SNA

Homophily, faction, and coreness

Grouping

- Grouping/partition as owning an attribute
 - Pre-defined
 - Exogenous (from the Greek words "exo" and "gignomi", meaning "outside" and "to come to be") refers to an action or object coming from outside a system.
- Grouping/partition as interconnectedness
 - Emergent
 - Endogenous substances are those that originate from within

Homophily

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous parts that are weakly connected to each other. In this social network from a town's middle school and high school, two such divisions in the network are apparent: one based on race (with students of different races drawn as differently colored circles), and the other based on friendships in the middle and high schools respectively [304].

Homophily test

p fraction are male (white node), q fraction are female (pink node)

Randomly Generated Network

- Probability of both ends of edge being male: p² female: q²
- male on one end and female on other: 2pq

Homophily Test: If the fraction of heterogeneous (cross-gender) edges is significantly less than 2pq then there is evidence for homophily

Cross-gender edges: 5 of 18

$$p = 6/9 = 2/3$$

 $q = 3/9 = 1/3$

If no homophily, # of crossgender edges should be 2pq = 4/9 = 8 out of 18

∴ Evidence of homophily

Homophily: correlation between network and attribute variables

Homophily test with UCINET

NETWORK>COHESION>HOMOPHILY

- 1. Make a partition of a network into a number of mutually exclusive groups
- 2. The E-I index, which ranges from 1 to -1 and can be seen as a measure of the extent a group chooses themselves a value of -1 showing homophily and a value of +1 showing heterophily.
- 3. For valued data it is the sum of the tie strengths instead of the number of ties.
- 4. Find the correlation between a network and an attribute variable by correlating the dichotomous variable "is in the same group as" with the corresponding entry in the data matrix.

Exercises

• Use the excel file friendship and friend-attr files to run both

NETWORK>COHESION>HOMOPHILY

AND

Network>Cohesion>E-I Index

Then compare their results

NODE PARTITION

Block	Value	Freq	Members:
1	1	5	Albert Bernard Chris David Elmo
2	2	5	Fiona Gill Helena Isabella Janet

No. of ties within and between groups

$$\begin{array}{ccccc}
 & 1 & 2 \\
 & -- & -- \\
1 & 16 & 4 \\
2 & 4 & 16
\end{array}$$

Whole Network Homophily Measures

PBSC = point biserial correlation.

Density matrix

40 ties.

Whole Network Results

		1 Freq	2 Pct	Possibl	4 Density
1 2 3	Internal External	32. 000 8. 000 -24. 000	0. 200		0. 800 0. 160 0. 111

Max possible external ties: 50.000 Max possible internal ties: 40.000

E-I Index: (-0.600)

Expected value for E-I index is: 0.111

Max possible E-I given density & group sizes 1.000 Min possible E-I given density & group sizes: -1.000

Re-scaled E-I index: -0.600

Permutation Test Number of iterations = 5000

	_	_	_	_	_	_	P <= 0b
1 Internal	0. 800	0. 200	0. 446	0. 800	0. 091	0. 009	1. 000
2 External	0. 200	0. 200	0. 554	0. 800	0. 091	1. 000	0. 009
3 E-I	-0. 600	-0. 600	0. 108	0. 600	0. 181	1. 000	0. 009

E-I Index is significant (p < 0.05)

Group level E-I Index

		1	2	3	4
		Intern	Extern	Total	E-I
		16.000			
2	2	16.000	4.000	20.000	-0.600

Individual Level E-I Index

		1	2	3	4
		Intern	Extern	Total	E-I
1	Albert	3.000	1.000	4.000	-0.500
2	Bernard	4. 000	1.000	5. 000	-0.600
2 3	Chris	3. 000	2,000	5. 000	-0.200
4	David	3.000	0.000	3.000	-1.000
5 6 7	E1mo	3.000	0.000	3.000	-1.000
6	Fiona	4.000	1.000	5. 000	-0.600
7	Gi11	3.000	0.000	3.000	-1.000
8	Helena	2.000	1.000	3.000	-0.333
9	Isabella	4.000	1.000	5. 000	-0.600
10	Janet	3.000	1.000	4.000	-0.500

