BEST AVAILABLE COPY

日本国特許庁 JAPAN PATENT OFFICE

29. 7. 2004

REC'D 16 SEP 2004

PCT

WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 3月16日

出 願 番 号 Application Number:

特願2004-075115

[ST. 10/C]:

[JP2004-075115]

出 願 人
Applicant(s):

永井 良三 眞鍋 一郎

協和醗酵工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 9月 3日

特許庁長官 Commissioner, Japan Patent Office い。門


```
【書類名】
              特許願
             H16-0184S3
【整理番号】
              平成16年 3月16日
【提出日】
【あて先】
              特許庁長官殿
【国際特許分類】
              C12N 15/00
              C12Q 1/68
              A61K 31/7105
              A61K 31/713
              A61K 48/00
              A61P 9/10
              A61P 35/00
【発明者】
              東京都文京区本郷2-32-2-1204
   【住所又は居所】
              永井 良三
   【氏名】
【発明者】
              東京都台東区池之端4-15-8-202
   【住所又は居所】
              眞鍋 一郎
   【氏名】
【発明者】
              静岡県駿東郡長泉町下土狩1188 協和醗酵工業株式会社
   【住所又は居所】
              薬総合研究所内
              石原 淳
   【氏名】
【発明者】
              静岡県駿東郡長泉町納米里410-1-A203
   【住所又は居所】
   【氏名】
              鳥取 恒彰
【特許出願人】
   【識別番号】
              594053419
              永井 良三
   【氏名又は名称】
【特許出願人】
               503271899
   【識別番号】
               眞鍋 一郎
   【氏名又は名称】
 【特許出願人】
               000001029
   【識別番号】
               協和醗酵工業株式会社
   【氏名又は名称】
   【代表者】
               松田 譲
 【代理人】
   【識別番号】
               100106574
   【弁理士】
   【氏名又は名称】
               岩橋 和幸
 【先の出願に基づく優先権主張】
               特願2003-202863
   【出願番号】
               平成15年 7月29日
   【出願日】
 【手数料の表示】
               008187
    【予納台帳番号】
               21,000円
    【納付金額】
 【提出物件の目録】
               特許請求の範囲 1
    【物件名】
```

明細書 1

要約書 1

図面 1

【物件名】

【物件名】

【物件名】

【魯類名】特許請求の範囲

【請求項1】

KLF5 mRNAの連続する15~30塩基の配列および該配列と相補的な配列を含み、KLF5遺伝子の発現を抑制するRNA。

【請求項2】

KLF5 mRNAがヒトまたはマウスのKLF5 mRNAである、請求項1に記載のRNA。

【請求項3】

RNAが、KLF5 mRNAの連続する15~30塩基の配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3'端に1~6個のヌクレオチドを付加した二本鎖RNAである、請求項1または2に記載のRNA。

【請求項4】

RNAが、KLF5 mRNAの連続する15~30塩基の配列からなるRNAおよび該配列と相補的な配列からなるRNAを、スペーサーオリゴヌクレオチドでつなぎ、3'端に1~6個のヌクレオチドを付加した、ヘアピン構造を形成するRNAである、請求項1または2に記載のRNA。

【請求項5】

以下の(a)~(c)からなる群から選ばれるKLF5遺伝子の発現を抑制するRNA。

- (a)配列番号 $2\sim16$ のいずれか 1 つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3 端に $2\sim4$ 個のウリジル酸またはデオキシチミジル酸を付加した二本鎖RNA。
- (b) 配列番号 $2\sim16$ のいずれか 1 つの配列からなるRNAおよび該配列と相補的な配列からなるRNAを 2 個のウリジル酸またはデオキシチミジル酸を5 端に有するスペーサーオリゴヌクレオチドでつなぎ、3 端に $2\sim4$ 個のウリジル酸またはデオキシ体チミジル酸を付加した、ヘアピン構造を形成するRNA。
- (c)配列番号 $2\sim11$ のいずれか 1 つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3 端に 2 個のウリジル酸を付加した二本鎖RNA。

【請求項6】

請求項1~5のいずれか1項に記載のRNAを発現するベクター。

【請求項7】

請求項1~5のいずれか1項に記載のRNAまたは請求項6に記載のベクターを細胞に導入することにより、該細胞中のKLF5遺伝子の発現を抑制する方法。

【請求項8】

請求項1~5のいずれか1項に記載のRNAまたは請求項6に記載のベクターを細胞に導入することにより、該細胞中のKLF5により転写が活性化される遺伝子の発現を抑制する方法

【請求項9】

KLF5により転写が活性化される遺伝子が血小板由来増殖因子A鎖遺伝子または平滑筋ミオシン重鎖SMemb遺伝子である請求項8に記載の方法。

【請求項10】

請求項1~5のいずれか1項に記載のRNAまたは請求項6に記載のベクターを有効成分として含有する医薬組成物。

【請求項11】

請求項1~5のいずれか1項に記載のRNAまたは請求項6に記載のベクターを有効成分と して含有する、血管新生を阻害するための医薬組成物。

【請求項12】

請求項1~5のいずれか1項に記載のRNAまたは請求項6に記載のベクターを有効成分と して含有する、心血管系疾患もしくは癌の治療薬または予防薬。

【請求項13】

心血管系疾患が動脈硬化、冠動脈インターベンション後の再狭窄または心肥大である請求 項12に記載の治療薬または予防薬。

【曹類名】明細曹

【発明の名称】KLF5遺伝子の発現を抑制するRNA

【技術分野】

[0001]

本発明は、KLF5遺伝子の発現を抑制するRNAに関する。

【背景技術】

[0002]

クルッペル様因子(Kruppel-like factor、以下KLFと略す)ファミリーは、C末端のジンク・フィンガー(zinc finger)モチーフを特徴とする、転写因子のファミリーであり、KLF1、KLF2、KLF3、KLF4、KLF5、KLF6、KLF7、KLF8、KLF9、KLF10、KLF11、KLF12、KLF13、KLF15、KLF16等が知られている。哺乳類において、KLFファミリーは、様々な組織や細胞、例えば赤血球、血管内皮細胞、平滑筋、皮膚、リンパ球等の分化に重要であること、また癌、心血管疾患、肝硬変、腎疾患、免疫疾患等の各種疾患の病態形成に重要な役割を果たしていることが報告されている(非特許文献1および2参照)。

[0003]

KLFファミリーのうちのKLF5は、BTEB2 (basic transcriptional element binding protein 2) あるいはIKLF (intestinal-enriched Kruppel-like factor) ともよばれる。血管平滑筋におけるKLF5の発現は、発生段階で制御を受けており、胎児の血管平滑筋では、高い発現を示すのに対し、正常な成人の血管平滑筋では発現が見られなくなる。また、バルーンカテーテルによる削剥後に新生した血管内膜の平滑筋では、KLF5の高い発現がみられ、動脈硬化や再狭窄の病変部の平滑筋でもKLF5の発現がみられる(非特許文献3参照)。

[0004]

動脈硬化巣や経皮的冠動脈形成術後の再狭窄部位などの病変部位の血管平滑筋は、活性化しており、筋フィラメントの消失、蛋白合成の亢進、増殖能や遊走能を示し、胎児の血管平滑筋と同様の形質(胎児型)へ形質転換している。平滑筋細胞にはSM1、SM2、SMembという3種類のミオシン重鎖のアイソフォームが存在するが、胎児型への形質転換に伴い、SM2が消失し、SMembの発現誘導が認められる。KLF5は、SMemb遺伝子の転写制御配列と結合し、その転写を活性化する(非特許文献4参照)。さらに、血小板由来増殖因子A鎖(以下PDGF-Aとよぶ)、トランスフォーミング増殖因子(TGF)- β 、血管内皮増殖因子(VEGF)リセプター、誘導型一酸化窒素合成酵素(iNOS)、プラスミノーゲンアクチベーターインヒビター(PAI)-1および転写因子Egr(early growth response)-1など、血管の形質や血管新生に関与する遺伝子の転写を活性化することが報告されている(非特許文献5および6参照)。

[0005]

また、KLF5遺伝子のヘテロノックアウトマウスにおいて、心血管系への物理的負荷やアンジオテンシンIIにより引き起こされる血管平滑筋増殖と血管内膜肥厚、血管新生、血管外膜の肉芽形成、心肥大および心筋線維化等が著明に抑制されていることが報告されている(非特許文献5参照)。

このように、KLF5遺伝子は平滑筋形質変換に関わるだけでなく、広く心血管系の病態形成に関わる転写因子であり、その機能発現には遺伝子発現量がきわめて重要である。KLF5は、動脈硬化や、心肥大等の心血管系の疾患あるいは癌等の血管新生が関与する疾患の病態形成に関与するので、KLF5遺伝子の発現を抑制することでこれらの疾患の治療または予防に有用な薬剤となりうることが予想される。しかし、現在のところKLFファミリー遺伝子の発現を効果的に抑制する薬剤は知られていない。

[0006]

一方、RNA干渉(RNA interference、以下、RNAiとよぶ)は、線虫において標的とする 遺伝子と同一の配列を有する二本鎖RNAを導入することにより、標的遺伝子の発現が特異 的に抑制される現象として報告された(非特許文献7参照)。

RNAiは、導入した二本鎖RNAが、21~23塩基の長さの二本鎖RNAに分解された後、蛋白質複合体がこの短い二本鎖RNAと結合し、同じ配列を有するmRNAを認識し切断することによ

って起こると考えられている。Tuschlらは、ショウジョウバエにおいて長い二本鎖RNAの代わりに、21~23塩基の長さの二本鎖RNAを導入することによっても、標的遺伝子の発現が抑制されることを見いだし、これをshort interfering RNA (siRNA)と名づけた(特許文献1参照)。siRNAの配列と標的遺伝子とのミスマッチがあると非常に発現抑制の効果が弱まること、長さは21塩基が最も効果が高く、平滑末端よりも、両方の鎖の3'末端にヌクレオチドが付加して、末端が突出した構造の方が効果が高いことが示された(特許文献2参照)。

[0007]

哺乳類細胞では、長い二本鎖RNAを導入した場合、ウイルス防御機構により遺伝子全体の発現抑制とアポトーシスが起こり、特定の遺伝子の抑制をすることができなかったが、20~29塩基のsiRNAであれば、このような反応がおこらず、特定の遺伝子の発現を抑制をすることができることが見いだされた。なかでも21~25塩基のものが発現抑制効果が高い(非特許文献8、9、10および11参照)。

[0008]

RNAiでは、二本鎖RNAは一本鎖アンチセンスRNAに比べ、標的遺伝子に対する発現抑制効果が飛躍的に高いことが報告されている(非特許文献7および12参照)。また、二本鎖RNAでなく、分子内ハイブリダイズにより、ヘアピン構造を形成する一本鎖RNAも、siRNAと同様にRNAiを示すことが報告されている(非特許文献13参照)。

RNAiはin vitroのみならず、in vivo試験においても多く検証されており、50bp以下のsiRNAを用いた胎児の動物での効果(特許文献3参照)、成体マウスでの効果(特許文献4参照)が報告されている。また、siRNAをマウス胎児に静脈内投与した場合に、腎臓、脾臓、肺、膵臓、肝臓の各臓器で発現抑制効果が確認されている(非特許文献14参照)。さらに、脳細胞においてもsiRNAを直接投与することで作用することが報告されている。(非特許文献15参照)しかし、これまでのところKLF5あるいは他のKLFファミリー遺伝

