الوحدة التعليمية: المنطق التوافقي

الوضعية التعليمية: نظام التعداد

الإشكالية:

علمنا في دراستنا للنظام الآلي أن تشغيل الآلة يكون بوجود التيار وتوقفها بقطع التيار وهذه هي اللغة التي تعمل بهاكل الآلات مثل الحاسوب و الآلة الحاسبة، ويتم التعبير عن هذه اللغة بالعددين ال0 و ال1حيث وجود التيار يعني 1 و عدم وجود التيار يعني 0 ، وهنا يطرح التساؤل حول خصائص هذه اللغة وعن كيفية ترجمة لغة الآلة الى لغة الانسان و العكس.

1- مفهوم نظام التعداد:

اذكر النظام العددي المتعامل به من طرف الانسان النظام العشري

10 ماهي الأرقام المكونه له (0,1,2,3,4,5,6,7,8,9) اذا أساس هذا النظام هو

0 كيف نمثل توهج او انطفاء مصباح في دارة كهربائية 0 نمثل توهج المصباح ب

ماهو النظام العددي المتعامل به في هذه الحالة ومن كم رقم يحتوي النظام الثنائي ويتكون من قمين هما 0 و 1 ماهو أساس هذا النظام أساسه 2

من كم رقم يتكون النظام الثماني و نظام السداسي عشر و ما هو أساس هذين النظامين؟

8 النظام الثماني يحتوي على 8 ارقام هم (0,1,2,3,4,5,6,7) واساس هذا النظام هو

النظام السادس عشر يحتوي على 16 رمز هم (0,1,2,3,4,5,6,7,8,9,A,B, C,D,E,F) واساس هذا النظام هو 16 حيث يمثل كل حرف رقم مرافق له

A B C D E F 10 11 12 13 14 15

نظام التعداد عبارة عن طريقة لتمثيل الأعداد بواسطة أرقام معينة تختلف من نظام إلى نظام أخر و لكل نظام أساس.

امثلة:

ننائي ، (A8D4) عدد في النظام السداسي عشر (A8D4)

2 (10011) عدد في النظام الثنائي

8 (752) عدد في النظام الثماني

10(189) عدد في النظام العشري

2- خصائص النظام الثنائي:

- في النظام الثنائي كيف تسمى الأرقام؟ تسمى الأرقام في النظام الثنائي بالوحدات المنطقية les bits
 - على أي شكل يتم تمثيل الارقام في النظام الثنائي؟

$$MSB \longrightarrow b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0$$
 LSB $h_1 \ b_0 \ b_2 \ b_1 \ b_0$ LSB $h_1 \ b_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$ $h_1 \ b_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$ $h_1 \ b_2 \ b_1 \ b_0$ $h_2 \ b_1 \ b_0$

- - عرف الوحدة المنطقية و الكلمة الثنائية.
- الوحدة المنطقية bit يمثل بـ 0 أو 1 في الترقيم الثنائي و تمثل حالتين 0 و1، إذن هي أصغر وحدة معلومة معالجة من طرف آلــــة.
 - الكلمة الثنائية octet هي وحدة معلومة تتكون من 8 وحدات منطقية bit، وتسمى أيضاLe Byte يستعمل ال octet لقياس سعة الذاكرات الموجودة في الحواسب و الهواتف الذكية...

حيث 1octet = 1byte = 8bit

1kilo-octet (Ko) = 2^{10} octet = 1024 octet

 $1 \text{méga-octet} \ (Mo) = 2^{10} \ \text{Ko} = 1048576 \ \text{octet}$

1giga-octet (Go) = 2^{10} Mo = 1048576Ko = 1073741824 octet

3- دراسة مختلف التحويلات:

1-3 التحويل من النظام العشري الى الأنظمة الاخرى:

$$(52)_{10} = (?)_8$$
 $(73)_{10} = (?)_8$

$$(40)_{10} = (?)_2$$

التمرين 01: حول الاعداد التالية:

$$(116)_{10} = (?)_{16}$$
 $(76)_{10} = (?)_{16}$

2-3- التحويل من الأنظمة الاخرى الى النظام العشري:

