

- 1 1. A photosensing organic field effect transistor (POFET), comprising:
- 2
- 3 a substrate insulating layer, the insulating layer having a high relative
4 dielectric constant and a first side and a second side;
- 5
- 6 a gate electrode, the gate electrode being an electrical conductor, the gate
7 electrode being positioned adjacent to the first side of the insulating layer;
- 8
- 9 a semiconducting polymer layer, the semiconducting polymer layer being
10 responsive to incident light, the semiconducting polymer layer having a
11 first side, a second side, a first end and a second end, the second side of
12 the semiconductor layer being adjacent the second side of the insulating
13 layer;
- 14
- 15 a source electrode, the source electrode being an electrical conductor, the
16 source electrode being in electrical contact with the first end of the
17 semiconductor layer; and
- 18
- 19 a drain electrode, the drain electrode being an electrical conductor, the
20 drain being in electrical contact with the second end of the semiconducting
21 polymer layer.
- 22
- 23 2. A POFET, comprising:
- 24
- 25 a substrate insulating layer, the insulating layer having a high relative
26 dielectric constant and a first side, a second side, a first end and a second
27 end;
- 28
- 29 a gate electrode, the gate electrode being an electrical conductor, the gate
30 electrode being positioned adjacent to the first side of the insulating layer;

1
2 a source electrode, the source electrode being an electrical conductor, the
3 source electrode being in electrical contact with the first end of the second
4 side of the insulating layer;

5
6 a drain electrode, the drain electrode being an electrical conductor, the
7 drain electrode being in electrical contact with the second end of the
8 second side of the insulating layer; and

9
10 a semiconducting polymer layer, the semiconducting polymer layer being
11 responsive to incident light, the semiconducting polymer layer being in
12 electrical contact with the second side of the insulating layer and the
13 source electrode and the drain electrode.

14
15 3. The POFET of claim 1, wherein the semiconducting polymer layer further
16 comprises a photoconducting polymer having a field effect mobility of 10^{-2}
17 cm²/V-sec or greater.

18
19 4. The POFET of claim 1, wherein the insulating layer has a dielectric constant of
20 3.0 or greater.

21
22 5. The POFET of claim 1, wherein the insulating layer is further comprised of a
23 polymeric material.

24
25 6. The POFET of claim 5, wherein the polymeric media is polyvinyl alcohol.

26
27 7. The POFET of claim 5, wherein the polymeric media is polymethyl methacrylate.

28
29 8. The POFET of claim 1, wherein the insulating layer is further comprised of an
30 inorganic material.

- 1 9. The POFET of claim 1, wherein the insulating layer is at least semi-transparent to
2 optical radiation.
- 3 10. The POFET of claim 1, wherein the insulating layer is further comprised of SiO₂.
- 4
- 5 11. The POFET of claim 1, wherein the gate electrode is partially transparent.
- 6
- 7 12. The POFET of claim 1, wherein the semiconducting polymer layer further
8 comprises a polymer matrix including, in dilute quantities, one or more electron
9 acceptors selected from the group consisting of buckminsterfullerene C₆₀ and
10 derivatives thereof, viologen, dichloro-dicyano-benzoquinone, nanoparticles of
11 titanium dioxide, nanoparticles of cadmium sulphide and the like, thereby
12 enabling electron transfer from the polymer matrix upon photoexcitation in order
13 to obtain a high photo-induced current between the drain and source electrodes.
- 14
- 15 13. The POFET of claim 1, wherein a drain current (and transistor ON state) is
16 independently controllable by a voltage applied to the gate electrode and by the
17 intensity of light incident upon the POFET.
- 18
- 19 14. The POFET of claim 1, wherein the semiconducting polymer layer further
20 comprises a regioregular polyalkylthiophene with 98.5% head-to-tail regiospecific
21 conformation.
- 22
- 23 15. The POFET of claim 14, wherein the regioregular polyalkylthiophene is Poly (3-
24 octylthiophene).
- 25
- 26 16. The POFET of claim 14, wherein the regioregular polyalkylthiophene is Poly (3-
27 hexylthiophene).
- 28
- 29 17. A method of fabricating a POFET, comprising the steps of:
30

coating a glass substrate with a semi-transparent gate electrode;
depositing upon the gate electrode an electrically insulating layer having a first side and a second side, the first side adjacent to the gate electrode; forming on the second side of the insulating layer a semiconducting polymer layer comprised of a regioregular polyalkylthiophene responsive to incident light and having a 98.5% head-to-tail regiospecific conformation; and
forming on the semiconducting polymer layer electrically conducting source and drain electrodes.

18. The method of claim 17, wherein the insulating substrate is comprised of a polymeric media.
19. The method of claim 17, wherein the insulating substrate is partially transparent.
20. The method of claim 17, wherein the semiconducting polymer layer further comprises a polymer matrix including, in dilute quantities, one or more electron acceptors selected from the group consisting of buckminsterfullerene C₆₀ and derivatives thereof, viologen, dichloro-dicyano-benzoquinone, nanoparticles of titanium dioxide, nanoparticles of cadmium sulphide and the like, thereby enabling electron transfer from the polymer matrix upon photoexcitation in order to obtain a high photo-induced current between the drain and source electrodes.
21. The method of claim 17, wherein the regioregular polyalkylthiophene is Poly (3-octylthiophene).

- 1 22. The method of claim 17, wherein the regioregular polyalkylthiophene is Poly (3-
2 hexylthiophene)
- 3
- 4 23. The POFET of claim 1, wherein a POFET saturation current gain of 100 or higher
5 may be achieved.
- 6
- 7 24. A method of using a POFET as a logical element, comprising the step of:
8 activating a transistor ON state by controlling gate bias or the intensity of
9 incident light.
- 10
- 11 25. A method of using a POFET as a logical element, comprising the step of:
12 activating a transistor ON state by controlling gate bias and the intensity of
13 incident light.
- 14
- 15 26. A method of using a POFET as a backbone of a position sensitive detector,
16 comprising the steps of:
17
18 positioning one or more photosensing organic FETs in a beam of light
19 incident from an object to be imaged; and
20
21 monitoring the variation of drain current(s) from the one or more
22 photosensing organic FETs, wherein the drain current(s) vary with the
23 spatial position of the incident light beam.
- 24
- 25 27. A method of controlling the electrical properties of a POFET, comprising the step
26 of:
27 varying the intensity of light incident upon the photosensing organic FET,
28 thereby varying the carrier concentration in the channel region and the
29 drain-source current.