

Mount Kenya University - Thika Campus

Medical School

Department of Medical Biochemistry

MBMB 1224: Enzymes, Vitamins and Minerals

Program: MBChB & BPHARM; Credits: Lecture 2 hrs/ week; **Lab** 3 hrs/ week.

Year 1 Semester 2: Jan – April 2023; Meetings: Tue 7- 9 am; Room: Auditorium

Lecturer: Dr Paul Sifuna; Email address: poshule@mku.ac.ke

Consultation hours: Room CTG:3 8.00 am - 5.00 pm with prior arrangements or appointment

COURSE OBJECTIVES:

By the end of the course student will be able to:

- 1. Explain why enzymes are the major and most versatile biological catalysts.
- 2. Differentiate enzyme (biocatalysts) from the chemical catalysts.
- 3. Describe the major classes of enzymes and the subclasses of some of them.
- 4. Given a list of reactions, identify the type of enzymes that catalyses them.
- 5. Summarize the key features of the active sites of enzymes.
- 6. Explain why enzymes do not alter the equilibrium of chemical reactions but only change the rates of chemical reactions.
- 7. Explain the raw law equation
- 8. Describe the order of an equations
- 9. Describe the formation of enzyme-substrate complex in catalysis.
- 10. Derive the Michaelis-Menten equation for a single substrate enzyme catalyzed reactions
- 11. Describe the Michaelis-Menten parameters, K_M and V_{max} and their significance.
- 12. Describe the transformation methods of Michaelis-Menten equation and outline the advantages and disadvantages of each method.

- 13. Explain the physiological and non-physiological factors that affect enzyme activity.
- 14. Distinguish between reversible and irreversible inhibition of enzyme activity.
- 15. Distinguish between the different types of reversible enzyme inhibition.
- 16. By relating the structure of the inhibitor to the active site of the enzyme, determine the type of inhibition exerted by the inhibitor.
- 17. Describe the major regulatory mechanisms that control enzyme activity.
- 18. Define allosteric enzymes and explain their properties.
- 19. Explain the cooperative kinetics of allosteric enzymes.
- 20. Describe the properties of isoenzymes.
- 21. Explain the use of enzymes and isoenzymes in medical practice.
- 22. Outline the general characteristics and functions of vitamins.
- 23. Classify the vitamins as fat soluble vitamins and water soluble vitamins.
- 24. Describe the role of both water and fat soluble vitamins in the body.
- 25. Distinguish between cofactors and coenzymes and describe their role in catalysis
- 26. Identify the precursors of the different coenzymes.
- 27. Outline the different forms of vitamin A.
- 28. Know the steps of activation of vitamin D.
- 29. Understand the role of vitamin D in calcium metabolism.
- 30. Understand the role of vitamin E as an anti-oxidant.
- 31. List the forms and sources of vitamin K.
- 32. Understand the mechanism of activation of the clotting factors by vitamin K.
- 33. Know the role of vitamin C in collagen formation and as an antioxidant.
- 34. Know the structure and different coenzymes derived from vitamin B.
- 35. Distinguish between clinical pictures of vitamin deficiencies.
- 36. List the major inorganic constituents of the body.
- 37. List the functions of calcium, phosphorous, magnesium, sodium, potassium and iron.
- 38. Describe the regulation of calcium phosphorous, magnesium, sodium, potassium & iron.
- 39. Define trace elements found in the body and their physiological functions.
- 40. List the function of copper, zinc, selenium, fluoride, and iodide.
- 41. Distinguish the clinical picture of deficiency of different minerals.

