Dependencias funcionales en BD Relacionales

Dependencias funcionales **Temario**

- Directrices de diseño informales
- Dependencias funcionales
 - Definición
 - Reglas de inferencia
 - Equivalencias
 - Conjuntos mínimos

- Referencias:
 - Fundamentals of Database Systems [E-N], 5ta. Edición, Cap. 10

Dependencias funcionales **Motivación**

- Habíamos visto que:
 - Esquema de BD relacional → esquemas de relación → atributos
- Podemos encontrarnos con varios diseños de solución para el mismo problema
- Vamos a ver parte de la teoría desarrollada con el objetivo de evaluar esquemas relacionales encaminados a la calidad del diseño

Dependencias funcionales **Motivación**

Objetivo:

- medir formalmente por qué un conjunto de agrupaciones de atributos en un esquema de relación es mejor que otro.
- ◆ Directriz → Instrucción o norma que ha de seguirse en la ejecución de algo.

Dependencias funcionales **Directrices informales**

Directrices de diseño informales para los esquemas de relación

- Antes de tratar la teoría formal, veremos cuatro medidas informales de calidad para el diseño de un esquema de relación:
 - 1. La *semántica* de los atributos.
 - 2. La reducción de información *redundante* en las tuplas.
 - 3. La reducción de los *valores NULL* en las tuplas.
 - 4. Prohibición de la posibilidad de generar tuplas falsas.

Directrices informales **N°1: semántica**

Impartir una semántica clara a los atributos de las relaciones

- La **semántica** de una relación hace referencia a la interpretación de los valores de un atributo en una tupla.
- Relación = conjunto de hechos
- En general, cuanto más sencillo es explicar la semántica de la relación, mejor será el diseño del esquema de relación.

Directrices informales **N°1: semántica**

Directriz 1

- Diseñar un esquema de relación para que sea fácil explicar su significado.
- No combine atributos de varios tipos de entidad y de relación en una única relación.
- Si la relación está compuesta por una mezcla de múltiples entidades y relaciones, se producirá una ambigüedad semántica y la relación no podrá explicarse con claridad.

Directrices informales N°1: semántica

Un ejemplo:

La facilidad con la que se pueda explicar el significado de los atributos de una relación es una medida informal de lo bien que está diseñada esa relación.

Directrices informales N°1: semántica

- A partir del ejemplo, podría decirse que:
 - Los esquemas tienen una interpretación bien definida y sin ambigüedad.
 - Por consiguiente, todo el esquema de relaciones de la figura podría considerarse como fácil de explicar.
 - Por tanto, es bueno desde el punto de vista de contar con una semántica clara.

Información redundante en tuplas y anomalías en la actualización

- Uno de los objetivos de un esquema de diseño es reducir el espacio de almacenamiento utilizado por las relaciones.
- El agrupamiento de atributos en esquemas de relación tiene un efecto significativo sobre el espacio de almacenamiento.

Directriz 2

- Diseñar los esquemas de relación de forma que no se presenten anomalías de inserción, borrado o actualización en las relaciones.
- En caso de que aparezca alguna de ellas, anótela claramente y asegúrese de que los programas que actualizan la base de datos operarán correctamente.

					Redundancia		
EMP_DEPT							
NombreE	<u>Dni</u>	FechaNac	Dirección	NúmeroDpto	NombreDpto	DniDirector	
Pérez Pérez, José	123456789	09-01-1965	Eloy I, 98	5	Investigación	333445555	
Campos Sastre, Alberto	333445555	08-12-1955	Avda. Ríos, 9	5	Investigación	333445555	
Jiménez Celaya, Alicia	999887777	19-07-1968	Gran Vía, 38	4	Administración	987654321	
Sainz Oreja, Juana	987654321	20-06-1941	Cerquillas, 67	4	Administración	987654321	
Ojeda Ordóñez, Fernando.	666884444	15-09-1962	Portillo, s/n	5	Investigación	333445555	
Oliva Avezuela, Aurora	453453453	31-07-1972	Antón, 6	5	Investigación	333445555	
Pajares Morera, Luis	987987987	29-03-1969	Enebros, 90	4	Administración	987654321	
Ochoa Paredes, Eduardo	888665555	10-11-1937	Las Peñas, 1	1	Sede central	888665555	