Individual E-I values saved as dataset C:\Users\assistant\Desktop\0326Matrix\IndE-I

Factions (Endogenous grouping)

- Factions: a subgroup in which each person is closely tied to all others within the group and no or few connections at all to other sub-groups
- Network>Subgroups>Factions
 - Maximize within-group connections/density, minimize between-group connections
 - Errors (sum of zeros within, and ones between, i.e., noon-diagonal blocks)
 - Use in an exploratory manner (i.e. trail and errors)

Need to specify the # of factions

Number of factions: Measure of fit: Hamming Input dataset: KNOKBUR Initial proportion correct: 0.567 .. Badness of fit: 27.000 Badness of fit: 27.000 Badness of fit: 29.000 Final proportion correct: 0.700 Group Assignments: Density Table 3 6 0.67 0.00 Grouped Adjacency Matrix 0. 42 0. 50 0. 50 1. 00 4 5 10 6

The assignment of actors into 4 groups

Show within and between density

How to count classification "errors"/badness of fit?

(sum of zeros within, and ones between, i.e., noon-diagonal blocks)

	3 Hamming KNOKBUR	
Initial proportion correct: 0.656		Initial proportion correct: 0.567
Badness of fit: 25.000 Badness of fit: 25.000 Badness of fit: 25.000		Badness of fit: 27.000 Badness of fit: 27.000 Badness of fit: 29.000
Final proportion correct: 0.722		Final proportion correct: 0.700
Group Assignments: Density Table		Group Assignments: Density Table
	2 3	1: 1 2 4 5 7 8 2: 9 3: 10
1: 3 10 2: 6 3: 1 2 4 5 7 8 9 Grouped Adjacency Matrix 3 0.21 0.00	0 0. 57 0. 29	4: 3 6
Grouped Adjacency Matrix 3 0.21 0.0	0 0.76	Grouped Adjacency Matrix 3 0.67 0.00 0.50 4 0.42 0.50 0.50 1.00
1 30 6 2417895 EW W CICNUWM	"good	ness" of 2 figt 4 5 7 9 0 6 3 C C U I M N W W E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 1 1 1		$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$
$egin{array}{c c c c c c c c c c c c c c c c c c c $		7 1 1 1
$\left \begin{array}{c c}4\\\underline{1}\end{array}\right $		9 1 1 1
$\begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$		10 1 1
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$egin{array}{ c c c c c c c c c c c c c c c c c c c$

Factions with Netdraw

- Analysis>Subgroups>Factions (select number).
- A "faction" is a part of a graph in which the nodes are more tightly connected to one another than they are to members of other "factions."

Subgroups: Analysis > Subgroups > Factions

Exercises

- Try setting faction number at 2 and see the correction rate
- Try assign different faction number to the NTNU faculty data
- Try visualization of the NTNU data with Netdraw
 - Analysis>Subgroups>Factions (select number).

Core/periphery structures

- Classification of community members by connectivity
 - A dense, cohesive core, and
 - A parse, unconnected periphery, only connect to the core,
 but not to each other

Fig. 3. Core/periphery structure.

Core/periphery

• To identify a core-periphery structure, we compare an **observed** block structure to an **ideal** block structure

Idealized core/periphery structure

	1	2	3	4	5	6	7	8	9	10
4		1		1	4					
١ ١		ı	1	1	'	ı	ı	į	ı	'
2	1		1	1	1	1	1	1	1	1
3	1	1		1	1	1	1	1	1	1
4	1	1	1		1	1	1	1	1	1
5	1	1	1	1		0	0	0	0	0
6	1	1	1	1	0		0	0	0	0
7	1	1	1	1	0	0		0	0	0
8	1	1	1	1	0	0	0		0	0
9	1	1	1	1	0	0	0	0		0
10	1	1	1	1	0	0	0	0	0	

Compare an observed block structure to an ideal block structure in order to identify the core/periphery structure

Fig. 1. A network with a core/periphery structure.

