Computer Networks

1 The Public Switched Telephone Network

hyperref colorlinks=true, citecolor=cyan, linkcolor=magenta, urlcolor=blue

1.1 Introduzione

Tralasciando il costo di dei cavi, il costo di un opera pubblica per far passare un cavo è uguale al costo di far passare più cavi.

1.2 Struttura del sistema telefonico

Quando Bell brevettò il telefono, era già a conoscenza dei limiti imposti dalla grande distribuzione. Introdusse così una gerarchia a due livelli di switching toll (uffici interurbani).

1.3 The local Loop: Modems, ADSL, and Fiber

Con "Local Loop" i si intende come è strutturato l'infrastruttura dalla cabina dell'ISP fino al DSL-Client. É la connessione fisica o circuito che connette dai public switched telephone network alle attrezzature adibite alla connessione degli usofruitori del servizio di dati.

Il problema consiste che, a prescindere della bandwidth che ha a disposizione la DSLAM, la linea tra la centralina e la residenza del cliente è, nella maggior parte dei casi, la stessa linea telefonica che è limita in frequenza. Tecnologie come ADSL, riutilizzano la linea telefonica già presente. Però la linea telefonica è stata progettata per trasmettere la voce umana per il telefono in analogico e quindi ha caratteristiche che non sono adatte alla trasmissione di dati digitali a banda elevata.

Sia i modem che le ADSL devono tener conto delle limitazioni dei vecchi impianti telefonici.

Di recente si stanno adoperando misure per installare fibre ottiche adatte alla trasmissione a banda larga.

¹Anche conosciuto come "last mile" (ultimo miglio).

1.4 Telephone Modems

Per inviare bits in un generico canale fisico, devono essere convertiti in segnali analogici che possono essere trasmessi attraverso il canale, attraverso delle tecniche di modulazione digitale. A destinazione, questi segnali trasmessi saranno poi convertiti nuovamente da analogici a bits.

Il dispositivo che esegue la conversione dei flussi di dati in analogico e in digitale, è chiamato **modem** che sta per "modulator demodulator".

I modem telefonici sono utilizzati per mandare bits tra due computer collegati tra di loro attraverso una linea telefonica adibita alla trasmissione della voce

La linea telefonica è limitata a trasmettere a frequenza di 3100Hz, sufficienti a trasmettere una conversazione. Per contestualizzare, la bandwidth dello standard Ethernete o 802.11 è quattro ordini di grandezza superiore.

Per il teorema di Nyquist, perfino per una linea perfetta a 3000Hz, non è possibile trasmettere a più di 6000 baud. In pratica, la maggior parte dei modem, manda ad una frequnza di 2400 baud, trasmettendo bits multipli per simbolo, permettendo traffico comunicazione Full Duplex².

Questi modem utilizzano 0 volts per trasmettere segnale logico 0 e 1 volt per segnale logico 1, con 1 bit per simbolo. Un avanzamento è usare quattro simboli differenti come attraversi QPSK, cosicché si abbia 2 bit/symbol e raggiungere una frequenza di trasmissione di 4800 bps.

Frequenze di trasmissione maggiori necessitano insiemi di simboli³ più ampi; ciò però significa anche che perfino una piccola quantità di rumore di fondo nel rilevamento di ampiezza o fase può produrre errori.

Prima dell'avvento delle connesioni 56k, il limite di bandwidth era di 35-kbps dovuto alla presenza di local loop alle estremità dell'infrastruttura di trasmissione, uno dalla parte degli end office (uffici di distribuzione locali dei servizi) e i Digital Subscriber.

L'approccio intrapreso per le connessioni 56-kbps, consiste nel rimuovere il local loop, tipicamente quello che lega ISP e l'end office più vicino, e sostituirlo con una linea di alta qualità e bandwidth.

Le linee telefoniche sono state progettate per trasmettere in analogico la voce umana $\,$

Ogni canale telefonico ha $4000\mathrm{Hz}^4$

1.5 Digital Subscriber Lines

Il motivo per cui i modem appena discussi erano lenti, è dovuto al limite tecnico della linea per il quale è stato ottimizzata tutto il sistema, ovvero per trasmettere la voce umana.

Nel punto in cui ogni local loop termina in un end office, il cavo è collegato ad un filtro che attenua ogni frequenza sotto i $300{\rm Hz}$ e sopra i $3400{\rm Hz}^6$.

Nel caso di una $xDSL^7$ il customer è collegato in un altro tipo di switch che non ha il filtro integrato, permettendo di utilizzare a pieno la capacità del local loop. Il fattore limitante rimane ora il local loop che supporta circa 1 MHz.

²usando frequenze differenti per direzioni differenti

³in gergo costellation

 $^{^4}$ per maggiori informazioni si guardi https://en.wikipedia.org/wiki/Voice $_f$ requencyV oiceF requencydicapacit \dot{a} , includendo