Elli Kiiski

2021 Kandinalku - The order of Euler's totient function

1 Introduction

Placeholder for some introductory explaining about the subject of this thesis.

All introduced variables a, b, c, ... are integers, unless stated otherwise. Here the set of natural numbers $\mathbb N$ consists of positive integers, meaning $0 \notin \mathbb N$.

Definition 1.1. Divisibility

If b = ka for some integer k, b is divisible by a. This is denoted by a|b.

Theorem 1.2. Greatest common divisor

Let $a \in \mathbb{N}$ and $b \in \mathbb{N}$. There is a unique $d \in \mathbb{N}$ with following properties:

- 1. d|a and d|b
- 2. if c|a and c|b, then c|d

The number d is called the greatest common divisor of a and b, denoted by gcd(a,b)=d.

Proof. LeVeque: thm 2.1, chp 2.1, p. 31

Definition 1.3. Congruence

Let $m \neq 0$. If $m \mid (a - b)$, we say a is congruent to b modulo m. It is denoted by $a \equiv b \pmod{m}$.

Definition 1.4. Complete residue system Tarvitaan joku hyvä määritelmä tälle, joku joka ei aiheuta tarpeita yhä uusille määritelmille.

Definition 1.5. Prime number

Integer $p \in \mathbb{N}$ is a prime, if $p \geq 2$ and for every $k \in \mathbb{N}$ holds that if k|p then $k \in 1, p$. The set of prime numbers is denoted by \mathbb{P} .

In other words, all integers greater than 1, only divisible by themself and 1, are primes.

Definition 1.6. Co-prime

If gcd(a, b) = 1, a and b are called co-primes or relatively primes.

Definition 1.7. Multiplicative number theoretic function

Function $f: \mathbb{N} \to \mathbb{R}$ is called number theoretic function. It is multiplicative if f(ab) = f(a)f(b) when gcd(a, b) = 1.

2 Euler's totient function and its properties

Euler's totient function is a multiplicative number theoretic function...

Definition 2.1. Euler's totient function $\phi : \mathbb{N} \to \mathbb{N}$

It is set that $\phi(1) = 1$. For all $n \geq 2$, $\phi(n)$ is the number of integers $a \in \{1, 2, ..., n\}$, for which $\gcd(a, n) = 1$.

That is, the value of $\phi(n)$ is the number of positive co-primes of n less or equal to n.

Theorem 2.2. Euler's totient function is multiplicative:

$$gcd(m, n) = 1 \implies \phi(mn) = \phi(m)\phi(n)$$
.

Proof. Assume m > 1, n > 1 and gcd(m, n) = 1. Consider the array

which consists of integers from 0 to mn-1, forming a complete residue system (mod mn).

Clearly, each row of the array forms a complete residue system (mod m) and all the elements of any column are congruent to each other (mod m). Now there are two types of columns: $\phi(m)$ columns containing only co-primes to m and the rest containing none of them. (lähde?)

Now consider the co-prime columns. Every column forms a complete residue system (mod n) (LeVeque: thm. 3.5, chp. 3.2, p. 52), meaning each includes $\phi(n)$ elements co-prime to n. Counting $\phi(n)$ elements from all the $\phi(m)$ columns we get in total $\phi(m)\phi(n)$ numbers that are relatively prime to both m and n.

On the other hand, since gcd(m, n) = 1, an integer k is co-prime to mn if and only if both gcd(m, k) = 1 and gcd(n, k) = 1 are true. Hence there are $\phi(m)\phi(n)$ numbers relatively prime to mn. Thus by definition $\phi(mn) = \phi(m)\phi(n)$.

The case m=1 or n=1 is trivial, since $\phi(1)=1$ and hence $\phi(mn)=\phi(m)\phi(n)$.

Theorem 2.3. Euler's product formula

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

where $\prod_{p|n} \left(1 - \frac{1}{p}\right)$ means the product over distinct primes that divide n.

Proof. Assume first that $n=p^k$, where $p\in\mathbb{P}$. Now for every x, for which $gdc(p^k,x)>1$, holds $x=mp^{k-1}$ for some $m\in\{1,2,...,p^{k-1}\}$.

Hence

$$\phi(n) = \phi(p^k) = p^k - p^{k-1} = p^k - \frac{p^k}{p} = \left(1 - \frac{1}{p}\right)p^k = \left(1 - \frac{1}{p}\right)n.$$

Then, in the general case, assume $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}=\prod_{i=1}^r p_i^{k_i}$, where $p_1,p_2,...,p_r$ are distinct primes that divide n and $k_1,k_2,...,k_r$ their powers respectively.

