

Examining the Impact of an Al-powered Writing Platform in Upper-division Engineering Courses

Digital Learning Lab

Ruilin Wu Advisor: Dr. Mark Warschauer, Jaeyoon Choi

Introduction

- Generative Al's surge in higher education demands a secure, scaffolded platform that preserves critical thinking, builds Al literacy, and supports instructors.
- PapyrusAI, built on GPT-4, serves as a Socratic tutor using curated and customizable prompts to guide students through topic development, outlining, and drafting.
- A pilot study in UCI engineering writing courses used PapyrusAI to give students real-time, rubric-aligned feedback to refine their topics, outlines, and arguments.

Research Question

How does the use of PapyrusAI vary across instructors, and what impact does this have on student engagement and final writing scores?

Methodology

Participants:

- 317 undergraduates enrolled in ENGR190W at UCI across four quarters between two instructors.
 Spring 24, Fall 24, Winter 25, Spring 25.
- Students generated a total of **22,914** chat messages with PapyrusAI.

Analytical approach:

- Multivariate Linear Regression.
- Correlation coefficients to examine relationships between PapyrusAl use and course performance.
- Focused on two instructors who implemented PapyrusAl differently across quarters.

Figure 1. Example of one conversation at PapyrusAl

Research

Linear Regression Models Predicting Final Score from PapyrusAl Usage Predictor Whole Set Instructor Instructor -0.0011 -0.0089 -0.0007 **Total Conversations Count** 0.00002 -0.00083 0.00066 Avg. Student Characters 0.149 Avg. Student Sentences 0.000005 0.000006 -0.000005 Avg. Response Time 0.475 0.471 0.505 Mean Convos per Module 0.046 0.026 0.030 Adjusted R² 1.92 (0.095) 2.31 (0.047) F-statistic (p-value)

Analysis

- Both correlation and regression analyses show that AI usage metrics have weak but noticeable links to final scores. Interaction quantity (e.g., conversation counts) shows mild positive correlations (r ≈ 0.18–0.21) and small regression effects, indicating limited predictive strength.
- Across instructors, Mean Conversations per Module consistently emerges as the strongest positive predictor ($\beta \approx 0.47$ –0.51). This suggests that students who engage consistently across modules, rather than simply more often overall, tend to achieve slightly higher scores.
- Metrics such as Average Characters, Average Sentences, and Response Time show minimal correlations (r ≈ 0 to 0.09) and weak or inconsistent regression coefficients implying that longer or quicker messages do not necessarily lead to better outcomes.
- Both instructors show similar correlation patterns, but Instructor 2's model explains more variance (R² = 0.046), suggesting that course design or integration approach may influence how AI engagement relates to learning outcomes.

Discussion

- Quantity of AI interactions = modest predictor
- Frequency of chats alone explains little variance in final scores.
- Instructional context and module design matter more
 - How instructors integrated PapyrusAI and which modules were emphasized strongly shaped engagement.
 - Instructor 2's focus on drafting linked to stronger correlations with performance.
- Planning and revision = consistent student
 needs
 - Repeated across quarters and instructors, highlighting persistent challenges in engineering writing.
 - Aligns with writing research showing students struggle most at early- and midstage drafting.

Limitation

- No control group for direct comparison.
- Enrollment numbers varied substantially across quarters.
- Possibility that students also used external AI tools outside of PapyrusAI, which was not measured.

Future Direction

Research should investigate:

- How instructors can strategically integrate AI tools into writing pedagogy.
- The balance between student autonomy and structured guidance.
- How module-level design choices affect engagement and outcomes.

Important to address equity and ethics, including:

- Unequal access to AI tools across student populations.
- Potential disparities in engagement and benefits.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No.23152984.