End-Semester Test (AY20/21 S1)

EP0605 - Advanced Physics

Time Allowed: 1½ hour

Instructions to Candidates

Max Marks: 100

- 1. All the Singapore Polytechnic examination rules must be strictly adhered to.
- 2. This paper consists of **6** questions.
- 3. Answer all the questions in this question booklet. All working must be shown.
- 4. This paper consists of **9** pages (inclusive of the cover page).
- 5. Fill in your personal particulars below.

Name:			
Admission No:		S/No	
Class:	EL/EP0605/FT/01	Date:	

Question	Marks
1	
2	
3	
4	
5	
6	
Total	

AY20/21 S1 1

- 1. A 4.00 kg particle moves along the positive *x* axis. Its position vector (expressed in terms of unit vectors) varies with time (measured in seconds) as $\mathbf{r}(t) = (t + 2.00t^3)$ i m.
 - a) Find the kinetic energy at any time t.
 - b) Find the acceleration of the particle at any time t.
 - c) Find the force acting on it at time t.
 - d) Find the power delivered to the particle at time t.
 - e) Calculate the work done on the particle from t = 0 to t = 2.00 s.

2. Two blocks rest on smooth surfaces. They are joined together by an inextensible massless string that passes over a frictionless pulley. The mass of block A is 5.0 kg and the mass of block B is 6.0 kg. A force P is acting on block B as shown in the below figure. If block B accelerates to the right at 2.0 m/s², find the magnitude of P.

- a) Draw the free body diagram for each block.
- b) What is the magnitude of force P?
- c) What is the magnitude of the tension in the string?

- 3. (a) A proton of charge $q = 1.6 \times 10^{-19}$ C moves through a uniform magnetic field (in Tesla) $\mathbf{B} = B_x \mathbf{i} + 3.0 B_x \mathbf{j}$. The proton has a velocity $\mathbf{v} = 2 \mathbf{i} + 4 \mathbf{j}$ m/s and the force acting on it is 6.4×10^{-19} k N, find B_x .
 - (b) In the below figure, two singly ionized atoms pass through slit S each with a speed of 7.00×10^5 m/s. They then enter a uniform magnetic field of magnitude 0.070 T pointing into the page. They move in circular paths and strike a photographic plate RS each leaving a dot on the plate. One atom has a mass of 1.67×10^{-27} kg, while the other has a mass of 8.35×10^{-27} kg. Find the distance d between the dots.

4. As shown in the figure, three point charges lie on the *x*-axis such that $q_1 = +4.0 \,\mu\text{C}$ is at the origin and $q_2 = +16 \,\mu\text{C}$ is at $x = 3.0 \,\text{m}$. Note that $1 \,\mu\text{C} = 10^{-6} \,\text{C}$.

- a) What is the magnitude of the electric force on q_1 due to q_2 ?
- b) If charge q_3 is located such that the net force on it is zero, find the distance d from the origin where q_3 is located somewhere between q_1 and q_2 .

5. (a) An object of mass *m*, moving in the positive *x*-axis is under the influence of a conservative force which is described by the below potential energy function

$$U(x) = \left(\frac{\alpha}{x^2}\right)$$

where x is in metres and α is a positive constant.

- (i) What is the SI unit of α ?
- (ii) What is the acceleration of the object in terms of m, x and α ?
- (b) An object of mass 65 kg is uniformly accelerated from rest to 6.00 m/s in 3 s. What is the average power supplied by the force? Assume that there is no friction.

6. The figure below shows four particles on the edges of a square of edge length d = 0.050 m and having charges $q_1 = +10.0$ nC, $q_2 = -20.0$ nC, $q_3 = +20.0$ nC and $q_4 = -10.0$ nC. Note that 1 nC = 10^{-9} C. The centre of the square is M.

- a) Calculate the magnitude of the electric field due to each charge at M.
- b) What is the total electric field at M in terms of unit vectors?
- c) What is the force acting on a +5.00 nC charged particle if it placed at M?
- d) What is the electric potential at M?

(15 marks)

Answers:

1(a)	$2.00(1+12.0t^2+36.0t^4)$ J
1(b)	$12.0t \hat{\imath} \text{ m/s}^2$
1(c)	48.0 <i>t</i> î N
1(d)	$48.0t + 288t^3 \text{ W}$
1(e)	1250 J
2(b)	51.4 N
2(c)	39.4 N
3(a)	2.0 T
3(b)	0.835 m
4(a)	0.064 N
4(b)	1 m
5(a)(i)	$\mathrm{J}\mathrm{m}^2$
5(a)(ii)	2α
	$\overline{mx^3}$
5(b)	390 W
6(a)	$E_1 = E_4 = 7.20 \times 10^4 \text{ N/C}, E_2 = E_3 = 1.44 \times 10^4 \text{ N/C}$
6(b)	$1.02 \times 10^5 \hat{j} \text{N/C}$
6(c)	$5.05 \times 10^{-4} \text{ N}$
6(d)	0 V

AY20/21 S1