

PES Institute of Technology Bangalore South Campus

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

VI SEMESTER

SOFTWARE TESTING LABORATORY MANUAL

SUBJECT CODE: 10ISL68

By

Mr. ANIMESH GIRI

//Program 1: Decision table approach for solving triangle problem

/* Design and develop a program in a language of your choice to solve the triangle problem defined as follows: Accept three integers which are supposed to be the three sides of triangle and determine if the three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all. Derive test cases for your program based on decision-table approach, execute the test cases and discuss the results */

```
#include<stdio.h>
int main()
       int a,b,c;
       char istriangle;
        printf("enter 3 integers which are sides of triangle\n");
        scanf("%d%d%d",&a,&b,&c);
        printf("a=%d\t,b=%d\t,c=%d",a,b,c);
       // to check is it a triangle or not
       if( a < b + c & & b < a + c & & c < a + b )
               istriangle='y';
       else
               istriangle ='n';
       if (istriangle=='y')
               if ((a==b) && (b==c))
                       printf("equilateral triangle\n");
               else if ((a!=b) && (a!=c) && (b!=c))
                       printf("scalene triangle\n");
                 else
                       printf("isosceles triangle\n");
       else
               printf("Not a triangle\n");
       return 0;
```


Test Case Name :Decision table for triangle problem

Experiment Number: 1

Test Data: Enter the 3 Integer Value(a, b And c) Pre-condition: a < b + c, b < a + c and c < a + b

Brief Description: Check whether given value for a equilateral, isosceles, Scalene triangle or can't from a triangle

Input data decision Table

RULES	•	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11
	C1: $a < b + c$	F	T	T	T	T	T	T	T	T	T	T
	C2: b < a + c	-	F	T	T	T	T	T	T	T	T	T
Conditions	C3: c < a + b	-	_	F	Т	Т	Т	T	Т	T	T	T
Conditions	C4: a = b	-	<u>_</u>		T	Т	T	Т	F	F	F	F
	C5: a = c	_	-	-	T	Т	F	F	Т	T	F	F
	C6: b = c	-	-	-	Т	F	T	F	T	F	T	F
	a1 : Not a triangle	X	X	X								
	a2 : Scalene triangle											X
Actions	a3 : Isosceles triangle							X		X	X	
	a4 : Equilateral triangle				X							
	a5 : Impossible					X	X		X			

Triangle Problem -Decision Table Test cases for input data

Case Id	Description	In	put D	ata	Expected Output	Actual Output	Status	Comments
Case Iu	Description	a	b	C	Expected Output	Actual Output	Status	Comments
1	Enter the value of a, b and c Such that a is not less than sum of two sides	20	5	5	Message should be displayed can't form a triangle			
2	Enter the value of a, b and c Such that b is not less than sum of two sides and a is less than sum of other two sides	3	15	11	Message should be displayed can't form a triangle			
3	Enter the value of a, b and c Such that c is not less than sum of two sides and a and b is less than sum of other two sides	4	5	20	Message should be displayed can't form a triangle			
4	Enter the value a, b and c satisfying precondition and a=b, b=c and c=a	5	5	5	Should display the message Equilateral triangle	A		
5	Enter the value a ,b and c satisfying precondition and a=b and b \neq c	10	10	9	Should display the message Isosceles triangle	7		
6	Enter the value a, b and c satisfying precondition and a \neq b, b \neq c and c \neq a	5	6	7	Should display the message Scalene triangle			

Program 2 (Boundary value analysis program)

/* Design and develop a program in a language of your choice to solve the triangle problem defined as follows: Accept three integers which are supposed to be the three sides of triangle and determine if the three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all. Derive test cases for your program based on boundary value analysis, execute the test cases and discuss the results */

```
#include<stdio.h>
int main()
       int a,b,c,c1,c2,c3;
       char istriangle;
       do
                printf("\nenter 3 integers which are sides of triangle\n");
               scanf("%d%d%d",&a,&b,&c);
               printf("na=\% d\te=\% d\te=\% d",a,b,c);
               c1 = a > = 1 & a < = 10:
               c2=b>=1 && b<=10;
               c3 = c > = 1 & c < = 10;
                if (!c1)
                        printf("\nthe value of a=%d is not the range of permitted value",a);
                if (!c2)
                       printf("\nthe value of b=%d is not the range of permitted value",b);
               if (!c3)
                       printf("\nthe value of c=\%d is not the range of permitted value",c);
        } while(!(c1 && c2 && c3));
       // to check is it a triangle or not
       if( a < b + c & & b < a + c & & c < a + b )
               istriangle='y';
       else
               istriangle ='n';
       if (istriangle=='y')
               if ((a==b) && (b==c))
                       printf("equilateral triangle\n");
               else if ((a!=b) && (a!=c) && (b!=c))
                       printf("scalene triangle\n");
                 else
                       printf("isosceles triangle\n");
       else
               printf("Not a triangle\n");
       return 0;
```

Test Case Name: Boundary Value Analysis for triangle problem

Experiment Number: 2

Test Data: Enter the 3 Integer Value(a, b And c)

Pre-condition: $1 \le a \le 10$, $1 \le b \le 10$ and $1 \le c \le 10$ and a < b + c, b < a + c and c < a + b

Brief Description: Check whether given value for a equilateral, isosceles, Scalene triangle or can't from a triangle

Triangle Problem -Boundary value Test cases for input data

Case Id	Description	lnį	out Da	ata	Expected Output	Actual	Status	Comments
cuse iu	Description .	Α	b	С	Expected Output	Output	Status	Comments
1	Enter the min value for a, b and c	1	1	1	Should display the message Equilateral triangle			
2	Enter the min value for 2 items and min +1 for any one item1	1	1	2	Message should be displayed can't form a triangle			
3	Enter the min value for 2 items and min +1 for any one item1	1	2	1	Message should be displayed can't form a triangle			
4	Enter the min value for 2 items and min +1 for any one item1	2	1	1	Message should be displayed can't form a triangle			
5	Enter the normal value for 2 items and 1 item is min value	5	5	1	Should display the message Isosceles triangle			
6	Enter the normal value for 2 items and 1 item is min value	5	1	5	Should display the message Isosceles triangle			
7	Enter the normal value for 2 items and 1 item is min value	1	5	5	Should display the message Isosceles triangle			
8	Enter the normal Value for a, b and c	5 '	5	5	Should display the message Equilateral triangle			
9	Enter the normal value for 2 items and 1 item is max value	5	5	10	Should display the message Not a triangle			

