

Proba de Avaliación do Bacharelato Código: 23 para o Acceso á Universidade

XULLO 2019

FÍSICA

Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dunha opción como solución ás cuestións. As respostas deben ser razoadas. O/A alumno/a elixirá unha das dúas opcións.

OPCIÓN A

- <u>C.1.</u> A distancia focal dun sistema formado por unha lente converxente de 2 dioptrías e outra diverxente de 4,5 dioptrías é: A) 2,5 m. B) -0,65 m. C) -0,4 m.
- <u>C.2.</u> As liñas de forza do campo eléctrico: A) Son pechadas. B) En cada punto son perpendiculares ás superficies equipotenciais. C) Poden cortarse.
- C.3. Unha partícula de masa *m* e carga *q* penetra nunha rexión onde existe un campo magnético uniforme de módulo *B* perpendicular á velocidade *v* da partícula. O raio da órbita descrita: A) Aumenta se aumenta a enerxía cinética da partícula. B) Aumenta se aumenta a intensidade do campo magnético. C) Non depende da enerxía cinética da partícula.
- C.4. Determina graficamente o índice de refracción dun vidro a partir da seguinte $\phi_{i}/^{\circ}$ a luz. Estima a súa $\phi_{r}/^{\circ}$ ϕ_{r}
- <u>P.1.</u> Considera dúas masas de 2 kg e 4 kg fixas sobre o eixe X na orixe e a x = 6 m, respectivamente. Calcula: a) As coordenadas dun punto no que o campo gravitacional resultante valla cero. b) O potencial gravitacional en x = 2 m;. c) O traballo realizado pola forza do campo gravitacional para levar unha masa de 6 kg desde ese punto ata o infinito. Interpreta o signo do resultado. DATO: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$.
- <u>P.2.</u> Ilumínase un metal con luz monocromática dunha certa lonxitude de onda. Se o traballo de extracción é de $4.8\cdot10^{-19}$ J e o potencial de freado é de 2.0 V, calcula: a) A velocidade máxima dos electróns emitidos. b) A lonxitude de onda da radiación incidente. c) Representa graficamente a enerxía cinética máxima dos electróns emitidos en función da frecuencia da luz incidente. DATOS: $|q_e| = 1.6\cdot10^{-19}$ C; $m_e = 9.1\cdot10^{-31}$ kg; $h = 6.63\cdot10^{-34}$ J·s⁻¹; c=3·10⁸ m·s⁻¹.

OPCIÓN B

- <u>C.1.</u> O $_{90}^{232}$ Th desintégrase emitindo 6 partículas α e 4 partículas β , o que dá lugar a un isótopo estable do chumbo de número atómico: A) 82. B) 78. C) 74.
- <u>C.2.</u> A expresión que relaciona a enerxía mecánica dun satélite que describe unha órbita circular arredor dun planeta e a súa enerxía potencial é: A) $E_m = -E_p$. B) $E_m = -\frac{1}{2} E_p$. C) $E_m = \frac{1}{2} E_p$.
- <u>C.3.</u> Unha superficie plana separa dous medios de índices de refracción distintos n_1 e n_2 . Un raio de luz incide desde o medio de índice n_1 . Razoa cal das afirmacións seguintes é verdadeira: A) O ángulo de incidencia é maior que o ángulo de reflexión. B) Os ángulos de incidencia e de refracción son sempre iguais. C) Se $n_1 < n_2$ non se produce reflexión total.
- <u>C.4.</u> Na práctica de óptica xeométrica traballas con lentes converxentes e obtés imaxes nunha pantalla variando a distancia entre o obxecto e a lente. Xustifica con diagramas de raios os casos nos que non obtés imaxes na pantalla.
- <u>P.1.</u> Un electrón acelérase desde o repouso mediante unha diferenza de potencial de $1,0\cdot10^3$ V, penetrando a continuación, perpendicularmente, nun campo magnético uniforme de 0,20 T. Calcula: a) A velocidade do electrón ao entrar no campo magnético. b) O raio da traxectoria do electrón. c) O módulo, a dirección e o sentido do campo eléctrico uniforme necesario para que o electrón non experimente desviación ao seu paso pola rexión na que existen o campo eléctrico e o magnético. DATOS: $q_e = -1,6\cdot 10^{-19}$ C; $m_e = 9,1\cdot10^{-31}$ kg.
- <u>P.2.</u> Nunha corda propágase unha onda dada pola ecuación y(x, t) = 0.04 sen 2π (2 x 4 t), onde as lonxitudes exprésanse en metros e o tempo en segundos. Calcula: a) A frecuencia, o número de onda, a lonxitude de onda e a velocidade de propagación da onda. b) A diferenza de fase, nun instante determinado, entre dous puntos da corda separados 1 m e comproba se devanditos puntos están en fase ou en oposición. c) Os módulos da velocidade e aceleración máximas de vibración dos puntos da corda.

