Amazon Reviews

Dr. Jarad Niemi

STAT 544 - Iowa State University

March 1, 2018

Amazon Reviews - Upright, bagless, cyclonic vacuum cleaners

	Number of ratings							
product_id	n1	n2	n3	n4	n5	n_total	mean	sd
B000REMVGK	21	17	2	8	7	55	2.33	1.44
B001EFMD8W	40	34	28	77	347	526	4.25	1.26
B001PB51GQ	14	12	13	31	69	139	3.93	1.36
B002DGSJVG	22	8	3	6	10	49	2.47	1.63
B002G9UQZC	8	0	1	1	1	11	1.82	1.47
B002GHBRX4	18	8	9	14	27	76	3.32	1.61
B002HF66BI	9	5	2	2	3	21	2.29	1.49
B003OA77MC	15	7	8	24	42	96	3.74	1.47
B003OAD24Y	7	7	4	9	19	46	3.57	1.53
B003Y3AA3C	20	3	1	2	2	28	1.68	1.28
B0043EW354	40	25	25	60	163	313	3.90	1.44
B00440EO8G	2	1	1	1	7	12	3.83	1.64
B004R9197I	9	1	1	9	26	46	3.91	1.58
B008L5F4H0	3	1	2	12	7	25	3.76	1.27

Let y_{ij} be the jth review for the ith product.

Let y_{ij} be the jth review for the ith product. Assume

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

Let y_{ij} be the jth review for the ith product. Assume

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

and

$$\theta_i \stackrel{ind}{\sim} N(\mu, \tau^2)$$

Let y_{ij} be the jth review for the ith product. Assume

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

and

$$\theta_i \stackrel{ind}{\sim} N(\mu, \tau^2)$$

and

$$p(\mu, \tau, \sigma) \propto Ca^+(\sigma; 0, 1)Ca^+(\tau; 0, 1)$$

Normal hierarchical model in Stan

```
normal_model = "
data {
 int <lower=1> n;
 int <lower=1> n_products;
 int <lower=1.upper=5> stars[n]:
 int <lower=1.upper=n products> product id[n]:
parameters {
 real mu;
                          // implied uniform prior
 real<lower=0> sigma;
 real<lower=0> tau:
 real theta[n_products];
model {
 // Prior
 sigma ~ cauchy(0,1);
 tau ~ cauchy(0,1);
 // Hierarchial model
 theta ~ normal(mu.tau):
 // Data model
 for (i in 1:n) stars[i] ~ normal(theta[product_id[i]], sigma);
```

Fit model

```
m = stan_model(model_code = normal_model)
In file included from file24d05f9c1dec.cpp:8:
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/StanHeaders/include/src/st
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/StanHeaders/include/stan/m
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/BH/include/boost/math/tool
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/BH/include/boost/config.hp
/Library/Frameworks/R.framework/Versions/3.4/Resources/library/BH/include/boost/config/compiler/clang.hpp:200:1
# define BOOST_NO_CXX11_RVALUE_REFERENCES
<command line>:6:9: note: previous definition is here
#define BOOST_NO_CXX11_RVALUE_REFERENCES 1
1 warning generated.
dat = list(n = nrow(d),
           n_products = nlevels(d$product_id),
           stars = d$stars.
           product id = as.numeric(d$product id))
r = sampling(m, dat)
SAMPLING FOR MODEL '03148bf3617900613206f68b66119d86' NOW (CHAIN 1).
```

