# Факультет компьютерных наук

А. С. Коваль, А.В. Сычев

# Архитектура ЭВМ и систем

Учебно-методическое пособие для вузов

| Утверждено научно-методическим      | советом | факультета | компьютерных | на- |
|-------------------------------------|---------|------------|--------------|-----|
| ук, 27 декабря 2006г., протокол N5. |         |            |              |     |

Рецензент: доц. кафедры цифровых технологий ФКН, Кургалин С.Д.

Учебно-методическое пособие подготовлено на кафедре информационных систем факультета компьютерных наук Воронежского государственного университета.

Рекомендовано для проведения лабораторных занятий по предметам «Архитектура ЭВМ и систем», «Архитектура ЭВМ и системное ПО» со студентами 1-го курса дневного отделения факультета компьютерных наук.

Для специальностей: 230201 (071900) - информационные системы и технологии и 230200 (654700) – информационные системы (бакалавр)

# Введение

Целью проведения практических занятий по курсу «Архитектура ЭВМ» является изучение основ организации и архитектуры ЭВМ на примере двух процессорных семейств: ставшего для многих учебных изданий классическим семейства PDP-11 и наиболее распространенного сейчас семейства процессоров Intel x86. Такой подход, на наш взгляд, позволяет, с одной стороны, дать прочные базовые знания фон-неймановской архитектуры, с другой стороны, не обойти вниманием популярную для построения персональных компьютеров серию x86, на которых студенту придется работать в течение учебных семестров, выполнять курсовые и дипломные работы. Кроме того, изучение двух различных подходов дает возможность сравнения, несомненно, полезную в методическом плане.

Во время практических занятий студент использует для выполнения большинства заданий программную модель PDP11 в среде операционной системы Windows 2000 и программу Turbo Debugger фирмы Borland при изучении процессоров Intel x86.

# 1 Модель PDP11

Модель PDP11, написанная на языке Си (MS Visual C++), выполняется в среде ОС Windows 9x/NT/2000 и имеет следующие технические данные:

- Система счисления для чисел и команд двоичная.
- Разрядность для чисел и команд 16 двоичных разрядов.
- Объем адресуемой оперативной памяти 32К 16-разрядных слов.
- Число регистров общего назначения 8.
- Система команд: безадресная, одноадресная, двухадресная.
- Виды адресации: регистровая, косвенно-регистровая, автоинкрементная, косвенно-автоинкрементная, автодекрементная, косвенно-автодекрементная, индексная и косвенно-индексная.
- Обработка внешних и внутренних прерываний выполняется с помощью памяти магазинного типа (стека).

Структурная схема учебной ЭВМ представлена на Рис. 1.1.

# 1.1 Регистры общего назначения

Модуль центрального процессора учебной ЭВМ содержит 16-разрядные регистры общего назначения (РОН), используемые для выборки операндов и записи результатов при выполнении арифметико-логических операций аналогично ячейкам памяти и регистрам внешних устройств.

Два из восьми имеющихся регистров общего назначения R0 - R7 имеют, кроме того, специальное назначение. Регистр R6 - *Указатель Стека* (УС) (Stack Pointer - SP) содержит адрес последней заполненной ячейки стека. Регистр R7 служит *Счетчиком Команд* (СК) (Program Counter - PC) и со-

держит адрес ячейки памяти, из которой процессор выбирает очередную команду для выполнения. В связи с этим обычно этот регистр (R7) используется только для адресации и не используется как накопительный регистр для хранения операндов. Процессор работает таким образом, что после выборки из памяти ЭВМ команды по указанному в R7 (PC) адресу содержимое этого регистра, т.е. адрес очередной команды, автоматически увеличивается на два. Благодаря этому после выполнения очередной команды в регистре R7 будет находиться адрес следующей по порядку команды.



# Рис. 1.1 Структурная схема учебной ЭВМ

# 1.2 Регистр состояния процессора (РСП)

Регистр состояния процессора содержит информацию о текущем состоянии процессора. Это информация (слово состояния процессора - ССП) о значении разрядов (кодов) условий ветвления программы, зависящих от результата выполнения команды, текущем приоритете процессора и др.



Рис. 1.2 Формат слова состояния процессора

На Рис. 1.2 показан формат регистра состояния процессора. Разряд при-

оритета процессора (7-ой разряд РСП) может находиться в состоянии "0" или "1". В последнем случае внешние устройства не могут вызывать прерывания текущей программы. Для удовлетворения требований прерывания программы седьмой разряд регистра состояния процессора должен быть равен "0".

Коды условий ветвления (разряды 0, 1, 2, 3) содержат информацию о результате последней выполненной процессором команды:

- Z=1 результат операции равен нулю
- N=1 результат отрицателен
- С=1 признак переноса из самого старшего разряда или в ситуации, когда при сдвиге вправо из самого младшего разряда была выдвинута единица
- V=1 признак арифметического переполнения

# 1.3 Обращение к памяти и распределение адресов канала

Весь обмен информацией и управляющими сигналами между различными устройствами и ЭВМ осуществляется через единый канал передачи информации. 16-разрядный код адреса позволяет обращаться к 32К 16-разрядных ячеек. Старшие 4К адресов (28К-32К) отведены под регистры внешних устройств. Распределение адресов канала показано на Рис. 1.3. Все адреса даны в восьмеричном коде. Буква "К" используется для обозначения числа, равного 2  $^{10}$  = 1024.



Рис. 1.3 Распределение адресов канала

Канал ЭВМ позволяет адресоваться к 32К 16-разрядных слов или к 64К байт. Ячейки памяти с 000000 по 000376 зарезервированы под векторы прерывания и использовать их для других целей не рекомендуется. Для каждого вектора необходимы две 16-разрядные ячейки, поэтому адреса векторов прерываний являются четными и заканчиваются на 0 или на 4. Последние 4К 16-разрядных адресов обычно отводятся для регистров внешних устройств, поэтому максимальный объем реальной памяти равен 28К 16-разрядных слов. Однако пользователь не обязан использовать все адреса этого пространства для этой цели и может руководствоваться соображениями необходимости.

Как показано на Рис. 1.4, машинное 16-разрядное слово делится на старший и младший байты. Ячейки, содержащие полные слова, всегда имеют четные адреса. Младшие байты слов хранятся в ячейках с четными адресами, а старшие с нечетными (Рис. 1.4).



Рис. 1.4 Формат слова учебной ЭВМ

| СЛОВО   |         | адреса | БАЙТ    | адреса |
|---------|---------|--------|---------|--------|
| байт    | байт    |        |         |        |
| Старший | Младший | 000000 | Младший | 000000 |
| Старший | Младший | 000002 | Старший | 000001 |
| Старший | Младший | 000004 | Младший | 000002 |
|         |         |        |         |        |
|         |         |        |         |        |
|         | •       | •      | •       | •      |
| Старший | Младший | 017770 | Младший | 017774 |
| Старший | Младший | 017772 | Старший | 017775 |
| Старший | Младший | 017774 | Младший | 017776 |
| Старший | Младший | 017776 | Старший | 017777 |

Рис. 1.5 Организация памяти ЭВМ по словам и по байтам для первых 4К адресов

# 1.4 Обмен данными между внешними устройствами и ЭВМ

Канал ЭВМ обеспечивает три типа обмена данными - это программный обмен, обмен в режиме прямого доступа к памяти и обмен в режиме прерывания программы. Обмен информацией между центральным процессором и внешними устройствами выполняется при помощи стандартных циклов обращения к каналу. Для организации обмена каждое внешнее устройство должно иметь один или несколько регистров (регистры данных, регистры состояния и др.), адреса которых определяет пользователь.

Как правило, регистры внешних устройств имеют четные адреса, однако при помощи байтовых команд можно обращаться к любому байту 16-разрядного регистра. Каждое внешнее устройство может иметь несколько различных регистров.

*Регистр состояния* (PC) содержит информацию об операции, выполняемой внешним устройством, характеризует состояние внешнего устройства и участвует в операциях по предоставлению прерывания.

*Регистр данных* (РД) используется при обмене данными между центральным процессором и внешним устройством.

Различные разряды регистров внешних устройств могут выполнять различные функции. Некоторые из них могут использоваться как для записи, так и для считывания информации, другие - только для записи или только для считывания. Типичным примером разряда, используемого для считывания и для записи, является разряд разрешения прерывания в регистре состояния внешнего устройства. Примером разряда, только принимающего информацию, является разряд пуска, а разрядом, используемым только для считывания, разряд ошибки регистра состояния внешнего устройства. Регистры данных внешних устройств, как правило, являются обычными накопительными регистрами, и их формат определяется только требованиями пользователя. Формат регистров состояния внешних устройств показан на Рис. 1.6. Данный формат не является обязательным, но желательным для обеспечения унификации операций, выполняемых при обращении к внешним устройствам. Заметим, что регистры состояния большинства внешних устройств имеют меньше 16 разрядов.



Рис. 1.6 Формат регистра состояния внешнего устройства

# 1.5 Система команд учебной ЭВМ и методы адресации

#### 1.5.1 Общие понятия

Команды ЭВМ, предназначенные для обработки данных, помимо кода выполняемой операции должны тем или иным образом указывать местонахождение (адрес) этих данных (операндов) в памяти ЭВМ. В связи с этим большое значение имеют реализованные в конкретной ЭВМ методы

адресации операндов, т.е. способы указания в машинной команде местонахождения операндов в памяти ЭВМ.

Способы адресации можно классифицировать на *прямые* и *косвенные*. При прямом способе адресации исполнительный адрес берется непосредственно из команды или вычисляется с использованием значения указанного в команде и содержимого какого-либо регистра.

Косвенный способ адресации предполагает, что в команде содержится значение косвенного адреса, т.е. адреса ячейки памяти, в которой находится окончательный исполнительный адрес.

При реализации методов адресации ЭВМ существенным образом используются *регистры центрального процессора* (РОН). Далее мы будем использовать термин адресный регистр для обозначения любого регистра центрального процессора, содержащего адрес.

#### 1.5.2 Формат команд обработки данных в учебной ЭВМ

В командах обработки данных может быть указано местонахождение от одного до нескольких операндов, используемых при выполнении конкретной операции. В учебной ЭВМ используются одноадресные и двухадресные команды. При этом обычно различают операнд - источник и операнд - приемник. Операнд - источник это содержимое ячейки памяти или регистра, которое используется при выполнении указанной в команде операции и которое в процессе выполнения команды не изменяется. Операнд - приемник это ячейка памяти или РОН, содержимое которых также может быть использовано при выполнении команды и в которые помещается результат выполненной операции (приемник результата). Ниже в приведенных примерах адресат - источник обозначается буквами src или S (source - источник), а операнд - приемник dst или D (destination - приемник). Поле команды, содержащее код операции, будет обозначаться аббревиатурой КОП.

#### 1.5.3 Формат одноадресных команд

Формат одноадресных команд (HALT, CLR ...) имеет следующий вид:



Разряды 15 - 06 содержат код операции, который определяет выполняемую команду. Разряды 05 - 00 образуют шестиразрядное поле, именуемое полем адресации операнда приемника, которое в свою очередь состоит из двух подполей:

1) Разряды 02 - 00 определяют один из восьми РОН, который использует данная команда;

2) Разряды 05 - 03 определяют способ использования выбранного регистра (метод адресации). Причем, разряд 03 определяет прямую или косвенную адресации.

#### 1.5.4 Формат двухадресных команд

Операции над двумя операндами (такие, как сложение, пересылка, сравнение) выполняются с помощью команд, в которых задаются два адреса. Задание разрядов в полях адресации операндов источника и приемника определяют используемые методы адресации и регистры общего назначения. Формат двухадресной команды имеет следующий вид:

| 15 | 14 | 13 | 12 | 11           | 10    | 9 | 8 | 7   | 6 | 5 | 4    | 3             | 2           | 1   | 0 |
|----|----|----|----|--------------|-------|---|---|-----|---|---|------|---------------|-------------|-----|---|
|    | К  | ЭΠ |    |              | Метод | Į |   | POI | Н |   | Мето | ЭД            |             | POI | Н |
|    |    |    |    | Пол<br>опера |       |   |   | Į.  |   |   |      | дреса<br>прие | ции<br>мник | a   |   |

Поле адресации операнда источника используется для выборки операнда источника. Поле адресации операнда приемника используется для выборки операнда приемника и занесения результата. Например, по команде **ADD A,B** содержимое ячейки "А" (операнда источника) складывается с содержимым ячейки "В" (операнд приемника). После выполнения операции сложения в ячейке "В" будет находиться результат операции, а содержимое ячейки "А" не изменится.

# 1.5.5 Методы прямой адресации

На Рис. 1.7 показаны последовательности операций при выполнении команд с каждым из четырех методов прямой адресации. При регистровом методе адресации операнд находится в выбранном регистре, который может быть использован как накопитель. Так как РОН аппаратно реализованы в ИС центрального процессора, они обладают более высоким быстродействием, чем любая другая память, работающая под управлением процессора. Это их преимущество особенно проявляется при операциях с переменными, к которым необходимо часто обращаться.



3. Автодекрементный метод адресации (обозначение -(R), код 48 -1002). Адрес Операнд Команда Слово: 4. Индексный метод адресации (обозначение X(R), код 68 - 1102). Команда Адрес Операнд



Рис. 1.7 Методы прямой адресации

# Регистровый метод адресации

При регистровом методе адресации операнд находится непосредственно в указанном в команде регистре.

# Пример 1.

| Мнемоника     | Восьмеричный код | Название            |
|---------------|------------------|---------------------|
| <u>INC</u> R3 | 005203           | Прибавление единицы |

Действие: к содержимому R3 прибавляется единица.

# Автоинкрементный метод адресации

При автоинкрементном методе адресации содержимое выбранного регистра является адресом операнда. После выборки операнда содержимое этого регистра автоматически наращивается для обеспечения возможности обращения в дальнейшем к последующей ячейке. При байтовых операциях наращивание происходит на 1, при операциях с полными *словами* - на 2. Содержимое R6, R7 всегда наращивается на 2.

Автоинкрементный метод адресации особенно удобен при операциях с массивами и стеками. С помощью этого метода можно выбрать элемент таблицы, а затем нарастить указатель для обращения к следующему элементу в таблице. Хотя этот метод наиболее удобен при работе с таблицами, он может быть использован как общий метод для различных целей.

# Пример 2.

| Мнемоника | Восьмеричный код | Название |
|-----------|------------------|----------|
| CLR(R5)+  | 005025           | Очистка  |

<u>Действие</u>: ячейка, адрес которой содержится в R5, очищается, после чего адрес (содержимое R5) увеличивается на 2.

| До выполі | нения операции | После выполнен | ия операции |
|-----------|----------------|----------------|-------------|
| 20000/    | 005025         | 20000/         | 005025      |
| 30000/    | 111116         | 30000/         | 000000      |
| R5/       | 030000         | R5/            | 030002      |

#### Автодекрементный метод

Автодекрементный метод адресации также используется для обработки табулированных данных. Однако в отличие от автоинкрементного метода, адресация к ячейкам массива идет в противоположном направлении. При этом методе адресации содержимое выбранного РОН вначале уменьшается (для байтовых команд - на единицу, для команд с полными словами - на два), а затем используется как исполнительный адрес.

Сочетание автоинкрементного и автодекрементного методов адресации может быть эффективно использовано при работе со стеком.

# Пример 3.

| INC -(R0) | 005240           | Прибавление единицы |
|-----------|------------------|---------------------|
| Мнемоника | Восьмеричный код | Название            |

<u>Действие</u>: содержимое R0 уменьшается на 2 и используется как исполнительный адрес. К операнду, выбранному из ячейки по этому адресу, прибавляется единица.

| До выполнения операции |        | После выполне | ния операции |
|------------------------|--------|---------------|--------------|
| 100/                   | 005240 | 100/          | 005240       |
| 17774/                 | 000000 | 17774/        | 000001       |
| R0/                    | 017776 | R0/           | 017774       |

# Индексный метод адресации

При индексном методе адресации исполнительный адрес определяется как сумма содержимого выбранного РОН с индексным словом. Этот метод позволяет осуществлять произвольный доступ к элементам структуры данных. Индексное слово содержится в следующей за командным словом ячейке памяти. При индексном методе адресации содержимое выбранного регистра может быть использовано в качестве базы для вычисления серии адресов.

# Пример 4.

| CLR 200(R4) | 005064           | Очистка  |
|-------------|------------------|----------|
| Мнемоника   | Восьмеричный код | Название |

<u>Действие</u>: адрес операнда определяется прибавлением к содержимому R4 кода 200, после чего ячейка с вычисленным адресом очищается.

| До выполнения операции | После выполнения операции |
|------------------------|---------------------------|
| 1020/005064            | 1020/005064               |
| 1022/000200            | 1022/000200               |
| 1200/ 177777           | 1200/000000               |
| R4/001000              | R4/001000                 |

#### 1.5.6 Методы косвенной адресации

Четыре основных метода могут быть использованы в комбинации с косвенной адресацией. Если при регистровом методе содержимое выбранного регистра является операндом, то при косвенно - регистровом методе это содержимое является адресом операнда. При трех других косвенных методах вычисленный адрес позволяет выбрать только адрес операнда, а не сам операнд. Эти методы используются при обращении к таблицам, состоящим из адресов, а не из операндов (Рис. 1.8).

1. Косвенно-регистровый метод адресации (обозначение @ $\mathbf{R}$ , код  $\mathbf{1}_8$  -  $001_2$ )



2. *Косвенно-автоинкрементный метод адресации* (обозн. @(R)+, код **3**8 - 0102)



3.Косвенно-автодекрементный метод адресации (обозн. @-(R), код 58 - 1012)



4. *Косвенно - индексный метод адресации* (обозн. **@X(R)**, код 78 - 1112)



Рис. 1.8 Методы косвенной адресации

# Пример 5.

| Мнемоника    | Восьмеричный код | Название            |
|--------------|------------------|---------------------|
| INC (a)(R2)+ | 005232           | Прибавление единицы |

<u>Действие</u>: содержимое ячейки, адрес которой находится в R2, используется как адрес операнда, операнд увеличивается на единицу, а содержимое R2 - на 2.

| До выполнения операции | После выполнения опе- |
|------------------------|-----------------------|
|                        | рации                 |
| 1000/005232            | 1000/005232           |
| 1010/000000            | 1010/000001           |
| 10300/001010           | 10300/001010          |
| R2/010300              | R2/010302             |

#### 1.5.7 Использование счетчика команд (РС) в качестве РОН

Счетчик команд R7 может быть использован со всеми методами адресации, применяемыми в микро - ЭВМ. Однако наиболее эффективно он используется только с четырьмя. Эти методы адресации получили специальные наименования: непосредственный, абсолютный, относительный и косвенно - относительный. Использование этих методов дает возможность построения программ, работоспособность которых не теряется при перемещении их в любую область памяти. В таблице ниже приведены методы адресации с использованием R7. Необходимо понимать, что эти четыре метода аналогичны описанным выше, но в качестве РОН используется R7. Методы адресации с использованием счетчика команд в значительной мере упрощают обработку данных, не сформированных в массивы.

| Восьм. код | Двоичный<br>код | Название              | Функция                                                                                                                    |
|------------|-----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|
| 2          | 010             | Непосредствен-<br>ный | Операнд выбирается из ячейки, следующей за командным словом.                                                               |
| 3          | 011             | Абсолютный            | Из ячейки, следующей за командным словом, выбирается адрес операнда.                                                       |
| 6          | 110             | Относительный         | Операнд выбирается из ячейки, адрес которой определяется как сумма содержимого R7 и ячейки, следующей за командным словом. |

| 7 | 111 | Косвенно-     | Из ячейки, адрес которой оп- |
|---|-----|---------------|------------------------------|
|   |     | относительный | ределяется как сумма содер-  |
|   |     |               | жимого R7 и ячейки, сле-     |
|   |     |               | дующей за командным сло-     |
|   |     |               | вом, выбирается адрес опе-   |
|   |     |               | ранда.                       |

# Непосредственный метод адресации

Непосредственный метод адресации имеет символическое обозначение #N. Он эквивалентен автоинкрементному методу адресации через счетчик команд R7. Этот метод обеспечивает экономию времени программиста при составлении программы за счет возможности помещения константы в ячейку памяти вслед за командным словом.

# Пример 6.

| ADD #10, R0 | 062700           | Сложение |
|-------------|------------------|----------|
| Мнемоника   | Восьмеричный код | Название |

<u>Действие</u>: содержимое R0 складывается с числом 10. Результат записывается в R0.

| До выполнения операции | После | выполнения  | onepa- |
|------------------------|-------|-------------|--------|
|                        | ции   |             |        |
| 1020/062700            |       | 1020/062700 |        |
| 1022/000010            |       | 1022/000010 |        |
| R0/000020              |       | R0/000030   |        |

Примечание. После выборки команды содержимое R7 (адрес этой команды) увеличивается на 2. Так в поле адреса операнда источника записан код 27, R7 используется как указатель адреса при выборке операнда, после чего содержимое его вновь увеличивается на 2 для указания на следующую команду.

# Абсолютный метод адресации

Абсолютный метод адресации имеет символическое обозначение @#A. Он эквивалентен косвенно-автоинкрементной адресации через R7. Этот метод удобен тем, что адрес операнда является его абсолютным адресом (т.е. он остается постоянным независимо от места расположения программы в памяти).

# Пример 7.

| Мнемоника  | Восьмеричный код | Название |  |
|------------|------------------|----------|--|
| CLR @#1100 | 005037           | Очистка  |  |

<u>Действие</u>: содержимое ячейки, следующей за командой, используется в качестве адреса операнда (в данном случае исполнительным адресом является код 1100). Содержимое ячейки с адресом 1100 очищается.

| До выполнения опера- | После выполнения | ļ |
|----------------------|------------------|---|
| ции                  | операции         |   |
| 20/005037            | 20/005037        |   |
| 22/001100            | 22/001100        |   |
| 1100/177777          | 1100/000000      |   |

# Относительный метод адресации

Относительный метод адресации имеет символическое обозначение X(PC) или A, где X - исполнительный адрес по отношению к счетчику команд. Этот метод эквивалентен индексной адресации через R7. Индексное слово хранится в следующей за командным словом ячейке и, будучи сложенным с содержимым R7, дает адрес операнда. Этот метод полезен при написании программы, которая может располагаться в различных местах памяти, так как адрес операнда фиксируется по отношению к содержимому R7. При необходимости перемещения программы в памяти операнд перемещается на то же число ячеек, что и сама команда.

# Пример 8.

| INC A     | 005267           | Прибавление единицы |
|-----------|------------------|---------------------|
| Мнемоника | Восьмеричный код | Название            |

<u>Действие</u>: к операнду, адрес которого определяется сложением содержимого R7 и индексного слова (000054), прибавляется "1".

| До выполнения опера- | После выполнения опе- |
|----------------------|-----------------------|
| ции                  | рации                 |
| 1020/005267          | 1020/005267           |
| 1022/000054          | 1022/000054           |
| 1024/                | 1024/                 |
| 1100/000000          | 1100/000001           |

# Косвенно - относительный метод адресации

Косвенно - относительный метод адресации имеет символическое обозначение @X(PC) или @A, где X - адрес ячейки, содержащей исполнительный адрес, по отношению к счетчику команд. Этот метод эквивалентен косвенно - индексной адресации через CK.

#### 1.6 Выполнение команд

Описание каждой команды включает: мнемонику, восьмеричный код,

формат команды, двоичный код, описание выполнения команды и выработки признаков, специальные пояснения и примеры.

