Gödel's incompleteness theorems

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. *If* $S \subseteq S'$ *and* $S \vdash w$ *then* $S' \vdash w$.

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. If $S \subseteq S'$ and $S \vdash w$ then $S' \vdash w$.

def: soundness/correctness Proof system S is sound/correct if all provable statements are true, i.e. if for all $w \in L$:

$$S \vdash w \Rightarrow w \text{ is true}$$

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. If $S \subseteq S'$ and $S \vdash w$ then $S' \vdash w$.

def: soundness/correctness Proof system S is sound/correct if all provable statements are true, i.e. if for all $w \in L$:

$$S \vdash w \Rightarrow w$$
 is true

def:consistency an approximation to correctness. Proof system is *consistent* if for no statement w

$$S \vdash w \text{ and } S \vdash (\sim w)$$

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. If $S \subseteq S'$ and $S \vdash w$ then $S' \vdash w$.

def: soundness/correctness Proof system S is sound/correct if all provable statements are true, i.e. if for all $w \in L$:

$$S \vdash w \Rightarrow w$$
 is true

def:consistency an approximation to correctness. Proof system is *consistent* if for no statement w

$$S \vdash w \text{ and } S \vdash (\sim w)$$

def: completeness Proof system S is complete if for all statements $w \in L$ either w or $\sim w$ is provable

$$S \vdash w$$
 or $S \vdash (\sim w)$

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. *If* $S \subseteq S'$ *and* $S \vdash w$ *then* $S' \vdash w$.

def: soundness/correctness Proof system S is sound/correct if all proven predicates are true, i.e. if for all $w \in L$:

$$S \vdash w \Rightarrow w$$
 is true

def:consistency an approximation to correctness. Proof system is *consistent* if for no predicate w

$$S \vdash w \text{ and } S \vdash (\sim w)$$

def: completeness $w \in L$ either w or $w \in W$ is provable $w \in L$ either

$$S \vdash w$$
 or $S \vdash (\sim w)$

Lemma 2. If S is complete, then the language

$$\{w \in L : S \vdash w\}$$

is decidable

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. If $S \subseteq S'$ and $S \vdash w$ then $S' \vdash w$.

def: soundness/correctness Proof system S is sound/correct if all proven predicates are true, i.e. if for all $w \in L$:

$$S \vdash w \Rightarrow w$$
 is true

def:consistency an approximation to correctness. Proof system is *consistent* if for no predicate w

$$S \vdash w \text{ and } S \vdash (\sim w)$$

def: completeness Proof system S is complete if for all predicates $w \in L$ either w or $\sim w$ is provable

$$S \vdash w$$
 or $S \vdash (\sim w)$

Lemma 2. If S is complete, then the language

$$\{w \in L : S \vdash w\}$$

is decidable

Proof. Enumerate all proofs. If proof of w appears, accept. If proof of $\sim w$ appears, reject.

$$S = (\Sigma, L, A, R)$$
 $S' (= \Sigma, L', A', R')$

def: extension We say S' extends S and write $S \subseteq S'$ if

$$\Sigma \subseteq \Sigma'$$
, $L \subseteq L'$, $A \subseteq A'$, $R \subseteq R'$

Lemma 1. If $S \subseteq S'$ and $S \vdash w$ then $S' \vdash w$.

def: soundness/correctness Proof system *S* is sound/correct if all proven predicates are true, i.e. if for all $w \in L$:

$$S \vdash w \Rightarrow w$$
 is true

def:consistency an approximation to correctness. Proof system is *consistent* if for no predicate w

$$S \vdash w \text{ and } S \vdash (\sim w)$$

def: completeness $w \in L$ either w or $w \in W$ is provable

$$S \vdash w$$
 or $S \vdash (\sim w)$

Lemma 2. If S is complete, then the language

$$\{w \in L : S \vdash w\}$$

is decidable

Proof. Enumerate all proofs. If proof of w appears, accept. If proof of $\sim w$ appears, reject.

Lemma 3. If S is correct and complete, then the set

$$T = \{w \in L : w \text{ is true}\}$$
 why?

is decidable

2 First Incompleteness Theorem

Lemma 4. Let S be any proof system whose language is as expressive as L_Z

$$S = (\Sigma_Z, L_Z, A, R)$$

If S is sound, then it is incomplete.

