

Ketentuan:

GY KE

Tipe soal : Open book, tapi sebaiknya gunakan general rules yang dibeikan pada

lembar soal.

: Hingga batas waktu maksimal pengerjaan yang diperbolehkan.

1. (bobot 20%) H 46 UF Bila $f(x,y) = \frac{x-y}{x+y}$ maka carilah:

a) $\frac{\partial f}{\partial x}$ pada titik (2,-1) b) $\frac{\partial f}{\partial y}$ pada titik (2,-1) Jawaban:

b) -4 2. (bobot 20%)

Bila $\left\{ \left(\frac{x^2 - xy}{x + y} \right) - untuk (x, y) \neq (0, 0) \right\}$ untuk(x, y) = (0,0)

Carilah:

a) $f_x(0,0)$ b) $f_{\nu}(0,0)$ Jawaban: 1 b) 0

(Bobot 100%)

Bila f(x, y) = (x - y)sin (3x + 2y)Hitunglah:

a) $f_x(0, \frac{\pi}{3})$ ---jawaban: $\frac{1}{2}(\pi + \sqrt{3})$ b) $f_y(0,\frac{\pi}{3})$ --- jawaban: $\frac{1}{6}(2\pi - 3\sqrt{3})$

c) $f_{xx}(0,\frac{\pi}{3})$ ---jawaban: $\frac{3}{2}(\pi\sqrt{3}-2)$

(1-7).(x+4) - cx-4). (1+4) : 2.(1)-(3). (0)

Kesesuaian Materi dengan Silabi	Kesesuaian Bobot dengan Tingkat Kompleksitas	Kelengkapan informasi soal	Catatan perbaikan jika ada *)	Tanda Tangan Validator
19 Tu		SCENE!		W _n
#14g	: 3 -96	14: X-1	×+19	
	3 3: -2		=1\)

tas khusus untuk ujian semester reguler Kertas khusus untuk ujian se

(X-1)·(X+4)- (X-4)·(A)

Kertas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk

Kertas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk

General Rules

Function	Derivative of Function
a	0
x	1
of(x)	af'(x)
f(x) + g(x)	f'(x) + g'(x)
x ⁿ	nx ⁿ⁻¹
ex.	ex
a ^x	a ^x lna
lnz	1
$[f(x)]^n$	$n[f(x)]^{n-1}f'(x)$
8 F(x)	$e^{f(x)}f'(x)$
$\alpha^{f(x)}$	$a^{f(x)}f'(x)\ln a$
L #/LX	f'(x)
ln f(x)	fx
f(x)g(x)	$f(x)g^{i}(x) + f^{i}(x)g(x)$
f(x)	g(x)f'(x) - f(x)g'(x)
g(x)	$g(x)^2$

$$1. \quad \frac{d}{dx}(C) = 0$$

$$2. \quad \frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$$

3.
$$\frac{d}{dx} \sin u = \cos u \frac{du}{dx}$$

4.
$$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$$

$$5. \quad \frac{d}{dx} \tan u = \sec^2 u \frac{du}{dx}$$

$$6. \frac{d}{dx} \cot u = -\csc^2 u \frac{du}{dx}$$

7.
$$\frac{d}{dx} \sec u = \sec u \tan u \frac{du}{dx}$$

8.
$$\frac{d}{dx} \csc u = -\csc u \cot u \frac{du}{dx}$$

9.
$$\frac{d}{dx}\log_a u = \frac{\log_a e}{u} \frac{du}{dx} \quad a > 0, a \neq 1$$

10.
$$\frac{d}{dx} \log_e u = \frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx}$$

11.
$$\frac{d}{dx}a^{\mu} = a^{\mu} \ln a \frac{du}{dx}$$

$$12. \quad \frac{d}{dx}e^{\mu} = e^{\mu}\frac{du}{dx}$$

· (x-x) = (x+x) (1-x)

13.
$$\frac{d}{dx} \sin^{-1} u = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx}$$

14.
$$\frac{d}{dx}\cos^{-1}u = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$$

15.
$$\frac{d}{dx} \tan^{-1} u = \frac{1}{1 + u^2} \frac{du}{dx}$$

16.
$$\frac{d}{dx} \cot^{-1} u = -\frac{1}{1 + u^2} \frac{du}{dx}$$

17.
$$\frac{d}{dx} \sec^{-1} u = \pm \frac{1}{u\sqrt{u^2 - 1}} \frac{du}{dx} \begin{cases} + \text{ if } u > 1 \\ - \text{ if } u < -1 \end{cases}$$

