

Barker

PAT/04/11619

=> dis his

(FILE 'HOME' ENTERED AT 15:43:05 ON 21 DEC 2005)

FILE 'REGISTRY' ENTERED AT 15:43:16 ON 21 DEC 2005

```

L1      STR
       E TETRAZOLYL/CN
L2      1 S B3
       E "5-TETRAZOLYL"/CN 5
       E TETRAZOLE/CN 5
L3      1 S B3
L4      STR L1
L5      0 S L4
L6      0 S L4 FUL
L7      STR L4
L8      0 S L7
L9      2 S L7 FUL

```

=> d 16 que stat;d 19 que stat;fil caplus;s 19

L4 STR


```

REP G1=(1-4) C
VAR G2=CH/14/12/16
VAR G3=ME/ET/I-PR/N-PR/18/X/O/S
VAR G4=23/24/25/22/26
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

```

```

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 27

```

Page 2

STEREO ATTRIBUTES: NONE
L6 0 SEA FILE=REGISTRY SSS FUL L4

100.0% PROCESSED 5 ITERATIONS
SEARCH TIME: 00.00.01


```
REP G1=(1-4) C
VAR G2=CH/14/12/16
VAR G3=ME/ET/I-PR/N-PR/18/X/O/S
VAR G4=CO2H/29/32/35/39/41/43
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED
```

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 41

STEREO ATTRIBUTES: NONE
L9 2 SEA FILE=REGISTRY SSS FUL L7

100.0% PROCESSED 14142 ITERATIONS 2 ANSWERS
SEARCH TIME: 00.00.01

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	345.00	345.21

FILE 'CAPLUS' ENTERED AT 15:57:42 ON 21 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 21 Dec 2005 VOL 143 ISS 26
FILE LAST UPDATED: 20 Dec 2005 (20051220/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply.
They are available for your review at:

<http://www.cas.org/infopolicy.html>

L10 1 L9

=> d ibib abs hitstr

L10 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 2004:905878 CAPLUS
DOCUMENT NUMBER: 141:379805
TITLE: A preparation of indole derivatives, useful as PDZ-domain inhibitors
INVENTOR(S): Guy, Rodney Kiplin; Kuntz, Irwin D.; Hafresco, Jose; Fujii, Naoki; Novak, Kathleen P.; Stokoe, David; He, Biao; You, Liang; Xu, Zhidong; Jablons, David M.
PATENT ASSIGNEE(S): The Regents of the University of California, USA
SOURCE: PCT Int. Appl., 43 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004092346	A2	20041028	WO 2004-US11619	20040415
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LZ, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 2005043385	A1	20050224	US 2004-826175	INSTANT 20040415
PRIORITY APPLN. INFO.: OTHER SOURCE(S):			US 2003-463198P	P 20030415
GI		MARPAT 141:379805		

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

AB The invention relates to a preparation of novel indole derivs. of formulas I and II [wherein: R1 and R2 are independently selected from alkenyl, phenylcyclopropyl, or phenylpropenyl, etc.; R3 is H, Me, or Et; M is HO(CH₂)_n; X is CH, C-halogen, C(Me), or C(Et); Y is CO₂H, CH₂CO₂H, or C(O)NH₂, etc.; Z is CH₂, CH(Me), CMe₂, or C(O)]], useful as PDZ-domain inhibitors. The invention also includes combinatorial libraries, arrays, and methods for screening and studying proteins. The compds. of the invention have produced apoptosis in certain cell lines that overexpress the Dishevelled protein (Dvl); inhibiting Wnt signaling. For instance, indolecarboxylic acid derivative III was prepared from oxazolylindole derivative IV

with a yield of 89%. Compound III was tested for apoptotic effect to represent the inhibitory effect on interaction between the PDZ domain of the Dishevelled (Dlv) protein and the Fz protein (apoptosis inhibition: 38.7% at 100 μM).

IT 782499-26-7P 782499-30-3P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of combinatorial library of indole derivs., useful as PDZ-domain inhibitors)

RN 782499-26-7 CAPLUS

CN 1H-Indole-6-carboxylic acid, 2-(1-hydroxypentyl)-5-methyl-1-(2-phenylethyl)- (9CI) (CA INDEX NAME)

RN 782499-30-3 CAPLUS

CN 1H-Indole-6-carboxylic acid, 1-(2-hydroxyethyl)-2-(1-hydroxypentyl)-5-methyl- (9CI) (CA INDEX NAME)

=> fil reg			
COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION	
FULL ESTIMATED COST	5.39	350.60	
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)		SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-0.73	-0.73	

FILE 'REGISTRY' ENTERED AT 15:58:03 ON 21 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 20 DEC 2005 **HIGHEST RN** 870448-61-6
DICTIONARY FILE UPDATES: 20 DEC 2005 **HIGHEST RN** 870448-61-6

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

* The CA roles and document type information have been removed from
* the IDE default display format and the ED field has been added,
* effective March 20, 2005. A new display format, IDERL, is now
* available and contains the CA role and document type information.
*

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in **REGISTRY**, refer to:

<http://www.cas.org/ONLINE/UG/repprops.html>

=> => d l13 que stat;fil caplus;s l13
L11 STB

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 6

VAR G1=CH2/17/15/12
VAR G2=CO2H/25/28/31/35/37/40/42/20/19/23/22/21

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 44

STEREO ATTRIBUTES: NONE
L13 9 SEA FILE=REGISTRY SSS FUL L11

100.0% PROCESSED 26897 ITERATIONS 9 ANSWERS
SEARCH TIME: 00.00.01

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	164.77	515.37
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	0.00	-0.73

FILE 'CAPLUS' ENTERED AT 16:03:25 ON 21 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the

American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 21 Dec 2005 VOL 143 ISS 26
FILE LAST UPDATED: 20 Dec 2005 (20051220/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply.
They are available for your review at:

<http://www.cas.org/infopolicy.html>

L14 8 L13

=> d 1-8 ibib abs hitstr

L14 ANSWER 1 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 2004:905878 CAPLUS
DOCUMENT NUMBER: 141:379805
TITLE: A preparation of indole derivatives, useful as PDZ-domain inhibitors
INVENTOR(S): Guy, Rodney Kiplin; Kuntz, Irwin D.; Haresco, Jose; Fujii, Naoaki; Novak, Kathleen P.; Stokoe, David; He, Biao; You, Liang; Xu, Zhidong; Jablons, David M.
PATENT ASSIGNEE(S): The Regents of the University of California, USA
SOURCE: PCT Int. Appl., 43 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004092346	A2	20041028	WO 2004-US11619	20040415
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW, RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			INSTANT	
US 2005043385	A1	20050224	US 2004-826175	20040415
PRIORITY APPLN. INFO.:			US 2003-463198P	P 20030415
OTHER SOURCE(S): GI		MARPAT 141:379805		

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

AB The invention relates to a preparation of novel indole derivs. of formulas I and II [wherein: R1 and R2 are independently selected from alkenyl, phenylcyclopropyl, or phenylpropenyl, etc.; R3 is H, Me, or Et; M is HO(CH₂)_n; X is CH, C-halogen, C(Me), or C(Et); Y is CO₂H, CH₂CO₂H, or C(O)NH₂, etc.; Z is CH₂, CH(Me), CMe₂, or C(O)], useful as PDZ-domain inhibitors. The invention also includes combinatorial libraries, arrays, and methods for screening and studying proteins. The compds. of the invention have produced apoptosis in certain cell lines that overexpress the Dishevelled protein (Dvl); inhibiting Wnt signaling. For instance, indolecarboxylic acid derivative III was prepared from oxazolylindole derivative IV.

with a yield of 89%. Compound III was tested for apoptotic effect to represent the inhibitory effect on interaction between the PDZ domain of the Dishevelled (Dlv) protein and the Fz protein (apoptosis inhibition: 38.7% at 100 μ M).

IT 782499-32-5P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(intermediate; preparation of combinatorial library of indole derivs.,

RN 782499-32-5 CAPLUS
CN 1H-Indole-6-carboxylic acid, 3-(hydroxymethyl)-5-methyl-2-pentyl-1-(2-

IT 618881-42-8P
RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(preparation of combinatorial library of indole derivs., useful as PDZ-domain inhibitors)

RN 618881-42-8 CAPLUS
 CN 1H-Indole-6-carboxylic acid, 3-(hydroxymethyl)-5-methyl-2-pentyl-1-(2-phenylethyl)-, monosodium salt (9CI) (CA INDEX NAME)

● Na

L14 ANSWER 2 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2004:769887 CAPLUS
 DOCUMENT NUMBER: 141:410724
 TITLE: A Synthetic Approach toward the Proposed Tetracyclic Aziridinomitosene Derived from FK317
 AUTHOR(S): Kim, Musong; Vedejs, Edwin
 CORPORATE SOURCE: Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
 SOURCE: Journal of Organic Chemistry (2004), 69(21), 7262-7265
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 141:410724
 GI

AB A synthesis of the FK317 derivative I is described using internal Michael addition Tin-lithium exchange of the deuterated stannylaziridine II

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 10

generated the key lithioaziridine intermediate, followed by cyclization and aromatization of the pyrrole ring to give III [R1 = CO₂Et, R2 = CH₂OTIPS (IV)]. Ester reduction from IV to III (R1 = CH₂OH, R2 = CHO) was effected via temporary aldehyde protection as the silylimidazole adduct, and conversion to the carbamate I was carried out using FmocNCO and FMOC cleavage. Structure I is the N-trityl-protected derivative of the proposed intermediate from bioactivation of FK317 that is responsible for DNA crosslinking. Attempted nitrogen deprotection of I using MsOH/i-Pr₃SiH resulted in replacement of the C(10) carbamate by hydride.. Deprotection of the more stable III (R1 = CO₂Et, R2 = CHO) gave the desired aziridine V.

IT 791807-46-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of proposed tetracyclic aziridinomitosene derived from FK317)

RN 791807-46-0 CAPLUS

CN Azirino[2',3':3,4]pyrrolo[1,2-a]indole-5-carboxaldehyde,
1,1a,2,8b-tetrahydro-8-(hydroxymethyl)-7-methoxy-1-(triphenylmethyl)-,
(1aS,8aS) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 80 THERE ARE 80 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 3 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2004:606472 CAPLUS

DOCUMENT NUMBER: 141:157141

TITLE: Preparation of diazepinoindolones as CHK-1 kinase inhibitors.

