

Display & Drive Control using FPGAs

Christoph Glattfelder / Oliver Bründler Enclustra GmbH

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Enclustra GmbH – Company Profile

- Quick Facts
 - Founded in 2004
 - Located at Technopark Zurich
 - Currently 6 FPGA Engineers
 - Vendor-Independent
- FPGA Design Center
 - FPGA-Related Design Services
 - Firmware (VHDL/Verilog)
 - Hardware (incl. analog and digital interfaces)
 - Embedded Software (for FPGA soft processors)

- FPGA Solution Center
 - FPGA Modules
 - Mars, Mercury and Saturn
 - IP Cores
 - TFT Display Controller
 - Universal Drive Controller
 - Etc.

Enclustra GmbH – FPGA Modules

Mars MX1/MX2 FPGA Module

- Low-cost, low-power Spartan-6 FPGA
- SO-DIMM form factor
- Single supply voltage
- 16 MB quad SPI Flash
- 256 MB DDR2 SDRAM
- Dual Fast Ethernet (MX1 only)
- Real time clock (MX1 only)
- Gigabit Ethernet (MX2 only)
- Dual multi-gigabit transceivers (MX2 only)
- PCIe endpoint (MX2 only)

Enclustra GmbH – FPGA Modules

Mercury CA1 FPGA Module

- Low-cost Cyclone IV FPGA
- Single supply voltage
- 16 MB SPI Flash
- 256 MB DDR2 SDRAM
- Gigabit Ethernet PHY
- USB 2.0 High-Speed interface
- High-power 8A core power supply

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Display Basics

Display Basics

Overview

Resolution	Interface	Color Depth	Pixel Clk	Data rate
		(per color)	(MHz)	(MB/s)
320x240	Parallel	6	5	9
640x480	Parallel/LVDS	6/8	20	37
800x600	Parallel/LVDS	6/8	32	86
1024x768	LVDS*	6/8	52	142
1280x1024	LVDS*	6/8	87	236
1600x1200	LVDS*	8	127	346
1920x1200	LVDS*	8/10	152	553

^{*} and DVI/HDMI/DisplayPort for external connection

Enclustra GmbH - 9 - 15.12.2010

Parallel

- 18/24 bit data, HSync +VSync oder DE, PxlClk
 - -> 20..30 signal wires
- Up to 800x600 (33MHz)

LVDS for Displays

- Serial high speed interface
- 1 Pixel is transfered over 3..4 LVDS lines (+ clock) with a 7 times higher frequency
- From 640x480 up to 1280x1024 single link (85 MHz PxlClk, 600 Mbps)
- Up to 1920x1200 as dual-link (even/odd pixels)
- higher resolutions as quad-link

DVI / HDMI

- TMDS (Transition Minimized Differential Signaling) with 8B/10B encoding
- data rate 10x higher than pixel clock
- Sync and control signals are transferred during blanking period
- 24 bit color depth
- Up to 165 MHz pixel clock (1.65 Gbps data rate)
- Up to 495 MBytes/s (per Link)

DisplayPort

- Similar to PCIe
- 1, 2 or 4 lanes with differential signaling
- 2.7 Gbps or 1.62 Gbps per lane (fixed, independent of the Pixel Clock)
- no dedicated clock channel
- 18..48 bit color depth
- Up to 1080 MBytes/s (netto, 4 Lanes)
- Transceiver required

Low Cost FPGAs (Spartan, Cyclone)

- Up to 300 Mbps single-ended IO
- Up to 600 Mbps differential IO
- With high speed serial transceiver: up to 3.125 Gbps
- Alternative for high resolutions: external serializer or DVI driver

High End FPGAs (Virtex, Stratix)

Up to 800 Mbps single-ended IO

•	Up to	1.6	Gbps	differential	IO,	10:1	serializer
---	-------	-----	------	--------------	-----	------	------------

Up to 11 Gbps with high speed transceiver

:1 serializer ransceiver	Parallel (530 Mbps)	LVDS (140600 Mbps)	DVI/HDMI (0.51.65 Gbps	DisplayPort (1.62, 2.7 Gbps)
Spartan, Cyclone	IO	Diff IO	Diff IO	-
Spartan, Cyclone with Transceiver	IO	Diff IO	Transceiver	Transceiver
Virtex, Stratix	IO	Diff IO	Diff IO / Transceiver	Transceiver

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Overview

- Source (uC, Camera, GigE, PCIe)
- Memory
- Display Controller
- Interfaces (Touch, Buttons, Rotary-Encoder)

A simple Display Controller

- Register Bank for configuration
- Timing Generator: 2 Counter
- Constant data rate needed: FIFO
- Different Bus and Pixel Clock: Async FIFO
- High Memory Bandwith: Read in bursts
- Banking periods: fill FIFO

