1 2 3 4 5

Autômatos de Pilha - Parte 3

Victor Carvalho Thais Pires Lara Santana Lucas Felipe

Curso de Engenharia da Computação – Disciplina: Linguagens Formais Escola de Engenharia Elétrica, Mecânica e Computação Universidade Federal de Goiás

10 de novembro de 2017

Sumário

- Funcionamento dos Autômatos de Pilha por Estado Final
- 2 Funcionamento dos Autômatos de Pilha por Pilha Vazia
- $\ensuremath{\mathfrak{3}}$ Equivalência entre AP_{ef} e AP_{pv}
- Questionário
- 5 Referências Bibliográficas

O autômato de pilha por estado final (AP_{ef}) é o autômato que, após ler uma cadeia válida, atinge um estado de aceitação pertencente ao grupo de estados finais. Este modo utiliza a memória interna (estados) do autômato.

Definição Formal (Relembrando)

Um autômato de pilha ${\cal M}$ é formalmente definido por uma 6-tupla:

$$M = (\mathcal{Q}, \Sigma, \Gamma, \Delta, q_0, F)$$

Onde:

- Q é um conjunto finito de estados;
- Σ é um conjunto finito de símbolos, denominado alfabeto de entrada;
- Γ é um conjunto finito de símbolos, denominado alfabeto da pilha;
- Δ é a relação de transição;
- q₀ é o estado inicial;
- F é o conjunto de estados finais (ou de aceitação).

Definição - Linguagem

Linguagem \mathcal{L} reconhecida pelo AP_{ef} :

$$\mathcal{L}(M) = \{ \omega \in \Sigma^* \mid (q_0, \omega, \mathcal{Z}) \vdash_M^* (f, \lambda, \gamma) \ com \ f \in F \ e \ \gamma \in \Gamma^* \}$$

Exemplo

Tomamos o AP_{ef} M descrito por

$$M = (\mathcal{Q}, \Sigma, \Gamma, \delta, p, Z, F),$$

Onde

- $Q = \{p, q, r\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{A, Z\}$
- $F = \{r\}$

Exemplo - Continuação

 δ consiste nas seis instruções seguintes:

$$(p, 0, Z, p, AZ)$$
, $(p, 0, A, p, AA)$, (p, λ, Z, q, Z) , (p, λ, A, q, A) , $(q, 1, A, q, \lambda)$, (q, λ, Z, r, Z) .

Representação do autômato M:

Exemplo - Continuação

O autômato M descrito reconhece a linguagem $\{0^n1^n \mid n \geq 0\}$

Tendo 0011 como cadeia de entrada ω , há várias computações possíveis:

- $(p,0011,Z) \vdash (q,0011,Z) \vdash (r,0011,Z)$. O estado final é o de aceitação, mas a entrada não é aceita, pois a cadeia não foi lida completamente;
- ② $(p,0011,Z) \vdash (p,011,AZ) \vdash (q,011,AZ)$. Não há mais estados possíveis;
- **③** (p,0011,Z) \vdash (p,011,AZ) \vdash (p,11,AAZ) \vdash (q,11,AAZ) \vdash (q,1,AZ) \vdash (q,λ,Z) \vdash (r,λ,Z) . Computação de aceitação: termina em um estado de aceitação e a cadeia é lida totalmente.

Exemplo - Continuação

$$\lambda = \epsilon$$

Sumário

- Funcionamento dos Autômatos de Pilha por Estado Fina
- 2 Funcionamento dos Autômatos de Pilha por Pilha Vazia
- $\ensuremath{\mathfrak{3}}$ Equivalência entre AP_{ef} e AP_{pv}
- Questionário
- 5 Referências Bibliográficas

O autômato de pilha por pilha vazia (AP_{pv}) é o autômato que, após ler uma cadeia válida, esvazia sua pilha. Nesse caso ele usa sua memória externa (pilha) e o conjunto de estados finais é irrelevante.

Definição - Linguagem

Linguagem \mathcal{N} reconhecida pelo AP_{pv} :

$$\mathcal{N}(M) = \{ \omega \in \Sigma^* \mid (q_0, \ \omega, \ \mathcal{Z}) \vdash_M^* (f, \ \epsilon, \ \epsilon) \ com \ q \in Q \}$$

Exemplo

Tomamos o AP_{pv} M descrito por

$$M = (\mathcal{Q}, \Sigma, \Gamma, \delta, p, Z),$$

Onde

- $Q = \{p,q\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{A, Z\}$

Exemplo - Continuação

 δ consiste nas cinco instruções seguintes:

$$(p, 0, Z, p, AAZ)$$
, $(p, 0, A, p, AAA)$, $(p, 1, A, q, \lambda)$, $(q, 1, A, q, \lambda)$, $(q, \lambda, Z, q, \lambda)$.

