Redes Pre-entrenadas Cosas del Servidor

No.	Nombre	Dataset	Criterio de Evaluación	Descripción
1	Clasificación binaria y Redes Convolucionales (principios)	800 imágenes De mosquitos proporcionadas por	Exactitud	Visualización. Distinguir entre las especies de Albopictus y Aegyti 600x600 px (256x256 px)
2	Clasificación binaria y Redes Convolucionales (avanzado)	Detección de Neumonía COVID-19	Precisión y matriz de confusión.	Análisis de tomografías de rayos X para la identificación de pulmones afectados por el virus SARS-CoV-2 (COVID-19)
3	Redes Convolucionales y Data Augmentation	Clasificación de imágenes de deportes.	Precisión y sensibilidad.	Revisión, clasificación e identificación de diferentes tipos de deportes sin repetirse.
4	Redes Neuronales Recurrentes	Detección de Sarcasmo	Exactitud y precisión.	Identificación de títulos de noticias que sean sarcásticos o satíricos, en contra a titulares reales identificando el lenguaje.
5	Instalación y uso de Dask	3 nodos virtuales con CPU y GPU c/u		Tutorial de instalación y uso del sistema Spak para aplicarse al Deep Learning
6	Instalación y uso de HDFS	3 nodos virtuales con CPU y GPU c/u		Tutorial de instalación y uso del sistema Hadoop para aplicarse al Deep Learning
7	Instalación y uso de Pytorch en Dask	3 nodos virtuales con CPU y GPU c/u		Tutorial de instalación y uso de Pytorch en Spark para aplicarse al Deep Learning
8	Transferencia de Aprendizaje	Clasificación de Navíos	Precisión y matriz de confusión.	Clasificación de 6252 imágenes de navíos para ser clasificadas en 5 categorías diferentes

Identificación de Mosquitos. 800 imágenes de mosquitos Aedes y Aegiptys http://basurae.iies.unam.mx/webmosquito/html/

Detección de Neumonía COVID-19 Se usará el dataset que viene en 2 partes (test y train) https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets - 85 MB

Clasificación de imágenes de deportes. Se usará el dataset que viene en 4 partes (image to predict, test, train y valid) https://www.kaggle.com/gpiosenka/sports-classification - 514.1 MB

Detección de Sarcasmo Se usará el dataset original de Kaggle https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detection - 11 MB

Clasificación de Navíos Se usará el dataset original de Kaggle https://www.kaggle.com/arpitjain007/game-of-deep-learning-ship-datasets - 80 MB