« En maths, on ne comprend pas les choses, on s'y habitue » (John Von Neumann)

Exercice 1 (Nilpotence) Soit E de dimension n > 0, f dans L(E) nilpotent d'indice de nilpotence p (ie $f^p = 0$ et $f^{p-1} \neq 0$).

- 1. Donner un exemple. Un endomorphisme nilpotent peut-il être inversible?
- 2. Adapter cette définition pour une matrice carrée.
- 3. Soit $x_0 \notin \ker(f^{p-1})$. Montrer que $B = (x_0, f(x_0), ..., f^{p-1}(x_0))$ est libre, en déduire une majoration de l'indice de nilpotence. A quelle condition sur n B est-elle une base de E? Donner alors la matrice de f dans B.
- 4. Donner un exemple montrant que cette majoration est optimale.
- 5. Soit A, B dans $M_n(\mathbb{K})$ telles que $(AB)^n = 0$, montrer que $(BA)^n = 0$.
- 6. Existe-t-il $A \in M_2(\mathbb{R})$ telle que $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$?

Exercice 2 Existe-t-il deux matrices A, B de $M_n(\mathbb{K})$ avec n > 0 telles que $AB - BA = I_n$?

Exercice 3 Montrer que les matrices suivantes ne sont pas semblables :

1.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
3. $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
2. $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
4. $A = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
Exercice 4 Montrer que $A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ sont semblables.

Exercice 5 On travaille dans $E = \mathbb{R}^{\mathbb{R}}$ le \mathbb{R} -ev des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que l'application $s: f \mapsto f$ avec f(x) = f(-x) est une symétrie de E.
- 2. Déterminer $\ker f$, $\operatorname{Im} f$, $\ker (f-id)$ et $\ker (f+id)$
- 3. Montrer que $\mathbb{R}^{\mathbb{R}}$ est somme directe des sevs des fonctions paires et des fonctions impaires. Préciser les projecteurs sur ces sevs et les exprimer à l'aide de s.

Exercice 6 Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par

$$u(P) = P + (1 - X)P'.$$

- 1. Montrer que u est un endomorphisme de E.
- 2. Déterminer une base de Im(u) et de ker(u).
- 3. Montrer que $\ker(u)$ et $\operatorname{Im}(u)$ sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 7 (Noyaux et images itérés) Soit u un endomorphisme d'un \mathbb{K} -ev E.

- 1. Montrer que la suite des noyaux itérés $(\ker(u^k))_{k\in\mathbb{N}}$ est croissante et que la suite des images itérées $(\operatorname{Im}(u^k))_{k\in\mathbb{N}}$ est décroissante.
- 2. Les déterminer quand $E = \mathbb{K}[X]$ et $u : P \mapsto P'$.
- 3. Montrer que s'il existe p dans \mathbb{N} tel que $\ker(u^p) = \ker(u^{p+1})$ alors pour tout k supérieur à p on a $\ker(u^k) = \ker(u^p)$.
- 4. Montrer que si E est de dimension finie alors il existe $p \in \mathbb{N}$ tel que $\ker(u^p) = \ker(u^{p+1})$. Comparer alors $\operatorname{Im}(u^p) = \operatorname{Im}(u^{p+1})$ et montrer que $E = \ker(u^p) \oplus \operatorname{Im}(u^p)$.