Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 16 Giugno 2008

- 1. (2 punti) Codificare i numeri interi (a) -76 e (b) 53 in modulo e segno a 8 bit
 - 11001100 (a)
 - (b) 00110101
- 2. (2 punti) Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1011100010 e (b) 1100100111 nella notazione in complemento a 2
 - (a) -286
- 3. (2 punti) Convertire da base 16 a base 8 i seguenti numeri naturali
 - (a) 9E2A 117052
- **(b)** B6D8

133330

4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1,x_2,x_3,x_4)$
0	0	0	0	1
0	0	0	1	-
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	-
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	-

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_3} \cdot (\overline{x_1} \cdot x_4) +$ $x_3 \cdot (\overline{x_2} \cdot \overline{x_1 \cdot \overline{x_4}}))$ facendo uso solo di multiplexer con 2 linee di controllo (selezione).

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0	4550	-	~	-	Separate P	-	emap.
0	0	1	1	0	1	0	0	1	1
0	1	0	1	0	Glimb	0	0	-0000	1
0	1	1	1	1	Antimos	0	***	0	0
1	0	0	-	-	-	- Carrier	ettemp.	dimina	wa
1	0	1	1	1	1	0	Apple	0	0
1	1	0	1	1	Circle .	0	1	ð	0
1	1	1	0	1	0	1	*200	0	1

$s_1 : _$	AUGUADO YA
s_2 :	X
z:	271+ 272 + x Y2 Y2

$r_1 : $	DC YAY2	
	enter during	
r_2 :	\mathcal{X} $\mathbf{Y}_{\mathbf{A}}$	

Disegno della rete:

Nome _	· · · · · · · · · · · · · · · · · · ·
Cognome _	
Matricola	

Corso di Laurea in Informatica 16 Giugno 2008

1. (5 punti) Cosa contengono i registri R1 e R2 dopo la seguente sequenza di istruzioni? LDI R1,2 – LDI R2,10 – MUL R1,R1,R2 – ADD R2,R1,R2 – SUB R1,R2,R1

Risposta: R1 10 R2 30

2. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	2	$7 \cdot 10^{6}$
Moltiplicazione	2	$4 \cdot 10^{6}$
Accesso in Memoria	4	$5 \cdot 10^6$
Salti Condizionati	2	$8 \cdot 10^{6}$

Calcolare la frequenza di clock necessaria per eseguire il suddetto programma in 2 secondi.

Risposta: 29 MHz

3. (5 punti) Determinare la sequenza di istruzioni assembler che realizzano lo statement di alto livello $x=a^2/c^3$ nel modello registro-registro

Risposta:

4. (9 punti) Determinare la fase di execute dell'istruzione CP1 (RA),V che ha l'effetto di copiare il contenuto della locazione di memoria di indirizzo simbolico V nella locazione di memoria il cui indirizzo è contenuto in RA, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

Numero	Segnali di Controllo
Ciclo	
T5	OMILIR [20:0] OUT, MARIN
T6_	MRb
TA	MRD, DTRIN
T8_	RAOUT, MAKIN
T3	MWR, SELDTRain, DTROUT
T10	MWR, SELDTRown, DTROUT

5. (6 punti) In riferimento alla legge di Amdhal, si calcoli l'accelerazione di una data componente necessaria per far sì che l'accelerazione complessiva del sistema sia pari a 1,1, assumendo che la frequenza di utilizzo di tale componente sia pari a 1/5.

Nome _	
Cognome _	
Matricola	

Corso di Laurea in Informatica 16 Giugno 2008

- 1. (2 punti) Codificare i numeri interi (a) -92 e (b) 47 in modulo e segno a 8 bit
 - (a) 11011100
 - (b) 00101111
- 2. (2 punti) Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1110110011 e (b) 1100101101 nella notazione in complemento a 2
 - (a) $\frac{-77}{-241}$
- 3. (2 punti) Convertire da base 8 a base 16 i seguenti numeri naturali
 - (a) 74063 **7833**

(b) 24516

234E

4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	_
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	
1	1	0	0	1
1	1	0	1	-
1	1	1	0	0
1	1	1	1	1

SOP	X1X3+X1		χ_z	(3+	$\overline{\chi}_{z} \overline{\chi}_{z}$	(4
	X, X,	.00,	01	11	10	
	00	1	1	0	4	
	01	0	0	0		
	11	И	A	1	0	
	10	回	回		V	-
		1				•

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = x_4 \cdot (\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}) + \overline{x_4} \cdot (\overline{x_2} \cdot x_3)$ facendo uso solo di multiplexer con 2 linee di controllo (selezione).

