Algebra

June 2, 2017

#### 1 Introduction to Homological Algebra

# Projective, Injective and Flat modules (week 14)

Def 1.

- $M \in \mathbf{Mod}_R$  is **projective** if  $\mathrm{Hom}(M,\cdot)$  preserves the *right* exactness.
- $N \in \mathbf{Mod}_R$  is **injective** if  $\mathrm{Hom}(\cdot, N)$  preserves the *right* exactness.
- $M \in \mathbf{Mod}_R$  is flat if  $M \otimes \cdot$  preserves the *left* exactness.

Fact 1.1.1.

- $\begin{array}{cccc} \bullet & M \text{ is projective} & \Longleftrightarrow & \stackrel{\exists \, \tilde{f}}{\swarrow} & \stackrel{M}{\downarrow_f} \\ & & M_2 \longrightarrow M_3 \longrightarrow 0 \\ \bullet & N \text{ is injective} & \Longleftrightarrow & 0 \longrightarrow M_1 \longrightarrow M_2 \\ \bullet & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & N \end{array}$
- free  $\implies$  projective: If  $X = \{x_i \mid i \in \Lambda\}$  and  $f: x_i \mapsto a_i$ . Then we can set  $\tilde{f}: x_i \mapsto b_i$  for any  $b_i$  s.t.  $\beta: b_i \mapsto a_i$ .

$$F(X)$$

$$\downarrow^{f} \qquad \downarrow^{f}$$

$$M_{2} \xrightarrow{\beta} M_{3} \longrightarrow 0$$

• free  $\Longrightarrow$  flat:

$$0 \to M_1 \to M_2 \text{ exact } \Rightarrow 0 \to R \underset{R}{\otimes} M_1 \to R \underset{R}{\otimes} M_2 \text{ exact}$$

since  $M_1 \cong R \underset{R}{\otimes} M_1$ . Let F is Free on  $X = \{x_i\}, i \in \Lambda$ , that is  $F \cong \underset{x_i \in X}{\oplus} Rx_i \cong R^{\oplus \Lambda}$ . And,  $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$  (see tensor product section!)

$$0 \to \bigoplus_{i \in \Lambda} (R \otimes M_1) \to \bigoplus_{i \in \Lambda} (R \otimes M_2) \text{ exact}$$
  
$$\Rightarrow 0 \to \left(\bigoplus_{i \in \Lambda} R\right) \otimes M_1 \to \left(\bigoplus_{i \in \Lambda} R\right) \otimes M_2 \text{ exact}$$

Therefore,

$$0 \to F \otimes M_1 \to F \otimes M_2$$
 exact

• If S is a m.c. set in R with  $1 \in S$ , then

$$0 \to M \to N \to L \to 0 \implies 0 \to M_S \to N_S \to L_S \to 0.$$

We know that  $M_S \cong R_S \otimes_R M$ . So  $R_S$  is a flat R-module. e.g.  $\mathbb{Q}$  is a flat  $\mathbb{Z}$ -module.

•  $\forall M \in \mathbf{Mod}_R, \exists F$ : free on X s.t.  $F \to M \to 0$ . This is obvious since we can choose X to be the generating set of M.

Ques:  $\forall M \in \mathbf{Mod}_R$ , does there exist  $N \in \mathbf{Mod}_R$  is injective s.t.  $0 \to M \to N$ ?

**Theorem 1** (Boer's criterion). 
$$N$$
 is injective  $\iff \forall I \subset R, 0 \xrightarrow{f} I \xrightarrow{f} R$ 

Proof.

- " $\Rightarrow$ " by the "Fact" of injective.
- " = "

Consider diagram,

$$0 \longrightarrow M_1 \longrightarrow M_2$$

$$\downarrow^g$$

$$N$$

Let  $S = \{(M, \rho) | M_1 \subseteq M \subseteq M_2 \text{ and } \rho : M \to N \text{ extend } g\} \neq \emptyset$  By Zorn's lemman, exists a maximal elemant  $(M^*, \mu) \in S$ .