【特許文献1】国際公開第01/75164号パンフレット

子に対するsiRNAを用いたRNAiに関しては報告例がない。

【特許文献2】国際公開第02/44321号パンフレット

【特許文献3】国際公開第02/132788号パンフレット

【特許文献4】国際公開第03/10180号パンフレット

【非特許文献1】 ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Jour nal of Biological Chemistry), (米国), 2001年, 第276巻, 第37号, p. 34355-34358

【非特許文献 2】 ジェノム・バイオロジー (Genome Biology), (イギリス), 2003年, 第4巻, 第2号, p. 206

【非特許文献3】サーキュレーション (Circulation), (米国), 2000年, 第102巻, 第20号, p. 2528-2534

【非特許文献4】サーキュレーション・リサーチ(Circulation Research), (米国), 1999年, 第85巻, 第2号, p. 182-191

【非特許文献 5 】 ネイチャー・メディシン (Nature Medicine), (米国), 200 2年, 第8巻, 第8号, p. 856-863

【非特許文献 6】 アナルズ・オブ・ザ・ニュー・ヨーク・アカデミー・オブ・サイエンシズ (Annals of the New York Academy of Scieces), (米国), 2001年, 947巻、p. 56-66

【非特許文献7】ネイチャー (Nature), (イギリス), 1998年, 第391巻, 第6669号, p. 806-811

【非特許文献8】ネイチャー (Nature), (イギリス), 2001年, 第411巻, 第6836号, p. 494-498

【非特許文献 9】 ネイチャー・レビューズ・ジェネティクス (Nature Reviews Genet ics), (イギリス), 2002年, 第3巻, 第10号, p. 737-747

【非特許文献10】モレキュラー・セル(Molecular Cell), (米国), 2002年

. 第10巻, 第3号, p. 549-561

【非特許文献11】ネイチャー・バイオテクノロジー (Nature Biotechnology), (*** 米国), 2002年, 第20巻, 第5号, p. 497-500

【非特許文献12】モレキュラー・セル (Molecular Cell), (米国), 2002年, 第10巻, 第3号, p. 537-548

【非特許文献13】 プロシーディングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッド・ステーツ・オブ・アメリカ (Proceeding s of the National Academy of Sciences of the United States of America), (米国), 2002年, 第99巻, 第9号, p. 6047-6052

【非特許文献14】ネイチャー・ジェネティクス (Nature Genetics), (米国), 2002年, 第32巻, 第1号, p. 107-108

【非特許文献 15】 ネイチャー・バイオテクノロジー (Nature Biotechnology), (米国), 2002年, 第20巻, 第10号, p. 1006-1010

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明の目的はKLF5遺伝子の発現を抑制するRNAを見出すことである。このようなRNAは、KLF5遺伝子の発現を抑制することにより、KLF5の転写因子としての機能を阻害し、心血管性疾患や癌等のKLF5が病態の形成に関与する疾患に対する、副作用の少ない治療薬または予防薬に用いることができる。

【課題を解決するための手段】

[0010]

本発明者らは、鋭意検討を行った結果、以下に記載する発明を完成するに至った。すな わち、本発明は以下の(1)~(13)に関する。

- (1) KLF5 mRNAの連続する15~30塩基の配列および該配列と相補的な配列を含み、KLF5 遺伝子の発現を抑制するRNA。
 - (2) KLF5 mRNAがヒトまたはマウスのKLF5 mRNAである、(1)に記載のRNA。
- (3) RNAが、KLF5 mRNAの連続する $15\sim30$ 塩基の配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3端に $1\sim6$ 個のヌクレオチドを付加した二本鎖RNAである、(1)または(2)に記載のRNA。
- (4) RNAが、KLF5 mRNAの連続する $15\sim30$ 塩基の配列からなるRNAおよび該配列と相補的な配列からなるRNAを、スペーサーオリゴヌクレオチドでつなぎ、3 端に $1\sim6$ 個のヌクレオチドを付加した、ヘアピン構造を形成するRNAである、(1)または(2)に記載のRNA。

[0011]

- (5)以下の(a)~(c)からなる群から選ばれるKLF5遺伝子の発現を抑制するRNA。
- (a) 配列番号 $2\sim16$ のいずれか 1 つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3 端に $2\sim4$ 個のウリジル酸またはデオキシチミジル酸を付加した二本鎖RNA。
- (b) 配列番号 2~16のいずれか 1 つの配列からなるRNAおよび該配列と相補的な配列からなるRNAを 2 個のウリジル酸を5'端に有するスペーサーRNAでつなぎ、3'端に 2~4 個のウリジル酸を付加した、ヘアピン構造を形成するRNA。
- (c) 配列番号 $2 \sim 11$ のいずれか 1 つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3' 端に 2 個のウリジル酸を付加した二本鎖RNA。
- (6) (1) ~ (5) のいずれか1項に記載のRNAを発現するベクター。

[0012]

- (7)(1)~(5)のいずれか1項に記載のRNAまたは(6)に記載のベクターを細胞に導入することにより、該細胞中のKLF5遺伝子の発現を抑制する方法。
- (8) (1) ~ (5) のいずれか1項に記載のRNAまたは(6) に記載のベクターを細胞に導入することにより、該細胞中のKLF5により転写が活性化される遺伝子の発現を抑制す

る方法。

(9) KLF5により転写が活性化される遺伝子が血小板由来増殖因子A鎖遺伝子または平滑筋ミオシン重鎖SMemb遺伝子である(8)に記載の方法。

[0013]

- $(1\ 0)$ (1) ~ (5) のいずれか1項に記載のRNAまたは(6)に記載のベクターを有効成分として含有する医薬組成物。
- (11) (1) \sim (5) のいずれか1項に記載のRNAまたは(6)に記載のベクターを有効成分として含有する、血管新生を阻害するための医薬組成物。
- (12) (1) ~ (5) のいずれか1項に記載のRNAまたは(6) に記載のベクターを有効成分として含有する、心血管系疾患もしくは癌の治療薬または予防薬。
- (13) 心血管系疾患が動脈硬化、冠動脈インターベンション後の再狭窄または心肥大である(12) に記載の治療薬または予防薬。

【発明の効果】

[0014]

本発明のRNAにより、KLF5遺伝子およびKLF5により転写が活性化される遺伝子の発現を抑制することができる。本発明のRNAまたは該RNAを発現するベクターの投与により、KLF5遺伝子およびKLF5により転写が活性化される遺伝子の発現が抑制され、平滑筋の増殖や血管新生を抑制できるので、本発明のRNAまたは該RNAを発現するベクターは、動脈硬化、冠動脈インターベンション後の再狭窄、心肥大等の心血管系疾患、あるいは癌の治療剤または予防剤の有効成分として使用することができる。

- 【発明を実施するための最良の形態】

[0015]

1. KLF5遺伝子の発現を抑制するRNA

本発明のRNAは、KLF5 mRNAの連続する $15\sim30$ 塩基、好ましくは $17\sim25$ 塩基、より好ましくは $19\sim23$ 塩基の配列(以下配列Xとする)および該配列と相補的な配列(以下、相補配列X'とする)を含み、KLF5遺伝子の発現を抑制するRNAである。該RNAとしては、(a)配列Xの鎖(センス鎖)および相補配列X'の鎖(アンチセンス鎖)からなる二本鎖RNAのそれぞれの鎖の3'端に $1\sim6$ 個、好ましくは $2\sim4$ 個のヌクレオチドを付加した二本鎖RNA(以下、このような構造のRNAをsiRNAとよぶ)であってKLF5遺伝子の発現を抑制するRNA、

(b) 配列XからなるRNAおよび相補配列X'からなるRNAを、スペーサーオリゴヌクレオチドでつなぎ、3'端に $1\sim6$ 個、好ましくは $2\sim4$ 個のヌクレオチドを付加した、ヘアピン構造を形成するRNA(以下、このようなRNAをshRNAとよぶ)であって、KLF5遺伝子の発現を抑制するRNAがあげられる。これらのRNAにおいて付加するヌクレオチドの塩基はグアニン、アデニン、シトシン、チミン、ウラシルのいずれでもよく、またRNAでもDNAでもよいが、ウリジル酸(U)またはデオキシチミジル酸(dT)が好ましい。またスペーサーオリゴヌクレオチドは $6\sim12$ 塩基のRNAが好ましく、その5'端の配列は2 個のUが好ましい。スペーサーオリゴヌクレオチドの例として、UUCAAGAGAの配列からなるRNAをあげることができる。スペーサーオリゴヌクレオチドによってつながれる2 つのRNAの順番はどちらが5'側になってもよい。

[0016]

配列Xは、KLF5 mRNAの連続する15~30塩基の配列、好ましくは17~25塩基、より好ましくは19~23塩基の配列であれば、いずれの配列でもよいが、以下の(1)に記載の方法で設計した19塩基の配列が最も好ましい。以上の構造を有するRNAであって、KLF5遺伝子の発現を抑制するものであれば、本発明のRNAに含まれる。

本発明のRNAは、上記の構造のRNAをKLF5遺伝子が発現している細胞に導入してKLF5遺伝子の発現を測定し、KLF5遺伝子の発現を抑制するRNAを選択することより取得できる。

[0017]

(1) 配列Xの設計

遺伝子の発現を抑制したい動物のKLF5 cDNAの塩基配列から、AAではじまる21塩基の部分配列を取り出す。取り出した配列のGC含量を計算し、GC含量が20~80%、好ましくは30

%~70%、より好ましくは40~60%の配列を複数個選択する。

[0018]

配列は、好ましくは、コード領域内の配列で、開始コドンから75塩基以上下流の配列を選択する。KLF5 cDNAの塩基配列の情報は、GenBank等の塩基配列データベースから得ることができる。例えば、マウスKLF5 cDNAの配列はGenBank登録番号NM_009769(配列番号49)、ヒトKLF5 cDNAの配列はGenBank登録番号AF287272(配列番号50)で、配列情報が得られる。

選択した配列の5'末端のAAを除き、配列中のTをUに変えた19塩基の配列を配列Xとする

[0019]

(2) 本発明のRNAの調製

(1)で選択した配列Xを元に、以下のようにしてRNAを調製することができる。以下には付加するオリゴヌクレオチドとして2個のUまたはdTの場合を記載するが、他のヌクレオチドの場合も同様にして調製することができる。

(a) siRNAの場合

配列Xの3'端に2個のUまたはdTを付加した配列からなるRNA、および相補配列X'の3'端に2個のUまたはdTを付加した配列からなるRNAの2本のRNAを調製する。この2本のRNAは、化学合成あるいはインビトロ転写により調製できる。化学合成は、DNA合成機を用いて行うことができる。またアンビオン(Ambion)社、日本バイオサービス株式会社、キアゲン(QIAGEN)社等のメーカーに化学合成を依頼することもできる。化学合成した互いに相補的な配列を含む2本のRNAをアニーリングすることにより、配列Xの鎖および相補配列X'の鎖からなる二本鎖RNAのそれぞれの鎖の3'端に2個のUまたはdTを付加した二本鎖RNAを調製することができる。アニーリングは、2本のRNAを適当なバッファー中で90~95℃で1~5分加熱後、45~60分間かけて室温にまで冷却することにより行うことができる。

[0020]

