

#### Shenzhen Global Test Service Co..Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

# TEST REPORT ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-3 V2.1.2 (2021-03)

Report Reference No..... GTS20211129024-1-3

Compiled by

( position+printed name+signature)..: File administrators Peter Xiao

Supervised by

( position+printed name+signature)..: Test Engineer Oliver Ou

Approved by

( position+printed name+signature)..: Manager Simon Hu

Date of issue....: Dec.30, 2021

Representative Laboratory Name .: Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Address....:

Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong

Applicant's name ..... **ZHUHAI TAIXIN SEMICONDUCTOR CO.LTD** 

3F, Building 2, Harbor 1 Science and Technology Park, No.1 Jin Tang Address....:

Road, Tangjiawan Town, High-tech Zone, Zhuhai, Guangdong, China

Test specification .....:

ETSI EN 301 489-1 V2.2.3 (2019-11) Standard .....:

ETSI EN 301 489-3 V2.1.2 (2021-03)

TRF Originator ..... Shenzhen Global Test Service Co.,Ltd.

Master TRF..... Dated 2014-12

#### Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description ....:: **TX-AH module** 

Trade Mark .....: N/A

ZHUHAI TAIXIN SEMICONDUCTOR CO.LTD Manufacturer....:

Model/Type reference..... TX-AH-R900PNR-860M

Listed model .....: TX-AH-R900P

Hardware version....: V1.1

Software version.....: V1.3

Ratings.....: DC 3.0-3.6V by Pinboard

Recharged by DC 5.0V

Result....: **PASS**  Report No.: GTS20211129024-1-3 Page 2 of 43

# TEST REPORT

| Test Report No. : | GTS20211129024-1-3 | Dec.30, 2021  |
|-------------------|--------------------|---------------|
|                   | 01020211123024-1-3 | Date of issue |

Equipment under Test : TX-AH module

Model /Type : TX-AH-R900PNR-860M

Listed model : TX-AH-R900P

Applicant : ZHUHAI TAIXIN SEMICONDUCTOR CO.LTD

Address 3F, Building 2, Harbor 1 Science and Technology Park, No.1 Jin Tang

Road, Tangjiawan Town, High-tech Zone, Zhuhai, Guangdong, China

Manufacturer : ZHUHAI TAIXIN SEMICONDUCTOR CO.LTD

Address 3F, Building 2, Harbor 1 Science and Technology Park, No.1 Jin Tang

Road, Tangjiawan Town, High-tech Zone, Zhuhai, Guangdong, China

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# **Contents**

| 1. TEST STANDARDS                             | 4  |
|-----------------------------------------------|----|
| 2. SUMMARY                                    | 5  |
| 2.1. General Remarks                          | 5  |
| 2.2. Product Description                      |    |
| 2.3. Difference description                   |    |
| 2.4. EUT operation mode                       |    |
| 2.5. EUT configuration                        | 7  |
| 2.6. Modifications                            | 7  |
| 3. TEST ENVIRONMENT                           | 8  |
| 3.1. Address of the test laboratory           | 8  |
| 3.2. Test Facility                            |    |
| 3.3. Environmental conditions                 | 8  |
| 3.4. Statement of the measurement uncertainty | 8  |
| 3.5. Test Description                         | 9  |
| 3.6. Equipments Used during the Test          | 10 |
| 4. TEST CONDITIONS AND RESULTS                | 12 |
| 4.1. EMISSION                                 | 12 |
| 4.1.1. Radiated Emission                      | 12 |
| 4.1.2. Conducted Emission (AC Mains)          | 18 |
| 4.1.3. Harmonic Current Emission              | 21 |
| 4.1.4. Voltage Fluctuation and Flicker        | 22 |
| 4.2. IMMUNITY                                 | 23 |
| 4.2.1. Performance criteria                   | 23 |
| 4.2.2. Monitoring EUT in Immunity Test        | 24 |
| 4.2.3. Electrostatic Discharge                | 25 |
| 4.2.4. RF Electromagnetic Field               |    |
| 4.2.5. Surges                                 |    |
| 4.2.6. RF- Common Mode 0.15MHz to 80MHz       |    |
| 4.2.7. Fast Transients Common Mode            |    |
| 4.2.8. Voltage Dips and Interruptions         | 32 |
| 5. TEST SETUP PHOTOS OF THE EUT               | 33 |
| 6 EXTERNAL AND INTERNAL PHOTOS OF THE FLIT    | 39 |

Report No.: GTS20211129024-1-3 Page 4 of 43

# 1. TEST STANDARDS

The tests were performed according to following standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)—ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU ETSI EN 301 489-3 V2.1.2 (2021-03)—ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; Harmonised Standard for ElectroMagnetic Compatibility

Report No.: GTS20211129024-1-3 Page 5 of 43

# 2. SUMMARY

# 2.1. General Remarks

| Date of receipt of test sample |   | Dec.10, 2021 |
|--------------------------------|---|--------------|
|                                |   |              |
| Testing commenced on           | : | Dec.10, 2021 |
|                                |   |              |
| Testing concluded on           | : | Dec.30, 2021 |

# 2.2. Product Description

| Product Name:         | TX-AH module                                  |
|-----------------------|-----------------------------------------------|
| Trade Mark:           | N/A                                           |
| Model/Type reference: | TX-AH-R900PNR-860M                            |
| List Model:           | TX-AH-R900P                                   |
| Model Declaration     | Please see description of differences         |
| Power supply:         | DC 3.0-3.6V by Pinboard                       |
|                       | Recharged by DC 5.0V                          |
| Hardware Version      | V1.1                                          |
| Software Version      | V1.3                                          |
| SRD                   |                                               |
| Frequency Range       | 863.0-865.0MHz, 865.0-868.0MHz                |
|                       | 1 Channel to 2M(864.0MHz, 866.0MHz)           |
| Channel Number        | 2 Channel to 1M(863.5MHz, 864.5MHz)           |
|                       | 3 Channel to 1M(865.5MHz, 866.5MHz, 867.5MHz) |
| Channel Bandwidth     | 1MHz, 2MHz                                    |
| Modulation Type       | OFDM                                          |
| Antenna Description   | External Antenna,3.00dBi                      |

