الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2011

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المسدّة: 03 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

النمرين الأول: (03 نقاط)

 $u_{n+1}=3u_n+1$ هنتائية العددية المعرقة به: $u_0=-1$ ومن أجل كل عدد طبيعي المنتائية العددية المعرقة به: $u_0=-1$

 $v_n = u_n + \frac{1}{2}: \pi$ المنتالية المعدية المعرّفة من أجل كل عدد طبيعي (v_n

في كل حالة من الحالات الثلاث الأنية افترحت ثلاث إجابات، إجابة واحدة فقط منها صحيحة، حندها مع النطيل،

المنتثية ("u) :

٢-- الاحسانية والاعتسية.

ب- هنسية.

أ - حسابية .

2. نهاية المنتالية (برند) هي :

$$-\infty$$
 $-\frac{1}{2}$ $-\varphi$

ائح صه

. $S_n = -\frac{1}{2} \left[1 + e^{\ln 3} + e^{2\ln 3} + e^{3\ln 3} + ... + e^{n\ln 3} \right]$ ، مناح من أجل كل عدد طبيعي من أجل كل عدد طبيعي 3.

$$S_n = \frac{1 - 3^{n+1}}{4} \quad \bullet \Rightarrow$$

$$S_n = \frac{1 - 3^n}{4} \quad \cdot \Psi$$

$$S_n = \frac{3^{n+1}-1}{2}$$
 -1

التمرين الثانى: (05 نفاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $O(I,J,\bar{K})$ ، المستوي P(x) الذي يشمل النقطة X+2y-7=0 شعاع ناظمي له ؛ وليكن P(x) المستوي ذا المعادلة P(x+2y-7=0)

- 1. لكتب معلالة ديكارتية للسنوي (9).
- B(-1;4;-1) مشتركة بين المستريين (\mathscr{D}) و B(-1;4;-1) .

ب ، بين أنّ المستوبين (\mathscr{G}) و (\mathscr{G}) متقاطعان وفق مستقيم (Δ) يطلب تعيين تعثيل وسيطيّ له.

3. لتكن النقطة (C (5;-2;-1)

، (عسب المسافة بين النقطة C و المستوى (\mathscr{G}) ثمّ المسافة بين النقطة C والمستوي (\mathscr{G})

 $m{\psi}$ - أثبت أن المستويين $m{(}m{\mathscr{D}}m{)}$ و $m{(}m{\mathcal{D}}m{)}$ متعامدان.

C و المستقيم (Δ)، بين النقطة C

التمرين الثالث: (05 نقاط)

نعتبر في العستوي المنسوب إلى المعلم المتعامد والمنجانس $O(\bar{u},\bar{v})$ ، النقط B ، A و C التي المقاتها على الترتيب: $z_{B}=2+3i$ ، $z_{A}=-i$

ا. أو اكتب على الشكل الجبري العدد المركب
$$\frac{z_C-z_A}{z_B-z_A}$$
.

$$ABC$$
 عين طويلة العدد المركب $\frac{z_C-z_A}{z_B-z_A}$ وعمدة له i ثمّ استنتج طبيعة المثلث z_B-z_A

2. نعيبر النحويل النقطي T في المستوي الذّي يرفق بكل نقطة M ذات اللاحقة z ، النقطة M ذات اللاحقة z'=iz-1

أ - عن طبيعة التحويل ٢ محددا عناصره المعيّرة.

T بالتحويل B بالتحويل D

 $z_D = -6 + 2i$ لَنقطة ذات اللاحقة D = -6 + 2i لتكن النقطة ذات اللاحقة .3

أ مبين أن النقاط C ، A أي المتقامية.

. D النقطة C النقطة A ويحول النقطة C إلى النقطة A

D إلى B باين العناصر المميّزة للتشابه B الذي مركزه A و بحول B إلى

التمرين الرابع: (67 نقاط)

$$g(x) = \frac{x-1}{x+1}$$
 بعثبر الدالة g المعرفة على $\mathbb{R} - \{-1\}$ بيا: \mathbb{R}

و (C_g) تمنزتها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_g)

(الشكل المقابل) ، بقراءة بياتية:
$$(O; \vec{i}, \vec{j})$$

$$\varphi$$
 حل برتيا المتراجعة $0 < (x)$

$$f(x) = \frac{x-1}{x+1} + \ln\left(\frac{x-1}{x+1}\right) : + x[x+1] + x = x$$
 [1] With the second of th

$$(C_f)$$
 يَمْثِلِها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(C; \overline{I}, \overline{f})$.

المسب الشروتين المسباء و
$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ المسباء المسب

$$g'(x) = \frac{2}{(x+1)^2}$$
 ،]1;+∞[من أجل كل عند حقيقي x من المجال .2

$$m{\psi}$$
 - احسب $(x)'$ و ادرس إشارتها ثم شكل جدول تغيرات الدالة f .

$$[I]_{i}+\infty$$
 السؤال الجزء $[I]_{i}+\infty$ السؤال جدم، عين إشارة العبارة $[I]_{i}+\infty$ على المجال $[I]_{i}+\infty$

ب - α عدد حقيقي.

.]
$$lpha$$
; + ∞ [على المجال $x\mapsto \ln(x-lpha)$ المدالة $x\mapsto \ln(x-lpha)$ على المجال $x\mapsto \ln(x-lpha)$ المجال $x\mapsto \ln(x-lpha)$ على المجال $x\mapsto 1$ على المحال $x\mapsto 1$ على المجال $x\mapsto 1$ على المحال $x\mapsto 1$ المحال

المجال]0+;[[.

