ΑĽ)	
	and the same of th	

Award Number: DAMD17-00-1-0516

TITLE: Pain Transmission In Humans: The Role of Novel Sensory

Ion Channels

PRINCIPAL INVESTIGATOR: Stephen R. Ikeda, M.D., Ph.D.

CONTRACTING ORGANIZATION: Donald Guthrie Foundation

for Education and Research Sayre, Pennsylvania 18840

REPORT DATE: May 2001

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 074-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. And comments regarding this burden estimate or other specific productions for reducing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) May 2001 Annual (1 May 00 - 30 Apr 01) 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE Pain Transmission In Humans: The Role of Novel Sensory Ion DAMD17-00-1-0516 Channels 6. AUTHOR(S) Stephen R. Ikeda, M.D., Ph.D. 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER Donald Guthrie Foundation for Education and Research Sayre, Pennsylvania 18840 E-Mail: sikeda@inet.guthrie.org 10. SPONSORING / MONITORING 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES This report contains colored photos 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release; Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) The primary accomplishments of the previous funding period were: 1) cloning and expression of the mouse isoform of Scn10a gene product (SNS; TTX-resistant sodium channel); 2) functional heterologous expression and initial biophysical characterization of the mouse Scn10a gene product in sympathetic neurons; 3) cloning and sequencing of 4 Kbp of upstream genomic DNA; and 4) identification of BAC (bacterial artificial chromosome) clones harboring the mouse ScnlOa gene. The nucleotide sequence of the mouse ScnlOa cDNA obtained in these studies deviates significantly (170 discrepancies in 5874 bases) from a previously published cDNA sequence derived from genomic DNA (GenBank accession number Y09108) and thus represents new information. Heterologous expression of the Scn10a cDNA in sympathetic neurons revealed a significant depolarizing shift in the biophysical

14. SUBJECT TERMS

15. NUMBER OF PAGES
54

16. PRICE CODE

17. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

18. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

properties of the expressed channel when compared with natively expressed channels. These findings indicate that an accessory protein may influence the behavior of the channel. A candidate promoter region for the Scn10a channel has been cloned and identified in BAC clones. Taken together, these results provide the experimental foundation for our future studies aimed at identifying new potential therapeutic targets that modify the function

and expression of sodium channels involved in pain transmission.

Table of Contents

1

2

Cover

SF 298.....

Table of C	Contents	3
Introducti	on	4
Body		4
Key Resea	arch Accomplishments	13
Reportabl	e Outcomes	14
Conclusio	ns	15
Reference	s	16
A. B. C. D.	Mouse Scn10s cDNA nucleotide sequence Nucleotide formatted alignments Protein formatted alignments Activation/inactivation properties of Scn10a channels heterologo expressed in sympathetic neurons Activation/inactivation properties of TTX-R sodium channels in a neurons	

I. LM-PCR primers: used for LM-PCR out (upstream) from the RACE products

G. Primers for 5' Rapid Amplification of cDNA Ends

J. Primers for genomic screening of mouse library:

H. LM-PCR primers: used for LM-PCR into the first intron

F. 5' flanking region

Introduction

The Scn10a gene product encodes a tetrodotoxin-resistant sodium channel (SNS/PN3) expressed exclusively in a subset of primary sensory neurons (e.g., dorsal root and nodose ganglia) believed to be involved in pain transmission (Akopian et al., 1996). Thus, it is important to understand mechanisms contributing to both the function of the protein and the exquisite specificity of gene expression. The overall research plan is detailed in the flowchart depicted to the right. During the last funding period, we have made significant progress on both the genomic (left branch) and proteomic (right branch) sections of the research plan.

Specifically, we have cloned and sequenced the full length mouse Scn10a cDNA. Moreover, we have demonstrated that the cDNA is functionally expressed in neurons and have initiated biophysical characterization of the expressed channels. With regard to progress toward better understanding the regulation of Scn10a transcription, the putative transcription start site has been identified using 5' rapid amplification of cDNA ends (RACE) and 4 Kbp of upstream genomic region has been sequenced using ligation-mediated PCR (LM-PCR). Finally, bacterial artificial chromosome (BAC) clones containing the full length mouse Scn10a gene have been identified.

Body

A. Cloning of mouse Scn10a cDNA

In order to obtain a murine Scn10a clone, dorsal root ganglion (DRG) neurons were enzymatically dissociated from adult CD1 mice and polyA mRNA isolated by standard techniques. A full length mScn10a clone was amplified from this material by RT-PCR using oligonucleotide primers based on the genomic sequence data provided in Souslova et al. (1997). The open reading frame was subcloned into the mammalian expression vector pCI (Promega) and sequenced with an ABI 377 automated sequencer (Appendix A). The sequence of the Scn10a clone was verified by sequencing the PCR product from several different mRNA preparations.

The nucleotide sequence of mouse Scn10a cDNA, when compared with sequence (#Y09108) derived from mouse genomic data (Souslova et al., 1997), revealed 170 discrepancies of 5874 total bp (Appendix B). About 50% of the changes do not alter the primary sequence (i.e., are silent mutations). About 1/3 of the "polymorphisms" are A to G changes (genomic to cDNA). An alignment of the primary amino acid sequence of our

clone compared with #Y09108 is shown in Appendix C. The reason for these discrepancies is unclear.

The derived primary sequence of mouse Scn10a is 93, 82, and 81% identical to the rat (X92184), human (AF117907), and dog (U60590) Scn10A sodium channel, respectively. When conserved substitutions are taken into account (ClustalW analysis), the sequence similarity is 95, 89, and 88%, respectively.

Figure 2, Mouse Scn10a primary amino acid sequence

Putative transmembrane segments are shown in shaded boxes with each color representing one of four homologous domains. The serine residue shown to be involved in TTX insensitivity in the rat ortholog (Sivilotti et al., 1997) is marked with a star. Putative intron/exon boundaries are from Souslova et al., 1997. Ambiguous residues are those not confirmed by sequencing of different clones.

B. Expression of Scn10a cDNA clone in rat sympathetic neurons

Rat sympathetic neurons isolated from superior cervical ganglion (SCG) were used as a host for Scn10a expression. Previous studies have shown that natively expressed sodium channels in SCG neurons are completely suppressed by tetrodotoxin (Schofield & Ikeda, 1988). Scn10a (0.1–0.2 μ g/ μ l) and EGFP (Clontech, 0.05 μ g/ μ l) cDNAs were co-injected into the nucleus of SCG neurons using an Eppendorf microinjection system (Ikeda, 1996, 1997). Patch clamp recordings were made following 12-18 hours of incubation at 37 C. Successfully injected cells were identified by EGFP fluorescence using an inverted microscope (Nikon) equipped with an epifluorescence unit.

Voltage-clamp recordings were made at room temperature (23–25 °C) using the whole-cell variant of the patch-clamp technique. Solutions designed to isolate tetrodotoxin resistant (TTX-R) currents were as follows: external (mM): TEA-Cl 120, NaCl 50, HEPES 10, MnCl₂ 2, and glucose 10. TTX (1 µM) was added to suppress sensitive

currents. The pH of the solution was adjusted to 7.4 with TEA-OH. The osmolality of the solution was 327 mosm/kg. Internal (mM): CsCl 115, NaCl 10, EGTA 11, CaCl₂ 1,HEPES 10, MgATP 4, GTP 0.1, and diTRIS phosphocreatine, 5. The pH of the solution was adjusted to 7.2 with TEA-OH. The osmolality of the solution was 303 mosm/kg. Current-voltage (I-V) and activation curves were derived from currents evoked by a 20 msec test pulse to various potentials from a holding potential of -80 mV. Conductance calculations were made using the chord conductance equation assuming a reversal potential of +40 mV. Inactivation was determined using a 1 sec conditioning pulse followed by a test pulse to 0 mV. Parameters for activation and inactivation curves were determined by fitting the normalized conductance curve to a Boltzmann function using a non-linear regression program. An example of currents and activation and inactivation analysis is shown in Figure 3.

Figure 3. TTX-resistant sodium currents recorded from rat sympathetic neurons expressing Scn10a channels.

Upper right: Family of currents evoked by depolarizing pulses. Lower left: Current voltage relationship. Upper right: Currents evoked with the inactivation voltage protocol. Lower right: Steady state activation and inactivation curves.

Figure 4. TTX-resistant sodium currents recorded from mouse DRG neurons

Upper right: Family of currents evoked by depolarizing pulses. Lower left: Current voltage relationship. Upper right: Currents evoked with the inactivation voltage protocol. Lower right: Steady state activation and inactivation curves.

Tetrodotoxin-resistant sodium currents were also recorded from acutely isolated mouse DRG neurons. The goal of these studies was to compare the heterologously expressed channels with natively expressed channels. An example of such currents is shown above (Figure 4.)

Comparison of heterologously and natively expressed TTX-resistant sodium channels revealed that depolarizing shifts in both the activation and inactivation curves of the cloned channels. Analyses of individual neurons are included in the Appendix (D and E). Mean activation and inactivation curves are depicted in Figure 5.

Figure 5. Mean activation and inactivation curves for natively and heterologously expressed TTX-R Na⁺ channels.

Activation and inactivation curves were fit to the following equation:

$$G(V) = \frac{Gmax}{1 + exp[(V-Vh)/k]}$$

A summary of the mean activation and inactivation parameters derived from the nonlinear regression analyses is show in Table 1.

Table 1.

	Activ	ation	Inactiv	/ation
	Vh _{act} (mV)	k _{act} (mV)	Vh _{inact} (mV)	k _{inact} (mV)
DRG	-4.3 ± 0.9 (9)	5.0 ± 0.2 (9)	-34.0 ± 0.6 (9)	4.3 ± 0.2 (9)
Scn10a	9.4 ± 1.1 (9)**	6.4 ± 0.4 (9)**	-25.2 ± 2.2 (4)	5.6 ± 0.5 (4)

C. Identification of BAC (bacterial artificial chromosome) clones harboring the Scn10a gene

The absolute size of the promoter for the Scn10a gene is unknown. Since other Na⁺ channel genes are regulated by promoters that span greater than 50 kb of genomic DNA, we reasoned that the Scn10a gene promoter may also be very large. To increase the likelihood of isolating the entire promoter, we chose to screen a mouse genomic BAC library prepared by Incyte Genomics. BAC (Bacterial Artificial Chromosome) libraries

are constructed in specialized plasmid vectors that stably maintain greater than 125 kb of contiguous cloned genomic DNA, and are well-suited for cloning projects where large stretches of genomic DNA need to be examined. Three BAC clones (#26462, #26463, and #26464) were identified in a PCR-based screen using oligonucleotide primers specific to exon 1 of the Scn10a gene.

The clones are currently being analyzed to determine the extent of 5'-flanking DNA (which contains the promoter) carried on each. Preliminary analysis of the three BAC clones by restriction endonuclease analysis indicates that the clones contain contiguous overlapping stretches of mouse genomic DNA containing an undetermined amount of exonic/intronic DNA and 5'-flanking DNA of the Scn10a gene. Pulsed field gel electrophoresis (PFGE) of the clones shows that they are similar, but not identical, in size and are greater than 150 kb (Figure 6). To determine the extent of 5'-untranslated DNA carried on each BAC clone, we are in the process of modifying each clone to contain a unique restriction site, SwaI and/or CeuI, just upstream of the ATG translation codon of the Scn10a gene. Digestion of the modified BAC clones at the unique NotI site in the pBeloBAC II cloning vector and the SwaI and/or CeuI site will release a segment of the BAC DNA corresponding to the 5'-flanking DNA, which will then be sized by PFGE. Incorporation of the SwaI and CeuI sites into each BAC clone is being done using a modified protocol first described in Yang et al. (1997).

Figure 6. Restriction enzyme digestion of BAC DNA. Digestion of the three BAC clones with BamHI or SalI is shown. Lane 1 contains high-molecular weight λ markers

The modification of the BAC clones will also allow us to examine the Scn10a gene promoter in transfected primary neurons as the coding sequence for the enhanced green fluorescent protein (EGFP) will simultaneously be placed immediately downstream of the 5'-flanking region. Expression of the EGFP gene under control of the Scn10a gene promoter is expected to provide a very sensitive read-out of this promoter's activity. In this protocol, a specialized shuttle vector is first constructed *in vitro* that carries a small segment of the 5'-flanking sequence of the Scn10a gene fused to the EGFP gene in the shuttle vector PLD53PA (Figure 7). The shuttle vector is next recombined *in vivo*

adjacent to the 5'-flanking sequence of the Scn10a gene on the BAC clone, creating a Scn10a promoter-IRES I EGFP fusion in the BAC clone. We have determined the DNA sequence of approximately 900 bp of the 5-flanking region of the Scn10a gene by direct sequence analysis of one of the BACs (Appendix F). We have constructed appropriate pairs of forward and reverse oligonucleotide primers that will be used to amplify by the PCR an approximately 600 bp subfragment (Figure 8). This 600 bp subfragment will be subcloned into the multiple cloning site of the shuttle vector PLD53PA via the NotI and SwaI sites incorporated into the forward and reverse primers. Recombination of the shuttle vector into the BAC DNA will occur at the second IRES I EGFP-PA sequence in PLD53PA. The SacB gene in this vector provides for sucrose-counterselection to select for BAC recombinants that have undergone a recombination event resulting in a final BAC clone containing a stably-integrated Scn10a promoter-EGFP fusion. The resulting BAC clones will retain whatever 5'-flanking DNA that was carried on the unmodified BACs, only fused to IRES I EGFP.

Figure 7. Map of the shuttle vector PLD53PA. The NotI/SwaI sites within PLD53PA for insertion of Scn10a DNA is shown.

Figure 8. Schematic of the 900 bp 5'-flanking DNA and location of PCR primers. Sets of forward and reverse primers to amplify a 600 bp subregion for insertion into PLD53PA are shown. The specific restriction sites incorporated into each primer is indicated.

5' RACE Analysis was performed on mRNA isolated using the cellulose based SV total RNA and polyAtract® mRNA isolation systems from Promega. The mRNA was reverse transcribed to first strand cDNA using the AdvantageTM RT for PCR kit from Clontech. The cDNA was then and used in the SMARTTM RACE cDNA Amplification kit (Clontech) in which the general first strand cDNA synthesis step was followed by a single round of PCR with a universal adaptor primer and a gene specific primer. The gene specific primer was designed to include a portion of the coding sequence for verification

of the authenticity of the product by sequence comparison. Products were visualized and fractionated from a 2.0 % agarose gel stained with ethidium bromide and cloned into the sequencing vector pGEM-T EasyTM (Promega) as per the manufacturer's directions. Sequencing was performed using an ABI 310 and 377 automated sequencer. The reactions produced a number of fragments possibly depending on the number of transcription start sites and the integrity of the cDNA or the mRNA from which it was constructed. The sequences of the resulting RACE products and primers are found in appendix G. A schematic of the two longest clones (B and I) aligned to the 5' end of the Scn10a coding sequence is shown in figure 9.

Figure 9: Alignment of the RACE products B and I to the 5' end of the Scn10a coding sequence

LM-PCR was performed with the use of the GenomewalkingTM kit from Clontech. Primers (custom made by Gibco/BRL) were designed to extend into regions of genomic DNA in a 5' direction from the end of the Scn10a gene. The kit supplies genomic DNA cut with blunt end restriction enzymes to which an adaptor has been ligated. The kit supplies primers directed to that adaptor. The adaptor primers are used with gene specific primers in primary and nested PCR reactions. A polymerase mix consisting of Tth polymerase and a proofreading polymerase allow

for the high fidelity amplification of fragments up to 6 kb. PCR fragments from the library or libraries yielding a significant size and purity were further purified from agarose gels and cloned into a sequencing vector (pGEM-T easy™ vector (Promega)) as per the manufacturer's directions. Sequencing was performed using an ABI 310 and 377 automated sequencers. LM-PCR was performed outward from the first protein coding exon about 920 bp into an intron located upstream from this exon and from the upstream ends of the RACE reaction products about 4.0 kb into what we hope is the promoter region of the Scn10a gene. The resulting sequences and primers for the LM-PCR into the 5'UTR intron and the LM-PCR out from the RACE product sequences can be found in appendices H and I respectively. The 4.0 kb fragment was constructed in two steps as shown in figure 10 and is currently being cloned into the EGFP-N1 reporter vector (Clontech) for screening promoter activity. Figure 10 also shows orientation of the 4.0kb fragment with respect to the coding sequence and the 5' RACE products.

Figure 10: Schematic of RACE followed by 2 rounds of LM-PCR (upstream 5' UTR intron has been bypassed: LM-PCR = genomic sequence/RACE and Scn10a cds are mRNA based.)

Genomic screening was performed through Incyte Genomics (Palo Alto, CA). The screening was of a mouse genomic library constructed in bacterial artificial chromosomes. The method of screening was PCR based, and primers were designed to the 5' coding sequence (first coding exon) from previously reported sequence information on the mouse genomic sequence (Souslova *et al.*). The screening process identified three unique BAC clones. Many introns have been identified in the mouse genomic Scn10a clone. Introns, generally, are regions of DNA sequence that interrupt the protein-coding portion of a gene. They are spliced out following transcription to yield a continuous coding mRNA. Coding exons on the 5' and 3' ends of the Scn10a gene were used as separate templates for secondary screening of the positives clones we received. The identification of clones yielding positive results for each primer set indicated the presence of the intact coding portion of the gene plus any introns in all three clones. The primers used to PCR screen the mouse genomic library and the sequence of the resulting PCR product are shown in appendix J.