Report No.: GTS20211129024-1-3 Page 6 of 43

# 2.3. Difference description

The difference between TX-AH-R900PNR-860M and TX-AH-R900P series is show in the below table:

| Differences / Models | TX-AH-R900P                                                 | TX-AH-R900PNR-860M      |
|----------------------|-------------------------------------------------------------|-------------------------|
| Silk screen          | Different                                                   | Different               |
| Shielding cover      | Same with shielding cover                                   | The same                |
| Module board         | /                                                           | Add a Saw to the Switch |
| RF IC Chip-set       | TXW8301                                                     | The same                |
| Circuit/ schematics  | /                                                           | Add a Saw to the Switch |
| Layout               | /                                                           | Add a Saw to the Switch |
| ВОМ                  | 1                                                           | Add a Saw to the Switch |
| Frequency bands      | 802.11ah<br>2M:866/864;<br>1M:863.5/864.5/865.5/866.5/867.5 | The same                |
| BT/ Wi-Fi antenna    | External Antenna                                            | The same                |
| Appearance           | The same                                                    | The same                |
| Dimension            | 17mm*15mm*2.4mm                                             | The same                |
| Power Supply         | The same                                                    | The same                |
| Accessories          | /                                                           | /                       |

Report No.: GTS20211129024-1-3 Page 7 of 43

# 2.4. EUT operation mode

| Test mode | SRD | DC IN |
|-----------|-----|-------|
| 1         | •   |       |

#### Note:

■ is operation mode.

Pre-scan above all test mode, found below test mode which it was worse case mode.

Pre-test conducted emission and radiated emission at both voltage AC 120V/60Hz and AC 230V/50Hz, recorded worst case.

| Test item          | Test mode (Worse case mode) |
|--------------------|-----------------------------|
| Conducted emission | Mode 1                      |
| Radiated emission  | Mode 1                      |
| EMS                | All Mode                    |

<sup>2,</sup> The module integrates two independent transmitters, Test results reported represents the worst case simultaneous transmission condition.

# 2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- $\ensuremath{\bigcirc}$  supplied by the lab

| $\circ$ | Adapter | M/N:          | GQ12-050200-ZG                   |
|---------|---------|---------------|----------------------------------|
|         |         |               | Dong Guan City GangQi Electronic |
|         |         | Manufacturer: | Co.Ltd                           |

# 2.6. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20211129024-1-3 Page 8 of 43

# 3. TEST ENVIRONMENT

### 3.1. Address of the test laboratory

#### Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

### 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

### 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Normal Temperature: | 15-35 ° C    |
|---------------------|--------------|
| Lative Humidity     | 30-60 %      |
| Air Pressure        | 950-1050mbar |

# 3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements"and is documented in the Shenzhen Global Test Service Co.,Ltd. acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

| Test                  | Range      | Measurement<br>Uncertainty | Notes |
|-----------------------|------------|----------------------------|-------|
| Radiated Emission     | 30~1000MHz | 4.10 dB                    | (1)   |
| Radiated Emission     | 1~18GHz    | 4.32 dB                    | (1)   |
| Conducted Disturbance | 0.15~30MHz | 3.12 dB                    | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: GTS20211129024-1-3 Page 9 of 43

# 3.5. Test Description

| Emission Measurement              |                                                                          |      |
|-----------------------------------|--------------------------------------------------------------------------|------|
| Radiated Emission                 | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| Conducted Emission( AC Mains)     | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| Harmonic Current Emissions        | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | N/A  |
| Voltage Fluctuations and Flicker  | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| Immunity Measurement              |                                                                          |      |
| Electrostatic Discharge           | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| RF Electromagnetic Field          | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| Fast Transients Common Mode       | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| RF Common Mode 0,15 MHz to 80 MHz | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| Voltage Dips and Interruptions    | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |
| Surges                            | ETSI EN 301 489-1 V2.2.3 (2019-11)<br>ETSI EN 301 489-3 V2.1.2 (2021-03) | PASS |

Remark: The measurement uncertainty is not included in the test result.

