# Supervised Learning Linear Regression



# **Objective**



Objective

Define the setup of Supervised Learning



Objective

Discuss basic regression models

# **Supervised Learning**

The set-up: the given training data consist of <sample, label> pairs, or (x, y); the objective of learning is to figure out a way to predict label y for any new sample x.

#### Consider two types of problems:

- Regression: y continuous
- -Classification: y is discrete, e.g., class labels.

### The Task of Regression

Given: A training set of n samples  $\langle x^{(i)}, y^{(i)} \rangle$  where  $y^{(i)}$  is a continuous "label" (or target value) for  $x^{(i)}$ 

To learn a model for predicting y for any new sample x.

A simple model is linear regression: modeling the relation between y and x via a linear function.

$$y \approx w_0 + w_1 x_1 + ... + w_d x_d = \mathbf{w}^t \mathbf{x}$$

(Note: **x** is *augmented* by adding a dimension of constant 1 to the original sample.)

#### **Linear Regression**

We can introduce an error term to capture the residual  $y = w^t x + e$ 

Applying this to all n samples, we have: y = X w + e

$$\begin{pmatrix}
y^{(i)} \\
y^{(i)} \\
y^{(i)}
\end{pmatrix}$$

$$\begin{pmatrix}
x_{1}^{(i)} & x_{2}^{(i)} & \cdots & x_{n}^{(i)} \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}$$

$$\begin{pmatrix}
e^{(i)} \\
e^{(i)} \\
e^{(i)} \\
\vdots \\
e^{(n)}
\end{pmatrix}$$

Learning in this case is to figure out a good w.

# Linear Regression (cont'd)

Find an optimal w by minimizing the squared error

$$||e||^2 = ||y - X w||^2$$

The solution can be found to be:

$$\widehat{\mathbf{w}} = (X^t X)^{-1} X^t \mathbf{y}$$

In practice, some iterative approaches may be used (e.g., gradient descent search).

# A simple example



### **Generalizing Linear Regression**

#### Introducing some basis functions $\phi_i(x)$ :

$$y = w_0 + w_1 \phi_1(\mathbf{x}) + ... + w_{M-1} \phi_{M-1}(\mathbf{x})$$

#### Compare:

➤ Blue: Linear Regression

 $\triangleright$  Red: With  $\phi_i(x) = x^j$ 



#### Regularized Least Squares

#### E.g., use a new error function: $E_D(w) + \lambda E_W(w)$

- $-\lambda$  is the regularization coefficient
- $-E_D(\mathbf{w})$  is the data-dependent error
- $-E_{\mathbf{W}}(\mathbf{w})$  is the regularization term, e.g.,  $E_{\mathbf{W}}(\mathbf{w}) = \|\mathbf{w}\|^q$

Help to alleviate overfitting.

# Supervised Learning Density Estimation in Supervised Learning



# **Objective**



Objective

Illustrate classification in Supervised Learning



Objective

Discuss basic density estimation techniques

# **Supervised Learning**

The set-up: the given training data consist of <sample, label> pairs, or (x, y); the objective of learning is to figure out a way to predict label y for any new sample x.

#### Consider two types of problems:

- Regression: y continuous
- -Classification: y is discrete, e.g., class labels.

#### **Examples of Image Classification**

The MNIST training images of hand-written digits

The Extended Yale B Face Images





#### How do we model the training images?

# Parametric: each class of images (the feature vectors) may be modeled by a density function $p_{\theta}(x)$ with parameter $\theta$ .

- To emphasize the density is for images from class/label y, we may write  $p_{\theta}(\mathbf{x}|\mathbf{y})$ .
- We may also use the notation  $p(\mathbf{x}|\mathbf{\theta})$ , if the discussion is true for any y.
- $\rightarrow$  How to estimate  $\theta$  from the training images?
- Note: We may also consider non-parametric approaches.

# MLE for Density Estimation (1/3)

Given some training data; Assuming a parametric model  $p(x/\theta)$ ; What specific  $\theta$  will fit/explain the data best?

