Series Notes

MAT 21C Winter 2021 MAT 21C Student

1 Strategy For Determining Series Convergence

Follow the following steps to determine the convergence of a series.

- 1. Check if $\lim_{n\to\infty} a_n \neq 0$. If so, use **Nth Term Test For Divergence**.
- 2. Check if the series is a p-series $(\sum \frac{1}{n^p})$. If so, use **P-series Test**.
- 3. Check if the series is a geometric series $(\sum ar^n)$. If so, use **Geometric Test**.
- 4. Check if the series is similar to a *p*-series or geometric series. If so, use **Comparison Test**.
- 5. Check if the series can be written in the form $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$. If so, use **Alternating Series Test**.
- 6. Check if the series contains factorials or expressions raised to the *n*th power. If so, use either **Ratio Test** or **Root Test**. Use intuition to determine which is more appropriate.
- 7. Check if $a_n = f(x)$ is positive, decreasing, and easy to integrate. If so, use **Integral Test**.
- 8. As a last resort, use either Comparison Test or Limit Comparison Test. Note that $\sum a_n$ must contain only positive terms.

1.1 Absolute Convergence

For absolute convergence, recall that:

- 1. If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- 2. If $\sum_{n=1}^{\infty} |a_n|$ diverges but $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges conditionally.
- 3. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

2 Series Convergence Test Overview

2.1 Nth Term Test For Divergence

If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ diverges.

Note that if $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ may or may not converge. This test *only* proves divergence.

Example

$$\sum_{n=1}^{\infty} n^2$$

Solution

By Nth Term Test For Divergence, $\sum_{n=1}^{\infty} n^2$ diverges since $\lim_{n\to\infty} n^2 = \infty \neq 0$.

2.2 P-series Test

Given the series $\sum \frac{1}{n^p}$.

- 1. If p > 1, then $\sum \frac{1}{n^p}$ converges.
- 2. If $p \le 1$, then $\sum \frac{1}{n^p}$ diverges.

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{999}{1000}}}$$

2

Solution

By P-series Test, $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{999}{1000}}}$ diverges since $p = \frac{999}{1000} \le 1$.

2.3 Geometric Test

Given the series $\sum a(r)^n$.

- 1. If |r| < 1, then $\sum a(r)^n$ converges.
- 2. If $|r| \ge 1$, then $\sum a(r)^n$ diverges.

The sum of a geometric series is $S = \frac{a}{1-r}$.

Example

$$\sum_{n=1}^{\infty} 5^{n+3} 4^n$$

Solution

$$\sum_{n=1}^{\infty} 5^{n+3} 4^n = \sum_{n=1}^{\infty} 5^3 5^n 4^n = \sum_{n=1}^{\infty} 5^3 (20)^n$$

By Geometric Test, $\sum_{n=1}^{\infty} 5^{n+3} 4^n$ diverges since $|r| = 20 \ge 1$.

2.4 Comparison Test

Let $\sum a_n$ and $\sum b_n$ be series with positive terms such that $a_n \leq b_n$ for all n.

- 1. If $\sum b_n$ converges, then $\sum a_n$ converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Example

$$\sum_{n=4}^{\infty} \frac{1}{(2n-1)(n-3)}$$

Solution

Let
$$\sum b_n = \sum_{n=4}^{\infty} \frac{1}{2n^2}$$
.
 $0 < \frac{1}{(2n-1)(n-3)} < \frac{1}{2n^2}$ for all n .

By P-series Test, $\sum_{n=4}^{\infty} \frac{1}{2n^2}$ converges since p=2>1.

By Comparison Test, $\sum_{n=4}^{\infty} \frac{1}{(2n-1)(n-3)}$ converges.

2.5 Alternating Series Test

If the series fulfills all of these conditions:

- 1. Is an alternating series
- $2. \lim_{n \to \infty} b_n = 0$

3. b_n is a decreasing sequence

then the alternating series converges.

TODO: Add example proof based on what prof wants.

2.6 Ratio Test

Given the series $\sum a_n$ where $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = p$.

- 1. If p < 1, then $\sum a_n$ converges.
- 2. If p > 1, then $\sum a_n$ diverges.
- 3. If p = 1, then no conclusion is met.

TODO: Add example proof based on what prof wants.

