NeoPixel Sunrise Clock

An intelligent bedside clock

Presented by:

Othniel Konan

KNNOTH001

Dept. of Electrical and Electronics Engineering University of Cape Town

Prepared for:

Dr. Simon Winberg & Mr. Justin Pead Dept. of Electrical and Electronics Engineering University of Cape Town

Submitted to the Department of Electrical Engineering at the University of Cape Town in partial fulfilment of the academic requirements for a Bachelor of Science degree in Electrical and Computer Engineering

November 5, 2017

Key Words: Neopixels, Circadian rhythm, STM32, Blue light, Nextion, MIT App Inventor

Declaration

- 1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend that it is one's own.
- 2. I have used the IEEE convention for citation and referencing. Each contribution to, and quotation in, this report from the work(s) of other people has been attributed, and has been cited and referenced.
- 3. This report is my own work.
- 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as their own work or part thereof.

Signature:
Othniel Konan
Date:

Acknowledgments

Abstract

Contents

1	Intr	oduct	ion	1
	1.1	Backg	ground to the study	1
	1.2	Objec	tives of this study	2
		1.2.1	Problems to be investigated	2
		1.2.2	Purpose of the study	2
	1.3	Scope	and limitations	2
	1.4	Plan o	of development	3
		1.4.1	Chronological progression of the report	4
2	Lite	erature	e Review	6
	2.1	The h	uman sleep-wake cycle	6
		2.1.1	The circadian rhythm	7
		2.1.2	Internal circadian rhythms influenced by light	7
		2.1.3	Quantitative and qualitative characteristics of light on melatonin production	8
		2.1.4	Impact of light on human behaviour and sleep-wake cycle	8
	2.2	Lighti	ng technologies	9
		2.2.1	Light	9
		2.2.2	Type of light technologies	9
		2.2.3	Light treatment of sleep disorder	10
	2.3	Hardy	vare modules	11
		2.3.1	Processors and microcontrollers	12
		2.3.2	Storage	13
		2.3.3	Wireless technology	13
		2.3.4	Touch screen	14

		2.3.5	Neopixels	4
	2.4	Comm	unication protocols	5
		2.4.1	Serial Peripheral Interface (SPI) Bus	6
		2.4.2	Universal asynchronous receiver-transmitter (UART)	7
		2.4.3	Inter-Integrated Circuit (I2C)	8
		2.4.4	Neopixels serial protocol	8
	2.5	PCB I	Board Design	9
	2.6	Progra	mming Languages	20
		2.6.1	$C \dots \dots$	20
		2.6.2	C++	21
	2.7	Softwa	re Tools and Libraries	21
		2.7.1	Atollic TrueSTUDIO for ARM	21
		2.7.2	Nextion IDE	21
		2.7.3	MIT App Inventor 2	22
	2.8	Design	Models	22
		2.8.1	V-Model	22
		2.8.2	Spiral Model	22
3	Met	thodolo	$_{ m pgy}$	4
	3.1	Outlin	e	24
	3.2	Literat	ture Review	24
	3.3	Setup		25
		3.3.1	Hardware setup	25
		3.3.2	Software setup	27
	3.4	Impler	mentation	28
		3.4.1	Level 1: Hardware and Utilities	28
		3.4.2	Level 2: Framework	28
		3.4.3	Level 3: Application and Unit tests	29
		3.4.4	Level 4: System tests	80
		3.4.5	Level 5: NPSC	80
	3.5	Experi	mentation	80
		3 5 1	Hardware tests	s O

		3.5.2	Software tests	31
		3.5.3	Performance tests	31
		3.5.4	Acceptance tests	32
	3.6	Analys	sis	32
4	Pre	limina	ry Design	33
	4.1	System	n overview	33
	4.2	System	n components selection	34
	4.3	Visual	l outputs component design decisions	35
	4.4	Mecha	anical case	35
5	Pro	totype	e Design	37
	5.1	-	n design	37
	5.2		evel design	37
		5.2.1	Inputs/Outputs instruction design	37
		5.2.2	External storage	37
		5.2.3	Alarm and Clock	37
		5.2.4	Visual outputs	38
	5.3	Details	s design	38
		5.3.1	Neopixels	38
		5.3.2	Screen	38
		5.3.3	Android application	38
		5.3.4	Bluetooth	38
		5.3.5	Eeprom	38
		5.3.6	External RTC	38
		5.3.7	Internal RTC and Alarms	38
6	Imp	lemen	tation	39
	6.1	Hardw	vare	39
	6.2	Utilitie	es	39
	6.3	Frame	ework	39
	6.4	Applp	ication	39

7	Testing	40
8	Results	41
	8.1 Simulation Results	41
	8.2 Experimental Results	41
9	Discussion	42
10	Conclusions	43
11	Recommendations	44
A	Additional Files and Schematics	49
В	Addenda	50
	B.1 Ethics Forms	50

List of Figures

1.1	Gantt chart showing the timeline of every task in the project as well as its critical path	3
1.2	Report breakdown detailing the different sections needed to be included in the report	5
2.1	Overview and classification of the sections of the literature review	6
2.2	C by GE Sol, an intelligent lamp bed using Amazon Alextra	11
2.3	Wake-up light by Philips	12
2.4	Touch-screen technologies. More pressure need to be applied on the resistive touch screen for location dectection	15
2.5	Relative position of the neopixel rings	16
2.6	Wire connection setting for SPI communication between a master and a slave device	17
2.7	Wire connection setting for UART communication between two devices	17
2.8	Wire connection setting for I2C communication between two masters and two slaves devices	18
2.9	Illustration of the neopixels serial interface	19
2.10	Ideal PCB design flow, starting from the need, followed by the design, implementation and testing	20
2.11	V-Model basic template used for system definition and testing	22
2.12	Spiral-Model basic template used for system refinement	23
3.1	Salea logic analyser	26
3.2	Overview of the implementation hierarchy. Implementation starts from the bottom with the collection or design and manufacturing of the hardware followed by the software implementation	29
4.1	Structural block diagram of the NPSC	34

4.2	Mechanical prototype of the NPSC.	 	 					36

List of Tables

2.1	Comparison between specifications of the Arduino Due [20], the Intel	
	Edison [21], the Raspverry Pi Zero [22], and the STM32F407VGT6[23] $.$	13
2.2	Comparison between the constraints and the convenience of Wifi, M2M,	
	Mesh network, and Bluetooth	14
2.3	Light specification of the SK6812RGBW neopixels $\dots \dots \dots$	15
2.4	Illuminance of the neopixel ring for distance ranging from 30cm to 110cm	16

Chapter 1

Introduction

1.1 Background to the study

Human behavioural and anatomical activities are influenced by several internal cycles. Among these internal cycles is the **circadian rhythm**, a rhythm studied for many years and whose impacts on the human activity have led to new interests in the regulation of these activities. Formally defined as a "cyclical changes in hormones, body temperature, and other biological processes over the course of a 24 hour period" [1], the Natural Institute of Health (NIH) defines it as "a physical, mental and behavioural changes that follow a roughly 24-hour cycle, responding primarily to light and darkness in an organism's environment" [1]. The circadian rhythm plays an important role as it also affects the human sleeping and rising pattern. The circadian rhythm is influenced by the production of melatonin produced by the pineal gland whose activities are dependent on the presence of light on the retinal-hypothalamic tract[3]. These studies have shown that the presence of light of specific wavelength at certain period of time during a day can affect the normal sleeping cycle.

According to the NIH, there is a correlation between long-term health problems and sleep disorders [6]. While stress levels and lifestyles affect the sleeping pattern, there is a strong evidence that the human sleep-wake cycle is strongly affected by light. With the invention of the electric light and the recent human exposure to LED screens, humans have more exposure to nocturnal light. Recent researches have shown that the usage of LED technologies at night is linked to sleep deficiency. Blueish light is said to have a huge impact on one of the human internal clock[4]. Sleep deficiency due to inappropriate light exposure can be cured using an optimal light exposure[4]. Researchers were able to quantify, qualify and time the light that is suitable to maintain the natural sleep-wake cycles [2]. With these results, it is possible to create an environment that will follow user specific light requirements needed to treat patients having a sleep disorder.

