

Patent number:

WO9915538

Publication date:

1999-04-01

Inventor:

GREGORIUS HEIKE [DE]; SUELING CARSTEN [DE];

BIDELL WOLFGANG [DE]; BRINTZINGER HANS-

HERBERT [CH]; DAMRAU HANS-ROBERT-HELLMUTH

[DE]; WEBER ARMIN [DE]

Applicant:

TARGOR GMBH [DE];; GREGORIUS HEIKE [DE];;

SUELING CARSTEN [DE];; BIDELL WOLFGANG [DE];;

BRINTZINGER HANS H [CH];; DAMRAU HANS ROBERT HELLMUTH [DE];; WEBER ARMIN [DE]

Classification:

- international:

C07F17/00; C08F10/00; C07B53/00

european:

C07F17/00; C08F10/00

Application number: WO1998EP05918 19980917 Priority number(s): DE19971041876 19970923

Also published as:

园 EP1017702 (A1) 型 US6262286 (B1))

DE19741876 (A1) EP1017702 (B1)

Cited documents:

DE19525184

XP002089631

XP004023851 XP002089633

XP002089634

more >>

Lighter dead of the

in the Hell TYON Edg.

Abstract of WO9915538

The invention relates to a method for selective production of racemic metallocene complexes through conversion of bridged or non-bridged transition metal complexes with cyclopentadienyl derivatives of alkali metals or alkaline-earth metals and/or an attaching substitution of aromatic ligands.

Data supplied from the esp@cenet database - Worldwide

This Page Blank (uspto)

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

(51) Internationale Patentklassifikation 6:

C07F 17/00, C08F 10/00, C07B 53/00

(11) Internationale Veröffentlichungsnummer: WO 99/15538

A1

(43) Internationales Veröffentlichungsdatum:

1. April 1999 (01.04.99)

(21) Internationales Aktenzeichen:

PCT/EP98/05918

(22) Internationales Anmeldedatum:

17. September 1998

(17.09.98)

Veröffentlicht

(30) Prioritätsdaten:

197 41 876.7

23. September 1997 (23.09.97) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): TARGOR GMBH [DE/DE]; Rheinstrasse 4G, D-55116 Mainz (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): GREGORIUS, Heike [DE/DE]; Salinenstrasse 6, D-55543 Bad Kreuznach (DE). SÜLING, Carsten [DE/DE]; Albrecht-Dürer-Ring 20c, D-67227 Frankenthal (DE). BIDELL, Wolfgang [DE/DE]; Dahlienstrasse 19, D-67112 Mutterstadt (DE). BRINTZINGER, Hans-Herbert [DE/CH]; Unterdorf-strasse 17, CH-8274 Taegerswilen (CH). DAMRAU, Hans-Robert-Hellmuth [DE/DE]; Bodanstrasse 21, D-78462 Konstanz (DE). WEBER, Armin [DE/DE]; Marienstrasse 2, D-88677 Markdorf (DE).
- (74) Anwalt: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: BR, CN, JP, KR, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: METHOD FOR SELECTIVE PRODUCTION OF RACEMIC METALLOCENE COMPLEXES
- (54) Bezeichnung: VERFAHREN ZUR SELEKTIVEN HERSTELLUNG RACEMISCHER METALLOCENKOMPLEXE
- (57) Abstract

The invention relates to a method for selective production of racemic metallocene complexes through conversion of bridged or non-bridged transition metal complexes with cyclopentadienyl derivatives of alkali metals or alkaline-earth metals and/or an attaching substitution of aromatic ligands.

(57) Zusammenfassung

Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallkomplexen mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen und gegebenenfalls anschließende Substitution der Aromatliganden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑŪ	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
E.E	ESTIANO	LK	LIDENA	SG	Singapur		

Verfahren zur selektiven Herstellung racemischer Metallocenkomplexe

5 Beschreibung

25

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexen 10 der allgemeinen Formel I

20 in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

X gleich oder verschieden Fluor, Chlor, Brom, Iod, Wasserstoff, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, $-OR^{10}$ oder $-NR^{10}R^{11}$,

n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,

gleich oder verschieden Fluor, Chlor, Brom, Iod, C₁-bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen in Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

2

 R^2 bis R^7

gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C_{10} -Alkylrest tragen kann -, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9) mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

10

5

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

15 R¹⁰, R¹¹

 C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

20

Y, Y¹ gleich oder verschieden

25

30

35

=
$$BR^{12}$$
, = AlR^{12} , -Ge-, -Sn-, -O-, -S-, = SO, = SO_2 , = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

40 R12

gleich oder verschieden Wasserstoff, Halogen, $C_1 \cdot C_{10} \cdot Alkyl$, $C_1 \cdot C_{10} \cdot Fluoralkyl$, $C_6 \cdot C_{10} \cdot Fluoraryl$, $C_6 \cdot C_{10} \cdot Aryl$, $C_1 \cdot C_{10} \cdot Alkoxy$, $C_2 \cdot C_{10} \cdot Alkenyl$, $C_7 \cdot C_{40} \cdot Arylalkyl$, $C_8 \cdot C_{40} \cdot Arylalkenyl$, $C_7 \cdot C_{40} \cdot Alkylaryl$ bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

3

M1 Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

gleich oder verschieden sind und für Wasserstoff, R' und R" Fluor, Chlor, Brom, Iod, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis 10 C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C1- bis 15 C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, oder zusammen mit benachbarten Resten R^4 oder R^5 für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teil-20 weise mit Heteroatomen substituiert sein können,

mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen und gegebenenfalls anschließende Substitution des verbrückten 25 Aromatliganden oder der beiden nicht verbrückten Aromatliganden; racemische Metallocenkomplexe der allgemeinen Formel III

$$\begin{array}{c}
R^{15} \\
R^{16}
\end{array}$$

$$\begin{array}{c}
R^{14} \\
R^{13}
\end{array}$$

$$\begin{array}{c}
MX^{1}
\end{array}$$

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der

III. Nebengruppe des Periodensystems und der Lanthanoiden,

4

$$X^1$$

wobei:

10

15

5

R1, R8

gleich oder verschieden Fluor, Chlor, Brom, Iod, C₁-bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

20

25

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

 R^2 bis R^7

gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C_{10} -Alkylrest tragen kann -, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9) mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

30

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig

35

oder teilweise mit Heteroatomen substituiert sein,

 Y, Y^1

gleich oder verschieden

5

15 =
$$BR^{12}$$
, = AlR^{12} , -Ge-, -Sn-, -O-, -S-, = SO, = SO_2 ,
= NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

5

gleich oder verschieden Wasserstoff, Halogen,

C1-C10-Alkyl, C1-C10-Fluoralkyl, C6-C10-Fluoraryl,

C6-C10-Aryl, C1-C10-Alkoxy, C2-C10-Alkenyl,

C7-C40-Arylalkyl, C8-C40-Arylalkenyl, C7-C40-Alkylaryl

bedeuten, oder wobei zwei Reste R¹² mit den sie

verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, 35 Fluor, Chlor, Brom, Iod, C₁-bis C₂₀-Alkyl, 3-bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 40 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C1- bis C20-Alkyl, C3- bis C10-Cycloalkyl, C6- bis C15-Aryl, oder zusammen mit benachbarten Resten R4 oder R5 für 4 bis 15 C-Atome aufweisende gesättigte, teilweise 45 gesättigte oder für ungesättigte cyclische Gruppen

WO 99/15538

PCT/EP98/05918

6

stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können,

 R^{13} bis R^{17} gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann -, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si $(R^{18})_3$ mit

gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

15 $Z \qquad \qquad \text{für} \qquad \qquad \overset{R^{23}}{\underset{R^{21}}{}} \qquad \text{steht},$

20 wobei die Reste

R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl,
- das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann -, C_6 - bis C_{15} -Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si $(R^{24})_3$ mit

30 $\begin{tabular}{ll} R^{24} & gleich oder verschieden C_1- bis C_{10}-Alkyl, C_6- bis C_{15}-Aryl oder C_3- bis C_{10}-Cycloalkyl, $$$

oder wobei die Reste

T gleich oder verschieden sein kann und für Silicium, 40 Germanium, Zinn oder Kohlenstoff steht,

 R^{25} , R^{26} für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl

45 q für die Zahlen 1, 2, 3 oder 4,

R²⁰

R23

7

oder A steht, wobei A — O—

5

$$-s-$$
, NR^{27} oder PR^{27} bedeutet,

10

mit R^{27} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder Si(R^{28})₃

15 mit R^{28} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl oder Alkylaryl

und die Verwendung von racemischen Metallocenkomplexen gemäß Formel III als Katalysatoren oder als Bestandteil von Kataly20 satoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagentien oder als Katalysatoren in der Stereoselektivensynthese.

Neben der stereospezifischen Olefinpolymerisation bietet in

25 zunehmendem Maße die enantioselektive organische Synthese interessante Anwendungsmöglichkeiten für chirale Metallocenkomplexe von Metallen der III. - VI. Nebengruppe des Periodensystems der Elemente. Beispielhaft seien hier enantioselektive Hydrierungen prochiraler Substrate genannt, beispielsweise prochiraler Ole
30 fine, wie in R. Waymouth, P. Pino, J. Am. Chem. Soc. 112 (1990),

S. 4911-4914 beschrieben, oder prochiraler Ketone, Imine und Oxime, wie in der WO 92/9545 beschrieben.

Weiterhin seien genannt die Herstellung optisch aktiver Alkene

35 durch enantioselektive Oligomerisation, wie in W. Kaminsky et al., Angew. Chem. 101 (1989), S. 1304-1306 beschrieben, sowie die enantioselektive Cyclopolymerisation von 1,5-Hexadienen, wie in R. Waymouth, G. Coates, J. Am. Chem. Soc. 113 (1991), S. 6270 - 6271 beschrieben.

40

Die genannten Anwendungen erfordern im allgemeinen den Einsatz eines Metallocenkomplexes in seiner racemischen Form, d.h. ohne meso-Verbindungen. Von dem bei der Metallocensynthese des Standes der Technik anfallenden Diastereomerengemisch (rac.- u. meso-

45 Form) muß zunächst die meso-Form abgetrennt werden. Da die meso-

8

Form verworfen werden muß, ist die Ausbeute an racemischem Metallocenkomplex gering.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren 5 zur selektiven Herstellung von racemischen, praktisch (NMR-Meßgenauigkeit) meso-Isomer-freien Metallocenkomplexen zu finden.

