The Shape of Monotone and Skew Monotone Pattern Avoiding Permutations

Benjamin Fineman

Department of Mathematics University of California, Davis

June 8, 2015

Definition of Permutation Patterns

Definition: A π -pattern in σ is a subsequence of σ that has the same relative order as π .

Example: The permutation $1432 \in S_4$ contains three 132-patterns:

- **143**
- **142**
- **132.**

If σ contains no copies of π , we say that σ avoids π .

Example: 1432 avoids 123.

Definition of Permutation Patterns

Definition: A π -pattern in σ is a subsequence of σ that has the same relative order as π .

Example: The permutation $1432 \in S_4$ contains three 132-patterns:

- **143**
- **142**
- 132.

If σ contains no copies of π , we say that σ avoids π .

Example: 1432 avoids 123.

Origins of Pattern Avoiding Permutations

Connections to Sorting

- ▶ 1915 (MacMahon): first appearance (enumerated permutations avoiding 123)
- ▶ 1968 (Knuth): stack-sorting

Theorem

(Knuth) A permutation σ can be stack-sorted if and only if it avoids the pattern 231.

Counting Pattern Avoiding Permutations

```
Definition: S_n(\pi)=set of permutations in S_n which avoid \pi. Examples: S_4(12) = \{4321\}, so |S_4(12)| = 1. S_4(132) = \{1234, 2134, 2341, 2314, 3124, 3214, 3241, 3412, 3421, 4123, 4213, 4231, 4312, 4321\} Thus: |S_4(132)| = 14.
```

- If π is any pattern of length 3, $|S_n(\pi)| = C_n \approx 4^n/P(n)$. (MacMahon 1915, Knuth '68)
- \triangleright π is pattern of length 4, there are three pattern classes:
 - ► $|S_n(1234)| \approx 9^n/P(n)$ (Gessel '90)
 - ► $|S_n(1423)| \approx 8^n$ (Bóna '97)
 - $ightharpoonup |S_n(1324)|$ between 9.8ⁿ and 13.8ⁿ (Beven '14, Bóna '15)
- No known enumeration for any pattern of length > 4, however, some asymptotics known.
 - ▶ $|S_n(k+1, k, ... 1)| \approx k^{2n}/P(n)$ (Regev '81)

- If π is any pattern of length 3, $|S_n(\pi)| = C_n \approx 4^n/P(n)$. (MacMahon 1915, Knuth '68)
- \blacktriangleright π is pattern of length 4, there are three pattern classes:
 - ▶ $|S_n(1234)| \approx 9^n/P(n)$ (Gessel '90)
 - ▶ $|S_n(1423)| \approx 8^n$ (Bóna '97)
 - $ightharpoonup |S_n(1324)|$ between 9.8" and 13.8" (Beven '14, Bóna '15)
- No known enumeration for any pattern of length > 4, however, some asymptotics known.
 - ▶ $|S_n(k+1, k, ... 1)| \approx k^{2n}/P(n)$ (Regev '81)

- If π is any pattern of length 3, $|S_n(\pi)| = C_n \approx 4^n/P(n)$. (MacMahon 1915, Knuth '68)
- \blacktriangleright π is pattern of length 4, there are three pattern classes:
 - ► $|S_n(1234)| \approx 9^n/P(n)$ (Gessel '90)
 - ▶ $|S_n(1423)| \approx 8^n$ (Bóna '97)
 - $ightharpoonup |S_n(1324)|$ between 9.8ⁿ and 13.8ⁿ (Beven '14, Bóna '15)
- No known enumeration for any pattern of length > 4, however, some asymptotics known.
 - ▶ $|S_n(k+1, k, ... 1)| \approx k^{2n}/P(n)$ (Regev '81)

- If π is any pattern of length 3, $|S_n(\pi)| = C_n \approx 4^n/P(n)$. (MacMahon 1915, Knuth '68)
- \blacktriangleright π is pattern of length 4, there are three pattern classes:
 - ► $|S_n(1234)| \approx 9^n/P(n)$ (Gessel '90)
 - ▶ $|S_n(1423)| \approx 8^n$ (Bóna '97)
 - $ightharpoonup |S_n(1324)|$ between 9.8ⁿ and 13.8ⁿ (Beven '14, Bóna '15)
- No known enumeration for any pattern of length > 4, however, some asymptotics known.
 - ► $|S_n(k+1,k,...1)| \approx k^{2n}/P(n)$ (Regev '81)

Stanley-Wilf Conjecture '81

Upper Bound for the number of pattern avoiding permutations

Theorem

(Marcus and Tardos '04) For any pattern π there exists a constant c such that $|S_n(\pi)| < c^n$.