- reduce Halting problem *H* to *T* with lemma 5
- if Z_E would be complete, then by lemma 3 T would be decidable

Lemma 5. There is a total computable function

$$H: \{0,1,\#\} \to L_E$$

such that

H(u#v) true \Leftrightarrow TM M_u started with v halts

2 First Incompleteness Theorem

Lemma 4. Let S be any proof system whose language is as expressive as L_Z

$$S = (\Sigma_Z, L_Z, A, R)$$

If S is sound, then it is incomplete.

- reduce Halting problem *H* to *T* with lemma 5
- if Z_E would be complete, then by lemma 3 T would be decidable

Lemma 5. There is a total computable function

$$H: \{0,1,\#\} \to L_E$$

such that

H(u#v) true \Leftrightarrow TM M_u started with v halts

from Sipser (MIT): Introduction to the Theory of Computation. A GREAT book. 'the actual construction of ... is too complicated to present here'.

• in contrast (KIU):

2 First Incompleteness Theorem

Lemma 5. There is a total computable function

$$H: \{0,1,\#\} \to L_E$$

such that

H(u#v) true \Leftrightarrow TM M_u started with v halts

Consider 1-tape TM

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

- 1. $k_0 = B \dots B z_0 v B \dots B$
- 2. $k_i \vdash k_{i+1}$ for i < t
- 3. $|k_i| = |k_j|$ for all i, j
- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

expressing concatenation

Lemma 6. There is an arithmetic predicate v = [x,y] such that for all $V,X,Y \in (A \cup Z \cup \{\$\})^*$ holds

$$\psi(V) = [\psi(X), \psi(Y)] \Leftrightarrow V = XY$$

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

expressing concatenation

Lemma 6. There is an arithmetic predicate v = [x, y] such that for all $V, X, Y \in (A \cup Z \cup \{\$\})^*$ holds

$$\psi(V) = [\psi(X), \psi(Y)] \Leftrightarrow V = XY$$

obviously using decomposition lemma for base p numbers. Top down:

•

$$v = [x, y] :\equiv (y = 0 \land v = x) \lor$$
$$(\sim y = 0 \land \exists u \ (v = y + u \cdot x \land u = p^{|y|})$$

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

expressing concatenation

Lemma 6. There is an arithmetic predicate v = [x,y] such that for all $V,X,Y \in (A \cup Z \cup \{\$\})^*$ holds

$$\psi(V) = [\psi(X), \psi(Y)] \Leftrightarrow V = XY$$

obviously using decomposition lemma for base p numbers. Top down:

•

$$v = [x, y] :\equiv (y = 0 \land v = x) \lor$$
$$(\sim y = 0 \land \exists u \ (v = y + u \cdot x \land u = p^{|y|})$$

•

$$u = p^{|y|} :\equiv u \text{ is power of } p$$

 $\land y < u \land u \le p \cdot u$

example:

$$456 < 1000 < 10 \cdot 456$$

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

expressing concatenation

Lemma 6. There is an arithmetic predicate v = [x,y] such that for all $V,X,Y \in (A \cup Z \cup \{\$\})^*$ holds

$$\psi(V) = [\psi(X), \psi(Y)] \Leftrightarrow V = XY$$

obviously using decomposition lemma for base p numbers. Top down:

•

$$v = [x, y] :\equiv (y = 0 \land v = x) \lor$$
$$(\sim y = 0 \land \exists u \ (v = y + u \cdot x \land u = p^{|y|})$$

•

$$u = p^{|y|} :\equiv u \text{ is power of } p$$

 $\land y < u \land u \le p \cdot u$

example:

$$456 < 1000 < 10 \cdot 456$$

•

$$u \le y :\equiv \exists r \, u = y + r$$

 $u < y :\equiv u \le y \land \sim u = y$

$$p > \#A + \#Z + 2$$
 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

expressing concatenation

Lemma 6. There is an arithmetic predicate v = [x,y] such that for all $V,X,Y \in (A \cup Z \cup \{\$\})^*$ holds

$$\psi(V) = [\psi(X), \psi(Y)] \Leftrightarrow V = XY$$

obviously using decomposition lemma for base p numbers. Top down:

•

$$v = [x, y] :\equiv (y = 0 \land v = x) \lor$$
$$(\sim y = 0 \land \exists u \ (v = y + u \cdot x \land u = p^{|y|})$$

•

$$u = p^{|y|} :\equiv u \text{ is power of } p$$

 $\land y < u \land u \le p \cdot u$

example:

•

$$u \le y :\equiv \exists r \ u = y + r$$

 $u < v :\equiv u < v \land \sim u = v$

u is power of
$$p :\equiv \forall r \, \forall s \, (r \cdot s = u \rightarrow r = 1 \, \lor p | r)$$

$$p|r :\equiv \exists s \, r = \overline{p} \cdot s$$

p > #A + #Z + 2 prime number

Interpret $w \in (A \cup Z \cup \{\$\})^*$ as number representation to base p.

