

SAINT IGNATIUS' COLLEGE

HSC Trial

2001

MATHEMATICS

Extension 1

2:00 – 4:05pm Wednesday 5th September 2001

Directions to Students

• Reading Time: 5 minutes

• Time Allowed : 2 hours

• Attempt ALL questions.

Board approved calculators may be used.

• A standard integral table is provided

 Answer each question in a separate writing booklet and clearly label your name and teacher's name. Total Marks 84

Attempt Questions 1 - 7

All questions are of equal value

Students are reminded that this is a trial examination only and cannot in any way guarantee the content or the format of the 2001 Mathematics Extension 1 Higher School Certificate examination

Total marks (84)
Attempt Questions 1 - 7
All questions are of equal value

Answer each question in a SEPARATE writing booklet.

QUESTION 1 (12 marks) Use a SEPARATE Writing Booklet.

(a) When $x^3 - 3x^2 - 4x + k$ is divided by (x + 2), the remainder is 3. Find the value of k. 2

(b) The interval PQ has end points P(5, -6) and Q(-7, 10).

Find the coordinates of the point R which divides PQ internally in the ratio 5:3.

(c) Evaluate $\int_1^2 \frac{dx}{\sqrt{4-x^2}}$.

2

(d) Solve $\frac{3}{2-x} > 1$.

3

(e) If α , β , γ are the roots of the equation $x^3 - 5x^2 + 3x - 2 = 0$, find the value of $\frac{3}{2}$

Marks Use a SEPARATE Writing Booklet. **QUESTION 2** (12 marks) Using the substitution u = x + 3, find $\int_{-3}^{-2} x(x+3)^4 dx$. 3 Consider the function $f(x) = \sin^{-1}(x-1)$. 1 What is the domain of y = f(x)? 1 Sketch the graph of y = f(x). Mr and Mrs Jones belong to a bush-walking club, which has a total of 20 members. A committee of 4 is chosen at random to plan the next bush-walk. What is the probability that: 2 . both Mr and Mrs Jones will be on the committee? 2 neither of Mr and Mrs Jones will be on the committee? (ii) 1 Express $\tan 2\theta$ in terms of $\tan \theta$. (d) (i) By letting $\theta = \tan^{-1} 2$, prove that $2 \tan^{-1} 2 = \tan^{-1} \left(-\frac{4}{2} \right)$ 2

QUESTION 3 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a)

The diagram shows the graph of $y = \cos \frac{1}{2}x$, for $0 \le x \le \pi$. The shaded area is rotated about the x-axis.

Find the volume of the solid formed.

(b)

A large industrial container is in the shape of a paraboloid, which is formed by rotating the parabola $y = \frac{1}{2}x^2$ around the y-axis.

Liquid is poured into the container at a rate of 2 m³ per minute.

- (i) Prove that the volume V of liquid in the container when the depth of liquid is h, 1 is given by $V = \pi h^2$.
- (ii) At what rate is the height of the liquid rising when the depth is 1.5 m?
- (iii) If the container is 3 m high, how long will it take to fill the container?
- Prove, using mathematical induction, that $5^n + 11$ is divisible by 4, where n is a positive integer.

3

QUESTION 4 (12 marks) Use a SEPARATE Writing Booklet.

Marks

3

(a) Find the coefficient of x^2 in the expansion of $(3+2x)(2+x)^6$.

(b) A squad of 18 boys is selected for rugby training, from which a team of 15 players is to be chosen for the Saturday game.

The probability that a player will be injured at training and not available for Saturday is 0.15.

- (i) Find the probability that 3 players will be unavailable for the Saturday game. 2 (Answer to 3 decimal places)
- (ii) Write the <u>numerical expression</u> for the probability that the team will not be able to field a team of 15 fit players on Saturday.

 Do not simplify the answer.

(c)

A ball is projected from the top of a 52 metre high tower. Its position t seconds after it is thrown, is given by the equations

$$x = 12t$$
, $y = 52 + 16t - 5t^2$

where the origin O is on the ground vertically below the point of projection.

