(12)

FUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent; 24.11.1999 Bulletin 1999/47
- (51) Int Cl.6: G06F 15/80

(11)

- (21) Application number: 94107842.0
- (22) Date of filing: 15.09.1989
- (54) learning processing system Lernverarbeitungssystem Système de traitement d'apprentissage
- (84) Designated Contracting States: DE FR GB
- (30) Priority: 17.09.1988 JP 23284588 17.09.1988 JP 23284688 20.09.1988 JP 23544188
- (43) Date of publication of application: 24.08.1994 Bulletin 1994/34
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 89402544.4 / 0 360 674
- (73) Proprietor: SONY CORPORATION Tokyo (JP)
- (72) Inventor: Hiralwa, Atsunobu Shinagawa-ku, Tokyo (JP)
- (74) Representative: Thévenet, Jean-Bruno et al Cabinet Beau de Loménie 158, rue de l'Université 75340 Paris Cédex 07 (FR)

- (56) References cited:
 - IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, vol.1, 24 July 1988, SAN DIEGO, USA pages 363 - 370 KUNG 'An algebraic projection analysis for optimal hidden units size and learning rates in back-propagation learning'
 - IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, vol.1, 24 July 1988, SAN DIEGO, USA pages 247 - 254 KOUTSOUGERAS 'Training of a neural network for pattern
 - classification based on an entropy measure' NEURAL NETWORKS FROM MODELS TO APPLICATIONS, PROCEEDINGS OF THE NEURO CONFERENCE, 6 June 1988, PARIS , FRANCE pages 178 - 186 EKEBERG 'automatic generation of internal representations in a probabilistic artificial neural network
 - NEURAL NETWORKS FROM MODELS TO APPLICATIONS, PROCEEDINGS OF THE NEURO CONFERENCE, 6 June 1988, PARIS . FRANCE pages 663 - 672 COCHET 'zzenn zig zag epigenetic neural networks and their use in information systems'
 - IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, vol.1, 24 July 1988, SAN DIEGO, USA pages 325 - 333 SIETSMA 'Neural net pruning - why and how'

612 033 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

BACKGROUND OF THE INVENTION

5 Field of the invention

[0001]. This invention relates to a signal processing apparatus or system carrying out signal processing with the use of a so-called neural network medu put of pulprity of units each taking charge of signal processing vertexpriding to that of a neuron, and a learning processing apparatus or system causing a signal processing section by said neural network to undergo a learning processing in accordance with the learning rule of beach progessition.

Prior art

40

[0002] The learning rule of back propagation, which is a learning algorithm of the neural network, has been tentatively applied to signal processing; including high speed image processing or pattern recognition, as disclosed in "Parallel Distributed Processing", vol. 1, The MIT Press, 1980 or "Nikkel Electronics", issue of August 10, 1997, N° 427, pp. 115 to 124. The learning rule of back propagation is also applied, as shown in Fig. 1, to a multistorey neural network having an intermediate layer 2 between an input layer 1 and an output layer 3.

[0003] Each unit u_i of the neural network shown in Fig. 1 issues an output value which is the total sum net, of output values O_i of a unit u_i coupled to the unit u_i by a coupling coefficient W_b, transformed by a predetermined function f, such as a signoid function. That is, when the value of a pattern p is supplied as an input value to each unit u_i of the input layer 1, an output value O_{ij} of each unit u_i of the intermediate layer 2 and the output layer 3 is expressed by the following formula (1)

$$O_{pi} = f_{j}(net_{pj})$$

$$= f_{i}(\Sigma, W_{in}O_{ni})$$
(1)

[0004] The output value O_{pj} of the unit u_j of the output layer 3 may be obtained by sequentially computing the output values of the inputs u_j each corresponding to a neuron, from the input layer, 1 towards the output layer 3. [0005] In accordance with the back-propagation learning algorithm, the processing of learning consisting in modifying the coupling coefficient W_p so as to minimize the total sum E_p of square errors between the actual output value O_{pj} of each unit u_j of the output layer 3 on application of the pattern g and the desirable output value 1_{pj}, that is the teacher signal,

$$E_{p} = \frac{1}{2} \sum_{i} (t_{pi} - O_{pi})^{2}$$
 (2)

is sequentially performed from the output layer 3 towards the input layer 1. By such processing of learning, the output value O_{ij} closes to the value T_{ij} of the teacher signal is output from the unit u_j of the output layer 3.

[0006] If the variant Δ W_{ji} of the coupling coefficient W_{ji} which minimizes the total sum E_p of the square errors is set so that

$$\Delta W_{ij} \alpha - \partial Ep/\partial W_{jj}$$
 (3)

the formula (3) may be rewritten to

$$\Delta W_{ii} = \eta \cdot \delta_{ni} O_{ni}$$
 (4)

as explained in detail in the above reference materials.

