BetaReg: pacchetto R

Marta Rotari - Idriss Riouak

Università degli studi di Udine Dipartimento di matematica e informatica Applied Statistic and Data Analysis idriss.riouak@spes.uniud.it marta.rotari@spes.uniud.it

16 febbraio 2018

Sommario

La regressione è un metodo statistico che permette l'analisi delle relazioni che intercorrono tra due variabili che possono assumere valori nel continuo o nel discreto. Lo scopo di questa relazione è quello di studiare e analizzare un modello di regressione nel quale il dominio delle variabili di risposta possono assumere valori nell'intervallo limitato (0,1). Il modello analizzato è chiamato modello di regressione con variabili di risposta Beta, introdotto per la prima volta nel 2004 da Cribari-Neto e Ferrari [1]. In particolare andremo ad analizzare l'implementazione in R del modello, evidenziandone i pregi e difetti.

I. Introduzione

Un modello di regressione è un modello statistico, il cui scopo è sia quello di studiare ed analizzare le relazioni tra una una variabile dipendente, detta variabile di risposta, e una o più variabili indipendenti, dette variabili esplicative, che di effettuare predizioni dato un nuovo valore per la variabile esplicativa.

Il modello di regressione lineare semplice ha la seguente forma

$$y_i = \alpha + \beta x_i + \varepsilon_i \tag{1}$$

dove la componente casuale ε_i è normalmente distribuita con media zero e varianza σ^2 . Tale modello è ampiamente utilizzato in svariate applicazione, tuttavia non è appropriato per situazioni dove la variabile risposta è limitata ad assumere valori in un intervallo (0,1), in quanto, i valori stimati potrebbero eccedere tale intervallo 1 .

Prima dell'avvento del modello di regressione con variabili Beta, per effettuare un'analisi in cui la variabile di risposta (v.r.) *y* assumeva valori in (0,1), era consuetudine effettuare delle trasformazioni di *y*. Dunque si con-

siderava $\tilde{y} = log(\frac{y}{1-y})$ alla quale veniva applicato il modello di regressione lineare semplice. Tale approccio presentava le seguenti problematiche:

- I Disugaglianza di Jensen: ovvero i parametri dovevano essere interpretati rispetto il valore atteso di \tilde{y} anziché rispetto quello di y.
- II Eteroschedasticità: la varianza aumentava all'avvicinarsi della media e decresceva spostandosi versoi limiti dell'intervallo.
- III Asimmetria: in generale la distribuzione di tassi e di proporzioni è asimmetrica e dunque la stima degli intervalli per il test dell'ipotesi basate su approssimazioni Gaussiane potrebbero essere imprecise per campioni di piccole dimensioni.

Nel 2004, Cribari-Neto e Ferrari, con l'articolo "Beta Regression for Modelling Rates and Proportions" [1], descrivono come il modello di regressione con variabili Beta sia il migliore per trattare proporzioni e tassi. Successivamente nel 2016, nell'articolo "Beta Regression in R" [2], i due autori forniscono un'implementazione in R di tale modello.

¹Un esempio classico è «Teaching Program»[3](pg. 67)

II. BETA DISTRIBUZIONE

Come già anticipato, il modello di regressione con variabili Beta, d'ora in avanti BetaReg, si presta perfettamente per modellare situazioni in cui la variabile di risposta y assuma valori nell'intervallo aperto $(0,1)^2$.

BetaReg è basato su un'alternativa parametrizzazione della funzione di densità della distribuzione beta; la funzione di densità di una variabile casuale (v.c.) beta è data nel seguente modo

$$f(y; p, q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} y^{p-1} (1-y)^{q-1}, \quad 0 < y < 1$$

Dove p>0 e q>0 e $\Gamma(\cdot)$ è la funzione gamma.

Ferrari e Cribari-Neto ne hanno proposto una parametrizzazione differente:

$$f(y,\mu,\phi) = \frac{\Gamma\phi}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi^{-1}} (1-y)^{(1-\mu)\phi-1}$$

con

$$\mu = \frac{p}{p+q}$$
, $\phi = p+q$

dove $0 < \mu < 1$, $\phi > 0$ e $0 < \gamma < 1$.

Denoteremo con $y \sim \mathcal{B}(\mu, \phi)$ se la v.c. y segue una beta distribuzione con parametri μ e ϕ . Si noti che $p = \mu \phi$ e $q = \phi(1 - \mu)$, da cui segue che $E(y) = \mu$ e che $VAR(y) = \frac{V(\mu)}{1+\phi} = \frac{\mu(1-\mu)}{1+\phi}$.

Il parametro ϕ è anche chiamato *parametro di precisione*, in quanto per un fissato μ , all'aumentare di ϕ diminuisce il valore della varianza.

III. IL MODELLO DI REGRESSIONE BETA

Sia $y_1, y_2, ..., y_n$ un campione casuale tale che $\forall_{i=1}^n : y_i \sim \mathcal{B}(\mu_i, \phi)$. Il modello di regressione

Figura 1: Rappresentazione grafica della distribuzione Beta, utilizzando il comando R: dbeta.

