Soham Chatterjee

Email: sohamc@cmi.ac.in

Roll: BMC202175 Course: Calculus Date: August 29, 2022

Problem 1

Is the function $\log x$ uniformly continuous on $[1, \infty)$?

Solution: For all $x \in [1, \infty)$ we have

$$\log x \le x - 1$$

Hence for $\epsilon > 0$, $x, y \in [1, \infty)$]let

$$|\log x - \log y| < \epsilon \iff \left|\log \frac{x}{y}\right| < \epsilon$$

Now if $|x-y| < \delta$ where $\delta > 0$ and suppose $x \ge y$ then x = y + k for some $0 \ge k < \delta$ then

$$\log \frac{x}{y} = \log \left(1 + \frac{k}{y} \right) \le \frac{k}{y} \le \frac{k}{1} < \delta$$

Hence if we take $\epsilon = \delta$ then for all $x, y \in [1, \infty)$, if $|x - y| < \delta$ then

$$|\log x - \log y| < \epsilon$$

Therefore $\log x$ is uniformly continuous in $[1, \infty)$

Problem 2

Let us agree that a complex-valued function $f = f_r + if_i$ defined on I will be called Riemann integrable if its real and imaginary parts f_r , f_i are Riemann Integrable; in which case, we define

$$\int_0^1 f(x)dx \equiv \int_0^1 f_r(x)dx + i \int_0^1 f_i(x)dx .$$

Prove that if f is Riemann integrable then |f| is Riemann integrable, and

$$\left| \int_0^1 f(x) dx \right| \le \int_0^1 |f(x)| dx$$

Solution: As $\sqrt{f_r^2(x) + f_i^2(x)} \ge 0$ for all $x \in [0,1]$. Now if $\int_0^1 f_r(x) dx = \int_0^1 f_i(x) dx = 0$ then

$$\int_0^1 |f(x)| dx \ge \left| \int_0^1 f(x) dx \right|$$

If at least one of $\int_0^1 f_r(x)dx$, $\int_0^1 f_i(x)dx$ is nonzero then let

$$a = \frac{\int_0^1 f_r(x)dx}{\sqrt{\left(\int_0^1 f_r(x)dx\right)^2 + \left(\int_0^1 f_i(x)dx\right)^2}} \qquad b = \frac{\int_0^1 f_i(x)dx}{\sqrt{\left(\int_0^1 f_r(x)dx\right)^2 + \left(\int_0^1 f_i(x)dx\right)^2}}$$

Therefore $a^2 + b^2 = 1$. Now by Cauchy Schwarz Inequality

$$\sqrt{a^2 + b^2} \sqrt{f_r^2(x) + f_i^2(x)} = \sqrt{f_r^2(x) + f_i^2(x)} \ge af_r(x) + bf_i(x) \qquad \forall \ x \in I$$

Assignment - 1

Hence

$$a \int_0^1 f_r(x)dx + b \int_0^1 f_i(x)dx = \int_0^1 (af_r(x) + bf_i(x))dx$$

$$\iff a \int_0^1 f_r(x)dx + b \int_0^1 f_i(x)dx \le \int_0^1 \sqrt{f_r^2(x) + f_i^2(x)}dx$$

$$\iff \sqrt{\left(\int_0^1 f_r(x)dx\right)^2 + \left(\int_0^1 f_i(x)dx\right)^2} \le \int_0^1 \sqrt{f_r^2(x) + f_i^2(x)}dx$$

$$\iff \left|\int_0^1 f(x)dx\right| \le \int_0^1 |f(x)|dx$$

Problem 3

The following problems are (with minor changes) taken from Rudin. Let p, q be positive real numbers satisfying

$$\frac{1}{p} + \frac{1}{q} = 1$$

(These are said to be *conjugate exponents* to each other. Note that p=2, q=2 are conjugate. Note also the "limiting cases" $p=1, q=\infty, p=\infty, q=1$.)

