

What about the Data? Towards Continual Learning in the Wild

Ameya Prabhu

Motivations for This Talk

 Quite Experimental! Need feed 	драск.
---	--------

Motivations for This Talk

Quite Experimental! Need feedback.

<u>Backstory</u>

- Gave my first broader talk recently at Computer Vision Talks
 - Title: "Computationally Budgeted Continual Learning"
 - Link: drimpossible.github.io/talks_and_blogs/
- Asked to elaborate on "How I Look at Problems?"
 - Me: "How Phil, Adel, Ozan/Vladlen, Anoop, Maneesh taught me"
 - This talk!

Outline

My Thought Process

- [Methods] Beware: Complex Methods (5 mins)
- [Evaluation] Ask: Why Evaluate X? (15 mins)
- [Problem Setup] Target the Most Pressing Problems first.. (15 mins)

Outline

My Thought Process

- [Methods] Beware: Complex Methods (5mins)
- [Evaluation] Ask Why Evaluate X?
- [Data] Target the Most Pressing Problems first..

Part 1 [Brief] My Way of Thinking about Methods

 Come up with a novel ide 	ea A
--	------

- Come up with a novel idea A
- Add it to a state-of-the-art pipeline P
- And evaluate

- Come up with a novel idea A
- Add it to a state-of-the-art pipeline P
- And evaluate
- If E(P + A) > E(P)
- Write a paper => reviewers recognize how smart we are => publish

- Come up with a novel idea A
- Add it to a state-of-the-art pipeline P
- And evaluate
- If E(P + A) > E(P)
- Write a paper => reviewers recognize how smart we are => publish

^A Large Fraction of Continual Learning Papers

- Come up with a novel idea A
- Add it to the state-of-the-art pipeline P

- Come up with a novel idea A.
- Add it to the state-of-the-art pipeline P
- And it breaks!

- Come up with a novel idea A.
- Add it to the state-of-the-art pipeline P
- And it breaks!
- Fix it with incremental changes i1 + i2 +...
- And Evaluate E(P + A + i1 + i2 +...) > E(P)
- Write a paper => reviewers recognize how smart we are => publish

- Come up with a novel idea A.
- Add it to the state-of-the-art pipeline P
- And it breaks!
- Fix it with incremental changes i1 + i2 +...
- And Evaluate E(P + A + i1 + i2 +...) > E(P)
- Write a paper => reviewers recognize how smart we are => publish

The Problem

A was the novel idea! But all performance increases came from i1 + i2 +...

- Come up with a novel idea A.
- Add it to the state-of-the-art pipeline P
- And it breaks!
- Fix it with incremental changes i1 + i2 +...
- And Evaluate E(P + A + i1 + i2 +...) > E(P)
- Write a paper => reviewers recognize how smart we are => publish

The Problem

A was the novel idea! But all performance increases came from i1 + i2 +...

Solution: Ablate A?

Ablations Are Not Enough!

The problem:

- We picked and tuned i1 + i2 +... to make P + A work
- Of course, when we remove A => Something degrades
- Doesn't mean A is needed!

Hence, my skepticism

Preliminary Takeaways

- Novelty is Overrated!
 - Be radically more skeptical of complex approaches: Justify extra burden!

Slides from: Helping or Hurting? Great Ideas and Why They Don't Matter, Chris Russell (TVG20 Talk @ Oxford)

Preliminary Takeaways

- Novelty is Overrated!
 - Be radically more skeptical of complex systems: Justify extra burden!
- Best Practices remain Stable!
 - Incremental "tricks" which generalize drive the field forward!

Slides from: Helping or Hurting? Great Ideas and Why They Don't Matter, Chris Russell (TVG20 Talk @ Oxford)

Preliminary Takeaways

- Novelty is Overrated!
 - Be radically more skeptical of complex systems: Justify extra burden!
- Best Practices remain Stable!
 - Incremental "tricks" which generalize drive the field forward!

So is simplicity better? Yes, but..
We need to go one important step ahead

Form Hypothesis,	Give an	Intervention	to test it:	Benchmark	& See	Results
------------------	---------	--------------	-------------	-----------	-------	---------

Slides from: Helping or Hurting? Great Ideas and Why They Don't Matter, Chris Russell (TVG20 Talk @ Oxford)

Form Hypothesis, Give an Intervention to test it: Benchmark & See Results

- GDumb (ECCV 2020):
 - Methods don't use online stream
 - Performance degrades! Test on longer time horizons, best: Reset (B2/B3)
- BudgetCL (CVPR 2023):
 - (i) Methods focus on memory rather than compute! Bad!

