1.2

Intervalles

Maths 2nde 7 - JB Duthoit

Définitions

Définition

• L'intervalle fermé [a;b] désigne l'ensemble des nombres x tels que $a \le x \le b$.

• L'intervalle ouvert a; b désigne l'ensemble des nombres x tels que a < x < b.

• L'intervalle semi-ouvert [a; b[désigne l'ensemble des nombres x tels que $a \le x < b$.

• L'intervalle semi-ouvert a; b désigne l'ensemble des nombres $a \in a$ tels que $a \in a$

• L'intervalle $[a; +\infty[$ désigne l'ensemble des nombres x tels que $a \le x$.

• L'intervalle $]a; +\infty[$ désigne l'ensemble des nombres x tels que a < x.

• L'intervalle $]-\infty;b]$ désigne l'ensemble des nombres x tels que $x \leq b$.

• L'intervalle] $-\infty$; b[désigne l'ensemble des nombres x tels que x < b.

Exercice 1.6

Traduire sous forme d'appartenance à un intervalle les propositions suivantes :

- 1. x est un réel strictement positif
- 2. x est un réel supérieur ou égal à 10
- 3. y est un réel compris entre -5 exclu et 7 inclus

• Exercice 1.7

Traduire sous forme d'appartenance à un intervalle les inégalités suivantes :

- 1. -3.4 < x < 10.3
- 2. $10^2 < x \le 10^3$
- 3. $y > \sqrt{5}$

- 4. 3 > x
- 5. $87.6 \le x \le 87.7$
- 6. $4.56 \le t$

Exercice 1.8

Traduire sous forme d'appartenance à un intervalle les inégalités suivantes :

- 1. $x \le 2$
- 2. $y \ge -3$
- 3. $z < -\sqrt{2}$

- 4. $0 \le t < 0.1$
- 5. -1 < x < 0
- 6. 5 > x

Exercice 1.9

Donner l'intervalle J le plus petit possible vérifiant la condition donnée et tel que $I \subset J$:

- 1. I = [4.5; 7.8] avec les bornes de J entières.
- 2. I = [0.123; 0.125] avec les bornes de J qui sont des décimaux admettant une partie décimale à deux chiffres.
- 3. $I = [-\sqrt{2}; \sqrt{3}]$ avec les bornes de J qui sont des décimaux admettant une partie décimale à deux chiffres.

Réunion et intersection d'intervalles

Définition

Soient I et J deux intervalles.

- L'intersection de I et J, noté $I \cap J$, est l'ensemble des réels qui appartiennent à I et à J.
- L'union (ou réunion de I et J, noté $I \cup J$, l'ensemble des réels qui appartiennent à I ou à J.

Savoir-Faire 1.2

SAVOIR DÉTERMINER UNE RÉUNION OU INTERSECTION D'INTERVALLES

- \bullet Déterminer la réunion de [3;7] et [4;10]
- Déterminer l'intersection de [3; 7] et [4; 10]

Exercice 1.10

Déterminer la réunion et l'intersection des deux intervalles I et J, avec :

- 1. I = [2; 5] et J = [-1; 3]
- 2. I = [-3; 5] et J = [5; 6]
- 3. $I =]-\infty; 2]$ et J =]-3; 4]

- 4. $I =]-\infty; 2]$ et $J =]1; +\infty[$
- 5. I = [-17; -3] et $J = [-4; +\infty]$

Savoir-Faire 1.3

Savoir résoudre une équation du premier degré Résoudre dans $\mathbb{R},$ et donner la nature de la solution :

1.
$$3x + 1 = 8$$

$$2. 4x - 4 = 5$$

• Exercice 1.11

Résoudre dans $\mathbb R$ les équations suivantes :

1.
$$x + 4 = 0$$

2.
$$13 - x = 0$$

$$3. 5x + 15 = 3$$

4.
$$6 = 3x - 3$$

5.
$$98 - 5x = -65$$

6.
$$5x - 7 = 18$$

7.
$$13x - 8 = 18$$

8.
$$5x + 7 = 2x + 16$$

• Exercice 1.12

Résoudre dans $\mathbb R$ les équations suivantes :

1.
$$-x + 7 = 3$$

$$4x + 4 = 0$$

3.
$$5x - 125 = 0$$

4.
$$2 - 5x = 7$$

5.
$$3 = 4x + 11$$

6.
$$2 - x = 0$$

7.
$$-8x + 80 = 0$$

8.
$$-5x + 2 = 7x$$

Savoir-Faire 1.4

Savoir résoudre une inéquation du premier degré Résoudre dans $\mathbb R$:

1.
$$3x + 1 \le 8$$

$$2. -4x - 4 > 5$$

Exercice 1.13

Résoudre dans $\mathbb R$ les inéquations suivantes :

1.
$$7x + 4 < 0$$

2.
$$13 - 2x \ge 0$$

3.
$$5x + 12 \ge 3$$

4.
$$6 > 3x + 7$$

5.
$$98 - 5x > -65$$

6.
$$1 - x \ge 0$$

7.
$$3x + 6 > -3$$

8.
$$5-2x < 15+2x$$