

## Livret de Nomenclature

## Chimie Organique

## Nomenclature

La nomenclature est l'attribution systématique des noms aux composés. Chaque composé organique doit avoir un nom unique de telle façon que chimistes et non chimistes puissent communiquer sans ambiguïté. L'IUPAC (International Union of Pure and Applied Chemistry) a créé le système de nomenclature actuellement utilisé et qui repose sur un certain nombre de *règles qui doivent être étudiées, et pas seulement mémorisées.* 

Le système part des alcanes qui servent de bases ; la nomenclature des autres familles de composés organiques en dérive.

| Structure                       | Groupe<br>fonctionnel                                                      | Exemple                                                                                                                                                                                                                                                                                                    | Nom trivial<br>(de l'exemple)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c                               | Alcanes                                                                    | CH <sub>3</sub> —CH <sub>3</sub>                                                                                                                                                                                                                                                                           | Éthane,<br>un constituant<br>du gaz naturel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | Alcènes                                                                    | CH <sub>2</sub> ==CH <sub>2</sub>                                                                                                                                                                                                                                                                          | Éthylène, employé<br>dans la fabrication<br>du polyéthylène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | Alcynes                                                                    | HC≡CH                                                                                                                                                                                                                                                                                                      | Acétylène, utilisé<br>dans la soudure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | Arènes<br>(composés<br>aromatiques)                                        |                                                                                                                                                                                                                                                                                                            | Benzène, une matièr<br>première dans<br>la fabrication<br>du polystyrène<br>et du phénol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| enfermant uniquement des liaiso | ns simples polaire                                                         | s                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                            |                                                                                                                                                                                                                                                                                                            | Chlorure de méthyle<br>un réfrigérant et<br>un anesthésique<br>local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| СОН                             | Alcools                                                                    | CH₃CH₂OH                                                                                                                                                                                                                                                                                                   | Alcool éthylique,<br>présent dans la bière<br>le vin et les liqueurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OH                              | Phénols                                                                    | H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                         | Vanilline,<br>une substance<br>à l'état naturel dans<br>la gousse de vanille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | Éthers                                                                     | CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                           | Éther diéthylique,<br>un anesthésique<br>autrefois répandu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Peroxydes                                                                  | НООН                                                                                                                                                                                                                                                                                                       | Peroxyde<br>d'hydrogène, utilisé<br>comme antiseptique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ou                              |                                                                            |                                                                                                                                                                                                                                                                                                            | commo anasopaque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 | enfermant uniquement des liaison  X = F, CI, Br, I  C O C  OU  OU  C O O H | Alcènes  CCCC Alcynes  Arènes (composés aromatiques)  enfermant uniquement des liaisons simples polaire  Composés halogénés (ou dérivés halogénés nau halogénes ou halogénoal  Alcools  CCOCC Alcynes  Arènes (composés halogénés ou dérivés halogénés ou halogénés ou halogénoal  Alcools  Ethers  Ethers | Alcanes CH <sub>3</sub> —CH <sub>3</sub> Alcanes CH <sub>2</sub> —CH <sub>2</sub> C—C Alcynes HC—CH  Arènes (composés composés aromatiques)  Composés CH <sub>3</sub> CI halogénés (ou dérivés halogénés ou halogénes ou halogénoalcanes)  Alcools CH <sub>3</sub> CH <sub>2</sub> OH  Phénols  CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> OCH <sub>3</sub> CH <sub>3</sub> CH  CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub> Alcools CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> |

Chimie organique 1 – © 2008 Les Éditions de la Chenelière inc.

