LEBANESE INTERNATIONAL UNIVERSITY

GPS Data formats An Introduction NMEA format

Dr. Sami Makdissi 2013

Topics

- Background
- Message Format and Sentence structures
- Common NMEA sentence
- Other GPS-related NMEA sentence
- References

Common GPS Data Format

RINEX

- Combine data from different manufacturer's GPS receivers
- For static data processing and archive

NMEA

- Transmission of data between GPS receiver and other devices (e.g. GPS → PDA with ArcPad software)
- For real time positioning

RTCM

- Transmission of data between GPS receivers (e.g Base → Rover)
- Binary file (more compact but difficult to understand)
- For real time DGPS/RTK corrections

Flow of NMEA data between devices

NMEA data transfer from GPS antenna to PDA with ArcPAD software

NMEA data used in Network RTK

What is NMEA data?

- Developed by National Marine Electronics Association
- Standard for interfacing marine electronic devices (GPS, , Compass, Echosounder...)
- Standard specifies the electrical signal requirements, data transmission protocol (i.e. agreed format for transmitting data between two devices), message formats
- Most GPS receivers understand the most popular NMEA format → NMEA 0183

What is NMEA data?

- ASCII file
 - Easily readable (even by people)
 - Less compact than binary

- Numerous sentence types
 - Not all related GPS application
 - Some popular GPS-related sentences are described in this presentation

NMEA settings

- Baud rate: 4800 (4800 characters in one second)
- Data bits: 8 (Bit 7 set to 0)
- Stop bits: 1 or 2
- Parity: none
- The "send" device and "receive" device should have same setting so as to transfer the NMEA data

Standard Message Format

• \$aaaaa, df1,df2..... [Carriage Return][Line Feed]

- Each message start with \$
- Five characters after \$ are address field
- Multiple data fields delimited by commas
- Check sum (optional): a 2-character field (0-9,A-F) to increase data integrity
- (*) character placed after the last data field

\$GPGSV,3,1,10,20,78,331,45,01,59,235,47,22,41,069,,13,32,252,45*70

Sentence structure

- There are three sentence structures
 - Talker: output from talker (e.g. GPS receiver) to other devices (PAD)
 - Query: means for listener (e.g. notebook) to request specified talker sentence from talker (GPS receiver)
 - Proprietary: means for manufactures to use non-standard sentences for special purpose

Talker sentence

- Format: \$ttsss, df1, df2...[CR][LF]
 - tt: defines device (for gps receivers the prefix is GP)
 - sss: sentence type

Example

\$GPGGA,031956,2218.2035,N,11410.7595,E,1,04,3,9,005.9,M,-001.3,M,,*51

The talker sends the GPS data in GGA sentence format.

Query sentence

Format: \$ttllQ, sss, [CR][LF]

Example CCGPQ,GGA, [CR][LF]

A computer (CC) is requesting from GPS device (GP) the GGA sentence

Proprietary sentence

- Format: \$PmmmA,df1,df2,....[CR][LF]
 - "P" indictes it is a proprietary message
 - "mmm" define as the manufacture
 - The fifth character is a letter (A-Z) defines the specific message type

Example

\$PLEIS,AHT,0,1.90,0*34

- "LEI" is Leica manufacturer
- "S" for set command

The message set the antenna height at 1.9m in the configuration of the internal sensor setting.

Common NMEA-0183 Sentence

Sentence Description

\$GPGGA: Global positioning system fixed data

\$GPGLL: Geographic position - latitude / longitude

\$GPGSA: GNSS DOP and active satellites

\$GPGSV: GNSS satellites in view

\$GPRMC: Recommended minimum specific GPS data

\$GPVTG: Course over ground and ground speed

To extract information related to surveyed position → Record at least one of the 3 sentences: \$GPGGA, \$GPGLL, \$GPRMC

GGA Sentence Format (fixed data)

\$GPGGA,092204.999,4250.5589,S,14718.5084,E,1,04,24.4,19.7,M,,,,0000*1F

Field	Example	Comments
Sentence ID	\$GPGGA	
UTC Time	092204.999	hhmmss.sss
Latitude	4250.5589	ddmm.mmmm
N/S Indicator	S	N = North, S = South
Longitude	14718.5084	dddmm.mmmm
E/W Indicator	E	E = East, W = West
Position Fix	1	0 = Invalid, 1 = Valid SPS,
		2 = Valid DGPS, 3 = Valid PPS
Satellites Used	04	Satellites being used (0-12)
HDOP	24.4	Horizontal dilution of precision
Altitude	19.7	Altitude (WGS-84 ellipsoid)
Altitude Units	M	M= Meters
Geoid Separation		Geoid separation (WGS-84 ellipsoid)
Seperation Units	M	Meters
Time since DGPS		In seconds
DGPS Station ID		
Checksum	*1F	always begin with *

\$GPGGA,092204.999,4250.5589,S,14718.5084,E,**1**,04,24.4,19.7,M,,,,0000*1F

• Fix quality:

- -0 = invalid
- -1 = GPS fix (SPS)
- -2 = DGPS fix
- -3 = PPS fix
- 4 = Real Time Kinematic
- -5 = Float RTK

GLL Sentence Format Geographic position

\$GPGLL,4250.5589,S,14718.5084,E,092204.999,A*2D

Field	Example	Comments
ID	\$GPGLL	
Latitude	4250.5589	ddmm.mmmm
N/S Indicator	S	N = North, S = South
Longitude	14718.5084	dddmm.mmmm
E/W Indicator	E	E = East, W = West
UTC Time	092204.999	hhmmss.sss
Status	Α	A = Valid, V = Invalid
Checksum	*2D	

