Summary Portfolio

Alex Thies athies@uoregon.edu

$March\ 15,\ 2018$

Contents

7	Polynomials over a Ring			
	7.1	Polynomials over a Ring	1	
	7.2	Properties of Polynomial Rings	2	
	7.3	Polynomial Functions and Roots	3	
8	Factoring Polynomials			
	8.1	Factors and Irreducible Polynomials	3	
	8.2	Roots and Factors	4	
	8.3	Factorization over \mathbb{Q}	4	
9	Field Extensions			
	9.1	Extension Field	5	
	9.2	Minimum Polynomial	6	
	9.3	Algebraic Extensions	6	
	9.4	Root Field of a Polynomial	7	
10	Galois Theory			
	10.1	Isomorphisms and Extension Fields	8	
	10.2	Automorphisms of Root Fields	8	
	10.3	The Galois Group of a Polynomial	9	
		The Galois Correspondence	9	
11	Solvability			
	11.1	Three Construction Problems	9	
	11.2	Solvable Groups	10	
		Solvable by Radicals	10	
12	Con	structible Numbers	11	

7 Polynomials over a Ring

7.1 Polynomials over a Ring

Definition 1. Let A be a commutative ring with unity. For each nonnegative integer n and elements $a_0, a_1, \ldots, a_n \in A$ we can define a polynomial over A, a(x), by:

$$a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 or $\sum_{i=0}^n a_i x^i$.

The set of all polynomials over a ring A is denoted A[x].

Definition 4. Suppose A is a commutative ring with unity and $a(x) \in A[x]$ with $a(x) = a_0 + a_1x + \cdots + a_nx^n$ for some nonnegative integer n.

- (i) The elements $a_0, a_1, \ldots, a_n \in A$ are the coefficients of a(x).
- (ii) For each $0 \le i \le n$, $a_i x^i$ is called a term of a(x).
- (iii) The largest nonnegative integer n with $a_n \neq 0_A$ (if one exists) is the degree of a(x), denoted deg(a(x)) = n. So for k > n we know $a_k = 0_A$.
- (iv) If all coefficients of a(x) are 0_A we say the degree of a(x) is $-\infty$.
- (v) For $n \ge 0$ if $\deg(a(x)) = n$ then a_n is called the leading coefficient of a(x).

Definition 5. Let A be a commutative ring with unity. For polynomials $a(x), b(x) \in A[x]$ we say a(x) = b(x) if and only if they have the same degree and if the degree is equal to $n \ge 0$ then for every $i \le n$, $a_i = b_i$.

Definition 6. Let A be a commutative ring with unity and let $a(x), b(x) \in A[x]$ as shown below.

$$a(x) = \sum_{i=0}^{n} a_i x^i$$
 $b(x) = \sum_{i=0}^{m} b_i x^i$

We define the new polynomial c(x) = a(x) + b(x) as follows where $k = \max\{n, m\}$.

$$c(x) = \sum_{i=0}^{k} c_i x^i$$
 and $c_i = a_i + b_i$

Remember, if i > n or i > m we assume $a = 0_A$ or $b = 0_A$, respectively.

Definition 8. Let A be a commutative ring with unity and polynomials $a(x), b(x) \in A[x]$ as shown below.

$$a(x) = \sum_{i=0}^{n} a_i x^i$$
 $b(x) = \sum_{i=0}^{m} b_i x^i$

Define the new polynomial d(x) = a(x)b(x) as follows.

$$d(x) = \sum_{i=0}^{n+m} d_i x^i \quad where \quad d_i = \sum_{j+t=i} a_j \cdot_A b_t$$

Note: $0 \le j \le n$ and $0 \le t \le m$.

Theorem 11. Let A be a commutative ring with unity. The operations of polynomial addition and polynomial multiplication from Definitions 7.6 and 7.8 are associative in A[x].

Theorem 13. Let A be a commutative ring with unity. In A[x], polynomial addition and polynomial multiplication are both commutative.

Theorem 14. Let A be a commutative ring with unity. Then the distributive laws hold in A[x].

Theorem 15. Let A be a commutative ring with unity. Then the set A[x] of polynomials over A is a commutative ring with unity.

