Introductory Topics in Complex Analysis

Huan Q. Bui

Colby College

PHYSICS & MATHEMATICS Statistics

Class of 2021

December 9, 2019

Contents

1	de Moivre's Formula	4
2	Roots & Things	4
3	Regions of the Complex Plane	4
4	Limits	5
5	Continuity	5
6	Differentiability	5
7	Cauchy-Riemann Theorem for Analytic Functions	5
8	Contour Integrals	5
9	Lemma on Modulus & Contours	5
10	Bound on Modulus of Contour Integrals	6
11	TFAE	6
12	Cauchy-Goursat Theorem	10
13	Simply-connected domain	10
14	Multiply-connected domain	10
15	Cauchy-Goursat Theorem for simply-connected domain	10
16	Corollary to Cauchy-Goursat for simply-connected domain	11
17	Cauchy-Goursat Theorem for multiply-connected regions	11
18	Principle of Path Deformation (Corollary to Cauchy-Goursat)	12
19	Cauchy's Integral Formula	12
20	Cauchy's Integral Formula for First-Order Derivative	13
2 1	Cauchy's Integral Formula for Higher-Order Derivatives	15
22	Analyticity of Derivatives	15
23	Analyticity of Derivatives on a Domain	15
24	Infinite Differentiability	15

25 Hörmander's Theorem	15
26 Morera's Theorem	16
27 Cauchy's Inequality	16
28 Liouville's Theorem	16
29 The Fundamental Theorem of Algebra	17
30 Corollary to The Fundamental Theorem of Algebra	17
31 The Maximum Modulus Principle 1	18
32 The Maximum Modulus Principle 2	18
33 Convergence of Series	19
34 Real and Imaginary parts of a convergent sequence	19
35 Cauchy sequences	19
36 Cauchy and Convergence	19
37 Series	19
38 Convergence of Series	20
39 Taylor's Theorem	20
40 Laurent's Theorem	22
41 More results about series	25
42 Residues	25
43 The Residue Theorem	26
44 Classification of Singularities	27
45 Residues with Φ theorem	27
46 Residues with p-q theorem	29
47 What happens near singularities?	29
48 Removable singularity - Boundedness - Analyticity (RBA)	29
49 The converse of RBA	20

1 de Moivre's Formula

$$(\cos \theta + \sin \theta)^n = \cos n\theta + i \sin n\theta. \tag{1}$$

2 Roots & Things

All roots of $z = r_0 e^{i\theta}$ are of the form

$$z_r = r_0^{1/n} \exp\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right) \tag{2}$$

where k = 0, 1, 2, ...

3 Regions of the Complex Plane

The ϵ -neighborhood of z_0 is the set of points

$$\mathcal{B}_{\epsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}. \tag{3}$$

The deleted ϵ neighborhood (nbh) of z_0 is the set

$$\mathcal{B}_{\epsilon}(z_0) \setminus \{z_0\} = \{z \in \mathbb{C} : 0 < |z - z_0| < \epsilon\}. \tag{4}$$

 z_0 is an interior point of $S \subset \mathbb{C}$ if some ϵ -nbh is completely contained in S, i.e.,

$$\exists \mathcal{B}_{\epsilon}(z_0) \text{ s.t. } \mathcal{B}_{\epsilon}(z_0) \subset S.$$
 (5)

 z_0 is an exterior point of S if $\exists \mathcal{B}_{\epsilon}(z_0)$ which does not intersect S.

If z_0 is neither an interior nor an exterior point of S then it is called a boundary point of S. The set of boundary points of S is called the boundary of S.

 z_0 is a boundary point of $S \iff \forall \epsilon > 0, \mathcal{B}_{\epsilon}(z_0)$ contains at least one point in S and at least one point in S^c .

A set \mathcal{O} is called open if it contains none of its boundary points.

A set C is called closed if it contains all of its boundary points.

The closure of a set S is the set $cl(S) = S \cup \partial S$.

Let
$$\mathcal{O} \subset \mathbb{C}$$
. \mathcal{O} is open $\iff \forall z \in \mathcal{O}, \exists \epsilon > 0, \mathcal{B}_{\epsilon}(z) \subset \mathcal{O}$.

A set S is called path connected if $\forall z_1, z_2 \in S$, there exists a continuous function $\gamma : [0,1] \to \mathbb{C}$ such that $\gamma(0) = z_1, \gamma(1) = z_2$ and $\gamma(t) \in S \forall t \in [0,1]$.

A set S is bounded if $\exists R > 0$ such that $S \subset \mathcal{B}_R(0)$.

A point z_0 is called an accumulation point of a set S if $\forall \epsilon > 0$,

$$\mathcal{B}_{\epsilon}(z_0) \setminus \{z_0\} \cap S \neq \emptyset, \tag{6}$$

i.e. every deleted nbh of z_0 contains at least an element of S.

A set is closed if and only if it contains all of its accumulation points.

- 4 Limits
- 5 Continuity
- 6 Differentiability
- 7 Cauchy-Riemann Theorem for Analytic Functions
- 8 Contour Integrals
- 9 Lemma on Modulus & Contours

Let $w \in C^0([a,b],\mathbb{C})$ then

$$\left| \int_{a}^{b} w(t) dt \right| \le \int_{a}^{b} |w(t)| dt. \tag{7}$$

Proof. This is essentially the triangle inequality. Let

$$r_0 = \left| \int_a^b w \, dt \right|. \tag{8}$$

If $r_0=0$ then the statement is obvious. Now suppose $r_0>0$. In this case, $\exists \theta_0 \in \mathbb{R}$ such that

$$\int_{a}^{b} w \, dt = r_{0}e^{i\theta_{0}} \implies r_{0} = e^{-i\theta_{0}} \int_{a}^{b} w \, dt$$

$$= \int_{a}^{b} w e^{-i\theta_{0}} \, dt \in \mathbb{R}$$

$$= \operatorname{Re} \left(\int_{a}^{b} w e^{-i\theta_{0}} \, dt \right)$$

$$= \int_{a}^{b} \operatorname{Re} \left(w e^{-i\theta_{0}} \right) \, dt. \tag{9}$$

But

$$\operatorname{Re}\left(we^{-i\theta_0}\right) \le \left|\operatorname{Re}\left(we^{-i\theta_0}\right)\right| \le \left|e^{-i\theta_0}w\right| = |w| \forall t \in [a, b].$$
 (10)

And so

$$\left| \int_{a}^{b} w \, dt \right| = r_0 \le \int_{a}^{b} |w| \, dt. \tag{11}$$

10 Bound on Modulus of Contour Integrals

Let C be a contour and let $f: \mathrm{Dom}(f) \to \mathbb{C}$ be piecewise continuous on C. If $|f(z)| \leq M \forall z \in \mathbb{C}$, then

$$\left| \int_{C} f(z) \, dz \right| \le M \mathcal{L}(C) \tag{12}$$

where $\mathcal{L}(C)$ is the arclength of C.

