

特開2001-157145

(P2001-157145A)

(43)公開日 平成13年6月8日(2001.6.8)

(51)Int.C1.⁷

識別記号

H 0 4 N 5/76

G 1 1 B 20/10

27/034

H 0 4 N 5/85

5/93

F I

H 0 4 N 5/76

G 1 1 B 20/10

H 0 4 N 5/85

5/93

G 1 1 B 27/02

テマコード(参考)

A 5C052

G 5C053

Z 5D044

Z 5D110

B

審査請求 未請求 請求項の数 8

O L

(全23頁) 最終頁に続く

(21)出願番号

特願平11-332352

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(22)出願日 平成11年11月24日(1999.11.24)

(72)発明者 浜田 俊也

東京都品川区北品川6丁目7番35号 ソニー

株式会社内

(72)発明者 加藤 元樹

東京都品川区北品川6丁目7番35号 ソニー

株式会社内

(74)代理人 100082131

弁理士 稲本 義雄

最終頁に続く

(54)【発明の名称】記録再生装置および方法、並びに記録媒体

(57)【要約】

【課題】 A V信号をシームレス再生する。

【解決手段】 少なくとも1以上のPlayitemが再生順に配置されたPlaylistに関し、Playitemが指定するClip上のIN点およびOUT点の状態(Aタイプ、Cタイプ、Dタイプ、またはEタイプ)を示す情報をPlayItem()に記述する。

量メディアは、ビデオ信号等のデジタルAV(Audio Visual)信号を記録するメディアとしての期待が高い。

【0003】DVD-RAM等に記録するデジタルAV信号の供給ソースとしては、現存の記録メディアであるVHSカセットテープ、8ミリテープ等に記録されたAV信号や、デジタル衛星放送、デジタル地上波放送、デジタルケーブルテレビジョン放送等の放送信号としてのAV信号等が考えられる。

【0004】上述した各ソースから供給されるデジタルビデオ信号は、通常、MPEG(Moving Picture Experts Group)2方式によって圧縮符号化されている。したがって、各ソースから供給されるデジタルビデオ信号を、DVD-RAM等に記録する場合、MPEG2方式で圧縮符号化されているAV信号を一旦デコードし、さらにMPEG2方式によってエンコードして光ディスクに記録する必要がある。しかしながら、このように圧縮符号化されているAV信号をデコードして、再びエンコードした場合、AV信号の品質が著しく劣化してしまう。

【0005】そこで、AV信号の品質の劣化を最小限に抑えるために、各ソースから供給される圧縮符号化されているAV信号を、エンコードおよびデコードすることなく、供給されるビットストリームの状態でDVD-RAM等に記録することが検討されている。すなわち、DVD-RAM等をデータストリーマとして使用することが検討されている。

【0006】DVD-RAM等のディスクメディアに対しては高速なランダムアクセスが可能であるが、そのことを活用して、DVD-RAM等に記録されているビットストリームを記録したときの順序とは異なる順序で再生することができれば便利である。再生順序を指定することは、一種の編集であり、再生順序の指定は、ディスクに記録されているビットストリームの配置が変更されることなく行われる。以下、このような編集を非破壊編集と記述する。

【0007】

【発明が解決しようとする課題】ところで、ディスクメディア上のビットストリームの配置は、非破壊編集をするために最適化されているわけではないので、実際に非破壊編集を実行する場合、ビットストリームの切り替え点でAV信号が途切れる等の課題があった。

【0008】本発明はこのような状況に鑑みてなされたものであり、非破壊編集を実行した際、AV信号を途切れさせることなく再生することを目的とする。

【0009】

【課題を解決するための手段】請求項1に記載の記録再生装置は、AVデータをファイル化したAVデータファイルを記録媒体に対して記録するAVデータファイル記録手段と、AVデータファイルの再生範囲を示す再生範囲情報を生成する生成手段と、再生範囲の少なくとも一方の端の状態を分類する分類手段と、分類手段の分類結