•

$$\psi: A \cup Z \cup \{\$\} \rightarrow [1:p-1]$$

 $\psi(a) \in \mathbb{N}$ injective

•

$$\psi(\varepsilon) = 0$$

extend to

$$\psi: (A \cup Z \cup \{\$\})^* \to [1:p-1]$$

$$\psi(w[s-1:0]) = \sum_{i=1}^{s-1} \psi(w_i) \cdot p^i$$

• expression whose value codes $a \in A \cup Z \cup \{\$\}$

$$\hat{a} = \overline{\psi(a)} \in T$$

expressing concatenation

Lemma 6. There is an arithmetic predicate v = [x,y] such that for all $V,X,Y \in (A \cup Z \cup \{\$\})^*$ holds

$$\psi(V) = [\psi(X), \psi(Y)] \Leftrightarrow V = XY$$

obviously using decomposition lemma for base p numbers. Top down:

•

$$v = [x, y] :\equiv (y = 0 \land v = x) \lor$$
$$(\sim y = 0 \land \exists u \ (v = y + u \cdot x \land u = p^{|y|})$$

•

$$u = p^{|y|} :\equiv u \text{ is power of } p$$

 $\land y < u \land u \le p \cdot u$

example:

•

$$u \le y :\equiv \exists r \ u = y + r$$

 $u < v :\equiv u < v \land \sim u = v$

•

u is power of
$$p :\equiv \forall r \, \forall s \, (r \cdot s = u \rightarrow r = 1 \, \lor p | r)$$

$$p|r :\equiv \exists s \, r = \overline{p} \cdot s$$

concatenating several strings

$$u = [xyv] :\equiv \exists w (w = [x,y] \land u = [w,v])$$

etc.

with

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

$$1. \ k_0 = B \dots B z_0 v B \dots B$$

2.
$$k_i \vdash k_{i+1}$$
 for $i < t$

3.
$$|k_i| = |k_j|$$
 for all i, j

- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(1): start configuration of computation

•

$$\exists k \ \exists m \exists a \ \exists b \exists c$$

$$(w = [\$, k, \$, m]$$

$$\land k = [a, b, c]$$

$$\land a = \psi(B \dots B)$$

$$\land c = \psi(B \dots B)$$

$$b = \psi(z_0 v_{n-1} \dots v_0)$$

• $\sigma(d,a)$: d codes a single symbol in $\psi^{-1}(a)$

$$\sigma(d,a) :\equiv \exists e \; \exists f \; (a = [e,d,f] \; \land d < \overline{p} \land \; \sim d = 0)$$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\}\})^+$

with

- $1. \ k_0 = B \dots B z_0 v B \dots B$
- 2. $k_i \vdash k_{i+1} \text{ for } i < t$
- 3. $|k_i| = |k_j|$ for all i, j
- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(1): start configuration of computation

•

$$\exists k \ \exists m \exists a \ \exists b \exists c$$

$$(w = [\$, k, \$, m]$$

$$\land k = [a, b, c]$$

$$\land a = \psi(B \dots B)$$

$$\land c = \psi(B \dots B)$$

$$b = \psi(z_0 v_{n-1} \dots v_0)$$

• $\sigma(d,a)$: d codes a single symbol in $\psi^{-1}(a)$

$$\sigma(d,a) :\equiv \exists e \; \exists f \; (a = [e,d,f] \; \land d < \overline{p} \land \; \sim d = 0)$$

 $a = \psi(B \dots B) :\equiv \forall d \ (\sigma(d, a) \to d = \hat{B})$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\}\})^+$

with

$$1. \ k_0 = B \dots B z_0 v B \dots B$$

2.
$$k_i \vdash k_{i+1} \text{ for } i < t$$

3.
$$|k_i| = |k_j|$$
 for all i, j

- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(1): start configuration of computation

