Chapitre 3 Dérivation (1) Premiers principes

Table 3.1 – Objectifs. À fin de ce chapitre 3...

	Pour m'entraîner <u></u>				
Je dois connaître/savoir faire	6	•	Ö		
Pente, tracé de tangentes et lecture graphique de nombre dérivés					
tracer une tangente et estimer le nombre dérivé	3.1 , à 3.4				
déterminer par lecture graphique le nombre dérivé et l'équation de la tangente		3.5 à 3.12			
utiliser les outils pour déterminer le nombre dérivé	3.13				
Quelques éléments de calculs de limites					
calculer des limites		3.14 à 3.19			
Utiliser la définition du nombre dérivé					
déterminer le nombre dérivé pour une fonction polynomiale		3.20	3.23, 3.21, 3.22		
déterminer le nombre dérivé pour une fonction rationnelle		3.24	3.25		
déterminer le nombre dérivé pour une fonction avec radi- caux		3.26	3.27		

3.1 Pente de la tangente et nombre dérivé

Définition 3.1 — pente et taux d'accroissement.

Soit une fonction f définie sur un intervalle I et sa représentation graphique \mathscr{C}_f .

Soit les points P(a; f(a)) et Q(x; f(x)) de \mathscr{C}_f et la droite (PQ) sécante à la courbe \mathscr{C}_f .

La pente de la sécante (PQ) est égale au taux d'accroissement de f entre a et x (c.f. figure) :

$$m_{PQ} = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(a)}{x - a}$$

Si lorsque Q se rapproche du point P (sans l'atteindre), la pente m_{PQ} de la sécante tend vers un nombre m, alors on définit la tangente à \mathscr{C}_f au point $P(a \; ; \; f(a))$ comme étant la droite T_a passant par P et de pente m:

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Figure 3.1 – La tangente T_a à \mathscr{C}_f au point P est la limite des sécantes par le point P.

Propriété 3.1 — variante. Avec x=a+h, et h=x-a, la pente de la tangente T_a s'écrit :

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Figure 3.2 – Variante de l'écriture de la pente de la tangente comme limite. (lien Desmos)

Notation 3.1 — nombre dérivé. Soit f définie sur un intervalle ouvert I, et $a \in I$.

La fonction f est dérivable en a si les limites suivantes existent :

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$
 Notation de Lagrange

f'(a) est le nombre dérivé de f en a et s'interprète comme :

- f'(a) est le taux d'accroissement infinitésimal de f en a.
- f'(a) est la pente de la tangente T_a à la courbe \mathscr{C}_f au point d'abscisse a.

Figure 3.3 – La fonction f est dérivable en $x_0 = 2$. La tangente à \mathscr{C}_f au point d'abscisse $x_0 = 2$ est non verticale et de pente $f'(x_0) < 0$ (gauche) $f'(x_0) = 0$ (centre) $f'(x_0) > 0$ (droite).

Proposition 3.2 — Équation de la tangente.

Soit f une fonction dérivable en a. La tangente T_a à la courbe \mathscr{C}_f au point de coordonnées (a, f(a)) est une droite non verticale d'équation

$$T_a$$
: $y = f'(a)(x - a) + f(a)$ alternative: $y - f(a) = f'(a)(x - a)$

Proposition 3.3 — approximation par une fonction affine.

Soit f une fonction dérivable en a. Lorsque x est au voisinage de a, l'approximation affine de f(x) est donnée par :

$$f(x) \approx f'(a)(x-a) + f(a)$$
 alternative: $f(x) - f(a) \approx f'(a)(x-a)$

Figure 3.4 – La fonction f n'est pas dérivable en $x_0 = 2$. La courbe \mathscr{C}_f peut avoir plusieurs tangentes (gauche) une tangente verticale (centre) ou aucune tangente (droite).