(a) If $u \ge 0$, $v \ge 0$, prove that

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

(Hint: Reduce to proving the case when u=1 and $0 \le v \le 1$. When v=0 or v=1, the inequality is clear; now use convexity.)

(b) If f, g are Riemann integrable non-negative functions on I, then

$$\int_0^1 fg \ dx \le \left\{ \int_a^b f^p dx \right\}^{\frac{1}{p}} \left\{ \int_a^b g^q dx \right\}^{\frac{1}{q}}$$

(Hint: Reduce to the case when both factors on the right are equal to one. Then use (a).)

(c) If f,g are complex-valued and Riemann integrable on I,

$$\left| \int_{0}^{1} fg \ dx \right| \le \left\{ \int_{0}^{1} |f|^{p} dx \right\}^{\frac{1}{p}} \left\{ \int_{0}^{1} |g|^{q} dx \right\}^{\frac{1}{q}}$$

Solution:

(a) If u=v=0 then we are done. Suppose at least one of is nonzero. Let $v^q \geq u^p$. Hence $v \neq 0$. Then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

$$\iff \frac{uv}{v^q} \le \frac{1}{p} \frac{u^p}{v^q} + \frac{1}{q}$$

$$\iff \frac{u}{v^{q-1}} \le \frac{1}{p} \frac{u^p}{v^q} + \frac{1}{q}$$

Let $x = \frac{u^p}{v^q}$. Now

$$\frac{1}{p} + \frac{1}{q} = 1 \iff \frac{1}{p} = \frac{q-1}{q} \iff \frac{q}{p} = q-1$$

Hence $x^{\frac{1}{p}} = \frac{u}{v^q}$. Hence substituting the values we need to prove

$$x^{\frac{1}{p}} \le \frac{x}{p} + \frac{1}{q} \qquad \forall \ x \in [0, 1]$$

Now take the function $f(x) = x^{\frac{1}{p}} - \frac{x}{p}$. Now at x = 1 we have

$$f(1) = 1 - \frac{1}{p} = \frac{1}{q}$$

and at x = 0 we have f(0) = 0. Now f is a differentiable function.

$$f'(x) = \frac{1}{p}x^{\frac{1}{p}-1} - \frac{1}{p} = \frac{1}{p}\left(x^{-\frac{1}{q}} - 1\right)$$

Now since $0 \le x \le 1$ we have $0 \le x^{\frac{1}{q}} \le 1$ and therefore $x^{-\frac{1}{q}} \ge 1$. Hence $\forall x \in [0,1]$ we have $f'(x) \ge 0$. Hence f is increasing. Hence the maximum value f attains on [0,1] is $\frac{1}{q}$. Hence

$$x^{\frac{1}{p}} \le \frac{x}{p} + \frac{1}{q}$$

Therefore

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

(b) $A = \left(\int_0^1 f^p(x)dx\right)^{\frac{1}{p}}$ and $B = \left(\int_0^1 g^q(x)dx\right)^{\frac{1}{q}}$. Now using part (a) we get

$$\frac{f(x)}{A} \frac{g(x)}{B} \le \frac{1}{p} \left(\frac{f(x)}{A}\right)^p + \frac{1}{q} \left(\frac{g(x)}{B}\right)^q$$

$$\iff \int_0^1 \frac{f(x)g(x)}{AB} dx \le \int_0^1 \left[\frac{1}{p} \left(\frac{f(x)}{A}\right)^p + \frac{1}{q} \left(\frac{g(x)}{B}\right)^q\right] dx$$

$$\iff \frac{\int_0^1 f(x)g(x) dx}{AB} \le \frac{1}{p} \frac{\int_0^1 f^p(x) dx}{A^p} + \frac{1}{q} \frac{\int_0^1 g^q(x) dx}{B^q}$$

$$\iff \frac{\int_0^1 f(x)g(x)}{AB} \le \frac{1}{p} + \frac{1}{q} = 1$$

$$\iff \int_0^1 f(x)g(x) dx \le AB$$

$$\iff \int_0^1 f(x)g(x) dx \le \left(\int_0^1 f^p(x) dx\right)^{\frac{1}{p}} \left(\int_0^1 g^q(x) dx\right)^{\frac{1}{q}}$$

