

AI Training Course Series

Model Compression: Quantization + Pruning + Weight-Sharing

Lecture 12

Student: Ting-Wei Hu

Advisor: Juinn-Dar Huang, Ph.D.

Aug 22, 2024

Outline

- Necessity of model compression
- Pruning
- Weight-sharing
- Low-rank approximation
- Quantization concepts
- Uniform integer quantization
- Survey of LLM quantization
- PFPQuant
- Homework

Necessity of Model Compression

Al Applications (1/2)

Al Applications (2/2)

- Requirements for the common applications
 - Low latency
 - Energy efficient

Drone

Booming Al Models

- Recent deep learning models are complex
 - LeNet-5: 1M parametes (1998)
 - VGG-16: 133M parameters (2014)
 - CoCa: 2100M parameters (2022)
 - 83× Emergence of LLMs
 - ChatGPT: 175B parameters (2023) extremely huge!

Computational Issue (1/2)

 The model size is developing at a faster pace than the GPU memory in recent years

Computational Issue (2/2)

- LLMs are compute and memory-intensive
- Swin Transformer model in computer vision →
 Swin-L 197M parameters
- ChatGPT → 175B parameters consuming at least 350GB memory to store in FP16
 - 5 X 80GB A100 GPUs for inference
 - Huge computation and communication overhead
 - Almost 1000× increase compared with Swin-L

Energy Issue

- DRAM results in significant energy consumption
- Huge models usually access data from DRAM
 - More data transfer, more energy consumption

Operation	Energy [pJ]	Relative Cost
32 bit int ADD	0.1	1
32 bit float ADD	0.9	9
32 bit Register File	1	10
32 bit int MULT	3.1	31
32 bit float MULT	3.7	37
32 bit SRAM Cache	5	50
32 bit DRAM Memory	640	6400

Energy consumption increases dramatically

Why Model Compression

- Challenges of complex deep models
 - Huge storage (memory, disk) requirement
 - Computationally expensive
 - Consume lots of energy
 - Hard to deploy models on small edge devices

Compression becomes more significant!

Pruning

Introduction

- Motivated by how real brain learns
 - Usefulness in, waste out
- Propose pruning technique discarding relatively unimportant weights to ahieve sparse model
 - Remove redundant connections

How Pruning Works (1/2)

- Threshold pruning
 - Set a parameter as threshold
 - Remove weights whose abs(weight) < threshold

How Pruning Works (2/2)

- Retrain after threshold pruning
 - Reduce accuracy drop
 - Learn effective connections by iterative pruning

repeat the two steps iteratively To achieve gradual pruning

Retraining Strategies

- After pruning, the performance loss should be compensated by retraining
 - Prune weights of all layers once then retrain few epochs, then repeat this procedure until certain degree of accuracy is restored
 - > Faster
 - Lower accuracy
 - Prune weights layer by layer then retrain iteratively, the model is retrained before pruning the next layer
 - > Slower
 - Higher accuracy

Model Compression Rate

- Result of threshold pruning
 - Experimented with LeNet, AlexNet, VGG (ImageNet)
 - About 10x smaller compared to origin network
 - Mostly contributed by FC layers
 - Less than 1% accuracy loss

Network	Top-1 Error Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64% -	267K	
LeNet-300-100 Pruned	1.59% 3.0%	22K	$12\times$
LeNet-5 Ref	0.80% - 0.77% 3.7% -	431K	
LeNet-5 Pruned	0.77% 3.7% -	36K	$12\times$
AlexNet Ref	42.78% 0.2% 19.73% 19.67%	61M	
AlexNet Pruned	42.77% 0.2% 19.67%	6.7M	9 imes
VGG-16 Ref	31.50% 5.0% 11.32% 10.88%	138M	
VGG-16 Pruned	31.34% 3.0% 10.88%	10.3M	$13 \times$

Unstructured Pruning

- Unstructured pruning
 - Better accuracy
 - Needs extra memory to store index
 - Extremely hard to keep parallelism in hardware acceleration (i.e., you'd better forget about it!)