•

$$\exists k \ \exists m \exists a \ \exists b \exists c$$

$$(w = [\$, k, \$, m]$$

$$\land k = [a, b, c]$$

$$\land a = \psi(B \dots B)$$

$$\land c = \psi(B \dots B)$$

$$b = \psi(z_0 v_{n-1} \dots v_0)$$

• $\sigma(d,a)$: d codes a single symbol in $\psi^{-1}(a)$

$$\sigma(d,a) :\equiv \exists e \; \exists f \; (a = [e,d,f] \; \land d < \overline{p} \land \; \sim d = 0)$$

 $a = \psi(B \dots B) :\equiv \forall d \ (\sigma(d, a) \to d = \hat{B})$

• Horner scheme for $\psi(z_0v)$

$$b = \psi(z_0 v) :\equiv \exists y_0 \dots \exists y_s$$

$$(y_s = \widehat{z_0} \land y_{s-1} = \overline{p} \cdot y_s + \widehat{v_{s-1}} \land y_0 = \overline{p} \cdot y_1 + \widehat{v_0} \land y_0 = y_0$$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

1.
$$k_0 = B ... B z_0 v B ... B$$

2.
$$k_i \vdash k_{i+1}$$
 for $i < t$

3.
$$|k_i| = |k_j|$$
 for all i, j

- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(2) \wedge (3): successor configuration

• in (codes of) neighboring configurations x and y we have $'x \vdash y'$

$$\forall r \forall x \ \forall y \ \forall z \ ((w = [r, \$, x, \$y, \$, z] \land 'x \ \text{codes no } \$' \land 'y \ \text{codes no } \$')$$

$$\rightarrow 'x \vdash y')$$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

1.
$$k_0 = B \dots B z_0 v B \dots B$$

2.
$$k_i \vdash k_{i+1}$$
 for $i < t$

3.
$$|k_i| = |k_j|$$
 for all i, j

- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(2) \wedge (3): successor configuration

• in (codes of) neighboring configurations x and y we have $'x \vdash y'$

$$\forall r \forall x \ \forall y \ \forall z \ ((w = [r, \$, x, \$y, \$, z] \land 'x \text{ codes no } \$' \land 'y \text{ codes no } \$')$$

$$\rightarrow 'x \vdash y')$$

'x codes no $\$' :\equiv \forall d \ (\sigma(d,x) \rightarrow \sim d = \$)$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

1.
$$k_0 = B \dots B z_0 v B \dots B$$

2.
$$k_i \vdash k_{i+1} \text{ for } i < t$$

3.
$$|k_i| = |k_j|$$
 for all i, j

- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(2) \wedge (3): successor configuration

• in (codes of) neighboring configurations x and y we have $'x \vdash y'$

$$\forall r \forall x \ \forall y \ \forall z \ ((w = [r, \$, x, \$y, \$, z] \land \ 'x \ \text{codes no } \$' \land \ 'y \ \text{codes no } \$')$$

$$\rightarrow \ 'x \vdash y')$$

'x codes no \$' :\equiv
$$\forall d \ (\sigma(d,x) \rightarrow \sim d = \hat{\$})$$

next configuration

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

1.
$$k_0 = B \dots B z_0 v B \dots B$$

2.
$$k_i \vdash k_{i+1} \text{ for } i < t$$

3.
$$|k_i| = |k_j|$$
 for all i, j

- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(4): no state at border

$$((w = [x, \$, y, \$, v] \land 'y \text{ codes no }\$'$$

$$\land \forall d (\sigma(d, y) \land (\bigvee_{z \in Z} d = \hat{z})))$$

$$\rightarrow \exists e \exists f (y = [e, d, f] \land \sim e = 0 \land \sim f = 0))$$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

1.
$$k_0 = B ... B z_0 v B ... B$$

- 2. $k_i \vdash k_{i+1} \text{ for } i < t$
- 3. $|k_i| = |k_j|$ for all i, j
- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(4): no state at border

$$((w = [x, \$, y, \$, v] \land 'y \text{ codes no }\$'$$

$$\land \forall d (\sigma(d, y) \land (\bigvee_{z \in Z} d = \hat{z})))$$

$$\rightarrow \exists e \exists f (y = [e, d, f] \land \sim e = 0 \land \sim f = 0))$$