Proof. This result follows from the previous lemma. Let $z(t):[a,b]\to\mathbb{C}$ be a parameterization, then

$$\left| \int_{C} f \, dz \right| = \left| \int_{a}^{b} f(z(t))z'(t) \, dt \right|$$

$$\leq \int_{a}^{b} |f(z(t))z'(t)| \, dt$$

$$\leq \int_{a}^{b} |f(z(t))||z'(t)| \, dt$$

$$\leq M \int_{a}^{b} |z'(t)| \, dt$$

$$= M \mathcal{L}(C). \tag{13}$$

11 TFAE

Let f be continuous on \mathcal{D} . The following are equivalent (TFAE):

- 1. f(z) has an antiderivative F(z) throughout \mathcal{D} .
- 2. Given any $z_1, z_2 \in \mathcal{D}$ and contours $C_1, C_2 \subset \mathcal{D}$ both going from z_1 to z_2 ,

$$\oint_{C_1} f(z) \, dz = \oint_{C_2} f(z) \, dz. \tag{14}$$

In other words, the integral is independent of contour.

3. Given any close contour $C \subset \mathcal{D}$,

$$\int_C f(z) dz = 0. \tag{15}$$

In the case that one (and hence every) condition is satisfied, we have that for any $z_1, z_2 \in \mathcal{D}$ and contour C from $z_1 \to z_2 \subset \mathcal{D}$,

$$\int_{C} f(z) dz = F(z_{2}) - F(z_{1}) \tag{16}$$

where F's existence is guaranteed by (1).

Proof. (2 \iff 3) Suppose (2) is valid and let C be a closed contour in \mathcal{D} . Then C contains 2 points z_1, z_2 and we can divide C into 2 pieces $C_1 + C_2$ where $C_1 : z_1 \to z_2$ and $C_2 : z_2 \to z_1$.

Note that by reversing the direction of C_2 , we ave both C_1 and $-C_2$ go from z_1 to z_2 and stay inside of \mathcal{D} . Thus,

$$\oint_C f \, dz = \int_{C_1} f \, dz - \int_{-C_2} f \, dz. \tag{17}$$

By (2), we have that

$$\int_{C_1} f \, dz = \int_{C_2} f \, dz. \tag{18}$$

This means

$$\oint_C f(z) dz = 0. \tag{19}$$

So $(2) \implies (3)$.

Now, assume (3) is true and let $z_0, z_1 \in \mathcal{D}$. Let $C_1, C_2 \subset \mathcal{D}$ be contours going from z_0 to z_1 . We observe that $C := C_1 - C_2$ is a s.c.c. in \mathcal{D} . So by (3),

$$0 = \oint_C f \, dz = \int_{C_1 - C_2} f \, dz = \int_{C_1} f \, dz - \int_{C_2} f \, dz. \tag{20}$$

 $(1 \iff 2)$ Assume (1) is true. Let $z_0, z_1 \in \mathcal{D}$ and let C be a contour from $z_0 \to z_1$, i.e., $C: z(t) \in C([a,b],\mathbb{C})$ piecewise differentiable, $z(a) = z_0$ and

 $z(b) = z_1$. As F is an antiderivative of f, for all $t \in [a, b]$ for which z'(t) exists the chain rule gives

$$\frac{d}{dt}F(z(t)) = F'(z(t))z'(t) = f(z(t))z'(t). \tag{21}$$

So,

$$\oint_C f \, dz = \sum_{k=1}^n \int_{a_k}^{b_k} f(z(t))z'(t) \, dt = \sum_{k=1}^n \int_{a_k}^{b_k} \frac{d}{dt} F(z(t)) \, dt \tag{22}$$

where a_k, b_k are points at which z fails to be differentiable, $a_1 = a, b_n = b$. By the fundamental theorem of calculus,

$$\oint_C f \, dz = \sum_{k=1}^n \int_{a_k}^{b_k} \frac{d}{dt} F(z(t)) \, dt$$

$$= \sum_{k=1}^n F(z(b_k)) - F(z(a_k))$$

$$= F(b) - F(a) = F(z_1) - F(z_0). \tag{23}$$

So, given any 2 contours $C_1, C_2 \in \subset \mathcal{D}$ from $z_0 \to z_1$, we have

$$\int_{C_1} f \, dz = F(z_1) - F(z_0) = \int_{C_2} f \, dz. \tag{24}$$

Now, assume (2) is true. We need to construct an antiderivative F. Let $z_0 \in \mathcal{D}$ and define $F : \mathcal{D} \to \mathbb{C}$ by

$$F(z) = \int_{C_z} f(w) dw \tag{25}$$

where C_z is a contour from $z_0 \to z_1$. Since \mathcal{D} is a domain, it is a path connected, and so for each z, a path C_z exists. By (2) this is not dependent on the choice of contour C_z . So F is well-defined. We wish to show that F(z) is differentiable and its derivative is f.

Let $z\in\subset\mathcal{D}$ and choose $\epsilon>0.$ Given th continuity of f, let δ be chosen so that

1.

$$|f(w) - f(z)| < \frac{\epsilon}{2} \forall |w - z| < \delta \tag{26}$$

2. $\mathcal{B}_{\delta}(z) \subset \mathcal{D}$ (or \mathcal{D} is open.)

