Bipolar Junction Transistor

Referências Bibliográficas

SEL-EESC-USP

BJT - Introdução

P. R. Veronese
 2015

- W. Shockley, "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistor," Bell Syst. Tech. J., 28, 435, 1949.
- B. G. Streetman, Solid State Electronic Devices, 4th Edition, Prentice Hall, N. Jersey, 1995, Cap. 7.
- P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, John Wiley & Sons, Inc., N. York, 2009, Cap. 1.
- J. J. Ebers, J. L. Moll, "Large-Signal Behavior of Junction Transistor," Proceedings of the IRE, 42, pp 1761-1772, 1954.
- R. S. Muller, T. I. Kamins, Device Electronics for Integrated Circuits, John Wiley & Sons, New York, 1986, Caps. 6 e 7.
- H. K. Gummel, Proc. IRE, 49, 834, 1961.

Índice

Objetivos

Generalidades e Princípios de Funcionamento

BJT - Estrutura Interna

Quanto vale I_C?

Quanto vale I_B?

Quanto vale $\beta_F = I_C / I_B$?

Comparação entre β_F s

Quanto vale $\alpha_F = I_C / I_E$?

Conclusões Importantes sobre o BJT

Objetivos

Quanto vale I_c?

Quanto vale I_B?

Quanto vale I_E?

Quanto vale $\beta_F = I_C / I_B$?

Quanto vale $\alpha_F = I_C / I_E$?

Comparação entre β_{F}

BJT

Generalidades e Princípios de Funcionamento

Transistor Bipolar de Junção

 Diversos tamanhos e encapsulamentos, conforme aplicação (limites de potência, frequência, tensão, corrente etc)

BJT Estrutura Interna

BJTs são estruturas eletrônicas ativas constituídas de duas junções pn interdependentes.

Cortes esquemáticos e simbologia do BJT

TBJ NPN – Fabricação

- As estruturas de um BJT podem ser construídas com semicondutores como o silício, o germânio ou com estruturas mistas dos tipos SiGe ou SiC.
- Esses semicondutores devem ser adequadamente dopados com elementos químicos dos grupos III ou V, de modo a formarem regiões do tipo p, com excesso de lacunas livres, ou do tipo n, com excesso de elétrons livres.
- Quando em contato íntimo, formam junções depletadas nas fronteiras e, portanto, retificadoras de corrente elétrica.
- As regiões mais externas têm, como função, emitir cargas livres ou coletar as cargas livres emitidas e, por isso, recebem os nomes de emissor e de coletor, respectivamente.
- A região central, chamada base, controla a quantidade de emissão e de coleta dessas cargas, variando a condutividade do dispositivo e fazendo com que a corrente entre os terminais de emissor e de coletor seja modulada por uma grandeza elétrica de controle aplicada nessa região.
- Em junções pn coexistem correntes de elétrons e de lacunas (característica bipolar).

 I_{B1} , I_{B2} , I_{C1} e I_{CO} tem sido real

I_E, I_B e I_C tem sido convencional

- Elétrons que vêm do emissor entram na base. A maior parte segue para o coletor e a menor parte se recombina com lacunas na base.
- B Elétrons do emissor se recombinam com lacunas que vêm da base (I_{B2.})
- C I_{co} = elétrons + lacunas

Quanto vale I_c?

Quanto vale I_B?

Quanto vale $\beta_F = I_C / I_B$?

Quanto vale $\alpha_F = I_C / I_E$?

Comparação entre β_{F}

Quanto vale I_c?

- A região de base possui largura determinada pelas fronteiras da região de cargas espaciais da base (W_{bef}) cuja dimensão é essencial na análise do funcionamento do dispositivo.
- I_{C1} é a corrente de difusão de minoritários (elétrons) pela base, gerada pela aplicação da tensão V_{BE} . Esses minoritários serão recolhidos preferencialmente na junção reversamente polarizada B-C, desde que o campo elétrico, nesse ponto seja elevado, isto é, $|V_{BC}| >> |V_{BE}|$.

