Unit 4: Orthogonalization, Eigen Values and Eigen Vectors

Orthogonalization -The Gram-Schmidt Orthogonalization, Introduction to Eigenvalues and Eigenvectors, Properties of Eigenvalues and Eigenvectors, Cayley-Hamilton theorem(Statement only), Symmetric Matrices, Diagonalization of a Matrix.

Class	Portions to be covered
No.	
42	Orthogonalization - Orthogonal Matrices, Properties
43	Rectangular Matrices with orthonormal columns
44	The Gram- Schmidt Orthogonalization
45	A = QR Factorization
46	Matlab Class Number 7- Projection by Least Squares
47	Introduction to Eigen values and Eigenvectors
48	Properties of eigenvalues and eigenvectors, Cayley-Hamilton theorem
49	Problems on Properties of Eigen values and Eigen vectors
50-51	Matlab Class Number 8 & 9- The Gram- Schmidt process, A=QR Factorization
52	Symmetric Matrices, Diagonalization of a Matrix
53-54	Problems on Diagonalization of a Matrix
55	Powers and Products of Matrices
56	Applications

Classwork problems:

1.	Let S consist of the following vectors $u_1=(1, 1, 0, -1)$, $u_2=(1, -2, -1, -1)$,
	$u_3=(1, 1, -3, 2)$, $u_4=(4, -1, 3, 3)$ in R^4 . Is S orthogonal, if not make it an
	orthogonal matrix. Does S form a basis of R ⁴ .
2.	If A= $\begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$ (a)Determine whether or not (i)Rows of A are orthogonal (ii)Columns of A are orthogonal (iii) A is an orthogonal matrix. (b)Find a matrix B having orthonormal rows of A. (c)Is B an orthogonal matrix?
	(d)Are the columns of B orthogonal?
	Answer: A and columns of A are not orthogonal.
3.	$Q = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{14} & 2/\sqrt{14} & -3/\sqrt{14} \\ & & \end{pmatrix}$ find a third row so that the matrix Q^T is orthogonal.
	If Q^T is orthogonal.
	Answer : $(-5/\sqrt{42}, 4/\sqrt{42}, 1/\sqrt{42})$

	,
4.	Find an orthonormal set q1, q2, q3 for which q1 and q2 span the column space of
	$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{pmatrix}$
	$\begin{pmatrix} -2 & 4 \end{pmatrix}$
	Which fundamental subspace contains q ₃ ? What is the least squares solution of Ax
	= b if b = $(1, 2, 7)$? Also find A = QR factorization.
	Answer: $q_2 = \begin{pmatrix} 2/3 & 1/3 & 2/3 \\ 2/3 & 1/3 & 2/3 \end{pmatrix}$ $q_3 = \begin{pmatrix} -2/3 & 2/3 & 1/3 \\ 2/3 & 1/3 & 2/3 \end{pmatrix}$ $x = (1, 2)$
5.	Use the Gram – Schmidt process to find a set of orthonormal vectors q1, q2, q3 from
	the independent vectors $a_1 = (1, -2, 0, 1)$, $a_2 = (-1, 0, 0, -1)$ $a_3 = (1, 1, 0, 0)$.
	Answer: $\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}}\right), \left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, 0, \frac{-1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{2}}, 0, 0, \frac{-1}{\sqrt{2}}\right)$
	Answer: $(/\sqrt{6}, \sqrt{6}, \sqrt{6}, \sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{2}, \sqrt{2})$
6.	$(4) \qquad (2)$
	What multiple of $a_1 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ should be subtracted from $a_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ to make the
	result orthogonal to a_1 ? Factor A = QR with orthonormal vectors in Q.
	Answer: 1/2
7.	Apply Gram – Schmidt process to find a set of orthonormal vectors q ₁ , q ₂ , q ₃ from the
	independent vectors a ₁ = (1, 1, 1), a ₂ = (-1, 0, -1) a ₃ = (-1, 2, 3). Factor A=QR where
	$A=(a_1, a_2, a_3).$
	Answer: $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}) \cdot (-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$
	Allswei . V V V V V V V V V V V V V V V V V V
8.	Find the eigenvalues and the corresponding eigenvectors of
	$(2 \ 0 \ 1) \ (4 \ 1 \ -1) \ (0 \ 0 \ 3)$
	$ \left[\begin{array}{cccc} 2 & 0 & 1 \\ 0 & 2 & 0 \end{array} \right] \left(\begin{array}{cccc} 4 & 1 & -1 \\ 2 & 5 & -2 \end{array} \right] \left(\begin{array}{cccc} 0 & 0 & 3 \\ 1 & 0 & -1 \end{array} \right) $
	$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$
	Answer :Eigen values are (i) 1, 2, 3 (ii) 3, 3, 5 (iii) 3, i, -i
9.	Verify Cayley Hamilton theorem for A and hence find its inverse given A=
] 3.	
	$ \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix} $
	$\begin{pmatrix} 3 & 1 & 1 \end{pmatrix}$
10.	The eigen vectors of a 3x3 matrix A corresponding to the eigen values -2. 3. 6 are (1, 0, -1),
	(1, -1, 1) and (1, 2, 1). Find the matrix A.
11.	If 3 and 6 are two eigen values of find eigen values of A ² , A ⁻¹ and A + 5I.
	(Use Property)
12.	(4 3)
	Factor $A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$ into $S\Delta S^{-1}$ and hence compute A ⁵⁵ .
	and nence compute A".
	Answer: Eigen values are 1, 5 and Eigen vectors are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$
	Answer: Eigen values are 1, 5 and Eigen vectors are ${}^{-1}{}^{\!\!/}$ and ${}^{1}{}^{\!\!/}$

13.	Find the matrices S and S ⁻¹ to diagonalize $A = \begin{pmatrix} 0.6 & 0.9 \\ 0.1 & 0.6 \end{pmatrix}$
	What are limits of A^k and $S\Lambda^kS^{-1}$ as $k \to \infty$?
	Answer: eigenvalues of A are 0.9 and 0.3 with eigenvectors (3, 1), (-3, 1).
14.	If λ is an eigen value of $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ and μ is an eigen value of $B = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$, then is $\lambda\mu$ an
	eigen value of the product AB.
15.	Check if the following matrices are orthogonally diagonalizable. If not, then orthogonally diagonalize them as $A = S\Delta S^{-1} = Q\Delta Q^{-1} = Q\Delta Q^T$ where Q is an orthogonal matrix.
	$ \begin{vmatrix} 4 & 1 & -1 \\ 2 & 6 & -2 \\ 1 & 1 & 2 \end{vmatrix} $