Tabular summary

Inference for Stan model: 03148bf3617900613206f68b66119d86.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat	
mu	3.23	0.00	0.26	2.73	3.07	3.23	3.40	3.73	4000	1	
sigma	1.39	0.00	0.03	1.34	1.38	1.39	1.41	1.45	4000	1	
tau	0.89	0.00	0.19	0.58	0.75	0.86	0.99	1.34	4000	1	
theta[1]	2.37	0.00	0.18	2.02	2.25	2.37	2.49	2.72	4000	1	
theta[2]	4.24	0.00	0.06	4.13	4.20	4.25	4.29	4.36	4000	1	
theta[3]	3.92	0.00	0.12	3.68	3.84	3.91	3.99	4.15	4000	1	
theta[4]	2.51	0.00	0.19	2.14	2.38	2.51	2.64	2.88	4000	1	
theta[5]	2.10	0.01	0.39	1.33	1.84	2.10	2.37	2.86	4000	1	
theta[6]	3.31	0.00	0.16	3.00	3.21	3.31	3.42	3.63	4000	1	
theta[7]	2.40	0.00	0.29	1.82	2.20	2.40	2.59	2.95	4000	1	
theta[8]	3.72	0.00	0.14	3.45	3.63	3.72	3.82	4.00	4000	1	
theta[9]	3.54	0.00	0.20	3.15	3.41	3.54	3.68	3.93	4000	1	
theta[10]	1.81	0.00	0.26	1.30	1.63	1.81	1.99	2.33	4000	1	
theta[11]	3.89	0.00	0.08	3.74	3.84	3.89	3.94	4.05	4000	1	
theta[12]	3.72	0.01	0.36	3.01	3.47	3.72	3.98	4.42	4000	1	
theta[13]	3.88	0.00	0.21	3.47	3.73	3.87	4.02	4.28	4000	1	
theta[14]	3.71	0.00	0.27	3.19	3.53	3.71	3.89	4.23	4000	1	
lp	-1207.37	0.07	2.87	-1213.62	-1209.10	-1207.11	-1205.33	-1202.55	1515	1	

Samples were drawn using NUTS(diag_e) at Thu Mar 1 09:41:07 2018. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Vacuum cleaner mean posteriors (θ_i)

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars.

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Let n^{\ast} be the number of new ratings and \overline{y}^{\ast} be the average of those ratings,

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Let n^{\ast} be the number of new ratings and \overline{y}^{\ast} be the average of those ratings, then

$$E[\theta^*|\overline{y}^*, n^*, \sigma, \mu, \tau] =$$

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Let n^* be the number of new ratings and \overline{y}^* be the average of those ratings, then

$$E[\theta^*|\overline{y}^*, n^*, \sigma, \mu, \tau] = \frac{\frac{n^*}{\sigma^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \overline{y}^* + \frac{\frac{1}{\tau^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \mu$$

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Let n^{\ast} be the number of new ratings and \overline{y}^{\ast} be the average of those ratings, then

$$E[\theta^* | \overline{y}^*, n^*, \sigma, \mu, \tau] = \frac{\frac{n^*}{\sigma^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \overline{y}^* + \frac{\frac{1}{\tau^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \mu$$
$$= \frac{n^*}{n^* + \frac{\sigma^2}{\tau^2}} \overline{y}^* + \frac{\frac{\sigma^2}{\tau^2}}{n^* + \frac{\sigma^2}{\tau^2}} \mu$$

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Let n^{\ast} be the number of new ratings and \overline{y}^{\ast} be the average of those ratings, then

$$\begin{split} E[\theta^*|\overline{y}^*, n^*, \sigma, \mu, \tau] &= \frac{\frac{n^*}{\sigma^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \overline{y}^* + \frac{\frac{1}{\tau^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \mu \\ &= \frac{n^*}{n^* + \frac{\sigma^2}{\tau^2}} \overline{y}^* + \frac{\frac{\sigma^2}{\tau^2}}{n^* + \frac{\sigma^2}{\tau^2}} \mu \\ &= \frac{n^*}{n^* + m} \overline{y}^* + \frac{m}{n^* + m} \mu \end{split}$$

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the average star rating will be (in the future) for this new product?

Let n^{\ast} be the number of new ratings and \overline{y}^{\ast} be the average of those ratings, then

$$\begin{split} E[\theta^*|\overline{y}^*, n^*, \sigma, \mu, \tau] &= \frac{\frac{n^*}{\sigma^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \overline{y}^* + \frac{\frac{1}{\tau^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \mu \\ &= \frac{n^*}{n^* + \frac{\sigma^2}{\tau^2}} \overline{y}^* + \frac{\frac{\sigma^2}{\tau^2}}{n^* + \frac{\sigma^2}{\tau^2}} \mu \\ &= \frac{n^*}{n^* + m} \overline{y}^* + \frac{m}{n^* + m} \mu \end{split}$$

where $m = \sigma^2/\tau^2$ is a measure of how many *prior* samples there are.

