Suite et séries de fonctions Chapitre 1: Suites de fonctions

Table des matières

1.	Introduction.	1
2.	Convergence simple.	1
3.	Convergence uniforme	2 3
4.	Intégration sur un segment et convergence uniforme.	5
5.	Dérivation et convergence uniforme.	6
6.	Modes de convergence d'une série de fonctions.	10
7.	Intégration sur un segment d'une série de fonctions. 7.1. Dérivation d'une série de fonctions.	15
8.	Généralités sur les séries entières.	18
9.	Calcul du rayon de convergence.	21
10.	Opérations algébriques sur les séries entières.	22
11.	Séries entières d'une variable. 11.1. Régularité de la somme d'une série entière de $\mathbb{R}[[x]]$	23
12.	Développement en série entière et fonctions analytiques	24 25 27 27
13	Résolution d'équations	28

1. Introduction.

On considère un ensemble X non vide (en général $X \subset \mathbb{R}$ ou \mathbb{C}).

Définition 1.1 (suite de fonctions): On appelle suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur X la suite définie pour tout $n\in\mathbb{N}$ par la fonction $f_n:X\to\mathbb{R};x\mapsto f_n(x)$.

Exemple:
$$X = \mathbb{R}$$
 $\forall n \in \mathbb{N}, f_n(x) = \ln(1 + nx^2).$

2. Convergence simple.

Définition 2.1 (convergence simple): Soit $\left(f_n\right)_{n\in\mathbb{N}}$ une suite de fonctions sur X. On dit que $\left(f_n\right)_{n\in\mathbb{N}}$ converge simplement sur X, si pour tout $x\in X$, la suite numérique $\left(f_n(x)\right)_{n\in\mathbb{N}}$ est convergente. Dans ce cas on note $f(x)=\lim_{n\to+\infty}f_n(x)$ la limite et on dit que $\left(f_n\right)_{n\in\mathbb{N}}$ converge simplement vers f sur X. i.e :

$$f_n \overset{\mathsf{CS}}{\longrightarrow} f \text{ sur } X \Leftrightarrow \forall x \in X, \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow |f_n(x) - f(x)| \leq \varepsilon$$

Remarque: La convergence simple est une propriété locale.

Exemples:

- 1. On considère $(f_n)_{n\in\mathbb{N}\setminus 0}$ sur $I=]0,+\infty[$ définie par $f_n:I\to\mathbb{R};x\mapsto \frac{1}{x+\frac{1}{n}}$ Soit x>0 fixé, on a $f_n(x)\underset{n\to+\infty}{\longrightarrow}\frac{1}{x}.$ On pose $f:I\to\mathbb{R};x\to \frac{1}{x}$ et on a $f_n\overset{\mathrm{CS}}{\longrightarrow}f$ sur X.
- 2. Même suite mais sur $I=[0;+\infty[$. Pour x=0, $f_n(0)=n\underset{n\to+\infty}{\longrightarrow}+\infty$ donc $\left(f_n\right)_{n\in\mathbb{N}\setminus 0}$ ne converge pas simplement sur I.
- 3. On considère $(f_n)_{n\in\mathbb{N}\setminus 0}$ sur $I=[0,+\infty[$ où $f_n:I\to\mathbb{R};x\mapsto \left(1+\frac{x}{n}\right)^n$ * pour x=0 fixé, $f_n(0)=1\underset{n\to+\infty}{\longrightarrow}1.$
 - $* \text{ pour } x > 0 \text{ fix\'e}, f_{n(x)} = e^{n \ln(1 + \frac{x}{n})} = e^{n \left(\frac{x}{n} + o\left(\frac{1}{n}\right)\right)} = e^{x + o(1)} \underset{n \to +\infty}{\longrightarrow} e^x$ On pose $f: I \to \mathbb{R}; x \to e^x$, on a $f_n \overset{\operatorname{CS}}{\longrightarrow} f \text{ sur } I.$
- 4. Soit $(f_n)_{n\in\mathbb{N}}$ sur I=[0,1] définie par $f_n(x)=x^n$. * Si $x\in[0,1[$ fixé, $f_n(x)\underset{n\to+\infty}{\longrightarrow}0$
 - * Si x=1, $f_n(1) \underset{n \to +\infty}{\longrightarrow} 1.$ On pose $f: I \to \mathbb{R}; x \mapsto \left\{ \begin{smallmatrix} 1 & \text{si } x=1 \\ 0 & \text{sinon} \end{smallmatrix} \right.$ On a $f_n \underset{n \to +\infty}{\longrightarrow} f.$

3. Convergence uniforme.

Définition 3.1 (Convergence uniforme): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction sur X. Soit f une fonction sur X. On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X si:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow \forall x \in X, |f_n(x) - f(x)| \leq \varepsilon.$$

On note $f_n \stackrel{\text{CU}}{\longrightarrow} f \text{ sur } X$.

Remarque: La convergence uniforme est une propriété globale.

Définition 3.2: Soit $f:X\to\mathbb{R}$ une fonction. On appelle **norme sup** ou **norme infinie** sur X la valeur :

$$||f||_{+\infty,X} = \sup\{|f(x)|, x \in X\} \in \mathbb{R}_+ \cup \{+\infty\}.$$

Exemples:

- 1. $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{1+x^2}$ On a $\forall x \in \mathbb{R}, 0 \le f(x) \le 1$ et f(0) = 1 donc $\|f\|_{+\infty,\mathbb{R}} = 1$.
- 2. $f: I = [0,1[\to \mathbb{R}; x \mapsto x^2]$ On a $f'(x) = 2x \ge 0$ Donc f(x) est croissante sur I et $f(x) \xrightarrow[x \to 1]{} 1$. D'où $\{f(x), x \in I\} = [0,1[$ donc $\|f\|_{+\infty,I} = 1$.
- 3. $f: \mathbb{R} \to \mathbb{R}; x \mapsto x$, $||f||_{+\infty,\mathbb{R}} = +\infty$.

3.1. Propriétés de la $\|\cdot\|_{+\infty}$

Proposition 3.1.1: Soient $f, g: X \to \mathbb{R}$ deux fonctions.

- 1. S'il existe $M \in \mathbb{R}_+$ tel que $\forall x \in X, |f(x)| \leq M$ alors $||f||_{+\infty,X} \leq M$.
- 2. $\forall \alpha \in \mathbb{R}, \|\alpha f\|_{+\infty,X} = |\alpha| \|f\|_{+\infty,X}.$
- 3. $||f + g||_{+\infty,X} \le ||f||_{+\infty,X} + ||g||_{+\infty,X}$.
- 4. $||fg||_{+\infty,X} \le ||f||_{+\infty,X} ||g||_{+\infty,X}$.

Démonstration:

- 1. exercice
- 2. exercice
- 3. $|f+g| \le |f| + |g| \le ||f||_{+\infty,X} + |g| \le ||f||_{+\infty,X} + ||g||_{+\infty,X}$ d'où d'après 1),

$$||f + g||_{+\infty,X} \le ||f||_{+\infty,X} + ||g||_{+\infty,X}.$$

Proposition 3.1.2 (Convergence uniforme avec la norme infinie): Soit $(f_n)_{n\in\mathbb{N}\setminus 0}$ une suite de fonctions sur X et f une fonction sur X. Alors

$$f_n \xrightarrow{\mathrm{CU}} f \Leftrightarrow \|f_n - f\|_{+\infty, \mathbf{X}} \underset{n \to +\infty}{\longrightarrow} 0.$$

Démonstration:

 $\Rightarrow \text{Si } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } X, \, \forall \varepsilon > 0, \, \exists N \in \mathbb{N} \text{ tq } n \geq N \Rightarrow \forall x \in X, |f_n - f| \leq \varepsilon \text{ donc } \|f_n - f\|_{+\infty, \mathbf{X}} \leq \varepsilon.$ $\begin{array}{l} \text{D'où } \|f_n - f\|_{+\infty, \mathbf{X}} \underset{n \to +\infty}{\longrightarrow} 0. \\ \Leftarrow \text{Si } \|f_n - f\|_{+\infty, \mathbf{X}} \underset{n \to +\infty}{\longrightarrow} 0 \text{ Alors} \end{array}$

$$\forall \varepsilon>0, \exists N_\varepsilon\in\mathbb{N}, n\geq N \Rightarrow \forall x\in X, |f_n(x)-f(x)|\leq \left\|f_n(x)-f(x)\right\|_{+\infty,X}\leq \varepsilon.$$

 $\operatorname{Donc} f_n \stackrel{\operatorname{CU}}{\longrightarrow} f \operatorname{sur} X.$

Théorème 3.1.1: Soit $(f_n)_{n\in\mathbb{N}\setminus 0}$ une suite de fonctions et soit f une fonction sur X. On a

$$f_n \xrightarrow{\operatorname{CU}} f \text{ sur } X \Rightarrow f_n \xrightarrow{\operatorname{CS}} f \text{ sur } X.$$

Démonstration: Immédiat.

Exemples:

1. $(f_n)_{n\in\mathbb{N}\setminus 0}$ définie par $f_n:I=[1,+\infty[\to \mathbb{R};x\mapsto \frac{1}{x+\frac{1}{x}}]$ On a vu que $f_n \stackrel{\text{CS}}{\longrightarrow} f$ sur I où $f: I \to \mathbb{R}; x \mapsto \frac{1}{x}$. On pose:

$$g_n = f_n - f = \frac{1}{x} - \frac{1}{x + \frac{1}{n}} = \frac{\frac{1}{n}}{x(x + \frac{1}{n})} = \frac{1}{nx^2 + x}.$$

 $1^{\rm ere}$ méthode: Majoration de $|g_n|$ par une expression qui ne dépend pas de x et qui tend vers 0 quand

Lorsque $x \ge 1$; $nx^2 + x \ge nx^2 + 1 \ge n + 1$ Donc $\forall x \in I, 0 \le g_n(x) \le \frac{1}{n+1}$ Donc

$$\|f_n - f\|_{+\infty, I} \le \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

. D'où $f_n \stackrel{\text{CU}}{\longrightarrow} f \text{ sur } I$.

 $2^e \text{ méthode: (en général plus couteuse): On étudie } g_n. \text{ On a } g_n{'}(x) = -\frac{2nx+1}{(nx^2+x)^2} \leq 0 \text{ donc } g_n \text{ est décroissante sur } I \text{ et } \|f\|_{+\infty,I} = \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0. \text{ D'où } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } I.$ $2. \quad (f_n)_{n \in \mathbb{N} \setminus 0} \text{ définie par } f_n : I = [0,1] \to \mathbb{R}; x \mapsto x^n. \text{ On a vu} \overset{\text{CS}}{\longrightarrow} f \text{ sur } I \text{ où } f : I \to \mathbb{R}; x \mapsto \begin{cases} 0 \text{ si } x \in [0,1[\\ 1 \text{ si } x = 1 \end{cases}$

 1^{ere} méthode: On veut minorer $|f_n(x)-f(x)|$. Pour cela, on utilise une suite de $(x_n)_{n\in\mathbb{N}}$ où $\forall n, x_n \in I, x_n = 1 - \frac{1}{n}$. Ainsi, on a bien $|f_n(x_n) - f(x_n)| \underset{n \to +\infty}{\longrightarrow} 0$.

$$|f_n(x_n) - f(x_n)| = f_n(x_n) = \left(1 - \frac{1}{n}\right)^n = e^{n\ln(1 - \frac{1}{n})} = e^{n\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{-1 + o(1)}} = e^{-1 + o(1)} \underset{n \to +\infty}$$

On a $\|f_n-f\|_{+\infty.I} \geq |f_n(x_n)-f(x_n)|$ $\nearrow f_{+\infty} 0$. d'où $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément

 $2^{e} \text{ m\'ethode: } g_{n}(x) = f_{n}(x) - f(x) = \begin{cases} f_{n}(x) = x^{n} \text{ si } x \neq 1 \\ 1 \text{ sinon} \end{cases} \text{donc } \left\|g_{n}\right\|_{+\infty,I} = 1 \underset{\mathbb{R}^{d} \to +\infty}{\longrightarrow} 0. \text{ Donc } \left(f_{n}\right)_{n \in \mathbb{N}}$ ne converge pas uniformément sur I.