	1	2	3	4	5	6	7	8	9	10
1		1	1	1	1	0	0	0	0	0
2	1		1	1	0	1	1	1	0	0
3	1	1		1	0	0	0	1	1	0
4	1	1	1		1	0	0	0	0	1
5	1	0	0	1		0	0	0	0	0
6	0	1	0	0	0		0	0	0	0
7	0	1	0	0	0	0		0	0	0
8	0	1	1	0	0	0	0		0	0
9	0	0	1	0	0	0	0	0		0
10	0	0	0	1	0	0	0	0	0	

(observed blocked network)

	(Ideal CP blocked network)									(observed blocked network)											
	1	2	3	4	5	6	7	8	9	10											
												1	2	3	4	5	6	7	8	9	10
1		1	1	1	1	1	1	1	1	1	1		1	1	1	1	0	0	0	0	0
2	1		1	1	1	1	1	1	1	1	2	1		1	1	0	1	1	1	0	0
3	1	1		1	1	1	1	1	1	1	3	1	1		1	0	0	0	1	1	0
4	1	1	_1_		1	1	1	1	1	1	4	1	1	1		1	0	0	0	0	1
5	1	1	1	1		0	0	0	0	0	5	1	0	0	1		0	0	0	0	0
6	1	1	1	1	0		0	0	0	0	6	0	1	0	0	0		0	0	0	0
7	1	1	1	1	0	0		0	0	0	7	0	1	0	0	0	0		0	0	0
8	1	1	1	1	0	0	0		0	0	8	0	1	1	0	0	0	0		0	0
9	1	1	1	1	0	0	0	0		0	9	0	0	1	0	0	0	0	0	-	0
10	1	1	1	1	0	0	0	0	0		10	0	0	0	1	0	0	0	0	0	

A core periphery structure exists to the extent that the correlation between the ideal structure and the observed structure is high. We can search for cores by simply proposing a partition (many times) and then selecting the best fitting partition.

Core/periphery structures

- When a network cannot be subdivide into exclusive cohesive subgroups (such as components, cliques etc.)
- The assumption:
 - The network consists of just one group to which all actors belong to a greater or lesser extent

Core/periphery with UCINET

• NETWORK > CORE/PERIPHERY > CATEGORICAL

PURPOSE Uses a genetic algorithm to fit a core/periphery model to the data.

DESCRIPTION Simultaneously fits a core/periphery model to the data network, and identifies which actors belong in the core and which belong in the periphery.

```
Apply core/periphery in bibliometrics
Alternative core/periphery model
                               CFCAAB
             CCJSSSS
                                                1
   6
 16
      SSR
 15
      SCW
 20
     SWRA
 17
       SW
      CAN
   4
                                  1
   9
       FR •
                                    1
     CSWJ •
      AMH •
                    1
      ASW •
     BJSW •
                                             1
 14
       PW
          • 1 1
   5
      CCQ
  11
     JGSW
                                             4
  12
      JSP •
  18
      SWG
                      1
  19
     SWHC
  10
     IJSW
```

Core/periphery with categorical data

Try ntu_TwomodRows ##d

Performed with categorical core-periphery procedure Size = degree

Color = core

Performed with continuous core-periphery procedure Size = Coreness More credits to the library director

Categorical

ucinetlog4.txt - 記事本											
檔案(F) 編輯(E) 格式(O) 檢視(V) 說明(H)											
Blocked Adjacency Matrix	Blocked Adjacency Matrix										
1 2 3 12 5 10 7 9 8 6 11 4 黃慕萱 朱則剛 吳明德 陳書梅 藍文欽 林珊如	- 13 14 15 16 17 陳雪華 唐牧群 謝寶煖	18 19 20 2 林維真 陳光華	21 22 23 24 林奇秀 潘美月								
1 黃慕萱 1.000 8.000 4.000 2.000 4.000 2 朱則剛 9.000 1.000		3.000 1.000 1.0 1.000									
3 吳明德 7.000 4.000	1.000 2.000 2.000 2.000 1.000 1.000	1.000 4.0 1.000	000 3.000 1.000								
	1.000 1.000 2.000										
	3.000	1.000	2.000								
8 謝寶煖 1.000 1.000 6 林維真	1.000	1.000 3.000	1.000 10.000 8.000								
6 林維真			1.000 1.000								
13 潘美月	1.000										

Coreness

- A continuous version of "coreness" can be had by generalizing the ideal image seen above. Instead of just 0/1, pairs of "high core" nodes have a very strong tie connecting them, and core-periphery nodes have a very low score.
- Nodes with high coreness are more likely to be at the center of a core-periphery structure.

