PATENT SPECIFICATION

(11)1327353

NO DRAWINGS

(21) Application No. 20399/72 (22) Filed 2 May 1972

(31) Convention Application No. 139844 (32) Filed 3 May 1971 in

(33) United States of America (US)

(44) Complete Specification published 22 Aug. 1973

(51) International Classification A01N 9/02 9/20 9/30 9/32 9/22

(52) Index at acceptance

A5E 1A3B 1A3C 1A3F 1A3H 1A5A1 1A5A2 1C14 1C15A1 1C15A3 1C15D3 1C15D4 1C15F2 1C7C 1C7N 1C8A 1C8B 1C9A

(54) BIOCIDAL COMPOSITIONS

I, HERBERT SCHWARTZ, a citizen of the United States of America, residing at 1963, North Maurice River Parkway, Vineland, New Jersey 08360, United States of America, do hereby declare the invention, for which I pray that a patent may he granted to me, and the method by

the weight ratio of the quaternary ammonium salt to the heterocyclic compound being in the range of 5:1 to 1:5. The compositions are of use against both gram negative and gram positive bacteria.

Quaternary ammonium salts are generally

10

50

45

ERRATUM

15

SPECIFICATION No. 1,327,353

55

Page 3, between lines 60 and 61 insert 5% N,N-diethyl-m-toluamide

THE PATENT OFFICE 3rd March, 1975

60

25

20

65

$$\begin{bmatrix} & & & \\ R & - N & - b \\ & & C \end{bmatrix}^{+} \begin{bmatrix} X \end{bmatrix}^{-}$$

30 in which R is a C_{12} — C_{20} aliphatic radical, X is halogen, sulphate, C_1 — C_7 alkyl sulphate, benzene sulphonate or C_1 — C_{10} alkyl benzene sulphonate and a, b and c are the same or different and are chosen from C1-C7 alkyl, phenyl C_1 — C_7 alkyl, phenoxy C_1 — C_7 alkyl,

thenyl and hydroxy alkynyl and a cage-type heterocyclic compound, containing four nitrogen atoms, formed by condensation of form-

propylene diamine or o-phenylene diamine, fiers and perfumes may be present as may

[Price 25p]

other or these rings, when o-phenylene diamine is used to make heterocyclic compound it also contains two benzene rings, each of which is fused to one of the heterocyclic rings.

The preferred heterocyclic compounds are hexamethylene teframine, 1,3,6,8-tetraazatricyclo(4,4,1,13.8)dodecane and 4,5,9,10 - dibenzo - 1,3,6,8 - tetraazatricyclo(4,4,1,13.8)dodecane. If desired, the compositions may contain two or more of the heterocyclic compounds.

The compositions may be formulated in a variety of ways e.g. as solutions, suspension, sprays, concentrates, emulsions or powders. The compositions may include any suitable carrier such as water, aqueous alkanols or aldehyde with ammonia, ethylene diamine, organic solvents. Also, wetting agents, emulsi-

SEE ERRATA SLIP ATTACHED

70

PATENT SPECIFICATION

(11) **1327353**

3

15

NO DRAWINGS

(21) Application No. 20399/72

(22) Filed 2 May 1972

(33) United

(31) Convention Application No. 139844

(32) Filed 3 May 1971 in

(3

(33) United States of America (US)

(44) Complete Specification published 22 Aug. 1973

(51) International Classification A01N 9/02 9/20 9/30 9/32 9/22

(52) Index at acceptance

ASE 1A3B 1A3C 1A3F 1A3H 1A5A1 1A5A2 1C14 1C15A1 1C15A3 1C15D3 1C15D4 1C15F2 1C7C 1C7N 1C8A 1C8B 1C9A

(54) BIOCIDAL COMPOSITIONS

(71) I, HERBERT SCHWARTZ, a citizen of the United States of America, residing at 1963, North Maurice River Parkway, Vineland, New Jersey 08360, United States of America, do hereby declare the invention, for which I pray that a patent may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement:—

Organic mercury and tin compounds have been used to control bacteria and fungi but, because of their high toxicity and prolonged persistence, they are not generally used. Quaternary ammonium salts have been used to combat bacteria, fungi and algae but are generally too weak for most applications.

I have now devised biocidal compositions, comprising a quaternary ammonium salt and another essential component, which have a bactericidal activity considerably greater than the sum of the equivalent activity of the individual components when used separately i.e. the two essential components of the compositions interact synergistically. According to the invention a biocidal composition comprises a quaternary ammonium salt of general formula:

30 in which R is a C₁₂—C₂₀ aliphatic radical, X is halogen, sulphate, C₁—C₇ alkyl sulphate, benzene sulphonate or C₁—C₁₀ alkyl benzene sulphonate and a, b and c are the same or different and are chosen from C₁—C₇ alkyl, phenyl C₁—C₇ alkyl, phenoxy C₁—C₇ alkyl, thenyl and hydroxy alkynyl and a cage-type heterocyclic compound, containing four nitrogen atoms, formed by condensation of formaldehyde with ammonia, ethylene diamine, propylene diamine or o-phenylene diamine,

[Price 25p]

the weight ratio of the quaternary ammonium salt to the heterocyclic compound being in the range of 5:1 to 1:5. The compositions are of use against both gram negative and gram positive bacteria.

