

GUESS PAPERS LPAPER-1

MATHS - 2A

Max.Marks: 75

Time: 3 Hours

SE	CT	rI	0	N	-A
<u> </u>		ш		-	

 $10 \times 2 = 20$

Ans-Page Index

Answer ALL the following VSAQ: I.

P 72(106.1)]

Write the conjugate of (3+4i)(2-3i) 1.

P 74(114)

If $x+iy=cis\alpha.cis\beta$, then find the value of x^2+y^2 . 2.

[P 75(116)]

If A,B,C are angles of a triangle, x=cisA,y=cisB,Z=cisC, then find xyz. 3.

P 76(121.1)

Form a quadratic equation, whose roots are $7 \pm 2\sqrt{5}$ 4.

P 78(127)

If $1,1,\alpha$ are the roots of $x^3-6x^2+9x-4=0$ then find α . 5.

P 80(138.1)]

If $^{n}P_{3}=1320$ find n 6.

8.

Find number of ways of selecting 4 boys and 3 girls from a group of 7.

P 83(152.1)

8 boys and 5 girls. Find the middle term (s) in the expansion of $\left(\frac{3x}{7} - 2y\right)^{10}$

P 84(158)

Find the mean deviation about mean for the data 3,6,10,4,9,10. 9.

P 87(169.1) P 89(174)

The mean and variance of a binomial distribution are 4, 3 respectively. Find the distribution and find $P(X \ge 1)$

SECTION-B

Answer any FIVE of the following SAQ: II.

 $5 \times 4 = 20$

Show that the four points in the Argand plane represented by the complex numbers 2+i, 4+3i, 2+5i, 3i are the vertices of a square. P 50(54.2)]

Find the range of $\frac{x+2}{2x^2+3x+6}$ Simplify ${}^{34}C_5 + \sum_{r=0}^{4} {}^{(38-r)}C_4$

P 54(63.1)

P 57(68.1)

14. Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers such that there are atleast 5 bowlers in the team.

P 58(70)

Resolve $\frac{x+4}{(x^2-4)(x+1)}$ into partial fractions.

Suppose A and B are independent events with P(A)=0.6, P(B)=0.7 compute (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) P(B/A) (iv) $P(A^c \cap B^c)$ P 61(77)

17. A problem in calculus is given to two students A and B whose chances of solving it are 1/3, 1/4 respectively. Find the probability of the problem being solved if both of them try independently.

[P 62(81)]

Answer any FIVE of the following LAQ:

$$5 \times 7 = 35$$

18. If n is a positive integer, show that
$$(1+i)^n + (1-i)^n = 2^{\frac{(n+2)}{2}} \cos\left(\frac{n\pi}{4}\right)$$

19. Solve
$$x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$$
.

20. If
$$2^{nd}$$
, 3^{rd} , 4^{th} terms in $(a+x)^n$ are 240, 720 and 1080, then find a, x, n.

21. If
$$x = \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \infty$$
, then find $3x^2 + 6x$

22. Find the mean deviation about the mean for the given data using 'step deviation method':

1	п	46	/ A	@ \ \
	r	40	14	a i
				•

Marks obtained	0-10	10-20	20-30	30-40	40-50
No. of students	5	8	15	16	6

[P 38(33)]

23. State and Prove Addition theorem on Probability.

P 42(41.1)

24.	A random	variab	le X has	s the follo	owing pr	obability	y distribution.
	X=xi	1	2	3	4	5	
	D(V-v)	l.	2k	3k	4k	5k	

Find k and the mean and variance of X.

GUESS PAPERS

Max.Marks: 75

Time: 3 Hours

	1.7			- 0	
- 0		2	_	20	ł
10	\times	L	_	20	

I. Answer ALL the following

1. Write the complex number
$$\frac{a-ib}{a+ib}$$
 in the form A+iB

1. Write the complex number
$$\frac{a+b}{a+ib}$$
 in the form A+1B
2. If $z_1 = -1$, $z_2 = i$ then find Arg (z_1/z_2) [P 74(111.2)] 3. If $x = \cos\theta + i\sin\theta$, then find $x^6 + \frac{1}{x^6}$

4. If
$$\alpha, \beta$$
 are the roots of ax²+bx+c=0, then find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$

If the product of the roots of
$$4x^3+16x^2-9x-a=0$$
 is 9, then find a.

7 If
$$^{n}P_{r} = 5040$$
 and $^{n}C_{r} = 210$ find n and r.

8. Find the term independent of x in the expansion of
$$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$$

Answer any FIVE of the following SAQ: П.