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0		**	-	~	C	eshabite	2500
0	0	1	0	1	0	4000	- denie	0	1
0	1	0	1	0	e2503	0	0	4000	0
0	1	1	D	1	D	1	emp.	0	1
1	0	0	and the	quart.	Marie .	egitina	- Command	egition.	4000
1	0	1	1	0	1	0	0	1	0
1	1	0	1	Λ	6000	0	1	0	1
1	1	1	1	0	ements	0	0	1	0

s_1 :	C	
<i>s</i> ₂ :	JC 42	
7.	$x\overline{y}_2 + \overline{x}\overline{y}_2$	

r_1	:	X	Yz		
r_2		χ	Y z		
' 2		 		 	

Disegno della rete:

Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 16 Giugno 2008

1. (5 punti) Cosa contengono i registri R1 e R2 dopo la seguente sequenza di istruzioni? LDI R1,4 – LDI R2,10 – MUL R1,R1,R2 – ADD R2,R1,R2 – SUB R1,R2,R1

Risposta: R1 10 R2 50

2. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	2	$3 \cdot 10^{6}$
Moltiplicazione	3	$2 \cdot 10^6$
Accesso in Memoria	5	$5\cdot 10^6$
Salti Condizionati	4	$6 \cdot 10^{6}$

Calcolare la frequenza di clock necessaria per eseguire il suddetto programma in 3 secondi.

Risposta: 20.33 MHz

3. (5 punti) Determinare la sequenza di istruzioni assembler che realizzano lo statement di alto livello $x=a^3/c^2$ nel modello registro-registro

Risposta: LB R1, A
LB R2, C
MUL R3, R1, R1
MUL R3, R1, R3
MUL R3, R1, R3

4. (9 punti) Determinare la fase di execute dell'istruzione CP2 V,(RA) che ha l'effetto di copiare il contenuto della locazione di memoria il cui indirizzo è contenuto in RA nella locazione di memoria di indirizzo simbolico V, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

Numero	Segnali di Controllo
Ciclo	
75	RAOUT, MARIN
<u>T6</u>	MRD
77	MRD, STRIN
T8_	OMILIREZO: OT DUT MAR.N
TS	MWR, SELDTRAIN, DTROUT MWR, SELDTRAIN, DTROUT
T/10	MWR, SELATRAIS, ATRONT

5. (6 punti) In riferimento alla legge di Amdhal, si calcoli l'accelerazione di una data componente necessaria per far sì che l'accelerazione complessiva del sistema sia pari a 1,2, assumendo che la frequenza di utilizzo di tale componente sia pari a 1/4.

Risposta:

Nome _	
Cognome _	
Matricola _	

Corso di Laurea in Informatica 16 Giugno 2008

- 1. (2 punti) Codificare i numeri interi (a) -69 e (b) 87 in complemento a 2 a 8 bit
 - (a) **1011011**
 - (b) 01010111
- 2. (2 punti) Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1110111001 e (b) 1001101101 nella notazione in modulo e segno
 - (a) -441 (b) -108
- 3. (2 punti) Convertire da base 16 a base 8 i seguenti numeri naturali
 - (a) 8BF3 **105763**
- (b) C5A9 _
- 142651
- 4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

u	1 1011	oa ao	1112/2/0	1140 1	metodo dene mar
	x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
	0	0	0	0	1
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	1
	0	1	0	1	-
	0	1	1	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	-
	1	1	0	0	-
	1	1	0	1	1
	_1	1	1	0	0
	1	1	1	1	0

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_2} \cdot (\overline{x_4} \cdot x_1) + x_2 \cdot (\overline{x_3} \cdot \overline{x_4} \cdot \overline{x_1})$) facendo uso solo di multiplexer con 2 linee di controllo (selezione).

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	\overline{z}
0	0	0	6mp	-	40000	enteres.		entra-	e10000
0	0	1	0	1	0		-	0	0
0	1	0	Λ	1	Gazzañ .	0	1	0	1
0	1	1	Λ	1	emb	0	- Collins	0	1
1	0	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	distrib.	Calan	-	-	dame
1	0	1	1	0	1	0	0	1	1
1	1	0	0	Λ	0	1	1	0	0
1	1	1	0	1	0	·V	(Section)	0	0

$s_1:$	X 94	
<i>s</i> ₂ :	YA	
~ •	\overline{x} $\overline{y}_1 + \overline{x} \overline{y}_1$	

 $r_1: \frac{\cancel{\Sigma} \cancel{y_1}}{\cancel{\Sigma} \cancel{y_2}}$

Disegno della rete:

Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 16 Giugno 2008

1. (5 punti) Cosa contengono i registri R1 e R2 dopo la seguente sequenza di istruzioni? LDI R1,2 – LDI R2,40 – MUL R1,R1,R2 – ADD R2,R1,R2 – SUB R1,R2,R1

Risposta: R1 40 R2 120

2. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	2	$4 \cdot 10^6$
Moltiplicazione	4	$3 \cdot 10^6$
Accesso in Memoria	5	$2 \cdot 10^6$
Salti Condizionati	2	$7 \cdot 10^{6}$

Calcolare la frequenza di clock necessaria per eseguire il suddetto programma in 4 secondi.

