Order statistics, quantiles & resampling (Module 9)

Statistics (MAST20005) & Elements of Statistics (MAST90058)

School of Mathematics and Statistics University of Melbourne

Semester 2, 2019

Outline

Order statistics
Introduction
Sampling distribution

Quantiles

Definitions

Asymptotic distribution

Confidence intervals for quantiles

Resampling methods

Aims of this module

- Go back to order statistics and sample quantiles
- More detailed definitions
- Derive sampling distributions and construct confidence intervals
- See examples of CIs that are **not** of the form $\hat{\theta} \pm \mathrm{se}(\hat{\theta})$
- · Learn some more distribution-free methods
- See how to use computation to avoid mathematical derivations

Unifying theme

- Use the data 'directly' rather than via assumed distributions
- Use the sample cdf and related summaries (such as order statistics)

Outline

Order statistics
Introduction
Sampling distribution

Quantiles
Definitions
Asymptotic distribution
Confidence intervals for quantiles

Resampling methods

Definition (recap)

- Sample: X_1, \ldots, X_n
- Arrange them in increasing order:

$$X_{(1)} = {\sf Smallest} \ {\sf of the} \ X_i$$
 $X_{(2)} = {\sf 2nd} \ {\sf smallest} \ {\sf of the} \ X_i$ \vdots $X_{(n)} = {\sf Largest} \ {\sf of the} \ X_i$

These are called the order statistics

$$X_{(1)} \leqslant X_{(2)} \leqslant \dots \leqslant X_{(n)}$$

- $X_{(k)}$ is called the kth order statistic of the sample
- X₍₁₎ is the minimum or sample minimum
- $X_{(n)}$ is the maximum or sample maximum $_{6 \text{ of } 50}$

Motivating example

- Take iid samples $X \sim N(0,1)$ of size n=9
- What can we say about the order statistics, $X_{(k)}$?
- Simulated values:

Standard normal distribution, n = 9

Example (triangular distribution)

- Random sample: X_1, \ldots, X_5 with pdf f(x) = 2x, 0 < x < 1
- Calculate $\Pr(X_{(4)} \leq 0.5)$
- Occurs if at least four of the X_i are less than 0.5,

$$\begin{split} \Pr(X_{(4)}\leqslant 0.5) &= \Pr(\text{at least 4}\ X_i\text{'s less than }0.5) \\ &= \Pr(\text{exactly 4}\ X_i\text{'s less than }0.5) \\ &+ \Pr(\text{exactly 5}\ X_i\text{'s less than }0.5) \end{split}$$

• This is a binomial with 5 trials and probability of success given by

$$\Pr(X_i \le 0.5) = \int_0^{0.5} 2x \, dx = \left[x^2\right]_0^{0.5} = 0.5^2 = 0.25$$

• So we have,

$$\Pr(X_{(4)} \le 0.5) = {5 \choose 4} 0.25^4 \, 0.75 + 0.25^5 = 0.0156$$

More generally we have,

$$F(x) = \Pr(X_i \le x) = \int_0^x 2t \, dt = \left[t^2\right]_0^x = x^2$$
$$G(x) = \Pr(X_{(4)} \le x) = {5 \choose 4} (x^2)^4 (1 - x^2) + (x^2)^5$$

· Taking derivatives gives the pdf,

$$g(x) = G'(x) = {5 \choose 4} 4(x^2)^3 (1 - x^2)(2x)$$
$$= 4 {5 \choose 4} F(x)^3 (1 - F(x)) f(x)$$

since we know that $F(x) = x^2$.