Théorème 3.1.2 (convergence uniforme + continuite): Soit $I \subset \mathbb{R}$ un intervalle et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies sur I. Soit $f:I\to\mathbb{R}$ une fonction. Soit $x_0\in I$. On suppose

1. $\forall n \in \mathbb{N}, f_n \text{ est continue en } x_0 \ (f_n \in C^0(I,\mathbb{R}) \).$ 2. $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f \text{ sur } I.$

Alors f est continue en x_0 .

Démonstration: Soit $\varepsilon > 0$.

On a $f_n \overset{\text{CU}}{\longrightarrow} f$ sur I donc $\exists N \in \mathbb{N}, n \geq N \Rightarrow \forall x \in I, \left| f_{n(x)} - f(x) \right| \leq \frac{\varepsilon}{3}$. De plus, f_n est continue en x_0 donc $\exists \eta > 0, |x - x_0| \leq \eta \Rightarrow |f_n(x) - f_n(x_0)| \leq \frac{\varepsilon}{3}$. Soit $n \ge N$ et $x \in I$ to $|x - x_0| \le \eta$.

$$\begin{split} |f(x)-f(x_0)| &= |f(x)-f_N(x_0)+f_N(x_0)-f_N(x)+f_N(x)-f(x_0)| \\ &\leq |f(x)-f_N(x)|+|f_N(x)-f_N(x_0)|+|f_N(x_0)-f(x_0)| \leq \varepsilon. \end{split}$$

Ainsi, f est continue en x_0 .

Remarques:

- 1. Le théorème nous donne un critère supplémentaire pour justifier la non-convergence uniforme.
- 2. On remarque que l'on a pas besoin de la continuité uniforme sur I en entier, c'est suffisant de l'avoir sur un voisinage de x_0 (ou un intervalle fermé et borné contenant x_0).

Proposition 3.1.3 (Continuité uniforme sur tout segment + continuité): Soit $I \subset \mathbb{R}$ un intervalle. Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur I et f une fonction définie sur I. On suppose :

1. $\forall n \in \mathbb{N}, f_n \text{ est continue en } x_0.$

2. $f_n \xrightarrow{\circ} f$ sur $I \cdot \setminus$ sur tout segment $K = [a, b] \subset I$.

Alors f est continue sur I.

Démonstration: Soit $x_0 \in I, \exists K = [a, b]$ avec $a \neq b \neq x_0$ tel que $x_0 \in [a, b]$ On applique le théorème sur K donc f est continue en x_0 . D'où f continue sur I.

Exemple: Considérons pour $n \in \mathbb{N} \setminus 0$, $f_n : \mathbb{R} \to \mathbb{R}; x \mapsto \begin{cases} x^2 \sin(\frac{1}{nx}) & \text{if } x \neq 0 \\ 0 & \text{sinon} \end{cases}$ Comme

$$\left| x^2 \sin\left(\frac{1}{nx}\right) \right| \le x^2 \underset{x \to 0}{\longrightarrow} 0,$$

 f_n est continue en 0.

Convergence simple: Si $x=0, f_n(0)=0 \underset{n \to +\infty}{\longrightarrow} 0$. Si $x \in \mathbb{R} \setminus 0, f_n(x) \underset{n \to +\infty}{\sim} x^2 \frac{1}{nx} = \frac{x}{n} \underset{n \to +\infty}{\longrightarrow} 0$. Convergence uniforme sur tout gement $K=[-\alpha,\alpha] \forall \alpha \in \mathbb{R}_+ \setminus 0$:

 $g(x) = \sin x - x \quad \text{et} \quad g'(x) = \cos(x) - 1 \leq 0. \quad \text{De} \quad \text{plus}, \quad \forall x \in K, \\ g(x) \leq 0 \quad \text{donc} \quad |\sin(x)| \leq |x|.$ $\text{Donc} \ \forall x \in \mathbb{R}, \\ |f_n(x)| \leq x^2 \left(\frac{1}{nx}\right) \leq \frac{|x|}{n}.$

D'où:
$$\forall x \in [-\alpha, \alpha] = K, |f_n(x)| \leq \frac{\alpha}{n} \text{ donc } ||f_n - f||_{+\infty, K} = 0 \text{ et } f_n \xrightarrow{\text{CU}} f \text{ sur } K.$$

Ainsi, il y a convergence uniforme sur tout segment.

Montrons qu'il n'y a **pas** de convergence uniforme sur \mathbb{R} :

On prend $x_n = n$ et $f_n(x_n) = n^2 \sin\left(\frac{1}{n^2}\right) \sim n^2 \frac{1}{n^2} = 1$ On a

$$|f_n(x_n)-f(x_n)|=1\leq \|f_n-f\|_{+\infty,\mathbb{R}} \underset{\mathbb{R}\to+\infty}{\longrightarrow} 0$$

Remarque: La convergence uniforme ne se conserve pas lors d'une réunion infinie. Mais se conserve si elle l'est.

4. Intégration sur un segment et convergence uniforme.

On veut étudier une suite d'intégrales par exemple, on veut chercher la limite quand $n \to +\infty$ de la suite $(I_n)_{n \in \mathbb{N}}$ définie par $I_n = \int_0^1 \frac{n^4 + x^4}{(n+x)^4} \, \mathrm{d}x$. La tentation serait de dire qu'à x fixé, $\frac{n^4 + x^4}{(n+x)^4} \xrightarrow[n \to +\infty]{} 1$ et donc $I_n \xrightarrow[n \to +\infty]{} \int_0^1 1 \, \mathrm{d}x = 1$. En faisant cela, on dit que

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \int_0^1 \lim_{n \to +\infty} f_n(x) \, \mathrm{d}x$$

ce qui est généralement faux.

Théorème 4.1 (Convergence uniforme + intégration sur un segment): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur un $\mathbf{segment}\ I = [a,b].$ On suppose que:

 $\begin{array}{l} \text{1. } \forall n \in \mathbb{N}, f_n \text{ est continue sur } I. \\ \text{2. } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } I. \end{array}$

2.
$$f_n \xrightarrow{CU} f \text{ sur } I$$
.

Alors f est continue sur I et

$$\lim_{n\to +\infty} \int_a^b f_n(x) \,\mathrm{d}x = \int_a^b \lim_{n\to +\infty} f_n(x) \,\mathrm{d}x = \int_a^b f(x) \,\mathrm{d}x.$$

 $\begin{array}{lll} \textit{D\'emonstration:} & f & \text{est continue} & \text{sur } I & \text{par le th\'eor\`eme} & \text{de CU+continuit\'e} \\ \forall n \in \mathbb{N}, \left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| = \left| \int_a^b f_n(x) - f(x) \, \mathrm{d}x \right| \end{array}$

$$\begin{split} & \leq \int_a^b \lvert f_n(x) - f(x) \rvert \, \mathrm{d}x \\ & \leq \int_a^b \left\lVert f_n - f \right\rVert_{+\infty,I} \, \mathrm{d}x = \left\lVert f_n - f \right\rVert_{+\infty,I} (b-a) \underset{n \to +\infty}{\longrightarrow} 0 \end{split}$$

Remarque: Le théorème peut être utilisé pour montrer la non convergence uniforme.

Exemple: Soit $f_n:[0,1]\to\mathbb{R}; x\mapsto n\ln\left(1+\frac{x}{n}\right)$. On montre que $f_n\stackrel{\text{CU}}{\longrightarrow} f$ sur [0,1] où f(x)=x (en exercice) et donc on a

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, \mathrm{d} x = \int_0^1 x \, \mathrm{d} x = \frac{1}{2}.$$

5. Dérivation et convergence uniforme.

Théorème 5.1 (Convergence uniforme + primitive): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur un

Démonstration:

$$\begin{split} \forall x \in I, n \in \mathbb{N}, |F_n(x) - F(x)| &= \left| \int_a^x f_n(t) \, \mathrm{d}t - f(t) \, \mathrm{d}t \right| \\ &= \int_a^x |f_n(t) - f(t)| \, \mathrm{d}t \\ &\leq \int_a^b |f_n(t) - f(t)| \, \mathrm{d}t \\ &\leq \|f_n - f\|_{+\infty,I} (b-a) \underset{n \to +\infty}{\longrightarrow} 0 \text{ voir thm précedent.} \end{split}$$

$$\operatorname{Donc} F_n \xrightarrow{\operatorname{CU}} F.$$

Théorème 5.2 (Convergence uniforme + dérivation): Soit $(f_n)_{n\in\mathbb{N}}$ définie sur un **intervalle** I.

On suppose: 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^1 \text{ sur } I.$

- 2. $\exists \alpha \in I$ tel que $f_n(\alpha)$ converge. 3. $\exists g$ définie sur I telle que $f_n' \overset{\mathrm{CU}}{\longrightarrow} g$ sur tout segment $K \subset I$.

- 1. La suite $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f$ sur tout segment $K \subset I$.
- 2. f' = g

 ${\it D\'{e}monstration}$: On note $l=\lim_{n\to +\infty} f_n(x)$. Par 3. on déduit que g est C^0 sur tout segment $K\subset I$ donc C^0 sur I. On pose $G_n: I \to \mathbb{R}; x \mapsto \int_a^x f_n'(t) dt$.

Remarquons que $\forall x \in I, G_{n(x)} = f_n(x) - f_n(a)$. Par 3. + le thm de convergence uniforme+primitive $A_n \stackrel{\mathrm{CU}^1}{\longrightarrow} G$ où

Corollaire 5.1 (Convergence uniforme + dérivation): Soit $(f_n)_{n\in\mathbb{N}}$ définie sur un intervalle I. On suppose :

- $\begin{array}{l} 1. \ \, \forall n \in \mathbb{N}, f_n \ \mathrm{est} \ C^1 \ \mathrm{sur} \ I. \\ 2. \ \, \exists f \ \mathrm{d\acute{e}finie} \ \mathrm{sur} \ I \ \mathrm{telle} \ \mathrm{que} \overset{\mathrm{CS}}{\longrightarrow} f \ \mathrm{sur} \ I. \end{array}$
- 3. La suite de fonctions $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction $g:I\to\mathbb{R}$.

Alors:

- 1. La suite $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f$ sur tout segment $K \subset I$. 2. La fonction f est C^1 sur I.
- 3. f' = g

Théorème 5.3: Soit k>1, $I\subset\mathbb{R}$ un intervalle, et $\left(f_{n}\right)_{n\in\mathbb{N}}:I\to\mathbb{R}$ une suite de fonctions. On suppose:

- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^k \text{ sur } I.$
- 2. $\forall i \in \{0, -, k-1\}$ la suite $(f_n^{(i)})$ converge simplement sur I.
- 3. La suite des dérivées k-ième converge uniformément sur I (ou sur tout segment $K \subset I$) vers une fonction $g: I \to \mathbb{R}$.

