Feature Engineering - Part : C

Feature engineering is the process of transforming raw data into informative and predictive features that can be used effectively by machine learning models.

Different steps used:

- 1. Imputation.
- 2. Handling Outliers.
- 3. Variable Transformation
- 4. Categorical Encoding.
- 5. Descritization / Binning.
- 6. Scalling
- 7. Feature Creation

Applications of Feature Engineering

Feature engineering is a fundamental step in the data preprocessing pipeline and plays a crucial role in various applications across different domains.

Find me on LinkedIn

```
In [ ]: import pandas as pd
                                                      import numpy as np
                                                      import matplotlib.pyplot as plt
                                                      plt.style.use('default')
In [ ]: data = {
                                                                                'age': np.random.randint(18, 65, 15),
                                                                                 'gender': ['Male', 'Female', 'Female', 'Male', 'Female', 'Male', 'Female', '
                                                                                 'income': np.random.randint(2000, 8000, 15),
                                                                             'education': ['High School', 'Bachelor', 'Master', 'PhD', 'High School', 'Bachelor', 'Master', 'PhD', 'Bachelor', 'Coccupation': ['Engineer', 'Teacher', 'Doctor', 'Lawyer', 'Engineer', 'Teacher', 'Doctor', 'Teacher', 'Doctor', 'Teacher', 
                                                                                 'purchase_amount': np.random.randint(100, 1000, 15)
                                                      data['age'][2] = 0
                                                      data['income'][8] = 0
                                                      data['occupation'][11] = np.nan
                                                      data['purchase amount'][12] = 5000
                                                      dfa = pd.DataFrame(data)
                                                      dfa['age'] = dfa['age'].replace(0, np.nan)
                                                      dfa['income'] = dfa['income'].replace(0, np.nan)
                                                      dfa
```

Out[]:		age	gender	income	education	occupation	satisfaction	purchase_amount
	0	58.0	Male	2071.0	High School	Engineer	5	900
	1	40.0	Female	2438.0	Bachelor	Teacher	5	575
	2	NaN	Female	7120.0	Master	Doctor	3	840
	3	38.0	Male	4702.0	PhD	Lawyer	4	171
	4	46.0	Male	3012.0	High School	Engineer	5	847
	5	62.0	Female	7018.0	Bachelor	Teacher	3	795
	6	37.0	Male	7192.0	Master	Doctor	1	224
	7	26.0	Female	2872.0	PhD	Lawyer	4	105
	8	64.0	Female	NaN	Bachelor	Engineer	5	497
	9	38.0	Male	7331.0	Master	Teacher	1	133
	10	57.0	Female	4349.0	PhD	Doctor	1	969
	11	21.0	Male	4406.0	High School	NaN	1	514
	12	36.0	Female	2861.0	Bachelor	Engineer	2	5000
	13	36.0	Male	3591.0	Master	Teacher	2	319
	14	27.0	Female	6239.0	PhD	Doctor	2	493