[0007] In the above formula (4), η stands for the rate of learning, which is a constant, and which may be empirically determined from the number of the units or layers or from the input or output values. δ_{pj} stands for the error proper to the unit up.

[0008] Therefore, in determining the above variant ΔW_{jk} it suffices to compute the error δ_{pj} in the reverse direction, or from the output layer towards the input layer of the network.

[0009] The error δ_{ni} of the unit u_i of the output layer 1 is given by the formula (5)

$$\delta_{oi} = (t_{oi} - O_{oi})f'_{i}(net_{i})$$
 (5)

(7)

On the other hand, the error δ_{pj} of the unit u_j of the intermediate layer 2 may be computed by a recurrent function of the following formula (6)

$$\delta pj = f_i(net_i) \sum_{k} pk W_{ki}$$
 (6)

using the error δ_{pk} and the coupling coefficient W_{kj} of each unit u_k coupled to the unit u_j herein each unit of the output layer 3. The process of finding the above formulas (5) and (6) is explained in detail in the above reference materials.

[0010] In the above formulas, f'j(netj) stands for the differentiation of the output function fj(netj).

[0011] Although the variant W_{ij} may be found from the above formula (4), using the results of the formulas (5) and (6), more stable results may be obtained by finding it from the following formula (7)

$$\Delta W_{ii}(n+1)=\eta \cdot \delta_{ni}O_{ni} + \alpha \cdot \Delta W_{iii(n)}$$

with the use of the results of the preceding learning. In the above formula, α stands for a stabilization factor for reducing the error oscillations and accelerating the convergence thereof.

[0012] The above described learning is repeated until it is terminated at the time point when the total sum E_p of the square errors between the output value O_{rd} and the teacher signal t_{ot} becomes sufficiently small.

[0013] It is noted that, in the conventional signal processing system in which the aforementioned back-propagation learning rule is applied to the neural network, the learning constant is empirically determined from the numbers of the layers and the units corresponding to neurons or the input and output values, and the learning is carried out at the constant learning rate using the above formula (7). Thus the number of times of repetition <u>n</u> of the learning until the total sum <u>E</u>, between the output value O_R and the teacher signal t_{pl} becomes small enough to terminate the learning may be enromous to render the efficient learning unleasible.

[0014] Also, the above described signal processing system is constructed as a network consisting only of feedforward couplings between the units corresponding to the neurons, so that, when the features of the input signal pattem are to be extracted by learning the coupling state of the above mentioned network from the input signals and the teacher signal, it is difficult to extract the sequential time series pattern or chronological pattern of the audio signals fluctuating on the time axis.

[0015] In addition, while the processing of learning of the above described multistorey neural network in accordance of with the back-propagation learning rule has a promisingly high functional ability, it may occur frequently that an optimum global minimum is not reached, but only a local minimum is reached, in the course of the learning process, such that the total sum E_n of the square errors cannot be reduced sufficiently.

[0016] Conventionally, when such local minimum is reached, the initial value or the learning rate η is changed and the processing of learning is repeated until finding the optimum global minimum. This results in considerable fluctuations and protractions of the learning processing time.

[0017] The paper by Kung et all entitled "An Algebraic Projection Analysis for Optimal Hidden Units Size and Learning Rates in Back-Propagation Learning" (IEEE International Conference on Neural Networks, San Diego, California, July 24-27, 1986) seeks to optimize a learning process consisting of iterative application of the back propagation algorithm and uses an approach whereby it is sought to minimise the value of a modified measure of mean squared error.

10018] The paper by Koutsougeras et al entitled 'Training of a Neural Network for Pattern Classification Based on an Entropy Measure' (IEEE International Conference on Neural Networks, San Diago, Caltionia, July 42-47, 1989) discusses a neural network having a branching structure designed to partition in-dimensional space into different discrete regions corresponding to respective different classes of patterns. The branching structure is incrementally built up during a training phase where input patterns are applied to the incividual neurons of the network and threshold and weight values of the neurons are adjusted starting from the input layer and proceeding towards the output laser. Extra neurons are added as needed in order adequately to partition the in-dimensional space.

Objects of the invention

[0019] It is a primary object of the present invention to provide a learning processing system in which the signal processing section of the neutral network is subjected to learning processing in accordance with a back-propagation learning rule, wherein the local minimum state in the learning processing process may be efficiently avoided for realizing an ootinum object minimum state outside and stably.