IMDB rating

```
From http://www.imdb.com/chart/top.html:
```

```
weighted rating (WR) = (v / (v+m)) R + (m / (v+m)) C
```

Where:

```
R = average for the movie (mean) = (Rating)
v = number of votes for the movie = (votes)
```

m = minimum votes required to be listed in the Top 250 (currently 25000)

C = the mean vote across the whole report (currently 7.1)

Thus IMDB uses a Bayesian estimate for the rating for each movie where $m = \sigma^2/\tau^2 = 25,000.$

We assumed

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

for the jth star rating of product i.

We assumed

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

for the jth star rating of product i. Clearly this model is incorrect since $y_{ij} \in \{1,2,3,4,5\}$.

An alternative model is

$$z_{ij} \stackrel{ind}{\sim} Bin(4, \theta_i)$$

where $z_{ij} = y_{ij} - 1$ is the jth star rating minus 1 of product i

We assumed

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

for the jth star rating of product i. Clearly this model is incorrect since $y_{ij} \in \{1,2,3,4,5\}$.

An alternative model is

$$z_{ij} \stackrel{ind}{\sim} Bin(4, \theta_i)$$

where $z_{ij} = y_{ij} - 1$ is the jth star rating minus 1 of product i and

$$\theta_i \sim Be(\alpha, \beta)$$

We assumed

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

for the jth star rating of product i. Clearly this model is incorrect since $y_{ij} \in \{1, 2, 3, 4, 5\}$.

An alternative model is

$$z_{ij} \stackrel{ind}{\sim} Bin(4, \theta_i)$$

where $z_{ij} = y_{ij} - 1$ is the jth star rating minus 1 of product i and

$$\theta_i \sim Be(\alpha, \beta)$$
 and $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$.

We assumed

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

for the jth star rating of product i. Clearly this model is incorrect since $y_{ij} \in \{1, 2, 3, 4, 5\}$.

An alternative model is

$$z_{ij} \stackrel{ind}{\sim} Bin(4, \theta_i)$$

where $z_{ij} = y_{ij} - 1$ is the jth star rating minus 1 of product i and

$$\theta_i \sim Be(\alpha, \beta)$$
 and $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$.

The idea behind this model would be that product i the probability of earning each star is θ_i and each star is independent.

Binomial hierarchical model in Stan

```
binomial_model = "
data {
 int <lower=1> n:
 int <lower=1> n_products;
 int <lower=1.upper=5> stars[n]:
 int <lower=1.upper=n products> product id[n]:
transformed data {
 int <lower=0, upper=4> z[n];
 for (i in 1:n) z[i] = stars[i]-1;
parameters {
 real<lower=0> alpha:
 real<lower=0> beta:
 real<lower=0,upper=1> theta[n_products];
model {
 // Prior
 target += -5*log(alpha+beta)/2; // improper prior
 // Hierarchical model
 theta ~ beta(alpha,beta);
 // Data model
 for (i in 1:n) z[i] ~ binomial(4, theta[product_id[i]]);
```

Fit model

```
m = stan_model(model_code = binomial_model)
In file included from file24d05140e485.cpp:8:
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/StanHeaders/include/src/st
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/StanHeaders/include/stan/m
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/BH/include/boost/math/tool
In file included from /Library/Frameworks/R.framework/Versions/3.4/Resources/library/BH/include/boost/config.hp
/Library/Frameworks/R.framework/Versions/3.4/Resources/library/BH/include/boost/config/compiler/clang.hpp:200:1
# define BOOST_NO_CXX11_RVALUE_REFERENCES
<command line>:6:9: note: previous definition is here
#define BOOST_NO_CXX11_RVALUE_REFERENCES 1
1 warning generated.
dat = list(n = nrow(d),
           n_products = nlevels(d$product_id),
           stars = d$stars.
           product id = as.numeric(d$product id))
r = sampling(m, dat)
SAMPLING FOR MODEL 'e26b5a276955604814aba1dc21dc3cbe' NOW (CHAIN 1).
```

