

Agenda

Discussion Flow

- ➤ Stacking: Combining Multiple Models
- Python Pipelines : Structured approach to model deployment
- Pickle : Saving models for deployment
- > Flask API: Models to prediction APIs in Production

Stacking

Why do we need complex algorithms

- When are linear models not enough?
- Variable transformations
- Complex Algos : Capture complex non-linear patterns

Complex algos as data transformers

- A complex algo function f , models the trends in data X, such that y = f(x) + e
- Different algos (randomforest, boosting machines,
 SVM) capture different patterns in the data
- So far we tested many and selected just one
- We can consider f to be a data transformation algorithm such that result (prediction) is a linearly related to y
- Now that we have complex transformations of the data, we can use these as inputs to our linear model

Catch: Out of sample predictions

Cross Sampling to Rescue

Lets see it in action in Python

Python Pipelines

Current Approach

- Combine training and production data for data prep
- Or Copy the multiple lines of data prep step and make the production data go through it
- Scope of manual error grows
- Data processing steps are not reusable (code again for new problem)

Simple Pipeline

Pipeline with feature union

Lets see it in action in Python

Model In Production

Requirement For putting model in production

- Model building machines and production servers are separate
- Models can be saved and passed on to server
- No need to build model on server, they can be simply loaded
- Business process should be able to connect with server and get results to make decisions

Lets see it in action in Python