7.2 Properties of Polynomial Rings

Theorem 17. If A is an integral domain then A[x] is also an integral domain.

Theorem 20. Let A be an integral domain, and nonzero $a(x), b(x) \in A[x]$. If $\deg(a(x)) = n$ and $\deg(b(x)) = m$, then $\deg(a(x)b(x)) = n + m$.

Theorem 22. If A is a commutative ring with unity then char(A) = char(A[x]).

Theorem 24 (The Division Algorithm). Let K be a field and $a(x), b(x) \in K[x]$. If $b(x) \neq 0(x)$ then there exist unique polynomials $q(x), r(x) \in K[x]$, for which a(x) = b(x)q(x) + r(x) and either $\deg(r(x)) < \deg(b(x))$ or r(x) = 0(x).

Theorem 26. Let K be a field. Then every ideal of K[x] is a principal ideal.

Theorem 27. Let A be a commutative ring with unity. Then the function $f: A \to A[x]$ defined by $f(a) = a + 0_A x$ is an injective ring homomorphism.

Theorem 28. Let A and K be commutative rings with unity, and suppose that $f: A \to K$ is a ring homomorphism. Then the function $\bar{f}: A[x] \to K[x]$ defined below is also a ring homomorphism.

$$\bar{f}(a_0 + a_1x + \dots + a_nx^n) = f(a_0) + f(a_1)x + \dots + f(a_n)x^n$$

Theorem 30. Let A, K be commutative rings with unity, and suppose that $f: A \to K$ is an isomorphism. Then the extension $\bar{f}: A[x] \to K[x]$ is also an isomorphism.

7.3 Polynomial Functions and Roots

Definition 33. Let A be a commutative ring with unity and $a(x) \in A[x]$ with $a(x) \neq 0(x)$. If $c \in A$ and deg(a(x)) = n, we define the element $a(c) \in A$ as follows:

$$a(c) = a_0 +_A (a_1 \cdot_A c) +_A (a_2 \cdot_A c^2) +_A \cdots +_A (a_n \cdot_A c^n).$$

If a(x) = 0(x) we say $a(c) = 0_A$ for all $c \in A$.

Theorem 35. Let A be an integral domain. The substitution function $h_c: A[x] \to A$ defined by $h_c(a(x)) = a(c)$ is a ring homomorphism.

Definition 37. Let A be a commutative ring with unity, $c \in A$, and $a(x) \in A[x]$ $a(x) \neq 0(x)$. We say that c is a root of the polynomial a(x) exactly when $a(c) = 0_A$. We do not say any element of A is a root of 0(x) even though $0(c) = 0_A$ for each $c \in A$.

8 Factoring Polynomials

8.1 Factors and Irreducible Polynomials

Definition 1. Let A be a commutative ring with unity and $a(x), d(x) \in A[x]$. We say that a(x) is a factor of d(x) if there exists a polynomial $b(x) \in A[x]$ with d(x) = a(x)b(x).

Definition 4. Let A be an integral domain. Polynomials $a(x), b(x) \in A[x]$ are called associates if there is a nonzero element $c \in A$ so that the constant polynomial c(x) = c has a(x) = c(x)b(x).

We will frequently write a(x) = cb(x) instead of first defining the constant polynomial c(x) = c.

Theorem 5. Let A be an integral domain and suppose $a(x), b(x) \in A[x]$ are associates. Then $c \in A$ is a root of a(x) if and only if c is a root of b(x).

Definition 7. Let A be an integral domain with $a(x) \in A[x]$ and deg(a(x)) > 0. We say that a(x) is irreducible over A if every factor of a(x) in A[x] is either a constant polynomial or an associate of a(x). If instead a nonconstant factor of a(x) which is not an associate of a(x) exists in A[x], we say that a(x) is reducible over A.

Theorem 8. Let K be a field and suppose $a(x), b(x) \in K[x]$ are associates. The polynomial a(x) is irreducible over K if and only if b(x) is irreducible over K.

Theorem 9. Let K be a field. Every polynomial in K[x] of degree 1 is irreducible over K.

Theorem 10. Suppose K is a field, and $p(x) \in K[x]$. If p(x) is irreducible over K then $\langle p(x) \rangle$ is a maximal ideal of K[x].

