THE COLLECTED PAPERS OF GERHARD GENTZEN

Edited by

M. E. SZABO

Sir George Williams University

Montreal

1969

NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM · LONDON

© NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM - 1969

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

Library of Congress Catalog Card Number: 71-97201

Standard Book Number: 7204 2254 X

PUBLISHERS:

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY, LTD. - LONDON

ACKNOWLEDGMENTS

The editor would like to thank Michael Dummett for his stimulating tutorials in 1958 and the initial interest which he created in the work of Gerhard Gentzen; Paul Bernays for contributing towards giving the present volume its final shape by providing unlimited information and counsel, and for suggesting several valuable improvements of the Introduction; John Denton for spending a much appreciated week in the editor's office helping to compare the final manuscript with Gentzen's original texts; C.A.S.A. of Sir George Williams University for making secretarial assistance possible; Mr. M. D. Frank of the North-Holland Publishing Co. for bringing the Gentzen project to its fruition, and H. J. Stomps and Mrs. O. Troelstra-Bakker for their technical expertise in seeing the manuscript through the press; finally, Lothar Collatz, Gentzen's closest friend, for making available what appears to be the only existing photograph of Gerhard Gentzen.

BIBLIOGRAPHY

This	volume is based on the following papers of Gerhard Gentzen:	
#1	Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, Mathematische Annalen 107 (1932) 329-350	29
#2	Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik, Galley proof, Mathematische Annalen (1933) received on 15th March 1933. (Kindly made available by Prof. Paul Bernays.)	53
# 3	Untersuchungen über das logische Schliessen, Mathematische Zeitschrift 39 (1935) 176-210, 405-431. (Accepted as Inaugural Dissertation by the faculty of mathematics and natural science of the university of Göttingen.)	68
#4	Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, 112 (1936) 493-565. Appendix: Galley proof of sections IV and V, Mathematische Annalen (1935) received on 11th August 1935. (Galley proof kindly made available by Prof. Paul Bernays.)	132
# 5	Die Widerspruchsfreiheit der Stufenlogik, Mathematische Zeitschrift 41, No. 3, (1936) 357-366	214
# 6	Der Unendlichkeitsbegriff in der Mathematik, Semester-Berichte, Münster in/W., 9th Semester, Winter 1936-37, 65-80	223
# 7	Die gegenwärtige Lage in der mathematischen Grundlagenforschung, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, New Series, No. 4, Leipzig (Hirzel), (1938) 5-18; also: Deutsche Mathematik 3 (1939) 255-268	234
# 8	Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, New Series, No. 4, Leipzig (Hirzel), (1938) 19-44	252
# 9	Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Mathematische Annalen 119. No. 1, (1943) 140–161. (Submitted as D. Phil. Habil. thesis to the faculty of mathematics and natural science of the university of Göttingen.).	287
⊭ 10	Zusammenfassung von mehreren vollständigen Induktionen zu einer einzigen, published posthumously in the Archiv für mathematische Logik und Grundlagenforschung 2, No. 1, (1954) 1-3. (Dedicated to H. Scholz on his 60th birthday, 17th December 1944).	309

BIOGRAPHICAL SKETCH

Gerhard Gentzen was born in Greifswald, Pomerania, on November 24th, 1909. He spent his childhood in Bergen on the Isle of Rügen in the Baltic Sea, where his father was practicing law. There he attended elementary school and the local Realgymnasium. After his father's death in the First World War, his mother decided in 1920 to move to Stralsund, where Gentzen completed his secondary education at the Humanistische Gymnasium. On February 29th, 1928, he was granted the Abitur with distinction, having attained the highest academic standing in his school and, on the recommendation of his headmaster, he received a university scholarship from the Deutsche Studentenwerk enabling him to continue his higher education.

Even as a young boy, Gentzen is said to have displayed exceptional mathematical ability and had declared categorically that the only subject which he would ever be able to study was mathematics. He enrolled at the University of Greifswald for two semesters and there earned Hans Kneser's respect as 'a particularly gifted student'. From Greifswald Gentzen went to Göttingen, where he matriculated for the first time on April 22nd, 1929. After two semesters he went to Munich, studied there for one semester, and after a further semester at Berlin, he finally returned to Göttingen and worked under Hermann Weyl. Five semesters later, in the summer of 1933, Gentzen sat his *Staatsexamen* and, at the age of twenty-three, was granted a doctorate in mathematics. The great mental strain which his studies had involved and his delicate constitution forced him to interrupt his academic career and to return home for an extended period of rest.

The major turning point in Gentzen's academic life came undoubtedly with his appointment in 1934 as Hilbert's assistant in Göttingen, where he continued to work even after Hilbert's retirement. During these years Gentzen published some of his most important papers and was also given the responsible task of reviewing numerous works of eminent researchers

from many countries for the Zentralblatt für Mathematik. These reviews attest his extraordinary range of interest and the great extent of his involvement in the international community of scholars. In 1937, he was invited to the Philosophical Congress in Paris and delivered an address on the 'Concept of Infinity and the Consistency of Mathematics'.

At the outbreak of the Second World War, Gentzen was conscripted into the armed forces and was given an assignment in Telecommunications in Braunschweig. Within two years he became seriously ill and spent three months in a military hospital. Upon his release, he was freed from military service for reasons of ill health. After a period of rest, he rejoined the University of Göttingen, where in 1942 he attained the Dr. phil. habil. degree for his papers on the 'Provability and Nonprovability of Restricted Transfinite Induction in Elementary Number Theory'.

