Проверка статистических гипотез

Малов Сергей Васильевич

Санкт-Петербургский государственный электротехнический университет

23 окт. / 7 ноября 2020 г.

План

- 1 Мощность критерия
- 2 Критерии отношения правдоподобия
- Проверка односторонней гипотезы
- Параметрический критерий отношения правдоподобия

Мощность критерия

Мощность критерия определяется при каждом значении $\theta \in \Theta_A$ и зависит от уровня значимости критерия

- Уменьшение уровня значимости влечет уменьшение мощности соответствующего критерия
- Для нерандомизованного критерия ϕ , построеннного на базе статистики T с доверительным множеством $\{X: T(X) \in I_{\alpha}\}$ мощность вычисляется по формуле $b_{\phi}(\theta) = P_{\theta}(T(X) \in I_{\alpha})$
 - для распределений T с носителем \mathbb{R}_+ характен выбор доверительного множества $\{X: T(X) \leq x_{\alpha}\}$
 - в частном случае доверительного множества $\{X: \mathcal{T}(X) \leq \mathsf{X}_{\alpha}\},$

$$b_{\phi}(\theta)=1-F_{T,\theta}\big(F_0^{-1}\big(1-x_{\alpha}\big)\big),\;\theta\in\Theta_{A}.$$

- \bullet F_0 функция распределения T при основной гипотезе
- Исходя из распределения P-значения при альтернативе, мощность вычисляется следующим образом

$$b_{\phi}(\theta) = P_{\theta}(PV \leq \alpha), \ \theta \in \Theta_{A}.$$

Мощность критерия

Различение гипотез при фиксированной альтернативе $\theta_A \in \Theta_A$ с использованием статистики критерия

Мощность критерия

Различение гипотез при фиксированной альтернативе $\theta_A \in \Theta_A$ с использованием P-значения

• Очевидно, что рассматриваемый критерий несмещенный

Вычисление достаточного объема выборки

Недостаточное как и избыточное количество наблюдений неблагоприятно влияет на интерпретацию результатов проверки статистических гипотез

- При недостаточном количестве наблюдений мощность мала, поэтому значимый результат часто простое стечение обстаятельств
- При избыточном количестве наблюдений статистический критерий может улавливать значимые, но не существенные отличия от основной гипотезы или расматриваемой модели статистического эксперимента
- Постановке статистического эксперимента часто предшествует исследование по определению достаточного объема выборки

Вычисление достаточного объема выборки

Постановка задачи определения достаточного объема выборки для проверки основной гипотезы $H_0: \theta \in \Theta_0$ при альтернативе $H_A: \theta \in \Theta_A$ с использованием известного критерия.

- Рассматривается асимптотическая модель статистического эксперимента
 - вводится набор статистических критериев $\phi = \{\phi\}_{i \in \mathbb{N}}$, построенных по определенному правилу
 - возможны точный или асимптотический подходы
- Выбирается уровень значимости критерия $\alpha \in (0,1)$
 - $\sup_{\theta \in \Theta_0} b_{\phi_n}(\theta) \le \alpha$ при каждом n
- Выбирается область существенного отклонения $\Theta_A^* \subseteq \Theta_A$ от основной гипотезы
 - если $\operatorname{dist}(\Theta_0,\Theta_A)=0$ или при проверке значимости отклонений от H_0 данное действие является необходимым
- ullet Выбирается граница надежности исследования eta
- Находится наименьший объем выборки n_0 : $\inf_{\theta \in \Theta_A^*} b_{\phi_{n_0}}(\theta) \ge \beta$

При наличии достаточного объема выборки n_0 критерий ϕ_{n_0} гарантирует успешное выявление существенного отклонения с вероятностью, не меньшей чем β

План

- 1 Мощность критерия
- 2 Критерии отношения правдоподобия
- 3 Проверка односторонней гипотезы
- Параметрический критерий отношения правдоподобия

