Decision Tree and Naive Bayes(1)

November 9, 2021

```
[1]: import pandas as pd
     import matplotlib.pyplot as plt
     from collections import Counter
     import seaborn as sns
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import accuracy_score, classification_report
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.naive_bayes import GaussianNB
[3]: Prudential_train = pd.read_csv("https://raw.githubusercontent.com/crisajose/
      →CIND-820-Big-Data-Analytics-Project/main/train.csv")
[4]: Prudential_train.head()
[4]:
            Product_Info_1 Product_Info_2 Product_Info_3 Product_Info_4
         2
     0
                         1
                                        D3
                                                        10
                                                                   0.076923
     1
         5
                         1
                                                        26
                                        Α1
                                                                   0.076923
     2
                         1
                                        E1
                                                        26
                                                                   0.076923
     3
         7
                         1
                                        D4
                                                        10
                                                                   0.487179
         8
                                        D2
                                                        26
                                                                   0.230769
                         1
        Product_Info_5 Product_Info_6 Product_Info_7
                                                          Ins_Age
                                                                          Ηt
     0
                     2
                                                         0.641791
                                                                    0.581818
                     2
     1
                                      3
                                                      1 0.059701
                                                                    0.600000
                     2
                                      3
     2
                                                      1 0.029851
                                                                    0.745455
     3
                     2
                                      3
                                                      1 0.164179
                                                                    0.672727
     4
                     2
                                                      1 0.417910 0.654545 ...
        Medical_Keyword_40 Medical_Keyword_41 Medical_Keyword_42
     0
                         0
                                                                   0
                                              0
     1
                         0
                                              0
                                                                   0
     2
                         0
                                              0
                                                                   0
     3
                         0
                                              0
                                                                   0
                         0
        Medical_Keyword_43 Medical_Keyword_44
                                                 Medical_Keyword_45
     0
```

```
1
                      0
                                             0
                                                                    0
2
                      0
                                             0
                                                                    0
3
                      0
                                             0
                                                                    0
4
                                                                    0
   Medical_Keyword_46
                         Medical_Keyword_47
                                                Medical_Keyword_48
                                                                       Response
0
                      0
                                                                               4
1
                      0
                                             0
                                                                    0
2
                      0
                                             0
                                                                    0
                                                                               8
3
                      0
                                             0
                                                                    0
                                                                               8
4
                      0
                                                                               8
                                             0
```

[5 rows x 128 columns]

```
[5]: CATEGORICAL COLUMNS = ["Product Info 1", "Product Info 2", "Product Info 3", "
     →"Product_Info_5", "Product_Info_6",\
                            "Product_Info_7", "Employment_Info_2", __
     →"Employment_Info_3", "Employment_Info_5", "InsuredInfo_1",\
                            "InsuredInfo_2", "InsuredInfo_3", "InsuredInfo_4", "

¬"InsuredInfo_5", "InsuredInfo_6", "InsuredInfo_7",\"
                            "Insurance_History_1", "Insurance_History_2", ___
     →"Insurance_History_3", "Insurance_History_4", "Insurance_History_7",\
                            "Insurance_History_8", "Insurance_History_9", __
     →"Family_Hist_1", "Medical_History_2", "Medical_History_3",\
                            "Medical_History_4", "Medical_History_5",
     →"Medical_History_6", "Medical_History_7", "Medical_History_8",\
                            "Medical_History_9", "Medical_History_11", __
     →"Medical_History_12", "Medical_History_13", "Medical_History_14",\
                            "Medical_History_16", "Medical_History_17", __
     →"Medical_History_18", "Medical_History_19", "Medical_History_20",\
                            "Medical_History_21", "Medical_History_22", __
     → "Medical_History_23", "Medical_History_25", "Medical_History_26", \
                            "Medical_History_27", "Medical_History_28", __
     →"Medical_History_29", "Medical_History_30", "Medical_History_31",\
                            "Medical_History_33", "Medical_History_34", ___
     \hookrightarrow "Medical_History_35", "Medical_History_36", "Medical_History_37",
                            "Medical_History_38", "Medical_History_39",
     →"Medical_History_40", "Medical_History_41"]
     CONTINUOUS_COLUMNS = ["Product_Info_4", "Ins_Age", "Ht", "Wt", "BMI",
                           "Employment_Info_1", "Employment_Info_4", u
     "Insurance_History_5", "Family_Hist_2", "Family_Hist_3", __
     →"Family_Hist_4", "Family_Hist_5"]
     DISCRETE_COLUMNS = ["Medical_History_1", "Medical_History_10", __
      →"Medical_History_15", "Medical_History_24", "Medical_History_32"]
     DUMMY_COLUMNS = ["Medical_Keyword_{}".format(i) for i in range(1, 48)]
```

```
[6]: categorical_data = Prudential_train[CATEGORICAL_COLUMNS]

[7]: continuous_data = Prudential_train[CONTINUOUS_COLUMNS]

[8]: discrete_data = Prudential_train[DISCRETE_COLUMNS]

[9]: dummy_data = Prudential_train[DUMMY_COLUMNS]
```