Triangular distribution, n = 5

Distribution of $X_{(k)}$

- Sample from a continuous distribution with cdf F(x) and pdf f(x) = F'(x).
- The cdf of $X_{(k)}$ is,

$$G_k(x) = \Pr(X_{(k)} \leqslant x)$$

$$= \sum_{i=k}^n \binom{n}{i} F(x)^i (1 - F(x))^{n-i}$$

• Thus the pdf of $X_{(k)}$ is,

$$\begin{split} g_k(x) &= G_k'(x) = \sum_{i=k}^n i \binom{n}{i} F(x)^{i-1} \left(1 - F(x)\right)^{n-i} f(x) \\ &+ \sum_{i=k}^{n-1} (n-i) \binom{n}{i} F(x)^i \left(1 - F(x)\right)^{n-i-1} \left(-f(x)\right) \\ &= k \binom{n}{k} F(x)^{k-1} \left(1 - F(x)\right)^{n-k} f(x) \\ &+ \sum_{i=k+1}^n i \binom{n}{i} F(x)^{i-1} \left(1 - F(x)\right)^{n-i} f(x) \\ &- \sum_{i=k}^{n-1} (n-i) \binom{n}{i} F(x)^i \left(1 - F(x)\right)^{n-i-1} f(x) \end{split}$$

But

$$i\binom{n}{i} = \frac{n!}{(i-1)!(n-i)!} = n\binom{n-1}{i-1}$$

and similarly

$$(n-i)\binom{n}{i} = \frac{n!}{i!(n-i-1)!} = n\binom{n-1}{i}$$

which allows some cancelling of terms.

• For example, the first term of the first summation is,

$$(k+1)\binom{n}{k+1}F(x)^k (1-F(x))^{n-k-1} f(x)$$
$$= n\binom{n-1}{k}F(x)^k (1-F(x))^{n-k-1} f(x)$$

The first term of the second summation is,

$$(n-k)\binom{n}{k}F(x)^k (1-F(x))^{n-k-1} f(x)$$

= $n\binom{n-1}{k}F(x)^k (1-F(x))^{n-k-1} f(x)$

These cancel, and similarly the other terms do as well.

Hence, the pdf simplifies to,

$$g_k(x) = k \binom{n}{k} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$$

Special cases: minimum and maximum,

$$g_1(x) = n (1 - F(x))^{n-1} f(x)$$

 $g_n(x) = n F(x)^{n-1} f(x)$

• Also:

$$\Pr(X_{(1)} > x) = (1 - F(x))^n$$

 $\Pr(X_{(n)} \le x) = F(x)^n$

Alternative derivation of the pdf of $X_{(k)}$

Heuristically,

$$\Pr(X_{(k)} \approx x) = \Pr(x - \frac{1}{2}dy < X_{(k)} \leqslant x + \frac{1}{2}dy) \approx g_k(x) \, dy$$

- Need to observe X_i such that:
 - k-1 are in $\left(-\infty, x-\frac{1}{2}dy\right]$
 - One is in $\left(x \frac{1}{2}dy, x + \frac{1}{2}dy\right]$
 - \circ n-k are in $(x+\frac{1}{2}dy, \infty)$
- Trinomial distribution (3 outcomes), event probabilities:

$$\Pr(X_i \leqslant x - \frac{1}{2}dy) \approx F(x)$$

$$\Pr(x - \frac{1}{2}dy < X_i \leqslant x + \frac{1}{2}dy) \approx f(x) dy$$

$$\Pr(X_i > x + \frac{1}{2}dy) \approx 1 - F(x)$$

• Putting these together,

$$g_k(x) dy \approx \frac{n!}{(k-1)! \, 1! \, (n-k)!} F(x)^{k-1} \, (1 - F(x))^{n-k} \, f(x) \, dy$$

 \bullet Dividing both sides by dy gives the pdf of $X_{(k)}$

Example (boundary estimate)

- $X_1, \ldots, X_4 \sim \text{Unif}(0, \theta)$
- · Likelihood is

$$L(\theta) = \begin{cases} \left(\frac{1}{\theta}\right)^4 & 0 \leqslant x_i \leqslant \theta, \quad i = 1, \dots, 4 \\ 0 & \text{otherwise (i.e. if } \theta < x_i \text{ for some } i) \end{cases}$$

