

INTERRUPÇÕES

ATMEGA328P

INTERRUPÇÕES

Interrupções

São desvios do programa em execução mediante a ocorrência de algum evento interno ou externo.

Ao ocorrer o evento, a CPU para a execução do programa, salva o contexto, desvia para um trecho de código, recarrega novamente o contexto e por fim volta a execução para o ponto exato do programa antes da interrupção

Vetor	End.	Fonte	Definição da Interrupção
I	0×00	RESET	Pino externo, Power-on Reset, Brown-out Reset e Watchdog Reset
2	0×01	INT0	interrupção externa 0
3	0×02	INTI	interrupção externa I
4	0×03	PCINT0	interrupção 0 por mudança de pino
5	0×04	PCINTI	interrupção I por mudança de pino
6	0×05	PCINT2	interrupção 2 por mudança de pino
7	0×06	WDT	estouro do temporizador Watchdog
8	0×07	TIMER2 COMPA	igualdade de comparação A do TC2
9	0×08	TIMER2 COMPB	igualdade de comparação B do TC2
10	0×09	TIMER2 OVF	estouro do TC2
- 11	0x0A	TIMER I CAPT	evento de captura do TCI
12	0×0B	TIMER I COMPA	igualdade de comparação A do TCI
13	0x0C	TIMER I COMPB	igualdade de comparação B do TCI
14	0x0D	TIMER I OVF	estouro do TCI
15	0×0E	TIMER0 COMPA	igualdade de comparação A do TC0
16	0x0F	TIMER0 COMPB	igualdade de comparação B do TC0
17	0×10	TIMER0 OVF	estouro do TC0
18	0×11	SPI, STC	transferência serial completa - SPI
19	0×12	USART, RX	USART, recepção completa
20	0×13	USART, UDRE	USART, limpeza do registrador de dados
21	0×14	USART,TX	USART, transmissão completa
22	0×15	ADC	conversão do ADC completa
23	0x16	EE_RDY	EEPROM pronta
24	0x17	ANA_COMP	comparador analógico
25	0x18	TWI	interface serial TWI – I2C
26	0x19	SPM_RDY	armazenagem na memória de programa pronta

INTERRUPÇÕES NO ATMEGA328P

- **São vetoradas.** Cada interrupção tem um endereço de atendimento específico na memória de programa
- Todas as interrupções são
 mascaráveis. Ou seja podem ser
 habilitadas ou desabilitadas
 individualmente
- O bit I do registrador de status (SREG) habilita ou desabilita todas as interrupções de uma vez só

INTERRUPÇÕES NO ATMEGA328P

Ao atender uma interrupção todas as outras são automaticamente desabilitadas, zerando o bit I do SREG

Ao retornar da interrupção o bit I do SREG é automaticamente setado reabilitando as interrupções

- Isso não permite interrupções aninhadas, a menos que as interrupções sejam reabilitadas explicitamente por software
- O AVR sempre executará uma instrução do programa principal antes de atender qualquer interrupção em espera.

INTERRUPÇÕES NO ATMEGA328P

Há 2 tipos de interrupções nos AVRs

Tipo I

- Um bit (flag) é ativado sinalizando que ocorreu uma interrupção. Ele é mantido em 1 até que a interrupção seja atendida, sendo zerado automaticamente por hardware.
- Isso permite que várias interrupções fiquem ativas enquanto uma está sendo atendida e sejam processadas por ordem de prioridade.

Tipo 2

• A interrupção é disparada quando o evento que a gera está presente. Não há fila de espera pois não há sinalização da sua ocorrência (Ex: interrupção externa por nível)

Função: ISR(INTO vect) {//interrupção externa 0 } ISR(INT1 vect) {//interrupção externa 1 } ISR(PCINT0_vect) {//interrupção 0 por mudança de pino } ISR(PCINT1 vect) {//interrupção | por mudança de pino } ISR(PCINT2 vect) {//interrupção 2 por mudança de pino } ISR(WDT vect) {//estouro do temporizador Watchdog } ISR(TIMER2 COMPA vect){//igualdade de comparação A do TC2 } ISR(TIMER2 COMPB vect){//igualdade de comparação B do TC2 } ISR(TIMER2 OVF vect) {//estouro do TC2} ISR(TIMER | CAPT vect) {//evento de captura do TC | } ISR(TIMER | COMPA vect){//igualdade de comparação A do TC | } ISR(TIMER | COMPB vect){//igualdade de comparação B do TC | } ISR(TIMER | OVF vect) {//estouro do TC | } ISR(TIMERO COMPA vect){//igualdade de comparação A do TCO } ISR(TIMERO COMPB vect){//igualdade de comparação B do TCO } ISR(TIMER0 OVF vect) {//estouro do TC0 } ISR(SPI STC vect) {//transferência serial completa - SPI } ISR(USART RX vect) {//USART, recepção completa } ISR(USART_UDRE_vect) {//USART, limpeza do registrador de dados } ISR(USART TX vect) {//USART, transmissão completa } VSR(ADC_vect) {//conversão_do ADC completa/} ISR(EE READY vect) {//EEPROM pronta } ISR(ANALOG COMP vect) {//comparador analógico } ISR(TWI vect) {//interface serial TWI } ISR(SPM READY vect) {//armazenagem na memória de programa pronta }

