ទិញ្ញាសានី09

മാരു

- I. គេឲ្យចំនួនកុំផ្តិច $Z_1=-\sqrt{3}+i\sqrt{3}$ និង $Z_2=\sqrt{3}+i\sqrt{3}$ ។
 - ១, សរសេរ Z_1 និង Z_2 ជាទម្រង់ត្រីកោណមាត្រ។
 - ២. គណនា $Z_3=Z_1\times Z_2$ និង $Z_4=rac{Z_1}{Z_2}$ ជាទម្រង់ត្រីកោណមាត្រ រួចសរសេរជាទម្រង់ពិជគណិត។
 - ៣, គណនាតម្លៃ $A = Z_4^{2017} \left(\frac{1-i}{\sqrt{2}}\right)^{2016}$ ។
- II. គណនាលីមីតនៃអនុគមន៍ខាងក្រោម៖

$$\widehat{\mathbf{n}} \) \qquad \lim_{x \to 1} \frac{x^3 + x - 2}{x^3 - x^2 - x + 1} \qquad \text{2} \) \qquad \lim_{x \to +\infty} \left(\sqrt{x^2 + x} - x \right) \qquad \widehat{\mathbf{n}} \) \qquad \lim_{x \to 0} \frac{e^x - \sin x - 1}{\sin 2x}$$

- III. គេឲ្យអនុគមន៍ $f(x) = \frac{x^2 2x + 2}{x^3 2x^2 + x}$ ដែល $(x \neq 0; x \neq 1)$ ។
 - ក) កំណត់តម្លៃa;b និងc ដើម្បីឲ្យ $f(x) = \frac{a}{x} + \frac{b}{x-1} + \frac{c}{(x-1)^2}$ ។
 - ខ) គណនាអាំងតេក្រាល $\int \frac{x^2 2x + 2}{x^3 2x^2 + x} dx$
- **IV.** គេឲ្យសមីការឌីផេរ៉ង់ស្យែល $(E): y'' + 2y' + y = x^2 + 2x 2$ ។
 - ក) កំណត់ចំនួនពិតa;b និងc ដើម្បីឲ្យ $g(x)=ax^2+bx+c$ ជាចម្លើយនៃសមីការ(E) ។
 - 2) បង្ហាញថា f ជាម្លើយនៃ (E) លុះត្រាតែ f-g ជាចម្លើយនៃ (E'): y''+2y'+y=0 ។
- V. គេឲ្យអនុគមន៍ g កំណត់លើ $\mathbb R$ ដែល $g(x)=x-1+2e^{-x}$ ហើយមានក្រាប(C) ។
 - ១. រក $\lim_{x\to\pm\infty}f(x)$ ។ រកសមីការអាស៊ីមតូតទ្រេត (L_1) នៃក្រាប(C)។ បង្ហាញថា f មានអប្បរមាត្រង់ $x=\ln 2$ ។
 - ២. សង់តារាងអរថរភាពនៃអនុគមន៍ f ។ រកសមីការបន្ទាត់ប៉ះ (L_2) នឹងក្រាប(C)ត្រង់ A(0,1) ។
 - ៣. សង់បន្ទាត់ (L_1) ; (L_2) និងក្រាប(C) ក្នុងតម្រុយអរតូណម៉ាល់ (o, \vec{i}, \vec{j}) ។
 - ៤. គណនាក្រឡាផ្ទៃប្លង់ដែលខ័ណ្ឌដោយអាស៊ីមតូត $(L_{\!\scriptscriptstyle 1})$ នឹងក្រាប(C) ជាមួយបន្ទាត់់ឈរ x=0, x=1។ គេឲ្យ៖ $\ln 2=0.7$

9

- **VI.** គេឲ្យអេលីបមួយមានសមីការទូទៅ(E): $12x^2 + 20y^2 12x + 40y 37 = 0$ ។
 - ១. ចូរបម្លែងសមីការអេលីប(E) នេះជាទម្រង់សមីការស្តង់ដានែអេលីប។
 - ២, រកកូអរដោនេនៃ ផ្ចិត កំពូល កំណុំ រួចសង់អេលីបនេះក្នុងតម្រុយអរតូណម៉ាល់ $\left(o, \vec{t}\,, \vec{j}\,\right)$ ។

VII. គេមានចំណុច A(0;1;-2), B(1;0;1), I(1;-1;0) និង I(1;2;-4) ក្នុងតម្រុយអរតូណម៉ាល់ $(o,\vec{t},\vec{j},\vec{k})$

- ក) កំណត់សមីការប្លង់(P)ដែលកាត់តាមចំណុច $_{A,B}$ និង $_{C}$ ។
- ខ) កំណត់ចម្ងាយពីចំណុច I ទៅប្លង់(P)។
- គ) សរសេរសមីការស្វ៊ែ(S) ដែលមានផ្ចិត I និងប៉ះប្លង់(P)។
- ឃ) កំណត់ក្រឡាផ្ទៃនៃត្រីកោណ ABC ។ ទាញរកមាឌតេត្រាអ៊ែត IABC។
- ង) កំណត់ចម្ងាយពីចំណុច I ទៅបន្ទាត់(D) ដែលសមីការនៃបន្ទាត់(D) គឺ: $(D): x = 1 + 3t, y = -1 + 5t, z = 1 4t \ (t \in \mathbb{R})$

សូមសំណា១ល្អ...!©

ម្រៀនតែនាំ១មយីវាត្សែងនាំនៃមួងប៉ង់មួតាន់ខ្ **೫೬೬೯ ದಾ** ಜ್ಞಾ ೩೦೦೮ ទិញ្ញាសា គណិតទិន្យា (ខ្ញាត់ទិន្យាសាស្ត្រពិត) ទេះពេល១៥០ខានី ೫೮೮ ಆಚಿತ್ರಣಿ

មណ្ឌលរួមនុវ្ សេខមត្ថម.....សេខតុ..... ಯಾ:ಅಕ್ಷಲಿನ..... សង្គលេខាមេត្ត៩ន.....

ದಿ0ಶ್ಚಳುಟ್ಟಿತ್ತ

គេឲ្យចំនួនកុំផ្លិច $z_1=1+2i$; $z_2=1$ និង $z_3=2i$ ។ I.

១, គណនា
$$z_1+z_2$$
 ; z_1-z_2 និង z_2-z_3 ២. គណនា $z_1\left(z_2-z_3\right)$ និង $\frac{z_1}{z_2-z_3}$ ។

គណនាលីមីតនៃអនុគមន៍ខាងក្រោម៖ II.

$$\tilde{n}. \lim_{x\to 0} \frac{1-\cos 4x}{2x^2}$$

$$\text{ fi. } \lim_{x \to 0} \frac{1 - \cos 4x}{2x^2} \qquad \text{ 8. } \lim_{x \to 0} \frac{e^{2x} - \sin 4x - 1}{3x} \qquad \text{ fi. } \lim_{x \to 1} \frac{1 - x}{\sqrt{x + 2} - \sqrt{3}}$$

$$\mathfrak{F}$$
. $\lim_{x \to 1} \frac{1-x}{\sqrt{x+2} - \sqrt{3}}$

W.
$$\lim_{x \to +\infty} \left(x - \sqrt{x^2 - x + 1} \right)$$
 4. $\lim_{x \to 0} \frac{e^{2017x} - e^{2013x}}{2x}$ **5.** $\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$

ង.
$$\lim_{x\to 0} \frac{e^{2017x} - e^{2013x}}{2x}$$

$$\mathfrak{T}. \lim_{x\to 0} \frac{1-\cos x}{x\sin x}$$

ក្នុងថង់មួយមានឃ្លីខ្មៅ ៣ ឃ្លីស ៤ និងឃ្លីបៃតង ៦ ។ គេចាប់យកឃ្លីម្តងបីព្រមគ្នាចេញពីថង់ដោយចៃដន្យ ។ គេសន្និដ្ធានថាប្រូបាបដែលចាប់បានឃ្លើនីមួយៗជាសមប្រូបាប ។ គណនាប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A: "ឃ្លីសមួយយ៉ាងតិច"

B: "ឃ្លីខ្មៅមួយយ៉ាងតិច"

C: "ឃ្លីមានពណ៍ដូចគ្នា"

D: "ឃ្លីមានពណ៍ខុសៗគ្នា"

គណនាអាំងតេក្រាលនៃអនុគមន៍ខាងក្រោម៖

$$\tilde{\mathsf{n}}. \int \frac{dx}{\sin^2 x \cos^2 x}$$

$$\text{ fi. } \int \frac{dx}{\sin^2 x \cos^2 x} \qquad \text{ 2. } \int \frac{\cos 2x}{\sin^2 x \cos^2 x} dx \quad \text{ fi. } \int_{-1}^{1} (x+1)^2 dx \qquad \text{ wi. } \int_{2}^{6} \frac{3x}{x^2 - 3} dx$$

$$\text{ti.} \int_{3}^{6} \frac{3x}{x^2 - 3} dx$$

$$\mathfrak{V}. \int (1-\cos^2 x) dx$$

$$\mathfrak{F}$$
. $\int \sin^4 x dx$

ង.
$$\int \sin^3 x dx$$

គេមានអនុគមន៍ $f(x) = \frac{(2x^2 - 1)^2}{x^2}$ ដែល $x \neq 0$ ។

9, សរសេរ f(x) ជាទម្រង់ $f(x) = Ax^2 + B + \frac{C}{r^2}$ រួចកំណត់ចំនួនពិត A ; B និង C ។