Quaternary ammonium salts are generally prepared by reaction of an alkyl halide, sulphonate or sulphate with a tertiary amine. The salts of most interest are the halides e.g. chlorides and bromides, sulphates, methosulphates, ethosulphates and benzene and C₁—C₁₀ alkyl benzene sulphonates. Suitable quaternary ammonium salts for the compositions according to the invention are described in Schwartz et al, Surface Active Agents and Detergents, Vol. II, 1958, p. 112 to 118. If desired, the compositions according to the invention may contain two or more quaternary ammonium salts.

The cage-type structure of the heterocyclic compounds that are usable in the compositions according to the invention arises because the compounds are non-planar and have a highly fused ring structure: the four nitrogen atoms are present in three nitrogen-containing heterocyclic rings, each of these rings having a side in common with each of the other of these rings. When o-phenylene diamine is used to make heterocyclic compound it also contains two benzene rings, each of which is fused to one of the heterocyclic rings.

The preferred heterocyclic compounds are hexamethylene tetramine, 1,3,6,8-tetraazatricyclo(4,4,1,1^{3.8})dodecane and 4,5,9,10 - dibenzo - 1,3,6,8 - tetraazatricyclo(4,4,1,1^{3.8})dodecane. If desired, the compositions may contain two or more of the heterocyclic compounds.

The compositions may be formulated in a variety of ways e.g. as solutions, suspension, sprays, concentrates, emulsions or powders. The compositions may include any suitable carrier such as water, aqueous alkanols or organic solvents. Also, wetting agents, emulsifiers and perfumes may be present as may

SEE ERRATA SLIP ATTACHED

45

50

50

65

70

75

80

85

15

other components conventionally included in bactericidal compositions.

The compositions are of value for killing bacteria in a variety of situations e.g. in hospitals, in agriculture and in treating stored waste. The compositions are of use for preventing bacterial decomposition of organic matter leading to undesirable odours. Examples of such matter are urine from cats and other domestic animals, manure from fowl, cattle and horses and garbage.

The following Examples illustrate the invention.

Example 1 In this Example bactericidal activity was determined using the standard evaluation test for quaternary ammonium compounds described in Official Methods of Analysis of the Association of Official Agricultural Chemists, 10th edition (1965), p. 80-82 with a 15 minute exposure to Pseudomonas aeruginosa PRD-10. The materials, which were tested at increasing dilutions, were alkyl dimethyl benzyl ammonium chloride where 25 alkyl was a mixture of C12 to C14 (A); hexamethylene tetramine (B) and 1:1 weight ratio mixture (C) of the chloride and hexamethylene tetramine. The results are given in Table I where + signifies no control and - signifies 100% control.

TABLE I

Concentration	A	В	C	
1:3,200 1:6,400 1:12,800 1:25,600 1:51,200	- + + +	+++++	- - - - +	35

Table I shows that in this test hexamethylenetetramine had no bactericidal activity but increased the bactericidal activity alkyldimethylbenzylammonium chloride four times. This is a clear demonstration of synergistic activity.

Example 2

The test of Example 1 was repeated but using 1,3,6,8 - tetraazatricyclo[4,4,1,12.5]dodecane (D) as the heterocyclic compound and a 2:1 weight mixture (E) of this heterocyclic compound and the quaternary ammonia chloride. In this Example Staphylococcus aurcus (SA) and Salmonella typhosa (ST) where used as test organisms. The results are given in Table II.

TABLE II

55	Concentrations	Asa	D	E	AST	D	Е
60	1: 1,000 1: 5,000 1: 10,000 1: 15,000 1: 20,000	+ + + + + +	+ + + +	- - + +	- + + +	+ + + + +	- - - + +

The results of Table II show that the mixtures tested are synergistic and effective against both gram negative and gram positive bacteria. The effective control of Staphylococcus aureus indicates that the mixtures could be used in hospital cleaning solutions as a disinfectant.

The tests were repeated using 4,5,9,10 dibenzo - 1,3,6,8 - tetraazatricyclo[4,4,1,13.8]dodecane as the heterocyclic compound and test results similar to those of Table II were obtained.