Solucións

OPCIÓN A

- C.1. A distancia focal dun sistema formado por unha lente converxente de 2 dioptrías e outra diverxente de 4,5 dioptrías é:

- A) 2,5 m.
- B) -0,65 m. C) -0,4 m.

(A.B.A.U. extr. 19)

Solución: C

Como non dan a distancia entre as lentes, supoño que están unidas. Nese caso:

$$P = P_1 + P_2 = 2 + (-4,5) = -2,5$$
 dioptrías

$$P = \frac{1}{f} \Rightarrow f = \frac{1}{P} = \frac{1}{-2.5 \text{ [m}^{-1}]} = -0.4 \text{ m}$$

- C.2. As liñas de forza do campo eléctrico:
 - A) Son pechadas.
 - B) En cada punto son perpendiculares ás superficies equipotenciais.
 - C) Poden cortarse.

(A.B.A.U. extr. 19)

Solución: B

As superficies equipotenciais son aquelas formadas polos puntos nos que o potencial eléctrico vale o mesmo. Se o campo eléctrico non fose perpendicular á superficie, tería unha compoñente paralela a ela e, ao colocar unha carga eléctrica nun punto da superficie sufriría unha forza e desprazaríase. Pero isto non ocorre porque as cargas só se desprazan se hai unha diferenza de potencial, que non é o caso.

As outras opcións.

A. Falsa. As liñas de forza dun campo electrostático xorden das cargas positivas (fontes) e terminan nas cargas negativas (sumidoiros). Son abertas.

C. Falsa. Por definición, as liñas de forza debúxanse de forma que o campo eléctrico sexa tanxente a elas en cada punto. O campo eléctrico nun punto é único. Se as liñas de forza cortásense, habería dúas tanxentes e dous vectores de campo eléctrico.

- C.3. Unha partícula de masa *m* e carga *q* penetra nunha rexión onde existe un campo magnético uniforme de módulo *B* perpendicular á velocidade *v* da partícula. O raio da órbita descrita:
 - A) Aumenta se aumenta a enerxía cinética da partícula.
 - B) Aumenta se aumenta a intensidade do campo magnético.
 - C) Non depende da enerxía cinética da partícula.

(A.B.A.U. extr. 19)

Solución: B

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe traxectoria circular con velocidade de valor constante xa que a aceleración só ten compoñente normal a_N .

Se só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_{B}$$

Aplicándoa 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética quedaría:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se as partículas entran perpendicularmente ao campo, sen $\varphi=1$. Despexando o raio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

Se aumenta a enerxía cinética, aumenta a velocidade e, como se ve na ecuación anterior, aumenta tamén o raio da traxectoria.

N.° exp. 1 2 3 4 C.4. Determina graficamente o índice de refracción dun vidro a partir da se- φ_i /° 10,0 20,0 30,0 40,0 guinte táboa de valores dos ángulos de incidencia, φ_i , e de refracción, φ_r , φ_r /° 6,5 13,5 20,3 25,5

Solución:

<u>DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO</u> en <u>Prácticas</u>: <u>Orientacións xerais</u> do *Grupo de Traballo*.

A lei de Snell pode resumirse na ecuación:

da luz. Estima a súa incerteza.

$$n_{\rm i} \cdot {\rm sen} \ \varphi_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \varphi_{\rm r}$$

Se o medio de incidencia é o aire, $n_i = 1$, o índice de refracción do vidro será

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}}$$

Se se fai unha representación gráfica de sen φ_r fronte a sen φ_i , a pendente da gráfica será a inversa do índice de refracción.

sen
$$\varphi_r = (1 / n_r) \cdot \text{sen } \varphi_i$$

Faise unha táboa calculando os senos dos ángulos de incidencia e refracción.

N.º exp.	$arphi_{i}/^{\circ}$	$arphi_{ m r}/^\circ$	sen $arphi_{i}$	sen $arphi_{ m r}$
1	10	6,5	0,174	0,113
2	20	13,5	0,342	0,233
3	30	20,3	0,500	0,347
4	40	25,5	0,643	0,431

Nunha folla de cálculo represéntanse nunha gráfica sen φ_r fronte a sen φ_i e trázase a liña de tendencia que pasa pola orixe de coordenadas.