1.2 Objectives of this study

1.2.1 Problems to be investigated

This project investigates the feasibility of making a user-friendly embedded system, relatively cheap that could be used as a personal medical device in solving human sleep disorder. This problem envelops the following question:

1 Is this possible to use a programmable light source to emit light of around 460nm at 30lux?

This is the light requirement as mentioned in section 1.3.

2 Can an embedded system meeting the light requirement mentioned above be used as a personal medical device?

The question focuses on the future use of the device in regulating the human sleep-wake cycle by medical prescription of light requirement.

1.2.2 Purpose of the study

The purpose of this study is to create a device that can be used to regulate the human sleep-wake cycle while being user-friendly and a personalisable digital alarm clock. The product would need to be relatively cheap and have more features than its competitor. Moreover, the device should be able to use user-specific data in the regulation of the sleep-wake cycle.

Further objectives ¹ includes:

- The use of user-specific medical lighting requirements and patterns to be used a personal medical device supplementing sleeping disorder treatment.
- Ability to pull events from an online calendar and set these events as alarms.
- User authentication for onboard screen usage and bluetooth connection

1.3 Scope and limitations

The scope of this project involves the design of an functional embedded system named NeoPixels Sunrise Clock also known as NPSC, capable of producing light of $460nm \pm 10nm$ with an intensity of 30lux as mentioned by the paper "Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor". The code and design artefact repository and a full documentation including a user manual, for anybody who wants to make use of the code design resources, also need to the delivered. Moreover, a description of future use of the device in the study of the effect

¹These are sub-objectives that would be implemented depending on the time available

of light on the circadian rhythm will be required.

This project does not study the effect of light on the users. For ethical reasons, the NPSC will not be tested on human subjects in real situations of either waking humans or including lighting to facilitate sleep at night. Instead, the system will be tested based on the recommendation from the research literature.

The design and creation of the NPSC are subject to several constraints listed below:

- **Time:** The project has a duration of 12 weeks within which the research, design, development, implementation, verification, and report writing need to be done.
- Budget: The project budget allocation is R1000
- **Light:** The NPSC must be able to produce blue light with a wavelength of 460nm while providing enough light to meet the requirement of the research paper and provide a various range of colour for sunrise simulation. These requirements narrow the options for choosing the right light emitters.
- Size: The NPSC is meant to be a bedside lamp, this implies that it should have a relatively small size to be able to fit on a 50cm * 50cm bedside table.

1.4 Plan of development

The project was broken into sections and subsections with an estimated timeline.

The Gantt Chart used for this project is shown in fig. 1.1. The project started with the an intensive research on the science related to the human sleeping cycle. The research lead to the design of the NPSC consisting of its hardware and software modules. During the manufacturing process, the software framework of the NPSC was continuously improved. The NPSC hardware and software integration were done later after the assembly of the hardware. Finally, the software was improved during the remaining lifetime of the project.

Figure 1.1: Gantt chart showing the timeline of every task in the project as well as its critical path.

1.4.1 Chronological progression of the report

The report organisation is displayed in fig. 1.2. The sections of the report are explained below:

• Research

- Introduction: The feasability of the project as well as its scope and limitations are defined in the introduction.
- Literature Review: The literature review gives an insight in the researches made for this project. This includes scientific discoveries on the human sleeping cycle, experiements and results performed by researchers on that matter, and some technical engineering design decisions.

• Design

- Methodology: This section covers the hardware, softeare, and mechanical design of the NPSC.
- Results: This section displays the results of the hardware and software testing.

• Write-ups

- Discussion: The analysis of the results obtained. Here, the performance of the NPSC is evaluated. A costs and functional analysis of NPSC done to evaluate its performance compared to its competitors. Moreover, the future use of the NPSC is elaborated.
- Conclusion: An evaluation of the project, did we achieve the intended goals.
- Recommendations: We dive into the solutions or recommendations that could improve the design of such device.
- User manual: This section is for any users of the NPSC. It provides a clear explanation of the features of the NPSC and a detailed manual.

Figure 1.2: Report breakdown detailing the different sections needed to be included in the report.

Chapter 2

Literature Review

This chapter reviews the research papers, articles, books and other relevant forms of research used in the design of the NPSC. It has been divided into the sections illustrated by fig. 2.1: The literature review starts with an explanation of the problems to be solved,

Figure 2.1: Overview and classification of the sections of the literature review.

it continues by uncovering the theory behind these problems and ends with a review of the design methods, hardware components and software tools used in this project.

2.1 The human sleep-wake cycle

Human has many "internal clocks" among them is the master clock located in the suprachiasmatic nuclei. These internal clocks or endegenous clocks are internal mechanisms in organisms reponsible for the regulations of certain functions or activities. The master clock cheif among them, regulates the secretion of melatonin is affected by light. The creation of artifical light expecially LEDs have caused a disruption in the sleep-wake cycle. This section give an overview of the human internal clocks and how they are affected by light.

2.1.1 The circadian rhythm

Human seasonal behaviours are synchronised to the environment by **biological clocks** responsible for the creation of biological rhythms. Biological clocks which are composed of proteins that act reciprocally on the body's cells are the natural timing devices found in many organs. The discovery of the genes from these biological clocks responsible for the control of these rhythms was made by three scientists Jeffrey C. Hall, Michael Rosbash and Michael W. Young winners of the Nobel Prize in Physiology or Medicine [14]. Their discovery made in the 1980s led to advanced research on the role of the circadian rhythms.

Circadian rhythms are biological rhythms which follow the same pattern in absence of external cues (endogenous), are influenced by the presence of external stimuli (entertainable), oscillating roughly every 24h¹ over a range of physiological temperatures. In the presence of external stimuli -also known as *zeitgebers*-, circadian rhythms synchronise their periodicity with these external stimuli. The zeitgebers of the circadian are the daily variation of the temperature and the dark/light cycle of the day.

Circadian rhythms have endogenous and exogenous components. Human placed in isolation without knowledge of the time continued exhibiting a circadian rhythm with their pacemakers notably the melatonin secretion, sleep-wake cycle, body temperature [13]. These results prove the existence of endogenous components of the circadian rhythms as it illustrates the effects of these internal signal on the circadian rhythms. A similar study shows that when people are exposed to light at night time, a shift in their pacemakers [9] which is an evidence of the exogenous component of circadian rhythms. These exogenous components of the circadian rhythms have the ability affect positively and negatively our natural endogenous cycle. With light being what we are mostly daily exposed to, what is the influence of light on the circadian rhythms?

2.1.2 Internal circadian rhythms influenced by light

Melatonin is the hormone produced by the pineal gland in the suprachiasmatic nuclei (SCN) which has a soporific effect and the ability to entertain the sleep-wake cycle. While melatonin itself is not the cause of a person sleeping, it however creates changes in a person's body that affect their sleepiness.

The pineal gland responsible for the secretion of the melatonin hormone is under the influence of one of the biological clocks, the master clock located in the SCN. The SCN receives visual information from the retinal-hypothalamic tract which entrains the SCN according to the photoperiod [3]. The SCN in turn activate a gene in the pineal cell (CREM) which produces a protein (ICER) needed for the production of melatonin. As a result, the secretion of pineal hormone melatonin tracks the light/dark cycle with its secretion being high during the day and low during the night.

¹it oxalates generally a period near 24h

2.1.3 Quantitative and qualitative characteristics of light on melatonin production

Many types of research have been done to understand the impact of light on the circadian rhythms especially the sleep-wake cycle.

