Assignment 2 Report

Arun Kodnani(ak6384) & Rahul Keswani(ryk248)

Hyperparameter Tuning

Vocab Size

From our understanding of vocab size = n, will chose the n most frequent words from the corpus and will only keep these words in the review. Therefore, we restricted vocab size in the range of 3000-5000 words.

Batch Size

We tried with different batch size combinations such as 32, 64, 128 and 256. We wanted to keep the batch size smaller so that there are a greater number of weight updates per epoch. To compensate for the computational time, we reduced the epochs because it was giving us good results.

Max Length

Since most of the review were either of 500 length of more, so we kept the max length of 500.

Padding

After trying the below architecture configurations, we had following observations:

• If post padding is kept then Bidirectional models worked better as compared to simple sequence models.

Our reason for this observation is that since simple recurrent network compute across time, the padding at the end of the review would dilute the output of the actual reviews which is being passed as the h(t-1) component.

Architecture Experimented

LSTM:

Configuration

Layer (type)	Output	Shape		Param #
embedding (Embedding)	(None,	None,	32)	160000
spatial_dropoutld (SpatialDr	(None,	None,	32)	0
lstm (LSTM)	(None,	100)		53200
dense (Dense)	(None,	1)		101
Total params: 213,301 Trainable params: 213,301 Non-trainable params: 0				

Accuracy - 87.62%

25000/25000 [===========] - 115s 5ms/step [0.3140373284912109, 0.8762]

GRU

Configuration

Layer (type)	Output	Shape	Param #
embedding_5 (Embedding)	(None,	500, 32)	160000
gru_5 (GRU)	(None,	100)	39900
dense_5 (Dense)	(None,	1)	101
Total params: 200,001 Trainable params: 200,001 Non-trainable params: 0			

Accuracy - 86.22%

Configuration

Bi-Directional LSTM

Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	None, 32)	160000
spatial_dropout1d (SpatialDr	(None,	None, 32)	0
bidirectional (Bidirectional	(None,	200)	106400
dense (Dense)	(None,	1)	201
Total params: 266,601 Trainable params: 266,601 Non-trainable params: 0			

Accuracy - 87.29

```
25000/25000 [===========] - 258s 10ms/step [0.31268428820610045, 0.87296]
```

Bi-Directional GRU

Configuration

Layer (type)	Output	Shape		Param #
embedding (Embedding)	(None,	None,	32)	160000
spatial_dropoutld (SpatialDr	(None,	None,	32)	0
bidirectional (Bidirectional	(None,	200)		79800
dense (Dense)	(None,	1)		201
Total params: 240,001 Trainable params: 240,001 Non-trainable params: 0				

Accuracy - 88.02

```
25000/25000 [=======] - 113s 5ms/step [0.2868043322277069, 0.88028]
```

NOTE: We got our best accuracy with this model (Bi-Directional GRU), but, unfortunately our Tensorboard didn't connect to the python notebook which had the code for this. Hence, we are not selecting this as our final architecture.

Stacked Bi-Directional LSTM

Configuration

Layer (type)	Output	Shape		Param #
embedding (Embedding)	(None,	None,	32)	160000
spatial_dropout1d (SpatialDr	(None,	None,	32)	0
bidirectional (Bidirectional	(None,	None,	200)	106400
bidirectional_1 (Bidirection	(None,	200)		240800
dense (Dense)	(None,	1)		201
Total params: 507,401 Trainable params: 507,401 Non-trainable params: 0				

Accuracy – 87.24

```
25000/25000 [======== ] - 987s 39ms/step [0.3282634956073761, 0.8724]
```

Final Architecture

Amongst all these architectures the base version of LSTM is giving us the best performance with an accuracy of 87.62%.

Configuration

- 1. vocab_size = 5000
- 2. batch_size = 64
- 3. embedding_size = 32
- 4. max_len = 500
- 5. optimizer='rmsprop'
- 6. loss='binary_crossentropy'

Architecture graph Main Graph

Loss plots

Epoch Loss

Validation Loss

Accuracy Plots

Epoch Accuracy

Validation Accuracy