Eine weitere Aufgabe war es, racemische Metallocenkomplexe zu finden, welche entweder direkt als oder in Katalysatoren, vor10 nehmlich für die Olefinpolymerisation, verwendet werden können, oder die nach Modifizierung, beispielsweise nach der Substitution eines "Hilfsliganden", als, oder in Katalysatoren, vornehmlich für die Olefinpolymerisation, verwendet werden können, oder die als Reagenzien oder Katalysatoren in der stereoselektiven Syn15 these verwendet werden können.

Demgemäß wurde das in den Patentansprüchen definierte Verfahren, die racemischen Metallocenkomplexe III, sowie deren Verwendung als Katalysatoren oder in Katalysatoren für die Polymerisation 20 von olefinisch ungesättigten Verbindungen oder als Reagenzien oder Katalysatoren in der stereoselektiven Synthese gefunden.

Die Begriffe "meso-Form", "Racemat" und somit auch "Enantiomere" in Verbindung mit Metallocenkomplexen sind bekannt und beispiels25 weise in Rheingold et al., Organometallics 11 (1992), S. 1869 1876 definiert.

Der Begriff "praktisch meso-frei" wird hier so verstanden, daß mindestens 90 % einer Verbindung in Form des Racemats vorliegen.

Die erfindungsgemäßen, verbrückten oder unverbrückten Übergangsmetallaromatkomplexe haben die allgemeine Formel I

in der die Substituenten und Indizes folgende Bedeutung haben:

Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, М Chrom, Molybdan, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

5 Х

gleich oder verschieden Fluor, Chlor, Brom, Iod, Wasserstoff, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR10 oder -NR10R11,

10

15

n

eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,

R1, R8

gleich oder verschieden Fluor, Chlor, Brom, Iod, C1bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C1- bis C10-Alkyl als Rest tragen kann -, C6- bis C15-Aryl, Alkylaryl mit 1 bis -10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C1- bis C20-Alkyl, C3- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

20

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

25

30

35

R² bis R⁷ gleich oder verschieden Wasserstoff, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C_{10} -Alkylrest tragen kann -, C6- bis C15-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis

20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl,

C6- bis C15-Aryl;

benachbarte Reste R2 bis R7 können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teil-

weise mit Heteroatomen substituiert sein,

40

 R^{10} , R^{11}

C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

Y, Y¹ gleich oder verschieden

15 $= BR^{12}, = AlR^{12}, -Ge-, -Sn-, -O-, -S-, = SO, = SO_2, \\ = NR^{12}, = CO, = PR^{12} \text{ oder } = P(O)R^{12},$

wobei

30

gleich oder verschieden Wasserstoff, Halogen,

C₁-C₁₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₆-C₁₀-Fluoraryl,

C₆-C₁₀-Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl,

C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl, C₇-C₄₀-Alkylaryl

bedeuten, oder wobei zwei Reste R¹² mit den sie

verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff, 35 Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 40 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C1- bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, oder zusammen mit benachbarten Resten R4 oder R5 für 4 bis 15 C-Atome aufweisende gesättigte, teilweise 45 gesättigte oder für ungesättigte cyclische Gruppen

11

stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können.

Bevorzugte Metalle M sind Titan, Zirkonium und Hafnium, ins-5 besondere Zirkonium.

Gut geeignete Substituenten X sind Fluor, Chlor, Brom, Iod, vorzugsweise Chlor, weiterhin C₁- bis C₆-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, i-Butyl, vorzugsweise 10 tert.-Butyl. Außerdem gut geeignet als Substituenten X sind Alkoholate -OR¹⁰ oder Amide -NR¹⁰R¹¹ mit R¹⁰ oder R¹¹ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest. Derartige Reste X sind beispielsweise 15 Methyl, Ethyl, i-Propyl, tert.-Butyl, Phenyl, Naphthyl, p-Tolyl, Benzyl, Trifluormethyl, Pentafluorphenyl.

Die Substituenten R^1 und R^8 sind gleich oder verschieden und bedeuten Fluor. Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 20 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl Propyl tragen kann. Beispiele für derartigen Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R1 und R^8 C_6 - bis C_{15} -Aryl, wie Phenyl, Naphthyl; Alkylaryl mit 1 bis 25 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl; Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1- bis C_{20} -Alkyl, C_{3} - bis C_{10} -Cycloalkyl, C_{6} - bis C_{15} -Aryl, beispielsweise 30 Trimetylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die genannten Reste können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R1 und R8 genannt 35 die Trifluormethyl-, Pentafluorethyl-, Heptafluorpropyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

Bevorzugte Substituenten R¹ und R⁸ sind solche, die viel Raum in Anspruch nehmen. Üblicherweise nennt man solche Substituenten 40 sperrige Substituenten. Sie zeichnen sich dadurch aus, daß sie sterische Hinderung hervorrufen können.

Im allgemeinen versteht man unter diesen Gruppen kohlenstoffoder siliziumorganische Reste mit hohem Raumbedarf (sperrige
45 Reste), aber auch Fluor und vorzugsweise Chlor, Brom und Iod. Die
Anzahl der Kohlenstoffatome die in derartigen kohlenstoff- oder

12

siliziumorganischen Resten enthalten sind, liegt üblicherweise nicht unter drei.

Bevorzugte nicht-aromatische, sperrige Reste sind solche kohlen-5 stoff- oder siliziumorganischen Reste, die in α-Stellung oder höherer Stellung verzweigt sind. Beispiele für derartige Reste sind verzweigte C₃- bis C₂₀-aliphatische, C₉- bis C₂₀-araliphatische Reste und C₃- bis C₁₀-cycloaliphatische Reste, wie iso-Propyl, tert.-Butyl, iso-Butyl, neo-Pentyl, 2-Methyl-2-phenyl-10 propyl (Neophyl), Cyclohexyl, 1-Methylcyclohexyl, Bicyclo[2.2.1]hept-2-yl (2-Norbornyl), Bicyclo[2.2.1]hept-1-yl (1-Norbornyl), Adamantyl. Weiterhin kommen als solche Reste siliziumorganische Reste mit drei bis dreißig Kohlenstoffatomen in Frage, beispielsweise Trimethylsilyl, Triethylsilyl, Triphenylsilyl, tert.-Butyl-15 dimethylsily, Tritolylsilyl oder Bis(trimethylsilyl)methyl.

Bevorzugte aromatische, sperrige Gruppen sind in der Regel C_6 - bis C_{20} -Arylreste, wie Phenyl, 1- oder 2-Naphthtyl oder vorzugsweise C_1 - bis C_{10} -alkyl- oder C_3 - bis C_{10} -cycloalkylsubstituierte aroma- 20 tische Reste wie 2,6-Dimethylphenyl, 2,6-Di-tert.-Butylphenyl, Mesityl.

Ganz besonders bevorzugte Substituenten R¹ und R⁸ sind i-Propyl, tert.-Butyl, Trimethylsilyl, Cyclohexyl, i-Butyl, Trifluormethyl, 25 3,5-Dimethylphenyl.

Im bevorzugten Substitutionsmuster sind \mathbb{R}^1 und \mathbb{R}^8 in Formel I gleich.

- 30 Die Substituenten R^2 bis R^7 sind gleich oder verschieden und bedeuten Wasserstoff, C_1 bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl das seinerseits ein C_1 bis C_{10} -Alkylrest, wie Methyl, Ethyl, Propyl tragen kann. Beispiele für derartigen Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl,
- 35 Norbornyl. Weiterhin bedeuten die Substituenten R^2 bis R^7 C_6 bis C_{15} -Aryl, wie Phenyl, Naphthyl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl
- 40 wie Si(R^9)₃ mit R^9 gleich oder verschieden C_1 bis C_{20} -Alkyl, C_3 bis C_{10} -Cycloalkyl, C_6 bis C_{15} -Aryl, beispielsweise Trimetylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die Reste R^2 bis R^7 können aber auch derartig miteinander verbunden sein, daß benachbarte Reste für 4 bis 15 C-Atome aufweisende gesättigte,
- 45 teilweise gesättigte oder ungesättigte cyclische Gruppen stehen. Vorzugsweise sind die Reste R^3 und R^4 und/oder die Reste R^5 und R^6 mit einer C_2 -Brücke derartig verbunden, daß ein benzoanelliertes

PCT/EP98/05918

13

Ringsystem (Naphthylderivat) entsteht. Die genannten Reste R² bis R⁷ können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R² bis R⁷ genannt die Trifluormethyl-, Pentafluorethyl-, Heptafluorpropyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

Besonders bevorzugt sind die Reste R^2 und R^7 gleich und bedeuten 10 Wasserstoff und R^3 , R^4 , R^5 , R^6 haben die bereits genannte Bedeutung.

Als Brückenglieder Y, Y¹ kommen die folgenden in Frage:

= BR^{12} , = AlR^{12} , -Ge-, -Sn-, -O-, -S-, = SO, = SO_2 , = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

30

WO 99/15538

gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine

C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten oder R¹² und R¹³ oder R¹² und R¹⁴ jeweils mit den sie verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist.

45 Bevorzugte Brückenglieder Y, Y^1 sind Methylen -CH₂-, S, O, -C(CH₃)₂-, wobei m in Formel I vorzugsweise 1 oder 2 ist; Y^1 ist ganz besonders bevorzugt gleich und bedeutet Sauerstoff -O-. Ganz

14

besonders bevorzugt sind Phenolattyp-Strukturen in welchen m in Formel I 0 ist, das heißt, daß die aromatischen Ringsysteme direkt miteinander verknüpft sind, beispielsweise zum Biphenolderivat.

5

Von den erfindungsgemäßen unverbrückten Übergangsmetallaromatkomplexen der allgemeinen Formel I sind diejenigen bevorzugt, in denen Y für Reste R' und R" steht, die gleich oder verschieden sind und Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl oder 3- bis

- 10 8-gliedriges Cycloalkyl das seinerseits ein C_1 bis C_{10} -Alkylrest, wie Methyl, Ethyl, Propyl tragen kann bedeuten. Beispiele für derartige Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R' und R" C_6 bis C_{15} -Aryl, wie Phenyl, Naphthyl;
- 15 Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl; Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis
- 20 C₁₅-Aryl, beispielsweise Trimetylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die genannten Reste können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte
- 25 Reste R' und R" genannt die Trifluormethyl-, Pentafluorethyl-, Heptafluorpropyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

Besonders bevorzugt sind R' und R" gleich. Ganz besonders bevorzugte unverbrückte Übergangsmetallaromatkomplexe sind solche, in 30 der R^1 , R8, R' und R" gleich sind.

Die verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I werden im allgemeinen nach Methoden hergestellt, die dem Fachmann bekannt sind.