2.7 Root Test

Given the series $\sum a_n$ where $\lim_{n\to\infty} \sqrt[n]{|a_n|} = p$.

- 1. If p < 1, then $\sum a_n$ converges.
- 2. If p > 1, then $\sum a_n$ diverges.
- 3. If p = 1, then no conclusion is met.

TODO: Add example proof based on what prof wants.

2.8 Integral Test

Let $\sum a_n$ be a series with positive terms where $a_n = f(x)$ is decreasing and continuous for $x \geq 1$.

1. If $\int_{1}^{\infty} f(x) dx$ converges, then $\sum a_n$ converges.

2. If $\int_{1}^{\infty} f(x) dx$ diverges, then $\sum a_n$ diverges.

Example

$$\sum_{n=1}^{\infty} \frac{9}{n^2 + 5n + 4}$$

Solution

I used partial fractions for this problem. To save space, I omitted my partial fractions work from here.

Let $f(x) = \frac{9}{x^2 + 5x + 4} = \frac{3}{x + 1} - \frac{3}{x + 4}$. f(x) is positive and continuous for $x \ge 1$. $\frac{9}{x^2 + 5x + 4} > \frac{9}{(x + 1)^2 + 5(x + 1) + 4}$ for all $x \ge 1$, so f(x) is decreasing for $x \ge 1$.

$$\int_{1}^{\infty} \frac{3}{x+1} - \frac{3}{x+4} dx = \lim_{t \to \infty} \left[3\ln|x+1| - 3\ln|x+4| \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left(3\ln|t+1| - 3\ln|t+4| \right) - \left(3\ln|1+1| - 3\ln|1+4| \right)$$

$$= \lim_{t \to \infty} \left(3\ln\frac{t+1}{t+4} - \ln\frac{8}{125} \right)$$

$$= 3\ln\left(\lim_{t \to \infty} \frac{t+1}{t+4} \right) - \ln\frac{8}{125}$$

$$= 3\ln\left(\lim_{t \to \infty} \frac{1+\frac{1}{t}}{1+\frac{4}{t}} \right) - \ln\frac{8}{125}$$

$$= 3\ln(1) - \ln\frac{8}{125}$$

$$= -\ln\frac{8}{125}$$

By Integral Test, $\sum_{n=1}^{\infty} \frac{9}{n^2 + 5n + 4}$ converges since $\int_{1}^{\infty} \frac{3}{x+1} - \frac{3}{x+4} dx$ converges.

2.9 Limit Comparison Test

Let $\sum a_n$ and $\sum b_n$ be series with positive terms where $\lim_{n\to\infty} \frac{a_n}{b_n} = p$.

- 1. If p is positive and finite, then either both $\sum a_n$ and $\sum b_n$ converge or both $\sum a_n$ and $\sum b_n$ diverge.
- 2. If p = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $p = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Example 1

$$\sum_{n=3}^{\infty} \frac{n-1}{\sqrt{n^3+n+3}}$$

Solution 1
Let
$$\sum b_n = \sum_{n=3}^{\infty} \frac{n}{\sqrt{n^3}} = \sum_{n=3}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$
.
 $0 < \frac{n-1}{\sqrt{n^3+n+3}}, \frac{1}{n^{\frac{1}{2}}}$ for all n .

$$\lim_{n \to \infty} \frac{\frac{n-1}{\sqrt{n^3 + n + 3}}}{\frac{1}{n^{\frac{1}{2}}}} = \lim_{n \to \infty} \frac{n^{\frac{3}{2}} + n^{\frac{1}{2}}}{\sqrt{n^3 + n + 3}} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{\left(1 + \frac{1}{n^2} + \frac{3}{n^3}\right)^{\frac{1}{2}}} = \frac{1 + 0}{\left(1 + 0 + 0\right)^{\frac{1}{2}}} = 1$$

By P-series Test, $\sum_{n=0}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges since $p=\frac{1}{2} \leq 1$.

By Limit Comparison Test, $\sum_{n=3}^{\infty} \frac{n-1}{\sqrt{n^3+n+3}}$ diverges since $\lim_{n\to\infty} \frac{\frac{n-1}{\sqrt{n^3+n+3}}}{\frac{1}{n}} = 1$ is a positive, finite value.

