Kopce Fibonacciego

3 Struktura kopców Fibonacciego

Podobnie jak kopce dwumianowe, kopce Fibonacciego są zbiorami drzew, których wierzchołki pamiętają elementy zgodnie z porządkiem kopcowym. Teraz jednak drzewa nie muszą być drzewami dwumianowymi.

Przyjmujemy taki sam sposób pamiętania drzew i elementu minimalnego, jak w przypadku kopców dwumianowych (wersja lazy). Ponadto w każdym wewnętrznym wierzchołku kopca pamiętamy war-

tość logiczną, mówiacą czy wierzchołek ten utracił jednego ze swoich synów w wyniku operacji cut -

4 Operacje

Operacje makeheap, insert, findmin i meld wykonujemy w taki sam sposób jak na kopcach dwumianowych.

4.1 Operacja cut(h, p)

Operacja ta zastosowana do wierzchołka wewnętrznego (tj. takiego, który nie jest korzeniem) wskazywanego przez p, odcina go od swojego ojca p' i dołącza (operacją meld poddrzewo zakorzenione w p do listy drzew kopca. Jeśli p jest pierwszym synem jakiego utracił p', to fakt ten jest zapamiętywany w p'. Jeśli p' wcześniej utracił już jakiegoś syna, to wykonujemy operację cut(h, p'). W ten sposób będziemy wędrować w górę drzewa odcinając odpowiednie poddrzewa tak długo, aż napotkamy korzeń lub wierzchołek, który dotąd nie utracił żadnego syna.

4.2 Operacja $decrement(h, p, \Delta)$

Zmniejszamy wartość klucza w wierzchołku wskazywanym przez p. Jeśli nowa wartość klucza zakłóca porządek kopcowy (tzn. jest mniejsza od klucza ojca wierzchołka p), wykonujemy cut(h, p).

4.2.1 Zamortyzowany koszt

Teraz każdy wierzchołek ma swoje konto. Będzie ono niepuste tylko u wierzchołków, które utraciły jednego syna.

Operacji $decrement(h, p, \Delta)$ przydzielamy 4 jednostki kredytu. Jedną jednostką opłacamy koszt instrukcji niskiego poziomu i operację meld przyłączenia drzewa o korzeniu w p do kopca. Drugą umieszczamy na koncie tego drzewa (obowiązuje nas w dalszym ciągu niezmiennik kredytowy, mówiący, iż na koncie każdego drzewa kopca znajduje się jedna jednostka). Dwie pozostałe jednostki wykorzystujemy tylko wtedy, gdy wykonujemy cut(h,p) i p jest pierwszym synem odciętym od swojego ojca. Umieszczamy je wówczas na koncie ojca p. Jednostki te są wykorzystywane do opłacenia operacji cut wykonanej wskutek tego, że ojciec p straci drugiego syna.

4.3 Operacja deletemin(h)

Deletemin wykonujemy w sposób analogiczny jak w przypadku kopców dwumianowych. W szczególności podczas redukcji łączymy drzewa o jednakowym rzędzie (zdefiniowanym jako liczba synów korzenia), otrzymując drzewo o stopniu o jeden wyższym. Jedyna różnica wynika z tego, że teraz drzewa nie są dwumianowe i nie można oczekiwać, że łączone drzewa będą identyczne.

Aby wykazać, że $O(\log n)$ nadal ogranicza czas wykonywania tej operacji musimy dowieść, że stopień wierzchołków drzew występujących w kopcach Fibonacciego jest ograniczony przez $O(\log n)$. Oczywiście będzie to także ograniczeniem na liczbe różnych rzędów drzew.

Lemat 1 Dla każdego wierzchołka x kopca Fibonacciego o rzędzie k, drzewo zakorzenione w x ma rozmiar wykładniczy względem k.

Dowód: Niech x będzie dowolnym wierzchołkiem kopca i niech y_1, \ldots, y_k będą jego synami uporządkowanymi w kolejności przyłączania ich do x. W momencie przyłączania y_i do x-a, x miał co najmniej i-1 synów. Stąd y_i też miał wówczas co najmniej i-1 synów, ponieważ przyłączane są tylko drzewa o jednakowym rzędzie. Od tego momentu y_i mógł stracić co najwyżej jednego syna, ponieważ w przeciwnym razie zostałby odcięty od x-a. Tak więc w każdym momencie i-ty syn każdego wierzchołka ma rząd co najmniej i-2.

Oznaczmy przez F_i najmniejsze drzewo o rzędzie i, spełniające powyższą zależność. Łatwo sprawdzić,

że F_0 jest drzewem jednowierzchołkowym, a F_i składa się z korzenia oraz i poddrzew: $F_0, F_0, F_1, F_2, \ldots, F_{i-2}$. Tak więc liczba $|F_i|$ wierzchołków takiego drzewa jest nie mniejsza niż $1 + \sum_{j=0}^{i-2} |F_j|$, co, jak łatwo pokazać indukcyjnie, jest równe i-tej liczbie Fibonacciego. Stąd liczba wierzchołków w drzewie o rzędzie k jest nie mniejsza niż ϕ^k , gdzie $\phi = (1 + \sqrt{5})/2$.