35

Die Synthese der verbrückten Übergangsmetallphenolatkomplexe ist beispielsweise in C. J. Schaverien, J. Am. Chem. Soc. (1995), Seiten 3008 bis 3012, beschrieben. Als gut geeignet hat sich hierbei folgendes Vorgehen erwiesen, wobei in der Regel im

- 40 Temperaturbereich von 0 bis 80°C, vorzugsweise zunächst bei ca. 20°C gearbeitet wird und die Reaktion dann durch Kochen am Rückfluß vervollständigt wird. Das Biphenol wird zunächst in einem Lösungsmittel, beispielsweise Tetrahydrofuran (THF) deprotoniert, zum Beispiel mit Natriumhydrid oder n-Butyllithium, und anschlie-
- 45 Bend die Übergangsmetallverbindung, beispielsweise das Halogenid, wie Titan-, Zirkonium- oder Hafniumtetrachlorid, vorteilhaft in Form des Bis-THF-Adduktes, hinzugegeben. Nach erfolgter Umsetzung

15

wird das Produkt in der Regel nach Abtrennung von Salzen durch Auskristallisieren erhalten. Die Herstellung von nicht-verbrückten Übergangsmetallphenolatkomplexen kann beispielsweise nach H. Yasuda et. al, J. Organomet. Chem. 473 (1994), Seiten 105 bis 116 erfolgen.

Die erfindungsgemäßen, verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I enthalten in der Regel noch 2 bis 4 Äquivalente einer Lewis-Base, welche in der Regel über die Syn10 theseroute eingeschleppt wird. Als derartige Lewisbasen sind beispielsweise zu nennen Ether, wie Diethylether oder Tetrahydrofuran (THF). Es ist aber auch möglich die Übergangsmetallaromatkomplexe Lewis-Basen-frei zu erhalten, beispielsweise durch Trocknung im Vakuum oder Wahl anderer Lösungsmittel bei der Syn15 these. Derartige Maßnahmen sind dem Fachmann bekannt.

Die erfindungsgemäßen racemischen Metallocenkomplexe werden hergestellt durch Umsetzung der verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I mit Cyclopentadienylderivaten der 20 Alkali- oder Erdalkalimetalle. Vorzugsweise setzt man Übergangsmetallaromatkomplexe I ein, in welchen M Zirkonium bedeutet und die Reste R¹ und R8 die oben beschriebene, bevorzugte Bedeutung haben. Sehr gut geeignet sind Dichlorobis(6-tert.-butyl-4-methyl-phenoxy)zirkon · (THF)2 und die in den Beispielen genannten Zir-25 kon-Phenolat-Verbindungen.

Prinzipiell kommen als Cyclopentadienylderivate der Alkali- oder Erdalkalimetalle diejenigen in Frage, welche nach der Umsetzung mit den erfindungsgemäßen, verbrückten Übergangsmetallaromat30 komplexen I selektiv, praktisch meso-Isomeren-freie, racemische Metallocenkomplexe liefern.

Die erfindungsgemäßen racemischen Metallocenkomplexe können verbrückt sein, müssen es aber nicht sein. Es genügt im allgemeinen 35 eine hohe Rotationsbarriere, insbesondere im Temperaturbereich von 20 bis 80°C, (bestimmbar mit der Methode der ¹H und/oder ¹³C-NMR-Spektroskopie) der unverbrückten Cyclopentadienyltyp-Liganden im Metallocen, damit die Metallocenkomplexe, direkt in ihrer racemischen Form isoliert werden können, ohne daß sie sich in 40 die meso-Form umwandeln können. Die Rotationsbarriere, die dies gewährleistet, liegt üblicherweise über 20 kJ/mol.

16

Gut geeignete Cyclopentadienderivate von Alkali- oder Erdalkalimetallen sind solche der allgemeinen Formel II

 $\begin{array}{c|c}
 & R^{15} & R^{14} \\
 & R^{16} & R^{13} & P M^2
\end{array}$ $\begin{array}{c|c}
 & R^{17} & R^{14} & R^{13} & R^{14} & R$

10 in der die Substituenten und Indizes folgende Bedeutung haben:

M² Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba,

R¹³ bis R¹⁷ gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si (R¹⁸) $_3$ mit

 R^{18} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

Z für \mathbb{R}^{23} \mathbb{R}^{19} steht

30 wobei die Reste

5

R19 bis R23 gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann, C_6 - bis C_{15} -Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $Si(R^{24})_3$ mit R^{24} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

oder wobei die Reste

 R^{16} und Z gemeinsam eine Gruppierung $-[T(R^{25})(R^{26})]_n$ -E- bilden, in der

WO 99/15538

17

gleich oder verschieden sein kann und für Silicium, Т Germanium, Zinn oder Kohlenstoff steht,

R²⁵, R²⁶ für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C₆- bis C₁₅-Aryl 5

für die Zahlen 1, 2, 3 oder 4, n

R²³ 10 oder A steht, wobei A E, für

15 oder

mit R27 gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder 20 $Si(R^{28})_3$

mit R²⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C_{15} -Aryl, C_{3} - bis C_{10} -Cycloalkyl oder Alkylaryl,

25 p = 1 für Be, Mg, Ca, Sr, Ba und wobei p = 2 für Li, Na, K, Rb, Cs.

Bevorzugte Verbindungen der Formel II sind solche in welchen M² 30 Lithium, Natrium und insbesondere Magnesium bedeutet. Ferner sind solche Verbindungen der Formel II a)

35 R¹⁷ R23 R19 40

besonders bevorzugt in welchen M^2 Magnesium, R^{17} und R^{23} von 45 Wasserstoff verschiedene Substituenten bedeuten, wie C_1 - bis C10-Alkyl, also Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, i.-Butyl, Hexyl, weiterhin C6-C10-Aryl, wie

WO 99/15538

18

Phenyl oder Trialkylsilyl, wie Trimethylsilyl, $T(R^{25}R^{26})$ für Bis- C_1 - C_{10} -alkylsilyl oder Bis- C_6 - C_{10} -arylsilyl steht wie Dimetylsilyl, Diphenylsilyl, weiterhin für 1,2-Ethyandiyl, Methylen und die Reste R^{13} bis R^{15} und R^{19} bis R^{25} die bereits genannte Bedeutung haben und insbesondere ein Indenvltyp-Ringsystem oder ein

PCT/EP98/05918

5 tung haben und insbesondere ein Indenyltyp-Ringsystem oder ein Benzoindenyltyp-Ringsystem bilden.

Ganz besonders bevorzugte Verbindungen II sind jene, welche in den Beispielen beschrieben werden und außerdem

10

Dimethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)-magnesium

Diethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)15 magnesium

Dimethylsilandiylbis(3-tert.-butyl-5-ethylcyclopentadienyl)magnesium

20 Dimethylsilandiylbis(3-tert.-pentyl-5-methylcyclopentadienyl) magnesium

Dimethylsilandiylbis(2,4,7-trimethylindenyl)magnesium

25 1,2-Ethandiylbis(1-{2,4,7-trimethylindenyl)}magnesium

Dimethylsilandiylbis(1-indenyl)magnesium

Dimethylsilandiylbis(4,5,6,7-tetrahydro-1-indenyl)magnesium 30

Dimethylsilandiylbis (2-methylindenyl) magnesium

Phenyl (methyl) silandiylbis (2-methylindenyl) magnesium

35 Diphenylsilandiylbis(2-methylindenyl)magnesium

Dimethylsilandiylbis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)-magnesium

40 Dimethylsilandiylbis(2,4-dimethyl-6-isopropylindenyl)magnesium

Dimethylsilandiylbis(2-methyl-1-benzindenyl)magnesium

Dimethylsilandiylbis(2-ethyl-1-benzindenyl)magnesium

45

Dimethylsilandiylbis(2-propyl-1-benzindenyl)magnesium

19

Dimethylsilandiylbis(2-phenyl-1-benzindenyl)magnesium
Diphenylsilandiylbis(2-methyl-1-benzindenyl)magnesium

5 Phenylmethylsilandiylbis(2-methyl-1-benzindenyl)magnesium Ethandiylbis(2-methyl-1-benzindenyl)magnesium

Dimethylsilandiylbis(2-methyl-1-tetrahydrobenzindenyl)magnesium

Dimethylsilandiylbis(2-methyl-4-isopropyl-1-indenyl)magnesium

Dimethylsilandiylbis(2-methyl-4-phenyl-1-indenyl)magnesium

- Dimethylsilandiylbis(2-methyl-4-naphtyl-1-indenyl)magnesium
 Dimethylsilandiylbis(2-methyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl)magnesium
- 20 Dimethylsilandiylbis(2-ethyl-4-isopropyl-1-indenyl)magnesium

 Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl)magnesium

 Dimethylsilandiylbis(2-ethyl-4-naphtyl-1-indenyl)magnesium

Dimethylsilandiylbis(2-ethyl-4-{3,5-trifluoromethyl}phenyl-1indenyl)magnesium

Ethandiylbis (2-methyl-4-phenyl-1-indenyl) magnesium

Ethandiylbis (2-methyl-4-naphtyl-1-indenyl) magnesium

Ethandiylbis (2-methyl-4-{3,5-di-(trifluoromethyl)} phenyl-1-indenyl) magnesium

35

Derartige Alkali- oder Erdalkalimetallverbindungen II lassen sich nach literaturbekannten Methoden erhalten, beispielsweise durch die, vorzugsweise stöchiometrische, Umsetzung einer Organometallverbindung oder eines Hydrids des Alkali- oder Erdalkalimetalls wit dem entsprechenden Cyclopentadienyltyp-Kohlenwasserstoff. Geeignete Organometallverbindungen sind beispielsweise n-Butyllithium oder Di-n-butylmagnesium.

Die Umsetzung der verbrückten oder nicht-verbrückten Übergangsme-45 tallaromatkomplexe I mit den Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen, vorzugsweise der Formeln II oder IIa) findet üblicherweise in einem organischen Lösungs- oder Suspensionsmittel, vorzugsweise in einem Ether wie Diethylether, THF und im Temperaturbereich von - 78 bis 100 °C, vorzugsweise im Temperaturbereich von 0 bis 60°C statt. Das molare Verhältnis des Übergangsmetallaromatkomplexes I zu dem Cyclopentadienylderivat von Alkali- oder Erdalkalimetallen liegt üblicherweise im Bereich von 0,8: 1 bis 1: 1,2, vorzugsweise bei 1: 1.