Form Hypothesis, Give an Intervention to test it: Benchmark & See Results

- GDumb (ECCV 2020):
 - Methods don't use online stream
 - Performance degrades! Test on longer time horizons, best: Reset (B2/B3)
- BudgetCL (CVPR 2023):
 - (i) Methods focus on memory rather than compute! Do they generalize?

Simplicity comes for free, as a by-product of a focused question

Form Hypothesis, Give an Intervention to test it: Benchmark & See Results

• Simplicity comes for free, as a by-product of a focused question

Excitement about Pre-Registration

- Pre-registration promising to encourage this style of research!
- Excited to see what happens in CLAI Unconference!

Form Hypothesis, Give an Intervention to test it: Benchmark & See Results

• Simplicity comes for free, as a by-product of a focused question

Excitement about Pre-Registration

- Pre-registration promising to encourage this style of research!
- Excited to see what happens in CLAI Unconference!

Let's Extend this thinking to Metrics and Data..

Outline

My Thought Process

- [Methods] Beware: Complex Methods (5 mins)
- **[Evaluation]** Ask: Why Evaluate X? (15 mins)
- [Data] Target the Most Pressing Problems first.. (15 mins)

Part 2 My Way of Thinking about Metrics

- Have a novel idea A
- Add it to a state-of-the-art pipeline P
- And evaluate
- If E(P + A) > E(P)
- Write a paper, the reviewers recognize how smart we are, and publish

Chronic Over-Reporting of Metrics

Case Study: Online Continual Learning

Report a whole bunch of metrics **E**:

Avg. Accuracy and Forgetting and Anytime Accuracy and LP Accuracy
 .. and just say we are better!

Bad!

State an Objective, propose/use a metric to measures progress, Benchmark!

State an Objective, propose/use a metric to measures progress, Benchmark!

Case Study: Online Continual Learning

Objective: I want to rapidly adapt to incoming data! (Goal of all online systems!)

State an Objective, propose/use a metric which measures that, Benchmark!

Case Study: Online Continual Learning

Objective: I want to rapidly adapt to incoming data! (Goal of all online systems!)

Relooking metrics in online continual learning:

Avg. Accuracy **and** Forgetting **and** Anytime Accuracy **and** LP Accuracy

None of them measure rapid adaptation! They measure forgetting!

State a Objective, propose/use a metric which measures that, Benchmark!

Case Study: Online Continual Learning

Objective: I want to rapidly adapt to incoming data!

(Goal of all online systems!)

Trad. Online Learning uses Online accuracy

 Measure of the model's performance on the next unseen sample/batch.

Free from Memory Limits: Prabhu et. al., "Online Continual Learning Without the Storage Constraint" Arxiv.

With Memory Limits: "Real-Time Evaluation in Online Continual Learning: A New Hope" Ghunaim et al, CVPR23.

State a Objective, propose/use a metric which measures that, Benchmark!

Case Study: Online Continual Learning

Objective: I want to rapidly adapt to incoming data!

(Goal of all online systems!)

Trad. Online Learning uses Online accuracy

 Measure of the model's performance on the next unseen sample/batch.

Impractical in class-incremental OCL Setups!

Next samples are by design same class

Free from Memory Limits: Prabhu et. al., "Online Continual Learning Without the Storage Constraint" Arxiv.

With Memory Limits: "Real-Time Evaluation in Online Continual Learning: A New Hope" Ghunaim et al, CVPR23.

Studying Data Streams: Measuring Adaptation

<u>Continual geoLOCalization</u> (Cai et. al., 2021)

- Geolocation at scale
- 713 classes, 39M images
- Simulates images arriving on a Flickr server.

Online accuracy

Measure of the model's performance on the next unseen sample/batch.

Hard to do in class-incremental setups

- Next samples are by design same class

Better Datasets

Continual Google Land Marks V2 (Prabhu et. al., 2023)

- Long-tailed landmark classification
- 10,788 classes, 450K images
- Simulates arrival on a Wikimedia Commons server.

Free from Memory Limits: Prabhu et. al., "Online Continual Learning Without the Storage Constraint" Arxiv.

With Memory Limits: "Real-Time Evaluation in Online Continual Learning: A New Hope" Ghunaim et al, CVPR23.

Insight: Metric Does not Evaluate Adaptation Well!

Online accuracy

Measures model's performance on the next unseen sample/batch.