10	Enter the normal value for 2 items and 1 item is max value	5	10	5	Should display the message Not a triangle
11	Enter the normal value for 2 items and 1 item is max value	10	5	5	Should display the message Not a triangle
12	Enter the max value for 2 items and max - 1 for any one item	10	10	9	Should display the message Isosceles triangle
13	Enter the max value for 2 items and max - 1 for any one item	10	9	10	Should display the message Isosceles triangle
14	Enter the max value for 2 items and max - 1 for any one item	9	10	10	Should display the message Isosceles triangle
15	Enter the max value for a, b and c	10	10	10	Should display the message Equilateral triangle

INSTITUTIONS

Program 3 (equivalence class partitioning program)

/* Design and develop a program in a language of your choice to solve the triangle problem defined as follows: Accept three integers which are supposed to be the three sides of triangle and determine if the three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all. Derive test cases for your program based on equivalence class partitioning, execute the test cases and discuss the results */

```
#include<stdio.h>
int main()
       int a,b,c, c1,c2,c3;
       char istriangle;
       do
               printf("\nenter 3 integers which are sides of triangle\n");
               scanf("%d%d%d",&a,&b,&c);
               printf("na=\% d\te=\% d\te=\% d",a,b,c);
               c1 = a > = 1 & a < = 10:
               c2=b>=1 && b<=10;
               c3 = c > = 1 & c < = 10;
                if (!c1)
                        printf("\nthe value of a=%d is not the range of permitted value",a);
                if (!c2)
                       printf("\nthe value of b=%d is not the range of permitted value",b);
               if (!c3)
                       printf("\nthe value of c=\%d is not the range of permitted value",c);
        } while(!(c1 && c2 && c3));
       // to check is it a triangle or not
       if( a < b + c & & b < a + c & & c < a + b )
               istriangle='y';
       else
               istriangle ='n';
       if (istriangle=='y')
               if ((a==b) && (b==c))
                       printf("equilateral triangle\n");
               else if ((a!=b) && (a!=c) && (b!=c))
                       printf("scalene triangle\n");
                 else
                       printf("isosceles triangle\n");
       else
               printf("Not a triangle\n");
       return 0;
```

Test Case Name : Equivalence class Analysis for triangle problem

Experiment Number: 3

Test Data: Enter the 3 Integer Value(a, b And c)

Pre-condition: $1 \le a \le 10$, $1 \le b \le 10$ and $1 \le c \le 10$ and a < b + c, b < a + c and c < a + b

Brief Description: Check whether given value for a equilateral, isosceles, Scalene triangle or can't from a triangle

Triangle Problem - Equivalence Class Test cases for input data

	Weak Equivalence class Testing									
Case	Case Description		put Da	ata	Expected Output	Actual	Statu	Comment		
Id	Description	a	_ b	C	Expected Output	Output	S	S		
1	Enter the min value for a, b and c	5	5	5	Should display the message Equilateral triangle					
2	Enter the min value for a, b and c	2	2	3	Should display the message Isosceles triangle					
3	Enter the min value for a, b and c	3	4	5	Should display the message Scalene triangle					
4	Enter the min value for a, b and c	4	1	2	Message should be displayed can't form a triangle					

	Weak Robust Equivalence class Testing										
5	Enter one invalid input and two	-1	5	5	Should display value of a is not in the						
	valid value for a, b and c				range of permitted values						
6	Enter one invalid input and two	5	-1	5	Should display value of a is not in the		ļ				
U	valid value for a , b and c	3	-1	3	range of permitted values						
7	Enter one invalid input and two	4	_	1	Should display value of a is not in the						
/	valid value for a, b and c	3	3	-1	range of permitted values						
0	Enter one invalid input and two	11	_	_	Should display value of a is not in the						
8	valid value for a, b and c	11	3	3	range of permitted values						
9	Enter one invalid input and two	5	11	5	Should display value of a is not in the						
9	valid value for a, b and c	3	11	3	range of permitted values						
10	Enter one invalid input and two	5	5	11	Should display value of a is not in the						
10	valid value for a, b and c	3	3	11	range of permitted values						

			Strong	Robu	ust Equivalence class Testing	
11	Enter one invalid input and two valid value for a , b and c	-1	5	5	Should display value of a is not in the range of permitted values	
12	Enter one invalid input and two valid value for a , b and c	5	-1	5	Should display value of a is not in the range of permitted values	
13	Enter one invalid input and two valid value for a , b and c	5	5	-1	Should display value of a is not in the range of permitted values	
14	Enter two invalid input and two valid value for a , b and c	-1	-1	5	Should display value of a is not in the range of permitted values Should display value of b is not in the range of permitted values	
14	Enter two invalid input and two valid value for a , b and c	5	-1	-1	Should display value of b is not in the range of permitted values Should display value of c is not in the range of permitted values	
14	Enter two invalid input and two valid value for a , b and c	-1	5	-1	Should display value of a is not in the range of permitted values Should display value of c is not in the range of permitted values	
15	Enter all invalid inputs	-1 S	-1	-1	Should display value of a is not in the range of permitted values Should display value of b is not in the range of permitted values Should display value of c is not in the range of permitted values	

```
//Program 4: (Dataflow Testing for commission calculation)
2
   #include<stdio.h>
3
   int main()
4
   {
5
           int locks, stocks, barrels, tlocks, tstocks, tbarrels;
6
           float lprice, sprice, bprice, lsales, ssales, bsales, sales, comm;
7
           lprice=45.0;
           sprice=30.0;
8
9
           bprice=25.0;
10
           tlocks=0;
11
           tstocks=0:
12
           tbarrels=0;
           printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
13
           scanf("%d", &locks);
14
           while(locks!=-1) {
                  printf("enter the number of stocks and barrels\n");
15
                  scanf("%d%d",&stocks,&barrels);
16
                  tlocks=tlocks+locks;
17
                  tstocks=tstocks+stocks:
18
                  tbarrels=btarrels+barrels;
                  printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
19
                  scanf("%d",&locks);
20
21
           printf("\ntotal locks = %d\",tlocks);
           printf("total stocks =%d\n",tstocks);
22
23
           printf("total barrels = %d\n",tbarrels);
24
           lsales = lprice*tlocks;
25
           ssales=sprice*tstocks;
26
           bsales=bprice*tbarrels;
27
           sales=lsales+ssales+bsales;
28
           printf("\nthe total sales=%f\n",sales);
29
           if(sales > 1800.0)
30
31
                  comm=0.10*1000.0;
32
                  comm=comm+0.15*800;
33
                  comm=comm+0.20*(sales-1800.0);
34
           else if(sales > 1000)
35
36
                  comm = 0.10*1000;
37
                  comm=comm+0.15*(sales-1000);
38
           else
39
                  comm=0.10*sales;
40
           printf("the commission is=%f\n",comm);
41
           return 0;
42 }
```

Test Case Name: Data Flow Testing for Commission Program

Experiment No: 4

Precondition: Enter -1 for locks to exit from input loop Brief Description: Enter the locks, stocks and barrels > 0

