2.证明题.

$$X_1$$
是 max $S = C_1 X$ 的最优解 $C_1 X_1 > C_1 X_2$ 即 $C_1 X_1 - C_1 X_2 > 0$ X_2 是 max $S = C_2 X$ 的最优解 $C_2 X_2 > C_2 X_1$ 即 $C_2 X_2 - C_2 X_1 > 0$

得证.

3. 标准型:

(1)
$$\max_{X} 3' = -2x_1 - 2x_2 - 4x_3$$

 $\begin{cases} 2x_1 + 3x_2 + 5x_3 - x_4 = 2\\ 3x_1 + x_2 + 7x_3 + x_5 = 3\\ x_1 + 4x_2 + 6x_3 + x_6 = 5\\ x_i > 0, i = 1, 2, 3, 4, 5, 6 \end{cases}$

(2) Max
$$3 = X_1 + 2X_2 - 3X_3' + 4(x_4 - x_4')$$

$$-X_1 + X_2 + X_3' - 3(x_4 - x_4') = 5$$

$$6X_1 + 7X_2 - 3X_3' - 5(x_4 - x_4') - X_5 = 8$$

$$12X_1 - 9X_2 + 9X_3' + 9(x_4 - x_4') + X_6 = 20$$

$$X_3' > 0, X_4 > 0, X_4' > 0, X_{1,2}, i = 1.2.5.6$$

(3).
$$\max_{X} S = 5(X_1' - X_1'') + 6X_2$$

$$\begin{cases} (X_1' - X_1'') + 2X_2 = 5 \\ (X_1'' - X_1') + 5X_2 - X_3 = 3 \\ X_1' > 0, X_1'' > 0, X_2 > 0, X_3 > 0 \end{cases}$$

(4)
$$max S = (X_1' - X_1'') + (X_2' - X_2'')$$

$$\begin{cases} 2(X_1' - X_1'') + (X_2' - X_2'') = 5 \\ 3(X_1' - X_1'') - (X_2' - X_2'') = 6 \\ X_1' > 0, X_1' > 0, X_2' > 0, X_2' > 0 \end{cases}$$

对偶问题:

(1). Min
$$W = 2y_1 + 3y_2 + 5y_3$$

 $2y_1 + 3y_2 + y_3 \ge 2$
 $3y_1 + y_2 + 4y_3 \ge 2$
 $5y_1 + 7y_2 + 6y_3 \ge 4$
 $y_1 \le 0, y_2 \ge 0, y_3 \ge 0$

(2). min
$$W = 51/1 + 81/2 + 201/3$$

 $\begin{cases} -1/1 + 61/2 + 121/3 > 1 \\ 1/1 + 71/2 - 91/3 > 2 \\ -1/1 + 31/2 - 91/3 < 3 \\ -31/1 - 51/2 + 91/3 = 4 \\ 1/1 天殿制 1 1/2 < 0 , 1/3 > 0 \end{cases}$

(3). min
$$W = 54, +342$$

 (3) . min $W = 54, +342$
 (4) . (4)

(4). min
$$W = 5 y_1 + 6 y_2$$

 $(2y_1 + 3y_2 = 1)$
 $(y_1 - y_2 = 1)$
 (y_1, y_2) 无限制

4.
$$\max_{x = 6} x_1 + 2x_2 + 12x_3$$

$$\begin{cases} 4x_1 + x_2 + 3x_3 + x_4 = 24 \\ 2x_1 + 6x_2 + 3x_3 + x_5 = 30 \\ x_1 > 0, i = 1, 2, 3, 4.5 \end{cases}$$

Ci 基 b O X+ 24 O X 30	6 2 12 0 0 X ₁ X ₂ X ₃ X ₄ X ₅ Q 4 (3) 1 0 8 2 6 3, 0 1 6 6 2 12 0 0	マンスターク 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
	100	1.00

此时. 巧<0 成立, 且 b>0. 得最优解 X=(0,0,8,0,6)T 最优值 3=6×0+2×0+12×8=96

5. 原问题的对偶问题为:

min
$$3 = 104$$
, $+104$ ₂
 $\begin{cases} 4 & +24 & > 4 \\ 24 & +34 & > 7 \\ 4 & +34 & > 7 \end{cases}$
 $\begin{cases} 4 & +34 & > 7 \\ 4 & +34 & > 0 \end{cases}$

