1

04-09-2024 shift-1

AI24BTECH11020 - Rishika

- 1) If the sum of the series $\frac{1}{1.(1+d)} + \frac{1}{(1+d)(1+2d)} + \cdots + \frac{1}{(1+9d)(1+10d)}$ is equal to 5,then 50d is equal to:
 - a) 5
 - b) 10
 - c) 20
 - d) 15
- 2) The solution of the differential equation $(x^2 + y^2)dx-5xydy = 0$, y(1) = 0, is :
 - a) $|x^2 2y^2|^6 = x$
 - b) $|x^2 2y^2|^5 = x^2$
 - c) $|x^2 4y^2|^6 = x$
 - d) $|x^2 4y^2|^5 = x^2$
- 3) A variable line L passes through the point (3,5) and intersects the positive coordinate axes at the points A and B. The minimum area of the triangle OAB, where O is the origin, is:
 - a) 25
 - b) 40
 - c) 35
 - d) 30
- 4) Let α, β be the roots of the equation $x^2 + 2\sqrt{2}x 1 = 0$. The quadratic equation, whose roots are $\alpha^4 + \beta^4$ and $\frac{1}{10}(\alpha^6 + \beta^6)$, is:
 - a) $x^2 180x + 9506 = 0$
 - b) $x^2 195x + 9506 = 0$
 - c) $x^2 195x + 9466 = 0$
 - $d) \ x^2 190x + 9466 = 0$
- 5) Let $f(x) = ax^3 + bx^2 + cx + 41$ be such that f(1) = 40, f'(1) = 2 and f''(1) = 4. Then $a^2 + b^2 + c^2$ is equal to:
 - a) 73
 - b) 54
 - c) 51
 - d) 62
- 6) If the domain of the function $f(x) = \sin^{-1}\left(\frac{x-1}{2x+3}\right)$ is $\mathbb{R} (\alpha, \beta)$. Then $12\alpha\beta$ is equal to:
 - a) 36
 - b) 32
 - c) 24
 - d) 40
- 7) Let three vectors $\vec{a} = \alpha \hat{i} + 4 \hat{j} + 2 \hat{k}$, $\vec{b} = 5 \hat{i} + 3 \hat{j} + 4 \hat{k}$, $\vec{c} = x \hat{i} + y \hat{j} + z \hat{k}$ form a triangle such that $\vec{c} = \vec{a} \vec{b}$ and the area of the triangle is $5\sqrt{6}$. If α is a positive real number, then $|\vec{c}|^2$ is equal to:
 - a) 16
 - b) 10
 - c) 14
 - d) 12

- 8) Let $|\cos\theta\cos(60^\circ \theta)\cos(60^\circ + \theta)| \le \frac{1}{8}$, $\theta \in [0, 2\pi]$. Find the sum of all $\theta \in [0, 2\pi]$, where $\cos 3\theta$ attains its maximum value, is:
 - a) 18π
 - b) 9π
 - c) 6π
 - d) 15π
- 9) The coefficient of x^{70} in $x^2 (1+x)^{98} + x^3 (1+x)^{97} + x^4 (1+x)^{96} + \dots + x^{54} (1+x)^{46}$ is $\binom{99}{p} \binom{46}{q}$. Then a possible value of p + q is:
 - a) 61
 - b) 55
 - c) 83
 - d) 68
- 10) The shortest distance between the lines $\frac{x-3}{4} = \frac{y+7}{-11} = \frac{z-1}{5}$ and $\frac{x-5}{3} = \frac{y-9}{-6} = \frac{z+2}{1}$ is :

 - b) $\frac{\sqrt{563}}{7}$
- 11) Let a circle passing through (2,0) have its centre at the point (h,k). Let (x_c,y_c) be the point of intersection of the lines 3x + 5y = 1 and $(2 + c)x + 5c^2y = 1$. If $\lim_{c \to 1} x_c$ and $\lim_{c \to 1} y_c$, then the equation of the circle is:
 - a) $25x^2 + 25y^2 2x + 2y 60 = 0$
 - b) $5x^2 + 5y^2 4x + 2y 12 = 0$
 - c) $25x^2 + 25y^2 20x + 2y 60 = 0$
 - d) $5x^2 + 5y^2 4x 2y 12 = 0$
- 12) Let $\lambda, \mu \in \mathbb{R}$. If the system of equations

$$3x + 5y + \lambda z = 3$$

$$7x + 11y - 9z = 2$$

$$97x + 155y + 189z = \mu$$

has infinitely many solutions, then $\mu + 2\lambda$ is equal to :

- a) 25
- b) 22
- c) 24
- d) 27
- 13) Let the line L intersect the lines x 2 = -y = z 1, 2(x + 1) = 2(y 1) = z + 1 and be parallel to the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{2}$. Then which of the following points lies on L?
 - a) $\left(\frac{-1}{3}, -1, -1\right)$
 - b) $(\frac{-1}{3}, 1, -1)$
 - c) $\left(\frac{-1}{3}, 1, 1\right)$
- 14) The frequency distribution of the age of students in a class of 40 students is given below. If the mean

Age	15	16	17	18	19	20
No of Students	5	8	5	12	х	у

deviation about the median is 1.25, then 4x + 5y is equal to:

- a) 47
- b) 43

- c) 46
- d) 44
- 15) The solution curve, of the differential equation $2y\frac{dy}{dx} + 3 = 5\frac{dy}{dx}$, passing through the point (0,1) is a conic, whose vertex lies on the line:
 - a) 2x + 3y = 9

 - b) 2x + 3y = 6c) 2x + 3y = -6d) 2x + 3y = -9