Unidad III: Altavoz en Caja Bass Reflex Parte 2 Requerimientos para el Ducto

Recinto para Altavoces Prof. Ing. Andrés Barrera A.

1.1.- No producir ruido excesivo en señales de gran amplitud

- Reducir el ruido por turbulencia
- Ajustar el área transversal del ducto para limitar la velocidad lineal (límite 5% de c)

$$S_{V} \ge 0.8 f_{B} V_{D}$$

$$d_{V} \ge \sqrt{f_{B} V_{D}}$$

Con V_D = Sd xmáx (Volumen de aire peak desplazado por el diafragma)

2"x 5" Port Tubes.

Bass Reflex Parte 2

- 1.2.- Debe proveer la frecuencia f_B necesaria para el correcto ajuste del alineamiento.
- Una vez determinado d_V , es posible determinar el largo del ducto d_V a partir de:

$$f_B = \frac{1}{2\pi\sqrt{MapCab}}$$

$$L_V = \frac{c^2}{4\pi} \frac{a_V^2}{f_B^2 V_B} - 1,46a_V$$

Para ductos no circulares, debe determinarse el radio equivalente.

$$L_V = \frac{c^2}{4\pi} \frac{a_{Veq}^2}{f_B^2 V_B} - 1,46a_{Veq}$$

Bass Reflex Parte 2

1.3.- Evitar ductos muy angostos

$$\frac{L_V}{d_V} \le 2$$

Diameter	Length	SpkPort
6"	30.25"	9.75"
4"	12.3"	8.5"
3"	6.25"	8.0"

2.1.- Según Thiele (1961), el máximo largo del ducto está limitado a:

$$L_{V} \le \frac{\lambda}{12}$$

$$con \quad \lambda = \frac{c}{f_{S}}$$

ASEGURAR COMPORTAMIENTO DE MASA ACÚSTICA!!!

2.2.- El ducto debe ubicarse al menos a 1 diámetro de los límites en la cara frontal, para asegurar que el extremo exterior de la masa acústica esté efectivamente en pantalla infinita.

$$L_V = \frac{c^2}{4\pi} \frac{a_V^2}{f_B^2 V_B} - 1,46a_V$$

$$L_V = \frac{c^2}{4\pi} \frac{a_V^2}{f_B^2 V_B} - 1,22a_V$$

2.3.- Es recomendable que el diámetro del ducto sea lo más grande posible, para evitar comportamientos no lineales.

Dickason (2008)

$$a_V \ge \frac{a}{3}$$

donde a:radio de piston del altavoz

LOUDSPEAKER DESIGN COOKBOOK

FIGURE 2.14

_	.093	1W 28	. 7	C 6"	Yent
****	:083	5W 33	. 4	C 6"	Veni
	:083	10 W 4	1.7	C 6"	Yent
	:083	20W 5	B.5	Ç Ø.	Vent
	-083	40W 0	1 7	C 0"	

FIGURE 2.20

--- : OB3 1W 25.7 C 2" Vent --- : OB3 5W 33 4 C 2" Vent --- : OB3 10W 41.7 C 2" Vent --- : OB3 20W 58.5 C 2" Vent --- : OB3 40W 91.7 C 2" Vent

2.4.- Ubicación del ducto

2.5.- Acoplamiento Mutual de Masas (de Radiación, entre altavoz y ducto)

Efectos:

- i) Desajuste de fB
- ii) Excitar las frecuencias de resonancia del ducto

Criterio de Small

$$d_{ducto-altavoz} \ge 1,5a$$

donde a: radio de piston del altavoz

3.- Dos ductos

$$Map_{EQ} = \frac{Map1 \cdot Map2}{Map1 + Map2}$$

3.- Dos ductos

$$Map_{EQ} = \frac{Map1 \cdot Map2}{Map1 + Map2}$$

Si los ductos son iguales (Map1 = Map2 = Map) y despreciando la corrección de extremo:

$$Map_{EQ} = \frac{Map}{2} \Leftrightarrow \frac{L_{Veq}}{S_{Veq}} = \frac{L_{Veq}}{2S_{Veq}}$$

