BAB 2

LANDASAN TEORI

2.1 State of the Art

Penelitian ini dilakukan dengan mempertimbangkan hasil dari beberapa studi terdahulu yang berhubungan sistem kendali pada gerak robot dengan topik meliputi kendali *Proportional Integral Derivative* (PID), Logika Fuzzy, dan metode tuning PID dengan Ziegle-Nichols. Berbagai studi terdahulu yang membahas topik yang relevan dapat ditemukan pada Tabel 1 di bawah ini.

Tabel 2.1 State of the Art Penelitian

No.	Judul Jurnal	Tipe	Ringkasan	
1.	Li, X., & Choi, B. J.	Algoritma	Implementasi sistem	
	(2013). Design of Obstacle	Logika Fuzzy	logika fuzzy untuk	
	Avoidance System For	untuk	mengontrol	
	Mobile Robot Using Fuzzy	menghindari	kecepatan sudut roda	
	Logic Systems.	rintangan.	pada <i>mobile robot</i>	
	International Journal of		agar dapat	
	Smart Home, 7(3), 321-		menghindari	
	328.[10]		rintangan yang cukup	
			efektif dengan waktu	
			tempuh yang cepat di	
			lingkungan yang	
			tidak diketahui.	
2.	A. Pandey dan D. R. Parhi,	Logika fuzzy	Penggunaan sistem	
	"Autonomous mobile robot	dengan tipe	inferensi Takagi-	
	navigation in cluttered	Takagi-	Sugeno pada	
	environment using hybrid	Sugeno.	penentuan keputusan	
	Takagi-Sugeno fuzzy		arah gerak robot	
	model and simulated		berupa sudut dan	
	annealing algorithm		Simulated Annealing	
	controller," World Journal		Algorithm (SAA)	

	(F) : 1.12		11, 1
	of Engineering, vol. 13, no.		diterapkan untuk
	5, hlm. 431–440, 2016.		mencari sudut
	[11]		kemudi yang optimal
			dari mobile robot
			dengan
			menggunakan fungsi
			fitness dengan hasil
			waktu lebih cepat
			dibandingkan hanya
			menggunakan logika
			fuzzy saja.
3.	Pratama, D., Ardilla, F.,	Sistem kendali	Sistem kendali PID
	Binugroho, E. H., &	PID pada	yang digunakan
	Pramadihanto, D. (2015,	sensor IMU.	untuk mengoreksi
	August). Tilt set-point		kemiringan pada
	correction system for		balancing robot dari
	balancing robot using PID		hasil pembacaan
	controller. In 2015		sensor IMU. Kendali
	International Conference		PID dapat menjaga
	on Control, Electronics,		keseimbangan robot
	Renewable Energy and		dengan rata-rata
	Communications		waktu yang
	(ICCEREC) (pp. 129-135).		dibutuhkan kembali
	IEEE.[12]		ke kondisi steady
			state setelah sistem
			menerima muatan
			adalah 1,13 detik.
4.	D. Diana, Amperawan, dan	Algoritma PID	Implementasi sensor
	J. Al Rasyid,	pada sensor	kompas pada gerak
	"Implementasi Sensor	Inertial	robot Micromouse
	Compas HMC5883L	Measurement	agar dapat bergerak
	Terhadap Gerak Robot	Unit (IMU).	secara stabil dan