#### 1.6.1 Обозначения, используемые при описании команд

|             | cond tottim, monestiboyetilbio iip |                 | • •                               |
|-------------|------------------------------------|-----------------|-----------------------------------|
| R           | регистр общего назначения          | В               | байтовая команда                  |
| YC (SP)     | указатель стека (R6)               | СК              | счетчик команд                    |
| РСП (RS)    | регистр состояния процессора       | (PC)            | (R7)                              |
| SRC         | источник                           | ссп             | слово состояния процессора        |
| (SRC)       | операнд источника                  | ss              | поле адресации операнда источника |
| DST         | приемник                           | DD              | поле адресации операнда приемника |
| (DST)       | операнд приемника                  | NN              | смещение (6 двоичных разрядов)    |
| XXX         | смещение (8 двоичных разрядов)     | *               | "исключающее ИЛИ"                 |
| ()          | содержимое ячейки                  | &               | логическое умножение ("И")        |
| V           | логическое сложение ("ИЛИ")        | /=/             | не равно                          |
| =           | равно                              | <b>&lt;&gt;</b> | не равно                          |
| Ā           | отрицание А ("НЕ")                 | >=              | больше или равно                  |
| <del></del> | становится равным                  | <=              | меньше или равно                  |
| PUSH        | запись в стек                      | *               | умножение                         |
| POP         | выборка из стека                   | **              | возведение в степень              |
|             |                                    |                 | 1                                 |

#### 1.6.2 Выполнение байтовых команд

Большинство команд ЭВМ оперируют как с полными словами, так и с байтами. Байтовые команды с автоинкрементным или автодекрементными методами адресации для обращения к следующему байту изменяют содержимое указанного регистра на "1". Байтовые команды при регистровом методе адресации производят обработку младшего байта выбранного регистра. Если старший разряд командного слова (разряд 15) установлен в "1", он указывает, что команда байтовая. Если же в разряде 15 командного слова записан "0", команда оперирует с полным словом.

# 1.6.3 Одноадресные команды

| Очистка          |                                                                                                | CLR          | 0050 <i>DD</i> |
|------------------|------------------------------------------------------------------------------------------------|--------------|----------------|
|                  |                                                                                                | CLR <i>B</i> | 1050 <i>DD</i> |
| <u>Действие:</u> | $(DST) \leftarrow 0$                                                                           |              |                |
| Описание:        | в указанную ячейку записывается нуль. Для байтовой команды нуль записывается в указанный байт. |              |                |
| Признаки:        | N V Z C<br>0 1 0 0                                                                             |              |                |

| Инвертирование   |                                                                                                                                                                                                                                                     | COM                                                            | 0051 <i>DD</i> |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------|
|                  |                                                                                                                                                                                                                                                     | COMB                                                           | 1051 <i>DD</i> |
| <u>Действие:</u> | $(DST) \leftarrow (DST)$                                                                                                                                                                                                                            |                                                                |                |
| Описание:        | содержимое указанной ячейки заменяется его двоичным обратным кодом (каждый разряд, содержащий $\theta$ , устанавливается, а каждый разряд, содержащий $I$ , очищается). Для байтовой команды операция производится по отношению к указанному байту. |                                                                |                |
| Признаки:        |                                                                                                                                                                                                                                                     | • 1, если <i>результат</i> < 0<br>1, если <i>результат</i> = 0 |                |

| Прибавление единицы |                                                                                                                                                       | INC  | 0052 <i>DD</i> |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|
|                     |                                                                                                                                                       | INCB | 1052 <i>DD</i> |
| Действие:           | $(DST) \leftarrow (DST) + 1$                                                                                                                          |      |                |
| Описание:           | к содержимому указанной ячейки (или байту, если команда байтовая) прибавляется единица.                                                               |      |                |
| Признаки:           | <ul> <li>N = 1, если результат &lt; 0</li> <li>Z = 1, если результат = 0</li> <li>V = 1, если операно = 077777</li> <li>C - не изменяется.</li> </ul> |      |                |

# Вычимание единицы DEC 0053DD Действие: (DST) ← (DST) - 1 Описание: из содержимого указанной ячейки (или указанного байта для байтовых команд) вычитается единица. • N = 1, если результат < 0</td> • Z = 1, если результат = 0 • V = 1, если операнд = 100000 • С - не изменяется.





| Описание: | в зависимости от содержимого указанной ячейки (или байта для байтовых команд) устанавливаются или очищаются признаки ${f N}$ и ${f Z}$ . |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Признаки: | $oxed{N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                           |

Увеличение или уменьшение чисел в кратное степени 2 число раз выполняется с помощью команд арифметического сдвига: ASR - арифметического сдвига вправо и ASL - арифметического сдвига влево. Знаковый разряд операнда (разряд 15) при арифметическом сдвиге вправо восстанавливается. В младший разряд при арифметическом сдвиге влево заносится нуль. Информация, сдвинутая за пределы C - разряда, теряется.



# Арифметический совиг влево ASL 0063DD Действие: (DST) ← сдвинутое на одну позицию влево (DST) Описание: все разряды операнда сдвигаются влево на одну позицию. В младший разряд результата записывается ноль. С - разряд загружается содержимым старшего разряда операнда. Таким образом, ASL или ASLB выполняет умножение числа со знаком на 2.



Для облегчения последовательной проверки и поразрядной обработки операнда используются команды циклического сдвига. Они оперируют со словом операнда и C-разрядом как с содержимым 17 - разрядного регистра с циклическим переносом.



| Циклический<br>сдвиг влево |                                                                                                                                                                                                  | ROL                                                              | 0061 <i>DD</i>     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|
|                            |                                                                                                                                                                                                  | ROL <i>B</i>                                                     | 1061 <i>DD</i>     |
| Действие:                  | (DST) ← циклически                                                                                                                                                                               | сдвинутое на одну позицию н                                      | влево <i>(DST)</i> |
| Описание:                  | все разряды операнда циклически сдвигаются на одну позицию влево. Содержимое старшего разряда загружается в C- разряд, а прежнее содержимое C - разряда загружается в младший разряд результата. |                                                                  |                    |
| Признаки:                  |                                                                                                                                                                                                  | = 1, если <i>результат</i> < 0<br>= 1, если <i>результат</i> = 0 |                    |

| <ul> <li>V = N*C (после сдвига)</li> </ul> |
|--------------------------------------------|
| • С = содержимое старшего разряда операнда |

# 1.6.4 Двухадресные команды

Использование двухадресных команд обеспечивает возможность экономии машинного времени и сокращения количества команд в программе. Список двухадресных команд содержит четыре арифметические и четыре логические команды.

# Арифметические команды

| Пересылка |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOV<br>MOV <i>B</i>                                                       | 01 <i>SSDD</i> |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|
| Пажаттуа  | (DCT) / (SDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WIO V B                                                                   | 1133DD         |
| Действие: | $(DST) \leftarrow (SRC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |                |
| Описание: | операнд источника (SRC) пересылается по адресу операнда приемника. Прежнее содержимое ячейки DST теряется, содержимое ячейки SRC не изменяется. При операциях с байтами команда MOVB с использованием регистрового метода адресации (единственная среди байтовых команд) расширяет старший разряд младшего байта (расширение знака). Все разряды старшего байта устанавливаются или сбрасываются в зависимости от того, установлен или сброшен старший (знаковый) разряд младшего байта. В других случаях MOVB оперирует с байтами так, как MOV со словами. |                                                                           |                |
| Признаки: | N V Z C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 1, если <i>(SRC)</i> < 0<br>= 1, если <i>(SRC)</i> = 0<br>не изменяется |                |

|           | Сравнение                                                                                                                                                                                            | CMP<br>CMP <i>B</i> | 02SSDD<br>12SSDD |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| Действие: | (SRC) - (DST)                                                                                                                                                                                        |                     |                  |
| Описание: | сравниваются операнды источника и приемника и, как результат сравнения, изменяются признаки, которые затем могут быть использованы для команд условных переходов. Оба операнда не изменяются. За ко- |                     |                  |

|           | мандой сравнения обычно следует команда условного ветвления. Заметим, что в отличие от команды вычитания при выполнении команды <i>CMP</i> операнды меняются местами, т.е. имеет место <i>(SRC) - (DST)</i> , а не <i>(DST) - (SRC)</i> . |                                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Признаки: | N V Z C * * * * *                                                                                                                                                                                                                         | <ul> <li>N = 1, если результат &lt; 0</li> <li>Z = 1, если результат = 0</li> <li>V = 1, если арифметическое переполнение</li> <li>C = 1, если перенос из старшего разряда</li> </ul> |





#### Логические команды

Из четырех логических команд три имеют такой же формат, как и двухадресные арифметические команды. Четвертая команда имеет специфический формат. Логические команды позволяют осуществлять поразрядную обработку данных.



Команда BIT используется для проверки состояния разрядов операнда источника (SRC), для которых установлены соответствующие разряды в операнде приемника (DST).



| Логическое сложение |                                                                                                          | BIS                                                                          | 05 <i>SSDD</i>                                  |
|---------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|
|                     |                                                                                                          | BISB                                                                         | 15 <i>SSDD</i>                                  |
| Действие:           | $(DST) \leftarrow (SRC) \lor (DST)$                                                                      | )                                                                            |                                                 |
| Описание:           | над содержимым SRC и D и записывается результат ются в "1", если соответс Прежнее содержимое DST менным. | по адресу DST. Разр<br>твующие им разряды                                    | ряды DST устанавлива-<br>(SRC) находятся в "1". |
| Признаки:           | $ \begin{array}{c c}     \hline                                $                                         | если <i>результат</i> < <b>0</b> если <i>результат</i> = <b>0</b> изменяется |                                                 |



# 1.6.5 Команды управления программой

К командам управления программой относятся команды ветвления, обращения к подпрограмме, возврата из подпрограммы, безусловного перехода и другие.

#### Команды ветвления.

Эти команды вызывают ветвление по адресу, являющемуся суммой смещения (умноженного на 2) и текущего содержимого счетчика команд R7, если условие ветвления выполняется.

Смещение показывает, на сколько ячеек нужно перейти относительно текущего содержимого счетчика команд в ту или другую сторону. Так как слова имеют четные адреса, то для получения истинного исполнительного адреса смещение необходимо умножить на два перед прибавлением к счетчику команд R7, который всегда указывает на слово. Старший разряд смещения (разряд 7) является знаковым разрядом. Если он установлен в 1, смещение отрицательное, ветвление происходит в сторону уменьшения адреса (в обратном направлении). Если в разряде 7 содержится 0, смещение - положительное, и ветвление происходит в сторону увеличения адресов (в прямом направлении). Восьмиразрядное смещение позволяет производить ветвление в обратном направлении максимально на 2008 слов от слова, на которое указывает текущее содержимое CK, и на 1778 слов в прямом направлении.



Новое содержимое CK = mекущее содержимое CK + 2 \* XXX (смещение), где текущее содержимое CK = adpec команды ветвления + 2.

#### Простые условные ветвления



| Ветвле           | ние, если равно<br>(нулю)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BEQ                                                                         | 001400 + XXX |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|
| <u>Действие:</u> | (CK) ← (CK) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 * XXX, если $Z = 1$                                                       |              |
| Описание:        | проверяется состояние разряда <b>Z</b> и вызывается ветвление, если он установлен. Команда <b>BEQ</b> обратна по действию команде <b>BNE</b> . Вместе с командой <b>CMP</b> команда <b>BEQ</b> используется для проверки равенства двух величин. Вместе с командой <b>BIT</b> она используется для проверки того, что очищенные разряды операнда источника соответствуют установленным разрядам приемника. В общем случае эта команда используется для проверки равенства нулю результата предыдущей операции. |                                                                             |              |
| Признаки:        | NVZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Не изменяются                                                               |              |
| Ветвле           | ние, если плюс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BPL                                                                         | 100000 + XXX |
| Действие:        | (CK) ← (CK) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 * XXX, если $N = 0$                                                       |              |
| Описание:        | проверяется разряд <i>N</i> и вызывается ветвление, если он очищен. Вместе с командой <i>TSTB</i> она используется для проверки установки разряда <i>7</i> (флага готовности) <i>регистра состояния</i> периферийного устройства. В общем случае эта команда используется для проверки положительности результата предыдущей операции. Команда <i>BPL</i> обратна по действию команде <i>BMI</i> .                                                                                                             |                                                                             |              |
| Признаки:        | NVZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Не изменяются                                                               |              |
| Ветвлен          | ние, если минус                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BMI                                                                         | 100400 + XXX |
| Действие:        | (CK) ← (CK) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 * XXX, если N = 1                                                         |              |
| Описание:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ояние разряда <i>N</i> и вызывает<br>зуется для проверки знака<br>операции. |              |
| Признаки:        | NVZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Не изменяются                                                               |              |



| Ветвление, если ариф-<br>метическое переполне-<br>ние |                                                                               | BVS                   | 102400 + XXX |
|-------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|--------------|
| Действие:                                             | (CK) ← (CK) +                                                                 | 2 * XXX, если $V = 1$ |              |
| Описание:                                             | проверяется состояние разряда $V$ и вызывается ветвление, если он установлен. |                       |              |
| Признаки:                                             | NVZC                                                                          | Не изменяются         |              |

BVS используется для обнаружения арифметического переполнения в результате исполнения предыдущей операции. BVS обратна по действию команде BVC.

| Ветвление, если нет переноса |                                                                           | ВСС             | 103000 + XXX |
|------------------------------|---------------------------------------------------------------------------|-----------------|--------------|
| Действие:                    | <i>(CK)</i> ← <i>(CK)</i> +                                               | 2 * XXX, если ( | <i>C</i> = 1 |
| Описание:                    | проверяется разряд $oldsymbol{C}$ и вызывается ветвление, если он очищен. |                 |              |
| Признаки:                    | NVZC                                                                      | Не изменяютс.   | я            |



Команда **BCS** обратна по действию команде **BCC**.

# Условные ветвления по результату операций над числами

Особые комбинации разрядов признаков поверяются с помощью команду условного ветвления по результату операций над числами. Эти команды используются для проверки результатов выполнения команд, в которых операнды рассматриваются как двоичные числа, имеющие знак. Заметим, что отличие в сравнении чисел, имеющих знак, и чисел без знака обусловлено их различным представлением в арифметике, использующей дополнительные коды. Для 16-разрядных чисел, не имеющих знака, последовательность следующая:

| наибольшее | 177777 |
|------------|--------|
|            | 077776 |
|            | •••••  |
|            | 000002 |
|            | 000001 |
| наименьшее | 000000 |

Командами условного ветвления по результату операции над числами являются следующие: *BGE*, *BLT*, *BGT*, *BLE*.



| Действие: | $(CK) \leftarrow (CK) + 2 * XXX$ , если $N*V = 0$                                                                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Описание: | вызывается ветвление, если оба разряда признаков N и V установлены или очищены (т.е. если результат операции <i>исключающее ИЛИ</i> над содержимым разрядов N и V равен $\theta$ ). Таким образом, команда $BGE$ всегда будет вызывать ветвление, если она следует за операцией сложения двух положительных чисел. Команда $BGE$ будет также вызывать ветвление по нулевому результату. |
| Признаки: | NVZC<br>Не изменяются                                                                                                                                                                                                                                                                                                                                                                   |

Ветвление, если 002400 +BLT меньше (нуля) XXX Действие: (CK)  $\leftarrow$  *(СК)* + 2 \* *XXX*, если N\*V = 1вызывается ветвление, если результат операции исключающее ИЛИ над содержимым разрядов N и V равен 1. Команда BLT обратна по действию команде **BGE**. Таким образом, команда **BLT** всегда будет вызывать ветвление, если она следует за операцией сложения двух отрицательных чисел, даже если происходит переполнение. В частности, команда *BLT* будет всегда вызывать ветвление, если она следует Описание: за командой сравнения отрицательного операнда и положительного операнда назначения, даже если произошло переполнение. Команда **BLT** никогда не будет вызывать ветвления, если она следует за командой сравнения (СМР) положительного операнда источника и отрицательного операнда назначения. Она также не будет вызывать ветвления, если результат предыдущей операции равен нулю без переполнения. <u>Признаки</u>: Не изменяются

Ветвление, если больше (нуля)

**BGT** 

003000 + XXX



| Ветвление, если меньше<br>или равно (нулю) |                                                                                                                             | BLE                                                               | 003400 + XXX |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|
| Действие:                                  | $(CK) \leftarrow (CK) + 2$                                                                                                  | <b>2</b> * <i>XXX</i> , если <b>Z</b> V ( <i>N</i> * <i>C</i> ) = | = 1          |
| Описание:                                  | команда $BGT$ подобна команде $BGE$ , за исключением того, что коман да $BGT$ не вызывает ветвления по нулевому результату. |                                                                   |              |
| Признаки:                                  | NVZC                                                                                                                        | Не изменяются                                                     |              |

# Условные ветвления по результату операции над кодами.

Условные ветвления по результату операции над кодами обеспечивают методы проверки результата операций сравнения операндов, рассматриваемых как величины без знака.

| Ветвление, если больше |                                                                                                                                                                                                               | ВНІ                             | 101000 +<br>XXX |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|
| Действие:              | $(CK) \leftarrow (CK) + 2$                                                                                                                                                                                    | 2 * XXX, если $C = 1$ или $Z =$ | 0               |
| Описание:              | вызывается ветвление, если предыдущая операция не вызывала переноса или появления нулевого результата. Это происходит при операциях сравнения <i>СМР</i> , когда операнд источника больше операнда приемника. |                                 |                 |
| Признаки:              | NVZC                                                                                                                                                                                                          | Не изменяются                   |                 |

| Ветвление, если боль-<br>ше или равно |                                                                                                                                                 | BHIS                            | 103000 +<br>XXX |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|
| <u>Действие:</u>                      | $(CK) \leftarrow (CK) + 2$                                                                                                                      | 2 * XXX, если $C = 1$ или $Z =$ | 0               |
| Описание:                             | По своему действию команда <i>ВНІS</i> идентична команде <i>ВСС</i> . Другая мнемоника вводится только в связи с другим использованием команды. |                                 |                 |
| Признаки:                             | NVZC                                                                                                                                            | Не изменяются                   |                 |

| Ветвление, если<br>меньше |                                                                                                                                              | BLO                               | 103400 + XXX |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|
| Действие:                 | <i>(CK)</i> ← <i>(CK)</i> +                                                                                                                  | 2 * XXX, если $C = 1$ или $Z = 1$ | = 0          |
| Описание:                 | По своему действию команда <i>BLO</i> идентична команде <u>BCS</u> . Друга мнемоника вводится только в связи с другим использованием команды |                                   |              |
| Признаки:                 | NVZC                                                                                                                                         | Не изменяются                     |              |

| Ветвление, если мень-<br>ше или равно |      | BLOS                                                       | 101100 +<br>XXX |
|---------------------------------------|------|------------------------------------------------------------|-----------------|
| Дейст-<br>вие:<br>Описа-<br>ние:      | _    | ю команда <i>BLOS</i> является опсходить, если операнд ист |                 |
| <u>Призна-</u><br><u>ки</u> :         | NVZC | Не изменяются                                              |                 |

| Безусловный переход |                                                                                                                                                                                                 | JMP                                                                                                                                                                           | 0001 <i>DD</i>                                                                                                                                                                                                                                                                                                                 |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Действие:           | (CK) ← (DST)                                                                                                                                                                                    | 1                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                |
| Описание:           | программы (не огр<br>да <u>BR</u> ) с использо<br>гистрового. Испол<br>ние программы по<br>4. Метод косвенно<br>управления програ<br>стре. Заметим, что<br>бираться из ячеек<br>дексным методом | раничиваясь предела<br>ванием всех методо<br>взование регистров<br>условию запрещен<br>й адресации может в<br>аммой по адресу, со<br>команды - это поль<br>с четными адресами | есть перехода на любую командуми в +177 и -200 слов как команв адресации, за исключением реой адресации вызывает прерывания команда через адрес вектора применяться и вызывает передачу одержащемуся в указанном региные слова и поэтому должны выми. Команда <i>JMP</i> с косвенно - инт передать управление по адресу, есов. |
| Признаки:           | NVZC                                                                                                                                                                                            | Не изменяются                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |

#### Команды обращения к подпрограмме и выхода из подпрограммы

Эти команды обеспечивают возможность автоматического вложения подпрограмм, выхода из подпрограммы и многократного входа в подпрограмму. В подпрограммах могут быть обращения к другим подпрограммам (или к самим себе) без специального программного запоминания адресов возврата. Процедура обращения к подпрограмме и выхода из нее не изменяет подпрограмму. Это позволяет использовать одну и ту же подпрограмму несколькими процессами, осуществляющими прерывание программы.



| <u>Описа-</u><br>ние: | При выполнении команды <i>JSR</i> старое содержимое указанного регистра ( <i>указатель связи</i> ) автоматически засылается в стек, и в регистр поступает новая связующая информация. Таким образом, обращение к подпрограмме, вложенное в подпрограмму на любую глубину, осуществляется с помощью регистра <i>указатель связи</i> . Нет необходимости в том, чтобы задавать максимальную глубину обращения к данной подпрограмме или включать команды запоминания и восстановления <i>указателя связи</i> в каждую подпрограмму. Обращение к подпрограмме по команде <i>JSR</i> может осуществляться с помощью автоинкрементной адресации (если каждый последующий вход в подпрограмму осуществляется через ячейку, адрес которой на <i>2</i> больше предыдущего) или индексом адресации (если вход в подпрограмму осуществляется по адресам, расположенным в произвольном порядке). Оба эти метода могут быть также косвенными. |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Призна-</u>        | NVZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>ки</u> :           | Не изменяются                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



# 

| <u>Описа-</u><br><u>ние</u> : | Содержимое регистра уменьшается на единицу. Если результат не равен , в счетчик команд загружается новое содержимое, определяемое вычитанием удвоенного смещения из текущего содержимого счетчика команд. В команде <i>SOB</i> смещением является шестиразрядное положительное число. Эта команда может быть эффективно использована для организации различного рода счетчиков, циклов. Следует отметить, что команда <i>SOB</i> не может быть использована для передачи управления в прямом направлении. |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <u>Призна-</u>                | NVZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| <u>ки</u> :                   | Не изменяются                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

#### Команды прерывания

Команды прерывания обеспечивают возможность обращения к программам управления вводом - выводом, программам отладки и программам, разработанным пользователем. Когда происходит прерывание, текущее содержимое счетчика команд и содержимое регистра состояния процессора записывается в стек. Новое содержимое счетчика команд и регистра состояния процессора загружается из вектора прерывания, состоящего из двух слов. При выходе из прерывания используются команды *RTI* и *RTT*, которые восстанавливают *СК* и *РСП*, извлекая их прежнее содержимое из стека. Векторы прерывания расположены по фиксированным, приписанным каждому виду прерывания адресам.



| Возврат из прерывания |                                                                                                                                                                                                       | RTI          | 000002 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
| Действие:             | • (PC) ← (Si<br>• (RS) ← (Si                                                                                                                                                                          |              |        |
| Описание:             | команда <i>RTI</i> используется для выхода из подпрограмм обслуживания внешних и внутренних прерываний. Содержимое счетчика команд и регистра состояния процессора восстанавливается с помощью стека. |              |        |
| Признаки:             | NVZC                                                                                                                                                                                                  | Не изменяютс | Я      |

# 1.6.6 Команды управления процессором

| Останов          |                            | HALT                 | 000000                                                  |
|------------------|----------------------------|----------------------|---------------------------------------------------------|
| <u>Действие:</u> | • (PC) ← (S<br>• (RS) ← (S |                      |                                                         |
| Описание:        |                            | команд сохраняется а | жим опроса пультового термидрес команды, которая должна |
| Признаки:        | NVZC                       | Не изменяются        |                                                         |

# 2 Семейство процессоров Intel x86

Первым представителем семейства Intel x86, или, согласно официальной классификации фирмы Intel (Integrated Electronics, США), семейства процессоров IA (Intel Architecture), является микропроцессор 8086, разработанный к 1978 году. Программы, написанные для него, выполняются на всех последующих процессорах семейства, включая все современные модели. Предшествующие процессоры - 8080, 8085 и 4004 (разработка 1967 г.) из-за несовместимости по объектному коду, остаются вне семейства, являясь, тем не менее, важными этапами на пути развития Intel x86 [3]. Сегодня процессоры этого семейства стали стандартом де-факто для большинства персональных компьютеров (ПК) во всем мире. Ниже приводятся основные данные наиболее известных представителей этой серии:

Таблица 1

|                        |                          |                                               |                                |                                  |                               |                                                    | таолица т              |
|------------------------|--------------------------|-----------------------------------------------|--------------------------------|----------------------------------|-------------------------------|----------------------------------------------------|------------------------|
| Название               | Начало произ-<br>водства | Макс. тактовая частота первых серийных образ- | Число<br>транзисторов,<br>млн. | Размер основных<br>регистров ЦПУ | Ширина внешней<br>шины данных | Размер внешнего адресного про-<br>странства памяти | Кэш-<br>память         |
| 8086                   | 1978                     | 8 МГц                                         | 0.029                          | 16                               | 16                            | 1 Мб                                               | нет                    |
| 80286                  | 1982                     | 12.5МГц                                       | 0.134                          | 16                               | 16                            | 16 Мб                                              | 6В на CP <sup>1</sup>  |
| 80386                  | 1985                     | 20 МГц                                        | 0.275                          | 32                               | 32                            | 4 Гб                                               | 8В на CP <sup>1</sup>  |
| 80486                  | 1989                     | 25 МГц                                        | 1.2                            | 32                               | 32                            | 4 Гб                                               | 8KB L1                 |
| Pentium                | 1993                     | 60 МГц                                        | 3.1                            | 32                               | 64                            | 4 Гб                                               | 16KB L1                |
| Pentium<br>Pro (P6)    | 1995                     | 200 МГц                                       | 5.5                            | 32                               | 64                            | 64 Гб                                              | 16 KB L1,<br>256KB L2  |
| Pentium III<br>(P6)    | 1999                     | 1 ГГц                                         | 9.5                            | 32                               | 64                            | 64 Гб                                              | 2x16K L1,<br>512KB L2  |
| Pentium 4              | 2000                     | 1.4 ГГц                                       | 42                             | 32                               | 2x6<br>4                      | 64 Гб                                              | 8K+12K L1,<br>256KB L2 |
| семейство<br>Itanium 1 | 2001                     | 733МГц                                        | 25                             | 64                               | 64                            | 2 <sup>63</sup> +2 <sup>63</sup>                   | 16Ki+16KB<br>L1, 96KB- |
| семейство<br>Itanium 2 | 2002                     | 900МГц                                        | 220-<br>1720                   | 64                               | 128                           | bytes                                              | 2.5MB L2,<br>2-32MB L3 |

Примечание 1: СР - сегментный регистр.

