Analyzer Report (Dataflow)

This report generated by Convolutional Neural Network Inference Analyzer (CNN-IA) to summarize the analysis needed to reach the optimal dataflow exploration for mlp_fc3_batch16 using restricted schedule space.

Memory Architecture:

	L0	L1	L2
Capacity	16	16384	536870912
Access cost	0.05	3.84	200.0
Static cost	0.0	0.0	0.0
Parallel count	256	1	1
Parallel mode	1	0	0
Parallel cost	2.0	0.0	0.0

Precision : 16

Minimum utilization : 0.0%

Outputs can be buffered by MAC: 0

Replication to improve utilization: True

Glossary:

- Memory Levels : (L0, L1, L2) The smallest index the nearest to CPU.

- Loop Notations: (FX, FY, OX, OY, OC, IC, ON)

FX: FILTER WIDTH

FY : FILTER HEIGHT

OX : OUTPUT WIDTHOY : OUTPUT HEIGHT

oc : OUTPUT CHANNEL

IC : INPUT CHANNEL

ON : BATCH

OC, IC

[cost: 33050440.0pJ, utilization: 0.09765625%]

Loop Blocking (factors):

	L0	L1	L2
FX	1.0	1.0	1.0
FY	1.0	1.0	1.0
ОХ	1.0	1.0	1.0
OY	1.0	1.0	1.0
ОС	2.0	1.0	25.0
IC	4.0	25.0	1.0
ON	1.0	16.0	1.0

Loop Partitioning (units):

	L0	L1	L2
FX	1.0	1.0	1.0
FY	1.0	1.0	1.0
ох	1.0	1.0	1.0
OY	1.0	1.0	1.0
ОС	5.0	1.0	1.0
IC	5.0	1.0	1.0
ON	1.0	1.0	1.0

Loop Ordering (from the innermost):

	L0	L1	L2
FX	6.0	6.0	6.0
FY	6.0	6.0	6.0
ох	6.0	6.0	6.0
OY	6.0	6.0	6.0
ос	0.0	6.0	0.0
IC	1.0	1.0	6.0
ON	6.0	0.0	6.0

OC, ON

[cost: 32071160.0pJ, utilization: 0.078125%]

Loop Blocking (factors):

	L0	L1	L2
FX	1.0	1.0	1.0
FY	1.0	1.0	1.0
ох	1.0	1.0	1.0
OY	1.0	1.0	1.0
ОС	2.0	1.0	25.0
IC	1.0	500.0	1.0
ON	4.0	1.0	1.0

Loop Partitioning (units):

	L0	L1	L2
FX	1.0	1.0	1.0
FY	1.0	1.0	1.0
ох	1.0	1.0	1.0
OY	1.0	1.0	1.0
ОС	5.0	1.0	1.0
IC	1.0	1.0	1.0
ON	4.0	1.0	1.0

Loop Ordering (from the innermost):

	L0	L1	L2
FX	6.0	6.0	6.0
FY	6.0	6.0	6.0
ОХ	6.0	6.0	6.0
OY	6.0	6.0	6.0
ос	0.0	6.0	0.0
IC	6.0	0.0	6.0
ON	1.0	6.0	6.0

IC, ON

[cost: 32079160.0pJ, utilization: 0.15625%]

Loop Blocking (factors):

	L0	L1	L2
FX	1.0	1.0	1.0
FY	1.0	1.0	1.0
ох	1.0	1.0	1.0
OY	1.0	1.0	1.0
ос	1.0	250.0	1.0
IC	4.0	1.0	25.0
ON	2.0	1.0	1.0

Loop Partitioning (units):

	L0	L1	L2
FX	1.0	1.0	1.0
FY	1.0	1.0	1.0
ОХ	1.0	1.0	1.0
OY	1.0	1.0	1.0
ОС	1.0	1.0	1.0
IC	5.0	1.0	1.0
ON	8.0	1.0	1.0

Loop Ordering (from the innermost):

	L0	L1	L2
FX	6.0	6.0	6.0
FY	6.0	6.0	6.0
ох	6.0	6.0	6.0
OY	6.0	6.0	6.0
ос	6.0	0.0	6.0
IC	0.0	6.0	0.0
ON	1.0	6.0	6.0

Optimal cost

[b: blocking factor, p: partitioning unit]

```
MEM - L2:
    for ( OC, 25b, 1p )

MEM - L1:
    for ( IC, 500b, 1p )

MEM - L0:
    for ( ON, 4b, 4p )
        for ( OC, 2b, 5p )

spatially unrolled loops: (OC)(ON)
```

Optimal utilization

```
MEM - L2:
    for ( IC, 25b, 1p )

MEM - L1:
    for ( OC, 250b, 1p )

MEM - L0:
    for ( ON, 2b, 8p )
        for ( IC, 4b, 5p )

spatially unrolled loops: (IC)(ON)
```