

Implementation of Human Gait Identification

By Rischan Mafrur

Advisor : Deokjai Choi

About Our Dataset

	ubiClass ▶ rischan ▶ [3]Walk ▶ B	
Ne	ew folder	
	Name	Date modified
	Sensor_record_20141117_165407_AndroS	11/17/2014 4:54 F
	Sensor_record_20141117_165510_AndroS	11/17/2014 4:55
	Sensor_record_20141117_165539_AndroS	11/17/2014 4:55
≡	Sensor_record_20141117_165613_AndroS	11/17/2014 4:56 F
	Sensor_record_20141117_165642_AndroS	11/17/2014 4:56
	Sensor_record_20141117_165709_AndroS	11/17/2014 4:57
	Sensor_record_20141117_165734_AndroS	11/17/2014 4:57
	Sensor_record_20141117_165758_AndroS	11/17/2014 4:57
	Sensor_record_20141117_165822_AndroS	11/17/2014 4:58
	Sensor_record_20141117_165844_AndroS	11/17/2014 4:58

- 4	A	В	С	AG	AH
1	ACCELEROMETER X (m/s??)	ACCELEROMETER Y (m/s??)	ACCELEROMETER Z (m/s??)	YYYY-MO-DD HH-MI-SS_SSS	
2	0.019154	-9.615114	1.455675	2014-11-17 16:53:57:173	
3	0.019154	-9.615114	1.455675	2014-11-17 16:53:57:223	
4	0.718261	-9.490616	1.168371	2014-11-17 16:53:57:276	
5	-0.047884	-9.940724	1.158794	2014-11-17 16:53:57:327	
6	0.651223	-9.346964	1.580173	2014-11-17 16:53:57:381	
7	-0.114922	-9.883264	1.934515	2014-11-17 16:53:57:437	
8	0.047884	-9.615114	0.871489	2014-11-17 16:53:57:500	
9	0.574608	-9.844956	1.063026	2014-11-17 16:53:57:560	
10	0.086191	-9.816226	1.254562	2014-11-17 16:53:57:624	
11	0.124498	-9.816226	0.593762	2014-11-17 16:53:57:675	
12	1.608904	-9.500192	0.986411	2014-11-17 16:53:57:738	
13	-0.086191	-10.28549	1.312023	2014-11-17 16:53:57:793	
14	1.053449	-8.801084	0.6608	2014-11-17 16:53:57:862	

Experiment

- Preprocessing
 - Linear Interpolation
 - DB6 Level 1~3 De-noising (Noise Removal)
 - Gait Segmentation
- Features Extraction
- Identification

Linear Interpolation

```
f <- approxfun(x, y)
11    curve(f(x), 0, 10, col = "green")
12    is.function(fc <- approxfun(x, y, method = "const")) # TRUE
13    curve(fc(x), 0, 10, col = "darkblue", add = TRUE)</pre>
```


(2)

The linear interpolation is calculated by:

$$s' = s_0 + \frac{(s_1 - s_0)(t' - t_0)}{t_1 - t_0}$$

where s_o, s_1 represents two samples collected at times t_o and t_1 , respectively, (s', t') is the new generated point that lies between (s_0, t_0) and (s_1, t_1) .

De-Noising a Signal with Multilevel Wavelet Decomposition

```
[C,L] = wavedec(xn,4,'db6') #do a multi-level analysis to four levels with the Daubechies-6 wavelet

A1 = wrcoef('a',C,L,'db6',1) # Reconstruct the approximations at various levels

A2 = wrcoef('a',C,L,'db6',2)

A3 = wrcoef('a',C,L,'db6',3)

A4 = wrcoef('a',C,L,'db6',4)

subplot(5,1,1),plot(xn),title('Original Signal')

subplot(5,1,2),plot(A1),title('Reconstructed Approximation - Level 1')

subplot(5,1,3),plot(A2),title('Reconstructed Approximation - Level 2')

subplot(5,1,4),plot(A3),title('Reconstructed Approximation - Level 3')

subplot(5,1,5),plot(A4),title('Reconstructed Approximation - Level 4')
```

Significant de-noising occurs with the level-4 approximation coefficients (Daubechies wavelets)

Before and After Linear Interpolation and DB6 noise reduction

Gait Segmentation

Use **Z** value of Accelerometer to define gait cycle

$$P = \{ d_i \mid d_i > d_{i+1} \land d_i > d_{i-1} \} \text{ with } i \in [1 ... n] \quad (1)$$

$$T = \mu + k\sigma \tag{2}$$

$$R = \{ d_i \in P | d_i \ge T \} \tag{3}$$

Features Extraction

Time domain feature:

- 1. Mean from each gait signal (X,Y,Z,M signals)
- 2. Average maximum acceleration from (X,Y,Z,M signals)
- 3. Average minimum acceleration from (X,Y,Z,M signals)
- 4. Average absolute different from (X,Y,Z,M signals)
- 5. Standard deviation
- 6. RMS (Root Mean Square)

Frequency domain features:

The first 40 FFT coefficients form a feature vector

Features

Time domain Features

Mean, Max, Min, Sd, Abs, Rms (6 features) with 4 signals (X,Y,Z, and M), total features from time domain features are 24 features.