显然,小=½,少=2 是其一个可行解.对应目标函数值8=25 根据戏器理论,最小值问题的任一可行解都是其对黑的 题最优值的一个上界,则 max W ≤25

6. 化为标准型:

max
$$3 = -2x_1 - 3x_2 - \mu x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 3\\ 2x_1 - x_2 + 3x_3 - x_5 = 4\\ x_1 > 0, i = 1, 2, 3, 4, 5 \end{cases}$$

等式约束列边 闰 时乘从一

$$max$$
 $3 = -2x_1 - 3x_2 - 4x_3$
 $-x_1 - 2x_2 - x_3 + x_4 = -3$
 $-2x_1 + x_2 - 3x_3 + x_5 = -4$
 $x_i > 0$, $i = 1, 2, 3, 4, 5$

(J)	-2 -3 -4 0 0		
Ca 基 b	X1 X2 X3 X4 X5		
0 X4-1	0 (-52) 1/2 1 -1/2		
-2 X, 2	1 -		
()	0 4 -1 0 -1		
min{bi}=一个, t奂出 X4			

此时,b全部大于0、焊到最优解
$$X^* = (1/5, 2/5, 0, 0, 0, 0)^T$$

最优值 min $W = - \text{Mov} 3^* = -[-2 \times (1/5) - 3 \times (2/5)] = 28/5$

7. may
$$3 = x_1 + 2x_2 + 3x_3 + 4x_4$$

($x_1 + 2x_2 + 2x_3 + 3x_4 \le 20$

$$\begin{cases} X_1 + 2x_2 + 2x_3 + 3x_4 \le 20 \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 \\ X_1, x_2, x_3, x_4, > 0 \end{cases}$$

min
$$W = 20 41 + 20 42$$

 $31 + 242 \ge 1$
 $241 + 342 \ge 2$
 $241 + 342 \ge 3$
 $341 + 242 \ge 4$

L 41, 12, 13, 14 70

$$| minw=204,+2042
 | y_1+2y_2-y_3=|
 | y_1+2y_2-y_3=|
 | y_1+2y_2-y_4=2
 | 2y_1+3y_2-y_5=3
 | 3y_1+2y_2-y_6=4
 | y_1,y_2,y_3-y_6>0
 | y_1,y_2,y_3-y_6>0$$

7.(续).

\; \, \, = 1.2, \, \, y_2 = 0.2 是对低问题最优解。

代入得:13=0.6, 4=0.6,4=0,46=0

、由至补松驰条件有:

X5=X6=0, X1=X2=0, 代入约翰件. X3=4, X4=4

二原问题最此解、X=(0,0,4,4)T,最优 max3=3x4+4x4=28

根据 $\sigma_i = C_i - \stackrel{\text{M}}{=} C_i \alpha_{ij}$ 来计算 σ_i σ_4 , 艺其全部小于0, 则 X=10,2,0,0.2),保解 列单纯形表:

~ T3=1 >0.

、此时 X2=2, X5=2, 不是原问题最优解

4*

9. 双烟的题为: min W=441+342

若原的题有最优解.则对据问题也有最优解 观察可知、对倡问题无可行解 更没最优解 故原问题无最优解.

ys.

10.每个公司最多建2个厂房,可将公司复制2份,补充第6个厂房品。

:、AI:BI,B3 A2:B2 A3:B4,B5 共用时:4+7+9+8+7=35

(2) Ai As A4 A6 A7 A2 A6 A7 A1 Ai A+ A3 A3 A2A6 A7 A1A5 Ai Ar A + A3 A6 A7 A1 A5 A2 ti 232675410 Cr. 2 5 7 17 23 30 35 39 Ci 2 5 7 13 20 25 29 39 d: 8 9 10 18 22 23 34 6 di 8 9 10 22 28 34 6 18 di 6 8 9 10 18 22 28 34 vvvvx 格出A2 前3个中, As 耗时最大,移出.

