비모수 인자 모형

김성민

서울대학교 통계학과, 베이즈통계 연구실

2024. 08. 07

목차

- ① 참고문헌
- ② 인자모형
- ③ 비모수 선형인자모형
- 4 식별성
- ⑤ 결과

목차

- ① 참고문헌
- ② 인자모형
- ③ 비모수 선형인자모형
- 4 식별성
- 5 결과

참고문헌

 Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
 Psychometrika, 23(3):187–200

- Poworoznek, E., Ferrari, F., and Dunson, D. (2021). Efficiently resolving rotational ambiguity in bayesian matrix sampling with matching.
 - arXiv preprint arXiv:2107.13783
- Xu, M., Herring, A. H., and Dunson, D. B. (2023). Identifiable and interpretable nonparametric factor analysis. arXiv preprint arXiv:2311.08254

목차

- ① 참고문헌
- ② 인자모형
- ③ 비모수 선형인자모형
- 4 식별성
- ⑤ 결과

인자모형(Factor Model)

인자모형 정의

 $x_1, \ldots, x_n \in \mathbb{R}^p$ 를 고려하자. 다음과 같은 모형을 생각할 수 있다.

$$x_i = g(\eta_i) + \epsilon_i, \quad i = 1, \ldots, n$$

여기서 $\eta_i \in \mathbb{R}^K$, $K \leq n$ 는 저차원 잠재 요인이고, $g: \mathbb{R}^K \to \mathbb{R}^p$ 사상 (mapping) 함수이다. ϵ_i 는 p차원 잔차이다.

정규 선형 인자모형

$$x_i = \Lambda \eta_i + \epsilon_i, \quad \eta_i \sim N(0, I_k), \quad \epsilon_i \sim N(0, \Sigma), \quad i = 1, \dots, n$$

- Λ : p × K 인자 로딩 행렬
- Σ: 잔차의 공분산 행렬 (일반적으로 대각행렬 가정)

$$\implies x_i \sim N(0, \Lambda \Lambda^T + \Sigma)$$

정규 선형 인자모형의 한계

- 비선형 관계 설명 불가.
- 비정규 데이터 설명 불가.

정규 선형 인자모형의 대안

• 비선형 인자 모형 (g가 비선형)

$$x_i = g(\eta_i) + \epsilon_i, \quad i = 1, \ldots, n$$

- 식별성 문제 (g와 ηi)
- 해석의 어려움
- $g: \mathbb{R}^k \to \mathbb{R}^p$ 추정을 위해 많은 데이터가 필요
- Distributional shift : η_i 에 가정한 분포와 경험적 누적분포가 달라서 모형의 성능이 떨어짐.

정규 선형 인자모형의 대안

• 선형 인자모형에서 잠재요인을 비모수적으로 모델링

$$x_i = \Lambda \eta_i + \epsilon_i, \quad i = 1, \dots, n$$

 $\eta_{ik} = g_k(u_{ik}), \quad k = 1, \dots, K.$

 u_{i1},..., u_{iK} 의 일부가 동일하도록 하여 요인간의 의존성을 부여 (비선형 관계 설명)

목차

- ① 참고문헌
- ② 인자모형
- ③ 비모수 선형인자모형
- 4 식별성
- 5 결과

비모수 선형인자모형(Nonparametric Linear Factor Model)

$$x_i = \Lambda \eta_i + \epsilon_i, \quad \epsilon_i \sim N(0, \Sigma), \quad i = 1, \dots, n,$$

 $\eta_{ik} = g_k(u_{il_k}), \quad k = 1, \dots, K,$
 $u_{il} \stackrel{iid}{\sim} U(0, 1), \quad l = 1, \dots, m, \quad m \leq K.$

- g_k: [0,1]에서 ℝ로의 증가함수
- η_{ik} : 잠재위치(latent location) u_{ik} 를 잠재사상(latent mapping) g_h 를 통해 변환한 잠재요인(latent factor)

독립성분분석(Independent Component Analysis)

$$x_i = \Lambda \eta_i + \epsilon_i$$

- η_i 가 서로 독립이고 비정규분포를 따르면 ICA 모형이라고 함.
- 비선형 관계를 설명하지 못함
- NIFTY (nonparametric linear factor analysis) 모형을 통해서 비선형 관계 설명 가능

(a) ICA models.

(b) NIFTY models.

