Topology 1 January 14 Lecture 3.

Recall that we just defined the set of accumulation points A' of a set A, and stated:

Theorem: (a) If A CB, then A'CB' and

(b) For every subset A of a space X we have $\overline{A} = A \cup A'$

(Here A is closure). Def: If {xn} < x, lim xn = x if V open U with xeu, ∃N s.t. n>N ⇒ xn ∈ U.

Definition: Let $A \subset X$. Then $x \in X$ is a boundary point of A if every open neighbourhood of x intersects both A and A^c nontrivially.

Example: In \mathbb{R}^2 , the boundary of the subset $(0,1]\times(0,1]$ is exactly what you expect:

boundary

Example: Give R the cofinite topology, and let $A \subseteq R$ be an infinite set with infinite complement. (E.g. $(a,b) \subseteq R$ with a,b finite). (E.g. $(a,b) \subseteq R$ with a,b finite). Given $x \in R$, every open set intersects both A and A^c nontrivially, so x is a boundary point of A.

Notation: Boundary of A is written 2A, here 2A = R.

Theorem: For every ACX, the following are true:

- (a) dA is closed.
- (b) A = intA v dA and intA n dA=9.
- (c) A is clopen iff $\partial A = \emptyset$.

Proofs (partial).

a) Observe $X \setminus \partial A = (A \setminus \partial A) \cup (A' \setminus \partial A)$, we show both of these sets are open. Since every point $x \in A \setminus \partial A$ is not in ∂A , $\exists U$ open s.t. $x \in U$ and $U \cap A' = \emptyset$; it follows that $U \cap \partial A = \emptyset$ also (by def of ∂A).

Thus $U \subset A \setminus \partial A$, so x is an interior point. Therefore int $(A \setminus \partial A) = A \setminus \partial A$ is open, by symmetry so is $A' \setminus \partial A$.

c), b) Technical definition—checking.

Last, we introduce a définition:

Def: A space X is Hausdorff if for every distinct pair of points x, y e X, there are disjoint open neighbourhoods xell and y e V.

Preture:

Example: Let $X = R \cup \{z\}$. Define a topology on X as follows. Let T denote the "regular topology on R. Set $T' = T \cup \{(U \setminus \{0\}) \cup \{z\} \mid U \in T \text{ and } U \in U\}$. Here, the point "z" is a second zero.

(€) Given $U \in T$, $\forall x \in U \ni B_x \subset U$ with $x \in B_x \subset U$.

Therefore $U = UB_x$, so B is a basis.

Example: The usual topology on R has many bases, here are some

- (i) { (a,b) | a,b & R}
- (ii) { (a,b) | a,be Q}
- (iii) { (P1, P2) | q1, q2 are multiples of 2 }.

i.e. Bases are not unique, there is no preferred bases Example: The open balls in a metric space form a basis for the topology.

Example: The divisor topology on Z+={1,2,3,...}.

Define T to be the set of UC It satisfying:

If nell and x divides n, then xell.

Then a basis for T is given by the sets:

 $S_n = \{ x \in \mathbb{Z}^+ \mid x \text{ divides } n \}.$

Why? Because given $U = \{n_1, n_2, n_3, ..., \} \in T$, we can write $U = \bigcup_{i=1}^{n} Sn_i$, in particular $\forall n \in U$ $n \in S_n \subset U$.

Theorem: A collection B is a basis for some topology on X iff

- (i) UB = X
- (ii) For every pair B₁, B₂ & B and every x & B₁ ∩ B₂. there exists B & B with X & B = B₁ ∩ B₂.

E.g.

Proof:

(=>) Suppose B is a basis for some T.

Then XET, so I{Bi}ier = B st. UBi = X, so (i) is true.

Given B, Bz & B then B, nB2 & T. Thus VX & B, nB2 &B

St. XEB = B, nB2, by previous (propositions).

(E) Suppose B satisfies (i) and (ii), and let T denote all unions of elements of B. If T is a topology, then B will be a basis for it and we're done.

To obviously satisfies (i) and (ii) in the definition of a topology (we take \emptyset = the empty union). So we need to show finite intersections of elements of T are in T.

We start with U,, U2 e T. Write

U, = UB; and Uz = UB; Then

 $U_1 \cap U_2 = \left(\bigcup_{i \in I} B_i\right) \cap \left(\bigcup_{j \in J} B_j\right) = \bigcup_{\substack{i \in I \\ j \in J}} \left(B_i \cap B_j\right)$. So if each

BinBj is a union of elements of B, then $U_1 \cap U_2 \in \mathbb{Z}$. However, this follows from assumption (ii) in the hypotheses of the theorem. Thus $U_1 \cap U_2 \in \mathbb{Z}$.

For arbitrary finite intersections, the claim follows by induction.

Exa Definition: For a set B of subsets satisfying (i) and (ii) above, the set of all unions of elements of B is called the topology generated by B. Example: The evenly-spaced topology on I is the topology generated by the basis B consisting of sets of the form S(a,b) = { na+b | ne Z } a +0. The set B = {S(a,b) | a,b & Z} obviously satisfies (i) $UB = \mathbb{Z}_{i}$ and (ii) (ii) Consider S(a,,b,) n S(a2,b2). The intersection consists of all integers x satisfying $X \equiv b_1 \mod a_1$ $X \equiv b_2 \mod a_2$ By the Chinese remainder theorem, there is a solution for x only when b, = b2 (mod gcd (a, , 2)) and in this case the solution is unique mod lcm(a,, a2). I.e, either S(a,,b,)nS(a2,b2) = Ø E T or J x s.t. S(a,x) = S(a,b,) nS(a2,b2) where a = lemlanaz). Definition: If T1, T2 are topologies on X

Definition: If T_1 , T_2 are topologies on X and $T_1 \subset T_2$, we say T_2 is finer than T_1 and T_2 is coarser than T_2 .

