Capstone Project: Insight into the Impact of Marketing Activities on Sales Using Marketing Mix Modeling

University of Chicago, Master of Science in Analytics Oct 1st, 2015

Project Tracker

Capstone Project Tracker: Implementation and Research Paper

				Planne	d Timing	for Con	pletion									
	Task	Status	29-Jun	6-Jul	13-Jul	20-Jul	27-Jul	3-Aug	10-Aug	17-Aug	24-Aug	31-Aug	7-Sep	14-Sep	21-Sep	28-Sep
	HAVI: On Site	Completed														
ngs	HAVI: Client Check-In	In Progress														
Meetings	Anil: Check-In	In Progress														
Ž	Weekly team meeting															
	Clean and prepare data	Completed														
	Descriptive Statistics	Completed														
<u></u>	Log linear models	Completed														
Modeling	Hierarchical Linear Models	Completed														
Mod	MCMC Models	Completed														
_	Model Validation	In Progress														
	Model Interpetation	Not Completed														

Our Client

Company Overview

HAVI Global Solutions LLC provides supply chain management services for the packaging and supply chain industry in the United States and internationally. It develops, sources, markets, and sets up strategic supply chain and packaging services solutions. The company offers packaging, promotions management, and analytics and supply chain services. HAVI Global Solutions LLC was formerly known as Perseco and changed its name to HAVI Global Solutions LLC in 2006. The company was founded in 1975 and is based in Downers Grove, Illinois. HAVI Global Solutions LLC operates as a subsidiary of The HAVI Group, L.P.

3075 Highland Parkway Downers Grove, IL 60515 United States

Founded in 1975

Phone: 630-493-7400 Fax: 630-493-7599 www.havigs.com

Consulting & Analytics Services

Key Clients

Client's Initial Project Requirements

HAVI Global Solutions

Company Profile HAVI Global Solutions (HGS) mission is to be your expert partner in managed services and consulting solutions across the global business supply chain, delivering value and growth from source to consumer. We reach beyond categories, industries, technologies and suppliers to leverage our expertise in an unbiased and impartial approach that is focused solely on your needs. Today some of the world's most respected brands rely on our packaging expertise, marketing and business analytics, supply chain services, promotions management know-how, and recycling and waste solutions to deliver a competitive advantage for their business and an unshakeable respect for their corporate and environmental program impacts.

Please visit us at http://www.havigs.com/

Project Title

Promo Mix Modeling

HGS is in the process of building a scalable, promotion (marketing) mix model. Such a set of models will help a key client to be able to plan appropriate product promotions from 30-50 potential products at each of its 170+ markets. There are two key components to make such a set of models operational – a series of statistical exercises to ensure that accuracy of the underlying statistical models, and an user friendly simulator that can fit the latest data into the validated statistical models and allow users to simulate different promotion effects. Potential school project can focus on the first component of model building.

Problem Statement While HGS does possess all the POS data for this client that can be used to build such models, the realistic expectation for a Capstone project is for the students to dive into a subset of data that involves a few market. Students will be encouraged to provide analytical solutions to solve the following key issues during statistical model building:

- Cannibalization effect across different products
- Minimizing data collinearity risks in statistical models
- Developing an effective model validation process that efficiently validate models related large number of products
- Developing a scalable solution to quickly expand the solution to 170+ markets

Please contact Pan Chen at pchne@havigs.com for questions and more details.

Executive Summary

BUSINESS

OBJECTIVES

- Identify the effects of different marketing and promotion activities of products on the total dollar sales as well as the total volume sales of other products
- Identify opportunities to further optimize promotion strategies across products

RESEARCH METHODS

- Linear Regressions
- Bayesian Hierarchical Linear Models (grouping factor: store)

KEY FINDINGS

- Adding *log(Discount)* and *Week of year* as new predictors significantly improve the performance of the models
- The strategy of having a model to predict the daily total volume sales of a product in a store has the best predicting performance (GLM6)
- Bayesian hierarchical linear model (MCMC2) using store as the grouping factor has comparative predictive power as the strategy of multiple small models

REMAINING ISSUES

- Residuals of both models (GLM6 and MCM2) show seasonal patterns (i.e., autocorrelated)
- Some incorrect coefficients for the variables of product price

Capstone Project Purpose and Questions/Hypotheses

Research Purpose

The purpose of the study is to identify the key vehicles of marketing and promotion activities that drive the boost of revenue and profit. By providing new insights into how different marketing and promotion activities across products affect the total revenue, the study can help HGS's client make more informed promotional decisions for driving volume, revenue, and profit. To achieve this, the solutions should be able to:

- Correctly identify and incorporate the cannibalization and halo effect of promotions across different products.
- Minimize data collinearity risks in statistical models.
- Contain a model validation process that efficiently validates models related to large numbers of products.
- •Allow for scalability into more markets.

Research Questions

- What is the effect of different marketing and promotion activities on the total sales and the sales of other items?
- Are there opportunities to further optimize promotion strategies across products?

Research Hypothesis

Changes in marketing and promotion activities within one Co-op impact sales differently across products.

Understanding Data and Exploratory Data Analysis

Description of Data

Dependent Variables	Independent Variables	
■ Total (4 variables) Daily total sales (\$) Daily total transections	 Weather (52 variables) Weather 07-JAN-2010, Weather 29-JAN-2010, Weather 30-JAN-2010, Weather 06-FEB-2010, Weather 08-FEB-2010 	Dummy Coding
 DrivThru daily total sales (\$) DrivThru daily total transections Items (28 variables) units_total_BF1, units_total_BF2, units_combo_BF2, units_total_BF3 units_total_BF4, units_combo_BF4, 	 Day of week and holidays (114 variables) Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday New Years Day(Sunday), New Years Day(Tuesday), New Years Day(Wednesday), New Years Day(Friday), New Years Day(Saturday) 	Dummy Coding Dummy Coding
<pre>units_total_BF5, units_combo_BF5 units_total_BK1, units_combo_BK1,</pre>	National promotions (24 variables)	Dummy Coding
units_total_CK1, units_combo_CK1	Local promotions (40 variables)	Dummy Coding
units_total_CK2, units_combo_CK2, units_total_DS1, units_total_HB1 units_total_CB1, units_total_CB2, units_total_CB4	 Price reduction promotions (15 variables) Price Discount for different item Calculated as log(promoted price / regular price) 	Numeric
units_total_DS2, units_total_CB5, units_total_DS3, units_total_CK3	Regular Price of items at store level (15 variables)	Numeric
units_total_bss, units_total_cks units_combo_CK3, units_total_SI1, units_total_SI2, units_total_SI3	 Promotion Price of items at store level (15 variables) 	Numeric 8