២. ដោយប្រើលទ្ធផលពីសំនួរ ១ ចូរគណនា $f'(x) \; ; \; f''(x)$ និង f'''(x) ។

៣, គណនា $\int_{0}^{2} f(x) dx$ ។

VI. 1) ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែលនៃអនុគមន៍ខាងក្រោម៖(ណែនាំ ត្រូវប្រើ $y' = \frac{dy}{dx}$)

$$\hat{n}$$
. $xy' = 2 - 4x^3$

2.
$$y' = \sin x + \cos x$$
 7. $5x - 4y' = 3$

គឺ.
$$5x-4y'=3$$

$$\text{tt. } 2x(x-y')=5$$

2) ក. ដោះស្រាយសមីការឌីផេរ៉ង់ស្អែល (E): y = -5y + 4y = 0 ។

ខ. កំណត់ចម្លើយពិសេស f មួយនៃ(E) ដែលប៉ះនឹងបន្ទាត់(T): y = -2x + 1 ត្រង់ O ។

គ. តាង $u(x) = 2e^x - e^{4x}$ ។ គណនា $\int_{1}^{0} [u(x)]^2 dx$ ។

VII. ១. កំណត់សមីការនៃប៉ារ៉ាបូលដែលមានកូអរដោនេ កំពូលV(0;1) និង F(0;-1) ។ រួចសង់ប៉ារ៉ាបូលនេះ

២. គេមានវ៉ិចទ័រ $\vec{u}=\vec{i}+\vec{j}$; $\vec{v}=3\vec{j}+\vec{k}$ និង $\vec{w}=-\vec{i}+2\vec{k}$ ។

ក. គណនា $\vec{u} + \vec{v}$; $\vec{v} + \vec{w}$ និង $2\vec{u} - 3\vec{v} + \vec{w}$ ។

ខ. គណនា $\vec{u} \times \vec{v}$ $\vec{v} \times \vec{w}$ និង $\vec{w} \times \vec{u}$ ។

គ. គណនាផ្ទៃក្រឡានៃត្រីកោណ និងក្រឡាផ្ទៃប្រលេឡក្រាម ដែលមានជ្រុងជាប់ $\vec{u}_{;\vec{v}}$ រួច $\vec{u}_{;\vec{w}}$ ។

ឃ. គណនាមាឌប្រលេពីប៉ែតកែងដែលមានជ្រុងជាប់ $\overset{\circ}{u};\overset{\circ}{v}$ និង $\overset{\circ}{w}$ ។

VIII. f ជាអនុគមន៍កំណត់ចំពោះគ្រប់ចំនួនពិតx ដោយ $y = f(x) = -x - 2 + \frac{4e^x}{e^x + 1}$ ហើយមានខ្សែក្រាប(C)។

- ១, គណនា $\lim_{x\to -\infty} f(x)$ និង $\lim_{x\to +\infty} f(x)$ ។ រកសមីការអាស៊ីមតូតទ្រេត (Δ) នៃខ្សែកោង (C) កាលណា $x\to +\infty$ ។
- ២. គណនាដេរីវេ f'(x) រួចបង្ហាញថា $f'(x) \le 0$ ចំពោះគ្រប់ចំនួនពិតx ។ គណនា f'(0); f(0) ហើយសង តារាងអថេរភាពនៃ f ។
- ៣, បង្ហាញថាគល់កូអរដោនេ o ជាចំណុចរបត់ និងជាផ្ចិតឆ្លុះនៃខ្សែកោង(c) ។
- ៤. គណនា f(3) ហើយសង់ក្រាប(C) ក្នុងតម្រុយអរតូណម៉ាល់ $\left(o;\vec{i};\vec{j}\right)$ ។ (គេឲ្យ៖ $e^{3}=20$)
- ៥. គណនាក្រឡាផ្ទៃដែលខ័ណ្ឌដោយខ្សែកោង(C) និង សមីការអាស៊ីមតូតទ្រេត (Δ) លើចន្លោះ $[-3\,;-2]$ ។

សូមសំណា១ស្ន...!©

្រឿនតែមាលាសាលា	នស្នាលទ្រឱ្យ១
සඳුණ්ව කට සුභා කරටයු	សេទឧសភិទបេទដំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ
ទិញ្ញាសា គណិតទិន្យា (ថ្លាក់ទិន្យាសាស្ត្រពិត)	ಯ್ತಾಣಕ್ಷಿಕಲ್ಲ
	ಲಾಹ್ಷಣವಾಣಕ್ಷವಣ
ಶಿಜೀಕ ಕಾಣಕ್ಕೆ ಕ್ಷಣಿಕ್ಷಣೆಗಳು	

ទិញ្ញាសានី០៣

- ១. ចូរសរសេរចំនួនកុំផ្លិច w ដែលមានម៉ូឌុល $\sqrt{2}$ និងអាគុយម៉ង់ $\frac{7\pi}{4}$ ជាទម្រង់ពិជគណិត ។ I.
 - ២. ដោះស្រាយសមីការក្នុងសុំណុំចំនួនកុំផ្លិច $\mathbb{C}_i\sqrt{2}z-\sqrt{2}=\sqrt{2}i+z$ ដោយឲ្យទម្រង់ជាពិជគណិត។
- គណនាលីមីតនៃអនុគមន៍ខាងក្រោម៖ II.

$$\widehat{\mathbf{n}}. \lim_{x \to -\infty} \left(x + \sqrt{x^2 + 3x + 1} \right)$$

2.
$$\lim_{x\to 0} \frac{\sqrt{x^2 + x + 1} - 1}{4x}$$

$$\Re \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 2x}$$

$$\text{U}.\lim_{x\to 0}\frac{1-\cos x}{\sin^2 x}$$

- ចូររកប្រូបាបនៃព្រឹត្តិការណ៍ដូចខាងក្រោម៖
 - ក. "គ្មានអំពូលខូចគុណភាពមួយសោះ"

ខ. "មានអំពូលខូចគុណភាពតែមួយគត់"

គ. "យ៉ាងតិចអំពូលខូចគុណភាពមួយ"

គ. "យ៉ាងច្រើនអំពូលខូចគុណភាពមួយ"

គណនាអាំងតេក្រាលនៃអនុគមន៍ខាងក្រោម៖

$$I = \int \left(\frac{1}{\sqrt{x}} + \frac{1}{x^3} + \sin 2x + ex\right) dx \qquad \qquad J = \int_1^4 \left(\frac{1+x^2}{x}\right)^2 dx$$

$$J = \int_1^4 \left(\frac{1+x^2}{x}\right)^2 dx$$

$$K = \int (1 - \cos x)^2 dx$$

- ១. កំណត់ចំនួនពិត λ ដើម្បីឲ្យ $h(x) = e^{\lambda x}$ ជាចម្លើយនៃសមីការ(E): y y = 0 ។
 - ក. ចំពោះគ្រប់ចំនួនពិត α ; β ចូរផ្ទៀងផ្ទាត់ថា $\mu(x)=\alpha e^x+\beta e^{-x}$ ជាចម្លើយនៃសមីការ(E) ។
 - ខ. កំណត់ចម្លើយពិសេសមួយនៃ (E) បើគេដឹងថាក្រាបតំណាងរបស់វាកាត់តាមចំណុច $\left(\ln 2\;;\;rac{3}{4}
 ight)$ ហើយប៉ះនឹង បន្ទាត់ដែលមានមេគុណប្រាប់ទិសស្មើនឹង $\frac{5}{4}$ ។
- ១. កំណត់សមីការអេលីបដែលមានកំពូល(0;-5) និង (0;5) ហើយកំណុំ(0;3) ។ រួចសង់អេលីបនេះ
 - ២. គេមាន A(0;0;3);(2;0;4);(-1;1;2) និង D(1;-4;0)
 - ក. កំណត់សមីការទូទៅនៃប្លង់ ABC ; BCD ; ACD និង ABD។
 - ខ. កំណត់សមីការឆ្លុះ និងប៉ារ៉ាម៉ែត្រដែលជាបន្ទាត់ប្រសព្វរវាងប្លង់ ABC នឹង BCDរួច ACD នឹង ABD ។
- VII. គេមានអនុគមន៍ $f(x) = \frac{1}{x(1-\ln x)}$ មានខ្សែកោង(C) ក្នុងតម្រុយអរតូណរម៉ាល់ $(o;\vec{i};\vec{j};\vec{k})$ ។
 - ក. រកសំណុំដែនកំណត់នៃអនុគមន៍ f ។
 - ខ. គណនាលីមីតនៃ f ត្រង់ចុងៗដែនកំណត់ ។ រកសមីការអាស៊ីមតូតដេក និងឈរនៃក្រាប(C) ។
 - គ. គណនា f'(x) ។ បង្ហាញថា f មានចំណុចអប្បរមាមួយ។ គូសតារាងអថេរភាពនៃ f រួចសង់ក្រាប(C)
 - ឃ. គណនាក្រឡាផ្ទៃផ្នែកប្លង់ ដែលខ័ណ្ឌដោយខ្សែកោង(C) នឹងអ័ក្ស(x'ox) លើចន្លោះ $3 \le x \le 4$ ។

ម្រៀនតែខាំ១មយ៉ាតងៃឧឌានមួងប៉ង់មួយដំនូ **೫೬೬೯ ದಾ** ಜ್ಞಾ ೩೦೦೮ ទិញ្ញាសា គណិតទិន្យា (ខ្ញាក់ទិន្យាសាស្ត្រពិត) ទេះពេល១៥០ខានី ೫೮೮ ಆಚಿತ್ರಣಿ

នស្វាលទ្រន់ខែ..... រសទឧស័ត ឃេទដំ ឃេច ಯಾ:ಅಕ್ಷಲಿ សង្គលេខាមេគ្គ៩ន.....

