Subject: Linear Algebra

Let A be a 5×8 matrix, then each column of A contains.

- (a) 5 elements
- (b) 8 elements
- (c) 40 elements
- (d) 13 elements

2. If A is a matrix of order
$$10 \times 5$$
, then each row of A contains-

- (a) 25 elements
- (b) 15 elements
- (c) 10 elements
- (d) 150 elements

3. The number of all possible matrices of order
$$2 \times 3$$
 with each entry 1 or -1 is-

- (a) 32
- (b) 12
- (c) 6
- (d) 64

4. If A is of order
$$m \times n$$
 and B is of order $p \times q$, then AB is defined only if

- (a) m = q
- (b) m = p
- (c) n = p
- (d) n = q

5. If P is of order
$$2 \times 3$$
 and Q is of order 3×2 , then PQ is of order

- (a) 2×3
- (b) 2×2
- (c) 3×2
- (b) 2 × 2 (d) 3 × 3

6. If
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then

- (a) $A^2 = 0$
- (c) $A^3 = A$

7. If
$$A = [x, y, z] B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}, C = [\alpha, \beta, \gamma]^T$$
,

then ABC is-

- (a) Not defined
- (b) is a 3×3 matrix
- (c) is a 1×1 matrix
- (d) is a 3×3 matrix

8. If
$$A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then A

is equal to

- (a) $\frac{1}{3} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ (b) $\frac{1}{3} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix}$

9. If
$$x + \begin{bmatrix} 2 & 1 \\ 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, then 'X' is equal to

- (a) $\begin{bmatrix} 0 & 1 \\ 0 & 6 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & -1 \\ 0 & -6 \end{bmatrix}$
- (c) $\begin{bmatrix} -1 & 0 \\ -6 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 6 & 0 \end{bmatrix}$

10. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 5 & 7 \end{bmatrix}$$
 and $2A - 3B = \begin{bmatrix} 4 & 5 & -9 \\ 1 & 2 & 3 \end{bmatrix}$,

then B is equal to

(a)
$$\frac{1}{3}\begin{bmatrix} -2 & -1 & 15 \\ 5 & 8 & -11 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$

(b)
$$\begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & -1 & 15 \\ 5 & 8 & 11 \end{bmatrix}$$
 (d) $-\frac{1}{3} \begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$

11. If
$$\begin{bmatrix} x & 1 \\ -1 & -y \end{bmatrix} + \begin{bmatrix} y & 1 \\ 3 & x \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, then

- (a) x = -1, y = 0 (b) x = 1, y = 0(c) x = 0, y = 1 (d) x = 1, y = 1

12. Let
$$A = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$
 and $A + B - 4l = 0$, then B is

(a)
$$\begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & -2 \\ -3 & -4 & -5 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 3 & 5 \\ 1 & -4 & 2 \\ 3 & 4 & 1 \end{bmatrix}$$

(c)
$$\frac{1}{4}\begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & -2 \\ -3 & -4 & -1 \end{bmatrix}$$
 (d) $\begin{bmatrix} 2 & 3 & 5 \\ -1 & 4 & -2 \\ 3 & 4 & 1 \end{bmatrix}$

- 13. If a diagonal matrix is commutative with every matrix of the same order then it is necessarily
 - (a) A diagonal matrix with at least two diagonal elements different.
 - (b) A scalar matrix
 - (c) A unit matrix
 - (d) A diagonal matrix with exactly two diagonal elements different.

14.
$$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
 is equal to

- (a) $\begin{vmatrix} 45 \\ 44 \end{vmatrix}$ (b) $\begin{bmatrix} 43 \\ 45 \end{bmatrix}$
- (c) $\begin{bmatrix} 44 \\ 43 \end{bmatrix}$ (d) $\begin{bmatrix} 43 \\ 50 \end{bmatrix}$

15.. If
$$f(x) = x^2 + 4x - 5$$
 and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, then $f(A)$ is equal to-

- (a) $\begin{bmatrix} 0 & -4 \\ 8 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$

- (c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & 4 \\ 8 & 0 \end{bmatrix}$
- **16.** If A is a square matrix such that $A^2 = I$, then A^{-1} is equal to-
 - (a) I
- (b) 0
- (c) A
- (d) I + A