Given a $\Delta z \in \mathbb{C}$ such that $\Delta z < \delta$, we consider a path $C_{z,\Delta z}$ defined by $w(t) = z + t\Delta z, \ t \in [0,1]$. We have that $C_z + C_{z,\Delta z}$ is a contour in \mathcal{D} from $z_0 \to z + \Delta z$. Then,

$$\frac{1}{\Delta z} \left(F(z + \Delta z) - F(z) \right) = \frac{1}{\Delta z} \left(\int_{C_z + C_{z, \Delta z}} f(w) \, dw - \int_{C_z} f(w) \, dw \right)$$

$$= \frac{1}{\Delta z} \int_{C_{z, \Delta z}} f(w) \, dw$$

$$= \frac{1}{\Delta z} \int_0^1 f(z + t\Delta z)(z + t\Delta z)' \, dt$$

$$= \int_0^1 f(z + t\Delta z) \, dt. \tag{27}$$

So, for $|\Delta z| < \delta$,

$$\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| = \left| \int_0^1 f(z + t\Delta z) \, dt - f(z) \right|$$

$$= \left| \int_0^1 \left[f(z + t\Delta z) - f(z) \right] \, dt \right|$$

$$\leq \int_0^1 \left| f(z + t\Delta z) - f(z) \right| \, dt$$

$$\leq \int_0^1 \frac{\epsilon}{2} \, dt$$

$$\leq \frac{\epsilon}{2}$$

$$< \epsilon \qquad (28)$$

by choice of δ . So, we have shown that given $z \in \mathcal{D}$ and $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| < \epsilon \tag{29}$$

whenever $|\Delta z| < \delta$. So, F is differentiable at z and F'(z) = f(z).

12 Cauchy-Goursat Theorem

Suppose that C is a simple closed contour and f is analytic on the interior of C and all points of C then

$$\oint_C f(z) dz = 0. \tag{30}$$

Proof. The proof involves slicing the interior of C into squares and partial squares. I won't try to reproduce it here.

13 Simply-connected domain

A domain \mathcal{D} is called simply-connected if every simple closed contour $C \subset \mathcal{D}$ contains only points of \mathcal{D} and its interior, i.e., every simple closed contour is contractible to a point.

14 Multiply-connected domain

A multiply-connected domain \mathcal{D} is a dmain which is not simply-connected. (very imaginative)

15 Cauchy-Goursat Theorem for simply-connected domain

Let \mathcal{D} be a simply connected domain. f is analytic in \mathcal{D} . For all closed contour $C \subset \mathcal{D}$,

$$\oint_C f(z) dz = 0. \tag{31}$$

Proof. Notice that we C need not be simple. Consider the figure

Let C be a closed contour in \mathcal{D} with a finite number of self-intersections. Given that C only has n interactions, we can split C into a finite number m of simple closed contour C_j . Also, given \mathcal{D} is simply connected, the interior of each C_j lives in \mathcal{D} . By the previous theorem, we have

$$\oint_{C_j} f(z) dz = 0 \forall j = 1, 2, 3, \dots \implies \oint_C f(z) dz = \oint_{\sum C_j} f(z) dz = 0.$$
 (32)

16 Corollary to Cauchy-Goursat for simply-connected domain

If f is analytic on a simply connected domain in \mathcal{D} then f has an antiderivative F everywhere in \mathcal{D} .

Proof. TFAE. \Box

17 Cauchy-Goursat Theorem for multiply-connected regions

Suppose that

- 1. C is a s.c.c.(+).
- 2. C_j , j = 1, 2, ..., n are s.c.c.(-), all disjoint and all live in the interior of C.

If f is analytic on $C, C_j \forall j$ and the region between C, C_j (enclosed by C but outside of C_j) then

$$\oint_C f(z) dz + \sum_{j=1}^n \oint_{C_j} f(z) dz = 0.$$
(33)

Proof. The proof follows from the this figure

18 Principle of Path Deformation (Corollary to Cauchy-Goursat)

Let C_1 and C_2 be simple closed curves and C_2 encloses C_1 . Both are (+) oriented. Then if f is analytic on the region between C_1, C_2 then

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz.$$
 (34)

Proof. Consider the following suggestive figure:

19 Cauchy's Integral Formula

Let C be a s.c.c.(+) and let f be analytic on C and its interior. If z_0 lives interior to C then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$$
 (35)

Proof. Let $\delta < 1$ be small enough such that $|z - z_0| < \delta$ so that C encloses z. Since the quotient $f(z)/(z - z_0)$ is analytic in the region exterior to $\mathcal{B}_{\delta}(z_0)$ and interior to C, we have that

$$\oint_{C} \frac{f(z)}{z - z_{0}} dz = \oint_{C_{\rho}} \frac{f(z)}{z - z_{0}} dz$$
(36)

where $\rho < \delta$ and C_{ρ} is a (+) circle centered at z_0 of radius ρ . The equality is guaranteed by the principle of deformation of path.

Now, consider

$$\mathcal{E} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z - z_{0}} - f(z_{0})$$

$$= \frac{1}{2\pi i} \oint_{C_{\rho}} \frac{f(z)}{z - z_{0}} - \frac{f(z_{0})}{2\pi i} \oint_{C_{\rho}} \frac{1}{z - z_{0}} dz$$

$$= \frac{1}{2\pi i} \left(\oint_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz \right). \tag{37}$$

Given that f(z) is continuous at z_0 , $\forall \epsilon > 0, \exists \rho > 0$ s.t. $|f(z) - f(z_0)| < \epsilon$ whenever $|z - z_0| < 2\rho < \delta$. Since $|z - z_0| = \rho < 2\rho$ on C_ρ , we have

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| = \frac{1}{\rho} |f(z) - f(z_0)| < \frac{\epsilon}{\rho} \text{ on } C_{\rho}.$$
 (38)

So,

$$|\mathcal{E}| \le \frac{1}{2\pi} \frac{\epsilon}{\rho} \mathcal{L}(C_{\rho}) = \epsilon.$$
 (39)

So, given any $\epsilon > 0$, $|\mathcal{E}| \leq \epsilon$. This says that

$$\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = f(z_0). \tag{40}$$

20 Cauchy's Integral Formula for First-Order Derivative

Let C s.c.c.(+) and let f be analytic on the interior of C and on C. Then if $z_0 \in \operatorname{int}(C)$ then

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$
 (41)