INVENTOR(S): Ninkovic, Sacha; Bennett, Michael John; Rui, Yuanjin; Wang, Fen; Benedict, Suzanne Pritchett; Teng, Min

PATENT ASSIGNEE(S): Pfizer Inc., USA

SOURCE: PCT Int. Appl., 279 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004063198	A1	20040729	WO 2004-IB26	20040105
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, MA, MD, MC, MK, MN, MW, MX, MZ				
CA 2512683	AA	20040729	CA 2004-2512683	20040105
EP 1585749	A1	20051019	EP 2004-700145	20040105
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,				

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
 US 2005075499 A1 20050407 US 2004-754171 20040109
 US 6967198 B2 20051122 P 20030109 ok.
 PRIORITY APPLN. INFO.: US 2003-439396P
 OTHER SOURCE(S): MARPAT 141:157141 WO 2004-IB26
 GI

AB Title compds. [I; X = O , S; A = CR1, N; YZ = OCH2, N:CH; R1 = alkyl, COR5; CONR6R7, R35, R36, (substituted) alkenyl, alkynyl; R2 = H, OH, alkyl, COR8; C:SR9, C:SNR10R11, R38, R39; R3 = alkyl, COR12, CONR13R14, NR15COR16, NR17SO2R18, etc.; R4 = H, F, Br, Cl, alkyl; R5 = H, alkyl, alkoxy, R36; R6, R7 = H, alkyl, R36; R8 = alkyl, alkenyl, alkynyl, NH2, R36, R37; R9, R10, R11, R17 = H, alkyl, R36; R13, R15 = H, alkyl; R14 = H, alkyl, CH2CO2alkyl, R36; R16 = H, alkyl, alkenyl, alkynyl, NH2, R36, R37; R18 = alkyl, R36; R36 = cycloalkyl, heterocyclyl, aryl, heteroaryl; R37 = NR25R26, R270; R25 = H, alkyl; R26 = CO2CMe3, alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl; R38 = R28SO_n; n = 0-2; R39 = R29R30NSO_n; R28, R30 = alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl; R29 = H, alkyl], were prepared as CHK-1 inhibitors (no data). Thus, 3-formyl-5-pyridin-3-yl-1H-indole-4-carboxylic acid Me ester (preparation given), N2H4, and HOAc were heated at 80° in MeOH for 24 h to give 23% 7-pyridin-3-yl-1,5-dihydro-[1,2]diazepino[4,5,6-cd]indol-6-one.

IT 731810-39-2P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation of diazepinoindolones as CHK-1 kinase inhibitors)*

RN 731810-39-2 CAPLUS

CN 1H-Indole-1,4,6-tricarboxylic acid, 3-(hydroxymethyl)-2-phenyl-, 1-(1,1-dimethylethyl) 6-methyl ester (9CI) (CA INDEX NAME)

L14 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2003:727516 CAPLUS

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 12

DOCUMENT NUMBER:

139:347402

TITLE:

A Selective Irreversible Inhibitor Targeting a PDZ Protein Interaction Domain

AUTHOR(S):

Fujii, Naoaki; Haresco, Jose J.; Novak, Kathleen A. P.; Stokoe, David; Kuntz, Irwin D.; Guy, R. Kiplin Department of Pharmaceutical Chemistry, Laboratory for Molecular Dynamics and Design, University of California at San Francisco, San Francisco, CA, 94143-2280, USA

SOURCE:

Journal of the American Chemical Society (2003), 125(40), 12074-12075

OIC

CODEN: JACSAT; ISSN: 0002-7863

American Chemical Society

PUBLISHER:

Journal

DOCUMENT TYPE:

English

LANGUAGE:

CASREACT 139:347402

AB Irreversible inhibitors of proteases have proven themselves useful tools for determining which proteases are active under given conditions in tissues or cells and for studying the functional role that a protease plays in physiol. processes. The application of such techniques to studying the activity and function of protein-protein interactions has been hindered by the lack of guiding principles for the mechanistic design of irreversible inhibitors which target the "active site" of a protein interaction. We report herein the first example of a mechanism-based irreversible inhibitor of a protein interaction that has been specifically targeted to one member of the PDZ family of protein interaction domains; i.e., the second PDZ domain of the membrane-associated guanylate kinase MAGI3. This inhibitor was designed using rationally directed computational evaluation to take advantage of a conserved histidine in the PDZ domain by introducing an ionizable group that will be held in close proximity to that nucleophile during binding. The novel compound exhibits all of the characteristics associated with an irreversible inhibitor of tumor suppressor PTEN interactions with MAGI3 in in vitro models. In cells, the inhibitor is shown to release PTEN from sequestration by MAGI3 and consequently upregulate the PKB signaling pathway.

IT 618881-42-8P

RL: BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(irreversible inhibitor of guanylate kinase MAGI3 interaction with PTEN electrostatically targets conserved His residue in PDZ2 domain of MAGI3)

RN 618881-42-8 CAPLUS

CN 1H-Indole-6-carboxylic acid, 3-(hydroxymethyl)-5-methyl-2-pentyl-1-(2-phenylethyl)-, monosodium salt (9CI) (CA INDEX NAME)

● Na

REFERENCE COUNT:

17

THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 1998:515943 CAPLUS

ACCESSION NUMBER: 1998.015945 GALE
DOCUMENT NUMBER: 129:230604

TITLE: The synthesis

AUTHOR(S) : Hulme, Christopher; Moriarty, Kevin; Miller, Bruce; Mathew, Rose; Ramanjulu, Mercy; Cox, Paul; Souness, John; Page, Ken M.; Uhl, Joanne; Travis, Jeffrey; Huang, Fu-Chih; Labaudiniere, Richard; Djuric, Stev

~~CORPORATE SOURCE:~~ Rhone-Poulenc Rorer Central Research, Collegeville,
PA 19426 USA

SOURCE: Bioorganic & Medicinal Chemistry Letters (1998),
8(14). 1867-1872

PUBLISHER: Elsevier Science Ltd
6(14), 1887-1872
CODEN: BMCLE8; ISSN: 0960-894X
102(1)

PUBLISHER: Elsevier Science Ltd.
DOCUMENT TYPE: Journal

DOCUMENT TYPE: Journal
LANGUAGE: English

AB This communication describes the synthesis and in vitro evaluation of a novel potent series of phosphodiesterase type (IV) (PDE-IV) inhibitors. The compds. described contain an indole moiety which replaces the "rolipram-like" 3-methoxy-4-cyclopentyloxy motif. The target compds. are derivs. of N-(3,5-dichloro-4-pyridinyl)-3-methyl-1H-indole-6-carboxamide. Several of the compds. presented possess low nanomolar IC₅₀'s for PDE-IV inhibition. In vivo activities determined from measurement of serum TNF- α levels in LPS challenged mice (mouse endotoxemia model) are also reported.

IT 201286-24-OP
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(Preparation of indole derivative as PDE IV inhibitor)

(preparation of)

RN 201288-24-0 CAPLOUS
CN 1H-Indole-6-carboxamide N-[3,5-dichloro-4-pyridinyl]-3-(1-hydroxyethyl)-1-

CN 1H-Indole-6-carboxamide, N-[4,5-dichloro-4-pyridinyl]-3-(1-hydroxyethyl)-1-[(4-methylphenyl)sulfonyl] (9CI) (CA INDEX NAME)

REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 6 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1998:31305 CAPLUS

DOCUMENT NUMBER: · 128:102087

TITLE: Substituted azabicyclic compounds and their use as inhibitors of the production of TNF and cyclic AMP phosphodiesterase

INVENTOR(S): Cox, Paul Joseph; Bower, Shelley; Aldous, David John;

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

PATENT ASSIGNEE(S) : Astles, Peter Charles; McGarry, Daniel Gerard; Hulme, Christopher; et al.
 SOURCE: Regan, John Robinson, UK; Huang, Fu-Chih;
 DOCUMENT TYPE: Rhone-Poulenc Rorer Ltd.; Cox, Paul Joseph; Bower,
 LANGUAGE: Shelley; et al.
 FAMILY ACC. NUM. COUNT: Patent
 PATENT INFORMATION: English
 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9748697	A1	19971224	WO 1997-GB1639	19970619
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BE, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
CA 2258728	AA	19971224	CA 1997-2258728	19970619
AU 9731026	A1	19980107	AU 1997-31026	19970619
ZA 9705446	A	19981221	ZA 1997-5446	19970619
EP 934307	A1	19990811	EP 1997-926148	19970619
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, PT, IE, FI JP 2000509719	T2	20000803	JP 1998-502503	19970619
US 6303600	B1	20011016	US 1998-216392	19981218
US 6800645	B1	20041005	US 2000-612530	20000707
US 2002173527	A1	20021121	US 2002-109629	20020328
US 2005038069	A1	20050217	US 2004-933077	20040901
PRIORITY APPLN. INFO.:			GB 1996-12760	A 19960619
			US 1996-23047P	P 19960802
			WO 1997-GB1639	W 19970619
			US 1998-216392	A1 19981218
			US 2000-612530	A3 20000707

OTHER SOURCE(S) : MARPAT 128:102087
 GI

AB The invention is directed to physiol. active compds. of formula I [wherein AB = fused bicyclic ring system, of approx. 10-13 ring members, wherein A = azaheterocycle ring and B = azaheteroaryl or optionally halo-substituted benzene ring; R1 = H, (hydroxy- or halo-substituted) alkyl, and also

alkenyl, alkynyl, or CHO when Z1 = bond; R2 = H, alkenyl, alkoxy, alkyl, aryl, aryloxy, cyano, etc.; R3 = wide variety of sidechains and functional groups; A1 = bond, (un)substituted alkylene, alkenylene, alkynylene; Z1 = bond, O, S, NH; m, n = 0, 1; provided that (n+m) = 1] and their N-oxides, prodrugs, and pharmaceutically acceptable salts and solvates. I inhibit the production or physiol. effects of TNF, and inhibit cAMP phosphodiesterase (PDE IV). The invention is also directed to pharmaceutical compns. comprising I, their pharmaceutical use, and methods for their preparation. For instance, 7-methoxy-2-(methoxymethyl)-3H-benzimidazole-4-carboxylic acid (preparation given) was treated with 0-benzotriazol-1-yl-N,N,N',N'-bis(tetramethylene)uronium tetrafluoroborate to give the 1-benzotriazolyl ester, which was amidated with 4-amino-3,5-dichloropyridine in THF (after treatment of the latter with Na diethylaluminate) to give the title compound II. Compds. I had IC50 of 10-5 to 10-10 M against guinea pig macrophage PDE IV, with 50- to 10,000-fold selectivity for PDE IV vs. PDE I, II, III, or V. The compds. also inhibited antigen-induced bronchoconstriction in rats by up to 89% at oral doses of 10 mg/kg.