Report No.: GTS20211129024-1-3 Page 10 of 43

# 3.6. Equipments Used during the Test

| Item | Test Equipment                               | Manufacturer                            | Model No.          | Serial No.                | Last Cal.  | Calibration<br>Due Date |
|------|----------------------------------------------|-----------------------------------------|--------------------|---------------------------|------------|-------------------------|
| 1    | EMI Test Receiver                            | R&S                                     | ESPI 3             | 101841-cd                 | 2021/07/17 | 2022/07/16              |
| 2    | Artificial Mains                             | ROHDE &<br>SCHWARZ                      | ESH2-Z5            | 893606/008                | 2021/07/17 | 2022/07/16              |
| 3    | Pulse Limiter                                | Agilent                                 | EM5010A            | 3107A04120                | 2021/07/17 | 2022/07/16              |
| 4    | EMI Test Receiver                            | ROHDE &<br>SCHWARZ                      | ESCI 7             | 101102                    | 2021/09/19 | 2022/09/18              |
| 5    | Spectrum Analyzer                            | Agilent                                 | N9020A             | MY48010425                | 2021/09/19 | 2022/09/18              |
| 6    | Spectrum Analyzer                            | R&S                                     | FSV40              | 100019                    | 2021/07/17 | 2022/07/16              |
| 7    | Active Loop<br>Antenna                       | Beijing Da Ze<br>Technology<br>Co.,Ltd. | ZN30900C           | 15006                     | 2021/09/19 | 2022/09/18              |
| 8    | By-log Antenna                               | SCHWARZBECK                             | VULB9163           | 000976                    | 2021/08/08 | 2022/08/07              |
| 9    | Double Ridged<br>Horn Antenna<br>(1~18GHz)   | SCHWARZBECK                             | BBHA<br>9120D      | 01622                     | 2021/09/19 | 2022/09/18              |
| 10   | Horn Antenna<br>(18GHz~40GHz)                | Schwarzbeck                             | BBHA9170           | 791                       | 2021/09/19 | 2022/09/18              |
| 11   | Amplifier<br>(30MHz~1GHz)                    | Schwarzbeck                             | BBV 9743           | #202                      | 2021/07/17 | 2022/07/16              |
| 12   | Amplifier<br>(1GHz~18GHz)                    | Taiwan Chengyi                          | EMC05184<br>5B     | 980355                    | 2021/07/17 | 2022/07/16              |
| 13   | Amplifier<br>(26.5GHz~40GHz)                 | Schwarzbeck                             | BBV9179            | 9719-025                  | 2021/07/17 | 2022/07/16              |
| 14   | ESD Simulators                               | EMC Partner                             | ESD3000            | ESD3000-1680              | 2021/09/19 | 2022/09/18              |
| 15   | RF POWER<br>AMPLIFIER                        | OPHIR                                   | 5225R              | 1079                      | 2021/09/19 | 2022/09/18              |
| 16   | RF POWER<br>AMPLIFIER                        | OPHIR                                   | 5273F              | 1025                      | 2021/09/19 | 2022/09/18              |
| 17   | RF POWER<br>AMPLIFIER                        | SKET                                    | HAP_03G0<br>6G-50W |                           | 2021/09/19 | 2022/09/18              |
| 18   | Stacked<br>Broadband Log<br>Periodic Antenna | SCHWARZBECK                             | STLP 9128          | 9128ES-112                | 2021/09/19 | 2022/09/18              |
| 19   | Stacked<br>Mikrowellen Log<br>Per Antenna    | SCHWARZBECK                             | STLP 9149          | 9149-594                  | 2021/09/19 | 2022/09/18              |
| 20   | Electric field probe                         | Narda S.TS./PMM                         | EP601              | 611WX90121                | 2021/09/19 | 2022/09/18              |
| 21   | ESG Vector Signal<br>Generator               | Agilent                                 | MY490726<br>27     | E4594C                    | 2021/09/19 | 2022/09/18              |
| 22   | Power meter                                  | Agilent                                 | MY451044<br>93     | E4602B                    | 2021/09/19 | 2022/09/18              |
| 23   | Power sensor                                 | Agilent                                 | MY414952<br>34     | E7201H                    | 2021/09/19 | 2022/09/18              |
| 24   | Ultra Compact<br>Simulator                   | EMC Partner                             | TRANSIEN<br>T3000  | TRA3000 F5-S-<br>D-V-1527 | 2021/09/19 | 2022/09/18              |

| 25 | Coupling Clamp                   | EMC Partner      | CN-<br>EFT1000  | CN-EFT1000-<br>1574     | 2021/09/19 | 2022/09/18 |
|----|----------------------------------|------------------|-----------------|-------------------------|------------|------------|
| 26 | Signal Line<br>Coupling Network  | EMC Partner      | CN-<br>R40C05   | CN-R40C05-<br>1513      | 2021/09/19 | 2022/09/18 |
| 27 | CS Test system                   | Frankonia        | CIT-10-75       | 126B1333                | 2021/09/19 | 2022/09/18 |
| 28 | 6dB Attenuator                   | Frankonia        | 75-A-FFN-<br>06 | 1509                    | 2021/09/19 | 2022/09/18 |
| 29 | CDN                              | Frankonia        | M2+M3           | A2210239                | 2021/09/19 | 2022/09/18 |
| 30 | Power Clamp                      | Frankonia        | EMCL-20         | 132A1216                | 2021/09/19 | 2022/09/18 |
| 31 | Harmonic and Flicker Analyzer    | EMC Partner      | HAR1000-<br>1P  | HAR1000-1P<br>230V-0221 | 2021/09/19 | 2022/09/18 |
| 32 | RF Cable                         | HUBER+SUHNE<br>R | RG214           | N/A                     | 2021/09/19 | 2022/09/18 |
| 33 | ISN                              | Schwarzbeck      | CAT5 8158       | 121                     | 2021/09/19 | 2022/09/18 |
| 34 | Radio<br>Communication<br>Tester | Rohde&Schwarz    | CMW500          | 115406                  | 2021/07/17 | 2022/07/16 |
| 35 | Conducted<br>Emission            | Tonscend         | JS32-CE         | Ver 2.5                 | /          | /          |
| 36 | Radiated Emission                | Tonscend         | JS32-RE         | Ver 2.5.1.8             | /          | /          |

The calibration interval is 1 year.

# 4. TEST CONDITIONS AND RESULTS

# 4.1. EMISSION

# 4.1.1. Radiated Emission

# <u>LIMIT</u>

Please refer to ETSI EN301489-1 Clause 8.2.3, Table 4 and EN55032 Annex A, Table A.4, A.5, and Class B

### **TEST CONFIGURATION**

### ■ Below 1GHz



#### ■ Above 1GHz



# **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 8.2.3 for the measurement methods

# **TEST RESULTS**

#### **Passed**

Please refer to the below test data:

# TX-AH-R900PNR-860M:



| Susp | Suspected List     |                     |                |                    |                   |                |                |              |          |           |        |  |  |  |
|------|--------------------|---------------------|----------------|--------------------|-------------------|----------------|----------------|--------------|----------|-----------|--------|--|--|--|
| NO.  | Frequency<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Result<br>[dBµV/m] | Limit<br>[dBμV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Detector | Polarity  | Remark |  |  |  |
| 1    | 44.5500            | 27.83               | -7.31          | 20.52              | 40.00             | 19.48          | 100            | 261          | PK       | Horizonta | PASS   |  |  |  |
| 2    | 192.4750           | 31.33               | -9.71          | 21.62              | 40.00             | 18.38          | 100            | 326          | PK       | Horizonta | PASS   |  |  |  |
| 3    | 296.2650           | 36.75               | -7.20          | 29.55              | 47.00             | 17.45          | 100            | 280          | PK       | Horizonta | PASS   |  |  |  |
| 4    | 359.3150           | 31.56               | -5.38          | 26.18              | 47.00             | 20.82          | 100            | 264          | PK       | Horizonta | PASS   |  |  |  |
| 5    | 531.4900           | 33.26               | -2.37          | 30.89              | 47.00             | 16.11          | 100            | 358          | PK       | Horizonta | PASS   |  |  |  |
| 6    | 833.1600           | 31.45               | 1.67           | 33.12              | 47.00             | 13.88          | 100            | 22           | PK       | Horizonta | PASS   |  |  |  |

Note: 1. Result (dB $\mu$ V/m) = Reading(dB $\mu$ V/m) + Factor (dB) .

 $2.\,Factor\,(dB) = Antenna\,Factor\,(dB/m) + Cable\,loss\,(dB) - Pre\,Amplifier\,gain\,(dB).$ 

| est mode:         |           |                       | N   | Mod | de i | 1   |      |        |                | Polariz                 | ation   |          |                       |          |         |   | \        | /ertica |
|-------------------|-----------|-----------------------|-----|-----|------|-----|------|--------|----------------|-------------------------|---------|----------|-----------------------|----------|---------|---|----------|---------|
| Test Graph        |           |                       |     |     |      |     |      |        |                |                         |         |          |                       |          |         |   |          |         |
| 80 -              | T         |                       | I I |     |      | П   |      |        |                |                         |         | <u> </u> | Ī                     |          | T       |   | -        |         |
| 70 -              |           | -                     | -   |     |      |     | -    |        |                |                         | -       | -        |                       |          |         | - | -        |         |
| 60 -              |           |                       |     |     |      |     | -    |        |                |                         | ļ       | <u> </u> | ļ                     |          |         |   | _        |         |
| <b>€</b> 50-      |           |                       |     |     |      |     |      |        |                |                         |         |          |                       |          |         |   |          |         |
| 후 40·             |           |                       |     |     |      |     |      |        |                |                         |         |          |                       |          |         |   |          |         |
| <u>_</u>          |           | м1                    |     |     |      |     |      |        |                |                         | ,       |          | <b>*</b> <sup>5</sup> |          | *       | 6 |          |         |
| _                 |           | / 5                   |     |     | 2    |     | 3    |        |                | للرا                    | . I.A   |          |                       | فيانس    | وأفيطها | - | <b>W</b> |         |
| 20 -              | ~~~       |                       |     |     | ~~~\ | ~~u | سلد  | turnum | mallocofely of | hod garacipa bid of the | And the |          | No.                   |          | +       | + | 1        |         |
| 10-               |           |                       |     |     |      |     |      |        |                |                         |         |          |                       |          |         |   |          |         |
| 0 -<br>30         | )M        |                       |     |     |      |     | 100M | <br>I  |                |                         | -       | -        | -                     | <u> </u> | _       | _ | i<br>1G  |         |
| 10 -<br>0 -<br>30 | )M<br>— 0 | P Limit<br>P Detector | — F |     |      |     | 100M | 1      | juency[Hz      |                         |         |          |                       |          |         |   | 1G       |         |

| Susp | Suspected List     |                     |                |                    |                   |                |                |              |          |          |        |  |  |  |
|------|--------------------|---------------------|----------------|--------------------|-------------------|----------------|----------------|--------------|----------|----------|--------|--|--|--|
| NO.  | Frequency<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Result<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Detector | Polarity | Remark |  |  |  |
| 1    | 44.5500            | 38.11               | -7.31          | 30.80              | 40.00             | 9.20           | 100            | 311          | PK       | Vertical | PASS   |  |  |  |
| 2    | 68.3150            | 32.21               | -9.56          | 22.65              | 40.00             | 17.35          | 100            | 104          | PK       | Vertical | PASS   |  |  |  |
| 3    | 99.3550            | 30.79               | -8.55          | 22.24              | 40.00             | 17.76          | 100            | 276          | PK       | Vertical | PASS   |  |  |  |
| 4    | 303.0550           | 35.94               | -7.03          | 28.91              | 47.00             | 18.09          | 100            | 337          | PK       | Vertical | PASS   |  |  |  |
| 5    | 533.4300           | 38.41               | -2.32          | 36.09              | 47.00             | 10.91          | 100            | 69           | PK       | Vertical | PASS   |  |  |  |
| 6    | 797.7550           | 32.14               | 1.74           | 33.88              | 47.00             | 13.12          | 100            | 267          | PK       | Vertical | PASS   |  |  |  |

Note: 1. Result ( $dB\mu V/m$ ) = Reading( $dB\mu V/m$ ) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

# TX-AH-R900P:



| Susp | Suspected List     |                     |                |                    |                   |                |                |              |          |           |        |  |  |
|------|--------------------|---------------------|----------------|--------------------|-------------------|----------------|----------------|--------------|----------|-----------|--------|--|--|
| NO.  | Frequency<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Result<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Detector | Polarity  | Remark |  |  |
| 1    | 44.5500            | 28.33               | -7.31          | 21.02              | 40.00             | 18.98          | 100            | 261          | PK       | Horizonta | PASS   |  |  |
| 2    | 192.4750           | 31.83               | -9.71          | 22.12              | 40.00             | 17.88          | 100            | 326          | PK       | Horizonta | PASS   |  |  |
| 3    | 239.5200           | 31.27               | -8.45          | 22.82              | 47.00             | 24.18          | 100            | 94           | PK       | Horizonta | PASS   |  |  |
| 4    | 296.2650           | 37.25               | -7.20          | 30.05              | 47.00             | 16.95          | 100            | 280          | PK       | Horizonta | PASS   |  |  |
| 5    | 359.3150           | 32.06               | -5.38          | 26.68              | 47.00             | 20.32          | 100            | 264          | PK       | Horizonta | PASS   |  |  |
| 6    | 531.4900           | 32.76               | -2.37          | 30.39              | 47.00             | 16.61          | 100            | 358          | PK       | Horizonta | PASS   |  |  |

