Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 18 de septiembre de 2022

Tarea 18

Problemas 2, 3 y 7, sección 3.9.

Problema 1 (Problema 2). Prove that

- 1. $x^2 + x + 1$ is irreducible over F, the field of integers mod 2.
- 2. $x^2 + 1$ is irreducible over the integers mod 7.
- 3. $x^3 9$ is irreducible over the integers mod 31.
- 4. $x^3 9$ is reducible over the integers mód11.

Demostraci'on.

Problema 2 (Problema 3). Let F, K be two fields $F \subset K$ and suppose $f(x), g(x) \in F[x]$ are relatively prime in F[x]. Prove that they are relatively prime in K[x].

Demostraci'on.

Problema 3 (Problema 7). 7. If f(x) is in F[x], where F is the field of integers mod p, p a prime, and f(x) is irreducible over F of degree n prove that F[x]/(f(x)) is a field with p^n elements.

Demostraci'on.