Random Walk

Outline

- Textbook: Chapter 5 Shreve I and Section 3.2 Shreve II
- Content
 - Basic property of symmetric random walk: martingale, first passage time distribution and reflection principle, Quadratic variation
 - Basic property of symmetric random walk: martingale, Quadratic variation
 - Limiting scaled symmetric random walk to a continuous time random process: Brownian motion
 - Limiting binomial asset pricing to a geometric Brownian motion

Table of Contents

Symmetric Random Walk

Scaled Symmetric Random Walk

Limiting Distribution of the Scaled Random Walk

▶ Toss a fair coin, $p(H) = p(T) = \frac{1}{2}$

- ▶ Toss a fair coin, $p(H) = p(T) = \frac{1}{2}$
- w_n : outcome of nth toss

- ▶ Toss a fair coin, $p(H) = p(T) = \frac{1}{2}$
- ▶ w_n : outcome of nth toss \rightarrow success outcomes is the infinite sequence of tosses $w = w_1 w_2 \dots$

- ▶ Toss a fair coin, $p(H) = p(T) = \frac{1}{2}$
- ▶ w_n : outcome of nth toss \rightarrow success outcomes is the infinite sequence of tosses $w = w_1 w_2 \dots$
- ▶ Step up down (Gain loss) at nth toss

$$X_n = \begin{cases} 1 \text{ if } w_n = H \\ -1 \text{ if } w_n = T \end{cases}$$

- ▶ Toss a fair coin, $p(H) = p(T) = \frac{1}{2}$
- ▶ w_n : outcome of nth toss \rightarrow success outcomes is the infinite sequence of tosses $w = w_1 w_2 \dots$
- ▶ Step up down (Gain loss) at nth toss

$$X_n = \begin{cases} 1 \text{ if } w_n = H\\ -1 \text{ if } w_n = T \end{cases}$$

Symmetric random walk $(M_k)_{k>0}$: $M_0=0$ and

$$M_k = \sum_{n=0}^k X_n = X_1 + \dots + X_k$$

Martingale Property

 \mathcal{F}_k : σ - algebra of information corresponding to the first k coin tosses then

$$E(M_{n+1}|\mathcal{F}_n) = M_n$$

for all n.

Martingale Property

 \mathcal{F}_k : σ - algebra of information corresponding to the first k coin tosses then

$$E(M_{n+1}|\mathcal{F}_n) = M_n$$

for all n.

Proof.

$$\begin{split} E(M_{n+1}|\mathcal{F}_n) &= E(\underbrace{(M_{n+1}-M_n)}_{X_{n+1} \text{ independent of } \mathcal{F}_n} + \underbrace{M_n}_{\text{measurable}} |\mathcal{F}_n) \\ &= E(X_{n+1}|\mathcal{F}_n) + E(M_n|\mathcal{F}_n) \\ &= E(X_{n+1}) + M_k \\ &= 0 + M_k = M_k \end{split}$$

First passage time

The first time the random walk reaches level m

$$\tau_m = \inf\{n : M_n = m\}$$

If the random walk never reaches m then denote $au_m=\infty$

Example

$$P(\tau_1=2)=0$$

$$P(\tau_1 = 4) = 0$$

▶
$$P(\tau_1 = 2j) = 0$$

$$P(\tau_1 = 1) = P(H) = \frac{1}{2}$$

▶
$$P(\tau_1 = 3) = P(THH)$$

►
$$P(\tau_1 = 5) = P(THTHH) + P(TTHHH) = 2(\frac{1}{2})^5$$

▶
$$P(\tau_1=2j-1)=$$
 "Number of path that first reaches 1 on the $(2j-1)$ step" * $\left(\frac{1}{2}\right)^{2j-1}$

Example

$$P(\tau_1=2)=0$$

$$P(\tau_1 = 4) = 0$$

$$P(\tau_1 = 2j) = 0$$

$$P(\tau_1 = 1) = P(H) = \frac{1}{2}$$

▶
$$P(\tau_1 = 3) = P(THH)$$

►
$$P(\tau_1 = 5) = P(THTHH) + P(TTHHH) = 2(\frac{1}{2})^5$$

▶
$$P(\tau_1=2j-1)=$$
 "Number of path that first reaches 1 on the $(2j-1)$ step" * $\left(\frac{1}{2}\right)^{2j-1}$