3.2 Formulaire de dérivation pour la première

Premier principe Nombre dérivé de f en a:

Notation de Lagrange (1736 – 1813)
$$f'(a)$$

Notation de Leibniz (1646 – 1716) $\frac{df}{dx}(a)$ $= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Equation de la tangente T_a à la courbe \mathscr{C}_f au point de coordonnées $A(x_0,f(x_0))$ a pour équation

$$T_a$$
: $y = f'(a)(x - a) + f(a)$

Dérivées des fonctions de référence						
Fonction f	Domaine de définition	Fonction dérivée f'	Domaine de dérivabilité			
$c \in \mathbb{R}$	\mathbb{R}	0				
x	\mathbb{R}	1				
x^2	$\mathbb R$					
x^3	\mathbb{R}					
x^4	\mathbb{R}					
$x^n (n > 0)$	\mathbb{R}					
$\frac{1}{x}$	$\mathbb{R}\setminus\{0\}=\mathbb{R}^*$					
$\frac{1}{x^2}$	$\mathbb{R}\setminus\{0\}=\mathbb{R}^*$					
$\frac{1}{x^3}$	$\mathbb{R}\setminus\{0\}=\mathbb{R}^*$					
$\frac{1}{x^4}$	$\mathbb{R}\setminus\{0\}=\mathbb{R}^*$					
$\frac{1}{x^n} = x^{-n} \ (n > 0)$						
\sqrt{x}						

3.3 Exercices

3.3.1 Exercices : variations moyennes et variations infinitésimales

Exercice 3.1

Pour se rendre à l'école tous les matin, Tom marche doit faire 160 m depuis sa maison jusqu'à l'arrêt de bus. Le graphique ci-contre représente son parcours un certain jour.

En réalité, la vitesse est rarement constante. Usain Bolt parcourt 100 m en 9,58 s, à la vitesse moyenne de 37,5 km/h. Sa vitesse instantanée en x_0 (la variation $\frac{\delta y}{\delta x}$ entre deux instants voisins de x_0) peut atteindre 50 km/h!

vitesse moyenne =
$$\frac{\Delta y}{\Delta x} = \frac{100 \text{ m}}{9,58 \text{ s}} \approx 10,44 \text{ m/s} = 37,5 \text{ km/h}$$

vitesse instantanée à l'instant $x_0 = \frac{\delta y}{\delta x}$

pic de vitesse instantanée 50 km/h

Exercice 3.2 Voir le corrigé

1. Associer chaque pente à un point de la courbe.

Pente	Points		D	
-4		A lacksquare		
1			$C \not$ E	
)			$rac{1}{\sqrt{\frac{1}{2}}}$,
10		B		
3				

, y

Pente Points

-9

0

3

-10

-3.75

2. Pour la fonction ci-contre, en quel(s) points la courbe représentative a-t-elle :

a) une pente positive [

b) une pente négative

c) la pente la plus grande

d) une pente nulle

■ Exemple 3.1 — tracer la tangente à une courbe en un point donné.

Pour la fonction f représentée ci-dessous, déterminer par lecture graphique :

1. a) la valeur de f pour x = 0.6

b) la variation instantanée de f pour x = 0.6

2. a) la valeur de f pour x = 1.3

b) la variation instantanée de f pour x = 1,3

3. a) la valeur de f pour x = 1

b) la variation instantanée de f pour x=1

Exercice 3.3

La distance parcourue en voiture par Jim en s'éloignant de sa maison est représentée ci-contre.

Tracer la tangente à la courbe aux points d'abscisse t, puis estimer la vitesse instantanée de la voiture à cet instant.

- 1. t = 6.5 s.
- **2.** t = 3 **s.**
- 3. t = 10 s.
- 4. t = 0 s.

Exercice 3.4 Voir le corrigé

La fonction f représente la distance parcourue en fonction du temps écoulé.

- 1. Déterminer les valeurs de f(3), f(4,5) et f(14).
- 2. Montrer par lecture graphique que $f'(3) \approx 3.8$, puis déterminer f'(4.5) et f'(14).
- 3. Interpréter les valeurs obtenues dans le contexte de l'exercice.

8

3.3.2 Exercices : lecture graphique du nombre dérivé, équation de tangente

■ Exemple 3.2 — déterminer le nombre dérivée par lecture graphique.

Soit la fonction f représentée ci-contre. Déterminer f'(4) et f(4).

solution.

1. La tangente T_4 à \mathscr{C}_f au point d'abscisse x=4 passe par les points $A(2\;;\;0)$ et $B(6\;;\;4)$. La pente de T_4 est égale à $m=\frac{4-0}{6-2}=1$. $\therefore f'(4)=1$.

