

SEQUENCE LISTING

<110> ITO, Kikukatsu

<120> Plant Thermogenic Genes and Proteins

<130> 2001-1838A/LC/00653

<140> 10/009,962

<141> 2002-01-23

<150> PCT/JP00/03806

<151> 2000-06-12

<150> JP11-167439

<151> 1999-06-14

<160> 12

<170> PatentIn Ver. 2.0

<210> 1

<211> 1525

<212> DNA

<213> Symplocarpus foetidus

<220>

<221> CDS

<222> (280)..(1188)

<221> poly A site

<221> (1271)..(1276)

<300>

<301> Ito, K.

<302> Isolation of two distinct cold-inducible cDNAs encoding plant uncoupling proteins from the spadix of skunk cabbage (Symplocarpus foetidus)

<303> Plant Sci.

<304> 149

<305> 2

<306> 167-173

<307> Dec-1999

<308> GenBank AB024733

<309> 2000-02-25

<400> 1

gaggattcgc agaagaaaagg ccagaacccg attccttccc gtcttcttct cttccggccc 60

aattgcagt tttcgacgc ggcgtcatcat caagaccctc cgcccttccg cgccaaacgc 120

cttccacccc caccaatcg ccctccgtt cccgaaatat tccttcttcc tcctccctt 180

tcctctctac ataaacccta accacccat cctctccctcc cgcttccgac caccctgcat 240

tctactggga gcccatttga tcgagggttc cggcgagg atg ggc gat cac ggc 294

Met Gly Asp His Gly

1 5

ccg agg acc gag atc tcg ttt gcc ggc agt tcg cga gca gca ttc gcc 342

Pro Arg Thr Glu Ile Ser Phe Ala Gly Ser Ser Arg Ala Ala Phe Ala

10 15 20

gct tgc ttc gcc gag ctt tgc acg att ccg ttg gac act gct aaa gtt 390

Ala Cys Phe Ala Glu Leu Cys Thr Ile Pro Leu Asp Thr Ala Lys Val				
25	30	35		
agg ctt caa ctc caa aag aaa gca gta aca ggt gat gtg gtg gct ttg				438
Arg Leu Gln Leu Gln Lys Lys Ala Val Thr Gly Asp Val Val Ala Leu				
40	45	50		
cca aaa tac agg gga atg ttg ggc act gtt gcc act att gcc agg gag				486
Pro Lys Tyr Arg Gly Met Leu Gly Thr Val Ala Thr Ile Ala Arg Glu				
55	60	65		
gaa ggt ttg tcg gca ctc tgg aaa gga att gta ccc ggt ttg cat cgt				534
Glu Gly Leu Ser Ala Leu Trp Lys Gly Ile Val Pro Gly Leu His Arg				
70	75	80	85	
caa tgc ctc ttt gga ggg cta cga att ggg ttg tat gaa cca gtt aag				582
Gln Cys Leu Phe Gly Gly Leu Arg Ile Gly Leu Tyr Glu Pro Val Lys				
90	95	100		
tcc ttt tat gtt gga gat aac ttt gtt gga gat att cct tta tcc aag				630
Ser Phe Tyr Val Gly Asp Asn Phe Val Gly Asp Ile Pro Leu Ser Lys				
105	110	115		
aaa ata ctt gct ggg ctt aca aca ggt gca tta gca att ata gtt gca				678
Lys Ile Leu Ala Gly Leu Thr Thr Gly Ala Leu Ala Ile Ile Val Ala				
120	125	130		
aat ccc act gac ctt gtt aaa gtt cga ctt caa tct gaa ggt aaa ctc				726
Asn Pro Thr Asp Leu Val Lys Val Arg Leu Gln Ser Glu Gly Lys Leu				
135	140	145		
ccc cct ggg gta ccg aga cgt tat tca ggg gcg cta aat gct tat tca				774
Pro Pro Gly Val Pro Arg Arg Tyr Ser Gly Ala Leu Asn Ala Tyr Ser				
150	155	160	165	
acc ata gtc aaa aag gaa gga ctt ggt gct ctg tgg act ggg ctt ggt				822
Thr Ile Val Lys Lys Glu Gly Leu Gly Ala Leu Trp Thr Gly Leu Gly				
170	175	180		
cct aat att gcc cgc aat gct att ata aat gct gct gaa ttg gcc agt				870
Pro Asn Ile Ala Arg Asn Ala Ile Ile Asn Ala Ala Glu Leu Ala Ser				
185	190	195		
tat gat caa gtg aaa cag aca atc tta aaa tta cca gga ttc tca gat				918
Tyr Asp Gln Val Lys Gln Thr Ile Leu Lys Leu Pro Gly Phe Ser Asp				
200	205	210		
aat att ttt act cat att tta gcc ggt ctg ggg gca ggt ttt ttt gcc				966
Asn Ile Phe Thr His Ile Leu Ala Gly Leu Gly Ala Gly Phe Phe Ala				
215	220	225		
gtc tgt atc ggt tct cct gtt gat gtg atg aag tct aga atg atg gga				1014
Val Cys Ile Gly Ser Pro Val Asp Val Met Lys Ser Arg Met Met Gly				
230	235	240	245	
gat tca gcc tac aaa agc aca ttt gat tgt ttc atc aag aca ttg aaa				1062
Asp Ser Ala Tyr Lys Ser Thr Phe Asp Cys Phe Ile Lys Thr Leu Lys				
250	255	260		
aat gat ggg ctt ctt gct ttt tac aag ggg ttt atc cca aac ttt ggt				1110
Asn Asp Gly Leu Leu Ala Phe Tyr Lys Gly Phe Ile Pro Asn Phe Gly				
265	270	275		
cgg tta gga tcg tgg aat gtg atc atg ttt ttg acc ttg gag cag gtc				1158
Arg Leu Gly Ser Trp Asn Val Ile Met Phe Leu Thr Leu Glu Gln Val				
280	285	290		
aag aag ttt ttc atc aaa gag gtc cca aat taatacatgg aactcggata				1208
Lys Lys Phe Phe Ile Lys Glu Val Pro Asn				
295	300			
ggagttagaaaa gaaagggttt ttgtggatt ttctctaccg gtgtggatcc tggcgagaga				1268
caaataaaatc ttccctgactg ctcagatgtg tacctttttt atgaatggtt cttttcttat				1328
agaggacaga gaaaagaaaa aaaaaatcat tgtcattac tctttttccc catttctgct				1388
gctaattctt gtaggagaag aaaagtctta cattgagtga taacgttgtt ctctgcatcc				1448

