

一、状态量、动能

人理想气体状态为彩

ム 统计假设

3. 微观假设

- 1)同类分子大小质量相同,每个分子有有成质点,体积忽略
- 4分子連循牛板定律,只发生完全弹性碰撞
- 3)分间其它相互作用忽略

4压强公式(由23指出) 适用于单原分分子

对A面 部间净量 12:-2mkx

A面受冲量 Ii=2m Vix

i分子来回·次隔时间 T= 说 碰撞频车 少宁

单位时间的子对小净 liv=fi=mvix

单位时间外的对相面对手看信盖心

A. 面压锅 P= 玉. = 正 : 型 Z Vix = mn V2

 $\Rightarrow P = \frac{1}{3} m n \overline{V^2} = \frac{1}{3} n (\frac{1}{2} m \overline{V^2}) = \frac{1}{3} n \widehat{E}_{t}$

Et=之m (平均动能)

5. 温度与动能

温度是分子平均平动动能的量度

6方均根建率 (5平均速率 1不同)

$$\sqrt{V^2} = \sqrt{\frac{3 k_B T}{m}} = \sqrt{\frac{3 RT}{44}}$$

推治: 涡段不变, 分子质量碰大, 方均根速率越小

二、气体动理论

单原子分子证3如:地氦气

刚性双原3分子 产3+2 计 如,02

非刚性双原3分子 证引出10 7~500亿分子内据动略

平边、转边、振边

2. 能量均分定理

$$\Xi_t = \frac{1}{2}k_BT = \frac{1}{2}mv_X^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2$$
 (只有平动)

定理:平衡态与体与个自由度都有相同的平均能量主KBT

- ⇒分子平均总动能 Ex= = 1/2 KBT
- 3、内能:会部微观粒子的能量总和

1mol 理想气体 Em= BRT

质量M气体 Em= 共产RT = 主VRT

4. 連率分加

定义:V到V+dV分子数H至

打一化条件 50 f(v) dv=1

V,いい分子数 学= 「v,fwdv

平均速率
$$V = \frac{\int_{V_{1}}^{V_{2}} v f(v) dv}{\int_{V_{2}}^{V_{2}} f(v) dv}$$
 方均根連年 $V = \frac{\int_{V_{1}}^{V_{2}} v^{2} f(v) dv}{\int_{V_{1}}^{V_{2}} f(v) dv}$

ゆ: 最可心(最概然) 速率 极值点。

5. 麦克斯韦速率分布

天外力,无外物的平衡态理想气体的速率分布函数

$$f(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} v^2 e^{-\frac{mv^2}{2k_B T}}$$

得 (F: V: 1)= 13: 1是: 12 × 173: 160: 141

都正比于一一一

$$V_{p=1} \sqrt{\frac{2 \, K_B T}{m}} \quad \overline{V} = \sqrt{\frac{8 \, K_B T}{2 \, m}}$$

6. 玻尔兹曼多布律

分子数密度 n= noe-器

dw=no(27/8T) == = dudydu dwdydz

7.分子平均自由程

A从相对速年U运动 U=在V

平均碰撞频率 豆式在不成了

At内分子平均走过TAT, 碰撞 豆吐

平均自由程入= = 豆成

8. 实际气体状态方程

b为分子固有体积的4倍

Do (Vo-以)=RT 1付积修正)

压强修正 平平的 附品

a,b由实验确定

范徳华方代 (P+ a-12) (V-vb)= VRT

三、热力学第一定律与准静态过程

1. 准静态过程: 过程中的任意时刻, 系统都无限据近于平衡态

2. S体推治寒作功: dw= Fdl = pSdl = pdV

WAC = [v. pdv (庄积显,非状态函数)

3. 热力学第一定律:系统从外界吸收的 热量贝与外界对系统作功A之和,

等于系统内能的馆量△E △E=Q+A dQ=dE+PdV

4 等体(客) 过程 吸热只用升温

dV=0 $dQ_V=dE=V_2^2RdT$

等体磨尔热客 Cum = 号 = 主R

内能增量 AE=VCv,m AT

1. 筹压过程

体积由1、变化至1/2,对纤作动 Wp= [ch. p dV= p(V2-V1)

Qp=DE+PLV2-VV) 吸热用于升温和对外作功

= V ((v,m+R) T

dQP=V(Cvm+R)dT :Cpm=亡·留于=Cvm+R=(注+1)R(证那)

理想与体摩尔热客的》= 500 = 342

6.等温过程 吸热只用于对外作功

dT=0, dE=0 $Q_T=\int_{V_1}^{V_2} P dV$ $ZP=\frac{VRT}{V}$

QT= URTHE = URT INF

 $C_T = \frac{dQ}{VQT} \rightarrow \omega$

7. 绝热过程 没有从外界吸热,(没有热交换)

die = VCv, m dT + PdV = 0

 $PV^{\gamma} = const$ $s C_{v,m} = \frac{P}{\gamma - 1} P^{\gamma - 1} T^{-\gamma} = const$ $Wu = -V C_{v,m} (T_2 - T_1) = \frac{P_1 V_1 - P_2 V_2}{\gamma^2 - 1}$

