ŘADA B – PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XLI/1992 ●
V TOMTO SEŠITĚ
Hewlett-Packard se představuje 1
ELEKTROMOTORY A GENERÁTORY V PRAXI
Trojfázové asynchronní motory 3 Přehled vyráběných typů 5 Jednofázové asynchronní motory 5 Přehled vyráběných typů 7 Stejnosměrné motory 7 Přehled vyráběných typů 9 Střídavé komutátorové motory 9 Univerzální motory 9 Přehled vyráběných typů 10 Synchronní motory 11 Přehled vyráběných typů 11 Krokové motory 11 Speciální motory 11 Speciální motory 12 Generátory 12 Praktická zapojení Řízení rychlosti otáčení motorů, brzdění motorů, ochrana proti přetížení, měkký rozběh atd. 14 až 24 Připojení motorků k poháněným zařízením
Číslicové zpracování televizního sig- nálu v televizorech (dokončení z AR B6/91) 27
Zenerovy diody a tranzistory jako vy- hlazovací členy 29
Zajímavé integrované obvody 32
Niklokadmiové akumulátory se sln- trovanými elektrodami

AMATÉRSKÉ RADIO ŘADA B

Vydávatel: Vydavatelství MAGNET-PRESS, s. p., 135 66 Praha 1, Vladislavova 26, tel. 26 06 51. Redakce: 113 66 Praha 1, Jungmannova 24, tel. 26 06 51. Séfredaktor L. Kalousek, OK1FAC, linka 354, sekretariát linka 355.

inzerce .

354, sekretariát linka 355. Tiskne: Naše vojsko, tiskárna, závod 08, 160 05 Praha 6, Vlastina ulice č. 889/23. Rozšířuje Poštovní novinová služba a vydavatelství MAGNET-PRESS s. p., Objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelská střediska a administrace vydavatelství MAGNET-PRESS s. p., 113 66 Praha 1, Vladislavova 26, tel. 26 06 51-9. Pololetní předplatné 29,40 kčs. Objednávky do zahraničí vyřizuje ARTIA, a. s., Ve smečkách 30, 111 27 Praha 1. Inzercí přijímá osobně i poštou vvdavatelství MAGNET-

111 27 Praha 1.

Inzerci příjímá osobně i poštou vydavatelství MAGNET-PRESS, inzertní oddělení, Vladislavova 26, 113 66
Praha 1, tel. 26 06 51-9, linka 294.
Za původnost a správnost příspěvku odpovídá autor.
Nevyžádané rukopisy nevracíme.
Návštevy v redakci ve středu od 9 do 16 hodin.
ISSN 0139-7087, číslo indexu 46 044.
Toto číslo má vyjít podle plánu 24. 1. 1992.

© Vydavatelství MAGNET-PRESS 1991

HEWLETT

SE PŘEDSTAVUJE

Společnost Hewlett-Packard vyrábí a dodává elektronické zařízení a přístroje měřicí a výpočetní techniky pro průmysl, obchod, vědecká a výzkumná pracoviště, pro lékařské účely a školství, a to včetně počítačů a jejich periferních zařízení. Je to celkem více než dvanáct tisíc druhů výrobků od kapesních kalkulátorů až po počítáčové a telekomunikační systémy; jsou to moderní měřicí a zkušební přístroje, vybavené výpočetní technikou; lékařské přístroje a přístroje pro chemickou analýzu a veškeré potřebné doplňkové vybavení i speciální součástky.

HP je jedna z největších průmyslových společností v USA s ročním obratem přes třináct miliard dolarů a s čistým ziskem 739 miliónů dolarů v roce 1990. Více než polovinu prodeje tvoří zahraniční zakázky, z toho 2/3 evropské. Další trhy představuje Japonsko, Kanada, Austrálie, země Dálného východu a Latinské Ameriky. Co do objemu výroby se HP řadí mezi 35 největších amerických průmyslových společností a co do exportu k patnácti nejúspěšnějším.

Společnost zaměstnává asi 92 tisíc pracovníků, z toho 57 tisíc na 25 místech v USA; 20 tisíc zaměstnanců pracuje ve 24 zemích Evropy; z nich asi 7 tisíc ve výzkumu, vývoji a výrobě. Úspěchů, dokumentovaných uvedenými údaji, bylo dosaženo velmi dynamickým rozvojem za pět desetiletí.

Na počátku bylo přátelství dvou studentů elektrotechniky na Stanfordské univerzitě, kteří se díky společným zájmům velmi úzce sblížili během prázdninového pobytu v horách Colorada. Po absolvování školy se Dave Packard (na obr. 1 jako fotbalový reprezentant univerzity) a Bill Hewlett (na obr. 2 z doby své služby v armádě během druhé světové války) nakrátko odloučili. Zatím co Dave dosťal příležitost (tehdy pro absolventa vzácnou) pracovat u firmy General Electric, Bill pokračoval ve studiích ve Stanfordu a na proslulém Massachussetts Institut of Technology. Ve Stanfordu pak působil jako nezávislý výzkumný pracovník. Podařilo se mu vyvinout tónový generátor, dokonalejší a při-tom jednodušší ve srovnání s dosud známými přístroji.

Dave opustil své místo u GE, kam se již nikdy nevrátil, a spolu s Billem založili vlastní podnik s počátečním kapitálem 8538 dolarů. Uvedli na trh první výrobek, vzniklý v pronajaté garáži: tónový generátor typ 200A, bezkonkurenční technickými poznastva konkurenční technickými parametry a cenou 855 dolarů (mimochodem: typové číslo 200 bylo zvoleno proto, aby působilo dojmem, že nejde o první výrobek).

Objednávka na osm kusů navazujícího typu 200B od filmového studia Walta Disneye pro produkci stereofonního zvuku ("zahrály" si v tehdy úspěšném filmu Fantasia) významně zlepšila finanční situaci mladého podniku a pomohla ujasnit budoucí koncepci firmy - zaměřit se na výrobu velmi jakostních, progresívních elektronických přístrojů, které by mohly být vyráběny ve větších množstvích díky široké aplikaci v průmyslu

Během roku 1939 oba mladí podnikatelé vyvinuli a úspěšně uvedli na trh nové přístroje, mezi nimi i analyzátor. Již po prvním roce, v němž se skupinou spolupracovníků produkovali asi šest typů přístrojů, zatím co obě

Obr. 1. Dave Packard (v době studií)

manželky měly na starosti administrativu, mohli naimout a zařídit výrobní prostory. V roce 1942 postavili první vlastní budovu, v níž byly kanceláře, laboratoř, výrobní dílny a ve dvou směnách tam pracovalo sto zaměstnanců. Produkce toho roku dosáhla hodnoty jednoho miliónu dolarů.

Obr. 2. Bill Hewlett (40. léta)

Když Bill sloužil v armádě, vedl podnik Dave (později se vystřídali, když Dave pracoval pro ministerstvo obrany Spojených států). Během prvních let společné práce získali oba cenné poznatky v organizační práci a obchodní zkušenosti.

Po skončení války odbyt nakrátko poklesl, ale již v roce 1947 bylo nutno získat další

Obr. 3. John Young (president společnosti od r. 1977)

budovu. V roce 1948 byly uvedeny na trh první z úspěšných přístrojů HP pro měření v mikrovlnném pásmu.

Padesátá léta přinesla prudký rozvoj technologie v elektronice a oba vedoucí firmy se dokázali dobře orientovat v měnících se podmínkách. Přišli na trh např. s rychlým měřičem kmitočtu – čítačem a s nf funkčním generátorem, které měly velmi široké uplatnění v měřicí technice pro elektronický průmysl. V roce 1958 uvedli na trh jako první na světě vzorkovací osciloskop, předchůdce pozdějších jejich nejrozšířenějších výrobků.

Roku 1959 začala firma pronikat do Evropy: místem první výrobní pobočky bylo město Böbblingen v SRN. Tato léta byla nejen léty technologického a obchodního rozvoje, ale i obdobím, v němž se zdokonalovala operační filosofie firmy, a to jak směrem k trhu, tak ve vnitřní organizaci. Výchozí myšlenkou pro personální politiku bylo, že člověk chce dělat dobře a tvořivou práci, ale jen ve vhodném prostředí může plně uplatnit své schopnosti. Je nezbytné respektovat jeho individualitu, správně odhadnout jeho schopnosti a vytvořit z jedinců tým, spolupracující ke společnému cíli: tým schopný podat maximální výkon a pružně reagovat na měnicí se vnější podmínky. Tato (na naše poměry příliš idealistická) teorie se v praxi firmy plně osvědčila.

Šestá dekáda přinesla další rozšíření firmy doma i ve světě. Nové závody byly založeny v SRN, Velké Británii, ale i v Japonsku. Rozvoj si vynutil i určitou restrukturalizaci společnosti. Výroba byla podle sortimentu rozčleněna do čtyř skupin. K měřicím přistrojům a součástkám přibyly minikalkulátory a první stolní počítače "High-Tech", lékařské přístroje a přístroje pro chemickou analýzu. Světový úspěch měly v r. 1964 atomové hodiny, koordinující národní časové standardy s přesností jedné miliontiny sekundy. Významný americký časopis Fortune zařadil HP v r. 1962 do svého pravidelně uveřejňovaného žebříčku pěti set nejúspěšnějších amerických společností.

Sedmdesátá léta byla předznamenána velkou událostí - výstupem astronautů Aldrina a Armstronga na povrch Měsíce z kosmické lodi Apollo II. Na tomto úspěchu měly podíl i přístroje a součástky, vyráběné u firmy Hewlett-Packard. Ale již o rok později došlo k hospodářskému poklesu, na který firma, jejíž sklady se začaly nezdravě plnit, reagovala desetiprocentním snížením platů a pracovní doby zaměstnanců (včetně vedoucích pracovníků) téměř ve všech svých závodech po dobu asi jednoho roku. Vlivům nestabilních hospodářských podmínek se společnost rozhodla čelit nikoli např. získáním dlouhodobého úvěru nebo krátkodobě působícími opatřeními na trhu, ale perspektivním řešením: "utažením opasku", v tomto případě např. lepším řízením příjmů a výdajů, střízlivou mzdovou politikou a cílevědomou přípravou zaměstnanců na budoucí další úspěšný vývoj. Do vedení firmy byl jmenován John Young.

V roce 1976 překročila hodnota roční produkce úroveň jedné miliardy dolarů, na konci roku 1978 dosáhla dvou miliard.

K překonání ekonomických výkyvů napomohlo rychlé uvádění novinek na trh; např. v roce 1972 to byla první (na světě) vědecká kalkulačka HP-35.

Strategickým záměrem firmy v osmdesátých letech bylo stabilizovat získaný trend, dále posílit konkurenceschopnost na světovém trhu a zvýšit účinnost práce co nejefektivnějším uplatněním výpočetní techniky na výrobních linkách i v organizačních útvarech. Byly sledovány čtyři hlavní záměry:

Soustavně zlepšovat jakost výrobků. Byl např. vytýčen (a také splněn) cíl během deseti let zlepšit spolehlivost zařízení desetkrát. Kvalita se stala "ostře sledovaným" parametrem nejen ve výrobě, ale ve všech sektorech činnosti společnosti.

Zdokonalit strukturu výroby – tak, aby např. firma produkovala nejen špičkové jednotlivé výrobky pro výpočetní techniku, ale aby se dostala do čela dodavatelů systémů. S tím souvisela unifikace architektury produktů a další práce, k jejichž řízení byla vytvořena centrální laboratoř výpočetní techniky. V roce 1987 uvedla firma na trh

výrobky RISC-based Precision Architecture (nyní již existuje další zlepšená verze PA-RISC se zdokonaleným výběrem instrukcí).

Získat vedoucí postavení ve svém oboru ve světovém měřítku, a to především uváděním na trh takových výrobků, které představují významný technický pokrok oproti stávajícímu stavu.

Vytvořit svým pracovníkům takové podmínky, aby mohli pružně přizpůsobovat svou činnost technologickému pokroku a aby byli přesvědčeni o sounáležitosti svých zájmů se zájmy společnosti.

Na přelomu 80. a 90. let je rozložení výdajů společnosti asi toto: zhruba 52 % připadá na výrobu (a její podporu), 28 % na obchod, režii, zastoupení apod. a 10 % na vývoj. K tomu lze dodat, že více než 60 % produktů HP nebylo uvedeno na trh dříve než před třemi lety, což svědčí o velmi rychlém tempu inovace. Pokud jde o strukturu výroby, 1/3 výdajů připadá na měřicí a výpočetní techniku, další třetina na periferie počítačů a sítě, 1/5 na údržbu, servis a konzultační činnost, zbytek na lékařskou techniku a analytická zařízení.

Pro devadesátá léta se předpokládá další zvýšení aktivity společnosti v Evropě, kde je potřeba pomoci státům bývalého socialistického tábora zlepšiť úroveň techniky dodávkami nejmodrnějších zařízení. Do Československa byly dováženy výrobky HP již před více než dvaceti lety, i když v omezeném sortimentu; je zde tedy určitá tradice. V současné době už neplatí vývozní omezení.

Od 1. června loňského roku existuje u nás společnost Hewlett-Packard, spol s r.o., s kancelářemi v Praze a Bratislavě. Generálním ředitelem byl jmenován pan Franz Lorber. Adresy obou kanceláří jsou:

Hewlett-Packard Československo s.r.o., Novodvorská 82/803, P.O.Box 111, pošta 414, 142 00 Praha 4 (tel. 471 73 21, fax 471 76 11) a Hewlett-Packard Československo s.r.o., Polianky 5, 844 14 Bratislava (tel. 07/76 58 96, fax 07/76 34 08).

Elektromotory a generátory v praxi

Ing. Milan Ručka

Přístroje, které převádějí elektrickou energil na mechanickou, zůstávají dnes mimo hlavní pozornost zájmu, ačkoli právě tato zařízení znamenají největší přínos v náhradě lidské práce prací strojů. Elektrické motory a generátory nazýváme elektrickými stroji točivými. Patří sem i některé speciální stroje (např. kompenzátory a měniče). Přítom se jedná vždy o elektromechanickou přeměnu energie.

Točivé stroje se staly největšími mechanickými pomocníky v průmyslu a v domácnostech. Poslední objevy v elektronice a ve výpočetní technice rozhodně nenahradí tato zařízení, jak by se při pohledu do současných populárních časopisů a obsahů náplně většiny konferencí a přehledu publikací zdálo, ale naopak se stávají jejich nezbytnými doplňky. Nové objevy podporují ekonomické využívání motorů a generátorů a elektronika přináší nové možnosti do jejich funkce. Lze proto předpokládat, že přehled nejběžnějších elektrických točivých strojů a jejich vlastností spolu s přehledem používaných zapojení pomůže zájemcům při jejich člnnostl. Pozornost bude věnována vlastnostem dostupných motorů malých výkonů, řízení jejich rychlosti otáčení, pomocným obvodům a použltí těchto strojů v domácnostl, na chatě a v dílně.

Elektrické stroje točivé dělíme na asynchronní (indukční), synchronní a stejnosměrné komutátorové.

Nebude zde probírána teorie, konstrukce a varianty jednotlivých strojů. Bude vysvětlen jen princip činnosti, který je důležitý pro rozlišení jednotlivých typů strojů a dále vlastnosti, které je nutno znát vzhledem ke správnému použití strojů. Předpokládá se převážně použití běžných výrobků dostupných na našem trhu, popř. strojů, "vymontovaných" z vyřazených běžných elektrických spotřebičů. Bude uveden i přehled některých strojů vyráběných v ČSFR. V závěru je popsáno několik praktických zapojení motorů pro amatérské použití.

Trojfázové asynchronní motory

Tyto motory jsou nejrozšířenějším typem motorů s charakteristickým použitím u domácích vodáren, míchaček na beton, okružních pil a téměř u všech pracovních strojů v průmyslu.

Při rozebrání motoru lze zjistit, že pevnou (stabilní) část tvoří svazek plechů podobně jako u transformátoru, s vinutím umístěným v drážkách. Spolu s kostrou se nazývá tato část stator. Ve válcové dutině statoru se

volně otáčí válcový rotor, který je opět složen z plechů (obr. 1). Rotor má také vinutí, avšak odlišného provedení. V drážkách rotoru jsou masívní tyče, které jsou buď měděné, nebo odlité z hliníku. Tyto tyče jsou na čelech rotorů spojeny prstenci nakrátko a vinutí tvoří tzv. klec.

Obr. 1. Rotor asynchronního motoru (viz 3. str. obálky)

Stator a rotor odděluje vzduchová mezera šířky 0,3 až 0,4 mm. Čím je tato mezera menší, tím je motor z funkčního hlediska výkonnější a má lepší účinnost. Omezující pro velikost mezery jsou však možnosti výroby, vlastnosti ložisek, tepelná roztažnost materiálů a pružnost hřídele. Přitom je nutno uvažovat dlouhodobou spolehlivost motoru, neboť při nárazu roztočeného rotoru na stator se může celý motor zničit.

Vhodným zapojením vinutí statoru vzniknou magnetické póly (střídavě "sever" a "jih"), z nichž vycházejí magnetické silové čáry. Tyto silové čáry procházejí motorem a vracejí se zpět do magnetického obvodu statoru. Vytvoří-li vinutí statoru jednu pólovou dvojici, nazýváme jej dvojpólovým. Dvojic může být několik, např. 2, 3, 4 atd. Jde potom o motor 4, 6, 8 a vícepólový.

Rotor (někdy nazývaný kotva) nemá vyjádřené póly. Ty jsou vytvořeny magnetickým pólem statoru. Proto může být stejný nebo podobný rotor použit u motorů s různým počtem pólů.

Protože je statorové vinutí napájeno z trojfázové sítě (napětí jsou proti sobě posunuta o 120°), proudy jednotlivých fází následují časově rovnoměrně po sobě a jejich účinky se tedy cyklicky střídají. V motoru se vytvoří tzv. točivé magnetické pole, jehož působením na rotor vznikne točivý moment působící na hřídel motoru.

Vinutí statoru a rotoru nejsou vodivě spojena a energie se do vinutí rotoru přenáší pouze elektromagnetickou indukcí (podobně jako u transformátoru). Proto se nazývají tyto motory také indukční. Vyznačují se stabilní rychlostí otáčení, která je dána kmitočtem sítě a počtem pólových dvojic, jejich údržba je jednoduchá a jsou velmi spolehlivé. Patří k nejrozšířenějším typům motorů a používají se všude tam, kde je k dispozici trojfázová síť. Tam, kde je nutné řídit rychlošt otáčení, používají se jen výjimečně.

Rychlost otáčení točivého elektromagnetického pole uvnitř asynchronního motoru je dána vztahem kde n_s je synchronní rychlost magnetického točivého pole, tzv. synchronní otáčky (1/min.),

f kmitočet sítě (Hz),

P počet pólových dvojic statoru.

Dvojpólový motor má tedy prakticky při kmitočtu 50 Hz 3000 otáček za minutu, čtyř-pólový 1500 otáček za minutu. Ve skutečnosti se však rotor točí pomaleji a to o tzv. skluz. Na skluzu, tzn. na rozdílu mezi synchronními otáčkami (točivého pole) a otáčkami skutečnými (otáčkami rotoru) je v podstatě založena činnost asynchronního motoru. Velikost skluzu závisí zejména na odporu vinutí rotoru.

Pokud motor pracuje se zátěží, která odpovídá jmenovité velikosti, odpovídají otáčky motoru štítkovému údaji.

Skluz se udává v procentech a vypočte.se ze vztahu

$$s = (n_s - n)/n_s$$
. 100 %,

kde *n* jsou skutečné otáčky hřídele motoru změřené otáčkoměrem (1/min).

Spojením obou uvedených vztahů a dosazením za kmitočet sítě 50 Hz získáme nový vztah

$$s = 1 - pn/3000 \cdot 100\%$$

kde p je počet pólových dvojic.

Skluz u malých motorků bývá až 10 %. U velkých asynchronních motorů je podstatně menší (1 až 4 %).

U tohoto typu motorů lze snadno měnit směr otáčení záměnou libovolných přívodů ke statoru. V praxi se používá obvykle pomocný přepínač. Při změně směru otáčení (reverzace) je třeba nejdříve motor mechanicky zastavit odpojením síťového přívodu a potom se přepínačem zamění přívody dvou fází a pak teprve můžeme připojit síť. Pokud by se měnil směr otáčení při pohybujícím se rotoru, vzniknou velké proudové nárazy v síti. V určitých případech je možné reverzací motor brzdit. Používá se to často u obráběcích strojů. Přitom je však nutné při častěm brzdění kontrolovat teplotu vinutí motoru.

Trojfázové asynchronní motory mají mezinárodně normalizovanou svorkovnici, která je znázorněna na obr. 2. Součástí svorkovnice jsou tři spojky, které lze jednoduchým způsobem přemístit a využít tak obou zapojení motoru. Pokud použijeme přepínač

Obr. 2. Mezinárodně normalizovaná svorkovnice asynchronních motorů a její použití

hvězda/trojúhelník, potom je nutné spojky ze svorkovnice odstranit.

Spouštění asynchronních motorů

Motor při spouštění odebírá podstatně větší proud (záběrový), než je proud jmenovitý. Záběrový proud je tím větší, čím je větší motor a čím je motor více mechanicky zatížen (včetně setrvačných hmot). Motory do výkonu asi 3 kW se připojují obyčejným spínačem přímo k síti. Motory s větším výkonem lze připojovat jen k sítím, které to dovolují (např. průmyslové rozvody). Pro omezení záběrového proudu lze motory spouštět různými způsoby:

a) spouštění hvězda - trojúhelník. Je to vlastně spouštění menším napětím. Motory vhodné pro tento druh spouštění musí být vinuty na odpovídající napětí - podle ČSN jsou vhodné motory na napětí 380 V/660 V. Motory s výkonem nad 3 kW se pro tyto účely vyrábějí navinuté na 380 V při zapojení do trojúhelníku. Na svorkovnici není použito zkratovacích spojek, ale k přepínači je připojeno všech šest vývodů vinutí motoru. Přepínačem se při rozběhu zapojuje motor do hvězdy (tj. na vinutí na 660 V) a po rozběhu do trojúhelníku (tj. na vinutí na 380 V). Zapojení přepínače je na obr. 3. Někdy se používají pro samočinné přepnutí časové spínače.

Obr. 3. Zapojení přepínače hvězda–trojúhelník

Běžný motor pro napětí 380/220 V takto spouštět nelze!

Při provozu motoru v zapojení do hvězdy dává motor pouze třetinový výkon. Pokud tento výkon pro dané použití postačuje, je možné provozovat motor v tomto režimu trvale. Plného výkonu však motor dosáhne až po připojení vinutí do trojúhelníku;

 b) spouštění zmenšeným napětím. U tohoto způsobu se zapojují při rozběhu do přívodů k vinutí motoru rezistory, nebo se vinutí motoru připojují k odbočkám autotransformátoru. Lze také využít i tyristorových regulátorů atp.;

 c) spouštění s odlehčením mechanického zatížení (dříve se používaly speciální mechanické nebo elektromechanické spojky, dnes se takové mechanismy používají jen výjimečně);

d) spouštění s tzv. kroužkovou kotvou. U těchto motorů má rotor vinutí, jehož konce jsou vyvedeny přes kroužky a kartáče na rotorovou svorkovnici. K této svorkovnici se připojuje proměnný rezistor (spouštěč), který se při rozběhu postupně vyřazuje. Když motor dosáhne plných otáček (spouštěč je vyřazen), spojí se pomocí mechanismu kroužky nakrátko. Motor potom pracuje jako motor nakrátko. Dnes se tyto motory používají pouze pro větší výkony (asi od 20 kW), ale dříve bylo jejich používání obvyklé i pro mnohem menší výkony. Mají velmi výhodné vlastnosti, zejména plynulý rozběh i při velkých zatíženích setrvačnými hmotami a možnost řídit rychlost otáčení při značném záběrovém momentu. Nevýhodou je větší výrobní cena. Často je lze najít odložené a po opravě schopné provozu.

Motory pro "těžký" rozběh s odporovým vinutím kotvy mají větší rozběhový proud a snášejí delší dobu rozběhu. Používají se např. u velkých odstředivek a pro častou reverzaci směru otáčení. Mají větší skluz a vyskytují se zřídka.

Ú trojfázových asynchronních motorů existují různé speciální konstrukce. Motory mohou mít několik vinutí a umožňují měnit rychlost otáčení motoru přepínáním počtu pólů. Takové motory mají odlišné svorkovnice. Motory mohou být také přepínatelné pro různá síťová napětí přepínáním vinutí statoru.

Konstrukčně mohou být motory – a to se týká prakticky všech druhů motorů – v provedení patkovém nebo přírubovém podle mechanického způsobu upevnění, případně podle dalších hledisek v provedení těsném, nevýbušném atd. pro různé použití.

Poruchy asynchronních motorů

U některých druhů motorů, u nichž jsou všechna vinutí stejná, se lze vzájemným porovnáváním odporů vinutí snadno ohmmetrem přesvědčit, zda některé z vinutí není poškozené nebo zda nejsou vinutí elektricky zkratována navzájem nebo proti kostře motoru. Mezizávitové zkraty tímto způsobem nezjistíme – pokud se jedná o takové zkraty, které se neprojevují výrazným rozdílem odporu jednotlivých vinutí. Takto poškozený motor se projevuje nadměrným oteplením vinutí, zmenšeným výkonem a brumem. V případě pochybnosti je vhodné změřit impedanci jednotlivých vinutí při napájení střídavým proudem.

Nejjednodušší-je-měřit proud jednotlivých vinutí střídavým ampérmetrem, který postupně přepojujeme, přičemž motor na krátkou dobu připojujeme k síti, nebo používáme pro měření menší napětí. Ampérmetr musí být přepnut na větší rozsah, neboť proud procházející poškozenou částí vinutí může být podstatně větší, než je proud jmenovitý. U motorů nemusí být odpor v jednotlivých

fázích stejný (např. u motorů se soustřednými cívkami) – potom je nutno odpory vinutí znát, nebo je porovnávat se stejným motorem.

Běžné závady mechanického rázu u tohoto druhu motorů jsou: poškození ložiska, klece ložiska, prohnutí hřídele atd.

Je třeba poznamenat, že mnoho závad vznikne při neopatrném stahování nebo narážení řemenice. Při stahování řemenice páčením doide často u menších motorů k ohnutí hřídele. Důsledkem je zvětšené namáhání ložisek, která potom hlučí a značně se zkrátí doba jejich života. Motor není vyvážen a chvěje se. Při práci je nezbytné používat příslušný "stahovák". Při narážení řemenice nebo spojky je zase bezpodmínečně nutné podepřít druhý konec hřídele a vyloučit tak přenášení sil a rázů do ložisek. Velkou pozornost věnujeme nasouvání ložisek do ložiskových děr. To platí zejména u motorů vyrobených z hliníkových slitin. Ložisko se při nesouosém zasouvání snadno "zakousne" a použijeme-li násilí, způsobíme značné škodv.

Pro kuličková ložiska je nutno použít správný ložiskový tuk a nepřeplňovat je. Nevhodný tuk může ložisko poškodit chemicky a přeplněné ložisko se nadměrně ohřívá a tuk vytéká.

Poškození vinutí průrazem vinutí se nedoporučuje amatérsky opravovat, pokud se nejedná o zřejmé povrchové poškození. Převíjení vinutí motorku vyžaduje použít speciální přípravky a mít značnou zkušenost. Takovou opravu raději svěříme odborné dílně, pokud se nechceme dočkat zklamání po úmorné práci.

Jištění asynchronních motorů

Jištění asynchronních motorů je nutné, avšak není jednoduché. Zvlášť problematické je při použití tavných pojistek. Kdyby byla pojistka dimenzována na rozběhový proud, nebude motor chránit při částečném poškození vinutí nebo při přetížení motoru. Také při výpadku jedné fáze by taková pojistka nechránila motor před zvětšeným proudem, při kterém se vinutí motoru spolehlivě poškodí ("shoří").

Používají se proto tzv. zpožděné (motorové) pojistky, které dovolují, aby po určitou dobu jimi procházel větší proud a přetaví se teprve po delší době. Mnohem lepší a dnes téměř výhradně používané jsou motorové jističe (označované M), které se odlišují od běžných jističů provedením. Jmenovité velikosti veličin těchto jističů se volí podle jmenovitého proudu motoru, nebo u některých typů jističů lze potřebné hodnoty nastavit.

Řízení rychlosti otáčení asynchronních motorů

Řízení rychlosti otáčení asynchronních motorů není snadnou záležitostí. V malém rozpětí lze jejich rychlost otáčení řídit, ale velmi to závisí na velikosti motoru a zátěže.

Lze postupovat zhruba pěti způsoby:

- změnou počtu pólů,
- změnou kmitočtu napájecího napětí,
- změnou odporu ve vinutí rotoru u kroužkových motorů (viz rozběh kroužkového motoru),
- změnou skluzu mechanickým zatížením (jen u nejmenších motorků),
- změnou napájecího napětí ve speciálních případech.

Pro řízení rychlosti otáčení změnou počtu pólů lze použít pouze motory, které jsou pro tento účel navrženy; způsob změny rychlosti otáčení je konstrukcí jednoznačně určen. Tímto způsobem nelze řídit rychlost otáčení plynule.

Řízení rychlosti otáčení změnou kmitočtu napájecího napětí vyžaduje použít mechanický nebo elektronický trojfázový generátor s výstupním napětím pokud možno sinusového průběhu, s potřebným výkonem a s proměnným kmitočtem. Kmitočet tohoto generátoru musí být možno řídit nějakým jednoduchým způsobem, nejlépe změnou napětí. Takový obvod potom lze snadno zapojit do zpětné vazby s tachogenerátorem nebo ovládat elektronickými obvody. Zařízení je však značně složité a v amatérské praxi se používá výjimečně.

V jednoduchých případech lze zmenšovat rychlost otáčení u těchto motorů tak, že zmenšujeme jejich svorkové napětí buď pomocí trojfázového regulačního transformátoru plynule, nebo skokově přepínáním odboček na trojfázovém transformátoru. Jiným způsobem je zařazování odporů do jednotlivých fází nebo využívání transduktorových či tyristorových regulátorů. Vždy se však v těchto případech jedná o zvětšování skluzu motoru, neboť kmitočet síťového napětí zůstává zachován. Nelze tedy použít tyto způsoby řízení tam, kde požadujeme od motoru plný výkon ve větším rozsahu rychlostí otáčení, nebo tam, kde se mění zátěž motoru v průběhu času. Tento způsob se používá většinou u ventilátorů nebo čerpadel, u nichž motor pracuje se značnou rezervou výkonu.

Při všech uvedených způsobech regulace rychlosti otáčení trojfázových asynchronních motorů je však ještě nutno brát v úvahu, že tyto motory jsou konstruovány pro určitý kmitočet napájecího napětí a při změně kmitočtu nebo rychlosti otáčení hřídele se mění poměry v motoru a zmenšuje se jeho účinnost, stupeň chlazení atp. Musíme vzít v úvahu, že se mění impedance vinutí a že nesmíme překročit velikost proudu, na níž je vinutí dimenzováno. Při použití pomocného generátoru hrozí i nebezpečí zvětšení napětí na vinutích, které by mohlo způsobit průraz. Takovým zdrojem napájecího napětí lze i zvětšovat rychlost otáčení motoru nad jmenovitou velikost, ale nikoli příliš, protože se může prohnout hřídel a zničit motor.

Stručný přehled vyráběných asynchronních motorů

Je zajímavé, že v současné době právě asynchronní motory spotřebují přibližně 60 % veškeré vyrobené elektrické energie.

Většinu elektromotorů v ČSFR vyrábí ZSE Praha, který je zároveň jedním z největších výrobců elektromotorů v celé Evropě a ve výrobním programu má motory od několika wattů do 1 MW.

Menší motory se vyrábějí v podnicích MEZ Náchod, MEZ Mohelnice a motory větších výkonů v MEZ Frenštát, popř. MEZ Brno, Škoda, ČKD atd.

Z trojfázových motorů pro použití v domácnosti je to řada 4AP (MEZ Mohelnice) o výkonech v rozmezí od 200 W do 7,5 kW. Dodávají se pro standardní napětí 220, 380, 500 a 660 V na 50 i 60 Hz. Hlavními představiteli těchto motorů jsou:

a) přepínatelné motory ve všech kombinacích počtu pólů od 2 do 8,

Tab. 1. Řada motorů MEZ Mohelnice (z řady 3AP)

Stroje	Výkon [W]	Otáčky [1/min]	Hmotnost [kg]
dvoupólové	180 až 2200	2700 až 2850	4 až 15,5
čtyřpólové	120 až 1500	1350 až 1400	4 až 15,5
šestipólové	90 až 1100	890 až 910	4,5 až 15,5
osmipólové	40 až 750	665 až 690	4,5 až 15,5

Tab. 2. Elektrické asynchronní motory MEZ Náchod

Тур	Napětí [V]	Výkon [W]	Otáčky [1/min]	Hmotnost [kg]
T3C32 patk. (FT3C32 přír.)	380/220	40	2730	1,55
T3C34 (FT3C34)	380/220	10	1320	1,55
T3C62 (FT3C62)	380/220	60	2750	2,3
T3C64 (FT3C64)	380/220	16	1350	2,3
T3C82 (FT3C82)	380/220	90	2770	2,6
T3C84 (FT3C84)	380/220	25	1370	2,6

b) speciální přepínatelné motory pro pohon ventilátorů s přepínáním počtu pólů 4/2, 8/4 a 12/6

 c) motory s vestavěnou elektromagnetickou brzdou.

Řada 4AP nahrazuje dřívější řady 2AP a 3AP. Přehled jednotlivých typů, které se v současné době vyrábějí, a které se vyráběly v minulosti, by zabral podstatnou část této publikace. Podrobnější informace lze najít v katalozích uvedených výrobců. K využití motorů většinou postačují štítkové údaje, uvedené na motoru.

Pro informaci uveďme, že např. řada 3AP se vyrábí v rozsazích podle tab. 1.

Na malé elektrické točivé stroje se také specializuje MEZ Náchod. Nejběžněji používané jsou trojfázové asynchronní motory s kotvou nakrátko s oběma směry otáčení a libovolnou pracovní polohou řady T3C a FT3C podle tab. 2.

Jednofázové asynchronní motory

O těchto motorech platí mnohé z toho, co bylo napsáno o motorech trojfázových. Jednofázové asynchronní motory se většinou připojují na jednofázovou síť 220 V. V domácnosti nacházejí uplatnění u ventilátorů, čerpadel, praček, odstředivek, sekaček na trávu apod., všude tam, kde není k dispozici trojfázová síť. Jejich použití je limitováno výkonem asi 1500 W.

Jednofázová síť neumožňuje vytvořit točivé elektromagnetické pole v motoru a proto je u těchto motorů hlavním problémem jejich rozběh ve správném směru otáčení. V minulosti vznikla celá řada principů, obvykle patentovaných, které tento problém řešily. Šlo hlavně o to, jak dosáhnout potřebného záběrového momentu pro rozběh.

Některé konstrukce byly tečhnicky pozoruhodné a dosahovalo se vynikajících záběrových momentů. Např. to byly motory s vinutým rotorem, které se rozebíhaly jako repulsní, tj. po rozběhu se automaticky spojilo vinutí nakrátko a motor dále běžel jako asynchronní. Jiné motory mají tzv. pomocnou fázi s kondenzátorem s velkou kapacitou, který se po rozběhu automaticky odpojí odstředivým vypínačem. Společným nedostatkem všech těchto motorů byla vyšší cena a menší spolehlivost. Dnes se již vyrábějí výjimečně.

Řešením problému je zmenšit nároky na rozběhový moment. Např. u chladniček pro domácnost staršího typu se vesměs používaly jednofázové motory s "kondenzátorovým" rozběhem, kondenzátor se odpojoval odstředivým vypínačem. Dnes mají chladničky zapouzdřený motor spolu s kompresorem. Motor má nejčastěji odporové rozběhové vinutí (fázi) odpojované proudovým relé.

Podle způsobu, jakým je zajištěn rozběh, lze dnes jednofázové asynchronní motory rozdělit do čtyř hlavních skupin, které také určují jejich vlastnosti a tedy i použití:

- a. Asynchronní motory s tzv. stíněným pólem. Jsou to indukční motory s rotorem nakrátko a s vyniklými póly na statoru. Část magnetického toku v mezeře mezi pólovými nástavci je prostorově posunuta proti toku hlavnímu pomocí jednoho nebo několika závitů nakrátko. Tím vznikne eliptické točivé pole, které roztočí motor. Tyto motory mají jeden smysl otáčení.
- b. Asynchronní motory s pomocným odporovým vinutím (fází). U těchto motorů je kromě hlavního vinutí na statoru ještě pomocné vinutí se zvětšeným odporem, které se po rozběhu motoru odpojí odstředivým, časovým nebo proudovým spínačem. Tyto motory mají menší záběrový moment než motory trojfázové a nehodí se tam, kde vyžadujeme velký moment při všech rychlostech otáčení, nebo tam, kde dochází k přetížení a motor je zatěžován tak, že se jeho rychlost otáčení zmenšuje např. pod velikost, při níž spíná rozběhový kontakt. Pomocné vinutí není dimenzováno na takový provoz a motor by se mohl přehřát a tím porušit, popř. zničit.

c. Asynchronní motory s kondenzátorem v rozběhovém vinutí (fázi). Tyto motory mají velmi dobrý záběrový moment a jsou schopné rozběhu se setrvačníkem na hřídeli, s jehož pomocí motor překonává značné rozdíly zatížení v průběhu otáčky. Jsou vhodné pro pohon kompresorů a tam, kde nevyhoví uspořádání s odporovou fází. Pomocná fáze s kondenzátorem je připojena opět pomocí vypínače a trvá zde také nebezpečí přehřátí vinutí při přetížení.

Je třeba poznamenat, že pro tento druh rozběhu se používají speciální elektrolytické kondenzátory na střídavý proud s kapacitou 100 μF a větší, které jsou určeny pouze pro krátkodobý provoz.

d. Asynchronní motory s trvale připoieným kondenzátorem bez vypínače. Kondenzátor má mnohanásobně menší kapacitu než v předchozím provedení. Jejich rozběhový moment je malý, ale celková momentová charakteristika i účinnost je lepší než u ostatních jednofázových motorů. Používají se pro pohony ventilátorů, u rotačních čerpadel malých výkonů, v odstředivkách a tam, kde se motor rozbíhá bez zatížení, např. u rotačních sekaček na trávu, okružních pil apod. Není vhodné tyto motory provozovat zcela odlehčené, neboť v tom případě vzniká na kondenzátoru větší napětí než je síťové a hrozí nebezpečí průrazu kondenzátoru. I v případě, že použijeme kondenzátor na podstatně větší napětí než je napětí sítě, je větším napětím namáhána izolace vinutí. Motor je nutno zatížit alespoň třecími odpory řemenice nebo dynamickým odporem ventilátoru či pily. Kondenzátory volíme na podstatně větší napětí než je provozní, zejména pokud motor využíváme všestranněji.