Summary of the invention

- 10 [0020] For accomplishing the primary object of the present invention, the present invention provides a learning processing system in which the learning processing section executes the learning processing of the coupling strength coefficient as it increases the number of units of the intermediate leave.
 - [0021] The above and other objects and novel features of the present invention will become apparent from the following detailed description of the invention which is made in conjunction with the accompanying drawings and the new matter pointed out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0022] Fig. 1 is a diagrammatic view showing the general construction of a neural network to which the back-propagation learning rule is applied.
 - [0023] Fig. 2 is a block diagram schematically showing the construction of an illustrative example of a signal processing exetern
 - [0024] Fig. 3 is a diagrammatic view of a neural network showing the construction of the signal processing section of the signal processing system according to the system shown in Fig. 2.
- 25 [0025], Fig. 4 is a flow chart showing the process of learning processing in the learning processing section constituting the signal processing system of the system shown in Fig. 2.
 - [0026] Fig. 5 is a block diagram schematically showing the construction of the learning processing system according to the present invention.
- [0027] Figs. 6A and 6B are diagrammatic views showing the state of the signal processing section at the start and in the course of learning processing in the learning processing system shown in Fig. 5.
- [0028] Fig. 7 is a flow chart showing a typical process of learning processing in the learning processing section
 - constituting the learning processing system shown in Fig. 5.

 [0029] Fig. 8 is a chart showing the typical results of tests of learning processing on the signal processing section
- of the neural network shown in Fig. 5 by the learning processing section of the learning processing system.

 5 [0030] Fig. 9 a chart showing the results of tests of learning or the signal processing section of the neural network shown in Fig. 3, with the number of units of the intermediate laver fixed at an
 - [0031] Fig. 10 is a chart showing the results of tests of learning on the signal processing system of the neural network shown in Fig. 3, with the number of units of the intermediate layer fixed at three.

40 DETAILED DESCRIPTION OF THE EMBODIMENTS

- [0032] By referring to the drawings, certain preferred embodiments of the present invention will be explained in more detail.
- [0033] An illustrative example of signal processing system will be hereinafter explained.
- [0034] As shown schematically in Fig. 2, the signal processing system of the present illustrative example includes a signal processing section 30 for obtaining the output value O_{gl} from the input signal patterns p and a learning processing section 40 for causing the signal processing section 30 to undergo learning to obtain the output value O_{gl} closest to the desired output value t_{gl} from the input signal patterns p.
- [0035] The signal processing section 30 is formed, as shown in Fig. 3, by a neural network of a three-layer structure to including at least an input layer L_h an intermediate layer L_h and an output layer L_b. These layers L_h L_h and L_o are constituted by units U_h to U_h, the 10 H_b, and U_o, 10 U_o, each corresponding to a neuron, respectively, where x, y and z stand for arbitrary members. Each of the units U_h 10 n_{by} and U_o, 10 u_o, of the intermediate layer L_h and the output layer L_o is provided with delay means and forms a recurrent network including a loop LP having its output O_{III} as its own input by way of the delay means and sedback FB having its output O_{III} as an input to another unit.
- 55 [0036] In the signal processing system 90, with the input signal patterns p entered into each of the units u₁₁ to u_{1x} of the input layer L₁, the total sum net) of the inputs to the units u₁₁ to u_{1y} of the intermediate layer L₁₁ is given by the following formula (17):

$$net_j = \sum_{k=0}^{\infty} \frac{NI}{k=0} w_{jx^*k+e} O_{ie}(t-k)$$

$$+ \frac{v}{2r} \sum_{k=1}^{NH} w_{jy} *_{k+i} O_{hi}(t-k)$$

$$+ \frac{z}{1} \sum_{k=1}^{NO} w_{jz} *_{k+i} O_{oi}(t-k)$$

$$+ \theta_{j} \qquad (17)$$

10

35

Each of the units u_{H1} to u_{Hy} of the intermediate layer L_H issues, for the total sum net, of the input signals, an output value O_{Hif0} represented by the sigmoid function of the following formula (18):

$$O_{Hj(t)} = \frac{1}{1+e^{-notj}}$$
(18)

[0037] The total sum net, of the inputs to the units u_{O1} to u_{O2} of the output layer L_O is given by the following formula (19):

$$\operatorname{net}_{j} = \underbrace{\frac{X}{i}}_{k=0}^{NH} \underbrace{w_{jx}}_{k+i} O_{Hi(t-k)}$$

$$+ \underbrace{\frac{Z}{i}}_{k=1}^{NO} \underbrace{w_{jz}}_{k+i} O_{Hi(t-k)}$$

$$+ \theta_{i}$$
(19)

While each of the units u_{O_1} to u_{O_2} of the output layer L_O issues, for the total sum net of the inputs, an output value O_{oin} represented by the following formula (20):

$$O_{oj}(t) = \frac{1}{1 - e^{-netj}}$$
(20)

where O_j stands for a threshold value and NI, NH and NO stand for the numbers of the delay means provided in the layers L_i , L_H and L_{O_i} respectively.