Kathleen et al. in their paper Blue light from light-emitting diodes elicits a dosedependent suppression of melatonin in humans [4], provide details information on their finding of the effect of light on humans subject. Subjects used for the experiments were 5 males and 3 females with a mean of 23.9 ± 0.5 years, with each subject demonstrating normal colour vision. The lighting requirement was blue light of $\lambda_{max} = 469nm \pm 1nm$ with $\frac{1}{2}$ peak bandwidth= 26nm and a typical viewing distance of 35cm. The subjects were blindfolded from midnight to 2 AM. From thereon, they were exposed to 90 min of blue light exposure followed by another dark exposure. Blood samples from the subject were taken from 2 AM at 30 min interval. From their experiment, they concluded that:

- Blue LED light has an increased melatonin suppression following an increase in exposure irradiance
- Blue LED light may have stronger suppressing effect than 4000K white fluorescent light.

A similar study was previously made by George C. Brainard et al. [5] used 72 healthy human subjects, with normal colour vision. The subjects composed of 37 females, 35 males, aged between 18 and 30 years (mean age of 24.5 ± 0.3 years), came from different ethnic (African, African Americans, Caucasians, Asian, Hispanic). The melatonin suppression action spectrum was formed using eight different wavelengths between 440nm and 600nm (440, 460, 480, 505, 530, 555, 575, 600). Using the same procedure as mentioned in the previous experiment, blood samples were taken at 30 min interval after 2 AM. The results of their research published in their paper Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor the following conclusion:

- Light irradiance greater or equal to $3.1 \mu W/cm^2$ evoke a significant melatonin supression
- Smaller wavelength monochromatic light have a greater change in Plasma Melatonin as Percent Change Control-Adjusted for a fixed value of Photon density ([5] pp. 4-5).

2.1.4 Impact of light on human behaviour and sleep-wake cycle

Among the Zeitgebers (natural phenomenon acting as a signal in the regulation of the circadian rhythm) of the circadian rhythms, light is the major Zeitgebers and has important effects on the human sleep-wake cycle. A study on the "Circadian and Light Effects on Human Sleepiness-Alertness" made by Christian et al.[2] shows that with nor phase lag or lead between the circadian rhythm and the sleep-wake cycle, subjective sleepiness and core body temperature have opposite behaviour ([2], pp. 12, fig. 2.1). The human normal sleep-wake cycle is comprised of 8h of sleep and 16h of wakefulness [15]. This cycle is naturally affected by the human activities but is highly influenced by light exposure. The study shows that office workers with bright blue office light have a better sleep-wake cycle than those with dim and warm office light. Furthermore, it shows that light exposure of sufficient intensity at night can reduce the secretion of melatonin with alerting response starting within the first 20mm. With the recent advance in LED technologies, humans are no longer following the natural light/dark cycle causing numerous sleep disorders.

2.2 Lighting technologies

Light is capable of affecting the human sleep-wake cycle. However this impact can be used to reverse the negative impact of light on the sleep-wake cycle. This section introduces the different light technologies available and their use in regualting the human sleep-wake cycle.

2.2.1 Light

The sun's electromagnetic radiation has a broad light spectrum ranging from 100nm to 1mm. After being filtered through the earth atmosphere, only certain portions of the spectrum are kept with the visible light spectrum having the maximum irradiance. Because the human circadian rhythms are automatically synchronised to the natural light-dark cycle, the characteristics of the sunlight are used as a benchmark in the emission of artificial light. These artificial lights are able to produce more or less the same wavelength as the sunlight but with much less irradiance.

2.2.2 Type of light technologies

Various light technologies have been developed over the years, their use and their usefulness in this project are detailed below.

Incandescent light

These are the most common and least efficient light technology. It produces light by passing a high current through a wire filament producing warm light as it glows. These type of lights produce only a specific spectrum of light (warm light) besides they are not designed to be programmable.

Fluorescent light

Light is produced by passing electricity through mercury vapour, the invisible light produced as a result of that interaction, connect with the coating of the glass emitting light. It produces all type of white light (warm, cool, daylight) with a good colour rendering. Compared to the incandescent light, it only produces one type of colour and it is not designed to be programmable.

Halogen light

It shares similarities with the incandescent light except that halogen gas is added to the glass. It produces a crisp white colour. As the previous technologies, it also produces one type of colour and it not designed to be programmed.

Xeon light

This type is another version of incandescent light with Xeon gas added to the glass instead, it produces a less yellow light. As the previous technologies, it also produces one type of colour and it not designed to be programmed.

LED light

This technology uses the passage of current through a diode to produce light. These light are very efficient and provide all sort of colour as well as cool and warm light. Moreover, their ability to work based on the passage on current allows these lights to be programmable. New LED technologies have a microcontroller which can be programmed the LEDs.

2.2.3 Light treatment of sleep disorder

With the discovery of the effect of light on the sleep-wake cycle, electronic devices producing specific light have been used in treating patients with sleep-disorder. Advanced sleep phase disorder (ASPD) have been treated using a therapeutic approach involving chronotherapy and timed light exposure [18]. The same concept has been used to create a home bed lamp or alarm clock facilitating the regulation of the sleep-wake cycle. **GE Sol** and **Philips**(which is actively involved in sleep-wake cycle treatment) have created devices able to "influence" the human sleep-wake cycle.

C by GE Sol

C shown in fig. 2.2 is a "all-in-one smart light" [16] which has Amazon intelligent personal assistant Alexa built in. C has a various range of colours which are manually

selected based on the user preference. It is capable of communicating with GE sol devices and smartphones inserting it among the user's network of devices. Despite its high technology features and its elegant design, C remains just a bed lamp as it is not clinically proven to be helpful in regulating the user's sleep-wake cycle.

Figure 2.2: C by GE Sol, an intelligent lamp bed using Amazon Alextra.

Philips wake-up lamps

Philips has created a broad range of wake-up lamps designed to impact the sleep-wake cycle of the users. Figures 2.3a and 2.3b are examples of the recent versions of Philips' clocks able to simulate sunrise and sunset which last from 20 to 40 mm. These simulations vary the colour of the light following the sun's natural sunrise colour and end with a selected channel or prefered user's music. These Sleep and Wake-up lights are the only wake-up lamp clinically proven to work as stated by Philips[17].

NEED SOME TRANSITION HERE

2.3 Hardware modules

This section provides the research on the hardware technologies as well as the reasons behind the choice of some of these technologies.

(b) HF3551/60, coloured sunrise simulation, 7 natural sounds, Tap snooze and reading lamp, midnight light function, Operated by iPhone App

Figure 2.3: Wake-up light by Philips

2.3.1 Processors and microcontrollers

A microcontroller is an integrated circuit which is dedicated to execute tasks of a specific application. It is physically small, cheap compared to a computer, and is designed to operate a low power consumption [19].

Numerous microcontrollers were analysed for this project. Each manufacturer provides various range of microcontroller suitable for different applications. The NPSC's microcontroller needs to communicate to a smartphone application wirelessly and control various external modules. While controlling the external modules, the microcontroller needs to perform processing of the sunrise and sunset patterns by continuously organising and sending data to the neopixels. In order to reduce the complexity of finding the *perfect* microcontroller for the NPSC, the selection was based on the following characteristics:

- Size of the FLASH: How many lines of code can be loaded to the microcontroller?
- Cost
- Clock speed
- Community: Does the manufacturer have a large community of developers?
- Bit precision: Are we aiming at 8, 16, or 32 bits precision?
- Familiarity: How familiar are we with the microcontroller (time is a constraint)?
- Number of pins: How many ports does it provide?
- Extra features: What are the built-in functionalities (wifi module, bluetooth)?

Table 2.1 provides the difference between the microcontrollers selected, this table was use to make the final decision on the microcontroller selection.