Proof. Let $M = \max |f(z)|$ where $z \in C$. Given $z_0 \in \operatorname{int}(C)$, let $d = \min |z - z_0| > 0$ where $z \in C$. Let $h = \Delta z$ is such that $|h| = |\Delta z| < d$. Using Cauchy's integral formula,

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz. \tag{42}$$

Because |h| < d, $z_0 + h \in int(C)$. So,

$$f(z_0 + h) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - (z_0 + h)} dz.$$
 (43)

Now, observe that

$$\mathcal{E} = \frac{f(z_0 + h) - f(z_0)}{h} - \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$= \frac{1}{h} \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - (z_0 + h)} dz - \frac{1}{h} \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$= \dots$$

$$= \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} \frac{h}{z - (z_0 + h)} dz$$
(44)

for all $z \in \text{int}(C)$, $d \leq |z - z_0|$. So,

$$\frac{1}{|z - z_0|^2} \le \frac{1}{d^2}. (45)$$

Also, $0 \le d - |h| \le |z - (z_0 + h)| \forall |h| < d$. So for all $z \in C$, whenever |h| < d,

$$\left| \frac{f(z)}{(z-z_0)^2} \frac{h}{z - (z_0 + h)} \right| \le \frac{M|h|}{d^2(d-|h|)}. \tag{46}$$

So, whenever |h| < d, we have

$$|\mathcal{E}| \le \frac{1}{2\pi} \frac{M|h|}{d^2(d-|h|)} \mathcal{L}(C) = \frac{M|h|}{2\pi d^2(d-|h|)} \mathcal{L}(C).$$
 (47)

Let $\epsilon > 0$ be given and choose

$$\delta = \min \left[\frac{d}{2}, \frac{\pi d^3}{M \mathcal{L}(C)} \right] \tag{48}$$

then whenever $|h| < \delta \le \frac{d}{2} < d$,

$$\frac{1}{d-|h|} \le \frac{1}{d/2}.\tag{49}$$

With this,

$$\mathcal{E} \le \frac{M|h|}{2\pi d^3/2} \mathcal{L}(C) < \frac{M\mathcal{L}(C)}{\pi d^3} \frac{\pi d^3 \epsilon}{M\mathcal{L}(C)} = \epsilon.$$
 (50)

So,

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$
 (51)

21 Cauchy's Integral Formula for Higher-Order Derivatives

Let C be s.c.c.(+) and f analytic on C and its interior. Then $\forall z_0 \in \text{int}(C)$, and $n \in \mathbb{N}$, f is n-times differentiable at z_0 and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz.$$
 (52)

22 Analyticity of Derivatives

If f is analytic at z_0 then f has derivatives of all orders which are also analytic at z_0 .

Proof. We simply applying the preceding theorem. \Box

23 Analyticity of Derivatives on a Domain

If \mathcal{D} is a domain and f is analytic on \mathcal{D} then f has derivatives of all orders and each derivative is analytic on \mathcal{D} . This means f is infinitely differentiable on \mathcal{D} .

24 Infinite Differentiability

Let f(z) = u(x, y) + iv(x, y) be analytic at $z_0 = (x_0, y_0)$. Then u, v have continuous partial derivatives of all orders at z_0 . Further, if f = u + iv is analytic on \mathcal{D} , then u, v are infinitely differentiable in \mathcal{D} , i.e., $u, v \in C^{\infty}(\mathcal{D})$.

Proof. The proof follows from Cauchy-Riemann theorem and equations. \Box

25 Hörmander's Theorem

If u is harmonic in a domain \mathcal{D} then u is smooth $\iff u \in C^{\infty}(\mathcal{D})$.

Proof. If u is harmonic then u has a harmonic conjugate v. Then f = u + iv is analytic, etc.

26 Morera's Theorem

Let f be continuous on \mathcal{D} . If for all closed $C \subset \mathcal{D}$,

$$\oint_C f(z) dz = 0,$$
(53)

then f is analytic on \mathcal{D} .

Proof. The proof follows from TFAE. By TFAE, f has an antiderivative F throughout \mathcal{D} . But F is analytic because f' = F. This means F's derivatives are analytic throughout \mathcal{D} as well. So, f is analytic throughout \mathcal{D} .

27 Cauchy's Inequality

Let f be analytic on and inside a (+) circle C with center z_0 and radius R. Let $M_R = \max[|f(z)|], z \in C_R$. Then $\forall n \in \mathbb{N}$,

$$\left| f^{(n)}(z_0) \right| \le \frac{n! M_R}{R^n}. \tag{54}$$

Proof. This follows from Cauchy's integral formula and the triangle inequality:

$$\left| f^{(n)}(z_0) \right| = \left| \frac{n!}{2\pi i} \oint_{C_R} \frac{f(z)}{(z - z_0)^{n+1}} dz \right|
\leq \frac{n!}{2\pi} \frac{M_R}{R^{n+1}} (2\pi R)
= \frac{n! M_R}{R^n}.$$
(55)

28 Liouville's Theorem

If f is bounded and entire and f is constant.

Proof. Let $M \ge 0$ for which $|f(z)| \le M \forall z \in \mathbb{C}$. Given any $z_0 \in \mathbb{C}$, f is analytic on every neighborhood of z_0 and so $\forall R > 0$,

$$|f'(z_0)| \le \frac{1!M_R}{R} \tag{56}$$

where $M_R = \max |f(z)| \le M$ where $z \in C_R(z_0)$. So, for any $z_0 \in \mathbb{C}$, R > 0,

$$|f'(z_0)| \le \frac{M}{R}.\tag{57}$$

This shows $f'(z_0) = 0 \forall z_0 \in \mathbb{C}$. So, f is constant because \mathbb{C} is a domain. \square

29 The Fundamental Theorem of Algebra

If P(z) is a non constant polynomial, i.e.,

$$P(z) = a_0 + a_1 z^1 + \dots + a_n z^n$$
(58)

where $a_n \neq 0, n = \deg(P)$, then $\exists z_0 \in \mathbb{C}$ at which $P(z_0) = 0$.

