類別	中文名詞	英文名詞	說明	單位
01基本	可見光	visible Light	相對於不可見光,波長在360到770nm的電磁輻射稱為可見光。	
01基本	不可見光	Invisible Light	相對於可見光,波長在360到770nm以外的電磁輻射稱為不可見光。	
01基本	白熾燈泡	Incandescent lamp	白熾燈泡為最早成熟的人工電光源。	
01基本	氣體放電燈	Gas discharge lamp	此類光源的發光原理為其兩電極間的氣體受電子激發而發光。低壓氣體放電 燈如日光燈及高壓氣體放電燈如水銀燈、高壓鈉氣燈及複金屬燈。	
01基本	光電半導體		由化學元素週期表上三價與五價以及二價及六價元素混合形成化合物半導體材料,有許多兼具高電荷載子移動率及高光電轉換率的特性,故可稱之	
01基本	發光二極體	LED, Light Emitting Diode	發光二極體為特殊材質製成的p-n二極體。是一種半導體元件。初時多用作 為指示燈、顯示板等;隨著白光LED的出現,也被用作照明。它被譽為21世 紀的新型光源,具有效率高,壽命長,不易破損等傳統光源無法與之比較的	
01基本	有機發光顯示器	OLED, Organic Light Emitting Display	或稱有機發光二極體(Organic Light Emitting Diode),其發光原理,是在透明陽極與金屬陰極間蒸鍍有機薄膜,注入電子與電洞,並利用其在有機薄膜間複合,將能量轉成可見光。並且可搭配不同的有機材料,發出不同顏色的光,來達成全彩顯示器的需求。	
01基本	燈具效率	Luminaire efficiency	評估燈具的能源效率的一項重要標準,將裝有光源的燈具所發出的光通量除以所裝光源本身所發出光通量所得的商值。	
01基本	晶粒	Chip	晶粒, 在磊晶上製作出電極以及切出一顆顆元件其元件稱為晶粒。	
01基本	砲彈型 LED燈	Leaded lamp	傳統砲彈型 LED燈。	
01基本	表面黏著型LED	SMD	surface-mount device,傳統的電子零件縮小化後的零件統稱,可以用迴銲爐配 合錫膏自動焊接。	
01基本	電冷卻溫度控制	Electric Thermal	將電能轉換為溫度差的一種冷卻方式。	
01基本	電致發光	Electroluminescent[EL]	電能直接轉變為可見光而不產熱的發光技術。	
01基本	活性層	active layer	光電元件結構中,電子與電洞復合反應而產生光子之主要發生區域	
01基本	雙異質結構	double heterostructure, DH	上下為能帶隙較大之化合物半導體,中間包夾一層能帶隙較小的磊晶層作為活層,其目的為降低光電元件表面復合的發生機會,以提高其發光效益	
02 材料	基板	Substrate	基板的通稱,在磊晶與晶粒段通指氧化鋁基板。	
02 材料	藍寶石基板	Sapphire	氧化鋁基板又稱藍寶石基板目前是使用C plane 氧化鋁基板。	
02 材料	圖案化藍寶石基 板	PSS	Pattern Sapphire Substrate:指在氧化鋁基板上形成一些凹凸圖案目的為增加磊晶品質以及光取出效率。	
02 材料	氮化銦鎵	InGaN	氢化銦鎵: 其特性為band gap 小於GaN 所以一般作為主動層中Multi-quantum well 中well 層,其成長溫度低約400~800C	
02 材料	氮化鋁鎵	AlGaN	氮化鋁鎵: 其特性為band gap 大於GaN 所以一般其function 為block layer 降低電子速度提高電子電洞復合率 進而提高光產出效率。	
02 材料	氮化鎵	GaN	氨化鎵: 在LED磊晶中依照function 分作1. p-type GaN (Mg doped) 2. 主動層 3. n type GaN (Si doped), GaN 成長溫度約1000~1400C	