Beta è definito nel seguente modo

$$g(\mu_i) = x_i^t \beta = \eta_i \tag{2}$$

dove $\beta = (\beta_1, \beta_2, ..., \beta_k)^t$, con k < n, è un vettore $k \times 1$, $x_i = (x_{i1}, x_{i2}, ..., x_{ik})^t$ è un vettore di k variabili esplicative mentre $\eta_i = \beta_1 x_{i1} ... \beta_k x_{ik}^3$ è un predittore lineare. Infine $g(\cdot) : (0,1) \to \mathbb{R} \in \mathcal{C}^2$ è una funzione di collegamento avente derivata seconda costante. Le funzioni di collegamento più utilizzate sono:

- **logit:** $g(\mu) = log(\frac{\mu}{(1-\mu)})$
- **probit:** $g(\mu) = \Phi^{-1}(\mu)$, dove $\Phi(\cdot)$ è la funzioni di distribuzione normale.
- log-log complementare: $g(\mu) = \log(-\log(1-\mu))$
- $log-log:g(\mu) = log(-log(\mu))$
- Cauchy: $g(\mu) = \tan(\pi(\mu 0.5))$

Denotiamo con $l(\beta,\phi) = \sum_{i=1}^{n} l_i(\mu_i,\phi)$ la funzione di verso somiglianza, dove

$$l_{i}(\mu_{i}, \phi) = \log \Gamma(\phi) - \log(\mu_{i}\phi)$$
$$- \log \Gamma((1 - \mu_{i})\phi) + (\mu_{i}\phi - 1) \log y_{i}$$
$$+ \{(1 - \mu_{i})\phi - 1\} \log(1 - y_{i})$$

con μ_i definito come nell'equazione (2) ovvero $\mu_i = g^{-1}(x_i^t \beta)$.

 $^{^2}$ Si noti che se la variabile y dovesse assumere valori nell'intervallo (a,b), dove a < b e sia a che b sono valori noti, allora è possibile modellare $\frac{y-a}{b-a}$ al posto di y. Mentre se la variabile y dovesse assumere come valori in [0,1], una possibile trasformazione potrebbe essere $\frac{y\cdot (n-1)\cdot 0.5}{n}$ dove n è la grandezza del campione.

³Per convenzione $x_{i1} = 1$. In tal modo ogni modello ha l'intercetta (null-model) [3].

Determinizzazione degli stimatori.

Siano

$$y_t^* = log(\frac{y_t}{1 - y_t})$$

e

$$\mu_t^* = \psi(\mu_t \phi) - \psi((1 - \mu_t)\phi),$$

dove $\psi(x)=\frac{\partial \log \Gamma(x)}{\partial x}$ con x>0 è detta funzione *digamma*. Denotiamo con

$$abla(eta,\phi) = \begin{pmatrix} U_{eta}(eta,\phi) \\ U_{\phi}(eta,\phi) \end{pmatrix}$$

la funzione score, ottenuta differenziando la funzione di log-verosimiglianza rispetto i due parametri sconosciuti. Dunque

$$U_{\beta}(\beta,\phi) = \frac{\partial l(\beta,\phi)}{\partial \beta} = \phi X^{t} T(y^{*} - u^{*}),$$

dove X è la matrice del modello di dimensione $n \times k$, T è una matrice diagonale la cui dimensione $n \times n$ definita come T = $diag\{g'(\mu)_1^{-1},...,g'(\mu_i)^{-1}\},\ y^*=(y_1^*,...,y_n^*)$ e $\mu^* = (\mu_1^*, ..., \mu_n^*)$. Mentre

$$U_{\phi}(\beta, \phi) = \sum_{t=1}^{n} \{ \mu_{t}(y_{t}^{*} - \mu_{t}^{*}) + log(1 - y_{t}) - \phi((1 - \mu_{t})\psi) + \phi(\psi) \}$$

Possiamo dunque concludere che gli stimatori di massima verosimiglianza (MLEs) per β e ϕ sono ottenibili ponendo rispettivamente $U_{\beta}(\beta,\phi)$ e $U_{\phi}(\beta,\phi)$ uguali a zero. Tale tipo di equazioni non sono risolvibili analiticamente, ma il risultato può essere approssimato attraverso un algoritmo numerico quale l'algoritmo di Newton. Tali algoritmi necessitano di un punto di partenza (β_0, ϕ_0) , che nel caso di β utilizzando il metodo dei minimi quadrati è

$$\beta_0 = (X^t X)^{-1} X^t z,$$

dove $z = (g(y_1), ..., g(y_n))^t$. Mentre per ϕ , Ferrari e Cribari-Neto in [1] suggeriscono come punto di partenza

$$\phi_0 = \frac{1}{n} \sum_{t=1}^n \frac{\breve{\mu}_t (1 - l \breve{\mu}_t)}{\breve{\sigma}_t^2},$$

dove μ_t è ottenuto applicando la funzione $g^{-1}(\cdot)$ al *t-esimo* valore stimato dal modello di regressione lineare di $g(y_1),...,g(y_n)$ su X:

e

$$\breve{\sigma}_t^2 = \frac{\breve{e}^t \breve{e}}{(n-k)[g'(\breve{\mu})_t]^2}$$

dove $\check{e} = z - X(X^t X)^{-1} X^t z$.

