1. Tenemos parte de una red con el esquema que se adjunta.

Supóngase dos conjuntos de archivos de configuración para los dos servidores DHCP.

Conjunto A

```
D1

subnet 150.244.0.0 netmask 255.255.0.0 {
  range 150.244.0.1 150.244.5.80;
  option routers 150.244.3.1;
  option domain-name-server 80.58.0.33;
}

subnet 150.244.0.0 netmask 255.255.0.0 {
  range 150.244.5.1 150.244.7.254;
  option routers 150.244.7.2, 150.244.7.3;
  option domain-name-server 80.58.0.33;
}
```

Conjunto B

```
D1

subnet 192.168.0.0 netmask 255.255.255.0 {
  range 192.168.0.60 192.168.0.90;
  option routers 192.168.0.254;
  option domain-name-server 80.58.0.33;
}

subnet 192.168.0.0 netmask 255.255.255.0 {
  range 192.168.0.1 192.168.0.80;
  option routers 192.168.0.1, 192.168.0.2;
  option domain-name-server 80.58.0.33;
}
```

Indica qué problemas de red pueden producirse en los siguientes casos:

- A. El router R está configurado como relay de DHCP con el conjunto A de archivos de configuración para los servidores DHCP (IPs en el rango LAN). (0.75 pts.)
- B. El router R está configurado como relay de DHCP con el conjunto B de archivos de configuración para los servidores DHCP (IPs en el rango LAN). (0.75 pts.)
- C. El router no hace relay de DHCP con el conjunto A de archivos de configuración (IPs en el rango LAN). (0.75 pts.)
- D. El router no hace relay de DHCP con el conjunto A de archivos de configuración (IPs en el rango WAN). (0.75 pts.)

3

• $data_id() = b_0 << 3$, donde b_0 son los 4 bits menos significativos del código ASCII del primer carácter de la etiqueta del contenido a almacenar.

Responde razonadamente a las siguiente preguntas:

- ¿Cuál es el número máximo de nodos que soporta este esquema de red?. (0,4 ptos.)
- Si n es el número de nodos activos en la red en un momento dado, y n_{max} el número máximo de nodos soportados, ¿cuál es la probabilidad de colisión?. (0,4 ptos.)
- ¿Cuál es el número máximo de contenidos que puede almacenar este esquema de red?. (0,4 ptos.)
- Si d es el número de datos ya almacenados en la red, y d_{max} el número máximo que soporta, ¿cuál es la probabilidad de colisión en el almacenamiento de datos?. (0,4 ptos.)
- Imagina ahora que 4 nodos, n_i , i=1,...,4, desean unirse a la red, para almacenar el contenido indicado más abajo, ¿cómo quedaría la distribución de nodos y contenidos en la red? La tabla random() indica la salida de llamadas sucesivas a esta función. (1 pto.)
- Calcula, asimismo, las dos primeras entradas de la tabla de fingers del nodo n_3 . (0,4 ptos.)

Detalla al máximo la resolución del ejercicio y realiza una representación gráfica del resultado. Las cadenas del contenido son sensibles a mayúsculas y minúsculas.

${f random}()$	
1302	${f Contenido}$
123	Hetzner
2014910	Queen
190	Guns 'n Roses
56	video3.mp4

Solución:

- 1. Puesto que el identificador se reduce $\mod 256$ (aunque la función random() trabaje en el rango $[0, 2^{32}]$, solo hay **256** posibles valores diferentes para el mismo.
- $2. n/m_{max}$
- 3. El operador << corresponde al desplazamiento binario a la izquierda, que introduce ceros por la derecha del valor considerado (lo que equivale a multiplicarlo por 2). Puesto que se nos dice que se consideran los 4 bits menos significativos existen, en realidad, únicamente 2⁴ = 16 posibles valores (el operador << no introduce nuevos valores, solo modifica los existentes).
- 4. d/d_{max}
- 5. Veamos el caso del primero contenido a almacenar, 'Hetzner'. Para ello:
 - a) $data_{-}id('Hetzner') = 0x48 = 0100\underbrace{1000}_{-}b << 3 = 0x40$
 - b) $node_id('Hetzner') = 1302 \mod 256 = 22$

El resto de identificadores de nodos se calculan de la misma forma, y se ordenan de la manera habitual. Si utilizamos la notación $n_i[data_id, node_id]$ para identificar cada nodo y el contenido que almacena, quedaría:

$$n_1[0x40, 22] > n_4[0x20, 56] > n_2[0x08, 123] > n_3[0x38, 190] > n_1$$

6. La tabla de fingers del nodo n_3 queda:

Figura 1: Tabla ASCII

Char	Dec	Oct	Hex	Char	Dec	Oct	Hex	Char	Dec	Oct	Hex
(sp)	32	0040	0x20	@	64	0100	0x40		96	0140	0x60
!	33	0041	0x21	Ä	65	0101	0x41	a	97	0141	0x61
	34	0042	0x22	В	66	0102	0x42	b	98	0142	0x62
#	35	0043	0x23	C	67	0103	0x43	С	99	0143	0x63
\$	36	0044	0x24	D	68	0104	0x44	d	100	0144	0x64
%	37	0045	0x25	Е	69	0105	0x45	e	101	0145	0x65
&	38	0046	0x26	F	70	0106	0x46	f	102	0146	0x66
1	39	0047	0x27	G	71	0107	0x47	l g	103	0147	0x67
(40	0050	0x28	Н	72	0110	0x48	ĥ	104	0150	0x68
)	41	0051	0x29	1	73	0111	0x49	l i	105	0151	0x69
*	42	0052	0x2a	J	74	0112	0x4a	j	106	0152	0x6a
+	43	0053	0x2b	K	75	0113	0x4b	ĺk	107	0153	0x6b
	44	0054	0x2c	L	76	0114	0x4c		108	0154	0x6c
-	45	0055	0x2d	M	77	0115	0x4d	m	109	0155	0x6d
	46	0056	0x2e	N	78	0116	0x4e	n	110	0156	0x6e
1	47	0057	0x2f	0	79	0117	0x4f	0	111	0157	0x6f
0	48	0060	0x30	Р	80	0120	0x50	l p	112	0160	0x70
1	49	0061	0x31	Q	81	0121	0x51	q	113	0161	0x71
2	50	0062	0x32	R	82	0122	0x52	r	114	0162	0x72
3	51	0063	0x33	S	83	0123	0x53	S	115	0163	0x73
4	52	0064	0x34	T	84	0124	0x54	l t	116	0164	0x74
5	53	0065	0x35	U	85	0125	0x55	u	117	0165	0x75
6	54	0066	0x36	V	86	0126	0x56	V	118	0166	0x76
7	55	0067	0x37	W	87	0127	0x57	W	119	0167	0x77
8	56	0070	0x38	X	88	0130	0x58	X	120	0170	0x78
9	57	0071	0x39	Υ	89	0131	0x59	у	121	0171	0x79
:	58	0072	0x3a	Z	90	0132	0x5a	Z	122	0172	0x7a
;	59	0073	0x3b	[91	0133	0x5b	 {	123	0173	0x7b
<	60	0074	0x3c	1	92	0134	0x5c	l Í	124	0174	0x7c
=	61	0075	0x3d]	93	0135		}	125	0175	0x7d
>	62	0076	0x3e	٨	94	0136	0x5e	~	126	0176	0x7e
?	63	0077	0x3f	_	95	0137	0x5f				

finger n_3	
finger[0]	$successor(190 + 1 \mod 256) = n_1$
finger[1]	$successor(190 + 2 \mod 256) = n_1$