

Ansible Server Deployement

Automatisierte Einrichtung eines Servers inklusive zweier Webapplikationen mittels Ansible

Jan Sulga

Inhalt

- 01. Unternehmen
- 02. Herausforderungen und Ziel
- 03. Basic Setup und Services
- 04. Wirtschaftlichkeit
- 05. Reflexion des Projektes

01

Unternehmen

Digitalagentur für interaktive Erlebnisse

Pop Rocket Labs ist eine Digitalagentur für interaktive Erlebnisse mit Fokus auf Gamification und Change Involvement.

Rette das Konzert!

Das Konzert des Jahres ist in Gefahr! Alleine oder gemeinsam werden Spieler:innen Teil des Elbphilharmonie-Teams und stellen sich der Herausforderung, das Konzert zu retten. Dafür müssen knifflige Rätsel-Stationen gelöst werden, die neue Einblicke hinter die Kulissen der Elbphilharmonie geben und die organisatorischen Abläufe erlebbar machen.

Tebonin[®]

MEINE TINNITUS APP

Eine medizinische App, die Patienten zu einem gelassenen und aufgeklärten Umgang mit störendem Tinnitus hilft. Die Patienten lernen Kapitel für Kapitel mit multimedialer Unterstützung, wie Audio/Video, Quizfragen und anderen Mechaniken auf interessante und wissenschaftliche Weise mit ihrem Ohrengeräusch umzugehen.

Abschlussprojekt

Fachinformatiker Fachrichtung Systemintegration

02

Herausforderungen und Ziel

Herausforderungen

Unkoordinierte Arbeitsweise

- auf Zuruf
- händisch per SSH
- inkonsistent

Gefährdete Secrets

- unverschlüsselt im Repository
- verteilt und dadurch ...
- oft veraltet

Verteilte Quellen

- mangelhafte Protokollierung
- fehlende Versionierung
- kein zentrales Ticketsystem

Ziele

Modularisierung und Abstraktion

- separate Funktionseinheiten
- abstrakte Schablonen
- simple Konfiguration

Standardisierte Systeme

- konsistent
- well known
- dokumentiert

Automatisierung

- reduzierter Zeitaufwand
- Kosteneinsparung
- Kalkulationssicherheit

Zeitaufwand

Planung 11 Std. Realisierung 20 Std. Dokumentation 9 Std. Präsentation

Ist-Analyse
Soll-Konzept
Uirtschaftlichkeit
Playbooks erstellen
Funktionstests

Warum Ansible?

01

Inventar verwalten

Zielsysteme bzw. ganze Flotten, werden mit Hilfe einfacher YAML-Syntax definiert und unterliegen ebenfalls der Versionskontrolle. 02

Playbooks und Tasks

Liegen ebenfalls als YAML-Dateien vor und können einfach modularisiert und übersichtlich strukturiert werden. 03

Integrierte Module

Breit gefächertes Angebot interner und externer (Community) Module für so gut wie alle Aufgaben im administrativen Umfeld.

Warum Ansible?

04

Einfachheit

Leicht zu verstehen, basierend auf Python einfache simple Programmiersprache, Konfiguration der Systeme mit Bordmitteln, d.h. keine Installation von Agenten. 05

Rückmeldung

Fehlererkennung, Protokollierung und Statusberichte informieren über Erfolg und Misserfolg. Verlauf und Revisionen ermöglichen ggfs. Rollback. 06

Idempotenz

Wenn eine Aktion idempotent ist, bleibt das System nach jeder weiteren Ausführung im gegebenen Zustand, ohne dass Änderungen erneut vorgenommen werden.

