Part I of Assignment 4

Find the AR and MA representations of x_t if

(a)
$$x_t$$
 is the following AR(1) process: $x_t = 0.7x_{t-1} + w_t$ with $w_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_w^2)$

(b)
$$x_t$$
 is the following MA(1) process: $x_t = w_t + 0.3w_{t-1}$ with $w_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_w^2)$

SOLUTION:

(a)
$$x_{\pm} = 0,7 \cdot x_{\pm - 1} + \omega_{\pm}$$
 | - 0,7 $\times_{\pm - 1}$
 $x_{\pm} - 0,7 \cdot x_{\pm - 1} = \omega_{\pm}$ | Backword shift operator

 $x_{\pm} - 0,7 \cdot x_{\pm - 1} = \omega_{\pm} \cdot A$
 $(A - 0,7 \cdot 6) \cdot x_{\pm} = \omega_{\pm} \cdot A$
 $(A - 0,7 \cdot 6) \cdot x_{\pm} = \omega_{\pm} \cdot A$
 $0,7 \cdot (0) \times (0) \times (0) \times (0) \times (0) \times (0)$
 $0,7 \cdot (0) \times (0) \times (0) \times (0) \times (0) \times (0)$
 $0,7 \cdot (0) \times (0) \times (0) \times (0) \times (0) \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0) \times (0) \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0) \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0) \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0) \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$
 $x_{\pm} = \frac{\omega_{\pm}}{0,7 \cdot (0)} \cdot \omega_{\pm} \times (0)$

$$\omega_{\pm} = \sum_{s=0}^{\infty} (-0.3)^{3} \cdot \kappa_{\pm \frac{1}{3}} - \kappa_{\pm} + (-0.3) \cdot \kappa_{\pm -1} + (-0.3)^{2} \cdot \kappa_{\pm -1} \dots$$

(s process is irrestible and the Ak-

and the allrepresentation exists