

- + Thanh phân 1: 14
- + Thành phần 2: 26 F.
- + Thành phân 3: 3589 3859

c/Danh sách kể

1:4.2:6,7

3: 🕱 8,9

5.8,9

7:2,6

9:3,5 6:2,7

(3) Ve đồ thí có day bão 4,4,4,4,2

19110315 Trình Ngọc thên

Dô thị trên không có khá mặng là đó thị đờn, vì đô thị có 5 định nhưng 4 định bậc 4 và 1 định bậc 2.

Bài 2: Hamilton

6. Tìm chu trình Hamilton của đồ thị sau. Trình bày chi tiết các bước.

Xét đồ thị G = (X,E) gồm n đỉnh, ta áp dụng 4 quy tắc sau đây:

Quy tắc 1: Lấy hết các cạnh kề với 2 đỉnh bậc 2.

Quy tắc 2: Không để phát sinh chu trình ít hơn n cạnh.

Quy tắc 3: Nếu đã lấy 2 cạnh kề với đỉnh x thì có thể loại tất cả các cạnh còn lại kề với x.

Quy tắc 4: Duy trì tính liên thông và đảm bảo bậc mỗi đỉnh luôn lớn hơn hoặc bằng 2.

Gọi H là tập hợp các cạnh của chu trình Hamilton.

B1: Thêm cạnh {ad} vào H. Loại cạnh {ad} khỏi đồ thị G.

B2: Thêm cạnh {dg} vào H. Loại cạnh {dg} khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {de} khỏi G.

B3: Thêm cạnh {gh} vào H. Loại cạnh {gh} khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {ge} khỏi G.

B4: Thêm cạnh {hi} vào H. Loại cạnh {hi} khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {he} khỏi G.

B5: Thêm cạnh {ie} vào H. Loại cạnh {ie} khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {if} khỏi G.

B6: Thêm cạnh {ef} vào H. Loại cạnh {ef} khỏi đồ thị G. Áp dụng quy tắc 3, loại các cạnh {ec}, {eb}, {ea} khỏi G.

B7: Thêm cạnh {fc} vào H. Loại cạnh {fc} khỏi đồ thị G.

B8: Thêm cạnh {cb} vào H. Loại cạnh {cb} khỏi đồ thị G.

B9: Thêm cạnh {ba} vào H. Loại cạnh {ba} khỏi đồ thị G.

Sau khi đã them đủ số đỉnh của G, ta kết thúc thuật toán. Ta thu được đường đi Hamilton như sau: $a \rightarrow d \rightarrow g \rightarrow h \rightarrow i \rightarrow e \rightarrow f \rightarrow c \rightarrow b$.

7. Tìm chu trình Hamilton của đồ thị sau. Trình bày chi tiết các bước.

Xét đồ thị G = (X,E) gồm n đỉnh, ta áp dụng 4 quy tắc sau đây:

Quy tắc 1: Lấy hết các cạnh kề với 2 đỉnh bậc 2.

Quy tắc 2: Không để phát sinh chu trình ít hơn n cạnh.

Quy tắc 3: Nếu đã lấy 2 cạnh kề với đỉnh x thì có thể loại tất cả các cạnh còn lại kề với x.

Quy tắc 4: Duy trì tính liên thông và đảm bảo bậc mỗi đỉnh luôn lớn hơn hoặc bằng 2.

Gọi H là tập hợp các cạnh của chu trình Hamilton.

B1: Thêm cạnh {ac} vào H. Loại {ac} ra khỏi đồ thị G.

B2: Thêm cạnh {cd} vào H. Loại {cd} ra khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {cg} khỏi G.

B3: Thêm cạnh {dh} vào H. Loại {dh} ra khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {ad} khỏi G.

B4: Thêm cạnh {hg} vào H. Loại {hg} ra khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {hk} khỏi G.

B5: Thêm cạnh {gk} vào H. Loại {gk} ra khỏi đồ thị G.

B6: Thêm cạnh {kl} vào H. Loại {kl} ra khỏi đồ thị G.

B7: Thêm cạnh {lj} vào H. Loại {lj} ra khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {li} khỏi G.

B8: Thêm cạnh {ji} vào H. Loại {ji} ra khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {jf} khỏi G.

B9: Thêm cạnh {ie} vào H. Loại {ie} ra khỏi đồ thị G.