Alors il existe une fonction f, C^k sur I telle que :

- 1. $f^{(k)} = g$
- 2. $\forall i \in \{0, -, k\}, f_n^{(i)} \xrightarrow{\text{CU}} f^{(i)}.$

Démonstration: par récurrence.

 $\textit{Remarque} \colon \operatorname{Si} f_n \overset{\operatorname{CU}}{\longrightarrow} f \text{ sur } I \text{ et } \forall n \in \mathbb{N}, f_n \text{ est } C^1 \text{ sur } I \text{ alors } f \text{ n'est pas forcément } C^1 \text{ sur } I.$

Théorème 5.4 (double limite): Soit $a \in \mathbb{R} \cup \{\pm \infty\}$ une borne d'un intervalle $I, (f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies sur I, et $f:I\to\mathbb{R}$ une fonction. On suppose :

$$\begin{array}{l} \text{1. } \forall n \in \mathbb{N}, f_n(x) \underset{x \to a}{\longrightarrow} l_n \in \mathbb{R}. \\ \text{2. } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } I. \end{array}$$

2.
$$f_n \xrightarrow{\text{CU}} f \text{ sur } I$$
.

Alors:

1. La suite numérique $(l_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}.$

2.
$$f(x) \xrightarrow[x \to a]{} l$$
.

On a donc

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x)_{=f(x)} \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x)_{=l_n} \right) = l$$

Démonstration:

1. Montrons que la suite (l_n) converge, donc est de Cauchy. Soit $\varepsilon > 0$ Par 2.,

$$\exists N \text{ tel que } \forall n \geq N, \text{ on a } \|f_n - f\|_{+\infty,I} \leq \frac{\varepsilon}{2}.$$

Soit $n \geq N$ et $p \in \mathbb{N}$.

$$\begin{split} \left| f_n(x) - f_{n+p}(x) \right| &= \left| f_n(x) - f(x) + f(x) - f_{n+p}(x) \right| \\ &\leq \left| f_n(x) - f(x) \right| + \left| f_{n+p}(x) - f(x) \right| \leq \varepsilon. \end{split}$$

On passe à la limite quand $x \longrightarrow a$ et $l_n - l_{n+p} \le \varepsilon$. donc (l_n) est de Cauchy donc converge.

2. Montrons $f(x) \xrightarrow[x \to a]{} l$.

 $\begin{array}{l} \text{Comme } f_n \stackrel{\text{CU}}{\longrightarrow} f \text{ sur } I, \exists N_1 \in \mathbb{N} \text{ tel que } n \geq N_1 \Rightarrow \|f_n - f\|_{+\infty, I} \leq \frac{\varepsilon}{3}. \\ \text{Comme } l_n \underset{n \to +\infty}{\longrightarrow} l, \exists N_2 \in \mathbb{N}, \text{tel que } n \geq N_2 \Rightarrow |l_n - l| \leq \frac{\varepsilon}{3}. \end{array}$

Posons $N = \max\{N_1, N_2\}$. Puisque $f_n(x) \longrightarrow l_n$

$$\exists \alpha > 0 \text{ tel que } \forall x \in I, |x-a| \leq \alpha \Rightarrow |f_n(x) - l_n| \leq \frac{\varepsilon}{3}$$

Soit $x \in I$ tel que $|x - a| \le \alpha$ et soit $n \ge N$. On a :

$$\begin{split} |f(x)-l| &= |f(x)-f_n(x)+f_n(x)-l_n+l_n-l| \\ &= |f(x)-f_n(x)|+|f_n(x)-l_n|+|l_n-l| \leq \varepsilon. \end{split}$$

 $DOnc \ f(x) \xrightarrow[x \to a]{} l.$

Remarque: La conclusion du théorème est vraie même si $l_n = +\infty$.

Exemple (Pour montrer la non convergence uniforme): On considère $f_n: I \to \mathbb{R}_+; x \mapsto \frac{x}{n+x}, n \geq 1$.

$$1. \ \forall n \in \mathbb{N}, f_{n(x)} \underset{x \to +\infty}{\longrightarrow} 1 = l_n \ \mathrm{donc} \ l_n \underset{n \to +\infty}{\longrightarrow} 1 = l.$$

2. CS de
$$(f_n)$$
: pour $x=0$ $f_n(0) \underset{n \to +\infty}{\longrightarrow} 0$. pour $x>0$ fixé, $f_{n(x)}=\frac{x}{n+x} \underset{n \to +\infty}{\longrightarrow} 0$ donc $f_n \overset{\text{CS}}{\longrightarrow} 0$.

Or

8

$$\lim_{x \to a} \Bigl(\lim_{n \to +\infty} f(x)\Bigr) = 0 = \lim_{n \to +\infty} \Bigl(\lim_{x \to a} l_n\Bigr)) = 1.$$

Faux donc 2. n'est pas vrai et il n'y a pas convergence uniforme.

Chapitre 2: Séries de fonctions.

6. Modes de convergence d'une série de fonctions.

Remarque: On considèrera un intervalle $I \subset \mathbb{R}$ et des fonctions $f: I \to \mathbb{R}$ mais il est possible de généraliser aux fonctions $f: I \to \mathbb{C}$ en remplacnt la valeur absolue par le module.

Définition 6.1: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur I. On appelle série de fonctions de terme général f_n la suite de fonctions

$$\left(S_n\right)_{n\in\mathbb{N}}\coloneqq S_n:I\to\mathbb{R};x\mapsto\sum_{k=0}^nf_k(x).$$

On note $\sum f_n$ une telle série de fonctions. La fonction S_n s'appelle la n-ième somme partielle de $\sum f_n$.

Définition 6.2 (Convergence simple): On dit qu'une série de fonctions $\sum f_n$ converge simplement sur I si pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge. Si $\sum f_n$ converge simplement sur I, on définit la fonction limite

$$S:I\to\mathbb{R};x\mapsto\sum_{n=0}^{+\infty}f_n(x)$$

La fonction S est appelée la fonction somme de $\sum f_n$ et est notée $S = \sum_{n=0}^{+\infty} f_n$.

Définition 6.3 (Reste): La fonction $S-S_n$ notée R_n s'appelle la fonction reste d'ordre n de $\sum f_n$, on note $R_n = \sum_{k=n+1}^{+\infty} f_k$. On a $R_n \stackrel{\text{CS}}{\longrightarrow} 0$ sur I.

Remarques:

- 1. Montrer que $\sum f_n$ converge simplement sur I c'est montrer que $S_n \stackrel{\text{CS}}{\longrightarrow} S$. 2. Si $\sum f_n$ converge simplement sur I, alors $S = \sum_{n=0}^{+\infty} f_n$ est définie sur I.
- 3. En général, il n'est pas posssible de calculer explicitement S.

Exemple: Soit $f_n:\mathbb{R}\to\mathbb{R}; x\mapsto x^n$. Pour $x\in\mathbb{R}$, tel que $|x|\geq 1, \sum f_n(x)$ diverge grossièrement car

 $f_n(x) \xrightarrow[n \to +\infty]{} 0.$ Si $x \in]-1,1[$, $S_n(x) = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x} \xrightarrow[n \to +\infty]{} S(x) = \frac{1}{1-x} \operatorname{donc} \sum f_n \text{ converge simplement sur }]-1,1[$. La fonction somme de $\sum f_n$ est seulement définie sur]-1,1[.

$$S:]\text{--}1,1 \to \mathbb{R}; x \mapsto \frac{1}{1-x}, \text{ et } R_n:]\text{--}1,1 \to \mathbb{R}; x \mapsto S(x) - S_{n(x)} = \frac{x^{n+1}}{1-x}.$$

Définition 6.4 (convergence absolue): On dit qu'une série de fonctions $\sum f_n$ converge absolument, noté CA sur I si $\forall x \in I$, la série numérique $\sum |f_n(x)|$ converge.

Proposition 6.1 (Convergence absolue => convergence simple): Si $\sum f_n$ converge absolument sur I alors $\sum f_n$ converge simplement sur I.

Démonstration: Voir cours séries numériques.

Exemples:

1. On considère la série de fonctions $\sum_{n\geq 1} f_n$ où $f_n:\mathbb{R}\to\mathbb{R}; x\mapsto \frac{(-1)^n}{x^2+n^2}$. Soit $x\in\mathbb{R}$,

$$|f_n(x)| = \frac{1}{x^2 + n^2} = \frac{1}{n^2 \left(\frac{x^2}{n^2} + 1\right)} \underset{+\infty}{\sim} \frac{1}{n^2}.$$

Par Riemann, et par équivalence, $\sum f_n$ converge absolument sur $\mathbb R$ donc converge.

2. On considère $\sum_{n\geq 1}f_n$ où $f_n:\mathbb{R}\to\mathbb{R}; x\mapsto \frac{(-1)^n}{\sqrt{(x^2+n^2)}}.$

Soit $x \in \mathbb{R}$

$$|f_n(x)| = \frac{1}{\sqrt{x^2 + n^2}} = \frac{1}{n\sqrt{\frac{x^2}{n^2} + 1}} \underset{+\infty}{\sim} \frac{1}{n}.$$

Donc f_n ne converge pas absolument sur \mathbb{R} .

Soit $x\in\mathbb{R}$. On pose $u_n(x)=\frac{1}{\sqrt{x^2+n^2}}\underset{n\to+\infty}{\longrightarrow}0.$ On a $(n+1)^2\geq n^2$ donc $x^2+(n+1)^2\geq x^2+n^2$ donc

$$\sqrt{x^2+(n+1)^2} \geq \sqrt{x^2+n^2} > 0 \text{ (par croissance de } \sqrt{\bigodot)}$$

$$u_{n+1}(x) \leq u_n(x).$$

Donc $(u_n(x))_{n\in\mathbb{N}\setminus 0}$ est décroissante. Par le critère special des séries alternées, $\sum f_n(x)$ converge et donc $\sum f_n$ converge simplement sur \mathbb{R} .

Définition 6.5 (convergence uniforme): On dit qu'une série de fonctions $\sum f_n$ converge uniformément sur I si la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ des sommes partielles converge uniformément sur I.

 $\it Remarque$: Cette définition est en général inutilisable car on ne connait pas une forme simple de S_n et S non plus.

Proposition 6.2: Si la série de fonctions $\sum f_n$ converge uniformément sur I alors $\sum f_n$ converge simplement sur I.

Démonstration: Cours sur les suites de fonctions

Proposition 6.3: Si une série de fonctions $\sum f_n$ converge uniformément sur I alors la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle.

Démonstration: Supposons $\sum f_n$ converge uniformément sur I. Pour tout $n \geq 1$, pour tout $x \in I$,

$$\begin{split} |f_n(x)| &= |S_n(x) - S_{n-1}(x)| = |S_n(x) - S(x) + S(x) - S_{n-1}(x)|) \\ &\leq |S_n(x) - S(x) + S(x)| + |S(x) - S_{n-1}x| \\ &\leq \|S_n - S\|_{+\infty,I} + \|S_{n-1} - S\|_{+\infty,I} \end{split}$$

$$\operatorname{Donc} \left\| f_n - 0 \right\|_{+\infty,I} \leq \left\| S_n - S \right\|_{+\infty,I} + \left\| S_{n-1} - S \right\|_{+\infty,I} \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } f_n \overset{\operatorname{CU}}{\longrightarrow} \text{ fct nulle sur } I.$$

Remarque: On se sert de ce résultat pour démontrer dans certains cas la non convergence uniforme.