Representação do autômato M:

Exemplo - Continuação

O autômato M descrito reconhece a linguagem $\{0^n1^{2n}\mid n>0\}$

Tendo 001111 como cadeia de entrada ω , há apenas uma computação:

• $(p,001111,Z) \vdash (p,01111,AAZ) \vdash (p,1111,AAAAZ) \vdash (q,111,AAAZ) \vdash (q,111,AAZ) \vdash (q,11,AAZ) \vdash (q,\lambda,Z) \vdash (q,\lambda,\lambda)$. Computação de aceitação: termina quando a pilha está vazia e a cadeia foi totalmente lida.

Sumário

- Funcionamento dos Autômatos de Pilha por Estado Fina
- Puncionamento dos Autômatos de Pilha por Pilha Vazia
- $\ensuremath{\mathfrak{3}}$ Equivalência entre AP_{ef} e AP_{pv}
- Questionário
- 5 Referências Bibliográficas

Conversão de Pilha Vazia para Estado Final

Temos o $P_{pv}=(\mathcal{Q},\ \Sigma,\ \Gamma,\ \Delta,\ q_0,\ F)$, podemos converter em um AP_{ef} com as seguintes instruções:

- ② Adicionamos um novo estado inicial p_0 . O novo estado irá empilhar Z_0 , símbolo de pilha vazia do AP_{pv} , na pilha do AP_{ef} . Além disso, p_0 irá mudar para o estado inicial q_0 do AP_{nv} . $\Delta(p_0, \epsilon, X_0) = (q_0, Z_0X_0)$;
- $\textbf{ Adicionamos um estado final } p_f \text{ ao } AP_{ef}.$ $\textbf{ Todos os estados do } AP_{pv} \text{ que esvaziarem a pilha, irão mudar para o novo estado final } p_f.$

Conversão de Estado Final para Pilha Vazia

Temos o $P_{ef}=(\mathcal{Q},\ \Sigma,\ \Gamma,\ \Delta,\ q_0,\ F)$, podemos converter em um AP_{pv} com as seguintes instruções:

- **1** Adicionamos um novo estado p para o AP_{ef} ;
- ② Para todo estado final do AP_{ef} , acrescentamos transições vazias para o novo estado p, considerando qualquer simbolo do alfabeto do AP_{ef} .

$$\Delta_{final}(q, \epsilon, X) = \{(p, \epsilon)\}, \ \forall X \in \Gamma \ sendo \ q \in F;$$

Sumário

- Funcionamento dos Autômatos de Pilha por Estado Fina
- 2 Funcionamento dos Autômatos de Pilha por Pilha Vazia
- $\ensuremath{\mathfrak{3}}$ Equivalência entre AP_{ef} e AP_{pv}
- Questionário
- 5 Referências Bibliográficas

Questão 01

Faça um autômato por estado final que reconheça a linguagem $\{0^n1^{2n}\mid n\geq 0\}.$

Questão 01 — Resposta Esperada 0, A; AAA 0, Z; AAZ 1, A; A 1, A; A q1 1, A; Z; Z q2

Questão 02

Faça um autômato por pilha vazia que reconheça a linguagem $\{0^n1^n\mid n>0\}.$

Questão 03

Encontre um AP_{pv} M que reconheça o conjunto $\mathcal{L} = \{\omega \mid \omega \in \{0,1\}^* \ e \ \omega \ \text{tem igual número de 0's e 1's}\}$, por pilha vazia.

Questão 04

Faça um autômato por estado final que reconheça a linguagem $\{0^m1^n\mid n\geq m\geq 0\}.$

Questão 05

Converta o AP_{pv} que processa sequências de i e e, detectando sequências inválidas (sequências que têm mais es que is num prefixo), para um AP_{ef} .

Sumário

- ¶ Funcionamento dos Autômatos de Pilha por Estado Fina
- 2 Funcionamento dos Autômatos de Pilha por Pilha Vazia
- $\ensuremath{\mathfrak{3}}$ Equivalência entre AP_{ef} e AP_{pv}
- Questionário
- Referências Bibliográficas

Referências Bibliográficas

- Michael Sipser. Introdução à Teoria da Computação.
 Tradução brasileira de "Introduction to the Theory of Computation" (PWS Publishing Company, 2nd edition, 2005), por Ruy de Queiroz, revisão Newton Vieira, Cengarle Learning, 2007 ISBN 978-85-221-0499-4.
- ean-Michel Autebert, Jean Berstel, Luc Boasson, Context-Free Languages and Push-Down Automata, in: G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, 1997, 111-174.
- Linguagens Formais, J. L. Range 1999