(1938) The learning processing section 40 computes the coefficient W_g of coupling strength between the units u_{O1} to u_{O2} u_{H1} to u_{H2} and u_{H3} to u_{D4}. If the output layer L_D towards the input layer L_D expenditured and repeatedly, according to the sequence shown in the flow chart of Fig. 4, while executing the learning processing of the coupling coefficient W_g so that the total sum of the square errors LMS between the desired output value I_{U2} afforded as the teacher signal and the output value O_{U2} of the output layer L_D to be closest to the desired output value I_{U2}, afforded as the treacher signal parterns, for an input signal partern p_{(O2} repeated output value I_{U2}. Afforded as the treacher signal parterns, for an input signal partern p_{(O2} represents an information unit almost which fluctuaties along the time axis and represented by the x number of data, where r stands for the number of times of sampling of the information unit and x the number date in each sample.

[0039] That is, the section 40 alfords at step 1 the input signal patterns ρ_{txy} to each of the units u_1 to u_x of the input layer L_b and proceeds to computing at step 2 each output value $O_{\rho(t)}$ of each of the units u_{tt} to u_{ty} and v_{ty} to u_{ty} and v_{ty} to u_{ty} and v_{ty} to u_{ty} and v_{ty} to v_{ty} and v_{ty} and v_{ty} to v_{ty} and v_{ty} to v_{ty} and $v_{$

[0040] The section 40 then proceeds to computing at step 3 the error δ_{pj} of each of the units u_{O_1} to u_{O_2} and u_{H_1} to u_{h_2} . from the output layer L_j owards the input layer L_j , on the basis of the output values O_{pj0} and the desired output value L_j . Afforded as the teacher signal.

[0041] In the computing step 3, the error δ_{oj} of each of the units u_{O1} to u_{Oz} of the output layer L_O is given by the following formula (21):

$$\delta_{\alpha i} = (t_{\alpha i} - O_{\alpha i})O_{\alpha i}(1 - O_{\alpha i}) \qquad (21)$$

wherein the error δ_{0i} of each of the units u_{H1} to u_{Hy} of the intermediate layer L_H is given by the following formula (22)

$$\delta_{Hi} = O_{Hi}(1 - O_{Hi}) \frac{\Sigma}{k} \delta_{ok} W_{ki} \qquad (22)$$

[0042] Then, in step 4, the learning variable β_j of the coefficient W_{ij} of coupling strength from the i'th one to the j'th one of the units u_{i1} to u_{bv} , u_{h1} to u_{hy} and u_{O1} to u_{O2} is computed by the following formula (23)

$$\beta_{j} = \frac{1}{\sum Opi^{2} + 1}$$
 (23)

in which the learning variable β_j is represented by the reciprocal of the square sum of the input values added to by 1 as a threshold value.

[0043] Then, in step 5, using the learning variable β_l computed in step 4, the variant Δw_l of the coupling coefficient W_l from the i'th one to the j'th one of the units u_{O1} to u_{O2} , u_{H1} to u_{hj} and u_{H1} to u_{hk} is computed in accordance with the following formula (24):

$$\Delta W_{ii(n)} = \eta. \beta(\delta_{pi} O_{pl}) \qquad (24)$$

In the formula, n stands for a learning constant.

15

25

50

[0044] Then, in step 5, the total sum LMS of the square errors on the units with respect to the teacher signal is computed in accordance with the formula (25):

$$LMS = \sum_{p=1}^{\Sigma} \sum_{i=1}^{\Sigma} (t_{pi} - O_{pi})$$
 (25)

10043] Then, in step 6, it is decided whether the processing of the steps 1 through 5 has been performed on the Fnumber of input signal patterns p_{xr}. If the result of decision at step 6 is NO, the section 40 reverts to step 1. When the result of decision at step 6 is VES, that is, when all of the variants 4 M_g of the coupling coefficient w_p between the units u_{O1} to u_{Q2}. u_{Q1} to u_y, and u₁₁ to U_{bx} are computed for the input signal patterns p_{xr}, the section 40 proceeds to step 7 to execute decision of the converging condition for the output value Q₀ obtained at the output layer L₀ on the basis of the total sum LMS of square errors between the output value Q₀ and the desired output value t_{1g} afforded as the teacher

[0046] In the decision step 7, it is decided whether the output value O₄₀ obtained at the output layer L₀ of the signal processing section 30 is closest to the desired output value I₄₁ afflorded as the teacher signal. When the result of decision at step 7 is YES, that is, when the total sum LMS of the square errors is sufficiently small and the output value I₅₁ is closest to the desired output value I₅₂, the learning processing is terminated. If the result of decision at step 7 is NO, the section 40 proceeds to computing at stop 8.

[0047] In this computing step 8, the coupling coefficient W_g between the units u_{O1} to u_{O2} , u_{H1} to u_{H2} and u_{H1} to u_{D2} is modified, on the basis of the variant W_g of the coupling coefficient W_g computed at step 5, in accordance with the following formula (26)

$$\Delta W_{ii(n)} = \Delta W_{ii(n)} + \alpha \Delta W_{ii(n-1)}$$
(26)

and the following formula (27)

$$W_{ii(n+1)}=W_{ii(n)} + \Delta_{Wii(n)}$$
 (27)

[0048] After the computing step 8, the section 40 reverts to step 1 to execute the operation of steps 1 to 6.