2. N'ayant pas l'expression de la fonction f, j'utilise

l'équation de la tangente pour déterminer les coordonnées du point P(4; y).

$$T_4 \colon y - 0 = m(x - 2)$$
 d'où : $P(4 \ ; \ y) \in T_4 \colon y = x - 2$
$$y = 1(x - 2) + 0 \qquad y = 4 - 2 = 2$$

$$y = x - 2 \qquad P(4 \ ; \ 2) \in \mathscr{C}_f \qquad \therefore f(4) = 2$$

Exercice 3.5 Déterminer pour les fonctions f, g et h représentées ci-dessous :

1. a) f(2) y | b) f'(2) y = f(x)

Exercice 3.6

Ci-contre la représentation graphique \mathcal{C}_f de la fonction f. La tangente T_{-2} à la courbe \mathcal{C}_f au point A est parallèle à l'axe des abscisses. La tangente T_0 au point d'abscisse 0 passe par le point de coordonnées (2;0).

- Déterminer par lecture graphique.
 Justifier vos réponses.
 - a) f(-2) et f(0)
- 2. En déduire les équations réduites des droites T_{-2} et T_0 .

b) f'(-2) et f'(0)

A(5; 6)

Exercice 3.7

Soit la représentation graphique \mathscr{C}_f de la fonction f.

- a) Déterminer f(5) et f'(5). Justifier votre réponse.
- b) En déduire l'équation réduite de la tangente T_5 .
- c) Quelle est l'ordonnée à l'origine de la droite T_5 ?

- a) Déterminer l'équation réduite de T_{-4} .
- b) En déduire les valeurs de f(-4) et f'(-4).

4. Sans justifier, comparer:

a)
$$f(2) \dots f(5)$$
 | b) $f'(2) \dots f'(5)$ | c) $f'(-3) \dots 0$ | d) $f'(2) \dots 0$

b)
$$f'(2) \dots f'(5)$$

c)
$$f'(-3) \dots 0$$

d)
$$f'(2) \dots 0$$

Exercice 3.8

Sur la figure ci-dessous les droites T_0 , T_2 , T_3 et T_8 sont tangentes à la courbe C_f représentant la fonction f. Les tangentes T_2 , T_3 et T_8 passent par le point C(3; 2.5), et les tangentes T_0 et T_3 sont parallèles à l'axe des abscisses.

- 1. Déterminer par lecture graphique. Justifier vos réponses.
 - a) f(0) et f'(0)
- **b)** f(2) et f'(2)
- | c) f(4) et f'(4) | d) f(8) et f'(8)
- 2. En déduire les équations réduites des tangentes T_0 , T_2 , T_3 et T_8 .
- a) Déterminer les coordonnées du point d'intersection de T_2 avec l'axe des ordonnées.
 - b) Déterminer les coordonnées du point d'intersection de T_8 avec l'axe des abscisses.

Exercice 3.9

Sur la figure ci-dessous, C_f est la courbe représentative d'une fonction f dérivable sur \mathbb{R} . Les droites d_1 , d_2 , d_3 et d_4 sont tangentes à la courbe C_f .

- 1. a) Déterminer par lecture graphique f'(2), f(2), f'(-4) et f(-4).
 - b) En déduire les équations réduites des droites d_1 et d_3 .
- 2. La tangente à la courbe C_f au point A passe par l'origine du repère.
 - a) Déterminer f'(-2) et f(-2).
 - b) En déduire l'équation réduite de d_2 .
- 3. a) Déterminer par lecture graphique f'(4) et f(4).
 - b) En déduire l'équation réduite de la droite d_4 .
 - c) Quelles sont les coordonnées du point d'intersection de d_4 avec l'axe des abscisses?
- 4. La tangente T à la courbe C_f au point $B\left(-6; \frac{8}{3}\right)$ est parallèle à la droite d_4 .
 - a) Déterminer f'(-6).
 - b) En déduire l'équation réduite de la tangente T.
 - c) Quelles sont les coordonnées du point d'intersection de T avec l'axe des ordonnées ?
 - d) Tracer cette droite sur le graphique précédent.

Exercice 3.10

La courbe C_f est la représentation graphique de la fonction f. Les tangentes à la courbe C_f aux points A et B d'abscisses respectives (-3) et 1 sont signalées par les flèches.

