知识点: 奇变偶不变, 符号看象限

【A组】

[A组]

1. 已知
$$\sin a = \frac{2\sqrt{5}}{5}$$
,则 $\cos\left(a - \frac{\pi}{2}\right) = \frac{2\sqrt{5}}{5}$

1. 已知
$$\sin a = \frac{1}{5}$$
 ,如 $\cos \left(\frac{a}{2} \right)$ 。 $\sin \left(a - \frac{3\pi}{2} \right)$ 的值为 $\frac{2}{5}$ 2. 若 $\sin a = \frac{1}{3}$, $a \in \left(\frac{\pi}{2}, \pi \right)$,则 $\sin \left(a - \frac{3\pi}{2} \right)$ 的值为 $\frac{2}{5}$ 分 题 $\sin \left(a - \frac{3\pi}{2} \right)$ 的值为 $\frac{2}{5}$

3. 已知点A的坐标为(3,4),将9A绕坐标原点O顺时针旋转 $\frac{\pi}{2}$ 至OA,则点A的

$$\mathbf{A} \sin(\frac{3\pi}{2} - a) = -\cos a$$

$$\mathbf{B.} \ \cos(\frac{3\pi}{2} - a) = \sin a$$

C.
$$\tan(\frac{3\pi}{2} - a) = -\cot a$$

$$\mathbf{D}, \cot(\frac{3\pi}{2} - a) = \cot a$$

5. 已知角 α 的终边经过点P(-3,-4),则 $\cos(\frac{\pi}{2}+\alpha)$ 的值为 $\frac{4}{5}$

【B组】

1. 已知
$$\sin\left(\frac{\pi}{2} - a\right) = \frac{3}{5}$$
,则 $\cos(\pi + a) = \frac{5}{5}$

2. 已知
$$\cos\left(\frac{\pi}{2} + \varphi\right) = \frac{\sqrt{3}}{2}$$
, 且 $|\varphi| < \frac{\pi}{2}$, 则 $\tan \varphi = \frac{-\sqrt{3}}{2}$

3. 如果
$$\cos(\pi + \alpha) = -\frac{1}{3}$$
, 那么 $\sin\left(\frac{3\pi}{2} - \alpha\right) = \frac{1}{3}$

4. 已知函数
$$f(x) = \sqrt{2}\cos\left(x - \frac{\pi}{12}\right)$$
,若 $\cos\theta = \frac{3}{5}, \theta \in \left(\frac{3\pi}{2}, 2\pi\right)$, π

5. E知
$$\sin \beta = \frac{1}{3}$$
, $\sin(a + \beta) = 1$,则 $\sin(2a + \beta) = \frac{3}{3}$

8. 已知点
$$P\left(\sin(\pi+\theta),\sin\left(\frac{3\pi}{2}-\theta\right)\right)$$
 在第三象限,则角 θ 所在的象限是第_____

象限.

9. 已知角
$$\alpha$$
 的终边上一点的坐标为 $\left(\sin\frac{4\pi}{3},\cos\frac{4\pi}{3}\right)$, 则角 α 的最小正值 为 $\frac{7}{6}$ π

10.已知角 α 的顶点与原点 O 重合,始边与 x 轴的正半轴重合,将 α 的终边按顺时针方向旋转 $\frac{\pi}{2}$ 后,过点 $P\left(\frac{3}{5},\frac{4}{5}\right)$,则 $\cos \alpha$ 等于 $\frac{4}{5}$

11. Exif(x) =
$$\frac{\cos\left(\frac{\pi}{2} + x\right)\cos(-x)\sin\left(\frac{3\pi}{2} - x\right)}{\sin(-\pi - x)\cos(2\pi - x)}.$$

(1) 化筒 f(x); (2) 若 x 是第三象限角,且 $\tan x = 2$, 求 f(x) 的值.

