagagtct g
 51
<210> 936
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
```

```
Here the second with the second team with the second team to the secon
```

```
<223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42341305
 <400> 936
 gatgaatatt cgagtacaga cacactgtat cccggcagcc tacctccaga a
 51
 <210> 937
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43980889
 <400> 937
 cttctatttt gaattctaaa gaccagttac aagtagaaaa tgatgcttac c
 51
 <210> 938
 <211> 51
 <212> DNA
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43980889
 <400> 938
 tattttgaat tctaaagacc atttataagt agaaaatgat gcttaccctg g
 51
 <210> 939
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
<222> (0)...(0)
 <223> Accession number cg43980889
```

```
<400> 939
 gcttaccctg gtaccgatag aacagcaaat gttaaatata gacaagtgga c
 51
 <210> 940
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg29349483
 <400> 940
 gcagtttttc accaagatca agacctctga ccaccagtac atggagggct t
 51
 <210> 941
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43918287
 <400> 941
 51
 <210> 942
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43918287
<400> 942
 51
 <210> 943
 <211> 51
 <212> DNA
```

```
<213> Homo sapiens
 <220>
 <221> allele
 <222> (26) ... (0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43918287
 <400> 943
 taaaccagcc cagccgccaa cccccgaaag ttggtctgca gttatattaa t
 51
 <210> 944
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43918287
 <400> 944
 51
 caacccccaa aagttggtct gcagtcatat taatttgagg ttggacctgg g
 <210> 945
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg37027086
 <400> 945
 gaatcagaac tacaaggatc aattacccca gctcaatgtc agggttcttc a
 51
 <210> 946
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42688841
attataactg ggatcccagt caacaaaagg tagaatttca ttaacctcaa g
 51
<210> 947
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42688841
<400> 947
ccgagcctag tgccagcgcg gcggccagac agagctgtca gagcggcgac c
 51
<210> 948
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg40332814
<400> 948
actgcacagg gaccgaatct ctgccccccg ctctgcagcc aggtgctcca a
 51
<210> 949
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43920571
<400> 949
```

```
gcgtttttct ctcacgtccg tctgaaattt actgaggaat attgtgctgg c
 51
 <210> 950
 <211> 51
 <212> DNA
 <213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
 <222> (0)...(0)
<223> Accession number cg44024149
<400> 950
 51
 ggaagccgca ctcagttatg gcttccacgg ctgccactgt ggcgtgggtg g
<210> 951
 <211> 51
 <212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43307245
<400> 951
 51
gatatgatag cttgtcctga aactgggact cctgccgtga taacgtgtga c
<210> 952
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39523553
<400> 952
gtgtgaggtc tgcccgatcc gggatagctg ccggtgggtg atcgacggta g
 51
<210> 953
<211> 51
<212> DNA
<213> Homo sapiens
```

```
going group draight only regard arrange and and the section of the
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0) ...(0)
<223> Accession number cg39523553
<400> 953
atggetettt eegeetggee egageeegat eaggeateaa ggtgeetgga a
 51
<210> 954
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg35933325
<400> 954
accaaatgcc actattttt ctccccttgc gaaaaatgaa ggaaatcacg t
 51
<210> 955
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg41677120
<400> 955
cacgacccac gagatcatgg ggcccgagaa aaagcacctg gactacttaa t
 51
<210> 956
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc feature
 <222> (0)...(0)
<223> Accession number cg41677120
 <400> 956
 51
 cccacgagat catggggccc aagaacaagc acctggacta cttaattcag t
 <210> 957
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg41677120
 <400> 957
 cacaaatgag atgaatgtga acatctcaca gttggcagac agtttatttg a
 51
 <210> 958
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg39648832
 <400> 958
 tgcagecteg tecteetect etggetgget etgeacacte tgeteetggt a
 51
 <210> 959
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42696021
 51
 gacacccgca cccgggcatg cttcagacag tggctgtgcc gccttcacaa t
```

```
<210> 960
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg42696021
 <400> 960
 accogggcat gcttcacaca gtggccgtgc cgccttcaca atgaagtgaa c
 51
 <210> 961
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
19
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg34243633
ķė.
 <400> 961
 cagagataat gcaggccagg gaggacattg cactggatqt caccatcatq q
 51
Į.
TJ.
 <210> 962
IJ
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg34243633
 <400> 962
 accgacataa gaacttgttt tccagttggg gagcagcatg gcaaccagtg t
 51
 <210> 963
 <211> 51
 <212> DNA
 <213> Homo sapiens
```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43942922
 cotgagetee ageetteeac etecagagae cageetgtea ectetgagee e
 51
 <210> 964
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43942922
 <400> 964
 cagcetteca cetecacaga ecagettgte acetetgage ecacatetea g
 51
<210> 965
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43942922
 <400> 965
 cacctccaca gaccagcctg tcacccctga gcccacatct caggccacta g
 51
 <210> 966
 <211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
```

```
from the state of ```

```
<222> (0)...(0)
<223> Accession number cg43942922
cctgtcacct ctgagcccac atctcgggcc actaggggaa gaaaaaatag g
                                                                         51
<210> 967
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg35133436
<400> 967
ttctctagtc caccaggagg ctacagctcg gctctcaggg tcaggtaatg a
                                                                         51
<210> 968
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44938009
<400> 968
gagtgcacgc ataaagatgg aagagtatgc actactttct gatccagtgg a
                                                                         51
<210> 969
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43949821
<400> 969
attitaattc cttcctgtct acggcagttg gacctcctgg ctctctgctg t
                                                                         51
```

```
print gray way to be their way was to the total and their their states that their their states that their
```

```
<210> 970
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39516123
<400> 970
                                                                        51
tggcttcggc tggcgggcca tcaattccag catggctgcc cccagcagtc c
<210> 971
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42731307
<400> 971
                                                                         51
cgaaaagcaa agtgcagttt gttgcctcgg ctgttgagtg gttcgggtcc a
<210> 972
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42731307
<400> 972
                                                                         51
tctggaaaga aggcattgat gatccagtcc cccagtgggt tgatggcaag t
<210> 973
<211> 51
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg42731307
     <400> 973
     gggttgatyg caagttctgg aatcccctgg aaatcttccc ggctgagagt c
                                                                              51
     <210> 974
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg44910937
     <400> 974
     tgcctttgga acaggaatat gaaaataaac tcagagccga gttagtggaa a
                                                                              51
     <210> 975
     <211> 51
W
     <212> DNA
     <213> Homo sapiens
Ļģ.
     <220>
3
ļ.
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
#11
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43335624
     <400> 975
     tcgaaaggaa gtgagtgcág atggggagac catcactgtc actttcttta a
                                                                              51
     <210> 976
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
    <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0) ... (0)
```

```
<400> 976
      cgctaatgcc aagaaggaga tggtgagctc caagctgccc aacagtgtgc t
                                                                              51
      <210> 977
      <211> 51
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg44128084
     <400> 977
     cttgacatcc agccagacgg ttcaggatca gcggttctgt ggtgcgacgg g
                                                                             51
     <210> 978
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
<222> (26)...(0)
M.
    <223> single nucleotide polymorphism
.....
     <221> misc_feature
     <222> (0)...(0)
.
.
     <223> Accession number cg30455661
<400> 978
     ttctcaagtg gtttgaagtc aaacatattt caacagaaga aatcagccct c
                                                                             51
     <210> 979
     <211> 51
     <212> DNA
     <213> Homo sapiens -
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg42747615
     <400> 979
     tgtgataaaa gtcactttca ggccactcac agcgaatctt cagacacttt t
                                                                             51
```

<223> Accession number cg43277268

<210> 980

```
<211> 51
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43153425
<400> 980
acaaattact atgggttcta ctgaagctcg ggttgactac atgggctcaa g
                                                                         51
<210> 981
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43968980
<400> 981
tattttctgc ttctctaaca gctgaatgtg aattgcttcc ttggactgaa g
                                                                         51
<210> 982
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg30384142
<400> 982
gatagtggtg tgtggtgatg cgagttaacc tgacgaatgg ttagctgaaa t
                                                                         51
<210> 983
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
```

```
<222> (26)...(0)
   <223> single nucleotide polymorphism
   <221> misc feature
   <222> (0)...(0)
  <223> Accession number cg43957773
  gggctcaccg tagagcaact gcaatagctc tgggcctggg cctggacagg a
                                                                           51
  <210> 984
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43931038
  <400> 984
  agggcaactt gtgggcaacc tggtccagga aaccttgact tcttcaaatt c
                                                                           51
  <210> 985
  <211> 51
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc_feature
  <222> (0)...(0)
  <223> Accession number cg43931038
  <400> 985
  cctccccca tgcgatgccc aacacctttg cgagtgatgg gcttgaaagg g
                                                                          51
  <210> 986
<211> 51
  <212> DNA
  <213> Homo sapiens
 <220>
  <221> allele
  <222> (26)...(0)
  <223> single nucleotide polymorphism
  <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43971060
```

```
<400> 986
cccacctcgt tcgtgctccc acccttccca gctccaccgc ctggtcttca g
                                                                        51
<210> 987
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44010070
<400> 987
ttetetgeeg geacetacee gegeegggag gagtaeegee ggggeatett a
                                                                        51
<210> 988
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43298242
tctgttggca gggctcacag agacgagggt gaggggagag atcgtgggtt c
                                                                        51
<210> 989
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43298242
<400> 989
agagacgggg gtgaggggag agatcatggg ttcatgagat cccatcttgg g
                                                                        51
<210> 990
<211> 50
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43300636
ccacagoogc cacgoccaco tocogoccag goccaggoot atgogoatca
                                                                         50
<210> 991
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43300636
ccgccacgcc cacctcccgg cccagcccag gcctatgcgc atcaccatgg
                                                                        50
<210> 992
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43250373
```

```
<400> 992
                                                                        50
ctgtggggtt gacccagaac aaagcttgcc agaaaacgtt aagtatggga
<210> 993
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43132502
<400> 993
ggccccagtg cagtgggtgg caccgcgagg ctgctgttac ggctcatctt
                                                                        50
<210> 994
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42528468
<400> 994
                                                                         50
gctcctgcct gggaacaacc ggaagtgtat gaactgagca atgtgcaaga
<210> 995
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
```

```
<222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43264626
 <400> 995
                                                                         50
 tttgccagtt ttcttcttga gttggcctcc agggcaccca cagagctaaa
 <210> 996
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43132668
 <400> 996
                                                                          50
 cgatgcgtgc cagggtgatt ccggagcccg ctggtgtgtg aggaccaagc
 <210> 997
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43132668
 <400> 997
                                                                          50
 gatgcgtgcc agggtgattc cggagcccgc tggtgtgta ggaccaagct
 <210> 998
 <211> 50
 <212> DNA
<213> Homo sapiens
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44924334
<400> 998
aaagctaatt gagacctatt tctccaaaac taccaagact atgagtatct
                                                                        50
<210> 999
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43303165
<400> 999
ggcccccact atcaggggcc ctggctcaat cactgagacc atccaagtcc
                                                                        50
<210> 1000
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42489148
                                                                        50
tgcgagtgga tgcggaaccg gcgcacagtc cctcggcagc caagtgaaaa
```

```
<211> 50
      <212> DNA
      <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc_feature
      <222> (0)...(0)
      <223> Accession number cg43929210
      <400> 1001
      totggctcag catgatgttc cctctgcctt cagcctgcca ctaaagaatg
                                                                               50
     <210> 1002
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
Tij.
      <222> (26)...(0)
      <223> single nucleotide polymorphism
i.
     <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
Fil
     <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg44004587
      <400> 1002
      gcttattttc ggtgttgaat aagaaacact aaaagctcga tgcaataatc
                                                                               50
      <210> 1003
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
```

<223> Nucleotide deleted between bases 25 and 26

<210> 1001