A inversa da pendente será o índice de refracción:

$$n_{\rm r} = \frac{{\rm sen}\,\varphi_{\rm i}}{{\rm sen}\,\varphi_{\rm r}} = \frac{1}{0.678} = 1.47$$

A incerteza depende da incerteza das medidas (medio grao?) e do cálculo. O máis sinxelo é poñelo en función das cifras significativas.

$$n_{\rm r} = 1.47 \pm 0.01$$

Se non se ten unha folla de cálculo trázase a ollo a recta polos puntos. Nese caso a incerteza vai ser moito maior.

$$n_{\rm r} = 1.5 \pm 0.1$$

- P.1. Considera dúas masas de 2 kg e 4 kg fixas sobre o eixe X na orixe e a x = 6 m, respectivamente. Calcu
 - a) As coordenadas dun punto no que o campo gravitacional resultante valla cero
 - b) O potencial gravitacional en x = 2 m.
 - c) O traballo realizado pola forza do campo gravitacional para levar unha masa de 6 kg desde ese punto ata o infinito. Interpreta o signo do resultado.

DATO:
$$G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$$
.

(A.B.A.U. extr. 19)

Rta.: a)
$$x = 2.5$$
 m; b) $V = -1.3 \cdot 10^{-10}$ J/kg; c) $W = -8.0 \cdot 10^{-10}$ J.

Datos

Masa na orixe

Masa no eixo X

Coordenada x da masa na orixe

Coordenada x da masa no eixo X

Coordenada x para calcular o potencial

Masa que se leva ao infinito

Constante da gravitación universal

Incógnitas

Coordenadas dun punto no que o campo gravitacional resultante valla cero

Potencial gravitacional en x = 2 m

Traballo da forza do campo para levar 6 kg desde x = 2 m ata o infinito

Ecuacións

Lei de Newton da gravitación universal

(forza que exerce cada masa puntual sobre cada unha das outras)

Intensidade do campo gravitacional que exerce unha masa M puntual nun punto a unha distancia r

Potencial gravitacional nun punto debido a unha masa M que dista r do punto

Enerxía potencial gravitacional (referida ao infinito)

Traballo do campo cando se despraza unha masa desde o punto 1 ao punto 2

Cifras significativas: 3 $M_0 = 2,00 \text{ kg}$

 $M_1 = 4,00 \text{ kg}$

 $x_0 = 0 \text{ m}$

 $x_1 = 6,00 \text{ m}$

 $x_2 = 2,00 \text{ m}$

m = 6,00 kg

 $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

x, *y* V_2

$$\vec{F}_{G} = -G \frac{M \cdot m}{r^2} \vec{u}_{r}$$

$$\vec{g} = \frac{\vec{F}_{G}}{m} = -G \frac{M}{r^{2}} \vec{u}_{r}$$

$$V = -G \frac{M}{r}$$

$$E_{p} = m \cdot V = -G \frac{M \cdot m}{r}$$

$$W_{1\to 2} = E_{p1} - E_{p2} = -\Delta E_{p}$$

Solución:

a) O punto deberá estar no eixe X entre as dúas masas. A súa coordenada γ será $\gamma = 0$.

O principio de superposición di que a intensidade de campo gravitacional nun punto, debido á presencia de varias masas, é a suma vectorial dos campos producidos Y 0 X

nese punto por cada masa, coma se o resto das masas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada masa, e despois súmanse os vectores.

A forza de atracción gravitacional entre dúas masas puntuais ou esféricas, M e m, vén dada pola lei da gravitación de Newton. G é a constante da gravitación universal e u_r o vector unitario na liña que une as ma-

$$\vec{F} = -G \frac{M \cdot m}{r^2} \vec{u}_r$$

O campo gravitacional nun punto situado a unha distancia, r, dunha masa puntual, M, é a forza sobre a unidade de masa situada nese punto.

$$\vec{g} = \frac{\vec{F}}{m} = \frac{-G\frac{M \cdot m}{r^2} \vec{u}_r}{m} = -G\frac{M}{r^2} \vec{u}_r$$

Para calcular a súa coordenada x. escríbense as expresións dos campos gravitacionais creados nese punto polas masas, e aplícase a condición de que o campo resultante é nulo.

O campo gravitacional nese punto creado pola masa situada na orixe é:

$$\vec{g}_0 = -G \frac{M_0}{r_0^2} \vec{u}_r = -6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \frac{2.00 \left[\text{kg} \right]}{x^2} \vec{i} = \frac{-1.33 \cdot 10^{-10}}{x^2} \vec{i} \text{ m/s}^2$$

O campo gravitacional nese punto creado pola masa situada en $x_1 = 6$ [m] é:

$$\vec{g}_1 = -G \frac{M_1}{r_1^2} \vec{u}_r = -6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \frac{4.00 \left[\text{kg} \right]}{(6.00 - x)^2} (-\vec{i}) = \frac{2.67 \cdot 10^{-10}}{(6.00 - x)^2} \vec{i} \text{ m/s}^2$$

Polo principio de superposición, o campo gravitacional é a suma vectorial dos dous campos.

$$\frac{\overline{g} = \overline{g}_0 + \overline{g}_1 = \overline{0}}{x^2} + \frac{2,67 \cdot 10^{-10}}{(6,00-x)^2} = 0$$

$$\frac{(6,00-x)^2}{x^2} = \frac{2,67 \cdot 10^{-10}}{1,33 \cdot 10^{-10}} = 2,00$$

$$6,00 - x = \pm \sqrt{2,00} x$$

$$x = \frac{6,00}{1 + \sqrt{2,00}} = 2,48 \text{ m}$$

Análise: A solución é aceptable, posto que se atopa entre as dúas masas. A outra solución,

 $x = \frac{6,00}{1 - \sqrt{2,00}} = -14,5 \text{ m}$ estaría nun punto no que ambos os campos serían do mesmo sentido e non se anularían.