FUNÇÕES PARA TRATAMENTO DE INTERRUPÇÕES

- No compilador AVR-GCC, a tabela de vetores de interrupção é prédefinida para apontar para rotinas de interrupção com nomes prédeterminados.
- As interrupções são escritas como funções

HABILITAÇÃO DAS INTERRUPÇÕES

√sei(); //Habilita todas as interrupções ∠li(); //Desabilita todas as interrupções

Interrupções Externas

 São interrupções disparadas por uma variação no estado de um determinado pino do microcontrolador

End.	Fonte	Definição da Interrupção	Descrição
0×01	INT0	interrupção externa 0	Subida, descida ou nível do pino PD2
0×02	INTI	interrupção externa l	Subida, descida ou nível do pino PD3
0×03	PCINT0	interrupção 0 por mudança de pino	Mudança de estado de qualquer pino da porta B
0×04	PCINTI	interrupção I por mudança de pino	Mudança de estado de qualquer pino da porta C
0×05	PCINT2	interrupção 2 por mudança de pino	Mudança de estado de qualquer pino da porta D

• Se habilitada, a interrupção pode ocorrer mesmo que o pino esteja configurado como saída, permitindo gerar interrupção por software ao se escrever no pino.

• Registrador de controle **EICRA** (Extern Interrupt Control Register A) configuração das interrupções externas INTO e INTI

Bit	_	7	6	5	4	3	2	1	0
	EICRA	•	-	-	-	ISC11	ISC10	ISQ01	ISO00
Lê/Escreve	•	L	L	L	L	(L/E	L/E	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

ISC01	ISC00	Descrição
0 .	0 .	Um nível baixo em INT0 gera um pedido de interrupção.
0		Qualquer <u>mudança</u> Jógica em INT0 gera um pedido de interrupção.
	0	Uma borda de decida em INT0 gera um pedido de interrupção.
		Uma borda de subida em INT0 gera um pedido de interrupção.

ISCII	ISC10	Descrição
0	0	Um nível baixo em INTI gera um pedido de interrupção.
0	I	Qualquer mudança lógica em INTI gera um pedido de interrupção.
1	0	Uma borda de decida em INTI gera um pedido de interrupção.
I	I	Uma borda de subida em INTI gera um pedido de interrupção.

Registrador **EIMSK** (External Interrupt Mask Register) habilita as interrupções externas INTO e INTI

• Registrador **EIFR** (External Interrupt Flag Register) contém os dois bits sinalizadores que indicam se alguma interrupção externa ocorreu.

Bit	_	7	6	5	4	3	2	1	0
	EIFR	-	-	-	-	-	1	INTF1	INTF0
Lê/Escreve	•	L	L	L	L	L	L	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

 Registrador PCICR (Pin Change Interrupt Control Register) é responsável por habilitar as interrupções PCINTO (port B), PCINTI (port C) e PCINT2 (port D).

Bit		7	6	5	4	3	2	1	0
	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIE0
Lê/Escreve	•	L	L	L	L	L	L/E	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

 Registrador PCIFR (Pin Change Interrupt Flag Register) contém os três bits sinalizadores que indicam se alguma interrupção ocorreu em PCINTO (port B), PCINTI (port C) ou PCINT2 (port D)

Bit	7	6	5	4	3	2	1	0
PCI	FR -	-	-	-	-	PCIF2	PCIF1	PCIF0
Lê/Escreve	L	L	L	L	L	L/E	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

• Registradores **PCMSKx** habilitação individual dos pinos nas interrupções PCINT0 (port B), PCINT1 (port C) e PCINT2 (port D).

Bit		7	6	5	4	3	2	1	0
	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0
Lê/Escreve Valor Inicial		L/E 0							
Bit		7	6	5	4	3	2	1	0
	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8
Lê/Escreve Valor Inicial		L/E 0							
Valor Inicial	PCMSK2	0	0	0	0	0	0	0	0

EXEMPLO INTERRUPÇÃO EXTERNA

• Exemplo: Teste da interrupção INTO


```
#define F_CPU 16000000UL
#include <avr/io.h> 
#include <avr/interrupt.h>
```

EXEMPLO INTERRUPÇÃO EXTERNA

```
ISR(INT⊗_vect) //interrupção externa INTO, quando o botão é pressionado o LED troca de estado
    PORTC | ^= 0b00000100; //Inverte o estado do pino PC2
int main(void)
   //GPIO //Todos os pinos da porta D como entradas
  \sqrt{PORTD} = 0xFF; \sqrt{/Todos} os pull-ups da porta D habilitados
  DDRC =0b00000100; //somente pino do LED como saída PC2
    //Configuração das interrupções
  √EICRA = 0b00000010; √/interrupção externa INTO na borda de descida
   ✓EIMSK = 0b00000001;  // habilita a interrupção externa INTO
   √sei();√/habilita interrupções globais, ativando o bit I do SREG
   while (1)
```


REFERÊNCIAS

IDE

Atmel Studio 7 (gratuito) https://www.microchip.com/mplab/avr-support/atmel-studio-7

Simuladores

- https://www.simulide.com/p/blog-page.html
- https://github.com/lcgamboa/picsimlab/releases
- https://www.labcenter.com/downloads/

Material de referência:

- Datasheet do Atmega 328p: https://www.microchip.com/wwwproducts/en/ATmega328p#datasheet-toggle
- Livro texto: http://borgescorporation.blogspot.com/2012/05/avr-e-arduino-tecnicas-de-projeto.html

