Semantic Segmentation

CNNs, Autoencoders, Skip Connections and Attention Mechanisms

→ whoami

Gabriel Rodríguez de los Reyes Joaquín Badillo Granillo

High-Level Overview

UNET

SEGNET

CROSS ATTENTION

Loss Functions

In segmentation tasks it measure how well the model's predictions match the target labels [1].

Minimizing H implies minimizing KL Divergence.

Dice-Sørensen Coefficient

Measures the similarity between 2 samples. Similar to intersection over union

Optimizer

Stochastic optimization algorithm that uses "momentum" and root mean square propagation to escape local minima and adapt learning rates dynamically.

Backpropagation

[PyTorch] Lightning executes backpropagation after each call to training_step, that's why loss is returned.

We added a learning rate scheduler so that validation set can also affect LR.

- > An idiot admires complexity, a genius admires simplicity
- Terry Davis

Encoder Blocks

Decoder Block

UNet-Alike AutoEncoder

Results: Model Performance

	Prec	Recall	F1	Acc
1	0.920	0.957	0.938	0.957
2	0.930	0.931	0.931	0.931
3	0.957	0.936	0.946	0.936
4	0.922	0.941	0.931	0.941
5	0.926	0.942	0.934	0.942
6	0.942	0.929	0.935	0.929
7	0.948	0.944	0.946	0.944
8	0.927	0.941	0.934	0.941
9	0.942	0.946	0.939	0.936
0	0.954	0.932	0.943	0.932

Cross Entropy.

Results: Labels vs Predictions

Good prediction

This could suggest the model did not overfit, since the 5 is a really bad sample

Results: Model Performance

	Prec	Recall	F1	Acc
1	0.949	0.951	0.950	0.951
2	0.884	0.940	0.911	0.940
3	0.950	0.922	0.935	0.922
4	0.912	0.918	0.915	0.918
5	0.899	0.950	0.924	0.950
6	0.941	0.931	0.936	0.931
7	0.980	0.905	0.941	0.905
8	0.922	0.913	0.917	0.913
9	0.918	0.927	0.923	0.927
0	0.962	0.949	0.955	0.949

Dice-Sørensen coefficient.

Results

Suspicious result

Trouble with rotations?
Or is it overfitting to an image with two 6s?

02 SegNet

- > Simplicity is the ultimate sophistication.
- Leonardo da Vinci

Architecture

Encoder Blocks

Decoder Blocks

Results: Model Performance

	Prec	Recall	F1	Acc
1	0.921	0.954	0.937	0.954
2	0.924	0.935	0.929	0.935
3	0.943	0.907	0.925	0.907
4	0.952	0.935	0.943	0.935
5	0.927	0.937	0.932	0.937
6	0.936	0.926	0.931	0.926
7	0.938	0.938	0.938	0.938
8	0.879	0.926	0.902	0.926
9	0.902	0.934	0.918	0.934
0	0.959	0.901	0.929	0.901

$$\mathcal{L} = d(X, Y)$$

Dice-Sørensen coefficient.

Results

Almost pixel perfect, interesting for the model to match the noise

Found both a 9 and an 8 in the bottom left number (got combined after softmax → argmax). Cannot blame the model, the number looks like a 9 but it is labeled like an 8.

1 03

Attention Autoencoder

- > Attention is all you need
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Encoder Block

Bottleneck Block

Custom Attention Block

Decoder Block

AutoEncoder

Encoder Blocks

Decoder Blocks

Results: Model Performance

	Prec	Recall	F1	Acc
1	0.717	0.974	0.826	0.974
2	0.934	0.906	0.920	0.906
3	0.925	0.968	0.946	0.968
4	0.976	0.898	0.935	0.898
5	0.930	0.956	0.942	0.956
6	0.954	0.934	0.944	0.934
7	0.890	0.950	0.919	0.950
8	0.978	0.952	0.965	0.952
9	0.986	0.846	0.911	0.846
0	0.975	0.918	0.945	0.918

Cross Entropy.

Results

The 3 wasn't drawn continuously. Maybe it found more patterns with luminosity values?

Did the model find patterns suggesting a top and bottom curve usually lead to 3? Or is it overfitting to an image where a 3 was positioned there (with some relativity to other numbers)?

Check the Notebooks

https://drive.google.com/drive/folders/1MtfGj6g7DKcNUrRcE6lEnzLMgPpd4eis?usp=sharing