O potencial gravitacional nun punto, debido á presencia de varias masas, é a suma dos potenciais producidos nese punto por cada masa, coma se o resto das masas non estivese presente.

Para determinar o potencial gravitacional nun punto, calcúlanse os potenciais creados nese punto por cada masa, e despois súmanse.

A ecuación do potencial gravitacional, V, nun punto situado a unha distancia, r, dunha masa puntual, Q, é:

$$V = -G \frac{M}{r}$$

G é a constante da gravitación universal.

b) Calcúlase o potencial gravitacional no punto x = 2 [m] creado pola masa situada na orixe:

$$V_0 = -G \frac{M_0}{r_0} = -6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \frac{2.00 \left[\text{kg} \right]}{2.00 \left[\text{m} \right]} = -6.67 \cdot 10^{-11} \text{ J/kg}$$

Calcúlase o potencial gravitacional no punto x = 2 [m] creado pola masa situada no punto x = 6 [m]:

$$V_1 = -G \frac{M_1}{r_1} = -6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \frac{4.00 \left[\text{kg} \right]}{6.00 - 2.00 \left[\text{m} \right]} = -6.67 \cdot 10^{-11} \text{ J/kg}$$

O potencial gravitacional é a suma.

$$V = V_0 + V_1 = (-6.67 \cdot 10^{-11} [J/kg]) + (-6.67 \cdot 10^{-11} [J/kg]) = -1.33 \cdot 10^{-10} J/kg$$

O campo gravitacional é un campo conservativo, porque o traballo realizado pola forza do campo, cando unha masa se move entre dous puntos, é independente do camiño seguido e depende só dos puntos inicial e final. Defínese unha función escalar chamada enerxía potencial, E_p , asociada ao campo vectorial de forzas, de tal xeito que o traballo realizado pola forza do campo ao mover unha masa entre dous puntos é igual á variación da enerxía potencial entre estes dous puntos, cambiada de signo.

$$W = -\Delta E_{\rm p}$$

Tamén se define outra magnitude escalar, chamada potencial gravitacional, que é igual á enerxía potencial da unidade de masa.

$$V = \frac{E_{\rm p}}{m}$$

O traballo realizado pola forza de campo, cando unha masa se move do punto A ao punto B, é:

$$W_{A\to B} = -\Delta E_p = -(E_{pB} - E_{pA}) = (E_{pA} - E_{pB}) = m \cdot V_A - m \cdot V_B = m (V_A - V_B)$$

c) Por definición, a enerxía potencial (e o potencial) no infinito é nula, polo que o traballo da resultante das forzas gravitacionais cando se leva a masa en x = 2 [m] ata o infinito é:

$$W_{2\to\infty} = -\Delta E_{\rm p} = -(E_{\rm p\infty} - E_{\rm p2}) = E_{\rm p2} - E_{\rm p\infty} = E_{\rm p2} = m \cdot V_2 = 6,00 \text{ [kg]} \cdot (-1,33 \cdot 10^{-10} \text{ [J/kg]}) = -8,00 \cdot 10^{-10} \text{ J}$$

O traballo das forzas gravitacionais é negativo, (a forza do campo oponse ao desprazamento cara ao infinito) e o traballo deberá facelo algunha forza externa.

- P.2. Ilumínase un metal con luz monocromática dunha certa lonxitude de onda. Se o traballo de extracción é de 4,8·10⁻¹⁹ J e o potencial de freado é de 2,0 V, calcula:
 - a) A velocidade máxima dos electróns emitidos.
 - b) A lonxitude de onda da radiación incidente.
 - c) Representa graficamente a enerxía cinética máxima dos electróns emitidos en función da frecuencia da luz incidente.

DATOS: $|q_e| = 1,6 \cdot 10^{-19} \text{ C}$; $m_e = 9,1 \cdot 10^{-31} \text{ kg}$; $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}^{-1}$; $c = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$. (A.B.A.U. extr. 19) **Rta.:** a) $v = 8,4 \cdot 10^5 \text{ m/s}$; b) $\lambda = 250 \text{ nm}$.

