Q7. A wrist watch keeps correct time on earth. If it is worn by pilot in spaceship, leaving earth with constant velocity of 10⁹ cm/sec. How many seconds does it appear to lose in one day with respect to the observer on the Earth.

Given:- $v=10^9$ cm/sec = 10^7 m/sec; t = 24 hrs in a day

Formula:-
$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Solution: 24=
$$\frac{t_0}{\sqrt{1-\frac{1}{900}}}$$

$$t_o = 24[1-\frac{1}{900}]^{-1/2}$$

Here, 1/900 is very small w.r.t 1 hence we can use the binomial expansion and neglect higher order terms

$$t_o = 24 \left[1 - \frac{1}{1800}\right] = 24 - \frac{1}{75} \text{ hrs}$$

hence loss in 24 hours= $\frac{1}{75}$ hrs =48 sec

Ans:- wrist watch looses 48 sec in a day with respect to observer on earth.