ទិញ្ញាសានី០៤

I. គេឲ្យចំនួនកុំផ្តិច
$$z_1 = -2\sqrt{3} - 2i$$
 និង $z_2 = 2\sqrt{3} + 2i$ ។

១.សរសេរ z_1 និង z_2 ជាទម្រង់ត្រីកោណមាត្រ។

២, សរសេរ z_1+z_2 , z_1-z_2 , $z_1\times z_2$ និង $\frac{z_1}{z_2}$ ជាទម្រង់ពិជគណិត ។ រួចសរសេរជាទម្រង់ត្រីកោណមាត្រ។

៣,គេតាង
$$A = \frac{z_1}{z_2} + \left(\frac{z_1}{z_2}\right)^5$$
 ។ រកតម្លៃនៃ A ។

II. គណនាលីមីតនៃអនុគមន៍ខាងក្រោម៖

$$\lim_{x\to 0} \frac{e^{2x} - \cos 4x}{2x}$$

2.
$$\lim_{x \to +\infty} \frac{x^2 - \ln x}{r \ln x}$$

$$\text{ fi. } \lim_{x \to 0} \frac{e^{2x} - \cos 4x}{2x} \qquad \text{ 2. } \lim_{x \to +\infty} \frac{x^2 - \ln x}{x \ln x} \qquad \text{ fi. } \lim_{x \to 0} \frac{\left(e^{38x} - 1\right) \sin 53x}{x^2} \qquad \text{ Ui. } \lim_{x \to +\infty} \left(xe^{-x} - e^{-x}\right)$$

$$\text{U.} \lim_{x\to +\infty} \left(xe^{-x}-e^{-x}\right)$$

$$\lim_{x \to 0} \frac{\cos 6x - \cos x}{\sin^2 x}$$

$$\mathfrak{V}. \lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

$$\mathfrak{F}. \lim_{x\to 1} \frac{\sin^2 \pi x}{x-1}$$

$$\Im. \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$

ង. $\lim_{x\to 0}\frac{\cos 6x-\cos x}{\sin^2 x}$ ច. $\lim_{x\to 0}\frac{\tan x-\sin x}{x^3}$ ឆ. $\lim_{x\to 1}\frac{\sin^2 \pi x}{x-1}$ ជ. $\lim_{x\to 0}\frac{\sqrt{2}-\sqrt{1+\cos x}}{\sin^2 x}$ III. គណនាអាំងតេក្រាល និងដើរជនៃអនុគមន៍ខាងក្រោម៖

$$\hat{n}$$
. $\int \tan 4x dx$

$$\mathfrak{V}. y = \ln\left(x^2 + e^x\right)$$

$$\mathfrak{F}. \ y = \frac{x - \ln x}{x}$$

$$\mathfrak{A}.(2x+3)^5$$

$$\mathfrak{V}. \ y = \ln(x^2 + e^x) \qquad \qquad \mathfrak{F}. \ y = \frac{x - \ln x}{x} \qquad \qquad \mathfrak{A}. (2x + 3)^5 \qquad \mathfrak{W}. \ y = \frac{x + 2}{1 - x}$$

IV. វិញ្ញាសានៃការបោះគ្រាប់ឡុកឡាក់ពីរគ្រាប់មានពណ៍ខុសគ្នា ក្រហម និងខៀវព្រមគ្នា ។

ក. រកប្រូបាបនៃព្រឹត្តិការណ៍ ដោយគោរពតាមលក្ខខណ្ឌដូចតទៅ៖

១, $A_{\rm l}$ = "ឡុកឡាក់ពណ៍ក្រហមចេញលេខ ៤" ។

២, A_2 = "ឡកឡាក់ពណ៌ខៀវចេញលេខសេស" ។

៣, A_3 = "ឡកឡាក់ពណ៍ក្រហមចេញលេខ ៣ គ្រាប់ឡកឡាក់ខៀវចេញលេខ ៥" ។

៤. A_4 = "ឡកឡាក់ពណ៍ក្រហមចេញលេខ ១ គ្រាប់ឡកឡាក់ខៀវចេញលេខ ៧" ។

ខ. តើព្រឹត្តិការណ៍ណាមួយជាព្រឹត្តិការណ៍ឯកធាតុ?

V. ក. គេឲ្យ $f(x) = \frac{2x-3}{x^2-3x+2}$ កំណត់គ្រប់ $x \ne 1$; $x \ne 2$ ។

១. តាង $v(x) = x^2 - 3x + 2$ គណនាv'(x) ។

២, គណនា
$$I = \int_{-1}^{0} f(x) dx$$
 ។

2. រកចំនួនពិត a និងb ដើម្បីឲ្យ $g(x) = \frac{2-x}{x^2-4x+3} = \frac{a}{x-1} + \frac{b}{x-3}$ ។ រួចគណនា $I = \int g(x) dx$ ។

- **VI.** គេមានសមីការឌីផេរ៉ង់ស្យែល(E): $y'-2y=2(e^{2x}-1)$ ។
 - ១. បង្ហាញថាអនុគមន៍h កំណត់លើ $\mathbb R$ ដោយ $h(x) = 2xe^{2x} + 1$ ជាចម្លើយពិសេសមួយនៃ(E) ។
 - ២, គេសន្មត់ y=z+h ។ បង្ហាញថា y ជាចម្លើយនៃសមីការ (E) លុះត្រាតែ z ជាចម្លើយនៃសមីការឌីផេរ៉ង់ស្យែល (E'): z'-2z=0 ។ រួចទាញរកចម្លើយទូទៅនៃសមីការ (E)។
 - ៣.កំណត់ចម្លើយមួយនៃ(E) ដោយដឹងថាក្រាបរបស់វាកាត់តាមអ័ក្សអាប់ស៊ីសត្រង់ $_0$ ។
- ${\bf VII.}$ ១. ប៉ារ៉ាបូលមួយមានកំពូល(1,2) និងកំណុំត្រង់ចំណុច(1,4)។
 - ក. រកសមីការស្គង់ដានៃប៉ារ៉ាបូលនេះ ។
 - ខ. រកសមីការបន្ទាត់ប្រាប់ទិស និងសង់ប៉ារ៉ាបូលនេះ ។
 - ២. នៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(o,\vec{i},\vec{j},\vec{k}\right)$ មានទិសដៅវិជ្ជមានគេឲ្យចំណុច A(1,2,3) និងវ៉ិចទ័រ $\vec{u}=2\vec{i}-\vec{j}+\vec{k}$ ។
 - ក. សរសេរសមីការបន្ទាត់D កាត់តាមA និងមានវ៉ិចទ័រប្រាប់ទិស $_{ar{u}}$ ។
 - ខ. សរសេរសមីការប្លង់lpha កាត់តាមA និងមានវ៉ិចទ័រណរម៉ាល់ $_{ec{u}}$ ។
- VIII. គេឲ្យ f ជាអនគមន៍កំណត់ដោយ $f(x) = \frac{x}{2} + 2 + \frac{\ln x}{x}$ មានក្រាប C ។
 - 9. សង់តារាងអរថេរភាពនៃអនុគមន៍ g ដែល $g(x) = x^2 + 2 2\ln x$ (មិនបាច់រកលីមីតទេ)។ ទាញរកសញ្ញា នៃ g(x) លើ $(0,+\infty)$ ។
 - ២, គណនា $\lim_{x\to 0^+} f(x)$ និង $\lim_{x\to +\infty} f(x)$ ។ សង់តារាងអថេរភាពនៃ f ។
 - ៣, កំណត់លីមីតនៃ $f(x) \frac{x}{2} 2$ កាលណា x ខិតទៅរក $+\infty$ រួចសិក្សាសញ្ញានៃកន្សោមនេះ។ បកស្រាយ តាមន័យក្រាបភិចនូវលទ្ធផលនេះ ។
 - ៤. ឲ្យសមីការនៃបន្ទាត់ប៉ះT ទៅនឹងC ត្រង់ចំណុចA មានអាប់ស៊ីស 1 ។
 - ៥, រកកូអរដោនេនៃចំណុច B នៅលើ C ដែលប៉ះទៅនឹង C ត្រង់ចំណុចនេះ ហើយស្របទៅនឹងបន្ទាត់ $d:y=\frac{x}{2}+2$ ។ សង់ខ្សែកោង C ។
 - ៦, គណនាផ្ទៃក្រឡា $S(\beta)$ ដែលខណ្ឌដោយខ្សែកោង C នឹងបន្ទាត់ d លើផចន្លោះ $[1,\beta]$, $1<\beta$ ។ កំណត់ β ដើម្បីឲ្យ $S(\beta)=100$ ។

