5.4. Seguridad laboral en vibraciones mecánicas

De muy baja frecuencia 0,1 a 0,5 Hz

-Balanceo de barcos, trenes, aviones, etc

De baja frecuencia

1-20 Hz

-Vib. Originadas por carretillas elevadoras, tractores, vehículos de transporte urbano, máquinas excavadoras, etc.

De alta frecuencia

20-1000 Hz

(Pueden ir asociadas con ruido)

-Máquina neumáticas y rotativas, tales como martillos picadores neumáticos, pulidores, motosierras, lijadoras, etc

De muy baja frecuencia <1 Hz

-Trastornos en el sistema nerviosos central; mareo vómitos (mal de los transportes)

De baja frecuencia

1-20 Hz

- -Lumbalgías, ciática, hernias, pinzamientos discales.
- -Dificultad equilibrio
- -Transtornos de visión por resonancia

De alta frecuencia

20-1000 Hz

- -Afecciones angioneuróticas de la mano:calambres, perdida de sensibilidad. /Síndrome dedo blanco (25 Hza 250 Hz), de Reynod,etc.
- -Enfermedades del estómago

L 31/1995: Prevención de Riesgos Laborales

Artículo 14. Derecho a la protección frente a los riesgos laborales (modificado por Ley 54/2003

1. Los trabajadores tienen derecho a una protección eficaz en materia de seguridad y salud en el trabajo.....deber del empresario y un deber de las Administraciones públicas respecto del personal a su servicio.

Artículo 15. Principios de la acción preventiva

- 1. El empresario aplicará las medidas que integran el deber general de prevención previsto en el artículo anterior, con arreglo a los siguientes principios generales:
- a) Evitar los riesgos. ◄

b) Evaluar los riesgos que no se puedan evitar.

No cuando ya lo tenemos encima!!!

L 31/1995: Prevención de Riesgos Laborales

c Combatir los riesgos en su origen.

d. Adaptar el trabajo a la persona

Actuar en la fuente!!! Y su entorno productivo

e) Tener en cuenta la evolución de la técnica.

Artículo 41. Obligaciones de los fabricantes, importadores y suministradores

Los fabricantes, importadores y suministradores de elementos para la protección de los trabajadores están obligados a asegurar la efectividad de los mismos, siempre que sean instalados y usados en las condiciones y de la forma recomendada por ellos..

RD1311/2005: Caracterización de las VM

VMB (vha) s/UNE-EN ISO 5349-1

Transductor: Acelerómetros de contacto

Posición de la mano

Sistemas de coordenadas BASICENTRO-BIODINÁMICO

Fuente: B&K

Palma abierta.

•Fuerza normalizada sobre una esfera de Ø 200 mm.

A > fuerza de presión > VMB

Empuñadura.

•Fuerza normalizada sobre barra de Ø 40 mm.

A > fuerza de presión > VMB

VCC (wbv) s/ISO 2631 parte 1

Transductor

Posición y Sistemas de coordenadas BASICENTRO-BIODINÁMICO

Acelerómetros de presión

Acelerómetros piezoeléctricos normales

Centro coordenadas basicentro: superficie del suelo

Recostado

PM (Punto de media): debajo de la pelvis, espalda y cabeza,

VCC (wbv) s/ISO 2631 parte 1

Transductor

Posición y Sistemas de coordenadas BASICENTRO-BIODINÁMICO

Acelerómetros de presión

Acelerómetros piezoeléctricos normales

Zona de exposición	Rango frecuencial
VMB s/UNE EN ISO 5349-1	 filtrado 1/3 de octava para fc de 6,3 Hz a 1,2KHz. Filtrado de 1 octava para fc de 8Hz a 1KHz Media ponderada en frecuencia en la banda de octavas de 5,6Hz a 1.4KHz.
VMB s/UNE 2631-1	• filtrado 1/3 octava para fc de 8 a 1KHz
VCC S/ISO 2631-1	•0,5 Hz – 80 Hz para seguridad, confort y percepción •0,1 Hz – 0,5 Hz para mareos

- Analizadores de vibración adecuados y calibrados s/ UNE ENV 28041:1994
- Transductores calibrados s/ ISO 5347-0:1987

VMB Y VCC

Valor eficaz de la aceleración de vibración

triaxial z y

Aceleración rms

promediada exponencialmente

$$a_{rms,\tau}(t_0) = \sqrt{\frac{1}{\tau} \int_{0}^{t_0} a^2(t) e^{\frac{t-t_0}{\tau}} dt} \quad \begin{array}{l} \tau = 1s \ (slow) \\ \tau = 125ms \ (fast) \end{array}$$

Sucesos vibratorios cortos (aleatorios)

Aceleración continua equivalente promediada linealmente

$$a_{eq}(T) = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt} \quad T = 1s \text{ (slow)}$$

$$T = 125ms \text{ (fast)}$$

Sucesos vibratorios largos (contínuos)