果を示す情報を再生範囲情報に付加する付加手段と、少なくとも1以上の再生範囲情報を再生する順序に配置して再生リストを構成する構成手段と、再生リストを記録媒体に対して記録する再生リスト記録手段とを含むことを特徴とする。

【0010】前記分類手段は、再生範囲の少なくとも一方の端の状態を4種類に分類するようにすることができる。

【0011】請求項1に記載の記録再生装置は、分類手段の分類結果に対応して、プリッジシーケンスを作成する作成手段をさらに含むことができる。

【0012】請求項4に記載の記録再生方法は、AVデータをファイル化したAVデータファイルを記録媒体に対して記録するAVデータファイル記録ステップと、AVデータファイルの再生範囲を示す再生範囲情報を生成する生成ステップと、再生範囲の少なくとも一方の端の状態を分類する分類ステップと、分類ステップの処理での分類結果を示す情報を再生範囲情報に付加する付加ステップと、少なくとも1以上の再生範囲情報を再生する順序に配置して再生リストを構成する構成ステップと、再生リストを記録媒体に対して記録する再生リスト記録ステップとを含むことを特徴とする。

【0013】請求項5に記載の記録媒体のプログラムは、AVデータをファイル化したAVデータファイルを情報記録媒体に対して記録するAVデータファイル記録ステップと、AVデータファイルの再生範囲を示す再生範囲情報を生成する生成ステップと、再生範囲の少なくとも一方の端の状態を分類する分類ステップと、分類ステップの処理での分類結果を示す情報を再生範囲情報に付加する付加ステップと、少なくとも1以上の再生範囲情報を再生する順序に配置して再生リストを構成する構成ステップと、再生リストを情報記録媒体に対して記録する再生リスト記録ステップとを含むことを特徴とする。

【0014】請求項6に記載の記録再生装置は、記録媒体に記録されている再生リストを読み出す読み出し手段と、再生リストを構成する少なくとも1以上の再生範囲情報から、再生範囲の少なくとも一方の端の状態を示す情報を抽出する抽出手段と、抽出手段が抽出した再生範囲の少なくとも一方の端の状態を示す情報に基づいて、記録媒体に記録されているAVデータを再生する再生手段とを含むことを特徴とする。

【0015】請求項7に記載の記録再生方法は、記録媒体に記録されている再生リストを読み出す読み出しステップと、再生リストを構成する少なくとも1以上の再生範囲情報から、再生範囲の少なくとも一方の端の状態を示す情報を抽出する抽出ステップと、抽出ステップの処理で抽出された再生範囲の少なくとも一方の端の状態を示す情報をに基づいて、記録媒体に記録されているAVデータを再生する再生ステップとを含むことを特徴とする。

ぶ。すなわち、Playlistは1以上のPlayitemから構成される。

【0028】Playitemを再生すると、特定されるAVストリームのIN点からOUT点までの範囲が再生されることになる。

【0029】AVストリームは、MPEG2で規定されているトランSPORTストリーム等の形式により多重化されているビットストリームであるが、当該AVストリームがファイル化されたAVストリームファイルとは別のファイル（以下、AVストリーム情報ファイルと記述する）として、当該AVストリームに関係する情報を保持しておくことで、再生、編集がより容易になる。AVストリームファイルと、AVストリーム情報ファイルを1つの情報単位としてのオブジェクトとみなし、Clipと呼ぶ。すなわち、図3のように、Clipは、1対1に対応するAVストリームファイルとAVストリーム情報ファイル（図3においてはstream attributesと表示している）から構成されるオブジェクトである。

【0030】図4に示すように、Playlist、Playitem、およびclipを階層的に設けることによって非破壊編集が可能となる。

【0031】ここで、Playitem間の接続点に注目する。2つのPlayitemは、それぞれ異なるClipを参照しているが、Playitemの接続点では、光ディスク1から読み込むトランSPORTストリーム（AVストリーム）が不連続となる場合がある。不連続となる要因は、トランSPORTストリームのsyntaxの不連続が存在する場合と、2つのファイルからの供給の不連続が有る場合である。