Die erfindungsgemäßen, racemischen Metallocenkomplexe sind vorzugsweise solche der allgemeinen Formel III

10

$$\begin{array}{c}
R^{15} \\
R^{16}
\end{array}$$

$$\begin{array}{c}
R^{14} \\
R^{13}
\end{array}$$

$$\begin{array}{c}
MX^{1} \\
\end{array}$$

15

in der die Substituenten und Indizes folgende Bedeutung haben:

20

М

Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

25 X1

30

wobei:

35 R1, R8

gleich oder verschieden Fluor, Chlor, Brom, Iod, C_1 -bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C_{10} -Alkyl als Rest tragen kann -, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9)₃ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

40

R² bis R⁷

gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C_{10} -Alkylrest tragen kann -, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest und 6 bis 20 C-Atomen im Arylrest, Si(R^9) mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl, benachbarte Reste R^2 bis R^7 können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise

10

5

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

15

 Y, Y^1

gleich oder verschieden

20

25

30

= BR^{12} , = $A1R^{12}$, -Ge-, -Sn-, -O-, -S-, = SO, = SO_2 , = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

R12

35

gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkyla

40

C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl, C₇-C₄₀-Alkylaryl bedeuten, oder wobei zwei Reste R¹² mit den sie verbindenden Atomen einen Ring bilden,

Μl

Silicium, Germanium oder Zinn ist und

45 m

0, 1, 2, 3 bedeutet,

22

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R"

 R^{13} bis R^{17}

gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können,

15

5

10

gleich oder verschieden Wasserstoff, C_{1} bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C_{1} - bis C_{10} -Alkyl als Substituent tragen kann -, C_{6} - bis C_{15} -Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si $(R^{18})_{3}$ mit

25

R18

20

gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

30

für R^{22} R^{19} steht,

35

wobei die Reste

 R^{19} bis R^{23}

gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann -, C_6 - bis C_{15} -Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si $(R^{24})_3$ mit

45

R24

gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

oder wobei die Reste

5

 R^{16} und Z gemeinsam eine Gruppierung - $\{T(R^{25})(R^{26})\}_q$ -E- bilden, in der

т 10 gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

R²⁵, R²⁶

für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl

15 q

für die Zahlen 1, 2, 3 oder 4,

E für

 R^{23} oder A steht, wobei A R^{20}

-s-, NR^{27} oder PR^{27} bedeutet,

mit R²⁷

gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si\left(R^{28}\right)_3$

30

25

mit R^{28} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl oder Alkylaryl.

Bevorzugte Verbindungen der Formel III sind solche in welchen M 35 Titan, Hafnium und insbesondere Zirkonium bedeutet. Ferner sind verbrückte Verbindungen der Formel III besonders bevorzugt (ansa-Metallocene) in welchen R^{17} und R^{23} von Wasserstoff verschiedene Substituenten bedeuten, wie C_1 - bis C_{10} -Alkyl, also Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, i.-Butyl,

- 40 Hexyl, weiterhin $C6-C_{10}-Aryl$, wie Phenyl oder Trialkylsilyl, wie Trimethylsilyl, $T(R^{25}R^{26})$ für $Bis-C_1-C_{10}-alkylsilyl$ oder $Bis-C_6-C_{10}$ -arylsilyl steht wie Dimetylsilyl, Diphenylsilyl, weiterhin für 1,2-Ethandiyl, Methylen und die Reste R^{13} bis R^{15} und R^{19} bis R^{25} die bereits genannte Bedeutung haben und insbesondere
- 45 ein Indenyltyp-Ringsystem oder ein Benzoindenyltyp-Ringsystem bilden.

24

Ganz besonders bevorzugte Verbindungen III sind jene, welche in den Beispielen beschrieben werden, und außerdem

Dimethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)
5 [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Diethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)
[bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

10 Dimethylsilandiylbis(3-tert.-butyl-5-ethylcyclopentadienyl)
[bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(3-tert.-pentyl-5-methylcyclopentadienyl)
[bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2,4,7-trimethylindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

1,2-Ethandiylbis(1-{2,4,7-trimethylindenyl)} [bis(6-tert.-butyl-20 4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

25 Dimethylsilandiylbis(4,5,6,7-tetrahydro-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-methylindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Phenyl (methyl) silandiylbis (2-methylindenyl) [bis (6-tert.-butyl-4-methyl-phenoxy)] zirkon

Diphenylsilandiylbis(2-methylindenyl)[bis(6-tert.-butyl-4-35 methyl-phenoxy)]zirkon

Dimethylsilandiylbis (2-methyl-4,5,6,7-tetrahydro-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)] zirkon

40 Dimethylsilandiylbis(2,4-dimethyl-6-isopropylindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-methyl-1-benzindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

25

Dimethylsilandiylbis(2-ethyl-1-benzindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-propyl-1-benzindenyl) [bis(6-tert.-butyl-5 4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-phenyl-1-benzindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

10 Diphenylsilandiylbis(2-methyl-1-benzindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Phenylmethylsilandiylbis(2-methyl-1-benzindenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

15
 Ethandiylbis(2-methyl-1-benzindenyl) [bis(6-tert.-butyl-4-methyl phenoxy)]zirkon

Dimethylsilandiylbis(2-methyl-1-tetrahydrobenzindenyl) [bis(6-20 tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-methyl-4-isopropyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

25 Dimethylsilandiylbis(2-methyl-4-phenyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-methyl-4-naphtyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-methyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-ethyl-4-isopropyl-1-indenyl) [bis(6-tert.-35 butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

40 Dimethylsilandiylbis(2-ethyl-4-naphtyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Dimethylsilandiylbis(2-ethyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

26

Ethandiylbis(2-methyl-4-phenyl-1-indenyl) [bis(6-tert.-butyl-4-methyl-phenoxy)]zirkon

Ethandiylbis(2-methyl-4-naphtyl-1-indenyl) [bis(6-tert.-butyl-4-5 methyl-phenoxy)]zirkon

Ethandiylbis (2-methyl-4-{3,5-di-(trifluoromethyl)}phenyl-1-indenyl)zirkon

10 Die racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III, lassen sich im allgemeinen weiter modifizieren.

Insbesondere kann beispielsweise ein verbrückter Bisphenolatli15 gand X¹ in dem Komplex III durch Substitution abgespalten und wiederverwendet werden. Geeignete Abspaltungs-(Substitutions-)methoden sind die Umsetzung der racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III mit einer Brönsted-Säure wie Halogenwasserstoff, also HF, HBr, HI, vorzugsweise HCl,

- 20 welche in der Regel in Substanz oder als Lösung in Wasser oder organischen Lösungsmitteln wie Diethylether, THF angewandt wird. Hierbei entsteht üblicherweise das der Formel III analoge Di-Halogenid (X = F, Cl, Br, I) und das Bisphenol. Ein weiteres gut geeignetes Substitutions-Verfahren ist die Umsetzung der
- 25 racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III mit Organo-Aluminiumverbindungen wie $Tri-C_1$ -bis C_{10} -Alkylaluminium, also Trimethylaluminium, Triethylaluminium, Tri-n-butylaluminium, Tri-iso-butylaluminium. Hierbei entsteht nach derzeitigem Kenntnisstand im allgemeinen die zu III analoge Or-
- 30 gano-Verbindung (X = organischer Rest, z.B. C_1 bis C_{10} -Alkyl, wie Methyl, Ethyl, n-Butyl, i-Butyl) und beispielsweise das Organo-Aluminiumbinaphtholat. Analog kann auch verfahren werden, wenn der Ligand X^1 in dem Komplex III zwei nicht verbrückte Phenolatliganden ist.

35

Bei den Spaltungsreaktionen werden die Komponenten üblicherweise im stöchiometrischen Verhältnis eingesetzt.

Die Spaltungsreaktionen finden im allgemeinen unter Erhaltung 40 der Stereochemie der Metallocenkomplexe statt, das bedeutet, es findet im allgemeinen keine Umwandlung der racemischen Form in die meso-Form der Metallocenkomplexe statt.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß es 45 sehr selektiv die racem-Form von Metallocenkomplexen zugänglich macht. Besonders vorteilhaft lassen sich verbrückte Indenyl- oder Benzoindenyltyp-Metallocene erhalten, welche in der Nachbarschaft

des Brückenglieds (sogenannte 2-Stellung) einen von Wasserstoff verschiedenen Liganden haben.

Die erfindungsgemäßen racemischen Metallocenkomplexe, ins5 besondere jene der allgemeinen Formell III oder ihre, beispielsweise durch Substitution der Phenolatliganden zugänglichen, bereits beschriebenen Derivate lassen sich als Katalysatoren oder
in Katalysatorsystemen für die Polymerisation von olefinisch
ungesättigten Verbindungen, wie Ethylen, Propylen, 1-Buten,
10 1-Hexen, 1-Octen, Styrol, verwenden. Besonders vorteilhaft kommen
sie zur Geltung bei der stereoselektiven Polymerisation von
prochiralen, olefinisch ungesättigten Verbindungen, wie Propylen,
Styrol. Geeignete Katalysatoren oder Katalysatorsysteme, in
welchen die erfindungsgemäßen racemischen Metallocenkomplexe

15 als "Metallocenkomponente" fungieren können, werden üblicherweise mittels metalloceniumionenbildenden Verbindungen enthalten, wie beispielsweise in EP-A-O 700 935, Seite 7, Zeile 34 bis Seite 8, Zeile 21 und Formeln (IV) und (V) beschrieben. Weitere metalloceniumionenbildenden Verbindungen sind Alumoxan (RAIO)_n wie

20 Methylaluminoxan.

Die erfindungsgemäßen racemischen Metallocenkomplexe, insbesondere jene der allgemeinen Formel III oder ihre, beispielsweise durch Abspaltung der Phenolatliganden zugänglichen, 25 bereits beschriebenen Derivate lassen sich weiterhin als Reagenzien oder als Katalysatoren oder in Katalysatorsystemen in der stereoselektiven, insbesondere organischen Synthese verwenden. Beispielsweise seien genannt die stereoselektive Reduktionen oder stereoselektiven Alkylierungen von C=C-Doppelbindungen oder C=O-, 30 C=N-Doppelbindungen.

