Ejercicio 1

(4 puntos) Dado un vector de $n \ge 0$ enteros, se pide diseñar un algoritmo eficiente que (sin utilizar un array auxiliar) modifique el vector de forma que todos los elementos mayores o iguales que 0 queden colocados al principio del vector y los estrictamente menores que 0 a continuación, y que adicionalmente devuelva cual es la posición de separación entre positivos y negativos, siendo esta la posición del primer número negativo en el vector modificado o n en caso de que no haya ninguno. Se pide:

- (1 punto) Especificar el problema.
- (1,5 puntos) Diseñar e implementar un algoritmo que resuelva el problema.
- (1 punto) Escribir un invariante y una función de cota que permitan demostrar la corrección del algoritmo implementado.
- (0,5 puntos) Justificar el coste del algoritmo.

Entrada

La primera línea contiene un número que indica el número de casos de prueba que aparecen a continuación. Cada caso de prueba se compone de dos líneas. La primera de ellas tiene el número de elementos del vector. La segunda contiene los elementos del vector separados por blancos.

Salida

Para cada caso de prueba se escribirá en una línea el vector modificado y en otra línea la posición de separación. Se ha de tener en cuenta que salida mostrada en el ejemplo es solamente una de las posibles.

Entrada de ejemplo

```
7
1
2
1
-3
6
5 4 1 9 0 2
5
-3 -1 -2 -7 -8
7
1 -3 2 -1 9 -6 -10
10
3 7 -100 1 0 1 4 6 8 100
10
0 -3 -4 -1 -9 -6 0 -5 -10 -20
```

Salida de ejemplo

```
2
1
-3
0
5 4 1 9 0 2
6
-3 -1 -2 -7 -8
0
1 9 2 -1 -3 -6 -10
3
3 7 100 1 0 1 4 6 8 -100
9
0 0 -4 -1 -9 -6 -3 -5 -10 -20
2
```