Structured Pruning

- Structured pruning
 - Maintains the regularity of the weight matrix
 - Accuracy degradation due to larger information loss

Weight-Sharing

Weight-Sharing By Clustering

- Weight-sharing by clustering
 - Cluster weights and use centroid in the indexed array
 - > E.g., k-means
 - Fine-tune the centroid weights with a summation of corresponding gradients

Weight-Sharing in Language Models (1/3)

- Scaling LMs to achieve better performance
 - Layer-sharing

Weight-Sharing in Language Models (2/3)

Embedding-sharing

Weight-Sharing in Language Models (3/3)

Embedding-sharing

Experiment Results in MobileLLM

Table 2: Ablation study of layer-sharing strategy on zero-shot common sense reasoning tasks.

Model	Sharing method	ARC-e	ARC-c	BoolQ	PIQA	SIQA	HellaSwag	OBQA	WinoGrande	Avg.
125M	baseline	41.6	25.7	61.1	62.4	43.1	34.4	36.9	51.6	44.6
	Immediate block-wise share		27.9	61.5	64.3	41.5	35.5	35.1	50.2	45.0
	Repeat-all-over share	43.6	27.1	60.7	63.4	42.6	35.5	36.9	51.7	45.2
	Reverse share	43.8	26.0	58.9	62.9	42.2	35.2	36.8	52.2	44.8
350M	baseline	50.8	30.6	62.3	68.6	43.5	45.1	43.8	52.4	49.6
	Immediate block-wise share	51.5	30.8	59.6	68.2	43.9	47.7	44.7	55.0	50.2
	Repeat-all-over share	53.5	33.0	61.2	69.4	43.2	48.3	42.2	54.6	50.7
	Reverse share	50.7	32.2	61.0	68.8	43.8	47.4	43.1	53.8	50.1

Low-Rank Approximation

Matrix Decomposition

 Any matrix A of rank-r can be decomposed into a long and skinny matrix times a short and long one

Singular Value Decomposition (SVD)

- A: an $m \times n$ matrix of rank-r
- **U**: an m × m orthogonal matrix
- V: an n x n orthogonal matrix
- S: an m x n diagonal matrix with nonnegative entries, and with the diagonal entries sorted from high to low

Figure 2: The singular value decomposition (SVD). Each singular value in \mathbf{S} has an associated left singular vector in \mathbf{U} , and right singular vector in \mathbf{V} .

 $A = USV^T$

Low-Rank Approximation with SVD (1/2)

- Rank-k approximation, $k \le r$ $A_k = U_k S_k V_k^T$
 - Compute the SVD
 - Set U_k equal to the first k columns of U (m \times k)
 - Set S_k equal to the first k rows and columns of S (k x k)
 - Set V_k^T equal to the first k rows of V^T (k x n)

Low-Rank Approximation with SVD (2/2)

- Get $A_k = U_k S_k V_k^T$
- Fuse S_k in U_k or V_k^T

$$-A_k = U_k' V_k^T \text{ or } U_k V_k^{T'}$$

- # of parameters
 - Original
 - $\rightarrow m \times n$
 - After low-rank approximation

$$\rightarrow m \times k + k \times n$$

Quantization Concepts

Common Data Types (1/2)

- In neural network
 - Parameters are usually stored in 16-bit or 32-bit precision
 - Single-precision IEEE 754 (FP32)

Floating point format with lower bits

Common Data Types (2/2)

- When quantize higher bits to lower bits
 - Lower computation overhead ©
 - Reduce memory usage ©
 - Lower power consumption ©
 - Quantization error → loss of precision ⊗
- FP32→INT8

Example: FP32 to INT8

- Aim to move values from FP32 to INT8
- Quantizer needs to allocate all FP32 values into 256 states
 - 8 bits can represent 256 states

Uniform Integer Quantization

Basics of N-Bit Uniform Integer Quantization

Formula

$$X^{INT_N} = \left| \frac{X^{FP}}{s} \right| + z, \qquad X^{FP} \approx s(X^{INT_N} - z)$$

