COM S 6810 Theory of Computing

April 23, 2009

Lecture 25: PCP 'Light' Theorem

Instructor: Rafael Pass Scribe: Shuang Zhao

1 Recall from Last Lecture

Theorem 1 (PCP 'light' theorem).

$$NP \subseteq PCP(poly(n), O(1)).$$

This theorem can be proved by showing that the NP-complete problem QUADEQ has a (poly(n), O(1))-PCP verifier.

Let $a_1, a_2, \ldots, a_n \in \{0, 1\}$ be a satisfying assignment. The prover is supposed to write down

$$\Pi(\mathbf{v}) := \langle \mathbf{v}, \mathbf{a} \otimes \mathbf{a} \rangle$$

for all $\mathbf{v} \in \{0,1\}^{n^2}$ where $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_i \mathbf{x}_i \mathbf{y}_i$.

The verifier checks the proof in three steps:

- 1. Linearity Test. Check that Π is a linear function.
- 2. Consistency Test. Verify that Π encodes $\mathbf{u} \otimes \mathbf{u}$ for some $\mathbf{u} \in \{0,1\}^n$.
- 3. Subset Sum Test. Verify that **u** is a satisfying assignment.

We showed in the last lecture that if Π is at distance ϵ from linear, it holds that

$$\Pr_{\mathbf{x},\mathbf{y}}[\Pi(\mathbf{x}) + \Pi(\mathbf{y}) \neq \Pi(\mathbf{x} + \mathbf{y})] \geq \epsilon.$$

For all $0 < \epsilon < 1/2$, we can obtain a linearity test rejecting with probability at least 1/2 every function that is at distance $\geq \epsilon$ from linear (by repeating this test independently). We call such a test a ϵ -linearity test.

$$\mathbf{x} \otimes \mathbf{y} := (\mathbf{x}_1 \mathbf{y}_1, \mathbf{x}_1 \mathbf{y}_2, \dots, \mathbf{x}_1 \mathbf{y}_n, \dots, \mathbf{x}_n \mathbf{y}_1, \mathbf{x}_n \mathbf{y}_2, \dots, \mathbf{x}_n \mathbf{y}_n).$$

¹If \mathbf{x}, \mathbf{y} are two *n*-dimensional vectors, then $\mathbf{x} \otimes \mathbf{y}$ is defined by

2 Today's Lecture

First we prove the following fact which will be repeatedly used in this lecture:

Lemma 2. Let $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$. If $\mathbf{x} \neq \mathbf{0}$, then $\Pr_{\mathbf{y}}[\mathbf{x}^T \mathbf{y} \neq 0] = 1/2$.

Proof. Assume without loss of generality that $x_1 = 1$. Then

$$\Pr_{\mathbf{y}}[\mathbf{x}^T\mathbf{y} \neq 0] = \frac{1}{2}\Pr_{\mathbf{y}}\left[\sum_{i=2}^n x_i y_i = 0\right] + \frac{1}{2}\Pr_{\mathbf{y}}\left[\sum_{i=2}^n x_i y_i \neq 0\right] = \frac{1}{2}.$$

Linearity Test. Perform a 0.001-linearity test on $\Pi(\mathbf{v})$. We assume that in the next two steps, Π is at distance 0.001 from a (unique) linear function l. For querying $l(\mathbf{t})$, the verifier picks \mathbf{r} at random and computes $\Pi(\mathbf{r}) + \Pi(\mathbf{r} + \mathbf{t})$. Since only a small number of queries will be used in those steps, according to union bound, it holds that with high probability (at least 0.9 in our proof) $\Pi(\mathbf{r}) + \Pi(\mathbf{r} + \mathbf{t}) = l(\mathbf{t})$ on all these queries.