attattttc agagatacta tttgacacat gaaaagtaat gcacatcagg tttttttaa 1508
aaaaaaaaaaaa aaaaaaaaa 1525

<210> 2
<211> 303
<212> PRT
<213> Symplocarpus foetidus

<400> 2
Met Gly Asp His Gly Pro Arg Thr Glu Ile Ser Phe Ala Gly Ser Ser
1 5 10 15
Arg Ala Ala Phe Ala Ala Cys Phe Ala Glu Leu Cys Thr Ile Pro Leu
20 25 30
Asp Thr Ala Lys Val Arg Leu Gln Leu Gln Lys Lys Ala Val Thr Gly
35 40 45
Asp Val Val Ala Leu Pro Lys Tyr Arg Gly Met Leu Gly Thr Val Ala
50 55 60
Thr Ile Ala Arg Glu Glu Gly Leu Ser Ala Leu Trp Lys Gly Ile Val
65 70 75 80
Pro Gly Leu His Arg Gln Cys Leu Phe Gly Gly Leu Arg Ile Gly Leu
85 90 95
Tyr Glu Pro Val Lys Ser Phe Tyr Val Gly Asp Asn Phe Val Gly Asp
100 105 110
Ile Pro Leu Ser Lys Lys Ile Leu Ala Gly Leu Thr Thr Gly Ala Leu
115 120 125
Ala Ile Ile Val Ala Asn Pro Thr Asp Leu Val Lys Val Arg Leu Gln
130 135 140
Ser Glu Gly Lys Leu Pro Pro Gly Val Pro Arg Arg Tyr Ser Gly Ala
145 150 155 160
Leu Asn Ala Tyr Ser Thr Ile Val Lys Lys Glu Gly Leu Gly Ala Leu
165 170 175
Trp Thr Gly Leu Gly Pro Asn Ile Ala Arg Asn Ala Ile Ile Asn Ala
180 185 190
Ala Glu Leu Ala Ser Tyr Asp Gln Val Lys Gln Thr Ile Leu Lys Leu
195 200 205
Pro Gly Phe Ser Asp Asn Ile Phe Thr His Ile Leu Ala Gly Leu Gly
210 215 220
Ala Gly Phe Phe Ala Val Cys Ile Gly Ser Pro Val Asp Val Met Lys
225 230 235 240
Ser Arg Met Met Gly Asp Ser Ala Tyr Lys Ser Thr Phe Asp Cys Phe
245 250 255
Ile Lys Thr Leu Lys Asn Asp Gly Leu Leu Ala Phe Tyr Lys Gly Phe
260 265 270
Ile Pro Asn Phe Gly Arg Leu Gly Ser Trp Asn Val Ile Met Phe Leu
275 280 285
Thr Leu Glu Gln Val Lys Lys Phe Phe Ile Lys Glu Val Pro Asn
290 295 300