Example 3

A mixture of 25 parts by weight of hexamethylenetetramine with 52 parts by weight of water was added, with stirring, to a mixture of 0.5 parts by weight of perfume, 10.0 parts by weight of a polyethylene oxidealkylphenol adduct as an emulsifier and 12.5 weight of alkyl dimethylbenzyl ammonium chloride (alkyl of 12 to 16 carbon atoms) to form a clear solution. 1 to 2 ml. of the solution was admixed with 1 pound of kitty litter which was used by two adult cats in a closed room for one week. During this time, there was none of the odour typical of microbial decomposition of urine.

Example 4

The solution prepared in Example 3 was sprayed about the interior of chicken coops and particularly on the manure covered floors. The strong objectionable odour of chicken manure was eliminated almost immediately after the spraying.

Example 5

A solution of 10 parts by weight of hexamethylenetetramine in 20 parts by weight of water was mixed with vigorous stirring with a solution of 25 parts by weight of methyl-

50

85

95

Solution 3

quaternary

formula:

amine

15% Culversan LC 80

10% Emulsifier of Example 3

55

60

95

ated napthalene, 20 parts by weight of polyoxyethylenealkylphenol adduct as an emulsifier, 12 parts by weight of Culversan LC 80 (alkyldimethylbenzylammonium chloridealkyl of 12 to 18 carbon atoms), 5 parts by weight of lindane, 5 parts by weight of perfume, 3 parts by weight of dichlorobenzene and 1 part by weight of 2 - ethyl - 1,3 hexanediol to obtain a concentrated, strawcoloured solution. One pint of this solution was poured into

a tank containing 55 gallons of water, and the resulting solution was sprayed onto garbage and the inside of garbage containers. This treatment eliminated the odour of decaying garbage. The containers and enclosed container sites were located at canning factories, supermarkets, and hamburger stands, and the time of the trials was mid-summer. During the trials people consumed food and drink parked next to garbage bins, which, if untreated, would have been producing unappetising odours.

Example 6

25 The following solutions were prepared and tested as garbage odour inhibitors as in Example 5 and were found to be effective to control odour produced by bacteria decomposing the organic matter.

30 Solution 1 10% by weight of hexamethylenetetra-12% Culversan LC 80 (Culver Corp) 18% Emulsifier of Example 3 22% Water 35 4.5% Perfume 2.5% 2 - ethyl - 1,3 - hexanediol as insect repellent

2.5% lindane 40 4.0% p-dichlorobenzene 24.5% methylated naphthalene

Solution 2

4% by weight of p-dichlorobenzene 18% Neutronyx 600 (a phenyl polyethy-

2.5% insect repellent (N,N - diethyl -

45 lene glycol ether sold by Millmaster Onyx Corporation) 2.5% lindane

m - toluamide) 50 10% Culversan LC 80

12% hexamethylenetetraamine

5% perfume 22% water 24% mineral oil

5% perfume 45% water Solution 4 24% by weight of petroleum base 22% water 20% Emulsifier of Example 3 65 12% Culversan LC 80
10% hexamethylenetetraamine
5% p-dichlorobenzene
5% perfume
2% 2 - ethyl - 1,3 - hexanediol. 70 WHAT I CLAIM IS:— 1. A biocidal composition comprising a

20% by weight of hexamethylenetetra-

$\begin{bmatrix} \mathbf{R} - \mathbf{N} - \mathbf{b} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{X} \end{bmatrix}^{\mathsf{T}}$ **75**

ammonium salt of general

in which R is a C_{12} — C_{20} aliphatic radical, X is halogen, sulphate, C_1 — C_7 alkyl sulphate, benzene sulphonate or C_1 — C_{10} alkyl benzene sulphonate and a, b and c are the same or different and are chosen from C_1 — C_7 alkyl, phenyl C_1 — C_7 alkyl, phenoxy C_1 — C_7 alkyl, thenyl and hydroxy alkynyl and a cage-type heterocyclic compound, containing four nitrogen atoms, formed by condensation of formaldehyde with ammonia, ethylene diamine, propylene diamine or o-phenylene diamine, the weight ratio of the quaternary ammonium salt to the heterocyclic compound being in the range of 5:1 to 1:5.

2. A composition according to claim 1 in which the heterocyclic compound is hexamethylenetetramine.

3. A composition according to claim 1 in which the heterocyclic compound is 1,3,6,8 tetraazatricyclo [4,4,1,1^{3.8}] dodecane.

4. A composition according to claim 1 in which the heterocyclic compound is 4,5,9,10 dibenzo - 1,3,6,8 - tetraazatricyclo [4,4,1,1^{3.8}]~

5. A composition according to any preced- 100 ing claim in which the weight ratio of the quaternary ammonium salt to the heterocyclic compound is in the range of 2:1 to 1:2.

6. A composition according to claim 1 sub-

stantially as hereinbefore described with reference to any of the Examples.

7. A method of killing bacteria comprising contacting the bacteria with a composition according to any preceding claim.

For the Applicant: GILL, JENNINGS & EVERY, 51/52 Chancery Lane, London, WC2A 1HN.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1973. Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.