Pueden haber anomalías en la inserción?			Redundancia I			
EMP_DEPT NombreE	<u>Dni</u>	FechaNac	Dirección	NúmeroDpto	NombreDpto	DniDirector
Pérez Pérez, José	123456789	09-01-1965	Eloy I, 98	5	Investigación	333445555
Campos Sastre, Alberto	333445555	08-12-1955	Avda. Ríos, 9	5	Investigación	333445555
Jiménez Celaya, Alicia	999887777	19-07-1968	Gran Vía, 38	4	Administración	987654321
Sainz Oreja, Juana	987654321	20-06-1941	Cerquillas, 67	4	Administración	987654321
Ojeda Ordóñez, Fernando.	666884444	15-09-1962	Portillo, s/n	5	Investigación	333445555
Oliva Avezuela, Aurora	453453453	31-07-1972	Antón, 6	5	Investigación	333445555
Pajares Morera, Luis	987987987	29-03-1969	Enebros, 90	4	Administración	987654321
Ochoa Paredes, Eduardo	888665555	10-11-1937	Las Peñas, 1	1	Sede central	888665555

		Y en la actualización?		Redundancia		
EMP_DEPT						
NombreE	<u>Dni</u>	FechaNac	Dirección	NúmeroDpto	NombreDpto	DniDirector
Pérez Pérez, José	123456789	09-01-1965	Eloy I, 98	5	Investigación	333445555
Campos Sastre, Alberto	333445555	08-12-1955	Avda. Ríos, 9	5	Investigación	333445555
Jiménez Celaya, Alicia	999887777	19-07-1968	Gran Vía, 38	4	Administración	987654321
Sainz Oreja, Juana	987654321	20-06-1941	Cerquillas, 67	4	Administración	987654321
Ojeda Ordóñez, Fernando.	666884444	15-09-1962	Portillo, s/n	5	Investigación	333445555
Oliva Avezuela, Aurora	453453453	31-07-1972	Antón, 6	5	Investigación	333445555
Pajares Morera, Luis	987987987	29-03-1969	Enebros, 90	4	Administración	987654321
Ochoa Paredes, Eduardo	888665555	10-11-1937	Las Peñas, 1	1	Sede central	888665555

					Redundancia		
EMP_DEPT							
NombreE	<u>Dni</u>	FechaNac	Dirección	NúmeroDpto	NombreDpto	DniDirector	
Pérez Pérez, José	123456789	09-01-1965	Eloy I, 98	5	Investigación	333445555	
Campos Sastre, Alberto	333445555	08-12-1955	Avda. Ríos, 9	5	Investigación	333445555	
Jiménez Celaya, Alicia	999887777	19-07-1968	Gran Vía, 38	4	Administración	987654321	
Sainz Oreja, Juana	987654321	20-06-1941	Cerquillas, 67	4	Administración	987654321	
Ojeda Ordóñez, Fernando.	666884444	15-09-1962	Portillo, s/n	5	Investigación	333445555	
Oliva Avezuela, Aurora	453453453	31-07-1972	Antón, 6	5	Investigación	333445555	
Pajares Morera, Luis	987987987	29-03-1969	Enebros, 90	4	Administración	987654321	
Ochoa Paredes, Eduardo	888665555	10-11-1937	Las Peñas, 1	1	Sede central	888665555	

Y con el borrado?

Directrices informales N°3: valores NULL

Valores NULL en las tuplas

- En relaciones grandes, si muchos de los atributos no se aplican a todas las tuplas de la relación, nos encontraremos con muchos *NULL* en esas tuplas, lo que puede desperdiciar espacio de almacenamiento.
- Otro problema con los NULL es cómo contabilizarlos cuando se aplican operaciones de agregación como COUNT o SUM.
- ightharpoonup NULL
 ightharpoonup múltiples interpretaciones.
- ◆ En comparaciones → los resultados serán impredecibles.

