1 Normalteiler

Definition 1.1. Sei (G, \circ) eine Gruppe und $H \subset G$ eine Untergruppe.

H heißt Normalteiler

$$:\iff \forall g\in G\ \forall u\in H: g\circ u\circ g^{-1}\in H$$

$$\iff \forall g\in G: gHg^{-1}=H$$

$$\iff \forall g\in G: gH=Hg.$$

Beispiel 1.2. Einige Beispiele für Normalteiler:

- Die triviale Untergruppe $\{e\}$ ist immer Normalteiler, denn es gilt für alle $g \in G : g \circ \{e\} = \{g\} = \{e\} \circ g$.
- G ist immer Normalteiler in sich selbst, denn es gilt $\forall g \in G \ \forall g' \in G:$ $g \circ g' \circ g^{-1} \in G.$
- Ist G kommutativ, so ist jede Untergruppe $H \subset G$ Normalteiler, denn es gilt $\forall g \in G \ \forall u \in H : g \circ u \circ g^{-1} = g \circ g^{-1} \circ u = e \circ u = u \in H$.

TODO: Faktorgruppe einbauen, ggf. zweite und dritte Definition in Definition 1 entsprechend verschieben

2 Normalisator

Sei (G, \circ) Gruppe, $U \subset G$ Untergruppe.

Im Allgemeinen ist U kein Normalteiler in G. Also suchen wir uns eine größtmögliche Untergruppe von G, sodass U in dieser Untergruppe Normalteiler ist. Formal wollen wir eine Untergruppe $V \subset G$ finden, sodass

- i) $U \subset V$ (U ist in V enthalten)
- ii) U ist Normalteiler in V
- iii) Ist V' eine weitere Untergruppe von G die i) und ii) erfüllt, so gilt $V' \subset V$. (V ist größtmöglich)

Bemerkung 2.1. V existiert immer.

Ist U Normalteiler in G, so wähle V = G.

Ist U kein Normalteiler in G, so erfüllt V'=U die ersten beiden Eigenschaften, also lässt sich auch eine größtmögliche Untergruppe V finden, die die ersten beiden Eigenschaften erfüllt.

Definition 2.2.

$$N_G(U) := \{ g \in G \mid gUg^{-1} = U \}$$

heißt Normalisator von U in G.

Satz 2.3. $N_G(U)$ ist Untergruppe von G und erfüllt die Eigenschaften i) bis iii).

Beweis: • Untergruppe:

Die Assoziativität wird vererbt.

Es gilt $e \in N_G(U)$, denn $e \in G$ und $eUe^{-1} = eUe = U$.

Sei $n \in N_G(U)$. Dann gilt

$$nUn^{-1} = U$$

$$\iff n^{-1}nUn^{-1}n = n^{-1}Un$$

$$\iff U = n^{-1}Un.$$

also auch $n^{-1} \in N_G(U)$.

Seien $n_1, n_2 \in N_G(U)$. Dann gilt:

$$(n_1 n_2)U(n_1 n_2)^{-1} = n_1 n_2 U n_2^{-1} n_1^{-1}$$

= $n_1 (n_2 U n_2^{-1}) n_1^{-1}$
= $n_1 U n_1^{-1}$
= U ,

also auch $n_1 \circ n_2 \in N_G(U)$.

Damit ist $N_G(U)$ Untergruppe von G.

• i): $\overline{U} \text{ ist Normalteiler in sich selbst, also gilt } \forall u \in U: uUu^{-1} = U. \text{ Zudem}$

gilt $U \subset G$. Per Definition von $N_G(U)$ folgt sofort $U \subset N_G(U)$.

- ii): Es gilt per Definition $\forall n \in N_G(U): nUn^{-1} = U$, d.h. U ist Normalteiler in $N_G(U)$.
- iii): Sei $V' \subset G$ eine weitere Untergruppe mit $U \subset V'$ und sodass U Normalteiler in V' ist. Sei $v \in V'$. Da U Normalteiler in V' ist, gilt $vUv^{-1} = U$, also per Definition $v \in N_G(U)$.

 $\implies V' \subset N_G(U).$

Satz 2.4. Seien G, U und $N_G(U)$ wie gehabt.