Micromouse dengan akurat menggun Menggunakan Algoritma algoritma PID.	- 1
Menggunakan Algoritma PID.	iakan
PID," Jurnal Teknik	
Elektro, vol. 6, no. 2, hlm.	
120–124, Jul 2017. [13]	
5. Abidin, A. Z., Mardiyanto, Tuning PID Penggunaan me	etode
R., & Purwanto, D. (2016, dengan Ziegler-Nichols	
July). Implementation of Metode untuk tu	ıning
PID controller for hold Ziegler- parameter PID	pada
altitude control in Nichols. stabilisasi p	osisi
underwater remotely kendaraan bawa	h air
operated vehicle. In 2016 menggunakan se	ensor
International seminar on IMU.	Hasil
intelligent technology and membuktikan ba	ahwa
its applications (ISITIA) overshoot lebih l	kecil,
(pp. 665-670). IEEE.[14] akurasi steady-	-state
lebih tinggi	dan
waktu penyesi	uaian
lebih kecil.	
6. A. E. Akbar, Metode Sistem navigasi	wall
6. A. E. Akbar, Metode Sistem navigasi "Implementasi Sistem Tuning PID following	wall
	wall
"Implementasi Sistem Tuning PID following	
"Implementasi Sistem Tuning PID following Navigasi Wall Following dengan menggunakan	ngan
"Implementasi Sistem Tuning PID following Navigasi Wall Following dengan menggunakan Menggunakan Kontroler Ziegler- kontroler PID de	ngan silasi
"Implementasi Sistem Tuning PID following Navigasi Wall Following dengan menggunakan Menggunakan Kontroler Ziegler- kontroler PID de PID Dengan Metode Nichols 2. metode tuning o Tuning Pada Robot Kontes	ngan silasi
"Implementasi Sistem Tuning PID following Navigasi Wall Following dengan menggunakan Menggunakan Kontroler Ziegler- kontroler PID de PID Dengan Metode Nichols 2. metode tuning o Tuning Pada Robot Kontes	ngan silasi dapat
"Implementasi Sistem Navigasi Wall Following dengan menggunakan Menggunakan Kontroler PID Dengan Metode Nichols 2. metode tuning of Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior Tuning Pid Metode Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior	ngan silasi dapat
"Implementasi Sistem Navigasi Wall Following dengan menggunakan Menggunakan Kontroler PID dengan Metode PID Dengan Metode Nichols 2. metode tuning of Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior Beroda," Jurnal Tuning PID following menggunakan kontroler PID dengan Metode Nichols 2. metode tuning of Ziegler-Nichols Metode ini of mempercepat putuning PID tuning PID to	ngan silasi dapat roses
"Implementasi Sistem Navigasi Wall Following dengan menggunakan Menggunakan Kontroler PID dengan Metode PID Dengan Metode Nichols 2. metode tuning of Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior Beroda," Jurnal Tuning PID following menggunakan kontroler PID dengan Metode Nichols 2. metode tuning of Ziegler-Nichols Metode ini of mempercepat putuning PID tuning PID to	ngan silasi dapat roses tanpa ewati
"Implementasi Sistem Navigasi Wall Following dengan menggunakan Menggunakan Kontroler PID dengan Metode PID Dengan Metode Nichols 2. metode tuning of Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior Beroda," Mahasiswa Teknik Elektro Tuning PID following menggunakan kontroler PID dengan Metode ini of metode tuning of tuning PID tuning PID tuning PID tuning PID to harus melocity.	ngan silasi dapat roses tanpa ewati

			bernavigasi dengan	
			aman, halus,	
			responsif dan cepat.	
7.	Barakat, M. H., Azar, A.	Penggabungan	Penelitian	
	T., & Ammar, H. H.	logika fuzzy	menggunakan logika fuzzy untuk self-	
	(2020). Agricultural	dan kendali		
	Service Mobile Robot	PID pada	tuning pada	
	Modeling and Control	sensor IMU.	parameter PID untuk	
	Using Artificial Fuzzy		penentuan sudut	
	Logic and Machine Vision.		sensor IMU.	
	In The International		Pengontrol PID	
	Conference on Advanced		Fuzzy self-tuning	
	Machine Learning		menunjukkan	
	Technologies and		overshoot kecil dan	
	Applications		akurasi yang lebih	
	(AMLTA2019) 4 (pp. 453-		tinggi untuk	
	465). Springer		mencapai target.	
	International			
	Publishing.[16]			

Berdasarkan tabel 2.1 di atas, penelitian ini mengacu pada penelitian terdahulu yang diteliti oleh Xi Li dan Byung-Jae Choi dengan judul "Design of Obstacle Avoidance System for Mobile Robot Using Fuzzy Logic Systems" [10]. Penelitian tersebut membahas tentang desain sistem navigasi *mobile robot* menggunakan logika fuzzy untuk menghindari rintangan. Sensor ultrasonik digunakan untuk mendeteksi jarak objek atau rintangan dengan posisinya. Sistem logika fuzzy digunakan untuk mengendalikan kecepatan sudut roda kiri dan kanan. Peneliti mengusulkan tabel aturan baru yang diinduksi dari pertimbangan jarak dengan rintangan dan sudut antara robot dengan target. Hasil simulasi menunjukkan bahwa metode yang diusulkan menghasilkan lintasan yang baik dengan menghindari rintangan dan memiliki waktu tempuh yang lebih cepat.

