

Exercise 9B

Question 5:

In a parallelogram, the opposite angles are equal.

So, in the parallelogram ABCD,

$$\angle A = \angle C$$

and

$$\angle B = \angle D$$

Since
$$\angle A = (2x + 25)^0$$

 $\therefore \qquad \angle C = (2x + 25)^0$
and $\angle B = (3x - 5)^0$
 $\therefore \qquad \angle D = (3x - 5)^0$

In a parallelogram, the sum of all the four angles is 360°

∴
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

⇒ $(2x + 25) + (3x - 5) + (2x + 25) + (3x - 5) = 360^{\circ}$
⇒ $10x + 40 = 360^{\circ}$
⇒ $10x = 360^{\circ} - 40^{\circ} = 320^{\circ}$
⇒ $x = \frac{320}{10} = 32^{\circ}$

$$\therefore \angle A = (2x + 25) = (2 \times 32 + 25) = 89^{0}$$

$$\angle B = (3x - 5) = (3 \times 32 - 5) = 91^{\circ}$$

$$\angle C = (2x + 25) = (2 \times 32 + 25) = 89^{\circ}$$

$$\angle D = (3x - 5) = (3 \times 32 - 5) = 91^{\circ}$$

$$\therefore \angle A = \angle C = 89^{\circ} \text{ and } \angle B = \angle D = 91^{\circ}$$

Question 6:

Lets ABCD be a parallelogram.

Then, $\angle B$, which is adjacent angle of A is $\frac{4}{5}x^0$.

In a parallelogram, the opposite angles are equal

$$\Rightarrow$$
 $\angle A = \angle C = x^0 \text{ and } \angle B = \angle D = \frac{4}{5}x^0$

The sum of all the four angles of a parallelogram is 360°.

 $\angle A = x^0$

⇒
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

⇒ $x + \frac{4}{5}x + x + \frac{4}{5}x = 360^{\circ}$
⇒ $2x + \frac{8}{5}x = 360^{\circ}$
⇒ $\frac{18}{5}x = 360^{\circ}$
⇒ $x = \frac{360 \times 5}{18} = 100^{\circ}$
∴ $\angle A = x = 100^{\circ}$
 $\angle B = \frac{4}{5}x = \frac{4}{5} \times 100 = 80^{\circ}$
 $\angle C = x = 100^{\circ}$
 $\angle D = \frac{4}{5}x = \frac{4}{5} \times 100 = 80^{\circ}$
∴ $\angle A = \angle C = 100^{\circ}$ and $\angle B = \angle D = 80^{\circ}$.

********* FND *******