Параметрический и непараметрический подходы

Различают параметрические и непараметрические гипотезы

- Гипотеза параметрическая, если она допускает представление в виде $H: \theta \in \Theta^* \subseteq \mathbb{R}^d$
- В остальных случаях гипотеза непараметрическая
- Параметрическая гипотеза может быть сформулирована и в непараметрической модели
 - формально, непараметрическая модель искусственно адаптируется к семипараметрической
- Тип критерия определяется типом основной гипотезы и альтернативы
 - критерий параметрический, если основная и альтернативная гипотезы параметрические
 - критерий непараметрический, если хотя бы одна из гипотез непараметрическая

Проверка простой гипотезы при простой альтернативе

Пусть $(\mathfrak{X},\mathfrak{F},\mathcal{P}),\,\mathcal{P}=\{P_{\theta}:\theta\in\Theta\}$ — статистический эксперимент

- $H_0: \theta = \theta_0$ простая основная гипотеза
- H_A : $\theta = \theta_A$ простая альтернатива
- Не умаляя общности считаем, что $\mathcal{P} = \{P_{\theta_0}, P_{\theta_1}\}$
- Введем статистику отношения правдоподобия

$$LR(X, \theta_1, \theta_0) = \frac{L(X; \theta_1)}{L(X; \theta_0)} = \frac{p_{\theta_1}(X)}{p_{\theta_0}(X)}.$$

- $p_{\theta_0(X)} = \frac{dP_{\theta_0}}{d\mu}$ и $p_{\theta_1} = \frac{dP_{\theta_0}}{d\mu}$ плотности распределений по отношению к доминирующей мере μ
- ullet обычно μ мера Лебега или считающая мера
- ullet в качестве меры μ можно выбрать $(P_{ heta_0} + P_{ heta_1})/2$
- значение статистики отношения правдоподобия не зависит от доминирующей меры

Фундаментальная лемма Неймана-Пирсона

Теорема (Лемма Неймана–Пирсона)

- (i). Существует наиболее мощный критерий уровня значимости α .
- (ii). Данный критерий представляется в виде

$$\phi(x) = \begin{cases} 1, & \text{при } LR(x) > c; \\ p, & \text{при } LR(x) = c; \\ 0, & \text{при } LR(x) < c, \end{cases}$$

где константа c и вероятность $p \in [0,1)$ находятся из уравнения

$$\mathbb{E}_{\theta_0}\phi(X) = P_{\theta_0}(LR(X) > c) + \rho P_{\theta_0}(LR(X) = c) = \alpha.$$

- (iii). В области $LR(x) \neq c$ наиболее мощный критерий ϕ определен однозначно.
 - Константа с находится однозначно
 - ullet Если $P_{ heta_0}(LR(X)=c)>0,$ то константа $p\in[0,1)$ находится однозначно

Фундаментальная лемма Неймана-Пирсона

Доказательство. (ii). Пусть ϕ^* произвольный критерий уровня значимости α . Рассмотрим множество $S = S_+ \cup S_-$, где $S_+ = \{x : \phi(x) > \phi^*(x)\}$, $S_{-} = \{x : \phi(x) < \phi^{*}(x)\}$. Тогда, поскольку $1 = \phi(x) \ge \phi^{*}(x)$ при $p_{\theta_1}(x) - cp_{\theta_0}(x) > 0$, и $0 = \phi(x) \le \phi^*(x)$ при $p_{\theta_1}(x) - cp_{\theta_0}(x) < 0$, $\mathbb{E}_{\theta_1}\phi - \mathbb{E}_{\theta_1}\phi^* - c(\mathbb{E}_{\theta_0}\phi - \mathbb{E}_{\theta_0}\phi^*) = \int_{\mathbb{R}^n} (\phi(x) - \phi^*(x))(p_{\theta_1}(x) - cp_{\theta_0}(x)\mu(dx) = 0$ $= \int_{S_{111}S_{-}} (\phi(x) - \phi^{*}(x)) (p_{\theta_{1}}(x) - cp_{\theta_{0}}(x)) \mu(dx) \ge 0.$ Далее отметим, что $\mathbb{E}_{\theta_0}\phi - \mathbb{E}_{\theta_0}\phi^* \ge \mathbf{0}$. Следовательно, критерий ϕ наиболее мощный.