(5) end state is reached

$$\exists e \; \exists f \; \exists t \; w = [e, t, f] \; \land \; (\bigvee_{z \in E} t = \hat{z})$$

$$M_u = (Z, A, \delta, z_0, E)$$

and $v \in \mathbb{B}^*$. M_u started with v halts iff

$$\exists w. \ w = k_0 \dots k_t$$
, $w \in (A \cup Z \cup \{\})^+$

with

- 1. $k_0 = B \dots B z_0 v B \dots B$
- 2. $k_i \vdash k_{i+1}$ for i < t
- 3. $|k_i| = |k_j|$ for all i, j
- 4. in no k_i if a $z \in Z$ first or last element
- 5. k_t is endconfiguration

(4): no state at border

$$((w = [x, \$, y, \$, v] \land 'y \text{ codes no }\$'$$

$$\land \forall d (\sigma(d, y) \land (\bigvee_{z \in Z} d = \hat{z})))$$

$$\rightarrow \exists e \exists f (y = [e, d, f] \land \sim e = 0 \land \sim f = 0))$$

(5) end state is reached

$$\exists e \; \exists f \; \exists t \; w = [e, t, f] \; \land \; (\bigvee_{z \in E} t = \hat{z})$$

reduction:

$$H(u # v) :\equiv \exists w (1) \land (2) \land (3) \land (4) \land (5)$$

3.1 Preliminaries

For proof systems S denote by consis(S) the statement, that S is consistent.

Lemma 7. Consistency can be formulated in Z_E

$$consis(S) \in L_E$$

3.1 Preliminaries

For proof systems S denote by consis(S) the statement, that S is consistent.

Lemma 7. Consistency can be formulated in Z_E

$$consis(S) \in L_E$$

Proof. Machine M_m started with empty tape enumerates all proofs of S and records all proven statements p. If it finds proofs of p and $\sim p$ for some p it halts. Then

$$consis(S) :\equiv H(m\#)$$

3.1 Preliminaries

For proof systems S denote by consis(S) the statement, that S is consistent.

Lemma 7. Consistency can be formulated in Z_E

$$consis(S) \in L_E$$

Proof. Machine M_m started with empty tape enumerates all proofs of S and records all proven statements p. If it finds proofs of p and $\sim p$ for some p it halts. Then

$$consis(S) :\equiv H(m\#)$$

Lemma 8. If machine M_u started with v halts, then one can prove this in Z_e .

$$H(u \# v) true \Rightarrow S \vdash H(u \# v)$$

Proof. One proves this by writing down a sequence of configurations and checking that it is the computation on M_u started with v. This argument can be formalized in Z_E .

3.1 Preliminaries

For proof systems S denote by consis(S) the statement, that S is consistent.

Lemma 7. Consistency can be formulated in Z_E

$$consis(S) \in L_E$$

Proof. Machine M_m started with empty tape enumerates all proofs of S and records all proven statements p. If it finds proofs of p and $\sim p$ for some p it halts. Then

$$consis(S) :\equiv H(m\#)$$

П

Lemma 8. If machine M_u started with v halts, then one can prove this in Z_e .

$$H(u \# v) true \Rightarrow S \vdash H(u \# v)$$

Proof. One proves this by writing down a sequence of configurations and checking that it is the computation on M_u started with v. This argument can be formalized in Z_E .

Lemma 9. If p is provable in Z_E , then one can prove, that it is provable

$$S \vdash p \Rightarrow (S \vdash (S \vdash p))$$

Proof. One establishes the existence of a proof by writing down the proof and then checking (with a syntax check), that the proof rules are obeyed. This argument can be formalized in Z_e

3.2 An explicit statement, which is independent of Z_E

def: independence Let $S = (\Sigma, L, A, R)$ be a proof system. A statement $v \in L$ is called independent of S if it can be neither proved nor disproved in S.

$$\sim S \vdash v \land \sim S \vdash \sim v$$

S is incomplete iff independent p exists. From now on assume that S extends Z_E , i.e. it is at least as powerful as Z_E .

$$Z_E \subseteq S$$

3.2 An explicit statement, which is independent of Z_E

def: independence Let $S = (\Sigma, L, A, R)$ be a proof system. A statement $v \in L$ is called independent of S if it can be neither proved nor disproved in S.

