COSC343: Artificial Intelligence

Lecture 14: Genetic algorithms

Lech Szymanski

Dept. of Computer Science, University of Otago

Lech Szymanski (Otago

COSC343 Lecture 14

Biological fitness

The natural world is full of optimisation processes

In each species, there's some definition of **fitness** for each organism *o*.

• How likely is it that o will survive long enough to reproduce?

This depends on different things for different species...but in general

- o needs to get food/energy...
- o needs to avoid being killed...
- o needs to find a mate...

In today's lecture

- Biological evolution
- Genetic algorithms optimisation algorithms inspired by biology

Lech Szymanski (Otago

COSC343 Lecture 1

Genetic diversity

Within any population *P* of a species, there is a **variation**.

- Each individual in *P* is built from its **genes**.
- When individuals reproduce, their genes are not perfectly copied
 - · There can be mutations...
 - In sexual reproduction, offspring are created by rcombining genes from two individuals
- So there's **genetic diversity** in *P*...and hence variation.
- The individuals in *P* are at different positions in the fitness landscape.

Lech Szymanski (Otag

COSC343 Lecture 14

Evolution by natural selection

Within any population *P*, there's an algorithm that *optimises* fitness: **natural selection**. This is a variety of stochastic search (random walk optimisation).

- The state space is the space of genetic variation within P.
- The fitness landscape is defined by the fitness function for P.

 The process of finding *neighbouring states* is implemented by **biological reproduction**:

- offspring may contain mutations...
- offspring may recombine their parent's genes.

Lech Szymanski (Otago)

COSC343 Lecture 14

http://evolution.berkeley.edu/evolibra

Genetic algorithms (GA): choose a representation

In a genetic algorithm we define a population of **individuals**, where each individual's position in state space is encoded by a **chromosome**.

8 6 4 2 7 5 3 1

A chromosome is a sequence of characters from some **alphabet**.

- The alphabet could be a set of numbers, characters...
- Each chromosome encodes a possible solution to the optimisation problem (i.e. a point in the state space).

Biological evolution is an algorithm, implemented by the world!

We can implement similar algorithms to solve optimisation problems in computers...these algorithms are called **genetic algorithms**.

Lech Szymanski (Otago

COSC343 Lecture 1

GA: choose a fitness function

Consider a well-known optimisation problem: the **8 queens problem**.

- Position 8 queens on a chessboard so that no queen can take any other queen
- Here's a possible chromosome and its corresponding board position

8 6 4 2 7 5 3 1

 As a fitness function, we can take the number of pairs of queens that can't take one another.

GA: the algorithm

- Create a population of individuals with random chromosomes.
- 2. Evaluate the fitness of each member of the population.
- 3. Pick two **parents** randomly, as a function of their fitness (fitter individuals more likely to be picked)
- Create a new individual by mixing the parents' chromosomes

Two issues:

- How to **pick** the parents...
- How to mix their chromosomes...

Lech Szymanski (Otago

COSC343 Lecture 14

GA: roulette wheel selection

A common method is **roulette wheel selection**.

- Sum the fitness of all individuals in the population
- Normalise fitness to sum to 1
- Express fitness of each individual as a range in the interval [0,1].
- Choose a random number from uniform distribution in the interval [0,1]
- · Pick the corresponding individual
- Very unfit individuals are hardly ever picked

GA: roulette wheel selection

A common method is roulette wheel selection.

- Sum the fitness of all individuals in the population
- Normalise fitness to sum to 1
- Express fitness of each individual as a range in the interval [0,1].
- Choose a random number from uniform distribution in the interval [0,1]
- · Pick the corresponding individual

Lech Szymanski (Otago)

COSC343 Lecture 1

GA: tournament selection

Another method is tournament selection.

- Pick a subset of *n* individuals from the population at random
- Two individuals with the highest fitness are selected as the two parents.

The size of *n* controls the chance that unfit individuals are selected.

GA: mixing chromosomes

Now we create a new individual based on the chromosomes of the selected parents.

The key mixing operation is **crossover**.

- First choose a **crossover point** in the chromosome
- Then select half of one parent and half of the other

Lech Szymanski (Otag

OSC343 Lecture 14

The parameters of a genetic algorithm

There are several things you can change:

- How chromosome encode possible solutions this is the most important thing! Crossover operations must make sense...
- Population size larger populations mean more diversity
- Selection the way you select will or will not promote diversity
- Mutation probability more mutations mean more randomness
- You can play with crossover probabilities too
- Elitism: you can choose to retain n fittest individuals in the next generation (often a good idea).

GA: mixing chromosomes

Now we create a new individual based on the chromosomes of the selected parents.

The key mixing operation is **crossover**.

- First choose a **crossover point** in the chromosome
- Then select half of one parent and half of the other

parent 1 3 2 7 5 2 4 1 1

parent 2 2 4 7 4 8 5 5 2

offspring 3 2 7 4 8 1 5 2

Then, with some low probability, introduce a **mutatio**n in the child.

Lech Szymanski (Otago)

COSC343 Lecture 14

An example: optimisation using genetic algorithm

An example: optimisation using genetic algorithm

Lech Szymanski (Otago

COSC343 Lecture 14

Summary

- Genetic algorithms a random walk optimisation through the state (or parameter) space
 - Population of individuals is equivalent to a set of possible solutions
 - Fitness function is the cost evaluation
 - Chromosome representation determines the dynamics of the evolution
 - Selection and mixing of fittest individuals
 - Mutation to encourage random exploration

Reading for the lecture: AIMA Section 4.1.4 Reading for next lecture: Review everything

ech Szymanski (Otago)

COSC343 Lecture 11