BACHELOR DEGREE IN INFORMATICS (UPC). COURSE 18-19 Q2 - QUIZ1

Anàlisi de Dades i Explotació de la Informació (ADEI).

(Date: 30th/May/2019 14:00		Place: Room A5S108)	
STUDENT NAME:			

DNI/PASSPORT:

Lecturer: Lídia Montero Mercadé

Office: Edifici C5 D207

Norms: Calculator, statistical tables and R Studio reference documents are allowed.

Internet access, emailing and chatting is strictly forbidden. Mobile phones should be switched off.

Quiz duration: 1h 00 min

Date for posting marks: Before June, 4th, 2019, to be posted at Subject's ATENEA WEB page.

Open-office: June, 4th, 2019 at 11:00 (C5-207).

Problem 1: All güestions account for 1 point

MASS package in R contains insurance dataframe. It consists on claims from a British car insurance company in 1973:

District district of policyholder (1 to 4): 4 is major cities (London).

Group group of car (1 to 4), <1 litre, 1–1.5 litre, 1.5–2 litre, >2 litre.

Age of driver in 4 ordered groups, <25, 25–29, 30–35, >35.

Holders numbers of policyholders (pòlisses)
Claims numbers of claims (sinistres)

Source: L. A. Baxter, S. M. Coutts and G. A. F. Ross (1980) Applications of linear models in motor insurance. Proceedings of the

21st International Congress of Actuaries, Zurich pp. 11-29

Data refer to 23,359 holders accounting for 3,151 sinisters in 1973. Total number of claims (Claims) is the target variable. Data is grouped into 64 classes.

target variable. Data is grouped into 04 classes.					
> summary(baxter)				
District	Group	Age	Hol ders	Cl ai ms	l ogHol ders
1: 16	<11 : 16	<25 : 16	Min. : 3.00	Mi n. : 0.00	Mi n. : 1. 099
2: 16	1-1.5l:16	25-29:16	1st Qu.: 46.75	1st Qu.: 9.50	1st Qu. : 3. 844
3: 16	1. 5-2l:16	30-35:16	Medi an : 136.00	Medi an : 22.00	Medi an : 4. 912
4: 16	>21 : 16	>35 : 16	Mean : 364.98	Mean : 49.23	Mean : 4. 904
			3rd Qu.: 327.50	3rd Qu.: 55.50	3rd Qu. : 5. 791
			Max. : 3582. 00	Max. : 400.00	Max. : 8. 184
> dim(df)					
[1] 64 6					
> sd(df\$Cl ai ms)					
[1] 71. 162	4				

. Determine the most promising variables for forecasting purposes of the selected target.	

Estimate Std. Erro	olders + Age, data = d	lf)	
Estimate Std. Erro	olders + Age, data = d	lf)	
3. 463138 (1) 3. 110360 0. 00324 4. 674287 (3) 4. 33295 5. 36763	2. 112		
juared: 0. 9724,	on (5) degrees of ad 59 DF, p-value: <		
<u> </u>		2	
2		3	
5		6	
ction equation for mo	odel (m2) and predict the e	expected number of claims fo	or a 50 years
ontaining all available net-effects of included		ber of holder is calculated. D	etermine
		el (m4) is proposed Discuss	the
		dual diagnostics in model (m3), a new mod	dual diagnostics in model (m3), a new model (m4) is proposed. Discuss

Ь.	A new model with interactions between factors and covariate is proposed (m4 and m5). Determine significant net-effect interactions that are worth to retain. Justify your answer.
	significant het-effect interactions that are worth to retain. Justify your answer.
7.	Make a rough assessment of the quality of the model based on the first impression of the diagnosis of residuals for (m5).
	residuais for (ms).
8.	A new binary factor consisting on grouping District levels into Others and London is defined and a new
	model m7 is obtained. Justify according to the provided output pros and cons of m5 and m7.
9.	Influent and atypical data analysis has to be discussed using influencePlot() output. Are there any
ĺ	atypical and/or influent data classes according to the output?
10	Indicate a 95% confidence interval for the expected number of claims according to (m7) for a person in
	the [30-35] age segment living in London and holding an insurance for a car in the most powerful
	group.