Directrices informales N°3: valores NULL

Directriz 3

- Hasta donde sea posible, evite situar en una relación base atributos cuyos valores sean frecuentemente *NULL*.
- En caso de no poderse evitar, asegúrese de que se aplican sólo en casos excepcionales y no los aplique a la mayor parte de las tuplas de la relación.

Generación de tuplas falsas

- Debido a un mal diseño de las relaciones pueden generarse problemas a la hora de obtener los datos desde varias de ellas.
- En estos casos, las tuplas que representan información que no es válida reciben el nombre de tuplas falsas.

Directriz 4

- Diseñar los esquemas de relación de forma que puedan concatenarse con condiciones de igualdad en los atributos que son parejas de clave principal y foreign key de forma que se garantice que no se van a generar tuplas falsas.
- Evite las relaciones que contienen atributos coincidentes que no son combinaciones de *foreign key* y clave principal porque la concatenación de estos atributos puede producir tuplas falsas.

Personas

<u>DniPersona</u>	NomPersona	NomProyecto	
8888888	Ana	Proyecto 1	
5555555	Roberto	Proyecto 2	

Proyectos

<u>NroProy</u>	NomProy
21	Proyecto 1
55	Proyecto 2
32	Proyecto 2

Join Personas-Proyectos

DniPersona	NomPersona	NomProyecto	NroProy	NomProy
8888888	Ana	Proyecto 1	21	Proyecto 1
555555	Roberto	Proyecto 2	55	Proyecto 2
555555	Roberto	Proyecto 2	32	Proyecto 2

Personas

<u>DniPersona</u>	NomPersona	NomProyecto	
8888888	Ana	Proyecto 1	
555555	Roberto	Proyecto 2	

Proyectos

<u>NroProy</u>	NomProy
21	Proyecto 1
55	Proyecto 2
32	Proyecto 2

Join Personas-Proyectos

DniPersona	NomPersona	NomProyecto	NroProy	NomProy
8888888	Ana	Proyecto 1	21	Proyecto 1
555555	Roberto	Proyecto 2	55	Proyecto 2
555555	Roberto	Proyecto 2	32	Proyecto 2

Directrices informales **Resumen**

- Hemos visto situaciones que provocan esquemas de relación problemáticos, que implica trabajo redundante, desaprovechamiento de almacenamiento o generación de datos inválidos.
- Tratamos unas directrices informales para definir un buen diseño relacional.
- → A continuación se presentarán conceptos y teorías formales que pueden utilizarse para definir de forma más precisa la *idoneidad* y la *mala calidad* de un esquema de relación individual.

Dependencias funcionales

• Una dependencia funcional (DF) es una **restricción** que se establece entre *dos conjuntos de atributos* de la base de datos.

Definición:

- Una dependencia funcional, denotada por $X \rightarrow Y$, entre dos conjuntos de atributos X e Y que son subconjuntos de R, especifica una restricción en *las posibles tuplas* que pueden formar un estado de relación r de R.
- La restricción dice que dos tuplas t1 y t2 en r tales que cumplen que t1[X] = t2[X], deben cumplir también que t1[Y] = t2[Y].

Por tanto:

- X **determina funcionalmente** Y si para toda instancia r del esquema de relación R, no es posible que r tenga dos tuplas que coincidan en los atributos de X y no lo hagan en los atributos de Y.

Observe lo siguiente:

- Si X es una **clave candidata** de R, se cumple que X → Y para cualquier subconjunto de atributos Y de R (la restricción de clave implica que dos tuplas en cualquier estado legal r(R) no tendrán el mismo valor de X).
- Si $X \rightarrow Y$ en R, esto **no supone** que $Y \rightarrow X$ en R.

- Una dependencia funcional es una *propiedad de la semántica* o significado de los atributos.
- Las dependencias funcionales *deben mantenerse* en todos los estados de relación r de R.
- Los estados de relación r(R) que satisfacen la restricción de DF reciben el nombre de *estados de relación legales*.