- 1. Déterminer par lecture graphique f'(1) et f'(-3).
- 2. En déduire les équations réduites des tangentes en A et en B.
- 3. Sachant que f'(0) = 1, déterminer si le point $E\left(-1; \frac{1}{2}\right)$ appartient à la tangente T_0 à la courbe C_f au point d'abscisse 0.
- 4. Vrai ou Faux? « $f'(-2) \leqslant f'(3)$ »

Exercice 3.11

Soit la fonction f représentée par la courbe \mathcal{C}_f . Sachant que la tangente à \mathcal{C}_f au point d'abscisse 1 a pour équation réduite y = -7x + 9, déterminer f(1) et f'(1).

Exercice 3.12

Soit la fonction f représentée par la courbe \mathscr{C}_f . Sachant que la tangente T à la courbe \mathscr{C}_f au point A(3; -2) passe par le point B(6; 0), déterminer f'(3) et l'équation réduite de T.

Exercice 3.13 — Point Numworks.

- 1. Tracer sur votre pythonette la représentation graphique de la fonction $f: x \mapsto \sqrt{x}$.
 - a) Quel est son domaine de définition?
 - b) À l'aide de la touche $\stackrel{\text{paster}}{ ext{ (a)}}$, tracer la tangente T_4 à \mathscr{C}_f au point d'abscisse 4.
 - c) Donner la valeur de $f'(4) = \dots$ et l'équation réduite de T_4 :
 - d) Utiliser les touches () pour faire tracer d'autres tangentes.
 - e) Que dire de f'(0) et de la tangente à \mathcal{C}_f au point d'abscisse x=0?
- 2. Tracer sur votre pythonette la représentation graphique de la fonction $g\colon x\mapsto |x|$.
 - a) Déterminer g(2.7), g(-1.75), g(0) ainsi que g'(2.7), g'(-1.75) et g'(0).
 - b) Donner graphiquement les solutions de l'équation g(x) = -1.
 - c) Déterminer graphiquement les solutions de l'équation g'(x) = -1.

3.3.3 Exercices : introduction au calcul de limites

Définition 3.2 — informelle.

Soit une fonction f définie sur un intervalle I, et soit $a \in I$. Si la valeur de f(x) peut être rendue aussi proche que l'on veut d'un réel l, en rendant x suffisamment proche de a (mais pas égal à a), alors on dit que f(x) a pour limite l lorsque x tend vers a:

$$\lim_{x\to a} f(x) = l$$
 $f(x)$ converge vers l lorsque x tend vers a

Propriété 3.4 — limite par substitution directe.

Si f est un polynome ou une fonction rationnelle (quotient de polynômes) et si a est dans le domaine de f, alors $\lim_{x\to a} f(x) = f(a)$

■ Exemple 3.3 Déterminer les limites suivantes :

1.
$$\lim_{x\to 3} (2x^3 - 10x - 8)$$

2.
$$\lim_{x \to -1} \frac{x^2 + 5x}{x^4 + 2}$$

solution.

1. $f(x) = 2x^3 - 10x - 8$ est un polynôme. Par substitution directe :

$$\lim_{x \to 3} (2x^3 - 10x - 8) = 2(3)^3 - 10(3) - 8 = 16$$

2. $f(x) = \frac{x^2 + 5x}{x^4 + 2}$ est une fonction rationnelle, et x = -1 est dans son domaine (dénominateur non nul). Par substitution directe:

$$\lim_{x \to -1} \frac{x^2 + 5x}{x^4 + 2} = \frac{(-1)^2 + 5(-1)}{(-1)^4 + 2} = \frac{-4}{3}$$

Exercice 3.14 Voir le corrigé

Déterminer, lorsque c'est possible, les limites suivantes par substitution directe.

1.
$$\lim_{x\to 4} (5x^2 - 2x + 3)$$

$$2. \lim_{x \to 0} (3x^3 - 2x^2 + 5)$$

3.
$$\lim_{x\to 3}(x^3+2)(x^2-5x)$$

4.
$$\lim_{x\to 2} \frac{2-x}{x^2+1}$$

4.
$$\lim_{x \to 2} \frac{2-x}{x^2+1}$$
5.
$$\lim_{x \to -1} \frac{x-2}{x^2+4x-3}$$
6.
$$\lim_{u \to -2} \sqrt{u^4+3u+6}$$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 4u}$$

Exercice 3.15 — des identités utiles à connaitre.

