Численные методы решения дифференциальных уравнений

Тема 6

Решение задачи Коши для уравнения первого порядка

Дифференциальные уравнения делятся на:

- **обыкновенные** (содержащие одну переменную),
- уравнения в частных производных.

Обыкновенные дифференциальные уравнения (OДУ) содержат одну или несколько производных искомой функции y=y(x) и могут быть записаны в виде

$$F\left(x,y(x),\frac{dy}{dx},\frac{d^2y}{dx^2},...,\frac{d^ny}{dx^n}\right)=0.$$

ИЛИ

$$F(x, y, y', y'', ..., y^{(n)}) = 0.$$

Наивысший порядок **n** входящей в уравнение производной называется *порядком дифференциального* уравнения.

Линейными дифференциальными уравнениями называются уравнения, линейные относительно искомой функции и её производных:

$$a_0(x)y + a_0(x)y' + a_0(x)y'' + ... + a_0(x)y^{(n)} = 0.$$

Уравнение, имеющее вид

$$y^{(n)} = F(x, y, y', y'', ..., y^{(n-1)})$$

называется уравнением, разрешенным относительно старшей производной.

Уравнение <u>первого</u> <u>порядка</u>, разрешенное относительно старшей производной:

$$y' = f(x, y(x))$$

Решением дифференциального уравнения является всякая функция $y = \varphi(x)$, которая после её подстановки в уравнение, превращает его в тождество.

Общее решение обыкновенного дифференциального уравнения n-го порядка содержит n постоянных $C_1, C_2, ..., C_n$

$$y = \varphi(x, C_1, C_2, ..., C_n)$$

Частное решение дифференциального уравнения получается из общего, если произвольным константам придать определенные значения.

Для выделения частного решения из общего решения дифференциального уравнения порядка n следует задать столько дополнительных условий, сколько произвольных постоянных C_1 , C_2 ,..., C_n в общем решении.

Геометрическая интерпретация линейного дифференциального уравнения 1-го порядка.

Общее решение дифференциального уравнения 1-го порядка - бесконечное семейство функций с параметром C, а частному решению соответствует одна функция этого семейства. Для выделения некоторого частного решения достаточно задать координаты некоторой точки (x_o, y_o) на данной интегральной кривой.

Поскольку производная характеризует наклон касательной к интегральной кривой в точке, то при y' = k получаем уравнение линии постоянного наклона, называемой изоклиной. Меняя k, получаем семейство изоклин.

Геометрическое представление решения дифференциального уравнения 1-го порядка.

Графическое представление семейство «параллельных» кривых $y = \varphi(x) + C$,

где каждому числу С соответствует определенная кривая семейства – интегральная кривая.

> Интегральные кривые для

$$y' = x^2 - x - 2$$

 $y = x^3 / 3 - x^2 / 2 - 2x + C$

- В зависимости от способа задания дополнительных условий существуют два типа задач:
- 1. Задача Коши: дополнительные условия задаются в одной точке (начальной точке) и называются начальными условиями.
- 2. Краевая задача: дополнительные условия задаются более, чем в одной точке (как правило, на границах области существования решения), называются граничными или краевыми условиями.

Постановка задачи Коши для ОДУ первого порядка

Требуется найти решения дифференциального уравнения

$$y' = f(x, y(x))$$

удовлетворяющее начальному условию

$$y_0 = \varphi(x_0) .$$

Будем считать, что функция f(x,y) в некоторой области удовлетворяет всем необходимым требованиям и задача поставлена корректно, т.е. решение задачи Коши существует и единственно.

Постановка задачи численного решения Коши для ОДУ первого порядка

Решение задачи Коши численными методами:

не определяя функцию $y = \varphi(x)$, найти по заданному числу y_0 для некоторой последовательности аргументов $x_0, x_1, ..., x_n$ такие значений $y_1, ..., y_n$, что

$$y_i = \varphi(x_i), i = 1, 2, ..., n$$

(т.е. построить <u>таблицу приближенных значений</u>

 $y_1, y_2, ..., y_n$ решения уравнения y(x) в точках $x_1, x_2, ..., x_n$.)

