EE378B Statistical Signal Processing

K-Means

Andrea Montanari

Lecture 1-4 - Due on 1/23/2017

The K-Means algorithm

K-Means is a simple and popular greedy algorithm for data clustering. Nowadays it is most commonly used in conjunction with spectral, or convex optimization methods, as a rounding procedure. For instance, spectral methods are used to construct a low-dimensional embedding and K-Means is then applied to construct the clusters.

The input to K-Means are items $x_1, x_2, \ldots, x_n \in \mathcal{X}$ (most often $\mathcal{X} = \mathbb{R}^d$, but the items can also be images, customers, and so on). The output is a partition of these items in k groups, or equivalently a labeling $\sigma \in [k]^n$. For instance, $\sigma_i = 3$ means that item i belongs to cluster 3.

K-Means attempts at at minimizing the following cost function over σ and $c = (c_1, c_2, \dots, c_k), c_\ell \in \mathcal{X}$:

$$\mathcal{L}(\boldsymbol{\sigma}, \boldsymbol{c}) \equiv \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{x}_i, \boldsymbol{c}_{\sigma(i)}). \tag{1}$$

Here $\ell: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a measure of distance between items (but does not need to be a distance function) and c_{σ} can be interpreted as the center of cluster σ . The cost function $\mathcal{L}(\boldsymbol{\sigma}, \boldsymbol{c})$ is the average distance between datapoints and the center of their cluster. Notice that this depends implicitly on the data $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$: this dependence is implicit.

In many cases, it is simple to minimize $\mathcal{L}(\boldsymbol{\sigma}, \boldsymbol{c})$ with respect to $\boldsymbol{\sigma}$ (for \boldsymbol{c} given) or with respect to \boldsymbol{c} (for $\boldsymbol{\sigma}$ given). The most classical form of K-Means is BATCH K-MEANS and alternates between these two minimization steps. Here, with a slight abuse of notation, we write $\mathcal{L}(\boldsymbol{\sigma}) \equiv \min_{\boldsymbol{c}} \mathcal{L}(\boldsymbol{\sigma}, \boldsymbol{c})$.

```
BATCH K-MEANS

Input: Data \{x_i\}, initial partition \sigma^0

Output: New partition \sigma^{\text{new}}

1: \sigma^{\text{new}} := \sigma^0;

2: Do

3: \sigma := \sigma^{\text{new}};

4: For j \in \{1, \dots, k\}, compute center c_j:

c_j = \arg\min_{c \in \mathcal{X}} \sum_{i \in [n]: \sigma_i = j} \ell(x_i, c)

5: For i \in \{1, \dots, n\}, compute new label
\sigma_i^{\text{new}} = \arg\min_{\sigma \in [k]} \ell(x_i, c_\sigma)

6: While \mathcal{L}(\sigma^{\text{new}}) \leq \mathcal{L}(\sigma) - \varepsilon

7: Return \sigma^{\text{new}}
```

In words, we compute centers of the current clusters, and then update the labels assigning each data point to the closest center. Step 5 is efficient and requires only nk evaluation of the metric $\ell(\cdot, \cdot)$. Step 4 is also efficient for many definition of the function $\ell(\cdot, \cdot)$. Normally this iteration is initialized with random labels σ^0 .

In this homework, we will consider the most standard example, namely $x_i \in \mathcal{X} = \mathbb{R}^d$ and $\ell(x, y) = \|x - y\|_2^2$. In these case, the center of a cluster is just the empirical mean. In other words, step 4 is implemented by

$$c_j = \frac{1}{n_j} \sum_{i \in [n]: \sigma_i = j} x_i. \tag{2}$$

where $n_j = |\{i : \sigma_i = j\}|$ (here and below |S| denotes the cardinality of set S).

(a) Program the BATCH K-MEANS for $x_1,\ldots,x_n\in\mathbb{R}^d$ and $d(x,y)=\|x-y\|_2^2$

Test your program on a synthetic dataset, by taking $n = 10^4$, d = 10, k = 3 and x_1, \ldots, x_n i.i.d. with density

$$\rho(\mathbf{x}) = \frac{1}{3}\phi(\mathbf{x} - s\mathbf{e}_1) + \frac{1}{3}\phi(x - s\mathbf{e}_2) + \frac{1}{3}\phi(x - s\mathbf{e}_3),$$
 (3)

where $\phi(z) = (2\pi)^{-d/2} \exp\{-\|x\|_2^2/2\}$ is the standard Gaussian density, and e_i is the *i*-th standard basis vector.

Run 10 trials (with different realizations of the data x) for each of $s \in \{0.5, 1, 1.5, \dots, 10\}$, For each value of s, report the mean fraction of misclassified points.

[Note that the three clusters can only be identified up to a permutation of the labels. Propose a suitable definition of misclassification error that overcomes this problem.]

(b) Let $\overline{X} \in \mathbb{R}^{n \times d}$ be the matrix whose rows are $\boldsymbol{x}_1^\mathsf{T}, \dots \boldsymbol{x}_n^\mathsf{T}$. Show that (always using the loss function $\ell(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$)

$$\mathcal{L}(\boldsymbol{\sigma}) = \frac{1}{n} \|\overline{X}\|_F^2 - \frac{1}{n} \sum_{a=1}^k \frac{1}{n_a} \|\overline{X}^\mathsf{T} \mathbf{1}_{\boldsymbol{\sigma}^{-1}(a)}\|_2^2. \tag{4}$$

where $\sigma^{-1}(a) = \{i \in [n] : \sigma_i = a\}$ and, as above, $n_a = |\sigma^{-1}(a)|$.

Deduce that

$$\min_{\boldsymbol{\sigma},c} \mathcal{L}(\boldsymbol{\sigma}, \boldsymbol{x}) \ge \frac{1}{n} \sum_{j=k+1}^{n \vee d} \sigma_j(\overline{X})^2.$$
 (5)

Compare this lower bound with the value achieved by BATCH K-MEANS in the simulations in point (a) above.

(c) The dataset seeds_dataset.txt from the UC Irvine Machine Learning repository contains measurements of geometrical properties of kernels belonging to three different varieties of wheat. Data are provided for n = 207 seeds. Each row contains d = 7 attributes and (as last entry) the seed type (a label between 1 and 3.

Use BATCH K-MEANS to cluster the 207 data points in k=3 clusters. Do you think it is useful to pre-process the data in some way? Re-run BATCH K-MEANS with 10 random initializations and report, each time, the value of objective $\mathcal{L}(\cdots)$ achieved, as well as the number of misclassified data-points. (As in point (a), mis-classification error has to be defined up to a permutation of the 3 labels.) Also, compare the value of the objective achieved with the lower bound at point (b).

Remark Paper submissions are preferred. You can submit the homework in class, or in the box of the second floor in Packard (there is a box for EE378B). You can use any programming languages. Tables and figures are preferred to help to illustrate your results. There are several sub-questions for each question. Make sure that it is easy for readers to figure out which sub-questions you are answering.