【0032】Playitemの接続点で不連続が有ると、再生される画像が静止画になったり、画像や音声が途切れたりするような再生品質の低下が発生する。しかしながら、Playitemの接続点を再生する前に予め、Playitemの接続点における不連続の要因を知っているならば、接続点での再生品質の低下を抑えることが可能となる。

【0033】Playitemの接続点において、2つのファイルからの供給の不連続が有る場合、ファイルの読み出し最低レートを保証すればよい。すなわち、読み出したAVストリームをデコード前に記憶する読み出しチャネル用バッファ6がアンダフローにならないようすればよい。

【0034】ここで、図1の光ディスク装置の再生系について、光ディスク1、読み出しチャネル用バッファ6、およびデコーダ7だけに簡略化して考える。光ディスク1からは、ランダムアクセス中にはデータが読み取れないので、読み出しチャネル用バッファ6がアンダフローしないようにするには、データが読み取れなくなるトラックジャンプを行う直前に、ある程度のデータを読み出しチャネル用バッファ6に蓄積しておく必要がある。このような制御は、光ディスク1上の記録領域であるセクタを、ブロック化して扱うことで実現できる。

【0035】例えば、トラックジャンプせずに連続して読み出せる隣接したセクタの集合を考え、これをフラグメントと呼ぶことにする。フラグメントには、常にある一定の割合以上のデータが存在しているという規定を設ける。例えば、各フラグメントの中で、データが占めている割合は、常に1フラグメントのサイズの半分以上であるというルールを設ける。すなわち、フラグメント中のデータが占めている領域をセグメントと呼ぶとき、セグメントの大きさがフラグメントの半分より大きいという条件を設定する。当該一定の割合は、光ディスク1上の任意の位置にあるフラグメントから、任意の位置にあるフラグメントへのジャンプにかかる時間や、フラグメントのサイズやバースト読み出しレートなどを考慮して決めるうことになる。

【0036】このようにしておけば、ランダムアクセスのジャンプを、フラグメント単位で行うこととしたとき、フラグメントにある程度のデータが存在しているので、読み出しチャネル用バッファ6に十分な量のデータが存在する状態でフラグメント間のジャンプを行うことができる。つまり、デコーダ7に対して最低レートを保証してデータを供給することが可能になる。

【0037】次に、トランSPORTストリームのsyntaxに不連続が存在する場合について考える。通常、別個にMPEGエンコードされて多重化された2つのビットストリームを、それぞれトランSPORTパケット単位で切断し、異なるビットストリームの切断面を接合しても、MPEGシステムズで規定されている正しいsyntaxのストリームになることはない。また、異なるトランSPORTストリームでは、トランSPORTストリームに含まれる時間軸の基準であるPCR(Program Clock Reference)も異なるので、接続点を跨いでデコードする場合、新たなPCRに基づいて時間軸を再設定する等の処理が必要になる。

【0038】したがって、playitemの接続点にsyntaxの不連続があるか否かの情報と、その不連続の種類の情報をデコードするときに知っても対処が間に合わないので、本発明の光ディスク装置では、playitemの接続点にsyntaxの不連続があるか否かの情報と、その不連続の種類の情報を予めデコーダ7に供給できるようになされている。

【0039】ここで、光ディスク1（以下、単にディスクとも記述する）に書き込まれるファイル配置について説明する。ディスク上には、図5に示すように、次の4種類のファイルが記録される。

```
info.dvr  
playlist###.plst  
####.clpi  
####.mpg
```

【0040】ディスク上にはディレクトリ/DVRが設けられ、ディレクトリ/DVR以下が光ディスク装置により管理される範囲とする。ただし、ディレクトリ/DVRは、ディ

に該当するAVストリームデータの状態を表す。状態の詳細については図19を参照して後述する。

【0052】playitem_start_time_stampは、当該PlayItemの開始点におけるpts(presentation time stamp)を表す。ただし、condition_INが0x03であるときには、AVストリームファイルは最後まで読み込まれてデコードされるので、当該playitem_start_time_stampは不要になる。playitem_end_time_stampは、当該PlayItemの終了点におけるptsを表す。ただし、condition_OUTが0x03であるときには、AVストリームファイルは先頭から読み込まれてデコードされるので、当該playitem_end_time_stampは不要になる。

