TRIGONOMETRY

Chapter 05 Session I

Razones trigonométricas de ángulos notables

MOTIVACIÓN

Sabías que existen varios ángulos notables, ¿Cuántas conoces?. Completemos el cuadro.

RT	30°	60°	45°	370	530	160	740
Sen α	1/2	$\sqrt{3}/2$	$\sqrt{2}/2$	3/5	4/5	7/25	24/25
Cos α	$\sqrt{3}/2$	1/2	$\sqrt{2}/2$	4/5	3/5	24/25	7/25
Tan α	$\sqrt{3}/3$	$\sqrt{3}$	1	3/4	4/3	7/24	24/7
Cot α	√3	$\sqrt{3}/3$	1	4/3	3/4	24/7	7/24
Sec α	$2\sqrt{3}/3$	2	$\sqrt{2}$	5/4	5/3	25/24	25/7
Csc α	2	$2\sqrt{3}/3$	$\sqrt{2}$	5/3	5/4	25/7	25/24

TEORÍA

Razones trigonométricas de ángulos notables

RT 🛧	30°	60 °	37 °	53 °	45°
sen	1/2	$\frac{\sqrt{3}}{2}$	3 5	4 5	$\frac{\sqrt{2}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	4 5	3 5	$\frac{\sqrt{2}}{2}$
tan	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{3}{4}$	4 3	1
cot	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	4 3	$\frac{3}{4}$	1
sec	$\frac{2\sqrt{3}}{3}$	2	5 4	5 3	$\sqrt{2}$
csc	2	$\frac{2\sqrt{3}}{3}$	5 3	5 4	$\sqrt{2}$

Thomas tiene dos terrenos en los distritos de la Molina y Ate-Vitarte. Si los terrenos tienen las siguientes dimensiones, ¿cuál de ellos tiene la mayor área?

RESOLUCIÓN:

(9cot37°)m
$$\frac{\text{La Molina}}{(9cot37^\circ)m = (9.\frac{4}{3})m = 12m}$$
 $S = (12m)(15m)$ $S = 180m^2$

Ate-Vitarte
$$(20\cos 37^{\circ}. \tan 37^{\circ})m = \left(20.\frac{4}{5}.\frac{3}{4}\right)m = 12m$$
 $S = (12m)^{2}$
 $S = 144m^{2}$

Rpta: La

2. Halle el valor de x si:

$$5x.sen53^{\circ} - sec60^{\circ} = 2x + (tan60^{\circ} + cot30^{\circ})^{2}$$

RESOLUCIÓN:

$$5x\left(\frac{4}{5}\right) - (2) = 2x + \left(\sqrt{3} + \sqrt{3}\right)^{2}$$

$$4x - 2 = 2x + \left(2\sqrt{3}\right)^{2}$$

$$4x - 2x = 2 + 12$$

$$2x = 14$$

$$x = 7$$

3. Del gráfico, calcule $tan\theta$

RESOLUCIÓN:

En el triángulo de 45°:

$$3x - 1 = 2x + 1$$

Luego:

$$tan\theta = \frac{2(2)+1}{(2)+4}$$

4. Halle el valor de x(x > 0), si:

$$\frac{x + sec45^{\circ}}{sen53^{\circ}} = \frac{10sec60^{\circ}.tan45^{\circ}}{x - sec45^{\circ}}$$

RESOLUCIÓN:

$$\frac{x + \sqrt{2}}{\frac{4}{5}} = \frac{10.2.1}{x - \sqrt{2}}$$
$$(x + \sqrt{2})(x - \sqrt{2}) = 10 \cdot 2 \cdot 1 \cdot \frac{4}{5}$$

$$x^2 - \sqrt{2}^2 = 16$$
$$x^2 - 2 = 16$$
$$x^2 = 18$$

$$\Rightarrow x = 3\sqrt{2}$$

5. Del gráfico, calcule tanx.

RESOLUCIÓN:

En
$$\triangle$$
 45°: $K = 6$

En
$$X$$
: tanx = $\frac{6}{4}$

6. Del gráfico, calcule $\cot\theta$ si AB=2DC.

RESOLUCIÓN:

DATO:
$$DC = k$$
; $AB = 2k$

Completar en 30° y 45°

$$\cot \theta = \frac{\mathbf{EC}}{\mathbf{EB}} = \frac{2\mathbf{k}}{\mathbf{k}}$$

 $\cot \theta = 2$

7. Si $csc\theta = sec60^{\circ} - sen30^{\circ}$, donde θ es un ángulo agudo, efectúe:

$$K = \sqrt{\csc\theta + \sqrt{5}\cot\theta}$$

RESOLUCIÓN:

DATO:

$$\csc\theta = \sec 60^{\circ} - \sec 30^{\circ}$$

$$\csc\theta = 2 - \frac{1}{2}$$

$$\csc \theta = \frac{3}{2} = \frac{H}{CO} \Rightarrow \frac{3}{\theta}$$

T. de Pitágoras:

$$3^2 = 2^2 + x^2 \implies x = \sqrt{5}$$

PIDEN:
$$K = \sqrt{\csc \theta} + \sqrt{5} \cot \theta$$

$$K = \sqrt{\frac{3}{2} + \sqrt{5} \times \frac{\sqrt{5}}{2}} = \sqrt{\frac{3}{2} + \frac{5}{2}}$$

$$\Rightarrow$$
 K = $\sqrt{4}$

$$K = 2$$

8. Del gráfico, efectúe:

$$E = 11tan\theta + \frac{1}{2} \dots (*)$$

RESOLUCIÓN:

En
$$37^{\circ}: 5K = 15 \implies K = 3$$

Usando el ADC en (*) :

$$E = 11x \frac{9}{22} + \frac{1}{2} = \frac{9}{2} + \frac{1}{2}$$