|                                             | Structure                                            | Groupe<br>fonctionnel                                | Exemple                                                         | Nom trivial<br>(de l'exemple)                                                                                                                                                                      |
|---------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. De type carbone-<br>soufre*              | —C—SH                                                | Thiols<br>ou<br>Mercaptans                           | CH₃SH                                                           | Méthanethiol<br>(odeur de chou<br>en décomposition)                                                                                                                                                |
|                                             | c                                                    | Thioéthers<br>ou<br>Sulfures                         | (CH <sub>2</sub> =CHCH <sub>2</sub> ) <sub>2</sub> S            | Sulfure de diallyle<br>(odeur d'ail)                                                                                                                                                               |
| 4. De type carbone-<br>azote**              | Amine primaire  C NH2  Amine secondaire              | Amines<br>primaires,<br>secondaires<br>ou tertiaires | CH₃CH₂NH₂                                                       | Éthylamine (odeur<br>d'ammoniac),<br>un activateur<br>des lymphocytes T<br>gamma-delta,<br>qui eux-mêmes<br>constituent<br>la première ligne<br>de défense contre<br>les invasions<br>bactériennes |
| ) Grounes fonctionnels i                    | Amine tertiaire<br>renfermant des liaisons multiples | s nolaires                                           |                                                                 |                                                                                                                                                                                                    |
| 1. De type carbone-<br>oxygène <sup>†</sup> | C—C—H (C ou H)                                       | Aldéhydes                                            | CH <sub>2</sub> ==0                                             | Formaldéhyde<br>(Formol <sup>††</sup> ), employe<br>pour conserver<br>les spécimens<br>biologiques                                                                                                 |
|                                             |                                                      | Cétones                                              | CH <sub>3</sub> COCH <sub>3</sub>                               | Acétone, un solvan<br>pour vernis à ongle<br>et colle à caoutchot<br>et pour assécher<br>la verrerie                                                                                               |
|                                             | О<br>С<br>С<br>(С ои Н)                              | Acides<br>carboxyliques                              | CH <sub>3</sub> COOH                                            | Acide acétique,<br>un constituant<br>du vinaigre                                                                                                                                                   |
|                                             | C C O H)                                             | Esters                                               | CH <sub>3</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | Acétate d'éthyle,<br>un solvant pour<br>vernis à ongles et c<br>pour modèles rédu                                                                                                                  |

Chimie organique 1 – © 2008 Les Éditions de la Chenelière inc.

|                                 | Structure                                                                                                    | Groupe<br>fonctionnel                             | Exemple                                                                                             | Nom trivial<br>(de l'exemple)                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                 | 0 0 C C C (C ou H)                                                                                           | Anhydrides                                        | H <sub>3</sub> C C O CH <sub>3</sub>                                                                | Anhydride acétique,<br>utilisé, entre autres,<br>dans la synthèse<br>de l'aspirine                     |
| 2. De type carbone-<br>halogène | C = C - X (C ou H) $X = F. Cl. Br ou I$                                                                      | Halogénures<br>d'acide                            | H <sub>3</sub> C CI                                                                                 | Chlorure d'éthanoyle<br>(chlorure d'éthylène)<br>réactif largement<br>répandu en synthèse<br>organique |
| 3. De type carbone-<br>azote    | C C NH <sub>2</sub> (C ou H)  Amide primaire  O H  C C N (C ou H) C  Amide secondaire  O C  C O N (C ou H) C | Amides<br>primaire,<br>secondaire<br>ou tertiaire | O<br>H<br>NH <sub>2</sub>                                                                           | Formamide,<br>un plastifiant                                                                           |
|                                 | —C—NO <sub>2</sub>                                                                                           | Nitro<br>(ou<br>composés<br>nitrés)               | H <sub>2</sub> C — ONO <sub>2</sub><br>HC — ONO <sub>2</sub><br>H <sub>2</sub> C — ONO <sub>2</sub> | Nitroglycérine,<br>un puissant explosit<br>sensible aux chocs                                          |
|                                 | CN                                                                                                           | Nitriles                                          | CH <sub>2</sub> =CH−C≡N                                                                             | Acrylonitrile,<br>une matière premiè<br>dans la fabrication<br>de l'orlon (polymère                    |

Chimie organique 1 – © 2008 Les Éditions de la Chenelière inc.

Le groupe — C—OH au sein des acides est appelé le groupe carboxyle (contraction de carbonyle et hydroxyle). †† Le formol est une solution aqueuse de formaldéhyde.

