1. Существует ли детерминированный конечный автомат, порождающий язык $\{a^k \omega b^k | k \ge 0, \omega \in \{a,b\}^*, |\omega|_a \le 3\}$. Если да, построить; если нет — обосновать.

Утверждается, что ДКА, порождающего представленный язык L не существует, иными словами язык не является регулярным.

Допустим L является регулярным.

Тогда, по лемме о накачке для регулярных языков, существует такое натуральное число n, что для любого слова $w \in L$, такого что $|w| \ge n$, существуют такие $x, y, z \in \Sigma^*$, что xyz = w, при том что $|xy| \le n, y \ne \varepsilon$ и $\forall i \in Z_{0+}, xy^iz \in L$.

Утверждается, что для любого предоставленного n можно представить слово $\in L$, но для которого вышеупомянутые свойства не выполняются.

Подобным словом будет: $k=n, \omega=aaa$ (a^kaaab^k)

Так как $|xy| \le n$, то y в этом слове состоит из 'a', однако при i > n полученная строка не будет принадлежать L, потому что

- (a) a^m aaa b^k , m > k,
- (b) $a^k a^{m-k} aaa b^k$, $\omega = a^{m-k} aaa$
- (c) однако, так как i > n, то $m k \ge 1$,
- (d) что противоречит правилу $|\omega|_a \le 3$.

Из этого можно заключить, что необходимое для регулярности языка свойство не выполняется, а значит язык не является регулярным и, следовательно, ДКА, порождающего этот язык, не существует.