### 2.1 Микроархитектура процессоров 8086 и Pentium Pro

Микропроцессор 8086 ориентирован на выполнение команд параллельно с их выборкой и может быть условно разделен на две части, работающие асинхронно (

Рис. 2.1): устройство сопряжения с внешними шинами (УС) и устройство обработки (УО). Устройство сопряжения обеспечивает формирование 20-разрядного физического адреса памяти, выборку команд и операндов из памяти, организацию очередности команд и запоминание результатов выполнения команд в памяти. В состав УС входит шесть 8-разрядных регистров очереди команд, четыре 16-разрядных сегментных регистра, 16-разрядный регистр обмена и 16-разрядный сумматор адреса, интерфейс с внешними шинами. Регистры очереди команд организованы по принципу FIFO - «первым пришел - первым вышел». УС готово выполнить цикл выборки 16-разрядного слова из памяти всякий раз, когда в очереди освобождаются, по меньшей мере, два байта, а УО извлекает из очереди команды по мере их выполнения. При выполнении команд передачи управления, например условных и безусловных переходов, очередь очищается УС и начинает заполняться заново.



### Рис. 2.1. Микроархитектура процессора 8086

Устройство обработки предназначено для выполнения операций по обработке данных и состоит из устройства микропрограммного управления (УМУ), 16-разрядного АЛУ, восьми 16-разрядных регистров общего назначения и регистра признаков. Команды из очереди, сформированной УС, поступают в УМУ, где декодируются и выполняются в 16-разрядном АЛУ согласно процедурам, записанным в памяти микропрограмм. Последовательное выполнение команд обеспечивается секвенсором команд, часть которого (регистр счетчика команд IP) изображена в составе УС, т.к. именно УС записывает в IP смещение следующей команды, т.е. положение новой команды относительно начала сегмента команд. УО обменивается данными с УС через внутреннюю 16-разрядную шину и регистр обмена (Рис. 2.1).



Рис. 2.2. Микроархитектура процессоров семейства Pentium Pro Для сравнения приводится (Рис. 2.2) микроархитектура процессоров

шестого поколения Pentium Pro. Как видно, архитектура со времени 8086 претерпела не только количественные (разрядность внутренних и внешних шин данных, регистров), но и существенные качественные изменения. Pentium Pro имеет суперскалярную архитектуру, т.е. может одновременно выполнять несколько команд за один такт. Эту возможность обеспечивают несколько АЛУ - два блока целочисленной арифметики и два блока с плавающей точкой. Другая важная особенность — т.н. динамическое исполнение — команды разбиваются на простейшие операции, порядок независимого исполнения которых определяется блоком «завершения и удаления микрокоманд» с буферами переупорядочивания и пулом микрокоманд (Рис. 2.2).

На Рис. 2.3 представлены обозначения микропроцессоров для принципиальных электрических схем, на которых видны внешние шины и сигналы 16-разрядного 8086 и 32-разрядного 80486.

# 2.2 Система команд и методы адресации процессоров 8086/8088

Процессоры 8086/8088 — первые в семействе x86, отличаются друг от друга шириной шины данных: в 8088 — 8-разрядная шина, в 8086 — 16-разрядная. Поэтому чтение и запись 16-разрядных данных выполняются примерно в два раза медленнее для 8088, т.к. возможна передача только одного байта за один цикл, а не 16-разрядного слова как у 8086.

### 2.2.1 Основные характеристики микропроцессора 8086

| Система команд                        | 135 команд                     |
|---------------------------------------|--------------------------------|
| Адресация                             | безадресная, одно-, двухадрес- |
|                                       | ная                            |
| Типы обрабатываемых данных            | биты, байты, 16-разрядные      |
|                                       | слова, строки до 64К байт      |
| Число программно доступных регист-    | 14 шестнадцатиразрядных        |
| ров                                   |                                |
| Число адресуемых устройств вво-       | 64K/64K                        |
| да/вывода                             |                                |
| Число способов вычисления адреса опе- | 24                             |
| рандов памяти                         |                                |
| Разрядность шин адреса/данных         | 20/16                          |
| Объем адресуемой памяти               | 1Мбайт                         |
| Тактовая частота (на момент выпуска)  | 8 МГц                          |
| Максимальное быстродействие (опера-   | 4 млн.                         |
| ции/с типа "регистр-регистр")         |                                |
| Потребляемая мощность                 | не более 1,75 Вт               |

### 2.2.2 Регистры процессора

Микропроцессор 8086 имеет 12 программно-доступных шестнадцатираз-

#### рядных регистров (

Рис. 2.1), регистр счетчика команд IP (Instruction Pointer) и регистр флагов (или регистр состояния процессора) FLAGS.



Рис. 2.3 ИС процессоров 8086 и 80486 в DIP и PGA корпусах

Среди программно-доступных регистров выделяют следующие группы (см. Рис. 2.4):

- Регистры данных: AX аккумулятор (Accumulator); BX базовый регистр (Base); CX регистр счетчика (Counter); DX регистр данных (Data).
- Регистры-указатели (индексные регистры): SI индекс источника (Source Index); DI индекс приемника (Destination Index); BP указатель базы (Base Pointer); SP указатель стека (Stack Pointer).
- Сегментные регистры: SS сегмент стека (Stack Segment); DS сегмент данных (Data Segment); ES дополнительный сегмент (Extended data Segment); CS сегмент кода (Code Segment).

16-битные регистры AX, BX, CX, DX состоят из двух 8-битных половин, к которым можно независимо обращаться по именам AH, BH, CH, DH - старшие байты и AL, BL, CL, DL - младшие байты.

|                  | регистр  | ы данных | сегментные<br>ры | регист-   |      |   |
|------------------|----------|----------|------------------|-----------|------|---|
|                  | 15 8     | 7 0      |                  |           | 15   | 0 |
| аккумулятор      | AH       | AL       | AX               | кода      | CS   |   |
|                  |          |          |                  |           |      |   |
| базовый          | ВН       | BL       | вх               | данных    | DS   |   |
|                  | T        |          | -                |           |      |   |
| счетчик          | СН       | CL       | CX               | стека     | SS   |   |
|                  | Τ        |          | 7                |           |      |   |
| данных           | DH       | DL       | DX               | доп.      | ES   |   |
|                  |          |          |                  | данных    |      |   |
|                  | адресные | регистры | _                |           |      |   |
| указатель стека  | ٤        | SP       |                  |           |      |   |
|                  |          |          | _                | указатель | IP   |   |
| указатель базы   | E        | 3P       |                  | команд    |      |   |
|                  |          |          | _                |           |      |   |
| индекс назначе-  | _        | )I       |                  | регистр   | FLAG | s |
| яин              |          |          |                  |           |      |   |
|                  |          |          | 7                | состояния |      |   |
| индекс источника |          | SI       |                  |           |      |   |

Рис. 2.4 Регистры процессора 8086

Биты (или флаги) регистра признаков FLAGS разделяются на условные, отражающие результат предыдущей операции ALU, и управляющие, от которых зависит выполнение специальных функций.

| 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    | OF | DF | IF | TF | SF | ZF |    | AF |    | PF |    | CF |

Рис. 2.5 Флаги процессора 8086

Флаги TF, IF, DF относятся к управляющим флагам, остальные - к условным (флагам состояния). Флаги отражают следующие условия:

- флаг переноса *CF* устанавливается в 1 при переносе/заеме, возникающем при сложении/вычитании байтов или слов, а также принимает значение выдвигаемого бита при сдвигах операнда;
- флаг четности РГ устанавливается в 1, если младшие 8 бит резуль-

тата имеют четное число единиц;

- флаг вспомогательного переноса AF устанавливается в 1, если есть перенос/заем из младшей тетрады в старшую 8- или 16-битного результата в операциях десятичного сложения/вычитания;
- флаг нуля ZF устанавливается в 1 при нулевом результате операции;
- флаг знака *SF* устанавливается в 1 при отрицательном результате операции при использовании дополнительного кода;
- флаг переполнения *OF* устанавливается в 1 при потере старшего бита результата сложения или вычитания;
- если флаг направления DF установлен в 1, то используется автодекрементная адресация при выполнении операции обработки строк, если DF установлен в 0, то используется автоинкрементная адресация;
- если флаг прерывания *IF* установлен в 1, то внешние маскируемые прерывания разрешены, иначе запрещены;
- если флаг трассировки TF установлен в 1, то процессор переходит в состояние прерывания после выполнения каждой операции, что позволяет проводить пошаговую отладку программ.

### 2.2.3 Организация памяти

Хотя процессор имеет 20-разрядную адресную шину, которая соединяет его с физической памятью, он оперирует с 16-битными логическими адресами, состоящими из 16-разрядного базового адреса сегмента и 16разрядного смещения в сегменте. Физические, 20-разрядные адреса данных и команд формируются путем сложения содержимого регистровуказателей и смещенного на 4 бита влево содержимого сегментных регистров. Т.н. эффективный адрес данных получается как сумма содержимого регистров ВХ или ВР, содержимого регистров SI или DI и смещения. Затем из эффективного адреса и содержимого сегментного регистра формируется физический адрес (Рис. 2.6). В формировании физического адреса команды участвуют IP и CS. Таким образом, адресное пространство разбивается на 4 сегмента емкостью 64К адресов по числу сегментных регистров. Регистр CS указывает на текущий сегмент кода (программы), откуда выбираются команды. Регистр DS указывает на текущий сегмент данных, в котором содержатся переменные. Регистр SS адресует текущий сегмент стека, в котором реализуются все стековые операции. Наконец, регистр ES определяет текущий дополнительный сегмент данных. Смещенное содержимое сегментного регистра определяет положение сегмента в 20-разрядном адресном пространстве, а регистры-указатели определяют положение команды или данных внутри сегментов.

Поскольку при формировании эффективного адреса содержимое сегментного регистра сдвигается на 4 бита, сегмент всегда начинается с адре-

са, кратного 16, т.е. на границе 16-байтового блока памяти (параграфа). Сегменты в памяти могут располагаться как последовательно, так и с наложением друг на друга. Если программа превышает 64 Кбайт, то необходимо перезагружать сегментный регистр СS новым значением базового адреса. Точно также, если данные превышают 64 Кбайт, то необходимо перезагрузить регистр DS.



Рис. 2.6 Формирование физического адреса данных и команды

Память организована в виде одномерного массива байтов с физическими адресами от  $00000_{16}$  до FFFFF<sub>16</sub>. Две области адресного пространства памяти зарезервированы для выполнения специальных функций, связанных с обработкой прерываний и системным сбросом. Этими областями являются первые 128 байт (физические адреса 00000 - 0007F) и последние 16 байт (физические адреса FFFFO - FFFFF). Данные области использовать для других целей нельзя.

Байты в памяти организуются в слова таким образом, что байту, имеющему меньший адрес, соответствуют менее значимые позиции разрядов в слове. Каждый байт или слово памяти адресуется с помощью 20-битного адреса, причем в случае адресации слова адрес указывает на его младшую часть. Например, адрес  $00000_{16}$  может обозначать и байт с этим адресом, что условно записывается в виде [00000] = 34h, и слово с таким же адресом, что записывается в виде [00000] = 1234h. Тогда старший байт слова, [00001] = 12h. Квадратные скобки обозначают ячейку памяти, адрес которой находится в этих скобках, h – шестнадцатеричную систему счисления. Команды, байты и слова можно размещать по любому адресу байта, однако рекомендуется размещать слова в памяти по четным адресам, так как процессор может передавать такие слова за один цикл обращения к памяти. Слово с четным адресом называется выравненным на границу слова. Слова с нечетными адресами (невыравненные) также допустимы, однако они считываются в два раза медленнее (требуют два цикла обращения к памяти).

#### 2.2.4 Форматы команд

Команды i8086 имеют переменную длину от 1 до 6 байт. По числу обрабатываемых операндов команды подразделяются на безадресные, одноадресные и двухадресные. В двухадресных командах результат всегда записывается по первому адресу и только один из операндов может находиться в памяти. При этом в мнемонике, операнд-приемник записывается слева от запятой-разделителя операндов, а операнд-источник — справа.

Всего существует четыре источника операндов: тело команды, регистр, память и порт ввода/вывода. В первом случае операнд называется непосредственным.

Первый байт команды содержит код операции ( $KO\Pi$ ), в состав которого могут входить специальные разряды d, s и w. При w=1 операции выполняются с 16-разрядными словами, при w=0 – с байтами. Разряд d определяет направление передачи данных в двухоперандных командах: из регистра в регистр/память (d=0) или из регистра/памяти в регистр (d=1). S – определяет расширение 8-битных непосредственных данных до полного размера (s=1) или нет (s=0). При некоторых сочетаниях команд и методов адресации (регистровый метод адресации) положение операнда может задаваться непосредственно в байте кода операции (см. следующий раздел), но чаще для этого используется т.н. «постбайт».

В командах, имеющих длину 2 и более байта, второй байт называется *постбайтом*. Он выполняет функции кодирования адресов операндов. Байты 3 - 6 присутствуют в команде в зависимости от типа адреса операнда, описанного постбайтом и наличия непосредственного операнда.

Постбайт состоит из трех полей: *режима - MOD*, *регистра - REG* и *регистра/памяти - R/M*. Поле MOD занимает 2 бита (6 и 7) постбайта. Поле REG занимает 3 бита (3-5) постбайта. Поле R/M занимает 3 бита (0-2) постбайта. Полями MOD и R/M совместно кодируется тип адреса операнда, находящегося в памяти или регистре. 32 значения этих полей определяют нахождение операнда 24 возможными методами адресации либо в одном из 8 регистров.

Ниже приведена структура байта кода операции и постбайта, а в таблицах показано формирование адресов регистровых операндов и адресов операндов памяти. DISP8 и DISP16 — смещения длиной 8 и 16 бит, расположенные в команде непосредственно за байтом адресации.

|   | КОП |     |   |    |    | П  | стб  | айт | 7  |     |
|---|-----|-----|---|----|----|----|------|-----|----|-----|
| 7 |     | 1   | 0 | 7  | 6  | 5  | 4    | 3   | 2  | 1 0 |
|   |     | S/D | W | M( | OD | RE | EG/( | ЭC  | R/ | /M  |

Рис. 2.7 Формат байта КОП и постбайта

| Таблица 2 Ф | Рормат поля | <b>REG</b> |
|-------------|-------------|------------|
|-------------|-------------|------------|

| Поле | Регистры |     | Carmananananana     |
|------|----------|-----|---------------------|
| REG  | W=1      | W=0 | Сегментные регистры |
| 000  | AX       | AL  | ES                  |
| 001  | CX       | CL  | CS                  |
| 010  | DX       | DL  | SS                  |
| 011  | BX       | BL  | DS                  |
| 100  | SP       | AH  | -                   |

| 101 | BP | СН | - |
|-----|----|----|---|
| 110 | SI | DH | - |
| 111 | DI | ВН | - |

Таблица 3 Кодирование типа адреса операнда

| Поле | Поле | Базовый | Эффективный    | Длина   |
|------|------|---------|----------------|---------|
| MOD  | R/M  | регистр | адрес          | команды |
| 00   | 000  | DS      | [BX+SI]        | 2       |
| 00   | 001  | DS      | [BX+DI]        | 2       |
| 00   | 010  | SS      | [BP+SI]        | 2       |
| 00   | 011  | SS      | [BP+DI]        | 2       |
| 00   | 100  | DS      | [SI]           | 2       |
| 00   | 101  | DS      | [DI]           | 2       |
| 00   | 110  | DS      | DISP16         | 4       |
| 00   | 111  | DS      | [BX]           | 2       |
| 01   | 000  | DS      | DISP8+[BX+SI]  | 3       |
| 01   | 001  | DS      | DISP8+[BX+DI]  | 3       |
| 01   | 010  | SS      | DISP8+[BP+SI]  | 3       |
| 01   | 011  | SS      | DISP8+[DP+DI]  | 3       |
| 01   | 100  | DS      | DISP8+[SI]     | 3       |
| 01   | 101  | DS      | DISP8+[DI]     | 3       |
| 01   | 110  | SS      | DISP8+[BP]     | 3       |
| 01   | 111  | DS      | DISP8+[BX]     | 3       |
| 10   | 000  | DS      | DISP16+[BX+SI] | 4       |
| 10   | 001  | DS      | DISP16+[BX+DI] | 4       |
| 10   | 010  | SS      | DISP16+[BP+SI] | 4       |
| 10   | 011  | SS      | DISP16+[BP+DI] | 4       |
| 10   | 100  | DS      | DISP16+[SI]    | 4       |
| 10   | 101  | DS      | DISP16+[DI]    | 4       |
| 10   | 110  | SS      | DISP16+[BP]    | 4       |
| 10   | 111  | DS      | DISP16+[BX]    | 4       |
| 11   | 000  | -       | AX or AL       | 2       |
| 11   | 001  | -       | CX or CL       | 2       |
| 11   | 010  | -       | DX or DL       | 2       |
| 11   | 011  | -       | BX or BL       | 2       |
| 11   | 100  | -       | SP or AH       | 2       |
| 11   | 101  | -       | BP or CH       | 2       |
| 11   | 110  | -       | SI or DH       | 2       |
| 11   | 111  | -       | DI or BH       | 2       |

Команде может предшествовать префикс — байт со специальным кодированием, которое изменяет операцию следующей за ним команды. В системе команд процессоров 8086/8088 есть два таких префикса — REP (RE-

Peat) для повторения команд обработки строк и SEG (SEGment) для прямого указания команде сегментного регистра вместо регистра, используемого по умолчанию.

### 2.2.5 Методы адресации

Методы адресации можно разделить на два класса: адресация данных и адресация переходов. Все методы можно отнести к одной из следующих групп:

#### Прямая адресация.

16-битный эффективный адрес (EA) операнда является частью команды:



### Пример: mov al, [0000h]

| Код           | Действие                                         |
|---------------|--------------------------------------------------|
| a00000        | Запись байта с адресом 0000h в регистр al        |
| До выполнения | После выполнения                                 |
| al=0          | al=7                                             |
| [0000]=7      | [0000]=7 (Предварительно запишите 7 в DS:[0000]) |
| ip=100        | ip=103                                           |

Примечание: запись в квадратных скобках обозначает ячейку, адрес которой (смещение по отношению к DS) записан в квадратных скобках.

### Регистровая адресация.

Операнд содержится в определяемом командой регистре. 16-битный операнд может находиться в регистрах AX, BX, CX, DX, SI, DI, SP или BP, а 8-битный - в регистрах AH, AL, BH, BL, CH, CL, DH, DL:

| Команда | Регистр     |
|---------|-------------|
| Регистр | <br>Операнд |

#### Пример: mov ax, bx

| Код           | Действие                                     |  |  |  |  |
|---------------|----------------------------------------------|--|--|--|--|
| 8bc3          | Запись содержимого регистра bx, в регистр ах |  |  |  |  |
| До выполнения | После выполнения                             |  |  |  |  |
| ax=7          | ax=3                                         |  |  |  |  |
| bx=3          | bx=3                                         |  |  |  |  |
| ip=100        | ip=102                                       |  |  |  |  |

### Косвенно-регистровая адресация.

Эффективный адрес операнда находится в базовом регистре BX или индексном регистре (SI или DI):



### Пример: mov ax, [bx]

| Действие |
|----------|
|          |

| 8b07 | Запись содержимого ячейки памяти с адресом из регистра bx (смещение внутри сегмента DS), в ре- |
|------|------------------------------------------------------------------------------------------------|
|      | гистр ах                                                                                       |

#### До выполнения

#### После выполнения

| ax=3     | ax=7                                             |
|----------|--------------------------------------------------|
| bx=0     | bx=0                                             |
| [0000]=7 | [0000]=7 (Предварительно запишите 7 в DS:[0000]) |
| ip=100   | ip=102                                           |

Физический адрес определяется парой сегмент-смещение (например CS:IP — адрес следующей команды), и для каждого регистра, содержащего смещение, есть сегментный регистр, заданный по умолчанию. Некоторые сегменты разрешается принудительно переназначать, мнемоническое обозначение переназначения — «сегментный\_регистр:смещение», в коде команды появляется дополнительный (первый) байт — байт замены сегмента.

| Регистры, хранящие смеще-      | Сегмент «по умолча- | Возможная  |
|--------------------------------|---------------------|------------|
| ние                            | НИЮ≫                | замена     |
| IP                             | CS                  | -          |
| SP                             | SS                  | -          |
| BP                             | SS                  | CS, DS, ES |
| BP+SI, BP+DI                   | SS                  | CS, DS, ES |
| BX                             | DS                  | CS, DS, ES |
| SI, DI (кроме адресации строк) | DS                  | CS, DS, ES |
| SI (адресация строк)           | DS                  | CS, DS, ES |
| DI (адресация строк)           | ES                  | -          |

### Пример: mov ax, cs:[bx]

Код Действие

| 2e8b07 | Запись содержимого ячейки памяти с адресом из регистра bx (смещение внутри сегмента CS), в ре- |
|--------|------------------------------------------------------------------------------------------------|
|        | гистр ах                                                                                       |

#### До выполнения

#### После выполнения

| ax=3         | ax=5                                              |
|--------------|---------------------------------------------------|
| bx=103       | bx=103                                            |
| cs=1554      | cs=1554 (посмотрите на текущее значение CS у Bac) |
| [1554:103]=5 | [1554:103]=5 (предварительно запишите [103]=5)    |
| ip=100       | ip=103                                            |

### Непосредственная адресация.

Операнд длиной байт или слово является частью команды. Операнд помещается в последние байты команды, причем младший байт следует первым (находится по меньшему адресу).

| Команда |  |
|---------|--|
| Операнд |  |

### Пример: mov ax, 1234h

Код Действие

| b83412 | Запись операнда, указанного в команде, в регистр |
|--------|--------------------------------------------------|
| 005412 | ax                                               |

#### До выполнения

#### После выполнения

| ax=5   | ax=1234 |
|--------|---------|
| ip=100 | ip=103  |

### Относительная косвенно-регистровая адресация.

Эффективный адрес операнда – сумма 8- или 16-разрядного смещения и значения одного из базовых или индексных регистров. Этот метод также называют *базовым*, если используются регистры BX, BP или *индексным*, при использовании SI, DI.



Базовая адресация обеспечивает возможность работы со структурами

данных, размещенными в памяти, например, с соседними ячейками памяти относительно эффективного адреса в базовом регистре.