Genomic sequencing was performed on the three clones upon arrival. Clones were supplied as glycerol stocks. The stocks were plated and individual clones were selected with the primers used for the screening protocol to ensure a homogeneous population for future work. We have found that extensive sequencing of the BAC clones is possible with only minor modifications to the protocol supplied with the Perkin Elmer Sequencing kit designed for the ABI 310 and 377 sequence analyzer. The modification involves an increase (10 fold) of DNA template concentration. Initial sequencing with primers directed toward distant regions of the gene such as the 3' and 5' ends were performed as mentioned above to establish the extent of the gene contained in the insert. We have also identified the ends of our RACE reaction and LM-PCR from the RACE reaction products in all three clones indicating that a fair amount of genomic sequence is present beyond the coding exons. Restriction mapping of the BAC clones is also currently underway using a combination of blotting and PCR. Figure 11 contains primer information (A) and alignments of the various regions upon which we have focused in characterizing how intact our BAC clones are with respect to the Scn10a gene. Figure 11 B and C shows sequencing into the 5'UTR intron from both downstream and upstream directions. Figure 11 D shows the direct sequencing of the 3' end of the coding sequence and 11 E shows the direct sequencing of the 5' end of the LM-PCR from RACE products. These figures combined show the presence of the entire coding region of the gene on our BAC clones as well as at least ~4.0 kb above the RACE ends or putative transcriptional start site.

Figure 11: Direct sequencing of BAC clones 26462/26463/26464:

A: Primers:

GTGTAAGTTTCGCAGAGCTGGGGTC-RT B in TCATGGACAAAGCGTAAGTGC- Scn10a Intron-in1 CCTGCATGCTCTACCAAGTCG- Scn10a Intron-in2 GGTGACAGCCTGACCACTGC- Scn10a Intron-out1 GCTTTGTAAGAAGCTCCATCC- Scn10a Intron-out2 CCTGTGTGTGCTGTAAAAAAGGATC - 3' EX-1

B: Sequencing direct in into 5'UTR intron

C: Sequencing direct out into 5'UTR intron

D: 3' end of coding sequence found in all three BAC clones (only BAC clone #26463 shown-sequenced twice txt and txt2)

E: 5' end of combined LM-PCR from RACE products (only BAC clone #26463 shown-sequenced twice txt and txt2)

Key Research Accomplishments

- Cloning and sequencing of the mouse Scn10a cDNA
- Functional heterologous expression of mouse Scn10a cDNA in sympathetic neurons
- Biophysical characterization of sodium currents arising from Scn10a expression
- Cloning and sequencing of 4 Kbp of upstream genomic DNA containing putative promoter elements
- Identification of BAC (bacterial artificial chromosome) clones harboring the Scn10a gene

Reportable Outcomes

Abstracts:

- 1. Ikeda, S.R., King, M.M., Aronstam, R.S. and Puhl, H.L. Cloning and expression of cDNA encoding a tetrodotoxin-resistant (TTX-R) sodium channel (Scn10a) from mouse dorsal root ganglion neurons. *Experimental Biology Meeting*, 2001.
- 2. Puhl, H.L., King, M.M., Aronstam, R.S. and Ikeda, S.R. Cloning and functional characterization of mouse cDNA encoding a tetrodotoxin-resistant (TTX-R) sodium channel (Scn10a). *Soc. Neurosci. Abstr.*, 2001.

Conclusions

- a. A murine ortholog of the TTX-resistant sodium channel Scn10a (SNS/PN3) was cloned from mouse DRG neuron mRNA using the PCR.
- b. The predicted protein sequence is highly homologous to the rat, dog, and human Scn10a gene product. Surprisingly, the nucleotide sequence deviates significantly from a published mouse genomic sequence perhaps suggesting a gene duplication.
- c. Intranuclear injection of the cloned cDNA into rat sympathetic neurons results in robust TTX-R sodium currents with kinetics characteristic of TTX-R sodium currents recorded from mouse DRG neurons.
- d. Steady-state inactivation and activation curves for the heterologously expressed Scn10a sodium current were shifted toward more positive potentials when compared with native DRG TTX-R sodium currents. This suggests that accessory proteins or post-translational modifications may be required to recapitulate the native phenotype.

References

- Akopian, A.N, Sivilotti, L. and Wood, J.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed in sensory neurons. *Nature* **379**:257–262, 1996.
- Ikeda, S.R. Voltage-dependent modulation of N-type calcium channels by G protein βγ-subunits. *Nature* **380**: 255–258, 1996.
- Ikeda, S.R. Heterologous expression of receptors and signaling proteins in adult mammalian sympathetic neurons by microinjection. In *Methods in Molecular Biology Volume 83: Receptor Signal Transduction Protocols* (Ed. Challis, R.A.J.), Humana Press Inc., Totowa, NJ, pg. 191–202, 1997.
- Schofield, G.G. and Ikeda, S.R. Sodium and calcium currents of acutely isolated adult rat superior cervical ganglion neurons. *Pflügers Archiv* **411**:481–490, 1988.
- Sivilotti L., Okuse K., Akopian A.N., Moss S. and Wood J.N. A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS *FEBS Lett.* **409**:49-52, 1997
- Souslova, V.A., Fox, M., Wood, J.N. and Akopian, A.N. Cloning and characterization of a mouse sensory neuron tetrodotoxin-resistant voltage-gated sodium channel gene, Scn10a. *Genomics* **41**:201–209, 1997.
- Yang, X.W., Model, P. and Heintz. Homologous recombination based modifications in *Escherichia coli* and germline transmission in transgenic mice of a bacterial artificial chromosome. *Nature Biotechnology* **15**:859-865, 1997.

Appendix A Mouse Scn10a cDNA nucleotide sequence

ATG M	GAG E	TTC F	10 CCC P	TTT F	GGG G	20 TCC S	GTG V	GGA G	30 ACT T	ACC T	AAC N		40 AGA R	CGG R	TTC F	50 ACT T	CCA P	GGG G	60 TCG S>
CTG L	GCA A		70 ATC I	GAG E	AAG K	80 CAG Q	ATC I	GCT A	90 GCC A	CAC H	CGC R		00 GCC A	AAG K		110 GGC G	AGA R	CCT P	120 AAG K>
CAA Q	AGA R	13 GGA G	30 CAG Q	AAG K		140 AAG K	AGT S	GAG E	150 AAG K	CCC P	AGG R		60 CAG Q	TTG L		170 TTG L	AAG K	GCC A	180 TGT C>
AAC N	CAG Q		90 CCC P	AGG R		200 TAT Y	GGC G	GAG E	210 CTC L	CCA P	GCA A		20 CTG L	GTC V		230 GAG E	CCC P	CTG L	240 GAG E>
GAC D	CTG L		50 CCT P	TTC F		260 AGC S	ACA T	CAC H	270 CGG R	ACA T	TTC F		80 GTG V	TTG L		290 AAA K	AGC S	AGG R	300 ACC T>
ATT I	TCC S		10 TTC F	AGT S		320 ACT T	TGG W	GCT A	330 CTG L	TGG W	CTC L		40 AGT S	CCC P		350 AAC N	CTG L	ATC I	360 AGA R>
AGA R	ACA T		70 ATC I	AAA K		380 TCC S	GTC V	CAC H	390 TCC S	TGG W	TTC F		00 ATA I	TTT F		410 ACT T	GTC V	ACT T	420 ATT I>
TTG L	GTC V		30 TGT C	GTG V		440 ATG M	ACC T	CGA R	450 ACT T	GAT D	CTT L		60 GAG E	AAA K		470 GAG E	TAT Y	GCC A	480 TTC F>
ACT T	GTT V		90 TAC Y	ACC T		500 GAG E	GCT A	CTG L	510 ATA I	aag K	ATA I		20 GCA A	AGA R		530 TTT F	TGT C	CTA L	540 AAT N>
GAA E	TTC F		50 TAT Y	CTT L		560 GAT D	CCC P	TGG W	570 AAC N	TGG W	CTG L		80 TTC F	AGT S		590 ATT I	ACC T	CTG L	600 GCG A>
TAT Y	GTG V		10 GCA A	GCG A		620 GAC D	CTC L	CGA R	630 GGA G	ATC I	TCA S		40 CTG L	CGG R		650 TTC F	CGA R	GTT V	660 CTC L>
AGG R	GCC A		70 AAG K	ACT T		680 TCT S	GTG V	ATC I	690 CCA P	GGA G	CTG L		00 GTC V	ATC I		710 GGA G	GCC A	CTG L	720 ATC I>
CAC H	TCA S	GTG	30 AGG R	AAG K	CTG	740 GCC A	GAC D	GTG V	750 ACC T	ATC I	CTC L	ACA	60 GTC V	TTC F	TGC	770 CTG L		GTC V	780 TTT F>
		GTG		CTG	CAG	CTC	TTC	AAG	GGG	AAC	CTC	AAG	AAT	AAA	TGC	0 88 TTA I	AAG	AAC	
ACA T	GAT D	CCG	50 CAC H	AAG	GCT	GAC	AAT	CTC	TCA	TCT	GAA	ATG	GCA	GGA	GAC	890 ATC I	TTC	ATC	900 AAG K>
CCC P		ACT		GAT	CCC	920 TTG L	TTG	TGT	GGC	AAT	GGA	TCT	GAT	GCT	GGC	950 CAC H	TGC	CCT	
GAT D		GTC		CGG	AAA		TCT	GAC	AAC	CCG	GAT	TTT	AAC	TAC	ACC	010 AGC S	TTT	GAT	

TTC GCG TGG GCG TTC CTC TCA CTG TTC CGT CTC ATG ACG CAG GAC TCC TGG GAA CGG CTG A W A F L S L F R L M T Q D S W E R L> TAC CAG CAG ACA CTC CGG GCT TCC GGG AAA ATG TAC ATG GTC TTT TTT GTG CTG GTC ATC Y O O T L R A S G K M Y M V F F V L V I> TTC CTT GGA TCA TTC TAC CTG GTC AAT TTG ATC TTG GCT GTG GTC ACC ATG GCA TAT GAG F L G S F Y L V N L I L A V V T M A Y E> GAA CAG AGC CAG GCA ACA ATT GCA GAA ATC GAA GCC AAG GAG AAG AAG TTC AAG GAA GCC E Q S Q A T I A E I E A K E K K F K E A> CTC GAG GTG CTG CAG AAA GAA CAG GAG GTG CTG GCA GCG CTG GGC ATT GGC ACA ACC TCG V L Q K E Q E V L A A L G I G T T S> CTC TAT TCC CAC AAC GGA TCA CCC TTA GCC CCC AAA AAC GCC AAT GAG AGA AGA CCC AGG LYSHNGSPLAPKNANERRPR> GTG AAA TCA AGG ATG TCA GAA GGC TCG ACA GAT GAC AAC AGA TCA CTA CAA TCC GAC CCT S R M S E G S T D D N R S L Q S D P> TAC AAC CAG CGC AGG ATG TCT TTC CTA GGC CTT TCT TCT GGA AGA CGC AGG GCT AGC CAC Q R R M S F L G L S S G R R A S H> AGC AGT GTG TTC CAC TTC CGA GCA CCC AGC CAA GAC GTC TCA TTT CCT GAT GGG ATC TTG SSVFHFRAPSQDVSFPDGIL> GAT GAC GGG GTC TTT CAT GGA GAT CAG GAA AGC CGT CGA AGT TCC ATA TTG CTG GGC AGG G V F H G D Q E S R R S S I L L G R> GGT GCC GGG CAG GCA GGT CCT CTC CCC AGG AGT CCA CTG CCT CAG TCC CCC AAC CCT GGC Q A G P L P R S P L P Q S P N P G> CCT AGA CGT GGA GAA GAG GGA CAG CGT GGA GTG CCC ACT GGT GAG CTT GCC ACT GGA GCG PRRGEEGORGVPTGELATGA> CCT GAA GGC CCG GCA CTC GAT GCT GCA GGA CAG AAG AAC TTC CTG TCT GCA GAC TAC TTG PEGPALDAAGOKNFLSAD AAT GAA CCT TTC CGA GCA CAG AGG GCA ATG AGT GTT GTC AGT ATT ATG ACT TCT GTC ATT PFRAQRAMSVVSIMTSVI> GAG GAG CTG GAA GAG TCT AAG CTG AAG TGC CCA CCC TGC TTG ATC AGC TTA GCC CAG AAG EELEESKLKCPPCLISLAQK> 1.950 TAC CTG ATA TGG GAG TGC TGC CCC AAG TGG AAG AAA TTC AAG ATG GTG CTC TTC GAG CTG Y L I W E C C P K W K K F K M V L GTG ACT GAC CCC TTC GCA GAG CTC ACC ATC ACC CTG TGC ATT GTG GTG AAT ACC GTC TTC DPFAELTITLCIVVNTVF> ATG GCC ATG GAA CAC TAC CCC ATG ACT GAT GCC TTC GAT GCC ATG CTC CAA GCC GGC AAC

ATT GTC TTT ACT GTG TTT TTT ACA ATG GAG ATG GCC TTC AAG ATC ATT GCC TTC GAC CCC FTVFFTMEMAFKIIAFDP> TAC TAC TAC TTC CAG AAG AAG TGG AAC ATC TTC GAC TGT GTC ATC GTC ACC GTG AGC CTG Y F Q K K W N I F D C V I V T V S L> CTG GAG CTG AGC ACA TCC AAG AAG GGC AGC TTG TCT GTG CTC CGC ACC TTC CGC TTG CTT LELSTSKKGSLSVLRTFRLL> CGG GTC TTC AAG CTG GCC AAG TCC TGG CCC ACC CTG AAC ATG CTC ATC AAG ATC ATC GGG FKLAKSWPTLNMLIKIIG> AAC TOT GTG GGG GCC CTG GGC AAC CTG ACC TTC ATC CTG GCC ATC ATC GTC TTT ATC TTC N S V G A L G N L T F I L A I I V F I F> GCC CTG GTG GGA AAG CAG CTC CTC TCA GAG AAC TAT GGG TGC CGC AGG GAT GGC ATC TCC ALVGKQLLSENYGCRRDGIS> GTG TGG AAT GGT GAG AGG CTG CGC TGG CAC ATG TGT GAC TTC TTC CAT TCC TTC CTC GTC W N G E R L R W H M C D F F GTC TTC CGG ATC CTC TGC GGG GAG TGG ATC GAG AAC ATG TGG GTC TGC ATG GAG GTC AGC RILCGEWIENMWVCMEVS> CAG GAC TAC ATC TGC CTC ACC CTC TTC TTG ACA GTG ATG GTG CTA GGC AAC CTG GTG GTG Q D Y I C L T L F L T V M V L G N L V V> CTC AAC CTA TTC ATC GCT TTA CTG CTG AAC TCC TTC AGT GCG GAC AAC CTC ACA GCC CCA L F I A L L L N S F S A D N L GAG GAT GAC GGG GAG GTG AAC AAC TTG CAG GTA GCA CTG GCC CGG ATT CAG GTA TTT GGC G E V N N L Q V A L A R I Q V F G> CAT CGG GCC AGT CGG GCC ATT ACC AGT TAC ATC AGA AGC CAC TGC CGG CTC CGC TGG CCC H R A S R A I T S Y I R S H C R L R W P> AAG GTG GAG ACC CAG CTG GGG ATG AAA CCC CCA CTC ACC AGC TGC AAA GCT GAG AAC CAC K V E T O L G M K P P L T S C K A E ATT GCT ACT GAT GCT GNC AAT GCT GCA GTG GGG AAC CAG GCA AAG CCA GCT CTT GGT GGC T D A X N A A V G N Q A K P A L G G> CCC AAG GAG AAC CAC GGG GAC TTC ATC ACT GAT CCT AAC GTG TGG GTC TCT GTG CCC ATT PKENHGDFITDPNVWVSVPI> GCT GAG GGG GAG TCC GAC CTT GAT GAG CTC GAG GAA GAT GTG GAG CAT GCT TCT CAG AGC A E G E S D L D E L E E D V E H A S TCC TGG CAG GAA GAG AGC CCC AAA GGG CAG GAG CTG CTG CAG CAA GTC CAA AAG TGT GAA QEESPKGQELLQQVQKCE> GAT CAC CAG GCA GCC CGA AGC CCA CCC TCC GGG ATG TCC TCT GAG GAC CTG GCT CCA TAC

D H Q A A R S P P S G M S S E D L A P Y>

CTG GGG GAG AGA TGG CAG AGG GAG GAG AGC CCT CGG GTC CCT GCC GAG GGA GTG GAT GAC ERWQREESPRVPAEGVDD> ACA AGC TCC TCC GAG GGC AGC ACG GTG GAC TGC CCG GAC CCA GAG GAG ATC CTG AGG AAG SSEGSTVDCPDPEEILRK> ATC CCT GAG CTG GCG GAG GAG CTG GAC GAG CCC GAT GAC TGT TTC CCA GAA GGC TGC ACT I P E L A E E L D E P D D C F P E G C T> CGC CGC TGT CCC TGC TGC AAA GTG AAC ACC AGT AAG TTT CCT TGG GCC ACG GGC TGG CAG C C K V N T S K F P W A T G W Q> GTG CGC AAA ACC TGT TAC CGC ATT GTG GAG CAC AGC TGG TTT GAG AGT TTC ATT ATC TTC V R K T C Y R I V E H S W F E S F I I F> ATG ATC CTG CTC AGC AGT GGA GCG CTG GCC TTT GAG GAT AAC TAC CTG GAA GAA AAG CCC MILLSSGALAFEDNYLEEKP> CGA GTG AAG TCT GTG CTG GAG TAC ACT GAC AGA GTG TTC ACT TTC ATC TTT GTA TTC GAG R V K S V L E Y T D R V F T F ATG TTG CTC AAG TGG GTA GCT TAT GGC TTC AAA AAA TAT TTC ACC AAT GCC TGG TGC TGG L K W V A Y G F K K Y F T N A W C W> CTG GAC TTC CTC ATC GTG AAT ATC TCC CTC ACA AGC CTC ATA GCC AAG ATC CTC GAG TAT L D F L I V N I S L T S L I A K I L E Y> TCA GAC GTG GCG TCC ATC AAA GCC CTT CGG ACT CTC CGT GCC CTC CGG CCG CTG CGG GCT V A S I K A L R T L R A L R P CTG TCT CGA TTC GAA GGC ATG AGG GTA GTG GTG GAT GCC TTG GTG GGC GCC ATT CCC TCC FEGMRVVVDALVGAIPS> ATC ATG AAC GTC CTC CTC GTC TGC CTC ATC TTC TGG CTC ATC TTC AGC ATC ATG GGT GTG T M N V L L V C L I F W L I F S I M G V> AAC CTC TTC GCC GGG AAA TTT TCG AGA TGT GTC GAC ACC AGA AGC AAC CCA TTT TCC GTC F A G K F S R C V D T R S N P GTG AAT TCG ACA TTC GTG ACT AAC AAG TCT GAC TGT TAC AAT CAA AAC AAT ACT GGC CAC S T F V T N K S D C Y N Q N N T G H> TTC TTC TGG GTT AAC GTC AAA GTC AAC TTC GAC AAC GTT GCT ATG GGC TAC CTC GCG CTT W V N V K V N F D N V A M G Y L A L> CTC CAG GTG GCA ACC TTC AAA GGC TGG ATG GAC ATT ATG TAT GCA GCT GTC GAT TCT CGA L O V A T F K G W M D I M Y A A V GAT ATC AAC AGT CAG CCC AAT TGG GAG GAG AGC CTG TAC ATG TAC CTA TAC TTC GTC GTC NSQPNWEESLYMYLYFVV> TTC ATC ATT TTC GGT GGC TTC TTC ACG CTG AAT CTC TTT GTC GGG GTC ATC ATT GAC AAC FIIFGGFFTLNLFVGVIIDN>