Find pmf of first passage time

Reflection Principle

- ▶ toss a coin an odd number (2j-1) of times
- Some of the paths of the random walk will reach the level 1 in the first 2j-1 steps and others will not
- ▶ Consider a path that reaches 1 at some time $\tau_1 \leq 2j-1$
- From that moment, we can create a "reflected" path which steps up each time the original path steps down and steps down each time the original path steps up.
- ▶ If the original path ends above 1 at the final time 2j-1, the reflected path ends below 1, and vice versa. If the original path ends at 1, the reflected path does also.

- ▶ Number of path that reaches 1 by time 2j-1
 - number of paths that are at 1 at 2j-1: $M_{2j-1}=1$
 - number of paths that exceeds 1 at 2j-1: $M_{2j-1}>1$
 - number of paths that below 1 at 2j-1: $M_{2j-1}<1$

By total law probability

$$P(\tau_1 \le 2j - 1) = P(\tau_1 \le 2j - 1, M_{2j-1} = 1) + P(\tau_1 \le 2j - 1, M_{2j-1} > 1) + P(\tau_1 \le 2j - 1, M_{2j-1} < 1)$$

► The reflected paths that exceed 1 correspond to path that are below 1

$$P(\tau_1 \le 2j - 1, M_{2j-1} > 1) = P(\tau_1 \le 2j - 1, M_{2j-1} < 1)$$

▶ Random walk surely reaches 1 before 2j - 1 if $M_{2j-1} > 1$ (because it starts at 0)

$$P(\tau_1 \le 2j - 1, M_{2j-1} > 1) = P(M_{2j-1} > 1)$$

▶ If $M_{2i-1} = 1$ then $\tau_1 \leq 2j - 1$. Hence

$$P(\tau_1 \le 2j - 1, M_{2j-1} = 1) = P(M_{2j-1} = 1)$$

▶ It implies that

$$P(\tau_1 \le 2j - 1) = P(M_{2j-1} = 1) + 2P(M_{2j-1} > 1)$$

By symmetric

$$P(M_{2j-1} > 1) = P(M_{2j-1} < -1)$$

$$\begin{split} P(\tau_1 \leq 2j-1) &= P(M_{2j-1} = 1) + P(M_{2j-1} > 1) \\ &+ P(M_{2j-1} < -1) \\ &= 1 - P(M_{2j-1} = -1)(M_{2j-1} \text{ only takes odd values} \\ &= 1 - P(M_{2j-1} = 1) \text{(by symmetric)} \end{split}$$

- ▶ $M_{2j-1} = 1$: there must be j Heads and j-1 Tails in the first 2j-1 tosses
- ▶ Number of path with $M_{2j-1} = 1$

$$\binom{2j-1}{j}$$

$$P(M_{2j-1} = 1) = {2j-1 \choose j} \left(\frac{1}{2}\right)^{2j-1}$$

$$P(\tau_1 \le 2j - 1) = 1 - {2j - 1 \choose j} \left(\frac{1}{2}\right)^{2j - 1}$$

Probability mass function of au_1

$$P(\tau_1 = 2j - 1) = P(\tau_1 \le 2j - 1) - P(\tau_1 \le 2j - 3)$$

$$= {2j - 1 \choose j} {1 \choose 2}^{2j - 1} - {2j - 3 \choose j} {1 \choose 2}^{2j - 3}$$

$$= {1 \choose 2}^{2j - 1} \frac{(2j - 2)!}{j!(j - 1)!}$$

Increments

$$M_n - M_m = X_{m+1} + X_{m+2} + \dots + X_n = \sum_{j=m+1}^n X_j$$

the change in position if the random walk between times m and n

Properties of Increments

1. X_j are independent and identically distributed with $EX_j=0$, $Var(X_j)=1$. Hence

$$E(M_n - E(M_m)) = 0$$

and

$$Var(M_n - E(M_m)) = n - m$$

Properties of Increments

1. X_j are independent and identically distributed with $EX_j=0$, $Var(X_j)=1$. Hence

$$E(M_n - E(M_m)) = 0$$

and

$$Var(M_n - E(M_m)) = n - m$$

2. Independent increments: if $0 = k_0 < k_1, \dots < k_m$ then the RVs

$$M_{k_1} - M_{k_0}, M_{k_2} - M_{k_1}, \dots, M_{k_m} - M_{k_{m-1}}$$

are independent.

