Course Learning Syllabus (// includes Learning Outcomes, Learning Plan & Assessment Plan)

Course	18MAB201T	Course	TRANSFORMS AND BOUNDARY VALUE PROBLEMS	Course	_	5 . 6 .	L	T	P	C	;
Code	TOWNSECTT	Name	THANSI ONING AND BOONDART VALUE PROBLEMS	Category	В	Basic Sciences	3	1	0	4	П
											_

Pre-requisite Courses	18MAB102T		Co-requisite Courses	NII		Progressive Courses	Nil
Course Offering	Department	Mathematics			Data Book / Codes/Standards	Nil	

Course L	earning Rationale (CLR):	The purpose of learning this course is to:	Learning												
CLR-1:	Analyze different types of partial differential equations, interpret the solutions that relate PDE to the respective branches of engineering.			Program Outcomes (PO)											
				1	2	3	4	5	6	7	8	9	10	11	12
CLR-2:	Relate Fourier series expansion	on to examine Sine and Cosine Series.													
CLR-3:	Apply PDE and Solve one dim	nensional wave and heat equations.					An aly								
CLR-4:	R-4: Examine the various types of integral transforms.						sis			Enviro		Indiv		Proj	
CLR-5:	Analyze z transform for solving discrete-time Signal problems.		Level (1-6)	Engin		gn &		Moder		nment &		idual &	Com		Life- Lona
CLR-6	Distinguish the importance of Fourier and Z – transform.	PDE, Fourier series, one dimensional wave and heat equations,		Knowl edge	Anal ysis		n, Re se		Cult ure	Sustai nabilit y		Tea m Wor k	catio		Lear
	lid.						arc h								
	outcomes (CO):	At the end of this course, learners will be able to:]												
CO-1:	Construct and solve partial dif	ferential equations using various techniques	4	3	3	-	-	-	-	-	-	-		-	
CO-2:	Explain the Fourier series exp	ansion of a function in terms of sine and cosine series.	4	3	3	-		-	-		-	-		-	
CO-3:	Identify Partial differential equations and utilize Fourier series techniques to solve one dimensional wave and heat equations.		4	3	3	-	-	-	-		-	-	-	-	-
CO-4:	Apply Fourier transforms tech	niques in signal analysis.	4	3	3						-				
CO- 5:	Solve discrete-time signal pro	blems using z transforms.	4	3	3	-	-	-	-	•	-	-	-		
CO-6:	Utilize PDE, Fourier series, or to solve engineering problems	4	3	3		-	-		-	-		-	-	-	

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5				
Duratio	tion (hour) 12		12	12	12	12				
S-1	SLO-1	Formation of partial differential equation by eliminating arbitrary constants	Introduction of Fourier series - Dirichlet's conditions for the existence of Fourier Series	Classification of second-order partial differential equations	Introduction of Fourier Transforms	Introduction of Z-transform				
5-1	SLO-2	Formation of partial differential equation by eliminating two or more arbitrary constants	Fourier series–related problems in $(0,2\pi)$	Method of separation of variables	Fourier Transforms- problems	Z-transform-elementary properties				
	SLO-1	Formation of partial differential equation by eliminating arbitrary functions	Fourier series–related problems in $\left(-\pi,\pi\right)$	One dimensional Wave Equation and its possible solutions	Properties of Fourier transforms	Z-transform- change of scale property, shifting property				
S-2	SLO-2	Formation of partial differential equation by eliminating two or more arbitrary functions	Change of interval Fourier series–related problems in $(0,2l)$	One dimensional Wave Equation- initial displacement with zero initial velocity-type 1 Algebraic function	Standard results of Fourier transform	Z-transform of $a^n, \frac{1}{n}, \frac{1}{n+1}$				
S-3		Formation of partial differential equation by eliminating arbitrary functions of the form $\phi(u,v)=0$	Fourier series–related problems in $(-l, l)$	One dimensional Wave Equation- initial displacement with zero initial velocity-type 2 Trigonometric function	Fourier Sine Transforms - problems	Z-transform of $\frac{1}{n^2}$, $\frac{1}{(n+1)^2}$				
		Solution of first-order nonlinear partial differential equations- standard type I F (p, q) =0	Fourier series –half range cosine series related problems $(0,\pi)$	One dimensional Wave Equation- initial displacement with zero initial velocity-type 3 – Midpoint of the string is displaced	Fourier Cosine Transforms - problems	Z-transform of $r^n \cos n\theta$				
S-4	SLO-1	Problem solving using tutorial sheet	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet	Problem solving using tutorial sheet				
5-4	SLO-2	Problem solving using tutorial sheet	Problem solving using tutorial sheet			Problem solving using tutorial sheet				
S-5		Solution of first order nonlinear partial differential equations-standard type –II Clairaut's form	Fourier series –half range cosine series related problems $(0, t)$.	One dimensional Wave Equation- initial displacement with non-zero initial velocity Type 1 Algebraic function	Properties of Fourier sine Transforms					

