Optimal Bump Functions with Lipschitz n^{th} Derivatives

Aresh Pourkavoos

November 26, 2024

Theorem 0.1. Let $n \in \mathbb{N}^{>0}$, $I = (t_0, t_n)$ be an interval, $p: I \to \mathbb{R}^{>0}$, $q: I \to \mathbb{R}^{<0}$. Define

$$\mathcal{F} = \left\{ f: I \to \mathbb{R} \mid q \le f \le p, \forall i \in \{1, \dots, n-1\} \left(\int_I f(t)(t_n - t)^{i-1} dt = 0 \right) \right\}.$$

Then if there exist $t_1 < \ldots < t_{n-1} \in I$ s.t. $f^* \in \mathcal{F}$, where

$$f^*(t) = \begin{cases} p(t) & t_{2i} \le t < t_{2i+1} \\ q(t) & t_{2i+1} \le t < t_{2i+2}, \end{cases}$$

then

- 1. f^* maximizes $\int_I f(t)(t_n-t)^{n-1}dt$ over $f \in \mathcal{F}$, and
- 2. f^* is the unique maximizer up to a set of measure 0.

Proof. (Found with the help of Xander Heckett and Robert Trosten) Suppose f^* exists as described. Let $f \in \mathcal{F}$. Then $f = f^*(1 - \eta)$ for some $\eta : I \to \mathbb{R}^{\geq 0}$. For 1., suffices to show that

$$\int_{I} f^{*}(t)(t_{n} - t)^{n-1}dt \ge \int_{I} f(t)(t_{n} - t)^{n-1}dt,$$

i.e. that

$$\int_{I} f^{*}(t)\eta(t)(t_{n}-t)^{n-1}dt \ge 0.$$

Let $a(t) = (t_1 - t) \cdots (t_{n-1} - t)$. Then $f^*(t)a(t) > 0$ everywhere except at t_i , so

$$\int_{I} f^{*}(t)\eta(t)a(t)dt \ge 0.$$

Thus, suffices to show

$$\int_{I} f^{*}(t)\eta(t)((t_{n}-t)^{n-1}-a(t))dt = 0.$$

Note $(t_n - t)^{n-1} - a(t) \in \text{span}\{(t_n - t)^{i-1} | i \in \{1, ..., n-1\}\}\$, so suffices to show

$$\int_{I} f^{*}(t)\eta(t)(t_{n} - t)^{i-1}dt = 0$$

for all $i \in \{1, ..., n-1\}$. Since $f^*\eta = f^* - f$ and $f, f^* \in \mathcal{F}$,

$$\int_{I} f^{*}(t)\eta(t)(t_{n}-t)^{i-1}dt = \int_{I} (f^{*}(t)-f(t))(t_{n}-t)^{i-1}dt = \int_{I} f^{*}(t)(t_{n}-t)^{i-1}dt - \int_{I} f(t)(t_{n}-t)^{i-1}dt = 0.$$

For 2., suppose $f \neq f^*$ on a set of positive measure, so $\eta > 0$ on a set of positive measure, so inequality becomes strict.

Lemma 0.1. Let $n \in \mathbb{N}^{>0}$, I = (0,4), p(t) = 1, and q(t) = -1 under the conditions of the previous theorem. Then the values $t_i = 4\cos^2\left(\frac{i\pi}{2n}\right)$ yield an $f^* \in \mathcal{F}$. Furthermore, $\int_I f^*(t)(t_n - t)^{n-1}dt = 4$.

Proof. Note

$$f^*(t) = \begin{cases} 1 & t_{2i} \le t < t_{2i+1} \\ -1 & t_{2i+1} \le t < t_{2i+2} \end{cases}$$
$$= \sum_{i=0}^{n-1} (-1)^i \left([t \ge t_i] - [t \ge t_{i+1}] \right),$$

where [] denotes the Iverson bracket. We want to determine $\int_0^4 f^*(t)(4-t)^{k-1}dt$ for all $k \in \{1, \dots, n\}$, which should be 4 for k = n and 0 otherwise. Note

$$\int_0^4 [t \ge t_i] (4-t)^{k-1} dt = \int_{t_i}^4 (4-t)^{k-1} dt = -\frac{1}{k} (4-t)^k \bigg|_{t_i}^4 = \frac{1}{k} (4-t_i)^k = \frac{1}{k} t_{n-i}^k,$$