Beispiele

Abkürzungen und Akronyme

35

Me = Methyl, tBu = tert.-Butyl, iPr = iso-Propyl

CH₃ CH₃

40

tBu O O tBu

p-Me-bp

Me Me 5 iPr iPr

2,2'-[3-Me-6-iPr- $C_6H_2O_2$

10

CH₃ CH₃ 15 tBu tBu

2,2'-CH₂[4-Me-6-tBu-C₆H₂O]

20

Me₂Si 25

 $Me_2Si(Cp)_2$

30

Me₂Si(ind)₂

5

10

15

30

25

40

$$Me_2Si[3-(2-Me-benz[e]-ideny1]_2$$

Me₂Si [2-Metetrahydrobenzo[e]inden-3-y1]

 Me_4C_2 (3 - $tBuCp)_2$

30

10

5

Beispiel A

Darstellung von Dichlorobis(6-t-butyl-4-methyl-phenoxy)zirkon(THF)₂[p-Me-bpZrCl₂(THF)₂]

- 15 Zu einer Lösung von 3,27 g (0,01 mol) 2,2'-Dihydroxy-3,3'-di-t-butyl-5,5'-dimethyl-biphenyl in 150 ml THF wurden bei Raumtemperatur unter Rühren portionsweise 0,483 g (0,02 mol) NaH zugegeben, anschließend bei Raumtemperatur eine Stunde gerührt und dann die Suspension 24 h unter Rückfluß erhitzt. Nach Abkühlen der
- 20 klaren, leicht orangefarbenen Lösung wurden unter Rühren portionsweise 3,8 g (0,01 mol) ZrCl₄x2THF zugegeben und die Suspension wieder 24 h unter Rückfluß erhitzt. Das entstandene NaCl wurde abfiltriert und das Lösungsmittel im Vakuum entfernt. Zum Rückstand wurden 100 ml Ether gegeben. Nach kurzer Zeit fiel aus der
- 25 zunächst klaren Lösung ein weißer Niederschlag aus. Die Lösung wurde zur Vervollständigung der Kristallisation auf -30°C gekühlt. Der Niederschlag wurde abfiltriert und mit wenig kaltem Ether gewaschen. Man erhielt 4,59 g (73 % d.Th.) Dichlorobis(6-t-butyl-4-methylphenoxy)zirkonium x 2THF: [p-Me-bp]ZrCl₂x2THF.

30

¹H-NMR: $(C_6D_6$, 250 Mhz): 7,26 (d, 2H, C_6H_2), 7,04 (d, 2H, C_6H_2), 4,06 (b, 8H, THF), 2,21 (s, 6H, Me), 1,74 (s, 18H, t-Bu), 1,05 (b, 8H, THF)

35 Beispiel 1

Darstellung von rac-C₂H₄ (ind₂Zr(p-Me-bp)

- a) Darstellung von C₂H₄ (ind) ₂Mg (THF) ₂
- Zu einer Lösung von 1,49 g (5,77 mmol) C₂H₄(indH)₂ in 150 ml Heptan wurden 6,3 ml Dibutylmagnesium in Heptan (6,3 mmol, 1 M Bu₂Mg-Lösung) bei Raumtemperatur zugegeben. Die Lösung wurde 5 h am Rückfluß erhitzt. Dabei entstand ein gelblicher Niederschlag. Die Suspension wurde auf -30°C gekühlt, der Niederschlag abfiltriert, mit wenig Heptan gewaschen und im Vakuum getrocknet. Das Rohprodukt wurde in wenig THF auf-

genommen und mit Heptan überschichtet. Man erhielt das

31

 C_2H_4 (ind) $_2Mg$ (THF) $_2$ in Form schwach violett gefärbter Nadeln. Die Ausbeute betrug 1,86 g (76 % d.Th.)

b) Komplexierung

5

10

15

 $0,459~g~(1,08~mmol)~C_2H_4(ind)_2Mg(THF)_2~und~0,679~g~(1,08~mmol)~p-Me-bpZrCl_2(THF)_2~wurden~trocken~vermischt.~Unter~Rühren~wurden~50~ml~Toluol~zugegeben~und~die~Suspension~zwei~Tage~bei~Raumtemperatur~gerührt.~Dabei~verfärbte~sich~die~Lösung~zunehmend~gelb-orange~und~trübte~ein.~Der~Niederschlag~wurde~abfiltriert,~das~Toluol~des~Filtrats~im~Vakuum~entfernt~und~der~Rückstand~in~100~ml~Pentan~aufgenommen.~Die~leicht~trübe~Lösung~wurde~über~Kieselgur~filtriert~und~das~Pentan~im~Vakuum~entfernt.~Man~erhielt~0,495~g~(68~%~d.Th.)~rac-<math>C_2H_4(ind)_2Zr(p-Me-bp)$.

¹H-NMR: $(C_6D_6, 250 \text{ Mhz})$: 7,40 (d, 2H, ind- C_6H_4), 7,21 (d, 2H, C_6H_2), 6,9 (m, 6H, ind- C_6H_4), 6,77 (d, 2H, C_6H_2), 6,00 (d, 2H, ind- C_3H_2), 5,76 (d, 2H, ind- C_9H_2), 3,29 (m, 4H, C_2H_4), 2,18 (s, 6H, Me), 1,36 (s, 18H, t-Bu).

Beispiel 2
Darstellung von rac-Me₂Si(2-Me-tetrahydrobenzo[e]inden-3-yl)₂-Zr((p-Me-bp)

25

20

- a) Darstellung von $Me_2Si(2-Me-tetrahydrobenzo[e]inden-3-y1)_2-Mg(THF)_2$
- Zu einer Lösung von 1 g (2,35 mmol) rac-Me₂Si(2-Me-tetra-30 hydrobenzo[e]inden-3-yl)₂Mg in 100 ml Heptan wurden 2,5 ml (2,5 mmol) einer 1 M Dibutylmagnesiumlösung in Heptan gegeben. Die Lösung wurde 6 h unter Rückfluß erhitzt. Nach dem Abkühlen auf Raumtemperatur wurden 0,4 ml THF zugegeben. Nach einigen Tagen bei Raumtemperatur wurden gelb grüne Nadeln von Me₂Si(2-Me-tetrahydro-

benzo[e]inden-3-yl) $_2$ Mg(THF) $_2\cdot$ (C $_7$ H $_1$ 6)0,5 durch Abdekantieren isoliert, mit wenig Heptan gewaschen und im Vakuum getrocknet. Es wurden 0,57 g (38 % d.Th.) des gewünschten Produktes erhalten.

40

 $^{1}\text{H-NMR}$: (CH₂Cl₂, 600 Mhz): 7,53 (d, 2H, C₆H₂), 6,55 (d, 2H, C₆H₂), 6,28 (s, 2H, C₅H₁), 3,2-2,4 (m), 2,2-1,5 (m), 0,65 (d, 6H, Me₂Si)

45 b) Darstellung von rac-Me₂Si(2-Me-tetrahydrobenzo[e]inden-3-yl)₂Zr(p-Me-bp)

500 mg (0,85 mmol) Me₂Si(2-Me-tetrahydrobenzo[e]inden-3-yl)₂-Mg(THF)₂ und 556 mg (0,85 mmol) p-Me-bpZrCl₂(THF)₂ wurden trocken vermischt. Unter Rühren gab man 60 ml Toluol zu und rührte die Suspension zwei Tage bei Raumtemperatur. Dabei verfärbte sich die Lösung zunehmend gelb und trübte ein. Der Niederschlag wurde abfiltriert, das Toluol des Filtrats im Vakuum entfernt und der Rückstand in 100 ml Pentan aufgenommen. Die leicht trübe Lösung wurde filtriert und das Pentan im Vakuum entfernt. Man erhielt 0,498 g (70 % d.Th.) rac-Me₂Si(2-Me-tetrahydrobenzo[e]inden-3-yl)₂Zr(p-Me-bp).

¹H-NMR ($_{6}D_{6}$, 250 Mhz): 7,46 (d, 2H, ind- $_{C_{6}H_{2}}$), 7,22 (d, 2H, $_{C_{6}H_{2}}$), 6,73 (d, 2H, $_{C_{6}H_{2}}$), 6,52 (d, 2H, ind- $_{C_{6}H_{2}}$), 6,09 (s, 2H, $_{C_{5}H_{1}}$), 2,46 (s, 6H, ind-Me), 2,21 (s, 6H, Me), 138 (s, 18H, t-Bu), 0,96 (s, 6H, Me₂Si)

Beispiel 3
Darstellung von Me₂SiCp₂Mg(THF)₂

5

10

15

30

20 Zu einer Lösung von 2,28 g (12,10 mmol) Me₂Si(CpH)₂ in 60 ml Heptan wurden 11,21 ml (12,20 mmol) einer 1,08 m Dibutyl-magnesiumlösung in Heptan zugegeben. Dabei trübte sich die Lösung durch einen weißen Niederschlag ein. Die Lösung wurde 5 h unter Rückfluß erhitzt. Bai Raumtemperatur wurden 3 ml (37 mmol) THF zugegeben. Die Lösung wurde 1 h bei Raumtemperatur gerührt, im Hochvakuum auf ca. 30 ml eingeengt und bei -30°C kühlgestellt. Nach einigen Tagen wurde der weiße Niederschlag abfiltriert, mit wenig Heptan gewaschen und im Hochvakuum getrocknet. Es wurden 3,35 g (78 %) Me₂SiCp₂Mg(THF)₂ erhalten.

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (CD $_{2}$ Cl $_{2}$, interner Standard TMS, 298 K, 250 MHz)

		Zuordnung
35	6,21 tp	C ₅ H ₄
	6,09 sb	C ₅ H ₄
	3,64 m	THF
	1,85 m	THF
40	0,54 s	(CH ₃) ₂ Si

Beispiel 4
Darstellung von Me₄C₂(3-^tBu-Cp)₂Mg(THF)₂

45 Zu einer Lösung von 6,78 g (20,76 mmol) $Me_4C_2(3-tBu-CpH)_2$ in 200 ml Heptan wurden 23 ml (23 mmol) einer 1 M Dibutylmagnesium-Lösung in Heptan gegeben. Die Lösung wurde unter Rückfluß 5 h er-

33

hitzt. Dabei war die Entwicklung von Butan zu beobachten. Zu der leicht gelblichen Lösung wurden 4 ml THF gegeben, eine Stunde bei Raumtemperatur gerührt, auf ein Viertel eingeengt und auf -30°C gekühlt. Nach einigen Tagen hatten sich farblose Kristalle gebil-5 det. Diese wurden durch Dekantieren abgetrennt, mit wenig Heptan gewaschen und im Hochvakuum getrocknet. Dabei wurden 6,83 g (78 %) Me₄C₂(3-tBu-Cp)₂Mg(THF) erhalten. Weiteres Einengen der Mutterlauge und Kühlung auf -30°C ergaben nach gleicher Aufarbeitung weitere 0,35 g (4 %) Me₄C₂(3-tBu-Cp₂Mg(THF).