Define /Use nodes for variables in the commission problem

Variable name	Defined at node	Used at Node
lprice	7	24
sprice	8	25
bprice	9	26
tlocks	10,16	16,21,24
tstocks	11,17	17,22,25
tbarrels	12,18	18,23,26
locks	13,19	14,16
stocks	15	17
barrels	15	18
lsales	24	27
ssales	25	27
bsales	26	27
sales	27	28,29,33,34,37,39
comm	31,32,33,36,37,39	32,33,37,42

Selected Define/Use Paths for Commission problem

Test case id	Description	variables path(Beginning, End nodes)	Du paths	Definition clear ?	Comments
1	Check for lock price variable DEF(lprice,7) and USE(lprice,24)	(7, 24)	<7-8-9-10-11-12-13-14-15-16-17- 18-19-20-21-22-23-24>	Yes	
2	Check for Stock price variable DEF(sprice,8) and USE(sprice,25)	(8, 25)	<8-9-10-11-12-13-14-15-16-17-18- 19-20-21-22-23-24-25>	Yes	
3	Check for barrel price variable DEF(bprice,9) and USE(bprice,26)	(9, 26)	<9-10-11-12-13-14-15-16-17-18- 19-20-21-22-23-24-25-26>	Yes	
		(10, 16)	<10-11-12-13-14-15-16>	Yes	
	Check for total locks variable DEF((tlocks,10) and DEF(tlocks,16)) and 3 usage node(USE(tlocks,16),USE(tlocks,21),USE(tlock	(10, 21)	<10-11-12-13-14-15-16-17-18-19- 20-14-21>	No	
4		(10, 24)	<10-11-12-13-14-15-16-17-18-19- 20-14-21-22-23-24>	No	
	s,24)	(16, 16)	<16-16>	Yes	
		(16, 21)	<16-17-18-19-14-21>	No	
		(16, 24)	<16-17-18-19-20-14-21-22-23-24>	No	
	LSNI	(11, 17)	<11-12-13-14-15-16-17>	Yes	
	Check for total stocks variable DEF((tstocks,11)	(11, 22)	<11-12-13-14-15-16-17-18-19-20- 21-14-21>	No	
5	and DEF(tstocks,17)) and 3 usage node(USE(tstocks,17),USE(tstocks,22),USE(tsto	(11, 25)	<11-12-13-14-15-16-17-18-19-20- 21-14-21-23-24-25>	No	
	cks,25)	(17, 17)	<17-17>	Yes	
		(17, 22)	<17-18-19-20-14-21-22>	No	
		(17, 25)	<17-18-19-20-14-21-22-23-24-25>	No	

		(13, 14)	<13-14>	Yes	Begin the loop
6	check for locks variable (DEF(locks,13)	(13, 16)	<13-14-15-16>	Yes	
0	,DEF(locks,19) and USE(locks,14),USE(locks,16)	(19, 14)	<19-20-14>	Yes	
		(19, 16)	<19-20-14-15-16>	Yes	Repeat the loop
7	Check for stocks variable (DEF(stocks,15) and USE(stocks,17)	(1 <mark>5 , 1</mark> 7)	<15-16-17>	Yes	
		(2 <mark>7 ,</mark> 28)	<27-28>	Yes	
	Check for sales DEF(sales, 27) and USE(Sales,	(27, 29)	<27-28-29>	Yes	
8	28), USE(Sales, 29), USE(Sales, 33),	(27, 33)	<27-28-29-30-31-32-33>	Yes	
0	USE(Sales, 34), USE(Sales, 37), USE(Sales,	(27, 34)	<27-28-29-34>	Yes	
	39)	(27, 37)	<27-28-29-34-35-36-37>	Yes	
		(27, 39)	<27-28-29-34-38-39>	Yes	
	Check for Commission variable DEF(comm,	((31,32,33),42)	<31-32-33-42>	Yes	
9	31,32,33), DEF(comm,34,35) and	((34, 35), 42)	<34-35-42>	Yes	
	DEF(comm,39) and USE(comm,42)	((39, 42)	<39 - 42>	Yes	

INSTITUTIONS

//Program 5, 6 and 7 (Boundary , Equivalence and Decision Test Case for Commission Problem)

/* Design. develop, code and run the program in nay suitable language to solve the commission problem. Analyze it from the perspective of boundary value, derive test cases, execute these test cases and discuss the test results */

/* Assumption price for lock=45.0, stock=30.0 and barrels=25.0 production limit could sell in a month 70 locks,80 stocks and 90 barrels commission on sales = 10 % <= 1000 and 15 % on 1000 to 1800 and 20 % on above 1800*/

```
#include<stdio.h>
int main()
       int locks, stocks, barrels, tlocks, tstocks, tbarrels;
       float lprice, sprice, bprice, sales, comm;
       int c1,c2,c3,temp;
       lprice=45.0;
       sprice=30.0;
       bprice=25.0;
       tlocks=0;
       tstocks=0;
       tbarrels=0;
       printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
       scanf("%d",&locks);
       while(locks!=-1)
               c1=(locks <=0||locks >70);
               printf("enter the number of stocks and barrels\n");
               scanf("%d%d",&stocks,&barrels);
               c2=(stocks<=0||stocks>80);
               c3=(barrels<=0||barrels>90);
               if(c1)
                       printf("value of locks not in the range 1..70");
               else
                       temp=tlocks+locks;
                       if(temp>70)
                              printf("new total locks = %d not in the range 1..70 so old ",temp);
                       else
                              tlocks=temp;
               printf("total locks = %d\n",tlocks);
               if(c2)
                       printf("value of stocks not in the range 1..80");
               else
                       temp=tstocks+stocks;
                       if(temp>80)
```

```
printf("new total stocks = %d not in the range 1..80 so old ",temp);
               else
               tstocks=temp;
       printf("total stocks=%d\n",tstocks);
       if(c3)
               printf("value of barrels not in the range 1..90");
       else
               temp=tbarrels+barrels;
               if(temp>90)
               printf("new total barrels = %d not in the range 1..90 so old ",temp);
               tbarrels=temp;
       printf("total barrel=%d",tbarrels);
       printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
       scanf("%d",&locks);
printf("\ntotal locks = %d\ntotal stocks = %d\ntotal barrels = %d\n",tlocks,tstocks,tbarrels);
sales = lprice*tlocks+sprice*tstocks+bprice*tbarrels;
printf("\nthe total sales=%f\n",sales);
if(sales > 0)
       if(sales > 1800.0)
               comm=0.10*1000.0;
               comm=comm+0.15*800;
               comm=comm+0.20*(sales-1800.0);
       else if(sales > 1000)
               comm = 0.10*1000;
               comm=comm+0.15*(sales-1000);
       else
               comm=0.10*sales;
       printf("the commission is=%f\n",comm);
else
       printf("there is no sales\n");
return 0;
```

}

Test Case Name: Boundary Value for Commission Problem

Experiment Number: 5

Test data: price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0

sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission: 10% up to sales Rs 1000, 15% of the next Rs 800 and 20% on any sales in excess of 1800

Pre-condition: lock = -1 to exit and 1 < = lock < = 70, 1 < = stock < = 80 and 1 < = barrel < = 90

Brief Description: The salesperson had to sell at least one complete rifle per month.