### Пример: mov ax, [bx+10], другая форма записи - mov ax, 10[bx]

| Код | Действие |
|-----|----------|
|     |          |

| 8b4710 | Запись содержимого ячейки памяти с EA (сегмент DS), определяемым как сумма содержимого bx и |
|--------|---------------------------------------------------------------------------------------------|
|        | смещения в команде (100+10=110) в регистр ах                                                |

#### До выполнения

#### После выполнения

| ax=1234 | ax=4                                            |
|---------|-------------------------------------------------|
| bx=100  | bx=100                                          |
| [110]=4 | [110]=4 (Предварительно запишите 4 в DS:[0110]) |
| ip=100  | ip=103                                          |

Индексный метод адресации удобен при обработке массивов, когда смещение указывает стартовый адрес массива, а содержимое индексного регистра соответствует индексу массива.

### Пример: mov ax, 0100[si], другая форма записи - mov ax, [si+0100]

Код Действие

| 8b840001 | Запись содержимого ячейки памяти с EA (сегмент DS), определяемым как сумма содержимого si и смещения в команде (2+100=102) в регистр ах. Можно рассматривать значение si как индекс массива со стартовым адресом 100. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### До выполнения

#### После выполнения

| ax=4321  | ax=7                                             |
|----------|--------------------------------------------------|
| si=2     | si=2                                             |
| [0102]=7 | [0102]=7 (Предварительно запишите 7 в DS:[0102]) |
| ip=100   | ip=104                                           |

### Базовая индексная адресация.

Эффективный адрес равен сумме содержимого базового (BX или BP) и индексного (SI или DI) регистров.



### Пример: mov ax, 100[bx][si], другая форма записи - mov ax, [bx+si+0100]

| Код      | Действие                                                                                                                                                                                                                                                                                       |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8b800001 | Запись содержимого ячейки памяти с EA (сегмент DS), определяемым как сумма содержимого регистров si, bx и смещения в команде (10+2+100=112) в регистр ах. Можно рассматривать значение si как индекс выбранного регистром bx одномерного массива в двумерном массиве со стартовым адресом 100. |  |

| До выполнения | После выполнения                                 |
|---------------|--------------------------------------------------|
| ax=7          | ax=5                                             |
| bx=10         | bx=10                                            |
| si=2          | si=2                                             |
| [0112]=5      | [0112]=5 (Предварительно запишите 5 в DS:[0112]) |
| ip=100        | ip=104                                           |

### Неявная адресация.

Неявная адресация задается операцией. Например, в командах обработки строк неявно используются регистры SI, DI. В командах управления циклами неявно используется регистр СХ и т.д.

### Стековая адресация.

Стековая адресация применяется в командах работы со стеком PUSH и POP. Для этих команд адрес операнда находится в указателе стека SP и автоматически уменьшается или увеличивается на два при записи в стек или при чтении из стека. Заполнение стека происходит в направлении уменьшения адресов ячеек памяти. Стек может обмениваться данными с регистрами общего назначения и сегментными регистрами. Команды обмена данными между стеком и памятью содержат байт адресации, в котором 3-разрядное поле REG, совместно с полем КОП, идентифицирует команду.



### Адресация переходов. Внутрисегментный прямой переход.

Адрес следующей команды определяется суммированием смещения со знаком, представленным в двоично-дополнительном коде, и значения IP:



### Пример: јтр 100

### Адресация переходов. Внутрисегментный косвенный переход.

Содержимое регистра IP заменяется содержимым регистра или слова памяти, заданным любым методом адресации, кроме непосредственного:



### Пример: jmp [bx]

### Адресация переходов. Межсегментный прямой переход.

Содержимое регистров CS и IP заменяются словами из команды:



### Адресация переходов. Межсегментный косвенный переход.

Содержимое регистров CS и IP заменяется словами, последовательно расположенными в памяти. Слова могут быть указаны любым методом адресации, кроме непосредственного:



#### 2.2.6 Система команд

#### Команды передачи данных

предназначены для пересылок данных между регистрами и памятью. Эту группу команд можно разделить на четыре подгруппы: команды пересылки данных общего назначения; команды, использующие аккумулятор; команды пересылки адресных объектов; команды пересылки флагов. Все команды этой группы не влияют на установку флагов, за исключением команд SAHF и POPF.

## Пример: mov ax, bx

## Код Действие

| 8bc3 | Пересылка 16-разрядного содержимого регистра bx |
|------|-------------------------------------------------|
| 0000 | B ax.                                           |

## До выполнения

## После выполнения

| ax=0    | ax=1234 |
|---------|---------|
| bx=1234 | bx=1234 |
| ip=100  | ip=102  |

| Мне-<br>моника | Действие                                                                                           | Байт<br>КОП | Постбайт      |
|----------------|----------------------------------------------------------------------------------------------------|-------------|---------------|
|                | Передача операнда из памяти/операнда регистра в регистр или из регистра в память/операнд регистра. | 100010dw    | mod reg r/m   |
|                | Передача непосредственного операнда в память/операнд регистра.                                     | 1100011w    | mod 000 r/m   |
|                | Передача непосредственного операнда в регистр.                                                     | 1011w reg   | нет           |
| MOV            | Передача операнда из памяти в аккумулятор.                                                         | 1010000w    | нет           |
|                | Передача операнда из аккумулятора в память.                                                        | 1010001w    | нет           |
|                | Передача операнда из памяти/регистра в сегментный регистр.                                         | 10001110    | mod 0 reg r/m |
|                | Передача операнда из сегментного регистра в память/регистр.                                        | 10001100    | mod 0 reg r/m |
| XCHG           | Обмен операндом из памяти/регистра с операндом из регистра.                                        | 1000011w    | mod reg r/m   |
| ACHG           | Обмен операндом из регистра с операндом из аккумулятора.                                           | 10010reg    | нет           |
| PUSH           | Передача операнда из памяти/операнда регистра по адресу в указателе стека SP.                      | 11111111    | mod 110 r/m   |
|                | Передача операнда из регистра по адресу в указателе стека SP.                                      | 01010reg    | нет           |
|                | Передача операнда из сегментного регистра по адресу в указателе стека SP.                          | 000reg110   | нет           |
| POP            | Передача операнда из адреса в указателе стека SP в память/регистр.                                 | 10001111    | mod 000 r/m   |

|       | Передача операнда из адреса в указателе стека SP в регистр.                                                                          | 01011reg | нет         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|       | Передача операнда из адреса в указателе стека SP в сегментный регистр.                                                               | 000reg11 | нет         |
| PUSHF | Передача содержимого регистра флагов по адресу в указателе стека SP.                                                                 | 10011100 | нет         |
| POPF  | Передача содержимого из адреса в указателе стека SP в регистр флагов.                                                                | 10011101 | нет         |
| LEA   | Загрузка исполнительного адреса памяти в регистр общего назначения.                                                                  | 10001101 | mod reg r/m |
| LDS   | Загрузка из памяти относительного адреса (смещения) и адреса сегмента в один из регистров общего назначения и сегментный регистр DS. | 11000101 | mod reg r/m |
| LES   | Загрузка из памяти относительного адреса (смещения) и адреса сегмента в один из регистров общего назначения и сегментный регистр ES. | 11000100 | mod reg r/m |
| LAHF  | Передача младшего байта регистра флагов в регистр АН.                                                                                | 10011111 | нет         |
| SAHF  | Передача содержимого регистра АН на место младшего байта регистра флагов.                                                            | 10011110 | нет         |
| XLAT  | Передача байта в регистр AL из 256-<br>байтовой таблицы кодов.                                                                       | 11010111 | нет         |
| IN    | Передача байта/слова из фиксированного порта ввода в аккумулятор AL/AX.                                                              | 1110010w | нет         |
| 111   | Передача байта/слова из переменного порта ввода в аккумулятор AL/AX.                                                                 | 1110110w | нет         |

### Арифметические команды

предназначены для выполнения четырех основных видов арифметических действий над 8- и 16- разрядными операндами в знаковом и беззнаковом представлении. Кроме основных арифметических команд имеются операции коррекции арифметических результатов для их перевода в упакованную или неупакованную форму. Признаки полученного результата отображаются в 6 битах регистра Flags (CF, AF, SF, ZF, PF и OF).

### Пример: add ax, bx

| Код | Действие |
|-----|----------|
|-----|----------|

| 03c3 | Сложение 16-разрядного содержимого регистров |
|------|----------------------------------------------|
|      | bx, ах и запись результата в ах.             |

## До выполнения

### После выполнения

| ax=2   | ax=5   |
|--------|--------|
| bx=3   | bx=3   |
| ip=100 | ip=102 |

| Мнемо-<br>ника | Действие                                                                                             | Байт<br>КОП | Постбайт    |
|----------------|------------------------------------------------------------------------------------------------------|-------------|-------------|
| ADD            | Сложение операнда из памяти/регистра с операндом из регистра.                                        | 000000dw    | mod reg r/m |
|                | Сложение непосредственного операнда с операндом из памяти/регистра.                                  | 100000sw    | mod 000 r/m |
|                | Сложение непосредственного операнда с операндом в аккумуляторе.                                      | 0000010w    | нет         |
|                | Сложение операнда из памяти/регистра с операндом из регистра (с учетом переноса).                    | 0001010w    | mod reg r/m |
| ADC            | Сложение непосредственного операнда с операндом из памяти/регистра (с учетом переноса).              | 100000sw    | mod 010 r/m |
|                | Сложение непосредственного операнда с операндом в аккумуляторе (с учетом переноса).                  | 0001010w    | нет         |
| INC            | Увеличение на единицу содержимого памяти/регистра.                                                   | 1111111w    | mod 000 r/m |
| nve            | Увеличение на единицу содержимого регистра.                                                          | 01000reg    | нет         |
| AAA            | Коррекция содержимого аккумулятора AL при сложении двоично-десятичных кодов в неупакованном формате. | 00110111    | нет         |
| DAA            | Тоже, но в упакованном формате.                                                                      | 00100111    | нет         |
| SUB            | Вычисление разности между операндом из памяти/регистра и операндом из регистра.                      | 001010dw    | mod reg r/m |
|                | Вычитание непосредственного операнда из операнда в памяти/регистре.                                  | 100000sw    | mod 101 r/m |
|                | Вычитание непосредственного операнда из операнда в аккумуляторе.                                     | 0010110w    | нет         |
| SBB            | Вычисление разности между операндом из памяти/регистра и операндом из регистра (с заемом).           | 000110dw    | mod reg r/m |

|      | Вычитание непосредственного операнда из операнда в памяти/регистре (с заемом).                            | 100000sw | mod 011 r/m |
|------|-----------------------------------------------------------------------------------------------------------|----------|-------------|
|      | Вычитание непосредственного операнда из операнда в аккумуляторе (с заемом).                               | 0001110w | нет         |
| DEC  | Вычитание единицы из операнда в памяти/регистре.                                                          | 1111111w | mod 001 r/m |
| DLC  | Вычитание единицы из операнда в регистре.                                                                 | 01001reg | нет         |
| NEG  | Вычитание исходного операнда из нуля (изменение знака).                                                   | 1111011w | mod 011 r/m |
|      | Сравнение операнда из памя-ти/регистра с операндом из регистра.                                           | 001110dw | mod 011 r/m |
| CMP  | Сравнение непосредственного операнда с операндом в памяти/регистре.                                       | 100000sw | mod reg r/m |
|      | Сравнение непосредственного операнда с операндом в аккумуляторе.                                          | 0011110w | нет         |
| AAS  | Коррекция содержимого аккумулятора AL при вычитании двоично-<br>десятичных кодов в неупакованном формате. | 00111111 | нет         |
| DAS  | То же, но в упакованном формате.                                                                          | 00101111 | нет         |
| MUL  | Умножение без учета знака операнда в аккумуляторе на операнд из памяти/регистра.                          | 1111011w | mod 100 r/m |
| IMUL | Умножение со знаком операнда из памяти/регистра.                                                          | 1111011w | mod 101 r/m |
| DIV  | Деление без учета знака операнда длиной в одно/два слова на операнд из памяти/регистра.                   | 1111011w | mod 110 r/m |
| IDIV | Деление со знаком операнда длиной в одно/два слова на операнд из памя-ти/регистра.                        | 1111011w | mod 111 r/m |
| AAM  | Коррекция содержимого аккумулятора АХ при умножении двоично-<br>десятичных кодов в неупакованном формате. | 11010100 | 00001010    |
| AAD  | Коррекция содержимого аккумулятора AL при делении двоично-десятичных кодов в неупакованном формате.       | 11010101 | 00001010    |

#### Логические команды

предназначены для выполнения четырех логических действий над 8- и 16-битовыми логическими структурами: получение инверсного кода, логическое произведение, логическая сумма, сумма по модулю два. Команды AND, TEST, OR и XOR воздействуют на арифметические флаги следующим образом: флаги OF и CF всегда сбрасываются в нулевое состояние; состояния флагов SF, ZF, PF зависят от полученного результата и определяются по тем же правилам, что и в командах арифметических операций; состояние флага AF не определено. Команда NOT не влияет на состояние флагов.

### Пример: not ax

| Действие |
|----------|
|          |

| F7D0 | Значения 16 бит регистра ах меняются на противо- |
|------|--------------------------------------------------|
|      | положные.                                        |

#### До выполнения

#### После выполнения

| ax=5555 | ax=AAAA |
|---------|---------|
| ip=100  | ip=102  |

| Мнемо-<br>ника | Действие                                                                                                                              | Байт<br>КОП | Постбайт    |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| NOT            | Инвертирование разрядов операнда в памяти/регистре.                                                                                   | 1111011w    | mod 010 r/m |
|                | Логическое умножение операнда из памяти/регистра и операнда из регистра.                                                              | 001000dw    | mod reg r/m |
| AND            | Логическое умножение непосредственного операнда и операнда из памяти/регистра.                                                        | 1000000w    | mod 100 r/m |
|                | Логическое умножение непосредственного операнда и операнда в аккумуляторе.                                                            | 0010010w    | нет         |
| TEST           | Установка регистра FLAGS в соответствии с результатом логического умножения операнда из памяти/регистра и операнда из регистра.       | 1000010w    | mod reg r/m |
|                | Установка регистра FLAGS в соответствии с результатом логического умножения непосредственного операнда и операнда из памяти/регистра. | 1111011w    | mod 000 r/m |

|     | Установка регистра FLAGS в соответствии с результатом логического умножения непосредственного операнда и операнда в аккумуляторе. | 1010100w | нет         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|     | Логическое сложение операнда из памяти/регистра и операнда из регистра.                                                           | 000010dw | mod reg r/m |
| OR  | Логическое сложение непосредственного операнда и операнда из памяти/регистра.                                                     | 1000000w | mod 001 r/m |
|     | Логическое сложение непосредственного операнда и операнда в аккумуляторе.                                                         | 0000110w | нет         |
| _   | Операция "исключающее ИЛИ" над операндами из памяти/регистра и из регистра.                                                       | 001100dw | mod reg r/m |
| XOR | Операция "исключающее ИЛИ" над непосредственным операндом и операндом из памяти/регистра.                                         | 1000000w | mod 110 r/m |
|     | Операция "исключающее ИЛИ" над непосредственным операндом и операндом в аккумуляторе.                                             | 0011010w | нет         |

#### Команды сдвига

предназначены для выполнения логических, арифметических и циклических сдвигов. Поле операнда имеет формат mem/reg, count. Здесь mem/reg адресует регистр или ячейку памяти, а count (счет или счетчик) определяет число сдвигов. Число сдвигов может быть указано как константа 1 (статический сдвиг) или как регистр СL. В первом случае осуществляется сдвиг на один байт, а во втором - число сдвигов определяется содержимым регистра СL, которое должно быть беззнаковым целым двочиным числом. Таким образом, число сдвигов можно задать переменной, вычисляемой во время выполнения программы (так называемый динамический сдвиг). При выполнении команд сдвигов флаги изменяются следующим образом:

- состояние флага АF всегда не определено;
- флаг СF всегда содержит значение последнего выдвинутого бита;
- в однобитных сдвигах флаг OF=0, если операция изменила значение старшего (знакового) бита операнда; при сдвиге на несколько бит состояние флага OF не определено;
- циклические сдвиги влияют только на флаги OF и CF;
- в арифметических и логических сдвигах флаги SF, ZF и PF изменяются в соответствии с полученным результатом.

### Пример: shl ax, 1

| Код | Действие |
|-----|----------|
| тод | Депствис |

|      | Поразрядный сдвиг 16-разрядного содержимого ре-  |
|------|--------------------------------------------------|
| D1E0 | гистра ах на одну двоичную позицию влево, в сто- |
|      | рону старших разрядов.                           |

#### До выполнения

#### После выполнения

| ax=1111 | ax=2222 |
|---------|---------|
| ip=100  | ip=102  |

| Мнемо-<br>ника | Действие                                                                                                                      | Байт<br>КОП | Постбайт    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| SHL,<br>SAL    | Логический (арифметический) сдвиг влево операнда из памяти/регистра на число разрядов, определяемое константой сдвига.        | 110100vw    | mod 100 r/m |
| SHR            | Логический сдвиг вправо операнда из памяти/регистра на число разрядов, определяемое константой сдвига.                        | 110100vw    | mod 101 r/m |
| SAR            | Арифметический сдвиг вправо операнда из памяти/регистра на число разрядов, определяемое константой сдвига.                    | 110100vw    | mod 111 r/m |
| ROL            | Циклический сдвиг влево операнда из памяти/регистра на число разрядов, определяемое константой сдвига.                        | 110100vw    | mod 000 r/m |
| ROR            | Циклический сдвиг вправо операнда из памяти/регистра на число разрядов, определяемое константой сдвига.                       | 110100vw    | mod 001 r/m |
| RCL            | Циклический сдвиг влево, с использованием СF, операнда из памяти/регистра на число разрядов, определяемое константой сдвига.  | 110100vw    | mod 010 r/m |
| RCR            | Циклический сдвиг вправо, с использованием СF, операнда из памяти/регистра на число разрядов, определяемое константой сдвига. | 110100vw    | mod 011 r/m |

### Команды передачи управления

включают в себя безусловные переходы, команды обращения к подпрограммам и возврата из них, а также команды управления циклами. Выполнение этих команд приводит к изменению содержимого указателя команд IP и регистра CS. Команды безусловных переходов и обращений к подпро-

граммам обеспечивают как внутрисегментные, так и межсегментные переходы с прямой и косвенной адресацией. Команды управления циклами обеспечивают переход только в области текущего сегмента с коротким смещением.

### Пример: јтр 110

| Действие |
|----------|
|          |

| EB0E | Загрузка регистра IP значением 110. Следующая |
|------|-----------------------------------------------|
| LDUL | команда имеет внутрисегментный адрес - 110.   |

| До выполнения | После выполнения |
|---------------|------------------|
| ip=100        | ip=110           |

### Пример: call 110

Код Действие

|         | Выполняется декремент SP на 2, в стек включается   |
|---------|----------------------------------------------------|
| E80D000 | содержимое ІР, а затем, к ІР прибавляется смеще-   |
|         | ние, которое интерпретируется, как знаковое целое. |

### До выполнения

#### После выполнения

| ip=100    | ip=110    |  |
|-----------|-----------|--|
| sp=80     | sp=7E     |  |
| [80]=0000 | [80]=0000 |  |
| [7E]=0000 | [7E]=0103 |  |

| Мнемо-<br>ника | Действие                                                                | Байт<br>КОП | Постбайт    |
|----------------|-------------------------------------------------------------------------|-------------|-------------|
|                | Безусловный внутрисегментный переход с прямой адресацией.               | 11101001    | нет         |
|                | Безусловный короткий внутрисегмент-<br>ный переход с прямой адресацией. | 11101011    | нет         |
| JMP            | Безусловный внутрисегментный переход с косвенной адресацией.            | 11111111    | mod 100 r/m |
|                | Безусловный межсегментный переход с прямой адресацией.                  | 11101010    | нет         |
|                | Безусловный межсегментный переход с косвенной адресацией.               | 111111111   | mod 101 r/m |
| CALL           | Внутрисегментный вызов подпрограммы с прямой адресацией.                | 11101000    | нет         |

|                   | Внутрисегментный вызов подпрограммы с косвенной адресацией.                              | 11111111 | mod 010 r/m |
|-------------------|------------------------------------------------------------------------------------------|----------|-------------|
|                   | Межсегментный вызов подпрограммы с прямой адресацией.                                    | 10011010 | нет         |
|                   | Межсегментный вызов подпрограммы с косвенной адресацией.                                 | 11111111 | mod 011 r/m |
|                   | Внутрисегментный возврат из подпрограммы.                                                | 11000011 | нет         |
| RET               | Внутрисегментный возврат из подпрограммы с увеличением содержимого указателя стека SP.   | 11000010 | нет         |
| KET               | Межсегментный возврат из подпрограммы.                                                   | 11001011 | нет         |
|                   | Межсегментный возврат из подпрограммы с увеличением содержимого указателя стека SP.      | 11001010 | нет         |
| LOOP              | Передача управления, если содержимое регистра СХ не равно нулю.                          | 11100010 | нет         |
| LOOPE,<br>LOOPZ   | Передача управления, если содержимое регистра СХ не равно нулю и флаг ZF установлен в 1. | 11100001 | нет         |
| LOOPNE,<br>LOOPNZ | Передача управления, если содержимое регистра СХ не равно нулю и флаг ZF установлен в 0. | 11100000 | нет         |
| JCXZ              | Передача управления, если содержимое регистра СХ равно нулю.                             | 11100011 | нет         |

## Команды условных переходов

обеспечивают только внутрисегментные переходы.

| Мнемоника | Действие                                               | Байт КОП |
|-----------|--------------------------------------------------------|----------|
| JE, JZ    | Передача управления по равенству/нулю.                 | 01110100 |
| JNE, JNZ  | Передача управления, если не равно/не нуль.            | 01110101 |
| JL, JNGE  | Передача управления, если меньше/не больше и не равно. | 01111100 |
| JLE, JNG  | Передача управления, если меньше или равно/не больше.  | 01111110 |
| JB, JNAE  | Передача управления, если меньше/не больше и не равно. | 01110010 |
| JBE, JNA  | Передача управления, если меньше или равно/не больше.  | 01110110 |
| JP, JPE   | Передача управления при четности.                      | 01111010 |

| JNP, JPO | Передача управления при нечетности.                    | 01111011 |
|----------|--------------------------------------------------------|----------|
| JO       | Передача управления при переполнении.                  | 01110000 |
| JNO      | Передача управления при отсутствии переполнения.       | 01110001 |
| JS       | Передача управления по отрицательному результату.      | 01111000 |
| JNS      | Передача управления по положительному результату.      | 01111001 |
| JG, JNLE | Передача управления, если больше/не меньше и не равно. | 01111111 |
| JGE, JNL | Передача управления, если больше или равно/не меньше.  | 01111101 |
| JA, JNBE | Передача управления, если больше/не меньше и не равно. | 01110111 |
| JAE, JNB | Передача управления, если больше или равно/не меньше.  | 01110011 |

### Команды управления процессором

за исключением ESC являются однобайтовыми и могут быть разделены на две группы: команды, изменяющие содержимое регистра флагов, и команды, предназначенные для работы с внешними устройствами и не воздействующие на флаги.

| Мнемоника | Действие                                            | Байт КОП |
|-----------|-----------------------------------------------------|----------|
| CLC       | Сброс признака переноса.                            | 11111000 |
| CMC       | Инвертирование признака переноса.                   | 11110101 |
| STC       | Установка признака переноса.                        | 11111001 |
| CDL       | Сброс признака направления.                         | 11111100 |
| STD       | Установка признака направления.                     | 11111101 |
| CLI       | Сброс признака разрешения прерывания.               | 11111010 |
| HLT       | Останов.                                            | 11110100 |
| WAIT      | Перевод процессора в состояние ожидания.            | 10011011 |
| ESC       | Выдача кода операции или операнда для сопроцессора. | 11011x   |
| LOCK      | Однобайтный префикс блокировки шины.                | 11110000 |

## Команды обработки строк

Все команды обработки строк символов имеют длину один байт. Бит 0 показывает операцию с байтом (бит 0=0) или словом (бит 0=1).