Example of 8-bit quantization

Data after asymmetric quantization

Symmetric & Asymmetric Quantization

Formula

$$-X^{INT_N} = \left[\frac{X^{FP}}{s}\right] + Z$$

$$-X^{FP} \approx s(X^{INT_N} - z) \text{ (dequantize)}$$

$$-a = -2^{N-1}, b = 2^{N-1} - 1$$

Symmetric quantization

$$- s_{sym} = \frac{max(|X^{FP}|)}{h-a}, \quad z_{sym} = 0$$

Asymmetric quantization

$$- s_{asym} = \frac{[max(X^{FP}) - min(X^{FP})]}{b - a} \stackrel{-128}{+}$$

$$- z_{tmp} = a - \frac{min(X^{FP})}{s_{asym}} \stackrel{-128}{+}$$

$$- z_{asym} = clamp\{z_{tmp}, a, b\} \stackrel{-128}{+}$$

s: scale

z: zero point

N: target number of bits

Quantization Granularity

Scale Calibration Range

Per-tensor Quantization for Matrix Operation

$$I^{INT} = \left[\frac{I^{FP}}{s_i}\right] + z_i, \qquad \overline{I^{FP}} = s_i (I^{INT} - z_i)$$

$$W^{INT} = \left[\frac{W^{FP}}{s_w}\right] + z_w, \qquad \overline{W^{FP}} = s_w (W^{INT} - z_w)$$

$$B^{INT} = \left[\frac{B^{FP}}{s_i \cdot s_w}\right], \qquad \overline{B^{FP}} = s_i s_w \cdot B^{INT}$$

$$O = I \cdot W + B \approx \overline{O^{FP}} = \overline{I^{FP}} \cdot \overline{W^{FP}} + \overline{B^{FP}}, \qquad O^{INT} = \left[\frac{\overline{O^{FP}}}{s_o}\right] + z_o$$

$$O^{INT} = \left[\frac{\sum s_i (I^{INT} - z_i) s_w (W^{INT} - z_w) + s_i s_w \cdot B^{INT}}{s_o}\right] + z_o = \left[\frac{s_i s_w}{s_o}\right[\sum (I^{INT} - z_i) (W^{INT} - z_w) + B^{INT}\right] + z_o$$

$$\frac{s_i s_w}{s_o} \approx M^{INT} \cdot 2^{shift}$$

Survey of LLM Quantization

Quantization Difficulty of LLMs (1/2)

Outliers in OPT (SmoothQuant)

Quantization Difficulty of LLMs (2/2)

Apply the vanilla 8-bit quantization on LLM

LLM.int8(): The Fact of Outliers (1/3)

- These outlier features are highly systematic after the emergence of outlier features occurs
 - EX: 6.7B transformer with a sequence length of 2048

 About 150k outlier features per sequence for the entire transformer, but these features are concentrated in only 7 different hidden dimensions

LLM.int8(): The Fact of Outliers (2/3)

- The effect of outlier features
 - Set all outlier features (at most 7 hidden dimensions) of a layer to zero
 - > 為了不要讓error累積,一次只做一層,其他層保持原樣
 - > Accuracy會掉20~40%
 - > Perplexity increases by 600~1000%
 - Set 7 random feature dimensions of a layer to zero
 - > 為了不要讓error累積,一次只做一層,其他層保持原樣
 - > Accuracy只掉0.02~0.3%
 - > Perplexity increases by 0.1%

LLM.int8(): The Fact of Outliers (3/3)

- The effect of outlier features
 - These outliers are critical for transformer performance
 - Quantization precision for these outlier features is paramount as even tiny errors greatly impact model performance

LLM.int8(): Methodology

Structured outliers

LLM.int8()

8-bit Vector-wise Ouantization

(2) Quantize

$$X_{F16}^*(127/C_X) = X_{18}$$

 $W_{F16}^*(127/C_W) = W_{18}$

(4) Dequantize

$$\frac{\text{Out}_{132}^{*} (C_{X} \otimes C_{W})}{127*127} = \text{Out}_{F16}$$

(3) Int8 Matmul

$$X_{18} W_{18} = Out_{132}$$

16-bit Decomposition

- (1) Decompose outliers
- (2) FP16 Matmul

SmoothQuant (1/3)

- Idea
 - Migrate the quantization difficulty from activations to weights

SmoothQuant (2/3)

Channel-wise smoothing

$$\mathbf{O} = (\mathbf{I} \cdot \operatorname{diag}(\lambda)^{-1}) \cdot (\operatorname{diag}(\lambda) \cdot \mathbf{W}) = \hat{\mathbf{I}} \hat{\mathbf{W}}$$

SmoothQuant (3/3)