E.g., Consider a simple 1-D normal density with only a parameter μ
 (assuming the variance is known)

Given a sample  $x_i$ ,  $p(x_i | \mu)$  gives an indication of how likely  $x_i$  is from  $p(x_i | \mu)$ 

→ the concept of the likelihood function.



# MLE for Density Estimation (2/3)

The likelihood function: the density function  $p(x/\theta)$  evaluated at the given data sample  $x_i$ , and viewed as a function of the parameter  $\theta$ .

- -Assessing how likely the parameter  $\theta$  (defining the corresponding  $p(\mathbf{x}|\theta)$ ) gives arise to the sample  $\mathbf{x}_i$ .
- -We often use  $L(\theta)$  to denote the likelihood function, and  $I(\theta)$  =  $\log(L(\theta))$  is called the log-likelihood.

Maximum Likelihood Estimation (MLE): Finding the parameter that maximizes the likelihood function

$$\widehat{\mathbf{\theta}} = \operatorname{argmax}_{\mathbf{\theta}} p(\mathbf{x}|\mathbf{\theta})$$

# MLE for Density Estimation (3/3)

How to consider *all* the given samples  $D=\{x_i, i=1,...,n\}$ ?

The concept of i.i.d. samples: the samples are assumed to be *independent* and *identically* distributed

So, the data likelihood is given by

$$L(\mathbf{\theta}) = P(D|\mathbf{\theta}) =$$

#### **MLE Example 1**

# Tossing a coin for n times, observing $n_1$ times for head.

– Estimate the probability  $\theta$  for head

#### The likelihood function is:

$$L(\theta) = P(D|\theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$$

# MLE Example 1 (cont'd)

We want to find what  $\theta$  maximizes this likelihood, or equivalently, the log-likelihood

$$l(\theta) = \log P(D|\theta) = \log(\theta^{n_1}(1-\theta)^{n-n_1})$$
  
= ...

Take the derivative and set to 0:

$$\frac{d}{d\theta}l(\theta) = 0$$

This will give us:

$$\widehat{ heta} = rac{n_1}{n}$$

#### **MLE Example 2**

Given n i.i.d. samples  $\{x_i\}$  from the 1-D normal distribution  $N(\mu, \sigma^2)$ , find the MLE for  $\mu$  and  $\sigma^2$ 

#### The likelihood function is:

$$L(\mu, \sigma) = p(D|\mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

#### The log-likelihood is:

$$l(\mu, \sigma) = \log P(D|\mu, \sigma)$$

$$= \log \left( \left( \frac{1}{\sigma \sqrt{2\pi}} \right)^n \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right)$$

$$= -n \log(\sigma \sqrt{2\pi}) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

# MLE Example 2 (cont'd)

#### The MLE solution for $\mu$

$$\hat{\mu} = \operatorname{argmax}_{\mu} l(\mu, \sigma)$$

$$= \operatorname{argmax}_{\mu} \{-n \log(\sigma \sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} \}$$

#### Set the derivative to 0:

$$\frac{\partial}{\partial \mu}l(\mu,\sigma) = 0$$

#### The solution is:

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}$$

# MLE Example 2 (cont'd)

#### The MLE solution for $\mu$

$$\hat{\sigma} = \operatorname{argmax}_{\sigma} l(\mu, \sigma)$$

$$= \operatorname{argmax}_{\sigma} \{-n \log(\sigma \sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} \}$$

#### Set the derivative to 0:

$$\frac{\partial}{\partial \sigma}l(\mu,\sigma) = 0$$

#### The solution is:

$$\widehat{\sigma^2} = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

# Supervised Learning Generative vs Discriminative Models in Supervised Learning



# **Objective**



Objective

Differentiate
between generative
and discriminative
models of
supervised learning



Objective

Discuss challenges in Bayesian learning

### **Supervised Learning**

The set-up: the given training data consist of <sample, label> pairs, or (x, y); the objective of learning is to figure out a way to predict label y for any new sample x.

