Université Abdelmalek Essaâdi Faculté Polydisciplinaire de Larache SG-S1/Année 2023-2024

Contrôle Final Mathématiques **Durée: 1 h 30** Pr. El Mahjour

Nom:	
Prénom:	
NoInc . SC	

Table n°: _____ Salle: ____

CALCULATRICE NON AUTORISÉE

Samedi 23 décembre 2023

- 1. (8 points) Soit $f(x) = x^2 e^{-x} \frac{e^{-1}}{2}$.
 - (a) Les limites au voisinage de $\pm \infty$ sont :
 - $\bullet \lim_{x \to -\infty} f(x) = \dots = \dots$
 - $\bullet \lim_{x \to +\infty} f(x) = \dots = \dots$
 - (b) On déduit de la question précédente que :
 - f admet au voisinage de $+\infty$ d'équation
 - (c) Montrer qu'il existe x_0 dans]0,1] tel que $f(x_0)=0$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•		 	 	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
					•																										 	 																		

(d) Calculer la dérivée f' et déduire que son signe dépend uniquement du signe de : $2x - x^2$.

•	٠		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•			•	•	•	•	•	•	•	•	•
	•																																															
																										•			•					•			•											

(e) Construire le tableau de variation de *f*

X	$-\infty$	0	2		$+\infty$
f'(x)					
f(x)					

(f) Tracez un croquis approximatif du graphe de f: (Prenez $\frac{e^{-1}}{2} \approx 0.2$)

2. (2 points) Calculez les intégrales suivantes

•
$$\int_0^1 3x^2 - 1dx = \dots = \dots$$

•
$$\int_{-\pi/4}^{\pi/4} x^4 \sin(x) dx = \dots = \dots$$

•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	٠	
																																		•			•			 			•			•																		

3. $(1\frac{1}{2} \text{ points})$ Soit la fonction à deux variables :

$$g(x,y) = \sqrt{x+2} \cdot \ln(y-1).$$

(a) Explicitez le domaine de définition de la fonction g:

$$D_g = \{(x,y) \in \mathbb{R}^2 / \dots \}$$

$$=$$

(b) Représenter graphiquement le domaine D_g :

4. $(4\frac{1}{2}$ points) Soit une autre fonction à deux variables : $h(x,y)=x^3-y^3+2x^2+y^2$	(a) Calculer le déterminant de ${\cal B}$ par la méthode usuelle
• Calculer les dérivées partielles premières et secondes de la fonction h (gradient et hessienne) et montrer que le point critique $(0,0)$ est un point de minimum local en utilisant les calculs nécessaires.	
	(h) Eu anglessant la gèrle de Course selector la déterminant
	(b) En employant la règle de Sarrus, calculer le déterminant de <i>B</i> .
$ abla_h = \left(\begin{array}{c} \\ \\ \end{array} \right), Hess_h = \left[\begin{array}{c} \\ \\ \end{array} \right]$	(c) Donner l'inverse de la matrice ${\cal B}.$
$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	
5. (4 points) Soit $B = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$	