Broken Valley Degeneracy In Strained Kekule Lattices

Kek-O

- Two Dirac valleys K/K' folded to center of new BZ, coupled by wave vector G.
- Bond distortion opens a gap in the spectrum around dirac point.

$$E^2 = v_0^2 |\mathbf{p}|^2 + (3t_0 \Delta_0)^2$$
 for $\nu = 0$.

Kek-Y

- Gapless spectrum at the Dirac point made up of pair of linearly dispersing modes.
- Two gapless modes are helical - valley isospin and sublattice pseudospin aligned with direction of motion.

$$E_{\pm}^2 = \nu_0^2 (1 \pm \Delta_0)^2 |\boldsymbol{p}|^2$$
, for $|\nu| = 1$,

Tight Binding Simulations

Scattering: Graphene

Scattering: Kek-O

- Dip in LDOS at Dirac point implies weak detuning, full gap not opened.
- Scattering approx might be further from TB than MOTA realization.

Scattering: Kek-Y

- Scattering model provides little info, could be weakness of CO lattice design.
- Differences between scattering and TB imply detuning magnitude is much smaller than bare hopping.

Real Space Examples

Strained Kekule: Theory

- Landau quantization is valley-degenerate in Graphene.
 - Distortions create splittings in some LLs but not others
- For Kek-Y, only LL0 remains degenerate.

Strained Kekule: Theory

For Kek-O, situation is reversed. LL0 is split independent of magnetic field, but requires larger detuning than can be realized in scattering. (On the right, Del = .25)

Strained Kek-O

Strained Kek-O: QPI at LL0

Strained Kek-O: QPI at LL0

Strained Kek-O: QPI at LL0

Strained Kek-Y: QPI at LL0

Strained Kek-Y: QPI at LL0