Valor eficaz de la aceleración de vibración

$$L_a = 10 \log \left(\frac{a}{a_0}\right)^2$$

VMB (vha) s/UNE-EN ISO 5349-1

Medida y evaluación de las vibraciones transmitidas por la mano:

La exposición diaria a las vibraciones se evalúa mediante:

 $A(8) = a_{hv} \sqrt{\frac{T}{T_0}}$

donde:

T es la duración total diaria de la exposición a las vibraciones

T_o es la duración de referencia de 8 horas (28.800 s)

Si el trabajo es tal que la exposición diaria total a las vibraciones consta de varias operaciones con diferentes magnitudes de las vibraciones, entonces:

$$A(8) = \sqrt{\frac{1}{T_0} \sum_{i=1}^{n} a_{hvi}^2 T_i}$$

donde:

a_{hvi} es la magnitud (vector suma) de las vibraciones de la operación i

n es el número de exposiciones individuales a las vibraciones

T_i es la duración de la operación i

$$a_{hv} = \sqrt{(a_{hwx})^2 + a_{hwy}^2 + (a_{hwz})^2}$$

a_{hw}(t) Valor de la aceleración instantánea de las vibraciones transmitidas por la mano, ponderadas en frecuencia, en el tiempo t, en m/s²

a_{hw} Valor eficaz de la aceleración instantánea de las vibraciones transmitidas por la mano, ponderadas en frecuencia, en el tiempo t, en m/s²

a_{hwx} Valor de a_{hw}, en m/s², para el eje x

 a_{hwy} Valor de a_{hw} , en m/s², para el eje y

a_{hwz} Valor de a_{hw}, en m/s², para el eje z

Valor total de la aceleración eficaz de las vibraciones, ponderada en frecuencia. Conocida también como vector suma o suma de aceleraciones ponderadas en frecuencias. Es la raíz cuadrada de la suma de los cuadrados de los valores de a hw para los tres ejes de medida de las vibraciones, en m/s²

A(8) Exposición diaria a las vibraciones (valor total de la energía equivalente de las vibraciones para 8 horas), en m/s². También denominado ahv(eq.8h) o, abreviadamente, ahv

T Duración total diaria de la exposición a las vibraciones

T_o Duración de referencia de 8 horas (28 800 s)

W_h Característica de ponderación en frecuencia para las vibracione transmitidas por la mano

VMB (vha) s/UNE-EN ISO 5349-1

$$a_{hw} = \sqrt{\sum_{i} (W_{hi} a_{hi})^2}$$

Valor rms dinámico

Tiene en cuenta transitorios y choques ocasionales

Valor rms dinámico: MTVV (Valor máximo transitorio de la vibración)

$$MTVV = \max \left[\left(\frac{1}{\tau} \int_{-\infty}^{1} a_{Wm}^{2}(\zeta) e^{-\frac{t-\zeta}{\tau}} d\zeta \right)^{\frac{1}{2}} \right]_{t=0}^{t=T}$$

- $\mathbf{a}_{\mathbf{wm}}(\zeta)$: Aceleración instantánea en función de tiempo ζ ponderada frecuencialmente Wm en m/s²
- •T: Duración de la medición
- τ:1s promediado exponencial de 1 segundo.

Valor de la dosis de vibración a la cuarta potencia -VDV

$$VDV = \left[\int_{0}^{T} a_{w}^{4}(\tau)d(\tau)\right]^{\frac{1}{4}}$$

- $a_{wm}(\zeta)$: Aceleración instantánea en función de tiempo ζ ponderada frecuencialmente Wm en m/s²
- •T: Duración de la medición

$$a_v = \sqrt{1,4^2(a_{wx})^2 + 1,4^2(a_{wy})^2 + (a_{wz})^2}$$

VCC (wbv) s/ISO 2631 parte 1 y 2

Ponderación Frecuencial	Salud Confort		Percepción	Mareos
W _k	eje- z; asiento eje- z; de pie Recostado vertical Ejes x-y-z; pie (sentado)		eje- z; asiento eje- z; de pie Recostado vertical	
W _d	eje- x; asiento eje- y; asiento eje- y; asiento ejes x-y; de pie Recostado horizontal ejes x-y espalda sentado		eje- x; asiento eje- y; asiento ejes x-y; de pie Recostado horizontal	
W _f				vertical

Ponderación Frecuencial	Salud	Confort	Percepción	Mareos
W _c	eje- x; espalda sentado	eje- x; espalda sentado	eje- x; espalda sentado	
We		Ejes rx-ry-rz; asiento	Ejes rx-ry-rz; asiento	
Wj		Recostado vertical	Recostado vertical	