17. Let A
$$\begin{bmatrix} 1 & x/n \\ -x/n & 1 \end{bmatrix}$$
, then $\lim_{n \to \infty} A^n$ is-

- (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$

(c)
$$\begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$$
 (d)
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

18. Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $P = \begin{bmatrix} \cos \pi/6 & \sin \pi/6 \\ -\sin \pi/6 & \cos \pi/6 \end{bmatrix}$ and $Q = PAP^{T}$, then $P^{T}Q^{2013}P$

(a)
$$\begin{bmatrix} 1 & 2013 \\ 0 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 0 & 2013 \\ 0 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2013 & 0 \\ 0 & 2013 \end{bmatrix}$$
 (d) $\begin{bmatrix} 0 & 2013 \\ 2013 & 0 \end{bmatrix}$

- **19.** If A is square matrix, then A is symmetric, iff

- (a) $A^2 = A$ (b) $A^2 = I$ (c) $A^T = A$ (d) $A^T = -A$
- 20. If A is a square matrix, then A is skew symmetric

- (a) $A^2 = A$ (b) $A^2 = I$ (c) $A^T = A$ (d) $A^T = -A$
- 21. If A is any square matrix, then
 - (a) $A + A^{T}$ is skew symmetric
 - (b) $A A^{T}$ is symmetric
 - (c) A A^T is symmetric
 - (d) AA^T is skew symmetric
- 22. Each diagonal element of a skew symmetric matrix is-
 - (a) Zero
 - (b) Positive and equal
 - (c) Negative and equal
 - (d) Any real number
- 23.. Let A be the set of all 3×3 matrices which are symmetric with entries 0 or 1. If there are five I's and four 0's then number of matrices in A
 - (a) 6
- (b) 12
- (c) 9
- (d) 58

24. Let
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$$
 and 1 be the identity matrix of

order 3. If $Q = [q_{ij}]$ is a matrix such that $P^{50} - Q =$ 1, then $\frac{q_{31} + q_{32}}{q_{21}}$ equals.

- (a) 52
- (b) 103
- (c) 201
- (d) 205
- 25. If A is a singular matrix, then adj A is

 - (a) Singular (b) Non-singular
 - (c) Symmetric
- (d) Non defined

- **26.** Which of the following is not true?
 - (a) Every skew-symmetric matrix of odd order is nonsingular
 - (b) If determinant of a square matrix is non-zero, then the it is non-singular
 - (c) Adjoint of symmetric matrix is symmetric
 - (d) Adjoint of diagonal matrix is diagonal
- 27. If k is a scalar and l is a unit matrix of order 3, then adi(kl) =
 - (a) k^3I
- (b) k^2I
- (c) $-k^3I$
- (d) $-k^2 I$
- **28.** Which of the following is/are true?
- (i) Adjoint of a symmetric matrix is symmetric
 - (ii) Adjoint of a unit matrix is a unit matrix
 - (iii) A(adj A) = (adj A) A = |A|I and
 - (iv) Adjoint of a diagonal matrix is a diagonal matrix
 - (a) (i)
 - (b) (ii)
 - (c) (iii) & (iv)
 - (d) None of these
- **29.** The adjoint of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ is
 - (a) $\begin{bmatrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} -3 & 4 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ (d) None of these
- 30. The inverse of $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$ is-
 - (a) $\begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$
 - (c) $\begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix}$ (d) None of these
- 31. If A and B are non-singular square matrix of same order, then adj(AB) is equal to
 - (a) (adj A)(adj B)
 - (b) (adj B) (adj A)

- (c) $(adj B^{-1})(adj A^{-1})$
- (d) $(adi A^{-1}) (adi B^{-1})$
- 32. If I_3 is the identity matrix of orders, the value of $(I_3)^{-1}$ is:
 - (a) 0
 - (b) $3l_3$
 - (c) l_3
 - (d) Does not exist
- 33. For two invertible matrices A and B of suitable orders, then value of $(AB)^{-1}$ is:

- **34.** Inverse of the matrix $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ is-
 - $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$

 - (c) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$
 - (d) $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$
- **35.** $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}; 1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A^{-1} = \frac{1}{6} [A^2 + cA + cA]$
 - dl], where c, $d \in \mathbb{R}$, then pair of values (c, d)

 - (a) (6, 11) (b) (6, 11)
 - (c) (-6, 11)
- (d) (-6, -11)
- **36.** Let $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then |2A| is equal to
 - (a) $4\cos 2\theta$
- (c) 2
- (d) 4
- 37. If ω is non-real complex cube root of unit, then the determinant of the matrix A is defined as

$$\begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & \omega & 1 \end{bmatrix}$$
 is equal to

