- Import neccessary library
- Read Dataset
- Sanity Check of Data
- Exploratory Data Analysis
 - Missing Value Treatment

 - Outlier Treatment
- Duplicates & garbage value treatment
 - Normalization
- Encoding of data

Import neccessary library

```
import matplotlib.pyplot as plt
                                                           import seaborn as sns
import pandas as pd
                  import numpy as np
In [1]:
```

Read Dataset

```
In [2]: | df = pd.read_csv('Life Expectancy Data.csv')
                                                                                        In [3]: |df.head(2)
```

Out[3]:

		Country Year	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	Life Adult infant Alcohol expenditure expectancy Mortality deaths	Hepatit
	0	0 Afghanistan 2015 Developing	2015	Developing	65.0	263.0	62		0.01 71.279624	65
	_	1 Afghanistan 2014 Developing	2014	Developing	59.9	271.0	64	0.01	73.523582	62
	2 10	2 rows × 22 columns	suwn							
	~									•
In [4]:	df.	In [4]: df.tail(2)								

Out[4]:

	Country Year	Year	Status	Life Adult infant expectancy Mortality deaths	Adult Mortality	infant deaths	Alcohol	percentage Hepa expenditure	Нера
2936	Zimbabwe	2001	Zimbabwe 2001 Developing	45.3	686.0	25	25 1.72	0.0	
2937	Zimbabwe	2000	Zimbabwe 2000 Developing	46.0	665.0	24	1.68	0.0	
2 rows	2 rows × 22 columns	suu							
~									•

Sanity Check of Data

```
float64
float64
                                                                                                                                                                                                                                                                                                                    float64
                                                                                                                                                                                                                                                                                                                                                                       float64
                                                                                                                                                                                                                                                                                                                                                                                                              float64
float64
                                                                                                                                                                                                                             float64
                                                                                                                                                                                                                                                                                float64
                                                                                                                                                                                                                                                                                                                                               float64
                                                                                                                                                                          object
                                                                                                                                                                                        float64
                                                                                                                                                                                                   float64
                                                                                                                                                                                                                                                                                                          float64
                                                                                                                                                                                                                                                                                                                                   float64
                                                                                                                                                                                                                                                                                                                                                            float64
                                                                                                                                                                                                                                                                                                                                                                                      float64
                                                                                                                                                                                                                                                                                                                                                                                                  float64
                                                                                                                                                  object
                                                                                                                                                                                                                 int64
                                                                                                                                                                                                                                                                   int64
                                                                                                                                                                                                                                                                                             int64
                                                                                                                                                               int64
                                                                                                                        Non-Null Count
                                                                                                                                                                                                                          2744 non-null
2938 non-null
2938 non-null
2938 non-null
2904 non-null
2938 non-null
2919 non-null
                                                                                                                                                                                                  2928 non-null
2938 non-null
                                                                                                                                                                                                                                                                                                                    2712 non-null
2919 non-null
                                                                                                                                                                                                                                                                                                                                                                                    2904 non-null
2904 non-null
                                                                                                                                                                                                                                                                                                                                                                                                                         2775 non-null
                                                                                                                                                                          2938 non-null
                                                                                                                                                                                                                                                                                                                                             2938 non-null
                                                                                                                                                                                                                                                                                                                                                           2490 non-null
                                                                                                                                                                                                                                                                                                                                                                       2286 non-null
                                                                                                                                                  2938 non-null
                                                                                                                                                               2938 non-null
                                                                                                                                                                                        2928 non-null
                                                                                                                                                                                                                                                                                                                                                                                                              2771 non-null
                                                                                                                                                                                                                                                                                                                                                                                                                                    dtypes: float64(16), int64(4), object(2)
memory usage: 505.1+ KB
                                                                                 <class 'pandas.core.frame.DataFrame'>
                                                                                                                                                                                                                                                                                                                                                                                                               Income composition of resources
                                                                                              RangeIndex: 2938 entries, 0 to 2937
                                                                                                           Data columns (total 22 columns):
                                                                                                                                                                                                                                          percentage expenditure
                                                                                                                                                                                                                                                                                                                                                                                       thinness 1-19 years
                                                                                                                                                                                                                                                                                                                                                                                                  thinness 5-9 years
                                                                                                                                                                                                                                                                                              under-five deaths
                                                                                                                                                                                                                                                                                                                      Total expenditure
                                                                                                                                                                                        Life expectancy
                                                                                                                                                                                                   Adult Mortality
                                                                                                                                                                                                                 infant deaths
                                                                                                                                                                                                                                                       Hepatitis B
                                                                                                                                                                                                                                                                                                                                   Diphtheria
                                                                                                                                                                                                                                                                                                                                                                        Population
                                                                                                                                                                                                                                                                                                                                                                                                                            21 Schooling
                                                                                                                                                                                                                                                                                                                                                HIV/AIDS
                                                                                                                                                                                                                            Alcohol
                                                                                                                                                                                                                                                                    Measles
                                                                                                                                                  Country
                                                                                                                                                                          Status
                                                                                                                         Column
                                                                                                                                                                                                                                                                                                          Polio
                        Out[5]: (2938, 22)
                                                                                                                                                                Year
                                                      df.info()
In [5]: df.shape
                                                                                                                                                                                                                                                                               10
111
112
113
114
115
116
                                                       In [6]:
```