Tyto motory se používají nejvíce. Umožňují i řídit rychlost otáčení v určitém rozsahu regulačním tranzistorem, proměnným odporem nebo polovodičovým regulátorem napětí. Podmínkou je však stálé zatížení téměř konstantním momentem v celém rozsahu rychlosti otáčení – toho lze využít u některých ventilátorů a rotačních čerpadel. Protože jsou vinutí využívána trvale, lze při správném návrhu dosáhnout u těchto motorů výkonů, přibližujících se výkonům trojfázových motorů podobných rozměrů.

Trojfázový motor na jednofázové síti

Speciálním případem je použití trojfázového asynchronního motoru s trvale připojeným pomocným kondenzátorem na jednofázové síti.

Motor, konstruovaný na napětí 220/380 V, se v tomto případě provozuje v zapojení do trojúhelníku pro síťové napětí 220 V. Síť připojíme mezi krajní svorky a kondenzátor o kapacitě 50 až 70 mikrofaradů na 1 kW jmenovitého výkonu motoru je připojen mezi střední svorku a jednu z krajních svorek (nejobvyklejší způsob). Tento kondenzátor lze doplnit pro snadný rozběh krátkodobě připojeným paralelním kondenzátorem, např. přes pomocné tlačítko, dvoupolohový speciální spínač, odstředivý nebo časový spínač. Paralelní kondenzátor mívá podstatně větší kapacitu a může to být rozběhový elektrolytický kondenzátor.

Poruchy tohoto druhu motorů

U jednofázových asynchronních motorů platí pro jednotlivé poruchy totéž, co bylo popsáno pro motory trojfázové. Nejčastěji bývá poškozeno rozběhové vinutí, neboť je dimenzováno na menší příkon než vinutí hlavní. Pokud je motor vybaven odstředivým vypínačem, potom nejdříve hledáme závadu v něm, neboť může mít opálené kontakty nebo nepohyblivý mechanismus.

Při posuzování poruchy vinutí zde nemáme možnost porovnávat odpory vinutí hlavní a rozběhové fáze. Pro posouzení, zda nedošlo k průrazu vinutí, je nutno velikosti odporů nebo lépe impedancí hlavního a rozběhového vinutí porovnat se stejným motorem, u něhož se závada nevyskytuje. Výrobce však tyto údaje obvykle neudává.

Stručný přehled vyráběných jednofázových asynchronních motorů

MEZ Náchod vyrábí jednofázové asynchronní motorky se stíněným pólem, uvedené v tab. 3.

MEZ Náchod vyrábí také malé jednofázové asynchronní motory s rotorem nakrátko řady CT4C, FCT4C, CJ4C, FCJ4C - výkony motorů jsou 60 W a 40 W (dvoupólové), 16 W a 10 W (čtyřpólové) a řady CJ28, FCJ2B s výkonem 8 W (dvoupólové). Do 30 minut je lze zatěžovat 30 W. Provedení je patkové nebo přírubové. Motory jsou s trvale připojeným kondenzátorem. Dále zde vyrábělí asvnchronní jednofázové motory s tzv. stíněným pólem. Reprezentanty této skupiny jsou čtyřpólové motory UA7F, určené pro pohon ventilátorů. Musí být trvale v proudu chladicího vzduchu. Jejich výkon je 3 W, 6 W a 11 W. Řada A24N je určena pro pohon ventilátorů tepelných spotřebičů a čerpadel špinavé vody v automatických pračkách.

Motorky se stíněným pólem jsou nejlevnější a nejjednodušší jednofázové motorky vůbec. Některá provedení mají vyjádřené póly a jen dvě, nebo dokonce jen jednu cívku. Často jsou přepínatelné na dva druhy napětí. Vesměs mají kluzná ložiska a nehlučný chod. Přesto, že tato ložiska jsou označována jako "samomazná", je vhodné občas je přimazat olejem, obzvláště když pracují v horkém prostředí. Donedávna se jich používalo např. pro pohon gramofonů.

K pohonu magnetofonů a zařízení, která pro dosažení rovnoměrnosti chodu vyžadují velký moment setrvačnosti rotoru, vyrábí MEZ Náchod jednofázový asynchronní motorek J 22 SF 113 s vnějším rotorem. Motorek musí být vestavěn do zařízení tak, aby byl chráněn proti možnosti doteku na otáčející se rotor a je určen pro činnost se svislou polohou rotoru. Na volný konec hřídele je nutno pro správnou funkci připevnit větrák, který tlačí chladný vzduch přes motorek. Jmenovitý výkon je 3 W, jmenovitý příkon max. 19 W, napětí 120 V. Kmitočet 50 Hz, otáčky 2750 1/min, jmenovitý moment 0,01167 Nm. Směr otáčení libovolný. Kapacita kondenzátoru je 4 μF.

Dalším z asynchronních motorků s trvale připojeným kondenzátorem a s vnějším rotorem od téhož výrobce je z řady JV motorek typu J 42 VO 101. Má oba směry točení, napájení 220 V a 50 Hz, příkon 60 W, hmotnost 2,70 kg a otáčky jsou 1390 1/min. Pracovní poloha je svislá.

MEZ Náchod vyrábí dále jednofázové asynchronní motorky s trvale připojeným kondenzátorem typu SCT2C, CJ3C, CT3C, CJ4C a CT4C. Jsou patkového provedení pro univerzální účely. Směr otáčení se mění jednoduchým přepínačem a motor má jednostranně vyveden hřídel o průměru 8,6 mm. Vyráběné druhy jsou uvedeny v tab.

Tab. 3. Jednofázové asynchronní motorky se stíněným pólem MEZ Náchod

Тур	Napětí [V]	Příkon [W]	Výkon [W]	Otáčky [1/min]	Hmotnost [kg]
A24KJ140	110, 120, 127, 220, 237 směr točení v	8 pravo, pracovn	0,25 í poloha (hřídel	2650 e) svislá	0,5
A24MF103	220 směr točení v	14 pravo, pracovn	í poloha vodoro	2200 ovná	0,3
A24MF129	220/120 směr točení v	13/16 pravo, pracovn	í poloha libovol	2450 ná	0,3
A24MF115	220 směr točení v	pravo, pracovn	1 í poloha libovol	2400 ná	0,3
A24NL131	220 směr točení v	pravo, pracovn	7 í poloha libovol		0,9
VA5C32B	220/120 směr točení v	42 pravo, pracovn	5 í poloha svislá	2500	0,56
UA6F24D UA6F64D UA6F84D	220 (120) 220 (120) 220 (110) směr točení v	19 40 50 levo, pracovní	poloha libovoln	1400 1390 1370 á	1,3 1,5 1,8
UA6F24A UA6F64A UA6F84A UA7F54K	220 220 220 220 220 směr točení v	20 40 75 95 elevo, pracovní	poloha vodorov	1360 1420 1300 1300 rná	2,1 2,4 2,8
A44SE123	220/120 směr točení v	35 pravo, pracovn	í poloha svislá	1400	1,0

Tab. 4. Jednofázové asynchronní motory MEZ Náchod

Тур	Výkon	Napětí	Kmitočet	Otáčky	Hmotnost
	[W]	[V]	[Hz]	[1/min]	[kg]
SCT2C32	10	220	50	3000	1,70
SCT2C62	16	220	50	3000	2,30
SCT2C82	25	220	50	3000	2,75
FSCT2C32	10	220	50	3000	1,55
FSCT2C62	16	220	50	3000	2,15
FSCT2C82	25	220	50	3000	2,60
CJ3C32	25	220	50	2750	1,70
CJ3C62	40	220	50	2800	2,30
CJ3C82	60	220	50	2800	2,75
FCJ3C32	25	220	50	2750	1,55
FCJ3C62	40	220	50	2800	2,15
FCJ3C82	60	220	50	2800	2,60
CT3C64	6	220	50	1300	1,70
CT3C84	10	220	50	1330	2,30
CT3C34	16	220	50	1360	2,75
FCT3C34	6	220	50	1300	1,55
FCT3C64	10	220	50	1330	2,15
FCT3C84	16	220	50	1360	2,60
CJ4C32 CJ4C52 CT4C34 CT4C54	10 60 10 16	220 220 220 220 220	50 50 50 50	2770 2770 1370 1370	2,30 2,90 2,00 2,25

Motorky mají oba směry otáčení a libovolnou pracovní polohu.

Z typové řady CJB jsou vyráběny dále jednofázové asynchronní motorky s trvale připojeným kondenzátorem pro univerzální použití (tab. 5).

-- Tab. 5. Jednofázové asynchronní motorky MEZ Náchod řady CJB

Тур	Vý- kon [W]	tí	Kmito- čet [Hz]		Hmot- nost [kg]
CJaB52G	6	220	50	2650	0,90
CJBd52P	15	220	50	2750	

První typ je patkový se směrem otáčení vlevo, druhý typ je přírubový s oběma směry otáčení. Pracovní poloha hřídele je vodorovná

Stejnosměrné motory

Tyto motory lze jako jediné napájet stejnosměrným napětím bez dalších pomocných obvodů. Mezi hlavní výhody patří relativně malá hmotnost vztažená k jednotce výkonu (daná velkými rychlostmi otáčení těchto motorů) a snadná regulace otáček elektronickými obvody. Hlavní nevýhodou je mechanický komutátor, který je výrobně poměrně složitý, je zdrojem značného vysokofrekvenčního rušení a je poruchový. Používají se zejména tam, kde je k dispozici stejnosměrné napětí. Jsou to palubní sítě letadel, automobilů a lodí, dále zálohované zdroje trvalých provozů, přenosné stroje a přístroje atd.

Důležitou a rozlišující částí (vzhledem k asynchronním motorům) je u stejnosměrných motorů komutátor (někdy nesprávně nazývaný kolektor) a kartáče (nesprávně uhlíky). Komutátor podmiňuje funkci těchto motorů.

Na obr. 4 je znázorněn vznik točivého momentu motoru. Mezi póly statoru a rotoru

působí magnetické pole. Vodiči ve vinutí motoru protéká proud a v magnetickém poli na tyto vodiče působí síla podle známého vztahu

$$F = B I I \sin \alpha$$

kde F je síla [N],

B magnetická indukce [Vs/m],

/ proud, protékající vodičem [A],

délka vodiče [m],

 ά úhel mezi vodičem a magnetickým polem.

Prostřednictvím komutátoru protéká elektrický proud pouze tou částí vinutí, která se nachází ve střední části mezi pólovými nástavci statoru. Působením síly se stator pootočí a komutátor přepne proud do sousední části vinutí. To se neustále opakuje. K rovnoměrnému otáčení rotoru přispívá setrvačnost a správné prostorové rozložení částí vinutí rotoru a segmentů komutátoru.

Jednotlivá vinutí se přepínají mechanickým komutátorem. Existují sice motory podobných vlastností, u nichž je komutace zabezpečena elektronicky, avšak tyto motory nejsou dosud běžné a nebudeme se jimi zabývat.

Komutátor se skládá z měděných lamel, obvykle tvaru povrchu válcových výsečí, vzájemně izolovaných a upevněných na hřídeli motorku, s níž se otáčí. Na lamely jsou připojeny vývody cívek rotorového vinutí. Na komutátor dosedají grafitové kartáče, které se nepohybují, ale po segmentech komutá-

Obr. 5. Funkce komutátoru

Uvedený motorek má však značnou nevýhodu. Z tzv. "mrtvé polohy" se sám neroztočí. Další úpravou rotoru tomu lze jednoduše odpomoci tím, že se použije větší množství pólů a segmentů komutátoru. Přepínání bude zajištěno vždy v té poloze, která poskytuje potřebný točivý moment. Na obr. 6 je

Obr. 6. Rotor s vinutími na šesti pólech

naznačen šestipólový rotor. Komutátor má šest lamel a dva kartáče. Vidíme, že pólové nástavce a-a jsou aktivní a blíží se do polohy, v níž se mění polarita. Po pootočení hřídele o určitý úhel budou pólovány jako nástavce b-b. Aktivní budou opět pólové nástavce c-c. Tato soustava se bude plynule otáčet a rozeběhne se z každé polohy. Na tomto obrázku má každý pól rotoru svoje vinutí. Je patrné, že polovina pólů vzájemně sousedících má vždy stejnou polaritu. Vinutí je tedy možno realizovat jako společné podle obr. 7. Cívka se umístí do protilehlých drá-

Obr. 7. Společné vinutí cívek rotoru

žek. Další cívka bude v následujících dvou drážkách a třetí cívka ve třetí dvojici drážek. Komutátor zapíná postupně vždy další cívku. Toto uspořádání se již blíží skutečnému provedení. Skutečné vinutí je složitější, je znázorněno na obr. 8.

Stator motoru je z měkké oceli, pólové nástavce jsou ke kostře, která je součástí magnetického obvodu, přišroubovány (obr.

Obr. 4. Vznik točivého momentu motoru

toru kloužou. Jejich prostřednictvím je do cívek rotoru přiváděn elektrický proud. Funkce je zřejmá z obr. 5, na němž je znázorněn nejjednodušší komutátor motorku pro hračkv.

Obr. 8. Skutečné provedení vinutí u stejnosměrného motoru (viz 3. str. obálky)

Obr. 9. Vinutí statoru stejnosměrného moto-

9). V jiném provedení je stator tvořen svazkem plechů (jako u transformátoru) a do kostry motoru je nalisován.

Vinutí statoru je umístěno přímo na pólových nastavcích.

Vinutí rotoru je umístěno v drážkách, jejichž počet je různý podle velikosti stroje a vzhledem k dalším konstrukčním i funkčním vlastnostem. Komutátor je na hřídeli nalisován.

Kartáče jsou vetleny v držácích, které musí být správně úhlově umístěny a někdy umožňují radiální natáčení, aby bylo možné při chodu motorku nastavit jejich optimální polohu s ohledem na správnou komutaci. Komutátor musí splňovat tyto požadavky:

- a. Musí přivádět do vinutí kotvy proud. Podle velikosti tohoto proudu se zvolí rozměry kartáčů, jejich druh a přítlačná síla. Pro stroje s malým napětím a velkými proudy se užívají měkké grafitové kartáče o malé rezistivitě. V některých případech obsahují kartáče bronzový prach pro zvětšení vodivosti, např. u startérů automobilů.
- b. Musí respektovat napěťové poměry na rotoru. Pro velká napětí je nutno použít kartáče z materiálu o velké rezistivitě, které se vyrábějí z elektrografitu. Jsou podstatně tvrdší, zvláště pro stroje s velkými rychlostmi otáčení. Důvodem pro použití kartáčů s velkou rezistivitou je především nutnost omezit jiskření, které je tím větší, čím je větší použité napětí. Kartáče při provozu motoru dosedají současně na několik lamel komutátoru. Mezi lamelami jsou připojeny vždy části vinutí rotoru, které jsou kartáčem zkratovány. Tvoří obvod, ve kterém vzniká zkratový proud. Při rozpojení takového místa vzniká značně velké napětí, projevující se krátkým elektrickým obloukem na hraně kartáče. Aby se tento zkratový proud mezi lamelami zmenšil, zařazují se do obvodu odpory, tvořené materiálem kartáče. Tím se jiskření podstatně omezí.
- c. Kartáče musí mít vyhovující kluzné vlastnosti. Je samozřejmé, že komutátor musí být bezvadně mechanicky proveden a udržován v dobrém stavu. Ohledů na mechanickou a elektrickou funkci je celá řada a někdy jsou ve vzájemném protikladu. Například pro dobrý kontakt by měla být co největší přítlačná síla, která by však byla příčinou rychlého opotřebení (poškození) komutátoru a mechanických ztrát v motoru.

Dobře vodivý kartáč bývá zase měkký a způsobuje značné prášení.

Při výměně kartáčů se řídíme těmito zásadami:

- a. Používáme kartáče předepsané výrobcem motoru. Při výměně dáváme pozor na jejich označení. Není-li složení či označení známo, použijeme kartáče pro motor stejných nebo podobných parametrů, jako je opravovaný. Nikdy nepoužijeme uhlíky např. z baterie nebo z jiných zařízení. Tím bychom komutátor brzy spolehlivě zničili. Kartáč je nutno zabrousit podle tvaru komutátoru.
- b. Kontrolujeme, pohybuje-li se lehce kartáč v držáku a vyvozuje-li pružina dostatečný tlak. Kartáč nesmí být v držáku příliš volný.
- c. Kartáče vyměňujeme včas. Opotřebením kartáče se zmenšuje přítlačná síla pružiny.
- d. Přítlačnou sílu nezmenšujeme ve snaze zmenšit mechanické ztráty.
- e. Udržujeme bezvadný stav komutátoru. "Vydřený" komutátor nespravujeme smirkovým plátnem. To nejraději nepoužíváme vůbec. Častou chybou při soustružení komutátoru je špatné mechanické upnutí rotoru, který při soustružení hází. Rotor soustružíme vždy upnutý v hrotech.
- **f.** Vyčnívající slídu mezi lamelami vyškrabeme ubroušenou pilkou na kov. Přitom nesmíme poškodit hrany lamel.
- g. Nesnažíme se, aby povrch kolektoru byl kovově lesklý. Právě naopak. Optimální kluzné vlastnosti má komutátor až tehdy, vznikne-li na jeho povrchu šedomodrý povlak. K tomu je zapotřebí, aby byl v provozu dostatečně ohřátý a aby byla přítomna vzdušná vlhkost a aby měl kartáč odpovídající jakost. V případech, kdy uvedený povlak na komutátoru špatně vzniká (např. v letadlech vlivem malé vlhkosti vzduchu), se kartáče chemicky ošetřují pro vznik potřebné vrstvy.

Na obr. 10 je nejběžněji používaný komutátor, na obr. 11 rotor s komutátorem a na obr. 12 je komutátor čelního provedení z malého motorku pro kazetový magnetofon.

Obr. 10. Nejběžněji používaný komutátor (viz 3. str. obálky)

Obr. 11. Rotor stejnosměrného motoru s komutátorem (viz 3. str. obálky)

Obr. 12. Čelní provedení komutátoru (a) a kartáče pro čelní provedení komutátoru (b) (viz 3 str. obálky)

Obr. 13. Druhy stejnosměrných motorů

Druhy stejnosměrných motorů

Stejnosměrné motory se liší vzájemným propojením vinutí statoru a rotoru a také konstrukčním uspořádáním.

Podle zapojení budicího vinutí (buzení) se dělí motory na motory s buzením: sériovým (obr. 13a), paralelním (derivačním, obr. 13b), kompaudním (obr. 13c).

Zvláštní typ představuje motor s trvalými (permanentními) magnety (obr. 13d).

Základní vlastnosti stejnosměrných motorů

Točivý moment je důsledkem vzájemného působení magnetického pole rotoru a statoru. Tato pole jsou závislá na velikosti proudů, které protékají vinutími. Točivý moment závisí na součinu proudu procházejícího vinutím rotoru a magnetického toku statoru.

Při spouštění motoru je činný odpor vinutí malý. Proto při připnutí motoru k síti odebírá motor velký proud a často se musí používat speciální spouštěče. Po roztočení rotoru se uvnitř magnetického pole statoru (v rotoru) vytváří opačná elektromotorická síla podobně iako v dvnamu a tato elektromotorická síla naopak působí proti elektromotorické síle motoru. Čím je rychlost otáčení motoru větší, tím je indukované napětí větší (je také přímo úměrné velikosti magnetického pole statoru). Výsledné napětí na vinutí rotoru je dáno rozdílem všech elektromotorických sil a určuje výsledný proud procházející rotorem, což má praktické důsledky na provoz a vlastnosti motoru.

Stejnosměrný motor se sérlovým buzením

Po připojení tohoto motoru k síti prochází proud rotoru také budicím vinutím statoru. Záběrný moment takového motoru je veliký. Odpor vinutí statoru je malý a proto je na rotoru téměř celé napětí zdroje. Po rozběhu se zvětšuje napětí indukované v rotoru a napětí na jeho vinutí se zmenšuje. Zmenšuje se celkový proud procházející motorem a také jeho točivý moment. Se zvětšující se rychlostí otáčení se zmenšuje i magnetické pole statoru. Přesto, že se rychlost otáčení zvětšuje, zmenšuje se napětí indukované v rotoru, což má za důsledek další zvětšování rychlosti otáčení. Není-li motor zatížen, může se rychlost otáčení zvětšit na nebezpečnou velikost a ohrozit mechanickou pevnost rotoru. Po zatížení motoru se proud do motoru rychle zvětšuje, zvětšuje se magnetické pole statoru a rychlost otáčení se zmenšuje. Stejnosměrný motor se sériovým buzením se svými vlastnostmi hodí tam, kde požadujeme velký záběrný moment při rozběhu, avšak kde současně po rozběhu vyhovuje rychlost otáčení závislá na zátěži.

Stejnosměrný motor s paralelním buzením (derivační motor)

Po připojení stojícího motoru k napájecímu napětí dosáhne magnetické pole statoru okamžitě maximální velikosti a bude po celou dobu stálé v celém rozsahu rychlostí otáčení. V kotvě se rychle s rychlostí otáčení zvětšuje indukované napětí, takže se rychle zmenšuje proud i točivý moment. Když dosáhne indukované napětí téměř velikosti napájecího napětí, rychlost otáčení se ustálí.

Rozdíl bude dán jen úbytkem napětí na odporu vinutí kotvy, způsobeným proudem protékajícím tímto vinutím. Úbytek je však malý, protože i odpor vinutí je malý.

Protože je magnetické pole statoru stálé, zmenšuje se vlivem zatížení málo i indukované napětí a rychlost otáčení motoru se málo mění se zatížením. Motor s paralelním buzením má tedy značně stabilní "otáčky" a tato přednost jej předurčuje k použití u strojů s proměnným zatížením, u servomechanismů apod.

Protože rychlost otáčení u těchto motorů závisí na velikosti magnetického pole statoru a na napětí indukovaném v kotvě, lze ji řídit buď změnou napětí na kotvě nebo změnou napětí na statoru. Při zmenšování magnetického pole statoru se rychlost otáčení motoru zvětšuje a naopak. Tohoto způsobu regulace se používá méně často než regulace změnou napětí na kotvě a pouze v rozsahu otáček asi 1:3.

Stejnosměrný motor s cizím buzením

Tento druh motorů má oddělené statorové vinutí, které je napájeno z vlastního zdroje proudu. Vlastní magnetické pole statoru je tedy zcela nezávislé na rychlosti otáčení motoru. Vlastnosti motorů jsou prakticky shodné s vlastnostmi motorů, které mají sériové buzení.

Stejnosměrný motor s trvalými magnety

Použijí-li se ve statoru k získání magnetického pole trvalé magnety, odpadne vinutí statoru. Vlastnostmi tento motor odpovídá motoru s paralelním buzením. Výhodou je jednodušší zapojení, lepší účinnost a snadná změna směru otáčení záměnou přívodů k motoru. Trvalé (permanentní) magnety se používají u menších motorů a motorků pro hračky.

Stejnosměrný motor s kompaudním buzením

Z dosud uvedených popisů vlastností jednotlivých typů motorů snadno dojdeme k myšlence spojit vlastnosti sériového a paralelního motoru a získat tak motor s charakteristikou vyhovující konkrétní aplikaci. Může převládat velký záběrný moment jako u motoru se sériovým buzením, nebo může mít motor stabilní rychlost otáčení jako u motorů s paralelním buzením.

Požadovaných vlastností se dosahuje poměrem závitů vinutí sériového či paralelního buzení a vlastnosti motoru je možné měnit i zařazováním rezistorů do jednotlivých vinutí nebo přepínáním částí vinutí.

Střídavé komutátorové motory

Pokud komutátorové motory nemají trvalé magnety ve statoru, avšak jsou buzeny do statorového vinutí, nezávisí směr otáčení na polaritě připojeného napětí. Při změně polarity se totiž změní jak magnetické pole statoru, tak i magnetické pole rotoru a smysl působení vzájemného točivého momentu zůstane zachován.

Tyto motory mohou tedy z principu pracovat se střídavým proudem, pokud jsou jejich magnetické obvody vyrobeny z materiálu, který střídavému magnetickému provozu vy-

hovuje. Magnetické pole kotvy i statoru musí být ve fázi. Protože je magnetické pole závislé na proudu, který protéká vinutím, zapojuje se vinutí motorů pro provoz se střídavým proudem zásadně do série. Mají tedy vlastnosti motorů se sériovým buzením.

Těchto motorů se využívá u většiny domácích spotřebičů. Mají obvykle velké rychlosti otáčení, často větší než 10 000 ot/min (otáčky > 10⁴ 1/min). Při malé hmotnosti a rozměrech se dosahuje značných výkonů. Moderní vysavače prachu mají výkon větší než 800 W a podobné výkony mají i ruční elektrické vrtačky. Jedná se o velmi namáhané stroje a nejsou většinou určeny pro trvalé zatížení. Jejich doba života je kratší než u jiných druhů motorů.

Značné potíže činí odrušení těchto motorů vzhledem k rozhlasovému a televiznímu přijímači a značný hluk při provozu. Motory se vyrábějí zásadně dvoupólové. Rotor mívá jednotlivé cívky dále dělené, takže kolektor má větší počet lamel, než jaký je počet cívek. To zlepšuje značně obtížnou komutaci těchto strojů. Motory jsou obvykle při provozu chlazeny vlastním větrákem.

U elektrického ručního nářadí (vrtaček, pil, hoblíků atd.) je k motoru připojena převodovka, redukující otáčky. První ozubený pastorek bývá přímo součástí hřídele motorku a bývá zhotoven lisováním nebo frézováním vlastního hřídele. To bývá nejslabším místem mechanismu stroje a je zde nutno věnovat zvýšenou pozornost mazání.

Univerzální motory

Připojíme-li vysavač nebo ruční vrtačku na stejnosměrnou síť o stejném napětí jaké má střídavá síť, nestane se mnoho. Motory se budou točit, jen poněkud rychleji. Zmenší se totiž reaktance omezující částečně proud při střídavém napájení. Někdy bývají vyvedeny vývody z vinutí motoru pro stejnosměrné napájení.

Některé spotřebiče jsou označeny, že vyhovují pro oba druhy proudu – např. holicí strojky. U nich se používá kompromisního způsobu vinutí pro stejnosměrný a střídavý proud. Tyto motory bývají označovány jako univerzální. Pokud chceme střídavý komutátorový motor provozovat na stejnosměrné napětí stejné velikosti jako je předepsané střídavé napětí, lze motoru předřadit vhodný rezistor.

Poruchy

Nejčastější poruchou komutátorových motorů jsou poškozené nebo uvolněné kartáče a následně vydřený či jinak poškozený komutátor. Při opravě kontrolujeme, nejsouli lamely komutátoru zkratovány rýhou, která vznikne při úplném obroušení kartáče pružinou nebo přívodním kablíkem.

Často vznikne porucha vniknutím tuku z přemazaných ložisek do komutátoru, což má za následek opálení lamel a vypájení přívodů zvýšenou teplotou. U ručního nářadí se může motor poškodit dlouhodobým přetěžováním. I když je dovolená provozní teplota moderních motorů značná, závisí správná činnost motoru na dobrém chlazení. Při zamezení přístupu chladicího vzduchu např. nečistotami nebo zakrytím větracích otvorů e rotor přehřívá a obvykle poškodí. K přehřívání motoru přispívá i větrák, jehož rychlost otáčení se při přetěžování stroje zmenšuje, což může opět vést k zničení motoru.

Dalšími choulostivými místy jsou ložiska. Jde o stroje s velkými rychlostmi otáčení se značným namáháním ložisek, kterým se obvykle věnuje málo pozornosti, pokud se motor točí. Je nutno znovu zdůraznit, že k mazání ložisek je nutno používat pouze ložiskový tuk pro velké rychlosti otáčení a značnou teplotu. Ložiska se však na druhé straně nesmí zbytečně přemazávat.

Poškozenou kotvu většinou sami nedokážeme opravit. U běžně dostupných spotřebičů se také neopravuje, ale vyměňuje za novou. Motory převíjejí odborné dílny.

Sami si můžeme opravit např. komutátor citlivým osoustružením. Vyškrabávat slídu není u těchto motorů třeba. Smirkovým plátnem čistíme povrch pouze v nouzi a prach je nutno odstranit důkladně tvrdým kartáčem. Odstraňovat šedomodrý film z povrchu komutátoru je nesprávné a škodlivé.

Přehled stejnosměrných a univerzálních motorků vyráběných v ČSFR

Výrobou stejnosměrných a univerzálních motorků pro použití v domácnostech a v běžné praxi se v ČSFR zabývá převážně MEZ Náchod a PAL Kbely. Mnoho z motorků těchto výrobců bylo sice vyvinuto pro konkrétní jednoúčelovou aplikaci, avšak našly použití v dalších i amatérsky zhotovených přístrojích. V následujících tabulkách jsou uvedeny pro orientaci hlavní parametry vybraných motorků uvedených výrobců podle nabídkových materiálů z konce roku 1990.

MEZ Náchod vyrábí řadu stejnosměrných motorků s trvalými (permanentními) magnety. Jejich přehled je v tab. 6.

Tab. 6. Motorky s trvalými (permanentními) magnety

Тур	Výkon [W]	Napětí [V]	Otáčky [1/min]	Hmotnost [kg]
K6A25	2	24	5000	0,16
K6A27	8	12	8000	0,16
K6A29	2	36	3000	0,16
K6A30	2	12	5000	0,16
P4HC411	2	24	5000	0,135
P4HC412	8	12	8000	0,135
P4HC413	2	36	3000	0,135
P4HC414	2	12	5000	0,135
P4HC417	4	24	5000	0,135
P2HH354	4	24	5000	0,135
P2RL364	25	24	3000	1,09
P2TV369	80	24	2000	3,0

V tab. 7 jsou stejnosměrné a univerzální motorky s převodovkou a s oběma směry otáčení téhož výrobce.

V tab. 8 jsou sériové komutátorové motorky z MEZ Náchod pro napájení jako stejnosměrné popř. jako univerzální. Mají krytí IP 20 a jsou určeny pro oba směry točení.

PAL Kbely vyrábí elektromotory pro použití v motorových vozidlech. Jsou určeny pro stejnosměrné napětí 12 až 24 V a většinou mají jeden směr otáčení a vodorovnou pracovní polohu. Přehled je v tab. 9.

Kromě těchto motorků vyrábí PAL Kbely několik řad točivých stěračů s kyvnými me-

Jab. 7. Stejnosměrné a univerzální motorky s převodovkou

Тур	Provoz	Napětí [V]	Jmen. moment [Nm]	Proud [A]	Kmitočet [Hz]	Jmen. otáčky [1/min]	Převod. poměr
K7A3	stejnosm.	24	0,64	0,5	-	45	1:98
PK3K5F	univerz.	220	11,7	0,65	50	10	1:540
PK3K5H	stejnosm.	220	11,7	0,24	-	4	1:540
PK3K8E	univerz.	220	1,66	0,73	50	208	1:24

Tab. 8. Sériové komutátorové motorky

Тур	Výkon [W]	Napětí [V]	Otáčky [1/min]	Druh proudu	Hmotnost ·[kg]
K2LH18	5	110	3000	50 Hz	0,50
K2LH19	10	220	5000	50 Hz, ss	0,50
K2LH20	. 20	220	8000	50 Hz, ss	
K2LL22	8	110	3000	50 Hz	0,59
K2LL23	16	220	5000	50 Hz, ss	0,59
K2LL24	32	220	8000	50 Hz, ss	0,59
NK2G2	12	220	3000	50 Hz	1,05
NK2G2	25	220	5000	50 Hz, ss	1,05
NK2G2	40	220	8000	50 Hz, ss	1,05
NK2G7	25	220	3000	50 Hz	1,55
NK2G7	50	220	5000	50 Hz, ss	1,55
NK2G7	80	220	8000	50 Hz, ss	1,55
NK3K3	32	220	3000	50 Hz	2,50
NK3K3	63	220	5000	50 Hz, ss	2,50
NK3K3	100	220	8000	50 Hz, ss	2,50
NK3K8	50	220	3000	50 Hz	3,05
NK3K8	.100	220	5000	50 Hz, ss	3,05
NK3K8	160	220	8000	50 Hz, ss	
K2UR350	160	220	3000	50 Hz	4,40
K2UR351	320	220	5000	50 Hz, ss	4,40
K2UV333	250	220	3000	50 Hz	5,40
K2UV328	500	220	5000	50 Hz, ss	5,40

chanismy od 2,5 Nm do 45 Nm záběrového momentu (2,5; 3; 9,5; 15; 45 Nm).

Motorky pro hračky

Tento druh motorků prodělal zajímavý vývoj. Dřívější motorky pro pohon hraček představovaly jednoduché a levné komutátorové motorky se sériovým buzením, nebo komutátorové motorky s aktivním rotorem. Motorky měly levné plechové komutátory, vinutí nebylo impergnováno a kartáče tvořily drátové pružiny. Takové motorky měly krátkou dobu života (zřejmě nebyla vzhledem k jiným možným poškozením poměrně levné hračky dlouhá doba života nutná). Častá potřeba oprav takových motorků donutila majitele hračky proniknout do funkce motorku a věnovat se jeho údržbě, popřípadě vylepšení.

Jednoduché mechanické hračky však byly časem zdokonalovány, nejprve v podobě pohonných jednotek elektrických vláčků a vybavení kolejišť, později pronikly do oblasti hraček i poměrně složité prvky moderní elektroniky. Součástí chodících postaviček a zvířat jsou vedle mechanismů pro jejich pohyb i jednoduché magnetofony nebo gramofony, kolejiště vláčků řídí počítač, tank je řízen počítačem s možností naprogramování trasy jízdy a mnoha dalších funkcí. Mezi hračky patří i modely aut s autodráhami, modely dálkově řízených aut, lodí a letadel,

Dříve bylo letecké modelářství výhradní doménou spalovacích motorků a dnes vynáObr. 14. Motorek Robbe (viz 3. str. obálky)

Obr. 16. Zuby, tvořící póly motorku AEG (viz 4. str. obálky)

Obr. 17. Rotor, motorku AEG (viz 4. str. obálky)

Obr. 15. Motorek AEG (a) a jeho vnitřní provedení (b) (viz 4. str. obálky)

Tab. 9. Elektromotory pro motorová vozidla

Тур	Výkon [W]	Napětí [V]	Otáčky [1/min]	Proud [A]	Poznámka	Obchodní číslo
062	60	12	5000	10	topení Š742	113-972050
062	60	24	5000	5		
062	20	12	3200	3,6	topení traktorů	
062	20	24	3200	1,8	topení autobusů	
063	7	24	3000	0,8	pom. topení T815	341-97106
063	28	12	4000	4,3	ofuk, skla T613	133-970040
063	1,4	24	70	0,6	svět. maják (převodovka)	
063	1,4	12	70	1,8	svět. maják (převodovka)	
063	25	24	5500	2,8	topení 3CON1-R	
063	7	12	2500	1,5	topení Oktavia	100-972051
063	7	24	3000	1	topení LIAZ	300-972064
063	14	24	5000	1,5	topení T815	341-97066
076	65	12	4500	8	topení Š100	111-972050
076	65	24	4500	4,5		300-972063
076	40	12	4000	5,8		110-972053
076	40	12	4000	5,8		110-972054
076	40	24	4000	2,8		300-972062
076	55	12	2600	7,5	větrák Š742	-
076	55	24	2900	3,8	větrák topení Karosa	
076	30	24	2100	2	větrání Karosa	
076	55	12	2600	.7,5	klimatizace T613	
076	55	24	2600	3,8	klimatizace T815	
076	65	24	4200	4,5	naft. topení	341-971062
092	90	24	3750	6	topení T815 Arktik	

šejí do vzduchu letecké modely elektromotory špičkových parametrů.

Např. německá firma Robbe nabízí v katalogu pro modeláře za 89.- DM motorky Elt-Max 50 o hmotnosti 530 g na imenovité napětí 22 V s krátkodobým maximálním výkonem až 550 W (obr. 14) a za 199,- DM je nabízen motorek z USA ASTRO Samarium Cobalt 40, ověnčený mnoha modelářskými rekordy, který má hmotnost pouhých 368,5 g, průměr 41 mm a délku 70 mm. Magnety jsou, jak již plyne z názvu, ze samanum-kobaltové směsi a kartáčky jsou ze speciální směsi stříbra a grafitu. Každý z motorků výrobce jednu hodinu testuje, rotor je dokonale dynamicky vyvážen s ohledem na minimální vibrace a je určen pro modely s vrtulovým pohonem s otáčkami 11 500 1/min při výkonu 450 W.

Hračky s elektronikou a nejrůznější modely se staly velmi výhodným obchodním zbožím a umožnily, lépe řečeno vyvolaly sériovou výrobu elektromotorků a jejich příslušenství včetně baterií a akumulátorů takové jakosti, která se požadovala před nedávnem pouze pro speciální účely. Jsou to výrobky výkonné, spolehlivé a také obvykle neobyčejně drahé.

Převážná většina elektromotorků pro hračky a modeláře jsou motorky komutátorové, pouze v aplikacích s počítačovými obvody se prosazují krokové motorky.

Synchronní motory

Základní vlastností těchto motorů je rychlost otáčení rotoru, která je synchronní s kmitočtem napájecího napětí v dovoleném rozsahu zátěže na hřídeli. Vlastní rychlost otáčení závisí na počtu pólů a kmitočtu napájecího napětí. Rotor se otáčí na rozdíl od asynchronních motorů bez skluzu (synchronně) současně se změnami magnetického pole uvnitř motoru. Synchronní motory se vyrábějí ve velkém rozsahu výkonů, avšak v běžné praxi se setkáváme s motorky o výkonu několika W. Tyto motorky jsou určeny zejména pro časoměrné účely (např. jako pohony mechanických časových spínačů a hodin), avšak používají se např. i pro pohon gramofonů.

Motory s většími výkony se používají ve spojení s řízeným výkonovým generátorem v servomechanismech apod.

V principu je použit stator s vinutími jako u asynchronních motorů a rotor má pólové nástavce vytvořeny z trvalých magnetů, nebo má vinutí napájené přes kartáčky a kroužky stejnosměrným napětím.

Vezmeme-li např. osvětlovací alternátor (nesprávně dynamko) z jizdního kola a připojíme jeho vývody na střídavé napětí asi 10 V/50 Hz, alternátor se po ručním roztočení udrží v synchronních otáčkách. Chová se tedy jako synchronní motorek. Při tomto provozu je však určité nebezpečí, že střídavým proudem odmagnetujeme trvalé (permanentní) magnety v alternátorku.

Pokud jde o vývoj malých jednofázových motorků pro běžné použití v domácnosti, uveďme malou reminiscenci. Starší radioamatéři ještě pamatují doby, kdy nebyly magnetofony (nebo nebyly běžně dostupné) a amatérsky se nahrávaly gramofonové desky. Speciální nahrávací gramofon býval poháněn jednoduchým synchronním motorkem, který poskytoval jak stabilní rychlost otáčení, tak potřebný výkon pro rytí drážky. Motor se používal přímo k pohonu hřídele kotouče bez převodů.

