Assignment 3: Spring Mass Damper System

Submit by: 30-03-2021 1700 Hours

Submit on: dt.shahani2020@gmail.com

iitdsl2020@gmail.com

For a spring mass damper system, plot the position v/s time graph and velocity v/s time graph

M – Mass

K – Spring

B – Damper

Select M, K such that natural frequency of oscillation $w_n = 10 \text{ rad/sec.}$

$$(w_n=\sqrt{rac{K}{M}} \ ext{and} \ oldsymbol{\zeta}=rac{B}{2}\sqrt{rac{1}{M\,K}})$$

Cases:

1. Unforced System ($\zeta = 0, 0.4, 1, 1.2$)

Initial deformation of Spring = -10 m

Plot the position v/s time graph and velocity v/s time graph

2. Forced System with Step Input as signal to Ideal Force Source ($\zeta = 0.2, 0.4, 0.6, 0.8$)

Step Time = 0; Final Value of Step = 1.

Initial Deformation of Spring = 0 m.

- A. For each value of ζ , plot the position v/s time Graph showing the given parameters:
 - 1. **Rise Time:** The rise time is the time required for the response to rise from 0% to 100% of its final value. **(Take 0% to 100%)**
 - **2. Maximum overshoot:** The maximum overshoot is the maximum peak value of the response curve measured from unity.
 - 3. Peak Time: The time at which the maximum overshoot occurs
 - 4. Time Period of oscillation (Td): Time between 2 successive peaks or valleys
 - 5. Damped Frequency (w_d)
- B. Plot the velocity v/s Time Graph
- 3. Forced System with Pulse Input as signal to Ideal Force Source ($\zeta = 0.4, 0.7$)

Pulse Amplitude = 1, Time Period = 10 seconds, Duty Cycle = 50%

Initial Deformation of Spring = 0 m.

Plot the position v/s time graph and velocity v/s time graph.

1. Unforced System

Paste your model here

a)
$$\zeta = 0$$

Initial Deformation of Spring = -10 m

(Position v/s Time Plot)

(Velocity v/s Time Plot)

2. Forced System with Step Input as signal to Ideal Force Source

Paste your model here

a)
$$\zeta = 0.2$$

M =

B =

K =

Initial Deformation of Spring = 0 m

(Position v/s Time Plot with all calculations)

(Velocity v/s Time Plot with all calculations)

Page 9

Table for Forced System with Step Input as signal to Ideal Force Source (ζ = 0.2, 0.4, 0.6, 0.8)

S. No	Wn	ζ	Rise Time (sec)	Peak Overshoot (%)	Peak Time	Time Period of Oscillations	Damped Frequency (rad/sec)

3. Forced System with Pulse Input as signal to Ideal Force Source

(Paste your model here)

a)
$$\zeta = 0.2$$

M =

B =

K =

Initial Deformation of Spring = 0 m

(Position v/s Time Plot)

(Velocity v/s Time Plot)