Distributed representations

ML4SE

Denis Litvinov

October 26, 2021

Table of Contents

Word2Vec

- 1 Word2Vec
 - Skip-grams
 - CBoW
 - Distributional hypothesis
- 2 Softmax optimization
 - Huffman tree
 - Negative Sampling
- 3 Glove

- 4 Subword Embeddings
 - FastText
- 5 Topic Modeling
 - LDA
 - Topic coherence
- 6 Dimension Reduction
 - NMF
 - PCA
- 7 SNE

 Softmax optimization
 Glove
 Subword Embeddings
 Topic Modeling
 Dimension Reduction

 0000
 0000
 00000000
 00000000
 0000

Problem Statement

Word2Vec

000000

Given a sequence of tokens (words), build a vector in \mathbb{R}^N for each token, which are in some sense representative.

Softmax optimization Glove Subword Embeddings Topic Modeling Dimension

Word2Vec Model

Word2Vec

0000000

CBOW

Skip-gram

Skip-gram Model

Word2Vec

0000000

where N - desired embedding dimension

Word2Vec Softmax optimization

Glove

Subword Embeddings

Topic Modeling

Skip-gram Model

For each word *t* predict surrounding words in a window of size *m* (context)

Objective is to maximize probability of context words given the current center word:

$$J(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m; j \ne 0} p(x_{t+j}|x_t;\theta) \to \max_{\theta}$$

, or

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{I} \sum_{-m < j < m; j \neq 0} \log p(x_{t+j}|x_t; \theta) \rightarrow \min_{\theta}$$

where x_t - center word, x_{t+j} - word from context, m - context size.

$$p(x_{t+j}|x_t) = p(out|center) = rac{e^{u_{out}^T v_{center}}}{\sum_{i=1}^{V} e^{u_i^T v_{center}}}$$

max optimization Glove Subword Embeddings Topic Modeling Dimension

Continuous Bag of Words Model

Word2Vec

0000000

= Predict center word from surrounding context

Softmax optimization Glove Subword Embeddings Topic Modeling Dimension Reduction

Why Embeddings?

Word2Vec

- What are other ways to construct a vector in R^N for each word?
- Embeddings allow to apply simple algebra on words
- Embeddings can describe entities (words, documents) that are absent in the dataset.

Softmax optimization Glove Subword Embeddings Topic Modeling Dimension Reduction

Distributional hypothesis

Word2Vec

0000000

Word embedding is defined by it's context.

Problem statement

What computational problems do you see in the objective function?

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m; j \neq 0} \log p(x_{t+j}|x_t; \theta) \rightarrow \min_{\theta}$$

$$p(x_{t+j}|x_t) = p(out|center) = rac{e^{u_{out}^T v_{center}}}{\sum_{i=1}^V e^{u_i^T v_{center}}}$$

ec Softmax optimization Glove Subword Embeddings Topic Modeling Dimension Reduction 000 0 000 0000 000000 0000

Huffman tree

How to build a binary prefix tree?

String to be encoded: ABACA

Huffman tree

```
Complexity O(V) \rightarrow O(\log_2 V) x = v_{n(x,j)}^T v_x, where n(x,j) is the j-th node on the path from the root to token x. p(n,left) = \sigma(v_n^T v_x) - probability to go left. p(n,right) = \sigma(-v_n^T v_x) - probability to go right. Then, p(x_j|x) = \prod_{j=1}^{L(x)-1} \sigma(I[n(x,j+1) == child(n(x,j))]v_n^T v_x), where L(x) - depth of the tree, child(x) - child of node n.
```

Huffman tree

Using negative sampling with k samples:

$$\log p(x_{t+j}|x_t;\theta) = \log \sigma(u_{outer}^\mathsf{T} v_{center}) + \sum_{i=1}^k E_{j \sim P(x)}[\log \sigma(-u_j^\mathsf{T} v_{center})]$$

Distributed representations October 26, 2021

Co-occurrence matrix

- = Word embeddings through decomposition of co-occurrence matrix
 - I enjoy flying.
 - 2. I like NLP.
 - 3. I like deep learning.

