Aprendizado Semi-Supervisionado Baseado em Grafos

Seminário da Matéria SCC5882

Professores: Dr. Zhao Liang e Dr. Alneu de Andrade Lopes

Aluno: Renato Fabbri

6 de julho de 2010

- Apresentação
 - Sumário
 - Resumo
- Introdução
 - Aprendizado Semi-Supervisionado
 - Grafos e Redes Complexas
- Aprendizado Semi-Supervisionado em Grafos
 - Propagação de Rótulo
 - Mincut
- Conclusão
- Principais Referências

Resumo

- Apresentação
 - Sumário
 - Resumo
- Introdução
 - Aprendizado Semi-Supervisionado
 - Grafos e Redes Complexas
- 3 Aprendizado Semi-Supervisionado em Grafos
 - Propagação de Rótulo
 - Mincut
- 4 Conclusão
- 5 Principais Referências

A - Definições (1)

 Aprendizado Supervisionado - treinamento somente com os dados rotulados

A - Definições (1)

- Aprendizado Supervisionado treinamento somente com os dados rotulados
- Aprendizado não Supervisionado utilizados somente dados não rotulados

A - Definições (1)

- Aprendizado Supervisionado treinamento somente com os dados rotulados
- Aprendizado não Supervisionado utilizados somente dados não rotulados
- Aprendizado Semi-Supervisionado utilização tanto dos dados rotulados quanto dos não rotulados.

A - Definições (2)

Classificação Semi-Supervisionada, CSS. (Clusterização forçada não é foco)

A - Definições (2)

- Classificação Semi-Supervisionada, CSS. (Clusterização forçada não é foco)
- Indutivo e Transdutivo.

A - Interesse

Criança aprendendo as coisas (animais).

A - Interesse

- Criança aprendendo as coisas (animais).
- Dados rotulados podem ser poucos ou custosos.

A - Caso 1

Figura: Forma em que a CSS auxilia na classificação. Fonte: Zhu, X. and Lafferty, J. and Rosenfeld, R., 2005

A - Caso 2

Aluno: Renato Fabbri ()

• Primeiros: Modelos de Mistura.

- Primeiros: Modelos de Mistura.
- Primeiros: Self-Training (self-teaching e bootstrapping).

- Primeiros: Modelos de Mistura.
- Primeiros: Self-Training (self-teaching e bootstrapping).
- Mais recentes: Co-training e SVM transdutivo.

- Primeiros: Modelos de Mistura.
- Primeiros: Self-Training (self-teaching e bootstrapping).
- Mais recentes: Co-training e SVM transdutivo.
- Mais recentes: Métodos baseados em grafos.

- Apresentação
 - Sumário
 - Resumo
- Introdução
 - Aprendizado Semi-Supervisionado
 - Grafos e Redes Complexas
- 3 Aprendizado Semi-Supervisionado em Grafos
 - Propagação de Rótulo
 - Mincut
- 4 Conclusão
- 5 Principais Referências

G & RC - Definição (1)

Conjunto de objetos, alguns ligados.

G & RC - Definição (1)

- Conjunto de objetos, alguns ligados.
- Objetos \rightarrow nós ou vértices. Ligações \rightarrow arestas.

G & RC - Definição (1)

- Conjunto de objetos, alguns ligados.
- ullet Objetos o nós ou vértices. Ligações o arestas.
- Visualmente \rightarrow pontos e linhas.

Arestas Direcionadas.

- Arestas Direcionadas.
- Pesos nas arestas.

- Arestas Direcionadas.
- Pesos nas arestas.
- Mais de um tipo de aresta.

- Arestas Direcionadas.
- Pesos nas arestas.
- Mais de um tipo de aresta.
- Atributos quaisquer associados às arestas e aos nós.

• Regular.

- Regular.
- Completo (click).

- Regular.
- Completo (click).
- Conectado.

- Regular.
- Completo (click).
- Conectado.
- Randômico.