$$\sim S \vdash v \land \sim S \vdash \sim v$$

S is incomplete iff independent p exists. From now on assume that S extends Z_E , i.e. it is at least as powerful as Z_E .

$$Z_E \subseteq S$$

a statement: Consider Turing machine $Q = M_q$. Started with w it enumerates all provable statements of S, i.e. the set

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

Q started with its own program q halts as soon as it finds a proof that it does not halt

3.2 An explicit statement, which is independent of Z_E

def: independence Let $S = (\Sigma, L, A, R)$ be a proof system. A statement $v \in L$ is called independent of S if it can be neither proved nor disproved in S.

$$\sim S \vdash v \land \sim S \vdash \sim v$$

S is incomplete iff independent p exists. From now on assume that S extends Z_E , i.e. it is at least as powerful as Z_E .

$$Z_E \subseteq S$$

a statement: Consider Turing machine $Q = M_q$. Started with w it enumerates all provable statements of S, i.e. the set

$$P = \{v : S \vdash v \}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

• assume $S \vdash H(q \# q)$ then

 $\Rightarrow \sim S \vdash \sim H(q#q)$ (S correct)

 $\Rightarrow \sim H(q#q)$ (construction of Q)

 \Rightarrow S not correct

Q started with its own program q halts as soon as it finds a proof that it does not halt

3.2 An explicit statement, which is independent of Z_E

def: independence Let $S = (\Sigma, L, A, R)$ be a proof system. A statement $v \in L$ is called independent of S if it can be neither proved nor disproved in S.

$$\sim S \vdash v \land \sim S \vdash \sim v$$

S is incomplete iff independent p exists. From now on assume that S extends Z_E , i.e. it is at least as powerful as Z_E .

$$Z_E \subseteq S$$

a statement: Consider Turing machine $Q = M_q$. Started with w it enumerates all provable statements of S, i.e. the set

$$P = \{v : S \vdash v \}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

• assume $S \vdash H(q \# q)$ then

$$\Rightarrow \sim S \vdash \sim H(q \# q)$$
 (S correct)

$$\Rightarrow \sim H(q#q)$$
 (construction of Q)

 \Rightarrow S not correct

• assume $S \vdash \sim H(q \# q)$ then

 $\Rightarrow Q$ finds proof

 $\Rightarrow H(q#q)$ (construction of Q)

 \Rightarrow S not correct

Q started with its own program q halts as soon as it finds a proof that it does not halt

3.2 An explicit statement, which is independent of Z_E

def: independence Let $S = (\Sigma, L, A, R)$ be a proof system. A statement $v \in L$ is called independent of S if it can be neither proved nor disproved in S.

$$\sim S \vdash v \land \sim S \vdash \sim v$$

S is incomplete iff independent p exists. From now on assume that S extends Z_E , i.e. it is at least as powerful as Z_E .

$$Z_E \subseteq S$$

a statement: Consider Turing machine $Q = M_q$. Started with w it enumerates all provable statements of S, i.e. the set

$$P = \{v : S \vdash v \}$$

It halts as soon as it finds a proof of $\sim H(w\#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

• assume $S \vdash H(q \# q)$ then

$$\Rightarrow \sim S \vdash \sim H(q \# q)$$
 (S correct)

$$\Rightarrow \sim H(q#q)$$
 (construction of Q)

 \Rightarrow S not correct

• assume $S \vdash \sim H(q \# q)$ then

 $\Rightarrow Q$ finds proof

 $\Rightarrow H(q#q)$ (construction of Q)

 \Rightarrow S not correct

Lemma 11. Statement H(q#q) is false

- assume M_q started with q halts,
- lemma 8: H(q#q) is provable
- impossible by lemma 10

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 12. If S is consistent, then statement $\sim H(q#q)$ is not provable in S.

$$consis(S) \Rightarrow \sim S \vdash \sim H(q \# q)$$

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 12. If S is consistent, then statement $\sim H(q#q)$ is not provable in S.

$$consis(S) \Rightarrow \sim S \vdash \sim H(q \# q)$$

asssume $S \vdash \sim H(q \# q)$. Then

- $\Rightarrow Q$ finds proof and halts
- $\Rightarrow H(q#q)$
- $\Rightarrow S \vdash H(q#q)$ (lemma 8)
- $\Rightarrow \sim consis(S)$