IT 201286-24-0P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
 (preparation of azabicyclic compds. as inhibitors of TNF production and PDE

IV)
 RN 201286-24-0 CAPLUS
 CN 1H-Indole-6-carboxamide, N-(3,5-dichloro-4-pyridinyl)-3-(1-hydroxyethyl)-1-[(4-methylphenyl)sulfonyl]- (9CI) (CA INDEX NAME)

L14 ANSWER 7 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1997:433622 CAPLUS
 DOCUMENT NUMBER: 127:103980
 TITLE: DNA-DNA interstrand crosslinking by FR66979:
 intermediates in the activation cascade
 AUTHOR(S): Paz, Manuel M.; Hopkins, Paul B.
 CORPORATE SOURCE: Department of Chemistry, University of Washington,
 Seattle, WA, 98195, USA
 SOURCE: Journal of the American Chemical Society (1997),
 119(26), 5999-6005
 CODEN: JACSAT; ISSN: 0002-7863
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The antitumor antibiotics FR66979 (1), FR900482 (2), and FK973 (3) are similar in structure and biol. activity to the DNA crosslinking antitumor antibiotic mitomycin C (4). The cytotoxic effects of 1-3 have been proposed to result from sequential bioreductive cleavage of the N-O bond

and condensation of the thus-exposed amine and ketone functions to yield an indole (e.g., 9) which is structurally analogous to the mitosene nucleus of reductively activated mitomycins. We report herein evidence substantiating this proposal based upon study of the reductive activation chemical of 1 and 2 using thiols and iron(II) in the absence and presence of DNA. Prolonged exposure of reductively activated 1 to sodium borohydride afforded the dihydroindole 11, presumably through trapping of the iminium ion precursor (16). Kinetics measurements strongly implicate a relatively long-lived precursor to the iminium ion, which accumulates following iron(II)-catalyzed thiol-promoted reduction of 1, proposed herein to be one or both of the isomeric aminals 12. Under appropriate conditions, some step or steps between this intermediate and the iminium ion are shown to be rate limiting in DNA crosslinking, in production of the dihydroindole by borohydride trapping, and in the decay of the intermediate(s) competent to produce those same products. These studies clearly demonstrate the strong similarities in the cascade of reactions which follow reductive activation of FR66979 (1) [and presumably by extension FR900482 (2) and FK973 (3)] and the mitomycins.

IT 192181-25-2P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); MFM (Metabolic formation); PUR (Purification or recovery); BIOL (Biological study); FORM (Formation, nonpreparative); PREP (Preparation)

(DNA-DNA interstrand crosslinking by FR66979: intermediates in the activation cascade)

RN 192181-25-2 CAPLUS

CN 1H-Pyrrolo[1,2-a]indole-6,9-dimethanol, 2-amino-2,3-dihydro-1,8-dihydroxy-, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

28

THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1997:88846 CAPLUS
 DOCUMENT NUMBER: 126:199468
 TITLE: Chiral Aziridinyl Radicals: An Application to the Synthesis of the Core Nucleus of FR-900482
 AUTHOR(S): Ziegler, Frederick E.; Belema, Makonen
 CORPORATE SOURCE: Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520-8107, USA
 SOURCE: Journal of Organic Chemistry (1997), 62(4), 1083-1094
 CODEN: JOCEAH; ISSN: 0022-3263
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 126:199468
 GI

AB An asym. route to the core nucleus of the antitumor agent FR-900482 utilizes the cyclization of an aziridinyl radical into a functionalized indole nucleus. The route employs a selective Polonovski reaction and the Hootele-Dmitrienko rearrangement to install two oxygen atoms. Thus, I (R = R1 = H) (also prepared) was converted to the acetate (R = Ac) whose Polonovski reaction gave I (R = Ac, R1 = OH) selectively and the last underwent the Hootele-Dmitrienko rearrangement to give II (R = Ac) which was deacetylated and further derivatized.

IT 187682-36-6P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(stereoselective preparation of azirinobenzazocinecarboxylates via the Hootele-Dmitrienko rearrangement of azirinopyrroloindoles)

RN 187682-36-6 CAPLUS

CN 1H-Indole-6-carboxylic acid, 1-[[3-bromo-1-[(1,1-dimethylethoxy)carbonyl]-2-aziridinyl]methyl]-3-(hydroxymethyl)-4-(phenylmethoxy)-, methyl ester, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 64 THERE ARE 64 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> fil reg			
COST IN U.S. DOLLARS	SINCE FILE	TOTAL	
FULL ESTIMATED COST	ENTRY	SESSION	
	39.97	555.34	
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL	
CA SUBSCRIBER PRICE	ENTRY	SESSION	
	-5.84	-6.57	

FILE 'REGISTRY' ENTERED AT 16:03:40 ON 21 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 18

COPYRIGHT (C) 2005 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 20 DEC 2005 HIGHEST RN 870448-61-6.
DICTIONARY FILE UPDATES: 20 DEC 2005 HIGHEST RN 870448-61-6

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

*
* The CA roles and document type information have been removed from *
* the IDE default display format and the ED field has been added, *
* effective March 20, 2005. A new display format, IDERL, is now *
* available and contains the CA role and document type information. *
*

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

```
=> e pdz/cn 5
E1      1      PDY 132/CN
E2      1      PDY 132LEP/CN
E3      0 ---> PDZ/CN
E4      1      PDZ AND LIM DOMAIN 1 (ELFIN) (HUMAN CLONE MGC:31954 IMAGE:36
10938)/CN
E5      1      PDZ AND LIM DOMAIN 1 (ELFIN) (HUMAN CLONE MGC:5344 IMAGE:298
5229)/CN
```

```
=> s pdz ?/cn
L15      71 PDZ ?/CN
```

```
=> fil medline,biosis,embase,capplus;s l15 or pdz(l)domain
COST IN U.S. DOLLARS          SINCE FILE      TOTAL
                                ENTRY        SESSION
FULL ESTIMATED COST          5.03          560.37

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)      SINCE FILE      TOTAL
                                                ENTRY        SESSION
CA SUBSCRIBER PRICE           0.00          -6.57
```

FILE 'MEDLINE' ENTERED AT 16:04:10 ON 21 DEC 2005

FILE 'BIOSIS' ENTERED AT 16:04:10 ON 21 DEC 2005
Copyright (c) 2005 The Thomson Corporation

FILE 'EMBASE' ENTERED AT 16:04:10 ON 21 DEC 2005
Copyright (c) 2005 Elsevier B.V. All rights reserved.

FILE 'CAPLUS' ENTERED AT 16:04:10 ON 21 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

L16 1396 FILE MEDLINE
L17 1845 FILE BIOSIS
L18 1286 FILE EMBASE
L19 1824 FILE CAPLUS

TOTAL FOR ALL FILES
L20 6351 L15 OR PDZ(L) DOMAIN

=> s l20 and inhibit?
L21 264 FILE MEDLINE
L22 272 FILE BIOSIS
L23 242 FILE EMBASE
L24 362 FILE CAPLUS

TOTAL FOR ALL FILES
L25 1140 L20 AND INHIBIT?

=> s combinat? library and l25
L26 0 FILE MEDLINE
L27 0 FILE BIOSIS
L28 0 FILE EMBASE
L29 3 FILE CAPLUS

TOTAL FOR ALL FILES
L30 3 COMBINAT? LIBRARY AND L25

=> d 1-3 ibib abs hit

L30 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 2005:15963 CAPLUS
DOCUMENT NUMBER: 142:110110
TITLE: Protein logic gates made from autoregulated fusion
proteins
INVENTOR(S): Lim, Wendell; Dueber, John; Yeh, Brian
PATENT ASSIGNEE(S): The Regents of the University of California, USA
SOURCE: U.S. Pat. Appl. Publ., 20 pp.
CODEN: USXXCO
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2005004347	A1	20050106	US 2003-613380	20030703
WO 2005010198	A2	20050203	WO 2004-US19778	20040619
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,				

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,
SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
SN, TD, TG

- PRIORITY APPLN. INFO.: US 2003-613380 A 20030703
- AB Protein logic gates are made from autoregulated fusion proteins comprising an output domain and a plurality of input domains, wherein at least one of the input domains is heterologous to the output domain, and the input domains interact with each other to allosterically and external, ligand-dependently regulate the output domain. The output domain may be constitutively active, and in the absence of the ligand, the input domains interact to inhibit the output domain. The activity of the output domain is user discretionary, and may include activities that are catalytic, label-generative, metabolic-regulative, apoptotic, specific-binding, etc. Multiple input domains can cooperatively regulate the fusion protein in a wide variety of functionalities, including as an OR-gate, an AND-gate, and an AND-NOT-gate. The gates may be incorporated into cells and therein used to modulate cell function. Domain recombination was used to reprogram input control of the actin polymerization switch, N-WASP. The PDZ domain of al-syntrophin and the N-WASP GBD were used as regulatory modules in the fusion protein and thus N-WASP was reengineered to respond to Cdc42 and PDZ ligand as opposed to Cdc42 and PIP2.
- AB Protein logic gates are made from autoregulated fusion proteins comprising an output domain and a plurality of input domains, wherein at least one of the input domains is heterologous to the output domain, and the input domains interact with each other to allosterically and external, ligand-dependently regulate the output domain. The output domain may be constitutively active, and in the absence of the ligand, the input domains interact to inhibit the output domain. The activity of the output domain is user discretionary, and may include activities that are catalytic, label-generative, metabolic-regulative, apoptotic, specific-binding, etc. Multiple input domains can cooperatively regulate the fusion protein in a wide variety of functionalities, including as an OR-gate, an AND-gate, and an AND-NOT-gate. The gates may be incorporated into cells and therein used to modulate cell function. Domain recombination was used to reprogram input control of the actin polymerization switch, N-WASP. The PDZ domain of al-syntrophin and the N-WASP GBD were used as regulatory modules in the fusion protein and thus N-WASP was reengineered to respond to Cdc42 and PDZ ligand as opposed to Cdc42 and PIP2.
- IT Protein motifs
(PDZ domain, for autoinhibitory module of fusion protein; protein logic gates made from autoregulated fusion proteins)
- IT Allostery
Antitumor agents
Combinatorial library
Cooperative phenomena
High throughput screening
Molecular association
Peptide library
Protein motifs
Signal transduction, biological
(protein logic gates made from autoregulated fusion proteins)

IT Proteins
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
 (Biological study)
 (syntrophins, a1, PDZ domain of, for autoinhibitory
 module of fusion protein; protein logic gates made from autoregulated
 fusion proteins)

L30 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2004:905878 CAPLUS.
 DOCUMENT NUMBER: 141:379805
 TITLE: A preparation of indole derivatives, useful as
 PDZ-domain inhibitors
 INVENTOR(S): Guy, Rodney Kiplin; Kuntz, Irwin D.; Haresco, Jose;
 Fujii, Naoaki; Novak, Kathleen P.; Stokoe, David; He,
 Biao; You, Liang; Xu, Zhidong; Jablons, David M.
 PATENT ASSIGNEE(S): The Regents of the University of California, USA
 SOURCE: PCT Int. Appl., 43 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004092346	A2	20041028	WO 2004-US11619	20040415
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 2005043385	A1	20050224	US 2004-826175 US 2003-463198P	20040415 P 20030415
PRIORITY APPLN. INFO.:				
OTHER SOURCE(S):		MARPAT 141:379805		
GI				

- AB The invention relates to a preparation of novel indole derivs. of formulas I and II [wherein: R1 and R2 are independently selected from alkenyl, phenylcyclopropyl, or phenylpropenyl, etc.; R3 is H, Me, or Et; M is HO(CH₂)_n; X is CH, C-halogen, C(Me), or C(Et); Y is CO₂H, CH₂CO₂H, or C(O)NH₂, etc.; Z is CH₂, CH(Me), CMe₂, or C(O)], useful as PDZ-domain inhibitors. The invention also includes combinatorial libraries, arrays, and methods for screening and studying proteins. The compds. of the invention have produced apoptosis in certain cell lines that overexpress the Dishevelled protein (Dvl); inhibiting Wnt signaling. For instance, indolecarboxylic acid derivative III was prepared from oxazolylindole derivative IV with a yield of 89%. Compound III was tested for apoptotic effect to represent the inhibitory effect on interaction between the PDZ domain of the Dishevelled (Dvl) protein and the Fz protein (apoptosis inhibition: 38.7% at 100 μM).