- 1. Développer $(x+y)^2$ et $(x-y)^2$
- 2. Développer $(x+y)^3$. En déduire le développement de $(x-y)^3$
- 3. Montrer que $(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$.
- 4. En déduire le développement de $(x-y)^4$

Figure 3.5 – Par la suite vous utiliserez si-necessaire les identités suivantes

■ Exemple 3.4 — limite après simplification.

Déterminer
$$\lim_{h\to 0} \frac{(3+h)^2-9}{h}$$

solution.

La substition ne peut aboutir car h = 0 n'est pas dans le domaine de $\frac{(3+h)^2 - 9}{h}$:

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{(9+6h+h^2) - 9}{h} = \lim_{h \to 0} \frac{6h+h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(6+h)}{h}$$

$$= \lim_{h \to 0} (6+h) = 6$$

Exercice 3.16 Voir le corrigé

Déterminer les limites suivantes :

1.
$$\lim_{h\to 0} \frac{(2+h)^2-4}{h}$$
 2. $\lim_{h\to 0} \frac{(2+h)^3-8}{h}$

■ Exemple 3.5 — somme de fractions rationnelles de dénominateurs différents.

$$A = 1 + \frac{1}{x+2}$$

$$= \frac{x+2}{x+2} + \frac{1}{x+2}$$

$$= \frac{8x - x - 2}{2(x+2)}$$

$$= \frac{9x + 2}{2(x+2)}$$

$$= \frac{9x + 2}{2(x+2)}$$

$$= \frac{-2x^2 - 6x + 4}{(x-1)(x+3)}$$

$$= \frac{(-2x - 4)}{(x-1)(x+3)}$$

$$= \frac{(-2x - 4)}{(x+3)}$$

$$= \frac{(-2x - 4)}{(x+3)}$$

Exercice 3.17 Voir le corrigé

Simplifier les sommes suivantes :

$$A = \frac{2}{x+1} - 1$$

$$B = \frac{3x-2}{x+1} - 2$$

$$C = \frac{1}{x+5} + \frac{2}{x-3}$$

$$D = \frac{3}{x+1} - \frac{1}{x+2}$$

$$E = \frac{1+\frac{1}{x}}{\frac{1}{x}-2}$$

$$F = \frac{1+\frac{1}{x+2}}{1-\frac{1}{x+2}}$$

Exercice 3.18 Voir le corrigé

Déterminer les limites suivantes.

1.
$$\lim_{h \to 0} \frac{\frac{1}{3+2h} - \frac{1}{3}}{h}$$
 | 2. $\lim_{h \to 0} \frac{\frac{5}{(2+h)^2} - \frac{5}{4}}{h}$

■ Exemple 3.6 — limite après une simplification par conjuguaison.

Déterminer la limite
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$

solution.

La substition ne peut aboutir car la limite du dénominateur est 0.

$$\frac{\sqrt{t^2+9}-3}{t^2} = \frac{(\sqrt{t^2+9}-3)}{t^2} \times \frac{(\sqrt{t^2+9}+3)}{(\sqrt{t^2+9}+3)}$$

$$= \frac{(t^2+9)-3^2}{t^2(\sqrt{t^2+9}+3)}$$

$$= \frac{t^2}{t^2(\sqrt{t^2+9}+3)}$$

$$= \frac{1}{\sqrt{t^2+9}-3}$$

$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = \lim_{t\to 0} \frac{1}{\sqrt{t^2+9}+3} = \frac{1}{\sqrt{9}+3} = \frac{1}{6}$$

$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = \frac{1}{t^2}$$

$$\lim_{t\to 0} \frac{1}{\sqrt{t^2+9}-3} = \frac{1}{t^2}$$

$$\lim_{t\to 0} \frac{1}{\sqrt{t^2+9}-3} = \frac{1}{t^2}$$

Exercice 3.19 Voir le corrigé

Déterminer les limites suivantes :

1.
$$\lim_{h \to 0} \frac{\sqrt{1+3h}-1}{h}$$
 2. $\lim_{h \to 0} \frac{\sqrt{3+2h}-\sqrt{3}}{h}$

3.3.4 Exercices : déterminer le nombre dérivé à partir de sa définition

■ Exemple 3.7

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x$.

