EBS 289K: Topics in Agricultural Robotics and Automation

Stavros G. Vougioukas
UC Davis

Energy expenditure

Skid-steering spends more energy

Ackermann Steering

Front-wheel steering.

$$\cot \delta_0 - \cot \delta_i = \frac{w}{l}$$

Prove it!

$$\tan \delta_{i} = \frac{l}{R_{1} - \frac{w}{2}}$$

$$\tan \delta_{o} = \frac{l}{R_{1} + \frac{w}{2}}$$

Effect of w/l on the Ackerman condition for front-wheel-steering vehicles

Rear-wheel drive: Equivalent Bicycle kinematic model

Bicycle model kinematic equations

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = v \frac{\tan \gamma}{L}$$

velocítu steered wheel wheel base {*O*}

• Hint:

Vehicle rotates about ICR.

Skidding and slipping

- Front wheel:
 - \square Skidding with slip angle δ_1 .
- Rear (driven) wheel:
 - ☐ Longitudinal slip, s.
 - \Box Skidding with slip angle δ_2 .

Skidding and slipping

- Kinematic model:

Kinematic model:

- Same approach as
$$v_l = \begin{cases} (1-s) v & \text{if driving} \\ v / (1+s) & \text{if braking} \end{cases}$$
with differential drive.

$$v_y = v_l \tan(\delta_2)$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v_{l} \cos \theta - v_{y} \sin \theta \\ v_{l} \sin \theta + v_{y} \cos \theta \\ \frac{v_{l}}{L} \tan(\gamma + \delta_{1}) - \frac{v_{y}}{L} \end{bmatrix}$$

Steering dynamics

- If we want to change steering angle from γ_I to γ_2 can it happen instantaneously?
- Tractors and off-road vehicles typically feature electro-hydraulic steering systems.
- Smaller vehicles involve gearing or chains.
- Linkages and tires have mass.

Steering dynamics

 Electro-hydraulics and wheel-soil interaction are very complex to model, and parameters are unknown.

 Computer-controlled vehicles feature a low-level steering controller.

Steering dynamics

 The steering system <u>closed loop</u> transfer function can be approximated as a first order system.

$$\dot{\gamma} = -\frac{1}{\tau_{\gamma}} \gamma + \frac{1}{\tau_{\gamma}} \gamma_{d}$$

Longitudinal velocity

- Does it change instantly?
- Same concept can be applied to a low-level speed controller.
- In the presence of slip, the steady state is $(1-s)v_d$.

$$\dot{v}_l = -\frac{1}{\tau_v} v_l + \frac{1}{\tau_v} (1 - s) v_d$$

Discretization

Euler discretization

$$\gamma_{k+1} - \gamma_k = dt \left(-\frac{1}{\tau_{\gamma}} \gamma_k + \frac{1}{\tau_{\gamma}} \gamma_d \right) \Longrightarrow$$

$$\gamma_{k+1} = \gamma_k \left(1 - \frac{dt}{\tau_{\gamma}} \right) + \frac{dt}{\tau_{\gamma}} \gamma_d$$

• Similarly for speed.

Kinematic + simple dynamic model for driving: Updated equations

- Inputs: γ_d and v_d
- Remember:

$$v_y = v_l tan(\delta_2)$$
 (skidding).

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{v}_l \end{bmatrix} = \begin{bmatrix} v_l cos\theta - v_y sin\theta \\ v_l sin\theta + v_y cos\theta \\ (v_l tan(\gamma + \delta_1) - v_y)/L \\ (-v_l + (1-s)v_d)/\tau_v \\ (-\gamma + \gamma_d)/\tau_\gamma \end{bmatrix}$$

These equations must be integrated via Euler.

Integration vs. controller sampling

- The kinematic model integration step dt must be small (e.g., 1-10 ms) to achieve high accuracy when integrating the motion model with the Euler method.
- However, the controller's sampling interval DT is typically much longer, in the order of 100 ms (10 Hz) or slower.
- Therefore, we must implement our models with two distinct sampling intervals.
 - Two nested loops.

Kinematic + simple dynamic model: Updated equations

Attention:

- You need to pass input $\mathbf{u} = [\gamma_d \, v_d]$ and state (q) constraints to your model.
- $U_{min} \le u \le U_{max}$ (2 x 1 vectors)
- $q_{min} \le q \le q_{max}$ (5 x 1 vectors)
- The state constraints must be enforced <u>inside the Euler loop</u> because the state changes during integration
 - For example, the steering angle γ is now a component of the state vector \mathbf{q} , and it changes inside the loop.
- The input constraints need only be enforced once, before the beginning of the loop, since u is constant from step k to k+1 (during DT).

Assignment 2 Part 1

- Implement the bicycle model in Matlab, with skid-slip and with two distinct sampling intervals (Euler integration dt & controller DT).
- Input: control vector $\mathbf{u} = [\gamma_d \, v_d]$, state vector \mathbf{q} , and all parameters (e.g., dt, DT, L, s, δ_1 , δ_2), control and state constraints.
 - Note: input for turning could also be ω, or R.
- Assume zero slip and skid
- Tractor wheel radius = 0.5m; Wheelbase = 2.5 m; $|\gamma_{max}| \le 45^{\circ}$; $|v_{max}| \le 5$ m/s
- Assume dt=DT=0.01 s.
- Apply input to turn at headland from one row to the next; rowcenter distance = 2 m.
- Does it work? Why? Try row-center distance = 3 m. Show traces.

Assignment 2 Part 2

- Non zero slip and skid
- Use same parameters as before.
- Add small slip angles $\delta 1$ and $\delta 2$ (e.g., 4°)
- Apply input to turn at headland from one row to the next; row-center distance =3 m.
- What happens as slip angles $\delta 1$ and $\delta 2$ (skidding) increase? (Assume zero slip, s, for rear driven wheel).
- What if skidding is zero ($\delta 1 = \delta 2 = 0$) and only slipping affects the rear wheel?

Assignment 2 Part 3

- Augment bicycle model with 1st order closed-loop steering and speed dynamics.
- Plot vehicle path for γ_d step function (0 to γ_{max}) and:
- 1. Speed lag: $\tau_{v} = 0$ s; τ_{γ} from 0 to 2 s (same plot). – (How will you implement τ_{v} or $\tau_{\gamma} = 0$?)
- 2. Speed lag: $\tau_v = 1 \text{ s}; \tau_v \text{ from 0 to 2 s (same plot)}.$
- Comment on these plots.