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (CD2Cl2, interner Standard TMS, 298 K, 600 MHz)

			Zuordnung
15	5,96 (tp	, 1H)	C ₅ H ₃ (H2)
	5,56 (tp	, 1H)	C ₅ H ₃ (H4)
	5,47 (tp	, 1H)	C ₅ H ₃ (H5)
20	1,54 (s,	6H)	C ₂ (CH ₃) ₂ (CH ₃ 1)
	1,40 (s,	6H)	C ₂ (CH ₃) ₂ (CH ₃ 2)
	1,16 (s,	18H)	C (CH ₃) ₃

Beispiel 5
Darstellung von Me₂Si(ind)₂Mg(THF)₂

Zu einer Lösung von 10,54 g (36,54 mmol) Me₂Si(indH)₂ in 150 ml Heptan wurden 37 ml (37 mmol) einer 1 M Dibutylmagnesiumlösung in Heptan gegeben. Die Lösung wurde 8 h unter starkem Rühren unter Rückfluß erhitzt. Dabei entstanden geringe Mengen eines Nieder-30 schlages. Bei Raumtemperatur wurden dann unter starkem Rühren 30 ml THF (0,37 mol) zugegeben. Sofort fiel ein weiß-rosafarbener Niederschlag aus. Dieser wurde abfiltriert, mit wenig Heptan gewaschen und im Hochvakuum getrocknet. Dabei wurden 9,98 g (61 %) Me₂Si(ind)₂Mg(THF)₂ erhalten. Das Filtrat wurde am Hoch-35 vakuum stark eingeengt und die Lösung bei -30°C kühlgestellt. Nach einigen Tagen wurden durch identische Aufarbeitung weitere 1,85 g (11 %) Me₂Si(ind)₂Mg(THF)₂ erhalten. Gesamtausbeute: 72 %

34

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (CD $_{2}$ Cl $_{2}$, interner Standard TMS, 298 K, 250 MHz)

			Zuordnung
5	7,96 (d, 2H)	³ J (7,9 Hz)	C ₆ H ₄
	7,52 (d, 2H)	³ J (7,9 Hz)	C ₆ H ₄
	6,98 (d, 2H)	³ J (3,3 Hz)	C ₅ H ₂
i	6,93 (tp, 2H)		C ₆ H ₄
10	6,83 (tp, 2H)		C ₆ H ₄
10	6,53 (d, 2H)	3 J (3,1 Hz)	C ₅ H ₂
	3,03 (d, 8H)		THF
	1,51 (b, 8H)		THF
	0,94 (s, 6H)		(CH ₃) ₂ Si

15

Beispiel 6
Darstellung von Me₂Si(3-tBu-Cp)₂Mg(THF)₂

Zu einer Lösung von 5,37 g (17,86 mmol) Me₂Si(3-tBu-CpH)₂ in 200 ml Heptan wurden 19,65 ml (19,65 mmol) einer 1 M Dibutyl-magnesiumlösung in Heptan gegeben. Die Reaktionslösung wurde 5 h unter Rückfluß erhitzt. Dabei war die Entwicklung von Butan zu beobachten. Die klare Lösung wurde auf ca. ein Dritte eingeengt.
Bei Raumtemperatur wurden 3 ml (36,86 mmol) THF zugegeben und die Lösung auf -30°C gekühlt. Nach einigen Tagen entstanden teils farblose Kristalle, teils amorpher Niederschlag. Beides wurde durch Dekantieren isoliert, mit wenig Heptan gewaschen und im Hochvakuum getrocknet. Dabei wurden 5,1 g (61 %) Me₂Si(3-tBu-Cp)₂Mg(THF)₂ erhalten. Weiteres Einengen der Mutterlauge und Kühlung auf -30°C ergaben nach identischer Isolierung weitere 2,0 g (24 %) Me₂Si(3-t-Bu-Cp)₂Mg(THF)₂.

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (D*-THF, interner Standard TMS, 298 K, 600 MHz)

				Zuordnung
40	6,14	(s,	2H)	C ₅ H ₃ (H4)
	6,00	(s,	2H)	C ₅ H ₃ (H2)
	5,67	(s,	2H)	C ₅ H ₃ (H5)
	1,16	(s,	18H)	(CH ₃) ₃ C
	0,37	(b,	6H)	(CH ₃) ₂ Si

Beispiel 7
Darstellung von Me₂Si(3-(2-Me-benz[e]indenyl)₂Mg(THF)₂

Zu einer Suspension von 1,09 g (2,61 mmol) Me₂Si (3-(3H-2-Me-benz-5 [e]indenyl)₂ in 80 ml Heptan wurden bei Raumtemperatur 3 ml (3 mmol) einer 1 M Dibutylmagnesiumlösung zugegeben. Die Suspension wurde unter Rückfluß zum Sieden erhitzt. Kurz vor dem Siedepunkt war die Lösung klar. Nach ca. 30 min trübte sich die Lösung durch ausgefallenes Produkt. Dabei war die Entwicklung von 10 Butan zu beobachten. Nach 12-stündigem Sieden wurde zu der gelben Suspension bei Raumtemperatur 6 ml (74 mmol) THF gegeben. Der Feststoff verfärbte sich leuchtend gelb. Nach 1 h Rühren bei Raumtemperatur wurde die Suspension auf ca. 20 ml am Hochvakuum eingeengt, der Niederschlag abfiltriert, mit wenig Heptan 15 gewaschen und am Hochvakuum getrocknet. Es wurden 1,29 g (85 %) Me₂Si (3-(2-Me-benz[e]indenyl)₂Mg (THF)₂ erhalten.

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (C₆D₆, interner Standard TMS, 298 K, 250 MHz)

20 .			
20			Zuordnung
	8,45	(d, 2H)	C ₆ H ₄ oder C ₆ H ₂
	8,34	(d, 2H)	C ₆ H ₄ oder C ₆ H ₂
	8,23	(d, 2H)	C ₆ H ₄ oder C ₆ H ₂
25	7,82	(d, 2H)	C ₆ H ₄ oder C ₆ H ₂
	7,42	(tp, 2H)	C ₆ H ₄
	7,22	(tp, C ₆ D ₆)	C ₆ H ₄
	7,14	(s, 2H)	C ₅ H
30	2,95	(s, 6H)	CH ₃
	2,79	(b, 8H)	THF
	1,10	(s, 6H)	(CH ₃) ₂ Si
	1,07	(b, 8H)	THF

35

Beispiel 8
Darstellung von rac-C₂H₄(ind)₂Zr-(2,2'(3-Me-6-iPr-C₆H₂O)₂)

0,172 g (0,40 mmol) 2,2'(3-iPr-5-Me-C₆H₂O)₂Zr(THF)₂ und 0,245 g
40 (0,40 mmol) C₂H₄(ind)₂Mg(THF)₂ wurden trocken vermischt und in
20 ml Toluol gelöst. Die Lösung verfärbte sich zunehmend gelb und
trübte sich ein. Nach 3 h Rühren bei Raumtemperatur wurde das
Lösungsmittel am Hochvakuum entfernt und der Rückstand in Hexan
aufgenommen. Das MgCl₂(THF)₂ wurde abfiltriert und mit Hexan
45 gewaschen. Das Lösungsmittel wurde am Hochvakuum entfernt und
der Rückstand in 3 ml Toluol aufgenommen. Nach einigen Tagen bei
Raumtemperatur entstanden hellgelbe Kristalle. Diese wurden durch

36

Dekantieren isoliert und im Hochvakuum getrocknet. Dabei wurden 0,110 g (41 %) rac-C₂H₄(ind)₂Zr-(2,2'(3-Me-6-iPr-C₆H₂O)₂) isoliert.

Me Me

iPr O iPr

ind ind

CH2 CH2

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm ($C_{6}D_{6}$, interner Standard TMS, 298 K, 600 MHz)

хA		Zuordnung
7,36	(d, 2H) ³ J $(8,5 Hz)$	C ₆ H ₄ (H7)
7,15	(unter C ₆ D ₆ Signal)	C ₆ H ₄ (H4)
6,94	(tp, 2H)	C ₆ H ₄ (H6)
6,87	(tp, 2H)	C ₆ H ₄ (H5)
6,80	(d, 2H) ³ J (7,6 Hz)	C ₆ H ₂ (H5)
6,71	(d, 2H) ³ J $(8,5 Hz)$	C ₆ H ₄ (H4)
5,93	(d, 2H) ³ J $(3, 1 Hz)$	C ₅ H ₂ (H2)
5,53	$(d, 2H)$ ^{3}J $(3, 0 Hz)$	C ₅ H ₂ (H3)
3,23	(s, 6H)	C ₂ H ₄
2,82	(sp, 2H) ³ J (6,8 Hz)	(CH ₃) ₂ CH
1,91	(s, 6H)	CH ₃
1,40	(d, 6H) ³ J (7,1 Hz)	(CH ₃) ₂ CH
1,16	(d, 6H) ³ J $(6, 6 Hz)$	(CH ₃) ₂ CH
	7,36 7,15 6,94 6,87 6,80 6,71 5,93 5,53 3,23 2,82 1,91 1,40	xA 7,36 (d, 2H) ³ J (8,5 Hz) 7,15 (unter C ₆ D ₆ Signal) 6,94 (tP, 2H) 6,87 (tP, 2H) 6,80 (d, 2H) ³ J (7,6 Hz) 6,71 (d, 2H) ³ J (8,5 Hz) 5,93 (d, 2H) ³ J (3,1 Hz) 5,53 (d, 2H) ³ J (3,0 Hz) 3,23 (s, 6H) 2,82 (sp, 2H) ³ J (6,8 Hz) 1,91 (s, 6H) 1,40 (d, 6H) ³ J (7,1 Hz) 1,16 (d, 6H) ³ J (6,6 Hz)

Beispiel 9
Darstellung von 2,2'-CH₂-(4-Me-6-tBu-C₆H₂O)₂ZrCl₂(THF)₂

Zu einer Lösung von 10,2 g (30 mmol) 2,2'CH₂-(4-Me-6-tBuC₆H₂OH)₂ in 100 ml THF wurden portionsweise 1,44 g (60 mmol) NaH gegeben. Anschließend wurde die Suspension 24 h unter Rückfluß erhitzt. Bei Raumtemperatur wurden dann zu der orangenen, klaren Lösung 11,3 g (30 mmol) ZrCl₄(THF₂) zugegeben und die Lösung 12 h unter Rückfluß erhitzt. Das entstandene NaCl wurde abfiltriert, mit THF gewaschen und das Lösungsmittel des Filtrats am Hochvakuum entfernt. Zum aufgeblähten Rückstand wurden 50 ml Ether gegeben.

