Fluid Mechanics and Rate Processes: Tutorial 6

P1. Consider a steady, two-dimensional, incompressible flow of a Newtonian fluid with the velocity field u = -2xy, $v = y^2 - x^2$, and w = 0. (a) Does this flow satisfy conservation of mass? (b) Find the pressure field p(x, y) if the pressure at point (x = 0, y = 0) is equal to P_a .

P2. A constant-thickness film of viscous liquid flows in laminar motion down a plate inclined at angle θ , as in Fig. P2. The velocity profile is

$$u = C y (2h - y)$$
 and $v = w = 0$

Find the constant C in terms of the specific weight and viscosity and the angle θ . Find the volume flux Q per unit width in terms of these parameters.

Fig. P2

P3. For the fully developed laminar-pipe-flow solution (as discussed in class), find the axisymmetric stream function $\psi(r, z)$. Use this result to determine the average velocity V = Q/A in the pipe as a ratio of u_{max} .