Pattern avoiding permutations are sparse: $|S_n| = n! \approx e^{n \log n - n}$

Current Research Directions for Pattern Avoiding Permutations

Generalize either concept of pattern or avoidance:

- generalized patterns (Babson and Steingrímsson '00)
- allow a small number (low density) of patterns
- avoid more than one pattern simultaneously (Atkinson '99, West '96, and others)

Better understand structure

- ▶ shape (Pak and Miner '13, Atapour and Madras '13, Hoffman, Rizzolo, and Slivken '14 and others)
- pattern classes (Babson and West '00, Backelin, West, Xin '07)

Current Research Directions for Pattern Avoiding Permutations

- Generalize either concept of pattern or avoidance:
 - generalized patterns (Babson and Steingrímsson '00)
 - allow a small number (low density) of patterns
 - avoid more than one pattern simultaneously (Atkinson '99, West '96, and others)
- Better understand structure
 - shape (Pak and Miner '13, Atapour and Madras '13, Hoffman, Rizzolo, and Slivken '14 and others)
 - pattern classes (Babson and West '00, Backelin, West, Xin '07)

Current Research Directions for Pattern Avoiding Permutations

- Generalize either concept of pattern or avoidance:
 - generalized patterns (Babson and Steingrímsson '00)
 - allow a small number (low density) of patterns
 - avoid more than one pattern simultaneously (Atkinson '99, West '96, and others)
- Better understand structure
 - shape (Pak and Miner '13, Atapour and Madras '13, Hoffman, Rizzolo, and Slivken '14 and others)
 - pattern classes (Babson and West '00, Backelin, West, Xin '07)

Results

Low density of patterns

Definition: Let $T_n(\pi)$ be the set of permutations containing a "small number" of π -patterns.

"small number" means fewer than $\delta^k n^k$, where k is the length of the pattern π .

Theorem

(F.) For any pattern π there are constants a $\leq b < 1$, such that

$$(a^n)n! \leq |T_n(\pi)| \leq (b^n)n!$$

Permutation Diagram

Diagram for 352987461 in S_9

			Χ					
				Χ				
					Χ			
							Χ	
	Χ							
						Χ		
Χ								
		Χ						
								Χ

Sketch of Upper Bound Proof

Special Case: Consider permutations in S_9 containing fewer than eight 132-patterns.

Idea: Find a condition that all such permutations must satisfy.

Sketch of Upper Bound Proof

Permutation Diagrams and Block Partitions

Diagram for 352987461 in S_9

			Χ					
				Χ				
					Χ			
							Χ	
	X							
						X		
Χ								
		Χ						
								Χ

Idea: Find a relatively large number of permutations containing a small number of π -patterns.

Strategy: Split the problem into 2 cases depending on π .

- \blacktriangleright π starts with a decreasing sequence (Ex: $\pi = 4213$.)
- \blacktriangleright π starts with an increasing sequence (Ex: π = 1324.)

Idea: Find a relatively large number of permutations containing a small number of π -patterns.

Strategy: Split the problem into 2 cases depending on π .

- \blacktriangleright π starts with a decreasing sequence (Ex: $\pi = 4213$.)
- \blacktriangleright π starts with an increasing sequence (Ex: $\pi = 1324$.)

Suppose the pattern π starts with a decreasing sequence (Ex: $\pi = 4213$).

Claim: Any permutation contained in the region below will contain a "small" number of π -patterns.

Suppose the pattern π starts with a decreasing sequence (Ex: $\pi = 4213$).

Claim: Any permutation contained in the region below will contain a "small" number of π -patterns.

