# 第四章作业参考答案

### 第一次作业

#### 练习 4.2.1

- 1) S=>SS\*=>SS+S\*=>aS+S\*=>aa+S\*=>aa+a\*
- 2) S=>SS\*=>Sa\*=>SS+a\*=>Sa+a\*=>aa+a\*
- 3)



### 4) 没有二义性。

- (1) 先证明一个该文法产生串的长度的结论: 设串的推导过程中使用产生式 S=>SS+和 S=>SS\*的次数为 m,则串的长度 <math>L=2\*m+1,且串中包含 m 个运算符(+或\*)和(m+1)个 a。
- 1) 当 m=0 时,仅有 S=>a 一种情况,L=1,串由 1 个 a 和 0 个运算符构成,结论成立:
- 2)设当 m<k(k>=1)时结论成立,则当 m=k 时,第一步推导必然为 S=>S1S200

op 为+或\*,S 下标仅用于区分 S 的多次出现。设 S1 $\Rightarrow$ α,S2 $\Rightarrow$ β,α、β 均为使用 S=>S1S2*op* 少于 k 次得到的串,设二者推导过程中分别使用该产生式 k1 和 k2 次,根据假设有:

$$L(\alpha)=2*k_1+1$$
,  $L(\beta)=2*k_2+1$ 

串长度 L= L( $\alpha$ )+ L( $\beta$ )+1=2\*(k<sub>1</sub>+k<sub>2</sub>+1)+1=2\*k+1; 且串中 a 的个数为(k<sub>1</sub>+1)+(k<sub>2</sub>+1)=k+1; 运算符个数为 k<sub>1</sub>+k<sub>2</sub>+1=k,故结论成立。

- (2)下面证明该文法无二义性,对串的长度做归纳。由前述证明可知,该文法产生的串长 L 可为任意非负奇数。对由该文法得到的长度为 L=2\*k+1 串  $\omega$ :
- 1) 当 k=0 时, L=2\*0+1=1, 只有 S=>a 一种情况,显然没有二义性。
- 2) 设当 k < n 时结论成立。 $S \Rightarrow \omega$ ,根据  $\omega$  末尾运算符可确定第一步推导使用的产

生式,不妨设为:

从后向前处理串  $\omega$ ,除去末尾的运算符,找到可以由 S 推导出的最短的串  $\alpha$ ,设  $\alpha$  长度为  $m_1$ ,由前述结论可知  $m_1$ =2\* $k_1$ +1,且  $\alpha$  包含  $k_1$  个运算符与( $k_1$ +1)个 a,

由归纳假设可知  $\alpha$  无二义性,存在唯一的最左推导  $S \stackrel{*}{\Rightarrow} \alpha$ ;

设串 ω 剩余部分为 β,设 β 长度为  $m_2$ ,同理可知  $m_2=2*k_2+1$ ,β 包含  $k_2$  个运算符与 $(k_2+1)$ 个 a,存在唯一最左推导 S  $\xrightarrow[m]{*}$  β,且满足  $k=k_1+k_2$ 。

此时串 $\omega$ 可表示成如下形式:

$$ω=βα+$$

故存在唯一的最左推导:

$$S \Rightarrow SS+ \Rightarrow \beta S+ \Rightarrow \beta \alpha +$$

此时仍不存在二义性。 综上所述,该文法不具有二义性。

5) 由字符 a 与运算符+、\*构成的后缀表达式。

#### 练习 4.2.3

S->01S | 1S | ε

#### 练习 4.3.1

- 1) 该文法无左公因子
- 2) 不能, 因此有左递归存在
- 3) rexpr->rterm rexpr' rexpr'->+rterm rexpr' | ε rterm->rfactor rterm' rterm'->rfactor rterm' | ε rfactor->rprimary rfactor' rfactor'->\* rfactor' | ε rprimary->a | b
- 4) 适合

### 第二次作业

1.

即使当非终结符用某个产生式匹配成功,但是这种成功可能只是暂时的,因为没有足够的信息来唯一地确定可能的产生式,所以分析过程就会产生回溯。不可以。例如对于产生式  $A=>\alpha$  |  $\beta$ ,  $FIRST(\alpha)$  与  $FIRST(\beta)$  交集为空集,但  $\epsilon$  是

其中某个 FIRST 集合的元素,不是一般性,假设  $\varepsilon \in FIRST(\alpha)$ ,想要避免回溯,则 还需要考虑 FOLLOW(A)与  $FIRST(\beta)$ 的情况

#### 2.

### a)消除左递归

```
lexp → atom | list

atom → number | identifier

list → (lexp-seq)

lexp-seq → lexp lexp-seq' | ε

lexp-seq' → lexp lexp-seq' | ε
```