<210> 3
<211> 2991
<212> DNA
<213> Symplocarpus foetidus

<220>
<221> CDS
<222> (286)..(1089)
<221> poly A site

<222> (1171)..(1176)
<221> poly A site
<222> (1243)..(1248)

<300>
<301> Ito, K.
<302> Isolation of two distinct cold-inducible cDNAs encoding plant uncoupling proteins from the spadix of skunk cabbage (*Symplocarpus foetidus*)
<303> Plant Sci.
<304> 149
<305> 2
<306> 167-173
<307> Dec-1999
<308> GenBank AB024734
<309> 2000-02-25

<400> 3

ttgtggtgac	gagtgacgag	gattcgcaga	agaaaaggcca	gaacccgatt	ccttcccgtc	60	
ttcttctcct	tccgccta	at tgcagtttt	cgca	cggt	catcatcaag	accctccg	120
tttccgcgcc	aaacgccttc	cacccaatcc	ctccgttcc	cgaaatattc	cccttccctc	180	
cctttcttc	tctacataaaa	ccctaaccac	ccccatc	tcctcccgct	tccgaccacc	240	
ctgcattcta	ctggatccc	atttgatcga	cgttcccg	cgagg	atg ggc	gat cac	297
					Met Gly Asp His		
				1			
ggc ccg agg acc gag atc tcg ttt gcc ggc agt tcg cga gca gca ttc							345
Gly Pro Arg Thr Glu Ile Ser Phe Ala Gly Ser Ser Arg Ala Ala Phe							
5	10	15	20				
gcc gct tgc ttc gcc gag ctc tgt acg att ccg ttg gac act gct aaa							393
Ala Ala Cys Phe Ala Glu Leu Cys Thr Ile Pro Leu Asp Thr Ala Lys							
25	30	35					
gtt agg ctt cag ctc caa aag aaa gca gta aca ggt gat gtg gtg gct							441
Val Arg Leu Gln Leu Gln Lys Lys Ala Val Thr Gly Asp Val Val Ala							
40	45	50					
ttg cca aaa tac agg gga atg ttg ggc act gtt gcc act att gcc agg							489
Leu Pro Lys Tyr Arg Gly Met Leu Gly Thr Val Ala Thr Ile Ala Arg							
55	60	65					
gag gaa ggt ttg tcg gca ctc tgg aaa gga att gta ccc ggt ttg cat							537
Glu Glu Gly Leu Ser Ala Leu Trp Lys Gly Ile Val Pro Gly Leu His							
70	75	80					
cgt caa tgc ctc ttt gga ggg cta cga att ggg ttg tat gaa cca gtt							585
Arg Gln Cys Leu Phe Gly Gly Leu Arg Ile Gly Leu Tyr Glu Pro Val							
85	90	95	100				
aag tcc ttt tat gtt gga gat aac ttt gtt gga gat att cct tta tcc							633
Lys Ser Phe Tyr Val Gly Asp Asn Phe Val Gly Asp Ile Pro Leu Ser							
105	110	115					
aag aaa ata ctt gct ggg ctt aca aca ggt gca tta gca att ata gtg							681
Lys Lys Ile Leu Ala Gly Leu Thr Thr Gly Ala Leu Ala Ile Ile Val							
120	125	130					
gca aat ccg act gac ctt gtt aaa gtt cga ctt caa tct gaa ggt aaa							729
Ala Asn Pro Thr Asp Leu Val Lys Val Arg Leu Gln Ser Glu Gly Lys							
135	140	145					
ctc ccc cct ggg gta cca aga cgt tat tca ggg gcg cta aat gct tat							777
Leu Pro Pro Gly Val Pro Arg Arg Tyr Ser Gly Ala Leu Asn Ala Tyr							
150	155	160					
tca acc ata gtc aaa aag gaa ctt ggt gct ctg tgg act ggg ctt							825
Ser Thr Ile Val Lys Lys Glu Gly Leu Gly Ala Leu Trp Thr Gly Leu							