TTC AAT CAA CAG AAA AAA AAG CTA GGG GGC CAG GAC ATC TTC ATG ACA GAG GAG CAG AAG NQQKKKLGGQDIFMTEEQK> AAG TAC TAC AAT GCC ATG AAG AAG CTG GGC TCC AAG AAA CCC CAG AAG CCC ATC CCA CGG Y N A M K K L G S K K P Q K P I P R> CCT TTG AAT AAG TAC CAG GGC TTC GTG TTT GAC ATT GTG ACC AGG CAA GCA TTT GAC ATC P L N K Y Q G F V F D I V T R Q A F D I> ATC ATC ATG GCT CTC ATC TGC CTC AAC ATG ATC ACC ATG ATG GTG GAG ACC GAC AAT CAG I I M A L I C L N M I T M M V E T D N Q> AGC GAG GAG AAG ACG AAG GTC CTG GGC AGA ATC AAC CAG TTC TTC GTG GCC GTC TTC ACG SEEKTKVLGRINQFFVAVFT> GGC GAG TGT GTG ATG AAG ATG TTC GCC CTT CGG CAG TAT TAC TTC ACC AAC GGC TGG AAT G E C V M K M F A L R Q Y Y F T N G W N> GTG TTC GAC TTC ATT GTG GTG ATT CTG TCC ATT TCT AGT CTG TTG TTT TCT GCG ATC CTT D F I V V I L S I S S L L F S A I L> AGC TCA CTA GAA AGT TAC TTC TCC CCC ACG CTC TTA CGC GTC ATC CGT CTG GCC AGG ATC S S L E S Y F S P T L L R V I R GGC CGC ATC CTC AGG CTG ATT CGA GCA GCC AAG GGG ATT CGC ACG CTG CTC TTC GCC CTC $\texttt{G} \quad \texttt{R} \quad \texttt{I} \quad \texttt{L} \quad \texttt{R} \quad \texttt{L} \quad \texttt{I} \quad \texttt{R} \quad \texttt{A} \quad \texttt{A} \quad \texttt{K} \quad \texttt{G} \quad \texttt{I} \quad \texttt{R} \quad \texttt{T} \quad \texttt{L} \quad \texttt{L} \quad \texttt{F} \quad \texttt{A} \quad \texttt{L}>$ ATG ATG TCC CTG CCC GCC CTC TTC AAC ATC GGC CTC CTC CTC CTC CTC GTC ATG TTC ATC M M S L P A L F N I G L L L F L V M F I> TAC TCC ATC TTC GGC ATG ACC AGC TTC GCT AAT GTC ATA GAT GAG GCT GGC ATC GAC GAC $\begin{smallmatrix} Y & S & I & F & G & M & T & S & F & A & N & V & I & D & E & A \\ \end{smallmatrix}$ ATG TTC AAC TTC AAG ACC TTT GGC AAC AGC ATG CTG TGC CTT TTC CAG ATC ACC ACG TCG M F N F K T F G N S M L C L F Q I T T S> GCT GGC TGG GAT GGC CTC CTC AGC CCC ATC CTC AAC ACA GGA CCC CCC TAC TGC GAC CCC AGWDGLLSPILNTGPPYCDP> AAC CGG CCC AAC AGC AAT GGC TCC AAG GGG AAT TGT GGA AGC CCA GCG GTG GGC ATC CTC N R P N S N G S K G N C G S P A V G I L> TTC TTC ACC ACC TAC ATC ATC ATC TCC TTC CTC ATC GTG GTC AAC ATG TAC ATT GCA GTG III S F L I V V N M Y I A V> т т ү ATT CTG GAG AAC TTC AAT GTG GCC ACA GAA GAG AGC ACG GAG CCC CTG AGC GAG GAC ILENFN V A TEESTEPLSED D> TTT GAC ATG TTC TAT GAG ACC TGG GAG AAG TTT GAC CCG GAG GCC ACC CAG TTC ATT GCC F D M F Y E T W E K F D P E A T Q F TTT TCT GCC CTC TCA GAC TTT GCA GAC ACA CTC TCT GGC CCT CTT AGA ATC CCA AAA CCT FSALSDFADTLSGPLRIPKP>

5360 5370 5380 AAT CAG AAT ATA TTA ATC CAG ATG GAC CTG CCG TTG GTC CCC GGA GAT AAG ATC CAC TGT N O N I L I Q M D L P L V P G D K I TTG GAC ATC CTC TTT GCC TTC ACA AAG AAT GTC TTG GGA GAA TCT GGG GAG TTG GAT TCT L D I L F A F T K N V L G E S G E L D S> CTG AAG ACT AAT ATG GAA GAG AAG TTT ATG GCA ACT AAT CTT TCC AAA GCA TCC TAT GAA L K T N M E E K F M A T N L S K A S Y E> CCA ATA GCA ACC ACC CTC CGG TGC AAG CAG GAA GAC ATC TCA GCC ACC ATT ATT CAA AAG PIATTLRCKQEDISATIIQK> GCC TAT CGG AAC TAC ATG TTG CAA CGC TCC TTG ATG CTC TCC AAC CCC CTG CAT GTG CCC A Y R N Y M L Q R S L M L S N P L H V P> AGG GCT GAG GAG GAT GGC GTG TCA CTC CCC AGG GAA GGC TAT GTT ACA TTC ATG GCA AAT RAEEDGVSLPREGYVTFMAN> GAC AAC GGT GGG CTC CCA GAC AAA TCG GAA ACT GCT TCT GCT ACG TCT TTC CCA CCA TCC DNGGLPDKSETASATSFPPS> TAT GAC AGC GTC ACC AGG GGC CTG AGT GAC AGG GCC AAC ATT AGC ACA TCT AGC TCA ATG Y D S V T R G L S D R A N I S T S S M> CAA AAT GAA GAT GAA GTC ACT GCT AAG GAA GGG AAG AGC CCT GGA CCT CAG TGA QNEDEVTAKEGKSPGPQ *>

Appendix B

									10)									20									3	0									4	0
Y09108-cds	Α	T	G	G	Α	G	T	T	CC	; C	C	T	T	T	G	G	G	T	С	C	G	T	G	G	G	A .	A	C .	Γ.	A	C	С	A	A	С	T	T	C	A
mScn10a cds (GRI)	Α	T	G	G	Α	G	T	T	C C	; C	C	T	T	T	G	G	G	T	С	C	G	T	G	G (G .	A A	A	C.	<u> </u>	A (<u>C</u>	<u>c</u>	A	A	<u>c</u>	T	T	C /	4
									50)									50									7										8	
Y09108-cds	G	Α	С	G	G	T	T	С	A C	: Т	С	С	Α	G	Α	G	T	С	G	С	T	G	G	C ,	Α	G /	A	G .	Α ΄	T	C	G	A	G	A	A	G	C	A
mScn10a cds (GRI)	G	Α	С	G	G	T	T	С	A C	<u> </u>	С	С	A	G	G	G	T	c	G	С	T	G	G	C A	Α	G /	<u> </u>	G /	Α .	T (<u> </u>	G	<u>A</u>	G	<u>A</u> _	<u>A</u>	G	C	<u>A</u>
									90										00									11						_				12	
Y09108-cds	G	Α	T	С	G	С	T	G	C	C	A	С	Ç	G	С	G	С	C	G	С	С	Α	A	G	A .	A (G	G	G	C /	A	G	A	Α	C	T	A	A	3
mScn10a cds (GRI)	G	Α	T	С	G	С	T	G	CC	; C	Α	С	С	G	C	G	C	C	G	C	C	Α	A	G .	Α .	A (G	G	G	C	<u>A</u> _	G	A	C	<u>C</u>	T	A	A	3
									130										10									15										16	
Y09108-cds	C	Α	A	A	G	Α	G	G	A C	; A	G	Α	A	G	G	Α	C	Α	A	G	Α	G	T	G .	A	G /	A	A	G (C	c	C	A	G	G	C	C	T	2
mScn10a cds (GRI)	С	Α	A	A	G	Α	G	G	A C	; A	G	A	Α	G	G	<u>A</u>	<u>c</u>	<u>A</u>	A	G	Α_	G	<u>T</u>	G /	Α '	G A	Α_	A (G	C	<u></u>	C	A	G	G	C	С	T	2
									170										30									19										20	
Y09108-cds	Α	G	T	T	G	G	A	C	T 1	G	A	A	G	G	C	C	T	G	T	Α	A	C	C	A	G	Č .	Ī	G (C	C	A	G	G	T	T	C	T /	4
mScn10a cds (GRI)	Α	G	T	T	G	G	Α	C	1 1	G	A	A	G	G	C	C		G	1	A	<u>A</u>	C	C	A	G '	<u>. </u>	!	G	_	<u> </u>	_	<u> </u>	G	u				- /	<u> </u>
									210										20									23					_	_				24	
Y09108-cds									T																														
mScn10a cds (GRI)	1	G	G	C	G	А	G	C	1	, (<u> </u>	G		<u> </u>	G	A	G	<u> </u>	1	u	<u>u</u>		<u> </u>	<u> </u>	<u>u</u>		u i	-	u ·			_	<u> </u>	-	G	<u>u</u>	^ '	긔
	_					_			250					1_		_	_		50	_	_	_	_	_	_	_		27			_			_		_		28	_
Y09108-cds mScn10a cds (GRI)	G	A	C	C	T	G	G	A	T C	; C	: T	T	T	T	T	A	C	A	G	C	A	C.	A A	C i	A		٦	G	id i	Α	C C	Α Δ	I T	T	C	Α Δ	I T	A	ر ج
mocritoa cus (GRI)	G	A			<u>'</u>	G	G		-		•	·	<u>'</u>	٦٠	<u>'</u>	^	<u> </u>		<u>u</u>		_		_			<u> </u>	٦٢	<u> </u>	-		_		·	<u>.</u>	<u> </u>		÷	<u>∵</u> ,	_
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	_	_	_	$\overline{}$	۸ [_	_	290 A A			_	_	_	_	_	Α.		00	Α.	~	7	_	_		Λ.	_	31		T /	~	_	<u>_</u>	_	<u>_</u>	_	_	32	
Y09108-cds mScn10a cds (GRI)	1																																						
<i></i>	Ŀ	_	<u> </u>	<u> </u>		~[·		-														_															
																		_	40									25	^									26	0
Y09108-cds	T	_	G	G	G	_	т	_	330 T (G	G	C	т		-	_		40 Δ	G	T	C	C	С.	т .	T (r.	35 A		C (_ _	_	G	Α	T	c	Α	36	
mScn10a cds (GRI)	T	Ť	G	G	G	C	T	c	TO	T	G	G	c	Ť	c	Ť	Ť	c	A	G	Ť	c	C	Ċ.	r ·	T (C	A	4	C	C	T	G	A	Ť	c	A	G	A
, ,																																							_
									27/									2	30									39	n									40	n
Y09108-cds	Δ	G	A	A	С	A	G	С	370 C A		С	A	Α	Α	G	T	G			С	G	T	С	C	A	c ·	Г			т (G	G	T	T	С	T	С		
mScn10a cds (GRI)	Α	G	A	Α	C	A	G	С	C A	T	c	Α	Α	A	G	T	G	Т	С	С	G	T	С	C	Α	c ·	r	C	Ċ,	T (G	G	T	T	C	T	С	C	A
									410)								4	20									43	0									44	0
Y09108-cds	Т	A	T	Т	T	Α	Т	С			G	Т	С	Α	С	T	A			T	T	G	G	T	C	A	A			G ·	T	G	T	G	T	G	С	Α	
mScn10a cds (GRI)	T	A	T	T	T	Α	T	С	A C																														

								490)								5	00									51	0									520	
Y09108-cds mScn10a cds (GRI)																																					G G G G	
								530			_				ı _ ı	<u></u>		40	_					_			55			_	_				_	_	560	,
Y09108-cds mScn10a cds (GRI)	C A	AA	G G	A	G	G G	G G	T 1	T	T	G	T	C	T	A	A	A	T	G	A	A	T T	T	C C	A A	C	T -	Γ.	A .	T	C	T	T	C	G	A	G A G A	
								570										80								_	59					_	(600	
Y09108-cds mScn10a cds (GRI)	,	; c	C	T	G G	G G	A	AC) T	G	G	C	T	G	G G	A	C	T	T T	C	A	G G	T T	G G	T T	C C	A -	r -	r ,	A A	c c	C	C	T	G	G G	C A C G	
V00400 ada	T- 4		<u> </u>		_	_	_	610				_		اما	_	Λ.		20		_	T		_	6	Λ.	G	63 G		Λ.	T	C	Ŧ		Λ.	-	G	640 C C	1
Y09108-cds mScn10a cds (GRI)	TA	\ \ \ \ \	G	T	G	G	G	T (G C	A	G	c	G	A	T	A	G	A	c	c	Ť	c	c	G	A	G	G	Α.,	Α .	<u>T</u>	c	Ť	c	A	G	G	c c	
						_		650					_	_		_		60	_	_		_	_	_	_		67		_	_			_	_	_	_	680	1
Y09108-cds mScn10a cds (GRI)																																					T C T C	
	(<u></u>							690										00									71										720	
Y09108-cds mScn10a cds (GRI)																																					T C	
								730)								7.	40									75	0									760	
Y09108-cds mScn10a cds (GRI)																																					A G A G	
								770										80									79										800	
Y09108-cds mScn10a cds (GRI)																																					C T C T	
								810										20									83										840	
Y09108-cds mScn10a cds (GRI)																																					G C G C	
								850										60									87										880	
Y09108-cds mScn10a cds (GRI)	4																																				G G G G	
								890										00									91										920	
Y09108-cds mScn10a cds (GRI)																																					T T	
								930										40									95										960	
Y09108-cds mScn10a cds (GRI)	G T	T	G G	T	G G	T T	G G	G (; A	A	T	G G	G G	G A	T	C	T	G G	A	T T	G G	C	T T	G G	G G	C	C /	4 (C .	T	G G	C C	C C	C C	T	A	AT	