TI A preparation of indole derivatives, useful as PDZ-domain inhibitors

AB The invention relates to a preparation of novel indole derivs. of formulas I and II [wherein: R1 and R2 are independently selected from alkenyl, phenylcyclopropyl, or phenylpropenyl, etc.; R3 is H, Me, or Et; M is HO(CH₂)_n; X is CH, C-halogen, C(Me), or C(Et); Y is CO₂H, CH₂CO₂H, or C(O)NH₂, etc.; Z is CH₂, CH(Me), CMe₂, or C(O)], useful as PDZ-domain inhibitors. The invention also includes combinatorial libraries, arrays, and methods for screening and studying proteins. The compds. of the invention have produced apoptosis in certain cell lines that overexpress the Dishevelled protein (Dvl); inhibiting Wnt signaling. For instance, indolecarboxylic acid derivative III was prepared from oxazolylindole derivative IV with a yield of 89%. Compound III was tested for apoptotic effect to represent the inhibitory effect on interaction between the PDZ domain of the Dishevelled (Dvl) protein and the Fz protein (apoptosis inhibition: 38.7% at 100 μM).

ST indole prepn PDZ domain inhibitor antitumor

IT Protein motifs ·
 (PDZ domain, inhibitor; preparation of
 combinatorial library of indole derivs., useful as
 PDZ-domain inhibitors)

IT Antitumor agents

Combinatorial library
 Human
 (preparation of combinatorial library of indole derivs.,
 useful as PDZ-domain inhibitors)

IT Neoplasm
 (treatment of; preparation of combinatorial library of
 indole derivs., useful as PDZ-domain
 inhibitors)

IT 18595-12-5P 618881-38-2P 618881-39-3P 618881-40-6P 618881-41-7P
 686342-80-3P 782499-17-6P 782499-18-7P 782499-19-8P 782499-20-1P
 782499-21-2P 782499-22-3P 782499-23-4P 782499-24-5P 782499-25-6P
 782499-27-8P 782499-28-9P 782499-29-0P 782499-31-4P 782499-32-5P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (intermediate; preparation of combinatorial library of
 indole derivs., useful as PDZ-domain
 inhibitors)

IT 618881-42-8P 782499-26-7P 782499-30-3P
 RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU
 (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
 (Uses)
 (preparation of combinatorial library of indole derivs.,
 useful as PDZ-domain inhibitors)

IT 103-63-9, 2-Bromoethylbenzene 105-36-2, Ethyl bromoacetate 124-68-5
 617-35-6, Ethyl pyruvate 628-71-7, 1-Heptyne 693-03-8,
 n-Butylmagnesium bromide 1975-52-6
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reactant; preparation of combinatorial library of
 indole derivs., useful as PDZ-domain
 inhibitors)

L30 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2003:22597 CAPLUS
 DOCUMENT NUMBER: 138:85352
 TITLE: T1R hetero-oligomeric taste receptors and use thereof
 for identification of taste compounds
 INVENTOR(S): Zoller, Mark T.; Li, Xiaodong; Staszewski, Lena;
 O'Connell, Shawn; Zozulya, Sergey; Adler, Joan
 Elliott; Xu, Hong; Echeverri, Fernando
 PATENT ASSIGNEE(S): Sennomyx, Inc., USA
 SOURCE: PCT Int. Appl., 135 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 4
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2003001876	A2	20030109	WO 2002-US19970	20020626
WO 2003001876	A3	20031204		
WO 2003001876	C1	20040819		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB,				

GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 2002160424	A1	20021031	US 2001-897427	20010703
US 6955887	B2	20051018		
US 2003054448	A1	20030320	US 2002-35045	20020103
CA 2451317	AA	20030109	CA 2002-2451317	20020626
US 2003232407	A1	20031218	US 2002-179373	20020626
EP 1412750	A2	20040428	EP 2002-761016	20020626
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
JP 2005500318	T2	20050106	JP 2003-508132	20020626
US 2003220479	A1	20031127	US 2002-318031	20021213
US 2004175792	A1	20040909	US 2003-725103	20031202
US 2004185469	A1	20040923	US 2003-725080	20031202
US 2004209286	A1	20041021	US 2003-725276	20031202
US 2005032158	A1	20050210	US 2003-725284	20031202
US 2004175793	A1	20040909	US 2003-725489	20031203
US 2004191862	A1	20040930	US 2003-725472	20031203
US 2005084932	A1	20050421	US 2003-725418	20031203
NO 2003005761	A	20040220	NO 2003-5761	20031222
PRIORITY APPLN. INFO.:			US 2001-300434P	P 20010626
			US 2001-897427	A 20010703
			US 2001-304749P	P 20010713
			US 2001-310493P	P 20010808
			US 2001-331771P	P 20011121
			US 2001-339472P	P 20011214
			US 2002-35045	A 20020103
			US 2002-372090P	P 20020415
			US 2002-374143P	P 20020422
			US 2002-374522P	P 20020423
			US 2001-259227P	P 20010103
			US 2001-284547P	P 20010419
			US 2002-179373	A3 20020626
			WO 2002-US19970	W 20020626

- AB The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compds. that resp. respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compds. is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging. Finally, the invention relates to the discovery that some compds., e.g., lactisole, inhibit both the activities of human T1R2/T1R3 and T1R1/T1R3 receptors, and accordingly the sweet and umami taste, suggesting that these receptors may be the only sweet and umami receptors. Examples of the invention show protein sequence alignments of human and rat T1R taste receptors, mRNA expression of human T1R2 and T1R3 receptors in tongue tissue, and functional data for the human T1R taste receptors.
- AB The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor

that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compds. that resp. respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compds. is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging. Finally, the invention relates to the discovery that some compds., e.g., lactisole, inhibit both the activities of human T1R2/T1R3 and T1R1/T1R3 receptors, and accordingly the sweet and umami taste, suggesting that these receptors may be the only sweet and umami receptors. Examples of the invention show protein sequence alignments of human and rat T1R taste receptors, mRNA expression of human T1R2 and T1R3 receptors in tongue tissue, and functional data for the human T1R taste receptors.

- IT Protein motifs
 - (PDZ domain, interacting peptide, fusion products; T1R hetero-oligomeric taste receptors and use thereof for identification of taste compds.)
- IT Amphibia
- Aves
- Bos taurus
- Canis familiaris
 - Combinatorial library
- Drug screening
- Drugs
- Felis catus
- Fish
- Food additives
- Human
- Mammalia
- Molecular association
- Molecular cloning
- Mus
- Ovis aries
- Peptide library
- Rattus
- Reptilia
- Sus scrofa domestica
- Sweetening agents
- Sweetness
- Transformation, genetic
- Viral vectors
 - (T1R hetero-oligomeric taste receptors and use thereof for identification of taste compds.)
- IT 138464-10-5, Gurmarin
 - RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
 - (T1R2/T1R3 receptor inhibitor; T1R hetero-oligomeric taste receptors and use thereof for identification of taste compds.)
- IT 150436-68-3, Lactisole
 - RL: BUU (Biological use, unclassified); CUS (Combinatorial use); BIOL (Biological study); CMPI (Combinatorial study); USES (Uses)
 - (inhibitor of T1R receptors; T1R hetero-oligomeric taste receptors and use thereof for identification of taste compds.)

```
=> s l20 and screen?
L31      162 FILE MEDLINE
L32      239 FILE BIOSIS
L33      152 FILE EMBASE
L34      284 FILE CAPLUS

TOTAL FOR ALL FILES
L35      837 L20 AND SCREEN?

=> s small molecule and (l35 or l25)
L36      0 FILE MEDLINE
L37      1 FILE BIOSIS
L38      0 FILE EMBASE
L39      6 FILE CAPLUS

TOTAL FOR ALL FILES
L40      7 SMALL MOLECULE AND (L35 OR L25)

=> dup rem l40
PROCESSING COMPLETED FOR L40
L41      7 DUP REM L40 (0 DUPLICATES REMOVED)

=> d 1-7 ibib abs hit

L41 ANSWER 1 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 2005:1130664 CAPLUS
DOCUMENT NUMBER: 143:410916
TITLE: Peptides derived from the C-terminus of voltage-gated
       calcium channel CaV2.2 for inhibiting pain
INVENTOR(S): Garry, Mary; Bezprozvanny, Ilya
PATENT ASSIGNEE(S): Board of Regents, the University of Texas System, USA
SOURCE: PCT Int. Appl., 106 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.      KIND    DATE      APPLICATION NO.      DATE
-----  -----
WO 2005097828   A2    20051020    WO 2005-US10642    20050331
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
   CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
   GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
   LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
   NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
   SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
   AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
   EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,
   RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
   MR, NE, SN, TD, TG
US 2005267036   A1    20051201    US 2005-96281    20050331
PRIORITY APPLN. INFO.:          US 2004-558383P   P 20040401
AB The present invention relates to peptides of CaV2.2 and their use in the
       treatment of pain. The sequence of the peptides is derived from the
       C-terminus of CaV2.2 and is believed to inhibit the interaction
       of CaV2.2 with Mint1-PDZ1. The invention is related to use of this
```

