General Purpose Input/Output (GPIO)

Embedded System 2561, KU CSC

Adapted by Sorayut Glomglome

Table 2. STM32F411xC/xE features and peripheral counts

Periph	nerals	s.	TM32F411	кC	s	TM32F411x	E		
Flash memory in k	(bytes	256			512				
SRAM in Kbytes	System			1	128				
Timoro	General- purpose				7				
Timers	Advanced- control				1				
	SPI/ I ² S			5/5 (2 ft	ull duplex)				
Communication interfaces	I ² C				3				
	USART	3							
intoria do do	SDIO	1							
	USB OTG FS	1							
GPIOs	1	36	50	81	36	50	81		
12-bit ADC		1							
Number of channe	els	10		16	10		16		
Maximum CPU fre	quency	100 MHz							
Operating voltage		1.7 to 3.6 V							
Operating tempera	atura a	Ambient temperatures: -40 to +85 °C/-40 to +105 °C							
Operating tempera	atures		Junction temperature: –40 to + 125 °C						
Package		WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100	WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100		

Table 2. STM32F401xD/xE features and peripheral counts

Peripl	herals	S ⁻	ГМ32F401:	xD	STM32F401xE				
Flash memory in	Kbytes		384			512			
SRAM in Kbytes	System		96						
Timers	General- purpose				7				
Timers	Advanced- control				1				
	SPI/ I ² S	3/2 (full c	luplex)	4/2 (full duplex)	3/2 (full o	duplex)	4/2 (full duplex)		
Communication interfaces	I ² C		3						
interiaces	USART				3				
	SDIO	-		1 -		1			
USB OTG FS		1							
GPIOs		36	50	81	36	50	81		
12-bit ADC					1				
Number of channe	els	10		16 10		16			
Maximum CPU fre	equency	84 MHz							
Operating voltage			1.7 to 3.6 V						
Operating tempera	atura a	F	Ambient temperatures: -40 to +85 °C/-40 to +105 °C						
Operating tempera	atures		June	ction temperat	ure: -40 to + 1	25 °C			
Package		WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100	WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100		

STM32F411xE & GPIO

- > GPIO Port A B C D E H
- > Each port is 16 pins
- > PA[0] PA[15]
- > PB[0] PB[15]
- **>** ...
- > PE[0] PE[15]

 π

LQFP64

STM32F411xE LQFP64 Port Available

Port/Pin	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	✓	✓	✓	✓	\	\	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
В	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	эc	✓	✓	✓	✓
С	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
D	ж	×	✓	x	×	ж	ж	x)c	эc	ж	эc	эc	ж	ж	ж
Н	✓	✓	×	×	×	×	×	×	×	ж	×	ж	ж	ж	×	×

NUCLEO-F411RE

Board Pin Out

Pin Mapping Table

	Pir	numb	oer	_					, ,	
UQFN48	LQFP64	WLCSP49	LQFP100	UFBGA100L	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
10	14	F6	23	L2	PA0-WKUP	I/O	тс	(5)	TIM2_CH1/TIM2_ET, TIM5_CH1, USART2_CTS, EVENTOUT	ADC1_0, WKUP1
11	15	G7	24	M2	PA1	I/O	FT	-	TIM2_CH2, TIM5_CH2, SPI4_MOSI/I2S4_SD, USART2_RTS, EVENTOUT	ADC1_1
12	16	E5	25	КЗ	PA2	I/O	FT	-	TIM2_CH3, TIM5_CH3, TIM9_CH1, I2S2_CKIN, USART2_TX, EVENTOUT	ADC1_2
13	17	E4	26	L3	PA3	I/O	FT	-	TIM2_CH4, TIM5_CH4, TIM9_CH2, I2S2_MCK, USART2_RX, EVENTOUT	ADC1_3

Arduino Headers

Pinout

Morpho headers

These headers give access to all STM32 pins.

General Purpose Input Output

- Basic interfacing between MCU and real word
- Digital signal

Figure 2. Digital Switching Levels

I/O Port Characteristics

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The ART accelerator is ON.
- Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
- HCLK is the system clock at 84 MHz. f_{PCLK1} = f_{HCLK}/2, and f_{PCLK2} = f_{HCLK}.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature is 25 °C and V_{DD} =3.3 V.

