CMSC 141 Automata and Language Theory Regular Languages

Mark Froilan B. Tandoc Instructor 1 ICS UPLB

August 15, 2014

Automata and Language Theory

Automaton

a theoretical machine capable of computation (string processing)

Formal Language

a set of strings (set can be finite, but most interesting languages are infinite)

Example

 $L = \{a, ab, aba, abab, ababa, ...\}$ $L = \text{set of strings } x \text{ over the alphabet } \Sigma = \{a, b\},$ such that x starts with a and alternates with b.

Finite Automaton

- This finite automaton (finite state machine) accepts all strings in *L* and rejects all others
- The machine has a finite number of nodes, but accepts an infinite number of strings

Why study automata?

- Working with abstract machines and languages train the mind (will train the mind in creating algorithms)
- Automata are essential and a good place to start in studying the limitations of computation
- Applications in various computer science topics like compiler design, natural language processing, fractal graphics, etc.

Alphabet

A finite, non-empty set of symbols. Conventionally, we use the symbol Σ for an alphabet.

- $\Sigma = \{0, 1\}$
- $\Sigma = \{0, 1, 2, ..., 8, 9\}$
- $\Sigma = \{a, b, c, ..., x, y, z\}$
- ullet $\Sigma = ASCII$ character set

Strings

A finite sequence of symbols over some alphabet Example strings from the binary alphabet

$$\Sigma = \{0,1\}$$

- 1

The empty string

We represent an empty string by ϵ . Other references use λ .

Length of a string

The number of symbols in a string.

Standard notation for the length of string w is |w|

- |101| = 3
- |1101| = 4
- $|\epsilon| = 0$

Powers of an alphabet

The set of all strings of a certain length from an alphabet Σ can be expressed using an exponent notation.

If $\Sigma = \{0, 1\}$ then

- $\Sigma^0 = \{\epsilon\}$
 - This applies to any alphabet
- $\Sigma^1 = \{0, 1\}$
- $\Sigma^2 = \{00, 01, 10, 11\}$

The set of all strings over an alphabet Σ is denoted by Σ^* .

 $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$

String concatenation

If x = abb and y = ab then xy = abbabFor any string w, $w = w\epsilon = \epsilon w$ holds since ϵ is the *identity* for string concatenation.

Self-concatenation

Self-concat uses exponent notation

If x = abb then

- $\mathbf{x}^0 = \epsilon$
 - This applies to any string
- $x^1 = abb$
- $x^2 = abbabb$
- $x^3 = abbabbabb$

Given w = xyz

- $\blacksquare x$ is a prefix of w
- y is a substring of w
- \blacksquare z is a suffix of w
- Is concatenation commutative?
 - Is xy = yx for all strings x and y?
- Is concatenation associative?
 - Is (xy)z = x(yz) for all strings x, y and z?

Languages

Formal language

A formal language is a set of strings over some alphabet

- \blacksquare $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, ...\}$ over $\Sigma = \{0, 1\}$
- $ID = \{x \in \Sigma^* : x \text{ starts with a letter followed}$ by 0 or more letters or digits $\}$ over $\Sigma = \{a..z, 0..9\}$
- $INT = \{x \in \Sigma^* : x \text{ is a sequence of one or more digits, prefixed by an optional } + \text{ or sign} \}$ over $\Sigma = \{0..9, +, -\}$

Languages

Set-Formers

A language can be described using a set former:

- $\{w \mid \text{ something about } w\}$
 - $\{w|w \text{ consists of an equal number of 0's and 1's }\}$
 - \blacksquare $\{w|w \text{ is a binary integer that is a prime }\}$

Operations on Languages

(Most) set operations are applicable to languages since it is a *set* of strings, along with other string-specific operations.

- Union $\Rightarrow L_1 \cup L_2$ (also denoted as $L_1 + L_2$)
- Intersection $\Rightarrow L_1 \cap L_2$
- Concatenation $\Rightarrow L_1L_2 = \{xy : x \in L_1, y \in L_2\}$
- Kleene Closure $\Rightarrow L^* = L^0 \cup L^1 \cup L^2 \cup ...$
- Complement $\Rightarrow \Sigma^* L$

Operations on Languages

Examples

- Concatenation:
- Kleene Closure

 - $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, ...\}$

Finite Automata

- Finite automata can describe Regular Languages
- A finite automaton has a finite set of states
- Its "control" transfers from state to state in response to external "inputs"
- Can be deterministic or non-deterministic

How FA process strings

- A FA decides whether to "accept" or "reject" a string
- The set of all strings a FA accepts is the language it represents
- lacktriangle Starting from the start state, we transition among the states using the transition function δ using each symbol in the input string until the whole string is read
- If we eventually ended in a final state, the input string is accepted

References

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org