Theorem 11. Let K be a field, and assume that $p(x) \in K[x]$ is irreducible over K. If $a(x), b(x) \in K[x]$ and p(x) is a factor of the product a(x)b(x), then p(x) is a factor of at least one of a(x) or b(x).

Theorem 12. Let K and E be fields, and suppose that $\bar{f}: K \to E$ is an isomorphism. The polynomial $p(x) \in K[x]$ is irreducible over K if and only if $\langle p(x) \rangle$ is irreducible over E.

8.2 Roots and Factors

Theorem 13. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. The element $c \in K$ is a root of a(x) if and only if b(x) = -c + x is a factor of a(x).

Theorem 17. Suppose K is a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. If the distinct elements $c_1, c_2, \ldots, c_n \in K$ are all roots of a(x), then the product $b(x) = (-c_1 + x)(-c_2 + x) \cdots (-c_n + x)$ is a factor of a(x).

Theorem 19. Let K be a field. If $c_1, c_2, \ldots, c_n \in K$ are distinct roots of the nonzero polynomial $a(x) \in K[x]$, then $\deg(a(x)) \geq n$.

Theorem 20. Suppose K is a field and $a(x) \in K[x]$. If $\deg(a(x)) > 0$ then there exist a positive integer m and polynomials $b_1(x), b_2(x), \ldots, b_m(x) \in K[x]$ which are irreducible over K and $a(x) = b_1(x)b_2(x)\cdots b_m(x)$.

Theorem 22. Let K be a field and $a(x) \in K[x]$ with deg(a(x)) = 2 or deg(a(x)) = 3. The polynomial a(x) is reducible over K if and only if a(x) has a root in K.

Definition 24. Let K be a field and $a(x) \in K[x]$. Suppose $a(x) \neq 0(x)$, with deg(a(x)) = n. The polynomial a(x) is **monic** if $a_n = 1_K$.

Definition 26. Let K be a field and $a(x) \in K$ with $a(x) \neq 0(x)$. Suppose $c \in K$ is a root of a(x). If there is an integer m > 0 for which the polynomial $b(x) = (-c + x)^m$ is a factor of a(x) but $d(x) = (-c + x)^{m+1}$ is not a factor of a(x), then we say that c is a root of a(x) with multiplicity m.

Theorem 27. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. If deg(a(x)) = n then there can be at most n distinct roots of a(x) in K.

Theorem 28. Let K be an infinite field. If $a(x), b(x) \in K[x]$, and $a(x) \neq b(x)$, then there must exist some $c \neq K$ for which $a(c) \neq b(c)$.

8.3 Factorization over \mathbb{Q}

Theorem 29. If $a(x) \in \mathbb{Q}[x]$ with $a(x) \neq 0(x)$ then there is a polynomial $b(x) \in \mathbb{Z}[x]$ with $\deg(a(x)) = \deg(b(x))$ which has exactly the same rational roots as a(x).

Theorem 31 (The Rational Roots Theorem). Let $a(x) \in \mathbb{Z}[x]$ with $a(x) \neq 0(x)$ and deg(a(x)) = n. If the rational number $\frac{s}{t}$ (s, $t \in \mathbb{Z}$ with no common prime factors and $t \neq 0$) is a root of a(x) then s must evenly divide a_0 and t must evenly divide a_n .

Theorem 33. If $a(x) \in \mathbb{Z}[x]$ and a(x) = b(x)c(x) with $b(x), c(x) \in \mathbb{Q}[x]$, $\deg(b(x)) > 0$, and $\deg(c(x)) > 0$, then there exist polynomials $u(x), w(x) \in \mathbb{Z}[x]$ with a(x) = u(x)w(x), $\deg(u(x)) > 0$, and $\deg(w(x)) > 0$.

Theorem 35 (Eisenstein's Criterion). Suppose $a(x) \in \mathbb{Z}[x]$ and deg(a(x)) = n with n > 0. If there exists a prime number p which divides coefficients $a_0, a_1, \ldots, a_{n-1}$ but not a_n , and p^2 does not divide a_0 , then a(x) is irreducible over \mathbb{Q} .