```
<222> (0)...(0)
      <223> Accession number cg41501665
      <400> 1003
      cgcttctcca aggtgctgga ggaggggcgg ccgccgagga gggcctgcgc
                                                                               50
      <210> 1004
      <211> 50
      <212> DNA
      <213> Homo sapiens
     <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg41501665
     <400> 1004
                                                                               50
      cggccgccga ggagggcctg cgcgactgca gcgcagccgg cggctctgcc
      <210> 1005
      <211> 50
      <212> DNA
      <213> Homo sapiens
ļ.
     <220>
er ies .
     <221> allele
      <222> (26)...(0)
fu.
     <223> single nucleotide polymorphism
     <221> misc feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
      <223> Accession number cg41501665
                                                                               50
     tgcgcgagct gcagcgcagc cggcgctctg ccacgaggac gtggaggcgc
     <210> 1006
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
     <222> (26)...(0)
```

<221> misc feature

```
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg41501665
<400> 1006
                                                                        50
gccacgagga cgtggaggcg ctggcgccat ctacgaggag aaggaggcct
<210> 1007
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43939695
<400> 1007
                                                                        50
caagactgag atcaattgcc ggcggcggac gatgggaacc tcttccccct
<210> 1008
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg29023997
<400> 1008
                                                                         50
tctggatggg atggagcacc atgtggcacc tgcatcccca aagtggagct
<210> 1009
<211> 50
```

```
Hard The state of the first will state that the state of ```

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43983535
<400> 1009
ctccaaacag cttcttcact tttttagaag ggcttctgca gctaccaact
 50
<210> 1010
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42488873
ttccccttaa attggtcagc atagtcccca ttttggggca tccttcagct
 50
<210> 1011
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42488873
```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg42488873
 <400> 1012
 cacgcggccc cccagcctcc tgccccctcc gcggccgtgt gcgcgcccag
 <210> 1013
 <211> 50
 <212> DNA
L
 <213> Homo sapiens
N
Ļž.
 <220>
 <221> allele
122
 <222> (26)...(0)
 <223> single nucleotide polymorphism
H.
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43249083
 <400> 1013
 ggagcagete caggagaege tgetgggget ettegggete tggtgetgaa
 <210> 1014
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
```

gtcagcatag tgccccattt tggggatcct tcagctggac aagggaaaca

50

50

50

<400> 1011

<210> 1012 <211> 50 <212> DNA

<221> allele <222> (26)...(0)

<221> misc\_feature

<223> single nucleotide polymorphism

<213> Homo sapiens

```
<222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43991048
 <400> 1014
 tetttettt ettettett tttttgttt tttetgett atectettet
 5υ
 <210> 1015
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43919677
<400> 1015
 gaagaaaaga aagaatgcta ctatatctca atgacgccag tctctgtgat
 50
ru.
 <210> 1016
 <211> 50
 <212> DNA
L=
 <213> Homo sapiens
ļ.
f
 <220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43997978
 <400> 1016
 50
 catcagetca etgtagatta cetetetteg teaatgaggg attecaegga
 <210> 1017
 <211> 50
 <212> DNA
 <213> Homo sapiens
```

```
print fried from the color fried fried and the color fried fried from the color from the first free freed from the first freed from the freed from the first freed from the freed from the first freed freed from the first freed freed freed from the first freed ```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43916615
<400> 1017
                                                                         50
 atgacggaat ataagctggt ggtgggggcg ccggcggtgt gggcaagagt
 <210> 1018
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43916615
 <400> 1018
                                                                          50
 tgacggaata taagctggtg gtggtggcgc cggcggtgtg ggcaagagtg
 <210> 1019
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43916615
                                                                          50
 gacggaatat aagctggtgg tggtggcgcc ggcggtgtgg gcaagagtgc
```

```
<210> 1020
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43069905
<400> 1020
agetecagea gtgacaggte atteteceeg egtecgegte atacegeatg
                                                                         50
<210> 1021
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43069905
<400> 1021
cagcagtgac aggtcattct cccccgcgt ccgcgtcata ccgcatgtgc a
                                                                         51
<210> 1022
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44028327
```

1.2

is E

```
50
     atgcatacat cgatattcag ctacgattgc ttccttctca cagaactgtg
     <210> 1023
     <211> 50
     <212> DNA
     <213> Homo sapiens
    <220>
     <221> allale
    <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg43940280
     <400> 1023
     cctcgaagtc tgcctgggca cacacacatg cagattttgg tgctttccca
                                                                             50
    <210> 1024
     <211> 50
     <212> DNA
14
     <213> Homo sapiens
W
     <220>
ſΨ
     <221> allele
ļ.
     <222> (26)...(0)
     <223> single nucleotide polymorphism
L≢.
     <221> misc_feature
E....
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
M
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43974196
     <400> 1024
     gattcagggc gtgtctgggg tgaagccaca gggttgagaa agcgaacctc
                                                                              50
     <210> 1025
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
```

<400> 1022

```
<223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43916919
 <400> 1025
 gaagaagacg ccctggttct cttgcccaca ggcaccggct tcagcttctc
                                                                         50
 <210> 1026
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
<221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
<221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
<221> misc feature
 <222> (0)...(0)
 <223> Accession number cg21428405
<400> 1026
atctcttcag gggcgaggtt cgggtgcgca gcggaacgcg gtcgagctcg
                                                                         50
<210> 1027
 <211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43336100
 <400> 1027
                                                                         50
atcatgctgg agaactcgca gatgaagagc gcatgctgct gcaagccacg
<210> 1028
 <211> 50
 <212> DNA
 <213> Homo sapiens
```

ru

ļ.

2:

L.

L.

ПIJ

<220>

```
<222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg39517655
     <400> 1028
     gggcgcctta ctcgctatyc tgcaaggccc cgggccttgg cttcggccgc
                                                                              50
    <210> 1029
     <211> 50
     <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
$4 ·
    <222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
Li
FU
    <221> misc feature
    <222> (0)...(0)
ļ.ā
    <223> Accession number cg43954704
<400> 1029
ķ.á.
    cccactggaa gtggaggctc cagtcaaccc ccctctgagc tccgaggcag
                                                                             50
ru.
    <210> 1030
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43986426
    <400> 1030
    gcggacagtc gccctaagca gtgcaggtgt cttgagccct atggtggcca
                                                                             50
```

<221> allele

```
<213> Homo sapiens
     <220>
    <221> allele
     <222> (26)...(0)
    <223> single nucleotide polymcrphism
    <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc_feature
     <222> (0) ... (0)
     <223> Accession number cg43917221
     <400> 1031
     gaaatgtcat ccacggtatt tttttcagtt ttagtttgac caaagcttta
    <210> 1032
    <211> 51
<212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
fu.
    <223> single nucleotide polymorphism
1.5.
    <221> misc_feature
    <222> (0)...(0)
L.
    <223> Accession number cg43918356
ļā.
    <400> 1032
Til.
    atgtcatctt catctagaaa cgcccatcac ggaaatggaa ttgctgccag a
<210> 1033
    <211> 50
     <212> DNA
     <213> Homo sapiens
    <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc_feature
     <222> (0)...(0)
```

<223> Accession number cg43918446

<400> 1033

50

51

<210> 1031 <211> 50 <212> DNA

```
ctttcccaca tgacttgtta cattcgacca ctgggaccac tcggtgagct
                                                                               50
     <210> 1034
     <211> 50
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
     <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
     <222> (0)...(0)
     <223> Accession number cg43927750
     <400> 1034
     taaaagttat tctccaatgg tgattggcaa gccctgcctc ctgtattctt
                                                                               50
    <210> 1035
     <211> 50
     <212> DNA
2.4
    <213> Homo sapiens
    <220>
Lik
    <221> allele
T.
    <222> (26)...(0)
in is.
    <223> single nucleotide polymorphism
1.4.
    <221> misc_feature
.
.
    <222> (25)...(26)
TU
    <223> Nucleotide deleted between bases 25 and 26
TJ.
    <221> misc_feature
    <222> (0)...(0)
    <223> Accession number cg43961075
    <400> 1035
    gggtaggatt gctcatttca gggcactgtc gcaagcatct cccaccccgt
                                                                              50
    <210> 1036
    <211> 50
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> allele
    <222> (26)...(0)
    <223> single nucleotide polymorphism
    <221> misc_feature
    <222> (25)...(26)
    <223> Nucleotide deleted between bases 25 and 26
```

```
<221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43961763
 <400> 1036
 catctaggtc aacaggaagg tcaagtcccg ctccggttcc actgatccat
                                                                          50
 <210> 1037
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43968223
 <400> 1037
 gttctgttct tgtagcgctt tctgcctgca gcatgatctg aagcttgttg
                                                                          50
<210> 1038
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
<222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg43980727
. <400> 1038
 ccctccaggt agaggcctag gaaggcccag aactgaagcc gaagcgctgg
                                                                          50
<210> 1039
 <211> 50
 <212> DNA
<213> Homo sapiens
<220>
<221> allele
```

```
gray given what of the master with the set of the set with the set of the set
```

```
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43999667
<400> 1039
ttctgttttg tcaggacttt tttttctaca agttgttttt ctgggatcac
                                                                         50
<210> 1040
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44022781
<400> 1040
gtatcaaagt gctctttcca actttggagg ccccatcacc actaccggta
                                                                        50
<210> 1041
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44919370
<400> 1041
cgtggacttt tccgaggatg acccctggag gccactgtcc attgggcccc
                                                                        50
<210> 1042
```

```
Hard the state of ```

```
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44932924
<400> 1042
 50
tctacaacca gagccaggaa ttacaacgaa gctggaggac tgcaggaaca
<210> 1043
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43991434
<400> 1043
 50
ggggtgcaag ggccttgggg aaatatcctg ctgcaccatg tggttcagcg
<210> 1044
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
```

```
<400> 1.044
 cetectecag graageactg greagtectg cagtgtagge cacttetgea
 50
 <210> 1045
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43949042
 cacagetgeg ttgccatagt tgcceggaaa aageggeeca egaaceagge
 50
Ļā.
 <210> 1046
 <211> 50
<212> DNA
 <213> Homo sapiens
l.s.
 <220>
ļ.
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
MW.
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43972066
 <400> 1046
 50
 taaatttgac ttttctcatg taaaatgtct aatgcgatgt atttggtaat
 <210> 1047
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
```

<223> Accession number cg44931278

<223> single nucleotide polymorphism

=

```
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43955639
<400> 1047
gggggtactg gggacctcgt ctgttggttc ccctcctcca gggtageggc
 50
<210> 1048
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43955639
<400> 1048
gggtactggg gacctcgtct gttggttccc ctcctccagg gtagcggctc
 50
<210> 1049
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223 > Accession number cg43965656
<400> 1049
 50
ctgcctattc tgaaccagcc aacattgaga ttgttgccaa tgcccgaggt
<210> 1050
<211> 50
<212> DNA
<213> Homo sapiens
```

```
The first of the color of the c
```

```
<220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43944615
 <400> 1050
 tacatggcac agaggaagaa gcgcacacgg cgctgcagtt cacgtccacc
 50
<210> 1051
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc_feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc feature
 <222> (0)...(0)
 <223> Accession number cg43323906
 <400> 1051
 ctctggtgct gctcctctga agattaagct tatttcaatg agactgcaga
 50
 <210> 1052
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44004690
<400> 1052
```

i.a

IJ

fu

3 ļ.

T.J

50

```
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43329741
<400> 1055
 50
gctctacctg ggctacaccc cgcagcggcc cgtgaagtgc gcatcatgca
<210> 1056
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44010310
<400> 1056
 51
tttgttgaga tgcatgaatt ttttttctct attgctgctt gaaaatttac a
<210> 1057
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39729127
<400> 1057
 51
gctctcttct ttattggtaa ccagttggtg gccacgagtc atacagggaa a
<210> 1058
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
```