- ▶ Question: Select a permutation uniformly at random from $S_n(\pi)$. What does the permutation diagram look like?
- \blacktriangleright π is a pattern of length 3 (well studied) (Hoffman, Rizzolo, and Slivken '14, Pak and Miner '14)
- \rightarrow π pattern of length k and starts with a k, then with high probability, some neighborhood of the upper left hand corner contains no X. (Atapour and Madras '13)

- ▶ Question: Select a permutation uniformly at random from $S_n(\pi)$. What does the permutation diagram look like?
- \blacktriangleright π is a pattern of length 3 (well studied) (Hoffman, Rizzolo, and Slivken '14, Pak and Miner '14)
- \blacktriangleright π pattern of length k and starts with a k, then with high probability, some neighborhood of the upper left hand corner contains no X. (Atapour and Madras '13)

Shape Results for Monotone Pattern-Avoiding Permutations

Definition

For a permutation $\sigma \in S_n$, let $\mathcal{D}_t(\sigma)$ denote the set of indices $i \in [n]$ such that $|i - \sigma(i)| > t$ and let $D_t = |\mathcal{D}_t(\sigma)|$.

Theorem

(F., Slivken) Let $\epsilon > 0$, and let $\mathbb{P}_n^{\setminus k}$ be the uniform probability measure on $S_n[k+1,k,\dots 1]$. There exists c>0 such that for n sufficiently large, we have

$$\mathbb{P}_n^{\setminus k} \left[D_{n^{1/2+\epsilon}} > 0 \right] = O(\exp(-cn^{\epsilon})).$$

Shape Results for Monotone Pattern-Avoiding Permutations

Definition

For a permutation $\sigma \in S_n$, let $\mathcal{D}_t(\sigma)$ denote the set of indices $i \in [n]$ such that $|i - \sigma(i)| > t$ and let $D_t = |\mathcal{D}_t(\sigma)|$.

Theorem

(F., Slivken) Let $\epsilon > 0$, and let $\mathbb{P}_n^{\searrow k}$ be the uniform probability measure on $S_n[k+1,k,\ldots 1]$. There exists c>0 such that for n sufficiently large, we have

$$\mathbb{P}_n^{\searrow k} \left[D_{n^{1/2+\epsilon}} > 0 \right] = O(\exp(-cn^{\epsilon})).$$

Shape Results for Pattern-Avoiding Permutations

In the permutation diagram of σ , with high probability, all X's are close to the diagonal.

Sketch of Proof

- Associate each permutation in $S_n(k+1,...,1)$ with a unique pair (A,B) of sequences
- Work with these sequences.

Rank of σ_i

Definition

Given σ , let the **rank** of σ_i =length of the longest decreasing sequence in σ that terminates at σ_i .

Example: if $\sigma =$ 4213 the ranks of 4, 2, 1, 3 are 1, 2, 3, 2 respectively.

- 1. σ avoids [k+1...1], all ranks between 1 and k.
- 2. elements of same rank form increasing sequence.
- 3. σ is the union of k increasing sequences.

Rank of σ_i

Definition

Given σ , let the **rank** of σ_i =length of the longest decreasing sequence in σ that terminates at σ_i .

Example: if $\sigma =$ 4213 the ranks of 4, 2, 1, 3 are 1, 2, 3, 2 respectively.

- 1. σ avoids [k+1...1], all ranks between 1 and k.
- 2. elements of same rank form increasing sequence.
- 3. σ is the union of k increasing sequences.

$$\sigma \in \mathcal{S}_n(k+1,\ldots,1) \to (A,B)$$

Theorem

(Bóna) $|S_n(k+1,...,1)| < k^{2n}$.

- At most kⁿ ways to assign a rank to each number 1, 2...n (B sequence)
- 2. At most k^n ways to assign a rank to each position. (A sequence)

$$\sigma \in \mathcal{S}_n(k+1,\ldots,1) \to (A,B)$$

Example: $352187469 \in S_9$ avoids 4321.

- \rightarrow A = (1, 1, 2, 3, 1, 2, 3, 3, 1) (Ranks of positions)
- \triangleright B = (3,2,1,3,1,3,2,1,1) (Ranks of numbers)

$$A_i = rank(\sigma_i)$$

$$B_i = rank(i)$$
.