Rotor tohoto motorku měl tvar ozubeného kola. Pro 78 otáček za minutu – tehdejší normu pro rychlost otáčení gramofonu – mělo kolo 77 zubů (pro kmitočet sítě 50 Hz). Ke kolu přiléhal jeden nebo dva elektromagnety s ozubenými pólovými nástavci. Pro rozběh bylo nutné roztočit gramofón rukou. I motorky pro hodiny na podobném principu bylo nutno roztáčet ručně.

Známé byly motorky firmy AEG, zcela odlišných tvarů, provedené z plechů lisováním a vyráběné ve velkých sériích (obr. 15a, h)

Stator těchto motorků má jednu cívku a tzv. "drápové" provedení pólů. Zuby tvořící póly uvnitř motoru jsou dvojité, nebo lépe skládají se ze dvou dílů, z nichž jeden prochází masívním závitem nakrátko z měděného plechu (obr. 16). Rotor má tvar bubínku s čely vyrobenými z tvrzeného papíru a na obvodu je "kotva" – kroužek z ocelového, tvrdě zakaleného plechu, který je opatřen měděným povlakem. Po obvodu je 16 čtvercových otvorů (obr. 17). Zbylý materiál mezi otvory tvoří 16 zubů, z nichž vždy dva jsou společně pod jedním statorovým pólem. Stator tvoří zároveň kostru motorku a je složen ze dvou polovin. Na každé polovině je osm zubů, které vzájemně zapadají mezi sebe. Tímto způsobem se dosahuje střídání magnetické polarity.

Motorek má tedy osm pólových dvojic a rychlost otáčení

$$n = \frac{60f}{p} = \frac{60 \cdot 50}{8} = 375 \text{ ot/min.}$$

kde f je kmitočet sítě (50 Hz).

Motorek se rozbíhá jako asynchronní se "stíněnými póly". Po rozběhu běží dál jako synchronní. Moment na hřídeli těchto motorků není velký, ale pro většinu aplikací (převážně v časových relé) vyhovoval. Uvedeného principu se využívá dodnes.

U synchronních motorů je obecným problémem malý rozběhový moment. U některých typů bylo tedy nutno motor nejdříve mechanicky roztočit, u některých je rozběh

Tab. 10. Trojfázové synchronní motory řady ST3C

Тур	Napětí	Proud	Výkon	Otáčky	Hmotnost
	[V]	[A]	[W]	[1/min]	kg
ST3C32	380	0,15	16	3000	1,70
ST3C62	380	0,25	25	3000	2,30
ST3C82	380	0,31	40	3000	2,55
FST3C32	380/220	0,15/0,26	16	3000	1,40
FST3C62	380/220	0,25/0,35	25	3000	2,15
FST3C82	380/220	0,31/0,54	40	3000	2,40
ST3C41	380	0,11	6	1500	1,70
ST3C64	380	0,14	10	1500	2,15
ST3C84	380	0,15	16	1500	2,55
FST3C34	380/220	0,11/0,19	6	1500	1,55
FST3C64	380/220	0,14/0,24	10	1500	2,15
FST3C84	380/220	0,15/0,26	16	1500	2,40

řešen pomocným rozběhovým vinutím na pólových nástavcích nebo v drážkách. Takový motor se rozbíhá jako indukční motor na asynchronní otáčky a na synchronní otáčky přejde až po nabuzení.

Jsou vyráběny i tzv. reakční motory, které slučují vlastnosti asynchronních a synchronních motorů. Rotor není vytvořen z trvalých magnetů, ani není napájen kluznými kontakty, ale je konstruován tak, aby se v něm při otáčení vytvořilo jednoznačně orientované magnetické pole.

Pokud jsou použity v konstrukci motoru trvalé magnety, musí uspořádání motoru zamezit jejich odmagnetování točivým magnetickým polem při rozběhu. Trvalých magnetů se k buzení používá do výkonů asi 35 kW. U velkých motorů se budí rotor tak, že na společné hřídeli je upevněn generátor s rotujícími polovodičovými usměrňovači.

V praxi se obvykle setkáváme se synchronními motorky typu SMZ nebo SMR, které se používají ve spínacích hodinách. Používají se také jako krokové motorky ve spojení s číslicovými elektronickými obvody v gramofonech, zapisovačích, měřicích přístrojich, v polohovacích mechanismech atd.

Stručný přehled vyráběných synchronních motorků

V ČSFR se vyrábí v ZPA Nový Bor synchronní pohonná jednotka reverzační pro automatizaci typu SMR (SMR 300-100, SMR 300-300, SMR 300-600). Je to jednofázový synchronní motorek s trvale připojeným kondenzátorem pro vytvoření fázově posunutého magnetického pole druhého vinutí. K připojení slouží čtyři vývody a směr točení se mění změnou zapojení kondenzátoru. Vyrábějí se pro napětí 220 V nebo 120 V (případně pro 60 V, 48 V, 24 V a 12 V) při kmitočtu 50 Hz a lze je používat i pro síť 60 Hz. K napájení pohonných jednotek ze stejnosměrného zdroje napětí se vyrábějí měniče STR 12 (pro 12 V), STR 24 (pro 24 V) a STR 48 (pro 48 V). Synchronní a rozběhový moment je 0,01 Nm u typu SMR 300-100, 0,03 Nm u typu SMR 300-300 a 0,06 Nm u typu SMR 300-600. Příkon mají 2 VA, 5,5 VA a 11 VA. Jmenovité otáčky jsou 300 1/min.

Stejný výrobce vyrábí také převodové synchronní motorky typu B 406. Jsou určeny pro pohon a ovládání automatizačních a registračních přístrojů, kde je požadováno dodržení konstantní rychlosti otáčení. Motorek s jednou rychlostí otáčení je doplněn převodovou skříní s neměnitelným převodovým

poměrem. Napájecí napětí je 220 V/50 Hz, případně 120 V/50 Hz, příkon max. 2 VA a pracovní poloha libovolná s možností točení v obou směrech. Vyrábějí se v 32 různých provedeních převodovek a to B 406-1s... až B 406-24h..., kde druhý údaj znamená čas na jedno otočení výstupního hřídele z převodovky a na konci označení (namísto ..) je 220 V nebo 120 V. Výstupní moment na hřídeli je v rozmezí 0,032 Nm až 0,98 Nm.

Další synchronní motorky tohoto výrobce tvoří řada B 407. Je to podobná řada s převodovkou, která je určena pouze pro pravotočivý směr otáčení a vodorovnou pracovní polohu. Vyrábějí se ve variantě A - bez třecí spojky a ve variantě B - s třecí spojkou (od typu B 407-20s-B výše). Napájecí napětí je 220 V/50 Hz a max. příkon 2 VA. Vyrábí se 27 různých provedení od typu B 407-1s-.. až do B 407-24h- . ., kde druhý údaj znamená také čas na jedno otočení hřídele jako u typu B 406 a na místě.. je označení A nebo B podle použití třecí spojky. Třecí spojka je seřízená na krouticí moment 0,12 Nm. V provedení bez spojky je výstupní moment v rozmezí 0,00662 Nm (u typu B 407-1s-A) do max. 0,3 Nm u typů B 407-1m-A (otáčka za 1 minutu) až B 407-24h-A.

ZPA Dukla Prešov vyrábí synchronní pohonné jednotky SM 250-4 a SM 250-20. Jsou opět určeny k pohonu časoměrných přístrojů pro automatizaci a pro zapisovače. Typ SM 250-4 má příkon 2,5 VA a typ SM 250-20 2 VA. Oba typy jsou na 220 V/50 Hz a mají jmenovité otáčky 250 1/min a pravotočivý směr otáčení.

MEZ Náchod vyrábi trojfázové synchronní motorky typové řady ST3C, uvedené v tab.

Krokové motory

. Krokové motory doznaly velkého rozvoje teprve s rozvojem číslicové techniky a výkonových elektronických spínačů. Jsou to tedy motory hromadně používané až v posledních letech.

Tyto motory by bylo možno principem činnosti zařadit mezi vícepólové synchronní stroje, avšak vzhledem k jejich speciálnímu využívání se staly samostatným druhem. Ve většině aplikací se využívají k převedení číslicové informace (čísla, počtu impulsů) na úhel natočení hřídele. Tvoří tedy číslicově

analogové elektromechanické převodníky. Obvykle jsou navázány na počítačové obvody v různých periferních zařízeních, jako jsou polohovací stolky, zapisovače, souřadnicové kreslicí a čtecí zařízení, ale i výkonové polohovací mechanismy číslicově řízených obráběcích strojů, robotů a manipulátorů.

Podle konstrukčního řešení existují krokové motory s aktivním rotorem a reakčním rotorem. Statory u všech těchto motorů jsou podobné. Mají větší počet pólových nástavců a na nich bývá ještě řada zubů. Rotor má také velký počet zubů a podle typu motoru obsahuje buď trvalé (permanentní) magnety (aktivní rotor), nebo magnetický tok vzniká reakcí rotoru, vyvolanou proudem procházejícím vinutím statoru (reakční rotor). Pro větší výkony existují ještě tzv. hybridní motory, které mají elektromechanický krokovací systém doplněný o zařízení zvětšující točivý moment stroje, např. o hydromotor.

Princip krokového motoru s aktivním rotorem je na obr. 18. Jedná se o motor s deseti-

Óbr. 18. Princip krokového motorku s aktivním rotorem

pólovým rotorem a osmipólovým statorem. Rotor i stator motoru jsou tvořeny dvěma shodnými částmi. Obě části rotoru jsou vzájemně úhlově natočeny o polovinu rozteče nástavců, tj. o 18 stupňů. Trvalé magnety rotoru svým stálým magnetickým tokem udržují rotor v nastavené poloze i po odpojení napětí na vinutích statoru.

Na každém z pólových nástavců statoru je budicí vinutí (A a B), kterým prochází stejnosměrný proud. Když změníme polaritu proudu v jednom z vinutí, pootočí se výsledné magnetické pole statoru o úhel 45 stupňů a rotor se natočí do polohy, odpovídající nejmenší výsledné reluktanci (magnetickému odporu) magnetického obvodu, tj. o úhel 9 stupňů. U skutečných krokových motorů je počet nástavců mnohem větší a dosahuje se i více než 400 kroků na jedno otočení rotoru.

Pro otočení krokového motoru je nutno postupně přepínat proud a jeho směr do jednotlivých vinutí. Rychlost tohoto přepínání určuje rychlost otáčení motoru. Vzhledem k indukčnosti vinutí a k setrvačným silám rotoru je však tato rychlost omezena, neboť se začnou "ztrácet" kroky a zhoršuje se přesnost polohy. Lze však dosáhnout až několika tisíc kroků za sekundu.

Motor na základě kombinací vstupních elektrických veličin zaujímá definované polohy natočení hřídele a v těchto polohách se snaží značným momentem udržet svoji polohu. Pokud nepřekročíme momentovou mechanickou zátěží určitou velikost a nepřekročíme určité odpovídající kritické otáčky, je úhel natočení hřídele v souladu se vstupní číslicovou informací. Není potom obvykle

nutné používat zpětnou informaci o poloze, získávanou složitým odměřováním.

Nezbytnou funkční částí motoru je elektronický ovládač. Ten zajišťuje výkonové spínání jednotlivých fází v požadovaném sledu a zajišťuje správný průběh napájecího proudu. Magnetický tok elektromagnetu je úměrný proudu, který prochází jeho vinutím. Vzhledem k impedanci vinutí musí mít tento proud určitý průběh v celém rozsahu používaných kmitočtů. Napájecí zdroj, dnes obvykle elektronicky řízený, musí mít proudový charakter, tj. velký výstupní odpor. Jedná se o poměrně složité a drahé zařízení a proto krokové motory nejsou dosud přiliš široce využívány.

V ČSFR se výrobou krokových motorků zabývá MEZ Náchod a Novoborské strojírny. MEZ Náchod vyrábí motory ve dvou provedeních:

- a) řada Z22 s reakčním rotorem v rozsahu zatěžovacích momentů 0,007 až 1,2 Nm a úhlem kroku 3 stupně při čtyřtaktním ovládání (1,5 ° při osmitaktním ovládání) tab. 11,
- b) řada Z42 s aktivním rotorem v rozsahu zatěžovacích momentů 0,75 až 5,55 Nm a úhlem kroku 1,8 stupně (popř. 0,9°) tab.

Výrobce dodává k provozu motorků dále:

- a) elektronické komutátory typu MO1004 pro čtyřtaktní a typu MO1005 pro osmitaktní ovládání.
- b) výkonové zesilovače typu MO1706 pro max. proud 1 A a typu M01707 pro max. proud 2,5 A,
- c) odporové jednotky MO2106 pro motor Z22DJ113

MO2107 pro motor Z22DJ106 ,

Obr. 19. Díly rozloženého motorku (a) a jeho rotor (b) (viz 4. str. obálky)

MO2108 pro motor Z22LB104 , MO2109 pro motor Z22LT105 , MO2110 pro motor Z22QO108 a MO2111 pro motor Z22QX109 .

Novoborské strojírny vyrábějí reverzační pohonné jednotky SMR, které jsou odvozeny od synchronních motorků stejného typového označení. Jsou určeny pro připojení k rozdělovači impulsů RI 250-24-4/8, napájenému ze stejnosměrné sítě 24 V.

Konstrukčně jsou tyto motorky řešeny jako čtyřťázové s trvalým (permanentním) magnetem v rotoru a se statorem s vyniklými póly. Optimální způsob řízení je čtyřtaktní, ale lze je provozovat i osmitaktně. Díly rozloženého motorku jsou na obr. 19a, b. Připomínají poněkud synchronní motorek s "drápovými" nástavci statoru, ale namísto okének v rotoru jsou zde dva kroužky feritových segmentů, které jsou namagnetovány po obvodu střídavě v 18 sekcích. Sekce vytvářejí jakési malé trvalé magnety proti magnetickým nástavcům statoru. Motorek se skládá ze dvou shodných částí, které jsou úhlově vzájemně posunuty.

Tyto motorky jsou určeny pro programová zařízení, dálková ovládání, přenos dat, polohové zařízení, převodníky pro počítací účely apod. Našly i četná uplatnění v amatérských konstrukcích.

Na obr. 20 jsou znázorněny průběhy proudů jednotlivými vinutími při čtyřtaktním řízení (kód 2-2) a při osmitaktním řízení (kód 1-2).

Krokové reverzační pohonné jednotky na stejnosměrné napětí 24 V, které je možno ovládat rozdělovačem impulsů RI 250-24-4/ 8, jsou v tab. 13.

Oba typy motorků mají 40 kroků na otáčku při čtyřtaktním řízení a 80 kroků na otáčku při osmitaktním řízení.

Tab. 11. Motory s reakčním rotorem

Тур	Napětí [V]	Mezní provozní kmitočet [Hz]	Mezní provozní moment [N . m]	Jmenovitý proud fáze [A]	Hmotnost [kg]
Z22QX109	48	200/350	1	2,25	7,0
Z22LB104	48	800/1200	0,0392	1,2	0,82
Z22DJ106	48	250/500	0,0039	0,35	0.3
Z22LT105	48	500/800	0,2	2	2,15
Z22Q0108	48	600/700	0,4	2,25	4,6
Z22DJ113	48	220/270	0,0036	0,175	0,3

Tab. 12. Motory s aktivním rotorem

Тур	Odpor vinutí fáze [Ω]	Největší provozní moment [N . m]	Mezní provozní kmitočet [Hz]	Jmenovitý proud fáze [A]	Hmotnost [kg]
Z42QN147	0,25	0,6	300	5,5	1,7
Z42RS145		1,5	250	7,0	3,2
742VV141		4,0	150	7,1	7,85

Tab. 13. Krokové reverzační pohonné jednotky

Тур	Odpor vinutí fáze	Přídržný moment 4(8) takt.	Maximální provozní kmitočet 4(8) takt.	Jmenovitý proud fáze	Hmotnost
	$[\Omega]$	[mN . m]	[Hz]	[A]	[kg]
SMR300-100-RI/24 SMR300-300-RI/24	30 31	28/22 70/50	280/560 400/1200	0,25 0,25	0,165 0,30

Obr. 20. Průběhy proudů ve vinutí čtyřfázového krokového motorku

Speciální motory

Tato kapitola by se spíše měla nazývat – ostatní motory. Dnes existují stovky druhů elektrických motorů, avšak pouze jejich výčet a krátká charakteristika by zabrala rozsah této publikace. Jsou to motory, se kterými se v běžné praxi zatím setkáme pouze výjimečně.

Existují např. lineární trakční elektromotory s rozvinutým statorem pro startování letadel, pohon lokomotiv či laboratorní nárazové zkoušky automobilů a na druhé straně lineární elektromotory pro polohovací mechanismy s rozsahem několika mikrometrů. Vyrábějí se motory, které mají komutátory nahrazeny speciálními magnetorezistivními polovodičovými součástkami, které přepínají vinutí statoru samočinně v závislosti na poloze rotoru, který je pro tento účel opatřen nástavci z trvalých magnetů.

V moderních servomechanismech se využívá motorů, jejichž rotory mají minimální setrvačné hmoty a jsou schopné dosáhnout maximální rychlosti otáčení - několika otáček za minutu – nebo se z maximální rychlosti otáčení zastavit během zlomku sekundv. Používá se v nich vinutí rotoru, zhotovené technikou podobnou výrobě několikavrstvových desek s plošnými spoji, nebo samonosně zpevněné rotorové vinutí ve tvaru bubínku, jaké vyrábějí např. v ZPA Nový Bor pod označením hyperservomotory typ HSM. Plochý rotor se pohybuje v mezeře silného magnetického pole trvalých magnetů. Nejběžnější použití těchto motorů je u kreslicích strojů.

Samostatnou skupinu tvoří ploché motory pro pohon gramofonů, motory pro přehrávače CD, diskové a disketové jednotky, krystalem řízené hodinky, fotoaparáty atd.

Nová vědní disciplína – mechatronika integruje nové možnosti elektronického zpracování informací s mechanickými prvky a syntetizuje je do tvorby zcela nových pohonů s optimálním využitím elektrických, materiálových a mechanických vlastností.

Na trhu se však takové pohony samostatně nenabízejí, neboť jsou to díly hromadně vyráběných moderních elektronických zařízení velkých světových výrobců a pro amatérské použití jsou těžko dostupné a neumožňují univerzální použití.

Generátory

Generátory jsou elektrické točivé stroje, které mění mechanickou energii na energii elektrickou. Dělíme je na dynama a alternátory.

a. Dynama jsou určena pro výrobu stejnosměrného proudu. Jsou konstrukčně shodná se stejnosměrnými motory. Budicí cívky statoru jsou napájeny stejnosměrným napětím, mají sudý počet pólů s cívkami vinutými tak, že se střídavě vytvářejí severní a jižní póly. Rotor se skládá z plechů a má na obvodu drážky, v nichž je uloženo vinutí. Konce cívek vinutí jsou připojeny na lamely komutátoru. Na komutátor dosedají kartáče upevněné v držácích.

Při otáčení rotoru procházejí vodiče vinutí magnetickým polem statorových pólů a indukuje se v nich střídavě napětí. Komutátor toto střídavé napětí usměrní. Proud, který prochází při zatížení vinutím rotoru, vytváří vlastní magnetické pole, které se s magnetickým polem statoru sčítá a deformuje je. Pro odstranění tohoto vlivu bývá na vinutí statorových magnetů umístěno ještě tzv. kompenzační vinutí.

Dynama se dělí podle způsobu zapojení vinutí podobně jako stejnosměrné motory na dynama s buzením cizím, paralelním, sériovým a kompaudním.

Dynama s cizím buzením se vyznačují tím, že se jejich napětí zmenšuje se zatížením jen nepatrně a lze je řídit napětím budiče popř. změnou nastavení budicího reostatu.

Dynama s paralelním buzením mají podobné vlastnosti jako dynama s cizím buzením

U dynama se sériovým buzením závisí napětí velmi na zatížení (nepoužívají se často).

Dynama s kompaudním buzením lze přizpůsobit potřebám konkrétních aplikací.

b. Alternátory jsou zdroje střídavého napětí. Nejběžnější jsou trojťazové, které jsou výhradním zdrojem pro napájení elektrických rozvodných sítí.

Menší alternátory využívají pro vytvoření magnetického pole ve statoru trvalých (permanentních) magnetů a napětí indukované v otáčejícím se rotoru je odváděno přes kroužky.

Větší alternátory mají na rotoru budicí vinutí, které je napájeno přes kroužky stejnosměrným proudem a na statoru je střídavé trojťázové vinutí. Při otáčení rotoru se indukuje v tomto vinutí napětí.

V sedmdesátých létech se začínaly alternátory běžně používat ve spojitosti se spolehlivými polovodičovými usměrňovači i v automobilech. Na obr. 21 je rotor automobilového alternátoru s kroužky, z nichž je odebírán trojfázový střídavý proud, který je dále usměrňován a používán pro stejnosměrný palubní rozvod.

c. Tachogenerátor a tachodynama jsou elektrické točivé stroje, které mění mechanickou energii na elektrickou a napětí, které vzniká, je přímo úměrně jejich rychlosti otáčení. Tyto stroje jsou používány jako členy regulovaných soustav. Používají se pro tři základní funkce: stabilizaci otáček, měření otáček a početní úkony.

Tachogenerátory jsou stejnosměrné elektrické stroje s trvalými magnety na rotoru. Při otáčení rotoru se indukuje ve statorovém vinutí střídavé napětí. Kmitočet napětí je dán počtem pólů rotoru a rychlosti jeho otáčení.

MEZ Náchod vyrábí střídavý tachogenerátor typu J13A1 s rozsahem otáček 1000 až 10 000 1/min, dávající napětí 30 V při otáčkách 1000 1/min. Zatěžovací proud je max. 0,02 A. Hmotnost 0,95 kg.

Tachodynama jsou steľnosměrné elektrické stroje s cizím buzením. Budicí magnetický tok vytváří vinutí, kterým prochází elektrický proud, nebo trvalé (permanentní) magnety.

Přesná dynama jsou konstruována s rotorem bez železa a jejich vinutí se otáčí ve vzduchové mezeře. Jsou buzena trvalými magnety a vyznačují se velkou linearitou výstupního napětí a minimální velikostí střídavé složky napětí.

Tyto stroje nedoporučuje výrobce demontovat z důvodu možné demagnetizace trvalých magnetů a i proto, že jejich správná montáž a nastavení vyžadují mimořádnou péči a speciální přístroje.

Nejpoužívanější tachodynama v ČSFR vyrábí MEZ Náchod a jsou to typy:

K4A2 pro 0 až 5000 1/min, dává 2 V na 1000 1/min do zatěžovacího odporu 5000 Ω /V. Hmotnost 0,15 kg.

B/1 Amatérske AD 1

K5A3 pro 0 až 6000 1/min, dává 20 V na 1000 1/min do zatěžovacího odporu 5000 Ω/V. Hmotnost 0.60 kg.

K10A2 pro 0 až 6000 1/min, dává 80 V na 1000 1/min do zatěžovacího odporu 50 Ω /V. Hmotnost 1,80 kg.

Rotační měniče

V nedávné minulosti byly rotační měniče hlavním prostředkem pro změnu velikosti stejnosměrného napětí. S nástupem výkonových polovodičových součástek nastaly velké změny i v tomto oboru. Přesto se rotační měniče v některých aplikacích, např. v letadlech používají dodnes.

Proč to má však zajímat amatéra či domácího kutila? Mnozí z nich mají doma ještě tyto různé "mašinky" z části z vojenských zbytků poslední války a z části z různých výprodejů, neboť se mnohé z nich používaly i dávno po skončení výroby např. ve Svazarmu. Dnes se celkem k ničemu nehodí, ale technicky jsou tak pěkné, že "je to škoda" je vyhodit. Tedy có s tím?

Předně můžeme něco udělat pro ukojení naší technické zvědavosti a ujasnit si leccos technicky zajímavého při demontáži těchto strojů. Někdy lze měnič použít jako motor, pokud – a to bývá zřídka – je dostupný některý konec jeho hřídele. Někdy lze jeden, popřípadě oba konce hřídele prodloužit, nebo alespoň po mechanické úpravě opatřit řemeničkou nebo pastorkem. Pokud nelze měniče využít ani tímto způsobem, zbývá nám již jen podniknout některé zajímavé pokusy a demonstrovat tak základní poznatky o točivých elektrických strojích pro vlastní poučení nebo při výuce. Velmi názorné jsou např. měniče pro střídavé napětí.

Nejobvyklejší jsou jednorotorové měniče. Na obou stranách rotoru jsou tyto měniče opatřeny komutátory s kartáčky. Strana vstupní – poháněcí – je nejčastěji určena pro stejnosměrné napětí 24 V, může však být také pro jiné napětí (12 V, 27 V, 48 V, 60 V apod.). Na výstupní straně je většinou větší stejnosměrné napětí, obvykle určené k napájení elektronkových přijímačů nebo vysílačů. Někdy u nich nalezneme kromě komutátoru i kroužky, z nichž lze odebírat střídavé napětí. Některé větší měniče pro zvlášť velké napětí (např. 800 V a více) mají dva komutátory na výstupní straně vedle sebe pro zvládnutí náročných problémů komutace.

Chceme-li tento druh měničů použít jako motor, odstraníme kartáče z výstupní strany a na vstupní stranu připojíme potřebné jmenovité napětí, které je obvykle uvedeno na štítku měniče. Na straně vstupu je měnič většinou zapojen jako motor s paralelním buzením. Někdy bývá doplněn i sériovým budicím vinutím, je tedy zapojen jako kompaudní motor pro zlepšení stability výstupního napětí.

Měnič lze také napájet střídavým proudem, pokud je stator složen z plechů. Je-li tomu tak, musíme ještě změnit zapojení na sériové. K tomu potřebujeme, aby vinutí statoru mělo malý odpor a to nemá. Částečně si lze pomoci tím, že cívky statoru zapojíme paralelně a připojíme sériově ke kartáčům. Motor bude mít "měkké otáčky", které se budou bez zatížení zvětšovat často i k mezi, při níž se motor zničí, což je typickou vlastností sériových motorů.

K napájení je vhodné použít proměnné střídavé napětí v rozsahu 20 až 50 V.

Měnič můžeme také napájet na výstupní straně, pokud není určena pro příliš velké napětí, popřípadě u měničů pro malá napětí využít vstupních i výstupních vinutí pro získání optimálních vlastností "motoru". Tyto úvahy jsou již předmětem konkrétního využití konkrétního měniče v rámci našeho "pokusnictví".

Měniče se střídavým výstupem byly obvykle určeny pro další zvětšení jejich výstupního napětí transformátorem. Takové měniče můžeme použít jako zdroj proudu s proměnným kmitočtem. To může být užitečné např. v přístroji pro zjišťování elektrických, popřípadě mechanických rezonancí různých kmitavých soustav a různých mechanismů, např. akvaristických vibračních pumpiček. Předpokladem je možnost regulovat kmitočet výstupního napětí v okolí 50 Hz.

Pokud připojíme k buzení měniče stejnosměrné napětí, můžeme se pokusit roztočit motor jako synchronní.

Některé z měničů, nazývané motorgenerátory, mají na jednom hřídeli stejnosměrný motor a odděleně i generátor. Nejčastěji se jedná o střídavý trojfázový alternátor. Používaly se např. pro pohon gyroskopů v letadlech, nebo v agregátech pro úpravu charakteristiky zdroje.

Po rozebrání rozeznáme oba stroje v klasickém provedení se všemi náležitostmi. Rotor střídavého generátoru (alternátoru) bývá z trvalých magnetů, ale někdy i buzený s tzv. "drápovým" rotorem o šesti nebo osmi pólech. Kmitočet výstupního napětí je obvykle 500 nebo 400 Hz.

Radostí z nové aplikace těchto měničů nám budiž "mírovější" využití vzhledem k původnímu určení většiny těchto strojů.

Praktická zapojení

Řízení rychlosti otáčení u asynchronních motorů

Jak již bylo v popisu činnosti těchto motorů uvedeno, změnit rychlost otáčení asynchronních motorů prakticky nelze. Skutečné otáčky hřídele motoru se liší od "otáček" magnetického pole motoru o tzv. skluz. Pokud nechceme měnit kmitočet napájecího napětí (síťového), je jedinou možností, jak změnit rychlost otáčení, změnit velikost skluzu. Ta závisí na konstrukci motoru, jeho zatížení a velikosti napájecího napětí. V určitém rozsahu lze tedy měnit rychlost otáčení změnou velikosti napájecího napětí, například použitím regulačního transformátoru nebo zařazováním impedancí do vinutí motoru. Tímto způsobem však negativně ovlivníme nejen účinnost motoru, ale také jeho momentovou charakteristiku.

Jistou možností je využít k napájení motoru střídavá napětí nesymetrického průběhu, při němž lze velikost nesymetrie nastavit. Vznikne tak stejnosměrná složka proudu, který protéká vinutím motoru a motor brzdí. V určitém rozmezí tak můžeme měnit velikost skluzu a tedy i rychlost otáčení motoru.

Obvodově toho dosáhneme jednoduchým způsobem podle obr. 22. Když je odpor rezistoru R nulový, je průběh proudu sinuso-

Obr. 22. Úprava rychlosti otáčení jednofázového asynchronního motoru

vý. Při zvětšování odporu se zvětšuje i stejnosměrná složka magnetického pole uvnitř motoru a zmenšuje se velikost proudu do vinutí. Rychlost otáčení motoru se zmenšuje. Takto lze rychlost otáčení zmenšit až o 30 %.

Síla, která brzdí motor, je úměrná velikosti stejnosměrného proudu a otáčkám. Podobného principu lze využít u trojfázového motoru, u něhož zapojíme obvod s diodami a proměnným rezistorem do jedné fáze podle obr. 23.

Obr. 23. Aplikace pro trojfázový motor

Je snad zbytečné připomínat, že provedení musí být v obou případech takové, aby nemohlo dojít k dotyku osob s obvody elektrického napětí.

Podobného výsledku dosáhneme, použijeme-li na místě diody D_2 a rezistoru tyristorový regulátor. Zvětší se tak účinnost obvodu a zmenší se tepelné ztráty, vznikající v rezistoru.

Jednoduchý zdroj pro malé asynchronní motorky

Pokud chceme napájet malé asynchronní jednofázové motorky z baterie, popřípadě měnit ve větším rozsahu jejich rychlost otáčení a nezáleží nám příliš na účinnosti, můžeme použít zapojení podle obr. 24. Zapojení lze použít pro motorky o výkonu několik VA, např. pro ventilátory nebo čerpadla. Obvod typu 555 tvoří astabilní multivibrátor s kmitočtem nastavitelným proměnným rezistorem v rozsahu asi 50 Hz až 150 Hz. Výstupní signál tohoto multivibrátoru se zpracovává v děličce kmitočtu 1:2, která se skládá z IO 7473, na jehož výstupu jsou impulsy o střídě 1:1 s polovičním kmitočtem. Přímým a invertovaným výstupem budíme výkonový stupeň zesilovače, takže přivádíme střídavě na primární vinutí transformátoru pravoúhlé proudové impulsy v rozsahu kmitočtů 25 až 75 Hz. Na vinutí 220 V (s filtračním kondenzátorem vyšších harmonických) získáme střídavé napětí pro pohon jednofázového asynchronního motorku.

K napájení použijeme baterie 12 V (např. automobilovou) a výkonové tranzistory opatříme dostatečně velkými chladiči (plocha každého z nich asi 1 dm²).

Řada výrobců nabízí speciální zařízení, obsahující také generátor, zesilovače a popř. obvody pro zavedení zpětné vazby s trojťazovým výstupem pro motory velkých výkonů. Dnes se používají v těchto zapojeních obvody impulsních zdrojů a taková zařízení pracují s mnohem lepší účinností. Jed-

Obr. 24. Jednoduchý zdroj pro malé asynchronní motorky

ná se však o složitá a poměrně drahá zařízení, která v běžné amatérské praxi podstatně znevýhodňují přednosti asynchronních motorů. Nejpraktičtější pro použití v domácnosti jsou "záskokové" zdroje pro domácí vodárny, kombinované s nabíječem baterie, která po dobu výpadku sítě zajišťuje správnou činnost čerpadla.

Regulátor rychlosti otáčení střídavých komutátorových motorků

Regulátory pro tyto druhy motorků jsou velmi populární mezi uživateli ručních vrtaček jako univerzálních pohonů pro různé přístroje, využívané v domácnosti (nástavcepro okružní pily, frézky, soustruhy, brusky, přímočaré pily atd.). Regulátor umožňuje plynule nastavit rychlost otáčení v poměrně značném rozsahu a přitom zachovává jmenovitý krouticí moment motoru vrtačky.

Jedná se o elektrický obvod, který je galvanicky spojen se sítí, a proto jsou jak jeho konstrukce, tak i zhotovení z tohoto hlediska zhačně náročné a je nutno dbát nejpřísnějších zásad ochrany před elektrickým proudem. Regulátor musí být mechanicky velmi odolný, neboť prostředí, v němž je používán, je na mechanickou pevnost obvykle velmi náročné. Regulátor musí být chráněn proti dotyku elektrických částí. Musí umožňovat řádné větrání (chlazení) elektronických obvodů a musí být chráněn proti mokru, vlhku a prachu.

To je důvod, který patrně odrazuje výrobce od sériové výroby takových regulátorů na trhu se s nimi setkáváme většinou výjimečně jako se samostatným zařízením. Obecně vzato vrtaček, které se v domácnostech používají, je velké množství druhů s různými výkony, způsobem odrušení a zejména provozním stavem. Výrobce, který se do výroby univerzálních regulátorů pustí, riskuje časté reklamace při jednoduchém a levném zapojení, nebo neprodejnost výrobku při skutečně univerzálním řešení s potřebnými ochranami např. proti zkratu, vysoké vnější teplotě atd. Někteří výrobci vybavují regulátorem již přímo vrtačku, což je podstatně snazší problém. Na našem trhu jsou to výrobky NAREX typu EV 710 D a EV 513 D/F. Zapojení takového regulátoru již bylo často publikováno, ale pro úplnost je vhodné zapojení připomenout (obr. 25).

Obr. 25. Regulátor rychlosti otáčení pro střídavé komutátorové motorky

V zapojení je použit k řízení velikosti proudu pouze v jedné půlvině tyristor a proto nelze dosáhnout regulace do plného výkonu motoru vrtačky. Přepínačem lze vyřadit regulátor a při plném výkonu např. vnitřním ventilátorem ochladit vinutí po předchozím déletrvajícím zvětšeném namáhání nebo využít pro práci stroje plného výkonu.

Toto zapojení se osvědčilo při praktickém dlouhodobém využívání a lze je doporučit. Je spolehlivější než zapojení s triakem srovnatelné složitosti. Zapojení využívá velmi účinně zpětné vazby, spočívající v tom, že při momentovém zatížení hřídele motorku se zvětšuje proud, protékající motorkem, a zvětšující se úbytek napětí na vinutí motorku dopomáhá k zvětšení úhlu otevření tyristoru. Kroutící moment motorku zůstává tedy zachován.

Znovu je nutno připomenout, že je nutno zamezit možnosti jakéhokoli dotyku s obvody regulátoru, což platí i pro hřídel potenciometru, na který se může při poškození potenciometru dostat nebezpečné napětí. Proto je nutné kovový hřídel potenciometru vyvést z ochranného, izolovaného a dostatečně pevného krytu izolovaným hřídelem.

Regulátor rychlosti otáčení k ejektrické vrtačce

Zajímavý regulátor otáček pro ruční vrtačku byl popsán v článku ing. Z. Budínského v AR-A č. 10/1990. Rotor motorku je na obvodu opatřen reflexními značkami (na obvodu je 6 až 7 stejně širokých bílých a černých polí), které jsou snímány fotoelektrickým snímačem, který se skládá ze svítivé diody a fototranzistoru. Signál z tohoto snímače je zpracován dvěma operačními zesilovači, na jejichž výstupu je napětí úměrné rychlosti otáčení motorku. Obvod tvoří vlastně fotoelektrické tachodynamo. Výstupní napětí se odečítá od napětí na běžci potenciometru P1, který slouží k nastavení rychlosti otáčení vrtačky. Rozdílové napětí je připojeno na vstup monolitického integrovaného obvodu pro fázové řízení triaků typu MAA436, který přes triak reguluje proud do motorku.

Obvod je konstruován tak, aby jej bylo možno přistavět k běžné ruční vrtačce. Neobsahuje z prostorových důvodů žádný transformátor. Schéma je na obr. 26. Bližší podrobnosti najdete v citovaném článku.

Řízení rychlosti otáčení stejnosměrných motorků

Nejčastějším problémem, před kterým modeláři a amatéři stojí, je řídit rychlost otáčení těchto dnes nejpoužívanějších motorků. Obvykle se jedná o komutátorové motorky se statorem z trvalých magnetů, popř. s buzeným statorem.

Rychlost otáčení určitého typu motorku závisí na velikosti zatěžovacího momentu a na velikosti napájecího napětí. Proud protékající motorkem se po rozběhu ustálí na určité velikosti a pokud se nemění zatěžovací moment, příliš se nemění ani při změně napájecího napětí a tedy i rychlosti otáčení. Proto je pro řízení otáčení těchto motorků nutno použít říditelný zdroj s velmi malým výstupním odporem. Nejvýhodnější je použít speciální elektronický zdroj, u něhož se v určitém rozsahu výstupní napětí při zatížení zvětšuje - tzv. zdroj se "záporným výstupním odporem". Možných zapojení je nepřeberné množství. Zdroj musí mít určitou "proudovou" rezervu pro zvětšené nároky motorku na odběr proudu při rozběhu.

Nejjednodušší zapojení je na obr. 27. Bezpečnostní transformátor Tr odděluje síťové

Obr. 27. Jednoduchý zdroj k řízení rychlosti otáčení stejnosměrného motorku

napětí z hlediska bezpečnosti obsluhy a upravuje velikost napětí pro provoz motorku. Usměrněné a filtrované napětí je přivedeno na kolektor tranzistoru T a napětím z odbočky potenciometru P se řídí napětí na jeho bázi a tedy i rychlost otáčení motorku od nulové do jmenovité. Je použit tranzistor s velkým proudovým zesílením (nejlépe pouzdro s vnitřním Darlingtonovým zapojením dvou tranzistorů). Z emitoru se odebírá regulované napětí pro motor přes pojistku, která chrání tranzistor (popř. i motorek) před

zničením zkratem nebo při přetížení motorku.