【0053】次に、上述したデータ構造を有するPlaylistの特性を列挙する。

- 1) Playlistは、Clipという「素材」の再生したい部分だけを、IN点(開始点)およびOUT点(終了点)により指定したものを集めたものである。
- 2) Playlistは、Clipと同様に、ユーザがひとまとまりとして認識する単位である。
- 3) Playlistは、非破壊のアセンブル編集を実現するための構造でもある。ClipとPlaylistは、Master-Slaveの関係であり、Playlistを作成、分割、併合、または消去してもClipは変化しない。
- 4) Clipの一部分を指定したものをPlayitemと呼ぶ。Playlistは、Playitemの配列で構成される。
- 5) Playitemは、主に、AVストリームファイルを特定するためのファイルidまたはファイル名、並びに、MPEG2トランスポートストリームに関して規定されているprogram_numberおよび当該program_numberに対応するprogram上のIN点とOUT点で構成される。Clip内では、programごとに、さらにPCRが連続な区間ごとにローカルな時間軸が定義されており、IN点およびOUT点はptsを用いて表現される。
- 6) Playlistを構成するPlayitemの再生指定範囲は、図11に示すように、ClipのPCR連続区間内で閉じている。
- 7) 1つのPlayitemを2つ以上のPlaylistで共有することは出来ない。
- 8) ブリッジシーケンスを形成するClipからは、Playitemが1つだけ作られる。ブリッジシーケンスを形成するClipは、複数のPlayitem間で共有されない。
- 9) Playlistには、アフレコをすることができる。アフレコされる対象は非破壊の状態が維持される。アフレコ用のpathとして、図12に示すように、PlayList内にAUX Audio pathが1本設けられる。メイン出力となるビデオおよびオーディオのPlayitemの配列をmain pathと称する。
- 10) 1つのpathにおいて、複数のPlayitemの再生時刻が時間的に重なることはない。2つ以上のPlayitemが1つのmain path上に並ぶ場合、Playitemは密に並べら

れ、再生時にギャップ(隙間)が存在してはならない。

【0054】11) Playlistの再生時間は、main pathの再生時間と同一である。

12) AUX Audio path上に存在するPlayitemの数は0または1である。
13) AUX Audio pathの再生開始時刻および終了時刻の範囲は、main pathの再生開始時刻および終了時刻の範囲を超えてはならない。

10 【0055】次に、Playlistに係わる非破壊編集時の操作について説明する。

1) Playlist作成

新たにAVストリームを記録した場合、AVストリームファイルとAVストリームファイル情報からなるClipが作成され、Clipを参照するPlayitemが作成され、Playlistが作成される。

2) 消去

不要になった再生順序指定を消す場合、Playlistの全体、またはPlayitem単位で消去される。

20 3) 分割

図13に示すように、1つPlaylistを構成するPlayitemを分割し、分割されたPlayitemで、それぞれPlaylist構成する。

【0056】4) 併合(ノンシームレス・シームレス接続)

2つのPlaylistを接続して1つのPlaylistを構成する。接続点において、映像および音声の途切れがないようなシームレスに再生されるように併合するか、途切れが発生してもかまわないノンシームレスに再生されるように

30 併合するかにより、併合処理が異なる。ノンシームレス再生されるように併合する場合には、新たなAVストリームを作成することなく、図14(A)に示すように、2つのPlaylistのPlayitemを単に再生順に一列に並べて、1つのPlaylistを構成すればよい。なお、図14(B)に示すように、併合するPlaylistをなすPlayitemが同一のClipを参照していて、かつ、参照される部分が連続している場合、Playitemも併合される。図15は、シームレスに再生できるように接続するためのブリッジシーケンス(詳細は後述する)を作成した例を表している。

40 5) 移動

図16に示すように、Playlistの再生順序を規定するPlaylist blockでのPlaylistの並びが変更される。各Playlistは変更されない。

6) Clip変換

例えば、ビデオカメラで撮影した素材をClipとし、当該Clipを部分的に再生するようなPlaylistを作成したとする。Playlistが完成した後に、その再生順で再生する、ストリームの実体を伴うClipを新たに作りたい場合、図17に示すように、Playlistで指定された部分がコピー