1 Variable Types

```
[10]: Prudential_train.dtypes
[10]: Id
                               int64
     Product_Info_1
                               int64
     Product_Info_2
                              object
      Product_Info_3
                               int64
      Product_Info_4
                             float64
      Medical Keyword 45
                               int64
     Medical_Keyword_46
                               int64
     Medical_Keyword_47
                               int64
     Medical_Keyword_48
                               int64
      Response
                               int64
      Length: 128, dtype: object
```

2 NULL values

```
'Medical_History_24',
'Medical_History_32']
```

3 Categorical Variable - Plot

```
[13]: def plot_categoricals(data):
    ncols = len(data.columns)
    fig = plt.figure(figsize=(5 * 5, 5 * (ncols // 5 + 1)))
    for i, col in enumerate(data.columns):
        cnt = Counter(data[col])
        keys = list(cnt.keys())
        vals = list(cnt.values())
        plt.subplot(ncols // 5 + 1, 5, i + 1)
        plt.bar(range(len(keys)), vals, align="center")
        plt.xticks(range(len(keys)), keys)
        plt.xlabel(col, fontsize=18)
        plt.ylabel("frequency", fontsize=18)
        fig.tight_layout()
        plt.show()
```


4 Continuous Variable - Plot

5 Discrete Variable - Plot

[16]: plot_histgrams(discrete_data)

6 Dummy Variable - Plot

[17]: plot_categoricals(dummy_data)

7 Response Data Distribution

```
[18]: sns.countplot(x=Prudential_train.Response).set_title('Distribution of rows by⊔ ⇒response categories')
```

[18]: Text(0.5, 1.0, 'Distribution of rows by response categories')

8 Outliers Plot

```
[19]: misc_cols=["Ins_Age","Ht","Wt","BMI"]
sns.boxplot(data=Prudential_train[misc_cols])
```

[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa0414a8ed0>

9 Reassign Risk Class

```
[20]: prudential_train=Prudential_train.drop(axis=1,labels=["Product_Info_2"])
[21]:
     prudential_train.dropna(axis=1,inplace=True)
[22]: def new_target(row):
          if (row['Response']<=5):</pre>
              val=0
          elif (row['Response']==6):
              val=1
          elif (row['Response']==7):
          elif (row['Response']==8):
              val=3
          else:
              val=-1
          return val
      prudential_train['Final_Response'] = prudential_train.apply(new_target,axis=1)
[23]: sns.countplot(x=prudential_train.Final_Response).set_title('Distribution of of of other state)
       →rows by response categories')
```

[23]: Text(0.5, 1.0, 'Distribution of rows by response categories')

10 Base Model

11 Decision Tree

```
[25]: model = DecisionTreeClassifier()
    model.fit(X_train, y_train)
    model_predictions = model.predict(X_test)
    print("Accuracy score: {}".format(accuracy_score(y_test, model_predictions)))
    print("="*80)
    print(classification_report(y_test, model_predictions))
```

Accuracy score: 0.514018691588785

	precision	recall	f1-score	support	
0	0.60	0.58	0.59	4205	
1	0.32	0.34	0.33	2206	
2	0.30	0.31	0.30	1608	
3	0.64	0.62	0.63	3858	
accuracy			0.51	11877	
macro avg	0.46	0.46	0.46	11877	
weighted avg	0.52	0.51	0.52	11877	

12 Naive Bayes

```
[26]: model = GaussianNB()
  model.fit(X_train, y_train)
  model_predictions = model.predict(X_test)
  print("Accuracy score: {}".format(accuracy_score(y_test, model_predictions)))
  print("="*80)
  print(classification_report(y_test, model_predictions))
```

