

Pokročilé algoritmy vyhľadávania

10. 10. 2017

zimný semester 2017/2018

Opakovanie – Problém vyhľadávania

Vstup:

- Postupnosť: a₁, a₂, a₃...a_n
 k(a_i) označíme kľúč k_i prvku a_i
- Hľadaný kľúč x
- Čo sú kľúče?

 Definičný obor D reťazce, reálne čísla, dvojice celých čísel, ...
- Relácia = (rovnosti) relácia ekvivalencie nad D
- Usporiadanie kľúčov < (binárna relácia nad D)
 Lineárne usporiadaná množina K (total ordering)
 Pre k₁, k₂ ∈ D budeme písať, že k₁ ≤ k₂ akk k₁ < k₂ alebo k₁ = k₂.

Výstup:

 Index res ∈ {1,2,...,n} takého prvku, že k(a_{res}) = x, alebo 0 ak taký prvok neexistuje.

Opakovanie – Základné algoritmy

- Čím viac informácií o vstupnej postupnosti mám
 k dispozícii, tým rýchlejší algoritmus dokážem vytvoriť
 - Lineárne vyhľadávanie: O(n)
 - Binárne vyhľadávanie: O(log n)
 - Interpolačné vyhľadávanie: O(log log n)
- Binárne vyhľadávacie stromy
 - Priemerný prípad: O(log n)
 - Najhorší prípad: O(n)
- Niektoré špecializované typy vyhľadávania
 - Prioritný front (vyhľadávam len najprioritnejší prvok): insert / removeMax : O(log n)

Nová operácia: nájdi k-ty prvok v strome

■ Prvé riešenie:

Využiť in-order usporiadanie, zobrať k-ty prvok

Zložitosť O(k)

■ Napr. k=5

■ In-order: 19, 22, 25, 28, **39**, 49, 63, 65, 86, 87

Nová operácia: nájdi k-ty prvok v strome

- Lepšie riešenie: využiť princíp QuickSelect algoritmu pri porovnaní vo vrchole pokračovať len v podstrome, v ktorom sa k-ty prvok nachádza
- Potrebujeme pre každý vrchol x poznať:
 počet prvkov v podstrome strome s koreňom x
- Implementácia ako rozšírenie štandardnej dátovej štruktúry BVS, rozšírime údaje pre vrchol:
 - ľavý, pravý, rodič, **počet** (prvkov v podstrome) tzv. **váha**
 - rekurzívna definícia váhy
 váha(v) = váha(ľavýPodstrom(v)) + váha(pravýPodstrom(v)) + 1
- Hodnoty váha vo vrcholoch upravujeme pri každej operácií ktorá mení štruktúru stromu: zložitosť O(h), kde h je výška stromu

Order statistic tree

- Rozšírenie BVS stromu
- Pre každý vrchol BVS si navyše pamätáme
 počet prvkov v podstrome vrcholu tzv. váhu
- Hodnoty váhy vo vrcholoch upravujeme pri každej operácií ktorá mení štruktúru stromu (insert, delete)
- Rozšírený strom podporuje navyše operácie:
 - select(k) nájdi k-ty najmenší prvok v množine
 - rank(x) nájdi poradie prvku x v usporiadanej postupnosti prvkov stromu
- Zložitosť operácií O(h), kde h je výška stromu

Ako vylepšiť všeobecné vyhľadávacie stromy?

- Obmedziť ich štruktúru, aby sme mohli o nej prehlásiť nejaké vlastnosti – napr. že bude vždy nízka výška stromu
- Z týchto garancií (na veľkosť výšky) vyplynú efektívne zložitosti operácií nad takýmito stromami
- Na získanie optimálnej zložitosti O(log n) musíme zabezpečiť, aby strom po vykonaní každej operácie zostal vyvážený
- Ako zabezpečiť vyváženie stromu?
 - Hodnoty v strome menit' nemôžeme :)
 - Musíme nejako upravovať štruktúru stromu

Rotácia stromu - doprava

- Operácia, ktorá zmení štruktúru ale zachová usporiadanie
- Zmena tvaru stromu zmena výšky stromu
- Rotácia doprava:
 l'avé diet'a sa presunie (doprava hore) na miesto rodiča