- Propose smoothing factor $\lambda \in \mathbb{R}^{c_i}$
 - Splits some quantization difficulties to the weights

$$\lambda_{\rho} = \frac{maxAbs(I_{\rho})^{\alpha}}{maxAbs(W_{\rho})^{1-\alpha}}, \quad \rho \in 1, 2, ..., C_{embd}$$

> α control how much difficulty is migrated

FPTQ

- Logarithmic Activation Equalization
 - Weight-independent

$$\lambda_{\rho} = \frac{maxAbs(\mathbf{I}_{\rho})}{\log_{2}(2 + maxAbs(\mathbf{I}_{\rho}))}, \qquad \rho \in 1, 2, \dots, C_{embd}$$

- If outlier exceed a preset threshold
 - Dynamic quantization

$$\mathbf{0} = (\mathbf{I} \cdot \operatorname{diag}(\lambda)^{-1}) \cdot (\operatorname{diag}(\lambda) \cdot \mathbf{W}) = \hat{\mathbf{I}} \hat{\mathbf{W}}$$

RPTQ (1/2)

- Per-group quantization
 - Reorder activation & weight by clustering algorithm

- Representative vector
 - > Each activation channel's (min, max) values after calibration
- Apply k-means, then get the result R
- Activations and their corresponding weights are reordered by *R* to maintain computational equivalence
- Different scales are calculated for different clusters

RPTQ (2/2)

- Per-group quantization
 - Reorder activation & weight by clustering algorithm

QuaRot (1/2)

Rotation-based

QuaRot (2/2)

- Retains floating-point operations for
 - Layer normalization, residual link additions
 - Rotation of input activations
 - Multi-head Attention
 - Gating in the FFN

PFPQuant: A Pure Fixed-Point Quantization Framework for Edge Devices without Floating-Point Units

LLM Quantization w/o FPUs

- FPUs
 - Floating-point units
- w/o FPUs
 - Means all computation should be
 - Integer operation & static shifts
- Difficulty
 - Most of uniform integer quantization is mixed precision
 - Layer normalization (LayerNorm \ RMSNorm)
 - » All
 - Residual-link addition
 - » All
 - Outlier-related computation
 - » LLM.int8()

Main Components of PFPQuant

- Generalized Outlier Mitigation
 - GOM
- Outlier-Reduced Integer LayerNorm
 - ORI-LN
- Residual-Link with Space-Accuracy Tradeoff
 - RL-SAT

GOM: Outlier Mitigation (1/2)

Equivalence

$$O = I \cdot W = \{I \cdot diag(\lambda)^{-1}\} \cdot \{diag(\lambda) \cdot W\}$$

$$I_{new} \qquad W_{new}$$

- Enhanced Logarithmic Activation Equalization
 - E-LAE
 - LAE proposed by FPTQ lacks the flexibility to adjust various quantization nodes
 - We introduced an α exponent term to the original formula

$$\lambda_{\rho} = \left[\frac{maxAbs(\mathbf{I}_{\rho})}{\log_{2}(2 + maxAbs(\mathbf{I}_{\rho}))} \right]^{\alpha}, \qquad \rho \in 1, 2, ..., C_{embd}$$

GOM: Outlier Mitigation (2/2)

- Median-Convergent Outlier Mitigation
 - MCOM
 - Goal
 - > Static per-tensor quantization for input activations
 - » Extremely hardware-friendly
 - Idea
 - > Based on E-LAE
 - Concentrate the elements of the same tensor around the median

$$V_{maxAbs} = \{ maxAbs(I_1), maxAbs(I_2), \dots, maxAbs(I_{C_{embd}}) \}$$

$$\lambda_{\rho} = \left[\frac{\beta + maxAbs(I_{\rho})}{\log_{2}(2 + median(V_{maxAbs}))} \right]^{\alpha}, \quad \rho \in 1, 2, ..., C_{embd}$$

GOM: Combined with Data-Shifting

Data-shifting vector

$$\delta_{\rho} = \frac{-1}{2} [max(I_{\rho}) + min(I_{\rho})], \qquad \rho \in 1, 2, ..., C_{embd}$$