Seien ferner $m \in \mathbb{N}$, $x_1, \ldots, x_m \in N_G(U)$ und $u_0, \ldots, u_m \in U$. Dann gilt für ein geeignetes $u \in U$:

$$u_m \circ x_m \circ u_{m-1} \circ x_{m-1} \circ \ldots \circ u_1 \circ x_1 \circ u_0 = x_m \circ \ldots \circ x_1 \circ u.$$

In sbe sondere:

$$x_m \circ \ldots \circ x_1 \in U \implies u_m \circ x_m \circ u_{m-1} \circ x_{m-1} \circ \ldots \circ u_1 \circ x_1 \circ u_0 \in U.$$

Beweis: Vollständige Induktion.

• Induktionsanfang (m=1): Zu zeigen: $u_1 \circ x_1 \circ u_0 = x_1 \circ u$ für ein geeignetes $u \in U$.

U ist Normalteiler in $N_G(U)$, also gilt $u_1 \circ x_1 = x_1 \circ \hat{u}$ für ein geeignetes $\hat{u} \in U$. Damit gilt

$$u_1 \circ x_1 \circ u_0 = x_1 \circ \hat{u} \circ u_0$$
$$= x_1 \circ u$$

 $mit \ u := \hat{u} \circ u_0 \in U.$

• Induktionsschritt ($m \implies m+1$): Es gilt:

$$u_{m+1} \circ x_{m+1} \circ u_m \circ x_m \circ \dots \circ u_1 \circ x_1 \circ u_0$$

$$= u_{m+1} \circ x_{m+1} \circ (u_m \circ x_m \circ \dots \circ u_1 \circ x_1 \circ u_0)$$

$$\stackrel{I.V.}{=} u_{m+1} \circ x_{m+1} \circ (x_m \circ \dots \circ x_1 \circ u')$$

$$= (u_{m+1} \circ (x_{m+1} \circ \dots \circ x_1)) \circ u'$$

$$\stackrel{NT}{=} ((x_{m+1} \circ \dots \circ x_1) \circ u'') \circ u'$$

$$= x_{m+1} \circ \dots x_1 \circ \underbrace{u'' \circ u'}_{=:u}.$$

für geeignete $u', u'' \in U$.

3 Symmetrische Gruppe

Jegliche Operationen, die im Zaubertrick durchgeführt werden, ändern lediglich die Reihenfolge der Karten im Stapel. Zur Modellierung des Tricks genügt es also, die Karten durchzunummerieren.

Definition 3.1. Wir führen Tricks mit n Karten durch und erzeugen beim Mischen Permutationen von $\{0, \ldots, n-1\}$.

Die Gruppe aller dieser Permutationen heißt die **symmetrische Gruppe** S_n . Formal lässt sich mit $\mathbb{Z}_n := \{0, \dots, n-1\}$ jedes Element von S_n als bijektive Abbildung $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ identifizieren.

Erinnerung. \mathbb{Z}_n wird mit der Addition und Multiplikation modulo n zu einem Ring, dem **Restklassenring**.

Definition 3.2. Sei $r \in \mathbb{Z}_n$.

$$s_r: \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$$

$$k \longmapsto s_r(k) = k + r \mod n$$

heißt zyklischer Shift. s_r ist bijektiv, also $s_r \in S_n$.

Bemerkung 3.3. s_r lässt sich interpretieren als

- $\bullet\,$ Die untersten r Karten nach oben zu legen
- Die obersten n-r Karten abzuheben und unter den Stapel zu legen

Im Vortrag am Beispiel klar machen (Menge $\{0, \ldots n-1\}$ von unten nach oben aufschreiben und Shift mit z.B. r=3 anwenden)

Satz 3.4.

$$S := \{ s_r \mid r \in \mathbb{Z}_n \}$$

ist kommutative Untergruppe von S_n .

Das bedeutet insbesondere: Die Reihenfolge von mehrmaligem Abheben ist egal (Kommutativität), und mehrmaliges Abheben bringt die Karten nicht mehr durcheinander als einmaliges Abheben (Abgeschlossenheit).

Beweis: Es gilt (kurz nachrechnen oder am Abheben klarmachen):

$$s_{r_1} \circ s_{r_2} = s_{r_2} \circ s_{r_1} = (k \mapsto k + r_1 + r_2 \mod n) = s_{r_1 + r_2},$$

womit die Kommutativität und Abgeschlossenheit gezeigt sind.

Zudem
$$s_r^{-1} = s_{-r} = s_{n-r}$$
, und $id = s_0 \in S$.