Tabular summary

Inference for Stan model: e26b5a276955604814aba1dc21dc3cbe. 4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean so	2.5%	25%	50%	75%	97 5%	n_eff	Rhat
2.1		_						_	
alpha	2.70	0.02 1.07		1.93	2.57	3.29	5.30	4000	1
beta	2.27	0.01 0.87	0.95	1.65	2.13	2.74	4.37	4000	1
theta[1]	0.34	0.00 0.03	0.28	0.32	0.34	0.36	0.40	4000	1
theta[2]	0.81	0.00 0.01	0.79	0.81	0.81	0.82	0.83	4000	1
theta[3]	0.73	0.00 0.02	0.69	0.72	0.73	0.74	0.77	4000	1
theta[4]	0.37	0.00 0.03	0.30	0.35	0.37	0.39	0.44	4000	1
theta[5]	0.24	0.00 0.06	0.13	0.20	0.23	0.28	0.36	4000	1
theta[6]	0.58	0.00 0.03	0.52	0.56	0.58	0.60	0.63	4000	1
theta[7]	0.33	0.00 0.05	0.24	0.30	0.33	0.37	0.43	4000	1
theta[8]	0.68	0.00 0.02	0.64	0.67	0.68	0.70	0.73	4000	1
theta[9]	0.64	0.00 0.03	0.57	0.62	0.64	0.66	0.70	4000	1
theta[10]	0.18	0.00 0.04	0.12	0.16	0.18	0.21	0.26	4000	1
theta[11]	0.72	0.00 0.01	0.70	0.72	0.72	0.73	0.75	4000	1
theta[12]	0.69	0.00 0.06	0.56	0.65	0.70	0.73	0.81	4000	1
theta[13]	0.72	0.00 0.03	0.66	0.70	0.72	0.75	0.79	4000	1
theta[14]	0.68	0.00 0.05	0.59	0.65	0.68	0.71	0.77	4000	1
lp	-3265.15	0.07 2.86	-3271.42	-3266.93	-3264.79	-3263.04	-3260.59	1632	1

Samples were drawn using NUTS(diag_e) at Thu Mar 1 09:42:54 2018. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Review mean posteriors (θ_i)

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- $\alpha + \beta$ is the prior sample size
- $E[\theta_i | \alpha, \beta] = \frac{\alpha}{\alpha + \beta}$ is the prior expectation for the probability

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- \bullet $\alpha + \beta$ is the prior sample size
- $E[\theta_i | \alpha, \beta] = \frac{\alpha}{\alpha + \beta}$ is the prior expectation for the probability

But we might want to show results on the original scale (stars),

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- $\alpha + \beta$ is the prior sample size
- $E[\theta_i | \alpha, \beta] = \frac{\alpha}{\alpha + \beta}$ is the prior expectation for the probability

$$E[\mathsf{stars}_{*j} | \alpha, \beta] = E[z_{*j} + 1 | \alpha, \beta]$$

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- \bullet $\alpha + \beta$ is the prior sample size
- $E[\theta_i | \alpha, \beta] = \frac{\alpha}{\alpha + \beta}$ is the prior expectation for the probability

$$E[\mathsf{stars}_{*j}|\alpha,\beta] = E[z_{*j}+1|\alpha,\beta] = E[z_{*j}|\alpha,\beta] + 1$$

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- ullet $\alpha+\beta$ is the prior sample size
- $E[\theta_i|\alpha,\beta]=\frac{\alpha}{\alpha+\beta}$ is the prior expectation for the probability

$$E[\mathsf{stars}_{*j} | \alpha, \beta] = E[z_{*j} + 1 | \alpha, \beta] = E[z_{*j} | \alpha, \beta] + 1$$
$$= E[E[z_{*j} | \theta^*] | \alpha, \beta] + 1$$

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- $\alpha + \beta$ is the prior sample size
- $E[\theta_i | \alpha, \beta] = \frac{\alpha}{\alpha + \beta}$ is the prior expectation for the probability

$$\begin{split} E[\mathsf{stars}_{*j} | \alpha, \beta] &= E[z_{*j} + 1 | \alpha, \beta] = E[z_{*j} | \alpha, \beta] + 1 \\ &= E[E[z_{*j} | \theta^*] | \alpha, \beta] + 1 = E[4\theta^* | \alpha, \beta] + 1 \end{split}$$

Other parameter posteriors

Recall that

- ullet α is the prior success
- ullet eta is the prior failures

So

- \bullet $\alpha + \beta$ is the prior sample size
- $E[\theta_i | \alpha, \beta] = \frac{\alpha}{\alpha + \beta}$ is the prior expectation for the probability