Proof. Let

$$w = \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z}$$
 (59)

and note that

$$P(z) = (w + a_n)z^n. (60)$$

We observe that z^k from $k \in \{1, 2, 3, ...\}$ has $1/z^k \to 0$ has $z \to \infty$. So, given $\epsilon = |a_n|/2$, there exists R > 0 for which

$$|w| \le \frac{|a_n|}{2} \forall |z| > R. \tag{61}$$

So, for |z| > R,

$$|w + a_n| \ge ||w| - |a_n|| = |a_n| - |w| \ge \frac{|a_n|}{2}.$$
 (62)

So,

$$\left| \frac{1}{P(z)} \right| = \frac{1}{|w + a_n||z^n|} \le \frac{2}{|a_n|} \frac{1}{|z^n|} \le \frac{2}{|a_n|} \frac{1}{R^n} \tag{63}$$

where |z| > R. Now, suppose that $P(z) \neq 0 \forall z \in \mathbb{C}$ to get a contradiction. Since P(z) is never vanishes, f(z) = 1/P(z) is entire. Since, in particular, f(z) is continuous, it is bounded on all closed bounded set. So, $\exists M > 0$ such that $|f(z)| \leq M \forall z, |z| \leq R$. So, by what we've just shown

$$\left| \frac{1}{P(z)} \right| \le \max \left[M, \frac{2}{|a_n| R^n} \right]. \tag{64}$$

So, we have f(z) is bounded and entire. By Liouville's theorem, 1/P(z) must be constant. This is a contradiction.

30 Corollary to The Fundamental Theorem of Algebra

If P(z) has degree n, then there exists $c \in \mathbb{C}$ and $z_1, z_2, \ldots, z_n \in \mathbb{C}$ such that

$$P(z) = c(z - z_1) \dots (z - z_n). \tag{65}$$

31 The Maximum Modulus Principle 1

Suppose that an analytic function f has |f(z)| maximized at z_0 in some nbh $\mathcal{B}_{\epsilon}(z_0)$ for some $\epsilon > 0$. Then f(z) is constant on $\mathcal{B}_{\epsilon}(z_0)$.

Proof. Take $0 < \rho < \epsilon$ and by invoking Cauchy's integral formula, we have

$$f(z_0) = \frac{1}{2\pi i} \oint_{C_\rho} \frac{f(z)}{z - z_0} dz$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + \rho e^{it})}{z_0 + \rho e^{it} - z_0} i\rho e^{it} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt. \tag{66}$$

So

$$|f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + \rho e^{it}) dt \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \underbrace{\left| f(z_0 + \rho e^{it}) \right|}_{\leq |f(z_0)|} dt$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0)| dt = |f(z_0)|. \tag{67}$$

This says

$$|f(z_0)| = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})| dt$$
 (68)

so

$$\frac{1}{2\pi} \int_0^{2\pi} \underbrace{|f(z_0)| - |f(z_0 + \rho e^{it})|}_{>0} dt.$$
 (69)

This says $\forall t \in [0, 2\pi]$ and $\forall \rho < \epsilon$

$$|f(z_0)| = |f(z_0 + \rho e^{it})|.$$
 (70)

This is true for all $\rho < \epsilon$, so $|f(z)| = |f(z_0)|$ for all $z \in \mathcal{B}_{\epsilon}(z_0)$.

32 The Maximum Modulus Principle 2

Let f be analytic and non-constant on a domain \mathcal{D} (open and connected), then |f(z)| cannot be maximized in \mathcal{D} .

Proof. Assume to reach a contradiction that f is maximized at $z_0 \in \mathcal{D}$. Let $z_1 \in \mathcal{D}$ be arbitrary. Then by the following figure

we get a contradiction, using the maximum modulus principle 1, as desired.

33 Convergence of Series

Consider a sequence $\{z_n\} = (z_0, z_1, \dots)$ of complex numbers. Write $\{z_n\} \in \mathbb{C}$. We say that the sequence converges if $\exists z \in \mathbb{C}$ for which the following holds: $\forall \epsilon > 0, \exists N = N_{\epsilon} \in \mathbb{N} \text{ s.t.}$

$$|z - z_n| < \epsilon \,\forall n \ge N. \tag{71}$$

In this sense, we also say that $\{z_n\}$ converges to z and call z the limit of the sequence:

$$z = \lim_{n \to \infty} z_n. \tag{72}$$

34 Real and Imaginary parts of a convergent sequence

Let $z_n = x_n + iy_n$ be a sequence, then $z_n \to z = x + iy$ if and only if $x_n \to x$ and $y_n \to y$ in the sense of real numbers.

35 Cauchy sequences

A sequence $\{z_n\}$ is called a Cauchy sequence if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

$$|z_n - z_m| < \epsilon \,\forall n, m \ge N. \tag{73}$$

36 Cauchy and Convergence

A sequence is convergent if and only if it is Cauchy.

37 Series

Consider a sequence $\{z_n\}_{n=0}^{\infty}$ and the series formed with the sequential elements as its terms:

$$\sum_{n=0}^{\infty} z_k = z_0 + z_1 + z_2 + \dots$$
(74)

where, a priori, we don't assume they add to anything. This series convergences if $\{S_N\}$ where

$$S_N = \sum_{n=0}^{N} z_k \tag{75}$$

is a convergent sequence, i.e.,

$$S = \lim_{N \to \infty} S_N \tag{76}$$

exists.

38 Convergence of Series

39 Taylor's Theorem

Let f(z) be analytic on a disk $\mathcal{B}_{R_0}(z_0)$, then for any $z \in \mathcal{B}_{R_0}(z_0)$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$
 (77)

Remarks:

- 1. In particular, the series $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ converges.
- 2. The sum is f.
- 3. For real functions $h : \mathbb{R} \to \mathbb{R}$. If h is differentiable on an open set containing x_0 , it might not be twice differentiable.
- 4. For infinitely differentiable functions, now the series makes sense, but we might have h being representable by a Taylor series that is infinitely differentiable, but not equal to its Maclaurin series. For example:

$$h(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 (78)

Proof. Without loss of generality, assume that $z_0 = 0$ and consider $\mathcal{B}_{R_0}(z_0)$ on which f is analytic. Let $z \in \mathcal{B}_{R_0}(z_0)$. Let $|z_0| < |z| < R_0$, and define a s.c.c.(+) C centered at $z_0 = 0$ of radius R_0 . Since z lives in the interior of C, Cauchy integral formula says

