Formulario

Analisi Matematica 3

Lucrezia Bioni

1 Funzioni Implicite

1.1 Teoremi

Teorema di ∃! globale

Siano $a < b, c < d \in \mathbb{R}$ e sia $f: [a,b] \times [c,d] \to \mathbb{R}$ continua. Supponiamo che:

- 1. $\forall x \in [a, b]$, $\lim_{y \to c^+} f(x, y)$ e $\lim_{y \to d^-} f(x, y)$ hanno segni discordi
- 2. $\forall (x,y) \in (a,b) \times (c,d), \, \partial_y f(x,y)$ esiste e ha segno strettamente definito

Allora esiste un'unica funzione $g:(a,b)\to(c,d)$ tale che f(x,g(x))=0 per ogni $x\in(a,b)$

Teorema di Dini, ∃! e regolarità locale

Sia U un aperto di \mathbb{R}^2 e sia $f: U \to \mathbb{R}$ di classe $\mathcal{C}^1(U)$. Sia $(x_0, y_0) \in U$ e supponiamo che:

- 1. $f(x_0, y_0) = 0$
- 2. $\partial_y f(x_0, y_0) \neq 0$ Allora esistono un intorno aperto V di x_0 , un intorno aperto W di y_0 con $VxW \subset U$, ed esiste un'unica funzione $g: V \to W$ tale che:
- 1. $g(x_0) = y_0$,
- 2. f(x, g(x)) = 0 per ogni $x \in V$

Inoltre $g \in \mathcal{C}^1(V)$ e la sua derivata soddisfa in V l'identità $g'(x) = -\frac{\partial_x f}{\partial_n f}|_{x,g(x)}$

Teorema di ∃! e regolarità locale multi dimensionale

Sia U aperto di \mathbb{R}^{m+n} e sia $f: U \to \mathbb{R}^n$ di classe $\mathcal{C}^1(U)$. Sia $(x_0, y_0) \in U$ e supponiamo che:

- 1. $f(x_0, y_0) = 0$
- 2. det $J_y f(x_0, y_0) \neq 0$

Allora esistono un intorno aperto $V \subset \mathbb{R}^m$ di x_0 , un intorno aperto $W \subset \mathbb{R}^n$ di y_0 con $VxW \subset U$, ed esiste un'unica funzione $g: V \to W$ tale che:

- 1. $g(x_0) = y_0$,
- 2. f(x, g(x)) = 0 per ogni $x \in V$

Inoltre $g \in \mathcal{C}^1(V)$ e la sua matrice jacobiana soddisfa in V l'identità

 $(Jg)|_{x} = -(J_{y}f)^{-1}(J_{x}f)|_{x,g(x)}$

1.2 Definizioni

Retta tangente all'implicita

Sia y = f(x) definita implicitamente. Per trovare il piano tangente in (x_0, y_0) : $f'(x) = -\frac{\partial_x F}{\partial_y F}$ $0 = \partial x x F + 2\partial_{xy} F f' + \partial_{yy} F (f')^2 + \partial_y F f''$

Piano tangente all'implicita 2D

Sia z = f(x, y) definita implicitamente.

2 Forme differenziali

2.1 Teoremi e definizioni

Lavoro del campo lungo una curva

Dato un campo vettoriale \mathcal{F} di classe \mathcal{C}^0 su Ω aperto di \mathbb{R}^n e data una curva regolare a tratti $\varphi:[a,b]\to\Omega$, si chiama lavoro del campo lungo la curva data il numero:

$$\int_{\gamma} \langle \mathcal{F}, \tau \rangle \ ds := \int_{a}^{b} \sum_{j=1}^{n} \mathcal{F}_{j}(\varphi(t)) \cdot \varphi_{j}'(t) \ dt$$

Integrale di una forma differenziale lungo una curva

Data ω forma differenziale su Ω di classe \mathcal{C}^0 , $\omega = \sum_{j=1}^n a_j dx_j$ e data una curva regolare a tratti φ : $[a,b] \to \Omega$, si chiama integrale di ω lungo φ la quantità

$$\int_{\gamma} \omega = \int_{\gamma} \sum_{j=1}^{n} a_{j} dx_{j} := \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\varphi(t)) \varphi'_{j}(t) dt = \int_{\gamma} \langle \mathcal{F}_{\omega}, \tau \rangle ds$$

Teorema di caratterizzazione

Data ω forma differenziale su Ω (aperto di \mathbb{R}^n) di classe \mathbb{C}^n .