- (a) 0
- (b) 1
- (c) 3
- (d) 2
- **38.** The value of the determinant of the matrix A=

$$\begin{bmatrix} 1 & x & x^3 \\ 1 & y & y^3 \\ 1 & z & z^3 \end{bmatrix}$$
 is equal to

- (a) (x-y)(y-z)(z-x)
- (b) (x-y)(y-z)(z-x)(x+y+z)
- (c) (x + y + z)
- (d) (x-y)(y-z)(z-x)(xy+yz+zx)
- **39.** If A is 3×3 matrix and |A| = 4, then $|A^{-1}|$ is equal to-
 - (a) $\frac{1}{4}$
- (b) $\frac{1}{16}$
- (c) 4
- (d) 2
- **40.** The number of real roots of the equation

|A|= 0 where A is defined as $\begin{bmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{bmatrix}$

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- **41.** If |A| = 0 where A is defined as the matrix

$$\begin{bmatrix} 4 & -4 & 0 \\ a & b+4 & c \\ a & b & c+4 \end{bmatrix}$$
, then $a+b+c$ is equal to

- (a) 41
- (b) 116
- (c) 628
- (d) -4
- **42.** The equation |A| = 0 where A is defined as $\begin{bmatrix} x-2 & 3 & 1 \end{bmatrix}$

$$\begin{bmatrix} x-2 & 3 & 1 \\ 4x-2 & 10 & 4 \\ 2x-1 & 5 & 1 \end{bmatrix}$$
 is satisfied by

- (a) x = -2
- (b) x = -5
- (c) x = -7
- (d) x = -9

43. The determinant of the matrix A=
$$\begin{vmatrix} x & 4 & y+z \\ y & 4 & z+x \\ z & 4 & x+y \end{vmatrix}$$
 is

equal to

- (a) 4x
- (b) x + y + z
- (c) *xyz*
- (d) 0
- 44. The value of the determinant A= $\begin{bmatrix} 1 & a & a^2 bc \\ 1 & b & b^2 ca \\ 1 & c & c^2 ab \end{bmatrix}$
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- **45.** The roots of the equation |A| = 0 where A is defined

as
$$\begin{bmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{bmatrix}$$

- (a) 1, 2
- (b) 1,-2
- (c) -1,-2
- (d) -1, 2
- **46.** The value of the determinant of the matrix $\begin{bmatrix} 1 & \log_b a \\ \log_a b & 1 \end{bmatrix}$ is equal to-
 - (a) 1
- (b) log_ab
- (c) log_ba
- $(d) \quad 0$
- 47. Find the |A|, where A is defined as $\begin{bmatrix}
 11+a & c & 1+bc \\
 11+a & d & 1+bd \\
 11+a & e & 1+be
 \end{bmatrix}$ is equal to
 - (a) 1
- (b) 0
- (c) 3
- (d) a+b+c
- **48.** If $|A| = ka^2b^2c^2$ where A is defined as $\begin{bmatrix} -a^2 & ab & ac \end{bmatrix}$

$$\begin{bmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{bmatrix}$$
, then k is equal to

- (a) 2
- (b) 4
- (c) -4
- (d) 8
- **49.** Let f(x) = |A| where A is defined as the matrix

$$\begin{bmatrix} 1 & x & x+1 \\ 2x & x(x-1) & (x-1)x \\ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \end{bmatrix}$$
then $f(100)$

- is equal to -
- (a) 0
- (b) 1

(d)
$$-100$$

50. The roots of the equation
$$|A|=0$$
 where A is defined

as
$$\begin{bmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{bmatrix}$$
 are

(a)
$$-1, -2$$

(b)
$$-1, 2$$

(c)
$$1, -2$$

51. If
$$A^2 = 8A + K1$$
 where $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$, then k is

(b)
$$-7$$

$$(d)$$
 -1

is defined as A=
$$\begin{bmatrix} {}^{5}C_{0} & {}^{5}C_{3} & 14 \\ {}^{5}C_{1} & {}^{5}C_{4} & 1 \\ {}^{5}C_{2} & {}^{5}C_{5} & 1 \end{bmatrix}$$
 is

$$(d) - 576$$

$$\Delta_1$$
 is the determinant of matrix
$$\begin{bmatrix} 10 & 4 & 3 \\ 17 & 7 & 4 \\ 4 & -5 & 7 \end{bmatrix}$$

and Δ_2 is the determinant of the matrix

$$\begin{bmatrix} 4 & x+5 & 3 \\ 7 & x+12 & 4 \\ -5 & x-1 & 7 \end{bmatrix}$$
 such that $\Delta_1 + \Delta_2 = 0$, then