```
<222> (0)...(0)
<223> Accession number cg43135797
<400> 1058
 50
agatetgtet eeceggagae eeggaceget ggeeattgea gaaggegeee
<210> 1059
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43965796
<400> 1059
atcactgttg atgctctggg ccacgcaggg tactggatct tcatggccac
 50
<210> 1060
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43965796
 50
tcactgttga tgctctgggc cacgcagggt actggatctt catggccacc
<210> 1061
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42907867
<400> 1061
 50
agggccacgg ggtgggccag ggggcgggcc atttccagtg gctccttgtc
<210> 1062
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43922710
<400> 1062
 50
tctacccagc taaatacaca ttatgcattt agcaaactaa cttacaagtc
<210> 1063
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43303845
 50
gcaggaacgc ctggatcggg agaggaagaa agacaagaac gagagaggct
<210> 1064
<211> 50
<212> DNA
```

```
per gran and other transfer of the state of
```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43973762
<400> 1064
 50
ataacagaaa gcaagagaag tgtgaaactc tgaaagaaga agttcaaaag
<210> 1065
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43918679
<400> 1065
 50
tcacagatat ctccatttgc caggaatgcc cagcctggag gtgatcacgc
<210> 1066
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg38059286
```

```
grown prints with refer to the lands of the set of the time that the print prints of the time that the prints of the time that the time the set of the time that the time the set of the time that the time the set of the time the set of the time that the time the set of the time the set
```

```
<400> 1066
 50
gccgctccct cttctcactg aagcaatctt ccaggaggac aaagacctgg
<210> 1067
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42549778
<400> 1067
 50
actgtcactt ccctgctgca gggcaccccc acctgtgagt ggctcgagcc
<210> 1068
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44921277
 50
ccctgatcat cctcatcgtg gagcttgcgg gctccaggcc cgcttccccc
<210> 1069
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
```

```
grang grang with the grang states are set of the set of the set of the grang grang grang grang states and the set of the grang ```

```
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44921277
<400> 1069
                                                                        50
ctgatcatcc tcatcgtgga gctgtcgggc tccaggcccg cttccccctg
<210> 1070
<211> 51
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg42530218
<400> 1070
                                                                        51
gatttaatac acagcagcag cagcagaact acattaggtg gtctcttcag t
<210> 1071
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42530218
<400> 1071
                                                                         50
atttaataca cagcagcagc agcaactaca ttaggtggtc tcttcagtca
<210> 1072
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
```

```
Hard Brief and a family and could be the selection of the
```

```
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43325007
<400> 1072
                                                                        50
aggaracccc cgaggaaggc cgccagaatg cgtgtgctgg gtaggtcttg
<210> 1073
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43981269
ggcctacggc gcctacgctc aggcatgatg cagcagcaag cggccctgat
                                                                        50
<210> 1074
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43250166
                                                                        50
aggtggccct cacacccagt gctgtctgcg cggagggctg tactgaaggt
<210> 1075
<211> 51
<212> DNA
<213> Homo sapiens
```

```
grid grid ville in grid ville grid ville said ville vi
```

```
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43982164
<400> 1075
ctgcggcggg tgctcatcct ggacacattc acctgcctcc tatgtcttcc a
                                                                        51
<210> 1076
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43980889
<400> 1076
ttaaatatag acaagtggac catttgcctc aaattcacag gagccagcat
                                                                        50
<210> 1077
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43970119
<400> 1077
gtggccattg gtgagacatc catcatattg caaaccaaaa gttttatttc
                                                                        50
<210> 1078
<211> 50
```

```
<213> Homo sapiens
     ·<220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0) ... (0)
      <223> Accession number cg44030987
      <400> 1078
      tcggcatgtt gagtggaaca gttgttttac ttgaattcca atctccttct
     <210> 1079
      <211> 50
      <212> DNA
      <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
      <222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
Eris.
     <221> misc_feature
ļ.
     <222> (0)...(0)
     <223> Accession number cg43320682
IJ
Till Hard
     <400> 1079
     ggtggctcag gggctggggg aggctccctg gggcttcaga cagcacatag
     <210> 1080
     <211> 50
      <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     ~<222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
      <222> (25)...(26)
     <223> Nucleotide deleted between bases 25 and 26
     <221> misc feature
```

50

50

<212> DNA

<222> (0)...(0)

<223> Accession number cg25255686

```
aaggcaccat caagtcggcg gtggcttcgg gcatctcctt gccgagggta
                                                                               50
      <210> 1081
      <211> 50
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> allele
      <222> (26)...(0)
      <223> single nucleotide polymorphism
      <221> misc_feature
      <222> (25)...(26)
      <223> Nucleotide deleted between bases 25 and 26
      <221> misc feature
      <222> (0)...(0)
      <223> Accession number cg43988975
      <400> 1081
      ctcctcctga ccgagtgggc cggcagagct tgaaatcgtc attggagatg
                                                                               50
      <210> 1082
      <211> 50
      <212> DNA
     <213> Homo sapiens
H
     <220>
lad.
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
ķ.s.
Li.
     <221> misc_feature
fij.
     <222> (25)...(26)
TU
     <223> Nucleotide deleted between bases 25 and 26
17
     <221> misc_feature
     <222> (0)...(0)
     <223> Accession number cg39523553
     <400> 1082
     cactggtatg cacggcgcgg tctcccagtg tgaggtctgc ccgatccggg
                                                                               50
     <210> 1083
     <211> 51
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> allele
     <222> (26)...(0)
     <223> single nucleotide polymorphism
     <221> misc_feature
```

<400> 1080

```
<222> (0)...(0)
<223> Accession number cg43951096
<400> 1083
ctccctcctg ggtatctgca tcttcaaaaa tctccttctt ggttttcatc c
                                                                        51
<210> 1084
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42831353
<400> 1084
ggacacaggc tgcggtgtaa gcccggtcac cgccggcacc tgcaggaact
                                                                         50
<210> 1085
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44938009
<400> 1085
aatactccgt gcagcgagtg cgtcactccg tgaagaattt gatcaaggtc
                                                                         50
<210> 1086
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
```

```
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0) ... (0)
<223> Accession number cg43054992
<400> 1086
caaaatcaca gctgaagaaa tgtatatata tttgggaaat atggacctat
                                                                         50
<210> 1087
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39516123
<400> 1087
cctggggctc accaaggcaa cctggctccg gtcttcatag caatgcaata
                                                                         50
<210> 1088
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg43983590
<400> 1088
ggaggagcca ggcgagcaca cccctgttg gcccctgcca cggcccagcc
                                                                         50
<210> 1089
<211> 50
<212> DNA
```

```
Here the second of the second
```

```
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44128084
<400> 1089
                                                                        50
cggcggcgca tgctcgacgt tctgggtctg tcgacgagtt gccggtgcaa
<210> 1090
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg44128084
<400> 1090
                                                                        50
cgtctgtcga cgagttgccg gtgcacgctg gagctgcgac gggatcctgg
<210> 1091
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg43976473
```

```
print print the state with the state of the
```

```
<400> 1091
 ggccctgtgc ttggagccgt gggctcgtag cccgagtgat aagccatggc
                                                                          50
 <210> 1092
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> allele
 <222> (26)...(0)
 <223> single nucleotide polymorphism
 <221> misc feature
 <222> (25)...(26)
 <223> Nucleotide deleted between bases 25 and 26
 <221> misc_feature
 <222> (0)...(0)
 <223> Accession number cg40309770
 <400> 1092
 ttccggccgc cgcgtccagg gctcgccgct gaggtcgttc atgaccccgc
                                                                         50
<210> 1093
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc_feature
<222> (25) ... (26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg42725664
<400> 1093
agatagctga gaatattctg cgcaacctca cagcttgttt cctggcagcc
                                                                         50
<210> 1094
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
```

```
The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the c
```

```
<223> Nucleotide deleted between bases 25 and 26
<221> misc feature
<222> (0)...(0)
<223> Accession number cg39380052
<400> 1094
atgagatega egeettgege ggeegggegt agacatteeg eaccegetea
                                                                         50
<210> 1095
<211> 50
<212> DNA
<213> Homo sapiens
<220>
<221> allele
<222> (26)...(0)
<223> single nucleotide polymorphism
<221> misc feature
<222> (25)...(26)
<223> Nucleotide deleted between bases 25 and 26
<221> misc_feature
<222> (0)...(0)
<223> Accession number cg44928804
<400> 1095
ctctcaatca tgccgcttta gagaagcaac atgggcaacc tgatttgtga
                                                                         50
<210> 1096
<211> 14
<212> PRT
<213> Homo sapiens
`<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1096
Asp Leu Leu Lys Glu Lys Val Ser Ile Tyr Gln Asn Gln Asn
                                     10
<210> 1097
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1097
Glu Ile Pro Ser Lys Glu Arg Pro Tyr Asp Ala Ala Lys Asp
                  5
```

```
gent generally met general and sold out of the second out of the second out that the first out that the second
```

```
<210> 1098
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1098
Ala Ala Pro Ala Ala Ser Val Pro Arg Pro Ala Thr Leu Pro
<210> 1099
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1099
Phe Trp Gly Gln Phe Gly Val Lys Thr Leu Lys Tyr Arg Ser
<210> 1100
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1100
Cys Glu Lys Ile Thr Cys His Lys Pro Asp Val Ser His Gly
<210> 1101
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1101
Pro Pro Arg Ser Glu Glu Ala Ala Val Leu Lys Gln Lys Leu
                 5
                                     10
```

```
The first wife of the first wife of the sale of the first wife of
```

```
<210> 1102
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1102
Arg Gly Leu Ala Ser Ala Val Lys Gly Gly His Gly Gly Ala
<210> 1103
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1103
Lys Lys Asp Asp Val Thr Ala Gly Lys Lys Pro Phe Arg Pro
                                    10
<210> 1104
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1104
Asn Phe Phe Lys Leu Asn Asp Lys Ser Glu Lys Asp Lys
<210> 1105
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1105
His Lys Glu Asp Ala Gly Ala Val Cys Ser Glu His Gln Ser
                 5
1
```

<210> 1106

```
grill grill only all grill only the grill of ```

```
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1106
 Leu Lys Lys Ala Arg Thr Gly Leu Gln Met Asp Glu Leu Lys
 <210> 1107
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1107
 Lys Leu Asn Leu Lys Met Lys Glu Glu Tyr Asp Lys Ile Gln
<210> 1108
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1108
 Leu Met Ser Val Lys Met Ala Lys Lys Tyr Lys Asn Ile Val
 <210> 1109
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1109
 Cys Asp Pro Glu Val Asn Asn Phe Arg Ala Lys Met Cys Gln
 <210> 1110
 <211> 14
```

```
<221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1110
 Glu Phe Gly Gly His Val Lys Asp Glu Val Phe Gly Thr
 <210> 1111
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1111
 Cys Ser Ser Arg Ser Asp Val Pro Gly Ser Asp Lys Asp Thr
 1
 <210> 1112
 <211> 14
 <212> PRT
T.
 <213> Homo sapiens
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1112
 Gly Gly Met Thr Thr Lys Ile Glu Ala Ala Arg Met Ala Thr
 <210> 1113
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1113
 Leu Arg Gly Ala Asn Pro Asn Leu Lys Asp Arg Thr Gly Phe
```