Consistency Test. If l encodes $\mathbf{u} \otimes \mathbf{u}$, it holds that $\mathbf{u}^T \mathbf{u} = \mathbf{M}$ where

$$\mathbf{u} = (w_{11}, w_{22}, \dots, w_{nn}) \text{ and } \mathbf{M} = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1n} \\ w_{21} & w_{22} & \dots & w_{2n} \\ & & & \dots & \\ w_{n1} & w_{n2} & \dots & w_{nn} \end{pmatrix}.$$

Lemma 3. If A, B are $n \times n$ matrices over GF(2) with $A \neq B$, then

$$\Pr_{\mathbf{x}, \mathbf{y} \in \{0,1\}^n} \left[\mathbf{x} A \mathbf{y}^T = \mathbf{x} B \mathbf{y}^T \right] \le \frac{3}{4}.$$

Proof. Let A' = A - B. According to Lemma 2, it holds that if $A' \neq 0$,

$$\Pr_{\mathbf{y}}[\mathbf{A}'\mathbf{y}^T \neq \mathbf{0}] \ge 1/2 \text{ and } \Pr_{\mathbf{y}}[\mathbf{x}\mathbf{A}'\mathbf{y}^T \neq \mathbf{0} \mid \mathbf{A}'\mathbf{y}^T \neq \mathbf{0}] \ge 1/2.$$

Therefore, $\Pr_{\mathbf{y}}[\mathbf{x}\mathbf{A}'\mathbf{y}^T \neq \mathbf{0}] \geq 1/4$, namely $\Pr_{\mathbf{y}}[\mathbf{x}\mathbf{A}\mathbf{y}^T = \mathbf{x}\mathbf{B}\mathbf{y}^T] \leq 3/4$.

To check that $\mathbf{u}^T\mathbf{u} = \mathbf{M}$, we pick $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$ randomly. Then

$$\mathbf{x}\mathbf{M}\mathbf{y}^T = \sum_{i,j\in[n]} x_i y_j w_{ij} = \langle \mathbf{x}\otimes\mathbf{y}, \mathbf{w} \rangle = l(\mathbf{x}\otimes\mathbf{y})$$

and

$$\mathbf{x}(\mathbf{u}^T\mathbf{u})\mathbf{y}^T = (\mathbf{x}\mathbf{u}^T)(\mathbf{u}\mathbf{y}^T) = \langle \mathbf{x}', \mathbf{w} \rangle \langle \mathbf{y}', \mathbf{w} \rangle = l(\mathbf{x}') \ l(\mathbf{y}')$$

where \mathbf{x}', \mathbf{y}' can be derived from \mathbf{x}, \mathbf{y} . By Lemma 3, if $\mathbf{u}^T \mathbf{u} \neq \mathbf{M}$, the consistency test will catch it with probability at least 1/4.

Subset Sum Test. Assume that l encodes $\mathbf{u} \otimes \mathbf{u}$, namely $l(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u} \otimes \mathbf{u} \rangle$. Next we need to check that $\mathbf{A}\mathbf{u}^{(2)} = \mathbf{b}$ where \mathbf{A} is an $m \times n^2$ matrix and $\mathbf{u}^{(2)} = \mathbf{u} \otimes \mathbf{u}$.

Pick random subset $S \subseteq [m]$ and compute

$$f(S) = \hat{\mathbf{S}}^T (\mathbf{A} \mathbf{u}^{(2)} - \mathbf{b}) \text{ where } \hat{S}_i = \begin{cases} 1 & i \in S \\ 0 & i \notin S \end{cases}.$$

By Lemma 2, $\Pr_S[f(S) \neq 0] = 1/2$ if $\mathbf{Au}^{(2)} \neq \mathbf{b}$. And f(S) can be computed by

$$f(S) = \hat{\mathbf{S}}^T (\mathbf{A} \mathbf{u}^{(2)} - \mathbf{b}) = l(\hat{\mathbf{S}}^T \mathbf{A}) - \hat{\mathbf{S}}^T \mathbf{b}.$$

Conclusion. The verifier always accepts a correct proof and accepts any incorrect proof with probability at most 0.8. This probability can be reduced to 0.5 by independently repeating this algorithm.