Note: 1. Result (dB $\mu$ V/m) = Reading(dB $\mu$ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

| Test mode:                              |            | Mode 1          |                                   | Polariz    | ation     |                |   |          |              | Vertical |
|-----------------------------------------|------------|-----------------|-----------------------------------|------------|-----------|----------------|---|----------|--------------|----------|
| Test Graph                              |            |                 |                                   |            |           |                |   |          |              |          |
| 80                                      |            |                 |                                   |            | l T       |                |   | T        |              |          |
| 70                                      |            |                 |                                   | <u> </u>   |           |                | - | -        |              | -        |
| 60                                      |            |                 |                                   | <u> </u>   |           |                | - | -        |              | _        |
| ₹ 50                                    |            | <u> </u>        |                                   | <u> </u>   |           |                |   |          |              |          |
| 50 — 50 — 50 — 30 — 50 — 50 — 50 — 50 — |            |                 |                                   |            |           |                |   |          |              |          |
| ) o o o o o o o o o o o o o o o o o o o | <b>#</b> 1 |                 |                                   |            | 4         | *              |   |          | <sup>6</sup> | _        |
| 20                                      | ~~/ ~m     |                 | 3                                 | <u></u> W  | L. Jahren | MANAGE AND RES | - | أتساليان | -            | <b>\</b> |
| 10                                      |            | Married Comment | material mountains and his flight | Cap-de Hay | MAD.      |                |   |          |              |          |
| 10 -                                    |            |                 |                                   |            |           |                |   |          |              |          |
| 30M                                     |            | 10              | OM                                |            | -         |                |   | _        |              | <br>1G   |
|                                         | QP Limit — | PK              | Frequency[l-                      | lz]        |           |                |   |          |              |          |

| Susp | Suspected List     |                     |                |                    |                   |                |                |              |          |          |        |  |  |  |
|------|--------------------|---------------------|----------------|--------------------|-------------------|----------------|----------------|--------------|----------|----------|--------|--|--|--|
| NO.  | Frequency<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Result<br>[dBµV/m] | Limit<br>[dBµ√/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Detector | Polarity | Remark |  |  |  |
| 1    | 44.5500            | 38.61               | -7.31          | 31.30              | 40.00             | 8.70           | 100            | 311          | PK       | Vertical | PASS   |  |  |  |
| 2    | 68.3150            | 32.71               | -9.56          | 23.15              | 40.00             | 16.85          | 100            | 104          | PK       | Vertical | PASS   |  |  |  |
| 3    | 99.3550            | 31.29               | -8.55          | 22.74              | 40.00             | 17.26          | 100            | 276          | PK       | Vertical | PASS   |  |  |  |
| 4    | 303.0550           | 36.44               | -7.03          | 29.41              | 47.00             | 17.59          | 100            | 337          | PK       | Vertical | PASS   |  |  |  |
| 5    | 533.4300           | 37.91               | -2.32          | 35.59              | 47.00             | 11.41          | 100            | 69           | PK       | Vertical | PASS   |  |  |  |
| 6    | 797.7550           | 32.64               | 1.74           | 34.38              | 47.00             | 12.62          | 100            | 267          | PK       | Vertical | PASS   |  |  |  |

Note: 1. Result (dB $\mu$ V/m) = Reading(dB $\mu$ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

#### TX-AH-R900PNR-860M:



Note:1. Result( $dB\mu V/m$ ) = Reading( $dB\mu V/m$ ) + Factor(dB).

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Test mode: Mode 1 Polarization Vertical Test Graph 2G 4G # AV Delector Suspected List Reading [dBµV/m Factor [dB] Frequency [MHz] Detector Polarity Remark 1039.3750 28 22 0.72 28.94 5000 21.06 100 358 PASS 1043.7500 37.75 0.74 38.49 70.00 31.51 358 Vertical PASS 1136 2500 47.66 0.98 48.64 70.00 21.36 100 322 PASS 1137.5000 36.64 0.98 37.62 12.38 322 PASS 5000 100 Vertical 1330.6250 32.78 0.51 33.29 5000 16.71 100 310 ΑV Vertical PASS 1331.8750 42.45 0.50 42.95 70.00 27.05 100 310 PΚ Vertical PASS 1747 5000 40.61 2.02 42.63 70.00 27.37 100 260 PК Vertical PASS 8 1759.3750 30.18 2.0532.23 5000 17.77 100 260 ΑV Vertical PASS 2431 2500 4.37 5000 17.81 78 PASS 100 10 2440 8250 38.39 4.40 42.79 70.00 27.21 100 291 PК PASS Vertical 11 3996,8750 39.78 9.19 48.97 7400 25.03 100 32 PК Vertical PASS 3998.7500 31.44 9.19 40.63 5400 Vertical Note:1. Result( $dB\mu V/m$ ) = Reading( $dB\mu V/m$ ) + Factor(dB).

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

#### TX-AH-R900P:



#### \*\*\*Note:

Pre-test at both voltage AC 120V/60Hz and AC 230V/50Hz, but we only recorded the worst case in this report.