But we might want to show results on the original scale (stars), so the expected number of stars for a new product is

$$\begin{array}{ll} E[\mathsf{stars}_{*j} | \alpha, \beta] &= E[z_{*j} + 1 | \alpha, \beta] = E[z_{*j} | \alpha, \beta] + 1 \\ &= E[E[z_{*j} | \theta^*] | \alpha, \beta] + 1 = E[4\theta^* | \alpha, \beta] + 1 \\ &= 4\frac{\alpha}{\alpha + \beta} + 1 \end{array}$$

Other parameter posteriors

This binomial model has the proper support $\{0,1,2,3,4\}$ for stars minus 1.

This binomial model has the proper support $\{0,1,2,3,4\}$ for stars minus 1, but does it have the correct proportion of observations in each star category?

This binomial model has the proper support $\{0,1,2,3,4\}$ for stars minus 1, but does it have the correct proportion of observations in each star category?

As an example, $\hat{\theta}_2 = 0.81$.

This binomial model has the proper support $\{0,1,2,3,4\}$ for stars minus 1, but does it have the correct proportion of observations in each star category?

As an example, $\hat{\theta}_2 = 0.81$. Thus, we would expect if we used $\hat{\theta}_2$

stars	theoretical	observed		
1	0.001	0.076		
2	0.022	0.065		
3	0.142	0.053		
4	0.404	0.146		
5	0.430	0.660		

This binomial model has the proper support $\{0,1,2,3,4\}$ for stars minus 1, but does it have the correct proportion of observations in each star category?

As an example, $\hat{\theta}_2 = 0.81$. Thus, we would expect if we used $\hat{\theta}_2$

stars	theoretical	observed
1	0.001	0.076
2	0.022	0.065
3	0.142	0.053
4	0.404	0.146
5	0.430	0.660

But this ignores the uncertainty in θ_2 (95% CI is (0.79, 0.83)), so perhaps this difference is due to this uncertainty.

To assess this model fit, we will simulate posterior predictive star ratings for product 2 and compare to the observed ratings:

product_id	n1	n2	n3	n4	n5	n_total
B001EFMD8W	40	34	28	77	347	526

To assess this model fit, we will simulate posterior predictive star ratings for product 2 and compare to the observed ratings:

product_id	n1	n2	n3	n4	n5	n_total
B001EFMD8W	40	34	28	77	347	526

Let \tilde{z}_2 be all the predictive data for product 2, i.e. $\tilde{z}_2=(\tilde{z}_{21},\ldots,\tilde{z}_{2J})$ with J=526 where \tilde{z}_{2j} is the jth predictive star rating minus 1 for review j of product 2.

To assess this model fit, we will simulate posterior predictive star ratings for product 2 and compare to the observed ratings:

product_id	n1	n2	n3	n4	n5	n_total
B001EFMD8W	40	34	28	77	347	526

Let \tilde{z}_2 be all the predictive data for product 2, i.e. $\tilde{z}_2=(\tilde{z}_{21},\ldots,\tilde{z}_{2J})$ with J=526 where \tilde{z}_{2j} is the jth predictive star rating minus 1 for review j of product 2. Then

$$p(\tilde{z}_2|z) = \int \left[\prod_{j=1}^J p(\tilde{z}_{2j}|\theta_2) \right] p(\theta_2|z) d\theta_2$$

To assess this model fit, we will simulate posterior predictive star ratings for product 2 and compare to the observed ratings:

product_id	n1	n2	n3	n4	n5	n_total
B001EFMD8W	40	34	28	77	347	526

Let \tilde{z}_2 be all the predictive data for product 2, i.e. $\tilde{z}_2=(\tilde{z}_{21},\ldots,\tilde{z}_{2J})$ with J=526 where \tilde{z}_{2j} is the jth predictive star rating minus 1 for review j of product 2. Then

$$p(\tilde{z}_2|z) = \int \left[\prod_{j=1}^J p(\tilde{z}_{2j}|\theta_2) \right] p(\theta_2|z) d\theta_2$$

Thus the following procedure will simulation from the joint distribution for the predictive ratings:

- 1. $\theta_2 \sim p(\theta_2|z)$,
- 2. For j = 1, ..., 526, $z_{2j} \stackrel{ind}{\sim} Bin(4, \theta_2)$, and
- 3. $star_{2j} = z_{2j} + 1$.

