

Лабораторная работа 2-6. Математика

A. Multiple primality test

time limit per test: 1.5 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

An integer $p \ge 2$ is called <u>prime</u>, if it doesn't have any positive integer divisors except 1 and p.

For every integer given in input find out, whether it is a prime number.

Input

First line contains an integer n ($2 \leq n \leq 500\,000$), the number of integers to test.

The i-th of the next n lines contains a_i ($2 \le a_i \le 2 \cdot 10^7$), an integer to test.

Output

The i-th line should contain "YES", if a_i is prime, and "NO", otherwise.

Example

NO
NO
YES
NO

B. Multiple factorization

time limit per test: 0.5 seconds memory limit per test: 64 megabytes

input: standard input output: standard output

Find the factorization for all given integers.

Input

First line contains an integer n ($2 \le n \le 300000$), the number of integers to factorize.

The *i*-th of the next *n* lines contains a_i ($2 \le a_i \le 10^6$).

Output

The *i*-th line should contain the factorization of a_i as a list of prime numbers in non-decreasing order.

Example

```
input

4
60
14
3
555

output

2 2 3 5
2 7
3
5 11
```

С. Большая проверка на простоту

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта

ввод: стандартный ввод вывод: стандартный вывод

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число n, $1 \le n \le 1000$ и далее n чисел a_i , $1 \le a_i \le 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

Пример

Statement is not available on English language

D. Китайская теорема

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта

ввод: стандартный ввод вывод: стандартный вывод

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m ($1 \le n, m \le 10^6, 0 \le a \le n, 0 \le b \le m$).

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число x.

Примеры

· · · · · · · · · · · · · · · · · · ·	
входные данные	Сору
1 0 2 3	
выходные данные	Сору
3	
входные данные	Сору
3 2 5 9	
выходные данные	Сору
38	

Statement is not available on English language

E. Взлом RSA

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 64 мегабайта

ввод: стандартный ввод вывод: стандартный вывод

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n = pq и сгенерировать два числа e и d такие, что $\{ed \equiv 1 \pm od\{(p-1)(q-1)\}\}$ (заметим, что $\{(p-1)(q-1) = \varphi(n)\}$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M — исходное сообщение. Для его шифрования вычисляется значение $C=M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M=C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: n, e, C, $n \le 10^9$, $e \le 10^9$, C < n. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\phi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M ($0 \le M \le n$), которое было зашифровано такой криптосхемой.

Примеры

Statement is not available on English language

F. Задача для второклассника

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Вам даны два числа. Необходимо найти их произведение.

Входные данные

Входные данные состоят из двух строк, на каждой из которых находится целое одно **целое** число, длина которого не превосходит двухсот пятидесяти тысяч символов.

Выходные данные

Выведите произведение данных чисел.

Примеры Входные данные Выходные данные Входные данные Входные данные Входные данные Сору 1 -1 Выходные данные Сору

<u>Codeforces</u> (c) Copyright 2010-2019 Mike Mirzayanov The only programming contests Web 2.0 platform

-1