Accuracy score: 0.428222615138503

	precision	recall	f1-score	support	
0	0.71	0.21	0.33	4205	
1	0.26	0.07	0.11	2206	
2	0.29	0.22	0.25	1608	
3	0.42	0.95	0.58	3858	
accuracy			0.43	11877	
v	0 10	0.00			
macro avg	0.42	0.36	0.32	11877	
weighted avg	0.47	0.43	0.36	11877	

13 Treating Outliers

```
[30]: sns.boxplot(data=dev[misc_cols])
```

[30]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa03fe1da90>


```
[31]: prudential_X_train = dev

[32]: def new_target(row):
    if (row['Response'] <= 5):</pre>
```

```
val=0
          elif (row['Response']==6):
              val=1
          elif (row['Response']==7):
              val=2
          elif (row['Response']==8):
              val=3
          else:
              val=-1
          return val
      prudential_X_train['Final_Response']=prudential_X_train.apply(new_target,axis=1)
[33]: medical_keyword_cols=[col for col in prudential_X_train.columns if str(col).
       ⇔startswith("Medical_Keyword")]
[34]: medical_cols=[col for col in prudential_X_train.columns if str(col).
       →startswith("Medical_History")]
[35]: prudential_X_train['Total_MedKwrds']=prudential_X_train[medical_keyword_cols].
       \rightarrowsum(axis=1)
      prudential_X_train['Total_MedHist']=prudential_X_train[medical_cols].sum(axis=1)
[36]: prudential_X_train['Total_MedKwrds']
[36]: 0
               0
      1
               0
      2
               0
      3
               1
               0
      59376
               0
      59377
               0
      59378
               1
               2
      59379
      59380
      Name: Total_MedKwrds, Length: 57348, dtype: int64
[37]: from sklearn.preprocessing import LabelEncoder
      le=LabelEncoder()
      prudential_X_train['Product_Info_2_en'] = le.

→fit_transform(prudential_X_train['Product_Info_2'])
[38]: prudential_X_train['Product_Info_2_en']
[38]: 0
               16
                0
      1
```

```
2
               18
      3
               17
               15
               . .
      59376
               14
      59377
               16
      59378
               18
      59379
               15
      59380
      Name: Product_Info_2_en, Length: 57348, dtype: int64
[39]: prudential_X_train = prudential_X_train.drop(axis=1,labels=['Product_Info_2'])
[40]: prudential_X_train.Final_Response.unique()
[40]: array([3, 0, 1, 2])
```

14 Feature Selection

15 Fill Null Values

```
[42]: prudential_X_train = prudential_X_train.fillna(prudential_X_train.mean())
```

16 Build Model

```
Shape of X_train dataset (45878, 127)
Shape of X_test dataset (11470, 127)
Shape of y_train dataset (45878,)
Shape of y_valid dataset (11470,)
```

17 Decision Tree - with feature selection

```
[44]: model = DecisionTreeClassifier()
  model.fit(X_train, y_train)
  model_predictions = model.predict(X_test)
  print("Accuracy score: {}".format(accuracy_score(y_test, model_predictions)))
  print("="*80)
  print(classification_report(y_test, model_predictions))
```

Accuracy score: 0.5431560592850916

	precision	recall	f1-score	support	
0	0.60	0.59	0.59	3731	
1	0.39	0.42	0.40	2202	
2	0.35	0.35	0.35	1642	
3	0.68	0.65	0.66	3895	
accuracy			0.54	11470	
macro avg	0.50	0.50	0.50	11470	
weighted avg	0.55	0.54	0.55	11470	

18 Naive Bayes - with feature selection

```
[46]: model = GaussianNB()
model.fit(X_train, y_train)
model_predictions = model.predict(X_test)
print("Accuracy score: {}".format(accuracy_score(y_test, model_predictions)))
print("="*80)
print(classification_report(y_test, model_predictions))
```

Accuracy score: 0.44533565823888405

	precision	recall	f1-score	support
0	0.58	0.32	0.41	3731
			*	
1	0.27	0.10	0.14	2202
2	0.24	0.36	0.29	1642
3	0.50	0.80	0.62	3895

accuracy			0.45	11470
macro avg	0.40	0.39	0.37	11470
weighted avg	0.45	0.45	0.41	11470

[]:[