Posterior predictive distribution in R

Posterior predictive distribution in R

Let $s_i = (s_{i1}, \dots, s_{i5})$ be the vector of the number of 1-star to 5-star ratings for product i,

Let $s_i=(s_{i1},\ldots,s_{i5})$ be the vector of the number of 1-star to 5-star ratings for product i, assume

$$S_i \stackrel{ind}{\sim} Mult(n_i, \theta_i)$$

where θ_i is a probability vector

Let $s_i = (s_{i1}, \dots, s_{i5})$ be the vector of the number of 1-star to 5-star ratings for product i, assume

$$S_i \stackrel{ind}{\sim} Mult(n_i, \theta_i)$$

where θ_i is a probability vector

$$\theta_{ik} = \int_{\alpha_{k-1}}^{\alpha_k} N(x|\mu_i, 1) dx = \Phi(\alpha_k - \mu_i) - \Phi(\alpha_{k-1} - \mu_i)$$

Let $s_i = (s_{i1}, \dots, s_{i5})$ be the vector of the number of 1-star to 5-star ratings for product i, assume

$$S_i \stackrel{ind}{\sim} Mult(n_i, \theta_i)$$

where θ_i is a probability vector

$$\theta_{ik} = \int_{\alpha_{k-1}}^{\alpha_k} N(x|\mu_i, 1) dx = \Phi(\alpha_k - \mu_i) - \Phi(\alpha_{k-1} - \mu_i)$$

where $\alpha_0 = -\infty$, $\alpha_1 = 0$, and $\alpha_5 = \infty$,

Let $s_i = (s_{i1}, \dots, s_{i5})$ be the vector of the number of 1-star to 5-star ratings for product i, assume

$$S_i \stackrel{ind}{\sim} Mult(n_i, \theta_i)$$

where θ_i is a probability vector

$$\theta_{ik} = \int_{\alpha_{k-1}}^{\alpha_k} N(x|\mu_i, 1) dx = \Phi(\alpha_k - \mu_i) - \Phi(\alpha_{k-1} - \mu_i)$$

where $\alpha_0 = -\infty$, $\alpha_1 = 0$, and $\alpha_5 = \infty$, and Φ is the standard normal cumulative distribution function (cdf).

Visualizing the model

So each product has its own mean μ_i .

So each product has its own mean μ_i . The larger μ_i is the more 5-star ratings the product will receive and the fewer 1-star ratings the product will review.

So each product has its own mean μ_i . The larger μ_i is the more 5-star ratings the product will receive and the fewer 1-star ratings the product will review.

In order to borrow information across different products, we might assume a hierarchical model for the μ_i

So each product has its own mean μ_i . The larger μ_i is the more 5-star ratings the product will receive and the fewer 1-star ratings the product will review.

In order to borrow information across different products, we might assume a hierarchical model for the μ_i , e.g.

$$\mu_i \stackrel{ind}{\sim} N(\eta, \tau^2)$$

So each product has its own mean μ_i . The larger μ_i is the more 5-star ratings the product will receive and the fewer 1-star ratings the product will review.

In order to borrow information across different products, we might assume a hierarchical model for the μ_i , e.g.

$$\mu_i \stackrel{ind}{\sim} N(\eta, \tau^2)$$

with a prior

$$p(\eta, \tau) \propto Ca(\tau; 0, 1).$$

```
ordinal_model = "
data {
 int <lower=1> n_products;
 int <lower=0> s[n_products,5]; // summarized count by product
parameters {
 real<lower=0> alpha diff[3]:
 real mu[n_products];
 real eta;
 real<lower=0> tau;
transformed parameters {
 ordered[4] alpha;
                             // cut points
 simplex[5] theta[n products]: // each theta vector sums to 1
 alpha[1] = 0; for (i in 1:3) alpha[i+1] = alpha[i] + alpha_diff[i];
 for (p in 1:n_products) {
   theta[p,1] = Phi(-mu[p]);
   for (i in 2:4)
     theta[p,j] = Phi(alpha[j]-mu[p]) - Phi(alpha[j-1]-mu[p]);
    theta[p,5] = 1-Phi(alpha[4]-mu[p]);
model {
 tau ~ cauchv(0,1):
 mu ~ normal(eta, tau);
 for (p in 1:n_products) s[p] ~ multinomial(theta[p]); // n_reviews[p] is implicit
```