RESULTS

```
condes(baxter, 5)
$quanti
                               p. val ue
            correl ation
              0. 9857701 9. 887964e-50
Hol ders
              0.7741853 6.251833e-14
l ogHol ders
$qual i
          R2 p. val ue
0. 4315501 1. 834931e- 07
Age
          0. 1459450 2. 287953e-02
Group
District 0. 1235997 4. 641178e-02
$category
                        p. val ue
         Estimate
         79. 82812 5. 058682e-09
>35
         41. 39062 6. 227092e-03
1-1.5l
        37. 07812 1. 487515e-02
-30. 54687 4. 652338e-02
1
>21
       - 34. 92187 2. 217507e- 02
<25
> m2 <- l m(l og(Cl ai ms+0.5) \sim l og(Hol ders) +Age, data=df)
> summary(m2)
Call: lm(formula = log(Claims + 0.5) \sim log(Holders) + Age, data = df)
Coeffi ci ents:
               Estimate Std. Error t value Pr(>|t|)
                                      -5.594 6.03e-07 ***
                            0.17008
               - 0. 95149
(Intercept)
log(Holders)
                                               < 2e-16 ***
               0.85354
                            0.04111
                                      20.763
              -0.07094
                            0. 12277
                                      - 0. 578
                                                 0.566
Age25-29
Age30-35
              -0.13827
                            0.12720
                                      - 1. 087
                                                  0.281
Age>35
              -0.07535
                            0. 16874
                                      -0.447
                                                  0.657
Residual standard error: 0.3297 on 59 degrees of freedom
Multiple R-squared: 0.9386, Adjusted R-squared:
F-statistic: 225.6 on 4 and 59 DF,
                                        p-value: < 2. 2e-16
> m3<-lm(log(Claims+0.5)~log(Holders)+District+Group+Age, data=df)
> summary(m3)
Call:lm(formula = log(Claims + 0.5) \sim log(Holders) + District + Group +
    Age, data = df
Coeffi ci ents:
              Estimate Std. Error t value Pr(>|t|)
                                      - 2. 841 0. 006369 **
                             0.7522
(Intercept)
                - 2. 1369
log(Holders)
                                       6. 502 2. 86e-08 ***
                 1.0575
                             0.1627
Di stri ct2
                 0.1715
                             0.1341
                                        1. 279 0. 206609
                0.1564
                             0.2113
                                       0.740 0.462606
District3
District4
                 0.3136
                             0.3099
                                        1. 012 0. 316208
                0.1020
                             0.1629
                                       0.626 0.534054
Group1-1.5l
Group1. 5-21
                 0.4176
                             0.1015
                                       4. 112 0. 000137
                                       2.874 0.005827 **
Group>21
                 0.6284
                             0. 2187
Age25-29
               -0.2619
                             0.1825
                                      -1.435 0.157288
               -0.3907
Age30-35
                             0. 2251
                                      - 1. 736 0. 088419
               -0.6806
                             0.4931
                                      -1.380 0.173290
Age>35
Residual standard error: 0.2848 on 53 degrees of freedom
Multiple R-squared: 0.9589, Adjusted R-squared: 0.9511
F-statistic: 123.6 on 10 and 53 \overline{\text{DF}}, p-value: < 2.2e-16
> Anova(m3)
Anova Table (Type II tests)
Response: log(Claims + 0.5)
              Sum Sq Df F value
                                      Pr(>F)
                       1 42. 2703 2. 856è-08 ***
              3. 4279
log(Holders)
                           0.7064 0.5524821
              0.1718
District
                           7. 7210 0. 0002269
              1.8784
                       3
Group
              0.2703
                       3
                           1. 1110 0. 3529063
Age
Resi dual s
              4.2980 53
```

```
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
> m4<-
lm(log(Claims+0.5)~log(Holders)*(District+Group+Age)+(District+Group+Age)^2, data=df)
> summary(m4)
Call: lm(formula = log(Claims + 0.5) \sim log(Holders) * (District + Group + Age) + (District + Group + Age)^2, data = df)
Residual standard error: 0.3016 on 17 degrees of freedom Multiple R-squared: 0.9852, Adjusted R-squared: 0.945
F-statistic: 24.61 on 46 and 17 DF, p-value: 2.288e-09
> m5 < -step(m4)
Step:
        AI C=- 159. 59
log(Claims + 0.5) \sim log(Holders) + District + Group + Age + log(Holders): District + Group + Age + log(Holders)
     District: Group + District: Age
                                Df Sum of Sq
                                                     RSS
                                                                AI C
<none>
                                                 1. 9451 - 159. 59
                                 9
                                      1. 11592 3. 0610 - 148. 57
  District: Age
  District: Group
                                 9
                                       1. 18381
                                                 3. 1289 - 147. 17
  log(Holders): District