Now, since ϕ is a multiplicative function

$$\begin{split} \phi(n) &= \phi(p_1^{k_1} p_1^{k_1} \cdots p_r^{k_r}) \\ &= \phi(p_1^{k_1}) \, \phi(p_2^{k_2}) \cdots \phi(p_r^{k_r}) \\ &= \left(1 - \frac{1}{p_1}\right) p_1^{k_1} \left(1 - \frac{1}{p_2}\right) p_2^{k_2} \cdots \left(1 - \frac{1}{p_r}\right) p_r^{k_r} \\ &= \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) p_i^{k_i} \\ &= n \prod_{p|n} \left(1 - \frac{1}{p}\right). \end{split}$$

Lemma 2.4. For every $p \in \mathbb{P}$ holds $\phi(p) = p - 1$.

Proof. Let $n \in \mathbb{P}$. Now the only prime that divides n is n itself. Hence by the Euler's product formula

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = n \left(1 - \frac{1}{n}\right) = n - 1.$$

3 Relevant definitions and lemmas

Building up to the order of the totient function, we must introduce few functions and theorems that are used in the proof of the lower limit. Since all of the results of this chapter serve mainly as tools, proof for many of them is not elaborated.

Theorem 3.1. Merten's theorem (Hardy-Wright: thm. 429, chp. 22.8, p. 466)

$$\lim_{n \to \infty} \log n \prod_{p \le n} \left(1 - \frac{1}{p} \right) = e^{-\gamma}$$

where γ is the Euler's constant.

Proof. Placeholder for a sketch of the proof or maybe even the whole proof.

Definition 3.2. Euler-Mascheroni constant (Wolfram MathWorld: Euler-Mascheroni constant (kelpaakohan lähteeksi))

The Euler-Mascheroni constant γ equals the limit of the difference of the harmonic series and natural logarithm,

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0,57721566.$$

The constant appears in the Merten's theorem, yet more detailed consideration goes beyond the scope of this thesis.

Definition 3.3. The sigma-function (Hardy-Wright: chp. 16.7, p. 310)

$$\sigma(n) = \sum_{d|n} d,$$

meaning the value of $\sigma(n)$ is the sum of the divisors of n.

Lemma 3.4. Let $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$ be the prime factorization of n, where $p_1,p_2,...,p_r$ are distinct primes. Then

$$\sigma(n) = \prod_{i=1}^{r} \frac{p_i^{k_i+1} - 1}{p_i - 1}.$$

Proof. Hardy-Wright: thm. 275, chp. 16.7, p. 311.

Theorem 3.5.

$$\frac{\phi(n)\,\sigma(n)}{n^2}<1$$

Proof. LeVeque: thm 6.27, chp. 6.10, p. 166

Definition 3.6. Chebyshev function (Hardy-Wright: chp. 22.1, p. 451)

$$\vartheta(x) = \sum_{p \le x} \log p = \log \prod_{p \le x} p,$$

where $x \in \mathbb{R}$ and $p \in \mathbb{P}$.

Lemma 3.7. For the function $\vartheta(x)$ holds

$$\vartheta(x) < Ax$$
,

where $x \geq 2 \in \mathbb{R}$, A is a real constant.

Proof. Hardy-Wright: thm. 414, chp. 22.2, p. 453. □

Definition 3.8. Riemann zeta-function (Hardy-Wright: chp. 17.2, p. 320)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \,,$$

where $s \in \mathbb{R}$.

Lemma 3.9. For all $s > 1 \in \mathbb{R}$,

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}.$$

Proof. Hardy-Wright: thm. 280, chp. 17.2, p. 320.

4 The limits of Euler's totient function

As shown before, there is an exact formula, the Euler's product formula, for the rather verbally defined totient function $\phi(n)$. Though, using it requires factorization of n, which makes it difficult to estimate its size as n gets bigger.

For example, let $n=2^p-1\in\mathbb{P}$ be so called Mersenne prime, meaning also $p\in\mathbb{P}$. By theorem 2.4 we know $\phi(n)=n-1$. On the other hand, from Euler's product formula follows that $\phi(n+1)=\phi(2^p)=2^p(1-\frac{1}{2})=\frac{2^p}{2}=\frac{n+1}{2}$. Now we see that while n and n+1 differ from each other only insignificantly, $\phi(n+1)$ is half the size of $\phi(n)$.

We start by proving the fairly obvious upper limit and then dive into a detailed proof of the lower limit.

4.1 Upper limit of Euler's totient function

The maximum value of $\phi(n)$ given n is easy to define with theorem 2.4.

