Chapitre 5

Primitives et équations différentielles

1 Équations différentielles et primitives d'une fonction

Définition : Équation différentielle

- Une **équation différentielle** est une équation où l'inconnue est une fonction et où interviennent des dérivées de cette fonction.
- **Résoudre une équation différentielle** sur un intervalle *I*, c'est trouver toutes les fonctions, dérivable sur *I*, qui sont solutions de cette équation.

Exemples

- La fonction f définie sur \mathbf{R} par e^{-x} est solution de l'équation différentielle y'+y=0. En effet, pour tout $x \in \mathbf{R}$, $f'(x) = -e^{-x}$ et $f(x) + f'(x) = e^{-x} - e^{-x} = 0$.
- La fonction f définie sur \mathbf{R} par e^{-x} est solution de l'équation différentielle y'' y = 0. En effet, pour tout $x \in \mathbf{R}$, $f'(x) = -e^{-x}$ et $f''(x) = e^{-x}$, donc $f''(x) - f(x) = e^{-x} - e^{-x} = 0$.
- · La fonction g définie sur]0; $+\infty[$ par $x\mapsto lnx$ est solution de l'équation différentielle $y'(x)=\frac{1}{x}.$

Définition: Primitive d'une fonction

Soit f une fonction définie sur un intervalle I.

On appelle **primitive** de f sur I toute fonction solution de l'équation différentielle F' = f sur I.

Ainsi, une fonction F est une primitive de f sur I lorsque, pour tout $x \in I$, F'(x) = f(x).

Exemples

- La fonction $x\mapsto x^2$ est solution de l'équation différentielle y'=2x. Donc, la fonction $F:x\mapsto x^2$ est une primitive de $f:x\mapsto 2x$.
- La fonction $x \mapsto e^x$ est solution de l'équation différentielle $y' = e^x$. Donc, la fonction $G_1: x \mapsto e^x$ est une primitive de $g: x \mapsto e^x$.
- La fonction $x\mapsto e^x+2$ est également solution de l'équation différentielle $y'=e^x$. Donc, la fonction $G_2:x\mapsto e^x+2$ est une primitive de $g:x\mapsto e^x$.

Propriété: Primitives de fonctions usuelles

Fonction f définie par :	Intervalle de définition	Primitive F définie par :
$f(x)=a$, avec $a\in \mathbf{R}$	R	F(x) = ax + k, avec k un réel
$f(x)=x^n$, avec $n\in \mathbf{N}^*$	R	$F(x) = \frac{1}{n+1}x^{n+1}$
$f(x)=x^n$, avec n entier, $n<-1$	$]-\infty\;;\;0[\;{ m ou}\;]0\;;\;+\infty[$	$F(x) = \frac{1}{n+1}x^{n+1}$
$f(x) = \frac{1}{\sqrt{x}}$	$]0\;;\;+\infty[$	$F(x) = 2\sqrt{x}$
$f(x) = e^x$	R	$F(x) = e^x$
$f(x) = \frac{1}{x}$	$]x ; +\infty[$	$F(x) = \ln x$

2 Existence et calcul de primitives

Propriété

Soit f une fonction définie sur un intervalle I.

- Si F est une primitive de f sur I, alors, pour tout $k \in \mathbb{R}$, la fonction $x \mapsto F(x) + k$ est également une primitive de f sur I.
- Si F et G sont deux primitives de f sur I, alors il existe une constante $C \in \mathbf{R}$ telle que, pour tout $x \in I$, F(x) = G(x) + C.

Preuve

• Soit $C \in \mathbf{R}$.

Soient F une primitive de f sur I et $G: x \mapsto F(x) + C$.

Alors, pour tout $x \in I$, G'(x) = F'(x) + 0 = f(x).

Donc, G est une primitive de f sur I.

• Soit F et G deux primitives de f sur I.

Alors, pour tout $x \in I$, F'(x) = f(x) et G'(x) = f(x).

Donc, pour tout $x \in I$, F'(x) = G'(x).

Soit $H: x \mapsto F(x) - G(x)$.

Alors, pour tout $x \in I$, H'(x) = F'(x) - G'(x) = 0.

Donc, H est une fonction constante. Il existe donc une constante $C \in \mathbf{R}$ telle que, pour tout $x \in I$, H(x) = C.

Donc, pour tout $x \in I$, F(x) - G(x) = k et F(x) = G(x) + C.

3. CALCUL DE PRIMITIVES 3

Remarque

On dit que deux primitive d'une même fonction diffèrent d'une constante.

Propriété

Soient f une fonction définie sur un intervalle I, x_0 un réel appartenant à I et y_0 un réel. Il existe **une unique primitive** G de f sur l'intervalle I telle que $G(x_0) = y_0$.

Preuve

Avec les notations précédentes, $G(x_0)=y_0$ s'écrit $F(x_0)+C=y_0$, soit $C=y_0-F(x_0)$. Donc, pour tout $x\in I$, $G(x)=F(x)+y_0-F(x_0)$.

Exemple

Soit f la fonction définie sur **R** par $f(x) = e^{2x}$.

