Sistemas Digitales (66.17) Práctica 1 - VHDL

1. Implementar en VHDL un contador de 2 bits de manera estructural (indicar en el dibujo todas las señales utilizadas). Simular.

- 2. Realizar el diagrama en bloques de un contador de 4 bits e implementarlo en VHDL (indicar en el dibujo todas las señales utilizadas). Implementar la entidad de simulación. Simular.
- 3. Describir en VHDL, por el modelo de comportamiento, la función lógica dada por el siguiente Karnaugh. Simular.

X1 X				
X3 X4	00	01	11	10
00	0	1	1	0
01	1	1	0	0
11	0	0	0	1
10	1	0	0	1

4. Confeccionar el Karnaugh representativo del siguiente código. Luego rescribirlo utilizando la sentencia if-else.

5. La siguiente tabla de flujo representa la descripción de un circuito secuencial asincrónico. Realizar la descripción en VHDL de dicho circuito. Simular.

	00	01	11	10
a	a,0	b	a,0	a,0
b	a	b ,0	c	-
c	d	c,1	c,1	c,1
d	d,1	c	-	a

6. La siguiente tabla de flujo representa la descripción de un circuito secuencial asincrónico. Realizar la descripción en VHDL de dicho circuito. Simular.

	00	01	11	10
a	a,0	b,1	a,0	a,1
b	a,1	b,0	b,1	b,0

- 7. Describir en VHDL un circuito sincrónico de una entrada y una salida, tal que por cada pulso de reloj la salida valga 1 si los últimos 4 bits fueron "1001". En la entrada nunca pueden existir más de dos 1 consecutivos. Simular.
- 8. Describir en VHDL un circuito asincrónico de dos entradas y dos salidas. En estas últimas se deberá indicar cuál fue la última entrada en cambiar. Sólo puede cambiar una entrada por vez, y las únicas salidas posibles son "01" y "10". Simular.

	00	01	11	10
a	a,10	c	-	b
b	a	-	d	b,10
c	f	c, 01	e	-
d	ı	g	d, 01	h
e	ı	g	e, 10	h
f	f, 01	c	•	b
g	f	g,10	e	-
h	a	-	d	h,01

9. Describir en VHDL un contador de flancos (ascendentes y descendentes) módulo 4.

	0	1
a	a,00	b,
b	с,	b,01
c	c,10	d,
d	a,	d,11

Verificar que el siguiente circuito cumple con lo pedido (implementándolo en VHDL):

- 10. Describir en VHDL un Flip Flop D de flanco ascendente con set y reset asincrónicos.
- 11. Implementar en VHDL un registro de 4 bits con flanco positivo de clock, con set asincrónico y clock enable.

- 12. Implementar en VHDL (indicar en el dibujo todas las señales utilizadas) los distintos circuitos integrados (Dual JK Flip Flop, Dual 4 Input Multiplexer, SIPO Shift Register, 9 Bit Parity Cheker, 4 Bit Full Adder With Fast Carry), cuyas hojas de datos se encuentran en la página de la materia (http://cactus.fi.uba.ar/6617). Implementar las correspondientes entidades de simulación. Simular.
- 13. Explicar los siguientes códigos:

```
for J in 10 downto 5 loop
   if SUM < TOTAL_SUM then
        SUM := SUM + 2;
   elsif SUM = TOTAL_SUM then
        next;
   else
        null;
   end if;
   K := K + 1;
end loop;</pre>
CODIGO 1
```

```
L1: for J in 0 to 10 loop

... -- grupo de sentencias 1

L2: loop

... -- grupo de sentencias 2

next L1 when isDone = '1';

... -- grupo de sentencias 3

end loop L2;

... -- grupo de sentencias 4

end loop L1;

CODIGO 2
```

Qué sucedería si en el código 2 se reemplazara la línea:

```
"next L1 when isDone = '1';"
por la sentencia:

"exit L2 when isDone = '1';"
```