<212> PRT

<210> 1114 <211> 14 <212> PRT

<220>

<213> Homo sapiens

```
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1114
Asn Leu His Thr Leu Asn Asn Tyr Gln Lys Leu Leu Gly Asn
<210> 1115
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1115
Leu Lys Glu Met Lys Glu Val Leu Gly Thr Pro Gly Ala Ala
<210> 1116
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1116
Pro Gly Gly Cys Ser Ala Ile Ser Ala His Gly Cys Leu Phe
<210> 1117
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1117
Gly Glu Glu Tyr Phe Tyr Ile Ala Thr Gln Gly Pro Leu Leu
<210> 1118
<211> 14
<212> PRT
<213> Homo sapiens
```

```
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1118
 Pro Ile Gly Gly Arg Asn Ile Gln Gly Gly Ile Arg Phe Gly
 <210> 1119
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1119
 Lys Asn Lys Met Glu Ile His Glu Asp Pro Lys Phe Leu Ile
 <210> 1120
 <211> 14
ij.
 <212> PRT
٠...
 <213> Homo sapiens
D
 <220>
 <221> VARIANT
TI.
 <222> (7)...(0)
ind.
 <223> cSNP translation
 <400> 1120
 Ala Gln Glu Asn Gln Gly Ile Phe Phe Ser Gly Asp Ser Tyr
 5
<210> 1121
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1121
 Lys Tyr Asp Met Glu Val Lys Val Gln Lys Thr Ser Lys Glu
 <210> 1122
 <211>-14
 <212> PRT
 <213> Homo sapiens
```

```
<221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1122
 Ser Arg Gly Phe Thr Tyr Arg Leu His Phe Trp Leu Gly Lys
 <210> 1123
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1123
 Met Asn Gln Leu Ser His Ile Asn Leu Ile Gln Leu Tyr Asp
 <210> 1124
 <211> 14
 <212> PRT
 <213> Homo sapiens
Į.
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
2
 <400> 1124
ļ.
 Leu Thr Glu Leu Asp Val Ile Leu Phe Thr Arg Gln Ile Cys
TU:
ŦIJ.
 <210> 1125
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1125
 Glu Tyr Ala Lys Tyr Cys Thr Glu Ile Leu Gly Val Ala Ala
 <210> 1126
 <211> 14
 <212> PRT
```

<213> Homo sapiens

<220>

<220>

```
<222> (7)...(0)
 <223> cSNP translation
 <400> 1126
 Asn Val Gly Pro Gln Met Val Ile Ser Thr Pro Gln Arg Leu
 5
 <210> 1127
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1127
 Ala Ala His Met Ala Ala Ser Ala Ile Leu Asn Leu Ser Thr
 <210> 1128
 <211> 14
 <212> PRT
 <213> Homo sapiens
M
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1128
 Phe His Gly Lys Phe Ile Asn Thr Gly Phe Ser Leu Pro Phe
 5
 <210> 1129
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 Lys Pro Ser Ala Ala Glu Arg Pro Ser His Gly Glu Gly Pro
 <210> 1130
 <211> 14
 <212> PRT
 <213> Homo sapiens
```

<221> VARIANT

<221> VARIANT

```
<400> 1130
 Glu Leu Gln Glu His Leu Asn Thr Tyr Asn Val Lys Arg Glu
 <210> 1131
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7) ... (0)
 <223> cSNP translation
 <400> 1131
 Asn Ser Ile Ser Val Arg Val Phe Leu Asp Glu Asp Asp Met
 <210> 1132
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
L.
 <400> 1132
 Gln Glu Asn Glu Asp Asn Arg Gln His Lys Glu Ser Leu Lys
#
l.s.
 <210> 1133
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 Ser Ala Lys Lys Pro Ser Ser Gly Ser Arg Tyr Gln Pro Leu
 <210> 1134
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
```

<222> (7)...(0)

<221> VARIANT <222> (7)...(0)

<223> cSNP translation

```
<400> 1134
 Asp Gly Trp Leu Glu Gly Ala Arg Leu Ser Asp Gly Glu Arg
 <210> 1135
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1135
 Gly Lys Asn Ser Ser Tyr Ala His Gly Gly Leu Asp Ser Asn
 <210> 1136
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
<223> cSNP translation
Tij.
 <400> 1136
1
 Ser Asn Glu Ser Leu Val Ala Asn Arg Val Thr Gly Asn Phe
1.5
<210> 1137
TU.
 <211> 14
fij
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1137
 Ser Tyr Ser Gln Ala Gly Val Thr Glu Thr Glu Trp Thr Ser
 <210> 1138
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
```

<223> cSNP translation

```
<400> 1142
 Arg Asp Lys Glu Arg Glu His Gln Arg Asp Trp Glu Asp Lys
 <210> 1143
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1143
 Tyr Ser Ser Ser Gly Pro Asp Leu Arg Arg Ser Leu Phe Ser
 <210> 1144
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1144
 Gln Pro Ala Pro Ser Pro Asp Asp Leu Ala Leu Ser Met Gly
TU:
Ļš.
 <210> 1145
E
 <211> 14
 <212> PRT
ļ.š.
 <213> Homo sapiens
TŲ.
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1145
 Phe Asp Phe Gln Val Gly Glu Glu Ala Pro Ile Leu Pro Asp
 <210> 1146
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1146
```

```
Leu Gln Glu Lys Leu Trp Val Ile Leu Gln Ala Thr Tyr Ile
 10
 <210> 1147
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1147
 Cys Gly Lys Ser Val Tyr Val Ala Glu Lys Val Met Gly Gly
 5
 10
 <210> 1148
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
<222> (7)...(0)
 <223> cSNP translation
 <400> 1148
 Lys Ser Lys Ser Asn Ser Thr Ala Ala Arg Glu Pro Asn Gly
<210> 1149
 <211> 14
 <212> PRT
 <213> Homo sapiens
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1149
 Leu Ser Pro Gly Gly Glu Phe Gln Lys Trp Asn Gly Thr Ala
 <210> 1150
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1150
 Gln Leu Gln Leu Gln Ala Val His Ala Gln Glu Gln Ile Cys
```

```
10
 1
 5
<210> 1151
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7) ..(0)
<223> cSNP translation
<400> 1151
Leu Leu Thr Asp Cly Asp Leu His Ile Arg Asp Asp Gly Arg
<210> 1152
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1152
Gly Lys Arg Leu Phe Val Ile Lys Pro Ser Leu Tyr Tyr Asp
1
<210> 1153
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1153
Leu Val Pro Asp Glu Asp Val Arg Ala Ala Lys Trp Ala Val
<210> 1154
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1154
Val Val Arg Asn Ser Pro Arg Gly Val Lys Val Gln Met Ala
 10
```

F.J

₽

Ŀ.

FL.

```
gent gent only on gent one of the state of the state of the gent of the state of th
```

```
<210> 1155
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1155
Ala Leu Ser Ala Trp Pro Gln Leu Asp Gln Ala Ser Arg Cys
<210> 1156
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1156
Ile Trp Ser Phe Cys Phe Tyr Val Val Thr Val Phe Ser Val
<210> 1157
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1157
Asn Leu Ser Asn Phe Leu Asn Lys Ser Gly Leu Gln Gly Tyr
<210> 1158
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1158
Thr Ser Ser Lys Asn Arg Asp Pro Ile Thr Ile Val Asp
 1
```

```
<210> 1159
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1159
Arg Leu His Asn Glu Val Asp Arg Lys Leu Gly Lys Pro Asp
 5
<210> 1160
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1160
Met Leu Leu Pro Ser Trp Arg Thr Ser Ser Tyr Val Gly Ala
<210> 1161
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1161
Gly Leu Leu Gly Thr Leu Ile Ala Met Leu Leu Pro Ser Trp
 5
<210> 1162
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1162
Val Lys Thr Pro Glu Thr Ile Val Pro Thr Ala Pro Glu Leu
1
 5
<210> 1163
```

```
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1163
 Gln Pro Ser Thr Ser Thr Asn Gln Pro Val Thr Ser Clu Pro
 10
 <210> 1164
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1164
 Asn Val Val Arg Ala Met Val Asp Asn Trp Asp Val Leu Phe
 1
i i
 <210> 1165
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
Ξ,
 <221> VARIANT
<222> (7)...(0)
žė:
 <223> cSNP translation
Ti.
 <400> 1165
 Gln Ala Arg His Arg Thr Gly Gly Thr Asn Thr Pro Pro Ser
 <210> 1166
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1166
 Phe Lys Asn Ile Lys Ser Ala Thr Glu Leu Asn Gly Asp Ile
 5
 <210> 1167
 <211> 14
```

```
<212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1167
 Glu Leu Ala Ile Asn Pro Val Gly Asp Arg Ile Ile Asn Ala
 <210> 1168
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1168
 Asn Gly Thr Leu Ser Arg Asp Asp Phe Gln Arg Ile Pro Glu
 <210> 1169
 <211> 14
 <212> PRT
 <213> Homo sapiens
TŲ.
 <220>
14
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1169
 ·Lys His Met Glu Met Glu Asp Ile Ser Ser Glu Glu Val Val
 <210> 1170
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1170
 Ile Ser Pro Leu Thr Pro Ile Ser Val Ser Pro Ala Asn Arg
 5
 <210> 1171
 <211> 14
```

<212> PRT

```
<213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1171
 Cys Pro Pro Asp Tyr His Tyr Ile His Thr Glu Ile Ser Arg
 1
 <210> 1172
 <211> 6
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1172
 Arg His Thr Asp Leu Asp
 <210> 1173
E es
 <211> 5
 <212> PRT
 <213> Homo sapiens
ļ.
 <400> 1173
 Ser Phe Leu Val Arq
lai.
<210> 1174
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 Gly Ile Pro Gly Gly Pro Gly Pro Gly Cys Gln Glu Leu
 <210> 1175
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
```

```
<400> 1175
Lys Tyr His Gly Val Ser Pro Leu Asn Pro Pro Glu Thr Leu
 10
<210> 1176
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1176
Glu Arg Val Val Gly Arg His Arg Ser Pro Cys Met Gln Asp
<210> 1177
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1177
Thr Val Tyr Pro Pro Leu Leu Ser Ile Gln Ala His Ser Gly
<210> 1178
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1178
Leu Ala Leu Pro Ser Val Thr Leu Cys Thr Phe Asn Ser Tyr
<210> 1179
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
```

```
per the time of the time of the state of the
```

```
<400> 1179
Pro Asn Val Tyr His Glu Pro Lys Leu Ala Ala Lys Glu Tyr
1
<210> 1180
<211> 14
<212> PRT
<213> Hcmo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1180
Asn Leu Gln Ser Lys Thr Ala Gly Leu His Val Thr Glu Tyr
<210> 1181
<21.1> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1181
Ser Ser Ile Ile Ala Asp Gln Ile Ala Leu Lys Leu Val Gly
<210> 1182
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1182
Ala Gly Gly Ile Arg His Thr Pro Asp Glu Ile Phe Leu Leu
<210> 1183
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1183
```

```
<210> 1184
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1184
 Pro Lys Ser Gly Asp Trp Phe Cys Pro Asn Pro Ser Cys Gly
 <210> 1185
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1185
 Ala Val Pro Gly Ala Leu Cys Pro Leu Thr Ile Thr Ser Ser
TI.
 1
 10
i.s.
2
 <210> 1186
 <211> 14
i.f.
 <212> PRT
 <213> Homo sapiens
Fil
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1186
 Ile Asn Lys Gln Val Glu Pro Tyr Arg Glu Glu Ser Gln Lys
 <210> 1187
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1187
```

Arg Glu Glu Ser Gln Lys Cys Leu Lys Glu Phe Gln Glu Asn

Leu Asp Ile Ala Thr Asp His Val Gln Lys Arg Lys Gln Phe

```
10
 5
 1
<210> 1188
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1188
Glu Asp Phe Lys Lys Asp Val Lys Asn Ser Leu Arg Glu Thr
<210> 1189
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1189
Met Lys Asn Ser Leu Arg Gly Thr Gln Glu Asn Ile Asn Lys
 1
<210> 1190
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1190
Glu Thr Gln Glu Asn Ile Ser Lys Gln Val Glu Ala Tyr Arg
 1
 5
 10
<210> 1191
<211> 14
<212> PRT
<213> Homo sapiens
```

Thr Gln Glu Asn Ile Asn Glu Gln Val Glu Ala Tyr Arg Glu

ĩŲ.

fad.

