HW4 Report

For each problem n, there is only one resulting figure consisting of 3 graphs, where the graph for problem n-1 is on the left, n-2 is on the top right, and n-3 is on the bottom right.

Problem 1

1-2

Let m_1, m_2, \ldots, m_{50} be the mobile devices in the central cell, and b_1, b_2, \ldots, b_{19} be the 19 base stations, where b_1 is the central base station.

Let \mathbf{x}_i be the coordinate of b_i and \mathbf{y}_j be the coordinate of m_j . Note that $\mathbf{x}_1 = (0,0)$.

The Shannon capacity of m_i , denoted as C_i , can be calculated by:

$$C_i = B\lg(1 + SINR_i),$$

where $B=rac{10^7}{50}$ (Hz) is the channel bandwidth of each mobile device, and SINR_i is the SINR of m_i .

In addition, \mathbf{SINR}_i can be calculated by:

$$SINR_i = \frac{P_{b_1}G_TG_R \cdot g(||\mathbf{y}_i - \mathbf{x}_1||)}{k \cdot 300.15 \cdot B + \sum\limits_{1 < j \leq 19} P_{b_j}G_TG_R \cdot g(||\mathbf{y}_i - \mathbf{x}_j||)}.$$

1-3

$$X_l = 5 \cdot 10^5 ({
m bit/s}), X_m = 10^6 ({
m bit/s}), X_h = 2 \cdot 10^6 ({
m bit/s})$$