[0049] Thus the section 40 executes the operations of the steps 1 to 8 repeatedly and, when the total sum LMS of the square errors between the desired output value to the actual output value O₀₀ becomes sufficiently small and the output value O₀₀ obtained at the output value L₀ of the signal processing section 30 is closest to the desired output value to the testing of the signal processing of learning by the decision at step 7.

[0059] In this manner, in the illustrative example signal processing system; the learning as to the coupling coefficient W_{ij} between the units ω_{ij} to ω_{ij} , ω_{ij} , ω_{ij} , and ω_{ij} to ω_{ij} of the signal processing section 30 constituting the recurrent network inclusive of the above mentioned loop LP and the feedback FB is executed by the learning processing section 40 on the basis of the desired output value V_{ij} allocated as the teacher signal. Hence, this features of the sequential time-base input signal pattern D_{ijk} exclude as undo signals, fluctuating along the time axis, may also be extracted reliably by the learning processing by the learning processing section 40. Thus, by setting the coupling state between the units U_{ij} to U_{ijk} , U_{ijk} or U_{ijk} of the signal processing section 30 by the coupling coefficient V_{ijk} , obtained as the result of learning by the learning processing section 40, the time-series input signal pattern D_{ik} can be subjected to desired signal processing processing section 30.

5 [0061] Moreover, in the illustrative example system, the learning constant η is normalized by the learning constant β indicated as the reciprocal of the square sum of the input values at the units u_{th} to u_{th} and u_{th} to u_{th}, and u_{th} to u_{th}, and u_{th} to u_{th} and u_{th} to u_{th} and u_{th} to u_{th} and u_{th} an

20 [0052] In this manner, in the illustrative example signal processing system, signal processing for input signals is performed at the signal processing section 30 in which the recurrent network inclusive of the loop LP and the feedback FB is constituted by the units \(\mu_H\) to \(\mu_D\) to \(\mu_D\) of the intermediate layer \(\mu_H\) and the output layer \(\mu_D\) each provided with delay means. In the learning processing section 40, the learning as to the coupling state of the recurrent network by the units \(\mu_H\) to \(\mu_h\) and \(\mu_D\) to \(\mu_D\) constituting the signal processing section 30 is executed on the besides of the teacher signal. Thus the features of the sequential time-base patterns, fluctuating along the time axis, such as audio signals, can be extracted by the above mentioned learning processing section to subject the signal processing section to the desired signal processing.

[0053] A preferred illustrative embodiment learning processing system according to the present invention will be hereinafter explained.

(D64) The basic construction of the learning processing system according to the present invention is shown in Fig. 5. As shown therein, the system includes a signal processing section 50 constituted by a neural network of a three-layered structure including at least an input layer I₄, and intermediate layer I₄ and an output layer I₄, each made up of plural units performing a signal processing or processing to one of a neuron, and a learning processing section 50 subjecting the learning processing to the signal processing consisting in sequentially repeatedly computing the coef-signal reprocessing to the signal processing consisting in sequentially repeatedly computing the coef-signal type I₄ or units and the coef-signal signal reprocessing the section of the error data 8₀ lettered the output valuey I₄ and of the error data 8₀ lettered the output valuey I₄ and the data the teacher signal I₃, for the input signal patterns p entered into the input layer I₄ of the signal processing section 50, and learning if the coupling coefficient IV₈ in accordance with the back-propagation learning rule.

[0055] The learning processing section 60 executes the learning processing of the coupling coefficient W_p as I causes the number of the number of the Intermediate layer L_q of the signal processing section 50 to be increased, and thus the section 60 has the control function of causing the number of units of the intermediate layer L_q to be increased in the course of learning processing of the coupling coefficient W_p. The learning processing section 50 baviles the signal processing section 50 having the input layer L_q and intermediate layer L_q and an output layer L_q made up of arbitrary numbers x, y and z of units u₁ to u₁, and u₂, to u₂, each corresponding to a neuron, respectively, as shown in Fig. 64, to learning processing as to the coupling coefficient W_p, while the section 60 causes the number of the unit

L₁ to be increased sequentially from y to (y+m), as shown in Fig. 68. [OSS] it is noted that the control operation of increasing the number of the units of the intermediate layer L₁ may be performed periodically in the course of learning processing of the coupling coefficient W_p, or each time the occurrence of the above mentioned local minimum state is sensed.