~ 12.3% of observations were removed from the data set due to containing missing values

rows before omitting NA = 184156 # rows after omitting NA = 161477

1939

1594

50

1939

Removal % ~ 12.3%

1000-1939 500-999 0-499

storeID	before omit NA	after omit NA	storeID	before omit NA	after omit NA	storeID	before omit NA	after omit NA	storeID	before omit NA	after omit NA
1	1939	1914	26	1939	1806	51	1939	1889	76	1939	1867
2	1939	1579	27	1939	1897	52	1939	1811	77	1939	1343
3	1939	1752	28	1939	1902	53	1939	1763	78	1939	1007
4	1939	1550	29		1875	54	1939	1917	79		1794
5			30			55	1939	1905	80		1811
6	1939	1081	31		1831	56	1939	1889	81	. 1939	1875
7	1939	1698	32	1939	1592	57	1939	1900	82	1939	1832
8	1939	1864	33		1599	58	1939	984	83	1939	1837
9	1939	1589	34		1681	59	1939	1870	84	1939	1896
10	1939	1863	35	1939	1550	60	1939	1877	85		1615
11	1939	1880	36		1825	61	1939	1887	86		0
12	1939	1894	37	1939	1708	62	1939	1893	87	1939	1912
13	1939	1839	38	1939	1721	63	1939	1850	88	1939	1655
14	1939	1798	39	1939	1779	64	1939	1909	89	1939	1885
15	1939	1628	40	1939	1850	65	1939	1764	90	1939	1873
16	1939	1864	41	1939	1679	66	1939	1756	91	. 1939	1781
17	1939	1882	42	1939	1074	67	1939	1674	92	1939	1899
18	1939	1869	43	1939	1775	68	1939	1007	93	1939	1822
19	1939	1869	44	1939	1906	69	1939	0	94	1439	1162
20	1939	998	45	1939	1335	70	1939	1909	95	1374	1352
21	1939	1350	46	1939	1817	71	1939	1864	96	325	316
22	1939	1810	47	1939	1908	72	1939	1130	97	367	356
23	1939	1805	48	1939	1907	73	1939	1869	98	324	319
24	1939	1880	49	1939	1884	74	1939	1837			

1890

75

1939

1873

14 (among 28) products have complete price information (regular and promotion price)

	regular	_price	promo	_price
product_name	Min.	Max.	Min.	Max.
units_total_BF1				
units_total_BF2	0.79	1.09	0.08	1.09
units_combo_BF2				
units_total_BF3	1.00	1.79	0.47	1.59
units_total_BF4	2.40	5.39	0.00	3.99
units_combo_BF4				
units_total_BF5	2.40	3.99	0.00	3.99
units_combo_BF5				
units_total_BK1	1.90	3.29	0.00	3.29
units_combo_BK1				
units_total_CK1	2.1	3.5	0.0	3.5
units_combo_CK1				
units_total_CK2	4.70	6.99	0.00	6.99
units_combo_CK2				
units_total_DS1	0.25	1.49	0.00	1.27
units_total_HB1	0.95	1.50	0.15	1.50
units_total_CB1				
units_total_CB2				
units_total_CB3				
units_total_CB4	1.00	1.65	0.09	1.59
units_total_DS2	0.50	20.01	0.04	1.03
units_total_CB5	1.59	3.19	0.00	2.94
units_total_DS3	1.99	2.89	0.00	2.89
units_total_CK3	3.99	6.19	0.00	6.19
units_combo_CK3				
units_total_SI1				
units_total_SI2				
units_total_SI3				

Among 28 products, 14 products have complete price information in the data set: units_total_BF2, units_total_BF3, units_total_BF4, units_total_BF5, units_total_BK1, units_total_CK1, units_total_CK2, units_total_DS1, units_total_HB1, units_total_CB4, units_total_DS2, units_total_CB5, units_total_DS3, units_total_CK3

We will model the daily unit sales of these 14 products first

The range of the regular price of units_total_DS2 (which is product of pie) was \$0.50-\$20.0. This abnormal observation was mainly from storeID=7.

Log-transformation was applied to the 14 dependent variables for the predictions

Correlation matrix of 14 Dependent Variables for modeling

Data Manipulation and Transformation

Data Manipulation and Transformation

For all y variables as well as the promotion prices of items

$$x = \{ \begin{array}{cc} 0.001 & while \ x = 0 \\ x & while \ x \neq 0 \end{array}$$

Create new variables: logDiscount, logRegular_price, week_of_year

$$ln(0.001) \qquad \text{while} \frac{promo\ price}{regular\ price} = 1$$

$$ln\left(1 - \frac{promo\ price}{regular\ price}\right) \quad \text{while} \frac{promo\ price}{regular\ price} < 1$$

 $logRegular_price = ln(regular_price)$

week of year: 1 to 53 (dummy coding)

Computational Details and Preliminary Results Part I. Prediction of Daily Sales Volume of Products

Design of Spliting Dataset for 70-30 Validation

Working Flow of Validation Process

Full Model Comparison

GLM 1	$\begin{split} &\log(Sales\ Volume) \\ &= \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log\left(\frac{promo_price_n}{regular_price_n}\right) \end{split}$
GLM 2	$\begin{split} &\log(\textit{Sales Volume}) \\ &= \beta_0 + \sum_i \beta_{1i} (\textit{day of week})_i + \sum_j \beta_{2j} (\textit{holiday})_j + \sum_k \beta_{3k} (\textit{weather})_k + \sum_l \beta_{4l} (\textit{national promotion})_l + \sum_m \beta_{5m} (\textit{tactic promotion})_m + \sum_n \beta_{6n} log \textit{Discount}_n \end{split}$

