Empirical Study on Transfer Learning for Text Classification

Yunshu Du Supervised by Nidhi Hegde Borealis AI internship Sept 13, 2018. Edmonton, AB

Motivation

- Apollo
 - Entity classification based on news articles
 - Need rich historical data for training
 - O How to make prediction if new entities or a new articles present?

- Transfer learning is important in many domains
 - o Computer vision, reinforcement learning, natural language processing...

We are interested in...

Text classification task

Data

<u>StackExchange</u> Questions (SE)

id	title	content	tag

Sentence Involving Compositional Knowledge (SICK)

id	sent_1	sent_2	sim	label
1	A group of kids is playing in a yard and an old man	A group of boys in a yard is playing and a man	4.5	NETURAL
2	An elderly man is sitting on a bench	An old person is sitting on a bench	4.6	ENTAILMENT
3	A cat is stuck on a moving ceiling fan	There is no cat swinging on a fan	2.8	CONTRADUCTION

Embedding Methods

- W2V
 - Google pre-trained model (google-w2v)
 - Self-pretrained (self-w2v)
- GloVe
 - The smallest Stanford pre-trained model: glove.6b (stanford-glove)
 - Self-pretrained (self-glove)
- Random
 - Uniformly random initialize embedding weights (*rand*)

Others: ELMO, InferSent, USE

Models

- CNN
 - Embedding layer
 - 3 CNN layers
 - 1 fully connected layer + softmax
- RNN
 - Embedding layer
 - 128 hidden cells
 - Vanilla
 - LSTM
 - 1 fully connected layer + softmax
- FastText (FT)
 - 1 fully connected layer + softmax

Training options

- Transfer and freeze embedding
- Transfer and finetune embedding
- Finetune everything else

- Adam optimizer
- Cross-entropy loss
- Batch size: 32 (smaller seems better)

Step 0: build a baseline classifier

id

title

How important is the minimum layer

height on a 3d printer?

content	tag
	quality, resolution

CNN/RNN/FT

3d printing

arabic

ai

astronomy

anime

arduino

android

academia

bike

Step 0: build a baseline classifier

- How does each component affect learning
 - Freeze vs. finetune?
 - Embedding methods?
 - o Model architectures?

How does each component affect learning

• Freeze vs. Finetune (google-w2v embedding)

How does each component affect learning

- Which embedding is better?
 - The two "self-train" embeddings seem to be slightly better

How does each component affect learning

- Which model architecture is better?
 - Compared across models with train-w2v embedding

Summary on Step 0

- Always finetune the embedding layers
- When your dataset is big enough, self-trained embedding could be better
- CNN seems better in short sentences; consider RNN if sentences are long;
 one layer model could also achieve comparable results

- What else to try?
 - freeze/finetune other layers
 - Finetune learning rate (Existing framework: <u>ULMFiT</u>)
 - Try larger scale classification

Step 1: transferability ← semantic similarity

id sent_1 sent_2 sim label

id	sent_1	sent_2	sim	label
----	--------	--------	-----	-------

Hypothesis:

"ENTAILMENT" should transfer better than "CONTRADICTION" if we assume that sentences that are "entailed" based on human interpretation means more "similarity"

id	sent_1	sent_2	sim	label	
----	--------	--------	-----	-------	--

- Evaluate baseline vs. transfer:
 - Jumpstart: accuracy differences at step 0
 - Final improve: accuracy differences at the last step
 - AUC (area under the curve) improve: accumulated accuracy differences

Do not transfer the embedding layer (stanford-glove, CONTRADICTION)

CNN RNN-vanilla FT

Distinct behaviours among models;

(google-w2v, CONTRADICTION)

RNN-LSTM FT

 Distinct behaviours among models; while RNN seems to be the most suitable for this transfer task. (google-w2v, CONTRADICTION)

RNN-vanilla

RNN-LSTM

- Overall, "CONTRADICTION" transfers slightly better than "ENTAILMENT";
- In a few runs "ENTAILMENT" performed well (stanford-glove)

- Overall, "CONTRADICTION" transfers slightly better than "ENTAILMENT";
- In a few runs "ENTAILMENT" performed well (stanford-glove)

id	sent_1	sent_2	sim	label
----	--------	--------	-----	-------

Hypothesis:

"ENTAILMENT" should transfer better than "CONTRADICTION" if we assume that sentences that are <u>"entailed"</u> based on human interpretation means more <u>"similarity"</u>

id sent_1 sent_2 sim label

Hypothesis:

"ENTAILMENT" should transfer better than "CONTRADICTION" if we assume that sentences that are "entailed" based on human interpretation means more "similarity"

However...