					10	010							102	0							103	30								1	040
Y09108-cds	A C T	Α (A	С	C A	G	C	ГТ	T	G	Α `	T	C	CT	Ţ	T	G	G	T	G	G	G	C	G	T	T	c	C	T	CI	C
mScn10a cds (GRI)	A C T	Α () A	С	C A	G	C	Т	<u>T</u>	G	Α	1 1	C	CT			G	j G	1	G	G	G	C	G	<u> </u>	1	C	<u>. </u>		<u> </u>	C
					4	050							400	^							107	70								4	080
Y09108-cds	A C T	G 1	Т	С		050 T	С	ГС	Α	Т	G	A C	106 G		G	G	A	C T	C	С			G	G	A	Α	С	G	G		
mScn10a cds (GRI)	1	G 1	Т	С	CG	T	C T	r c	Α	T	G	A C	G	CA	G	G	A	СТ	С	С	T	G	G	G	A	A	С	G	G	C 1	G
	(-					090	_		_	_	_		110		_	_		-	_	_	111			_	_	_		_			120
Y09108-cds mScn10a cds (GRI)	TAC																														
, ,	<u> </u>																														
						130							114								115										160
Y09108-cds	TCT	TI	T	T	T G	T	G	CT	G	G	T	CA	T	T	T	C	C .	T	G	G	A	T	C	A	T	T	C	T	A	CC	T
mScn10a cds (GRI)	TCT	1 1		1	1 6	1	G	ا د	G	G	1 '	U A		ا_ا			<u> </u>		G	G	A	<u> </u>	_	<u> </u>			C		A	<u> </u>	<u>, </u>
					4.	170							118	n							119	20								1	200
Y09108-cds	G G 1	C	A	T			Α 7	ГС	Т	T	G	G C			G	G	T (CA	С	С			G	G	С	Α	T	Α	T		
mScn10a cds (GRI)	GGT	CA	A	Τ.	T	G	A 1	r c	T	T	G	G C	T	G T	G	G	T	CA	С	С	Α	T	G	G	С	A	T	A	T	G A	G
Y09108-cds	G A A		<u> </u>	Λ.		210	Λ (2 6		^	Λ.	~ A	122		-	_	Λ (2 A	Δ	Λ	123		G	Λ	Λ	G	_	C	Δ		240
mScn10a cds (GRI)		C	G	A	GC	C	A (G G	C	Â	A	CA	A	ГТ	G	c	A (G A	A	Â	Ť	c	G	A	A	G	c	c	Â	A	G
			-			250							126								127					_					280
Y09108-cds mScn10a cds (GRI)	AAA	AA	A	A	GT	T	C	A	G	G	A	A G	C	0 0	T	C	G /	A G	G	T	G	C	T T	G	C C	A	A	Α Δ	Α Δ	ΑG	A
modified bas (GN)	101(316		- I Δ					117	~	•		~ ~			<u>.</u>	<u> </u>	<u> </u>	• •				<u> </u>	·		_						
	A G	A	iΔ	A	G I	•	<u> </u>																			ت					
	AGE	A	iΑ	A			<u> </u>	-					130)							131	0								1	320
Y09108-cds	ACA	GG	a A	G	12 G T	290 G	тГ	r G	G	С	A	G C	130	T	G	G	G /	AA	T	T	G	Α[C	A	С	A	A	C	Ţſ	T C	; G
Y09108-cds mScn10a cds (GRI)	A C A	GG	a A	G	12 G T	290 G	тГ	r G	G	С	A (G C	G	T	G G	G G	G /	A A	T T	T	G	Α[C C	A	С	A	A	C C	т[С[T C	; G
	ACA	GG	a A	G	12 G T G T	290 G G	тГ	r G	G	С	A	G C	G (C T	G G	G G	G G	AACA	T T	T	G	A G	C C	A	С	A	A	C C	т[c[T (G
	ACA	G (A A	G (12 G T G T	290 G G	T [r G	G	C C	A	G C	G (C T	G	G	G	C <u>A</u>	T	T	G G	A G	С	A A	C C	A A	A A	С	С[T C	G G G
mScn10a cds (GRI)	A C A	GG	G A	G	12 G T G T	290 G G	T C	r G	G G	cc	G (G C	G (G (O T	G	G	G C	T	T	T	G G	A G O	<u>c</u> ⊤[A A	C C	A A	A A	C A	C[T C	360 G
mScn10a cds (GRI) Y09108-cds	A C A	GG	G A	G	12 G T G T	290 G G	T C	r G	G G	cc	G (G C	G (G (O T	G	G	G C	T	T	T	G G	A G O	<u>c</u> ⊤[A A	C C	A A	A A	C A	C[T C	360 G
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI)	A C A	G G G	G A G A	G (G)	12 G T G T 13 C C C	290 G G 3330 C C	T C	T G	G G	CC	G (G	G C G C	1340 T (T	CA	G C C	G C C	C 1	TT	A A	G G	135 C C	A G G C C C	c c[A A	CCC	AAA	A A A	A A	A A	1 CA CA C	360 G G G
mScn10a cds (GRI) Y09108-cds	A C A A C A	T A	G A	G (G)	12 G T G T 13 C C C	290 G G 3330 C C C	A (T G T G	G G A	CCCCC	GGG	G C G A	1340 T (1380 G (1380	C A	CC	G C C	C T	TT	A A	G G	135 C C	A G C C C	C C C	A A	C C C	A A A	A A A	A A	A A	1 CA	360 G G G
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds	A C A A C A	T A	G A	G (G)	12 G T G T 13 C C C	290 G G 3330 C C C	A (T G T G	G G A	CCCCC	GGG	G C G A	1340 T (1380 G (1380	C A	CC	G C C	C T	TT	A A	G G	135 C C	A G C C C	C C C	A A	C C C	A A A	A A A	A A	A A	1 CA	360 G G G
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI)	A C A A C A	G G G	G A T T G G	G G	12 G T G T 13 C C C C C	290 G G 3330 C C C	A (A	C A C A	G G A A	CC	GGCC	G C A C A	1344 T (1386 G (142)	C A A C A	CC	G C C G G	C 1	A A	A A	G G C	135 C C C	A G C C C	C G G	A A C C	C C C	A A A	A A A	A A	A A	1 C C C C C C C C C C C C C C C C C C C	360 360 360 360 360 360 360 360 360 360
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds	A C A A C A	G G G	G A T T G G	G G	12 G T G T 13 C C C C C	290 G G 3330 C C C	A (A	C A C A	G G A A	CC	GGCC	G C A C A	1344 T (1386 G (142)	C A A C A	CC	G C C G G	C 1	A A	A A	G G C	135 C C C	A G C C C	C G G	A A C C	C C C	A A A	A A A	A A	A A	1 C C C C C C C C C C C C C C C C C C C	360 360 360 360 360 360 360 360 360 360
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI)	A C A A C A C A C A C A C A C A A C	G G G	G A T T G G	G G	12 G T G T 13 C C C C C	290 G G 3330 C C C	A (A	C A C A	G G A A	CC	GGCC	G C A C A	1344 T (1386 G (142)	C A A C A	CC	G C C G G	C 1	A A	A A	G G C	135 C C C	A G C C C	C G G	A A C C	C C C	A A A	A A A	A A	A A	1 C C C C C C C C C C C C C C C C C C C	360 360 G G G A
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds	A C A A C A	G G G	G A T T G G	G G	12 G T G T 13 C C C C C C	290 G G 3330 C C C C	A (A	C A C A	G G A A	CC	GGCC	G C A C A	1344 T (17 (17 (17 (17 (17 (17 (17 (17 (17 (17	C T C T C A C A C A G G G G	CC	G C C G G	C 1	A A	A A	G G C	135 C C C	A G G G G G G G G G G G G G G G G G G G	C G G	A A C C	C C C	A A A	A A A	A A	A A	1 C C C C	360 C G C G A A A 440 C T
mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds	A C A A C A C A C C C A A G C	G G G G G G G G G G G G G G G G G G G	G A T T G G C C C C C C C C C C C C C C C C	G G G G G G G G G G G G G G G G G G G	12 G T G T G T G C C C C C C C C C C C C C	290 G G 3330 C C C G G G G G C C	A G	C A G A G A T A T	G G A A	C C C C A A	G G G C C C	G C A A A A A A	1344 T (1388 G (C)	C T C T C A C A G G G G G G G C C C C C C C C C	C C T T T	G C C G G T T T	G C A A A A A A A A A A A A A A A A A A	T T T T A A A A A A C A C C A C C	T T T	G G C C G	135 C C C 139 A A A	A G C C C C A A C C C	C G G	A A C C C G G	C C C G A	A A A T T T C C C	A A A G G G	A A T T	A A C C C C C	1 C C C C C C C	360 360 360 360 360 360 360 360 360 360

Y09108-cds mScn10a cds (GRI)	A G C A C C C A	1530 A G C C A A G A C G T A G C C A A G A C G T	1540 C T C A T T T C C C T C A T T T C C	1550 C T G A T G G G C T G A T G G G	1560 GATCTTG GATCTTG
Y09108-cds mScn10a cds (GRI)	G A C G A T G G G A T G A C G G	1570 G G G T C T T T C A T G G G T C T T T C A T	1580 G G A G A T C A G G G A G A T C A G	1590 G G A A A G C C G G A A A G C C	1600 CGTCGAA
Y09108-cds mScn10a cds (GRI)	A	1610 A T T G C T G G G C A A T T G C T G G G C A	1620 A G G G G T G C C G A G G G G T G C C G	1630 G G C A G G C G G C A G G C	1640 CAGGTCC CAGGTCC
Y09108-cds mScn10a cds (GRI)	T C T C C C C A	1650 A G A G T C C A C T A G G A G T C C A C T	1660 GCCTCAGTC GCCTCAGTC	1670 C C C C C A A C C C C C C A A C	1680 CCCTGGC CCTGGC
Y09108-cds mScn10a cds (GRI)	CGTAAACA CCTAGACG	1690 A T G G A A A A G A G G T G G A G A A G A G	1700 3 G G A C A G C T T 3 G G A C A G C G T	1710 F G G A A T G C F G G A G T G C	1720 C C C A C T G C C C A C T G
Y09108-cds mScn10a cds (GRI)	GTGAACTT GTGAGCTT	1730 F G C C G C T G G A A F G C C A C T G G A G	1740 CGCCTGAAG GCGCCTGAAG	1750 G G C C C G G C G G C C C G G C	1760 CACTCGA
Y09108-cds mScn10a cds (GRI)	T G C T G C A G	1770 G G A C A G A A G A A G G A C A G A A G A A	1780 A C T T C C T G T C A C T T C C T G T C	1790 C T G C A G G C C T G C A G A G	1800 CTACTTG CTACTTG
Y09108-cds mScn10a cds (GRI)		1810 CTTTCCGAGCA CTTTCCGAGCA			
Y09108-cds mScn10a cds (GRI)	G T A T C A T G	1850 G A C T T C T G T C A G A C T T C T G T C A	1860 A T T G A G G A A G A T T G A G G A G	1870 CTGGAAGA CTGGAAGA	A A T C T A A G T C T A A
Y09108-cds mScn10a cds (GRI)	G C T G A A G T G C T G A A G T	1890 F G C C C A C C C T G F G C C C A C C C T G	1900 GCTTGATCAG GCTTGATCAG	1910 GCTTCGCC GCTTAGCC	1920 C C A A A A A C C A G A A G
Y09108-cds mScn10a cds (GRI)	T A T C T G A T	1930 T A T G G G A A T G C T A T G G G A G T G C	1940 T G C C C C A A G T G C C C C A A G	1950 G T G G A G A A G T G G A A G A	1960 A A A T T C A A A A T T C A
Y09108-cds mScn10a cds (GRI)	A A A T G G T G A G A T G G T G	1970 GCTCCTCGAAC GCTCTCGAAGC	1980 C T G G T G A C T G C T G G T G A C T G	1990 G A C C C C T T G A C C C C T T	2000 C G C A G A C G C A G A

	2050 2060	2070	2080
Y09108-cds mScn10a cds (GRI) A T G G C C A	T G G A A C A C T A C C C C A T G T G G A A C A C T A C C C C A T G	A C T G A T G C T T T C G A A C T G A T G C C T T C G	ATG ATG
	2090 2100	2110	2120
Y09108-cds mScn10a cds (GRI) C C A T G C T	C C A A G C C G G C A A C A T T G C C A A G C C G G C A A C A T T G	ATCTTCACTGTGTT ACTGTGTT	T T T
	2130 2140	2150	2160
Y09108-cds mScn10a cds (GRI) T A C A A T G	G	CATTGCTTTCGACCCATTGCAC	C C G
	2170 2180	2190	2200
	A C T T C C A G A A G A A G T G G A C T T C C A G A A G A A G T G G		
	2210 2220	2230	2240
Y09108-cds mScn10a cds (GRI) T C A T T G T T C A T C G T	CACCGTGAGCCTGCTGG CACCGTGAGCCTGCTGG	A A G C T G A G T G C A T C A A G C T G A G C A C A T C	CAA
	2250 2260	2270	2280
Y09108-cds A A A G G G C mScn10a cds (GRI) G A A G G G C	A G C C T A T C T G T G C T C C G A G C T T G T C T G T G C T C C G	CACCTT CCGCTT G	CTT
V20100 vI	2290 2300 T C A A G C T G G C C A A G T C C	2310	2320
mScn10a cds (GRI)	T C A A G C T G G C C A A G T C C	CTGGCCCACCCTGA	ACA
Y09108-cds TGCTCAT	2330 2340 C A A G A T C A T C G G G A A C T	2350 C T G T G G G G C C C T	2360 G G G
	CAAGATCATCGGGAACT		
Y09108-cds CAACCTG	2370 2380 A C C T T C A T C C T G G C C A T	2390 CATCGTCTTCATC	2400 T T T
mScn10a cds (GRI) C A A C C T G	ACCTTCATCCTGGCCAT	CATCGTCTT	; т т с
	2410 2420 T G G G A A A G C A G C T C C T C		
mScn10a cds (GRI) GCCCTGG	T G G G A A G C A G C T C C T C	CT CAGAGAACTAT G	GGT
Y09108-cds GCCGCAG	2450 2460 G G A T G G C G T C T C C G T G T	2470 G G A A T G G T G A G A	2480 G C T
mScn10a cds (GRI) GCCGCAG	GGATGGC A TCTCCGTGT	GGAATGGTGAGA	GCT
Y09108-cds GCGCTGG	2490 2500 C A C A T G T G T G A C T T C T T	2510 C C A T T C C T T C C T C	2520 G T C
mScn10a cds (GRI) GCGCTGG	CACATGTGTGACTTCTT	CCATICCTTCCTC	GIC

						2	570								2	258	0								2590)								2600
Y09108-cds mScn10a cds (GRI)	G G G G	G G	r C	T T	G (CA	T	G G	G G	A A	G G	G G	T T	C .	A A	G G	CC	A	G	A G	A A	C C	T T	A A	C /	1 1	. 0	T	G G	C	C C	T	C	A C
							510									262									2630									2640
Y09108-cds mScn10a cds (GRI)	C C	T (C T	T T	C .	T T	G G	A	c c	A A	G G	T T	G G	Α .	T T	G G	G T	G	C	T	A A	G G	G G	C C	A A	1 0	0 0	T	G G	G G	T	G G	G G	T G T G
						_ 20	550								,	266	0								267						1			2680
Y09108-cds mScn10a cds (GRI)	C T	C	A A	C	C.	r T	T	T	T C	A	T T	C C	G G	C .	T ·	T T	T A	0	T	G	C C	T T	G G	A A	A		1 0	; C	T	T	C	A	G G	T G
	C G	_		_			590	_		<u> </u>	٥٢	_	_			270					^	T	-		2710		2 6			G	G	-		2720
Y09108-cds mScn10a cds (GRI)	CG	G	A C	A	A	CC	T	C	A	C	A	G	C	C	C	C	AC	A	G	G	A	T	G	A	C	3 6	3 G	G	A	G	G	Ť	G	AA
Y09108-cds	CA	Α (ст	т	G		730 G] [T	A	G	C	A	<u>c</u> .		274 G		c c	a l	G	G	A	T		2750 C		G (T	A]c	T	Т		2760 G C
mScn10a cds (GRI)	1	A	C T	T	G	CA	G	G	T	A	G	С	A	C ·	T	G	G C	C	c	G	G	A	T	T	C /	1 (G G	T	Α	Т	T	T	G	G C
Y09108-cds	C A	T	C G	G	G	c c	770 A	G	Т	С	G	G	G	С	C	278 A	ТТ	- Α	C	С	Α	G	T	Т	279 A () A	A T	C	A	G	A	A	G	2800 C C
mScn10a cds (GRI)	CA	T	C G	G	G	c c	Α_	G	T	С	G	G	G	C	<u>C</u>	Α .	T 1	Α.	C	С	A	G	<u>T</u>	<u>T</u>	A	<i>, </i>	<u> </u>		Α.	G	<u>A</u>	A	G	C C
Y09108-cds	A T A C	T	G C	C	G	GТ	10 T	C	C	G	٦	T	G	G	c	282 C	C A	Α Α	G	G	T	G	G	Ā	283	1 0		; c	A	G	C	Ť	G	2840 G G
mScn10a cds (GRI)	AC	<u>'</u>	<u> </u>		G	_		<u> </u>	<u> </u>	G	υL	<u>'</u>	<u>u</u>	G .				`	· u	<u>u</u>	•	<u>u</u>	<u>u</u> _									•		
Y09108-cds mScn10a cds (GRI)	G A G A	T (G A	A	A	C C	850 C	C	C	A A	C C	T T	C C	A A	С	286 C	A C	3 0	; T	G	C	A A	A A	Ā	287 G G	F	Γ G	A	G	A	A	CC	C	2880 A C A C
,							890									290									291									2920
Y09108-cds mScn10a cds (GRI)	A T	T	G C	T	A	CT	G	A A	T T	G G	C C	T T	G G	T N	С	A	A 1	. 6	C	T T	G G	C C	A A	G	T (3 (G (i (A	A A	C	C C	T A	G A G G
							930									294									295		_							2960
Y09108-cds mScn10a cds (GRI)	C A	A .	A G A G	C	C .	A G	C	T	C C	T T	T T	A G	G G	T T	G G	G G	CC	0 0	C	A	A	G G	G G	A	G A	A A	A C	C	A	C	G	G G	G G	G A
							970									298						_	_		299							_		3000
Y09108-cds mScn10a cds (GRI)	CT	T	C A	T	C	A C	T .	G	A	T T	c c	c c	T	A A	A A	C C	G 1	- 0	T	G	G G	G G	T T	C C	T () T	7 (T	G	C	C	C	A	TT
Y09108-cds	G C	т.	G A	G	G		010	^	G	Т	C	_	G	Δ		302 C			Α :	-	G	Δ	G		303		3 4		. 6	Δ	Δ	G	Α	3040 T G
mScn10a cds (GRI)	GC	Ť	G A	G	G	GG	G	A	G	Ť	č	č	G	Ā	c	Ċ.	† 1	(A	Ť	Ğ	A	G	c	T (G A		G	A	Ā	Ğ	A	TG