Theorem 37. Suppose $a(x) \in \mathbb{Z}[x]$ is a monic polynomial and $\deg(a(x)) = k$ with k > 0. If there exists n > 1 so that $\bar{f}_n(a(x))$ is irreducible in $\mathbb{Z}[x]$ then a(x) is also irreducible in $\mathbb{Z}[x]$.

9 Field Extensions

9.1 Extension Field

Definition 1. Suppose that K and E are fields with $K \subseteq E$. If for all $a, b \in K$ we have $a +_K b = a +_E b$ and $a \cdot_K b = a \cdot_E b$, then K is a subfield of E or E is an extension field of K.

Definition 2. Suppose E is an extension field of K, and $c \in E$

- (i) If there exists $a(x) \in K[x]$ with $a(x) \neq 0(x)$ and $a(c) = 0_E$, then c is **algebraic** over K.
- (ii) If for every nonzero $a(x) \in K[x]$ we have $a(c) \neq 0_E$, then c is **transcendental** over K.

Theorem 4. Suppose E is an extension field of K, $a(x) \in K[x]$, and there is $c \in E$ with $a(c) = 0_E$.

- (i) If deg(a(x)) = 1, then $c \in K$.
- (ii) If a(x) is irreducible over K and deg(a(x)) > 1, then $c \notin K$

Theorem 5. Suppose K is a field. E is an extension field of K and $c \in E$. If c is algebraic over K, then there exists a field K(c) ("K adjoin c") with:

- (i) $K \subseteq K(c) \subseteq E$.
- (ii) $c \in K(c)$.
- (iii) For any subfield S of E with $K \subseteq S$ and $c \in S$ we have $K(c) \subseteq S$.

Theorem 7. Let K be a field and assume $a(x) \in K[x]$ is irreducible over K. Then there exists a field E so that E is an extension field of K and a(x) has a root in E.

9.2 Minimum Polynomial

Theorem 9. If K is a field, E is an extension field of K, and $c \in E$ is algebraic over K, then there is a **unique monic** polynomial $p(x) \in K[x]$ that is irreducible over K and has c as a root.

Definition 10. Let K be a field, E and extension field of K, and $c \in E$ algebraic over K. The unique monic polynomial $p(x) \in K[x]$ that is irreducible over K and has c as a root is called **the minimum polynomial** for c over K.

Theorem 12. Suppose K be a field, E and extension field of K, and $c \in E$ algebraic over K with minimum polynomial $p(x) \in K[x]$.

- (i) Using the homomorphism $f_c: K[x] \to E$ as defined in Theorem 9.5, $\ker(f_c) = \langle p(x) \rangle$.
- (ii) If $b(x) \in K[x]$ is a nonzero polynomial with $b(c) = 0_E$, then b(x) = p(x)q(x) for some $q(x) \in K[x]$.

Theorem 13. Suppose K be a field, E and extension field of K, and $c \in E$ algebraic over K. If p(x) is the minimum polynomial for c over K, and deg(p(x)) = n, then:

$$K(c) = \{a(c) : a(x) \in K[x] \text{ and either } a(x) = 0(x) \text{ or } \deg(a(x)) < n\}.$$

9.3 Algebraic Extensions

Definition 16. Let K be a field and E an extension field of K. If every element of E is algebraic over K we say that E is an **algebraic extension** of K.

Definition 17. Let K be a field and E an extension field of K. A nonempty subset of E, $B = \{u_1, u_2, \ldots, u_m\}$ is called a **basis for E over K** when the following hold:

- (i) For every element $s \in E$ there exist $a_1, a_2, \ldots, a_m \in K$ so that $s = a_1u_1 + a_2u_2 + \ldots + a_mu_m$ (B spans E over K).
- (ii) If $a_1, a_2, \ldots, a_m \in K$ with $a_1u_1 + a_2u_2 + \ldots a_mu_m = 0_E$ then $a_i = 0_K$ for all $i = 1, \ldots, m$ (B is independent over K).

If there exist m elements of E that form a basis for E over K we say E is a **finite** extension of K of degree m, and write [E:K]=m.

Theorem 19. Let K be a field and E an extension field of K.

- (i) Every basis for E over K has the same cardinality.
- (ii) Every subset of E that spans E contains a basis for E over K.