សុមសំណា១ស្ទ...!©

ម្រៀតតែថវិទមុណីជាឧធានខានម្យុងរប់ថម្ពុ៣ងំគួ
ಕಾತ್ರಣಚಿತ್ರಕ್ಕಾ ಅನ್ಯಕ್ಷಾತ್ರಚಿತ್ರಕ್ಕಾ
ទិញ្ញាសា គរសិតទិន្សា (ថ្លាក់ទិន្សាសស្ត្រពិត)
ទេះពេល១៥០ខាន្ទ
ಶ್ರಿಣಕ್ಟ್ ಕಾಣಕ್ಟ್ರಿಣಿ

មណ្ឌលម្រនុទ្រ..... លេខឧទ័ត ខេត្ត ເໝຸາ:ເອສອຣ...... ಲಾಕ್ಷಣಾಣಕ್ಕಿಲ್ಲ<u>ಿ</u>

ទិញ្ញាសានី០៥

- គេឲ្យចំនួនកុំផ្លិច $z_1=\sqrt{2}+i\sqrt{2}$ និង $z_2=\sqrt{2}-i\sqrt{2}$ ដែល $w=\frac{z_1}{z_2}$ ។
 - ១.សរសេរចំនួនកុំផ្លិច z_1 ; z_2 និង w ជាទម្រង់ត្រីកោណមាត្រ ។ រួចសរសេរ w^4 ជាទម្រង់ពីជគណិត ។
 - ២, គេឲ្យចំនួនកុំផ្លិច $u=\cos \alpha+i\sin \alpha$ ដែល $(\alpha\in\mathbb{R})$ ។ គណនា α ដោយដឹងថា $u=w^4$ ។
- II. គណនាលីមីតនៃអនុគមន៍ខាងក្រោម៖

$$\tilde{n}. \lim_{x\to 0} \frac{e^{4x} - e^{-4x}}{\sin x}$$

$$2.\lim_{x\to 0}\frac{e^x-1}{\sqrt{x+1}-1}$$

គ.
$$\lim_{x\to 0} \frac{\sqrt{e^x} - 1}{\sin 2x}$$

$$\text{7.} \lim_{x \to 0} \frac{e^{4x} - e^{-4x}}{\sin x} \qquad \text{2.} \lim_{x \to 0} \frac{e^{x} - 1}{\sqrt{x + 1} - 1} \qquad \text{5.} \lim_{x \to 0} \frac{\sqrt{e^{x}} - 1}{\sin 2x} \qquad \text{5.} \lim_{x \to \pi} \frac{1 + \cos x}{\left(\pi - x\right)^{2}}$$

$$\Im. \lim_{x\to 1} \frac{2-\sqrt{x+3}}{x^2-1}$$

$$\mathfrak{F}. \lim_{x \to +\infty} \ln \left(\frac{x+1}{x-1} \right)$$

III. គណនាអាំងតេក្រាលនៃអនុគមន៍ខាងក្រោម៖

ក. គណនា
$$I = \int_{2}^{3} (4x^2 - 2x + 1) dx$$

$$2. f(x) = \frac{1+2x}{(x^2-4x)+(4-x)}$$
 ។ បង្ហាញថា $f(x) = \frac{1}{1-x} - \frac{3}{4-x}$ គណនា $J = \int_2^3 f(x) dx$ ។

IV. គេឲ្យអនុគមន៍ h(x) កំណត់ចំពោះ $x \neq -1$ ដោយ $h(x) = \frac{4x-1}{(x+1)^2}$ ។

១,រកចំនួនពិត
$$a$$
 និង b ដើម្បីឲ្យ $h(x) = \frac{a}{(x+1)} + \frac{b}{(x+1)^2}$ ចំពោះគ្រប់ $x \neq -1$ ។

២. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល $(x+1)^2$ y'=4x-1 ដោយដឹងថា y(0)=2017 ។

- v. សិស្សម្នាក់ចង់ទិញសៀវភៅមួយក្បាលដែលមានតម្លៃ ៧០០រៀល ។ នៅក្នុងហោប៉ាវរបស់សិស្សម្នាក់នោះមានក្រ ដាស់ប្រាក់ ១០០០រៀល មួយសន្លឹក ៥០០រៀល ពីរសន្លឹក និង ២០០រៀល បួនសន្លឹក ។ សិស្សនោះលុកក្នុងហោប៉ាវ ដោយចៃដន្យយកបានក្រដាស់ប្រាក់ពីរសន្លឹក ។
 - ក. A: "មានផលបូកស្មើនឹង ៧០០រៀល" ។
 - ខ. B: "មានផលបុកស្មើនឹង ៧០០រៀល យ៉ាងតិច" ។
- **VI.** គេឲ្យប៉ារ៉ាបូលមួយមានសមីការ $P: x^2 4x + 4y + 8 = 0$ ។
 - ១,រកកូអរដោនេ កំពូល កំណុំ និងសមីការបន្ទាត់ប្រាប់ទិសនៃប៉ារ៉ាបូល P នេះ។
 - ២. រកកូអរដោនេនៃចំណុចប្រសព្វរវាងប៉ារ៉ាបូល P នឹងបន្ទាត់ដេក y=-2 ។
 - ៣.ចូរសង់ប៉ារ៉ាបូលP នេះក្នុងតម្រុយ $\left(o,\overline{i},\overline{j}\right)$ ។

- VII.គេឲ្យអនុគមន៍ f កំណត់លើ $\mathbb R$ ដែល $f(x) = x + 1 e^x$ មានក្រាបC ។
 - ក. គណនាលីមីតចុងដែនកំណត់ ។ កំណត់ដេរីវេ f'(x) ។ សិក្សាសញ្ញានៃ f'(x) ។ រួចសង់តារាងអថេរភាពនៃ f(x) ។
 - ខ. កំណត់សញ្ញានៃ f(x) រួចបង្ហាញថា $e^x \geq x+1$ គ្រប់ $x \in \mathbb{R}$ ។
 - គ. បង្ហាញថាបន្ទាត់L: y=x+1 ជាអាស៊ីមតូតនៃក្រាបC ខាង $-\infty$ ។
 - ឃ. សង់ក្រាប $_C$ និងបន្ទាត់ $_L$ ក្នុងតម្រុយ $_{(o,\vec{i},\;\vec{j})}$ ។
 - ង. ដោយប្រើខ្សែកោង C ចូរពិភាក្សាទៅតាមតម្លៃប៉ារ៉ាមែត្រm នៅចំនួនឫសនៃសមីការ $x+1-e^x-m=0$ ។
 - ច. គណនាផ្ទៃក្រឡា S ផ្នែកប្លង់ដែលខណ្ឌដោយខ្សែកោង C នឹងអ័ក្សអាប់ស៊ីស $0 \le x \le 1$ ។
- **VIII.** នៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(o,\vec{i},\;\vec{j},\vec{k}\;\right)$ មានទិសដៅវិជ្ជមានគេឲ្យចំណុច $A\left(1,1,0\;\right),B\left(0,2,2\;\right),$ $C\left(1,-2,3\;\right)$ ។
 - ក. គណនាផលគុណវ៉ិចទ័រ $\overline{AB} imes \overline{AC}$ រួចទាញបញ្ជាក់ថាA,B,C មិនឋិតនៅលើបន្ទាត់តែមួយ ។
 - ខ. សរសេរសមីការប្លង់ P ដែលកាត់តាមចំណុច $_{A,B,C}$ ។
 - គ. រកសមីការប៉ារ៉ាមែត្រនៃបន្ទាត់ L ដែលកាត់តាមចំណុច D(1,-2,0) ហើយកែងនឹងប្លង់ P ។ រួចរកកូអរដោនេនៃចំណុច M ប្រសព្វរវាងប្លង់ P និងបន្ទាត់ L ។

សូមសំណាខល្អ...!©

ម្រៀតតែថវិទមុណីតម្លៃតនាំកម្មដូមវិថម្មកាន់គ្ន
ಕಾತ್ರಣಚಿತ್ರಕ್ಕಾ ಅನ್ಯಕ್ಷಾತ್ರಚಿತ್ರಕ್ಕಾ
ទិញ្ញាសា គរសិតទិន្សា (ថ្លាក់ទិន្សាសស្ត្រពិត)
ទេះមេល១៥០ខាន្ទ
តិតូសរុម ១២៥

សេខមត្ថម.....សេខតុ..... ಯಾ:ಅಕ್ಷಲಿ សង្គលេខាមេត្ត៩ន.....