1. Imputation (Dealing with missing values)

```
in []: threshold = 0.7

##keeping those columns with missing values rate is lower than threshold
dfa = dfa[dfa.columns[dfa.isna().mean() < threshold]]

dfa</pre>
```

```
Out[]:
                   gender
                           income
                                     education occupation satisfaction purchase_amount
          0 58.0
                                                                      5
                                                                                      900
                     Male
                            2071.0
                                    High School
                                                   Engineer
                                                                                      575
          1 40.0 Female
                            2438.0
                                                                      5
                                       Bachelor
                                                    Teacher
          2
             NaN Female
                            7120.0
                                        Master
                                                     Doctor
                                                                      3
                                                                                      840
          3
             38.0
                     Male
                            4702.0
                                           PhD
                                                    Lawyer
                                                                      4
                                                                                       171
             46.0
                                   High School
                                                                      5
                                                                                      847
                     Male
                            3012.0
                                                   Engineer
                                                                      3
                                                                                      795
          5 62.0 Female
                            7018.0
                                       Bachelor
                                                    Teacher
             37.0
                            7192.0
                                                                                      224
                     Male
                                         Master
                                                     Doctor
                                                                      1
             26.0 Female
                            2872.0
                                           PhD
                                                    Lawyer
                                                                      4
                                                                                       105
          8 64.0 Female
                                                                      5
                              NaN
                                       Bachelor
                                                   Engineer
                                                                                      497
             38.0
                            7331.0
                                                                                      133
                     Male
                                         Master
                                                   Teacher
          10
             57.0 Female
                            4349.0
                                           PhD
                                                                      1
                                                                                      969
                                                     Doctor
             21.0
                     Male
                            4406.0
                                    High School
                                                       NaN
                                                                                      514
             36.0 Female
                            2861.0
                                                                      2
                                                                                     5000
          12
                                       Bachelor
                                                   Engineer
             36.0
                            3591.0
                                                                      2
                                                                                      319
          13
                     Male
                                         Master
                                                    Teacher
             27.0 Female
                            6239.0
                                           PhD
                                                     Doctor
                                                                      2
                                                                                      493
```

```
In [ ]: ##Checking that which attribute contains how many missing values
dfa.isna().sum()
```

```
In [ ]: ##Checking the datatypes of the attributes
dfa.dtypes
```

```
Out[]: age
                           float64
                            object
        gender
                           float64
        income
        education
                            object
        occupation
                            object
        satisfaction
                             int32
                             int32
        purchase amount
        dtype: object
In [ ]: #numerical impuation
        dfa["age"] = dfa["age"].fillna(dfa["age"].mean())
        dfa["income"] = dfa["income"].fillna(dfa["income"].mean())
        #categorical imputation
        dfa["occupation"] = dfa["occupation"].fillna(dfa["occupation"].mode()[0])
        ##mode() represents the most frequent occuring value, and [0] selected 1st value in series
        dfa.isna().sum()
                           0
Out[]: age
        gender
                           0
                           0
        income
        education
        occupation
                           0
                           0
        satisfaction
        purchase_amount
                           0
        dtype: int64
         2. Handling outliers
In [ ]: ##selecting those columns only whose datatype is integer or a float
        numeric_columns = dfa.select_dtypes(include=['int', 'float'])
        numeric_columns.boxplot()
        ##so only purchase amount attribute contains the outlier
Out[ ]: <Axes: >
       7000
       6000
       5000
       4000
       3000
       2000
       1000
           0
                    age
                                  income
                                                satisfaction
                                                              purchase_amount
In []: Q1 = dfa["purchase amount"].quantile(0.25)
        Q3 = dfa["purchase_amount"].quantile(0.75)
        IQR = Q3 - Q1
        lower_extreme = Q1-1.5*IQR
        upper extreme = Q3+1.5*IQR
```

```
In [ ]: ##replacing oulier with mean
```

5000

outliers = dfa[(dfa['purchase_amount'] < lower_extreme) | (dfa['purchase_amount'] > upper_extreme)]

age gender income education occupation satisfaction purchase_amount

Engineer

In []: ##detecting outliers

12 36.0 Female

2861.0

Bachelor

outliers

Out[]:

```
dfa.loc[dfa['purchase_amount'] < lower_extreme, "purchase_amount"] = dfa["purchase_amount"].mean()
dfa.loc[dfa['purchase_amount'] > upper_extreme, "purchase_amount"] = dfa["purchase_amount"].mean()
dfa.boxplot()
```