Toutes les primitives de f sont de la forme $x\mapsto \frac{1}{2}e^{2x}+C$, avec C un réel.

La primitive de f qui prend la valeur 0 en en 1 est G définie par $G(x)=\frac{1}{2}e^{2x}+C$ avec C tel que G(1)=0.

Donc,
$$G(1) = \frac{1}{2}e^2 + C = 0$$
, soit $C = -\frac{1}{2}e^2$.

Donc, la primitive de f qui prend la valeur 0 en 1 est $G: x \mapsto \frac{1}{2}e^{2x} - \frac{1}{2}e^2$.

3 Calcul de primitives

Toutes les propriétés suivantes se déduisent de la définition d'une primitive et des opérations sur les fonctions dérivables.

Propriété

Soient f et g deux fonctions définies sur un intervalle I et F et G deux primitives respectives de f et g sur I.

- La fonction F+G est une primitive de f+g sur I.
- Pour tout réel λ , la fonction λF est une primitive de λf sur I.

Exemple

Soit f la fonction définie sur]0; $+\infty[$ par $f(x)=\frac{2}{x}+x^2.$

Pour tout $x \in \mathbf{R}$, $f(x) = 2 \times \frac{1}{x} + x^2$.

Donc une primitive F de la fonction f sur]0; $+\infty[$ est définie par $F(x)=2\ln x+\frac{1}{3}x^3.$

Propriété: D'autres primitives

Soit u une fonction dérivable sur un intervalle I.

Fonction f	Primitive de f sur I	Condition sur \boldsymbol{u}
2uu'	$u^2 + C$	
$\frac{u'}{u}$	ln(u) + C	$u>0$ pour tout $x\in I$
$u'e^u$	$e^u + C$	

Exemple

f est la fonction définie sur **R** par $f(x) = \frac{2x}{4+x^2}$.

Pour tout $x \in \mathbb{R}$, on pose $u(x) = 4 + x^2$. On a : u'(x) = 2x.

On a donc, pour tout $x \in \mathbf{R}$, $f(x) = \frac{2u'(x)}{u(x)}$.

Donc, une primitive F de la fonction f sur \mathbf{R} est définie par $F(x) = \ln(4 + x^2)$.

4 Résolution des équations différentielles de la forme y' = ay + b

Propriété : Équations différentielles de la forme y'=ay

Soit a un nombre réel non nul.

Les solutions sur ${\bf R}$ de l'équation différentielle y'=ay sont les fonctions définies sur ${\bf R}$ par $x\mapsto ke^{ax}$, avec k un réel.

Preuve

• Montrons que les fonctions $x \mapsto ke^{ax}$, avec k un réel, sont solutions de l'équation différentielle y' = ay.

Soit f la fonction définie sur **R** par $f(x) = ae^{ax}$.

Pour tout $x \in \mathbf{R}$, $f'(x) = a \times ae^{ax} = af(x)$.

Donc, f est une solution de l'équation différentielle y' = ay.

• Montrons que toutes les solutions de l'équation différentielle y'=ay sont de la forme $x\mapsto ke^{ax}$, avec k un réel.

Soit g une solution de l'équation différentielle y' = ay.

Alors, pour tout $x \in \mathbb{R}$, g'(x) = ag(x).

Soit h définie par $h(x) = g(x)e^{-ax}$.

Alors, pour tout
$$x \in \mathbf{R}$$
, $h'(x) = g'(x)e^{-ax} - ag(x)e^{-ax}$
= $ag(x)e^{-ax} - ag(x)e^{-ax}$

$$= 0$$

Donc, h est une fonction constante. Il existe donc un réel k tel que, pour tout $x \in \mathbb{R}$, h(x) = k. Donc, pour tout $x \in \mathbb{R}$, $g(x)e^{-ax} = k$, soit $g(x) = ke^{ax}$.

Allure des courbes des fonctions solution selon le signe de a et de k:

Cas a > 0:

Cas a < 0:

Exemple

L'équation différentielle (E):y'=3y admet pour solutions sur **R** les fonctions de la forme $x\mapsto ke^{3x}$, avec k un réel.

L'unique solution de (E) telle que f(0)=2 est la fonction f définie par $f(x)=2e^{3x}$.

Méthode : Résoudre une équation différentielle y'=ay

- (E) est l'équation différentielle 2y'+3y=0.
- 1. Résoudre (E) sur R.
- 2. Déterminer la solution f de (E) telle que f(4)=1.
- 1. On commence par se ramener à une équation différentielle de la forme y'=ay. L'équation différentielle 2y'+3y=0 est équivalente à $y'=-\frac{3}{2}y$. Les solutions sur R de l'équation différentielle $y'=-\frac{3}{2}y$ sont les fonctions f_k définies sur R par $f_k(x)=ke^{-\frac{3}{2}x}$, avec k un réel.
- **2.** Parmi toutes les solutions de (E), on cherche l'unique solution qui vérifie f(4) = 1. On résout l'équation $f_k(4) = 1$, d'inconnue k.

$$f(4) = 1 \iff ke^{-\frac{3}{2} \times 4} = 1$$
$$\iff ke^{-6} = 1$$
$$\iff k = e^{6}$$

Donc, la solution de (E) telle que f(4)=1 est la fonction f définie sur ${\bf R}$ par

$$f(x) = e^{6}e^{-\frac{3}{2}x}$$

= $e^{6-\frac{3}{2}x}$

Propriété : Équations différentielles de la forme y' = ay + b

Soit a et b deux nombres réels non nuls.