			N-GaN=N type GaN 是Si 掺雜進入GaN,目前量產摻雜的手法為在磊晶過程中	
02 材料	N型氮化鎵	N-GaN	通入SiH4 氣體。	
02 材料	P型氦化鎵	P-GaN	P-GaN=p type GaN 是將Mg 摻雜進入GaN, 目前量產摻雜的手法為在磊晶過程中通入含Mg 氣體。	
02 材料	銦錫氧化物層	ITO layer	ITO(Indium Tin Oxide: 銦錫氧化物)是由90%的銦(Indium)加10%的錫(Tin)所組成,此層為覆蓋在P-GaN 上方的導電電極,又稱為透明導電層 (transparent conductive layer TCL):透明導電層需同時具備低阻值與良好透光率,ITO因同時具備極佳的導電特性(電阻係數可至 2×10-4Ω-cm以下)及高透光率(透光率可大於85%),因此被大量用於LCD面板產業中。	
03 製程	有機金屬化學氣 相磊晶	MOCVD	有機金屬化學氣相磊晶(Metal-Organic Chemical Vapor Deposition; MOCVD)是在基板上成長半導體薄膜的一種方法,其中MO是指半導體薄膜成程中所採用的反應源(precursor)為金屬有機物,而CVD是指所成長的半導體薄膜的特性是屬於非晶形薄膜或是具有晶形的薄膜。	
03 製程	氫化物氣相磊晶 法	Hydride Vapor Phase Epitaxy 或簡稱 HVPE	氫化物氣相磊晶成長是主要利用鹵化物與Ⅲ族元素反應所生成的磊晶成長過程,其最大的優點是磊晶生長速率極快且易量產化	
03 製程	分子束磊晶法	Molecular Beam Epitaxy或 簡稱MBE	熱蒸鍍技術的一種,主要是在超高真空狀況下,磊晶成長Ⅲ-V或Ⅱ-VI族化合物半導體	
03 製程	磊晶	Epi (Epitaxy)	磊晶, Epitaxy 縮寫 一般通稱在單一結晶方向上的基板 wafer (在blue LED 為單一方向氧化鋁基板),再長上有方向性排列的薄膜 (在Blue LED 中是為多層的	
03 製程	磊晶片	EPI wafer	長在基板上的EPI 一般稱為Epi wafer	
03 製程	晶片段製程	wafer process	意指前段製程,前段製程為將磊晶片至上製作PN電極,包含蒸鍍,黃光,化學 等製程。	
03 製程	電子槍	E-Gun	Electron Gun 是指電子槍,這是一個非正式的稱呼 ,是指利用電子槍產生電子後加熱蒸鍍源,所以應該算是蒸鍍一種,目前ITO 與Pad metal 接是用E-gun機台進行鍍覆。	
03 製程	製作電極	metallization	欲注人電流於半導體元件須製作電極形成歐姆接觸, 使電流能順利注人元件	
03 製程		PAD metal layer	Pad 是指金屬墊,就是指晶粒電極讓Package 打線的部份,目前晶粒廠內使用 metal 種類為Cr/Pt/Au	
03 製程	歐姆接觸	ohmic contact	金屬與半導體界面經熱處理形成電流導通通路	
03 製程	黄光製程	Photo	黃光製程: 一般包含 上光阻 (photo resistor coating) 對位曝光 (aligner exposure)	
			顯影 (Development) 以及去光阻 (strip)	

				蝕刻:配合黃光製程定義出需要移除部份利用蝕刻製程將其移除,一般有分乾	
動態	03 製程	蝕刻	Etching		
3	03 製程	化學蝕刻	chemical etching	以化學溶液蝕刻半導體、金屬、氧化層及其他絕緣層之製作程序	
25 数性	03 製程			為高密度電漿一種產生方式,此處是只MESA etching 用的ICP etching	
2	03 製程	平台蝕刻	MESA etching	台(MESA) 所以稱為MESA etching	
28 製程 超面が限	03 製程	薄膜沉積	Film Depo.		
