

Yukarıda verilen kapalı çevrim sistemde Routh-Hurwitz yöntemini kullanarak

- $G(s) = \frac{s+1}{s^4(s+2)}$ için sistemi kararlı kılan K kazanç değer aralığını bulun. K = 1 ve $G(s) = \frac{1}{4s^2(s^2-1)}$ olarak verildiğine göre kapalı çevrim sistem kutuplarının s-düzleminde hangi bölgede olduğunu belirleyin.
- K=1 ve $G(s)=\frac{s+3}{s^2(s^3+3s^2+5s+4)}$ olarak verildiğine göre kapalı çevrim sistem kutuplarının s-düzleminde hangi bölgede olduğunu belirleyin.

Çözüm:

a) Kapalı çevrim transfer fonksiyonu $\frac{Y(s)}{R(s)} = \frac{K(s+1)}{s^5+2s^4+Ks+K}$ olarak hesaplanır. Dolayısıyla, sistemin karakteristik denklemi $s^5+2s^4+0s^3+0s^2+Ks+K=0$ kullanılarak aşağıdaki Routh tablosu oluşturulur.

 s^3 satırının ilk elemanı sıfır olduğu için bu elemanın yerine sıfıra yakın ama sıfırdan farklı bir değerde olduğunu kabul ettiğimiz ϵ koyarız. ϵ 'un ve K'nın pozitif ya da negatif olmalarına göre oluşan 4 farklı durumu değerlendiren aşağıdaki tabloyu inceleyelim.

$\epsilon = 0^+ , K > 0$	$\epsilon = 0^- \;,\; K > 0$	$\epsilon = 0^+$, $K < 0$	$\epsilon = 0^-, K < 0$	ilk sütun
+	+	+	+	1
+	+ ,,	+	+	2
+	- 🖖	+	- *	ϵ
- \\	+ *	+ ,,	-	$-\frac{K}{\epsilon}$
+ *	+	- 1	-	$\epsilon^2 + \frac{K}{2}$
+	+	-	-	K

Görüldüğü üzere K>0 için 2 tane kök sağ yarı düzlemde, K<0 için 1 tane kök sağ yarı düzlemde olduğu bulunur. Burada hatırlanması gereken bir nokta da ϵ 'un pozitif ya da negatif değerli olmasının sonucu değiştirmediği gerçeğidir. Bütün bu irdelemeden şunu anlıyoruz ki, seçilen her hangi bir K değeri ile birinci sütunda işaret değişikliği olmamasını sağlamak mümkün değildir. Dolayısıyla sistemi kararlı kılan K değer aralığı bulunamaz.

b) Kapalı çevrim transfer fonksiyonu $\frac{Y(s)}{R(s)} = \frac{1}{4s^4 - 4s^2 + 1}$ olarak hesaplanır. Dolayısıyla, sistemin karakteristik denklemi $4s^4 + 0s^3 - 4s^2 + 0s + 1 = 0$ kullanılarak aşağıdaki Routh tablosu oluşturulur.

 s^3 satırının tüm elemanları sıfırdır. Bu durumda s^4 satırını oluşturan fonksiyonun s'e göre türevi alınır. $\frac{d[4s^4-4s^2+1]}{ds}=16s^3-8$ olarak bulunan fonksiyon s^3 satırında yerine konur ve sadeleştirme amacıyla 8'e bölünür. Bu sefer de s^1 satırının tüm elemanları sıfır çıkar. Bu durumda da s^2 satırını oluşturan fonksiyonun s'e göre türevi alınır. $\frac{d[-2s^2+1]}{ds}=-4s$ olarak bulunan fonksiyon s^1 satırında yerine konarak Routh tablosu oluşturulur. s^3 satırının tüm elemanları sıfır olması fonksiyonun 4. dereceden bir çift fonksiyon olduğundan kaynaklanmıştır. Dolayısıyla, bu fonksiyonun 4 kökü orijine göre simetriktir. Routh tablosunun ilk sütununda 2 defa işaret değişikliği olduğu için bu köklerin ikisinin sağ yarı düzlemde olduğunu anlıyoruz. Dolayısıyla köklerin $\sigma_1 + j\omega_1, \sigma_1 - j\omega_1, -\sigma_1 + j\omega_1, -\sigma_1 - j\omega_1$ şeklinde olduğunu düşünebiliriz. Öte yandan s^1 satırında ikinci defa tüm elemanların sıfır olduğu bir satır görüyoruz. Bu durum köklerin katlı kök olduğunu gösterir. Yani $\omega_1 = 0$ olmak durumundadır. Öyleyse iki kök σ_1 'de ve diğer iki kök de $-\sigma_1$ 'dedir.

c) Kapalı çevrim transfer fonksiyonu $\frac{Y(s)}{R(s)} = \frac{s+3}{s^5+3s^4+5s^3+4s^2+s+3}$ olarak hesaplanır. Dolayısıyla, sistemin karakteristik denklemi $s^5+3s^4+5s^3+4s^2+s+3=0$ kullanılarak aşağıdaki Routh tablosu oluşturulur.

Routh tablosunun ilk sütununda 2 defa işaret değişikliği olduğu için bu köklerin ikisinin sağ yarı düzlemde olduğunu anlıyoruz. 5. dereceden bir sistem olduğu için toplam 5 kök vardır. Kalan 3 kök sol yarı düzlemdedir.