165	170	175	180	
ggt cct aat att gcc	cgc aat gct att ata	aat gct gct gaa ttg	gcc	873
Gly Pro Asn Ile Ala	Arg Asn Ala Ile	Asn Ala Ala Glu	Leu Ala	
185	190	195		
agt tat gat caa gtg	aaa cag atg aag tct	aga atg atg gga	gat tca	921
Ser Tyr Asp Gln Val	Lys Gln Met Lys	Ser Arg Met Met	Gly Asp Ser	
200	205	210		
gcc tac aaa agc aca	ttt gat tgt ttc	atc aag acg ttg	aaa aat gat	969
Ala Tyr Lys Ser Thr	Phe Asp Cys Phe	Ile Lys Thr Leu	Lys Asn Asp	
215	220	225		
ggg cct ctt gct	ttt tac aag ggg	ttt atc cca aac	ttt ggt cggttta	1017
Gly Pro Leu Ala Phe	Tyr Lys Gly Phe	Ile Pro Asn Phe	Gly Arg Leu	
230	235	240		
gga tcg tgg aat	gtg atc atg ttt	ttg acc ttg	gag cag gtc aag aag	1065
Gly Ser Trp Asn Val	Ile Met Phe Leu	Thr Leu Glu	Gln Val Lys Lys	
245	250	255	260	
ttc ttc atc aaa gag	gtg cca aat taatacattt	aagtccgata	ggagtagaaaa	1119
Phe Phe Ile Lys	Glu Val Pro Asn			
265				
aaaagggttt ttgtgaaatt	ttctctaccg	gtgtggatcc	tggcgagaga	gaataaatct
tcctgactgc	tcagatgtt	taccttttt	atgaatggtt	ctttcttat
gaaaataaaa	gaaaaattca	ttgtcatgt	ctcttttcc	ccatttctgc
ctataccaag	cagacttgt	tgcttggctg	ctgctaattct	tgtagctgaa
acattgagtg	ataacgtt	tctctgcatt	cattattttt	cagagttact
tgaaaagttt	ttttttttt	ttttttttt	aacaggcagc	aaatagagga
cgactatcct	ctttattcat	taacaggcat	acaacttag	ggagagcatg
atcaaaatat	accctttat	tagacattt	gcgtacacag	ttgtcctca
tctagcagcc	aattttttaga	ccacattaag	acagagagaa	aacagggtta
ccatacatac	ataggtata	attaagatga	tgaacatgc	atagttcat
ttcttcacgt	acacatgtg	caccagctg	atggaatct	tggcacat
agtacgtcat	gtgcagacgt	tatatagtgt	tcttcttacc	attcagcagc
gcatcaaaca	ctgggtt	gacagggtat	gagggtaca	ttgcgatccc
tagggagtca	cattgcgtt	gattttatg	tatccagct	acacatgccg
gagttcctta	caagccaata	atccttccca	tcctccgaac	gtccccacct
gcatggtcga	tacgttgacc	acatggtcca	gcaaatacgc	atggcatgaa
ccagcgcgg	aagccctcaag	agcaacactg	acagggtgt	ttgcgactgc
ctaaccctcg	tgtacggaga	acacatttca	tacgcatcaa	atactgtagg
tttgcctgc	aagttcctcg	acgtcctgt	tacgggtat	tttaataaga
cgggaagaag	cgcgcgtc	tgctcgcgac	gggttaattc	tttgcattatggc
atggcttcgg	cagccctccag	tttcgttctc	actccggcct	cacttcgagc
ttccccctgc	cgcctcttt	cccagggtcg	caggaggctc	tttgcgatccc
agccgcgacg	accccccgc	ccggcgcgg	gtgggtggc	ggggcggagga
gccaccgatc	gggccaaga	gggggtcaaa	cggaggagc	cccccaagcc
gtgtggcttc	tggaggtaga	tttgcgttct	ccatcggtgt	ttttcaatt
taaattttat	tctcatctgt	ggacgaccc	tttgcgtccct	2619
aagatctccg	gaaggaatcc	tactggttca	ctcgccgtcg	2679
aggatccggc	gactcgatac	ccggcgtgtt	atcggtggtg	2739
tctcgaccaa	caactacgca	ctggacgaga	gctgttgcac	2799
tggtcggctcg	ggcatgtcac	ttcggttca	caaggtcaac	2859
cattcgtgt	aaactcttcc	tttcgcagtt	tatgcgaacg	2919
aaaaaaaaaa	aa	tttcgcacaa	tcctcagtt	2979
				2991