Cifras significativas: 2

Dutos	Cijius signijicunivus. 2
Traballo de extracción do metal	$W_{\rm e} = 4.8 \cdot 10^{-19} {\rm J}$
Potencial de freado	V = 2,0 V
Constante de Planck	$h = 6.63 \cdot 10^{-34} \text{J} \cdot \text{s}$
Velocidade da luz no baleiro	$c = 3.0 \cdot 10^8 \text{ m/s}$
Carga do electrón	$ e = 1.6 \cdot 10^{-19} \text{ C}$
Masa do electrón	$m_{\rm e} = 9.1 \cdot 10^{-31} {\rm kg}$
Incógnitas	
Velocidade máxima dos electróns emitidos	ν
Lonxitude de onda da radiación incidente	λ
Ecuacións	
Ecuación de Planck (enerxía do fotón)	$E_{\mathrm{f}} = h \cdot f$
Ecuación de Einstein do efecto fotoeléctrico	$E_{ m f}=W_{ m e}+E_{ m c}$
Relación entre a frecuencia dunha onda luminosa e a lonxitude de onda	$f = c / \lambda$
Enerxía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$
Relación entre a enerxía cinética dos electróns e o potencial de freado	$E_c = e \cdot V$

Solución:

Datos

a) A enerxía cinética máxima dos electróns emitidos calcúlase a partir do potencial de freado:

$$E_{\rm c} = |e| \cdot V = 1.6 \cdot 10^{-19} [\rm C] \cdot 2.0 [\rm V] = 3.2 \cdot 10^{-19} \rm J$$

A velocidade calcúlase a partir da expresión da enerxía cinética:

$$E_{\rm c} = \frac{1}{2} m \cdot v^2 \Rightarrow v = \sqrt{\frac{2 E_{\rm c}}{m}} = \sqrt{\frac{2 \cdot 3.2 \cdot 10^{-20} \text{ [J]}}{9.1 \cdot 10^{-31} \text{ [kg]}}} = 8.4 \cdot 10^5 \text{ m/s}$$

b) Calcúlase a enerxía da radiación empregando a ecuación de Einstein do efecto fotoeléctrico

$$E_{\rm f} = W_{\rm e} + E_{\rm c} = 4.8 \cdot 10^{-19} \, [\rm J] + 3.2 \cdot 10^{-19} \, [\rm J] = 8.0 \cdot 10^{-19} \, \rm J$$

A frecuencia dos fotóns incidentes calcúlase usando a ecuación de Planck:

$$E_{\rm f} = h \cdot f \Rightarrow f = \frac{E_{\rm f}}{h} = \frac{8.0 \cdot 10^{-19} \,[\,\text{J}\,]}{6.63 \cdot 10^{-34} \,[\,\text{J} \cdot \text{s}\,]} = 1.2 \cdot 10^{15} \,\text{s}^{-1} = 1.2 \cdot 10^{15} \,\text{Hz}$$

A lonxitude de onda dos fotóns calcúlase usando a relación entre a frecuencia e a lonxitude de onda:

$$f = \frac{c}{\lambda} \Rightarrow \lambda = \frac{c}{f} = \frac{3.0 \cdot 10^8 [\text{m/s}]}{1.2 \cdot 10^{15} \text{ s}^{-1}} = 2.5 \cdot 10^{-7} \text{ m} = 250 \text{ nm}$$

c) Calcúlase a frecuencia limiar combinando as ecuacións de Planck e Einstein:

 $W_{\rm e} = h \cdot f_{\rm o}$

$$f_0 = \frac{W_e}{h} = \frac{4.8 \cdot 10^{-19} \text{ J}}{6.63 \cdot 10^{-24} \text{ J} \cdot \text{s}} = 7.2 \cdot 10^{14} \text{ s}^{-1}$$

Por debaixo da frecuencia limiar non hai electróns. Faise unha táboa con valores da frecuencia maiores ao valor da frecuencia limiar, e calcúlase a enerxía cinética dos electróns coa ecuación de Einstein do efecto fotoeléctrico. A gráfica podería ser como a seguinte:

OPCIÓN B

- C.1. O $_{90}^{232}$ Th desintégrase emitindo 6 partículas α e 4 partículas β , o que dá lugar a un isótopo estable do chumbo de número atómico:
 - A) 82.
 - B) 78.
 - C) 74.

(A.B.A.U. extr. 19)

Solución: A

As partículas alfa son núcleos de helio ⁴He, as partículas beta electróns - ⁰te e as radiacións gamma fotóns ⁰γ. Escribindo a reacción nuclear:

$$^{232}_{90}$$
Th $\rightarrow 6^{4}_{2}$ He + 4^{0}_{-1} e + $^{A}_{Z}$ D

Aplicando os principios de conservación do número bariónico (ou número másico) e da carga, queda:

$$232 = 6 \cdot 4 + A \Longrightarrow A = 208$$

$$90 = 6 \cdot 2 + 4 \cdot (-1) + Z \Longrightarrow Z = 82$$

- C.2. A expresión que relaciona a enerxía mecánica dun satélite que describe unha órbita circular arredor dun planeta e a súa enerxía potencial é:
 - A) $E_{\rm m} = -E_{\rm p}$.
 - B) $E_{\rm m} = -\frac{1}{2} E_{\rm p}$.
 - C) $E_{\rm m} = \frac{1}{2} E_{\rm p}$.