- peptide to treat pain and to use of this peptide in binding reaction with Mint-PDZ to screen for small mols. that can inhibit pain.
- TI Peptides derived from the C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain
- AB The present invention relates to peptides of CaV2.2 and their use in the treatment of pain. The sequence of the peptides is derived from the C-terminus of CaV2.2 and is believed to inhibit the interaction of CaV2.2 with Mint1-PDZ1. The invention is related to use of this peptide to treat pain and to use of this peptide in binding reaction with Mint-PDZ to screen for small mols. that can inhibit pain.
- IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(APBA2 (amyloid β A4 precursor protein-binding family A member 2); peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Peptides, biological studies
RL: BPN (Biosynthetic preparation); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(CaV2.2; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Protein motifs
(Mint1-PDZ1; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(PDZ domain-containing; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(R9, TAT sequence; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Gene, microbial
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(immediate early, promoter from; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Tumor antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(large T, promoter from; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Drug delivery systems
(liposomes; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Nerve, disease
Pain
(neuralgia, treatment of; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Anti-inflammatory agents
(nonsteroidal; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Inflammation
Neoplasm
(pain, treatment of; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
- IT Adenoviral vectors
- Analgesics
- Animal
- Bos taurus

Canis familiaris
Drug design
Drug screening
Drug targets
Equus caballus
Felis catus
Gene therapy
Genetic vectors
Human
Molecular cloning
Mus musculus
Oryctolagus cuniculus
Protein sequences
Rattus
Retroviral vectors
Viral vectors
 (peptides derived from C-terminus of voltage-gated calcium channel
 CaV2.2 for inhibiting pain)
IT Promoter (genetic element)
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
 (peptides derived from C-terminus of voltage-gated calcium channel
 CaV2.2 for inhibiting pain)
IT Opioids
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (peptides derived from C-terminus of voltage-gated calcium channel
 CaV2.2 for inhibiting pain)
IT Steroids, biological studies
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (peptides derived from C-terminus of voltage-gated calcium channel
 CaV2.2 for inhibiting pain)
IT Genetic element
RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (polyadenylation signal; peptides derived from C-terminus of
 voltage-gated calcium channel CaV2.2 for inhibiting pain)
IT Cytomegalovirus
Rous sarcoma virus
Simian virus 40
 (promoter from; peptides derived from C-terminus of voltage-gated
 calcium channel CaV2.2 for inhibiting pain)
IT Pain
 (treatment of; peptides derived from C-terminus of voltage-gated
 calcium channel CaV2.2 for inhibiting pain)
IT Adeno-associated virus
Herpesviridae
Polyomavirus
Vaccinia virus
 (vector; peptides derived from C-terminus of voltage-gated calcium
 channel CaV2.2 for inhibiting pain)
IT Lipids, biological studies
RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (vehicle; peptides derived from C-terminus of voltage-gated calcium
 channel CaV2.2 for inhibiting pain)
IT Calcium channel
RL: BPN (Biosynthetic preparation); PRP (Properties); THU (Therapeutic
use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (voltage-gated, CaV2.2; peptides derived from C-terminus of
 voltage-gated calcium channel CaV2.2 for inhibiting pain)
IT 867144-13-6P 867144-14-7P 867144-15-8P 867144-16-9P 867144-17-0P

867144-18-1P 867144-19-2P 867144-20-5P 867144-21-6P
 RL: BPN (Biosynthetic preparation); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (pain inhibiting peptide sequence; peptides derived from C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
 IT 867227-40-5 867227-42-7
 RL: PRP (Properties)
 (unclaimed nucleotide sequence; peptides derived from the C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)
 IT 867227-41-6 867227-43-8
 RL: PRP (Properties)
 (unclaimed protein sequence; peptides derived from the C-terminus of voltage-gated calcium channel CaV2.2 for inhibiting pain)

L41 ANSWER 2 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2005:1123740 CAPLUS
 DOCUMENT NUMBER: 143:416224
 TITLE: Agents disrupting the interaction between postsynaptic density protein 95 and neuronal nitric oxide synthase for use as analgesics
 INVENTOR(S): Janosky, Christine Loh; Lai, Yvonne Yee-Wen
 PATENT ASSIGNEE(S): Icos Corporation, USA
 SOURCE: PCT Int. Appl., 136 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2005097090.	A2	20051020	WO 2005-US11774	20050404
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				

PRIORITY APPLN. INFO.: US 2004-559491P P 20040405
 AB Agents capable of disrupting an interaction between neuronal nitrous oxide synthase (nNOS) and postsynaptic d. protein 95 (PSD95) and related proteins are described for use as analgesics. The agents include small mol. compds., natural product exts., peptides, and fusion proteins. Treatable conditions include pain, opiate tolerance, ischemic brain damage, neurol. disorders, neurodegenerative disorders, Parkinson's disease, epilepsy, seizures, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and psychiatric disorders. The interaction between nNOS and PSD95 was shown to depend on PDZ domains. This was adapted to a high throughput screen of a chemical library of 158752 members for effectors of the interaction using biotinylated PSD95 with europium-labeled streptavidin as the reporter in a time-delayed fluorescence assay. Candidate compds. were then tested for their effectiveness in inhibiting NMDA-dependent nitric

oxide synthesis and toxicity in rat hippocampal cells in vitro. Candidates that passed this test were screened for effectiveness in several rat pain models and one compound was found to be effective in most of the pain models without affecting other NMDA-dependent processes.

AB Agents capable of disrupting an interaction between neuronal nitrous oxide synthase (nNOS) and postsynaptic d. protein 95 (PSD95) and related proteins are described for use as analgesics. The agents include small mol. compds., natural product exts., peptides, and fusion proteins. Treatable conditions include pain, opiate tolerance, ischemic brain damage, neurol. disorders, neurodegenerative disorders, Parkinson's disease, epilepsy, seizures, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and psychiatric disorders. The interaction between nNOS and PSD95 was shown to depend on PDZ domains. This was adapted to a high throughput screen of a chemical library of 158752 members for effectors of the interaction using biotinylated PSD95 with europium-labeled streptavidin s the reporter in a time-delayed fluorescence assay. Candidate compds. were then tested for their effectiveness in inhibiting NMDA-dependent nitric oxide synthesis and toxicity in rat hippocampal cells in vitro. Candidates that passed this test were screened for effectiveness in several rat pain models and one compound was found to be effective in most of the pain models without affecting other NMDA-dependent processes.

ST nitric oxide synthase PSD95 interaction inhibition analgesic

IT Protein motifs
(PDZ domain, in interactions of neuronal nitric oxide synthase; agents disrupting interaction between PSD95 and neuronal nitric oxide synthase for use as analgesics)

IT Actinomycetes
(analgesic inhibitor of PSD95/nNOS interactions from; agents disrupting interaction between PSD95 and neuronal nitric oxide synthase for use as analgesics)

IT Transcription factors
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(tat, fusion products with nNOS, as analgesic inhibitor of PSD95/nNOS interactions from; agents disrupting interaction between PSD95 and neuronal nitric oxide synthase for use as analgesics)

IT 6640-28-4 30057-19-3 91719-08-3 98068-68-9 100726-66-7
104226-33-7 104226-36-0 105541-09-1 126839-84-7 388598-13-8
416863-01-9 416867-14-6 416870-24-1 866927-10-8 866927-11-9
866927-12-0 866927-13-1 866927-14-2
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(as analgesic inhibitor of PSD95/nNOS interactions; agents disrupting interaction between PSD95 and neuronal nitric oxide synthase for use as analgesics)

IT 52-26-6, Morphine hydrochloride 57-27-2, Morphine, biological studies 57-42-1, Meperidine 64-31-3, Morphine sulfate 71-68-1, Hydromorphone hydrochloride 76-99-3 124-90-3, Oxycodone hydrochloride 125-69-9, Dextromethorphan hydrobromide 125-72-4, Levorphanol tartrate 143-71-5, Hydrocodone bitartrate 302-31-8, Morphine tartrate 357-07-3, Oxymorphone hydrochloride 437-38-7, Fentanyl 466-99-9, Hydromorphone 469-62-5, Propoxyphene 561-27-3, Diacetylmorphine 1420-53-7, Codeine sulfate 1502-95-0, Diacetylmorphine hydrochloride 56030-54-7
71195-58-9, Alfentanil 132875-61-7, Remifentanil
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pain management with inhibitor of PSD95/nNOS interactions and; agents disrupting interaction between PSD95 and neuronal nitric oxide synthase for use as analgesics)

TITLE: Identification of a Specific Inhibitor of the Dishevelled PDZ Domain
AUTHOR(S): Shan, Jufang; Shi, De-Li; Wang, Junmei; Zheng, Jie
CORPORATE SOURCE: Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
SOURCE: Biochemistry (2005), 44(47), 15495-15503
CODEN: BICHAW; ISSN: 0006-2960
PUBLISHER: American Chemical Society
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The Wnt signaling pathways are involved in embryo development as well as in tumorigenesis. Dishevelled (Dvl) transduces Wnt signals from the receptor Frizzled (Fz) to downstream components in canonical and noncanonical Wnt signaling pathways. The Dvl PDZ domain is thought to play an essential role in both pathways, and we recently demonstrated that the Dvl PDZ domain binds directly to Fz receptors. In this study, using structure-based virtual ligand screening, we identified an organic mol. (NSC668036) from the National Cancer Institute small-mol. library that can bind to the Dvl PDZ domain. We then used mol. dynamics simulation to analyze the binding between the PDZ domain and NSC668036 in detail. In addition, we showed that, in Xenopus, as expected, NSC668036 inhibited the signaling induced by Wnt3A. This compound provides a basis for rational design of high-affinity inhibitors of the PDZ domain, which can block Wnt signaling by interrupting the Fz-Dvl interaction.

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

TI Identification of a Specific Inhibitor of the Dishevelled PDZ Domain

AB The Wnt signaling pathways are involved in embryo development as well as in tumorigenesis. Dishevelled (Dvl) transduces Wnt signals from the receptor Frizzled (Fz) to downstream components in canonical and noncanonical Wnt signaling pathways. The Dvl PDZ domain is thought to play an essential role in both pathways, and we recently demonstrated that the Dvl PDZ domain binds directly to Fz receptors. In this study, using structure-based virtual ligand screening, we identified an organic mol. (NSC668036) from the National Cancer Institute small-mol. library that can bind to the Dvl PDZ domain. We then used mol. dynamics simulation to analyze the binding between the PDZ domain and NSC668036 in detail. In addition, we showed that, in Xenopus, as expected, NSC668036 inhibited the signaling induced by Wnt3A. This compound provides a basis for rational design of high-affinity inhibitors of the PDZ domain, which can block Wnt signaling by interrupting the Fz-Dvl interaction.