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 12. If S is consistent, then statement $\sim H(q#q)$ is not provable in S.

$$consis(S) \Rightarrow \sim S \vdash \sim H(q \# q)$$

asssume $S \vdash \sim H(q \# q)$. Then

 $\Rightarrow Q$ finds proof and halts

 $\Rightarrow H(q#q)$

 $\Rightarrow S \vdash H(q#q) \text{ (lemma 8)}$

 $\Rightarrow \sim consis(S)$

Lemma 13. Lemma 12 is provable in S

$$S \vdash (consis(S) \rightarrow \sim S \vdash \sim H(q#q))$$

Proof. The proof of lemma 12 can be formalized in Z_E .

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 13. Lemma 12 is provable in S

$$S \vdash (consis(S) \rightarrow \sim S \vdash \sim H(q#q))$$

3.4 The second incompleteness theorem

Lemma 14. If $Z_E \subseteq S$ and S is consistent, then one cannot prove the consistency of S in S

$$consis(S) \rightarrow \sim S \vdash consis(S)$$

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 13. Lemma 12 is provable in S

$$S \vdash (consis(S) \rightarrow \sim S \vdash \sim H(q \# q))$$

3.4 The second incompleteness theorem

Lemma 14. If $Z_E \subseteq S$ and S is consistent, then one cannot prove the consistency of S in S

$$consis(S) \rightarrow \sim S \vdash consis(S)$$

• assume

$$S \vdash \underbrace{consis(S)}_{A}$$

• lemma 13:

$$S \vdash (consis(S) \rightarrow \underbrace{\sim S \vdash \sim H(q\#q)}_{B})$$

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w\#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 13. Lemma 12 is provable in S

$$S \vdash (consis(S) \rightarrow \sim S \vdash \sim H(q\#q))$$

3.4 The second incompleteness theorem

Lemma 14. *If* $Z_E \subseteq S$ *and* S *is consistent, then one cannot prove the consistencyy of* S *in* S

$$consis(S) \rightarrow \sim S \vdash consis(S)$$

• assume

$$S \vdash \underbrace{consis(S)}_{A}$$

• lemma 13:

$$S \vdash (consis(S) \rightarrow \underbrace{\sim S \vdash \sim H(q\#q)}_{B})$$

• modus ponens

$$\frac{A , \mathcal{A} \to B}{B}$$

•

$$S \vdash (\underbrace{\sim S \vdash \sim H(q\#q)}_{B})$$

• construction of Q:

$$B \to \underbrace{\sim H(q \# q)}_{C}$$

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 13. Lemma 12 is provable in S

$$S \vdash (consis(S) \rightarrow \sim S \vdash \sim H(q \# q))$$

3.4 The second incompleteness theorem

Lemma 14. *If* $Z_E \subseteq S$ *and* S *is consistent, then one cannot prove the consistencyy of* S *in* S

$$consis(S) \rightarrow \sim S \vdash consis(S)$$

• assume

$$S \vdash \underbrace{consis(S)}_{A}$$

• lemma 13:

$$S \vdash (consis(S) \rightarrow \underbrace{\sim S \vdash \sim H(q\#q)}_{B})$$

• modus ponens

$$\frac{A , \mathcal{A} \to B}{B}$$

•

$$S \vdash (\underbrace{\sim S \vdash \sim H(q\#q)}_{B})$$

• construction of Q:

$$B \to \underbrace{\sim H(q \# q)}_{C}$$

• this argument can be formalized in Z_E

$$S \vdash B \rightarrow C$$

$$P = \{v : S \vdash v\}$$

It halts as soon as it finds a proof of $\sim H(w\#w)$.

Lemma 10. If S is correct, then statement H(q#q) is independent of S.