Adopting log(Discount) rather than log(price ratio) significantly improve the prediction

	in-sam	ple R ²	RM	SE		Al	С		BIC		
Product Name	GLM 1	GLM 2	GLM 1 GLM 2		GLM 1	GLM 2		GLM 1	GLM 2		
units_total_BF2	0.15*	0.21*	0.344	0.331		79207	70570		81442	72853	
units_total_BF3	0.26*	0.30*	0.374	0.362		98135	91236		100370	93520	
units_total_BF4	0.33*	0.33*	0.380	0.379		101856	101713		104091	103997	
units_total_BF5	0.23*	0.26*	0.396	0.388		111303	106557		113539	108841	
units_total_BK1	0.26*	0.30*	0.507	0.494		167376	161430		169611	163713	
units_total_CB4	0.24*	0.29*	0.368	0.355		94672	86648		96907	88931	
units_total_CB5	0.18*	0.19*	0.528	0.525		176464	175374		178699	177656	
units_total_CK1	0.25*	0.31*	0.412	0.394		120361	109915		122596	112198	
units_total_CK2	0.40*	0.43*	0.721	0.702		247038	240884		249273	243167	
units_total_CK3	0.24*	0.26*	0.393	0.388		109589	106520		111824	108803	
units_total_DS1	0.34*	0.38*	0.609	0.592		208952	202511		211187	204794	
units_total_DS2	0.19*	0.25*	0.431	0.415		130443	122057		132678	124340	
units_total_DS3	0.21*	0.23*	0.591	0.586		201814	199652		204049	201935	
units_total_HB1	0.23*	0.26*	0.369	0.363		95490	91675		97725	93958	

^{*} The p-value of the F test was significant at p < 2.2e-16

Model Comparison

GLM 1	$\log(SalesVolume) \\ = \beta_0 + \sum_i \beta_{1i}(dayofweek)_i + \sum_j \beta_{2j}(holiday)_j + \sum_k \beta_{3k}(weather)_k + \sum_l \beta_{4l}(nationalpromotion)_l + \sum_m \beta_{5m}(tacticpromotion)_m + \sum_n \beta_{6n}log\left(\frac{promo_price_n}{regular_price_n}\right)$
GLM 2	$\log(Sales\ Volume) \\ = \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log Discount_n$
GLM 3	$\begin{split} \log(SalesVolume) \\ = \beta_0 + \sum_i \beta_{1i} (dayofweek)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (nationalpromotion)_l + \sum_m \beta_{5m} (tacticpromotion)_m + \sum_n \beta_{6n} logDiscount_n \\ + \sum_o \beta_{7o} logRegular_price_o \end{split}$

Inclusion of log(regular price) significantly improve the prediction of the models

	in-	sample	R ²		RMSE			AIC			BIC	
Product Name	GLM 1	GLM 2	GLM 3	GLM 1	GLM 2	GLM 3	GLM 1	GLM 2	GLM 3	GLM 1	GLM 2	GLM 3
units_total_BF2	0.15*	0.21*	0.31*	0.344	0.331	0.309	79207	70570	55351	81442	72853	57790
units_total_BF3	0.26*	0.30*	0.45*	0.374	0.362	0.321	98135	91236	63361	100370	93520	65791
units_total_BF4	0.33*	0.33*	0.42*	0.380	0.379	0.353	101856	101713	85200	104091	103997	87553
units_total_BF5	0.23*	0.26*	0.32*	0.396	0.388	0.371	111303	106557	96218	113539	108841	98609
units_total_BK1	0.26*	0.30*	0.41*	0.507	0.494	0.454	167376	161430	142119	169611	163713	144539
units_total_CB4	0.24*	0.29*	0.37*	0.368	0.355	0.333	94672	86648	72191	96907	88931	74702
units_total_CB5	0.18*	0.19*	0.23*	0.528	0.525	0.512	176464	175374	169466	178699	177656	171835
units_total_CK1	0.25*	0.31*	0.39*	0.412	0.394	0.371	120361	109915	96207	122596	112198	98714
units_total_CK2	0.40*	0.43*	0.59*	0.721	0.702	0.600	247038	240884	205221	249273	243167	207620
units_total_CK3	0.24*	0.26*	0.32*	0.393	0.388	0.372	109589	106520	97062	111824	108803	99617
units_total_DS1	0.34*	0.38*	0.41*	0.609	0.592	0.575	208952	202511	195859	211187	204794	198251
units_total_DS2	0.19*	0.25*	0.35*	0.431	0.415	0.385	130443	122057	105269	132678	124340	107681
units_total_DS3	0.21*	0.23*	0.28*	0.591	0.586	0.565	201814	199652	191889	204049	201935	194325
units_total_HB1	0.23*	0.26*	0.37*	0.369	0.363	0.335	95490	91675	73947	97725	93958	76462

^{*} The *p*-value of the *F* test was significant at p < 2.2e-16

Model Comparison

GLM 1	$\log(SalesVolume) \\ = \beta_0 + \sum_{i} \beta_{1i}(dayofweek)_i + \sum_{j} \beta_{2j}(holiday)_j + \sum_{k} \beta_{3k}(weather)_k + \sum_{l} \beta_{4l}(nationalpromotion)_l + \sum_{m} \beta_{5m}(tacticpromotion)_m + \sum_{n} \beta_{6n}log\left(\frac{promo_price_n}{regular_price_n}\right)$
GLM 2	$\log(Sales\ Volume)$ $= \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log Discount_n$
GLM 3	$\begin{split} \log(SalesVolume) \\ = \beta_0 + \sum_i \beta_{1i}(dayofweek)_i + \sum_j \beta_{2j}(holiday)_j + \sum_k \beta_{3k}(weather)_k + \sum_l \beta_{4l}(nationalpromotion)_l + \sum_m \beta_{5m}(tacticpromotion)_m + \sum_n \beta_{6n}logDiscount_n \\ + \sum_o \beta_{7o}logRegular_price_o \end{split}$
GLM 4	$\log(Sales\ Volume) \\ = \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log Discount_n \\ + \sum_o \beta_{7o} log Re\ gular_price_o$

