Graph pattern learning for long-distance phonotactics

Adam Jardine

Dept. of Linguistics & Cognitive Science University of Delaware

NAPhC 9 May 7, 2016

Introduction

- ► Languages have long-distance phonotactic patterns, especially in tone (Yip, 2002; Hyman, 2011)
- ▶ Dependencies between non-adjacent units can make the learning problem difficult (Hayes and Wilson, 2008)
- ► How are these patterns learned?

Introduction

- Computationally local string learners form a strong theory of phonotactic learning, including many long-distance patterns (Heinz, 2009, 2010; Jardine and Heinz, 2016)
- ▶ Some tone patterns are beyond these learners

Introduction

- ► These can be learned with a local **autosegmental** learner
- ► Idea: learn banned **subgraphs**
- Local autosegmental learning provides a strong theory of tone learning
- ▶ May be extended to long-distance segmental phonology as well

➤ **Strictly Local (SL)** stringsets are those describable by a finite set of *banned substrings* (Rogers and Pullum, 2011)

•	Kago	oshima Japanese								
	(Hirayama, 1951; Haraguchi, 1977; Kubozono, 2012)									
	a.	hána	'nose'	HL						
	b.	sakúra	'cherry blossom'	LHL						
	c.	kagaríbi	'watch fire'	LLHL						
	d.	kagaribí-ga	'watch fire' + NOM	LLLHL						
	e. f. g. h.	haná usagí kakimonó kakimono-gá	'flower' 'rabbit' 'document' 'document' + NOM	 LH LLH LLLH LLLLH						

```
KJ = \{ \#HL\#, \#LH\#, \#LLH\#, \#LLHL\#, \#LLHL\#, \#LLLH\#, \#LLLH\#, \#LLLL\# \}
*#HLLLL#, *#HLLHL#
```

```
#LHL#, #LLH#, #LLH#, #LLH#, ... } G_{KJ} = \{\text{HLL}, \text{HH}, \text{HLH}, \text{LL#}\} *#HLLLL#, *#HLLHL#, *#LLHHL#, *#LHLHL#, *#LLLLL#, ...
```

 $KJ = \{ \text{#HL\#}, \text{#LH\#},$

Learning SL patterns

ightharpoonup Fix k

Learning SL patterns

ightharpoonup Fix k

$$substr_k(w) = \{u | u \text{ is a } k\text{-substring of } w\}$$

Learning SL patterns

ightharpoonup Fix k

$$substr_k(w) = \{u | u \text{ is a } k\text{-substring of } w\}$$

ightharpoonup substr₃(#LLHL#) = {#LL, LLH, LHL, HL#}

Learning SL patterns

ightharpoonup Fix k

$$substr_k(w) = \{u | u \text{ is a } k\text{-substring of } w\}$$

$$\mathrm{substr}_k(D) = \bigcup_{w \in D} \mathrm{substr}_k(w)$$

ightharpoonup substr₃(#LLHL#) = {#LL, LLH, LHL, HL#}

Learning SL patterns

ightharpoonup substr_k scans each input string with a window of size k

Rogers and Pullum (2011); Rogers et al. (2013)

Learning SL patterns

Let S_k be the set of all possible k-substrings

▶ Learner:
$$G_0 = S_k$$
 $G_n = S_k - \operatorname{substr}_k(\{d_1, d_2, ..., d_n\})$

- Let S_k be the set of all possible k-substrings
- Learner: $G_0 = S_k$ $G_n = S_k - \operatorname{substr}_k(\{d_1, d_2, ..., d_n\})$
- ► KJ: k = 3 $G_0 = \{ \text{ #LL, LLL, LLH, LHL, HLL, HLH, ..., LH#} \}$

- Let S_k be the set of all possible k-substrings
- Learner: $G_0 = S_k$ $G_n = S_k \operatorname{substr}_k(\{d_1, d_2, ..., d_n\})$
- ► KJ: k = 3 $G_1 = \{ \#LL, LLL, LLH, LHL, HLL, HLH, ..., LH# \}$

$$\begin{array}{c|c} \underline{Time} & \underline{Datum} & \underline{substr_3} \\ 1 & \#LLHL\# & \left\{\#LL, LLH, LHL, HL\#\right\} \end{array}$$