Checking boundary value for locks, stocks and barrels and commission

Commission Problem Output Boundary Value Analysis Cases

Casa			Input Da	ta	Expec	ted Output	Actua	loutput	Statu	
Case Id	Description	Total Locks	Total Stocks	Total Barrels	Sales	Comm- ission	Sales	Comm -ission	S	Comment
1	Enter the min value for locks, stocks and barrels	1	1	1	100	10				output minimum
2		1	1	2	125_	12.5				output minimum +
3	Enter the min value for 2 items and min +1 for any one item	1	2	1	130	13				output minimum +
4	any one item	2	1	1	145	14.5				output minimum +
5	Enter the value sales approximately mid value between 100 to 1000	5	5	5	500	50				Midpoint
6		10	10	9	975	97.5	13			Border point -
7	Enter the values to calculate the commission for sales nearly less than 1000	10	9	10	970	97				Border point -
8	suite meany ress than 1999	9	10	10	955	95.5				Border point -
9	Enter the values sales exactly equal to 1000	10	10	10	1000	100				Border point
10	Enter the values to calculate the commission for	10	10	11	1025	103.75				Border point +
11	sales nearly greater than 1000	10	11	10	1030	104.5				Border point +
12	sales fleatily greater than 1000	11	10	10	1045	106.75				Border point +
13	Enter the value sales approximately mid value	14	14	14	1400	160				Midpoint

	between 1000 to 1800		T A		l W		
14	Enter the values to calculate the commission for	18	18	17	1775	216.25	Border point -
15	sales nearly less than 1800	18	17	18	1770	215.5	Border point -
16		17	18	18	1755	213.25	Border point -
17	Enter the values sales exactly equal to 1800	18	18	18	1800	220	Border point
18		18	18	19	1825	225	Border point +
19	Enter the values to calculate the commission for sales nearly greater than 1800	18	19	18	1830	226	Border point +
20	Sales fically greater than 1000	19	18	18	1845	229	Border point +
21	Enter the values normal value for lock, stock and barrel	48	48	48	4800	820	Midpoint
22	Enter the max value for 2 items and max - 1 for	70	80	89	7775	1415	Output maximum -
23	any one item	70	79	90	7770	1414	Output maximum -
24		69	80	90	7755	1411	Output maximum -
25	Enter the max value for locks, stocks and barrels	70	80	90	7800	1420	Output maximum

Output Special Value Test Cases

6			Input Da	ta	Expec	ted Output	Actua	loutput		
Case Id	Description		Total Stocks	Total Barrels	Sales	Commissi on	Sales	Commi ssion	Status	Comment
1	Enter the random values such that to calculate commission for sales nearly less than 1000	11	10	8	995	99.5				Border point -
2	Enter the random values such that to calculate commission for sales nearly greater than 1000	10	11	9	1005	100.75				Border point +
3	Enter the random values such that to calculate commission for sales nearly less than 1800	18	17	19	1795	219.25				Border point -

Enter the random values such that to calculate commission for sales nearly greater than 1800 18 19 17 1805 221 Border point +

Test Case Name: Equivalence Class for Commission Problem

Experiment Number: 6

Test data: price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0

sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission: 10% Upto sales Rs 1000, 15% of the next Rs 800 and 20% on any sales in excess of 1800

Pre-condition: lock = -1 to exit and 1 < = lock < = 70, 1 < = stock < = 80 and 1 < = barrel < = 90

Brief Description: The salesperson had to sell at least one complete rifle per month.

Checking boundary value for locks, stocks and barrels and commission

Valid Classes

 $L1 = \{LOCKS : 1 \le LOCKS \le 70\}$

L2 = {Locks=-1}(occurs if locks=-1 is used to control input iteration)

 $L3 = \{ stocks : 1 <= stocks <= 80 \}$

L4= {barrels :1<=barrels<=90}

L3 ={locks: locks=0 OR locks<-1}

 $L4 = \{locks: locks > 70\}$

 $S2 = \{ stocks : stocks < 1 \}$

 $S3 = \{\text{stocks} : \text{stocks} > 80\}$

B2 = $\{barrels : barrels < 1\}$

B3 =barrels : barrels >90}

Invalid Classes

Commission Problem Output Equivalence Class Testing

(Weak & Strong Normal Equivalence Class)

Case		Input Data			Exp	Expected Output			Stat	
Id	Description	Total Locks	Total Stocks	Total Barrels	Sales	Commission	Sales	Commiss ion	us	Comment
1	Enter the value within the range for locks, stocks and barrels	35	40	45	3900	640				

Weak Robustness equivalence Class

Case	Description		Input Dat	a	Expected Output	Actual output	Stat	Comment
Id	Description	Locks	Stocks	Barrels	Expected Output	Actual output	us	Comment
WR1	Enter the value locks = -1	-1	40	45	Terminates the input loop and proceed to calculate sales and commission (if Sales > 0)			
WR2	Enter the value less than -1 or equal to zero for locks and other valid inputs	0	40	45	Value of Locks not in the range 170			
WR3	Enter the value greater than 70 for locks and other valid inputs	71	40	45	Value of Locks not in the range 170			
WR4	Enter the value less than or equal than 0 for stocks and other valid inputs	35	0	45	Value of stocks not in the range 180			
WR5	Enter the value greater than 80 for stocks and other valid inputs	35	81	45	Value of stocks not in the range 180			
WR6	Enter the value less than or equal 0 for barrels and other valid inputs	35	40	0	Value of Barrels not in the range 190			
WR7	Enter the value greater than 90 for barrels and other valid inputs	35	40	91	Value of Barrels not in the range 190			

Strong Robustness equivalence Class

Case	Description		nput Dat	а	Expected Output	Actual autout	Stat	Comment
Id	Description	Locks	Stocks	Barrels	Expected Output	Actual output	us	Comment
SR1	Enter the value less than -1 for locks and other valid inputs	-2	40	45	Value of Locks not in the range 170			
SR2	Enter the value less than or equal than 0 for stocks and other valid inputs	35	-1	45	Value of stocks not in the range 180			
SR3	Enter the value less than or equal 0 for barrels and other valid inputs	35	40	-2	Value of Barrels not in the range 190			
GD 4	Enter the locks and stocks less than or	2	1	4.5	Value of Locks not in the range 170			
SR4	equal to 0 and other valid inputs	-2	-1	45	Value of stocks not in the range 180			
SR5	Enter the locks and barrel less than or equal to 0 and other valid inputs	-2	40	_1	Value of Locks not in the range 170			
SKJ			40	-1	Value of Barrels not in the range 190			

