	Cant	nuation ?	LEAR NO.
= -	A = define	PBA on JOLO	1. Matoconl s 2. make plot
	graph (A) teeps topology only not?	purial INuct	Like NIS
	biginformancs toolbox		3. find other note;
	glattice Mr. = give co-ords for	graph	4. reread on Meras
	wg Plot (adj, word, waryin (: 1)	slow, site etc	5. Andrews website
	1 stady states not in 1-node model	(just?)	
	2. are there other strady states? fsolve find out & divide		
	3. chimeras paper + look at parameters	alua	ys have a stable
	4. Lyapunov fo.?		val just be five
	5. see now diff. graphs modifies swact		a Hopf bif.
	6. analytic stability on graph system		7 7 7 7
	(paper on this masters.	.)	hyapunov fr. for
	7. "fragmented Landscapes":	av /	this fingives
	wave initiation of spandemental ena	02 247.	glubal stability
	image set (A) lattice adj. marrix		
	t 1		ade 15 s (10 10 10)
	<u> </u>		brevanas 5
	most chimero papers focus on latrices		pan II h decidy
	(recreate for random graph	12)	hive steps
	ponlocal/normal latices (10/20)		
	(perrolation theory P(1) - over 50°/0	cuts no longer.	connected)
>			
,	rand (4) < 0.9 (keep 90% of		
	-1 node lattice 2 ha		Inchronises)
	- complete graph of see	P SIM. Scme.	
	" how does spatial frequentation impact	erosustems"	
	chaos (n>2, RM n 3 2 but usually >		

			02/02/
chimeras not	attractors will go to on	ass or synthrong	
transi	ent phenomenon		
long time	behaviour t & e		
RMT messie	r than most papers		
1 2 3 4 4			
ecological	interpretation - research	spatial ewlogy	
math cont		1 11 11 12 12 1 12 1 12 1	
0-1 401	talante de timo catal de	And and MATIAR tile avelage and	0
() () () () () () () () () ()	alekcis lift time selles Chac	tic on MATLAB file exchange	
		(read convents first)	
	ft	ed to at a node to check	
		long sims.	
Corn	ell uni user guide		