- Let S_k be the set of all possible k-substrings
- ▶ Learner: $G_0 = S_k$ $G_n = S_k - \operatorname{substr}_k(\{d_1, d_2, ..., d_n\})$
- ► KJ: k = 3 $G_2 = \{ \#LL, LLL, LLH, LHL, HLL, HLH, ..., LH# \}$

<u>Time</u>	<u>Datum</u>	substr ₃
1	#LLHL#	$\overline{\{\text{\#LL, LLH, LHL, HL#}\}}$
2	#LLLH#	$\{\#LL, LLL, LLH, LH\#\}$

- Let S_k be the set of all possible k-substrings
- Learner: $G_0 = S_k$ $G_n = S_k \operatorname{substr}_k(\{d_1, d_2, ..., d_n\})$
- ► KJ: k = 3

$$G_3 = G_2 = \{ \text{ \#LL}, \text{ LLL}, \text{ LLH}, \text{LHL}, \text{ HLL}, \text{HLH}, ..., \text{LH#} \}$$

<u>Time</u>	<u>Datum</u>	substr ₃
1	#LLHL#	$\overline{\{\#LL, LL}$ H, LHL, HL# $\}$
2	#LLLH#	{#LL, LLL, LLH, LH#}
3	#LLLLHL#	{#LL, LLL, LLH, LHL, HL#}

Learning SL patterns

- Let S_k be the set of all possible k-substrings
- ▶ Learner: $G_0 = S_k$ $G_n = S_k - \operatorname{substr}_k(\{d_1, d_2, ..., d_n\})$
- ► KJ: k = 3

$$G_3 = G_2 = \{ \, \# \mathsf{LL}, \, \, \mathsf{LLL}, \, \, \mathsf{LLH}, \, \mathsf{LHL}, \, \, \mathsf{HLL}, \, \mathsf{HLH}, \, ..., \, \mathsf{LH\#} \}$$

► There will always be some *n* for which *G_n* describes *KJ* (García et al., 1990; Heinz, 2010, 2011)

Tone patterns and stringset classes

Tone patterns and stringset classes

Tone patterns and stringset classes

► Arigibi (Donohue, 1997): **At most one H**

a.	nar	'finish'	e.	umú	'dog'	j.	ola?olá	'red'
	L			LH			LLLH	
b.	tutu:	'long'	f.	nímo	'louse'	k.	tuni?\?\	'all'
	LL			HL			LLHL	
c.	vovo?o	'bird'	g.	mudεbέ	'claw'	1.	idómai	'eye'
	LLL			LLH			LHLL	
d.	εlaila	'hot'	h.	ivío	'sun'	m.	nú?∧tama	'bark'
	LLLL			LHL			HLLL	
			i.	ŋgí?epu	'heart'			
				HLL				

► Arigibi (Donohue, 1997): **At most one H**

a.	nar	'finish'	e.	umú	'dog'	j.	ola?olá	'red'
	L			LH			LLLH	
b.	tutu:	'long'	f.	nímo	'louse'	k.	tuni?\?\	'all'
	LL			HL			LLHL	
c.	vovo?o	'bird'	g.	mudεbέ	'claw'	l.	idómai	'eye'
	LLL			LLH			LHLL	
d.	εlaila	'hot'	h.	ivío	'sun'	m.	nú?∧tama	'bark'
	LLLL			LHL			HLLL	
			i.	ŋgí?epu	'heart'			
				HLL				

- ► Not SL
- ► *H...H; {HH, HLH, HLLH, HLLLH, ...}

- ► Arigibi: **At most one H**
- ▶ Hirosaki J. (Haraguchi, 1977):

Exactly one H or F; F word-final

```
a. 'chicken' niwatorí LLLH
b. 'lightening' kaminarî LLLF
c. 'fruit' kudamóno LLHL
d. 'trunk' toránku LHLL
e. 'bat' kóomori HLLL
```

- ► Arigibi: **At most one H**
- ▶ Hirosaki J. (Haraguchi, 1977):

Exactly one H or F; F word-final

```
a. 'chicken' niwatorí LLLH
b. 'lightening' kaminarî LLLF
c. 'fruit' kudamóno LLHL
d. 'trunk' toránku LHLL
e. 'bat' kóomori HLLL
```

► *H...H, *H...F, *Lⁿ, *FL, etc.