Report No.: GTS20211129024-1-3 Page 18 of 43

# 4.1.2. Conducted Emission (AC Mains)

# **LIMIT**

Please refer to ETSI EN301489-1 Clause 8.4.3, Table 8 and EN55032 Annex A, Table A.9, A.11

# **TEST CONFIGURATION**



# **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 8.4.3 for the measurement methods

# **TEST RESULTS**

#### **Passed**

Please refer to the below test data:

#### TX-AH-R900PNR-860M:



Note: 1. Result (dB $\mu$ V) = Reading (dB $\mu$ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

| Test mode: | Mode1 | Polarization | N |
|------------|-------|--------------|---|
|            |       |              |   |

### Test Graph



| Fina | Final Data List |         |         |        |        |        |        |        |        |        |      |        |  |  |
|------|-----------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|------|--------|--|--|
| NO.  | Frequency       | QP      | AVG.    | Factor | QP     | AVG.   | QP     | AVG.   | QP     | AVG.   | Line | Remark |  |  |
|      |                 | Reading | Reading |        | Result | Result | Limit  | Limit  | Margin | Margin |      |        |  |  |
|      | [MHz]           | [dBµ∨]  | [dBµV]  | [dB]   | [dBµ∨] | [dBµ∨] | [dBµ∨] | [dBµ∨] | [dB]   | [dB]   |      |        |  |  |
| 1    | 0.2897          | 32.16   | 21.96   | 9.98   | 42.14  | 31.94  | 60.53  | 50.53  | 18.39  | 18.59  | N    | PASS   |  |  |
| 2    | 0.5931          | 30.93   | 24.80   | 10.06  | 40.99  | 34.86  | 56.00  | 46.00  | 15.01  | 11.14  | N    | PASS   |  |  |
| 3    | 1.0863          | 28.67   | 21.43   | 10.08  | 38.75  | 31.51  | 56.00  | 46.00  | 17.25  | 14.49  | Ν    | PASS   |  |  |
| 4    | 1.5669          | 29.79   | 22.13   | 10.12  | 39.91  | 32.25  | 56.00  | 46.00  | 16.09  | 13.75  | N    | PASS   |  |  |
| 5    | 2.5795          | 20.28   | 15.13   | 10.24  | 30.52  | 25.37  | 56.00  | 46.00  | 25.48  | 20.63  | N    | PASS   |  |  |
| 6    | 7.5107          | 16.36   | 10.28   | 10.62  | 26.98  | 20.90  | 60.00  | 50.00  | 33.02  | 29.10  | N    | PASS   |  |  |

Note: 1. Result (dB $\mu$ V) = Reading (dB $\mu$ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

#### TX-AH-R900P:



### \*\*\*Note:

Pre-test at both voltage AC 120V/60Hz and AC 230V/50Hz, but we only recorded the worst case in this report.

# 4.1.3. Harmonic Current Emission

# **LIMIT**

Please refer to EN 61000-3-2

# **TEST CONFIGURATION**



# **TEST PROCEDURE**

Please refer to EN 61000-3-2 for the measurement methods.

# **TEST RESULTS**

Not applicable to this device (The product without test since the rating power of EUT is less than 75W).

# 4.1.4. Voltage Fluctuation and Flicker

# <u>LIMIT</u>

Please refer to EN 61000-3-3

# **TEST CONFIGURATION**



# **TEST PROCEDURE**

Please refer to EN 61000-3-3 for the measurement methods.

# **TEST RESULTS**

# Maximum Flicker results

| TX-AH-R900PNR-860M      |       |      |      |  |  |  |  |  |  |  |
|-------------------------|-------|------|------|--|--|--|--|--|--|--|
| EUT values Limit Result |       |      |      |  |  |  |  |  |  |  |
| Pst                     | 0.085 | 1.00 | PASS |  |  |  |  |  |  |  |
| Plt                     | 0.069 | 0.65 | PASS |  |  |  |  |  |  |  |
| dc [%]                  | 0.172 | 3.30 | PASS |  |  |  |  |  |  |  |
| dmax [%]                | 0.269 | 4.00 | PASS |  |  |  |  |  |  |  |
| dt [s]                  | 0.082 | 0.50 | PASS |  |  |  |  |  |  |  |

| TX-AH-R900P             |       |      |      |  |  |  |  |  |  |  |
|-------------------------|-------|------|------|--|--|--|--|--|--|--|
| EUT values Limit Result |       |      |      |  |  |  |  |  |  |  |
| Pst                     | 0.089 | 1.00 | PASS |  |  |  |  |  |  |  |
| Plt                     | 0.076 | 0.65 | PASS |  |  |  |  |  |  |  |
| dc [%]                  | 0.182 | 3.30 | PASS |  |  |  |  |  |  |  |
| dmax [%]                | 0.283 | 4.00 | PASS |  |  |  |  |  |  |  |
| dt [s]                  | 0.096 | 0.50 | PASS |  |  |  |  |  |  |  |

Report No.: GTS20211129024-1-3 Page 23 of 43

# 4.2. IMMUNITY

# 4.2.1. Performance criteria

### ■ ETSI EN301489-3

### General performance criteria

- performance criterion A applies for immunity tests with phenomena of a continuous nature;
- performance criterion B applies for immunity tests with phenomena of a transient nature.
- •The equipment shall meet the minimum performance criteria as specified in the following.

| Criteria | During test                | After test                                            |
|----------|----------------------------|-------------------------------------------------------|
| Α        | Operate as intended        | Operate as intended                                   |
|          | No loss of function        | No loss of function                                   |
|          | No unintentional responses | No degradation of performance                         |
|          |                            | No loss of stored data or user programmable functions |
| В        | May show loss of function  | Operate as intended                                   |
|          | No unintentional responses | Lost function(s) shall be self-recoverable            |
|          |                            | No degradation of performance                         |
|          |                            | No loss of stored data or user programmable functions |

NOTE: Where "operate as intended" or "no loss of function" is specified, the EUT shall demonstrate correct functioning as described in clause 5.