14 / 48

Aprendizado Semi-Supervisionado Baseado en

G & RC - Exemplos Clássicos

- Regular.
- Completo (click).
- Conectado.
- Randômico.
- trivial, nulo, etc.

14 / 48

G & RC - Medidas mais Comuns

Grau.

G & RC - Medidas mais Comuns

- Grau.
- Força.

G & RC - Medidas mais Comuns

- Grau.
- Força.
- Entrada e Saída.

G & RC - Rede Complexa

- Grafo de grandes dimensões.
- Casos triviais RC randômica e regular.

G & RC - Breve Histórico

• Euler - "Konigsberg Bridge problem".

G & RC - Breve Histórico

- Euler "Konigsberg Bridge problem".
- Cayley Química.

- Euler "Konigsberg Bridge problem".
- Cayley Química.
- "Grafo" Nature Silvester 1878.

- Euler "Konigsberg Bridge problem".
- Cayley Química.
- "Grafo" Nature Silvester 1878.
- Grafos, topologia, álgebra Lei de Kirchoff

- Euler "Konigsberg Bridge problem".
- Cayley Química.
- "Grafo" Nature Silvester 1878.
- Grafos, topologia, álgebra Lei de Kirchoff
- Teorias probabilísticas

- Euler "Konigsberg Bridge problem".
- Cayley Química.
- "Grafo" Nature Silvester 1878.
- Grafos, topologia, álgebra Lei de Kirchoff
- Teorias probabilísticas
- RC naturais propriedades não triviais LE, PM.

- Euler "Konigsberg Bridge problem".
- Cayley Química.
- "Grafo" Nature Silvester 1878.
- Grafos, topologia, álgebra Lei de Kirchoff
- Teorias probabilísticas
- RC naturais propriedades não triviais LE, PM.
- Neurociência, Física, Linguística, Computação, etc.

- - Sumário
 - Resumo
- - Aprendizado Semi-Supervisionado
 - Grafos e Redes Complexas
- Aprendizado Semi-Supervisionado em Grafos
 - Propagação de Rótulo
 - Mincut

CSS em G

- Algorítmo de regularização.
- Mincut
- Propagação de Rótulo.
- Modelos de Mistura.
- Máxima Entropia.
- ETC.

- Apresentação
 - Sumário
 - Resumo
- Introdução
 - Aprendizado Semi-Supervisionado
 - Grafos e Redes Complexas
- Aprendizado Semi-Supervisionado em Grafos
 - Propagação de Rótulo
 - Mincut
- 4 Conclusão
- 5 Principais Referências

PR - Concepção

 \bullet Vizinho mais próximo \to propaga mais fácil.

PR - Concepção

- ullet Vizinho mais próximo o propaga mais fácil.
- Rótulos fixos nos rotulados de antemão.

PR - Concepção

- \bullet Vizinho mais próximo \to propaga mais fácil.
- Rótulos fixos nos rotulados de antemão.
- Estes "emanam" os seus rótulos.

• $(x_1, y_1)...(x_l, y_l)$ os dados rotulados.

- $(x_1, y_1)...(x_l, y_l)$ os dados rotulados.
- $y \in 1...C$ com C o número de classes.

- $(x_1, y_1)...(x_l, y_l)$ os dados rotulados.
- $y \in 1...C$ com C o número de classes.
- \bullet $X_{l+1}...X_{l+u}$.

- $(x_1, y_1)...(x_l, y_l)$ os dados rotulados.
- $y \in 1...C$ com C o número de classes.
- X_{I+1}...X_{I+u}.
- Geralmente $I \ll u$.

- $(x_1, y_1)...(x_l, y_l)$ os dados rotulados.
- $y \in 1...C$ com C o número de classes.
- \bullet $x_{l+1}...x_{l+u}$.
- Geralmente $I \ll u$.
- Seja n = l + u

- $(x_1, y_1)...(x_l, y_l)$ os dados rotulados.
- $y \in 1...C$ com C o número de classes.
- \bullet $x_{l+1}...x_{l+u}$.
- Geralmente $I \ll u$.
- Seja n = l + u
- L e U denotam os dados rotulados e não rotulados, respectivamente

Convenções e Exposição do Problema (2) - Notas

• Cada classe de C presente em ao menos 1 elemento.

