Structural Comparison

Eugene Gladyshev

Abstract

This article describes a generic algorithm for comparing patterns.

1 Problem

Given a model vector for example: $\mathbf{a} = \{5, 7, 10, 2\}$, assign a similarity score to other vectors of the same size such as, $\mathbf{b} = \{0, 5, 7, 3\}$. One way of doing it is to use statistical methods.

- Take the difference vector $\boldsymbol{x} = \sum_{i=0}^{N-1} (b_i a_i)$.
- Calculate expectation: $\overline{x} = \frac{\sum\limits_{i=0}^{N-1} x_i}{N}$.
- Score as the standard deviation: $score = \sqrt{\frac{\sum\limits_{i=0}^{N-1}(x_i-\overline{x})^2}{N}}$. Where the smallest score indicates the best match.

Obviously, it doesn't work too well for discovering patterns especially for small vectors. If we take a look at the graphs of the model vector \boldsymbol{a} and vector \boldsymbol{b} and another vector $\boldsymbol{c} = \{8,7,7,2\}$, it appears that \boldsymbol{a} and \boldsymbol{b} should produce a better pattern match than \boldsymbol{a} and \boldsymbol{c} .

Figure 1: Vector \boldsymbol{a}

Figure 2: Vector \boldsymbol{b}

Figure 3: Vector \boldsymbol{c}

The statistical method gives the following scores:

- The score for the pair, a, b equal 4.75.
- The score for the pair, a, c equal 3.1875.

It says that a, c is a better match but it doesn't seem very natural.

2 Solution

The simple idea is to score the vector pairs based on their structure instead of differences in values. The process of sorting is employed to reveal the structural similarities.

- Transform the model vector, \boldsymbol{a} into a vector of pairs $\boldsymbol{A} = \{a_i, i\}$. It's a map of elements to their own index.
- Sort \boldsymbol{A} by the first field, a_i .
- \bullet Do the same steps with the second vector, $\pmb{b}.$ We now have two new vectors, \pmb{A} and $\pmb{B}.$

- For each A_i , take the second field $v_i = secondfield(A_i)$.
- Find v_i in among the second fields in \boldsymbol{B} , take the index of the found element in \boldsymbol{B} , $x_i = indexof\{B : secondfield(B) = v_i\}$
- We consider i and x_i as coordinates in an N- dimensional space, where $N = sizeof(\mathbf{A}) = sizeof(\mathbf{B})$.
- The comparison score is the distance between vectors \boldsymbol{I} and \boldsymbol{X} , $score = \sqrt{\sum_{i=0}^{N-1} (i-x_i)^2}$. The smaller score indicates a better match.

The given method produces the following scores for the three sample vectors: a, b, c.

- The score for the pair, a, b equal 1.41421.
- The score for the pair, a, c equal 2.44949.

The scores seem more natural indicating a and b as a better match. The structural comparison may be complementary to other methods.

Listing 1: Pseudocode for structural comparison

```
input vectors a, b;
declare vectors A, B
N = sizeof(a);
assert(N = sizeof(b));
for (i=0; i < N; i++) {
  A.\,add\_element\left(\left\{\,a\left[\,\,i\,\,\right]\,,\  \  \, i\,\right\}\right)\,;
  B. add_element({b[i], i});
}
sort(A);
sort (B);
score = 0;
for (i = 0; i < N; i++) {
  v = A[i].second_field;
  x = indexof(find_by_second_field(B, v));
  score = score + (i - x)^2;
}
return score;
```