The resulting counts matrix will then be:

		I	like	enjoy	deep	learning	NLP	flying	
X =	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0]

Singular Value Decomposition

Every matrix $M \in \mathbb{R}^{n \times m}$, n < m can be represented as a product

$$M = U\Sigma V^T$$

where $U \in R^{nxn}$, $V \in R^{nxm}$ are orthogonal matrices, $\Sigma \in R^{nxn}$ - diagonal matrix

$$Mv = \sigma u$$

$$M^*u = \sigma v$$

SVD complexity $O(nm^2)$

Denis Litvinov

 Softmax optimization
 Glove
 Subword Embeddings
 Topic Modeling
 Dimension Reduction

 0000
 0000
 0000
 0000000
 0000

Glove

Word2Vec

 P_{ij} - occurrence of *i*-th word along with *j*-th in the window of size m Cons:

- 1 Very high-dimensional, not used in practice
- Hard to add new words and docs

Trivial solution: use some dimension-reduction method, usually SVD

ftmax optimization Glove Subword Embeddings Topic Modeling

OOO OOO OOOOOO

Dimension Reduction

Glove

Word2Vec

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})$$

f(x) - some weight functions that obeys following properties:

- f(0) = 0
- non-decreasing, so rare co-occurrences won't overweight
- relatively small for large x, to compensate frequent co-occurrences

The authors have chosen

$$f(x) = \begin{cases} (\frac{x}{x_{max}})^{\alpha} & x \leq x_{max} \\ 1 & else \end{cases}$$

Softmax optimization Glove Subword Embeddings Topic Modeling Dimension Reduction

FastText

FastText

Word2Vec

Subword embeddings.

Introduce scoring function (instead of scalar product as in w2v):

$$s(w,c) = \sum_{g \in G_w} z_g^T v_c$$

where G_w - set of 3-grams appearing in word w

 z_g - embedding of 3-gram g

v_c - context vector

Denis Litvinov

20/36

FastText

Word2Vec

Objective function for skip-gram case:

$$\sum_{t=1}^{T} [\sum_{c \in C_t} log(1 + e^{-s(w_t, w_c)}) + \sum_{n \in N_{t,c}} \log(1 + e^{s(w_t, n)})] \rightarrow \min$$

where c - chosen context position

 C_t set of context position dependent on current word t

T - total number of words

 $N_{t,c}$ - set of negative samples dependent on chosen word and context

Inference: Embedding of word w from 3-grams G_w :

$$V_w = \sum_{g \in G_w} Z_g$$

FastText

Tweaks in Negative sampling: sampling with probability

$$p(w) = \frac{\sqrt{U(w)}}{Z}$$

where $Z = \sum_{w} \sqrt{U(w)}$ and U(w) - the count of a particular word w Probability of token w to be discarded during training:

$$P(w) = \sqrt{\frac{t}{f(w)}} + \frac{t}{f(w)}$$

where $f(w) = \frac{U(w)}{Z}$ - frequency of token w

Denis Litvinov

Problem Statement

Word2Vec

Topic modeling is equivalent to soft clustering:

Given document d_j , assign each document a vector of probabilities for each topic (cluster) $v_j = [p(t_0), ..., p(t_K)], \sum_k p(t_k) = 1$ Usually,

- number of topics *K* is fixed and is a subject for cross-validation.
- document is described by term-document matrix (bag of words model).

How to overcome BoW assumption?

October 26, 2021

Latent Semantic Analysis

Let $X \in R^{VxD}$ be word-document matrix where D - number of documents V - number of words then applying SVD we get

$$X = U \Sigma V^T$$

Select k largest singular values and corresponding singular vectors \rightarrow make truncated SVD

$$X \sim U_k \Sigma_k V_k^T$$

Denis Litvinov Distributed representations

Latent Semantic Analysis

then $\sum_{k=1}^{\frac{1}{2}} V_k$ - document embeddings

 $U_k \Sigma_k^{\frac{1}{2}}$ - learned word embeddings

■ What are pros and cons of this method?