$$\frac{4\pi u}{\sin x - \cos x}$$
 = $\frac{-3\pi \times \cdot 65x \cdot (-65x)}{\sin x - 65x}$

$$(2) \quad t_{\text{mx}} = 2, \quad t_{\text{mx}} = -\frac{f_{\text{m}}}{f}$$

$$+ f_{\text{mx}} = -\frac{f_{\text{m}}}{f}$$

12. 已知 $\sin \alpha$ 是方程 $3x^2-10x-8=0$ 的根,且 α 为第三象限角,求

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\tan^2\left(2\pi - a\right)\tan\left(\pi - a\right)}{\cos\left(\frac{\pi}{2} - a\right)\cos\left(\frac{\pi}{2} + a\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\tan^2\left(2\pi - a\right)\tan\left(\pi - a\right)}{\cos\left(\frac{\pi}{2} + a\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\tan^2\left(2\pi - a\right)\tan\left(\pi - a\right)}{\cos\left(\frac{\pi}{2} + a\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\tan^2\left(2\pi - a\right)\tan\left(\pi - a\right)}{\cos\left(\frac{\pi}{2} + a\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\tan^2\left(2\pi - a\right)\tan\left(\pi - a\right)}{\cos\left(\frac{\pi}{2} + a\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\cos\left(\frac{\pi}{2} + a\right)}{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\frac{3\pi}{2} - a\right)\cos\left(\frac{\pi}{2} + a\right)}{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)}$$

$$\frac{\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left(\alpha + \frac{3\pi}{2}\right)\sin\left$$

13、化筒

$$(1)\sin(21\pi - a) + \cos(\frac{9\pi}{2} - a) + \tan(\frac{9\pi}{4} - a) - \sin(-a - 19\pi) - \cos(-a - \frac{27}{2}\pi) - \tan(-a - \frac{7\pi}{4})$$

(2)
$$\frac{\sin(31^\circ + a)}{\tan(27^\circ + a)} \cdot \frac{\tan(747^\circ + a)}{\cos(36^\circ + a)} \cdot \frac{\cos(1116^\circ + a)}{\sin(751^\circ + a)}$$

14. 已知 a 是第三象限角,
$$f(a) = \frac{\sin\left(a - \frac{\pi}{2}\right) + \cos\left(\frac{3\pi}{2} + a\right)}{\cos(-a - 2021\pi) + \sin(2022\pi - a)}$$
.

(1)者
$$\alpha = -\frac{32\pi}{3}$$
, 求 $f(\alpha)$ 的值;

(2)若
$$\tan a = 2$$
,求 $f(a)$ 的值.

(1)
$$f(x) = f(\frac{4}{3}\pi) = [-2+J]$$

$$(2) f(d) = \frac{-1 + tmd}{-1 - tand} = \boxed{-\frac{1}{3}}$$

【C组】

1、(1)已知集合 $A = \{a \mid a = k\pi + \frac{\pi}{6}, k \in \mathbb{Z}\}$

①是否存在 B = [a,b], 使 $A \cap B = \{-\frac{11\pi}{6}, -\frac{5\pi}{6}, \frac{\pi}{6}, \frac{7\pi}{6}\}$ 成立? 如果存在,求出 a, b 的范围; 如果不存在,说明理由.

②是否存在 B = [a,b],使 $A \cap B$ 有且仅有 4 个元素? 如果存在, 求出 b-a 的最大范围; 如果不存在, 说明趣由.

(2)所有能使 $\tan a = \tan 3$ 成立的 a 组成集合 A, 请你写出一个集合 B, 使 $B \subseteq A$,

且B的元素有无限个.

ない、のなら(して、一でな)

しらしてで、「3な)

しらしてで、「3な)

つしてしまた、5な)

(r) B = V

 $\angle 1$ 2、当 s 和 t 取遍所有实数时,求 $(s+7-|\cos t|)^2+(s-2|\sin t|)^2$ 的最小值.