(0057) The above mentioned learning processing section 60, having the control function of increasing the number of the units of the intermediate layer L₁ in the course of learning processing of the coupling coefficient W₁, subjects the signal processing section 50 formed by a neural network of a three-layer structure including the input layer L₂, intermediate layer L₁, and the output layer L₂ to the learning processing of the coupling coefficient W₃, as it causes the number of units of the intermediate layer L₁ to be increased. Thus, even on occurrence of the local minimum state in the course of learning of the coupling coefficient W₃, the section 50 is able to increase the number of units of the intermediate layer L₁ to exit from such local minimum state to effect rapid and reliable convergence into the optimum global minimum state.

[0058] Tests were conducted repeatedly, in each of which the learning processing section 50 having the control

function of increasing the number of units of the intermediate layer in the course of learning of the coupling coefficient W_{\parallel} causes the signal processing section 60 constituting the recurrent network including the feedback FB and the loop IP in the illustrative example, signal processing system of Figs. 2-4 to undergo the process of learning the coefficient W_{\parallel} , with the number of the units of the input layer I_{\perp} of S(z=0), that of the output layer I_{\perp} of S(z=0), the number of the delay means of each layer of 2 and with the input signal pattern of uding learning operation, using 21 time-space patterns of 1=5/7, and the processing algorithm shown in the flow chart of Fig. 7, with the learning being started at the number of the units of the intermediate layer I_{\perp} of S(z=3) and with the number of the units of the intermediate layer I_{\perp} to IS(z=3) and with the number of the units of the intermediate layer I_{\perp} to IS(z=3) and with the number of the units of the intermediate layer I_{\perp} three to five times, the test results were obtained in which the convergence to the optimum global minimum state were realized without poing into the local minimum state.

[0059] Fig. 8 shows, as an example of the above tests, the test results in which learning processing of converging into the optimum minimum state could be achieved by adding the units of the intermediate layer L_H at the timing shown by the arrow mark in the figure and by increasing the number of the intermediate layer L_H from three to six. The ordinate in Fig. 8 stands for the total sum LMS of the quadratic errors and the absclssa stands for the number of times of the learning processing operations.

[0060] The processing algorithm shown in the flow chart of Fig. 7 is explained.

35

[0061] In this processing algorithm, in step 1, the variable K indicating the number of times of the processing for detecting the local minimum state is initialized to '0°, while the first variable Lms for deciding the converging condition of the learning processing is also initialized to 1000000000.

[0062] Then, in step 2, the variable n indicating the number of times of learning of the overall learning pattern, that is, the 1-number of the input signal patterns p. is initialized. The program then proceeds to step 3 to execute the learning processing of the I-number of the input signal patterns p.

[0063] Then, in step 4, decision is made of the variablen indicating the number of times of learning. Unless n=3, the program proceeds to step 5 to add one to n (n → n+1), and then reverts to step 3 to repeat the learning processing. When n=3, the program proceeds to step 6.

(1964) In step 6, after the value of the first variable Lms is maintained as the value of the second variable Lms (1) for deciding the converging condition of the learning processing, the total sum of the square errors between the output signal and the teacher signal in each unit is computed in accordance with the formula (28), this value being then used as the new value for the first variable Lms. such that

$$Lms = \sum_{p=1}^{1} \sum_{i=1}^{m} (t_{pi} - O_{pi})^{2}$$
 (28)

[0065] Then, in step 7, the first variable Lms for deciding the converging condition of the learning processing is compared with the second variable Lms(1). If the value of the first variable Lms is lesser than that of the second variable Lms(1), the program proceeds to step 8 to decide whether or not the variable k indicating the number of times of the processing operations for detecting the local minimum state is equal to 0.

[0066] If, in step 8, the variable k is 0, the program reverts directly to step 2. If the variable k is not 0, setting of k—k—
1 is made in step 9. The program then reverts to step 2 to initialize <u>n</u> to 0(n=0) to execute the learning processing of
the inumber of the input signal patterns p in step 3.

[0067] If, in step 7, the value of the first variable Lms is larger than that of the second variable Lms(-1), the program proceeds to step 10 to set the value of k indicating the number of times of the processing operations for detecting the local minimum state $(k \to k + 1)$. Then, in step 11, it is decided whether or not the value of k is 2.

[0068] II, in step 11, the value of the variable k is not 2, the program reverts directly to step 2. If the variable k is 2, it is decided that the local minimum state is prevailing. Thus, in step 12, control is made of increasing the number, of the units of the intermediate layer \(\p\x_1\) then, in step 13, setting of k=0 is made. The program then reverts to step 2 for setting of n=0 and then proceeds to step 3 to execute the learning processing of the above mentioned number of the input stonal patterns a.

OG69] Test on the learning processing was conducted of the signal processing section 50 of the above described illustrative example signal processing system of Figs. 24 constituting the recurrent network including the feedback loop FB and the loop. LP shown his Fig. 3, with the number of the united is the intermediate layer type set to sky (P-6). The test results have revealed that the learning processing need be repeated an extremely large number of times with considerable time dyspenditure until the convergence to the optimum minimum state was achieved, and that the local minimum state prevailed for three out of eight learning processing tests without convergence to the optimum global

[0070] Fig. 9 shows, by way of an example, the results of the learning processing tests in which the local minimum

state was reached.