(A.B.A.U. extr. 19)

Solución: C

A enerxía cinética dun obxecto de masa m, que se move con velocidade v, é directamente proporcional ao cadrado da súa velocidade.

$$E_{\rm c} = \frac{1}{2} m \cdot v^2$$

A enerxía potencial gravitacional dun satélite de masa m, que xira arredor dun astro de masa M, nunha órbita de radio r, é inversamente proporcional ao raio da órbita.

$$E_{\rm p} = -G \frac{M \cdot m}{r}$$

Onde G é a constante da gravitación universal.

A enerxía mecánica de un corpo de masa m, que se atopa en órbita de raio r arredor dun astro de masa M, é a suma das súas enerxías cinética e potencial.

$$E = E_{c} + E_{p} = \frac{1}{2} m \cdot v^{2} + \left(-G \frac{M \cdot m}{r} \right)$$

A <u>velocidade dun satélite</u> que xira a unha distancia r arredor dun astro de masa M é:

$$v = \sqrt{\frac{G \cdot M}{r}}$$

Substituíndo v^2 , a expresión da enerxía cinética queda:

$$E_{c} = \frac{1}{2} m \cdot v^{2} = \frac{1}{2} G \frac{M \cdot m}{r}$$

A expresión da enerxía mecánica queda:

$$E = E_{c} + E_{p} = \frac{1}{2} m \cdot v^{2} - G \frac{M \cdot m}{r} = \frac{1}{2} G \frac{M \cdot m}{r} - G \frac{M \cdot m}{r} = -\frac{1}{2} G \frac{M \cdot m}{r}$$

A enerxía mecánica dun satélite en órbita é igual á metade da súa enerxía potencial.

$$E = \frac{1}{2}E_{\rm p}$$

- C.3. Unha superficie plana separa dous medios de índices de refracción distintos n_1 e n_2 . Un raio de luz incide desde o medio de índice n_1 . Razoa cal das afirmacións seguintes é verdadeira:
 - A) O ángulo de incidencia é maior que o ángulo de reflexión.
 - B) Os ángulos de incidencia e de refracción son sempre iguais.
 - C) Se $n_1 < n_2$ non se produce reflexión total.

(A.B.A.U. extr. 19)

Solución: C

Para que exista reflexión total a luz debe pasar dun medio máis denso opticamente (con maior índice de refracción) a un menos denso.

Pola lei de Snell

$$n_1 \cdot \text{sen } \theta_1 = n_2 \cdot \text{sen } \theta_2$$

O ángulo límite é o ángulo de incidencia para o que o ángulo de refracción vale 90°.

$$n_1 \cdot \text{sen } \lambda_1 = n_2 \cdot \text{sen } 90^\circ = n_2$$

Se $n_2 > n_1$ entón:

$$sen \lambda_1 = n_2 / n_1 > 1$$

É imposible. O seno dun ángulo non pode ser maior que uno.

C.4. Na práctica de óptica xeométrica traballas con lentes converxentes e obtés imaxes nunha pantalla variando a distancia entre o obxecto e a lente. Xustifica con diagramas de raios os casos nos que non obtés imaxes na pantalla.

Solución:

Se colocamos o obxecto a unha distancia igual á distancia focal non se forma imaxe porque os raios saen paralelos despois de atravesar a len-

Se colocamos o obxecto a unha distancia menor que a distanciafocal non se forma imaxe na pantalla porque os raios non se cortan despois de atravesar a lente. Prolongando os raios obtemos un punto de corte que

corresponde á imaxe virtual, que non se ve na pantalla,

- P.1. Un electrón acelérase desde o repouso mediante unha diferenza de potencial de 1,0·10³ V, penetrando a continuación, perpendicularmente, nun campo magnético uniforme de 0,20 T. Calcula:
 - a) A velocidade do electrón ao entrar no campo magnético.
 - b) O raio da traxectoria do electrón.
 - c) O módulo, a dirección e o sentido do campo eléctrico uniforme necesario para que o electrón non experimente desviación ao seu paso pola rexión na que existen o campo eléctrico e o magnético. (A.B.A.U. extr. 19)

DATOS:
$$q_e = -1.6 \cdot 10^{-19} \text{ C}$$
; $m_e = 9.1 \cdot 10^{-31} \text{ kg}$.

