CHAPTER 15

Multicasting and Multicast Routing Protocols

Exercises

1. See Tables below:

R2 Table		
Dest.	Next-hop	
N1		
N2		
N3		
N4	R3	
N5	R1	
N6	R1	

R3 Table		
Dest.	Next-hop	
N1	R2	
N2	R2	
N3		
N4		
N5	R2	
N6	R2	

R4 Table	
Dest.	Next-hop
N1	R1
N2	R1
N3	R1
N4	R1
N5	
N6	

3. See the entry in the table below:

Destination	Interface
10.0.0.0	2

- 5. No, RPF does not create a shortest path tree because a network can receive more than one copy of the same multicast packet. RPF creates a graph instead of a tree.
- 7. Yes, RPM creates a shortest path tree because it is actually RPB (see previous answer) with pruning and grafting features. The leaves of the tree are the networks.