Chamastanistics	Microcontrollers					
Characteristics	Arduino	Intel Edison	Raspberry	${\bf STM32F407VGT6}$		
	Due		Pi Zero			
Clock speed	84MHz	dual-core, dual-	1GHz	168 MHz		
		threaded 500 MHz	single core			
		CPU				
Bit precision	32	32	32	32		
\mathbf{FLASH}	512KB	4GB	MicroSDHC	1MB		
\mathbf{Pins}	54	40	40	82		
Cost	R549.25	R687.87	R79.8	R114.83		

Table 2.1: Comparison between specifications of the Arduino Due [20], the Intel Edison [21], the Raspverry Pi Zero [22], and the STM32F407VGT6[23]

2.3.2 Storage

Storages are important in the development of embedded solutions. The **Electrical Erasable Programmable Read-Only Memory** (EEPROM) is a non-volatile memory capable of keeping its data after being powered off. There are two types of EEPROMs, serial and parallel EEPROMs. In a study made by Microship on the difference between serial and parallel EEPROM of 16KB, Tom Tyson from the Memory Product Divisions concluded that the serial EEPROM is the best option for embedded solutions requiring a small EEPROM footprint, low current and low operating voltage, the ability and ease to programme a byte at a time, and the best price-performance non-volatile memory solution available [24] (pp. 4). The NPSC needs to store the user's data and the NPSC default's settings. Having a non-volatile external memory easy to program is of benefits to the NPSC.

2.3.3 Wireless technology

Different types of wireless technologies allow devices to communicate to each other wirelessly. The Institute of Electrical and Electronics Engineers (IEEE) has grouped them in the 802.15 technologies. Among these are the well-known Wifi, cellular machine to machine (M2M), mesh network using ZigBee, Z-wave . . . and Bluetooth.

The NPSC needs to make a wireless connection to communicate with a smartphone application. The appropriateness of the technologies tabulated in ?? for the NPSC are analysed below. Wifi modules are inexpensive; however, smartphones communicating with the NPSC will require being connected to the same wifi. Moreover, a web application might need to be designed as a platform for the NPSC, this will raise security issues that we would not be able to explore to the time constraint of the project. Cellular machine to machine has one main drawback, its recurring cost. As its name indicate, this technology is to send information from a machine to another machine and is not optimal for a graphic design platform². Mesh networks are optimal for interactions of device/machine of the

²having a phone or web application that make use of this would be horrible

same kind (not a requirement), the NPSC does not fall into that category. Bluetooth is designed for short-range communication (the typical distance is around $10m^3$)being in almost all smartphones it has been extensively used by embedded systems device such as handsets, Bluetooth speakers. It has a full-duplex communication with synchronous and asynchronous channel. Using Bluetooth, the NPSC will not require any network or incur any recurring cost to the user.

Technology	Constraints	Convenience			
Wifi	Wifi network and security protocol	Yes			
M2M	Recurring cost	No			
\mathbf{Mesh} network	Machine/Device of the same kind	No			
Bluetooth	Short range	Yes			

Table 2.2: Comparison between the constraints and the convenience of Wifi, M2M, Mesh network, and Bluetooth

2.3.4 Touch screen

A touch-screen device can locate the position of a point of contact on its screen. Figure 2.4 illustrates the difference between resistive and capacitive touch-screen. Resistive touch-screens are made out of many layers of which two are composed of indium-tin-oxide (ITO) which is highly resistive and transparent. By applying pressure on one of the layers, the layers come in contact creating a signal that is used to find the location of the point of contact. Capacitive touch-screens, on the other hand, make use of the conductivity of the object in contact with the screen to affect the electrostatic field between the ITO layers. Resistive touch-screens are less complex than capacitive touch-screens, thus cheaper. Additionally, because they rely on pressure, any object whether conductive or not can be used on the screen which is made to be robust. However, resistive touch-screens do not support multi-touch and have poor contrast because of the extra layer used to protect the ITO layers.

The NPSC need to have an onboard controller. This controller must be user-friendly, with the different features of the NPSC, a touch-screen is desirable over a controller with physical buttons. A resistive touchscreen would add to the robustness of the NPSC as a whole.

2.3.5 Neopixels

The neopixel is a programmable light source using an MCU to control an RGB or RGBW LEDs. Each colour is capable of producing 255 brightness levels resulting in 16777216 different RGB colours. The light characteristics of the neopixel of choice are presented in table 2.3. The light requirement of the NPSC is the emmission of light of 460nm (blue light) at an illuminance of 30lux minimum. The illuminance of a light source at

³can be increased by increasing the transmission power

(a) Resistive touch-screen technology [28]. (b) Resistive touch-screen technology [29].

Figure 2.4: Touch-screen technologies. More pressure need to be applied on the resistive touch screen for location dectection.

Emitting colour	Wavelength	Luminous	Colour
	(nm)	intensity	temperature
		(mcd)	(K)
Red	620-630	390-420	N/A
\mathbf{Green}	515 - 525	660-720	N/A
Blue	460-470	180-200	N/A
Natural White	N/A	N/A	4000-4500

Table 2.3: Light specification of the SK6812RGBW neopixels

a point is given by:

$$E_{v(lx)} = \frac{I_{v(cd)}}{d_m^2} \tag{2.1}$$

eq. (2.1) is the illuminance directly in front of the light source. **Lambert's Cosine Law** says that the illuminance is directly proportional to the cosine of the angle made by the normal to the illuminated surface with the direction of the incident flux. [38], mathematically it means:

$$E_{v_1} = E_v * \cos(\theta) \tag{2.2}$$

with θ , the angle between the direction of the incident light and the surface normal. The dimension to be considered for the calculation of the illuminance of the neopixel ring are shown in fig. 2.5. Using the dimension from fig. 2.5 and the intensity from table 2.3 for the blue light, the total illuminance of the rings at a specific distance can be calculated using the following equation:

$$E_{v_{total}} = N * Ev * (\cos(\theta_1) + \cos(\theta_2) + \cos(\theta_3))$$
 (2.3)

The result of the calculation are tabulated in the ??. The NPSC will not meet the light requirement if the it is placed more than one meter away from the subject.

2.4 Communication protocols

The NPSC requires different integrated circuits using various communication protocols, below is a brief on the use of the protocol required.

Figure 2.5: Relative position of the neopixel rings

Distance (cm)	Illuminance (lux)	
	no angle consideration	with angle
30	360	345.62
40	202.5	197.82
50	129.6	127.66
60	90	89.06
70	66.12	65.61
80	50.63	50.32
90	40	39.81
100	32.4	32.28
110	26.78	26.69

Table 2.4: Illuminance of the neopixel ring for distance ranging from 30cm to 110cm

2.4.1 Serial Peripheral Interface (SPI) Bus

SPI is a synchronous full duplex serial communication protocol used for short distance communication of electronic devices. With the protocol, one master can communicate to many slaves using a chip select pin (use to select the slave) but a slave can only talk to the master device. SPI uses 4 signals namely, the Master Out Slave In (MOSI), the Master In Slave Out (MISO), the clock (SCK), and the slave select or chip select (SS). Since SPI uses a clock, it does not require the configuration of a baud rate before communication. The main inconvenience with SPI is the number of pins required for a one to one communication, for every additional slave, the master must provide an SS pins which make SPI not the ideal protocol for communicating to multiple slaves devices [30].

Figure 2.6: Wire connection setting for SPI communication between a master and a slave device

2.4.2 Universal asynchronous receiver-transmitter (UART)

UART is an asynchronous full duplex communication protocol making use of two signals a transmit signal (TX) and a receive signal (RX). With UART, both devices need to agree on a baud-rate for communication, this rate defines the number of bytes to be sent and received. The problem with UART is the complexity of the protocol required to ensure synchronous communication and correct transfer of information between device. Although theoretically, UART baud-rate is infinite, it is practically limited to 230400 bits per seconds [31].

Figure 2.7: Wire connection setting for UART communication between two devices

2.4.3 Inter-Integrated Circuit (I2C)

I2C is a serial protocol that allows communications from multiple slaves to multiple masters. It takes a bit of both SPI and UART by being designed for short distance communication and requiring only two pins, namely the data line (SDA) and clock line (SCL). Its clock ranges from 100kHz to 400kHz and a byte is sent at a time. Furthermore, with the I2C protocol, each slave must have a unique address used by the master for communication [32].