تسمى عملية المرور من الأنظمة الأخرى الى النظام العشري بفك الترميز (décodage)، وللحصول على هذا التحويل نقوم بجمع جداءات رموز العدد المراد تحويله الى العشري مع القيمة المرتبة المقابلة

$$S = 1.2^{0} + 1.2^{1} + 0.2^{2} + 1.2^{3} + 1.2^{4} + 1.2^{5}$$

 $S = 1 + 2 + 0 + 8 + 16 + 32 = 59$

$$(111011)_{2} = (?)_{10} = (?)_{10}$$

$$(111011)_{2} = (?)_{10} = (?)_{10}$$

$$(111011)_{2} = (?)_{10} = (?)_{10}$$

$$(111011)_2 = (59)_{10}$$

التمرين 02 : حول الاعداد التالية الى النظام العشري :

$$(721)_8 = (?)_{10}$$
 $(235)_8 = (?)_{10}$ $(101101)_2 = (?)_{10}$
 $(9EC)_{16} = (?)_{10}$ $(AC2)_{16} = (?)_{10}$

نشاط : حول الاعداد العشرية من 0 الى 15 للنظام الثنائي بواسطة الالة الحاسبة ثم صنفها في الجدول

2^3	2^2	2^{1}	2^{0}	الثنائي	2^3	2^2	2^1	2^{0}	الثنائي
				العشري					العشري
1	0	0	0	8	0	0	0	0	0
1	0	0	1	9	0	0	0	1	1
1	0	1	0	10	0	0	1	0	2
1	0	1	1	11	0	0	1	1	3
1	1	0	0	12	0	1	0	0	4
1	1	0	1	13	0	1	0	1	5
1	1	1	0	14	0	1	1	0	6
1	1	1	1	15	0	1	1	1	7

تحقق من نتائج التمرين 1 و2 السابقين باستعمال الالة الحاسبة.

4- العلاقة بين النظام الثنائي و النظام السادس عشر:

-1-4 التحويل من النظام الثنائي الى النظام السداسي عشر :

نقوم بتقسيم العدد في النظام الثنائي الى مجموعات، كل مجموعة مكونة من 4 بيت انطلاقا من اليمين الى اليسار، ثم نحول كل مجموعة مباشرة الى مكافئها في النظام السداسي عشر.

إذا نقصت عدد الابيات عن أربعة في المجموعة الأخيرة نضيف اليها اصفار.

$$(101101110)2 = (16E)16$$

2-4 التحويل من النظام السداسي عشر الى النظام الثنائي:

نحول كل رقم من العدد في النظام السداسي عشر الى النظام الثنائي باستعمال 4بيت

مثال : 2(؟) = 16(B39)

$$(\mathbf{B39})16 = (\ 101100111001)2$$

5- العمليات الحسابية في النظام الثنائي:

-1الجمع : تتم عملية الجمع في النظام الثنائي حسب الجدول التالي -1

الجمع	الناتج	الباقي
0+0	0	0
0+1	1	0
1+0	1	0
1+1	0	1

-2-5 الطرح : تتم عملية الطرح في النظام الثنائي حسب الجدول التالي

التحق

الطرح	الناتج	الباقي
0-0	0	0
0-1	1	1
1-0	1	0
1-1	0	0

5-5 الضرب: تتم عملية الضرب في النظام الثنائي حسب الجدول التالي

الضرب	الناتج
0×0	0
0×1	0
1×0	0
1×1	1

-4-5 القسمة: تتم عملية القسمة في النظام الثنائي حسب الجدول التالي

_11010	10
$\frac{10}{010}$	1101
10	
$\frac{0\ 0\ 1}{0\ 0}$	
010	
$-\frac{10}{00}$	