(c)
$$A = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}$$
 and $B = \left(\int_0^1 |g(x)|^q dx\right)^{\frac{1}{q}}$. Now using part (a) we get
$$\frac{|f(x)|}{A} \frac{|g(x)|}{B} \le \frac{1}{p} \left(\frac{|f(x)|}{A}\right)^p + \frac{1}{q} \left(\frac{|g(x)|}{B}\right)^q$$

$$\iff \int_0^1 \frac{|f(x)g(x)|}{AB} dx \le \int_0^1 \left[\frac{1}{p} \left(\frac{|f(x)|}{A}\right)^p + \frac{1}{q} \left(\frac{|g(x)|}{B}\right)^q\right] dx$$

$$\iff \frac{\int_0^1 |f(x)g(x)| dx}{AB} \le \frac{1}{p} \frac{\int_0^1 |f(x)|^p dx}{A^p} + \frac{1}{q} \frac{\int_0^1 |g(x)|^q dx}{B^q}$$

$$\iff \frac{\int_0^1 |f(x)g(x)|}{AB} \le \frac{1}{p} + \frac{1}{q} = 1$$

$$\iff \int_0^1 |f(x)g(x)| dx \le AB$$

$$\iff \int_0^1 |f(x)g(x)| dx \le \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int_0^1 |g(x)|^q dx\right)^{\frac{1}{q}}$$

Using (1) we have

 $\left| \int_0^1 f(x)g(x)dx \right| \le \int_0^1 |f(x)g(x)|dx$

Hence

 $\left| \int_{0}^{1} f(x)g(x)dx \right| \le \left(\int_{0}^{1} |f(x)|^{p} dx \right)^{\frac{1}{p}} \left(\int_{0}^{1} |g(x)|^{q} dx \right)^{\frac{1}{q}}$

Problem 4

Consider the set $S = \{(x,y)|x,y \in \mathbb{Q}\} \subset I^2$. Is S Jordan-measurable? If yes, compute its area. If not

- (a) show directly that χ_S is not integrable and
- (b) show that ∂S does not have content zero.

Solution: Since $\mathbb{Q} \cap I$ is dense in I, $\mathbb{Q}^2 \cap I^2 = S$ is dense in I^2 . FOr any closed rectangle R in I^2 we can write $R = I_1 \times I_2$ where I_1, I_2 are closed intervals in I. Then we will always have a point from $\mathbb{Q} \cap I$ and a point from $(\mathbb{R} \setminus \mathbb{Q}) \cap I$ in each of I_1, I_2 . Now We take the closed rectangle $R = I^2$ which covers the whole S. Let P be any partition of I^2 . Since S is dense in I^2 for any rectangle R_i we have $S \cap R_i \neq \phi$ and $(I^2 \setminus S) \cap R_i \neq \phi$. Hence $M_{R_i}(x) = 1, m_{R_i}(x) = 0$ for all $x \in R_i$. Hence

$$U(P,R) - L(P,R) = \sum_{i} (M_{R_i}(x) - m_{R_i}(x)) Vol(R_i) = \sum_{i} (1 - 0) Vol(R_i) = \sum_{i} Vol(R_i) = Vol(R) = 1$$

for all partitions P of R we have this. Hence χ_S is not integrable. Therefore ∂S does not have measure zero. Hence S is not Jordan-Measurable.

- (a) We just show that χ_S is not integrable.
- (b) Since χ_S is not integrable $\iff \partial S$ is content zero and since χ_S is not integrable we have ∂S is not content zero.

Problem 5

What about the set

$$S = \{(x,y)\} \setminus \bigcup_{n=1,\dots} \left\{ \left(\frac{1}{n}, y\right) \right\} \subset I^2$$
?

