Arbeitsblatt: Modulares Potenzieren

Für das Modulo-Rechnen gelten u.a. die folgenden Rechenregeln:

$$(a \cdot b) \mod m = (a \mod m \cdot b \mod m) \mod m$$

 $(a^b) \mod m = (a \mod m)^b \mod m$

Aufgaben:

1. Versuche in Worte zu fassen, welche Ansätze bei den folgenden Rechenbeispielen verwendet werden, um 7^4 mod 12 und 82^{17} mod 20 zu berechnen.

$$7^4 \mod 12 = 7^2 \cdot 7^2 \mod 12$$

= $49 \cdot 49 \mod 12$
= $(49 \mod 12 \cdot 49 \mod 12) \mod 12$
= $(1 \cdot 1) \mod 12$
= $1 \mod 12$
= 1

$$82^{17} \mod 20 = 2^{17} \mod 20$$

$$= 2^{16} \cdot 2^{1} \mod 20 = (2^{4})^{4} \cdot 2 \mod 20$$

$$= 16^{4} \cdot 2 \mod 20 = (-4)^{4} \cdot 2 \mod 20$$

$$= (-4)^{2} \cdot (-4)^{2} \cdot 2 \mod 20$$

$$= 16^{2} \cdot 2 \mod 20$$

$$= (-4)^{2} \cdot 2 \mod 20 = 16 \cdot 2 \mod 20$$

$$= 32 \mod 20$$

$$= 12$$

- 2. Berechne
 - (a) $8^9 \mod 7$
 - (b) $6^9 \mod 7$
 - (c) $54^{16} \mod 55$
 - (d) $3^{333} \mod 26$ (Tip: Benutze $3^3 \mod 26 = 27 \mod 26 = 1 \mod 26 = 1$)
 - (e) $2^{268} \mod 17$ (Tip: Benutze $2^4 \mod 17 = 16 \mod 17 = (-1) \mod 17$)
 - (f) $2^{269} \mod 17$ (Tip: Verwende das Ergebnis von (e) oder benutze, dass $2^4 \mod 17 = 16 \mod 17 = (-1) \mod 17$)
 - (g) $2^{270} \mod 19$ (Tip: Benutze, dass $2^9 \mod 19 = -1 \mod 19$.)
 - (h) $2^{271} \mod 19$ (Tip: Verwende das Ergebnis von (g) oder benutze, dass $2^9 \mod 19 = -1 \mod 19$.
 - (i) $3^{333} \mod 15$ Tip: Zeige zunächst, dass $3^4 \mod 15 = 6 \mod 15$, und nutze außerdem, dass $6^k \mod 15 = 6$ ist.