18.
$$\frac{d}{dx} \csc^{-1} u = \mp \frac{1}{u\sqrt{u^2 - 1}} \frac{du}{dx} \begin{cases} -\text{ if } u > 1 \\ +\text{ if } u < -1 \end{cases}$$

19.
$$\frac{d}{dx} \sinh u = \cosh u \frac{du}{dx}$$

$$20. \quad \frac{d}{dx}\cosh u = \sinh u \frac{du}{dx}$$

21.
$$\frac{d}{dx} \tanh u = \operatorname{sech}^2 u \frac{du}{dx}$$

22.
$$\frac{d}{dx} \coth u = -\operatorname{csch}^2 u \frac{du}{dx}$$

23.
$$\frac{d}{dx} \operatorname{sech} u = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

24.
$$\frac{d}{dx} \operatorname{csch} u = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

25.
$$\frac{d}{dx} \sinh^{-1} u = \frac{1}{\sqrt{1 + u^2}} \frac{du}{dx}$$

$$26. \quad \frac{d}{dx} \cosh^{-1} u = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

27.
$$\frac{d}{dx} \tanh^{-1} u = \frac{1}{1 - u^2} \frac{du}{dx}$$
, $|u| < 1$

28.
$$\frac{d}{dx} \coth^{-1} u = \frac{1}{1 - u^2} \frac{du}{dx}$$
, $|u| > 1$

29.
$$\frac{d}{dx} \operatorname{sech}^{-1} u = \frac{1}{u\sqrt{1 - u^2}} \frac{du}{dx}$$

30.
$$\frac{d}{dx} \operatorname{csch}^{-1} u = -\frac{1}{u\sqrt{u^2 + 1}} \frac{du}{dx}$$

3.783-11).

m_ulilalbab ster reguler Kertas khusus untuk ujian semester reguler usus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus

SOAL UJIAN TENGAH SEMESTER

KALKULUS PEUBAH BANYAK

Tipe soal: Open book, tapi sebaiknya gunakan general rules yang dibeikan pada lembar soal.

Hingga batas waktu maksimal pengerjaan yang diperbolehkan. Waktu:

Bila
$$f(x,y) = \frac{x-y}{x+y}$$
 maka carilah:

a)
$$\frac{\partial f}{\partial x}$$
 pada titik (2,-1)

b)
$$\frac{\partial f}{\partial y}$$
 pada titik (2,-1)

Jawaban:

$$Bila f(x,y) =$$

$$\begin{cases} \left(\frac{x^2 - xy}{x + y}\right) & untuk \ (x, y) \neq (0, 0) \\ 0 & untuk \ (x, y) = (0, 0) \end{cases}$$

Carilah:

- a) $f_x(0,0)$
- b) $f_{y}(0,0)$

Jawaban:

- a) 1
- b) 0

3. (Bobot 100%)

Bila
$$f(x, y) = (x - y)$$

Bila
$$f(x,y) = (x - y)\sin(3x + 2y)$$

Hitunglah:

a)
$$f_x(0,\frac{\pi}{3})$$
 ---jawaban: $\frac{1}{2}(\pi + \sqrt{3})$

c)
$$f_{xx}(0,\frac{\pi}{3})$$
 ---jawaban: $\frac{3}{2}(\pi\sqrt{3}-2)$

b)
$$f_y(0,\frac{\pi}{3})$$
 ---jawaban: $\frac{1}{6}(2\pi - 3\sqrt{3})$
c) $f_{xx}(0,\frac{\pi}{3})$ ---jawaban: $\frac{3}{2}(\pi\sqrt{3} - 2)$
d) $f_{yy}(0,\frac{\pi}{3})$ ---jawaban: $\frac{2}{3}(\pi\sqrt{3} + 3)$

e)
$$f_{xy}(0,\frac{\pi}{3})$$
 ---jawaban: $\frac{1}{2}(2\pi\sqrt{3}+1)$

f)
$$f_{yx}(0,\frac{\pi}{3})$$
 --- jawaban: $\frac{1}{2}(2\pi\sqrt{3}+1)$

rtas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk rtas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk Kertas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk Kertas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk Kertas khusus untuk ujian semester reguler Kertas khusus untuk ujian semester reguler Kertas khusus untuk