Penelitian ini menawarkan keterbaharuan yang membedakan dengan penelitian sebelumnya tentang penggabungan kendali Fuzzy dan PID. Penelitian ini mengimplementasikan gabungan sistem kendali yaitu Logika Fuzzy sebagai penentu arah gerak robot dengan akurat, sedangkan PID untuk mencapai kestabilan yang optimal setelah mendapat arah gerak robot tersebut.

2.2 Sistem Kendali Logika Fuzzy

Logika Fuzzy merupakan pengembangan dari logika Boolean oleh Lotfi Zadeh pada tahun 1965, yang didasarkan pada teori matematika himpunan fuzzy, yang merupakan generalisasi dari teori himpunan klasik. Konsep derajat dalam verifikasi suatu kondisi diperkenalkan dalam logika fuzzy, sehingga kondisi dapat dinyatakan dalam keadaan selain benar atau salah, dengan demikian logika fuzzy memberikan fleksibilitas yang sangat berharga dalam penalaran. Logika fuzzy memungkinkan ketidakakuratan dan ketidakpastian dapat diperhitungkan, sehingga memberikan kemampuan untuk memecahkan masalah yang kompleks [17].

Tahapan-tahapan dalam menyusun logika fuzzy ditunjukkan pada Gambar 2.1 struktur kontrol fuzzy.

Gambar 2.1 Struktur Kontrol Fuzzy

Tahap awal dalam logika fuzzy adalah mengenali variabel input dan output dalam bentuk linguistik dan mendefinisikan himpunan fuzzy yang sesuai (inisialisasi). Fuzzifikasi atau klasifikasi fuzzy adalah proses mengubah data yang jelas menjadi variabel fuzzy dengan menggunakan fungsi keanggotaan (*set fuzzy*). Dalam proses ini, data dikonversi menjadi himpunan fuzzy dengan menentukan derajat keanggotaan untuk setiap

himpunan fuzzy yang diidentifikasi. Proses ini memungkinkan data yang tidak terdefinisi dengan jelas untuk digunakan dalam penalaran logika fuzzy. Dengan demikian, fuzzifikasi memungkinkan kita untuk memasukkan ketidakpastian dan ketidakakuratan ke dalam sistem logika [18].

Defuzzifikasi adalah proses konversi dari suatu besaran fuzzy menjadi nilai numerik yang dapat digunakan sebagai output pengendali dalam suatu sistem. Dalam pengaturan sistem, keluaran pengendali harus berupa nilai diskrit. Defuzzifikasi diperlukan untuk mengubah hasil fuzzy menjadi nilai keluaran yang tepat. Nilai keluaran dihitung dengan menjumlahkan hasil perkalian keanggotaan himpunan masukan untuk setiap masukan dengan nilai keluaran yang sesuai. Kemudian, hasil perkalian tersebut dibagi dengan jumlah dari perkalian keanggotaan himpunan masukan untuk setiap masukan [19].

2.3 Logika Fuzzy dengan Model Takagi-Sugeno-Kang

Fuzzy Takagi-Sugeno-Kang (TSK) adalah salah satu teknik logika fuzzy yang dapat digunakan untuk memodelkan sistem kontrol dengan respon yang ideal. Metode ini menggabungkan model linier dan nonlinier untuk menyelesaikan masalah sistem yang kompleks dan tidak dapat diprediksi [20]. Model fuzzy tipe Sugeno karena ini bekerja dalam teknik pembelajaran adaptif dan lebih kompak dan efisien secara komputasi [11]. Konsep fuzzy TSK yaitu pada keluaran dari sistem fuzzy ini berbentuk himpunan fuzzy singleton. Pada proses inferensi fuzzy TSK memiliki basis aturan dalam bentuk serangkaian ungkapan "Jika-Maka" [21].

a) Fungsi Keanggotaan (Membership Function)

Fungsi keanggotaan (*membership function*) merupakan sebuah kurva yang memetakan setiap nilai input ke suatu nilai keanggotaan dengan rentang antara 0 hingga 1. Untuk mendapatkan nilai keanggotaan tersebut, dapat digunakan pendekatan fungsi. Terdapat beberapa jenis fungsi yang bisa digunakan, seperti [22]:

1. Representasi Kurva Linier Naik

Gambar 2.2 Representasi Kurva Linier Naik

$$\mu_{\tilde{A}}(x) = \begin{cases} 0 & x < a \\ \frac{x - a}{b - a} & a \le x \le b \\ 1 & x > b \end{cases}$$
 (1)

