# Formulas

#### Stephanie Ranft S2459825

October 10, 2019

# Statistics 2 PSBE2-07

## **Exercises**

## Regression - ANOVA analysis

1. The "Healthy Breakfast" dataset contains, among other variables, the Consumer Reports ratings of 77 cereals, the number of grams of sugar contained in each serving, and the number of grams of fat contained in each serving.

Considering "Sugars" as the explanatory variable and "Rating" as the response variable generated the following regression line:

Rating = 59.3 - 2.40 Sugars

| Source     | DF | SS      | MS     | F      | p     |
|------------|----|---------|--------|--------|-------|
| Regression | 1  | 8654.7  | 8654.7 | 102.35 | 0.000 |
| Error      | 75 | 6342.1  | 84.6   |        |       |
| Total      | 76 | 14996.8 | 194.76 |        |       |

Table 1: Analysis of Variance - rating ~ sugar

As a simple linear regression model, we previously considered "Sugars" as the explanatory variable and "Rating" as the response variable.

The regression line generated by the inclusion of "Sugars" and "Fat" is the following:

Rating = 61.1 - 2.21 Sugars - 3.07 Fat

| Source     | DF | SS      | MS     | F     | p     |
|------------|----|---------|--------|-------|-------|
| Regression | 2  | 9325.3  | 4662.6 | 60.84 | 0.000 |
| Error      | 74 | 5671.5  | 76.6   |       |       |
| Total      | 76 | 14996.8 | 194.76 |       |       |
| Source     | DF | Seq SS  |        |       |       |
| Sugars     | 1  | 8654.7  |        |       |       |
| Fat        | 1  | 670.5   |        |       |       |

Table 2: Analysis of Variance - rating  $\sim$  sugar + fat

- (a) Define the population regression model using table 2. If two cereals have the same fat content but different sugar content, what can you say about the rating?
- (b) What does VIF stand for? Compute the VIF using table 2.
- (c) What does VAF stand for? Compute the VAF using tables 1 and 2.
- (d) How do the ANOVA results change when "FAT" is added as a second explanatory variable?
- (e) Formulate appropriate hypotheses, make a decision and explain your reasoning.

2. Answer the following questions using the tables and graphs below.

Table 3: Descriptive Statistics

|                    | sales   | adverts  | airplay | attract |
|--------------------|---------|----------|---------|---------|
| Valid              | 200     | 200      | 200     | 200     |
| Missing            | 0       | 0        | 0       | 0       |
| Mean               | 193.200 | 614.412  | 27.500  | 6.770   |
| Std. Error of Mean | 5.706   | 34.341   | 0.868   | 0.099   |
| Std. Deviation     | 80.699  | 485.655  | 12.270  | 1.395   |
| Minimum            | 10.000  | 9.104    | 0.000   | 1.000   |
| Maximum            | 360.000 | 2271.860 | 63.000  | 10.000  |



Figure 1

Table 4: Model Summary

| Model | R     | $\mathbb{R}^2$ | Adjusted R <sup>2</sup> | RMSE   | R <sup>2</sup> Change | F Change | df1 | df2 | p      |
|-------|-------|----------------|-------------------------|--------|-----------------------|----------|-----|-----|--------|
| 0     | 0.578 | 0.335          | 0.331                   | 65.991 | 0.335                 | 99.587   | 1   | 198 | < .001 |
| 1     | 0.815 | 0.665          | 0.660                   | 47.087 | 0.330                 | 96.447   | 2   | 196 | < .001 |

Table 5: Coefficients

|       |             |                |                |              |        |        | 95% CI  |         | Collinearity Statistics |       |
|-------|-------------|----------------|----------------|--------------|--------|--------|---------|---------|-------------------------|-------|
| Model |             | Unstandardized | Standard Error | Standardized | t      | p      | Lower   | Upper   | Tolerance               | VIF   |
| 0     | (Intercept) | 134.140        | 7.537          |              | 17.799 | < .001 | 119.278 | 149.002 |                         |       |
|       | adverts     | 0.096          | 0.010          | 0.578        | 9.979  | < .001 | 0.077   | 0.115   | 1.000                   | 1.000 |
| 1     | (Intercept) | -26.613        | 17.350         |              | -1.534 | 0.127  | -60.830 | 7.604   |                         |       |
|       | adverts     | 0.085          | 0.007          | 0.511        | 12.261 | < .001 | 0.071   | 0.099   | 0.986                   | 1.015 |
|       | airplay     | 3.367          | 0.278          | 0.512        | 12.123 | < .001 | 2.820   | 3.915   | 0.959                   | 1.043 |
|       | attract     | 11.086         | 2.438          | 0.192        | 4.548  | < .001 | 6.279   | 15.894  | 0.963                   | 1.038 |

Table 6: ANOVA

| Model |            | Sum of Squares | df  | Mean Square | F       | р      |
|-------|------------|----------------|-----|-------------|---------|--------|
| 0     | Regression | 433687.833     | 1   | 433687.833  | 99.587  | < .001 |
|       | Residual   | 862264.167     | 198 | 4354.870    |         |        |
|       | Total      | 1.296e + 6     | 199 |             |         |        |
| 1     | Regression | 861377.418     | 3   | 287125.806  | 129.498 | < .001 |
|       | Residual   | 434574.582     | 196 | 2217.217    |         |        |
|       | Total      | 1.296e + 6     | 199 |             |         |        |

- (a) What is the population regression equations for Model 0 and 1?
- (b) Describe the regression equations you wrote above, in words (1-2 sentences each model). What is the point of the comparison?
- (c) Summarise the findings of table 3 and compare with fig. 1.
- (d) Write the null and alternative hypothesis based on the regression equations you wrote in part (a). Now, describe these hypothese in words (do not refer to beta coefficients, just use plain language like you're informing a friend). What does table 4 inform you about your hypotheses?
- (e) Under Model 0, what is the expected output if the explanatory variable input has value 600? Compare this with output with the output from Model 1 under the same conditions. Explain the difference in your results.
- (f) Explain the fourth and seventh columns of table 4.
- (g) Table 5 provides you with the VIF for both models. Interpret the results without making too many references to the exact value of the VIF, i.e. what do these values mean?
- (h) Provide the standardised regression equations for both models.
- (i) Use table 6 to make your decision about your hypotheses. Explain your reasoning.