- Maximised when heta is as small as possible, so $\hat{ heta} = \max(X_i) = X_{(4)}$
- Now,

$$g_4(x) = 4\left(\frac{x}{\theta}\right)^3 \left(\frac{1}{\theta}\right) = \frac{4x^3}{\theta^4}, \quad 0 \leqslant x \leqslant \theta$$

• Then,

$$\mathbb{E}(X_{(4)}) = \int_0^\theta x \frac{4x^3}{\theta^4} \, dx = \left[\frac{4x^5}{5\theta^4} \right]_0^\theta = \frac{4}{5}\theta$$

- So the MLE $X_{(4)}$ is biased
- (But $\frac{5}{4}X_{(4)}$ is unbiased)

Uniform distribution, n = 4

- Deriving a one-sided CI for θ based on $X_{(4)}$:
 - 1. For a given 0 < c < 1, show that,

$$1 - c^4 = \Pr(c\theta < X_{(4)} < \theta) = \Pr(X_{(4)} < \theta < X_{(4)}/c)$$

- 2. Thus, a $100 \cdot (1-c^4)\%$ confidence interval for θ is $\left(x_{(4)}, \, x_{(4)}/c\right)$
- 3. Letting $c=\sqrt[4]{0.05}=0.47$, we have a 95% confidence interval from $x_{(4)}$ to $2.11x_{(4)}$

Outline

Order statistics
Introduction
Sampling distribution

Quantiles
Definitions
Asymptotic distribution
Confidence intervals for quantiles

Resampling methods

Population quantiles

- Informally, a quantile is a number that divides the range of a random variable based on the probabilities on either side.
- The *p*-quantile, π_p , of a continuous probability distribution with cdf F has the property:

$$p = F(\pi_p) = \Pr(X \leqslant \pi_p)$$

So, we can define it by the inverse cdf:

$$\pi_p = F^{-1}(p)$$

- More general definition (also works for discrete variables): the p-quantile is the smallest value π_p such that $p \leqslant F(\pi_p)$
- The most commonly used quantile is the median, $\pi_{0.5}$, often referred to simply as m
- Also the first and third quartiles, $\pi_{0.25}$ and $\pi_{0.75}$

Sample quantiles

- ullet Want a statistic which estimates π_p
- There are many ways to do this
- R implements 9 different definitions!
- See help(quantile)
- Previously mentioned two of these...

'Type 6' quantiles

Definition:

$$\hat{\pi}_p = x_{(k)}, \quad \text{where } p = \frac{k}{n+1}$$

- Linear interpolation otherwise
- Motivated by the following relationship (see later):

$$\mathbb{E}(F(X_{(k)})) = \frac{k}{n+1}$$

We used this previously for QQ plots

'Type 7' quantiles

Definition:

$$\hat{\pi}_p = x_{(k)}, \quad \text{where } p = \frac{k-1}{n-1}$$

- Linear interpolation otherwise
- Motivated by the following relationship (see later):

$$\mathsf{mode}(F(X_{(k)})) = \frac{k-1}{n-1}$$

This is the default in R (quantile function)

'Type 1' quantiles

Can also apply the general quantile definition to the sample cdf:

$$\hat{\pi}_p = x_{(\lceil np \rceil)}$$

- The ceiling function, [b], is the smallest integer not less than b
- In other words,

$$\hat{\pi}_p = x_{(k)}, \quad \text{if } \frac{k-1}{n}$$

• Reminder: the sample cdf is

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \leqslant x)$$

Differences in definitions

- · Different definitions imply different estimators for the cdf
- For large sample sizes, differences are negligible

Sample cdf (n = 5)

Sample cdf (n = 50)

Distribution on the cdf scale

- Reminder: for a continuous distribution, $F(X) \sim \text{Unif}(0,1)$
- Proof: for $0 \le w \le 1$,

$$G(w) = \Pr(F(X) \le w) = \Pr(X \le F^{-1}(w)) = F(F^{-1}(w)) = w$$

so the density is

$$g(w) = G'(w) = 1, \quad 0 \leqslant w \leqslant 1$$

so $F(X) \sim \text{Unif}(0,1)$.

