

Faculdade de Ciências Departamento de Física

Curso de Licenciatura em Física

DISCIPLINA: ESPECTROSCOPIA Aula Prática III Espectroscopia Rotacional

- A figura mostra a distribuição da população relativa nos estados rotacionais para a molécula do ácido bromídrico. Determine:
 - (a) O estado físico da molécula;
 - (b) A contante rotacional em unidades espectroscópicas à 27 ^OC;
 - (c) O número de onda, em unidades espectroscópicas, correspondente à máxima transição rotacional.

- 2. A molécula de monóxido de carbono exibe a primeira linha do seu espectro puramente rotacional a $3.84235 \ cm^{-1}$. Determine:
 - (a) O momento de inércia e a distância inter-atómica;
 - (b) O número quântico máximo a 27 ^{O}C .
- 3. O espectro rotacional de $^{79}Br^{19}F$ mostra uma série de linhas de absorção igualmente espaçadas em $0.71433\ cm^{-1}$. Determine;
 - (a) A constante rotacional em unidades espectroscópicas;
 - (b) O momento de inércia;
 - (c) A transição que corresponde a maior linha da intensidade espectral para 300 *K*.
- 4. A molécula de HCl executa movimentos rotacionais de forma não rígida. Sabendo que a distância inter-atómica é $1.275 \dot{A}$ no equilíbrio e o coeficiente de distorção centrífuga é $5.3 \times 10^{-4} \ cm^{-1}$. Determine:
 - (a) A energia de transição da terceira ordem em unidades espectroscópicas;

- (b) O número quântico máximo a 25 ^OC;
- (c) A frequência de vibração e a constante de força da molécula.
- 5. A figura mostra o espectro rotacional na região do IV distante de dois isótipos da molécula de CO.

Calcule:

- (a) A separação média das transições rotacionais da molécula de $^{12}C^{18}O;\,$
- (b) O raio de ligação da molécula de $^{13}C^{16}O$.
- 6. A constante rotacional para $H^{12}C^{14}N$ observada é 44,315.97 Megaciclos e o seu isótopo $D^{12}C^{14}N$ exibe 36,207.97 Megaciclos. Calcule:
 - (a) O momento de inécia destas moléculas;
 - (b) O raio de ligação entre $H^{12}C$ e $^{12}C^{14}N$.
- 7. O espectro da molécula do CH_4 a 25 ^{O}C exibe linhas equidistantes correspondentes às suas transições rotacionias. Determine:
 - (a) Os valores de energias rotacionais para os dois primeiros estados rotacionais;
 - (b) O número de onda da transição fundamental;
 - (c) O espectro de frequências.
- 8. A molécula de CH_3Br executa movimentos rotacionais de forma rígida. Dadas as constantes rotacionais $\tilde{A} = 5.08cm^{-1}$ c m^{-1} e $\tilde{B} = \tilde{C} = 0.31$ c m^{-1} . Determine:
 - (a) A geometria da molécula molécula;
 - (b) A energia do estado fundamental em $\frac{kJ}{mol}$;
 - (c) A frequência de absorção na transição para J=10 e represente o diagrama da respectiva linha espectra.