

Forecasting Patient Enrolment for Clinical Trials

6th Team Project Sprint Review July 3rd, 2020

01

Preprocessing

Different preprocessing techniques necessary for the model

02

Data Gathering

Adding site-level information to the data

03

Pipeline and Custom Transformers Setting up the evaluation and optimization framework 04

Hyperparameter Optimization Optimizing the hyperparameters for all models

Preprocessing

- Preprocessing Approach
- Newly added features
- Using free text fields
- Using new condition related fields

Preprocessing Approach

Newly added features

- Number of facilities, countries, ArmGroups, ...
- Patients per site / country
- Average population, lifeExpectancy, ...
- Extracted keywords
- Estimated enrollment count per country

6620

1511

Using free text fields

- Problem: Free text input fields of various length → One hot encoding leads to high dimensionality
- Examples:
 - InterventionName (i.e. [IncobotulinumtoxinA (16-20 Units per kg body weight)])
 - OrgFullName (i.e. Ankara City Hospital Bilkent)

•	Approach:

- Text processing (lower case, stopword removal, number & special character reconstruction)
- Tokenization of strings
- Extract k most frequent keywords
- For each keyword do one hot encoding if it appears in original text field

	D1 a salas	Nation
	Placebo	Institu
	placebo	
_	cyclophosphamide	Resear
	Bevacizuman	
	Cyclophosphamide	Health

Center	2609
Cancer	2505
lational	2056
institute	2015
lospital	1801
Research	1760
Nedical	1589

University

Inc.

Condition Branch

Condition MeshID

- =Medical Subject Headings ID
- = get additional Information on each condition
- -> too complex
- -IDs often have a naming convention / meaning
- -use naive approach: treat ID as an integer
- -mesh ID seems to be somehow correlated with duration

Data Gathering

- Local Population density
- additional regional-level information

Population density data

- Including data of 5 different years
- 4 different resolutions
- => Because of our db's space limitation, we use 15 minute-arc (~900km2 squares)

```
for i in nc.variables:
    print([i, nc.variables[i].units, nc.variables[i].shape])

['longitude', 'degrees_east', (1440,)]
['latitude', 'degrees_north', (720,)]
['raster', 'unknown', (20,)]
['Population Density, v4.11 (2000, 2005, 2010, 2015, 2020): 15 arc-minutes', 'Persons per square kilometer', (20, 720, 1440)]
```

Population density data

_id: ObjectId("5efaab2ee9730241097ea6f8")

longitude: 23.125 latitude: 79.875

year: 2005

popDensity: 0.087911

Data extraction

Next steps:

- Get coordinates of location facilities by using Google Maps APIs
- Calculate population count on site-level based on k-nearest coordinates
- Distributing enrollment count based on the ratio of population count

Additional Regional Information

- If we cannot assign the longitude/latitude to a facility: use regional level
- if we cannot assign on the regional level: use country level

- More information might be inside SEDAC's data: Age and gender proportion
- More information to add on the regional level: Age Structure, Unemployment Rate and Wifi Access

Pipelines and Custom Transformers

- Using a pipeline and custom transformers
- Different approaches to build a pipeline
- Benefits of using a pipeline

Pipeline

- automates preprocessing and estimation steps
- ensures that all necessary steps are taken in the correct order
- connect preprocessing, hyperparameter optimization and model training in one function

Manage the complexity of our prediction model

1. Approach

I. Define Groups of similar features (in terms of transformation)

```
categorical_single_features = ['HealthyVolunteers','IsFDARegulatedDrug']
categorical_list_features = ['Phase', 'StdAge', 'CollaboratorClass']
numerical features = ['EnrollmentCount']
```

I. Preprocessing: Apply a different pipeline on every group of features (including own defined transformation classes)

```
categorical_single_pipeline = Pipeline( steps = [
    ( 'cat_selector', FeatureSelector(categorical_single_features) ),
    ('cat_transformer', CategoricalEmptyValuesTransformer(strategy = "most_common") ),
    ( 'one_hot_encoder', OneHotEncoder() ) ] )
```

