Лекции курса «Алгебра», лектор Р. С. Авдеев

 Φ КН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Лекция 5

Строение конечно порождённых абелевых груп (продолжение). Экспонента конечной абелевой группы. Действие группы на множестве. Орбиты и стабилизаторы.

Продолжим доказательство теоремы с прошлой лекции.

Теорема 1. Всякая конечно порождённая абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, т. е.

(1)
$$A \cong \mathbb{Z}_{p_s^{k_1}} \oplus \ldots \oplus \mathbb{Z}_{p_s^{k_s}} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z},$$

где p_1, \ldots, p_s — простые числа (не обязательно попарно различные) и $k_1, \ldots, k_s \in \mathbb{N}$. Кроме того, число бесконечных циклических слагаемых, а также число и порядки примарных циклических слагаемых определено однозначно.

Доказательство. На прошлой лекции мы доказали существование разложения и то, что количество бесконечных циклических групп $\mathbb Z$ определено однозначно. Для этого мы вводили понятие *подгруппы кручения*:

(2)
$$\operatorname{Tor} A = \langle c_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}}.$$

Далее, для каждого простого числа p определим в A подгруппу p-кручения

$$\operatorname{Tor}_{p} A := \{ a \in A \mid p^{k} a = 0 \text{ для некоторого } k \in \mathbb{N} \}.$$

Ясно, что $\mathrm{Tor}_p A \subset \mathrm{Tor}\, A$. Выделим подгруппу $\mathrm{Tor}_p A$ в разложении (2). Легко видеть, что $\langle c_i \rangle_{p_i^{k_i}} \subseteq \mathrm{Tor}_p A$ для всех i с условием $p_i = p$. Если же $p_i \neq p$, то по следствию 2 из теоремы Лагранжа (см. лекцию 2) порядок любого ненулевого элемента $x \in \langle c_i \rangle_{p_i^{k_i}}$ является степенью числа p_i , а значит, $p^k x \neq 0$ для всех $k \in \mathbb{N}$. Отсюда следует, что $\mathrm{Tor}_p A$ является суммой тех конечных слагаемых в разложении (2), порядки которых суть степени p. Поэтому доказательство теперь сводится к случаю, когда A — примарная группа.

Пусть
$$|A| = p^k$$
 и

$$A = \langle c_1 \rangle_{p^{k_1}} \oplus \ldots \oplus \langle c_r \rangle_{p^{k_r}}, \quad k_1 + \ldots + k_r = k.$$

Докажем индукцией по k, что набор чисел k_1, \ldots, k_r не зависит от разложения.

Если k=1, то |A|=p, но тогда $A\cong \mathbb{Z}_p$ по следствию 5 из теоремы Лагранжа (см. лекцию 2). Пусть теперь k>1. Рассмотрим подгруппу $pA:=\{pa\mid a\in A\}$. В терминах равенства (3) имеем

$$pA = \langle pc_1 \rangle_{p^{k_1-1}} \oplus \ldots \oplus \langle pc_r \rangle_{p^{k_r-1}}.$$

В частности, при $k_i=1$ соответствующее слагаемое равно $\{0\}$ (и тем самым исчезает). Так как $|pA|=p^{k-r}< p^k$, то по предположению индукции группа pA разлагается в прямую сумму примарных циклических подгрупп однозначно с точностью до порядка слагаемых. Следовательно, ненулевые числа в наборе k_1-1,\ldots,k_r-1 определены однозначно (с точностью до перестановки). Отсюда мы находим значения k_i , отличные от 1. Количество тех k_i , которые равны 1, однозначно восстанавливается из условия $k_1+\ldots+k_r=k$.

Заметим, что теорема о согласованных базисах даёт нам другое разложение конечной абелевой группы А:

$$A = \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m}, \quad \text{где } u_i | u_{i+1} \text{ при } i = 1, \ldots, m-1.$$

Числа u_1, \ldots, u_m называют *инвариантными множителями* конечной абелевой группы A.

Определение 1. Экспонентой конечной абелевой группы A называется число $\exp A$, равное наименьшему общему кратному порядков элементов из A. Легко заметить, что это равносильно следующему условию:

$$\exp A = \min\{n \in \mathbb{N} \mid na = 0 \text{ для всех } a \in A\}$$

Предложение 1. Экспонента конечной абелевой группы A равна её последнему инвариантному множителю u_m .

Доказательство. Обратимся к разложению (4). Так как $u_i|u_m$ для всех $i=1,\ldots,m$, то $u_ma=0$ для всех $a\in A$. Это означает, что $\exp A\leqslant u_m$ (и тем самым $\exp A\,|u_m)$. С другой стороны, в A имеется циклическая подгруппа порядка u_m . Значит, $\exp A\geqslant u_m$.

Следствие 1. Конечная абелева группа A является циклической тогда и только тогда, когда $\exp A = |A|$.

Доказательство. Группа A является циклической тогда и только тогда, когда в разложении (4) присутствует только одно слагаемое, т.е. $A = \mathbb{Z}_{u_m}$ и $|A| = u_m$.

Пусть G — произвольная группа и X — некоторое множество.