4 Normalisator von S

Bemerkung 4.1. Definiere

$$\phi_a : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$$

$$k \longmapsto \phi_a(k) = ak \mod n.$$

Wann ist ϕ_a bijektiv?

Seien a und n teilerfremd. Dann gilt für $k, k' \in \mathbb{Z}_n$:

$$\phi_a(k) = \phi_a(k') \iff ak = ak' \mod n$$

$$\iff a(k - k') = 0 \mod n$$

$$\iff k - k' = 0 \mod n$$

$$\iff k = k'.$$

Also ist ϕ_a injektiv und damit surjektiv (Abbildung zwischen zwei gleichen endlichen Mengen).

Seien nun a und n nicht teilerfremd.

 $\implies \exists t \in \mathbb{N} : a = t \cdot k, n = t \cdot k'$ für geeignete $k, k' \in \mathbb{N}$. Dann gilt

$$\phi_a(k') = ak' = tkk' = nk = 0 \mod n$$
$$= \phi_a(0),$$

also ist ϕ_a nicht injektiv.

Damit ist gezeigt: ϕ_a ist bijektiv $\iff a$ und n teilerfremd.

Definition 4.2. Seien $a, b \in \mathbb{Z}$. Definiere

$$\phi_{a,b}: \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$$

$$k \longmapsto \phi_{a,b}(k) = ak + b \mod n.$$

Lemma 4.3.

$$a, n \ teiler frem d \implies \phi_{a,b} \in S_n.$$

Beweis: Es gilt $\phi_{a,b}(k) = ak + b \mod n = s_b(ak) = (s_b \circ \phi_a)(k)$. Es gilt $s_b \in S_n$ und $\phi_a \in S_n$ (haben Bijektivität eben gezeigt), also wegen der Abgeschlossenheit von S_n : $\phi_{a,b} \in S_n$.

Lemma 4.4. Sei $\phi \in S_n$ bijektiv. Es gilt:

$$\exists a \in \mathbb{Z}_n^*, b \in \mathbb{Z}_n : \phi = \phi_{a,b} \iff \exists a \in \mathbb{Z}_n : \forall k \in \mathbb{Z}_n : \phi(k+1) = \phi(k) + a \mod n.$$

Beweis: • $\underline{,} \Longrightarrow \underline{"}$:

Es gilt $(k \in \mathbb{Z}_n \text{ beliebig})$

$$\phi(k+1) - \phi(k) = a(k+1) + b - (ak+b) = a.$$

• <u>" ← ":</u>

Definiere $\phi(0) = b$. Zeige per Induktion: $\phi = \phi_{a,b}$.

- Induktions and (k = 0): Es gilt $\phi(0) = b = a \cdot 0 + b = \phi_{a,b}(0)$. - Induktionsschritt $(k \implies k+1)$: Es gilt

$$\phi(k+1) = \phi(k) + a \mod n$$

$$\stackrel{I.V.}{=} \phi_{a,b}(k) + a \mod n$$

$$= ak + b + a \mod n$$

$$= a(k+1) + b \mod n$$

$$= \phi_{a,b}(k+1).$$

Da ϕ zudem injektiv ist, müssen a und n teilerfremd sein.

Satz 4.5. Es gilt

 $N_{S_n}(S) = \{\phi_{a,b} \mid a,b \in \mathbb{N} \ teilerfremd\}.$

Beweis: • "⊃":

Sei $\phi_{a,b}$ beliebig mit a,n teilerfremd. Nach Lemma 4.3 gilt dann $\phi_{a,b}\in S_n$. Ferner gilt für beliebige $s_r\in S, k\in\mathbb{Z}_n$:

$$(\phi_{a,b} \circ s_r)(k) = \phi_{a,b}(k+r)$$

$$= a(k+r) + b \mod n$$

$$= (ak+b) + ar \mod n$$

$$= (s_{ar} \circ \phi_{a,b})(k).$$

Also $\phi_{a,b} \circ s_r \circ \phi_{a,b}^{-1} = s_{ar} \in S$. $\implies \phi_{a,b} \in N_{S_n}(S)$.

● "⊂":

Sei $\phi \in N_{S_n}(S)$. Dann gilt insbesondere für alle $k \in \mathbb{Z}_n$ mit geeignetem $s_a \in S$:

$$(\phi \circ s_1 \circ \phi^{-1})(k) = s_a(k)$$

$$\iff (\phi \circ s_1)(k) = (s_a \circ \phi)(k)$$

$$\iff \phi(k+1) = \phi(k) + a \mod n.$$

Mit Lemma 4.4 folgt die Behauptung.