مثال:	القسمة	الناتج
	0/1	0
	1/1	1

التمرين 04: احسب ما يلى

1001–10 ; 1101–1011

; 1101+111 ; 1011+1001

11000/10

 1101×110 ;

1001×11

6- أنظمة الترميز:

ان العمليات الرقمية تتصف بانها معقدة ولهذا كان من الضروري اجاد أنظمة رقمية أكثر سهولة في اجراء العمليات والتحويلات

$\frac{1-6}{1-6}$ نظام الترميز $\frac{1}{1}$: (نظام عشري مرمز ثنائي)

$$(10010110_{0.2} \times 2^{0} + 1 \times 2^{1} \dots = 150_{(10)})$$

قم بتحويل العدد الثنائي المقابل الى العشري

أكمل الجدول التالي؟

0	0	0	1	0	1	0	1	0	0	0	0	BCD
1				5	5			()		عشري	

- * ماذا تلاحـــظ؟
- نلاحظ أن التحويل من BCD إلى العشرى أكثر سهولة و سرعة من تحويل الثنائي إلى العشرى.
- نقول عن BCD هو ترميز مستعمل عموما في إظهار الأرقام العشرية مرموز لها في الثنائي بأربع وحدات منطقية (4bit)، ويستعمل في الأجهزة الرقمية.

عشري	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

- الجمع في النظام BCD

$$+ \frac{0101 \ 1101}{0110 \ 0011} + \frac{0110}{0110 \ 0011}$$
 (0110 0011)_{BCD}=(63)₁₀

نتائج:

- اذا تحصنا في الناتج على عدد يساوي او اقل من 9 فان العملية صحيحة
- اذا تحصلنا في الناتج على عدد اكبر من 9 يجب القيام بالتصحيح و ذالك بإضافة العدد 6 (0110) للعدد الأكبر من 9 في الناتج

(نظام الترميز GRAY: (نظام الثنائي الانعكاسي)

نظام GRAY هو نظام ثنائي يختلف عن النظام الثنائي الطبيعي بحيث يتغير ببت واح (1bit) بين عددين ثنائيين متتاليين

نظام GRAY	النظام الثنائي	النظام العشري	نظام GRAY	النظام الثنائي	النظام العشري
1100	1000	8	0000	0000	0
1101	1001	9	0001	0001	1
1111	1010	10	0011	0010	2
1110	1011	11	0010	0011	3
1010	1100	12	0110	0100	4
1011	1101	13	0111	0101	5
1001	1110	14	0101	0110	6
1000	1111	15	0100	0111	7

-التحويل من النظام الثنائي الى نظام GRAY :

للتحويل من النظام الثنائي الى نظام GRAY نتبع الخطوات التالية :

- نبدأ من بيت الموجود في اقصى اليسار ننزله ليكون اول بيت ثم نضيف اليه قيمة البيت الثاني
 - نحتفظ بالمجموع ونحذف الباقي
 - نقوم بجمع البيت الثاني والثالث
 - نحتفظ بالمجموع ونحذف الباقي وهكذا الى غاية البيت الاخير

مثال:

 $(10011)_2 = (11010)_{GRAY}$

 $(0101)_2 = (0111)_{GRAY}$

-التحويل من نظام GRAY الى النظام الثنائي :

للتحويل من النظام GRAY الى نظام الثنائي نتبع الخطوات التالية:

- نبدأ من بيت الموجود في اقصى اليسار ننزله ليكون اول بيت ثم نضيف اليه قيمة البيت الثاني
 - نحتفظ بالمجموع ونحذف الباقي
- نضيف الى هذا المجموع قيمة البيت الثالث ثم نحتفظ بالمجموع ونحذف الباقى وهكذا الى غاية اخر بيت

مثال:

 $(01101)_{\text{ GRAY}} = (01001)_2$

 $(1001)_{GRAY} = (1110)_2$

التمرين 05: امل الجدول التالي بدون استعمال الآلة الحاسبة

HEX	BCD	GRAY	DEC	BN
				10110
			152	
		10111		
	0011			
8AC				