                                      0. 86227 2. 8073 - 142. 10
                                 3
  par(mfrow=c(2, 2))
  pl ot (m5)
>
  par(mfrow=c(1, 1))
                                           Standardized residuals
               Residuals vs Fitted
                                                           Normal Q-Q
      9.
                                                                      88880000 O O O
                       8
 Residuals
                       ∞® &
      0.0
                     8
                      &ે
                                                    490 0000000
                                               ۲
                                               ტ
            0
                1
                        3
                                    6
                                                      -2
                                                                           2
                   Fitted values
                                                         Theoretical Quantiles
 Standardized residuals
                 Scale-Location
                                           Standardized residuals
                                                      Residuals vs Leverage
      0.
                        $ 0000
8000
                                00
                                0
                                               ო
                                                         Cook's distance
      0.0
                    2
                        3
                            4
                                5
                                                   0.0
                                                         0.2
                                                               0.4
                                                                     0.6
                                                                           8.0
                   Fitted values
                                                             Leverage
> Anova(m5)
Anova Table (Type II tests)
Response: log(Claims + 0.5)
                              Sum Sq Df F value
                                                          Pr(>F)
log(Holders)
                             2. 73039
                                         1 44. 9201 1. 445e-07
Di stri ct
                             0.17184
                                             0.9424
                                                        0.431684
Group
                             1.98156
                                            10.8668
                                                      4. 433e-05
                                         3
                             0.35523
                                             1.9481
                                                        0.141696
Age
log(Holders): District 0.86227
                                             4. 7287
                                                        0.007671
Di stri ct: Group
                             1.18381
                                             2. 1640
                                                        0.052491
                                         9
                                             2.0399
District: Age
                             1. 11592
                                                        0.066960 .
                             1.94506 32
Resi dual s
```

```
> df$London <- factor(i fel se(df$Di stri ct!=4, 0, 1), l abel s=c("0ther", "London"))</pre>
> m6<-lm(log(Claims+0.5)~log(Holders)*(London+Group+Age)+(London+Group+Age)^2, data=df)
> summary(m6)
Call:
lm(formula = log(Claims + 0.5) \sim log(Holders) * (London + Group +
    Age) + (London + Group + Age) ^2, data = df)
Residual standard error: 0.2932 on 33 degrees of freedom
Multiple R-squared: 0.9729, Adjusted R-squared: 0.9482 F-statistic: 39.43 on 30 and 33 DF, p-value: < 2.2e-16
> m7<-step(m6)
> anova(m7, m5)
Analysis of Variance Table
Model 1: log(Claims + 0.5) ~ log(Holders) + London + Group + Age + log(Holders): London
+ London: Group + London: Age
Model 2: log(Claims + 0.5) \sim log(Holders) + District + Group + Age +
log(Holders): District + District: Group + District: Age
  Res. Df
              RSS Df Sum of Sq
                                         F Pr(>F)
1
       48 3.3743
2
       32 1.9451 16
                           1. 4292 1. 4696 0. 1725
> BIC(m7, m5)
   df
             BI C
   17 63. 99292
m7
m5 33 95.27760
 influencePlot(m7, col = "cyan", pch=19)
     StudRes
                                 CookD
                       Hat
9 - 2. 348364 0. 1932308 0. 07545664
46 - 5. 120061 0. 1565165 0. 19932177
49 - 2. 207329 0. 6708584 0. 57433866
61 - 1. 945311 0. 8193086 1. 01363233
Studentized Residual
     0
     ۲
                                                                  61
     Ŋ
     ကူ
     4
              0.2
                       0.3
                               0.4
                                        0.5
                                                0.6
                                                         0.7
                                                                 0.8
                                   Hat-Values
> predict(m7, newdata=data.frame(Holders=1, London="London", Group=">21 ", Age="30-35"), interval = "prediction", se. fit=T)
$fit
                      lwr
  -3. 337568 -5. 438462 -1. 236674
```