Working Flow of Lasso Regression

Lasso regression did not improve the predicting performance

		in-sam	ple R ²			RM	SE			Al	С		BIC					
Product Name	GLM 1	GLM 2	GLM 3	GLM 4	GLM 1	GLM 2	GLM 3	GLM 4	GLM 1	GLM 2	GLM 3	GLM 4	GLM 1	GLM 2	GLM 3	GLM 4		
units_total_BF2	0.15*	0.21*	0.31*	0.31*	0.344	0.331	0.309	0.309	79207	70570	55351	55362	81442	72853	57790	57751		
units_total_BF3	0.26*	0.30*	0.45*	0.45*	0.374	0.362	0.321	0.321	98135	91236	63361	63363	100370	93520	65791	65731		
units_total_BF4	0.33*	0.33*	0.42*	0.42*	0.380	0.379	0.353	0.353	101856	101713	85200	85125	104091	103997	87553	87599		
units_total_BF5	0.23*	0.26*	0.32*	0.32*	0.396	0.388	0.371	0.370	111303	106557	96218	96181	113539	108841	98609	98607		
units_total_BK1	0.26*	0.30*	0.41*	0.41*	0.507	0.494	0.454	0.454	167376	161430	142119	142111	169611	163713	144539	144518		
units_total_CB4	0.24*	0.29*	0.37*	0.37*	0.368	0.355	0.333	0.333	94672	86648	72191	72274	96907	88931	74702	74599		
units_total_CB5	0.18*	0.19*	0.23*	0.23*	0.528	0.525	0.512	0.512	176464	175374	169466	169407	178699	177656	171835	171894		
units_total_CK1	0.25*	0.31*	0.39*	0.39*	0.412	0.394	0.371	0.371	120361	109915	96207	96286	122596	112198	98714	98596		
units_total_CK2	0.40*	0.43*	0.59*	0.59*	0.721	0.702	0.600	0.600	247038	240884	205221	205192	249273	243167	207620	207600		
units_total_CK3	0.24*	0.26*	0.32*	0.32*	0.393	0.388	0.372	0.372	109589	106520	97062	97189	111824	108803	99617	99480		
units_total_DS1	0.34*	0.38*	0.41*	0.41*	0.609	0.592	0.575	0.575	208952	202511	195859	195823	211187	204794	198251	198267		
units_total_DS2	0.19*	0.25*	0.35*	0.35*	0.431	0.415	0.385	0.385	130443	122057	105269	105253	132678	124340	107681	107667		
units_total_DS3	0.21*	0.23*	0.28*	0.28*	0.591	0.586	0.565	0.565	201814	199652	191889	191898	204049	201935	194325	194278		
units_total_HB1	0.23*	0.26*	0.37*	0.37*	0.369	0.363	0.335	0.336	95490	91675	73947	74035	97725	93958	76462	76318		

^{*} The *p*-value of the *F* test was significant at p < 2.2e-16

It is because the dimension of variables was not greatly reduced using Lasso

Number of Variables Selected Using Lasso:

Product name	Number of Variables (original=260)
units_total_BF2	254
units_total_BF3	254
units_total_BF4	252
units_total_BF5	255
units_total_BK1	253
units_total_CB4	254
units_total_CB5	257
units_total_CK1	255
units_total_CK2	249
units_total_CK3	255
units_total_DS1	255
units_total_DS2	256
units_total_DS3	252
units_total_HB1	251

Model Comparison

CINA 1	$\log(Sales\ Volume) \\ = \beta_0 + \sum_{i} \beta_{1i}(day\ of\ week)_i + \sum_{i} \beta_{2j}(holiday)_j + \sum_{i} \beta_{3k}(weather)_k + \sum_{i} \beta_{4l}(national\ promotion)_l + \sum_{i} \beta_{5m}(tactic\ promotion)_m + \sum_{i} \beta_{6n}log\left(\frac{promo_price_n}{regular_price_n}\right)$
GLM 1	$= p_0 + \sum_{i} p_{1i}(uay \ oj \ week)_i + \sum_{j} p_{2j}(notituay)_j + \sum_{k} p_{3k}(weather)_k + \sum_{l} p_{4l}(national \ promotion)_l + \sum_{m} p_{5m}(tactic \ promotion)_m + \sum_{n} p_{6n} tog \ (regular_price_n)$
	log(Sales Volume)
GLM 2	$=\beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log Discount_n$
	log(Sales Volume)
GLM 3	$=\beta_0+\sum_i\beta_{1i}(\textit{day of week})_i+\sum_j\beta_{2j}(\textit{holiday})_j+\sum_k\beta_{3k}(\textit{weather})_k+\sum_l\beta_{4l}(\textit{national promotion})_l+\sum_m\beta_{5m}(\textit{tactic promotion})_m+\sum_n\beta_{6n}log\textit{Discount}_n$
	$+\sum_o eta_{7o}logRegular_price_o$
	$\log(Sales\ Volume)$
GLM 5	$=\beta_0 + \sum_i \beta_{1i} (\textit{day of week})_i + \sum_j \beta_{2j} (\textit{holiday})_j + \sum_k \beta_{3k} (\textit{weather})_k + \sum_l \beta_{4l} (\textit{national promotion})_l + \sum_m \beta_{5m} (\textit{tactic promotion})_m + \sum_n \beta_{6n} log \textit{Discount}_n$
	$+\sum_{o} \beta_{7o} log Regular_price_{o} + \sum_{p} \beta_{8p} (week\ of\ year)_{p}$