5 現住	03 製程	保護層	Passivation layer		
50 整性 15gb reflection coating, IR 18 2 差貌 - 激展等方法形成多版及對原位主義開始而之反射影响几字方法 2 差貌 - 如此 reflection coating, IR 18 2 2	03 製程	電流阻檔層	CB layer		
50 製程	03 製程	鏡面鍍膜	facet coating	利用高/低反射率的鍍膜在雷射共振腔反射面進行高/低反射率鍍膜的製作	
3 製程	03 製程	高反射膜	high-reflection coating, HR	以蒸鍍、濺鍍等方法形成多層反射膜使半導體表面之反射率增加之方法	
1	03 製程	低反射膜	anti-reflection coating, AR	以蒸鍍、濺鍍等方法形成多層反射膜使半導體表面之反射率減低之方法	
33 製程 お社切割	03 製程	晶粒段製程	chip process		
153 製程 野歌					
13 製程 18 18 18 18 18 18 18 1		晶粒切割	scriber		
対表 解离			break		
98 対数 Package	03 製程	測試	testing		
日 光館量 Luminous flux. Φ 相一光源發射道被人眼感知的所有輻射能。光源在單位時間內所發出的光之	03 製程	封裝	Package	界污染及易於裝配應用,並達到晶片與電子系統間之電性連接、實體支撐及	
4 光性 光強度	04 光性	光輻射	Light and radiation	指人眼可以感知為明亮的電磁輻射	
ロ4 光性 光強度 luminous intensity, I 一般而言,光源會加不同力向以不同之強度放射出其光通量。在特定方向所放出之可見光輻射強度稱為光強度,光源在東一方向立體角内之光通量大 型位面横内所射入光的葉、北京是米克藤以面横加分所得到的值,用來表示 基一場所的明亮值。1 lux之照度為1 lumen之光通量均与分佈在面積為一平方 米之區域。 一光源或一被照面之網度指其單位表面在某一方向上的光強度密度,也可說是人眼所成如此光源或被照面之明亮程度;單位表面上在某一方向上之光強 單位: 2 使 经光效率 Luminous efficacy, η 代表光源將所消耗的電能轉換成光的效率 單位: 3 使 法 2 使 2 是 是 2 是 2 是 2 是 2 是 2 是 2 是 2 是 2		光通量	Luminous flux,Φ		單位:流明 (lumen, lm)
四年	04 光性	光強度	luminous intensity, I	一般而言,光源會向不同方向以不同之強度放射出其光通量。在特定方向所	單位:坎德拉 (candela, cd)
日本元性 神及 Luminance/Luminous	04 光性	照度	Luminance,E	某一場所的明亮值。1 lux之照度為1 lumen之光通量均勻分佈在面積為一平方	單位:勒克斯 (Lux,lx)
04 光性 整元 公本 Luminous efficacy、7 「代表だ原料所内料料的電影轉換成光的效率」 「「大表だ原料所内料料的電影轉換成光的效率」 「「大表だ原料所内料料的電影轉換成光的效率」 「「大表だ原料所内料料的電影等機成光的效率」 「「大表だ原料所内料料的電影等機成光的效率」 「「大表が原料」 「大きな野温度値、此温度可以在色度圖上之普朗克制跡上找到其對應點。標準黑體之温度越高。其輻射出之光線光譜中藍色成份越多紅色成份也就相對的越少。以發出光色為缺白色之普通白熟燈泡為例,其色温為2700K,而畫光色日光燈之色温為6000K 「一般認為人造光源應讓人眼正確地咸知色彩,就如同在太陽光下看東西一樣。當然這需視應用之場合及目的而有不同之要求程度。此準據即是光源之演色特性,稱之為"平均演色性指數(general color rendering index、(Ray)"	04 光性	輝度	Luminance/Luminous ,L		單位: cd/m^3
