GSK988TD Modbus 地址映射

为了能够通过 Modbus 读 CNC 的数据,必须为各个 CNC 数据项分配一个 Modbus 可访问的地址。Modbus 最广泛的应用是读取远程 PLC 数据, Modbus GPC 系统也是这种应用,建议 CNC 可保留访问 PLC 数据这种应用,以使 CNC 可以与 HMI 系统相连,配备远程控制终端设备。PLC 数据地址映射可以参考 GPC, PLC 地址表如下:

分类	PLC地址	地址号	操作功能码
输入(1 BIT)	F0.0 – F399.7	3001 – 6200	2, 5, 15
	F1000.0 – F1399.7	6201 – 9400	
	K0.0 – K79.7	10001-10640	
	R0.0 – R1999.7	20001 - 36000	
输出(1 BIT)	G0.0 – G399.7	3001 – 6200	1
	G1000.0 – G1399.7	6201 – 9400	
	K0.0 – K79.7	10001-10640	
	R0.0 – R1999.7	20001 - 36000	
数据寄存器	D0 – D1999	1 – 4000	3, 6, 16
(16 BIT)	DC0-DC199	18001 – 18400	
	DT0-DT199	19001 – 19400	
	T0 – T199	20001 – 20400	
	C0 – C199	21001 - 21400	
	F0 – F399	22001 - 22200	
	F1000 – F1399	23001 - 23200	
	R0.0 – R1999.7	25001 - 26000	
输入寄存器	作为模拟量输入寄存器,	,暂不支持	

注意: 1、目前外部 modbus 可写的 F 地址为 F372~F379。

2、打开参数 930 bit2 modbus 置为 1,参数 1 bit0 MODPLC 置为 1。

地址换算:

PLC的F、G、K、R地址为8位,对应地址计算如下:

Modbus 输入输出地址 = 基地址 + 字节*8 + 位

例如:

F392.1 的地址: 3001 + 8*379 + 1 = 6034

PLC 的 D、DC、DT、T、C 等寄存器为 32 位,而 modbus 的寄存器位 16 位,所以需要将 2 个 16 位 modbus 寄存器拼成一个 32 位。对应地址计算如下:

Modbus 数据寄存器地址 = 基地址 + 寄存器号*2

DC101 的地址: 18001 + 101*2 = 18203

DC101 对应数据寄存器地址 18203, 18204

其他 CNC 的数据地址全部映射到数据寄存器地址,使用功能码 fc3、fc6、fc16 进行操作,如下表:

CNC数据	地址号
刀具偏置值,前10轴为通道1	30001-34950
刀具磨损值,前10轴为通道1	35001-39950
系统参数值	40001-50000
螺补值	50001-54000,32位整数,每个值占2个地址号
通道1 宏变量(局部变量与公共宏变量)	54001-56000, 单精浮点, 每个值占2个地址号
通道2 宏变量	56001-58000, 单精浮点, 每个值占2个地址号
总报警数	62001, 16位整数
总警告数	62002, 16位整数
PLC报警数	62003, 16位整数
PLC警告数	62004, 16位整数
最后一条报警记录的编号	62005, 32位整数
报警号查询	62011-62100,16位整数
通道1 绝对坐标值	62101-62124, 单精浮点, 每个值占2个地址号
通道2 绝对坐标值	62125-62150, 单精浮点, 每个值占2个地址号
通道1 相对坐标值	62151 - 62174, 单精浮点, 每个值占2个地址号
通道2 相对坐标值	62175 - 62200, 单精浮点, 每个值占2个地址号
通道1 机床坐标值	62201 - 62224, 单精浮点, 每个值占2个地址号
通道2 机床坐标值	62225 - 62250, 单精浮点, 每个值占2个地址号
通道1 余移动量	62251 - 62274, 单精浮点, 每个值占2个地址号
通道2 余移动量	62275 - 62300, 单精浮点, 每个值占2个地址号
通道1 G模态值个数	62301 16位整数
通道1 G模态值	62302-62325,16位整数
通道2 G模态值个数	62326 16位整数
通道2 G模态值	62327-62350,16位整数
通道1 M模态值个数	62351 16位整数
通道1 M模态值	62352-62355,16位整数
通道2 M模态值个数	62356 16位整数