Out[]: <Axes: >

3. Variable transformation

```
Out[]:
                                     education occupation satisfaction purchase_amount
              age gender income
          0
               58
                     Male
                              2071 High School
                                                   Engineer
                                                                       5
                                                                                       900
          1
               40
                   Female
                              2438
                                       Bachelor
                                                    Teacher
                                                                       5
                                                                                       575
           2
                                                                       3
                                                                                       840
               41 Female
                              7120
                                         Master
                                                     Doctor
          3
               38
                                           PhD
                              4702
                                                                       4
                                                                                       171
                     Male
                                                     Lawyer
           4
               46
                     Male
                              3012
                                    High School
                                                   Engineer
                                                                       5
                                                                                       847
          5
               62 Female
                              7018
                                       Bachelor
                                                    Teacher
                                                                       3
                                                                                       795
                                                                       1
           6
               37
                                                                                       224
                     Male
                              7192
                                         Master
                                                     Doctor
          7
                              2872
                                           PhD
                                                                       4
                                                                                       105
               26 Female
                                                     Lawyer
          8
                              4657
                                       Bachelor
                                                                       5
                                                                                       497
               64 Female
                                                   Engineer
          9
               38
                     Male
                              7331
                                         Master
                                                    Teacher
                                                                                       133
                                           PhD
          10
               57 Female
                              4349
                                                     Doctor
                                                                       1
                                                                                       969
         11
               21
                     Male
                              4406 High School
                                                     Doctor
                                                                                       514
          12
                              2861
                                       Bachelor
                                                                       2
                                                                                       825
               36
                  Female
                                                   Engineer
                                                                       2
          13
               36
                     Male
                              3591
                                         Master
                                                    Teacher
                                                                                       319
               27 Female
                              6239
                                           PhD
                                                                       2
                                                                                       493
          14
                                                     Doctor
```

```
In []: dfa["income_log"] = np.log(dfa["income"])
    dfa["purchase_amount_scale"] = (dfa["purchase_amount"] - dfa["purchase_amount"].mean())/dfa["purchase_amount"].
    dfa
```

Out[]:		age	gender	income	education	occupation	satisfaction	purchase_amount	income_log	purchase_amount_scale
	0	58	Male	2071	High School	Engineer	5	900	7.635787	1.162885
	1	40	Female	2438	Bachelor	Teacher	5	575	7.798933	0.091836
	2	41	Female	7120	Master	Doctor	3	840	8.870663	0.965153
	3	38	Male	4702	PhD	Lawyer	4	171	8.455743	-1.239561
	4	46	Male	3012	High School	Engineer	5	847	8.010360	0.988222
	5	62	Female	7018	Bachelor	Teacher	3	795	8.856234	0.816854
	6	37	Male	7192	Master	Doctor	1	224	8.880725	-1.064898
	7	26	Female	2872	PhD	Lawyer	4	105	7.962764	-1.457067
	8	64	Female	4657	Bachelor	Engineer	5	497	8.446127	-0.165216
	9	38	Male	7331	Master	Teacher	1	133	8.899867	-1.364792
	10	57	Female	4349	PhD	Doctor	1	969	8.377701	1.390277
	11	21	Male	4406	High School	Doctor	1	514	8.390723	-0.109192
	12	36	Female	2861	Bachelor	Engineer	2	825	7.958926	0.915720
	13	36	Male	3591	Master	Teacher	2	319	8.186186	-0.751822
	14	27	Female	6239	PhD	Doctor	2	493	8.738575	-0.178398