Inclusion of week_of_year slightly improves the models

		in-sam	ple R ²		RMSE					Al	С			BI	С	
Product Name	GLM1	GLM 2	GLM 3	GLM 5	GLM1	GLM 2	GLM 3	GLM 5	GLM1	GLM 2	GLM 3	GLM 5	GLM1	GLM 2	GLM 3	GLM 5
units_total_BF2	0.15*	0.21*	0.31*	0.32*	0.344	0.331	0.309	0.307	79207	70570	55351	53361	81442	72853	57790	56288
units_total_BF3	0.26*	0.30*	0.45*	0.46*	0.374	0.362	0.321	0.319	98135	91236	63361	61471	100370	93520	65791	64398
units_total_BF4	0.33*	0.33*	0.42*	0.45*	0.380	0.379	0.353	0.346	101856	101713	85200	80088	104091	103997	87553	83016
units_total_BF5	0.23*	0.26*	0.32*	0.34*	0.396	0.388	0.371	0.365	111303	106557	96218	92537	113539	108841	98609	95464
units_total_BK1	0.26*	0.30*	0.41*	0.42*	0.507	0.494	0.454	0.449	167376	161430	142119	138928	169611	163713	144539	141855
units_total_CB4	0.24*	0.29*	0.37*	0.40*	0.368	0.355	0.333	0.327	94672	86648	72191	67440	96907	88931	74702	70367
units_total_CB5	0.18*	0.19*	0.23*	0.27*	0.528	0.525	0.512	0.498	176464	175374	169466	162003	178699	177656	171835	164930
units_total_CK1	0.25*	0.31*	0.39*	0.41*	0.412	0.394	0.371	0.366	120361	109915	96207	93048	122596	112198	98714	95975
units_total_CK2	0.40*	0.43*	0.59*	0.60*	0.721	0.702	0.600	0.590	247038	240884	205221	200440	249273	243167	207620	203367
units_total_CK3	0.24*	0.26*	0.32*	0.34*	0.393	0.388	0.372	0.366	109589	106520	97062	92946	111824	108803	99617	95873
units_total_DS1	0.34*	0.38*	0.41*	0.55*	0.609	0.592	0.575	0.506	208952	202511	195859	165942	211187	204794	198251	168869
units_total_DS2	0.19	0.25*	0.35*	0.38*	0.431	0.415	0.385	0.378	130443	122057	105269	100003	132678	124340	107681	102930
units_total_DS3	0.21*	0.23*	0.28*	0.32*	0.591	0.586	0.565	0.549	201814	199652	191889	184077	204049	201935	194325	187004
units_total_HB1	0.23*	0.26*	0.37*	0.38*	0.369	0.363	0.335	0.330	95490	91675	73947	69322	97725	93958	76462	72250

^{*} The *p*-value of the *F* test was significant at p < 2.2e-16

Model Comparison

GLM 5	$\begin{split} \log(SalesVolume) \\ = \beta_0 + \sum_i \beta_{1i} (dayofweek)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (nationalpromotion)_l + \sum_m \beta_{5m} (tacticpromotion)_m + \sum_n \beta_{6n} logDiscount_n \\ + \sum_o \beta_{7o} logRegular_price_o + \sum_p \beta_{8p} (weekofyear)_p \end{split}$
GLM 6	$log(Sales\ Volume)_{storeID} = \beta_{0,storeID} + \sum_{i} \beta_{1i,storeID} (day\ of\ week)_{i,storeID} + \sum_{j} \beta_{2j,storeID} (holiday)_{j,storeID} + \sum_{k} \beta_{3k,storeID} (weather)_{k,storeID} \\ + \sum_{l} \beta_{4l,storeID} (national\ promotion)_{l,storeID} + \sum_{m} \beta_{5m,storeID} (tactic\ promotion)_{m,storeID} + \sum_{n} \beta_{6n,storeID} logDiscount_{n,storeID} + \\ + \sum_{o} \beta_{7o,storeID} logRegular_price_{o,storeID} + \sum_{p} \beta_{8p,storeID} (week\ of\ year)_{p,storeID}$

Optimal approach: fit models for each product in each store

		in-	sample	R^2			h	oldout R	2		RMSE						
Product Name	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6		
units_total_BF2	0.15*	0.21*	0.31*	0.32*	0.86	0.14	0.21	0.31	0.32	0.77	0.344	0.331	0.309	0.307	0.177		
units_total_BF3	0.26*	0.30*	0.45*	0.46*	0.90	0.25	0.30	0.45	0.46	0.83	0.374	0.362	0.321	0.319	0.176		
units_total_BF4	0.33*	0.33*	0.42*	0.45*	0.86	0.33	0.33	0.42	0.44	0.77	0.380	0.379	0.353	0.346	0.223		
units_total_BF5	0.23*	0.26*	0.32*	0.34*	0.82	0.22	0.26	0.32	0.34	0.71	0.396	0.388	0.371	0.365	0.241		
units_total_BK1	0.26*	0.30*	0.41*	0.42*	0.88	0.26	0.29	0.40	0.42	0.81	0.507	0.494	0.454	0.449	0.259		
units_total_CB4	0.24*	0.29*	0.37*	0.40*	0.94	0.23	0.29	0.37	0.40	0.90	0.368	0.355	0.333	0.327	0.136		
units_total_CB5	0.18*	0.19*	0.23*	0.27*	0.66	0.18	0.19	0.23	0.27	0.44	0.528	0.525	0.512	0.498	0.435		
units_total_CK1	0.25*	0.31*	0.39*	0.41*	0.85	0.24	0.31	0.39	0.40	0.74	0.412	0.394	0.371	0.366	0.243		
units_total_CK2	0.40*	0.43*	0.59*	0.60*	0.86	0.40	0.43	0.59	0.60	0.77	0.721	0.702	0.600	0.590	0.448		
units_total_CK3	0.24*	0.26*	0.32*	0.34*	0.82	0.24	0.26	0.32	0.34	0.69	0.393	0.388	0.372	0.366	0.249		
units_total_DS1	0.34*	0.38*	0.41*	0.55*	0.80	0.34	0.38	0.41	0.54	0.66	0.609	0.592	0.575	0.506	0.439		
units_total_DS2	0.19	0.25*	0.35*	0.38*	0.84	0.19	0.25	0.35	0.37	0.73	0.431	0.415	0.385	0.378	0.249		
units_total_DS3	0.21*	0.23*	0.28*	0.32*	0.70	0.21	0.23	0.28	0.32	0.52	0.591	0.586	0.565	0.549	0.462		
units_total_HB1	0.23*	0.26*	0.37*	0.38*	0.88	0.23	0.26	0.36	0.38	0.81	0.369	0.363	0.335	0.330	0.184		