1/16

2/16

```
In [7]: # display the missing values count
| df.isnull().sum()
```

0	0	0	10	10	0	194	0	553	0	34	0	19	226	19	0	448	652	34	34	167		
Out[7]: Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI	under-five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling	dtype: int64

In [8]: # dispLay the missing values percentage round(df.isnull().sum() / df.shape[0]*100,2)

9.99	0.00	0.34	0.34	0.00	6.60	00.0	18.82	00.0	1.16	00.0	0.65	7.69	0.65	00.0	15.25	22.19	1.16	1.16	5.68	5.55	
Out[8]: Country Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI	under-five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling	dtype: float64

In [9]: # check the duplicate value df.duplicated().sum()

Out[9]: 0

In [10]:

Nikhil Vishwakarma 0187AS221032 - Jupyter Notebook

10/3/24, 9:59 PM

```
# identify the garbage value
for i in df.select_dtypes(include='object').columns:
    print(df[i].value_counts())
                                                                                                                                                16
16
16
16
16
                                                                                            : ⊣
                                                                                                                               Saint Kitts and Nevis
                                                                                                                                                                  2426
                            print('*'*30)
                                                                                                                                                                Developing
                                              Afghanistan
                                                                                                             San Marino
                                                               Nicaragua
                                                                                                                                       Dominica
                                                                                  Nigeria
                                                                         Niger
                                                        Peru
                                                                                                                       Nauru
                                                                                                     Niue
```

In [11]: # describe numerical features
df.describe().T

Out[11]:

		count	mean	std	min	25%	20%
	Year	2938.0	2.007519e+03	4.613841e+00	2000.00000	2004.000000	2.008000e+03
	Life expectancy	2928.0	6.922493e+01	9.523867e+00	36.30000	63.100000	7.210000e+01
	Adult Mortality	2928.0	1.647964e+02	1.242921e+02	1.00000	74.000000	1.440000e+02
	infant deaths	2938.0	3.030395e+01	1.179265e+02	0.00000	0.000000	3.000000e+00
	Alcohol	2744.0	4.602861e+00	4.052413e+00	0.01000	0.877500	3.755000e+00
	percentage expenditure	2938.0	7.382513e+02	1.987915e+03	0.00000	4.685343	6.491291e+01
	Hepatitis B	2385.0	8.094046e+01	2.507002e+01	1.00000	77.000000	9.200000e+01
	Measles	2938.0	2.419592e+03	1 146727e+04	0.00000	0.000000	1.700000e+01
	BMI	2904.0	3.832125e+01	2.004403e+01	1.00000	19.300000	4.350000e+01
	under-five deaths	2938.0	4.203574e+01	1.604455e+02	0.00000	0.000000	4.000000e+00
	Polio	2919.0	8.255019e+01	2.342805e+01	3.00000	78.000000	9.300000e+01
	Total expenditure	2712.0	5.938190e+00	2.498320e+00	0.37000	4.260000	5.755000e+00
	Diphtheria	2919.0	8.232408e+01	2.371691e+01	2.00000	78.000000	9.300000e+01
	HIV/AIDS	2938.0	1.742103e+00	5.077785e+00	0.10000	0.100000	1.0000006-01
	GDP	2490.0	7.483158e+03	1.427017e+04	1.68135	463.935626	1.766948e+03
	Population	2286.0	1.275338e+07	6.101210e+07	34.00000	195793.250000	1.386542e+06
	thinness 1- 19 years	2904.0	4.839704e+00	4.420195e+00	0.10000	1.600000	3.300000e+00
	thinness 5-9 years	2904.0	4.870317e+00	4.508882e+00	0.10000	1.500000	3.300000e+00
	Income composition of resources	2771.0	6.275511e-01	2.109036e-01	0.00000	0.493000	6.770000e-01
	Schooling	2775.0	1.199279e+01	3.358920e+00	0.00000	10.100000	1.230000e+01

