Fachbericht Projekt 5 EIT Detroit Electric Car

Umrüsten eines Detroit Electric Car von 1918 auf Li-Ion Batterien

Version: 1.0

Autoren:

Yanick Frei Marc Müller

Auftraggeber:

Urs Jäger

Fachcoach:

Felix Jenni

Windisch, 19. April 2017

Abstract

Inhaltsverzeichnis

1.		Berechnungen zur Batterie	
2.	Schlussfolgerung		4
3.	Literaturve	Literaturverzeichnis	
Α.	Anhang		6

1 Einleitung

1.0.1. Berechnungen zur Batterie

Bei der Batterie sind vor allem der maximale Kurzschlussstrom sowie die maximale Verlustleistung von Interesse, da diese für die Sicherung und die Kühlung relevant sind.

Mittels $\frac{dU}{dI}$ -Messung konnte der Innenwiderstand der Batterie bestimmt werden. Dabei wurde eine Messung im Leerlauf und eine bei einem Strom von ca. 50 A durchgeführt, wobei diese Messung für zwölf in Serie geschaltete Zellen durchgeführt wurde. Die Messung ergab einen Innenwiderstand von 20 m Ω , deswegen wird zur Sicherheit mit folgenden Werten gerechnet:

- 15 m Ω als schlimmster Fall für den Kurzschluss (maximaler Kurzschlussstrom)
- 24 m Ω als schlimmster Fall für die Verlustleistung (maximale Abwärme)

Da jeweils drei Stränge zu 12 Zellen parallel geschaltet sind ergibt sich ein Widerstand von:

$$R_B = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = 5 \text{ m}\Omega \text{ bzw. } 8 \text{ m}\Omega$$

Die Abwärme berechnet sich gemäss der Formel $P = I^2 \cdot R$ (für diese Berechnungen wird der Wert von 8 m Ω benützt), dies soll zuerst für einen konstanten Ladestrom von 10 A berechnet werden:

$$P_{V,Laden} = (10 \text{ A})^2 \cdot 8 \text{ m}\Omega = \underline{0.8 \text{ mW}}$$

Für den maximalen Fahrstrom ergibt sich eine Abwärme von:

$$P_{V,Max} = (100 \text{ A})^2 \cdot 8 \text{ m}\Omega = 80 \text{ W}$$

Der schlimmste Fall eines Kurzschlusses ist ein Kurzschluss direkt an den Klemmen der Batterie. In diesem Fall wird der Stromfluss nur durch die Spannung der Batterie beschränkt. Im schlimmsten Fall muss mit der Ladeschlussspannung und einem kleinen Innenwiderstand der Batterie gerechnet werden, der Kurzschlussstrom berechnet sich gemäss $I = \frac{U}{R}$ zu:

$$I_k = \frac{12 \cdot 4.2 \text{ V}}{5 \text{ m}\Omega} = \frac{10 \ 800 \text{ A}}{10 \ 800 \text{ A}}$$

1.0.2. Schaltvorgänge und -zustände

In diesem Kapitel werden die einzelnen Schaltvorgänge und -zustände des Fahrzeuges analysiert und beschrieben. Dabei wird besonders auf das Zusammenspiel von Mechanisch zu Elektrisch eingegangen.

Parken

Im Zustand Parken ist der Detroit durch die Handbremse gesichert. Diese blockiert die Hinterräder und unterbricht gleichzeitig den Hauptstromkreis durch den Cut-Out-Switch. Gleichzeitig zeigt der Ganghebel in der neutralen Position vertikal nach oben, womit der Rear-Reverse-Switch ebenfalls keinen Kontakt macht. Somit ist Hauptstromkreis sogar zweifach unterbrochen.

Parken zu Neutral

Im Zustand Neutral ist der Oldtimer nicht mehr durch die Handbremse gesichert. Um diese zu lösen sind zwei Schritte gleichzeitig notwendig. Zum einen soll der Ganghebel in waagerechte Position gebracht werden um ihn dann anschliessend zu sich zu ziehen. Das ist sogleich die Motorbremse, welche die eigentliche Bremsung bei Bedarf unterstützen kann. Damit wird der Sicherungshebel des Cut-Out-Switch betätigt. Somit ist es nun möglich mit dem zweiten Schritt die Handbremse zu betätigen, wodurch sich die Handbremse und sogleich der Cut-Out-Switch aus der Verankerung heben lassen um sich zu lösen und den Hauptstromkreis zu schliessen.

Neutral zu Parken

Durch die Betätigung der Handbremse wird eine Feder über Zahnräder gespannt und der Cut-Out-Switch unterbricht den Stromkreis. Zu beachten ist, dass die Handbremse mit voller Kraft durchgedrückt wird, damit der Stromkreis klar unterbrochen ist.

Neutral zu Vorwärts

Durch das Stellen des Ganghebels in waagrechte Position wird der Rear-Reverse-Switch in die Position Vorwärts geschaltet. Das Wegdrücken des Ganghebels wird mit einem Einrasten. Dies setzt einen Hebel in Bewegung, welcher bis hin zum Stufenschalter führt. So dreht dieser nun in Position 1 und das Fahrzeug fährt im 1. Gang los. Ist das Anfahren nun geschehen, kann in den 2. Gang geschaltet werden. Dies erfolgt durch weiteres Wegdrücken des Ganghebels, bis dieser wieder einrastet. Höhere Gänge bis zum 5. können mit der selben Methode erreicht werden.

Neutral zu Rückwärts

Bei einer 45°-Stellung des Ganghebels verschiebt sich der Rear-Reverse-Switch in Position Rückwärts, womit der Stromfluss, wie der Name des Switch schon sagt, umkehrt. Durch gewohntes Schalten in den ersten Gang dreht der Stufenschalter wieder in Position 1 und das Fahrzeug lässt sich rückwärts lenken.

2 Schlussfolgerung

3 Literaturverzeichnis

A Anhang