ទិញ្ញាសានី០៦

I. គេមានចំនួនកុំផ្លិច $z_1 = \sqrt{3} - i$, $z_2 = -2\sqrt{3} + 2i$ និង $z_3 = \frac{z_1}{z_2}$ ។

គណនា z_1+z_2 , $(z_1-z_2)\times z_3$ ។ សរសេរជាទម្រង់ត្រីកោណមាត្រនូវចំនួនកុំផ្លិច z_1+z_2 ។ រួចទាញរក $(z_1+z_2)^4$ ។

II. គណនាលីមីត៖ ក. $\lim_{x\to 2} \frac{x^2-4}{x^2+x-6}$ ខ. $\lim_{x\to 5} \frac{\sqrt{x+4}-3}{x^2-25}$ គ. $\lim_{x\to 0} \frac{7\sin 7x}{x}$ ឃ. $\lim_{x\to 0} \frac{\sin 2018x}{\sin 2017x}$

III. 9. គណនាអាំតេក្រាល ក. $\int_{2}^{3} (2x^2 + x - 3) dx$ ខ. $\int_{0}^{\frac{\pi}{3}} (1 - 2\cos^2 x) dx$ គ. $\int_{0}^{\frac{\sin^3 x}{\cos x}} dx$ ឃ. $\int_{0}^{\frac{x^2}{16 - x^2}} dx$

ង. $\int_{x^2}^0 \ln t dt$ ប៊. $\int \sin x e^{\cos x} dx$ ស៊. $\int \cos^4 x dx$ ប៊. $\int \cos^2 x \sin x dx$ ឈ. $\int_{x^2}^{\frac{\pi}{2}} \sin^3 x \cos^2 x dx \left(An : \frac{2}{15} \right)$

២. គេមាន f កំណតចំពោះ $x \neq -2$; $x \neq -1$ ដោយ $f(x) = \frac{x}{x^2 + 3x + 2}$ ។ បង្ហាញថា $f(x) = \frac{2}{x + 2} - \frac{1}{x + 1}$ ។

រួចគណនា $K = \int_0^1 f(x) dx$ ។

IV. ក្នុងថង់មួយមានប៊ូល ១៥ ដែលចែកជាប៊ូលពណ៍បៃតងចំនួន៧ និងគេសរសេរលើប៊ូលទាំង៧ នេះតាមលេខរៀងពី ១ដល់៧ រួចប៊ូលខៀវចំនួន៥ និងគេសរសេរលើប៊ូលទាំង៥ នេះតាមលេខរៀងពី១ដល់៥ ចុងក្រោយប៊ូលក្រហមចំនួន ៣ និងគេសរសេរលើប៊ូលទាំង៣ នេះតាមលេខរៀងពី១ដល់៣។ គេចាប់យកប៊ូលមួយចេញពីថង់ដោយចៃដន្យ។ រកប្រូប៉ាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖

A: ប៊ូលដែលចាប់បានមានពណ៌បៃតង ។

B: ប៊ូលដែលចាប់បានមានលេខសេស ។

C: ប៊ូលដែលចាប់បានមានលេខគូ ។

D: ប៊ូលដែលចាប់បានមានលេខជាចំនួនបឋម ។

E: ប៊ូលដែលចាប់បានមានពណ៍បៃតង និងមានលេខជាចំនួនបឋម ។

 ${\bf v}$. ១. គេមានសមីការ $16x^2+9y^2-54y-63=0$ ។ក. បង្ហាញថាសមីការនេះជាសមីការអេលីប។ រកប្រវែងអ័ក្សតូច ប្រវែងអ័ក្សធំ និងកូអរដោនេនៃកំពូល, កំណុំទាំងពីរ របស់អេលីបនេះ ។ ខ. សង់អេលីបនេះ។

២. នៅក្នុងលំហប្រដាប់ដោយតម្រុយអរតូណរម៉ាល់ $\left(o, \vec{i}, \ \vec{j}, \vec{k}\ \right)$ គេមានចំណុច A(2,3,4), B(3,5,6)

,C(4,6,7),D(3,4,5) ។ ក. រកវ៉ិចទ័រ $\overrightarrow{AB},\overrightarrow{CD}$ និងរកតម្លៃ $|\overrightarrow{AB}|,|\overrightarrow{CD}|$ ។ រួចគណនាផលគុណ $\overrightarrow{AB} \times \overrightarrow{CD}$ ។

ខ. ទាញបង្ហាញថាចតុកោណ ABCD ជាប្រលេឡក្រាម។

VI. ក. ដោះស្រាយសមីការឌីវេរ៉ង់ស្យែល(E): y = 4y = 0 ។

ខ. រកចម្លើយពិសេសមួយនៃសមីការឌីផេរ៉ង់ស្អែល(E) ដែល y(0)=1 និង y'(0)=0 ។

VII.គេឲ្យអនុគមន៍ f មួយកំណត់លើ $\mathbb R$ ដោយ $f(x) = (x-2)e^x + 1$ មានក្រាបតាង C ។

- ក. រកតម្លៃអតិបរមានៃ f ។
- ខ. រកលីមីតនៃ f ត្រង់ $+\infty$ និង $-\infty$ រួចទាញរកសមីការអាស៊ីមតូតនៃក្រាប C ។
- គ. សង់តារាងអថេរភាពនៃ f ។
- ឃ. រកចំណុចI របត់នៃក្រាបC ។ សរសេរសមីការបន្ទាត់ប៉ះ (Δ) ត្រង់I ។
- ង. ដោះស្រាយសមីការ f(x)=1 ។ បញ្ជាក់ទីតាំងនៃ C ធៀបនឹងអាស៊ីមតូតដែលរកបាននៅសំនួរ ខ។
- ច. គណនា $f\left(-1\right)$ ។ សងក្រាប C អាស៊ីមតូត និងបន្ទាត់ប៉ះ $\left(\Delta\right)$ ។

កេឲ្យ៖ e = 2.7

VIII. គេឲ្យអនុគមន៍ f មួយកំណត់លើ]0 , $+\infty[$ ដែល $f(x)=x\ln x-x+1$ មានក្រាប(C) ។

- ក. រកលីមីត $\lim_{x \to 0^+} f(x)$ និង $\lim_{x \to \infty} f(x)$ ។
- ខ. គណនាដេរីវេ f'(x) រួចសិក្សាសញ្ញានៃ f'(x) ។ គណនាតម្លៃបរមានៃ f ។
- គ. គូសតារាងអថេរភាពនៃ f ។
- ឃ. គណនា f(2) ។ រកx បើ f(x)=1 ។ គេឲ្យ៖ $(\ln 2 = 0.7)$
- ង. សង់ក្រាប(C) តាងអនុគមន៍ f ។

សុមសំណា១ល្អ...!⊚

ម្រៀនតែខាំ១មយ៉ាតងៃឧឌានមួងប៉ង់មួយដំនូ **೫೬೬೯ ಕ್ಷಾಣಕ್ಷಿತ ಕ್ಷಾಣಕ್ಷಿತ ಕ್ಷಾಣಕ್ಷಿತ** ទិញ្ញាសា គណិតទិន្យា (ខ្ញាក់ទិន្យាសាស្ត្រពិត) ទេះពេល១៥០ខានី ೫೮೮ ಆಚಿತ್ರಣಿ

លេខមន្ទម......លេខឌុ..... ಯ್ತಾಃಚಕ್ಷಲಿ សង្គលេខាមេត្ត៩ន.....

ទិញ្ញាសានី០៧

- គេឲ្យចំនួនកុំផ្លិច z=1+i ជាឫសនៃសមីការ $z^3-3z^2+az+b=0$:(E) ។
 - ក. កំណត់ចំនួនពិត_{a,b} ។
 - ខ. រកឫសផ្សេងទៀតនៃសមីការ(E)។
 - គ. សរសេរឫសនៃសមីការ(E)ជាទម្រង់ត្រីកោណមាត្រ ។
- II. គណនាលីមីតខាងក្រោម៖

$$\text{7.} \lim_{x \to 0} \frac{e^{2x} + e^x - 2}{\sin 2x + \sin x} \qquad \text{2.} \lim_{x \to 0} \frac{1 - \cos 2x}{x \sin 4x} \qquad \text{3.} \lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{x^2} \qquad \text{4.} \lim_{x \to 0} \frac{\sin 5x}{2x^2 + 4x}$$

$$2. \lim_{x\to 0} \frac{1-\cos 2x}{x\sin 4x}$$

គ.
$$\lim_{x\to 0} \frac{1-\sqrt{\cos x}}{x^2}$$

$$\text{US.} \lim_{x \to 0} \frac{\sin 5x}{2x^2 + 4x}$$

$$3. \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \qquad 3. \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2} \qquad 3. \lim_{x \to 0} \frac{\left(1 - \cos x\right)^2}{\tan^3 x - \sin^3 x} \qquad 3. \lim_{x \to 0} \frac{1 + \sin x - \cos x}{1 - \sin x - \cos x}$$

$$\mathfrak{G}. \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2}$$

$$\mathfrak{F}.\lim_{x\to 0}\frac{\left(1-\cos x\right)^2}{\tan^3 x-\sin^3 x}$$

$$\mathfrak{A}. \lim_{x \to 0} \frac{1 + \sin x - \cos x}{1 - \sin x - \cos x}$$

- III. គេចង់បង្កើតលេខដែលមានបីខ្ទង់ ផ្សេងៗគ្នា ដោយយកចេញពី ១,២,៣,៤ ។ ចូររកប្រូបាបនៃព្រឹត្តិការណ៍ដូចខាងក្រោម៖
 - ក. ចំនួននោះជាពហុគុណនៃ ៣ ។
 - ខ. ចំនួននោះជាពហុគុណនៃ ២ ។
 - គ. ចំនួននោះជាពហុគុណនៃ ២ ឬ ជាពហុគុណនៃ ៣។
- **IV.** ក. គណនាអាំងតេក្រាល $I = \int_{1}^{5} (x^2 + 2x 3) dx$
 - 2. បង្ហាញថាគ្រប់ចំនួនពិត $x \ne 1$ គេបាន $f(x) = \frac{2x^2 3x + 2}{x 1} = 2x 1 + \frac{1}{x 1}$ ។ រួចទាញរក $J = \int_{2}^{3} f(x) dx$ ។
- **V.** គេមានអនុគមន៍ f កំណត់លើ \mathbb{R} ដោយ $f(x) = \frac{1}{1+e^x} + \frac{2}{9}x$ និងតាង C ក្រាបរបស់ f ។
 - 1. អនុគមន៍ g កំណត់លើ \mathbb{R} ដោយ $g(x) = 2e^{2x} 5e^x + 2$ ។
 - ក. ផ្ទៀងផ្ទាត់់ថា $g(x) = (2e^x 1)(e^x 2)$ ។
 - ខ. ទាញតាមតម្លៃនៃx សញ្ញានៃg(x) ។
 - 2. ក. រិក $\lim_{x\to a} f(x)$ និង $\lim_{x\to a} f(x)$ ។
 - ខ. អនុគមន៍ f មានដេរីវេ f ។ បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x គេបាន f (x) និង g(x) មានសញ្ញាដូចគ្នា។
 - គ. សិក្សាអថេរភាពនៃអនុគមន៍ f លើ $\mathbb R$ ។
- VI. 9. គេមានអនុគមន៍ $g(x) = x^2 2 \ln x$ កំណត់លើចន្លោះ $I = (0, +\infty)$ ។