VCC (wbv) s/ISO 2631 parte 1 y 2

		VMB (hav) s/UNE-EN ISO 5349-1		VCC (wbv) s/ISO 2631 parte 1 y 2	
Valor de umbral A(8)		1 m/s ²	120 dB	0,25 m/s ²	108 dB
Valor de exposición que da lugar a una acción A(8)		2,5m/s ²	128 dB	0,5 m/s ²	114 dB
Valor límite de	NO Protegida	5 m/s ²	134 dB	0,7 m/s ²	117 dB
exposición diaria A(8)	Protegida	5 m/s ²	134 dB	1,15 m/s ²	121 dB

http://www.bosch-pt.com/productspecials/blue/vibration/es

profesorinteractivo.blogia.com/upload/20060.

pa El Tiemblo (Ávila)

RD1311/2005: Vibración mano brazo (VMN)

OBJETO Y CAMPO DE APLICACIÓN: exposición a las vibraciones transmitidas por la mano, en tres ejes ortogonales.

Aplicable a vibraciones periódicas y aleatorias. Provisionalmente, también se aplica a los choques repetidos tipo excitación (impactos

UNE-EN ISO 5349-1

Rango frecuencial considerado 8 Hz – 1k Hz

	8Hz a 1KHz
Valor límite de exposición respecto a un período de referencia 8 horas	5 m/s ²
Valor de exposición diaria normalizado para un período de referencia 8 horas que da lugar a una acción ael Torres del Castillo (9ª Ed:6/2016) Profesor externo de la Salle URL. Codirector del MAAM.	2,5 m/s ²

RD1311/2005: Vibración cuerpo completo (VCC)

OBJETO Y CAMPO DE APLICACIÓN: vibraciones transmitidas al conjunto del cuerpo humano, bien sean vibraciones periódicas, aleatorias o transitorias

Aplicable a las transmisiones a través de las superficies soportantes: por el pié para persona

erguida, nalgas, espalda y pié para persona sentada o área soportante para persona acostada. Tal tipo de vibración se encuentra en **vehículos**, **maquinaria** y **edificios**.

ISO 2631-1 y 2

Rango frecuencial considerado

0,5 Hz – 80 Hz para seguridad, confort y percepción

0,1 Hz - 0,5 Hz para mareos

	Valor límite de exposición respecto a un período de referencia 8 horas	1,15 m/s ²
Rafae	Valor de exposición diaria normalizado para un período de referencia 8 horas que da lugar a una acción el Torres del Castillo (9ª Ed:6/2016) Profesor externo de la Salle URL. Codirector del MAAM.	0,5 m/s ²

Trastornos psicologícos

Trastornos vasculares

- "Síndrome del dedo blanco" (25 a 250 hz.) Trastornos neurológicos
- .-Empeoramiento destreza manual Trastornos musculares
- .-Debilidad muscular y dolores en brazos y manos

Trastornos esqueléticos

- .-Transtornos en las lumbares
- .-Hernia discal, etc.

Trastornos de la exposición a vibraciones

En la maquinaria, las vibraciones producen:

- Desgaste
- y suelen provocar roturas por fatiga.
- Las vibraciones pueden tener efectos nocivos para los <u>seres</u> humanos:
 - Reducción del rendimiento en el desarrollo de Tareas
 - Mareo por movimiento (Motion Sickness)
 - Alteraciones de la respiración y del habla
 - Síndrome del "Dedo Blanco", perdida de sensibilidad por atrofia de los nervios.

Comfort Assessments of Vibration Environments

Vibration Level - Acceleration (m/s²)	Human Perception
< 0.315	Not uncomfortable
0.315 - 0.63	A little uncomfortable
0.5 - 1	Fairly uncomfortable
0.8 - 1.6	Uncomfortable
1.25 - 2.5	Very uncomfortable
> 2	Extremely uncomfortable

Sin referencia encontrada por tanto sirven como orientación. http://www.engineeringtoolbox.com/people-vibration-d_1292.html

Seguridad laboral: Ámbito normativo

Orden competencial

- 1. Directiva 89/391/CE del Consejo, de 12 de junio de 1989: relativa a la aplicación de medidas para promover la mejora de la seguridad y de la salud de los trabajadores
 - 11. Directiva 2002/44/CE. del Parlamento Europeo y del Consejo, de 25 de junio.

 Sobre las disposiciones mínimas de seguridad y de salud relativas a la exposición de los trabajadores a los riesgos derivados de los agentes físicos (vibraciones) (art16 apartado 1 de 89/391CE)
 - 12. Ley 31/1995 de Prevención de Riesgos Laborales.(ART.16)
 - 13. RD 39/1997 del 17 de enero: Reglamento de los servicios de prevención de riesgos laborales (sección 1ª del Capítulo II)
 - **131.RD 1311/2005**: Vibraciones mecánicas en puestos de trabajo.

Figura 2. Modelo mecánico para un brazo.

