Reproducible Research: Peer Assessment 1

Loading and preprocessing the data

First we load appropriate libraries, set some options, then unzip and load the data:

```
suppressWarnings(suppressMessages(library(dplyr)))
suppressWarnings(suppressMessages(library(ggplot2)))
options(scipen=999) # Get numbers to print nicely...
unzip('activity.zip')
data = read.csv('activity.csv', stringsAsFactors = F)
```

What is mean total number of steps taken per day?

The following code computes total steps taken per day:

```
stepsPerDay = data %>% # Start with the data we loaded
filter(!is.na(steps)) %>% # Remove entries with NA steps
group_by(date) %>% # Group into days
summarise(totalSteps = sum(steps)) #Find total steps each day
```

Then we plot a histogram.

```
ggplot() + geom_histogram(data = stepsPerDay, aes(x = totalSteps, fill = 'coral'), binwidth = 1000 ) +
```


So the mean total number of steps taken per day is 10766.1886792, and the median is 10765.

What is the average daily activity pattern?

The following code computes average steps taken in each 5 minute interval:

```
stepsPerInterval = data %>% # Start with the data we loaded
filter(!is.na(steps)) %>% # Remove entries with NA steps
group_by(interval) %>% # Group into days
summarise(meanSteps = mean(steps)) #Find mean steps each interval
```

Plot a time series plot of steps

```
ggplot() + geom_line(data = stepsPerInterval, aes(x = interval, y = meanSteps), binwidth = 1000 ) + the
```


And find the maximum.

```
maxIntervalStart = stepsPerInterval$interval[which.max(stepsPerInterval$meanSteps)]
```

The interval with the most steps on average is from 835 to 840 minutes.

Imputing missing values

```
numberOfNas = sum(is.na(data$steps))
```

Of the 17568 rows in the data, 2304 are NA (13.11% of rows).

To replace these NAs, we will use the simple strategy of replacing them with the mean number of steps for that 5 minute interval, which we computed in the previous section. Then create a new data set replacing NAs with the mean for each interval.

```
imputedData = data

stepsPerInterval = as.matrix(stepsPerInterval)
rownames(stepsPerInterval) = stepsPerInterval[,'interval']

imputedData$steps[is.na(imputedData$steps)] = stepsPerInterval[as.character(imputedData$interval[is.na()])
```

Are	there	differences	in activity	patterns	between	weekdays	and weeke	$^{ m nds}?$