

DIFFERENTIAL EVOLUTION OPTIMIZATION FOR TARGETING SPACECRAFT MANEUVER PLANS

Daniel Mattern
NASA GSFC || Omitron, Inc.

2016 Astrodynamics Specialist Conference 13-16 September 2016 Long Beach, CA

BACKGROUND

- Analysis performed for the Tracking and Data Relay Satellite (TDRS)
- Previous analysis examined the long-term impact to operational geosynchronous (GSO) region occupants if a TDRS at-risk spacecraft were to fail while on orbit
 - Required at least 50 km "keep out zone" of GSO ring
 - Found that "ideal" TDRS orbits had eccentricity of 0.004 and argument of perigee (AoP) of 300°
 - Only violation at perigee when AoP is aligned equatorially
 - Lowest "allowable" eccentricity of 0.0012
 - See references on last slide
- In 2015, TDRS-9 changed longitudes from 41° W to 12° W
 - This analysis examined if the "ideal" orbit parameters could be achieved with the drift termination (DT) maneuvers alone

PREVIOUS ANALYSIS

TARGET

CONSTRAINTS

- Constraints
 - Physical limits of the spacecraft thrusters based on tank and thruster temperatures
 - All maneuver burn durations must be ≤ 10 sec
 - Any 2 maneuvers must be ≥ 30 minutes apart
 - Final maneuver(s) must be on 10 June
 - All maneuvers must be executed between 03:00 and 14:00Z on a given day

ASSUMPTIONS AND SIMPLIFICATIONS

Assumptions

- Only 18 DT maneuvers
- Each maneuver can be approximated by an impulsive maneuver

Radial: -3.136 (10-5) km/s
In-track: 5.716 (10-5) km/s
Cross-track: -5.242 (10-5) km/s

Simplifications

- Maneuvers executed on the half hour (03:00, 03:30, etc.)
- The first DT maneuver occurs no sooner than 1 June with maneuvers evenly distributed over the days leading to 10 June
 - 9 maneuvers/day for 2 days, 6 maneuvers/day for 3 days, etc.

APPROACH

- Single maneuver effects
 - Looking at maneuvers executed across the window and on different days
 - Examined 18 May, 2 June, 4 June, 6 June, 8 June, and 10 June
- Differential Evolution Optimization
 - A target ephemeris created using the "ideal" orbit parameters
 - Maneuver schedule is the control parameter
 - 7-day summed difference between target and resultant position is the cost function
 - 4 maneuver scenarios examined
 - 1. DT-0 days: All maneuvers executed on 10 June
 - 2. DT-1 days: 9 maneuvers per day occurring on 9 and 10 June
 - 3. DT-2 days: 6 maneuvers per day occurring on 8, 9, and 10 June
 - 4. DT-5 days: 3 maneuvers per day occurring on 5, 6, 7, 8, 9, and 10 June

SINGLE MANEUVER EFFECTS

SINGLE MANEUVER EFFECTS

- Needed to qualitatively assess how different maneuver epochs would effect the target orbital parameters
 - Maneuver epochs could be varied across days and across the daily maneuver window

- Specifically looking for
 - Maneuver window effects
 - Competing target constraints
 - Maneuver day effects
 - Possible changes in end-state proximity to target state

END STATE EFFECTS: MANEUVER ON 2 JUNE

END STATE EFFECTS: MANEUVER ON 4 JUNE

END STATE EFFECTS: MANEUVER ON 6 JUNE

END STATE EFFECTS: MANEUVER ON 8 JUNE

END STATE EFFECTS: MANEUVER ON 10 JUNE

SINGLE MANEUVER ANALYSIS

Maneuver Day Effects

- Waiting to maneuver closer to 10 June increases the likelihood of overshooting the target longitude.
 - SMA, eccentricity, and AoP are marginally effected by changes in maneuver day

Maneuver Window Effects

- There are competing constraints
 - Maneuvering early in the window improves targeting SMA and eccentricity, but is bad for targeting AoP (and vice versa)

OPTIMIZED MANEUVER SCENARIOS

OPTIMIZED SCENARIOS

- Starting with a target state, created a 7-day ephem
- Varied maneuver schedule to minimize target-toresultant ephem difference
 - Assumptions, constraints, and simplifications resulted in 10¹⁰ possible maneuver schedule combinations
- Also looked at end-states which met the on-station longitude requirements
 - Mean daily official edges: 12° W ± 0.3°
 - Daily East-most drift tolerance: 11.5° W (expected)