Les solutions sur R de l'équation différentielle y'=ay+b sont les fonctions définies sur R par $x\mapsto ke^{ax}-\frac{b}{a}$, avec k un réel.

Preuve

• On détermine d'abord une fonction constante $g:x\mapsto c,\,c\in \mathbf{R}$, solution particulière de l'équation différentielle y'=ay+b.

Pour tout $x \in \mathbb{R}$, g'(x) = 0.

Ainsi,
$$g$$
 est solution de $y'=ay+b\iff$ Pour tout $x\in\mathbf{R},\quad g'(x)=ag(x)+b\iff 0=ac+b\iff c=-\frac{b}{a}$

Donc la fonction constante $g: x \mapsto -\frac{b}{a}$ est solution de l'équation différentielle y' = ay + b.

- On montre ensuite que les fonctions $x\mapsto ke^{ax}-\frac{b}{a}$, avec k un réel, sont solutions de l'équation différentielle y'=ay+b.
- \cdot Soit f une fonction définie et dérivable sur ${\bf R}$.

$$f \text{ est solution de } y' = ay + b \iff \text{Pour tout } x \in \mathbf{R}, \quad f'(x) = af(x) + b$$
 Or pour tout $x \in \mathbf{R}, \quad g'(x) - ag(x) = b$
$$\iff \text{Pour tout } x \in \mathbf{R}, \quad f'(x) - g'(x) = af(x) + b - (ag(x) + b)$$

$$\iff \text{Pour tout } x \in \mathbf{R}, \quad (f - g)'(x) = a(f - g)(x)$$

$$\iff (f - g) \text{ est solution de } y' = ay$$

$$\iff \text{il existe un réel } k, \text{tel que pour tout } x \in \mathbf{R}, \quad (f - g)(x) = ke^{ax}$$

$$\iff \text{il existe un réel } k, \text{tel que pour tout } x \in \mathbf{R}, \quad f(x) - g(x) = ke^{ax}$$

$$\iff \text{il existe un réel } k, \text{tel que pour tout } x \in \mathbf{R}, \quad f(x) = ke^{ax} + g(x)$$

$$\iff \text{il existe un réel } k, \text{tel que pour tout } x \in \mathbf{R}, \quad f(x) = ke^{ax} - \frac{b}{a}$$

Méthode : Résoudre une équation différentielle y' = ay + b

- (E) est l'équation différentielle y' = 4y 5.
- 1. Déterminer la fonction constante g solution particulière de (E).
- 2. Résoudre (E) sur R.

7

- 3. Déterminer la solution f de (E) telle que $f(2) = \frac{1}{4}$.
- 1. On commence par déterminer une solution particulière de (E):

Soit g la fonction constante solution de l'équation différentielle y'=4y-5.

On a : pour tout $x \in \mathbf{R}$, g(x) = c, avec $c \in \mathbf{R}$ et g'(x) = 0.

$$g$$
 est solution de $(E)\iff$ Pour tout $x\in\mathbf{R},\quad g'(x)=4g(x)-5$
$$\iff 0=4c-5$$

$$\iff c=\frac{5}{4}$$

Donc, la fonction constante g solution de (E) sur \mathbf{R} est définie par $g(x)=\frac{5}{4}$.

2. On résout ensuite l'équation différentielle homogène (H):y'=4y :

Les solutions de (H) sur **R** sont les fonctions h_k définies sur **R** par $h_k(x) = ke^{4x}$, avec k un réel.

On en déduit par addition les solutions de (E) sur R :

Les solutions de (E) sur **R** sont les fonctions f_k définies par $f_k(x) = ke^{4x} + \frac{5}{4}$, avec k un réel.

3. On détermine enfin la solution de (E) qui vérifie la condition initiale :

Soit f_k une solution de (E) sur $\mathbf{R}, k \in \mathbf{R}$.

On a donc : pour tout $x \in \mathbf{R}$, $f_k(x) = ke^{4x} + \frac{5}{4}$.

On résout l'équation $f_k(2) = \frac{1}{4}$, d'inconnue k.

$$f_k(2) = \frac{1}{4} \iff ke^{4\times 2} + \frac{5}{4} = \frac{1}{4}$$

$$\iff ke^8 + \frac{5}{4} = \frac{1}{4}$$

$$\iff ke^8 = -1$$

$$\iff k = -\frac{1}{e^8}$$

$$\iff k = -e^{-8}$$

Donc, la solution de (E) qui vérifie la condition initiale $f(2)=\frac{1}{4}$ est la fonction f définie sur $\mathbf R$ par :

$$f(x) = -e^{-8}e^{4x} + \frac{5}{4}$$
$$= -e^{4x-8} + \frac{5}{4}$$