(iii). Пусть ϕ , ϕ^* наиболее мощные критерии;

$$S_{\delta} = \{x : (\phi(x) - \phi^*(x))(p_{\theta_1}(x) - cp_{\theta_0}(x)) > \delta\}$$

Тогда,

$$0 = \int_{S_{+} \cup S_{-}} (\phi(x) - \phi^{*}(x)) (p_{\theta_{1}}(x) - cp_{\theta_{0}}(x)) \mu(dx) \ge \delta \mu(S_{\delta})$$

Далее выбираем $\delta = \delta_n = 1/n$ ($S_0 = \bigcup_{n \in \mathbb{N}} S_{1/n}$) и переходим к пределу $\mu(S_0) = \lim_{n \to \infty} \mu(S_{1/n}) = 0$

Построение наиболее мощного критерия

Задача

Пусть X_1, \ldots, X_n – выборка из распределения Бернулли $\mathrm{Bi}(\theta, 1)$. Построить наиболее мощный критерий проверки $H_0: \theta = \theta_0$ при альтернативе $H_A: \theta = \theta_1$ уровня значимости α $(\theta_0 > \theta_1)$.

Решение. Функция правдоподобия имеет вид

$$L(X;\theta) = \theta^{\sum_{i=1}^{n} X_i} (1-\theta)^{(n-\sum_{i=1}^{n} X_i)}.$$

Тогда, статистика отношения правдоподобия равна

$$LR(X) = \frac{L(X; \theta_1)}{L(X; \theta_0)} = \left(\frac{\theta_1(1-\theta_0)}{\theta_0(1-\theta_1)}\right)^{\sum_{i=1}^n X_i} \left(\frac{1-\theta_1}{1-\theta_0}\right)^n.$$

В силу монотонности статистики LR(X) отеносительно МДС \overline{X}

$$LR(X) > c \Leftrightarrow \overline{X} < c^*$$

 $LR(X) < c \Leftrightarrow \overline{X} > c^*$

при
$$c^* = \frac{\log c - n(\log(1-\theta_1) - \log(1-\theta_0))}{\log(\theta_1(1-\theta_0)) - \log(\theta_0(1-\theta_1))}.$$

Построение наиболее мощного критерия

Решение (продолжение). Наиболее мощный критерий удобно записать в терминах \overline{X}

$$\phi(x) = \begin{cases} 1, & \text{при } \overline{X} < c^*; \\ \rho, & \text{при } \overline{X} = c^*; \\ 0, & \text{при } \overline{X} > c^*. \end{cases}$$

Для нахождения c^* воспользуемся формулой Бернулли

$$P_{\theta_0}(\overline{X} \leq c^*) = P(n\overline{X} \leq nc^*) = \sum_{i=0}^{\lfloor nc^* \rfloor} C_n^i \theta^i (1-\theta)^{n-i},$$

где [nc] — наибольшее целое число, меньшее nc. Константа c^* находится из соотношения

$$\sum_{i=0}^{n^*-1} \; \boldsymbol{C}_n^i \boldsymbol{\theta}^i \big(1-\boldsymbol{\theta}\big)^{n-i} \leq \alpha < \sum_{i=0}^{n^*} \; \boldsymbol{C}_n^i \boldsymbol{\theta}^i \big(1-\boldsymbol{\theta}\big)^{n-i},$$

где $n^* = [nc^*]$ — целое число. В свою очередь, константа p находится из соотношения

$$p = (\alpha - \sum_{i=0}^{n^*-1} C_n^i \theta^i (1-\theta)^{n-i}) / (C_n^{n^*} \theta^{n^*} (1-\theta)^{n-n^*})).$$

Наиболее мощный критерий построен.