#### Les alcanes

- Les noms des **alcanes non ramifiés** (chaîne droite ou linéaire) contiennent deux parties : **une racine numérique** et un **suffixe**.

La racine numérique indique le nombre d'atomes de carbones de la chaîne et le suffixe pour les alcanes sera —ane. Le nom résultant de cette combinaison entre racine et suffixe est le **nom fondamental**.



exemple:

pour un alcane possédant quatre atomes de carbones le préfixe sera *but-*; le suffixe sera *-ane*; pour conduire au nom fondamental *butane*.

Le tableau ci-dessous résume le nom des douze premiers alcanes (à savoir par cœur !!!!!!!!)

#### Noms fondametaux IUPAC des alcanes à chaînes droite

| Nombre<br>d'atomes<br>de carbone | Nom<br>fondamental | Formule semi-développée                                                                                                                         |
|----------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                | Méthane            | CH <sub>4</sub>                                                                                                                                 |
| 2                                | Ethane             | CH₃CH₃                                                                                                                                          |
| 3                                | Propane            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                                 |
| 4                                | Butane             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                 |
| 5                                | Pentane            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                 |
| 6                                | Hexane             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                 |
| 7                                | Heptane            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                 |
| 8                                | Octane             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                 |
| 9                                | Nonane             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
| 10                               | Décane             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> |
| 11                               | Undécane           | CH <sub>3</sub> CH <sub>2</sub> |
| 12                               | Dodécane           | CH <sub>3</sub> CH <sub>2</sub> |

- Pour nommer **les alcanes ramifiés** il faut suivre les règles suivantes établies par l'IUPAC.
  - 1. Repérer et nommer la chaîne la plus longue que l'on puisse trouver au sein de la molécule.
  - 2. Nommer tous les groupes carbonés greffés sur la plus longue chaîne en tant que substituants alkyles (voir ci-dessous)
  - 3. Numéroter la chaîne la plus longue en commençant par l'extrémité la plus proche d'un substituant.
    - Si deux substituants sont à égale distance des deux extrémités de la chaîne, on se base sur l'alphabet pour décider du sens de numérotage du substrat. Le substituant à énoncer le premier d'après l'ordre alphabétique est considéré comme étant fixé sur le carbone portant le plus petit chiffre.
  - 4. Ecrire le nom de l'alcane en arrangeant tout d'abord tous les substituants par ordre alphabétique (chacun étant précédé, à l'aide d'un tiret, du numéro de l'atome de carbone auquel il est rattaché), puis en y adjoignant le nom du substrat ou nom fondamental.

Lorsqu'une molécule contient un même substituant en plusieurs exemplaires, on fait précéder le nom de celui-ci par un préfixe ad hoc tel que di, tri tétra, penta ainsi de suite. Les positions d'attache sur la chaîne parentale sont indiquées sous forme d'une séquence qui précède le nom du substituant et ces chiffres sont séparés par des virgules. Ces préfixes, de même que *sec-* et *tert-*, ne sont pas pris en considération dans l'arrangement alphabétique, sauf lorsqu'ils font partis du nom d'un substituant complexe.





3-éthyl-4,5-diméthylheptane

#### Comment nommer un substituant (ou groupement alkyle)?

De la même façon qu'un alcane sauf que le suffixe ne sera plus -ane mais -yl.

Noms des groupes alkyle linéaires

| Nombre d'atomes de carbone | Nom de l'alcane | Nom du groupe<br>alkyl | Groupe alkyle                                                                     |
|----------------------------|-----------------|------------------------|-----------------------------------------------------------------------------------|
| 1                          | Méthane         | Méthyle                | CH <sub>3</sub> -                                                                 |
| 2                          | Ethane          | Ethyle                 | CH₃CH₂-                                                                           |
| 3                          | Propane         | Propyle                | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> -                                 |
| 4                          | Butane          | Butyle                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -                 |
| 5                          | Pentane         | Pentyle                | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> - |
| Etc                        |                 |                        |                                                                                   |