### b) 求该文法的 FIRST 集合和 FOLLOW 集合

```
FIRST(lexp)={ number, identifier, ( }
FIRST (atom)={ number, identifier }
FIRST(list)={ ( }
FIRST(lexp-seq)={ number, identifier, ( }
FIRST(lexp-seq')={ ε, number, identifier, ( }
FOLLOW(lexp)={ $, ), number, identifier, ( }
FOLLOW (atom)={ $, ), number, identifier, ( }
FOLLOW (list)={ $, ), number, identifier, ( }
FOLLOW (lexp-seq)={ ) }
FOLLOW (lexp-seq')={ ) }
```

### c) 说明所得的文法是 LL(1)文法

可以根据 LL(1)文法的定义来证明

因为 FIRST (atom)  $\cap$  FIRST (list) =  $\phi$ ,且 FIRST (lexp lexpseq')  $\cap$  FIRST ( $\epsilon$ ) = FIRST (lexp)  $\cap$  FIRST ( $\epsilon$ ) =  $\phi$ ,且 FIRST (lexp-seq')  $\cap$  FOLLOW(lexp-seq') =  $\phi$ ,所以该文法是 LL(1)文法

## d) 为所得得文法构造 LL(1)分析表

| 非终结符         | 输入符号                      |                            |                           |             |    |  |  |
|--------------|---------------------------|----------------------------|---------------------------|-------------|----|--|--|
| <b>非然知</b> 的 | number                    | Identifier                 | (                         | )           | \$ |  |  |
| lexp         | lexp → atom               | lexp → atom                | lexp → list               |             |    |  |  |
| atom         | atom →<br>number          | atom →<br>identifier       |                           |             |    |  |  |
| list         |                           |                            | list → ( lexp-<br>seq )   |             |    |  |  |
| lexp-seq     | lexp-seq → lexp lexp-seq' | lexp-seq → lexp lexp- seq' | lexp-seq → lexp lexp-seq' |             |    |  |  |
| lexp-seq'    | lexp-seq' →               | lexp-seq' →                | lexp-seq' →               | lexp-seq' → | ·  |  |  |

| lexp lexp-seq' | lexp lexp- | lexp lexp-seq' | ε |  |
|----------------|------------|----------------|---|--|
|                | seq'       |                |   |  |

# e) 对输入串(a (b (2)) (c))给出相应得 LL(1)分析程序的动作

记 lexp 为 E, list 为 L, atom 为 A, lexp-seq 为 S, lexp-seq'为 S', number 为 num, identifier 为 id,则分析过程如下:

| 栈                                  | 输入             | 动作                         |
|------------------------------------|----------------|----------------------------|
| \$ E                               | (a(b(2))(c))\$ | E → L                      |
| \$ L                               | (a(b(2))(c))\$ | $L \rightarrow (S)$        |
| \$ )S(                             | (a(b(2))(c))\$ | match                      |
| \$)\$                              | a(b(2))(c))\$  | S → E S'                   |
| \$ ) S'E                           | a(b(2))(c))\$  | $E \rightarrow A$          |
| \$)S'A                             | a(b(2))(c))\$  | $A \rightarrow id$         |
| \$ ) S'id                          | a(b(2))(c))\$  | match                      |
| \$) \$'                            | (b(2))(c))\$   | S'→ E S'                   |
| \$) S'E                            | (b(2))(c))\$   | E → L                      |
| \$ ) S'L                           | (b(2))(c))\$   | $L \rightarrow (S)$        |
| \$ ) S') S (                       | (b(2))(c))\$   | match                      |
| \$ ) S') S                         | b(2))(c))\$    | $S \rightarrow E S'$       |
| \$ ) S') S'E                       |                | $E \rightarrow A$          |
| \$ ) S') S'A                       | b(2))(c))\$    | $A \rightarrow id$         |
| \$ ) S') S'id                      | b(2))(c))\$    | match                      |
|                                    | b(2))(c))\$    | S' → E S'                  |
| \$ ) S') S'                        | (2))(c))\$     |                            |
| \$ ) S') S'E                       | (2))(c))\$     | E → L                      |
| \$ ) S') S'L                       | (2))(c))\$     | $L \rightarrow (S)$        |
| \$ ) S') S') S (<br>\$ ) S') S') S | (2))(c))\$     | match $S \rightarrow E S'$ |
|                                    | 2))(c))\$      | E → A                      |
| \$ ) S') S') S'E                   | 2))(c))\$      |                            |
| \$ ) S') S') S'A                   | 2))(c))\$      | A → num                    |
| \$ ) S') S') S'num                 | 2))(c))\$      | match                      |
| \$ ) S') S') S'                    | ))(c))\$       | S'→ ε                      |
| \$ ) S') S')                       | ))(c))\$       | match                      |
| \$ ) \$') \$'                      | )(c))\$        | S'→ ε                      |
| \$ ) S')                           | )(c))\$        | match                      |
| \$) \$'                            | (c))\$         | S' → E S                   |
| \$ ) S'E                           | (c))\$         | $E \rightarrow L$          |
| \$ ) S'L                           | (c))\$         | L → (S)                    |
| \$ ) S')S(                         | (c))\$         | match                      |
| \$ ) \$')\$                        | c))\$          | $S \rightarrow E S'$       |
| \$ ) S')S'E                        | c))\$          | $E \rightarrow A$          |
| \$ )S ')S'A                        | c))\$          | A → id                     |
| \$ ) S')S'id                       | c))\$          | match                      |
| \$ ) S')S'                         | ))\$           | S' <b>→</b> ε              |