Distributional Shift (정규 선형인자모형)

$$x_i = \Lambda \eta_i + \epsilon_i, \quad i = 1, \ldots, n$$

- η_i 의 경험적 누적분포함수가 $N(0, I_p)$ 와 다름
- η_i, Γ, Σ에 대한 추정이 달라짐.
- x_i 의 경험적 공분산 : $\Lambda cov(\eta_i, i = 1, ..., n)\Lambda^T + \Sigma$
- $x_{i1} \sim Beta(0.4, 0.4), x_{i2} \sim Gamma(1, 1)$ 인 경우를 고려하자.

+0.14	-0.01
-0.01	+0.95

+0.35	+0.49
+0.49	+2.07

+0.11	+0.06
+0.06	+0.98

(a) Empirical covariance of \boldsymbol{x}_i (b) Posterior estimation via (c) Posterior estimation via in the data. $\hat{\boldsymbol{\Lambda}}\hat{\boldsymbol{\Lambda}}^T + \hat{\boldsymbol{\Sigma}}. \qquad \hat{\boldsymbol{\Lambda}}\mathrm{cov}(\hat{\boldsymbol{\eta}}_i, i=1,\dots,N)\hat{\boldsymbol{\Lambda}}^T + \hat{\boldsymbol{\Sigma}}.$

Distributional Shift (비모수 선형인자모형)

- u의 분포가 독립인 균등분포에서 벗어나 데이터에 치우쳐짐.
- u의 사전분포에 제약을 부여하여 분포가 균등분포가 되게 해야 함.

$$\Pi_{u_{.l}}(u_{1l}, \cdots, u_{nl}) = \prod_{i=1}^{n} 1(u_{il} \in [0, 1]) \exp(-\nu W_2(U_l, U))$$

• $W_2(U_l, U)$ 는 u_l 의 경험적 누적분포와 U(0,1) 사이의 와서스타인-2 거리이다.

$$W_2(F,G) = \left(\int_0^1 |F^{-1}(z) - G^{-1}(z)|^2 dz\right)^{1/2}$$

• $\nu, n \to \infty$ 이면 u의 사전분포가 독립인 균등분포로 수렴함이 알려져 있다.

Distributional Shift (비모수 선형인자모형)

(a) One posterior sample of the latent locations without the constraint relaxation term.

(b) One posterior sample of the latent locations with the constraint relaxation term ($\nu=1000$).

목차

- ① 참고문헌
- ② 인자모형
- ③ 비모수 선형인자모형
- 4 식별성
- 5 결과

식별성(Identifiability)

$$x_i = \Lambda \eta_i + \epsilon_i, \quad \epsilon_i \sim N(0, \Sigma), \quad i = 1, \dots, n,$$
 $\eta_{ik} = g_k(u_{il_k}), \quad k = 1, \dots, K,$
 $u_{il} \stackrel{iid}{\sim} U(0, 1), \quad l = 1, \dots, m, \quad m \leq K.$

- Latent locations : uil
- Residual covariance : $\Sigma = diag(\sigma_1^2, \dots, \sigma_p^2)$
- ullet Loadings and factors : Λ and g
 - General Identifiability

$$\mathbb{P}(x|\Lambda,g) = \mathbb{P}(x|\Lambda',g') \text{ iff } \Lambda = \Lambda'R \text{ and } g = R^Tg'$$

for some rotation matrix $R \in \mathbb{R}^{K \times K}$

Strict Identifiability

$$\mathbb{P}(x|\Lambda,g) = \mathbb{P}(x|\Lambda',g')$$
 iff $\Lambda = \Lambda'$ and $g = g'$

식별성

가정1

각 인자 u_{ii} 에 대해서 다음을 만족하는 j가 존재한다.

$$\mathbb{E}[x_{ij}|u_i] = \lambda_{jh}g_h(u_{il}), \quad \forall i.$$

• uil의 식별성 증명을 위해 필요

가정2

인자 로딩 행렬 Γ 는 full column rank 이고, 각 열의 노름이 고정되어 있다.

• 양의 실수 a에 대해서 (λ_{jh},g_h) 와 $(a\lambda_{jh},\frac{1}{a}g_h)$ 동일한 모형을 표현함을 방지

식별성

가정3

가정 1에서 $\mathbb{E}[x_{ij}|u_i] = \lambda_{jh}g_h(u_{il})$ 가 만족한다면,

$$x_{ij}|u_i \sim N(\lambda_{jh}g_h(u_{il}), \sigma_j^2)$$

이 성립함을 알 수 있다. 이 때, σ_i^2 이 알려져 있음을 가정한다.