Численное решение задачи Коши

Введем равномерную *сетку* с шагом h (h>o), т.е. рассмотрим множество точек (*узлов сетки*) $x_i = x_o + kh$, k=1,2, ...,n.

Дифференциальное уравнение заменим некоторым разностным

$$y_{k+1} = \Phi(x_k, y_{k+1}, y_k, ..., y_{k-p+1})$$

которое необходимо решить на каждом шаге для нахождения y_{k+1} .

Выбор функции Φ определяет метод численного решения: если она не зависит от y_{k+1} , то получают явный метод (явную формулу для вычисления y_{k+1}), и неявный - в противном случае.

Численное решение задачи Коши

Метод, дающий формулу для вычисления y_{k+1} по m предыдущим значениям y_k , y_{k-1} , ..., y_{k-m+1} ,

$$y_{k+1} = \Phi(x_k, y_{k+1}, y_k, ..., y_{k-m+1})$$

называется т-шаговым.

Существуют две группы численных методов решения задачи Коши:

- одношаговые (или методы Рунге -Кутта)
- многошаговые разностные методы.

Классификация численных методы решения задачи Коши для ОДУ

> ОДНОШАГОВЫЕ:
$$y_{k+1} = \Phi(x_k, y_{k+1}, y_k)$$

> МНОГОШАГОВЫЕ:
$$y_{k+1} = \Phi(x_k, y_{k+1}, y_k, ..., y_{k-m+1})$$

* ЯВНЫЕ:
$$y_{k+1} = \Phi(x_k, y_k, ..., y_{k-p+1})$$

* НЕЯВНЫЕ:
$$y_{k+1} = \Phi(x_k, y_{k+1}, y_k, ..., y_{k-p+1})$$

Численные методы решения ОДУ характеризуются следующими показателями:

Численные методы решения ОДУ характеризуются следующими показателями:

- ➤ Точность характеризует погрешность, с которой получается решение. Все методы характеризуется определенным порядком точности. Чем выше порядок – тем выше точность.
- Устойчивость метода характеризует возможность вообще получить достоверный результат.

- Метод должен быть устойчив. Устойчивость связана с некоторой критической величиной шага. При проявлении неустойчивости наблюдается полное искажение качественной картины расчета, «разболтка» результата.
- При выборе метода <u>рекомендуется сначала добиться</u> <u>устойчивости</u>, а внутри области устойчивости сходимости результата. Устойчивость обеспечивает качественную картину. Сходимость обеспечивает количественный результат.

- Каждый численный метод обладает **точностью**, поскольку результат отличается от теоретического. Точность метода зависит от величины шага. Различные методы имеют различную точность. <u>Порядок зависимости точности от величины шага обозначают как O(h).</u>
- Если при уменьшении шага предел **у**_п стремится к значению **у**_{теор.}, то говорят, что метод обладает **сходимостью**, которая характеризуется **скоростью** сходимости метода.

*Метод сходится в точке х**, если построена последовательность сеток таких, что $x^*=x_o+nh$ ($h \to o$, $n \to \infty$), и $y(x^*)-y_n \to o$ при $h \to o$.

Метод имеет р-ый порядок сходимости если существует такое p > 0, что $|y(x^*)-y_n| = O(h^p)$ при $h \to 0$.

Доказано, что при очень общих предположениях порядок точности разностного метода совпадает с порядком аппроксимации дифференциального уравнения разностным:

$$y_{k+1} = \Phi(x_k, y_{k+1}, y_k, ..., y_{k-p+1})$$

Метод Эйлера

Производную функции у' представим в виде конечной разности. За величину приращения аргумента Δx принимаем величину шага h:

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \approx \frac{y_{i+1} - y_i}{h}$$

В общем виде:

$$y_{i+1} = y_i + h \cdot f(x_i, y_i)$$
$$x_{i+1} = x_i + h$$

Эта формула называется методом Эйлера

Графическая интерпретация метода Эйлера

Характеристики метода Эйлера

Метод Эйлера является одношаговым методом, то есть для расчета последующей точки необходимо знать только координаты предыдущей.