Noms des groupes alkyles ramifiés

| Nombre d'atomes de carbone | Groupe alkyle                                          |              | Nom du groupe<br>alkyl                    |
|----------------------------|--------------------------------------------------------|--------------|-------------------------------------------|
| 3                          | H <sub>3</sub> C<br>CH—<br>H <sub>3</sub> C            | <u>}</u>     | isopropyle<br>1-méthyléthyle              |
| 4                          | H <sub>3</sub> C—CH <sub>2</sub> CH—  H <sub>3</sub> C |              | <i>sec</i> -butyle<br>1-méthylpropyle     |
| 4                          | $H_2C - \xi$ $H_3C - CH$ $CH_3$                        |              | isobutyle<br>2-méthylpropyle              |
| 4                          | $H_3C$ $H_3C$ $\downarrow$ $\downarrow$ $\downarrow$   | <del>\</del> | <i>tert</i> -butyle<br>1,1-diméthyléthyle |

-Pour nommer **les alcanes cycliques** il suffira de rajouter le préfixe *cyclo*- à la racine numériquel (ex : cyclobutane).

Les cycles sont prioritaires par rapport aux chaînes linéaires ou ramifiées. Mais si la chaîne linéaire liée au cycle contient plus de carbones que le cycle lui-même, celui-ci devient alors un substituant.



1,1,2-triméthylcyclopropane

cyclobutylpentane

#### Les alcènes

Pour les alcènes, le nom fondamental sera aussi constitué par une racine numérique et un suffixe (–ène).

Pour nommer un alcène, comme pour les alcanes il faut suivre les règles suivantes :

- 1. Rechercher et nommer la plus longue chaîne qui contient les deux carbones impliqués dans la double liaison. La molécule peut présenter des plus longues chaînes carbonées, mais celles-ci sont ignorées dans la nomenclature du substrat.
- 2. Indiquer, à l'aide d'un nombre, la localisation de la double liaison dans la chaîne principale, en commençant le numérotage par l'extrémité la plus proche de la double liaison (indice le plus faible). Ce chiffre sera placé entre la racine numérique et le suffixe entre deux tirets. Si la double liaison (ou autres fonctions) est placée en position 1, l'indice de position peut être supprimé.
- 3. Nommer, numéroter et arranger les substituants par ordre alphabétique. Si la chaîne de l'alcène est symétrique, il faut numéroter ladite chaîne dans le sens qui donne au premier substituant rencontré le plus petit chiffre possible.
- 4. Identifier et préciser, s'il y a lieu, la stéréochimie de la double liaison (*E, Z*). Elle se place avant les substituant et entre parenthèses



Les substituants qui contiennent une double liaison sont appelés des groupes alcényles (ex : propényle).

(2Z)-4-méthylhex-2-ène

Deux noms génériques de radicaux alcènes souvent utilisés à connaître :



## Les alcynes

Le groupe fonctionnel caractéristique des alcynes est une triple liaison carbone-carbone.

Les règles de nomenclature des alcènes s'appliquent également aux alcynes, étant entendu que le suffixe —ène sera remplacé par —yne.



5-éthyl-2-méthylhept-3-yne

Cas d'une double et triple liaison au sein de la même molécule :

- Dans la nomenclature IUPAC, un hydrocarbure contenant à la fois une double et triple liaison est appelé un alcényne.
- La chaîne est numérotée à partir de l'extémité la plus proche de l'un ou de l'autre de ces deux groupes fonctionnels.
- lorsque la double et la triple liaison sont à des distance égales au niveau des extrémités, on attribue à la double liaison le plus petit indice localisateur.

$$\equiv \langle$$

2-méthylbut-1-én-3-yne

## Les aromatiques

Pour nommer les composés aromatiques **monosubstitués** il faut rajouter le nom du substituant sous forme de préfixe au mot benzène.



isopropylbenzène

Pour nommer les composés aromatiques **disubstitués** il y a trois arrangements possibles : - les substituants peuvent être adjacents, ce que l'on désigne par le préfixe **1,2**- (ou encore **ortho-** ou **o-**), positionnés en 1,3, **1,3**- (préfixe **méta-** ou **m-**), ou bien en 1,4, **1,4**- (préfixe **para-** ou **p-**). Les dits substituants sont énumérés par ordre alphabétique.



o-éthylméthylbenzène

Pour nommer les dérivés **tri- ou polysubstitués**, on numérote les six carbones du cycle de manière à avoir le jeu de chiffres localisateurs le plus petit possible.