2. Representasi Kurva Linier Turun

Gambar 2.3 Representasi Kurva Linier Turun

$$\mu_{\tilde{A}}(x) = \begin{cases} 1 & x < a \\ \frac{b-x}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$
 (2)

3. Representasi Kurva Segitiga:

Gambar 2.4 Representasi Kurva Segitiga

$$\mu_{\tilde{A}}(x) = \begin{cases} 0 & x \le a \text{ atau } x > c \\ \frac{x - a}{b - a} & a \le x \le b \\ \frac{c - x}{c - b} & b \le x \le c \end{cases}$$
(3)

- b) Aturan fuzzy dalam model Takagi-Sugeno-Kang Jika x_1 adalah A_{i1} , x_2 adalah A_{i2} , x_3 adalah A_{i3} , maka f_i adalah a_i (4)
- c) Defuzzifikasi untuk varibel diskrit (singleton)

$$z^* = \frac{\sum_{j=1}^n z_j \mu(z_j)}{\sum_{j=1}^n \mu(z_j)}$$
 (5)

2.4 Sistem Kendali *Proportional Integral Derivative* (PID)

Sistem Kendali PID adalah sistem kendali yang memanfaatkan tiga komponen utama untuk mencapai stabilitas dan kinerja optimal pada sistem kendali. Komponen-komponen atau parameter-parameter kendali PID tersebut meliputi *Proportional* (P), *Integral* (I), dan *Derivative* (D) [13]. Pada umumnya parameter sistem kendali PID digunakan secara bersama, namun dapat juga digunakan secara terpisah karena setiap parameter memiliki keunggulan dan kekurangan tersendiri seperti aksi kontrol *proportional* dapat mempercepat *rise time* (waktu naik), aksi kontrol *integral* dapat memperkecil kesalahan (error), serta aksi kontrol *derivative* dapat mengurangi *overshoot* atau *undershoot* [23].

Cara kerja sistem kendali PID adalah dengan membandingkan sinyal masukan (*input*) dengan sinyal *set point* (nilai yang diinginkan) dan menghasilkan sinyal keluaran (*output*) yang membantu mengatur sistem untuk mencapai *set point* yang diinginkan. Perhitungan sistem kendali PID melibatkan rumus matematis yang menggabungkan tiga komponen untuk menghasilkan sinyal *output* yang optimal. Sistem kendali PID digunakan dalam berbagai aplikasi, seperti kontrol suhu, kontrol posisi, dan kontrol kecepatan [24].

Persamaan matematis pada penggabungan parameter sistem kendali PID dapat dirumuskan:

$$U(t) = K_p e(t) + K_I \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$
 (6)

Persamaan 1 menyatakan bahwa nilai u(t) yang dihasilkan adalah hasil penjumlahan dari tiga faktor yaitu gain proportional (Kp), gain integral (Ki), dan gain derivative (Kd), dimana masing-masing faktor dipengaruhi oleh waktu (t) dan kesalahan (error).

a) Kontrol *Proportional* (P)

Kontrol proporsional dari kontrol PID menghasilkan sinyal kontrol yang sebanding dengan error atau perbedaan antara setpoint dan nilai aktual sistem. Proporsional memberikan respons yang lebih cepat pada perubahan besar dalam error karena mengeluarkan sinyal keluar sebesar konstanta pengalinya [25].

b) Kontrol Integral (I)

Pengontrol integral memiliki peran penting untuk menghilangkan kesalahan *steady-state* pada sebuah sistem kontrol. Tanpa adanya unsur integrator dalam *plant* (1/s), pengontrol proporsional tidak akan dapat memberikan respon yang akurat pada output sistem, sehingga penggunaan pengontrol integral menjadi penting untuk memastikan output sistem sesuai dengan respon yang diinginkan. Oleh karena itu, penggunaan pengontrol integral secara efektif dapat meningkatkan

performa sistem kontrol, terutama pada plant yang memerlukan penyesuaian jangka panjang untuk mencapai setpoint yang diinginkan.

c) Kontrol *Derivative* (D)

Pengontrol derivatif bekerja dengan menggunakan kecepatan perubahan sinyal error sebagai parameter pengendali. Jika tidak terdapat perubahan dalam sinyal kesalahan, maka pengontrol derivatif tidak akan memberikan perubahan pada output sistem. Dengan kata lain, kontrol derivatif hanya memberikan pengaruh ketika terjadi perubahan pada error, sehingga penting untuk memastikan bahwa parameter pengontrolnya diatur dengan tepat agar memberikan respon yang optimal pada sistem.

