Functional Calculus

Joel Sleeba

October 22, 2023

Definition

- 1. A unital algebra (vector space + multiplication) ${\cal A}$
 - \circ (ab)c = a(bc)
 - \circ $(a + \lambda b)c = ac + \lambda bc$
 - $\circ \ a(b + \lambda c) = ab + \lambda ac$
 - \circ $1_A a = a = a1_A$
- 2. with an involution *
 - $\circ (\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$
 - $(ab)^* = b^*a^*$
 - o a** = a
- 3. and a complete norm $\|\cdot\|$ that satisfy
 - $||ab|| \le ||a|| ||b||$ (submultiplicativity)
 - $\circ \|a^*\| = \|a\|$
 - $\circ \|a^*a\| = \|a\|^2$

Definition

- 1. A unital algebra (vector space + multiplication) ${\cal A}$
 - \circ (ab)c = a(bc)
 - $\circ (a + \lambda b)c = ac + \lambda bc$
 - \circ $a(b + \lambda c) = ab + \lambda ac$
 - \circ $1_A a = a = a1_A$
- 2. with an involution *
 - $\circ (\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$
 - $(ab)^* = b^*a^*$
 - $\circ a^{**} = a$
- 3. and a complete norm $\|\cdot\|$ that satisfy
 - ∘ ||ab|| ≤ ||a|| ||b|| (submultiplicativity)
 - $\circ \|a^*\| = \|a\|$

Definition

- 1. A unital algebra (vector space + multiplication) ${\cal A}$
 - \circ (ab)c = a(bc)
 - $\circ (a + \lambda b)c = ac + \lambda bc$
 - \circ $a(b + \lambda c) = ab + \lambda ac$
 - \circ $1_A a = a = a1_A$
- 2. with an involution *
 - $\circ (\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$
 - $(ab)^* = b^*a^*$
 - $\circ a^{**} = a$
- 3. and a complete norm $\|\cdot\|$ that satisfy

 - $|a^*| = |a|$

Examples

- 1. $\mathbb C$ with standard multiplication, conjugation, and standard norm.
- 2. B(X), complex valued bounded functions on X, with pointwise multiplication, conjugation, and supremum norm.
- 3. $B(\mathcal{H})$ for a Hilbert space \mathcal{H} with composition, adjoint, and operator norm.

Examples

- 1. $\mathbb C$ with standard multiplication, conjugation, and standard norm.
- 2. B(X), complex valued bounded functions on X, with pointwise multiplication, conjugation, and supremum norm.
- 3. $B(\mathcal{H})$ for a Hilbert space \mathcal{H} with composition, adjoint, and operator norm.

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid 1_A \lambda - a \notin G(A) \}$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid 1_A \lambda - a \notin G(A) \}$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{\lambda \in \mathbb{C} \mid 1_{\mathcal{A}}\lambda - a \notin G(\mathcal{A})\}\$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

C* algebra

Definition (Invertible elements of A)

An element $a \in \mathcal{A}$ is called invertible if there is an element $z \in \mathcal{A}$ such that $az = 1_{\mathcal{A}} = za$. We denote the collection of invertible elements of \mathcal{A} by $G(\mathcal{A})$

Definition (Spectrum of an element)

We define the spectum of an element $a \in \mathcal{A}$ as the collection

$$\sigma(a) = \{\lambda \in \mathbb{C} \mid 1_{\mathcal{A}}\lambda - a \notin G(\mathcal{A})\}\$$

$$r(a) = \sup\{|\lambda| \mid \lambda \in \sigma(a)\}$$

- G(A) is an open in A
- $r(a) \leq ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \leq ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\mathcal A}$ is invertible, then ${\mathcal A}={\mathbb C} 1_{\mathcal A}$ (Gelfand Mazur)

- G(A) is an open in A
- $r(a) \le ||a||$
- $\sigma(a)$ is nonempty for all $a \in A$ (Gelfand)
- $\sigma(a)$ is closed compact in $\mathbb C$
- $r(a) = \lim \|a^n\|^{\frac{1}{n}}$ (Beurling)
- If every nonzero element in ${\cal A}$ is invertible, then ${\cal A}={\Bbb C}1_{\cal A}$ (Gelfand Mazur)

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- normal if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if a is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if a is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if a is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- normal if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- **projection** if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- **projection** if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

Definition

Let A be a C* algebra, an element $a \in A$ is called:

- self adjoint / hermitian if $a^* = a$
- **normal** if $a^*a = aa^*$
- **unitary** if $a^*a = 1_A = aa^*$
- **positive** if *a* is hermitian and $\sigma(a) \subset \mathbb{R}^+$
- projection if $a^2 = a$

- a is hermitian, then $\sigma(a) \subset \mathbb{R}$
- a is unitary, then $\sigma(a) \subset \mathbb{T}$

C* algebra

We will now use A_{sa} and A^+ to denote hermitian and positive elements in A respectively

• Every $a \in \mathcal{A}$ can be written as a = b + ic where $b, c \in \mathcal{A}_{sa}$

$$b = \frac{a+a^*}{2}, c = \frac{a-a^*}{2i}$$

- If $a, b \in \mathcal{A}^+$, then $a + b, \alpha a \in \mathcal{A}^+$ for $\alpha \ge 0$
- $\bullet \ \mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

We will now use A_{sa} and A^+ to denote hermitian and positive elements in A respectively

$$b = \frac{a+a^*}{2}, c = \frac{a-a^*}{2i}$$

- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $\mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

We will now use A_{sa} and A^+ to denote hermitian and positive elements in A respectively

$$b = \frac{a+a^*}{2}, c = \frac{a-a^*}{2i}$$

- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $\mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

We will now use A_{sa} and A^+ to denote hermitian and positive elements in A respectively

$$b = \frac{a+a^*}{2}, c = \frac{a-a^*}{2i}$$

- If $a, b \in \mathcal{A}^+$, then $a + b, \alpha a \in \mathcal{A}^+$ for $\alpha \ge 0$
- $\bullet \ \mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

We will now use A_{sa} and A^+ to denote hermitian and positive elements in A respectively

$$b = \frac{a+a^*}{2}, c = \frac{a-a^*}{2i}$$

- If $a, b \in \mathcal{A}^+$, then $a + b, \alpha a \in \mathcal{A}^+$ for $\alpha \geq 0$
- $\bullet \ \mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b a \in A^+$ defines a partial order in A_{sa}

C* algebra

We will now use A_{sa} and A^+ to denote hermitian and positive elements in A respectively

$$b = \frac{a+a^*}{2}, c = \frac{a-a^*}{2i}$$

- If $a, b \in A^+$, then $a + b, \alpha a \in A^+$ for $\alpha \ge 0$
- $\bullet \ \mathcal{A}^+ = \{a^*a \mid a \in \mathcal{A}\}$
- $a \leq b$ if $b-a \in \mathcal{A}^+$ defines a partial order in $\mathcal{A}_{\mathit{sa}}$

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in B(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: \mathcal{A} \to \mathcal{B}$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: A \to B$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: \mathcal{A} \to \mathcal{B}$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

C* algebra

Definition (Homomorphisms between C* algebras)

An involutive multiplicative bounded linear map between C* algebras is called a homomorphism.

Let $\phi: \mathcal{A} \to \mathcal{B}$ be a linear map between C* algebras \mathcal{A}, \mathcal{B} .

- $\phi \in \mathcal{B}(\mathcal{A}, \mathcal{B})$ (bounded)
- $\phi(ab) = \phi(a)\phi(b)$ (multiplicative)
- $\phi(a^*) = \phi(a)^*$ (involutive)

- If $\phi: \mathcal{A} \to \mathcal{B}$, then ϕ is norm decreasing. $(\|\phi(a)\| \le \|a\|)$
- Every injective *-homomorphisms are isometric.

Gelfand Spectrum

C* algebra

Definition

If $\mathcal A$ is a C* algebra, we define the Gelfand specturm of $\mathcal A$ to be the collection of all * homomorphims from $\mathcal A \to \mathbb C$ and denote it by $\Omega(\mathcal A)$. Since $\Omega(\mathcal A) \subset \mathcal A^*$, the dual space of $\mathcal A$, we can endow $\Omega(\mathcal A)$ with the weak * topology from $\mathcal A^*$

Note that by the norm decreasing property of the *-homomorphisms we see that $\Omega(\mathcal{A})$ is a subset of the closed unit ball of \mathcal{A}^*

Gelfand Spectrum

C* algebra

Definition

If $\mathcal A$ is a C* algebra, we define the Gelfand specturm of $\mathcal A$ to be the collection of all * homomorphims from $\mathcal A \to \mathbb C$ and denote it by $\Omega(\mathcal A)$. Since $\Omega(\mathcal A) \subset \mathcal A^*$, the dual space of $\mathcal A$, we can endow $\Omega(\mathcal A)$ with the weak * topology from $\mathcal A^*$