11. If
$$(x-iy)^{1/3} = a$$
 -ib, then show that $\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$
12. If x is real, prove that $\frac{x}{x^2 - 5x + 9}$ lies between 1 and $\frac{-1}{11}$

12. If x is real, prove that
$$\frac{x}{x^2-5x+9}$$
 lies between 1 and $\frac{-1}{11}$

13. Show that
$${}^{25}C_4 + \sum_{r=0}^4 {}^{(29-r)}C_3 = {}^{30}C_4$$

15. Resolve
$$\frac{x^2 - x + 1}{(x+1)(x-1)^2}$$
 into partial fractions.

16. If A and B are independent events with
$$P(A) = 0.2$$
, $P(B) = 0.5$, find (i) $P(A/B)$ (ii) $P(B/A)$ (iii) $P(A \cap B)$ (iv) $P(A \cup B)$

Answer any FIVE of the following LAQ: Ш

Answer any FIVE of the following LAQ:
$$5 \times 7 = 3$$

18. Show that
$$(1+\cos\theta+i\sin\theta)^n+(1+\cos\theta-i\sin\theta)^n=2^{n+1}\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$$
 for $n \in \mathbb{Z}$

Solve
$$6x^6-25x^5+31x^4-31x^2+25x-6=0$$

20. If the coefficients of rth, (r+1)th, (r+2)th terms in the expansion of $(1+x)^n$ are in A.P then show that $n^2-(4r+1)n+4r^2-2=0$

21. If
$$x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots$$
 then prove that $9x^2 + 24x = 11$

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Students	6	5	8	15	7	6	3

A random variable X has its range {0,1,2} and the probabilities are
$$P(X=0)=3c^3$$
, $P(X=1)=4c-10c^2$, $P(X=2)=5c-1$ where 'c' is a constant, find (i) c (ii) $P(0 (iii) $P(1 (iv) $P(X<1)$$$

 $5 \times 4 = 20$

MODEL PAPER -3

				MAT	HS -	2A		Max.Marks	s : 75
-	ime : 3 Hours Answer ALL	the follow					$10 \times 2 = 20$		
1.	Find the multiplic							[→P 72(108	
2.	If Arg \overline{z}_{l} , Arg	[a−P 74(112							
3.	If $1, \omega, \omega^2$ are cube	[→P 75(119)]						
4.	If $x^2-15-m(2x-8)$)=0 has equ	al roots th	en find m	W //2-03)(2-ti)	, ,	[→P 77(124	1.1)]
5.	If -1 , 2, α are the							[a-P 78(128	3)
6.						ing 7 di	fferent coloured bead	[→P 83(153	3.2)]
7.	If ${}^{n}C_{5} = {}^{n}C_{6}$, th	en find 13	C.	or pi	-parca as	ing / un	nerent conductor ocac	[a-P 81(14	3.1)]
8.	If ²² C _r is the large			nt in the e	xnansio	of(1+)	() 22 find 13C	[→P 86(163	01
9.	Find the mean dev	iation abou	it median	for the da	ata 4.6	3 10	13.2	[→P 87(170	.1)]
10.	A Poisson variable	e satisfies P	(X=1)=P((Y=2) fin	4 D/V-5	1	.5,2	[æP 89(173)]
II.	Answer any FI	VE of the	follow	ing SAQ) :		$5 \times 4 = 20$		
11.	S.T the points in t	he Argand	diagram	represent	ed by the	comple	ex numbers	[-P 50(54.1	[(1
	$2+2i, -2-2i, -2\sqrt{2}$	3 + 2√3ia	re the ver	tices of a	n equilat	eral tria	ngle		
12.	Find the range of	$x^2 + x +$	I_P 54	(63.2)]	13 p.m.	C _{2n}	1.3.5(4n-1)	I D 57(60)	
	Tind the range of	$x^2 - x +$	1000	(03.2)]	3.P.T -2	$\frac{2n}{n} =$	$\{1.3.5 (2n-1)\}^2$	[G-F 5/(69)]	l
14.							ways and the words		
	are arranged in did	tionary ord	er, then fi	nd rank o	f PRISO	N.	ways and the words	1000000	'
15.	Resolve $\frac{x^2-x^2}{(x+2)(x+2)}$	-3							
15.	(x+2)(x+2)	$(\frac{1}{(2+1)})^{into}$	partial fr	actions.				[æP 68(100)]
16.	If A,B are 2 events	with P(A	∪B)=	0.65 and	P(A ∩	B) = 0.	.15, then find P(A ^c)	+P(B ^c) [-P 61	(79)]
17.	The probability for	or a contrac	tor to ge	t a road	contract	is 2/3 a	and to get a building	g contract is 5/9	. The
	probability to get a	tleast one c	ontract is	4/5. Find	the prob	ability tl	hat he gets both the c	ontracts. P 62	2(83)]
III.	Answer any FI	VE of the	follow	ing LA():		$5 \times 7 = 3$	5	
18.	If α.β are roots of	the equati	on x ² -2	c+4=0, S	$T \alpha^n + \beta^n$	=2 ⁿ⁺¹ co	$os(\frac{n\pi}{n})$	[-P 18(4)	1
19. 20.	If α,β are roots of Solve the equation	$8x^3 - 36x^2$	-18x+81=	=0 the roo	ts being	in A.P.	(3)	[→P 27(16 [→P 30(21	
20.	If the coefficients					•		[3-1 30(21	71
	are a ₁ ,a ₂ ,a ₃ ,a ₄ res	spectively,	show tha	$\frac{a_1}{a_1+a_2}$	+ a3	$=\frac{2a_2}{a_2+a_3}$	_		
21.							3	[a−P 36(29)]
	If $x = \frac{5}{2! \cdot 3} + \frac{5.7}{3! \cdot 3^2} + \frac{5}{3! \cdot 3^2}$	[a-P 47(50							
22.	Find the mean dev						50.60	(a-F 47(50	71
	Marks	0-10	10-20	20-30	30-40		50-60		
20	No. of boys	6	8	14	16	4	2	ins [-P 39(36)]
23.	Suppose that an ur	n B ₁ conta	ins 2 whi	te and 3	black ba	lls and a	another urn B2 conta	ains (30	/1
	3 white and 4 black If the ball drawn is	halle One	tirn is se	lected at	random	and a or	all is diawn from it.	(a-P 43(43)	11
24.	A cubical die is thr	own. Find	the mean	and vari	ance of	X, givin	g the	[a-1 43(43)	/1
	number on the fac	e that show	vs up.						

