LACP Port Channels/Etherchannels in Cisco

Creating and Managing Link Aggregation

© Dan Mill Training

This is a generic cheat sheet and not for a specific use case.

What is EtherChannel?

EtherChannel is Cisco's technology that allows you to bundle multiple physical links between switches into a single logical link. This provides increased bandwidth, redundancy, and load balancing while appearing as a single link to Spanning Tree Protocol.

Benefits of EtherChannel

- Increased Bandwidth Combine multiple links for higher throughput
- **Redundancy** If one link fails, traffic continues on remaining links
- Load Balancing Traffic distributed across multiple physical links
- **STP Optimization** Appears as single link to Spanning Tree Protocol
- No Convergence Delay Link failures don't trigger STP recalculation

EtherChannel vs Single Links

Single Link	EtherChannel
1Gbps usable	2Gbps usable
Total outage	Degraded performance
Multiple paths	Single logical path
None	Automatic
	1Gbps usable Total outage Multiple paths

EtherChannel Protocols

LACP (Link Aggregation Control Protocol)

- **IEEE 802.3ad standard** (industry standard)
- **Dynamic negotiation** between switches
- Automatic configuration and maintenance
- Better interoperability between vendors
- Recommended protocol for new deployments

PAgP (Port Aggregation Protocol)

- Cisco proprietary protocol
- Dynamic negotiation between Cisco switches only
- Legacy protocol LACP preferred
- Limited to Cisco devices

Static EtherChannel

- No negotiation protocol used
- Manual configuration on both ends
- Less flexible than dynamic protocols
- Used when protocol negotiation not desired

LACP Modes

LACP Channel Modes

Mode	Description	Behavior
active	Actively initiates LACP negotiation	Sends LACP packets
passive	Responds to LACP negotiation	Waits for LACP packets
on	Forces channel without LACP	No protocol negotiation
4		

LACP Mode Combinations

Switch A	Switch B	Result
active	active	✓ Channel forms
active	passive	✓ Channel forms
passive	passive	X Channel fails
on	on	✓ Channel forms (no LACP)
active	on	X Incompatible
4		

Basic LACP Configuration

Step 1: Create Port-Channel Interface

Switch(config)# interface port-channel 1

Switch(config-if)# description Link to Distribution Switch

Switch(config-if)# switchport mode trunk

Switch(config-if)# switchport trunk allowed vlan 10,20,30

Step 2: Configure Physical Interfaces

Switch(config)# interface range gigabit0/1-2
Switch(config-if-range)# description LACP to Distribution Switch
Switch(config-if-range)# switchport mode trunk
Switch(config-if-range)# switchport trunk allowed vlan 10,20,30
Switch(config-if-range)# channel-group 1 mode active

Complete Example Configuration

! Create Port-Channel interface interface port-channel 1 description LACP Bundle to Core Switch switchport mode trunk switchport trunk allowed vlan 10,20,30,40

! Configure member interfaces interface range gigabit0/1-4 description Member of Port-Channel 1 switchport mode trunk switchport trunk allowed vlan 10,20,30,40 channel-group 1 mode active

Verification and Troubleshooting

Essential Show Commands

View EtherChannel Summary

Switch# show etherchannel summary

Output Example:

Number of channel-groups in use: 1

Number of aggregators: 1

Group Port-channel Protocol Ports
-----+

1 Po1(SU) LACP Gi0/1(P) Gi0/2(P)

Detailed EtherChannel Information

Switch# show etherchannel 1 detail Switch# show etherchannel 1 port-channel

LACP-Specific Information

Switch# show lacp neighbor Switch# show lacp 1 neighbor detail Switch# show lacp 1 counters

Interface Status

Switch# show interfaces port-channel 1 Switch# show interfaces gigabit0/1 etherchannel

Port-Channel Flags

Flag	Meaning
S	Layer 2 (switched)
R	Layer 3 (routed)
U	In use (up)
D	Down
P	Bundled in port-channel
I	Stand-alone (individual)
н	Hot-standby
s	Suspended
4	• • • • • • • • • • • • • • • • • • •

Port Flags in EtherChannel

Flag	Meaning
P	Port is bundled and active
1	Port is individual (not bundled)
s	Port is suspended
н	Port is in hot-standby
D	Port is down
4	•

EtherChannel Requirements

Configuration Requirements

All ports must have identical configuration:

- Same VLAN configuration
- Same trunk/access mode

- Same speed and duplex
- Same spanning-tree settings

Physical requirements:

- Same media type
- Same cable length (within reason)
- Connected to same pair of switches

Common Configuration Mismatches

➤ VLAN mismatch - Different allowed VLANs ➤ Mode mismatch - Trunk vs Access mode ➤ Speed/Duplex mismatch - Different interface settings ➤ STP mismatch - Different spanning-tree configurations

Remember: All member interfaces in an EtherChannel must have identical configurations. Use LACP (active mode) for best interoperability and automatic negotiation. Always verify your EtherChannel status after configuration!

This document is part of the Cisco networking training materials by Dan Mill Training.