SR6	Enter the stocks and barrel less than or	35	35 -1 -1		Value of stocks not in the range 180		
	equal to 0 and other valid inputs				Value of Barrels not in the range 190		1
					Value of Locks not in the range 170		<u> </u>
SR7	Enter the stocks and barrel less than or	-2	-2	-2	Value of stocks not in the range 180		
	equal to 0 and other valid inputs	2		-2	Value of Barrels not in the range 190		

Some addition equivalence Boundary checking

Cana			nput Dat	a	Ex	pected Output	Actu	al output		
Case Id	Description	Total Locks	Total Stocks	Total Barrels	Sales	Commission	Sale s	Commiss ion	Stat us	Comment
OR1	Enter the value for lock, stocks and barrels where 0 < Sales < 1000	5	5	5	500	50				
OR2	Enter the value for lock, stocks and barrels where 1000 < Sales < 1800	15	15	15	1500	175				
OR3	Enter the value for lock, stocks and barrels where Sales < 1800	25	25	25	2500	360				

INSTITUTIONS

Test Case Name : Decision Table for Commission Problem

Experiment Number: 7

Test data: price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0

sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission: 10% Upto sales Rs 1000, 15% of the next Rs 800 and 20% on any sales in excess of 1800

Pre-condition: lock = -1 to exit and 1 < = lock < = 70, 1 < = stock < = 80 and 1 < = barrel < = 90

Brief Description: The salesperson had to sell at least one complete rifle per month.

Input data decision Table

RULES		R1	R2	R3	R4	R5	R6	R7	R8	R10
Conditions	C1: Locks = -1	T	F	F	F	F	F	F	F	F
	C2: $1 \le \text{Locks} \le 70$	-	T	T	F	T	F	F	F	T
	$C3:1 \leq Stocks \leq 80$	-	T	F	Т	F	T	F	F	T
	C4: $1 \le Barrels \le 90$	-	F	T	T	F	F	T	F	T
Actions	a1 : Terminate the input loop	X								
	a2 : Invalid locks input				X		X	X	X	
	a3 : Invalid stocks input			X		X		X	X	
	a4 : Invalid barrels input		X			X	X		X	
	a5 : Calculate total locks, stocks and barrels		X	X	X	X	X	X		X
	a5 : Calculate Sales	X								
	a6: proceed to commission decision table	X								

Commission calculation Decision Table

Precondition: lock = -1

RULES		R1	R2	R3	R4
	C1 : Sales = 0	T	F	F	F
Condition	C1 : Sales > 0 AND Sales ≤ 1000		T	F	F
Condition	C2 : Sales > 1001 AND sales ≤ 1800			T	F
	C3 : sales ≥1801				T
	A1 : Terminate the program	X			
	A2 : comm= 10% *sales		X		
Actions	A3 : comm = 10%*1000 + (sales-1000)*15%			X	
	A4 : comm = 10%*1000 + 15% * 800 + (sales-1800)*20%				X

Precondition: Initial Value Total Locks=0, Total Stocks=0 and Total Barrels=0

Precondition Limit: Total locks, stocks and barrels should not exceed the limit 70,80 and 90 respectively

Commission Problem -Decision Table Test cases for input data

Case	D 1.11	Inj	out D	ata		Actual	Stat	Comm
Id	Description	Loc ks	Sto cks	Barr els	Expected Output	Output	us	ents
1	Enter the value of Locks= -1	-1			Terminate the input loop check for sales if(sales=0) exit from program else calculate commission			
2	Enter the valid input for lock and stack and invalid for barrels	20	30	-5	Total of locks, stocks is updated if it is with in a precondition limit and Should display value of barrels is not in the range 190			
3	Enter the valid input for lock and barrels and invalid for stocks	15	-2	45	Total of locks, barrels is updated if it is with in a precondition limit and Should display value of barrels is not in the range 180			
4	Enter the valid input for lock and barrels and invalid for stocks	-4	15	16	Total of stocks, barrels is updated if it is with in a precondition limit and Should display value of barrels is not in the range 170			
5	Enter the valid input for lock and invalid value for stocks and barrels	15	80	100	Total of locks is updated if it is with in a precondition limit and (i)Should display value of stock is not in the range 180 (ii)Should display value of barrels is not in the range 190			
6	Enter the valid input for stocks and invalid value for locks and barrels	88	20	99	Total of stocks is updated if it is with in a precondition limit and (i)Should display value of lock is not in the range 170 (ii)Should display value of barrels is not in the range 190			
7	Enter the valid input for barrels and invalid value for locks and stocks	100	20 0	25	Total of barrels is updated if it is with in a precondition limit and (i)Should display value of lock is not in the range 170 (ii)Should display value of stocks is not in the range 180			
8	Enter the invalid input for lock, stocks and barrels	-5	40 0	-9	(i)Should display value of lock is not in the range 170 (ii)Should display value of stocks is not in the range 180 (iii)Should display value of barrel in not in the range 190			

9	Enter the valid input for lock, stocks and barrels	15	20	25	Total of locks, stocks and barrels is updated if it is with in a precondition limit and calculate the sales and proceed to commission			
---	--	----	----	----	---	--	--	--

Commission Problem -Decision Table Test cases for commission calculation

Precondition: Locks = -1

		Input Data	Input Data Expected Output				G
Case Id	Description	Sales	Commission	Values	Actual Output	Stat us	Comm ents
1	Check the value of sales	0	Terminate the program where commission is zero	0			
2	if sales value with in these range(Sales > 0 AND Sales ≤ 1000)	900	Then commission = 0.10*sales = 90	900			
3	if sales value with in these range(Sales > 1000 AND Sales ≤ 1800)	1400	Then commission = $0.10*1000 + 0.15*(sales - 1000)$	1600			
4	if sales value with in these range(Sales > 1800	2500	Then commission = 0.10*1000 + 0.15*800 + 0.20 *(sales - 1800)	3400			

Program 8(Binary Search - Path Testing)

/* Design, develop a code and run the program in any suitable language to implement the binary search algorithm. Determine the basis paths and using them derive different test cases execute these test cases and discuss the test results */

```
#include<stdio.h>
int binsrc(int x[],int low,int high,int key)
       int mid;
       while(low<=high)
               mid=(low+high)/2;
               if(x[mid]==key)
                      return mid;
               if(x[mid]<key)
                      low=mid+1;
               else
                      high=mid-1;
       return -1;
}
int main()
       int a[20], key, i, n, succ;
       printf("Enter the n value");
       scanf("%d",&n);
       if(n>0)
       printf("enter the elements in ascending order\n");
               for(i=0;i< n;i++)
               scanf("%d",&a[i]);
       printf("enter the key element to be searched\n");
            scanf("%d",&key);
               succ=binsrc(a,0,n-1,key);
               if(succ > = 0)
                      printf("Element found in position = \%d\n",succ+1);
               else
                      printf("Element not found \n");
       }
       else
               printf("Number of element should be greater than zero\n");
       return 0;
}
```