الموضوع الثاتي

التمرين الأول (04 نقاط)

مند حقیقی موجب شاما ویختاف عن1.

 $u_{n+1}=\alpha u_n+1$ ، u_n عدد طبیعی معرقة علی $u_0=6$ بے: $u_0=8$ ومن أجل كل عدد طبیعی معرقة علی u_n

 $v_n = u_n + \frac{1}{\alpha - 1} : n$ n = n are defined and so are acceptanced as $v_n = n$

1. أ - بين أنْ (ر ν) منتالية هندسية أساسها α -

 u_n عبارة n و α ، عبارة v_n شم استنتج بدلالة n و α ، عبارة u_n

ج - عين قيّم العدد الحقيقي lpha النبي تكون من أجلها المتتالية (u_n) متقاربة.

 $\alpha = \frac{3}{2}$ نضع 2

 $T_n = u_0 + u_1 + ... + u_n$ بدلالة n ، المجموعين $S_n = u_0 + v_1 + ... + v_n$ عيث: $T_n = u_0 + u_1 + ... + u_n$ بدلالة n ، المجموعين $S_n = u_0 + u_1 + ... + u_n$

التعرين الثانى: (04 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ ، النقط C = B + A و C = B التي المعلم الترتيب: $z_B = 3 + 2i + c$ و $z_A = 3 - 2i$

ا علم الربط A . B و C .

ب ما طبيعة الرباعي OABC ؟ علَّل إجابتك.

جـ عَبِن لاحقة النقطة Ω مركز الرباعي OABC.

 $MO + \overline{MA} + \overline{MB} + \overline{MC} = 12$ عَيْنَ ثُمَ أَنْشَىٰ M مجموعة النقط M من المستوي الذي تحقَّق: 12 عين ثمّ أنشئ $MO + \overline{MA} + \overline{MB} + \overline{MC}$

 $z^2 - 6z + 13 = 0$ الثانية: z = 4 الثانية: z = 6z + 6z + 13 الثانية: z = 6z + 6z + 13

نسمي 20 ء 21 على هذه المعائلة.

ب. التكن M نقطة من المستوي الاحقتها العند المركب z .

- عين مجموعة النقط M من المستوي للني تحقق: $|z-z_0|=|z-z_0|$.

التمرين الثالث: (05 نقاط)

 $C\left(3;-3;6
ight)$ و $B\left(2;i;7
ight)$ ، $A\left(0;1;5
ight)$ النقط $\left(O;\overline{i},\overline{j},\overline{k}
ight)$ و المتجامد و المتجانب في الفضاء المنسوب إلى المعلم المتعامد و المتجانب المتحامد و المتجانب أن المتحامد و المتحابد المتحامد و المتحابد المتحامد و المتحابد المتحابد

1. أ ما لكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشعل النقطة B و (1-4;-4) شعاع توجيه له.

ب- تحقق أن النقطة C تتمى إلى المستقيم (۵).

جه بين أن الشماعين \overline{AB} و \overline{BC} متعامدان.

د - استنتج قمسافة بين النقطة A والمستقيم (Δ) .

 $h(t)=AM: +\mathbb{R}$ المعرفة على h المعرفة h با M حيث t عدد حقوقي t ولنكن الدالة h المعرفة على M با M بدلالة M بدلال

$$h'(t) = \frac{18t}{\sqrt{18t^2 + 8}} + t$$
 عند حقیقی عند عند من أجل كل عند عند عقیقی به بین أنه من أجل كل

ج- استنتج قيمة العدد الحقيقي 1 التي تكون من أجلها المسافة AM أصغر ما يمكن.

- قارن بين القيمة الصغرى للدالمة h، و المسافة بين النقطة A والمستقيم (Δ) .

التمرين الرابع: (07 نقاط)

$$f\left(x
ight)=e^{x}-ex-1:$$
ب نعتبر للدللة العددية f المعرفة على R ب $:$ R المعرفة على $\left(C_{f}
ight)$ تمثيلها للبياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}
ight)$

 $\lim_{x \to +\infty} f(x) \lim_{x \to +\infty} f(x)$

+ - احسب f'(x) ثمّ ادرس إشارتها.

شكل جنول تغير أت الدالة ﴿.

 $(-\infty)$ بجوار (\mathcal{C}_f) بجوار (\mathcal{C}_f) بجوار (v=-ex-1) بجوار ((Δ)) بخوار ((Δ)) بجوار ((Δ)) بخوار ((Δ)

-0 النقطة ذات الفاصلة (C_{Γ}) مماس المنحنى النقطة ذات الفاصلة -1 الكتب معائلة للمستقيم +2 مماس المنحنى

 α عند المعادلة f(x)=0 عند المجال f(x)=0 عند حدد α

،] $-\infty$, 2] على المجال (\mathcal{C}_{f}) على المحال (\mathcal{C}_{f}) على الم

3. أ - احسب بدلالة α ، المساحة $A(\alpha)$ للحيّز المستوي المحدّد بالمنحنى C_f) و حامل محور الغواصل والمستقيمين $x=\alpha$ و x=0 اللّذين معادلتيهما:

. (تابت أن: ua) $A(\alpha) = \left(\frac{1}{2}e\alpha^2 - e\alpha + \alpha\right)ua$ هي وحدة المساحات).