DEFINITION: A function f is **continuous at** a provided: For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x-a| < \delta$ then f(x) is defined and $|f(x)-f(a)| < \varepsilon$.

THEOREM: If f is defined at a then f is continuous at a if and only if $\lim_{x \to a} f(x) = f(a)$.

THEOREM: If f and q are both continuous at a, and c is any constant, then

- (1) f + q is continuous at a.
- (2) cf is continuous at a.
- (3) fg is continuous at a.
- (4) f/g is continuous at a, provided $g(a) \neq 0$.

THEOREM: If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a.

It is tiresome to say "continuous at a for every $a \in \mathbb{R}$ ". The following definition is then convenient.

DEFINITION 29.1: Let I be an open interval of \mathbb{R} of the form $I=(a,b), I=(a,\infty), I=(-\infty,a),$ or $I = (-\infty, \infty) = \mathbb{R}$. We say f is **continuous on** I if f is continuous at a for all $a \in I$.

(1) Let

$$f(x) = \begin{cases} 2x & \text{if } x \ge 1\\ x+1 & \text{if } x < 1. \end{cases}$$

Use the $\varepsilon - \delta$ definition to show that f(x) is continuous at 1.

- (2) Which of the following functions are continuous on \mathbb{R} ?
 - $f(x) = \sqrt{x^2 + 5}$.

• Every polynomial function.

- $f(x) = \sqrt{x}$. $f(x) = \frac{1}{x}$.
- (3) Which of the following functions are continuous on $(0, \infty)$?
 - $f(x) = \sqrt{x^2 + 5}$.

• Every polynomial function.

- $f(x) = \sqrt{x}$. $f(x) = \frac{1}{x}$.
- (4) Prove that $j(x) = x \sin(1/x)$ is continuous¹ on \mathbb{R} .
- (5) Prove or disprove: If f and g are continuous at a, then f/g is continuous at a.
- (6) Prove or disprove: If f and g are two functions, $a \in \mathbb{R}$, and f(a) = g(a), then f is continuous at a if and only if g is continuous at a.
- (7) Prove or disprove: If f and g are two functions, a < b, and f(x) = g(x) for all $x \in (a, b)$, then f is continuous on (a, b) if and only if q is continuous on (a, b).

¹You can use without proof that sin(x) is continuous on \mathbb{R} .