Table 33. Peripheral current consumption

Perip	heral	I _{DD} (typ)	Unit	
	GPIOA	1.55		
	GPIOB	1.55		
	GPIOC	1.55		
41154	GPIOD	1.55		
AHB1 (up to 84MHz)	GPIOE	1.55	μA/MHz	
(4) to 0 1111112)	GPIOH	1.55		
	CRC	0.36		
	DMA1	20.24		
	DMA2	21.07		

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 30*.

Table 55. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I_{IO} = +8 mA 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I_{IO} =+8 mA 2.7 V \leq V _{DD} \leq 3.6 V	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	V _{DD} -1.3 ⁽⁴⁾	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.8 V ≤ V _{DD} ≤ 3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	V _{DD} -0.4 ⁽⁵⁾	-	V

 π

Absolute Maximum Rating

Table 11. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including $\rm V_{DDA}, V_{DD}$ and $\rm V_{BAT})^{(1)}$	-0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage for BOOT0	V _{SS}	9.0	1
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50	m∨
V _{SSX} -V _{SS}	Variations between all the different ground pins	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)		

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V _{DD_x} power lines (source) ⁽¹⁾	160	
ΣI_{VSS}	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	-160	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line $(sink)^{(1)}$	-100	
	Output current sunk by any I/O and control pin	25	
l _{IO}	Output current sourced by any I/O and control pin	-25	mA
21	Total output current sunk by sum of all I/O and control pins (2)	120	
ΣI_{IO}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-120	
. (3)	Injected current on FT pins (4)	5/.0	
I _{INJ(PIN)} (3)	Injected current on NRST and B pins ⁽⁴⁾	-5/+0	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

Related Documents

Working with Larger DC Loads

- MCU can drive simple DC loads directly with its digital I/O pins. (+/- 25 mA)
- MCU can't drive a load (e.g. motor) which needs more current than MCU port pin can supply.
- Need an interfacing circuit to draw current from a higher voltage.

- A good switching transistor for small DC loads is the ZVN4206A.
- The maximum VGS threshold value, shown as 3 V.
- MOSFET will respond to the 3.3V Logic 1 output level of MCU.

Characteristic	ZVN4206A
Maximum Drain-Source Voltage $V_{\scriptscriptstyle DS}$	60V
Maximum Gate-Source Threshold $V_{_{GS(th)}}$	3V
Maximum Drain-Source Resistance when 'On'. R _{DS(on)}	1.5Ω
Maximum Continuous Drain current I _D	600mA
Maximum Power Dissipation	0.7W
Input Capacitance	100pF

DC motor with Flying Diode

Memory Organization

- Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte address space
- Bytes are coded in memory in *little endian* format
 The lowest numbered byte in a word is considered the word's least significant byte and the highest numbered byte, the most significant
- Addressable memory space is divided into 8 main blocks, each of 512 MB

Big-endian and Little-endian format

Byte-invariant big-endian format

In byte-invariant big-endian format, the processor stores the most significant byte of a word at the lowest-numbered byte, and the least significant byte at the highest-numbered byte. For example:

Register

B2

Little-endian format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the most significant byte at the highest-numbered byte. For example:

Memory Map

 π

Memory Map

Bus	Boundary address	Peripheral
	0xE010 0000 - 0xFFFF FFFF	Reserved
Cortex [®] -M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals
	0x5004 0000 - 0xDFFF FFFF	Reserved
AHB2	0x5000 0000 - 0x5003 FFFF	USB OTG FS

Bus Boundary address Peripheral 0x4002 6800 - 0x4FFF FFFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 5000 - 0x4002 4FFF Reserved 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC AHB1 0x4002 2000 - 0x4002 2FFF Reserved 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1400 - 0x4002 1BFF Reserved 0x4002 1000 - 0x4002 13FF **GPIOE** 0x4002 0C00 - 0x4002 0FFF GPIOD **GPIOC** 0x4002 0800 - 0x4002 0BFF 0x4002 0400 - 0x4002 07FF **GPIOB GPIOA** 0x4002 0000 - 0x4002 03FF