[0071] In this figure, the ordinate stands for the total sum LMS of the square errors and the abscissa stands for the number of times of the learning processing operations.

[0072] Also the tests on the learning processing was conducted 30 times on the signal processing section 50 of the above described liturative example signal processing system constituting the recurrent network including the feed-back loop FB and the loop LP shown in Fig. 3, with the number of the units of the intermediate layer 1_{th} being set to three (y=3). It was found that, as shown for example in Fig. 10, the local minimum state was reached in all of the tests on learning processing without convergence to the continum obtain minimum state.

[0073] In Fig. 10, the ordinate stands for the total sum LMS of the square errors and the abscissa stands for the number of times of the learning processing operations.

number of times of the learning processing operations.

[0074] From the foregoing it is seen that the present invention provides a learning processing system in which the learning processing of the coefficient of coupling strength is performed, while the number of the units of the intermediate

learning processing or the coefficient to cooping starting in a periorities, when the training on the during intermediate layer is increased by the learning processing section, whereby the convergence to the optimum global minimum state is achieved promptly and reliably to achieve the stable learning processing to avoid the local minimum state in the learning processing process conforming to the back-propagation learning processing process conforming to the back-propagation learning rule.

Claims

10

25

30

40

50

A learning processing system (50, 60) comprising:

a signal processing section (50) composed of a multi-layer neural network having an input layer (L_i), a bidden layer (L_i) and an output layer (L_i), the layers being made up of units $u_{\rm H}$ to $u_{\rm bv}$ $u_{\rm HI}$ to $u_{\rm hv}$ and $u_{\rm OI}$ to $u_{\rm Oz}$, respectively, each unit corresponding to a neuron; and

a learning processing section (60) executing a learning process using a back-propagation learning algorithm, the process consisting in sequentially modifying, from the output layer towards the input layer, the coupling coefficients W₀ of all units in the hidden and in the output layer by a varient \(\text{W}_0 \) so as to minimize the total sum of square errors between the actual output \(\text{O}_0 \) of unit i in the output layer (\(\text{L}_0 \)) produced from an input signal pattern (p) and the desirable output value \(\text{L}_0 \) (accorder signal) for said unit i in the output layer (\(\text{L}_0 \)) whereby \(\text{W}_0 \) is the weight for the signal from the lift to the jift unit,

the learning processing section being fed with a desired output value t_{pi} as a teacher signal for the output value O_{pi} of the unit j in the output layer (L₀) for the input patterns p entered into the input layer (L_j),

the learning processing section (60) computing the error value for each unit in the output layer and in the bidden layer.

said learning process being executed repeatedly until the total sum (E) of the square error between the desired output afforded as the teacher signal and the output signal becomes sufficiently small;

characterised in that the learning processing section (60) comprises control means for increasing the number of units in the bidden layer (L.), during the repeated execution of said learning process, either periodically or when a local minimum state of the signal processing system has been detected, said learning processing section (GO) being adapted in subsequent repeated executions of the learning process to perform learning processing of the coefficients W₁ of coupling strength in respect of the increased number of units in the hidden layer.

The learning processing system of claim 1, wherein the control means of the learning processing section (60) is adapted to detect a local minimum state by comparing successive values of a first variable, Lms, where

$$Lms = \sum_{p=1}^{l} \sum_{i=1}^{m} (t_{pi} - O_{pi})^{2}$$

Patentansprüche

1. Lernverarbeitungssystem (50, 60)

mit einem Signalverarbeitungsabschnitt (50), der aus einem neuronalen Mehrschichten-Netzwerk mit einer

Eingangsschicht (L_I), einer verborgenen Schicht (L_H) und einer AusgangsSChiCht (L_O) zusammengesetzt ist, wobel die Schichten aus Einheiten u_H bis u_h , u_{H1} bis u_{hy} bzw. u_{O1} bis u_{O2} bestehen und jede Einheit einem Neuron entsoricht.

und mit einem Lamwerarbeitungsabschnitt (60), der einen Lemprozeß unter Verwendung eines sich rückwäts ausbroitenden Algorithmus ausführt, wobei der Prozeß darin besteht, daß von der Ausgangsschicht in Richtung zu der Eingangsschicht die Kopplungskooffizienten W_g aller Einheiten jn der verborgenen Schicht und in der Ausgangsschicht durch eine Variante AW_g so modifiziert werden, daß die Gesamtsumme der quadratischen Fehler zwischen dem durch ein Eingangssignalnuster (p) erzeugten tatsächlichen Ausgangswend (_{p)} der Einheit in der Ausgangsschicht (_{Lo}) minmiert wird, wobei W_g das Gewicht für das Signal aus der i-ten Einheit zu der i-ten Einheit ist.