-E.g., Given n pairs  $\langle \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \rangle$ , i=1, ..., n;  $\mathbf{x}^{(i)}$ : i-th sample represented as d-dimensional vectors;  $\mathbf{y}^{(i)}$ : corresponding labels.

Equivalently, to find P(y|x)

#### **Two Types of Models**

#### **Generative Model**

- $-P(y|x) \propto P(y) p(x|y)$
- $\rightarrow$  To learn P(y) and p(x|y).

#### **Discriminative Model**

- Directly learn P(y|x)
- No assumption made on p(x|y)

#### **Two Types of Models**

#### **Generative Model**

- $-P(y|x) \propto P(y) p(x|y)$
- → To learn P(y) and p(x|y).
- → Bayesian learning,Bayes classifiers.
- Example: Naïve BayesClassifier

#### **Discriminative Model**

- Directly learn P(y|x)
- No assumption made on p(x|y)
- Example: LogisticRegression

#### **Practical Difficulty of Bayesian Learning**

# Consider doing Bayesian learning without making simplifying assumptions.

- -Given *n* training pairs  $\langle \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \rangle$ , i=1, ..., n. Each  $\mathbf{x}^{(i)}$  is d-dimensional.
- We need to learn P(y) and p(x|y)

- $\rightarrow p(\mathbf{x}|\mathbf{y})$  can be very difficult to estimate:
  - → Consider a very simple case: binary features, and y is also binary. How many probabilities do we need to estimate?

# Supervised Learning Naïve Bayes Classifier



# **Objective**



Objective

Implement the fundamental learning algorithm Naive Bayes

#### Naïve Bayesian Classifier

The "naive" conditional independence assumption: each feature is (conditionally) independent of every other feature, given the label, i.e.,  $p(x_i | \{x_i \text{ for any } j \neq i\}, y) = p(x_i | y)$ 

#### How does this assumption simplify the problem?

- Consider the previous example again: d-dimensional binary features, and y is also binary.
- How many probabilities do we need to estimate now?

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_d | \mathbf{y}) = ...$$

# Naïve Bayesian Classifier (cont'd)

The naïve Bayes classifier: the predicted label is given by

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(y) \prod_{i=1}^{a} p(x_i|y)$$

"Parameters" of the classifier:

- -P(y)
- $-p(x_i|y)$  for all i, y

#### Naïve Bayesian Classifier (cont'd)

E.g., estimating the "parameters" of the classifier

 $-P(y) & p(x_i|y) \text{ for all } i, y -$ 

for the following familiar example

```
944823560911
```

#### Discrete Feature Example

- $x = \langle x_1, x_2, ..., x_d \rangle$  where each  $x_i$  can take only a finite number of values from  $\{v_1, v_2, ..., v_m\}$ :
- In this case, the "parameters" of the classifier are
  - -P(y)
  - $-P(x_i=v_k|y)$ , for all i, k, and y
- Given: A training set of n labelled samples  $\langle x^{(i)}, y^{(i)} \rangle$ , i=1, ..., n
  - → How to estimate the model parameters?

# Discrete Feature Example (cont'd)

Given: A training set of n labelled samples  $\langle x^{(i)}, y^{(i)} \rangle$ , i=1, ..., n

→ How to estimate the model parameters?

$$P(y) =$$

$$P(x_i = v_k | y) =$$

These are in fact the MLE solutions for the corresponding parameters.

# Supervised Learning Logistic Regression



# **Objective**



Objective

Implement the fundamental learning algorithm Logistic Regression

# Discriminative Model: Example

Again, we are given a training set of n labelled samples  $\langle x^{(i)}, y^{(i)} \rangle$ 

Why not directly model/learn P(y|x)?

