ØV1 — TRIGONOMETRI, KOMPLEKSE TALL OG GEOMETRISKE REKKER

Innleveringsfrist: 21. august.

Ukeoppgavene skal løses selvstendig og vurderes i øvingstimene. Det forventes at alle har satt seg inn i fagets øvingsopplegg og godkjenningskrav for øvinger. Dette er beskrevet påhjemmesiden til IN3190:

http://www.uio.no/studier/emner/matnat/ifi/IN3190/h20/informasjon-om-ovingsopplegget/

Mål: Kurset IN3190 krever en viss grad av kunnskap om matematikk, både i form av kjennskap til teori og erfaring med bruk og praktisk regning. Oppgavene her oppsummerer en del av de viktigste punktene man bør kjenne til.

Oppgave 1 Trigonometriske funksjoner

2 Poeng

- a) Plott følgende trigonometriske funksjoner under hverandre (med parallelle t-akser) for intervallet $-1 \le t \le 2.5$, slik at du får vist hvordan de forholder seg til hverandre mht. frekvens og faseskift.
 - 1. $\cos(2\pi t)$
 - 2. $cos(2\pi t + \pi)$
 - 3. $cos(8\pi t)$
 - 4. $\cos(4\pi t \pi/3)$
- b) Finn frekvens, faseskift og amplitude for cosinus-funksjonene i figur 1.

Figure 1: Finn frekvens, faseskift og amplitude for cosinus-funksjonene i figur.

Oppgave 2 Diskrete trigonometriske funksjoner

2 Poeng

a) Hvilke av de følgende *diskrete* funksjonene er periodiske, og hva er periodene deres (dvs. N)?

- 1. $\cos(0.5n + \pi/2)$
- 2. $\cos(\pi n + \pi/2)$
- 3. $\cos\left(\frac{\sqrt{2}}{2}\pi n\right)$
- b) Angi den cosinus-funksjonen i diskret tid som vi får ved å ta 5 sampler per halve periode av en cosinus i kontinuerlig tid.
- c) Angi den cosinus-funksjonen i diskret tid som vi får ved å ta sampler med avstand 1 sekunder av en cosinus i kontinuerlig tid med vinkelfrekvens 1.

Oppgave 3 Regning med komplekse tall

2 Poeng

- a) Regn ut følgende for polar $(z = re^{j\theta})$ og/eller kartesisk (z = a + jb) form som angitt. Inkluder mellomregning, spesielt når svaret er oppgitt.
 - 1. z^* på polar form
 - 2. zz* på polar og kartesisk form (hva er dette det samme som?)
 - 3. z^k på polar form
 - 4. $z + z^*$ på polar og kartesisk form

 $2r\cos\phi$

- 5. $z-z^*$ på polar og kartesisk form
- 6. z^{-1} på polar og kartesisk form (**Merk:** oppgaven er å finne c og d slik at $c+jd=\frac{1}{a+jb}$, samt s og ϕ slik at $se^{j\phi}=\frac{1}{re^{j\theta}}$.) $\boxed{\frac{a-jb}{a^2+b^2}, \frac{1}{r}e^{-j\phi}}$
- 7. Bruk punktene over for å finne et uttrykk for $\cos(\theta)$ og $\sin(\theta)$ ved komplekse eksponentialer (Euler identitetene).
- 8. Hva er forskjellen på z^{-1} og z^* ? Beskriv z^{-1} utifra $|z|^2$ og z^* .
- **b)** Skriv følgende tall som komplekse tall på polar form (k er et vilkårlig heltall). Som eksempel kan tallet 1 skrives som $1e^{j\cdot 2\pi k}$.
 - 1. -1
 - 2. $(-1)^k$
 - 3. i^k

Oppgave 4 Regning med komplekse tall

2 Poeng

- a) Gjør følgende utregninger. Om svaret står oppgitt må mellomregning inkluderes.
 - 1. |3+j4|=?
 - 2. $\frac{1}{3+j4}$ til kartesisk form = ? $\frac{3}{25} j\frac{4}{25}$
 - 3. $\frac{1+j2}{1+e^{j\pi/2}}$ til kartesisk form = ?
 - 4. $(-1)^n + e^{j\pi n} = ?$, hvor n er et heltall $2 \cdot (-1)^n$
- b) Vis at

$$(\cos(\theta) + j\sin(\theta))^n = (\cos(\theta n) + j\sin(\theta n))$$
 Ref. til de Moivres formel

Oppgave 5 Geometriske rekker

- a) Beregn verdien til følgende endelige geometriske rekker:
 - 1. $\sum_{k=0}^{100} 23^k = ?$
 - 2. $\sum_{k=5}^{19} (4.5)^k = ?$ (Tips: del opp summen for å endre summasjonsgrensene).
 - b) Bestem hvilke av de følgende uendelige geometriske rekkene som konvergerer, og beregn verdien til disse:
 - 1. $\sum_{k=0}^{\infty} 1^k$
 - 2. $\sum_{k=0}^{\infty} \left(\frac{3}{a}\right)^k, a > 4$
 - $3. \sum_{k=-\infty}^{\infty} 2^{-k}$
 - 4. $\sum_{k=-\infty}^{\infty} 2^{-|k|}$
 - c) Finn konvergensområdet til følgende uendelige geometriske rekker. Om svaret er oppgitt, vis mellomregning.
 - 1. $\sum_{k=0}^{\infty} \left(\frac{x}{2}\right)^k, x \in \mathbb{R}$
 - 2. $\sum_{k=0}^{\infty} (x^{-1})^k, x \in \mathbb{R}$
 - 3. $\sum_{k=0}^{\infty} 2^k z^{-k}, z \in \mathbb{C} \qquad \boxed{|z| > 2}$