Solutions, Homework #5

- 1.
- a. $M_0(u,v) = XY \operatorname{sinc}(Xu) \operatorname{sinc}(Yv)$
- b. $k_x(t) = \gamma A t/(2\pi)$, $k_y(t) = 0$. Assuming that the scaling constant is 1, then $s(t) = XY \operatorname{sinc}(X\gamma A t/(2\pi))$
- c. $k_x(t) = \gamma at/(2\pi X)$, $k_y(t) = \gamma at/(2\pi Y)$. $s(t) = XY \operatorname{sinc}^2(\gamma at/(2\pi))$.
- d. For $t \in [0,T]$, $k_x(t) = 0$, $k_y(t) = \gamma at/(2\pi Y)$. $s(t) = XY \operatorname{sinc}(\gamma at/(2\pi))$

For t > T, $k_x(t) = 0$, $k_y(t) = \gamma aT/(2\pi Y) = 2/Y$.

 $s(t) = XY \operatorname{sinc}(0) \operatorname{sinc}(2) = 0.$

2. First of all, $m_0(x) = 1$ implies that the magnetization is uniform everywhere. The first RF pulse tips the magnetization into the transverse plane. Looking in the rotating frame, **M** lies along the y'-axis. We then apply a gradient that makes the resonant frequency vary as a function of spatial position $\omega(x) = \omega_0 + \gamma Gx$. In the rotating frame, the resonant frequency is $\omega_{\text{rot}}(x) = \gamma Gx$. Assuming that the gradient is turned on for length of time, *T*, then the phase that accumulates (as a function of spatial position) is $\phi_{\text{rot}}(x) = \gamma GxT$. We can decompose the magnetization vector into two components $M_{x,\text{rot}} = \sin(\phi)$ and $M_{y,\text{rot}} = \cos(\phi)$. During the second RF pulse -M_{y,rot} is rotated up to M_z and M_{x,rot} does not change. Ultimately, we end up with a sinusoidal variation with *x* of the x- and *z*-components of the magnetization.

- a) $m_{xy,rot}(x) = 0; m_z(x) = m_0$
- b) $m_{xy,rot}(x) = i m_0$; $m_z(x) = 0$
- c) $m_{xy,rot}(x) = i m_0 \exp(-i \gamma GxT) = i m_0 \cos(\gamma GxT) + m_0 \sin(\gamma GxT)$; $m_z(x) = 0$
- d) $m_{xv.rot}(x) = m_0 \sin(\gamma GxT)$; $m_z(x) = -m_0 \cos(\gamma GxT)$

3.

- a. $\gamma/2\pi = 42.58 \text{ MHz/T}$, so $f_0 = (42.58 \text{ MHz/T})(1.5 \text{ T}) = 63.87 \text{ MHz}$ and $\Delta f = f_0 f_f = \gamma/2\pi B_0 \delta_f = (42.58 \text{ MHz/T})(1.5 \text{ T})(3.5 \text{ x } 10^{-6}) = 223.5 \text{ Hz}$.
- b. As shown in the drawing below, one possible excitation pulse will be centered at the frequency of water, f_0 , and will have a rectangular frequency profile with a half-bandwidth of ½ of the difference in water and fat frequencies. The water excitation pulse, therefore, will have a center frequency of f_0 and a bandwidth of $\Delta f = f_0 f_f$.

which has a spectrum $\operatorname{rect}((f-f_0)/\Delta f)$. The RF pulse will then be similar to the IFT of this function $-B_{1,\operatorname{rot}}(t) = A \operatorname{sinc}(t/T)$ (perhaps truncated with a rect or hanning window), where $1/T = \Delta f = 223.5$ Hz or T = 4.47 ms. The integrated areas under this RF pulse is γAT , which for a 90 degree flip angle, should be set equal to $\pi/2$. Thus, $A = \pi/(2\gamma T)$. The carrier frequency at which it is applied will be $f_0 = 63.87$ MHz. The RF pulse will now look like: $B_{1,\operatorname{xy}}(t) = A \operatorname{sinc}(t/T) \exp(-i2\pi f_0)$. (Recall that spins in MRI go in the negative frequency direction.)

4.

- a. $FOV_z = 1/\Delta k_z$ and $\Delta k_z = \gamma/2\pi$ $T_z \Delta G_z$, thus $\Delta G_z = 2\pi/(\gamma$ T_z $FOV_z) = 0.023$ mT/m.
- b. $\Delta z = 1/(2k_{z,max})$ and $k_{z,max} = \gamma/2\pi$ T_z $G_{z,max}$, thus $G_{z,max} = 2\pi/(\gamma$ T_z 2 $\Delta z) = 0.47$ mT/m.
- c. FOV_v = $1/\Delta k_v$ and $\Delta k_v = \gamma/2\pi$ T_v ΔG_v , thus $\Delta G_v = 2\pi/(\gamma$ T_v FOV_v) = 0.023 mT/m.
- d. $\Delta y = 1/(2k_{y,max})$ and $k_{y,max} = \gamma/2\pi T_y G_{y,max}$, thus $G_{y,max} = 2\pi/(\gamma T_y 2 \Delta y) = 1.17 \text{ mT/m}$.
- e. $\Delta x = 1/W_{kx}$ and $W_{kx} = \gamma/2\pi$ T_{read} G_{read} , thus $G_{read} = 2\pi/(\gamma T_{read} \Delta x) = 1.17$ mT/m.
- f. $FOV_x = 1/\Delta k_x$ and $\Delta k_x = \gamma/2\pi \Delta t$ G_{read} and $G_{read} = 2\pi/(\gamma T_{read} \Delta x)$, thus $\Delta t = T_{read} \Delta x / FOV_x = 0.1$ ms (100 μs).

5. Let the signal strength (as a function of x) is equal to sensitivity S(x) and the noise is equal to σ . The signal to noise ratio is then $S(x)/\sigma$. For the volume coil $S_{\nu}(x) = 1$ and $\sigma_{\nu} = 1$, therefore $SNR_{\nu} = 1$. For the surface coil, the SNR is

$$SNR_s = \frac{1}{\left(0.1 \cdot a\right)^{\frac{3}{2}} \left(1 + \left(\frac{x}{a}\right)^2\right)^{\frac{3}{2}}} = \frac{1}{\left(\left(0.1 \cdot a\right) \left(1 + \left(\frac{x}{a}\right)^2\right)\right)^{\frac{3}{2}}}$$

To find the region where $SNR_s > SNR_v$, we merely need to find for which x that $SNR_s > 1$.

a. a = 5 cm, $SNR_s > SNR_v$, for x < 5 cm, that is if we are interested in a structure closer to the coil than 5 cm, it is preferred (from the SNR standpoint) to use the surface coil, otherwise the volume coil is better.

$$SNR_{s} = \frac{1}{\left(0.5\left(1 + \left(\frac{x}{5}\right)^{2}\right)\right)^{\frac{3}{2}}} > 1$$

$$0.5\left(1 + \left(\frac{x}{5}\right)^{2}\right) < 1$$

$$\left(\frac{x}{5}\right)^{2} < 1$$

$$x < 5$$

b. a = 10 cm, $SNR_v > SNR_s$, for all non-zero values of x, therefore, the volume will always have better SNR. (No values of x satisfy the below relationship.)

$$SNR_s = \frac{1}{\left(1\left(1 + \left(\frac{x}{10}\right)^2\right)\right)^{\frac{3}{2}}} > 1$$
$$\left(1 + \left(\frac{x}{5}\right)^2\right) < 1$$
$$\left(\frac{x}{10}\right)^2 < 0$$
$$x^2 < 0$$