- Choose the right answer (2 points for each, total 30 points)
 BACDB CCBDD CBDBC
- **II.** Answer the question(6 points for each, total 30 points)
 - 1. Prove that there are no solutions in integers x and y to the equation $2x^2 + 5y^2 = 14$.

Q:
$$\therefore 2x^2 <= 14$$
 $\therefore x \subset \{-2, -1, 0, 1, 2\}$ (2 points)
 $\therefore 5 \ y^2 <= 14$ $\therefore y \subset \{-1, 0, 1\}$ (2 points)
when y=0, no x can meet $2x^2 + 5y^2 = 14$ (1 point)
y=-1 or 1, no x can meet $2x^2 + 5y^2 = 14$ (1 point)

so there are no solutions in integers x,y to the equation $2x^2 + 5y^2 = 14$

- 2. Let $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$, and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find.
 - a) $A \cap B \cap C$. b) $A \cup B \cup C$. c) $(A \cup B) \cap C$. (2 points per question)

Q: a)
$$A \cap B \cap C = \{4,6\}$$

b)
$$A \cup B \cup C=\{0,1,2,3,4,5,6,7,8,9,10\}$$

c)
$$(A \cup B) \cap C = \{4,5,6,8,10\}$$

d) $(A \cap B) \cup C = \{0,2,4,5,6,7,8,9,10\}$

3. Let S =
$$\{-1, 0, 2, 4, 7\}$$
. Find f (S) if
a) $f(x) = 1$. b) $f(x) = 2x + 1$. C) $f(x) = x^2 + 2x$
(2 points per question)

4. Find the inverse of 7 modulo 26.

Q:

26=3*7+5

7=5+2

5=2*2+1

So -11 is inverse of 7 modulo 26. So do 15,41...

You should write how to get the answer, if you only write the answer, you will lose half score. And inverse is a set of integers.

5. A((BC)D) 10*40*50+10*50*30+30*10*30=44000

III. Proof(8 points for each, total 40 points)

- 1. Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent.
 - Use truth table total 8 rows, 1 point one row
 - Use inference rules to show it.

- Use Conjunctive Normal Form to show it.
- 2. Devise an algorithm that finds the sum of all the integers in a list.

```
procedure sumup(x: integer, a1, a2, . . . , an: distinct integers)
sum := 0
while (i ≤ n)
    i := i + 1
    sum=sum+x[i]
return sum
```

3. Use rules of inference to show that the hypotheses

```
      Step Reason

      1. ¬t Hypothesis

      2. s → t Hypothesis

      3. ¬s Modus tollens using (1) and (2)

      4. (¬r ∨ ¬f) → (s ∧ 1) Hypothesis

      5. (¬(s ∧ 1)) → ¬(¬r ∨ ¬f) Contrapositive of (4)

      6. (¬s ∨ ¬l) → (r ∧ f) De Morgan's law and double negative

      7. ¬s ∨ ¬l Addition, using (3)

      8. r ∧ f Modus ponens using (6) and (7)

      9. r Simplification using (8)
```

4. Prove when n>4, n! grows faster than 2ⁿ.

```
Q: Let P(n) be the statement when n>4, n! grows faster than 2^n. basis step:
when n=5, n!=120 2^5=32<n!
inductive step: if P(k) is true, it will implies P(k+1) is true.
P(k) is true, then k!>2^k
```

(k+1)!=k!*(k+1)>k!*2>2^k*2=2^(k+1)

So $P(k) \rightarrow P(k+1)$ For any n > 4, n! grows faster than 2^n .

5. If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Yes

To clarify the setting, suppose that $g:A\to B$ and $f:B\to C$, so that $f\circ g:A\to C$. We will prove that if $f\circ g$ is one-to-one, then g is also one-to-one, so not only is the answer to the question "yes," but part of the hypothesis is not even needed. Suppose that g were not one-to-one. By definition this means that there are distinct elements a1 and a2 in A such that g(a1)=g(a2). Then certainly f(g(a1))=f(g(a2)), which is the same statement as $(f\circ g)(a1)=(f\circ g)(a2)$. By definition this means that $f\circ g$ is not one-to-one, and our proof is complete.