2D Acceleration

- DMA Unit
- Draw lines and rectangles
- Clear Video pages

2D Acceleration

- DMA Unit
- Draw lines and rectangles
- Clear Video pages
- Copy rectangles (Font)
- Copy with transparency

Overlay and Transparency

- 2 or more Image Units
- Video Overlay
- On Screen Display

Overlay and Transparency

- 2 or more Image Units
- Video Overlay
- On Screen Display
- α -Blending $y=x1\cdot\alpha + x2\cdot(1-\alpha)$
- Color Correction

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Conclusion

FPGAs are ideal for flexible or customized display solutions:

- Support for Parallel, LVDS, DVI/HDMI and DisplayPort
- Optional units (2D Accelerator, Overlay, α-Blendig) can be added if needed
- Parallel processing and multiplier are useful for α -Blendig, Color Correction and other signal processing
- Internal Block RAM can be used for pixel FIFO
- DDR2/3 interface for video memory
- System on a programmable chip can be built using softcore processors and periperals -> long term availability!

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

System Overview

- Position can be measured
- Velocity has to be estimated

Enclustra GmbH - 25 - 15.12.2010

Conventional velocity estimation

- Measure distance over a fixed time
- Resolution +/- 1 increment
- Resolution is proportional to speed
- Scaling can not improve results at low speeds (excessive measurement time)

Velocity estimation using FPGAs

- Measure time over a known distance
- Resolution +/- 1 clock cycle
- Resolution is reciprocally proportional to speed
- Scaling at high speeds possible
 - Vary measurement distance

$$v = \frac{s}{t}$$

Comparison

- 1 ms measurement time50MHz clock
- Low speed (1k Inc/s encoder)
 - Conventional: 1 bit
 - Proposed: 16 bit
- High speed (5M Inc/s encoder)
 - Conventional: 12-13 bit
 - Independent values every 1ms
 - Proposed: 12-13 bit
 - Scaling 512x
 - Independet values every ~100us

Implementation

- Perfectly suited for FPGAs
 - Ringbuffer in block-RAMs
 - Too performance hungry for processors
 - Binary divider
 - Every increment has to be stored (up to 5M Inc/s)

Conclusion

- Improved speed resolution
 - Espessially for low speed
- Improved time resolution
 - New value every increment
- Scalability
 - Constant resolution over a wide speed range
- Need high processing power
 - Reasonable realization only on FPGAs (and ASICS)

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Introduction

- High performance drive controls use 2 to 3 control loops
- Example controller periods
 - Current control 100kHz
 - Velocity control 25kHz
 - Position control 5kHz

Drawbacks using CPUs

- Extremely high realtime requirements
- Only little processing power left for other, more typical CPU tasks
 - Trajectory planning
 - Communication, often over a fieldbus
 - High level control
- Poor scalability to additional axes

Enclustra GmbH - 33 - 15.12.2010

Concept using FPGAs

- All control loops are calculated in HW
- Control Task in soft or external CPU
 - Interface optimized for low realtime requirements
 - Only responsible for typical CPU tasks

Enclustra GmbH - 34 - 15.12.2010

Example architectures

- Still much processing power needed in control CPU
- But much lower realtime requirements

- Very little processing power needed in control CPU
- No realtime requirements after the move is calculated

Enclustra GmbH - 35 - 15.12.2010

Concept of TDM

- FPGAs are fast... Often faster than required
- Use available processing power to minimize resource usage

Enclustra GmbH - 36 - 15.12.2010

Efficient implementation

- Requirements
 - 3 controllers per axis
 - 3/4 multiplications per controller
 - Realworld PIDs need also limitting, barrel shifter etc.
 - Price (chip size)
- Implementation
 - TDM on three levels
 - Only one multiplier and one adder
 - Control logic is reused on different levels
 - Well scalable to the number of axis
- Example: 8 axes, 200kHz current control, 80MHz clock
 - 8 axis x 200kSps x 3 PIDs = 4.8M PIDs/s
 - 80MHz / 4.8M PIDs = 16 cycles per PID

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Conclusion

- FPGAs are used in many drive control systems for fieldbus access
- Log term availability is important for industrial applications
- FPGAs are available on the newest process nodes
 - Prices are falling
 - Devices are growing
 - New features as hard CPUs further reduce the BOM

Table of Content

- Company Profile
- Display Controller in a FPGA
 - Interfaces
 - Controller Architecture
 - Conclusion
- Drive Controller in a FPGA
 - Velocity Estimation
 - Drive Control Loops
 - Conclusion
- Questions

Questions?

Christoph Glattfelder

Enclustra GmbH

glattfelder@enclustra.com

Fon +41 43 343 39 49

Oliver Bründler

Enclustra GmbH

bruendler@enclustra.com

Fon +41 43 343 39 48

Slides in PDF format:

http://www.enclustra.com/de/company/publications/