FFT Features

FFT features is the 40 first FFT coefficient from each gait signal. In this experiment we use 4 accelerometer signals (X,Y,Z, and M) so total FFT features are 160 features.

All Features

Combine between time domain features and FFT features. Total: 24+160 = 184 features

1	Α	В	С	D	Е	F	G	Н	I	J	K	L
1	MeanX	SdX	MaxX	MinX	AbsX	RmsX	MeanY	SdY	MaxY	MinY	AbsY	RmsY
2	0.555395	1.098373	2.585991	-1.08811	1.252715	1.215395	-9.51746	2.921483	-3.84992	-13.631	2.110561	9.94235
3	0.589866	1.674695	2.342881	-1.7251	1.877133	1.702228	-9.53034	4.4986	-2.73963	-17.1231	4.310039	10.4510
4	-0.57362	1.973134	5.313475	-5.58799	1.535156	2.029057	-9.0482	3.819357	0.18906	-17.1231	1.998044	9.80118
5	0.046401	1.333856	1.680272	-3.22602	0.503896	1.31431	-10.4238	4.875651	-4.62248	-16.5488	7.807723	11.4763
6	0.59743	2.15929	5.780469	-4.10599	1.58677	2.216083	-10.9544	2.195639	-6.95364	-17.8585	1.775844	11.1672
7	0.460256	1.466863	2.977381	-3.45786	1.272482	1.513052	-9.79361	4.176959	-4.37038	-14.5361	6.159178	10.6188
8	0.076862	3.499743	7.005158	-9.98727	2.63952	3.447166	-9.5194	3.639357	-0.46927	-14.8035	3.37587	10.1716
9	-1.3334	1.008193	0.501548	-2.83548	0.983463	1.65126	-11.7156	1.578985	-9.67843	-14.4889	2.100525	11.8144
10	0.391567	1.444585	2.786917	-2.83548	1.855781	1.474053	-10.1042	4.67004	-3.88231	-15.2468	6.137039	11.0995
11	1.08488	1.408252	3.484808	-0.94153	2.044802	1.758338	-8.74339	4.155428	-1.59603	-17.1275	3.769392	9.64982
12	-0.51043	0.674269	0.81719	-1.22429	0.539701	0.832133	-10.8278	1.174787	-8.95463	-12.4584	1.475132	10.8882
13	0.35861	2.336641	3.258774	-4.91309	1.075629	2.327632	-10.0079	4.256948	-3.78951	-15.8723	6.268378	10.8495
14	1.831153	1.013319	3.485867	0.699891	1.053489	2.057486	-10.2371	2.13004	-7.52693	-13.2058	2.795151	10.4252
15	4.595901	1.188852	6.851176	3.485867	0.66244	4.725861	-8.49996	4.635166	-4.2969	-17.5652	2.126148	9.52180
16	0.92104	3.355269	6.851176	-2.75926	2.460915	3.27092	-9.52298	7.088065	0.304573	-17.5652	7.028253	11.6037
17	-0.6693	0.38319	-0.15324	-1.31823	0.431065	0.76058	-10.409	2.502866	-8.06672	-16.0147	0.89282	10.6731
18	-0.26855	0.202324	0.097024	-0.47175	0.177996	0.328536	-9.49025	0.221543	-9.29248	-9.90878	0.185577	9.49251
19	0.172826	0.432426	0.547773	-0.68017	0.335536	0.43606	-9.75276	0.130861	-9.60609	-9.91369	0.160027	9.75350
20	-0.54613	0.552443	0.421373	-1.29695	0.674968	0.765833	-9.49886	0.210116	-9.08911	-9.91369	0.193713	9.50105
21	0.334047	0.269243	0.537492	-0.04947	0.143337	0.407377	-9.402	0.090068	-9.29508	-9.4855	0.092643	9.40232
22	0.17121	0.200362	0.344133	-0.13422	0.151396	0.247848	-9.45391	0.020268	-9.41957	-9.4669	0.001635	9.45392
23	0.312653	0.269433	0.681938	-0.13422	0.310558	0.404657	-9.37638	0.020055	-9.34769	-9.41957	0.017913	9.37640
24	0.249499	0.096882	0.360068	0.101849	0.08727	0.265132	-9.34003	0.018024	-9.314	-9.36328	0.022763	9.34004
25	0.249998	0.028222	0.27626	0.220157	0.033632	0.251058	-9.30377	0.010308	-9.29338	-9.314	0.01492	9.30377
26	0.312859	0.035744	0.34651	0.220157	0.018518	0.314824	-9.34379	0.050858	-9.29256	-9.43376	0.026749	9.34392
27	0.330673	0.807715	2.625555	-2.01434	0.452796	0.864246	-10.0095	1.208931	-8.99344	-13.322	0.267905	10.0806
28	-0.12814	2.019406	1.901591	-4.67069	1.104262	1.99361	-9.55233	3.856989	-3.54766	-13.9149	4.207983	10.2803