• Since F is non-decreasing, we have

$$F(X_{(1)}) < F(X_{(2)}) < \dots < F(X_{(n)})$$

- So $W_i = F(X_{(i)})$ are order statistics from a $\mathrm{Unif}(0,1)$ distribution
- The cdf is G(w) = w, for 0 < w < 1
- So the pdf of kth order statistic $W_k = F(X_{(k)})$ is

$$g_k(w) = k \binom{n}{k} w^{k-1} (1-w)^{n-k}$$

• This is a beta distribution,

$$F(X_k) \sim \text{Beta}(k, n - k + 1)$$

• We can derive that:

$$\mathbb{E}(W_k) = \frac{k}{n+1}$$

$$\mathsf{mode}(W_k) = \frac{k-1}{n-1}$$

Uniform distribution, n = 5

Defining the estimators

- How does this relate to the definitions of the estimators?
- Consider:

$$Pr(X \leqslant X_{(k)}) = F(X_{(k)})$$
$$Pr(X \leqslant \pi_p) = F(\pi_p) = p$$

- Have $F(X_{(k)})$ probability to the left of $X_{(k)}$, need p probability to the left π_p
- Just need to relate them
- $F(X_{(k)})$ is the (random!) area to the left $X_{(k)}$
- We know its distribution, so can summarise it
- For example, $\mathbb{E}(F(X_{(k)})) = k/(n+1)$
- This suggests $X_{(k)}$ can be an estimator of π_p where p=k/(n+1)
- So, define $\hat{\pi}_p = X_{(k)}$ where p = k/(n+1)
- For other values of p, linearly interpolate $\frac{36 \text{ of } 50}{2}$

Sample median

• The sample median is

$$\hat{m} = \begin{cases} X_{((n+1)/2)} & \text{when } n \text{ is odd} \\ \frac{1}{2} \left(X_{(n/2)} + X_{((n/2)+1)} \right) & \text{when } n \text{ is even} \end{cases}$$

 Consistent with most definitions of the sample quantiles (not type 1!)

Asymptotic distribution

For large sample sizes, it can be shown that

$$\hat{\pi}_p \approx N\left(\pi_p, \frac{p(1-p)}{nf(\pi_p)^2}\right)$$

where f is the pdf of the population distribution

• The median, $\hat{M}=\hat{\pi}_{0.5}$, is convenient special case,

$$\hat{M} \approx N\left(m, \frac{1}{4nf(m)^2}\right)$$

Example (normal distribution)

- Random sample: $X \sim N(\mu, \sigma^2)$ of size n
- Compare \bar{X} and \hat{M} as estimators of μ
- Already know,

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Now we also know,

$$\hat{M} \approx N\left(m, \frac{1}{4nf(m)^2}\right)$$

• Note that $m=\mu$ and,

$$f(m) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$$

• This gives,

$$\hat{M} \approx N\left(\mu, \frac{\pi}{2} \frac{\sigma^2}{n}\right)$$

- Does the $\pi/2$ look familiar?
- ... problem 3, week 2!
- The sample mean, $\bar{X},$ is a more efficient estimator of μ than the sample median, \hat{M}
- In other scenarios, it can be the other way around

Confidence intervals for quantiles

- Can we construct distribution-free Cls for quantiles?
- Can do so based on order statistics
- Procedure is the 'inverse' of the sign test

Example (CI for median)