Final formula of GOM

$$O = \{(I + \delta) \cdot diag(\lambda)^{-1}\} \cdot \{diag(\lambda) \cdot W\} + \{B - \delta \cdot W\}$$

$$V_{new}$$

ORI-LN: Outlier Score (1/2)

- Previous quantization research has not performed LayerNorm under quantized precision
- To elucidate the difficulty of LayerNorm quantization
 - We define an outlier score OS
 - \rightarrow After calibration, V_{maxAhs} is a static vector

$$egin{aligned} V_{maxAbs} &= \{ maxAbs(I_1), & maxAbs(I_2), & ..., & maxAbs(I_{C_{embd}}) \} \ \ OS &= rac{max(V_{maxAbs})}{median(V_{maxAbs})} \end{aligned}$$

ORI-LN: Outlier Score (2/2)

ORI-LN: Vanilla Integer LayerNorm (1/2)

- Static per-tensor quantization for input activations
 - For simplicity, we use the RMSNorm formula, a variant of LayerNorm, to illustrate our approach

$$O_{\rho} = \frac{I_{\rho} \cdot \gamma_{\rho}}{\sqrt{\frac{1}{C_{embd}} \cdot \sum_{m=1}^{C_{embd}} (I_{m})^{2}}}, \qquad \rho \in 1, 2, ..., C_{embd}$$

$$I_{
ho}^{INT} = \left[rac{I_{
ho}}{s_i}
ight] + z_i, \qquad I_{
ho} pprox s_i ig(I_{
ho}^{INT} - z_i ig) \qquad \gamma_{
ho} pprox \gamma_{
ho}^{INT} \cdot s_{\gamma_{
ho}}, \qquad s_{\gamma_{
ho}} = 2^{shift_{\gamma_{
ho}}}$$

$$O_{\rho} \approx \frac{s_{i}(I_{\rho}^{INT} - z_{i}) \cdot s_{\gamma_{\rho}} \cdot \gamma_{\rho}^{INT}}{\sqrt{\frac{1}{C_{embd}} \cdot \sum_{m=1}^{C_{embd}} \left(s_{i}(I_{m}^{INT} - z_{i}) \right)^{2}}} = \frac{s_{i}}{\sqrt{s_{i}^{2}}} \cdot \left(s_{\gamma_{\rho}} \cdot \sqrt{C_{embd}} \right) \cdot \frac{\left(I_{\rho}^{INT} - z_{i} \right) \cdot \gamma_{\rho}^{INT}}{\sqrt{\sum_{m=1}^{C_{embd}} \left(\left(I_{m}^{INT} - z_{i} \right) \right)^{2}}}$$

$$s_{\gamma_{\rho}} \cdot \sqrt{C_{embd}} \approx M_{\rho}^{INT} \cdot 2^{shift_{M_{\rho}}}$$

ORI-LN: Vanilla Integer LayerNorm (2/2)

- SQ represents the outlier mitigation formula proposed by SmoothQuant
- Using the LLaMA-2 7B chat model
 - The average accuracy of each method on LAMBADA,
 HellaSwag, PIQA, WinoGrande, and ARCe
 - The perplexity on Wikitext-2

Method	Average ↑	Wikitext↓	
FP	0.7226	12.28	
SQ w VILN	0.3106	51036.37	
E-LAE w VILN	0.3092	53769.12	

ORI-LN

Introducing outlier mitigation into LayerNorm

$$O_{\rho} = \frac{I_{\rho} \cdot \gamma_{\rho}}{\sqrt{\frac{1}{C_{embd}} \cdot \sum_{m=1}^{C_{embd}} (I_{m})^{2}}} = \frac{\sqrt{C_{embd}}}{\sqrt{\sum_{m=1}^{C_{embd}} \left(\frac{I_{m}}{\lambda_{m}} \cdot \lambda_{m}\right)^{2}}} \cdot \left(\frac{I_{\rho}}{\lambda_{\rho}}\right) \cdot (\lambda_{\rho} \cdot \gamma_{\rho}), \qquad \rho \in 1, 2, ..., C_{embd}$$