ENTAILMENT

- If A is true, then B is true:
 - A: A dog is running in a field
 - B: An animal is running in a field

NETURAL

- If A is true, then B cannot be said to be true or false:
 - A: A man is breaking three eggs in a bowl
 - B: A girl is pouring some milk in a bowl

CONTRADICTION

- If A is true, then B is false:
 - A: A man is playing golf
 - B: No man is playing golf

Lesson learned in Step 1

 Experiments were not-so-appropriately designed due to a misunderstanding in the dataset --- understand your data is important

Lesson learned in Step 1

- Experiments were not-so-appropriately designed due to a misunderstanding in the dataset --- understand your data is important
- Directly connect transferability with human interpretation of text is too big of a step, need more bridges.

Lesson learned in Step 1

- Experiments were not-so-appropriately designed due to a misunderstanding in the dataset --- understand your data is important
- Directly connect transferability with human interpretation of text is too big of a step, need more bridges.

But...still observed transfer patterns in different model/embedding methods.

Step 2: transferability ← embedding similarity

Going back to SE data

id	title	content	tag
1	What is the right approach to write the spin controller for a soccer robot?		soccer control

Source: biology, cooking, crypto, diy, robotics, travel

Vocabulary Size: 33398

Train/Dev split: 78300/8700

#tags: 4268

Target: bioinformatics

Vocabulary Size: 2705

Train/Dev split: 1228/136

o #tags: 379

- Perform transfer
- 2. Compute embedding distances
- 3. Is transferability correlated with embedding distances?

Transfer Results

- All sources to "bioinformatics" vs. "biology" to "bioinformatics"
 - CNN model with google-w2v embedding

"biology" to "bioinformatics"

Transfer Results

- "diy" to "bioinformatics" vs. "robotics" to "bioinformatics"
 - CNN model with google-w2v embedding

"diy" to "bioinformatics"

Look at embedding distances

- m to n pairwise comparison on cosine similarity over the entire source and target sentences, then take the average score (normalized to [0, 1])
 - To save time, we do random sample of 1000 sentences from source and target and average over 5 iterations. (1000 x 1000 x 5 comparisons)
 - Score -> 0: near; Score -> 1: far

cosine distance normalized [0,1]

Look at embedding distances

Biology -> Bioinformatics: avg 0.46

Diy -> Bioinformatics: avg 0.45

Revisit SICK data

• Is "CONTRADICTION" actually closer in embedding distance? Does that explain why its transfer performed better than "ENTAILMENT"?

Revisit SICK data

- Is "CONTRADICTION" actually closer in embedding distance? Does that explain why its transfer performed better than "ENTAILMENT"?
- Based on 1 measurement using USE, CONTRADICTION and ENTAILMENT shows the <u>same embedding distance of 0.3</u>

sent_1	sent_2	label
		ENTAILMENT

sent_1	sent_2	label
		CONTRADICTION

Step 3: embedding ← semantic similarity

An existing recent work: <u>Evaluation of sentence embeddings in downstream and linguistic probing tasks</u>

Takeaway

- Always finetune a pretrained model with your data (at least in the embedding)
 - But do not transfer the embedding layer
 - o If your data is big enough, consider training an embedding from scratch
- Model/embedding selection is still task-dependent
- There are some patterns in transferability vs. "similarity", but
 - One will need to define a similarity measurement accordingly, multiple measurements should be evaluated
 - In this work we looked at "semantic similarity" as a measurement for transferability, but no solid conclusion on the correlation

Thank you!

Empirical Study on Transfer Learning for Text Classification

Yunshu Du Supervised by Nidhi Hegde Borealis AI internship Sept 13, 2018. Edmonton, AB