Chapter 1

ε-δ論法と極限

ここまでのこの本では、極限というものを厳密に定義していなかった。また、微分と積分において、イメージで導出できることを最重視し、厳密な議論を避けた箇所が多くある。

厳密には、極限は ε - δ 論法によって定義され、微分積分の基礎理論は極限の議論に基づいている。 ε - δ 論法に踏み込んでいない私たちは、極限というものを語る言葉をまだ持ち合わせていない。

1.1 実数の集合

厳密な理論を展開する上で、知っておくべき言葉の定義を行う。

1.1.1 区間

2つの実数の間の範囲は、区間と呼ばれる。

区間は、端点を含むかどうかによって、開区間、閉区間、半開区間に分類される。

開区間

端点を含まない区間を開区間という。

開区間 $a \le x \le b$ となる実数 x の集合を 開区間 といい、(a,b) と表す。

閉区間

端点を含まない区間を閉区間という。

半開区間

一方の端点を含み、他方の端点を含まない区間を半開区間という。

1.2. 数列の極限 3

1.2 数列の極限

微分を定義するには関数の極限を考えるが、関数の極限の諸性質は、数列の極限から導かれる。 まずは、 $\varepsilon-\delta$ 論法(数列の場合は $\varepsilon-N$ 論法とも呼ばれる)によって数列の極限を定義し、その 性質をひとつひとつ確かめていこう。

1.2.1 εで「一致」をどう表現するか

「限りなく近づく」という表現では、「限りなく」の部分に無限という概念が含まれてしまう。 有限の値 ϵ を使って、無限を表現しようとするのが ϵ - δ 論法である。

* * *

 ε - δ 論法で極限を定義する前に、有限値 ε を使った議論の例を見てみよう。

実数は連続である(数直線には穴がない)ため、 $a \, C \, b$ が異なる実数であれば、 $a \, C \, b$ の間には無 数の実数が存在する。

つまり、aとbが異なる限り、その間の距離 |a-b| は絶対に0にはならない。

|a-b| が 0 にならないということは、ここでも実数の連続性によって、|a-b| より小さい実数が存 在してしまう。

たとえば、 $a \ge b$ の間の中点 $x = \frac{|a-b|}{2}$ は、|a-b| よりも小さい。

a と b の間の中点というと $\frac{a-b}{2}$ だが、正の数 ε と比較するため、絶対値をつけて $\frac{|a-b|}{2}$ としている

|a-b| より小さい実数が存在してしまうと、「任意の」 $\varepsilon > 0$ に対して、 $|a-b| < \varepsilon$ を成り立たせる ことができない。

 ε はなんでもよいのだから、|a-b|より小さい実数を ε として選ぶこともできてしまう。 しかし、|a-b| より小さい実数を ε としたら、 $|a-b| < \varepsilon$ は満たされない。

|a-b| が 0 でないという状況下では、あらゆる実数 ε より |a-b| を小さくすることは不可能である。 したがって、 $|a-b| < \varepsilon$ を常に成り立たせるなら、|a-b| = 0、すなわち a = b となる。

ここまでの考察から直観を取り除いて、この定理の数学的な証明をまとめておこう。

1.2. 数列の極限 5

Proof: 有限値 ε の不等式による一致の表現

 $a \neq b$ と仮定する。

 $\varepsilon_0 = \frac{|a-b|}{2}$ とおくと、絶対値 |a-b| が正の数であることから、 ε_0 も正の数となる。 よって、 $|a-b| < \varepsilon_0$ が成り立つので、

$$|a-b| < \frac{|a-b|}{2}$$

 $2|a-b| < |a-b|$
 $2|a-b| - |a-b| < 0$
 $|a-b| < 0$

絶対値が負になることはありえないので、 $a \neq b$ の仮定のもとでは矛盾が生じる。したがって、a = b でなければならない。

1.2.2 ε-N 論法による数列の収束

 $\varepsilon - \delta$ 論法は、数列の極限に適用する場合、 $\varepsilon - N$ 論法と呼ばれることが多い。

「数列が $\{a_n\}$ が α に収束する」ことの $\varepsilon - N$ 論法による表現を、まずはイメージで掴んでみよう。

* * *

まず、 α の周りに、両側それぞれ ε だけ広げた区間を考える。

 ε は正の数ならなんでもよいとすれば、 ε を小さな数に設定し、いくらでも区間を狭めることができる。

そして、「ここから先の項はすべて区間内に収まる」といえる位置に、N という印をつけておく。

 ε を小さくしていくと、 ε による α 周辺の区間に入る項は少なくなる。 それでも、N をずらしていけば、N 以降はこの区間に収まる項だけになる。 これこそが「収束」という現象だと定義するのが、 $\varepsilon-N$ 論法の考え方である。

区間幅 (の半分) となる ε をどんなに小さくしても、[N 番目以降は区間内に収まる項だけになる」といえるような N を設定できるか?が肝心で、そのような N が存在するなら、数列は収束するといえる。

このことを、数学の言葉でまとめておこう。

1.2. 数列の極限

数列の	収束と	極[限値																				
数列 {a	$\{l_n\}_{n=1}^{\infty}$	実	数 6	r 12	つい	いて	、 ?	欠の	条(牛を	考.	える	0										
	任意0)正(の数	(ε	に対	t U	τ																
						n <u>?</u>	≥ <i>1</i>	V	_	\Rightarrow		a	n -	- a	<u> </u>	< ε	,						
	が成り) 立.	つよ	う・	な自	然	数 /	V カ ^ュ	存	在す	る												-
この条	件が同	₹1) ∑	立つ	اع	き、	数	列 {a	a_n }	は。	xι	収	東で	する	とい	767	. 7	欠の	よ	うに	表`	す。		
		li n-	m →∞	a	n =	= (α) 0	また	は		a_n	_) (γ	(n	\rightarrow	0	0)			
このと	き、α	を数	女列	$\{a_n$,} O	極	限値	直と	٧١	う。													f