- **b)** Elde ettiğiniz cebirsel ifadelerle kafe sahibinin bu kahveden elde edeceği gelir fonksiyonunu (g(x)) modelleyiniz.
- c) g fonksiyonunu tamkareye tamamlama metodu ile $g(x) = a(x + r)^2 + k$ şeklinde yazınız.
- **ç**) Elde ettiğiniz gelir fonksiyonundan yararlanarak kafe sahibinin kahveyi kaç TL'den satarsa maksimum gelire ulaşacağını hesaplayınız.
- d) Kafe sahibinin bu kahveden bir günde elde edeceği maksimum geliri bulunuz.
- **5.** Fonksiyonun sıfırlarını, artan-azalan olduğu aralıkları ve maksimum-minimum noktalarını elde ederken kullandığınız tamkareye tamamlama, grafik temsilinden yararlanma ve çarpanlara ayırma yöntemlerini kullanışlılık açısından değerlendiriniz. Sonuçları sınıf arkadaşlarınızla tartışınız.

8. Örnek

Tarım alanlarında bitkilerin büyüme hızı (verimlilik), gübre miktarına (x) bağlı olarak artar ancak aşırı gübreleme nedeniyle belli bir noktadan sonra düşüş gösterir. Bu ilişki,

- x: Uygulanan Gübre Miktarı (kg)
- v(x): Verimlilik (kg/m²) olmak üzere

 $v(x) = -0.1x^2 + 4x + 20$ şeklinde ifade edilir.

Buna göre

- a) Gübre miktarının maksimum verimlilik sağladığı değeri bulunuz.
- b) Maksimum verimlilik değerini hesaplayınız.
- c) Gübre miktarının sıfır olduğu durumda verimliliği bulunuz.

Çözüm

Verilen fonksiyon tamkare formuna çevrilirse

$$v(x) = -0.1x^2 + 4x + 20$$

$$v(x) = -0.1(x^2 - 40x - 200)$$

$$v(x) = -0.1(x^2 - 40x + 400 - 600)$$

$$v(x) = -0.1[(x-20)^2-600]$$

$$v(x) = -0.1(x - 20)^2 + 60$$
 elde edilir.

Yukarıdaki v(x) fonksiyonu yorumlandığında

- a) Maksimum verimlilik için gübre miktarı x = 20 kg olmalıdır.
- **b)** Maksimum verimlilik değeri 60 kg/m² olur.
- c) $v(0) = -0.1(0 20)^2 + 60 = -0.1 \cdot 400 + 60 = -40 + 60 = 20$ bulunur.

Buna göre gübre kullanılmadığında başlangıç verimliliği 20 kg/m² olur.