Binary Search function with line number

```
int binsrc(int x[],int low, int high, int key)
       int mid;
                                            1
       while(low<=high)
                                            2
              mid=(low+high)/2;
              if(x[mid]==key)
                                            3
                                            8
                      return mid;
              if(x[mid]<key)
                                            4
                      low=mid+1;
                      else
                      high=mid-1;
                                            6
       return -1;
                                            8
```

Program Graph – for Binary Search

Independent Paths:

#Edges=11, #Nodes=9, #P=1

$$V(G) = E-N+2P = 11-9+2 = 4$$

P1: 1-2-3-8-9

P2: 1-2-3-4-5-7-2

P3: 1-2-3-4-6-7-2

P4: 1-2-8-9

Pre-Conditions/Issues:

Array has Elements in Ascending order T/F
Key element is in the Array T/F
Array has ODD number of Elements T/F

Test Cases – Binary Search

Paths	Inpu	ıts	Expected	Remarks
Pauls	x[]	Key	Output	Remarks
P1 : 1-2-3-8-9	{10,20,30,40,50}	30	Success	Key ∈ X[] and Key==X[mid]
P2: 1-2-3-4-5-7-2	{10,20,30,40,50}	20	Repeat and Success	Key < X[mid] Search 1 st Half
P3: 1-2-3-4-6-7-2	{10,20,30,40,50}	40	Repeat and Success	Key > X[mid] Search 2 nd Half
P4 : 1- 2 -8-9	{10,20,30,40,50}	60 OR 05	Repeat and Failure	Key ∉ X[]
P4 : 1-2-8-9	Empty	Any Key	Failure	Empty List

Program 9(Quick Sort-Path Testing)

/*Design, develop ,code and run the program in any suitable language to implement the quicksort algorithm. Determine the basis paths and using them derive different test cases, execute these test cases and discuss the test results.*/

```
#include<stdio.h>
void quicksort(int x[10],int first,int last)
       int temp, pivot, i, j;
       if(first<last)
        {
                pivot=first;
                i=first;
                j=last;
                while(i<j)
                       while(x[i]<=x[pivot] && i<last)
                               i++;
                      while(x[j] >= x[pivot])
                        if(i < j)
                                 temp=x[i];
                                 x[i]=x[j];
                                 x[j]=temp;
               temp=x[pivot];
               x[pivot]=x[i];
               x[i]=temp;
              quicksort(x,first,j-1);
              quicksort(x,j+1,last);
        }
}
// main program
int main()
       int a[20], i, key, n;
       printf("enter the size of the array");
       scanf("%d",&n);
       if(n>0)
               printf("enter the elements of the array");
               for(i=0;i< n;i++)
                       scanf("%d",&a[i]);
```

```
quicksort(a,0,n-1);
                printf("the elements in the sorted array is:\n");
             for(i=0;i< n;i++)
                printf("%d\t",a[i]);
       }
       else
                printf("size of array is invalid\n");
}
                           Quick sort function with line number
 void quicksort(int x[10],int first,int last)
     int temp, pivot, i, j;
                                                                                      1
                                                                                      2
     if(first<last)
                                                                                      3
             pivot=first;
             i=first+1;
                                                                                      4
             j=last;
                                                                                      5
             while(i<j)
                                                                                      6
               {
                         while(x[i]<=x[pivot] && i<last)
                                                                                      7
                                                                                      8
                                     i++;
                         while(x[j]>=x[pivot])
                                                                                      9
                                                                                      10
                                     j--;
                         if(i<j)
                                                                                      11
                                      temp=x[i];
                                                                                      12
                                      x[i]=x[j];
                                                                                      13
                                      x[j]=temp;
                                                                                      14
                         }
              }
             temp=x[pivot];
                                                                                      15
             x[pivot]=x[j];
                                                                                      16
             x[j]=temp;
                                                                                      17
             quicksort(x,first,j-1);
                                                                                      18
             quicksort(x,j+1,last);
                                                                                      19
}
                                                                                      20
```

Program Graph - Quick Sort

Independent Paths-Quick Sort

P1: A-B-N

P2: A-B-C-J-K-B

P3: A-B-C-J-K-M-B

P4: A-B-C-D-F-H-C

P5: A-B-C-D-F-H-I-C

P6: A-B-C-D-E-D-F-H

P7: A-B-C-D-F-G-F-H

ISE

Pre-Conditions/Issues:

Array has only one Element, Two Elements, Three Elements (6 Possibilities) Array has Elements in ASC/DSC/Arbitrary(Any of the Permutations)

EX: 3 elements: 123, 132, 213, 231, 312, 321, + 222,111,333

Test Cases – Quick Sort

	Inputs	;	Expected	
Paths	x[]	First, Last	Output	Remarks
P1 : A-B-N	5	1,1	Sorted	Only one Elem
P2 : A-B-C-J-K-B	5,4	1,2	Repeat & Sorted	Two Elements
P3: A-B-C-J-K-M-B	1,2,3 OR 3,1,2	1,3	Repeat & Sorted	Three Elements
P4: A-B-C-D-F-H-C	1,2,3,4,5	1,5	Repeat & Sorted	ASC Sequence
P5: A-B-C-D-F-H-I-C	5,4,3,2,1	1,5	Repeat & Sorted	DSC Sequence
P6 : A-B-C-D-E-D-F-H	1,4,3,2,5 OR 2,2,2,2,2	1,5	Repeat & Sorted	Pivot is MIN
P7 : A-B-C-D-F-G-F-H	5,2,3,1,4	1,5	Repeat & Sorted	Pivot is MAX

Program 10 (Absolute Letter Grading Path Testing)

/* Design, develop, code and run the program in any suitable language to implement an absolute letter grading procedure, making suitable assumptions. Determine the basis paths and using them derive different test cases, execute these test cases and discuss the test results */

```
#include<stdio.h>
int main()
       float per;
       char grade;
       scanf("%f",&per);
       if(per > = 90)
               grade= 'A';
       else if(per>=80 \&\& per<90)
               grade ='B';
       else if(per>=70 && per<80)
               grade ='C';
       else if(per>=60 && per<70)
              grade='D';
       else grade='E';
          switch(grade)
       case 'A': printf("\nEXCELLENT"); break;
       case 'B':printf("\nVery Good"); break;
       case 'C' : printf("\nGood"); break;
       case 'D': printf("\nAbove Average"); break;
       case 'E': printf("\n Satisfactory"); break;
   printf("\t The percentage = %f and grade is %c ",per,grade);
         return 0;
}
```