(i) Find the greatest height reached above ground level.

4

(ii) For what length of time is the ball in flight?

-

(iii) How far from O does the ball land?

1

QUESTION 5 (12 marks) Use a SEPARATE Writing Booklet.

Marks

1

(a)

AB is the diameter of a semi-circle. $\triangle ABC$ is right-angled at A, and BC cuts the semi-circle at D. EF is a tangent to the semi-circle at D. AD is joined. $\angle CDE = \theta$.

COPY OR TRACE THE DIAGRAM ONTO YOUR WRITING PAGE.

$$Why is \angle ADB = 90^{\circ}?$$

(ii) Why is
$$\angle ADE = \angle ABD$$
?

(iv) Prove
$$\triangle ADE$$
 is isosceles.

(v) Prove that
$$E$$
 is the midpoint of AC .

(b) Consider the function $f(x) = (x-2)^2 - 3$ for $x \le 2$.

(i) Sketch the function
$$y = f(x)$$
.

(ii) Explain why
$$f(x)$$
 has an inverse function.

Find the inverse function
$$y = f^{-1}(x)$$
.

UES	STION	6 (12 marks) Use a SEPARATE Writing Booklet.	Marks
ı)	The ve	elocity of a particle moving in a straight line at position x is given by: $v = 2e^{-x}$.	
	Initial	ly the particle is at the origin.	
	(i)	Show that the acceleration at position x is given by $a = -4e^{-2x}$.	2
	(ii)	What is the initial acceleration?	1
	(iii)	The position of the particle at time t is given by $x = \log_e f(t)$. Find the function $f(t)$.	2 .
b)	Consi	der the binomial expansion, where n is an even number:	
	(1+x)	$)^{n} = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^{2} + \binom{n}{3}x^{3} + \dots + \binom{n}{n}x^{n}.$	
	(i)	Prove that $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1} = 2^{n-1}$.	3
	(ii)	Prove that $\sum_{r=1}^{n} r \binom{n}{r} = n \times 2^{n-1}$.	2
	(iii)	Find an expression for $\sum_{r=0}^{n} (r+1) \binom{n}{r}$.	2

7			Mari
QUE	STION	7 (12 marks) Use a SEPARATE Writing Booklet.	•
(a)	(i)	Express $2 \sin t - 5 \cos t$ in the form $A \sin(t - \alpha)$, where α is in radians, $A > 0$.	2
	(ii)	What is the amplitude of the function $f(t) = 2 \sin t - 5 \cos t$?	1
(b)	Show	w that the derivative of $8t \tan^{-1} 2t - 2 \log_e (1 + 4t^2)$ is $8 \tan^{-1} 2t$.	2
(c)		e Olympic 100 metres running event, the speed ν metres per second of a runner ads after the start is given by:	t
		$\nu = 8 \tan^{-1} 2t.$	
	(i)	Using the result of part (b), explain why the time taken, T seconds, to complete the 100 metres is given by the equation	2
		$8T\tan^{-1}2T - 2\log_e(1 + 4T^2) - 100 = 0.$	٠
	(ii)	Show that a root of this equation lies between $T=9$ and $T=10$.	2
	(iii)	Using $T = 9$ as a first approximation, use Newton's method to find a better approximation, to one decimal place.	2
	(iv)	Using this value of T, what is the runner's speed at the end of the 100m race?	1

End of paper

SAINT IGNATIUS' COLLEGE

HSC Trial

2001

MATHEMATICS

Extension 1

2:00 – 4:05pm Wednesday 5th September 2001

SUGGESTED SOLUTIONS

· Reading Time: 5 minutes

• Time Allowed: 2 hours

Total Marks 84

Attempt Questions 1 - 7

All questions are of equal value

Students are reminded that this is a trial examination only and cannot in any way guarantee the content or the format of the 2001 Mathematics Extension 1 Higher School Certificate examination

