

PLANO DE ENSINO

Disciplina: Tópicos em Computação Aplicada

Curso: Ciência da Computação

Docente: Vitor Augusto Correa Cortez Almeida

Ementa

Ciência de dados; Bases de dados; Fundamentos de Python; Python em computação científica; Manipulação de dados; Descoberta de dados; Amostragem de dados; Estatística descritiva; Visualização de dados; Qualidade de dados; Transformação de dados; Aprendizado de máquina; Modelagem de dados; Avaliação de modelos; Outros tópicos.

Objetivo

Apresentar a área, processos e ferramentas de Ciência de Dados e motivar o aluno a aplicar essas ferramentas para resolver problemas práticos e aprender a aprender.

Conteúdo programático

- · Unidade 1
 - Ciência de dados
 - Introdução à ciência de dados
 - Áreas e termos relacionados
 - Processos de desenvolvimento
 - Bases de dados
 - * Tipos de dados
 - Fontes de dados
 - * Estrutura de dados
 - Fundamentos de Python
 - * Linguagem Python
 - * Ambientes virtuais
 - Python em computação científica
 - * Ambiente de desenvolvimento
 - * IPython
 - Jupyter Notebooks
 - Manipulação de dados
 - Dados tabulares
 - * Biblioteca Pandas
 - * Planilhas e Data-Frame
 - Descoberta de dados
 - Seleção de dados
 - Web scraping
 - Biblioteca Beautiful-Soup

- Unidade 2
 - Amostragem de dados
 - População e amostra
 - * Representatividade
 - * Tipos de inferência
 - Estatística descritiva
 - * Escalas de medida
 - * Medições descritivas
 - * Biblioteca NumPy
 - Visualização de dados
 - Análise exploratória de dados
 - * Gráficos estatísticos
 - * Biblioteca Matplotlib
 - * Biblioteca Seaborn
 - Qualidade de dados
 - * Dados faltantes
 - * Dados ruidosos
 - * Pontos fora da curva
 - * Dados enviesados
 - * Limpeza de dados
 - Transformação de dados
 - * Conversão de dados
 - * Normalização
 - * Padronização

- · Unidade 3
 - Aprendizado de máquina
 - Modelagem estatística
 - Tipos de aprendizado
 - * Tarefas de modelagem
 - Modelagem de dados
 - * Regressão linear
 - * Classificação
 - * Agrupamento
 - * SciKit Learn
 - Avaliação de modelos
 - * Métricas avaliativas
 - * Teste de hipóteses
 - * SciPy
 - Outros tópicos
 - Algoritmos bioinspirados
 - * Hiperparâmetros
 - Dados não estruturados
 - * Ética

Método de ensino

Aulas expositivas e dialogadas; Aulas práticas, com exercícios guiados e/ou assistidos; Atividades e apresentações práticas, individuais ou em grupo.

Recursos didáticos

Sistema Integrado de Gestão de Atividades Acadêmicas; Lousa; Projetor multimídia; Computadores; Softwares gratuitos: VSCode, Python3, Miniconda/Anaconda, Git, LibreOffice e navegador web.

Sistemática de avaliação

Avaliação formativa, considerando a participação do aluno no decorrer das três unidades de conteúdo, e somativa por meio da entrega e apresentação de projetos e resolução de exames escritos. A média aritmética entre as notas de cada unidade determina a nota parcial. Alunos com nota parcial ≥ 7 serão aprovados; <4 reprovados; e, caso contrário, de exame final. Em caso de exame final, uma média aritmética ≥ 6 entre as notas do exame final e parcial determina se o aluno será aprovado.

Bibliografia básica

CARVALHO, André C.P.L.F. de; MENEZES, Angelo G.; BONIDIA, Robson P. **Ciência de Dados**: Fundamentos e Aplicações. [*S. I.*]: LTC, 2024.

GRUS, Joel. **Data Science do Zero**: Primeiras Regras com o Python. Edição: Alta Books. [S. l.]: O'Reilly Media, 2016.

MORETTIN, Pedro Alberto; SINGER, Júlio da Motta. **Estatística e Ciência de Dados**. [*S. l.*]: LTC, 2025.

Bibliografia complementar

BLUM, Avrim; HOPCROFT, John; KANNAN, Ravi. **Foundations of Data Science**. Cambridge: Cambridge University Press, 2020.

GODSEY, Brian. **Think Like a Data Scientist**: Tackle the Data Science Process Step-by-Step. [*S. l.*]: Manning, 2017.

KOTU, Vijay; DESHPANDE, Bala. **Data Science**: Concepts and Practice. [*S. l.*]: Elsevier Science, 2018.

KROESE, D.P. *et al.* **Data Science and Machine Learning**: Mathematical and Statistical Methods. Boca Raton: CRC Press, 2019. (Chapman & Hall/CRC machine learning & pattern recognition).

OZDEMIR, Sinan. Principles of Data Science. [S. I.]: Packt Publishing, 2016.

VANDERPLAS, Jake. **Python Data Science Handbook**: Essential Tools for Working with Data. [S. I.]: O'Reilly Media, 2016.

VERRI, Filipe Alves Neto. **Data Science Project**: An Inductive Learning Approach. [S. l.]: Leanpub, 2024.