five lemma

hayami-m

22/10/16

- five lemma -

k 加群の可換図式

において、各行は完全であり、 h_2 、 h_4 が同型、 h_1 が全射、 h_5 が単射とする。このとき、 h_3 は同型である。

proof:

[injection] $h_3(a) = h_3(a')$ を満たす $a, a' \in A_3$ を取る.

このとき、可換性より $g_3h_3(a'-a)=h_4f_3(a'-a)=0$ である.

 h_4 は同型であるから、特に単射であり $f_3(a'-a)=0$ である.

exactness より, $a'-a \in \text{Ker } f_3 = \text{Im } f_2$ であるから, ある $a_2 \in A_2$ が存在して $f_2(a_2) = a'-a$ を満たす. 可換性より, $g_2h_2(a_2) = h_3f_2(a_2) = 0$ である.

 $\operatorname{exactness}$ より, $h_2(a_2) \in \operatorname{Ker} g_2 = \operatorname{Im} g_1$ であるから, ある $b_1 \in B_1$ が存在して $g_1(b_1) = h_2(a_2)$ を満たす.

 h_1 の全射性から、ある $a_1 \in A_1$ が存在して $h_1(a_1) = b_1$ を満たす.

可換性より, $h_2f_1(a_1)=g_1h_1(a_1)=g_1(b_1)=h_2(a_2)$ である.

 h_2 は同型であるから、特に単射であり $f_1(a_1) = a_2$ である.

このことと exactness より, $a' - a = f_2(a_2) = f_2 f_1(a_1) = 0$ である.

以上から, h_3 の単射性が示せた.

$$a_1 \longmapsto f_1(a_1) = a_2 \longleftrightarrow a' - a \to f_3(a' - a) = 0$$

$$\sup_{b_1} \downarrow \qquad \qquad \downarrow \qquad \inf_{b_1} \downarrow$$

$$b_1 \longleftrightarrow h_2(a_2) \longrightarrow 0 \longrightarrow 0$$

 $[\mathbf{surgection}]$ $b_3 \in B_3$ を取る.

 h_4 が同型より, $a_4 \in A_4$ で $h_4(a_4) = g_3(b_3)$ を満たすものが一意に存在する.

可換性と exactness より, $h_5f_4(a_4) = g_4h_4(a_4) = g_4g_3(b_3) = 0$ である.

 h_5 の単射性から, $f_4(a_4) = 0$ である.

このことと exactness より、 $a_4 \in \text{Ker } f_4 = \text{Im } f_3$ であるから、ある $a_3 \in A_3$ が存在して $f_3(a_3) = a_4$ を満たす。可換性より、 $g_3h_3(a_3) = h_4f_3(a_3) = h_4(a_4) = g_3(b_3)$ である.

exactness より, $b_3 - h_3(a_3) \in \text{Ker } g_3 = \text{Im } g_2$ であるから, ある $b_2 \in B_2$ が存在して $g_2(b_2) = b_3 - h_3(a_3)$ を満たす.

 h_2 の全射性から、ある $a_2 \in A_2$ が存在して $h_2(a_2) = b_2$ を満たす.

可換性より, $h_3f_2(a_2)=g_2h_2(a_2)=g_2(b_2)=b_3-h_3(a_3)$ である。つまり, $b_3=h_3(a_3+f_2(a_2))$ である。以上から, h_3 の全射性が示せた。

余談

 h_1 が単射で, h_5 が全射とすると, h_3 は必ずしも同型にならない. 反例は以下のようなものがある.

このようにすれば、可換性より $h_3=0$ となり、同型写像ではない、