4. Categorical Encoding

```
In [ ]: from sklearn.preprocessing import OneHotEncoder, LabelEncoder, OrdinalEncoder
In [ ]: ## one-hot encoding
         df_one_hot = pd.get_dummies(dfa, columns=['gender', 'education', 'occupation'])
         df_one_hot = df_one_hot.replace({True:1, False:0})
         dfb = df_one_hot.copy()
         dfb
Out[]:
             age income satisfaction purchase_amount income_log purchase_amount_scale gender_Female gender_Male education_Bac
          0
              58
                     2071
                                    5
                                                    900
                                                            7.635787
                                                                                   1.162885
                                                                                                          0
                                                                                                                       1
          1
              40
                     2438
                                    5
                                                    575
                                                            7.798933
                                                                                   0.091836
                                                                                                                       0
          2
                                    3
                                                                                                          1
                                                                                                                       0
              41
                     7120
                                                    840
                                                            8.870663
                                                                                   0.965153
                                                                                                          0
          3
              38
                     4702
                                    4
                                                    171
                                                            8.455743
                                                                                   -1.239561
                                    5
                                                    847
                                                                                   0.988222
                                                                                                          0
          4
              46
                     3012
                                                            8.010360
                                                                                                                       1
              62
                     7018
                                    3
                                                    795
                                                            8.856234
                                                                                   0.816854
                                                                                                                       0
          6
              37
                     7192
                                    1
                                                    224
                                                            8.880725
                                                                                   -1.064898
                                                                                                          0
                                                                                                                       1
                     2872
                                                    105
                                                            7.962764
                                                                                   -1.457067
                                                                                                                       0
              26
                                    4
          8
                     4657
                                    5
                                                    497
                                                            8.446127
                                                                                   -0.165216
                                                                                                                       0
              64
                                                                                                          1
          9
              38
                     7331
                                                    133
                                                            8.899867
                                                                                   -1.364792
                                                                                                          0
              57
                                    1
                                                                                   1.390277
                                                                                                          1
                                                                                                                       0
         10
                     4349
                                                    969
                                                            8.377701
                                                                                   -0.109192
                                                                                                          0
              21
                     4406
                                                    514
                                                            8.390723
         11
                                    2
                                                                                   0.915720
                                                                                                                       0
         12
              36
                     2861
                                                    825
                                                            7.958926
                                                                                                          1
         13
              36
                     3591
                                    2
                                                    319
                                                            8.186186
                                                                                   -0.751822
                                                                                                          0
                                    2
                                                                                   -0.178398
                                                                                                                       0
              27
                                                    493
                                                            8.738575
         14
                     6239
                                                                                                          1
In []: ## Label encoding
```

```
In []: ## Label encoding
   dfa['gender'] = dfa['gender'].map({'Male':1, 'Female':0})
   # dfa['gender'] = np.where(dfa['gender']=="Male", 1, 0)
   dfa
```

Out[]:		age	gender	income	education	occupation	satisfaction	purchase_amount	income_log	purchase_amount_scale
	0	58	1	2071	High School	Engineer	5	900	7.635787	1.162885
	1	40	0	2438	Bachelor	Teacher	5	575	7.798933	0.091836
	2	41	0	7120	Master	Doctor	3	840	8.870663	0.965153
	3	38	1	4702	PhD	Lawyer	4	171	8.455743	-1.239561
	4	46	1	3012	High School	Engineer	5	847	8.010360	0.988222
	5	62	0	7018	Bachelor	Teacher	3	795	8.856234	0.816854
	6	37	1	7192	Master	Doctor	1	224	8.880725	-1.064898
	7	26	0	2872	PhD	Lawyer	4	105	7.962764	-1.457067
	8	64	0	4657	Bachelor	Engineer	5	497	8.446127	-0.165216
	9	38	1	7331	Master	Teacher	1	133	8.899867	-1.364792
	10	57	0	4349	PhD	Doctor	1	969	8.377701	1.390277
	11	21	1	4406	High School	Doctor	1	514	8.390723	-0.109192
	12	36	0	2861	Bachelor	Engineer	2	825	7.958926	0.915720
	13	36	1	3591	Master	Teacher	2	319	8.186186	-0.751822
	14	27	0	6239	PhD	Doctor	2	493	8.738575	-0.178398

5. Descretization or Binning

```
In [ ]: no_of_bins = 3
    bin_labels = ['low', 'medium', 'high']

dfa["income_bin"] = pd.cut(dfa["income"], bins=no_of_bins, labels=bin_labels)

dfa["purchase_amount_bin"] = pd.qcut(dfa["purchase_amount"], q=3, labels=bin_labels)

dfa
```

