# Precalculus Find all angles coterminal to a given one

**Todor Miley** 

2019

# **Definition (Coterminal Angles)**

Two angles (angle measures) are called coterminal if the corresponding geometric angles have the same initial and terminal sides.



## Observation

The set of angles coterminal with  $\alpha$  consists of the angles  $\alpha + 2k\pi$ , where k runs over the set of integers. In other words, the angles coterminal with  $\alpha$  are the angles:

$$\ldots, \alpha - 6\pi, \alpha - 4\pi, \alpha - 2\pi, \alpha, \alpha + 2\pi, \alpha + 4\pi, \alpha + 6\pi, \ldots$$

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi, \pi]$  that are coterminal to  $\frac{\pi}{4}$ . By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles  $\frac{\pi}{4} + 2k\pi$  lie in the interval  $[-2\pi, \pi]$ , we write them as an infinite list

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles  $\frac{\pi}{4} + 2k\pi$  lie in the interval  $[-2\pi, \pi]$ , we write them as an infinite list

$$\dots, \frac{\pi}{4} - 4\pi, \frac{\pi}{4} - 2\pi, \frac{\pi}{4}, \frac{\pi}{4} + 2\pi, \frac{\pi}{4} + 4\pi, \dots$$

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles  $\frac{\pi}{4} + 2k\pi$  lie in the interval  $[-2\pi, \pi]$ , we write them as an infinite list (we indicate the unboundedness of the list by ellipsis dots)

$$\dots, \frac{\pi}{4} - 4\pi, \frac{\pi}{4} - 2\pi, \frac{\pi}{4}, \frac{\pi}{4} + 2\pi, \frac{\pi}{4} + 4\pi, \dots$$

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles  $\frac{\pi}{4} + 2k\pi$  lie in the interval  $[-2\pi, \pi]$ , we write them as an infinite list (we indicate the unboundedness of the list by ellipsis dots) and cross out the angles that lie outside of the desired interval.

$$\ldots, \frac{\pi}{4} - 4\pi, \frac{\pi}{4} - 2\pi, \frac{\pi}{4}, \frac{\pi}{4} + 2\pi, \frac{\pi}{4} + 4\pi, \ldots$$

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles  $\frac{\pi}{4} + 2k\pi$  lie in the interval  $[-2\pi, \pi]$ , we write them as an infinite list (we indicate the unboundedness of the list by ellipsis dots) and cross out the angles that lie outside of the desired interval.

$$\sqrt{\frac{\pi}{4}}$$
  $\sqrt{4\pi}$ ,  $\frac{\pi}{4}$   $-2\pi$ ,  $\frac{\pi}{4}$ ,  $\frac{\pi}{4}$   $+2\pi$ ,  $\frac{\pi}{4}$   $+4\pi$ , ...

- Find all angles that are coterminal to  $\frac{\pi}{4}$ .
- Find all angles in the interval  $[-2\pi,\pi]$  that are coterminal to  $\frac{\pi}{4}$ .

By theory, the angles coterminal with  $\frac{\pi}{4}$  are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles  $\frac{\pi}{4} + 2k\pi$  lie in the interval  $[-2\pi, \pi]$ , we write them as an infinite list (we indicate the unboundedness of the list by ellipsis dots) and cross out the angles that lie outside of the desired interval.

$$, , \frac{\pi}{4} - 4\pi, \frac{\pi}{4} - 2\pi, \frac{\pi}{4}, \frac{\pi}{4} + 2\pi, \frac{\pi}{4} + 4\pi, \dots$$

Our final answer is  $-\frac{7\pi}{4}, \frac{\pi}{4}$