Urodynamics Without Borders Guide

..

September 26, 2023

Contents

1	The	eory		3	
2	Manufacturing Guide				
	2.1	Comp	onents List	3	
	2.2	Order	ing PCBs	4	
	2.3		eating Supporting Structures	5	
		2.3.1	3D Printing	5	
		2.3.2	Workshop Manufacturing	5	
		2.3.3		6	
		2.3.4	Pressure Configuration Clamp Design	7	
		2.3.5	Infusion Pump Clamp Design	8	
		2.3.6	Volume Infused Loadcell Clamp Design	9	
		2.3.7	Volume Infused Fluid Mount Clamp Design	10	
	2.4	Subsy	tem Assembly	11	
		2.4.1	Control Subsystem		
		2.4.2	Uroflowmetry	12	
		2.4.3		14	
		2.4.4	Fluid Infusion	15	
		2.4.5	Infusion Pump	16	
3	Software		17		
4	System Testing			17	
5	Clinicial Use				
6	Appendices			17	

1 Theory

2 Manufacturing Guide

This section will provide the required equipment lists, ordering requirements, fabrication, and soldering information to manufacture the full Urodynamics system.

2.1 Components List

here

2.2 Ordering PCBs

Figure 1: PCB Manufacturer

- 1. 3D Visit the PCBs page on the UDSWB website and download the zip files $\,$
- 2. Find a low-cost PCB manufacturer online and upload the zip files

2.3 Fabricating Supporting Structures

The sections below provide drawings with labelled dimensions and tables with the corresponding measurements. Measure the procured components and apply the dimensions to the drawings to identify suitable supporting structures for your components.

2.3.1 3D Printing

If you have access to a 3D printer, then check (XX APENDIX x) to see the measurements used to create the STL files for the components. If your component parts have the same measurements, then use the supplied files. If component measurements vary then use the drawings to design your own, at the time of writing Autodesk provide a free version of Autodesk that can be used to design the parts and export to STL files for printing. Aim to use a stiff setting filament to optimise the transmission of load for loadcell measurement.

2.3.2 Workshop Manufacturing

Use the drawings and relative measurements in each section to form the design for each part. Aim to use lightweight and stiff materials, this will ensure that the load transmission for measurement via loadcells is optimised.

2.3.3 Uroflowmetry Base Plates

The drawings below outline base plates fit for purpose, two are required. The large flat bottom provides a large stable base in contact with the floor as well as a large pad to place the fluid container on. The design centres the loadcell in the middle of the plate so that the weight of the container and fluid are over the centre of the plate. This reduces the likelihood of the container falling over if knocked.

Figure 2: Uroflowmetry Base Plate Drawings

- a) The distance between the centre points of the two tapped holes at each end of the loadcell
- b) The width of the loadcell + > 2mm
- c) Length of the loadcell
- d) The bolt diameter used by the loadcell + > 1mm
- e) The diameter of the head of the bolt + > 2mm
- f) The height of the loadcell
- g) Distance between the centre of the loadcell and the centre point of the loadcell hole nearer to the loadcell mid-point

2.3.4 Pressure Configuration Clamp Design

The drawings below outline the pressure configuration clamp, two are required. Two of these can be fixed together on a stand to provide a clamp for the pressure sensor syringes. The four bolt and nut holes allow the two parts to be clamped together around the upright support. The internal nut holes and through bolt holes allow a single bolt ant nut to act as grub screws to fix the two syringes in place and fix the clamp to the upright support. The single nut and bolt hole at the end of the part clamps the two parts together so that the syringe grub screws do not splay the parts.

Figure 3: Pressure Syringe Clamp Drawings

- a) The diameter of the pressure syringe + > 4mm
- b) The diameter of the upright stand/trolley + > 4mm
- Nb) Select bolts that are greater than the larger of 3a and 3b
- Nb) Create holes to accommodate the chosen bolts
- Nb) Create hexagonal holes to accommodate the corresponding nuts, a tight fit makes it easier to move the bolts without the nuts dropping out

2.3.5 Infusion Pump Clamp Design

The drawings below outline the infusion pump clamp, two are required. Two of these can be fixed together on a stand to provide a clamp for the infusion pump to be fixed to. The four bolt and nut holes allow the two parts to be clamped together around the upright support. The internal nut hole and through bolt hole allow a single bolt ant nut to act as grub screw to fix the clamp to the upright support. The two through holes allow bolts to pass through the part to fix the pump to the clamp.

Figure 4: Infusion Pump Clamp Drawings

- a) The diameter of the upright stand/trolley + > 4mm
- b) The distance between the pump fixation screw holes 5mm
- c) The length of the pump + > 10mm

2.3.6 Volume Infused Loadcell Clamp Design

The drawings below outline the fluid infusion loadcell clamp, two are required. Two of these can be fixed together on a stand to provide a clamp for the fluid infusion loadcell. The four bolt and nut holes allow the two parts to be clamped together around the upright support. The internal nut hole and through bolt hole allow a single bolt ant nut to act as grub screw to fix the clamp to the upright support. The two through holes allow bolts to pass through the part to fix the loadcell to the clamp.