- Por tanto, el *uso fundamental* de las DFs es *describir* más en profundidad un esquema de relación R especificando restricciones de sus atributos que siempre deben cumplirse.
- Ciertas DFs pueden especificarse sin hacer referencia a una relación específica.
- Por ejemplo:
 - {*Provincia*, *NumPermisoConducir*} → *Dni* debe mantenerse para cualquier adulto que viva en España.

◆ Ejemplo: considerar el esquema relación *EMP_PROY* y sus *DFs*

- ♦ $\{Dni, NumProyecto\} \rightarrow Horas$
- Dni → NombreE
- NumProyecto → {NombreProyecto, UbicaciónProyecto}

- ullet Una DF es un **propiedad** del esquema, no de la instancia
- No puede ser inferida automáticamente a partir de un estado de relación r, sino que alguien que conozca la semántica de los atributos de R debe definirla explícitamente.

Figura 10.7. Un estado de relación IMPARTIR con una posible dependencia funcional TEXTO → CURSO. Sin embargo, PROFESOR → CURSO no es posible.

IMPARTIR

Profesor	Curso	Texto
Smith	Estructuras de datos	Bartram
Smith	Administración de datos	Martin
Hall	all Compiladores	
Brown	Estructuras de datos	Horowitz

Dependencias funcionales **Ejemplo**

- Una empresa de alquiler de vehículos desea implementar una base de datos con la información de su negocio. Se tienen vehículos identificados por su numero de matrícula, y de los que se conoce su marca, color, modelo y año.
- ➤ También se tienen clientes identificados por su número de cédula de identidad, y de los que se conoce su nombre, dirección y teléfono. Un contrato de alquiler de vehículo está identificado por un número de contrato y se realiza en una fecha dada entre un cliente y un vehículo, registrándose el periodo de alquiler en días y el precio del servicio.
- Se considera que en una misma fecha no se puede alquilar más de una vez el mismo vehículo al mismo cliente en la misma fecha.

Dependencias funcionales **Ejemplo**

- Una empresa de alquiler de vehículos desea implementar una base de datos con la información de su negocio. Se tienen vehículos identificados por su numero de matrícula, y de los que se conoce su marca, color, modelo y año.
- → También se tienen clientes identificados por su número de cédula de identidad, y de los que se conoce su nombre, dirección y teléfono. Un contrato de alquiler de vehículo está identificado por un número de contrato y se realiza en una fecha dada entre un cliente y un vehículo, registrándose el periodo de alquiler en días y el precio del servicio.
- Se considera que en una misma fecha no se puede alquilar más de una vez el mismo vehículo al mismo cliente en la misma fecha.

Dependencias funcionales **Ejemplo**

Entonces obtenemos:

```
matricula \rightarrow \{marca, color, modelo, año\}
c\'edula \rightarrow \{nombre, direcci\'on, tel\'efono\}
nroContrato \rightarrow \{fecha, c\'edula, matricula, período, precio\}
\{fecha, c\'edula, matricula\} \rightarrow nroContrato
```

Dependencias funcionales **Inferencia, deducción**

- Decimos que:
 - *F*: conjunto de *DFs* especificadas en un esquema de relación *R*.
- Habitualmente se especifican las DFs que son semánticamente obvias.
- Sin embargo, es habitual que muchas otras DFs se encuentren en todas las instancias de relación legales entre los conjuntos de atributos que pueden derivarse y satisfacen las dependencias de F.

Dependencias funcionales **Inferencia, deducción**

- Entonces, decimos que esas otras dependencias pueden inferirse o deducirse de las DF de F.
- ◆ En la vida real, es imposible especificar todas las dependencias funcionales posibles para una situación concreta.

Dependencias funcionales **Inferencia, deducción**

Por ejemplo:

- Si cada departamento tiene un director, de manera que *NroDpto* determina de forma única *DniDirector* (*NroDpto* → *DniDirector*)
- y un director tiene un único número de teléfono TelDirector
 (DniDirector → TeléfonoDirector)

Entonces:

- Ambas dependencias juntas suponen que $NroDpto \rightarrow TeléfonoDirector$.
- Esto es una DF inferida y no tiene que declararse explícitamente.