In [12]: # describing categorical features
df.describe(include="object").T

Out[12]:

	count	count unique	top	top freq
Sountry	2938	193	193 Afghanistan	16
Status	2938	0	Developing 2426	2426

Exploratory Data Analysis

Nikhil Vishwakarma 0187AS221032 - Jupyter Notebook

10/3/24, 9:59 PM

check data distribution

10/3/24, 9:59 PM

Identify Outlier

Relation between Feature Matrix and Target Vector

```
x = df.select_dtypes(include="number").columns
                                                                      x.remove(target) # removing target vector
                                              target = 'Life expectancy'
                         x = list(x)
 In [15]:
```


7/16

0.4 0.6 0.8 Population

Nikhil Vishwakarma 0187AS221032 - Jupyter Notebook

10/3/24, 9:59 PM

corr_matrix = df.select_dtypes(include='number').corr()
plt.figure(figsize=(20,20))
sns.heatmap(corr_matrix, annot=True)
plt.show() In [17]:

Missing Value Treatment

- Traditional Method (Mean, Mode, Median)
 - New Method KNNImputer

```
In [18]: for i in [' BMI ', 'Polio', 'Income composition of resources']:
    df[i].fillna(df[i].median(), inplace=True)
```

10/3/24, 9:59 PM

In [22]: |df.isna().sum()

Nikhil Vishwakarma 0187AS221032 - Jupyter Notebook

```
194
0
553
                                                                                                                                                                              226
19
0
                                                                                                                                                                                                                  448
652
                                                                                                                                                                                                                                                                Income composition of resources
                                                                                                           percentage expenditure
                                                                                                                                                                                                                                          thinness 1-19 years
                                                                                                                                                                                                                                                      thinness 5-9 years
                                                                                                                                                                                Total expenditure
                                                                                                                                                         under-five deaths
df.isna().sum()
                                                            Life expectancy
                                                                       Adult Mortality
                                                                                   infant deaths
                                                                                                                                                                                                                                                                                          dtype: int64
                                                                                                                      Hepatitis B
                                                                                                                                                                                                                              Population
                                                                                                                                                                                            Diphtheria
                                                                                                                                                                                                        HIV/AIDS
                                                                                                                                  Measles
                         Country
                                                                                                Alcohol
                                                 Status
                                                                                                                                                                     Polio
In [19]:
                        Out[19]:
```

```
from sklearn.impute import KNNImputer
                                                                     imputer = KNNImputer()
# using KNNImputer
In [20]:
```

```
for i in df.select_dtypes(include='number').columns:
                                  df[i] = imputer.fit_transform(df[[i]])
     In [21]:
```

```
00000000000000000000
                                                                                                                                                        Income composition of resources
                                                       percentage expenditure
                                                                                                                                          thinness 1-19 years
                                                                                                                                                  thinness 5-9 years
                                                                                                    Fotal expenditure
                                                                                     under-five deaths
                       .ife expectancy
                               Adult Mortality
                                     infant deaths
                                                                                                                                                                         dtype: int64
                                                              Hepatitis B
                                                                                                                                  Population
                                                                                                            Diphtheria
                                                                                                                                                                  Schooling
                                                                                                                    HIV/AIDS
                                                                     Measles
Country
                                              Alcohol
                Status
                                                                                            Polio
Out[22]:
```

Outlier Treatment

In [23]: imputer.n_neighbors

Out[23]:

```
q1,q3 = np.percentile(col,[25,75])
                                                          hf = q3 + 1.5 * iqr
lf = q1 - 1.5 * iqr
return lf,hf
                                         iqr = q3 - q1
In [24]: | def wisker(col):
```

```
df_outlier_cols = list(df.select_dtypes(include='number').columns)
                                                                    Out[25]: (-9773.52021495771, 17837.165679596183)
                                                                                                                                                                                 df_outlier_cols.remove('Year')
df_outlier_cols.remove('BMI')
df_outlier_cols.remove('Alcohol')
df_outlier_cols[:2]
In [25]: wisker(df['GDP'])
                                                                                                                                                     In [26]:
```

```
Out[26]: ['Life expectancy ', 'Adult Mortality']
```