Построение наиболее мощного критерия

Единственность наиболее мощного критерия

- Наиболее мощный критерий определен однозначно на множестве $\{X: LR(X) \neq c\}$
 - лемма Неймана-Пирсона п.3
 - наиболее мощный критерий единственный, если $P_{\theta_0}(LR(X)=c)=0$
- В общем случае, на множестве $\{X: LR(X) = c\}$ наиболее мощный критерий не всегда определен однозначно
 - в последнем примере $\{X: LR(X) = c\} \Leftrightarrow \{\overline{X} = c^*\}$
 - пусть $p_0 = 1/2$, n = 2k четное число; c^* нечетное
 - построим нерандомизованный критерий ϕ_1 : $\phi_1(X) = \phi(X)$ при $\overline{X} \neq c^*$ и

$$\phi_{1}(X) = \begin{cases} 1, & \sum_{i=1}^{k} X_{i} > \sum_{i=k+1}^{n} X_{i}, \ \overline{X} = c^{*}; \\ 0, & \sum_{i=1}^{k} X_{i} < \sum_{i=k+1}^{n} X_{i}, \ \overline{X} = c^{*}. \end{cases}$$

• $\mathbb{E}_{\theta_A}(\phi_1) = \mathbb{E}_{\theta_A}(\phi) \Rightarrow \phi_1$ – наиболее мощный критерий.

План

- 1 Мощность критерия
- 2 Критерии отношения правдоподобия
- 3 Проверка односторонней гипотезы
- Параметрический критерий отношения правдоподобия

Постановка задачи

Пусть $\theta_* \in \Theta \subseteq \mathbb{R}$ — фиксированное значение параметра

- Поставим задачу проверки
 - основной гипотезы $H_0: \theta \le \theta_*$
 - при альтернативе $H_A: \theta > \theta_*$.

Определение

Будем говорить, что семейство \mathcal{P} имеет монотонное (относительно θ_* и T) отношение правдоподобия, если при каждом $\theta \in \Theta : \theta < \theta_*$, статистика отношения правдоподобия $LR(X; \theta, \theta_*)$ является монотонной функцией некоторой одномерной статистики T(X) ($LR(X; \theta, \theta_0) = LR^*(T(X); \theta, \theta_0)$).

- В этом случае решение уравнения $LR(x; \theta, \theta_*) < c$ может быть записано с использованием статистики T
 - в виде $T < c^*$, если LR^* возрастает
 - в виде $T > c^*$, если LR^* убывает

Наиболее мощный критерий

Теорема

Пусть семейство \mathcal{P} имеет монотонное отношение правдоподобия относительно θ_* и некоторой статистики T (для определенности считаем, что LR^* возрастает). Тогда существует равномерно наиболее мощный критерий проверки гипотезы H_0 при альтернативе H_A , который имеет вид

$$\phi(x) = \begin{cases} 1, & \text{если } T(X) > c; \\ p, & \text{если } T(X) = c; \\ 0, & \text{если } T(X) < c, \end{cases}$$

где константы \boldsymbol{c} и $\boldsymbol{p} \in [0,1)$ выбираются из уравнения

$$\sup_{\theta \leq \theta_*} \mathbb{E}_{\theta} \phi(X) = \mathbb{E}_{\theta_*} \phi(X) = P_{\theta_*} (T(X) > c) + p P_{\theta_*} (T(X) = c) = \alpha.$$

• Построенный в теореме критерий – единственный наиболее мощный T— измеримый с точностью до множеств нулевой вероятности

Наиболее мощный критерий

- В доказательстве изучается поведение $b_{\phi}(\theta)$ = $\mathbb{E}_{\theta}\phi(X)$
 - $b_{\phi}(\theta), \ \theta \in \Theta_0$ вероятность ошибки I рода
 - $b_{\phi}(\theta), \ \theta \in \Theta_{A}$ мощность критерия
- При доказательстве используются лемма Неймана—Пирсона и несмещенность соответствующего наиболее мощного критерия при любом уровне значимости, любой основной гипотезе и любой альтернативе

