Insight Report: Analyzing School Learning Outcomes

Objective

This report presents findings from a multivariate analysis of government school performance data across three districts. The goal was to identify key factors influencing Math scores and segment schools to target interventions more effectively.

Step 1: Feature Description

```
%_Language_Score - Average language score
```

% Science Score - Average science score

Teacher_Student_Ratio - Number of students per teacher

Avg_Teacher_Experience_Years - Teacher experience in years

Teacher_Trainings_Attended - Training sessions attended

Electricity Available - Binary: 1 = yes, 0 = no

Internet_Available - Binary: 1 = yes, 0 = no

Library Available - Binary: 1 = yes, 0 = no

% Marginalized Students - Share of marginalized students

% Students With Home Internet - Share of students with internet at home

Parent Literacy Rate - Parental literacy level.

Step 2: Data Preprocessing

- Dropped rows with missing % Math Score
- Filled missing:
 - Teacher_Student_Ratio with median
 - Internet Available with 0
 - Parent_Literacy_Rate with Block-wise mean, then overall median
- Converted categorical features to appropriate types
- Normalized numerical features using StandardScaler.

Step 3: Multiple Linear Regression

- Target: %_Math_Score
- Strong predictors:
 - **Positive**: %_Science_Score, %_Language_Score, Parent_Literacy_Rate
 - Negative: Teacher Student Ratio, % Marginalized Students
- Interpretation: Parental education and strong teaching environment drive better math performance.

Step 4: Clustering with KMeans

- KMeans applied with **k** = **3** (based on Silhouette Score)
- Resulting clusters:
 - **Cluster 0**: High-performing schools, better infrastructure
 - Cluster 1: Moderate performance, mixed infrastructure
 - **Cluster 2**: Low-performing, rural, higher marginalization

Step 5: Principal Component Analysis (PCA)

- Used for dimensionality reduction and visualization
- PCA showed clear cluster separation on 2D plot
- Helped confirm the strength of clustering structure

Highlights:

1. Correlation Highlights

Correlation analysis showed:

- Strong positive correlation between Math scores and Science/Language scores
- Moderate positive link between Math scores and Parent Literacy Rate
- Weak or negative correlation with Teacher-Student Ratio and % Marginalized Students

2. Key Insights by Cluster

- Cluster 0 schools are typically urban with better infrastructure and outcomes
- Cluster 2 schools are mostly rural, with lower access to internet, toilets, and libraries
- Parent literacy and home internet access are major differentiators across clusters

Recommendations

- Focus infrastructure development in Cluster 2 regions (rural blocks lacking basics)
- -Promote parent literacy initiatives and community learning programs
- -Boost digital access through local internet hubs or tablet provisions
- -Invest in teacher training in high student-load areas (high T-S ratio)

Appendix: Key Visualizations

Conclusion:

This multivariate analysis revealed key drivers of math performance in schools. PCA and clustering helped segment schools meaningfully. Targeted interventions should focus on:

- Improving basic infrastructure (Cluster 2)
- Promoting parental education and digital access
- Supporting marginalized groups with focused educational programs