Napětí na sekundárním vinutí transformátoru musí respektovat to, že pro správnou funkci tranzistoru musí být napětí po usměrnění a filtraci nejméně asi o 3 V větší, než je požadované maximální napětí na motorku. Rezistror R chrání bázi tranzistoru před zničením nadměrným proudem. Tranzistor je nutno chladit (chladič např. z hliníkového plechu o tloušťce 3 mm a o rozměrech asi 100 × 100 mm nebo plochou odpovídající profilový chladič).

Pro řízení rychlosti otáčení výkonnějších motorků bude nutno použít složitější elektronické zdroje: Dnes nejobvyklejší jsou tyristorové regulátory nebo impulsně řízené zdroje. Jejich návrh a realizace jsou však již spíše zaměřeny na konkrétní aplikace a nebudeme se zde jimi zabývat.

Pokud požadujeme od motorku, aby jeho otáčky byly co nejstálejší, je nutno na hřídel motorku mechanicky vázat tachodynamo a zavést zpětnou vazbu do elektronických obvodů pro řízení motorku.

Zapojení pro vyloučení vllvu vnitřního odporu motorku

Na obr. 28 je schéma zapojení, které využívá k řízení rychlosti otáčení motorku monolitického zesilovače typu A2030, který je obvykle používán v aplikaci jako výkonový zesilovač akustických zařízení. Napětím U_1 se nastavuje rychlost otáčení motorku.

Obr. 28. Řízení rychlosti otáčení stejnosměrného motorku výkonovým operačním zesilovačem A2030 s vyloučením vnitřního odporu motorku

Proud tekoucí do motorku je funkcí zatěžovacího momentu a vytváří na sériově zapojeném rezistoru R_2 úměrný úbytek napětí. Vlivem zpětné vazby přes rezistor R_3 na neinvertující vstup zesilovače se vytváří záporný výstupní odpor zesilovače $-R_0$ o velikosti:

$$-R_0 = (R_1R_2)/R_3$$
.

Příčinou zmenšení rychlosti otáčení motoru při zatížení je, jak již bylo popsáno, rozdíl mezi stabilním napájecím napětím a úbytkem napětí na vnitřních odporech motorku, jejichž součet označíme $R_{\rm m}$. Podmínkou konstantní rychlosti otáčení je:

$$R_{\rm m}-R_{\rm o}=0.$$

Musíme tedy znát velikost odporu $R_{\rm m}$. Tento odpor je však teplotně závislý (vlivem teplotní závislosti měděného vinutí) a přechodový odpor komutátoru je závislý na rychlosti otáčení motorku. Proto nelze dosáhnout dokonale stabilní rychlosti otáčení – přesto se však stabilita výrazně zlepší proti použití zdroje s konstantním napětím. Skutečné poměry v obvodu je však nutno nasta-

vit experimentálně při měření rychlosti otáčení motoru vnějším otáčkoměrem v konkrétním provozním a teplotním režimu. Platí přibližný vztah:

$$R_3 = (1,1R_1R_2)/R_m$$

kde $R_{\rm m}$ je velikost odporu zjištěná měřením při motorku v klidu.

Napájení motorku pro oba směry otáčení

Pokud chceme, aby se motorek otáčel oběma smysly otáčení, lze využít také výkonového zesilovače typu A2030 a to podle zapojení na obr. 29. Obvod je nutno napájet ze zdroje, který dodává kladné i záporné napětí požadované velikosti pro maximální rychlost otáčení motorku a má samozřejmě střední, společný vývod.

Obr. 29. Řízení rychlosti otáčení stejnosměrného motorku v obou směrech otáčení a s klidovou polohou

Vlivem působení diod v obvodu motorku dosáhneme toho, že při určité poloze běžce na odporové dráze potenciometru P bude motorek zcela bez napětí a dalším pohybem běžce doleva nebo doprava se změní směr otáčení, což je pro řízení modelů obvykle žádoucí.

Ovládání stejnosměrných motorků šířkou impulsů

Rychlost otáčení stejnosměrných motorků lze řídit nejen napětím kotvy nebo změnou buzení, ale mnohem efektivněji a účinněji změnou střídy impulsního napětí, které přivádíme na vinutí kotvy. Tento způsob řízení je energeticky podstatně příznivější a je obzvláště výhodný při bateriovém napájení motorku. Úspora energie však není zadarmo. Obvody, jimiž se řídí rychlost otáčení motorku změnou střídy impulsů, jsou podstatně složitější, než obvody při řízení změnou napětí, kde často postačí použít pouze potenciometr.

Na obr. 30 je znázorněn princip tohoto způsobu řízení. Poměrem šířky impulsů na-

Obr.'30. Princip řízení rychlosti otáčení motorku změnou střídy impulsů napájecího napětí

pětí na motorku měníme vlastně efektivní velikost výkonu (příkonu), který motorek spotřebuje. Rychlost otáčení je úměrná poměru časových úseků a:b, tj. době připnutí a odpojení napájecího napětí motorku. Základní kmitočet, který určuje dobu c, nesmí být příliš velký, aby se neprojevoval vliv indukčnosti vinutí kotvy, a nesmí být ani příliš malý, aby se motorek otáčel plynule. Nej-

vhodnější kmitočet závisí samozřejmě na typu motorku, ale osvědčil se kmitočet 100 Hz, odvozený ze síťového kmitočtu. Při aplikacích s bateriovým napájením musíme tento kmitočet získat z pomocného generátoru.

Nejběžnější princip pro řízení střídy sepnutí a rozepnutí využívá operačních zesilovačů a je znázorněn na obr. 31.

Obr. 31. Princip řízení střídy impulsů operačním zesilovačem

Na jeden vstup operačního zesilovače přivedeme regulační napětí z potenciometru, nebo napětí získané z regulačních či zpětnovazebních obvodů. Tímto napětím řídíme rychlost otáčení motoru. Na druhý vstup operačního zesilovače přivedeme napětí pilovitého průběhu. Polarita napětí na výstupu operačního zesilovače se změní v okamžiku, kdy jsou obě napětí na vstupech stejné velikosti.

Na obr. 32 je tato situace znázorněna pro dvě různá regulační napětí. Na výstupu z operačního zesilovače je připojen výkonový spínací zesilovač, který spíná proud do vinutí motorku.

Obr. 32. Změna střídy výstupních impulsů při různém U_{rea}

Pokud chceme řídit rychlost otáčení ve velkém rozsahu bez ohledu na setrvačné hmoty, kterými je hřídel motorku zatížen, musíme zajistit, aby byl průběh proudu do vinutí motorku stejný, jako je průběh napětí v jednotlivých impulsech. Motorek se totiž v okamžiku zmenšení napětí chová vlivem setrvačnosti jako generátor a je zdrojem elektrické energie. Výkonový zesilovač musí mít malý výstupní odpor a v okamžiku, kdy dosáhne napětí řídicího impulsu nulové velikosti, musí být motorek pro generovaný proud zkratován.

Toto dosáhneme při řízení motorku při jednom smyslu otáčení použitím obvodu pro samočinné brzdění motorku. V době trvání impulsu dostává motorek plný výkon v době zániku impulsu je motorek brzděn. Tímto způsobem lze dosáhnout pozoruhodných výsledků v regulaci. Motorek, který má při jmenovitém napětí 4000 ot/min, se podařilo řídit až na mez jedna otáčka/min s poměrně dobrým momentovým účinkem.

Chceme-li řídit rychlost otáčení motorku v obou směrech, musíme přepnout v okamžiku požadované změny smyslu otáčení polaritu napětí na vinutí statoru nebo na rotoru. To je sice nepraktické, lze však toho dosáhnout obvykle nejsnáze mechanickým způsobem, např. použitím relé.

Vhodnější je použít dva operační zesilovače, dva výkonové zesilovače a napájení symetrickým napětím, jak je naznačeno na obr. 33. Vhodným odporem rezistorů R₁, R₂ a volbou napětí –*U* a *U*_{reg} dosáhneme toho, že ve střední poloze běžce potenciometru P jsou oba výkonové zesilovače v nevodi-

Obr. 33. Zjednodušené schéma řízení rychlosti otáčení motorku v obou smyslech otáčení

vém stavu a motorek se neotáčí. Při změně polohy běžce v okolí střední polohy se začne motorek otáčet v jednom nebo druhém směru a rychlost otáčení lze řídit až do jmenovitých otáček. Průběh napětí na motorku při řízení v obou směrech je pro různé polohy potenciometru naznačen na obr. 34.

Obr. 34. Průběh napětí při řízení motorku pro oba smysly otáčení

Na obr. 35 je praktické zapojení pro řízení rychlostí modelů vláčků. K získání napětí pilovitého průběhu je použito dvoucestně usměrněné napětí síťového kmitočtu o velikosti asi 30 V. Napětí je přivedeno přes rezistor R₂₀ na bázi tranzistoru T₅, který je vlastně každých 10 ms uzavřen při zmenšení vstupního napětí k nule (na velmi krátkou dobu). Na jeho kolektoru se objeví špička kladného napětí a tranzistor T₆ s kondenzátorem C₁₀ a rezistorem R₂₂ vytváří integrátor, který spolu s emitorovým sledovačem T7 dodává na výstupní svorce označené A napětí pilovitého průběhu s potřebnou výstupní impedancí. Napětí pro řízení rychlosti otáčení je stabilizováno diodami D1 a D2, rychlost otáčení se řídí potenciometrem R₃. Výkonový zesilovač tvoří dvojice tranzistorů T3 a T2 pro "kladný směr" a dvojice tranzistorů T4 a T2 pro "záporný směr" proudu, protékajícího motorkem M.

Pro nastavení správných poměrů v obvodu je vhodné použít osciloskop. Průběh pilovitého napětí nastavíme trimrem R_{22} tak, aby se co nejvíce blížil ideálnímu pilovitému průběhu o velikosti asi 4 V. Trimry R_7 a R_6 nastavíme tak, aby byl běžec lineárního potenciometru R_3 přesně ve středu odporové dráhy tehdy, když se motorek neotáčí. Tento potenciometr je vhodné opatřit stupnicí pro orientační informaci o rychlosti otáčení motorku (tj. v otáčkách za minutu).

Obr. 35. Zapojení k řízení rychlosti modelů vláčků

Obr. 36. Řízení rychlosti otáčení stejnosměrných motorků se čtyřmi nízkofrekvenčními výkonovými tranzistory v Darlingtonově zapojení v můstku

Další způsoby řízení rychlosti otáčení stejnosměrných motorů

Na obr. 36 je můstkové zapojení se čtyřmi nízkofrekvenčními výkonovými tranzistory v Darlingtonově zapojení pro řízení stejnosměrného motoru. Směr a rychlost otáčení lze řídit potenciometrem. Základní poloha, při které se hřídel motoru neotáčí, by měla být při běžci potenciometru ve středu odporové dráhy. Rychlost otáčení motoru je úměrná vychýlení běžce potenciometru ze středové polohy v obou směrech. Obvodu lze využít u různých strojů např. pro natáčení satelitních antěn, u navíječek, závitořezných strojů, polohovacích mechanismů atd.

Jedna větev můstku je řízena přímo napětím z běžce potenciometru a druhá je řízena invertorem z operačního zesilovače, řízeného z téhož napětí.

Obvod je napájen z nefiltrovaného usměrněného napětí. Neinvertující vstup operačního zesilovače je připojen ke středu odporového děliče, napájeného z tohoto nefiltrovaného napětí a k témuž napětí je také připojen potenciometr. Při vychýlení běžce potenciometru ze středové polohy se můstek rozváží a motorem protéká proud např. přes tranzistory T₁ a T₄, nebo v opačném směru přes tranzistory T₂ a T₃. Zbývající dvojice tranzistorů je vždy v uzavřeném stavu.

Pokud jsou použity tranzistory typu BD675 a BD676 podle schématu, není nutné mezi emitory a kolektory těchto tranzistorů zařazovat ochranné diody, chránící tranzistory před napěťovými špičkami, vznikajícími na indukčnostech vinutí motoru při provozu. Uvedené tranzistory již mají takové diody uvnitř vestavěny. Při náhradě těchto tranzistorů jinými tranzistory v Darlingtonově zapojení (nebo při náhradě těchto tranzistorů dvěma samostatnými tranzistory) je nutno použít ještě ochranné diody podle obr. 37.

Vzhledem k tomu, že je při provozu namáhán vždy pouze jeden z tranzistorů stejného typu, lze tyto tranzistory umístit na společný chladič. V případě náhrady dvěma tranzistory mohou být na společném chladiči jen výkonové tranzistory.

Při zablokování motoru, nebo při zkratu uvnitř jeho vinutí může motorem protékat neúměrně velký proud a proto je nutno chránit obvod, motor i vinutí transformátoru pojistkou (nebo lépe jističem), kterým lze opět po odstranění závady uvést obvod do činnosti.

Pokud máme na transformátoru k dispozici dvě stejná vinutí pro napájení motoru, lze pro podobný účel použít podstatně jednodušší zapojení podle obr. 38. V tomto případě se využívá polovičního můstku s výkonovými tranzistory v Darlingtonově zapojení. Báze jsou ovládány přímo napětím z běžce potenciometru a opět se hřídel motoru otáčí v obou směrech v závislosti na vychýlení běžce potenciometru ze středové polohy. Na tranzistorech je proti úplnému můstku při stejné rychlosti otáčení motoru dvojnásobné

Obr. 37. Náhrada výkonových tranzistorů v Darlingtonově zapojení s ochrannými diodami

Obr. 38. Řízení rychlosti otáčení stejnosměrných motorků se dvěma nízkofrekvenčními výkonovými tranzistory v Darlingtonově zapojení v polovičním můstku

napětí a jsou tedy zatěžovány dvojnásobným výkonem. Proti musí mít chladiče větší plochu, odpovídající této výkonové ztrátě. Teplota tranzistorů by při provozu neměla přestoupit 50 °C.

Na obr. 39 je schéma pro řízení stejnosměrného motoru odlišným způsobem. Jsou použity dva doplňkové tranzistory typu n-p-n

Obr. 39. Řízení stejnosměrného motoru impulsním způsobem (BD 136 má být p-n-p)

a p-n-p. Motorem v tomto případě protéká proud tvaru impulsů. Pokud je běžec potenciometru ve středové poloze, je impulsní proud do motoru v obou směrech stejně velký a motor se neotáčí. Při vychýlení běžce potenciometru ze středové polohy se velikost proudu v jednom směru zvětší a v druhém zmenší. Motor se začne otáčet odpovídajícím směrem.

Rezistor o odporu 33 Ω omezuje proud do bází tranzistorů v krajních polohách potenciometru a jeho odpor, právě tak jako odpor odporové dráhy potenciometru a jejich výkonové zatížení, typ a způsob chlazení tranzistorů závisí na typu motoru.

Poměry zde závisí na vlastnostech motoru, na proudovém zesílení tranzistorů a na jejich teplotě. Otáčky nejsou lineárně závislé na mechanické "výchylce" potenciometru, toto jednoduché zapojení však může v jednoduchých aplikacích vyhovět.

Obr. 40. Symetrické řízení stejnosměrného motoru

Na obr. 40 je schéma obvodu pro symetrické řízení rychlosti otáčení motoru, napájeného štejnosměrným proudem. Toto zapojení opět umožňuje řídit směr i rychlost otáčení u malých motorků. Při vychýlení běžce potenciometru doleva se otevírá tranzistor T₂, proudem procházejícím přes diodu D₁, motor a tranzistor T₂ se začne motor otáčet jedním směrem. Při vychýlení běžce potenciometru vpravo proud protéká opačným směrem přes tranzistor T₁ a diodu D₂. Aby se dosáhlo co nejmenšího klidového proudu ve středové poloze potenciometru, jsou do série s rezistory v bázích tranzistorů zařazeny ještě diody D₃ a D₄.

Obvod k řízení rychlosti otáčení stejnosměrných motorů s integrovanými obvody typu 555

Vzhledem k tomu, že lze u stejnosměrných motorů řídit rychlost otáčení snadno, používají se u různých mechanismů s tímto záměrem. Pokud se nepoužívá zpětná vazba, obvykle se od řídicího obvodu požaduje přímá závislost mezi vstupním napětím a rychlostí otáčení motoru.

Stejnosměrné motory s trvalými magnety mají z principu v určitém rozsahu téměř lineární závislost mezi napájecím napětím a rychlostí otáčení, takže vhodným řídicím obvodem je vlastně stejnosměrný výkonový zesilovač. Vzhledem k účinnosti se pro tyto účely využívá impulsních zdrojů s proměnou šířkou impulsů, které také lépe vyhovují pro řízení motorů v oblasti malých rychlostí otáčení.

Na obr. 41 je obvod pro řízení rychlosti otáčení stejnosměrného motoru. Vstupnímu napětí v rozsahu 0 až 10 V odpovídá rychlost otáčení motoru v rozsahu maximálních otáček v jednom směru, které postupně zpomalují až k nule (motor v klidu) a opět zrychlují do maximálních otáček ve druhém směru.

K řízení šířky impulsů jsou použity integrované obvody typu 555. Astabilní multivibrátor s IO₁ generuje impulsy o kmitočtu asi 80 Hz. Tento kmitočet je dostatečně vysoký aby se při impulsním napájení běžných typů motorů jejich hřídel nerozkmital.

Zenerova dioda s tranzistorem T₁ a s rezistorem R₂ vytváří zdroj proudu, kterým se nabíjí kondenzátor C₃. Napětí na kondenzátoru se tak zvětšuje lineárně s časem a má pilovitý průběh, neboť kondenzátor je působením generátoru IO₁ pravidelně vybíjen.

Napětí kondenzátoru se na integrovaném obvodu IO₂ porovnává s řídicím vstupním napětím a na výstupu 3 z tohoto obvodu jsou pravoúhlé impulsy o kmitočtu 80 Hz, jejichž šířka je závislá na velikosti řídicího napětí. Při velikosti řídicího napětí 5 V je střída výstupních impulsů 1:1 a motor se neotáčí.

Impulsy jsou přivedeny k výkonovým tranzistorovým můstkovým spínačům, jimiž lze spínat proudy až do velikosti 8 A za předpokladu, že jsou tranzistory dobře chlazeny a záběrový proud nepřesahuje 6 A. Směr otáčení lze přepínat přepínačem.

Diody D_1 až D_4 zabezpečují správnou činnost obvodu se zřetelem na napěťové špičky, které vznikají na vinutí motoru při provozu.

Brzdění stejnosměrných motorků

Pokud požadujeme od mechanismů poháněných tímto druhem motorků, aby se po

Obr. 41. Obvod řízení rychlosti otáčení stejnosměrných motorů s integrovaným obvodem typu 555

vypnutí spínače co nejrychleji přestaly otáčet, můžeme využít toho, že tyto motorky mohou pracovat jako zdroj elektrické energie. Otáčíme-li rotorem, pohybují se vodiče rotoru v magnetickém poli buzeného statoru a na kartáčích naměříme napětí přibližně úměrné rychlosti otáčení rotoru.

Na obr. 42 je znázorněn obvod, který této vlastnosti komutátorových motorků využívá. Je použit komutátorový motorek s trvalými magnety ve statoru. Namísto spínače je použit přepínač, kterým odpojujeme napáje-

Obr. 42. Brzdění stejnosměrného komutátorového motorku přepnutím přepínače

ní a vzápětí zkratujeme vinutí rotoru (na kartáčích). Po přepnutí přepínače se motorek setrvačností nadále otáčí a motor začne pracovat jako dynamo. Ve vinutí rotoru vzniká elektromotorická síla stejné polarity, jakou mělo napětí před přepnutím přepínače. Obvodem přepínače protéká značně velký proud, prakticky určený rychlostí otáčení a odporem vinutí rotoru. Motor ve funkci dynama je tímto proudem značně zatížen a tedy brzděn.

Obvod pracuje stejným způsobem i při přepólování zdroje, kdy se motor otáčí v opačném smyslu. U větších motorů může být tento způsob brzdění nebezpečný, neboť mohou vznikat značné elektromechanické síly, vedoucí k poškození motoru mechanicky, nebo poškození vinutí rotoru či komutátoru nadměrným proudem.

Samočinné brzdění stejnosměrných komutátorových motorků

U aplikací, u nichž nelze použít mechanický přepínač, ale pouze spínač (S), nebo je motor spínán elektronicky, popř. je napájen ze stejnosměrného zesilovače, lze použít

Obr. 43. Samočinné brzdění stejnosměrného motorku tranzistorem

zapojení podle obr. 43.

Když je spínač S sepnut, motorek je připojen ke zdroji a rotor se otáčí. Proud protékající motorem protéká také diodou D₁ a na dynamickém odporu této diody v propustném směru vzniká úbytek napětí naznačené polarity. Ačkoliv je báze tranzistoru T spojena s kolektorem přes rezistor R, je tranzistor v nevodivém stavu, neboť napětí na diodě udržuje bázi tranzistoru typu n-p-n "zápornou" (je na ní přibližně o 0,5 V méně než na emitoru).

Po rozpojení spínače S se motor setrvačností nadále otáčí, avšak proud již diodou neprotéká. Motor začne pracovat jako dynamo a na jeho kartáčích je napětí původní polarity. Působením tohoto napětí protéká do báze tranzistoru přes rezistor R proud a tranzistor přejde do vodivého stavu. Proud vznikající v motoru je tranzistorem zkratován, motor ve funkci dynama je tímto zkratem zatížen a otáčející se rotor je účinně brzděn.

Toto zapojení je použitelné i tehdy, požadujeme-li, aby rychlost otáčení motoru rychle sledovala velikost a průběh napájecího napětí. V tomto případě není do obvodu zapojen spínač S, motor je připojen ke stejňosměrnému výkonovému zesilovači, který je součástí např. regulačního zpětnovazebního obvodu nebo servopohonu. Obvod motoru je oddělen diodou D₂. Tranzistor je samočinně spínán či uváděn do nevodivého stavu podle toho, zda napětí ze zesilovače je menší nebo větší než napětí indukované ve vinutí motoru.

Zapojení neumožňuje měnit polaritu napájení a tedy měnit smysl otáčení motoru. Pokud je použit stejnosměrný komutátorový motorek s cizím buzením statoru, musí toto buzení zůstat pro správnou funkci zapojeno. Směr otáčení motoru lze potom přepínat změnou polarity buzení.

Na obr. 44a je obvod, který umožňuje měnit polaritu buzení např. logickým signálem. Potřebujeme galvanicky oddělený zdroj střídavého napětí, jehož špičková hodnota odpovídá potřebnému napětí pro buzení vinutí statoru.

Připojíme-li na řídicí elektrodu tyristoru Ty₁ přes omezovací rezistor R₁ (bod 1) logic-

Obr. 44. Obvod pro změnu polarity buzení (a) a použití elektrolytických kondenzátorů

kou úroveň napětí (+5 V), získanou např. z logických obvodů TTL, tyristor spíná při kladných půlvlnách na dolním vodiči střídavého napětí. V obvodu vinutí statoru a diody D₂ protéká proud. Efektivní střídavé napětí 18 V podle obrázku odpovídá po usměrnění a vyfiltrování kondenzátorem budicímu napětí 24 V i s ohledem na úbytky napětí na tyristoru Ty₁ a diodě D₂.

Na vinutí statoru se tedy objeví každá druhá půlvlna střídavého napětí a je nezbytné napětí na vinutí filtrovat kondenzátorem o značné kapacitě (s vlastní indukčností vinutí). Impulsní průběh napětí by měl jinak za následek i impulsní průběh magnetického pole statoru s důsledkem zhoršené účinnosti motoru, hluku a zahřívání vinutí.

Při připojení logického signálu na řídicí elektrodu druhého tyristoru (bod 2) začne protékat proud tyristorem Ty₂, budicím vinutím statoru v opačném směru a diodou D₁ v opačných půlvlnách střídavého napětí. Polarita napětí na vinutí se tedy změní a tím se změní i smysl otáčení motoru. Nesmíme připustit, aby byly sepnuty oba vstupy (1 a 2) současně. Vinutím by přitom protékal střídavý proud, motor by se tedy nemohl točit a zvětšilo by se nemáhání kondenzátoru.

Pro střídavý proud o kmitočtu 50 Hz je nutno použít kondenzátor o takové kapacitě, aby jeho náboj stačil k napájení vinutí statoru po dobu chybějící půlperiody (tj. téměř 20 ms) a zvlnění neovlivnilo podstatně funkci motoru.

Kapacita takového kondenzátoru musí být alespoň

 $C = 3 \cdot 20 \cdot 10^{-3}/R$

kde C je kapacita kondenzátoru v μF a činný odpor vinutí statoru.

Vzhledem k tomu, že kondenzátor musí vyhovovat pro obě polarity napětí, musí to být buď kondenzátor pro střídavé napětí (např. rozběhový), nebo lze využít elektrolytických kondenzátorů podle obr. 44b. Protože se jedná o kondenzátory značně velkých kapacit, je druhý způsob, pokud jde o rozměry kondenzátorů, výhodnější.

Zapojení pracuje následovně:

Při kladné půlvíně na přívodu 1 se kondenzátor C₃ nabije na špičkovou hodnotu napětí v obvodu C₃, D₄. Při zmenšení napětí impulsu a po dobu opačné půlperiody je nabitý kondenzátor zdrojem proudu pro budicí vinutí. Tento proud nabíjí kondenzátor C₄. Při následující kladné půlperiodě se opět kondenzátor C₃ nabije na špičkové napětí, ala kondenzátor C₄ se vybíjí a napětí na něm může dosáhnout i opačné polarity, omezené napětím na diodě D₄ v předním směru (tj. asi –0,5 V). Děj se trvale opakuje.

Při impulsech opačné polarity působí naopak jako zásoba energie náboj kondenzátoru C_4 a kondenzátor C_3 je pomocný. Funkce diod D_3 a D_4 se vzájemně vymění.

Ochrana motorků proti přetížení

Zapojení je na obr. 45a. Ochrana spočívá v tom, že do obvodu motoru je zapojen tyristor, který při neúměrném zvětšení proudu motorkem obvod vypne.

Ochrana se tedy hodí pro stejnosměrné komutátorové motorky nebo pro univerzální motorky v domácích spotřebičích a chrání motorky proti poškození při zvětšení mechanické zátěže nad určitou mez. Funkce je jednoduchá. První tyristor Ty₁ je sepnut

Obr. 45. Ochrana motorků proti přetížení

proudem protékajícím rezistory R_1 až R_3 a diodou D_5 a motorek se otáčí. Zvětší-li se proud obvodem motorku (diody D_1 až D_4 , motorek, rezistor R_4 paralelně s potenciometrem P), zvětší se i napětí na snímacím rezistoru R_4 .

Požadovanou mez vypnutí nastavíme potenciometrem P. Přes tranzistor T sepne druhý tyristor Ty₂ a ten zůstane sepnutý, pokud nestlačíme startovací tlačítko Tl po odstranění příčiny přetížení. Sepnutý tyristor Ty₂ zabraňuje průchodu proudu tyristorem Ty₁ a tedy obvodem motorku. Kondenzátor C₁ má za úkol zabránit sepnutí tyristoru Ty₂ při zvětšeném proudu během rozběhu motorku. Tyristor Ty₂ je napájen stejnosměrným napětím, které je filtrováno kondenzátorem 100 μF.

Podobný obvod lze realizovat pro ochranu střídavých komutátorových motorků nebo jednofázových asynchronních motorků. Zapojení je na obr. 45b. Obvod je v principu shodný, avšak motorkem protéká střídavý proud. Usměrňovací můstek slouží k získání stejnosměrného proudu ovládajícího činnost tyristoru. Pro vytvoření stejnosměrného napájecího napětí pro obvod druhého tyristoru a tranzistoru je použita další dioda, D₆. Funkce ostatních součástek i jejich číselné označení jsou zachovány.

Měkký rozběh univerzálního motorku

Na obr. 46 je schéma zapojení pro pozvolné zvětšování příkonu do vinutí univerzálního motorku. Tento obvod oceníme u pohonu mechanismů s velkou setrvačnou zátěží, kde je použito třecích převodů. Při spouštění motorku na plný výkon takové převody prokluzují a rychle se opotřebovávají. Jedná se o aplikace s převodovkami např. u zdvihacích zařízení (vrátků) nebo u navíječek. K měkkému rozběhu motorku poslouží integrovaný obvod typu MAA436.

Obr. 46. Měkký rozběh motoru

V okamžiku zapnutí jsou kondenzátory 10 μF bez napětí, tranzistor KC508 je uzavřen a úhel otevření traku je nulový. S postupným nabíjením kondenzátorů se začíná tranzistor otevírat a tím se zvětšuje úhel otevření až na úroveň, danou nastavením děliče R_A a R_B.

Dobu náběhu do plného výkonu motorku lze nastavit odporovým trimrem R_A v rozmezí zlomku sekundy až po dobu několika sekund. Spínaný výkon ovlivňuje volbu triaku. Zapojení je převzato z technických zpráv TESLA Rožnov – Příklady použití integrovaného obvodu pro fázové řízení triaků a tyristor MAA436 a je určeno pro měkký rozběh motorků u běžného domácího nářadí, zejména vrtaček pro napětí 220 V a příkon do 800 W.

Zapojení je vhodné doplnit na síťové straně vhodným filtrem pro odrušení špiček, vzniklých fázovým řízením na indukčnostech vinutí. Volba součástek filtru je určena typem motorku. V AR-A č. 7/1982 popisoval autor L. Srb odvozené zapojení s využitím pro ochranu projekčních žárovek před proudovými nárazy po zapnutí. Zapojení je zjednodušené o tranzistor a dosahuje se násehových časů až několik minut s lepšími vlastnostmi. Zapojení je na obr. 47. V uvedeném článku bylo popsáno i osvědčené zapojení filtračních členů.

Proporcionální řízení motorů

Jedním z oblíbených způsobů využívání elektromotorů v automatizaci a v modelářství je tzv. proporcionální řízení. Proporcionálnost zde znamená přímou závislost mezi vstupní a výstupní veličinou, které se plynule, obvykle s lineární závilostí mění. V modelářství se jedná například o lineární závislost polohy ovládací páky ve vysílací části a např. úhlu nastavení předních kol modelu autíčka, nebo nastavení kormidla v letadle na části přijímací.

Vzhledem k značnému rozšíření tohoto způsobu dálkového ovládání bylo již dosaženo značné standardizace jednotlivých prvků celého elektrického i mechanického vybavení a jsou vyráběny kompaktní celky jako vysílače, přijímače, pákové ovládače, servomechanismy a mnoho mechanických doplňků.

Principem takového způsobu ovládání mechanismů se stejnosměrnými motorky je např. převedení polohy potenciometru na signál o určitém kmitočtu a opětné převedení tohoto signálu na úhel natočení hřídele motorku (na přijímací straně).

Hřídel motorku je mechanicky spojen s potenciometrem tak, aby napětí na běžci toho-

Obr. 47. Upravené zapojení, vhodné i pro spínání projekčních žárovek

Obr. 48. Přijímací část proporcionálního řízení rychlosti otáčení motorku změnou kmitočtu

to potenciometru odpovídalo úhlu natočení hřídele.

Na obr. 48 je zapojení přijímací části proporcionálního systému, u něhož závisí úhel natočení hřídele motorku na kmitočtu vstupního signálu. Jako vysílače zde využijeme převodníku napětí/kmitočet. Napětí snímáme z běžce lineárního potenciometru a kmitočet se mění v rozsahu 440 až 1100 Hz.

Diferenciální zesilovač, který je tvořen integrovaným obvodem MBA145, porovnává napětí na běžci potenciometru, který je mechanicky vázán na hřídel motorku, s napětím na výstupu z převodníku kmitočet/napětí na kondenzátoru C₄. Zesilovač z tranzistorů T₂ a T₃ spíná proud do motorku tak, aby byla napětí na vstupech diferenciálního zesilovače stejná. Motorek se přestane otáčet tehdy, když bude rozdílové napětí na vstupech 5 a 6 (MBA145) menší než asi 15 mV. To odpovídá asi 1 % z celého rozsahu napětí v krajních polohách potenciometru P₁. Tato přesnost je pro většinu aplikací dostatečná.

Převodník kmitočet/napětí tvoří integrovaný obvod MAA325 a tranzistor T₁. Průběh vstupního napětí může být prakticky libovolný, tj. sinusový, pravoúhlý, nebo může mít tvar impulsů. Druhé dva tranzistory integrovaného obvodu MAA325 vytvářejí tvarovací obvod, který ze vstupního signálu vytváří signál pravoúhlého průběhu, odvozený od průchodu vstupního signálu nulou. Kondenzátory C₂ a C₃ a obvody tranzistoru T₁ tvoří integrátor a napětí na kondenzátoru C₄ je s velkou přesností úměrné kmitočtu vstupního signálu.

Na obr. 49 je schéma sériově vyráběného serva typu ST-1, které vyráběla TESLA Kolín. Servo je určeno pro řízení modelů lodí, letadel a aut, dálkově ovládaných proporcionální rádiovou soupravou (např. Modela Digi, Modela 6 AM 27, Modela 4 AM 27 apod.). Vlastnostmi odpovídá dováženým typům proporcionálně řízených serv a využívá zákaznického hybridního obvodu

Obr. 49. Servo ST-1

WDC011. Připojení je třídrátové a použitý stejnosměrný motorek má pětilamelový komutátor s dlouhou dobou života.

Servo reaguje na šířku vstupních impulsů a má neutrální polohu při šířce ovládacího impulsu 1,5 ms. Napájecí napětí je v rozmezí 4 až 6 V, přičemž toto napětí musí být z hlediska spolehlivé funkce zajištěno ze zdroje o malém vnitřním odporu (dobré baterie, nejlépe sintrované články NiCd), klidový odběr je 12 mA max., největší odběr je

Obr. 50. Zapojení pro řízení serva

500 mA. Hřídel výstupu serva se natáčí v rozsahu asi ±50° v rozsahu šířky vstupních ovládacích impulsů 1 až 2 ms.

Na obr. 50 je schéma zapojení obvodu pro řízení tohoto serva přímo bez rádiového řetězce. V tomto zapojení lze servo použít pro třídrátové ovládání např. polarizátoru konvertoru (vnější jednotky) družicové antény, pro zkoušení jiných serv, či jinému účelu. V případě přepínání polarizátoru změříme příslušné odpory odporové dráhy potenciometru pro potřebné úhly natočení vertikální a horizontální polohy antény a potenciometr nahradíme přepínačem s pevně nastavenými odpory.

Jednoduchý přepínač směru otáčení při proporcionálním ovládání motorů

U dálkově řízených modelů se stejnosměrnými motorky se obvykle požaduje možénost ovládat rychlost a směr otáčení v závislosti na tvaru vysílaných impulsů. Existuje řada více či méně dokonalých zapojení, která tomuto účelu vyhovují a existují i speciální integrované obvody pro tento účel.

Jednoduché řešení se dvěma běžnými integrovanými obvody a můstkem z tranzistorů, které vyhoví pro některé aplikace, při nichž se požaduje pouze možnost změny otáčení motorku v obou směrech, je na obr. 51.

Motor je zapojen v úhlopříčce můstku, sestaveného za čtyř tranzistorů. Tím se dosáhne snadného napájení můstku z jediného zdroje bez nutnosti elektromechanicky přepínat polaritu napětí např. pomocí relé.

Vstupní impulsy kladné polarity jsou negovány tranzistorem T₁ a na vstupu 1 integrovaného obvodu MH7400 jsou krátké záporné impulsy. Hradla H₁ a H₂ tvoří monostabilní klopný obvod, který je těmito impulsy spouštěn. Šířka impulsů, které tento monostabilní obvod synchronně se vstupními impulsy generuje, je určena kapacitou kondenzátoru C₂ a odporem proměnného rezistoru R₂. Šířku těchto impulsů lze tedy nastavit změnou polohy běžce R₂.

Pokud je délka impulsu z monostabilního generátoru delší než doba mezi vstupními impulsy, je na špičce 10 integrovaného obvodu (hradlo H₃) úroveň log. 0 a na špičce 8 úroveň log. 1. Toto napětí otvírá tranzistor T₂. Současně je úrovní na špičce 11 otevřen tranzistor T₅. Tranzistory T₃ a T₄ jsou v nevodivém stavu a motor se otáčí jedním směrem.

Pokud je naopak délka impulsu z monostabilního generátoru kratší než doba mezi vstupními impulsy, jsou tranzistory v opačném stavu a motor se otáčí opačným směrem.

Zastavit motor při shodnosti délek obou impulsů je prakticky nemožné, neboť o stavu obvodu rozhodují délky těchto impulsů v oblasti nanosekund. Klidový stav motoru mezi přepnutím z jednoho do druhého směru je určen časovými konstantami součástek R₃, R₄ a C₃. Zapojení je vhodné pouze pro aplikace, u nichž není dlouhý čas zastavení motorů požadován, nebo u nichž je zajištěn jiným způsobem. Mez sepnutí při určité rychlosti otáčení v obou směrech se nastaví potenciometrem R₂.

Z napájecího napětí se asi 0,5 V ztrácí na tranzistorech v můstku a je tedy nutno při volbě napájecího napětí pro motorek s tímto úbytkem počítat. Napříznivě také působí závislost délky impulsů z monostabilního obvo-

Obr. 51. Jednoduchý přepínač směru otáčení při proporcionálním řízení rychlosti otáčení motorků

du na napájecím napětí, které by bylo nutno při větších nárocích na obvod stabilizovat. Zapojení pracuje s napájecím napětím integrovaných obvodů TTL v rozmezí 4,5 až 6 V a tyto obvody spolu se vstupním tranzistorem odebírají ze zdroje v závislosti na velikosti napětí proud 20 až 30 mA.

Řízení krokových motorků

Točivý moment krokových motorků vzniká vhodným postupným přepínáním kombinací buzení jednotlivých fází v rytmu kmitočtu řídicího signálu. Změnou následnosti těchto kombinací měníme smysl otáčení motorku.

Na obr. 20 byl znázorněn průběh proudů do jednotlivých vinutí nejobvyklejších čtyřfázových krokových motorků pro čtyřtaktní a osmitaktní ovládání. Při čtyřtaktním ovládání je počet kroků na 1 otáčku poloviční než při ovládání osmitaktním. Počet kroků volíme s ohledem na požadovanou úhlovou přesnost požadovaných poloh hřídele motorku.

U dnes nejběžněji používaných krokových motorků v amatérské praxi typu SMR 300-100-R1 je počet kroků na 1 otáčku při čtyřtaktním ovládání 40 a při osmitaktním ovládání 80.

Pro správnou funkci motorku je nutno dodržet průběh proudů podle uvedeného obrázku bez ohledu na indukční charakter zátěže těchto vinutí. Používáme-li čtyři elektronické spínače a společný zdroj konstantního napětí, musíme do série s jednotlivými vinutími zapojit rezistory, které vhodně upraví impedanci zátěže. Pro uvedený typ motorků výrobce doporučuje a ke každému motorku dodává rezistory o odporu 62 Ω/6 W. Rezistory lze nahradit tranzistorovými spínači s proudovým charakterem. Na vinutí motorku vznikají vlivem přechodových jevů napěťové špičky, které mohou ohrozit spolehlivost spínacích tranzistorů. Proto musí být tranzistory chráněny diodami nebo kondenzátorovými filtry. Čím lépe se podaří dodržet ideální průběh proudu podle obr. 20, tím dosahuje motorek při provozu lepších dynamických vlastností, zejména velkého momentu při větších rychlostech otáčení a spolehlivosti při kritické momentové zátěži.

