

GRADE 100%

Transformers

LATEST SUBMISSION GRADE

100%

 A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture). 1/1 point

- O True
- False

✓ Correct

Correct! A Transformer Network can ingest entire sentences all at the same time.

2. Transformer Network methodology is taken from: (Check all that apply)

1/1 point

Convolutional Neural Network style of processing.

✓ Correct

- None of these.
- Attention mechanism.

✓ Correct

- Convolutional Neural Network style of architecture.
- 3. The concept of Self-Attention is that:

1 / 1 point

- Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.
- O Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.
- O Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.
- O Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.

✓ Correct

4.	Which	of the	following	correctly	represents	Attention

 $\bigcap Attention(Q, K, V) = min(\frac{QV^T}{\sqrt{d_k}})K$

$$\bigcirc Attention(Q, K, V) = softmax(\frac{QV^{T}}{\sqrt{d_b}})K$$

$$\bigcap Attention(Q, K, V) = min(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

5. Are the following statements true regarding Query (Q), Key (K) and Value (V)?

Q = interesting questions about the words in a sentence

K = specific representations of words given a Q

V = qualities of words given a Q

False

O True

✓ Correct

Correct! Q = interesting questions about the words in a sentence, K = qualities of words given a Q, V = specific representations of words given a Q

$Attention(W_{i}^{Q}Q,W_{i}^{K}K,W_{i}^{V}V)$

1/1 point

i here represents the computed attention weight matrix associated with the ith "word" in a sentence.

O True

False

✓ Correct

 ${\it Correct!}\ i\ {\it here}\ {\it represents}\ {\it the}\ {\it computed}\ {\it attention}\ {\it weight}\ {\it matrix}\ {\it associated}\ {\it with}\ {\it the}\ i'{\it head''}\ ({\it sequence}).$

7. Following is the architecture within a Transformer Network. *(without displaying positional encoding and output* layers(s))

What information does the Decoder take from the Encoder for its second block of Multi-Head Attention? (Marked X, pointed by the independent arrow)

(Check all that apply)

✓ K

	□ Q					
8.	ng is the architecture within a Transformer Network. (without displaying positional encoding and output 1/1 point					
	Encoder Add & Norm Feed Forward Neural Network Add & Norm Multi-Head Attention					
	What is the output layer(s) of the <i>Decoder</i> ? (Marked Y , pointed by the independent arrow) Softmax layer Softmax layer followed by a linear layer. Linear layer Linear layer followed by a softmax layer.					
	✓ Correct					
9. W	Why is positional encoding important in the translation process? (Check all that apply) Position and word order are essential in sentence construction of any language.	1/1 point				
	✓ Correct					
	 It helps to locate every word within a sentence. It is used in CNN and works well there. ✓ Providing extra information to our model. 					
	✓ Correct					
	Which of these is a good criteria for a good positionial encoding algorithm? It should output a unique encoding for each time-step (word's position in a sentence).	1/1 point				
	✓ Correct					
	Distance between any two time-steps should be consistent for all sentence lengths.					
	✓ Correct					
	The algorithm should be able to generalize to longer sentences.					
	✓ Correct None of the these.					

✓ Correct