14. Bodové odhady parametrů

Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Odhad získáváme ve tvaru funkce náhodného výběru, tzv. statistiky. Rozeznáváme dva druhy odhadů:

bodový odhad - hodnota statistiky je odhadem parametrů rozdělení; intervalový odhad - hodnota statistiky je mezí intervalu výskytu parametru rozdělení.

14.1. Bodový odhad. Náhodný výběr X_1, X_2, \ldots, X_n je výběrem z rozdělení s hustotou $f(x, \theta_1, \theta_2, \ldots, \theta_m)$, či pravděpodobnostní funkcí $p(x, \theta_1, \theta_2, \ldots, \theta_m)$, kde $\underline{\theta} = (\theta_1, \theta_2, \ldots, \theta_m) \in \Omega$ jsou parametry rozdělení a Ω je parametrický prostor.

 $Bodovým\ odhadem$ parametru $\underline{\theta}$ je vhodně zvolená funkce náhodného výběru, $statistika\ T$, která je odhadem parametrů $\underline{\theta}$. Odhadem parametru $\underline{\theta}$ je hodnota $T(x_1, x_2, \ldots, x_n)$ statistiky T pro realizaci (x_1, x_2, \ldots, x_n) náhodného výběru.

14.2. Kritéria vhodnosti a kvality odhadů.

Formulaci provedeme pro jednorozměrný parametr θ . Pro vektor $\underline{\theta}$ parametrů, či jejich funkci, získáme snadno zobecnění formulací.

1. Nestrannost odhadů. Statistika T je nestranným odhadem parametru θ , jestliže je

$$E(T) = \theta$$
.

Příklad: Je-li X_1, X_2, \ldots, X_n náhodný výběr z rozdělení, pro které je $E(X_i) = \mu$, pak je statistika výběrový průměr

$$T = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

nestranným odhadem střední hodnoty μ .

Je-li rozptyl $D(X_i) = \sigma^2$, pak je statistika výběrový rozptyl

$$T = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

nestranným odhadem rozptylu σ^2 .

Poznámka: Pro střední hodnotu statistiky T je někdy splněna slabší podmínka

$$\lim_{n\to\infty} E(T) = \theta.$$

Takový odhad nazýváme asymptoticky nestranný.

Příklad: Statistika

$$T = s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

je asymptoticky nestranným odhadem rozptylu σ^2 , neboť je $E(s^2) = \frac{n-1}{n}\sigma^2$.

2. Konzistentnost odhadu. Statistika T je konzistentním odhadem parametru θ , jestliže platí

$$\lim_{n \to \infty} P(|T - \theta| < \varepsilon) = 1$$

pro každé $\varepsilon > 0$.

Poznámka: Z Čebyševovy nerovnosti vyplývá, že nestranné odhady s konečným rozptylem jsou konzistentní. Je totiž

$$E(T) = \theta$$
 a $P(|T - \theta| < \varepsilon) \ge 1 - \frac{D(T)}{\varepsilon^2}$.

Příklad: Je-li náhodný výběr výběrem z normálního rozdělení $N(\mu; \sigma^2)$, pak pro výběrový průměr platí:

$$E(T) = E(\overline{X}) = \mu$$
 a $D(T) = D(\overline{X}) = \frac{\sigma^2}{n}$.

Je tedy výběrový průměr \overline{X} nestranným a konzistentním odhadem střední hodnoty μ .

Pro výběrový rozptyl S^2 je

$$E(S^2) = \sigma^2$$
 a $D(S^2) = \frac{1}{n} \left(\mu_4 - \frac{(n-3)\sigma^4}{n-1} \right)$,

je tedy statistika S^2 nestranným a konzistentním odhadem rozptylu σ^2 .

3. Vydatnost odhadu. Nestranný odhadT parametru $\theta,$ pro který je rozptyl

$$D(T) = E[(T - \theta)^2]$$

minimální, se nazývá nejlepší nestranný odhad.

Metody hledání bodových odhadů.