Absolute Grading Program with Line Numbers and Program Graph int main() **Start** float per; char grade; scanf("%f",&per); 1. 2. if(per > = 90)3 3. grade= 'A'; 4. else if(per>=80 && per<90) 5 5. grade ='B'; 6. else if(per>=70 && per<80) 7. grade ='C'; 8. else if(per>=60 && per<70) 9. grade='D'; 10. else grade='E'; 9 11. switch(grade) 10 12. case 'A': printf("\nEXCELLENT"); break; 13. 14. case 'B':printf("\nVery Good"); break; 11 case 'C' : printf("\nGood"); break; 15. case 'D': printf("\nAbove Average"); break; 16. 13 14 **15** 16 case 'E': printf("\n Satisfactory"); break; 17. 18. 19. printf("\t The percentage = %f and grade is %c ",per,grade); 19 20. return 0; } **End** 20 **Independent Paths:** #Edges=25, #Nodes=18, #P=1 V(G) = E-N+2P = 25-18+2 = 09E Grade **P1**: 1-2-4-6-8-10-11-17-19-20 **P2**: 1-2-4-6-8-9-11-16-19-20 D Grade **P3**: 1-2-4-6-7-11-15-19-20 C Grade **P4**: 1-2-4-5-11-14-19-20 B Grade **P5**: 1-2-3-11-13-19-20 A Grade **P6**: 1-2-4-6-8-10-11-13-19-20 **P7**: 1-2-4-6-8-10-11-14-19-20 **P8**: 1-2-4-6-8-10-11-15-19-20 **P9**: 1-2-4-6-8-10-11-16-19-20

Pre-Conditions/Issues:

Percentage Per is a positive Float Number

Test Cases – Absolute Grading

Paths	Input Per	Expected Output	Remarks
P1 : 1-2-4-6-8-10-11-17-19-20	< 60	E Grade, Satisfactory	Pass
P2: 1-2-4-6-8-9-11-16-19-20	60-69	D Grade, Above Average	Pass
P3: 1-2-4-6-7-11-15-19-20	70-79	C Grade, Good	Pass
P4: 1-2-4-5-11-14-19-20	80-89	B Grade, Very Good	Pass
P5 : 1-2-3-11-13-19-20	>= 90	A Grade, Excellent	Pass
P6 : 1-2-4-6-8-10-11-13-19-20	< 60	Excellent	Fail
P7 : 1-2-4-6-8-10-11-14-19-20	< 60	Very Good	Fail
P8 : 1-2-4-6-8-10-11-15-19-20	< 60	Good	Fail
P9 : 1-2-4-6-8-10-11-16-19-20	< 60	Above Average	Fail

Program 11 and 12 (Next date program)

/* Design, develop, code and run the program in any suitable language to implement the NextDate function. Analyze it from the perspective boundary value testing and equivalence class analysis. Derive different test cases, execute these test cases and discuss the test results. */

```
#include<stdio.h>
int check(int day,int month)
       if((month==4||month==6||month==9||month==11) & day==31)
               return 1;
       else
               return 0;
int isleap(int year)
       if((year\%4==0 \&\& year\%100!=0) || year\%400==0)
                      return 1;
       else
                      return 0;
int main()
       int day,month,year,tomm_day,tomm_month,tomm_year;
       char flag;
       do
               flag='y';
               printf("\nenter the today's date in the form of dd mm yyyy\n");
               scanf("%d%d%d",&day,&month,&year);
               tomm month=month;
               tomm_year= year;
               if(day<1 \parallel day>31)
                       printf("value of day, not in the range 1...31\n");
                        flag='n';
               if(month<1 || month>12)
                       printf("value of month, not in the range 1....12\n");
                       flag='n';
               else if(check(day,month))
               {
                      printf("value of day, not in the range day<=30");
                       flag='n';
               }
```

```
if(year<=1812 || year>2013)
                printf("value of year, not in the range 1812......2013\n");
                flag='n';
       if(month==2)
              if(isleap(year) && day>29)
                      printf("invalid date input for leap year");
                     flag='n';
              else if(!(isleap(year))&& day>28)
                      printf("invalid date input for not a leap year");
                      flag='n';
}while(flag=='n');
switch (month)
       case 1:
       case 3:
       case 5:
       case 7:
       case 8:
       case 10:if(day<31)
                     tomm_day=day+1;
              else
                      tomm_day=1;
                      tomm_month=month+1;
              break;
       case 4:
       case 6:
       case 9:
       case 11: if(day<30)
                      tomm_day=day+1;
               else
                      tomm_day=1;
                      tomm_month=month+1;
              break;
```

```
case 12: if(day\overline{<31})
                     tomm_day=day+1;
              else
                {
                     tomm_day=1;
                     tomm_month=1;
                     if(year==2013)
                 printf("the next day is out of boundary value of year\n");
                        tomm_year=year+1;
                     else
                        tomm_year=year+1;
              break;
       case 2:
              if(day < 28)
                     tomm_day=day+1;
              else if(isleap(year)&& day==28)
                            tomm_day=day+1;
              else if(day==28 \parallel day==29)
                      tomm_day=1;
                      tomm_month=3;
              break;
printf("next day is : %d %d %d",tomm_day,tomm_month,tomm_year);
return 0;}
```

INSTITUTIONS

Test Case Name: Boundary Value Analysis test cases for Next date program

Experiment Number: 11

Test data : Enter the three integer value

Pre-condition: Month 1 to 12, DAY 1 TO 31 AND YEAR 1812 TO 2013 / we are consider one corner of the input space

Brief Description:

		Min		Max	
	Min	+1	Normal	-1	Max
Month	1	2	6	11	12
Day	1	2	15	30	31
Year	1812	1813	1912	2012	2013

Next date Output Boundary Value Analysis Cases

		In	put Dat	а	Expe	ted Out	put	Actu	al out	put		
Case Id	Description	Month	day	year	Month	day	year	Month	day	year	Status	Comment
1	Enter the min value month,day and year	1	1	1812	1	2	1812					
2	Enter the min+1 value for year and min for month and day	1	1	1813	1	2	1813					
3	Enter the normal value for year and min for month and day	1	1	1912	1	2	1912					
4	Enter the max -1 value for year and min for month and day	1	1	2012	1	2	2012					
5	Enter the max value for year and min for month and day	1	1	2013	1	2	2013					
6	Enter the min+1 value of day and min for month and year	1	2	1812	1	3	1812					
7	Enter the min+1 value for day and year and min for month	1	2	1813	1	3	1813					
			ليبا				•	•		•		