 π

Memory Map

	0x4001 5400- 0x4001 FFFF	Reserved
	0x4001 5000 - 0x4001 53FFF	SPI5/I2S5
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4/I2S4
APB2	0x4001 3000 - 0x4001 33FF	SPI1/I2S1
AFDZ	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0400 - 0x4001 0FFF	Reserved
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7400 - 0x4000 FFFF	Reserved
		<u> </u>

General-Purpose I/Os (GPIOs)

- Each of the general-purpose I/O ports has:
 - Four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR)
 - Two 32-bit data registers (GPIOx_IDR and GPIOx_ODR)
 - 32-bit set/reset register (GPIOx_BSRR)
 - 32-bit locking register (GPIOx_LCKR)
 - Two 32-bit alternate function (GPIOx_AFRH and GPIOx_AFRL)
- Each port bit of GPIOs can be individually configured by software in several modes:

Input floating

Input pull-up

Input-pull-down

Analog

Output open-drain with pull-up or pull-down capability

Output push-pull with pull-up or pull-down capability

Alternate function push-pull with pull-up or pull-down capability

Alternate function open-drain with pull-up or pull-down capability

Basic Structure of a GPIO Bit (5V tolerance)

GPIO Bit Configuration Table

Table 23. Port bit configuration table⁽¹⁾

Table 2011 of the State of the								
MODER(i) [1:0]	OTYPER(i)	OSPEEDR(i) [B:A]		DR(i) :0]	I/O configuration			
	0		0	0	GP output	PP		
	0		0	1	GP output	PP + PU		
	0	SPEED [B:A]	1	0	GP output	PP + PD		
01	0		1	1	Reserved			
01	1		0	0	GP output	OD		
	1		0	1	GP output	OD + PU		
	1		1	0	GP output	OD + PD		
	1		1	1	Reserved (GP output OD)			
	+	+		•	+	•		

Table 23. Port bit configuration table⁽¹⁾ (continued)

MODER(i) [1:0]	OTYPER(i)	OSPEEDR(i) PUPDR(i) [1:0]		I/O configuration			
10	0	SPEED [B:A]		0	0	AF	PP
	0			0	1	AF	PP + PU
	0			1	0	AF	PP + PD
	0			1	1	Reserved	
	1			0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1			1	1	Reserved	
00	Х	х	Х	0	0	Input	Floating
	Х	х	Х	0	1	Input	PU
	Х	х	Х	1	0	Input	PD
	Х	х	Х	1	1	Reserved (input floating)	
11	Х	х	Х	0	0	Input/output	Analog
	Х	х	Х	0	1	Reserved	
	Х	х	Х	1	0		
	Х	х	Х	1	1		

GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function.

GPIO Operation

- During and just after reset, the alternate functions are not active and the I/O ports are configured in Input Floating mode (MODERx[1:0]=00b, PUPDRx[1:0]=00b)
- When configured as output, the value written to the Output Data register (GPIOx_ODR) is output on the I/O pin.
 - It is possible to use the output driver in Push-Pull mode or Open-Drain mode (only the N-MOS is activated when outputting 0).
- The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB1 clock cycle
- All GPIO pins have an internal weak pull-up and weak pull-down which can be activated or not when configured as input

GPIO Atomic Bit Set or Reset

☐ Atomic Read/Modify access

No interruption in the middle to cause errors

- Atomic operations ensure that the desired change is not interrupted resulting in partial set/reset of GPIOs
- ☐ There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level:
- ☐ It is possible to modify only one or several bits in a single atomic AHB1 write access
- ☐ This is achieved by programming to '1' the Bit Set/Reset Register (GPIOx_BSRR, or for reset only GPIOx_BRR) to select the bits you want to modify.