Solution: Since

$$S = \left\{ (x, y) \in I^2 \right\} \setminus \left\{ \left(\frac{1}{n}, y \right) \mid y \in I, \ n \in \mathbb{N} \right\} = \bigcup_{i=1}^{\infty} \left(\frac{1}{i+1}, \frac{1}{i} \right) \times I$$

Hence the

$$\partial S = S \cup \{\{x\} \times I, I \times \{x\} \mid x = 0, 1\} = \left\{ \left(\frac{1}{n}, y\right) \mid y \in I, \ n \in \mathbb{N} \right\} \cup \{\{x\} \times I, I \times \{x\} \mid x = 0, 1\}$$

$$= \{\{x\} \times I, I \times \{x\} \mid x = 0, 1\} \cup \left[\bigcup_{i=1}^{\infty} \left\{\frac{1}{i}\right\} \times I\right]$$

Now for any $\epsilon > 0$ the set $\left\{\frac{1}{i}\right\} \times I$ can be covered by the rectangle $\left[\frac{1}{i} - \frac{\epsilon}{2 \times 2^{i+1}}, \frac{1}{i} + \frac{\epsilon}{2 \times 2^{i+1}}\right]$ Hence

$$Vol\left(\left\{\frac{1}{i}\right\}\times I\right) \leq Vol\left(\left[\frac{1}{i} - \frac{\epsilon}{2\times 2^{i+1}}, \frac{1}{i} + \frac{\epsilon}{2\times 2^{i+1}}\right] \times I\right) = \frac{\epsilon}{2\times 2^i} \times 1 = \frac{\epsilon}{2\times 2^i}$$

Now

$$\bigcup_{i=1}^{\infty} \left\{\frac{1}{i}\right\} \times I \subseteq \bigcup_{i=1}^{\infty} \left[\frac{1}{i} - \frac{\epsilon}{2 \times 2^{i+1}}, \frac{1}{i} + \frac{\epsilon}{2 \times 2^{i+1}}\right] \times I$$

Therefore

$$\begin{split} Vol\left(\bigcup_{i=1}^{\infty}\left\{\frac{1}{i}\right\}\times I\right) &\leq Vol\left(\bigcup_{i=1}^{\infty}\left[\frac{1}{i} - \frac{\epsilon}{2\times 2^{i+1}}, \frac{1}{i} + \frac{\epsilon}{2\times 2^{i+1}}\right]\times I\right) \\ &= \sum_{i=1}^{\infty}Vol\left(\left[\frac{1}{i} - \frac{\epsilon}{2\times 2^{i+1}}, \frac{1}{i} + \frac{\epsilon}{2\times 2^{i+1}}\right]\times I\right) \\ &< \sum_{i=1}^{\infty}\frac{\epsilon}{2\times 2^{i}} = \frac{\epsilon}{2} \end{split}$$

Now each $\{0\} \times I, \{1\} \times I, I \times \{0\}, I \times \{1\}$ can be covered with respectively $\left[-\frac{\epsilon}{8}, \frac{\epsilon}{8}\right] \times I, \left[1-\frac{\epsilon}{8}, 1+\frac{\epsilon}{8}\right] \times I, I \times \left[-\frac{\epsilon}{8}, \frac{\epsilon}{8}\right], I \times \left[1-\frac{\epsilon}{8}, 1+\frac{\epsilon}{8}\right].$ Therefore there total volume is less than $\frac{\epsilon}{2}$. Hence

$$Vol(\partial S) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence ∂S has measure zero. Therefore S is Jordan-Measurable.