- ក. សិក្សាអថេរភាព និងគូសតារាងអថេរភាពនៃ g (មិនចាំបាច់គណនាលីមីតចុងដែនកំណត់ទេ) ។
- ខ. ទាញថាចំពោះគ្រប់x > 0 នោះគេបាន g(x) > 0 ។
- ២. អនុគមន័f កំណត់លើI ដោយ $f(x) = \frac{1}{2}x \frac{3}{2} + \frac{1 + \ln x}{x}$ មានក្រាបC ។
 - ក. គណនាលីមីតនៃ f ត្រង់0 និង $+\infty$ ។
 - ខ. a. បង្ហាញថា $f'(x) = \frac{g(x)}{2x^2}$ ចំពោះគ្រប់ $x \in I$ ។
 - b. ទាញរកសញ្ញានៃ f និងគូសតារាងអថេរភាពនៃ f លើ I ។
 - គ. a. បង្ហាញថាបន្ទាត់ D មានសមីការ $y = \frac{1}{2}x \frac{3}{2}$ ជាអាស៊ីមតូតទ្រេតនៃ C
 - b. កំណត់កូអរដោនេនៃចំណុចប្រសព្វរវាង $\, C \,$ និង $\, D \,$ ។
 - c. កំណត់ទីតាំងធៀបនៃ C និង D ។
 - d. សង់ C និងDនៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(O,ec{i},ec{j}\right)$ (ឯកតាលើអ័ក្ស2cm)
- ៣. នៅលើចន្លោះ I គេឲ្យ $h(x) = \frac{1 + \ln x}{x}$ ។
 - ក. រកព្រីមីទីវមួយនៃអនុគមន៍h លើចន្លោះI ។
 - ខ. គណនាផ្ទៃក្រឡាផ្នែកនៃប្លង់ S ខ័ណ្ឌដោយក្រាប C បន្ទាត់ D និងបន្ទាត់ឈរ $x=\frac{1}{e}, x=e^2$ គិតជា cm^2 ។

VII.(ំបែម)គេឲ្យសមីការ (E_1) : $2x^2 + y^2 = 8$ និង (E_2) : $y^2 = 6x$ ។

- ក. ចូរបញ្ជាក់ដោយប្រាប់ឈ្មោះនៃប្រភេទខ្សែកោង ឬសមីការទាំងពីរខាងលើ ។
- ខ. រកកូអរដោនេនៃចំណុចប្រសព្វរវាងខ្សែកោងទាំងពីរខាងលើ ។
- គ. រកមេគុណប្រាប់ទិសនៃបន្ទាត់ប៉ះទៅនឹងខ្សែកោងទាំងពីរខាងត្រង់ចំណុចប្រសព្វនោះ។
- ឃ. បង្ហាញថាបន្ទាត់ប៉ះទៅនឹងខ្សែកោងទាំងពីរត្រង់ចំណុចប្រសព្វនោះកែងគ្នា។
- ${f VIII.}$ នៅក្នុងតម្រុយអរតូណរម៉ាលមានទិសដៅវិជ្ជមាន $\left(o, \vec{i}, \ \vec{j}, \vec{k}\ \right)$ គេមានចំណុច $A\left(1,0,0\ \right), B\left(0,1,0\ \right), \ C\left(0,0,1\right)$
 - ក. បង្ហាញចាត្រីកោណ ABC ជាត្រីកោណសម្ប័ង។
 - ខ. គណនាផលគុណ $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$ រួចសរសេរសមីការប្លង់ ABC ។
 - គ. រកចម្ងាយពីចំណុច D(0,1,1) ទៅប្លង់ ABC ។
 - ឃ. រកសមីការស្វ៊ែs ដែលមានអង្គត់ផ្ចិតAC ។
 - ង. សរសេរសមីការប្លង់ Pប៉ះស្វ៊ែ S ត្រង់ C ។

សូមសំណាខល្អ...!©

ម្រៀនតែខាំ១មយ៉ាតងៃឧឌានមួងប៉ង់មួយដំនូ **೫೬೬೯ ಕ್ಷಾಣಕ್ಷಿತ ಕ್ಷಾಣಕ್ಷಿತ ಕ್ಷಾಣಕ್ಷಿತ** ទិញ្ញាសា គណិតទិន្យា (ខ្ញាក់ទិន្យាសាស្ត្រពិត) ទេះពេល១៥០ខានី ೫೮೮ ಆಚಿತ್ರಣಿ

មណ្ឌលរួមទុទ្រ..... លេខឧទ័ត ខេត្ត ເໝຸາ:ເອສອຣ...... សង្គលេខាមេត្ត៩ន.....

ទិញ្ញាសានី០៨

I. គេឲ្យចំនួនកុំផ្លិច
$$Z = \frac{5+3\sqrt{3}i}{1-2\sqrt{3}i}$$
 ។

- ក. សរសេរ Z ជាទម្រង់a+bi ដែល a និង b ជាចំនួនពិត។
- ខ. គណនា Z^2 និង Z^3 រួចទាញរក Z^{15} ។
- គ. បង្ហាញថាគ្រប់ចំនួនគត់ធម្មជាតិ $n \ Z^{3n+2} = -2^{3n+1} \left(1 + i\sqrt{3}\right)$ រួចគណនា $Z^{20} \$ ។
- II. គណនាលីមីតនៃអនុគម៍ខាងក្រោម៖

$$\text{ fi.} \lim_{x \to 0} \frac{e^{4020x} - e^{2013x}}{\sin 2040x - \sin 2039x} \qquad \text{ 2.} \lim_{x \to 0} \frac{\left(e^{3x} - e^{5x}\right)\sin 2x}{8x^2} \qquad \text{ fi.} \lim_{x \to 0} \frac{1 - \sqrt{\cos 4x}}{1 - \sqrt{\cos 8x}} \qquad \text{ Ui.} \lim_{x \to 0} \frac{\sin^2 4x}{\sin^2 8x}$$

$$2.\lim_{x\to 0}\frac{\left(e^{3x}-e^{5x}\right)\sin 2x}{8x^2}$$

គ.
$$\lim_{x \to 0} \frac{1 - \sqrt{\cos 4x}}{1 - \sqrt{\cos 8x}}$$

$$\text{UJ.} \lim_{x\to 0} \frac{\sin^2 4x}{\sin^2 8x}$$

$$\mathfrak{V}.\lim_{x\to 0}\frac{4\sin 4x}{2-\sqrt{x+4}}$$

$$\mathfrak{F}.\lim_{x\to 0}\frac{\sqrt{2+x}-\sqrt{2-x}}{x}$$

$$\Im. \lim_{x\to 0} \frac{\sin^2 x}{-3x}$$

$$\mathfrak{W}. \lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x^3}$$

$$\mathfrak{Q}.\lim_{x\to 0}\frac{\ln x}{x}$$

$$\ddot{\mathbf{u}}. \lim_{x \to +\infty} \frac{x^2 - \ln x}{x \ln x}$$

$$\mathfrak{W}.\lim_{x\to +\infty}\frac{\left(\ln x\right)^2}{x^3} \qquad \mathfrak{Q}.\lim_{x\to 0}\frac{\ln x}{x} \qquad \mathfrak{U}.\lim_{x\to +\infty}\frac{x^2-\ln x}{x\ln x} \qquad \mathfrak{V}.\lim_{x\to 0}\left(\frac{e^x}{x}-\frac{1}{x}+\frac{\sin 4x}{x}\right)$$

III. 9.គេមានអនុគមន៍ f កំណត់លើ $D = [2, +\infty)$ ដោយ $f(x) = \frac{x^2 - 4x + 4}{(2x - 3)(x - 1)^2}$ ។

ក. ផ្ទៀងផ្ទាត់ថាចំពោះគ្រប់
$$x \in D$$
 នោះ $f(x) = \frac{-1}{(x-1)^2} + \frac{1}{2x-3}$ ។