$$O_{\rho} = \frac{\sqrt{C_{embd}}}{\sqrt{\sum_{m=1}^{C_{embd}} \left(\frac{I_{m}}{\lambda_{m}}\right)^{2} \cdot (\lambda_{m})^{2}}} \cdot \left(\frac{I_{\rho}}{\lambda_{\rho}}\right) \cdot (\lambda_{\rho} \cdot \gamma_{\rho}) \qquad I'_{\rho} = \left(\frac{I_{\rho}}{\lambda_{\rho}}\right), \qquad \gamma'_{\rho} = (\lambda_{\rho} \cdot \gamma_{\rho})$$

$$O_{\rho} = \frac{I'_{\rho} \cdot \gamma'_{\rho} \cdot \sqrt{C_{embd}}}{\sqrt{\sum_{m=1}^{C_{embd}} (I'_{m})^{2} \cdot (\lambda_{m})^{2}}} \approx \frac{s_{i'} \left(I'_{\rho}^{INT} - z_{i'}\right) \cdot s_{\gamma'_{\rho}} \cdot \gamma'_{\rho}^{INT} \cdot \sqrt{C_{embd}}}{\sqrt{\sum_{m=1}^{C_{embd}} \left(s_{i'} \left(I'_{m}^{INT} - z_{i'}\right)\right)^{2} \cdot (\lambda_{m})^{2}}} = \left(s_{\gamma'_{\rho}} \cdot \sqrt{C_{embd}}\right) \cdot \frac{\left(I'_{\rho}^{INT} - z_{i'}\right) \cdot \gamma'_{\rho}^{INT}}{\sqrt{\sum_{m=1}^{C_{embd}} \left(I'_{m}^{INT} - z_{i'}\right)^{2} \cdot (\lambda_{m})^{2}}}$$

$$s_{\gamma_{\rho}'} \cdot \sqrt{C_{embd}} \approx M_{\rho}^{INT} \cdot 2^{shift_{M_{\rho}}}, (\lambda_m)^2 \approx M_{\lambda_m}^{INT} \cdot 2^{shift_{M_{\lambda_m}}}$$

RL-SAT: Recall (1/2)

 Since the residual-link originates from the input of the previous LayerNorm, it inherits its quantization difficulty

RL-SAT: Recall (2/2)

Per-tensor quantization for matrix operation

$$I^{INT} = \left[\frac{I^{FP}}{s_i}\right] + z_i, \qquad \overline{I^{FP}} = s_i (I^{INT} - z_i)$$

$$W^{INT} = \left[\frac{W^{FP}}{s_w}\right] + z_w, \qquad \overline{W^{FP}} = s_w (W^{INT} - z_w)$$

$$B^{INT} = \left[\frac{B^{FP}}{s_i \cdot s_w}\right], \qquad \overline{B^{FP}} = s_i s_w \cdot B^{INT}$$

$$O = I \cdot W + B \approx \overline{O^{FP}} = \overline{I^{FP}} \cdot \overline{W^{FP}} + \overline{B^{FP}}, \qquad O^{INT} = \left[\frac{\overline{O^{FP}}}{s_o}\right] + z_o$$

$$O^{INT} = \left[\frac{\sum s_i (I^{INT} - z_i) s_w (W^{INT} - z_w) + s_i s_w \cdot B^{INT}}{S_o}\right] + z_o = \left[\frac{s_i s_w}{s_o}\right] \sum (I^{INT} - z_i) (W^{INT} - z_w) + B^{INT}\right] + z_o$$

$$\frac{s_i s_w}{s_o} \approx M^{INT} \cdot 2^{shift}$$

RL-SAT: Vanilla Residual Quantization

$$I_{norm}^{INT} = \left[\frac{I_{norm}^{original}}{s_{norm}} \right] + z_{norm}$$

$$\overline{R_0^{FP}} = \overline{I_{norm}^{FP}} = s_{norm} \cdot (I_{norm}^{INT} - z_{norm}) \approx I_{norm}^{original}$$

$$R^{INT} = \left[\frac{\overline{R_0^{FP}}}{\overline{s_i s_w}} \right] = \left[\frac{s_{norm}}{s_i s_w} \cdot (I_{norm}^{INT} - z_{norm}) \right]$$

$$\overline{R^{FP}} = s_i s_w \cdot \left[\frac{s_{norm}}{s_i s_w} \cdot \left(I_{norm}^{INT} - z_{norm} \right) \right] = s_i s_w \cdot R^{INT} \qquad (O^{INT}, s_o, z_o)$$

$$\frac{S_{norm}}{S_i S_w} \approx M_{SC_{Transform}}^{INT} \cdot 2^{shift_{SC_{Transform}}} = M_{SC_{Transform}}$$