Example 2

$$\sum_{n=2}^{\infty} \frac{n^2 \ln n}{n^3 + 5}$$

Solution 2

Let
$$\sum b_n = \sum_{n=2}^{\infty} \frac{1}{n}.$$
$$0 < \frac{n^2 \ln n}{n^3 + 5}, \frac{1}{n} \text{ for all } n.$$

$$\lim_{n \to \infty} \frac{\frac{n^2 \ln n}{n^3 + 5}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^3 \ln n}{n^3 + 5} = \lim_{n \to \infty} \frac{\ln n}{1 + \frac{5}{n^3}} = \infty$$

By P-series Test, $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges since $p = 1 \le 1$.

By Limit Comparison Test, $\sum_{n=0}^{\infty} \frac{n^2 \ln n}{n^3 + 5}$ diverges since $\lim_{n \to \infty} \frac{\frac{n^2 \ln n}{n^3 + 5}}{\frac{1}{n^2}} = \infty$ and $\sum_{n=0}^{\infty} \frac{n^2 \ln n}{n^3 + 5}$ diverges.

Example 3

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^4}$$

Let
$$\sum b_n = \sum_{n=1}^{\infty} \frac{1}{n^3}$$
.

$$0 < \frac{\ln n}{n^4}, \frac{1}{n^3}$$
 for all n .

$$\lim_{n \to \infty} \frac{\frac{\ln n}{n^4}}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{\ln n}{n} \stackrel{\text{L.H.}}{=} \lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \frac{0}{1} = 0$$

By P-series Test, $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges since p=3>1. By Limit Comparison Test, $\sum_{n=1}^{\infty} \frac{\ln n}{n^4}$ converges since $\lim_{n\to\infty} \frac{\frac{\ln n}{n^4}}{\frac{1}{n^3}} = 0$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges.

Test Name	Statement	Comments
Nth Term Test For Divergence	If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ diverges.	If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$
		may or may not converge.
P-series Test	a) $p > 1$ series converge	Harmonic is special P-series.
	b) $p \le 1$ series diverge where $\sum \frac{1}{n^p}$.	
Geometric Test	a r < 1 series converge	Sum of a geometric series is $S = \frac{a}{1-r}$.
	b) $ r \ge 1$ series diverge	
	where $\sum a(r)^n$.	
Comparison Test	Let $\sum a_n$ and $\sum b_n$ be series with positive terms such that $a_n \leq b_n$ for all n .	Use this test as a last resort.
	a) If $\sum b_n$ converges, then $\sum a_n$ converges.	
	b) If $\sum a_n$ diverges, then $\sum b_n$ diverges. If the alternating series fulfills the following conditions:	
Alternating Series Test	1. $\lim_{n \to \infty} b_n = 0$	This test only applies to alternating series.
	$2. \begin{cases} b_n \end{cases}$ is a decreasing sequence	
	then the alternating series converges.	
Ratio Test	Given the series $\sum a_n$ where $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = p$.	Use this test when a_n contains factorials or n th powers.
	a) If $p < 1$, then $\sum a_n$ converges.	
	b) If $p > 1$, then $\sum a_n$ diverges.	
	c) If $p = 1$, then no conclusion is met.	
Root Test	Given the series $\sum a_n$ where $\lim_{n\to\infty} \sqrt[n]{ a_n } = p$.	Use this test when a_n contains n th powers.
	a) If $p < 1$, then $\sum a_n$ converges.	
	b) If $p > 1$, then $\sum a_n$ diverges. c) If $p = 1$, then no conclusion is met.	
Integral Test	Let $\sum a_n$ be a series with positive terms	Use this test when the integral is easy to integrate and the series fulfills all conditions. Use this test as a last resort. This test is marginally easier to use than Comparison Test, but still requires some skill in choosing $\sum b_n$.
	where $a_n = f(x)$ is decreasing and continuous for $x \ge 1$.	
	a) If $\int_{1}^{\infty} f(x) dx$ converges, then $\sum a_n$ converges.	
	b) If $\int_1^\infty f(x) dx$ diverges, then $\sum a_n$ diverges.	
Limit Comparison Test	Let $\sum a_n$ and $\sum b_n$ be series with positive terms where $\lim_{n\to\infty} \frac{a_n}{b_n} = p$.	
	a) If p is positive and finite, then either both series converge or both series diverge.	
	b) If $p = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges. c) If $p = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.	
	$\sum u_n$ diverges, then $\sum u_n$ diverges.	