I. Estimation: Apply a pipeline on the different transformation pipelines and include the estimator

2. Approach

I. Define Groups of similar features (in terms of transformation)

```
Features that require one hot encoding (e.g. one_hot_features=[OrgClass,LeadsponsorClass,...])
Features that require binary encoding (e.g binary_features=[HealthyVolunteers, Gender,...])
Features that require special transformations
```

I. Import / Write Transformer for each group

```
from sklearn.preprocessing import OneHotEncoder, BinaryEncoder
class MeshIDTransformer(BaseEstimator, TransformerMixin):
    def __init__(self): ...
```

Combine all transformers as steps in a pipeline and pass them the groups they need to transform steps=[('one_hot_encoder', OneHotEncoder(one_hot_features)), ('binary_encoder', BinaryEncoder(binary_features)), ('meshID_transform', MeshIDTransformer("ConditionMeshID"))]
pipeline = Pipeline(steps)

I. Also add Feature Selection, Normalization, Outlier Detection, Hyperparameter Optimization and the actual Model into this pipeline

Benefits

- Organized readable code
- Definition of own Transformation classes allows reuse of code for similar features (DRY)
- Own transformation classes contain methods used by pipelines
 - inherited from TransformerMixin and BaseEstimator
 - fit, transform and fit_transform can be overwritten + additional methods such as inverse_transform
- Easily adjustable/reproducible, enables a simple change of the parameters
- Parameters used for Transformation are saved in the Transformation "instance" and can be applied on new data before prediction

Hyperparameter Optimization

- Set objective function to minimize
- Set spaces to search
- choose best overall model

1. Set Objective function

Define Objective function to minimize → Choose a loss function

Two possible settings (MAE or RMSE loss):

Cross Validation to find best loss

If we use some other algo (SVR, Random forest...) there is gridsearch CV available, different than lgb.cv.

1. Set Objective function

Define Objective function to minimize → Choose a loss function

Two possible settings + MAE or RMSE loss:

I. Cross Validation to find best loss

Problem encounter here:

If we use some other algo (SVR, Random forest...) there is only gridsearch CV available, different than lgb.cv.

I. No cross-validation but fit the model by setting the function below in the beginning

```
train_X, val_X, train_y, val_y = train_test_split(data,labels,test_size=0.2,random_state=1)
```

2. Hyperopt - Set Space

- Space over which to search can be like

hp.pchoice/choice	Choice with/without probability
hp.uniform(y, low, high)	Draws uniformly between low and high (continuous)
hp.quniform(y, low, high, q)	round(uniform(low, high) / q) * q (discrete)
hp.loguniform(y, low, high)	exp(uniform(low, high)) (normally for decimals)

3. Run Model - Choose best overall model

- So far lightGBM/ XGBoost/ Random Forest
- Set objectives and spaces for each algorithm individually, because they have different function call
- Define another function to call the best
- With this function that returns the real number to compare loss for cv with lgb/ xgboost
- Find the model with least loss

There is 2 way possibly to be done by hyperopt, to choose the model with hp.pchoice, but it is somehow like

- I. Use hp.choice to choose the model \rightarrow use hyperopt to choose best parameter from the model with least loss
- II. Use hyperopt estimator to use it in a pipeline way

Next Steps

Next Steps

- Apply the framework to all features
- How to combine Pipelines and Hyperopt?
- More MongoDB storage

Cluster Tier

M2 (Shared RAM, 2 GB Storage) V

Encrypted

Base hourly rate is for a MongoDB replica set with 3 data bearing servers.

Shared Clusters for development environments and low-traffic applications

	Tier	RAM	Storage	vCPU	Base Price
Mo S	Sandbox	Shared	512 MB	Shared	Free forever
9	M2	Shared	2 GB	Shared	\$9 / MONTH
500	max connections	Low network perfo	ormance 100 max c	latabases 500 n	nax collections
	M5	Shared	5 GB	Shared	\$25 / MONTH