インビトロ転写によるRNAの調製は、以下のようにして行うことができる。まず、(i) T7 RNAポリメラーゼのプロモーター配列を有するDNA(T7プライマー)、(i i)相補配列X'のUをTに変え、その5'端には2個のAを付加し、3'端にはT7プライマーの3'端8塩基と相補的な配列を付加した配列を有するDNA、(i i i)配列XのUをTに変え、その5'端には2個のAを付加し、3'端にはT7プライマーの3'端8塩基と相補的な配列を付加した配列を有するDNA、をそれぞれ調製する。

[0021]

T7プライマーと(ii)のDNAとをアニールさせた後、DNAポリメラーゼ反応により、二本鎖DNAにする。得られた二本鎖DNAを鋳型として、T7 RNAポリメラーゼを用いたインビトロ転写反応を行うことにより、配列Xの3'端に2個のUが付加し、5'端にはリーダー配列が付加した配列を有するRNAを合成することができる。同様にT7プライマーと(iii)のDNAとを用いて同様の反応を行うことにより、相補配列X'の3'端に2個のUが付加し、5'端にはリーダー配列が付加した配列を有するRNAを合成することができる。

[0022]

2つの反応液を混ぜて、さらにインビトロ転写反応を続けることにより、互いに相補的な配列を含む2本のRNAをアニールさせる。その後、デオキシリボヌクレアーゼおよび一本鎖RNA特異的なリボヌクレアーゼにより、鋳型の二本鎖DNAおよび各RNA鎖の5'側のリーダー配列を分解して除去する。各RNA鎖の3'端の2個のUは分解を受けずに付加したまま残る。

[0023]

以上の反応は、サイレンサーsiRNA作製キット(Silencer・siRNA Construction Kit、アンビオン社製)等のキットを用いて行うことができる。T7プライマーとアニールさせるDNAは、DNA合成機により化学合成することができる。またアンビオン社、日本バイオサービス株式会社、北海道システムサイエンス株式会社、キアゲン社等のメーカーに化学合成を依頼することもできる。

[0024]

(b)shRNAの場合

配列XからなるRNAおよび相補配列X'からなるRNAを、スペーサーオリゴヌクレオチドでつなぎ、3'端に1~6個、好ましくは2~4個のヌクレオチドを付加した、ヘアピン構造を形成するRNAは、DNA合成機を用いた化学合成によって調製できる。また、2. に後述するsiRNA発現ベクターを細胞に導入することにより、細胞内にshRNAが合成される。このsh RNAは、細胞内でsiRNAに変換される。ベクターを導入して細胞内で合成させた場合は、sh RNAの単離と(3)に記載した細胞への導入の操作は不要であり、ベクターを導入した細胞についてKLF5遺伝子の発現を解析すればよい。

[0025]

(3) KLF5遺伝子の発現抑制

KLF5遺伝子を発現する細胞株に(2)で調製したsiRNAまたはshRNAを導入する。細胞株は、(1)の配列Xの設計のもとにしたKLF5 cDNAと同じ動物種の細胞を用いる。KLF5遺伝子を発現する細胞株としては、平滑筋、繊維芽細胞または血管内皮細胞に由来する細胞株、例えばマウス胎児繊維芽細胞株C3H/10T1/2(ATCC番号:CCL-226)、ヒト臍帯血管内皮細胞等をあげることができる。RNAの導入は、動物細胞へのトランスフェクション用試薬、例えばポリフェクト(Polyfect)トランスフェクション試薬(キアゲン社製)、トランスメッセンジャー(TransMessenger)トランスフェクション試薬、オリゴフェクトアミン(Oligofectamine)試薬(インビトロジェン社製)、リポフェクトアミン(Lipofectamine)2000(インビトロジェン社製)等を利用して、これらの試薬とRNAを混合して複合体を形成させた後、細胞に添加することにより行うことができる。

[0026]

本発明のRNAまたは2.で後述するsiRNA発現ベクターを導入した細胞のKLF5遺伝子の発現は、RT-PCRにより解析することができる。RNAまたはsiRNA発現ベクターを導入した細胞および導入しなかった細胞から総RNAを調製し、このRNAからcDNAを合成する。合成したcDNAを鋳型にして、KLF5遺伝子に特異的なプライマーを用いたPCRを行い、KLF5 cDNAに由来する増幅産物の量を、アガロースゲル電気泳動によって定量することにより、KLF5遺伝子の発現量を測定することができる。RNAまたはsiRNA発現ベクターを導入しなかった細胞のKLF5遺伝子の発現量と比較して、KLF5遺伝子の発現量が減少した細胞に導入したRNAを、KLF5遺伝子の発現を抑制するRNAとして選択する。

[0027]

このようにして選択された、KLF5遺伝子の発現を抑制するRNAとしては、配列番号 $2\sim1$ 1のいずれか 1 つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3 3端に 2 個のウリジル酸を付加した二本鎖RNAをあげることができる。該RNAはマウス cDNAの配列に基づいて設計されたものであり、マウスKLF5遺伝子の発現を抑制する。このうち、配列番号 4 、8 および10の配列はそれぞれマウスとヒトのぞれぞれのKLF5 m RNAで共通する配列であるので、配列番号 4 、8 および10のいずれか 1 つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3 3端に 2 個のウリジル酸を付加した二本鎖RNAは、マウスKLF5遺伝子だけでなくヒトKLF5遺伝子の発現も抑制する。

[0028]

(1)の配列Xの設計のもとにしたある動物種AのKLF5 cDNAと、異なる動物種BのKLF5 cDNAを配列の相同性に基づいてアライメントすることにより、動物種Aで選択された配列Xと対応する動物種Bの配列Yを得ることができる。上記の方法で、動物種AのKLF5遺伝子の発現を抑制するRNAが得られた場合、該RNAの配列Xおよびその相補配列X'の領域をそれぞれ配列Yとその相補配列Y'に置換したRNAは、動物種BのKLF5遺伝子を抑制すると考えられる。

[0029]

例えば、マウスKLF5 cDNAの配列に基づく配列番号2、3、7、9および11のいずれか1つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3'

端に2個のウリジル酸を付加した二本鎖RNAは、マウスKLF5遺伝子の発現を抑制するので、ヒト KLF5 cDNAにおいて対応する配列である配列番号12~16のいずれか1つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3'端に2個のウリジル酸を付加した二本鎖RNAは、ヒトKLF5遺伝子の発現を抑制すると考えられる。

[0030]

2. KLF5遺伝子の発現を抑制するRNAを発現するベクター

(1) プラスミドベクター

KLF5遺伝子の発現を抑制するRNAを発現するプラスミドベクターを、培養細胞または生体内の細胞に導入することにより、細胞内で該RNAが産生され、導入した細胞でのKLF5遺伝子の発現を抑制することができる。該ベクターは、U6プロモーターあるいはH1プロモーター等RNAポリメラーゼIIIのプロモーターを含む動物細胞用プラスミドベクター等のsiRN A発現用ベクターのプロモーターの下流に、1. で選択された配列Xおよびその相補配列X'(それぞれUはTに変換する)を、2個のTを5'端に有するスペーサー配列でつなぎ、3'端にRNAポリメラーゼIIIターミネーターとなる4~6個のTからなる配列を含むDNA(以下、KLF5 siRNA用DNAとよぶ)を挿入して作製することができる。スペーサー配列としては、2個のTを5'端に有する6~12塩基の配列が好ましく、例えば、TTCAAGAGAをあげることができる。配列Xと相補配列X'の順序は、どちらが5'側でもよい。siRNA発現用ベクターとしては、pSilencer 1.0-U6(アンビオン社製)、pSilencer 3.0(アンビオン社製)、pSUPER [オリゴエンジン(OligoEngine)社製]、pSIREN-DNR [BDバイオサイエンシズ・クロンテック (BD Biosciences Clontech) 社製]等をあげることができる。

[0031]

上記のKLF5 siRNA用DNAを挿入して作製した組換えベクターを導入した細胞では、U6プロモーターからのRNAポリメラーゼIII反応により、1. (1) に記載したshRNAが合成され、このshRNAが細胞内で切断を受けてsiRNAに変換される。組換えベクターの細胞への導入は、通常の動物細胞へのベクターの導入と同様に、リン酸カルシウム法(特開平2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci. USA, <u>84</u>, 7413 (1987)] 等により行うことができる。

[0032]

(2) ウイルスベクター

siRNA発現ベクターとして、レトロウイルスベクターやレンチウイルスベクター、アデノウイルスベクター等のウイルスベクターを利用したsiRNA発現用ベクターを用いることもできる。このようなウイルスベクターを利用したsiRNA発現用ベクターとして、pSUPER. retro (オリゴエンジン社製)、pSIREN-RetroQ (BDバイオサイエンシズ・クロンテック社製)、文献 [Proc. Natl. Acad. Sci USA, 100, 1844 (2003); Nat. Genet., 33, 401 (2003)] に記載のベクターなどをあげることができる。

[0033]

ウイルスベクターを利用したsiRNA発現用ベクターに上記と同様のKLF5 siRNA用DNAを挿入して作製した組換えベクターを、用いたウイルスベクターに応じたパッケージング細胞に導入することにより、該組換えベクターを含む組換えウイルスを生産させる。組換えベクターのパッケージング細胞への導入は、上記と同様に、リン酸カルシウム法、リポフェクション法等により行うことができる。得られた組換えウイルスを細胞に接触させて感染させることにより、組換えベクターが細胞に導入され、1. (1)に記載したshRNAが合成され、このshRNAが細胞内で切断を受けてKLF5遺伝子の発現を抑制するsiRNAに変換される。

[0034]

- 3. KLF5遺伝子の発現を抑制するRNAの利用法
- (1) KLF5により転写が活性化される遺伝子の発現の抑制

KLF5は転写因子として、種々の遺伝子の発現を活性化している。KLF5遺伝子の発現を抑制するRNAにより、KLF5遺伝子の発現が抑制される結果、KLF5により転写が活性化される遺伝子の発現も抑制することができる。KLF5により転写が活性化される遺伝子としては、

[0035]

(2) KLF5の機能の解析

KLF5遺伝子の発現を抑制するRNAを、種々の細胞に作用させ、その細胞の形質の変化や、各種遺伝子の発現量の変動を調べることにより、それぞれの細胞におけるKLF5の機能を解析することができる。また、該RNAは、胎児から成体まで、さまざまな発育段階の動物でKLF5遺伝子の発現抑制をすることができるので、ヘテロノックアウトマウスの解析だけではわからないKLF5の機能の解明をすることが可能となる。

[0036]

4. 本発明のRNAまたはベクターを有効成分として含有する医薬組成物

本発明のKLF5遺伝子の発現を特異的に抑制するRNA、または該RNAを発現するベクターを 投与することにより、KLF5および、KLF5が転写を活性化する遺伝子の発現が抑制され、平 滑筋の増殖や血管新生が阻害されるので、動脈硬化、冠動脈インターベンション後の再狭 窄や心肥大等の心血管系の疾患あるいは癌の治療または予防をすることができる。

[0037]

本発明のRNAまたは該RNAを発現するベクターは、医薬品として使用する場合、単独で投与することも可能ではあるが、通常は薬理学的に許容される添加剤(例えば担体、賦形剤、希釈剤等)、安定化剤または製薬上必要な成分と混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供するのが望ましい。また、ウイルスベクターの場合は、組換えウイルスの形態でウイルスベクターを投与することが望ましい。

