DTU Diplom Lautrupvang 15, 2750 Ballerup

Dijkstra Graph Traversal

Finding shortest paths to all vertices in a non-directional, weighted graph.

Supervisor(s): Roger Munck-Fairwood

Student name	Student number	Signature
James Testmann	S071954	
Aimo Suikkanen	S082577	
Lukas Janocko	S135272	
Shicheng Dai	S133342	
Sudhir Kumar Chaurasiya	S137239	

DTU Diplom Lautrupvang 15, 2750 Ballerup

Title

Graphs: shortest path

Perspective

Modeling problems from the real physical world will in many cases call for a graph, such as:

- Find the cheapest plane ticket from Copenhagen to Rome.
- Find the quickest route from Lautrupvang to Tivoli by bike.
- Determine the cheapest way to supply pipes for fresh water to houses under construction.
- Find the most efficient route through a complex data network.
- In a speech recognition system find the most likely word in a stream of spoken words.

The choice of implementation of a graph together with associated algorithms is highly dependent on the problem to be solved. Some attempts have been made to supply graph libraries to toolboxes of different compilers, but they are often over-killed with functionality and very often cannot satisfy your actual needs.

Answer: do it yourselves!

Knowledge of some very basic graph-searching algorithms is mandatory. They are fundamental to most of the more advanced algorithms.

Assignment

Dijkstra's algorithm is a graph traversal method for finding the shortest path from one vertex to any other non-isolated vertex.

A graph is any set of objects, some or all of which may be connected by links (objects and links are called "vertices" and "edges" respectively). It is a supertype of other structures like trees.

If two vertices are connected by an edge, this edge may be directional or not, weighted or not, or even contain loops and multiple paths between the same verts (called a "quiver" graph).

In this assignment we use a weighted, non-directional graph with no loops and no isolated subsets.

Each vertex starting with the graph's "start vertex" is visited deterministically (the vertex with the currently lowest score). Then all non-visited neighbours of the visited vertex are given a score which is updated only if it is greater than the current path to that neighbour. We can describe it in pseudocode as such:

```
if (neighbour's score > (current score + "cost" to neighbour))
{
          neighbour's score = current score + "cost" to neighbour
} else
{
          neighbour's score = neighbour's score.
}
```

Alongside a score - each vertex also has a return value. This value is the vertex to backtrack to, to get the shortest path.

DTU Diplom Lautrupvang 15, 2750 Ballerup

Figure 1- Connection graph (e.g. connections between houses or transport stops)

Run Dijkstra's Shortest Path algorithm by hand on the figure above.

• Use H1 and H5 as two different source (starting) vertices (and others, if you wish).

Start H1	H1	H2	Н3	H4	H5	Н6	H7	Н8	Н9	H10
Dist	0	- ''-	1.5		113	110		1.0	1.13	1120
Pred										
Dist		20	45							45
Pred		H1	H1							H1
Dist			45		45			120		45
Pred			H1		H2			H2		H1
Dist				90	45			120		45
Pred				Н3	H2			H2		H1
Dist				90		120		120		45
Pred				Н3		H5		H2		H1
Dist				90		120		95		
Pred				Н3		H5		H10		
Dist						120		95		
Pred						H5		H10		
Dist						120	110		140	
Pred						H5	Н8		Н8	
Dist						120			140	
Pred						H5			Н8	
Dist									140	
Pred									Н8	

DTU Diplom Lautrupvang 15, 2750 Ballerup

		Path		
Goal	Cost	(List of		
		vertices)		
H1	0			
H2	20	H1		
H3	45	H1		
H4	90	Н3	H1	
H5	45	H2	H1	
H6	120	H5	H2	H1
H7	110	Н8	H10	H1
H8	95	H10	H1	
H9	140	Н8	H10	H1
H10	45	H1		