wobei dem Lemverarbeitungsabschnitt ein gewünschter Ausgangswert t_{pj} als Lehrersignal für den Ausgangswert Opj der Einheit ji n der Ausgangsschloht (L_O) für die in die Eingangsschloht (L_J) eingegebenen Eingangsmuster o zuoerführt wird.

wobei der Lernverarbeitungsabschnitt (60) den Fehlerwert für jede Einheit in der Ausgangsschicht und in der verborgenen Schicht berechnet,

und wobei der Lernprozeß wiederholt durchgeführt wird, bis die Gesamtsumme (E) des quadratischen Fehlers zwischen dem als Lehrersignal angebotenen gewünschten Signal und dem Ausgarigssignal hinreichend klein wird.

dadurch gekennzeichnet,

daß der Lerrwerarbeitungsabschnitt (60) eine Steuereinrichtung enthält, um die Zahl der Einheiten in der verborgenen Schicht (L_H) während der wiederholten Durchführung des Lernprozesses entweier periodisch oder dann zu vergrößern, wenn ein lokaler Minimatzusand des Signalverarbeitungssystems detektient wurde, wobei der Lerrwerarbeitungsabschnitt (60) so ausgebildet ist, daß er in den nachfolgenden wiederholten Durchführungen des Lemprozesses die Lernwerarbeitung der Kopplungskoeffizierten W_I bezüglich der vergrößerten Zahl von Einheiten in der verborgenen Schicht durchführt.

 Lernverarbeitungssystem nach Anspruch 1, bei dem die Steuereinrichtung des Lern-Verarbeitungsabschnitts (60) den lokalen Minimalzustand durch Vergleichen von aufeinanderfolgenden Werten einer ersten Variablen Lms detektieren kann, wobei

Lms =
$$\sum_{p=1}^{1} \sum_{i=1}^{m} (t_{pi} - O_{pi})^2$$
.

Revendications

20

95

45

55

1. Système de traitement d'apprentissage (50, 60) comprenant :

une section de traitement de signatur. (50) constituée d'un réseau neuronal multicouche ayant une couche d'entrée (L_j), une couche intermédiaire (L_j) et une couche de sortie (L_o), les couches étant respectivement formées d'unités un à u_{jk} , u_{jk} à u_{jk}

une section de traiement d'apprentissage, (60) qui exécute un traitement d'apprentissage utilisant un algorithme d'apprentissage de rétropropagation, ce traitement consistant à modifier séquentiellement, de la couche de sortie vers la couche d'entrée, les coefficients de couplage W, de toutes les unités j de la couche intermédiaire et de la couche de sortie à l'aide d'un coefficient de variation AW, de façon à minimiser la sormne totale des erreurs quadratiques existant entre la valeur de sortie récile Cp₀ de l'unité j de la couche de sortie (L₀) produite à partir d'une forme de signat d'entrée (p) et la valeur de sortie exclusitable L₀, (signat d'enseignement) pour ladite unité j de la couche de sortie (L₀), si bien que W₀ est le poids du signat de la l^{lime} à la pireu unité, ils section de traitement d'apprentissage recevant une valeur de sortie voulute L₀, au titre d'un signal d'enseignement, pour la valeur de sortie (C₀), de l'unité j de la couche de sortie (L₀), pour les formes d'entrée p introduites dans la couche d'entrée (Li.).

la section de traitement d'apprentissage (60) calculant la valeur d'erreur pour chaque unité de la couche de sortie et de la couche intermédiaire.

ledit traitement d'apprentissage étant exécuté de façon répétée jusqu'à ce que la somme totale (E) des erreurs quadratiques existant entre le signal de sortie souhaité, qui est fourni au titre du signal d'enseignement, et le signal de sortie soit devenue suffisamment petite,

caractérisé en ce que la section de traitement d'apprentissage (60) comprend un moyen de commande servant à augmenter le nombre des unités de la couche intermédiaire (H_d), pendant l'exécution répétée dudit traitement d'apprentissage, ou bien périodiquement, qui bein oraqu'un état de minimum local du système de traitement de signaux a été détecté, ladite section de traitement d'apprentissage (60) étant conçue pour, lors d'exécutions répétées suivantes du traitement d'apprentissage, effectuer le traitement d'apprentissage des coefficients W_{if} d'intensité de couplage rélativement au nombre augmenté d'unités de la couche intermédiaire.

Lms =
$$\sum_{p=1}^{l} \sum_{i=1}^{m} (t_{pi} - O_{pi})^2$$

źη

25

FIG. 1

FIG.2

FIG.3

1

FIG.5

FIG.6(A)

FIG.7

FIG. 8

40

FIG. 10