so

$$\int_0^4 f^*(t)(4-t)^{k-1}dt = \int_0^4 \left(\sum_{i=0}^{n-1} (-1)^i \left([t \ge t_i] - [t \ge t_{i+1}] \right) \right) (4-t)^{k-1}dt$$

$$= \sum_{i=0}^{n-1} (-1)^i \left(\int_0^4 [t \ge t_i] (4-t)^{k-1}dt - \int_0^4 [t \ge t_{i+1}] (4-t)^{k-1}dt \right)$$

$$= \sum_{i=0}^{n-1} (-1)^i \left(\frac{1}{k} t_{n-i}^k - \frac{1}{k} t_{n-(i+1)}^k \right)$$

$$= \frac{1}{k} \sum_{i=0}^{n-1} (-1)^i \left(t_{n-i}^k - t_{n-(i+1)}^k \right),$$

so

$$\begin{split} k \int_0^4 f^*(t) (4-t)^{k-1} dt &= \sum_{i=0}^{n-1} (-1)^i \left(t_{n-i}^k - t_{n-(i+1)}^k \right) \\ &= \sum_{i=0}^{n-1} (-1)^i t_{n-i}^k - \sum_{i=0}^{n-1} (-1)^i t_{n-(i+1)}^k \\ &= \sum_{i=0}^{n-1} (-1)^i t_{n-i}^k + \sum_{i=0}^{n-1} (-1)^{i+1} t_{n-(i+1)}^k \\ &= \sum_{i=0}^{n-1} (-1)^i t_{n-i}^k + \sum_{i=0}^{n-1} (-1)^{n-i} t_i^k \\ &= \sum_{i=0}^{n-1} ((-1)^i t_{n-i}^k + (-1)^{n-i} t_i^k). \end{split}$$

which we WTS is 4k = 4n for k = n and 0 otherwise.

Define $\omega = \exp\left(\frac{\pi}{n}\sqrt{-1}\right)$, so

$$t_i = 4\cos^2\left(\frac{i\pi}{2n}\right) = \left(2\cos\left(\frac{i\pi}{2n}\right)\right)^2 = (\omega^{i/2} + \omega^{-i/2})^2,$$

so

$$\begin{split} t_i^k &= \left(\omega^{i/2} + \omega^{-i/2}\right)^{2k} \\ &= \sum_{j=0}^{2k} \binom{2k}{j} \omega^{(i/2)(2k-j)} \omega^{(-i/2)j} \\ &= \sum_{j=0}^{2k} \binom{2k}{j} \omega^{(k-j)i} \\ &= \sum_{j=-k}^k \binom{2k}{k-j} \omega^{ji}. \end{split}$$

Then

$$k \int_0^4 f^*(t) (4-t)^{k-1} dt = \sum_{i=0}^{n-1} \left((-1)^i \sum_{j=-k}^k \binom{2k}{k-j} \omega^{j(n-i)} + (-1)^{n-i} \sum_{j=-k}^k \binom{2k}{k-j} \omega^{ji} \right).$$

The rest is trig bashing, which I will copy from an earlier iteration of the writeup. There seems to be a missing factor of $(-1)^n$ which I cannot account for at the moment (and which is relevant since the result is nonzero in the k = n case), but it is what it is.