3

			Fourier series -half range sine	One dimensional Wave Equation-	T	
	SLO-2	Solution of first order nonlinear partial differential equations-standard type III $F(z,p,q)\text{=0}$	series related problems $(0,\pi)$	initial displacement with non-zero initial velocity Type 2 Trigonometric function	Fourier sine Transforms applications	Initial value theorem
S-6	SLO-1	Solution of first order nonlinear partial differential equations- standard type-IV separation of variable f(x, p) = g(y, q)	Fourier series –half range sine series related problems $(0,t)$	Wave Equation-initial displacement with non-zero initial velocity Type 3 split function	Properties of Fourier cosine Transforms	Final value theorem
	SLO-2			Fourier cosine Transforms applications	Inverse Z-transform- long division method	
	SLO-1	Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)- related problems in cosine series	One dimensional heat equation related problem	Convolution of two function	Inverse Z-transform, related problems, long division method
S- 7	SLO-2	More problems in Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)-related problems in sine series	One dimensional heat equation - Steady-state conditions	Convolution Theorem	Inverse Z-transform, Partial fraction method
S-8	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
3-0	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients-CF and PI Type 1: e^{ax+by}	Introduction to Harmonic Analysis	One dimensional heat equation - Steady state conditions more problems	Parseval's Identity for Fourier transform	Inverse Z-transform, Partial fraction method related problems
	SLO-2	PI Type2.: sin(ax+by) or	Harmonic Analysis for finding harmonic in $(0,2\pi)$	One dimensional heat equation - Steady state conditions with zero velocity	Parseval's Identity for Fourier sine & cosine transforms	Inverse Z-transform - residue theorem method
S-10	SLO-1	PI Type 3: polynomials	Harmonic Analysis for finding harmonic in $(0,2l)$	One dimensional heat equation - Steady state conditions with zero velocity more problems	Parseval's Identity for Fourier sine & cosine transforms applications	Inverse Z-transform - residue theorem method-problems
3-10	SLO-2	PI Type 4: Exponential shifting - $e^{ax+by} f(x,y)$	Harmonic Analysis for finding harmonic in periodic interval $(0,T)$	One dimensional heat equation - Steady state conditions with zero velocity more related problems	Fourier Transforms Using Differentiation property	Convolution theorem (without proof)
S-11	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients type 5 General rule	Harmonic Analysis for finding cosine series	Steady state conditions and non- zero boundary conditions- related problems	Solving integral equation	Convolution theorem applications
3-11	SLO-2	Applications of Partial differential equations in Engineering	Harmonic Analysis for finding sine series	Steady state conditions and non- zero boundary conditions- more related problems	Self-reciprocal using Fourier Transform, sine and cosine transform	Solution of linear difference equations with constant coefficients using Z-transform
S-12	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
3-12	SLO-2	3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
Learnin Resourc		B.S. Grewal, Higher En Veerarajan T., Transfor Ramana B.V., Higher E	Dead Engineering Mathematics, 10th E. Igineering Mathematics, Khanna Publ Irms and Partial Differential Equations Engineering Mathematics, Tata McGra Goyal, A text book of Engineering Mal	ishers, 43rd Edition, 2015. Tata McGraw-Hill, New Delhi, 3rd e w Hill New Delhi, 2010 3rd Edition.	10	

Learning As	ssessment											
	Bloom's	Continuous	Learning Assess	sment (50% weig	htage)					Final Examination (50%		
	Level of	CLA - 1 (10%)		CLA - 2 (1	CLA - 2 (15%)		CLA - 3 (15%)		(%)	weightage)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%		20%		20%		20%		20%		
Level 2	Understand	20%		20%		20%		20%		20%		
Level 3	Apply	30%		30%		30%		30%		30%		
Level 4	Analyze	30%		30%		30%		30%		30%		
Level 5	Evaluate			-		-		-		-		
Level 6	Create			-		-		-				
	Total	100 %		100 %	100 %		100 %			100 %		

#CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., SLO - Session Learning Outcome

OLO - Gession Learning Outcome						
Course Designers						
(a) Experts from Industry						
1 Mr.V.Maheshwaran	CTS, Chennai	maheshwaranv@yahoo.com				
(b) Experts from Higher Technical Ir	stitutions					
2 Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in	3 [Or.Nanjundan	Bangalore University	nanzundan@gmail.com
(b) Internal Experts						
4 Dr.A. Govindarajan	SRMIST	govindarajan.a@ktr.srmuniv.ad		Dr.K.Ganapathy subramanian	SRMIST	ganapathy.k@ ktr.srmuniv.ac.in

IMPORTANT DATES:

CLAT 1- 07-09-2022 CLAT 2- 13-10-2022 CLAT 3- 16-11-2022 ASSIGNMENT I 26-08-2022 ASSIGNMENT II 26-09-2022

SIGNATURE OF COURSE COORDINATORS

SIGNATURE OF HOD

ASSOCIATE PROFESSOR & HEAD
Department of Mathematics
College of Engineering and Technology
SRM Institute of Science and Technology
SRM Nagar, Kattankulathur - 603 203
Chengalpattu Dist, Tamil Nadu, India