Utiliser la définition du nombre dérivé $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ pour déterminer le nombre dérivé au point a=5.

solution.

$$f(x) = x^2 + 2x$$

$$f(5) = (5)^2 + 2(5) = 35$$

$$f(5 + h) = (5 + h)^2 + 2(5 + h)$$

$$\frac{f(5 + h) - f(5)}{h} = \frac{(5 + h)^2 + 2(5 + h) - 35}{h}$$

$$= \frac{25 + 10h + h^2 + 10 + 2h - 35}{h}$$

$$= \frac{h^2 + 12h}{h}$$

$$= \frac{\cancel{K}(h + 12)}{\cancel{K}}$$

$$\frac{f(5 + h) - f(5)}{h} = h + 12$$

$$f'(5) = \lim_{h \to 0} \frac{f(5 + h) - f(5)}{h} = \lim_{h \to 0} (h + 12) = 12$$

$$\therefore f'(5) = 12$$
remplacer x par $a + h$ dans
l'expression de f
écrire le taux de variation
entre a et $a + h$
simplifier le taux de variation
$$f'(5) = \lim_{h \to 0} \frac{f(5 + h) - f(5)}{h} = \lim_{h \to 0} (h + 12) = 12$$

$$f'(5) = 12$$

Exercice 3.20 Voir le corrigé

Pour les fonctions f données par leur domaine et leur expression, déterminer f'(a).

1.
$$D_f = \mathbb{R}$$
, $f(x) = 3x + 4$ et $a = 1$.

4.
$$D_f = \mathbb{R}$$
, $f(x) = 2 - 3x + x^2$ et $a = -1$.

5.
$$D_f = \mathbb{R}$$
, $f(x) = 2x^3$ et $a = 2$.

3.
$$D_f = \mathbb{R}$$
, $f(x) = 1 - 3x^2$ et $a = 2$.

6.
$$D_f = \mathbb{R}, f(x) = 2x - x^3 \text{ et } a = 1.$$

Exercice 3.21 Voir le corrigé

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 5x - 2$ et sa représentation graphique \mathscr{C}_f .

- 1. Soit $a \in \mathbb{R}$, montrer que f'(a) = 2a + 5.
- 2. Déterminer f'(2) et l'équation réduite de la tangente T_2 a \mathscr{C}_f au point d'abscisse 2.

Exercice 3.22 Voir le corrigé

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x$ et sa représentation graphique \mathscr{C}_f .

1. Soit $a \in \mathbb{R}$, montrer que $f'(a) = 3a^2 - 3$.

2. Résoudre l'équation f'(a) = 0. Interpréter les solutions dans le contexte de l'exercice.

Exercice 3.23 Voir le corrigé

- 1. Soit la fonction affine définie sur \mathbb{R} par f(x) = mx + c. Pour $a \in \mathbb{R}$, exprimer f'(a) en fonction de a.
- 2. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Pour $a \in \mathbb{R}$, montrer que f'(a) = 2a.
- 3. Soit f la fonction définie sur $\mathbb R$ par $f(x)=x^3$. Pour $a\in\mathbb R$, montrer que $f'(a)=3a^2$.
- 4. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4$. Pour $a \in \mathbb{R}$, exprimer f'(a) en fonction de a.
- Exemple 3.8 Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{3}{x}$.
- 1. Déterminer le nombre dérivé en a=3.
- 2. En déduire l'équation réduite de la tangente T_3 au point d'abscisse 3.

solution.