本身之絕對溫度值,此溫度可以在色度圖上之普朗克軌跡上找到其對應點。標準黑體之溫度越高,其輻射出之光線光譜中藍色成份越多紅色成份也就相對的越少。以發出光色為暖白色之普通白熱燈泡為例,其色溫為2700K,而畫光色日光燈之色溫為6000K 一般認為人造光源應讓人服正確地感知色彩,就如同在太陽光下看東西一樣。當然這需視應用之場合及目的而有不同之要求程度。此準據即是光源之演色特性,稱之為"平均演色性指數(general color rendering index. (Ra)" 164 光性 半功率發射角 Half-Intensity Directional Angle 经产品的 Angle 在分光分佈,此為一相對值。 在分光分佈,針對發光光譜和對發光強度最大值的波長。 如此 Angle	04 光性	發光效率	Luminous efficacy, η	代表光源將所消耗的電能轉換成光的效率	單位:流明每 瓦[lm/W]
一般認為人造光源應讓人眼正確地感知色彩,就如同在太陽光下看東西一様。當然這需視應用之場合及目的而有不同之要求程度。此準據即是光源之演色特性,稱之為"平均演色性指數(general color rendering index, (Ra)" 日本	04 光性	色溫	Color Temperature	本身之絕對溫度值,此溫度可以在色度圖上之普朗克軌跡上找到其對應點。 標準黑體之溫度越高,其輻射出之光線光譜中藍色成份越多,紅色成份也就相 對的越少。以發出光色為暖白色之普通白熱燈泡為例,其色溫為2700K,而	單位:絕對溫 度 (Kelvin, K)
Half-Intensity Directional Angle	04 光性	演色性	Color rendering	一般認為人造光源應讓人眼正確地感知色彩,就如同在太陽光下看東西一樣。當然這需視應用之場合及目的而有不同之要求程度。此準據即是光源之	
04 光性 光譜 Spectrum 光線依波長大小順序的分佈稱為光譜。發光光譜之相對發光強度的波長分佈,亦稱分光分佈,此為一相對值。 04 光性 峰值波長 Peak Wavelength[WP] 在分光分佈,針對發光光譜相對發光強度最大值的波長。頻譜中強度最強的 波長。 單位:系 (nm) 04 光性 主波長 Domain Wavelength[WD] 簡單的說就是人類視覺上的波長。 單位:系 (nm) 04 光性 半高波寬 Spectral Bandwidth 對應於發光光譜分佈中之相對發光強度最大值一半之波長相互間之波長間隔單位:系 (nm) 05 電性 動作溫度 Operation Temperature 能得所規定顯示性能之周圍溫度。 05 電性 順向電流 Operation Current 為能得到所規定之顯示性能,而對發光二極體所施加的順向電流。 05 電性 順向電流 Forward Current[If] 在規定的量測條件下,對應規定之順向電壓值的電極電流。 單位:系 (mA) 05 電性 順向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位:系 (mA)	04 光性	半功率發射角	_	沿著發光二極體大型燈發光面軸心線轉動測光器角度,當測得知發光二極體 大型燈光度為 其軸心光度一半時,此位置與發光二極體大型燈發光面軸心	單位:度
04 光性 峰值波長 Peak Wavelength[WP] 在分光分佈,針對發光光譜相對發光強度最大值的波長。頻譜中強度最強的 波長。 單位:系(nm) 04 光性 主波長 Domain Wavelength[WD] 簡單的說就是人類視覺上的波長。 單位:系(nm) 04 光性 半高波寬 Spectral Bandwidth 對應於發光光譜分佈中之相對發光強度最大值一半之波長相互間之波長間隔 單位:系(nm) 05 電性 動作溫度 Operation Temperature 能得所規定顯示性能之問圍溫度。 05 電性 動作電流 Operation Current 為能得到所規定之顯示性能,而對發光二極體所施加的順向電流。 05 電性 順向電流 Forward Current[If] 在規定的量測條件下,對應規定之順向電壓值的電極電流。 單位:系(mA) 05 電性 期向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位:系 05 電性 遊向電流 Reverse Current[IR] 在規定的量測條件下,對應規定之源向電壓值的電極電流。 單位:系	04 光性	光譜	Spectrum		
