Message Latency in Waku Relay with Rate Limiting Nullifiers

Presenter:

Alvaro / Research Engineer at Status.im

Authors:

Alvaro Revuelta

Sergei Tikhomirov

Aaryamann Challani

Hanno Cornelius

Simon Pierre Vivier

Agenda

Background:

- Gossipsub
- Zero-Knowledge and RLN
- Waku

Latency

Simulations

- Single-host simulations
- Multi-host simulations

Contributions

Future work

Questions

Gossipsub:

- Publisher/subscriber based
- Allows a message to reach all peers subscribed to a topic
- In permissionless and adversarial environments
- With constant amplification factor (D)
- Two types of connections: full and metadata
- Eager push + lazy pull approach
- Used in multiple blockchains such as Ethereum
- By Protocol Labs

Publisher

9

Publisher

00

9

Publisher

Background

Background • (...) 9 **Publisher**

Gossipsub:

- In every hop more nodes learn about the message. Exponential D, disregarding duplicates.
- Difficult to know source of message
- Propagation time depends on:
 - D: connections of each node
 - Number of nodes in the network.
- Problem?
 - Permissionless, so we need rate limit

Zero-knowledge

- Allows to prove a given statement without revealing information.
- Computation intensive: proof generation + verification.

Rate Limiting Nullifiers (RLN)

- Used for rate limiting
- Prove that:
 - Sender knows a secret
 - Hash of secret part of a Merkle tree
 - No double signaling happened

Waku:

- Suite of protocols
- Uses gossipsub for routing
- Uses zero-knowledge proofs (RLN) for rate limiting.
- Principles:
 - Privacy-preserving
 - Decentralized
 - Permissionless
 - Generalized
- But, feasible for real applications?
 - We analyze from latency PoV.

Latency

- <u>Definition</u>: Time it takes for a message to propagate to all peers.
- Goal: Measure it.

P1 sends P2. Total latency is:

- L_q : Proof generation
- $L_t^{l \to J}$: Propagation time peer $i \to j$
- L_v^i : Validation time at peer i

Single-host simulations

- Mesh of 1000 peers
- D=6: Full mesh connections per peer
- Worst case amount of hops ≈ 4
- Using shadow simulator
 - Simulated latencies (150 ms RTT)
 - Bandwidth constrained (100 Mbps)
 - No CPU time, simulated with await.
- 10 nodes inject a message with a timestamp
- 9900 messages are received at different timestamps (each node receives 10 msg)

Single-host simulations

- Small messages (=2KB) latency is RTT/2 scaled by the amount of hops.
- 95% of messages =25KB propagate <1second to all peers
- For big messages
 (=500KB) < 1.7 seconds
 with a worst case of 3
 seconds.

Singapore Bangalore San Francisco New York Frankfurt

Multi-host simulations

- Real virtual machines (Digital Ocean)
- At different world locations: Singapore, Bangalore, SF, NY and Frankfurt.
- Real Internet conditions.
- Difference from single-host:
 - Just 5 nodes connected in cascade.
 - Cost effective.
 - Boundaries (best/worst case) instead of latency distribution.
 - Same worst amount of hops ≈4

Multi-host simulations

- In black the same distribution as before.
- In red, results from multihost simulations.
- Validates the single-host simulations (with some nuances)
- See paper for latencies on each hop.
- See paper for RTT between nodes.

Contributions

- Quantify Waku message propagation latencies for different message sizes in a decentralized network (1000 nodes).
 - Best/worst case
 - 95% cases
- Model and identify latency contributions.
- Benchmark RLN implementation and its impact in Waku.
- Validate simulations with multi-host measurements using real network conditions.

Future work

- Dynamic topologies: node churn
- Higher message rates
- Onchain RLN
- Security and privacy analysis
- Compare with other P2P protocols

Questions