DT-0 Days

TARGET

td9.E

target orbit

- Optimized maneuver plan
 - 10 Jun 2015
 - Every half hour from 05:30 to 14:00
- At 14:00Z on 10 June

Longitude: 11.2°W

Eccentricity: 0.0011

Arg. of Perigee: 248.6°

DT-1 Days

TARGET

- Optimized maneuver plan
 - 9, and 10 Jun 2015
 - Every half hour from 10:00 to 14:00
- At 14:00Z on 10 June

Longitude: 11.4°W

– Eccentricity: 0.0008

– Arg. of Perigee: 258.0°

DT-2 Days

TARGET

- Optimized maneuver plan
 - 8, 9, and 10 Jun 2015
 - Every half hour from 11:30 to 14:00
- At 14:00Z on 10 June

Longitude: 11.6°W

Eccentricity: 0.0007

Arg. of Perigee: 258.3°

DT-5 Days

- Optimized maneuver plan
 - 5, 6, 7, 8, 9, and 10 Jun 2015
 - Every half hour from 13:00 to 14:00
- At 14:00Z on 10 June

Longitude: 12.1°W

- Eccentricity: 0.0006

Arg. of Perigee: 256.1°

1100

Long-term propagation of

target orbit

100°

900

td9.E

GEO ring crossing

RELAXED CONSTRAINTS

RELAXED CONSTRAINTS

- Previous analyses suggested that the AoP constraint may be weighting the optimizer to target a greater change in AoP
- As a result, wanted to remove the AoP constraints to see if the optimizer would target a greater change in eccentricity
 - Tested hypothesis using the DT-0 day, DT-2 day, and DT-5 day maneuver cadences

Results

- Resultant optimizations targeted early window maneuver plans with better results
- Agreed with single-maneuver analysis

DT-0 EARLY WINDOW MANEUVERS

At 14:00Z on 10 June

– Longitude: 11.2°W

- Eccentricity: 0.0014

DT-2 EARLY WINDOW MANEUVERS

At 14:00Z on 10 June

– Longitude: 11.65°W

- Eccentricity: 0.0017

DT-5 EARLY WINDOW MANEUVERS

Maneuver Window DT - 5 days (June 5, 6, 7, 8, 9, 10)			
Burn Time	mnvr 1	mnvr 2	mnvr 3
03:00			
03:30			
04:00			
04:30			
05:00			
05:30			
06:00			
06:30			
07:00			
07:30			
08:00			
08:30			
09:00			
09:30			
10:00			
10:30			
11:00			
11:30			
12:00			
12:30			
13:00			
13:30			
14:00			

At 14:00Z on 10 June

Longitude: 12.2°W

- Eccentricity: 0.0017

CONCLUSIONS

- To meet the original constraints (AoP = 300°, ecc = 0.004), the largest state change came from the AoP
 - Optimizer originally targeted late window maneuver plans to accommodate
- By removing the AoP constraints, the optimizer began targeting maneuvers earlier in the window, thus producing larger changes in eccentricity
 - AoP drifts continually clockwise, so this constraint is somewhat superfluous
 - Optimization's best achieved eccentricity ≈ 0.0017
- WSC eventual maneuver plan
 - 10 DT maneuvers on 9 June
 - 8 DT maneuvers and 1 small correction burn on 10 June
 - All maneuver sequences began at the start of window and were executed every 30 minutes
 - Resultant eccentricity ≈ 0.0015

REFERENCES

- Dykes, A., Considering Orbit Changes for the Tracking and Data Relay Satellite System, NASA Orbital Debris Colloquium at GSFC, March 2002
- Cherney, R., et al., Eccentricity Management for TDRS Fleet, Presentation to Jon Walker (Code 452), 2005

Back-up Slides

END STATE EFFECTS: MANEUVER ON 18 MAY

Additional Notes

Things to note:

- Waiting to execute maneuvers closer to or on 10 June caused the spacecraft to pass the target longitude (with current drift rate, should reach 12°W around 8 or 9 June)
- All maneuver plans resulted in an SMA at 14:00Z on 10 June of about 42166 km (2 km greater than GSO radius)
 - Changes in SMA between "Early window" and "Late Window" maneuver plans were less than 1 km
- Larger eccentricities will require larger East-most and West-most daily tolerances

Recommendation delivered to WSC

- Reaching the target longitude on the target date needs to be the highest priority. Therefore, this analysis would suggest beginning the DT maneuvers before 10 June
- Executing burns earlier in the window should result in achieving a more desirable eccentricity
 - Remaining ΔV provides a best achievable eccentricity of about 0.0017
- If desired, future station-keeping maneuvers may be used to further increase the eccentricity