 $I_n = I_{C1} + I_{B1}$ representa a corrente de difusão de minoritários (elétrons) pela base, gerada pela aplicação da tensão V_{BE} . Esses minoritários serão recolhidos preferencialmente na junção reversamente polarizada B-C, desde que o campo elétrico, nesse ponto seja elevado, isto é, $|V_{BC}| >> |V_{BE}|$.

$$I_n = I_{C1} + I_{B1}$$

$$I_n \approx I_{C1}$$

$$I_C \approx -I_{C1}$$

Mostra-se que:

$$E \stackrel{\mathbf{I}_{B1}}{\longrightarrow} \stackrel{\mathbf{I}_{C1}}{\longrightarrow} \stackrel{\mathbf{I}_{C1}}{\longrightarrow} \stackrel{\mathbf{I}_{C}}{\longrightarrow} C$$

$$\mathbf{I}_{\mathrm{C}} \approx \frac{qA_E D_n n_i^2}{N_A W_{Bef}} \ x \ \left(e^{\frac{V_{BE}}{V_t} - 1}\right) = \frac{qA_E D_n n_i^2}{Q_B} \ x \ \left(e^{\frac{V_{BE}}{V_t} - 1}\right) \tag{A}$$

$$I_c = I_s \left(e^{\frac{V_{BE}}{V_t} - 1} \right)$$

$$I_{C} \approx \frac{qA_ED_nn_i^2}{N_AW_{Bef}} \ x \ \left(e^{\frac{V_{BE}}{V_t}-1}\right) = \frac{qA_ED_nn_i^2}{Q_B} \ x \ \left(e^{\frac{V_{BE}}{V_t}-1}\right) \quad \text{[A]}$$

 D_n [cm²/s] - constante de difusão de elétrons na base N_A [cm-³] - concentração de dopantes na base $n_i \approx 1,45 \times 10^{10}$ [cm-³] @ 27°C - concentração intrínseca do Si A_E [cm²] - área seccional de emissor q [C] - carga do elétron $V_t = kT/q$ [V] - potencial térmico W_{Bef} [cm] - largura efetiva da base

$$I_c = I_s \left(e^{\frac{V_{BE}}{V_t} - 1} \right)$$

$$I_S = rac{qA_E \overline{D}_n n_i^2}{N_a W_{Bef}} = rac{qA_E \overline{D}_n n_i^2}{Q_B} \quad ext{[A]} \quad ext{0.1 fA} \leq I_S \leq 10 \; fA$$

 $\overline{D_n}$ [cm²/s] - valor médio da constante de difusão de elétrons na base N_a [cm⁻³] - concentração de dopantes, considerada uniforme, na base $n_i \approx 1,45 \times 10^{10}$ [cm⁻³] @ 27°C - concentração intrínseca do Si A_E [cm²] - área seccional de emissor

q [C] - carga do elétron
 V_t = kT/q [V] - potencial térmico
 W_{Bef} [cm] - largura efetiva da base

$$I_{S} = \frac{qA_{E}\overline{D}_{p}n_{i}^{2}}{N_{d}W_{Bef}} = \frac{qA_{E}\overline{D}_{p}n_{i}^{2}}{Q_{B}} \quad [A] \quad \text{0.1 fA} \leq I_{S} \leq 10 \text{ fA}$$

PNP N_d [cm

 D_p [cm²/s] - valor médio da constante de difusão de lacunas na base

N_d [cm⁻³] - concentração de dopantes, considerada uniforme, na base

n_i ≈ 1,45×1010 [cm⁻³] @ 27°C - concentração intrínseca do silício

A_F [cm²] - área seccional de emissor

q [C] - carga do elétron

 $V_t = kT/q [V]$ - potencial térmico

W_{Bef} [cm] - largura efetiva da base

Quanto vale I_B?

I_{B1} representa a corrente de recombinação de elétrons injetados pelo emissor e recombinados na base

I_{B2} representa a corrente de recombinação de lacunas injetadas pela base e recombinadas no emissor.

I_{B1} representa a corrente de recombinação de elétrons injetados pelo emissor e recombinados na base

Mostra-se que:

$$I_{B1} = -\frac{qA_E n_{po} W_{Bef}}{2\tau_B} \times \left(e^{\frac{V_{BE}}{V_t}} - 1\right) \quad [A]$$

A_F [cm²] - área seccional de emissor

q [C] - carga do elétron

 $V_t = kT/q [V] - potencial térmico$

n_{po} - concentração de elétrons minoritários no lado p

W_{BeF.} - largura de base efetiva

T_B (s) - tempo de vida de minoritários (elétrons) na base

Para transistores convencionais usados em circuitos integrados, a parcela I_{B1} da corrente de base é pequena comparada à parcela I_{B2} .

I_{B2} representa a corrente de recombinação de lacunas injetadas pela base e recombinadas no emissor.