(b) P(5,-6) Q(-7,10) 5:3 $R\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right) = \left(\frac{5^{-} \times (-7) + 3 \times 5^{-}}{5 + 3}, \frac{5^{-} \times 10 + 3 \times (-6)}{5 + 3}\right)$ = (-2=1) 2 $(c) \int_{1}^{2} \frac{dx}{\sqrt{u-x^{2}}} = \left[sin^{-1} \frac{x}{2} \right]_{1}^{2}$ $(2-x)^2$: $3(2-x) > (2-x)^2$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \beta + \alpha \gamma + \alpha \beta}{\alpha \beta \gamma}$ 3

3 Unit - Question 2	
$\frac{(a)}{-3} \int_{-3}^{-2} 2(2x+3)^{4} da = \int_{-3}^{1} (u-3) u^{4} du$	u = x+3
$=\int_{1}^{2} (u^{5}-3u^{4}) du$	du = doi
$=\int_{0}^{1}\frac{1}{5}u^{6}-\frac{3}{5}u^{5}$	When 21 3, 4 = 0
$= \left(\frac{1}{6} - \frac{3}{3}\right) - \left(0 - 0\right)$	When $z = -2$, $u = 1$
= - 12	[3]
	· · · · · · · · · · · · · · · · · · ·
$f(x) = sin^{-1}(x-1)$	• • • • • • • • • • • • • • • • • • • •
(i) -1 \(\xexit{\chi}\) -1 \(\xexit{\chi}\) -1 \(\xexit{\chi}\) -1 \(\xexit{\chi}\) -1 \(\xexit{\chi}\)	/ 🗃
Domain is 0 5 x 52	
	e en
2 ×	
-# 2	
(c) (i) $Prob = \frac{\binom{18}{2}}{\binom{20}{4}} = \frac{153}{4845} = \frac{3}{95}$ (or o	:032,3dp)
(20) 4845 95 4)	
(16)	
(ii) $Prob = \binom{16}{4} - 1820 - 364$ (or $\binom{20}{4}$ 4845 969	0.376,3dp)
(4)	<u>14</u>
$(4) (i) \qquad +\cos 2\theta = 2 \cos \theta$	
$(d) (i) \qquad \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$. <u> </u>
(i) Let $G = \tan^{-1} 2$. $\tan \theta = 2$	
$\frac{\tan 2\theta = \frac{2 \times 2}{1 - 2^2}$	
/ - 2 ²	
= -3	
$20 = \tan^{-1}\left(-\frac{4}{3}\right)$	
$2 \tan^{-1} 2 = \tan^{-1} \left(-\frac{4}{3}\right)$	[2]

3 Unit - Question 3

3 Unit - Yuestion 3					
Question 3.	1				
$(a) V = \pi \int_{-\frac{\pi}{2}} dx$	(c) Prove 5" + 11 in divisible by 4.				
$= \pi \int_{D}^{\pi} \cos^{2} \frac{1}{2} \times d\alpha$	(e) Prove 5"+11 in divisible by 4. When n=1, 5"+11 = 5"+11				
$= \pi \int_0^{\pi} \frac{1}{2} \left(1 + \cos x \right) dx$	= 16				
$= \pi \int_{\mathbb{R}} x + \sin x \int_{0}^{\pi}$	It is true when n = 1.				
$= \overline{\pi} \int (\overline{\pi} + 0) - (0 + 0)$					
$Volume = \frac{\pi^2}{2} unit^3. \boxed{3}$	assume it is tout for n = k				
	i'e assume 5th + 11 = 4 I where I is intog				
$(b) (i) V = \pi / x^2 dy$					
$=\pi/2ydy$	when $n = k + 1$				
$= \pi \int_{-\pi}^{\pi} y^{2} \int_{0}^{\pi}$ $= \pi \lambda^{2} \qquad \qquad \square$	$5^{n} + 11 = 5^{k+1} + 11$				
$\dots = \pi \lambda^2 \qquad \qquad \boxed{\prod} .$	= 5 x 5 + 11				
	= 5 (4I-11) + 11 by arounthis				
$ \frac{(ii)}{at} = \frac{aV}{ah} * \frac{ah}{ax} $ $ \frac{dV}{at} = 2\pi h * \frac{ah}{ax} $	= 20 I -44				
$\frac{dV}{dt} = 2\pi h \times \frac{dh}{dt}$	= 4(5-I-II)				
when at = 2, L= 1.5	which is diverible by 4				
	94 4 7 6 4				
$2 = 2 \times \pi \times (1.5) \times \frac{dk}{dt}$	If it is true for n= k				
$\frac{dk}{dt} = \frac{2}{3\pi}$	then it is true for n = k+1.				
1 in cal in starting of 2 m love	since it is true for n=1,				
Lighted is resing at $\frac{2}{3\pi}$ m/min $(3dp)$	other et is true for n= 2				
[5]	it is true for n=3,				
(iii) When h = 3 V = 9T	is this tour for all pointure				
(iii) When h = 3, V = 9TT Time taken = 9TT manules	integers n. 4				
`					
or 14.14 min (2dp)					