							309)								31	00								31	10								3	3120
Y09108-cds mScn10a cds (GRI)	C A																																		
																																			100
Y09108-cds	G A	A	A A	A T	С	A	313	C A	G	G	C	A	G	С	С	31. A	G	A	A	G	С	C (C A	Ā	31.	С	T	C	C	G	G	G	A	T (3160 G T
mScn10a cds (GRI)	G A	<u>A</u>	G[/	1 T	С	Α	C) A	G	G	С	Α_	G	С	С		G	A	A	G	C	C	<i> </i>	ЛC	C	C	<u>T</u>	C	C	G	G	G	A		ă I
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	-				1 . 1	317)		_	_	_	_	_	_	31		-	•			- ,	~ (31:		A	_	^	6		-	C /		3200
Y09108-cds mScn10a cds (GRI)	CC	; T	C 1	r G	A	G	G	4 (C	T	G	G	C	†	C	C	A	T	A	C	C	T (3 (G	G	G	A	G	A	G	A	T	G	G	A
							321	2								32	20								32	30								,	3240
Y09108-cds	A A	G	G /	A	G	G	Δ	- 4	A	C	C	C	T	C	A	G	G	T	C	C	C	T (G C	C	G	Α	G	G	G	A	G	T	G	G /	A T
mScn10a cds (GRI)	G	G	<u>u</u>	2	G	G	A	7[y G	U	·	-	<u>'</u>	۷	G.	<u>u</u>	u	•	<u> </u>	<u> </u>	<u> </u>		3 (, 0	<u> </u>		G	<u> </u>	<u>u</u>	Α.	<u>u</u>	-	<u>u</u>	<u> </u>	
Y09108-cds	G A		Δ (` Δ	Δ		3250		C	т	C	C	G	Δ	G	320 G		Ċ	Δ	G	С	Δ (. (G	32: T		G	Α	c	T	G	С	C (3280 3 G
mScn10a cds (GRI)	G A																																		
							3290)								330	00								33	10								3	320
Y09108-cds mScn10a cds (GRI)	A C	C	C A	A G	A	G	G /	\ C	A	T	C	C	T T	G G	Α	G	G	A A	A A	G G	A ·	T (0 0	C	T T	G G	A	G G	C C	T T	G G	G G	C	G (G A
, ,	•																																		
Y09108-cds	GG	Α	тГ	; T	G	G	333(A (· G	A	G	С	С	С	G	Α	334 T	G	A	С	T	G	1 7	Т Т	С	33: A	С	Α	G	Α	Α	G	G	Ç.	Г	360 G C
mScn10a cds (GRI)	G G	Α	GL) T	G	G	Α (9 0	A	G	С	С	С	G	Α	T	G	A	С	T	G '	7	T	С	Jcl	С	Α	G	Α	A	G	G	<u>c</u> .	Γ (G C
							3370									338									33										3400
Y09108-cds mScn10a cds (GRI)	A C																																		
							044									24	20								24	20									2440
Y09108-cds	CT	C	C 1	T	G	G	3410 G (; C	A	C	A	G	G	C	T	342 G	G	C	A	G	G	T	3 0	G	34:	Α	A	A	A	C	C	T	G :	r 1	440 A
mScn10a cds (GRI)	' [_	<u> </u>	<u> </u>		G	G	G	, (A	C	JG	G	G	C	•	G	G	<u> </u>	A	G	<u>u</u>		3 (<u> </u>		^	<u> </u>	^	^	<u> </u>	<u> </u>	<u>'</u>	G		
Y09108-cds	СС		<u>C /</u>	· T	_		3450		Α :	G	C	Λ	_	Δ		340 C		G	<u>-</u>	Ŧ	т .	т (2 4	G	34		т	т	T	тſ	Δ	T]	сE	3	3480
mScn10a cds (GRI)	CC	G	C A	T	Ť	G	T (3 6	A	G	c	A	Ċ	Ā	G	č	Ť	G	G	Ť	<u> </u>	Τ (S A	G	A	Ğ	Ť	Ť	Т	c	A	T	T [A T	r c
							3490)								350	00								35 ⁻	10								3	3520
Y09108-cds mScn10a cds (GRI)	TT	C	A 1	G	A	T	C	T :	G	C	T	C	A	G G	C C	Α	G	T T	G G	G G	A	A G	0 0	C	T	G	G G	C	C	T T	T T	T. T	G A	A (G G
	L						- '				-	_	-									L.					<u> </u>								
Y09108-cds	АТ	A	A (T :	Α	c	3530 C 1	G	G	A	Α	G	Α	G	A	354 A	АΓ	С	С	С	С	G A	\ G	T	35:	Α	Α	G	T	С	T	G	T (G (3560 C T
mScn10a cds (GRI)	AT	Α	A (<u> </u>	Α	С	C T	· G	G	Α	A	G	Α	Α	Α	Α	G	С	С	С	С	G /	A G	T	G	Α	Α	G	T	С	T	G	T (G (С Т.

Nucleotide alignment Formatted Alignments Saturday, June 2, 2001 8:18 PM

							3610)								362	0							3	630								;	3640
Y09108-cds	G A	G	A T	G	T	T	G (; T	С	Α	Α	G	T	G	G	G	T A	G	C	C	T	A	T (3 0	C	T	T	C	A	A	A	A	Α .	AT
mScn10a cds (GRI)	G A	G	A T	G	T	T	G (; T	С	A	Α	G	T	G	G	G .	T A	G	С	JT	T	A	T	3 0	C	T	T	С	Α	A	A	Α.	Α .	A T
							3650									366				_					670									3680
Y09108-cds	AT	Ţ	TC	: A	C	C	A	T	G	C	C	T	G	G	T	G	СТ	G	G	C	T	G	G /	A C	; T	T	C	C	T T	C	Α	T T	C (GT
mScn10a cds (GRI)	AI		1 (, A	<u> </u>	U	A /		<u> </u>		U	,	u	u	<u> </u>	u	<u> </u>	- 0	G		<u>'</u>	<u>u</u>	G /	•	, ,				•	_	_	•		
					_		3690		_	_	_	_	-			370		_				_	~ -		710	_	_	_	_	_	+	^		3720
Y09108-cds mScn10a cds (GRI)	G A	A		T	C	T	0 0	; C	T	C	Α	C	Α	Α	G	C (CT	C C	A	Ť	A	G	C	, ρ : Δ	Α	G	A	T	C	C	†	C	G .	AG
mscirroa cus (GNI)	U A		عا '		_	<u>-</u>			<u>.</u>	Ŭ	_		_		<u>~</u>		<u> </u>			·								•	_			_		
																																		.700
V00400 ada	TA	_	T 6	· A	-		3730			-	_	G	T	_		374			Λ	Λ	G	_	C (750 T	-	G	G	Δ	C	T	C '		3760 C. C.
Y09108-cds mScn10a cds (GRI)	TA																																	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-																												
							077									270	0							9	790									3800
Y09108-cds	G T	G	<u>C (</u>		T		3770		C	C	G	С	Ŧ	G		378 G		С	т	С	Т	G	T (G	A	Т	Т	С	G	Α		
mScn10a cds (GRI)	GT	G	CC	. c	Ť	c	c	G	C	c	G	C	Ť	G	c	G	GG	C	Ť	Č	Ť	G	T (T	C	G	A	T	Ť	C	G	Α	A	GG
, ,																																		
							3810	,								382	n							3	830								:	3840
Y09108-cds	CA	т	G A	G	G				Т	G	G	Т	G	G				C	Т	Т	G	G	T (С	G	С	С	Α	T	сΓ		
mScn10a cds (GRI)		T	G A	G	G	G	T A	G	T	G	G	Т	G	G	Α	T	G C	c	T	T	G	G	T	3 6	G	С	G	C	C	A	T	⊤[C	CC
							3850)								386	0							3	870								;	3880
Y09108-cds	TC	С	АТ	С	Α	T	G A	A	С	G	Т	С	С	Т	С	C .	ТС	G	T	С	T	G	C	T	C	Α	Т	C	T	T	С	T	G	GC
mScn10a cds (GRI)	T C	C	A T	С	Α	T	G A	A	C	G	T	С	С	T	С	C.	T C	G	T	С	T	G	C	7	C	Α	T	C	T	T	С	T	G	GC
							3890									390									910									3920
Y09108-cds	T C	Α	T C	; T	T	С	A	C	A	T	C	A	T	G	G	G	TG	T	G	A	A	C	C	· C	T	T	C	G	C	С	G	G	G	AA
mScn10a cds (GRI)	T C	A	T C	; T	T	С	AC	C	A	<u>T</u>	C	Α	T	G	G	G	T G	iT	G	A	Α_	C	C	-	; 1		C	G	C	C	G	G	G .	AA
							3930									394			_				_		950	_	_	_				~		3960
Y09108-cds mScn10a cds (GRI)	AT	T	T T	C	G	A	G A	T	G	T	G	T	C	G	A	C.	A C	; C	Α	G	Α	A	G) A	Α	C	C	C	Α	T	T	T T	T :	0 0
mscn10a cas (GRI)	AI		1 1		u	Α	G /	. 1	<u> </u>		G		<u> </u>	<u>u</u>	^	<u> </u>	<u> </u>	, 0		<u>u</u>			u (, ,		_	_	_	_	<u> </u>	•	•	-	
	GT		-	_			3970		_	_	_	_		-		398			٦,	<u>_</u>		4	0		990	-	_	-	_	Α.	_	T		4000 FIC
Y09108-cds mScn10a cds (GRI)		C	GI	G	Α	Α Δ	T 7	C C	G	A	C	A	T	T	C	G.	1 G	iΑ	C	+	A	A	C	4 A	G	T	C	, T	G	A	C	T .	G G	TT
moenroa cas (Gray	<u> </u>	<u> </u>	<u> </u>		-		-			-	_			Ė		_] -	<u> </u>						_								
																400	•								000									40.40
V00100 ada	Δ.	Α.	۸ ٦		^	Λ	4010	_	^		T	٨		ر ر		402		. Λ	_	т	т	c	-		030	G	-	G	T	T	Δ	Δ		4040 G T
Y09108-cds mScn10a cds (GRI)		A	AI	C	A	A	A A	C	A	A	†	A	č	\exists	G	G	CC	, A ; A	C	÷	Ť	c	i i		T	G	G	G	Ť	Ť	A	A	C	GT
			•										لــــــا	L																				
							405	,								400	0							,	070									4080
Y09108-cds	C A	Δ	Δ (T	С		4050 A (т	C	G	Α	C	Α		406 C		o F	G	С	Т	Α	T		070 G	С	Т	A	C	C	T	С		
mScn10a cds (GRI)	CA	A	A	T	c	A	A	. T	Ť	c	G	A	C	Α	Α	C	G T	Ť	G	c	T	A	T (3 0	G	С	Т	Α	С	С	T	С	G	CG
. ,	-																	_																

					4130							41	40							415	0							4160
Y09108-cds mScn10a cds (GRI)	T G T	ГАТ	GC	Α	G C	T (3 T	C	G	Α]	T	C	T	C C	A £	G	A	T /	T	C	A A	C	A	G G	T T	C /	A G	CC
modifica das (divi)	1 4		<u> </u>		<u>u </u>	•••		Ŭ					•				-	•										
					4170							41								419								4200
Y09108-cds mScn10a cds (GRI)	CAA	4 Τ Τ 4 Τ Τ	GG	G	A G	G	A G	A	G	C	CT	G	T .	A C) A	T	G	T / T /	C	C	T #	L T L T	A	C	T '	T (C C	TC
<i>mediriod</i> 666 (61.11)	<u> </u>																											
					4210							42								423								4240
Y09108-cds mScn10a cds (GRI)	GTO	CTT	CA	T	CA	T -	Г Т Г Т	T T	C	G (G T G T	G	G G	C 1 C 1	· T	C	T	T (ACA	C	G (; T ; T	G	A	A	T () T) T	CT
modiffed odd (Gru)	<u> </u>																											
					4250					_	_		60							427								4280
Y09108-cds mScn10a cds (GRI)	TTO	G T C	GG	G	G T G T	C	A T A T	C	A	T C	C G	i A	C	A A	C	T	T T	C /	A A	T T	C A	l A	C	A	G G	A A	\ A \ A	A A .
modiffed add (Gru)		<u> </u>								ن													.,					
			_		4290							43	00							431		_		1 . r	_		. =	4320
Y09108-cds mScn10a cds (GRI)	AAA	AGIC	TA	G	G G G G	G	G C	C	A	G	G A G A	C	A	T (T	T	C	A 1 A 1	r G r G	A	C /	à∣G ∖∣G	A	A G	G G	A	A C	A G
			السا																		_							
			, –		4330							43				١.,				435		_	_		_			4360
Y09108-cds mScn10a cds (GRI)	AA	A A A	A T	A	T T C T	A	C A	A	T T	G	CC	A	T	G A G A	A A	G	A	A	A C	T	G (i G i G	C	T	C	CI	A A	GA
,		<u> </u>																										_
					4370							43	80			_	_			439				_	_	-		4400
Y09108-cds mScn10a cds (GRI)	AAG	C	CA	AG	A A	G	0 0	C	A	T (CC	C	A	C	iG iG	C	C	T	-	G	A A	A T	A	A	G	T /	A C	CA
, ,																		_										
	GGG				4410	_		_	_	_		44	20		_	_				443			_	101	-	- -	- 6	4440
Y09108-cds mScn10a cds (GRI)	1	G C T G C T	TC	G	T G	T ·	T	G	A	C	A 1 A T	T	G	T (A	C	C	A	G G	C	A	\ G	C		Ť	T 7	r G	AC
										-																		
	ATO	.			4450	-		7-	-		. .		60	<u> </u>		^	_	+ /	- A	447		\ T	G	_	_	<u> </u>	<u> </u>	4480
Y09108-cds mScn10a cds (GRI)	AT	CAT	CA	T	CA	T	GG	c	T	C :	T C	. A	Ť	C	G	c	c	T) A	A	C /	1 T	G	Â	Ť	c /	A C	CA
V00400	TG	A T C			4490	_		_	_	Α .	<u>~ ^</u>	45		~ /		^	G	<u> </u>	2 4	451		N G	Δ	^	<u></u>	Λ (<u> </u>	4520
Y09108-cds mScn10a cds (GRI)	TG	ATG	GT	G	GA	G	A C	C	G	A	CA	A	Ť	c /	G	A	G	c	3 A	G	G /	i G	A	Â	G	A) G	AA
V00400 ada	66	=1 × [5	+ 6		4530	Α.	~ A	_	T	_	Λ Λ		40	۸ (2 T	_	 _ [- -	F) T	455		2 G	<u> </u>	le[G	T (<u>. T</u>	4560 T C
Y09108-cds mScn10a cds (GRI)	G G T	T c c	TO	G	GC	A	G A	A	Ť	C	AA	C	č	A (T	Ť	c	T	c	G	T	3 G	C	c	G	T	<u> </u>	TC
V00108 ada	Λ C .	6.6.0		· A	4570	G .	r c	т	G	Δ.	T 6	45	80 A	Δ	- آ	G	T	T (. G	459 C	0 C (; T]G	C	G	ΑŒ	C A	4600
Y09108-cds mScn10a cds (GRI)	A C (GGG	C	A	GT	G ·	T G	Ť	G	A :	T G	A	A	G A		G	Ť	T	G	č	c c	<u> </u>	Т	С	G	G	2 A	GT

Nucleotide alignment Formatted Alignments Saturday, June 2, 2001 8:18 PM

							4650)								466	60								4670)								4680
Y09108-cds mScn10a cds (GRI)	G G	i T	G A	A T	T T	С	T (T	C	C	A A	T T	T T	G[T[C C	G T	A (G 7	C	T	G G	T	T T	G G	T 1	T	T	C	T T	G G	C	A G	A A	T C
Y09108-cds	СТ	T	A /	A G	T	С	4690 A (: Т	A	G	A	A	A	G	T	470 T	Α (C 1	T	С	T	C	C	С	4710 C () A	С	G	T	T	C	T	T	4720 C C
mScn10a cds (GRI)	СТ	<u>T</u>	AJC	a C	T		4730		A	G	Α_	A	A	G		T 474		ו ט	1	C	1	C	C		4750		C	G	J C J	1	C	<u>'</u>		4760
Y09108-cds mScn10a cds (GRI)	G C	G G	T (A	T	C	CC	i T	C	T	G G	G G	C	C C	A	G G	G /	A 7	C	G	G G	C C	C C	G G	C A	T	C	C	T	C	A	G G	G G	C T
Y09108-cds mScn10a cds (GRI)	G A					G		G							G		A							G		G							G	4800 C C C C
. ,							4810)								482	20								4830)								4840
Y09108-cds mScn10a cds (GRI)	C T	. <u>C</u>	A 1 A 1	r G	A	T	G 1	C	C	C	T	G G	C	C C	C C	G G	CC	0 0	; T ; T	C	T	T T	C	A A	AC	; A	T	C	G	G	c	C	T	C C
Y09108-cds mScn10a cds (GRI)						С		C							T		C /							С		T							С	4880 A T A T
Y09108-cds	[6] 6	a C	C /	A G	C		4890 T (С	Т	Α	A	Т	G		490 C		г /	\ G	i A	Т	G	A		4910 G (G	G	С	A	T	С		4920 A C
mScn10a cds (GRI)	G A					T	т (G							T	С	A 7							G	G (; T							G	A C
Y09108-cds mScn10a cds (GRI)	1					Т		A							G		C							Α		A							T	4960 G T G T
Y09108-cds	GC					C		G							A		G 1							G		G							С	
mScn10a cds (GRI)	G C	; C	<u>T 1</u>	T	T		C A 5010		Α	T	С	Α	С	С		C 502		Γ (G	G	С	<u>T</u>	G		C 1		G	G	A	T	G	G		<u>СТ</u> 5040
Y09108-cds mScn10a cds (GRI)						С	C	A							Α	С	Α (С	CC	; C							G	AC
Y09108-cds mScn10a cds (GRI)						G		C							С		Α 1							A		G							G	5080 T G
							5090)								510	00								5110)								5120
Y09108-cds mScn10a cds (GRI)	G A																																	A T

