Modelación y Simulación 1

Bifurcación de caminos

Clase 24-08-2015

Bloques de Enrutamiento

Select Item

Bloque Select Item In

Bloque Select Item Out

Uso:

Este es un bloque sencillo al igual que el anterior, ya que su función es la de pasar el ítem presente en la entrada del bloque y trasladarlo cualquiera de las salidas del bloqle de acuerdo a algún criterio.

El numero de salidas del bloque se especifica en el dialogo del bloque en la pestaña *Options*, en la opción *Select options and report throughput*.

Las políticas para seleccionar los ítems de cualquiera de las entradas del bloque se configuran en la pestaña *Options* y la opción *Select output based on*:

- (1) Property
- (2) Connector priority
- (3) Random
- (4) Select connector
- (5) Sequential

Conectores de entrada:

ItemIn: conector por donde entran los ítems al bloque.

Selectin (3): conector para especificar a cual de las salidas se enviara el ítem cuando se encuentra seleccionada la opción **Select connector**.

Ejemplo 1

En un carwash donde llegan automóviles con una tasa de llegada de poisson de 1 auto cada 4 minutos, se da servicio a los autos de uno en uno según vayan llegando, a los cuales se les cobra Q25.00 por lavado. Debido al poco espacio con el que disponen, los encargados del carwash solo pueden tener 4 vehículos en el local, de manera que si un 5to vehículo llega, este se va del sistema representando una perdida para el negocio. Si se lava exponencialmente 1 auto cada 4 minutos.

Preguntas:

- ¿Qué tan ocupado se mantiene el negocio durante el día?
- Cual es el ingreso total del carwash en el día.
- Cual es la perdida representada por los autos que no entran al sistema.

Ejemplo 1: Definición de bloques

Nombre	Librería	Descripción	Icono
Create	ltem	Se configura la tasa de llegada y se establece la animación de los ítems a ingresar al sistema.	Create
Select Item Out	ltem	Bifurca el camino de los autos que entran a la cola del sistema o salen al no encontrar mas espacio.	Select Item Out
Queue	ltem	Cola del sistema con una capacidad máxima de 3 autos.	Queue
Activity	ltem	Se configura la tasa de servicio que es la misma que la tasa de llegada, pero con una distribución diferente.	Activity
Equation	Value	Se utiliza para crear una ecuación que nos da el resultado de los ingresos y perdidas del día.	□ y=f(x) ■ Equation
Display Value	Value	Muestra el resultado de las ecuaciones utilizadas para obtener los datos de ingresos y perdidas.	Display Value
Exit	Item	Se utilizan dos bloques, uno que representa la salida del sistema y otro la salida de los autos que no entraron al sistema.	□□> Exit

Ejemplo 1: Esquema de la simulación

Ejemplo 1: Configuraciones (1)

Ya que el sistema tiene una capacidad máxima de 4 autos (1 en servicio y 3 en cola) configuramos la cola para darle una longitud máxima de 3 vehículos.

Ejemplo 1: Configuraciones (2)

Para la configuración del select ítem out en este caso se utilizara la opción select conector, dependiendo de lo que llegue al conector selectIn asi será el camino a elegir. Si llega [0] se ira a la cola, caso contrario [1] se ira a la salida.

Ejemplo 1: Configuraciones (3)

Para el bloque de ecuación, colocamos el nombre a nuestras variables, del lado derecho tenemos las entradas y del izquierdo las salidas. En el editor de la parte de abajo, escribimos la ecuación que vamos a utilizar.

Ejemplo 1: Respuestas (1)

Respuesta 1: Vemos que la utilización del sistema es de aproximadamente 85% por lo que podemos deducir que el sistema se mantiene ocupado la mayor parte del día y concluir con que el sistema llega a ser un poco saturado.

Ejemplo 1: Respuestas (2)

- Respuesta 2: El ingreso al carwash en el día es de Q5600.00
- Respuesta 3: La perdida del día es de un total de Q650.00.

Estos datos son una estimación ya que no todos los días se obtendrá la misma cifra pero si una muy aproximada

Ejemplo 2: Descripción del problema

■ El hotel Torre Fuerte posee dos líneas telefónicas. Un promedio de 30 personas por hora tratan de llamar para hacer sus reservaciones y el tiempo promedio de cada llamada es de 1 minuto. Si una persona trata de llamar cuando las dos líneas están ocupadas, cuelga y se pierde del sistema. Suponiendo que el tiempo entre las llamadas que tratan de comunicarse y los tiempos de servicio son exponenciales.

Preguntas:

- ¿Que fracción del tiempo estarán libres ambas líneas?
- Probabilidad de que este desocupada una línea
- En promedio ¿Cuántas solicitudes colgaran cada hora?

Ejemplo 2: Definición de bloques

Nombre	Librería	Descripción	Icono
Create	Item	Se configura la tasa de llegada y se establece la animación de los ítems a ingresar al sistema	Create
Activity	Item	Se configura la tasa de servicio, para este caso se utilizan dos bloques, una por línea telefónica	Activity
Select Item Out	Item	Bifurca el camino de las llamadas, se utilizan dos bloques, uno para dividir las llamadas recibidas de las que se desconectan y otro para elegir una línea libre	Select Item Out
Select Item In	ltem	Une el camino de las líneas telefónicas para dirigirlos a una misma salida que lleva control de cuantas llamadas fueron atendidas	Select Item In
Math	Value	Se utiliza para definir la condición de llamadas que se desconectan del sistema	₽ → Math
Exit	ltem	Se utilizan dos bloques de salida, uno para tener un conteo de las llamadas que fueron atendidas y otro para contar las llamadas desconectadas.	□□> Exit

Ejemplo 2: Esquema de la simulación

Ejemplo 2: Configuraciones (1)

El primer canal de bifurcación se configura con una lógica que selecciona los caminos de forma numérica, donde la opción cero se dirige a las líneas telefónicas y la opción 1 a la salida que representa las llamadas desconectadas.

Ejemplo 2: Configuraciones (2)

El segundo canal de bifurcación se configura con una lógica aleatoria, donde la llamada entrara en cualquiera de las líneas que encuentre libre, con una probabilidad de 50% para cada una.

Ejemplo 2: Configuraciones (3)

El bloque Math funciona como un bloque lógico, el cual define una compuerta AND donde si ambas líneas están ocupadas (1), envía el resultado a la primer bifurcación que cambiara el camino de cero a uno y desconectara las llamadas que entren