HCPC新歓-2022/8/9

問題解說二乗

解説:titan

問題文

https://atcoder.jp/contests/nikkei2019-ex/tasks/nikkei2019ex_b

B - 二乗

解説

実行時間制限: 2 sec / メモリ制限: 1024 MB

配点:200点

問題文

正整数 N が与えられます。 A^2 が N を超えないような最大の整数 A を出力してください。

制約

• $1 \le N \le 10^9$

方針

まずはサンプルを… N=10

 $A^2 \le 10$ を満たす最大の整数Aを求めたい→どうする?

「A = 1,2, ...と順番に試していく」ことを考えてみる

まずはサンプルを… N=10

A	1	2	3	4	5	6	7	8	• • •
A^2									
$A^2 \le 10?$									

まずはサンプルを…

A	1	2	3	4	5	6	7	8	• • •
A^2	1	4	9	16	25	36	49	64	• • •
$A^2 \le 10?$									

まずはサンプルを…

A	1	2	3	4	5	6	7	8	• • •
A^2	1	4	9	16	25	36	49	64	• • •
$A^2 \le 10?$	YES								

まずはサンプルを…

A	1	2	3	4	5	6	7	8	• • •
A^2	1	4	9	16	25	36	49	64	• • •
$A^2 \le 10?$	YES	YES							

まずはサンプルを… N=10

A	1	2	3	4	5	6	7	8	• • •
A^2	1	4	9	16	25	36	49	64	• • •
$A^2 \le 10?$	YES	YES	YES						

まずはサンプルを…

A	1	2	3	4	5	6	7	8	• • •
A^2	1	4	9	16	25	36	49	64	• • •
$A^2 \le 10?$	YES	YES	YES	NO					

まずはサンプルを…

A	1	2	3	4	5	6	7	8	• • •
A^2	1	4	9	16	25	36	49	64	• • •
$A^2 \le 10?$	YES	YES	YES	NO					• • •

(1) $B^2 \leq N$? この解法をとって 得られる値をBとした B+1 B+2 B+3 ··· В B-1 A^2 A²<N? YES YES ··· YES YES NO

(1) $B^2 \leq N$? ←Bの求め方より自明

А	1	2	• • •	B-1	В	B+1	B+2	B+3	• • •
A^2			• • •						• • •
$A^2 \leq N$?	YES	YES	• • •	YES	YES	NO			• • •

(2) Bは最大?

A	1	2	• • •	B-1	В	B+1	B+2	B+3	• • •
A^2			• • •						• • •
$A^2 \leq N$?	YES	YES	• • •	YES	YES	NO			• • •

(2) Bは最大?**←YES/NOの境界が1つだけなら**

A	1	2	• • •	B-1	В	B+1	B+2	B+3	• • •
A^2			• • •						• • •
$A^2 \leq N$?	YES	YES	• • •	YES	YES	NO			• • •

(2) Bは最大?←YES/NOの境界が1つだけなら←**単調増加**

A	1	2	• • •	B-1	В	B+1	B+2	B+3	• • •
A^2	<	<	<····<	<	< <	<	<	<	<
$A^2 \leq N$?	YES	YES	• • •	YES	YES	NO	NO	NO	NO

計算量について

- ・アルゴリズムが正しくても、計算回数が多すぎると 実行制限時間を超えてしまい不正解となる
 - ・「Aの値を何回試す必要があるか」考えてみる

計算量について

・答えをBとすると、 試す必要のあるAの値は1からB+1までのB+1個

$$\cdot B^2 \le N$$
なので、 $B \le \sqrt{N} \Rightarrow B + 1 \le \sqrt{N} + 1$

・つまり、 \sqrt{N} (切り捨て) + 1回、Aの値を試せばよい

計算量について

- ・コンピュータは1秒間に108回程度の計算ができる
- \rightarrow この問題の実行制限時間は2秒なので、 計算回数がおよそ 2×10^8 回以下であればよい
 - $N = 10^9$ のとき $\sqrt{N} + 1 \approx 3 \times 10^4 \rightarrow$ 間に合う!

実装例

```
#include <bits/stdc++.h> 
   using namespace std;
   int main() {
                                5
     int N;
                                  Nを受け取る
     cin >> N;
                                  変数aを定義
     int a = 1;
     while (true) {
                                8
                                9 a * a > N なら
       if (a * a > N) {
                               10 ループを抜ける
10
         break;
11
12
                               12
       a++;
13
                               13
                               14 a-1を出力
14
     cout << a - 1 << endl;
15
     return 0;
                               15
                               16
16
```

実装例

```
1 N = int(input())
2 a = 1
3 while True:
4 if a * a > N:
5 break
6 a += 1
7 print(a - 1)
1 Nを受け取る
2 変数aを定義
3 4 a * a > N なら
5 ループを抜ける
6 7 a-1を出力
```

実装例

C++ : https://atcoder.jp/contests/nikkei2019-ex/submissions/33787951
Python: https://atcoder.jp/contests/nikkei2019-ex/submissions/33787951

余談

・先ほど紹介した解法は \sqrt{N} 回程度の計算が必要だが、 計算回数が $\log_2 N$ 回程度で済む解法もある(ヒント:単調性)

(気になる人は、考えてみたり、聞いてみたりして下さい!)

実装例

C++ : https://atcoder.jp/contests/nikkei2019-ex/submissions/33788028
Python: https://atcoder.jp/contests/nikkei2019-ex/submissions/33788028

・数学ライブラリから直接 \sqrt{N} の切り捨てを出力してもよい

実装例

C++ : https://atcoder.jp/contests/nikkei2019-ex/submissions/33788055
Python: https://atcoder.jp/contests/nikkei2019-ex/submissions/33788046