# Neural Word Embedding as Implicit Matrix Factorization

Omer Levy & Yoav Goldberg

Presented by Shih-Ming Wang NLPLab, Institute of Information Science, Academia Sinica

01-22-2015

### Outline

#### Introduction

Skip-Gram with Negative Sampling (SGNS) Skip-Gram Model Negative Sampling

SGNS as Implicit Matrix Factorization

#### Alternative Word Representations

Point-wise Mutual Information Singular Value Decomposition

#### **Empirical Results**

Experiment Setting
Deviation from Optimal
Linguistic Tasks

#### Conclusion

Introduction

## Introduction

- Word representation why and how
- Distributional hypothesis
  - Words in similar contexts have similar meanings
  - Word-context matrix
- Skip-gram model
  - Neural-network based
  - Represent both word and context as vector
  - Maximize the dot-product of frequently occurring word-context vector pairs
  - Not well (theoretically) understood
- Analyze skip-gram as an implicit word-context matrix factorization

- Words as dense vector (projected from one-hot)
- Different projection matrix for input and output words (context)
- Loss function:

$$\frac{1}{T} \sum_{t=1}^{.} \sum_{-c \leq j \leq c} logp(w_{t+j}|w_t), \text{ where}$$

$$p(w_o|w_t) = \frac{exp(\vec{w}_o \cdot \vec{w}_t)}{\sum_{i=1}^{||Y||} exp(\vec{w}_i \cdot \vec{w}_t)}$$

 Problem: softmax impractical because ||V|| is usually large



- From now on, represent input and context word as w and c
- Skip-Gram optimizes conditional probability P(c|w)
- Negative Sampling optimizes joint probability P(w, c)
  - Maximize observed pairs  $\sigma(\vec{w} \cdot \vec{c})$
  - Minimize k randomly sampled negative pairs  $\sigma(\vec{w} \cdot \vec{c}_N)$
  - $\sigma(x) = \frac{1}{1 + \exp(-x)}$ , Property:  $\sigma(-x) = -\sigma(x)$
- Paired-wise loss function  $L(w,c) = log(\sigma(\vec{w} \cdot \vec{c}) + k\mathbb{E}_{C_N \sim P(D)}[log(\sigma(-\vec{w} \cdot \vec{c}_N))]$
- Global loss function:  $\sum_{w \in V_w} \sum_{c \in V_c} \#(w, c) L(w, c)$

# SGNS as Implicit Matrix Factorization I

- SGNS learn a (input) word embedding  ${\it W}$  and a (output) context embedding  ${\it C}$
- Rows of W are used as word vectors while C is usually ignored
- But effectively, SGNS is implicitly factorizing a word-context matrix  $M = W \cdot C^T$
- Each cell of M equals  $\vec{w} \cdot \vec{c}$ , measuring the strength of association for a (w, c) pair
- But what is the explicit form  $f(w, c) = \vec{w} \cdot \vec{c}$ ?

# SGNS as Implicit Matrix Factorization II

- Assume that SGNS can fully reconstruct M (this requires infinite dimension for W, C)
- The global loss then equals the summation of M's cells  $\sum_{w \in V_w} \sum_{c \in V_c} \#(w,c) \cdot L(w,c) = \sum_i \sum_j M_{ij} = \sum_i \sum_j f(w_i,c_j)$
- The global loss is optimized when each cell of M is optimized
- Goal: find explicit form  $f(w,c) = \vec{w} \cdot \vec{c}$
- Strategy: Find  $\sum_{w \in V_w} \sum_{c \in V_c} \ell(w,c) = \sum_{w \in V_w} \sum_{c \in V_c} \#(w,c) \cdot L(w,c), \text{ and let } \frac{\partial \ell(w,c)}{\partial (\vec{w} \cdot \vec{c})} = 0 \text{ to find } \vec{w} \cdot \vec{c} \text{ that optimizes } \ell(w,c)$

# SGNS as Implicit Matrix Factorization III

- $\ell(w,c) = \#(w,c)\log\sigma(\vec{w},\vec{c}) + k \cdot \#(w) \cdot \frac{\#(c)}{|D|}\log\sigma(-\vec{w}\cdot\vec{c})$
- $\vec{w} \cdot \vec{c} = log\left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)}\right) log \ k$  (Wait, PMI?)
- $M_{ii}^{SGNS} = W_i \cdot C_j = \vec{w_i} \cdot \vec{c_j} = PMI(w_i, c_j) log \ k =$  $M_{ii}^{PMI}$  – log k
- M<sup>SGNS</sup> was assumed to be fully reconstructed (not possible)
- In  $\ell(w,c)$ , the deviation of  $\vec{w_i} \cdot \vec{c_i}$  from  $M^{PMI} \log k$  is weighted by #(w,c) and  $k \cdot \#(w) \cdot \frac{\#(c)}{|D|}$
- SGNS is a weighted matrix factorization of  $M^{PMI} log k$
- Deviation of frequent word-context pairs pay more

#### Point-wise Mutual Information

- $PMI(x, y) = log \frac{P(x, y)}{P(x)P(y)}$
- Empirically,  $PMI(w, c) = log \frac{\#(w, c) \cdot |D|}{\#(w) \cdot \#(c)}$
- Issue:  $M^{PMI}$  is dense
  - For unobserved (w, c),  $PMI(w, c) = log 0 = -\infty$
  - Solution: PPMI(w, c) = max(PMI(w, c), 0)
  - PPMI lose information of infrequent word-context pairs
  - Intuition: prefer positive ('Canada', 'Snow') association against negative ('Canada', 'Desert') association
- $M^{SGNS} = M^{PMI} log k$  is dense
- Modify:  $M^{SPPMI}$ , where SPPMI(w, c) = max(PMI(w, c) log k, 0)