[0038]

投与経路は、治療に際し最も効果的なものを使用するのが望ましく、口腔内、気道内、 直腸内、皮下、筋肉内および静脈内などの非経口投与または経口投与をあげることができ 、望ましくは静脈内投与、筋肉内投与をあげることができる。静脈内投与、筋肉内投与に 適当な製剤としては、注射剤があげられる。

[0039]

本発明のRNAまたは該RNAを発現するベクターを、注射剤の形態に成形するに際しては、担体として、たとえば、水、エチルアルコール、マクロゴール、プロピレングリコール、クエン酸、酢酸、リン酸、乳酸、乳酸ナトリウム、硫酸および水酸化ナトリウム等の希釈剤、クエン酸ナトリウム、酢酸ナトリウムおよびリン酸ナトリウム等のpH調整剤および緩衝剤、ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸およびチオ乳酸等の安定化剤等が使用できる。なお、この場合等張性の溶液を調製するに十分な量の食塩、ブドウ糖、マンニトールまたはグリセリンを医薬製剤中に含有せしめてもよい。安定化剤としては、グルコース等の単糖類、サッカロース、マルトース等の二糖類、マンニトール、ソルビトール等の糖アルコール、塩化ナトリウム等の中性塩、グリシン等のアミノ酸、ポリエチレングリコール、ポリオキシエチレンーポリオキシプロピレン共重合体(プルロニック)、ポリオキシエチレンソルビタン脂肪酸エステル(トゥイーン)等の非イオン系界面活性剤、ヒトアルブミン等が例示される。また、細胞内への取り込みを促進するため、本発明のRNAまたは該RNAを発現するベクターを、該RNAまたはベクターを含むリポソームとして調製して用いてもよい。

[0040]

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定 されるものではない。

【実施例1】

[0041]

siRNAによるKLF5遺伝子の発現抑制

(1) siRNAの調製

KLF5遺伝子の発現を抑制できるsiRNAの配列として、マウスKLF5 cDNAの配列(GenBank

登録番号:NM_009769、配列番号49)から、(a) AAではじまる21塩基の配列、(b) GC 含量が20~80%の2つの条件に当てはまる、11個の部分配列を選択した。ただし、開始コドン(配列番号49の167~169番目の配列)より75塩基以上下流の、コード領域(配列番号167~1507番目の配列)内の配列で、GC含量が40~60%のものをなるべく選択するようにした。選択した配列の配列番号49における配列の位置、GC含量を第1表に示した。選択した配列の5'端のAAを除いた19塩基の配列のTをUに変えた配列をそれぞれ配列番号1~11に示した。

【0042】 【表1】

第1表

		st J	. 12		
選択した配列	配列の 位置	GC 含量	作製した RNA の配列	配列 番号	siRNA 番号
	r 0.7 FF 6	48%	CAUGAACGUCUUCCUCCCUTT	17	No. 1
AACATGAACGTCTTCCTCCCT	537-556	(10/21)	AGGGAGGAAGACGUUCAUGTT	18	No. 1
	1156-1176	48%	AUUUACCUGCCACUCUGCCUU	19	No. 2
AAATTTACCTGCCACTCTGCC	1150-1170	(10/21)	GGCAGAGUGGCAGGUAAAUUU	20	NO. Z
A A GOA OTTA A GOOGGA TICTOGA	1010 1000	52%	GGAGUAACCCGGAUCUGGAUU	21	No. 3
AAGGAGTAACCCGGATCTGGA	1216-1236	(11/21)	UCCAGAUCCGGGUUACUCCUU	22	NU. 3
	1909 1999	48%	AAGCUCACCUGAGGACUCAUU	23	No. 4
AAAAGCTCACCTGAGGACTCA	1303-1323	(10/21)	UGAGUCCUCAGGUGAGCUUUU	24	No. 4
1 - MOOOG 1 O 1 O COMO C 1 MOOO	151 171	62%	UCCCCAGACCGUCCAUGCCUU	25	No. F
AATCCCCAGACCGTCCATGCC	151-171	(13/21)	GGCAUGGACGGUCUGGGGGUU	26	No. 5
	1515 1505	76%	CGCUGCGCCCACCCGCCUGUU	27	N
AACGCTGCGCCCACCCGCCTG	1515-1535	(16/21)	CAGGCGGGUGGGCGCAGCGUU	28	No. 6
	405 495	43%	AUGGAGAAGUAUCUGACCCUU	29	No. 7
AAATGGAGAAGTATCTGACCC	405-425	(9/21)	GGGUCAGAUACUUCUCCAUUU	30	No. 7
A A A COMA MA CA COCA CA CA CA COMOCO	400 400	43%	AGUAUAGACGAGACAGUGCUU	31	No. 0
AAAGTATAGACGAGACAGTGC	463-483	(9/21)	GCACUGUCUCGUCUAUACUUU	32	No. 8
	974 004	48%	ACCAGACGGCAGUAAUGGAUU		No 0
AAACCAGACGGCAGTAATGGA	874-894	(10/21)	UCCAUUACUGCCGUCUGGCUU	34	No. 9
A A COMO A CA COCOMO CA A COMO CA	2049 2000	57%	GCUCAGAGCCUGGAAGUCCUU	35	N. 45
AAGCTCAGAGCCTGGAAGTCC	2048-2068	(12/21)	GGACUUCCAGGCUCUGAGCUU	36	No. 10
A A COCCUMINATE A STREET A MICHIGAN	1494 1444	57%	GCCGUUCCAGUGCAUGGUGUU	37	No. 1
AAGCCGTTCCAGTGCATGGTG	1424-1444	(12/21)	CACCAUGCACUGGAACGGCUU	J 38 No. 11	

配列番号 1~11のいずれかの配列および該配列と相補的な配列の3'端にそれぞれ2個のUまたはdTを付加した配列からなる11種類の二本鎖RNA(以下、それぞれsiRNA No. 1~No. 11とよぶ)を以下のようにして調製した。siRNA No. 1~No. 11それぞれのセンス鎖およびアシチセンス鎖の配列を第1表に示した(配列番号17~38)。siRNA No. 1は、配列番号17および18の配列からなる2本のRNAを、株式会社日本バイオサービスに依頼して化学合成し、アニーリングさせることにより調製した。siRNA No. 2~No. 11はサイレンサーsiRNA作製キット(Silencer siRNA Construction Kit、アンビオン社製)を利用したインビトロ転写により調製した。インビトロ転写の鋳型作製に用いるDNAは、北海道システム・サイエンス株式会社に化学合成を依頼した。また、文献〔Nat. Genet., 32, 107-108, 2002; 米国特許出願公開 第2002/0132788号明細書〕に基づき、配列番号39および40の配列からなる、分泌型アルカリフォスファターゼ(SEAP)遺伝子の発現を抑制するsiRNA(以下、SEAP-siRNAとよぶ)を、サイレンサーsiRNA作製キットを利用したインビトロ転写により調製し、コントロールのsiRNAとして用いた。

[0043]

(2) siRNAによるKLF5遺伝子の発現抑制

マウス胎児線維芽細胞株C3H/10T1/2 (入手先:アメリカン・タイプ・カルチャー・コレクション (ATCC)、ATCC番号:CCL-226)をウェルあたり 4×10^5 個になるよう 6 ウェル・プレート(コーニング社製)に播種した。 $1.5~\mu$ gのsiRNA No. 2、No. 3、No. 4、No. 5、No. 6およびSEAP-siRNAそれぞれに、細胞内導入試薬ポリフェクト(polyfectR、キアゲン社製) $10~\mu$ Lを添加して混合し、室温下5~10分保持した後、各ウェルに添加した。5% CO2存在下37 10で48時間から72時間インキュベーションし、細胞にそれぞれのsiRNAを導入した。

[0044]

siRNAによるKLF5遺伝子の発現抑制は、以下に示すRT-PCRにより確認した。インキュベーション終了後、回収した細胞から、細胞溶解液ホモジェナイズ用キットのQIAシュレッダー(QIAshredder、キアゲン社製)および総RNA精製用キットのRNイージー(RNeasy、キアゲン社製)を用いてRNAを単離した。単離したRNAを、 $30\sim50~\mu$ Lの注射用水(大塚蒸留水、大塚製薬株式会社製)で溶解し、逆転写反応によりcDNAを合成した。逆転写反応は、上記のRNA溶液(RNA 1.0μ g分)と、 $5\times$ 緩衝液 2.5μ L、0.1mol/L ジチオスレイトール(DTT) 2.0μ L、20nmol/L dNTP(ロッシュ社製) 1.0μ L、 50μ mol/L ランダムプライマー(宝酒造株式会社製) 2.0μ L、 30μ L、 30μ Lになるよりでは、 30μ Lになるよう注射用水を加えた反応溶液で、 30μ Lになるよう注射用水を加えた反

[0045]

配列番号41および42の配列それぞれからなる2本のDNAを化学合成し、それぞれマウスKLF5遺伝子特異的なフォワードプライマー、リバースプライマーとした。これらのプライマーを用いたPCRにより、KLF5 cDNAから配列番号49の1268~1428番目の配列に相当する161bpの断片が増幅される。

[0046]

 $10\times PCR緩衝液2.5 \mu L、2.5 mmo1/L dNTP(ロッシュ製)<math>2.0 \mu L$ 、 $5 \mu mo1/L$ フォワードプライマー $2.0 \mu L$ 、 $5 \mu mo1/L$ リバースプライマー $2.0 \mu L$ 、ホットスタータック(HotStarTaq) DNAポリメラーゼ(キアゲン社製、5単位/ μ L) 0.125μ L、18S rRNA特異的プライマー〔クォンタ mRNA(QuantumRNA)クラシック18S内部標準、アンビオン社製〕 2μ L、注射用水1 3.375μ L、cDNA 1.0μ Lからなる 25μ LのPCR反応溶液を調製し、 $95 \mathbb{C}$ で15分保持後、熱変性94 \mathbb{C} で30秒間、アニーリング53 \mathbb{C} で30秒間、伸長反応72 \mathbb{C} で40秒間の反応を 1 サイクルとして、28 サイクルのPCRを実施し、その後72 \mathbb{C} で10分間保持した。 $10\times PCR$ 緩衝液はホットスタータックDNAポリメラーゼに付属のものを使用した。反応後の溶液の0.8%アガロースゲル電気泳動により、KLF5 mRNAに由来する増幅産物 (161bp)を検出し、siRNAを導入

しなかった細胞での増幅産物の量と比較した。内部標準として、18S rRNAに由来する増幅 産物 (488bp) を用いた。図 1 に示すように、コントロールのSEAP-siRNAではKLF5遺伝子 の発現の抑制が見られないのに対し、KLF5遺伝子に特異的な、siRNA No. 2、No. 3、No. 4、No. 5およびNo. 6は、KLF5遺伝子の発現を抑制することが確認できた。中でも、siRNA No. 3およびsiRNA No. 4は強くKLF5遺伝子の発現を抑制した。

[0047]