Finding: The stream labels are correlated in natural streams!

Insight: Incorrect Evaluation of Adaptation

Online accuracy

Measures model's performance on the next unseen sample/batch.

Let us look at Real CLOC Samples!

Hammoud et. al., Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?, ICCV' 23

Insight+: Why are Correlated Samples Important?

Finding: The stream labels are correlated in natural streams!

Why is it important?

A **Blind** Classifier

Blind Classifier: A model that predicts the mode of the last **K** samples seen without access to the input images.

Insight+: Why are Correlated Samples Important?

Finding: The stream labels are correlated in natural streams!

Why is it important?

Hammoud et. al., Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?, ICCV' 23

OverAdapt: Hacking the Label Correlations

Finding: The stream labels are correlated in natural streams!

A Blind Classifier has Great Performance

OverAdapt: A simple and clearly wrong baseline!

A model made to overfit to the latest data by:

- 1. Adopting FIFO sampling to select training samples: The Bad Design Component in Cai et. al. 2021
- 2. Fix a pretrained ResNet50 backbone and trainlinear layer only

OverAdapt: Hacking the Label Correlations

Finding: The stream labels are correlated in natural streams!

A Blind Classifier has Great Performance

Hammoud et. al., Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?, ICCV' 23

Recent Methods which I think Fall into this Trap

Finding: The stream labels are correlated in natural streams!

A Blind Classifier has Great Performance

Kalman Filter for Online Classification of Non-Stationary Data

Michalis K. Titsias* Google DeepMind mtitsias@google.com

Razvan Pascanu Google DeepMind razp@google.com Alexandre Galashov* Google DeepMind agalashov@google.com

Yee Whye Teh Google DeepMind ywteh@google.com Amal Rannen-Triki Google DeepMind arannen@google.com

Jörg Bornschein Google DeepMind bornschein@google.com Low-rank extended Kalman filtering for online learning of neural networks from streaming data

Peter G. Chang, Gerardo Durán-Martín, Alex Shestopaloff, Matt Jones, Kevin Patrick Murphy

Keywords: Bayesian inference, online learning, extended Kalman filter, deep neural networks, non-stationary distributions, continual learning

Abstract Paper

Hammoud et. al., Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?, ICCV' 23

Our Solution: Near-Future Accuracy

- Instead of measuring the accuracy on the immediate next batch how about we measure the accuracy on the next uncorrelated batch?
- Question: How do we estimate the batches to delay our evaluation with?

Near-Future Accuracy: Blind Classifier to Rescue

• Question: How to estimate the batches to delay our evaluation with?

Delay the Blind Classifier evaluation just until it converges to a random classifier!

Near-Future Accuracy: Benchmark

Hammoud et. al., Rapid Adaptation in Online Continual Learning: Are We Evaluating It Right?, ICCV' 23

Outline

My Thought Process

- [Methods] Beware: Complex Methods (5 mins)
- [Evaluation] Ask: Why Evaluate X? (15 mins)
- [Problem Setup] Target the Most Pressing Problems First.. (15 mins)

Part 3 My Approach about Deciding Problem Setup

Hypothesis testing frame hopefully clear by now!									

<u>Problem Setup</u>: How to choose assumptions while formulating a problem?

Assumptions help simplify and contextualize hard problems which...

- Allows principled approaches, far faster than hit-and-try grad student descent!
 - This is for the empirical/applied folks in the audience

<u>Problem Setup</u>: How to choose assumptions while formulating a problem?

Assumptions help simplify and contextualize hard problems which

- Allows principled approaches, far faster than hit-and-try grad student descent!
 - This is for the empirical/applied folks in the audience
- Assumptions should reflect the real world
 - For the theoretical folks in the audience

<u>Problem Setup</u>: How to choose assumptions while formulating a problem?

Great to see continual progression towards more realistic assumptions!

- Task-increment => Class-increment => Blurry-boundaries => Time-incremental
- Small-scale => Large-scale
- No memory => Tiny-memory => Memory-limited => Memory-unconstrained

..while imposing computational constraints!

<u>Problem Setup</u>: How to choose assumptions while formulating a problem?

Great to see continual progression towards more realistic assumptions!

- Task-increment => Class-increment => Blurry-boundaries => Time-incremental
- Small-scale => Large-scale
- No memory => Tiny-memory => Memory-limited => Memory-unconstrained

..while imposing computational constraints!

A new dimension today: Where does labeled data come from?

Studying Data Streams: Where is Training Data?