We know that for any closed rectangle R if R^0 is the interior of R then $\int \chi_{R^0} = Vol(R)$ i.e. $Vol(R^0) = Vol(R)$. Now in S for each $\left(\frac{1}{i+1}, \frac{1}{i}\right) \times I$

$$\left(\frac{1}{i+1}, \frac{1}{i}\right) \times (0,1) \subset \left(\frac{1}{i+1}, \frac{1}{i}\right) \times I \subset \left[\frac{1}{i+1}, \frac{1}{i}\right] \times I$$

Since

$$Vol\left(\left(\frac{1}{i+1},\frac{1}{i}\right)\times(0,1)\right)=Vol\left(\left[\frac{1}{i+1},\frac{1}{i}\right]\times I\right)=\frac{1}{i(i+1)}$$

we have

$$Vol\left(\left(\frac{1}{i+1}, \frac{1}{i}\right) \times I\right) = \frac{1}{i(i+1)}$$

Hence

$$Vol(S) = \sum_{i=1}^{\infty} Vol\left(\left(\frac{1}{i+1}, \frac{1}{i}\right) \times I\right) = \sum_{i=1}^{\infty} \frac{1}{i(i+1)} = \sum_{i=1}^{\infty} \frac{1}{i} - \frac{1}{i+1} = 1$$

Problem 6

Let $f: I \to \mathbb{R}$ be a continuous function, and let $\Gamma_f = \{(x, f(x)) | x \in I\} \subset \mathbb{R}^2$ be its graph. Show that Γ_f has content zero. What if f is only integrable?

Solution: Since f is continuous on a closed interval f is uniformly continuous. Hence for every $\epsilon > 0$, $\exists \ \delta > 0$ such that for all $x,y \in I$, $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$. Hence there exists $n \in \mathbb{N}$ such that $\frac{1}{n} \le \delta < \frac{1}{n-1}$. Now we partition I into $x_0, x_1, \ldots, x_{n-1}, x_n$ where $x_i = \frac{i}{n}$ for $i = 0, 1, 2, \ldots, n$. Now for any closed interval $x, y \in [x_i, x_{i+1}]$ we have $|f(x) - (y)| < \epsilon$ and therefore $M_{f_i}(x) - m_{f_i}(x) < \epsilon$. Now the set Γ_f can be covered with the rectangles $R_i = [m_{f_i}(x), M_{f_i}(x)] \times [x_i, x_i + 1]$ for $i = 0, 1, \ldots, n-1$. Now for each R_i

$$Vol(R_i) < \epsilon \times \frac{1}{n} = \frac{\epsilon}{n}$$

Hence

$$Vol(\Gamma_f) \le \sum_{i=0}^{n-1} Vol(R_i) < \sum_{i=0}^{n-1} \frac{\epsilon}{n} = \epsilon$$

Hence Γ_f has content zero.

Given that f is integrable. Therefore for all $\epsilon > 0$ there exists a partition P of I such that

$$U(P,I) - L(P,I) < \epsilon$$

Let the partition $P = \{x_0, x_1, \dots, x_n\}$ where $x_0 = 0$ and $x_n = 1$. Now

$$U(P,I) - L(P,I) = \sum_{i=0}^{n-1} (M_{f_i}(x) - m_{f_i}(x)) (x_{i+1} - x_i)$$

If We choose the rectangles $\{R_i\}$ such that $R_i = [m_{f_i}(x), M_{f_i}(x)] \times [x_i, x_{i+1}]$ then Γ_f is covered by the union of all rectangles R_i . Hence $Vol(\Gamma_f) \leq \sum_{i=0}^{n-1} Vol(R_i) < \epsilon$. Hence Γ_f has content zero.

Problem 7

Let $D: I \to \mathbb{R}$ be the function D(t) = 1 - t.

- 1. What is $\int_{\mathbb{R}} \tilde{D}$? (Notation of the notes.)
- 2. Compute

$$\int_{I\times I} D(x)D(xy)dxdy$$

Justify the steps, even when you have to just refer to a definition.

Solution:

(a) $\tilde{D} = D\chi_I$. Since both D and χ_I are integrable \tilde{D} is also integrable. Then

$$\int_{\mathbb{R}} \tilde{D} = \int_{I} \tilde{D} = \int_{I} D\chi_{I} = \int_{0}^{1} (1 - t)dt = \left[t - \frac{t^{2}}{2} \right]_{0}^{1} = 1 - \frac{1}{2} = \frac{1}{2}$$