Olimpiada Națională de Matematică 2005 Etapa județeană și a municipiului București 5 martie 2005 CLASA A XI-A

Subiectul 1. Notăm cu H mulțimea matricelor pătrate de ordin $n \geq 2$, ale căror elemente sunt numere naturale și cu P mulțimea matricelor din H cu proprietatea că suma elementelor de pe fiecare linie și de pe fiecare coloană este egală cu 1.

- a) Arătați că dacă $A \in P$, atunci det $A \in \{-1, 1\}$.
- b) Arătați că dacă $A_1,A_2,\ldots,A_p\in H$ și produsul $A_1A_2\cdots A_p\in P,$ atunci $A_1,A_2,\ldots,A_p\in P.$

Subiectul 2. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție continuă cu proprietatea că pentru orice $a, b \in \mathbb{R}$, a < b, pentru care f(a) = f(b), există $c \in (a, b)$ cu f(a) = f(b) = f(c). Arătați că f este monotonă pe \mathbb{R} .

Subiectul 3. a) Fie $A, B \in \mathcal{M}_3(\mathbb{R})$ astfel încât rang A > rang B. Arătaţi că rang $(A^2) \ge \text{rang } (B^2)$.

b) Determinați polinoamele neconstante cu coeficienți reali f cu proprietatea că pentru orice matrice $A, B \in \mathcal{M}_4(\mathbb{R})$ cu rang A > rang B are loc relația rang $f(A) \ge \text{rang } f(B)$.

Subiectul 4. Fie $f: \mathbb{Q} \to \mathbb{Q}$ o funcție bijectivă și monotonă.

- a) Arătați că există o unică funcție continuă $F: \mathbb{R} \to \mathbb{R}$ astfel încât F(x) = f(x) pentru orice $x \in \mathbb{Q}$.
- b) Dați un exemplu de funcție polinomială $G: \mathbb{R} \to \mathbb{R}$ neinjectivă, cu proprietatea că $G(\mathbb{Q}) \subset \mathbb{Q}$ și restricția ei la \mathbb{Q} să fie injectivă.

Timp de lucru 3 ore Toate subiectele sunt obligatorii