Rta.: a) $v = 1.9 \cdot 10^7 \text{ m/s}$; b) $r = 5.4 \cdot 10^{-4} \text{ m}$; c) $|E| = 3.8 \cdot 10^6 \text{ N/C} \perp \overline{v} \perp \overline{B}$.

Datos	Cifras significativas: 2
Diferenza de potencial de aceleración	$V = 1.0 \cdot 10^3 \text{ V}$
Valor da intensidade do campo magnético	B = 0.20 T
Carga do electrón	$q = -1.60 \cdot 10^{-19} \text{ C}$
Ángulo entre a velocidade do protón e o campo magnético	$\varphi = 90^{\circ}$
Masa do electrón	$m = 9.1 \cdot 10^{-31} \text{ kg}$
Incógnitas	
Velocidade do electrón	ν
Radio da traxectoria circular	$\frac{R}{E}$
Vector campo eléctrico que anule o efecto do campo magnético	$\overline{m{E}}$
Outros símbolos	
Valor da forza magnética sobre o electrón	F_B
Período do movemento circular	T
Enerxía (cinética) do protón	$E_{\mathbf{c}}$

Ecuacións

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$ rior dun campo magnético, \overline{B} , cunha velocidade, \overline{v}

Aceleración normal (nun movemento circular de raio R)	$a_{\rm N} = \frac{v^2}{R}$
2.ª lei de Newton da Dinámica	$\Sigma \overline{F} = m \cdot \overline{a}$
Velocidade nun movemento circular uniforme de raio ${\cal R}$	$v = \frac{2\pi \cdot R}{T}$
Traballo do campo eléctrico	$W(eléctrico) = q \cdot \Delta V$
Traballo da forza resultante	$W = \Delta E_{\rm c}$
Enerxía cinética	$rac{E_{ m c}}{m{F}_{\!\scriptscriptstyle E}} = rac{1\!\!/_{\!\! 2}}{q} \cdot rac{m{m}}{m{E}} \cdot m{v}^2$
Forza, \overline{F}_E , exercida por un campo electrostático, \overline{E} , sobre unha carga, q	$\overline{m{F}}_{\!E}=m{q}\cdot\overline{m{E}}$

Solución:

a) Para calcular a velocidade temos que ter en conta que ao acelerar o electrón cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética:

$$W(\text{eléctrico}) = |q| \cdot \Delta V = \Delta E_{c} = \frac{1}{2} m_{p} v^{2} - \frac{1}{2} m_{p} v_{0}^{2}$$

Se parte do repouso, $v_0 = 0$. A velocidade final é:

$$v = \sqrt{\frac{2|q| \cdot \Delta V}{m_{\rm p}}} = \sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} [{\rm C}] \cdot 1.0 \cdot 10^{3} [{\rm V}]}{9.1 \cdot 10^{-31} [{\rm kg}]}} = 1.9 \cdot 10^{7} {\rm m/s}$$

Análise: A velocidade é moi alta, pero non tanto que haxa que facer correccións relativistas.

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o electrón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N .

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio, R:

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{9.1 \cdot 10^{-31} [\text{kg}] \cdot 1.9 \cdot 10^7 [\text{m/s}]}{1.6 \cdot 10^{-19} [\text{C}] \cdot 0.20 [\text{T}] \cdot \text{sen } 90^{\circ}} = 5.3 \cdot 10^{-4} \text{ m} = 0.53 \text{ mm}$$

Y+ *X*+

Análise: O raio ten un valor demasiado pequeno, menos dun milímetro.

c) Se actúa unha forza eléctrica que anula a magnética,

$$\overline{F}_B + \overline{F}_E = q (\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

O campo eléctrico debe valer, en módulo:

$$|\overline{E}| = |-(\overline{v} \times \overline{B})| = 1.9 \cdot 10^7 \text{ [m/s]} \cdot 0.20 \text{ [T]} \cdot \text{sen } 90^\circ = 3.8 \cdot 10^6 \text{ N/C}$$

A dirección ten que ser a do produto $(\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}})$, perpendicular ao vector velocidade e perpendicular ao vector campo magnético.

O sentido ten que ser oposto ao da forza magnética. Poñamos o caso de que a velocidade é paralela ao eixe Y en sentido negativo e o campo magnético é paralelo ao eixe Z en sentido negativo, a forza magnética estará na dirección do eixe X en sentido negativo:

$$\overline{F}_B = q (\overline{v} \times \overline{B}) = -q v B (-\overline{j} \times -\overline{k}) = -q v B \overline{i}$$

A forza eléctrica deberá estar na mesma dirección pero en sentido contrario.

$$\overline{F}_{E} = -\overline{F}_{B} = q v B \overline{i}$$

Pero como a carga do electrón é negativa, o campo eléctrico deberá ser de sentido oposto ao da forza

$$\overline{E} = \overline{F}_E / (-q) = -v B \overline{i}$$

P.2. Nunha corda propágase unha onda dada pola ecuación y(x, t) = 0.04 sen 2 π (2 x – 4 t), onde as lonxitudes exprésanse en metros e o tempo en segundos. Calcula:

- b) A diferenza de fase, nun instante determinado, entre dous puntos da corda separados 1 m e comproba se devanditos puntos están en fase ou en oposición.
- c) Os módulos da velocidade e aceleración máximas de vibración dos puntos da corda.