Deux noms génériques de radicaux aromatiques souvent utilisés à connaître :

phényle

## Nomenclature des

composés à fonctions

simples ou multiples

#### Les alcools

- La manière systématique de nommer les alcools consiste à les considérer comme des dérivés des alcanes. La terminaison –e de l'alcane est remplacée par **-ol**. Ainsi, un alcane est converti en un alcanol. Par exemple, l'alcool le plus simple dérivé du méthane est le méthanol.
- Dans le cas de systèmes plus complexes, avec des ramifications, on peut appliquer les mêmes règles que celles définies pour les alcènes en remplaçant dans la *règle 1* (des alcènes) la double liaison par la fonction alcool. Ainsi le nom de l'alcool dérive de la chaîne la plus longue *contenant le substituant OH*. Comme pour les alcènes et les alcynes, cette chaîne peut ne pas être la plus longue chaîne de la molécule.
- 1. Rechercher et nommer la plus longue chaîne qui contient la fonction alcool. La molécule peut présenter des plus longues chaînes carbonées, mais celles-ci sont ignorées dans la nomenclature du substrat.
- Indiquer, à l'aide d'un nombre, la localisation de la fonction alcool dans la chaîne principale, en commençant le numérotage par l'extrémité la plus proche de OH (indice le plus faible). Ce chiffre sera placé entre la racine numérique et le suffixe entre deux tirets.
- 3. Nommer, numéroter et arranger les substituants.

Si la chaîne principale est symétrique, il faut numéroter ladite chaîne dans le sens qui donne au premier substituant rencontré le plus petit chiffre possible.



## Les éthers-oxydes

Pour nommer les composés de la forme R'-O-R, il faut d'abord déterminer un nom de base qui est celui du composé RH correspondant au groupe R prioritaire, c'est à dire celui qui contient le plus de carbones, ou une insaturation ou une fonction. Le groupe R'O-, groupe alkoxy, qui contient l'autre groupe R' est considéré comme un substituant dans le composé de base et constitue un préfixe devant son nom.

substituant racine numérique + oxy Hydrocarbure

méthoxyéthane 3-éthoxyprop-1-ène

### Les cétones

- La manière systématique de nommer les cétones consiste à les considérer comme des dérivés des alcanes. La terminaison e de l'alcane est remplacée par one. Ainsi, un alcane est converti en une alcanone. Par exemple, la cétone la plus simple dérivée du propane est propanone (ou acétone).
- Dans le cas de systèmes plus complexes, avec des ramifications, on peut appliquer les mêmes règles que celles définies pour les alcènes, alcynes et alcools. La cétone dérive de la chaîne la plus longue *contenant le carbone carbonylique*.
- 1. Rechercher et nommer la plus longue chaîne qui contient la fonction cétone. La molécule peut présenter des plus longues chaînes carbonées, mais celles-ci sont ignorées dans la nomenclature du substrat.
- 2. Indiquer, à l'aide d'un nombre, la localisation de la fonction cétone dans la chaîne principale, en commençant le numérotage par l'extrémité la plus proche du carbone carbonylique (indice le plus faible). Ce chiffre sera placé entre la racine numérique et le suffixe entre deux tirets.
- 3. Nommer, numéroter et arranger les substituants. Si la chaîne principale est symétrique, il faut numéroter ladite chaîne dans le sens qui donne au premier substituant rencontré le plus petit chiffre possible.