Question 4.	
1	
$(a)(3+2x)(2+x)^{b}$	(i) Hete provend when i = 0
$= (3+2x) \left[\binom{6}{0} 2^{4} + \binom{1}{1} 2^{5} x + \binom{4}{2} 2^{5} x^{2} + \frac{1}{1} \right]$	(11) Hets ground when y = 0 52 1 16 t - 5 t = 0
Tem in x2=3x(2)2+2	5-t2-11t-52=0
+271x(1)25x	$t = 16 \pm \sqrt{256 - 4 \times 5 \times (-52)}$
= 3x15x16x2+2y6x32 xXl2	10
$= (720 + 384) 2^{2}$	= -16 ± 3/2
Coefficient of x2 = 1104: 3	, ,
	= 2 01-5.2.
(b)(') P= (18) (0.15)3 (0.85)15	Ballis in flight for 2 seconds [2]
= 0.2+1 (3 d P) []	
	(ii) olchen t = 2, 21 = 12 × 2
(11) Probability of not feeleding a	= 2.4 .
full team	Ball Lands 24 m. from O. [
= P (4 or more injusted)	
= 1 - P(0 or 1 or 2 or 3 injused)	*.* ·
$= 1 - \left[(0.85)^{18} + (17)(0.15)(0.85)^{1} + (18)(0.15)^{1} (0.$	<u>.</u>
+ (3)(0.15)2(0.85)6+(3)(0.15)6015	
(c) $y = 12t$ $y = 52+16t-5t^2$	
(c) $x = 12t$, $y = 52 + 16t - 5t^2$ x = 12, $y = 16 - 10t$	
(1) aneatest deight when is = 0	
(1) greatest Leight when ig =0	
t = 1.6	
y = 52 + 16 × 1.6 - 5 × 1.62	
= 64.8	
Greatur Seight - 64.8 metres.	
2	

3 Unit - Question 3				
Question 5				
Question 5.	(b) $f(x) = (x-2)^2 - 3$ for $x \in 2$.			
Ē 60 6	(i) \17			
4				
(1) LADB = 90° because it is an	1 > 2			
angle in the semi-usele []				
(11) LADF = LABD becaus the angle between a tangent and a chord				
drawn to the point of contact is equal	(2,-3)			
to an angle in the alternate regnent. OR the alternate regnest theorem.	(ii) f(x) has an inverse because			
<u> </u>	it is a 1:1 relation			
(ii) / CDE = /FDB (vert off)	ere value of a mad to each			
= 1048 (alt. sy. Un)	value of y and to reach			
(iv) L=DA = 90°-0 from diagram	ot x .			
LEAD = 900-0 from deagran	or It satisfies the horizontal line test			
: AF = 5D (sider of posite equal angles)				
· DADF is socieles.	(iii) Invoise is			
[a]	21 = (y-2) 2-3 for y = 2			
(v) Rince LEAD = 90°-0	$x+3 = (y-2)^{2}$			
After [ACD = O largle sum	$y-2 = \pm \sqrt{x+3}$ $y = 2 \pm \sqrt{x+3}$			
of ADC) ∴1=DC=1=CD	Buty &2			
CF = FD	$y = 2 - \sqrt{5643}$			
But AE = ED in (iv)	or f (60) = 2 - 1x+3: []			
AF = CF				
K is midpoint of AC. 2				

f(9)=8x9 ten'18-2 loge(1+4x9)-100

f(10) = 8 x 10 tem 20 - 2 log (1+4 x 102) -10

lines f(9) and f (0) have opposite

signs, a root lies between 9, 10.

