C2 Algebra

Robin Adams

August 20, 2022

1 Groups

Definition 1 (Group). A *group* is a triple (G, \cdot, e) where G is a set, \cdot is a binary operation on G, and $e \in G$, such that:

1.	· is associative.
2.	$\forall x \in G. xe = ex = x$
3.	$\forall x \in G. \exists y \in G. xy = yx = e$

Lemma 2. The integers \mathbb{Z} form a group under + and 0.

Proof: Easy.

Lemma 3. In any group, inverses are unique.

PROOF: Suppose y and z are inverses to x. Then y = ey = zxy = ze = z

Definition 4. We write x^{-1} for the inverse of x.

2 Abelian Groups

Definition 5 (Abelian Group). A group (G, +, 0) is *Abelian* iff + is commutative.

When using additive notation (i.e. the symbols + and 0) for a group, we write -y for the inverse of y, and x-y for x+(-y).

Lemma 6. The integers \mathbb{Z} are Abelian.

Proof: Easy.

Lemma 7. The rationals \mathbb{Q} form an Abelian group under +.

PROOF: Easy.

Lemma 8. The non-zero rationals form an Abelian group under multiplication.

Proof: Easy. \square

3 Ring Theory

Definition 9 (Commutative Ring). A commutative ring is a quintuple $(R, +, \cdot, 0, 1)$ consisting of a set R, binary operations + and \cdot on R, and elements $0, 1 \in R$ such that:

- 1. (R, +, 0) is an Abelian group.
- 2. The operation \cdot is commutative, associative, and distributive over +.
- $3. \ \forall x \in R.x1 = x$
- 4. $0 \neq 1$

Definition 10 (Integral Domain). An *integral domain* is a ring such that, whenever xy = 0, then x = 0 or y = 0.

Lemma 11. The integers form an integral domain.

Proof: Easy.

4 Field Theory

Definition 12 (Field). A *field* is an integral domain such that every non-zero element has a multiplicative inverse.

Definition 13 (Field of Fractions). Let R be an integral domain. The *field of fractions* of R is $(R \times (R - \{0\}))/\sim$, where $(a,b) \sim (c,d)$ iff ad = bc, under the following operations:

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$
$$[(a,b)][(c,d)] = [(ac,bd)]$$
$$0 = [(0,1)]$$
$$1 = [(1,1)]$$

It is routine to check that \sim is an equivalence relation and the operations are well-defined and form a field. The additive inverse of [(a,b)] is [(-a,b)], and the multiplicative inverse of [(a,b)] is [(b,a)].

Definition 14 (Rational Numbers). The field of rational numbers \mathbb{Q} is the field of fractions of the integers.

5 Rational Numbers

Lemma 15. If $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ and b,b',d,d' are all positive then ad < bc iff a'd' < b'c'.

PROOF: Easy.

Definition 16. The ordering on the rationals is defined by: if b and d are positive then [(a,b)] < [(c,d)] iff ad < bc.

Theorem 17. The relation < is a linear ordering on \mathbb{Q} .

Proof: Easy. \square

Definition 18 (Positive). A rational q is positive iff 0 < q.

Definition 19 (Absolute Value). The *absolute value* of a rational q is the rational |q| defined by

$$|q| = \begin{cases} q & \text{if } q \ge 0 \\ -q & \text{if } q \le 0 \end{cases}$$

Theorem 20. For any rational s, the function that maps q to q + s is strictly monotone.

Proof: Easy.

Theorem 21. For any positive rational s, the function that maps q to qs is strictly monotone.

Proof: Easy.

6 Ordered Fields

Definition 22 (Ordered Field). An *ordered field* is a sextuple $(D, +, \cdot, \cdot, 0, 1, <)$ such that $(D, +, \cdot, 0, 1)$ is a field, < is a linear ordering on D, and:

$$\forall x, y, z. x < y \Leftrightarrow x + z < y + z$$
$$\forall x, y, z. 0 < z \Rightarrow (x < y \Leftrightarrow xz < yz)$$