The truth table for the and function is: Input 1 Input 2 Input 1 and Input 2	The truth table for the or function is: Input 1 Input 2 Input 1 or Input 2
T F	T F
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	F T
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
The truth table for the implies function is: Input 1 Input 2 Input 1 implies Input 2 T	The truth table for the bi-implication function is: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	4
For all interpretation, the formula ' \vee ' evaluates to \blacksquare , and ' \wedge ' evaluates to \blacksquare .	What do you say when an interpretation I if when it is applied to a formula $F, F \equiv \top$? Give two answers.
When is a formula satisfiable?	If a formula is true for every interpretation, then it is
7	8

The truth table for the or function is:

Input 1	Input 2	Input 1 or Input 2
T	T	T
T	F	T
F	T	T
F	F	F

The truth table for the and function is:

Ir	nput 1	Input 2	Input 1 and $Input 2$
	T	T	T
	T	F	\overline{F}
	F	T	\overline{F}
	F	F	F

2

1

The truth table for the bi-implication function is:

Input 1	Input 2	$Input 1 \iff Input 2$
\overline{T}	T	T
\overline{T}	F	\overline{F}
\overline{F}	T	\overline{F}
F	F	T

	Input 1	Input 2	Input 1 implies Input 2
	T	T	T
_	T	F	F
_	F	T	T
	F	F	T

4 3

We say that I satisfies F, or that I is a model of F.

For all interpretation, the formula ' \lor ' evaluates to 0, and ' \land ' evaluates to 1.

5

Valid (aka a tautology). If there is some interpretation that satisfies the formula.