KLF5遺伝子に特異的なsiRNAとして、siRNA No. 1、No. 4、No. 7、No. 8、No. 9、No. 10およびNo. 11を用いて、上記と同様にして、C3H/10T1/2細胞へのsiRNAの導入と、RT-PC RによるKLF5遺伝子の発現の解析を行った。図 2 に示すように、コントロールのSEAP-siRN AではKLF5遺伝子の発現の抑制が見られないのに対し、KLF5遺伝子に特異的な、siRNA No. 4、No. 7、No. 8、No. 9、No. 10およびNo. 11は、KLF5遺伝子の発現を抑制することが確認できた。中でも、siRNA No. 4、siRNA No. 7、siRNA No. 9およびsiRNA No. 10は強くKLF5遺伝子の発現を抑制した。KLF5遺伝子に特異的であるにもかかわらず、siRNA No. 1では抑制がみられなかった。

【実施例2】

[0048]

KLF5遺伝子特異的なsiRNAによる、KLF5により転写が活性化される遺伝子の発現の抑制(1) PDGF-A遺伝子の発現の抑制

KLF5遺伝子に特異的なsiRNAとして、siRNA No. 1、No. 4、No. 7、No. 8、No. 9、No. 10およびNo. 11をC3H/10T1/2細胞へ導入し、RT-PCRにより、KLF5により転写が活性化される遺伝子であるPDGF-A遺伝子の発現の解析を行った。

[0049]

実施例 1 (2)と同様にして、siRNAのC3H/10T1/2細胞への導入、cDNAの調製を行った。配列番号43および44の配列からなる 2本のDNAを化学合成し、それぞれPDGF-A遺伝子特異的なフォワードプライマーおよびリバースプライマーとした。これらのプライマーを用いたPCRにより、PDGF-A cDNAから403bpの断片が増幅される。PDGF-A遺伝子特異的なフォワードプライマーおよびリバースプライマーを、KLF5遺伝子特異的なフォワードプライマーおよびリバースプライマーの代わりに用いて、実施例 1 (2)のKLF5遺伝子の発現解析と同様にして、PDGF-A遺伝子の発現を解析した。ただしPCRは、PCR反応溶液を95℃で15分間保持後、熱変性94℃で30秒間、アニーリング53℃で30秒間、伸長反応72℃で40秒間からなる反応を1サイクルとし、26サイクル実施し、その後72℃で10分間保持する条件で行い、電気泳動は1%アガロースゲルで行った。

[0050]

図3に示すように、コントロールのSEAP-siRNAではPDGF-A遺伝子の発現の抑制が見られないのに対し、KLF5遺伝子に特異的な、siRNA No. 4、No. 7、No. 8、No. 9、No. 10およびNo. 11は、KLF5により転写が活性化される遺伝子であるPDGF-A遺伝子の発現をも抑制することが確認できた。中でも、siRNA No. 4、siRNA No. 7、siRNA No. 9およびsiRNA No. 10は強くPDGF-A遺伝子の発現を抑制した。KLF5遺伝子に特異的であるにもかかわらず、siRNA No. 1では抑制がみられなかった。

[0051]

(2) SMemb遺伝子の発現の抑制

KLF5遺伝子に特異的なsiRNAとして、siRNA No. 1、No. 4、No. 7、No. 8、No. 9、No. 10およびNo. 11をC3H/10T1/2細胞へ導入し、RT-PCRにより、KLF5により転写が活性化される遺伝子であるSMemb遺伝子の発現の解析を行った。

[0052]

実施例1 (2) と同様にして、siRNAのC3H/10T1/2細胞への導入、cDNAの調製を行った。配列番号45および46の配列からなる2本のDNAを化学合成し、それぞれSMemb遺伝子特異的なフォワードプライマーおよびリバースプライマーとした。これらのプライマーを用いたPCRにより、SMemb cDNAから235bpの断片が増幅される。SMemb遺伝子特異的なフォワードプライマーおよびリバースプライマーを、KLF5遺伝子特異的なフォワードプライマーお

よびリバースプライマーの代わりに用いて、実施例1 (2)のKLF5遺伝子の発現解析と同様にして、SMemb遺伝子の発現を解析した。ただしPCRは、PCR反応溶液を95℃で15分間保持後、熱変性94℃で30秒間、アニーリング53℃で30秒間、伸長反応72℃で40秒間からなる反応を1サイクルとし、26サイクル実施し、その後72℃で10分間保持する条件で行い、電気泳動は1%アガロースゲルで行った。

[0053]

図4に示すように、コントロールのSEAP-siRNAではSMemb遺伝子の発現の抑制が見られないのに対し、KLF5遺伝子に特異的な、siRNA No. 4、No. 7、No. 8、No. 9、No. 10およびNo. 11は、KLF5により転写が活性化される遺伝子であるSMemb遺伝子の発現をも抑制することが確認できた。中でも、siRNA No. 4、siRNA No. 7、siRNA No. 9およびsiRNA No. 10は強くSMemb遺伝子の発現を抑制した。KLF5遺伝子に特異的であるにもかかわらず、siRNA No. 1では抑制がみられなかった。

[0054]

(3) KLF5遺伝子特異的なsiRNAによる遺伝子発現の抑制の特異性

KLF5遺伝子に特異的なsiRNAによる遺伝子の発現の抑制が、KLF5遺伝子およびKLF5により転写が活性化される遺伝子に特異的であることを、KLF5遺伝子に特異的なsiRNAをC3H/1 OT1/2細胞へ導入し、RT-PCRにより血清応答因子(SRF)遺伝子の発現を解析することにより、検証した。SRF遺伝子は平滑筋細胞で多く発現する転写因子の遺伝子であり、KLF5により転写が活性化される遺伝子ではない。

[0055]

KLF5遺伝子に特異的なsiRNAとして、siRNA No. 1、No. 4、No. 7、No. 9およびNo. 10を用いて、実施例 1 (2)と同様にして、siRNAをC3H/10T1/2細胞へ導入した後、RT-PCRによる遺伝子発現の解析を行った。配列番号47および48の配列からなる 2本のDNAを化学合成し、それぞれSRF遺伝子特異的なフォワードプライマーおよびリバースプライマーとした。これらのプライマーを用いたPCRにより、SRF cDNAから519bpの断片が増幅される。SRF遺伝子特異的なフォワードプライマーおよびリバースプライマーを、KLF5遺伝子特異的なフォワードプライマーおよびリバースプライマーの代わりに用いて、実施例 1 (2)のKLF5遺伝子の発現解析と同様にして、SRF遺伝子の発現を解析した。ただしPCRは、PCR反応溶液を95℃で15分間保持後、熱変性94℃で30秒間、アニーリング53℃で30秒間、伸長反応72℃で40秒間からなる反応を1サイクルとし、26サイクル実施し、その後72℃で10分間保持する条件で行い、電気泳動は1.2%アガロースゲルで行った。

[0056]

図5に示すように、KLF5遺伝子に特異的な、siRNA No. 1、siRNA No. 4、No. 7、No. 9 およびNo. 10全てにおいて、コントロールのSEAP-siRNAと同様に、SRF遺伝子の発現の抑制がみられなかった。したがって、KLF5遺伝子に特異的なsiRNAは、非特異的に、遺伝子全体の発現を抑制するのでなく、KLF5遺伝子およびKLFにより転写の活性化をうける遺伝子の発現を特異的に抑制することが明らかとなった。

【実施例3】

[0057]

siRNAによるヒトKLF5遺伝子の発現抑制

実施例1で作製したsiRNA No. 4は、マウス KLF5 cDNAの塩基配列(配列番号49)の1303~1323番目の配列(AAAAGCTCACCTGAGGACTCA)をもとにしたsiRNAであり、C3H/10T1/2細胞においてマウスのKLF5遺伝子の発現を強く抑制した。しかし、この AAAAGCTCACCTGAGGA CTCA の配列は、ヒトKLF5 cDNAの塩基配列(配列番号50)の1481~1501番目にも存在するため、siRNA No. 4はマウスだけでなくヒトのKLF5遺伝子の発現も抑制することが期待される。以下のようにして、siRNA No. 4がヒトKLF5遺伝子の発現も強く抑制をすることを確認した。

[0058]

ヒトさい帯静脈血管内皮細胞(HUVEC、入手先:三光純薬、製品番号:CC-2517)を約 3×10^5 個となるように6 cmディッシュ(コーニング社)に播種した。200 pmolosiRNA No.

4およびSEAP-siRNAそれぞれに、細胞内導入試薬(リポフェクトアミン2000、インビトロジェン社製)10 μ Lを添加して混合し、室温下20分保持した後、全量を各ディッシュに添加した。5% CO_2 存在下37 Cで24時間インキュベーションし、細胞にそれぞれのsiRNAを導入した。

[0059]

実施例1(2)に記載した方法と同じ方法で、細胞からRNAを単離し、RT-PCRによるヒトKLF5遺伝子の発現抑制を調べた。なお、KLF遺伝子特異的なフォワードプライマー、リバースプライマーとしては、実施例1で用いた配列番号41および42それぞれの配列からなるDNAを用いた。これらのプライマーを用いたPCRにより、ヒトKLF5 cDNAから配列番号50の1446~1606番目の配列に相当する161bpの断片が増幅される。反応後の溶液の0.8%アガロースゲル電気泳動により、KLF5 mRNAに由来する増幅産物(161bp)を検出し、siRNAを導入しなかった細胞での増幅産物の量と比較した。内部標準として、18S rRNAに由来する増幅産物(488bp)を用いた。図6に示すように、コントロールのSEAP-siRNAではKLF5遺伝子の発現の抑制が見られないのに対し、KLF5遺伝子に特異的な、siRNA No. 4は、ヒトさい帯血管内皮細胞のKLF5遺伝子の発現を抑制していた。したがって、siRNA No. 4はマウスのKLF5遺伝子だけでなく、ヒトのKLF5遺伝子の発現も強く抑制できることが確認された

[0060]

第2表に、実施例1でマウスKLF5遺伝子の発現を抑制したsiRNA No. $2\sim4$ および $7\sim11$ において、設計のもとにしたマウスKLF5 cDNA上の21塩基の配列および配列番号49におけるその位置と、該マウス配列に対応するヒトcDNA上の21塩基の配列、配列番号50におけるその位置、該ヒト配列から5 端のAAを除いたRNAの配列を表す配列番号を示した。なお、siRNA No. 5および6は、非コード領域の配列をもとにしているため、対応するヒト配列は示さなかった。これらのヒト配列をもとにした二本鎖RNAもヒトKLF5遺伝子の発現を抑制すると考えられる。なお、siRNA No. 4、8および10は、対応するヒト配列がマウス配列と全く同じであり、siRNA No. 8および10は、siRNA No. 4と同様に、マウスKLF5遺伝子だけでなくヒトKLF5遺伝子の発現を抑制すると考えられた。

[0061]

【表2】

第2表

siRNA	マウス KLF5 cDNA		ヒト KLF5 cDNA		
番号	配列	位置	対応する配列	位置	配列番号
No. 2	AAATTTACCTGCCACTCTGCC	1156-1176	AAATTTACCCACCACCCTGCC	1334-1354	12
No. 3	AAGGAGTAACCCGGATCTGGA	1216-1236	AAGGAGTAACCCCGATTTGGA	1394-1414	13
No. 4	AAAAGCTCACCTGAGGACTCA	1303-1323	AAAAGCTCACCTGAGGACTCA	1481-1501	4
No. 7	AAATGGAGAAGTATCTGACCC	405-425	AAATGGAGAAGTATCTGACAC	583-603	14
No. 8	AAAGTATAGACGAGACAGTGC	463-483	AAAGTATAGACGAGACAGTGC	641-661	8
No. 9	AAACCAGACGGCAGTAATGGA	874-894	AAATCAGACAGCAGCAATGGA	1040-1060	15
No. 10	AAGCTCAGAGCCTGGAAGTCC	2048-2068	AAGCTCAGAGCCTGGAAGTCC	1226-1246	10
No. 11	AAGCCGTTCCAGTGCATGGTG	1424-1444	AAGCCCTTCCAGTGCGGGGTG	1602-1622	16