Unselected bits will not be modified

Input Configuration

- When the I/O Port is programmed as Input:
 - The Output Buffer is disabled
 - The Schmitt Trigger Input is activated
 - The weak pull-up and pull-down resistors are activated or not depending on input configuration (pull-up, pull-down or floating)
 - The data present on the I/O pin is sampled into the Input
 Data Register every AHB1 clock cycle
 - A read access to the Input Data Register obtains the I/O
 State

Input Configuration

Output Configuration

- When the I/O Port is programmed as Output:
 - The Output Buffer is enabled:
 - Open Drain Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register leaves the port in Hi-Z. (the P-MOS is never activated)
 - Push-Pull Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register activates the P-MOS
 - The Schmitt Trigger Input is activated.
 - The weak pull-up and pull-down resistors are disabled.
 - The data present on the I/O pin is sampled into the Input Data Register every AHB1 clock cycle
 - Read access to Input Data Register gets the I/O state
 - Read access to Output Data register gets last written value

Alternate Function Configuration

- When the I/O Port is programmed as Alternate Function:
 - The Output Buffer is turned on in Open Drain or Push-Pull configuration
 - The Output Buffer is driven by the signal coming from the peripheral (alternate function out)
 - The Schmitt Trigger Input is activated
 - The weak pull-up and pull-down resistors are disabled
 - The data present on the I/O pin is sampled into the Input Data Register every AHB1 clock cycle
 - A read access to the Input Data Register gets the I/O state in open drain mode
 - A read access to the Output Data register gets the last written value in Push-Pull mode

Alternate Function Configuration

π

Alternate Function Configuration

Analog Configuration

- When the I/O Port is programmed as Analog configuration:
 - The Output Buffer is disabled.
 - The Schmitt Trigger Input is de-activated providing zero consumption for every analog value of the I/O pin.
 - The output of the Schmitt Trigger is forced to a constant value (0).
 - The weak pull-up and pull-down resistors are disabled.
 - Read access to the Input Data Register gets the value "0".

Analog I/O Configuration

GPIO port mode register

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

0x0C00 0000 for port A

0x0000 0280 for port B

• 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODER	R12[1:0]	MODE	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

GPIO port output type register

8.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)

Address offset: 0x04

Reset value: 0x0000 0000

 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	OT8	OT7	ОТ6	OT5	OT4	OT3	OT2	OT1	ОТ0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

GPIO port output speed register

8.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..E and H)

Address offset: 0x08

Reset values:

0x0C00 0000 for port A

0x0000 00C0 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]	OSPEI [1:	EDR13 :0]	OSPEI [1:	EDR12 :0]		EDR11 :0]		EDR10 :0]		EDR9 :0]		EDR8 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	DR7[1:0]	OSPEE	DR6[1:0]	OSPEE	DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPE [1:	EDR1 :0]		EDR0 0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **OSPEEDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: Fast speed

11: High speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus V_{DD} range and external load.

GPIO port pull-up/pull-down register

8.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..E and H)

Address offset: 0x0C

Reset values:

0x6400 0000 for port A

0x0000 0100 for port B

• 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPDI	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPDI	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw										

Bits 2y:2y+1 **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down

11: Reserved

GPIO port input data register

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy**: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

GPIO port output data register

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	. 8	. 7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the $GPIOx_BSRR$ register (x = A..E and H).

8.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..E and H)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	BS4	3 BS3	BS2	1 BS1	0 BS0

Bits 31:16 **BRy:** Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

GPIO port configuration lock register

8.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..E and H)

Address offset: 0x1C

Reset value: 0x0000 0000

Access: 32-bit word only, read/write register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						_									LCKK
						Г	Reserved								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

GPIO port configuration lock register

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 **LCKK[16]**: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset occurs.

LOCK key write sequence:

WR LCKR[16] = '1' + LCKR[15:0]

WR LCKR[16] = '0' + LCKR[15:0]

WR LCKR[16] = '1' + LCKR[15:0]

RD LCKR

RD LCKR[16] = '1' (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will return '1' until the next CPU reset.

Bits 15:0 **LCKy:** Port x lock bit y (y=0..15)

These bits are read/write but can only be written when the LCKK bit is '0.

