CSE 421 Algorithms

Richard Anderson
Lecture 19
Longest Common Subsequence

Longest Common Subsequence

- C=c₁...c_g is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

occurranec attacggct occurrence tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

- Align sequences with gaps
 CAT TGA AT
 CAGAT AGGA
- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with γ_{xx} = 0 and δ_x > 0

LCS Optimization

- $A = a_1 a_2 ... a_m$
- $B = b_1 b_2 ... b_n$
- Opt[j, k] is the length of LCS(a₁a₂...a_j, b₁b₂...b_k)

Optimization recurrence

If $a_i = b_k$, Opt[j,k] = 1 + Opt[j-1, k-1]

If $a_j != b_k$, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

Opt[j, k] =

Let $a_j = x$ and $b_k = y$ Express as minimization

Dynamic Programming Computation

Code to compute Opt[j,k]

Storing the path information

```
 \begin{aligned} &A[1..m], \ B[1..n] & & & & & & & & & & & & & & & & & & \\ &for \ & i := 1 \ to \ m & & & & & & & & & & & & & & & \\ &for \ & j := 1 \ to \ n & & & & & & & & & & & & & \\ &Opt[0,0] := 0; & & & & & & & & & & \\ &Opt[0,0] := 0; & & & & & & & & & \\ &ori \ & i = 1 \ to \ m & & & & & & & & \\ &for \ & i := 1 \ to \ m & & & & & & & \\ &for \ & i := 1 \ to \ m & & & & & & & \\ &for \ & i := 1 \ to \ m & & & & & & \\ &for \ & i := 1 \ to \ m & & & & & \\ &for \ & i := 1 \ to \ m & & & & & \\ &for \ & i := 1 \ to \ m & & & & & \\ &for \ & i := 1 \ to \ m & & & & & \\ &for \ & i := 1 \ to \ m & & & & \\ &for \ & i := 1 \ to \ m & & & & \\ &for \ & i := 1 \ to \ m & & & & \\ &for \ & i := 1 \ to \ m & & & & \\ &for \ & i := 1 \ to \ m & & & \\ &for \ & i := 1 \ to \ m & & & \\ &for \ & i := 1 \ to \ m & & & \\ &for \ & i := 1 \ to \ m & & \\ &for \ & i := 1 \ to \ m & & \\ &for \ & i := 1 \ to \ m & & \\ &for \ & i := 1 \ to \ m & & \\ &for \ & i := 1 \ to \ m & & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to \ m & \\ &for \ & i := 1 \ to
```

How good is this algorithm?

 Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Algorithm Performance

- O(nm) time and O(nm) space
- On current desktop machines
 - -n, m < 10,000 is easy
 - -n, m > 1,000,000 is prohibitive
- Space is more likely to be the bounding resource than time

Observations about the Algorithm

- The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in O(nm) time and O(n+m) space

- Divide and conquer algorithm
- Recomputing values used to save space

Divide and Conquer Algorithm

 Where does the best path cross the middle column?

 For a fixed i, and for each j, compute the LCS that has a_i matched with b_i

Constrained LCS

- LCS_{i,i}(A,B): The LCS such that
 - $-a_1,...,a_i$ paired with elements of $b_1,...,b_i$
 - $-a_{i+1},...a_m$ paired with elements of $b_{j+1},...,b_n$
- LCS_{4,3}(abbacbb, cbbaa)

A = RRSSRTTRTS B=RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B),...,LCS_{5,9}(A,B)

A = RRSSRTTRTS B=RTSRRSTST

Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$,..., $LCS_{5,9}(A,B)$

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Computing the middle column

- From the left, compute LCS($a_1...a_{m/2}$, $b_1...b_j$)
- From the right, compute LCS(a_{m/2+1}...a_m,b_{i+1}...b_n)
- · Add values for corresponding j's

• Note - this is space efficient

Divide and Conquer

- $A = a_1, ..., a_m$
- $B = b_1, \dots, b_n$
- Find j such that
 - $-LCS(a_1...a_{m/2}, b_1...b_i)$ and
 - LCS($a_{m/2+1}...a_m$, $b_{j+1}...b_n$) yield optimal solution
- Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that T(m,n) <= 2cmn

Memory Efficient LCS Summary

- We can afford O(nm) time, but we can't afford O(nm) space
- If we only want to compute the length of the LCS, we can easily reduce space to O(n+m)
- Avoid storing the value by recomputing values
 - Divide and conquer used to reduce problem sizes