Доказательство. По лемме Неймана — Пирсона, критерий ϕ является наиболее мощным уровня значимости $b_{\phi}(\theta_0)$ для проверки гипотезы $H_0^*: \theta = \theta_0$ при альтернативе $H_A^*: \theta = \theta_1$ для любых $\theta_0, \theta_1 \in \Theta: \theta_0 < \theta_1$. Тогда, в силу несмещенности наиболее мощного критерия, $b_{\phi}(\theta_0) \leq b_{\phi}(\theta_1)$. Следовательно, $\sup_{\theta \leq \theta_*} b_{\phi}(\theta) = b_{\phi}(\theta_*)$. Остается отметить, что, согласно лемме Неймана — Пирсона, для любого значения $\theta_+ > \theta_*$ рассматриваемый критерий остается наиболее мощным уровня значимости α для проверки гипотезы $H_0^+: \theta = \theta_*$ при каждой альтернативе $H_A^+: \theta = \theta_+, \ \theta_+ > \theta_*$. Следовательно, ϕ — равномерно наиболее мощный критерий уровня значимости α для проверки H_0 при альтернативе H_A •

Экспоненциальные семейства

Пусть \mathcal{P} — однопараметрическое экспоненциальное семейство с плотностями

$$p_{\theta}(x) = h(x) \exp(a(\theta)\delta(x) + r(\theta)).$$

• Отношение правдоподобия равно

$$LR(x, \theta, \theta_*) = \exp((a(\theta) - a(\theta_*))\delta(x) + (r(\theta) - r(\theta_*))$$

- ullet Отношение правдоподобия монотонно зависит от $\delta(X)$
 - возрастает, если $a(\theta) a(\theta_*) > 0$
 - убывает, если $a(\theta) a(\theta_*) < 0$
- Более того, существует равномерно наиболее мощный критерий уровня значимости α для проверки
 - интервальной основной гипотезы $H_0: \theta \in [\theta_1, \, \theta_2]$
 - при альтернативе H_1 : $\theta \notin [\theta_1, \theta_2]$

$$\phi(\mathbf{X}) = \begin{cases} 1, & \text{если } \mathbf{c}_1 < \delta(\mathbf{X}) < \mathbf{c}_2, \\ \mathbf{p}_i, & \text{если } \delta(\mathbf{X}) = \mathbf{c}_i, \\ 0, & \text{если } \delta(\mathbf{X}) \notin [\mathbf{c}_1, \mathbf{c}_2], \end{cases}$$

ullet константы $c_i,\ p_i,\ i$ = 1, 2, выбираются из уравнений

$$\mathbb{E}_{\theta_1}\phi(X)=\mathbb{E}_{\theta_2}\phi(X)=\alpha.$$

Односторонняя гипотеза

Задача

Для целей некоторого химического производства желательно, чтобы вода содержала не более одной бактерии на единицу объема v=1. Для проверки чистоты воды отбирается n проб объема v. Каждая из этих проб добавляется в пробирку с питательной средой. Если проба была загрязнена (т. е. содержала хоть одну бактерию), то раствор в соответствующей пробирке потемнеет. Требуется построить оптимальный критерий контроля качества воды.

Решение. (i). Модель эксперимента. Считаем, что бактерии случайным образом распределены по исходному объему жидкости.

• Концентрацией ν будем называть среднее число бактерий на единицу объема.

Положим, что $m=\nu V$ бактерий случайным образом распределены в объеме V. Тогда вероятность того, что в отобранной пробе объема v=1 будет в точности k бактерий, вычисляется по формуле Бернулли

$$P(\mu_m = k) = C_m^k p^k (1-p)^{m-k} \approx \lambda^k e^{-\lambda}/k!$$

- $p = v/V \Rightarrow \lambda = mp = \nu V(v/V) = \nu V = \nu$
- приближенное равенство получено по теореме Пуассона
- ullet при v << V можно считать, что отбор проб происходит независимо

Односторонняя гипотеза

Решение (продолжение). (ii). Посатановка задачи. Считаем, что исходный набор наблюдений представляет собой выборку из распределения Бернулли

- успех проба чистая
- вероятность успеха $p = e^{-\lambda}$.