- ► Arigibi: **At most one H**
- ► Hirosaki J.: Exactly one H or F; F word-final
- ▶ Unbounded Tone Plateauing (Hyman, 2011; Jardine, to appear):

At most one plateau of H

```
'chopper'
                                 LHL
a.
                 mutéma
b.
   'log'
                  kisikí
                                 LLH
c. 'log chopper' mutémá+bísíkí LHHHHH
                *mutéma+bisikí *LHLLLH
d.
   11 11
        (Luganda; Hyman, 2011; Hyman and Katamba, 2010)
```

- ightharpoonup Arigibi: At most one H (Ar)
- ► Hirosaki J.: Exactly one H or F; F word-final (HJ)
- ► Unbounded Tone Plateauing: **At most one plateau of H** (*UTP*)

- ➤ **Tier-based SL** (Heinz et al., 2011): Banned substrings evaluated over one subset or **tier** of alphabet
- ► Arigibi: *G* = {HH} when L is ignored; *HLH, *LLHLLLH, ...

- ➤ **Tier-based SL** (Heinz et al., 2011): Banned substrings evaluated over one subset or **tier** of alphabet
- Arigibi: $G = \{HH\}$ when L is ignored; *HLH, *LLHLLLH, ...

- ➤ **Tier-based SL** (Heinz et al., 2011): Banned substrings evaluated over one subset or **tier** of alphabet
- Arigibi: $G = \{HH\}$ when L is ignored; *HLH, *LLHLLLH, ...

- ➤ **Tier-based SL** (Heinz et al., 2011): Banned substrings evaluated over one subset or **tier** of alphabet
- ► Arigibi: *G* = {HH} when L is ignored; *HLH, *LLHLLLH, ...

► Tier and grammar are learnable (Jardine and Heinz, 2016)

- ► For *HJ* (exactly one H; F word-final), can't ignore Ls: *FLL...
- ► For *UTP* (at most one H plateau), can't posit *HH

Computational locality for autosegmental representations

Autosegmental representations are graphs (Goldsmith, 1976;
 Coleman and Local, 1991)

▶ We can instead consider banned sub**graph** grammars

Computational locality for autosegmental representations

Let a **subgraph** be some finite, connected piece of a graph

 Subgraphs may refer to boundaries on each tier (not depicted in full graphs)

k is the number of nodes

Computational locality for autosegmental representations

► **Graph SL**: Describable by banned subgraph grammars

▶ These grammars are learnable in a similar way to SL grammars

Some assumptions

 Association preserves precedence relations (the No-Crossing Constraint (NCC))

 Adjacent nodes on tonal tier cannot be identical (the Obligatory Contour Principle (OCP)

► Such representations can be generated from strings (Jardine and Heinz, 2015)

Arigibi: At most one H

▶ *HLH, *HLLH, *LLHLLLH, ...

Arigibi: At most one H

▶ *HLH, *HLLH, *LLHLLLH, ...

► First banned subgraph: (H) → (L) → (H)

Arigibi: At most one H

Arigibi: At most one H

$$G_{Ar} = \left\{ \begin{array}{c} H \\ \hline \end{array}, \begin{array}{c} H \\ \hline \end{array}, \begin{array}{c} H \\ \hline \end{array}, \begin{array}{c} H \\ \hline \end{array} \right\}$$

Hirosaki Japanese: Exactly one H or F; F is word-final

▶ *HLLF, *LLLL

Hirosaki Japanese: Exactly one H or F; F is word-final

Hirosaki Japanese: Exactly one H or F; F is word-final

$$G_{HJ} = \left\{ \begin{array}{c} H \\ \end{array} \right\} \left(\begin{array}{c} H \\ \end{array} \right) \left(\begin{array}{c} H \\$$