Figure 2.8: Wire connection setting for I2C communication between two masters and two slaves devices

2.4.4 Neopixels serial protocol

Each neopixel has a built-in IC controlling the LEDs' intensity based on the data received. The neopixels use a single wire communication protocol. The neopixels can be connected to form a daisy chain (cascade)fig. 2.9c allowing to program of a series of neopixels using one signal. Each neopixel requires 24 Bytes (32 Bytes for RGBW LEDs), each bytes is an encoded bit using a Non-Return-to-Zero encoding fig. 2.9a. On receiving a sequence of data, the first neopixel in the chain takes the first 24 bytes and passes the rest of the data to the next neopixel in the daisy chain and so for. This operation continues until a rest signal is received by the first neopixel fig. 2.9c. This

is possible because each neopixel is capable of reshaping the incoming signal preserving the integrity its integrity of continuous transmission.

(a) Non-return-to-zero encoding of a single (b) Neopixels connected in daisy chain bit in the neopixels programming protocol (cascade).

(c) As the first neopixel receives a stream of multiple 8 Bytes chunck of data, it takes the first 8 Bytes from the stream and transmit the rest to the next neopixel in the cascade. A rest signal indicates where the stream of data ends.

Figure 2.9: Illustration of the neopixels serial interface

2.5 PCB Board Design

Printed Circuit Boards (PCBs) are almost present in every electronic circuit as they hold all the components together and implement the electrical connections. Designing a PCB is a process easily prone to errors, therefore a good PCB design requires the implementation of the design steps. Figure 2.10 illustrates an examples of the ideal pcb design steps. In making the NPSC PCBs these steps give an engineering approach that can be elaborated further based on the PCBs requirement. For example, the designer

might question what is the best placement for certain component and thus be referred to some PCBs design standards such as the IPC2221.

One important design requirement (need) for the NPSC light requirement is its theoretical current (10A) drawn at full pixel brightness. The board-level diagram of the NPSC ring of the neopixel board should therefore be designed so that the track are wide enough to dissipate all the heat evenly across the board. The IPC2221, a generic standard for printed board design published by the Association Connecting Electronics Industries [33] describes a method for finding the minimal width track given a specific current (see fig 6-4 from the IPC2221 [33](pp. 41)). A Javascript program based on the IPC2221 standard can be easily use to determine the track width [34]. This web application use the track current, thickness, temperature rise, ambient temperature and track length as input to determine the required track width.

Figure 2.10: Ideal PCB design flow, starting from the need, followed by the design, implementation and testing

2.6 Programming Languages

Choosing the right programming language for software development is a crutial step, expecially in embedded system design as carefull manipulation of memory is required. The languages below are the ones chosen for the development of NPSC.

2.6.1 C

C is a mid-level programming language 4 providing the ability to get close to the hardware while keeping some abstract layers for programming [35]. It has an easy and straight forward syntax compared to languages such as Java, C has accumulated a lot

 $^{^4}$ has the advantages of both ligh and low level language

of support and has lots of functions and documentation. Although C does not support Object Orientated Programming, it is a Procedure Orientated Language (POL) which means it is designed to create programs that follow an algorithm. This latter feature of C make it the favourite programming language for Embedded System.

2.6.2 C++

C++ is a programming language based on C which has higher level functionality. In the context of this project, C++ is used to test the functionality of the NPSC modules using an Arduino.

2.7 Software Tools and Libraries

Developing an embedded system software can be quite frustrating, for this reason tools with decent debugging features and programming interface should be chosen to reduce development to its minimal.

2.7.1 Atollic TrueSTUDIO for ARM

Atollic TrueSTUDIO is an IDE based on Eclipse. It comes with the GCC toolchain for ARM and with debugging features beuilt on top of GDB. It has more advanced features compared to Eclipse in the development embedded system application. Its debugging features include the use of any debug probe compatible with the GDB-server, P&E Micro, SEGGER J-Link / J-Trace, ST-Link, OpenOCD are all supported by Atollic TrueSTUDIO. It supports debugging of single and multi core devices and allows real time view of memory mapping, peripheral registers, advanced visualisation of variable and complex break point, CPU fault analysis and many more. Another important debugging feature of Atollic TrueSTUDIO is the instruction tracing and system analysis real time event analysis of Real Time Operating System [39].

2.7.2 Nextion IDE

Nextion IDE is the official IDE designed for programming any Nextion HMI touch-screen. The IDE allows the designed and programmation of a GUI interface and the definition of serial commands to be sent to a MCU. Nextion IDE is designed to reduce significantly development time of touch-screen interface in an embedded system project [40].

2.7.3 MIT App Inventor 2

2.8 Design Models

Designing an embedded system requires the use of suitable design methods. This section describes the different design models used for the project.

2.8.1 V-Model

The V-Model is a linear product-development methodology composed of two main parts. On the left side of the diagram (see fig. 2.11) is the project definition. On that branch, the requirements are defined, the system design, architectural design and module design are performed. At the bottom of the diagram is the implementation of the design. Following the implementation is the project testing and integration. The project testing starts with the unit testing of the module design followed by integration testing in which the architectural design is tested to ensure that the system functions well across all components. The next step consists of the system testing and the validation of the performance defined in the design. The last step is the acceptance testing, done to ensure that the system can be deployed.

Figure 2.11: V-Model basic template used for system definition and testing

2.8.2 Spiral Model

The Spiral model is a combination of the iterative model ⁵ and the waterfall model ⁶ through which a product can be refined after each cycle. Figure 2.12 illustrate the order of the spiral model steps. The first step is the identification, it consists of identifying the user, system, sub-system, and unit requirements. The second step consists of the

⁵Cyclic process consisting of design, prototyping, testing, analysis and refinement of a product

⁶linear sequential process consisting of conception, initiation, analysis, design, construction, testing, deployment and maintenance of a product.

system, architectural, physical design and logical design of all modules. The prototype is built during the third step, the prototype serves as a proof of concept. During the last stage, the prototype performance is evaluated as well as the validation of the system requirements. Moreover, a risk and cost analysis alongside with the overall feasibility of the project is evaluated at this stage.

Figure 2.12: Spiral-Model basic template used for system refinement

Chapter 3

Methodology

This chapter describes the way the research for the project was done. It is explained with sufficient details such that the device can be rebuilt again by anyone reading the report and having some basics understanding of electronics and embedded system programming.

3.1 Outline

The project is about the design of an embedded system capable meeting the light requirement as mentioned in chapter 1 while being user-friendly and personalisable to the user's content. To achieve this, two design methods were used. The spiral model was used to provide an understanding of the cycle of the ES, from the identification of the requirement to the validation of the user requirements. As for the V-model, it was used to ensure a thorough testing of the device ensuring that all modules and system at a higher level function perfectly.

MENTION SPIRAL MODEL USE HERE.

The first step in the development of the design consists of the understanding of the requirements presented in section 1.3.

3.2 Literature Review

The review of research related to the internal clocks, how are their endogenous influencers and what technologies can be used to affect these clocks are made to get an understanding of the problem. This is not only limited to gathering information about the theory involved to meet the requirements but it also covers the reviews of documents and articles on hardware and software modules and tools that could possibly be of use.

Below are the questions by which the literature review was driven.

1. What are the problems? This step consists of seeking information about sleep disorder and its causes.

- 2. What biological mechanisms lead to the problem? Here research papers on biological clocks and circadian clock and rhythms were analysed to see their relationship with the problem.
- 3. What are the characteristics of the light causing sleep disorder? When does the reception of these lights cause a problem? A this point, there was a correlation between light and sleep disorder in humans. In order to control the effect of light on patients having sleep disorders, the characteristics (wavelength, incandescence, ...) of the light are required.
- 4. What technologies can be used to mimic these light characteristics? This step involved a careful analysis of all artificial light source technologies available.
- 5. What device has been created to tackle the same problem? An analysis of the competitors' devices.
- 6. What hardware is required by the device?
- 7. What communication protocol is used by each hardware?
- 8. What software tools are available for the development of the device software?
- 9. What design methodology is suitable for this type of project?