= 9.679

= 9.2 (1dp) P

= 9 - (-2-466)

(iv) Wan T=9.2,

<u>(ii)</u>

= -2.466

 $v = 8 \tan^{-1}(2 \times 9.2)$

Runner's apreal is 12.13 m/s. []

si = 18 lan 2 tax = et ton 'at -2 lay (1+4t2) + C.

0=0-26g1+C

x = 8 t tan '2 t - 2 day (1+4t2)

When x=100, t= T. : 100 = 8T lon 2T - 2 leg (1+4T2)

3 Unit - Question 7.

 $(b)(1+2)^{2}=\binom{n}{p}+\binom{n}{i}z+\cdots+\binom{n}{n}z^{n}$ (n = wen).

(i) Let x = -1. $O = \begin{pmatrix} n \\ 0 \end{pmatrix} - \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2n \end{pmatrix} - \begin{pmatrix} n \\ 3 \end{pmatrix} + \cdots - \begin{pmatrix} n \\ n-1 \end{pmatrix} + \begin{pmatrix} n \\ n-1 \end{pmatrix}$ $(n - 1) + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots + (n - 1) = (2) + (2) + \cdots +$

 $2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$ $\begin{pmatrix} \binom{n}{2} + \binom{n}{2} \end{pmatrix} + \cdots + \binom{n}{n-1} \geq \frac{2^n}{2}$ = > ^-1 . 3

(ii) Differentiate $n(1+2)^{n-1} = \binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^2 + \cdots$

 $n \times 2^{n-1} = \binom{n}{1} + 2\binom{n}{2} + \cdots + n\binom{n}{n}$ ce & r(2) = 0 x 2 1 2

 $\lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2}$... + (n) x 1 ···

(1+x).+x n(1+x)"-1 $= \binom{n}{0} + 2\binom{n}{1} \times + 3\binom{n}{2} \times^{2} + \cdots$ Let x = 1:

 $2^{2} + n \times 2^{n-1} = \binom{n}{p} + 2\binom{n}{1} + 3\binom{n}{2} + \cdots$ · · · + (a+)(â)

in 2 (r+1)(r) = 2 (2+n)]

(ii) When t =0, x =0 .'. a = -4e°

Question 6.

 $(a) z = ze^{-x}$

 $(i) \quad \alpha = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$

Initial acceleration is - 4 units

= d. (2 × 4 e -2x)

= -4 e -22

 $= 2 \times (-2) e^{-2x}$

(iii) $\frac{dx}{dt} = 2e^{-x}$ $=\frac{2}{e^{x}}$

t = de" + c When t=0, x=0

0 = = + C c = -\frac{1}{2}

... t = = = ex -= $2t = e^{2t} - 1$ $e^{2l}=2t+1$

x = ln (2t+1)

f(t) = 2t + 1

Question 7. (a) 2 sin t -5 cot = A sin (t-a)

- A sin t co a - A contains. Equating coefficients of sint, cost.

A co a = 2 (1)

A sind = 5 (2)

A2002x + A2002x = 22+52 $A^{\alpha}\left(\cos^{2}x+\sin^{2}\alpha\right)=29$

 $A = \sqrt{29} (A > 0)$

From (1) (2) ruis A = 0, a is acute. (iii) (2) = (1) tand = 5

: 2 sint - 5 cas t = \(\sigma_{2q} \sin(t-1.1q) \)

(ii) amplitude of f(t) in 129.

(b) 2 | st tan 2t -2 log (1+4t2)

=8 tan 2t

(c) (1) v = 8 tan 27

When t=0, x=0

1.2 5 Then 2T - 2 lg (1+4T2)-100=0