Wniosek 1 Każdy wierzchołek w n-elementowym kopcu Fibonacciego ma stopień ograniczony przez $O(\log n)$.

4.3.1 Operacja delete(h, p)

Operację delete(h,p) można wykonać najpierw ustanawiając w p minimum kopca (poprzez operację $decrement(h,p,-\infty)$) a następnie usuwając minimum. Zamortyzowany koszt wynosi $O(\log n)$.

Uwaga: W ten sam sposób możemy wykonywać delete na kopcach dwumianowych. Oczywiście wówczas decrement musi polegać na przesunięciu zmniejszonego elementu do korzenia drzewa.

Niech $u \in V \setminus X$ o minimalnej wartości D(u)for each $\langle u, v \rangle \in E$ takiej, że $v \in V \setminus X$ do $D(v) \leftarrow \min(D(v), D(u) + l(u, v))$

Dlatego kopce tibonacciego sa tutaj tak wantaściowe, ponieważ decrease-key unkancienny w O(1), a delete-min zajmie nam O(logn).

Zatem Tożoność Dijxtry wynosi


```
def insert(self, key):
                                                                                         ef union(self, FH2):
                                                                                                                                       def decrease_key(self, x, k):
class FibonacciHeap():
                                                                                           FH = FibonacciHeap()
                                              node = Node(key)
                                                                                                                                            if k > x.key:
     def __init__(self):
                                              node.left = node
                                                                                           FH.root_list = self.root_list
                                                                                                                                                 return None
                                              node.right = node
           self.n = 0
                                                                                           # set min to lesser of FH1.min and FH2.min
                                                                                                                                            x.key = k
                                                                                           FH.min = self.min if self.min.key < FH2.min.key else
                                              self.merge_with_root_list(node)
           self.min = None
                                                                                                                                            y = x.parent
                                                                                           # fix pointers to combine root lists
                                              if self.min is None or node.key < self.min.key:
           self.root_list = None
                                                                                           last = FH2.root_list.left
                                                  self.min = node
class Node():
                                                                                           FH2.root_list.left = FH.root_list.left
                                                                                           FH.root_list.left.right = FH2.root_list
                                              self.n += 1
     def __init__(self, key):
                                                                                           FH.root_list.left = last
                                              return node
                                                                                           FH.root_list.left.right = FH.root_list
            self.key = key
                                           def merge_with_root_list(self, node):
                                               if self.root list is None:
                                                                                           # update total nodes
            self.degree = 0
                                                   self.root_list = node
                                                                                           FH.n = self.n + FH2.n
           self.mark = False
                                               else:
                                                                                          return FH
                                                   node.right = self.root_list
                                                                                        (union w skrócie łączy ze sobą listy korzeni obu
                                                   node.left = self.root_list.left
           # pointers
                                                                                         drzew i odpowiednio ustawia wskaźnik min)
                                                   self.root_list.left.right = node
           self.parent = None
                                                   self.root_list.left = node
                                                                                            extract min w skrócie usuwa
                                           (insert w skrócie w skrócie tworzy nowego noda i dodaje go
            self.child = None
                                             do listy korzeni odpowiednio przepinając wskaźniki)
                                                                                           najmniejszą wartość w kopcu
            self.left = None
                                                                                         dodatkowo mergując wszystkie
                                             def minimum(self):
            self.right = None
                                                                                         drzewa o tych samych stopniach
                                                     return self.min
fibonacci heap
                                           def extract_min(self):
                                                                                           def consolidate(self):
                                              z = self.min
                                                                                              A = [None] * int(math.log(self.n) * 2)
                                              if z is not None:
                                                                                              nodes = [w for w in self.iterate(self.root_list)]

    data structure that implements

                                                 if z.child is not None:
                                                                                              for w in range(0, len(nodes)):
                                                    children = [c for c in self.iterate(z.child)]
     1. make-heap
                                                                                                 x = nodes[w]
                                                    for c in children:
                                                                                                 d = x.degree
     2. insert
                                                       self.merge_with_root_list(c)
                                                                                                 while A[d] != None:
                                                       c.parent = None
                                                                                                     y = A[d]
     3. minimum
                                                                                                     if x.key > y.key:
                                                 self.remove_from_root_list(z)
                                                                                                        temp = x
     4. extract-min
                                                                                                        x, y = y, temp
                                                 if z == z.right:
                                                                                                     self.heap_link(y, x)
     5. union
                                                    self.min = None
                                                                                                     A[d] = None
                                                    self.root_list = None
                                                                                                     d += 1
                                                 else:

    additional methods:

                                                                                                 A[d] = x
                                                    self.min = z.right
                                                                                              for i in range(0, len(A)):
                                                    self.consolidate()
     6. decrease-key
                                                                                                 if A[i] is not None:
                                                                                                     if A[i].key < self.min.key:</pre>
                                                 self.n -= 1
     7. delete
                                                                                                        self.min = A[i]
```