 On peut également utiliser cette dernière méthode pour nommer les cétones de types R-CO-R'. Si les groupes R et R' sont simples, on peut les nommer en faisant suivre leurs noms (sous forme de groupement alkyle) dans l'ordre alphabétique, du mot cétone. Par exemple l'éthylméthylcétone correspond à la butan-2-one.



butan-2-one éthylméthylcétone

## Les aldéhydes

- La manière systématique de nommer les aldéhydes consiste à les considérer comme des dérivés des alcanes. La terminaison –e de l'alcane est remplacée par al. Ainsi, un alcane est converti en un alcanal. Par exemple, l'aldéhyde le plus simple dérivé du méthane est le méthanal.
- Dans le cas de systèmes plus complexes, avec des ramifications, on peut appliquer les mêmes règles que celles définies pour les alcènes, alcynes et les alcools. On numérote la chaîne porteuse de substituants en attribuant le numéro 1 au carbone carbonylique.



 Les aldéhydes cycliques dans lesquels la fonction est liée directement à un cycle sont nommés en ajoutant la terminaison carbaldéhyde au nom du cycle.



### Les amines

 Pour les amines primaires, la meilleure manière de les nommer consiste à les considérer comme des dérivés des alcanes. La terminaison –e de l'alcane est remplacée par –amine. Ainsi, un alcane est converti en une alcanamine. Par exemple, l'amine la plus simple dérivée du méthane est la méthanamine.



 Pour les amines secondaires ou tertiaires, le substituant alkyle le plus important de l'azote est choisi pour former le nom alcanamine de base et l'(es) autre(s) groupe(s) est(sont) nommé(s) en tant que substituant(s) à la suite de la(des) lettre(s) N- (N,N-).



N-méthyléthanamine N,N-Diméthyléthanamine N-éthyl-N-propyl-3-méthyllbutan-2-amine

## Les acides carboxyliques et dérivés

#### 1. Les acides carboxyliques

En série acyclique, le système IUPAC construit les noms des acides carboxyliques en remplaçant la désinence –e du nom de l'alcane par –oïque et en faisant précéder le tout par le mot acide. La chaîne de l'acide alcanoïque est numérotée en assignant le numéro 1 au carbone carboxylique et en positionnant tous les substituants tout au long de la plus grande chaîne carbonée incluant obligatoirement le groupe CO<sub>2</sub>H.



- En série cyclique, les acides dont la fonction est directement liée à un cycle sont nommés en tant qu'acides cycloalcanecarboxyliques.



acide 4,4-diméthylhexanoïque

acide cyclopentanecarboxylique

En série aromatique, ils sont nommés en tant qu'acides benzoïques.

#### 2. Les halogénures d'acides

Ces composés sont nommés en changeant le nom de *l'acide alcanoïque* dont ils dérivent par le vocable **halogénure** d'**alcanoyle**.



#### 3. Les esters

Les esters sont nommés en tant qu'alcanoates d'alkyle



butanoate de propyle

#### 4. Les anhydrides

Ils se nomment en faisant précéder le nom de l'acide (ou les noms des acides dans le cas d'anhydrides mixtes) par le terme *anhydride*. Cette méthode s'applique également aux dérivés cycliques.

19

# Nomenclature des composés à fonctions mixtes

Du point de vue nomenclature, la réunion de deux ou plusieurs fonctions dans une molécule pose essentiellement des questions de priorités entre elles.

La fonction prioritaire est désignée par un suffixe et le sens de numérotage de la chaîne principale est choisi de façon à lui attribuer l'indice le plus petit possible.

Les autres fonctions présentes sont désignées par des préfixes indiqués dans le tableau ci-dessous (priorité décroissante de haut en bas : une fonction à priorité sur celles qui se trouvent en dessous).

| Fonction           | Prioritaire (suffixe) | Non prioritaire (préfixe) |
|--------------------|-----------------------|---------------------------|
| Acide Carboxylique | -oïque                |                           |
| Nitrile            | -nitrile              | Cyano-                    |
| Aldéhyde           | -al                   | Formyl-                   |
| Cétone             | -one                  | Oxo-                      |
| Alcool, phénol     | -ol                   | Hydroxy-                  |
| Amine              | -amine                | Amino-                    |

Acide 5-hydroxy-5-phénylpentanoïque