Exemple:

On considère $\sum f_n$ où $f_n: \mathbb{R}_+ \setminus 0 \to \mathbb{R}; x \mapsto \frac{1}{1+n^2x}$.

Soit $x \in I$. On a $\frac{1}{1+n^2x} \underset{+\infty}{\sim} \frac{1}{n^2x}$. Par Riemann et par équivalence, $\sum_{CS} f_n(x)$ converge donc $\sum f_n$ converge simplement et converge absolument sur I. On a $f_n \xrightarrow{CS}$ fct nulle sur I. On va voir qu'elle n'est pas uniforme. Soit $x_n = \frac{1}{n^2}, n \ge 1$. $f_{n(x_n)} = \frac{1}{2}$ donc $\|f_n - 0\|_{+\infty, X} \ge \frac{1}{2}$ donc $\|f_n - 0\|_{+\infty, X} \xrightarrow{n \to +\infty} 0$. D'où la non convegrence uniforme.

Remarque: Cet exemple montre CA ≠ CU.

Proposition 6.4 (caractérisation de la convegrence uniforme avec les restes): Soit $\sum f_n$ une série de fonctions. $\sum f_n$ converge uniformément sur I si et seulement si

- 1. $\sum f_n$ converge simplement sur I.
- 2. La suite de fonctions $(R_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur I.

Démonstration:

On suppose $\sum f_n$ converge uniformément sur I donc S est bien définie sur I et on a H_1 . $\sum f_n$ converge uniformément sur $I \Leftrightarrow S_n \stackrel{\mathrm{CU}}{\longrightarrow} S$ sur $I \Leftrightarrow S_n - S \stackrel{\mathrm{CU}}{\longrightarrow} 0$. D'où H_2 .

Remarque: Ce résultat est en général inexploitable car on en connait pas R_n .

Définition 6.6 (convergence normale): On dit qu'une série de fonctions $\sum f_n$ converge normalement sur I si la série numérique $\sum \|f_n\|_{+\infty,I}$ est convergente.

Proposition 6.5: Soit $\sum f_n$ une série de fonctions. $\sum f_n$ converge normalement sur I si et seulement si il existe une suite numérique $(a_n)_{n\in\mathbb{N}}$ convergente telle que $\|f_n\|_{+\infty,I}\leq a_n$. La série numérique $\sum a_n$ est appelée une série majorante de $\sum f_n$.

Démonstration:

 \Rightarrow Si $\sum f_n$ converge normalement sur I, on pose $a_n = \|f_n\|_{+\infty,I}$ et $\sum a_n$ est une série majorante. \Leftarrow Si $\sum a_n$ est une série majorante, par le théorème de comparaison, $\sum \|f_n\|_{+\infty,I}$ converge. \square

Théorème 6.1 (Comparaison des modes de convergence): Soit $\sum f_n$ une série de fonctions sur I. On a

convergence normale \Rightarrow convergence absolue \Rightarrow convergence simple

et

convergence normale \Rightarrow convergence uniforme \Rightarrow convergence simple

 $\textit{D\'{e}monstration}\colon$ On suppose que $\sum f_n$ converge normalement sur I. Il existe une série majorante $\sum a_n$ pour $\sum f_n$.

- 1. Comme $\forall n \in \mathbb{N}, \left\|f_n\right\|_{+\infty,I} \leq a_n$, on a $\forall x \in I, 0 \leq |f_n(x)| \leq \left\|f_n\right\|_{+\infty,I} \leq a_n$. Par le théorème de comparaison, $\sum |f_n(x)|$ converge pour tout $x \in I$, donc $\sum f_n$ converge absolument sur I.
- 2. Comme converge normale \Rightarrow convergence absolue \Rightarrow convergence simple, $\sum f_n$ converge simplement sur I. Donc $\forall x \in I, R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$ est bien défini, et $\sum |f_n(x)|$ converge simplement sur I donc ses restes associés que l'on appelera R'_n sont bien définis.. Comme $\sum a_n$ converge, les restes d'ordre n, r_n sont bien définis.

$$\forall x \in I, |R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_n \right| \le \sum_{k=n+1}^{+\infty} |f_n| \le r_n = \sum_{k=n+1}^{+\infty} a_n \in \mathbb{R}.$$

Ainsi, $\|R_n - 0\|_{+\infty,I} \le r_n \underset{n \to +\infty}{\longrightarrow} 0$. D'où $R_n \xrightarrow{\text{CU}}$ fct nulle sur I. Donc $\sum f_n$ converge uniformément sur I.

Exemple:

1. $\sum_{n\geq 1} f_n$ où $f_n(x) = \frac{(-1)^n}{x^2 + n^{\frac{3}{2}}}$

2. Etudions les convergences sur $I =]0, +\infty[$ de $\sum f_n$ où $f_n(x) = nx^2 e^{-x\sqrt{n}}$.

* Convergence normale:

$$f_n'(x) = 2nxe^{-x\sqrt{n}} - n^{\frac{3}{2}}x^2e^{-x\sqrt{n}} = nxe^{-x\sqrt{n}}\big(2 - \sqrt{n}x\big)$$

par etude de tableau de variation on obtient que $\|f_n\|_{+\infty,I} = f_n\left(\frac{2}{\sqrt{n}}\right) = \frac{4}{e^2}$ Donc $\sum \|f_n\|_{+\infty,I}$ diverge grossièrement, ainsi, il n'y a pas de convergence normale.

 $* \underline{\text{Convergence absolue}:} \\ \text{Soit } x \in]0, +\infty[. \\ \text{On a } n^2f_n(x) = n^3x^2e^{-x\sqrt{n}} \\ \text{Donc par la règle de } n^\alpha u_n,$ $\sum |f_n(x)|$ converge. Donc converge absolument sur I. (et converge simplement sur I). * Comme $\|f_n\|_{+\infty,I}$ $\to 0$, donc (f_n) ne converge pas uniformément vers la fonction nulle donc $\sum f_n$ ne converge pas uniformément sur I.

Remarque: La convergence absolue et la convergence simple sont locales tandis que la convergence normale et uniforme sont globales.

Théorème 6.2 (double limite): Soit $\sum f_n$ une série de fonctions sur I un intervalle, a une borne de cet intervalle. On suppose :

 $\begin{array}{ll} \text{1.} & \forall n \in \mathbb{N}, f_n(x) \underset{x \to a}{\longrightarrow} l_n \in \mathbb{R}. \\ \text{2.} & \sum f_n \text{ converge uniformément sur } I. \end{array}$

Alors en notant S la fonction somme de la série $\sum f_n$ sur I,

1. La série des l_n converge. 2. $S(x) \underset{x \to a}{\longrightarrow} \sum_{n=0}^{+\infty} l_n$

C'est-à-dire:

$$\lim_{x\to a} \left(\lim_{n\to +\infty} \sum_{k=0}^n f_k(x) \right) = \lim_{n\to +\infty} \left(\lim_{x\to a} \sum_{k=0}^n f_k(x) \right)$$

 $extit{D\'emonstration}$: On considère $S_n(x) = \sum_{k=0}^n f_{k(x)}$ et on applique le théorème de la double limite à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$.

Remarques:

1. Sous l'hypothèse de convergence uniforme, on peut intervertir limite en x et signe somme à l'infiini en n. On a :

$$\lim_{x \to a} \sum_{k=0}^{+\infty} f_k(x) = \sum_{k=0}^{+\infty} \lim_{x \to a} f_k(x)$$

2. On peut se servir de ce théorème pour montrer qu'une série de fonctions ne converge pas uniformement.

Exemple:

On considère $\sum f_n$ où $f_n(x) = \frac{x^n}{1+nx^n}$ sur [0,1[. $\underline{\text{Convergence simple:}}$ On a $f_n(x) \underset{+\infty}{\sim} x^n$ donc par équivalence (car $f_n \geq 0$), $\sum f_n$ converge et, $\forall x \in [0,1[,f_n(x) \underset{n \to +\infty}{\longrightarrow} 0$. Donc $\sum f_n$ converge absolument et simplement sur [0,1[.

théroème d'équivalence, $\sum \|f_n\|_{+\infty}$ diverge. Il n'y a donc pas convergence normale.

Convergence uniforme: Si $\sum f_n$ converge sur I, alors le théorème de la double limite s'applique $\overline{\mathrm{donc\ lim}_{x o 1}\, f_n(x) = \frac{1}{1+n}} = l_n \ \mathrm{et\ donc\ } \sum l_n \ \mathrm{converge}.$ Contradiction donc $\sum f_n$ ne converge pas

 ${\it Remarque}\colon {\it Pour montrer}$ la non convergence uniforme on peut montrer que les f_n ne convergent pas uniformément vers la fonction nulle.

Théorème 6.3 (Continuité uniforme et continuité): Soit I un intervalle, $\sum f_n$ une série de fonctions sur I, $a \in I$. On suppose :

- 1. $\forall n, f_n$ est continue en a.
- 2. $\sum f_n$ converge uniformément sur I.

Alors la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ de $\sum f_n$ est continue en a.

Démonstration: On applique le théorème de continuité uniforme+continuité à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$

Théorème 6.4: Soit $\sum f_n$ une série de fonctions sur I. On suppose

- 1. $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$
- 2. $\sum f_n$ converge uniformément sur tout segment $K \subset I$.

Alors la fonction somme est continue sur I.

Exemple:

- 1. Déterminer l'ensemble de définition I de $S:?? \to \mathbb{R}; x \mapsto \sum_{n=1}^{+\infty} n^x e^{-nx}$.
- 2. Montrer que S est continue sur I.
- 3. Déterminer $\lim_{x\to+\infty} S$.

7. Intégration sur un segment d'une série de fonctions.

Théorème 7.1 (Convergence uniforme et intégration termes à termes): Soit $\sum f_n$ une série de fonctions définies sur $I = [a, b] \subset \mathbb{R}$. On suppose :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$
- 2. $\sum f_n$ converge uniformément sur I.

Alors

- 1. La fonction somme $S=\sum_{n=0}^{+\infty}f_n$ est continue sur I. 2. La série numérique $\sum \int_a^b f_n(x)\,\mathrm{d}x$ converge. 3. On peut intervertir la somme et l'intégrale, i.e $\int_a^b \sum f_n(x)\,\mathrm{d}x = \sum \int_a^b f_n(x)\,\mathrm{d}x$.

Démonstration: On applique le théorème de convergence uniforme + intégration sur un segment à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ où $S_n=\sum_{k=0}^n f_k$.

Exemple: Série « Mina-bili » de Johan Bernouilli 1697.