Coreness

- Coreness can thus be defined as a type of centrality, but one that assumes a particular underlying structure to the network.
- Coreness is essentially Eigenvector centrality, and UCINET sorts nodes by eigenvector centrality and build the "core" until the correlation between ideal/observed drops.

Again, correlation between network and attribute variables

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		М	M	M	М	М	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
1	М		2	10	4	5	5	9	7	4	3	3	7	3	2	5	1	4	1	0	1
2	М	2		5	1	3	1	4	2	6	2	5	4	3	2	2	6	3	1	1	1
3	М	10	5		8	9	5	11	7	8	8	14	17	9	11	11	5	9	4	6	5
4	М	4	1	8		4	0	3	4	2	3	5	3	11	4	7	0	4	3	3	0
5	М	5	3	9	4		3	5	7	4	3	5	6	3	4	4	1	2	1	3	3
6	F	5	1	5	0	3		5	2	3	2	2	4	4	3	1	1	2	0	1	2
7	F	9	4	11	3	5	5		5	4	8	3	9	5	5	4	2	6	3	2	2
8	F	7	2	7	4	7	2	5		3	0	3	4	2	1	3	0	1	1	1	0
9	F	4	6	8	2	4	3	4	3		1	3	2	4	5	4	3	4	. 1	3	2
10	F	3	2	8	3	3	3/	6	0	1		4	7	5	5	7	2	2	3	3	2
11	F	3	5	14	5	5	2	3	3	3	4		9	3	4	4	2	4	2	3	1
12	F	7	4	17	3	6	4	9	4	2	7	9		7	7	8	3	7	2	4	3
13	F	3	3	9	11	3	4	5	2	4	5	3	7		8	11	3	8	2	5	3
14	F	2	2	11	4	4	3	5	1	5	5	4	7	8		8	1	5	4	4	1
15	F	5	2	11	7	4	1	4	3	4	7	4	8	11	8		2	5	2	2	1
16	F	1	6	5	0	1	1	2	0	. 3	2	2	3	3	1	2		6	1	0	1
17	F	4	3	9	4	2	2	6	1	4	2	4	7	8	5	5	6		4	3	3
18	F	1	1	4	3	1	0	3	1	1	3	2	2	2	4	2	1	4		2	1
19	F	0	1	6	3	3	1	2	1	3	3	3	4	5	4	2	0	3	2		6
20	F	1	1	5	0	3	2	2	0	2	2	1	3	3	1	1	1	3	1	6	

Interactions among a troop of monkeys

Network> core/periphery > continuous

Coreness exercise

```
Output:
檔名-Coreness、檔名-CorenessPart
```

檔名-CorenessPart

檔名-Coreness

Network> core/periphery > categorical

Simple Core		×
Input dataset:		<u> ✓ </u>
Type of data:	Positive	X Cancel
Algorithm:	DENSITY	? <u>H</u> elp
Density of core-to-periphery block	HAMMING CORR	
Maximum # of iterations: S	DENSITY SXY EMPTYPER	
Population Size: 1	100	
Output partition: Coref	Partition	
Output cluster indicator matrix: Core(Classes	

Output: CorePartition \ CoreClasses

Exercise

- 1. Use aNobii cosine (aNobii cosin ##d; aNobii cosin ## h) to
 - A. Open the file in UCINET and NetDraw to examine the cells
 - B Dichotomize by the threshold of 0.7, then run categorical core/periphery procedure, note where CorePartition file is saved
 - B. Import CorePartition into NetDraw
 - C. Visualize the raw data with NetDraw then set edge >0.7
 - E. Run continuous core/periphery procedures and save the coreness output
 - F. Input partition and coreness as attributes and redraw the book-book network, again set edge > 0.7