- M<sup>SPPMI</sup> could directly be used as word embedding
- But it's sparse, dense vectors sometimes could be better?
- $M^{SPPMI} = U \cdot \Sigma \cdot V^T \Rightarrow U_d \cdot \Sigma_d \cdot V_d^T = M^{SVD}$
- Choose  $W^{SVD} = U_d \cdot \Sigma_d$  and  $C^{SVD} = V_d$ 
  - Under-perform SGNS empirically
  - $C^{SVD}$  is orthogonal while  $W^{SVD}$  is not
  - Both  $C^{SGNS}$  and  $W^{SGNS}$  are not orthogonal
  - $W^{SVD_{1/2}} = U_d \cdot \sqrt{\Sigma_d}$  and  $C^{SVD_{1/2}} = V_d \cdot \sqrt{\Sigma_d}$
  - Generally  $W^{SVD_{\alpha}} = U_d \cdot \Sigma^{\alpha}$  (set to 1/2 in experiments)

- Corpus: English Wikipedia, 77.5 million sentences, 1.5 billion tokens
- Window size is set to 5, dropping words appears less than 100 times
- 189533 terms derived for both words and contexts

# Deviation from Optimal

| Method | $PMI - \log k$ | SPPMI    |         | SVD     |          | SGNS    |         |          |  |
|--------|----------------|----------|---------|---------|----------|---------|---------|----------|--|
|        |                |          | d = 100 | d = 500 | d = 1000 | d = 100 | d = 500 | d = 1000 |  |
| k = 1  | 0%             | 0.00009% | 26.1%   | 25.2%   | 24.2%    | 31.4%   | 29.4%   | 7.40%    |  |
| k = 5  | 0%             | 0.00004% | 95.8%   | 95.1%   | 94.9%    | 39.3%   | 36.0%   | 7.13%    |  |
| k = 15 | 0%             | 0.00002% | 266%    | 266%    | 265%     | 7.80%   | 6.37%   | 5.97%    |  |

- The optimal solution is PMI − log k
- SPPMI is near-perfect approximation of the optimum
- SVD is better when d < 500 and k = 1
- SVD fails to leverage higher dimension as SGNS does
- k's meaning for SGNS
  - higher k means more sample and better estimation of negative sample distribution (good news)
  - higher k means that negative examples are more probable (actually not a good thing)
- SPPMI(w, c) = max(PMI(w, c) log k, 0), only losing information as k increases

# Linguistic Tasks

| WS353 (WORDSIM) [13] |        |       | MEN (WORDSIM) [4] |        |       | MIXED ANALOGIES [20] |        |       | SYNT. ANALOGIES [22] |        |       |
|----------------------|--------|-------|-------------------|--------|-------|----------------------|--------|-------|----------------------|--------|-------|
| Representation       |        | Corr. | Representation    |        | Corr. | Representation       |        | Acc.  | Representation       |        | Acc.  |
| SVD                  | (k=5)  | 0.691 | SVD               | (k=1)  | 0.735 | SPPMI                | (k=1)  | 0.655 | SGNS                 | (k=15) | 0.627 |
| SPPMI                | (k=15) | 0.687 | SVD               | (k=5)  | 0.734 | SPPMI                | (k=5)  | 0.644 | SGNS                 | (k=5)  | 0.619 |
| SPPMI                | (k=5)  | 0.670 | SPPMI             | (k=5)  | 0.721 | SGNS                 | (k=15) | 0.619 | SGNS                 | (k=1)  | 0.59  |
| SGNS                 | (k=15) | 0.666 | SPPMI             | (k=15) | 0.719 | SGNS                 | (k=5)  | 0.616 | SPPMI                | (k=5)  | 0.466 |
| SVD                  | (k=15) | 0.661 | SGNS              | (k=15) | 0.716 | SPPMI                | (k=15) | 0.571 | SVD                  | (k=1)  | 0.448 |
| SVD                  | (k=1)  | 0.652 | SGNS              | (k=5)  | 0.708 | SVD                  | (k=1)  | 0.567 | SPPMI                | (k=1)  | 0.445 |
| SGNS                 | (k=5)  | 0.644 | SVD               | (k=15) | 0.694 | SGNS                 | (k=1)  | 0.540 | SPPMI                | (k=15) | 0.353 |
| SGNS                 | (k=1)  | 0.633 | SGNS              | (k=1)  | 0.690 | SVD                  | (k=5)  | 0.472 | SVD                  | (k=5)  | 0.337 |
| SPPMI                | (k=1)  | 0.605 | SPPMI             | (k=1)  | 0.688 | SVD                  | (k=15) | 0.341 | SVD                  | (k=15) | 0.208 |

- Similarity test (WD353, Men)
  - SVD  $\geq$  SPPMI  $\geq$  SGNS (but the difference is small)
  - ullet k matters, SVD, SPPMI prefer small k, SGNS prefers large k
- Analogies test (Mixed, Synt)
  - SVD is not good
  - SGNS significantly outperforms others on syntactic dataset
  - Might be due to that SGNS's higher weight for frequent word such as "the", "will", "each", "had"

# Conclusion

- SGNS is shown to implicitly factorizing the M<sup>PMI</sup> log k matrix
- $M^{SPPMI}$ , where SPPMI = max(PMI log k, 0)
  - Practical modification of SPMI
  - Approximate  $M^{PMI} log k$  better than SGNS
  - Not necessarily performs better on linguistic tasks
  - Might be due to SGNS's ability to perform weighted matrix factorization
- SVD
  - Leads to no significantly improvement but sometimes worse performance
  - The data is "big" enough to support M<sup>SPPMI</sup>?