Synthesis Project

Literature Survey

Protecting Privacy while Improving Choroid Layer Segmentation in

OCT Images: A GAN-based Image Synthesis Approach

Image-to-Image Translation with Conditional Adversarial Networks

UNSUPERVISED REPRESENTATION LEARNING

WITH DEEP CONVOLUTIONAL

GENERATIVE ADVERSARIAL NETWO

https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging

Generative AI for Medical Imaging: extending

the MONAI Framework

https://docs.monai.io/en/latest/installation.html

https://github.com/Warvito/generative_oct/tree/main

https://arxiv.org/pdf/2307.13125.pdf

RETINAL OCT SYNTHESIS WITH DENOISING DIFFUSION PROBABILISTIC MODELS

FOR LAYER SEGMENTATION

Unsupervised Denoising of Retinal OCT with Diffusion

Probabilistic Model

Reconstruction using Retfound

Original

Reconstructed

Replacing Masked Patches

NO Masking

Original

Reconstructed

512x512 Resolution

Pix2Pix GAN - ResNet based Generator

Pt45_OD_001

Pix2Pix with Retfound Model as Generator

Pt45_OS_000_003

Retfound Model as Generator (with tanh non-linearity)

Pt46_OD_030

Masked Auto-Encoders Meet Generative Adversarial Networks and Beyond

$$L_{gen}(X, \theta_{mae}) = L_{mae}(X, \theta_{mae}) + \gamma L_{adv}(X, \theta_{mae}),$$

Diffusion Models

generated using MONAI Framework - Latent Diffusion Models

Latent Diffusion Models

Fig. 1. Overview of different types of generative models.

Forward diffusion process

Given a data point sampled from a real data distribution $\mathbf{x}_0 \sim q(\mathbf{x})$, let us define a forward diffusion process in which we add small amount of Gaussian noise to the sample in T steps, producing a sequence of noisy samples $\mathbf{x}_1, \ldots, \mathbf{x}_T$. The step sizes are controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$.

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

The data sample \mathbf{x}_0 gradually loses its distinguishable features as the step t becomes larger. Eventually when $T \to \infty$, \mathbf{x}_T is equivalent to an isotropic Gaussian distribution.