• $x_i = \eta_i + \epsilon = (\eta_i + \epsilon/2) + \epsilon/2$ 처럼 다양한 방식으로 표현됨을 방지

식별성

• 가정 1,2,3 하에서 u_{il} , Σ 의 식별성과 Λ,g 의 일반(general) 식별성을 증명할 수 있다.

$$\mathbb{P}(x|\Lambda,g) = \mathbb{P}(x|\Lambda',g')$$
 iff $\Lambda = \Lambda'$ and $g = g'$

- 강한(strict) 식별성을 위해 추가 조건(혹은 작업)이 필요하다. (Poworoznek et al. [2021])
 - 로딩행렬에 하삼각행렬과 같은 제약을 부여하여 샘플링
 - A의 특정 성분을 0으로 선택
 - 사후표본을 사후처리

사후표본 사후처리

• Xu et al. [2023]가 제안한 사후처리-사후표본

Algorithm 1: post-processing the posterior samples to solve ambiguity

Input:
$$(\boldsymbol{\Lambda}^{(1)}, \boldsymbol{g}^{(1)}, \boldsymbol{\Sigma}^{(1)}), \dots, (\boldsymbol{\Lambda}^{(M)}, \boldsymbol{g}^{(M)}, \boldsymbol{\Sigma}^{(M)})$$

for $m=1,\ldots,M$ do

for
$$k = 1, \ldots, K$$
 do

Orthogonalize the kth partition $\mathbf{\Lambda}^{(m)k}$ and tackle the label and

sign switching with MatchAlign algorithm (Poworoznek et al., 2021);

Obtain rotation matrix $\mathbf{R}^{(m)k}$ and $\mathbf{\Lambda}_{h}^{(m)k} \leftarrow \mathbf{\Lambda}^{(m)k} \mathbf{R}^{(m)k}$;

Rotate \mathbf{g}^k and obtain $\mathbf{g}^{(m)k} \leftarrow (R^{(m)k})^T \mathbf{g}^{(m)k}$.

for
$$h = 1, \dots, H$$
 do

$$\boldsymbol{\Lambda}_h^{(m)} \leftarrow \boldsymbol{\Lambda}_h^{(m)} / \|\boldsymbol{\Lambda}_h^{(m)}\|_2;$$

$$\boldsymbol{g}^{(m)} \leftarrow \boldsymbol{g}^{(m)} \| \boldsymbol{\Lambda}_h^{(m)} \|_2;$$

MatchAlign 알고리듬

• Poworoznek et al. [2021]에서 제안한 MatchAlign 알고리듬 이용

Algorithm 1 MatchAlign algorithm to solve rotational ambiguity in matrix valued parameters.

```
Input: \{\Lambda^{(t)}: t = 1, ..., T\}
1. for t in 1: T do
    Orthogonalize \Lambda^{(t)} using Varimax and output \tilde{\Lambda}^{(t)}
end

 Choose a pivot Λ<sup>P</sup> from {Λ

(t): t = 1, ..., T}

 for t in 1: T do

    for i in 1:k do
        Compute normed differences between c_i^{(t)} and \Lambda^P and -\Lambda^P columns
        Retain the j^{th} column having minimum norm value
        Drop the matched column and its negative from the pivot
    end
    Reorder and re-sign
end
```

MatchAligh 알고리듬

• VariMax 처리 후에 각 Λ 에 대해 적절한 $S = diag(s_1, \ldots, s_K), \ s_i \in \{-1, 1\}$ 과 치환행렬 Q 선택

$$\arg\min_{Q,S} \left| \left| \Lambda QS - \Lambda^P \right| \right|_F$$

Pivot Λ^P는 사후표본 중에서 하나 선택.

VariMax

- 'Variance is maximized' 의 약자로 Kaiser [1958] 가 제안
- 다음을 만족하는 회전행렬 $R \in O_p$ 를 찾는 것이 목표이다.

$$R_{\textit{VariMax}} = \arg\max_{R} \sum_{j=1}^{k} \left[\frac{1}{p} \sum_{i=1}^{p} (\Lambda R)_{ij}^4 - \left(\frac{1}{p} \sum_{i=1}^{p} (\Lambda R)_{ij}^2 \right)^2 \right]$$

• $R_{VariMax}$ 은 Λ 를 회전변환하여 각 열의 분산의 합이 가장 크게 만든다.