Ставим задачу проверки

- основной гипотезы $H_0: p \ge e^{-1} \ (\nu \le 1)$
- при альтернативе $H_1: p < e^{-1} (\nu > 1)$
- (iii). Построение критерия. Функция правдоподобия:

$$L(x; p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{(1-x_i)} = p^{\sum_{k=1}^{n} x_k} (1-p)^{(n-\sum_{k=1}^{n} x_k)}.$$

Тогда статистика отношения правдоподобия представляется в виде

$$LR(X; p, p_*) = \left(p(1-p_*)/(p_*(1-p))\right)^{\sum_{k=1}^n X_k} \left((1-p)/(1-p_*)\right)^n.$$

• монотонно убывает по $\sum_{k=1}^{n} X_k$ при $p < p_*$

Односторонняя гипотеза

Решение (продолжение). Равномерно наиболее мощный критерий:

$$\phi(\mathbf{X}) = \begin{cases} 1, & \text{если } \sum_{k=1}^{n} X_k < X_{\alpha}; \\ q_{\alpha}, & \text{если } \sum_{k=1}^{n} X_k = X_{\alpha}; \\ 0, & \text{если } \sum_{k=1}^{n} X_k > X_{\alpha}, \end{cases}$$

Далее отметим, что $\sum_{k=1}^{n} X_k$ имеет $\mathrm{Bi}(n,p)$ распределение, поэтому

$$\mathbb{E}_{\theta_*}\phi(x) = \sum_{i < x_{\alpha}} C_n^i \theta_*^i (1 - \theta_*)^{n-i} + q C_n^{x_{\alpha}} \theta_*^{x_{\alpha}} (1 - \theta_*)^{n-x_{\alpha}}$$

ullet константа $\mathbf{X}_{lpha} \in \mathbb{N} \cup \{0\}$ находится из соотношения

$$\textstyle \sum_{i=0}^{x_{\alpha}-1} \ \textit{C}_{n}^{i} \theta_{*}^{i} \big(1-\theta_{*}\big)^{n-i} \leq \alpha < \sum_{i=0}^{x_{\alpha}} \ \textit{C}_{n}^{i} \theta_{*}^{i} \big(1-\theta_{*}\big)^{n-i},$$

ullet константа $q_{lpha} \in [0,1)$ находится из соотношения

$$q_{\alpha} = (\alpha - \sum_{i=0}^{x_{\alpha}-1} C_n^i \theta_*^i (1 - \theta_*)^{n-i}) / (C_n^{x_{\alpha}} \theta_*^{x_{\alpha}} (1 - \theta_*)^{n-x_{\alpha}})).$$

Наиболее мощный критерий построен.

• Нерандомизованный асимптотический критерий можно получить с использованием интегральной теоремы Муавра-Лапласа (ЦПТ)

$$x_{\alpha} = n\theta^* + \Phi^{-1}(\alpha)\sqrt{n\theta_*(1-\theta_*)}; \quad q_{\alpha} = 0.$$

План

- 1 Мощность критерия
- 2 Критерии отношения правдоподобия
- 3 Проверка односторонней гипотезы
- 4 Параметрический критерий отношения правдоподобия

Постановка задачи проверки статистических гипотез

- Параметрическое множество $\Theta \subseteq \mathbb{R}^k$
 - обычно $\Theta = \mathbb{R}^k$
- ullet Основная гипотеза $H_0: heta \in \Theta_0, \ \Theta_0 \subseteq \Theta$ и $\dim(\Theta_0) = d, \ d < k$
 - если $\Theta = \mathbb{R}^k$, то обычно Θ_0 линейное подпространство размерности d пространства \mathbb{R}^k .
- Альтернатива может быть
 - Н_A: θ ∉ Θ₀ проверка значимости
 - если Θ_A ⊂ \mathbb{R}^k : $\mathrm{dist}(\Theta_0,\Theta_A) > \delta$ фиксированная альтернатива
 - если $\Theta_A = \Theta_{A,n} \subset \mathbb{R}^k$: $\operatorname{dist}(\Theta_0, \Theta_{A,n}) = \delta_n$ стягивающаяся альтернатива