Dependencias funcionales Clausura (F⁺)

ullet Por tanto, formalmente es útil definir un concepto llamado *clausura* (*closure*) que incluye *todas las posibles* dependencias que pueden *inferirse* de un conjunto F dado

♦ *Clausura (F+):*

– Es el conjunto de todas las dependencias que incluyen F, **junto con** las dependencias que pueden inferirse de F, reciben el nombre de clausuras de F; está designada mediante F⁺.

Nota: Tener en cuenta que las DF en F^+ deben cumplirse *para todos* los estados r(R) legales donde se cumpla F

Dependencias funcionales **Reglas de inferencia**

Para determinar una manera sistemática de inferir dependencias, debemos descubrir un conjunto de reglas de inferencia que puedan usarse para deducir nuevas dependencias a partir de un conjunto de dependencias concreto.

• Usamos la notación $F \mid = X \rightarrow Y$ para indicar que la dependencia funcional $X \rightarrow Y$ se infiere del conjunto de dependencias funcionales F.

Dependencias funcionales **Reglas de inferencia**

- **Reglas:** (siendo W,X,Y,Z conjuntos de atributos)
 - (*RI1*) *reflexiva*: Si $X \supseteq Y$, entonces $X \rightarrow Y$
 - (RI2) de aumento: $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$
 - (RI3) transitiva: $\{X \rightarrow Y, Y \rightarrow Z\} \mid = X \rightarrow Z$
 - (RI4) descomposición: $\{X \rightarrow YZ\} \mid = X \rightarrow Y$
 - (*RI5*) **unión:** $\{X \to Y, X \to Z\} \mid = X \to YZ$
 - (RI6) pseudotransitiva: $\{X \rightarrow Y, WY \rightarrow Z\} \mid = WX \rightarrow Z$
- Reglas de Armstrong: RI1 a RI3
 - *Minimales*: Las demás se pueden derivar a partir de estas tres.

Dependencias funcionales **Reglas de inferencia**

Nota:

- Aunque X → A y X → B implican X → AB por la regla de unión (RI5),
- $X \rightarrow A$ e $Y \rightarrow B$ no implican que $XY \rightarrow AB$.
- Además, $XY \rightarrow A$ **no implica** necesariamente ni $X \rightarrow A$ ni $Y \rightarrow A$.

Dependencias funcionales Clausura de X bajo F (X⁺)

- **▶** F: conjunto de DFs sobre un esquema
- ullet *X*: conjunto de atributos que aparece en la *parte izquierda* de alguna dependencia funcional de F

Definición:

– La clausura de X bajo F es el conjunto de atributos *determinados funcionalmente* por X, basados en F; está designada por X⁺

Dependencias funcionales Clausura de X bajo F (X⁺)

Algoritmo para determinar X+ bajo F

Asigna todos los atributos de X
$$repetir$$

$$antiguaX + := X +;$$

$$para \ cada \ df \ Y \rightarrow Z \ en \ F \ hacer$$

$$si \ Y \subseteq X + \ entonces \ X + := X + \ U \ Z;$$

$$hasta \ que \ (antiguaX + = X +);$$
 No hay más cambios en $X +$

Dependencias funcionales Clausura de X bajo F (X⁺)

Ejemplo:

- EMP_PROY (NSS, NumProy, Horas, NomEmp, NomProy, LugarProy)
- $F = \{NSS \rightarrow NomEmp;$ $NumProy \rightarrow NomProy, LugarProy;$ $NSS, NumProy \rightarrow Horas\}$
- **♦** {*NSS*}+ = {*NSS*, *NomEmp*}
- {NumProy}+ = {NumProy, NomProy, LugarProy}
- **♦ {NSS, NumProy}**+ = {NSS, NumProy, NomEmp, NomProy, LugarProy, Horas}

Dependencias funcionales **Equivalencias de conjuntos de DFs**

Definición:

- Dos conjuntos de dfs E y F **son equivalentes** sii $E^+ = F^+$.
- Entonces:
 - Todas las dfs en *E* se pueden **inferir** de *F* y todas las de *F* se pueden **inferir** de *E*.
 - *E* **cubre** a *F* y *F* **cubre** a *E*.