=

ļģ.

Fig

<220>

<221> VARIANT <222> (7)...(0)

<400> 1191

<223> cSNP translation

```
The state of the s
```

```
<210> 1192
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1192
Ile Val Thr Ala Thr Glu
 5
<210> 1193
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1193
Met Gly Gly Arg Asp Pro Glu Glu Met Glu Ile Asp Gly
<210> 1194
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1194
Glu Val Lys Arg Lys Gln Cys Asp Ala Tyr Gly Ser Ala Gly
 5
<210> 1195
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1195
Asn Tyr Arg Asn Asn Pro Ser His Asn Phe Arg His Cys Phe
 10
```

```
<210> 1196
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1196
 Leu Leu Arg His His Gly Gly Thr Val Leu Pro Ser Leu Asp
 <210> 1197
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1197
 Leu Ser Thr Tyr Ser Leu Asp Trp Val Met Ala Ala Val Val
 <210> 1198
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1198
 Ile Ile Cys Cys Ser Glu Leu Pro Val Val Lys Thr Glu Met
 <210> 1199
 <211> 14
 <212> PRT
 <213> Homo sapiens
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1199
 Glu Asn Gly Asp Phe Ala Ser Phe Arg Val Glu Arg Ala Glu
 10
 <210> 1200
```

```
हारीन हमीन क्याने की क्षेत्र क्याने क्याने क्याने क्याने क्याने क्याने क्याने हमीन हमीन
प्रतिकृतिक क्याने की mile प्रतिकृतिक क्याने क्याने क्याने प्रतिक क्याने क्याने क्याने क्याने प्रतिकृतिक क्याने
```

```
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1200
Cys Lys Gln Thr Ala Gly Gln Gly Ser Pro Cys Glu Glu Gln
<210> 1201
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1201
Asn Lys Glu Lys Thr Glu Phe Gly Thr His Pro Lys Gly Thr
<210> 1202
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1202
Leu Leu Pro Phe Lys Ser Pro Ser Gly Asn Asp Val Glu Ala
 5
<210> 1203
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1203
Leu Met Glu Glu Lys Phe Pro Gly Asp Ala Gly Leu Gly Lys
<210> 1204
<211> 14
```

```
gaing from some of great way was and the second of the south south from great that the south south the south south the south that the south the so
```

```
<212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1204
 Asn Asp Leu Lys Leu Asn Ser Lys Met Arg Glu Glu Tyr Asp
 <210> 1205
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 Met Gly Lys Lys Tyr Lys Lys Ile Val Leu Leu Lys Gly Leu
 <210> 1206
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1206
 Ser Val Lys Met Gly Lys Asn Tyr Lys Asn Ile Val Leu Leu
 <210> 1207
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1207
 Leu Trp Lys Thr Gln Lys Leu Ser Leu Trp Glu Ala Pro Arg
 5
 <210> 1208
<211> 14
 <212> PRT
```

```
gen gen en de gen en
```

```
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1208
Asp Leu Ile Trp Thr Leu Leu Gln Asp Cys Arg Glu Ile Phe
<210> 1209
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1209
Ala Trp Leu Pro Pro Thr Pro Ala Glu His Asp His Ser Leu
<210> 1210
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1210
Asp Phe Gly Leu Ser Lys Ile Gly Leu Met Ser Leu Thr Thr
<210> 1211
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1211
Gly Asn Ser Arg Val Trp Arg Gly Thr Met Glu Lys Ala Gly
<210> 1212
<211> 14
<212> PRT
<213> Homo sapiens
```

```
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1212
Thr Val Lys His Gly Ala Arg Ala Glu Ile Ser Thr Val Asn
<210> 1213
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1213
Ala Thr Arg Ala Thr Leu Glu Lys Glu Phe Gly Gly His
<210> 1214
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1214
Ala Thr Leu Lys Lys Glu Ser Gly Gly Gly His Ile Lys Asp
 1
<210> 1215
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1215
Thr Ile Lys Ser His Ser Asn Leu Pro Pro Asn Asn Ser Tyr
<210> 1216
<211> 14
<212> PRT
<213> Homo sapiens
```

```
<221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1216
 Val Val Glu Asp Ile Asp Thr Leu Asp Val Asp Thr His Lys
 <210> 1217
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1217
 Val Ser Ile Phe Asn Leu Gly Gly Met Glu His His Val Arg
 <210> 1218
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
fij
 <222> (7)...(0)
ļ.
 <223> cSNP translation
 <400> 1218
 Pro Ala Gln Asp Asp Arg Pro Phe Tyr Gln Phe Glu Ala Ala
<210> 1219
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1219
 Glu Arg Leu Gln Glu Thr Gly Lys Ile Ile Ala Glu Leu Asn
 <210> 1220
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
```

<220>

```
<221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1220
 Pro Glu Asn Val Val Phe His Val Gly Gly Tyr Pro Pro Asp
 <210> 1221
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1221
 Asp Ser Val Trp Met Glu Val Asp Asp Glu Glu Asp Leu Pro
 <210> 1222
 <211> 14
 <212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1222
 Ser Thr Thr Gly Thr Pro Leu Ser Ser Ala Pro Asp Pro Lys
 <210> 1223
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1223
 Gln Arg Arg Leu Asp Gln Phe Ile Gly Lys Pro Ser Leu Phe
 10
 <210> 1224
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
```

TU.

ļ.

ļ.

TI.

```
<222> (7)...(0)
 <223> cSNP translation
 <400> 1224
 Pro Pro Pro Trp Ser Lys Tyr Val Glu Tyr Thr Phe Thr Gly
 <210> 1225
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1225
 Thr Phe Gly Phe Gln Gly Lys Ala Leu Ser Ser Leu Cys Ala
 <210> 1226
 <211> 6
 <212> PRT
 <213> Homo sapiens
L.
 <220>
<221> VARIANT
<222> (7)...(0)
 <223> cSNP translation
 <400> 1226
 Lys Leu Asn Thr Ser Asn
14
 <210> 1227
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1227
 Ile Arg Asn Ala Gln Leu Arg Gly Leu Ile Ile Ala Pro Glu
 <210> 1228
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
```

**2** 

```
<210> 1229
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1229
 Glu Tyr Gln Val Leu Phe Gly Ala Leu Ile Ser Pro Asp Arg
 <210> 1230
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
FU
 <400> 1230
 Gln Arg Asp Leu Gly Tyr Val Pro Leu Val Ser Trp Glu Glu
2
 5
 <210> 1231
fu
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1231
 Cys Thr Ala Ser Ala Thr Leu Ser Cys Asn Asp Leu Cys Glu
 <210> 1232
 <211> 14
 <212> PRT
 <213> Homo sapiens
```

Gly Lys Leu Val Leu Asn Gln Asn Pro Val Asn Tyr Phe Ala

<223> cSNP translation

<400> 1228

<220>

<221> VARIANT <222> (7)...(0)

<223> cSNP translation

```
<400> 1232
 Arg Pro Leu Thr Thr Gln His Pro Gln Ser Gly Thr Leu Lys
 10
 <210> 1233
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1233
 Gly Ser Leu Ala Arg Ala Glu Glu Ala Gly Lys Leu Glu Glu
 <210> 1234
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1234
 Lys Ile Ile Lys Val Lys Ser Val Lys Asp Arg Glu Asp Val
 <210> 1235
 <211> 14
 <212> PRT
 <213> Homo sapiens
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1235
 Ala Leu Arg Ser Leu Gln Ser Arg Cys Leu Val Pro Gly Tyr
 <210> 1236
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
```

```
gring tring with the state with mile than the other other than hard that
```

```
<400> 1236
Ile Ser Ala Ser Ser Gln Ala Pro Leu Ala Leu Arg Ser Leu
 5
<210> 1237
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1237
Thr Lys Asn Ser Val Met Ser Lys Leu Tyr Gly Asp Ala Asp
<210> 1238
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1238
Leu Leu Arg Pro Gly Ser Ser Ala Arg Val Val Gln Cys Ile
<210> 1239
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1239
Cys Asp Arg Ser Trp Ile Asn Asp Gln Tyr Asp Arg Phe Val
<210> 1240
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
 <400> 1240
```

```
Thr Gly Asp Lys Arg Phe Gly Cys Ala Gln Cys Gln Lys Arg
<210> 1241
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1241
Thr Ser Val Gly Pro Asn Thr Val Ser Pro Ser Ser Gly Pro
<210> 1242
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1242
Cys Glu Gln Gly Phe Ser Arg Lys Ser His Leu Ile Arg His
<210> 1243
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1243
Thr Leu Tyr His His Val Asp Gly Cys Asp Val Phe His Leu
<210> 1244
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1244
Met Ala Leu Phe Thr Pro
```

```
gives given compared to the time of the three first fi
```

```
1
 5
<210> 1245
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1245
Cys Ile Asn Val Leu Val Pro Gly Phe Ile Met Val Ser Gly
<210> 1246
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1246
Thr Val Ser Ile Ser Ile Trp Ala Ser Leu Gln Gln Thr Gln
<210> 1247
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1247
Ser Glu Leu Asn Gln Pro Pro Glu Leu Leu Pro Gln Phe Ser
 5
<210> 1248
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1248
Thr Pro Gln His Cys Ser Arg Asn Asn Phe Thr Met Arg Leu
 5
```

```
Here have the second control of the second c
```

```
<210> 1249
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1249
Trp Leu Lys Gly Gly Glu Gln His Ser Ala Leu Pro Glu Gln
<210> 1250
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1250
Ile Thr Gly Thr Phe Lys Tyr Arg Lys Met Thr Leu Val Glu
<210> 1251
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1251
Cys Asp Gln Lys Pro Cys Asn Cys Pro Lys Gly Asp Val Asn
 10
<210> 1252
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1252
Pro Gly Leu Gly Ser Pro Glu Arg Tyr Ser Pro Val His Gly
```

```
<210> 1253
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1253
Gly Ala Val Leu Val Leu Tyr Ser Leu Pro Leu Glu Phe Pro
 10
<210> 1254
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1254
Ile Glu Ala Glu Ser Ser Asn Leu Thr Ser Val Thr Thr Glu
<210> 1255
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1255
Leu Thr Trp Pro Ala Asp Thr Leu His Cys Thr Glu Cys Val
<210> 1256
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1256
Leu Thr Ser Ser Tyr Ser Leu Asp Val Ser Asp Tyr Lys Glu
 5
<210> 1257
```

```
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
Lys Lys Val Glu Phe Val Pro Lys Gln Leu Arg Ile Met Gln
<210> 1258
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1258
Val Leu Gln Ala Gly Ala
<210> 1259
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1259
Glu Ser Val Gln Gln Gln Thr Glu Phe Leu Asn Arg Gln Leu
1
<210> 1260
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
Asn Pro Phe Gly Pro Val Pro Gly Ala Gln Ile Gln Phe
<210> 1261
<211> 14
```

```
<212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1261
 Gly Cys Val Asp Ile Ala Glu Ile Leu Leu Ala Ala Lys Cys
 <210> 1262
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1262
 Ser Glu Ser Ser Ile Lys Glu Lys Phe Leu Lys Arg Lys Gly
 1
 5
٠...
E.
 <210> 1263
IJ:
 <211> 14
Li
 <212> PRT
 <213> Homo sapiens
į.
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1263
 Asn Leu Val Pro Val Arg Met Phe Met Ala His Gln Asp Leu
 1
 <210> 1264
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1264
 Gln Arg Lys Arg Leu Gln Pro Gln Leu Glu Glu Arg Ser Arg
 5
 <210> 1265
 <211> 14
```

ļ.