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - z} dw. \tag{79}$$

Since $w \neq 0$, we write

$$\frac{1}{w-z} = \frac{1}{w} \frac{1}{1-z/w} = \sum_{n=0}^{N} \frac{z^n}{w^{n+1}} + \frac{1}{w-z} \left(\frac{z}{w}\right)^{N+1},\tag{80}$$

which is made possible by the fact that

$$\frac{1}{1-a} = \frac{1-a^{N+1}}{1-a} + \frac{a^{N+1}}{1-a} = \sum_{n=0}^{N} a^n + \frac{a^{N+1}}{1-a}.$$
 (81)

Next, by Cauchy's derivative formula,

$$f^{(n)}(0) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-0)^{n+1}} dw.$$
 (82)

So we have

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w-0)^{n+1}} dw.$$
 (83)

Next, let the error be

$$\rho_{N} = f(z) - \sum_{n=0}^{N} a_{n} z^{n}
= \frac{1}{2\pi i} \oint_{C} \frac{f(w)}{w - z} dw - \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \oint_{C} \frac{f(w)}{(w - 0)^{n+1}} z^{n} dw
= \frac{1}{2\pi i} \oint_{C} f(w) \left[\frac{1}{w - z} - \sum_{n=0}^{N} \frac{z^{n}}{w^{n+1}} \right] dw
= \frac{1}{2\pi i} \oint_{C} f(w) \frac{(z/w)^{N+1}}{w - z} dw.$$
(84)

Set

$$d = \min|w - z| \quad z \in C \tag{85}$$

and

$$M = \max |f(z)| \quad z \in \mathcal{B}_{R_0}(z_0 = 0)$$
 (86)

then

$$|\rho_N| = \frac{1}{2\pi} \left| \oint_C f(w) \frac{(z/w)^{N+1}}{w-z} dw \right|$$

$$\leq \frac{1}{2\pi} \frac{|z/w|^{N+1}}{d} M \mathcal{L}(C)$$

$$= \frac{M|z/w|^{N+1}}{d} r_0$$
(87)

So, we have shown that given $z \in \mathcal{B}_{R_0}(0)$, $\exists |z| < r_0 < R_0$ for which

$$|\rho_N| \le M \frac{|z|^{N+1}}{d \cdot r_0^N} = \left(\frac{M|z|}{d}\right) \left(\frac{|z|}{r_0}\right)^N \forall N \in \mathbb{N}.$$
 (88)

Since we've chosen $|z| < r_0 < R_0$, $|z|/r_0 < 1$. Given $\epsilon > 0$, $\exists N_0 \in \mathbb{N}$ for which $\forall N \geq N_0$,

$$\left(\frac{|z|}{r_0}\right)^N < \frac{\epsilon d}{M|z|}.
\tag{89}$$

So, for all $N \geq N_0$,

$$|\rho_N| \le \frac{M|z|}{d} \left(\frac{|z|}{r_0}\right)^N < \epsilon. \tag{90}$$

Thus,

$$f(z) = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=0}^{N} a_n z^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n.$$
 (91)

40 Laurent's Theorem

Let f be analytic on a region \mathcal{D} defined by $R_1 < |z - z_0| < R_2$, and let a simple closed contour C endowed with a positive orientation in this annulus be given. Then, for each $z \in \mathcal{D}$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^{-n+1}}$$
(92)

where

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \quad b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{-n+1}} dz.$$
 (93)

Proof. Without loss of generality, assume $z_0 = 0$. Let C_1, C_2 , s.c.c.(+) be given such that C_2 encloses C_1, z, C ; C encloses C_1 , and the exterior of C_1 contains z, C. Also, let γ be a s.c.c.(+) around z, exterior to C_1 but interior to C_2 . An appeal to Cauchy-Goursat for multiply-connected domain shows that

$$\oint_{C_2} \frac{f(s)}{s-z} \, ds - \oint_{C_1} \frac{f(s)}{s-z} \, ds - \oint_{C_2} \frac{f(s)}{s-z} \, ds = 0. \tag{94}$$

Next, by Cauchy integral formula,

$$f(z) = \frac{1}{2\pi i} \oint_{C_{\gamma}} \frac{f(s)}{s - z} ds$$

$$= \oint_{C_{2}} \frac{f(s)}{s - z} ds - \oint_{C_{1}} \frac{f(s)}{s - z} ds$$

$$= \oint_{C_{2}} \frac{f(s)}{s - z} ds + \oint_{C_{1}} \frac{f(s)}{z - s} ds. \tag{95}$$

For the first integral, we can make the following replacement

$$\frac{1}{s-z} = \frac{1}{s} \left(\frac{1}{1-z/s} \right)
= \sum_{n=0}^{N-1} \frac{z^n}{s^{n+1}} + \frac{1}{s-z} \left(\frac{z}{s} \right)^N.$$
(96)

For the second integral, we can make the following replacement (interchanging the role of s and z)

$$\frac{1}{z-s} = \frac{1}{z} \left(\frac{1}{1-s/z} \right)$$

$$= \sum_{n=0}^{N-1} \frac{s^n}{z^{n+1}} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N$$

$$= \sum_{n=1}^{N} \frac{s^{n-1}}{z^n} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N$$

$$= \sum_{n=1}^{N} \frac{z^{-n}}{s^{-n+1}} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N.$$
(97)

And so we have

$$f(z) = \frac{1}{2\pi i} \oint_{C_2} f(s) \left[\sum_{n=0}^{N-1} \frac{z^n}{s^{n+1}} + \frac{1}{s-z} \left(\frac{z}{s} \right)^N \right] z^n dz$$

$$+ \frac{1}{2\pi i} \oint_{C_1} f(s) \left[\sum_{n=1}^N \frac{z^{-n}}{s^{-n+1}} + \frac{1}{z-s} \left(\frac{s}{z} \right)^N \right] z^{-n} dz$$

$$= \sum_{n=0}^{N-1} \underbrace{\left[\frac{1}{2\pi i} \oint_{C_2} \frac{f(s)}{s^{n+1}} ds \right]}_{\alpha_n} z^n + \sum_{n=1}^N \underbrace{\left[\frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{s^{-n+1}} ds \right]}_{\beta_n} z^{-n} + \rho_N + \sigma_N$$
(98)

where

$$\rho_N = \frac{1}{2\pi i} \oint_{C_2} \frac{f(s)}{s - z} \left(\frac{z}{s}\right)^N ds \tag{99}$$

$$\sigma_N = \frac{1}{2\pi i} \oint_{C_s} \frac{f(s)}{z - s} \left(\frac{s}{z}\right)^N ds. \tag{100}$$