| \$ ) S') | ))\$ | match                     |
|----------|------|---------------------------|
| \$) S'   | )\$  | $S' \rightarrow \epsilon$ |
| \$)      | )\$  | Match                     |
| \$       | \$   | Accept                    |

# 第三次作业

## 练习 4.5.2

1. SS+

2. SS+

3.a

# 练习 4.6.2

# 增广文法如下:

1)S' -> S

2)S -> SS+

3)S -> SS\*

4)S -> a

# GOTO 函数见下图:



# FOLLOW(S) = { a, \$,+,\* }

# 语法分析表如下:

| 状态 |    | ACT | GOTO |     |   |  |  |
|----|----|-----|------|-----|---|--|--|
| 八心 | а  | +   | *    | \$  | S |  |  |
| 0  | S1 |     |      |     | 2 |  |  |
| 1  | R4 | R4  | R4   | R4  |   |  |  |
| 2  | S1 |     |      | acc | 3 |  |  |

| 3 | S1 | S4 | S5 |    | 3 |
|---|----|----|----|----|---|
| 4 | R2 | R2 | R2 | R2 |   |
| 5 | R3 | R3 | R3 | R3 |   |

因为没有冲突,所以是 SLR 文法。

### 练习 4.7.1

```
增广文法如下:
1)S'->S
2)S->SS+
```

1. 正规 LR 项目集族如下:

 $I_0$ 

S'->.S,\$

S->.SS+, \$/a

S->.SS\*, \$/a

S->.a, \$/a

l<sub>1</sub>

S->a., \$/a

 $I_2$ 

S'->S.,\$

S->S.S+, \$/a

S->S.S\*, \$/a

S->.SS+, +/\*/a

S->.SS\*, +/\*/a

S->.a, +/\*/a

l<sub>3</sub>

S->a., +/\*/a

14

S->SS.+, \$/a

S->SS.\*, \$/a

S->S.S+, +/\*/a

S->S.S\*, +/\*/a

S->.SS+, +/\*/a

S->.SS\*,+/\*/a

S->.a,+/\*/a

# l<sub>9</sub> S->SS\*.,+/\*/a 状态转换图如下:



语法分析表如下:

|   | 11/2/2/ 1/1/1/2/1 |    |     |      |     |   |  |  |
|---|-------------------|----|-----|------|-----|---|--|--|
| Ī | 状态                |    | ACT | GOTO |     |   |  |  |
|   | 八心                | а  | +   | *    | \$  | S |  |  |
|   | 0                 | S1 |     |      |     | 2 |  |  |
|   | 1                 | R4 |     |      | R4  |   |  |  |
|   | 2                 | S3 |     |      | acc | 4 |  |  |
|   | 3                 | R4 | R4  | R4   |     |   |  |  |

| 4 | S3 | S5 | S6 |    | 7 |
|---|----|----|----|----|---|
| 5 | R2 |    |    | R2 |   |
| 6 | R3 |    |    | R3 |   |
| 7 | S3 | S8 | S9 |    | 7 |
| 8 | R2 | R2 | R2 |    |   |
| 9 | R3 | R3 | R3 |    |   |

# 2. 归并得到 LALR 项目集族如下:

### 10

S'->.S,\$

S->.SS+, \$/a

S->.SS\*, \$/a

S->.a,\$/ a

#### **I13**

S->a., \$/+/\*/a

#### 12

S'->S.,\$

S->S.S+, \$/a

S->S.S\*,\$/ a

S->.SS+, +/\*/a

S->.SS\*, +/\*/a

S->.a, +/\*/a

### 147

S->SS.+, +/\*/a/\$

S->SS.\*, +/\*/a/\$

S->S.S+, +/\*/a

S->S.S\*, +/\*/a

S->.SS+, +/\*/a

S->.SS\*, +/\*/a

S->.a, +/\*/a

#### 158

S->SS+.,+/\*/a/\$

### 169

S->SS\*.,+/\*/a/\$