On veut montrer que

$$\int_0^1 x^x \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^n}.$$

On admet $\forall y \in \mathbb{R}, e^y = \sum_{n \in \mathbb{N}} \frac{y^n}{n!}$. Pout x > 0,

$$x^x = e^{x \ln(x)} = \sum \frac{x^n \ln(x)^n}{n!}$$

 $\text{Posons } f_0 = 1, f_n: [0,1] \to \mathbb{R}; x \mapsto \begin{cases} \frac{x^n \ln(x)^n}{n!} & \text{si } x \in]0,1[\text{ et posons par } g: [0,1] \to \mathbb{R}; x \mapsto x \ln x. \text{ Par \'etude de fonctions, on trouve } \|g\|_{+\infty,[0,1]} = \frac{1}{e} \text{ donc } \|f_n\|_{+\infty,[0,1]} = \frac{1}{e^n n!}. \text{ Par d'Alembert, } \frac{u_{n+1}}{u_n} = \frac{1}{e^{n+1}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n+1}} = \frac{1}{e^{n+1}} = \frac{1}{e^{n+1}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n+1}} = \frac{1}{e^{n+1}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n+1}} = \frac$ 0 donc $\sum u_n$ converge. Ainsi, $\sum f_n$ converge normalement sur [0,1] donc converge uniformément sur [0,1]. De plus, $\forall n \in \mathbb{N}, f_n$ est C^0 sur [0,1]. Par le théorème de convergence uniforme + intégration pour les séries de fonctions,

$$\int_0^1 x^x \, \mathrm{d}x = \int_0^1 \sum_{n=0}^{+\infty} f_n(x) \, \mathrm{d}x \underset{\text{thm}}{=} \sum_{n=0}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} = \sum_{n=0}^{+\infty} \int_0^1 \frac{x^n \ln(x)^n}{n!} \, \mathrm{d}x.$$

On psoe $J_{n,p} = \int_0^1 x^n \ln(x)^p dx$. Par changement de variables,

$$J_{n,p} = \left[\ln(x)^p \frac{x^{n+1}}{n+1}\right]_0^1 - \int_0^1 \frac{p}{n+1} x^n \ln(x)^{p-1} dx = -\frac{p}{n+1} J_{n,p-1}.$$

$$= (-1)^p \frac{p!}{(n+1)^p} J_{n,0} = (-1)^p \frac{p!}{(n+1)^{p+1}}$$

7.1. Dérivation d'une série de fonctions.

Théorème 7.1.1 (Convergence uniforme de la série des primitives.): Soit $\sum f_n$ une série de fonctions **continues** sur un **segment** I = [a,b]. Pour tout $n \in \mathbb{N}$, on considère par le théorème fondamental de l'analyse $F_n : [a,b] \to \mathbb{R}; x \mapsto \int_a^x f_n(t) \, \mathrm{d}t$. Alors, si la série de fonctions $\sum f_n$ converge uniformément sur I vers la fonction somme S, la série des primitives $\sum F_n$ converge uniformément sur I vers la fonction (somme) $T : [a,b] \to \mathbb{R}; x \mapsto \int_a^x S(t) \, \mathrm{d}t$.

Démonstration: On applique le théorème de convrgence uniforme de la suite des primitives à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ où $S_n=\sum_{k=0}^n f_k$

Théorème 7.1.2 (Dérivation, C¹ et CU, dérivation terme à terme): Soit $I \subset \mathbb{R}$ un intervalle et soit $\sum f_n$ une série de fonctions où $F_n: I \to \mathbb{R}$. On suppose :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^1 \text{ sur } I.$
- 2. $\sum f_n$ converge simplement sur I.
- 3. $\sum f'_n$ converge uniformément sur I.

Alors:

- 1. $\sum f_n$ converge uniformément sur tout segment $K \subset I$.
- 2. $S = \sum f_n \operatorname{est} C^1 \operatorname{sur} I$.
- 3. On peut permuter sommes et dérivées. $S' = \sum f'_n$

Remarque: On peut remplacer H2. par $\exists a \in I$ tel que $\sum f_n(a)$ converge. H3. par $\sum f'_n$ converge uniformément sur tout segment $K \subset I$.

Théorème 7.1.3: Soit $I \subset \mathbb{R}$ un intervalle et $\sum f_n$ une série de fonctions où $f_n : I \to \mathbb{R}$, et $k \ge 1$

- 1. On suppose:
- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^k \text{ sur } I.$
- 2. $\forall i \in \{0, -, k-1\}, \sum f_n^{(i)}$ converge simplement sur I.
- 3. $\sum f_n^{(k)}$ converge uniformément sur tout segment $K \subset I$.

Alors:

- 1. $\forall i \in \{0, -, k-1\}, \sum f_n^{(i)}$ CU sur tout segment $K \subset I$
- 2. la fonction somme est C^k sur I.
- 3. $S^{(i)} = \sum f_n^{(i)}$.

Exemple: On pose $f(x) = \sum_{n=1}^{+\infty} u_n$ avec $u_n = \frac{(-1)^n e^{-nx}}{n}$.

- 1. Donner le domaine de définition I de f.
- 2. Montrer que f est C^0 sur I.
- 3. Montrer que f est C^1 sur I et calculer f'.
- 4. Calculer $f \, \text{sur } I$.

.

- 1. Si x<0, u_n ne tend pas vers 0 donc $\sum u_n(x)$ diverge grossièrement. Si $x\geq 0$, On obtient une série alternée avec $\frac{e^{-nx}}{n}\underset{n\to+\infty}{\longrightarrow}0$ et $u_{n+1}\leq u_n$ donc par le critère spécial des séries alternées, $\sum u_n$ converge donc $I=\mathbb{R}_+$.
- 2. Pour x=0, $\left|u_{n(0)}=\frac{1}{n}\right|$ donc $\left|u_{n}(0)\right|$ diverge. Il n'y a pas de convergence absolue donc pas de convergence normale sur I. Etudions directement la convere uniforme.

$$|R_n(x)| = \left|\sum_{k=n+1}^{+\infty} u_k(x)\right| \leq \sup_{\mathrm{CSSA}} \left|u_{n+1}(x)\right| = \frac{e^{-(n+1)x}}{n+1} \leq \frac{1}{n+1}$$

Donc $\sum u_n$ converge uniformément sur $I\Leftrightarrow R_n$ converge uniformément vers la fonction nulle sur I. Ainsi, $\|R_n\|_{+\infty,I}\leq \frac{1}{n+1}\underset{n\to +\infty}{\longrightarrow} 0$ donc $\sum u_n$ converge uniformément sur I. Enfin, par le théorème de convergence uniforme+continuité, f est C^0 sur I car $\forall n\in\mathbb{N}, u_n$ est $C^{+\infty}$ sur I.

3. On a $\forall n \in \mathbb{N}, u_n$ est C^1 sur I. $\sum u_n$ converge simplement sur I. De plus, $u_n'(x) = (-1)^{n+1}e^{-nx} = -(-e^{-x})^n$. Pour x>0, c'est le terme général d'une série géomètrique convergente.

On regarde des intervalles de la forme $[a, +\infty[$, a>0. On a $\|u_n'\|_{+\infty, [a,b[}=e^{-an}$ qui est un terme d'une série géometrique qui converge.

Donc $\sum u_n'$ converge normalement sur $[a,+\infty[$. On applique le théorème de convergence uniforme + dérivation et donc f est C^1 sur $[a,+\infty[$ et $\forall x\in [a,+\infty[,f'(x)=-\sum -e^{(-x)^n}$ donc f est c^1 sur $\bigcup_{a>0}[a,+\infty[=]0,+\infty[$. Enfin,

$$\forall x \in]0, +\infty[, f'(x) = -\sum_{n=1}^{+\infty} (-e^{-x})^n = -\frac{-e^{-x}}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}} \xrightarrow[x \to 0]{} \frac{1}{2}$$

On en déduit que f est C^1 sur I et $f'(0) = \frac{1}{2}$.

4.
$$\forall x \in I, \int_0^1 f'(t) \, \mathrm{d}t = \int_0^x \frac{e^{-t}}{1 + e^{-t}} \, \mathrm{d}t = \left[-\ln(1 + e^{-t}) \right]_0^x = -\ln(1 + e^{-x}) + \ln 2$$

Donc
$$f(x) = -\ln(1 + e^{-x}) + \ln(2) + f(0)_{\sum \frac{(-1)^n}{x}}$$

VOIR TEL!!

Donc
$$f(x) = -\ln(1+e^{-x})$$

Chapitre 3: Séries entières.

8. Généralités sur les séries entières.

Définition 8.1: On appelle série entière de coefficients $(a_n)_{n\in\mathbb{N}}$ la série de fonctions de la forme $\sum f_n$ où $f_n:\mathbb{C} \to \mathbb{C}; z \mapsto a_n z^n.$ On notera une telle série sous la forme $\sum a_n z^n.$

Définition 8.2: L'ensemble D des $z \in \mathbb{C}$ tels que la série numérique $\sum a_n z^n$ converge est apppelé domaine de convergence de la série entière.

Définition 8.3: Soit $\sum a_n z^n$ une série entière, D le domaine de convergence de la série. On appelle la somme de la série entière la fonction

$$S\coloneqq:D\to C; z\mapsto \sum_{n=0}^{+\infty}a_nz^n$$

Exemples:

1. $\sum z^n$ Si |z| < 1, la série géométrique converge absolument donc simplement. Si $|z| \ge 1$, $z^n \longrightarrow 0$ donc la série diverge grossièrement. donc D = B(0,1).

2. $\sum_{n\geq 1}u_n \text{ avec } u_n=\frac{z^n}{n^2}.$ Si $|z|\leq 1,\frac{|z^n|}{n^2}\leq \frac{1}{n^2}$ donc $\sum u_n$ converge absolument. Si |z| > 1, on utilise la règle de d'Alembert. on a

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{|z|^{n+1}}{|z|^n} * \frac{n^2}{(n+1)^2} \underset{n \to +\infty}{\longrightarrow} |z| > 1$$

Donc $\sum u_n$ diverge grossièrement. Ici le domaine de convergence est donc $D=\overline{B}(0,1)$

3. $\sum_{n>1} u_n \text{ avec } u_n = \frac{z^n}{2^n n}$.

$$\left|\frac{u_{n+1}}{u_n}\right| = |z| \frac{2^n n}{2^{n+1} n + 1} \underset{n \to +\infty}{\longrightarrow} \frac{|z|}{2}.$$

Donc $\sum u_n$ converge absolument lorsque $\frac{|z|}{2} < 1 <=> |z| < 2$ et pour $|z| > 2, \sum u_n$ diverge par d'Alembert.

Si z=2, la série devient $\sum \frac{1}{n}$ qui diverge par Riemann. Si z=-2, la série devient $\sum \frac{(-1)^n}{n}$ qui converge par le critère spécial des séries alternées.

Ainsi, $B(0,2) \subseteq D \subseteq \overline{B}(0,2)$.

Proposition 8.1: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes, et $z_0\in\mathbb{C}$ tel que la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ soit bornée. Alors

$$\forall z \in \mathbb{C}, |z| < |z_0| \Rightarrow \sum a_n z^n$$
 converge absolument.

Démonstration: Soit $z_0 \in \mathbb{C}$ On suppose $z_0 \neq 0$ car sinon il n'y a rien à faire. On suppose $(a_nz^n)_{n\in\mathbb{N}}$ bornée. Il existe M>0 tel que $\forall n\in\mathbb{N}, |a_nz_0^n|\leq M\Leftrightarrow |a_n|\leq \frac{M}{|z_0|}$. Soit $z \in \mathbb{C}$, $|z| < |z_0|$.

$$\forall n \in \mathbb{N}, |a_n||z^n| \leq M \frac{|z^n|}{z_0}.$$

On a majoré la série par un terme d'une série géométrique convergente. Ainsi, par comparaison, $\sum a_n z^n$ converge absolument.