<210> 4
<211> 268
<212> PRT
<213> Symplocarpus foetidus

<400> 4
Met Gly Asp His Gly Pro Arg Thr Glu Ile Ser Phe Ala Gly Ser Ser
1 5 10 15
Arg Ala Ala Phe Ala Ala Cys Phe Ala Glu Leu Cys Thr Ile Pro Leu
20 25 30
Asp Thr Ala Lys Val Arg Leu Gln Leu Gln Lys Lys Ala Val Thr Gly
35 40 45
Asp Val Val Ala Leu Pro Lys Tyr Arg Gly Met Leu Gly Thr Val Ala
50 55 60
Thr Ile Ala Arg Glu Glu Gly Leu Ser Ala Leu Trp Lys Gly Ile Val
65 70 75 80
Pro Gly Leu His Arg Gln Cys Leu Phe Gly Gly Leu Arg Ile Gly Leu
85 90 95
Tyr Glu Pro Val Lys Ser Phe Tyr Val Gly Asp Asn Phe Val Gly Asp
100 105 110
Ile Pro Leu Ser Lys Lys Ile Leu Ala Gly Leu Thr Thr Gly Ala Leu
115 120 125
Ala Ile Ile Val Ala Asn Pro Thr Asp Leu Val Lys Val Arg Leu Gln
130 135 140
Ser Glu Gly Lys Leu Pro Pro Gly Val Pro Arg Arg Tyr Ser Gly Ala
145 150 155 160
Leu Asn Ala Tyr Ser Thr Ile Val Lys Lys Glu Gly Leu Gly Ala Leu
165 170 175
Trp Thr Gly Leu Gly Pro Asn Ile Ala Arg Asn Ala Ile Asn Ala
180 185 190
Ala Glu Leu Ala Ser Tyr Asp Gln Val Lys Gln Met Lys Ser Arg Met
195 200 205
Met Gly Asp Ser Ala Tyr Lys Ser Thr Phe Asp Cys Phe Ile Lys Thr
210 215 220
Leu Lys Asn Asp Gly Pro Leu Ala Phe Tyr Lys Gly Phe Ile Pro Asn
225 230 235 240
Phe Gly Arg Leu Gly Ser Trp Asn Val Ile Met Phe Leu Thr Leu Glu
245 250 255
Gln Val Lys Lys Phe Phe Ile Lys Glu Val Pro Asn
260 265

<210> 5
<211> 306
<212> PRT
<213> Solanum Tuberosum

<400> 5
Met Gly Gly Gly Asp His Gly Gly Lys Ser Asp Ile Ser Phe Ala Gly
1 5 10 15
Ile Phe Ala Ser Ser Ala Phe Ala Ala Cys Phe Ala Glu Ala Cys Thr
20 25 30
Leu Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Leu Gln Lys Lys Ala
35 40 45
Val Glu Gly Asp Gly Leu Ala Leu Pro Lys Tyr Arg Gly Leu Leu Gly
50 55 60
Thr Val Gly Thr Ile Ala Lys Glu Glu Gly Ile Ala Ser Leu Trp Lys
65 70 75 80

