Discussion Week 9

Minimum Spanning Tree

Spanning trees

Given a connected graph with *n* vertices, a spanning tree is defined as a subgraph that is a tree and includes all the *n* vertices

• It has n-1 edges

A spanning tree is not necessarily unique

Spanning trees on weighted graphs

The weight of a spanning tree is the sum of the weights on all the edges which comprise the spanning tree

Minimum Spanning Trees

Which spanning tree minimizes the weight?

Such a tree is termed a minimum spanning tree

Minimum Spanning Trees

Simplifying assumption:

All edge weights are distinct

This guarantees that given a graph, there is a unique minimum spanning tree.

Prim's algorithm for finding the minimum spanning tree states:

- Start with an arbitrary vertex to form a minimum spanning tree on one vertex
- At each step, add the edge with least weight that connects the current minimum spanning tree to a new vertex
- Continue until we have n-1 edges and n vertices

Associate with each vertex three items of data:

- A Boolean flag indicating if the vertex has been visited,
- The minimum distance (weight of a connecting edge) to the partially constructed tree, and
- A pointer to a vertex which will form the parent node in the resulting tree

Implementation:

- Add three member variables to the vertex class
- Or track three tables

Visited or not

	1	Distance	Parent
1			
2			
3			
4			
5			
6			
7			
8			
9			

Visiting vertex 1, we update vertices 2, 4, and 5

		Distance	Parent
1	7	0	0
2	F	4	1
3	F	8	0
4	T	1	1
5	F	8	1
6	F	8	0
7	I	8	0
8	F	8	0
9	F	8	0

The next unvisited vertex with minimum distance is vertex 4

- Update vertices 2, 7, 8
- Don't update vertex 5

		Distance	Parent
1	Τ	0	0
2	I	2	4
3	F	8	0
4	7	1	1
5	F	8	1
6	F	8	0
7	I	9	4
8	F	8	4
9	F	8	0

Next visit vertex 2

Update 3, 5, and 6

		Distance	Parent
~	Τ	0	0
2	H	2	4
3	F	2	2
4	Η	1	1
5	H	6	2
6	F	1	2
7	I	9	4
8	I	8	4
9	F	8	0

Next, we visit vertex 6:

update vertices 5, 8, and 9

		Distance	Parent
1	4	0	0
2	Т	2	4
3	IЕ	2	2
4	Τ	1	1
5	F	3	6
6	Т	1	2
7	IЪ	9	4
8	F	7	6
9	F	8	6

And neither are there any vertices to update when visiting vertex 7

		Distance	Parent
1	Τ	0	0
2	Τ	2	4
3	Η	2	2
4	H	1	1
5	Н	2	3
6	H	1	2
7	H	4	5
8	Т	1	5
9	Т	3	8

Using the parent pointers, we can now construct the minimum spanning tree

		Distance	Parent
1	_	0	0
2	Т	2	4
3	Т	2	2
4	Т	1	1
5	Т	2	3
6	T	1	2
7	Т	4	5
8	Т	1	5
9	Т	3	8

Implementation: Prim's Algorithm

Use a priority queue.

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost a[v] = cost of cheapest edge from v to a
 node in S.
- O(n2) with an array; O(m log n) with a binary heap.

```
Prim(G, c) {
   foreach (v \in V) a[v] \leftarrow \infty
   Initialize an empty priority queue Q
   foreach (v ∈ V) insert v onto Q
   Initialize set of explored nodes S \leftarrow \emptyset
   while (Q is not empty) {
       u ← delete min element from 0
       S \leftarrow S \cup \{u\}
       foreach (edge e = (u, v) incident to u)
           if ((v \notin S) \text{ and } (c < a[v]))
               decrease priority a[v] to c_
```

Kruskal's Algorithm

- Sort the edges by weight
- Go through the edges from least weight to greatest weight
 - add the edges to the spanning tree so long as the addition does not create a cycle
 - Does this edge belong to the minimum spanning tree?
 - Yes! The cut property (consider the subtree connected to one end of the edge as the set S).
- Repeatedly add more edges until:
 - |V|-1 edges have been added, then we have a minimum spanning tree
 - Otherwise, if we have gone through all the edges, then we have a forest of minimum spanning trees on all connected sub-graphs

We could use disjoint sets

 Consider edges in the same connected sub-graph as forming a set

Instead, we could use disjoint sets

- Consider edges in the same connected sub-graph as forming a set
- If the vertices of the next edge are in different sets, take the union of the two sets

Instead, we could use disjoint sets

- Consider edges in the same connected sub-graph as forming a set
- If the vertices of the next edge are in different sets, take the union of the two sets
- Do not add an edge if both vertices are in the same set

The disjoint set data structure has run-time $O(\alpha(n))$, which is effectively a constant

Thus, checking and building the minimum spanning tree is now O(|E|)

The dominant time is now the time required to sort the edges, which is $O(|E| \ln(|E|)) = O(|E| \ln(|V|))$

• If there is an efficient $\Theta(|E|)$ sorting algorithm, the runtime is then $\Theta(|E|)$

Going through the example again with disjoint sets

We start with twelve singletons

We start by adding edge {C, E}

→ {C, E} $\{H, I\}$ {G, I} {F, G} {B, E} {E, H} {B, C} {H, K} {H, L} {D, E} {G, H} {I, K} {B, D} {D, F} {E, G} $\{K, L\}$