11/16

80

80

70 Polio

- 09

09

- 06

70 80 Diphtheria

- 09

Nikhil Vishwakarma 0187AS221032 - Jupyter Notebook

10/3/24, 9:59 PM

Duplicates & garbage value treatment

```
In [29]: print(df.shape)
df.drop_duplicates(inplace=True)
df.shape
```

(2938, 22)

Out[29]: (2938, 22)

localhost:8888/notebooks/ML/Basic Project/Nikhil Vishwakarma 0187AS221032.ipynb

mydata = pd.get_dummies(data=df,columns=['Country','Status'], drop_first=Tr print(mydata.shape) mydata.head() In [30]:

(2938, 213)

Out[30]:

	Year	Life Adult infant expectancy Mortality deaths	Adult Mortality	infant deaths	Alcohol	percentage Hepatitis Measles expenditure B	Hepatitis B	Measles	BM	unc dea
0	0 2015.0	65.0	263.0	55.0	0.01	71.279624	65.0	65.0 900.625 19.1	19.1	7
_	2014.0	59.9	271.0	55.0	0.01	73.523582	62.0	492.000 18.6	18.6	7
7	2013.0	59.9	268.0	55.0	0.01	73.219243	64.0	430.000 18.1	18.1	7
က	2012.0	59.5	272.0	55.0	0.01	78.184215	0.79	900.625	17.6	7
4	2011.0	59.2	275.0	55.0	0.01	7.097109	0.89	900.625 17.2	17.2	7
2	ows × 2	5 rows × 213 columns								
7										4

Normalization

```
In [31]: X = mydata.drop(['Life expectancy '],axis=1)
                                y = mydata['Life expectancy ']
```

```
X_scaled = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)
                                                                                             from sklearn.preprocessing import StandardScaler
In [32]: # perform Standardization using StandardScaler
                                                                                                                                                                                           scaler = StandardScaler()
```

In [33]: X_scaled.head(2)

	>	Adult	infant	1-1-14	percentage	Hepatitis	Manage	2	5
	rear	Mortality	deaths	Alconol	expenditure	m	Measies	Q Q	qe
0	1.621762	0.874521	2.165057	1 172958	1.621762 0.874521 2.165057 -1.172958 -0.546410 -1.534064 1.886225 -0.967349 2.06	-1.534064	1.886225	-0.967349	2.06
_	1.404986	0.943807	2.165057	1.404986 0.943807 2.165057 -1.172958		-0.540647 -1.768413 0.730456 -0.992434	0.730456		2.06
(-	-							

2 rows × 212 columns

Nikhil Vishwakarma 0187AS221032 - Jupyter Notebook

10/3/24, 9:59 PM

```
X_scaled_normal = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)
                                                                                                                                                                                                            scaler = MinMaxScaler(feature_range=(-1,1)) # default range is 0 to 1
                                                                                                      from sklearn.preprocessing import MinMaxScaler
In [34]: # or perform Normalization using MinMaxScaler
```

```
In [35]: |X_scaled_normal.head(4)
```

Out[35]:

	Year	Adult infant Mortality deaths	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМ	under- five deaths
0	0 1.000000 0.150384	0.150384	1.0	-1.0		-0.870023 -0.672864 1.000000 -0.580533	1.000000	-0.580533	1.0
-	0.866667 0.185510	0.185510	1.0	-1.0	-0.865932	-0.820470	0.092575	-0.592121	1.0
7	0.733333	0.733333 0.172338	1.0	-1.0	-0.866487	-0.722066		-0.045108 -0.603708	1.0
က	3 0.600000 0.189901	0.189901	1.0	-1.0	-0.857433	-0.857433 -0.574460 1.000000 -0.615295	1.000000	-0.615295	1.0
4	4 rows × 212 columns	columns							
~									•

Split dataset into Train and Test

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled_normal, y, ran
In [36]: |from sklearn.model_selection import train_test_split
```

```
In [37]: X_test.shape, X_train.shape
                                                       Out[37]: ((882, 212), (2056, 212))
```

15/16