Jay Sawant

📞:+1 2068507888 ➡:jsawant@ucsd.edu 📠:linkedin.com/in/jaysawant61 🔗:jay6101.github.io ♠:jay6101 📚:jay-sawant

Education

University of California San Diego

San Diego, CA

• MS in Data Science student at Halicioğlu Data Science Institute (HDSI) | CGPA - 4/4 [Expected S

[Expected Sep '24 - Dec '25]

• Key courses: Reinforcement Learning, Deep Generative Models, Machine Learning, Statistical Models, NLP in Biomedicine

Indian Institute of Technology Bombay

Mumbai, India

 \bullet Graduated with a Bachelor's and Master's Degree in Electrical Engineering | CGPA - 8.9/10

[Jul '18 - Jun '23]

• Relevant courses: Machine Learning, Generative AI with LLMs (Coursera), Automatic Speech Recognition, Probability and Random Process, Linear Algebra, Medical Image Computing, Advanced Image Processing, Data Structures and Algorithms

Technical Skills and Extracurricular

Programming & Tools Python, PyTorch, CUDA, Tensorflow, AWS, GCP (Vertex AI), HuggingFace, Pandas, Git, SQL **Teaching Assistantship** Introduction to Machine Learning (EE769), Introduction to Digital Image processing (EE610)

Publications

• Patil, A.; Diwakar, H.; **Sawant, J.**; Kurian, N.C.; Yadav, S.; Rane, S.; Bameta, T.; Sethi, A. Efficient Quality Control of Whole Slide Pathology Images with Human in-the-Loop Training. *J. Pathol. Inform.* **2023**, *14*, 100306

Work, Research and Internship Experience

• 3D Brain MRI Synthesis using DiT-3D | Graduate Student Researcher | UC San Diego Health

[Jan '25 - Present]

- Developed a novel conditional latent diffusion pipeline by integrating a VAE for latent space compression with a DiT-3D based diffusion transformer, enabling the generation of high-fidelity, class-specific synthetic 3D brain MRIs with FID score of 16.9
- Augmented the real brain MRI dataset with synthetic data, leading to substantial improvements in F1-score, accuracy, AUC-ROC, and AUCPR for a Temporal Lobe Epilepsy classifier trained using an EfficientNet-V2 backbone.
- Cardiac arrhythmia detection and classification | Probeplus Innovative Solutions Pvt. Ltd. | Al Consultant [May '24 Jul '24]
 - Trained a baseline CNN and multi-head attention based model as a part of a remote-health monitoring system to achieve a multi-label classification of 26 arrhythmias using a diverse dataset of 12-lead ECG recordings from Physionet 2021 challenge
 - Improved the model performance by integrating an RNN branch for temporal context and by calculating cross-attention features between CNN and RNN outputs, achieving 2% increase in the challenge score on external test datasets
- Software Development Engineer | Enphase Energy, Bangalore, India

[Jul '23 - May '24]

- Collaborated with a 7-member Test Automation team to develop and maintain a Python-based test framework
- Utilized Object-Oriented Programming (OOP) techniques to create comprehensive test suites for the hardware test automation
- Developed a Python library leveraging the Jama REST API to connect to Jama, fetch test cases, execute them on a local PC, and update results in Jama, providing end-to-end automation support for the Design-Verification-Test team
- Improving Histopathology and Medical Image Analysis with Deep Learning | M. Tech Thesis

[May '22 - Jun '23

- Employed active learning method to train a classifier, achieving efficient segmentation of WSIs into six tissue regions and outperforming the popular HistoQC tool with higher dice scores on 70% of the WSIs
- Utilized DeepLabV3 architecture for cell detection and classification using segmentation method in the OCELOT Challenge 2023, securing a global ranking of 16th place with an F1-score of 0.67
- Opacity Detection in Chest Xrays using Contrastive Learning | Qure.ai | Al Scientist Intern

[May '22 - Aug '22]

- Trained a vanilla classification model of ResNet50 on 1.2M chest x-rays using the conventional supervised training method for opacity classification and achieved an AUC score of 0.80 on the test dataset of 280K chest x-rays
- Outperformed the vanilla baseline by utilizing a model backbone trained using the Supervised Contrastive Learning method

Key Technical Projects

• Cross-Person Virtual Try-On | ECE285: Deep Generative Models | Guide: Prof. Pengtao Xie

[May'25 - June'25]

- Leveraged IDM-VITON preprocessing to generate dataset for cross person garment transfer along with DensePose segmentation maps to convert VITON-HD images into cloth-agnostic and garment-conditioned token streams for diffusion-transformer training
- Architected and implemented a 16-block Diffusion Transformer denoiser integrating self-attention on noise and cloth-agnostic tokens, cross-attention on garment tokens, and FiLM-based timestep modulation for high-fidelity virtual try-on
- Optimized the diffusion pipeline with noise-aware EDM parameterization, a 2^{nd} ODE solver and CFG achieving an FID of 27.7
- RAG-based Multimodal Medical QnA App | MED277: Biomedical NLP | Guide: Prof. Shamim Nemati [Oct'24 Nov'24]
 - Designed a RAG-based multimodal medical chatbot app with multilingual capabilities, integrating a Google Translate API, BiomedBERT embeddings for context retrieval, Google's Gemini 1.5 Pro for output generation, and Gradio for a web interface
 - Built a pipeline that combines text, medical imaging, and contextual retrieval to deliver accurate responses to medical queries
- Identity Aware Portrait Generation | CS726: Advanced Machine Learning | Guide: Prof. Sunita Sarawagi [Feb'22 April'
 - Utilized the CycleGAN model in the Image translation to generate portraits preserving the human facial features
 - Proposed a perceptual loss to preserve facial features that uses FaceNet embeddings to guide the generators
 - Achieved an average SSIM of 0.98 using our approach between the human faces and their respective portraits