3.3 Setup

This section describes the tools to be set prior any implementation and design. The setups are divided into two sections; the hardware setup and the software setup.

3.3.1 Hardware setup

Below are all the hardware modules required for the development of the NPSC.

Personal or Desktop Computer

A computer is needed to design, program and debug the hardware. Most of the softwares run on Windows, Linux and IOS but it is recommended that a Windows computer running on windows vista minimum is used for the development of the project.

STM32F4 Discovery board

The STM32F4 Discovery board is the evaluation board of the STM32F407VG. It has an onboard STLink debugger to facilitate the programming of the STM32F407VG and provides all the I/O pins to the microcontroller.

Arduino board

The library made for the STM32F4 are all custom made, there is a risk of being stuck with debugging these libraries as it might be thought that the modules are not working and not the libraries. Arduino boards have libraries proven to work for most of the modules used in this project. The role of this board is purely for testing the functionalities of the modules.

Note that the use of this board is optional. Any Arduino board can be used; however, an Arduino Uno was used in this project.

Electronic modules

All modules mentioned in ?? are required. They are all interconnected and the absence of one can cause the whole system to fail.

Logic analyser

A logic analyser is a tool that analyses the data coming from one of its channel based on predefined communication protocols. This is a very useful device in debugging the modules interaction with the microcontroller. The logic analyser used for this project is one of the Salea logic analysers.

Figure 3.1: Salea logic analyser.

Serial to USB converter

The Serial to USB converter allows the translation of UART commands to USB command. This module is required to program the Nextion screen.

3.3.2 Software setup

Certain software tools are required for the development of the NPSC software. Those mentioned below are the one used for this project, other version or type of software can be used as long as they have the same functionalities as the one listed below.

Atolic TrueSTUDIO

Atolic TrueSTUDIO provides debugging functionalities such as breakpoint, memory and register observation as well as backtracking. It contains all the STM libraries which facilitate development. Moreover, it comes with STLink so no external debugging setup is required. Other IDEs such as Keil or Eclipse can also be used instead of Atolic TrueSTUDIO. In such case, it is essential to make sure that C is installed as well as gdb and STlink alongside its drivers.

Nextion IDE

The Nextion IDE is the only IDE capable of programming the Nextion TFT touchscreen and only runs on windows. It provides a Graphical User Interface when visual components can be dragged to the screen. Each type of component has specific parameters and events. The IDE also allows the user to program the behaviour of a component depending on its events. Before uploading the program to the Nextion screen, the user should use the debugging mode to test the logical behaviour implemented and the data transfer of the screen.

Logic analyser software

The logic analyser mentioned in section 3.3.1 requires the use of the Salea software which runs on Windows, Linux and IOS. The software allows the selection of up to eight channels whose data can be visualised and analysed. Before analysing the data, the sampling rate and time period must be set based on the baud rate or frequency of the pin to debug. After the first setup, an analyser is set up to the desired communication protocol. In this project only the protocols mentioned in ?? are needed. The data can be collected and automatically analysed once the setup stage is done.

PCB design software: Altium Designer

A PCB design software is required in the design of the hardware. The one used for this project is Altium designer as the university has a working license and Altium has more sophisticated features than its competitors.

API generator: Doxygen

The interactions between the elements in the system become more complex for every hardware module, sub-system and system design added to the project. In order to keep track of these interactions, an API generator is required. An API generator generates the documentation of the system based on the comments in each file. Doxygen which is popular among the API generator, especially for ES is used for this project.

Version Control: git

The whole project is under a version controller. Each implementation type (hardware, software, report, mechanical, ...) has its own branch to control each change made in the project. This project repository is under git and can be found on github.com.

3.4 Implementation

The NPSC requires hardware and software modules. For the first prototype, certain hardware modules off the shelves can be used, as for other modules, they require to be designed and manufactured as modules with their specific characteristics do not exists on the market.

The implementation was broken into two main sections, the hardware implementation and the software implementation. The software implementation relies on the functioning of the hardware. To ensure that the system is implemented in a way that uses the time efficiently, it was implemented following the hierarchy illustrated in fig. 3.2. Figure 3.2 has five levels. Elements from the same level are able to call functions of the level below and not vice-versa. This implies that in order to implement one level, the level bellow must exist and function. The levels and their interactions are details as follow:

3.4.1 Level 1: Hardware and Utilities

The hardware and the utilities software are at the bottom of the hierarchy and are the first to be implemented. The hardware is manufactured and assembled, as for the off the shelves modules, a basic test using the Arduino is performed on the modules. The utilities software contains all the common functionalities or structures required by the element at higher levels. This element might not be implemented initially, in reality, this element is continuously modified based on the need of the higher elements.

3.4.2 Level 2: Framework

The framework element contains all the framework required by each hardware module. There is a one-to-one relationship between the framework modules and the hardware modules. The framework provides the basic functions required by higher modules. For

Figure 3.2: Overview of the implementation hierarchy. Implementation starts from the bottom with the collection or design and manufacturing of the hardware followed by the software implementation

example, each framework module provides an initialization function used to initialised the communication between its corresponding hardware module and the NPSC.

3.4.3 Level 3: Application and Unit tests

The unit test provides tests for each framework module. There is also a one-to-one relationship between the unit test modules and the software modules. The application element of the hierarchy contains all application codes required by the system. These applications have a one-to-many relationship between them and the framework modules. For example, the alarm application requires the internal RTC framework and the external RTC framework.

3.4.4 Level 4: System tests

The system tests contain the test designed to verify the system requirements. An example of a test is checking that a specific command from the screen executes the right command.

3.4.5 Level 5: NPSC

The NPSC is the highest level of the hierarchy. It, however, existed since the first implementation of the framework. It is used to call all the function needed for the application element and to run the unit and system tests.

3.5 Experimentation

This section presents the different tests designed to ensure that each hardware modules, sub-systems and system requirements are met. Each experiment targets one specific element from the hierarchy in fig. 3.2.

3.5.1 Hardware tests

The hardware testing requires careful test are any wrong connection could possibly damage the hardware. Two main tests are made on the hardware, a basic test testing the functionality of the hardware modules and the neopixel ring PCB test to ensure that the light requirement is met.

Basic hardware test

Most hardware communicates to the microcontroller through the protocols mentioned in ??. The test of these hardware is done using these steps:

- 1. Check connection to the micro using the hardware datasheets
- 2. Check power connections
- 3. Check functionality of module using benchmark testing (Arduino) if available otherwise use framework module to test hardware ¹
- 4. Use Salea logic analyser to verify the data received from the hardware is correct.

¹Is it risky to use the framework module to test the hardware as it has not been tested at this stage

Neopixel ring test

The Neopixel ring has light and current requirements. The light requirement is tested using a lux meter available in smartphones. As for the current requirement, the current withdrawn by the PCB is measure are different light intensity.

3.5.2 Software tests

The software tests rely on the hardware, therefore, the hardware tests must be run prior these tests. There are two types of test performed, namely the communication protocol tests (coms tests) and the logic tests.

The coms tests are performed using the debugging tools of the selected IDE (Atolic TrueSTUDIO in this project). Breakpoints are used alongside the Salea logic analyser to verify the information transferred between the STM32F4 and the hardware modules. The logic tests are performed during runtime or using the IDE debugger ². The logic tests make use of a visual signal (either via the Nextion screen or Android application or Neopixel ring) to output the outcome of the tests.

There are two levels of software tests, the unit tests and the system tests.

Unit tests

Unit tests are designed to test the framework of the hardware modules. These tests are logic tests performed on the hardware. One example of these test is verifying the data stored on the storage after a write operation, or getting the colour from one neopixel. Unit tests also include indirect hardware interaction functions such as functions which convert a structure of data into another.