increments over nonoverlapping time intervals are independent because they depend on different coin tosses

Quadratic Variation

Quadratic Variation up to time k is

$$\langle M, M \rangle_k = \sum_{j=1}^k (M_j - M_{j-1})^2$$

quadratic variance is computed path - by - path by taking all the one - step increment M_jM_{j-1} along that path, squaring these increment and summing them

Example

Along this path

▶ Step 1:
$$M_1 - M_0 = 1$$

▶ Step 2:
$$M_2 - M_1 = -1$$

▶ Step 3:
$$M_3 - M_2 = -1$$

▶ Step 4:
$$M_4 - M_3 = -1$$

▶ Step 5:
$$M_5 - M_4 = 1$$

Find $\langle M, M \rangle_k$ for k=1,2,3,4,5 along this path.

Example

Along this path

▶ Step 1:
$$M_1 - M_0 = 1$$

▶ Step 2:
$$M_2 - M_1 = -1$$

▶ Step 3:
$$M_3 - M_2 = -1$$

▶ Step 4:
$$M_4 - M_3 = -1$$

▶ Step 5:
$$M_5 - M_4 = 1$$

Find $\langle M,M\rangle_k$ for k=1,2,3,4,5 along this path. Generate another path of random walk up to time period 5. And can calculate the about quadratic variations along the new path.

Property Quadratic Variation of Symmetric Random Walk

$$\langle M, M \rangle_k = k$$

Property Quadratic Variation of Symmetric Random Walk

$$\langle M, M \rangle_k = k$$

Proof.

Hint

$$(M_j - M_{j-1})^2 = X_j^2 = 1$$

for all j

Table of Contents

Symmetric Random Walk

Scaled Symmetric Random Walk

Limiting Distribution of the Scaled Random Walk

Scaled Symmetric Random Walk

Speed up time and scale down the size of a symmetric random walk

$$W_t^{(n)} = \frac{1}{\sqrt{n}} M_{nt}$$

provided for nt is an integer.

Fig. 3.2.2. A sample path of $W^{(100)}$.

➤ To see a single sample path of a scaled symmetric random walk

- ► To see a single sample path of a scaled symmetric random walk
- ▶ Fix a sequence of coin tosses $w = w_1 w_2 \dots$

- ► To see a single sample path of a scaled symmetric random walk
- ▶ Fix a sequence of coin tosses $w = w_1 w_2 \dots$
- ▶ Drawn the path of the resulting process as time *t* varies.

- ► To see a single sample path of a scaled symmetric random walk
- Fix a sequence of coin tosses $w = w_1 w_2 \dots$
- ▶ Drawn the path of the resulting process as time t varies.

Select t such that 100t is an integer, e.g, 0, $\frac{1}{100}$, $\frac{2}{100}$, $\frac{3}{100}$

$$\bullet$$
 $t=0$: $W_0^{(100)}=\frac{1}{\sqrt{100}}M_0=0$

$$t = 1: W_{\frac{1}{100}}^{(100)} = \frac{1}{\sqrt{100}} M_1 = \frac{1}{10}$$

$$t = 2: W_{\frac{2}{100}}^{(100)} = \frac{1}{\sqrt{100}} M_2 = 0$$

►
$$t = 3$$
: $W_{\frac{3}{100}}^{(100)} = \frac{1}{\sqrt{100}} M_3 = -\frac{1}{10}$