Gly Ile Val Pro Gly Leu His Arg Gln Cys Ile Tyr Gly Gly Leu Arg
85 90 95

Ile Gly Met Tyr Glu Pro Val Lys Asn Leu Tyr Val Gly Lys Asp His
100 105 110

Val Gly Asp Val Pro Leu Ser Lys Lys Ile Leu Ala Ala Leu Thr Thr
115 120 125

Gly Ala Leu Gly Ile Thr Ile Ala Asn Pro Thr Asp Leu Val Lys Val
130 135 140

Arg Leu Gln Ala Glu Gly Lys Leu Pro Ala Gly Val Pro Arg Arg Tyr
145 150 155 160

Ser Gly Ala Leu Asn Ala Tyr Ser Thr Ile Val Lys Gln Glu Gly Val
165 170 175

Arg Ala Leu Trp Thr Gly Leu Gly Pro Asn Ile Gly Arg Asn Ala Ile
180 185 190

Ile Asn Ala Ala Glu Leu Ala Ser Tyr Asp Gln Val Lys Glu Ala Val
195 200 205

Leu Arg Ile Pro Gly Phe Thr Asp Asn Val Val Thr His Leu Ile Ala
210 215 220

Gly Leu Gly Ala Gly Phe Phe Ala Val Cys Ile Gly Ser Pro Val Asp
225 230 235 240

Val Val Lys Ser Arg Met Met Gly Asp Ser Ala Tyr Lys Asn Thr Leu
245 250 255

Asp Cys Phe Val Lys Thr Leu Lys Asn Asp Gly Pro Leu Ala Phe Tyr
260 265 270

Lys Gly Phe Ile Pro Asn Phe Gly Arg Leu Gly Ser Trp Asn Val Ile
275 280 285

Met Phe Leu Thr Leu Glu Gln Ala Lys Lys Phe Val Lys Ser Leu Glu
290 295 300

Ser Pro
305

<210> 6
<211> 316
<212> PRT
<213> Arabidopsis thaliana

<400> 6
Met Val Ala Ala Gly Lys Ser Asp Leu Ser Leu Pro Lys Thr Phe Ala
1 5 10 15

Cys Ser Ala Phe Ala Ala Cys Val Gly Glu Val Cys Thr Ile Pro Leu
20 25 30

Asp Thr Ala Lys Val Arg Leu Gln Leu Gln Lys Ser Ala Phe Thr Leu
35 40 45

Ala Gly Asp Val Thr Leu Pro Lys Tyr Arg Gly Leu Leu Gly Thr Val
50 55 60

Gly Thr Ile Ala Arg Glu Glu Gly Leu Arg Ser Leu Trp Lys Gly Val
65 70 75 80

Val Pro Gly Leu His Arg Gln Cys Leu Phe Gly Gly Leu Arg Ile Gly
85 90 95

Met Tyr Glu Pro Val Lys Asn Leu Tyr Val Phe Thr Gly Lys Asp Phe
100 105 110

Val Gly Asp Val Pro Leu Ser Lys Lys Ile Leu Ala Gly Leu Thr Thr
115 120 125

Gly Ala Leu Gly Ile Met Val Ala Asn Pro Thr Asp Leu Val Lys Val
130 135 140

Arg Leu Gln Ala Glu Gly Lys Leu Ala Ala Gly Ala Pro Arg Arg Tyr
145 150 155 160

Ser Gly Ala Leu Asn Ala Tyr Phe Thr Ser Thr Ile Val Arg Gln Glu
165 170 175

Gly Val Arg Ala Leu Trp Thr Val Leu Gly Pro Asn Val Ala Arg Asn
180 185 190

Ala Ile Ile Asn Ala Ala Glu Leu Ala Ser Tyr Asp Gln Val Lys Glu
195 200 205

Thr Ile Leu Lys Ile Pro Gly Phe Thr Asp Asn Val Val Thr His Ile
210 215 220

Leu Ser Gly Leu Phe Thr Gly Ala Gly Phe Phe Ala Val Cys Ile Gly
225 230 235 240

Ser Pro Val Asp Val Val Lys Ser Arg Met Met Gly Asp Ser Gly Ala
245 250 255

Tyr Lys Gly Thr Ile Asp Cys Phe Val Lys Thr Leu Lys Ser Asp Gly
260 265 270

Pro Met Ala Phe Tyr Lys Gly Phe Ile Pro Asn Phe Gly Arg Leu Gly
275 280 285

Ser Phe Thr Trp Asn Val Ile Met Phe Leu Thr Leu Glu Gln Ala Lys
290 295 300

Lys Tyr Val Arg Glu Leu Asp Ala Ser Lys Arg Asn
305 310 315

<210> 7
<211> 307

<212> PRT

<213> Homo sapiens

<400> 7

Met Gly Gly Leu Thr Ala Ser Asp Val His Pro Thr Leu Gly Val Gln
1 5 10 15

Leu Phe Ser Ala Pro Ile Ala Ala Cys Leu Ala Asp Val Ile Thr Phe
20 25 30

Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Val Gln Gly Glu Cys Pro
35 40 45