## Пример: movsw

| Код | Действие |
|-----|----------|
| КОД | Денствис |

|    | Выполняется пересылка слова строки источника      |
|----|---------------------------------------------------|
| АЭ | (src), адресуемой регистром SI, в строку приемни- |
|    | ка (dst), адресуемую регистром DI. Команда не ус- |
|    | танавливает флагов.                               |

## До выполнения

### После выполнения

| ip=100    | ip=101    |
|-----------|-----------|
| si=20     | si=22     |
| di=50     | di=52     |
| [20]=0102 | [20]=0102 |
| [50]=0000 | [50]=0102 |

## Пример: rep movsw

Код Действие

|       | Выполняется пересылка строки источника (src), ад-                                               |
|-------|-------------------------------------------------------------------------------------------------|
|       | ресуемой регистром SI, в строку приемника (dst), адресуемую регистром DI. На каждом шаге произ- |
| F3A5  |                                                                                                 |
| 10110 | водится коррекция индексных регистров на требуе-                                                |
|       | мую величину и направление. Выполнение ко-                                                      |
|       | манды прекращается по исчерпании счетчика СХ.                                                   |

### До выполнения

### После выполнения

| ip=100    | ip=102    |
|-----------|-----------|
| si=20     | si=26     |
| di=50     | di=56     |
| cx=3      | cx=0      |
| [20]=0102 | [20]=0102 |
| [22]=0304 | [22]=0304 |
| [24]=0506 | [24]=0506 |
| [50]=0000 | [50]=0102 |
| [52]=0000 | [52]=0304 |
| [54]=0000 | [54]=0506 |

| Мнемоника       | Действие                                                                               | Байт КОП |
|-----------------|----------------------------------------------------------------------------------------|----------|
| KHP             | Циклическое повторение команды обработки строки, количество повторов – в СХ. (Префикс) |          |
| MOVSB,<br>MOVSW | Передача элемента строки - байта/слова.                                                | 1010010w |

| CMPSB,<br>CMPSW | Сравнение элементов строк - байтов/слов.                              | 1010011w |
|-----------------|-----------------------------------------------------------------------|----------|
| SCASB,<br>SCASW | Сканирование строк символов - байтов/слов.                            | 1010111w |
| LODSB,<br>LODSW | Загрузка элементов строк символов - бай-<br>тов/слов в регистр AL/AX. | 1010110w |
| STOSB,<br>STOSW | Запись байтов/слов из регистра AL/AX в строку символов.               | 1010101w |

### 2.2.7 Математический сопроцессор

Математический сопроцессор (MCP - math coprocessor) — это расширение основной архитектуры и множества команд основного процессора. Сопроцессор дополняет возможности процессора новыми командами для работы с вещественными числами и новыми регистрами и реализован в виде отдельной ИС для процессоров до 80386 включительно (8087, 80287, 80387), либо непосредственно в микросхеме центрального процессора, как внутренний модуль (Floating Point Unit, FPU). Сопроцессор поддерживает семь типов данных: 16-, 32-, 64-битные целые числа; 32-, 64-, 80-битные вещественные числа и 18-разрядные числа в двоично-десятичном формате. Форматы чисел с плавающей точкой соответствуют стандартам IEEE 754, 854 и представлены на Рис. 2.9, где  $D_i$  — разряды десятичного числа в двоично-десятичном представлении; М — мантисса, Е — порядок вещественного числа, а S — знаковый разряд.

Декодирование инструкций для сопроцессора и доставка данных осуществляется основным процессором, сопроцессор только исполняет свои команды. Для хранения операндов и промежуточных данных имеется восемь 80-разрядных регистров данных R0-R7, в которых данные представлены в расширенном вещественном формате (см. Рис. 2.9). При загрузке регистра из памяти, данные автоматически преобразуются в этот формат. Регистры данных образуют стек, обращение к которому возможно через относительные имена ST(N). Пять регистров специального назначения служат для управления вычислениями и определения состояния сопроцессора (Рис. 2.10).

Слово состояния (SW) состоит из флагов (начиная с 0-го разряда): IE — недействительная команда (пустой операнд, неопределенный результат), DE — денормализован хотя бы один из операндов, ZE — деление на нуль, ОЕ - переполнение, UE - антипереполнение, PE — выполнено округление, ES (другое обозначение - IR) — возникновение немаскируемого исключения, C[0:3] — код условия, интерпретируемый в зависимости от выполненной команды, ST[0:2] (Stack Top) — номер регистра из стека, выполняющего роль вершины стека.

Управляющее слово (CW) - определяет условия выполнения команд. Разряды 0..5 маскируют исключения: IM – неверная команда, DM – операнд денормализован, ZM – деление на нуль, OM - переполнение, U M -

антипереполнение, РМ — округление. Поле РС (биты 8,9) — управление точностью: 00-24 бита, 10-53 бита, 11-64 бита. Поле RC (биты 10,11) — управление округлением:  $00-\kappa$  ближайшему значению,  $01-\kappa$  - $\infty$ ,  $10-\kappa$  + $\infty$ ,  $11-\kappa$  нулю.

Слово мэгов (ТW) - состоит из восьми двухбитных признаков (тэгов) для каждого из регистров данных сопроцессора. Четыре возможных значения тэга: 00, 01, 10, 11, определяют содержимое регистра как, соответственно, ненулевое число, нуль, специальное значение (бесконечность, неизвестный формат, и т.п.)

| Название                      | Диапазон         | <b>I</b> 15 0                     |   |                                                                  |
|-------------------------------|------------------|-----------------------------------|---|------------------------------------------------------------------|
| Целое слово                   | $10^{4}$         | S                                 |   |                                                                  |
| Короткое целое                | 10 <sup>9</sup>  | 31 0<br>S                         |   |                                                                  |
| Длинное целое                 | 10 <sup>19</sup> | 63<br>S                           |   | 0                                                                |
| Упакованное десятичное        | $10^{18}$        | 7978 72 71<br>S X D <sub>17</sub> |   | $\begin{array}{c cccc} & 4 & 3 & 0 \\ & D_1 & D_0 & \end{array}$ |
| Вещественное одинарной точн.  | $10^{\pm 38}$    | 3130 23 22 0<br>S E M             |   |                                                                  |
| Вещественное двойной точности | $10^{\pm 308}$   | 6362 52 51<br>S E                 | M | 0                                                                |
| Расширенное вещественное      | $10^{\pm 4932}$  | 7978 64 63 62<br>S E 1            | M | 0                                                                |

Рис. 2.9 Форматы данных сопроцессора

#### Регистровый стек Регистры специального назначения 64 63 ST(6) R0 Е M Регистр управления ST(7) Rl SWST(0) Регистр состояния R2 вершина стека R3 ST(1) 0 15 TWST(2) Слово тэгов R4 47 R5 ST(3) 0 IP Указатель команды R6 ST(4) 0 R7 ST(5) DP Указатель данных Положение вершины стека определя-10 OC КОП (OpCode) ет поле TOP регистра SW - в его битах 13-11 находится номер одного из Rn регистров.

Рис. 2.10 Регистры сопроцессора

Система команд сопроцессора состоит из команд передачи данных и за-

грузки констант, основных арифметических команд, сравнения, управления сопроцессором. Все команды сопроцессоры относятся к классу т.н. ESC- команд и начинаются с битовой последовательности 11011 (D1 $_{16}$ ). Ниже приведены ассемблерная мнемоника и краткое описание действий команд. Операнды обозначены следующим образом:

- m32real, m64real, m80real вещественные числа в памяти;
- m16int, m32int, m64int целочисленные значения в памяти;
- m80bcd упакованное двоично-десятичное число;
- st(i) регистр стека сопроцессора, смещенный от верхушки на i;
- reg/mem операнд в регистре/памяти.

### Команды передачи данных и загрузки констант

| FLD src    | $st(0) \leftarrow src (m32real/m64real/m80real)$    |
|------------|-----------------------------------------------------|
| FILD src   | $st(0) \leftarrow src (m16int/m32int/m64int)$       |
| FBLD src   | $st(0) \leftarrow src (m80bcd)$                     |
| FLDZ       | $st(0) \leftarrow 0.0$                              |
| FLD1       | $st(0) \leftarrow 1.0$                              |
| FLDPI      | $st(0) \leftarrow \pi$                              |
| FLDL2T     | $st(0) \leftarrow log_2(10)$                        |
| FLDL2E     | $st(0) \leftarrow log_2(e)$                         |
| FLDLG2     | $st(0) \leftarrow \log_{10}(2)$                     |
| FLDLN2     | $st(0) \leftarrow ln(2)$                            |
| FST dest   | $dest \leftarrow st(0) \text{ (m32real/m64real)}$   |
| FSTP dest  | dest ← st(0) (m32real/64/80); "вытолкнуть" стек     |
| FIST dest  | $dest \leftarrow st(0) (m16int/32)$                 |
| FISTP dest | dest ← st(0) (m16int/32/64); "вытолкнуть" стек      |
| FBST dest  | $dest \leftarrow st(0) \text{ (m80bcd)}$            |
| FBSTP dest | $dest \leftarrow st(0) (m80bcd);$ "вытолкнуть" стек |

### Команды сравнения

| FCOM          | Установить флаги как для $st(0)$ - $st(1)$              |
|---------------|---------------------------------------------------------|
| FCOM op       | Установить флаги как для st(0) - op (m32real/64)        |
| FCOMP op      | Сравнить st(0) с ор (reg/m32real/64); "вытолкнуть" стек |
| FCOMPP        | Сравнить $st(0)$ с $st(1)$ ; "вытолкнуть" стек 2 раза   |
| FICOM op      | Установить флаги как для st(0) - op (m16int/m32int)     |
| FICOMP op     | Сравнить st(0) с ор (m16int/m32int); "вытолкнуть" стек  |
| FTST          | Сравнить st(0) с 0.0                                    |
| FXAM          | Установить флаги по содержимому st(0)                   |
| FUCOMP st(i)  | Сравнить $st(0)$ с $st(i)$ ; "вытолкнуть" стек          |
| FUCOMPP st(i) | Сравнить st(0) c st(i); "вытолкнуть" стек 2 раза        |

### Арифметические команды и команды трансцендентных функций

| FADD | $st(0) \leftarrow st(0) + st(1)$ |
|------|----------------------------------|
|------|----------------------------------|