50 されて新たなClipが作成される(オリジナルのClipが新

生を実現するための方法である。元のAVストリームファイルが変更されない点が図20(B)に示した例との相異である。ここでは、ブリッジシーケンスに入るためAVストリームファイルの途中から抜ける点と、ブリッジシーケンスから出てAVストリームファイルの途中に入る点がDタイプとなる。

【0069】次に、Dタイプの接続点を持つ2つのPlayitemの間をシームレス再生するための構造であるブリッジシーケンスについて説明する。ブリッジシーケンスとは、ディスク上の空き領域に、接続点周辺のAVストリームを用いて、コピーまたは一部再エンコードして作成した短いAVストリームである。再生時には、ブリッジシーケンスとしての短いAVストリームを再生することによってシームレスな接続を実現する。ブリッジシーケンスは、図21(A)に示すように、クリーンブレイクを挟んで2つのAVストリームファイルから構成される場合と、図21(B)に示すように、1つのAVストリームファイルから構成される場合がある。

【0070】クリーンブレイクは、2つのClipの間をシームレス再生する場合、または、2つのPlayitemの間をシームレス再生する場合において、再エンコードおよび再多重化を行うことで、シームレス接続されるAVストリームファイルの端は、図22(A)に示すように、クリーンブレイクとなる。通常、MPEG2システムにおける多重化位相差のために、各エレメンタリストリームにおいて同時刻に表示すべきデータは、ファイル内の離れた位置にある。クリーンブレイクとは、この多重化位相差を考慮して、ある時刻の以前に表示されるエレメンタリストリームと以後に表示されるエレメンタリストリームが別々のファイルに分けられた状態である。当然、以前側のファイルに存在するビデオデータが表示される時刻と同時に再生されるオーディオデータも以前側のファイルに存在し、同様に、以後側のファイルに存在するビデオデータが表示される時刻と同時に再生されるオーディオデータも以後側のファイルに存在する。

【0071】ブリッジシーケンスは、例えば、2つのPlayitemの間をシームレス再生する場合において、図22(B)に示すように、オリジナルのAVストリームファイルとは独立したAVストリームファイルが形成される。ブリッジシーケンスは、接続点周辺のビットストリーム(オリジナルのAVストリームファイル)をコピーして新たなファイルを生成するが、デコードおよび再エンコードによって作り直されるのは、その一部分である。

【0072】次にブリッジシーケンス作成時の条件1-1乃至4-1について説明する。連続供給の保証および読み出しデータの連続性の必要から、ブリッジシーケンス上のポイントa, d, e, h(図21)は、以下に説明する条件を満たすバイト位置でなければならない。

【0073】フラグメント(fragment)とセグメント(seg

ment)の関係に注目した場合におけるブリッジシーケンス作成条件を説明する。ここで、セグメントとは、フラグメントのうちデータで占められている部分を指している。

【0074】1-1) 図23に示すように、ブリッジシーケンスS2, S3とブリッジシーケンスに出入りするセグメントS1, S4は、0.5フラグメント以上の大きさでなければならない。

10 【0075】ブリッジシーケンス作成条件2-2を説明する。

【0076】2-1) 図24に示すように、ユーザが指定したOUT点に基づいてa点の位置を決める。

【0077】具体的には、フラグメントの後半(half of fragment)の部分であって、CPIが存在するソースパケット(source packet)の先頭をa点の候補とする。対象としているフラグメントの中にa点が見つからなければ、1つ前のフラグメントを対象に変えて、その中で条件を満たす点を捜す。ソースパケットとは、トランスポートパケットに4バイトの時刻情報が付加されたものである。a点が見つかるまで対象とするフラグメントを1つずつ遡る。a点からユーザが指定したOUT点までの部分は、そのままコピーされるか、あるいは再エンコードされてブリッジシーケンスに入る。フラグメントの後半の中にCPIが指す点が含まれているか否かと、含まれるCPIの数については、ピットレートに依存する。より具体的な処理については、図29のフローチャートを参照して後述する。