							ŗ	170									51	80									5190)								5200
Y09108-cds							T	G G	Α								Α	Α								A	C A	G								CA
mScn10a cds (GRI)	G T	G	Α	T	T	C	T (G G	Α	G	Α	Α	С	T	T	С	Α	Α	T	G	T	G	G	<u>c</u>	C	A	C A	G	Α	Α	G	Α	G	Α	G	CA
								210									52										5230									5240
Y09108-cds																																				GA
mScn10a cds (GRI)	C	i G	<u>A</u>	G	C	C	C	ا ز	G	<u>A</u>	G	C	G	A	G	G	<u>A</u>	C	G	A	C	<u> </u>		1	G .	Α .	C P	1	G		<u>'</u>			<u>A</u>		GA
	-	_		_	_	_		250		_	_	_	_	_	_	_	52		_		_	A	_		_		5270		_	^	_	-	-	_		5280
Y09108-cds mScn10a cds (GRI)	G A																																			TT
moonroa cos (ora)	<u>u</u> ,		<u> </u>	·	~	<u>~</u>	<u> </u>					·	·	•		<u></u>			_					_												
							,	.000									52	00									5310	1								5320
Y09108-cds	G C	: c	Т	т	т	T		290 r G		С	C	Т	С	T	С	A	53 G		С	Т	Т	T	G	С	A				С	A	С	T	С	T		C G
mScn10a cds (GRI)	G	C	Ť	Ť	Ť	Ť	C 1	r G	C	C	C	Ť	č	Ť	C	A	G	Α	c	T	T	Ť	G	Ċ	A	G	A C	; A	c	A	C	T	C	T	С	⊤G
	•																																			
							£	330									53	40									5350)								5360
Y09108-cds							T /	A G	Α								Α	A								A	G A	A								AT
mScn10a cds (GRI)	GC	; c	С	T	С	T	Τ /	4 G	Α	Α	T	С	С	С	Α	Α	Α	Α	С	С	Т	A	A	T	C	A	G A	A	T	Α	T	Α	T	T	A	AT
								370									53										5390									5400
Y09108-cds																																				A C
mScn10a cds (GRI)	CC	; A	G	A		G	G /	4 0	U		G	C	C	G			G	G		U	C	C	C	G	G	A	G P		A	A	G	<u> </u>			<u> </u>	AC
V00400 ada	T .	_	<u> </u>	_	_	_		410		_	_	_	_	_	_	_	54		_	_	_	_	Α.	_	۸		5430		^	-	G	Ť	_	_		5440 G G
Y09108-cds mScn10a cds (GRI)	1																																			
	<u></u>		<u> </u>	-			-												_																	
							,	450									54	60									5470)								5480
Y09108-cds	G A	G	Α	A	T	С				G	A	G	T	т	G	G			т	С	Т	С	T	G	A				T	A	A	T	A	T		G A
mScn10a cds (GRI)	1																																			
							5	490									55	00									5510)								5520
Y09108-cds																																				AT
mScn10a cds (GRI)	A	i A	G	Α	Α	G	T -	Т	Α	Т	G	G	С	A	Α	C	T	Α	<u>A</u>	T	C	T	T	T	С	C .	A A	A	G	C	Α_	T	C	<u>c</u>	<u>T</u>	АТ
								530									55										5550									5560
Y09108-cds																																				CA
mScn10a cds (GRI)	G A	A	<u> </u>	C	A	A	1 /	4 6	· C	А	A	C	U	A	U	C	U		C	<u></u>	G	G	-	G	<u>.</u>	A .	A C	1 0	A	G	u	<u> </u>	<u>~</u>	G		CA
1/00/100	F= -	_	_		_	_		570		_	_	-	_	-	-	_	55		_	_	_	_	_	_	т		5590		_		^	_	-			5600
Y09108-cds mScn10a cds (GRI)																																				AT
moonroa das (divi)		<u> </u>			<u>~</u>	<u> </u>	- /				•	•		-	-	_									-	-										
																	F۸	20									5620)								5640
Y09108-cds	G 7		G	С	Δ	Δ		610 3 C		C	C	T	T	G	Δ	т	56 G		т	С	T	C	c	A	A		5630 A C		C	Т	G	С	A	T		5640 T G
mScn10a cds (GRI)	1	· †	G	Ç	A	A	C	GC	Ť	C	c	Ť	Ť	G	A	Ť	Ğ	c	Ť	c	Ť	C	C	A	Α	c	c	C	c	Ť	G	c	A	T	G	TG
, ,																					-						_									

Nucleotide alignment Formatted Alignments Saturday, June 2, 2001 8:18 PM

			5710 C A A C G G T G G	
	5690		CAACGGTGG	5720
Y09108-cds GCTAT	GTTACATTCAT	TGGCAAATGAC		GCTCCC
mScn10a cds (GRI) G C T A T	GTTACATTCAT		CAACGGTGG	GCTCCC
	5730	57 4 0	5750	5760
Y09108-cds A G A C A	AATCAGAAACT	TGCTTCTGCTA	ACGTCTTTC	CCACCA
mScn10a cds (GRI) A G A C A	AATCGGAAACT	TGCTTCTGCTA	ACGTCTTTC	CCACCA
modified doc (Grill)				
	5770	5780	5790	5800
Y09108-cds T C C T A	TGAAGCGTCA	ACCAGGGCCT	TGAGTGACA	GGGCCA
mScn10a cds (GRI) T C C T A		ACCAGGGGCCT	TGAGTGACA	GGGCCA
mosmod 505 (5/1)				
	5810	5820	5830	5840
Y09108-cds A C A T T		GCTCAATGCAA	AAATGAAGA	TGAAGT
mScn10a cds (GRI) A C A T T	1 1	GCTCAATGCAA	AAATGAAGA	TGAAGT
modified data (dr.t.)				
	5850			5880
Y09108-cds CACTG	CTAAGGAAGGG	5860	5870	TGA
mScn10a cds (GRI) C A C T G	CTAAGGAAGGG			

Appendix C

								10									20									30								4	
Y09108	ME	F	Р	F	G	S	٧	G T	T	N	F	R	R	F 1	P	E	S	L	A	E	1	EK	Q	ı	Α	Α	Н	R	A A	A F	(K	G	R	T	K
mScn10a(GRI)	M E	F	P	F	G	S	٧	G T	Ţ	N	F	R	R	F 1	P	G	S	L	A	E		EK	Q	<u> </u>	Α	A	Н	R	Α /	A F	(K	G	R	P	K
								50									60									70								8	0
Y09108	QR	G	Q	K	D	ĸ	s			R	P	Q	L	DL	. K	A		N	Q	LI	P	₹ F	Υ	G			P	Α	EI	LI	/ (E	P	L	E
mScn10a(GRI)	QR	G	Q	K	D	K	S	E K	P	R	P	Q	L	D L	. K	A	C	N	Q	L I	P	R F	Y	G	E	L	Р	Α	E I	L \	/ 0	E	P	L	E
								90									100								4	10								12	n
Y09108	D L	ח	D	E	v	9	T	H B	т	F	1	-	П	NI	CS	R	T	1	S	RI	F	S A	Т	W			w	L	F S	s I) F	N	L		
mScn10a(GRI)	DL	D	P	F	Ÿ	S	T	 Н В	Ť	F	i	v		D	S	R	Ť	i	s	RI	FS	5 A	T	W	Α	L	w	L	F	SF	, F	N	L		R
,,,																																			
																										- 0								40	^
1400400	RT	_	_	17	17	_	1/	130		_	_	_	_		- 1/		140	-		NI A		, ,	. 84	+		50 T	n		D I	= 1	<u> </u>	=	v	16	
Y09108 mScn10a(GRI)		Α .	1	K	V	5	V V	н 5 н с	W	F	5	1	r	1 7	v rv	T	1	L	V	N (C I	, ,	, IVI	+	R	T T	ח	L L	PI	e r E l	ĊL	. E	Y	A	F
mochioa(orti)					•		•		**	·		<u>.</u>	<u> </u>		_	<u> </u>			•					Ė											
	F-2-7-			_	_			170					_				180		_					_		90	147		<u> </u>			, ,	-	20	
Y09108	T V																																		
mScn10a(GRI)	I V					<u>E</u>	<u> </u>	L !		1	_		<u>n</u>	<u> </u>			14		<u> </u>					_	**	-	**						<u>.</u>	- /	
								210									220									30								24	
Y09108	ΥV	G	A	Α	٧	D	L	RG	1	S	G	L	R	T F	F	۷	L	R	A	LI	K 1	r v	S	٧	!	Р	G	L	K '	V I	I V	G	A	L	!
mScn10a(GRI)	ΥV	G	Α	Α	1	D	L.	R G		5	G	L	H	<u> </u>	· H	V		н	Α	L 1			5	<u>v</u>	<u> </u>	Ρ	G	<u> </u>	N '	<u> </u>		G	A		<u> </u>
								250									260									70								28	
Y09108	H S																																		
mScn10a(GRI)	H S	V	R	K	L	A	D	V T		L	T	V	F	C L	. S	V	F	Α	L	<u> </u>	GI	_ G	L	F	K	G	N	<u>L</u>	K I	<u> </u>	-	, 1	<u>K</u>	N	G
								290								3	300									10								32	
Y09108	TD	P	Н	K	A	D	N	L S	S	E	М	A	E	DI	F	ı	K	P	G	T	T	P	L	L	C	G	N	G	SI	0 /	١ (H	C	P	N
mScn10a(GRI)	T D	P	Н	K	A	D	N	L S	S	E	М	Α	G	D I	F		K	Р	G	T]	T) P	L	L	С	G	N	G	SI	<u> </u>	4 (H	C	P	N
								330									340									50								36	0
Y09108	GY	V	С	Q	K	Т	P	D N	Р	D	F	N	Υ	T S	F	D	S	F	Α	W /	A I	L	S	L.	F									R	
mScn10a(GRI)	DY	<u> </u>	С	R	K	Т	s	D N	Р	D	F	N	Υ	T S	F	D	S	F	Α	W /	A I	- L	S	L	F	R	L	M	T	ן נ) S	W	E	R	L
								370								3	380								39	90								40	0
Y09108	YQ	Q	T	L	R	Α	s			Υ	М	٧	F	F١	/ L	V	ı	F	L	G S	SF	Y	L	٧	N	L	ı	L	A \	V 1	/ T	M	A	Υ	E
mScn10a(GRI)	ΥQ	Q	T	L	R	A	S	G K	M	Y	M	٧	F	F١	/ L	V	ı	F	L	G S	S	Y	L	٧	N	L	1	L	A \	<u>۷</u> ۱	/ T	M	Α	Y	E
								410								4	120								43	30								44	0
Y09108	E Q	S	Q	Α	T	ī	A	ΕI	E	Α	K	E	K	K F		E	A	L	E	V I	L	K	E	Q	E	٧	L	A	A I		G I	D	T	T :	S
mScn10a(GRI)	E Q	S	Q	Α	T	1	Α	E I	E	A	K	E	K	K F	K	E	Α	L	E	V	L	K	E	Q	E	٧	L	A	A I	_ (3 1	G	T	T	S

Protein alignment Formatted Alignments Saturday, June 2, 2001 8:21 PM

									49	90									5	00									51	0								5	20
Y09108 mScn10a(GRI)	Y	N N	Q Q	R	R R	M M	S S	F	L	G	L L	s s	S S	G G	R	R	R R	A	s	Н	G S	S S	V V	F	H	F	R R	A A	P S	s c) [) V	S	F	P	, 0	G	il	L
									53	30										40						_	_		55										60
Y09108 mScn10a(GRI)	D D	D D	G G	۷ ۷	F	H	G G	D D	Q Q	E	S S	R	R	N S	S	1	L	L	G G	R	G	A	G G	Q Q	A	G G	P P	L L	PI	9 5	5 P	, L	P	C	S	P	N	P	G
	- (<u></u>		l	_	_	_	57	70	[_	_	_	_			١.	5	80 -	-	_	_	n	•		<u> </u>	^	59	0		<u> </u>	- E	_			Πa	6	00
Y09108 mScn10a(GRI)	P	R	R	G	E	E	G	Q	R	G	V	P	T	G	E	L	A	T	G	A	P	E	G	P	A	L	D .	A_	A	GG	K	()	F	L	S	A		Y	Ĺ
Y09108	N	_	D	E	D	٨	_	D	6	10	9	v	V	S	1	ħ.f.	T	8		20	F	F	1	F	F	S	K	L	63 K () F		: L		- 5	n e	: [A	6 Q	40 K
mScn10a(GRI)	N	E	P	F	R	Â	a	R	Â	M	s	v	v	S	<u>i</u>	M	Ť	s	v	i	E	E	Ĺ	E	E	S	K	_	K (C F	P	Ò	; <u>L</u>	ı	S	L	A	Q	Κ
Y09108	V	L	ī	w	E	С	С	P		50 W	R	K	F	K	M	v	L	۱L		60 L	V	T	D	P	F	A	E	L	67 T		- <u>L</u>	. c	: 1	V		' N	ı T		80 F
mScn10a(GRI)	Υ	L	1	w	E	Ċ	c	P	K	w	K	K	F	K	M	٧	L	F	E	L	٧	T	D	P	F	Α	E	L	T	ן ו	· L	. C	: 1	V	V	N	<u> </u>	V V	F
Y09108	М	Α	М	E	Н	Υ	P	М		90 D	A	F	D	A	М	L	Q	A		00 N	1	٧	F	T	V	F	F	T	71 M I	O E N	I A	F	K	<u> </u>	1	Δ.	F	7 D	20 P
mScn10a(GRI)	М	A	M	E	Н	Υ	P	M	T	D	A	F	D	A	M	L	Q	A	G	N	1	٧	F	T	٧	F	F	T	M I	E N	1 A	F	K			A	F	D	Р
									73	30									7	40					_				75	0						_	_	7	60
Y09108 mScn10a(GRI)	Y	Y	Y	F	Q Q	K K	K	W	N N	1	F	D D	C	۷ ۷	1	۷ ۷	T T	V V	S	L	L	E	L	s s	A L	S S	K K	K K	G S	SL	. 8	5 V	L	F	T	F	F	L	L
										70										80									79						_				00
Y09108 mScn10a(GRI)	R R																																					1	
									81	10			_	_						20				_					83										40
Y09108 mScn10a(GRI)	A	L	V V	G G	K K	Q Q	L L	L	S S	E	N N	Y	G G	C	R	R	D	G	1	S	۷ ۷	W	N	G	E	K R	L	H R	W I	H N	1 0	; L) F	F	H	1 5	F	L	v
	F	_	_		-	_	_		88	50		•			.,	_			8	60			14		_		-		87		- \				_				80
Y09108 mScn10a(GRI)	V	F	R	1	L	C	G	E	W	1	E	N	M	W	V	C	M	E	V	S	Q	D	Y	1	c	L	T .	L	F	1	V	N	1 V	L		N	L	. V	V
V00400				_		_		_		90	_	-	_	•	_			_		00	_	_	<u> </u>		=	W	NI.	N.	91				Λ.		1	G			20 G
Y09108 mScn10a(GRI)	L	N	L	F	1	A	L	L	L	N	5 S	F	S	A	D	N	L	T	A	P	E	D	D	G G	E	V	N	N	L	3 / 3 F							-		G
									93	30										40									95										60
Y09108 mScn10a(GRI)	H H	R R	A A	S S	R R	A A	 	T T	S S	Y Y	l I	R R	S S	H	C	R R	F L	R R	W W	P P	K K	۷ ۷	E	T T	Q Q	L L	G I	M	K I	PF) L	. T	S	C	; K	(V	E	N	H

Protein alignment Formatted Alignments Saturday, June 2, 2001 8:21 PM

1010 1020 1030	1040
Y09108 MScn10a(GRI) A E G E S D L D E L E E D V E H A S Q S S W Q E E S P K G Q Q E L L P H A S Q S S W Q E E S P K G Q - E L L Q	Q V Q K C Q V Q K C
1050 1060 1070	1080
Y09108 ENHQAARSPTSGMSSEDLAPYLGERWKRKDNPQVP mScn10a(GRI) EDHQAARSPPSGMSSEDLAPYLGERWQREESPRVP	A E G V D A E G V D
	1120
1090 11100 11110 Y09108 D T S S S E G S T V D C P D P E E I L R K I P E L A E E L D E P D D C mScn10a(GRI) D T S S S E G S T V D C P D P E E I L R K I P E L A E E L D E P D D C	FTEGC
mScn10a(GRI) DTSSSEGSTVDCPDPEEILRKIPELAEELDEPDDC	
Y09108 TRRCPCCKVNTSKSPWATGWQVRKTCYRIVEHSWF	1160 ESFII
mScn10a(GRI) TRRCPCCKVNTSKFPWATGWQVRKTCYRIVEHSWF	ESFII
1170 1180 1190 Y09108 FMILLSSGT LAFEDNYLEEKPRVKSVLEYTDRVFT	1200
mScn10a(GRI) FMILLSSGALAFEDNYLEEKPRVKSVLEYTDRVFT	FIFVF
1210 1220 1230 Y09108 EMLLKWVAYGFKKYFTNAWCWLDFLIVNISLTSLI	1240 A K I I F
mScn10a(GRI) EMLLKWVAYGFKKYFTNAWCWLDFLIVNISLTSLI	AKILE
1250 1260 1270	1280
YSDVASIKALRTLRALRPLRALSRFEGMRVVVDAL YSDVASIKALRTLRALRPLRALSRFEGMRVVVDAL	VGAIP
1290 1300 1310	1320
Y09108 SIMNVLLVCLIFWLIFSIMGVNLFAGKFSRCVDTR mScn10a(GRI) SIMNVLLVCLIFWLIFSIMGVNLFAGKFSRCVDTR	SNPFS
1330 1340 1350	1360
Y09108 V V N S T F V N N K S D C H N Q N N T G H F F W V N V K V N F D N V A mScn10a(GRI) V V N S T F V T N K S D C Y N Q N N T G H F F W V N V K V N F D N V A	MGYLA
	4400
1370 1380 1390 Y09108 L L Q V A T F K G W M D I M Y A A V D S R D I N S Q P N W E E S L Y M mScn10a(GRI) L L Q V A T F K G W M D I M Y A A V D S R D I N S Q P N W E E S L Y M	1400
mScn10a(GRI) LLQVATFKGWMDIMYAAVDSRDINSQPNWEESLYN	1 to 1 1 V
Y09108 V F I I F G G F F T L N L F V G V I I D N F N Q Q K K K L G G Q D I F	
mScn10a(GRI) V F I I F G G F F T L N L F V G V I I D N F N Q Q K K K L G G Q D I F	MTEEQ
1450 1460 1470	1480
WScn10a(GRI) KKYYNAMKKLGSKKPQKPIPRPLNKYQGFVFDIVT	RQAFD