通道2 M模态值		62357-62360,16位整数
通道1	当前刀具号	62361, 16位整数
实时状态	当前刀偏号	62362, 16位整数
	加工件数	62363, 32位整数
	运行时间	62365, 32位整数
	切削时间	62367, 32位整数
	进给编程速度	62369, 单精浮点, 每个值占2个地址号
	进给实际速度	62371, 单精浮点, 每个值占2个地址号
	进给倍率	62373, 单精浮点, 每个值占2个地址号
	主轴编程速度	62375-62384, 单精浮点, 每个值占2个地址号
	主轴实际速度	62385-62394, 单精浮点, 每个值占2个地址号
	主轴倍率	62395, 32位浮点
	快速倍率	62401, 32位浮点
	手动倍率	62403,32位浮点
	手轮倍率	62405, 32 位浮点
	CNC工作方式	62407,32位整数
	CNC工作状态	62409, 32位整数
	当前运行的程序号	62411, 32位整数
通道2	当前刀具号	62431, 16位整数
实时状态	当前刀偏号	62432, 16位整数
	加工件数	62433, 32位整数
	运行时间	62435, 32位整数
	切削时间	62437, 32位整数
	进给编程速度	62439, 单精浮点, 每个值占2个地址号
	进给实际速度	62441, 单精浮点, 每个值占2个地址号
	进给倍率	62443, 单精浮点, 每个值占2个地址号
	主轴编程速度	62445-62454, 单精浮点, 每个值占2个地址号
	主轴实际速度	62455-62464, 单精浮点, 每个值占2个地址号
	主轴倍率	62465, 32位浮点
	快速倍率	62471, 32位浮点
	手动倍率	62473, 32位浮点
	手轮倍率	62475, 32 位浮点
	CNC工作方式	62477, 32位整数
	CNC工作状态	62479, 32位整数
	当前运行的程序号	62481, 32位整数

轮询数据传输地址映射表长度	62501,16位整数
轮询数据传输地址映射表	62502-62534, 16位的整数数组
轮询数据访问地址	62535-62600,每个数据32位
获取进给轴负载	62601-62650, 单精浮点, 每个值占2个地址号
获取主轴负载	62651-62670, 单精浮点, 每个值占2个地址号
轴的反向间隙值	62701-62750, 单精浮点, 每个值占2个地址号
CNC型号	63001-63009,字符串 <=18字符
CNC控制器类型	63010, 16位整数, T:车床, M:铣床
CNC软件版本	63011, 16位整数
系统标识码,主要方便通信服务端识别CNC	63012, 32位整数
通道1 有效轴数	63014, 16位整数
通道1 有效轴轴名	63015-63022,每个轴占一个字节
通道2 有效轴数	63023, 16位整数
通道2 有效轴轴名	63024-63030,每个轴占一个字节
上电次数	63031, 32位整数
本次上电时间	63033, 32位整数
刀具偏置数	63035, 16位整数
螺距补偿数	63036, 16位整数
通道数	63040, 16位整数
机床型号	63051-63060,字符串 <=20字符
机床编号	63061-63070,字符串 <=20字符
梯形图版本	63071-63080,字符串 <=20字符
通道1 轴伺服信息,目前是伺服型号和电机	63101-63300,字符串,每个伺服信息占20个地
型号,以逗号隔开	址,即最多40个字符
通道2 轴伺服信息	63301-63500,字符串,格式同上
通道1 主轴伺服信息	63501-63600,字符串,格式同上
通道2 主轴伺服信息	63601-63700,字符串,格式同上

◆ 轮询数据传输

CNC 中的某些数据不断的实时更新,比如坐标和进度速度,对于这些数据通讯的客户端可能需要不断地查询更新数据。由于串口本身的传输速率比较低,加上各个通讯节点的延迟,如果对多组数据轮翻查询,就需要进行多个的通讯回合才能完成,这将大大降低通讯的效率。如果能在一个通讯回合就完全多组数据的传输,那么通讯的周期就可以缩短很多。为了实现这种目标,就提供一种特殊的轮询数据传输方式。先设置一个数据映射表,然后再用一条通讯指令一次性读取数据映射表所列出的全部数据

首先将地址映射表写入 62501-62534 的地址空间,其中 62501 为数据地址个数,62502 开始为数据地址列表。写入成功后该映射表就被写入 CNC,映射表一直有效,直至被修改

或 CNC 断电。

设置了映射表以后,就可以通过访问地址 62535-62600 获取映射表所指定的数据。为了可以进行线性编址和统一读取接口,无论数据本身是 16 位数还是 32 位数,每个数据都占 2个地址号,即以 32 位的数据传输。

◆ 报警日志访问

最直接的方法是把报警日志以文件的形式整体导出,远程诊断另外提供的单条导出的功能。这是一种间接读取的方式,每一条日志需要发送两条通讯指令才能完成读取。第一条指令是向 64501 寄存器写入 32 位的报警记录编号,然后读取 64503~65000 寄存器,可批量获取报警号、报警时间、报警内容等信息。