Статистика отношения правдоподобия

$$\lambda_n = LR(X; \Theta_0, \Theta) = \frac{\sup_{\theta \in \Theta_0} L(X; \theta)}{\sup_{\theta \in \Theta} L(X; \theta)}.$$

Теорема (Уилкс)

Пусть $(\mathfrak{X},\mathfrak{F},\mathcal{P}),\ \mathcal{P} = \{P_{\theta},\theta\in\Theta\}$ — статистический эксперимент,

- (i). $\Theta = \mathbb{R}^k$
- (ii). выполнен ряд условий регулярности эксперимента
- (iii). $H_0: \theta \in \Theta_0, \ \Theta_0 = \mathbb{R}^d$ линейное подпространство Θ

Тогда при каждом $\theta \in \Theta_0$

$$\lim_{n\to\infty} P_{\theta}(-2 \ln \lambda_n < t) = P(\chi^2_{k-d} < t) = K_{k-d}(t), \quad t \ge 0,$$

где K_{k-d} – функция распределения χ^2_{k-d} .

- Теорема остается верной в присутствии мешающего параметра
- Если $\mathrm{dist}(\Theta_0,\Theta\backslash\Theta_0)\!>\!0,$ то $G\!\to\!0$ по вероятности $P_\theta,\,\theta\!\in\!\Theta_0$ при $n\!\to\!\infty$
- Критерий отошения правдоподобия применим и для некоторых гипотез одностороннего типа
 - статстика $G(X) = -2 \ln \lambda_n$ имеет другое асимптотическое распределение при $\theta \in \Theta_0$, зависящее от формы границы Θ_0 .

Типичная постановка задачи проверки значимости

- $\theta = (\theta_1, \dots, \theta_k)' \in \mathbb{R}_k \mathbf{d}$ -мерный параметр
- основная гипотеза $H_0: C\theta = 0$
 - С некоторая матрица
 - в частности, можно приравнять к нулю какие-то компоненты параметра
- Статистика критерия

$$G(X) = -2 \Big(\ln(\sup_{\{\theta: C\theta = 0\}} L(X; \theta)) - \ln(\sup_{\theta \in \mathbb{R}^k} L(X; \theta)) \Big)$$

• В условиях теоремы Уилкса получаем асимптотический критерий

$$\phi(\mathbf{X}) = \begin{cases} 0, & \text{если } G(X) \le \mathbf{X}_{\alpha}, \\ 1, & \text{если } G(X) > \mathbf{X}_{\alpha}; \end{cases}$$

• $x_{\alpha}:K_{k-d}(x_{\alpha})=1-\alpha$.

Упражнение

Пусть X_1,\dots,X_n – выборка из двухпараметрического нормального распределения $N(\theta,\sigma^2)$. Построить критерий отношения правдоподобия проверки значимости отклонений от основной гипотезы $H_0:\theta=\theta_0$.

Решение. Функция правдоподобия:

$$L_n(X; \theta, \sigma^2) = (2\pi)^{-n/2} \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \theta)^2\right).$$

Отметим, что

•
$$\sup_{\{\theta=\theta_0,\sigma^2>0\}} L_n(X;\,\theta,\,\sigma^2) = L_n(X;\,\theta_0,s_0^2),\, s_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i-\theta_0)^2.$$

•
$$\sup_{\{\theta \in \mathbb{R}, \sigma^2 > 0\}} L_n(X; \theta, \sigma^2) = L_n(X; \overline{X}, s^2)$$

Тогда

$$G_n(X) = -2 \ln \frac{(s\sqrt{2\pi})^n \exp(-n/2)}{(s_0\sqrt{2\pi})^n \exp(-n/2)} = n \ln(s_0^2/s^2).$$

Поскольку $s^2 = s_0^2 - (\theta_0 - \overline{X})^2$,

$$G_n(X) = n \ln \left(\frac{s^2 + (\overline{X} - \theta_0)^2}{s^2} \right) = n \ln \left(1 + \frac{(\overline{X} - \theta_0)^2}{s^2} \right) \Rightarrow_{H_0} \chi_1^2$$

Критерий отношения правдоподобия получаем на базе статистики G_n .