- Zmena hĺbky 25(-1), 42(-1), 47(+1), 65(+1), 75(+1)
- In-order poradie (oba stromy): 25, 42, 45, 47, 65, 75

Rotácia stromu - doľava

- Operácia, ktorá zmení štruktúru ale zachová usporiadanie
- Zmena tvaru stromu zmena výšky stromu
- Rotácia dol'ava:
 pravé diet'a sa presunie (dol'ava hore) na miesto rodiča

- Zmena hĺbky 25(+1), 42(+1), 47(-1), 65(-1), 75(-1)
- In-order poradie (oba stromy): 25, 42, 45, 47, 65, 75

Výškovo vyvážené stromy (AVL stromy)

Označme faktor vyváženia (balance factor) vo vrchole:

Výškovo vyvážený strom (AVL strom):

|bf(v)| ≤ 1, pre každý vrchol v

Výška AVL stromu

- Aké sú najhoršie prípady výškovo vyvážených stromov?
 - Pre danú výšku také, ktoré majú čo najmenej vrcholov, lebo
 - ak by sme pridali / odstránili nejaký list, tak by sme strom
 - a) viac vyvážili (čo nechceme), alebo
 - b) by to už nebol výškovo vyvážený strom (lebo bf(v) > 1)

Napr. pre 7 vrcholov:

Označme N_h minimálny počet vrcholov AVL stromu výšky h.

h

AVL strom s N_h vrcholmi, musí mať jedno dieťa koreňa, ktoré má výšku h-1 a teda najmenej vrcholov v jeho podstrome je N_{h-1} . Minimálna výška druhého dieťaťa koreňa je h-2, a teda jeho podstrom môže mať najmenej N_{h-2} vrcholov:

$$N_h = N_{h-1} + N_{h-2} + 1$$

Výška AVL stromu (2)

- N_h najmenší počet vrcholov "najhoršieho" AVL stromu výšky h
- $N_1 = 1$, $N_2 = 2$. Rekurzívna konštrukcia "najhoršieho" stromu pre väčšie výšky: $N_h = N_{h-1} + N_{h-2} + 1$
- Odhadneme výšku h:

$$N_{h} = N_{h-1} + N_{h-2} + 1$$

$$N_{h-1} = N_{h-2} + N_{h-3} + 1$$

$$N_{h} = (N_{h-2} + N_{h-3} + 1) + N_{h-2} + 1$$

$$N_{h} > 2N_{h-2} > 2 \cdot 2 \cdot N_{h-4} > \dots > 2^{\frac{h}{2}}$$

$$N_{h} > 2^{\frac{h}{2}}$$

$$\log N_{h} > \log 2^{\frac{h}{2}}$$

$$2 \log N_{h} > h$$

$$h = O(\log N_{h})$$

Operácie nad AVL stromom

- Ak operácia nemení štruktúru stromu (napr. min, max, select, succ, pred) vykonávame rovnako ako pri BVS, ale navyše máme garantovanú zložitosť O(log N), kde N je počet vrcholov v AVL strome.
- Ak operácia mení štruktúru stromu (napr. insert, delete), vykonáme rovnako ako pri BVS a následne dodatočne vyvážime strom rotáciami.
 - Časová zložitosť jednej rotácie O(1)
 - Vykonáme najviac h rotácií, kde h = O(log N), preto celková zložitosť insert aj delete je O(log N)

Insert(x) do AVL stromu

- Postupnosť rotácií závisí podľa typu nevyváženosti
- Uvažujme, že po pridaní je ľavý podstrom (b) ľavého dieťaťa (d) príliš hlboký: rotácia doprava

(pravý podstrom pravého dieťaťa je symetrická situácia: rotácia doľava)

Insert(x) do AVL stromu (2)

 Uvažujme, že po pridaní je pravý podstrom (d) ľavého dieťaťa (b) príliš hlboký: dvojitá rotácia doprava

(ľavý podstrom pravého dieťaťa je symetrická situácia: dvojitá rotácia doľava)

Insert do AVL stromu - Ukážka

- insert 24, insert 12, insert 5
- teraz je bf(24) = -2
- jednoduchá rotácia 24 doprava

