IE630: Simulation Modelling & Analysis Comparing Systems

Saurabh Jain
Assistant Professor
Department of Industrial Engineering and Operations Research
IIT Bombay

Quick Recap

Comparison of Multiple Systems: Why?

- Key Utility of Simulation
 - Primarily used for comparing different alternatives to support decisionmaking.
- Nature of Alternative Scenarios
 - Minor variations: Changes in parameters (e.g., resource allocation, processing speed).
 - Major differences: Structural or logical modifications in decision rules or workflows.
- Ensuring Valid Comparisons
 - Apply appropriate statistical techniques to draw meaningful conclusions.
 - Avoid errors → misleading conclusions → poor decisions by ensuring:
 - Proper validation and verification of models.
 - Use of hypothesis testing and confidence intervals for comparison.

Comparison of Multiple Systems: How?

- Hypothesis Testing
 - Null Hypothesis (H₀): Both alternatives are statistically the same.
 - Alternative Hypothesis (H₁): Both alternatives are statistically different.
- Statistical Tests for Hypothesis Testing
 - When the number of replications is the same $(n_1 = n_2)$:
 - Use Paired t-test to compare the means of two related datasets.
- When the number of replications is different $(n_1 \neq n_2)$:
 - Use Welch's t-test (Welch's Confidence Interval Method) to account for unequal sample sizes and variances.

Hypothesis Testing

$$H_0: \mu_1 = \mu_2 \rightarrow \mu_1 - \mu_2 = ($$
 $H_1: \mu_1 \neq \mu_2 \rightarrow \mu_1 - \mu_2 \neq ($

- Sample Confidence Intervals of $(X_1 X_2)$
- Two statistical tests for this hypothesis testing
 - When the number of replications are same (n1 = n2)(
 - When the number of replications are different (n1 ≠ n2)
 (

Case 1:

Case 2:

Pairwise t-test

Replication	Within run observations, y_{ij}	Average,	Replication	Within run observations, y _{ij}	Average,
(i)		$\overline{y_n}$	(i)		$\overline{y_n}$
1	$y_{11}, y_{12}, y_{13}, \dots, y_{1m-1}, y_{1m}$	$\overline{y_1}$	1	$y_{11}, y_{12}, y_{13}, \dots, y_{1m-1}, y_{1m}$	$\overline{y_1}$
2	$y_{21}, y_{22}, y_{23}, \dots, y_{2m-1}, y_{2m}$	$\overline{y_2}$	2	$y_{21}, y_{22}, y_{23}, \dots, y_{2m-1}, y_{2m}$	
3	$y_{31}, y_{32}, y_{33}, \dots, y_{3m-1}, y_{3m}$	$\frac{\overline{y_3}}{\overline{y_4}}$	3	$y_{31}, y_{32}, y_{33}, \dots, y_{3m-1}, y_{3m}$	$\overline{y_3}$ $\overline{y_4}$
4	$y_{41}, y_{42}, y_{43}, \dots, y_{4m-1}, y_{4m}$	<i>y</i> ₄	4	$y_{41}, y_{42}, y_{43}, \dots, y_{4m-1}, y_{4m}$	
	y _{ij}			y _{ij}	
n	$y_{n1}, y_{n2}, y_{n3}, \dots, y_{nm-1}, y_{nm}$	$\overline{y_n}$	n	$y_{n1}, y_{n2}, y_{n3}, \dots, y_{nm-1}, y_{nm}$	$\overline{y_n}$

Pairwise t-test

Example

Replication	First system,	Second system,	Difference,
(i)	$X_{i1} = \overline{y_{i1}}$	$X_{i2} = \overline{y_{i2}}$	$X_{i(1-2)}$
1	54.48	56.01	-1.53
2	57.36	54.08	3.28
3	54.81	52.14	2.67
4	56.20	53.49	2.71
5	54.83	55.49	-0.66
6	57.69	55.00	2.69
7	58.33	54.88	3.45
8	57.19	54.47	2.72
9	56.84	54.93	1.91
10	55.29	55.84	-0.55
Sam. mean			1.67
Sam. S. D			1.85
Sam. Var			3.42

Welch's CI method

- Number of replications are different! (n1≠n2)
- You don't have to memorize these equations; but understand that we do need this statistical testing when replication numbers are different)

Sample Mean and Sample Variance

A1 $X_1, X_2, X_3, X_4 \dots X_n$ $\overline{\overline{X}} (n) \qquad S^2 (n)$

A2

$$X_1, X_2, X_3, X_4 \dots X_m$$

$$\overline{\overline{X}}$$
 (m) $S^2(m)$

Welch's CI method

• CI for 100(1-α) %

Estimated degree of freedom

$$\hat{f} = \frac{\left[\frac{S_{A1}^2}{n_1} + \frac{S_{A2}^2}{n_2}\right]^2}{\left(\frac{S_{A1}^2}{n_1}\right)^2 + \left(\frac{S_{A2}^2}{n_2}\right)^2}$$

$$\frac{n_1 - 1}{n_2 - 1} + \frac{n_2 - 1}{n_2 - 1}$$

BOMBAY

Dealing with multiple performance measures

- In many real-world simulations, several measures of performance are of interest simultaneously.
 - For e.g., Server Utilization, Average Time in system, & Average Number in Queue

Dealing with multiple performance measures