Определение 2. Действием группы G на множестве X называется отображение $G \times X \to X$, $(g, x) \mapsto gx$, удовлетворяющее следующим условиям:

- 1) ex = x для любого $x \in X$ (e нейтральный элемент группы G);
- 2) g(hx) = (gh)x для всех $g, h \in G$ и $x \in X$.

Обозначение: G: X.

Если задано действие группы G на множестве X, то каждый элемент $g \in G$ определяет биекцию $a_g\colon X\to X$ по правилу $a_g(x)=gx$ (обратным отображением для a_g будет $a_{g^{-1}}$). Обозначим через S(X) группу всех биекций (перестановок) множества X с операцией композиции. Тогда отображение $a\colon G\to S(X),\ g\mapsto a_g,$ является гомоморфизмом групп. Действительно, для произвольных элементов $g,h\in G$ и $x\in X$ имеем

$$a_{qh}(x) = (gh)x = g(hx) = ga_h(x) = a_q(a_h(x)) = (a_qa_h)(x).$$

Можно показать, что задание действия группы G на множестве X равносильно заданию соответствующего гомоморфизма $a\colon G\to S(X).$

Пример 1. Симметрическая группа S_n естественно действует на множестве $X = \{1, 2, ..., n\}$ по формуле $\sigma x = \sigma(x)$ ($\sigma \in S_n, x \in X$). Условие 1) здесь выполнено по определению тождественной подстановки, условие 2) выполнено по определению композиции подстановок.

Пусть задано действие группы G на множестве X.

Определение 3. *Орбитой* точки $x \in X$ называется подмножество

$$Gx = \{x' \in X \mid x' = gx \text{ для некоторого } g \in G\} = \{gx \mid g \in G\}.$$

Замечание 1. Для точек $x, x' \in X$ отношение «x' лежит в орбите Gx» является отношением эквивалентности:

- (1) (рефлексивность) $x \in Gx$ для всех $x \in X$: это верно, так как $x = ex \in Gx$ для всех $x \in X$;
- (2) (симметричность) если $x' \in Gx$, то $x \in Gx'$: это верно, так как из условия x' = gx следует $x = ex = (g^{-1}g)x = g^{-1}(gx) = g^{-1}x' \in Gx'$;
- (3) (транзитивность) если $x' \in Gx$ и $x'' \in Gx'$, то $x'' \in Gx$: это верно, так как из условий x' = gx и x'' = hx' следует $x'' = hx' = h(gx) = (hg)x \in Gx$.

Отсюда вытекает, что множество X разбивается в объединение попарно непересекающихся орбит действия группы G.

Определение 4. Стабилизатором (стационарной подгруппой) точки $x \in X$ называется подгруппа $St(x) := \{g \in G \mid gx = x\}.$

Упраженение 1. Проверьте, что множество St(x) действительно является подгруппой в G.

Лемма 1. Пусть конечная группа G действует на множестве X. Тогда для всякого элемента $x \in X$ справедливо равенство

$$|Gx| = |G|/|\operatorname{St}(x)|.$$

В частности, число элементов в (любой) орбите делит порядок группы G.

Доказательство. Рассмотрим множество G/St(x) левых смежных классов группы G по подгруппе St(x) и определим отображение $\psi \colon G/St(x) \to Gx$ по формуле $gSt(x) \mapsto gx$. Это определение корректно, поскольку для любого другого представителя g' левого смежного класса gSt(x) имеем g' = gh, где $h \in St(x)$, и тогда g'x = (gh)x = g(hx) = gx. Сюръективность отображения ψ следует из определения орбиты Gx. Проверим инъективность. Предположим, что $g_1St(x) = g_2St(x)$ для некоторых $g_1, g_2 \in G$. Тогда $g_1x = g_2x$. Подействовав на левую и правую части элементом g_2^{-1} , получим $(g_2^{-1}g_1)x = x$, откуда $g_2^{-1}g_1 \in St(x)$. Последнее и означает, что $g_1St(x) = g_2St(x)$. Итак, мы показали, что отобржание ψ является биекцией. Значит, |Gx| = |G/St(x)| = [G : St(x)] и требуемое равенство вытекает из теоремы Лагранжа (см. лекцию 1).

 $^{^1}$ Это множество может не быть факторгруппой, так как подгруппа $\mathrm{St}(x)$ не обязана быть нормальной в G.

Пример 2. Рассмотрим действие группы $S^1=\{z\in\mathbb{C}\mid |z|=1\}$ на множестве \mathbb{C} , заданное формулой $(z,w)\mapsto zw$, где $z\in S^1,\,w\in\mathbb{C}$, а zw — обычное произведение комплексных чисел. Для этого действия орбитами будут множества вида |z|=c, где $c\in\mathbb{R}_{\geqslant 0}$, — это всевозможные окружности с центром в нуле, а также отдельная орбита, состоящая из нуля. Имеем

$$\operatorname{St}(z) = egin{cases} \{1\}, & \operatorname{если}\ z
eq 0; \ S^1, & \operatorname{если}\ z = 0. \end{cases}$$

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 10, $\S 3$)
- [2] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 1, § 3)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 57)