Relational Model 1: Tables and Keys

Gary KL Tam

Department of Computer Science Swansea University The <u>relational model</u> is the *de facto* standard implemented in all the major database systems. It defines:

- 1 the format by which data should be stored;
- 2 the operations for querying the data.

We will focus on the first aspect in this lecture, leaving the second aspect to the next lecture.

A database conforming to the relational model is called a relational database.

Table, a.k.a. Relation

In a relational database, data are stored in tables.

PROF

pid	name	dept	rank	sal
<i>p</i> 1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

- Each row is also called a tuple.
- Each column is also called an attribute.
- The relation schema of a table is the set of its attribute names.
 - E.g., the schema of the above table is {pid, name, dept, rank, sal}.

Schema Examples

PROF						
pid	name	dept	rank	sal	. 1	
p1	Adam	CS	asst	6000		
p2	Bob	EE	asso	8000		
p3	Calvin	CS	full	10000		
p4	Dorothy	EE	asst	5000		
p5	Emily	EE	asso	8500		
p6	Frank	CS	full	9000		

CLASS							
cid title dept year							
c1	database	CS	2011				
c2	signal processing	EE	2012				
c1	database	CS	2012				

- optionally, attributes have domains; like types in a programming language
- A relation is a set of tuples, which means:
 - there can be no duplicate tuples (but in practise, commercial DBMSs allow duplicate rows)
 - order of the tuples doesn't matter
 - order of the attributes doesn't matter

- key: a set of attributes for which no two rows can have the same values
- Superkey
- Candidate key
- Primary key
- Foreign key

Superkey

Definition

Superkey: a set of one or more attributes whose combined values are unique. I.e., no two tuples can have the same values on these attributes.

- There may be more than one superkey.
- "Superkey" because it is a superset of some key.

Example

- In the PROF table (pid, name, dept, rank, sal) in Slide 3, {pid} is a key. Hence, all the following are super keys:
- {pid}, {pid, name}, {pid, dept}, {pid, rank, sal}, · · ·

Example

PROF	
------	--

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

Consider these superkeys and a new tuple to add to PROF

```
 \begin{array}{lll} \{ pid \} & - p1, \ Adam, \ CS, \ asso, \ 7000 \ (conflict \ with \ p1) \\ \{ name, \ dept \} - p6, \ Dorothy, \ EE, \ asst, \ 7000 \ (conflict \ with \ p4) \\ \{ pid, \ sal \} & - p5, \ Emily, \ EE, \ asst, \ 8500 \ (OKAY!) \\ \{ pid, \ sal \} & - p1, \ Markus, \ EE, \ asst, \ 8500 \ (OKAY!) \\ \end{array}
```

Candidate Key

Definition

In a table, a candidate key is a minimal set K of attributes such that no two tuples are allowed to be equivalent on all the attributes in K.

E.g., in the PROF table of the previous slide, if we set {pid} as a candidate key, then no two tuples can have the same pid.

- A candidate key is designated when the table is created.
- There can be multiple candidate keys.
 - E.g., if you want, you can specify {name} as another candidate key, but do you think it makes sense?
 - How about {dept, rank}?

Discussion

CLASS

cid	title	dept	year
<i>c</i> 1	database	CS	2011
<i>c</i> 2	signal processing	EE	2012

How would you set a candidate key?

- {cid}?
- {dept}?
- {title}?
- {year}?
- {title, year}?
- {cid, dept}?
- {cid, year}?

CLASS

cid	title	dept	year
<i>c</i> 1	database	CS	2011
<i>c</i> 2	signal processing	EE	2012
	•••		

Note

A university stores the whole history of its modules in the CLASS database/table.

Example cid(s): CS-250, EE-301, MA-101

Why important?

Can I set the candidate key { cid, dept, year } ?

Class						
cid	title	dept	year			
CS250	database	CS	2011			
EE101	signal processing	EE	2012			

Why important?

Can I set the candidate key { cid, dept, year } ?

Class					
cid	title	dept	year		
CS250	database	CS	2011		
EE101	signal processing	EE	2012		
CS300	Project Management	CS	2013		
CS300	Project Management	EE	2013		

Consider these? What do you see?

As a good practice, every table should have at least a candidate key, a convention that will be enforced in the rest of the course. This implies that no two tuples in the table can be entirely equivalent to each other (think: why?).

Choosing a key

- Need to know not just that there are no duplicates now, but that there in principle cannot be any.
- Is every relation guaranteed to have a key?
- Often we have to invent an artificial new attribute to ensure all tuples will be unique. Eg, NI number, ISBN number.
- A key is a kind of integrity constraint.

Primary Key

Primary key - one of the candidate keys chosen by DB designer.

Foreign Key

Definition

Let T and T' be two tables, and K a candidate key in T. If T' also contains K, then K is a foreign key of T' referencing T.

See the next slide for an example.

		PROF							
pid	name	dept	rank	sal			CLASS		
p_1	Adam	CS	asst	6000		Cid	title	dept	year
p2	Bob	EE	asso	8000		↑ c1	database	CS	2011
p3	Calvin	CS	full	10000		c2	signal processing	EΕ	2012
p4	Dorothy	EE	asst	5000		c1	database	CS	2012
p5	Emily	EE	asso	8500		1			
p6	Frank		full	9000					
				TEA	CE	1			
				pid cid	;	year			
				p1 $c1$		2011			
			_	p2 $c2$		2012			
			_	p1 $c1$		2012			

Suppose that PROF has a candidate key pid, and CLASS has a candidate key cid, year. Then

- {pid}: is a foreign key of TEACH referencing PROF.
- {cid, year}: is a foreign key of TEACH referencing CLASS.

PROF

pid	name	dept	rank	sal
p_1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p_4	Dorothy	EE	asst	5000
p5	Emily	ĒE	asso	8500
p6	Frank	CS	full	9000

		CLASS		
(cid	title	dept	year
4	c1	database	CS	2011
l	c2	signal processing	EΕ	2012
ĺ	c1	database	CS	2012

CT ACC

TEACH

pid	$\overline{\text{cid}}$	year
p1	c1	2011
p2	c2	2012
p1	c1	2012

These violate referential constraint (foreign key) in TEACH:

<p10, c1, 2012>

- p10 does not exist in PROF

<p2, c3, 2016>

- c3, 2016 does not exist in CLASS

Discussion

PROF

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p_5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

cid	title	\mathbf{dept}	year
c1	database	CS	2011
c2	signal processing	EE	2012
c1	database	CS	2012

TEACH

\mathbf{pid}	cid	year
p1	c1	2011
p2	c2	2012
p1	c1	2012

How would you designate a candidate key for TEACH?

Roadmap - next couple of lectures

- We will learn how to define a database's structure and write queries on it.
- We will learn these first in the relational model, then in SQL because:
- the relational model and algebra are the foundation for SQL
- other important concepts, like query optimization, are defined in terms of relational algebra

Important

FAQ

So far, we seem to pick the keys in a very ad-hoc way (by guessing/try-and-error). We will cover more theories (esp. functional dependencies in week7). After that, we will formally introduce "HOW" to define candidate keys properly. Stay tuned.

For today, make sure you understand:

- Definitions of: superkeys, candidate keys, primary keys, foreign keys
- The meaning of keys
- The use of keys