$$\downarrow L_{Veq} \Rightarrow S_{Veq} = 2S_{Veq} \Leftrightarrow a_{Veq} = \sqrt{2}a_{Veq}$$

$$S_{Veq} \Rightarrow L_{Veq} \Rightarrow$$

4.- Potencias Limitadas por Desplazamiento

Expresión aproximada (Small)

$$Par_{(VB)PROGRAM} = 3.0 \cdot f_3^4 V_D^2$$

TG9FD10-04

- 3 1/2" Full Range
- · NRSC Glass Fiber Cone
- Copper cap on pole piece
- · Polymer Chassis
- Frequency Response 100Hz to 10kHz
- Flange 98mm Square
- · Cut-out 78.5mm
- Depth 38mm
- Flange Thickness 3.2mm

Znom	4 ohn	n Sd	38	cm ²
Re	3.2 ohn	n BL	2.4	Tm
Le@1kHz	0.12 mH	Vas	3.15	Itrs
fs	82 Hz	Xmax	2.6	mm peak
Qms	2.90	VC Ø	20	mm
Qes	0.70	Sensitivity		
Qts	0.56	2.83V / 1m	85.5	dB
Mms	2.45 g	Nom. Power DIN	١ -	W
Rm	- Ns/i	m Magnet weight	105	g

Diseñar Caja Bass Reflex

Diseño Bass Reflex

$$H = 0.7162 \rightarrow f_B = 58.7[Hz]$$

Alineamiento C4 (QL = 15; QTS = 0.56):

$$\alpha = 0.4065 \rightarrow Vb = 7.7[L]$$

$$\frac{f_3}{f_S} = 0.6101 \rightarrow f_3 = 50[Hz]$$

Restricciones del Ducto
$$a = \sqrt{\frac{Sd}{\pi}} = 3.5[cm] \Rightarrow a_V \ge \frac{a}{3} = 1.2[cm]$$

$$d_V \ge \sqrt{f_B V_D} = 2.4[cm] \Rightarrow a_V \ge \frac{d_V}{2} = 1.2[cm]$$

Longitud del ducto (para av = 1.2cm)

$$L_V = \frac{c^2}{4\pi} \frac{a_V^2}{f_R^2 V_R} - 1,46a_V = 3.3[cm] \quad (L_V / d_V = 1.4)$$

$$L_V = \frac{c^2}{4\pi} \frac{a_V^2}{f_P^2 V_P} - 1,22a_V = 3.6[cm] \quad (L_V / d_V = 1.5)$$

Diseño Bass Reflex

$$\sqrt[3]{Vb} = 20[cm]$$

Dimensionamiento (Regla de Oro)

$$ancho = 20[cm]$$

$$profundidad = 0.6 \cdot 20 = 12[cm]$$

$$alto = \frac{Vb}{ancho \cdot prof} = 33[cm]$$

Restricciones de posicionamiento

Acoplamiento mutual
$$d_{altavoz-ducto} \ge 1,5a = 5.2[cm]$$

Distancia a los bordes
$$d_V \ge 2.4[cm]$$

Profundidad mínima caja
$$Lv + 3'' = 10.8[cm]$$

Longitud máxima ducto
$$Lv \le \frac{\lambda_S}{12} = 35[cm]$$

Diseño Bass Reflex

$$\sqrt[3]{Vb} = 20[cm]$$

Dimensionamiento (Regla de Oro)

$$ancho = 20[cm]$$

$$profundidad = 0.6 \cdot 20 = 12[cm]$$

$$alto = \frac{Vb}{ancho \cdot prof} = 33[cm]$$

Restricciones de posicionamiento

Acoplamiento mutual
$$d_{altavoz-ducto} \ge 1,5a = 5.2[cm]$$

Distancia a los bordes
$$d_V \ge 2.4[cm]$$

Profundidad mínima caja
$$Lv + 3'' = 10.8[cm]$$

Longitud máxima ducto
$$Lv \le \frac{\lambda_S}{12} = 35[cm]$$

Modelo en WinISD Beta 0.44