$$\begin{split} k \int_0^4 f^*(t)(4-t)^{k-1} dt &= \sum_{i=0}^{n-1} \left((-1)^i \sum_{j=-k}^k \binom{2k}{k-j} \omega^{ji} + (-1)^{n-i} \sum_{j=-k}^k \binom{2k}{k-j} \omega^{j(n-i)} \right) \\ &= \sum_{i=0}^{n-1} \left(\sum_{j=-k}^k \binom{2k}{k-j} (-1)^i \omega^{ji} + \sum_{j=-k}^k \binom{2k}{k-j} (-1)^{n-i} \omega^{j(n-i)} \right) \\ &= \sum_{i=0}^{n-1} \left(\sum_{j=-k}^k \binom{2k}{k-j} (-1)^i \omega^{ji} + \sum_{j=-k}^k \binom{2k}{k+j} (-1)^{n-i} \omega^{-j(n-i)} \right) \\ &= \sum_{i=0}^{n-1} \left(\sum_{j=-k}^k \binom{2k}{k-j} \omega^{ni} \omega^{ji} + \sum_{j=-k}^k \binom{2k}{k-j} \omega^{-n(n-i)} \omega^{-j(n-i)} \right) \\ &= \sum_{i=0}^{n-1} \left(\sum_{j=-k}^k \binom{2k}{k-j} \omega^{(n+j)i} + \sum_{j=-k}^k \binom{2k}{k-j} \omega^{-n(n+j)(n-i)} \right) \\ &= \sum_{i=0}^{n-1} \left(\sum_{j=-k}^k \binom{2k}{k-j} \omega^{(n+j)i} + \sum_{j=-k}^k \binom{2k}{k-j} \omega^{-n(n+j)(i-n)} \right) \\ &= \sum_{i=0}^{n-1} \left(\sum_{j=-k}^k \binom{2k}{k-j} \omega^{(n+j)i} + \omega^{(n+j)(i-n)} \right) \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=0}^{n-1} \left(\omega^{(n+j)i} + \omega^{(n+j)(i-n)} \right) \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=0}^{n-1} \omega^{(n+j)i} + \sum_{i=0}^{n-1} \omega^{(n+j)i} \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=0}^{n-1} \omega^{(n+j)i} + \sum_{i=-n}^{n-1} \omega^{(n+j)i} \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=n}^{n-1} \omega^{(n+j)i} \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=n}^{n-1} \omega^{(n+j)i} \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=n}^{n-1} \omega^{(n+j)i} \right) \\ &= \sum_{j=-k}^k \left(\binom{2k}{k-j} \sum_{i=-n}^{n-1} \omega^{(n+j)i}$$

which is 4n when k = n and 0 otherwise, as desired.

Theorem 0.2. Let $n \in \mathbb{N}^{>1}$, $g : \mathbb{R} \to \mathbb{R}$. Suppose g is supported on an open interval I = (a, b), g is n - 2 times differentiable, and $g^{(n-2)}$ is Lipschitz with constant L. Then

$$\int_{\mathbb{R}} g(t)dt \le \frac{1}{4^{n-1}(n-1)!} L(b-a)^{n}.$$

Furthermore, this bound is tight.

Proof. Since g is supported on I, so is $g^{(n-2)}$. Since $g^{(n-2)}$ is also Lipschitz, there is some f supported on I such that $g^{(n-2)}(t) = \int_a^t f(t)dt$ and $-L \leq f \leq L$. By the Cauchy formula for repeated integration, and since g(t) = 0 for $t \leq a$,

$$g^{(n-2-k)}(t) = \frac{1}{k!} \int_{a}^{t} f(s)(t-s)^{k} ds$$

for $k \in \{0, \dots, n-1\}$, where $g^{(-1)}(t) = \int_{-\infty}^t g(s)ds = \int_a^t g(s)ds$. Let f_{norm} be f normalized to fit the previous lemma, i.e. $f_{norm}(s) = \frac{1}{L}f\left(\frac{b-a}{4}s+a\right)$, so $f(t) = Lf_{norm}\left(\frac{4}{b-a}(t-a)\right)$. Then

$$\int_{0}^{4} f_{norm}(s)(4-s)^{n-1} ds \le 4,$$

so substituting t = b, k = n - 1,

$$\int_{\mathbb{R}} g(t)dt = \frac{1}{(n-1)!} \int_{a}^{b} f(t)(b-t)^{n-1}dt$$

$$= \frac{1}{(n-1)!} \int_{a}^{b} Lf_{norm} \left(\frac{4}{b-a}(t-a)\right) (b-t)^{n-1}dt$$

$$= \frac{1}{(n-1)!} \int_{0}^{4} Lf_{norm}(s) \left(\frac{b-a}{4}(4-s)\right)^{n-1} \frac{b-a}{4}ds$$

$$= \frac{1}{4^{n}(n-1)!} L(b-a)^{n} \int_{0}^{4} f_{norm}(s)(4-s)^{n-1}ds$$

$$\leq \frac{1}{4^{n-1}(n-1)!} L(b-a)^{n}.$$

The bound may be shown tight by transforming f^* from the previous lemma and repeatedly integrating to get g: $f(t) = Lf^*\left(\frac{4}{b-a}(t-a)\right)$, $g(t) = \frac{1}{(n-2)!}\int_a^t f(s)(t-s)^{k-2}ds$.