Définition 8.4: On appelle rayon de convergence de la série entière $\sum a_n z^n$ le nombre

$$R \coloneqq \sup\{r \in \mathbb{R}_+ \mid \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, (a_n r^n) < M\} \in \mathbb{R}_+ \cup \{+\infty\}$$

Exemples:

1. Le rayon de convergence de $\sum z^n$ est R=1.

Proposition 8.2: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Le rayon de convergence de la série entière $\sum a_n z^n$ vaut

$$R\coloneqq \sup\Bigl\{r\geq 0\ |\ |a_n|r^n\underset{n\to +\infty}{\longrightarrow} 0\Bigr\}$$

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{On note } I = \big\{ r \in \mathbb{R}_+ \mid \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, (a_n r^n) < M \big\}, \\ J = \sup \Big\{ r \geq 0 |a_n| r^n \underset{n \to +\infty}{\longrightarrow} 0 \Big\}. \text{ Par d\'{e}finition, } R = \sup I. \text{ On veut montrer que } R = \sup J \text{ On a } J \subset I \text{ donc } \sup J \leq R. \end{array}$

 $SI = \{0\}, I = J \text{ donc sup } I = \sup J$

Si I!= $\{0\}$, on peut poser $r \neq 0$. Soit $s \in [0, r]$,

$$|a_n s^n| = |a_n r^n| \left| \frac{s}{r} \right|^n \leq M \left| \frac{s}{r} \right|^n$$

Donc $\sum |a_n s^n|$ converge par comparaison donc $|a_n s^n| \underset{n \to +\infty}{\longrightarrow} 0$ or $s \in J$ donc $[0, r] \in J$ donc $\sup \{[0, r]\} = r \le \sup J$ donc par ordre total, $\sup J = \sup J = R$.

Remarques: Avec les notations de la preuve,

- 1. $0 \in I, 0 \in J$
- 2. $[0, R] \subset J \subset I \subset [0, R]$

Proposition 8.3 (Caractérisation du rayon de convergence): Soit $\sum a_n z^n$ une série entière et soit $R \in \mathbb{R}_+ \cup \{+\infty\}$. On a une équivalence entre les propriétés suivantes:

- 1. R est la rayon de convergence de $\sum a_n z^n$.
- 2. (i) $\forall z \in \mathbb{C}, |z| < R \Rightarrow \sum |a_n z^n|$ converge, et (ii) $|z| > R \Rightarrow \sum a_n z^n$ diverge grossièrement.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{Soit } I = \Big\{ r \geq 0 \mid \left(a_n r^n \right)_{n \in \mathbb{N}} \text{ est born\'{e}} \Big\}, \text{ et } J = \Big\{ r \geq 0 \mid a_n r^n \underset{n \rightarrow +\infty}{\longrightarrow} 0 \Big\}. \text{ On a vu que si } R_a \text{ est le rayon de convergence de } \sum a_n z^n, \text{ on a } [0, R_a[\subset J \subset I \subset [0, R_a]. \end{array}$

 $1 \Rightarrow 2$: Soit $z \in \mathbb{C}$. On suppose que $R = \text{rayon de convergence de } \sum a_n z^n$.

Si |z| < R, il existe r tel que $0 \le |z| < r < R$ donc $r \in I$ et $(a_n r^n)$ est bornée. Par le lemme d'Abel, $\sum a_n z^n$ converge absolument.

Si |z|>R, alors $|z|\notin I$ donc $(a_nz^n)_{n\in\mathbb{N}}$ n'est pas bornée et donc a_nz^n 0 donc la série entière diverge grossièrement.

 $2\Rightarrow 1$: On note R_a le rayon de convergence de sum a_n z^n on veut montrer $R=R_a$ On suppose

donc(i) et(ii)

$$\begin{array}{l} \text{Par }(i)\text{, pour tout } 0 < r < R, a_n r^n \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } r \in J. \\ \text{Par }(ii)\text{, } \forall |z| > R, (a_n z^n) \underset{p \to +\infty}{\longrightarrow} 0 \text{ donc } \forall r > R, r \notin J \text{ donc } R \leq \sup J = R_a \end{array} \quad \square$$

Remarque:

- 1. Si R=0, les points 1. et 2. se réduisent à $\forall z\in\mathbb{C}\setminus 0, \sum a_nz^n$ diverge grossièrement.
- 2. Si $R=+\infty$ les points 1. et 2. se réduisent à $\forall z\in\mathbb{C}, \sum a_nz^n$ converge absolument.

Corollaire 8.1: Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Son domaine de convergence D vérifie :

- 1. Si $R = 0, D = \{0\}$.
- 2. Si $R = +\infty, D = \mathbb{C}$.
- 3. Si $R \in]0, +\infty[$, $B(0, R) \subset D \subset \overline{B(0, R)}$.

 $\mathbb{C} \mid |z| = R$.

Exemples:

- 1. On considère $\sum u_n$ avec $u_n=z^n$. Par Cauchy, $|u_n|^{\frac{1}{n}}=|z|\underset{n\to+\infty}{\longrightarrow}|z|$. Si $|z|<1,\sum a_nz^n$ converge absolument et si $|z|>1,\sum a_nz^n$ diverge. Par la proposition, R=1 Si $z\in C(0,1), \forall n\in\mathbb{N}, z^n\in C(0,1)$ donc $z^n\underset{n\to+\infty}{\longrightarrow}0$ donc $\forall z\in C(0,1),\sum a_nz^n$ diverge grossièrement. Donc ici, D = (0, 1).
- 2. On considère $\sum u_n$ avec $u_n = \frac{r^n}{n2^n}, r \in [0, 2[$. Par d'Alembert, $\frac{u_{n+1}}{u_n} = \frac{n}{n+1} \frac{r}{2} \xrightarrow[n \to +\infty]{r} \frac{r}{2} < 1$. Donc $\sum u_n \text{ converge, donc } R \geq 2.$ Pour $r=2, \frac{2^n}{n2^n}=\frac{1}{n}$ terme général d'une série qui diverge. donc R=2 et $B(0,2)\subsetneq D\subsetneq \overline{B(0,2)}$

Exercice 1: Donner un exemple où $R \in]0, +\infty[$ et D = (0, R)

Exercice 2: Calculer le rayon de convergence de $\sum \frac{z^n}{n^2+in}$

Exercice 3: Déterminer le rayonde convergence de $\sum \ln \frac{n}{2^n} z^2 n$

Théorème 8.1: Soit $\sum a_n z^n$ une série entière, R son rayon de convergence et $r \in [0, R[$. $\sum a_n z^n$ converge normalement et donc uniformément sur tout disque fermé (compact en vrai mais veut pas expliquer ce que c'est $B(0,r) \subset B(0,R)$.

 $\textit{D\'{e}monstration} \colon \text{Soir } r \in [0, R[. \ \forall z \in B(0, r), |a_n z^n| \leq |a_n r^n| \text{ terme g\'{e}n\'{e}ral d'une s\'{e}rie convergente}]$ car r < R. Donc $\|a_n z^n\|_{+\infty, B(0,R)}$ converge donc $\sum a_n z^n$ converge normalement sur $\overline{D(0,r)}$

Remarque: En général, on ne peut pas obtenir la convergence normale sur B(0,R).

9. Calcul du rayon de convergence.

Théorème 9.1 (règle de d'Alembert pour les séries entières.): Soit $\sum a_n z^n$ une série entière telle que $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow a_n \neq 0$. Si $\left|\frac{a_{n+1}}{a_n}\right| \underset{n \to +\infty}{\longrightarrow} l$, alors le rayon de convergence de $\sum a_n z^n$ est $R = \frac{1}{l}$ avec la convention que $\frac{1}{0} + = +\infty$ et $\frac{1}{+\infty} = 0$.

Démonstration: Pour z=0, on a $\sum a_n z^n$ converge absolument. Pour $z\in\mathbb{C}$, on applique d'Alembert de manière classique à $\sum a_n z^n$.

$$\left|\frac{u_{n+1}}{u_n}\right| = \left|\frac{a_{n+1}}{a_n}\right| |z| \underset{n \to +\infty}{\longrightarrow} l|z|.$$

Si $l=0, \forall z\in\mathbb{C}$, D'après d'Alembert, $\sum a_nz^n$ converge absolument donc $R=+\infty$ et $R=\frac{1}{l}$. Si $l=+\infty, \forall z\in\mathbb{C}\setminus 0, \sum a_nz^n$ diverge grossièrement donc $R=0=\frac{1}{l}$.

Si $l \in]0, +\infty[$, par d'Alembert, $l|z| < 1 \Leftrightarrow |z| < \frac{1}{l}, \sum a_n z^n$ converge absolument. $|z|l > 1 \Leftrightarrow |z| > \frac{1}{l}, \sum a_n z^n$ diverge grossièrement. donc $R = \frac{1}{l}$.

Exemples:

1. $\sum a_n z^n$ avec $a_n = \frac{2^n}{n+1}$.

$$\left| \frac{a_{n+1}}{a_n} \right| = 2^{n+1} \frac{n+1}{(n+2)2^n} \underset{n \to +\infty}{\longrightarrow} 2$$

donc $R = \frac{1}{2}$ par la règle de d'Alembert pour els séries entières.

1. $\sum a_n z^{2n} \text{ avec } a_n = \frac{2^n}{n+1}.$

$$\left|\frac{a_{n+1}z^{n+1}}{a_nz^n}\right| = \left|\frac{2^{n+1}(n+1)}{(n+2)2^n}\right| |z^2| \longrightarrow 2|z|^2.$$

Si $2|z|^2<1\Leftrightarrow |z|<\frac{\sqrt{2}}{2},\sum a_nz^n$ converge absolument par d'Alembert et diverge grossièrement si $|z|>\frac{\sqrt{2}}{2}.$ Ainsi, $R=\frac{\sqrt{2}}{2}.$

Théorème 9.2 (règle de Cauchy pour les séries entières.): Soit $\sum a_n z^n$ une série entière telle que $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow a_n \neq 0$. Si $\left|a_n^{\frac{1}{n}}\right| \underset{n \to +\infty}{\longrightarrow} l$, alors le rayon de convergence de $\sum a_n z^n$ est $R = \frac{1}{l}$ avec la convention que $\frac{1}{0} + = +\infty$ et $\frac{1}{l} = 0$.

Proposition 9.1: Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de converge respectifs R_a et R_b .

- 1. Si $a_n = O_{+\infty}(b_n)$ alors $R_a \ge R_b$.
- 2. Si $a_n = o_{+\infty}(b_n)$ alors $R_a \geq R_b.$
- 3. Si $a_n \underset{+\infty}{\sim} b_n$ alors $R_a = R_b$.

 $\begin{array}{ll} \textit{D\'{e}monstration:} & \text{Par} & \text{d\'{e}finition,} & R_a = \sup I_a, R_b = \sup I_b \text{avec} & I_a = \left\{r \geq 0 \mid (a_n r^n)_{n \in \mathbb{N}} \text{ est born\'{e}e}\right\}, I_b = \left\{r \geq 0 \mid (b_n r^n)_{n \in \mathbb{N}} \text{ est born\'{e}e}\right\}. \\ 1. & \text{Si } a_n = O(b_n), \exists K > 0, \text{ et } N \in \mathbb{N}, \text{ tel que } \forall n \geq N, |a_n| \leq K|b_n|. \text{ Soit } r \geq 0. \end{array}$

 $\forall n \geq N, |a_n r^n| \leq K |b_n| r^n. \mbox{ Ceci montre } I_b \subset I_a \mbox{ donc } R_a \geq R_b.$

- 1. Si $a_n = o(b_n), a_n = O(b_n)$ donc on applique 1.
- 2. $a_n \sim b_n \Leftrightarrow (a_n = O(b_n) \text{ et } b_n = O(a_n)) \text{ donc } R_a = R_b \text{ par 1.}$

Proposition 9.2: Soit $\sum a_n z^n$. Les séries $\sum a_n z^n$ et $\sum n a_n z^n$ ont le même rayon de convergence.