Upon the request of the director of the Mathematical Institute of the German University of Prague, Gentzen was subsequently appointed Dozent at that University in the autumn of 1943. He taught there until, on May 5th, 1945, he and all other professors at the University were taken into custody by the new local authorities. On August 4th, 1945 amid the turmoil and confusion that must have marked that period, Gentzen died tragically in his cell of malnutrition after several months of extreme physical hardship. One of his friends writes: "I can still see him lying on his wooden bunk thinking all day about the ((mathematical)) problems which preoccupied him. He once confided in me that he was really quite contented since now he had at last time to think about a consistency proof for analysis. He was in fact fully convinced that he would succeed in carrying out such a proof. He also concerned himself with other questions such as that of an artificial language, etc. Now and then he would give a short talk We were continually reassured that the formalities of our release would take only a few days longer He was hoping to be able to return to Göttingen and devote himself fully to the study of mathematical logic and the foundations of mathematics. He was dreaming of an Institute for this purpose, perhaps together with H. Scholz "

M.E.S.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	7
BIBLIOGRAPHY	V.
BIOGRAPHICAL SKETCH	VI)
TABLE OF CONTENTS	IX
INTRODUCTION	ĵ
NOTES TO THE INTRODUCTION	24
#1. ON THE EXISTENCE OF INDEPENDENT AXIOM SYSTEMS FOR INFINITE SENTENCE SYSTEMS	29
 § 1. The 'sentences'	29 29 30 32
§ 6. The independence of axiom systems	38 39 41
§ 1. Construction of the paradigm $\overline{\mathfrak{A}}$	42 42 43 45
§ 1. Outline of procedure	46 46 46 48 50
#2. ON THE RELATION BETWEEN INTUITIONIST AND CLASSICAL ARITHMETIC	53
Introduction	53

X CONTENTS

	§ 1. § 2. § 3. § 4. § 5. § 6.	Terminology and notations	53 55 58 60 65											
# 3.	INVES	STIGATIONS INTO LOGICAL DEDUCTION												
	Synops	sis	68											
	Section I. Terminology and notations													
	\$ 1. § 2. § 3. § 4. § 5.	Examples of natural deduction	74 74 75 78 79 80											
	\$ 1. § 2. § 3.	N III. The deductive calculi LJ, LK and the Hauptsatz The calculi LJ and LK	81 81 85 88											
	\$ 1. § 2. § 3.	Applications of the Hauptsatz	103 103 106											
		N. V. The equivalence of the new calculi NJ, NK, and LJ, LK with culus modelled on the formalism of Hilbert	115 115 116 117 120											
	§ 6.	The equivalence of the calculi <i>LHK</i> , <i>NK</i> , and <i>LK</i>	128											
# 4.	THE C	CONSISTENCY OF ELEMENTARY NUMBER THEORY	132											
	SECTION § 1.	I. Reflections on the purpose and possibility of consistency proofs The antinomies of set theory and their significance for mathematics as a whole	132 132 136											
	SECTION § 3.	N II. The formalization of elementary number theory	139 139											

CONTENTS Xi

		Example of a proof from elementary number theory	143
	§ 6.	number theory Derived concepts and axioms in elementary number theory	149 155
	-	N III. Disputable and indisputable forms of inference in elementary	
	num	ber theory	158
	§ 7.	Mathematics over finite domains of objects	158
	•	Decidable concepts and propositions over an infinite domain of	
		objects	160
	_	The 'actualist' interpretation of transfinite propositions Finitist interpretation of the connectives \forall , &, \exists and \lor in transfinite	161
	8 11	propositions	163
	g 11.	view	167
	SECTIO	N IV. The consistency proof	170
		The elimination of the symbols \vee , \exists and \supset from a given derivation	171
	_	The reduction of sequents	173
	•	Reduction steps on derivations.	179
		Ordinal numbers and proof of finiteness	186
	SECTIO	N V. Reflections on the consistency proof	193
		The forms of inference used in the consistency proof	193
		Consequences of the consistency proof	198
APPI	ENDIX	TO #4	201
# 5.	THE	CONSISTENCY OF THE SIMPLE THEORY OF TYPES	214
	§ 1.	The formal structure of the simple theory of types	214
	§ 2.		217
# 6.	THE	CONCEPT OF INFINITY IN MATHEMATICS	223
# 7.	THE I	PRESENT STATE OF RESEARCH INTO THE FOUNDATIONS	
	OF M	ATHEMATICS	234
	§ 1.	•	234
	6.2	and the concept of infinity	207
	§ 2.	Exact foundational research in mathematics: axiomatics, metalogic,	238
	6.3	metamathematics. The theorems of Gödel and Skolem	243
	§ 3.		247
	§ 4.	The possibility of reconciling the different points of view	271
#8 .		VERSION OF THE CONSISTENCY PROOF FOR ELEMENTARY	
	NUMI	BER THEORY	252
	§ 1.	New formalization of number-theoretical proofs	253
	§ 2.	Outline of the consistency proof	260
	§ 3.	· ·	261
	84		277

xii contents

#9. <u>]</u>																									_	
	FINIT	EIND	UCT	101	4 LI	NE	LLL	ΞM	lEi	NI	AK	Y	N	UN	ΛВ	Ŀ	X I	H	ΕO	R	Y	•	•	•	•	287
		<i>TJ</i> -de																								
		Chara																								
	§ 3.	Demo	nstra	tion	is o	fn	on	pro	ova	bili	ity	•	•	•	•	•				•				•		297
⊭ 10. ∶	FUSIC	ON OF	SEV	ER	ΑI	. C	O	MР	LE	ΞΤΕ	E I.	NE	U	C	ΓIC	NC	IS.			•			•	•		309
NOTE	S							•	•																	312
GLOS	SARY				•													•								318
INDE	X OF	SYMB	ols		•																			•		321
INDE	X OF	AUTE	HORS	S .	•																					322
NDF	X OF	SUBT	FCTS																							325