## Difusividad térmica

Ignacio Poggi

Carlos Ríos Chávez

ignaciop.3@gmail.com

 $carlos\_rios\_ch@hotmail.com$ 

Grupo 3 - Laboratorio 4, Cátedra Schmiegelow - Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

18 de febrero de 2019

#### Resumen

En este trabajo se estudió la difusión del calor utilizando una barra de cobre sometida a una fuente periódica, modulada por una onda cuadrada en uno de sus extremos. Se calculó la velocidad y el coeficiente de decaimiento de la onda de calor en el estado estacionario, para poder obtener la constante de difusividad térmica del  $_{29}$ Cu,  $\kappa = ALGO$ .

#### 1. Introducción

En un sólido isótropo y homogéneo, cuya difusividad térmica  $\kappa$  es independiente de la temperatura, la ecuación que determina el comportamiento térmico es: [1]:

$$\frac{\partial^2 \theta(x,t)}{\partial x^2} = \frac{1}{\kappa} \frac{\partial \theta(x,t)}{\partial t} \tag{1}$$

siendo  $\theta(x,t)$  la temperatura en la posición x a tiempo t. A la ecuación (1) se la conoce como la ecuación de Fourier unidimensional. Para determinar las condiciones de contorno que corresponden a nuestro experimento, se dispuso en el origen de la barra una fuente de calor periódica, lo que permite expresar  $\theta(x,t)$  en este extremo de la siguiente manera:

$$\theta(0,t) = \sum_{n=1,3,5}^{\infty} \frac{4\theta_0}{n\pi} sen(\frac{2n\pi t}{\tau}) \qquad (2)$$

Además, como la barra se supone semiinfinita, la condición en el otro extremo será  $\theta(\infty,t)=0$ ; es decir, se considera que la temperatura al final de la barra decae completamente.

Siendo que nos interesa la distribución de temperatura en el régimen estacionario, se propone la siguiente serie de Fourier como solución a la ecuación (1):

$$\theta(x,t) = \sum_{n=1}^{\infty} A_n(x) sen(\omega_n t - k_n x)$$
 (3)

donde  $A_n$ ,  $\omega_n$  y  $k_n$  son la amplitud, frecuencia y el número de onda del n-ésimo armónico. Reemplazando la ecuación (3) en (1), junto a las condiciones de contorno mencionadas en (2) y  $\theta(\infty,t)=0$ , se obtiene la solución para el sistema estudiado:

$$\theta(x,t) = \sum_{n=1,3,5,\dots}^{\infty} \theta_n e^{\epsilon_n x} sen(\omega_n t - \epsilon_n x)$$
 (4)

donde

$$\theta_n = \frac{4\theta_0}{n\pi}, \omega_n = \frac{2n\pi t}{\tau}, \epsilon_n = \sqrt{\frac{\omega_n}{2\kappa}}$$
 (5)

Se puede ver que, a medida que aumenta n, los armónicos se desvanecen rápidamente dado que  $\epsilon_n$  aumenta con la frecuencia. Debido a esto, es posible aproximar a la distribución de temperatura en puntos lo suficientemente alejados del origen de la barra, utilizando solamente el primer armónico:

$$\theta(x,t) \approx A_0 e^{\epsilon x} cos(\omega(t-\frac{x}{v}))$$
 (6)

escogiendo el origen de tiempo tal que  $\theta$  es máximo en x=0. Considerando la ecuación (6) y el primer armónico de la solución completa (4), se pueden obtener las expresiones:

$$\kappa_{\epsilon} = \frac{\pi}{\tau \epsilon^2} \tag{7}$$

$$\kappa_v = \frac{v^2 \tau}{4\pi} \tag{8}$$

que relacionan las propiedades térmicas del material, en este caso la difusividad térmica  $\kappa$ , con dos propiedades de la onda: la velocidad v y el coeficiente de decaimiento  $\epsilon$ .