Výrobce dodává k motorkům také speciální budiče. Pokud motorek řídíme vlastními číslicovými obvody specifických vlastností, je výhodné použít budič vlastní koncepce. Budič se obvykle skládá z generátoru řídicího napětí určitého kmitočtu k řízení směru otáčení, děliče kmitočtu, dekodéru a zesilovače

Při využití počítače lze programově zabezpečit funkci generátoru, obvodu řízení směru otáčení, děliče kmitočtu i dekodéru. Zbývá sestrojit pouze vhodný zesilovač proudů do jednotlivých vinutí.

Blokové schéma běžného budiče je na obr. 52. Kmitočet generátoru se řídí vnějším napětím nebo přepínačem v rozpětí, které je schopen motorek se zatížením zpracovávat. V čítači se postupně vytváří řada logických stavů závislá na požadovaném smyslu otáčení a dekodér upravuje obsah čítače na informaci pro spínače (zesilovače) proudů do jednotlivých vinutí motorku.

Na obr. 53 je schéma osmitaktního rozdělovače. Kmitočet z vnějšího generátoru je

Obr. 53. Osmitaktní rozdělovač

zpracován v obousměrném čítači – integrovaném obvodu MH74193. Na místě dekodéru je použit integrovaný převodník z kódu BCD na kód 1 z 10, MH7442, a čtyři třívstupové pozitivní logické členy NAND (1+1/3 integrovaného obvodu MH7410). Zbývajících dvou těchto členů je využito v obvodu pro přepínání směru.

Jiný rozdělovač, využívající na místě dekodéru elektricky programovatelné paměti PROM typu MH74188, je na obr. 54. Toto zapojení umožňuje přepínat čtyřtaktní a osmitaktní ovládání motorku.

Paměř je nutno naprogramovat podle uvedené tabulky. Paměř ROM 256 bitů typu MH74188 se programuje takto:

1. Připojí se napájecí napětí a kombinací logických úrovní na vstupech ADRESA se zvolí slovo, které má být naprogramováno (oblast I na obr. 55).

Obr. 55. Průběhy programovacích impulsů

- 2. Vstup VÝBĚR se připojí na napětí 2,4 až 5 V (oblast II).
- 3. Výstupní bit, který má být naprogramován, se připojí na napětí –0,6 až –0,8 V.
- Napájecí napětí se zvětší na 9 až 11 V a nejpozději do 10 ms po dosažení této velikosti (oblast III) se vstup VÝBĚR připojí

na napětí 0 až 0,5 V. Toto "vybavení paměti" musí trvat déle než 700 ms. Nejpozději do 10 ms po zmenšení napětí na vstupu VÝ-BĚR na napětí podle bodu 2 se musí zmenšit napájecí napětí na původní velikost podle bodu 1 (max. 5,5 V). Zdroj napájecího napětí musí být schopen dodat při napětí 0 až 11 V proud 100 mA.

Jednotlivé bity se programují postupně a je vhodné se vždy okamžitě přesvědčit o správném naprogramování každého bitu.

Nejvhodnější je použít k programování alespoň jednoduchý přípravek s přepínači a objímkou pro programovaný integrovaný obvod, nebo si alespoň takový přípravek zapůjčit, popřípadě si nechat obvod naprogramovat. Práce bez přípravku je zdlouhavá a je možno snadno obvod naprogramovat nesprávně.

Na obr. 56 je schéma spínače pro krokové motorky typu SMR 300-100-R1. Tento spínač je vstupy 1 až 4 připojen k výstupům rozdělovače. Jednotlivá vinutí motorku jsou přemostěna diodami D₁ až D₄, které chrání spínací tranzistory před napěťovými špičkami. Vinutí jsou vždy ve dvojicích jedním koncem spojena (již od výrobce) a společný vývod je připojen ke společnému sériovému odporu.

Obr. 56. Spínač pro čtyřfázový motorek typu SMR 300-100-RI

Stejné zapojení lze použít při řízení krokového motorku počítačem. Vstupy 1 až 4 jsou však připojeny k jednotlivým výstupům (portům) programovatelného paralelního obvodu pro vstup/výstup, např. typu MHB8255 A. Nezbytné je podle vzdálenosti obvodu spínače od počítače oddělit ještě vstupní signály oddělovacími obvody, hradly nebo opto-

elektronickými prvky. Funkci rozdělovače zastane program počítače.

Využití synchronních a krokových motorků pro pohon gramofonů

Synchronní motorky typu SMZ a SMR se staly velmi oblíbenými pro pohon gramofonů a prakticky vytlačily dříve používané asynchronní motorky. Důvodem byla snadná náhrada přepínání rychlosti otáčení gramofonového talíře mechanickým způsobem na způsob elektronický. Určitá náchylnost ke škubavému pohybu otáčení hřídele motorku byla odstraněna "gumičkovým" převodem. Namísto využívání mechanicky náročných kladek a pák se používají elektronické zesilovače, generátory a zdroje stejnosměrného napětí. Řešení je obvykle výrobně podstatně dražší, ale je vykoupeno podstatným zlepšením spolehlivosti přístroje.

Na schématu v obr. 57 je obvod pro pohon gramofonu synchronním motorkem typu SMR 300/220, který nepotřebuje ke své funkci síťový transformátor. Obvod je tedy celý galvanicky spojen se síťovým napětím a tomu musí z hlediska bezpečnosti odpovídat konstrukční provedení přístroje.

Tranzistory T₁ a T₂ jsou napájeny ze stabilizační diody D₂ a tvoří astabilní multivibrátor. Přepínačem volíme kmitočet, odpovídající požadované rychlosti otáčení gramofonového talíře, tedy 45 ot/min a 33 ot/min. V tomto případě je to kmitočet 50 Hz a 36,6 Hz – závisí na mechanickém převodu gramofonu.

Tyristory Ty₁ a Ty₂ postupně spínají a mění směr průtoku proudu usměrněného napětí do cívky motorku. Při sepnutí jednoho z tyristorů je vždy přerušen proud v obvodu druhého tyristoru, který pak nevede. Proud je přerušen vybíjením příslušného kondenzátoru (C₃ a C₄).

Jiné zapojení, využívající ke spínání proudu do vinutí motorku tranzistorů, je na obr. 58. Obvod je ovšem vybaven síťovým transformátorem pro napájení tranzistorů a motorek typu SMz 375 je převinut pro napájecí napětí 24 V. Pokud je síťový transformátor konstruován jako bezpečný, není nutno dbát tak přísných konstrukčních zásad pro ochranu obsluhy proti úrazu elektrickým proudem jako v předchozím případě.

Úprava vinutí motorku je snadná, neboť vinutí u tohoto typu motorku je umístěno na válcové cívce a hlavním problémem je demontáž motorku.

Použijeme drát CuL o průměru 0,17 mm a pro dosažení symetrie vineme obě vinutí společně. Každé vinutí má 1050 závitů. Počátek vinutí vyvedeme společně pro obě cívky (střed vinutí 2) a připojíme na ± 24 V. Potenciometry P_1 a P_2 nastavujeme kmitočty oscilátoru pro požadovanou rychlost otáčení kotouče gramofonu.

Pro správnou funkci a stabilitu je nezbytně nutné dobře stabilizovat napájecí napětí. Proto byl použit integrovaný stabilizátor napětí MA7824.

Krokové motorky v hodinách

Krokových motorků speciální konstrukce se využívá pro pohon krystalem řízených hodin a budíků. U náramkových hodinek se většinou používají jednoúčelové elektronické obvody, určené pro plošnou montáž a zalité do ochranných laků. Jsou napájeny bate-

Obr. 57. Obvod pro pohon gramofonu s motorkem SMR 300/220

Obr. 58. Obvod pro řízení synchronního motorku SMz 375

rií o napětí 1,2 až 1,5 V, mají vně připojený krystal a obvykle i několik pasívních elektronických součástek. Takové obvody nejsou pro běžné kusové využití použitelné.

U větších hodin a u stolních budíků lze (z rozměrových důvodů) použít integrované obvody pro běžnou montáž. Např. u budíků typu Prim Quartz se používá dovážený integrovaný obvod (pro běžnou montáž do desek s plošnými spoji) typu e1151. Napájecí napětí tohoto obvodu je max. 5 V, avšak spolehlivě pracuje již při napájení z běžného suchého článku 1,5 V, tj. v rozsahu 1,2 a 1,7 V. Při menším napájecím napětí již nepracují tyto obvody spolehlivě (a proto bývají již problémy při použití článků NiCd s napětím 1,2 V).

Obvod obsahuje oscilátor, pracující s vnějším krystalem o kmitočtu 4,194304 MHz. Vnějším kapacitním trimrem lze v malém rozmezí tento kmitočet přesně nastavit. Dále obvod obsahuje dělič kmitočtu s 23 binárními stupni pro získání výsledného kmitočtu 0,5 Hz se střídou 1:1. Signálem tohoto kmitočtu je již ovládán, po zpracování vnitřními tvarovacími obvody a zesilovačem, krokový motorek.

Zapojení integrovaného obvodu e1151 je na obr. 59. Tlačítko Tl umožňuje nastavit přesný čas. Při jeho stisknutí se motorek zastaví a po jeho uvolnění se po jedné sekundě generuje do jeho vinutí první impuls.

Na vývodu 6 integrovaného obvodu je signál o kmitočtu 64 Hz pravoúhlého průbě-

Obr. 59. Integrovaný obvod e1151

hu v úrovni CMOS. Vinutí krokového motorku je připojeno přes vnější kondenzátor o kapacitě 50 μF. Integrovaný obvod pracuje při teplotách od –20 do +70 °C, lze jej napájet napětím až 5 V a jeho ztrátový výkon je max. 300 mW.

Proud mezi svorkami 3 a 5 je 3 mA a po zesílení jej lze použít i pro napájení výkonnějších motorků. V tom případě se použijí kladné impulsy o kmitočtu 0,5 Hz na vývodu 5 proti "zápornému" přívodu napájecího napětí (vývod 2).

Regulátor alternátoru

Většina dnešních automobilů je vybavena alternátorem. U mnoha těchto alternátorů se však dosud používá mechanický regulátor tak, jak jej známe z dříve používaných regulátorů dynam. Výrobce měl sice jistě důvody, proč použil mechanický kontaktní regulátor – mohly to být důvody cenové, ovšem mohl to být i důsledek seriózních zkoušek v mezních podmínkách, v jakých přístroje v automobilech běžně pracují. Každopádně dnes mnoho výrobců s úspěchem používá polovodičové regulátory, které se vyznačují podstatně delší dobou života i spolehlivostí.

Pokud je vaše vozidlo vybaveno mechanickým regulátorem, nedoporučuji jej trvale nahradit jiným, neboť vozidlo je s původním regulátorem homologováno a amatérsky zhotovený regulátor by mohl způsobit různé problémy. Musel by být z hlediska prostředí vozu ošetřen jak po elektrické (přísný výběr součástek), tak i mechanické stránce. Mohly by totiž způsobit selhání nebo havárii. Potom by mohly i následovat problémy s pojišťovnou.

Pokud však alternátor použijeme například pro nabíjení baterií na chatě u vodní nebo větrné elektrárny, nebo v jiné aplikaci, doporučuji použít elektronický regulátor. V takové aplikaci je obvod podstatně méně tepelně i mechanicky namáhán a pro amatéra se základními znalostmi a vybavením není prakticky proti jeho použití žádný důvod.

Hlavní výhody elektronického regulátoru jsou:

- odstranění mechanických kontaktů, které se opalují, popř. lepí a časem ztrácejí svoji funkci;
- prakticky neomezená doba života,
- podstatně dokonalejší regulační vlastnosti
- výhodnější vlastnosti z hlediska nabíjení akumulátoru, který netrpí extrémními nabíjecími proudy, což by se mělo projevit prodlouženou dobou života.

Popíšeme si nyní funkci polovodičového regulátoru k alternátoru podle obr. 60. Na svorky označené + a – je připojen alternátor.

Obr. 60. Regulátor alternátoru

Mezi svorku označenou B a - je připojeno budicí vinutí alternátoru. Stabilizační dioda D₁ zajišťuje konstantní napětí mezi svorkou + a kolektorem tranzistoru T₁. Napětí na odporovém děliči R₁, R₂, R₃ a R₄ se mění podle toho, jak kolísá napětí na alternátoru. Cílem je udržet toto napětí na velikosti 14,2 V s odchylkou 0,1 V. Dosáhne-li tedy napětí alternátoru 14,3 V, potom tranzistory, které byly dosud ve vodivém stavu, se uzavřou a do budicího vinutí přestane protékat proud. Tento stav je nutno nastavit proměnným rezistorem R₄. Při uvedeném napětí je na děliči z rezistorů R₃ a R₄ napětí menší než na stabilizační diodě D₁ a na přechodu báze-emitor T₁ a tranzistor T₁ se proto uzavře. Tím se uzavřou i zbývající tranzistory.

Když se naopak napětí alternátoru zmenší pod 14,1 V, tranzistory se otevřou a alternátor je opět buzen. K sepnutí a rozepnutí dojde skokově, neboť rezistor R₆ tvoří kladnou zpětnou vazbu a způsobuje hysteresi asi 0,2 V mezi spínacím a rozpínacím napětím. Tato činnost se rychle za sebou opakuje a výsledkem je konstantní napětí na alternátoru.

Obvod lze nastavit vnějším zdrojem proměnného napětí. Napětí musíme být schopni nastavovat s dostatečnou přesností. Mezi svorku B a – zapojíme žárovku 12 V/5 W a odpor rezistoru R4 nastavíme tak, aby střední hodnota mezi napětím, kdy se žárovka rozsvítí (při zmenšování napětí zdroje pod 14,2) a kdy žárovka zhasne (při zvětšování napětí zdroje nad 14,2 V) byla právě 14,2 V.

Pokud obvod použijeme v motorovém vozidle, v blízkosti spalovacího motoru nebo na lodi, musíme pečlivě upevnit součástky, nejlépe na desce s plošnými spoji a dobře je mechanicky zajistit. Spoje musíme dokonale pájet a celý obvod uzavřít do obalu, který jej ochrání proti vlhku, prachu a případným dalším nečistotám.

Mechanické připojení motorků k poháněným zařízením

Při praktickém použití motorů, u nichž nelze plynule řídit rychlost otáčení, zejména u asynchronních motorků, je pro pohon domácího i průmyslového nářadí nezbytné upravit rychlost otáčení hřídele motoru podle dané aplikace.

Volba správného přenosu síly na poháněný stroj je náročná a vyžaduje určitou zkušenost, neboť rozhoduje o dobré funkci a spolehlivosti zařízení.

Vedle funkčních vlastností je nutno pochopitelně zvážit i naše "výrobní" možnosti. Ty bývají obvykle omezené a proto v maximální míře používáme hotové výrobky. Mezi ty patří zejména řemeny a řemenice.

Nejčastější závady při konstrukčním návrhu pohonných mechanismů vznikají nevhodným zachycením reakčních sil do kostry stroje, nesouosostí poháněcího a poháněného hřídele a vibracemi nevyvážených hmot. Doprovodnými jevy jsou otřesy, hluk, zvýšené opotřebení dílů, nadměrné ohřívání a následný vliv např. na obrobek. Pokud nemáme vlastní teoretické znalosti a praktické zkušenosti, je nezbytné se řídit podle osvědčených konstrukcí.

Převody s klínovými řemeny

Tyto převody patří k nejpoužívanějším v aplikaci s tzv. otevřeným opásáním s rovnoběžnými hřídeli. Řemeny se vyrábějí sériově v širokém výběru ve dvou provedeních:

1) kordovém (Industrial) a

2) provazcovém (Rekord).

Kordové řemeny mají tažnou část z kordové tkaniny navinuté v několika vrstvách. Provazcové řemeny mají tažnou část z kordových nití šroubovicovitě stočených do provazce.

Kordové řemeny se používají pro obvodové rychlosti do 25 ms⁻¹, provazcové do 30 ms⁻¹. Jsou určeny pro teploty od –30 do 60 °C. Tam, kde se dostávají řemeny do styku s olejem, je nutno použít speciální řemeny např. ELECTRO-OIL.

Při výpočtu převodu vyjdeme z obr. 61. Obvodová rychlost

 $v = d_1 n_1/19 100,$

Obr. 61. Třecí převod

kde v je obvodová rychlost v ms⁻¹,

d₁ tzv. výpočtový průměr menší řemenice v mm.

n₁ otáčky menší řemenice v min⁻¹.
 Převodový poměr

 $i = n_1/n_2 = d_2/d_1$

kde d_2 je výpočtový průměr větší řemenice v mm,

n₂ otáčky větší řemenice v min-1.

Vzorce uvádíme pro připomenutí toho, že při práci s klínovými řemeny počítáme s tzv. výpočtovými rozměry, cbž jsou pomyslné rozměry nebo čáry na klínovém řemenu nebo řemenici, při nichž nedochází k prokluzu řemenu při běžné funkci a jsou pro jednotlivé typy klínových řemenů a řemenic udávány v tabulkách nebo v normě. Je uvažována průměrná hodnota v rozsahu přípustného opotřebení.

Na obr. 62 je průřez klínového řemene: W je šířka větší základny průřezu řemene, W_p výpočtová šířka řemene,

T výška řemene a

 $\alpha_{\rm o}$ úhel klínu řemene (40° ± 1°).

Obr. 62. Průřez klínovým řemenem

Pro běžné aplikace využíváme klínových řemenů průřezu Z, A a B. V tab. 14 jsou rozměry, hmotnost 1 m délky a rozsahy vyráběných délek. Řemeny se vyrábějí v těchto výpočtových délkách: 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000, 2240, 2500, 2800, 3150, 3550, 4000, 4500, 5000, 5600 a 6300.

Tab. 14. Vyráběné klínové řemeny

	Prů- řez	<i>W</i> _p [mm]	<i>W</i> [mm]	<i>T</i> [mm]	Hmot- nost 1 m [kg]	rozr od [běné něry mm] mm]
	Z	8,5	10	6,0	0,06	400	2500
ı	Α	11	13	8,0	0,10	560	4000
I	В	14	17	11,0	0,18	800	6300

Velikost přenášené síly závisí na profilu řemene, na obvodové rychlosti, délce řemene, jeho vypnutí a na způsobu provozu. Výpočet je poměrně složitý a praktický výsledek je velmi závislý na dobré údržbě při provozu. Bližší podrobnosti lze nalézt v ČSN 02 3110-85 (ST SEV 4481-84), ČSN 02 31111-86 (ST SEV 4982-85), ČSN 02 3112-75, ČSN 02 3109-72.

Při každém využití klínových řemenů však vřele doporučujeme: držet se opět osvědčených předloh.

Přímý náhon

Pokud není nutné (nebo žádoucí) měnit rychlost otáčení mezi hřídelem motoru a hřídelem poháněného stroje, postačí ke spojení poměrně jednoduchá spojka. Některé mechanismy využívají dokonce vlastních ložisek motoru, např. ventilátory, ale některé

jsou z hlediska zachycení příčných i osových sil opatřeny vlastními ložisky, např. čerpadla. Sem patří i spojení motoru s dynamem, tachodynamem nebo odměřovacím zařízením

Hřídele je nutno spojit pružnou spojkou, dovolující při přenosu síly natočení o určitý úhel, daný nesouosostí jednotlivých mechanismů, neboť jinak by se nadměrně namáhala a opotřebovávala ložiska. Zde si pomáháme pružnými vyrovnávacími spojkami, např. kotoučovými (Hardy), které jsou na trhu dostupné buď samostatně, nebo jako náhradní díly pro čerpadla (vodní nebo kalová).

Zajímavým řešením je použít k výrobě spojky kovový válcový vlnovec. Nelze jím přenášet velké krouticí momenty, ale úhlová přesnost je velmi dobrá. Taková spojka je vhodná pro připojení odměřovacího zařízení nebo tachodynama. Na obr. 63 je provedení pružné vyrovnávací spojky pro přesný přenos úhlového natočení hřídele mezi servomotorem a impulsním snímačem polohy, u níž se vyžaduje přesnost nastavení v úhlových vteřinách.

Obr. 64. Pružná spojka

Jiné, zajímavé řešení využívá pružnosti materiálu spojovacího hřídele. V několika místech je pod různými úhly hřídel symetricky probroušen, takže zbylý materiál vytváří jakési pružné planžety. Tím je zaručena vyrovnávací funkce hřídele – viz obr. 64 a vlastnosti v přesném přenášení úhlového natočení jsou podobné jako při použití vlnovcové spojky.

Přípravek na zkoušení tyristorů a triaků

Mnoho zapojení využívá k řízení rychlosti otáčení motorů a k řízení výkonových zdrojů všech druhů často tyristory a triaky. Pro snadnou orientaci o správné činnosti těchto prvků poslouží jednoduchý přípravek podle obr. 65. K napájení obvodů přípravku potřebujeme střídavé efektivní napětí 8 až 12 V. Je možno použít zvonkový transformátor s napětím 8 V.

Mezi body *a, b* a *c* připojíme zkoušenou součástku a stiskneme tlačítko Tl. Rozsvítí se dioda D₃ (žlutá), která signalizuje, že do řídicí elektrody zkoušeného prvku protéká proud. Ten může samozřejmě protékat

D₂ - LO1202 - červená D₃ - LO1502 - žlutá

Obr. 65. Přípravek ke zkoušení tyristorů a triaků

i v případě, že je mezi řídicí elektrodou a katodou zŘrat.

Pokud zkoušíme tyristor, rozsvítí se po stisknutí tlačítka i dioda D_2 (červená). Pokud zkoušíme triak, musí se po stisknutí tlačítka rozsvítit všechny tři diody (žlutá, červená a zelená). Po uvolnění tlačítka musí všechny svítivé diody zhasnout.

Odchylky od uvedených stavů signalizují přerušení nebo zkraty mezi jednotlivými elektrodami zkoušených prvků.

Přípravek vyhoví pro zkoušení běžných tyristorů a triaků do spínaných proudů asi 15 A. Pro výkonové prvky nad uvedenou velikost spínaného proudu nemusí již být budicí proud do řídicí elektrody dostatečný.

Zajímavé drobnosti

Usměrňovače, zdvojovače napětí a násobiče napětí

K napájení stejnosměrných obvodů ze síťového zdroje se nejvíce rozšířilo zapojení s jedním vinutím, usměrňovací diodou nebo s diodovým můstkem (Graetzovo zapojení) a vyhlazovacím kondenzátorem. Toto zapojení je doporučováno u většiny zdrojů a je také použito u většiny návodů v této publikaci. Ačkoliv se jedná o zapojení jednoduché, nemusí být vždy nejvhodnější z hlediska množství použitých součástek a vlastností. Pomineme-li složitější impulsní zdroje s tranzistorovými nebo triakovými spínači, které mají obvykle lepší účinnost (avšak jejichž návrh a údržba přesahují většinou amatérské možnosti), existuje řada jednoduchých zapojení, které se téměř nepoužívají pouze z důvodu malé popularity.

V následujících řádcích si popíšeme usměrňovače, zdvojovače napětí a násobiče napětí, skládající se z tradičních součástí, tj. transformátoru, diod a kondenzátorů, a vedle známých zapojení budou popsána i zapojení méně známá, která mohou pomoci vyřešit problematiku návrhu spojů. Inspirací byl článek v časopise Elektor 9/90 D. A. J. Harkema.

Na obr. 66 je nejjednodušší zapojení jednocestného usměrňovače. Jedná se o jednofázový usměrňovač. Kondenzátor C se nabíjí na špičkovou hodnotu napětí sekundárního vinutí transformátoru, tj. na napětí \overline{\mathcal{Z}}.U. Zapojení lze stejně jako některé dále

Obr. 66. Jednocestný usměrňovač

popisované obvody aplikovat na trojfázovou variantu, při níž získáme podstatně lépe vyhlazené (vyfiltrované) usměrněné napětí. Filtrační kondenzátor je v trojfázové variantě nabíjen na špičkovou hodnotu usměrněného napětí namísto každých 20 ms (u jednofázového usměrňovače) každých 6,6 ms. Pro názornost je na obr. 67 zapojení obvodu pro jednofázové usměrnění napětí z trojfázového transformátoru. Při použití tří jednofázových transformátoru. Při použití tří jednofázových transformátorů je nutno dbát správného zapojení sledu fází z důvodu rovnoměrného nabíjení filtračního kondenzátoru a tedy minimálního zvlnění.

Obr. 67. Jednocestné usměrnění trojfázového napětí

Nevýhoda jednocestného usměrnění spočívá v tom, že vinutí transformátoru i usměrňovací diody jsou proudově značně namáhány pouze v jedné půlvlně průběhu síťového napětí.

Můstkové zapojení (Graetzovo zapojení) podle obr. 68 je podstatně výhodnější a je to dnes nejpoužívanější zapojení. Zdroj střídavého napětí je symetricky zatížen a filtrační kondenzátor je dobíjen dvakrát častěji, tj.

Obr. 68. Můstkové (Graetzovo) zapojení usměrňovače

každých 10 ms, což má výrazně příznivý charakter na zvlnění výstupního stejnosměrného napětí. Nevýhodou je větší počet diod a větší úbytek napětí na diodách (1 V i více), což se projevuje nepříznivě především při usměrňování malých napětí.

Na obr. 69 je zapojení pro dvoucestné usměrnění trojfázového proudu z trojfázového transformátoru, nebo ze tří transformáto-

Obr. 69. Trojfázový můstkový usměrňovač

rů v jednotlivých fázích. Kondenzátor se nabíjí na špičkovou hodnotu ($\sqrt{2}$.U) napětí mezi fázemi ($\sqrt{3}$.U), tj. na 2,45U.-Kondenzátor je nabíjen na toto napětí každé 3,33 ms.

Další varianta zapojení s jedním vinutím je na obr. 70. Jedná se o zdvojovač napětí, případně o zdroj kladného, záporného a dvojnásobného napětí. Transformátor je v tomto případě zatížen rovnoměrně, avšak z hlediska filtrace a namáhání diod má zapo-

Obr. 70. Zdvojovač napětí

jení podobné vlastnosti jako jednocestný usměrňovač. Zapojení není vhodné při nesymetrickém zatížení jednotlivých částí.

Pokud máme na transformátoru k dispozici dvě stejná vinutí (nebo dvojité symetrické vinutí), můžeme použít tzv. dvoucestný usměrňovač podle obr. 71. Zapojení je svými

Obr. 71. Dvoucestný usměrňovač

vlastnostmi podobné můstkovému zapojení, úbytek napětí na diodách je však poloviční a ušetříme dvě diody (příp. i s chladiči, což je zajímavé při větších výkonech).

Dalším zapojením z této řady je kaskádní zdvojovač napětí podle obr. 72 (tzv. Villardovo zapojení). Principu je využíváno i u násobičů napětí s více stupni. Při první půlperiodě s kladným napětím na dolním vývodu z transformátoru se přes diodu D₁ nabije konden-

Obr. 72. Kaskádový zdvojovač napětí

zátor C_1 na špičkové napětí transformátoru. V následující, opačné půlperiodě se sečte napětí na na vinutí s napětím na kondenzátoru a přes diodu D_2 se tedy nabíjí kondenzátor C_2 na dvojnásobnou hodnotu špičkového napětí.

Dosud uvedená zapojení jsou obecně známá a používaná. Další zapojení pochází od lng. Gispera z Curychu a je na obr. 73. Jedná se o spojení Graetzova zapojení s usměrňovačem s posledně uvedeným Villardovým zapojením. Sledujme tok proudu

Obr. 73. Můstkové zapojení usměrňovače (Gisperovo zapojení)

v zapojení podle obrázku. Při kladné půlpenodě na horním vývodu sekundárního vinutí protéká proud do zátěže v obvodu D₄, D₆, + pól zátěže, - pól zátěže, D2 a dolní (záporný) vývod vinutí. V další půlperiodě, tj. pří záporném napětí na horním vývodu protéká proud zátěží takto: + (spodní vývod vinutí), C2 (nabitý na špičkovou hodnotu napětí transformátoru), D₆, zátěž D₁ a - (horní vývod vinutí). Napětí na filtračním kondenzátoru C₃, tj. na zátěži je dáno součtem špičkového napětí na vinutí a napětí na kondenzátoru C2. Při této půlvlně se nabije podobným způsobem jako v předchozí půlvlně kondenzátor C₁ v obvodu: dolní vývod vinutí, D₃, C₁, horní vývod. Náboj tohoto kondenzátoru se vybije v následující půlvlně atd.

Zdroj tedy pracuje jako zdvojovač napětí v obou půlvlnách sířového napětí. Vinutí transformátoru i diody jsou v obou půlperiodách symetricky zatíženy, což je výhodné z hlediska namáhání transformátoru a součástek, ale i z hlediska výsledného zvlnění stejnosměrného napětí. Zapojení lze také použít pro zpracování vysokofrekvenčního napětí.

Podobně jako zapojení zdvojovače podle Villarda Ize obecně rozšířit na obecný násobič napětí (na obr. 74 je násobič čtyřmi), Ize i zapojení podle Gispera kaskádovitě rozšířit (viz obr. 75).

Obr. 74. Násobič napětí

Obr. 75. Kaskádovitě rozšířené zapojení

Dvojité Gisperovo zapojení, umožňující získat přibližně dvojnásobné napětí a nezdvojené usměrněné napětí, je na obr. 76. Transformátor má symetrické sekundární vinutí a obě napětí jsou využívána v obou

Obr. 76. Dvojité Gisperovo zapojení

půlvlnách střídavého napájecího napětí. Vinutí transformátoru i usměrňovací jsou tak rovnoměrně zatěžovány.

Podobně lze rozšířit zapojení při požadavku na kladné i záporné dvojnásobné napětí podle obr. 77.

Obr. 77. Symetrické dvojité Gisperovo zapojení

Uvedená zapojení jsou přehledem základních typů usměrňovačů, zdvojovačů a násobičů napětí a existuje ještě řada variant od těchto zapojení odvozených.

Kapacity použitých kondenzátorů a typy diod závisí samozřejmě na konkrétních aplikacích.

Zpožděné vypínání osvětlení s integrovaným obvodem typu 555

V některých případech je velmi užitečné, když po vypnutí spínače osvětlení zůstane ještě po určitou dobu svítit světlo. Oceníme to např. při cestě od domu ke garáži, kdy nám světlo z domu ještě posvítí na cestu. Zařízení může být užitečně i pro osvětlení chodby domu, sklepa, zahradní cesty apod. Po zhasnutí světla je celý obvod oddělen od síťového napětí, takže je na minimum zmenšena možnost poškození obvodu přepětím v síti, případným vniknutím vlhka do obvodu, samovolné spínání vlivem síťového rušení atd.

Použití takového obvodu ušetří práci s instalací dalšího osvětlení nebo propojování elektrických obvodů mezi vzdálenými místy, popřípadě problémy spojené s používáním přenosné svítilny.

Schéma zapojení je na obr. 78. Ke galvanickému oddělení obvodu časovače od síťové části je použito relé, transformátor a fotoelektrický vazební člen. Fotoelektrický vazební člen je vyroben z doutnavky a fototranzistoru, případně fotorezistoru. Lze použít prakticky libovolné doutnavky s dlouhou dobou života, např. doutnavky s vestavěným omezovacím rezistorem, opatřené žárovkovým závitem, jaké se používají ve sporácích. Pokud chceme použít jiné typy doutnavek, musíme zajistit, že budou mít vestavěn omezovací rezistor, nebo musíme takový rezistor do série s doutnavkou zařadit. Odpor tohoto rezistoru musí vyhovovat přípustnému provoznímu proudu doutnavky a síťovému napětí 220 V.

Fotorezistor je nutno umístit do blízkosti doutnavky a mechanicky oba prvky spojit v kompaktní celek.

Po sepnutí síťového spínače S se doutnavka rozsvítí a přes sepnutý klidový kontakt relé Re₁ (re_{1/1}) se připojí k síti jednak žárovka osvětlení, jejíž svit potřebujeme po vypnutí určitou dobu zachovat, a jednak primární vinutí transformátoru, napájecího zpožďovací obvod. Zde je nejvhodnější použít zvonkový transformátor. Relé Re2, ovládané časovačem typu 555, okamžitě sepne a po asi 0,5 s sepne i relé Re₁. Kontakt re_{2/1} přemostí na síťové straně spínač osvětlení S1 a klidový kontakt relé Re₁ (re_{1/1}). Světlo zůstává svítit i po rozepnutí re_{1/1} a také svítí doutnavka Dt. Po rozpojení spínače S zhasne doutnavka, ale transformátor i žárovka zůstávají dále v činnosti. Po určité době, nastavené odporovým trimrem 100 kΩ, rozepne i relé Re₂, rozpojí se kontakt re2/1 a žárovka zhasne. Nastavením odporového trimru lez dosáhnout času rozepnutí až 2 minuty.

Všechny díly umístíme do uzavřené izolované krabice, jejíž velikost je určena použitými součástkami. Střídavé napětí na sekundámí straně transformátoru by mělo být mezi 6 až 15 V. Tomuto napětí musí vyhovovat kondenzátory C₁ a C₄ a musí při něm spolehlivě spínat použitá relé. Tranzistor T₁ musí být typu n-p-n a musí výkonově vyhovovat vinutí relé Re₁.

Pevnost a umístění krabice musí vyhovět z hlediska bezpečnosti před úrazem elektrickým proudem, neboť části obvodu jsou galvanicky spojeny se síťovým napětím.

V místě připojení musíme mít k dispozici i nulový pracovní vodič. Nelze tedy obvod obvykle připojit v místě běžného síťového spínače žárovky.

ČÍSLICOVÉ ZPRACOVÁNÍ TELEVIZNÍHO SIGNÁLU V TELEVIZORECH

Ing. Vladimír Vít

(Dokončení z B6/91)

Integrované zpožďovací vedení 1 H v základním pásmu

Kromě číslicového zpracování televizního signálu lze zapojení ryze analogového televizoru zdokonalit (zmenšit počet součástek a nastavení) použitím zpožďovacího vedení v dekodéru barev na základě nabíjení spínaných kondenzátorů. Z hlediska jejich počtu lze tak v praxi učinit jen v základním pásmu rozdílových signálů, tj. po demodulaci chrominančního signálu. Zpožďovací vedení je součástí hřebenového filtru (viz literaturu [14]), zapojeného za každým synchronním detektorem dekodéru pro soustavu PAL/ NTSC (viz obr. 67). V praxi se zapojení pro soustavu PAL, NTSC, SECAM integruje do dvou integrovaných obvodů, např. TDA4650 (multistandardní dekodér) a TDA4660 (dva hřebenové filtry se zpožďovacím vedením).

V zapojení na obr. 67 se chrominanční signál F přivádí nejprve na synchronní detektory, při čemž se rozdílným zesílením v předzesilovačích V_B, popř. V_B odstraňuje rozdílný redukční součinitel obou rozdílových signálů. Před synchronním detektorem (R-Y) se chrominanční signál F přepíná v po-laritě ob řádek známým přepínačem PAL. Při demodulaci v synchronních detektorech se pomocí obvyklých referenčních signálů f(R-Y) a f_(B-Y), vzniklých v obvodu pro obnovení barvonosné vlny, získají za dolními propustmi sice oddělené signály (R-Y)s, popř. (B-Y), není v nich však vytvořen průměr ze současného a zpožděného řádku. Odtud index "s" značící, že jde o jednoduchý PAL (simple). Následnými hřebenovými filtry, stejnými v každém rozdílovém signálu, se kromě hřebenové filtrace (viz průběhy na obr. 67) vytvoří žádaný průměr přímého a zpožděného signálu. Demodulátor PAL pracuje tudíž až v základním pásmu, tj. v kmitočtovém rozsahu 0 až 1,4 MHz. Zpožďovací vedení s touto relativní šířkou pásma by nebylo možné vyrobit na základě šíření ultrazvuku v určitém médiu (např. skle). Protože jsou oba hřebenové filtry totožné (na rozdíl od klasického demodulátoru PAL se u obou filtrů signály sčítají a zpoždění je $\tau = T_{\rm H}$), bez vinutí dílů a potenciometru, lze je v podobě spínaných kondenzátorů vyrobit jako integrované obvody (např. TDA4660).

Oba rozdílové signály (R-Y), popř. (B-Y) se v základním pásmu zpožďují postupným nabíjením elementárních paměřových kondenzátorů, které se pak po stanoveném zpoždění vybíjejí rovněž elektronickými spinači. Tento způsob získávání zpožděných signálů v základním pásmu se označuje jako zpožďovací vedení SCD, tj. Switched Capacitor Delay line (= zpožďovací vedení sepínanými kondenzátory). Tak je možné zaručit fázovou věrnost v celé šířce pásma 0 až 1,5 MHz na rozdíl od ultrazvukových vedení.

Integrace spínaných kondenzátorů v podobě zpožďovacího vedení přináší i další výhody v konstrukci televizorů. Integrací se zmenší rozměry původních ultrazvukových zpožďovacích vedení, zmenší se počet vnějších součástek, vyloučí se cívky a potenciometry. Taktováním příslušných řádkových kmitočtů se samočinně upravuje přesná doba zpoždění, potřebná u různých barevných soustav a televizních norem (PAL/ NTSC). Velkou výhodou je odstranění přeslechů mezi signály (zvláště u soustavy SE-CAM) a rušivých odrazů uvnitř klasických ultrazvukových zpožďovacích vedení i na jeho případně nepřizpůsobených koncích. U soustavy PAL je vyloučená fázová nepřesnost v obvodu zpožďovacího vedení a tím výskyt "žaluzií". V soustavě NTSC se snadným způsobem zapojují hřebenové filtry, čímž se dobře potlačuje rušení cross color.

přepínací signál f_H/2 detektor zpożdovaci (R-Y) dolni vedeni propust ΡΆL $\tau = T_t$ hrebenový filtr řizený. signål F detektor zpożdovaci (B-Y) dolni vedeni propust (B-Y). $\tau = T_b$ obnoveni barvonosnė vlny TDA4650 TDA4660

Obr. 67. Základní zapojení dekodéru PAL se zpožďovacími vedeními v základním pásmu; přepínač PAL by mohl být umístěn alternatívně za synchroním detektorem (R–Y) nebo v přívodu referenčního signálu f_(R–Y)

Totéž platí částečně i u soustavy PAL.

Výhoda zapojení se zpožděním v základním pásmu podle obr. 67 se uplatňuje u soustavy NTSC tím, že pro vytvoření účinku hřebenových filtrů s maximem pro signál (R-Y), popř. (B-Y) a minimem pro jasový signál v polovině intervalu řádkového kmitočtu mezi spektry obou rozdílových signálů, stačí jen vyloučit přepínání přepínače PAL a učinit jej průchodným pro chrominanční signál NTSC.