 $extit{D\'{e}monstration}$: On note R et R' les rayons de convergence respectifs des séries. Comme $a_n = o(na_n)$, on a $R \geq R'$. Montrons $R' \geq R$. Soit $z \in \mathbb{C}$ tel que |z| < R. Soit $r \in \mathbb{R}_+$ tel que |z| < r < R. On a

$$\forall n \in \mathbb{N}, n|a_n||z|^n = n \bigg|a_n \bigg(\frac{z}{r}\bigg)^n\bigg|r^n \leq C|a_n r^n| \, \operatorname{car} \lim_{n \to +\infty} n \bigg|\frac{z}{r}\bigg|^n = 0.$$

Comme $r < R, C|a_n|r^n$ est le terme général d'une série convergente, par comparaison, $\sum na_nz^n$ convere absolument, d'où $R' \geq R$.

10. Opérations algébriques sur les séries entières.

Théorème 10.1 (Somme de deux séries entières): Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs r_a et r_b . On appelle somme de ces 2 séries entières, $\sum a_n z^n + \sum b_n z^n$ la série entière $\sum (a_n + b_n) z^n$. Son rayon de convergence est :

$$\begin{cases} R = \min(r_a, r_b) \text{ si } r_a \neq r_b \\ R \ge \min(r_a, r_b) \text{ si } r_a = r_b \end{cases}$$

Si $|z| < \min(r_a, r_b)$ alors

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

Théorème 10.2 (Produit de deux séries entières): Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs r_a et r_b . On appelle produit de Cauchy de ces 2 séries entières, $\sum a_n z^n \times \sum b_n z^n$ la série entière $\sum (c_n) z^n$. avec $c_n = \sum_{k=0}^n a_k b_{n-k}$ Son rayon de convergence est : $R \ge \min(r_a, r_b)$ et Si $|z| < \min(r_a, r_b)$ alors

$$\sum_{n=0}^{+\infty}(a_k+b_{n-k}z^n=\sum_{n=0}^{+\infty}a_nz^n\times\sum_{n=0}^{+\infty}b_nz^n$$

Remarque: Si $R_a \neq R_b$, on peut avoir $R > \min(r_a, r_b)$

Exemple: On considère $\sum a_n z^n = 1 - z$ i.e, $a_0 = 1, a_1 = -1, a_n = 0 \forall n \geq 2, \sum b_n z^n = \sum z^n$. on a $r_a = +\infty, r_b = 1$ et $\sum a_n z^n \sum b_n z^n = 1$ donc $R = +\infty > \min(r_a, r_b) = 1$.

Chapitre 4: Fonctions développables en séries entières et fonctions analytiques.

11. Séries entières d'une variable.

11.1. Régularité de la somme d'une série entière de $\mathbb{R}[[x]]$

Remarque (notation):

On note $\mathbb{C}[[z]]$ l'anneau des séries entières complexes qui contient $\mathbb{C}[z]$.

On note $\mathbb{R}[[x]]$ l'anneau des séries entières réelles qui contient $\mathbb{R}[x]$.

Définition 11.1.1 (Dérivée formelle): Soit $S_n = \sum a_n z^n$. La dérivée formelle est

$$\partial \Bigl(\sum a_n z^n\Bigr)\coloneqq \sum na_n z^{n-1}.$$

Théorème 11.1.1: Soit $\sum a_n x^n \in \mathbb{R}[[x]]$, R son rayon de convergence, et S sa fonction somme. S est C^{∞} sur l'intervalle ouvert]-R,R[.

De plus, $\forall x \in]-R, R[, \forall i \in \mathbb{N},$

$$S^{(i)}(x) = \sum_{n=0}^{+\infty} a_n (x^n)^{(i)} = \sum_{n=i}^{+\infty} n(n-1)...(n-i+1)x^{n-i}$$

Démonstration: Soit $r \in]0, R[$. On a convergence normale sur [-r, r]. De plus, d'après la Proposition 9.2, toute les dérivées ont convergence normale sur [-r, r].

Ainsi,
$$\forall i \in \mathbb{N}, S \text{ est } C^i \text{ sur }] - R, R [= \bigcup_{0 < r < R} [-r, r].$$

Théorème 11.1.2 (intégrale de la somme d'une série entière): Soit $\sum a_n x^n$ une série entière de rayon de convergence R>0, soit $[a,b]\subset]-R,R[$. Alors

$$\int_a^b \sum_{n=0}^{+\infty} a_n x^n \, \mathrm{d}x = \sum_{n=0}^{+\infty} \int_a^b a_n x^n \, \mathrm{d}x = \sum_{n=0}^{+\infty} \left[a_n \frac{x^{n+1}}{n+1} \right]_a^b$$

Démonstration: On applique le théorème d'intégration sur un segment des séries de fonctions en remarquant que $\sum a_n z^n$ converge normalement sur [a,b].

Corollaire 11.1.1: Soit $\sum a_n x^n$ une série entière de rayon de convergence R>0. Alors la série $\sum a_n \frac{x^{n+1}}{n+1}$ a le même rayon de convergence et sa somme est la primitive de la somme de $\sum a_n x^n$ qui s'annule en 0.

Théorème 11.1.3 (calcul des coefficients d'une série entière): Soit $\sum a_n x^n$ une série entière réelle de rayon de convergence R. Soit S la fonction somme de la série. Alors pour tout $n \in \mathbb{N}$,

$$a_n = \frac{S^{(n)}(0)}{n!}.$$

Démonstration: La démonstration s'explique notamment par le Théorème 11.1.1 suivant.

Si $x\in]-R, R[,S(x)=\sum_{n=0}^{+\infty}a_nx^n.$ On fait x=0 et $S(0)=a_0$

$$S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$$

Donc pour $x = 0, S'(0) = a_1$.

$$S''(x) = \sum_{n=1}^{+\infty} n(n+1)a_{n+1}x^{n-1} = \sum_{n=0}^{+\infty} (n+1)(n+2)a_{n+2}x^n$$

Donc pour $x = 0, S''(0) = 2a_2$.

...

Corollaire 11.1.2: Soit $A=\sum a_nx^n, B=\sum a_nx^n$ deux séries entières réelles de rayons de convergence respectifs R_a et R_b et de fonctions sommes S_a et S_b . On suppose qu'il existe un voisinage ouvert U de 0 et pour tout $x\in U$,

$$S_a(x)=\sum_{n=0}^{+\infty}a_nx^n=S_b(x)=\sum_{n=0}^{+\infty}b_nx^n.$$

Alors pour tout $n \in \mathbb{N}$, $a_n = b_n$ donc A = B.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{D\'{a}pr\`{e}s l'hypoht\`{e}se, il existe } r>0, r< R_a, r< R_b \text{ tel que } \forall x\in]-r, r[, S_a(x)=S_b(x). \text{ La s\'{e}rie enti\`{e}re } A-B=\sum (a_n-b_n)x^n \text{ a un rayon de convergence} \geq R_a \text{ et } R_b. \text{ Ainsi, } \forall x\in]-r, r[, S(x)S_a(x)-S_b(x)=0 \text{ donc pour tout } n\in \mathbb{N}, S^{(n)}(x)=0. \end{array}$ Par le th\'{e}or\`{e}me,

$$\forall n \in \mathbb{N}, a_n - b_n = \frac{S^{(n)}(0)}{n!}$$

12. Développement en série entière et fonctions analytiques.

Définition 12.1: Soit U un ouvert de \mathbb{C} , $f:U\to\mathbb{C}$ et $z_0\in U$. On dit que f est développable en série entière (DSE) au voisinage de x_0 ou en z_0 si il existe $\varepsilon>0$ et une série entière $\sum a_nz^n$ in $\mathbb{C}[[z]]$ de rayon de convergence ε tels que $D(z_0,\varepsilon)\subset U$ et $\forall z\in D(z_0,\varepsilon), f(z)=\sum a_n(z-z_0)^n$. On dit que f est analytique sur U si f est DSE sur U.

Définition 12.2: Soit $I\subset\mathbb{C},\ f:I\to\mathbb{C}$ et $x_0\in I$. On dit que f est développable en série entière (DSE) en x_0 si il existe $\varepsilon>0$ et une série entière $\sum a_nx^n$ in $\mathbb{R}[[z]]$ de rayon de convergence $>\varepsilon$ tels que $D(x_0,\varepsilon)\subset I$ et $\forall z\in D(x_0,\varepsilon), f(x)=\sum a_n(x-x_0)^n$. On dit que f est analytique sur I si f est DSE sur I.

Remarque: Une fonction polynomiale est analytique sur \mathbb{C} .

Exemple: On a déjà vu que si |z| < 1, $\frac{1}{1-z} = \sum z^n$. Donc $f(z) = \frac{1}{1-z}$ est DSE en 0 de série entière associée $\sum z^n$ et le DSE est valable sur D(0,1).

Exemple: La fonction $f(x)=e^x$ est DSE en 0 de série entière $\sum \frac{x^n}{n!}$ et le DSE est valable sur \mathbb{R} . En effet pour x=0, on a bien $e^0=\sum \frac{0^n}{n!}$ Pour $x\neq 0, \forall n\in \mathbb{N}, \exists c\in]0, x[$ tel que $e^x=\sum_{k=0}^n \frac{x^k}{k!}+e^c\frac{x^{n+1}}{(n+1)!}$ donc

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| = \frac{|x|^{n+1}}{(n+1)!} e^c \le |x|^{n+1} \frac{e^x}{(n+1)!}$$

qui est le terme général d
 une série qui converge par d'Alembert. Alors $e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$

Exemple: Soit $f(x) = \frac{1}{2+z}, z \in \mathbb{C} \setminus \{-2\}$. On va montrer que f est DSE en z = 0 et en z = 1.

$$f(z) = \frac{1}{2+z} = \frac{1}{2} \frac{1}{1+\frac{z}{2}} = \frac{1}{2} \frac{1}{1-\left(-\frac{z}{2}\right)} \underset{\text{si}}{=} \frac{|z|}{2 < 1} \sum \frac{1}{2} \left(-\frac{z}{2}\right)^n = \sum \frac{(-1)^n}{2^{n+1}} z^n.$$

Ainsi, f est DSE en 0 de série associée $\sum \frac{(-1)^n}{2^{n+1}} z^n$ DSE valable sur D(0,2). On pose u=z-1, z=u+1 $f(z)=\frac{1}{3+u}=\frac{1}{3}\frac{1}{1-(-\frac{u}{3})} = \frac{1}{|u|<3} \frac{1}{3} \sum \frac{(-1)^n}{3^n} u^n$

12.1. Régularité des fonctions DSE.

Théorème 12.1.1: Soit $I \subset \mathbb{R}$ un intervalle ouvert, $x_0 \in I$. Si f est DSE en x_0 de série associée $\sum a_n x^n$ alors il existe $\varepsilon > 0$ tel que pour tout $x \in]x_0 - \varepsilon, x_0 + \varepsilon[, f(x) = \sum a_n (x - x_0)^n$. Alors

- 1. $f \operatorname{est} C^{\infty} \operatorname{sur}]x_0 \varepsilon, x_0 + \varepsilon[.$
- 2. f est analytique sur $]x_0 \varepsilon, x_0 + \varepsilon[$.
- 3. $\forall k \geq 1, f^{(k)}$ est DSE en x_0 de série entière associée $\mathrm{d}^{(k)}(\sum a_n x^n)$ sur $]x_0 \varepsilon; x_0 + \varepsilon[$ donc :

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n (x-x_0)^{n-k} = \sum_{n=0}^{+\infty} \frac{(n+k)!}{n!} a_{n+k} (x-x_0)^n.$$

4. $\forall n\geq 0,$ $a_n=\frac{f^{(n)}(x_0)}{n!}$ est le coefficient de Taylor de f en x_0 i.e $\sum a_n x^n$ est la série de Taylor de f en x_0 .