UTP: At most one plateau of H

*LHLLHL, LHHHHL

- ightharpoonup Arigibi: At most one H (Ar)
- ► Hirosaki J.: Exactly one H or F; F word-final (HJ)
- ► Unbounded Tone Plateauing: **At most one plateau of H** (*UTP*)

ightharpoonup Fix k

ightharpoonup Fix k

```
\operatorname{subg}_k(g) = \{s|\ s \text{ is a $k$-subgraph of } g\}
```

ightharpoonup Fix k

$$\mathrm{subg}_k(g) = \{s | s \text{ is a k-subgraph of g} \}$$

$$\mathrm{subg}_k(D) = \bigcup_{g \in D} \mathrm{subg}_k(g)$$

Learning banned GSL

▶ Cognitive interpretation of $subg_k$ is the same as $substr_k$: scan input structures, remembering substructures of size k

- ▶ Let S_k be the set of all possible k-sub**graphs**
- ▶ Learner: $G_0 = S_k$ $G_n = S_k \operatorname{subg}_k(\{d_1, d_2, ..., d_n\})$

- Let S_k be the set of all possible k-sub**graphs**
- Learner: $G_0 = S_k$ $G_n = S_k - \operatorname{subg}_k(\{d_1, d_2, ..., d_n\})$
- ► Ar: k = 3

$$G_0 = \left\{ (H), (L), (L) + (H) + (L), (H) + (L) + (H) \right\}$$

- Let S_k be the set of all possible k-sub**graphs**
- ▶ Learner: $G_0 = S_k$ $G_n = S_k \operatorname{subg}_k(\{d_1, d_2, ..., d_n\})$
- ► Ar: k = 3

$$G_1 = \left\{ \begin{array}{c} H \\ \mu \end{array}, \begin{array}{c} L \\ \mu \end{array}, \dots, \begin{array}{c} L \\ \mu \end{array}, \dots, \begin{array}{c} L \\ \mu \end{array} \right\}$$

Time	e <u>Datum</u>	$subg_3$
1	H-L	$\left\{\begin{array}{c} H \rightarrow L \\ \end{array}, \begin{array}{c} L \\ \end{array}, \ldots, \begin{array}{c} \mu \rightarrow \mu \rightarrow \mu \end{array}\right\}$
	$(\mu) \rightarrow (\mu) \rightarrow (\mu)$	(μ) (μ) (μ)

- ▶ Let S_k be the set of all possible k-sub**graphs**
- ▶ Learner: $G_0 = S_k$ $G_n = S_k - \operatorname{subg}_k(\{d_1, d_2, ..., d_n\})$
- ► Ar: k = 3

$$G_2 = \left\{ (H), (L), (L) + (H) + (L), (H) + (L) + (H) \right\}$$

<u>Time</u> <u>Datum</u>	subg ₃
$1 \qquad \stackrel{\text{H} \rightarrow \text{L}}{{\mu} \rightarrow {\mu} \rightarrow {\mu}}$	$\left\{ \begin{array}{c} H - L \\ \downarrow \\ \mu \end{array}, \begin{array}{c} L \\ \downarrow \\ \mu \end{array}, \ldots, \begin{array}{c} \mu - \mu \\ \downarrow \\ \mu \end{array} \right\}$

- Let S_k be the set of all possible k-sub**graphs**
- ▶ Learner: $G_0 = S_k$ $G_n = S_k \operatorname{subg}_k(\{d_1, d_2, ..., d_n\})$
- ► Ar: k = 3

$$G_2 = \left\{ \begin{array}{c} \left(\right) \right)} \right) \end{array} \right) \\ \end{array} \right) \\ \end{array} \right) \end{array} \right) \end{array} \right) \right)$$

<u>Time</u> <u>Datum</u>	subg ₃
$1 \qquad \stackrel{\text{H} \rightarrow \text{L}}{\stackrel{\mu}{\longrightarrow} \stackrel{\mu}{\longrightarrow} \stackrel{\mu}{\longrightarrow}}$	$\left\{ \begin{array}{c} H \rightarrow L \\ \mu \end{array}, \begin{array}{c} L \\ \mu \end{array}, \dots, \begin{array}{c} \mu \rightarrow \mu \rightarrow \mu \end{array} \right\}$

$$2 \qquad \stackrel{\text{(L)}}{\longleftarrow} \stackrel{\text{(H)}}{\longleftarrow} \stackrel{\text{(L)}}{\longleftarrow} \left\{ \begin{array}{c} \text{(L)} & \text{(H)} & \text{(L)} \\ \text{(L)} & \text{(H)} & \text{(L)} \end{array} \right. , \dots, \left. \begin{array}{c} \text{(M)} & \text{(M)} & \text{(M)} \\ \text{(M)} & \text{(M)} & \text{(M)} \end{array} \right.$$

. . .