I seguenti fatti sono equivalenti:

- $\bullet \omega$ è esatta in Ω
- $\int_{\gamma} \omega = 0 \forall$ curva γ regolare (a tratti) e chiusa in Ω
- $\forall p,q$ in Ω , comunque si prenda una curva regolare (a tratti) in Ω da p a q e orientata (da p a q) si ha che $\int_{\text{curva da p a q}} \omega$ dipende solo da p e q, ma non dipende dalla curva γ

Forma differenziale chiusa

Sia $\omega = a_1 dx_1 + ... + a_n dx_n$ una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n , ω è detta chiusa

$$\frac{\partial a_i}{\partial x_j} = \frac{\partial a_j}{\partial x_i} \ \forall i, j$$

Campo vettoriale non rotazionale

Sia $F = (F_1, ..., F_n)$ un campo vettoriale di classe \mathcal{C}^1 su Ω , aperto di \mathbb{R}^n , F è detto non rotazionale (o irrotazionale) quando si verifica:

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i} \ \forall i,j$$

Proposizione

Sia ω una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n . Se ω è esatta in $\Omega \implies \omega$ è chiusa in Ω .

Lemma di Poincaré

Sia ω una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n .

Se Ω è stellato e ω è chiusa in $\Omega \implies \omega$ è esatto in Ω .

Valido anche nel caso in cui Ω sia semplicemente connesso.

Omotopia

Siano $\phi_0, \phi_1 : [0,1] \to \Omega \subseteq \mathbb{R}^n$.

Supponiamo che ϕ_0 e ϕ_1 siano curve con $\phi_0(0) = \phi_1(0)$ e $\phi_0(1) = \phi_1(1)$.

Le due curve ϕ_0 e ϕ_1 sono dette omotope quando esiste una mappa (mappa di omotopia) $\psi : [o,1] \times [0,1] \to \Omega$ continua globalmente e tale che:

2

- $\bullet \, \psi(0,t) = \phi_0(t) \forall t$
- $\bullet \, \psi(s,0) = \phi_1(t) \forall t$
- $\psi(s,0)$ non dipende da s e $\psi(s,0)$ non dipende da s.

Teorema di invarianza omotopica

Sia ω una forma differenziale su Ω , aperto di \mathbb{R}^n , di classe \mathcal{C}^1 . Supponiamo che ω sia chiusa in Ω . Siano ϕ_0 e ϕ_1 curve regolari a tratti da p a q in Ω . Se ϕ_0 e ϕ_1 sono omotope $\Longrightarrow \int_{\phi_0} \omega = \int_{\phi_1} \omega$

3 Ottimizzazione

Ottimizzazione vincolata

Teorema dei moltiplicatori di Lagrange

Sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, Ω aperto, $f \in \mathcal{C}^1(\Omega)$. Sia $D \subseteq \Omega$ l'insieme degli zeri di una mappa $F: \Omega \to \mathbb{R}^m$ $(m < n), F \in \mathcal{C}^1$. Supponiamo che $x_0 \in D$ sia un estremo locale per f ristretto a D. Supponiamo che $J_f x_0$ abbia rango massimo (ovvero di rango m). Allora $\exists \ \lambda_1, ..., \lambda_m \in \mathbb{R}$ t.c. $\nabla f(x_0) = \lambda_1 \nabla F_1(x_0) + ... + \lambda_m \nabla F_m(x_0)$, dove $F = (F_1, ..., F_m)$.

4 Integrazione secondo Lebesgue

5 Teoremi

Funzione misurabile

Sia $f: \mathbb{R}^n \to \mathbb{R}$, f continua $\Longrightarrow f$ è misurabile

Funzione integrabile

Diciamo che f è integrabile quando $\int_E f^+ \, dx$ e $\int_E f^- \, dx$ sono finiti

$$f \in \mathcal{L}(E) \iff f \in \mathfrak{M}(E) \in \int_{E} |f| \, dx < +\infty$$

Condizione sufficiente di integrabilità

- Se f è misurabile e limitata e $m(E) < +\infty \implies f \in L(E)$
- $f \in \mathcal{R}(I), I = [a, b] \implies f \in L(I)$
- $f: I \to \mathbb{R}$, con I intervallo (non necessariamente compatto). Supponiamo che f sia assolutamente integrabile secondo Riemann generalizzato in I $\Longrightarrow f \in L(I)$

Teorema di convergenza uniforme

Sia $E \in \mathcal{M}(\mathbb{R}^n)$, con $m(E) < +\infty$. Se $\{f_k\}_{k \in \mathbb{N}} : E \to \mathbb{R}, f_k \in L(E), f : E \to \mathbb{R}, e f_k \to f$ uniformemente in E Allora $f \in L(E)$ e, inoltre, $\lim_{k \to \infty} \int_E |f_k(x) - f(x)| dx = 0$, così che $\lim_{k \to \infty} \int_E f_k$ esiste e vale $\int_E f_k |f_k(x)| dx = 0$