8	Enter the min+1 value for day, normal value for year and min value for month	1	2	1912	1	3	1912			
9	Enter the min+1 value for day, max -1 value for year and min value for month	1	2	2012	1	3	2012			
10	Enter the min+1 value for day, max value for year and min value for month	1	2	2013	1	3	2013			
11	Enter the normal value of day and min for year and month	1	15	1812	1	16	1812			
12	Enter the normal value for day and min+1 for year and min for month	1	15	1813	1	16	1813			
13	Enter the normal value for day normal value for year and min value for month	1	15	1912	1	16	1912			
14	Enter the normal value for day , max -1 value for year and min value for month	1	15	2012	1	16	2012			
15	Enter the normal value for day , max value for year and min value for month	1	15	2013	1	16	2013			
16	Enter the max - 1 value of day and min for day and year	1	30	1812	1	31	1812			
17	Enter the max -1 value for day and min for month and min+1 for year	1	30	1813	1	31	1813			
18	Enter the max - 1 value for day, normal value for year and min value for month	1	30	1912	1	31	1912			
19	Enter the max - 1 value for day , max -1 value for year and min value for month	1	30	2012	1	31	2012			
20	Enter the max -1 value for day, max value for year and min value for month	1	30	2013	1	31	2013			
		T	0		7					

21	Enter the max value of day and min for year and month	1	31	1812	2	1	1812			
22	Enter the max value for day and min for month and min + 1 for year	1	31	1813	2	1	1813			
	Enter the max value for day , normal value for year and min value for month	1	31	1912	2	1	1912			
24	Enter the max value for day, max -1 value for year and min value for month	1	31	2012	2	1	2012			
25	Enter the max value for day, max value for year and min value for month	1	31	2013	2	1	2013			

Next date Output Special value test cases

		In	put Dat	a	Exped	ted Ou	tput	Acti	ual outp	ut	Status	
Case Id	Description	month	day	year	month	day	year	month	day	year		Comm ent
1	Enter the D1, M1 and Y1 valid cases	12	31	1811	messag yea	d displa e value r in ran 12201	of the	5				
2	Enter the D1, M1 and Y2 valid cases	12	31	2012	1	1	2013					
3	Enter the D1, M1 and Y3 valid cases	12	31	2013	message	d displa Next is dary 20	out of					

Test Case Name: Equivalence class test cases for Next date

Experiment Number: 12

Test data: Enter the three integer value

Pre-condition: Month 1 to 12, DAY 1 TO 31 AND YEAR 1812 TO 2013

Valid Cases

 $M1 = \{ \ month \ ; \ 1 \leq month \ \leq \ 12 \ \}$

 $D1 = \{ day : 1 \le day \le 31 \}$

 $Y1 = \{ year : 1812 \le year \le 2013 \}$

Invalid cases

 $M2 = \{month : month < 1\}$

 $M3 = \{month : month > 12\}$

 $D2 = \{day : day < 1\}$

 $D3 = {day : day > 31}$

 $Y2 = \{ year : year < 1812 \}$

 $Y3 = {year : year > 2013}$

Next date Output Equivalence Class Testing

(Weak and Strong Normal Equivalence Class)

	N.	In	out Da	ta	Expe	cted Out	put	Actu	ıal out	put		
Case Id	Description	month	day	year	month	day	year	month	day	year	Status	Comment
WN1,SN1	Enter the M1, D1 and Y1 valid cases	6	15	1912	6	16	1912					

(Weak Robustness Equivalence Class)

Case Id	Description	In	put Da	ta	Ехре	ected Out	tput	Act	ual ou	tput	Status	Comme nt
Case Iu	Description	month	day	y <mark>ear</mark>	month	day	year	mon th	day	year		
WR1	Enter the M1, D1 and Y1 cases	6	15	1912	6	16	1912					
					Should display	•						
14/02	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15	1012	of the mor		the range					
WR2	Enter the M2 , D1 and Y1 cases	-1	15	1912		112						
					Should display	-	essage value the range					
WR3	Enter the M3 ,D1 and Y1 cases	13	15	1912	or the mor	112	the runge					
					Should display	ay the me	essage value					
WR4	Enter the M1, D2 and Y1 cases	6	-1	1912	of the day n	ot in the	range 131					
					Should display	ay the me	essage value					
WR5	Enter the M1, D3 and Y1 cases	6	32	1912	of the day n	ot in the	range 131					
					Should display	ay the me	essage value					
					of the yea	ar not in t	he range					
WR6	Enter the M1, D1 and Y2 cases	6	15	1811	1	812201	3					
	I Poli	4. I			Sho <mark>ul</mark> d displa	ay the me	essage value					
	11.5	4" "		-	of the yea	ar not in t	he range					
WR7	Enter the M1, D1 and Y3 cases	6	15	2014	1	812201	3					

(Strong Robustness Equivalence Class)

Case	D	Inp	ut Dat	a	5 7 10 11 1	A.I. alia I.a. I	CL-1	Com
Id	Description	month	day	year	Expected Output	Actual output	Status	ment
SR1	Enter the M2 , D1 and Y1 cases	-1	15	1912	Should display the message value of the month not in the range 112			
SR2	Enter the M1, D2 and Y1 cases	6	-1	1912	Should display the message value of the day not in the range 131			
SR3	Enter the M1, D1 and Y2 cases	6	15	1811	Should display the message value of the year not in the range 18122013			
SR4	Enter the M2 , D2 and Y1 cases	-1	-1	1912	(i)Should display the message value of the month in range 112			
31.4	Effect the M2, D2 and T1 cases		_	1312	(ii) Should display the message value of the day in range 131			
SR5	Enter the M1, D2 and Y2 cases	6	-1	1811	(i) Should display the message value of the day in range 131			
31(3	Litter the IVII, D2 and 12 cases	o o		1011	(ii) Should display the message value of the year in range 18122013			
					(i)Should display the message value of the			
SR6	Enter the M2, D1 and Y2 cases	-1	15	1811	month in range 112			
	1.6	IĆ.		IT	(ii) Should display the message value of the year in range 18122013			
		4.3			(i)Should display the message value of the month in range 112			
SR7	Enter the M2, D2 and Y2 cases	-1	-1	1811	(ii) Should display the message value of the day in range 131			
			T	c	(iii) Should display the message value of the year in range 18122013			

Some addition equivalence Boundary checking

Case Id	Description	Input D	ata		Expecte	Expected Output			output		Status	Comment
		day	mo nth	year	day	month	year	day	mo nth	year		
1	Enter the D1, M1 and Y1 valid cases	31	12	1811		•						
2	Enter the D1, M1 and Y2 valid cases	31	12	2012	1	1	2013					
3	Enter the D1, M1 and Y3 valid cases	31	12	2013		display the Next is only 2013				•		