Метод использует *явную схему* – в правой части формулы Эйлера все величины известны.

Метод Эйлера *не является устойчивым* методом, поэтому он применяется только для ОДУ, решением которых являются достаточно гладкие функции.

Метод характеризуется *первым порядком точности* (точность низкая).

Нарастание суммарной ошибки в методе Эйлера на ряде шагов _{Из графика}

Из графика видно, что с увеличением количества шагов погрешность возрастает.

Если величину шага h уменьшить, то результат получится более точным.

Решение задачи Коши для уравнения первого порядка методом Эйлера

Задача 1.

Дано дифференциальное уравнение

$$y' = 2xy$$

Задано начальное положение системы:

$$y(o)=1.$$

Требуется найти y(x) на интервале от 0 до 1.

Численный расчет уравнения методом Эйлера и сравнение результата с точным решением на каждом шаге

i	t _i	$y_i = y_{i-1} + y'_{i-1} \cdot \Delta t$	$y'_i = 2t_i \cdot y_i$	$\Delta y_i = y'_i \cdot \Delta t$	$y_{i+1} = y_i + \Delta y_i$	$y_{\text{точн.}} = \exp(t_i^2)$
0	0.0	1	0	0	1	1
1	0.1	1	0.2	0.02	1.02	1.0101
2	0.2	1.02	0.408	0.0408	1.0608	1.0408
3	0.3	1.061	0.636	0.0636	1.1246	1.0942
4	0.4	1.124	0.900	0.0900	1.2140	1.1735
5	0.5	1.214	1.214	0.1214	1.3354	1.2840
6	0.6	1.336	1.603	0.1603	1.4963	1.4333
7	0.7	1.496	2.095	0.2095	1.7055	1.6323
8	0.8	1.706	2.729	0.2729	1.9789	1.8965
9	0.9	1.979	3.561	0.3561	2.3351	2.2479
10	1.0	2.335	4.669	0.4669	2.8019	2.7183

Если будем менять значение шага Δx , например, уменьшать шаг, то относительная погрешность расчета тоже будет уменьшаться.

Результат вычисления значения y(1) с разными значениями шага:

$\Delta \mathbf{x}$	у _{расч.} (1)	$y_{\text{reop.}}(1)$	σ
1/10	2.3346	2.7183	14%
1/20	2.5107	2.7183	8%
1/100	2.6738	2.7183	2%

Как видим, с уменьшением шага приращения Δx уменьшается величина относительной погрешности.

Изменение шага в 10 раз (с 1/10 до 1/100) ведет к изменению величины ошибки примерно тоже в 10 раз (с 14% до 2%). При изменении шага в 100 раз ошибка примерно уменьшится тоже в 100 раз. Иными словами размер шага и ошибка для метода Эйлера связаны линейно.

Этот факт в математике принято обозначать символом $\boldsymbol{\varepsilon} = O(\Delta x)$, а поэтому метод Эйлера называют методом первого порядка точности.

Поскольку в методе Эйлера ошибка достаточно велика и от шага к шагу накапливается, а точность пропорциональна количеству вычислений, то метод Эйлера обычно применяют для грубых расчетов, для оценки поведения системы в принципе.

Для точных количественных расчетов применяют более точные методы. Обычно используют методы Рунге-Кутты, которые являются методами повышенной точности.

При небольшом объеме вычислений стандартный метод Рунге-Кутты обладает точностью метода $O(h^4)$.

Метод Рунге-Кутты четвертого порядка

Как и в методе Эйлера

$$y_i = y_{i-1} + \Delta y_{i-1}, \quad (i=1,2,...n)$$

но функцию y=F(x) раскладывают в ряд Тейлора с точностью до членов h^4 , включительно.

$$\Delta y = y(x+h) - y(x) = h\frac{dy}{dx} + \frac{h^2}{2}\frac{d^2y}{dx^2} + \frac{h^3}{6}\frac{d^3y}{dx^3} + \frac{h^4}{24}\frac{d^4y}{dx^4}$$