

CAIRO UNIVERSITY

FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE

M351 project

PRESENTERS

Mohamed Atef Shata Fares Magd Elamir Mahmoud Atef Mahmoud

PROFESSOR

Nasser Sweilm

COURSE

Numerical Analysis (MATH 351)

Winter 2022

M351 project

Mohamed Atef Shata (2027115), Mahmoud Atef Mahmoud (2027453) , Fares Magd Elamir (2027279)

> Department of Computer Science Faculty of Science Cairo University

> > Winter 2022

1 Mid-point rule

Mid-point rule is a method of estimating the integral of a function or the area under a curve by dividing the area into rectangles of equal width.

$$M_n = \sum_{i=1}^n f(m_i) \Delta x \tag{1}$$

where i is the ith rectangle, n is the number of rectangles that the area under the curve is divided into, $f(m_i)$ is the function of the curve evaluated at the midpoint of the ith rectangle, and Δx is the width of each rectangle.

$$m_i = \frac{x_i - x_{i-1}}{2} \tag{2}$$

where x_i is the x-value of the right endpoint of the *ith* rectangle, and x_{i-1} is the x-value of the left endpoint of the *ith* rectangle.

$$\Delta x = \frac{b-a}{n} \tag{3}$$

where a is the lower boundary of the interval, b is the upper boundary of the interval, and n is the number of rectangles.

2 Trapezoidal rule

Trapezoidal rule is the first of the Newton-Cotes closed integration formulas, where the integrand is approximated by a first-order polynomial, so:

$$I = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \dots + \int_{x_{n-1}}^{x_n} f(x)dx$$
 (1)

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$
 (2)

$$I = \frac{h}{2} [f(x_0) + 2 \sum_{i=1}^{i=n-1} f(x_i) + f(x_n)]$$
(3)

3 Simpson's rule

Simpson's rule is an extension of Trapezoidal rule where the integrand is approximated by a second-order polynomial, so:

$$I = \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \dots + \int_{x_{n-2}}^{x_n} f(x)dx$$
 (1)

$$I = \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)] + \frac{h}{3}[f(x_2) + 4f(x_3) + f(x_4)] + \dots$$

... +
$$\frac{h}{3}$$
[$f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)$] (2)

$$I = \frac{h}{3} [f(x_0) + 4 \sum_{i=1,3,5,\dots}^{i=n-1} f(x_i) + 2 \sum_{i=2,4,6,\dots}^{i=n-2} f(x_i) + f(x_n)]$$
(3)

4 Screenshots for all results for each case

assuming the problem

$$\int_{1}^{3} x^3 - x^2 - 12dx$$

approximating this integral using the 3 methods with n=10 our script will be like this

4.1 Trapezoidal

first using trapezoidal

```
>> project
enter used wanted method (Trap,Simp,Mid,lAnalyzis) :
Trap
enter f(x) :
x^3-x^2-12
enter a :
1
enter b :
3
enter number of iterations :
10
ans = -12.600
```

4.2 Simpson's

using Simpson's

```
>> project
enter used wanted method (Trap,Simp,Mid,lAnalyzis) :
Simp
enter f(x) :
x^3-x^2-12
enter a :
1
enter b :
3
enter number of iterations :
10
ans = -12.667
>> |
```

4.3 Mid-point

```
>> project
enter used wanted method (Trap,Simp,Mid,lAnalyzis) :
Mid
enter f(x) :
x^3-x^2-12
enter a :
1
enter b :
3
enter number of iterations :
10
ans = -12.700
```

4.4 Analysis

for the IAnalyzis the number of iterations entered is the number of max n and with step = 10 then if number of iterations = 100 the function calculates n = [10,20,30,40,50,....,100] if number of iterations = 1000 the function calculates n = [10,20,30,40,50,....,100,....,1000] the function can be used like this