03

Basis Setup und Services

Basis Setup

01

Prepare

Vorbereitung Basissystem

- Hostname konfigurieren
- **sudo** installieren
- Verwaltungsbenutzer einrichten

02

Setup

Absicherung und Runtime

- Pakete und System aktualisieren
- Fail2Ban installieren
- Container Runtime (Docker) einrichten

03

Traefik

Reverse Proxy und TLS-Terminierung

- Proxy Netzwerk erstellen
- Konfiguration u. Zertifikatsspeicher
- Middlewares (dynamische Konfiguration)
- Konfiguration (Dotenv) übertragen
- Deployment Docker Compose File

pb1_prepare.yml

pb2_setup.yml

pb3_traefik.yml

Services

04

Directus

No Code Datenbank Management System

- Konfiguration übertragen (Ansible Vault)
- Deployment Docker Compose File

05

Passbolt

Secrets- und Password Manager für Teams

- Konfiguration übertragen (Ansible Vault)
- Dotenv bereitstellen
- Deployment Docker Compose File

pb4_directus.yml

pb5_passbolt.yml

Lokales Repository

ansible.cfg
config.yml
hosts.ini
pb1_prepare.yml
pb2_setup.yml
pb3_traefik.yml
pb4_directus.yml
pb5_passbolt.yml

./directus

.env.compose
docker-compose.yml

./passbolt

.env.compose
.env.passbolt
docker-compose.yml

./traefik

.env.compose
docker-compose.yml
protected_auth.yml
protected_ips.yml
traefik.yml

Remote Directories (Zielhost)

```
/etc/traefik

conf.d
  protected-auth.yml
  protected-ips.yml

acme.d
  crt_store.json
```

```
/opt/containers
directus
   .env
   docker-compose.yml
passbolt
   .env
   .env.passbolt
   docker-compose.yml
traefik
   .env
   docker-compose.yml
   traefik.yml
```


Deployment

```
    ~/ap24/Ansible $ ansible-playbook pb1_prepare.yml --ask-become-pass
    ~/ap24/Ansible $ ansible-playbook pb2_setup.yml --ask-become-pass
    ~/ap24/Ansible $ ansible-playbook pb3_traefik.yml --ask-become-pass
    ~/ap24/Ansible $ ansible-playbook pb4_directus.yml --ask-vault-pass
    ~/ap24/Ansible $ ansible-playbook pb5_passbolt.yml --ask-vault-pass
```

1-3: Basis Setup

Diese drei Kommandos richten das System inkl. Fail2Ban, Docker und Traefik (Reverse Proxy) ein. Zum Teil evaluierte Rechte benötigt.

4-5: Workload bzw. Services

Installation der Services Directus und Passbolt. Inklusive verschlüsselter Konfigurationselemente aus dem Repository.

Hinweis

Bei einem Linux vServer mit vier Kernen und 4 GB RAM benötigt die Ausführung etwa acht Minuten.

Traefik Dashboard | https://proxy.mars.poprocket.com (BasicAuth)

Directus Login Screen https://cms.mars.poprocket.com

Passbolt Login Screen | https://pass.mars.poprocket.com

04

Wirtschaftlichkeit

Kostenvorteile

Tabelle 1: Manuelle Bereitstellungen p.A.

Projektart	Anzahl	Interner Stundensatz	Zeitaufwand	Kosten in €
Intern	3	40,00 €	8,0 Std.	960,00€
Kunde einfach	7	40,00 €	12,0 Std.	3360,00€
Kunde komplex	3	40,00 €	24,0 Std.	2880,00€

Tabelle 2: Bereitstellungen via Ansible p.A.

Projektart	Anzahl	Interner Stundensatz	Zeitaufwand	Kosten in €
Intern	3	40,00 €	2,0 Std.	240,00€
Kunde einfach	7	40,00 €	3,5 Std.	980,00€
Kunde komplex	3	40,00 €	8,0 Std.	960,00€

05

Reflektion des Projektes

Learnings

01

Hands On

Echtes Projekt und System

- Erfahrung mit Automatisierung
- Theorie und Praxis

02

Best Practice

Verständnis für Sicherheit

- Secrets Management
- Verschlüsselung

03

Dokumentation

Resilienz schaffen

- Arbeitsschritte erfassen
- Lösungen erkennen

Pop Rocket Labs GmbHGasstraße 14, 22761 Hamburg

www.poprocket.com

Vielen Dank für Ihre Aufmerksamkeit.