- ▶ There will always be some n for which G_n describes Ar
- ► Searching for *k* connected subgraphs is tractable (Ferreira, 2013)
- ► Can learn from string input (Jardine and Heinz, 2015)

Conclusions

- ➤ Tone includes many long-distance patterns, including some that are outside of the range of established string-based learners
- ► A graph-based learner can learn these patterns
- ➤ This is thanks to a computational notion of **locality** extended to autosegmental representations
- ► Future work: how can this result be extended to representations in other domains (segmental, metrical)?

Acknowledgments

Thanks to Jeff Heinz, Rémi Eyraud, and the members of the UD Speech, Phonetics, and Phonology Lab

References I

- Coleman, J. and Local, J. (1991). The "No Crossing Constraint" in autosegmental phonology. *Linguistics and Philosophy*, 14:295–338.
- Donohue, M. (1997). Tone systems in New Guinea. *Linguistic Typology*, 1:347–386.
- Ferreira, R. (2013). *Efficiently Listing Combinatorial Patterns in Graphs*. PhD thesis, Università degli Studi di Pisa.
- García, P., Vidal, E., and Oncina, J. (1990). Learning locally testable languages in the strict sense. In *Proceedings of the Workshop on Algorithmic Learning Theory*, pages 325–338.
- Goldsmith, J. (1976). *Autosegmental Phonology*. PhD thesis, Massachussets Institute of Technology.
- Haraguchi, S. (1977). *The Tone Pattern of Japanese: An Autosegmental Theory of Tonology*. Kaitakusha.
- Hayes, B. and Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry*, 39:379–440.

References II

- Heinz, J. (2009). On the role of locality in learning stress patterns. *Phonology*, 26:303–351.
- Heinz, J. (2010). Learning long-distance phonotactics. *Linguistic Inquiry*, 41:623–661.
- Heinz, J. (2011). Computational phonology part I: Foundations. *Language and Linguistics Compass*, 5(4):140–152.
- Heinz, J., Rawal, C., and Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In *Proceedings of the 49th Annual Meeting of* the Association for Computational Linguistics, pages 58–64, Portland, Oregon, USA. Association for Computational Linguistics.
- Hirayama, T. (1951). Kyuusyuu hoogen Onchoo no Kenkyuu (Studies on the Tone of the Kyushu Dialects). Tokyo: Gakkai no shinshin-sha.
- Hyman, L. (2011). Tone: Is it different? In Goldsmith, J. A., Riggle, J., and Yu, A. C. L., editors, *The Blackwell Handbook of Phonological Theory*, pages 197–238. Wiley-Blackwell.

References III

- Hyman, L. and Katamba, F. X. (2010). Tone, syntax and prosodic domains in Luganda. In Downing, L., Rialland, A., Beltzung, J.-M., Manus, S., Patin, C., and Riedel, K., editors, *Papers from the Workshop on Bantu Relative Clauses*, volume 53 of *ZAS Papers in Linguistics*, pages 69–98. ZAS Berlin.
- Jardine, A. (to appear). Computationally, tone is different. *Phonology*.
- Jardine, A. and Heinz, J. (2015). A concatenation operation to derive autosegmental graphs. In *Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015)*, pages 139–151, Chicago, USA. Association for Computational Linguistics.
- Jardine, A. and Heinz, J. (2016). Learning tier-based strictly 2-local languages. *Transactions of the Association for Computational Linguistics*, 4:87–98.
- Kubozono, H. (2012). Varieties of pitch accent systems in Japanese. *Lingua*, 122:1395–1414.

References IV

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complexity. In *Formal Grammar*, volume 8036 of *Lecture Notes in Computer Science*, pages 90–108. Springer.

Rogers, J. and Pullum, G. (2011). Aural pattern recognition experiments and the subregular hierarchy. *Journal of Logic, Language and Information*, 20:329–342.

Yip, M. (2002). *Tone*. Cambridge University Press.