【0078】図25を参照して、アライドユニット(Aigned Unit)とCPIの関係に注目した場合におけるブリッジシーケンス作成条件について説明する。なお、アライドユニットとは、AVストリームをファイルに格納する際の単位であって、ファイルシステム上における連続する所定の数のセクタを1つの単位として扱うための構造である。アライドユニットの先頭は、ソースパケットとアラインされている、つまり、アライドユニットは必ずソースパケットの先頭から始まる。AVストリームファイルは、アライドユニットの整数倍から構成されている。

【0079】また、CPIとは、AVストリーム中のランダムアクセス可能な位置(デコードを開始可能な位置)を指しており、AVストリーム中のピクチャのpts(presentation time stamp)と、そのピクチャのファイル内バイト位置がデータベースになっているものである。このCPIデータベースを参照することにより、PlayitemのIN点とOUT点を決めているタイムスタンプから、AVストリームファイル内のバイト位置に変換することができる。逆に、CPIデータベースが無ければ、表示時刻からファイル内バイト位置に変換することは困難であるので、ブリッジシーケンスとの接続点は、CPIで指された位置に合わせる必要がある。

ップS 2 1において、既存のPlaylistの中から1つが選択される。ステップS 2 2において、ステップS 1で選択されたPlaylistを構成する先頭のPlayitemが選択されて当該先頭のPlayitemに基づいてClipの再生が開始される。ステップS 2 3において、選択されたPlayitemに基づくClipの再生が終了したか否かが判定され、Playitemに基づくClipの再生が終了したと判定されるまで待機される。Playitemに基づくClipの再生が終了したと判定された場合、ステップS 2 4に進む。

【0093】ステップS 2 4において、現Playitemに続く次のPlayitemがあるか否かが判定される。次のPlayitemがないと判定された場合は、このPlaylist再生処理は終了されるが、次のPlayitemがあると判定された場合、ステップS 2 5に進む。

【0094】ステップS 2 5において、次のPlayitemとの接続点がAタイプーAタイプ接続であるか否かが判定される。次のPlayitemとの接続点がAタイプーAタイプ接続であると判定された場合、Playitemの接続点でギャップが発生するので、ステップS 2 6に進み、デコーダがリセットされて復旧処理が実行される。ステップS 2 7において、次のPlayitemに基づいてClipの再生が開始される。その後、ステップS 2 3に戻り、それ以降の処理が繰り返される。

【0095】なお、ステップS 2 5において、次のPlayitemとの接続点がAタイプーAタイプ接続ではないと判定された場合、ステップS 2 8に進む。ステップS 2 8において、次のPlayitemとの接続点がCタイプーCタイプ接続であるか否かが判定される。次のPlayitemとの接続点がCタイプーCタイプ接続であると判定された場合、ステップS 2 9において、接続点はクリーンプレイによって再生すると判断される。ステップS 3 0において、前側のPlayitemが参照しているClipの最後のデータまでが読み込まれた後、次のPlayitemが参照するClipの先頭のデータから読み込みが開始される。デコーダによりPCRの切り替えがシームレスに行われる。ステップS 2 7に進む。

【0096】ステップS 2 8において、次のPlayitemとの接続点がCタイプーCタイプ接続ではないと判定された場合、ステップS 3 1に進む。ステップS 3 1において、次のPlayitemとの接続点がDタイプーEタイプ接続であるか否かが判定される。次のPlayitemとの接続点がDタイプーEタイプ接続であると判定された場合、ステップS 3 2に進み、当該接続点はブリッジシーケンスに入る接続点であると判断される。ステップS 3 3において、前側のPlayitemが指定しているPlayitem_end_time_stampとCPIが参照されてClipの途中で読み込みが停止され、次のPlayitemが参照するClipの先頭のデータから読み込みが開始される。読み込まれたデータは読み込まれた順番にデコードされる。ステップS 2 7に進む。