Protein alignment Formatted Alignments Saturday, June 2, 2001 8:21 PM

								1530)								154									155								15	
Y09108	TG	Е	С	٧	M	K	٧Г	F A	L	R	Q	Υ	Υ	F	T	N	G	W	N 1	/ F	D	F	I	٧	٧	1 1	. S	- 1	Α	S	L	L	FS	A	1
mScn10a(GRI)	TG	E	С	٧	M	K	М	F /	L	R	Q	Υ	Y	F	T	N	G	W	N Y	V F	D	F		٧	٧	1 1	<u>.</u> S	1	S	S	L	L I	F S	6 A	1
								1570)								158	30								159	0							16	
Y09108	LK	S	L	E	S	Υ	F	S F	, T]F	F	R	٧	ī	R	L	Α	R	1 (G F	1	L	R	L	T	R	A A	K	G	١	R	T	LL	. F	A
mScn10a(GRI)	LS	S	L	E	S	Υ	F	S F	, T	L	L	R	٧	1	R	L	A	R	1 (G F	1	L	R	L	1	R	A A	K	G	1	R	T		. F	Α
								1610)								162									163								16	
Y09108	L M	M	S	L	Р	A	L	FN	1 1	A	L	L	L	F	L	٧	М	F	1	Y S	i	F	G	М	A	SI	= A	N	٧	ı	D	E	A C	}	D
mScn10a(GRI)	LM	M	S	L	Р	A	L	FN	1 1	G	L	L	L	F	L	٧	М	F	1	YS	1	F	G	М	Т	S	= A	N	٧		D	Ε,	A (<u> </u>	D
								1650)								166	80								167	0							16	80
Y09108	D M	F	N	F	K	T	F	G N	īS	M	L	С	L	F	Q	1	T	T	S	A C	W	D	G	L	L	SI	9	L	N	Т	G	Р	РΥ	′ C	D
mScn10a(GRI)	D M	F	N	F	K	T	F	G I	IS	M	L	С	L	F	Q	1	T	T	S	A G	N £	D	G	L	L	SI	<u> </u>	L	N	T	G	Р	PΥ	<u> </u>	D
								1690)								170	00								171	0							17.	20
Y09108	PN	R	P	N	S	N	G	S	G	N	С	G	S	P	Α	٧	G	ī	LI	FF	T	T	Υ	1	T	1 :	3 F	L	ı	٧	٧	NI	M Y	1	Α
mScn10a(GRI)	PN	R	P	N	S	N	G	S	G	N	С	G	S	P	Α	٧	G	1	L	FF	T	T	Y	1	1	1 :	SF	L	1	٧	٧	N I	M Y	1	Α
								1730)								174	10								175	0							17	60
Y09108	VI	L	E	N	F	N	٧	Αī	E	E	S	Т	E	P	L	S	E	D	DΙ	FE	M	F	Υ	Ε	Т	w i	≣ K	F	D	P	E	A	T C	F	1
mScn10a(GRI)	VI	L	E	N	F	N	٧	A 1	. E	Е	s	T	E	P	L	S	E	D	D I	FC	M	F	Υ	E	T	W I	EK	F	D	P	E	Α ΄	T C	F	1
								1770)								178	30								179	0							18	00
Y09108	AF						F	A [T																										
mScn10a(GRI)	AF	S	Α	L	S	D	F	A [T	L	S	G	P	L	R	1	P	K	P	N G	N	1	L.	1	Q	M) L	P	L	٧	P	G	D H	()	Н
								1810									182									183								18	
Y09108	CL	D	ī	L	F	Α	F	T	N	٧	L	G	E	S	G	E	L	D	S	L K	T	N	M	E	E	K	= M	Α	T	N	L	S	K A	S	Y
mScn10a(GRI)	CL	D	1	L	F	A	F	T	(N	٧	L	G	E	S	G	E	L	D	S	L K	T	N	M	E	E	K	= M	Α	T	N	L	S	K A	S	Y
								1850									186									187								18	
Y09108	ΕP	ī	A	T	T	L	R	C	Q	E	D	I	S	Α	T	1	1	Q	K	A Y	' R	N	Υ	М	L	Q	RS	L	M	L	S	N	ΤŢ	. Н	٧
mScn10a(GRI)	E P	1	Α	T	T	L	R	C	Q	E	D		S	Α	T	ı		Q	K	A Y	R	N	Υ	М	L	Q I	RS	L	M	L	S	N	РЦ	. н	V
								189									190									191								19	20
Y09108	PR	Α	E	E	D	G	٧	SI	. P	K	G	G	Υ	٧	T	F	M	A	N	D N	1 0	G	L	P	D	K	SE	T	A	S	A	T	SF	P	
mScn10a(GRI)	PR	Α	E	E	D	G	٧	s l	. P	R	JΕ	G	Υ	٧	T	F	M	Α	N	א ט	1 G	G	L	P	ט	K	5 E	T	A	S	A	1	5 F	: Р	۲
								1930									194									195								19	
Y09108	SY	E	S	٧	T	R	G	LS) D	R	A	N	I	N	T	S	S	S	M (3 1	I E	D	E	٧	T	A	KE	G	N	S	P	G	PC	N	
mScn10a(GRI)	SY	D	S	٧	T	R	G	L S	s D	R	A	N	1	S	T	S	5	5	M (۱ د	4 E	D	E	V	1	Α	E	G	Jĸ	5	٢	G	P (N	J

Appendix D

Activation properties of Scn10a channels heterologously expressed in sympathetic neurons

1	2	3	4	5	6	7	8	9			
				Normali	zed Cond	luctance			Mean	SEM	N
-0.003	-0.005	-0.001	-0.001	-0.003	-0.001	-0.003	-0.004	-0.004	-0.003		9
-0.004	-0.006	-0.001	-0.003	-0.003	-0.001	-0.004	-0.004	-0.004	-0.003	0.001	9
-0.005	-0.006	-0.002	-0.001	-0.004	0.000	-0.005	-0.005	-0.005	-0.003		9
-0.003	-0.008	-0.002	-0.002	-0.001	0.002	-0.005	-0.003	-0.004	-0.003		9
0.000	-0.004	0.000	0.000	0.003	0.006	-0.003	-0.002	-0.003	0.000		9
0.011	0.006	0.006	0.011	0.015	0.025	0.005	0.005	0.003			9
0.049	0.035	0.021	0.026	0.047	0.086	0.023	0.016				9
0.153	0.122	0.068	0.064	0.111	0.203	0.091	0.044	0.051			9
0.343	0.294	0.179	0.152	0.236	0.353	0.235	0.125	0.154			9
0.554	0.529	0.346	0.280	0.396	0.501	0.430	0.268	0.322			9
0.722	0.750	0.508	0.431	0.558	0.625	0.624	0.439				9
0.872	0.905	0.661	0.575	0.718	0.736	0.775	0.599				9
0.963	1.001	0.782	0.727	0.847	0.822	0.896	0.752				9
1.011	0.958	0.890	0.837	0.919	0.909	0.965	0.868				9
0.966	0.753	0.978	0.934	0.972	1.004	0.993	0.957	0.984	0.949	0.025	9
Boltzmann equation parameters as determined by nonlinear regression											
5.07 5.43	5.42 4.75	11.21 6.73	13.49 7.26	9.33 6.72	6.90 7.81	8.12 5.74	13.16 6.53	11.43 6.30	9.35 6.36	1.06 0.31	9 9
	-0.003 -0.004 -0.005 -0.003 0.000 0.011 0.049 0.153 0.343 0.554 0.722 0.872 0.963 1.011 0.966 ann equati	-0.003 -0.005 -0.004 -0.006 -0.005 -0.006 -0.003 -0.008 0.000 -0.004 0.011 0.006 0.049 0.035 0.153 0.122 0.343 0.294 0.554 0.529 0.722 0.750 0.872 0.905 0.963 1.001 1.011 0.958 0.966 0.753 ann equation param	-0.003 -0.005 -0.001 -0.004 -0.006 -0.001 -0.005 -0.006 -0.002 -0.003 -0.008 -0.002 0.000 -0.004 0.000 0.011 0.006 0.006 0.049 0.035 0.021 0.153 0.122 0.068 0.343 0.294 0.179 0.554 0.529 0.346 0.722 0.750 0.508 0.872 0.905 0.661 0.963 1.001 0.782 1.011 0.958 0.890 0.966 0.753 0.978 ann equation parameters as 6	-0.003 -0.005 -0.001 -0.001 -0.004 -0.006 -0.001 -0.003 -0.005 -0.006 -0.002 -0.001 -0.003 -0.008 -0.002 -0.002 0.000 -0.004 0.000 0.000 0.011 0.006 0.006 0.011 0.049 0.035 0.021 0.026 0.153 0.122 0.068 0.064 0.343 0.294 0.179 0.152 0.554 0.529 0.346 0.280 0.722 0.750 0.508 0.431 0.872 0.905 0.661 0.575 0.963 1.001 0.782 0.727 1.011 0.958 0.890 0.837 0.966 0.753 0.978 0.934 ann equation parameters as determin	Normalic -0.003 -0.005 -0.001 -0.001 -0.003 -0.004 -0.006 -0.001 -0.003 -0.003 -0.005 -0.006 -0.001 -0.003 -0.003 -0.005 -0.006 -0.002 -0.001 -0.004 -0.003 -0.008 -0.002 -0.002 -0.001 -0.001 0.000 -0.004 0.000 0.000 0.003 0.011 0.006 0.006 0.011 0.015 0.049 0.035 0.021 0.026 0.047 0.153 0.122 0.068 0.064 0.111 0.343 0.294 0.179 0.152 0.236 0.554 0.529 0.346 0.280 0.396 0.722 0.750 0.508 0.431 0.558 0.872 0.905 0.661 0.575 0.718 0.963 1.001 0.782 0.727 0.847 1.011 0.958 0.890 0.837 0.919 0.966 0.753 0.978 0.934 0.972 ann equation parameters as determined by non 5.07 5.42 11.21 13.49 9.33	Normalized Cond -0.003	Normalized Conductance -0.003	Normalized Conductance	Normalized Conductance	Normalized Conductance	Normalized Conductance

Inactivation properties of Scn10a channels heterologously expressed in sympathetic neurons

Cell	1	2	3	4			
mV		Normalia	zed condu	ıctance	Mean	SEM	N
-59	1.000	1.000	1.000	1.000	1.000	0.000	4
-53	1.011	0.998	1.001	0.985	0.999	0.005	4
-48	0.960	0.992	0.952	0.976	0.970	0.009	4
-44	0.956	0.963	0.883	0.933	0.934	0.018	4
-38	0.936	0.918	0.772	0.840	0.866	0.038	4
-34	0.907	0.841	0.611	0.717	0.769	0.066	4
-28	0.825	0.723	0.432	0.539	0.630	0.089	4
-23	0.658	0.560	0.278	0.348	0.461	0.089	4
-18	0.388	0.347	0.145	0.147	0.257	0.065	4
-14	0.127	0.137	0.046	0.046	0.089	0.025	4
-9	0.027	0.034	0.017	0.023	0.025	0.004	4
-4	0.004	0.008	0.004	0.009	0.006	0.001	4
1	0.000	0.000	0.000	0.000	0.000	0.000	4
Boltzm	ann equati	ion paran	neters as o	determined b	y nonlinear reg	gression	
Vh	-20.68	-22.51	-30.14	-27.66	-25.25	2.20	4
K	-4.30	-5 56	-6.52	-5.89	-5 57	0.47	4

Appendix E

Activation properties of TTX-R sodium channels in mouse DRG neurons												
Cell	1	2	3	4	5	6	7	8	9			
mV	•	_				zed Con	ductano	ee		Mean	SEM	N
-58	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.0007	0.0001	9
-48	0.000	-0.002	0.000	0.000	0.001	0.000	0.000	-0.001	0.000	-0.0001	0.0003	9
-43	0.001	-0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.0003	0.0002	9
-38	0.001	-0.001	0.000	0.002	0.004	-0.001	0.000	0.002	-0.001	0.0007		9
-34	0.003	0.002	0.002	0.004	0.007	0.001	0.001	0.005	0.000	0.0028	0.0007	9
-28	0.006	0.007	0.006	0.009	0.010	0.009	0.005	0.009	0.002	0.0069	0.0008	9
-24	0.013	0.022	0.016	0.020	0.017	0.029	0.015	0.018	0.007	0.0175	0.0021	9
-19	0.032	0.057	0.046	0.047	0.032	0.082	0.048	0.042	0.022	0.0454	0.0058	9
-14	0.086	0.161	0.127	0.110	0.060	0.223	0.162	0.105	0.062	0.1217	0.0177	9
-9	0.244	0.373	0.312	0.268	0.134	0.437	0.433	0.271	0.184	0.2950	0.0349	9
-4	0.511	0.625	0.558	0.493	0.300	0.663	0.716	0.531	0.405	0.5335	0.0429	9
1	0.716	0.796	0.746	0.688	0.519	0.839	0.888	0.757	0.633	0.7313	0.0369	9
6	0.852	0.903	0.861	0.824	0.718	0.947	0.978	0.914	0.804	0.8668	0.0265	
11	0.935	0.969	0.933	0.921	0.859	0.999	1.000	0.988	0.923	0.9475		
16	0.982	1.000	0.988	0.983	0.957	1.000	0.963	1.000	0.986	0.9843		9
21	1.000	0.985	1.000	1.000	1.000	0.903	0.852	0.924	1.000	0.9628	0.0185	9
Boltzma	ınn equa	tion par	ameters	s as dete	ermined	by nonl	inear r	egressio	1			
Vh	-3.61	-6.20	-4.72	-3.38	0.72	-7.56	-7.73	-4.48	-1.69	-4.29	0.91	9
k	4.94	4.97	5.25	5.53	5.40	5.00	3.99	4.55	4.99	4.96	0.15	9
Inactivation properties of TTX-R sodium channels in mouse DRG neurons												
Cell	1	2	3	4	5	6	7	8	9			
mV				N	Normali:	zed Con				Mean		N
-58	1.000	1.000	1.000	1.000	1.000	1.000	1.000		1.000	1.0000	0.0000	
-5 3	0.972	0.990	0.988	1.009	1.002	0.961	0.989		0.988	0.9877	0.0047	
40	0.010	0.062	0.044	0.006	1.012	0.013	0.052	0.965	0.950	0.9572	0.0108	9

Cell	1	2	3	4	5	6	7	8	9			
mV	•	-		-	ormaliz	ed Cond	luctance	,		Mean	SEM N	
-58	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.0000	0.0000 9	
-53	0.972	0.990	0.988	1.009	1.002	0.961	0.989	0.991	0.988	0.9877	0.0047 9	
-48	0.919	0.963	0.944	0.996	1.013	0.913	0.952	0.965	0.950	0.9572	0.0108 9	
-43	0.810	0.878	0.869	0.943	0.974	0.805	0.870	0.892	0.859	0.8777	0.0183 9	
-38	0.625	0.759	0.732	0.815	0.875	0.620	0.697	0.726	0.663	0.7236	0.0282 9	
-33	0.369	0.567	0.513	0.583	0.680	0.420	0.421	0.452	0.390	0.4885	0.0347 9	
-29	0.140	0.321	0.266	0.272	0.377	0.222	0.158	0.184	0.148	0.2321	0.0277 9	
-23	0.046	0.125	0.087	0.079	0.145	0.125	0.049	0.084	0.058	0.0888	0.0119 9	
-19	0.023	0.035	0.032	0.033	0.050	0.078	0.023	0.060	0.035	0.0410	0.0061 9	
-14	0.013	0.011	0.015	0.015	0.023	0.042	0.013	0.035	0.020	0.0210	0.0036 9	
-9	0.003	0.003	0.006	0.005	0.010	0.021	0.005	0.021	0.007	0.0091	0.0023 9	
-4	0.001	0.002	0.001	0.000	0.000	0.005	0.002	0.009	0.003	0.0025	0.0010 9	
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000 9	
Roltzmai	nn eanat	ion nar	ameters	as dete	rmined	by nonli	near re	gression				

Boltzmann equation parameters as determined by nonlinear regression

Vh	-36.20	-32.35	-33.04	-32.68	-30.89	-35.43	-35.16	-34.53	-35.62	-33.99	0.60	9
k	-4.71	-4.78	-4.41	-3.66	-3.83	-5.54	-3.82	-3.97	-3.95	-4.30	0.21	9

	20 40 60
	ATCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
9 4/25whole >	ATCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
A 4/25whole >	ATCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
B 4/25whole ▶	ATCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
Intron1-in/A-Notl	
Intron1-in/B-Notl ▶	
Intron1-out/A-Swal €	
Intron1-out/B-Swal ◀	
Intron1-out/A-Swal/I-Ceul	
Intron1-out/B-Swal/I-Ceul ◀	
	80 100 120
	TYCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTC
9 4/25whole >	TTCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTC
A 4/25whole >	TCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTC
B 4/25whole ▶	TCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTCCTTCTC
Intron1-in/A-Notl ▶	
Intron1-in/B-Notl ▶	
intron1-out/A-Swal ◀	
Intron1-out/B-Swal ◀	
Intron1-out/A-Swal/I-Ceul 4	
Intron1-out/B-Swal/I-Ceul ◀	
	140 160 180
	TCCTTCTCCTTCTNN: NNNN CHARLES SENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
9 4/25whole >	TCCTTCTCCTTCTCCTTCTCCTTCCCCTTCTCCTTCTCCTTCTC
A 4/25whole >	TCCTTCTCCTTCTCT
B 4/25whole ▶	TCCTTCTCCCTTCTCCTTCT
Intron1-in/A-NotI▶	
Intron1-in/B-NotI▶	
Intron1-out/A-Swal ◀	
Intron1-out/B-Swal ◀	
Intron1-out/A-Swal/I-Ceul 4	
Intron1-out/B-Swal/I-Ceul ◀	

•	200 220 240 CCCTTTTCTCTCCTCCTTCTTCCTT
9 4/25whole > A 4/25whole > B 4/25whole > Intron1-in/A-Notl > Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/A-Swal 4	TCCCTTTTCTCTGCCTCCTCCTTCTCCTCCTCCTCCTTCTT
Intron1-out/B-Swal/I-Ceul ◀	
	260 280 300 CTCTTCTTCTKWYYKCRKYSBYCCTTTCGAATGACKATSKMGSMMRYGACAACCAACAAT
9 4/25whole > A 4/25whole > B 4/25whole > Intron1-in/A-Notl > Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/B-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4	CTCTTCTTCTTCATTGCTCCTTTCGAATGACTATGTAGCAAACGACAACCAAC
	320 340 360 CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGTYCCCAGAATTCCAA
9 4/25whole > A 4/25whole > B 4/25whole > Intron1-in/A-Notl > Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/B-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4	CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGACCCCAGAATTCCAA CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGTTCCCAGAATTCCAA CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGTCCCCAGAATTCCAA CAGCAACC