(A.B.A.U. extr. 19)

Rta.: a) f = 4 Hz; k = 12.5 m⁻¹; $\lambda = 0.5$ m; $v_p = 2$ m/s; b) $\Delta \varphi = 4$ π rad; c) v = 1.01 m/s; a = 25.3 m/s².

DatosCifras significativas: 3Ecuación da onda $y = 0,0400 \text{ sen } 2\pi (2,00 \text{ } x - 4,00 \text{ } t) \text{ [m]}$ Distancia entre os puntos $\Delta x = 1,00 \text{ m}$ IncógnitasVelocidade de propagación ν_p Diferenza de fase entre dous puntos separados 1 m $\Delta \varphi$ Outros símbolos $\nabla \varphi$ Pulsación (frecuencia angular) ω

DatosCifras significativas: 3FrecuenciafLonxitude de onda λ Número de ondak

Ecuacións

Ecuación dunha onda harmónica unidimensional

Número de onda

Relación entre a frecuencia angular e a frecuencia

Relación entre a lonxitude de onda e a velocidade de propagación

 $y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$ $k = 2 \pi / \lambda$ $\omega = 2 \pi \cdot f$ $v_p = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$

$$y = 0.0400 \text{ sen } 2\pi (2.00 \text{ } x - 4.00 \text{ } t) = 0.0400 \cdot \text{sen} (-8.00 \cdot \pi \cdot t + 4.00 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular: Número de onda:

$$\omega = 8,00 \cdot \pi \text{ [rad/s]} = 25,1 \text{ rad/s}$$

 $k = 4,00 \cdot \pi \text{ [rad/m]} = 12,6 \text{ rad/m}$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{8,00 \cdot \pi \,[\text{rad} \cdot \text{s}^{-1}]}{2\pi \,[\text{rad}]} = 4,00 \,\text{s}^{-1} = 4,00 \,\text{Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi \text{ [rad]}}{4,00 \cdot \pi \text{ [rad·m}^{-1]}} = 0,500 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0,500 \text{ [m]} \cdot 4,00 \text{ [s}^{-1}] = 2,00 \text{ m} \cdot \text{s}^{-1}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = [2 \pi (-4,00 \cdot t + 2,00 \cdot x_2)] - [4 \pi (2 \pi (-4,00 \cdot t + 2,00 \cdot x_1))] = 2 \pi \cdot 2,00 \cdot (x_1 - x_2) = 2 \pi \cdot 2,00 \cdot \Delta x$$

$$\Delta \varphi = 2 \pi \cdot 2,00 \cdot 1,00 = 4,00 \pi \text{ rad}$$

Análise: A distancia entre os puntos é 1,00 m que é o dobre da lonxitude de onda. Como os puntos que están en fase ou cuxa diferencia de fase é múltiplo de 2π atópanse a unha distancia que é múltiplo da lonxitude de onda, unha distancia de dúas veces a lonxitude de onda corresponde a unha diferenza de fase dobre de 2π , ou sexa. 4π rad.

Os dous puntos atópanse en fase.

c) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[0.040 \text{ Gen } 2\pi(2.00 \cdot x - 4.00 \cdot t)\right]}{\mathrm{d}t} = 0.040 \cdot 2\pi \cdot (-4.00) \cdot \cos(2\pi(2.00 \cdot x - 4.00 \cdot t)) \left[\text{m/s}\right]$$

$$v = -1.01 \cos 2\pi (2.00 x - 4.00 t) [m/s]$$

A velocidade é máxima cando $cos(\varphi) = -1$

$$v_{\rm m} = 1.01 \; {\rm m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[-1,01\cos 2\pi(2,00\cdot x - 4,00\cdot t)\right]}{\mathrm{d} t} = -1,01\cdot 2\pi \cdot (-4,00)\cdot \mathrm{sen}\left(2\pi(2,00\cdot x - 4,00\cdot t)\right) \left[\mathrm{m/s}^{2}\right]$$

$$a = 25.3 \cdot \text{sen}(-3.00 \cdot t + 2.00 \cdot x) \text{ [m/s}^2$$

A aceleración é máxima cando sen(φ) = 1

$$a_{\rm m} = 25,3 \text{ m/s}^2$$

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de *traducindote*, de Óscar Hermida López.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 20/02/24