Start/Source H5	H1	H2	Н3	H4	H5	Н6	H7	Н8	Н9	H10
Dist					0					
Pred										
dist		25		75		75		90		
pred		H5		H5		H5		H5		
dist	45		55	75		75		90		55
pred	H2		H2	H5		H5		H5		H2
dist			55	75		75		90		55
pred			H2	H5		H5		H5		H2
dist				75		75		90		55
pred				H5		H5		H5		H2
dist				75		75		90		
pred				H5		H5		H5		
dist						75		90		
pred						H5		H5		
dist							155	90	115	
pred							Н6	Н5	Н6	
dist							105		115	
pred							Н8		Н6	
dist									115	
pred		-	-		_		_		Н6	

		Path		
Goal	Cost	(List of		
		vertices)		
H1	45	H2	H5	
H2	25	H5		
H3	55	H2	H5	
H4	75	H5		
H5	0			
H6	75	H5		
H7	105	H8	H5	
H8	90	H5		
H9	115	Н6	H5	
H10	55	H2	H5	

• The connection between H8 and H10 is now disconnected. Run the algorithm again with H1 as the source vertex.

(no connection h	otwoon	U0 and	1 L10)							
(no connection b	1					116		110	110	1140
Start H1	H1	H2	Н3	H4	H5	Н6	H7	H8	H9	H10
Dist	0									
Pred										
Dist		20	45							45
Pred		H1	H1							H1
Dist			45		45			120		45
Pred			H1		H2			H2		H1
Dist				90	45			120		45
Pred				Н3	H2			H2		H1
Dist				90		120		120		45
Pred				Н3		H5		H2		H1
Dist				90		120		120		
Pred				Н3		H5		H2		
Dist						120		120		
Pred						Н5		H2		
Dist							200	120	130	
Pred							Н6	H2	Н6	
Dist							135		130	
Pred							H8		Н6	
Dist							135			
Pred							Н8			

Goal	Cost	Path (List of vertices)			
H1	0				
H2	20	H1			
Н3	45	H1			
H4	90	H3	H1		
H5	45	H2	H1		
Н6	120	H5	H2	H1	
H7	135	Н8	H2	H1	
Н8	120	H2	H1		
H9	130	Н6	H5	H2	H1
H10	45	H1			

• An extra vertex (H11) is added.

Start H1	H1	H2	НЗ	H4	H5	Н6	H7	Н8	Н9	H10	H11
dist	0										
pred											
dist		20	45							45	
pred		H1	H1							H1	
dist			45		45			120		45	40
pred			H1		H2			H2		H1	H2
dist			45	80	45			120		45	
pred			H1	H11	H2			H2		H1	
dist				80	45			120		45	
pred				H11	H2			H2		H1	
dist				80		120		120		45	
pred				H11		H5		H2		H1	
dist				80		120		95			
pred				H11		H5		H10			
dist						120		95			
pred						H5		H10			
dist						120	110		140		
pred						H5	Н8		H8		
dist						120			140		
pred						H5			H8		
dist									140		
pred									Н8		

DTU Diplom Lautrupvang 15, 2750 Ballerup

		Path		
Goal	Cost	(List of		
		vertices)		
H1	0			
H2	20	H1		
Н3	45	H1		
H4	80	H11	H2	H1
H5	45	H2	H1	
Н6	120	H5	H2	H1
H7	110	H8	H10	H1
Н8	95	H10	H1	
H9	140	H8	H10	H1
H10	45	H1		
H11	40	H2	H1	

Centre for Information Technology and Electronics

Team 5Mandatory Assignment – Graphs

DTU Diplom Lautrupvang 15, 2750 Ballerup

• The table is now expanded noticeably.