Fig.

<212> PRT

```
<213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1265
 Phe Lau Tyr Ile Ser Leu Thr Asp Met Phe Pro Glu Met Asn
 <210> 1266
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1266
 Gly His Thr Leu Asp Val Leu Lys Arg Lys Phe His Tyr Phe
 <210> 1267
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1267
 Gly Lys Thr Val Leu Ser Leu Gly Phe Thr Glu Val Met Pro
 1
 5
 <210> 1268
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1268
 Leu Ser Leu Ile Ile Gly His Pro Ile Ala Val Leu Met Tyr
 <210> 1269
<211> 14
 <212> PRT
 <213> Homo sapiens
```

```
हुर्तनेतु हुर्तनेतु पर्योत्ते कहें कुर्तनेतु किन्तु क्यान्त्र को को को क्यान्त्र हुर्तनेतु हुर्तनेतु हुर्तनेत्
किन्ति कर्म के की क्यान्ति क्यानित क्या
```

```
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1269
Gln Glu Glu Gln Met Glu Pro Glu Gln Gln Asn Lys Asp Glu
<210> 1270
<211> 14
<212> PRT
<213> Homo sapiers
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1270
Glu Ala Gln Arg Leu Ile Thr Gln Gln Gly Leu Val Asp Gly
<210> 1271
<211> 6
<212> PRT
<213> Homo sapiens
<220> -
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1271
Ser Pro Gly Lys Cys Asp
1
<210> 1272
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1272
Leu Thr Ser Ser Glu Leu Pro Gln Arg Leu Lys Thr Ile Gly
1
 5
<210> 1273
<211> 14
<212> PRT
<213> Homo sapiens
```

```
How the transport of the first could have collected to the collection for the first transfer that
```

```
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1273
Ser His His Asp Pro Ile Ile Lys Val Leu Ser Ile Arg Gly
<210> 1274
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1274
Ser Ser Glu Lys Ile Ser Tyr Asn Pro Trp Ser Leu Arg Cys
<210> 1275
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1275
Asn Phe Lys His Ala Ser Ser Ile Leu Pro Ile Thr Glu Phe
<210> 1276
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1276
Pro Ile Ala Glu Thr Ile Lys Ala Ser Ser Asn Glu Ser Leu
<210> 1277
<211> 14
<212> PRT
<213> Homo sapiens
<220>
```

```
<221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1277
 Thr Ser Leu Ala Pro Ala Ser Leu Ile Thr Met Pro Ala Thr
 <210> 1278
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1278
 Lys Glu Trp Val Asp Lys Cys Asp Pro Gly Ala Leu Val Ile
 <210> 1279
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
T)
 <400> 1279
 Ser Pro Arg Met Pro Ser Phe Gly Phe Ala Ala Glu Gly Arg
Ŀĕ.
LA:
TŲ.
 <210> 1280
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1280
 Ser Ile Ile His Ile Ile Ser Thr Leu Leu Ser Thr Gln
 <210> 1281
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
```

```
<210> 1282
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1282
 Arg Asp Arg Asp Arg Glu Gly Asp Arg Asp Arg Asp Arg Asp
 <210> 1283
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
<u>L</u>
 <400> 1283
 Lys Glu Ser Glu Leu Gln Val Thr Ser Ala Ala Ser Pro His
 <210> 1284
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1284
 Gly Ser Ser Arg Ser His Cys Arg Glu Glu Arg Ser Arg Arg
 <210> 1285
 <211> 14
 <212> PRT
```

Lys Glu Glu Leu Asp Arg Ser Cys Arg Glu Cys Lys Arg Lys

<222> (7)...(0)

<213> Homo sapiens

<221> VARIANT <222> (7)...(0)

<220>

<400> 1281

<223> cSNP translation

```
हुन्तुं हुन्तुं (त्यां) कांत्रुं कांत्रुं हुन्तुं कांत्रुं कांत्रुं कांत्रुं कांत्रुं कांत्रुं कांत्रुं कांत्र
पातां जान को व्यक्ति पातां पातां पीतां वातां प्राप्त पातां कांत्रुं कांत्रुं कांत्रुं कांत्रुं कांत्रुं कांत्र
```

```
<223> cSNP translation
 <400> 1285
 Ser Ala Ala Ser Ser Val Leu Arg Arg Glu Tyr Lys Pro Arg
 <210> 1286
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1286
 Asp Ile Pro Ile Ile Leu Phe Gly Asn Lys Ser Asp Leu Val
 <210> 1287
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1287
 Ile Arg Phe Arg Gln Asp Ser Asn Glu Ala Val Gly Gly Phe
 <210> 1288
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1288
 Thr Thr Val Phe Glu Asp Pro Tyr Asp Tyr Met Asn Ser Leu
 <210> 1289
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
<223> cSNP translation
```

```
<400> 1289
 Pro Arg Gln Asn Ser Gln Pro Pro Ala Gln Val Gln Asn Gly
 <210> 1290
 <211> 6
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1290
 Gln Gln Lys Leu Trp Asn
 1
 <210> 1291
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1291
 Ala Ile Glu Thr Gln Leu Pro Glu Tyr His Lys Leu Ala Arg
 <210> 1292
ŝå.
 <211> 14
 <212> PRT
 <213> Homo sapiens
FU
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1292
 Asn Lys Lys Met Gly Leu Gly Asp Thr Leu Glu Gln Leu Asn
 5
 <210> 1293
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
```

```
fferty from the state of the st
```

```
<400> 1293
Phe Ser Thr Pro Glu Ala Arg Gly Glu His Gly Leu Ala Pro
<210> 1294
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1294
Gln Lys Phe Gln Val Asp Lys Ser Asn Arg Leu Leu Cln
<210> 1295
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1295
Gln Gln Val Ser Leu Pro Tyr Ile Pro Gly Asn Tyr Thr Val
<210> 1296
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1296
Lys Glu Glu Glu Gln Ala Glu Lys Asn Lys Leu Ser Gly Lys
 10
<210> 1297
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1297
```

```
gering gering of the state of the second of
```

```
Val Ser Leu Pro Lys Leu Thr Asn Val Gln Leu Leu Asp Thr
<210> 1298
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1298
Asn Val Gln Leu Leu Asp Ile Asp Gly Gly Phe Val His Ser
<210> 1299
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1299
Tyr Gln Glu Glu Leu Arg Phe His Tyr Lys Asp Met Leu Ser
<210> 1300
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1300
Asn Phe Pro Ile Thr Phe Thr Cys Tyr Ala Ala Leu Phe Cys
<210> 1301
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1301
Arg Asp Glu His Leu His Lys Met Ala Leu Glu Gln Ile Thr
```

```
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1302
 Ile Ala Thr Lys Glu Glu Ile Ser Leu Leu Glu Ala Trp Lys
 <210> 1303
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
£4.
 <400> 1303
 Phe Thr Trp Leu Ser Pro Glu Gly Glu Tyr Gln Lys Trp Asn
Ē.
 <210> 1304
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1304
 Gly Pro Leu Pro Glu Asn Val Thr Trp Leu Ser Pro Gly Gly
 5
 10
 <210> 1305
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
```

Val Phe Asn Ser Asp Glu Ser Ser Trp His Leu Val Glu Asp

5

1

¥

<400> 1305

<210> 1302

10

```
<210> 1306
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1306
Arg Lys Ser Phe Val Phe Gly Leu Asn Glu Cys Ala Ser Ser
 1
<210> 1307
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1307
Gly Gln Glu Tyr His Leu
1
<210> 1308
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1308
Lys Asp Gly Ala Pro Trp Phe Gly Arg His Tyr Cys Glu Ser
 5
 1
<210> 1309
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1309
Tyr Ser Ser Thr Asp Thr Leu Tyr Pro Gly Ser Leu Pro Pro
```

```
<210> 1310
 <211> 14
 <212> PRT
<213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1310
 Ile Leu Asn Ser Lys Asp Gln Leu Gln Val Glu Asn Asp Ala
 <210> 1311
 <211> 6
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
<400> 1311
 Asn Ser Lys Asp His Leu
 <210> 1312
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1312
 Pro Gly Thr Asp Arg Thr Ala Asn Val Lys Tyr Arg Gln Val
 5
 10
 <210> 1313
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1313
 Phe Thr Lys Ile Lys Thr Ser Asp His Gln Tyr Met Glu Gly
 <210> 1314
```

ĻŞ.

to.

TU:

2

```
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1314
 Ala Gly Leu Asp Ala Gin Met Val Met Gln Asp Asp Ala Ile
 <210> 1315
 <211> 14
 <212> PRT
<213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1315
 Val Gly Gly Trp Ala Gly Phe Asp Ala Gln Val Val Met Gln
 <210> 1316
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1316
 Ile Thr Ala Asp Gln Leu Ser Gly Val Gly Gly Trp Ala Gly
 5
 <210> 1317
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1317
 Val Gln Pro Gln Ile Asn Met Thr Ala Asp Gln Leu Leu Gly
 5
 10
 <210> 1318
 <211> 14
```

```
HTTH THE THE SELECTION OF THE SELECTION
```

```
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1318
Asn Tyr Lys Asp Gln Leu Pro Gln Leu Asn Val Arg Val Leu
<210> 1319
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1319
Leu Met Lys Phe Tyr Leu Leu Leu Thr Gly Ile Pro Val Ile
<210> 1320
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1320
Ala Leu Thr Ala Leu Ser Gly Arg Arg Ala Gly Thr Arg Leu
<210> 1321
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1321
His Leu Ala Ala Glu Arg Gly Ala Glu Ile Arg Ser Leu Cys
<210> 1322
<211> 14
<212> PRT
```

```
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1322
Thr Ile Phe Leu Ser Lys Phe Gln Thr Asp Val Arg Glu Lys
<210> 1323
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1323
Ala Leu Ser Tyr Gly Phe His Gly Cys His Cys Gly Val Gly
<210> 1324
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1324
Ile Ala Cys Pro Glu Thr Gly Thr Pro Ala Val Ile Thr Cys
 5
<210> 1325
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1325
Val Cys Pro Ile Arg Asp Ser Cys Arg Trp Val Ile Asp Gly
<210> 1326
<211> 14
<212> PRT
<213> Homo sapiens
```

```
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1326
 Leu Ser Ala Trp Pro Glu Pro Asp Gln Ala Ser Arg Cys Leu
 <210> 1327
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1327
 Ile Ser Phe Ile Phe Arg Lys Gly Arg Lys Asn Ser Gly Ile
 <210> 1328
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
<400> 1328
His Glu Ile Met Gly Pro Glu Lys Lys His Leu Asp Tyr Leu
 <210> 1329
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1329
 Glu Ile Met Gly Pro Lys Asn Lys His Leu Asp Tyr Leu Ile
 <210> 1330
 <211> 14
 <212> PRT
 <213> Homo sapiens
```

```
group griefs or in the griefs of the griefs of the set of the griefs of the griefs griefs griefs griefs that the griefs of the g
```

```
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1330
Glu Met Asn Val Asn Ile Ser Gln Leu Ala Asp Ser Leu Phe
<210> 1331
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7) ... (0)
<223> cSNP translation
<400> 1331
Glu Gln Ser Val Gln Ser Gln Pro Glu Glu Glu Asp Glu
<210> 1332
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1332
Arg Thr Arg Ala Cys Phe Arg Gln Trp Leu Cys Arg Leu His
 5
<210> 1333
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1333
Ala Cys Phe Thr Gln Trp Pro Cys Arg Leu His Asn Glu Val
<210> 1334
<211> 14
<212> PRT
<213> Homo sapiens
<220>
```

```
<222> (7)...(0)
 <223> cSNP translation
 <400> 1334
 Met Val Thr Ser Ser Ala Met Ser Ser Leu Ala Cys Ile Ile
 <210> 1335
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1335
 Val Ala Met Leu Leu Pro Asn Trp Lys Thr Ser Ser Tyr Val
 <210> 1336
 <211> 14
 <212> PRT
 <213> Homo sapiens
<220>
 <221> VARIANT
Li
 <222> (7)...(0)
 <223> cSNP translation
<u>L</u>
 <400> 1336
 Leu Gln Pro Ser Thr Ser Arg Asp Gln Pro Val Thr Ser Glu
<210> 1337
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1337
 Ser Thr Ser Thr Asp Gln Leu Val Thr Ser Glu Pro Thr Ser
 5
 <210> 1338
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
```