8. 多方且程

 $C_{m} = \frac{dQ}{VaT} = C_{V,m} - \frac{R}{n-1} = \frac{R}{p-1} - \frac{R}{m_{1}} = \frac{n-\gamma}{(n-1)(p-1)}R$ $n = \frac{C-Cp}{C-Cv}$

(cn cp, 热荡C co 超脂的 (恒星质化初期)

表 8.3 理想气体的几种多方过程					
过程名称	等压过程	等温过程	绝热过程	等体过程	多方过程
多方指数	0	1	γ	±∞	n
过程方程	$\frac{V}{T}$ = 常量	pV=常量	pV ^γ =常量	<u>P</u> = 常量	pV"=常量
p-V 曲 线斜率	$-o\left(\frac{p}{V}\right)$	$-1\left(\frac{p}{V}\right)$	$-\gamma\left(\frac{p}{V}\right)$	$-(\pm\infty)\left(\frac{p}{V}\right)$	$-n\left(\frac{p}{V}\right)$
摩尔热容	$C_{p,\mathrm{m}}$	± &	0	$C_{V,m}$	$C_{\rm m} = \frac{n-\gamma}{n-1} C_{V,\rm m}$
气体对外 界所做的 功(-A)	$p\Delta V$	$\nu RT \ln \frac{V_b}{V_a}$ $= p_a V_a \ln \frac{p_a}{p_b}$	1 7	0	$\frac{\Delta(pV)}{1-n}$
气体吸收 的热量 Q		ע RT ln $rac{V_b}{V_a}$	0	$ u C_{V,m} \Delta T$	$ \frac{\nu C_{\rm m} \Delta T}{= \nu C_{\rm V,m} \Delta T} + \frac{\Delta (pV)}{1-n} $
气体内能的增量ΔE	$ u C_{V,m} \Delta T$	0	$= \frac{\Delta(pV)}{\gamma - 1}$	$ u C_{V,m} \Delta T$	$ u C_{V,\mathrm{m}} \Delta T$

75 45 6- 4L 4L 0 7L 6- 1- 1- 10

9. 热力学循环

经-个循环 UE=D

热机效率 1= 岩版=1- 器

制冷系数 e= Q贴 = Q贴 - Q的-Q贴

O D D B

10. 奥托循环 个

2绝热+2等体

1-1-(型)=1-アドア 圧縮は下場

1、卡诺循环 P1

)绝热+2等温

1= 1- =

制和e=元

四、热力学第二定律与熵

1. 开尔文表述:不可能从单-热源吸取热量使之完全变成功,而不产生其他变化

2、克劳修斯表述:不可能使热量从低温热源传递到高温热源,而不产生其他变化

3.卡诺定理:(1)在两个温度-定的热源间,-切卡诺循环效率相同,与工作物质无关

(1) 在两个温度 - 定的热源间, - 切不可逆循环效率分热小于卡涡循环 1/4 1- 平

4. 态函数熵(5)

公司包X Ng (7)

对 3 卡诺循环 $\eta = \frac{Q_W - Q_W}{Q_W} = \frac{T_- T_2}{T_1} \triangleq \frac{Q_1 + Q_2}{Q_1} \Rightarrow \frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$

推广任意可逆循环 acbda,都可用卡诺循环逼近

自个小循环型工一型二口和工学:0

小循环数目→四 刚 中华=0

中学 = acb 学 + bad = acb 学 - acb - acb

计算特定状态的熵, 隔选参先点(绝对屋座, 0°c)

- 5. 理想气体状态源变时的熵变
 - 1 绝热牙道: da=0 0S=0
 - 2) 写体: OS = SabdQv = ST: DCvdT = DCv/n干;
 - 3) 第丘: OS: DCp In 平
 - 4) 等温: OS = SO de = +VRT M光: VRM光
 - s) 化色两灰间: ds= 华 + PdV = vCv 华 + vR 华 OS = [Tb v Cvd] + SVb VR dV = vCvh' + vR h' ka

可用状态的程体变量 华十二 华

- 6相变过程的熵变 45= Q相变
- 7.绝热不可色注程的熵变

例如特级自由膨胀一倍

从私1 (V,,P,T) 到私2 (V2,P,T2)

dQ=0,气体不对外做功 → ΔE=0 → T=T2

用可逆等温线连接起1和卷2(只用于计算)

S2-S1= 52 de = 52 Pay = 28 holy 20

兄, 鸠鸠原理: 孤立系统的自发过程总是向熵, 增大的方向, 浸化; US>D 当熵最大时, 系统达到平衡态 (等: 种表述)

三种私述等价

9. 热力学第二定律的统计学意义 玻尔兹曼陶公式 S=Kh八、热炸概率(微观态敏印)

