

The University of Azad Jammu and Kashmir, Muzaffarabad

Name	Tayyab Hanif
Course Name	Computer Architecture and Logic Design
Submitted to	Engr. Sidra Rafique
Semester	2nd
Session	2024-2028
Roll No	2024-SE-11
Lab	Open Ended Lab
Submission date	05 September 2025

Task 1: Parity Generator and Checker

1. 4-bit Parity Generator Circuit

- Inputs: A, B, C, D (4-bit data word).
- Output: Parity Bit (P).
- Even parity rule: The parity bit is chosen such that the total number of 1's (data bits + parity) is even.

Boolean Equation:

 $P=A \oplus B \oplus C \oplus DP$

2. Implementation

- Use XOR gates in PLA or a digital logic simulator like Electronic Work Bench...
- Connect inputs A, B, C, D \rightarrow XOR chain \rightarrow Output P.

3. Testing the Generator

- Try all 16 combinations of A, B, C, D.
- Verify that $(A \oplus B \oplus C \oplus D) + P$ always gives **even number of 1s**.

4. Parity Checker Circuit

- Inputs: A, B, C, D, and received Parity Bit (P).
- Output: Error signal (E).

Boolean Equation:

$E=A \oplus B \oplus C \oplus D \oplus P$

- If $E = 0 \rightarrow \text{No error}$.
- If $E = 1 \rightarrow Error$ detected.

5. Implementation and Testing

- Connect inputs to XOR chain.
- Apply different data with parity bit.
- Check if circuit correctly detects error when a bit flips.

4-bit Parity Generator Circuit

Figure 1: When two Switch is OFF and two ON means inputs (A, B, C, D) = (0, 1, 0, 1) then output is 0.

Figure 2: When three Switches ON and one OFF means all inputs (A, B, C, D) = (1,1,1,0), then output is 1.

4-bit Parity Generator (Even Parity): -

Formula: $P=A \oplus B \oplus C \oplus D$

A	В	С	D	P (Parity)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

4-bit Parity Checker (Error Detection)

- Inputs: A, B, C, D, and received Parity Bit (P).
- Output: Error signal (E).

Boolean Equation:

$E=A \oplus B \oplus C \oplus D \oplus P$

- If $E = 0 \rightarrow \text{No error}$.
- If $E = 1 \rightarrow Error$ detected.

Implementation and Testing

- Connect inputs to XOR chain.
- Apply different data with parity bit.
- Check if circuit correctly detects error when a bit flips.

4-bit Parity Checker (Error Detection)

Figure 1: When four Switches ON and one OFF means all inputs (A, B, C, D, P) = (1,1,1,1,0), then output is 0.

Figure 2: When all Switches ON means all inputs (A, B, C, D, P) = (1,1,1,1,1), then output is 1

Parity Checker Truth Table

Boolean Equation:

 $E=A \oplus B \oplus C \oplus D \oplus PE$

Inputs: A, B, C, D, P \rightarrow Output: E (Error)

A	В	С	D	P (Expected)	E (Output)	Meaning
0	0	0	0	0	0	✓ No error
0	0	0	0	1	1	× Error
1	0	1	0	0	0	✓ No error
1	0	1	0	1	1	X Error
1	1	1	1	0	0	✓ No error
1	1	1	1	1	1	× Error

Task 2: Low-Level Program for Shift Instructions

- 1. **SHL (Shift Left Logical)** Multiplies number by 2.
- 2. SHR (Shift Right Logical) Divides unsigned number by 2.
- 3. **SAR (Shift Arithmetic Right)** Divides signed number by 2, keeps sign.
- 4. **SAL** (**Shift Arithmetic Left**) Similar to SHL.

```
MOVAL, 00001101b ; Load data = 13 (binary)

SHL AL, 1 ; Shift Left \rightarrow result = 26

SHR AL, 1 ; Shift Right \rightarrow result = 13

SAR AL, 1 ; Arithmetic Right \rightarrow sign preserved

SAL AL, 1 ; Arithmetic Left \rightarrow same as SHL
```

By using emulator,

Step #01:

```
emu8086 - assembler and microprocessor emulator 4.08
file edit bookmarks assembler emulator math ascii codes help
                                                                                                                       P
   火
                                                                                                                                   Œ
                                                                               calculator convertor
                                                                                                         options
                                                                                                                      help
                                                                                                                                 about
  new
             open
                       examples
                                                       compile
                                                                  emulate
                                        save
         ; You may customize this and other start-up templates; The location of this template is c:\emu8086\inc\0_com_template.txt
     04
     05
          org 100h
                                             ; Load data = 13 (binary)
; Shift Left ? result = 26
; Shift Right ? result = 13
; Arithmetic Right ? sign preserved
; Arithmetic Left ? same as SHL
          MOU AL, 00001101b
          SHL AL, 1
SHR AL, 1
     09
     10 SAR AL, 1
         SAL AL. 1
    12
13 ret
14
15
```

Result:

Deliverables

1. Working Circuits

o 4-bit parity generator and checker implemented in simulator.

2. Truth Table & Boolean Equations

 A	В	С	D	Parity $P = A \oplus B \oplus C \oplus D$
 0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
•••	•••	•••		

Boolean Equation:

 $E=A \oplus B \oplus C \oplus D \oplus P$

3. Summary

- o Designed a 4-bit parity generator using XOR gates.
- o Verified functionality with truth table and simulation.
- o Designed a parity checker for error detection.
- o Implemented and tested both circuits in simulator.
- o Wrote Assembly program for shift operations SHL, SHR, SAR, SAL.