18.404 Recitation 6

Oct 9, 2020

Today's Topics

- Question: A_{TM} and a possibly infinite alphabet?
- Review: Recursion Theorem
 - \circ Proving A_{TM} is undecidable with Recursion Theorem
- A_{I BA} is decidable
- E_{I BA} is undecidable
- ALL_{PDA} is undecidable
- E_{2WAY-PDA} is undecidable
- Review: Closure Properties
- Review: Computability Class Relationships
- Review: Common Languages
- Review: Pumping Lemmas
- Bonus: B = { $0^i 1^j 2^k \mid i,j,k \ge 0$ and $i \ge k \text{ or } j \ge k$ }
 - B is a CFL
 - o B is not a regular language

Question: A_{TM} and possibly infinite alphabet

- TM alphabets are always finite
- So then how does A_{TM} recognize <M,w> when languages of M may differ from A_{TM} ?

- Trick: Encode alphabet of M into some fixed alphabet, say {0,1}
- Express kth symbol of M's alphabet as 0^k1 for example

Review: Recursion Theorem

Goal is to show that a TM can retrieve its own description

- Define function q: $\Sigma^* \to \Sigma^*$ such that:

 - o q on w returns description of TM that when run, prints w onto tape and halts.
 - Straightforward to see that such function can exist

Review: Recursion Theorem (cont.)

TM SELF has two parts, A and B

- 1. Run A = $\langle P_B \rangle$
- 2. Run B = "1. Compute q(tape contents) to get $\langle P_{tape contents} \rangle = \langle P_{B} \rangle = A$
 - 2. Prepend A to tape (currently has B) to get AB
 - 3. Halt with AB = <SELF> on tape"

Proving A_{TM} is Undecidable with Recursion Theorem

Proof by Contradiction: Assume some TM H decides A_{TM}

Consider TM R: (diagonalization argument)

R = "On input w

- Get own description <R>
- 2. Use H on $\langle R, w \rangle$ to determine whether R accepts w
- 3. Do opposite of what H returns"

If H were to exist, then we could create such a TM R. But such TM R may never exist!

A_{LBA} is Decidable

LBA has bounded tape, so bounded number of state configurations

```
# state configurations = |Q| \cdot w \cdot |\Gamma|^w
```

- S = "on input < L, w >
 - 1. Simulate L on w for |Q|*w*|Gamma|^w iterations
 - 2. Accept if simulation accepts
 Reject if simulation rejects or is not yet halted"

E_{LBA} is Undecidable

Goal: To create a LBA that only accepts a valid comp. history of M on w

Reduce A_{TM} to E_{LBA} problem $(A_{TM} \leq_m E_{LBA})$

Assume TM T decides E_{LBA} . Use T to create TM S which decides A_{TM}

- S = "on input < M, w >
 - 1. Create a LBA L which accepts only on comp. history M on w
 - Check if legal starting config for input w
 - Check if legal accepting config at the end
 - Check that all transitions Ci to Ci+1 are valid
 - 2. Use TM T on L
 - 3. If T accepts L, reject. Accept otherwise."

ALL_{PDA} is Undecidable

Goal: Create a PDA which accepts all non-valid comp. histories and all valid comp. histories EXCEPT M on w

Similar reduction and proof as for E_{IBA} . Use computation history method.

Assume TM T decides ALL_PDA.

- S = "on input < M, w >
 - 1. Create a P PDA which does not accept valid comp history M on w Non-det. branch to the following conditions:
 - Accept if starting config is NOT valid
 - Accept if ending config is NOT valid
 - Go to some point on tape. Push Ci onto the stack and compare against Ci+1. If NOT valid transition accept.
 - 2. Use TM T on P. If T accept, then reject. Otherwise, accept."

ALL_{PDA} is Undecidable

Similar reduction and proof as for E_{LBA} . Use computation history method.

18.404 -> 404.81

$$\# \underbrace{\longrightarrow}_{C_1} \# \underbrace{\longleftarrow}_{C_2^R} \# \underbrace{\longrightarrow}_{C_3} \# \underbrace{\longleftarrow}_{C_4^R} \# \cdots \# \underbrace{\longleftarrow}_{C_k} \#$$

Review: Closure Properties

Regular Languages	CFLs	
Closed	Closed	
	Not-Closed ■ Intersection ■ Negation Note: CFL ∩ Reg. lang. = CFL	

Review: Computability Class Relationships

Review: Common Languages

T-Decidable	T-Recognizable (undecidable)	T-coRecognizable (undecidable)	T-Unrecognizable (neither T-recog nor T-coRecog)
 A_{DFA} A_{NFA} E_{DFA} EQ_{DFA} A_{CFG} E_{CFG} 	 A_{TM} negate(EQ_{CFG}) HALT_{TM} 	 E_{TM} negate(A_{TM}) EQ_{CFG} 	 EQ_{TM} negate(EQ_{TM})

Review: Pumping Lemmas (Regular Language)

For every regular language, there exists a pumping number $p \ge 1$ such that every string of length at least p can be written as w=xyz and satisfies:

- $|y| \ge 1$
- |xy| ≤ p
- $(\forall n \ge 0) (xy^n z \in L)$

Review: Pumping Lemmas (CFLs)

For every CFL, there exists a pumping number $p \ge 1$ such that every string of length at least p can be written as s=uvxyz and satisfies:

- $(\forall n \ge 0) (uv^n xy^n z \in L)$
- |vy| ≥ 1
- |vxy| ≤ p

Note: Need to make sure that all slide-windows in the string that CANNOT be pumped!