TP théorique réseau de neurones

Adrien CHAN-HON-TONG - ENSTA 2019/2020

1 neurone

Ce TP porte sur la classification binaire de point 2D $x \in \mathbb{R}^2$ et $y(x) \in \{-1,1\}$. Montrer qu'il est possible d'apprendre par coeur la base de données ((1,1),1), ((-1,-1),-1) avec 1 neurones sans biais.

Est-il possible d'apprendre par coeur la base de données ((0,1),1), ((0,-1),1), ((1,0),-1), ((-1,0),-1) avec 1 neurones sans biais?

2 couches de neurones

Est-il possible d'apprendre par coeur la base de données ((0,1),1), ((0,-1),1), ((1,0),-1), ((-1,0),-1) avec le réseau ci dessous (sans biais - activation = relu)?

Si oui, dessinez les zones classées comme 1 et celles classées comme -1.

Même question avec la base de données suivante ((0,2),1), ((0,-2),1), ((2,0),1), ((-2,0),1), ((0,0),-1) avec le réseau ci dessous (sans biais - activation = relu)?

2 couches de neurones avec biais

Considérons encore la base de données ((0,2),1), ((0,-2),1), ((2,0),1), ((-2,0),1), ((0,0),-1), ainsi que les 2 réseaux

$$f(x) = relu(x_1) + relu(-x_1) + relu(-x_2) + relu(x_2) - 1$$

$$f(x) = relu(x_1 - x_2) + relu(x_2 - x_1) - 1$$

Dessinez les zones classées comme 1 et celles classées comme -1. Voyez vous pourquoi cette base est un contre exemple classique à l'affirmation moins de paramètre implique plus de généralité? Attention, cette affirmation est néanmoins une ligne directrice très importante.