 $\underline{\text{Claim}}: M^* = M_2$ 

If not, pick  $a \in M_2$   $M^*$ . Let  $M' = M^* + Ra \supseteq M^*$  and  $I = \{r \in R | ra \in M^*\}$  Define  $f: I \to N$  with  $r \mapsto \mu(ra)$ . Then we have extension h,

$$0 \longrightarrow I \underset{N}{\longleftrightarrow} R$$

Now, define  $\mu': M' \to N$  with  $x + ra \mapsto \mu(x) + h(r)$ 

Well-define:

 $x_1 + r_1 a = x_2 + r_2 a \leadsto a(r_1 - r_2) = x_2 - x_1 \in M \leadsto h(r_1) - h(r_2) = h(r_1 - r_2) = f(r_1 - r_2) = \mu(a(r_1 - r_2)) = \mu(x_2 - x_1) = \mu(x_2) - \mu(x_1) \leadsto \mu(x_1) + h(r_1) = \mu(x_2) + h(r_2)$ 

But,  $\mu'$  is extension of  $\mu$ . Therefore,  $(M', \mu') \geq (M^*, \mu)$ , which is a contradiction to  $M^*$  is maximal.

**Def 2.** M is **divisible** if  $\forall x \in M, r \in R \setminus \{0\}$ , there exists  $y \in M$  such that x = ry, i.e.  $rM = M \quad \forall r \in R \setminus \{0\}$ .

Prop 1.1.1.

1. Every injective module N over an integral domain is divisible.

Proof. For  $x_0, r_0 \in R \{0\},\$ 



Let  $y_0 := h(1)$ . Then,  $r_0 y_0 = r_0 h(1) = h(r_0) = x_0$ . (why the ID is required?)

2. Every divisible module N over an PID is injective.

*Proof.* If I = 0, let h(1) = arbitrary is always let diagram commute. Now, let  $\forall I \neq 0$   $I = \langle r_0 \rangle$ 

for some  $r_0 \neq 0 \in R$ 



Then,  $\exists y_0 \leadsto r_0 y_0 = x_0$ . Define  $h(1) = y_0$ . The diagram commute.

**Theorem 2.**  $\forall M \in \mathbf{Mod}_R, \exists N \text{ is injective s.t. } M \hookrightarrow N.$ 

Proof.

- Case 1  $R = \mathbb{Z}$
- Case 2 R is arbitrary

We can regard  $M_1$  as  $\mathbb{Z}$  module, therefore  $\exists N_0$  a  $\mathbb{Z}$  module with inclusion map.  $M_1 \hookrightarrow N_0$ . Now, we have R module  $N := Hom_{\mathbb{Z}}(R, N_0)$ 

 $\underline{\text{Claim}}$ : N is injective



 $oldsymbol{Mod}_R oldsymbol{Mod}_{\mathbb{Z}}$ 

Now, define

$$h: M_2 \longrightarrow N$$

$$y \longmapsto h(y): R \longrightarrow N_0$$

$$1 \longmapsto h'(y)$$

$$r \longmapsto h'(ry)$$

well-define

1. Show  $h(y) \in Hom_{\mathbb{Z}}(R, N_0)$ 

$$h(y)(r_1+kr_2) = h'((r_1+kr_2)y) = h'(r_1+kr_2y) = h'(r_1)+kh'(r_2) = h(y)(r_1)+kh(y)(r_1)$$

2. Show  $h \in Hom_R(M_2, N)$ 

$$h(y_1 + r_2 y_2)(r) \ \forall \ r \in R = h'(r(y_1 + r_2 y_2)) \ \forall \ r \in R = h'(ry_1 + rr_2 y_2) \ \forall \ r \in R$$
$$= h'(ry_1) + h'(rr_2 y_2) \ \forall \ r \in R = h(y)(r) + h(r_2 y_2)(r) \ \ \forall \ r \in R$$
$$= h(y)(r) + (r_2 h(y_2))(r) \ \forall \ r \in R$$

#### 3. Show diagram commute

## **Prop 1.1.2.** TFAE

- 1. M is projective.
- 2.  $\forall 0 \to M_1 \to M_2 \to M \to 0$  is split exact.

3.  $\exists M'$  s.t.  $M \oplus M' \cong F$ : free.

## **Prop 1.1.3.** TFAE

- 1. M is projective.
- 2.  $\forall 0 \to M_1 \to M_2 \to M \to 0$  is split exact.
- 3.  $\exists M'$  s.t.  $M \oplus M' \cong F$ : free.

## **Prop 1.1.4.** TFAE

- 1. M is injective.
- 2.  $\forall 0 \to M \to M_2 \to M_3 \to 0$  is split exact.

**Prop 1.1.5.** projective  $\implies$  flat.