Continual Manual Annotation is costly and time-consuming — huge problem!

• CLEAR10 required \$4500 for 30K

Alternate Task: Going from Categories to Classifier

Task: Go from Category List to Trained Classifier within minutes *continually*

1. The data stream, S, presents a set of categories, Y_t , to be learned.

Alternate Task: Going from Categories to Classifier

Task: Go from Category List to Trained Classifier within minutes *continually*

- 1. The data stream, S, presents a set of categories, Y_t , to be learned.
- 2. Under a given computational budget, C_t , the classifier $f_{\theta_{t-1}}$ is updated to f_{θ_t} .

Can use any public data/model assistance to do this! E.g. GPT3, DALL-E, LAION5B

Alternate Task: Going from Categories to Classifier

Task: Go from Category List to Trained Classifier within minutes *continually*

- 1. The data stream, S, presents a set of categories, Y_t , to be learned.
- 2. Under a given computational budget, C_t , the classifier $f_{\theta_{t-1}}$ is updated to f_{θ_t} .
- 3. To evaluate the learner, the stream S presents test samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with y_i belonging to the collective set $\bigcup_{i=1}^t \mathcal{Y}_i$.

How to Get Around Manual Data Annotation?

Manual Annotation

Stable Diffusion

Retrieval from Source

Internet: Billions of images uploaded each day

Static datasets are miniscule and out-of-date in comparison to the Internet!

Internet as a Huge, Continually Evolving Train Set

Idea: Download data from searching the Internet! [Fergus, et.al. 2005]

==> Go from Category List to Trained Classifier within minutes continually!

Internet as a Huge, Continually Evolving Train Set

Is it better than using Stable Diffusion or Retrieval From LAION5B?

Table 3: Comparison with Name-Only Classification Techniques with ResNet50: When comparing with existing state-of-the-art name-only classification techniques, we show that our method outperforms those methods by margins ranging from 2% to 25%.

Type	Method	Model	Birdsnap	Aircraft	Flowers	Pets	Cars	DTD	
Data-Free	CLIP-ZS (Radford et al., 2021)	CLIP	32.6	19.3	65.9	85.4	55.8	41.7	P _r E
	CaFo-ZS (Zhang et al., 2023)	CLIP	-	17.3	66.1	85.8	55.6	50.3	9
	CALIP (Guo et al., 2023)	CLIP	-	17.8	66.4	86.2	56.3	42.4	Bett rom
	CLIP-DN (Zhou et al., 2023)	CLIP	31.2	17.4	63.3	81.9	56.6	41.2	<u>d</u>
	CuPL (Pratt et al., 2023)	CLIP	35.8	19.3	65.9	85.1	57.2	47.5	er
	VisDesc (Menon & Vondrick, 2022)	CLIP	35.7	16.3	65.4	82.4	54.8	42.0	•
	SD-Clf (Li et al., 2023a)	SD-2.0	-	26.4	66.3	87.3	-	-	
Use-Data	GLIDE-Syn (He et al., 2022)	CLIP	38.1	22.0	67.1	86.8	56.9	43.2	5
	CaFo (Zhang et al., 2023)	CLIP	-	21.1	66.5	87.5	58.5	50.2	SD/ AIO
	SuS-X-LC (Udandarao et al., 2023)	CLIP	38.5	21.1	67.1	86.6	57.3	50.6	SD/ AION
	SuS-X-SD (Udandarao et al., 2023)	CLIP	37.1	19.5	67.7	85.3	57.2	49.2	_
	C2C (Ours-Linear Probe)	CLIP	48.1 (+9.6)	44.0 (+22.0)	82.0 (+14.3)	88.1 (+0.6)	71.3 (+12.8)	57.1 (+6.5)	
	C2C (Ours-MLP Adapter)	CLIP	46.6 (+8.1)	48.9 (+26.9)	84.8 (+17.1)	89.4 (+1.9)	72.6 (+14.1)	57.6 (+7.0)	
	C2C (Ours-Linear Probe)	MocoV3	56.1 (+17.6)	57.5 (+35.5)	85.7 (+18.0)	91.7 (+4.2)	62.1 (+3.6)	54.6 (+4.0)	
	C2C (Ours-MLP Adapter)	MocoV3	53.7 (+15.2)	65.5 (+43.5)	87.1 (+19.4)	92.8 (+5.3)	66.8 (+8.3)	55.8 (+5.2)	

<u>Using Internet is Vastly Better!</u>