GSA Sentence Format GNSS DOP and active satellites

\$GPGSA,A,3,01,20,19,13,,,,,,40.4,24.4,32.2*0A

Field	Example	Comments
Sentence ID	\$GPGSA	
Mode 1	A	A = Auto 2D/3D
		M = Forced 2D/3D
Mode 1	3	1 = No fix, 2 = 2D, 3 = 3D
Satellite used 1	01	Satellite used on channel 1
•		
•		
Satellite used 12	24	Satellite used on channel 12
PDOP	2.5	Position dilution of precision
HDOP	1.3	Horizontal dilution of precision
VDOP	2.1	Vertical dilution of precision
Checksum	*0A	

GSV Sentence Format GNSS satellites in view

\$GPGSV,3,1,10,20,78,331,45,01,59,235,47,22,41,069,,13,32,252,45*70

Field	Example	Comments
Sentence ID	\$GPGSV	
No. of messages	3	No. of messages in complete (1-3)
Sequence no.	1	Sequence no. of this entry (1-3)
Satellites in view	10	
Satellite ID 1	20	Range is 1-32
Elevation 1	78	Elevation in degrees
Azimuth 1	331	Azimuth in degrees
SNR 1	45	Signal to noise ratio dBHZ (0-99)
Satellite ID 2	01	Range is 1-32
Elevation 2	59	Elevation in degrees
Azimuth 2	235	Azimuth in degrees
Checksum	*70	

Dr. Sami Makdisi Aleppo university

RMC Sentence Format

Recommended minimum specific GPS data

\$GPRMC,092204.999,A,4250.5589,S,14718.5084,E,0.00,89.68,211200,,*25

Field	Example	Comments
Sentence ID	\$GPRMC	
UTC Time	092204.999	hhmmss.sss
Status	Α	A = Valid, V = Invalid
Latitude	4250.5589	ddmm.mmmm
N/S Indicator	S	N = North, S = South
Longitude	14718.5084	dddmm.mmmm
E/W Indicator	E	E = East, W = West
Speed over ground	0.00	Knots
Course over ground	0.00	Degrees
UTC Date	211200	DDMMYY
Magnetic variation		Degrees
Magnetic variation		E = East, W = West
Checksum	*25	

VTG Sentence Format

Course over ground and ground speed

\$GPVTG,89.68,T,,M,0.00,N,0.0,K*5F

Field Sentence ID	Example \$GPVTG	Comments
Course	89.68	Course in degrees
Reference	Т	T = True heading
Course		Course in degrees
Reference	M	M = Magnetic heading
Speed	0.00	Horizontal speed
Units	N	N = Knots
Speed	0.00	Horizontal speed
Units	K	K = KM/h
Checksum	*5F	

NMEA-0183 data file

```
$GPRMC.104426.591,A.5920.7019,N.01803.2893,E.0.117980,320.93,141204,.*0F
$GPGGA,104427.591,5920.7009,N,01803.2938,E,1,05,3.3,78.2,M,23.2,M,0.0,0000*4A
$GPGSA,A,3,05,24,17,30,02,.....5.6,3.3,4.5*34
$GPGSV.3.1.12.30.72.254.30.05.70.125.39.24.37.083.43.02.36.113.45*7B
$GPGSV.3.2.12.04.32.059.34.01.27.307.00.14.26.256.00.06.24.219.00*7F
$GPGSV.3.3.12.17.22.135.40.25.20.311.31.09.19.159.25.20.08.346.34*7C
$GPRMC.104427.591,A.5920.7009,N.01803.2938,E.0.146345,320.93,141204..*08
$GPGGA,104428.591,5920.7008,N,01803.2943,E,1,05,3.3,78.9,M,23.2,M,0.0,0000*43
$GPGSA,A,3,05,24,17,30,02,......5.6,3.3,4.5*34
$GPGSV,3,1,12,30,72,254,31,05,70,125,41,24,37,083,44,02,36,113,46*71
$GPGSV,3,2,12,04,32,059,34,01,27,307,00,14,26,256,00,06,24,219,00*7F
$GPGSV,3,3,12,17,22,135,40,25,20,311,30,09,19,159,25,20,08,346,35*7C
$GPRMC,104428.591,A,5920.7008,N,01803.2943,E,0.164145,320.93,141204,,*08
$GPGGA,104429.591,5920.7012,N,01803.2931,E,1,05,3.3,77.1,M,23.2,M,0.0,0000*4B
$GPGSA,A,3,05,24,17,30,02,....,5.6,3.3,4.5*34
$GPGSV,3,1,12,30,72,254,31,05,70,125,40,24,37,083,43,02,36,113,46*77
$GPGSV.3.2.12.04.32.059.34.01.27.307.00.14.26.256.00.06.24.219.00*7F
```

Other GPS NMEA sentences

Sentence Description

\$GPALM: GPS almanac data

\$GPGRS: GPS range residuals

\$GPGST: GPS pseudorange noise statistics

\$GPMSS: Beacon receiver status

\$GPZDA: UTC and local date/time data

References

- Common NMEA Setence types
 - http://www.commlinx.com.au/NMEA_sentences.htm
- NMEA data
 - http://www.gpsinformation.org/dale/nmea.htm

- The National Marine Electronics Association
 - http://www.nmea.org/