Teorema di convergenza monotona

Sia $\{f_k\}_{k\in\mathbb{N}}: E \to \overline{\mathbb{R}}, \ f: E \to \overline{\mathbb{R}}, \ E \in \mathcal{M}(\mathbb{R}^n), \ f_k \in f \in \mathfrak{M}(\mathbb{R}^n).$ Supponiamo che $\exists g: E \to \overline{\mathbb{R}}, \ g \in \mathcal{L}(E), \ \text{con } g(x) \leq f_k(x) \ \forall x \in E \ \forall k \in \mathbb{N}.$ Supponiamo poi che $\forall x \in E \ f_k(x) \nearrow f(x)$ (convergenza monotona puntuale) $\Longrightarrow f_k \ \forall k \in f \ \text{hanno integrale} \ e \ \lim_{k \to \infty} \int_E f_k \ dx = \int_E f(x) \ dx$

Lemma di Fatou

Sia $f_k : E \subseteq \mathcal{M}(\mathbb{R}^n) \to \overline{\mathbb{R}}, \quad f_k \in \mathfrak{M}(E) \ \forall k.$ 1. Supponiamo che $\exists g \in \mathcal{L}(E), g(x) \leq f_k(x) \ \forall x \implies \int_E \lim_{k \to \infty} \inf f_k \, dx \leq \lim_{k \to \infty} \inf \int_E f_k$ 2. Supponiamo che $\exists G \in \mathcal{L}(E), f_k(x) \leq G(x) \ \forall x \implies \int_E \lim_{k \to \infty} \sup f_k \, dx \geq \lim_{k \to \infty} \sup \int_E f_k \, dx$

Teorema di convergenza dominata

Sia $f_k : E \subseteq \mathcal{M}(\mathbb{R}^n) \to \overline{\mathbb{R}}, f_k \in \mathfrak{M}(E) \ \forall k.$ Supponiamo che

1. $\exists f: E \to \overline{\mathbb{R}}$, con $\lim_{k \to \infty} f_k(x) = f(x) \ \forall x \in E$

2. $\exists g: E \to \overline{\mathbb{R}}, g \in \mathcal{L}(E)$ con $|f_k(x)| \leq g(x)$ $\forall x \in E$ $\forall k \implies \lim_{k \to \infty} \int_E f_k \, dx = \int_E f(x) \, dx$

6 Integrazione multidimensionale

7 Teoremi e definizioni

Teorema di Fubini

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}, E \in \mathcal{M}(\mathbb{R}^n), f \in L(E)$. Sia $\mathbb{R}^m \times \mathbb{R}^k = \mathbb{R}^n$ una decomposizione ortogonale. Allora:

- per $q.o.\overline{x}$ la sezione $E(x) = \{y \in \mathbb{R}^k \text{ con } (x,y) \in E\}$ è misurabile in \mathbb{R}^k
- per q.o la funzione $x \mapsto \int_{E(x)} f(x,y) dy$ è ben definita, ed è in $L(\mathbb{R}^m)$
- $\int_E f(x,y)dxdy = \int_{\mathbb{R}^m} \left[\int_{E(x)} f(x,y)dy \right] dx$

Teorema di Tonelli

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}$, $E \in \mathcal{M}(\mathbb{R}^n)$, $f \in \mathcal{M}(E)$, $f(x) \geq 0 \, \forall x$. Sia $\mathbb{R}^m \times \mathbb{R}^k = \mathbb{R}^n$ una decomposizione ortogonale. Allora:

- $\bullet\,$ per $q.o.\,x$ la sezione $E(x)=\{y\in\mathbb{R}^k \text{ con } (x,y)\in E\}$ è misurabile in \mathbb{R}^k
- per q.ox la funzione $x \mapsto \int_{E(x)} f(x,y) dy$ è ben definita, ed è in $L(\mathbb{R}^m)$
- $\int_E f(x,y)dxdy = \int_{\mathbb{R}^m} \left[\int_{E(x)} f(x,y)dy \right] dx$

Teorema per il cambiamento di coordinate

Sia $\Phi: \Omega \subseteq \mathbb{R}^n \to \tilde{\Omega}$, con Ω e $\tilde{\Omega}$ aperti, un cambiamento di coordinate (dunque un diffeomorfismo). Sia $E \subseteq \tilde{\Omega}, E \in \mathcal{M}(\mathbb{R}) \implies \Phi^{-1}(E) \in \mathcal{M}(\mathbb{R}^n)$.

