

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Применение системы мультиобъектного трекинга в системах адаптивного круиз-контроля и автоматического экстренного торможения

Выполнил: студент группы СМ7-13М Есенов К.Ч. Руководитель: доцент, к.т.н. Рубцов В.И.

Цель и задачи НИР

Цель:

• Анализ существующих систем мультиобъектного трекинга и способов их применения в системах адаптивного круиз-контроля (АКК) и автоматического экстренного торможения (АЭТ).

Задачи:

- Исследовать существующие методы детекции объектов на изображении/видео;
- Провести анализ алгоритмов отслеживания;
- Определить поведение автомобиля для систем АКК и АЭТ;
- Составить план работы над ВКРМ.

Мультиобъектный трекинг

АКК и АЭТ

Адаптивный круиз-контроль

Автоматическое экстренное торможение

Уровни автономности

В соответствии с SAE J3016 существует 6 уровней автоматизации автономных автомобилей:

Полное отсутствие автоматизации Контроль полностью у водителя

1

Помощь водителю.

Часть функций управления выполняет система.

2

<u>Частичная</u> <u>автоматизация.</u>

Ряд функций полностью выполняет система.

<u>Условная</u> <u>автоматизация.</u>

В некоторых случаях система выполняет все функции сама.

Высокая автоматизация.

ТС может двигаться самостоятельно почти во всех ситуациях

Полная автоматизация.

ТС выполняет все функции управления без человеческого вмешательства.

Детекция объектов

Пешеходы

Автомобили

Объекты, представляющие опасность

Методы детекции

- Метод градиентов (HOG);
- Свёрточные нейронные сети (CNN, R-CNN, Fast R-CNN);
- Single Shot Detector (SSD);
- YOLO

YOLO (you only look once)

Алгоритмы для отслеживания

Фильтр Калмана	<u>Расширенный фильтр</u> <u>Калмана</u>	<u>Частотный фильтр</u>
Хорошо работает с линейными моделями	✓ Работает с нелинейными моделями	Лучшаяпроизводительностьдля нелинейногодвижения
Плохо работает с нелинейными моделями	× В общем случае не является оптимальным	Требует больше вычислительных ресурсов

Применение МОТ в АКК и АЭТ

Использование МОТ позволит:

- Распознавать и отслеживать несколько объектов;
- Адаптировать автомобиль к изменениям в дорожном трафике;
- Принимать решение об экстренном торможении и изменении траектории движения.

План работ

1 семестр	- Анализ литературы - Ознакомление с существую слежения
2 семестр	- Разработка системы МОТ, е
3 семестр	- Разработка алгоритма, кото в системах АКК и АЭТ
4 семестр	- Проведение экспериментов

Заключение

Таким образом, применение МОТ в системах АКК и АЭТ позволит повысить качество и безопасность дорожного движения, за счет улучшения параметров отслеживания объектов системами помощи водителю.

В ходе НИР были решены все поставленные задачи:

- Был проведен анализ методов детекции и отслеживания объектов;
- Определено поведение автомобиля в системах АКК и АЭТ
- Был составлен план работ на ВКРМ.

