ASSIGNMENT-II

(2 Marks Questions for Section-A)

1. Classify the differential equation:
$$\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$$

2. Classify the partial differential equation:
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}.$$
 (M.T.U. 2011)

3. Classify the partial differential equation:
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
. Also explain your answer.

(A.K.T.U. 2016)

Classify:
$$f_{xx} + 2f_{xy} + 4f_{yy} = 0$$
. (U.P.T.U. 2014)

5. Classify:
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$$
. [G.B.T.U. (SUM) 2010]

6. Classify the partial differential equation:
$$\frac{\partial^2 u}{\partial x^2} + 3 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$
. (*U.P.T.U. 2015*)

Explain briefly the method of separation of variables in solving a given partial differential equa-7. tion.

(M.T.U. 2012)

9. Mention two applications of partial differential equations in engineering.
$$[G.B.T.U. (AG) 2012]$$

10. Name the following equations: $[G.B.T.U. (AG) 2012]$

(i)
$$\frac{\partial^2 u}{\partial t^2} = c \frac{\partial^2 u}{\partial x^2}$$
 (ii) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$

Apply the method of separation of variables to find the most appropriate solution of 11. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}.$ [G.B.T.U. (A.G.) 2012]

What does the two-dimensional wave equation represent? 12.

Write down the partial differential equation for one-dimensional wave equation. 13.

14. Solve:
$$4u_x + u_y = 3u$$
; $u(0, y) = e^{-5y}$. (A.K.T.U. 2015, 2017)

15. Solve:
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 in the steady state. [G.B.T.U. (A.G.) 2011]

16. Classify:
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

17. Name the equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Write down the equation of steady state heat conduction in the rectangular plate. 18.

- 19. Write down the two-dimensional steady state heat flow equation in polar coordinates.
- 20. Solve: $3u_x + 2u_y = 0$ where $u_x = \frac{\partial u}{\partial x}$, $u_y = \frac{\partial u}{\partial y}$.
- 21. Classify the following differential equation in the first quadrant:

$$y^2 u_{xx} - x^2 u_{yy} = 0 (G.B.T.U. 2013)$$

22. Solve
$$\frac{\partial u}{\partial x} = 3 \frac{\partial u}{\partial t}$$
 using method of separation of variables. (G.B.T.U. 2013)

23. Write the boundary conditions and initial conditions for the displacement of a finite string of length L that is fixed at both ends and is released from rest with an initial displacement f(x).

 $(G.B.T.U.\ 2013)$

24. (i) Write telegraph equations.

(U.P.T.U. 2014)

(ii) Write two-dimensional heat equation.

(A.K.T.U. 2016)

25. (i) Characterize the following partial differential equation into elliptic, parabolic and hyperbolic

equations:
$$a \frac{\partial^2 z}{\partial x^2} + 2h \frac{\partial^2 z}{\partial x \partial y} + b \frac{\partial^2 z}{\partial y^2} + 2f \frac{\partial z}{\partial x} + 2g \frac{\partial z}{\partial x} + cz = f(x, y)$$
 where a, b, c, h, f, g are

(M.T.U. 2013)

- (ii) Specify with suitable example, the classification of partial differential (PDE) for elliptic, parabolic and hyperbolic differential equations.

 (A.K.T.U. 2017)
- 26. Find the condition for which the following partial differential equation is parabolic:

$$yu_{xx} + (x+y)u_{xy} + xu_{yy} = 0$$
 (U.P.T.U. 2013)

27. Classify the partial differential equation:

$$2\frac{\partial^2 z}{\partial x^2} - 3\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} - 3\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$$
 (U.P.T.U. 2015)

28. Classify the following partial differential equation along the line y = x:

$$yu_{xx} + (x+y)u_{xy} + xu_{yy} = 0.$$
 (U.P.T.U. 2014)

29. (i) Find the steady state temperature distribution in a rod of length L when its one end is kept at 0°C and the other end is kept at 100°C. (U.P.T.U. 2013)

(ii) Find the steady state temperature distribution in a plate of length of 20 whose ends are kept at 40°C and 100°C respectively. (U.P.T.U. 2015)

- 30. (i) Find the steady state temperature distribution in a rod of 2 m whose ends are kept at 30°C and 70°C respectively. (U.P.T.U. 2015)
 - (ii) Find the steady state temperature distribution in a rod of length 20 cm, whose ends are kept at 0°C and 60°C.

 (U.P.T.U. 2014)

Answers

1. Elliptic

2. Parabolic

3. Elliptic

4. Elliptic

5. Hyperbolic

6. Hyperbolic

- 8. $\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$
- 10. (i) One-dimensional wave equation
- (ii) One-dimensional heat equation
- 11. $u(x, y, t) = (c_1 \cos k_1 x + c_2 \sin k_1 x) (c_3 \cos k_2 y + c_4 \sin k_2 y) c_5 e^{-c^2 k^2 t}$
- 12. Vibrations of a tightly stretched membrane

13.
$$\frac{\partial y}{\partial t} = c^2 \frac{\partial^2 y}{\partial x^2}$$

15.
$$u = c_1 x + c_2$$

Laplace equation in two dimensions

19.
$$r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$$

21. hyperbolic

y(0, t) = 0 = y(L, t) boundary conditions

$$\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0$$

$$y(x, 0) = f(x)$$
 initial conditions

24. (i)
$$\frac{\partial^2 V}{\partial x^2} = RC \frac{\partial V}{\partial t}$$
 and $\frac{\partial^2 I}{\partial x^2} = RC \frac{\partial I}{\partial t}$ (ii) $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$

25. $h^2 < ab \rightarrow elliptic$ $h^2 = ab \rightarrow \text{parabolic}$ $h^2 > ab \rightarrow \text{hyperbolic}$

26. y = x

parabolic 28.

29. (i)
$$u(x, 0) = \frac{100}{L} x$$

30. (i) u(x, 0) = 30 + 20 x

14.
$$u(x, y) = e^{2x - 5y}$$

16. Parabolic

$$18. \ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

20.
$$u(x, y) = c e^{\frac{k}{6}(2x - 3y)}$$

22.
$$u(x, t) = c_1 c_2 e^{-p^2(3x+t)}$$

(ii)
$$\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

27. hyperbolic

$$(ii)\ u(x,\,0) = 40 + 3x$$

$$(ii)\ u(x,\,0)=3x$$