▶
$$t = 4$$
: $W_{\frac{4}{100}}^{100} = \frac{1}{\sqrt{100}} M_4 = -\frac{2}{10}$
▶ $t = 5$: $W_{\frac{5}{100}}^{100} = \frac{1}{\sqrt{100}} M_5 = -\frac{1}{10}$

$$t = 5$$
: $W_{\frac{5}{100}}^{(100)} = \frac{1}{\sqrt{100}} M_5 = -\frac{1}{100} M_5$

A sample path of scaled symmetric random walk

Properties of Scaled Symmetric Random Walk

1. Independent increment: for all $0 = t_0 < t_1 < \cdots < t_m$ then

$$W_{t_1}^{(n)} - W_{t_0}^{(n)}, W_{t_2}^{(n)} - W_{t_1}^{(n)}, \dots, W_{t_m}^{(n)} - W_{t_{m-1}}^{(n)}$$

are independent

2. For t > s

$$E(W_t^{(n)} - W_s^{(n)}) = 0$$
$$Var(W_t^{(n)} - W_s^{(n)}) = t - s$$

because $(W_t^{(n)}-W_s^{(n)}$ is the sum of n(t-s) independent RVs with means 0 and variance $\frac{1}{n}$

3. Martingale

$$E(M_t^{(n)}|\mathcal{F}_s) = M_s^{(n)}, \forall t > s$$

where \mathcal{F}_s is σ - algebra of information available at time s (knownlegde of the first ns coin tosses)

Quadratic Variance of Scaled Symmetric Random Walk Definition

$$\langle W^{(n)}, W^{(n)} \rangle (t) = \sum_{i=1}^{nt} \left(W_{\frac{j}{n}}^{(n)} - W_{\frac{j-1}{n}}^{(n)} \right)^2$$

Quadratic Variance of Scaled Symmetric Random Walk Definition

$$\langle W^{(n)}, W^{(n)} \rangle (t) = \sum_{j=1}^{nt} \left(W_{\frac{j}{n}}^{(n)} - W_{\frac{j-1}{n}}^{(n)} \right)^2$$

Example

$$\langle W^{(100)}, W^{(100)} \rangle (1.37) = \sum_{j=1}^{137} \left(W_{\frac{j}{100}}^{(100)} - W_{\frac{j-1}{100}}^{(100)} \right)^2$$

$$= \sum_{j=1}^{137} \left(\frac{1}{10} X_j \right)^2 = \sum_{j=1}^{137} \frac{1}{100} = 1.37$$

Quadratic Variance of Scaled Symmetric Random Walk Definition

$$\langle W^{(n)}, W^{(n)} \rangle (t) = \sum_{j=1}^{nt} \left(W_{\frac{j}{n}}^{(n)} - W_{\frac{j-1}{n}}^{(n)} \right)^2$$

Example

$$\langle W^{(100)}, W^{(100)} \rangle (1.37) = \sum_{j=1}^{137} \left(W_{\frac{j}{100}}^{(100)} - W_{\frac{j-1}{100}}^{(100)} \right)^2$$

$$= \sum_{j=1}^{137} \left(\frac{1}{10} X_j \right)^2 = \sum_{j=1}^{137} \frac{1}{100} = 1.37$$

This is computed path - by - path: go from time 0 to time t along the path of the scaled random walk, evaluate the increment over each time step and square these increments before summing them

Quadratic Variance of Scaled Symmetric Random Walk

$$\langle W^{(n)}, W^{(n)} \rangle (t) = t$$

Quadratic Variance of Scaled Symmetric Random Walk

$$\langle W^{(n)}, W^{(n)} \rangle (t) = t$$

Proof.

$$\langle W^n, W^n \rangle (t) = \sum_{j=1}^{nt} \left(W_{\frac{j}{n}}^{(n)} - W_{\frac{j-1}{n}}^{(n)} \right)^2$$
$$= \sum_{j=x}^{nt} \left(\frac{1}{\sqrt{n}} X_j \right)^2$$
$$= \sum_{j=1}^{nt} \frac{1}{n} = t$$

Table of Contents

Symmetric Random Walk

Scaled Symmetric Random Walk

Limiting Distribution of the Scaled Random Walk

Another way to see scaled symmetric random walk at a given time

- ▶ Fix time t
- Consider all possible paths evaluated at t
- ▶ In other words, fix t and think about scaled random walk corresponding to different sequence of coin tosses, w.