Example: $352187469 \in S_9$

Example: $352187469 \in S_9$

Example: $352187469 \in S_9$

Chernoff/Hoeffding's Inequality ('52, '63)

Theorem

Let Y_1, \ldots, Y_n be independent 0-1 random variables with $\mathbb{E}[Y_i] = p$. Let $Y = \sum_{i=1}^n Y_i$, $\mu = \mathbb{E}[Y] = np$. Then

$$\mathbb{P}[|Y - \mu| \ge \lambda] \le \exp\left(-\frac{2\lambda^2}{n}\right).$$

• Y_i indicator function for A_i (or $(B_i) = r$

Sketch of the Proof

$$\mathbb{P}(V|U) = \frac{|V \cap U|}{|U|} \le \frac{|V|}{|U|}$$

T = all pairs of sequences U = pairs \leftrightarrow perm. avoiding $k, k - 1 \dots 1$ V = "bad pairs" (far from diagonal)

$$|T| = k^{2n}$$

 $|U| \approx k^{2n}/P(n)$
 $|V|/|U| \approx \exp(-cn^{\epsilon})$

Sketch of the Proof

$$\mathbb{P}(V|U) = \frac{|V \cap U|}{|U|} \le \frac{|V|}{|U|}$$

T = all pairs of sequences U = pairs \leftrightarrow perm. avoiding $k, k - 1 \dots 1$ V = "bad pairs" (far from diagonal)

$$|T| = k^{2n}$$

 $|U| pprox k^{2n}/P(n)$
 $|V|/|U| pprox \exp(-cn^{\epsilon})$

Sketch of the Proof

$$\mathbb{P}(V|U) = \frac{|V \cap U|}{|U|} \le \frac{|V|}{|U|}$$

T = all pairs of sequences U = pairs \leftrightarrow perm. avoiding $k, k - 1 \dots 1$ V = "bad pairs" (far from diagonal)

$$|T| = k^{2n}$$

 $|U| pprox k^{2n}/P(n)$
 $|V|/|U| pprox \exp(-cn^{\epsilon})$

Bijection of Backelin, West, and Xin

Special Case: Bijection from
$$S_n([k+1,k,\ldots,1])$$
 to $S_n([k+1,k,\ldots m+1,1,2,\ldots m])$

- ► Bijection preserves Left-to-Right Maxima
- Bijection works iteratively
- ▶ Example: $S_n(4321) \to S_n(4312) \to S_n(4123)$

Bijection of Backelin, West, and Xin

```
Special Case: Bijection from S_n([k+1,k,...,1]) to S_n([k+1,k,...m+1,1,2,...m])
```

- Bijection preserves Left-to-Right Maxima
- Bijection works iteratively
- ► Example: $S_n(4321) \to S_n(4312) \to S_n(4123)$

$$S_n(4321) \to S_n(4312)$$

							Χ	
	Χ							
				Χ				
								X
						Χ		
					X			
Χ								
			Χ					
		Χ						

$$S_n(4321) \to S_n(4312)$$

							Χ	
	Χ							
				Х				
								Χ
					X			
						X		
Χ								
			Χ					
		Х						

$$S_n(4321) \to S_n(4312)$$

							Χ	
	Χ							
				Χ				
						Χ		
					Χ			
								X
Χ								
			Χ					
		Х						

$$S_n(4321) \to S_n(4312)$$

							Χ	
	Χ							
				Χ				
					X			
						X		
								X
Χ								
			Χ					
		Χ						

$$S_n(4312) \to S_n(4123)$$

Search for instances of [4, 1, 2, 3], and switch 123 \rightarrow 312.

							Χ	
	Χ							
				X				
					X			
						X		
								X
Χ								
			Χ					
		Χ						

$$S_n(4312) \to S_n(4123)$$

Search for instances of [4, 1, 2, 3], and switch 123 \rightarrow 312.