Finalmente, combinando las ecuaciones (7) y (8), se obtiene una expresión para el coeficiente de difusividad térmica del cobre en función de los parámetros v y  $\epsilon$ , determinados experimentalmente:

$$\kappa = \frac{v}{2\epsilon} \tag{9}$$

la cual permite comparar el valor de  $\kappa$  experimental con el teorico de  $\kappa = 1,02*10^{-4}$ 

## 2. Dispositivo experimental

Los instrumentos de laboratorio utilizados fueron:

- PC con software MATLAB para la adquisición y análisis de los datos.
- Multímetro Agilent 34970A.
- Multiplexor de 8 canales.
- Barra de cobre de  $1.5 \pm 0.1$  cm de diámetro y  $50 \pm 0.1$  cm de largo.
- Siete termocuplas (2 de tipo K y 5 de tipo J).
- Soldador.
- Contactor.
- Generador de funciones Tektronix AFG3021B.

Se dispuso un soldador conectado a un contactor controlado por un generador de ondas, el cual se configur Ó para emitir una onda cuadrada de período  $\tau=200$  seg. durante el régimen transitorio; y de  $\tau=170$  seg. para el estacionario. Luego, la punta del soldador fue insertada en uno de los extremos de la barra aislada, y a los 10 minutos se comenzó a medir el régimen transitorio.

Las medidas de la temperatura se obtuvieron mediante 7 termocuplas de tipo K y J, insertadas a lo largo de la barra en diferentes posiciones como muestra la siguiente tabla (todos los valores tomando como posición 0 al extremo fijado al soldador):

Cuadro 1: Posición de cada termocupla en la barra con respecto al extremo en contacto con el soldador (posición 0).

| Termocupla | Posición ( $\pm 0, 1cm$ ) |
|------------|---------------------------|
| 1 K        | 4,1                       |
| 2 K        | 8,6                       |
| 3 J        | 13,4                      |
| 1 J        | 17,1                      |
| 1 J        | 22,0                      |
| 1 J        | 29,2                      |
| 1 J        | 36,4                      |

Estas termocuplas se conectaron a un multiplexor, el cual fue conectado a un multimetro de 8 canales, con el que se realizó la adquisición de los datos utilizando 7 de ellos. En la siguiente figura se puede ver un esquema del dispositivo utilizado:



Figura 1: Dispositivo experimental. Cabe destacar que la barra de cobre se encuentra aislada con una capa interna de espuma aislante y una externa de PVC.

Mediante un programa realizado en MATLAB; el cual se utilizo para configurar al multímetro vía interfaz GPIB, se tomaron 1000 mediciones secuenciales en las termocuplas cada 5 segundos, es decir; se obtuvieron 7 valores de temperatura (una por cada termocupla) cada 5 segundos; esto equivale a una medición. Este paso se repitió durante un tiempo total de 5000 segundos (aproximadamente 1:30 hs.), primero para el régimen transitorio y luego para el estacionario; dejando pasar para este último 3 horas desde el comienzo de la medición del transitorio.

Luego, se obtuvieron todos los datos guardados en el multímetro con el mismo programa en MATLAB, para su posterior análisis.

### 4. Conclusiones

### 3. Resultados y análisis

Para estimar la temperatura a la cual el sistema alcanza el régimen estacionario, se alimentó al soldador con una onda cuadrada de período  $\tau=200$  seg y amplitud de 6,432 Vpp. durante la primera medición realizada en un tiempo de 1:30 hs.; observando que la misma aumenta de manera uniforme durante éste régimen hasta oscilar alrededor de un valor fijo en cada termocupla; por ejemplo, en las termocuplas 1 y 4,  $T_{Ch,1}=89.5$  C y  $T_{Ch,4}=79.2$  C respectivamente ; manteniéndose en este rango lo que resta de tiempo en esta primer medición, como puede verse en la siguiente figura.



Figura 2: Valores de temperatura en cada termocupla durante el regimen transitorio

Luego, se deja evolucionar al sistema durante 3 horas más, para poder alcanzar el régimen estacionario, y se realiza la segunda medición, ésta vez con una onda cuadrada de período  $\tau$  = 170 seg. y misma amplitud que antes.

#### FIGURA DEL ESTACIONARIO ACA?????

Podemos notar que la temperatura inicial de la termocupla 1 es de 89 grados, coincidiendo con la ultima medicion de temperatura (a  $t=5000~{\rm seg}$ ) para el regimen transitorio; lo cual nos indica que el tiempo de 3 horas utilizado para llegar al regimen estacionario una vez comenzado el experimento fue correcto.

# 5. Referencias

[1] A. Bodas, V. Gándia and E. López-Baeza, An undergraduate experiment on the propagation of thermal waves, American Journal of Physics, **66**, 528 (1998).