Eine Funktion ψ ist gleichzeitig Eigenfunktion zu einem Satz von Operatoren $\hat{O}_1,...,\hat{O}_k$ mit Eigenwerten $a_n,n=1,...,k$. Zu den Operatoren $\hat{\vec{l}}^2,\hat{l}_z$ sind die Kugelflächenfunktionen simultane Eigenfunktionen.

 π , einer Wellenfunktion, charakterisiert Verhalten der Wellenfunktion $\psi(\vec{r})$ bei Spiegelung am Koordinatenursprung $\vec{r} \to -\vec{r}$, $\psi(-\vec{r}) = +\psi(\vec{r}), \pi = +1, \text{gerade Parität}$ $\psi(-\vec{r}) = -\psi(\vec{r}), \pi = -1, \text{unger. Parität}$

Eine beliebige Wellenfunktion ψ kann nach dem vollständigen Satz der normierten Eigenfunktionen ψ_n des Operators \hat{O} entwickelt werden:

$$\psi = \sum_{n} c_n \psi_n$$

Die Eigenwerte eines Operators \hat{O} sind die möglichen Messwerte der Observablen O. Liefert eine Messung von O das Ergebnis a_n , befindet sich das System im Eigenzustand ψ_n .

Der Entwicklungskoeffizient liefert die Wahrscheinlichkeit $|c_n|^2$, bei einer Messung der Observablen O an einem System im Zustand ψ den Messwert a_n zu finden.

Messungen der Observablen O an einem System im Eigenzustand ψ_n liefern immer den gleichen Messwert a_n ; in einem beliebigen Zustand ψ , der keine Eigenfunktion von \hat{O} ist, schwanken die Ergebnisse um den Erwartungswert.

Des Operators \hat{O} in der durch die Funktionen $\varphi_i, i=1,...,N$ gegebenen Basis:

$$O_{ik} = \int \varphi_i^* \hat{O} \varphi_k dV, \ i, k = 1, ..., N$$

Obervable werden durch hermitesche Matrizen dargestellt, die in der Basis der Eigenfunktionen diagonal werden.

 \bar{O} , der Observablen O im Zustand ψ , Mittelwert der Messwerte der Observablen O an einem System im Zustand ψ :

$$\bar{O} = \int \psi^* \hat{O} \psi dV = \sum_n |c_n|^2 a_n$$