例 13.1 微分方程 $y' = \frac{y(1-x)}{x}$ 的通解是_____.

例 13.3 设 L 是一条平面曲线,其上任意一点 P(x,y)(x>0) 到坐标原点的距离恒等于该点处的 切线在 y 轴上的截距,且 L 经过点 $\left(\frac{1}{2},0\right)$. 求曲线 L 的方程.

例 13.4 设 F(x) = f(x)g(x),其中函数 f(x)与 g(x)在($-\infty$, $+\infty$)内满足以下条件: f'(x) = g(x), g'(x) = f(x),且 f(0) = 0, $f(x) + g(x) = 2e^x$.

- (1)求 F(x)所满足的微分方程;
- (2)求出 F(x)的表达式.

例 13.5 求 $ydx = (1+x\ln y)xdy(y>0)$ 的通解.

例 13.6 求 $y'' = \frac{2xy'}{1+x^2}$ 的通解.

例 13.7 求微分方程 $2yy''+(y')^2=0$ 的通解,其中 y>0.

例 13.8 设 A,B,C 为待定常数,微分方程 $y''-2y'+5y=2e^{x}\sin^{2}x$ 的特解形式为().

 $(A)Ae^{x} + xe^{x}(B\cos 2x + C\sin 2x)$ (B) $Ae^{x}\sin^{2}x$

 $(C)Ae^x + e^x(B\cos 2x + C\sin 2x)$

 $(D)Ae^{x}\cos^{2}x$

例 13.9 已知某 n 阶常系数齐次线性微分方程有特解 $y_1(x) = e^x \cos 2x$, $y_2(x) = x$, 且方程中 $y^{(n)}$ 前的系数为 1,则最小的 $n = _____$,该方程为_____.

例 13.10 设 y_1, y_2 是一阶非齐次线性微分方程 y'+p(x)y=q(x) 的两个特解,若常数 λ,μ 使 λy_1+ μy_2 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则().

$$(A)_{\lambda} = \frac{1}{2}, \mu = \frac{1}{2}$$

(B)
$$\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$$

(D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$

$$(C)_{\lambda} = \frac{2}{3}, \mu = \frac{1}{3}$$

(D)
$$\lambda = \frac{2}{3}, \mu = \frac{2}{3}$$

例 13.11 设 y=f(x)是方程 y''-2y'+4y=0 的一个解,若 $f(x_0)>0$,且 $f'(x_0)=0$,则函数 f(x)

(A)取得极大值 (B)取得极小值 (C)某个邻域内单调增加 (D)某个邻域内单调减少

13.1 求微分方程 $\left(x\frac{\mathrm{d}y}{\mathrm{d}x}-y\right)$ arctan $\frac{y}{x}=x$ 的通解.

13.2 微分方程 $ydx+(x-3y^2)dy=0$ 满足条件 $y\Big|_{x=1}=1$ 的解为 y=_____.

13.3 求微分方程 $y'+1=e^{-y}\sin x$ 的通解.

13.4 设函数 f(t)在 $[0,+\infty)$ 上连续,且满足方程 $f(t) = e^{4\pi t^2} + \iint_{x^2+y^2 \leqslant 4t^2} f\left(\frac{1}{2}\sqrt{x^2+y^2}\right) dxdy$, 求 f(t).

13.5(仅数学一) 求 $(x+2)y''+x(y')^2=y'$ 的通解.

13.8 设 y=y(x)是二阶常系数线性微分方程 $y''+py'+qy=e^{3x}$ 满足初始条件 y(0)=y'(0)=0 的特 解,则当 $x\to 0$ 时,函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限().

(A)不存在 (B)等于1 (C)等于2 (D)等于3

13.9 设函数 y(x)是微分方程 $y'-xy=\frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1)=\sqrt{e}$ 的特解.

21

65 考研数学基础30讲·高等数学分册

- (1)求 y(x);
- (2)设平面区域 $D = \{(x,y) | 1 \le x \le 2, 0 \le y \le y(x) \}$,求 D 绕 x 轴旋转所得旋转体的体积.