Insert do AVL stromu – Ukážka (2)

- ... insert 30, insert 20, insert 45
- teraz je bf(12) = +2
- jednoduchá rotácia 12 doľava

Insert do AVL stromu – Ukážka (3)

- ... insert 11, insert 13, insert 9
- teraz je bf(5) = +2
- Dvojitá rotácia:
 - jednoduchá rotácia 11 doprava
 - jednoduchá rotácia 5 doľava

Odstránenie z AVL stromu

- Podobne ako pri vkladaní
- Vykonáme operáciu odstránenia nad obyčajným BVS a následne prechodom (od miesta odstráneného vrcholu) do koreňa upravujeme faktor vyváženia (bf) vrcholov, rotujúc vo vrcholoch, ktoré sú nevyvážené
- Môžeme rotovať viac krát, ale vždy najviac O(log n) krát

Delete(x) z AVL stromu

Uvažujme, že po odstránení prvku z ľavého podstromu, niektorý jeho predok (b) zostane nevyvážený, pričom bf jeho pravého dieťaťa (d) je 0 alebo +1: rotácia doľava

(odstránenie z pravého podstromu je symetrická situácia: rotácia doprava)

Delete(x) z AVL stromu (2)

Uvažujme, že po odstránení prvku z ľavého podstromu, niektorý jeho predok (b) zostane nevyvážený, pričom bf jeho pravého dieťaťa (f) je -1: dvojitá rotácia doľava

(odstránenie z pravého podstromu je symetrická situácia: dvojita rotácia doprava)

Delete z AVL stromu – Ukážka

Implementácia AVL stromov

- Rozšírenie štruktúry vrcholu o hodnotu výšky vrcholu
- Opakovanie výpočet výšky vo vrchole realizujeme vychádzajúc z rekurzívnej definície:

$$v\acute{y} \acute{s}ka(T) = \begin{cases} -1 & ak \ podstrom \ T \ je \ pr\'{a}zdny \\ 1 + max(v\acute{y} \acute{s}ka(T_L), v\acute{y} \acute{s}ka(T_R)) & ak \ podstrom \ T \ nie \ je \ pr\'{a}zdny \end{cases}$$

- Pri jednej rotácii sa zmenia výšky vrcholov "zachytených v rotáciach" na ceste do koreňa
 - Najviac O(log n) zmien hodnôt výšok

Operácia splay(x) – presunúť hodnotu x do koreňa

- Rotácie nám umožňujú upravovať štruktúru stromu
- Ako dostať x do koreňa?
- Tri prípady:
- Parent(x) je koreň a x ľavé dieťa rotácia p doprava

(ak je x pravé dieťa je to symetrické: rotácia p doľava)

Operácia splay(x) – presunúť hodnotu x do koreňa

Parent(x) nie je koreň a Parent(x) a x sú obe ľavé deti –
 2x rotácia doprava (zig-zig)

(ak sú obe pravé deti je to symetrické: 2x rotácia doľava)

Operácia splay(x) – presunúť hodnotu x do koreňa

3. Parent(x) nie je koreň a Parent(x) je ľavé dieťa a x je pravé dieťa, alebo opačne – rotácia p doľava a rotácia g doprava (zig-zag)

(analogicky v symetrickej situácii)

Ďalšie operácie nad BVS

- insertRoot(x) vloženie hodnoty do koreňa:
 - insert(x) štandardné vloženie x
 - splay(x) presun hodnoty do koreňa
 - Zložitosť O(log n)
- join(a,b) spojenie dvoch vyhľadávacích stromov A a B
- split(x) rozdelenie stromu na dva stromy, prvý s hodnotami
 x, a druhý s hodnotami > x
- **Splay strom** je strom, v ktorom po každej operácii s x vykonáme splay(x), teda hodnota x sa dostane do koreňa
 - Štruktúra sa dynamicky prispôsobuje vykonávaným operáciám
 - Operácia pracujú v amortizovanej zložitosti O(log n)

Optimálny binárny vyhľadávací strom

 Najmenší možný počet vykonaných krokov pre danú postupnosť vykonávania operácií (search, insert, delete)

