6.2.3 Chernoff Bounds

If *X* is a random variable, then for any $a \in \mathbb{R}$, we can write

$$egin{aligned} P(X \geq a) &= P(e^{sX} \geq e^{sa}), \qquad ext{for } s > 0, \ P(X \leq a) &= P(e^{sX} \geq e^{sa}), \qquad ext{for } s < 0. \end{aligned}$$

Now, note that e^{sX} is always a positive random variable for all $s\in\mathbb{R}$. Thus, we can apply Markov's inequality. So for s>0, we can write

$$egin{aligned} P(X \geq a) &= P(e^{sX} \geq e^{sa}) \ &\leq rac{E[e^{sX}]}{e^{sa}}, \quad ext{by Markov's inequality.} \end{aligned}$$

Similarly, for s < 0, we can write

$$P(X \le a) = P(e^{sX} \ge e^{sa})$$

 $\le \frac{E[e^{sX}]}{e^{sa}}.$

Note that $E[e^{sX}]$ is in fact the moment generating function, $M_X(s)$. Thus, we conclude

Chernoff Bounds:

$$P(X \geq a) \leq e^{-sa} M_X(s), \qquad \qquad ext{for all } s > 0, \ P(X \leq a) \leq e^{-sa} M_X(s), \qquad \qquad ext{for all } s < 0$$

Since Chernoff bounds are valid for all values of s > 0 and s < 0, we can choose s in a way to obtain the best bound, that is we can write

$$P(X \geq a) \leq \min_{s>0} e^{-sa} M_X(s), \ P(X \leq a) \leq \min_{s<0} e^{-sa} M_X(s).$$

Let us look at an example to see how we can use Chernoff bounds.

Example 6.22

Let $X \sim Binomial(n,p)$. Using Chernoff bounds, find an upper bound on $P(X \geq \alpha n)$, where $p < \alpha < 1$. Evaluate the bound for $p = \frac{1}{2}$ and $\alpha = \frac{3}{4}$.

Solution

For $X \sim Binomial(n, p)$, we have

$$M_X(s) = (pe^s + q)^n, \qquad ext{where } q = 1 - p.$$

Thus, the Chernoff bound for $P(X \ge a)$ can be written as

$$egin{aligned} P(X \geq lpha n) & \leq \min_{s > 0} e^{-sa} M_X(s) \ & = \min_{s > 0} e^{-sa} (pe^s + q)^n. \end{aligned}$$

To find the minimizing value of s, we can write

$$rac{d}{ds}e^{-sa}(pe^s+q)^n=0,$$

which results in

$$e^s = rac{aq}{np(1-lpha)}.$$

By using this value of s in Equation 6.3 and some algebra, we obtain

$$P(X \ge \alpha n) \le \left(\frac{1-p}{1-\alpha}\right)^{(1-\alpha)n} \left(\frac{p}{\alpha}\right)^{\alpha n}.$$

For $p=\frac{1}{2}$ and $\alpha=\frac{3}{4}$, we obtain

$$P(X \geq rac{3}{4}n) \leq ig(rac{16}{27}ig)^{rac{n}{4}}.$$

Comparison between Markov, Chebyshev, and Chernoff Bounds:

Above, we found upper bounds on $P(X \geq \alpha n)$ for $X \sim Binomial(n,p)$. It is interesting to compare them. Here are the results that we obtain for $p = \frac{1}{4}$ and $\alpha = \frac{3}{4}$:

$$P(X \geq \frac{3n}{4}) \leq \frac{2}{3}$$
 Markov, $P(X \geq \frac{3n}{4}) \leq \frac{4}{n}$ Chebyshev, $P(X \geq \frac{3n}{4}) \leq (\frac{16}{27})^{\frac{n}{4}}$ Chernoff.

The bound given by Markov is the "weakest" one. It is constant and does not change as n increases. The bound given by Chebyshev's inequality is "stronger" than the one given by Markov's inequality. In particular, note that $\frac{4}{n}$ goes to zero as n goes to infinity. The strongest bound is the Chernoff bound. It goes to zero exponentially fast.