Quiz Questions: Complexity of Algorithms

- 1. If for an algorithm time complexity is given by $O((\sqrt[3]{2})^n)$ then complexity is:
 - a. Quadratic
 - b. Cubic
 - c. Exponential
 - d. Rational
- 2. What is the least integer n such that $f(x) = 3x^3 + (\log x)^4$ is $O(x^n)$:

 - b. 2
 - c. 3
 - d. 4
- 3. Let k be a positive integer, then $1^k + 2^k + \cdots + n^k$ is:
 - a. $O(k^{n+1})$
 - b. $O(n^{k+1})$
 - c. $O(\log_k n)$
 - d. $O(kn^2)$
- 4. The big-O estimate for $\sum_{j=1}^{n} j(j+1)$ is:
 - a. $O(2^n)$
 - b. $O(n^2)$
 - c. $O(\log n)$
 - d. $O(n^3)$
- 5. Algorithm **A** and **B** have a worst-case running time of O(n) and $O(\log n)$, respectively.
 - a. For all A, B, I A runs faster than B for input I
 - b. For all A, B, I B runs faster than A for input I
 - c. For all B exists A for all I B runs faster than A for input I
 - d. None of the possibilities is correct
- 6. Which of the following are ordered by increasing complexity:

 - a. $n \log n^2 < n(\log n)^2 < n^2$ b. $n^2 < n \log n^2 < n(\log n)^2$ c. $n(\log n)^2 < n \log n^2 < n^2$ d. $n \log n^2 < n^2 < n(\log n)^2$
- 7. Which of the following is correct?
 - a. x^3 is $o(x^2)$
 - b. $x^3 is \ o(x^{\frac{3}{2}})$ c. $x^3 is \ o(x^3)$

 - d. x^3 is $o(x^4)$
- 8. The complexity of adding two n x n matrices is
 - a. O(n)
 - b. $O(n^2)$
 - c. $O(n^3)$
 - d. $O(2^n)$