Star			1	1	1			1		1			1	1	1						
t H1	H1	H2	Н3	H4	H5	Н6	H7	H8	Н9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21
dist	0																				
pred																					
dist		20	45							45											
pred		H1	H1							H1											
dist			45		45			120		45	40										
pred			H1		H2			H2		H1	H2										
dist			45	80	45			120		45											
pred			H1	H11	H2			H2		H1											
dist				80	45			120		45											
pred				H11	H2			H2		H1											
dist				80		120		120		45											
pred				H11		H5		H2		Н1											
dist				80		120		95													
pred				H11		H5		H10													
dist						120		95													
pred						Н5		H10													
dist						120	110		140												
pred						Н5	Н8		Н8												
dist						120			140			135		170							
pred						Н5			Н8			H7		Н7							
dist									140			135		140	200	210					
pred									Н8			Н7		Н6	Н6	Н6					
dist									140				230	140	200	210					
pred									Н8				H12	Н6	Н6	Н6					
dist													230	140	200	210					
pred													H12	Н6	Н6	Н6					
dist													180		200	200					
pred													H14		Н6	H14					
dist															200	200		210			
pred															Н6	H14		H13			
dist																200		210			300
pred																H14		H13			H15
dist																	240	210		220	270
pred																	H16	H13		H16	H16
dist																	240		260	220	270
pred																	H16		H18	H16	H16
dist																	240		260		240
pred																	H16		H18		H20
dist																			250		240
pred																			H17		H20
dist																			250		
pred																			H17		
p.cu				<u> </u>										<u> </u>					,		<u> </u>

DTU Diplom Lautrupvang 15, 2750 Ballerup

Goal	Cost	Path (List of vertices)						
H1	0							
H2	20	H1						
H3	45	H11	H2	H1				
H4	80	H11	H2	H1				
H5	45	H2	H1					
H6	120	H5	H2	H1				
H7	110	H8	H10	H1				
H8	95	H10	H1					
H9	140	H8	H10	H1				
H10	45	H1						
H11	40	H2	H1					
H12	135	H7	H8	H10	H1			
H13	180	H14	H6	H5	H2	H1		
H14	140	Н6	H5	H2	H1			
H15	200	H6	H5	H2	H1			
H16	200	H14	H6	H5	H2	H1		
H17	240	H16	H14	Н6	H5	H2	H1	
H18	210	H13	H14	Н6	H5	H2	H1	
H19	250	H17	H16	H14	Н6	H5	H2	H1
H20	220	H16	H14	H6	H5	H2	H1	
H21	240	H20	H16	H14	Н6	H5	H2	H1

What is the complexity (in big-O notation) of the Dijkstra algorithm?
 Hint: The implementation of the priority queue may influence your answer.
 O(|E|+|V|*log|V|)

To find the efficiency of Dijkstra we need to consider the operations necessary to traverse the graph.

- 1. For each vertex |V| extract the smallest value.
- 2. For the extracted vertex, read values of all neighbours |E|.
- 3. Decrease the values of each neighbour when applicable.

We can then write the efficiency as:

O(|E| * |decrease-values(Q)| + |V| * |extract-min(Q)|)

Where Q is the time it takes for the queue or array to handle the operation.

For an unsorted array, the extract-min operation has a complexity of O(|V|). Each vertex of the graph has to be explored to find the smallest occurrence. The decrease values operation is seen as O(1) because of the fast memory operations with a known index in an array.

Centre for Information Technology and Electronics

Team 5

Mandatory Assignment - Graphs

DTU Diplom Lautrupvang 15, 2750 Ballerup

This combined makes an unsorted array's efficiency:

$$O(|E| + |V|^2)$$

For a sorted queues we find different efficiencies depending on queue-type implementations.

For Fibonacci and binary heap queues the extract-min operations are:i

Binary Heap: O(log |V|) Fibonacci: O(log |V|)

The increase-value operations are:

Binary Heap: O(log(|V|) Fibonacci: O(1)

Which makes the efficiency:

Binary Heap: O((|E| + |V|) * log(|V|))Fibonacci: O(|E| + |V| * log(|V|))

ⁱ Efficiency numbers collected from http://bigocheatsheet.com/