Dual-Rail Combinational Circuit Design

- Os refer to a signal's $rail^0$ and ls refer to a signal's $rail^1$
- Add missing terms to ensure input-completeness
- Partition output equations into groups of four or fewer variables
 - largest number of product terms per group
 - smallest number of groups
 - map each group to one of the 27 NCL gates
- Booth2 PP generation component
 - input-complete with respect to input, MR_1
 - $PP^{1} = MR_{2}^{1}MR_{1}^{1} + MR_{1}^{1}MR_{0}^{1}MD_{i-1}^{1} + MR_{2}^{1}MR_{1}^{0}MD_{i-1}^{0} + MR_{2}^{1}MR_{1}^{0}MD_{i-1}^{0}$
 - $PP^{0} = MR_{2}{}^{0}MR_{1}{}^{0} + MR_{1}{}^{0}MR_{0}{}^{0}MD_{i-1}{}^{1} + MR_{2}{}^{0}MR_{1}{}^{1}MR_{0}{}^{0} + MR_{2}{}^{0}MR_{1}{}^{1}MD_{i-1}{}^{0}$

Optimized Logic Functions

• AND:
$$Z^0 = X^0Y^0 + X^0Y^1 + X^1Y^0 \rightarrow THand0$$

 $Z^1 = X^1Y^1 \rightarrow TH22$

• OR:
$$Z^0 = X^0Y^0 \rightarrow TH22$$

 $Z^1 = X^1Y^1 + X^0Y^1 + X^1Y^0 \rightarrow THand0$

• XOR:
$$Z^0 = X^0Y^0 + X^1Y^1 \to THxor0$$

 $= X^0Y^0 + X^1Y^1 + X^0X^1 + Y^0Y^1 \to TH24comp$
 $Z^1 = X^1Y^0 + X^0Y^1 \to THxor0$
 $= X^1Y^0 + X^0Y^1 + X^0X^1 + Y^0Y^1 \to TH24comp$

Optimal NCL Full Adder

- inherently input-complete
- check by expanding S in terms of X, Y, and C_i