Ergebnisse zu ausgewählten Aufgaben zur 6. Übung am 28. September 2023 Thema: Vektorrechnung, Analytische Geometrie im \mathbb{R}^2 und im \mathbb{R}^3

Aufgabe 1

(b)
$$\vec{a} + \vec{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, $3\vec{a} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$, $-2\vec{a} + 3\vec{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$

(c)
$$|\vec{a}| = \sqrt{10} \approx 3.16$$
, $|\vec{b}| = \sqrt{5} \approx 2.24$

(d)
$$\vec{a} \cdot \vec{b} = 5$$

Die Vektoren schließen einen Winkel von 45° ein.

Aufgabe 2

(a)
$$\vec{a} + \vec{b} = \begin{pmatrix} -1 \\ 5 \\ 0 \end{pmatrix}$$
, $3\vec{a} = \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}$, $-2\vec{a} + 3\vec{b} = \begin{pmatrix} -13 \\ 10 \\ 5 \end{pmatrix}$

(b)
$$|\vec{a}| = \sqrt{6} \approx 2.45, \qquad |\vec{b}| = \sqrt{26} \approx 5.10$$

(c)
$$\vec{a} \cdot \vec{b} = -3$$

Die Vektoren schließen einen stumpfen Winkel ein.

Aufgabe 3

(a)
$$\left| \overrightarrow{AB} \right| = 2\sqrt{13} \approx 7.21$$
, $\left| \overrightarrow{BD} \right| = \sqrt{13} \approx 3.61$, $\left| \overrightarrow{DA} \right| = \sqrt{65} \approx 8.06$

(c)
$$F = 13$$

(d)
$$C = (8, 11)$$

Aufgabe 4

(b)
$$\vec{a} \times \vec{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Aufgabe 5

(a)
$$F = \frac{1}{2}\sqrt{2} \approx 0.71$$

(b)
$$F = \frac{1}{2}\sqrt{3} \approx 0.87$$

Aufgabe 6

(a)
$$\vec{x} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad t \in \mathbb{R}$$

- (b) y = 2x + 2
- (c) Nur P_3 liegt auf der Geraden. Die Abstände der übrigen Punkte zur Geraden betragen

$$dist(P_1, g) = \frac{2}{5}\sqrt{5} \approx 0.89, \quad dist(P_2, g) = \frac{1}{5}\sqrt{5} \approx 0.45.$$

- (d) Parameterdarstellung: $\overrightarrow{x}=\begin{pmatrix}1\\4\end{pmatrix}+t\begin{pmatrix}-2\\1\end{pmatrix}$, $t\in\mathbb{R}$ parameterfreie Darstellung: $y=-\frac{1}{2}x+\frac{9}{2}$
- (e) Parameterdarstellung: $\overrightarrow{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $t \in \mathbb{R}$ parameterfreie Darstellung: y = 2x 4

Aufgabe 7

- (a) Die Geraden schneiden sich im Punkt S = (2, -6).
- (b) Die Geraden schneiden sich nicht.

Aufgabe 8

(a)
$$\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}$$

(b) P_2 liegt auf der Geraden, P_1 nicht.

Aufgabe 9

- (a) Die Geraden schneiden sich im Punkt S = (5, 0, -7).
- (b) Die Geraden sind windschief zueinander.

Aufgabe 10

(b) (b1) Nur P2 liegt auf der Ebene. Die Abstände der übrigen Punkte zur Ebene betragen

2

$$dist(P_1, \mathcal{E}) = \frac{1}{14}\sqrt{14} \approx 0.27, \quad dist(P_3, \mathcal{E}) = \frac{1}{7}\sqrt{14} \approx 0.53.$$

(b2)
$$S = \left(\frac{1}{2}, \frac{5}{2}, \frac{3}{2}\right)$$

(b3)
$$\vec{x} = \begin{pmatrix} 4 \\ 3 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \quad t \in \mathbb{R}$$

Aufgabe 11

- (a) Parameterdarstellung: $\vec{x} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$, $s, t \in \mathbb{R}$ parameterfreie Darstellung: 2x y = 4
- (b) 2x y = 3