Out[]:		age	gender	income	education	occupation	satisfaction	purchase_amount	income_log	purchase_amount_scale	income_bin
	0	58	1	2071	High School	Engineer	5	900	7.635787	1.162885	low
	1	40	0	2438	Bachelor	Teacher	5	575	7.798933	0.091836	low
	2	41	0	7120	Master	Doctor	3	840	8.870663	0.965153	high
	3	38	1	4702	PhD	Lawyer	4	171	8.455743	-1.239561	medium
	4	46	1	3012	High School	Engineer	5	847	8.010360	0.988222	low
	5	62	0	7018	Bachelor	Teacher	3	795	8.856234	0.816854	high
	6	37	1	7192	Master	Doctor	1	224	8.880725	-1.064898	high
	7	26	0	2872	PhD	Lawyer	4	105	7.962764	-1.457067	low
	8	64	0	4657	Bachelor	Engineer	5	497	8.446127	-0.165216	medium
	9	38	1	7331	Master	Teacher	1	133	8.899867	-1.364792	high
	10	57	0	4349	PhD	Doctor	1	969	8.377701	1.390277	medium
	11	21	1	4406	High School	Doctor	1	514	8.390723	-0.109192	medium
	12	36	0	2861	Bachelor	Engineer	2	825	7.958926	0.915720	low
	13	36	1	3591	Master	Teacher	2	319	8.186186	-0.751822	low
	14	27	0	6239	PhD	Doctor	2	493	8.738575	-0.178398	high

6. Scalling

```
In []: from sklearn.preprocessing import StandardScaler
In []: ## Standard z-score scalling/normalization
    dfc = dfa.copy()
    numeric_columns = ['income', 'purchase_amount']
    ##Initializing the scalar object
```

```
##The StandardScaler scales the data by subtracting the mean and dividing by std.
scaler = StandardScaler()

dfc[numeric_columns] = scaler.fit_transform(dfc[numeric_columns])

dfc
```

ut[]:		age	gender	income	education	occupation	satisfaction	purchase_amount	income_log	purchase_amount_scale	income_bi
	0	58	1	-1.420177	High School	Engineer	5	1.203700	7.635787	1.162885	lo
	1	40	0	-1.218649	Bachelor	Teacher	5	0.095059	7.798933	0.091836	lo
	2	41	0	1.352342	Master	Doctor	3	0.999028	8.870663	0.965153	hiç
	3	38	1	0.024564	PhD	Lawyer	4	-1.283068	8.455743	-1.239561	mediu
	4	46	1	-0.903453	High School	Engineer	5	1.022907	8.010360	0.988222	lo
	5	62	0	1.296332	Bachelor	Teacher	3	0.845524	8.856234	0.816854	hiç
	6	37	1	1.391879	Master	Doctor	1	-1.102274	8.880725	-1.064898	hiç
	7	26	0	-0.980330	PhD	Lawyer	4	-1.508207	7.962764	-1.457067	lo
	8	64	0	-0.000146	Bachelor	Engineer	5	-0.171015	8.446127	-0.165216	mediu
	9	38	1	1.468207	Master	Teacher	1	-1.412694	8.899867	-1.364792	hiç
	10	57	0	-0.169276	PhD	Doctor	1	1.439073	8.377701	1.390277	mediu
	11	21	1	-0.137976	High School	Doctor	1	-0.113025	8.390723	-0.109192	mediu
	12	36	0	-0.986370	Bachelor	Engineer	2	0.947860	7.958926	0.915720	lo
	13	36	1	-0.585511	Master	Teacher	2	-0.778209	8.186186	-0.751822	lo
	14	27	0	0.868565	PhD	Doctor	2	-0.184660	8.738575	-0.178398	hiç

7. Feature Creation

```
In [ ]: bins_no = [18, 25, 35, 50, 65]
bin_labels = ['18-25', '26-35', '36-50', '51-65']
dfc["age_group"] = pd.cut(dfc["age"], bins = bins_no, labels = bin_labels)
dfc
```

