CURSO PLC DESDE CERO

EQUE ES PLC?

· CONTROLADOR LÓGICO PROGRAMABLE

PARTES Y ARQUITECTURA DE LOS PLC'S:

Está formado por:

- Fuente Alimentación.
- Bloques de Entrada.
- Bloques de Salida.
- · CPU.
- Interface programación.
- Memoria.

de

DEL FUENTE DE PROGRAMA ALIMENTACION BATERIA BUS INTERNO MEMORIA DI MEMORIA DATOS IMAGEN E/S INTERFACES UNIDAD INTERFACE DE ENTRADA CENTRAL DE PROCESO TEMPORIZADOR (CPU) CONTADORES

MEMORIA

de

DE SALIDAS

1. Fuente de Alimentación:

• A partir de un voltaje exterior genera voltajes necesarios para funcionamiento de los circuitos del PLC.

 Posee una batería interna para manténer el programa y datos importantes.

Voltaje de entrada Oscila entre: 100VCA - 240VCA

Voltaje de salida Oscila entre: 12VDC - 24VDC

Corriente de salida

50Hz ó 60Hz Frecuencia de

operación

Sobrecorrientes y sobrevoltajes

Protecciones

ELECTROALL

1A - 3A

2. Bloques de Entrada:

- Adaptan y codifican las señales de los dispositivos de entrada para que el CPU las procese.
 - Interruptores, pulsadores.
 - · Sensores.
 - Entre otros.

Bloques de Salida: Amplifican y decodifican las señales del CPU de acuerdo al programa para activar los dispositivos de salida.

- · Lámparas.
- Relés.
- Contactores.
- Electroválvulas.
- Entre otros.

• CPU: Es el cerebro del PLC que se encarga de ejecutar el programa de control del proceso.

- Lee las entradas, procesa la información y envía respuestas a las salidas.
- CPU significa "Unidad Central de Procesamiento".

Interface de Programación: Permite comunicar el PLC con el usuario para escribir el programa.

- Es una PC que posee un software específico para programar el PLC.
- Función Transferir y modificar programas, verificación e visualización del funcionamiento del proceso.

Memoria: Permite almacenar el programa de forma permanente y datos temporales que necesite el programa.

• 2 tipos:

- EEPROM -> Memoria de grabacion electronica.
- RAM -> Memoria de acceso aleatorio.
- Memoria de Imagen de Entradas y Salidas: Almacena las señales leídas y enviadas de las entradas y salidas del PLC.

Módulos especiales

¿ Cómo podemos comunicarnos con el robot para que haga una tarea?

Mediante un Lenguaje de Programación.

 Expresa las instrucciones que debe realizar para una Aplicación.

El PLC/necesita de un Lenguaje de programación para comunicarse con el usuario.

PROGRAMACIÓN DE UN PLC:

Existen 3 Lenguajes de programación para PLC:

- 1. Diagrama de Contactos o Ladder (Escalera).
- 2. Diagrama de Funciones (Bloques).
- 3. Lista de Instrucciones (Textual).

¿Cuál de los 3 lenguajes mencionados será el más utilizado?

El Lenguaje Escalera o LADDER.

 Debido a su <u>parecido</u> a los diagramas o esquemas eléctricos de control clásicos (relés y gontactores).

· Por tanto, un técnico puede "adaptarse" a este lenguaje.

REGLAS PARA USAR EL LENGUAJE LADDER:

1. Dibujar 2 líneas verticales opuestas que representan la alimentación (+24V y GND).

2. Al lado izquierdo van las entradas y al lado derecho las salidas.

REGLAS PARA USAR EL LENGUAJE LADDER:

El diagrama puede tener varias "ramas o escalones".

 Se pueden colocar varias entradas pero termina en una sola salida.

ELECTRUALL

ELEMENTOS DE ENTRADA EN LENGUAJE LADDER:

Serían los contactos que dejan pasar la corriente de una línea a otra, pueden ser:

- 1. NA:
 Normalmente
 Abierto.
- 2. NC: Normalmente cerrado.

ELEMENTOS DE SALIDA EN LENGUAJE LADDER:

Son las bobinas (relés) y su estado depende entradas.

 Energizarán la bobina de un motor o una lámpara.

IMAGINEMOS...

Representación Eléctrica

¿Qué debemos hacer para que fluya el agua?

¿Cómo se conectaron los elementos

AUMENTAMOS...

¿Qué debemos hacer para que fluya el agua?

OPERACIÓN LÓGICA AND:

Α	В	Salida
0	0	0
0	1	0
1	0	0
1	1	1

"Contactos en serie"

11	12	Q1	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
	-		

↑ Figura 10.18. Asociación de contactos en serie.

Tabla de la verdad.

 $Q1 = I1 \cdot I2$

Ecuación lógica.

EJENIPLOS OPERACIÓN LÓCICA AND

¿ Qué contactos se deben activar para que las salidas Q1 y Q2 se activen?

Activar: 11, 12 e 3

OPERACIÓN LÓGICA OR:

Α	В	Salida
0	0	0
0	1	1
1	0	1
1	1	1

11	12	Q1
0	0	0
0	1	1
1	0	1
1	1	1

↑ Figura 10.20. Asociación de contactos en paralelo.

Tabla de verdad.

"Contactos en paralelo"

$$Q1 = |1 + |2$$

Ecuación lógica

EJEMPLOS OPERACIÓN LÓGICA OR:

¿ Cuál es el estado inicial de la salida Q1? ¿Está activado o desactivado?

ACTIVADO

¿ Porqué?

Debido a que el contacto 15 e

OPERACIÓN LÓGICA NOT:

Α	Salida
0	1
1	0

"Invierte el estado del contacto"

 $Q1 = \overline{11}$ Ecuación lógica.

EJERCICIO 1:

¿Cómo sería programa en LADDER para controlar encendido y apagado de una bomba de agua/utilizando un pulsador NA y otro NC?

EJERCICIO 2:

¿Cómo sería programa en LADDER para controlar encendido y apagado de una bomba de agua/ utilizando pulsadores NA?