Now, on C_2 ,

$$\frac{1}{|s-z|} \le \frac{1}{R_2 - R},\tag{101}$$

and on C_1 ,

$$\frac{1}{|z-s|} \le \frac{1}{R-R_1},\tag{102}$$

where R = |z|, $R_1 < R < R_2$. Setting $M = \max |f(s)|$ where $s \in C_1 \cap C_2$, by triangle inequality, we have that

$$|\rho_N| = \frac{1}{2\pi} \left| \oint_{C_2} \frac{f(s)}{s - z} \left(\frac{z}{s} \right)^N ds \right| \le \frac{1}{2\pi} \frac{M}{R_2 - R} \left(\frac{R}{R_2} \right)^N 2\pi R_2 = \frac{M}{1 - R/R_2} \left(\frac{R}{R_2} \right)^N.$$
(103)

Similarly,

$$|\sigma_N| \le \frac{M}{1 - R_1/R} \left(\frac{R_1}{R}\right)^N. \tag{104}$$

We see that $\rho_N \to 0$, $\sigma \to 0$ as $N \to \infty$. It follows (with ϵ 's and N's similar to those in the proof of Taylor's theorem) that

$$f(z) = \sum_{n=0}^{\infty} \alpha_n z^n + \sum_{n=1}^{\infty} \beta_n z^{-n}.$$
 (105)

And by corollary to Cauchy-Goursat for multiply-connected regions,

$$\alpha_n = \frac{1}{2\pi i} \int_C (\) \, ds = a_n$$

$$\beta_n = \frac{1}{2\pi i} \int_C (\) \, ds = b_n \tag{106}$$

for all n.

41 More results about series

Consider a power series

$$S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$
 (107)

- 1. If S(z) converges at some $z_1 \neq z_0$ the S(z) converges on $\mathcal{B}_R(z_0)$ where $|z_0 z_1| \leq R$.
- 2. The series converges uniformly and absolutely on every ball \mathcal{B} properly contained in $\mathcal{B}_R(z_0)$.
- 3. On $\mathcal{B}_R(z_0)$, S(z) is analytic, $S'(z) = \sum_{n=1}^{\infty} n a_n (z z_0)^{n-1}$.
- 4. If C is a s.c.c.(+) and g is continuous on C and $C \subset \mathcal{B}_R(z_0)$ then

$$\oint_C fg \, dz = \sum_{n=0}^{\infty} \oint_C a_n g(z) (z - z_0)^n \, dz \tag{108}$$

5. Uniqueness of Laurent series: If $S(z) = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n$ converges on an annulus $R_1 \leq |z - z_0| \leq R_2$ then this is precisely the Laurent series of S at z_0 .

42 Residues

For C a s.c.c.(+), let f have singularities at z_1, z_2, \ldots, z_n enclosed by C. Then all the z_k 's are isolated singularities, and there exist punctured disks $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n$ inside C which are on-overlapping whose centers contains z_k 's, respectively.

Next, suppose that f has an isolated singularity at z_0 . Then f has a Laurent series expansion on an annulus $0 < |z - z_0| < R$ with

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}.$$
 (109)

Further, for any s.c.c.(+) C_k ,

$$b_n = \frac{1}{2\pi i} \oint_{C_k} \frac{f(z)}{(z - z_0)^{-n+1}} dz \forall n = 1, 2, 3, \dots$$
 (110)

In particular,

$$b_1 = \frac{1}{2\pi i} \oint_{C_h} f(z) \, dz. \tag{111}$$

We shall call this coefficient of $1/(z-z_0)$ in the Laurent series expansion the residue of f at z_0 , denoted

$$b_1 := \operatorname{Res}_{z=z_0} f(z). \tag{112}$$

This gives us a way to compute integrals by finding Laurent series expansions.

43 The Residue Theorem

Let C be a s.c.c.(+) and suppose that f is analytic on C and the interior to C except at a finite number of points z_1, z_2, \ldots, z_n , all enclosed by C. Then

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$
(113)

Proof. Take C_1, C_2, \ldots, C_n to be non-intersecting s.c.c.(+) inside C where each enclosed only the singular point z_k , respectively. Then f is analytic on $Int(C) \setminus \cup^n IntC_k$. By Cauchy-Goursat for multiply-connected region,

$$\oint_{C} f(z) dz = \sum_{k=1}^{n} \oint_{C_{k}} f(z) dz.$$
 (114)

But for each k, we also have

$$\oint_{C_k} f(z) dz = 2\pi i \operatorname{Res}_{z=z_k} f(z).$$
(115)

So,

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$
(116)

44 Classification of Singularities

If the principal part of the Laurent series expansion of f is identically zero then z_0 is said to be a removable singularity.

If z_0 is an isolated removable singularity for f for $z \neq z_0$ but $0 < |z - z_0| < R$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + 0.$$
 (117)

At $z=z_0$, the left-hand side is a_0 . So if we define

$$f_{ext}(z) = \begin{cases} f(z) & 0 < |z - z_0| < R \\ a_0 & z = z_0 \end{cases}$$
 (118)

then

$$f_{ext}(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (119)

for all z such that $|z - z_0| < R$. This is called an extension of f. We note that $f_{ext}(z)$ is analytic on $\mathcal{B}_R(z_0)$. We have just removed the removable singularity.

When the principal part of f is nonzero and contains a finite number of summands

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} = \frac{b_1}{(z-z_0)} + \dots \frac{b_m}{(z-z_0)^m}$$
 (120)

and $b_k \neq 0 \forall k \geq m+1$ then z_0 is a pole of order m for f. When $m=1, z_0$ is called a simple pole.

If the principal part of f is identically zero, then z_0 is a removable singularity for f, because f can be extended via its valid Taylor-Laurent series expansion to an analytic function on $\mathcal{B}_R(z_0)$.

 z_0 is said to be an essential singularity of f it it is not removable or a pole, i.e., the principle part of the Laurent series of f contains an infinite number of non-zero terms.