2.កំណត់លើចន្លោះ
$$[2,+\infty)$$
 នូវព្រឹមីទីវរបស់អនុគមន៍ g និង h ដែល $g(x) = -\frac{1}{(x-1)^2}$ និង $h(x) = \frac{1}{2x-3}$

- គ. ទាញរកតម្លៃប្រាកដនៃ $I = \int_{2}^{3} f(x) dx$ ។
- ២. គណនាអាំងតេក្រាល $A = \int_{1}^{3} (3x^2 + 2x + 3) dx$

IV. ក្នុងលំដាប់លេខ:១,២,៣,៤,៥,៦,៧,៨,៩,១០គេចាប់យកលេខចំនួន៦ចេញពីលំដាប់លេខនេះដោយចៃដន្យ។ គណនាប្រូបាបនៃព្រឹត្តិការដូចខាងក្រោម៖

- ក. ក្នុងចំនួនទាំង ៦ នោះមានចំនួនគួ ៣គត់។
- ខ. ក្នុងចំនួនទាំង ៦ នោះមានចំនួនសេសមួយយ៉ាងតិច ។
- គ. ក្នុងចំនួនទាំង ៦ នោះមានចំនួនសេសតែមួយគត់ ។
- ឃ. ក្នុងចំនួនទាំង ៦ នោះមានផលបូកស្មើនឹង ៦ ។

v. គេមានសមីការឌីផេរ៉ង់ស្បែល $E: y'' + 2y' + y = x^2 + 2x - 2$ ។

- ក. រកចម្លើយ y_c របស់សមីការ E': y'' + 2y' + y = 0 ។
- ខ. កំណត់តម្លៃនៃចំនួនពិតa,b,c ដើម្បីឲ្យអនុគមន៍ $y_p = ax^2 + bx + c$ ជាចម្លើយនៃ E ។

គ. ផ្ទៀងផ្ទាត់់ថាអនុគមន៍ $y=y_c+y_p$ ជាចម្លើយទូទៅនៃសមីការ E ។

VI. 9. f កំណត់ដោយ $f(x) = x \ln x + ax + b$ ។ រកចំនួនពិត a និង b ដើម្បីឲ្យអនុគមន៍ f មានតម្លៃអប្បបរមាស្មើ 0 ចំពោះ x = 1 ។

២. g កំណត់ដោយ $g(x) = x \ln x - x + 1$ មានខ្សែកោង C ។

ក. រកដែនកំណត់នៃអនុគមន៍ g ។ រួចគណនាលីមីតចុងៗដែនកំណត់នៃអនុគមន៍ g ។

ខ. គណនា g'(x) ។ សិក្សាសញ្ញានៃ g'(x) ។

គ. សង់តារាងអថេរភាព g ។ រួចទាញរកសញ្ញា g(x) ។

ឃ. សង់ក្រាបC និង $C'h(x) = \ln x$ ក្នុងតម្រុយតែមួយ។

ង. គណនាផ្ទៃក្រឡាផ្នែកប្លង់ដែលខ័ណ្ឌដោយ $\, C \,$ និង $\, C \,$ ។

ច. គណនាផ្ទៃក្រឡាផ្នែកប្លង់ដែលខ័ណ្ឌដោយ C និងអ័ក្សអាប់ស៊ីសដែល $0 < x \le 1$ ។

 ${f VII}$.គេឲ្យអនុគមន៍ $f(x) = 1 + \frac{1}{2}x^2 - 4 \ln x$ មានខ្សែកោងតំណាង C ។

ក.រកដែនកំណត់នៃអនុគមន៍ f ។ គណនាលីមីតនៃ f ត្រង់ចុងដែនកំណត់ ។

ខ.តាង f' ជាដេរីជេន f ។ គណនា f' និងបង្ហាញថា $f'(x) = \frac{(x-2)(x+2)}{x}$ ។

គ.រកសមីការបន្ទាត់ប៉ះT ដែលប៉ះទៅនឹងក្រាបC ត្រង់ចំណុចដែលអាប់ស៊ីសx=1 ។

ឃ.ទាញរកសញ្ញានៃ f'(x) និងគូសតារាងអថេរភាពនៃ f'។

ង.សង់ក្រាប ${\it C}$ និងបន្ទាត់ ${\it T}$ ក្នុងតម្រុយតែមួយ ។

ច.ផ្ទៀងផ្ទាត់ថា $F(x) = \frac{1}{6}x^3 - 4x \ln x + 5x$ ជាព្រឹមីទីវមួយនៃអនុគមន៍ f ។

ឆ.គណនាអាំងតេក្រាល $J = \int_1^5 f(x) dx$ ។

សូមសំណាខល្អ...!©

ម្រៀតតែខាំ១មយីវាតាំងគនាំតម្ងងប៉ប់ន់មួតាដំនូ **೫೬೬೯ ಕ್ಷಾಣಕ್ಷಿತ ಕ್ಷಾಣಕ್ಷಿತ ಕ್ಷಾಣಕ್ಷಿತ** ទិញ្ញាសា គណិតទិន្យា (ខ្ញាក់ទិន្យាសាស្ត្រពិត) ទេះពេល១៥០ខានី ೫೮೮ ಆಚಿತ್ರಣಿ

នស្នាលម្រន់ទេ..... សេខមនុម្ភ សេខដុ ເໝຸາ:ເອສອຣ...... សង្គលេខាមេត្ត៩ន.....

ទិញ្ញាសានី0៩

គណនាលីមីតនៃអនុគមន៍ខាងក្រោម៖

$$\mathbf{\tilde{n}}. \lim_{x \to +\infty} \frac{3e^{x} + 4}{5e^{x} - 6}$$

$$\mathbf{\tilde{n}}. \lim_{x \to +\infty} \frac{\sqrt{1 + \sin^{2} 3x} - 1}{e^{x}}$$

$$\text{71.} \lim_{x \to +\infty} \frac{3e^x + 4}{5e^x - 6} \qquad \text{2.} \lim_{x \to +\infty} \frac{2x^2 - 3x + \ln x}{x^2} \qquad \text{31.} \lim_{x \to 1} \frac{x^3 - x^2 + 7x - 7}{x^2 - 1} \qquad \text{32.} \lim_{x \to 0} \frac{4\sin^2 2x}{x^2}$$

$$x^2$$
 $\sin \frac{\sqrt{x^2 + 3} - 2}{2}$

$$\mathbf{\tilde{h}}. \lim_{x \to 1} \frac{x^3 - x^2 + 7x - 7}{x^2 - 1}$$

$$\text{UI.} \lim_{x \to 0} \frac{4\sin^2 2x}{x^2}$$

$$\mathfrak{B}.\lim_{x\to 0}\frac{\sin\left(1-\cos x\right)}{x^2}$$

 \mathbf{II} . គេមានចំនួនកុំផ្តិច $z_1 = -2 - 2\sqrt{3}i$ និង $z_2 = 3 - \sqrt{3}i$ ។

ក.គណនា z_1+z_2 ; z_1-z_2 ; $z_1\times z_2$ និង $\frac{z_1}{z_2}$ សរសេរជាទម្រង់ a+bi ។

ខ.សរសេ z_1 និង z_2 ជាទម្រង់ត្រីកោណមាត្រ ។ រួចទាញរក $z_1 \times z_2$ និង $\frac{z_1}{z_2}$ ជាទម្រង់ត្រីកោណមាត្រ ។

គ.បង្ហាញថា $z_1^{2016} + z_2^{2016}$ ជាចំនួនថេរ ។

III. ១.គណនាអាំងតេក្រាលនៃអនុគមន៍ខាងក្រោម៖

$$\widehat{\mathsf{n}}. \int (x+1)^2 e^{2x+2} dx$$

$$2.\int \cos x \ln e^{\tan x} dx$$

គឺ.
$$\int \frac{\ln x}{2017x} dx$$

$$\tilde{\Pi}. \int (x+1)^2 e^{2x+2} dx \qquad \qquad \Im. \int \cos x \ln e^{\tan x} dx \qquad \qquad \tilde{\Pi}. \int \frac{\ln x}{2017x} dx \qquad \qquad \text{W.} \int \frac{\sin x}{\left(1-\cos x\right)^{2017}} dx$$

២.គេមានអនុគមន៍ $f(x) = \frac{6-x}{x^2-4}$ ចំពោះគ្រប់ $x \neq \pm 2$ ។ បង្ហាញថា $f(x) = \frac{1}{x-2} - \frac{2}{x+2}$ ចំពោះគ្រប់ $x \neq \pm 2$ ។ រួចទាញរក $I = \int_{1}^{6} f(x) dx$ ។

- IV. លីដូមានស្បែកជើងកីឡា ៣សំរាប់ពណ៍ផ្សេងគ្នា ខាវកីឡា ៤ពណ៍ផ្សេងគ្នា និងអាវកីឡា ៥ពណ៍ផ្សេងគ្នា ។ តើលីដូ អាចស្លៀកពាក់បានប៉ុន្មានរបៀបផ្សេងគ្នា ? តើបានប៉ុន្មានរបៀបបើគេដឹងថា ស្បែកជើងក្រហម ខាវក្រហម និងអាវ ក្រហម លីដូមិនអាចស្លៀកពាក់ក្នុងពេលតែមួយ?
- **V.** 9/ ដោះស្រាយសមីការ 4y + y = 0 (E) ។