37

Nach kurzer Zeit fiel aus der, zunächst klaren Lösung, ein weißer Niederschlag aus. Dieser wurde durch Dekantieren abgetrennt, mit wenig Ether gewaschen und im Hochvakuum getrocknet. Es wurden 12,38 g (64 %) 2,2'CH₂-(4-Me-6-tBu-C₆H₂O)₂ZrCl₂(THF)₂ erhalten. Die Mutterlauge und die Waschlösung wurden vereinigt, im Hochvakuum stark eingeengt und bei -30°C kühlgestellt. Nach einigen Tagen wurde der kristalline Niederschlag auf gleiche Weise isoliert. Dabei wurden weitere 2,11 g (11 %) 2,2'CH₂-(4-Me-6-tBu-C₆H₂O)₂-ZrCl₂(THF)₂ erhalten.

10 Gesamtausbeute: 75 %

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (CD $_{2}$ Cl $_{2}$, interner Standard TMS, 298 K, 250 MHz)

15		-						Zuordnung
	7,16	(d,	2H)	4 J	(1,8	Hz)	7,27	C ₆ H ₂
	6,96	(d,	2H)	⁴ J	(1,9	Hz)	7,05	C ₆ H ₂
	5,3	(b,	LH)					CH ₂
20	4,45	(m,	8H)					THF
	3,33	(d,	1H)	3 J	(1,9	Hz)	= =	CH ₂
	2,31	(s,	6H)				2,34	CH ₃
	2,04	(m,	8H)		-			THF
	1,49	(s,	18H)				1,56	(CH ₃) ₃ C

25

30

35

40

38

Beispiel 10
Darstellung von rac-Me₂SiCp₂Zr(2,2'CH₂-(4-Me-6-tBuC₆H₂O)₂)

0,374 g (1,05 mmol) Me₂SiCp₂Mg(THF)₂ und 0,680 g (1,05 mmol)
5 2,2'CH₂-(4-Me-6-tBuC₆H₂O)₂ZrCl₂(THF)₂ wurden trocken vermischt und in 30 ml Toluol gelöst. Die Lösung wurde 4 Tage bei Raumtemperatur gerührt, wobei sie sich gelb verfärbte und trüb wurde. Das Lösungsmittel wurde am Hochvakuum entfernt und der Rückstand in Heptan aufgenommen. Das MgCl₂(THF)₂ wurde abfiltriert, mit Heptan gewaschen und das Filtrat auf ca. 30 ml eingeengt. Nach einigen Tagen bei Raumtemperatur bildeten sich gelbe Kristalle. Diese wurden durch Dekantieren isoliert und im Hochvakuum getrocknet. Es wurden 0,311 g)48 %) Me₂SiCp₂Zr(2,2'CH₂-(4-Me-6-tBuC₆H₂O)₂) isoliert. Einengen der Mutterlauge und Kühlung auf -30°C ergaben 15 nach einigen Tagen mit identischer Aufarbeitung weitere 0,154 g (24 %) Me₂SiCp₂Zr(2,2'CH₂-(4-Me-6-tBuC₆H₂O)₂) isoliert. Gesamtausbeute 72 %

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (CD $_{2}$ Cl $_{2}$, interner Standard TMS, 20 298 K, 600 MHz)

		Zuordnung
	7,09 (d, 2H) ⁴ J (1,3 Hz)	C ₆ H ₂ (H6)
	6,92 (d, 2H) ⁴ J (1,5 Hz)	C ₆ H ₂ (H4)
25	6,85 (tp, 2H)	C ₅ H ₄
	6,17 (tp, 2H)	C ₅ H ₄
	6,01 (tp, 2H)	C ₅ H ₄
	5,95 (tp, 2H)	C ₅ H ₄
30	4,21 (d, 1H) ³ J (13,8 Hz)	CH ₂
	$3,11$ (d, 1H) 3 J (13,8 Hz)	CH ₂
	2,26 (s, 6H)	CH ₃
	1,41 (s, 18H	(CH ₃) ₃ CH
35	0,811(s, 6H)	(CH ₃) ₂ Si

Beispiel 11

Darstellung von rac-Me₂Si(3-(2-Me-benz[e]indenyl)₂Zr(2,2'(3- t Bu-5-Me-C₆H₂O)₂)

40

17 mg (0,029 mmol) Me₂Si(3-(2-Me-benz[e]indenyl)₂Mg(THF)₂ und 18,3 mg (0,0291 mmol) 2,2'(3- t Bu-5-Me-C₆H₂O)₂ZrCl₂(THF)₂ wurden in einem NMR-Rohr trocken vermischt und in 0,5 ml C₆D₆ gelöst. Nach 6 Tagen bei Raumtemperatur ist die Lösung gelb. Neu entstanden 45 ist ein weißer Niederschlag. Es wurde ein 1 H-NMR-Spektrum aufgenommen.

39

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm ($C_{6}D_{6}$, interner Standard TMS, 298 K, 250 MHz)

		Zuordnung
5	8,63 (d)	C ₆ H ₄ oder C ₆ H ₂
	7,97 (d)	C ₆ H ₄ oder C ₆ H ₂
	7,78 (m)	C ₆ H ₄ oder C ₆ H ₂
	7,82	C ₆ H ₄ oder C ₆ H ₂
10	7,52 (m)	C ₆ H ₄ oder C ₆ H ₂
10	7,35-7,03 (m)	C ₆ H ₄ oder C ₆ H ₂ , C ₆ H ₂ (Phenoxyligand)
	6,97 (d)	C ₆ H ₂ (Phenoxyligand)
	6,84 (s)	C ₅ H
	3,43 (sb)	THF (frei)
15	3,25 (s)	CH ₃
	2,27 (s)	CH ₃ (Phenoxyligand)
	1,45 (m)	THF (frei)
	1,23 (s)	(CH ₃) ₃ C
20	1,16 (s)	(CH ₃) ₂ Si

Beispiel 12 Darstellung von Cl₂Zr(O-2,6-Me₂C₆H₃)₂(THF)₂

5,21 g (13,81 mmol) ZrCl₄(THF)₂ wurden in 150 ml Toluol suspendiert. Hierzu gab man bei 0°C 16 g (82,3 mmol) Me₃SiO-2,6·(CH₃)₂-C₆H₃ und die Suspension wurde anschließend 12 h unter Rückfluß erhitzt. Das Lösungsmittel wurde abgezogen und der Rückstand in 80 ml THF aufgenommen. Diese Lösung wurde mit Hexan überschichtet. Nach einigen Tagen bei Raumtemperatur bildeten sich farblose Kristalle, die durch Dekantieren isoliert und im Hochvakuum getrocknet wurden. Man erhielt 1,82 g (3,31 mmol) Cl₂Zr(O-2,6-Me₂C₆H₃)₂(THF)₂. Weiteres Einengen der Mutterlauge und Kühlung auf -30°C ergaben nach identischer Isolierung weitere 2,20 g (4,01 mmol) Cl₂Zr(O-2,6-Me₂C₆H₃)₂(THF)₂.

Gesamtausbeute: 4.02 g (7,32 mmo1, 53%) $C1_2Zr(0-2,6-Me_2C_6H_3)_2$ (THF)₂

40 Darstellung von rac- C_2H_4 (ind)₂Zr(O-2,6-Me₂C₆H₃)₂

15,7 mg (0,028 mmol) $Cl_2Zr(O-2,6-Me_2C_6H_3)_2$ (THF)₂ und 12,1 mg (0,028 mmol) C_2H_4 (ind)₂Mg (THF)₂ wurden in einem NMR-Rohr trocken vermischt und in 0,5 ml C_6D_6 gelöst. Nach 24 h bei Raumtemperatur hatte sich die Lösung gelb verfärbt und durch ausfallendes MgCl₂(THF)₂ eingetrübt. Es wurde ein ¹H-NMR-Spektrum aufgenommen,

40

das zeigte, daß ausschließlich die racemo-Form von C_2H_4 (ind) $_2Zr$ -(0-2,4-Me $_2C_6H_5$) $_2$ gebildet wurde.

Me O O Me

Ind ind

CH2—CH2

 $^{1}\mbox{H-NMR-Verschiebungen}$ in ppm (C6D6, interner Standard TMS, 298 K, 250 NMz)

20		Zuordnung
20	7,46 (d, 2H)	C ₆ H ₄
	7,02 (d, 2H)	C ₆ H ₄
	6,92 (d, 4H)	C ₆ H ₃
	6,82 (m, 4H)	C ₆ H ₃ oder C ₆ H ₄
25	6,44 (tp, 2H)	C ₅ H ₄
	6,14 (d, 2H)	C ₅ H ₂
	5,94 (d, 2H)	C ₅ H ₂
30	3,52 (m, 2H)	C ₂ H ₄
	3,17 (m, 2H)	C ₂ H ₄
	1,97 (s, 6H)	CH ₃

Beispiel 13

35 Darstellung von rac-Me₂Si(ind)₂Zr(O-2,6-Me₂C₆H₃)₂

25 mg (0,045 mmol) Me₂Si(ind)₂Mg(THF)₂ und 20,5 mg (0,045 mmol)
Cl₂Zr(O-2,6·Me₂C₆H₃)₂(THF)₂ wurden in einem NMR-Rohr trocken vermischt und in 0,5 ml C₆D₆ gelöst. Nach 24 h bei Raumtemperatur
40 hatte sich die Lösung gelb verfärbt und durch ausfallendes
MgCl₂(THF)₂ eingetrübt. Es wurde ein ¹H-NMR-Spektrum aufgenommen,
daß zeigte, das ausschließlich die racemo-Form von Me₂Si(ind)₂Zr(O-2,6-Me₂C₆H₃)₂ gebildet wurde.