| FADD st(), st st(i) ← st(i) + stc (m32real/m64real)  FADDP st(i), st st(i) ← st(i) + st(0); "вытголкнуть" стек  FIADD src st(0) ← st(0) + src (m16real/m32real)  FSUB st(0) ← st(0) − stc (reg/mem)  FSUB st(i), st st(i) ← st(i) − st(0)  FSUBP st(i), st st(i) ← st(i) − st(0)  FSUBP st(i), st st(i) ← st(i) − st(0)  FSUBP st(i), st st(i) ← st(i) − st(0)  FSUBR st(i), st st(0) ← st(i) − st(0)  FSUBR st(i), st st(0) ← st(i) − st(0); "вытголкнуть" стек  FSUBR st(i), st st(0) ← st(i) − st(0); "вытголкнуть" стек  FSUBR src st(0) ← st(0) − src (m16int/m32int)  FSUBR src st(0) ← st(0) + st(1)  FMUL st(i) st(i) ← st(0) + st(i)  FMUL st(i), st st(i) ← st(0) * st(i)  FDIV st(i), st st(i) ← st(0) + st(i)  FDIVR st(i), st st(0) ← st(0) + st(i)  FDIVR st(i), st st(0) ← st(0) + st(i)  FDIVR st(i), st st(0) ← st(0) + st(0)  FDIVR st(i), st st(0) ← st(i) + st(0)  FDIVR st(i), st st(0) ← st(i) + st(0)  FSCALE st(0) ← масштабировать на степень 2-ки st(0)  FXTRACT st(0) ← мантисса st(0)  FXTRACT st(0) ← мантисса st(0)  FREM st(0) ← st(0) + st(0)  FREM st(0) ← st(0) ← st(0)  FREM st(0) ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EADD                                  | (0) (0) (0)                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|
| FADDP st(i),st st(i) ← st(i) + st(0); "вытолкнуть" стек FIADD src st(0) ← st(0) + src (m16real/m32real)  FSUB st(0) ← st(0) − st(1)  FSUB st(i),st st(i) ← st(i) − st(o)  FSUBP st(i),st st(i) ← st(i) − st(o)  FSUBP st(i),st st(i) ← st(i) − st(o)  FSUBP st(i),st st(i) ← st(i) − st(o)  FSUBRP st(i),st st(i) ← st(i) − st(o)  FSUBRP st(i),st st(o) ← st(i) − st(o); "вытолкнуть" стек stubre st(o) ← st(o) − src (m16int/m32int)  FSUBR src st(o) ← st(o) − src (m16int/m32int)  FMUL st(i) ← st(o) ← st(o) * st(i)  FMUL st(i) ← st(o) ← st(o) * st(i)  FMUL st(i),st st(i) ← st(o) * st(i)  FDIV st(i) ← st(o) ← st(o) + st(i)  FDIV st(i) ← st(o) ← st(o) ← st(i)  FDIV st(i) ← st(o) ← st(i)  FDIV st(i),st st(i) ← st(o) ÷ st(i)  FDIV st(i),st st(i) ← st(o) ÷ st(i)  FDIV st(i),st st(i) ← st(o) + st(i)  FDIVR st(i),st st(i) ← st(o) + st(i)  FDIVR st(i),st st(o) ← st(i) + st(o)  FOORT st(o) ← machitate machine mach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FADD src                              | $st(0) \leftarrow st(0) + src (m32real/m64real)$          |
| FIADD src st(0) ← st(0) + src (m16real/m32real)  FSUB st(0) ← st(0) - st(1)  FSUB src st(0) ← st(0) - src (reg/mem)  FSUB st(i),st st(i) ← st(i) - st(0)  FSUBP st(i),st st(i) ← st(i) - st(0)  FSUBP st(i),st st(0) ← st(i) - st(0)  FSUBRP st(i),st st(0) ← st(i) - st(0)  FSUBRP st(i),st st(0) ← st(i) - st(0)  FSUBRP st(i),st st(0) ← st(i) - st(0); "вытолкнуть" стек  FSUBR src st(0) ← st(0) - src (m16int/m32int)  FISUBR src st(0) ← st(0) + st(1)  FMUL st(i) ≤ st(0) ← st(0) * st(1)  FMUL st(i) st(i) ← st(0) * st(i)  FMUL st(i),st st(i) ← st(0) * st(i)  FMULP st(i),st st(i) ← st(0) * st(i)  FMULP st(i),st st(i) ← st(0) * st(i)  FDIV st(i) ≤ st(0) ← st(0) + st(i)  FDIV st(i) ≤ st(0) ← st(0) + st(i)  FDIV st(i) ≤ st(i) ← st(0) + st(i)  FDIV st(i),st st(i) ← st(0) + st(i)  FDIVP st(i),st st(i) ← st(0) + st(i)  FDIVP st(i),st st(i) ← st(0) + st(i)  FDIVR st(i),st st(i) ← st(0) + st(i)  FDIVR st(i),st st(0) ← st(i) + st(0)  FOOR st(0) ← st(0) + st(0)  FSCALE st(0) ← st(0) + st(0)  FSCALE st(0) ← st(0) + st(0)  FREM st(0) ← st(0) MOD st(1)  FRNDINT st(0) ← st(0) MOD st(1)  FRNDINT st(0) ← st(0) ← st(0)  FOOS st(0) ← COS(st(0))  FPTAN st(0) ← TAN(st(0))  FPTAN st(0) ← ATAN(st(0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |                                                           |
| FSUB         st(0) ← st(0) − st(1)           FSUB src         st(0) ← st(0) − src (reg/mem)           FSUB st(i),st         st(i) ← st(i) − st(0)           FSUBP st(i),st         st(i) ← st(i) − st(0); "вытолкнуть" стек           FSUBR st(i),st         st(0) ← st(i) − st(0); "вытолкнуть" стек           FSUBR pst(i),st         st(0) ← st(i) − st(0); "вытолкнуть" стек           FISUB src         st(0) ← st(0) + st(0) (m16int/m32int)           FMUL         st(0) ← st(0) * st(i)           FMUL st(i)         st(0) ← st(0) * st(i)           FMUL st(i),st         st(i) ← st(0) * st(i)           FMUL st(i),st         st(i) ← st(0) * st(i)           FMUL st(i),st         st(0) ← st(0) * st(i)           FDIV         st(0) ← st(0) ÷ st(i)           FDIV st(i),st         st(0) ← st(0) ÷ st(i)           FDIV st(i),st         st(i) ← st(0) ÷ st(i)           FDIV st(i),st         st(i) ← st(0) ÷ st(i)           FDIVR st(i),st         st(0) ← st(0) ÷ st(i)           FDIVR st(i),st         st(0) ← st(0) ÷ st(0)           FDIVR st(i),st         st(0) ← st(i) ÷ st(0)           FDIVR st(i),st         st(0) ← st(i) ÷ st(0)           FOLY st(i),st         st(0) ← st(i) * st(0)           FOLY st(i),st         st(0) ← st(0) * st(i)           FOLY st(i),st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FADDP st(i),st                        |                                                           |
| FSUB src st(0) ← st(0) − src (reg/mem)  FSUB st(i),st st(i) ← st(i) − st(0)  FSUBP st(i),st st(i) ← st(i) − st(0); "ВЫТОЛКНУТЬ" СТЕК  FSUBR st(i),st st(0) ← st(i) − st(0); "ВЫТОЛКНУТЬ" СТЕК  FSUBR p st(i),st st(0) ← st(i) − st(0); "ВЫТОЛКНУТЬ" СТЕК  FSUBR p st(i),st st(0) ← st(i) − st(0); "ВЫТОЛКНУТЬ" СТЕК  FSUBR src st(0) ← st(0) + src (m16int/m32int)  FMUL st(i) ← st(0) + st(i)  FMUL st(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | $st(0) \leftarrow st(0) + src (m16real/m32real)$          |
| FSUB st(i),st st(i) ← st(i) − st(0); "Вытолкнуть" стек FSUBR st(i),st st(0) ← st(i) − st(0); "Вытолкнуть" стек FSUBR st(i),st st(0) ← st(i) − st(0); "Вытолкнуть" стек FSUBR pt(i),st st(0) ← st(0) − st(m16int/m32int) FSUBR src st(0) ← st(0) ← st(0) + st(0) FMUL st(i) ← st(0) ← st(0) ← st(i) FMUL st(i) ← st(0) ← st(i) FMUL st(i),st st(i) ← st(0) ★ st(i) FMUL st(i),st st(i) ← st(0) ★ st(i) FMUL pt(i),st st(i) ← st(0) ★ st(i) FMUL st(i),st st(i) ← st(0) ★ st(i) FDIV st(i),st st(i) ← st(0) ★ st(i) FDIV st(i) ← st(0) ← st(0) ← st(i) FDIV st(i),st st(i) ← st(0) ← st(i) FDIV st(i),st st(i) ← st(0) ← st(i) FDIV st(i),st st(i) ← st(0) ← st(i); "Вытолкнуть" стек FIDIV src st(0) ← st(0) ÷ st(i) FDIVR st(i),st st(0) ← st(0) ÷ st(i); "Вытолкнуть" стек FIDIVR st(i),st st(0) ← st(i) ÷ st(0) FDIVR st(i),st st(0) ← st(i) ÷ st(0) FDIVR pt(i),st st(0) ← st(i) ÷ st(0); "Вытолкнуть" стек FIDIVR st(i),st st(0) ← st(i) ÷ st(0); "Вытолкнуть" стек FIDIVR src st(0) ← src ÷ st(0) (m16int/m32int) FSQRT st(0) ← квадратный корень от st(0) FSCALE st(0) ← масштабировать на степень 2-ки st(0) FXTRACT st(0) ← масштабировать на степень 2-ки st(0) FXTRACT st(0) ← порядок st(0); втолкнуть в стек; st(0) ← мантисса st(0) FPREM st(0) ← St(0) MOD st(1) FRNDINT st(0) ← INT( st(0)); зависит от флага RC FABS st(0) ← ABS( st(0)); убрать знак FCHS st(0) ← COS( st(0)) FCOS st(0) ← TAN( st(0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FSUB                                  | $st(0) \leftarrow st(0) - st(1)$                          |
| FSUBP st(i),st st(i) ← st(i) − st(0); "вытолкнуть" стек FSUBR st(i),st st(0) ← st(i) − st(0) FSUBRP st(i),st st(0) ← st(i) − st(0); "вытолкнуть" стек FISUB src st(0) ← st(0) − src (m16int/m32int) FISUBR src st(0) ← st(0) + st(1) FMUL st(0) ← st(0) * st(1) FMUL st(i),st st(i) ← st(0) * st(i) FMUL st(i),st st(i) ← st(0) * st(i) FMULP st(i),st st(i) ← st(0) * st(i); "вытолкнуть" стек FIMUL src st(0) ← st(0) * st(i) FDIV st(i) ← st(0) + st(i) FDIV st(i) ← st(0) + st(i) FDIV st(i),st st(i) ← st(0) + st(i) FDIVP st(i),st st(i) ← st(0) + st(i); "вытолкнуть" стек FIDIV src st(0) ← st(i) + st(0) FDIVR st(i),st st(0) ← st(i) + st(0) FDIVR st(i),st st(0) ← st(i) + st(0); "вытолкнуть" стек FIDIVR src st(0) ← src + st(0) (m16int/m32int) FSQRT st(0) ← src + st(0) (m16int/m32int) FSCALE st(0) ← src + st(0) (m16int/m32int) FSCALE st(0) ← масштабировать на степень 2-ки st(0) FSCALE st(0) ← st(0) MOD st(1) FRNDINT st(0) ← ABS( st(0) ); убрать знак FCHS st(0) ← ABS( st(0) ); убрать знак FCHS st(0) ← COS( st(0) ) FPTAN st(0) ← ATAN( st(0) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FSUB src                              | $st(0) \leftarrow st(0) - src (reg/mem)$                  |
| FSUBR st(i),st $st(0) \leftarrow st(i) - st(0)$ FSUBRP st(i),st $st(0) \leftarrow st(i) - st(0)$ ; "вытолкнуть" стек FISUB src $st(0) \leftarrow st(0) - src (m16int/m32int)$ FISUBR src $st(0) \leftarrow st(0) + st(1)$ FMUL $st(0) \leftarrow st(0) + st(1)$ FMUL $st(0) \leftarrow st(0) + st(1)$ FMUL st(i),st $st(0) \leftarrow st(0) + st(1)$ FMULP st(i),st $st(0) \leftarrow st(0) + st(1)$ FMULP st(i),st $st(0) \leftarrow st(0) + st(1)$ FMULP st(i),st $st(0) \leftarrow st(0) + st(1)$ FDIV $st(0) \leftarrow st(0) + st(1)$ FDIVP st(i),st $st(0) \leftarrow st(0) + st(1)$ FDIVP st(i),st $st(0) \leftarrow st(0) + st(1) + st(0)$ FDIVR $st(0) \leftarrow st(0) + st(0) + st(0)$ FSCALE $st(0) \leftarrow st(0) + st(0) + st(0) + st(0)$ FSCALE $st(0) \leftarrow st(0) + st(0) + st(0) + st(0)$ FSCALE $st(0) \leftarrow st(0) + st(0) + st(0) + st(0)$ FPREM $st(0) \leftarrow st(0) + st(0) + st(0)$ FPREM $st(0) \leftarrow st(0) + st(0) + st(0)$ FRNDINT $st(0) \leftarrow st(0) + st(0) + st(0)$ FRNDINT $st(0) \leftarrow st(0) + st(0) + st(0)$ FCOS $st(0) \leftarrow st(0) + st(0)$ FPTAN $st(0) \leftarrow st(0) + st(0)$ FPATAN $st(0) \leftarrow st(0) + st(0)$ FPATAN $st(0) \leftarrow st(0) + st(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FSUB st(i),st                         |                                                           |
| FSUBRP st(i),st $st(0) \leftarrow st(i) - st(0)$ ; "вытолкнуть" стек FISUB src $st(0) \leftarrow st(0) - src (m16int/m32int)$ FISUBR src $st(0) \leftarrow st(0) * st(1)$ FMUL $st(0) \leftarrow st(0) * st(i)$ FMUL $st(i) \leftarrow st(0) * st(i)$ FMUL $st(i) \leftarrow st(0) * st(i)$ FMUL $st(i)$ ,st $st(i) \leftarrow st(0) * st(i)$ FMULP st(i),st $st(i) \leftarrow st(0) * st(i)$ FMULP st(i),st $st(i) \leftarrow st(0) * st(i)$ FIMUL src $st(0) \leftarrow st(0) * st(i)$ "вытолкнуть" стек FIMUL src $st(0) \leftarrow st(0) * st(i)$ FDIV $st(0) \leftarrow st(0) \div st(i)$ FDIV $st(i) \leftarrow st(0) \leftarrow st(0) \div st(i)$ FDIV $st(i)$ ,st $st(i) \leftarrow st(0) \div st(i)$ FDIV st(i),st $st(i) \leftarrow st(0) \div st(i)$ FDIVR st(i),st $st(i) \leftarrow st(0) \div st(i)$ FDIVR st(i),st $st(0) \leftarrow st(0) \div st(0) \leftarrow st(0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FSUBP st(i),st                        | $st(i) \leftarrow st(i)$ - $st(0)$ ; "вытолкнуть" стек    |
| FISUBR src $st(0) \leftarrow st(0) - src (m16int/m32int)$ FISUBR src $st(0) \leftarrow src - st(0) (m16int/m32int)$ FMUL $st(0) \leftarrow st(0) * st(1)$ FMUL $st(i) = st(0) \leftarrow st(0) * st(i)$ FMUL $st(i) = st(0) \leftarrow st(0) * st(i)$ FMUL $st(i), st = st(i) \leftarrow st(0) * st(i)$ FMULP $st(i), st = st(i) \leftarrow st(0) * st(i) * st(i) * st(i) \leftarrow st(0) * st(i) * st(i) \leftarrow st(0) * st(i) * st(i) \leftarrow st(0) \leftarrow st(0) * st(i)$ FDIV $st(0) \leftarrow st(0) \div st(1)$ FDIV $st(0) \leftarrow st(0) \leftrightarrow st(0)$ | FSUBR st(i),st                        |                                                           |
| FISUBR src $st(0) \leftarrow src - st(0) \ (m16int/m32int)$ FMUL $st(i) \rightarrow st(0) + st(i)$ FMUL $st(i) \rightarrow st(0) \leftarrow st(0) * st(i)$ FMUL $st(i), st \rightarrow st(i) \rightarrow st(i) \times st(i)$ FMUL $st(i), st \rightarrow st(i) \rightarrow st(i) \times st(i)$ FMUL $st(i), st \rightarrow st(i) \rightarrow st(i) \times st(i) \times st(i) \times st(i) \times st(i) \rightarrow st(i) \times st(i) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FSUBRP st(i),st                       | $st(0) \leftarrow st(i)$ - $st(0)$ ; "вытолкнуть" стек    |
| FMUL $st(0) \leftarrow st(0) * st(1)$ FMUL $st(i)$ $st(0) \leftarrow st(0) * st(i)$ FMUL $st(i)$ , $st$ $st(i) \leftarrow st(0) * st(i)$ FMULP $st(i)$ , $st$ $st(i) \leftarrow st(0) * st(i)$ FMULP $st(i)$ , $st$ $st(i) \leftarrow st(0) * st(i)$ ; "вытолкнуть" стек  FIMUL $st(0) \leftarrow st(0) \leftarrow st(0) \Rightarrow st(1)$ FDIV $st(0) \leftarrow st(0) \rightarrow st(1)$ FDIV $st(0) \leftarrow st(0) \rightarrow st(1)$ FDIV $st(0) \leftarrow st(0) \rightarrow st(1)$ FDIV $st(0)$ , $st(0) \leftarrow st(0) \rightarrow st(1)$ FDIVR $st(0)$ , $st(0) \leftarrow st(0) \rightarrow st(0)$ FDIVR $st(0)$ , $st(0) \leftarrow st(0) \rightarrow st(0)$ FDIVR $st(0)$ , $st(0) \leftarrow st(0) \rightarrow st(0)$ FOURD $st(0) \leftarrow st(0) \rightarrow st(0)$ FSQRT $st(0) \leftarrow st(0) \rightarrow st(0)$ FSCALE $st(0) \leftarrow st(0) \rightarrow st(0)$ FSCALE $st(0) \leftarrow st(0) \rightarrow st(0)$ FYTRACT $st(0) \leftarrow st(0) \rightarrow st(0)$ FYTRACT $st(0) \leftarrow st(0) \rightarrow st(0)$ FOUND $st(0) \leftarrow st(0) \rightarrow st(0)$ FREM $st(0) \leftarrow st(0) \rightarrow st(0)$ FOUND $st(0) \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FISUB src                             | $st(0) \leftarrow st(0) - src (m16int/m32int)$            |
| FMUL st(i)         st(0) $\leftarrow$ st(0) * st(i)           FMUL st(i),st         st(i) $\leftarrow$ st(0) * st(i); "вытолкнуть" стек           FMULP st(i),st         st(0) $\leftarrow$ st(0) * st(i); "вытолкнуть" стек           FIMUL src         st(0) $\leftarrow$ st(0) * src (m16int/m32int)           FDIV         st(0) $\leftarrow$ st(0) $\div$ st(i)           FDIV st(i)         st(i) $\leftarrow$ st(0) $\div$ st(i)           FDIV st(i),st         st(i) $\leftarrow$ st(0) $\div$ st(i); "вытолкнуть" стек           FIDIV src         st(0) $\leftarrow$ st(0) $\div$ src (m16int/m32int)           FDIVR st(i),st         st(0) $\leftarrow$ st(i) $\div$ st(0)           FDIVR st(i),st         st(0) $\leftarrow$ st(i) $\div$ st(0); "вытолкнуть" стек           FIDIVR src         st(0) $\leftarrow$ st(0) (m16int/m32int)           FSQRT         st(0) $\leftarrow$ квадратный корень от st(0)           FSQRT         st(0) $\leftarrow$ квадратный корень от st(0)           FSCALE         st(0) $\leftarrow$ масштабировать на степень 2-ки st(0)           FXTRACT         st(0) $\leftarrow$ масштабировать на степень 2-ки st(0)           FXTRACT         st(0) $\leftarrow$ мантисса st(0); втолкнуть в стек; st(0) $\leftarrow$ мантисса st(0)           FPREM         st(0) $\leftarrow$ st(0) MOD st(1)           FRNDINT         st(0) $\leftarrow$ INT( st(0)); зависит от флага RC           FABS         st(0) $\leftarrow$ ABS( st(0)); убрать знак           FCHS         st(0) $\leftarrow$ COS( st(0))           FPTAN         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FISUBR src                            | $st(0) \leftarrow src - st(0) (m16int/m32int)$            |
| FMUL st(i),st $st(i) \leftarrow st(0) * st(i)$ ; "вытолкнуть" стек           FMULP st(i),st $st(0) \leftarrow st(0) * st(i)$ ; "вытолкнуть" стек           FIMUL src $st(0) \leftarrow st(0) * st(0) * st(1)$ FDIV $st(0) \leftarrow st(0) \div st(1)$ FDIV st(i) $st(0) \leftarrow st(0) \div st(i)$ FDIV st(i),st $st(i) \leftarrow st(0) \div st(i)$ ; "вытолкнуть" стек           FIDIV src $st(0) \leftarrow st(0) \div st(0)$ ; "вытолкнуть" стек           FDIVR st(i),st $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек           FIDIVR src $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек           FIDIVR src $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек           FIDIVR src $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек           FSQRT $st(0) \leftarrow st(i) \leftarrow st(i)$ FSQRT $st(0) \leftarrow st(0) \leftarrow st(0)$ FSCALE $st(0) \leftarrow st(0) \leftarrow st(0)$ ; втолкнуть в стек; $st(0) \leftarrow st(0) \leftarrow st(0)$ $st(0) \leftarrow st(0) \leftarrow st(0)$ FPREM $st(0) \leftarrow st(0) \leftarrow st(0)$ FRNDINT $st(0) \leftarrow st(0) \leftarrow st(0)$ FOS $st(0) \leftarrow st(0)$ FCHS $st(0) \leftarrow st(0)$ FCOS $st(0) \leftarrow st(0)$ FPTAN $st(0) \leftarrow st(0)$ FPATAN $st(0) \leftarrow st(0)$ <td>FMUL</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FMUL                                  |                                                           |
| FMULP st(i),st         st(i) $\leftarrow$ st(0) * st(i); "вытолкнуть" стек           FIMUL src         st(0) $\leftarrow$ st(0) * src (m16int/m32int)           FDIV         st(0) $\leftarrow$ st(0) $\div$ st(i)           FDIV st(i)         st(0) $\leftarrow$ st(0) $\div$ st(i)           FDIV st(i),st         st(i) $\leftarrow$ st(0) $\div$ st(i); "вытолкнуть" стек           FIDIV src         st(0) $\leftarrow$ st(0) $\div$ src (m16int/m32int)           FDIVR st(i),st         st(0) $\leftarrow$ st(i) $\div$ st(0); "вытолкнуть" стек           FIDIVR src         st(0) $\leftarrow$ st(i) $\div$ st(0) (m16int/m32int)           FSQRT         st(0) $\leftarrow$ квадратный корень от st(0)           FSCALE         st(0) $\leftarrow$ масштабировать на степень 2-ки st(0)           FXTRACT         st(0) $\leftarrow$ мантисса st(0); втолкнуть в стек; st(0) $\leftarrow$ мантисса st(0)           FPREM         st(0) $\leftarrow$ st(0) MOD st(1)           FRNDINT         st(0) $\leftarrow$ INT( st(0)); зависит от флага RC           FABS         st(0) $\leftarrow$ ABS( st(0)); убрать знак           FCHS         st(0) $\leftarrow$ -st(0)           FCOS         st(0) $\leftarrow$ COS( st(0))           FPTAN         st(0) $\leftarrow$ ATAN( st(0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                           |
| FIMUL src $st(0) \leftarrow st(0) * src (m16int/m32int)$ FDIV $st(i) \rightarrow st(0) \leftarrow st(0) \div st(i)$ FDIV $st(i), st \rightarrow st(i) \leftarrow st(0) \div st(i)$ FDIVP $st(i), st \rightarrow st(i) \leftarrow st(0) \div st(i)$ FDIVP $st(i), st \rightarrow st(i) \leftarrow st(0) \div st(i)$ FDIVR $st(i), st \rightarrow st(0) \leftarrow st(0) \div src (m16int/m32int)$ FDIVR $st(i), st \rightarrow st(0) \leftarrow st(i) \div st(0)$ FDIVRP $st(i), st \rightarrow st(0) \leftarrow st(i) \div st(0)$ FDIVRP $st(i), st \rightarrow st(0) \leftarrow st(i) \div st(0)$ FSQRT $st(0) \leftarrow src \div st(0) (m16int/m32int)$ FSQRT $st(0) \leftarrow st(0) \leftarrow st(0) \leftarrow st(0)$ FSCALE $st(0) \leftarrow st(0) \leftarrow st(0) \leftarrow st(0)$ FXTRACT $st(0) \leftarrow st(0) \leftarrow st(0) \leftarrow st(0)$ FXTRACT $st(0) \leftarrow st(0) \leftarrow st(0) \rightarrow st(0)$ FRNDINT $st(0) \leftarrow st(0) \rightarrow st(0) \rightarrow st(0)$ FRNDINT $st(0) \leftarrow st(0) \rightarrow st(0) \rightarrow st(0)$ FRNDINT $st(0) \leftarrow st(0) \rightarrow st(0) \rightarrow st(0)$ FCOS $st(0) \leftarrow st(0) \rightarrow st(0) \rightarrow st(0)$ FCOS $st(0) \leftarrow st(0) \rightarrow st(0) \rightarrow st(0)$ FPTAN $st(0) \leftarrow st(0) \rightarrow st(0)$ FPATAN $st(0) \leftarrow st(0) \rightarrow st(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FMUL st(i),st                         |                                                           |
| FDIV $st(0) \leftarrow st(0) \div st(1)$ FDIV $st(i)$ $st(0) \leftarrow st(0) \div st(i)$ FDIV $st(i)$ , $st$ $st(i) \leftarrow st(0) \div st(i)$ FDIVP $st(i)$ , $st$ $st(i) \leftarrow st(0) \div st(i)$ ; "вытолкнуть" стек FIDIV $st(i)$ , $st$ $st(0) \leftarrow st(0) \div st(0)$ FDIVR $st(i)$ , $st$ $st(0) \leftarrow st(i) \div st(0)$ FDIVR $st(i)$ , $st$ $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек FIDIVR $st(i)$ , $st$ $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек FIDIVR $st(i)$ , $st$ $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек FIDIVR $st(i)$ , $st$ $st(i)$ $st($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMULP st(i),st                        | $st(i) \leftarrow st(0) * st(i);$ "вытолкнуть" стек       |
| FDIV st(i) st(0) ← st(0) ÷ st(i)  FDIV st(i),st st(i) ← st(0) ÷ st(i)  FDIVP st(i),st st(i) ← st(0) ÷ st(i); "вытолкнуть" стек  FIDIV src st(0) ← st(0) ÷ st(0)  FDIVR st(i),st st(0) ← st(i) ÷ st(0)  FDIVRP st(i),st st(0) ← st(i) ÷ st(0); "вытолкнуть" стек  FIDIVR src st(0) ← src ÷ st(0) (m16int/m32int)  FSQRT st(0) ← квадратный корень от st(0)  FSCALE st(0) ← масштабировать на степень 2-ки st(0)  FXTRACT st(0) ← порядок st(0); втолкнуть в стек; st(0) ← мантисса st(0)  FPREM st(0) ← st(0) MOD st(1)  FRNDINT st(0) ← INT( st(0) ); зависит от флага RC  FABS st(0) ← ABS( st(0) ); убрать знак  FCHS st(0) ← cOS( st(0) )  FPCOS st(0) ← COS( st(0) )  FPTAN st(0) ← TAN( st(0) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIMUL src                             | $st(0) \leftarrow st(0) * src (m16int/m32int)$            |
| FDIV st(i),st $st(i) \leftarrow st(0) \div st(i)$<br>FDIVP st(i),st $st(i) \leftarrow st(0) \div st(i)$ ; "вытолкнуть" стек<br>FIDIV src $st(0) \leftarrow st(0) \div src$ (m16int/m32int)<br>FDIVR st(i),st $st(0) \leftarrow st(i) \div st(0)$<br>FDIVRP st(i),st $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек<br>FIDIVR src $st(0) \leftarrow src \div st(0)$ (m16int/m32int)<br>FSQRT $st(0) \leftarrow st(0) \leftarrow st(0)$ (m26int/m32int)<br>FSCALE $st(0) \leftarrow st(0) \leftarrow st(0)$ (m36int/m32int)<br>FXTRACT $st(0) \leftarrow st(0) \leftarrow st(0)$ (m36int/m32int)<br>FXTRACT $st(0) \leftarrow st(0) \leftarrow st(0)$ (m36int/m32int)<br>FREM $st(0) \leftarrow st(0) \rightarrow st(0)$ (m36int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FDIV                                  | $st(0) \leftarrow st(0) \div st(1)$                       |
| FDIVP $st(i)$ , $st$ $st(i) \leftarrow st(0) \div st(i)$ ; "вытолкнуть" стек FIDIV $src$ $st(0) \leftarrow st(0) \div src$ (m16int/m32int)  FDIVR $st(i)$ , $st$ $st(0) \leftarrow st(i) \div st(0)$ FDIVRP $st(i)$ , $st$ $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек FIDIVR $src$ $st(0) \leftarrow src \div st(0)$ (m16int/m32int)  FSQRT $st(0) \leftarrow \text{квадратный корень от } st(0)$ FSCALE $st(0) \leftarrow \text{масштабировать на степень } 2\text{-ки } st(0)$ FXTRACT $st(0) \leftarrow \text{порядок } st(0)$ ; втолкнуть в стек; $st(0) \leftarrow \text{мантисса } st(0)$ FPREM $st(0) \leftarrow \text{мантисса } st(0)$ FRNDINT $st(0) \leftarrow \text{INT}(st(0))$ ; зависит от флага RC  FABS $st(0) \leftarrow \text{ABS}(st(0))$ ; убрать знак  FCHS $st(0) \leftarrow \text{-st}(0)$ FCOS $st(0) \leftarrow \text{COS}(st(0))$ FPTAN $st(0) \leftarrow \text{TAN}(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FDIV st(i)                            | $st(0) \leftarrow st(0) \div st(i)$                       |
| FIDIV src $st(0) \leftarrow st(0) \div src \ (m16int/m32int)$ FDIVR $st(i)$ ,st $st(0) \leftarrow st(i) \div st(0)$ FDIVRP $st(i)$ ,st $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек FIDIVR src $st(0) \leftarrow src \div st(0) \ (m16int/m32int)$ FSQRT $st(0) \leftarrow \text{квадратный корень от } st(0)$ FSCALE $st(0) \leftarrow \text{масштабировать на степень } 2\text{-ки } st(0)$ FXTRACT $st(0) \leftarrow \text{порядок } st(0)$ ; втолкнуть в стек; $st(0) \leftarrow \text{мантисса } st(0)$ FPREM $st(0) \leftarrow st(0) \ \text{MOD } st(1)$ FRNDINT $st(0) \leftarrow \text{INT}(\ st(0)\ )$ ; зависит от флага RC FABS $st(0) \leftarrow \text{ABS}(\ st(0)\ )$ ; убрать знак FCHS $st(0) \leftarrow \text{-st}(0)$ FCOS $st(0) \leftarrow \text{COS}(\ st(0)\ )$ FPTAN $st(0) \leftarrow \text{TAN}(\ st(0)\ )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FDIV st(i),st                         | $st(i) \leftarrow st(0) \div st(i)$                       |
| FIDIV src $st(0) \leftarrow st(0) \div src \ (m16int/m32int)$ FDIVR $st(i)$ ,st $st(0) \leftarrow st(i) \div st(0)$ FDIVRP $st(i)$ ,st $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек FIDIVR src $st(0) \leftarrow src \div st(0) \ (m16int/m32int)$ FSQRT $st(0) \leftarrow st(0) \leftarrow st(0)$ FSCALE $st(0) \leftarrow st(0) \leftarrow st(0)$ FXTRACT $st(0) \leftarrow st(0) \leftarrow st(0)$ ; втолкнуть в стек; $st(0) \leftarrow st(0) \leftarrow st(0)$ FPREM $st(0) \leftarrow st(0) \leftarrow st(0)$ FRNDINT $st(0) \leftarrow st(0) \leftarrow st(0)$ ; зависит от флага RC FABS $st(0) \leftarrow st(0)$ ; убрать знак FCHS $st(0) \leftarrow st(0)$ FCOS $st(0) \leftarrow st(0)$ FPTAN $st(0) \leftarrow st(0)$ FPATAN $st(0) \leftarrow st(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FDIVP st(i),st                        | $st(i) \leftarrow st(0) \div st(i)$ ; "вытолкнуть" стек   |
| FDIVR st(i),st $st(0) \leftarrow st(i) \div st(0)$<br>FDIVRP st(i),st $st(0) \leftarrow st(i) \div st(0)$ ; "вытолкнуть" стек<br>FIDIVR src $st(0) \leftarrow src \div st(0)$ (m16int/m32int)<br>FSQRT $st(0) \leftarrow $ квадратный корень от $st(0)$<br>FSCALE $st(0) \leftarrow $ масштабировать на степень 2-ки $st(0)$<br>FXTRACT $st(0) \leftarrow $ порядок $st(0)$ ; втолкнуть в стек; $st(0) \leftarrow $ мантисса $st(0)$<br>FPREM $st(0) \leftarrow st(0)$ MOD $st(1)$<br>FRNDINT $st(0) \leftarrow INT(st(0))$ ; зависит от флага RC<br>FABS $st(0) \leftarrow ABS(st(0))$ ; убрать знак<br>FCHS $st(0) \leftarrow -st(0)$<br>FCOS $st(0) \leftarrow COS(st(0))$<br>FPTAN $st(0) \leftarrow TAN(st(0))$<br>FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIDIV src                             | · · · · · · · · · · · · · · · · · · ·                     |
| FDIVRP st(i),st         st(0) $\leftarrow$ st(i) $\div$ st(0); "вытолкнуть" стек           FIDIVR src         st(0) $\leftarrow$ src $\div$ st(0) (m16int/m32int)           FSQRT         st(0) $\leftarrow$ квадратный корень от st(0)           FSCALE         st(0) $\leftarrow$ масштабировать на степень 2-ки st(0)           FXTRACT         st(0) $\leftarrow$ порядок st(0); втолкнуть в стек; st(0) $\leftarrow$ мантисса st(0)           FPREM         st(0) $\leftarrow$ st(0) MOD st(1)           FRNDINT         st(0) $\leftarrow$ INT( st(0)); зависит от флага RC           FABS         st(0) $\leftarrow$ ABS( st(0)); убрать знак           FCHS         st(0) $\leftarrow$ -st(0)           FCOS         st(0) $\leftarrow$ COS( st(0))           FPTAN         st(0) $\leftarrow$ TAN( st(0))           FPATAN         st(0) $\leftarrow$ ATAN( st(0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FDIVR st(i),st                        |                                                           |
| FIDIVR src $st(0) \leftarrow src \div st(0)$ (m16int/m32int)           FSQRT $st(0) \leftarrow квадратный корень от st(0)$ FSCALE $st(0) \leftarrow масштабировать на степень 2-ки st(0)$ FXTRACT $st(0) \leftarrow порядок st(0)$ ; втолкнуть в стек; $st(0) \leftarrow mантисса st(0)$ FPREM $st(0) \leftarrow st(0) MOD st(1)$ FRNDINT $st(0) \leftarrow INT(st(0))$ ; зависит от флага RC           FABS $st(0) \leftarrow ABS(st(0))$ ; убрать знак           FCHS $st(0) \leftarrow -st(0)$ FCOS $st(0) \leftarrow COS(st(0))$ FPTAN $st(0) \leftarrow TAN(st(0))$ FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FDIVRP st(i),st                       |                                                           |
| FSQRT $st(0) \leftarrow$ квадратный корень от $st(0)$ FSCALE $st(0) \leftarrow$ масштабировать на степень 2-ки $st(0)$ FXTRACT $st(0) \leftarrow$ порядок $st(0)$ ; втолкнуть в стек; $st(0) \leftarrow$ мантисса $st(0)$ FPREM $st(0) \leftarrow$ $st(0)$ MOD $st(1)$ FRNDINT $st(0) \leftarrow$ INT( $st(0)$ ); зависит от флага RC           FABS $st(0) \leftarrow$ ABS( $st(0)$ ); убрать знак           FCHS $st(0) \leftarrow$ - $st(0)$ FCOS $st(0) \leftarrow$ COS( $st(0)$ )           FPTAN $st(0) \leftarrow$ TAN( $st(0)$ )           FPATAN $st(0) \leftarrow$ ATAN( $st(0)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIDIVR src                            | - · · · - · · · · · · ·                                   |
| FXTRACT $st(0) \leftarrow$ порядок $st(0)$ ; втолкнуть в стек; $st(0) \leftarrow$ мантисса $st(0)$ FPREM $st(0) \leftarrow st(0)$ MOD $st(1)$ FRNDINT $st(0) \leftarrow$ INT( $st(0)$ ); зависит от флага RC         FABS $st(0) \leftarrow$ ABS( $st(0)$ ); убрать знак         FCHS $st(0) \leftarrow$ - $st(0)$ FCOS $st(0) \leftarrow$ COS( $st(0)$ )         FPTAN $st(0) \leftarrow$ TAN( $st(0)$ )         FPATAN $st(0) \leftarrow$ ATAN( $st(0)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FSQRT                                 |                                                           |
| $st(0) \leftarrow \text{мантисса } st(0)$ FPREM $st(0) \leftarrow st(0) \text{ MOD } st(1)$ FRNDINT $st(0) \leftarrow \text{INT}(st(0))$ ; зависит от флага RC  FABS $st(0) \leftarrow \text{ABS}(st(0))$ ; убрать знак  FCHS $st(0) \leftarrow -st(0)$ FCOS $st(0) \leftarrow \text{COS}(st(0))$ FPTAN $st(0) \leftarrow \text{TAN}(st(0))$ FPATAN $st(0) \leftarrow \text{ATAN}(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FSCALE                                | $st(0) \leftarrow$ масштабировать на степень 2-ки $st(0)$ |
| FPREM $st(0) \leftarrow st(0)  \text{MOD}  \text{st}(1)$ FRNDINT $st(0) \leftarrow \text{INT}( \text{st}(0) );$ зависит от флага RCFABS $st(0) \leftarrow \text{ABS}( \text{st}(0) );$ убрать знакFCHS $st(0) \leftarrow -\text{st}(0)$ FCOS $st(0) \leftarrow \text{COS}( \text{st}(0) )$ FPTAN $st(0) \leftarrow \text{TAN}( \text{st}(0) )$ FPATAN $st(0) \leftarrow \text{ATAN}( \text{st}(0) )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FXTRACT                               | $st(0) \leftarrow$ порядок $st(0)$ ; втолкнуть в стек;    |
| FRNDINT $st(0) \leftarrow INT(st(0))$ ; зависит от флага RC         FABS $st(0) \leftarrow ABS(st(0))$ ; убрать знак         FCHS $st(0) \leftarrow -st(0)$ FCOS $st(0) \leftarrow COS(st(0))$ FPTAN $st(0) \leftarrow TAN(st(0))$ FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | $st(0) \leftarrow \text{мантисса } st(0)$                 |
| FABS $st(0) \leftarrow ABS(st(0))$ ; убрать знакFCHS $st(0) \leftarrow -st(0)$ FCOS $st(0) \leftarrow COS(st(0))$ FPTAN $st(0) \leftarrow TAN(st(0))$ FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FPREM                                 | $st(0) \leftarrow st(0) \text{ MOD } st(1)$               |
| FCHS $st(0) \leftarrow -st(0)$ FCOS $st(0) \leftarrow COS(st(0))$ FPTAN $st(0) \leftarrow TAN(st(0))$ FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FRNDINT                               | $st(0) \leftarrow INT(st(0))$ ; зависит от флага RC       |
| FCOS $st(0) \leftarrow COS(st(0))$ FPTAN $st(0) \leftarrow TAN(st(0))$ FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FABS                                  | $st(0) \leftarrow ABS(st(0))$ ; убрать знак               |
| FPTAN $st(0) \leftarrow TAN(st(0))$<br>FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FCHS                                  | $st(0) \leftarrow -st(0)$                                 |
| FPATAN $st(0) \leftarrow ATAN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FCOS                                  | $st(0) \leftarrow COS(st(0))$                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FPTAN                                 | $st(0) \leftarrow TAN(st(0))$                             |
| FSIN $st(0) \leftarrow SIN(st(0))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FPATAN                                | $st(0) \leftarrow ATAN(st(0))$                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FSIN                                  | $st(0) \leftarrow SIN(st(0))$                             |

