Generalization in Multilingual Semantic Parsing

Workshop on Ten Years of BabelNet and Multilingual Neurosymbolic
Natural Language Understanding
5 July 2022

Daniel Hershcovich

UNIVERSITY OF COPENHAGEN

Why Meaning Representation for NLP?

Performance

Inductive bias

Access to structured data

Reasoning ability

Understanding

Interpretability

Theoretical analysis

Fine-grained control

Generalization

Languages

Domains

Tasks

Graph-based Meaning Representations

Type of Information DM PSD EDS DMRS UCCA AMR PMB

Graph-Based Meaning Representations: Design and Processing (Koller et al., ACL 2019)

Multitask Parsing Across Semantic Representations (Hershcovich et al., ACL 2018)

Universal Conceptual Cognitive Annotation (UCCA)

Design principles

- Cross-linguistic portability and stability
- Accessibility to non-expert annotators
- Modularity of semantic components

Corpora

English, German, French, Russian, Hebrew
 Now also Turkish

UCCA

UCCA Parsing

Meaning Representation Parsing

MRP 2020: The Second Shared Task on Cross-Framework and Cross-Lingual Meaning Representation Parsing (Oepen et al., CoNLL 2020)

Cross-lingual Generalization

Dominant approaches:

Multilingual models (mBERT, XLM-R etc.)

Annotation projection (manual/automatic translation)

"THE ABILITY TO SYSTEMATICALLY GENERALIZE TO COMPOSED TEST EXAMPLES OF A CERTAIN DISTRIBUTION AFTER BEING EXPOSED TO THE NECESSARY COMPONENTS DURING TRAINING ON A DIFFERENT DISTRIBUTION"

Train set	Test set
Who directed Inception? Did Greta Gerwig produce Goldfinger?	Did Greta Gerwig direct Goldfinger? Who produced Inception?
•••	•••

CFQ (Compositional Freebase Questions)

English

Did a film editor's parent direct MO?

Grammar Rules, Inference Rules, Resolution Rules, Knowledge

```
SPARQL
```

```
SELECT count(*) WHERE {
   ?x0 ns:film.director.film [M0] .
   ?x0 ns:people.person.children ?x1 .
   ?x1 a ns:film.editor
}
```

CFQ (Compositional Freebase Questions)

Multilingual Compositional Wikidata Questions

Rahul Aralikatte

Heather Lent

Property mapping Entity substitution

English

Automatic & manual translation

Hebrew, Kannada, Chinese & English

Multilingual Compositional Wikidata Questions

```
En Did Lohengrin 's male actor marry Margarete Joswig

He אם ה שחקן ה גברי של לוהנגרין התחתן עם מרגרט יוסוויג

Kn ರೀಹೆಂಗ್ರಿನ್ ಅವರ ಪುರುಷ ನಟ ವಿವಾಹವಾದರು ಮಾರ್ಗರೇಟ್ ಜೋಸ್ವಿಗ್

Zh Lohengrin 的 男 演员 嫁给了 Margarete Joswig 吗
```

```
SPARQL Query:
ASK WHERE { ?x0 wdt:P453 wd:Q50807639 . ?x0
wdt:P21 wd:Q6581097 . ?x0 wdt:P26 wd:Q1560129 .
FILTER ( ?x0 != wd:Q1560129 )}
```

Within-language

Exact Match (%) LSTM+Attention E. Transformer mBERT T5-base+RIR mT5-small+RIR mT5-base+RIR

Random split

En	He	Kn	Zh
96.6	80.8	88.7	86.8
99	90.4	93.7	92.2
98.7	91	95.1	93.3
98.5			
98.6	90	93.8	91.8
99.1	90.6	94.2	92.2

Within-language	MCD_{mean}					Ran	dom sp	lit
Exact Match (%)	En	He	Kn	Zh	En	Не	Kn	Zh
LSTM+Attention	19.4	15.5	17.6	16.2	96.6	80.8	88.7	86.8
E. Transformer	29.3	18.9	20.2	18.9	99	90.4	93.7	92.2
mBERT	26.6	22.7	21.6	23.4	98.7	91	95.1	93.3
T5-base+RIR	28.1				98.5			
mT5-small+RIR	38.3	29.3	31.5	36.3	98.6	90	93.8	91.8
mT5-base+RIR	33.8	33.2	32.1	29.6	99.1	90.6	94.2	92.2