 $^{1}\text{H-NMR-Verschiebungen}$ in ppm (C $_{6}\text{D}_{6}\text{,}$ interner Standard TMS, 298 K, 250 NMz)

5		Zuordnung	
	7,57 (d, 2H)	C ₆ H ₄	
	7,20 (d, 2H)	C ₆ H ₄	
10	6,96 - 6,70 (m)	C ₆ H ₃ oder C ₆ H ₄	
	6,47 (s, 4H)	C ₅ H ₂	
	6,44 (tp, 2H)	C ₆ H ₄	
	2,37 - 1,97 (m, 6H)	CH ₃	
	0,81 (s, 6H)	Me ₂ Si	

Patentansprüche

15

30

35

40

45

R1, R8

Verfahren zur Herstellung von racemischen Metallocenkomplexen
 durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexen der allgemeinen Formel I

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob,

20 Tantal, Chrom, Molybdän, Wolfram, sowie Elemente
der III. Nebengruppe des Periodensystems und der
Lanthanoiden,

y gleich oder verschieden Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR¹⁰ oder -NR¹⁰R¹¹,

n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,

gleich oder verschieden Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können, R^2 bis R^7

WO 99/15538

gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

10

15

5

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

 R^{10} , R^{11} C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

20

Y, Y¹ gleich oder verschieden

25

30

35

=
$$BR^{12}$$
, = $A1R^{12}$, -Ge-, -Sn-, -O-, -S-, = SO,
= SO_2 , = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

40

wobei

R12

gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten, oder wobei zwei

44

Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

M1 Silicium, Germanium oder Zinn ist und

5

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

10

15

20

25

R' und R"

gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit

mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen und gegebenenfalls anschließende Substitution des
verbrückten Aromatliganden oder der beiden nicht verbrückten
Aromatliganden.

Heteroatomen substituiert sein können,

2. Verfahren nach Anspruch 1, wobei R¹ und R⁸ in Formel I sperrige Substituenten sind.

- Verfahren nach den Ansprüchen 1 bis 2, wobei m in Formel I 0 bedeutet.
- Verfahren nach den Ansprüchen 1 bis 3, wobei Y¹ gleich ist
 und Sauerstoff bedeutet.
 - 5. Verfahren nach den Ansprüchen 1 bis 4, wobei Cyclopentadienylderivate des Magnesiums verwendet werden.
- 45 6. Racemische Metallocenkomplexe der allgemeinen Formel III

45

$$\begin{array}{c}
R^{15} \\
R^{16} \\
R^{17}
\end{array}$$

$$\begin{array}{c}
R^{14} \\
R^{13} \\
X
\end{array}$$

$$\begin{array}{c}
MX^{1} \\
Z
\end{array}$$

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob,
Tantal, Chrom, Molybdän, Wolfram, sowie Elemente
der III. Nebengruppe des Periodensystems und der
Lanthanoiden,

wobei:

25

5

R1, R8 gleich oder verschieden Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl 30 - das seinerseits ein C1- bis C10-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen 35 im Arylrest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C_6 - bis C_{15} -Aryl, wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein 40 können,

gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im

46

Alkylrest und 6 bis 20 C-Atomen im Arylrest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein.

Y, Y¹ gleich oder verschieden

=
$$BR^{12}$$
, = AlR^{12} , -Ge-, -Sn-, -O-, -S-, = SO,
= SO_2 , = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

30 R¹²

35

40

45

5

10

15

gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen

einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R"

gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C1- bis C20-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C1- bis C10-Alkyl als Rest tragen kann -, C6- bis C15-Aryl; Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R9)3 mit R9 gleich oder verschieden C1- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R4 oder R5 für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können,

 R^{13} bis R^{17}

R¹⁸

gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann -, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si $(R^{18})_3$ mit

25

20

5

10

15

gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

30

Z für

$$R^{23}$$
 R^{19}
 R^{20}
steht,

wobei die Reste

35

40

R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann -, C_6 - bis C_{15} -Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $Si(R^{24})_3$ mit

45 R²⁴

gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl, 48

oder wobei die Reste

 R^{16} und Z gemeinsam eine Gruppierung $-[T(R^{25})(R^{26})]_q$ -E-bilden, in der

5

 \mathbf{T}

gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

10 R^{25} , R^{26} für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl

q für die Zahlen 1, 2, 3 oder 4,

15

E für \mathbb{R}^{23} oder A steht, wobei A -0

20

-s-, NR^{27} oder PR^{27} bedeutet

25

mit R^{27} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$

30 mit R²⁸

gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl oder Alkylaryl.

- 7. Racemische Metallocenkomplexe nach Anspruch 6, wobei R^{17} 35 und R^{23} nicht Wasserstoff bedeuten, wenn R^{16} und Z gemeinsam eine Gruppierung - $[T(R^{25})(R^{20})]_q$ -E- bilden.
- Verwendung von racemischen Metallocenkomplexen gemäß den Ansprüchen 6 bis 7 als Katalysatoren oder als Bestandteil von Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagenzien oder Katalysatoren in der stereoselektiven Synthese.

49

Verfahren zur selektiven Herstellung racemischer Metallocenkomplexe

5 Zusammenfassung

Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallkomplexen mit Cyclopentadienylderivaten von Alkali- oder 10 Erdalkalimetallen und gegebenenfalls anschließende Substitution der Aromatliganden.

15

20

25

30

35

40

Inter mai Application No PCT/EP 98/05918

			,		
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07F17/00 C08F10/00 C07B53/0	0			
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS	SEARCHED				
Minimum do IPC 6	cumentation searched (classification system followed by classification CO7F CO8F CO7B	on symbols)			
Documentat	ion searched other than minimum documentation to the extent that so	uch documents are included in the fields	searched		
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, search terms use	d)		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	·	·,		
Category °	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.		
X	WILD, F.R.W.P. ET AL.: "ansa-met derivatives. iv. synthesis and mo structure of chiral ansa-titanoce derivatives with bridged tetrahyd ligands" JOURNAL OF ORGANOMETALLIC CHEMIST vol. 232, 1982, pages 233-247, XP see the whole document	6-8			
X	KUNTZ, B.A. ET AL.: "addition of sterically hindered, chiral croty ansa-titanocene complex to aldehy JOURNAL OF ORGANOMETALLIC CHEMIST vol. 497, 1995, pages 133-142, XP see the whole document	6-8			
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are liste	d in annex.		
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the or priority date and not in conflict with the application but cited to understand the principle or theory underlying the or priority date and not in conflict with the application but cited to understand the principle or theory underlying the or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to invention cannot be considered to another or annot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is cannot be considered to involve an inventive step when the document is cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is cannot be considered to involve an inventive step when the docum					
14	4 January 1999	01/02/1999			
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nt,	Authorized officer Rinkel. L			

Inter. stal Application No PCT/EP 98/05918

		101/51 30/02319
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HABAUE, S. ET AL.: "optical resolution of chiral ethylenebis(4,5,6,7-tetrahydro-1-indenyl)z irconium derivatives by high-performance liquid chromatography" CHEMISTRY LETTERS,1996, pages 383384, XP002089633 see the whole document	. 6,7
X	SCHMIDT, K. ET AL.: "photochemical isomerization of me2si-bridged zirconocene complexes. application to stereoselective synthesis of ansa-zirconocene binaphtholate stereoisomers" ORGANOMETALLICS, vol. 16, no. 8, 15 April 1997, pages 1724-1728, XP002089634 see the whole document	6,7
А	ERICKSON, M.S. ET AL.: "stereoselectivity in the synthesis of tetramethylethano-bridged 3,3'-di-tetrt-butyltitanocene dichloride" JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 415, 1991, pages 75-85, XP002089635 see the whole document	1-8
A	DE 195 25 184 A (BASF AG) 16 January 1997 see the whole document	1-8
		٠

interr net Application No

, dot	.dormation on patent family members		PCT/EP	PCT/EP 98/05918	
Patent document cited in search report	Publication date	Pat m	ent family ember(s)	Publication date	
DE 19525184 A	16-01-1997	CN WO EP US	1190399 A 9703081 A 0837866 A 5840950 A	12-08-1998 30-01-1997 29-04-1998 24-11-1998	
·					

Inter males Aktenzeichen

PCT/EP 98/05918 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 6 C07F17/00 C08F10/00 C07B53/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C07F C08F C07B COSF CO7B IPK 6 Recherchierte aber nicht zum Mindestprütstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsuttierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* 6-8 X WILD, F.R.W.P. ET AL.: "ansa-metallocene derivatives. iv. synthesis and molecular structure of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands" JOURNAL OF ORGANOMETALLIC CHEMISTRY, Bd. 232, 1982, Seiten 233-247, XP002089631 siehe das ganze Dokument KUNTZ, B.A. ET AL.: "addition of sterically hindered, chiral crotyl X 6-8 ansa-titanocene complex to aldehydes" JOURNAL OF ORGANOMETALLIC CHEMISTRY, Bd. 497, 1995, Seiten 133-142, XP004023851 siehe das ganze Dokument -/--Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Spätere Veröffentlichung, die nach dem internationalen Anmeidedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeidung nicht kollidiert, sondern nur zum Verständnis des der Editalium zum Verständnis * Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erlindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausgeführt)
"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des Internationalen Recherchenberichts 14. Januar 1999 01/02/1999

2

Name und Postanschrift der Internationalen Recherchenbehörde

Fax: (+31-70) 340-3016

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswljk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Bevollmächtigter Bediensteter

Rinkel, L

Inter males Aktenzeichen
PCT/EP 98/05918

	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Telle Betr. Anspruch Nr.
Х	HABAUE, S. ET AL.: "optical resolution of chiral ethylenebis(4,5,6,7-tetrahydro-1-indenyl)z irconium derivatives by high-performance liquid chromatography" CHEMISTRY LETTERS,1996, Seiten 383384, XP002089633 siehe das ganze Dokument	6,7
X	SCHMIDT, K. ET AL.: "photochemical isomerization of me2si-bridged zirconocene complexes. application to stereoselective synthesis of ansa-zirconocene binaphtholate stereoisomers" ORGANOMETALLICS, Bd. 16, Nr. 8, 15. April 1997, Seiten 1724-1728, XP002089634 siehe das ganze Dokument	6,7
A	ERICKSON, M.S. ET AL.: "stereoselectivity in the synthesis of tetramethylethano-bridged 3,3'-di-tetrt-butyltitanocene dichloride" JOURNAL OF ORGANOMETALLIC CHEMISTRY, Bd. 415, 1991, Seiten 75-85, XP002089635 siehe das ganze Dokument	- 1-8
Α	DE 195 25 184 A (BASF AG) 16. Januar 1997 siehe das ganze Dokument	1-8

Angaben zu Veröffentlichurs-en, die zur seiben Patentfamilie gehören

Inter nales Aktenzeichen PCT/EP 98/05918

cht Datum der Mitglied(er) der ument Veröffentlichung Patentfamilie		Datum der Veröffentlichung
CN WO	1190399 A 9703081 A	12-08-1998 30-01-1997
EP	0837866 A	29-04-1998
US	5840950 A	24-11-1998
	WO EP	WO 9703081 A EP 0837866 A

This Page Blank (uspto)