Nome	
Cognome _	
Ü	
Matricola _	

Architettura degli Elaboratori

Corso di Laurea in Informatica 16 Giugno 2008

1. (2 punti) Codificare i numeri interi (a) -76 e (b) 53 in modulo e s	segno a 8 bit
--	---------------

(a)				
(b)				

2.	(2 punti)	Determinare	i numeri	interi	rappresentati	dalle sequ	enze di	bit (a)	1011100010	е ((b)
	11001001	11 nella notazi	one in coi	mplem	ento a 2						

(a)		
(b)		

3.	(2 1)	ounti)	Convertire	da	base	16	a	base	8	i	seguenti	numeri	natura	li
ο.	(~)	Janus	COHVOIGHO	acc		TO	C		\circ		SOS GOILOI	Hamon	iia ai ai	77

(a) 9E2A	 (b) B6D8	

4.	(6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella
	di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	-
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	-
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	_

SOP ____

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_3} \cdot (\overline{x_1} \cdot x_4) + x_3 \cdot (\overline{x_2} \cdot \overline{x_1} \cdot \overline{x_4})$) facendo uso solo di multiplexer con 2 linee di controllo (selezione).

6.	(7 punti) Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola
	uscita (z) che restituisca in un determinato istante $i \geq 0$ uscita uguale a 1 se e solo la sequenza di
	bit finora letta coincide con un'alternanza completa dei bit 010

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

s_1 :		
s_2 :		
z:		

r_1	:	
. 1	٠	

r_2 :				
. 2				

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.