System tests

Systems tests are at a higher level than the unit tests. They are all logic tests ensuring that the interaction between the framework modules is as expected. When these tests fail, the unit tests of the involved framework modules must be tested. If the unit tests pass, it is certainly a logic error and the IDE debugger must be used to pinpoint the errors.

3.5.3 Performance tests

This tests gather data on the performance of each module and of the system as a whole. It is meant to answer the following question:

1. What is the optimal queue size for the instruction buffer?

²The IDE debugger is done to pinpoint the point of failure in the code. It might require the use of a com test and is used if the runtime test fails

2. What is the optimal DMA size for each input?

3.5.4 Acceptance tests

This is the final test done to prove that the device meets all the requirements defined in section 1.3. This test involves using the device as a user and verify the functionalities of the device.

3.6 Analysis

This section provides analysis of the tests performed during the experiments. TODO

Preliminary Design

This chapter aims to provide a general overview of the design, the interaction between the different modules of the NeoPixel Sunrise Clock (NPSC). Moreover, it provides the justifications of components selection and the reasoning behind the visual design of the NPSC.

4.1 System overview

The NPSC is designed such that it is a user-friendly bedside alarm-clock serving as a supplement in the treatment of sleep-disorder via light emission. To achieve these goals, the system was designed using a modular approach. The modules illustrated in fig. 4.1 are the elements deemed required to achieve the goals laid out in 1.2.2.

The relationship between the goals defined in the introduction and these modules are given below:

- Regulate the sleep-wake cycle: This is done by emissions of specific lights parameters using the Neopixel as part of the system outputs.
- User-friendly: Using push-buttons for controlling the NPSC would not be optimal it is a multifunctional device. The onboard touchscreen in the System Inputs is to remove having the users relying on push-buttons to use certain functionalities. As for the android application, it allows the users to control the devices wirelessly. Via the Android application, the NPSC has the possibility to be an Internet Of Thing (IOT) device increasing the variety of its applications.
- **Personalisable**: The system inputs are the doors to the NPSC configurations, with both inputs being touchscreen devices, multiples functionalities can be implemented. The EEPROM is to store user-specific data such as alarm, visual preferences.
- Alarm-clock: The Clock module consisting of a Real Time Clock (RTC) and an Alarm are meant to interact together to make the NPSC also an alarm clock.

Figure 4.1: Structural block diagram of the NPSC.

4.2 System components selection

This section provides reasons on the selection of the components described in 4.1.

- Microcontroller: The STM32F407VGT6 with the specifications listed in table 2.1 is the one selected for the NPSC. This choice was based on its number of pins and mostly on the fact that this microcontroller has been used in previous projects.
- Wireless: As mentioned in 2.3.3, the preferable wireless technology is Bluetooth for its low complexity and the reliability of its connection. The HC-06 Bluetooth module has been chosen for this prototype for its popularity among microcontrollers application.
- **Eeprom**: There are no specific requirements on the EEPROM selection, for this prototype, only few information might require to be stored. It was assumed that a 32KB EEPROM would be enough. The EEPROM chosen is the 25LC640 64KB as it was proven to be reliable in previous projects. Moreover, the framework for this EEPROM was already developed for an STM microcontroller in the third year Embedded System project.
- RTC: The NPSC is an alarm clock and must be able to get accurate time. The STM32F4 series have a built-in RTC with two alarms. Because this prototype might not run on batteries and the RTC data would be lost if the microcontroller loses power, an external RTC module was required. An off the shelves breakout board for an RTC (the DS1307) is heavily used as an RTC for microcontroller applications and is used for this project as the external RTC. This breakout board powers the DS1307 with a battery that can last 10 years.

- Light: As mentioned in 2.3.5, the Neopixels were used as light source.
- Touchscreen: Many touchscreens on the market require the use of dozens of pins for their control. Besides, there are no common libraries for the modules increasing developing time. The touchscreen chosen for this prototype is the Nextion TFT touchscreen from Itead. It solves the issues mentioned above by providing an IDE (the Nextion IDE) used to program the screen via USB (required device from 2.7.2). It moreover provides an easy way for communicating with the microcontroller using two pins (TX and RX in the UART protocol).

4.3 Visual outputs component design decisions

The NPSC's visual impact is very important as it has great influence on the users. While focusing on the visual impact, the NPSC light source must meet the light requirements. To achieve both aesthetic and functionalities, the preliminary aspects were considered:

- Light emission of 30lux: This is an important function of the NPSC. To achieve this, the NPSC must have a main light source module, based on table 2.4, 180 neopixels are sufficient to meet this requirement on a subject placed at 1m of the light source. For its aesthetic, the main light source is composed of three rings of 60 neopixels each. A great visual functionality could be displaying the hours, minutes and seconds one each ring, having the pixels on the seconds ring being light up as the second passes and so forth. Note that the board size needs to be large enough to dissipate the power consumed by the pixels (see 2.5).
- Alarm clock: What is the purpose of the clock that does not display the time? For this reason and to fill the gap in the centre of the ring three main pieces of information are to be displayed:
 - 1. Date and Temperature: seven segments RGB displays are used to display this information. Using RGB displays provides consistency in the choice of colour that the NPSC can emit.
 - 2. Time: A bigger version of the seven segments displays used in the point above could not be found, so the neopixels were used to simulate the seven segments RGB displays.
 - 3. Weekday: A row of seven neopixel, one for each day in the week.

4.4 Mechanical case

The NPSC must be able to stand on a bedside desk, these desks have a general size of 50cm * 50cm. The NPSC ideal mechanical design is displayed in fig. 4.2.

Each side is meant to have specific use described below:

- Front: All visual outputs of the NPSC are on the front side. The main light source (the ring PCB) uses most of the front space. The other visual outputs PCBs are designed to fit inside the ring. The front side should be covered by a material hiding the PCB but letting most of the light pass. Here the NPSC should provide the look of a dark glass whose part can be illuminated.
- **Top**: The onboard touchscreen is located on the top of the NPSC. The touchscreen should be detachable from the NPSC case to allow the user to view the changes on the board while modifications are made.
- Right and Left side: Each side should have a speaker for the alarm. On the right side on the NPSC, a set of critical buttons are used to power off the device or stop the alarm.

Figure 4.2: Mechanical prototype of the NPSC.

 \mathbf{S}

Prototype Design

5.1 System design

Show structural block diagram of the whole system and how the modules are connected

5.2 High level design

Mainly for Application level, explain protocols and interation between components. For each level, provides structural diagram of component connection and mention what actions are perform between them.

5.2.1 Inputs/Outputs instruction design

How are the inputs connected? How do they communicate with the micro (UART, Buffers, Queues) When and when to send/receive instructions.

Instruction set tables with reasons for instruction size.

5.2.2 External storage

What action are performed on the storages? How is it structure?

5.2.3 Alarm and Clock

How is the time obtained? When is time requested? Why different RTCs? Synchronization? Alarm management.

5.2.4 Visual outputs

What application can have access to the visual outputs? Defines the need for modes (normal, alarm, sunrise, sleep ...). Pixels parameters?

5.3 Details design

Provide schematics and pcb for each modules.

5.3.1 Neopixels

How do we program it (daisy chain, buffer).

5.3.2 Screen

How is it programed?

GUI?

Show screen and instruction sent.

5.3.3 Android application

How is it programed?

GUI?

Show screen and instruction sent.

5.3.4 Bluetooth

5.3.5 Eeprom

5.3.6 External RTC

5.3.7 Internal RTC and Alarms

Implementation

6.1 Hardware

shows all hardware assembled

6.2 Utilities

Each module to have table describing each methods used

6.3 Framework

Subsection for each module.

Each module to have table describing each methods used

6.4 Application

MUST PROVIDE USE CASE DIAGRAM AND FLOW CHART FOR EACH MODULE Subsection for each module.

