ICAR Model (Besag 1974; Besag, York, Mollié 1991)

Model parameter			
Schematic	CARBayes	S.CARleroux argument	Value
S, R	φ		
α, β	β *	prior.mean.beta	c(0, 0)
,		prior.var.beta	c(100, 100)
σ_s^2	$ \tau^2 $	prior.tau2	c(0.5, 1)
(1)	ρ **	fix.rho	TRUE
	•	rho	1
W	W	W	W

^{*} In the CARBayes package, β includes the intercept, so the prior for both α and β must have the same *form* of distribution, but potentially different parameters.

^{**} The ICAR model is a special case of the Leroux model when the spatial autocorrelation ρ is fixed at 1. Hence, the S.CARleroux R function is used.

BYM Model (Besag, York, Mollié 1991)

Model parameter			
Schematic	CARBayes	S.CARbym argument	Value
R	ψ		
α, β	β*	prior.mean.beta	c(0, 0)
,	•	prior.var.beta	c(100, 100)
$\sigma_{\scriptscriptstyle S}^2$	$ \tau^2 $	prior.tau2	c(0.5, 1)
σ_u^2	σ^2	prior.sigma2	c(0.5, 1)
W	W	W	W

^{*} In the CARBayes package, β includes the intercept, so the prior for both α and β must have the same *form* of distribution, but potentially different parameters.

Leroux Model (Leroux et al. 2000)

Model parameter			
Schematic	CARBayes	S.CARleroux argument	Value
S, R	φ		
α, β	β^*	prior.mean.beta	c(0, 0)
,		prior.var.beta	c(100, 100)
σ_s^2	$ \tau^2 $	prior.tau2	c(0.5, 1)
ρ	ρ	fix.rho	FALSE
	•	rho	NULL
W	W	W	W

^{*} In the CARBayes package, β includes the intercept, so the prior for both α and β must have the same *form* of distribution, but potentially different parameters.

Dissimilarity Model (Lee and Mitchell 2012)

This model is based on the Leroux model, except here ρ is fixed at 0.99 to ensure strong global spatial smoothing, while the weights are estimated rather than fixed. The weights are estimated according to the dissimilarity between areas, as determined by a non-negative dissimilarity metric **Z** with elements

$$z_{ij} = \frac{\left|z_i - z_j\right|}{\sigma_z}$$

where σ_z is the standard deviation of $|z_i - z_j|$ over all pairs of contiguous areas. This metric is then treated as a regression parameter, weighted by δ . The metric can be based on geography (e.g. distance between area centroids), covariates (which would then be excluded from the stage 2 of the model), or residuals from another model. The weights can be either binary or non-binary. The non-binary formulation is given by:

$$w_{ij}(\delta, z_{ij}) = \exp(-\delta z_{ij})$$

 $\delta \sim \text{Uniform}(0, 50).$

The larger the dissimilarity measure z_{ij} , the closer to zero the weights w_{ij} will be.

Model parameter		S.CARdissimilarity	
Schematic	CARBayes	argument	Value
S, R	φS		
α, β	β*	prior.mean.beta	c(0, 0)
,	•	prior.var.beta	c(100, 100)
$\sigma_{\scriptscriptstyle S}^2$	τ^2	prior.tau2	c(0.5, 1)
ρ	ρ	fix.rho	TRUE
'	,	rho	0.99
W	W	W	W
		W.binary	TRUE or FALSE

Z	Z	Z	list(Z = Z)
δ	α		

^{*} In the CARBayes package, β includes the intercept, so the prior for both α and β must have the same *form* of distribution, but potentially different parameters.

References

- Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **36** (2): 192-236.
- Besag, J., J. York, and A. Mollié. 1991. Bayesian image restoration with application in spatial statistics. *Annals of the Institute of Statistical Mathematics* **43** (1):1-20. doi: 10.1007/BF00116466.
- Leroux, B. G., X. Lei, and N. Breslow. 2000. "Estimation of disease rates in small areas: a new mixed model for spatial dependence". In *Statistial models in epidemiology, the environment and clinical trials*, edited by M. E. Halloran and D. Berry, pp. 179-191. The IMA Volumes in Mathematics and its Applications, vol 116. New York: Springer. doi: 10.1007/978-1-4612-1284-3_4.
- Lee, D. and R. Mitchell. 2012. Boundary detection in disease mapping studies. *Biostatistics* 13 (3): 415-426. doi: 10.1093/biostatistics/kxr036.

See also the CARBayes paper and documentation:

Lee, D. 2013. CARBayes: An R package for Bayesian spatial modelling with conditional autoregressive priors. *Journal of Statistical Software* **55** (13): 1-24. URL: http://www.jstatsoft.org/v55/i13/.

https://cran.r-project.org/web/packages/CARBayes.pdf

https://cran.r-project.org/web/packages/CARBayes/vignettes/CARBayes.pdf