 \blacktriangleright Set t=.25 and consider set of all possible values of $W_{.25}^{(100)}=\frac{1}{10}M_{25}$

- \blacktriangleright Set t=.25 and consider set of all possible values of $W_{.25}^{(100)}=\frac{1}{10}M_{25}$
- \blacktriangleright M_{25} can take the value of any odd integers between -25 and 25

- \blacktriangleright Set t=.25 and consider set of all possible values of $W_{.25}^{(100)}=\frac{1}{10}M_{25}$
- \blacktriangleright M_{25} can take the value of any odd integers between -25 and 25
- ▶ All possible values of $W_{.25}^{(100)}$ is

$$-2.5 - 2.3, \ldots, , -.1, -.1, 2.3, , 2.5$$

- \blacktriangleright Set t=.25 and consider set of all possible values of $W_{.25}^{(100)}=\frac{1}{10}M_{25}$
- \blacktriangleright M_{25} can take the value of any odd integers between -25 and 25
- ▶ All possible values of $W_{.25}^{(100)}$ is

$$-2.5 - 2.3, \ldots, -1, -1, 2.3, 2.5$$

► $P(W_{.25}^{(100)}) = .1) = ?$ Must get 13 heads and 12 tails,

- \blacktriangleright Set t=.25 and consider set of all possible values of $W_{.25}^{(100)}=\frac{1}{10}M_{25}$
- \blacktriangleright M_{25} can take the value of any odd integers between -25 and 25
- ▶ All possible values of $W_{.25}^{(100)}$ is

$$-2.5 - 2.3, \ldots, -1, -1, 2.3, 2.5$$

 $P(W_{.25}^{(100)}) = .1) = ?$ Must get 13 heads and 12 tails,

$$P(W_{.25}^{(100)}) = .1) = {13 \choose 25} \left(\frac{1}{2}\right)^{13} \left(\frac{1}{2}\right)^{12} = .1555$$

Distribution of $W_{.25}^{\left(100\right)}$

Distribution of $W_{.25}^{\left(100\right)}$

Normal??

Distribution of $W_{.25}^{\left(100\right)}$

Normal?? Central limit theorem

Limiting distribution fo $W_t^{(n)}$ as $n \to \infty$

$$W_t^{(n)} = \sum_{j=1}^{nt} \frac{1}{\sqrt{n}} M_{jn}$$

$$\blacktriangleright \text{ Let } X_j = \frac{1}{\sqrt{n}} M_{jn}$$

Limiting distribution fo $W_t^{(n)}$ as $n \to \infty$

$$W_t^{(n)} = \sum_{j=1}^{nt} \frac{1}{\sqrt{n}} M_{jn}$$

- Let $X_j = \frac{1}{\sqrt{n}} M_{jn}$
- ▶ X_j are independent and identically distributed with mean $\mu = \frac{1}{\sqrt{n}} E(M_{nj}) = 0$ and variance $\sigma^2 = \frac{1}{n} Var(M_{nt}) = \frac{1}{n}$

Limiting distribution fo $W_t^{(n)}$ as $n \to \infty$

$$W_t^{(n)} = \sum_{j=1}^{nt} \frac{1}{\sqrt{n}} M_{jn}$$

- $\blacktriangleright \text{ Let } X_j = \frac{1}{\sqrt{n}} M_{jn}$
- ▶ X_j are independent and identically distributed with mean $\mu = \frac{1}{\sqrt{n}} E(M_{nj}) = 0$ and variance $\sigma^2 = \frac{1}{n} Var(M_{nt}) = \frac{1}{n}$
- By central limit theorem

$$W_t^{(n)} \stackrel{distribution}{\longrightarrow} N(0,t)$$

as
$$n \to \infty$$

lacktriangle Model for stock price on the time interval [0,t]