な (S+7,5)

Blost1, 2/sht1) / 1/5=/A/31

ky B

易益出/1654=1,164/20,5=3/107分十

in YSmy = [18]

△3、 着a > 0, b > 0, 求min {max $(a, b, \frac{1}{a^2} + \frac{1}{b^2})$ }.

能不妨险 azb

1. 15 = min {max (a, \frac{1}{a^2} + \frac{1}{b^2})}

图急到 《建婚、 六十岁建城(1日之的) 】 版 a = 武 + 位 的 mx {a, 元 + 6} 最小

 $\frac{2}{4^{3}-1} \leq 4^{2}$ $\frac{2}{4} \leq 4^{2}$ $\frac{2}{4} \leq 4^{2}$

1、(1)已知集合 $A = \{a \mid a = k\pi + \frac{\pi}{K}, k \in \mathbb{Z}\}$

①是否存在 B = [a,b], 使 $A \cap B = \{-\frac{11\pi}{6}, -\frac{5\pi}{6}, \frac{\pi}{6}, \frac{7\pi}{6}\}$ 成立? 如果存在,求出 a, b的范围; 如果不存在, 说明理由.

②是否存在B = [a,b],使 $A \cap B$ 有且仅有4个元素?如果存在,求出b-a的最大 范围;如果不存在。说明理由.

(2)所有能使 $\tan a = \tan 3$ 成立的 a 组成集合 A, 请你写出一个集合 B, 使 $B \subseteq A$,

且 B 的元素有无限个 (1) O a6(-17,-17) b6(6,6)

日子文部之名のB={K元十号, K元十元十号 | 大丁大丁号 | 東B=[a|a=3+水元] | 民門 ae(kn-n+?, kn+?) becknon+; kn+4n+;)

a.6存在 5g 的最大范围为[3元,5元)

(S-(|ωst-7|)) +(S-2|sint|) (5.5) ([ωst-7], 2|sint|) (5.5) ([ωst-7], 2|sint|) (5.5) ([ωst-7], 2|sint|) 2. 当s和t取通所有实数时, 求(s+7-|cost|)2+(s-2|sint|)2的最小值.

スAIS、3) B为园 (X+7)+計 日在 X 抽上 議在 X = 75x=-b 之间 「元十日日

中国像下来当B坐标为H。O)时. #A坐标为1-339时 /AB广东影传 此时1ABT=18,等是在5=-3.1t=kx,从空时取得。

3、者a > 0, b > 0, 來min $\{\max(a, b, \frac{1}{a^2} + \frac{1}{b^2})\}$.

in ist = minfnax (9.6, extit) ·· +12 t> 1/2 ·· min [max(a,b,a+tb+)]= 1/2 李安在 a=b= 5时取得 65. 解析 设点 A(s+7,s) ,点 $B(|\cos t|, 2|\sin t|)$,则 $(s+7-|\cos t|)^2+(s-2|\sin t|)^2=$ $|AB|^2$. 注意到 $|\cos t| \ge 0,2 |\sin t| \ge 0$,不妨设 $t \in \left[0,\frac{\pi}{2}\right]$,则点 B 的坐标为 $(\cos t,2\sin t)$.

易知点 A(s+7,s) 为直线 x-y-7=0 上的动点,点 $B(\cos t, 2\sin t)$ 到直线 x-y-5=0

$$7 = 0$$
 的距离为
$$|\cos t - 2\sin t - 7| \quad 7 + 2\sin t - \cos t$$

$$d = \frac{|\cos t - 2\sin t - 7|}{\sqrt{2}} = \frac{7 + 2\sin t - \cos t}{\sqrt{2}}$$
.

又函数 $d = \frac{7+2\sin t - \cos t}{\sqrt{2}}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上单调递增,故当 t = 0 时, d 取得最小值 $\frac{6}{\sqrt{2}}$,则

 $|AB|^2$ 的最小值为 $\left(\frac{6}{\sqrt{2}}\right)^2 = 18$. 所以 $(s + 7 - |\cos t|)^2 + (s - 2|\sin t|)^2$ 的最小值为 18.