Statická optimalita

- Pre dané pravdepodobnosti s akými sa budú vyhľadávať prvky, strom musí mať najnižšiu očakávanú zložitosť search operácií
- Staticky optimálny strom sa dá zostrojiť dynamickým programovaním v čase $O(n^2)$ využitím vážených dĺžok ciest

Dynamická optimalita

- Pre danú postupnosť prístupov k prvkom $X = x_1, ..., x_m$ chceme minimalizovať celkový počet operácií (posun doľava/doprava, posun do rodiča, jednoduchá rotácia) minimálny počet OPT(X)
- Domnienka: Splay stromy sú dynamicky optimálne vykonajú O(OPT(x)) operácií.

Váhovo vyvážené stromy

- Pôvodný názov: stromy s ohraničenou vyváženosťou (tzv. bounded balance trees – BB[α])
- Vyváženie podľa váhy (počet prvkov v podstrome)
 tzv. weight-balanced trees
- Hodnoty váhy vo vrcholoch upravujeme pri každej operácií ktorá mení štruktúru stromu (insert, delete)
- Štruktúru stromu upravujeme jednoduchými rotáciami a dvojitými rotáciami (podobne ako pri vyvažovaní podľa výsky), ak je strom vo vrchole nevyvážený

Váhovo vyvážené stromy (2)

- Udržiadať vyváženosť podstromov na presnosť +/- 1 ako pri vyvážení podľa výšky je náročnejšie ako O(log n)
- Ohraničíme pomer váhy podstromu (ľavého aj pravého) k celkovej váhe vo vrchole:
 - $\alpha \cdot vana(x) \le vana(Podstrom(x)) \le (1 \alpha) \cdot vana(x)$
- Strom výšky aspoň 2 má aspoň $\left(\frac{1}{1-\alpha}\right)^n$ listov
- Výška stromu:

$$h \leq \log_{rac{1}{1-lpha}} n = rac{\log_2 n}{\log_2 \left(rac{1}{1-lpha}
ight)} = O(\log n)$$

■ Dobré hodnoty pre vyváženie: $\frac{2}{11} < \alpha < 1 - \frac{1}{\sqrt{2}}$

Čo keď máme veľa dát?

- Doteraz sme predpokladali, že sa dátová štruktúra zmestí do pracovnej pamäte
- Uvažujme, že máme tak veľa údajov, že ich nie je možné všetky naraz vložiť do pamäte
- Na uloženie musíme použiť pevný disk
 - čas vykonania podstatne narastie
- Diskové operácie (načítanie a zápis) sú výrazne pomalšie ako operácie s pamäťou

Aké rýchle sú operácie v počítači?

- 4GHz procesor $\approx 2^{32}/s$
- Načítať dáta do L1 cache trvá 2 inštrukcie: ≈ 2³¹/s
- Načítať dáta do L2 cache trvá 30 inštrukcií: ≈ 2²⁷/s
- Načítať dáta do pamäte trvá 250 inštrukcií: ≈ 2²⁴/s
- Načítať dáta z nového miesta na disku trvá asi 8M inštrukcií: ≈ 2⁹/s

Náročnosť operácií

- Rýchlejšie ako JEDEN prístup na disk je:
 - 2 milióny aritmetických operácií,
 - 1000 L2 cache prístupov,
 - 200 prístupov do pamäte.
- Uvažujme teraz AVL strom s n = 2³⁸ (256GB) prvkami,
 - potom, výška stromu je okolo 1,44*38 = 55,
 - čiže každá operácia search/insert/delete vyžaduje okolo 55 prístupov na disk, čo môže trvať aj 0,5 sekundy, alebo
 - asi 30 vykonaní operácií za minútu
- Z disku sa číta po veľkých blokoch
 - Každý vrchol AVL stromu môže byť v inom bloku

B-strom (B-tree)