[0062]

KLF5遺伝子の発現を抑制するsiRNAによる血管内皮細胞の遊走の阻害

KLF5遺伝子の発現を抑制するsiRNA No. 4の、血管内皮細胞の遊走に対する阻害を、以下に示すような微小孔フィルターを用いた血管内皮細胞のインビトロ細胞遊走試験〔J. C ell Biol., 147, 1073 (1999); Becton, Dickinson and Company, Technical Bulletin 4 29 (1998)〕により調べた。

[0063]

ヒトさい帯静脈血管内皮細胞(HUVEC、入手先:三光純薬、製品番号:CC-2517)を約3 $\times 10^5$ 個となるように6 cmディッシュ(コーニング社)に播種した。siRNA No. 4およびコントロールのSEAP-siRNAそれぞれ200 pmolに $10\,\mu$ Lの細胞内導入試薬(リポフェクタミン2 000, インビトロジェン社製)を添加、混合し、室温下20分インキュベーションした後、全量をディッシュに添加した。5% CO_2 存在下37Cで18時間インキュベーションし、siRN Aを導入した。

[0064]

siRNA導入細胞を洗浄後、 5μ g/mLの生細胞染色用蛍光色素(カルセインAM、同仁化学社製)で細胞を蛍光標識した。得られた蛍光標識細胞は、トリプシンで細胞を剥離、洗浄後、細胞濃度 5×10^5 個/mLになるように血管内皮細胞用基礎培地(EBM-2、三光純薬社製)で再懸濁した。HTSフルオロブロック個別型インサート(24ウェルプレート用ポアサイズ3 μ mインサート、BDファルコン)を24ウェルセルカルチャーインサート用プレート(BDファルコン)に取り付けた後、インサート側には蛍光標識細胞の懸濁液 100μ Lを、24ウェルプレート側には10 ng/mLのヒトVEGF(RアンドDシステムズ社製)を含有する血管内皮細胞用増殖培地(ブレットキットEGM-2、三光純薬製) 600μ Lをそれぞれ添加した。

[0065]

添加後4時間まで、経時的にフィルターの微小孔を遊走してきた細胞をプレート底から 蛍光顕微鏡で観察および撮影した。得られた画像から、画像解析ソフトウェア(Scion Im age、Scion社製)を用いて、遊走細胞数を計測した。図7に示すように、コントロールの SEAP-siRNAと比較して、KLF5遺伝子特異的なsiRNA No. 4を導入した血管内皮細胞では、 遊走細胞数が低下した。したがって、KLF5遺伝子の発現を抑制するsiRNAにより、血管内 皮細胞の遊走を阻害できることが確認された。

【実施例5】

[0066]

KLF5遺伝子の発現を抑制するsiRNAのインビボでの血管新生阻害効果

KLF5遺伝子の発現を抑制するsiRNA No. 4のインビボでの血管新生阻害効果を、以下に示すようなマトリゲル(Matrigel)を用いたアッセイ [Proc. Natl. Acad. Sci. USA, <u>94</u>, 13612 (1997); J. Biol. Chem., <u>277</u>, 6667] により調べた。

[0067]

マトリゲル混合物は、マトリゲルマトリックス(BD バイオサイエンス製)0.5~mL(5~mg量)にマウスVEGF [RアンドDシステムズ社(R&D Systems Inc.)製、カタログ番号 493-MV] $0.6\,\mu\,\text{g}$ 、ウシ塩基性線維芽細胞増殖因子(bFGF、RアンドDシステムズ社製、カタログ番号133-FB) $0.6~\mu\,\text{g}$ およびsiRNA No.4 $10~\mu\,\text{g}$ を加え、氷上でピペッティングにより混合して調製した。コントロールとして、siRNA No. 4の代わりにSEAP-siRNAを用いたマトリゲル混合物も調製した。調製したマトリゲル混合物を6週齢のオスのC57BL/6マウスの背中の皮下に注射した。注射14日後にゲル化したマトリゲルを取り出した。取り出したマトリゲルをPBSで1回洗浄し、10%ホルムアルデヒドーPBS溶液で固定した。固定したマトリゲルを5 mm厚にカットしてパラフィンに包埋し、通常の組織学的手法を使用して切片化し、ヘマトキシリンーエオジンで染色した。染色したマトリゲル切片を顕微鏡で観察した。

[0068]

その結果、コントロールのSEAP-siRNAを加えたマトリゲルでは、マトリゲルに添加した VEGFおよびbFGFに反応して、多数の血管内皮細胞が遊走して、マトリゲル内に浸潤してい るのに対し、siRNA No.4を加えたマトリゲルではマトリゲル内への血管内皮細胞の浸潤が抑制されていた。したがってKLF5遺伝子の発現を抑制するsiRNAにより、血管新生が阻害できることが確認された。

[0069]

「配列表フリーテキスト」

配列番号1-発明者:永井良三;眞鍋一郎;石原淳

配列番号17-siRNA No. 1 センス鎖

配列番号18-siRNA No. 1 アンチセンス鎖

配列番号19-siRNA No. 2 センス鎖

配列番号20-siRNA No. 2 アンチセンス鎖

配列番号21-siRNA No. 3 センス鎖

配列番号22-siRNA No. 3 アンチセンス鎖

配列番号23-siRNA No. 4 センス鎖

配列番号24-siRNA No. 4 アンチセンス鎖

配列番号25-siRNA No. 5 センス鎖

配列番号26-siRNA No. 5 アンチセンス鎖

配列番号27-siRNA No. 6 センス鎖

配列番号28-siRNA No. 6 アンチセンス鎖

配列番号29-siRNA No. 7 センス鎖

配列番号30-siRNA No. 7 アンチセンス鎖

配列番号31-siRNA No. 8 センス鎖

配列番号32-siRNA No. 8 アンチセンス鎖

配列番号33-siRNA No. 9 センス鎖

配列番号34-siRNA No. 9 アンチセンス鎖

配列番号35-siRNA No. 10 センス鎖

配列番号36-siRNA No. 10 アンチセンス鎖

配列番号37-siRNA No. 11 センス鎖

配列番号38-siRNA No. 12 アンチセンス鎖

配列番号39-siRNA-SEAP センス鎖

配列番号40-siRNA-SEAP アンチセンス鎖

配列番号41-KLF5遺伝子特異的フォワードプライマー

配列番号42-KLF5遺伝子特異的リバースプライマー

配列番号43-PDGF-A遺伝子特異的フォワードプライマー

配列番号44-PDGF-A遺伝子特異的リバースプライマー

配列番号45-SMemb遺伝子特異的フォワードプライマー

配列番号46-SMemb遺伝子特異的リバースプライマー

配列番号47-SRF遺伝子特異的フォワードプライマー

配列番号48-SRF遺伝子特異的リバースプライマー 【図面の簡単な説明】

[0070]

【図1】KLF5遺伝子特異的なsiRNAによるKLF5遺伝子の発現抑制を示す。左から、100 bpマーカー、siRNAを導入しなかった細胞、SEAP-siRNA、siRNA No. 2、siRNA No. 3、siRNA No. 4、siRNA No. 5、siRNA No. 6をそれぞれ導入した細胞でのPCRによる測定で、KLF5は、KLF5 mRNA由来の増幅産物、18Sは、18S rRNA由来の増幅産物の位置を示す。

【図2】KLF5遺伝子特異的なsiRNAによるKLF5遺伝子の発現抑制を示す。左から、100 bpマーカー、siRNAを導入しなかった細胞、SEAP-siRNA、siRNA No. 7、siRNA No. 8、siRNA No. 9、siRNA No. 10、siRNA No. 11、siRNA No. 4、siRNA No. 1をそれぞれ導入した細胞でのPCRによる測定で、KLF5は、KLF5 mRNA由来の増幅産物、18Sは、18S rRNA由来の増幅産物の位置を示す。

- 【図3】KLF5遺伝子特異的なsiRNAによるPDGF-A遺伝子の発現抑制を示す。左から、100bpマーカー、siRNAを導入しなかった細胞、SEAP-siRNA、siRNA No. 7、siRNA No. 8、siRNA No. 9、siRNA No. 10、siRNA No. 11、siRNA No. 4、siRNA No. 1をそれぞれ導入した細胞でのPCRによる測定で、PDGF-Aは、PDGF-A mRNA由来の増幅産物、18Sは、18S rRNA由来の増幅産物の位置を示す。
- 【図4】KLF5遺伝子特異的なsiRNAによるSMemb遺伝子の発現抑制を示す。左から、10 Obpマーカー、siRNAを導入しなかった細胞、SEAP-siRNA、siRNA No. 7、siRNA No. 8、siRNA No. 9、siRNA No. 10、siRNA No. 11、siRNA No. 4、siRNA No. 1をそれぞれ導入した細胞でのPCRによる測定で、SMembは、SMemb mRNA由来の増幅産物、18Sは、18S rRNA由来の増幅産物の位置を示す。
- 【図5】KLF5遺伝子特異的なsiRNAはSRF遺伝子の発現は抑制しないことを示す。左から、siRNAを導入しなかった細胞、SEAP-siRNA、siRNA No. 1、siRNA No. 4、siRNA No. 7、siRNA No. 9、siRNA No. 10をそれぞれ導入した細胞でのPCRによる測定で、SRFは、SRFmRNA由来の増幅産物、18Sは、18S rRNA由来の増幅産物の位置を示す。
- 【図6】siRNA No. 4によるヒトKLF5遺伝子の発現抑制を示す。左から、100bpマーカー、siRNAを導入しなかった細胞、SEAP-siRNA、およびsiRNA No. 4をそれぞれ導入した細胞でのPCRによる測定で、KLFは、KLF5 mRNA由来の増幅産物、18Sは、18S rRNA由来の増幅産物の位置を示す。
- 【図7】siRNA No. 4による血管内皮細胞の遊走の阻害を示す。横軸は時間(時間)、縦軸は遊走した細胞数で、丸はsiRNA No. 4を導入した細胞、四角はSEAP-siRNAを導入した細胞の結果を示す。エラーバーは例数4の標準偏差である。

<212> RNA

SEQUENCE LISTING

<110> Nagai, Ryozo; Manabe, Ichiro; Kyowa Hakko Kogyo Co., Ltd. <120> RNAs which inhibit KLF5 gene expression <130> H16-0184S3 <150> JP 2003-202863 <151> 2003-07-29 <160> 50 <170> PatentIn version 3.1 <210> 1 <211> 19 <212> RNA <213> Mus musculus <220> Inventor: Nagai, Ryozo; Manabe, Ichiro; Ishihara, Atsushi; <223> Inventor: Tottori, Tsuneaki <400> 1 19 caugaacguc uuccucccu <210> 2 <211> 19 <212> RNA <213> Mus musculus <400> 2 19 auuuaccugc cacucugcc <210> 3 <211> 19 <212> RNA <213> Mus musculus <400> 3 19 ggaguaaccc ggaucugga <210> 4 <211> 19