Fit model

```
m = stan_model(model_code = ordinal_model)
In file included from file23897f9b2fb4.cpp:8:
In file included from /Library/Frameworks/R.framework/Versions/3.3/Resources/library/StanHeaders/include/src/st
In file included from /Library/Frameworks/R.framework/Versions/3.3/Resources/library/StanHeaders/include/stan/m
In file included from /Library/Frameworks/R.framework/Versions/3.3/Resources/library/BH/include/boost/math/tool
In file included from /Library/Frameworks/R.framework/Versions/3.3/Resources/library/BH/include/boost/config.hp
/Library/Frameworks/R.framework/Versions/3.3/Resources/library/BH/include/boost/config/compiler/clang.hpp:196:1
# define BOOST_NO_CXX11_RVALUE_REFERENCES
<command line>:6:9: note: previous definition is here
#define BOOST_NO_CXX11_RVALUE_REFERENCES 1
1 warning generated.
dat = list(n_products = nrow(for_table),
           s = as.matrix(for_table[,2:6]))
r = sampling(m, dat, pars = c("alpha", "eta", "tau", "mu"))
SAMPLING FOR MODEL 'cfd399bb3e758fc22eaf105a07c2068f' NOW (CHAIN 1).
Chain 1. Iteration:
                       1 / 2000 [ 0%]
                                        (Warmup)
Chain 1, Iteration:
                    200 / 2000 [ 10%]
                                        (Warmup)
Chain 1. Iteration: 400 / 2000 [ 20%]
                                        (Warmup)
```

Fit model

```
r
```

Inference for Stan model: cfd399bb3e758fc22eaf105a07c2068f. 4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
alpha[1]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4000	NaN
alpha[2]	0.36	0.00	0.03	0.31	0.34	0.36	0.38	0.43	4000	1
alpha[3]	0.60	0.00	0.04	0.53	0.57	0.60	0.62	0.67	4000	1
alpha[4]	1.11	0.00	0.04	1.03	1.08	1.11	1.13	1.19	4000	1
eta	0.68	0.00	0.18	0.31	0.56	0.68	0.80	1.04	4000	1
tau	0.65	0.00	0.15	0.42	0.54	0.62	0.73	1.02	4000	1
mu[1]	0.15	0.00	0.14	-0.13	0.05	0.15	0.24	0.43	4000	1
mu[2]	1.49	0.00	0.06	1.36	1.45	1.49	1.53	1.61	4000	1
mu[3]	1.15	0.00	0.10	0.95	1.08	1.15	1.22	1.33	4000	1
mu[4]	0.20	0.00	0.16	-0.10	0.10	0.20	0.31	0.50	4000	1
mu[5]	-0.17	0.01	0.33	-0.81	-0.39	-0.16	0.06	0.46	4000	1
mu[6]	0.73	0.00	0.12	0.48	0.64	0.73	0.81	0.97	4000	1
mu[7]	0.15	0.00	0.22	-0.30	0.00	0.14	0.30	0.59	4000	1
mu[8]	0.99	0.00	0.11	0.77	0.91	0.99	1.07	1.21	4000	1
mu[9]	0.90	0.00	0.16	0.59	0.79	0.90	1.00	1.22	4000	1
mu[10]	-0.38	0.00	0.23	-0.84	-0.53	-0.37	-0.23	0.06	4000	1
mu[11]	1.15	0.00	0.07	1.01	1.10	1.15	1.20	1.29	4000	1
mu[12]	1.07	0.00	0.30	0.48	0.87	1.06	1.26	1.69	4000	1
mu[13]	1.14	0.00	0.17	0.83	1.03	1.14	1.26	1.47	4000	1
mu[14]	0.88	0.00	0.21	0.47	0.75	0.89	1.02	1.30	4000	1
lp	-1835.69	0.09	3.13	-1842.60	-1837.59	-1835.37	-1833.46	-1830.53	1206	1

Samples were drawn using NUTS(diag_e) at Thu Feb 23 11:33:47 2017.

Review mean posteriors (θ_i)

Other parameter posteriors

Visualizing the model