- Myšlienka: vo vrcholoch sa budeme viac vetviť
 - Vyšší stupeň vetvenia vo vrcholoch = menšia výška stromu
- B-strom rádu m je strom, v ktorom každý vrchol môže mať najviac m detí, pričom:
 - počet kľúčov vo vrchole je o 1 menší než počet jeho detí (kľúče rozdeľujú intervaly kľúčov v podstromoch)
 - všetky listy sú v rovnakej hĺbke
 - každý vnútorný vrchol okrem koreňa má aspoň $\left[\frac{m}{2}\right]$ detí
 - koreň je buď list alebo má 2 až m potomkov
 - list obsahuje najviac m 1 kľúčov
- Rád B-stromu m je nepárne číslo

B-strom rádu 5 obsahujúci 26 prvkov – Ukážka

Všetky listy sú v (rovnakej) hĺbke 2

Insert do B-stromu

- Vyhľadám list, do ktorého by nový kľúč mal patriť
- Vložíme nový kľúč do tohto listu
- Opravím chyby:
 - Ak by list už obsahoval príliš veľa kľúčov, rozdelíme ho na dva vrcholy, a prostredný kľúč posunieme vyššie (do rodiča)
 - Rekurzívne pokračuj až do koreňa:
 Ak by rodič už obsahoval príliš veľa kľúčov, rozdeľ ho a stredný kľúč posun vyššie
 - V prípade koreňa (ak je to potrebné): koreň rozdelíme na dva vrcholy, a prostredný kľúč vytvorí nový koreň, čím sa zvýši celková výška B-stromu

Konštrukcia B-stromu – Ukážka

- Na vstupe máme prvky: 1,12,8,2,25,6,14,28,17, 7,52,16,48,68,3,26,29,53,55,45
- Chceme zostrojiť B-strom rádu 5
- Vkladáme prvky po jednom
- Po vložení 4 prvkov bude koreň:

Pridanie piateho prvku (25) by porušilo podmienky B-stromu rádu m=5, takže vrchol rozdelíme, strednú hodnotu (8) povýšime na nový koreň ...

Insert 25 do B-stromu rádu 5

Presahuje rád m=5.

Rozdeliť vrchol a povýšiť stredný prvok (8) na nový koreň.

Insert 6, 14, 28 do listov

Insert 17 do B-stromu

Vložíme 17 do pravého listu, keďže bude už obsahovať príliš veľa prvkov, rozdelíme podľa strednej hodnoty, ktorú posunieme do rodiča

Insert 7, 52, 16, 48 do listov

Insert 68 do B-stromu

Vloženie 68 spôsobí rozdelenie pravého listu, prvok 48 bude povýšený do rodiča

Insert 3 do B-stromu

Vloženie 3 spôsobí rozdelenie ľavého listu

Insert 26, 29, 53, 55 do listov

Insert 45 do B-stromu

Delete z B-stromu

- Odstránenie kľúča X zo stromu
- Ak kľúč nie je v liste, tak predchádzajúci alebo nasledujúci prvok P stromu je v liste, odstránime X a prvok P povýšime na miesto X
- Ak je kľúč X v liste:
 - Ak ho môžeme odstrániť bez toho, aby v liste zostalo príliš málo prvkov, odstránime ho.
 - Ak máme list, v ktorom po odstránení X zostane príliš málo kľúčov, hľadáme možnosti, ako by sme listy-súrodencov spojili (a v rodičovi prípadne znížili počet kľúčov) ...
 - Ak v rodičovi zostane málo kľúčov pokračujeme rekurzívne do koreňa

Zložitosť operácií nad B-stromom

- Podstatné sú prístupy na disk
- Maximálny počet prvkov v B-strome rádu m a výšky h:

```
root m - 1
level 1 m(m - 1)
level 2 m^2(m - 1)
. . .
level h m^h(m - 1)
```


Celkový počet prvkov:

$$N_{m,h} = (1 + m + m^2 + m^3 + ... + m^h)(m - 1) = [(m^{h+1} - 1)/(m - 1)] (m - 1) = m^{h+1} - 1$$

- Pre m = 5, h = 2 počet $N_{5,2} = 5^3 1 = 124$
- Pre m = 101, h = 3 počet $N_{101,3} = 101^4 1 = cca 100M$