<221> VARIANT

```
<222> (7)...(0)
 <223> cSNP translation
 <400> 1338
 Thr Asp Gln Pro Val Thr Pro Glu Pro Thr Ser Gln Ala Thr
 <210> 1339
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1339
 Thr Ser Glu Pro Thr Ser Arg Ala Thr Arg Gly Arg Lys Asn
 <210> 1340
 <211> 14
 <212> PRT
 <213> Homo sapiens
1
 <220>
in sile :
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1340
 Val His Gln Glu Ala Thr Ala Arg Leu Ser Gly Ser Gly Asn
 <210> 1341
<211> 14
TŲ.
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1341
 Arg Ile Lys Met Glu Glu Tyr Ala Leu Leu Ser Asp Pro Val
 1
 <210> 1342
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
```

```
<223> cSNP translation
 <400> 1342
 Arg Ala Arg Arg Ser Asn Cys Arg Arg Gln Glu Gly Ile Lys
 <210> 1343
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1343
 Gly Trp Arg Ala Ile Asn Ser Ser Met Ala Ala Pro Ser Ser
 <210> 1344
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
<222> (7)...(0)
 <223> cSNP translation
13
 <400> 1344
 Glu Pro Leu Asn Ser Arg Gly Asn Lys Leu His Phe Ala Phe
æ
 <210> 1345
 <211> 14
 <212> PRT
TU.
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1345
 Ile Asn Pro Leu Gly Asp Trp Ile Ile Asn Ala Phe Phe Pro
 <210> 1346
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
```

```
per great project of the responsibility of the responsibility of the second project project of the responsibility of the responsibil
```

```
<400> 1346
Ser Arg Glu Asp Phe Gln Gly Ile Pro Glu Leu Ala Ile Asn
 5
<210> 1347
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1347
Leu Glu Gln Glu Tyr Glu Asn Lys Leu Arg Ala Glu Leu Val
<210> 1348
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1348
Glu Val Ser Ala Asp Gly Glu Thr Ile Thr Val Thr Phe Phe
<210> 1349
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1349
Ala Lys Lys Glu Met Val Ser Ser Lys Leu Pro Asn Ser Val
<210> 1350
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
```

```
after after the trip of the section ```

```
<400> 1350
Ile Gln Pro Asp Gly Ser Gly Ser Ala Val Leu Trp Cys Asp
<210> 1351
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1351
Lys Trp Phe Glu Val Lys His Ile Ser Thr Glu Glu Ile Ser
<210> 1352
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1352
Lys Ser His Phe Gln Ala Thr His Ser Glu Ser Ser Asp Thr
<210> 1353
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1353
Thr Met Gly Ser Thr Glu Ala Arg Val Asp Tyr Met Gly Ser
<210> 1354
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1354
```

```
Ser Lys Glu Ala Ile His Ile Gln Leu Leu Glu Lys Gln Lys
     <210> 1355
     <211> 6
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1355
     Val Cys Gly Asp Ala Ser
     <210> 1356
     <211> 14
     <212> PRT
     <213> Homo sapiens
    <220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1356
ij.j.
     Gln Ala Gln Ala Gln Ser Tyr Cys Ser Cys Ser Thr Val Ser
     <210> 1357
22
     <211> 14
<212> PRT
     <213> Homo sapiens
<220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1357
     Glu Glu Val Lys Val Ser Trp Thr Arg Leu Pro Thr Ser Cys
     <210> 1358
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1358
     Lys Pro Ile Thr Arg Lys Gly Val Gly His Arg Met Gly Gly
```

```
<210> 1359
      <211> 14
      <212> PRT
      <213> Homo sapiens
     <220>
      <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1359
     Arg Ser Cys Ser His Pro Ser Gln Leu His Arg Leu Val Phe
     <210> 1360
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1360
     Ala Gly Thr Tyr Pro Arg Arg Glu Glu Tyr Arg Arg Gly Ile
TU
     <210> 1361
<211> 14
=
     <212> PRT
ļ.
     <213> Homo sapiens
f
     <220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1361
     Thr Ile Ser Pro Leu Thr Leu Val Ser Val Ser Pro Ala Asn
     <210> 1362
     <211> 14
     <212> PRT
     <213> Homo sapiens
    <220>
    <221> VARIANT
    <222> (7)...(0)
    <223> cSNP translation
```

Met Gly Ser His Glu Pro Met Ile Ser Pro Leu Thr Pro Val

1

5

10

```
are he private regarded and the second secon
```

```
<210> 1363
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1363
Arg Ile Gly Leu Gly Leu Gly Gly Arg Trp Ala Trp Arg Leu
<210> 1364
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1364
Val Met Arg Ile Gly Leu Gly Trp Ala Gly Arg Trp Ala Trp
<210> 1365
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1365
Gly Leu Thr Gln Asn Lys Ala Cys Gln Lys Thr Leu Ser Met
                  5
<210> 1366
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1366
Val Gln Trp Val Ala Pro Arg Gly Cys Cys Tyr Gly Ser Ser
```

```
<210> 1367
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1367
Pro Gly Asn Asn Arg Lys Cys Met Asn
<210> 1368
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1368
Ser Val Gly Ala Leu Glu Ala Asn Ser Arg Arg Lys Leu Ala
1
<210> 1369
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1369
Cys Gln Gly Asp Ser Gly Ala Arg Trp Cys Val Arg Thr Lys
<210> 1370
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1370
Cys Gln Gly Asp Ser Gly Ala Arg Trp Cys Val Arg Thr Lys
                                     10
 1
<210> 1371
```

```
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1371
Ile Glu Thr Tyr Phe Ser Lys Thr Thr Lys Thr Met Ser Ile
<210> 1372
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1372
Pro Leu Ser Gly Ala Leu Ala Gln Ser Leu Arg Pro Ser Lys
<210> 1373
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1373
Trp Met Arg Asn Arg Arg Thr Val Pro Arg Gln Pro Ser Glu
<210> 1374
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1374
Phe Ser Gly Arg Leu Lys Ala Glu Gly Thr Ser Cys
<210> 1375
<211> 14
```

```
georg george with the state of ```

```
<212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1375
 Leu His Arg Ala Phe Ser Val Ser Tyr Ser Thr Pro Lys Ile
 <210> 1376
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1376
 Ser Lys Val Leu Glu Glu Gly Arg Pro Pro Arg Arg Ala Cys
 <210> 1377
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1377
 Ala Glu Glu Gly Leu Arg Glu Cys Ser Ala Ala Gly Gly Ser
 <210> 1378
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1378
 Glu Leu Gln Arg Ser Arg Ser Ala Thr Arg Thr Trp Arg
 5
 <210> 1379
<211> 14
 <212> PRT
```

```
gring gring trings and gring weight sticks of a sign of first with with gring gring the first than a star of a sign of the first than the first than the first than the first that the fir
```

```
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1379
Glu Asp Val Glu Ala Leu Ala Pro Ser Thr Arg Arg Arg Arg
<210> 1380
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1380
Glu Ile Asn Cys Arg Arg Thr Met Gly Thr Ser Ser Pro
<210> 1381
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1381
Gly Met Glu His His Val Ala Pro Ala Ser Pro Lys Trp Ser
<210> 1382
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (10)...(0)
 <223> cSNP translation
 <400> 1382
 Val Ala Ala Glu Ala Leu Leu Lys Lys
 <210> 1383
 <211> 14
 <212> PRT
 <213> Homo sapiens
```

```
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1383
Gly Cys Pro Lys Met Gly Thr Met Leu Thr Asn Leu Arg Gly
<210> 1384
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1384
Pro Cys Pro Ala Glu Gly Ser Pro Lys Trp Gly Thr Met Leu
<210> 1385
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1385
Ala His Thr Ala Ala Glu Gly Ala Gly Gly Trp Gly Ala Ala
<210> 1386
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
Leu Gln Glu Thr Leu Leu Gly Leu Phe Gly Leu Trp Cys
 10
<210> 1387
<211> 14
<212> PRT
<213> Homo sapiens
```

```
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1387
Asp Lys Ala Glu Lys Thr Lys Lys Lys Lys Lys Lys Arg Lys
<210> 1388
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1388
Lys Lys Glu Cys Tyr Tyr Ile Ser Met Thr Pro Val Ser Val
<210> 1389
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1389
Glu Ser Leu Ile Asp Glu Glu Arg
<210> 1390
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1390
Glu Tyr Lys Leu Val Val Gly Ala Pro Ala Val Trp Ala Arg
<210> 1391
<211> 14
<212> PRT
<213> Homo sapiens
<220>
```

```
<221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1391
 Glu Tyr Lys Leu Val Val Val Ala Pro Ala Val Trp Ala Arg
 <210> 1392
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1392
 Tyr Lys Leu Val Val Val Ala Pro Ala Val Trp Ala Arg Val
 <210> 1393
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
<222> (7)...(0)
 <223> cSNP translation
=
 <400> 1393
 Tyr Asp Ala Asp Ala Gly Arg Met Thr Cys His Cys Trp Ser
TL:
 <210> 1394
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT.
 <222> (9)...(0)
 <223> cSNP translation
 <400> 1394
 Met Arg Tyr Asp Ala Asp Ala Gly Gly Glu
 <210> 1395
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
```

```
<222> (8)...(0)
 <223> cSNP translation
 <400> 1395
 Tyr Ile Asp Ile Gln Leu Arg Leu Leu Pro Ser His Arg Thr
 <210> 1396
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1396
 Ala Pro Lys Ser Ala Cys Val Cys Ala Gln Ala Asp Phe Glu
 <210> 1397
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1397
 Gly Val Ser Gly Val Lys Pro Gln Gly
 1
 <210> 1398
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1398
 Leu Lys Pro Val Pro Val Gly Lys Arg Thr Arg Ala Ser Ser
 5
<210> 1399
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
```

```
gerig gerig wegi og gleig och seig sig og og og og og och sig finn grag greig
Hall erik of salta had mall han sella 18 sella och dans han han hall had
```

```
<223> cSNP translation
<400> 1399
Asp Arg Val Pro Leu Arg Thr Arg Thr Ser Pro Leu Lys Arg
<210> 1400
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1400
Leu Glu Asn Ser Gln Met Lys Ser Ala Cys Cys Lys Pro
<210> 1401
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (9)...(0)
<223> cSNP translation
<400> 1401
Leu Leu Ala Met Leu Gln Gly Pro Gly Pro Trp Leu Arg Pro
<210> 1402
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1402
Ser Glu Leu Arg Gly Gly Leu Thr Gly Ala Ser Thr Ser Ser
 5
<210> 1403
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
```

```
<400> 1403
Val Ala Leu Ser Ser Ala Gly Val Leu Ser Pro Met Val Ala
<210> 1404
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (9)...(0)
<223> cSNP translation
<400> 1404
Leu Val Lys Leu Lys Leu Lys Ile Pro Trp Met Thr Phe
<210> 1405
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1405
Ser Asn Ser Ile Ser Val Met Gly Val Ser Arg
<210> 1406
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1406
Thr Glu Trp Ser Gln Trp Ser Asn Val Thr Ser His Val Gly
<210> 1407
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
```

```
<211> 10
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1408
 Val Gly Asp Ala Cys Asp Ser Ala Leu Lys
 <210> 1409
 <211> 13
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
ļ.ā.
 <223> cSNP translation
 <400> 1409
IJ
 Ser Val Glu Pro Glu Arg Asp Leu Thr Phe Leu Leu Thr
and the
 <210> 1410
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1410
 Leu Gln Ile Met Leu Gln Ala Glu Ser Ala Thr Arg Thr Glu
 <210> 1411
 <211> 8
 <212> PRT
 <213> Homo sapiens
 <220>
```

