PERTEMUAN 3

Aljabar Boolean

Toni Arifin, ST., M.Kom 0430059101

Inti pembelajaran

- Bisa menghasilkan suatu realisasi rangkaian elektronika digital/Teknik digital dari suatu persamaan logika matematika
- Persamaan logika matematika tersebut dimodifikasi sehingga menghasilkan realisasi rangkaian dengan jumlah gerbang yang minimal/optimal.

Rangkaian digital yang ekivalen dengan persamaan logika

- Misalnya diketahui persamaan logika:
- x = A.B+C
- Rangkaiannya:

Urutan Operasi (Parentheses)

- Operasi bilangan biner hanya mengenal AND dan OR
- Jika terjadi operasi AND dan OR bersamaan tanpa ada kurung, maka yang didahulukan adalah AND
- Misal: x = A.B+C = (A.B)+C → A dan B diand-kan dulu, baru di-or-kan dengan C

Contoh rangkaian (dengan inverter)

$$x = A'BC(A+D)'$$

Tabel kebenaran rangkaian digital

- Merupakan list output rangkaian/ persamaan logika untuk seluruh kombinasi input
- Contoh: buatlah tabel kebenaran untuk rangkaian x = A'BC(A+D)'

Tabel kebenaran

D	С	В	А	A'	B.C	(A+D)'	x = A'BC(A+D)'
0	0	0	0	1	0	1	0
0	0	0	1	0	0	0	0
0	0	1	0	1	0	1	0
0	0	1	1	0	0	0	0
0	1	0	0	1	0	1	0
0	1	0	1	0	0	0	0
0	1	1	0	1	1	1	1
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	1	1	0	0
1	1	1	1	0	1	0	0

Sifat Aljabar Boolean

- Sifat komutatif
- Sifat Asosiatif
- Sifat Distributif

Sifat Komutatif

$$A = AB \equiv A = B$$

Sifat Asosiatif

$$A + (B + C) = (A + B) + C$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

Sifat Distributif

Teorema De Morgan

Theorem 1

$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$

Theorem 2

$$\overline{(x \cdot y)} = \overline{x} + \overline{y}$$

- -Teori De Morgan sangat berguna untuk disain rangkaian digital
- -Menggunakan teknik ini, gerbang AND dan OR bisa saling ditukar
- -Penukaran dilakukan dengan menambahkan gerbang NOT

Contoh:

X = A'+B', realisasi rangkaian:

- X=A'+B' sesuai de Morgan bisa diubah menjadi ekspresi AND sebagai berikut
- X=(A.B)', realisasi rangkaian

Universalitas gerbang AND

Fungsi-fungsi boolean bisa dibentuk menggunakan gerbang NAND

Universalitas gerbang NOR

Fungsi-fungsi boolean bisa dibentuk menggunakan gerbang NOR

Latihan

- Sederhanakan!
- a. y=AC' + ABC'
- b. Y=A'B'CD' + A'B'C'D'
- c. Y=A'D + ABD
- d. Y = (A' + B)(A + B)