Consideriamo ora la matrice d'informazione di Fisher, che servirà per poter approssimare l'errore standard degli stimatori $\hat{\beta}$ e $\hat{\phi}$. Poniamo prima $W = diag\{w_1, ..., w_n\}$, con

$$w_t = \phi \{ \psi'(\mu_t \phi) + \psi'((1 - \mu_t) \phi) \} \frac{1}{\{ g'(\mu_t) \}^2}$$

$$c = (c_1, ..., c_n)^t$$
, dove

$$c_t = \phi \{ \psi'(\mu_t \phi) \mu_t - \phi'((1 - \mu_t)\phi)(1 - \mu_t) \}$$

e $\psi'(\cdot)$ è la funzione trigamma, definita come segue

$$\psi'(x) = \frac{\partial^2}{\partial z^2} \log \Gamma(x).$$

Sia dunque K la matrice d'informazione di Fisher:

$$K = K(\beta, \phi) = \begin{pmatrix} K_{\beta\beta} & K_{\beta\phi} \\ K_{\phi\beta} & K_{\phi\phi} \end{pmatrix},$$
 (3)

dove

- $K_{\beta\beta} = \phi X^t W X$,
- $K_{\beta\phi} = K_{\phi\beta}^t = X^t Tc$, $K_{\phi\phi} = tr(D)$.

Sotto le condizioni di normalità, d'indipendenza e di omogeneità di varianza delle variabili, quando la grandezza del campione è grande, vale che

$$\begin{pmatrix} \hat{\beta} \\ \hat{\phi} \end{pmatrix} \sim \mathcal{N}_{k+1} \left(\begin{pmatrix} \beta \\ \phi \end{pmatrix}, K^{-1} \right).$$

Denoteremo con $SE(\hat{\beta}_i)$ l'errore standard asintottico del MLE $\hat{\beta}_i$, che si ottiene dall'inversa della matrice di *Fisher* (3) valutata in $\hat{\beta}_i$ e in $\hat{\phi}$.

ii. Intervallo di confidenza

E' possibile determinare un intervallo di confidenza $(1 - \alpha)100\%^4$ per i coefficienti $\hat{\beta}_j$, con j = 1, ..., k. Tale intervallo è:

$$\left[\hat{\beta}_j \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} SE(\hat{\beta}_j) \right) \right],$$

dove $\Phi(\cdot)$ è la funzione di distribuzione cumulativa di una variabile casuale normale.

Analogamente un intervallo di confidenza $(1-\alpha)100\%$ per il parametro $\hat{\phi}$ è il seguente

$$\left[\hat{\phi} \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} SE(\hat{\phi})\right)\right]$$

dove

$$SE(\hat{\phi}) = \sqrt{tr(D) - \phi^{-1}c^t T^t X (X^t W X)^{-1} X^t Tc}$$
$$= \sqrt{\hat{\gamma}}.$$

In fine è possibile determinare un intervallo di confidenza $(1 - \alpha)100\%$ per il valore atteso della variabile risposta μ per un dato vettore d'osservazioni delle variabili regressori $x_0 = [1, x_{01}, x_{02}, ..., x_{0k}]$:

$$[Lim_{sx}, Lim_{dx}]^5$$

dove

$$Lim_{sx} = \left[g^{-1} \left(\hat{\eta} - \Phi^{-1} \left(\frac{1-\alpha}{2} \right) SE(\hat{\eta}) \right) \right]$$

mentre

$$Lim_{dx} = \left[g^{-1}\left(\hat{\eta} + \Phi^{-1}\left(\frac{1-\alpha}{2}\right)SE(\hat{\eta})\right)\right],$$

con $\hat{\eta} = x_0^t \hat{\beta}$ e $SE(\hat{\eta}) = \sqrt{x_0^t \widehat{cov}(\hat{\beta}) x_0}$ dove $\widehat{cov}(\hat{\beta})$ è ottenuto dall'inversa della matrice di *Fisher* (3) valutata negli MLEs escludendo la riga e la colonna relative al parametro di precisione $\hat{\phi}$.

 4 con $\alpha \in (0, \frac{1}{2}).$

INDICE

I	Intro	oduzione	1
II	Beta	distribuzione	2
III	Il me	odello di regressione Beta Determinizzazione degli stima-	2
	ii	tori	3 4
Indice			4
Riferimenti bibliografici			4

RIFERIMENTI BIBLIOGRAFICI

- [1] Beta Regression for Modelling Rates and Proportions., Ferrari SLP, Cribari-Neto Francisco (2004). Journal of Applied Statistics, 31(7), 799815.
- [2] **Beta Regression in R**, Francisco Cribari-Neto, Achim Zeileis.
- [3] Towards multiple linear regression and logistic regression, Paolo Vidoni, 2017-2018. Lecture 5. Applied Statistics and Data Analysis.

⁵Tale intervallo è valido solo per funzioni di collegamento $g(\cdot)$ strettamente crescenti.