Sia $f: E \to \mathbb{R}, f \in L(E)$ oppure $f: E \to [0, +\infty]$ e misurabile. Allora:

$$\int_{\Phi^{-1}(E)} f(\Phi(x)) \left| \det J\Phi(x) \right| dx = \int_{E} f(y) dy$$

Formule di Green

Sia D un dominio regolare in \mathbb{R}^2 . Sia $f:\Omega\subseteq\mathbb{R}^2\to\mathbb{R},D\subseteq\Omega,\Omega$ aperto, $f\in\mathcal{C}^1(\Omega)$, allora:

$$\int_{D} \frac{\partial f}{\partial x}(x, y) dx dy = \int_{\partial D^{+}} f(x, y) dy$$
$$\int_{D} \frac{\partial f}{\partial y}(x, y) dx dy = -\int_{\partial D^{+}} f(x, y) dx$$

Teorema della divergenza (Gauss) e di Stokes in \mathbb{R}^2

Sia $D \subseteq \mathbb{R}^2$ un dominio regolare. Sia $F: \Omega \to \mathbb{R}^2, D \subseteq \Omega, \Omega$ aperto, un campo vettoriale di classe $\mathcal{C}^1(\Omega)$, F = (f, g) allora:

$$\int_{D} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dx dy = \int_{D} \text{Div} F dx dy = \int_{\partial D^{+}} (f dy - g dx) = \int_{\partial D^{+}} \langle F, \nu \rangle ds$$

$$\int_{D} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \int_{\partial D^{+}} (f dx + g dy) = \int_{\partial D^{+}} \langle F, \tau \rangle ds$$

Equazione del piano tangente

Sia $s_0 \in \overset{\circ}{S} \left(\equiv \operatorname{Im} \phi \left(\overset{\circ}{D} \right) \right)$. Allora S ha in s_0 un piano tangente che ha equazione:

$$\det \left[\mathbf{x} - s_0 \mid \partial_u \phi(u_0, v_0) \mid \partial_v \phi(u_0, v_0) \right] = 0$$

Integrale di superficie

Data una superficie ϕ (non necessariamente orientabile) di sostegno S, sia $f: W \subseteq \mathbb{R}^3 \to \mathbb{R}$, con S $\subseteq W$, dico che f è integrabile (secondo Lebesgue) su S quando $f \circ \phi \|\partial_{\mathbf{u}}\phi \wedge \partial_{\mathbf{v}}\phi\|$ è Lebesgue integrabile in D. In tal caso si pone:

$$\int_{S} f \, d\sigma = \int_{D} (f \circ \phi)(u, v) \, \|\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi\| \, du dv$$

Teorema della divergenza (Gauss) in \mathbb{R}^3

Sia T un dominio regolare e sia $\mathbf{F} = (F_1, F_2, F_3)$ un campo vettoriale di classe $\mathcal{C}^1(\Omega)$, con Ω aperto, $T \subseteq \Omega$, allora:

$$\int_T Div \mathbf{F} \ dx \, dy \, dz = \int_{\partial T^+} <\mathbf{F}, \nu > \, d\sigma$$

Dove
$$Div \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
 e $\nu = \frac{\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi}{\|\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi\|}$

Teorema di Stokes in \mathbb{R}^3

Sia $\phi: D \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ una superficie regolare con bordo, con D dominio regolare, di sostegno S. Sia **F** un campo vettoriale di classe $\mathcal{C}^1(W)$ con W un aperto di $\mathbb{R}^3, S \subseteq W$. Allora:

$$\int_{S} < \operatorname{rot} F, \nu > d\sigma = \int_{\partial S^{+}} < \mathbf{F}, \tau > ds$$

Dove $rot \mathbf{F}$:

$$\begin{bmatrix} i & \partial x & F_1 \\ j & \partial y & F_2 \\ k & \partial z & F_3 \end{bmatrix}$$

7.1 Domini notevoli in \mathbb{R}^3

Paraboloide

 $z=z_0+x^2+y^2$ - Paraboloide con vertice in $(0,0,z_0)$ e aperto verso + $y=y_0+x^2+z^2$ - Paraboloide su asse y $x=x_0+y^2+z^2$ - Paraboloide su asse x Se è della forma $z=-(x^2+y^2)$ è ribaltato.

Sfera

$$(x-x_0)^2+(y-y_0)^2+(z-z^0)^2=r^2$$
- Sfera di raggio
r e centro (x_0,y_0,z_0)

Cono

$$z=\sqrt{x^2+y^2}$$
- Cono standard $z=z_0\pm\sqrt{x^2+y^2}$ - Cono di vertice $(0,0,z_0).$ Se segno - è ribaltato.

Cilindro

$$\boldsymbol{x}^2 + \boldsymbol{y}^2 = \boldsymbol{c}^2$$
 - Cilindro di raggio c.

Iperboloide

$$z^2 - (x^2 + y^2) = c^2$$
 - Iperboloide di vertice c.

Sfera parziale

 $z=a\pm\sqrt{b-x^2-y^2}$ - Porzione della sfera ridotta a un intorno del polo N/S

5