							Χ	
	Χ							
				Χ				
					X			
						X		
		X						
Χ								
								Χ
			Х					

BWX Bijection - 4321 avoiding

BWX Bijection - 4312 avoiding

BWX Bijection - 4123 avoiding

Shape Results for Pattern-Avoiding Permutations

Definition

For a permutation $\sigma \in S_n$, let $\mathcal{D}_t(\sigma)$ denote the set of indices $i \in [n]$ such that $|i - \sigma(i)| > t$ and let $D_t = |\mathcal{D}_t(\sigma)|$.

Theorem

Let $\delta > \epsilon > 0$, and let $\mathbb{P}_n^{k \vee m}$ be the uniform probability measure on $S_n^{k \vee m} = S_n(k+1,\cdots,m+1,1\cdots,m)$. Then there exists a c > 0 such that for n sufficiently large we have

$$\mathbb{P}_n^{k\vee m}\left[D_{n^{1/2+\delta}}>n^{1+\epsilon-\delta}\right]=O(\exp(-cn^{2\epsilon})).$$

Shape Results for Pattern-Avoiding Permutations

Definition

For a permutation $\sigma \in S_n$, let $\mathcal{D}_t(\sigma)$ denote the set of indices $i \in [n]$ such that $|i - \sigma(i)| > t$. Also, let $A^- = \{i : \sigma(i) - i < 0\}$ and let $A^+ = \{i : \sigma(i) - i > 0\}$

- if $\sigma \in S_n^{k \vee m}$, with high probability, we have:
 - 1. $\mathcal{D}_{n^{1/2+\delta}} \in A^-$ 2. $\sigma(i) - i < n^{1/2+\epsilon}$ for

Shape Results for Pattern-Avoiding Permutations

Definition

For a permutation $\sigma \in S_n$, let $\mathcal{D}_t(\sigma)$ denote the set of indices $i \in [n]$ such that $|i - \sigma(i)| > t$. Also, let $A^- = \{i : \sigma(i) - i < 0\}$ and let $A^+ = \{i : \sigma(i) - i > 0\}$

- if $\sigma \in \mathcal{S}_n^{k \vee m}$, with high probability, we have:
 - 1. $\mathcal{D}_{n^{1/2+\delta}} \in A^-$
 - 2. $\sigma(i) i < n^{1/2 + \epsilon}$ for $i \in A^+$

►
$$A^- = \{i : \sigma(i) - i < 0\}$$

$$\triangleright \mathcal{D}_{n^{1/2+\delta}} \in A^-$$

$$1. \sum_{i \in [n]} \sigma(i) - i = 0.$$

2.
$$[n] = A^+ \cup A^-$$

3.
$$\sum_{i \in A^+} \sigma(i) - i = \sum_{i \in A^-} i - \sigma(i)$$

$$\mathcal{D}_{n^{1/2+\delta}}|n^{1/2+\delta} \leq \sum_{\mathcal{D}_{n^{1/2+\delta}}} i - \sigma(i)$$

$$\leq \sum_{A^{-}} i - \sigma(i) = \sum_{A^{+}} \sigma(i) - i \leq (n) n^{1/2 + \epsilon}.$$

$$|\mathcal{D}_{n^{1/2+\delta}}| \le n^{1+\epsilon-\delta}$$

▶
$$A^- = \{i : \sigma(i) - i < 0\}$$

$$\triangleright \mathcal{D}_{n^{1/2+\delta}} \in A^-$$

$$1. \sum_{i \in [n]} \sigma(i) - i = 0.$$

2.
$$[n] = A^+ \cup A^-$$

3.
$$\sum_{i \in A^+} \sigma(i) - i = \sum_{i \in A^-} i - \sigma(i)$$

$$\mathcal{D}_{n^{1/2+\delta}}|n^{1/2+\delta} \leq \sum_{\mathcal{D}_{n^{1/2+\delta}}} i - \sigma(i)$$

$$\leq \sum_{A^{-}} i - \sigma(i) = \sum_{A^{+}} \sigma(i) - i \leq (n) n^{1/2 + \epsilon}.$$

$$|\mathcal{D}_{n^{1/2+\delta}}| \le n^{1+\epsilon-\delta}$$

- ► $A^- = \{i : \sigma(i) i < 0\}$
- $\triangleright \mathcal{D}_{n^{1/2+\delta}} \in A^-$