Discriminative model

Further assume P(y/x) takes the form of a logistic

sigmoid function

→ Logistic Regression



# **Logistic Regression**

Logistic regression: use the logistic function for modeling P(y|x), considering only the case of  $y \in \{0,1\}$ 

$$P(y = 0 | \mathbf{x}) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{d} w_i x_i)}$$

$$P(y = 1|\mathbf{x}) = \frac{\exp(w_0 + \sum_{i=1}^{d} w_i x_i)}{1 + \exp(w_0 + \sum_{i=1}^{d} w_i x_i)}$$

#### The logistic function

$$\sigma(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t}$$

### Logistic Regression -> Linear Classifier

Given a sample x, we classify it as 0 (i.e., predicting y=0) if

$$P(y=0|\mathbf{x}) \ge P(y=1|\mathbf{x})$$

→ This is a linear classifier.

#### The Parameters of the Model

What are the model parameters in logistic regression?

Given a parameter w, we have P(y|x) =

Suppose we have two different sets of parameters,  $w^{(1)}$  and  $w^{(2)}$ , whichever giving a larger P(y|x) should be a better parameter.

#### The Conditional Likelihood

- Given *n* training samples,  $\langle x^{(i)}, y^{(i)} \rangle$ , *i*=1,...,*n*, how can we use them to estimate the parameters?
- For a given w, the probability of getting all those  $y^{(1)}$ ,  $y^{(2)}$  ..., $y^{(n)}$  from the corresponding data  $x^{(i)}$ , i=1,...,n, is

$$P[y^{(l)},y^{(l)},\dots,y^{(n)}|x^{(l)},x^{(l)},\dots,x^{(n)},w] = \prod_{i=1}^{n} P(y^{(i)}|x^{(i)},w)$$

$$= \prod_{i=1}^{n} \left[ \nabla(w^{t}x^{(i)}) \right]^{y^{(i)}} \left( 1 - \nabla(w^{t}x^{(i)}) \right]^{1-y^{(i)}}$$

 $\rightarrow$  Call this L(w), the (conditional) likelihood.

# The Conditional Log Likelihood

$$\begin{split} \mathcal{L}(\omega) &= \log \mathcal{L}(\omega) = \left( o \int_{\overline{z}_{-}}^{\overline{z}_{-}} (v_{-}) \right) \\ &= \sum_{i=1}^{n} \log \left[ \nabla (w^{i} x^{(i)})^{\nabla (i)} (1 - \nabla (w^{i} x^{(i)}))^{1 - y^{(i)}} \right] \\ &= \sum_{i=1}^{n} \left( \log \left( \nabla (w^{i} x^{(i)})^{y^{(i)}} \right) + \log \left( (1 - \nabla (w^{i} x^{(i)}))^{1 - y^{(i)}} \right) \right) \end{split}$$

## **Maximizing Conditional Log Likelihood**

#### Optimal parameters

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} l(\mathbf{w})$$

$$= \operatorname{argmax}_{\mathbf{w}} \sum_{i=1}^{n} [y^{(i)} \mathbf{w}^t \mathbf{x}^{(i)} - \log(1 + \exp(\mathbf{w}^t \mathbf{x}^{(i)}))]$$

# We cannot really solve for w\* analytically (no closed-form solution)

 We can use a commonly-used optimization technique, gradient descent/ascent, to find a solution.

# Finding the Gradient of I(w)

Recall: 
$$\frac{\partial(w^{t}x)}{\partial w} = x$$
,  $\frac{\partial(osf(x))}{\partial x} = \frac{\partial f(x)}{\partial x}$   
 $\nabla_{w}l(w) = \nabla_{w}\left[\sum_{n=1}^{n}\left(y^{n}\right)_{w}v^{n}\right] - \log\left(1+e^{w^{t}x^{n}}\right)\right]$ ,  $\frac{\partial e^{x}}{\partial x} = e^{x}$   
 $= \sum_{n=1}^{n}\left[y^{n}\right]_{x}v^{n} - \frac{e^{w^{t}x^{n}}}{1+e^{w^{t}x^{n}}}\right]$   
(Setting this to a cannot really give us a closed-form solution for w.

# **Gradient Ascent Algorithm**

#### The algorithm

Iterate until converge

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta \nabla_{\mathbf{w}^{(k)}} l(\mathbf{w})$$

 $\eta > 0$  is a constant called the learning rate.