B10: Thêm cạnh {ef} vào H. Loại {ef} ra khỏi đồ thị G. Áp dụng quy tắc 3, loại cạnh {eb} khỏi G.

B11: Thêm cạnh {fb} vào H. Loại {fb} ra khỏi đồ thị G.

B12: Thêm cạnh{ba} vào H. Loại {ba} ra khỏi đồ thị G.

Sau khi đã them đủ số đỉnh của G, ta kết thúc thuật toán. Ta thu được đường đi Hamilton như sau: $a \rightarrow c \rightarrow d \rightarrow h \rightarrow g \rightarrow k \rightarrow l \rightarrow j \rightarrow i \rightarrow e \rightarrow f \rightarrow b$.

Bài 3: Khung cây tối tiểu

8. Sử dụng thuật toán Prim để tìm khung cây tối tiểu đồ thị dưới đây. Trình bày các bước làm.

Chọn a là đỉnh xuất phát.

Đánh dấu "*" để xác định vị trí đi tiếp theo.

Bước	a	b	С	d	e	f	g	h	i	T
Khởi tạo	[0,a]	[5, a]	[∞, a]	[2, a]*	[∞, a]	[∞, a]	[∞, a]	[∞, a]	[∞, a]	a
1	-	[5,a]*	$[\infty, a]$	-	[7, d]	$[\infty, a]$	[6, d]	[8, d]	$[\infty, a]$	a,d
2	ı	ı	[4, b]*	ı	[5, b]	[6, b]	[6, d]	[8, d]	$[\infty, a]$	a,d,b
3	-	-	-	-	[5, b]	$[3, c]^*$	[6, d]	[8, d]	[∞, a]	a,d,b,c
4	-	-	-	-	$[1, f]^*$	ı	[6, d]	[4, f]	[4, f]	a,d,b,c,f
5	-	-	-	-	-	ı	[6, d]	$[3, e]^*$	[4, f]	a,d,b,c,f,e
6	-	-	_	-	-	ı	[4, h]	ı	$[2, h]^*$	a,d,b,c,f,e,h
7	-	-	-	-	-	-	[4, h]*	-	-	a,d,b,c,f,e,h,i
8	-	-	-	-	-	-	-	-	-	a,d,b,c,f,e,h,i,g

Từ đó, ta thu được cây khung T (cạnh) là: $\{(a,d),(a,b),(b,c),(c,f),(f,e),(e,h),(h,i),(h,g)\}$.

9. Sử dụng thuật toán Kruskal để tìm khung cây tối tiểu đồ thị dưới đây. Trình bày các bước làm.

a	2	b	3	С	1	(d
3		1		2		5	
e	4	f	3	g	3		h
4		2		4		3	
	3		3		1		
	i	j	j	k		ı	

Trọng số	Cạnh
1	(c, d)
1	(b, f)
1	(k, l)
2	(a, b)
2	(c, g)
2	(f, j)
3	(b, c)
3	(f, g)
3	(g, h)
3	(i, j)
3	(j, k)
3	(h, l)
3	(a, e)
4	(e, f)
4	(g, k)
4	(e, i)
5	(d, h)

Bước 1: Khởi tạo cây $T = \emptyset$ có 12 đỉnh.

Bước 2: Thêm cạnh (b, f). $T = \{(b, f)\}$.

Bước 3: Thêm cạnh (c, d), (k, l). $T = \{(b, f), (c, d), (k, l)\}$.

Bước 4: Thêm cạnh (a, b), (c, g), (f,i). $T = \{(b, f), (c, d), (k, l), (a, b), (c, g), (f, i)\}$.

Bước 5: Thêm cạnh (b, c). $T = \{(b, f), (c, d), (k, l), (a, b), (c, g), (f, i), (b, c)\}.$

Bước 6: Ta không thêm (f, g) vì nếu thêm sẽ dẫn đến tạo chu trình con.

Bước 7: Thêm (g, h), (i, j), (j, k). $T = \{(b, f), (c, d), (k, l), (a, b), (c, g), (f, i), (b, c), (g, h), (i, j), (j, k)\}.$

Bước 8: Không thêm (h, l) vì sẽ tạo chu trình con.

Bước 9: Thêm (a, e). $T = \{(b, f), (c, d), (k, l), (a, b), (c, g), (f, i), (b, c), (g, h), (i, j), (j, k), (a, e)\}.$

Đến đây ta có được số cạnh của T là 11 = (12 - 1) nên ta dừng thuật toán.