FU FV FW FΖ GA FX FY GB GC FFT153 FFT154 FFT155 FFT156 FFT157 FFT158 FFT159 FFT160 label -0.60934 0.144611 -0.405 -0.88437 -0.67508 -0.40843 -0.55527 -0.59382 agung -2.61995 -2.79797 -2.47035 -2.78383 -2.50306 -2.71729 -2.16354 -2.44152 agung 2.700932 1.954585 2.055435 1.902533 1.679828 2.059306 2.190261 2.336578 agung -0.95285 -0.17715 -0.38109 0.241818 -0.72403 -0.65203 -1.93696 -1.98026 agung 4.808676 2.777703 4.670166 6.669613 3.334803 0.89254 2.977633 2.611604 agung -1.17916 -2.04098 -2.44121 -3.28289 -3.10196 -3.18561 -2.60327 -2.40219 agung 5.966523 5.999911 7.502656 6.85634 6.760834 4.302868 5.591767 6.273775 agung -2.77245 -2.62142 -2.8757 -2.84504 -2.84814 -2.64578 -2.8176 -2.83888 agung -0.542 -0.30119 -1.41766 -0.92355 -1.59163 -1.09617 -1.03317 -0.8322 agung 4.431904 5.628292 3.171458 3.831947 3.641558 4.807209 3.801818 4.083849 agung -2.17362 -2.24252 -2.24948 -2.14989 -2.24958 -2.38743 -2.40747 -2.3552 agung -2.25839 -2.31592 -1.74282 -1.40156 -1.70077 -2.06582 -3.03182 -3.14669 agung 5.516083 5.465489 5.449561 5.577563 5.453935 5.588735 5.49983 5.456692 agung -7.31496 -7.15132 -7.27213 -7.14189 -7.50581 -7.05846 -7.38461 -7.2666 agung 4.172495 4.292497 4.836977 4.363838 4.718246 4.136125 4.193529 4.255587 agung 3.404821 3.567294 3.555427 3.487997 3.510887 3.555237 3.485073 3.577724 agung -1.13499 -1.17272 -1.15514 -1.20356 -1.15912 -1.17396 -1.15804 -1.15923 agung 0.86713 0.803363 0.846054 0.860618 0.813731 0.868544 0.851388 0.805035 agung 0.482515 0.404696 0.39354 0.415888 0.438225 0.346379 0.415751 0.453539 agung 0.062353 0.048932 0.058648 0.060265 0.048935 0.05705 0.058647 0.048939 agung 0.02446 0.026294 0.024354 0.026032 0.02446 0.025875 0.024375 0.025682 agung -0.03734 -0.03736 -0.03715 -0.03729 -0.03725 -0.03737 -0.03759 -0.03747 agung -0.06281 -0.06267 -0.06287 -0.06285 -0.06306 -0.06288 -0.06288 -0.06279 agung -0.02659 -0.02656 -0.02659 -0.02657 -0.02657 -0.02659 -0.02659 -0.02657 agung 0.042131 0.043772 0.042679 0.034298 0.04193 0.040868 0.040933 0.040135 agung -4.05089 -4.31722 -3.92748 -3.66853 -3.67108 -3.95814 -4.09392 -3.91254 agung 1.044144 1.04149 1.479194 1.546559 1.572899 1.5814 1.246371 1.176803 agung

Result

Time Domain Features

List Features after SFFS:

"MeanX", "AbsX", "MeanY", "MinY", "MeanZ", "SdZ" Best SVM Parameters: gamma = 0.5, cost = 10

	Original	SFFS
Time Loading	0.48	0.37
Time Prediction	0.11	0.02
Accuracy	0.7614	0.8267

FFT Features

List Features after SFFS:

"FFT1", "FFT13", "FFT71", "FFT81", "FFT82", "FFT121"
Best SVM Parameters: cost=1, gamma=1

	Original	SFFS
Time Loading	1.73	0.87
Time Prediction	0.45	0.03
Accuracy	0.4821	0.7178

SFS (Sequential Forward Selection)
SFFS (Sequential Floating Forward Selection)

All Features

List Features after SFFS:

"MeanX", "AbsX", "MeanY", "MinY", "MeanZ", "SdZ" Best SVM Parameters: gamma = 0.5, cost = 10

	Original	SFFS
Time Loading	2.45	0.37
Time Prediction	0.55	0.02
Accuracy	0.4155	0.8267

Naïve Bayes and Random Forest

	SVM SFFS	Naïve Bayes	Naïve Bayes with SFFS
Time Loading	0.37	91.36	4.09
Time Prediction	0.02	8.58	0.31
Accuracy	0.8267	0.5297	0.6287

	SVM SFFS	Random Forest	Random Forest with SFFS
Time Loading	0.37	2.53	0.62
Time Prediction	0.02	0.36	0.23
Accuracy	0.8267	0.848	0.7966

Conclusion

- If we want to play with sensor data, we have to consider deeply about sampling rate.
- Features selection is very useful method, we can use it to find which is the best features.
- Many features does not mean good accuracy, but many features means take more time to load and predict.

Thank you,