EEE 3310 Digital Electronics | Fall 2022

Design Project 2

Design & Simulation of Digital Circuits with CAD Tools

Total Points: 150 **Due: 7 December 2022**

<u>Design, simulate, and analyze the following logic gates using HSPICE</u>. Use the 45-nm CMOS High Performance Predictive Technolog Model. Supply voltage, V_{DD} , should be 1V for all the designs.

- 1. 2-input NAND gate
- 2. 2-input NOR gate
- 3. 2-input XNOR gate

Note: you will need to perform **transient analysis** for this. Apply a pulse at the input (V_I) . Use the following pulse as input: PULSE $(0\ 1\ 0n\ 0.01n\ 0.01n\ 4n\ 8n)$. Use .measure to measure the $t_{PI,H}$ and t_{PHI} values.

Performance Parameters	Basic CMOS Inverter
t_{PLH}	15.97 <i>ps</i>
t_{PHL}	17.25 <i>ps</i>
t_p	16.61 <i>ps</i>

Part 1: 2-input NAND gate design, simulation, and analysis (40 points)

a. Determine the widths (W) of all the transistors in the design such that the delays are almost same as that of the basic inverter in **Part 0**.

Include the diagram of the 2-input CMOS NAND logic clearly indicating the (W/L) of each transistor. Note: the diagram should NOT be hand-drawn.

b. Model the circuit in HSPICE, perform the HSPICE simulation, and note down the following parameters.

Note: you will need to perform **transient analysis** for this. Apply two pulses at the inputs A and B. One pulse should have a time period of 8ns, whereas the other should have a period of 16ns. Use **.measure** to measure the values based on the transient response.

Performance Parameters	2-input NAND gate				
t_{PLH}	17.8, 17.3, 9.66	14.92ps			
t_{PHL}	14.7, 15.4, 16.7	15.6ps			
$\overline{t_p}$	15.26ps				
Static Power	25.9575nW				
Average Power	218.407nW				

Include the screenshot of the transient response waveform to observe the inverter operation up to 20ns and the SPICE netist (.sp file).

c. Is the average propagation delay, t_p , exactly same as that of the basic CMOS inverter from **Part** 0? If not, what is the percentage deviation from the basic inverter's average propagation delay?

8.127%

Part 2: 2-input NOR gate design, simulation, and analysis (40 points)

a. Determine the widths (W) of all the transistors in the design such that the delays are almost same as that of the basic inverter in Part 0.

Include the diagram of the 2-input CMOS NOR logic clearly indicating the (W/L) of each transistor. Note: the diagram should NOT be hand-drawn.

b. Model the circuit in HSPICE, perform the HSPICE simulation, and note down the following parameters.

Performance Parameters	2-input NOR gate				
t_{PLH}	16.8, 15.6, 17.7	16.433ps			
$\overline{}t_{PHL}$	20.4, 10.4, 18.5	16.7ps			
$\overline{t_p}$	16.566ps				
Static Power	4.1915nW				
Average Power	89.04nW				

Include the screenshot of the transient response waveform to observe the inverter operation up to 20ns and the SPICE netist (.sp file).

c. Is the average propagation delay, tt_{pp} , exactly same as that of the basic CMOS inverter from **Part** 0? If not, what is the percentage deviation from the basic inverter's average propagation delay?

0.260%

Part 3: 2-input XNOR gate design, simulation, and analysis (50 points)

a. Determine the widths (W) of all the transistors in the design such that the delays are almost same as that of the basic inverter in Part 0.

Include the diagram of the 2-input CMOS XNOR logic clearly indicating the (W/L) of each transistor. Note: the diagram should NOT be hand-drawn.

Performance Parameters	2-input XNOR gate				
t_{PLH}	15.6, 22.6, 16, 24.5,	19.675ps			
t_{PHL}	25.6, 19.4, 15.6, 22.8	20.85ps			
$\overline{t_p}$	20.262ps				
Static Power	390.9029nW				
Average Power	255.84nW				

Include the screenshot of the transient response waveform to observe the inverter operation up to 20ns and the SPICE netist (.sp file).

c. Is the average propagation delay, tt_{pp} , exactly same as that of the basic CMOS inverter from **Part** 0? If not, what is the percentage deviation from the basic inverter's average propagation delay?