{J, K}

{J, I}

{J, G}

{A, B}

 $\{A, D\}$

{C, E}

We add edge {H, I}

{H, I} $\{G,\ I\}$ {F, G} {B, E} {E, H} {B, C} {H, K} {H, L} {D, E} {G, H} {I, K} {B, D} {D, F} {E, G} $\{K, L\}$ {J, K} {J, I} {J, G} {A, B} $\{A, D\}$

{C, E}

→ {G, I}

→ {B, E}

{E, H}

{B, C}

{H, K}

 $\{H, L\}$

{D, E}

{G, H}

{I, K}

{B, D}

{D, F}

 $\{E, G\}$

 $\{K,\;L\}$

 $\{J,\ K\}$

{J, I}

 $\{J,\,G\}$

{A, B}

{A, D}

 $\{E, F\}$

{C, E} {H, I} $\{G, I\}$ {F, G} {B, E} {E, H} {B, C} {H, K} {H, L} {D, E} {G, H} {I, K} {B, D} $\{D, F\}$ {E, G} $\{K, L\}$ {J, K} $\{J, I\}$ {J, G} {A, B} $\{A, D\}$

{C, E} {H, I} $\{G, I\}$ {F, G} {B, E} {E, H} {B, C} {H, K} {H, L} {D, E} {G, H} {I, K} {B, D} $\{D, F\}$ {E, G} {K, L} {J, K}

{J, I}

{J, G}

{A, B}

 $\{A, D\}$

{C, E}

We try adding {B, C}, but it creates a cycle

{H, I} $\{G, I\}$

{F, G}

{B, E}

{E, H}

{B, C}

{H, K}

{H, L}

{D, E}

{G, H}

{I, K}

{B, D}

 $\{D, F\}$

{E, G}

 $\{K, L\}$

{J, K}

{J, I}

{J, G}

{A, B}

 $\{A, D\}$

We add edge {H, K}, {H, L} and {D, E}

{C, E} {H, I} {G, I} {F, G} {B, E} {E, H} **→** {H, K} **→** {H, L} → {D, E} {G, H} {I, K} {B, D} {D, F} {E, G} $\{K, L\}$ {J, K} {J, I} {J, G} {A, B} $\{A, D\}$ {E, F}

Both G and H are in the same set

{C, E} {H, I} $\{G, I\}$ {F, G} {B, E} {E, H} {H, K} {D, E} {G, H} {I, K} {B, D} {D, F} {E, G} $\{K, L\}$ {J, K} $\{J, I\}$ {J, G} {A, B} $\{A, D\}$ {E, F}

Both {I, K} are in the same set

{C, E} {H, I} {G, I} {F, G} {B, E} {E, H} {H, K} {H, L} {D, E} $\{G, H\}$ {I, K} {B, D} {D, F} {E, G} $\{K, L\}$ {J, K} $\{J, I\}$ {J, G} {A, B} $\{A, D\}$ {E, F}

Both {B, D} are in the same set

{C, E} {H, I} {G, I} {F, G} {B, E} {E, H} {H, K} {H, L} {D, E} {B, D} {D, F} {E, G} $\{K, L\}$ {J, K} $\{J, I\}$ {J, G} {A, B} $\{A, D\}$

Both {D, F} are in the same set

{C, E}

We end when there is only one set, having ades (A, B)

Implementation: Kruskal's Algorithm

Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- O(m log m) for sorting.

```
Kruskal(G, c) { Sort edges weights so that c_1 \le c_2 \le \ldots \le c_m. T \leftarrow \phi foreach (u \in V) make a set containing singleton u for i = 1 to m are u and v in different connected components? (u,v) = e_i if (u and v are in different sets) { T \leftarrow T \cup \{e_i\} merge the sets containing u and v merge two components } return T }
```

Topological Sort

Topological Sort

Idea:

- Given a DAG V, iterate:
 - Find a vertex v in V with in-degree zero
 - Let v be the next vertex in the topological sort
 - Continue iterating with the vertex-induced sub-graph $V \setminus \{v\}$

With the previous example, we initialize:

- The array of in-degrees
- The queue

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
ı	1
J	1
K	1
L	2

Stepping through the array, push all source vertices into the queue

Α	1
В	1
С	0
D	2
E	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Stepping through the table, push all source vertices into the queue

1
1
0
2
4
2
1
0
1
1
1
2

Pop the front of the queue

Η

Queue:

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

C has one neighbor: D

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

- C has one neighbor: D
- Decrement its in-degree

Α	1
В	1
C	0
D	1
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Α	1
В	1
С	0
D	1
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

- C has one neighbor: D
- Decrement its in-degree

Α	1
В	1
C	0
D	1
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Α	1
В	1
С	0
D	1
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

The array used for the queue stores the topological sort

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

The array used for the queue stores the topological sort

Note the difference in order from our previous sort?

C, H, D, A, B, I, J, F, G, E, K, L

/	
A	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Question

 Count the number of possible topological sorts for the following graph. Show your detailed counting method. Do NOT enumerate.

Answer:

Consider this question as placing 5 balls into 5 boxes. We first place 2, 3; and we have $C_5^2 = 10$ ways to do this.

Then the rest of the boxes will be given to 4, 5, 6; the order is either 4, 6, 5 or 6, 4, 5.