#physics

Q1

Q₁a

We begin,

$$\mathcal{L}=rac{1}{2}\mu(\dot{r}^2+r^2\dot{\phi}^2)-kr^n$$

By Euler-Lagrange,

$$0=rac{d\mathcal{L}}{d\phi}-rac{d}{dt}rac{d\mathcal{L}}{d\dot{\phi}}= \boxed{-\mu r^2\ddot{\phi}=0}$$

$$0=rac{d\mathcal{L}}{dr}-rac{d}{dt}rac{d\mathcal{L}}{d\dot{r}}=\mu r\dot{\phi}^2-knr^{n-1}-\mu\ddot{r} \implies \boxed{\mu\ddot{r}=\mu r\dot{\phi}^2-knr^{n-1}}$$

Combining,

$$\dot{\phi} = rac{L}{\mu r^2} \implies \left[\mu \ddot{r} = rac{L^2}{\mu r^3} - knr^{n-1}
ight]$$

Q₁b

If $\dot{r}=0$, then

$$\mu\ddot{r}=rac{L^2}{\mu r^3}-knr^{n-1}=0 \implies \boxed{r_{eq}=\left(rac{L^2}{kn\mu}
ight)^{1/(n+2)}}$$

Q₁c

We have

$$\mu\ddot{r}=rac{L^2}{\mu r^3}-knr^{n-1},~~kn>0$$

To be stable, this derivative must be negative at equilibrium.

$$-rac{3L^2}{\mu r_{eq}^4}-kn(n-1)r_{eq}^{n-2}<0,\quad kn>0$$
 $-rac{3L^2}{\mu}< kn(n-1)r_{eq}^{n+2}=kn(n-1)rac{L^2}{kn\mu}\implies -3< n-1$ $-3< n-1\implies \boxed{-2< n}\implies \boxed{ ext{stable for }n\geq -1}$

Q₁d

Using the above derivative as -k for hooke's law,

$$au_{osc} = 2\pi/\omega, \;\;\; \omega^2 = k/\mu = rac{3L^2}{\mu^2 r_{eq}^4} + rac{kn(n-1)}{\mu} r_{eq}^{n-2}$$

$$au_{osc} = rac{2\pi}{\sqrt{rac{3L^2}{\mu^2 r_{eq}^4} + rac{kn(n-1)}{\mu} r_{eq}^{n-2}}}$$

Q₁e

Recall $\dot{\phi}=rac{L}{\mu r^2}.$ Period is $2\pi/\dot{\phi}$

$$\Longrightarrow \boxed{ au_{orb} = rac{2\pi\mu}{L}igg(rac{L^2}{kn\mu}igg)^{2/(n+2)}}$$

Q1f

We require rational square root values. We use $\sqrt{n+2}=1,2,3$. Then,

$$n=-1,2,7$$

Q2

Big sun mass and radius approximations used throughout.

Q2a

By formula, we have

$$E = -rac{GM_sm}{2a} \implies \boxed{E = -rac{GM_Sm}{2r_1}}$$

Q2b

Kinetic energy is

$$T=E-U=-rac{GM_s}{2r_1}+rac{GM_s}{r_1}=rac{GM_sm}{2r_1}=rac{1}{2}mv_1^2 \ \ \Longrightarrow oxed{v_1=\sqrt{rac{GM_s}{r_1}}}$$

Q₂c

The energy of the orbital transfer is the change in energy:

$$\Delta E = rac{GM_Sm}{2}igg(rac{1}{r_1}-rac{1}{r_2}igg)$$

Q2d

Parallel to original velocity (tangential)

We expand,

$$|v_1 + \Delta v|^2 = |v_1|^2 + 2v_1 \cdot \Delta v + |\Delta v|^2$$

To maximize the post-impulse speed, we must maximize the $2v_1 \cdot \Delta v$ term. Clearly, this dot product is maximized when Δv is tangential or parallel to v_1 .

Q₂e

At maximum, $a = \frac{r_1 + r_2}{2}$. By energy conservation,

$$-rac{GM_sm}{r_1} + rac{1}{2}mv_f^2 = -rac{GM_sm}{r_1 + r_2} \implies v_f = \sqrt{2GM_s(rac{1}{r_1} - rac{1}{r_1 + r_2})}$$
 $v_f - v_1 = egin{bmatrix} \Delta v = \sqrt{rac{2GM_s}{r_1} - rac{2GM_s}{r_1 + r_2}} - \sqrt{rac{GM_s}{r_1}} \end{bmatrix}$

Q2f

By Kepler's third,

$$rac{a^3}{T^2} = rac{G(M+m)}{4\pi^2} pprox rac{GM_s}{4\pi^2} \implies T = \sqrt{rac{4\pi^2(r_1+r_2)^3}{2^3GM_s}} = \sqrt{rac{\pi^2(r_1+r_2)^3}{2GM_s}}$$

We only complete a half period, so we coast for

$$t = \sqrt{rac{\pi^2(r_1 + r_2)^3}{8GM_s}}$$
 units of time

Q2g

Yes. Otherwise you'll have to catch up/slow down to Venus.

Q2h

Yes. Otherwise you'll continue moving in the elliptical non-Venus orbit.

Q3

Q3a

By formula, we have for rocket mass m_r ,

$$E=rac{1}{2}m_r(7900)^2-rac{GMm_r}{6371000+250000}=-28997770.6691\cdot m_r$$

$$\boxed{E=m_r\cdot -2.9\cdot 10^7} ext{ Joules}$$

where m_r is numerical rocket mass in kgs but carries no units.

Q₃b

We have,

$$E = -rac{GMm}{2a} = m \cdot -2.9 \cdot 10^7$$
 $\implies a = 6872986m pprox \boxed{a = 6.87 \cdot 10^6 ext{ meters}}$

Q₃c

By Kepler's Third,

$$rac{a^3}{T^2}=rac{G(M+m)}{4\pi^2}pproxrac{GM_s}{4\pi^2}\implies T=2\pi\sqrt{rac{a^3}{GM_E}}=5666.892s$$
 $\boxed{T=5667\, ext{seconds}}$

Q3d

We already found a is 6872986m. The closest distance is the initial distance or 6371000 + 250000 = 6621000 meters. This must be either the closest or the farthest, since the rocket is perpendicular to the earth at this point. Since it's less than a, it is the closest. The farthest, then, must be at a distance

$$r_{close} = 6621000 \implies r_{far} = (a - r_c) + a = 7119000$$
 $\boxed{r_{close} = 6.62 \cdot 10^6 \ \mathrm{meters}, \quad r_{far} = 7.12 \cdot 10^6 \ \mathrm{meters}}$

Q₃e

By formula,

$$\epsilon = rac{r_{far} - r_{close}}{r_{far} + r_{close}} = 0.0363901018923$$
 $\boxed{\epsilon = 0.0364}$

So it is fairly circular.

Q3f

28.5 degrees

They are the same.