21.989%

Deliverables:

One PDF Report with all the designs, .SP files, simulation results, question answers,

CMOS Inverter Part 0

* This is the model for a 45-nm CMOS Inverter Part 0*

.OPTION POST

.include 'W:\Digital Electronics\device_45_nm.lib'

.param len= 45nm

.param Wp= 135nm

.param Wn= 90nm

vdd vdd gnd dc 1V

*FOR TRANSIENT ANALYSIS

*PULSE (V1 V2 Td Tr Tf PW Period)

V1 Vin gnd PULSE (0 1 0n 0.01n 0.01n 4n 8n)

* TRANSISTOR CONNECTION

*UDN Drain Gate Source Sub device_type Width Length W = WpM2 Vout Vin vdd L= len vdd pmos W=WnL= len M1 Vout Vin gnd gnd nmos

CL Vout gnd 3f

* MEASURING DELAY IN TRANSIENT ANALYSIS

.tran 20p 50n

.measure tpLH TRIG V(Vin) VAL=0.5V FALL=1 TARG V(Vout) VAL=0.5V RISE=1 .measure tpHL TRIG V(Vin) VAL=0.5V RISE=2 TARG V(Vout) VAL=0.5V FALL=2 .measure tp PARAM = '(tpLH + tpHL)/2'

.PRINT V(Vout) V(Vin)

.end

CMOS 2-input NAND gate Part 1

*This is the model for a 45-nm CMOS 2-input NAND gate Part 1 *

.OPTION POST

.include 'W:\Digital Electronics\device_45_nm.lib'

.param len= 45nm

.param Wp= 135nm

.param Wn= 180nm

vdd vdd gnd dc 1V

*FOR TRANSIENT ANALYSIS

*PULSE (V1 V2 Td Tr Tf PW Period)

V1 VA gnd PULSE (1 0 0n 0.01n 0.01n 2n 6n)

V2 VB gnd PULSE (1 0 0n 0.01n 0.01n 6n 10n)

* TRANSISTOR CONNECTION

*UDN	Drain	Gate	Sourc	e Sub	device_type	Width Lengtl	h
MUA	VY	VA	vdd	vdd	pmos	W = Wp	L= len
MUB	VY	VB	vdd	vdd	pmos	W = Wp	L= len
MDA	VY	VA	P1	P1	nmos	W=Wn	L= len
MDB	P1	VB	gnd	gnd	nmos	W=Wn	L= len

* MEASURING DELAY IN TRANSIENT ANALYSIS

- .tran 20p 50n
- .measure tpLH TRIG V(VA) VAL=0.5V FALL=1 TARG V(VY) VAL=0.5V RISE=1
- .measure tpHL TRIG V(VA) VAL=0.5V RISE=2 TARG V(VY) VAL=0.5V FALL=2
- .measure tp PARAM = '(tpLH + tpHL)/2'
- .measure TRAN iavg AVG i(vdd) FROM=18e-9 TO=26e-9

.PRINT V(Vout) V(Vin)

.end 🗅 🕶 🖻 🖈 🛚 📆 : Custom WaveView Version R-2020.12-1 Synopsys. Inc Custom Weekform No. 2011 Symposy, Inc.

Weekform Tools Configuration

To 2 m 0 0 Filter: · (on toplevel)

DO:CMOS_Part0_Inverter.tr0 toplevel
D0:CMOS_Part1_NAND.tr0
toplevel Filter: • V / All V @ £ ☆ **□ ⑦** : Custom WaveView Version R-2020.12-1 Synopsys, Inc. | Cuten Wave/lev Iverion A2002.02-1 Synepsy, inc.
| File Wave/form Tools Configuration | Cuten Configuration | ₽ 🖪 🕢 🛈

 waveview 1 x
 waveview 2 x

 □ € € € € | x

 □ ★ € € € | x

 Filter: \(\left(\text{in toplevel} \right) \right(\text{in toplevel} \right) \right) \right\ \text{in toplevel} \right\) 0.8 0.6 0.4 0.2 0 -0.2 0.6 Filter: • V / All V 0 0.6