$$1. \sum_{i \in [n]} \sigma(i) - i = 0.$$

2.
$$[n] = A^+ \cup A^-$$

3.
$$\sum_{i \in A^+} \sigma(i) - i = \sum_{i \in A^-} i - \sigma(i)$$

$$|\mathcal{D}_{n^{1/2+\delta}}|n^{1/2+\delta} \le \sum_{\mathcal{D}_{n^{1/2+\delta}}} i - \sigma(i)$$

$$\le \sum_{i} i - \sigma(i) = \sum_{i} \sigma(i) - i \le (n)n^{1/2+\epsilon}.$$

$$|\mathcal{D}_{n^{1/2+\delta}}| \leq n^{1+\epsilon-\delta}$$

$$A^- = \{i : \sigma(i) - i < 0\}$$

$$\triangleright \mathcal{D}_{n^{1/2+\delta}} \in A^-$$

$$1. \sum_{i \in [n]} \sigma(i) - i = 0.$$

2.
$$[n] = A^+ \cup A^-$$

3.
$$\sum_{i \in A^+} \sigma(i) - i = \sum_{i \in A^-} i - \sigma(i)$$

$$|\mathcal{D}_{n^{1/2+\delta}}|n^{1/2+\delta} \leq \sum_{\mathcal{D}_{n^{1/2+\delta}}} i - \sigma(i)$$

$$\leq \sum_{\mathbf{A}^{-}} i - \sigma(i) = \sum_{\mathbf{A}^{+}} \sigma(i) - i \leq (n) n^{1/2 + \epsilon}.$$

$$|\mathcal{D}_{n^{1/2+\delta}}| \le n^{1+\epsilon-\delta}.$$

►
$$A^- = \{i : \sigma(i) - i < 0\}$$

$$\triangleright \mathcal{D}_{n^{1/2+\delta}} \in A^-$$

$$1. \sum_{i \in [n]} \sigma(i) - i = 0.$$

2.
$$[n] = A^+ \cup A^-$$

3.
$$\sum_{i \in A^+} \sigma(i) - i = \sum_{i \in A^-} i - \sigma(i)$$

$$|\mathcal{D}_{n^{1/2+\delta}}|n^{1/2+\delta} \leq \sum_{\mathcal{D}_{n^{1/2+\delta}}} i - \sigma(i)$$

$$\leq \sum_{\Delta^{-}} i - \sigma(i) = \sum_{\Delta^{+}} \sigma(i) - i \leq (n) n^{1/2 + \epsilon}.$$

$$|\mathcal{D}_{n^{1/2+\delta}}| \leq n^{1+\epsilon-\delta}$$

Extensions and Future Work

Future directions

- shape results for other classes of patterns, e.g. 4213
- shape results for permutations with a low density of a given pattern

Extensions and Future Work

Future directions

- shape results for other classes of patterns, e.g. 4213
- shape results for permutations with a low density of a given pattern

$S_n(4213)$

Theorem

(Bóna/Simion and Schmidt '85) Given $\sigma \in S_n(4213)$, there is a unique permutation $\sigma \in S_n(312)$ that has the same left-to-right maxima (values and positions are the same.)

- 312 is a skew-monotone pattern
- unsure of multiplicities, i.e. how many 4213 avoiding permutations correspond to "bad" 312 avoiding permutations.

$S_n(4213)$

Theorem

(Bóna/Simion and Schmidt '85) Given $\sigma \in S_n(4213)$, there is a unique permutation $\sigma \in S_n(312)$ that has the same left-to-right maxima (values and positions are the same.)

- 312 is a skew-monotone pattern
- unsure of multiplicities, i.e. how many 4213 avoiding permutations correspond to "bad" 312 avoiding permutations.

Example: $352187469 \in S_9$

								Х
				Χ				
					Χ			
							Х	
	Х							
						Х		
Χ								
		Χ						
			Х					

Example: $\sigma \in S_n$, n large, $\leq (\delta n)^4$ 4321-patterns

=contains more than δn X's

Example: $\sigma \in S_n$, n large, $\leq (\delta n)^4$ 4321-patterns