Note that by the norm decreasing property of the *-homomorphisms we see that $\Omega(\mathcal{A})$ is a subset of the closed unit ball of \mathcal{A}^*

Gelfand Spectrum

C* algebra

Definition

If $\mathcal A$ is a C* algebra, we define the Gelfand specturm of $\mathcal A$ to be the collection of all * homomorphims from $\mathcal A \to \mathbb C$ and denote it by $\Omega(\mathcal A)$. Since $\Omega(\mathcal A) \subset \mathcal A^*$, the dual space of $\mathcal A$, we can endow $\Omega(\mathcal A)$ with the weak * topology from $\mathcal A^*$

Note that by the norm decreasing property of the *-homomorphisms we see that $\Omega(\mathcal{A})$ is a subset of the closed unit ball of \mathcal{A}^*

Gelfand Transform

Abelian C* algebra

Assuming ${\cal A}$ to be abelian gives us extra results

1. $\Omega(A)$ to be compact.

2.
$$\sigma(a) = \Omega(A)a = \{\tau(a) \mid \tau \in \Omega(A)\}\$$

Definition (Gelfand Transform)

Given any abelian C* algebra \mathcal{A} , we define the Gelfand transform of $a \in \mathcal{A}$ as the map

$$\hat{a}:C(\Omega(A))\to\mathbb{C}:=\hat{a}(f)=f(a)$$

Gelfand Transform

Abelian C* algebra

Assuming ${\mathcal A}$ to be abelian gives us extra results

- 1. $\Omega(A)$ to be compact.
- 2. $\sigma(a) = \Omega(A)a = \{\tau(a) \mid \tau \in \Omega(A)\}$

Definition (Gelfand Transform)

Given any abelian C* algebra \mathcal{A} , we define the Gelfand transform of $a \in \mathcal{A}$ as the map

$$\hat{a}: C(\Omega(A)) \to \mathbb{C} := \hat{a}(f) = f(a)$$

Gelfand Transform

Abelian C* algebra

Assuming ${\mathcal A}$ to be abelian gives us extra results

- 1. $\Omega(A)$ to be compact.
- 2. $\sigma(a) = \Omega(A)a = \{\tau(a) \mid \tau \in \Omega(A)\}$

Definition (Gelfand Transform)

Given any abelian C* algebra \mathcal{A} , we define the Gelfand transform of $a \in \mathcal{A}$ as the map

$$\hat{a}:C(\Omega(A))\to\mathbb{C}:=\hat{a}(f)=f(a)$$

Gelfand Representation

Abelian C* algebra

If the C* algebra is abelian, we can represent the abstract C* algebra with a concrete a C* algebra of continuous functions in a compact space. This is given by the Gelfand representation.

Theorem (Gelfand)

For any abelian C* algebra A, Gelfand representation, defined as

$$A \to C(\Omega(A)) : a \to \hat{a}$$

is an isometric *-isomorphism

Gelfand Representation

Abelian C* algebra

If the C* algebra is abelian, we can represent the abstract C* algebra with a concrete a C* algebra of continuous functions in a compact space. This is given by the Gelfand representation.

Theorem (Gelfand)

For any abelian C* algebra A, Gelfand representation, defined as

$$A \to C(\Omega(A)) : a \to \hat{a}$$

is an isometric *-isomorphism.

Gelfand Representation

Abelian C* algebra

If the C* algebra is abelian, we can represent the abstract C* algebra with a concrete a C* algebra of continuous functions in a compact space. This is given by the Gelfand representation.

Theorem (Gelfand)

For any abelian C^* algebra A, Gelfand representation, defined as

$$\mathcal{A} \rightarrow \mathcal{C}(\Omega(\mathcal{A})): a \rightarrow \hat{a}$$

is an isometric *-isomorphism.

Before Functional Calculus

Lemma (Theorem 2.1.11, Murphy)

Let \mathcal{B} be a C^* subalgebra of \mathcal{A} . Then if $b \in \mathcal{B}$,

$$\sigma_{\mathcal{A}}(a) = \sigma_{\mathcal{B}}(a)$$

Definition

Motivation: If $p \in \mathbb{C}[z, \overline{z}]$ is a polynomial and $a \in \mathcal{A}$, then p(a) is a well defined element of \mathcal{A} . Can we generalize this to continuous functions?