CMOS 2-input NOR gate part 2

* This is the model for a 45-nm CMOS 2-input NOR gate part 2*

.OPTION POST

.include 'W:\Digital Electronics\device_45_nm.lib'

.param len= 45nm

.param Wp= 270nm

.param Wn=90nm

vdd vdd gnd dc 1V

*FOR TRANSIENT ANALYSIS

*PULSE (V1 V2 Td Tr Tf PW Period)

V1 VA gnd PULSE (1 0 0n 0.01n 0.01n 4n 6n)

V2 VB gnd PULSE (1 0 0n 0.01n 0.01n 6n 10n)

* TRANSISTOR CONNECTION

*UDN	Drain	Gate	Source Sub		Source Sub device_type Widtl		Width Len	Vidth Length	
MUA	P1	VA	vdd	vdd	pmos	W = Wp	L= len		
MUB	VY	VB	P1	P1	pmos	W = Wp	L= len		
MDA	VY	VA	gnd	gnd	nmos	W=Wn	L= len		
MDB	VY	VB	gnd	gnd	nmos	W=Wn	L= len		

CL VY gnd 3f

* MEASURING DELAY IN TRANSIENT ANALYSIS

.tran 20p 50n

.measure tpLH TRIG V(VA) VAL=0.5V FALL=1 TARG V(VY) VAL=0.5V RISE=1

.measure tpHL TRIG V(VA) VAL=0.5V RISE=2 TARG V(VY) VAL=0.5V FALL=2

.measure tp PARAM = '(tpLH + tpHL)/2'

.measure TRAN iavg AVG i(vdd) FROM=17e-9 TO=19e-9

.PRINT V(Vout) V(Vin)

.end

CMOS 2-input XNOR gate part 3

* This is the model for a 45-nm CMOS 2-input XNOR gate part 3*

.OPTION POST

.include 'W:\Digital Electronics\device_45_nm.lib'

.param len= 45nm

.param WIp= 135nm

.param WIn= 90nm

.param Wp= 270nm .param Wn= 180nm

vdd vdd gnd dc 1V

*FOR TRANSIENT ANALYSIS

*PULSE (V1 V2 Td Tr Tf PW Period)

V1 VA gnd PULSE (1 0 0n 0.01n 0.01n 2n 4n)

V2 VB gnd PULSE (1 0 0n 0.01n 0.01n 3n 5n)

* TRANSISTOR CONNECTION

*UDN	Drain	Gate	Sourc	e Sub	device_type	Width Lengt	h
MIUA	VIA	VA	vdd	vdd	pmos	W = WIp	L= len
M1DA	VIA	VA	gnd	gnd	nmos	W=WIn	L= len
MIUB	VIB	VB	vdd	vdd	pmos	W = WIp	L= len
M1DB	VIB	VB	gnd	gnd	nmos	W=WIn	L= len
MUNB	P1	VB	vdd	vdd	pmos	W = Wp	L= len
MUNA	VY	VA	P1	P1	pmos	W = Wp	L= len
MUIB	P2	VIB	vdd	vdd	pmos	W = Wp	L= len
MUIA	VY	VIA	P2	P2	pmos	W = Wp	L= len
MDIA	VY	VIA	P3	P3	nmos	W=Wn	L= len
MDNB	P3	VB	gnd	gnd	nmos	W=Wn	L= len
MDNA	VY	VA	P4	P4	nmos	W=Wn	L= len
MDIB	P4	VIB	gnd	gnd	nmos	W=Wn	L= len

CL VY gnd 3f

* MEASURING DELAY IN TRANSIENT ANALYSIS

.tran 20p 50n

.measure tpLH TRIG V(VA) VAL=0.5V FALL=1 TARG V(VY) VAL=0.5V RISE=1 .measure tpHL TRIG V(VA) VAL=0.5V RISE=2 TARG V(VY) VAL=0.5V FALL=2

.measure tp PARAM = '(tpLH + tpHL)/2'

.measure TRAN iavg AVG i(vdd) FROM=13e-9 TO=18e-9

.PRINT V(Vout) V(Vin)

.end