04 光性 半高波寬 Spectral Bandwidth 對應於發光光譜分佈中之相對發光強度最大值一半之波長相互間之波長間隔單位:系統體之半高波寬,此值決定發光色視感度。 單位:系統體之半高波寬,此值決定發光色視感度。 05 電性 動作溫度 Operation Temperature 能得所規定顯示性能之問圍溫度。 05 電性 動作電流 Operation Current 為能得到所規定之顯示性能,而對發光二極體所施加的順向電流。 05 電性 順向電流 Forward Current[If] 在規定的量測條件下,對應規定之順向電壓值的電極電流。 單位: 05 電性 順向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位: 05 電性 逆向電流 Reverse Current[IR] 在規定的量測條件下,對應規定之並向電壓值的電極電流。 單位:	04 光性	峰值波長	Peak Wavelength[WP]		
04 光性 手高波見 Spectral Bandwidth 為光譜之半高波寬,此值決定發光色視感度。 (nm) 05 電性 動作溫度 Operation Temperature 能得所規定顯示性能之周圍溫度。 (nm) 05 電性 動作電流 Operation Current 為能得到所規定之顯示性能,而對發光二極體所施加的順向電流。 05 電性 順向電流 Forward Current[If] 在規定的量測條件下,對應規定之順向電壓值的電極電流。 單位: 05 電性 順向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位: 05 電性 逆向電流 Reverse Current[IR] 在規定的量測條件下,對應規定之逆向電壓值的電極電流。 單位:	04 光性	主波長	Domain Wavelength[WD]	簡單的說就是人類視覺上的波長。	單位: 奈米
05 電性 動作電流 Operation Current 為能得到所規定之顯示性能,而對發光二極體所施加的順向電流。 05 電性 順向電流 Forward Current[If] 在規定的量測條件下,對應規定之順向電壓值的電極電流。 單位: 05 電性 順向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位: 05 電性 逆向電流 Reverse Current[IR] 在規定的量測條件下,對應規定之源向電壓值的電極電壓或電極間電壓。 單位:	04 光性	半高波寬	Spectral Bandwidth		
05 電性 動作電流 Operation Current 為能得到所規定之顯示性能,而對發光二極體所施加的順向電流。 05 電性 順向電流 Forward Current[If] 在規定的量測條件下,對應規定之順向電壓值的電極電流。 單位: 05 電性 順向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位: 05 電性 逆向電流 Reverse Current[IR] 在規定的量測條件下,對應規定之源向電壓值的電極電壓或電極間電壓。 單位:	05 電性	動作溫度	Operation Temperature		
05 電性 順向電壓 Forward Current[II] 任規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 (mA) 05 電性 順向電壓 Forward Voltage[Vf] 在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。 單位:6 05 電性 逆向電流 Reverse Current[IR] 在規定的量測條件下,對應規定之逆向電壓值的電極電壓或電極間電壓。 單位:3			Operation Current		
05 雷性 一逆向雷流 Reverse Current[IR] 在担定的景测修件下,料確担定之逆向雷厭值的雷極雷流。 單位:					單位:豪安培 (mA)
05 雷性 一逆向雷流 Reverse Current[IR] 在担定的景测修件下,料確担定之逆向雷厭值的雷極雷流。 單位:	05 電性	順向電壓	Forward Voltage[Vf]	在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。	單位: 伏特(V)
$l(m\Delta)$					單位:豪安培 (mA)
	05 電料		Pavarca Voltaco[Vr]	左相完的昙训修供下,對確相完之並肯感染植的愛嬌家廳證泰縣眼泰廳。	單位: 伏特(V)