Exercise3.12

Luqing Ye*

January 1, 2015

Exercise. Let ω and ν be 1-forms on $T_p\mathbf{R}^2$. Show that $\omega \wedge \nu(V_1,V_2)$ is the area of the parallelogram spanned by V_1 and V_2 , times the area of the parallelogram spanned by $\langle \omega \rangle$ and $\langle \nu \rangle$.

 $\begin{array}{l} \mathit{Proof.} \ \, \mathrm{Let} \ \, V_1 = \langle p_1, p_2 \rangle, V_2 = \langle q_1, q_2 \rangle. \\ \mathrm{Let} \ \, \omega \langle dx, dy \rangle = \alpha dx + b dy = \langle \omega \rangle \cdot \\ \langle dx, dy \rangle, \nu \langle dx, dy \rangle = c dx + d dy = \langle \nu \rangle \cdot \langle dx, dy \rangle. \end{array}$

$$\begin{split} \omega \wedge \nu(V_1,V_2) &= \begin{vmatrix} \omega(V_1) & \nu(V_1) \\ \omega(V_2) & \nu(V_2) \end{vmatrix} \\ &= \begin{vmatrix} \alpha p_1 + b p_2 & c p_1 + d p_2 \\ \alpha q_1 + b q_2 & c q_1 + d q_2 \end{vmatrix} \\ &= \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix} \end{split}$$

Done.

 $^{{\}rm *An\; undergraduate\; at\; Hangzhou\; Normal\; University, Email: yeluqing mathematics@gmail.com}$