## Команды управления сопроцессором

| FINIT      | Инициализировать сопроцессор |
|------------|------------------------------|
| FSTSW AX   | $AX \leftarrow MSW$          |
| FSTSW dest | dest ← MSW (m16int)          |
| FLDCW src  | FPU CW ← src (m16int)        |
| FSTCW dest | dest ← FPU CW                |

| FCLEX       | Очистить исключения                                                  |
|-------------|----------------------------------------------------------------------|
| FSTENV dest | записать слова состояния, управления, тэгов и                        |
|             | указатели исключений в память – dest                                 |
| FLDENV src  | загрузить окружение с src                                            |
| FSAVE dest  | записать состояние сопроцессора в 94-байтное dest                    |
| FRSTOR src  | восстановить состояние сопроцессора,                                 |
|             | сохраненное FSAVE                                                    |
| FINCSTP     | $st(6) \leftarrow st(5); st(5) \leftarrow st(4),,st(0) \leftarrow ?$ |
| FDECSTP     | $st(0) \leftarrow st(1); st(1) \leftarrow st(2),,st(7) \leftarrow ?$ |
| FFREE st(i) | Отметить регистр st(i) как неиспользуемый                            |
| FNOP        | $st(0) \leftarrow st(0)$ , холостая команда                          |
| WAIT/FWAIT  | Остановить ЦПУ, пока сопроцессор не завершил                         |
|             | выполнение текущей команды                                           |

Покажем, как используется стек сопроцессора и его команды для выполнения последовательности вычислений на примере вычисления скалярного произведения (Рис. 2.11). Вначале разместим исходные данные в сегменте данных DS последовательно (1.2; 3.4; 5.6; 7.8) в формате float. Для этого изменим представление данных сегмента DS как данных с плавающей точкой (Ctrl $^D$   $\rightarrow$  Float).

- 1. Перед работой со стеком сопроцессора, выполним сброс FINIT.
- 2. Вторая команда FLD dword ptr [bp] выполняет декремент указателя стека и загружает значение 1.2 из DS:BP в ST(0).
- 3. Третья команда умножает значение ST(0) на операнд 3.4 из DS:[BP+4] и записывает результат в ST(0).
- 4. Четвертая команда выполняет декремент указателя стека и загружает значение 5.6 из памяти DS:[BP+8] в ST(0).
- 5. Пятая команда умножает значение ST(0) на значение 7.8 из DS:[BP+0C] и записывает результат в ST(0).
- 6. Шестая команда складывает значения ST(1) и ST(0) и записывает результат 47.76 в ST(0).



Рис. 2.11 Пример программы для сопроцессора

#### 2.2.8 Организация ввода-вывода

Работа с портами ввода/вывода в процессорах x86 возможна как с использованием специальных команд (IN, OUT), через отдельное адресное пространство ввода/вывода, так и по схеме с отображением регистров устройств на обычное адресное пространство. В последнем случае возможно использование обычных команд из системы команд процессора.

Для адресации портов устройств в пространстве ввода/вывода, используется 16-разрядный адрес, обеспечивая доступ к 64К 8-битным портам с адресами от 0h до FFFFh. Адреса 0F8h — 0FFh— зарезервированы для системных целей. Порты с адресами 0h — 0FFh используются оборудованием системной платы ПК (таймер, контроллер прерываний и т.п.), адреса 0100h—03FFh используют различные контроллеры: дисков, видеомонитора, компьютерной сети.

Команды IN и OUT работают с прямой адресацией (адрес порта находится в команде) для портов с адресами 0h - 0F7h и с косвенной адресацией (адрес порта находится в регистре DX) для любых портов: 0h - FFFFh. Обмен данными происходит только через регистр-аккумулятор (AX, AL), например, чтение из порта: in al,dx, запись в порт: out dx,ax

### Пример работы с устройством в/в (программируемый таймер 8254)

Для задания временных интервалов и формирования сигналов с различными временными параметрами в ПК на основе процессоров Intel х86 применяется программируемый таймер i8254. В состав таймера входят: буфер шины данных, схема управления вводом-выводом и три независимых канала, каждый из которых содержит регистр режима, схему управления каналом, буфер и 16-разрядный счетчик. В современных ПК, таймер реализован не в виде отдельной ИС, а в СБИС чипсета.

Программирование канала осуществляется путем записи управляющих слов в регистр режима каналов и начального значения в его счетчики. Каждый канал имеет управляющий вход GATE и выход OUT и может работать в одном из шести режимов. Частота CLK = 1193181 Гц.

Временные диаграммы одного из режимов таймера (режим 3) приведены на следующем рисунке:



Рис. 2.12 Временная диаграмма 3-го режима таймера

В IBM РС таймер имеет базовый адрес 40h и следующие программируемые регистры:

| Адрес | Операция                        | Назначение                                        |  |
|-------|---------------------------------|---------------------------------------------------|--|
| 40h   | запись                          | Загрузка счетчика канала 0                        |  |
| 4011  | чтение                          | Чтение счетчика канала 0                          |  |
| 41h   | запись                          | Загрузка счетчика канала 1                        |  |
| 4111  | чтение                          | Чтение счетчика канала 1                          |  |
| 42h   | запись                          | Загрузка счетчика канала 2                        |  |
| 4211  | чтение Чтение счетчика канала 2 |                                                   |  |
| 43h   | запись                          | Запись управляющего слова в регистр режима канала |  |

Управляющее слово (порт 43h) имеет следующий формат:

| бит 0,<br>представление | биты 1-3,<br>режим работы | биты 4-5,<br>вид загрузки счетчика | биты 6-7,<br>номер<br>канала: |
|-------------------------|---------------------------|------------------------------------|-------------------------------|
| 0 - двоичный            | 000 - режим 0             | 00 - "защелкивание"                | 00 - канал 0                  |
| 1 - двоично-            | 001 - режим 1             | 01 - только младший байт           | 01 - канал 1                  |
| десятичный              | Х10 - режим 2             | 10 - только старший байт           | 10 - канал 2                  |
|                         | Х11 - режим 3             | 11 - младший байт, затем           | 11 - запре-                   |
|                         | 100 - режим 4             | старший                            | щено                          |
|                         | 101 - режим 5             |                                    |                               |

В ІВМ РС каналы таймера обычно имеют следующее назначение:

| Канал | Назначение                                   | Режим                |
|-------|----------------------------------------------|----------------------|
| 0     | системные часы, IRQ0                         | 3, счетчик=0 (65536) |
| 1     | запрос для канала 0 ПДП (регенерация памяти) | 2, счетчик=18        |
| 2     | генератор звука                              |                      |

Тактовая частота каждого канала равна 1,19318 МГц, т.о. каждый такт имеет длительность 0,84 мсек. Вход GATE каналов 0 и 1 всегда имеют высокий уровень, поэтому счет на этих каналах разрешен всегда. Вход GATE канала 2 управляется битом 0 порта 61h.

При начальной загрузке BIOS инициализирует канал 0 для работы в режиме 3 со счетчиком 0 (65536 декрементов на цикл счета). Поэтому частота системных часов равна 1,19 МГц/65536 = 18.2 Гц и прерывание IRQ0, связанное с вектором Int 8, происходит 18,2 раз в секунду, т. е. каждые 55 мсек. BIOS также обновляет свой таймер по адресу 0000:046Ch.

Канал 1 работает в режиме 2 со счетчиком 18, поэтому регенерация памяти происходит каждые 18 мсек. Перепрограммировать его нежелательно. Программирование канала 2 может быть использовано для генерации звука.

На вход звукогенератора поступает логическое «И» двух сигналов: выхода ОUТ 2-го канала таймера и содержимого бита 1 порта 61h. Поэтому, простейший способ генерации звука состоит в программировании канала 2 таймера так, чтобы он вырабатывал прямоугольный импульс заданной частоты, лежащий в звуковом диапазоне 20 Гц - 20 кГц (учитывая качество динамика ПК 500-5000Гц). Для этого следует использовать режим таймера 3 с подходящим начальным значением счетчика. Если затем установить биты 0 и 1 порта 61h, то импульс начнет поступать на вход звукогенератора (бит 0 - это вход GATE канала 2, разрешающий счет, а бит 1 - разрешение выдачи выхода ОUТ на вход звукогенератора). Для выключения звука достаточно сбросить биты 0 - 1 в 61h. Значение счетчика 2-го канала вычисляется по формуле n=1193181/f (1193181 - тактовая частота таймера в Гц, f - требуемая частота звука). Обратите внимание, что т.о. будет получено значение для счетчика в десятичной системе.

# Пример генерации звука (обязательно внимательное прочтение предыдущего описания работы таймера!)

Для работы с регистрами таймера можно воспользоваться программой debug. Эта программа операционной системы DOS, поставляется и во всех последующих OC MS в рамках эмуляции DOS. Запуск программы можно выполнить так: Start  $\rightarrow$  Run  $\rightarrow$  debug  $\rightarrow$ OK. Полный перечень команд debug можно получить набрав вместо команды знак вопроса. Нам же понадобятся две команды этой программы: i – для чтения из порта ввода/вывода и o – для записи в порт. Чтобы проверить возможности генерации звука на данном ПК, нужно выполнить следующие команды:

| -o 61 3  | Разрешение выхода таймера (OUT) и разрешение счета (GATE) |
|----------|-----------------------------------------------------------|
| -o 43 A6 | Установка режима 3 для канала 2 (управляющее слово = 86)  |
| -o 42 1  | Запись старшего байта счетчика = 1                        |
| -o 42 2  | Запись старшего байта счетчика = 2 (на октаву вниз)       |
| -o 42 4  | Запись старшего байта счетчика = 4 (на октаву вниз)       |
| -o 42 8  | Запись старшего байта счетчика = 8 (на октаву вниз)       |
| -o 42 10 | Запись старшего байта счетчика = 10 (на октаву вниз)      |
| -o 61 0  | Выключение выхода и счета                                 |
| -quit    | Выход из программы debug                                  |
|          |                                                           |

В данном примере в регистр счетчика загружался только старший байт (управляющее слово, записанное в порт 43h, имело значение A6h). Значения старшего байта счетчика[1; 2; 4; 8; 10], с учетом нулевого младшего байта, в десятичной системе дадут [256; 512; 1024; 2048; 4096]. Соответствующие значения частоты на втором канале таймера будут F=1193180/счетчик = [4660; 2330; 1165; 582; 291]  $\Gamma$ ц.

### 2.2.9 Организация прерываний

Прерывания - приостановление основных вычислений в процессоре, для выполнения вспомогательных действий, технологических сервисных процедур — можно разделить на два класса: внешние и внутренние. Каждо-

му прерыванию назначен четырехбайтный вектор с номером в диапазоне 0h - FFh. Векторы определяют адреса подпрограмм обслуживания прерывания (ISR, Interrupt Service Routine) и размещаются в младшем килобайте адресного пространства памяти в виде IP:CS (сегмент\_ISR:смещение\_ISR, смещение записывается по младшему адресу).

Внешние прерывания вызываются сигналами на входах (см. Рис. 2.13) запроса немаскируемого прерывания процессора (NMI) и маскируемого прерывания (INTR). Маскируемые прерывания игнорируются, если очищен флаг I (Рис. 2.5).



Рис. 2.13 Источники прерываний

После завершения выполнения текущей команды процессор вырабатывает сигналы подтверждения (INTA), получает по шине данных номер прерывания от контроллера прерываний, сохраняет в стеке текущее содержимое Flags, CS, IP и приступает к выполнению ISR, загружая содержимое вектора в CS, IP. В начале выполнения ISR процессор очищает флаг I, запрещая дальнейшие прерывания. Если необходимо, в подпрограмме ISR можно разрешить дальнейшие прерывания, установив флаг I (с помощью команды STI). Подпрограмма ISR должна заканчиваться командой IRET, которая загружает старые значения IP, CS, Flags из стека и т.о. возобновляет работу прерванной программы.

Запросы от различных устройств в ПК обрабатываются контроллером прерываний, который формирует сигнал INTR для процессора (Рис. 2.13). Обычно это две микросхемы Intel8259, каждая из которых имеет 8 входов прерываний. Запросам прерываний IRQ0-IRQ7 ПК соответствуют векторы от 08h до 0Fh, а IRQ8-IRQ15 — векторы от 070h до 077h. Битовые маски, позволяющие запрещать (маскировать) отдельные входы запросов прерываний, находятся по адресам 021h и 0A1h для IRQ0-IRQ7 и IRQ8-IRQ15 соответственно.

К внутренним прерываниям относятся т.н. *исключения* — различного рода ошибки, механизм для отлаживания программ, аварийные состояния и командные прерывания INT:

вектор 0 – возникает при ошибке деления;

- вектор 1 отладочное, возникает при установленном ТГ;
- вектор 3 вызывается однобайтной командой int 3;
- вектор 4 вызывается однобайтной командой into, при установленном OF;
- вектор > 4 вызывается командой int n, где n номер вектора.

Вход для немаскируемых прерываний с вектором 2 используется для подачи сигналов о серьезных аварийных состояниях, требующих немедленного обслуживания, например, об отсутствии напряжения в сети.

### 2.2.10 Базовая система ввода-вывода BIOS

BIOS (Basic Input-Output System) - набор подпрограмм, записанный в запоминающее устройство (ПЗУ или флеш), предназначен для начальной инициализации ПК, выполнения программы настройки оборудования ПК Setup, загрузке операционной системы и совместной работы с операционной системой DOS. Прерывания BIOS - это механизм выполнения стандартных операций ввода/вывода, предоставляемый операционной системе и программе Setup. После получения инструкции INT процессор, после обычных процедур со стеком, определяет по номеру прерывания в таблице векторов прерываний адрес операции, который находится в адресном пространстве ПЗУ BIOS, и приступает к ее выполнению. Выполнение продолжается до команды IRET, после чего процессор возвращается к адресу, сохраненному в стеке, и восстанавливает все флаги. Параметры процедурам BIOS обычно передаются через регистры A, B, C и D.

Т.о. для выполнения той или иной процедуры BIOS необходимо записать ее параметры в регистры и затем выполнить команду Int с кодом, соответствующим процедуре.

Ниже приводятся коды прерываний и значения регистров (параметров) для некоторых наиболее распространенных процедур работы с видеоконтроллером (Int10), коммуникационными (Int14) и параллельными портами (Int17), манипулятором «мышь» (Int10):

- Int10 Установка видеорежима. Аргументы: ah=00, al= номер режима. Режимы 0-3 16-цветный текст, режимы 4-6 4-х цветная графика, режим 7 -монохромный текст, режимы 8-18 зависят от типа видеоадаптера, режим 19 256-ти цветная графика.
- Int10 Установка размера курсора. Аргументы: ah=01, ch=начальная линия, cl=конечная линия курсора.
- Int10 Установка позиции курсора. Аргументы: ah=02, bh=номер видеостраницы, dh=строка курсора, dl=столбец курсора. Главная видеостраница = 0
- Int10 Считывание положения и размера курсора. Аргументы: ah=03, bh=номер видеостраницы. Выход: bh=номер видеостраницы,

- ch=начальная линия, cl=конечная линия, dh=строка курсора, dl=столбец курсора.
- Int10 Выбор активной видеостраницы. Аргументы: ah=05, al=номер страницы.
- Только для текстового режима, номера страниц обычно 0-7.
- Int10 Чтение знака и его атрибутов. Аргументы: ah=08, bh=номер видеостраницы. Выход: ah=байт атрибутов, al=ASCII код буквы. Атрибуты дисплея = однобайтовое число, старшие биты цвет фона, младшие биты цвет знака, цвета от 0 до F.
- Int10 Запись знака и его атрибутов. Аргументы: ah=09, al=ASCII код знака, bh=номер видеостраницы, lb=байт атрибутов (как указано выше), сх=число знаков для вывода на экран.
- Int10 Запись знака. Аргументы: ah=0A, al=ASCII код знака, bh=номер видеостраницы, bl=цвет, сх=число знаков для вывода на экран.
- Int10 Запись точки (1 пиксел). Аргументы: ah=0C, al=значение пиксела, сx=столбец, dx=ряд.
- Int10 Чтение точки (1 пиксел). Аргументы: ah=0D, сx=столбец, dx=ряд. Выход: al=значение пиксела, сx=столбец, dx=ряд.
- Int10 Информация о видеорежиме. Аргументы: ah=0F. Выход: ah=ширина экрана, al=режим отображения, bh=активная видеостраница.
- Int10 Запись строки. Аргументы: ah=13, al=видеорежим, bh=номер видеостраницы, bl=атрибуты строки (см. выше), сх=длина строки, dh=строка курсора, dl=столбец курсора, es=сегмент, bp=смещение. Примечание: ES:BP=адрес строки.
- Int14 Инициализация коммуникационного порта. Вход: ah=00, al=параметр, dx=номер COM порта (начиная с 0, для COM1). Выход: ah=статус линии, al=статус модема.
- Int14 Передача символа. Вход: ah=01, al=ASCII символ, dx=номер COM порта.
- Int14 Прием символа. Вход: ah=02, dx=номер СОМ порта. Выход: ah=возвратный код, al=принятый символ.
- Int14 Статус СОМ порта. Вход: ah=03, dx=номер СОМ порта. Выход: ah=статус линии, al=статус модема.
- Int17 Печать символа. Вход: ah=00, al=символ, dx=принтер. Выход: ah=статус принтера. Примечание: принтер=0 (LPT1) до 2 (LPT3).
- Int17 Инициализация принтера. Вход: ah=01, dx=принтер. Выход: ah=статус принтера.
- Int17 Статус принтера. Вход: ah=02, dx=принтер. Выход: ah=статус принтера.
- Int33 Сброс манипулятора мышь. Вход: ax=00. Выход: ax=статус.
- Int33 Показать указатель мыши. Вход: ax=01.

- Int33 Скрыть указатель мыши. Вход: ax=02.
- Int33 Определить положение указателя. Вход: ax=03. Выход: bx=статус клавиш: 0 разряд левая, 1 разряд правая, 2 разряд средняя; сx=координаты по оси X (по горизонтали); dx координаты по оси Y (по вертикали).

### 2.3 32-разрядные процессоры

IA32 — так по классификации фирмы Intel [3] обозначается архитектура 32-разрядных процессоров Intel от процессора 80386 до 80686. Процессоры IA32 могут работать в двух основных режимах: Real Address Mode (реальный режим) и Protected Virtual Address Mode (защищенный режим). В реальном режиме IA32 полностью совместимы с 8086, имеют аналогичные регистровый файл, адресное пространство, механизм сегментации памяти. В защищенном режиме появляются новые возможности:

- дополненный регистровый файл;
- новые механизмы сегментации и страничной адресации;
- режим виртуального процессора 8086 Virtual 8086 Mode (V86);
- добавления к системе команд.

В большинстве моделей IA32 введен еще один режим — System Management Mode (режим системного управления) для отладочных целей и для реализации функции энергосбережения.

Набор регистров общего назначения включает в себя регистры 16-разрядных процессоров 8086/8088, однако они имеют разрядность 32 бита. К обозначениям регистров добавлена приставка Е (Extended - расширенный): EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP. Возможно обращение к младшим 16 разрядам расширенных регистров по именам без приставки, например, AX, BX, а также отдельно к младшим и старшим байтам, например, AL, AH.

Регистр состояния процессора FLAGS расширен до 32 разрядов и обозначается — EFLAGS. Флаги 16-разрядных процессоров с 0 по 11 разряд занимают такое же положение в EFLAGS. Добавлены новые флаги:

- ID Flag (ID, 21 бит) Если возможно программно устанавливать и сбрасывать этот флаг, процессор поддерживает команду CPUID.
- Virtual Interrupt Pending (VIP, 20 бит) Указывает на то, что остались прерывания, ожидающие обработку. Устанавливается и сбрасывается программно, процессор только считывает его значение.
- Virtual Interrupt Flag (VIF, 19 бит) Образ флага IF для режима V86.
- Alignment Check (AC, 18 бит) Флаг контроля выравнивания. При установке этого флага во время обращении к невыровненному операнду возникает исключение.

- Virtual-8086 Mode (VM, 17 бит) Включает/выключает режим V86 в защищенном режиме.
- Resume Flag (RF, 16 бит) Флаг возобновления исполнения при отладке
- Nested Task (NT, 14 бит) Флаг вложенной задачи. Устанавливается, когда текущая задача связана с прерванной задачей, очищается, если такой связи нет.
- I/O Privilege Level (IOPL, 12-13 биты) определяет уровень привилегий ввода/вывода для текущей задачи.

Сегментные регистры CS, SS, DS, ES, как и в процессорах 8086/8088, имеют разрядность 16 бит. К ним добавлены регистры FS и GS – дополнительные сегментные регистры данных.

В реальном режиме, в котором процессор находится сразу после включения питания или сброса, сегментные регистры определяют 64Кб сегменты, как и в 16-разрядных процессорах, а в защищенном режиме содержат указатели (т.н. селекторы) на описатели сегментов (64-разрядные дескрипторы), находящиеся в памяти в виде таблиц.

Дескриптор, помимо базового адреса, содержит предельный размер сегмента и атрибуты сегмента (права доступа). Дескрипторы являются основой защиты и мультизадачности. В защищенном режиме сегменты могут начинаться с любого линейного адреса и иметь любой предел вплоть до 4Гбайт. Существуют две обязательные дескрипторные таблицы - глобальная (GDT) и дескрипторная таблица прерывания (IDT), а также множество (до 8192) локальных дескрипторных таблиц (LDT), из которых в один момент времени процессору доступна только одна. Дескрипторы сегментов могут находиться в GDT или LDT. Расположение дескрипторных таблиц определяется регистрами процессора GDTR (Global Descriptor Table Register), IDTR (Interrupt Descriptor Table Register), LDTR (Local Descriptor Table Register). Регистры GDTR и IDTR - 6-байтные, они содержат 32 бита линейного базового адреса дескрипторной таблицы и 16 бит предела таблицы. Программно доступная часть регистра LDTR - 16 бит, которые являются селектором LDT. Дескрипторы LDT находятся в GDT. Однако чтобы не обращаться каждый раз к GDT, в процессоре имеется теневая (программно недоступная) часть регистра LDTR, в которую процессор помещает дескриптор LDT при каждой перегрузке селектора в регистре LDTR.