Convenções e Exposição do Problema (2) - Notas

- Cada classe de C presente em ao menos 1 elemento.
- Método Transdutivo.

Convenções e Exposição do Problema (3) - Obtenção do Grafo

Completo.

Convenções e Exposição do Problema (3) - Obtenção do Grafo

- Completo.
- $w_{ij} = exp(-\frac{\|x_i-x_j\|^2}{\alpha^2})$

Convenções e Exposição do Problema (3) - Obtenção do Grafo

- Completo.
- $w_{ij} = exp(-\frac{\|x_i x_j\|^2}{\alpha^2})$
- ullet α é um hiperparâmetro

Convenções e Exposição do Problema (4) - Transição

• P_{ij} é a probabilidade de transição do nó i para o nó j (passagem do rótulo)

Convenções e Exposição do Problema (4) - Transição

- P_{ij} é a probabilidade de transição do nó i para o nó j (passagem do rótulo)
- $P_{ij} = P(i \rightarrow j) = \frac{w_{ij}}{\sum_{k=1}^{n} w_{ik}}$

Convenções e Exposição do Problema (5) - Últimas Definições

• Matriz de rótulos Y_L , $I \times C$, cuja *iésima* linha possui 1 na coluna correspondente à classe do dado x_i .

Convenções e Exposição do Problema (5) - Últimas Definições

- Matriz de rótulos Y_L , $I \times C$, cuja *iésima* linha possui 1 na coluna correspondente à classe do dado x_i .
- f uma matriz $n \times C$ em que cada linha pode ser interpretada como uma distribuição de probabilidade sobre os rótulos.

Convenções e Exposição do Problema (5) - Tarefa!

A tarefa consiste em computar os rótulos dos nós todos (na verdade somente dos não rotulados)

O Algoritmo de Propagação de Rótulo

- Propague $f \leftarrow Pf$. (todos os nós propagam o seu rótulo para os seus vizinhos)
- Mantenha os dados rotulados iniciais $f_L = Y_L$. (assegura que os rótulos dos nós inicialmente rotulados não sejam sobrescritos)
- Repita do passo 1 até que o algoritmo convirja.

PR - Convergência (1)

$$f = \begin{pmatrix} f_L \\ f_U \end{pmatrix} \tag{1}$$

$$\begin{bmatrix} P_{LL} & P_{LU} \\ P_{UL} & P_{UU} \end{bmatrix} \tag{2}$$

$$f_U \leftarrow P_{UU}f_U + P_{UL}Y_L \tag{3}$$

$$f_{U} = \lim_{n \to \infty} [(P_{UU})^{n} f_{U}^{0} + (\sum_{i=1}^{n} (P_{UU})^{(i-1)}) P_{UL} Y_{L}]$$
 (4)

PR - Convergência (2)

$$f_{u} = \lim_{n \to \infty} [(P_{UU})^{n} f_{U}^{0} + (\sum_{i=1}^{n} (P_{UU})^{(i-1)}) P_{UL} Y_{L}]$$
 (5)

$$(P_{UU})^n f_U^0 \to 0 \tag{6}$$

$$\exists \gamma < 1 : \sum_{j=1}^{u} (P_{UU})_{ij} \le \gamma, \forall i = 1...u$$
 (7)

Portanto:

$$\sum_{j} (P_{UU})_{ij}^{n} \le \gamma^{n} \tag{8}$$

Então:

$$f_{u} = (I - P_{UU})^{-1} P_{UL} Y_{L}$$
 (9)

PR - Exemplo 1 (1)

PR - Exemplo 1 (2)

PR - Exemplo 1 (3)

PR - Exemplo 2 (1)

Aluno: Renato Fabbri ()

PR - Exemplo 1 (2)

PR - Exemplo 1 (2)

Figura: Dados espiralados rotulados utilizando propagação de rótulos.