- ¿Cómo determinamos si F cubre a E?
 - Para cada df X → Y ∈ E, calculamos X⁺ $respecto\ a\ F$ y verificamos que X⁺ incluya los atributos en Y.

Dependencias funcionales **Equivalencias de conjuntos de DFs**

Ejemplo:

-
$$\mathbf{F} = \{AB \rightarrow C, B \rightarrow D, D \rightarrow GC, CG \rightarrow H\}$$

- **F1** = {
$$D \rightarrow H, B \rightarrow C, AD \rightarrow GH$$
}

- *F1* cubre a *F*?
- *F* cubre a *F1*?
- *F* es equivalente a *F1*?

Dependencias funcionales **Equivalencias de conjuntos de DFs**

Ejemplo:

-
$$\mathbf{F} = \{AB \rightarrow C, B \rightarrow D, D \rightarrow GC, CG \rightarrow H\}$$

- **F1** = {
$$D \rightarrow H, B \rightarrow C, AD \rightarrow GH$$
}

-
$$F2 = \{B \rightarrow D, D \rightarrow G, D \rightarrow C, CG \rightarrow H\}$$

- Qué pasa entre *F2* y *F*?
- Qué pasa entre *F1* y *F2*?

Dependencias funcionales Conjuntos mínimos de DFs

- Una **cobertura mínima** de un conjunto de dfs E, es un conjunto de dfs F que satisface la propiedad que cada dependencia de E **está en** F+ de F.
- ightharpoonup Además, esta propiedad **se pierde** *si se elimina* cualquier df de F.
- F no debe tener redundancias, y las dependencias en F están en una forma estándar.

Dependencias funcionales Conjuntos mínimos de DFs

- ightharpoonup F es **minimal** sii:
 - **1. Toda** df en *F* **tiene** *un solo* atributo a la derecha
 - **2. No** podemos reemplazar **ninguna** df $X \rightarrow A \in F$ por una df $Y \rightarrow A$, donde Y es subconjunto de X, Y seguir teniendo un conjunto de dfs **equivalente** a F
 - **3. No** podemos eliminar **ninguna** dependencia de F y seguir teniendo un conjunto de dfs **equivalente** a F

Dependencias funcionales **Conjuntos mínimos de DFs**

Algoritmo para localizar cobertura mínima F para E

Donde: *E*, *F*: conj. de dfs; *X*, *Y*: conj. de atributos; *A*, *B*: atributos individuales

1. Establecer F := E

Reemplazar dependencias

- **2. Reemplazar** cada df $X \rightarrow \{A1, A2, ..., An\}$ en F por las n dfs $X \rightarrow A1, X \rightarrow A2, ..., X \rightarrow An$
- **3. Por cada** df $X \rightarrow A$ en F por cada atributo B que sea un elemento de X si $\{(X-B)+$ respecto a F, contiene a A} entonces reemplazar $X \rightarrow A$ por $\{(X-B)\}$ A en A
- **4. Por cada** df $X \rightarrow A$ sobrante en F si $\{F \{X \rightarrow A\}\}$ es equivalente a F, entonces eliminar $X \rightarrow A$ de F.

Dependencias redundantes

Dependencias funcionales **Conjuntos mínimos de DFs**

- **Ejemplo:** Dado el conjunto de dfs $E = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$, hallar el cubrimiento minimal.
 - Hay df en *E* con varios *atributos a la derecha? Ninguna*

Reemplazar dependencias

- *Hay atributos redundantes?* En $AB \rightarrow D$:
 - $\{A\}$ + = $\{A\}$
 - $\{B\}$ + = $\{B, A, D\}$
 - Entonces obtenemos $E1 = \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$

Sin atributos redundantes

- Hay dfs redundantes? En E1
 - En E1-{ $B \rightarrow A$ }, calculo {B}+ = {B, D, A}
 - Por lo tanto, $B \rightarrow A$ es redundante en E1 y puede eliminarse
 - Entonces obtenemos $E2 = \{D \rightarrow A, B \rightarrow D\}$

Sin dfs redundantes

- Entonces: $\{D \rightarrow A, B \rightarrow D\}$ es cubrimiento minimal de E