(a,b) stromy

- Stupeň vrchola B-stromu je od a do b=2a-1
 - Pri insert/delete je potrebných Θ(log n) úprav blokov
- Ak umožníme ešte väčší stupeň vetvenia (b ≥ 2a), tak vyvažovanie pracuje efektívnejšie – (a,b) stromy:
 - Pri insert/delete postačuje upravit' amortizovane O(1) blokov
- V praxi preferovaný typ stromu v porovnaní s klasickým B-stromom

2-3 stromy (2-3 trees)

- Špeciálny prípad B-stromu pre m=3
 - · Každý vnútorný vrchol má dve alebo tri deti
 - Všetky listy sú v rovnakej hĺbke a každý obsahuje najviac 2 hodnoty
- B-stromy sú vždy vyvážené, takže 2-3 strom je dobrý príklad vyváženého vyhľadávacieho stromu

2-3-4 stromy (2-3-4 trees)

- Špeciálny prípad B-stromu, resp. (a,b) stromu pre (2,4)
 - Každý vnútorný vrchol má dve, tri alebo štyri deti
 - Všetky listy sú v rovnakej hĺbke a každý obsahuje najviac 3 hodnoty

- Insert je možné spraviť jedným prechodom od koreňa
 - Vždy, keď prechádzame cez 4-vrchol, rozdelíme ho na dva 2-vrcholy
 - 2-3 strom môže (po vložení do listu) vyžadovať spätný prechod

Insert do 2-3-4 stromu

- Nájdi list, do ktorého sa bude hodnota vkladať.
- Počas hľadania, keď narazíš na 4-vrchol, tak ho rozbaľ.
- Ak je list, do ktorého vkladáme 2-vrchol alebo 3-vrchol, tak vlož do listu.
- Ak je list (po vložení) 4-vrchol, tak ho rozbaľ tak, že prostrednú hodnotu vlož do rodiča a vkladanú hodnotu vlož do príslušného listu.
 - Miesto v rodičovi sa určite nájde, keďže sme pri ceste dole rozbalili všetky 4-vrcholy. Preto nemusíme rekurzívne postupovať hore ako v prípade 2-3 stromov.

Farebné stromy

- Binárne stromy sú implementačne výhodné
 - Dajú sa využiť operácie ako nad štandardným BVS
- Vrcholy obsahujúce viac ako jeden kľúč sú implementačne komplikované
 - Operácie majú veľa špeciálnych prípadov
- Návrh: farbenie vrcholov binárneho stromu dvomi farbami
- Aké farby zvolíme? červenú čiernu
 - (1978) červená bola najkrajšia farba, ktorú vedeli farebné laserové tlačiarne vytlačiť:)
 - Dobrá dostupnosť červených a čiernych pier na kreslenie na papier ...

Červeno-čierny strom (red-black tree)

- Binárny vyhľadávací strom s vrcholmi ofarbenými na červeno alebo čierno, taký že:
 - 1. Koreň je **čierny**
 - 2. Listy neobsahujú dáta a sú čierne
 - 3. Cesty z koreňa do listov majú rovnaký počet **čiernych** vrcholov a tento počet označujeme **čierna** výška stromu
 - 4. Ak je vrchol červený, tak jeho deti sú čierne
- Vlastnosti:
 - Na žiadnej ceste nie sú dva červené vrcholy za sebou
 - Dĺžka cesty z koreňa do najvzdialenejšieho listu nie je viac ako dvakrát dlhšia ako cesta do najbližšieho listu
 - Každý vnútorný vrchol má dvoch potomkov

Červeno-čierny strom – Ukážka

 <u>Čierna výška</u> vrcholu – počet čiernych vrcholov na ceste z vrcholu do listu

Najmenej vyvážený červeno-čierny strom

Najhoršia výška stromu s n listami: 2 log n - O(1)

- Čierna výška stromu: 5
- Najkratšia cesta do listu: 5 vrcholov
- Najdlhšia cesta do listu: 9 vrcholov

Insert(x) do červeno-čierneho stromu

- Vrchol x vložíme ako do štandardného BVS a zafarbíme ho na červeno
- Ktorú vlastnosť stromov sme mohli týmto porušiť?
- Ak je x koreň, zafarbíme ho na čierno
- Ak je Parent(x) čierny, strom je v poriadku
- Ak je y = Parent(x) červený, tak (keďže nie je koreň) má z = Parent(y), ktorý je čierny:
 - 1. súrodenec vrcholu y (strýko vrcholu x) je červený
 - 2. Súrodenec vrcholu y (strýko vrcholu x) je čierny