Uvedené zpožďovací vedení se spínanými kondenzátory v základním pásmu se používá i při zpracování signálu soustavy SECAM. Jeden společný kmitočtový demodulátor v barevném dekodéru dodává na svém výstupu signály (R-Y) a (B-Y), střídající se ob řádek. Výstup se rozděluje do dvou cest, v nichž se jeden signál vybírá tím, že se druhý v následujícím řádku potlačuje. Tak např. se v cestě signálu (R-Y) objeví ob řádek jen signál (R-Y), signál (B-Y) se zde vynechává. V cestě (B-Y) se naopak vynechává signál (R-Y). Úkolem zpožďovacího vedení a součtového členu v obou cestách je vytvářet v době chybějícího přímého signálu doplněk ze zpožděného signálu (opakování), vysílaného v předcházejícím řádku. Zapojení hřebenového filtru se v soustavě SE-CAM využívá jako součtový člen přímého (když není zpožděný) a zpožděného (když není současně přímý) signálu.

Skupinové zapojení hřebenového filtru ze zpožďovacím vedením v základním pásmu

Činnost zpožďovacího vedení se spínanými kondenzátory se zakládá na vzorkování vstupního analogového signálu U1 (rozdílového signálu barev). Při tom se napěťové vzorky v počtu Nukládají postupně na paměťových kondenzátorech stejného počtu (viz obr. 68, 69). Říkáme, že se signál časově diskretizuje. Vzorek napětí se jako náboj příslušného kondenzátoru uskladní po dobu zpoždění (přesně o něco méně, což bude dále vysvětleno) a pak se pomocí nábojově napěťového měniče přemění za součinnosti vzorkovacího a paměťového obvodu na výstupní analogový signál U2. Vzorkovací a paměťový obvod (označovaný v literatuře jako sample and hold), zařazený za nábojově napěťovým převodníkem, vynechává přerušení čteného napětí mezerovými impulsy (viz dále) a tak zabraňuje zkreslení signálu. Všechna tato zapojení potřebují taktovací impulsy s příslušně rozdílnou fází, vyráběné v taktovacím generátoru synchronizovaném řádkovými impulsy. Zpožděný výstupní analogový signál je třeba zbavit vyšších kmitočtů, vzniklých vzorkováním, a to dolní propustí, která doplňuje svým přídavným zpožděním $\Delta \tau$ zpoždění signálu τ_c mezi čtením a zápisem na žádanou dobu TH jednoho řádku. Posledním článkem hřebenového filtru je součtový obvod pro přímý a zpozděný signál.

Zápis a čtení napětí paměťových spínaných kondenzátorů

Princip zápisu a čtení je znázorněn na obr. 69. Analogový vstupní signál U_1 se postupně připojuje na elementární paměťové konden-

zátory C_{s1} až C_{sN}. Jsou realizovány tranzistory řízenými polem s kapacitou mezi bází a kolektorem, spojeným s emitorem. Zápis zprostředkují zapisující spínače Sz1 až SzN ovládané spínacími signály S₁ až S_N = S_o z posuvného registru. Je sepnut vždy jen jeden zapisující spínač pomocí výstupu na úrovni H z posuvného registru a to po dobu T_v, odpovídající periodě vzorkování. Vzorkovací kmitočet $f_v = 1/T_v$ je dán požadavkem na nezkreslený a nerušený přenos podle Nyquistovy podmínky (teoremu Shannon-Kotelnikova), aby vzorkovací kmitočet byl minimálně dvojnásobkem nejvyššího přená-

šeného kmitočtu v signálu ($f_{max} = 1 \text{ MHz}$). V integrovaném obvodu TDA4660 s dvojicí popisovaných hřebenových filtrů je vzorkovací kmitočet $f_v = 3f_{\text{max}}$ (s ohledem na snadné provedení dolní propusti bez potřeby velmi strmého týlu přenosové křivky). Tytéž povelové impulsy z posuvného registru se používají pro čtení náboje z paměťových kondenzátorů. Jednotlivé kondenzátory se při čtení připojují na společné výstupní vedení přes čtecí spínače, a to tak, že se v době o jednu (nebo i více) vzorkovací periodu před zápisem do určitého kondenzátoru z něi odebírá náboj pomocí sepnutého čtecího spínače. Při tom stejný povelový signál S o úrovni H spíná zapisovací spínač pro paměťový kondezátor v pořadí za kondenzátorem, z kterého se čte (viz obr. 69). Tak např. povel S2 (úroveň H) spíná zapisovací spínač S_{z2} pro kondenzátor C_{s2} a současně po dobu jedné periody $T_{\rm v}$ vybíjí kondenzátor C_{s3} . Tím se ovšem doba zpoždění $\tau = T_H$ zkrátí o vzorkovací periodu Tv a o tuto hodnotu je třeba v dalších obvodech zpožďovacího vedení signál přídavně zpozdit (děje se tak samočinným řízením doby zpoždění v dolní propusti). Posuvný registr se taktuje impulsy se vzorkovacím kmitočtem, přičemž se posuv inicializuje řádkovým impulsem (start čtení). Čtení začíná signálem So o úrovni H. Počet vzorků pro jeden řádek a tedy i počet N paměťových kondenzátorů (spínacích signálů a spínačů obojího druhu) závisí na době zpoždění a na vzorkovacím kmitočtu podle vztahu

Obr. 68. Skupinové schéma hřebenového filtru se zpožďovacím vedením v základním pásmu .

Obr. 69. Působení zpožďovacího vedení v základním pásmu se spínanými kondenzátorv

$N = f_{V}\tau = f_{V} T_{H} = f_{V}/f_{H}$

Při vzorkovacím kmitočtu $f_v = 3f_{max} =$ $3 \times 1 \text{ MHz} = 3 \text{ MHz}$ a pro $f_{H} = 15 625 \text{ Hz}$ je počet kondenzátorů $= 3.10^{6}/$. /15625 = 192. Proto je výhodné zpožďovací kondenzátorové vedení v základním pásmu, neboť vzorkovací kmitočet (a tím i počet paměťových kondenzátorů) je menší, než by tomu bylo v pásmu barvonosného kmitočtu. Vnitřní podrobné zapojení integrovaných obvodů TDA4650 a TDA4660 s popisem dílčích činností je uvedeno v literatuře [14].

Závěr

Účelem celého pojednání bylo seznámit čtenáře se zapojením světových špičkových televizorů, obohacených pomocí číslicového přepracování televizního signálu uvnitř přístroje o nové funkce a zdokonalení obsluhy, servisu i spolehlivosti provozu. Tyto skutečnosti a zmenšený počet pasívních součástek a nastavování (tj. zlevnění výroby) umožní brzké rozšíření číslicových obvodů i do televizorů střední třídy.

Opravý a doplňky

Vzhledem k tomu, že obsah č. 6/1991 byl relativně náročný, udělejte si v něm, prosíme, následující opravy a doplňky

na str. 203, levý sloupec, druhý odstavec místo "doplněného" správně "doplněném

str. 209, levý sloupec, druhý odstavec shora - místo obr. 18 má být obr. 16 a naopak.

str. 210, prostřední sloupec, druhý odstavec pátý a šestý řádek má být správně "dulátory PAL se zpožďovacím vedením. Na výstupu demodulátorů jsou rozdílové signály...". Do textu pod obr. 16 přidejte "ZV(1H) v základním pásmu tvoří paměť RAM", str. 212, levý sloupec – doplňte na závěr sloupce před titulkem Procesor tele-

textu větu "(pouze u dekodéru sousta-

vy D2MAC)", str. 214, prostřední sloupec – místo 54:1 má

být "64:1" pravý sloupec, 22. řádek zdola - místo jednosměrné má být správně "jednosměrně'

str. 217, levý sloupec, 10 řádek shora – místo vzrokováním má být správně "vzorpravý sloupec, 4. řádek shora - vypus-

tit slovo "těchto", str. 219, pravý sloupec, druhý řádek zdola - místo rovném má být správně "rov-

str. 220, prostřední sloupec shora - místo predikační má být správně "predikční".

str. 224, pravý sloupec, druhý odstavec shora - místo detektoru šumu a detektoru... má být správně "detektorem šumu a detektorem . . .

str. 227, prostřední sloupec, druhý odstavec místo CS má být "SC"

str. 229, pravý sloupec shora – místo 8 kilobitů má být správně 8 kilobytů,

str. 231, levý sloupec, poslední řádek – místo směr má být správně "směs" poslední čtyři řádky mají znít takto: "na špičku 22 procesoru VIP2 . . . přepínačem C, a to tak, že čidlo C při přítom-

pravý sloupec, první řádek - má být správně "signálu na špičce 7 přepne přepínač na .

str. 232, prostřední sloupec - místo zpraco-

vává má být správně "zpracování", str. 234, pravý sloupec dole – doplnit slovo čtyři, tj. "má záchytný obvod čtyři rov-nocenné skupiny",

str. 235, tabulka 5 – místo 7 bitů pro stav má být "7 bytů pro stav", ve spodní části tabulky má být ve sloupci 5 a řádku D3

místo HZ3 správně "HU3", rotace čí-sel stránek patří již do skupiny 24 znaků v záhlaví; dále v pravém sloupci by mělo být všude místo (ten) řádek správně (ta) řádka, neboť je normalizován termín "teletextová řádka"

str. 236, tabulka 6 - vypustit slovo stránek z kolmo umístěného textu (bude tedy "data nezobrazených řádek . . .' levý sloupec shora - místo umožňující má být "určující",

st. 237, prostřední sloupec - před nadpisem Generátor znaků má být správně "na špičku 28 při odpojení oddělova-

pravý sloupec - asi za polovinou sloupce chybí dvě závorky, jedna za "přepí-nacího" a druhá před = blanking, na konci sloupce má být místo příznaku správně "příznaků", str. 238, levý sloupec – na konci třetího

odstavce má být místo řád správně "řad", na konci prostředního odstavce místo probit má být "pro bit"

str. 239, levý sloupec - asi uprostřed má být věta správně takto "v němž byla stránka nalezena, ale mikropočítač ji však právě zpracovává...", sloupci zcela dole místo OE by mělo být "ŌĒ."

Odkaz na literaturu 14 se váže k problematice, která je v tomto čísle, tj. v dokončení.

Při zavedeném značení by též mělo být správně v posledním řádku tab. 4 (str. 233) místo (R/W) všude správně (R/W).

ZENEROVY DIODY A TRANZISTORY JAKO VYHLAZOVACÍ ČLENY

Ing. Josef Punčochář

Zenerovy diody a . . . se jmenuje jedna kapitola v [1]. Protože obsahuje nepřesnosti i chybná zapojení, a protože návrh napájecího zdroje je základní znalostí elektronika, vznikl tento příspěvek.

Základní zapojení stabilizační (Zenerovy) diody

Základní zapojení stabilizační diody jako paralelního stabilizátoru je na obr. 1. Pro objasnění činnosti je na obr. 2 voltampérová charakteristika. Pracovní oblast je vymezena minimálním proudem $I_{\rm D}$ min a mezním proudem $I_{\rm D}$ max. Pro proudy $I_{\rm D} < I_{\rm D}$ min již nelze hovořit o stabilizaci napětí. Pro proudy $I_{\rm D} > I_{\rm D}$ max je překročena mezní výkonová ztráta diody. V pracovní oblasti $I_{\rm D}$ min $< I_{\rm D} < I_{\rm D}$ max lze definovat dynamický odpor diody (obr. 2)

$$\dot{r}_{\rm D} \doteq \Delta U_{\rm D}/(I_{\rm D max} - I_{\rm D min}) \tag{1}$$

V ideálním případě se napětí $U_{\rm D}$ se změnou $I_{\rm D}$ nemění, $\Delta\,U_{\rm D}=0,\,r_{\rm D}=0.$

Jednoduchý statický model je na obr. 2b. Platí

$$U_{\rm D} = U_{\rm D\,min} + I_{\rm D}r_{\rm D} \tag{2}$$

pro $I_{\rm D\,min} < I_{\rm D} < I_{\rm D\,max}$. Pokud není stabilizátor zatížen, tj. při $R_{\rm z} = \infty$, je situace velmi jednoduchá, platí $I_{\rm 1} = I_{\rm D}$. Pro $U_{\rm 1} < U_{\rm D\, min}$ je $U_{\rm D} \doteq U_{\rm 1}$. Pro $U_{\rm 1} > U_{\rm D\, min}$ platí vztah (2), přičemž

$$J_1 = I_D = (U_1 - U_D)/R_1 = (U_1/R_1) - + [(U_{D \min} + r_D I_D)/R_1].$$
 Po úpravě dostaneme

$$I_1 = I_D = \frac{U_1 - U_{D \, \text{min}}}{R_1} \frac{1}{1 + r_D/R_1}$$
 (3).

Dosadíme-li z (3) do (2), dostaneme po úpravách

$$U_{\rm D} = U_{\rm D\,min} + (U_{\rm 1} - U_{\rm D\,min}) \, \frac{r_{\rm D}}{r_{\rm D} + R_{\rm 1}} \tag{4}.$$

Obr. 1. Základní zapojení stabilizační diody

Obr. 2. Voltampérová charakteristika stabilizační diody (a) a možné náhradní schéma – statické (b)

Změně napětí d U_1 proto odpovídá změna napětí d U_D

$$dU_{D} = dU_{1}[r_{D}/(r_{D} + R_{1})]$$
 (5).

Je-li obvod zatížen (R_z ≠ ∞), je vhodné zapojení na obr. 1 upravit podle obr. 3 a použít Théveninovu větu. Ekvivalentní svorkové napětí naprázdno je

napětí naprázdno je $U_{\rm e}=U_{\rm 1}R_{\rm z}/(R_{\rm 1}+R_{\rm 2})$. Ekvivalentní odpor $R_{\rm e}$ je dán paralelní kombinací $R_{\rm 1}$ a $R_{\rm z}$

Dinaci H_1 a H_2 $R_e = R_1R_2/(R_1 + R_2)$. Situace na obr. 3 je již shodná s dříve uvažovanou situací pro $R_2 = \infty$. Musíme však udělat záměnu $U \rightarrow U_e$, $R_1 \rightarrow R_e$. Dioda nestabilizuje pro napětí $U_e = U_1R_2/(R_1 + R_2) < U_{\rm D min}$,

tedy pro
$$U_1 < U_{D, min}(1 + R_1/R_z)$$
 (6).

Pro napětí větší dioda stabilizuje a platí $I_D = \left[(U_e - U_{D \text{ min}})/R_e \right] \left[1/(1 + r_D/R_e) \right], \ U_D = U_{D \text{ min}} + (U_e - U_{D \text{ min}})r_D/(r_D + R_e).$ Po dosazení a po úpravách dostaneme

$$I_{D} = \left(\frac{U_{1} - U_{D \, min}}{R_{1}} - \frac{U_{D \, min}}{R_{2}}\right) \cdot \frac{1}{1 + r_{D}/R_{1} + r_{D}/R_{2}}$$

$$U_{\rm D} = U_{\rm D \, min} + \left(\frac{U_1}{1 + R_1/R_2} - U_{\rm D \, min} \right)$$

$$\frac{r_{\rm D}}{r_{\rm D} + R_1/(1 + R_1/R_2)}$$

$$R = R_1 R_1/(R_1 + R_1)$$

Obr. 3. Obvod z obr. 1 upravený na základě Théveninovy věty

Platí proto, že změna d $U_{\rm D}$ je se změnou d $U_{\rm 1}$ popsána vztahem

$$dU_{D} = dU_{1} \frac{r_{D}}{R_{1} + r_{D} (1 + R_{1}/R_{z})}$$
 (7)

Je zřejmé, že v praxi platí téměř vždy $r_{\rm D} << R_{\rm 1}/(1+R_{\rm 1}/R_{\rm 2}), r_{\rm D}/R_{\rm 1} << 1\,{\rm a}\,r_{\rm D}/R_{\rm z} << 1.$ Potom

om

$$I_{\rm D} = (U_1 - U_{\rm D min})/R_1 - (U_{\rm D min}/R_{\rm z})$$
(8),

$$U_{\rm D} \doteq U_{\rm D\,min} + \left(\frac{U_{\rm 1}}{1 + R_{\rm 1}/R_{\rm z}} - U_{\rm D\,min}\right) r_{\rm D},$$

$$\cdot \left(\frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm z}}\right) (9).$$

Důležité je určit napětí U_{1H} , při němž je proud diodou maximální, $I_{\rm D} = I_{\rm D}$ max. Dosadíme do (8)

$$I_{\text{D max}} \doteq \frac{U_{1\text{H}} - U_{\text{D min}}}{R_1} - \frac{U_{\text{D min}}}{R_z}.$$

Po úpravě dostaneme

$$U_{1H} \doteq R_1 I_{D \text{ max}} + U_{D \text{ min}} (1 + R_1 / R_z)$$
(10).

Je-li zátěž R_z připojena, stabilizuje zapojení na obr. 1 v rozsahu vstupních napětí

$$U_{1D} < U_1 < U_{1H}$$
 (11),

kde $U_{1D} \doteq U_{D \text{ min}}(1 + R_1/R_z)$ a U_{1H} je dáno vztahem (10).

Pouze v tomto intervalu se může měnit napětí na vyhlazovacím (filtračním) kondenzátoru usměrňovače a pro střídavé signály (zvlnění) platí vztah (7). Pro $R_1 >> r_D (1 + R_1 / R_2)$ je přenos zvlnění

$$d\overline{U}_{D}/d\overline{U}_{1} \doteq r_{D}/R_{1} \qquad (12).$$

Situace je znázorněna na obr. 4 – křivky U_{1a} , U_{Da} . Zmenší-li se napětí U_{1} pod velikost U_{1D} , platí

$$U_{\rm D} = U_{\rm 1}R_{\rm z}/(R_{\rm 1} + R_{\rm z}),$$

obr. 4, křivky $U_{\rm 1b}$, $U_{\rm Db}$.

Obr. 4. Průběhy napětí U₁ a U_D pro vhodnou kapacitu kondenzátoru usměrňovače – křivka **a**, a pro nevhodnou kapacitu kondenzátoru usměrňovače – křivka **b**

Pouze v intervalu napětí, určeném vztahem (11), lze srovnávat vliv stabilizační diody s vlivem ekvivalentního kondenzátoru $C_{\rm e}$ podle obr. 5. Předpokládáme-li, že platí

Obr. 5. Zapojení s ekvivalentním kondenzátorem C_e

 $1/(\omega C_e) << R_1$, platí pro absolutní hodnotu přenosu střídavé složky u_1 napětí U_1 $(u_1 \rightarrow dU_1, u_2 \rightarrow dU_2)$

 $\begin{array}{l} (u_1 {\rightarrow} \mathrm{d} U_1, \ u_2 {\rightarrow} \mathrm{d} U_2) \\ u_2 / u_1 = \left[\ 1 / (\omega C_\mathrm{e}) \right] / R_1 = 1 / (\omega C_\mathrm{e} R_1). \\ \text{Srovnáním se vztahem (12)} \end{array}$

$$r_{\rm D}/R_1 = 1/(\omega C_{\rm e} R_1)$$

dostaneme pro ekvivalentní kapacitu vztah uváděný v [1]

$$C_{\rm e} = 1/\omega r_{\rm D} = 1/(2 \pi f r_{\rm D})$$
 (13)

Ze vztahu (8) je zřejmé, že se při zvětšování U_1 zvětšuje přímo úměrně i proud I_D stabilizační diodou. Proud zátěží $I_z = U_D/R_z$ se téměř nemění. Potřebujeme-li velký rozdíl mezi U_{1D} a U_{1H} , musíme použít diodu s velkým proudem I_D max – výkonovou. V případě nouze si lze takovou diodu složit i podle obr. 6. Je-li mezní přípustný proud stabilizační

$$|D_{D_1}| \downarrow |D_{D_1}| \downarrow |D_{D_1}| \downarrow |D_2| \downarrow |D_3| \downarrow |D_4| \downarrow |D_5| \downarrow$$

Obr. 6. Stabilizační dioda s velkým proudem I_{D max}

diody ZD1 $I_{\rm D1\ max}$, protéká tranzistorem proud až $I_{\rm K} \doteq h_{\rm 21}I_{\rm D1\ max}$. Tranzistor proto musí být schopen pracovat s takovým proudem a kolektorovou ztrátou $P_{\rm K} > h_{21}$ $I_{\rm D1\ max}(U_{\rm D1} + 0.7\ {\rm V})$. Ekvivalentní stabilizač in dioda by měla mezní proud I_D max = $I_{D1 \text{ max}} + h_{21}I_{D1 \text{ max}}$. Rezistorem R_{BE} upravujeme chování obvodu v oblasti malých proudů I_D . Nikdy jím neprotéká větší proud než $U_{\rm BE}/R_{\rm BE}=0.7~{\rm V}/R_{\rm BE}$. Požadujeme-lizá-kladní proud diodou ZD1 větší než např. 1 mA, volíme $R_{BE} = U_{BE}/1$ mA = 0,6 V/ /1 mA = 600Ω .

Použití tranzistoru

Použití výkonové stabilizační diody při velkých změnách U1 nebo při odpojení zátěže Rz vede k velkým výkonovým ztrátám na stabilizační diodě, přitom výhodnější je stabilizační diodu zatěžovat co nejméně. Vhodné zapojení je na obr. 7. Pro stejnosměrné poměry platí

$$U_2 = U_D - U_{BE} = U_D - (0.6 \text{ až } 0.7) \text{ V } (14),$$

$$I_1 = (U_1 - U_D)/R_1$$
 (15),

$$I_{\rm B} = I_{\rm o}/h_{21} = U_{\rm 2}/(h_{21}R_{\rm z}) \doteq U_{\rm D}/(h_{21}R_{\rm z})$$
 (16),

Obr. 7. Zapojení jednoduchého zdroje se stabilizační diodou a jedním tranzistorem (a), s tranzistory v Darlingtonově zapojení

u₁, u₂, u_D – dynamické složky

Tranzistor T₁ je vůči napětí U_D zapojen jako emitorový sledovač. Pro samotnou stabilizační diodu platí schéma na obr. 8. Chování tohoto obvodu se dá posuzovat podle předchozích úvah velmi jednoduše. Pouze dosazujeme $h_{21}R_z$ místo R_z . Lze zajistit, aby součin h21Rz byl dostatečně velký a stabilizační dioda byla tedy zatěžována co nejmé-ně. V krajním případě lze použít Darlingtonovo zapojení tranzistorů podle obr. 7b. Bez problémů lze zajistit $h_{21}>2000$. Podstatnou vlastností zapojení na obr. 7 je to, že i při odpojení zátěže Rz se změní proud stabilizační diodou pouze o proud báze $I_B = I_0/h_{21}$, tedy většinou nepatrně. Odpojení zátěže proto neohrozí stabilizační diodu výkonovým přetížením (nevede k volbě výkonové stabilizační diody). Dynamické změny d $U_2 \rightarrow u_2$, $dU_1 \rightarrow u_1$ jsou prakticky popsány vztahem (12), protože změny střídavého napětí na emitoru jsou shodné se změnami na bázi tranzistoru, $u_2/u_1 = r_D/R_1$.

Obr. 8. Ekvivalentní schéma pro zatížení stabilizační diody podle obr. 7

Příklad. Předpokládejme, že potřebujeme zdroj 6 V, 250 mA. Na kondenzátoru usměrňovače (C_u na obr. 7) je nejmenší napětí 8 V a největší napětí 12 V.

1. Pomocí vztahu (14) vybereme diodu, ieiíž

 $U_{\rm D} = U_2 + U_{\rm BE} = 6 \, \text{V} + 0.6 \, \text{V} = 6.6 \, \text{V}.$ Vyhovuje dioda KZ241/6V8 ($U_D = 6,4$ až 2 V, I_D _{max} = 49 mA, r_D <150 Ω při = 1 mA, r_D <8 Ω při I_D = 5 mA).

2. Vybereme tranzistor T_1 – např. KF507 (I_C max = 500 mA, U_{CB0} = 40 V, P_C = 800 mW bez chładiče a 2,6 W s ideálním chladičem, $h_{21}>35$).

Z údajů r_D je zřejmé, že není výhodné, aby se proud diodou zmenšil až na 1 mA, při němž je pracovní bod diody již v koleně charakteristiky, obr. 2a. Proto budeme požadovat, aby i při nejmenším napětí $U_1 = 8 \text{ V}$ a největším proudu lo = 250 mA protékal diodou proud $I_D = 2 \text{ mA}$. Předpokládejme, že vybereme diodu s $U_D = 6,6 \text{ V}$. Zřejmě platí, že v takovém případě musíme zajistit proud větší než

$$l_{1 \text{ min}} = l_{0 \text{ min}} + l_{8 \text{ max}} < 2 \text{ mA} + 250 \text{ mA}/35 = 9 \text{ mA}$$
 (17). Je zřejmé, že poměr mezi $l_{D \text{ min}}$ a $l_{8 \text{ max}}$ není příliš výhodný, odpor rezistoru R_1 bude příliš malý. Rozhodneme-li se pro tranzistor KF508, je zaručen $h_{21} = 90$ až 300. $U_{\text{CBO}} = 75 \text{ V}$, ostatní vlastnosti jsou obdobné vlastnostem KF507. Nyní Ize určit

$$I_{1 \text{ min}} = I_{D \text{ min}} + I_{B \text{ max}} < 2 \text{ mA} + 250 \text{ mA/90} \doteq 4.8 \text{ mA}$$
 (18).

Pro $U_1 = 8 \text{ V}$ dostaneme ze vztahu (15) $R_{1 \text{ max}} = (U_{1 \text{ min}} - U_{D})/I_{1 \text{ min}} = (8-6,6 \text{ V})/I_{4,8 \text{ mA}} = 0,29 \text{ k}\Omega.$

Volíme odpor z řady E12 - R₁=270 Ω. I při $U_1 = 12 \text{ V a nezatíženém obvodu } (I_0 = 0)$ bude protékat stabilizační diodou proud $I_{\rm D\ max} = (12-6,6)/270 = 20$ mA, což je vyhovující. Přenos zvlnění v intervalu napětí U_1 = 8 až 12 V je přibližně

 $u_2/u_1 = r_D/R_1 = 8/270 = 0,0296$. Při $U_1 = 12$ V a $I_{0x} = 250$ mA je mezní kolektorová ztráta tranzistoru $P_{C \text{max}} = (12-6).0,25 = 1,5$ W. Proto se musí tranzistor chladit.

3. Co se stane, když se bude zvětšovat h21? Vybereme tranzistor, jehož zesilovací činitel je 300. Přepočítáme $I_{1 \text{ min}} = I_{D \text{ min}} + I_{B \text{ max}}$ = 2 mA + 250 mA/300 = 2,83 mA. Pro U_{1} = 8 V je $R_{1 \text{ max}}$ = (8–6,6)V/2,83 mA = 0,5 kΩ. Volime R_{1} =470 Ω. I při vstupním napětí 12 V a nezatíženém obvodu bude protékat stabilizační diodou proud ID max=(12-6,6)/ /470= 11,5 mA. Přenos zvlnění při napětí U₁ v mezích 8 až 12 V je $r_D/R_1 = 8/470 = 0,017$. Je zřejmé, že pro $h_{21} \rightarrow \infty$ je l_1 min= l_0 min+ l_0 max/ $h_{21} = 2$ mA. Pro $U_1 = 8$ V je R_1 max= (8-6,6)/2 mA=0,7 kΩ, přenos zvlnění je r_0/R_1 =8/700=0,0114. Pro U_1 min=8 V nelze s ideálním tranzistorem překročit $R_1 = 700 \ \Omega.$

4. Co se stane, když velký zesilovací činitel h₂₁ zajistíme Darlingtonovým zapojením

 n_{21} zajistíme Darlingtonovým zapojením tranzistorů (oba mají např. h_{21} =90)? Ekvivalentní h_{21e} = 90.90 = 8100. Pro výstupní napětí U_2 = U_D - 2 U_{BE} $\stackrel{.}{=}$ U_D - 1,2 V. Proto vybereme stabilizační diodu, jejíž U_D = 6 + 1,2 V = 7,2 V. Opět požadujeme, aby i pro U_1 =8 V a I_0 =250 mA byl proud diodou I_D min = 2 mA. Potom

 $I_{1 \text{ min}} = I_{\text{D min}} + 250 \text{ mA/8100} = 2 \text{ mA}.$ Pro $U_{1} = 8 \text{ V}$ dostaneme $R_{1 \text{ max}} = (U_{1} - U_{\text{D}})/2 \text{ mA} = (8 - 7,2)/2 \text{ mA} = 400 \ \Omega.$ Je zřejmé, že při uvedených poměrech je vliv zvětšení h_{21} téměř potlačen nutností zvětšit U_D o 0,6 V. Tím se zmenší úbytek napětí na R₁ a při $U_1 = 8 \text{ V vyjde odpor rezistoru } R_1$ relativně malý, požádujeme-li ID min= 2 mA. Proto se poměř r_D/R_1 příliš nezmění: r_D/R_1 = 8/400 = 0.02.

5. Co se stane, když zvolíme poměry na usměrňovači a na $C_{\rm u}$ tak, že napětí $U_{\rm 1}$ bude v rozmezí 9 až 12 V?

Předpokládejme, že použijeme zapojení podle obr. 7a. Potom $U_D = U_2 + 0.6 \text{ V} = 6.6 \text{ V}$; požadujeme opět ID min=2 mA. Proud I1 min=

Obr. 9. Zapojení stabilizátoru s doplňkovým filtračním kondenzátorem C_f

2 mA + 250 mA/90 = 4,8 mA. Dále určíme $R_{1 \text{ max}}$ pro U_1 =9 V: (9–6,6)/4,8 mA = 500 Ω , zvolíme R_1 = 470 Ω . Přenos zvlnění pro U_1 = 9 až 12 V je r_0/R_1 =8/470= 0,017. Napětí menší než 9 V (U₁ < 9 V) jsou nyní ovšem "zakázána"

Použijeme-li nyní Darlingtonovo zapojení podle obr. 7b, je opět $U_D=6+1,2=7,2$ V. Pro $h_{21}=8100$ je h_{1} min $=h_{D}$ min =2 mA a R_{1} max=(9-7,2)/2 mA =900 Ω . Nyní bude $r_D/R_1=8/900=0,009$.

Doplňková filtrace

Ve všech předcházejících úvahách isme se vlastně snažili zajistit, aby odpor rezistoru R₁ byl co největší proto, aby byl poměr r_D/R₁ co nejmenší. Vliv r_D lze však do jisté míry potlačit zapojením doplňkového filtračního kondenzátoru podle obr. 9. Předpokládejme, že jsou splněny stejné podmínky jako v bodě 2 předchozí kapitoly. Potom R_1 max = 290 Ω a tím je i při h_{21} = 90, l_0 = 250 mA a U_1 \pm 8 V zaručen minimální proud diodou $l_{\rm D}$ min= = 2 mA. Rezistor R_1 rozdělíme tak, že bude platit $R_a + R_b = R_1$ a do zapojení vložíme doplňkový vyhlazovací (filtrační) kondenzátor C, který zmenší zvlnění napětí pro stabilizační diodu, takže se zmenší střídavá složka u_D a tedy i u_o. Náhradní schéma pro "střídavé změny" (ZD v oblasti stabilizace) je na obr. 10. Lze dokázat, že optimální je volba

Obr. 10. Náhradní schéma obvodu na obr. 9 pro střídavé signály

 $R_a = R_b = R_1/2$. Předpokládejme, že $R_1/2 >>$ r_D a že impedance kondenzátoru je zanedbatelná proti paralelní kombinaci Ra a Rb, tedy $1/(\omega C_1) >> R_1/4$. V praxi to znamená, že musíme zajistit

$$C_1 >> 4/(\omega R_1) \tag{19}$$

 $\omega = 2\pi f = 200\pi$ pro dvoucestné usměrnění. Z předchozího rozboru víme, že R_1 = 290 Ω . $R_a = R_b = R_1/2 = 145 \Omega$, volíme tedy $R_a = R_b = 150 \Omega$. Potom musíme volit

Leuy $R_a = R_0 = 100$ Leu $C_1 >> 4/(200\pi \cdot 150) = 40 \mu F$. Je-li $1/(\omega C_1) << R_1/4 < R_1/2$, |ze určit, že pro střídavé napětí na kondenzátoru (uc na Ci)

$$|u_{c}/u_{1}| \doteq [1/(\omega G_{1})]/R_{a} = 1/(\omega C_{1}R_{a}) = 2/(\omega C_{1}R_{1}).$$

Pro $r_D << R_b = R_1/2$ dále platí, že $u_D/u_c = r_D/R_b = 2r_D/R_1$.

Za uvedených předpokladů lze tedy určit, že $u_{\rm D}/u_1 = (u_{\rm c}/u_1)(u_{\rm D}/u_{\rm c})$

= $(2/\omega C_1 R_1) (2r_D/R_1) = 4r_D/(\omega C_1 R_1^2)$. Protože tranzistor T₁ je zapojen jako emitorový sledovač, je $u_D \doteq u_0$ a platí

$$u_0/u_1 = 4r_0/(\omega C_1 R_1^2)$$
 (20).

Je-li G=200 μF, je přenos střídavé složky na výstup

$$u_0/u_1 \doteq 4.8/(2\pi.100.200.10^{-6}.300^2) = 0.0056.$$

Rozbor různých variant podle bodů 2 až 5 předchozí úvahy by se projevil pouze v určitých změnách R_1 . Je zřejmé, že obdobně můžeme postupovat i v zapojení podle obr. 1.

Filtrace bez stabilizační diody

Pouhé filtrace napětí lze dosáhnout v zapojení podle obr. 11a. Pro správnou činnost se nesmí napětí U_{KE} zmenšit pod určitou minimální velikost UKE min, ani při největším zmenšení U1. Požadujme výstupní napětí Uo 6 V, výstupní proud $I_0 = 250 \text{ mA}, h_{21}$ = 100. Předpokládejme takové zvlnění napětí, tj. u₁, že pokles pod ustálenou (střední)

Obr. 11. Filtrační zapojení bez stabilizační diody s jedním rezistorem (a) a s děličem (b)

velikost napětí U1 je maximálně 2 V. Ustálená velikost napětí U1 proto musí být

U₁ = U₀+U_{KE min}+ pokles napětí = = IU_{KE min}>2 VI= 6+2+2 = 10 V. Na bázi tranzistoru musí být napětí $U_{\rm B} = U_{\rm o} + 0.6 \, \rm V = 6.6 \, \rm V.$ Rezistorem R_1 musí protékat proud $I_1 = I_0 / h_{21} = 250$ mA/100 = 2,5 mA, přičemž platí $I_1 = (U_1 - U_B)/R_1$ [vztahy (21), (22)]. Snadno

lze nyní určit, že

$$R_1 = (U_1 - U_B)/I_1 = (10-6.6)/2,5 = 1.36 \text{ k}\Omega$$
(23)

Střídavá složka, u_1 , tj. zvlnění, je ovšem dělena děličem z R_1 , impedance C_1 a vstupního odporu tranzistoru T₁

 $R_{\rm in} \doteq h_{21}R_{\rm z} = h_{21}U_{\rm o}/I_{\rm o}$. Pro střídavou složku opět platí $u_0 = u_B - náh$ radní schéma je na obr. 12. Pro

$$\omega C_1 R_1 R_{\text{in}} / (R_1 + R_{\text{in}}) >> 1$$
, tedy pro

$$C_1 \approx \frac{1}{\omega \frac{R_1 R_{in}}{R_1 R_{in}}}$$
 (24).

 $U_{\rm B} = U_0 = U_1/\omega C_1 R_1$ Pro zvolené poměry je R_1 =1,36 k Ω , $R_{\rm in}$ =100.(6 V/250 mA) = 2400 Ω . ω = 2 πf = 200 π pro dvoucestné usměrnění. Proto musíme volit

$$C_1 \approx \frac{1}{200 \pi - \frac{1360 \cdot 2400}{3760}} = 1.9 \cdot 10^{-6} \text{ F}.$$

Zvolíme C_1 =50 μF a potom $u_o/u_1=1/(200\pi.50.10^{\circ}.1360)=0.023$. Zajímavé je chování obvodu při trvalé změně U₁. Je zřejmé, že

$$U_1 = U_{KE} + U_0, U_1 = R_1 I_1 + 0.6 + U_0, I_1 R_2)$$
 (29)

 $I_1 = U_0/(h_{21}R_z)$ Jednoduchým postupem dostaneme, že

$$U_{\rm o} = \; \frac{U_1^{\cdot} - 0.6}{1 + R_1/(h_{21}R_2)} \; , \; U_{\rm KE} = U_1 - U_{\rm o} \; . \label{eq:Uo}$$

Na základě těchto dvou vztahů lze snadno určit pro uvedené poměry, že

$$U_0 = (U_1 - 0.6)/(1 + 1.36/2.4) =$$

 $= (U_1 - 0.6)/1.566,$ $U_{KE} = U_1 - U_0 = (0.566U_1 + 0.6)/1.566;$ číselné údaje jsou v tabulce (tab.1). Je zřejmé, že i pro $U_1 = 6 \text{ V zbývá ještě ,,prostor}$ pro potlačení zvlnění, U_{KE} je větší než 2 V. Při zvětšování U_1 musíme hlídat kolektorovou ztrátu T₁.

Filtrační zapojení s děličem R_1 , R_2 je na obr. 11b. Předpokládejme, že proud děličem

Tab. 1. Chování obvodu na obr. 11 při $R_1 = 1.36 \text{ k}\Omega$, $h_{21} = 100 \text{ a } R_z = 24 \Omega$

<i>U</i> ₁ [V]	<i>U</i> 。 [V]	U _{KE} [V]
4	2,17	1,83
6	3,45	2,55
8	4,72	3,28
10	6	4
12	7,28	4,72
14	8,55	5,45
16	9,83	6,17

Obr. 12. Náhradní schéma pro střídavé signály

je mnohonásobně větší než proud báze IB. Musí proto platit, že $U_1/(R_1+R_2) >> I_{0 \text{ max}}/h_{21}$.