【0097】ステップS 3 1において、次のPlayitemと

の接続点がDタイプーEタイプ接続ではないと判定された場合、ステップS 3 4に進む。ステップS 3 4において、次のPlayitemとの接続点がEタイプーDタイプ接続であるか否かが判定される。次のPlayitemとの接続点がEタイプーDタイプ接続であると判定された場合、ステップS 3 5に進み、当該接続点はブリッジシーケンスから抜ける接続点であると判断される。ステップS 3 6において、前側のPlayitemが参照しているClipの最後のデータまでが読み込まれた後、次のPlayitemが指定しているPlayitem_start_time_stampとCPIが参照されてClipの途中から読み込みが開始される。読み込まれたデータは読み込まれた順番にデコードされる。ステップS 2 7に進む。

【0098】ステップS 3 4において、次のPlayitemとの接続点がEタイプーDタイプ接続ではないと判定された場合、ステップS 3 7に進む。ステップS 3 7において、当該接続点はEタイプーEタイプ接続であると判断される。ファイルの区切りは考慮されずにデータが読み込まれ、読み込まれた順番にデコードすればシームレスに再生される。ステップS 2 7に進む。

【0099】次に、ブリッジシーケンス作成条件2-2「ユーザが指定したOUT点に基づいてa点の位置を決める」の具体的な処理について、図29のフローチャートを参照して説明する。

【0100】ステップS 5 1において、ClipからのOUT点が指定される。ステップS 5 2において、OUT点の時刻がCPI上であるか否かが判定される。OUT点の再生時刻がCPI上ではないと判定された場合、ステップS 5 3に進む。ステップS 5 3において、OUT点の時刻以前の時刻に対応するCPIで示される点が存在すれば、その最も時刻が近い点が新たなOUT点とされる。なお、ステップS 5 2において、OUT点の再生時刻がCPI上であると判定された場合、ステップS 5 3の処理はスキップされる。

【0101】ステップS 5 4において、フラグメントの先頭からOUT点までの大きさ(バイト数)がフラグメントの半分よりも大きいか否かが判定される。フラグメントの先頭からOUT点までの大きさがフラグメントの半分よりも大きいと判定された場合、ステップS 5 5に進む。

【0102】ステップS 5 5において、OUT点で指定された時刻が当該PlayitemのPlayitem_end_time_stampとされる。ステップS 5 6において、当該Playitemのcondition_outがDタイプとされる。ステップS 5 7において、Playitem_end_time_stamp以降のデータがコピーされ、ブリッジシーケンスの前半部分のClipが新規に生成される。新規に生成されたClipとは、DタイプーEタイプ接続とされる。