Thr Ser Ser Val Ile Arg Tyr Lys Gly Val Leu Gly Thr Ile Thr Ala
50 55 60

Val Val Lys Thr Glu Gly Arg Met Lys Leu Tyr Ser Gly Leu Pro Ala
65 70 75 80

Gly Leu Gln Arg Gln Ile Ser Ser Ala Ser Leu Arg Ile Gly Leu Tyr
85 90 95

Asp Thr Val Gln Glu Phe Leu Thr Ala Gly Lys Glu Thr Ala Pro Ser
100 105 110

Leu Gly Ser Lys Ile Leu Ala Gly Leu Thr Thr Gly Gly Val Ala Val
115 120 125

Phe Ile Gly Gln Pro Thr Glu Val Val Lys Val Arg Leu Gln Ala Gln
130 135 140

Ser His Leu His Gly Ile Lys Pro Arg Tyr Thr Gly Thr Tyr Asn Ala
145 150 155 160

Tyr Arg Ile Ile Ala Thr Thr Glu Gly Leu Thr Gly Leu Trp Lys Gly
165 170 175

Thr Thr Pro Asn Leu Met Arg Ser Val Ile Ile Asn Cys Thr Glu Leu
180 185 190

Val Thr Tyr Asp Leu Met Lys Glu Ala Phe Val Lys Asn Asn Ile Leu
195 200 205

Ala Asp Asp Val Pro Cys His Leu Val Ser Ala Leu Ile Ala Gly Phe
210 215 220

Cys Ala Thr Ala Met Ser Ser Pro Val Asp Val Val Lys Thr Arg His
225 230 235 240

Ile Asn Ser Pro Pro Gly Gln Tyr Lys Ser Val Pro Asn Cys Ala Met
245 250 255

Lys Val Phe Thr Asn Glu Gly Pro Thr Ala Phe Phe Lys Gly Leu Val
260 265 270

Pro Ser Phe Leu Arg Leu Gly Ser Trp Asn Val Ile Met Phe Val Cys
275 280 285

Phe Glu Gln Leu Lys Arg Glu Leu Ser Lys Ser Arg Gln Thr Met Asp
290 295 300

Cys Ala Thr
305

<210> 8
<211> 309
<212> PRT
<213> Homo sapiens

<400> 8
Met Val Gly Phe Lys Ala Thr Asp Val Pro Pro Thr Ala Thr Val Lys
1 5 10 15

Phe Leu Gly Ala Gly Thr Ala Ala Cys Ile Ala Asp Leu Ile Thr Phe
20 25 30

Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Ile Gln Gly Glu Ser Gln
35 40 45

