Interrogation CSI3-CIR3

Durée : 1 heure Sans documents Sans calculatrice

PHYSIQUE DU SOLIDE ET NANOSCIENCES

Exercice 1. Questions de cours

Répondre brièvement aux questions suivantes.

- 1) Dans le domaine des semiconducteurs, qu'est-ce que le dopage ?
- 2) La conductivité électrique dans le modèle des électrons libres de Drude est donnée par : $\sigma = \frac{nq^2\tau}{m}$. Donner le nom et les unités des grandeurs n, q, τ et m.

Exercice 2. Gaz d'électrons libres à deux dimensions

On considère N électrons de masse m, sans interaction, enfermés dans une surface carrée de côté L. Le potentiel constant à l'intérieur de la surface est choisi comme origine des énergies.

- 1) Ecrire l'équation de Schrödinger pour un électron en explicitant l'expression de l'hamiltonien.
- 2) Pour résoudre cette équation, on cherche des solutions à variables séparées du type $\Phi(x,y) = \varphi_x(x). \varphi_y(y)$. Montrer qu'il suffit alors de résoudre deux équations différentielles indépendantes pour obtenir les solutions de l'équation de Schrödinger. Indication : définir deux énergies E_x et E_y telles que l'énergie $E = E_x + E_y$.
- 3) Donner la forme des solutions de ces équations différentielles et l'expression des énergies permises.
- 4) En utilisant les conditions aux limites de Born-von-Karman, donner les fonctions d'onde et énergies permises quantifiées pour un électron. Il n'est pas nécessaire de normaliser les fonctions d'onde obtenues.
- 5) Représenter dans l'espace réciproque (k_x, k_y) les états \vec{k} permis. Quelle est la surface occupée par un état \vec{k} ?
- 6) Quel contour géométrique définissent les vecteurs \vec{k} de même énergie? A l'intérieur de ce contour géométrique on cherche le nombre total N(k) de vecteurs \vec{k} . Montrer que $N(k) = \alpha k^2$ avec α une constante que l'on déterminera.

Soit $N^*(k) = N(k)/L^2$ le nombre d'états \vec{k} par unité de surface.

- 7) Déterminer l'expression du nombre N(E) d'états électroniques à partir de $N^*(k)$. Ne pas oublier que d'après le principe de Pauli à chaque vecteur \vec{k} correspondent deux états (spin up et spin down).
- 8) La densité D(E) d'états électroniques est égale à $\frac{dN(E)}{dE}$. Montrer que D(E) est égale à Cm où C est une constante que l'on déterminera.