Matrix Decompositions

April 20, 2023

1 Matrix Approximation

Partial SVD can also help us to represent A as a sum of simpler (low-rank) matrices A_i , which lends itself to a matrix approximation scheme that is cheaper to compute than the full SVD.

We construct a rank-1 matrix $\mathbf{A}_i \in \mathbb{R}^{m \times n}$ as

$$\boldsymbol{A}_i := \boldsymbol{u}_i \boldsymbol{v}_i^T \tag{1}$$

which is formed by the outer product of the *i*-th orthogonal column vector of U and V.

A matrix $A \in \mathbb{R}^{m \times n}$ of rank r can be written as a sum of rank-1 matrices A_i so that

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_{i=1}^{r} \sigma_i \mathbf{A}_i$$
 (2)

where the outer-product matrices A_i are weighted by the *i*-th singular value σ_i . The diagonal structure of the singular value matrix Σ multiplies only matching left- and right-singular vectors $u_i v_i^T$ and scales them by the corresponding singular value σ_i . All terms $\sum_{ij} u_i v_i$ vanish for $i \neq j$ because Σ is a diagonal matrix. Any terms i > r vanish because the corresponding singular values are 0.

We can sum up r different rank-1 matrices to obtain a rank-r matrix A. If the sum does not run over all matrices A_i , i = 1, ..., r, but only up to an intermediate k < r, we obtain a rank-k approximation

$$\hat{\boldsymbol{A}} := \sum_{i=1}^{k} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T = \sum_{i=1}^{k} \sigma_i \boldsymbol{A}_i$$
(3)

of **A** with $rk(\hat{\mathbf{A}}(k)) = k$.

To measure the difference (error) between \boldsymbol{A} and its rank-k approximation $\hat{\boldsymbol{A}}(k)$, we need the notion of a norm.

Definition - Spectral Norm of a Matrix

For $x \in \mathbb{R}^n \setminus \{0\}$, the spectral norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\|\mathbf{A}\|_2 := \max_{x} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$
 (4)

The spectral norm determines how long any vector x can at most become when multiplied by A.

Theorem

The spectral norm of A is its largest singular value σ_1 .

Theorem - Eckhart-Young Theorem

Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r and let $\mathbf{B} \in \mathbb{R}^{m \times n}$ be a matrix of rank k. For any $k \leqslant r$ with $\hat{\mathbf{A}}(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ it holds that

$$\hat{\mathbf{A}}(k) = \operatorname{argmin}_{rk(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_{2}$$

$$\|\mathbf{A} - \hat{\mathbf{A}}(k)\|_{2} = \sigma_{k+1}$$
(5)

The Eckhart-Young theorem states explicitly how much error we introduce by approximating \boldsymbol{A} using rank-k approximation. We can interpret the rank-k approximation obtained with the SVD as a projection of the full-rank matrix \boldsymbol{A} onto a lower-dimensional space of rank-at-most-k matrices. Of all possible projections, the SVD minimizes the error (with respect to the spectral norm) between \boldsymbol{A} and any rank-k approximation.

We observer that the difference between $\mathbf{A} - \hat{\mathbf{A}}(k)$ is a matrix containing the sum of the remaining rank-1 matrices

$$\mathbf{A} - \hat{\mathbf{A}}(k) = \sum_{i=k+1}^{T} \sigma_i \mathbf{u}_i \mathbf{v}^T$$
(6)

We immediately obatin σ_{k+1} as the spectral norm of the difference matrix. If we assume that there is another matrix \mathbf{B} with $rk(\mathbf{B}) \leq k$, such that

$$\|\mathbf{A} - \mathbf{B}\|_{2} < \|\mathbf{A} - \hat{\mathbf{A}}(k)\|_{2}$$
 (7)

then there exists an at least (n-k)-dimensional null space $Z \subseteq \mathbb{R}^n$, such that $x \in Z$ implies that Bx = 0. Then it follows that

$$\|Ax\|_2 = \|(A - B)x\|_2$$
 (8)

and by using a version of the Cauchy-Schwartz inequality that encompasses norms of matrices, we obtain

$$\|Ax\|_{2} \leq \|A - B\|_{2} \|x\|_{2} < \sigma_{k+1} \|x\|_{2}$$
 (9)

However, there exists a (k+1)-dimensional subspace where $\|\mathbf{A}\mathbf{x}\|_2 \geqslant \sigma_{k+1}\|\mathbf{x}\|_2$, which is spanned by the right-singular vectors $\mathbf{v}_j, j \leqslant k+1$ of \mathbf{A} . Adding up dimensions of these two spaces yields a number greater than n, as there must be a nonzero vector in both spaces. This is a contradiction of the rank-nullity theorem.

The Eckart-Young theorem implies that we can use SVD to reduce a rank-r matrix \boldsymbol{A} to a rank-k matrix $\hat{\boldsymbol{A}}$ in a principled, optimal (in the spectral norm sense) manner. We can interpret the approximation of \boldsymbol{A} by a rank-k matrix as a form of lossy compression. Therefore, the low-rank approximation of a matrix appears in many machine learning applications, e.g., image processing, noise filtering, and regularization of ill-posed problems. Furthermore, it plays a key role in dimensionality reduction and principal component analysis.