<213> Mus musculus	
<400> 4 aagcucaccu gaggacuca	19
<210> 5 <211> 19	
<212> RNA <213> Mus musculus	
<400> 5 uccccagacc guccaugcc	19
<210> 6	
<211> 19 <212> RNA <213> Mus musculus	
<400> 6	19
cgcugcgccc acccgccug	19
<210> 7 <211> 19 <212> RNA	
<213> Mus musculus	
<400> 7 auggagaagu aucugaccc	19
<210> 8 <211> 19	
<212> RNA <213> Mus musculus	
<400> 8 aguauagacg agacagugc	19
<210> 9 <211> 19 <212> RNA	
<213> Mus musculus <400> 9	
accagacggc aguaaugga	19

<211>	10 19 RNA	
<213>	Mus musculus	
	10	19
gcucaga	agcc uggaagucc	19
<210>	11	
<211>	19	
<212>		
<213>	Mus musculus	
<400>		19
gccguu	ccag ugcauggug	19
<210>	12	
<211>		
<212>	RNA	
<213>	Homo sapiens	
<400>	12	10
auuuac	ccac cacccugcc	19
<210>	13	
<211>	19	
<212>		
	Homo sapiens	
<400>	13	
ggagua	accc cgauuugga	19
<210>	1.4	
<211>		
<212>		
	Homo sapiens	
<400>	14	
auggag	gaagu aucugacac	19
<210>		
<211>		
<212>		
<213>	Homo sapiens	

<400>	15	10
aucagac	agc agcaaugga	19
	16	
	19	
	RNA	
<213>	Homo sapiens	
<400>	16	
	cag ugcggggug	19
8		
	17	
<211>	21	
<212>		
<213>	Artificial	
<220>		
	siRNA No. 1 sense strand	
\ <i>UU</i> 0>	Silver No. 1 Sense Strain	
<220>		
<221>	misc_feature	
<222>	(20)(21)	
<223>		
400	17	
	17	21
caugaa	cguc uuccucccut t	21
<210>	18	
<211>	21	
<212>		
	Artificial	
<220>		•
<223>	siRNA No. 1 antisense strand	
<220>	•	
	misc_feature	
	(20)(21)	
<223>		
<443>	Diaz	
<400>		01
agggag	ggaag acguucaugt t	21
<210>	19	
<2102 <2115		

<212> <213>	RNA Artificial	
<220> <223>	siRNA No. 2 sense strand	
<400> auuuac	19 cugc cacucugccu u	21
<210> <211> <212> <213>	21	
<220> <223>	siRNA No. 2 antisense strand	
<400> ggcaga	20 agugg cagguaaauu u	21
<210> <211> <212> <213>	21	
<220> <223>	siRNA No. 3 sense strand	
<400> ggagu	21 aaccc ggaucuggau u	21
<210> <211> <212> <213>	21	
<220> <223>	siRNA #3 antisense strand	
<400> uccag	22 auccg gguuacuccu u	21

<220>	
<223> siRNA No. 4 sense strand	
400. 00	
<400> 23	21
aagcucaccu gaggacucau u	
<210> 24	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA No. 4 antisense strand	
<400> 24	
ugaguccuca ggugagcuuu u	21
ugaguccuca ggugugouau u	
<210> 25	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA No. 5 sense strand	
Caro, Blight No. 6 Source Comment	
<400> 25	0.1
uccccagacc guccaugccu u	21
<210> 26	
<211> 21 <212> RNA	
<213> Artificial	
(110) 11101110111	
<220>	
<223> siRNA No. 5 antisense strand	
<400> 26	21
ggcauggacg gucugggggu u	
<210> 27	
<211> 21	
<211> Z1	
<213> Artificial	
<220>	

21

21

21

21

<223> siRNA No. 6 sense strand
<400> 27 cgcugcgccc acccgccugu u
<210> 28 <211> 21 <212> RNA <213> Artificial
<220> <223> siRNA No. 6 antisense strand
<400> 28 caggcgggug ggcgcagcgu u
<210> 29 <211> 21 <212> RNA <213> Artificial
<220> <223> siRNA No. 7 sense strand
<400> 29 auggagaagu aucugacccu u
<210> 30 <211> 21 <212> RNA <213> Artificial
<220> <223> siRNA No. 7 antisense strand
<400> 30 gggucagaua cuucuccauu u
<210> 31 <211> 21 <212> RNA <213> Artificial

<220>

<223> siRNA No. 8 sense strand

21

21

21

21

<210>	36	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA No. 10 antisense strand	
<400>	36	
ggacuu	ccag gcucugagcu u	21
<210>	37	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	siRNA No. 11 sense strand	
<400>	37	
	iccag ugcauggugu u	21
<210>	38	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	siRNA No. 11 antisense strand	
<400>	38	
cacca	ugcać uggaacggcu u	21
<210>	39	
<211>	21	
	RNA	
<213>	Artificial	
<220>		
<223>	SEAP-siRNA sense strand	
<400>	39	
	aacuu ccagaccauu u	21

<210> <211>	40 21	
<212> <213>	RNA Artificial	
<220> <223>	SEAP-siRNA antisense strand	
<400> augguc	40 Jugga aguugcccuu u	21
<210> <211> <212> <213>	20	
<220> <223>	KLF5 gene specific forward primer	
<400> ggttgd	41 cacaa aagtttatac	20
<210> <211> <212> <213>	22	
<220> <223>	KLF5 gene specific riverse primer	
<400> ggctt	ggcgc ccgtgtgctt cc	22
<220> <223>	> PDGF-A gene specific forward primer	
	> 43 agcgac tcttggagat ag	22
	> 44 > 22	

<212> DNA <213> Artificial	
<220> <223> PDGF-A gene specific riverse primer	
<400> 44	
ttcaggttgg aggtcgcaca tg	22
<210> 45	
<211> 25	
<212> DNA <213> Artificial	
<220> <223> SMemb gene specific forward primer	
<400> 45	O.E.
aatgcccgcc agcagctgga gcgac	25
<210> 46	
<211> 25 <212> DNA	
<212> DNA <213> Artificial	
·	
<220> <223> SMemb gene specific riverse primer	
2223 Swemb gene specific fivered primer	
<400> 46	25
gctccttata ctgatccgca tgccg	20
<210> 47	
<211> 25 <212> DNA	
<213> Artificial	
<220>	
<220> <223> SRF gene specific forward primer	
<400> 47 tggcaccagt gtctgctact gtcag	25
iggodoodgi giolgoldol glodg	
<210> 48	
<211> 25	
<212> DNA	
<213> Artificial	

<220> <223> SRF gene specific riverse primer	
<400> 48 gctgccctat cacagccatc tggtg	25
<210> 49 <211> 1591 <212> DNA <213> Mus musculus	
<220> <221> CDS <222> (167)(1507) <223>	
<400> 49 ccgagcccag gagccccgat ctccgtgccc gccttcgtga gcgtctggct gccggcccag	60
gggtcccccg ccgcggcccc ccgccgagtc cgccgtcccg tgccagcccg agcgaggtgg	120
gatcgcgatc gctccgtgtc ccgctcccgt aatccccaga ccgtcc atg ccc acg Met Pro Thr 1	175
cgg gtg ctg acc atg agc gcc cgc ctg gga cca ctg ccc cag ccg ccg Arg Val Leu Thr Met Ser Ala Arg Leu Gly Pro Leu Pro Gln Pro Pro 5 10 15	223
gcc gcg cag gcc gag ccc gtg ttc gcg cag ctc aag ccg gtg ctg ggc Ala Ala Gln Ala Glu Pro Val Phe Ala Gln Leu Lys Pro Val Leu Gly 20 25 30 35	271
gct gcg aac ccg gcc cgc gac gcg gcg ctc ttc tcc gga gac gat ctg Ala Ala Asn Pro Ala Arg Asp Ala Ala Leu Phe Ser Gly Asp Asp Leu 40 45 50	319
aaa cac gcg cac cac cac ccg cct gcg ccg ccg cca gcc gct ggc ccg Lys His Ala His His Pro Pro Ala Pro Pro Pro Ala Ala Gly Pro 55 60 65	367
cga ctg ccc tcg gag gag ctg gtc cag aca aga tgt gaa atg gag aag Arg Leu Pro Ser Glu Glu Leu Val Gln Thr Arg Cys Glu Met Glu Lys 70 75 80	415
tat ctg acc cct cag ctc cct cca gtt ccg ata att tca gag cat aaa Tyr Leu Thr Pro Gln Leu Pro Pro Val Pro Ile Ile Ser Glu His Lys 85 90 95	463

aag Lys 1	tat Tyr	aga Arg	cga Arg	ga As	рS	gt g Ser 1	gcc Ala	tca Ser	gtg Val	gta Val	gac Asp 110	Gln	tto Phe	e Pl	tc a	Chr .	gac Asp 115		511
act : Thr					o T										eu I				559
atc Ile				1 A1						Lys				g P					607
aca Thr			Ly						Thr					s (655
		Ala								cco Pro			n Al						703
	Thr				he					g aco		r Al						l	751
gtg Val	aac Asr	aa As	t at n Il	e P	tc he	atc Ile	aaa Lys	caa Glr	gaa Glu	a cti u Lei 20	ı Pr	t at o Il	a co e Pi	ca ;	gat Asp	ctt Leu 210	His	; S	799
			1 P1							c ct; s Le 0				eu					847
ccg Pro	g gar o Asj	t ct p Le 23	u A	ac a sp N	atg Met	ccc Pro	agt Ser	t tc	r Th	a aa r As	c ca n Gl	ig ac n Th	ır A	ca la 40	gta Val	atg Met	g gae : As	c p	895
acc Thr	ct Le 24	u As	it g sn V	tt i	tct Ser	atg Met	gc: Al: 25	a Gl	c ct y Le	t aa eu As	c co n Pi	ro Hi	ac c is P 55	cc ro	tct Ser	gci Ala	t gt a Va	t l	943
cca Pro 260	o Gl	g ac n Th	g t ir S	ca : er]	atg Met	Lys 265	s Gl	g tt n Ph	c ca e G1	ng gg In Gl	у Ме	tg co et P: 70	cc c ro P	ct ro	tgc Cys	aca Th	g ta r Ty 27	r	991
acc Th	c at r Me	g co et P	ca a	er	cag Gln 280	Phe	t ct e Le	t co u Pr	a ca o Gl	ag ca ln Gi 28	ln A	cc a la T	ct t hr T	at Yr	ttt Phe	cc Pr 29	o Pr	g o	1039
tc	a co	a c	ca a	gc	tca	ga	g cc	t gg	ga ag	gt c	cc g	at a							1087 1 7 9 2 4

