11. Aufgabenblatt

(Besprechung in den Tutorien 15.01.2024–19.01.2024)

Aufgabe 1. Polynomzeitreduktionen und NP

Sei Σ ein endliches Alphabet und bezeichne $A \leq_m^p B$ die Relation "A ist polynomiell reduzierbar auf B". Diskutieren Sie die Korrektheit folgender Behauptungen.

- (a) Für alle $A, B, C \subseteq \Sigma^*$ gilt, falls $A \leq_m^p B$ und $A \leq_m^p C$, dann $B \leq_m^p C$.
- (b) Wenn P = NP, dann gilt für alle $A \in NP \setminus \{\Sigma^*, \emptyset\}$, dass A NP-schwer ist.
- (c) Für alle $A, B \in NP$ gilt, wenn $A \leq_m^p B$, dann $B \leq_m^p A$.

Aufgabe 2. Polynomzeitreduktionen und Halteproblem

Sei $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$ das allgemeine Halteproblem. Welche der folgenden Aussagen gelten?

- 1. $H \leq^p_m SAT$
- 2. SAT $\leq_m^p H$
- 3. H ist NP-schwer
- 4. H ist NP-vollständig

Aufgabe 3. Polynomzeitreduktion I

Betrachten Sie die beiden folgenden Probleme.

VERTEX COVER

Eingabe: Ein ungerichteter Graph G = (V, E) und eine natürliche Zahl k.

Frage: Existiert eine Teilmenge $X \subseteq V$ mit $|X| \leq k$, sodass für jede Kante $\{v, w\} \in E$ einer der beiden Endpunkte in X enthalten ist, d.h. $v \in X$ oder $w \in X$?

STEINERBAUM

Eingabe: Ein ungerichteter Graph G = (V, E), eine Teilmenge von Knoten $T \subseteq V$ und eine natürliche Zahl k.

Frage: Existiert eine Kantenteilmenge $E'\subseteq E$ mit $|E'|\le k$, sodass im Graph G'=(V,E') alle Knoten in T in derselben Zusammenhangskomponente sind?

Gegeben sei die Funktion f, die für eine Vertex Cover-Instanz $\langle G=(V,E),k\rangle$ eine Steinerbaum-Instanz $f(\langle G,k\rangle)=\langle G^*=(V^*,E^*),T^*,|E|+k\rangle$ liefert, die wie folgt definiert ist:

$$\begin{split} V^* &\coloneqq \{v^* \mid v \in V\} \cup \{e^* \mid e \in E\} \cup \{z\}, \\ E^* &\coloneqq \{\{z, v^*\} \mid v \in V\} \cup \{\{e^*, v^*\}, \{e^*, w^*\} \mid e = \{v, w\} \in E\}, \\ T^* &\coloneqq \{e^* \mid e \in E\} \cup \{z\}. \end{split}$$

Beweisen Sie, dass die gegebene Funktion f eine polynomielle Reduktion von VERTEX COVER auf STEINERBAUM ist.