return z

if y is not None and x.key < y.key: self.cut(x, y) self.cascading_cut(y) if x.key < self.min_node.key:</pre> $self.min_node = x$ def cut(self, x, y): self.remove_from_child_list(y, x) y.degree -= 1 self.merge_with_root_list(x) x.parent = None x.mark = False def cascading_cut(self, y): z = y.parent if z is not None: if y.mark is False: y.mark = True else: self.cut(y, z) self.cascading_cut(z) decrese_ key w skrócie zmniejsza wartość konkretnego noda do oczekiwanej wartości po czym ucina wszystkie nody które zaburzają strukture kopca bądź mają atrybut mark = True czyli kiedyś już utraciły dziecko (wykonuje się to rekurencyjnie zaczynając odd wskazanego noda idac do korzenia def delete(self, x): self.decrease_key(x, float('-inf')) return self.extract_min()

W jakim czasie działa algorytm Kruskala, jeśli: ▼ Rozwiązanie krawędzie podane są w kolejności rosnących wag; O(n) gdy będziemy mieli jedno drzewo w postaci listy, gdzie każdy wierzchołek(korzeń i liść nie muszą spełniać tego warunku) miał już uciętego kolejka priorytetowa zaimplementowana jest przy pomocy kopca Fibonacciego. Na czym polega opracja kaskadowego odcinania w kopcach Fibonacciego? Odpowiedź uzasadnij. Uwaga: Oba te warunki są spełnione jednocześnie. Żeby zachować niezmienniki potrzebne do amortyzowanej złożoności, nie pozwalamy w operacji (a) Jaką dodatkową operację umożliwiają kopce Fibonacciego względem dwumianowych w wersji Lazy? odcięcia, usunięcia więcej niż jednego poddrzewa z jednego wierzchołka. Dlatego zaznaczamy ojca który utracił jednego syna i przy próbie usunięcia mu kolejnego syna usuwamy całe poddrzewo (b) Jakie z tego powodu wynikają różnice w budowie tych kopców? dodajemy je do ogólnej listy. Po tym markujemy jego dziadka (jeżeli jest zmarkowany, to znowu usuwamy poddrzewo i rekurencyjnie w gore). Podaj definicję rzędu drzew w kopcach Fibonacciego Jakiego rodzaju kopca użyć dla asymptotycznie najefektywniejszego zaimplementowania algorytmu: ▼ ^{Rozwiązanie} (a) a) Prima, Górne ograniczenie na ten rząd Operacja decrement b) Dijkstry Ideę dowodu tego ograniczenia (b) Każdy wierzchołek zawiera dodatkowe pole ze wskaźnikiem na ojca ▼ Rozwiązanie Komentarz do zadania b) Prima - kopiec fibbonaciego, zlozonosc: O(E + V*logV) To jest odpowiedź poprawna dla kopców poznanych na wykładzie. W wielu źródłach można znaleźć, że kopiec dwumianowy posiada operację decrement oraz pole ze wskaźnikiem na ojca. b) Dijkstry - kopiec fibbonaciego, zlozonosc: O(E + V*logV) Czy wysokość drzew powstałych w kopcu Fibonacciego o n wierzchołkach da się ograniczyć przez Ile maksymalnie drzew może znaleźć się w: log^2n ? Kopcu dwumianowym(wersja eager) Kopcu fibonacciego Zawierającym n elementów ▼ Rozwiązanie ▼ Rozwiazanie Ładny dowód pokazujący, że log(n) ogranicza wysokość drzew Fibonacciego. A log ^2 (n) jest większe od log (n), zatem tym bardziej też Kopiec dwumianowy składa się z drzew o wielkościach będących potęgą dwójki. Dla każdej potęgi dwójki może istnieć tylko jedno drzewo, ogranicza. w przeciwnym razie łączymy operacją join dwa drzewa o takiej samej ilości wierzchołków, żeby otrzymać dwa razy większe drzewo. W którym z kopców pamiętających po n kluczy może być więcej drzew: w kopcu dwumianowym (wersja lazy) czy kopcu Fibonacciego? Dodawanie wierzchołków oraz operacja meld w tym kopcu działa na zasadzie dodawnia liczb binarnych. Stąd mając i rząd największego drzewa, największą ilość drzew mamy, gdy istnieje każde mniejsze drzewo od B_i. np. dla n = 15, będzie to B_0 mający 1 wierzchołek, B_1 mający 2 wierzchołki, B_2 mający 4 wierzchołki, B_3 mający 8 wierzchołków. stąd log(n) to największa ilość drzew dwumianowych w wersji

▼ Rozwiązanie

W obydwu kopcach może być tyle samo drzew - dokładnie n.

O ile co najwyżej może zwiększyć się liczba drzew w kopcu Fibonacciego w skutek wykonania pojedynczej operacji decreasekey

Dodajemy wierzchołki leniwie, to znaczy dodajemy je do roota kopca. W takim razie nie robiąc żadnej innej operacji poza insert,

otrzymujemy kopiec z n drzewami.