5 Zauberhafte Folgerung

Welcher Mischvorgang muss auf einen aus n
 Karten bestehenden Kartenstapel angewendet werden, um eine Permutation der Form
 $\phi_{a,b}$ zu erhalten?

- i) Mischvorgang R_c : Sei $c \in \mathbb{N}$. Teile die n Karten von links nach rechts auf c Stapel aus. Danach werden die Karten wieder aufgenommen, und zwar von rechts nach links. Nach ganz oben kommt also der am weitesten links liegende Stapel.
- ii) Mischvorgang L_c : Von links nach rechts austeilen, und auch von links nach rechts aufnehmen.

(Beispiel vorführen)

Definition 5.1. i) Sei c ein Teiler von c-1 und a:=(n-1)/n. Dann sind a und n teilerfremd und R_c entspricht $\phi_{a,a}$.

ii) Sei c ein Teiler von c+1 und a:=(n+1)/n. Dann sind a und n teilerfremd und L_c entspricht $\phi_{-a,-1}$.

Beweis: • i) Teilerfremdheit folgt direkt aus ac = n - 1.

Es gilt dann n-ac=1 (Mit $ggT(a,b)=s\cdot a+t\cdot b,\quad s,t\in\mathbb{Z}$ folgt Teilerfremdheit von a und n.

Aus der ursprünglichen Reihenfolge der Karten $(0, \dots, n-1)$ passiert durch R_c folgendes:

Erster Stapel hat a + 1 Elemente, alle anderen a.

 $\longrightarrow c$ Stapel von rechts nach links zusammenlegen:

Betrachte Karte k aus dem Stapel s $(s \in \{1, ..., c-2\})$. Dann liegt die Karte k+1 im Stapel s+1 genau a Stellen weiter als k, da in jedem Stapel

außer dem ersten genau a Karten sind. In Stapel 1 gilt zusätzlich Karte 0 liegt a Karten weiter als ac.

Die letzte Karte im Stapel ist c-1. Zyklisch weiterzählen. Wir sehen dass Karte c die a-te Karte von oben ist.

Insgesamt: $R_c(0) = a$ und $R_c(k+1) = R_c(k) + a$. Mit Lemma 4.5 gilt also $R_c = \phi_{a,a}$.

• ii) Teilerfremdheit folgt direkt aus ac = n + 1.

$$ac - n = 1 \longrightarrow \text{wie vorhin}$$

Aus der ursprünglichen Reihenfolge der Karten $(0, \dots, n-1)$ passiert durch L_c folgendes:

Letzter Stapel hat a-1 Elemente, alle anderen a.

Beweis wie vorhin, aber gehe a Karten zurück um von der Karte k zur Karte k-1 zu kommen. Mit $L_c(0)=n-1$ folgt $L_c=\phi_{-a,-1}$. (In \mathbb{Z}_n ist $-1\equiv n-1$).

Beispiele vorführen

Erkenntnis aus 4.3, 4.4, 4.6 (umbenennen):

Für $n \in \mathbb{N}$ sei $A_n := \{x | n-1 \text{ durch } x \text{ teilbar}\}$ und $B_n := \{x | n+1 \text{ durch } x \text{ teilbar}\}.$

Wähle $a_1, \ldots, a_r \in A_n$ und $a'_1, \ldots, a'_l \in B_n$ aus. Sei a das Produkt aller a_i und a'_j . Wähle c_i bzw c'_j sodass $c_i a_i = n - 1$, bzw $c'_j a'_j = n + 1$.

Führe auf einen Kartenstapel R_{c_1}, \ldots, R_{c_r} und $L_{c'_1}, \ldots, L_{c'_l}$ in beliebiger Reihenfolge durch. Dazwischen darf noch zusätzlich abgehoben werden. Der Kartenstapel befindet sich in der Permutation $\phi_{a,b}$, mit b unbekannt falls abheben beliebig. Auf Erkenntnisse aus den jeweiligen Abschnitten verweisen.

Für uns von Bedeutung: a=1 oder $a=-1\to {\rm Die}$ Karten sind in der gleichen, bzw der gespiegelten zyklischen Reihenfolge.