14.3. Metoda maximální věrohodnosti je založena na vlastnostech sdružené hustoty či pravděpodobnostní funkce.

Je-li X_1, X_2, \ldots, X_n náhodný výběr z rozdělení s hustotou, či pravděpodobnostní funkcí $f(x, \theta_1, \theta_2, \ldots, \theta_m)$, pak má náhodný vektor (X_1, X_2, \ldots, X_n) sdruženou hustotu, či pravděpodobnostní funkci

$$f(x_1, \theta_1, \theta_2, \dots, \theta_m).f(x_2, \theta_1, \theta_2, \dots, \theta_m)...f(x_n, \theta_1, \theta_2, \dots, \theta_m).$$

Tuto funkci označujeme

$$(\clubsuit)$$
 $L(x_1, x_2, \dots, x_n, \underline{\theta})$

a nazýváme ji *věrohodnostní funkcí*. Hodnotu $\underline{\hat{\theta}}$, pro kterou je věrohodnostní funkce maximální, nazýváme *maximálně věrohodným* odhadem parametrů $\underline{\theta}$. Protože má v řadě případů hustota exponenciální průběh používáme místo věrohodnostní funkce $L(\boldsymbol{x},\underline{\theta})$ její logaritmus. Maximálně věrohodný odhad $\underline{\hat{\theta}}$ je řešením soustavy věrohodnostích rovnic

$$\frac{\partial L(x_1, x_2, \dots, x_n, \underline{\theta})}{\partial \theta_k} = 0 \Leftrightarrow \frac{\partial \ln L(x_1, x_2, \dots, x_n, \underline{\theta})}{\partial \theta_k} = 0, \quad 1 \leq k \leq m.$$

14.4. Příklad: Normální rozdělení. Pro normální rozdělení $N(\mu;\sigma^2)$ je hustota rovna

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

a tedy věrohodnostní funkce je rovna

$$L(x_1, x_2, \dots, x_n, \mu, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} e^{-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}}$$

Pro logaritmus věrohodnostní funkce $\ln L$ tedy platí:

$$\ln L(x_1, x_2, \dots, x_n, \mu, \sigma^2) = -\frac{n}{2} \ln (\sigma^2) - n \ln (\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

Potom je soustava věrohodnostních rovnic rovna:

$$\frac{\partial \ln L}{\partial \mu} = -\frac{1}{2\sigma^2} 2 \sum_{i=1}^n (x_i - \mu)(-1) = 0,$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

Z první rovnice dostaneme

$$\sum_{i=1}^{n} (x_i - \mu) = 0 \Leftrightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$$

Po dosazení do druhé rovnice dostaneme

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \Leftrightarrow \hat{\sigma}^2 = s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Všimneme si, že odhad střední hodnoty μ je nestranný a konzistentní odhad a odhad rozptylu σ^2 je asymptoticky nestranný.

14.5. Příklad: Poissonovo rozdělení $Po(\lambda)$ má pravděpodobnostní funkci

$$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

a $E(X_i) = D(X_i) = \lambda$. Je tedy věrohodnostní funkce rovna

$$L(k_1, k_2, \dots, k_n, \lambda) = \frac{\lambda^{k_1 + k_2 + \dots + k_n}}{k_1! k_2! \dots k_n} e^{-n\lambda}$$

a její logaritmus je roven

$$\ln L(k_1, k_2, \dots, k_n, \lambda) = -n\lambda + (k_1 + k_2 + \dots + k_n) \ln \lambda - \ln (k_1! k_2! \dots k_n!).$$

Odtud dostaneme věrohodnostní rovnici

$$\frac{\partial \ln L}{\partial \lambda} = -n + \frac{1}{\lambda}(k_1 + k_2 + \ldots + k_n) = 0 \Rightarrow \lambda = \frac{1}{n}(k_1 + k_2 + \ldots + k_n).$$

Maximálně věrohodný odhad parametru λ je roven

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$$

Protože je $E(\overline{X})=\lambda$ a $D(\overline{X})=\frac{\lambda}{n}$ je získaný odhad nestranný a konzistentní.