ST NSC668036 inhibitor dishevelled PDZ domain

Wnt signaling

IT INDEXING IN PROGRESS

IT INDEXING IN PROGRESS

IT Proteins

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
(DVL (dishevelled); identification of a specific inhibitor of dishevelled PDZ domain)

IT Protein motifs
(PDZ domain; identification of a specific inhibitor of dishevelled PDZ domain)

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(Wnt; identification of a specific inhibitor of dishevelled PDZ domain)
IT Molecular association
Signal transduction, biological
Xenopus
(identification of a specific inhibitor of dishevelled PDZ domain)
IT Simulation and Modeling
(mol. dynamics; identification of a specific inhibitor of dishevelled PDZ domain)
IT Conformation
(protein; identification of a specific inhibitor of dishevelled PDZ domain)

L41 ANSWER 4 OF 7 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation on STN
ACCESSION NUMBER: 2004:124384 BIOSIS
DOCUMENT NUMBER: PREV200400127300
TITLE: Virtual ligand screening of small inhibitors of the Dvl PDZ domain

AUTHOR(S): Shan, Jufang [Reprint Author]; Zheng, Jie [Reprint Author]
CORPORATE SOURCE: Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
SOURCE: Biophysical Journal, (January 2004) Vol. 86, No. 1, pp. 307a. print.
Meeting Info.: 48th Annual Meeting of the Biophysical Society. Baltimore, MD, USA. February 14-18, 2004.
Biophysical Society.
ISSN: 0006-3495 (ISSN print).
DOCUMENT TYPE: Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LANGUAGE: English
ENTRY DATE: Entered STN: 3 Mar 2004
Last Updated on STN: 3 Mar 2004

AB Dishevelled (Dvl) is a key component of Wnt signaling pathways, which play an important role in embryo development as well as tumor genesis. Dvl transduce Wnt signals from Frizzled (Fz) to stabilize beta-catenin in canonical Wnt signaling pathways and to activate c-Jun N-terminal kinase (JNK) in non-canonical Wnt signaling pathways. The Dvl PDZ domain is suggested to be involved in both pathways. In a recent report, we demonstrated that it directly binds to the Fz receptors, and proposed such interaction plays an essential role in the Wnt signaling. In this study, using NMR-assisted virtual ligand screening, we conducted a search to define small molecules that can bind to the Dvl PDZ domain and block the interaction between Fz and Dvl. In detail, we first designed queries to search potential inhibitors in large databases with Sybyl(R) module Unity(R) based on the structure of this domain. We then docked the resulting compounds using Sybyl(R) module FlexXTM. Best conformations are extracted and scored by Sybyl(R) module CscoreTM. In addition, we also docked these compounds using ICM-VLS, a different software package, to obtain more docking information. High scored compounds were obtained and tested by biophysical methods, mainly NMR spectroscopy. The positive hits were further evaluated by mapping the binding sites on the surface of the PDZ domain using chemical shift perturbation experiments and determining the binding affinities using fluorescence spectroscopy. These identified reagents should block the Wnt signaling by interrupting the Fz-Dvl interaction, and can serve as a powerful tool to dissect the molecular mechanism underlying the Wnt pathways. Furthermore, our study may also be helpful in formulating rational approaches to the

- development of novel pharmaceutical agents that can interfere with specific Wnt signal events that contribute to cancer and other human diseases.
- TI Virtual ligand screening of small inhibitors of the Dvl PDZ domain.
- AB Dishevelled (Dvl) is a key component of Wnt signaling pathways, which play an important role in embryo development as well as tumor genesis. Dvl transduce Wnt signals from Frizzled (Fz) to stabilize beta-catenin in canonical Wnt signaling pathways and to activate c-Jun N-terminal kinase (JNK) in non-canonical Wnt signaling pathways. The Dvl PDZ domain is suggested to be involved in both pathways. In a recent report, we demonstrated that it directly binds to the Fz receptors, and proposed such interaction plays an essential role in the Wnt signaling. In this study, using NMR-assisted virtual ligand screening, we conducted a search to define small molecules that can bind to the Dvl PDZ domain and block the interaction between Fz and Dvl. In detail, we first designed queries to search potential inhibitors in large databases with Sybyl(R) module Unity(R) based on the structure of this domain. We then docked the resulting compounds using Sybyl(R) module FlexXTM. Best conformations are extracted and scored by Sybyl(R) module CscoreTM. In addition, we also docked these compounds using ICM-VLS, a different software package, to obtain more docking information. High scored compounds were obtained and tested by biophysical methods, mainly NMR spectroscopy. The positive hits were further evaluated by mapping the binding sites on the surface of the PDZ domain using chemical shift perturbation experiments and determining the binding affinities using fluorescence spectroscopy. These identified reagents should block the Wnt signaling by interrupting the Fz-Dvl interaction, and can serve as a powerful tool to dissect the molecular mechanism underling the Wnt pathways. Furthermore, our study may also be helpful in formulating rational approaches to the development of novel pharmaceutical agents that can interfere with specific Wnt signal events that contribute to cancer and other human diseases.
- IT Major Concepts
 Biochemistry and Molecular Biophysics; Chemical Coordination and Homeostasis; Computer Applications (Computational Biology); Pharmacology
- IT Chemicals & Biochemicals
 Dvl PDZ domains: small inhibitors; Fz receptors; ligands; proteins; small molecules: pharmacological properties
- IT Methods & Equipment
 ICM-VLS software package: computer software; NMR: laboratory techniques, spectrum analysis techniques; fluorescence spectroscopy: laboratory techniques, spectrum analysis techniques; virtual ligand screening: laboratory techniques
- IT Miscellaneous Descriptors
 Wnt signaling pathways: functions; chemical shift perturbation experiments: results; drug design: structure-based; drug development; human pathologies: treatment methods; methodology; molecular interactions
- L41 ANSWER 5 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2000:813117 CAPLUS
 DOCUMENT NUMBER: 134:113493
 TITLE: Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction
 AUTHOR(S): Rebhun, John F.; Castro, Ariel F.; Quilliam, Lawrence

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

CORPORATE SOURCE: A. Department of Biochemistry and Molecular Biology and
Walther Oncology Center, Indiana University School of
Medicine, Indianapolis, IN, 46202, USA

SOURCE: Journal of Biological Chemistry (2000), 275(45),
34901-34908

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER: American Society for Biochemistry and Molecular
Biology

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Although the Ras subfamily of GTPases consists of .apprx.20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, resp. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homol. with the calcium- and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homol. with Ras-associating or Ral-GDS/AF6 homol. (RA) domains. By searching for in vitro interaction with Ras-GTP proteins, PDZ-GEF specifically bound to Rap1A- and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunopptn. studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biol. effects.

REFERENCE COUNT: 57 THERE ARE 57 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

AB Although the Ras subfamily of GTPases consists of .apprx.20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, resp. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homol. with the calcium- and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homol. with Ras-associating or Ral-GDS/AF6 homol. (RA) domains. By searching for in vitro interaction with Ras-GTP

proteins, PDZ-GEF specifically bound to Rap1A- and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunopptn. studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biol. effects.

IT G proteins (guanine nucleotide-binding proteins)
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (smg-21 (small-mol.-weight, 21,000-mol.-weight);
 identification of guanine nucleotide exchange factors (GEFs) for the
 Rap1 GTPase in relation to regulation of MR-GEF by M-Ras-GTP
 interaction)

L41 ANSWER 6 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2000:42581 CAPLUS
 DOCUMENT NUMBER: 132:177208
 TITLE: PDZ-GEF1, a guanine nucleotide exchange factor
 specific for Rap1 and Rap2
 AUTHOR(S): De Rooij, Johan; Boenink, Nienke M.; Van Triest,
 Miranda; Cool, Robbert H.; Wittinghofer, Alfred; Bos,
 Johannes L.
 CORPORATE SOURCE: The Laboratory for Physiological Chemistry and Center
 for Biomedical Genetics, Utrecht University, Utrecht,
 3584 CG, Neth.
 SOURCE: Journal of Biological Chemistry (1999), 274(53),
 38125-38130
 CODEN: JBCHA3; ISSN: 0021-9258
 PUBLISHER: American Society for Biochemistry and Molecular
 Biology
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The small GTPase Rap1 has been implicated in a variety of cellular
 processes including the control of cell morphol., proliferation, and
 differentiation. Stimulation of a large variety of cell surface receptors
 results in the rapid activation of Rap1, i.e. an increase in the GTP-bound
 form. This activation is mediated by second messengers like calcium,
 cAMP, and diacylglycerol, but addnl. pathways may exist as well. Here we
 describe a ubiquitously expressed guanine nucleotide exchange factor of
 200 kDa that activates Rap1 both in vivo and in vitro. This exchange
 factor has two putative regulatory domains: a domain
 with an amino acid sequence related to cAMP-binding domains and
 a PDZ domain. Therefore, we named it PDZ
 -GEF1. PDZ-GEFs are closely related to Epacs, Rap-specific
 exchange factors with a genuine cAMP binding site, that are directly
 regulated by cAMP. The domain related to cAMP-binding
 domains, like the cAMP binding site in Epac, serves as a neg.
 regulatory domain. However, PDZ-GEF1 does not
 interact with cAMP or cGMP. Interestingly, PDZ-GEF1 also
 activates Rap2, a close relative of Rap1. This is the first example of an
 exchange factor acting on Rap2. We conclude that PDZ-GEF1 is a
 guanine nucleotide exchange factor, specific for Rap1 and Rap2, that is
 controlled by a neg. regulatory domain.
 REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
 AB The small GTPase Rap1 has been implicated in a variety of cellular
 processes including the control of cell morphol., proliferation, and

differentiation. Stimulation of a large variety of cell surface receptors results in the rapid activation of Rap1, i.e. an increase in the GTP-bound form. This activation is mediated by second messengers like calcium, cAMP, and diacylglycerol, but addnl. pathways may exist as well. Here we describe a ubiquitously expressed guanine nucleotide exchange factor of 200 kDa that activates Rap1 both in vivo and in vitro. This exchange factor has two putative regulatory domains: a domain with an amino acid sequence related to cAMP-binding domains and a PDZ domain. Therefore, we named it PDZ-GEF1. PDZ-GEFs are closely related to Epacs, Rap-specific exchange factors with a genuine cAMP binding site, that are directly regulated by cAMP. The domain related to cAMP-binding domains, like the cAMP binding site in Epac, serves as a neg. regulatory domain. However, PDZ-GEF1 does not interact with cAMP or cGMP. Interestingly, PDZ-GEF1 also activates Rap2, a close relative of Rap1. This is the first example of an exchange factor acting on Rap2. We conclude that PDZ-GEF1 is a guanine nucleotide exchange factor, specific for Rap1 and Rap2, that is controlled by a neg. regulatory domain.

