

## AMENDMENTS TO THE CLAIMS

1. (withdrawn): A method for forming a light emitting diode comprising following steps:  
forming a first stack;  
5 forming a second reaction layer over said first stack;  
forming a second stack;  
forming a first reaction layer over said second stack;  
holding together said first reaction layer and said second  
reaction layer by means of a transparent adhesive  
10 layer.
2. (withdrawn): The method of claim 1 wherein the step of forming a first stack comprises following steps:  
providing a first substrate;  
15 forming a second contact layer on the first substrate;  
forming a second cladding layer on the second contact  
layer;  
forming an emitting layer on the second cladding layer;  
forming a first cladding layer on the emitting layer;  
20 forming a first contact layer on the first cladding layer;  
and  
forming a transparent conductive layer on the first  
contact layer.
- 25 3. (withdrawn): The method of claim 2 further comprising following steps:  
removing the first substrate;  
etching the second contact layer, the second cladding  
layer, the emitting layer, first cladding layer, and  
30 the first contact layer; and  
forming a first electrode on the second contact layer, and  
a second electrode on the transparent conductive

layer.

4. (withdrawn): The method of claim 2 wherein the first substrate comprises at least one material selected from a group consisting of GaP, GaAs, and Ge.
5. (withdrawn): The method of claim 2 wherein the first contact layer and the second contact layer each comprise at least one material selected from a group consisting of GaP, GaAs, GaAsP, InGaP, AlGaInP, and AlGaAs.
10. (withdrawn): The method of claim 2 wherein the first cladding layer, the emitting layer, and the second cladding layer each comprise AlGaInP.
15. (withdrawn): The method of claim 2 wherein the transparent conductive layer comprises at least one material selected from a group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc oxide, zinc tin oxide, BeAu, GeAu, and Ni/Au.
20. (withdrawn): The method of claim 1 wherein the first and second reaction layers each comprise at least one material selected from a group consisting of SiNx, Ti, and Cr.
25. (withdrawn): The method of claim 1 wherein the transparent adhesive layer comprises at least one material selected from a group consisting of PI, BCB, and PFCB.
30. 10. (withdrawn): The method of claim 1 wherein forming a second stack comprises forming a second substrate.

11. (withdrawn): The method of claim 10 wherein the second substrate comprises at least one material selected from a group consisting of SiC, Al<sub>2</sub>O<sub>3</sub>, glass materials, quartz, GaP, GaAsP, and AlGaAs.

5

12. (withdrawn): The method of claim 1 wherein said first reaction layer and said second reaction layer are held together with the transparent adhesive layer by chemical bonds.

10

13. (withdrawn): The method of claim 12 wherein the chemical bonds are hydrogen bonds or ionic bonds.

14. (original): A light emitting diode comprising:

15

a first stack;  
a second reaction layer formed on the first stack;  
a second stack;  
a first reaction layer formed on the second stack;  
a transparent adhesive layer formed between the first and  
20 second reaction layers; and  
a first electrode and a second electrode formed on the  
first stack.

20

25

15. (original): The light emitting diode of claim 14 wherein the first stack comprises:

30

a transparent conductive layer formed on the second reaction layer, the transparent conductive layer having a first surface area and a second surface area;  
a first contact layer formed on the first surface area of the transparent conductive layer;  
a first cladding layer formed on the first contact layer;  
an emitting layer formed on the first cladding layer;

a second cladding layer formed on the emitting layer; and  
a second contact layer formed on the second cladding layer;  
wherein the first electrode is formed on the second contact  
layer, and the second electrode is formed on the second  
surface area of the transparent conductive layer.

- 5
16. (original): The light emitting diode of claim 15 wherein  
the first contact layer and the second contact layer each  
comprise at least one material selected from a group  
10 consisting of GaP, GaAs, GaAsP, InGaP, AlGaInP, and  
AlGaAs.
- 15
17. (original): The light emitting diode of claim 15 wherein  
the first cladding layer, the emitting layer, and the  
second cladding layer each comprise AlGaInP.
- 20
18. (original): The light emitting diode of claim 15 wherein  
the transparent conductive layer comprises at least one  
material selected from a group consisting of indium tin  
oxide, cadmium tin oxide, antimony tin oxide, zinc oxide,  
zinc tin oxide, BeAu, GeAu, and Ni/Au.
- 25
19. (original): The light emitting diode of claim 14 wherein  
the first and second reaction layers each comprise at least  
one material selected from a group consisting of SiNx, Ti,  
and Cr.
- 30
20. (original): The light emitting diode of claim 14 wherein  
the transparent adhesive layer comprises at least one  
material selected from a group consisting of PI, BCB, and  
PFCB.

21. (original): The light emitting diode of claim 14 wherein the second stack comprises a second substrate, the first reaction layer being formed on the second substrate.
- 5 22. (original): The light emitting diode of claim 21 wherein the second substrate comprises at least one material selected from a group consisting of SiC, Al<sub>2</sub>O<sub>3</sub>, glass materials, quartz, GaP, GaAsP, and AlGaAs.

10