General Rules

Training I	The land of the land
4	V
×	1
400	af*(a) :
f(x) + g(x)	1 (4 + 2 1) (4 + 2 1) (4 + 2 1)
P	*
	d'Ina
Eix	*
DOT	$n(f(x))^{n-1}f(x)$
100	e ^{ras} f (a)
a fail	a ^{rial} fictina
b /(a)	
A(A)S(A)	Justin + Plasto
fün	g(x)f'(x) = f(x)g'(x)
g(3)	800

$$1, \quad \frac{d}{ds}(C) = 0$$

$$2 \frac{d}{dx}d^2 = m^{n-1}\frac{dx}{dx}$$

4.
$$\frac{d}{dx}\cos x = -\sin x \frac{dx}{dx}$$

5.
$$\frac{d}{dc} \tan a = \cos^2 a \frac{da}{dx}$$

$$6. \quad \frac{d}{dx} \cot u = -\cos^2 u \frac{du}{dx}$$

7.
$$\frac{d}{dx} \sec u \Rightarrow \sec u \tan u \frac{du}{dx}$$

$$\$, \quad \frac{d}{dt} \csc u = -\csc u \cot u \frac{du}{dt}$$

$$3 \frac{d}{dx} \log_{x} x = \frac{\log_{x} x}{x} \frac{dx}{dx} = x \cdot 0. x \neq 1$$

10.
$$\frac{d}{dt} \log u = \frac{d}{dt} \ln u = \frac{1}{u} \frac{du}{dt}$$

$$11 \quad \frac{d}{dx} e^{x} = e^{x} \ln a \frac{da}{dx}$$

13.
$$\frac{d}{du} du^{-1} u = \frac{1}{\sqrt{1-u^2}} \frac{du}{du}$$

14.
$$\frac{d}{dx}\cos^{-1}u = \frac{1}{\sqrt{1-u}}\frac{du}{dx}$$

15.
$$\frac{d}{dt} \tan^{-1} u = \frac{1}{1+u^2} \frac{du}{dx}$$

$$16. \quad \frac{d}{dx} \cot^{-1} u = -\frac{1}{1+u^2} \frac{du}{dx}$$

$$2 \frac{d}{dx} x^2 = n x^{n-1} \frac{dx}{dx}$$

$$17 \frac{d}{dx} \sin^{-1} x = \pm \frac{1}{n \sqrt{n^2 - 1}} \frac{dx}{dx} \left\{ -i f x > 1 - i f x < -i \right\}$$

18.
$$\frac{d}{dx} \cos^{-1} u = \mp \frac{1}{\sqrt{x^2 - 1}} \frac{du}{dx} \left[-\frac{17}{4} u > 1 + 17 u < -1 \right]$$

19.
$$\frac{d}{dx}$$
 sinh $a = \cosh a \frac{dx}{dx}$

20.
$$\frac{d}{dx} \cosh u = \sinh u \frac{du}{dx}$$

21.
$$\frac{d}{dx} \tanh u = \operatorname{sech}^2 u \frac{du}{dx}$$

22.
$$\frac{d}{dx} \coth u = -\cosh^2 u \frac{du}{dx}$$

23.
$$\frac{d}{dx}$$
 sech $u = -sech utzeh u \frac{du}{dx}$

$$24 \frac{d}{dt} \cos ku = -\cosh u \cosh u \frac{du}{dt}$$

25.
$$\frac{4}{40} \sinh^{-1} u = \frac{1}{\sqrt{1 + u^2}} \frac{du}{dx}$$

$$26 \frac{d}{ds} \cos dx^{-1} u = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{ds}$$

$$Z_{i} = \frac{d}{dx} \tanh^{-1} u = \frac{1}{1 - u^{2}} \frac{du}{dx}, \quad |u| < 1$$

28.
$$\frac{d}{dx} \approx 0.0^{-1} = \frac{1}{1-u^2} \frac{du}{dx}$$
, $|u| > 1$

29.
$$\frac{d}{dx} \operatorname{sch}^{-1} \operatorname{will} = \frac{1}{s\sqrt{1-s^2}} \frac{du}{dx}$$

30.
$$\frac{d}{dx} \operatorname{cach}^{-1} u = -\frac{1}{u\sqrt{u^2 + 1}} \frac{du}{dx}$$

