DATA MINING

DIGITAL ASSIGNMENT 6

ABHIRUPA MITRA - 17BCE0437

Recommendar Systems

Implement a recommender system using TensorFlow and Cloud Machine Learning Engine in Google Cloud Platform.

Objectives:

- > Prepare Google Analytics data from BigQuery for training a recommendation model.
- > Train the recommendation model.
- > Tune model hyperparameters for Google Analytics data.
- > Run the TensorFlow model code on Google Analytics data to generate recommendations.

Submit the step-by-step docs for implementing a recommendation system on GCP.

STEP 1: Create a browser based terminal and securely connect to the VM Instance:

```
sudo apt-get update

sudo apt-get install -y git bzip2

git clone https://github.com/GoogleCloudPlatform/tensorflow-recommendation-wals

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh

bash Miniconda2-latest-Linux-x86_64.sh

cd tensorflow-recommendation-wals
    conda create -n tfrec
    conda install -n tfrec --file conda.txt
    source activate tfrec
    plp Install -r requirements.txt
    pip install tensorflow

curl -0 'http://files.grouplens.org/datasets/movielens/ml-100k.zip'
    unzip ml-100k.zip
    mkdir -p data
    cp ml-1m.zip
    mkdir -p data
    crul -0 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
    unzip ml-1m.zip
    mkdir -p data
    crul -0 'http://files.grouplens.org/datasets/movielens/ml-20m.zip'
    unzip ml-20m.zip
    mkdir -p data
    cp ml-20m/ratings.csv data/
```

STEP 2: Model Code:

```
In [2]:
             import pandas as pd
             names=headers,
                                        header=header_row,
           6
                                        dtype={
                                          'user_id': np.int32,
'item_id': np.int32,
           8
                                          'rating': np.float32
          10
                                          'timestamp': np.int32,
          11
          ratings = ratings_df.as_matrix(['user_id', 'item_id', 'rating'])
             # deal with 1-based user indices
          13
             ratings[:,0] -= 1
          15
             ratings[:,1] -= 1
          16
             np items = ratings df.item id.as matrix()
          18 unique items = np.unique(np items)
          19
             n_items = unique_items.shape[0]
          20 max_item = unique_items[-1]
             # map unique items down to an array 0..n items-1
         23 z = np.zeros(max_item+1, dtype=int)
24 z[unique_items] = np.arange(n_items)
25 i_r = z[np_items]
          26
             test set size = len(ratings) / TEST SET RATIO
          28 test_set_idx = np.random.choice(xrange(len(ratings)),
                                               size=test_set_size, replace=False)
          30 test set idx = sorted(test set idx)
```

```
32 ts ratings = ratings[test set idx]
33 tr_ratings = np.delete(ratings, test_set_idx, axis=0)
35 u tr, i tr, r tr = zip(*tr ratings)
36 tr_sparse = coo_matrix((r_tr, (u_tr, i_tr)), shape=(n users, n items))
38 # Implementing the WALS algorithm in TensorFlow
39 input tensor = tf.SparseTensor(indices=zip(data.row, data.col),
                                      values=(data.data).astype(np.float32),
                                      dense shape=data.shape)
42 model = factorization ops.WALSModel(num rows, num cols, dim,
43
                                          unobserved weight=unobs,
44
                                          regularization=reg,
45
                                          row weights=row wts,
                                          col weights=col wts)
47 # retrieve the row and column factors
48 row_factor = model.row_factors[0]
49 col_factor = model.col_factors[0]
50
51 row update op = model.update row factors(sp input=input tensor)[1]
52 col update op = model.update col factors(sp input=input tensor)[1]
54 sess.run(model.initialize op)
55 sess.run(model.worker_init)
56 for _ in xrange(num_iterations):
57
        sess.run(model.row update prep gramian op)
        sess.run(model.initialize row update op)
        sess.run(row_update op)
59
        sess.run(model.col_update_prep_gramian_op)
60
        sess.run(model.initialize_col_update_op)
61
62
        sess.run(col update op)
63
64 # evaluate output factor matrices
65 output_row = row_factor.eval(session=session)
66 output_col = col_factor.eval(session=session)
```

Step3: Train the model locally

Training the model locally is useful for development purposes. It allows you to rapidly test code changes and to include breakpoints for easy debugging. To run the model on <u>Cloud Shell</u> or from your local system, run the mltrain. sh script from the wals_ml_engine directory using the local option.

```
cd wals ml engine
./mltrain.sh local ../data u.data
./mltrain.sh local ../data ratings.csv --headers --delimiter ,
OUTPUT:
```

```
INFO:tensorflow:Train Start: <timestamp>
...
INFO:tensorflow:Train Finish: <timestamp>
INFO:tensorflow:train RMSE = 1.29
INFO:tensorflow:test RMSE = 1.34
```

```
BUCKET=gs://[YOUR_BUCKET_NAME]
gsutil cp -r data/u.data $BUCKET/data/u.data
gsutil cp -r data/ratings.dat $BUCKET/data/ratings.dat
gsutil cp -r data/ratings.csv $BUCKET/data/ratings.csv

cd wals_ml_engine
./mltrain.sh train ${BUCKET} data/u.data
./mltrain.sh train ${BUCKET} data/ratings.dat --delimiter ::
```

Step 4: Hyper parameters to be tuned:

Hyperparameter name and description	Default Value	Scale
latent_factors Number of latent factors K	5	UNIT_REVERSE_LOG_SCALE
regularization L2 Regularization constant	0.07	UNIT_REVERSE_LOG_SCALE
unobs_weight Weight on unobserved ratings matrix entries	0.01	UNIT_REVERSE_LOG_SCALE
feature_wt_factor Weight on observed entries	130	UNIT_LINEAR_SCALE
feature_wt_exp Feature weight exponent	1	UNIT_LOG_SCALE
num_iters Number of alternating least squares iterations	20	UNIT_LINEAR_SCALE

Table 1. Hyperparameter names and default values used in the model

<u>The standard_gpu machine type is specified in the scaleTier parameter, so tuning takes place on a GPU-provisioned machine. The configuration file looks like this:</u>

```
"minValue": "0.001",
        "maxValue": "10.0",
        "scaleType": "UNIT_REVERSE_LOG_SCALE"
        },
        "parameterName": "latent_factors",
        "type": "INTEGER",
        "minValue": "5",
        "maxValue": "50",
        "scaleType": "UNIT REVERSE LOG SCALE"
        },
        "parameterName": "unobs_weight",
        "type": "DOUBLE",
        "minValue": "0.001",
        "maxValue": "5.0",
        "scaleType": "UNIT_REVERSE_LOG_SCALE"
        },
        "parameterName": "feature_wt_factor",
        "type": "DOUBLE",
        "minValue": "1",
        "maxValue": "200",
        "scaleType": "UNIT_LOG_SCALE"
    ],
    "maxTrials": 500
}
}
```

Step 5: Running the hyperparameter tuning job:

./mltrain.sh tune \$BUCKET data/u.data

Hyperparameter Name	Description	Value From Tuning
latent_factors	Latent factors K	34
regularization	L2 Regularization constant	9.83
unobs_weight	Unobserved weight	0.001
feature_wt_factor	Observed weight	189.8
feature_wt_exp	Feature weight exponent	N/A
num_iters	Number of iterations	N/A

Table 2. Values discovered by Cloud ML Engine hyperparameter tuning

Dataset	RMSE with default hyperparameters	RMSE after hyperparameter tuning
100k	1.06	0.98
1m	1.11	0.90
20m	1.30	0.88

Table 3. Summary of RMSE values on the test set for the different MovieLens datasets, before and after hyperparameter tuning

Step 6: Preparing the data from BigQuery for training:

Shell Commands:

```
BUCKET=gs://[bucket1]
gsutil cp
gs://solutions-public-assets/recommendation-tensorflow/data/ga_ses
sions_sample.json.gz ${BUCKET}/data/ga_sessions_sample.json.gz
```

For Location, select Google Cloud Storage, and then enter the following path:

[bucket1]/data/ga_sessions_sample.json.gz

Step 7:Exporting the training Data:

```
#legacySql
SELECT
fullVisitorId as clientId,
ArticleID as contentId,
  (nextTime - hits.time) as timeOnPage,
FROM(
    SELECT
    fullVisitorId,
    hits.time,
```

Step 8: Training the recommendation model:

```
BUCKET="gs://[YOUR_BUCKET_NAME]"
gs://[YOUR_BUCKET_NAME]/ga_pageviews.csv
./mltrain.sh train $BUCKET ga_pageviews.csv --data-type
web_views
```

The path for the job directory is created using the BUCKET argument passed to the mltrain.sh script, then /jobs/, and then the identifier of the training job. The job identifier is set in the mltrain.sh script as well. By default, that identifier is wals_ml_train appended with the job start date and time. For example, if you specified a BUCKET of gs://my_bucket, the model files would be saved to paths like these:

```
gs://my_bucket/jobs/wals_ml_train_20171201_120001/model/row.npy
gs://my_bucket/jobs/wals_ml_train_20171201_120001/model/col.npy
gs://my_bucket/jobs/wals_ml_train_20171201_120001/model/user.npy
gs://my_bucket/jobs/wals_ml_train_20171201_120001/model/item.npy
```

<u>Step 8: Tuning model hyperparameters for Google Analytics data:</u>

./mltrain.sh tune gs://your_bucket data/ga_pageviews.csv --data-type web_views

Hyperparameter Name	Description	Value From Tuning
latent_factors	Latent factors K	30
regularization	L2 Regularization constant	5.05
unobs_weight	Unobserved weight	0.01
feature_wt_factor	Observed weight (linear)	N/A
feature_wt_exp	Feature weight exponent	5.05

Table 1 Values discovered by Cloud ML Engine hyperparameter tuning for the sample Google Analytics data

Step 10: Running Model Code To Generate Recommendations:

```
import numpy as np
from model import generate_recommendations
client id = 1000163602560555666
already_rated = [295436355, 295044773, 295195092]
k = 5
user_map = np.load("/tmp/model/user.npy")
item_map = np.load("/tmp/model/item.npy")
row factor = np.load("/tmp/model/row.npy")
col_factor = np.load("/tmp/model/col.npy")
user idx = np.searchsorted(user map, client id)
user_rated = [np.searchsorted(item_map, i) for i in
already rated]
recommendations = generate recommendations (user idx,
user_rated, row_factor, col_factor, k)
article_recommendations = [item_map[i] for i in
recommendations
```

Generate recommendations in production:

The remaining components needed for a production system to serve recommendations on Google Analytics data include:

- Training a recommendation model on a regular schedule—for example, nightly.
- Serving the recommendations using an API.