Значение сегментного регистра (селектор) содержит индекс дескриптора в дескрипторной таблице; бит, определяющий, к какой дескрипторной таблице производится обращение (LDT или GDT); а также запрашиваемые права доступа к сегменту. Таким образом, селектор выбирает дескрипторную таблицу, выбирает дескриптор из таблицы, а по дескриптору определяется положение сегмента в линейном пространстве памяти. Однако обращение к дескрипторным таблицам происходит только при загрузке селектора в сегментный регистр. При этом процессор помещает дескриптор в

теневую (программно недоступную) часть сегментного регистра. При формировании линейного адреса дескриптор сегмента процессору уже известен (см. Рис. 2.14).

#### Сегментный регистр содержит селектор:



Рис. 2.14 Сегментная адресация в защищенном режиме

В защищенном режиме используются также 32-разрядные регистры управления CR0-CR3, регистры отладки DR0-DR7 и регистры проверки TR0-TR7.

Кроме механизма адресации 32-разрядные процессоры реализуют еще один уровень косвенности при формировании физического адреса — страничное преобразование адресов, где базовым объектом адресации является блок фиксированного размера (4Кбайт и/или 4 Мбайт) — страница. Фиксированный размер страницы позволяет организовать эффективную систему виртуальной памяти с заменой страниц по требованию и защитой на уровне страниц.

В страничном преобразовании участвуют два типа структур: каталоги таблиц и таблицы страниц. Их положение в памяти определяется физическим адресом, записанным в регистр управления CR3. Для включения страничной переадресации устанавливают 31 бит (Paging) в регистре CR0.

В защищенном режиме возможны дополнительные методы адресации. Команды имеют длину от 1 до 15 байт. Им могут предшествовать префиксные байты. Кроме префиксов REP и SEG, введены новые префиксы:

- размера операнда SIZ (operand SIZe), для переключения 16- и 32 разрядных операндов;
- размера адреса ADDRSIZ (ADDRess SIZe) для переключения 16- и 32 –разрядных адресов.

Для новых методов адресации в формат команды добавлено поле SIB (Scale Index Base), которое определяет масштаб, индексный и базовый ре-

гистры. Эффективный адрес определяется как сумма значений базового регистра, смещения в команде и индексного регистра, умноженного на масштабный коэффициент (1, 2, 4, 8). Примеры команд с новыми методами адресации приведены в следующей таблице:

| Метод адресации                                  | Пример команд                |
|--------------------------------------------------|------------------------------|
| Индексный с масштабированием и смещением         | mov eax, [2*esi + 100h]      |
| Базовый индексный с масштабированием             | mov eax, [ebp + 4*esi]       |
| Базовый индексный с масштабированием и смещением | mov eax, [ebp + 8*esi + 10h] |

### 2.4 Программа Turbo Debugger и лабораторные занятия

Лабораторные занятия по второму разделу (x86) необходимо начинать с изучения работы с отладчиком Turbo Debugger. Затем, рекомендуется выполнить все примеры к разделам 2.2.5 – 2.2.8. В разделе 2.2.10 можно изучить работу функций BIOS для работы с видео (прерывание int 10h) на задачах: вывести точку (группу точек), вывести знак (группу знаков) по заданным координатам. Имеет смысл повторно реализовать задания первого раздела (для учебной модели PDP-11) теперь в системе команд x86.

Отладчики Turbo Debugger фирмы Borland для реального (td.exe) и защищенного (td32.exe) режимов позволяют отлаживать код программ, предназначенных для систем DOS и Windows. Turbo Debugger дает возможность изменять код тестируемых программ и отлаживать его в пошаговом режиме, имеет встроенный ассемблер для ввода команд в мнемонике.

Для начала работы (выполнения примеров и заданий) обычно загружают в отладчик исполняемый файл (меню File→Open→Browse→имя файла) или подключаются к процессу (меню File→Attach→процесс). Например: File → Open → Browse → rtm.exe (или td32.exe для 32-х разрядной версии) → ОК. Верхняя строка экрана – меню, содержащее средства перестройки режимов отображения, управления комплексом отлаживаемых модулей и функциональных режимов (выберите View → CPU). В нижней строке указывается назначение функциональных клавиш отладчика.

Обычно используются 5 окон отладчика: команд, стека, данных, регистров и флагов, которые вызываются с помощью команды меню View→CPU. В зависимости от типа активного окна просмотра можно пользоваться следующими сочетаниями клавиш:

| окно команд |        |                   | окна даг | ных, стека |         |
|-------------|--------|-------------------|----------|------------|---------|
| Ctrl G      | Goto   | Переход по адресу | Ctrl G   | Goto       | Переход |
| Ctrl O      | Origin | Перейти к IP      | Ctrl S   | Search     | Поиск   |

| окно команд |          |                  | окна дан | ных, стека |                 |
|-------------|----------|------------------|----------|------------|-----------------|
| Ctrl F      | Follow   | Следовать        | Ctrl N   | Next       | Поиск вперед    |
| Ctrl N      | Next     | Установить IP    | Ctrl C   | Change     | Изменить        |
| Ctrl C      | Caller   | Вызывающий адрес | Ctrl F   | Follow     | Следовать       |
| Ctrl P      | Previous | К предыдущему IP | Ctrl P   | Previ-     | Поиск назад     |
|             |          |                  |          | ous        |                 |
| Ctrl S      | Search   | Поиск            | Ctrl D   | Display    | Формат данных   |
| Ctrl V      | View     | Просмотр         | Ctrl B   | Block      | Работа с блоком |
| Ctrl M      | Mixed    | Смешанный        |          |            |                 |

| окно регистров |        |                  | окно   | флагов |                 |
|----------------|--------|------------------|--------|--------|-----------------|
| Ctrl I         | Incre- | Добавить единицу | Ctrl T | Toggle | Поменять значе- |
|                | ment   |                  |        |        | ние             |
| Ctrl D         | Decre- | Вычесть единицу  |        |        |                 |
|                | ment   |                  |        |        |                 |
| Ctrl Z         | Zero   | Очистить         |        |        |                 |
| Ctrl C         | Change | Изменить         |        |        |                 |

Для исполнения программы в пошаговом режиме необходимо определить стартовый адрес в паре CS:IP и, затем, нажатиями F7 или F8 (без «захода» в код подпрограмм) выполнять команды. Другие функциональные клавиши приведены ниже в таблице:

| Клавиша | Команда           | Действие                               |
|---------|-------------------|----------------------------------------|
| F1      | Help              | Вызов справки                          |
| F2      | Toggle Breakpoint | Установка/снятие контрольной точки     |
| F3      | Module            | Загрузка модуля или таблицы символов   |
| F4      | Go to Cursor      | Выполнить до курсора                   |
| F5      | Zoom Window       | Изменить масштаб окна                  |
| F6      | Next Window       | Следующее окно                         |
| F7      | Trace Into        | Выполнить шаг с заходом в подпрограм-  |
|         |                   | мы                                     |
| F8      | Step Over         | Выполнить шаг без заходов в подпро-    |
|         |                   | граммы                                 |
| F9      | Run               | Выполнить все                          |
| F10     | Command menu      | Вызов командного меню                  |
| Alt F1  | Last help         | Вызов справки по последней теме        |
| Alt F2  | Breakpoint At     | Установить контрольную точку по адресу |
|         |                   | •••                                    |
| Alt F3  | Close Window      | Закрыть окно                           |
| Alt F4  | Back trace        | Трассировка назад                      |
| Alt F5  | User Screen       | Экран выполняемой программы            |

| Клавиша  | Команда           | Действие                           |
|----------|-------------------|------------------------------------|
| Alt F6   | Undo Close        | Отмена закрытия                    |
| Alt F7   | Instruction Trace | Выполнить одну команду             |
| Alt F8   | Until Return      | Выполнять до возврата              |
| Alt F9   | Execute To        | Выполнять до указанного адреса     |
| Alt F10  | Speed menu        | Вызов контекстного меню            |
| Ctrl F2  | Program Reset     | Сброс, перезагрузка программы      |
| Ctrl F4  | Data evaluate     | Оценить значение выражения         |
| Ctrl F5  | Window resize     | Изменение размера окна             |
| Ctrl F7  | Data Watch        | Слежение за значением              |
| Ctrl F8  | Breakpoint Toggle | Установка/снятие контрольной точки |
| Ctrl F9  | Run               | Выполнить все                      |
| Ctrl F10 | Speed menu        | Вызов контекстного меню            |

## Приложения

# 1. Список команд процессора учебной ЭВМ (подмножество системы команд семейства PDP-11)

| Мнемоника        | Команда                         | Код                    | Стр. |
|------------------|---------------------------------|------------------------|------|
|                  | одноадресные команды            |                        |      |
| CLR(B)           | Очистка                         | * <b>050</b> <i>DD</i> | 17   |
| COM(B)           | Инвертирование                  | * <b>051</b> <i>DD</i> | 17   |
| INC (B)          | Прибавление единицы             | * <b>052</b> <i>DD</i> | 17   |
| DEC(B)           | Вычитание единицы               | * <b>053</b> <i>DD</i> | 18   |
| NEG(B)           | Изменение знака                 | * <b>054</b> <i>DD</i> | 18   |
| TST(B)           | Проверка                        | * <b>057</b> <i>DD</i> | 18   |
| ASR(B)           | Арифметический сдвиг вправо     | * <b>062</b> <i>DD</i> | 19   |
| ASL(B)           | Арифметический сдвиг влево      | * <b>063</b> <i>DD</i> | 19   |
| ROR(B)           | Циклический сдвиг вправо        | * <b>060</b> <i>DD</i> | 20   |
| ROL (B)          | Циклический сдвиг вправо        | * <b>061</b> <i>DD</i> | 20   |
|                  | двухадресные команды            |                        |      |
| MOV (B)          | Пересылка                       | <b>*1</b> SSDD         | 21   |
| CMP(B)           | Сравнение                       | <b>*2</b> SSDD         | 21   |
| ADD              | Сложение                        | <b>06</b> <i>SSDD</i>  | 22   |
| SUB              | Вычитание                       | <b>16</b> <i>SSDD</i>  | 22   |
| BIT ( <i>B</i> ) | Проверка разрядов               | *3 SSDD                | 23   |
| BIC (B)          | Очистка разрядов                | <b>*4</b> <i>SSDD</i>  | 23   |
| BIS (B)          | Логическое сложение             | <b>*5</b> SSDD         | 24   |
| XOR              | Исключающее ИЛИ                 | <b>074</b> <i>RDD</i>  | 24   |
|                  | команды управления              |                        |      |
|                  | ПРОГРАММОЙ                      |                        |      |
| BR               | Ветвление безусловное           | 000400                 | 25   |
| BNE              | Ветвление, если не равно (нулю) | 001000                 | 25   |
| BEQ              | Ветвление, если равно (нулю)    | 001400                 | 26   |
| BPL              | Ветвление, если плюс            | 100000                 | 26   |
| BMI              | Ветвление, если минус           | 100400                 | 26   |
|                  | Ветвление, если нет             |                        |      |
| BVC              | арифметического переполнения    | 102000                 | 27   |

|      | Ветвление, если есть          |                       |    |
|------|-------------------------------|-----------------------|----|
| BVS  | арифметическое переполнение   | 102400                | 27 |
| BCS  | Ветвление, если перенос       | 103400                | 28 |
| BCC  | Ветвление, если нет переноса  | 103000                | 27 |
|      | Ветвление, если больше        |                       |    |
| BGE  | или равно (нулю)              | 002000                | 28 |
| BLT  | Ветвление, если меньше (нуля) | 002400                | 29 |
| BGT  | Ветвление, если больше (нуля) | 003000                | 29 |
|      | Ветвление, если меньше        |                       |    |
| BLE  | или равно (нулю)              | 003400                | 30 |
| BHI  | Ветвление, если больше        | 101000                | 30 |
|      | Ветвление, если меньше или    |                       |    |
| BLOS | равно                         | 101400                | 31 |
|      | Ветвление, если больше или    |                       |    |
| BHIS | равно                         | 103000                | 31 |
| BLO  | Ветвление, если меньше        | 103400                | 31 |
| JMP  | Безусловный переход           | <b>0001</b> DD        | 32 |
| JSR  | Обращение к подпрограмме      | <b>004</b> <i>RDD</i> | 32 |
| RTS  | Возврат из подпрограммы       | 00020R                | 33 |
| SOB  | Вычитание единицы и ветвление | <b>077</b> <i>RNN</i> | 33 |
|      | команды прерывания            |                       |    |
|      | Командное прерывание для      | 104000-               |    |
| EMT  | системных программ            | 104377                | 34 |
|      | r · r                         | 104400-               |    |
| TRAP | Командное прерывание          | 104777                |    |
|      | Командное прерывание          |                       |    |
| IOT  | для ввода-вывода              | 000004                |    |
|      | Командное прерывание          |                       |    |
| BPT  | для отладки                   | 000003                |    |
| RTI  | Возврат из прерывания         | 000002                | 35 |
| RTT  | Возврат из прерывания         | 000006                |    |
|      | команды управления            |                       |    |
|      | ПРОЦЕССОРОМ                   |                       |    |
| HALT | Останов                       | 000000                | 35 |

|     | команды изменения              |        |
|-----|--------------------------------|--------|
|     | ПРИЗНАКОВ                      |        |
| CLN | Очистка N                      | 000250 |
| CLN | Очистка N                      | 000250 |
|     |                                |        |
| CLV | Очистка V                      | 000242 |
| CLC | Очистка С                      | 000241 |
| CCC | Очистка всех разрядов (NZVC)   | 000257 |
| SEN | Установка N                    | 000270 |
| SEZ | Установка Z                    | 000264 |
| SEV | Установка V                    | 000262 |
| SEC | Установка С                    | 000261 |
| SCC | Установка всех разрядов (NZVC) | 000277 |
| NOP | Нет операции                   | 000240 |

## 2. Список команд процессора і8086 (в алфавитном порядке)

| Мнемоника    | Название команды                         |
|--------------|------------------------------------------|
| AAA          | Коррекция кода ASCII для сложения        |
| AAD          | Коррекция кода ASCII для деления         |
| AAM          | Коррекция кода ASCII для умножения       |
| AAS          | Коррекция кода ASCII для вычитания       |
| ADC A1,A2    | Сложение байтов или слов с переносом     |
| ADD A1,A2    | Сложение байтов или слов                 |
| AND A1,A2    | Логическое умножение байтов или слов (И) |
| CALL address | Вызов подпрограммы                       |
| CLC          | Сбросить флаг переноса СГ в 0            |
| CLD          | Сбросить флаг направления DF в 0         |
| CLI          | Сброс флага разрешения прерывания IF в 0 |
| CMC          | Инвертировать флаг переноса СГ           |
| CMP A1,A2    | Сравнение байта или слова                |
| CMPS         | Сравнение байта или слова строки         |
| CWB          | Преобразование байта в слово             |
| CWD          | Преобразование слова в двойное слово     |
| DAA          | Десятичная коррекция для сложения        |
| DAS          | Десятичная коррекция для вычитания       |
| DEC A1       | Вычитание единицы из байта или слова     |

| DIV A2      | Деление байтов или слов без знака                   |
|-------------|-----------------------------------------------------|
| ESC         | Выдача кода для внешнего процессора                 |
| HLT         | Переход процессора в состояние останова             |
| IDIV A2     | Деление байтов или слов со знаком                   |
| IMUL A2     | Умножение байтов или слов со знаком                 |
| IN AC, PORT | Ввод байта или слова из порта                       |
| INC A1      | <u>*</u>                                            |
|             | Увеличение байта или слова на единицу               |
| INTO        | Прерывание по переполнению                          |
| IRET        | Возврат из прерывания                               |
| JA, JNBE    | Перейти, если выше/не ниже или равно                |
| JAE, JNB    | Перейти, если выше или равно/не ниже                |
| JB, JNAE    | Перейти, если ниже/не выше или равно                |
| JBE, JNA    | Перейти, если ниже или равно/не выше                |
| JC          | Перейти, если есть перенос                          |
| JCXZ        | Перейти, если содержимое регистра СХ=0              |
| JE, JZ      | Перейти, если равно/нуль                            |
| JG, JNLE    | Перейти, если больше/не меньше или равно            |
| JGE, JNL    | Перейти, если больше или равно/не меньше            |
| JL, JNGE    | Перейти, если меньше/не больше или равно            |
| JLE, JNG    | Перейти, если меньше или равно/не больше            |
| JNC         | Перейти, если нет переноса                          |
| JNE, JNZ    | Перейти, если не равно/не нуль                      |
| JNO         | Перейти, если нет переполнения                      |
| JNP, JPO    | Перейти, если нет паритета/паритет нечетный         |
| JNS         | Перейти, если нет знака                             |
| JO          | Перейти, если есть переполнения                     |
| JP, JPE     | Перейти, если есть паритет/паритет четный           |
| JS          | Перейти, если есть знак                             |
| LAHF        | Загрузка флагов в регистр АН                        |
| LDS R,A2    | Загрузка указателя с загрузкой адреса сегмента в DS |
| LEA R,A2    | Загрузка исполнительного адреса                     |
| LES R,A2    | Загрузка указателя с загрузкой адреса сегмента в ES |
| LOCK        | Блокировка системной шины                           |
| LODS        | Загрузка байта или слова строки                     |
| LOOP        | Цикл пока CX не равно 0                             |
| LOOPE       | Цикл пока CX не равно 0 и ZF=1                      |
| LOOPNE      | Цикл пока CX не равно 0 и ZF=0                      |
| LOOPNZ      | Цикл пока CX не равно 0 и ZF=0                      |

| LOOPZ         | Цикл пока CX не равно 0 и ZF=1                    |
|---------------|---------------------------------------------------|
| MOV A1,A2     | Пересылка байта или слова                         |
| MOVS          | Пересылка байта или слова строки                  |
| MUL A2        | Умножение байтов или слов без знака               |
| NEG A1        | Отрицание (дополнительный код) байта или слова    |
| NOP           | Команда пустой операции                           |
| NOT A1        | Инвертирование байта или слова (НЕ)               |
| OR A1,A2      | Логическое сложение байтов или слов (ИЛИ)         |
| OUT PORT,AC   | Вывод байта или слова в порт                      |
| POP A1        | Чтение слова из стека                             |
| POPF          | Установка флагов из стека                         |
| PUSH A1       | Запись слова в стек                               |
| PUSHF         | Запись флагов в стек                              |
| RCL A1, count | Циклический сдвиг байта или слова влево через CF  |
| RCR A1, count | Циклический сдвиг байта или слова вправо через CF |
| RET           | Возврат из подпрограммы                           |
| ROL A1, count | Циклический сдвиг байта или слова влево           |
| ROR A1, count | Циклический сдвиг байта или слова вправо          |
| SAHF          | Установка флагов из регистра АН                   |
| SAL A1, count | Арифметический сдвиг байта или слова влево        |
| SAR A1, count | Арифметический сдвиг байта или слова вправо       |
| SBB A1,A2     | Вычитание байтов или слов с заемом                |
| SCAS          | Сравнение байта или слова строки с аккумулятором  |
| SHL A1, count | Логический сдвиг байта или слова влево            |
| SHR A1, count | Логический сдвиг байта или слова вправо           |
| STC           | Установить флаг переноса CF в 1                   |
| STD           | Установить флаг направления DF в 1                |
| STI           | Установка флага разрешения прерывания IF в 1      |
| STOS          | Запоминание байта или слова строки                |
| SUB A1,A2     | Вычитание байтов или слов                         |
| TEST A1,A2    | Логическое умножение байтов или слов без записи   |
| WAIT          | Переход процессора в состояние ожидания           |
| XCHG A1,A2    | Обмен байтами или словами                         |
| XLAT          | Перекодировка байта                               |
| XOR A1,A2     | Исключающее ИЛИ над байтами или словами           |

### Литература

- 1. Френк Т.С. PDP-11: Архитектура и программирование: Пер. с англ. М.: Радио и связь, 1986. 371 с.
- 2. PDP11.ORG <a href="http://www.pdp11.org/">http://www.pdp11.org/</a>
- 3. Intel 64 and IA-32 Architectures Software Developer's Manual vol. 1, <a href="http://www.intel.com/">http://www.intel.com/</a>, 2006. 466 p.
- 4. Гук М. Процессоры Pentium II, Pentium Pro и просто Pentium СПб: 3AO «Издательство Питер», 1999. 288 с.
- 5. Гук, Михаил. Процессоры Pentium 4, Athlon и Duron / Михаил Гук, Виктор Юров.— СПб. и др. : Питер, 2001.— 511 с.
- 6. Таненбаум, Эндрю. Архитектура компьютера : пер. с англ. / Э.Таненбаум .— 5-е изд. СПб. [и др.] : Питер, 2007 .— 698 с.
- 7. Википедия Intel, <a href="http://ru.wikipedia.org/wiki/Intel">http://ru.wikipedia.org/wiki/Intel</a>

## Содержание

| Введение                          |                                                    | 1  |
|-----------------------------------|----------------------------------------------------|----|
| 1 Модель РЕ                       | P11                                                | 3  |
|                                   | ры общего назначения                               |    |
| 1.2 Регист                        | р состояния процессора (РСП)                       | 4  |
|                                   | ение к памяти и распределение адресов канала       |    |
| 1.4 Обмен                         | данными между внешними устройствами и ЭВМ          | 6  |
| 1.5 Систем                        | иа команд учебной ЭВМ и методы адресации           | 7  |
|                                   | щие понятия                                        |    |
| 1.5.2 Фо                          | рмат команд обработки данных в учебной ЭВМ         | 8  |
|                                   | рмат одноадресных команд                           |    |
|                                   | рмат двухадресных команд                           |    |
|                                   | стоды прямой адресации                             |    |
|                                   | стоды косвенной адресации                          |    |
| 1.5.7 Ис                          | пользование счетчика команд (РС) в качестве РОН    | 13 |
|                                   | нение команд                                       |    |
|                                   | означения, используемые при описании команд        |    |
|                                   | полнение байтовых команд                           |    |
|                                   | ноадресные команды                                 |    |
|                                   | ухадресные команды                                 |    |
|                                   | манды управления программой                        |    |
|                                   | манды управления процессором                       |    |
| 2 Семейство процессоров Intel x86 |                                                    |    |
| -                                 | архитектура процессоров 8086 и Pentium Pro         |    |
|                                   | иа команд и методы адресации процессоров 8086/8088 |    |
|                                   | новные характеристики микропроцессора 8086         |    |
|                                   | гистры процессора                                  |    |
| -                                 | ганизация памяти                                   |    |
|                                   | рматы команд                                       |    |
| 2.2.5 Me                          | стоды адресации                                    | 46 |
| 2.2.6 Си                          | стема команд                                       | 51 |
| 2.2.7 Ma                          | тематический сопроцессор                           | 63 |
| 2.2.8 Op                          | ганизация ввода-вывода                             | 68 |
|                                   | ганизация прерываний                               |    |
| 2.2.10 Баз                        | вовая система ввода-вывода BIOS                    | 72 |
| 2.3 32-разр                       | оядные процессоры                                  | 74 |
| 2.4 Програ                        | мма Turbo Debugger и лабораторные занятия          | 77 |
| *                                 |                                                    |    |
| 1. Список в                       | соманд процессора учебной ЭВМ (подмножество систе  | МЫ |
|                                   | 11)                                                |    |
| 2. Список в                       | соманд процессора і8086 (в алфавитном порядке)     | 82 |
| Литература                        |                                                    | 85 |

Учебное издание

**Коваль** Андрей Сергеевич, **Сычев** Александр Васильевич

### АРХИТЕКТУРА ЭВМ И СИСТЕМ

Учебное пособие для вузов

Учебно-методическое пособие для лабораторных занятий

Редактор Бунина Т.Д.