1º Doble grado de Matemáticas-Informática

Primer Parcial Viernes, 1 de marzo de 2019

Apellidos:					Nombre:			
DNI:					 Grupo:			
]	

Separa con claridad un problema de otro. Recuadra los resultados de cada problema.

Problema 1 (1 punto) Sea $f:V\to W$ una transformación lineal de \mathbb{K} -espacios vectoriales. Demuestra que $f(0_V)=0_W$.

Como $O_V + O_V = O_V$, y f es lineal $f(O_V) = f(O_V + O_V) = f(O_V) + f(O_V)$ y por tanto $f(O_V) = O_W$. **Problema 2** (1 punto) Decide de manera razonada si las siguientes afirmaciones son **verdaderas** o **falsas**.

- (a) Sea V un \mathbb{K} -espacio vectorial, $\mathcal{F}=\{v_1,v_2,\ldots,v_{k-1},v_k\}\subset V$ un conjunto de k vectores, con $k\geq 2$. Sea $f:V\to W$ una transformación lineal de \mathbb{K} -espacios vectoriales. Si $\{f(v_1),f(v_2),\ldots,f(v_k)\}\subset W$ es linealmente dependiente entonces $\mathcal{F}=\{v_1,v_2,\ldots,v_{k-1},v_k\}\subset V$ es linealmente dependiente. FALSO: Sea $f:\mathbb{R}^2\to\mathbb{R}^2$ la aplicación trivial (nula). Sea $\{v_1=e_1,v_2=e_2\}$ la base canónica. Aquí $\{f(v_1)=(0,0),f(v_2))=(0,0)\}$ es linealmente dependiente pero $\{v_1=e_1,v_2=e_2\}$ es independiente.
- (b) Existe una transformación lineal inyectiva $f: \mathbb{K}^3 \to \mathbb{K}^2$. FALSO: dim(N(f)) + dim(Img(f)) = 3 implica que $dim(N(f)) \ge 1$.

Problema 3 (2 puntos) Decide si existe $B \in M_{2\times 3}(\mathbb{R})$ que verifique $AB = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ en cada uno de los siguientes apartados, y en el caso afirmativo exhibe un ejemplo de matriz B que lo verifique:

(a)
$$A = \begin{pmatrix} -1 & -1 \\ 2 & 1 \end{pmatrix}$$
. TIENE SOL: $B = A^{-1} \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 3 & -2 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$$
.

NO TIENE SOL: $\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ no tiene solución}.$

Problema 4 (2 puntos) Sea $A = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$ y sea $B = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \\ -1 & 2 & 1 \end{pmatrix}$. Halla una matriz **no nula**

 $C\in M_{3 imes 3}(\mathbb{R})$ que verifique AC=BC=0, donde 0 denota la matriz nula de $M_{3 imes 3}(\mathbb{R})$

Por ejemplo
$$C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
.

Problema 5 (2 puntos) Sea $f_A: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por $A=\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$. Halla $B\in M_{3\times 2}(\mathbb{R})$ de modo que $f_A\cdot f_B=id_{\mathbb{R}^2}$

Por ejemplo
$$B = \begin{pmatrix} -1 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$
.

Problema 6 (2 puntos) En el \mathbb{R} -espacio vectorial \mathbb{R}^3 se consideran los subespacios:

$$W_1 = \langle (1, -2, 1), (0, -2, 2), (1, -1, 0) \rangle$$

 $W_2 = \{x_1 - x_3 = 0\}.$

- (a) Halla las dimensiones de W_1 y de W_2 $dim(W_1) = dim(W_2) = 2.$
- (b) Halla $A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \in M_{3\times 2}(\mathbb{R})$ de modo que $W_1\cap W_2$ sea el conjunto de soluciones del sistema homogeneo definido por la matriz.

Por ejemplo
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

(c) Halla una base de $W_1 \cap W_2$.

Por ejemplo
$$\{(1,-2,1)\}$$

(d) Indica, de manera razonada y utilizando (c), cuál es la dimensión de W_1+W_2 .

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2) = 2 + 2 - 1 = 3.$$