1 几何最优传输映射

1.1 Monge-Ampére 方程

问题 1.1 (Brenier). 给定 (Ω, μ) 和 (\sum, ν) 以及成本函数 $c(x, y) = \frac{1}{2}|x - y|^2$,最优传输映射 $T: \Omega \to \sum$ 是满足 Monge-Ampére 方程的 Brenier 势 $u: \Omega \to \mathcal{R}$ 的梯度映射。

$$det\left(\frac{\partial^2 u(x)}{\partial x_i \partial x_j}\right) = \frac{f(x)}{g \circ \nabla u(x)}$$
(1)

问题 1.2 (Semi-discrete OT). 给定一个在 \mathcal{R}^d 上的紧凸域 Ω , 和 p_1, p_2, \cdots, p_k 以及质量 $w_1, w_2, \cdots, w_k > 0$,找到一个最优传输映射 $T: \Omega \to \{p_1, \cdots, p_k\}$,则 $vol(T^{-1}(p_i)) = w_i$,使 运输成本最小化

$$C(T) := \frac{1}{2} \int_{\Omega} |x - T(x)|^2 dx \tag{2}$$

图 1: Brenier 图

根据 Brenier 定理,将有一个分段线性凸函数 $u:\Omega\to\mathbb{R}$ 、梯度映射给出了最佳运输映射。

定理 1.1 (Alexandrov 1950). 给定在 \mathbb{R}^n 上的紧凸域 Ω , 在 \mathbb{R}^n 上互不相同的 p_1, \dots, p_k , 当 $A_1, \dots, A_k > 0$,使得 $\sum A_i = Vol(\Omega)$,则存在 PL 凸函数

$$f(x) := \max \left\{ \langle x, p_i \rangle + h_i \mid i = 1, \cdots, k \right\},\tag{3}$$

唯一的传输使得

$$Vol(W_i) = Vol(\{x \mid \nabla f(x) = p_i\}) = A_i. \tag{4}$$

Alexandrov's 证明是拓扑的,而不是变分。多年来人们一直开放寻找构造性的证明。

1.2 变分证明

定理 1.2 (Gu-Luo-Sun-Yau 2013). Ω 是在 \mathbb{R}^2 上的紧凸域, y_1, \dots, y_k 在 \mathbb{R}^2 上互不相同, μ 是在 Ω 上的正连续。任意 $v_1, \dots, v_k > 0$ 以及 $\sum v_i = \mu(\Omega)$, 存在 1 个向量 (h_1, \dots, h_k) 使得,

$$u(x) = \max \{\langle x, \mathbf{p}_i \rangle + h_i \}$$

满足 $\mu(W_i \cap \Omega) = v_i$, 其中 $W_i = \{x \mid \nabla f(x) = \mathbf{p}_i\}$ 。此外,h 是凹函数的最大点

$$E(\mathbf{h}) = \sum_{i=1}^{k} v_i h_i - \int_0^h \sum_{i=1}^k w_i(\eta) d\eta_i$$
 (5)

其中 $w_i(\eta) = \mu(W_i(\eta) \cap \Omega)$ 是胞腔的 μ - 体积。

图 2: polyhedron 图

可以通过定义圆柱体 $\partial\Omega$, 圆柱体被 xy 平面和凸多面体截断。能量项 $\int^{\mathbf{h}} \sum w_i(\eta) \mathrm{d}\eta_i$ 等于截断圆柱体的体积。

1.3 计算算法

定义 1.1 (Alexandrov Potential). 凹面能量是

$$E(h_1, h_2, \cdots, h_k) = \sum_{i=1}^k v_i h_i - \int_0^{\mathbf{h}} \sum_{j=1}^k w_j(\eta) d\eta_j$$
 (6)

能量的 Hessian 是边和双边的长度比,

$$\frac{\partial w_i}{\partial h_j} = -\frac{\lfloor e_{ij} \rfloor}{\lfloor \bar{e}_{ij} \rfloor}$$

Algorithm: Optimal Transport Map

Input: A set of distinct points $P = p_1, p_2, \dots, p_k$

, and the weights $\{A_1, A_2, \cdots, A_k\}$; A convex domain $\Omega, \sum A_j = Vol(\Omega)$;

Output: The optimal transport map $T: \Omega \to P$

Scale and translate **P**, such that $P \subset \Omega$; Initialize $\mathbf{h}^0 \leftarrow \frac{1}{2} \left(|p_1|^2, |p_2|^2, \cdots, |p_k|^2 \right)^T$;

图 3: particale 图

Algorithm: ConvexHull(P)

Input: A set P of points in the plane.

Output: A list \mathcal{L} containing the vertices of $\mathcal{CH}(P)$ in clockwise order.

Sort the points by x-coordinate, resulting in a sequence $p_1, ..., p_n$.

Put the points p_1 and p_2 in a list \mathcal{L}_{upper} , with p_1 as the first point.

for $i \leftarrow 3$ to n do

Append p_i to \mathcal{L}_{upper} .

while \mathcal{L}_{upper} contains more than 2 points and the last three points in \mathcal{L}_{upper} do not make a right turn do

Delete the middle of the last three points from \mathcal{L}_{upper} .

end

end

Put the points p_n and p_{n-1} in a list \mathcal{L}_{lower} , with p_n as the first point.

for $i \leftarrow n-2$ downto 1 do

Append p_i to \mathcal{L}_{lower} .

while \mathcal{L}_{lower} contains more than 2 points and the last three points in \mathcal{L}_{lower} do not make a right turn do

Delete the middle of the last three points from \mathcal{L}_{lower} .

 $\quad \text{end} \quad$

\mathbf{end}

Remove the first and the last point from \mathcal{L}_{lower} to avoid duplication of the points where the upper and lower hull meet.

Append \mathcal{L}_{lower} to \mathcal{L}_{upper} , and call the resulting list \mathcal{L} .

 $\mathbf{retu}_{\mathbf{rn}} \; \mathcal{L}$

图 4: Alexandrov Potential 图