Démonstration: « Déjà fait ».

Corollaire 12.1.1: Soit $I \subset \mathbb{R}$ un intervalle ouvert et soit $f: I \to \mathbb{C}$ analytique sur I. Alors f est C^{∞} sur I.

Corollaire 12.1.2: Si f est DSE en x_0 alors f est C^{∞} au voisinage de x_0 .

Corollaire 12.1.3: Si f est DSE en x_0 la série entière associée est unique.

 $\begin{array}{l} \textit{Exemple} \colon \text{On a vu que } x \mapsto \frac{1}{1-x} \text{ est DSE en 0 de série entière } \sum x^n \text{ valable sur }] - 1, 1[. \\ \text{Donc } x \to \frac{1}{(1-x)^2} \text{ est DSE en 0 de série entière associée } \sum_{n \geq 1} n x^{n-1} = \sum_{n \geq 0} (n+1) x^n. \\ \text{et } x \mapsto \frac{2}{(1-x)^3} \text{ est DSE en 0 de série entière associée } \sum_{n \geq 1} n (n+1) x^{n+1} = \sum_{n \geq 0} (n+1) (n+2) x^n. \end{array}$

Corollaire 12.1.4: Soit $I \subset \mathbb{R}$ un intervalle ouvert et $x_0 \in I$, $f: I \to \mathbb{C}$ une fonction DSE en x_0 valable sur $]x_0 - \varepsilon, x_0 + \varepsilon[$. Alors toute primitive F de f est DSE en x_0 valable sur le même intervalle. On peut obtenir la série entière associée à F en intégrant celle de f.

Exemple: On a $\frac{1}{1-x} = \sum x^n$ si $x \in]-1,1[$. $x \mapsto -\ln(1-x)$ est la primitive de $\frac{1}{1-x}$ qui s'annule en x=0. Soit $x \in]-1,1[$ $\sum x^n$ converge normalement sur $[0,x] \subset]-1,1[$ donc

$$\int_0^x \frac{1}{1-t} \, \mathrm{d}t = \left[-\ln(1-t)\right]_0^x = \sum_{n=0}^{+\infty} \int_0^x t^n \, \mathrm{d}t = \sum_{n=0}^{+\infty} \left[\frac{t^{n+1}}{n+1}\right]_0^x = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

donc $x\mapsto -\ln(1-x)$ est DSE en 0 de série entière associée $\sum_{n\geq 0}\frac{x^{n+1}}{n+1}$ valable sur] -1,1[.

Théorème 12.1.2: Soit $I \subset \mathbb{R}$ et $f: I \to \mathbb{C}$ une fonction DSE en $x_0 \in I$. Alors les dérivées succesives et les primitives de f sont DSE en x_0 .

Théorème 12.1.3: Soit $X \subset \mathbb{C}$ un ouvert, $f,g: X \to \mathbb{C}$ deux fonctions DSE en $z_0 \in X$. Alors pour tout $\lambda \in \mathbb{C}$, $\lambda f, f + g, fg$ sont DSE en z_0 de séries entières associées données par la somme et le produit de Cauchy (Théorème 10.1)

Proposition 12.1.1 (Parité de fonctions): Soit $f:]-a,a[\to \mathbb{R}$ une fonction paire (resp. impaire) sur]-a,a[qui est DSE en 0 de série entière associée $\sum a_n x^n$. Alors $a_{2n+1}=0$ (resp. $a_{2n}=0$).

Démonstration: $\exists \varepsilon > 0$ tel que $] - \varepsilon, \varepsilon[\subset] - a, a[$ et

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n = f(-x) = \sum_{n=0}^{+\infty} (-1)^n a_n x^n.$$

Par Corollaire 11.1.2, $\forall n \in \mathbb{N}, a_n = (-1)^n a_n$.

Remarque (Rappel): f DSE en $x_0 \Rightarrow f$ est C^∞ en $x_0 \Rightarrow f$ admet un DL en x_0 à l'ordre n.

12.2. Développement en série entière et développement limités.

Proposition 12.2.1: Soit $I \subset \mathbb{R}$ un intervalle ouvert, $x_0 \in I$, $f: I \to \mathbb{R}$ une fonction DSE en x_0 . de série entière associée $\sum_{n \geq 0} a_n x^n$. Alors $\forall n \in \mathbb{N}$, f admet un DL à l'ordre n en x_0 donné par

$$f(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n + o((x - x_0)).$$

Démonstration: On suppose que $x_0 = 0$.

Soit R > 0 le rayon de convergence de $\sum a_n x^n$. Par hypothèse, il existe 0 < r < R tel que $\forall x \in]-r,r[$,

$$f(x) = \sum_{m=0}^{+\infty} a_m x^m = \sum_{k=0}^{n} a_k x^k + x^n \sum_{n=1}^{+\infty} a_{n+p} x^p$$

On pose pour $p \geq 0,$ $b_p = \left\{ egin{align*} 0 & ext{si } n = 0 \\ a_{n+p} & ext{sinon} \end{array}
ight.$ On doit montrer

$$\lim_{x \to 0} \sum_{p=1}^{+\infty} b_p x^p = 0.$$

Pour tout $p \ge 1$,

$$\big|b_p\big|r^p=\big|a_{n+p}\big|r^p=\frac{\big|a_{p+n}\big|r^{p+n}}{r^n}\leq M$$

car $\sum a_k r^k$ converge et donc son terme général tend vers 0. Ainsi, par le lemme d'Abel, on en déduit que $\sum b_p z^p$ converge normalement sur tout [-r',r'] et donc la fonction somme est une fonction conitnue de z ainsi

Remarque: Une fonction C^{∞} au voisinage de 0 n'est pas forcement DSE en 0 ni analytique au voisinage de 0.

 $\begin{aligned} \textit{Exemple:} \ f(x) &= \begin{cases} e^{-\frac{1}{x^2}} \sin x \neq 0, \ f^{(n)}(x) = \text{fonction rationnellle en } \mathbf{x} \times e^{-\frac{1}{x^2}} &\longrightarrow 0 \ \text{donc} \ f \\ \text{est } C^{\infty} \sin \mathbb{R}, \text{ et } \forall n \geq 0, f^{(n)}(0) = 0 \ \text{Sa s\'erie de Taylor en } 0 \ \text{est donc} \ \sum_{n \geq 0} \frac{f^{(n)}(0)}{n!} x^n = 0. \end{aligned}$ Si f admet un DSE en 0, ce DSE est donné par la série de Taylor mais f(x) = somme de la série de taylor seulement pour x = 0

12.3. Conditions pour admettre un DSE.

Théorème 12.3.1 (Taylor avec reste intétral): Soit R > 0, f une fonction C^{n+1} sur] - R, R[. Pour tout $x \in] - R$, R[, on a

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{n} + r_{n}(x)$$

où
$$r_n(x)=\int_0^x \frac{(x-t)^n}{n!}f^{(n+1)}(t)\,\mathrm{d}t.$$

Théorème 12.3.2: Soit R>0, f une fonction C^{∞} sur]-R, R[. On suppose qu'il existe M>0 et a>0 tel que $\forall n\in\mathbb{N}, \forall x\in]-R, R[, \left|f^{(n)}(x)\right|\leq Ma^n$. Alors f admet un DSE au voisinage de 0 donné par sa série de Taylor.

 $D\'{e}monstration$: On doit montrer que le r_n du développement de taylor tend vers 0 avec les conditions de ce précédent théorème.

$$|r_n(x)| \leq \left| \int_0^x \frac{(x-t)^n}{n!} Ma^{n+1} \, \mathrm{d}t \right| \leq \left| \left[\frac{Ma^{n+1}}{n!} - \frac{(x-t)^{n+1}}{n+1} \right]_0^x \right| = \frac{Ma^{n+1}}{n!} \frac{|x|}{n+1}.$$

Par d'Alemebert la série $\sum \frac{Ma^{n+1}}{n!} \frac{|x|}{n+1}$ converge donc $\frac{Ma^{n+1}}{n!} \frac{|x|}{n+1} \xrightarrow[n \to +\infty]{} 0$.

Proposition 12.3.1 (DSE classique):

1.
$$\frac{1}{1-x} = \sum x^n$$
, si $x \in]-1,1[$.

2.
$$e^x = \sum \frac{x^n}{n!}$$
, si $x \in \mathbb{R}$.

3.
$$\ln(1-x) = -\sum \frac{x^{n+1}}{n+1}$$
, si $x \in]-1,1[$.

4.
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n!}$$
 si $x \in \mathbb{R}$.

5.
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 si $x \in \mathbb{R}$.

6.
$$(1+x)^{\alpha}=\sum \frac{\alpha(\alpha-1)\dots(\alpha-(n+1))}{n!}x^n$$
 si $x\in]-1,1[$

Remarque:
$$\sqrt{1+x} = \sum (-1)^{n+1} \frac{1\cdot 3\cdot 5\cdots (2n-3)}{2^n n!} x^n = \sum (-1)^{n+1} \frac{(2n-2)!}{2^{2n-1}(n-1)!} x^n$$

13. Résolution d'équations.

Exemple: Suite récurrente.

On veut résoudre $\forall n \in \mathbb{N}, a_{n+1} = 2a_n + 2^n$ et a_0=1. On considère la série entière $\sum a_n x^n$ de somme f pour $x \in$. On a

$$\left(\sum_{n=0}^{+\infty}a_{n+1}x^n\right)_{=\frac{f(x)-1}{x}} \ \underset{x \in}{=} \ 2\sum_{n=0}^{+\infty}a_nx^n + \sum_{n=0}^{+\infty}(2x)^n \ \underset{x \in}{=} \ 2f(x) + \frac{1}{1-2x}$$

$$\begin{array}{l} \text{Donc } f(x)-1=2xf(x)+\frac{x}{1-2x}\Rightarrow f(x)(1-2x)=1+\frac{x}{1-2x}\Rightarrow f(x)=\frac{1}{1-2x}+\frac{x}{(1-2x)^2}.\\ \frac{1}{1-2x}=\sum 2^nx^n\text{ si }x\in]-\frac{1}{2},\frac{1}{2}[\text{ et }\frac{x}{(1-2x)^2}=\frac{1}{2}\big(\frac{x}{1-2x}\big)'\\ \text{donc }\frac{x}{(1-2x)^2}=\sum_{n=0}n2^{n-1}x^n\text{ si }x\in]-\frac{1}{2},\frac{1}{2}.\text{ Donc }f(x)=\sum 2^{n-1}(2+n)x^n\text{ donc }a_n=2^{n-1}(2+n)x^n\end{array}$$