- (a) x = 0
- (b) x has no real value
- (c) x = 0
- (d) x = 1

54. If all elements of a third order determinant are equal to 1 or -1, then determinant itself is-

- (a) An odd integer
- (b) An even integer
- (c) An imaginary number
- (d) Multiple of 3

55. If A is a
$$3\times3$$
 matrix and det $(3A) = k \{det (A)\},$ then k is-

- (a) 9
- (b) 6
- (c) 1
- (d) 27

- (a) 1
- (b) $|A|.l_n$
- (c) 0
- (d) $|A|^n$
- 57. If A is a square matrix of order 3, |A| = 3 then |adj|adj A is equal to -
 - (a) 3^{5}
- (b) 3^7

58. If
$$A = \begin{bmatrix} 11 & 7 \\ -13 & 17 \end{bmatrix}$$
, then adj (adj A) is

(a)
$$\begin{bmatrix} 17 & -7 \\ 13 & 11 \end{bmatrix}$$
 (b) $\begin{bmatrix} 11 & 7 \\ -13 & 17 \end{bmatrix}$ (c) $\begin{bmatrix} -17 & 7 \\ 13 & -11 \end{bmatrix}$ (d) $\begin{bmatrix} -11 & 7 \\ -13 & 17 \end{bmatrix}$

(b)
$$\begin{bmatrix} 11 & 7 \\ -13 & 17 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -17 & 7 \\ 13 & -11 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -11 & 7 \\ -13 & 17 \end{bmatrix}$$

59. If
$$A = \begin{bmatrix} \sin \alpha & -\cos \alpha & 0 \\ \cos \alpha & \sin \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then A^{-1} is equal to

- (c) adiA
- (d) A^2

60. If A is a matrix of order 3 and
$$|A| = 2$$
, then $|adj A|$ is-

- (a) 1
- (b) 2

61. Let
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
. The only correct statement

about the matrix A is:

- (a) A is zero matrix
- (b) $A = (-1)/_3$
- (c) A^{-1} doesn't exist
- (d) $A^2 = 1$

62. A is a matrix of order
$$3 \times 3$$
. If $A' = A$ and five entries in the matrix are of one kind and remaining four are of another kind, then the maximum number of such matrices is greater then of equal to-

- (a) 9
- (b) 10
- (c) 11
- (d) 8

63. If the adjoint of a
$$3\times3$$
 matrix P is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then

the possible value (s) of the determinant of P is (are)-

(b)
$$-1$$

$$(d)$$
 2

64. Let
$$P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$$
, where $\alpha \in \mathbb{R}$. Suppose $Q = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$

 $[q_{ij}]$ is a matrix such that PQ = K1, where $k \in \mathbb{R}$, k \neq 0 and 1 is the identity matrix of order 3. If q_{23} =

$$\frac{k}{8}$$
 and $\det(Q) = \frac{k^2}{2}$, then

- (a) $\alpha = 0, k = 8$
- (b) $4\alpha k + 8 = 0$
- (c) $\det(P \text{ adj } (Q)) = 2^9$
- (d) $\det(Q \operatorname{adj}(P)) = 2^{13}$
- **65**. A and B are two matrices for same order 3×3 , where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{bmatrix}, B = \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ 7 & 2 & 9 \end{bmatrix}$$

Choose the correct answer:

- The value of adj(adj A) is,
 - (a) –A
- (b) 4A
- (c) 8A
- (d) 16A
- The value of |adj (AB)| is
 - (a) 24
- (b) 24^2
- (c) 24^3
- (d) 65
- Value of |adj(adj(adj(adjA)))| is
 - (a) 2^4
- (b) 2^9
- (c) 1
- (d) 2^{19}
- **66.** Let P be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1. Five of these are 1 and four of them are 0.
- The number of matrices in /is:
 - (a) 12
- (b) 6
- (c) 9
- (d) 3
- The number of A in P for which the system of linear equations