Risposta: 11 MHz

3. (5 punti) Determinare la sequenza di istruzioni assembler che realizzano lo statement di alto livello $x=a^2-c^3$ nel modello registro-registro

Risposta: LB R1, A MUL R3, R3, R2 MUL R1, R1, R1 SUB R3, R1, R2 LB R2, B ST X, R3 MUL R3, R2, R2

4. (9 punti) Determinare la fase di execute dell'istruzione CP3 (RA),V che ha l'effetto di copiare il contenuto della locazione di memoria di indirizzo simbolico V nella locazione di memoria il cui indirizzo è contenuto in RA, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

Numero	Segnali di Controllo
Ciclo	
T 5	OMILIR CZO: 03 OUT, MARIN
T6	MRS
TP	MRD, DTRIN
T8	RADUT, MARIN
T9_	MWR SELDTRAIN, DTROUT
710	MWR SELBTRAIR DTROUT

5. (6 punti) In riferimento alla legge di Amdhal, si calcoli l'accelerazione di una data componente necessaria per far sì che l'accelerazione complessiva del sistema sia pari a 1,3, assumendo che la frequenza di utilizzo di tale componente sia pari a 1/3.

Risposta	:	13/4

Nome _	
Cognome _	
Matricola _	

Corso di Laurea in Informatica 16 Giugno 2008

- 1. (2 punti) Codificare i numeri interi (a) -95 e (b) 49 in complemento a 2 a 8 bit
 - 10100001 (a)
 - 00110001 (b)
- 2. (2 punti) Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1011010011 e (b) 1100111011 nella notazione in modulo e segno
 - $\begin{array}{c} \text{(a)} & -211 \\ \text{(b)} & -315 \end{array}$
- 3. (2 punti) Convertire da base 8 a base 16 i seguenti numeri naturali
 - 3 C 8 F (a) 36217 _
- 782B **(b)** 74053
- 4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	-
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	_
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	. 1
1	1	0	0	
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = x_2 \cdot (\overline{x_3} \cdot \overline{x_4 \cdot \overline{x_1}}) +$ $\overline{x_2} \cdot (\overline{x_4} \cdot x_1)$) facendo uso solo di multiplexer con 2 linee di controllo (selezione).

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0	4	4	7		de	-	4
0	0	1	1	1	A	0	4	0	1
0	1	0.	1	0	1000	0	0	escript.	0
0	1	1	A	1	gjarë	0	enterts	0	1
1	0	0	and the same of th	enzione.	4mmmy	Accord	describe.	transp	,garring,
1	0	1	1	٥	1	0	0	1	0
1	1	0	0	A	0	1	Λ	0	1
1	1	1	Λ	0	40000	0	0	1	0

s ₁ :
s ₂ : X $\overline{y_2}$
$z: \overline{X} Y_2 + X \overline{Y}_2$

 $r_1: \frac{\chi \sqrt{\gamma_2}}{\chi \sqrt{\gamma_2}}$

Disegno della rete:

Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 16 Giugno 2008

1. (5 punti) Cosa contengono i registri R1 e R2 dopo la seguente sequenza di istruzioni? LDI R1,4 – LDI R2,30 – MUL R1,R1,R2 – ADD R2,R1,R2 – SUB R1,R2,R1

2. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	2	$3 \cdot 10^{6}$
Moltiplicazione	3	$3 \cdot 10^6$
Accesso in Memoria	4	$7 \cdot 10^{6}$
Salti Condizionati	2	$6 \cdot 10^{6}$

Calcolare la frequenza di clock necessaria per eseguire il suddetto programma in 5 secondi.

Risposta: 11 MH2

3. (5 punti) Determinare la sequenza di istruzioni assembler che realizzano lo statement di alto livello $x=a^3-c^2$ nel modello registro-registro

Risposta: LD R1,A
LB R2,B
MUL R3,R1,R1
MUL R3,R3,R1

MUL R3,R3,R1

4. (9 punti) Determinare la fase di execute dell'istruzione CP4 V,(RA) che ha l'effetto di copiare il contenuto della locazione di memoria il cui indirizzo è contenuto in RA nella locazione di memoria di indirizzo simbolico V, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

Numero	Segnali di Controllo
Ciclo	
T5	RAOUT, MARIN
T6	MRD
T7	MRD
T8_	OMILIR CZO: OJOUT, MARIN
TS	MWR, SELDTRAIN, DTROUT
T10	MWR, SELDTRAIZ, DTROUT MWR, SELDTRAIZ, DTROUT
	7-17-17-17-17-17-17-17-17-17-17-17-17-17

5. (6 punti) In riferimento alla legge di Amdhal, si calcoli l'accelerazione di una data componente necessaria per far sì che l'accelerazione complessiva del sistema sia pari a 1,4, assumendo che la frequenza di utilizzo di tale componente sia pari a 1/2.

Risposta : 7/3