In the Claims:

Please amend Claim 1 as indicated below. The status of all pending claims is as follows:

 (Currently Amended) A method of manufacturing a substrate for a liquid-crystal display device comprising the steps of:

forming a resin layer on a substrate;

selectively reforming the surface portion of said resin layer by applying energy with an energy density per unit time of a prescribed value or more to said resin layer to generate a difference in a rate of thermal shrinkage between said surface portion and the layer portion other than the surface portion in said resin layer;

performing a heat treatment to said resin layer to form random wrinkles of micro-grooves in said surface portion, said random wrinkles of micro-grooves having ridges of a linear or curved continuous pattern; and

forming reflective electrodes on said surface portion.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to claim 1,

wherein said energy is applied by irradiation with light.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to claim 2,

wherein said energy is applied by irradiation with ultraviolet rays.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to claim 3,

wherein said energy is applied by irradiation with said ultraviolet rays with an illuminance exceeding $12\ mW/cm^2$.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to claim 3,

wherein said energy is applied by irradiation with said ultraviolet rays with an illuminance of no more than 12 mW/cm² and said resin layer is in a semi-hardened condition prior to the application of said energy.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to claim 5,

wherein heat treatment of said resin layer is performed at a prescribed temperature prior to the application of said energy.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to any of claims 1 to 6,

wherein photosensitive resin is employed for said resin layer.

 (Original) The method of manufacturing a substrate for a liquidcrystal display device according to claim 7,

wherein novolac resist is employed for said resin layer.

9. (Previously Presented) A method of manufacturing a liquid-crystal display device in which a pair of substrates are manufactured and said substrates are mutually stuck together so that liquid-crystal is sealed between said substrates, wherein

one of said substrates is manufactured using a method of manufacturing a substrate for a liquid-crystal display device according to any of claims 1 to 6.

10-13. (Cancelled)

14. (Currently Amended) A method of manufacturing a substrate for a liquid-crystal display device comprising the steps of:

forming a resin layer on a substrate;

selectively reforming the surface portion of said resin layer by applying energy with an energy density per unit time of a prescribed value or more to said resin layer without

using a mask to generate a difference in a rate of thermal shrinkage between said surface portion and the layer portion other than the surface portion in said resin layer;

performing a heat treatment to said resin layer to form random undulations wrinkles of micro-grooves in said surface portion; and

forming reflective electrodes on said surface portion.

 (Previously Presented) The method of manufacturing a substrate for a liquid-crystal display device according to claim 14,

wherein said energy is applied by irradiation with light.

 (Previously Presented) The method of manufacturing a substrate for a liquid-crystal display device according to claim 14,

wherein said energy is applied by irradiation with ultraviolet rays.

 (Previously Presented) The method of manufacturing a substrate for a liquid-crystal display device according to claim 16,

wherein said energy is applied by irradiation with said ultraviolet rays with an illuminance exceeding 12 mW/cm².

 (Previously Presented) The method of manufacturing a substrate for a liquid-crystal display device according to claim 16, wherein said energy is applied by irradiation with said ultraviolet rays with an illuminance of no more than $12\,\text{mW/cm}^2$ and said resin layer is in a semi-hardened condition prior to the application of said energy; and

further wherein heat treatment of said resin layer is performed at a prescribed temperature prior to the application of said energy.