延误工件最少为2个,是AG、A2

```
12
                                                                                                                                                                 Ji Jo Ja Ja Ja Ja Ja Ja Ja Ja Ja
               Ji J, J2 J3 J4 J5 J6 J7 J8 J9 J10
                                                                                                                                                                  ti 11 937654321
                                                                        3 7
               ti 5 4 2 8 6
                                                                                                                                    对于LPT算法:
   对于LS算法。
                                                                                                                                                 PI: TJO
             Pi. 15 Jo Ja
                                                                                                                                                                                                                                      FLPT = 19
                                                                                                 fis = 22
                                                                                                                                                P3: -
             13: 国
                                                                                                                                                                                     8911 1516 1819
15 12 1, 17 13 16 14 18
                                                                                                        降序
                                                                                                                                                                                                   8
                                                                                                                                                   16
                                                                                                                                                               14 12 10
           12 14 8 4 16 6 10
                                                                                                                                                                          Yack
                                                                                                                                                                                             : 5
                                                                                                                                      10 2
 BNF: [2]
                                                                                8141
                                                    14
                                                                                                                                                                         Pack
                                                                                                                                                                                               : 4
                                                                                                          6 10
                                                     14 42
      BF: 12 8
                                                                                                                                                                        Pack
                                                                                                                                                                                             : 4
                                                                                                        6 10
                                                                                 16
     FF:
                                                    14 4 2
                       12 8
                                                                                                                                                                       Pack
                                                                                                                                                                                             : 4
                                                                                 12 8
     BFD: 16 4
                                                     14 6
                                                                                                                                                                                            : 4
                                                                                                                                                                       Pack
                                                                              12 | 8 | 10 | 2
                                                     14/6
    FFD: 16 4
            f_3(10) = \max_{0 \le 1} \{ (10 - 3x_3) \} = \max_{0 \le 1} \{ 2x_3^2 + f_2(10 - 3x_3) \} = \max_{0 \le 1} \{ f_3(10), 2 + f_2(1), 8 + f_2(1) \}
14. a=10, 问题是求 fi(10)
                                     0台次台号, 机整数.
             f2(10) = Max { 9x2 + f1 (10-4x2)} = max { 9x2 + f1 (10-4x2)} = max { f1 (10), 9+f1 (6), 18+f1 (2)}
                                                                                                             X_2 = 0.1.2
                                   O≤X1.4号,X1为整数.
             fi(1) = max { 9x2 + fi(7-4x2)} = max (9x2 + fi(7-4x2)) = max {fi(7), 9+fi(3)}
                                    OSX26年,X2为整数。
                                                                                                             X2=0, 1
             f2(4) = max 3 9x2 + f1(4-4x2)3 = max 3 9x2+f1(4-4x2)3 = max 3 f1(4), 9+f1(0)3
                                                                                                           X2 = 0, 1
                                    04%11、X功整数.
             f_2(1) = \max_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \max_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \max_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \max_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \max_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \max_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1}{1 - 4X_2} = \min_{0 \le X_2 \le 4} \frac{1
              易知,f_1(0) = 4 \times L = 1 = 0,f_1(1) = 4 \times L = 1 = 0,f_1(2) = 4 \times L = 1 = 4.(x,=1),f_1(3) = 4 \times L = 1 = 4.(x,=1)
                                  f_{1}(4) = 4 \times \lfloor \frac{4}{3} \rfloor = 8, f_{1}(6) = 4 \times \lfloor \frac{4}{3} \rfloor = 12, f_{1}(7) = 4 \times \lfloor \frac{7}{3} \rfloor = 12 (x_{1}=3), f_{1}(10) = 4 \times \lfloor \frac{4}{3} \rfloor = 20, (x_{1}=3)
        : f_2(10) = \max_{1/2} \frac{1}{20}, 9+12, \frac{1}{20} + \frac{1}{20} = 22; f_2(7) = \max_{1/2} \frac{1}{20}, 9+4 = 13
                                                                                                              f_{2}(1) = f_{1}(1) = 0
                  f2/4) = max 3, 9+03 = 9
     :, f_3(10) = \max\{22, 2+13, 8+9, 18+0\} = 22 \quad (\chi_1 = 1, \chi_2 = 2, \chi_3 = 0)
         、最优解为 X=(1,2,0),最优值 及=22
```


Scanned by CamScanner