【0103】ステップS 5 4において、フラグメントの先頭からOUT点までの大きさがフラグメントの半分よりも大きないと判定された場合、ステップS 5 8に進

【図22】クリーンブレイクとブリッジシーケンスの関係を説明する図である。

【図23】ブリッジシーケンスの状態の例を示す図である。

【図24】ブリッジシーケンスの状態の例を示す図である。

【図25】ブリッジシーケンスの状態の例を示す図である。

【図26】ブリッジシーケンスの状態を示す図である。

【図27】Playlist作成処理を説明するフローチャート 10

である。

【図28】Playlist再生処理を説明するフローチャートである。

【図29】接続点をDタイプとするときの処理を説明するフローチャートである。

【符号の説明】

1 光ディスク, 2 光ヘッド, 6 読み出しチャネル用バッファ, 7 デコーダ, 13 システムコントローラ
2 光ヘッド, 3 RFおよび復調/変調回路, 4 ECC回路, 5 アドレス検出回路, 8 ビデオ出力, 10 エンコーダ, 14 入力部
3 アドレス検出回路, 11 書き込みチャネル用バッファ, 9 OSD制御回路, 12 CPU, ROM, RAM, RAM, RAM, 13 システムコントローラ
4 ECC回路, 14 入力部, 15 オーディオ出力, 16 オーディオ入力, 17 ビデオ入力
5 アドレス検出回路, 18 オーディオ出力, 19 オーディオ入力, 20 ビデオ入力
6 読み出しチャネル用バッファ, 21 CPU, 22 ROM, 23 RAM, 24 RAM
7 デコーダ, 8 ビデオ出力, 9 OSD制御回路, 10 エンコーダ, 11 書き込みチャネル用バッファ
8 ビデオ出力, 9 OSD制御回路, 10 エンコーダ, 11 書き込みチャネル用バッファ
10 エンコーダ, 11 書き込みチャネル用バッファ, 12 CPU, ROM, RAM, RAM, RAM, 13 システムコントローラ
12 CPU, ROM, RAM, RAM, RAM, 13 システムコントローラ, 14 入力部
13 システムコントローラ, 14 入力部, 15 オーディオ出力, 16 オーディオ入力, 17 ビデオ入力
14 入力部, 15 オーディオ出力, 16 オーディオ入力, 17 ビデオ入力, 18 オーディオ出力, 19 オーディオ入力, 20 ビデオ入力
15 オーディオ出力, 16 オーディオ入力, 17 ビデオ入力, 18 オーディオ出力, 19 オーディオ入力, 20 ビデオ入力
16 オーディオ出力, 17 ビデオ入力, 18 オーディオ出力, 19 オーディオ入力, 20 ビデオ入力
17 ビデオ入力, 18 オーディオ出力, 19 オーディオ入力, 20 ビデオ入力
18 オーディオ出力, 19 オーディオ入力, 20 ビデオ入力
19 オーディオ出力, 20 ビデオ入力
20 ビデオ入力

【図1】

【図2】

【図3】

【図15】

【図7】

syntax	size	type
%%%%.clpi {		
ClipInfo_start_address	32	bslbf
SequenceInfo_start_address	32	bslbf
CPI_start_address	32	bslbf
MarkList_start_address	32	bslbf
reserved	64	bslbf
for(i=0;i<L1;i++) {		
padding_byte	8	bslbf
}		
ClipInfo()		
for(i=0;i<L2;i++) {		
padding_byte	8	bslbf
}		
SequenceInfo()		
for(i=0;i<L3;i++) {		
padding_byte	8	bslbf
}		
CPI()		
for(i=0;i<L4;i++) {		
padding_byte	8	bslbf
}		
MarkList()		
for(i=0;i<L5;i++) {		
padding_byte	8	bslbf
}		
}		

【図8】

syntax	size	type
playlist##.plist{		
PlayList_start_address	32	bslbf
reserved	160	bslbf
for(i=0;i<L1;i++) {		
padding_byte	8	bslbf
}		
PlayList()		
for(i=0;i<L2;i++) {		
padding_byte	8	bslbf
}		
}		

【図9】

Syntax	size	type
PlayList0 {		
version_number	8*8	char
length	32	bslbf
reserved	14	bslbf
aux_audio_valid_flag	2	bslbf
reserved	8	uimsbf
playlist_type	16	uimsbf
playlist_name_length	8	uimsbf
for(i=0;i<L1;i++) {		
char	8	bslbf
}		
ResumeInfo0		bslbf
synchronous_start_pts	32	uimsbf
num_of_playitems_for_main//main path	16	uimsbf
num_of_playitems_for_aux_audio //aux audio path	16	uimsbf
for(i=0;i<num_of_playitems_for_main;i++) {		
PlayItem() //main path		
}		
for(i=0;i<num_of_playitems_for_aux_audio;i++) {		
PlayItem0 //aux audio path		
}		
PlaylistInfoDescriptor0		
}		

【図14】

【図17】

【図18】

ミニマイズ(どのplaylistからも使われていないclipの部分を消す)

【図24】

【図21】

【図23】

【図25】

【図28】

Fターム(参考) 5C052 AC08 AC10 CC06 CC20 DD04
5C053 FA14 FA30 HA29 JA16 JA24
JA30 KA24 LA11
5D044 AB05 AB07 BC06 CC04 DE12
DE25 DE49 DE96 EF03 EF05
FG10 FG18 GK07 HH07 HL14
5D110 AA17 AA19 AA27 AA29 BB06
BB20 CA04 CA16 CB06 CD02
CD05 CD16 CD24 CD27 CK26