- Take iid samples X_1, \ldots, X_5
- $X_{(3)}$ is an estimator of the median $m=\pi_{0.5}$
- For the median to be between $X_{(1)}$ and $X_{(5)}$ must have at least one $X_i < m$ but not five $X_i < m$
- If the distribution is continuous, Pr(X < m) = 0.5
- Let W be the number of $X_i < m$, then $W \sim \mathrm{Bi}(5, 0.5)$ and

$$\Pr(X_{(1)} < m < X_{(5)}) = \Pr(1 \le W \le 4)$$

$$= \sum_{k=1}^{4} {5 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{5-k}$$

$$= 1 - 0.5^5 - 0.5^5 = \frac{15}{16} \approx 0.94$$

• So $(x_{(1)},x_{(5)})$ is a 94% confidence interval for m

Confidence intervals for the median

In general, want i and j so that, to the closest possible extent,

$$\Pr(X_{(i)} < m < X_{(j)}) = \Pr(i \le W \le j - 1)$$

$$= \sum_{k=i}^{j-1} \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} \approx 1 - \alpha$$

- Need to use computed binomial probabilities (e.g. R) to determine i and j
- Or use the normal approximation to the binomial
- Note that these confidence intervals do not arise from pivots and cannot achieve 95% confidence exactly

Example (lengths of fish)

- Lengths of 9 fish (in cm), in ascending order:
 15.5, 19.0, 21.2, 21.7, 22.8, 27.6, 29.3, 30.1, 32.5
- Now,

$$\Pr(X_{(2)} < m < X_{(8)}) = \sum_{k=2}^{7} {9 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{9-k} = 0.9610$$

- In R:
 - > pbinom(7, size = 9, prob = 0.5) + pbinom(1, size = 9, prob = 0.5)
 [1] 0.9609375
- So a 96.1% confidence interval for m is (19.0, 30.1)

Confidence intervals for arbitrary quantiles

- Argument can be extended to any quantile and any order statistics,
- For example, the ith and jth,

$$1 - \alpha = \Pr(X_{(i)} < \pi_p < X_{(j)})$$
$$= \Pr(i \leqslant W \leqslant j - 1)$$
$$= \sum_{k=i}^{j-1} \binom{n}{k} p^k (1-p)^{n-k}$$

Example (income distribution)

- Incomes (in \$100's) for a sample of 27 people, in ascending order: 161, 169, 171, 174, 179, 180, 183, 184, 186, 187, 192, 193, 196, 200, 204, 205, 213, 221, 222, 229, 241, 243, 256, 264, 291, 317, 376
- Want to estimate the first quartile, $\pi_{0.25}$
- W is the number of the X's below $\pi_{0.25}$

- $W \sim \text{Bi}(27, 0.25) \approx N(\mu = 27/4 = 6.75, \sigma^2 = 81/16)$
- This gives

$$\begin{split} \Pr(X_{(4)} < \pi_{0.25} < X_{(10)}) \\ &= \Pr(4 \leqslant W \leqslant 9) \\ &= \Pr(3.5 < W < 9.5) \qquad \text{(continuity correction)} \\ &= \Phi\left(\frac{9.5 - 6.75}{9/4}\right) - \Phi\left(\frac{3.5 - 6.75}{9/4}\right) \\ &= 0.815 \end{split}$$

• So (\$17400, \$18700) is an 81.5% CI for the first quartile

Outline

Order statistics
Introduction
Sampling distribution

Quantiles

Asymptotic distribution

Confidence intervals for quantiles

Resampling methods

Resampling

- What if maths is too hard?
- Try a resampling method
- Replaces mathematical derivation with brute force computation
- Used for approximating sampling distributions, standard errors, bias, etc.
- Sometimes work brilliantly, sometimes not at all

Bootstrap

- Most popular resampling method: the bootstrap
- Basic idea:
 - Use the sample cdf as an approximation to the true cdf
 - Simulate new data from the sample cdf
 - o Equivalent to sampling with replacement from the actual data
- Use these bootstrap samples to infer sampling distributions of statistics of interest
- This is an advanced topic
- Only a 'taster' is presented...
- ...in the lab (week 10)