Mostra-se que:

$$I_{B2} = \frac{qA_E D_p n_i^2}{L_p N_d} \times \left(e^{\frac{V_{BE}}{V_i}} - 1\right) \quad [A] \quad E^{\frac{I_E}{I_{B2}}} \xrightarrow{I_{B2}} \underbrace{I_{C1}}_{I_{B1}} \xrightarrow{I_{C0}} \underbrace{I_{C2}}_{I_{B1}} \xrightarrow{I_{C1}} \underbrace{I_{C2}}_{I_{B2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{B1}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}} \underbrace{I_{C2}}_{I_{C2}} \xrightarrow{I_{C2}$$

D_p [cm²/s] é a constante de difusão de lacunas no emissor

N_d [cm⁻³] é a concentração de dopantes, considerada uniforme, no emissor

n_i ≈ 1,45×1010 [cm-3] @ 27°C é a concentração intrínseca do silício

A_E [cm2] é a área seccional de emissor

q [C] é a carga do elétron

 $V_t = kT/q [V]$ é o potencial térmico

L_p [cm] é o comprimento de difusão de lacunas no emissor.

A corrente total de base (I_B) vale, portanto:

$$I_{B} = I_{B2} - I_{B1} = qA_{E}n_{i}^{2} \times \left(\frac{W_{Bef}}{2\tau_{B}N_{a}} + \frac{D_{p}}{L_{p}N_{d}}\right) \times \left(e^{\frac{V_{BE}}{V_{i}}} - 1\right)$$
 [A]

Quanto vale $\beta_F = I_C / I_B$?

 $\beta_{\rm F}$ é o ganho direto de corrente

$$I_{C} \approx \frac{qA_ED_nn_i^2}{N_AW_{Bef}} \ x \ \left(e^{\frac{V_{BE}}{V_t}-1}\right) = \frac{qA_ED_nn_i^2}{Q_B} \ x \ \left(e^{\frac{V_{BE}}{V_t}-1}\right)$$

$$I_{B} = I_{B2} - I_{B1} = qA_{E}n_{i}^{2} \times \left(\frac{W_{Bef}}{2\tau_{B}N_{a}} + \frac{D_{p}}{L_{p}N_{d}}\right) \times \left(e^{\frac{V_{BE}}{V_{i}}} - 1\right)$$

Pela divisão I_C e I_B obtem-se β_F :

$$\beta_{F} = \frac{\frac{qA_{E}D_{n}n_{i}^{2}}{N_{a}W_{Bef}}}{qA_{E}n_{i}^{2} \times \left(\frac{W_{Bef}}{2\tau_{B}N_{a}} + \frac{D_{p}}{L_{p}N_{d}}\right)} = \frac{\frac{D_{n}}{N_{a}W_{Bef}}}{\frac{W_{Bef}}{2\tau_{B}N_{a}} + \frac{D_{p}}{L_{p}N_{d}}}$$

$$\beta_F = \frac{1}{\frac{W_{Bef}^2}{2\tau_B D_n} + \frac{D_p}{D_n} \times \frac{W_{Bef}}{L_p} \times \frac{N_a}{N_d}}$$

$$\beta_F = \frac{1}{\frac{W_{Bef}^2}{2\tau_B D_n} + \frac{D_p}{D_n} \times \frac{W_{Bef}}{L_p} \times \frac{N_a}{N_d}} \qquad e \qquad \beta_F = \frac{1}{\frac{W_{Bef}^2}{2\tau_B D_p} + \frac{D_n}{D_p} \times \frac{W_{Bef}}{L_n} \times \frac{N_d}{N_a}}$$

NPN

 PNP

$$\beta_F = \frac{1}{\frac{W_{Bef}^2}{2\tau_B D_n} + \frac{D_p}{D_n} \times \frac{W_{Bef}}{L_p} \times \frac{N_a}{N_d}} \qquad e \qquad \beta_F = \frac{1}{\frac{W_{Bef}^2}{2\tau_B D_p} + \frac{D_n}{D_p} \times \frac{W_{Bef}}{L_n} \times \frac{N_d}{N_a}}$$

$$NPN$$

$$PNP$$

$$PNP$$

D_n [cm²/s] - constante de difusão de elétrons no emissor
 D_p [cm²/s] - constante de difusão de lacunas na base
 N_d [cm⁻³] - concentração de dopantes, considerada uniforme, na base
 N_a [cm⁻³] - concentração de dopantes, considerada uniforme, no emissor
 L_p [cm] - comprimento de difusão de buracos no emissor
 L_n [cm] - comprimento de difusão de elétrons no emissor
 Ū_B [s] - tempo de vida de minoritários (elétrons) na base
 W_{Ref} [cm] - largura efetiva de base

Conclusões Importantes sobre o BJT

A largura efetiva da base (W_{Bef}) é um fator primordial no dimensionamento do β to transistor.