Ser	Pro	Pro	Ser 295	Ser	Glu	Pro	Gly	Ser 300	Pro	Asp	Arg	Gln	Ala 305	Glu	Met	
ctg Leu	cag Gln	aat Asn 310	ctc Leu	acc Thr	cca Pro	cct Pro	ccg Pro 315	tcc Ser	tat Tyr	gcc Ala	gct Ala	aca Thr 320	att Ile	gct Ala	tcc Ser	1135
aaa Lys	ctg Leu 325	gcg Ala	att Ile	cac His	aac Asn	cca Pro 330	aat Asn	tta Leu	cct Pro	gcc Ala	act Thr 335	Leu	cca Pro	gtt Val	aat Asn	1183
	Pro		ctc Leu								Arg					1231
ctg Leu	gag Glu	aag Lys	cga Arg	cgt Arg 360	Ile	cac His	ttc Phe	tgc Cys	gat Asp 365	Tyr	aat Asn	ggt Gly	tgc Cys	aca Thr 370	Lys	1279
gtt Val	tat Tyr	aca Thr	aag Lys 375	Ser	tct Ser	cac	tta Leu	aaa Lys 380	Ala	cac His	ctg Lei	g agg ı Arg	act Thr 385	His	acg Thr	1327
ggo	gag Gli	g aag 1 Lys 390	s Pro	tac Tyr	aag Lys	tgo Cys	acc Thi	r Trp	g gag o Glu	g ggo ı Gly	tgo Cys	gac s Asp 400	Trp	agg Arg	ttt Phe	1375
gce Ala	c cgg a Arg 40	g Se	g gat r Asp	gag Glu	g ctg ı Lei	g according to the term of the	r Ar	c cad	tao Tyi	c agg	g aag g Lys 41	s His	c acg s Thi	g ggo Gly	gcc Ala	1423
aa Ly 42	s Pr	g tto o Ph	c cag e Gli	g tgo n Cys	c atg s Me ⁻ 42	t Va	g tg l Cy	c cas s Gl	a cgo n Arį	c ago g Se: 430	r Ph	c tco e Se	c cgo r Arg	c tco g Sei	gac r Asp 435	1471
			g ct; a Le		s Me					n As		a gc	gagc	gaac		1517
gc	tgcg	ccca	. ccc	gcct	gac	gcct	tgca	gt c	cgct	ttgc	c at	cctt	taaa	ccg	cagacct	1577
aa	cttc	ataa	aaa	g												1591

<210> 50

<211> 3359

<212> DNA

<213> Homo sapiens

<221> CDS <222> (312)..(1685)

<400> 50	
ggtacgtgcg ctcgcggttc tctcgcggag gtcggcggtg gcgggagcgg gctccggaga	60
gcctgagagc acggtggggc ggggcgggag aaagtggccg cccggaggac gttggcgttt	120
acgtgtggaa gagcggaaga gttttgcttt tcgtgcgcgc cttcgaaaac tgcctgccgc	180
tgtctgagga gtccacccga aacctcccct cctccgccgg cagccccgcg ctgagctcgc	240
cgacccaagc cagcgtgggc gaggtgggaa gtgcgcccga cccgcgcctg gagctgcgcc	300
cccgagtgcc c atg gct aca agg gtg ctg agc atg agc gcc cgc ctg gga Met Ala Thr Arg Val Leu Ser Met Ser Ala Arg Leu Gly 1 5 10	350
ccc gtg ccc cag ccg ccg gcg ccg cag gac gag ccg gtg ttc gcg cag Pro Val Pro Gln Pro Pro Ala Pro Gln Asp Glu Pro Val Phe Ala Gln 15 20 25	398
ctc aag ccg gtg ctg ggc gcc gcg aat ccg gcc cgc gac gcg gcg ctc Leu Lys Pro Val Leu Gly Ala Ala Asn Pro Ala Arg Asp Ala Ala Leu 30 35 40 45	446
ttc ccc ggc gag gag ctg aag cac gcg cac cac cgc ccg cag gcg cag Phe Pro Gly Glu Glu Leu Lys His Ala His His Arg Pro Gln Ala Gln 50 55 60	494
ccc gcg ccc gcg cag gcc ccg cag ccg gcc cag ccg cc	542
ccg cgg ctg cct cca gag gac ctg gtc cag aca aga tgt gaa atg gag Pro Arg Leu Pro Pro Glu Asp Leu Val Gln Thr Arg Cys Glu Met Glu 80 85 90	590
aag tat ctg aca cct cag ctt cct cca gtt cct ata att cca gag cat Lys Tyr Leu Thr Pro Gln Leu Pro Pro Val Pro Ile Ile Pro Glu His 95 100 105	638
aaa aag tat aga cga gac agt gcc tca gtc gta gac cag ttc ttc act Lys Lys Tyr Arg Arg Asp Ser Ala Ser Val Val Asp Gln Phe Phe Thr 110 115 120 125	686
gac act gaa ggg tta cct tac agt atc aac atg aac gtc ttc ctc cct Asp Thr Glu Gly Leu Pro Tyr Ser Ile Asn Met Asn Val Phe Leu Pro 130 135 140	734

tct aaa ctg gca att cac aat cca aat tta ccc acc ctg cca gtt Ser Lys Leu Ala Ile His Asn Pro Asn Leu Pro Thr Leu Pro Val

325

320

330

345

aac tca caa aac atc caa cct gtc aga tac aat aga agg agt aac ccc Asn Ser Gln Asn Ile Gln Pro Val Arg Tyr Asn Arg Arg Ser Asn Pro 350 355 360 365	1406
gat ttg gag aaa cga cgc atc cac tac tgc gat tac cct ggt tgc aca Asp Leu Glu Lys Arg Arg Ile His Tyr Cys Asp Tyr Pro Gly Cys Thr 370 375 380	1454
aaa gtt tat acc aag tct tct cat tta aaa gct cac ctg agg act cac Lys Val Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His 385 390 395	1502
act ggt gaa aag cca tac aag tgt acc tgg gaa ggc tgc gac tgg agg Thr Gly Glu Lys Pro Tyr Lys Cys Thr Trp Glu Gly Cys Asp Trp Arg 400 405 410	1550
ttc gcg cga tcg gat gag ctg acc cgc cac tac cgg aag cac aca ggc Phe Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly 415 420 425	1598
gcc aag ccc ttc cag tgc ggg gtg tgc aac cgc agc ttc tcg cgc tct Ala Lys Pro Phe Gln Cys Gly Val Cys Asn Arg Ser Phe Ser Arg Ser 430 435 440 445	1646
gac cac ctg gcc ctg cat atg aag agg cac cag aac tga gcactgcccg Asp His Leu Ala Leu His Met Lys Arg His Gln Asn 450 455	1695
tgtgacccgt tccaggtccc ctgggctccc tcaaatgaca gacctaacta ttcctgtgta	1755
aaaacaacaa aaacaaaaaa aaaacaagaa aaccacaact aaaactggaa atgtatattt	1815
tgtatatttg agaaaacagg gaatacattg tattaatacc aaagtgtttg gtcattttaa	1875
gaatctggaa tgcttgctgt aatgtatatg gctttactca agcagatctc atctcatctc	1935
atgacaggca gccagtctca acatgggtaa ggggtggggg tgaaggggag tgtgtgcagc	1995
gtttttacct aggcaccatc atttaatgtg acagtgttca gtaaacaaat cagttggcag	2055
gcaccagaag aagaatggat tgtatgtcaa gattttactt ggcattgagt agttttttc	2115
aatagtaggt aatteettag agatacagta taeetggeaa tteacaaata geeattgaae	2175
aaatgtgtgg gtttttaaaa attatataca tatatgagtt gcctatattt gctattcaaa	2235
attttgtaaa tatgcaaatc agctttatag gtttattaca agttttttag gattcttttg	2295

gggaagagtc ataattcttt tgaaaataac catgaataca cttacagtta ggatttgtgg	2355
taaggtacct ctcaacatta ccaaaatcat ttctttagag.ggaaggaata atcattcaaa	2415
tgaactttaa aaaagcaaat ttcatgcact gattaaaata ggattatttt aaatacaaaa	2475
ggcattttat atgaattata aactgaagag cttaaagata gttacaaaat acaaaagttc	2535
aacctcttac aataagctaa acgcaatgtc atttttaaaa agaaggactt aggggtcgtt	2595
ttcacatatg acaatgttgc atttatgatg cagttttcaa gtaccaaaac gttgaattga	2655
tgatgcagtt ttcatatatc gagatgttcg ctcgtgcagt actgttggtt aaatgacaat	2715
ttatgtggat tttgcatgta atacacagtg agacacagta attttatcta aattacagtg	2775
cagtttagtt aatctattaa tactgactca gtgtctgcct ttaaatataa atgatatgtt	2835
gaaaacttaa ggaagcaaat gctacatata tgcaatataa aatagtaatg tgatgctgat	2895
gctgttaacc aaagggcaga ataaataagc aaaatgccaa aaggggtctt aattgaaatg	2955
aaaatttaat tttgttttta aaatattgtt tatctttatt tattttgtgg taatatagta	3015
agtttttta gaagacaatt ttcataactt gataaattat agttttgttt gttagaaaag	3075
ttgctcttaa aagatgtaaa tagatgacaa acgatgtaaa taattttgta agaggcttca	3135
aaatgtttat acgtggaaac acacctacat gaaaagcaga aatcggttgc tgttttgctt	3195
ctttttccct cttatttttg tattgtggtc atttcctatg caaataatgg agcaaacagc	3255
tgtatagttg tagaattttt tgagagaatg agatgtttat atattaacga caatttttt	3315
tttggaaaat aaaaagtgcc taaaagaaaa aaaaaaaaaa	3359

【魯類名】図面【図1】

100bp siRNA SEAP- siRNA siRNA siRNA siRNA siRNA マーカー なし siRNA No. 2 No.3 No. 4 No. 5 No. 6

【図2】

100bp siRNA SEAP- siRNA siRNA siRNA siRNA siRNA siRNA siRNA マーカー なし siRNA No. 7 No. 8 No. 9 No. 10 No. 11 No. 4 No. 1

【図3】

100bp siRNA SEAP- siRNA siRNA siRNA siRNA siRNA siRNA siRNA マーカー なし siRNA No. 7 No. 8 No. 9 No. 10 No. 11 No. 4 No. 1

【図4】

100bp siRNA SEAP- siRNA siRNA siRNA siRNA siRNA siRNA siRNA マーカー なし siRNA No. 7 No. 8 No. 9 No. 10 No. 11 No. 4 No. 1

【図5】

【図6】

【図7】

【課題】クルッペル様因子5 (KLF5) 遺伝子の発現を抑制するRNAを提供すること。

【解決手段】KLF5 cDNAの塩基配列から設計した、KLF5 mRNAの連続する15~30塩基の配列および該配列を含みKLF5遺伝子の発現を抑制するRNA。特に、配列番号2~11のいずれか1つの配列の鎖および該配列と相補的な配列の鎖からなる二本鎖RNAのそれぞれの鎖の3 '端に2個のウリジル酸を付加した二本鎖RNA。該RNAまたは該RNAを発現するベクターを細胞に導入することにより、該細胞中のKLF5遺伝子の発現を抑制することができる。該RNAまたは該RNAを発現するベクターは、心血管系疾患または癌の治療薬に用いることができる。

【選択図】 なし

特願2004-075115

出願人履歴情報

識別番号

[594053419]

1. 変更年月日

2003年10月10日

[変更理由]

住所変更

住所氏名

東京都文京区本郷2-32-2-1204

永井 良三

特願2004-075115

出願人履歴情報

識別番号

[503271899]

1. 変更年月日

2003年 7月29日

[変更理由]

新規登録

住 所

東京都台東区池之端4-15-8-202

氏 名

眞鍋 一郎

特願2004-075115

出 願 人 履 歴 情 報

識別番号

[000001029]

1. 変更年月日

1990年 8月 6日

[変更理由]

新規登録

住 所 名

東京都千代田区大手町1丁目6番1号

名 協和醗酵工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
_

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.