MatchAlign 알고리듬 적용 결과

• 왼쪽은 Λ 한 원소에 대한 Traceplot 이고, 중앙은 Varimax 적용 후, 오른쪽은 MatchAlign 적용 후의 결과이다.

목차

- ① 참고문헌
- ② 인자모형
- ③ 비모수 선형인자모형
- 4 식별성
- ⑤ 결과

$$x_i = \Lambda \eta_i + \epsilon_i, \quad \epsilon_i \sim N(0, \Sigma), \quad i = 1, ..., n,$$
 $\eta_{ik} = g_k(u_{il_k}), \quad k = 1, ..., K,$

$$\Pi_{u_{\cdot l}}(u_l) = \prod_{i=1}^n 1(u_{il} \in [0, 1]) \exp(-\nu W_2(U_l, U)), \quad l = 1, ..., m$$

$$\lambda_{jk} \sim N(0, \tau \gamma_{jk} \sigma_j^2)$$

$$\gamma_{jh} \sim C^+(0, 1)$$

$$\tau \sim C^+(0, 1)$$

- Λ에 horseshoe 사전분포 부여
- 충분히 큰 수의 잠재인자 개수 K를 선택한 후에 수축사전 분포를 통해 의미가 없는 요인 제거.

비교 모형

- 다음의 4 가지 잠재인자 모형 사용.
 - NITFY : 논문에서 제안한 모형
 - GP-LVM (gaussian process latent variable model) : 비선형 인자모형으로 회귀 함수에 GP 사전분포 부여
 - VAE (variational autoencoder) : 비선형 인자모형으로 DNN 이용
 - PPCA (probabilistic pca) : 정규 선형 인자모형

결과

• 주어진 데이터셋의 분포를 얼마나 잘 학습하나를 out-of-sample 를 통해 확인

- (a) 2-dimensional data generated from independent Gamma and Beta distribution.
- (b) 20-dimensional data generated from a Gaussian linear factor.
- (c) 10-dimensional data generated from two latent curves.
- NIFTY 가 대부분 데이터에서 가장 좋은 성능 지님.
- PPCA 는 정규 선형 인자모형을 통해서 생성된 데이터에서 가장 좋은 성능 보임.
- GPLVM 과 VAE 는 NIFTY 다음의 성능을 보이나, curve 데이터에서는 VAE 성능 안 좋음.

• Curve 데이터에서 NIFTY와 GPLVM 이 좋은 성능 가짐

차원 축소 결과

- Latent location u_{il} 는 저차원 단위 큐브에서의 좌표로 생각할 수 있다.
- u;i를 통한 차원 축소 결과는 아래와 같다.
- (u_{il}이 아닌 g(u_{il})?)

(a) The three-dimensional Swiss roll generated from uniform variables u_i and v_i .

(b) 2D visualization from diffusion maps.

(c) 2D visualization from NIFTY latent locations.

(d) Loading matrix and latent mappings.

논의

- u에 제약이 있는 사전분포?
 - n이 충분히 크지 않으면 distributional shift 방지 불가
 - 와서스타인이 포함된 부분이 n, ν 가 커지면 거의 무시되면서도, distributional shift 를 억제할 수 있나?
- NIFTY 가 커버할 수 있는 데이터 분포?
 - Λ: 데이터를 사상시킬 초평면(hyperplane) 결정
 - η : 초평면에서의 데이터 분포 결정
- 시의 식별성 문제로 인해서 수렴속도에 영향을 미침(Multimodality)
 - $\eta \sim F$ 로 모델링하면 Λ 을 하삼각행렬로 제한하면 괜찮을수도?

References I

- Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. *Psychometrika*, 23(3):187–200.
- Poworoznek, E., Ferrari, F., and Dunson, D. (2021). Efficiently resolving rotational ambiguity in bayesian matrix sampling with matching. *arXiv* preprint arXiv:2107.13783.
- Xu, M., Herring, A. H., and Dunson, D. B. (2023). Identifiable and interpretable nonparametric factor analysis. *arXiv preprint* arXiv:2311.08254.