U.S. Appln. No.: 10/617,210

Attorney Docket No.: Q76413

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (currently amended): A method of coding an audio or speech signal using a

codebook search of a codebook, comprising:

dividing said codebook into a plurality of codebook groups, where the codebook

comprises a plurality of code vectors for vector quantization of a signal vector representing a set

of signal values of said audio or speech signal;

simultaneously determining a plurality of optimal group code vectors, each of which

corresponds to one of said plurality of codebook groups;

determining an optimal code vector of said codebook from said plurality of optimal group

code vectors;

performing a comparison of the plurality of code vectors within said codebook search to

determine the optimal code vector, wherein said comparison is based on cross multiplication

expression

 $\underline{C_t * E_{best}} > < \underline{E_t * C_{best}}$

calculated in parallel for every vector, which is based on fixed point operations performed,

wherein C_t is a cross term corresponding to a t-th code vector and C_{best} is the cross term

corresponding to a temporarily best code vector, and wherein Et is a energy term corresponding

to said t-th code vector and E_{best} is the energy term corresponding to said temporarily best code

vector; and

U.S. Appln. No.: 10/617,210

outputting the optimal code vector,

wherein said determining of said optimal code vector among said plurality of optimal

Attorney Docket No.: Q76413

group code vectors comprises evaluating an index of each optimal group code vector uniquely

identifying each optimal group code vector within said codebook, and

wherein a cross multiplication expression, Ct * Ebest >< Et * Cbest, is used for each code

vector.

2. (canceled).

3. (previously presented): The method according to claim 1, wherein said vector

quantization is of a shape-gain type.

4. (canceled).

5. (previously presented): The method according to claim 1, wherein said method is

based on a code excited linear prediction (CELP) algorithm comprising a synthesis section, and

wherein elements of a matrix representing a transfer function of at least one filter of said

synthesis section, and/or elements of auto-correlation matrices used within said CELP-algorithm

and/or further precalculation and postcalculation steps for said comparison of code vectors are

generated/evaluated in parallel.

U.S. Appln. No.: 10/617,210

Attorney Docket No.: Q76413

(previously presented): The method according to claim 1, wherein said codebook 6.

comprises pulse code vectors.

(currently amended): A processor for coding an audio or speech signal, wherein 7.

the processor comprises:

configurable hardware with an acceleration module which performs codebook search

comprising:

dividing module which divides said codebook into plurality of codebook groups,

where the codebook comprises a plurality of code vectors for vector quantization of a

signal vector representing a set of signal values of said audio or speech signal:

first set of determination units which simultaneously determines plurality of

optimal group code vectors, where each of the plurality of optimal group code vectors

corresponds to one of said plurality of codebook groups; and

second determination unit which determines said optimal code vector of said

codebook from the plurality of optimal group code vectors; and

an outputting module which outputs said optimal code vector,

wherein the codebook search is performed in parallel execution,

wherein said second determination unit determining said optimal code vector among said

plurality of optimal group code vectors comprises evaluating an index of each optimal group

code vector uniquely identifying each optimal group code vector within said codebook, and

U.S. Appln. No.: 10/617,210

Attorney Docket No.: Q76413

wherein a comparison of the plurality of code vectors within said codebook search is performed to determine the optimal code vector, wherein said comparison is based on cross multiplication expression

$$\underline{C_t * E_{best}} > < \underline{E_t * C_{best}}$$

calculated in parallel for every vector, which is based on fixed point operations, wherein C_t is a cross term corresponding to a t-th code vector and C_{best} is the cross term corresponding to a temporarily best code vector, and wherein E_t is a energy term corresponding to said t-th code vector and E_{best} is the energy term corresponding to said temporarily best code vectora cross multiplication expression, $C_t * E_{best} > < E_t * C_{best}$ is used for each code vector.

- 8. (previously presented): The processor according to claim 7 further comprising means for simultaneously accessing a plurality of said signal values located in a memory.
- 9. (previously presented): The processor according to claim 7, wherein the processor is a standard processor further comprising calculation module wherein the standard processor performs the parallel execution of said codebook search, and wherein said codebook search is optimized regarding at least one of the calculation module of said standard processor and execution time.
 - 10. (cancelled).

U.S. Appln. No.: 10/617,210

Attorney Docket No.: Q76413

11. (previously presented): A coder and a decoder, capable of performing the method

according to claim 1, wherein the coder and decoder are at least one of speech and audio signal

CODECs.

12. (canceled).

13. (previously presented) The processor according to claim 7, wherein the processor

is a digital signal processor.

14. (canceled).

15. (previously presented): The processor according to claim 7, further comprising a

plurality of calculation units, each of which determines optimal group code vectors of a

respective one of the plurality of codebook groups, wherein the plurality of calculation units

execute said determining simultaneously.

16. (previously presented): The method according to claim 1, wherein each codebook

group comprises a number of code vectors wherein the number of code vectors is a fraction of

the plurality of code vectors.

17. (previously presented): The method according to claim 1, wherein each code

vector is uniquely identifiable by a unique index.

U.S. Appln. No.: 10/617,210

18. (previously presented): The method according to claim 17, wherein the code vectors contained in a first codebook group are mutually exclusive from the code vectors contained in a second codebook group.

Attorney Docket No.: Q76413

- 19. (canceled).
- 20. (previously presented): The method according to claim 1, wherein said evaluating an index of each optimal group code vector ensures conformity with a linear search method.