14.5. Příklad: Exponenciální rozdělení $Exp(0; \delta)$ má hustotu

$$f(x) = \frac{1}{\delta} e^{-\frac{x}{\delta}}, \quad x > 0,$$

pro které je $E(X_i) = \delta$. Věrohodnostní funkce je rovna

$$L(x_1, x_2, \dots, x_n, \delta) = rac{1}{\delta^n} \mathrm{e}^{-rac{1}{\delta} \sum\limits_{i=1}^n x_i}$$

a její logaritmus je roven

$$\ln L(x_1, x_2, \dots, x_n, \delta) = -n \ln \delta - \frac{1}{\delta} \sum_{i=1}^n x_i.$$

Odtud dostaneme věrohodnostní rovnici

$$\frac{\partial \ln L}{\partial \delta} = -n\frac{1}{\delta} + \frac{1}{\delta^2} \sum_{i=1}^n x_i = 0.$$

Maximálně věrohodný odhad parametru δ je

$$\hat{\delta} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$$

Tento odhad je nestranný a konzistentní.

14.6. Příklad: Exponenciální rozdělení $Exp(A; \delta)$ má hustotu

$$f(x) = \frac{1}{\delta} e^{-\frac{x-A}{\delta}}, \quad x > A,$$

pro které je $E(X_i) = A + \delta$ a $D(X_i) = \delta$. Věrohodnostní funkce je rovna

$$L(x_1, x_2, \dots, x_n, A, \delta) = \frac{1}{\delta^n} e^{-\frac{1}{\delta} \sum_{i=1}^n (x_i - A)}$$

a její logaritmus je roven

$$\ln L(x_1, x_2, \dots, x_n, A, \delta) = -n \ln \delta - \frac{1}{\delta} \sum_{i=1}^{n} (x_i - A).$$

Musí být $X_i \geq A, \ 1 \leq i \leq n$ a tudíž funkce ln L má maximální hodnotu pro

$$\hat{A} = min\{X_1, X_2, \dots, X_n\}.$$

Věrohodnostní rovnice pro parametr δ je

$$\frac{\partial \ln L}{\partial \delta} = -n\frac{1}{\delta} + \frac{1}{\delta^2} \sum_{i=1}^{n} (x_i - A) = 0.$$

Maximálně věrohodný odhad parametru δ je

$$\hat{\delta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{A}) = \overline{X} - \hat{A}.$$

Protože je $E(\hat{A}) = A + \frac{\delta}{n}$ není tento odhad nestranný, je vychýlený, asymptoticky nestranný, ale je konzistentní. Dále je $E(\hat{\delta}) = \delta \frac{n-1}{n}$, tudíž je tento odhad rovněž asymptoticky nestranný.

14.7. Příklad: Rovnoměrné rozdělení v intervalu $(\mu-h,\mu+h)$ má hustotu

$$f(x) = \frac{1}{2h}, \quad \mu - h < x < \mu + h,$$

kde $E(X_i) = \mu$ a $D(X_i) = \frac{h^2}{3}$. Věrohodnostní funkce je

$$L(x_1, x_2, \dots, x_n, \mu, h) = \frac{1}{(2h)^n}, \quad \mu - h < x_i < \mu + h$$

a její logaritmus je roven

$$\ln L(x_1, x_2, \dots, x_n, \mu, h) = -n \ln (2h)$$

Tato funkce má maximální hodnotu pro minimální volbu parametru h. Je tedy maximálně věrohodný odhad parametru h roven

$$\hat{h} = \frac{1}{2}(\max\{x_i; \ 1 \le i \le n\} - \min\{x_i; \ 1 \le i \le n\}).$$

Pro maximálně věrohodný odhad střední hodnoty dostaneme

$$\hat{\mu} = \frac{1}{2}(\max\{x_i; \ 1 \le i \le n\} + \min\{x_i; \ 1 \le i \le n\}).$$

Z rozdělení uspořádaného výběru dostaneme, že

$$E(\hat{h}) = h \frac{n-1}{n+1}$$
 a $E(\hat{\mu}) = \mu$.

Odhad $\hat{\mu}$ je nestranný, odhad \hat{h} je asymptoticky nestranný a oba jsou konzistentní.

Metoda momentů je založena na rovnosti výběrových momentů a momentů rozdělení.