Theorem

Let a be a normal element in a unital C^* algebra \mathcal{A} . Let $z:\sigma(a)\to\mathcal{C}$ be the inclusion map. Then there is a unique unital *-homomorphism from $\phi_a:C(\sigma(a))\to\mathcal{A}$ such that $\phi_a:z\to a$. Moreover image of ϕ_a is the C^* algebra generated by a and $1_{\mathcal{A}}$. (Note that this C^* algebra is abelian since $a^*a=aa^*$)

Definition

Motivation: If $p \in \mathbb{C}[z, \overline{z}]$ is a polynomial and $a \in \mathcal{A}$, then p(a) is a well defined element of \mathcal{A} . Can we generalize this to continuous functions?

Theorem

Let a be a normal element in a unital C* algebra \mathcal{A} . Let $z:\sigma(a)\to\mathcal{C}$ be the inclusion map. Then there is a unique unital *-homomorphism from $\phi_a:C(\sigma(a))\to\mathcal{A}$ such that $\phi_a:z\to a$. Moreover image of ϕ_a is the C* algebra generated by a and $1_{\mathcal{A}}$. (Note that this C* algebra is abelian since $a^*a=aa^*$)

Definition

Motivation: If $p \in \mathbb{C}[z, \overline{z}]$ is a polynomial and $a \in \mathcal{A}$, then p(a) is a well defined element of \mathcal{A} . Can we generalize this to continuous functions?

Theorem

Let a be a normal element in a unital C^* algebra \mathcal{A} . Let $z:\sigma(a)\to \mathcal{C}$ be the inclusion map. Then there is a unique unital *-homomorphism from $\phi_a:C(\sigma(a))\to \mathcal{A}$ such that $\phi_a:z\to a$. Moreover image of ϕ_a is the C^* algebra generated by a and $1_{\mathcal{A}}$. (Note that this C^* algebra is abelian since $a^*a=aa^*$)

Definition

Definition (Functional calculus)

Let a be a normal element of a unital C* algebra \mathcal{A} and $f \in C(\sigma(a))$, then we call ϕ_a the functional calculus of a.

Notation: For ease of notation when $a \in \mathcal{A}$ and $f \in C(\sigma(a))$, we will write f(a) instead of $\phi_a(f)$.

Theorem (Spectral Mapping Theorem)

Let $a\in\mathcal{A}$ be normal and $f\in\mathcal{C}(\sigma(a))$ ther

$$\sigma(f(a)) = f(\sigma(a))$$

Definition

Definition (Functional calculus)

Let a be a normal element of a unital C* algebra \mathcal{A} and $f \in C(\sigma(a))$, then we call ϕ_a the functional calculus of a.

Notation: For ease of notation when $a \in \mathcal{A}$ and $f \in \mathcal{C}(\sigma(a))$, we will write f(a) instead of $\phi_a(f)$.

Theorem (Spectral Mapping Theorem)

Let $a \in \mathcal{A}$ be normal and $f \in C(\sigma(a))$ then

$$\sigma(f(a)) = f(\sigma(a))$$

Proof of Spectral Mapping

Proof.

Let $\mathcal B$ be the C* subalgebra generated by $1_{\mathcal A}, a$. Then $\mathcal B$ is abelian. Moreover

$$\sigma(f(a)) = \{\tau(f(a)) \mid \tau \in \Omega(B)\} = \{f(\tau(a)) \mid \tau \in \Omega(B)\} = f(\sigma(a))$$

Note that
$$f(\tau(a)) = \tau(f(a))$$
 since it holds for $f = 1, z$ and $C(\sigma(a))$ is generated by $1, z$.

Applications

Lemma

Every self adjoint element can be written as the difference of two positive elements.

Proof.

Consider $f^+, f^- \in C(\sigma(a))$ where $a \in A_{sa}$. where

$$f^{+}(x) = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases} \quad f^{-}(x) = \begin{cases} 0, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

See that $a = f^+(a) - f^-(a)$ and that this proves it.

Applications

Theorem (Theorem 2.1.15, Murphy)

Let Γ be compact Hausdorff. For $\gamma \in \Gamma$, let δ_{γ} be a character for $C(\Gamma)$ given by $f \to f(\gamma)$. Then the map $\Gamma \to \Omega(C(\Gamma)) : \gamma \to \delta_{\gamma}$ is a homeomorphism.

References

- C* Algebras and Operator Theory Gerald Murphy
- Functional Analysis; Spectral Theory V. S. Sunder
- For More

https://joelsleeba.github.io/resources/

Thank you for listening!

Joel Sleeba

joelsleeba1@gmail.com joelsleeba.github.io