MortalityLaws R Package

A History of Mortality Modeling from Gompertz to Lee-Carter

The 4th Human Mortality Database Symposium, 22 - 23 May 2017, Berlin

- (a) Marius Pascariu & Vladimir Canudas-Romo
- **1** Max-Planck Odense Center on the Biodemography of Aging University of Southern Denmark
- mpascariu@health.sdu.dk
- https://github.com/mpascariu

MORTALITY MODELLING TIMELINE

MAIN OBJECTIVE

Build an R package that is capable of performing multiple tasks in a matter of seconds. For example:

- Download and save HMD data;
- Fit mortality laws over different age intervals;
- Provide multiple fitting procedures for the same model (MLEs, loss functions etc.);
- Smooth data;
- Construct life tables given different type of input data $(q_x, m_x, D_x, E_x \text{ etc.})$;
- Facilitate comparisons of mortality improvements across time and ages;
- Generate instant plots and goodness of fit measures.

THE STRUCTURE OF THE MORALITYLAWS R PACKAGE

IMPLEMENTED PARAMETRIC FUNCTIONS & GENERIC PLOTS

Mortality laws	Predictor	Code
Gompertz	ae^{bx}	gompertz0
Gompertz	$\frac{1}{\sigma}exp\left\{\frac{x-m}{\sigma}\right\}$	gompertz
Inverse-Gompertz	$\frac{1}{\sigma}exp\left\{\frac{x-m}{\sigma}\right\}/\left(exp\left\{e^{\frac{-(x-m)}{\sigma}}\right\}-1\right)$	invgompertz
Makeham	$ae^{bx} + c$	makeham0
Makeham	$\frac{1}{\sigma}exp\left\{\frac{x-m}{\sigma}\right\} + c$	makeham
Inverse-Makeham	$\frac{1}{\sigma}exp\left\{\frac{x-m}{\sigma}\right\}/\left(exp\left\{e^{\frac{-(x-m)}{\sigma}}\right\}-1\right)+c$	invmakeham
Opperman	$\frac{a}{\sqrt{x}} + b + c\sqrt[3]{x}$	opperman
Thiele	$a_1e^{-b_1x} + a_2e^{-\frac{1}{2}b_2(x-c)^2} + a_3e^{b_3x}$	thiele
Wittstein & Bumstead	$\frac{1}{m}a^{-(mx)^n} + a^{-(M-x)^n}$	wittstein
Weibull	$\frac{1}{\sigma} \left(\frac{x}{m}\right)^{\frac{m}{\sigma}} - 1$	weibull
Inverse-Weibull	$\frac{1}{\sigma} \left(\frac{x}{m} \right)^{-\frac{m}{\sigma} - 1} / \left(exp \left\{ \left(\frac{x}{m} \right)^{-\frac{m}{\sigma}} \right\} - 1 \right)$	invweibull
Siler	$a_1e^{-b_1t} + a_2 + a_3e^{b_3t}$	siler
Heligman - Pollard	$A^{(x+B)^C} + De^{-E(\ln x - \ln F)^2} + GH^x$	HP
Kannisto	$\frac{ae^{bx}}{1+ae^{bx}}+c$	kannisto
Carriere	$s(x) = \psi_1 s_1(x) + \psi_2 s_2(x) + \psi_3 s_3(x)$	carriere1

Figure 1: Observed and fitted death rates between age 0 and 80 for male population in Sweden. The mortality is extrapolated up to age 100.