FMI11 Zusammenfassung

13. Juli 2014

Teil I

DEA

1 Formale Definition

```
A = (Q, \Sigma, \delta, q_i, F)
Q ist die Menge aller möglichen Zustände = \{q_0, q_1, ..., q_{n-1}\}
\Sigma ist die Menge aller möglichen Eingaben = \{e_0, e_1, ..., e_{n-1}\}
F ist die Menge aller möglichen Endzustände = F \subseteq Q
q_i \in Q der Endzustand ist in Q enthalten
```

 $\delta:Q\times\Sigma\to Q$ ist die Transitionsfunktion und beschreibt den Übergang vom einem Zustand aus Q mit der Kombination einer Eingabe aus Σ zu einem Zustand aus Q

$$(1)\delta(q_i, e_j) = q_m$$

$$(2)\delta(q_j, e_k) = q_n$$

$$(3)\delta(q_j, e_k) = undefiniert$$

Beispiel:

$$\begin{split} A &= (Q, \Sigma, \delta, q_0, F) \\ Q &= \{q_0, q_1\} \\ \Sigma &= \{0, 1\} \\ \delta &= Qx\Sigma \to Q \\ (1)\delta(q_0, 0) &= q_1 \\ (2)\delta(q_0, 1) &= undefiniert \\ (3)\delta(q_1, 0) &= undefiniert \\ (4)\delta(q_1, 1) &= q_0 \\ F &= \{q_1\} \end{split}$$

${\bf 2} \quad {\bf Zustands diagramm}$

Beispiel:

3 Automatentafel

δ	E_0	E_1
$\rightarrow Q_i$	Q_j	-
$\Box Q_i$	-	Q_{j}

Beispiel:

δ	0	1
$\rightarrow Q_0$	Q_1	-
$\Box Q_1$	-	Q_0

4 Akzeptierte Sprachen

Eine akzeptierte (erkannte) Sprache besteht aus all denjenigen Wörtern w, die den Automaten aus der Anfangskonfiguration (q_0, w) in eine Konfiguration (q, ϵ) überführen, bei dem der Zustand q ein Endzustand ist.

- Eine Konfiguration die keine Folgekonfiguration besitzt ist eine **Stopp-Konfiguration**.
- Die durch eine Konfigurationsfolge $(q_0, w_0) \vdash (q_1, w_1) \vdash (q_2, w_2) \vdash ...)$ durchlaufene Zustandsfolge $(q_0, q_1, q_2, ...)$ wird **Pfad** genannt.
- Der durch eine akzeptierende Konfigurationsfolge beschriebene Pfad wird akzeptierter Pfad genannt.

 $A \vdash B$ wird als "B ist aus A herleitbar"gelesen.

4.1 Formale Definition

$$L(A) = \{w|w = (wort), Bedingung\} \subseteq \Sigma^*$$

Beispiel:

 $L(A_1) = \{w | w \in \mathbb{N} \text{ und w ist gerade}\} \subseteq \Sigma^* = \{0, 1, 2, 3, ..., 9\}$ Erkennt alle einstelligen geraden Zahlen.

$$L(A_2) = \{w | u\epsilon \Sigma^* : w = u01\} \subseteq \Sigma^* = \{a, b\}$$

Erkennt alle Eingaben die mit 01 enden.

$$L(A_2) = \{w | u\epsilon \Sigma^* : w = 01u\} \subseteq \Sigma^* = \{a, b\}$$

Erkennt alle Eingaben die mit 01 beginnen.

$$L(A_2) = \{w | u, v \in \Sigma^* : w = u01v\} \subseteq \Sigma^* = \{a, b\}$$

Erkennt alle Eingaben die 01 enthalten.

Teil II NEA

5 Formale Definition

$$A = (Q, \Sigma, \delta, q_i, F)$$
 Q ist die Menge aller möglichen Zustände = $\{q_0, q_1, ..., q_{n-1}\}$ Σ ist die Menge aller möglichen Eingaben = $\{e_0, e_1, ..., e_{n-1}\}$ F ist die Menge aller möglichen Endzustände = $F \subseteq Q$ $q_i \in Q$ der Endzustand ist in Q enthalten $\delta: Q \times (\Sigma \bigcup \{\epsilon\}) \to 2^Q$

$$x = \begin{cases} \{\delta_1(q_i, a)\} & \text{für alle q } \epsilon \Sigma \text{ und a } \epsilon \Sigma, \text{ für die } \delta_1(q_i, a) \text{ definiert ist} \\ \emptyset & \text{sonst} \end{cases}$$

Es muss bei der Definition explizit darauf hingewiesen werden welcher Automatentyp vorhanden ist (DEA/NEA).

Beispiel:

6 Zustandsdiagramm

Beispiel:

Automatentafel 7

Beispiel:

- 010 P1011		
δ	a	b
$\rightarrow q_0$	$\{q_1,q_2,q_3\}$	$\{q_3,q_5\}$
q_1	$\{q_1, q_2, q_3\}$	Ø
q_2	Ø	\emptyset
$emptyboxq_3$	Ø	Ø
q_4	Ø	$\{q_5,q_3\}$
q_5	Ø	$\{q_4\}$

Umwandlung ϵ -NEA in NEA 8

 ϵ -Übergänge sind Zustandsübergänge ohne Eingabe, denn ϵ bedeutet, dass man keine Eingabe tätigt.

$\mathbf{Umwandlung}\ \mathbf{NEA} \to \mathbf{DEA}$ 9

Tabelle 1: Ursprungs-NEA				
δ	a	b		
$\rightarrow q_0$	$\{q_1,q_2,q_3\}$	$\{q_3,q_5\}$		
q_1	$\{q_1,q_2,q_3\}$	Ø		
q_2	Ø	Ø		
$emptyboxq_3$	Ø	Ø		
q_4	Ø	$\{q_5,q_3\}$		
q_5	Ø	$\{q_4\}$		

Tabelle 2: Äquivalenter DEA

$$\delta$$
 a
 b

 $\rightarrow q_0$
 $\{q_1, q_2, q_3\}$
 $\{q_3, q_5\}$
 $\Box \{q_1, q_2, q_3\}$
 $\{q_1, q_2, q_3\}$
 \emptyset
 $\Box \{q_3, q_5\}$
 \emptyset
 $\{q_4\}$
 q_4
 \emptyset
 $\{q_5, q_3\}$

