Contents

1	Lect	ture 1	1
	1.1	Basic ML Setup	1
	1.2	PAC Learning Framework	2

1 Lecture 1

We define **machine learning** as a computational method to convert experience into expertise. We say that *experience* is past data, and *expertise* is the prediction of future outcomes.

Some standard learning tasks are: classification, regression, clustering, dimensionality reduction/manifold learning (find lower dimensional representation of data while preserving its properties).

In this course:

- 1. Theretical foundations and statistical learning theory. PAC learning framework, Rademacher complexity, VC-dimension.
- 2. Analysis of ML methods & algorithms (with applications of part 1).
 - (a) SVM & kernel methods
 - (b) Boosting
 - (c) Logistic regression
 - (d) SGD
 - (e) Neural networks (deep learning)

There may be a part 2 of this course.

1.1 Basic ML Setup

We have an **input space** X for example $X = \mathbb{R}^n$, $[0,1]^2$,.... We have an **output space** Y, which cna be for example $\{0,1\}$, \mathbb{R} ,.... We also have **training data**, which are tuples with the data and a label: (x_i, y_i) , i = 1, ..., m for labeled data, or unlabeled data given by simply a list $x_i, i = 1, ..., m$. We also have a **hypothesis class** \mathcal{H} , which is a set of functions $h: X \to Y$.

Now, the question is: what class of functions should we learn? Why do we need to choose \mathcal{H} ? We use the example of a papaya classification, and describe the natural way to iterate from overfit data to a simple rectangular classifier, on the inputs of softness and color as two axes (therefore the input space is $X = [0,1]^2$). This is described in some detail in the live notes, but does not warrant TeXed notes.

Now, there are several different types of learning that are sketched.

- 1. Supervised.
- 2. Unsupervised.

- 3. Semisupervised.
- 4. Online learning.
- 5. RL.
- 6. Active learning.

1.2 PAC Learning Framework

We now describe the **PAC learning framework**. Consider a supervised learning scenario for binary classification. We have X our input space, Y our output, and training data

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in (X \times Y)^m.$$
(1)

We make some assumptions.

- 1. x_i , i = 1, ..., m are drawn iid, according to some *unknown* probability distribution \mathcal{D} on X.
- 2. Labels are given $y_i = f(x_i), i = 1, ..., m$ for some map $f: X \to Y$.

Our goal is to find f (at least approximately). More generally (later), we will assume that (x_i, y_i) are drawn iid from \mathcal{D} on $X \times Y$.

The learner's output will be a prediction rule

$$h: X \to Y,$$
 (2)

and ideally h = f. The learner will select a hypothesis from

$$\mathcal{H} \subset \{g: X \to Y\} \tag{3}$$

and f may or may not be contained in \mathcal{H} .

Assumptions on measurable spaces: several assumptions are made, simply to remove pathological mathematical cases. For measurable spaces X, Y, Z, \ldots :

- 1. If the space is finite/countably infinite, it is equipped with the σ -algebra consisting of all subsets of the space.
- 2. Otherwise, assume it is a metric space, complete and separable, equipped with the corresponding Borel σ -algebra.
- 3. For products $X \times Y$, it carries the product σ -algebra of X and Y.

We can also define the **generalization error**.

Definition 1.2.1: Generalization Error

For $h: X \to Y = \{0,1\}$, the **generalization error** or **risk** of h is:

$$R(h) = \underset{x \sim \mathcal{D}}{\mathbb{P}} (h(x) \neq f(x)) = \mathbb{E}[\mathbb{1}_{\{x \mid h(x) \neq f(x)\}}]. \tag{4}$$

To see that this makes sense, note that

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{1}_A],\tag{5}$$

 ${\rm since}$

$$\mathbb{P}(A) = \int_{A} 1 \, dP(\omega) \tag{6}$$

$$\mathbb{P}(A) = \int_{A} 1 \, dP(\omega) \tag{6}$$

$$\mathbb{E}[\mathbb{1}] = \int_{\Omega} \mathbb{1}_{A} \, dP(\omega). \tag{7}$$

Also note that above, we assumed a fixed labeling function $f:X \to Y=$ $\{0,1\}$ and probability distribution \mathcal{D} on X.

\mathbf{Index}

```
generalization error, 2
hypothesis class, 1
input space, 1
machine learning, 1
output space, 1
PAC learning framework, 2
risk, 2
training data, 1
```