3.3 weakening correctness to consistency

Lemma 13. Lemma 12 is provable in S

$$S \vdash (consis(S) \rightarrow \sim S \vdash \sim H(q \# q))$$

3.4 The second incompleteness theorem

Lemma 14. *If* $Z_E \subseteq S$ *and* S *is consistent, then one cannot prove the consistencyy of* S *in* S

$$consis(S) \rightarrow \sim S \vdash consis(S)$$

assume

$$S \vdash \underbrace{consis(S)}_{A}$$

• lemma 13:

$$S \vdash (consis(S) \rightarrow \underbrace{\sim S \vdash \sim H(q\#q)}_{B})$$

• modus ponens

$$\frac{A , \mathcal{A} \to B}{B}$$

•

$$S \vdash (\underbrace{\sim S \vdash \sim H(q\#q)}_{R})$$

• construction of Q:

$$B \to \underbrace{\sim H(q\#q)}_{C}$$

• this argument can be formalized in Z_E

$$S \vdash B \rightarrow C$$

modus ponens

$$\frac{B, B \to C}{C}$$

•

$$S \vdash \sim H(q \# q)$$

• lemma 9 (provability is provable)

$$S \vdash \underbrace{(S \vdash \sim H(q \# q))}_{\sim B}$$

S not consistent

warning

before you try to find such proofs yourself for extended periods of time:

read vita of Cantor and Gödel in Wikipedia

there might be a mental health hazard

theories (as considered here) have

- a universe *U*. Here natural numbers.
- functions f with arguments and values in U, Here $+, \times$
- theory is *countable* if the set of axioms and proof rules in countable

theories (as considered here) have

- a universe *U*. Here natural numbers.
- functions f with arguments and values in U, Here $+, \times$
- theory is *countable* if the set of axioms and proof rules in countable

model of a theory : instantiation of universe U and functions f such that the axioms hold. For Z_E

- decimal numbers
- binary numbers
- unary numbers: finite sequences of vertical lines
- all isomorphic elements of U in different models are just renamings of each other
- standard natural numbers

theories (as considered here) have

- a universe *U*. Here natural numbers.
- functions f with arguments and values in U, Here $+, \times$
- theory is *countable* if the set of axioms and proof rules in countable

model of a theory : instantiation of universe U and functions f such that the axioms hold. For Z_E

- decimal numbers
- binary numbers
- unary numbers: finite sequences of vertical lines
- all isomorphic elements of U in different models are just renamings of each other
- standard natural numbers

do non standard models of Z_E exist?

theories (as considered here) have

- a universe *U*. Here natural numbers.
- functions f with arguments and values in U, Here $+, \times$
- theory is *countable* if the set of axioms and proof rules in countable

model of a theory : instantiation of universe U and functions f such that the axioms hold. For Z_E

- decimal numbers
- binary numbers
- unary numbers: finite sequences of vertical lines
- all *isomorphic* elements of *U* in different models are just renamings of each other
- standard natural numbers

do non standard models of Z_E exist?

model existence theorem of logic:

theories (as considered here) have

- a universe U. Here natural numbers.
- functions f with arguments and values in U, Here $+, \times$
- theory is *countable* if the set of axioms and proof rules in countable

model of a theory : instantiation of universe U and functions f such that the axioms hold. For Z_E

- decimal numbers
- binary numbers
- unary numbers: finite sequences of vertical lines |
- all isomorphic elements of U in different models are just renamings of each other
- standard natural numbers

do non standard models of Z_E exist?

model existence theorem of logic:

- define α as the number of steps after which Q started with q halts.
- does not exist, because H(q#q) is false
- the statement that it exists is consistent.
- adding this statement to axioms of Z_E gives a consistent theory.
- has model by model existence theorem.
- it contains this 'step number'

model existence theorem of logic:

model existence theorem of logic:

- established proof systems for set teory (including the reals) exist
- e.g. ZF: Zermelo-Fraenkel set theory
- countable!
- so there exist countable models

model existence theorem of logic:

Lemma 15. Every consistent countable theory has a countable model.

- established proof systems for set teory (including the reals) exist
- e.g. ZF: Zermelo-Fraenkel set theory
- countable!
- so there exist countable models

how can this be?

model existence theorem of logic:

Lemma 15. Every consistent countable theory has a countable model.

- established proof systems for set teory (including the reals) exist
- e.g. ZF: Zermelo-Fraenkel set theory
- countable!
- so there exist countable models

how can this be?

- in a langue L you can only define countably many entities
- include in model only the ones you can define/talk about

model existence theorem of logic:

Lemma 15. Every consistent countable theory has a countable model.

- established proof systems for set teory (including the reals) exist
- e.g. ZF: Zermelo-Fraenkel set theory
- countable!
- so there exist countable models

how can this be?

- in a langue L you can only define countably many entities
- include in model only the ones you can define/talk about
 - question: do things you cannot talk about, really exist?