- lacktriangle Model for stock price on the time interval [0,t]
- ► Fix n and construct a binomial model that takes n steps per unit time
- up factor $u_n=1+\frac{\sigma}{\sqrt{n}}$, down factor $d_n=1-\frac{\sigma}{\sqrt{n}}$, $\sigma>0$
- $p = q = \frac{1}{2}$
- Let H_{nt} and T_{nt} be number of Heads and Tails in the first nt coin tosses then

$$H_{nt} + T_{nT} = nt$$

and state of the random walk at nt is

$$M_{nt} = H_{nt} - T_{nt}$$

- lacktriangle Model for stock price on the time interval [0,t]
- ► Fix n and construct a binomial model that takes n steps per unit time
- up factor $u_n=1+\frac{\sigma}{\sqrt{n}}$, down factor $d_n=1-\frac{\sigma}{\sqrt{n}}$, $\sigma>0$
- $p = q = \frac{1}{2}$
- Let H_{nt} and T_{nt} be number of Heads and Tails in the first nt coin tosses then

$$H_{nt} + T_{nT} = nt$$

and state of the random walk at nt is

$$M_{nt} = H_{nt} - T_{nt}$$

$$\begin{cases}
H_{nt} = \frac{1}{2}(nt + M_{nt}) \\
T_{nt} = \frac{1}{2}(nt - M_{nt})
\end{cases}$$

Stock price at time t

$$S_n(t) = S(0)u_n^{H_{nt}} d_n^{T_{nt}} = S(0) \left(1 + \frac{\sigma}{n}\right)^{H_{nt}} \left(1 - \frac{\sigma}{n}\right)^{T_{nt}}$$
$$= S(0) \left(1 + \frac{\sigma}{n}\right)^{\frac{1}{2}(nt + M_{nt})} \left(1 - \frac{\sigma}{n}\right)^{\frac{1}{2}(nt - M_{nt})}$$

Take logarithm both sides

$$\log S_n(t) = \log S(0) + \frac{1}{2}(nt + M_{nt})\log\left(1 + \frac{\sigma}{\sqrt{n}}\right) + \frac{1}{2}(nt - M_{nt})\log\left(1 - \frac{\sigma}{\sqrt{n}}\right)$$

Limit of Binomial Model

▶ n is large enough then $\frac{\sigma}{n} \approx 0$. Therefore by Taylor's expansion

$$\log\left(1+\frac{\sigma}{\sqrt{n}}\right)\approx\frac{\sigma}{\sqrt{n}}-\frac{\sigma^2}{2n} \text{ and } \log\left(1-\frac{\sigma}{\sqrt{n}}\right)\approx-\frac{\sigma}{\sqrt{n}}-\frac{\sigma^2}{2n}$$

•

$$\log S_n(t) \approx \log S(0) - \frac{1}{2}\sigma^2 t + \sigma \frac{1}{\sqrt{n}} M_{nt} = \log S(0) - \frac{1}{2}\sigma^2 t + \sigma W_t^{(n)}$$

Limit of Binomial Model

▶ n is large enough then $\frac{\sigma}{n} \approx 0$. Therefore by Taylor's expansion

$$\log\left(1+\frac{\sigma}{\sqrt{n}}\right)\approx\frac{\sigma}{\sqrt{n}}-\frac{\sigma^2}{2n} \text{ and } \log\left(1-\frac{\sigma}{\sqrt{n}}\right)\approx-\frac{\sigma}{\sqrt{n}}-\frac{\sigma^2}{2n}$$

•

$$\log S_n(t) \approx \log S(0) - \frac{1}{2}\sigma^2 t + \sigma \frac{1}{\sqrt{n}} M_{nt} = \log S(0) - \frac{1}{2}\sigma^2 t + \sigma W_t^{(n)}$$

As $n \to \infty$, $W_t^{(n)} \stackrel{D}{\to} \mathcal{N}(0,t)$ implies that the distribution of $\log S_n(t)$ converges to a normal distribution or $S_n(t)$ converges to the distribution of

$$S(t) = S(0)e^{-\frac{1}{2}\sigma^2t + \sigma W(t)}$$

where $W(t) \hookrightarrow \mathcal{N}(0,t)$.

We say that S(t) has log-normal distribution.