Report No.: GTS20211129024-1-3 Page 24 of 43

# 4.2.2. Monitoring EUT in Immunity Test

#### 4.2.2.1 Monitoring for Continuous Phenomena Applied to the EUT

#### SRD Mode

At the start of the test, establish a wireless link between the EUT and CMW500(integrate WIFI protocol Analyzer);

During the test, observe whether the EUT operate as intended, no loss of function and no unintentional transmissions. Monitoring PER and shall exeed 10%

After the test, Check the function and critical stored data of the EUT with no degration.

In addition, when EUT working in Idle /Receiver mode, monitor whether the transmitter unintentionally operates.

#### other Mode

During and after the test, observe the Screen status by eyes or monitor to see whether there is degration of performance

#### 4.2.2.2 Monitoring for Transient Phenomena Applied to the EUT

#### ■ SRD Mode

At the start of the test, establish a wireless link between the EUT and CMW500(integrate WIFI protocol Analyzer);

After the test, Check the function and critical stored data of the EUT with no degration.

In addition, when EUT working in Idle /Receiver mode, monitor whether the transmitter unintentionally operates.

After the test, Check the function and critical stored data of the EUT with no degration.

#### ■ other Mode

After the test, observe the Screen status by eyes or monitor to see whether there is degration of performance

Report No.: GTS20211129024-1-3 Page 25 of 43

### 4.2.3. Electrostatic Discharge

#### LIMIT

#### SEVERITY LEVELS OF ELECTROSTATIC DISCHARGE

Test level: Contact Discharge at ±2KV, ±4KV Air Discharge at ±2KV, ±4KV, ±8KV

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 9.3.2 and EN 61000-4-2 for the measurement methods.

### **Contact Discharge:**

The ESD generator is held perpendicular to the surface to which the discharge is applied and the tip of the discharge electrode touch the surface of EUT. Then turn the discharge switch. The generator is then retriggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

#### Air Discharge:

Air discharge is used where contact discharge can't be applied. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

#### Indirect discharge for horizontal coupling plane:

At least 10 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT.

# Indirect discharge for vertical coupling plane:

At least 10 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Report No.: GTS20211129024-1-3 Page 26 of 43

# **TEST MODE**

Please reference to the section 2.3

# **TEST RESULTS**

| Direct discharge     |                        |                                                           |                |        |
|----------------------|------------------------|-----------------------------------------------------------|----------------|--------|
| Type of discharge    | Discharge voltage (KV) | Criteria Level                                            | Result         |        |
| Contact<br>discharge | $\pm 2$                | No degradation in performance of the EUT was observed (A) | В              |        |
|                      | ±4                     | А                                                         | В              | Pass   |
| Air discharge        | ±2                     | А                                                         | В              | 1 433  |
|                      | ±4                     | А                                                         | В              |        |
|                      | ±8                     | А                                                         | В              |        |
| Indirect discharge   |                        |                                                           |                |        |
| Type of discharge    | Discharge voltage (KV) | Observations Performance                                  | Criteria Level | Result |
| HCP (6 sides)        | ±2                     | Α                                                         | В              |        |
| HCP (6 sides)        | ±4                     | A                                                         | В              | Door   |
| VCP (4 sides)        | ±2                     | А                                                         | В              | Pass   |
|                      | ±4                     | A                                                         | В              |        |

Remark: The ancillary equipment's specification for an acceptable level of performance or degradation of performance during and/or after the ESD tests.

Report No.: GTS20211129024-1-3 Page 27 of 43

# 4.2.4. RF Electromagnetic Field

# **PERFORMANCE CRITERION**

Criteria A

# **TEST LEVEL**

3V/m (80%, 1kHz Amplitude Modulation)

# **TEST CONFIGURATION**



# **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 9.2.2 and EN 61000-4-3 for the measurement methods.

### **TEST MODE**

Please reference to the section 2.3

Report No.: GTS20211129024-1-3 Page 28 of 43

# **TEST RESULTS**

| Frequency    | Level   | Modulation                                                        | Antenna<br>Polarization | EUT Face | Observations<br>(Performance<br>Criterion) | Result |
|--------------|---------|-------------------------------------------------------------------|-------------------------|----------|--------------------------------------------|--------|
|              |         |                                                                   | V                       | Front    | А                                          | Pass   |
|              |         | 1 kHz,<br>80 % Amp. Mod,<br>1 % increment,<br>dwell time=3seconds | Н                       | FIOIIL   | Α                                          | Pass   |
|              |         |                                                                   | V                       | Door     | А                                          | Pass   |
|              | 3 V/III |                                                                   | Н                       | Rear     | А                                          | Pass   |
|              |         |                                                                   | V                       | Left     | А                                          | Pass   |
| 80 MHz-6 GHz |         |                                                                   | Н                       |          | Α                                          | Pass   |
| 80 MHZ-6 GHZ |         |                                                                   | V                       | Diaht    | Α                                          | Pass   |
|              |         |                                                                   | Н                       | Right    | А                                          | Pass   |
|              |         |                                                                   | V                       | Ton      | А                                          | Pass   |
|              |         |                                                                   | Н                       | Тор      | Α                                          | Pass   |
|              |         |                                                                   | V                       | Dottom   | А                                          | Pass   |
|              |         |                                                                   | Н                       | Bottom   | А                                          | Pass   |

Special conditions for EMC immunity tests

# **SRD Test Result:**

| EUT<br>Working Mode | Antenna<br>Polarity | Frequency<br>(MHz) | Fielded<br>Strength<br>(V/m) | Observation | Position                    | Conclusion |
|---------------------|---------------------|--------------------|------------------------------|-------------|-----------------------------|------------|
| Operating Mode      | Vertical            | 80-6000            | 3                            | CT, CR      | Front, Right,<br>Left, Back | Pass       |
|                     | Horizontal          | 80-6000            | 3                            | CT, CR      | Front, Right,<br>Left, Back | Pass       |

# Special conditions for EMC immunity tests

| EUT operating<br>Mode | PER during test(Worst) | PER Limit | Conclusion |
|-----------------------|------------------------|-----------|------------|
| SRD                   | 4.5%                   | 10%       | Pass       |

Report No.: GTS20211129024-1-3 Page 29 of 43

# 4.2.5. Surges

# PERFORMANCE CRITERION

Criteria B

### **TEST LEVEL**

1kV Line to Line: Differential mode 2kV Line to Ground: Common mode

(Voltage Waveform: 1.2/50 us; Current Waveform: 8/20 us)

### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 9.8.2 and EN 61000-4-5 for the measurement methods.

