視野チェック

■視野チェック

あるゲームで「プレイヤ」が「敵キャラ」の視野領域に入ったかどうか を判定することを考えます(簡単のために 2 次元で考えます)。

いま、敵キャラがワールド座標系の座標 Q にいて、プレイヤが座標 P にいるとします。このとき、プレイヤが敵キャラの視野領域に入ったかどうかを、どのように判定したらいいでしょうか。

ただし、敵キャラの位置ベクトル $\vec{q}=(q_x,q_y)$ 、 プレイヤの位置ベクトル $\vec{p}=(p_x,p_y)$ 、 敵キャラの視野領域を半径 \mathbf{R} と中心角 $\boldsymbol{\theta}$ (ただし、敵キャラの向いている方向で左右対称角、かつ $\theta>0$) で作る扇型とします。

★以下の流れで問題を解決していきます

① まず、敵の単位方向ベクトル(敵の向き) \vec{e} 、敵キャラ位置からプレイヤ位置への方向ベクトル \vec{v} 、扇形の弧の端点 C_0 と C_1 、敵キャラ位置からそれらへの方向ベクトル $\vec{c_0}$ と $\vec{c_1}$ を考え、左図のようなシンプルな形にします。このとき、点P が敵の視野領域に入るための条件はどうなるでしょうか。何人かでディスカッションしてみましょう。

② 点P が敵の視野領域に入るための条件はつぎのようになります。

条件 1. $|\vec{v}| \leq R$ … 敵キャラからプレイヤまでの距離が R 以下

条件 2. かつ、 $0 \le \phi \le \theta/2$ … ϕ : \vec{e} と \vec{v} がなす角

条件1は簡単に判定できますので、以降は条件2の判定方法について調べていきます。

③ 角度の関係を調べる方法には、単位円の円周上の位置関係で調べる方法が便利です。 では、さっそく \vec{v} 、 $\vec{c_0}$ 、 $\vec{c_1}$ を単位化して作図しなおしてみます。

単位化したものを、それぞれ \overrightarrow{v}' 、 $\overrightarrow{c_0}'$ 、 $\overrightarrow{c_1}'$ とし、 \overrightarrow{v}' と $\overrightarrow{c_0}'$ (あるいは $\overrightarrow{c_1}$: 近いほうを選択)がなす角を ϕ とします。このとき、P' が弧 $\widehat{C_0'C_1'}$ 上にあるならば、 $\phi \leq \theta/2$ が成り立ちます(ただし、 $\theta > 0$ 、 $\phi \geq 0$)。

 θ は、あらかじめ与えられた値ですが、 ϕ はプレイヤの位置によって決まるので、ゲーム内で毎フレームの計算が必要になります。 角度を求めるには逆三角関数の arccos や arcsin などを使えば計算できました(【ゲーム数学】ベクトル②を参照)。 ただし、三角関数の計算負荷は比較高いので、できるだけ使用したくありません。 では、どのようにしたらいいのでしょうか。

④ もう一度、上の図をよく見てみましょう。 P' が弧 $\widehat{C_0'C_1'}$ 上にあるとき、 $\overrightarrow{v'} \cdot \overrightarrow{e} = \cos \phi$ の値が $\overrightarrow{c_0'} \cdot \overrightarrow{e} = \overrightarrow{c_1'} \cdot \overrightarrow{e} = \cos^\theta/2$ の値以上になっていることが読み取れます。 したがって、条件 2 の $0 \le \phi \le \theta/2$ の判定は

敵キャラからプレイヤまでの単位方向ベクトルと、敵キャラの単位方向ベクトルとの内積を求め、 あらかじめ計算していた $\cos^{\theta}/_{2}$ との比較で判定します。