Insert(x) do červeno-čierneho stromu (2)

- y = Parent(x) je červený, strýko vrcholu x je červený
- Vrcholy y a strýko x prefarbíme na čierno, z=Parent(y) na červeno. Ak je z koreň alebo má čierneho rodiča, končíme, inak vyriešime "chybu" rekurzívne vyššie. (Nakoniec koreň zafarbíme na čierno.)

Insert(x) do červeno-čierneho stromu (3)

- y = Parent(x) je červený, strýko vrcholu x je čierny
- Ak x je <u>opačným</u> dieťaťom y ako je y dieťaťom z=Parent(y)
- Uvažujme, že x je pravým dieťaťom a y je ľavým rotácia y doľava, a rotácia z doprava a prefarbenie:

Symetricky ak x je ľavým dieťatom a y je pravým

Insert(x) do červeno-čierneho stromu (4)

- y = Parent(x) je červený, strýko vrcholu x je čierny
- Ak x je <u>rovnakým</u> dieťaťom y ako je y dieťaťom z=Parent(y)
- Uvažujme, že x je ľavým dieťaťom a y je tiež ľavým rotácia y doprava, a prefarbíme y na čierno, z na červeno:

Symetricky ak sú pravými deťmi: rotácia y doľava

■ Vlož I0

Prefarbit' koreň na čierno

Vlož 85

Vlož 15

- Porušená podmienka!
 - Rotácia 85 doprava
 - Rotácia 15 dol'ava
 - Prefarbenie

Vlož 70

- Porušená podmienka!
 - Prefarbenie

Vlož 20

- Porušená podmienka!
 - Rotácia 70 doprava
 - Prefarbenie

■ Vlož 60

- Porušená podmienka!
 - Prefarbenie

Vlož 30

Porušená podmienka!

Insert do červeno-čierneho stromu – Ukážka

Vlož 50

Insert do červeno-čierneho stromu – Ukážka

Porušená podmienka!

- Stále porušená podmienka
 - Rotácia 70 doprava
 - Rotácia 15 dol'ava
 - Prefarbenie

Insert do červeno-čierneho stromu – Ukážka

Delete z červeno-čierneho stromu

- Podobne ako v prípade štandardných BVS vrchol na odstránenie nahradíme inorder predchodcom
- Musíme teda vyriešiť len prípad odstránenia vrcholu s jedným dieťaťom – nahradíme ho dieťatom, a prípadnú "chybu" riešime rekurzívne, postupujúc ku koreňu
- Odstránením vrcholu môžeme porušiť podmienku (3)
 "cesty do listov majú rovnaký počet čiernych vrcholov"
- Sú dva jednoduché prípady, ak zostal / sme v červenom vrchole alebo sme v koreni, prefarbíme na čierno
- Inak nastavíme vrchol ako dvojito čierny, a prefarbovaním smerom ku koreňu túto chybu vyriešime

Spojíme červené vrcholy do ich čiernych rodičov

 Vznikne strom, v ktorom vnútorné vrcholy majú 2, 3 alebo 4 deti – 2-3-4 strom

Červeno-čierne stromy ako iné stromy

- Červeno-čierne stromy sú ako reprezentácia stromov s väčšími vrcholmi využitím binárneho stromu
- V závislosti od varianty implementácie zodpovedajú
 - 2-3-4 stromom, alebo
 - 2-3 stromom

Porovnanie hĺbok vyvážených stromov

- h_n hĺbka binárneho vyhľadávacieho stromu s n listami
- Dolné ohraničenie (úplný BVS): log n ≤ h_n
- Výškovo vyvážené (AVL) stromy: h_n ≤ 1.44 log n
- Červeno-čierne stromy: $h_n \le 2 \log n$
- Váhovo vyvážené stromy: 2 log n ≤ h_n ≤ O(log n)
- Iné teoretické modely dosahujú lepšie garancie, ale pre praktickú implementáciu sú komplikované
 - Malé zrýchlenie pri vyhľadávaní
 - Výrazné komplikácie pri úpravách (insert, delete)
 - Napr. 2-3 a 2-3-4 stromy s n listami majú výšku log n