Gly Pro Val Arg Ala Thr Ala Ser Ala Gln Tyr Arg Gly Val Met Gly
50 55 60

Thr Ile Leu Thr Met Val Arg Thr Glu Gly Pro Arg Ser Leu Tyr Asn
65 70 75 80

Gly Leu Val Ala Gly Leu Gln Arg Gln Met Ser Phe Ala Ser Val Arg
85 90 95

Ile Gly Leu Tyr Asp Ser Val Lys Gln Phe Tyr Thr Lys Gly Ser Glu
100 105 110

His Ala Ser Ile Gly Ser Arg Leu Leu Ala Gly Ser Thr Thr Gly Ala
115 120 125

Leu Ala Val Ala Val Ala Gln Pro Thr Asp Val Val Lys Val Arg Phe
130 135 140

Gln Ala Gln Ala Arg Ala Gly Gly Arg Arg Tyr Gln Ser Thr Val
145 150 155 160

Asn Ala Tyr Lys Thr Ile Ala Arg Glu Glu Gly Phe Arg Gly Leu Trp
165 170 175

Lys Gly Thr Ser Pro Asn Val Ala Arg Asn Ala Ile Val Asn Cys Ala
180 185 190

Glu Leu Val Thr Tyr Asp Leu Ile Lys Asp Ala Leu Leu Lys Ala Asn
195 200 205

Leu Met Thr Asp Asp Leu Pro Cys His Phe Thr Ser Ala Phe Gly Ala
210 215 220

Gly Phe Cys Thr Thr Val Ile Ala Ser Pro Val Asp Val Val Lys Thr
225 230 235 240

Arg His Met Asn Ser Ala Leu Gly Gln Tyr Ser Ser Ala Gly His Cys
 245 250 255
 Ala Leu Thr Met Leu Gln Lys Glu Gly Pro Arg Ala Phe Tyr Lys Gly
 260 265 270
 Phe Met Pro Ser Phe Leu Arg Leu Gly Ser Trp Asn Val Val Met Phe
 275 280 285
 Val Thr Tyr Glu Gln Leu Lys Arg Ala Leu Met Ala Ala Cys Thr Ser
 290 295 300
 Arg Glu Ala Pro Phe
 305
 <210> 9
 <211> 312
 <212> PRT
 <213> Homo sapiens
 <400> 9
 Met Val Gly Leu Lys Pro Ser Asp Val Pro Pro Thr Met Ala Val Lys
 1 5 10 15
 Phe Leu Gly Ala Gly Thr Ala Ala Cys Phe Ala Asp Leu Val Thr Phe
 20 25 30
 Pro Leu Asp Thr Ala Lys Val Arg Leu Gln Ile Gln Gly Glu Asn Gln
 35 40 45
 Ala Val Gln Thr Ala Arg Leu Val Gln Tyr Arg Gly Val Leu Gly Thr
 50 55 60
 Ile Leu Thr Met Val Arg Thr Glu Gly Pro Cys Ser Pro Tyr Asn Gly
 65 70 75 80
 Leu Val Ala Gly Leu Gln Arg Gln Met Ser Phe Ala Ser Ile Arg Ile
 85 90 95
 Gly Leu Tyr Asp Ser Val Lys Gln Val Tyr Thr Pro Lys Gly Ala Asp
 100 105 110
 Asn Ser Ser Leu Thr Thr Arg Ile Leu Ala Gly Cys Thr Thr Gly Ala
 115 120 125
 Met Ala Val Thr Cys Ala Gln Pro Thr Asp Val Val Lys Val Arg Phe
 130 135 140
 Gln Ala Ser Ile His Leu Gly Pro Ser Arg Ser Asp Arg Lys Tyr Ser
 145 150 155 160
 Gly Thr Met Asp Ala Tyr Arg Thr Ile Ala Arg Glu Glu Gly Val Arg
 165 170 175
 Gly Leu Trp Lys Gly Thr Leu Pro Asn Ile Met Arg Asn Ala Ile Val
 180 185 190

Asn Cys Ala Glu Val Val Thr Tyr Asp Ile Leu Lys Glu Lys Leu Leu
195 200 205

Asp Tyr His Leu Leu Thr Asp Asn Phe Pro Cys His Phe Val Ser Ala
210 215 220

Phe Gly Ala Gly Phe Cys Ala Thr Val Val Ala Ser Pro Val Asp Val
225 230 235 240

Val Lys Thr Arg His Met Asn Ser Pro Pro Gly Gln Tyr Phe Ser Pro
245 250 255

Leu Asp Cys Met Ile Lys Met Val Ala Gln Glu Gly Pro Thr Ala Phe
260 265 270

Tyr Lys Gly Phe Thr Pro Ser Phe Leu Arg Leu Gly Ser Trp Asn Val
275 280 285

Val Met Phe Val Thr Tyr Glu Gln Leu Lys Arg Ala Leu Met Lys Val
290 295 300

Gln Met Leu Arg Glu Ser Pro Phe
305 310

<210> 10

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA Primer

<400> 10

tttttttttt tttttttttt tttt

24

<210> 11

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Conserved UCP Peptide Fragment

<400> 11

Cys Cys Ile Tyr Thr Ile Gly Ala Tyr Ala Cys Ile Gly Cys Ile Ala
1 5 10 15

Ala Arg

<210> 12

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Conserved UCP Peptide Fragment

<400> 12

Ala Cys Trp Thr Thr Cys Cys Ala Ile Ser Tyr Ile Cys Cys Ile Ala
1 5 10 15

Trp Ile Cys