INEQUALITY ON INTEGER SEQUENCES

Problem 1. Let (u_n) be the strictly increasing integer sequence such that among 2022 consecutive positive integers, there exist at least one term in (u_n) . Prove that

$$\frac{1}{u_2^2 - u_1^2} + \frac{1}{u_3^2 - u_2^2} + \dots + \frac{1}{u_{n+1}^2 - u_n^2}$$
 is unbounded.

Problem 2. Let (u_n) be the strictly increasing integer sequence such that

i) $u_1 > 1$ and the terms of this sequences are pairwise coprime.

ii)
$$\frac{1}{\sqrt{u_1 u_2}} + \frac{1}{\sqrt{u_3 u_4}} + \dots + \frac{1}{\sqrt{u_{2n-1} u_{2n}}}$$
 is unbounded.

Prove that this sequence contains infinitely many primes.

Problem 3. Let (u_{b}) be the strictly increasing integer sequence and there exist some constant c such that

$$u_{2m} + u_{2m-1} = c \cdot u_m$$
 for all $n \in \mathbb{Z}^+$.

Find the least value of c.

Problem 4. For some positive integer a, consider the sequence (u_n) definied by

$$u_1 = a$$
, $u_{n+1} = u_n + f(u_n)$ for $n = 1, 2, ...$

with f(x) is the product of all of digits of x. Prove that there exist N such that $u_n = u_N$ for any $n \ge N$.

Problem 5. Let (u_n) be a sequence such that $u_1 = 2^{2023} - 2$ and for any $n \ge 1$,

$$u_{n+1} = \varphi(u_n) + 1$$
, with $\varphi(x)$ is Euler function.

Prove that $u_{2^{2022}}$ is a prime bigger than 3.

Problem 6. Consider two integer arithmetic progressions (a_n) , (b_n) such that in each of them, the first term and the difference are coprime. Suppose that there exist infinitely many positive integer n such that one of two products

$$(a_n^2 + a_{n+1}^2)(b_n^2 + b_{n+1}^2), (a_n^2 + b_n^2)(a_{n+1}^2 + b_{n+1}^2)$$

is perfect square. Prove that $a_n = b_n, \forall n$.

Problem 7*. Consider the sequence (a_n) definded by $a_1 = a_2 = 1$ and

$$a_n = a_{a_{n-1}} + a_{n-a_{n-1}}$$
 for all $n \ge 3$.

Prove that $a_{2n} \leq 2a_n$ for any n.