Bài 4: Thuật toán Dijkstra

Trình bày thuật toán Dijkstra để tìm đường đi ngắn nhất của các đồ thị sau

10. Từ đỉnh $\bf A$ tới đỉnh $\bf Z$

Bước	A	В	C	D	Е	F	G	Z
Khởi tạo	0	$(\infty, -)$						
1	-	(4, A)	$(3, A)^*$	$(\infty, -)$				
2	-	$(4, A)^*$	-	(6, C)	(9, C)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$
3	ı	-	ı	$(6, C)^*$	(9, C)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$
4	ı	-	-	-	$(7, D)^*$	(11, D)	$(\infty, -)$	$(\infty, -)$
5	1	-	ı	-	ı	$(11, D)^*$	(12, E)	$(\infty, -)$
6	-	-	-	_	-	-	$(12, E)^*$	(16, G)
7	-	-	-	-	-	-	-	$(16, G)^*$
8	-	-	-	_	-	-	-	-

Vậy đường đi ngắn nhất là: A \rightarrow C \rightarrow D \rightarrow E \rightarrow G \rightarrow Z với tổng độ dài đường đi là 16.

11. Từ Deep Springs đến Warm Springs

Đặt lại tên đỉnh:

- Deep Springs \rightarrow DS.
- Gold Point \rightarrow GP.
- Siver Pea \rightarrow SP.
- Manhattan \rightarrow M.
- Diver \rightarrow D.
- Beatty \rightarrow B.
- Gold field \rightarrow G.
- Warm Springs \rightarrow WS.
- Oasis \rightarrow O.
- Lida → L.
- Tonopah \rightarrow T.

Bước	DS	0	GP	D	SP	L	В	G	T	M	WS
Khởi tạo	0*	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
1	-	(10,DS)*	(30,DS)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
2	-	-	(30,DS)*	(31,0)	(33,O)	(35,O)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
3	-	-	-	(31,0)*	(33,O)	(35,O)	(75,GP)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
4	-	-	-	-	(33,0)*	(35,0)	(75,GP)	(∞,-)	(∞,-)	(111,D)	(∞,-)
5	-	-	-	-	-	(35,0)*	(75,GP)	(53,SP)	(73,SP)	(111,D)	(∞,-)
6	-	-	-	-	-	-	(75,GP)	(53,SP)*	(73,SP)	(111,D)	(∞,-)
7	-	-	-	-	-	-	(75,GP)	-	(73,SP)*	(111,D)	(∞,-)
8	-	-	-	-	-	-	(75,GP)*	-	-	(98,T)	(128,T)
9	-		-	-	-	-	-	-		(98,T)*	(128,T)
10	-	-	-	-	-	-	-	-	-	-	(128,T)*
11	_	-	-	-	-	-	-	-	-	-	-

(Nếu hình trên không vừa lòng anh/chị, thì anh chị có thể xem ở đây).

(Do em copy từ excel qua mà nó dài quá nên làm mất. Mong anh/chị thứ lỗi).

Bước	DS	0	GP	D	SP	L	В	G	T	M	WS
Khởi tạo	0*	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
1	-	(10,DS)*	(30,DS)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
2	-	-	(30,DS)*	(31,0)	(33,O)	(35,O)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
3	-	-	-	(31,0)*	(33,O)	(35,O)	(75,GP)	(∞,-)	(∞,-)	(∞,-)	(∞,-)
4	•	-	-	1	(33,0)*	(35,O)	(75,GP)	(∞,-)	(∞,-)	(111,D)	(∞,-)
5	-	-	-	-	1	(35,O)*	(75,GP)	(53,SP)	(73,SP)	(111,D)	(∞,-)
6	1	-	-	1	•	1	(75,GP)	(53,SP)*	(73,SP)	(111,D)	(∞,-)
7	1	-	-	1	•	-	(75,GP)	-	(73,SP)*	(111,D)	(∞,-)
8	1	-	-	-	•	-	(75,GP)*	-	-	(98,T)	(128,T)
9		-	-	•	-	-	-	-	-	(98,T)*	(128,T)
10	-	-	-	-	-	-	-	-	-	-	(128,T)*
11	-	-	-	-	-	-	-	-	-	-	-

Từ đó, ta có được đường đi ngắn nhất từ Deep Springs-> Warm Springs là: Deep Springs→Oasis→Siver Pea→Tonapah→Warm Springs với tổng độ dài đường đi là 128.