^{*} The p-value of the F test was significant at p < 2.2e-16

Model Comparison

GLM 5	$\log(Sales\ Volume) \\ = \beta_0 + \sum_i \beta_{1i}(day\ of\ week)_i + \sum_i \beta_{2j}(holiday)_j + \sum_i \beta_{3k}(weather)_k + \sum_i \beta_{4l}(national\ promotion)_l + \sum_i \beta_{5m}(tactic\ promotion)_m + \sum_i \beta_{6n}log\ Discount_n$
	t f g
GLM 6	$\begin{split} \log(SalesVolume)_{storeID} &= \beta_{0,storeID} + \sum_{i} \beta_{1i,storeID} (dayofweek)_{i,storeID} + \sum_{j} \beta_{2j,storeID} (holiday)_{j,storeID} + \sum_{k} \beta_{3k,storeID} (weather)_{k,storeID} \\ &+ \sum_{l} \beta_{4l,storeID} (nationalpromotion)_{l,storeID} + \sum_{m} \beta_{5m,storeID} (tacticpromotion)_{m,storeID} + \sum_{n} \beta_{6n,storeID} logDiscount_{n,storeID} + \\ &+ \sum_{o} \beta_{7o,storeID} logRegular_price_{o,storeID} + \sum_{p} \beta_{8p,storeID} (weekofyear)_{p,storeID} \end{split}$
MCMC 1 (HLM/MCMC)	$\begin{split} log(Sales\ Volume) \\ = \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log Discount_n \\ + \sum_o \beta_{7o} log Regular_price_o + \sum_{p, storelD} \alpha_{0p, storelD} + \sum_{q, storelD} \alpha_{1q} log Discount_{q, storelD} \end{split}$

Working Flow of Combined Hierarchical Linear Modeling/MCMC Simulation

Model Comparison

	in-sample R ²							holdout R ²							RMSE						
Product Name	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	MCMC 1	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	MCMC 1	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	MCMC 1			
units_total_BF2	0.15*	0.21*	0.31*	0.32*	0.86	0.76	0.14	0.21	0.31	0.32	0.77	0.58	0.344	0.331	0.309	0.307	0.177	0.241			
units_total_BF3	0.26*	0.30*	0.45*	0.46*	0.90	0.81	0.25	0.30	0.45	0.46	0.83	0.67	0.374	0.362	0.321	0.319	0.176	0.246			
units_total_BF4	0.33*	0.33*	0.42*	0.45*	0.86	0.75	0.33	0.33	0.42	0.44	0.77	0.63	0.380	0.379	0.353	0.346	0.223	0.280			
units_total_BF5	0.23*	0.26*	0.32*	0.34*	0.82	0.70	0.22	0.26	0.32	0.34	0.71	0.57	0.396	0.388	0.371	0.365	0.241	0.292			
units_total_BK1	0.26*	0.30*	0.41*	0.42*	0.88	0.80	0.26	0.29	0.40	0.42	0.81	0.72	0.507	0.494	0.454	0.449	0.259	0.308			
units_total_CB4	0.24*	0.29*	0.37*	0.40*	0.94	0.85	0.23	0.29	0.37	0.40	0.90	0.71	0.368	0.355	0.333	0.327	0.136	0.226			
units_total_CB5	0.18*	0.19*	0.23*	0.27*	0.66	0.51	0.18	0.19	0.23	0.27	0.44	0.42	0.528	0.525	0.512	0.498	0.435	0.443			
units_total_CK1	0.25*	0.31*	0.39*	0.41*	0.85	0.75	0.24	0.31	0.39	0.40	0.74	0.63	0.412	0.394	0.371	0.366	0.243	0.286			
units_total_CK2	0.40*	0.43*	0.59*	0.60*	0.86	0.76	0.40	0.43	0.59	0.60	0.77	0.72	0.721	0.702	0.600	0.590	0.448	0.491			
units_total_CK3	0.24*	0.26*	0.32*	0.34*	0.82	0.69	0.24	0.26	0.32	0.34	0.69	0.56	0.393	0.388	0.372	0.366	0.249	0.298			
units_total_DS1	0.34*	0.38*	0.41*	0.55*	0.80	0.71	0.34	0.38	0.41	0.54	0.66	0.65	0.609	0.592	0.575	0.506	0.439	0.445			
units_total_DS2	0.19*	0.25*	0.35*	0.38*	0.84	0.71	0.19	0.25	0.35	0.37	0.73	0.59	0.431	0.415	0.385	0.378	0.249	0.304			
units_total_DS3	0.21*	0.23*	0.28*	0.32*	0.70	0.56	0.21	0.23	0.28	0.32	0.52	0.49	0.591	0.586	0.565	0.549	0.462	0.473			
units_total_HB1	0.23*	0.26*	0.37*	0.38*	0.88	0.78	0.23	0.26	0.36	0.38	0.81	0.64	0.369	0.363	0.335	0.330	0.184	0.253			

^{*} The p-value of the F test was significant at p < 2.2e-16

Density Distribution of Residuals for the Prediction of units_total_BF2

Density Distribution of Residuals for the Prediction of units_total_BF2 for Each Store

Example: units_total_BF2

Convergence: trace of the movement of the means over each iteration of the chain

-0.39

-0.21

-0.38

-0.20

-0.37

-0.19 -0.18

-0.36

Hierarchical linear modeling was not converged due to the curse of variable dimension

$$\begin{aligned} \textbf{GLM 6} & & = \beta_{0,storeID} + \sum_{l} \beta_{1,storeID} (day\ of\ week)_{l,storeID} + \sum_{l} \beta_{2j,storeID} (holiday)_{j,storeID} + \sum_{k} \beta_{3k,storeID} (weather)_{k,storeID} \\ & & + \sum_{l} \beta_{4l,storeID} (national\ promotion)_{l,storeID} + \sum_{m} \beta_{5m,storeID} (tactic\ promotion)_{m,storeID} + \sum_{n} \beta_{6n,storeID} logDiscount_{n,storeID} + \\ & & + \sum_{o} \beta_{7o,storeID} logRegular_price_{o,storeID} + \sum_{p} \beta_{ep,storeID} (week\ of\ year)_{p,storeID} \\ & &$$

Model Comparison

GLM 6	$log(Sales\ Volume)_{storeID} = \beta_{0,storeID} + \sum_{i} \beta_{1i,storeID} (day\ of\ week)_{i,storeID} + \sum_{j} \beta_{2j,storeID} (holiday)_{j,storeID} + \sum_{k} \beta_{3k,storeID} (weather)_{k,storeID} \\ + \sum_{l} \beta_{4l,storeID} (national\ promotion)_{l,storeID} + \sum_{m} \beta_{5m,storeID} (tactic\ promotion)_{m,storeID} + \sum_{n} \beta_{6n,storeID} logDiscount_{n,storeID} + \\ + \sum_{o} \beta_{7o,storeID} logRegular_price_{o,storeID} + \sum_{p} \beta_{8p,storeID} (week\ of\ year)_{p,storeID}$
MCMC 1 (HLM/MCMC)	$log(Sales\ Volume)$ $= \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} log Discount_n$ $+ \sum_o \beta_{7o} log Regular_price_o + \sum_{p, storeID} \alpha_{0p, storeID} + \sum_{q, storeID} \alpha_{1q} log Discount_{q, storeID}$
MCMC 2 (HLM/MCMC)	$log(Sales\ Volume)$ $= \beta_0 + \sum_i \beta_{1i} (day\ of\ week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national\ promotion)_l + \sum_m \beta_{5m} (tactic\ promotion)_m + \sum_n \beta_{6n} logDiscount_n$ $+ \sum_o \beta_{7o} logRegular_price_o + \sum_p \beta_{8p} (week\ of\ year)_p + \sum_{p,storelD} \alpha_{0p,storelD} + \sum_{q,storelD} \alpha_{1q} logDiscount_{q,storelD} + \sum_{r,storelD} \alpha_{2r} logRegular_price_{r,storelD}$