380 400 420 ATGTCACNCACTTGCAGAAACTACCTGCAACCGACAAANTCTCGCCCCTGCTAGAGCAAG ATGTCACACACTTGCAGAAACTACCTGCAACCGACAAAGTCTCGCCCCTGCTAGAGCAAG 9 4/25whole ▶ ATGTCACACACTTGCAGAAACTACCTGCAACCGACAAAATCTCGCCCCTGCTAGAGCAAG A 4/25whole > ATGTCACGCACTTGCAGAAACTACCTGCAACCGACAAAATCTCGCCCCTGCTAGAGCAAG B 4/25whole ▶ Intron1-in/A-NotI Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/A-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4 440 460 AGGCAAATCATAGTCAGCTGCTGTGGNTCAATCYKNAAGCAGCTCCATATCCCACACCCG AGGCAAATCATAGTCAGCTGCTGTGG.TCAATCCG.AAGCAGCTCCATATCCCACACCCG 9 4/25whole > AGGCAAATCATAGTCAGCTGCTGCGGGTCAATCTTGAAGCAGCTCCATATCCCACACCCG A 4/25whole > AGGCAAATCATAGTCAGCTGCTGTGG.TCAATCTG.AAGCAGCTCCATATCCCACACCCG B 4/25whole ▶ Intron1-in/A-NotI▶ Intron1-in/B-Not1 ▶ Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/A-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4 500 520 GGATTAAAACAGACATACTCATAATATTECTG GATTETCTTCTTAAAGAAANGCAAAAT GGATTAAAACAGACATACTCATAATATTTCTGTGATTTTCTTCTTAAAGAAA.GCAAAAT 9 4/25whole > GGATTAAAACAGACATACTCATAATATTTCTGGGATTCTCTTAAAGAAAAGCAAAAT A 4/25whole > GGATTAAAACAGACATACTCATAATATT.CTGTGATTCTCTTCTTAAAGAAA.GCAAAAT B 4/25whole ▶ Intron1-in/A-Notl > Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/A-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4

•	560 580 600 TTNYACTGCAATGAGGGAAAGATG TCANAATTTATAAAGC TAGTTTGTGGGGGAATGG
9 4/25whole > A 4/25whole > B 4/25whole > Intron1-in/A-Notl > Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/B-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4	TTTCACTGCAATGAGGGAAAGATG.TCAAAATTTATAAAGC.TAGTTTGTGGGGGAATGG TT.CACTGCAATGAGGGAAAGATG.TCAGAATTTATAAAGC.TAGTTTGTGGGGGAATGG TTTTACTGCAATGAGGGAAAGATGGTCAAAATTTATAAAGCCTAGTTTGTGGGGGAATGG
	620 640 660 GATGGAGCTTCTTACAAAGCAAGGAGNAARAC
9 4/25whole A 4/25whole B 4/25whole Intron1-in/A-Notl Intron1-in/B-Notl Intron1-out/A-Swal Intron1-out/B-Swal Intron1-out/B-Swal/I-Ceul Intron1-out/	GATGGAGCTTCTTACAAAGCAAGGAGAAA.CAATGGCTTCAGGGATATGGAGCAAAGAC GATGGAGCTTCTTACAAAGCAAGGAG.AAAGCAATGGCTTCAGGGATATGGAGCAAAGAC GATGGAGCTTCTTACAAAGCAAGGAGGAAG.CAATGGCTTCAGGGATATGGAACAAAAAC
	680 700 720 ACACCTGTGCTACCTGGATTTGTAGATGGACTGCAGAGGATGGAGGGGGGGG
9 4/25whole A 4/25whole B 4/25whole Intron1-in/A-Noti Intron1-in/B-Noti Intron1-out/A-Swal Intron1-out/B-Swal Intron1-out/B-Swal/I-Ceul Intron1-out/B-Swal/I-Ceul	ACACCTGTGCTACCTGGATTTGTAGATGGACTGCAGAGGATGGAGGGGGGGG

•	740 760 780 TATTGARGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAAGTAGGGGTGATGG
9 4/25whole ▶	TATTGAAGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAA
A 4/25whole >	.TATTGAGGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAA
B 4/25whole >	GTATTGAGGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAA
Intron1-in/A-Not1	
Intron1-in/B-Notl ▶	
Intron1-out/A-Swal 4	
Intron1-out/B-Swal €	
Intron1-out/A-Swal/I-Ceul 4	
Intron1-out/B-Swal/I-Ceul 4	
milioni odino ondini odini	
	800 820 840 ACAGGAGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTT-\YTTCCTYMSRE\YC
9 4/25whole ▶	ACAGGAGGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTTATTTTCCTCCCAGAAGAG
A 4/25whole >	ACAGGAGGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTTATTTTCCTCCCAGAAGAG
B 4/25whole ▶	ACAGGAGGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTTATTTTCCTCCCAGAAGAG
Intron1-in/A-Not1	
Intron1-in/B-Notl >	
Intron1-out/A-Swal €	GAG
Intron1-out/B-Swal4	GGTCAGGCTGTCACCACTCTCTGGATTT
Intron1-out/A-Swal/I-Ceul ◀	GAG
Intron1-out/B-Swal/I-Ceul ◀	GGTCAGGCTGTCACCACTCTCTGGTTCGCTACCTTAGGACCGTT
	860 880 900
	KWRWWW.CSWTYYCCAAGAAGWWYKMAA SWTEGRRYYSYYMT KKKRYSMKT GGAACT
9 4/25whole >	TGTAAATCCTTCCCCAAGAAGAATGAGAAGATGGAGTTCCCCTTTGGGTCCGTGGGAACT
A 4/25whole >	TGTAAATCCTTCCCCAAGAAGAATGAGAAGATGGAGTTCCCCTTTGGGTCCGTGGGAACT
B 4/25whole ▶	TGTAAATCCTTCCCCAAGAAGAATGAGAAGATGGAGTTCCCCTTTGGGTCCGTGGGAACT
Intron1-in/A-NotI▶	
Intron1-in/B-Notl ▶	
Intron1-out/A-Swal ◀	TGTAAATCCTTCCCCAAGAAGATTT
Intron1-out/B-Swal 4	
Intron1-out/A-Swal/I-Ceul ◀	TGTAAATCCTTCCCCAAGAAGTTCGCTACCTTAGGACCGTTATAGTTACGATTT
Intron1-out/B-Swal/I-Ceul ◀	ATAGTTACGATTT

,	920 ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC	940	960
9 4/25whole >	ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC		
A 4/25whole >	ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC		
B 4/25whole >	ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC		
Intron1-in/A-NotI▶			
Intron1-in/B-NotI ▶			
Intron1-out/A-Swal ◀			
Intron1-out/B-Swal ◀			
Intron1-out/A-Swal/I-Ceul ◀			
Intron1-out/B-Swal/I-Ceul 4			

Appendix G:

Primers for 5' Rapid Amplification of cDNA Ends:

GCCAGCGACTCTGGAGTGAACCGTC- Scn10a5'RACE1 GACCAGCTCTGCTGGGAGCTCGC- Scn10a5'RACE2 GAACCTGGGCAGCTGGTTACAGGCC- Scn10a5'RACE3

RACE pro	ducts					
cn10a RAC	E Clone B from A	TG out				
equence R	lange: 1 to 245 5	'UTR (245	+ cds)			
	10 CCGGACAAGTGTAA	20 GTTTCGCAG. 5' 1	AGCTGGGGTCT	40 CCAGCTTAC CN10A	TTCTGCTAAT	60 GCTACCC >
	70 CAGGCCTTTAGACG	GAGAACAGA'		GTTTCTTCC	rgccatgcgc	
	130 GAGCGGATCTCATG	ATCCCCGAG	150 CTCATGGCTTI UTR MOUSE S	CAGTAGAGG	CAACCTGGGC'	180 TAAGAAG >
	190 AGATCTCCGACTTA	CGGAGCAGC		TAAATCCTT	CCCCAAGAAG	
	>Start_codon 					
AGC GCC	>Start_codon AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCGC CAGGCCTCAGTTGGACT	TGGGAACTA(CGCCGCCAA(TTGAAGGCC	CCAACTTCAGA GAAGGGCAGAC	CTAAGCAAA	GAGGACAGAA	
AGC GCC Scn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC	TGGGAACTA(CGCCGCCAA(TTGAAGGCCT TG out	CCAACTTCAGA GAAGGGCAGAC TGTAACCAGCT	CTAAGCAAA	GAGGACAGAA	
AGC GCC cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCGC CAGGCCTCAGTTGGAC CE Clone I from A	TGGGAACTAC CGCCGCCAAC TTGAAGGCCT TG out 'UTR (210: 20 GCTAATGCT	CCAACTTCAGA GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT	CTAAGCAAAC GCCCAGGTTC 40 TTAGACGGA	EAGGACAGAA(: : 50 GAACAGATGG	GGACAAGA 60 CAGATGG
AGC GCC Ccn10a RAC	AGATG TTCCCCTTTGGGTCCGT AGATCGNTGCCCACCGC CAGGCCTCAGTTGGACT CE Clone I from A Range: 1 to 209 5 ACGCGGGGACTTCT 70 AGTTTCTTCCTGCC	TGGGAACTAGCCCCCAAGTTGAAGGCCCCTTGAAGGCCCCTTGAATGCTTGAATGCTTAATGCTTAATGCGCGAACCCGCGAACCCCGCGAACCCCCAAACCCTAATGCTAATGCGCGAACCCCGAACCCGCGAACCCGCGAACCCGCGAACCCGCGAACCCGCGAACCCGCGAACCCCGAACCCCGAACCCGCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCAACCCCGAACCCCAACCCCGAACCCCGAACCCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCC	CCAACTTCAGA GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT SCN10A 5'UT	CTAAGCAAAC GCCCAGGTTC 40 PTTAGACGGAC R 100 PTCTCATGATC	50 SAACAGATGG 110 CCCCGAGCTC	60 CAGATGG 120 ATGGCTT
AGC GCC Scn10a RAC	AGATG TTCCCCTTTGGGTCCGT AGATCGNTGCCCACCGC CAGGCCTCAGTTGGACT CE Clone I from A Range: 1 to 209 5 ACGCGGGGACTTCT 70 AGTTTCTTCCTGCC	TGGGAACTAGCCCCCAAGTTGAAGGCCCCTTGAAGGCCCCTTGAATGCTTGAATGCTTAATGCTTAATGCGCGAACCCGCGAACCCCGCGAACCCCCAAACCCTAATGCTAATGCGCGAACCCCGAACCCGCGAACCCGCGAACCCGCGAACCCGCGAACCCGCGAACCCGCGAACCCCGAACCCCGAACCCGCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCGAACCCCAACCCCGAACCCCAACCCCGAACCCCGAACCCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCC	CCAACTTCAGA GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT SCN10A 5'UT	40 PTTAGACGGA 100 PTCTCATGAT	50 SAACAGATGG 110 CCCCGAGCTC	60 CAGATGG 120 ATGGCTT

190 200 | AATCCTTCCCCAAGAAGAATGAGAAGATG __SCN10A 5'UT___>

 $\label{thm:caccact} GAGTTCCCCTTTGGGTCCGTGGGAACTACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGCAGAGATCGAGAAGCAGACCAGACCTCACCACCACCGCGCCCCAAGAAGGGCAGAACCAAAGAGGACAAGAGGACAAGAGTGAGAAGCCCAGGCCTCAGTTGGACTTGAAGGCCTGTAACCAGCTGCCCAGGTTC$

Appendix H:

LM-PCR primers: used for LM-PCR out (upstream) walking into the first intron 5' from the translational start site: (simply used RACE primers on genomic template instead of cDNA)

GCCAGCGACTCTGGAGTGAACCGTC- Scn10a5'RACE1 GACCAGCTCTGCTGGGAGCTCGC- Scn10a5'RACE2 GAACCTGGGCAGCTGGTTACAGGCC- Scn10a5'RACE3

Sequence of LM-PCR product generated by walking into the first intron 5' from the translational start site:

10 ATCTTCTTCTT	20 CTTCTTCTTC		40 TCTTCTTCTT		60 CTTCTTCTTC
					120
70 TTCTTCTCCTT	80 CTCCTTCTCC	90 TTCTCCTTCT	100 CCTTCTCCTI	110 CTCCTTCTCC	
130	140	150	160	170	180
TCCTTCTCCTT					
190	200	210	220	230	240
TCCCTTTTCTC	TGCCTCCTCC	TCCTTCTCCI	CCTCCTTCTT	CTCCTTCCT	CTTCTTCCTT
250	260	270	280	290	300
CTCTTCTTCTT	TCTTCATTGC	TCCTTTCGAA	ATGACTATGTA	AGCAAACGAC	AACCAACAAT
310 CAGCAACCTAC	320		340	350	360
370 ATGTCACACAC			400 CGACAAAGTO	410 TCGCCCCTGC	420 CTAGAGCAAG
		450	460	470	480
430 AGGCAAATCAT	440 AGTCAGCTGC				
490	500	510	520	530	540
ATTAAAACAGA	CATACTCATA			CTTAAAGAAA	GCAAAATTTT
550	560		580	590	600
CACTGCAATGA	GGGAAAGATG	TCAAAATTTA	ATAAAGCTAGI	TTGTGGGGG	AATGGGATGG
610	620	630	640	650	660
AGCTTCTTACA	AAGCAAGGAG			'ATGGAGCAAZ	AGACACACCT
670 GTGCTACCTGG	680 ביייייייייייייייייי		700 AGGATGGAGGG	710	720 GGTATTGAA
730 GAGCTGGAGAC	740 AGAGATAGGG		760 STCAATCAAGT	770 AGGGGTGAT	780 GACAGGAGG
790	800	810	820	830	840
GTTGCAGTGGT					
850	860	870	880	890	900
CTTCCCCAAGA				CCGTGGGAA	CTACCAACTT
910	920				
CAGACGGTTCA	CTCCAGAGTC	GCTGGC			

Appendix I:

LM-PCR primers: used for LM-PCR out (upstream) from the RACE products

CAGGTTGCCTCTACTGAAAGCCATGAGC –LMPCRScn10a-1 GCTCAGCATTCGCGCATGGCAGG –LMPCRScn10a-2 CTCCATCTGCCATCTGTTCTCCGTC –LMPCRScn10a-3 CTCCATCTGCCATCTGTTCTCCGTC –LMPCRScn10a-3a CTCCGTCTAAAGGCCTGGGGTAGC –LMPCRScn10a

Sequence of combined two rounds of LM-PCR 5' from ends of RACE products:

10	20	30	40	50	60
ATTCCAGTTGCTG	SAGTGGAGAGA	GCACTGTAGG	GTCATGGAAG(GACAGTGGGGF	GGTCTG
70	80	90	100	110	120
TTAGAGGTCCTTG	SAAATTATAAA	GTGACCTCGC	CATGATGGTG	GTCTCAGAGAT	CGAGAG
130 ATGATGTAATCAG			160 rtagaggccc		180 CTGTGG
190	200	210	220	230	240
ACGAGGGACGGCT	CTTGGATTAC	CTCTAGATGC	rgggcttgtg <i>i</i>	AGTCCAGGCAA	AGCAGAG
250	260	270	280	290	300
TGTTCTTGGAGAG	GCTTCTCTGG	GGGAGGATCA	FTCTGAGCAG	GGCACAGGCAC	CAGAAAT
310		330	340	350	360
CATTAGTCCATCT		CTGAGATGTT	AGTGGAGTGT	CCATGAAGGGA	AATTCA
370	380	390	400	410	420
GGCTTCTACCACA	TTAGTGTATA	FTTAAATCTG	ACACCAGGAGA	AGAGATTTATO	SATGGAG
430	440	450	460	470	480
CTGACAGACTCCG	GTGCCATGTC	AGGTAGGTGA	CTGAAGCCCT	GGGGAAGGAGA	AGGCGTA
490 GGATGGAATCTTA					
550 GGCCAGAGAAGCT					
610 GCAGCTAATCCTG					
670 GAGACCAGTAGAA		ATTCCGGGTG'			
730 TCTTCCTTCTTGG					
790 TCAAAGAAGAGAG					
850 CGTGGTGGGGAAC					
910	920	930	940	950	960
TATCTTTGTCTGT	PATACAGAAAG	CAGAGAGAGC	CAACTGGGAA	FGACTTGTGGC	TTTTGG

CAACGGGTGCTCTGCCACGCAGGGGCAGCGGTGGGACTCAGCCCATCCTGCTAAGGA 3620 3630 3640 3650 $\tt CGGGCAGCCTGAGCCAGGCTTGGGAGTCTGTCATGGCTGCCAGACGAATCATTATCTAAT$ TGCAGCCTTTTCTCTTCCTTAGGTTTCAGCAGGTCCCGAGAGAGCATTTAAAATCGCATT TACTACTTTACCATCTAATCACACATAAGCCTCTCCCTATACCCTCCACCCTCCTTCCAT TCAGAGTGTACTTTCTGGAGCCCATCCAGCAAGCAGGGTGGAACTCATGACGGGAAATGG GAACGCCCCACGAAGCCGTGATTCCTTGTAGATCCTTGAGTGATGGACGGGTGAGGTT ${\tt TCCGTCAGGCAAGCCCAGCCACCTTCGTGGAGGAGCCCCGGACAAGTGTAAGTTTCGCAG}$ AGCTGGGGTCTCCAGCTTACTTCTGCTAATGCTACCCCAGGCCTTTAGACGGAGAACAGA

TGGCAGATGGAG

Appendix J:

Primers for genomic screening of mouse library:

CCTGTGTGTGCTGTAAAAAGGATC - EX1-3' OUT TGAGAAGATGGAGTTCCCCTTTGG – EX1-5' IN

Amplified fragment for PCR screening of mouse genomic library:

	10	20	30	40	50	60
TGAG	AAGATGGAG	rtcccctttg(GTCCGTGGG.	AACTACCAAC	TTCAGACGGT'	CACTCC
	70	80	90	100	110	120
AGAG	TCGCTGGCA	GAGATCGAGA?	AGCAGATCGC'	TGCCCACCGCC	GCCGCCAAGAA	AGGGCAG
	130	140	150	160	170	180
AACT	AAGCAAAGA	GGACAGAAGGA	ACAAGAGTGA	GAAGCCCAGG(CCTCAGTTGG	\CTTGAA
	190	200	210	220	230	240
GGCC	TGTAACCAG	CTGCCCAGGT	CTATGGCGA	GCTCCCAGCA	GAGCTGGTCG(GGAGCC
	250	260	270			
CCTG	GAGGACCTG	GATCCTTTTT	ACAGCACACA	CAGG		

Souslova VA, Fox M, Wood JN, and Akopian AN "Cloning and Characterization of a Mouse Sensory Neuron Tetrodotoxin-Resistant Voltage-Gated Sodium Channel Gene, Scn10a" *Genomics* **41**, 201-209 (1997).