A summary of EHR-based phenotyping article annotation

Siyue Yang, Jessica Gronsbell

05/25/2022

Contents

1	Ove	erview	2
	1.1	Traditional ML method	2
	1.2	DL method	3
2	Phe	enotype	4
	2.1	More nuanced phenotype	5
3	Dat	ca source	6
	3.1	Summary	6
	3.2	Structured and unstructured data type	6
	3.3	Openly-available data	8
4	NL	P software	8
5	Em	ebddings	8
6	Val	idation and comparison	10
	6.1	Traditonal supervised ML vs. rule-based	10
	6.2	Deep supervised ML vs. traditional supervised ML	11
	6.3	Weakly-supervised v.s. rule-based	12

1 Overview

1.1 Traditional ML method

Table 1: Common traditional machine learning methods (Count > 1)

ML	Traditional ML method	Count
Supervised	Random forest	14
Supervised	Logistic regression	11
Supervised	SVM	11
Supervised	L1 logistic regression	8
Unsupervised	LDA	5
Supervised	Decision trees	4
Supervised	XGBoost	4
Unsupervised	K-means	4
Supervised	Naive Bayes	3
Weakly-supervised	PheNorm	3
Weakly-supervised	MAP	2
Weakly-supervised	Random forest	2
Unsupervised	UPGMA Hierarchical clustering	2

[1] "There are 18 papers using multiple traditional machine learning methods"

1.2 DL method

Table 2: Deep supervised learning methods

DL method	ML	Count
RNN	Supervised	18
CNN	Supervised	12
BERT	Supervised	7
FFNN	Supervised	3

[1] "There are 5 papers using multiple deep learning methods"

1.2.1 Deep neural network variants

2 Phenotype

2.1 More nuanced phenotype

COVID-19 -

Colon cancer Chronic kidney disease

Breast cancer

Bladder cancer Acute myeloid leukaemia

0.0

0.5

Cardiovascular disease

1

1

1

1

1

1.5

1.0

2.0

	Total number of papers	Used free-text	Used NLP software	Used competi- tion data	Used multisite data	Used open data	Used private single- site data	Compared to rule-based algo-rithms	Comapred to tradi- tional ML	Reported patient demographic	Released open code
TSL	27	15	14	3	2	4	22	10	0	13	4
DSL	33	31	18	11	9	19	13	2	19	9	8
SSL	6	2	1	0	0	0	6	1	0	3	0
WSL	15	13	10	0	4	2	10	8	1	4	3
USL	19	9	4	0	3	3	13	0	0	15	4
Total	101	70	47	14	18	29	64	21	21	45	20

3 Data source

3.1 Summary

 $TSL = Traditional \ supervised \ learning. \ DSL = Deep \ supervised \ learning. \ DRL = Reinforcement \ deep \ learning. \ SSL = Semi-supervised \ learning. \ WSL = Weakly-supervised \ learning. \ US = Unsupervised \ learning.$

3.2 Structured and unstructured data type

[1] "There are 50 papers using multiple structured data type"

[1] "There are 15 papers using multiple unstructured data type"

Data	Supervised	Supervised	Weakly-	Weakly-	Unsupervised	Reinforcement	Count
source	Deep	Traditional	supervised	supervised	Traditional	Deep	
	learning	machine	Deep	Traditional	machine	learning	
		learning	learning	machine	learning		
				learning			
MIMIC-III database	14	1	1	1	3	1	21

3.3 Openly-available data

[1] "There are 2 papers using multiple Competition data"

Competition data name	Supervised Traditional machine learning	Supervised Deep learning	Count
2018 n2c2	0	6	6
track 2 2018 n2c2 track 1	1	3	4
TRECMED	1	1	2
2011 TRECMED 2012	1	1	2

Data source	Count
MIMIC-III database	21
MTSamples database	1

[1] "There are 1 papers using multiple Openly data"

4 NLP software

[1] "There are 7 papers using multiple NLP software"

5 Emebddings

Embeddings were only used in deep supervised articles.

NLP software	Supervised Deep learning	Weakly- supervised Traditional machine learning	Supervised Traditional machine learning	Semisupervised Traditional machine learning	Unsupervised Traditional machine learning	Count
cTAKES	8	0	8	1	2	19
NegEx	0	2	3	0	1	6
NILE	0	5	1	0	0	6
NLTK	4	0	0	0	1	5
MetaMap	1	0	3	0	0	4
Stanford CoreNLP	2	0	0	0	0	2

Embedding training data	Count
Unstructured EHR	11
Biomedical literature	10
MIMIC-III database (internal)	7
MIMIC-III database (external)	6
Wikipedia	6
Structured EHR	2

[1] "There are 7 papers using multiple embedding training data"

Embedding	Count
Word2vec	19
GloVe	6
BERT	5
RoBERTa	3
BioBERT	2
BioClinicalBERT	2
FastText	2
Not specified	2

[1] "There are 11 papers using multiple embedding training methods"

6 Validation and comparison

6.1 Traditonal supervised ML vs. rule-based

6.2 Deep supervised ML vs. traditional supervised ML

6.3 Weakly-supervised v.s. rule-based

Model perfor- mance metrics	Supervised Deep learning	Supervised Traditional machine learning	Weakly- supervised Deep learning	Weakly- supervised Tradi- tional machine learning	Reinforceme Deep learning	ent Semi- supervised Tradi- tional machine learning	Count
Precision	26	23	0	8	0	4	61
Recall	26	23	1	7	0	2	59
AUROC	10	15	1	10	1	5	42
F-score	26	9	0	7	0	0	42
Specificity	7	11	1	1	0	0	20
Accuracy	5	8	1	4	0	0	18
NPV	1	7	0	5	0	2	15
AUPRC	3	2	0	2	1	0	8
Calibration plots	2	3	0	0	0	0	5
Log loss	1	1	0	0	0	1	3
Brier score	1	1	0	0	0	0	2
Hamming loss	2	0	0	0	0	0	2
Matthews Correlation Coefficient	1	1	0	0	0	0	2
Normalized dis- counted cumula- tive gain	1	1	0	0	0	0	2