Potom je dělič prakticky nezatížený a platí $U_{\rm B} = U_1 R_2/(R_1 + R_2) = 0.6 \text{ V.}$ Určit nyní napětí $U_{\rm KE}$ není obtížné. Pro přenos zvlnění platí prakticky vztah (25). Stačí si prakticky vztah (25). Stačí si prakticky vztah (25). Stačí si prakticky vztah (25). uvědomit, že na obr. 12 je odpor Rin nahrazen paralelní kombinací R_2 a $R_{\rm in}$. Pro $U_1/$ $/(R_1+R_2)>> I_0$ max/ h_{21} ovšem platí, že $R_2<< R_{in}$ a stačí tedy pouze záměna R_{in} za R₂. To má vliv pouze na určení kapacity kondenzátoru pomocí vztahu (24); pro zapojení na obr. 11b platí vztah (25) pouze pro

$$C_1 \approx \frac{1}{\omega R_1 R_2 / (R_1 + R_2)}$$
 (24a).

$$u_1 \qquad L_0 \qquad u_0$$

$$R_2 = \frac{U_0}{l_0} = 24 \Omega$$

Obr. 13. Zapojení s ekvivalentní indukčností

Na obr. 13 je zapojení s ekvivalentní indukčností, které by pro střídavé signály u1 zajistilo stejný přenos, jako obvody s filtračním kondenzátorem C_1 . Předpokládáme, že $\omega L_{\rm e} >> R_{\rm z}$, proto

$$u_0/u_1 \doteq R_z/(\omega L_e) \tag{27}$$

Srovnáním vztahů (25) a (27) dostaneme $u_1/(\omega C_1 R_1) = u_1 R_z/(\omega L_e) \rightarrow L_e = C_1 R_1 R_z =$

=
$$50.10^{-6}.1,36.10^{3}.24 = 1,632 \text{ H}$$
 (28).

Obr. 14. Jiné filtrační zapojení s tranzistorem a kondenzátorem

Na obr. 14 je jiné filtrační zapojení bez stabilizační diody (v [1] uvedeno nesprávně). Nejdříve rozebereme stejnosměrné pracovní podmínky za poměrů, srovnatelných se situací v [1]: $I_{\rm o}$ =50 mA, $U_{\rm o}$ =150 V, $R_{\rm 1}$ =90 Ω . Tomu odpovídá zatěžovací odpor $R_z = U_o/I_o = 150/0,05 = 3 \text{ k}\Omega$. Předpokládáme-li h21=30, musí protékat bázový proud $I_{\rm B} = 50 \text{ mA}/30 = 1,67 \text{ mA}$. Úbytek napětí na rezistoru R_1 je $U_{\rm R1} = R_1(I_{\rm o} + I_{\rm B}) = 90(50 + 1,67).10^{-3} = 4,65 \text{ V}$. Požadujemeli pro kompenzaci zvlnění úbytek napětí UEK=20 V, musí být stejnosměrné napětí na

 $U_1 = U_0 + U_{\rm EK} + U_{\rm R1} = 174,65 \, {\rm V}.$ Napětí $U_{\rm R2}$ na rezistoru R_2 je $U_{\rm R2} = U_1 - U_{\rm R1} - U_{\rm EB} = 170 \, {\rm V}.$ Nyní lze snadno určit potřebné napětí na R_2

 $R_2 = U_{R2}/I_B \doteq h_{21}U_{R2}/I_0 = 30.170/(50.10^{-3})$ $= 102 k\Omega$

Co se stane, budeme-li měnit při Rz=konst. stejnosměrné napětí U1? Platí

$$\begin{array}{lll} U_1 = U_{R1} + U_{EB} + U_{R2} & (29), \\ U_1 = U_{R1} + U_{EK} + U_0 & (30), \\ I_0 = U_0 / R_2 & (31), \\ I_B = I_0 / h_{21} & (32, \\ U_{R1} = (I_0 + I_B) R_1 & (33), \\ U_{R2} = R_2 I_B & (34). \end{array}$$

Z tohoto souboru vztahů lze určit, že $(h_{21}>>1, U_1>>0,6 \text{ V})$

$$U_{o} \doteq \frac{R_{z}}{R_{1} + R_{2}/h_{21}} U_{1} \tag{35},$$

$$U_{\text{EK}} \triangleq \frac{R_2 - h_{21}R_z}{R_2 + h_{21}R_1} U_1 \tag{36}.$$

Pro dříve uvedené poměry ($R_1=90~\Omega,~R_2=102~\mathrm{k}\Omega,~R_2=3~\mathrm{k}\Omega,~h_{21}=30$) potom dostaneme $U_0=0.8596U_1~a~U_{\mathrm{EK}}=0.1146U_1$; některé údaje jsou v tabulce 2.

 $Tab.\ 2.$ Závislost $U_{\rm o}$ a $U_{\rm EK}$ na $U_{\rm 1}$ pro zapojení na obr. 14. $R_1 = 90 \Omega$, $R_2 = 102 k\Omega$, $R_z = 3 k\Omega$, $h_{21} = 30$

υ,	່ ບ ູ	U _{EK}
[۷]	[v]	[V]
130	111,7	14,9
150	128,9	17,2
174,6	150	20
190	163,3	21,7
210	180,5	24,1

Pro střídavé signály bude situace poněkud jiná. Pro I_0 = 50 mA a R_1 = 90 Ω lze dokázat, že dynamický odpor přechodu báze-emitor je proti R₁ zanedbatelný, střídavé napětí $u_{\rm C}$ na kondenzátoru C_2 bude proto celé na rezistoru R_1 a vyvolá jím střídavý proud i_1 , který se přenese na zátěž $R_{\rm z}$. Na obr. 15 je model obvodu pro výpočet střídavého napětí $u_{\rm C}$. Ze situace na obr. 15b lze určit. že

$$U_C = \frac{\nu_1 - i_1 R_2 / h_{21}}{1 + j \omega C_2 R_2}$$

Obr. 15. Model pro výpočet napětí $u_{\rm C}$ (a) a jeho úprava pomocí Théveninovy věty (b)

Dále musí platit podle předchozí úvahy, že i, = u_C/R₁, takže po dosazení a úpravách dostaneme

$$i_1 = \frac{u_1}{R_1 + R_2/h_{21} + j\omega C_2 R_2 R_1}$$
 (37).

Platí-li
$$\omega C_2 R_2 R_1 >> R_1 + R_2/h_{21}$$
, je $i_1 = u_1/(\omega C_2 R_2 R_1)$

a výstupní napětí (střídavá složka) je
$$u_0 = i_1 R_z = R_z u_1 / (\omega C_2 R_2 R_1)$$
 (38).

Se zvyšujícím se kmitočtem se přenos střídavé složky zmenšuje, stejně jako u obvodu na obr. 13. Ekvivalentní indukčnost dostaneme srovnáním vztahů (38) a (27)

 $R_z u_1 / (\omega C_2 R_2 R_1) = u_1 R_z / (\omega L_e)$

Pro ekvivalentní indukčnost obvodu na obr. 14 proto platí $L_e = C_2 R_2 R_1$ (39).

Amatérské!

V [1] se uvádí pro f=100 Hz, u_1 =8 V, C_2 =60 μF a R_z =3 k Ω (150 V, 50 mA), že u_0 =40 mV. Tomu odpovídá podle [1] ekvivalentní indukčnost 50 H. Ze vztahu (27) je však zřejmé, viz též obr. 13, že

$$0.04/8 = R_z/(2\pi.100.L_e)$$

tedy $L_{\rm e}=R_{\rm z}(8/0,04)/(2\pi.100)=955~{\rm H.}$ Dosadíme-li do (39) za C_2 =60 $\mu{\rm F},$ R_2 =102 k Ω , R_1 = 90 Ω , dostaneme $L_{\rm e}$ =60.10°.102.10³.90 = 550 H, což je indukčnosti 955 H jistě blíže. Uvědomíme-li si, že se pro elektrolytické kondenzátory uvádějí tolerance –10 až +100 %, lze se k 955 H snadno dopočítat. I odpor R_2 se bude zvětšovať, bude-li h_{21} větší než 30.

Kapacita kondenzátoru usměrňovače

Napětí U_1 vzniká na kondénzátoru $C_{\rm u}$, který bývá nejčastěji zapojen za můstkový usměrňovač, obr. 16. Zátěž pro usměrňovač představuje odpor $R_{\rm S_2}$ který reprezentuje

Obr. 16. Zapojení můstkového usměrňovače; R_i je součtem odporu vinutí transformátoru a usměrňovacích diod

stabilizační nebo filtrační obvody. Nahrazuje-li $R_{\rm s}$ obvod na obr. 7a a je-li požadováno U_1 =10 V a I_0 =250 mA, je $R_{\rm s}$ =10/0,25 = 40 Ω . Nyní již lze určit potřebné napětí na sekundárním vinutí transformátoru a potřebnou kapacitu $C_{\rm u}$ kondenzátoru pro požadované zylnění.

Průběhy napětí na usměrňovači jsou na obr. 17. Předpokládáme, že kondenzátor je

Obr. 17. Napětí na výstupu dvoucestného usměrňovače

nabit na napětí $U_{1\,\,\mathrm{max}}$, střední hodnota napětí je $U_{1\,\mathrm{s}}$ a minimální napětí je $U_{1\,\,\mathrm{min}}$. Dále předpokládáme, že platí

$$U_{1 \text{ max}} \doteq U_{1s} + \Delta U_{r}$$

$$U_{1 \min} \doteq U_{1s} - \Delta U \tag{40}.$$

Vybíjení kondenzátoru $C_{\rm u}$ přes odpor $R_{\rm s}$ je popsáno známým exponenciálním vztahem, takže platí

$$U_{1 \min} = U_{1 \max} e^{-t/(P_b C_0)}$$
 (41),

kde t_v je doba vybíjení kondenzátoru (obr. 17).

S ohledem na vztahy (40) a (41) lze určit, že

$$U_{1s} - \Delta U = (U_{1s} + \Delta U)e^{-t_v/(P_s C_u)}$$
 (42).

Zavedeme-li pro popis činitele zvlnění

$$\Phi = \Delta U/U_{1s} \tag{43},$$

lze ze vztahu (42) určit

$$e^{t_v/(R_bC_u)} = (1 + \Phi)/(1 - \Phi)$$
 (44).

Odtuc

$$t_{\rm v} / (R_{\rm s} C_{\rm u}) = \ln[(1+\phi)/(1-\phi)],$$

ZAJÍMAVÉ IO

Sběrnice I²C

Sběrnice, označovaná jako I²C, je asynchronní dvousměrná dvoudrátová sběrnice, určená k řízení a regulaci, která sjednocuje všechny potřebné funkce pro rozsáhlou výměnu dat, jako je adresování, řízení postupu čtení a zápisu, přenos dat a potvrzení instrukcí. Sběrnice slouží k vnitřnímu spojení mikrořadiče a periferních funkčních skupin uvnitř televizního přijímače.

Dvou drátová sběrnice se skládá z vedení hodinového signálu SCL a datového vedení SDA. Ke sběrnici je připojen vysílač, který vysílá řídicí instrukce a data, a přijímač, který tyto informace přijímá. Zapojení, které slouží k přenosu, zvláště vedení hodinového signálu řídicí mikrořadič, je nazváno "master", protější zapojení přijímače je "slave". Protější zapojení může též rovnoprávně vystupovat jako mikrořadič. Jestliže mikrořadič posílá data na periferní zapojení, pak je to vysílač master a periferní zapojení je přijímač slave. Je-li tomu obráceně, např. paměť vysílá data na mikrořadič, pak je paměť vysílač slave, a mikrořadič přijímač master.

Sériový přenos dat po sběrnici I²C se děje po bytech (B) s přídavným bitem potvrzení ACK (Acknowledge), tedy v sekvencích po devíti hodinových impulsech. Protože kmitočet hodinového signálu se může použít nejvýše 100 kHz, je možný přenos rychlostí 10 kHz.

Generace mikrořadičů NMOS typové řady MAB8400 a řady PCF84C00 (je vyrobena technikou CMOS) představuje technické řešení datového přenosu po sběrnici l°C, které bylo vyvinuto v polovině roku 1985, avšak dodnes se bez změn používá. Obě řady mikrořadičů dodávají výrobci s různými programovými a datovými namětmi.

gramovými a datovými pamětmi.

Sběrnicový systém l²C je mimořádně pružný a přizpůsobivý. Periferní funkční skupiny se mohou připojovat nebo vypouštět

podle potřeby, popříp. se může mikrořadič vyměnit za jiný s aktualizovaným programem. Jestliže se této možnosti nevyužije, může se na stejnou sběrnici připojit i několik mikrořadičů a využít jejich několikanásobné vlastnosti master. Aby byl zajištěn přenos dat mezi stejně oprávněnými mikrořadiči, je možné použít k využití sběrnice výběrový postup (arbitráž), zatím co každý mikrořadič zkouší úroveň na datovém vedení a porovnává ji se svým vlastním stavem výdeje. Je-li sběrnice obsazena (úroveň L), zůstává na výstupu úroveň H. Aktivní je ten mikrořadič, který vyrobí dříve úroveň L. To se může provést známým způsobem předáním adresy mikrořadiči. Uvedeným způsobem a druhem provozu může mikrořadič komunikovat s rovnoprávným mikrořadičem nejen s periferními funkčními skupinami, ale i s jinými mikrořadiči v systému (provoz je označován jako multimaster).

Každý přenos začíná startovní podmínkou řídicího mikrořadiče, který adresovým B (tj. 1.B) adresuje určitou periferní skupinu a určuje směr přenosu dat (zápis/čtení). Druhým B se při zápisu přenese subadresa (adresa slova, adresa registru) nebo řídicí bit (přiznak). Další B obsahují osmibitová datová slova. Přenos končí podmínkou stop.

Periferní zapojení

Periferní zapojení (funkční skupiny) sběrnice l²C se vyznačují technickým řešením sběrnice, jehož předností jsou pouze dva vývody. Oproti zapojením s osmibitovým rozhraním se ušetří mnoho spojů, jako např. vstupy a výstupy dat a adres, dále uvolňovací vývody. To vše šetří místo a zmenšuje pořizovací náklady.

Pro všeobecné použití slouží paměťové, hodinové a kalendářové budicí zapojení, budiče zobrazovačů a zapojení pro rozšíření sběrnice. Speciální zapojení pro spotřební elektroniku je k dispozici např. pro ladění

z čehož

$$C_{u} \ge \frac{t_{v}}{R_{s} \ln \left[(1+\Phi)/(1-\Phi) \right]} \tag{45}.$$

V praxi požadujeme vždy $\Delta << 1$ a proto lze pro výpočet přirozeného logaritmu použít přibližný vztah

$$\ln[(1+\phi)/(1-\Delta)] = 2\phi.$$

Potom

$$C_{\mathsf{u}} \ge t_{\mathsf{v}}/(2\phi\mathsf{R}_{\mathsf{s}}) \tag{46}.$$

V praxi předpokládáme, že při dvoucestném usměrnění je doba vybíjení asi jedna čtvrtina periody, $t_v = T/4 = 1/(4f)$.

Proto pro dvoucestné usměrnění musíme volit

$$C_{\rm u}=1/(8f\phi R_{\rm s})$$

Pro jednocestné usměrnění předpokládáme, že se doba vybíjení o půl (vynechané) periody prodlouží:

$$t_{\rm v} = T/4 + T/2 = 3/(4\hbar)$$
.

Proto při jednocestném usměrnění musíme volit

$$C_{\rm u} \ge 3/(8f\phi R_{\rm s})$$
.

Požadujeme-li tedy střední hodnotu napětí $U_{1s}=10$ V, $R_s=40$ Ω a $\Delta U \leqq 1$ V, musíme volit při dvoucestném usměrnění $C_u \geqq 1/(8.50.0,1.40) = 6.10^{-1}$ F = 600 μ F. Přesný postup výpočtu je uveden např. v [2] a [3], kde se počítá i s výstupním odporem

vinutí transformátoru a odporem usměrňovače a kde jsou stanoveny požadavky na transformátor i na vlastnosti diod.

Závěr

V článku byly shrnuty základní úvahy, potřebné k návrhu jednoduchých napájecích zdrojů se stabilizační diodou a tranzistorem nebo pouze s vyhlazovacím (filtračním) kondenzátorem a tranzistorem. Přestože se stabilizační dioda při filtraci zvlnění velmi dobře uplatní, nesmí se zanedbat správná volba kapacity filtračního kondenzátoru.

Literatura

- [1] Arendáš, M.: Praktická zapojení pro elektroniky. AR pro konstruktéry č.2/ 1991, s. 66 a 67.
- [2] Jurkovič, K.; Zodl, J.: Príručka nízkofrekvenčnej obvodovej techniky. Alfa: Bratislava 1985.
- [3] Holub, P.; Zíka, J.: Praktická zapojení polovodičových diod a tyristorů. SNTL: Praha 1971.
- [4] Mallat, J.; Krofta, J.: Stabilizované napájecí zdroje pro mikroelektroniku. SNTL: Praha 1985.
- [5] Gvozdjak, L.: Základy elektrotechniky prenosu a spracovania zpráv. Alfa: Bratislava 1962.

televizních přijímačů (VTS), rozhlasových přijímačů (RTS) nebo pro videotext, k dispozici jsou rovněž zapojení pro řízení hlasitosti. Programy se průběžně rozšiřují, takže zanedlouho budou přístupná všechna zapojení pro úplné řízení sběrnice I²C televizního přijímače bez jakéhokoliv vyvažování CCTV (Computer Controlled TV).

Adresa periferního zapojení se vytvoří vždy sedmi bity adresového B. Adresy jsou vzdy sedmi bily adresovenio b. Adresy jsou pevně stanoveny výrobcem obvodu a jsou centrálně spravovány. Aby bylo možno při-pojit až osm stejných periferních zapojení na stejnou sběrnici, což je žádoucí např. u pamětí, jsou tři poslední bity adresy často proměnlivé a mohou se určit připojením

třech vkládacích vstupů adres.

Osmým bitem adresového B se mikropočítačem nastavuje protější zapojení na přijímač slave (zápis) nebo vysílač slave (čtení). Po adresovém B potvrzuje adresované zapojení instrukcí ACK = L (9. bit) příjem. Periferní zapojení s několika adresami registru využívá autoinkrementaci, při níž se např. při čtení/zápisu jednoho paměťového zapojení s každým potvrzovacím bitem zvýší adresa registru automaticky o 1.

Protokol sběrnice I²C

Klidový stav ve vedení dat SDA a hodinového signálu SCL je charakterizován vždy úrovní H, přes každý vnější rezistor každého zapojení se vztahuje vedení sběrnice na úroveň H. Celková kapacita sběrnice smí být maximálně 400 pF, což omezuje použití sběrnice I²C na jednu přístrojovou jednotku. Pouzdra zapojení mají vstupní kapacitu kaž-dého vývodu zpravidla max. 5 pF, miniaturní pouzdra max. 10 pF. V katalogových listech uváděné mezní údaje časových průběhů sběrnice I2C se musí bezpodmínečně dodržet při použití programu, zpracovaného výrobcem. Detailní popis sběrnice l°C je značně rozsáhlý a vybočuje z rámce této publikace.

Základní podmínky pro přenos dat

- 1. Přenos dat může začít pouze tehdy, je-li sběrnice volná, tzn. vedení SCL a SDA mají úroveň H.
- 2. Podmínka startu STA: Vedení SDA má úroveň L. vedení SCL úroveň H.
- 3. Podmínka stop na konci přenosu: Vedení SDA má úroveň H, vedení SCL již přešlo do úrovně H (STO = podmínka zastavení stop).
- Během jednoho impulsu hodinového signálu SCL = H se nesmí signál SDA změnit (doba přenosu). Změna dat je možná pouze při SCL = L.

Mezi podmínkou start a stop se neomezuje počet přenášených dat. Informace se přenášejí po B s tím, že v dočasném přijímači se vyrobí bit potvrzení ACK (A).

Osmý bit prvního B (adresovacího) určuje směr přenosu následujících datových B, tj. bit R/W, který charakterizuje pracovní funkci:

> $R/\bar{W} = 0$ zápis R/W = čtení

Příklad 1:

Řízení zobrazovacího periferního obvodu PCF8577 (zápis), STA – podmínka startu, STO – podmínka stop, A = bit potvrzení STA/0111 0110/A/1000 0000/A/XXXX XXXX/A/STO/ adresa/zápis/subadresa/datový B/

Aby se obvod po ukončení zápis převedl na funkci čtení, musí se provést nové adresování s podmínkou startu. Nejdříve přenášena subadresa se interně ukládá do paměti tak dlouho, pokud napájecí napětí bude nad úrovní zapínacího nulování.

Nulování při zapnutí

Připojením napájecího napětí UCC se celé technické provedení sběrnice I²C v každém obvodě systému vynuluje a nastaví do pohotovostního stavu (vedení SCL a SDA mají stejnou úroveň H). Stavy na výstupech jsou definovány v katalogových listech jednotlivých integrovaných obvodů.

Ladicí a obslužné svstémy v přístrojích spotřební elektroniky

Rychlý nástup mikrořadičů do přístrojů spotřební elektroniky podpořila všestrannost a cenová výhodnost nového řešení. Řízení systému je záležitostí mikrořadičů a vyznačuje se u komplexních přístrojů rozdělením úloh mezi několik mikrořadičů (např. ve videorekordéru se používá jeden mikrořadič pro obsluhu přístroje, druhý pro řízení pohonu).

K rychlému rozšíření koncepce sběrnice l²C a lepšímu splnění požadavků konstruktérů zavádějí výrobci polovodičových součástek množství integrovaných obvodů pro ladi-cí, mezifrekvenční a nízkofrekvenční účely. Sběrnicový systém l²C byl vyvinut a patento-ván firmou Philips. Mimo spotřební elektroniku se uplatňuje v profesionálních přístrojích, takže konstruktérům mohou posloužit jako vzor mnohé speciální periferní integrované obvody.

Ve sběrnicovém systému I2C slouží ke každému přenosu uspořádání master a slave, jakož i funkce vysílání a příjmu. Ponejvíce je mikrořadič ve funkci vysílače master, popříp. přijímač master, zatímco připojené periferní funkční skupiny slouží jako přijímač slave, popříp. vysílač slave. V podstatě může každý obvod komunikovat s každým jiným obvodem po sběrnici, řízené mikropočítačem, pokud je to účelné. Každý obvod nebo zapojení má svou adresu. Dříve než se začne s přenosem dat, je obvod adresován. Provádí se to prvním B po podmínce startu. Po libovolném počtu datových slov se přenos ukončí podmínkou stop.

Popis systému VTS (Video Tuning System)

Pro televizní přijímače a videomagnetofony vyrábí firma Philips rozšířitelný, mikrořadičem řízený ladicí, zobrazovací a ovládací systém VTS. Jeho základní provedení je mimořádně kompaktní a použitím mikrořadi-če s pamětí ROM 2 kB typu MAB8421 s in-tegrovaným budičem LED je atraktivní a cenově výhodné. Mikrořadičové řízení dovoluje spolu se sběrnicí l²C modulovou konstrukci systému s minimálním až po největší komfort.

Zvláštnosti řešení VTS

Použití mikrořadičů řady MAB8400 se sériovým rozhraním sběrnice I2C má tyto přednosti:

- paměťová kapacita je přizpůsobena požadovaným úkolům, proto neprodražuje výrobu součástky,
- vývoj programu pro koncepci s PMDS nebo PM4300 je rychlý a pružný,
- k dispozici je pro mikrořadič MAB8421 standardní program.
- Ve srovnání s pevně propojeným systémem nabízí mikrořadičové řízení další výhodv:
- vyšší pružnost,
- přizpůsobení vlastností přístroje a ovládá-

ní podle vlastního přání a požadavků trhu je možné programováním.

Přednosti struktury sběrnice je možné vyjmenovat do základních bodů:

- rozhraní sběrnice l²C je přizpůsobeno mik-rořadiči řady MAB8400 (NMOS) rořadiči řady M a PCF84C00 (CMOS),
- rozsáhlé řízení všech funkcí programem,
- nepatrné náklady na propojování všech periferních obvodů, neboť použitá sběrnice vyžaduje pouze dva vodiče,
- bezporuchový chod sběrnice, neboť průchod dat je časově mimořádně krátký, přičemž zkouškami adres s následným potvrzením jsou vyloučeny chyby přenosu,
- jednoduché adresování periferních obvodů se provádí adresovacím B.
- záchytné registry v periferních obvodech slouží k ukládání přijatých instrukcí, které se pak autonomně provádějí, takže mikrořadič po přenosu instrukce je ihned uvolněn pro další jiné úkoly.

Ladění a výdej analogových dat

Základní konfigurace je ladicí smyčka, složená z kanálového voliče v televizním přijímači, děliče kmitočtu 64:1 s citlivým vf vstupním zesilovačem (SAB1164) a kmitočtovým (SAB3035, komparátorem SAB3036, SAB3037).

Ladění na principu měření kmitočtu

Kmitočet signálu oscilátoru z kanálového voliče se v předzesilovači SAB1164 zesiluje a dělí 64, pak se v kmitočtovém komparátoru obvodu SAB3035 porovnává s jmenovitým kmitočtem daným mikrořadičem. Přítom vzniká rozdílový kmitočet, přičemž obvod SAB3035 generuje ladicí a dolaďovací impulsy, které se přivádějí přes vnitřní operační zesilovač, pracující jako integrátor, do kanálového voliče jako stejnosměrné ladicí napětí. Přepínání pásma provádí obvod SAB 3035 přímo přes příslušné brány. Přímá volba stanice, uložené do paměti, se děje ladicím postupem v závislosti na programu nebo vyhledávacím postupem v celém kmitočtovém rozsahu přijímaných kanálů.

Řízení, ovládání a dálkové ovládání

tomuto účelú slouží MAB8421 a několik dalších integrovaných obvodů pro dálkové ovládání, které slouží k automatickému řízení, ovládání a dálko-vému ovládání televizních přijímačů. Jmenovitě jsou to obvody: (viz návrh funkčního řešení podle obr. 1 a 2) SAA3004 zdroj (CMOS) 7 × 64 instrukcí dálkového ovládání, výstupy jsou modulovatelné

TDA3047, TDA3048 zesilovač přijímaných infračervených signálů úzko nebo širokopásmového charakteru

SAA3028 transkodér signálů dálkového ovládání s výstupem pro sběrnici l2C pro obvody SAA3027 a SAA3006 (s nízkou úrovní).

PCD8571 zapisovací/čtecí paměť RAM 128 × 8 b; zapisuje data do paměti ještě při napětí 1 V, spotřeba napájecího proudu max. 2 μA, uchovává v paměti více než 30 kanálů a mnoho dalších analogových údajů

Obr. 1. Návrh dálkově ovládaného televizního a rozhlasového přijímače s možností rozšíření periferními obvody sběrnicí I²C

Obr. 3. Princip ladicího systému s kmitočtoγου syntézou pro rozhlasové přijímače stolního typu

mikropočítač LED MAR8421 ΞT ROM 2 MB I²C RAM nodiny/kalend PCD857 PCB8573 (128B) -2μA] 1,2V] 32.768 kH; zobrazovač PCF8577 - LCD (32/64 segm) čtyřmístný čelní deska (+5 V) různé funkční skupiny رَح videotext SAA5230 SAA5240 vá synté OF 5481164

Obr. 2. Návrh dálkově ovládaného obrazového ladicího systému pro televizní přijímače a videomagnetofony s možností kombinace s dalšími přístroji

Obr. 4. Návrh ladicího systému s kmitočtovou syntézou pro kufříkové a automobilové přijímače

PCB8573 hodinový a kalendářový obvod CMOS; přejímá data při napětí 1,1 V, spotřeba proudu max. 10µA, pracuje s křemenným oscilátorem s kmitočtem 32,768 kHz, obsahuje registr spínacích časů s poplašným zvukovým výstupem a výdejem dat po sběrnici l²C; obvod je vybaven kontrolou napájecího napětí, napájí se z NiCd baterie

Zobrazovańí: dvoumístným zobrazovačem ze světelných diod, který řídí mikrořadič, popříp. řízení přes sběrnici I°C.

Ladění rozhlasových přijímačů kmitočtovou syntézou

Pokud požadujeme ladění přijímače pro náročné s přesným naladěním požadovaných kmitočtů vysílačů s dlouhodobou stabilitou, je možné provést ladicí systém podle návrhu na obr. 3. Řešení spočívá v systému kmitočtové syntézy s fázovou regulační smyčkou (PLL). K tomu slouží kmitočtově a fázově strmá vazba na krystalem přesný referenční kmitočet. Princip ladicího systému je patrný z obr. 3.

Z oscilátorů (AM a FM) kanálového voliče rozhlasového přijímače se odebírá signál s kmitočtem oscilátoru f_{OSC} a přivádí na int. obvod SAA1057, který má oddělené citlivé vstupy pro signály AM a FM. Vyšší signál oscilátoru FM se uvnitř obvodu dělí 10.

Rozhraním sběrnice obvodu SAA1057 se mimo přepínací impulsy pro příjem AM/FM přejímá dělicí poměr kmitočtu n pro programovatelný dělič 15 b z mikropočítače systému (MAB8420 nebo PCF84C20).

Ve fázovém detektoru se vydělený oscilační kmitočet porovnává s referenčním napětím, vyděleným poměrem 1:100 nebo 1:125, a po integraci vnitřním zesilovačem filtru smyčky vzniká stejnosměrné napětí, použitelné jako ladicí napětí. To se pak přivádí na ladicí varikap kanálového voliče.

Fázový detektor (přídržný a vzorkovací) není ovlivňován rušením z číslicového zpracování signálu a zaručuje vysokou spektrální čistotu oscilačního kmitočtu přijímače. Rušivý odstup je velký ve srovnání s jinými rušivými odstupy v přijímači.

Rychlé ladění provádí číslicový fázový detektor, který pracuje s 32násobným kmitočtem než fázový detektor vzorkovací a přídržný. Detektor smyčky určuje rastrování ladicí smyčky a vypíná číslicový fázový detektor.

Všechny funkce integrovaného obvodu SAA1057 se řídí programem, jako např.:

- volba děliče datovým slovem 15 b (A),
- řídicí instrukce datovým slovem 15 b (B),
- přepínání signálu AM/FM,
- ladicí kroky 1 a 1,25 kHz u signálů AM, popříp. 10 a 12,5 kHz u signálů FM,
- proudový zdroj pro programované nastavení zesílení smyčky (40 dB).

Ladicí napětí se může nastavovat volně a může dosáhnout až 30 V. Jako ve starších systémech PTS se mohou řídit obvody rozhraní pomocí sběrnice z mikropočítače MAB8420 nebo PCF84C20. Může se též používat integrovaný obvod SAA1060 pro zobrazení kmitočtu a programu, další obvod pro řízení hlasitosti.

Systém pro kufříkové a automobilové přijímače

V zapojení ladicího systému pro kufříkové přijímače a autopřijímače (obr. 4) se používají převážně proudově úsporné obvody CMOS. Jako příklad slouží:

PCF84C20 mikropočítač CMOS s pamětí RAM 64 B pro ukládání kmitočtů vysílačů a jako pracovní paměť, paměť 2 k slouží k uchování volby programů, výstup pracuje s instrukcemi pro sběrnici l²C.

SAA1300 přepínač pásem se sériovým rozhraním sběrnice I°C, výkonové výstupy slouží k napájení kanálového voliče napájecím napětím.

PCF2112 budič zobrazovače LED's 32 segmenty se sériovým rozhraním nebo

PCF8577 se sénovým rozhraním sběrnice I²C, spotřeba napájecího proudu max. 10 µA.

TDA3820 regulator hlasitosti a barvy zvuku (stereo) s rozhraním sběrnice I²C.

TEA6000 čítač kmitočtu signálů AM/FM s rozhraním sběrnice I²C.

V příštím čísle Měření tyz. veličin na PC Jednočipové mikroprocesory

TEA6100

FM-MF zesilovač a AM/FM vyhledávací rozhraní

Výrobce: Philips-Valvo

Integrovaný obvod TEA6100 je mezifrekvenční zesilovač signálů FM s demodulátorem a rozhraní pro vyhledávání AM/FM se sériovým rozhraním I°C pro ladicí systémy v televizních přijímačích.

Vlastnosti obvodu:

 obvod sdružuje čtyřstupňový symetrický mezifrekvenční omezovací zesilovač s oddělenými vstupy pro signály AM a FM,

detektor mf úrovně s měkce nasazujícím umlčujícím zapojením,

symetrický kvadraturní demodulátor mf

signálů FM, zapojení pro získávání mf úrovně signálů FM/AM a úrovně vícecestných signálů FM, převodník A/D se dvěma úrovňovými regis-

try 3 b pro výdej sběrnice I2C,

- měřicí systém AM/FM mezifrekvenčních kmitočtů s volitelným rozlišením a programovatelnými děliči N1 a N2.

výdej měřicího kmitočtu 8 b pro sběrnici

- druh provozu a dělicí činitel děličů je volitelný programem. **Pouzdro:** plastové DIL-20

Popis funkce

zesilovač Mezifrekvenční obvodu TEA6100 se skládá ze čtyř řízených omezovacích stupňů. Pro mezifrekvenční signály AM a FM má oddělené vstupy. Vnitřní výstup je společný. Jeden z obou vstupů se může používat programovým řízením (vývod 19 nebo 18). Omezovací zesilovač budí kmitočtový čítač a kvadraturní demodulátor signálu FM. Demodulovaný nízkofrekvenční signál Uo MPX se uvnitř obvodu dále zesiluje.

Zesilovač úrovně signálů AM/FM je řízen pěti úrovňovýml detektory a vyrábí úrovňový

signál, závislý na vstupním signálu, který se vnitřně používá pro umlčovací zapojení. Podle přání se může tento signál používat k vnějšímu přepínání stereo/mono a k řízení prahové úrovně stereo v připojeném stereofonním dekodéru.

Potenciometrem připojeným k vývodu 14 se může nastavovat úroveň AM a FM signálů, čímž se mohou přizpůsobit k různým kanálo-vým zesilovačům. Protože úrovňový zesilovač řídí umlčovací zapojení, je zajištěno, že bod omezování -3 dB zůstává konstantní a nezávislý na šířce pásma zesilovače kanálového voliče.

Úroveň napětí na vývodu 03 závisí na síle pole, tedy na vstupním signálu. Při vícecestném příjmu je vstupní signál modulován amplitudově. Podíl vícecestného příjmu musí být určen takto:

 Vývodem 03 se přivádí úrovňový signál na dolní propusť, v mf detektoru se pak tyto složky usměrňují. Mf úroveň se přivádí rovněž na převodník A/D 3 b (ADC 1),

Tab. 1. Elektrické údaje mf zesilovače FM TEA6100

Mezní údaje:			
Vývody 08 a 20 jsou spojeny se ze	mí.		
Napájecí napětí analogové části	UP1(1/20)	=0 až 13,2	٧
Napájecí napětí číslicové části	UP2 (8/7)	=0 až 13,2	٧
Ztrátový výkon celkový	(,		
ϑ _a ≤25°C	P _{tot}	≤1,9	W
Rozsah pracovní teploty okolí	$\vartheta_{\mathbf{a}}$	=-30 až +85	°C
lozsah skladovací teploty	ϑ_{stg}	=-65 až +150	°C
Tepelný odpor přechod-okolí	P _{hia}	≤70	ΚŴ
Charakteristické údaje:	nju		
Platí při $U_{P1} = U_{P2} = 8.5 \text{ V, vývod}$	v 08 a 20 snc	nieny se zemí n. = 25	
°C, $U_{iFM} = 1 \text{ mV} (f = 10.7 \text{ MHz}, t)$	=1 kHz	zdvih +22.5 kHz), není-li	
uvedeno jinak.	mod · ·······	2011.7 = 22,0 14 12/1 110111 11	
Napájecí napětí analogové části	16	=imen. 8,5; 7,5 až 12	٧
Napájecí napětí číslicové části	UP1 (1/20)	=jmen. 8,5; 7,5 až 12	v
	U _{P2 (7/8)}	jirieri. 0,5, 7,5 az 12	
Napájecí proud vývodu 01	,	-iman 10: <0F	
při provozu FM	/P1 (1)	=jmen. 19; ≤25	mA
při provozu AM	/P1 (1)	=jmen. 15; ≤25	mA
Napájecí proud vývod 07	/P2 (7)	=jmen. 16; ≤23	mA
Mezifrekvence FM a demodulátor:		· ·	
Vstupní signál-vývodu 18			
pro –3 dB před omezením	U _{IFM ef}	=jmen. 15≤30	μV
pro <i>S/N</i> =26 dB	U _{iFM ef}	=jmen. 12	٠μ٧
typicky pro potlačení	100		
AM > 40 dB	U _{iFM ef}	=0,09 až 1000	μV
Měření na nf výstupu - vývod 11:			
Výstupní signál při omezování mf	UONE	=jmen. 200; 160 až 240	mV
Zatěžovací kapacita	GL 11/20		рF
Zkreslení při zdvihu ±75 kHz	-C 11/20		
s jednoduchým obvodem			
demodulátoru	k	=imen. 0,65	%
s dvojitým obvodem demodulátoru		=jmen. 0,1	%
Potlačení AM při	, ·	jillolli o, i	, ,
U _{IFM} =0,6 až 600 mV, m =0,3	α	=jmen. 85	dΒ
	α_{AM} α_{AM}		dB
$U_{\text{iFM}} = 0.2 \text{ až } 0.6 \text{ mV, m} = 0.3$	[™] AM	=jmen. 45; ≥38	ub
Odstup signálu k šumu			
$U_{\text{iFM}} = 10 \text{ mV}, \text{ zdvih } \pm 75 \text{ kHz},$	CAL	· 05	-40
BW = 300 až 15 000 Hz	S/N	=jmen. 85	dB
Potlačení brumu	<i>α</i> ₂₀₀	=jmen. 45; ≥38	dB
Umlčovací zapojení FM:			×
Měkké sepnutí umlčování detektore	em		
úrovně			
přechod hlasitě/umlčení			
typicky	U _{3/20}	=0,1 až 2,5	١٧
pro $U_{ONF} = -3 \text{ dB}$	$U_{3/20}$	=jmen. 1,45; 1,2 až 1,75	٧
	U _{3/20}	=jmen. 0,1	٧
Tvrdé sepnutí umlčování na vývod	u 02		
pro $U_{ONF} = -60 \text{ dB}$	U _{2/20}	=jmen. 460	m۷
Nabíjecí proud kondenzátoru			
$U_{2/20} = 0 \text{ V}$	-l ₂	=jmen. 1,5	μΑ
Vybíjecí proud kondenzátoru	*	,	۳.
$U_{2/20} = 2 \text{ V}, U_{3/20} = 0 \text{ V}$	+ 1/2	=jmen. 270	μΑ
Úrovňový detektor/zasilovač EM:	' ' ²	- julion. 210	μ^
Úrovňový detektor/zesilovač FM:			l
Urovňový signál na vývodu 03,			l
(vyvážený na vývodu 14)	1	•	,
strmost vyvážení (nastavitelný zisk)		· · · · · · · · · · · · · · · · · · ·	,,,
	1 11 /11	=jmen. −2	ΙVΛ

úroveň při <i>U_{FM}</i> =0 V typicky maximální úroveň	U _{3/20} U _{3/20} R _{3/20}	=0,1 až 4,6 ≥U _{P1} − 1,5 =imen. 100	V V Ω
výstupní odpor, $U_{3/20} > 1 \text{ V}$ regulační strmost při $U_{\text{FM}} = 10 \text{ m}$	٧,	'	
$U_{14/20} = 2,4 \text{ V}$	U ₃	=jmen. 1,6; 1,4 až 1,8 V/d	ekádu
Úrovňový výstup – vývod 05			
vybíjecí proud kondenzátoru vnitřně přes rezistor a diodu	<i>l</i> ₅	=jmen. 200	μА
Referenční napětí (jen při FM)	U _{15/20}	=jmen. 4,4	١٧
teplotní závislost při –30 až +85 °C	Δ <i>U</i> _{15/20}	=jmen. 12	mV
výstupní odpor	R _{15/20}	≤ 10	Ω
výstupní proud záporný	-115	≥5	mA
výstupní proud kladný	+l ₁₅	≤1,5	mA
Referenční výstupní odpor při AM	_		
(vysokoohmový), $U_{15/20} = 0 \text{ V}$	R _{15/20}	=jmen. 14	kΩ
Detektor vícecestného příjmu:	۱.	10.7.40	امرا
vstupni odpor	R _{4/20}	=jmen. 10; 7 až 13	kΩ
přenosové zesílení (≈/=) při šířci	Ð		
pásma filtru 0,1 až 120 kHz,	I 4	-imon 20	ďΒ
$20 \log = U_{4/20} / U_{5/20}$	<i>U</i> _{5/20}	=jmen. 30 =0,2 až 6,0	V I
typická výstupní úroveň Úrovňový detektor/zesilovač AM:	05/20	-0,2 22 0,0	'
Úrovňový signál na vývodu 05 (vy	váže-		
ný na vývodu 14 s U _{P1} jako refere			
ním napětím)		1	
strmost vyvážení			
(nastavitelný zisk)	UIAM/U14/20	=jmen2	V/V
ùroveň při Ú _{lAM} ≕0 V, typicky	U _{5/20}	=0,2 až 4,6	٧
úroveň při <i>U</i> iAM>10 mV	U _{5/20}	≥6,0	
regulační strmost při U _{IAM} =100 r	ηV		
$a U_{14/20} = 2.4 \text{ V}$	l U _{5/20}	=jmen. 1,5; 1,3 až 1,9	l I
zbytkový signál při f _{mod} =200 Hz			ekadu
$m = 0.8 \text{ pro } U_{\text{IAM}} = 0.1 \text{ až } 30 \text{ m}$		=jmen. 300; ≤400	mV
Převodník A/D 3 b pro kvantování		1 45, 1 0 at 1 7	l v l
nejmenší stupeň (000)	U ₅ pod	=jmen. 1,45; 1,2 až 1,7	
největší stupeň (111)	I U ₅ nad	=jmen. 4,5; 4,25 až 4,75	1 '
Registr ADC1 obsahuje při FM úr			
Registr ADC2 obsahuje při FM ún MWE (středovlnného přijímače)	Oven		
Registr ADC2 obsahuje při AM úr	oveň MF		
Vstup mf čítače:	01011 1111		
Zaručené vstupní signály pro ode	čtení ± 1 b:		1
provoz FM, f = 10,7 MHz, vývod 18	U _{iFM ef}	=0,06 až 1000	mV
provoz FM, $f = 10.7$ MHz, vývod 19	U _{iFM ef}	=0,06 až 1000	mV
provoz AM, f = 460 kHz, vývod 19	UiAM of	=0,045 až 1000	mV
Vstup referenčního kmitočtu – vý	vod 06:		
referenční kmitočet	$f_{\rm REF}$	≤ 40	kHz
vstupní napětí – úroveň L	U _{6/8L}	=0 až 0,4	V
vstupní napětí – úroveň H	U _{6/8H}	≥5 .	V
Sběrnice I ² C – vývody SDA a SCI		-0 ox 1.5	l v
Vstupní napětí – úroveň L	U_{1L}	=0 až 1,5 =jmen. 5; 3 až U _{P2}	v
Vstupní napětí – úroveň H	U_{IH}	=jinen. 3, 3 az 0p2 ≤10	μА
Vstupní proud Potvrzení (ACK)	-4	- **	PACE
výstupní napětí při $I_{SDA} = 3 \text{ mA}$	U _{SDA}	≤0,4	V
7 1 1 1 000	1		<u> </u>

Obr. 1. Funkční skupinové zapojení FM MF zesilovače TEA6100. Funkce vývodů: 01 - přípoj napájecího napětí pro analogovou část U_{P1} (+8,5 V); 02 - měřicí bod umlčovacího zapojení; 03 -úroveň signálu FM; 04 -vstup usměrňovače signálu vícecestného příjmu; 05 -úroveň vícecestného příjmu v provozu FM, úroveň signálu v provozu AM; 06 -vstup referenčního signálu 40 kHz f_{REF} (z obvodu TSA6057); 07 -zemnicí bod číslicové části (0 V); 08 -přípoj napájecího napětí pro číslicovou část U_{P2} (+8,5 V); 09 -vedení hodinového signálu pro sběrnici l^2C (SCL); 10 -datové vedení pro sběrnici l^2C (SDA); 11 -výstupní signál MPX, nf signál pro stereodekodér; 12, 13 -přípoj vnějšího referenčního obvodu kvadraturního demodulátoru signálu FM; 14 -vyvážení úrovně AM/FM; 15 -výstup referenčního napětí U_{REF} ; 16 -blokování vstupu diferenčního zesilovače; 17 -blokování vstupu diferenčního zesilovače; 18 -vstup mezifrekvence FM (FM-MF); 19 -vstup mezifrekvence AM (AM-MF); 20 -zemnicí bod analogové části (0 V).