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Has a unique solution, is

- (a) Less than 4
- (b) At least 4 but less than 7
- (c) At least 7 but less than 10
- (d) At least 10
- The number of matrices A in A for which for which the system on linear equations $A \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

is inconsistent, is

- (a) 0
- (b) More than 2
- (c) 2
- (d) 1
- 67. The total number of distinct $x \in \mathbb{R}$ which

$$\begin{vmatrix} x & x^2 & 1+x^3 \\ 2x & 4x^2 & 1+8x^3 \\ 3x & 9x^2 & 1+27x^3 \end{vmatrix} = 10 \text{ is-}$$

68. The matrices which commute with $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ in

case of multiplication.

STATEMENT -1 Are always singular STATEMENT -2 Are always singular STATEMENT -3 Are always singular

- (a) FFF
- (b) TTF
- (c) TTT
- (d) T F T
- **69.** Number or real roots equation |A|=0 where A is

defined as
$$\begin{bmatrix} x^2 & -4 & -2 \\ 4 & x^2 & 1 \\ -5 & 3 & x^2 \end{bmatrix}$$
 are

- (a) 0
- (c) 2
- **70.** The coefficient of x in $f(x) = \det$ of A where A is defined as

(d) 4

$$\begin{bmatrix} x & 1 + \sin x & \cos x \\ 1 & \log(1+x) & 2 \\ x^2 & 1+x^2 & 0 \end{bmatrix}$$
 where $-1 < x \le 1$, is
$$\begin{bmatrix} a & 1 & (b) & -2 \\ (c) & -1 & (d) & 0 \end{bmatrix}$$

- 71. If adj B = A, |P| = |Q| = 1, then adj $(Q^{-1}BP^{-1})$ equals

 $\begin{array}{cccc} (a) & PQ & & (b) & QAP \\ (c) & PAQ & & (d) & PA^{-1}Q \end{array}$

72. The matrix $A = \begin{bmatrix} -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$ is

(a) Orthogonal(b) Nilpotent(c) Idempotent(d) Involutary

73. The matrix $A = \begin{bmatrix} a & 2 \\ 2 & 4 \end{bmatrix}$ is singular if

(a) $a \neq 1$

(b) a = 1

(c) a = 0

(d) a = -1

74. $A = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$ is invertible for

(a) k = 1 (b) k = -1 (c) $k \neq \pm 1$ (d) k = 0

Answer Key

- (a) 1.
- 2. (b)
- **3.** (d)
- 4. (c)
- 5. (b)
- 6. (a)
- 7. (c)
- 8. (a)
- 9. (c)
- **10.** (d)
- **11.** (b)
- **12.** (a)
- **13.** (b)
- **14.** (d)
- 15. (d) 16. (c)
- **17.** (b)
- **18.** (a)
- **19.** (c)
- **20.** (d)
- **21.** (c)
- **22.** (a)
- **23.** (b) **24.** (b)
- **25.** (b)
- **26.** (a)
- **27.** (b)
- **28** (d)
- **29.** (b)
- **30.** (b)
- **31** (b)
- **32.** (c)
- **33.** (b)
- **34.** (d)
- **35.** (c)
- **36.** (d)
- **37.** (a)
- **38.** (b)
- **39.** (a)
- **40.** (d)
- **41.** (d)
- **42.** (c)
- **43.** (d)
- **44.** (a)
- **45.** (b) **46.** (d)
- **47.** (b)
- **48.** (b)
- **49.** (a)
- **50.** (b)
- **51.** (b)

- **52.** (d)
- **53.** (a)
- **54.** (b)
- **55.** (d)
- **56.** (b)
- **57.** (d)
- **58.** (b)
- **59.** (c)
- **60.** (d)
- **61.** (d)
- **62.** (1,2,3,4)
- **63.** (1,4)
- **64.** (2, 3)
- **65.1**-(a)
- **2-**(b)
- **3-**(c)
- **66.** 1-(a)
- **2-** (b)
- **3-**(b)
- **67.** 2
- **68.** (a)
- **69.** (c)
- **70.** (b)
- **71.** (c)
- **72.** (c)
- **73.** (b)
- **74.** (c)

Any issue with DPP, please report by clicking here:- $\underline{https://forms.gle/t2SzQVvQcs638c4r5}$ For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

PW Mobile APP: https://smart.link/7wwosivoicgd4