Mincut - Concepção

- Objetos parecidos devem ficar juntos.
- Seccionamento por separações de custos mínimos.

Mincut - Convenções e Exposição do Problema

• rotulados L e não rotulados U.

Mincut - Convenções e Exposição do Problema

- rotulados L e não rotulados U.
- L_+ os positivos; L_- os negativos.

Aprendizado Semi-Supervisionado Baseado en

Mincut - Convenções e Exposição do Problema

- ullet rotulados L e não rotulados U.
- L_+ os positivos; L_- os negativos.
- v₊ e v_−

O Algoritmo de Propagação de Mincut

- G = (V, E), onde $V = L \cup U$ e $E \subseteq V \times V$
- $e \in E$ é associado um peso w(e)
- $w(v_1, v_2) = \infty, \forall v_1, v_2 \in L_+ \text{ e } w(v_1, v_2) = \infty, \forall v_1, v_2 \in L_-.$
- Função de atribuição de pesos, denotada por w.
- Determinamos o conjunto de arestas com a menor soma de pesos que, se removidas, separam todos os v_+ dos v_- . (Corte mínimo)
- Por fim, rotulamos como positivos todos os vértices em V_+ e como negativos todos os vértives em V_- .

Calibragem do Mincut

- w é sem dúvida o crucial neste algorítmo.
- Mincut-3
- Mincut- δ , Mincut- δ_0 , Mincut- $\delta_{\frac{1}{2}}$, Mincut- δ_{opt}

Mincut - Problemas

- Difícil Calibragem.
- Casos de poucos exemplos rotulados

Mincut - Desempenho Comparativo (1)

DATASET	L & U	NUMBER OF	Mincut				ID3	3-NN
		FEATURES	Mincut-3	Mincut- δ_{opt}	Mincut- δ_0	MINCUT- $\delta_{1/2}$		
Mush	20+1000	22	82.1	97.7	97.7	97.0	93.3	91.1
Mush*	20+1000	22	74.2	88.7	56.9	87.0	80.8	83.3
Tae	10+100	5	86.0	99.0	96.0	97.0	86.0	80.0
Tae*	10+100	5	76.0	96.0	86.0	94.0	76.0	62.0
Voting	45+390	16	89.1	91.3	66.1	83.3	86.4	89.6
Musk	40+200	166	73.0	92.5	91.0	92.5	83.5	87.0
Pima	50+718	8	63.8	72.3	48.8	72.3	70.0	68.1
Iono	50+300	34	71.0	81.6	78.0	77.6	88.6	69.6
Bupa	45+300	6	53.3	59.3	48.0	41.7	55.3	52.7
MI	$ \begin{array}{r} 124 + 432 \\ 169 + 432 \\ 122 + 432 \end{array} $	6	70.0	64.4	64.4	64.4	98.6	81.1
MII		6	68.6	67.2	57.2	67.2	67.9	63.6
MIII*		6	79.1	80.6	64.8	80.6	94.4	83.6

Figura: Mincut com alguns valores para δ e comparação com outros métodos.

Mincut - Desempenho Comparativo (2)

Figura: Variação do erro com o Delta.

Mincut - Desempenho Comparativo (3)

Figura: Comparação do erro entre mincut e kNN com a variação de exemplos rotulados δ_{opt} .

Mincut - Desempenho Comparativo (4)

Figura: Comparação do erro entre mincut e kNN com a variação de exemplos não o

Conclusão

- Com segurança se as classes são clusterizadas entre si.
- Na falta de dados rotulados
- Seguindo a distribuição dos dados evitam o critério único da proximidade dos dados rotulados.
- Melhor que o kNN para os casos que vimos.
- Complexidade simples-moderada.

Referências Principais

- Zhu, X. and Lafferty, J. and Rosenfeld, R. "Semi-supervised learning with graphs.", 2005
- Zhu, X. and Ghahramani, Z., "Learning from labeled and unlabeled data with label propagation.", 2002
- Blum, A. and Chawla, S., "Learning from labeled and unlabeled data using graph mincuts", 2001

FIM.

FIM.