Each module to have table describing each methods used

Testing

Results

These are the results I found from my investigation.

Present your results in a suitable format using tables and graphs where necessary. Remember to refer to them in text and caption them properly.

8.1 Simulation Results

8.2 Experimental Results

Discussion

Here is what the results mean and how they tie to existing literature...

Discuss the relevance of your results and how they fit into the theoretical work you described in your literature review.

Conclusions

These are the conclusions from the investivation and how the investigation changes things in this field or contributes to current knowledge...

Draw suitable and intelligent conclusions from your results and subsequent discussion.

Recommendations

Make sensible recommendations for further work.

Use the IEEE numbered reference style for referencing your work as shown in your thesis guidelines. Please remember that the majority of your referenced work should be from journal articles, technical reports and books not online sources such as Wikipedia.

Bibliography

- [1] General Electric Company, "GE Lighting, lighting and sleep", December 2014.
- [2] C. Cajochen, S. L. Chellappa and C. Schmidt, "Circadian and Light Effects on Human Sleepiness-Alertness", Sleepiness and Human Impact Assessment, pp. 9-22, 2014.
- [3] Gregory M. Brown, "Light, Melatonin and Sleep-Wake Cycle", *Journal Psychriatry Neurosci*, vol. 19(5), pp. 345-353, Nov 1994.
- [4] K. E. West, M. R. Jablonski, B. Warfield, K. S. Cecil, M. James, M. A. Ayers, J. Maida, C. Bowen, D. H. Sliney, M. D. Rollag, J. P. Hanifn and G. C. Brainard, "Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans", *Journal Appl Physiol*, vol. 110, pp. 619-626, 16 Dec 2010.
- [5] George C. Brainard, John P. Hanifin, Jeffrey M. Greeson, Brenda Byrne, Gena Glickman, Edward Gerner and Mark D. Rollag, "Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor", *Journal of Neuroscience*, vol. 21(16), pp. 6405-6412, 15 Au 2001.
- [6] Berson, D. M., F. A. Dunn, and M. Takao. "Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock." *Science*, vol. 295, pp. 1070-073, 2002.
- [7] Kavita Thapan, Josephine Arendt and Debra J. Skene, "An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans", *Journal of Physiology*, vol. 535.1, pp.261-267, July 2001.
- [8] Christian Cajochen*, Jamie M. Zeitzer, Charles A. Czeisler, Derk-Jan Dijk, "Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness", Behavioural Brain Research, vol. 115, pp.75-83, May 2000.
- [9] Helen J. Burgess and Charmane I. Eastman, "Early versus late bedtimes phase shift the human dim light melatonin rhythm despite a fixed morning lights on time", Neurosci Lett., vol. 356(2), pp. 115118, Feb 2004.
- [10] Helen J. Burgess and Thomas A. Molina, "Home Lighting Before Usual Bedtime Impacts Circadian Timing: A Field Study", *Photochem Photobiol.*, vol. 90(3), pp. 723726, 2014.

- [11] US Department of Energy, "Lighting for Health: LEDs in the New Age of Illumination", Solid-State Lighting Technology Fact Sheet, 2014.
- [12] Mark S. Rea and Mariana G. Figueiro, "A Working Threshold for Acute Nocturnal Melatonin Suppression from WhiteLight Sources used in Architectural Applications", Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA, 2013.
- [13] Derk-Jan Dijk, "Internal rhythms in humans", CELL & DEVELOPMENTAL BIOLOGY, vol. 7, pp. 831-836, 1996.
- [14] "Scientific Background Discoveries of Molecular Mechanisms Controlling the Circadian Rhythm", *The Nobel Assembly at Karolinska Institutet*, 2017.
- [15] Tobler I., "Is sleep fundamentally different between mammalian species?", Behav Brain Res., vol. 69(1-2), pp. 35-41, Jul-Aug 1995.
- [16] GE sol, [Online], available at: https://www.cbyge.com/products/sol
- [17] Philips, [Online], available at: https://www.usa.philips.com/c-p/HF3550_-60/discontinued-wake-up-light/overview
- [18] Ehren R. Dodson and Phyllis C Zee, "Therapeutics for Circadian Rhythm Sleep Disorders", Sleep Med Clin, vol. 5(4), pp. 701-715, Dec 2010.
- [19] Marshall Brain, "How Microcontrollers Work", HowStuffWorks.com[Online], available at: http://electronics.howstuffworks.com/microcontroller1.htm, 1 Apr 2000.
- [20] "Arduino Due Specifications", Arduino, [Online], available at: https://store.arduino.cc/arduino-due
- [21] "Intel Edison Specifications", *Intel*, [Online], available at: https://cdn-shop.adafruit.com/datasheets/EdisonDatasheet.pdf
- [22] "Raspberry Pi Zero Specifications", Raspberry Pi, [Online], available at https://www.raspberrypi.org/products/raspberry-pi-zero-w/
- [23] "STM32F407VGT6 Specifications", STM microelectronics, [Online], available at: http://www.st.com/en/microcontrollers/stm32f407-417.html?querycriteria=productId=LN11
- [24] Tom Tyson, "Serial **EEPROM** Solutions Parallel Solutions", VS. Memory**Products** Division, Microchip, [Online], available at: http://ecee.colorado.edu/mcclurel/microchipan551.pdf
- [25] Steve Drehobl, "Basic Serial EEPROM Operation", Memory Products Division, Microchip, [Online], available at: http://ecee.colorado.edu/mcclurel/man536.pdf

- [26] Jean-Michel DagaCaroline, PapaixMarylene CombeEmmanuel, RacapeVincent Sialelli, "Embedded EEPROM Speed Optimization Using System Power Supply Resources", Lecture Notes in Computer Science, vol. 3254.
- [27] K. V. S. S. S. S. Sairam and N. Gunasekaran and S. R. Redd, "Bluetooth in wireless communication", *IEEE Communications Magazine*, vol. 40(6), pp. 90-96, Jun 2002.
- [28] "Resistive Touch Screen", Baanto,[Online], available at: http://baanto.com/resistive-touch-screen-technology
- [29] "Capacitive Touch Screen", Baanto,[Online], available at: http://baanto.com/capacitive-touch-screen
- [30] "Serial Peripheral Interface (SPI)", Sparkfun,[Online], available at: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
- [31] "Serial Communication", Sparkfun,[Online], available at: https://learn.sparkfun.com/tutorials/serial-communication
- [32] "I2C", Sparkfun, [Online], available at: https://learn.sparkfun.com/tutorials/i2c
- [33] "Generic Standard on Printed Board Design", ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES,[Online], available at: http://www.sphere.bc.ca/class/downloads/ipc_2221a-pcb%20standards.pdf
- [34] Advanced Circuits, "Trace Width Website Calculator", [Online] available at: http://www.4pcb.com/trace-width-calculator.html
- [35] Stephen G. Kochan, "Programming in C: A complete intorduction to the C programming language, Third Edition".
- [36] Herbert Schildt, "Java: The complete reference, Seventh Edition".
- [37] Energy Saver, "Type of lighting", *U.S Department of Energy*, [Onile] available at: https://energy.gov/energysaver/types-lighting.
- [38] Warren J. Smith, "Modern Optical Engineering: The Design of Optical Systems"
- [39] Atollic TrueSTUDIO, "Features", Atollic TrueSTUDIO, [Onile] available at: https://atollic.com/truestudio/features/
- [40] Nextion, "Features", Nextion, [Onile] available at: https://nextion.itead.cc/
- [41] Android, "Everything you need to build on Android", Android, [Onile] available at: https://developer.android.com/studio/features.html
- [42] authors, "Paper", Journal, vol., pp.

Appendix A

Additional Files and Schematics

Add any information here that you would like to have in your project but is not necessary in the main text. Remember to refer to it in the main text. Separate your appendices based on what they are for example. Equation derivations in Appendix A and code in Appendix B etc.

Appendix B

$\mathbf{Addenda}$

B.1 Ethics Forms