Figure 5: Volume Infused Loadcell Clamp Drawings

- a) The diameter of the upright stand/trolley + > 4mm
- b) Twice the width of the loadcell + 4mm
- c) The distance between the centre points of the two tapped holes at each end of the loadcell
- d) Height of the loadcell
- Nb. Create holes to accommodate the chosen bolts
- Nb. Create hexagonal holes to accommodate the corresponding nuts, a tight fit makes it easier to move the bolts without the nuts dropping out

2.3.7 Volume Infused Fluid Mount Clamp Design

The drawings below outline the fluid infusion mount, one part is required. The part is fixed to the end of the fluid infusion load cell and allows the infusion bag to be supported and weighed. The two through holes allow bolts to pass through the part to fix the loadcell to the clamp. The upright cylinder/hook acts as the point to fix the infusion fluid bag, it should be made sufficiently strong to hold a minimum of 1.25 kg.

Figure 6: Volume Infused Fluid Mount Clamp Drawings

- a) The diameter of the upright stand/trolley + > 4mm
- a) The bolt diameter used by the loadcell + > 1mm
- b) The distance between the centre points of the two tapped holes at each end of the loadcell
- c) The distance between the centre points load cells outermost hole and the end of the load cell + 1mm
- d) Distance from the end of the load cell to the innermost holes edge $+>5\mathrm{mm}$
- e) The width of the loadcell + 4mm
- f) Height of the loadcell

2.4 Subsytem Assembly

2.4.1 Control Subsystem

- 1. Solder the resistors in place. (Tight to the board and not intruding other components)
- 2. Solder the PWM circuit components. (The transistor pins can be bent to 90 degrees to avoid it sticking up)
- 3. Solder the support pins to the 2 buck converters
- 4. Solder the 3.3v connection on one buck converter and the 5v on the other
- 5. Solder the buck converters to the designated spot (3.3v to the 3.3v spot...)
- 6. Solder the DC barrel jack mount to the PCB
- 7. Solder the support pins to the TCA9548A Multiplexer, the Arduino Nano and the 2 HX711 amplifiers
- 8. Solder the TCA9548A Multiplexer, the Arduino Nano and the 2 HX711 amplifiers to the PCB
- 9. Cut 6x10cm and 5x5cm lengths of 4 core wire
- 10. Fix female 4 pin DIN connectors to the ends of 5cm lengths of wire
- 11. Fix male pin connectors to the other ends of the 5cm lengths
- 12. Solder the 10cm lengths of wire to the PCB (2 of the wires will only require 2 cores to be soldered)
- 13. Fix female pin connectors to the other ends of the 10 cm lengths
- 14. Cut holes in the waterproof casing just large enough to fit the female DIN connectors, the micro-USB connector, the DC plug and the switch
- 15. Fix the female DIN connectors, the micro-USB connector, the DC plug and the switch in place
- 16. Place the PCB inside and connect each of the male and female pin connectors
- 17. Test the continuity of each female 4 pin DIN connector to the PCB to ensure that the pins are connected in the correct order
- 18. Screw the waterproof casing lid on to finish

2.4.2 Uroflowmetry

1. 3D print or manufacture the supporting parts using the STL files

- 2. Connect the 2m 4 core wire to the 4 wires attached to the loadcell (Note the order of the wires attached)
- 3. Solder the male 4 pin DIN connector to the other end of the

Pin	Wire
1	E+
2	E-
3	A-
4	A+

Table 1: Uroflowmetry Loadcell Pin Out

- 4. Screw the loadcell into the first baseplate
- 5. Screw the second base plate onto the loadcell

2.4.3 Pressure Sensor Configuration

- 1. Solder the pressure sensors to the PCBs
- 2. Fix the male 4 pin DIN connector to the 4-core wire
- 3. Cut a hole axially through the syringe plunger to allow the 4-core wire to pass through
- 4. Solder the 4-core wire to the PCB (pressure sensor facing up)

Pin	Wire
1	GND
2	VCC
3	SCK
4	SDA

Table 2: MS5840-02BA Pressure Sensor Pin Out

5. Mix the epoxy resin and use it to cover the PCB ensuring not to go over the aperture of the pressure sensor. The resin should form a seal at the top of the plunger to stop fluid passing through the hole cut to allow the wires to pass through.

2.4.4 Fluid Infusion

- $1.\,$ 3D print or manufacture the supporting parts using the STL files
- 2. Connect the 4-core wire to the load cell
- 3. Connect the 4-core wire to the peristaltic pump
- 4. Fix the male 4 pin DIN connector to the other end of the 4-core wire (x2)

2.4.5 Infusion Pump

1. get pump

- 3 Software
- 4 System Testing
- 5 Clinicial Use
- 6 Appendices