aNobii-Raw data – Categorical

```
文化人類學(13版)學話筆正義第3/第5河神夫村國鬼宴卷之五胡術宴
唐國鬼宴卷之二 索妖魔 (13版)學話第一次 (13版)
                                                                    緊康永的說話之道
                                                                      妖怪公寓4
       )5陰陽師千年特集
                                                                            6個人的小世界
   小草昭相鈴 F
  今天也要用心過生活
 魔法衝擊 Magic Strikes

天洛的一角實見大圓滿

QBQI問題前後的問題

推伸卑不晚餐後
 加墨坐宏全,青春迷走
 アラシゴト
ニッポンの嵐 ポケット版 [発売日以降のお届け]
                                                                               重力小丑
华絲排行棒
水木 1.15~ 妖怪百物語
共設百物語
                                                                               Fish Story
                                                                               這一夜,誰能安睡
日本早俗學方法序說
                                                                               編川荷爾摩
柳田國里描绘的日本
日本好怪学大全
                                                                               牧羊少年奇幻之旅
                                                                              美声音短, 少安前進吧!
 核謎 杏铋
                                                                             写らばen Slumbers
織父
 柳潭林茶絲
  千年京都
                                                                           魔術的耳語
Level 7
  纤体带粉针
   穿排縣中的创油本
    紧默的伽伽的态钟
    Whara tha Wild Things Are
                                                                           AL EMBORTAL/ADV
     (14人) 国地
                                                                          MODERN TIMES 塵登時代
      不季更同答
                                                                        監,以另一種監,
大人指距倫轉地球
       住住 RAT RA
        世界,老本意是什麽樣
                                                                        学庙田牙莳,范尔
           頁小注頭蓋上数給我的人生課
             為法院仍然以司佐多了出Pod?
                                                            荷爾摩六景吉儂的花東
                       京英唱會宣百<u>聿(創世紀復刻版)</u>
海海水水、中的
                                  模仿犯(一)~(四)
```

aNobii-Raw data Continuous

```
星期三是藍色的
                                                                     计单自后
                                                                     水木しげる 妖怪百物語
ニッポンの風 ポケット版 [発売日以降のお届け]
    子與瑪德蓮夫。
                                                                      経滾本事演唱會寫真書 (創世紀復刻版)
情感於計
 火燎原■
世代の時間世代の時代を由土ま
                                                                       說計
讓世界看見芬蘭
老古人類學666爭
櫻樹抽芽時,想你
別聞 ſ 毎年午年
                                                                       為什麽你的公司生產不出iPod?
● 好怪公里3
NODERN TIMES 摩登時代
基苦短,少女前旗吧!
                                                                       ◆千年京都
◆好怪小里4
                                                                       ●好怪研物能
                                                                       十二國記套書 (共12本)
對給阿爾吉儂的花束
                                                                       ●6個人的小世界
                                                                     五月天的素人自拍。
     才預匪盗轉地球
                                                                    Where the Wild Things Are
                                                                  市台於莪
                                                           愛上鋼珠筆可愛彩繪
人生課
學別用國男抽檔的日本
結緣 演写
                  家鴨與野鴨的投幣式置物櫃
                      性鴨川荷爾摩
                              小五、羊少年奇幻之族。他海中下課後,怪獸家點名!?

●魔幽靈怪談馬里狂奔的运动的歌歌等。
```

aNobiidichotomized-Continuous

我所看見的未來

世界,未來會是什麽樣子?

沙門空海之唐國鬼宴 卷之四 牡丹

沙門空海之唐國鬼宴 卷之八鬼宴 書幽鬼晏 卷之二光佣

正義

第8號當舖

失落的一角會見大圓滿

怪獸與牠們的產地

穿越歷史的魁地奇

門空海之唐國鬼宴 卷之二 索妖 沙門空海之唐國鬼宴 卷之七不空 沙門空海之唐國鬼宴 卷之五胡術 魔法抓路 Magic Burns 門空海之唐國鬼宴 卷之一入唐 ↑ 這一夜,誰能安睡 evel 7 廊寞的頻率 合阿爾吉儂的花束 禁康永的說話之道

先生。 最後14堂星期二的課 在天堂遇見的五個人

●酒與神 食、權力與國族認同 社會的麥當勞化 葡萄酒文化想像 ■歐洲飲食文化