Latent Dirichlet Allocation

- *K* number of topics
- N number of words
- M number of documents

Assumed generative process:

- **1** sample $\theta_d \sim Dir(\theta|\alpha)$, $d \in 1..M$
- **2** sample $\phi_k \sim Dir(\phi|\beta)$, $k \in 1..K$
- \blacksquare for each word w_{ij} in document i:
 - **1** sample a topic $z_{ii} \sim Multinomial(\theta_i)$
 - 2 sample a word $w_{ij} \sim Multinomial(\phi_{z_{ij}})$

26/36

Latent Dirichlet Allocation

$$p(z_{d,n} == k | \theta_d) = (\theta_d)_k$$

$$p(\mathbf{w}_{d,n} = \nu | \mathbf{z}_{d,n}, \phi) = (\phi_{\mathbf{z}_{d,n}})_{\nu}$$

Joint distribution on word and documents

$$p(w, z, \theta, \phi | \alpha, \beta) = \prod_{k} Dir(\phi_{k} | \beta) \prod_{d} [Dir(\theta_{d} | \alpha) \prod_{n} p(z_{d,n} | \theta_{d}) p(w_{d,n} | z_{d,n}, \phi)]$$

- Essentially, Dirichlet prior works as a regularizer
- Obviously, you can introduce your own regularizers

Latent Dirichlet Allocation

Multinomial distribution

$$p(x_1,...,x_k) = \frac{n!}{x_1!...x_k!}p_1^{x_1}...p_k^{x_k}$$

, where $\sum_{i=1}^{k} x_i = n$ Dirichlet distribution on simplex

$$Dir(z|\alpha) = \frac{1}{B(\alpha)} \prod_{i=1}^{k} z_i^{\alpha_i - 1}$$

, where $\alpha_i > 0$ Simplex is a set of points $\{z | \sum_{i=1}^k z_i = 1 \land z_i \ge 0\}$

Denis Litvinov

Latent Dirichlet Allocation

Topic Coherence

Word2Vec

Topic coherence is a measure of topic quality. Algorithm sketch:

- Each topic is described by top-n most probable words
- Introduce similarity measure between words: for example, based on co-occurrence matrix or cosine distance of word embeedings
- 3 Compute average of pairwise similarities of top-n words for each topic
- 4 Average scores over topics

Problem Statement

Word2Vec

Given feature matrix $X \in R^{NxD_1}$ create a mapping $\phi : R^{NxD_1} \to R^{NxD_2}$, $D_1 > D_2$ such that most of important information about features is preserved.

■ Make your own

Non-negative Matrix Factorization

 $A \sim WH$

$$\begin{cases} ||A - WH||_F^2 \rightarrow \min_{W,H} \\ W,H > 0 \end{cases}$$

Principal Component Analysis

sample mean

$$m = \frac{1}{N} \sum_{i=1}^{N} x_i$$

sample covariance

$$S = \frac{1}{N-1}(X-m)(X-m)^T$$

Eigenvalue decomposition = SVD for square matrices

$$S = U\Sigma U^T$$

Select eigenvectors corresponding to biggest k eigenvalues (principal components)

Then $X = U_k \Sigma_k$ is new feature matrix

Softmax optimization Glove Subword Embeddings Topic Modeling Dimension Reduction

Principal Component Analysis

ftmax optimization Glove Subword Embeddings Topic Modeling Dimensic

SNE ●00

Problem statement

Word2Vec

Given feature matrix $X \in R^{NxD_1}$ create a mapping $\phi : R^{NxD_1} \to R^{NxD_2}$, $D_1 > D_2$ that preserves local structure (distances?).

Softmax optimization

Word2Vec

Glove

t-distributed Stochastic Neighborhood Embeddings

$$p_{j|i} = \frac{exp(-\frac{1}{2\sigma_{j}^{2}}||x_{i} - x_{j}||^{2})}{\sum_{k \neq l} exp(-\frac{1}{2\sigma_{i}^{2}}||x_{l} - x_{k}||^{2})}$$

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

$$Loss = KL(P||Q) = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ii}}$$

t-distributed Stochastic Neighborhood Embeddings

Student t-distribution

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma_{\frac{\nu}{2}}}(1+\frac{t^2}{\nu})^{-\frac{\nu+1}{2}}$$

for $\nu = 1$

$$f_{\nu=1}(t) = \frac{1}{\pi}(1+t^2)^{-1}$$

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq i} (1 + ||y_k - y_j||^2)^{-1}}$$

Denis Litvinov Distributed representations