中 国 科 学 技 术 大 学 2009 - 2010学年第二学期期中考试试卷

考试科目:	线性代数	得分:
学生所在系:		学号:

一. 【共40分】填空题

- 1. 已知空间直角坐标系中两向量 $\mathbf{a} = (4, -3, 0)$ 和 $\mathbf{b} = (4, 3, -2)$,则以 \mathbf{a} 和 \mathbf{b} 为两 边的三角形的面积为_____。
- 2. 以A(1,0,2), B(1,-1,0), C(2,2,-1)和D(-2,-1,4)为 顶 点 的 四 面 体 的 体 积 为_____。
- 3. 两平行平面2x + 3y + 4z + 5 = 0和2x + 3y + 4z + 17 = 0之间的距离为。
- 4. 直角坐标系中过直线 $\frac{x+1}{-2} = \frac{y-1}{1} = \frac{z+2}{-3}$ 且平行于z轴的平面方程为

5. 设
$$A = \begin{pmatrix} 3 & -5 & 2 & 1 \\ 1 & 1 & 0 & -5 \\ -1 & 3 & 1 & 3 \\ 2 & -4 & -1 & -3 \end{pmatrix}$$
, 记 A_{ij} 为元素 a_{ij} 的代数余子式,则 $A_{11} - A_{21} + A_{31} - A_{41} =$ 。

6. 对线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ -x_1 + x_2 - 2x_3 + 2x_4 = -3, \\ x_1 + x_2 + 4x_3 + 4x_4 = 9, \\ -x_1 + x_2 - 8x_3 + 8x_4 = -27, \end{cases}$$

已知系数方阵的行列式
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -2 & 2 \\ 1 & 1 & 4 & 4 \\ -1 & 1 & -8 & 8 \end{vmatrix} = 72$$
,则解 $x_4 = \underline{\qquad}$ 。

- 7. 设A为4阶方阵,且|A|=3,则 $|A^{-1}|=$ ______, $|A^2|=$ ______,A的 伴随矩阵A*的行列式 $|A^*|=$ _____。
- 8. 设矩阵 $B = (b_{ij})_{3\times3}$ 满足 $B^* = B^T$,其中 B^* 为B的伴随矩阵, B^T 为B的转置矩阵。若 b_{11}, b_{12}, b_{13} 为3个相等的非零正数,则 $b_{11} =$ ______。
- 二. 【12分】若3阶方阵A和B满足关系式 $A^{-1}BA=6A+BA$,且 $A=\begin{pmatrix} 1/4 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/7 \end{pmatrix}$,试求B。
- 三. 【12分】求矩阵 $A = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & -1/4 & -1/4 \\ 1/4 & -1/4 & -1/4 & 1/4 \\ 1/4 & -1/4 & 1/4 & -1/4 \end{pmatrix}$ 的逆。
- 四. 【12分】设直线l: $\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{-1}$ 在平面 π : x-y+2z=0上的投影为直线 l_0 。
 - (a) 求直线l₀的方程;
 - (b) 求 l_0 绕坐标y轴旋转一周所成曲面的方程。
- 五. 【12分】已知向量组 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^n$ 线性无关,试证明:向量组 $\mathbf{b}_1 = \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3$, $\mathbf{b}_2 = \mathbf{a}_1 + 3\mathbf{a}_2 + 5\mathbf{a}_3$, $\mathbf{b}_3 = \mathbf{a}_1 + 9\mathbf{a}_2 + 25\mathbf{a}_3$ 线性无关。
- 六. 【12分】设 $\mathbf{a}_1,\ldots,\mathbf{a}_m\in F^n$ 为一组列向量, $A=(\mathbf{a}_1,\ldots,\mathbf{a}_m)$ 是以 $\mathbf{a}_1,\ldots,\mathbf{a}_m$ 为列构成的 $n\times m$ 阶矩阵。A经过一系列的初等行变换后变为矩阵 $B=(\mathbf{b}_1,\ldots,\mathbf{b}_m)$,这里 $\mathbf{b}_1,\ldots,\mathbf{b}_m\in F^n$ 为矩阵B的列。试证明:若 $\{\mathbf{a}_1,\ldots,\mathbf{a}_r\}$ 为 $\{\mathbf{a}_1,\ldots,\mathbf{a}_m\}$ 的极大无关组,则 $\{\mathbf{b}_1,\ldots,\mathbf{b}_r\}$ 为 $\{\mathbf{b}_1,\ldots,\mathbf{b}_m\}$ 的极大无关组。