]:		age	gender	income	education	occupation	satisfaction	purchase_amount	income_log	purchase_amount_scale	income_b
	0	58	1	-1.420177	High School	Engineer	5	1.203700	7.635787	1.162885	lo
	1	40	0	-1.218649	Bachelor	Teacher	5	0.095059	7.798933	0.091836	lo
	2	41	0	1.352342	Master	Doctor	3	0.999028	8.870663	0.965153	hiç
	3	38	1	0.024564	PhD	Lawyer	4	-1.283068	8.455743	-1.239561	mediu
	4	46	1	-0.903453	High School	Engineer	5	1.022907	8.010360	0.988222	lo
	5	62	0	1.296332	Bachelor	Teacher	3	0.845524	8.856234	0.816854	hiç
	6	37	1	1.391879	Master	Doctor	1	-1.102274	8.880725	-1.064898	hiç
	7	26	0	-0.980330	PhD	Lawyer	4	-1.508207	7.962764	-1.457067	lo
	8	64	0	-0.000146	Bachelor	Engineer	5	-0.171015	8.446127	-0.165216	mediu
	9	38	1	1.468207	Master	Teacher	1	-1.412694	8.899867	-1.364792	hiç
1	10	57	0	-0.169276	PhD	Doctor	1	1.439073	8.377701	1.390277	mediu
1	11	21	1	-0.137976	High School	Doctor	1	-0.113025	8.390723	-0.109192	mediu
1	12	36	0	-0.986370	Bachelor	Engineer	2	0.947860	7.958926	0.915720	lo
1	13	36	1	-0.585511	Master	Teacher	2	-0.778209	8.186186	-0.751822	lo
1	14	27	0	0.868565	PhD	Doctor	2	-0.184660	8.738575	-0.178398	hiç

In []:	dfb									
Out[]:		age	income	satisfaction	purchase_amount	income_log	purchase_amount_scale	gender_Female	gender_Male	education_Ba
	0	58	2071	5	900	7.635787	1.162885	0	1	
	1	40	2438	5	575	7.798933	0.091836	1	0	
	2	41	7120	3	840	8.870663	0.965153	1	0	
	3	38	4702	4	171	8.455743	-1.239561	0	1	
	4	46	3012	5	847	8.010360	0.988222	0	1	
	5	62	7018	3	795	8.856234	0.816854	1	0	
	6	37	7192	1	224	8.880725	-1.064898	0	1	
	7	26	2872	4	105	7.962764	-1.457067	1	0	
	8	64	4657	5	497	8.446127	-0.165216	1	0	
	9	38	7331	1	133	8.899867	-1.364792	0	1	
	10	57	4349	1	969	8.377701	1.390277	1	0	
	11	21	4406	1	514	8.390723	-0.109192	0	1	
	12	36	2861	2	825	7.958926	0.915720	1	0	

final dataframe

8.186186

8.738575

-0.751822

-0.178398

di	fc									
	age	gender	income	education	occupation	satisfaction	purchase_amount	income_log	purchase_amount_scale	income_b
() 58	1	-1.420177	High School	Engineer	5	1.203700	7.635787	1.162885	lo
	1 40	0	-1.218649	Bachelor	Teacher	5	0.095059	7.798933	0.091836	lo
2	2 41	0	1.352342	Master	Doctor	3	0.999028	8.870663	0.965153	hiç
;	38	1	0.024564	PhD	Lawyer	4	-1.283068	8.455743	-1.239561	mediu
4	4 46	1	-0.903453	High School	Engineer	5	1.022907	8.010360	0.988222	lo
,	5 62	0	1.296332	Bachelor	Teacher	3	0.845524	8.856234	0.816854	hiç
(3 7	1	1.391879	Master	Doctor	1	-1.102274	8.880725	-1.064898	hiç
7	7 26	0	-0.980330	PhD	Lawyer	4	-1.508207	7.962764	-1.457067	lo
8	64	0	-0.000146	Bachelor	Engineer	5	-0.171015	8.446127	-0.165216	mediu
9	9 38	1	1.468207	Master	Teacher	1	-1.412694	8.899867	-1.364792	hiç
10	57	0	-0.169276	PhD	Doctor	1	1.439073	8.377701	1.390277	mediu
1	1 21	1	-0.137976	High School	Doctor	1	-0.113025	8.390723	-0.109192	mediu
12	36	0	-0.986370	Bachelor	Engineer	2	0.947860	7.958926	0.915720	lo
1:	3 36	1	-0.585511	Master	Teacher	2	-0.778209	8.186186	-0.751822	lo
14	4 27	0	0.868565	PhD	Doctor	2	-0.184660	8.738575	-0.178398	hiç

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js