- IT Guanine nucleotide exchange factors
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(PDZ-GEF1; novel guanine nucleotide exchange factor
PDZ-GEF1 activates Rap1 and Rap2 and is controlled by neg. regulatory domain)
- IT Protein motifs
(RCBD (related to cAMP-binding domains); RCBD functions as inhibitory domain in PDZ-GEF1; novel guanine nucleotide exchange factor PDZ-GEF1 activates Rap1 and Rap2 and is controlled by neg. regulatory domain)
- IT G proteins (guanine nucleotide-binding proteins)
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(gene rap2; novel guanine nucleotide exchange factor PDZ-GEF1 activates Rap1 and Rap2 and is controlled by neg. regulatory domain)
- IT Protein sequences
(homol., homol. of catalytic domains of PDZ-GEF1 and GEFs for Ras-like GTPases; novel guanine nucleotide exchange factor PDZ-GEF1 activates Rap1 and Rap2 and is controlled by neg. regulatory domain)
- IT G proteins (guanine nucleotide-binding proteins)
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(smg-21 (small-mol.-weight, 21,000-mol.-weight); novel guanine nucleotide exchange factor PDZ-GEF1 activates Rap1 and Rap2 and is controlled by neg. regulatory domain)

L41 ANSWER 7 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 2000:42542 CAPLUS
DOCUMENT NUMBER: 132:177207
TITLE: RA-GEF, a novel Rap1A guanine nucleotide exchange factor containing a Ras/Rap1A-associating domain, is conserved between nematode and humans
AUTHOR(S): Liao, Yanhong; Kariya, Ken-Ichi; Hu, Chang-Deng; Shibatohge, Mitsuhige; Goshima, Masahiro; Okada, Tomoyo; Watari, Yasuhiro; Gao, Xianlong; Jin, Tai-Guang; Yamawaki-Kataoka, Yuriko; Kataoka, Tohru
CORPORATE SOURCE: The Department of Physiology II, Kobe University School of Medicine, Kobe, 650-0017, Japan

SOURCE: Journal of Biological Chemistry (1999), 274(53),
37815-37820

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER: American Society for Biochemistry and Molecular
Biology

DOCUMENT TYPE: Journal
LANGUAGE: English

AB A yeast two-hybrid screening for Ras-binding proteins in nematode *Caenorhabditis elegans* has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF mols., which are conserved through evolution.

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

AB A yeast two-hybrid screening for Ras-binding proteins in nematode *Caenorhabditis elegans* has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF mols., which are conserved through evolution.

IT G proteins (guanine nucleotide-binding proteins)
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(smg-21 (small-mol.-weight, 21,000-mol.-weight), Rap1A;
sequence of RA-GEF of *C. elegans*, novel Rap1A guanine nucleotide exchange factor containing Ras/Rap1A-associating domain, and its conservation
between nematode and humans)

=> s guy r?/au;s kuast i?/au;s harasco j?/au

L42 418 FILE MEDLINE

L43 653 FILE BIOSIS

Prepared by: Mary Hale 02-2507 Rem Bldg 1D86

Page 38

L44 469 FILE EMBASE
L45 667 FILE CAPLUS

TOTAL FOR ALL FILES
L46 2207 GUY R?/AU

L47 0 FILE MEDLINE
L48 0 FILE BIOSIS
L49 0 FILE EMBASE
L50 0 FILE CAPLUS

TOTAL FOR ALL FILES
L51 0 KUAST I?/AU

L52 0 FILE MEDLINE
L53 0 FILE BIOSIS
L54 0 FILE EMBASE
L55 0 FILE CAPLUS

TOTAL FOR ALL FILES
L56 0 HARASCO J?/AU

=> s fujii n?/au
L57 791 FILE MEDLINE
L58 971 FILE BIOSIS
L59 731 FILE EMBASE
L60 1911 FILE CAPLUS

TOTAL FOR ALL FILES
L61 4404 FUJII N?/AU

=> s l46 and l61
L62 5 FILE MEDLINE
L63 8 FILE BIOSIS
L64 5 FILE EMBASE
L65 7 FILE CAPLUS

TOTAL FOR ALL FILES
L66 25 L46 AND L61

=> dup rem 166
PROCESSING COMPLETED FOR L66
L67 10 DUP REM L66 (15 DUPLICATES REMOVED)

=> d 1-10

L67 ANSWER 1 OF 10 MEDLINE ON STN DUPLICATE 1
AN 2004608183 MEDLINE
DN PubMed ID: 15582423
TI Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain.
AU Fujii Naoaki; Mallari Jeremy P; Hansell Elizabeth J; Mackey Z;
Doyle Patricia; Zhou Y M; Gut Jiri; Rosenthal Philip J; McKerrow James H;
Guy R Kiplin
CS Department of Pharmaceutical Chemistry, University of California-San
Francisco, San Francisco, CA 94143, USA.
SO Bioorganic & medicinal chemistry letters, (2005 Jan 3) 15 (1) 121-3.
Journal code: 9107377. ISSN: 0960-894X.
CY England: United Kingdom

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200505

ED Entered STN: 20041208

Last Updated on STN: 20050503

Entered Medline: 20050502

L67 ANSWER 2 OF 10 CAPLUS COPYRIGHT 2005 ACS on STN

AN 2004:905878 CAPLUS

DN 141:379805

TI A preparation of indole derivatives, useful as PDZ-domain inhibitors

IN Guy, Rodney Kiplin; Kuntz, Irwin D.; Haresco, Jose; Fujii, Naoaki; Novak, Kathleen P.; Stokoe, David; He, Biao; You, Liang; Xu, Zhidong; Jablons, David M.

PA The Regents of the University of California, USA

SO PCT Int. Appl., 43 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004092346	A2	20041028	WO 2004-US11619	20040415
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, PI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW, RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
PRAI	US 2005043385	A1	20050224	US 2004-826175	20040415
OS	US 2003-463198P	P	20030415		
	MARPAT 141:379805				

L67 ANSWER 3 OF 10 MEDLINE on STN

DUPLICATE 2

AN 2004002110 MEDLINE

DN PubMed ID: 14698174

TI A novel protein crosslinking reagent for the determination of moderate resolution protein structures by mass spectrometry (MS3-D).

AU Fujii Naoaki; Jacobsen Richard B; Wood Nichole L; Schoeniger Joseph S; Guy R Kiplin

CS Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94143, USA.

SO Bioorganic & medicinal chemistry letters, (2004 Jan 19) 14 (2) 427-9. Journal code: 9107377. ISSN: 0960-894X.

CY England: United Kingdom

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 200409

ED Entered STN: 20040106

Last Updated on STN: 20040922

Entered Medline: 20040921

L67 ANSWER 4 OF 10 MEDLINE on STN

DUPLICATE 3

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 40

AN 2003507532 MEDLINE
DN PubMed ID: 14518976
TI A selective irreversible inhibitor targeting a PDZ protein interaction domain.
AU Fujii Naoaki; Haresco Jose J; Novak Kathleen A P; Stokoe David;
Kuntz Irwin D; Guy R Kiplin
CS Department of Pharmaceutical Chemistry, University of California at San Francisco, Genentech Hall, Mission Bay, 600 16th Street 2280, San Francisco, California 94143-2280, USA.
NC GM31497 (NIGMS)
GM56531 (NIGMS)
SO Journal of the American Chemical Society, (2003 Oct 8) 125 (40) 12074-5.
Journal code: 7503056. ISSN: 0002-7863.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200401
ED Entered STN: 20031031
Last Updated on STN: 20040121
Entered Medline: 20040120

L67 ANSWER 5 OF 10 MEDLINE on STN DUPLICATE 4
AN 2003115074 MEDLINE
DN PubMed ID: 12627945
TI Role of electrostatic interactions in PDZ domain ligand recognition.
AU Harris Baruch Z; Lau Francis W; Fujii Naoaki; Guy R
Kiplin; Lim Wendell A
CS Program in Biological Sciences, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.
SO Biochemistry, (2003 Mar 18) 42 (10) 2797-805.
Journal code: 0370623. ISSN: 0006-2960.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200307
ED Entered STN: 20030312
Last Updated on STN: 20030702
Entered Medline: 20030701

L67 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2005 ACS on STN
AN 2003:184277 CAPLUS
TI Targeting PDZ-domain by rationally designed nonpeptide small molecules: Structure and irreversibility
AU Fujii, Naoaki; Haresco, Jose J.; Novak, Kathleen A. P.; Stokoe, David; Kuntz, Irwin D.; Guy, R. Kip
CS Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143-0446, USA
SO Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23-27, 2003 (2003), MEDI-311 Publisher: American Chemical Society, Washington, D. C.
CODEN: 69DSAA
DT Conference; Meeting Abstract
LA English

L67 ANSWER 7 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation on STN
AN 2003:411534 BIOSIS
DN PREV200300411534

Page 41

TI Targeting PDZ-domain by rationally designed non-peptide small molecules: Structure and irreversibility.
AU Fujii, Naoaki [Reprint Author]; Haresco, Jose J.; Novak, Kathleen A. P. [Reprint Author]; Stokoe, David; Kuntz, Irwin D.; Guy, R. Kip
CS Department of Pharmaceutical Chemistry, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143-0446, USA
nkfj@itsa.ucsf.edu
SO Abstracts of Papers American Chemical Society, (2003) Vol. 225, No. 1-2, pp. MED1 311. print.
Meeting Info.: 225th American Chemical Society (ACS) National Meeting. New Orleans, LA, USA. March 23-27, 2003. American Chemical Society.
ISSN: 0065-7727 (ISSN print).
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 10 Sep 2003
Last Updated on STN: 10 Sep 2003

L67 ANSWER 8 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation on STN
AN 2003:402097 BIOSIS
DN PREV200300402097
TI Design, synthesis, and investigation of inhibitors of the function of PDZ domains.
AU Novak, Kathleen Pendola [Reprint Author]; Fujii, Naoaki; Stokoe, David; Guy, R. Kip
CS Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
kpendol@itsa.ucsf.edu; nkfj@itsa.ucsf.edu; dstokoe@cc.ucsf.edu;
rguy@cgl.ucsf.edu
SO FASEB Journal, (March 2003) Vol. 17, No. 4-5, pp. Abstract No. 844:15.
<http://www.fasebj.org/>. e-file.
Meeting Info.: FASEB Meeting on Experimental Biology: Translating the Genome. San Diego, CA, USA. April 11-15, 2003. FASEB.
ISSN: 0892-6638 (ISSN print).
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 3 Sep 2003
Last Updated on STN: 3 Sep 2003