Obr. 2. Zapojení programovatelného děliče čítání kmitočtu a funkčního spínače.

Obr. 3. Připojení kvadraturního demodulátoru s dvojitým laděným obvodem pro mf signál U_{IFM} > 200 μV. Postup vyvažování: L2 se rozladí, L1 se nastaví na nejmenší zkreslení. Pak se nastaví L2 rovněž na nejmenší zkreslení.

Obr. 4. Doporučené zapojení integrovaného obvodu TEA6100.

 Výstupní signál z dolní propustě se vnitřně usměrňuje a zesiluje, takže na vývodu 05 je úroveň stejnosměrné složky, úroveň vícecestného příjmu; obě složky se rovněž přivádějí do převodníku D/A 3 b, (ADC 2)

 Výsledkem je stav: při signálu FM je na vývodu 03 úroveň mf, na vývodu 05 úroveň vícecestného příjmu.

Provoz AM

Informace o úrovni na vývodu 03 se nemůže přímo využít. Nejdříve se musí vyfiltrovat, neboť obsahuje ještě složky AM. Filtrace se provádí následujícím postupem:

multiplexer sepne signál na zeslabovač,
 po zeslabení se signál přivede na zesilovač, jehož zesílení je stejně velké jako předcházející zeslabení,

 po zesílení se signál vnitřním rezistorem a vnějším kondenzátorem, připojeným k vývodu 05, vyfiltruje,

takto uprávený signál se přivádí na ADC 1,
 analogicky je úroveň AM k dispozici na vývodu 05.

Provoz FM

Mezifrekvenční signál FM je demodulován v symetrickém kvadraturním demodulátoru. Jeho předností je malý počet potřebných vnějších součástek (viz obr. 4). Potlačení amplitudové modulace musí být dobré, proto se používá omezovacího mf zesilovače. Dobré potlačení AM při malých vstupních signálech vyžaduje velké zesílení mf zesilovače. Velké zesílení nebo též velká vstupní citlivost však není žádoucí v autopřijímačích. Tento problém se řeší umlčovacím zapojením, které lze vyvážit z vnějšku, čímž se může celková citlivost nastavit na požadovanou úroveň.

Umlčovací zapojení se řídí do stavu umlčení zesilovačem úrovně (měkké umlčení), což platí jen při signálech FM. Jestliže vstupní signál poklesne pod předem určenou úroveň, aktivuje se řízení umlčovače. K potlačení zapínacího a vypínacího jevu sleduje nízkofrekvenční zvukový signál kolísání vstupního signálu. Řízení umlčení se aktivuje rychle, avšak do neaktivního stavu přechází pomalu. Příčinou je působení proudového zdroje (kondenzátor připojený k vývodu 02), které zabraňuje agresivnímu chování zvukových signálů. Vyvážení je možné z vnějšku obvodu – omezovací bod – 3dB nf signálu pomocí napěťové úrovně. U rychle pracujících umlčovacích zapojení se musí vývod 02 připojit na zemní potenciál.

Úrovňové signály na vývodech 03 a 05 jsou digitalizovány převodníkem A/D a mohou se přečíst přes sběrnici I²C. Slovo 1 se nachází v registru ADC 1, slovo 2 v ADC 2. Provoz FM: Slovo 1 = úroveň FM (z vývodu

Slovo 2 = úroveň vícecestného příjmu (z vývodu 05)

Provoz AM: Slovo 1 = úroveň AM s modula-

cí (z vývodu 03) Slovo 2 = úroveň AM bez modulace (z vývodu 05)

Čítač

Osmibitový čítač dodává přesný signál pro zastavení (stop). Ten je potřebný k umožnění přesného ladění, jestliže měřený kmitočet souhlasí se středním mezifrekvenčním kmitočtem. Při měření vstupního kmitočtu jsou impulsy čítány v časovém okénku. Široké okénko pro dlouhé doby čítání zaručuje vysokou přesnost. Rozlišení čítače je definováno čítacím krokem po Hz. Protože obvod TEA6100 musí čítat mezifrekcence AM

a FM, je rozlišení čítače provedeno jako programovatelné. Závisí na aktivování děliče N1, děliče N2 a na referenčním kmitočtu f_{REF}. Dělicí činitel děličů N1 a N2 se řídí programem. Šířka okénka a rozlišení čítače pro referenční kmitočet f_{REF} = 40 kHz jsou uvedeny v tabulce 3. Přesnost je dána sedmým bitem vstupního slova. Rozlišení pro bit 7 = 0 a bit 7 = 1 je tím stejné, šířka okénka se zdvojnásobí všák až poté, kdy je bit 7=1.

bit 7 = 0: přesnost = ± číselné rozlišení bit 7 = 1: přesnost \doteq ± 1/2 číselného rozlišení

Přenos sběrnicí l²C. Protokol pro TEA6100

Komunikace mezi TEA6100 a mikropočítačem probíhá obousměrně po dvou linkách sběrnice I2C. K zamezení přeslechu jsou vedeny odděleně přívody napájecího napětí a zemnicí přívody pro analogovou a číslicovou část integrovaného obvodu.

Význam použitých instrukcí: S podmínka startu P podmínka zastavení A potvrzení (Acknowledge = 0) A není potvrzeno (Acknowledge = 1) Adresovací byte. 1.B po podmínce startu

Adresa pro TEA6100

1100 000X

kde X = 0 platí pro zápis, X = 1 platí pro čtení stavu.

Instrukce obvodu TEA6100

Formát vstupních dat při zápisu

S	11000010	Α	XXXXXXX	Α	Ρ
adı	resovací B	dat	ový B		

Tvorba datového byte (B)

Informace o programování

Rozlišení čítače je definováno na vstupu.

Tab. 2. Šířka okénka a rozlišení čísel mf FM zesilovače TEA6100

mf

kmitočet

(kHz)

460.0

460.0

460.0

460 0

460,0

460,0

460,0

460,0

460,0

460,0

460,0

460,0

460,0

460,0

460,0

460,0

10700,0

10700.0

10700.0

10700,0

10700.0

10700.0

10700 0

10700,0

10700.0

10700,0

10700.0

10700,0

10700,0

mf výstupní

registr

(hexa)

4F

CF

4F

CF

C3

36

C3

36

OF

7F

OF

7F

3F

3F

2F

E7

2F

E7

C3

36 C3

36

A8 C2

AΒ

C2

kmitočtový rozsah

max.

(kHz)

466,875

461,500

466,875

461,500

520,000

620,800

520,000

620,800

535,000

492,000

535,000

492,000

2116,000

1688,800

2116,000

1688,800

10830,000

10712,000

10830,000

10712,000

10760,000

10680,800

10760,000

10860,000

11120,000

10944,000

11120,000

10944,000

12356,000

min.

(kHz)

456,914 453,531 456,914

453,531

265,000

416,800

256,000

416,800

455,312

428,250

455,312

428,250

76,000

56,800

76,800

56,800

10670,625

10584,500

10670,625

10584,000

10505,000

10656,800

10505,000

10656,800

9854,000

9924,000

9845,000

9924,000

10316,000

rozlišení

čítače

(Hz/n)

39,1

31,3

39,1

31.3

1000,0

800,0

1000,0

800,0

312,5

250,0

312,5

250,0

8000,0

6400.0

8000,0

6400,0

625,0

500.0

625.0

500.0

1000.0

800.0

1000.0

800.0

5000,0

4000.0

5000.0

4000,0

8000,0

Spínač

(obr. 2) ADEFG

00000

10000

00001

10001

00100

10100

00101

10101

00010

10010

00011

10011

00110

10110

00111

10111

01000

11000

01001

11001

01100

11100

01101

11101

01010

11010

01011

11011

01110

okénko

(ms)

25,6

32,0

51,2

64,0

128,0

160,0

256,0

320,0

3,2

4,0

6,1

8,0

16,0

20.0

32,0

40,0

25,6

32,0

51.2

64.0

128.0

160,0

256.0

320,0

3,2

4,0

6,4

8,0

16,0

Čtení stavu a kmitočtu obvodu TEA6100

Stav: ADC 1 = obsah registru 3 b pro slovo 1 (úroveň).

ADC 2 = obsah registru 3 b pro slovo 2 (úroveň).

Kmitočet: Mezifrekvenční kmitočet v hexadecimálním kódu podle tabulky.

Rozlišení = poměr čítače N2 k šířce okénka. S každým novým krokem čítače se zvyšuje čítaný kmitočet relativně k rozlišení v Hz. např. šířka okénka = 20 ms, N2 = 128,

MF = 10,7 MHz

rozlišení = 128/0,02 = 6,4 kHz na krok čítače

Čítač je osmibitový. Proto je maximální kmitočtový rozsah, který je možné čítat, dán 256. Rozlišení = 1,6384 MHz. Je-li mf kmitočet 10,7 MHz, musí čítač podle výše uvedeného příkladu "pročíst" sedmkrát. Skutečně naměřený kmitočet je dán freal = (výsledek čítače + 256 . pročtení)

"Pročtení" (overflow) ukazuje uložení na kmitočtové stupnici, které se musí připočíst k vydané hodnotě. Vztaženo na šířku mf pásma filtru jsou kmitočty na vstupu obvodu TEA6100 známy. Např. střední mf kmitočet = 10,7 MHz, šířka pásma (- 3 dB) = 300

Na vstupu se projeví jen kmitočty 10,7 MHz ± 0,15 MHz. Není proto nutné počítač s "pročtením".

- Výsledek čítače se musí převést na kmitočet, přitom výsledek závisí na rozlišení číta-če. Výhodnější cesta výpočtu kmitočtu je vypočíst výdej specifikované mezifrekven-ce. Porovnání této hodnoty s naměřeným výdejem, rozdíl se násobí rozlišením.
- Závislosti pro výpočet specifikované mezifrekvence a rozlišení jsou známy: A, D, E, Fa G (datového B při zápisu pro fREF, MF, FM, DIV a RES) se předávají přes sběrnici

An, Dn, En, Fn, Gn jsou invertované hodnoty A, D, E, F a G. Vypočtené výsledky pro referenční kmitočet ($f_{\rm REF}$) 40 kHz jsou uvedeny v tabulce . Platí:

 $N1 = (An.4 + A.5) \cdot (... | 2^{(E2 + G1)}| \cdot (F.1 + Fn.8)$ Šířka okénka $(T) = N1/f_{REF}$ (En.4 + E.5).8.

 $N2 = \{ E.16.8 + En \cdot (Dn.1 + D.16) \} \cdot (G.2)$ + *Gn*.1)

číslicový výdej TDEC = T . (TIFF/N2) + (E.247 + En79), kde TIFF je jmenovitý mf kmitočet (target IF).

- Decimální výsledek se musí převést na hexadecimální výdej (THEX); k tomu se použiie dvou LSB (ne však hodnot "pročtení).

čtení - adres. B

ACD 1 ADC 2 datový B1

mf kmitočet datový B2

Niklokadmiové akumulátory se sintrovanými elektrodami

Ing. Jaromír Buksa

Niklokadmiové akumulátory nacházejí stále širší použití. Přes několikanásobně vyšší cenu, než je cena ekvivalentních suchých článků, je jejich používání ekonomičtější. I když jejich výroba je značně náročná pro ekologické I surovinové problémy, počet výrobců ve světě roste.

Domácí produkce kvalitních článků NiCd se sintrovanými elektrodami zdaleka nestačí krýt poptávku a tak trh bude brzy nabízet nejrůznější akumulátory z dovozu. Následující odstavce tohoto článku mají posloužit pro širší informovanost profesionální i amatérské veřejnosti o vlastnostech a pravidlech zacházení s akumulátory NiCd (uzavřeného i otevřeného provedení).

Zjednodušení funkce uzavřeného článku NiCd

Akumulátory NiCd jsou elektrochemickým systémem s elektrodami obsahujícími aktivní hmoty, které podléhají oxidaci bez fyzikálních změn. Materiál elektrod je nerozpustný v alkalickém roztoku elektrolytu. Zůstává stálý a nerozpouští se během oxidačního procesu. Z tohoto důvodu mají elektrody dlouhou dobu života, protože chemický proces nepůsobí úbytek aktivní hmoty. Důležitou vlastností akumulátorů NiCd je, že mají poměrně konstantní napětí po celou dobu vybíjecího cyklu.

Aktivním materiálem anody je hydroxid niklu. Během vybíjení nabitý hydroxid niklu NiOOH přechází v nižší valenční stav Ni(OH)₂ přijímáním elektronů z vnější sféry. Materiálem záporné elektrody je kadmium, během vybíjení je okysličováno na hydroxid kadmia Cd(QH)₂ a uvolňuje elektrony vnější sféře. Chemická reakce při nabíjení probíhá obráceně. Vzorcem lze proces popsat násle-

 $Cd+2H_2O + 2 NiO (OH) \rightleftharpoons 2 Ni (OH)_2 + Cd(OH)_2$

Každý lepší výrobce opatřuje i utěsněné NiCd články pojistným ventilem přesto, že za normálních okolností v článku nikdv nenastane takový tlak, aby nastal výbuch. Veškeré vzniklé zplodiny zůstávají během celé doby života článku uzavřeny v pracovním prostoru článku. Konstrukce utěsněného článku je provedena tak, že kyslík vyloučený na kladné elektrodě se během přebíjení přemístí na zápornou elektrodu (která není plně nabita) a rekombinuje. Protože na záporné elektrodě není generován vodík, kyslík rychle dosáhne aktivní polohy na povrchu záporné aktivní hmoty, kde je přeměněn v plynnou fázi. Tímto způsobem kyslík funguje jako chemický zkratovací obvod uvnitř článku, umožňující trvalé přebíjení článku bez nadměrného zvětšení vnitřního tlaku.

Moderní uzavřené články se ponejvíce vyrábějí se sintrovanými elektrodami. Aktivní desky článků jsou vyrobeny z porézního sintrovaného plátku, zakotveného na ocelový substrát. Tento plátek, impregnovaný aktivní hmotou, odolává široké škále fyzikálních vlivů i vlivům prostředí. Články jsou vysoce odolné vůči rázům i vůči trvalým vibracím a mohou být používány za extrémních teplotních podmínek. Dosahují běžně životnosti 1000 cyklů nebo mnoha let v pohotovostním režimu.

Konstrukce otevřeného článku

Velké články jsou provedeny jako otevřené a plyny během pracovních cyklů mají kontakt s okolní atmosférou. Z tohoto důvodu snesou bez jakýchkoliv jevů mnohonásobné přetížení, hlavně při vybíjení. Pro nabíjení je nejvýhodnější používat zdroj konstantního proudu, zvětšené napětí po dosažení nabitého stavu článku signalizuje nutnost odpojit nabíječ.

Otevřeným článkem se rozumí článek opatřený odšroubovatelným víčkem s tlakovou pojistkou. Článek se skládá z ploché kladné a záporné elektrody, niklokadmiové desky, oddělené materiálem, který působí jako plynová bariéra a separátor. Desky jsou kompletně ponořeny do elektrolytu a jsou konstruovány maximálně s ohledem na dosažení co nejmenšího vnitřního odporu článku, což spolu s hustotou elektrolytu umožňuje vybíjení velkým proudem.

Separátor je obvykle porézní, multilaminovaná zvlněná nylonová deska, oddělující elektricky kladnou a zápornou desku. Elektrolyt se skládá ze 70 % váhových dílů vody a 30 % hydroxidu draselného. Specifická hustota elektrolytu se za normálních teplotních podmínek (asi 23 °C) má pohybovat mezi 1,24 až 1,32. V tomto rozmezí jsou parametry článků stejné. Pozor! Na rozdíl od olověných akumulátorů nelze podle hustoty elektrolytu stanovit stav nabití NiCd článku.

Modernější články jsou pouzdřeny do nylonových pouzder, starší do ocelových, mezi kladným a záporným vývodem je plnicí a odvzdušňovací otvor s přetlakovým jištěním.

Chemická reakce se při vybíjení a nabíjení článků poněkud liší od reakcí u uzavřených článků. Při přebíjení článku se generuje kyslík a vodík a článek ztrácí vodu. Ztrátou vody lze indikovat stupeň přebití článku. U otevřených článků je nutné kontrolovat hladinu

elektrolytu, pokles snižuje výkonnost článku, způsobuje jeho degradaci prostřednictvím přehřátí při nabíjení i vybíjení.

Výhody NiCd akumulátorů

- dlouhá doba života
- schopnost trvalého přebíjení,
- velký vybíjecí proud,
- funkce v jakékoliv pozici (u uzavřených článků),
- minimální požadavky na údržbu,
- možnost rychlého nabíjení,
- funkce za vysokých teplot,
- funkce za nízkých teplot,
- dlouhodobá skladovatelnost,
- robustní konstrukce,
- stálost napětí při vybíjení.

Nejobvyklejší nabíjecím režimem je nabíjení proudem, rovným 0,1 C (kde C je kapacita článku v ampérhodinách), pro rychlonabíjení je vhodná hodnota 0,3 C. Obecnou zásadou, platnou u všech akumulátorů NiCd je, že se nesmí zvyšovat teplota během nabíjení. V technických podmínkách i v návodech k použití článků se uvádí použitelnost do teploty max. 50 nebo 55 °C. Články vyrobené špičkovou technologií jsou schopny krátkodobě "přežít" i teplotu 65 °C. O specialitách nabíjení při extrémních teplotách bude pojednáno dále.

Akumulátory NiCd jsou bez ztráty parametrů skladovatelné po řadu let bez jakékoliv péče – jejich následné uvedení do provozu popisuje zvláštní odstavec. Protože trvale snášejí připojení na zdroj proudu, jsou nejvýš vhodné pro pohotovostní (standby) režim. Optimální velikostí je proud 0,05*C*.

Zacházení s NiCd akumulátory

Skladování

Obecně potřebují velmi malou přípravu před uskladněním, uzavřené žádnou, otevřené doplnění vodou na předepsanou úroveň (pochopitelně destilovanou) a podle teploty ve skladu kontrolu, zda se voda neodpařila na homí úroveň desek. Skladovat lze články v nabitém i vybitém stavu. Dobijíme-li je konzervačním proudem (0,05*C*), jsou kdykoliv připraveny k použití. Prostředí skladu musí být bez korozních tekutin, plynů a suché. Skladovací teploty je –50 °C až +50 °C. Nabité akumulátory ztrácejí samovybíjením energii (obr. 1) a to tím rychleji, čím je vyšší skladovací teplota. V běžném prostředí se článek samovybíje zhruba za 1 rok.

Otevřené akumulátory uvolňují i při samovybíjení směs vodíku a kyslíku a proto musí být umístěny ve větratelné místnosti. Dlouhodobé testy prokázaly, že akumulátory ani po více než desetiletém skladování neztratily nic ze svých vlastností.

Obnovení otevřených akumulátorů

Při intenzívním využívání akumulátorů je třeba čas od času je "obnovovat". Důvodem je většinou ztráta kapacity, obvykle po čin-

Zkratka pro hexadecimální měření je MHEX. rozlišení R = N2/T měření kmitočtu $f_i = (TIFF) + R$. (MHEX – THEX)

Poznámka:

Ovšem pozor! Jestliže TIFF + $\frac{1}{2}$ šířky pásma filtru je větší než hexadecimální výdej FF, nebo je-li TIFF – $\frac{1}{2}$ šířky pásma filtru je menší než 00.

Přesnost čítače (AW a AN) se může pro stejné rozlišení zvolit bitem RES:

 $\overrightarrow{RES} = 0$: platí $\overrightarrow{AN} \pm (N2/T)$, tj. malá přesnost

RES = 1: platí $AW \pm (\frac{1}{2} N2/T)$, tj. velká přesnost.

nosti řady článků v sériovém spojení, kdy dochází k určité nevyváženosti v zatížení jednotlivých článků v důsledku i nepatrně rozdílného vnitřního odporu, vnějšího znečištění částečně vodivými nečistotami, zvýšenou teplotou apod. O otevřených akumulátorech NiCd lze prohlásit, že stářím neztrácejí kapacitu trvale a že je lze obnovovat potud, pokud se trvale vnitřně nepoškodily. Obecně nelze stanovit časové úseky mezi jednotlivými obnovovacími procedurami, toto závisí na několika okolnostech:

- provozované teplotě,
- způsobech napájení,
- objemu přebíjení,
- objemu transformovaných ampérhodin,
- udržování hladiny elektrolytu,
- čistotě.

Obr. 1. Křivka samovybíjení akumulátoru NiCd

Obr. 2. Napětí akumulátoru při nabíjení

Obr. 3. Paralelní nabíjení baterií

Obr. 4. Režim "standby" pro několik baterií

Obr. 5. Závislost vnitřního odporu na kapacitě článku

Obnovovací procedura

- Nabít článek na napětí 1,4 V.
- Vybít článek až do napětí 0,5 V a ponechat ve zkratovaném stavu nejméně 24 hodin.
- Mechanicky očistit článek, hlavně kolem vývodů, zkorodované spojky článků vyměnit.
- Odstranit zkratovací svorku a nabíjet 24 hodin proudem 0,1C. Asi po 5 minutách nabíjení měřit napětí jednotlivých článků. Je-li napětí větší než 1,5 V/článek, je téměř suchý, doplnit destilovanou vodou.
- Po dalších 5 minutách nabíjení znovu změřit napětí. Články o napětí do 1,2 V vyřadit, články s napětím větším než 1,55 V rovněž.
- Po 20 hodinách trvalého nabíjení změřit a zaznamenat napětí. Pokud je třeba, doplnit destilovanou vodu.
- Po 24 hodinách nabíjení znovu změřit napětí, zaznamenat a naměřenou hodnotu porovnat s předchozím měřením. Pokud se hodnota liší více než 0,04 V, článek vyměnit. Vyměnit je nutno i každý článek, který má po uvedené proceduře méně než 1,6 V. Po odpojení nabíječe měřit teplotu článku, zvýšená teplota signalizuje možnost poškození plynové bariéry.
- Celý cyklus je možné pro jistotu opakovat.

Kontrola elektrolytu

Elektrolyt musí být doplňován častěji než obnovování, hladina elektrolytu se má měřit 2 až 4 hodiny po skončení nabíjení, výška hladiny má být asi 1,5 cm nad deskami.

Způsoby nabíjení

Nabíjet lze čtyřmi způsoby: udržovacím proudem, "standby", pomalým, rychlým a velmi rychlým.

Způsob nabíjení	Intenzita C	Čas [hod]	Kontrola
"standby"	0,01 0,02 0,03 0,04	100 50 30 25	ne
pomalé	0,05 0,10	20 10	ne
rychlé	0,30	3	ne
velmi rychlé	1,00 2,00 10,00	1 30,5 min 6 min	nutná na- pěťová i teplotní

Nabíjecí napětí se obvykle volí mezi 1,4 až max.1,6 V na článek (podle stavu vybití). Udržovacím proudem se může baterie nabíjet bez nebezpečí přehřátí a poškození. Po několika měsících připojení se kontroluje hladina elektrolytu.

Nabíjecí proudy pro uzavřené články jsou analogické, nabíjecí proud může mít stejnosměrný průběh nebo obsahovat velkou složku zvlnění, případně jej mohou tvořit i stejnosměrné impulsy. Doporučuje se, aby nabíjecí proud nebyl menší než 0,01*C*, pod touto hodnotou se mnoho proudu spotřebuje

pro generování kyslíku. Články, které byly uskladněny po delší dobu ve vybitém stavu (více než půl roku) nelze proudem pod 0,05 C oživit – článek "nebere" proud. V tomto případě se doporučuje udělit článku krátkodobý proudový šok (postačí sekundový), zdrojem s menším vnitřním odporem, např. jedním článkem suché baterie. Při velmi rychlém nabíjení je nutná teplotní kontrola článků

Vliv teploty na nabíjení

Akumulátory NiCd lze podle předchozích zásad nabíjet běžně od teploty +5 °C, při nižších teplotách je omezena účinnost rekombinační reakce kyslíku a proto vzniká také větší množství vodíku na záporné elektrodě. Při přebíjení za nízkých teplot může být vytlačen pojistný ventil, proto při teplotě –20 °C není vhodné překročit velikost nabíjecího proudu 0,1 C. Při automatické teplotní kontrole rychlonabíjení akumulátoru je třeba automatické odpojení zdroje nastavit na hranici 45 °C. Pro rychlonabíjení je nejvhodnější vnitřní teplota článků v rozmezí 15 až 49 °C.

Jedna z metod rychlonabíjení, tzn. metoda "vyprazdňování", spočívá v tom, že se akumulátor napřed velkým proudem vybije a vzápětí se zdrojem konstantního proudu s časovým spínačem nabije definovaným objemem energie.

U sintrovaných uzavřených článků se maximum křivky (obr. 2) zmenšuje přibližně na 1,4 V, kde se článek chová jako Zenerova dioda (za normální teploty).

Nabíjení článků spojených sériově a paralelně

Uvedenými metodami se běžně nabíjejí články v sériovém zapojení, z jednoho zdroje proudu je možno nabíjet více baterií o nestejném počtu článku, za předpokladu použití zapojení na obr. 3.

Pro "standby" režim více baterií se doporučuje zapojení na obr. 4. Prosté paralelní spojení akumulátorů se při nabíjení ani při vybíjení nedoporučuje, důvodem je rozdíl (byť i nepatrný) ve vnitřním odporu článků.

Vybíjení článků

Charakteristickou veličinou při vybíjení článku je efektivní vnitřní odpor článku $R_{\rm e}$. Není konstantní veličinou, jeho velikost je závislá na teplotě článku, nejmenší je v rozmezí 20 až 60 °C. Odpor se samozřejmě mění i se stářím článků a jeho zvětšení u otevřených článků signalizuje nutnost obnovení. Efektivní napětí nezatíženého článku rovněž není konstantní, ale může se měnit až na třetím místě za desetinnou čárkou v závislosti na teplotě článku, stavu nabití a vnitřním uspořádání (podle jednotlivých výrobců). Efektivní vnitřní odpor článku je obvykle mezi 10 až 15 mV/C. Jeho závislost na kapacitě článku je na obr. 5.

Je třeba poznamenat, že s rostoucí teplotou se $E_{\rm o}$ zmenšuje (např. při teplotě 60 °C je napětí plně nabitého článku 1,15 V). Zajímavý efekt, nazývaný "paměť", nastává při vybíjení u článků trvale přebíjených. U těchto článků narostou krystaly aktivního materiálu větší a tudíž se zmenší aktivní plocha a mírně se zvětší i vnitřní odpor článku. Proto se při prvním vybíjení takového článku článek chová poněkud jinak, než článek nepřebíje-

VELKOOBCHOD SE SOUČÁSTKAMI PRO ELEKTRONIKU

Vám nabízí široký sortiment součástek a konstrukčních prvků předních světových výrobců.

Přijďte, pište, objednávejte, telefonujte. S.O.S. Electronic spol. a r.o., Loosova 1c, 638 00 Bmo, 2 05 - 52 40 08 fax 05 - 52 40 09

Pryč se zastaralými konstrukcemi

ný. Po dalším cyklu se již chová normálně (např. energie trvale přebíjeného článku je o 5 až 10 % při prvním vybíjení menší).

Měření kapacity článku

Výsledky měření nemusí být vždy stejné, mohou být ovlivněny intenzitou vybíjecího proudu, konečným napětím článku, teplotou i předchozí "historií" článku. Za konečné napětí je za normální teploty považováno 1,0 V. Optimální teplota pro vybíjení článku je v rozmezí -20 až +40 °C. Zlom vybíjecí charakteristiky nastává u teploty -10 °C tak, že při -30 °C se zmenší kapacita článku na 60 % užitečné hodnoty, při teplotách nad 40 °C se zmenšuje kapacita rovněž zhruba na 60 %. "Užitná hodnota" kapacity klesá i se zvětšováním vybíjecího proudu. Kapacita článku se samozřejmě zmenšuje i se stářím článku. U otevřených signalizuje nutnost oživení, u uzavřených článků se sintrovanými elektrodami výrobci běžně zaručují 1000 cyklů (norma DIN předepisuje 400 cyklů), nebo 5 až 6 let (VARTA), 8 let (SAFT). Po této době by články neměly mít méně než 80 % kapacity.

Maximální vybíjecí proud článku Tato veličina je dána vzorcem:

$$I_{\rm mp} = \frac{E_0/2}{R_0}$$

kde Eo je efektivní napětí článku, efektivní vnitřní odpor článku.

Testování akumulátoru před použitím

Pokud není v dodacích podmínkách stanoveno jinak, dodávají se články v nenabitém stavu, otevřené se zkratovanými vývo-

Postup testování:

- Změří se napětí článku naprázdno bez zátěže, pokud je větší než 1,0 V, článek je dobrý, pokud je menší, pokračuje se dalšími krokv.
- Nabíjet 4C po dobu 30 s, vybít 4C po dobu 2 až 3 s. Napětí měřit na konci vybíjení, jeli menší než 1 V, článek je vadný. Je-li napětí rovno nebo větší než 1,0 V, pokračujeme následujícím krokem.
- Článek po 24 hodin zkratovat. Po dobu 2 minut nabíjet 0,1 C. Napětí musí stoupnout na více než 1,2 V.
- Článek nechat v klidu po dobu 90 minut nezatížený. Je-li po této době napětí článku alespoň 0,5 V a větší, je článek dobrý.

Několik důležitých pravidel nakonec

- Nevhazovat články do ohně, mohou vybuchnout a rozstříknout elektrolyt.
- Nezkratovat nabité články, mohou rovněž vybuchnout.
- Malé články s páskovými vývody skladovat tak, aby se nemohly samovolně zkratovat - zbytkový náboj i vybitého článku může způsobit požár.
- Velké otevřené články nabíjet uzavřené (mimo konzervační proud).
- Pokud nedošlo ke ztrátě elektrolytu, doplňovat hladinu článků jen destilovanou
- Horní desku s kontakty u otevřených článků udržovat v čistotě.

Aplication Engineering Handbook General Electric

Firemní publikace firmy VARTA Katalogové listy firmy SAFT

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press inzertní oddělení (inzerce ARB), Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-9 linka 342. Uzávěrka tohoto čísla byla 10. 12. 1991, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Oscilo: S1-99 100 MHz obr. 12 × 10 (35000), 2 kanál. H3015 10 MHz (2000), OML-3M (1500). Gen: L31 10 MHz (2000), Sura (komplex. oscilo., gen. 10 MHz + regul. zdroj) (3000). Wobler do 650 MHz + vestavěn gen. TV sig., tov. výr. (10 000). P. Hercik, Galaktická 5, 040 00 Košice-jih, tel. 855546. Siemens: BFR90, 91, BFQ69 (23, 25, 70), od 10 ks (21, 25, 23, 50). Izo fakt. L. Zavadili Rov. 37, 142 00 Breba 411.

59) Ize fakt. J. Zavadil, Box 27, 142 00 Praha 411.

Magnetický polarizér vč. feedhornu, vhodný pro kruh. i offset parabolu, cca 70 mA (90) asi 4 V (485). J. Starosta, Stinadla 1064, 584 01 Ledeč n. Sáz. Možno i tel. 0452 2618 po 16. hod.

RŮZNÉ

LHOTSKÝ - E. A., electronic actuell, nabízí vybrané druhy součástek za výhodné ceny. Nabídkový seznam i s cenami na požádání zdarma zašleme. P. O. Box 40, 432 01 Kadaň 1.

SAT SERVIS ZLÍN.

tř. T. Bati 560 tel, fax 067/918 225 dodá:

špičkové konvertory SONY 11 GHz a další komponenty KVALITA + CENA + ZÁRUKA = SPOKOJENOST

Po více než desetileté přestávce se připravuje zcela nové zpracování knihy ing. Víta a kol. "Televizní technika". Autor rozdělil knihu do čtyř dílů. První díl zpracovává televizní přenosové soustavy z moderního hlediska klasických i družicových mohořádkových soustav s velkou rozlišovací schopnosti (MUSE, HD MAC, ACTV atd.) včetně aplikace číslicových filtrů. Obsahlá část je věnována číslicovému přenosu v zatemňovacím intervalu (včetně teletextu) a přenosu signálů družicemi.

Druhý a třetí díl se věnuje anténám, kabelovým rozvodům a moderním technologiím televizních přijímačů (včetně neblikavých typů 100 Hz s pa-

Poslední díl doplňuje komplex televizní techniky popisem studiových

a vysilacích zařízení.

Veškerá moderní látka navazuje na vydání z r. 1979 a je podána vynikajícím pedagogickým způsobem vlastním hlavnímu autorovi, který sám napsal první tři díly. Populární výklad bez přílišné matematické teorie však neubírá knize na fyzikální přesnosti a úplnosti. Mimořádnou vysokou hodnotu díla zdůrazňují původní instruktážní barevné obrázky a diagramy. Recenzent: lng. Jiří Nedvěd, VÚST Praha.

Ve snaze zjistit pro nakladatelství potřebný náklad podnikáme průzkum zájmu o tuto knihu. Každý díl obsahuje přibližně 300 stran textu s 250 černobílými i barevnými obrázky včetně fotografií. Díly by vycházely postup-ně v letech 1992 až 93. Cena v rozmezí 90 až 110 Kčs za jeden díl bude upřesněna podle počtu zájemců.

Vystřížený kupón vyplněný Vaším jménem a adresou Vás opravňuje k přednostní nabídce jednotlivých dílů ihned po vydání. Kupón zašlete na adresu naší redakce.

Zajímám se o koupi kr IV. díl* v počtu	nihy: Ing. Vít a kol. ,,Telev	vizní technika", a to I., II., III., exemplářů.
Jméno	Plná adresa	Podpis
*Při záimu ien o někt	erý díl ostatní čísla přešk	ortněte!

amaterske!