Matemática Discreta – ACH2013

Nome: ___

Segunda Lista de Exercícios

N° USP:

Turma:	04	94	Nota:

Propriedade	Lógica	Teoria dos Conjuntos	
Idempotência	$p \wedge p \Leftrightarrow p$	$A \cap A = A$	
-	$p \lor p \Leftrightarrow p$	$A \cup A = A$	
Comutativa	p∧q ⇔ q∧p	A∩B=B∩A	
	$p \vee q \Leftrightarrow q \vee p$	$A \cup B = B \cup A$	
Associativa	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$	$A \cap (B \cap C) = (A \cap B) \cap C$	
	$p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$	$A \cup (B \cup C) = (A \cup B) \cup C$	
Distributiva	$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
	$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
Negação/	¬ ¬p ⇔ p	~~A = A	
Complemento	p∧¬p⇔F	A∩~A=Ø	
	p ∨ ¬p ⇔ V	A ∪ ~A = U	
DeMorgan	¬(p v q) <> ¬p ∧ ¬q	~(A ∪ B) = ~A ∩ ~B	
	¬(p∧q) ⇔ ¬p∨¬q	~(A ∩ B) = ~A ∪ ~B	
Elemento Neutro	$p \wedge V \Leftrightarrow p$	$A \cap U = A$	
	pvF⇔p	A∪∅=A	
Elemento Absorvente	p∧F⇔F	A ∩Ø=Ø	
		A W.	

Figura 3.15 Conetivos lógicos × operações sobre conjuntos

p ∧ (p ∨ q) «> p

Relação	Lógica	Teoria dos Conjuntos
Implicação/Continência	$p \Rightarrow q$	A⊆B
Equivalência/Igualdade	D⇔a	A = B

Figura 3.16 Relações lógicas × relações sobre conjuntos

1) Verdadeiro ou Falso. Para cada uma das afirmações a seguir, determine se é verdadeira ou falsa e prove sua afirmação. Isto é, para cada afirmação verdadeira apresente uma prova, e para cada afirmação falsa dê um contra-exemplo (com explicação).No que segue, A,B e C denotam conjuntos.

a)
$$(A-B) \cup B = A \cup B$$
 b) $(A \cup B) - C = (A - C) \cap (B - C)$

- 2) Usando a tabela com as propriedades e suas respectivas definições , relativamente à união e à intersecção, *prove* a seguinte propriedade e *explique* , passo a passo , quais definições usou para provar: (1,5)
 - a) Distributividade da união sobre a intersecção, ou seja, (suponha A,B e C conjuntos quaisquer): $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

b) DeMorgan:	$A \cap A$	B = ~(^	′A U ~B)
--------------	------------	---------	----------

- 3) As relações são fechadas para as seguintes operações sobre conjuntos(ou seja, a operação de duas relações resulta em uma relação)? Justifique a sua resposta:
- a) Diferença

b)Conjunto das partes

- 4) Sejam A, B conjuntos. Prove:
- a) $A \subseteq B$ se e somente se $A B = \emptyset$.

b)
$$A - \emptyset = A$$
 e $\emptyset - A = \emptyset$.