SYSTÈMES ET COMMANDE LINÉAIRES

GEL-21946

Professeur: André Desbiens

Deuxième examen (30% de la note finale)

Vendredi 28 mars 2003, 10h30-12h20

Une feuille 8.5 X 11 pouces est autorisée

Note: Une bonne réponse sans justification ne vaut *aucun* point.

QUESTION 1 (14% + 10% = 24%)

En négligeant le frottement et l'inductance de l'induit, un moteur (Eh oui un moteur!) à courant continu fut identifié comme suit :

$$G(s) = \frac{40}{0.1s + 1}$$

L'entrée et la sortie considérées sont la tension (V) appliquée à l'induit et la vitesse angulaire (rad/sec) de l'arbre du moteur. L'inertie du moteur est $1 \times 10^{-6} \text{ kg} \cdot \text{m}^2$.

- a) Si la tension est 10 V, quel couple faut-il appliquer à l'arbre pour bloquer le moteur, c'est-à-dire l'empêcher de tourner?
- b) La tension est 10 V et le moteur entraîne une charge qui est directement sur l'arbre du moteur. En régime permanent, le moteur tourne à une vitesse constante qui nécessite le développement par le moteur d'un couple de 1.5×10⁻³ N·m. À quelle vitesse le moteur tourne-t-il?

QUESTION 2 $(4 \times 6\% = 24\%)$

Un asservissement de position d'une antenne de radar est conçu à l'aide d'un régulateur PI qui manipule la tension appliquée à un moteur. La position angulaire de l'antenne est mesurée à l'aide d'un potentiomètre. La fonction de transfert du régulateur est :

$$G_C(s) = \frac{2(0.5s+1)}{0.5s}$$

Le système est initialement au repos. À l'instant t=0, deux évènements surviennent simultanément:

- l'opérateur de l'asservissement effectue un échelon de consigne passant la position désirée de 0 à 0.8 radians,
- une perturbation équivalente à un échelon d'amplitude –0.5V attaque l'entrée du procédé.

Que valent la sortie du régulateur et la position de l'antenne aux temps $t = 0^+$ et $t = \infty$?

QUESTION 3 $(2 \times 12\% = 24\%)$

Le système étudié est illustré à la Figure 1.

- a) Tracez le rapport d'amplitude de G(s) sur une feuille semi-logarithmique. Déduisez la fréquence à laquelle le rapport d'amplitude est unitaire. Sur la feuille semi-logarithmique, utilisez les échelles suivantes : de 10^{-2} rad/sec à 10^{2} rad/sec ainsi que -60 db à 60 db (4 db par division). Écrivez votre nom sur la feuille semi-logarithmique et insérez-la dans votre cahier d'examen.
- b) Quel retard faudrait-il ajouter à G(s) pour que l'asservissement de la Figure 1 devienne à la limite de la stabilité?

Figure 1

QUESTION 4 $(2 \times 2\% = 4\%)$

Quels sont le module et l'argument des nombres suivants (contrairement aux autres numéros, aucune justification n'est nécessaire):

- a) $0.8e^{0.5j}$
- b) -3

QUESTION 5 $(2 \times 12\% = 24\%)$

Identifiez les deux procédés dont les comportements sont illustrés aux Figures 2 et 3. Les procédés étaient en régime permanent avant t = 0. L'entrée et la sortie de chaque procédé sont respectivement notées u et y.

Bonne chance!

FORMULES:

1. Transformation de Laplace

y(t) pour $t > 0$	Y(s)	Seuil de définition	Pôles de Y(s)
1	$\frac{1}{s}$	Re $s > 0$	0
$\delta(t)$	1	Re $s > -\infty$	-
t	$\frac{1}{s^2}$	$\operatorname{Re} s > 0$	0, double
e^{-at}	$\frac{1}{s+a}$	$\operatorname{Re} s > -a$	- a
te ^{-at}	$\frac{1}{(s+a)^2}$	$\operatorname{Re} s > -a$	-a, double
cos ωt	$\frac{s}{s^2 + \omega^2}$	$\operatorname{Re} s > 0$	± jω
sin ωt	$\frac{\omega}{s^2 + \omega^2}$	$\operatorname{Re} s > 0$	± jw
$e^{-at}\cos \omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\operatorname{Re} s > -a$	$-a \pm j\omega$
$e^{-at} \sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\operatorname{Re} s > -a$	$-a \pm j\omega$

2. Système du deuxième ordre $G(s) = \frac{K}{1 + \frac{2z}{\omega_n} s + \frac{s^2}{\omega_n^2}}$

Fig. 8-4. — Facteur de résonance vs facteur d'amortissement.

Fig. 8-6. — Dépassements successifs de la réponse d'un système du second ordre à un échelon ou à un essai de lâcher. En abscisses: le facteur d'amortissement r. (D'apoès C.S. Douren, W. McKaw et S. Lees, ouvrage cité an § 1.45 de la bibliographie, p. 257.)