MCMC2 has comparative holdout R² and in-sample RMSE relative to GLM6

			in-s	sample	R ²			holdout R ²							RMSE						
Product Name	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	MCMC 1	MCMC 2	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	MCMC 1	MCMC 2	GLM 1	GLM 2	GLM 3	GLM 5	GLM 6	MCMC 1	MCMC 2
units_total_BF2	0.15*	0.21*	0.31*	0.32*	0.86	0.76	0.78	0.14	0.21	0.31	0.32	0.77	0.58	0.76	0.344	0.331	0.309	0.307	0.177	0.241	0.181
units_total_BF3	0.26*	0.30*	0.45*	0.46*	0.90	0.81	0.84	0.25	0.30	0.45	0.46	0.83	0.67	0.83	0.374	0.362	0.321	0.319	0.176	0.246	0.179
units_total_BF4	0.33*	0.33*	0.42*	0.45*	0.86	0.75	0.77	0.33	0.33	0.42	0.44	0.77	0.63	0.77	0.380	0.379	0.353	0.346	0.223	0.280	0.222
units_total_BF5	0.23*	0.26*	0.32*	0.34*	0.82	0.70	0.72	0.22	0.26	0.32	0.34	0.71	0.57	0.70	0.396	0.388	0.371	0.365	0.241	0.292	0.244
units_total_BK1	0.26*	0.30*	0.41*	0.42*	0.88	0.80	0.82	0.26	0.29	0.40	0.42	0.81	0.72	0.81	0.507	0.494	0.454	0.449	0.259	0.308	0.259
units_total_CB4	0.24*	0.29*	0.37*	0.40*	0.94	0.85	0.88	0.23	0.29	0.37	0.40	0.90	0.71	0.87	0.368	0.355	0.333	0.327	0.136	0.226	0.148
units_total_CB5	0.18*	0.19*	0.23*	0.27*	0.66	0.51	0.54	0.18	0.19	0.23	0.27	0.44	0.42	0.51	0.528	0.525	0.512	0.498	0.435	0.443	0.407
units_total_CK1	0.25*	0.31*	0.39*	0.41*	0.85	0.75	0.77	0.24	0.31	0.39	0.40	0.74	0.63	0.75	0.412	0.394	0.371	0.366	0.243	0.286	0.237
units_total_CK2	0.40*	0.43*	0.59*	0.60*	0.86	0.76	0.79	0.40	0.43	0.59	0.60	0.77	0.72	0.78	0.721	0.702	0.600	0.590	0.448	0.491	0.433
units_total_CK3	0.24*	0.26*	0.32*	0.34*	0.82	0.69	0.72	0.24	0.26	0.32	0.34	0.69	0.56	0.70	0.393	0.388	0.372	0.366	0.249	0.298	0.245
units_total_DS1	0.34*	0.38*	0.41*	0.55*	0.80	0.71	0.72	0.34	0.38	0.41	0.54	0.66	0.65	0.70	0.609	0.592	0.575	0.506	0.439	0.445	0.408
units_total_DS2	0.19*	0.25*	0.35*	0.38*	0.84	0.71	0.75	0.19	0.25	0.35	0.37	0.73	0.59	0.74	0.431	0.415	0.385	0.378	0.249	0.304	0.245
units_total_DS3	0.21*	0.23*	0.28*	0.32*	0.70	0.56	0.59	0.21	0.23	0.28	0.32	0.52	0.49	0.56	0.591	0.586	0.565	0.549	0.462	0.473	0.438
units_total_HB1	0.23*	0.26*	0.37*	0.38*	0.88	0.78	0.81	0.23	0.26	0.36	0.38	0.81	0.64	0.80	0.369	0.363	0.335	0.330	0.184	0.253	0.188

^{*} The *p*-value of the *F* test was significant at p < 2.2e-16.

Model Comparison

NEXT: Model Comparison

	$log(Sales\ Volume)$
MCMC 1 (HLM/MCMC)	$=\beta_{0}+\sum_{i}\beta_{1i}(day\ of\ week)_{i}+\sum_{j}\beta_{2j}(holiday)_{j}+\sum_{k}\beta_{3k}(weather)_{k}+\sum_{l}\beta_{4l}(national\ promotion)_{l}+\sum_{m}\beta_{5m}(tactic\ promotion)_{m}+\sum_{n}\beta_{6n}logDiscount_{n}\\ +\sum_{o}\beta_{7o}logRegular_price_{o}+\sum_{p,storelD}\alpha_{0p,storelD}+\sum_{q,storelD}\alpha_{1q}logDiscount_{q,storelD}\\$
MCMC 2 (HLM/MCMC)	$log(Sales Volume)$ $= \beta_0 + \sum_i \beta_{1i} (day of week)_i + \sum_j \beta_{2j} (holiday)_j + \sum_k \beta_{3k} (weather)_k + \sum_l \beta_{4l} (national promotion)_l + \sum_m \beta_{5m} (tactic promotion)_m + \sum_n \beta_{6n} log Discount_n$ $+ \sum_o \beta_{7o} log Regular_price_o + \sum_p \beta_{8p} (week of year)_p + \sum_{p, storelD} \alpha_{0p, storelD} + \sum_{q, storelD} \alpha_{1q} log Discount_{q, storelD} + \sum_{r, storelD} \alpha_{2r} log Regular_price_{r, storelD}$
MCMC 3 (HLM/MCMC)	$log(Sales\ Volume)$ $= \beta_{0} + \sum_{i} \beta_{1i}(day\ of\ week)_{i} + \sum_{j} \beta_{2j}(holiday)_{j} + \sum_{k} \beta_{3k}(weather)_{k} + \sum_{l} \beta_{4l}(national\ promotion)_{i} + \sum_{m} \beta_{5m}(tacktic\ promotion)_{m} + \sum_{n} \beta_{6n}logDiscount_{n}$ $+ \sum_{o} \beta_{7o}(logRegular_price)_{o} + \sum_{p} \beta_{8p}(week\ of\ year)_{p} + \sum_{p,storelD} \alpha_{0p,storelD} + \sum_{q,storelD} \alpha_{1q,storelD}(logDiscount)_{q,storelD}$ $+ \sum_{r} \alpha_{2r,storelD}(logRegular_price)_{r,storelD} + \sum_{s,storelD} \alpha_{3s,storelD}(tactic\ promotion)_{s,storelD}$