Theorem 20. Suppose K is a field, c is algebraic over K with minimum polynomial p(x), and $\deg(p(x)) = n$. Then the set $B = \{1_K, c, c^2, \ldots, c^{n-1}\}$ is a bsis for K(c) over K and $[K(c):K] = \deg(p(x))$.

Theorem 21. Let K be a field and E an extension field of K with [E:K] = n for some n > 0. Then E is an algebraic extension of K.

Theorem 22. Suppose that K is a field and L is a finite extension of K. If E is a finite extension of L, then E is also a finite extension of K and [E:K] = [E:L][L:K].

9.4 Root Field of a Polynomial

Definition 23. Let K be a field and $a(x) \in K[x]$ have $\deg(a(x)) > 0$. The **root field** for a(x) over K is a field extension E of K with the following properties:

- (i) In E[x], a(x) can be factored into a product of polynomials of degree 1.
- (ii) For any extension of K, L, which satisfies (i), we have $K \subseteq E \subseteq L$.

Definition 25. Let K be a field and c_1, c_2 algebraic over K. Let $L = K(c_1)$, then the field $K(c_1, c_2) = L(c_2)$ is called the **iterated extension** of K.

Theorem 26. Let K be a field and $a(x) \in K[x]$ with deg(a(x)) > 0. If E is the root field of a(x) over K, and the elements $c_1, c_2, \ldots, c_n \in E$ are all of the distinct roots of a(x), then $E = K(c_1, c_2, \ldots, c_n)$.

Definition 28. Suppose that E is an extension field of K with $c \in E$. A field extension K(c) is called a **simple extension** of K.

Definition 29. Let K be a field and $p(x) \in K[x]$. We say p(x) is **separable** if no irreducible factor of p(x) has multiple roots in any extension field of K. Otherwise, we say p(x) is **inseparable**.

Theorem 31. Let K be a field with char(K) = 0. Then every irreducible polynomial in K[x] is separable.

Theorem 32. Let K be a finite field with char(K) = q for some prime q.

- (i) For any polynomial $b(x) = b_0 + b_1 x + \cdots + b_t x^t \in K[x]$ we have $(b(x))^q = b_0^q + b_1^q x^q + \cdots + b_t^q x^{qt}$.
- (ii) For any element $s \in K$ there is $r \in K$ with $s = r^q$.

Theorem 33. Let K be a finite field. Then every irreducible polynomial in K[x] is separable.

Theorem 34. Let K be a field of characteristic 0, and E a finite extension of K. Then E is a simple extension of K, meaning there is some $c \in E$ with E = K(c).

10 Galois Theory

10.1 Isomorphisms and Extension Fields

Definition 2. Let K be a field and $f: K \to K$ be a function. If f is an isomorphism we say that f is an **automorphism of** K.

Definition 3. Let K be a field and E_1, E_2 be exention fields of K. Suppose $f: E_1 \to E_2$ is an isomorphism. If for every $a \in K$ we have f(a) = a, then we say that **f** fixes K.

Theorem 4. Suppose K_1, K_2 are fields, $f: K_1 \to K_2$ is an isomorphism, and $p(x) \in K_1[x]$ is irreducible over K_1 . Then there exist extension fields $K_1(c_1)$ and $K_2(c_2)$ with the following properties:

- (i) c_1 is a root of p(x) and c_2 is a root of $\bar{f}(p(x))$ (as defined in Theorem 7.28).
- (ii) There exists an isomorphism $g: K_1(c_1) \to K_2(c_2)$ with $g(c_1) = c_2$ for any $a \in K_1$, g(a) = f(a).

Theorem 7. Let K be a field and $p(x) \in K[x]$ an irreducible polynomial. If c_1 and c_2 are roots of p(x) in some extension of K, then $K(c_1) \cong K(c_2)$ where the isomorphism $g: K(c_1) \to K(c_2)$ maps $g(c_1) = c_2$ and fixes K.

Theorem 9. Let K be any field and E_1, E_2 extension fields of K, with $f: E_1 \to E_2$ an isomorphism fixing K. If $p(x) \in K[x]$ and $c \in E_1$ is a root of p(x), then $f(c) \in E_2$ is also a root of p(x).

10.2 Automorphisms of Root Fields

Theorem 10. Let K be a field and $a(x) \in K[x]$. If deg(a(x)) = n > 0, then a(x) is exactly n roots in its root field.