L67 ANSWER 9 OF 10 MEDLINE on STN DUPLICATE 5
AN 2002406486 MEDLINE
DN PubMed ID: 12161160
TI Investigation of the PDZ domain ligand binding site using chemically modified peptides.
AU Novak Kathleen A P; Fujii Naoaki; Guy R Kiplin
CS Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA.
SO Bioorganic & medicinal chemistry letters, (2002 Sep 2) 12 (17) 2471-4.
Journal code: 9107377. ISSN: 0960-894X.
CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200307
ED Entered STN: 20020806
Last Updated on STN: 20030801
Entered Medline: 20030731

L67 ANSWER 10 OF 10 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation on
STN
AN 2003:166926 BIOSIS
DN PREV200300166926
TI Targeting PDZ-domain by novel non-peptide small molecules -design and
evaluation, structure and irreversibility.
AU Fujii, N. [Reprint Author]; Haresco, J. J.; Novak, K. A.
[Reprint Author]; Kuntz, I. D.; Guy, R. K. [Reprint Author]
CS Department of Pharmaceutical Chemistry, UC-San Francisco, San Francisco,
CA, USA
SO Molecular Biology of the Cell, (Nov 2002) Vol. 13, No. Supplement, pp.
360a. print.
Meeting Info.: 42nd Annual Meeting of the American Society for Cell
Biology. San Francisco, CA, USA. December 14-18, 2002. American Society
for Cell Biology.
ISSN: 1059-1524 (ISSN print).
DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
LA English
ED Entered STN: 2 Apr 2003
Last Updated on STN: 2 Apr 2003

=> s (l46 or l61) and l20
L68 4 FILE MEDLINE
L69 7 FILE BIOSIS
L70 4 FILE EMBASE
L71 6 FILE CAPLUS

TOTAL FOR ALL FILES
L72 21 (L46 OR L61) AND L20

=> s l72 not (l40 or l66 or l30)
L73 1 FILE MEDLINE
L74 1 FILE BIOSIS
L75 1 FILE EMBASE
L76 1 FILE CAPLUS

TOTAL FOR ALL FILES
L77 4 L72 NOT (L40 OR L66 OR L30)

=> dup rem l77
PROCESSING COMPLETED FOR L77
L78 1 DUP REM L77 (3 DUPLICATES REMOVED)

=> d ibib abs

L78 ANSWER 1 OF 1 MEDLINE on STN DUPLICATE 1
ACCESSION NUMBER: 1998058950 MEDLINE
DOCUMENT NUMBER: PubMed ID: 9395497
TITLE: MAGI-1, a membrane-associated guanylate kinase with a
unique arrangement of protein-protein interaction domains.
AUTHOR: Dobrosotskaya I; Guy R K; James G L
CORPORATE SOURCE: Department of Biochemistry, The University of Texas Health
Science Center, San Antonio, Texas 78284-7760, USA.
CONTRACT NUMBER: HL20948 (NHLBI)
SOURCE: Journal of biological chemistry, (1997 Dec 12) 272 (50)
31589-97.
PUB. COUNTRY: United States
Journal code: 2985121R. ISSN: 0021-9258.

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 43

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
OTHER SOURCE: GENBANK-AF027503; GENBANK-AF027504; GENBANK-AF027505
ENTRY MONTH: 199801
ENTRY DATE: Entered STN: 19980129
Last Updated on STN: 19980129
Entered Medline: 19980115

AB Membrane-associated guanylate kinase (MAGUK) proteins participate in the assembly of multiprotein complexes on the inner surface of the plasma membrane at regions of cell-cell contact. MAGUKs are characterized by three types of protein-protein interaction modules: the PDZ domain, the Src homology 3 (SH3) domain, and the guanylate kinase (GuK) domain. The arrangement of these domains is conserved in all previously known MAGUKs: either one or three PDZ domains in the NH₂-terminal half, followed by the SH3 domain, followed by a COOH-terminal GuK domain. In this report, we describe the cDNA cloning and subcellular distribution of MAGI-1, a MAGUK with three unique structural features: 1) the GuK domain is at the NH₂ terminus, 2) the SH3 domain is replaced by two WW domains, and 3) it contains five PDZ domains. MAGI-1 mRNA was detected in several adult mouse tissues. Sequence analysis of overlapping cDNAs revealed the existence of three splice variants that are predicted to encode MAGI-1 proteins with different COOH termini. The longest variant, MAGI-1c, contains three bipartite nuclear localization signals in its unique COOH-terminal sequence and was found predominantly in the nucleus of Madin-Darby canine kidney cells. A shorter form lacking these signals was found primarily in membrane and cytoplasmic fractions. This distribution, which is reminiscent of that seen for the tight junction protein ZO-1, suggests that MAGI-1 may participate in the transmission of regulatory signals from the cell surface to the nucleus.

=> dis his

(FILE 'HOME' ENTERED AT 15:43:05 ON 21 DEC 2005)

FILE 'REGISTRY' ENTERED AT 15:43:16 ON 21 DEC 2005

L1	STR
	E TETRAZOLYL/CN
L2	1 S E3
	E "5-TETRAZOLYL"/CN 5
	E TETRAZOLE/CN 5
L3	1 S E3
L4	STR L1
L5	0 S L4
L6	0 S L4 FUL
L7	STR L4
L8	0 S L7
L9	2 S L7 FUL

FILE 'CAPLUS' ENTERED AT 15:57:42 ON 21 DEC 2005

L10	1 S L9
-----	--------

FILE 'REGISTRY' ENTERED AT 15:58:03 ON 21 DEC 2005

L11	STR
L12	1 S L11
L13	9 S L11 FUL

FILE 'CAPLUS' ENTERED AT 16:03:25 ON 21 DEC 2005
L14 8 S L13

FILE 'REGISTRY' ENTERED AT 16:03:40 ON 21 DEC 2005
E PDZ/CN 5
L15 71 S PDZ ?/CN

FILE 'MEDLINE, BIOSIS, EMBASE, CAPLUS' ENTERED AT 16:04:10 ON 21 DEC 2005
L16 1396 FILE MEDLINE
L17 1845 FILE BIOSIS
L18 1286 FILE EMBASE
L19 1824 FILE CAPLUS
TOTAL FOR ALL FILES
L20 6351 S L15 OR PDZ(L) DOMAIN
L21 264 FILE MEDLINE
L22 272 FILE BIOSIS
L23 242 FILE EMBASE
L24 362 FILE CAPLUS
TOTAL FOR ALL FILES
L25 1140 S L20 AND INHIBIT?
L26 0 FILE MEDLINE
L27 0 FILE BIOSIS
L28 0 FILE EMBASE
L29 3 FILE CAPLUS
TOTAL FOR ALL FILES
L30 3 S COMBINAT? LIBRARY AND L25
L31 162 FILE MEDLINE
L32 239 FILE BIOSIS
L33 152 FILE EMBASE
L34 284 FILE CAPLUS
TOTAL FOR ALL FILES
L35 837 S L20 AND SCREEN?
L36 0 FILE MEDLINE
L37 1 FILE BIOSIS
L38 0 FILE EMBASE
L39 6 FILE CAPLUS
TOTAL FOR ALL FILES
L40 7 S SMALL MOLECULE AND (L35 OR L25)
L41 7 DUP REM L40 (0 DUPLICATES REMOVED)
L42 418 FILE MEDLINE
L43 653 FILE BIOSIS
L44 469 FILE EMBASE
L45 667 FILE CAPLUS
TOTAL FOR ALL FILES
L46 2207 S GUY R?/AU
L47 0 FILE MEDLINE
L48 0 FILE BIOSIS
L49 0 FILE EMBASE
L50 0 FILE CAPLUS
TOTAL FOR ALL FILES
L51 0 S KUAST I?/AU
L52 0 FILE MEDLINE
L53 0 FILE BIOSIS
L54 0 FILE EMBASE
L55 0 FILE CAPLUS
TOTAL FOR ALL FILES
L56 0 S HARASCO J?/AU
L57 791 FILE MEDLINE
L58 971 FILE BIOSIS
L59 731 FILE EMBASE

Page 45

```
L60      1911 FILE CAPLUS
        TOTAL FOR ALL FILES
L61      4404 S FUJII N?/AU
L62      5 FILE MEDLINE
L63      8 FILE BIOSIS
L64      5 FILE EMBASE
L65      7 FILE CAPLUS
        TOTAL FOR ALL FILES
L66      25 S L46 AND L61
L67      10 DUP REM L66 (15 DUPLICATES REMOVED)
L68      4 FILE MEDLINE
L69      7 FILE BIOSIS
L70      4 FILE EMBASE
L71      6 FILE CAPLUS
        TOTAL FOR ALL FILES
L72      21 S (L46 OR L61) AND L20
L73      1 FILE MEDLINE
L74      1 FILE BIOSIS
L75      1 FILE EMBASE
L76      1 FILE CAPLUS
        TOTAL FOR ALL FILES
L77      4 S L72 NOT (L40 OR L66 OR L30)
L78      1 DUP REM L77 (3 DUPLICATES REMOVED)
```

```
=> d 16 que stat;d 19 que stat;d 113 que stat
L4          STR
```



```
REP G1=(1-4) C
VAR G2=CH/14/12/16
VAR G3=ME/ET/I-PR/N-PR/18/X/O/S
VAR G4=23/24/25/22/26
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
```

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
 RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 27

STEREO ATTRIBUTES: NONE
 L6 0 SEA FILE=REGISTRY SSS FUL L4
 100.0% PROCESSED 5 ITERATIONS
 SEARCH TIME: 00.00.01

0 ANSWERS

REP G1=(1-4) C
 VAR G2=CH/14/12/16
 VAR G3=ME/ET/I-PR/N-PR/18/X/O/S
 VAR G4=CO2H/29/32/35/39/41/43
 NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
 RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 41

STEREO ATTRIBUTES: NONE
 L9 2 SEA FILE=REGISTRY SSS FUL L7
 100.0% PROCESSED 14142 ITERATIONS
 SEARCH TIME: 00.00.01

2 ANSWERS

L11 STR

Prepared by: Mary Hale @2-2507 Rem Bldg 1D86

Page 47

VAR G1=CH2/17/15/12
VAR G2=CO2H/25/28/31/35/37/40/42/20/19/23/22/21

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
DEFAULT ELEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 44

STEREO ATTRIBUTES: NONE
L13 9 SEA FILE=REGISTRY SSS FUL L11

100.0% PROCESSED 26897 ITERATIONS 9 ANSWERS
SEARCH TIME: 00.00.01

=> log y	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	69.44	629.81
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
CA SUBSCRIBER PRICE	ENTRY	SESSION
	-6.57	-13.14

STN INTERNATIONAL LOGOFF AT 16:08:24 ON 21 DEC 2005