Semestrálna práca S2

Maximálny možný počet získaných bodov: 30

Termín na odovzdanie bez straty bodov: 7. týždeň semestra

Na stavbu nového závodu zahraničnej automobilky je potrebné dopraviť veľké množstvo sypkého stavebného materiálu (piesku, štrku,...). Materiál sa nachádza v mieste A, stavba závodu je v mieste B. Situácia je vyznačená na schematickom obrázku. V mieste A je umiestnený nakladač (s výkonom $V_n = 180$ m^3/h), ktorý nakladá materiál na automobily, ktoré potom idú na stavbu B. V mieste B sa náklad vyloží vykladačom (s výkonom $V_v = 200 \, m^3/h$). Cesta na trasách A-B a C-A je úzka a jednosmerná, z tohto dôvodu nie je na týchto trasách možné predbehnúť pomalšie vozidlo. Prázdne automobily sa musia vrátiť do miesta A prejazdom cez miesto C. Na ceste B-C je povolené predbiehanie vozidiel. Dĺžky jednotlivých úsekov sú AB=45km, BC=15km, CA=35km.

Na trase sa pohybujú vozidlá rôznych typov, ktoré majú rôznu kapacitu $(o_1...o_n)$ a priemernú rýchlosť $(v_1...v_n)$. V úseku B-C je cesta v zlom technickom stave a dochádza na ňom často k poruchám vozidiel. Vozidlo typu A_i môže byť s pravdepodobnosťou p_i v úseku B-C postihnuté poruchou a oprava tejto poruchy si vyžiada konštantný čas t_i . Počas opravy je pokazené auto obchádzané inými vozidlami. Parametre rôznych typov nákladných automobilov udáva tabuľka.

Typ automobilu	A_1	\mathbf{A}_2	A_3	A_4	A_5
Objem o_i [m ³]	10	20	25	5	40
Rýchlosť v _i [km/h]	60	50	45	70	30
Pravdepodobnosť poruchy na úseku p i	0,12	0,04	0,04	0,11	0,06
Čas opravy t _i [min]	80	50	100	44	170

Cieľom stavebnej firmy je zistiť, ktorý z troch variantov vozidlového parku jej poskytne rýchlejší dovoz daného množstva materiálu ($M=5000~m^3$) na stavbu. Variant 1 predpokladá nasadenie 4 vozidiel (A_1 , A_2 , A_3 a A_4), variant 2 použitie 3 vozidiel (A_1 , A_3 a A_5), variant 3 použitie 3 vozidiel (A_2 , A_3 a A_4). Ďalej je potrebné pre každý variant zistiť čas, ktorý vozidlá strávia čakaním na nakládku, resp. vykládku materiálu a priemernú dĺžku radu pred nakladačom a vykladačom. **Všetky závery stanovte na základe štatisticky vyhodnotených replikácií.** V programe zobrazte pomocou grafu ustaľovanie **priemernej doby trvajúcej prepravenie daného množstva materiálu** v závislosti na rastúcom počte replikácii. Pre túto hodnotu určite aj 90% interval spoľahlivosti.

Navrhnite a implementujte **udalostne** orientovaný simulačný model prepravy materiálu. Implementujte a využite vlastné univerzálne simulačné jadro. Nezabudnite na všetky všeobecné požiadavky semestrálnych prác. V priebehu simulácie vypisujte všetky sledované veličiny, stav systému, priebežné štatistiky atď. **Pracujte každý samostatne!**