Theorem 4.2. Upper limit of the totient function (Hardy-Wright: thm. 326, chp. 18.4, p. 352)

For every $n \geq 2$ holds $\phi(n) \leq n - 1$ and

$$\limsup \frac{\phi(n)}{n} = 1.$$

Proof. By definition, $\phi(n) \leq n$ because there are n elements in the set $\{1, 2, ..., n\}$. Also, for every $n \geq 2$ holds $\gcd(n, n) = n \neq 1$. Thus, $\phi(n) \leq n - 1$.

On the other hand, according to theorem 2.4, $\phi(p) = p - 1$ for every $p \in \mathbb{P}$. Now, because there are infinitely many primes (lähde?),

$$\limsup \frac{\phi(n)}{n} = \lim \frac{n-1}{n} = 1.$$

4.3 Lower limit of Euler's totient function

How small $\phi(n)$ can be as n grows, is much less trivial a question to answer. However, it can be shown that the value of $\phi(n)$ is proportional to $\frac{n}{\log \log n}$. The rest of this paper will cover the proof of the exact limit inferior of the totient function.

Theorem 4.4. Lower limit of the totient function (Hardy-Wright: thm. 328, chp. 18.4, p. 352)

$$\lim \inf \frac{\phi(n) \log \log n}{n} = e^{-\gamma},$$

where γ is the Euler's constant.

Proof. We follow here the proof of theorem 328 from Hardy & Wright: Introduction to the Theory of Numbers, chapter 22.9, p. 467.

Let's prove the claim by showing $\liminf f(n) = 1$, when

$$f(n) = \frac{\phi(n) e^{\gamma} \log \log n}{n},$$

and γ is the Euler's constant.

The proof is based on finding two functions $F_1(t)$ and $F_2(t)$, the limits of which are both $\lim_{t\to\infty} F_1(t) = 1$ and $\lim_{t\to\infty} F_2(t) = 1$. First we show that

$$f(n) \ge F_1(\log n) \text{ for all } n \ge 3$$
 (1)

and in the second part that

$$f(n_j) \le \frac{1}{F_2(j)}$$
 for some infinite increasing sequence n_2, n_3, \dots (2)

Let $p_1, p_2, ..., p_{r-\rho} \leq \log n$ and $p_{r-\rho+1}, ..., p_r > \log n$ be the prime factors of n. In other words, the number n has r prime factors, ρ of which are greater than $\log n$.

Now

$$(\log n)^{\rho} < p_{r-\rho+1} \cdot p_{r-\rho+2} \cdots p_r \le n,$$

which yields

$$\rho < \frac{\log n}{\log \log n} \,.$$

Thus, there are less than $\frac{\log n}{\log \log n}$ prime factors greater than $\log n$.

By the Euler's product formula (theorem 2.3)

$$\frac{\phi(n)}{n} = \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

$$= \prod_{i=1}^{r-\rho} \left(1 - \frac{1}{p_i} \right) \prod_{i=r-\rho+1}^{r} \left(1 - \frac{1}{p_i} \right)$$

$$= \prod_{p \le \log n} \left(1 - \frac{1}{p} \right) \prod_{p > \log n} \left(1 - \frac{1}{p} \right)$$

$$\ge \left(1 - \frac{1}{\log n} \right)^{\rho} \prod_{\substack{p \le \log n \\ \log \log n}} \left(1 - \frac{1}{p} \right)$$

$$> \left(1 - \frac{1}{\log n} \right)^{\frac{\log n}{\log \log n}} \prod_{p < \log n} \left(1 - \frac{1}{p} \right).$$

Hence, we can define

$$F_1(t) = e^{\gamma} \log t \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} \prod_{p \le t} \left(1 - \frac{1}{p} \right) ,$$

because by the inequality above

$$F_1(\log n) = e^{\gamma} \log \log n \left(1 - \frac{1}{\log n}\right)^{\frac{\log n}{\log \log n}} \prod_{p \le \log n} \left(1 - \frac{1}{p}\right)$$
$$\le \frac{\phi(n)}{n} e^{\gamma} \log \log n = f(n)$$

and by the Merten's third theorem (theorem 3.1)

$$\lim_{t \to \infty} F_1(t) = \lim_{t \to \infty} e^{\gamma} \log t \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} \prod_{p \le t} \left(1 - \frac{1}{p} \right)$$

$$= \lim_{t \to \infty} e^{\gamma} \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} \left(\log t \prod_{p \le t} \left(1 - \frac{1}{p} \right) \right)$$

$$= \lim_{t \to \infty} e^{\gamma} \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}} e^{-\gamma}$$

$$= \lim_{t \to \infty} \left(1 - \frac{1}{t} \right)^{\frac{t}{\log t}}$$

$$= 1.$$

Now we have proved the part (1) and showed that $\liminf f(n) \geq 1$.