45 Residues with Φ theorem

Let z_0 be an isolated singularity of f. Then z_0 is a pole or order m if and only if \exists a function $\phi(z)$ which is non zero at z_0 , analytic at z_0 and for which

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$
 (121)

for $z \in a$ nbh of z_0 . In this case,

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}.$$
 (122)

Proof. (\rightarrow) Suppose that

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$
 (123)

where $\phi(z)$ is analytic at z_0 and $\phi(z_0) \neq 0$. Then we have that $\phi(z)$ has a valid Taylor series expansion in $\mathcal{B}_R(z_0)$:

$$\phi(z) = \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^n.$$
 (124)

With this, we can write f(z) as

$$f(z) = \frac{1}{(z - z_0)^m} \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^{n-m}$$

$$= \sum_{n=0}^{m-1} \frac{\phi^{(n)}(z_0)}{n!} (z - z_0)^{n-m} + (\text{Taylor})$$

$$= \sum_{k=1}^{m} \frac{\phi^{(n-k)}(z_0)}{(m-k)!} (z - z_0)^k + (\text{Taylor}), \quad (k = m - n).$$
(125)

And so z_0 is a pole of order m, since $\phi^{(0)}(z_0) \neq 0$. And of course, we get for free

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}.$$
 (126)

 (\leftarrow) Conversely, assume that f has a pole at z_0 or order m. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + 0 \dots$$

$$= \frac{1}{(z - z_0)^m} \left[\sum_{n=0}^{\infty} a_n (z - z_0)^{n+m} + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^{n-m}} \right]$$

$$:= \frac{\phi(z)}{(z - z_0)^m}$$
(127)

where $\phi(z)$ is defined to be the expression in the square brackets. With this, we see that $\phi(z)$ is analytic at z_0 and $\phi(z_0) = 0 + b_m \neq 0$ by hypothesis.

46 Residues with p-q theorem

Let p, q be analytic at z_0 . If $p(z_0) \neq 0, q'(z_0) \neq 0$, and $p'(z_0) = 0$ then

$$f(z) = \frac{p(z)}{q(z)} \tag{128}$$

has a simple pole of z_0 and

$$\operatorname{Res}_{z=z_0} f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}.$$
 (129)

Proof. hello

47 What happens near singularities?

If z_0 is a pole of order m for f, then

$$\lim_{z \to z_0} f(z) = \infty. \tag{130}$$

48 Removable singularity - Boundedness - Analyticity (RBA)

If z_0 is a removable singularity for f then f is bounded and analytic on a punctured nbh of z_0 .

49 The converse of RBA

Let f be analytic on $0 < |z - z_0| < \delta$ for some $\delta > 0$. If f is also bounded on $0 < |z - z_0| < \delta$, then if z_0 is a singularity for f, it must be removable.

Proof. By assumption, f has a Laurent series representation of the form

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
 (131)

where b_n in particular is given by

$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{-n+1}} dz$$
 (132)

where C is a s.c.c.(+) in the annulus of the analyticity. In particular, if $0 < \rho < \delta$, and $C_{\rho} := \{z, |z - z_0| = \rho\}$, (+) then

$$|b_n| = \left| \frac{1}{2\pi i} \oint_{C_o} \frac{f(z)}{(z - z_0)^{-n+1}} dz \right|$$
 (133)

and if M is such that $f(z) \leq M \forall 0 < |z - z_0| < \delta$ then

$$|b_n| \le \frac{1}{2\pi} \frac{M}{\rho^{-n+1}} 2\pi \rho = M\rho^n.$$
 (134)

Since this is valid $\forall \rho < \delta$, we must have that $b_n = 0 \forall n$.

50 Casorati-Weierstrass Theorem

Let f have an essential singularity at z_0 . Then $\forall w_0 \in \mathbb{C}$ and $\epsilon > 0$,

$$|f(z) - w_0| < \epsilon \tag{135}$$

for some $z \in \mathcal{B}_{\delta}(z_0) \forall \delta 0$.

 \iff f is arbitrarily close to every complex number on every nbh of z_0 .

 $\iff \forall \delta > 0, f(\mathcal{B}_{\delta}(z_0) \setminus \{z_0\}) \text{ is dense on } \mathbb{C}.$

 \iff f gets close to every single point in a ball for any ball.

 \iff If z_0 is an essential singularity for f then f attains, except for at most one value, every complex number an infinite number of time on every nbh of z_0 .

Proof. Assume to reach a contradiction that $\exists w_0 \in \mathbb{C}, \epsilon, \delta > 0$ s.t.

$$|f(z) - w_0| \ge \epsilon \forall 0 < |z - z_0| < \delta, \tag{136}$$

i.e., f does not get close to some value w_0 in some nbh of z_0 of radius δ . Then, consider

$$g(z) = \frac{1}{f(z) - w_0} \tag{137}$$

which is bounded and analytic on the punctured disk $0 < |z - z_0| < \delta$. At worst, z_0 is a removable singularity for g. Also note that g(z) is not identically zero since f is not constant (as f has a singularity). With this,

$$g(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k,$$
(138)

which allows us to extend g to z_0 . Let $m = \min(k = 0, 1, 2, ...)$ such that $a_k \neq 0$, which exists because $g \neq 0$. Then

$$g(z) = (z - z_0)^m \sum_{k=0}^{\infty} a_k (z - z_0)^{k-m} = (z - z_0)^m \sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k.$$
 (139)

Call the sum h(z), which $h(z_0) = a_m \neq 0$. So, in $\mathcal{B}_{\delta}(z_0) \setminus \{z_0\}$, we have

$$f(z) = w_0 + \frac{1}{g(z)}. (140)$$

If $g(z_0) \neq 0 \iff m = 0$, then this formula allows s to extend f to z_0 , which is then analytic, which makes z_0 a removable singularity. This is a contradiction. If $g(z_0) = 0$, then because $m \geq 1$ (by definition) and

$$f(z) = w_0 + \frac{1}{g(z)} = \frac{w_0 g(z) + 1}{(z - z_0)^m h(z)} := \frac{\phi(z)}{(z - z_0)^m}.$$
 (141)

We see that $\phi(z_0) \neq 0$, and $\phi(z)$ is analytic. So, z_0 is a pole of order m of f. This is also a contradiction.