EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado

Duração da prova: 120 minutos

2.ª FASE

2001

VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de onze.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos.
- 1. Para um certo valor de k, é contínua em $\mathbb R$ a função f definida por

$$f(x) = \begin{cases} 0 & se \ x \leq 0 \\ \ln{(x+k)} & se \ x > 0 \end{cases}$$
 ($\ln{\text{designa logaritmo de base } e}$)

Qual é o valor de k?

- **(A)** -1
- **(B)** 0
- **(C)** 1
- **(D)** 2

2. Na figura está parte da representação gráfica de uma função g, polinomial do terceiro grau.

> A função g admite máximo relativo igual a 3para x = -1 e admite mínimo relativo igual a -2 para x=1.

Qual é o conjunto dos valores de $\,b\,$ para os quais a equação g(x) = b tem três soluções distintas?

- (A) $]-\infty,3[$ (B) $]-2,+\infty[$ (C) [-2,3] (D)]-2,3[

3. Seja f uma função tal que a sua derivada, no ponto 3, é igual a 4.

Indique o valor de $\lim_{x \to 3} \frac{f(x) - f(3)}{x^2 - 9}$

- (A) $\frac{2}{3}$
- **(B)** $\frac{3}{2}$
- (C) 4
- **(D)** 0
- **4.** Na figura estão representados, em referencial o.n. Oxyz:
 - uma circunferência de raio 1, centrada no ponto (0,1,1) e contida no plano yOz
 - o ponto A(0,2,1)
 - o ponto $\ B$, pertencente ao semieixo positivo $\ Ox$

Considere que um ponto P, partindo de A, se desloca sobre essa circunferência, dando uma volta completa, no sentido indicado na figura.

Para cada posição do ponto P, seja θ a amplitude, em radianos, do arco AP $(\theta \in [0, 2\pi])$ e seja $d(\theta)$ a distância de P ao ponto B.

Qual dos gráficos seguintes pode ser o da função $\,d\,$?

(A)

(B)

(C)

(D)

5. Num certo país existem três empresas operadoras de telecomunicações móveis: A, B e C. Independentemente do operador, os números de telemóvel têm nove algarismos. Os números do operador A começam por 51, os do B por 52 e os do C por 53.

Quantos números de telemóvel constituídos só por algarismos ímpares podem ser atribuídos nesse país?

- **(A)** 139 630
- **(B)** 143 620 **(C)** 156 250
- **(D)** 165 340

- 6. Considere:
 - uma caixa com nove bolas, indistinguíveis ao tacto, numeradas de 1 a 9;
 - um dado equilibrado, com as faces numeradas de 1 a 6.

Lança-se o dado e tira-se, ao acaso, uma bola da caixa.

Qual é a probabilidade de os números saídos serem ambos menores que 4?

- (B) $\frac{1}{6}$ (C) $\frac{5}{27}$ (D) $\frac{5}{54}$
- 7. Qual das seguintes regiões do plano complexo (indicadas a sombreado) contém as imagens geométricas das raízes quadradas de 3 + 4i ?

(A)

(B)

(C)

(D)

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Em \mathbb{C} , conjunto dos números complexos, considere

w = 2 + i (*i* designa a unidade imaginária).

- **1.1.** Determine $(w-2)^{11}(1+3i)^2$ na forma algébrica.
- **1.2.** Averigúe se o inverso de w é, ou não, $\sqrt{2} \ cis \ \frac{3 \, \pi}{4}$
- 2. Um petroleiro, que navegava no oceano Atlântico, encalhou numa rocha e sofreu um rombo no casco. Em consequência disso, começou a derramar crude. Admita que, às t horas do dia a seguir ao do acidente, a área, em km^2 , de crude espalhado sobre o oceano é dada por

$$A(t) = 16 e^{0.1 t}$$
 , $t \in [0, 24]$

2.1. Verifique que, para qualquer valor de t, $\frac{A(t+1)}{A(t)}$ é constante.

Determine um valor aproximado dessa constante (arredondado às décimas) e interprete esse valor, no contexto da situação descrita.