Proposition: If B generates the topology T on X and $B \subset T'$, then $T \subseteq T'$. In other words, Boxs T is the coarsest topology containing B.

Example (Sorgenfrey line).

The real line R with T generated by {[a,b) | a,b \in R?

will be called the Sorgenfrey line.

Since (c, b) = U[a,b), the 'normal' open intervals

(c,b) are open in the Sorgenfrey topology as well. In other words, if I is the usual topology on IR ne have $T \subset T'$, so the Sorgenfrey line has a finer topology than IR.

Topology 1 January 16 Lecture 4.

Definition: A space (X, T) is second countable fit has a countable bases.

Example: We already saw that R has basis

B = {(a,b) | a,b \in \text{Q}, which is countable since}

Q is countable.

Example: The Sorgenfrey line is not second ountable.

Let I = {[x, x+1) | x e R}. The set I is not countable, and every set in I is open.

Suppose B is a basis for the Sorgenfrey line. Then $\forall [x, x+1] \in I$, $\exists B_x \text{ s.t. } x \in B_x \subset [x, x+1)$. To show B is uncountable, we need only show that $B_x \neq B_y$ whenever $x \neq y$.

So suppose WLOG X<y. Then X = [y, y+1) yet and so X = By, yet X = Bx. Thus Bx and By are distinct elements of B + x, y = R, so B is uncountable.

Definition: A local basis of a point $x \in X$ is a set B_x of nbhds of x s.t. for all open sets U with $x \in U$, $\exists B \in B_x$ s.t. $x \in B \subset U$.

Picture:

Proposition: If B is a basis of (X, T), then

Bx = {BeB| xeB} is a local basis at x.

Proposition: If $\{B_x\}_{x\in X}$ is a collection of local bases, one for each point of X, then $B = \bigcup B_x$ is a basis for X.

Definition: A space X is first countable if every x \in X has a countable local basis.

Example: Metric spaces are first countable. For each $x \in X$, with metric d(x,y), set $B_x = \{B(x,t) \mid n \in \mathbb{Z}^t, \text{ open balls}\}$. Then B_x is a countable local basis cet x.

Example: Consider IR2, and order it as follows: declare $(x_1, y_1) < (x_2, y_2)$ if $y_1 < y_2$ or $y_1 = y_2$ and $x_1 < x_2$. Give \mathbb{R}^2 the order topology. So open sets look like:

 (x_1,y_1) (x_2,y_2) (if $y_1 = y_2$)

if y, < y =

Definition: A collection S of open subsets of (X,T) is a subbasis for T if the set of finite intersections of elements of S form a basis. I.e

B= {U,n.nuk | uies, ke Il is a basis.

Remark: A collection S is a subbasis for some topology iff Bs satisfies (i) and (ii) of the basis
theorem, ie.

- (i) $\bigcup_{B \in \mathcal{B}} B = X$
- (ii) $\forall B_1, B_2 \in B$ and $x \in B_1 \cap B_2 \ni B \in B$ s.t $x \in B \subset B_1 \cap B_2$.

However, since By contains all finite intersections (ii) is automatic. So we only need (i) in order to get a topology from S.

Prop: S is a subbasis for some topology off UU=X. In this case, T is said to be generated by S.

§3.4 Density.

Definition: A subject DCX is dense in X if Y nonempty open UCX, UnD + \phi.

Example: A set is always dense in itself.

Example: Q' is always dense in R'for every n.

Example: Give R the cofinite topology. Then every infinite subset of R is dense in R.

Proposition: D is dense in X iff D = X.

Prost. (=) Suppose D is dense. Recall that D=DUD'. By definition of density, every xeXID.

To an accumulation point of D, so done.

(\Leftarrow) Suppose $\bar{D} = X$; and let $U \in X$ be open. Given $x \in U$ either $x \in D$ and $U \cap D \neq \emptyset$, or $x \in D'$ and by definition of accumulation points $D \cap U \neq \emptyset$. Def: A space X is separable if X has a countable dense subset.

Proposition: Every second courtable space is separable.

Proof: Let B be a countable basis for X.

For each BEB, choose $x_B \in B$. Then $\{x_B\}_{B \in B}$ is countable, and it's dense because every open U is a union of element of B, so some x_B is in U.

Proposition: Every separable metric space is second countable.

Proof: Let (X,d) be a metric space with DCX countable and dense.

Set $B = \{B(x, \frac{1}{n}) \mid x \in D \text{ and } n \in \mathbb{Z}^+\}$, we show B is a basis. (B) is countable because there one ball for each $(x, n) \in D \times \mathbb{Z}^+$, a product of countable sets thus countable).

Let $U\subset X$ open, and $y\in U$ any point. Then $\exists \varepsilon>0$ such that $B(y,\varepsilon)\subset U$. Choose $n>\frac{2}{\varepsilon}$, so $\frac{2}{n}<\varepsilon$ and $B(y,\frac{2}{n})\subset B(y,\varepsilon)$.

But now D is dense, so I x & Dn B(y, to), hence y & B(x, to).

Now we check that $B(x, t_n) \subset B(y, t_n)$. This follows from $\forall z \in B(x, t_n)$:

 $d(z,y) \leq d(z,x) + d(x,y)$ $\leq \frac{1}{n} + \frac{1}{n}$

= 2

Soye B(x, +n) c B(y, =n) c B(y, \in) c U.

Thus B is a basis.