0: Port configuration not locked

1: Port configuration locked

GPIO alternate function low register

8.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..E and H)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRL	7[3:0]			AFRL	6[3:0]			AFRL	.5[3:0]			AFRL	.4[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFRL	3[3:0]			AFRL	2[3:0]			AFRL	.1[3:0]			AFRL	.0[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFRLy:** Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:

,	
0000: AF0	1000: AF8
0001: AF1	1001: AF9
0010: AF2	1010: AF10
0011: AF3	1011: AF11
0100: AF4	1100: AF12
0101: AF5	1101: AF13
0110: AF6	1110: AF14
0111: AF7	1111: AF15

GPIO alternate function high register

8.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..E and H)

Address offset: 0x24

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRH	15[3:0]			AFRH1	14[3:0]			AFRH	13[3:0]			AFRH	12[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFRH	11[3:0]			AFRH10[3:0]				AFRH	19[3:0]			AFRH	18[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFRHy:** Alternate function selection for port x bit y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRHy selection:

	•	
0000	: AF0	1000: AF8
0001	: AF1	1001: AF9
0010	: AF2	1010: AF10
0011	: AF3	1011: AF11
0100	: AF4	1100: AF12
0101	: AF5	1101: AF13
0110	: AF6	1110: AF14
0111	: AF7	1111: AF15

Accessing GPIOA/GPIOx

#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)

#define GPIOA_BASE (AHB1PERIPH_BASE + 0x0000)

#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000)

#define PERIPH BASE ((uint32_t)0x40000000)

 π

Stm32f411xe.h

```
typedef struct
  IO uint32 t MODER;
                      /*!< GPIO port mode register,</pre>
                                                                Address offset: 0x00
   IO uint32 t OTYPER; /*!< GPIO port output type register,
                                                                Address offset: 0x04
   IO uint32 t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08
                       /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C
  IO uint32 t PUPDR;
  IO uint32 t IDR;
                      /*!< GPIO port input data register,</pre>
                                                           Address offset: 0x10
  IO uint32 t ODR;
                       /*!< GPIO port output data register, Address offset: 0x14
  IO uint32 t BSRR; /*!< GPIO port bit set/reset register, Address offset: 0x18
  IO uint32 t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C
  IO uint32 t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
} GPIO TypeDef;
```

GPIO Initialization

```
void MX GPIO Init(void)
  GPIO InitTypeDef GPIO InitStruct;
  /* GPIO Ports Clock Enable */
   GPIOA CLK ENABLE();
  /*Configure GPIO pin : PA5 */
  GPIO InitStruct.Pin = GPIO PIN 5;
  GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
  GPIO InitStruct.Pull = GPIO PULLUP;
  GPIO InitStruct.Speed = GPIO SPEED FAST;
  HAL GPIO Init(GPIOA, &GPIO InitStruct);
```

GPIO Operations

HAL_GPIO_ReadPin

Function Name

GPIO_PinState HAL_GPIO_ReadPin (GPIO_TypeDef * GPIOx, uint16_t GPIO_Pin)

Function Description

Parameters

GPIOx: where x can be (A..K) to select the GPIO peripheral for STM32F429X device or x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.

GPIO_Pin: specifies the port bit to read. This parameter can be GPIO_PIN_x where x can be (0..15).

Return values

Notes

None.

Function Name	void HAL_GPIO_WritePin (GPIO_TypeDef * GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
Function Description	Sets or clears the selected data port bit.
Parameters	 GPIOx: where x can be (AK) to select the GPIO peripheral for STM32F429X device or x can be (AI) to select the GPIO peripheral for STM32F40XX and STM32F427X devices. GPIO_Pin: specifies the port bit to be written. This parameter can be one of GPIO_PIN_x where x can be (015). PinState: specifies the value to be written to the selected bit. This parameter can be one of the GPIO_PinState enum values: GPIO_BIT_RESET: to clear the port pin GPIO_BIT_SET: to set the port pin
Return values	None.
Notes	 This function uses GPIOx_BSRR register to allow atomic read/modify accesses. In this way, there is no risk of an IRQ occurring between the read and the modify access.

HAL_GPIO_TogglePin

Function Name void HAL_GPIO_TogglePin (GPIO_TypeDef * GPIOx, uint16_t GPIO_Pin)

Function Description Toggles the specified GPIO pins.

 GPIOx: Where x can be (A..K) to select the GPIO peripheral for STM32F429X device or x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices.

GPIO_Pin: Specifies the pins to be toggled.

Return values

None.

None.

Parameters

Notes