Theorem 12. Suppose that K is a field and E_1, E_2 are both finite exentions of K. If there exists an isomorphism $f: E_1 \to E_2$ which fixes K, and E_1 is a root field of the polynomial $p(x) \in K[x]$, then $E_1 = E_2$.

Theorem 13. Suppose K is a field and E is the root field for some nonconstant $p(x) \in K[x]$. Suppose L_1 and L_2 are finite extension fields of K with $K \subseteq L_1 \subseteq E$. If there exists $f: L_1 \to L_2$ an isomorphism fixing K, then $L_2 \subseteq E$ and there exist an automorphism g of E, with g(a) = f(a) for all $a \in L$.

Theorem 14. Suppose K is a field, E is the root field of a polynomial in K[x], and $p(x) \in K[x]$ is irreducible over K with deg(p(x)) > 1. For any two distinct roots $c_1, c_2 \in E$ of p(x), there exists an automorphism of E fixing K, mapping c_1 to c_2 .

Theorem 16. Suppose K is a field and E is the root field of a polynomial in K[x]. If the irreducible polynomial $a(x) \in K[x]$ has one root in E then every root of a(x) is in E.

10.3 The Galois Group of a Polynomial

Theorem 18. Let K be a field and $p(x) \in K[x]$. If E is the root field of p(x) over K then the set pf all automorphisms of E fixing K is a group under composition.

Definition 19. Let K be a field and $p(x) \in K[x]$ with root field E. The group of automorphisms of E fixing K is called the **Galois group of E over K**, denoted Gal(E/K). It can also be called the **Galois group of p(x) over K**.

Theorem 20. Let K be a field and E the root field for some $p(x) \in K[x]$. The number of automorphisms of E fixing K is equal to [E:K].

Theorem 23. Let K be a field and $p(x) \in K[x]$ with root field E. Let G = Gal(E/K). If H is a subgroup of G then the set $E_H = \{y \in E : \alpha(y) = y \text{ for every } \alpha \in H\}$ is a subfield of E and $K \subseteq E_H \subseteq E$. The field E_H is called **the fixed field for H**.

Theorem 24. Let K be a field, $p(x) \in K[x]$ with root field E, and G = Gal(E/K). If $n \in A$ is a subfield of E with $K \subseteq L$, then $G_L = \{\alpha \in G : \text{ for every } y \in L, \alpha(y) = y\}$ is a subgroup of G. The subgroup G_L is called **the fixer of L**.

10.4 The Galois Correspondence

Theorem 25. Let K be a field, $p(x) \in K[x]$ with root field E, and G = Gal(E/K). If L is a subfield of E with $K \subseteq L \subseteq E$, then L is the fixed field of G_L , i.e., $E_{G_L} = L$.

Theorem 27. Let K be a field, $p(x) \in K[x]$ with root field E, and G = Gal(E/K). If H is a subgroup of G then the fixer of the field E_H is H, i.e., $G_{E_H} = H$.

Theorem 29. Let K be a field and E the root field for a polynomial over K. If L is a subfield of E with $K \subseteq L$ and L is a root field over K, then $Gal(E/L) \triangleleft Gal(E/K)$ and $Gal(L/K) \cong Gal(E/K)/Gal(E/L)$.

Theorem 30. Let K be a field, E the root field for a polynomial over K, and L an intermediate field $K \subseteq L \subseteq E$. If $Gal(E/L) \triangleleft Gal(E/K)$ then L is a root field over K.

11 Solvability

11.1 Three Construction Problems

There are no definitions or theorems in this subsection.

11.2 Solvable Groups

Definition 1. A group G is called a **solvable group** if there are subgroups $\{e_G\} = H_0, H_1, \ldots, H_n = G$, so that for each $0 \le i \le n-1$, $H_i \triangleleft H_{i+1}$ and H_{i+1}/H_i is an abelian group.

Theorem 3. The permutation group S_5 is not solvable.

Theorem 4. The permutation group S_4 is not solvable.

Theorem 5. Let G be a group and J a subgroup of G.

- (i) If G is a solvable group then J is a solvable group.
- (ii) If $J \triangleleft G$ and both J and G/J are solvable groups, then G is a solvable group.