2.2. Admita que a mancha de crude é circular, com centro no local onde o petroleiro encalhou. Sabendo que esse local se encontra a sete quilómetros da costa, determine a que horas, do dia a seguir ao do acidente, a mancha de crude atingirá a costa.

Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

3. Considere a função f , de domínio $]-\pi\,,\,\pi\,[$, definida por $f(x)=\frac{\cos\,x}{1+\cos\,x}$

Sem recorrer à calculadora, resolva as três alíneas seguintes.

- **3.1.** Estude a função quanto à existência de assimptotas do seu gráfico.
- **3.2.** Mostre que a função f tem um máximo e determine-o.
- **3.3.** Na figura está representada, em referencial o.n. xOy, uma parte do gráfico da função f.

Na mesma figura está também representado um trapézio $\ [OPQR].$

O ponto $\,O\,$ é a origem do referencial, e os pontos $\,P\,$ e $\,R\,$ pertencem aos eixos $\,Ox\,$ e $\,Oy\,$, respectivamente.

Os pontos $\,P\,$ e $\,Q\,$ pertencem ao gráfico de $\,f.$

Sabendo que o ponto $\,R\,$ tem ordenada $\,\frac{1}{3}$, determine a área do trapézio.

- **4.** De uma função g, contínua em \mathbb{R} , sabe-se que:
 - 1 é zero de g;
 - g(3) > 0.

Prove que a equação $\ g(x)=\frac{g(3)}{2}\$ tem, pelo menos, uma solução no intervalo]1,3[

5. Uma turma do 12.º ano é constituída por vinte e cinco alunos (quinze raparigas e dez rapazes). Nessa turma, vai ser escolhida uma comissão para organizar uma viagem de finalistas.

A comissão será formada por três pessoas: um **presidente**, um **tesoureiro** e um responsável pelas **relações públicas**.

- **5.1.** Se o delegado de turma tivesse obrigatoriamente de fazer parte da comissão, podendo ocupar qualquer um dos três cargos, quantas comissões distintas poderiam ser formadas?
- **5.2.** Admita agora que o delegado de turma pode, ou não, fazer parte da comissão.
 - **5.2.1.** Quantas comissões mistas distintas podem ser formadas?

Nota: Entenda-se por comissão mista uma comissão constituída por jovens que não são todos do mesmo sexo.

5.2.2. Suponha que a escolha dos três elementos vai ser feita por sorteio, da seguinte forma:

Cada aluno escreve o seu nome numa folha de papel. As vinte e cinco folhas são dobradas e introduzidas num saco. Em seguida, retiram-se do saco, sucessivamente, três folhas de papel. O primeiro nome a sair corresponde ao do presidente, o segundo, ao do tesoureiro, e o terceiro, ao do responsável pelas relações públicas.

Sejam $A, B \in C$ os acontecimentos:

A: «o presidente é uma rapariga»;

B: «o tesoureiro é uma rapariga»;

C: «a comissão é formada só por raparigas».

Indique o valor da probabilidade condicionada $P(C|(A\cap B))$ e, numa pequena composição, com cerca de dez linhas, justifique a sua resposta.

Nota: Não aplique a fórmula da probabilidade condicionada. O valor pedido deverá resultar **exclusivamente** da interpretação de $P(C|(A \cap B))$, no contexto do problema.

FIM

COTAÇÕES

Grupo I	63
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	- 3
Nota: Um total negativo neste grupo vale 0 (zero) pontos.	
Grupo II	137
1.	21
2.	28
3.1. 14 3.2. 14 3.3. 14	42
4	14
5.	32
ΓΟΤΔΙ	200

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

($r - raio da base; g - geratriz$)

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a \cdot cos b + sen b \cdot cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 imes \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$