1.
$$f(x) = \frac{3}{x} , \text{ d'où } \frac{f(3+h) - f(3)}{h} = \frac{\frac{3}{3+h} - 1}{h}$$

$$f(3) = \frac{3}{3} = 1$$

$$f(3+h) = \frac{3}{3+h}$$

$$= \frac{\frac{3}{(3+h)} - \frac{(3+h)}{(3+h)}}{h}$$

$$= \frac{\frac{3}{(3+h)} - \frac{(3+h)}{(3+h)}}{h}$$

$$= \frac{\frac{3-3-h}{(3+h)}}{h}$$

$$= \frac{-\cancel{h}}{\cancel{h}(3+h)}$$

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{-1}{(3+h)} = -\frac{1}{3}$$

2. f(3) = 1, T_3 passe par le point A(3; 1). $T_3: y = f'(3)(x - 3) + f(3)$

$$y = -\frac{1}{3}(x-3) + 1$$
$$y = -\frac{1}{3}x + 2$$

Exercice 3.24 Voir le corrigé

Pour les fonctions données par leur domaine et expression, et de représentation graphique \mathscr{C}_f , déterminer (1) f(a) (2) le nombre dérivé f'(a) à partir de la définition (3) l'équation réduite de la tangente au point d'abscisse a.

1.
$$D_f = \mathbb{R} \setminus \{-1\}, \ f(x) = \frac{1}{x+1} \text{ et } a = 2.$$

3.
$$D_f = \mathbb{R} \setminus \{0\}, \ f(x) = \frac{1}{x^2}$$
 et $a = -1$

1.
$$D_f = \mathbb{R} \setminus \{-1\}$$
, $f(x) = \frac{1}{x+1}$ et $a = 2$.
2. $D_f = \mathbb{R} \setminus \{-2\}$, $f(x) = \frac{1}{x+2}$ et $a = 3$.
3. $D_f = \mathbb{R} \setminus \{0\}$, $f(x) = \frac{1}{x^2}$ et $a = -1$.
4. $D_f = \mathbb{R} \setminus \{2\}$, $f(x) = \frac{x}{2-x}$ et $a = -3$.

4.
$$D_f = \mathbb{R} \setminus \{2\}, \ f(x) = \frac{x}{2-x} \text{ et } a = -3.$$

Exercice 3.25

- 1. Soit la fonction définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x}$. Soit $a \neq 0$, montrer que $f'(a) = \frac{-1}{a^2}$.
- 2. Soit la fonction définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x^2}$. Soit $a \neq 0$, montrer que $f'(a) = \frac{a^2}{a^3}$.
- 3. Soit la fonction définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x^3}$. Soit $a \neq 0$, exprimer f'(a) en fonction de a.
 - Exemple 3.9 exprimer le nombre dérivé f'(a) en fonction de a.

Soit la fonction f définie sur $[0; +\infty[$ définie par $f(x) = \sqrt{x}$.

- 1. Soit a > 0, exprimer f'(a) en fonction de a.
- **2**. En déduire f'(1), f'(4) et f'(9).

solution.

1.
$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h}$$

$$= \frac{\sqrt{a+h}-\sqrt{a}}{h} \times \frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}}$$

$$= \frac{(\sqrt{a+h})^2-(\sqrt{a})^2}{h(\sqrt{a+h}+\sqrt{a})}$$

$$= \frac{(a+h)-a}{h(\sqrt{a+h}+\sqrt{a})}$$

$$= \frac{h}{h(\sqrt{a+h}+\sqrt{a})}$$

$$= \frac{h}{h(\sqrt{a+h}+\sqrt{a})}$$

$$f'(a) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} \frac{1}{\sqrt{a+h}+\sqrt{a}} = \frac{1}{\sqrt{a}+\sqrt{a}} = \frac{1}{2\sqrt{a}}$$
2.
$$f'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2}; \ f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}; \ \text{et } f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{6};$$

Exercice 3.26

Voir le corrigé

Déterminer pour chaque fonction la valeur du nombre dérivé f'(a).

1.
$$D_f = [-\frac{1}{2}; +\infty[, f(x) = \sqrt{1+2x} \text{ et } a = 1.]$$
 | 2. $D_f = [0; +\infty[, f(x) = 1 + 2\sqrt{x} \text{ et } a = 4.]$

2.
$$D_f = [0; +\infty[, f(x) = 1 + 2\sqrt{x} \text{ et } a = 4.$$

Exercice 3.27

Voir le corrigé

Soit la fonction f définie sur $D_f = [2; +\infty[$ par $f(x) = \sqrt{x-2}$.

- 1. Soit a > 2, exprimer f'(a) en fonction de a.
- 2. En déduire f'(3) et f'(4)