RL-SAT

- Directly quantizes $I_{norm}^{original}$ to a scale that allows correct accumulation
- While this approach uses slightly more memory space, it reduces one instance of quantization error (due to rounding)
- Since the additional memory consumption is negligible compared to the weights of LLMs, PFPQuant adopts this method (RL-SAT)

$$R^{INT} = \left[\frac{I_{norm}^{original}}{s_i \cdot s_w}\right]_{i=1}^{i=1} \overline{R^{FP}} = s_i s_w \cdot R^{INT} \approx R^{FP} = I_{norm}^{original}$$

Experiment Results: Effectiveness of GOM

- GOM
 - Generalized Outlier Mitigation

Experiment Result: Quantized LLaMA 2

 We tested PFPQuant on various common tasks using the LLaMA-2 7B chat model

Method	LAMBDA	HellaSwag	PIQA	WinoGrande	ARCe	Average↑	Wikitext↓
FP	0.6850	0.7530	0.7666	0.6646	0.7441	0.7226	12.28
SQ w R8-S8	0.6238	0.7266	0.7568	0.6464	0.7033	0.6914	41.52
SQ w R16-S8	0.6286	0.7269	0.7579	0.6409	0.7050	0.6919	41.46
SQ w R8-S16	0.6173	0.7182	0.7546	0.6346	0.7066	0.6863	22.55
SQ w R16-S16	0.6282	0.7220	0.7541	0.6472	0.7104	0.6924	22.39
E-LAE w R8-S8	0.6255	0.7182	0.7541	0.6251	0.7037	0.6853	36.08
E-LAE w R16-S8	0.6271	0.7192	0.7530	0.6172	0.7066	0.6846	36.15
E-LAE w R8-S16	0.6112	0.7111	0.7552	0.6227	0.7075	0.6815	19.34
E-LAE w R16-S16	0.6151	0.7125	0.7519	0.6283	0.7079	0.6831	19.25
MCOM w R8-S8	0.6275	0.7380	0.7519	0.6527	0.7189	0.6978	27.86
MCOM w R16-S8	0.6295	0.7378	0.7486	0.6701	0.7180	0.7008	26.73
MCOM w R8-S16	0.6327	0.7383	0.7552	0.6559	0.7243	0.7013	14.80
MCOM w R16-S16	0.6339	0.7410	0.7579	0.6535	0.7218	0.7016	14.77

Table 2: **R** indicates the bit-width of RoPE sine and cosine tables, and **S** indicates the softmax output bit-width. For example, **R8-S8** uses 8-bit RoPE tables and clamps the softmax output to unsigned 8-bit (Q0.8). The data shows results after applying GOM, ORI-LN, and RL-SAT; omitting any of these strategies leads to pure fixed-point quantization failure.

Implementation Overview

LLaMA-2 7B

Comparison

Homework

HW1 & HW2

- HW1 (35%)
 - 詳細介紹k-means分群演算法,並說明你覺得該演算法要 怎麼用來壓縮NN模型
 - > 請善用圖示說明:圖最好自己畫,少用截圖
 -) 以簡報形式呈現
- HW2 (65%)
 - 請從下列論文擇一閱讀,並製作圖文並茂的簡報,圖例為主,文字需簡潔扼要:圖最好自己畫,少用截圖
 - AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration
 - QuaRot: Outlier-free 4-bit Inference in Rotated LLMs
 - > A White Paper on Neural Network Quantization
 - Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

Format

- 将HW1&HW2融合成一份PowerPoint檔案(不超過25 頁投影片),繳交該檔案,檔名為:
 - 中文姓名_Lab12
- 將該份PowerPoint檔案轉成PDF檔案,一併繳交,檔 名為:
 - 中文姓名_Lab12
- 總共要繳交兩份檔案,注意,不要壓縮
- 別直接傳兩個檔案,請至少附上姓名、主旨&禮貌
- 繳交至以下信箱:
 - anson.twhu.ee11@nycu.edu.tw

Deadline

• 23:59, Aug 26, 2024

Thank you