14.8. Definice: Je-li X_1, X_2, \dots, X_n náhodný výběr, pak definujeme $k\text{-}t\acute{y}$ výběrový moment jako

$$M'_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \quad 1 \le k$$

a k-tý centrální výběrový moment jako

$$M_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, \quad 1 \le k.$$

Pokud má rozdělení, ze kterého provádíme náhodný výběr, parametry $\theta_1, \theta_2, \dots, \theta_m$, pak jejich odhad $\theta_1^*, \theta_2^*, \dots, \theta_m^*$ určíme z rovnic

$$M'_k = \mu'_k, \quad 1 \le k \le m \Leftrightarrow M_k = \mu_k$$

kde μ'_k jsou obecné a μ_k centrální momenty rozdělení.

Poznámka: Nejčastěji používáme první dva momenty, pro které platí:

$$M'_1 = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}$$
 a $M'_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.

14.9. Příklad: Binomické rozdělení Bi(n, p) má střední hodnotu $E(X_i) = np$ a rozptyl $D(X_i) = np(1-p)$. Odhad parametru p určíme z rovnice

$$np = M_1' = \frac{1}{n} \sum_{i=1}^n X_i \Leftrightarrow p^* = \frac{1}{n^2} \sum_{i=1}^n X_i = \frac{1}{n} \overline{X}.$$

Protože je

$$E(p^*) = \frac{1}{n^2} n \cdot np = p$$
 a $D(p^*) = \frac{p(1-p)}{n^2}$

je odhad p^* nestranný a konzistentní.

14.10. Příklad: Normální rozdělení $N(\mu; \sigma^2)$. Pro normální rozdělení je $E(X_i) = \mu, \, D(X_i) = \sigma^2$ a $E(X_i^2) = \sigma^2 + \mu^2$. Odhady parametrů μ a σ^2 dostaneme z rovnic

$$\mu = M_1' = \overline{X}, \ \sigma^2 + \mu^2 = M_2' = \frac{1}{n} \sum_{i=1}^n X_i^2,$$

tedy

$$\mu^* = \overline{X}$$
 a $\sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\overline{X})^2$.

Odhady jsou shodné s maximálně věrohodnými odhady z odstavce 14.4.

14.11. Příklad: Exponenciální rozdělení $Exp(0, \delta)$ má střední hodnotu $E(X_i) = \delta$ a tudíž odhad parametru δ získáme z rovnice

$$M_1' = \mu_1' \Leftrightarrow \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} = \delta,$$

tedy odhadem parametru δ je hodnota $\delta^* = \overline{X}$. I tento odhad je shodný s maximálně věrohodným odhadem $\hat{\delta}$ z odstavce 14.5.

14.12. Příklad: Exponenciální rozdělení $Exp(A, \delta)$ Má střední hodnotu $E(X_i) = A + \delta$ a rozptyl $D(X_i) = \delta^2$. Odhady parametrů rozdělení získáme z rovnic

$$M_1' = \mu_1'$$
 a $M_2' = \mu_2'$,

tedy

$$\overline{X} = A + \delta, \qquad \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \delta^2 + (A + \delta)^2,$$

jejichž řešením dostaneme

$$\delta^* = \sqrt{\frac{1}{n} \sum_{i=1}^n X_i^2 - (\overline{X})^2} a \quad A^* = \overline{X} - \sqrt{\frac{1}{n} \sum_{i=1}^n X_i^2 - (\overline{X})^2}.$$

Všimneme si, že jsme získali jiné odhady než jsou maximálně věrohodné odhady z odstavce 14.5.

14. 13. Příklad: Rovnoměrné rozdělení v intervalu $(\mu - h, \mu + h)$ má střední hodnotu $E(X_i) = \mu$ a roztyl $D(X_i) = \frac{h^2}{3}$. Pro odhady parametrů μ a h dostaneme rovnice

$$M_1' = \mu$$
 a $M_2' = \mu^2 + \frac{h^2}{3}$.

Jejich řešením dostaneme pro odhady vyjádření

$$\mu^* = \overline{X}$$
 a $h^* = \sqrt{3\left(\frac{1}{n}\sum_{i=1}^n X_i^2 - (\overline{X})^2\right)},$

což jsou hodnoty odlišné od maximálně věrohodných odhadů z odstavce 14.7.