GUESS PAPERS L PAPER -4

Max.Marks: 75

Time: 3 Hours

MATHS - 2A

SECTION-A

 $10 \times 2 = 20$

		1.1-1	find the locus of Z.	ar.	71(100)
Find the course root of 7424i .	n 22/100 til 3	If $z=x+iy$, $ z =1$	Tilla are		

Find the square root of 7+24i [P 73(109.1)] 2. Find the value of $(1-i)^8$. [P 75(119.1)] 3.

[P 76(123.1)] [arP 78(131)]

Find the maximum or minimum value of the expression $x^2 - x + 7$ 4.

If $\alpha, \beta, 1$ are the roots of $x^3 - 2x^2 + 5x + 6 = 0$ then find α, β . 5

P 83(154.1)

Find the number of diagonals of a polygon with 12 sides.

[a-P 81(144.2)]

If ${}^{12}C_{r+1} = {}^{12}C_{3r-5}$ then find r

[a-P 86(166)]

Find the number of terms in the expansion of $(2x+3y+z)^7$.

[P 87(170.2)]

Find the mean deviation about median for the data 6,7,10,12,13,4,12,16.

[a-P 90(178)]

If mean & variance of a binomial variable X are 2.4 & 1.44 find P(1<X≤4) 16

 $5 \times 4 = 20$ P 52(59)

11.

P 55(64)

If $x + iy = \frac{1}{1 + \cos \theta + i \sin \theta}$ then, show that $4x^2 - 1 = 0$ Find the maximum value of the function $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ over R. 12.

[P 60(76)]

Find the sum of all 4 digit numbers that can be formed using digits 1,3,5,7,9. Find the number of ways of selecting 11 member cricket team from 7 batsmen, 13.

[P 58(71)]

6 bowlers and 2 wicket keepers so that the team contains 2 wicket keepers and atleast 4 bowlers.

Resolve $\frac{x^4}{(x-1)(x-2)}$ into partial fractions.

[a-P 69(102)]

If A,B are events with P(A)=0.5, P(B)=0.4 and $P(A \cap B)=0.3$,

P 61(80)

find the probability that (i) A does not occur (ii) neither A nor B occurs.

Find the probability that a non-leap year contains i) 53 Sundays ii) 52 Sundays only. [P 64(88)]

SECTION-C

 $5 \times 7 = 35$

18. If $n \in \mathbb{N}$, show that $(p+iq)^{1/n} + (p-iq)^{1/n} = 2(p^2+q^2)^{1/2n} \cos\left(\frac{1}{n}Tan^{-1}\frac{q}{p}\right)$ [PT C₀C₇+C₁C₇₊₂+...+C_{n-r}C_n= $\frac{2n}{n}$ C_(n+r) Hence deduce that $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{2n}{n}$ C_n [PT 32(24)]

Find the sum of the infinite series $\frac{3.5}{5.10} + \frac{3.5.7}{5.10.15} + \frac{3.5.7.9}{5.10.15.20} + ...\infty$

Calculate the variance and standard deviation for the following distribution:

[P 37(31)] [P 48(52)]

40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100

Three boxes B1, B2 and B3 contain balls with different colours are shown here

P 40(38)

	White	Black	Red
\mathbf{B}_{1}	2	1	2
B_2	3	2	4
\mathbf{B}_3	4	3	2

A die is thrown and B₁ is chosen if either 1 or 2 lurns up, B₂ is chosen if 3 or 4 turns up and B₃ is chosen if 5 or 6 turns up. Having chosen a box in this way, a ball is chosen at random from this box. If the ball drawn is of red colour, what is the probability that it comes from box B2?

A random variable x has the following probability distribution

P 43(42)

$x=x_i$	0		7	7				
$P(X=x_i)$	0		~		4	- 5	6	77
		K	2k	2k	3k	k2	21.2	71.2.
Find(i)k(ii) the	mean	(iii) Pm			``	2k ²	$7k^2+k$
			(III) I (U \)	(5)				