### **TEST MODE**

Please reference to the section 2.3

# **TEST RESULTS**

| Location | Level(kV) | Pulse No | Surge<br>Interval | Phase(deg) | Observations (Performance Criterion) | Result |
|----------|-----------|----------|-------------------|------------|--------------------------------------|--------|
|          |           |          | 5 00-             | 0°         | A                                    | Pass   |
| LN       |           | F        |                   | 90°        | А                                    | Pass   |
| L-N ± 1  | 5         | 60s      | 180°              | А          | Pass                                 |        |
|          |           |          | 270°              | A          | Pass                                 |        |

Remark: A: No degradation in performance of the EUT was observed.

Report No.: GTS20211129024-1-3 Page 30 of 43

# 4.2.6. RF- Common Mode 0.15MHz to 80MHz

# **PERFORMANCE CRITERION**

Criteria A

### **TEST LEVEL**

3Vrms on AC main port (80%, 1kHz Amplitude Modulation)

# **TEST CONFIGURATION**

SIGNAL GENERATER



### **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 9.5.2 and EN 61000-4-6 for the measurement methods.

### **TEST MODE**

Please reference to the section 2.3

# **TEST RESULTS**

| Frequency       | Injected<br>Position | Level | Modulation                                                        | Observations (Performance Criterion) | Result |
|-----------------|----------------------|-------|-------------------------------------------------------------------|--------------------------------------|--------|
| 150kHz to 80MHz | AC Mains             | 3Vrms | 1 kHz,<br>80 % Amp. Mod,<br>1 % increment,<br>dwell time=3seconds | А                                    | Pass   |

Special conditions for EMC immunity tests

| EUT operating<br>Mode | PER during test(Worst) | PER Limit | Conclusion |
|-----------------------|------------------------|-----------|------------|
| SRD                   | 4.4%                   | 10%       | Pass       |

Report No.: GTS20211129024-1-3 Page 31 of 43

# 4.2.7. Fast Transients Common Mode

### PERFORMANCE CRITERION

Criteria B

### **TEST LEVEL**

1KV for AC main port

(Impulse Frequency: 5 kHz; Tr/Th: 5/50ns; Burst Duration: 15ms; Burst Period: 3Hz)

### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 9.4.2 and EN 61000-4-4 for the measurement methods.

### **TEST MODE**

Please reference to the section 2.3

#### **TEST RESULTS**

| Lead under Test | Level (±kV) | Coupling<br>Direct/Clamp | Observations<br>(Performance Criterion) | Result |
|-----------------|-------------|--------------------------|-----------------------------------------|--------|
| L               | ±1          | Direct                   | А                                       | Pass   |
| N               | ±1          | Direct                   | А                                       | Pass   |
| L+N             | ±1          | Direct                   | А                                       | Pass   |

Remark: A: No degradation in performance of the EUT was observed.

Report No.: GTS20211129024-1-3 Page 32 of 43

# 4.2.8. Voltage Dips and Interruptions

### **PERFORMANCE CRITERION**

>95% VD, 0.5 period----Performance criterion: B

>95% VD, 1.0 period----Performance criterion: B

30% VD, 25 period----Performance criterion: C

>95% VI, 250 period----Performance criterion: C

#### **TEST LEVEL**

0% of VT(Supply Voltage) for 0.5 period

0% of VT(Supply Voltage) for 1.0 period

70% of VT(Supply Voltage) for 25 period

0% of VT(Supply Voltage) for 250 period

### **TEST CONFIGURATION**



### **TEST PROCEDURE**

Please refer to ETSI EN 301 489-1 Clause 9.7.2 and EN 61000-4-11 for the measurement methods.

#### **TEST MODE**

Please reference to the section 2.3

### **TEST RESULTS**

| Test<br>Level %<br>UT | Duration<br>(Periods) | Phase angle         | No. of drop out | Time<br>between<br>dropout | Observations<br>(Performance<br>Criterion) | Result |
|-----------------------|-----------------------|---------------------|-----------------|----------------------------|--------------------------------------------|--------|
| 0                     | 0.5                   | 0°, 90°, 180°, 270° | 3               | 10s                        | Α                                          | Pass   |
| 0                     | 1.0                   | 0°, 90°, 180°, 270° | 3               | 10s                        | Α                                          | Pass   |
| 70                    | 25                    | 0°, 90°, 180°, 270° | 3               | 10s                        | Α                                          | Pass   |
| 0                     | 250                   | 0°, 90°, 180°, 270° | 3               | 10s                        | В                                          | Pass   |

#### Remark:

A: No degradation in performance of the EUT was observed.

B: During the test, the power shut down, after the experiment, the function can automatically return to normal.

# 5. TEST SETUP PHOTOS OF THE EUT

Radiated Emission





Report No.: GTS20211129024-1-3 Page 34 of 43



Electrostatic Discharge



Report No.: GTS20211129024-1-3 Page 35 of 43



Electrical fast transients / Burst











# 6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT



Fig. 1



Fig. 2





Fig. 4





Fig. 6



Fig. 7



Fig. 8



Fig. 9



Fig. 10



Fig. 11

.....End of Report.....