As densidades de dopagem na base e no emissor também influenciam no β_F do transistor. Para que β_F seja maximizado, <mark>a concentração de dopantes no emissor deve ser muito maior do que a concentração de dopantes na base</mark>.

$$\begin{array}{ccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Por essa razão, os **transistores reais** são construídos com **emissores superdopados** e com **bases fraca ou medianamente dopadas**.

Os transistores reais possuem, portanto, **estruturas do tipo n**⁺**pn**⁻ **ou** do **tipo p**⁺**np**⁻ e não são, consequentemente, simétricos.

Transistores **npn convencionais de circuitos integrados** possuem ganhos diretos de corrente na faixa $50 \le \beta_F \le 500$.

Dispositivos discretizados, npn ou pnp, possuem esses ganhos na faixa $100 \le \beta_F \le 900$.

4 O ganho direto de corrente também pode ser escrito, conforme referência [2]:

$$\beta_F = \frac{\tau_B}{\tau_T} \quad (12)$$

 \mathbf{U}_{B} é o **tempo médio de vida do minoritário na base** e \mathbf{U}_{T} , chamado de **tempo de transito**, é o tempo que o minoritário, injetado pelo emissor, demora para cruzar a base e alcançar o coletor.

- B. G. Streetman, Solid State Electronic Devices, 4th Edition, Prentice Hall, N. Jersey, 1995, Cap. 7.
- Em bases muito estreitas, o tempo de trânsito ($\mathbf{\overline{U}_T}$) cai e, portanto, β_F aumenta.
- Em bases fracamente dopadas, o tempo médio de vida dos minoritários nessa região cresce e, portanto, β_F aumenta, comprovando a necessidade de bases estreitas e fracamente dopadas para transistores de β_F elevado.

Comparação entre $\beta_{\rm F}$

- Sejam β_F , β_F e β_F os ganhos de corrente de transtores de áudio , de chaveamento e de potência, respectivamente:
 - Transistores de áudio tem base estreita e são fracamente dopados.
 - Transistores de chaveamento tem base estreita e são fortemente dopados.

$$\beta_F$$
 "< β_F "

Transistores de potência tem base larga

$$\beta_{\rm F}$$
 " $< \beta_{\rm F}$

Código de transistores BJT europeus:

BC - áudio

BF - rádio frequência

BY ou BW - chaveamento

BD - potência

Quanto vale $\alpha_F = I_C / I_E$?

A corrente total de coletor inclui uma componente de fuga reversa na junção B-C, chamada de I_{co} (figura abaixo), desprezível em temperatura ambiente. Desprezando-se I_{co} e analisando-se o esquema da figura conclui-se que:

$$\alpha_F = \frac{\beta_F}{\beta_F + 1}$$

$$\beta_F = \frac{1}{\frac{W_{Bef}^2}{2\tau_B D_n} + \frac{D_p}{D_n} \times \frac{W_{Bef}}{L_p} \times \frac{N_a}{N_d}}$$

$$\alpha_F = \alpha_T \gamma$$

$$\alpha_T = \frac{2\tau_B D_n}{2\tau_B D_n + W_{Bef}^2}$$

$$\gamma = \frac{1}{1 + \frac{D_p}{D_n} \times \frac{W_{Bef}}{L_p} \times \frac{N_a}{N_d}}$$

$$\alpha_F = \alpha_T \gamma$$

$$\alpha_T = \frac{2\tau_B D_n}{2\tau_B D_n + W_{Pot}^2}$$

A grandeza α_{τ} , chamada de fator de transporte de base, representa a razão entre as cargas que alcançam o coletor e as cargas injetadas na base pelo emissor.

$$\gamma = \frac{1}{1 + \frac{D_p}{D} \times \frac{W_{Bef}}{L} \times \frac{N_a}{N_a}}$$

A grandeza y, chamada de eficiência de $\gamma = \frac{1}{1 + \frac{D_p}{D} \times \frac{W_{Bef}}{I} \times \frac{N_a}{N}}$ injeção de emissor, representa a razi entre a corrente de minoritários injetados na base pelo emissor e a corrente total injeção de emissor, representa a razão (elétrons + lacunas) que cruza a junção B-E.

Idealmente $\gamma \rightarrow 1$, se $W_{Bef} \ll L_p e N_d \gg N_a$

Idealmente $\alpha_T \longrightarrow 1$ e consequentemente $\alpha_F \longrightarrow 1$ se W_{Bef} for muito pequeno