Zusammenhänge von Zusammenhangsbegriffen

X homotop zu Y ($X \simeq Y$):

$$\exists f: X \to Y, g: Y \to X:$$
$$g \circ f \simeq \mathrm{id}_X, f \circ g \simeq \mathrm{id}_Y$$

X zusammenhängend:

 $\forall U, V \subseteq X$ offen, nicht-leer : $U \cup V = X \Rightarrow U \cap V \neq \emptyset$

X kann nicht in zwei diskunkte offene Mengen zerteilt werden

X wegzusammenhängend:

 $\forall x, y \in X : \exists \gamma : [0, 1] \to X :$ $\gamma(0) = x, \gamma(1) = y$

Je zwei Punkte können durch $\{(0,y)|-1 \le y \le 1\} \cup \{\sin(1/x)|x>0\}$ einen Weg verbunden werden

X einfach zusammenhängend:

X wegzusammenhängend und $\pi_1(X) = 0$

wegzsh. und alle Schleifen zusammenziehbar

X zusammenziehbar:

 $X \simeq \{*\}$

homotop zum 1-Pkt.-Raum

X lokal zusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x:$ $\exists V \subseteq U \text{ Umg. v. } x:V \text{ zsh.}$

Jede Umg. enthält zsh. Umg.

X schwach lokal wegzusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x : \exists V \subseteq X \text{ Umg. v. } x :$ $\forall u \in V : \exists x \leadsto u \text{ Weg in } U$

X lokal einfach zusammenhängend:

 $\forall x \in X, U \subseteq X \text{ Umg. v. } x:$ $\exists V \subseteq U \text{ Umg. v. } x:V \text{ einf. zsh.}$

Jede Umg. enthält einf. zsh. Umg.

X halb-lokal einfach zusammenhängend:

 $\forall x \in X : \exists U \subseteq X \ \mathsf{Umg.} \ \mathsf{v.} \ x :$ $\pi_1(U,x) \hookrightarrow \pi_1(X,x)$ trivial

Jeder Pkt. besitzt eine Umg., die nur global triviale Schleifen enthält