Tyr Arg Arg Gln Gly Leu Pro Ile Thr Ile Gly Glu

<400> 1407

<210> 1408

<221> VARIANT <222> (7)...(0)

<400> 1411

<223> cSNP translation

```
10
 <210> 1412
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (10)...(0)
 <223> cSNP translation
 <400> 1412
 Pro Glu Lys Gln Leu Val Glu Lys Lys Val Leu Thr Lys Gln
 <210> 1413
 <211> 13
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (9)...(0)
 <223> cSNP translation
 <400> 1413
 Val Val Val Met Gly Pro Pro Lys Leu Glu Arg Ala Leu
E in.
 <210> 1414
2
 <211> 14
 <212> PRT
ļ.
 <213> Homo sapiens
<220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1414
 Phe Ser Glu Asp Asp Pro Trp Arg Pro Leu Ser Ile Gly Pro
 5
 <210> 1415
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1415
```

Asn Gln Ser Gln Glu Leu Gln Arg Ser Trp Arg Thr Ala Gly

Phe Gly Phe Ser Ser Gly Pro Ser

```
ķä
≆
TU
```

```
1
 5
 10
 <210> 1416
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1416
 Asn His Met Val Gln Gln Asp Ile Ser Pro Arg Pro Leu His
 <210> 1417
 <211> 14
 <212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1417
Lys Trp Pro Thr Leu Gln Asp Trp Pro Val Leu Pro Trp Arg
<210> 1418
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1418
Phe Val Gly Arg Phe Phe Arg Ala Thr Met Ala Thr Gln Leu
<210> 1419
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (9)...(0)
<223> cSNP translation
<400> 1419
Gln Ile His Arg Ile Arg His Phe Thr
1
```

5

```
The first of the first and the selection of the first of the first of the first of the selection of the sele
```

```
<210> 1420
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1420
 Thr Leu Glu Glu Gly Asn Gln Gln Thr Arg Ser Pro Val Pro
 <210> 1421
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1421
 Ala Thr Leu Glu Glu Gly Asn Gln Gln Thr Arg Ser Pro Val
 <210> 1422
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
<222> (7)...(0)
 <223> cSNP translation
 <400> 1422
 Ile Leu Asn Gln Pro Thr Leu Arg Leu Leu Pro Met Pro Glu
 <210> 1423
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1423
 Val Asn Cys Ser Ala Val Cys Ala Ser Ser Ser Val Pro Cys
```

```
Ala Ala Pro Leu Lys Ile Lys Leu Ile Ser Met Arg Leu Gln
 <210> 1425
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1425
 Glu Glu Val Glu Glu Glu Glu Lys Arg Met Phe Ser Pro
j.
 <210> 1426
 <211> 14
<212> PRT
 <213> Homo sapiens
ĿĿ.
 <220>
 <221> VARIANT
ķė
 <222> (9)...(0)
TJ.
 <223> cSNP translation
FL.
 <400> 1426
 Arg Val Gly Thr Pro Ser Gln Gly His Phe Phe Glu Gly Ala
 1
 <210> 1427
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
```

<210> 1424 <211> 14 <212> PRT

<220>

<213> Homo sapiens

<223> cSNP translation

<221> VARIANT <222> (7)...(0)

<221> VARIANT <222> (8)...(0)

<400> 1427

<210> 1428

<223> cSNP translation

Pro Cys Ala Val Leu Arg Pro Leu Gly Leu Trp Ser Pro Ser

<400> 1424

```
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1428
 Leu Gly Tyr Thr Pro Gln Arg Pro Val Lys Cys Ala Ser Cys
 1
 <210> 1429
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (9)...(0)
 <223> cSNP translation
 <400> 1429
 Phe Gln Ala Ala Ile Glu Lys Lys Asn Ser Cys Ile Ser Thr
<u>L</u>ic
 <210> 1430
<211> 4
 <212> PRT
 <213> Homo sapiens
 <400> 1430
 Leu Leu Tyr Trp
TU
 <210> 1431
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1431
 Phe Cys Asn Gly Gln Arg Ser Gly Ser Pro Gly Arg Gln Ile
 <210> 1432
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
```

```
<222> (7)...(0)
 <223> cSNP translation
 <400> 1432
 Met Lys Ile Gln Tyr Pro Ala Trp Pro Arg Ala Ser Thr Val
 <210> 1433
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1433
 Met Lys Ile Gln Tyr Pro Ala Trp Pro Arg Ala Ser Thr Val
 <210> 1434
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
£0
 <221> VARIANT
L
 <222> (9)...(0)
 <223> cSNP translation
1...
 <400> 1434
 Glu Pro Leu Glu Met Ala Arg Pro Leu Ala His Pro Val Ala
L.
 <210> 1435
 <211> 1
 <212> PRT
 <213> Homo sapiens
 <400> 1435
 Ser
 . 1
 <210> 1436
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1436
 Arg Leu Asp Arg Glu Arg Lys Lys Asp Lys Asn Glu Arg Gly
```

```
The first wife of the wife and all wife and a self wine first that
```

```
<210> 1437
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1437
Glu Ser Lys Arg Ser Val Lys Leu
<210> 1438
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1438
Asp Ile Ser Ile Cys Gln Glu Cys Pro Ala Trp Arg
<210> 1439
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1439
Ser Leu Phe Ser Leu Lys Gln Ser Ser Arg Arg Thr Lys Thr
 5
 10
<210> 1440
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1440
Thr Ser Leu Leu Gln Gly Thr Pro Thr
```

```
<210> 1441
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1441
Ile Ile Leu Ile Val Glu Leu Ala Gly Ser Arg Pro Ala Ser
<210> 1442
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1442
Ile Leu Ile Val Glu Leu Ser Gly Ser Arg Pro Ala Ser Pro
<210> 1443
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1443
Asn Thr Gln Gln Gln Gln Asn Tyr Ile Arg Trp Ser Leu
 10
<210> 1444
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1444
Thr Gln Gln Gln Gln Leu His
 1
<210> 1445
```

```
<211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1445
 Tyr Pro Ala His Ala Phe Trp Arg Pro Ser Ser Gly Val Ser
 1
 <210> 1446
 <211> 6
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1446
 Gly Ala Tyr Ala Gln Ala
 1
 <210> 1447
<211> 10
 <212> PRT
 <213> Homo sapiens
#
 <220>
godi.
 <221> VARIANT
 <222> (7)...(0)
<223> cSNP translation
 <400> 1447
 Ser Thr Ala Leu Arg Ala Asp Ser Thr Gly
 5
 10
 1
 <210> 1448
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1448
 Arg Val Leu Ile Leu Asp Thr Phe Thr Cys Leu Leu Cys Leu
```

<210> 1449 <211> 11

```
<212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1449
 Tyr Arg Gln Val Asp His Phe Pro Gln Ile His
 <210> 1450
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7)...(0)
 <223> cSNP translation
 <400> 1450
Lys Leu Leu Val Cys Asn Met Met Asp Val Ser Pro Met Ala
 <210> 1451
 <211> 14
 <212> PRT
 <213> Homo sapiens
<220>
 <221> VARIANT
7
 <222> (7)...(0)
ļ4
 <223> cSNP translation
 <400> 1451
 Asp Trp Asn Ser Ser Lys Thr Thr Val Pro Leu Asn Met Pro
<210> 1452
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (7) ... (0)
 <223> cSNP translation
 <400> 1452
 Leu Ser Glu Ala Pro Gly Ser Leu Pro Gln Pro Leu Ser His
 <210> 1453
 <211> 14
 <212> PRT
```

```
gridg gridg which was stated they stated with well out out the stated which gridg gridg gridg the stated which the stated throw the stated through ```

```
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1453
Thr Ile Lys Ser Ala Val Ala Ser Gly Ile Ser Leu Pro Arg
<210> 1454
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1454
Pro Asp Arg Val Gly Arg Gln Ser Leu Lys Ser Ser Leu Glu
<210> 1455
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(0)
<223> cSNP translation
<400> 1455
Val Cys Thr Ala Arg Ser Pro Ser Val Arg Ser Ala Arg Ser
                                     10
                  5
<210> 1456
<211> 6
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(0)
<223> cSNP translation
<400> 1456
Asn Gln Glu Gly Asp Phe
<210> 1457
<211> 14
.<212> PRT
<213> Homo sapiens
```

```
<220>
     <221> VARIANT
     <222> (8)...(0)
     <223> cSNP translation
     <400> 1457
     Leu Gln Val Pro Ala Val Thr Gly Leu Thr Pro Gln Pro Val
     <210> 1458
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (8)...(0)
     <223> cSNP translation
     <400> 1458
     Ser Val Gln Arg Val Arg Gln Ser Val Lys Asn Leu Ile Lys
     <210> 1459
     <211> 14
     <212> PRT
     <213> Homo sapiens
<220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1459
     Thr Ala Glu Glu Met Tyr Ile Tyr Leu Gly Asn Met Asp Leu
                      5
<210> 1460
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (8)...(0)
     <223> cSNP translation
     <400> 1460
     Ala His Gln Gly Asn Leu Ala Pro Val Phe Ile Ala Met Gln
     <210> 1461
     <211> 14
     <212> PRT
     <213> Homo sapiens
```

f

```
<221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1461
     Pro Gly Glu His Thr Pro Cys Trp Pro Leu Pro Arg Pro Ser
     <210> 1462
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (7)...(0)
     <223> cSNP translation
     <400> 1462
     Arg Met Leu Asp Val Leu Gly Leu Ser Thr Ser Cys Arg Cys
                      5
     <210> 1463
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
     <222> (8)...(0)
     <223> cSNP translation
ļ.ā
     <400> 1463
1,4
     Val Asp Glu Leu Pro Val Gln Ala Gly Ala Ala Thr Gly Ser
     <210> 1464
13
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
     <221> VARIANT
   <222> (7)...(0)
     <223> cSNP translation
   . <400> 1464
     Ala Tyr His Ser Gly Tyr Glu Pro Thr Ala Pro Ser Thr Gly
     <210> 1465
     <211> 14
     <212> PRT
     <213> Homo sapiens
     <220>
```

<220>

```
<221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1465
 Val Met Asn Asp Leu Ser Gly Glu Pro Trp Thr Arg Arg Pro
 <210> 1466
 <211> 14
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> VARIANT
 <222> (8)...(0)
 <223> cSNP translation
 <400> 1466
 Arg Lys Gln Ala Val Arg Leu Arg Arg Ile Phe Ser Ala Ile
 <210> 1467
 <211> 8
  <212> PRT
 <213> Homo sapiens
  <220>
  <221> VARIANT
  <222> (8)...(0)
  <223> cSNP translation
  <400> 1467
. Ile Asp Ala Leu Arg Gly Arg Ala
  <210> 1468
  <211> 11
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> VARIANT
  <222> (7)...(0)
  <223> cSNP translation
  <400> 1468
  Ser Cys Arg Phe Arg Glu Ala Thr Trp Ala Thr
                    5
   1
```

Ė

ļ.

1.4

TU.