Consider the XXZ chain with L spins 1/2, and Hamilton operator

$$H = \sum_{\langle ij \rangle} J_{xy} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + J_z \sigma_i^z \sigma_j^z$$
 (1)

The L are represented as bit patterns, such that the spin operators count/flip adjacents bits according to

pattern	$\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y$	$\sigma_i^z \sigma_j^z$
00	_	$+1 \times 00$
01	$+1 \times 10$	-1 × 01
10	$+1 \times 01$	-1 × 10
11		$+1 \times 11$

Because of S_z -symmetry, H preserves the number of up spins N_{\uparrow} . \Rightarrow decompose total Hilbert space of dimension 2^L into subspaces with fixed $0 \leq N_{\uparrow} \leq L$, each of which has dimension $\binom{L}{N_{\uparrow}}$:

	subspace size				
N_{\uparrow}	L=10	L=20	L=30	L=40	
0	1	1	1	1	
1	10	20	30	40	
5	252	15504	142506	658008	
10	1	184756	30045015	847660528	
15		15504	155117520	40225345056	
20		1	30045015	137846528820	
30			1	847660528	
40				1	
total:	1024	1048576	1073741824	1099511627776	

As a consequence, much fewer degenerate energy eigenvalues occur: E.g. the totally ferromagnetic state (the highest energy state for $J_{xy} = J_z > 0$) is L+1-fold degenerate in the full Hilbert space, but appears only once in every N_{\uparrow} -subspace.

Figure 1: Minimal and maximal eigenvalues as a function of N_{\uparrow} , for $L \to \infty$. Rightmost panel: The green dots give the extremeal eigenvalues for L=10, where the 4/L offset of the maximal eigenvalue for $1 \le N_{\uparrow} < L$ is clearly visible.

Figure 2: Sparsity pattern of the Hamilton matrix for L=10 including all 2^{10} (left panel) or only the 252 states with $N_{\uparrow}=5$ (right panel).