COURSEDESCRIPTION

Enzymes: Historical perspective, terminologies, nomenclature & classification, properties, mode of action, activity and specificity. Enzyme manipulations: Sub cellular distribution, isolation, purification, criteria of homogeneity. Enzyme substrate interactions: ES complex, binding, active and allosteric sites. Enzyme- substrate binding hypothesis; Fischer, Koshland's, Jacob-Onod. Mechanism of enzyme action: ES complementarity, Stereochemistry ES action, catalytic efficiency. Enzyme kinetics: rates of chemical reactions, turnover number, Factors affecting rate of catalysis- Collision and transitional state theories, temperature, pH, substrate concentration, enzyme concentration, enzyme inhibitors, allosteric effects, steady, pre-steady and equilibrium-state kinetics. Single substrate enzyme catalyzed reactions: Michaelis-Menten equation, transformations and application. M.M equation primary and secondary plots, importance of Km and Vmax. bi-substrate and multi-substrate reaction. Enzyme inhibitions: Irreversible inhibitors, suicide inhibitors, reversible (competitive, uncompetitive, uncompetitive etc), determination of K_i . Clinical utility of enzyme inhibitions: drugs as enzyme inhibitors. regulation mechanisms: allosterism, covalent modification, compartmentations, hormonal, organ specialization, multi-enzyme complexes. Co-factors in enzyme action: types, functions. Clinical significance of enzymes. snake venom enzymes, marker enzymes, isoenzymes and their clinical applications. Vitamins; classification, coenzymes, sources, chemistry, physiological function, deficiency symptoms and risk groups. Minerals and trace elements - general functions, macro and microelements. Biochemical role of vitamins and minerals as coenzymes and cofactors.

COURSE OUTLINE

Week	Topic		Sub-Topic
1	Minerals	✓	Biochemistry of dietary minerals
2	Vitamins	√	Classification, Sources, Chemistry, Physiological and Biochemical functions, Deficiency symptoms and Related Disorders
3	Co-enzymes and Co-factors	✓	Types, Roles and functions of co-enzymes and co-factors
4	Introduction to Enzymes	√	Historical Perspective, Terminologies, Nomenclature, classification, and Properties
5	Enzyme Isolation and Purification	√	Sub-cellular distribution, isolation, purification, criteria of homogeneity and purity
6	Mechanisms Enzyme Substrate Interactions and Specificity	√	ES complex Formation, Substrate Binding on active and Allosteric sites, Stereochemistry, ES-binding Hypothesis; Fischer, Koshland's, Jacob-Onod.
7	Enzyme Catalysis I	✓	Collision and Transitional state theories, Temperature, pH, Substrate Concentration, Enzyme concentration, Enzyme Inhibitors and Allosteric effectors

	Enzyme Catalysis II	✓ Types of Catalytic Mechanisms; Acid-base catalysis,
		Covalent catalysis, Metal ion catalysis; Proximity and
		orientation effects; Preferential binding of the transition
		state
8	Enzyme Kinetics I	✓ Rates of Chemical Reactions, Turnover number and
		Order of the Reaction
		✓ Kinetics of single substrate enzyme catalysed reactions
		✓ Michaelis-Menten (M.M) equation and its
		transformations.
9	Enzyme Kinetics II	✓ Mechanism of Bi-substrate and Multi-substrate reactions.
		Ping-Pong, Random, Order and Compulsory order
		Mechanism. Mechanism Co-cooperativity and the Hill
		Plot
10	Enzyme Inhibition and its	✓ Reversible inhibitors
	Significance in Medicine	✓ Irreversible, Suicidal inhibitors
		✓ Determination of Ki
		✓ Drugs as enzyme inhibitors
10	Regulation of Enzyme activity	✓ Proteolytic cleavage of Zymogens,
		✓ Allosterism, Covalent modification
11	Clinical applications of	✓ Marker Enzymes of Tissue Damage in diagnosis
	Enzymes and Isoenzymes	✓ Therapeutic enzymes
	,	• •
12		REVISION
13		END TERM EXAM

Learning and teaching methodologies: Lectures, tutorials, practical sessions

Assessment: Continuous Assessment Test

Practical: (3 HRS/ LAB)

REFERENCES

- i. Nelson DL & Cox MM (2013). Lehninger: Principles of Biochemistry, $6^{\rm th}$ ed. Macmillan, 0-333-94657-X
- ii. Stryer L. (1995), Biochemistry 4th ed. WH Freeman, 0-7167-2009-4
- iii. Wilson K. & Walker J. (2009). Principles and Techniques of Biochemistry and Molecular Biology 7th ed. Cambridge University Press. 05214176941994
- iv. Vasuden D. M., Sreekumari S. and Vaidyanathan K. (2011). A Textbook of Biochemistry for Medical Students, 6th Edition. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.