2.5 Metode Tuning PID dengan Ziegler-Nichols

Tuning parameter pada kontrol PID merupakan proses penting untuk menentukan nilai-nilai optimal dari parameter-parameter kontrol seperti Kp, Ki, dan Kd. Selain itu, tuning parameter ini juga dapat mencakup penyetelan terhadap parameter lainnya seperti *time sampling*, penentuan *set point*, dan lain-lain.

Ada beberapa metode tuning PID yang umum digunakan dalam pengendalian sistem, salah satunya adalah Ziegler-Nichols. Pada tuning PID dengan menggunakan Ziegler-Nichols terdapat dua cara yaitu metode kurva reaksi dan metode osilasi (siklus kontinu). Metode yang digunakan pada penelitian ini yaitu metode osilasi (siklus kontinu).

Metode osilasi Ziegler-Nichols ini menggunakan pendekatan *trial and error* untuk mencari parameter Kp, Ti, dan Td. Langkah-langkah metode osilasi ini yaitu sebagai berikut [26]:

- 1. Buat sebuah sistem loop tertutup dengan memasukkan kontroler P dan plant ke dalamnya.
- Setelah itu, dengan menggunakan kontrol proporsional dengan nilai Ki =
 0 dan Kd = 0 nilai tersebut ditingkatkan dari nol sampai ke nilai kritis

Kcr, sehingga mengakibatkan keluaran sistem mengalami osilasi yang berkelanjutan dengan amplitude yang kurang lebih konsisten [27].

Gambar 2.5 Osilasi Ziegler-Nichols

- 3. Berdasarkan keluaran osilasi yang berkelanjutan tersebut, penguatan kritis Kcr dan periode Pcr dapat ditentukan.
- 4. Menghitung nilai Kp, Ti, dan Td sesuai yang ditunjukkan Tabel 2.2 parameter metode osilasi Ziegler-Nichols.

Type of Controller	K_p	T_i	T_d
P	$0.5K_{cr}$	8	0
PI	$0.45K_{cr}$	$\frac{1}{1.2}P_{cr}$	0
PID	0.6K _{cr}	$0.5P_{cr}$	$0.125P_{cr}$

Tabel 2.2 Tabel Ziegler-Nichols 2

5. Nilai Ki dan Kd didapatkan dengan perhitungan sebagai berikut:

$$Ki = \frac{Kp}{Ti} \tag{7}$$

$$Kd = Kp \times Td \tag{8}$$

2.6 Inertial Measurement Unit (IMU)

Inertial Measurement Unit (IMU) adalah perangkat elektronik yang terdiri dari beberapa sensor yang digunakan untuk mengukur dan memberikan orientasi objek, percepatan, kecepatan, perpindahan, laju sudut, dan sudut rotasi menggunakan akselerometer dan giroskop [28]. Jenis IMU ini terdiri dari akselerometer dan giroskop, dimana setiap sensor memiliki dua

hingga tiga derajat kebebasan untuk sumbu x, y, dan z seperti yang ditunjukkan pada Gambar 2.6.

Gambar 2.6 Roll (x), Pitch (y), dan Yaw (z) pada sensor IMU

Dengan menggabungkan kedua sensor, akan didapatkan empat hingga enam *Degree of Freedom* (DOF). Data percepatan dari akselerometer dan kecepatan sudut dari giroskop diambil secara terpisah dan kemudian dikalibrasi untuk mendapatkan data keluaran yang lebih akurat seperti pada Gambar 2.7. Dari kedua sensor tersebut, sudut dapat diukur sehingga kedua data dapat dipadukan dan disesuaikan agar hasilnya lebih akurat.

Gambar 2.7 IMU berdasarkan dua jenis sensor Sumber: Ahmad dkk. 2013 [29]

IMU jenis ini memiliki keunggulan yaitu dapat digunakan tanpa terpengaruh oleh medan magnet luar pada sensor ketika ditempatkan dekat dengan bahan feromagnetik. Namun, hanya mengandalkan akselerometer dan giroskop saja tidak cukup untuk meningkatkan akurasi pengukuran karena adanya kebisingan sensor dan masalah drift giroskop (kesalahan pengukuran pada sensor giroskop) [29].