北京邮电大学 2019-2020 学年第二学期

《概率论与数理统计》期末试题(3学分)

考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效.

- 一、简答题(每题4分,共40分,需写出简单步骤)
- 1. 口袋中有 2 个白球, 3 个红球, 从中随机地一次取出 3 个球, 求取出的 3 个球中至多有 2 个红球的概率。
- 2. 设随机变量 X,Y 相互独立同分布,服从正态分布 N(-1,1),求 Z=2X-Y 的概率密度函数。
- 3. 已知随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X=0\}=\frac{1}{2}$,求 $P\{X<2\}$ 。
- 4. 设随机变量 X,Y 满足 D(X) = 9, D(Y) = 16, 相关系数 $\rho_{XY} = \frac{1}{2}$ 。求 D(X + Y)。
- 5. 将一枚硬币连掷 100 次,求正面出现次数大于 60 次的概率。 (已知: Φ (2) = 0.9772 : 当 x > 4 时, Φ (x) = 1)
- 7. 设 X_1 , X_2 , $\cdots X_6$ 为来自正态总体N(0,1) 的简单随机样本,

而 $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$,求常数 c,使得随机变量 cY 服从 χ^2 分布,并指出其自由度。

- 8. 设 X_1 , X_2 ,… X_n 为来自正态总体 $N(\mu,\sigma^2)$ 的简单随机样本,其中参数 μ,σ ($\sigma>0$)未
- 知,求(1) μ 的 $1-\alpha(0<\alpha<1)$ 的置信区间长度L;(2) $E(L^2)$
- 9. 叙述在假设检验中,显著性水平 α 的概率意义。
- 10. 设随机变量 $X \sim N(1,1)$, 且 $\Phi(z_{\alpha}) = 1 \alpha (0 < \alpha < 1)$,

求
$$x$$
, 使得 $P\{|X-1| < x\} = \alpha$ 。

- 二、证明题(前两题3分,后一题4分,共10分)
- 1. 设事件 A、B 满足 0 < P(A) < 1, P(B) > 0, $P(B \mid A) = P(B \mid \overline{A})$, 证明事件 A 与 B 独立。
- 2. 设 X_1 , X_2 , $\cdots X_n$ 为 独 立 同 分 布 的 随 机 变 量 序 列 , $E(X_i) = \mu$, $D(X_i) = 8$,

$$i = 1, 2, \dots, n$$
。设 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,证明不等式: $P\{\mu - 4 < \overline{X} < \mu + 4\} \ge 1 - \frac{1}{2n}$ 。

3. 随机变量 X 服从标准正态分布,即 $X \sim N(0,1)$,设 $Y = g(X) = \int_{-\infty}^{X} e^{-\frac{u^2}{2}} du$,

证明: 随机变量Y在 $[0,\sqrt{2\pi}]$ 上服从均匀分布。

三、计算题(共10分)

- 一大型设备在任意时长为t的时间内,发生故障的次数N(t)服从参数为 λt 的泊松分布,求:
 - (1) 相继两次故障之间的时间间隔T的概率分布函数:
 - (2) 设备在无故障工作8个小时的情况下,再无故障运行8个小时的概率。

四、计算题(共10分)

设二维随机变量
$$(X, Y)$$
具有概率密度 $f(x, y) = \begin{cases} A(x+y), & 0 < x < 1, |y| < x, \\ 0, & 其它, \end{cases}$

求 (1) 常数 A; (2) 概率 $P\{X > 2Y\}$; (3) X 的数学期望 E(X);

(4) Z = X + Y的概率密度。

五、计算题(共10分)

设总体
$$X$$
 的概率密度为 $f(x,\theta) = \begin{cases} \frac{1}{\theta-1} x^{\frac{2-\theta}{\theta-1}}, & 0 < x < 1, \\ 0, & 其它, \end{cases}$

其中 θ (>1)是未知参数, x_1 , x_2 , $\cdots x_n$ 是来自总体 X 的样本值。

求 (1) θ 的矩估计量;

(2) θ 的极大似然估计量 $\hat{ heta}_{\!\scriptscriptstyle L}$,并问 $\hat{ heta}_{\!\scriptscriptstyle L}$ 是 θ 的无偏估计吗?并证明你的结论。

六、计算题(共10分)

对 5 个正常人和 6 个矽肺病人分别测量肺活量,设正常人和矽肺病人的肺活量分别为 $X \sim N \; (\mu_1, \; \sigma_1^{\; 2})$ 和 $Y \sim N \; (\mu_2, \; \sigma_2^{\; 2})$,计算可得样本均值及样本方差如下: 正常人的肺活量: $\bar{x} = 2.8$, $S_1^2 = 0.05$,矽肺病人的肺活量: $\bar{y} = 2.5$, $S_2^2 = 0.10$ 。

- (1) 检验 H_0 : $\sigma_1^2 = \sigma_2^2$ (显著性水平 $\alpha = 0.05$);
- (2) 求两类人群肺活量均值差 $\mu_1 \mu_2$ 置信度 $1-\alpha$ 的置信区间。

$$(F_{0.05}(5,6) = 4.39, F_{0.025}(5,4) = 9.36, F_{0.025}(4,5) = 7.39,$$

 $t_{0.05}(11) = 1.7959, t_{0.025}(11) = 2.2010, t_{0.025}(9) = 2.2622)$

七、计算题(共10分)

一批同型号的枪,其中一半由甲厂生产,另一半由乙厂生产。一射击手用甲厂生产的枪射击时的命中率为 p_1 ,用乙厂生产的枪射击时的命中率为 p_2 , $p_1 \neq p_2$ 。射击手要用其中的枪射击两次,现有两种选择:第一种选择是从这批枪中任取一支,然后射击两次;第二种选择是先从这批枪中任取一支,射击一次,把枪放回再从这批枪中任取一支射击一次。用X.Y分别表示第一、二种选择下的射击命中次数。

- (1) 求X的期望与方差、Y的期望与方差,并比较X,Y的期望、方差的大小。
- (2) A表示事件 "第一次射击命中",B表示事件 "第二次射击命中",在第一种选择下,A与B是否独立?证明你的结论。