Moment Generating Function

Chebyshev inequality

Theorem 1 If X is a random variable with mean μ and standard deviation σ , then for any positive number k

$$P\{|X - \mu| < k\sigma\} \ge 1 - \frac{1}{k^2}.$$

Example

Example 1 Let X be a random variable with density function

$$f(x) = \begin{cases} |x - 1| & \text{for } 0 \le x \le 2\\ 0 & \text{otherwise.} \end{cases}$$

- a) Find the exact value of $P\{|X \mu| > 1.5 * \sigma\}$.
- b) Use Chebyshev's inequality to find a bound for the above probability.

Definition

Definition 1 The moment generating function of a random variable X is given by $M_X(t) = E[e^{tX}]$, which is:

$$M_X(t) = \sum_i e^{ti} P[X = i]$$

for discrete random variables and

$$M_X(t) = \int_{-\infty}^{+\infty} e^{tx} f(x) dx$$

for continuous random variables.

Why the name !!!

We define the rth non-centered moment of the r.v. X by

$$\mu_r' = E(X^r).$$

Theorem 2 Let X be a r.v. with rth non-centered moment μ'_r and m.g.f. $M_X(t)$, then

$$\mu'_r = M_X^{(r)}(0) = \frac{d^r M_X(t)}{dt^r} \bigg|_{t=0}.$$

Properties

Theorem 3 Let
$$Y = a + bX$$
 then

$$M_Y(t) = e^{ta} M_X(bt).$$

Moment generating function

Example 2 Suppose *X* and *Y* are r.v. with prob. dist.

a) Show that
$$E(X) = E(Y) = 7/2$$
 and $Var(X) = Var(Y) = 9/4$.
b) Compare the m.g.f. of X and Y .

Examples

Example 3 Find the moment generating functions for *X* and *Y* defined in Example 2.

Example 4 Let Y be a cont. r.v. with a Gamma(1,4) (i.e. Exponential(4)) density function. Find the moment generating function of Y.

Links

Virtual Library/Expectation