Next, to prove the part (2), let's define

$$g(n) = \frac{\sigma(n)}{n \, e^{\gamma} \log \log n}$$

and show that $g(n_j) \ge F_2(j)$ for an infinite increasing sequence $n_2, n_3 \dots$ The desired result will follow from theorem 3.5.

Let

$$n_j = \prod_{p \le e^j} p^j$$
, where $j \ge 2$.

By the lemma 3.7

$$\log n_j = \log \prod_{p \le e^j} p^j = j \log \prod_{p \le e^j} p = j \vartheta(e^j) \le A j e^j,$$

where A is a real constant.

Hence

$$\log \log n_i = \log A j e^j = \log A + \log j + \log e^j = \log A + \log j + j.$$

Since n_j is the product of all primes smaller than e^j to the power of j, by the lemma 3.4 we have

$$\sigma(n_j) = \prod_{p \le e^j} \frac{p^{j+1} - 1}{p - 1}$$

and

$$\frac{\sigma(n_j)}{n_j} = \prod_{p \le e^j} \frac{p^{j+1} - 1}{(p-1)p^j} = \prod_{p \le e^j} \frac{p^{j+1} \left(1 - \frac{1}{p^{j+1}}\right)}{p^{j+1} \left(1 - \frac{1}{p}\right)} = \prod_{p \le e^j} \frac{1 - \frac{1}{p^{j+1}}}{1 - \frac{1}{p}}.$$

Also, by the lemma 3.9

$$\prod_{p \le e^j} \left(1 - \frac{1}{p^{j+1}} \right) > \prod \left(1 - \frac{1}{p^{j+1}} \right) = \frac{1}{\zeta(j+1)}.$$

Now we can define

$$F_2(t) = \frac{1}{e^{\gamma} \zeta(t+1)(B+t+\log t)} \prod_{p < e^t} \left(\frac{1}{1-\frac{1}{p}}\right),$$

where $B = \log A$ is a suitable real constant.

This is, by combining the results above

$$F_{2}(j) = \frac{1}{e^{\gamma} \zeta(j+1)(B+j+\log j)} \prod_{p \le e^{j}} \left(\frac{1}{1-\frac{1}{p}}\right)$$

$$\le \frac{1}{e^{\gamma} \log \log n_{j}} \prod_{p \le e^{j}} \frac{1-\frac{1}{p^{j+1}}}{1-\frac{1}{p}}$$

$$= \frac{\sigma(n_{j})}{n_{j} e^{\gamma} \log \log n_{j}} = g(n_{j}).$$

By the Merten's third theorem (theorem 3.1)

$$\lim_{t \to \infty} \prod_{p \le e^t} \left(\frac{1}{1 - \frac{1}{p}} \right) = \lim_{t \to \infty} \frac{1}{\prod_{p \le e^t} \left(1 - \frac{1}{p} \right)} = \left(\frac{e^{-\gamma}}{\log e^t} \right)^{-1} = e^{\gamma} t$$

and hence

$$\lim_{t \to \infty} F_2(t) = \lim_{t \to \infty} \frac{1}{e^{\gamma} \zeta(t+1)(B+t+\log t)} \prod_{p \le e^t} \left(\frac{1}{1-\frac{1}{p}}\right)$$

$$= \lim_{t \to \infty} \frac{e^{\gamma} t}{e^{\gamma} \zeta(t+1)(B+t+\log t)}$$

$$= \lim_{t \to \infty} \frac{t}{\zeta(t+1)(B+t+\log t)}$$

$$= \lim_{t \to \infty} \frac{t}{B+t+\log t}$$

Zeta-funktion raja-arvo pitää käsitellä!

By the theorem 3.5

$$f(n) g(n) = \frac{\phi(n) e^{\gamma} \log \log n}{n} \cdot \frac{\sigma(n)}{n e^{\gamma} \log \log n} = \frac{\phi(n) \sigma(n)}{n^2} < 1$$

and since $g(n_j) \ge F_2(j)$

$$f(n_j) \le \frac{1}{F_2(j)} \,.$$

Thus we have proved the part (2) and showed that $\liminf f(n) \leq 1$.

Altogether, from the parts (1) and (2), we get that the limit inferior of f(n) must be

$$\lim \inf \frac{\phi(n) e^{\gamma} \log \log n}{n} = \lim \inf f(n) = 1$$

and equivalently

$$\lim\inf\frac{\phi(n)\,\log\log n}{n}=e^{-\gamma}\,.$$