Working Flow of Combined Hierarchical Linear Modeling/MCMC Simulation

MCMC2 has comparative performance relative to MCMC3 and is less time-consuming

		in-	sample	R ²			h	oldout F	R ²		RMSE					
Product Name	GLM 5	GLM 6	MCMC 1	MCMC 2	MCMC 3	GLM 5	GLM 6	MCMC 1	MCMC 2	MCMC 3	GLM 5	GLM 6	MCMC 1	MCMC 2	MCMC 3	
units_total_BF2	0.32*	0.86	0.76	0.78	0.79	0.32	0.77	0.58	0.76	0.76	0.307	0.177	0.241	0.181	0.180	
units_total_BF3	0.46*	0.90	0.81	0.84	0.85	0.46	0.83	0.67	0.83	0.83	0.319	0.176	0.246	0.179	0.179	
units_total_BF4	0.45*	0.86	0.75	0.77	0.79	0.44	0.77	0.63	0.77	0.77	0.346	0.223	0.280	0.222	0.222	
units_total_BF5	0.34*	0.82	0.70	0.72	0.74	0.34	0.71	0.57	0.70	0.71	0.365	0.241	0.292	0.244	0.242	
units_total_BK1	0.42*	0.88	0.80	0.82	0.83	0.42	0.81	0.72	0.81	0.81	0.449	0.259	0.308	0.259	0.258	
units_total_CB4	0.40*	0.94	0.85	0.88	0.89	0.40	0.90	0.71	0.87	0.87	0.327	0.136	0.226	0.148	0.149	
units_total_CB5	0.27*	0.66	0.51	0.54	0.56	0.27	0.44	0.42	0.51	0.51	0.498	0.435	0.443	0.407	0.406	
units_total_CK1	0.41*	0.85	0.75	0.77	0.78	0.40	0.74	0.63	0.75	0.76	0.366	0.243	0.286	0.237	0.234	
units_total_CK2	0.60*	0.86	0.76	0.79	0.81	0.60	0.77	0.72	0.78	0.79	0.590	0.448	0.491	0.433	0.430	
units_total_CK3	0.34*	0.82	0.69	0.72	0.73	0.34	0.69	0.56	0.70	0.71	0.366	0.249	0.298	0.245	0.243	
units_total_DS1	0.55*	0.80	0.71	0.72	0.73	0.54	0.66	0.65	0.70	0.70	0.506	0.439	0.445	0.408	0.409	
units_total_DS2	0.38*	0.84	0.71	0.75	0.77	0.37	0.73	0.59	0.74	0.75	0.378	0.249	0.304	0.245	0.237	
units_total_DS3	0.32*	0.70	0.56	0.59	0.61	0.32	0.52	0.49	0.56	0.56	0.549	0.462	0.473	0.438	0.441	
units_total_HB1	0.38*	0.88	0.78	0.81	0.82	0.38	0.81	0.64	0.80	0.80	0.330	0.184	0.253	0.188	0.190	

^{*} The *p*-value of the *F* test was significant at p < 2.2e-16.

Remaining Issues I: Residuals of both models (GLM6 and MCM2) show seasonal patterns

Example: Residuals, ACF, and PACF of the linear model for the prediction of product CB4 at store 1 (GLM6)

The residuals of linear models GLM6 show strong autocorrelation. So linear assumption of independence of residuals is not valid in these models, which may lead to the wrong coefficients.

Remaining Issues II: Both models have a large percentage of coefficients with incorrect signs. MCMC2, however, has zero instances of N/A's

Price Elasticity: Incorrect vs. Correct Sign GLM 6

>0 (Incorrect) <0 (Correct) N/A % With Incorrect Sign

BF2	BF3	BF4	BF5	BK1	CB4	CB5	CK1	CK2	СКЗ	DS1	DS2	DS3	HB1	Total
24	21	63	37	40	12	54	54	8	44	14	48	34	1	454
43	74	32	47	53	27	39	34	86	47	77	45	43	91	738
29	1	1	12	3	57	3	8	2	5	5	3	19	4	152
35.8%	22.1%	66.3%	44.0%	43.0%	30.8%	58.1%	61.4%	8.5%	48.4%	15.4%	51.6%	44.2%	1.1%	29.1%

HLM MCMC2

>0 (Incorrect)
<0 (Correct)
N/A
% With Incorrect Sign

	BF2	BF3	BF4	BF5	BK1	CB4	CB5	CK1	CK2	СКЗ	DS1	DS2	DS3	HB1	Total
	64	20	55	47	45	28	62	46	28	43	7	29	25	0	499
	32	76	41	49	51	68	34	50	68	53	89	67	71	96	845
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	6.7%	20.8%	57.3%	49.0%	46.9%	29.2%	64.6%	47.9%	29.2%	44.8%	7.3%	30.2%	26.0%	0.0%	31.4%

Next

• For Issue I: Diagnosing the seasonality pattern in the dependent variables

Deseasonalization by the means of seasonal adjustment

• For Issue II: Perform constrained optimization using non negative least squares (different from Lasso)
Perform best subset regression

Appendix

Working Flow of Validation Process

number of interaction terms

Correlation matrix of log regular prices and log Discount prices

Correlation matrix of 14 Dependent Variables for modeling

Correlation matrix of log units and log regular prices

Correlation matrix of log units and log Discount prices

Correlation matrix of log Units, log regular prices and log Discount prices

