Total Number of Possible Global Alignments between Two Sequences

Zhiping Weng Boston University

Definitions

Two sequences $\vec{a} = a_1 a_2 ... a_m$ and $\vec{b} = b_1 b_2 ... b_n$ $(m \ge n)$

f(m,n): The total number of possible alignments between \vec{a} and \vec{b}

g(m,n): The total number of possible non-redundant alignments between \vec{a} and \vec{b}

L: The length of an alignment (with padded gaps)

n=m=1

$$L=1$$
 $L=2$

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \quad \begin{bmatrix} -a_1 \\ b_1 - \end{bmatrix}$$

$$\begin{vmatrix} a_1 - \\ -b_1 \end{vmatrix}$$

$$f(1,1) = 3$$

$$g(1,1) = 2$$

BE561 9/19/00 Zhiping Weng

m=2; n=1

$$L=2$$
 $L=3$

$$a_1 a_2$$
 $-a_1 a$

$$\begin{vmatrix} b_1 - \end{vmatrix} \begin{vmatrix} b_1 - - \end{vmatrix}$$

$$\begin{vmatrix} a_1 & a_2 \\ -b_1 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & -b_1 \\ -b_1 & -b_1 \end{vmatrix}$$

$$\begin{vmatrix} a_1 - a_2 \\ -b_1 - \end{vmatrix}$$

$$f(1,2) = 5$$

$$g(1,2) = 3$$

m=2; n=2

$$f(2,2) = 13$$

 $\frac{\text{BE561}}{\text{Zhiping Weng}} \frac{9/19/00}{\text{Weng}} g(2,2) = 6$

f(n,m)

	n=0	1	2	3	4	5		
m=0	1	1	1	1	1	1		
1	1	3	5	7	9	11		
2	1	5	13	25	41	61		
3	1	7	25	63	129	231		
4	1	9	41	129	321	681		
5	1	11	61	231	231 681			

$$\begin{array}{ccc}
f(m-1,n-1) & f(m,n-1) \\
& \searrow & \downarrow \\
f(m-1,n) & \to & f(m,n)
\end{array}$$

BE561 9/19/00 Zhiping Weng

f(m,n) = f(n-1,m) + f(n,m-1) + f(n-1,m-1)

f(n,m)

3 ways an alignment can be made:

$$\dots a_m \quad \dots a_m \quad \dots -$$

 $\dots b_n \quad \dots - \quad \dots b_n$

$$f(m,n) = \sum_{k=0}^{n} {k+m \choose n} \cdot {n \choose k}$$

 $\lim_{n \to \infty} f(n, n) = \sqrt{n} (1 + \sqrt{2})^{2n+1}$

BE561 9/19/00 Zhiping Weng

 $f(1000,1000) = 10^{767.4}$

g(n,m)

	n=0	1	2	3	4	5
m=0	1	1	1	1	1	1
1	1	2	3	4	5	6
2	1	3	6	10	15	21
3	1	4	10	20	35	56
4	1	5	15	35	70	126
5	1	6	21	56	126	252

$$g(m, n-1) \downarrow \\ g(m-1, n) \rightarrow g(m, n)$$

BE561 9/19/00 Zhiping Weng

g(m,n) = g(n-1,m) + g(n,m-1)

g(n,m)

$$...a_m - - a_m$$
 are the same alignment $.... - b_n - b_n -$

$$g(m,n) = g(n-1,m) + g(n,m-1)$$
$$f(0,0) = f(m,0) = f(0,n) = 1$$

$$g(m,n) = {m+n \choose n}$$

$$\lim_{n \to \infty} g(n,n) = \frac{(2n)!}{(n!)^2} = \frac{\sqrt{2\pi 2n} (2n)^{2n} e^{-2n}}{\left(\sqrt{2\pi n} (n)^n e^{-n}\right)^2} = \frac{2^{2n}}{\sqrt{n\pi}}$$

BE561 9/19/00 Zhiping Weng $g(1000,1000) = 10^{600}$

Pairwise Sequence Alignment Local Alignment Semi-Global Alignment

Zhiping Weng Boston University

Dynamic Programming End Gaps

End Gaps: gaps appear before the first or after the last nucleotide/amino acid in a sequence

BE561 9/19/00 Zhiping Weng

End Gaps vs. Internal Gaps

CAGCA-CITGGATTCTCGG	
CAGCGTGG	

6 matches, 1 mismatch, 1 internal gap, 11 end gaps

8 matches, 0 mismatch, 10 internal gaps, 0 end gap

BE561 9/19/00
Zhiping Weng

Local Alignment

A local Alignment between sequence s and sequence t is an alignment with maximum similarity between a <u>substring</u> of s and a <u>substring</u> of t.

T. F. Smith & M. S. Waterman, "Identification of Common Molecular Subsequences", J. Mol. Biol., 147:195-197

BE561 9/19/00 Zhiping Weng

Local Alignment

For any entry (i,j) in the dynamic programming matrix, there is always the alignment between the empty suffixes of s[1...i] and t[1...j], which has score zero. Therefore the dynamic programming matrix will have all entries greater than or equal to zero.

Dynamic Programming Local Alignment

$$S_{ij} = \max \begin{cases} S_{i-1} \\ S_{i-1} \\ S_{i-1} \\ S_{i} \\ J_{i} \\ J_{i} \end{cases} W$$

 S_{ii} : score for the alignment ending at i in sequence 1 and j in sequence 2

 $\mathbf{S}_{ij}\text{:}$ score for aligning base/amino acid i in sequence 1 with base/amino acid j in sequence 2

W: the score for making a gap

No gap penalties for the boundaries

The end of the optimal path may be found anywhere in the dynamic

BE561 9/19/00programming matrix Zhiping Weng

Dynamic Programming: local Alignment Match = 5, Mismatch = -4, Gap w= -7

C 0

A 0

A 0

G 0

A 0

C 0

Dynamic Programming: local Alignment Match = 5, Mismatch = -4, Gap w= -7

l		0	G	C	T	G	G	A	A	G	G	C	A	T
l	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ŀ	G	0	5	0	0	5	5 <	0	0	5	5	0	0	0
ŀ	C	0	0	10	3	0	1	1	0	0	1	10	3	0
١.	A	0	0	3	6	0	0	6	^6	0	0	3	15	8
ŀ	G	0	5	0	0	11	5	0	2	11,	5	0	8	11
١.	A	0	0	1	0	4	7	10	5	4 \	7	1	5	4
ŀ	G	0	5	0	0	5	9	3	6	10	•	3	0	1
ŀ	C	0	0	10	3	0	2	5	0	3	6	14	7	0
١.	A	0	0	3	6	0	0	7	10	3	0	7	19	12
ŀ	С	0	0	5	0	2	0	0	3	6	0	5	12	15
ŀ	T	0	0	0	10	3	0	0	0	0	2	0	5	17

BE561 9/19/00 Zhiping Weng

Dynamic Programming: local Alignment Match = 5, Mismatch = -4, Gap w= -7

6 matches: 6 * 5 = 30

1 mismatch: -4

1 gaps: 1 * -7 = -7

Total: 19

Dynamic Programming End Gap Variations

Action					
Initialize first row with zeros					
Look for maximum in last row					
Initialize first column with zeros					
Look for maximum in last column					

Second sequence