

Sunbeam Institute of Information Technology Pune and Karad

Module - Concepts of Operating System

Trainer - Devendra Dhande

Email – <u>devendra.dhande@sunbeaminfo.com</u>

Priority

(Non preemptive)

Process	Arrival	CPU Burst	Priority	TW	RT	TAT
P1	0	10	3	6	6	16
P2	0	1	1 (H)	0	D	1
P3	0	2	4 (1-)	16	16	18
P4	0	5	2	1		6

(Pre emptive)

Process	Arrival	CPU Burst	Priority
P1	0	10	3
P2	1	1	1 (H
P3	3	2	4 (1
P4	0	5	2

RR (Round Robin) (pre emptive)

Process	CPU Burst	
P1	53	33,13
P2	17	*
P3	68	48,28
P4	24	4 X

0+57+24
20
37+40+17
57 + 40

Time Quantum: CPV	time	slice
Tg = 20		
TG=100		

La behave like FCFS
TG=4
La CPU overhead will increase

Multi Level Ready Queue

fork() - to create a child process

- child process is created by duplicating parent process (calling process)

- process whas parent terminates before it

init/systemd-process (pid=1)

defunct/zombie process - process who terminates before its parent.

wait () / waitpid ()

exec - exect, execv, execvp, exectp, execve

- Load program from handout to RAM in newly created process.

Producer - Consumer

Semaphore

Mutex = Mutual Exclusion

(one at a time)

- mutex is same like binary semaphore
- operations lock / unlock
- process who locks the mulex becomes owner of mulex.
- only owner can unlock the mutex.

Deadlock

- infinite waiting for a resource
- deadlock occurs only when below four conditions hold true at a time
 - 1. Mutual Exclusion
 - 2. No preemption
 - 3. Hold & wait 4. Circular wait

Prevention:

while implementing OS, it is always ensured that 1/4 condition will hold false.

Avoidance:

- 1. Banker's algorithm 2. Resource allocation graph 3. Safe state algorithm

Recover:

- 1. resource pre emption of process

Memory Management

Simple MMU

Contiguous memory allocation

	Fixed partition
RAM	
P6]16 K
1464	14 K internal fragmentation
Ρ7	if process is not utilizing whole allocated partition, some part of that memory will be wasted.
P3	lok some part of that memory
P2	gk will be wasted.
	7に
PY	
	- 4x limitations:
PS	1. Max process size i's
P1	1. Max process size is size of maximum partition 2. Max no. of processes
•	o are no of partitions

Virtual memory

Segmentation MMU

Paging MMU

Page fault

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com