Within-language	MCD_{mean}					Ran	dom sp	olit ———
Exact Match (%)	En	He	Kn	Zh	En	He	Kn	Zh
LSTM+Attention	19.4	15.5	17.6	16.2	96.6	80.8	88.7	86.8
E. Transformer mBERT	29.3 26.6	18.9 22.7	20.2 21.6	18.9 23.4	99 98.7	90.4 91	93.7 95.1	92.2 93.3
T5-base+RIR	28.1				98.5			
mT5-small+RIR	38.3	29.3	31.5	36.3	98.6	90	93.8	91.8
mT5-base+RIR	33.8	33.2	32.1	29.6	99.1	90.6	94.2	92.2

Cross-lingual (from English)

mT5-small+RIR	0.2	0.3	0.2	0.5	0.4	1.1
mT5-base+RIR	0.4	0.7	1.5	1.1	0.9	7.2

Within-language	MCD_{mean}					Random split		
Exact Match (%)	En	Не	Kn	Zh	En	Не	Kn	Zh
LSTM+Attention	19.4	15.5	17.6	16.2	96.6	80.8	88.7	86.8
E. Transformer	29.3	18.9	20.2	18.9	99	90.4	93.7	92.2
mBERT	26.6	22.7	21.6	23.4	98.7	91	95.1	93.3
T5-base+RIR	28.1				98.5			
mT5-small+RIR	38.3	29.3	31.5	36.3	98.6	90	93.8	91.8
mT5-base+RIR	33.8	33.2	32.1	29.6	99.1	90.6	94.2	92.2
Cross-lingual (fro	m Eng	lish)						
SPARQL BLEU	En	He	Kn	Zh	En	He	Kn	Zh
mT5-small+RIR	87.5	53.8	53.2	59	99.9	60.4	59.9	63.8
mT5-base+RIR	86.4	46.4	46	52.7	99.9	63.2	63.5	70.6
Exact Match (%)								
mT5-small+RIR		0.2	0.3	0.2		0.5	0.4	1.1
mT5-base+RIR		0.4	0.7	1.5		1.1	0.9	7.2

Error Analysis

Error Analysis

```
Question Was MO written by and directed by M1, M2, and M3
Gold ASK WHERE { MO wdt:P57 M1 . MO wdt:P57
M2 . MO wdt:P57 M3 . MO wdt:P58 M1 . MO
wdt:P58 M2 . MO wdt:P58 M3 }
Inferred ASK WHERE { MO wdt:P57 M1 . M1 wdt:P57
M2 . MO wdt:P58 M3 }

(screenwriter)
```

Incorrect predicate-argument structure

Can Multilingual Meaning Representation Help?

Summary

Multilingual compositional generalization benchmark

Similar within-language generalization across languages

Zero-shot cross-lingual generalization fails

Limitations & Future Work

- Synthetic & unnatural (inherited from CFQ)
 - Paraphrasing & expansion

- Mostly automatic translation
 - **I**mprovement with RBMT

- No cultural adaptation
 - ►Native data collection

Thanks!

danielhers.github.io

dh@di.ku.dk

Semantics for Analysis

_Englis

CONTEXT: A piece of paper was later found on which he had written his last statements in **two** languages, Latin and German. Only **one** statement was in Latin and the rest in German.

QUESTION: In what language were most statements written? ANSWER: German PREDICTED ANSWER: Latin and German

LI_Spanish

PREMISE: **Más de tres** personas resultaron heridas en un accidente de **dos** vehículos el lunes por la noche. (translation: **More than three** people were injured in a **two**-vehicle crash Monday evening.)

HYPOTHESIS: Había 4 personas involucradas. (translation: There were 4 people involved. LABEL: Neutral PREDICTED LABEL: Entailment

Semantics for Interpretability

UCCA

Implicit Relations in UCCA

Ruixiang Cui

Refining Implicit Argument Annotation for UCCA (Cui & Hershcovich, DMR 2020)

Great Service! Fine-grained Parsing of Implicit Arguments (Cui & Hershcovich, IWPT 2021)

28

UCCA

Parsing Progress

AMR 2015 Smatch F1

Parsing Progress

Uniform Meaning Representation

"Edmund Pope tasted freedom today for the first time in eight months."

"Pope was convicted on spying charges and sentenced to 20 years in a Russian prison."

<u>Designing a Uniform Meaning Representation for Natural Language Processing</u> (Van Gysel et al., KI - Künstliche Intelligenz 2021)

<u>UMR-Writer:</u> A Web Application for Annotating Uniform Meaning Representations (Zhao et al., EMNLP 2021)