Trie – dynamická množina reťazcov

- Strom prefixov reťazcov
- Vrcholy zodpovedajú prefixom hodnôt prvkov v množine
 - Nasledovníci vrcholu majú spoločný prefix
 - Koreň je prázdny reťazec
 - Nie každý vrchol zodpovedá reťazcu z množiny
 - Každý z listov zodpovedá nejakej hodnote v množine
- Každá hrana (prechod) má priradené písmenko
- Vykonávanie operácií: začnem v koreni a postupujem po jednom písmenku

Radixový strom (radix tree)

- Priestorovo optimalizovaný trie
- Také vrcholy, ktoré sú jediné dieťa svojho rodiča sú spojené s rodičom do jedného vrcholu
- Hrany môžu mať priradený reťazec

Efektívna dynamická množina reťazcov

Lano – efektívna manipulácia dlhých reťazcov

- Lano (rope) binárny vyhľadávací strom
 vo vrchole x je váha = počet znakov reťazca vo vrchole
 x a počet znakov v ľavom podstrome x
- Napr. Hello my name is Simon

Lano – efektívna manipulácia dlhých reťazcov

- Efektívne manipulácie s dlhými reťazcami O(log n)
 - Index znak na k-tej pozícií
 - Concat spojenie dvoch reťazcov do jedného
 - Insert vložiť podreťazec
 - **Delete** odstrániť podreťazec

Binárne indexované stromy (Fenwick tree)

- Uvažujme úlohu určiť súčet prvkov intervalu v postupnosti a₁, a₂, ..., a_n
- Chceme podporovať dve operácie:
 - update(i,value) úprava i-tej hodnoty
 - sum(i,j) súčet prvkov a_i, ..., a_j
- Jednoduchá reprezentácia v poli: update O(1), sum O(n)
- Binárne indexované stromy (tiež len v rovnakom poli)
 - Umožňujú efektívne vykonávať update, a zistiť prefixovú sumu, teda súčet a₁, ..., a_i (pre ľubovoľné i)
 - Operácie: update O(log n), sum O(log n)

Binárne indexované stromy (2)

- Implementované v poli (podobne ako binárna halda)
 - Index v poli reprezentuje vrchol stromu
 - Rodiča vrcholu získame bitovými operáciami s indexom
 - V poli si pamätáme prefixový súčet prislúchajúcej časti poľa:

Binárne indexované stromy (3)

Vo vrchole V si pamätáme súčet prvkov z intervalu [V-2^K+1,V], kde K je počet núl na konci binárneho zápisu indexu V − napr. pre V=4=100₂ sú to čísla [4-2²+1,4], teda [1...4]: T[4]=a[1]+a[2]+a[3]+a[4]=10

Operácia prefixSum

- Súčet hodnôt počas prechodu doľava hore (posun: v indexe zmažeme posledný nenulový bit)
- Napr. prefixSum(7): $7 \rightarrow 6 \rightarrow 4 \rightarrow \text{koniec}$ T[7]+T[6]+T[4] = 7+11+10=28

Operácia update

- Prechodom doprava hore upravíme hodnoty v strome, ktoré zahŕňajú hodnotu upravovaného prvku (posun: k indexu pripočítame posledný nenulový bit)
- Napr: update(3,+1): $3 \rightarrow 4 \rightarrow 8 \rightarrow \text{koniec}$

Ďalšie typy vyhľadávacích stromov

- Obsahujú intervaly
 - **Segmentové stromy** vhodné pre operáciu: nájdi intervaly, v ktorých sa nachádza daný bod
 - Intervalové stromy vhodné pre intervalové operácie: napr. nájdi intervaly, ktoré prekrývajú daný interval
- Obsahuje body:
 - Range trees vhodné na operáciu:
 nájdi body, ktoré sa spadajú do daného intervalu
- Obsahujú skalárne hodnoty:
 - Binárne indexované stromy vhodné na operáciu: koľko bodov je v danom intervale