២/ រកចម្លើយ g មួយនៃ (E) ដោយដឹងថា $\int_0^{\pi} g(x) dx = 0$ និង $\int_0^{2\pi} g(x) dx = 3$ ។

VI. 9.គេឲ្យវ៉ិចទ័រ $\vec{u} = \vec{i} + 2\vec{j} - \vec{k}$; $\vec{v} = \vec{i} + \vec{j} + \vec{k}$ និង $\vec{w} = \vec{u} \times \vec{v}$ ។

ក/ រកកូអរដោនេនៃវ៉ិចទ័រ \vec{u} $+ \vec{v}$ និង \vec{w} = $\vec{u} \times \vec{v}$ ។ ស្រាយបញ្ជាក់ថា \vec{w} អរតូកូណាល់នឹង \vec{u} ផង និង \vec{v} ផង ។

ខ/ រកវ៉ិចទ័រឯកតាដែលអរតូកូណាល់ទៅនឹងវ៉ិច \bar{u} និង \bar{v} ។

គ/ រកមាឌប្រឡេពីប៉ែតដែលមានវិមាត្រ $\vec{u}; \vec{v}; \vec{w}$ ។

២.គេមានសមីការ(E) $36x^2 + 16y^2 = 4$ ។

ក/ បង្ហាញថា(E) ជាសមីការអេលីប ។ រួចទាញរក ផ្ចិត កំពូល និងកំណុំ នៃអេលីបនេះ ។

2/ សង់អេលីប(E) ។

 ${f VII}.$ គេឲ្យ f ជាអនុគមន៍កំណត់លើ $\Bbb R$ ដោយ $f(x)=x+2-rac{2\left(e^x-1
ight)}{e^x+1}$ មានក្រាប(C) ។

១. គណនាលីមីត $\lim_{x\to -\infty} f(x)$ និង $\lim_{x\to +\infty} f(x)$ ។ រួចសិក្សាទីតាំងធៀបរវាងក្រាប(C) ជាមួយនឹងបន្ទាត់ $(\Delta): y = x + 2$ ។

២.ក/ ចូរស្រាយបញ្ចាក់ថា $f'(x) = \left(\frac{e^x - 1}{e^x + 1}\right)^2$ ចំពោះគ្រប់ចំនួនពិត x ។

ខ/ គូសតារាងអថេរភាពនៃ f ។

៣.ក/ ចំពោះគ្រប់ $x \in \mathbb{R}$ ចូរស្រាយបំភ្លឺថាកន្សោម f(x) អាចសរសេរជាពីរទម្រង់ $f(x) = x + \frac{4}{e^x + 1}$ និង

$$f(x) = x + 4 - \frac{4e^x}{e^x + 1}$$
 1

ខ/ ទាញបញ្ជាក់ថាខ្សែកោង(C) មានអាស៊ីមតូតពីរតាងដោយ $(d_{\scriptscriptstyle 1})$ និង $(d_{\scriptscriptstyle 2})$ ។

៤.គណនា f(x)+f(-x) រួចទាញថាចំណុច I(0;2) ជាផ្ចិតឆ្លុះនៃក្រាប(C) ។

៥.គណនា f(1) និង f(2) រួចសង់ក្រាប(C)បន្ទាត់ (Δ) ; (d_1) ; (d_2) ក្នុងតម្រុយអរតូណរម៉ាល់ (O,\vec{i},\vec{j}) តែមួយ។

គេយ្គ
$$e = 2.7$$
 ; $\frac{e-1}{e+1} = 0.5$ និង $\frac{e^2-1}{e^2+1} = 0.8$ ។

សូមសំណាខស្ន...!©

ೀಟ್ರಿಣಳಮುನಚಿಣಬೇಜಾಗಿ ೧೦೦೮ ಜನ್ನು ೧೦೦೮		លេទឧម័ត្ ឃេទដ ឧឃឹលខែមិទ
සුබොහා සඟුසසුසව (විාපුසුස්වාහා විස් යු මේ සිට දැන්ව සහ වෙන සට දැන්ව		ឈ្មោះខេងិត្តនៈ
រណៈមេខក្សាស្រ្ត ក្រុង ក្		សឌ្តលេខាខេង្គិនទ
ព្ធមាន ១៣៥	ទិញ្ញាសានី១០	
ប្រធាន៖	જીવ	
I. (១៥ ពិន្ទុ)គណនាលីមីត៖ ក. $\lim_{x\to 1} \frac{\sqrt{x+3}-2}{x^2-1}$	$2. \lim_{x \to +\infty} \left(\sqrt{x^2 + x + 1} - x \right)$	គ. $\lim_{x\to 0} \frac{4\sin^2 3x}{-5x^2}$
II. (90 ពិន្ទុ)គេឲ្យចំនួនកុំផ្លិច $z_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ និង z_2	3 3	$w = Z_1 \times Z_2$ ជាទម្រង់ត្រីកោណ
មាត្រ និងទម្រង់ពីជគណិត ។ ខ/ បង្ហាញថា w^4 ជ	វាចំនួនពិត។	
III. (១៥ ពិន្ទុ)១.គណនា $\int_{1}^{4} (x^{2} + 3x + 2) dx$ ។		
២.គេមានអនុគមន័ $f(x) = \frac{3x+3}{9-x^2}$ ចំពោះគ្រប់ x	$x \neq \pm 3$ ។ បង្ហាញថា $f(x) = \frac{2}{3-x}$	$\frac{1}{3+x}$ ចំពោះគ្រប់ $x \neq \pm 3$ ។
រួចទាញរក $I = \int_0^6 f(x) dx$ ។		
IV. (១៥ ពិន្ទុ) ក្នុងថង់មួយមានប៊ិចទាំងអស់ ១២ដើ	•	
៥ដើម ។ គេចាប់យកប៊ិច ៣ដើមព្រមគ្នាដោយ៤		
ក/ ចាប់បានសុទ្ធតែប៊ិចពណ៍ក្រហម។ ខ/ ចាប់		· · · · · · · · · · · · · · · · · · ·
${f V.}$ (២០ ពិន្ទុ) ១.កោនិច (C) មួយមានសមីការ 14		
រកប្រវែងរវាងកំពូលទាំងពីរ ប្រវែងរវាងកំណុំទាំង	0 \ / 2	` '
២.នៅក្នុងតម្រុយអរតូណរម៉ាលមានទិសដៅវិជ្ជម	វាន $\left(o,ec{i},\ ec{j},ec{k} ight)$ គេមានចំណុច A	(1,1,1), B (1, 3,-1)និង
$C(1,3,3)$ ។ បង្ហាញថា $\Delta\!ABC$ ជាត្រីកោណកែង	សមាបាត ។ រួចគណនាផ្ទៃក្រឡាំ	នៃត្រីកោណ <i>∆ABC</i> នេះ ។
VI. (១៥ ពិន្ទុ) π / ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E) : y "+ y '- $2y$ = 0 ។		
ខ/ រកចម្លើយពិសេសមួយនៃ (\it{E}) ដោយដឹងថា្យ	កាឋនៃ (E) ប៉ះទៅនឹងបន្ទាត់ (T) :	y=-3x+3 ត្រង់ចំណុចដែល
មានអាប់ស៊ីស0។		
VII.(៣៥ ពិន្ទុ)១. គេមានអនុគមន៍ $g(x) = x^2 - 2 \ln x$	$\mathbf{n} x$ កំណត់លើចន្លោះ $I = (0, +\infty)$) ។
ក. សិក្សាអថេរភាព និងគូសតារាងអថេរភាពនៃ g (មិនចាំបាច់គណនាលីមីតចុងដែនកំណត់ទេ) ។		
ខ. ទាញថាចំពោះគ្រប់ <i>x</i> >0 នោះគេ	បាន $g(x) > 0$ ។	
២. អនុគមន៍ f កំណត់លើ I ដោយ $f(x)$ =	"	1
ក. គណនាលីមីតនៃ f ត្រង់ 0 និង $\operatorname{\sharp}$	-∞ ៗ	
2. a. បង្ហាញថា $f'(x) = \frac{g(x)}{2x^2}$ ចំពេ		
b. ទាញរកសញ្ញានៃ $f^{ \prime}$ និងគូសព	ការាងអថេរភាពនៃ f លើ I ។	

គ. a. បង្ហាញថាបន្ទាត់ D មានសមីការ $y = \frac{1}{2}x - \frac{3}{2}$ ជាអាស៊ីមតូតទ្រេតនៃ C

- b. កំណត់កូអរដោនេនៃចំណុចប្រសព្វរវាង ${\it C}$ និង ${\it D}$ ។
- c. កំណត់ទីតាំងធៀបនៃ C និង D ។
- d. សង់ C និងDនៅក្នុងតម្រុយអរតូណរម៉ាល់ $\left(O,\vec{i},\vec{j}\right)$ ។
- ៣. នៅលើចន្លោះ I គេឲ្យ $h(x) = \frac{1 + \ln x}{x}$ ។
 - ក. រកព្រីមីទីវមួយនៃអនុគមន៍h លើចន្លោះI ។
 - ខ. គណនាផ្ទៃក្រឡាផ្នែកនៃប្លង់ S ខ័ណ្ឌដោយក្រាបC បន្ទាត់ D និងបន្ទាត់ឈរ $x=\frac{1}{e}, x=e^2$ ។