Theorem 6. Suppose G and B are groups. If there is an <u>onto</u> homomorphism f: $G \to B$ and G is a solvable group, then B is a solvable group.

Theorem 7. For each $n \geq 5$, S_n is not a solvable group.

11.3 Solvable by Radicals

Definition 9. Let K be a field. A **radical extension** of K is a finite extension of the form $K(c_1, \ldots, c_n)$ where for each $1 \le i \le n$, there is a positive integer $m_i \ge 2$ so that $(c_1)^{m_1} \in K$ and for $1 < i \le n$, $(c_i)^{m_i} \in K(c_1, \ldots, c_{i-1})$

Definition 11. Let K be a field and $p(x) \in K[x]$. We say that p(x) is **solvable by** radicals if the root field of p(x) is contained in a radical extension of K.

Theorem 13. Let L be a radical extension of \mathbb{Q} . Then there exists a radical extension E of \mathbb{Q} , with $\mathbb{Q} \subseteq L \subseteq E$, where E is also a root field over \mathbb{Q} .

Definition 14. For n > 1, the root $\omega_n = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$ for the polynomial $-1 + x^n \in \mathbb{Q}[x]$ is called a **primitive** n^{th} **root of unity**.

Theorem 15. For each positive integer n, the polynomial $p(x) = -1 + x^n$ in $\mathbb{Q}[x]$ is solvable by radicals.

Theorem 16. If n is a positive integer with $n \geq 2$ then $Gal(\mathbb{Q}(\omega_n)/\mathbb{Q})$ is abelian.

Theorem 17. Let m_1, m_2, \ldots, m_r be distinct positive integers, and $m_j \geq 2$ for each j. Then the field $L = \mathbb{Q}(\omega_{m_1}, \omega_{m_2}, \ldots, \omega_{m_r})$ is a root field over \mathbb{Q} , and $Gal(L/\mathbb{Q})$ is a solvable group.

Theorem 18. If the polynomial $p(x) \in \mathbb{Q}[x]$ is solvable by radicals, then the Galois group G for p(x) is a solvable group.

Theorem 20. If G is a finite solvable group, then there is a sequence of subgroups $\{e_G\} = H_0, H_1, \ldots, H_n = \overline{G}$ where for each $0 \le j < n$, $H_j \triangleleft H_{j+1}$, and H_{j+1}/H_j is cyclic of prime order.

Theorem 21. If $p(x) \in \mathbb{Q}[x]$ has root field E and $Gal(E/\mathbb{Q})$ is solvable, then p(x) is solvable by radicals.

12 Constructible Numbers

Definition 22. We say that a real number α is constructible if – using an unmarked straight-edge and compass – we can build a line segment of length $|\alpha|$ using the following geometric operations:

- (i) Given a constructed point P and constructed line ℓ , we can construct a unique line ℓ' through P that is perpendicular to ℓ .
- (ii) Given a constructed point P and constructed line ℓ , we can construct a unique line ℓ'' through P that is parallel to ℓ .
- (iii) Give a constructed point P and constructed length $|\alpha|$, we can construct a point Q on ℓ such that $PQ = |\alpha|$.

Theorem 23. The set of constructable numbers is a field extension of \mathbb{Q} and is closed under taking square roots.

Theorem 24. Let α be a constructible number. Then there exists a sequence ('tower') of finite field extensions $\mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_n$ such that:

- (i) $F_n \subset \mathbb{R}$.
- (ii) $\alpha \in F_n$.
- (iii) For each i, we have $F_i = F_i(\sqrt{r_i})$ where $r_i \in F_i$.

Conversely, given a sequence of field extensions satisfying conditions (i) and (iii), then all $x \in F_n$ are constructible.

Corollary 25. If α is a constructible number, then $[\mathbb{Q}(\alpha):\mathbb{Q}]=2^n$ for some $n\in\mathbb{N}$.

Theorem 26. Using an unmarked straight-edge and compass, it is impossible to construct a cube of volume two units.

Theorem 27. It is impossible to trisect an angle of 60 degrees using an unmarked straight-edge and compass.

Corollary 28. Using an unmarked straight-edge and compass, it is impossible to construct an angle of 20 degrees.