

Real World Applications using Parallel Computing for Dynamic Traffic Assignment and Shortest Path Search

Alessandro Attanasi Edmondo Silvestri Pietro Meschini Guido Gentile

Introduction

The Objective:

To implement a functional solution to take on the

Dynamic Traffic Assignment Problem Route Choice + Flow Propagation

In a time and resource efficient manner.

Problem #1 Definition

Dynamic Shortest Path Search Parallelisation

How to best exploit parallel computing to:

- Reduce calculation time for individual requests
- Achieve a high level of service

Test Application:

VAO: Verkehrsauskunft Österreich

Hyperpath based Multi-modal Route planning for Austria

Network Size:

1.1 Million Nodes

2.6 Million Arcs

SAPIENZA UNIVERSITÀ DI ROM/

Shortest Path Search

Test Network

- A* Shortest Path Algorithm:
 - Explore nodes in sequence, lower cost first
 - Similar to Dijkstra, distance as additional cost *estimate*
 - Bucket list to avoid sorting, label correcting
- Parallelisation Strategy:
 - Parallel threads extract one node each

1500 Requests Execution time:

- End user waiting time considerably reduced
- Faster, but not exceptionally faster
- Time vs Distance looks sub-linear

1500 Requests Execution time:

- End user waiting time considerably reduced
- Faster, but not exceptionally faster
- Time vs Distance looks sub-linear
- Gains up to 8 threads

1500 Requests Performance Gain:

8 thread performance2 to 4 times faster

 Better results for more complex requests

Problem #2 Definition

Dynamic Traffic Assignment Parallelisation

How to best exploit parallel computing to:

- Reduce total computation time of Route Choice Model + Flow Propagation
- Achieve Real-Time compatible performance on large real-world networks

Parallelisation Strategy

- Route Choice (DSP):
 - each DSP search is handled by a single thread
 - parallel threads carry out simultaneous path searches
- Flow Propagation (GLTM):
 - parallel threads compute flow splitting and redirection at individual nodes based solely on previous states
 - after processing a node, the same thread performs flow propagation on the FS and BS of that node, link by link

Benchmark Network Metrics

Network Metrics						
Region	Region N. of nodes N.					
5T-Piedimont	34606	95794	2009			
Moscow	18749	46334	644			
Catania	2052	6006	89			
Düsseldorf South	656	1696	155			

	Total computation time by number of threads [s]					
Region	1 Thr	2 Thr	4 Thr	8 Thr	16 Thr	
5T-Piedimont	227	135	65	42	29	
Moscow	102	57	31	18	13	
Catania	7.2	4.3	2.6	1.8	1.3	
Düsseldorf South	2.1	1.5	1.1	0.87	0.73	

1 DTA Iteration Route Choice Phase

- Gains nearly linear for 2 and 4 threads
- Best results for larger networks
- MUCH more efficient than parallelised A*
- Saturation onset is considerably delayed

1 DTA Iteration Flow Propagation Phase

- Gains sub-linear but still very significant
- Best results for larger networks

- Complete DTA Iteration Results:
 - ◆ Route Choice + Flow Generation + Flow Propagation
 - Simulation horizon 75 minutes
 - Time step 12 seconds

	Total computation time by number of threads [s]					
Region	1 Thr	2 Thr	4 Thr	8 Thr	16 Thr	
5T-Piedimont	227	135	65	42	29	
Moscow	102	57	31	18	13	
Catania	7.2	4.3	2.6	1.8	1.3	
Düsseldorf South	2.1	1.5	1.1	0.87	0.73	

- Complete DTA Iteration Results:
 - ◆ Route Choice + Flow Generation + Flow Propagation
 - Simulation horizon 75 minutes
 - Time step 12 seconds

	Total computation time by number of threads [s]						
Region	1 Thr	2 Thr	4 Thr	8 Thr	16 Thr		
5T-Piedimont	227	135	65	42	29		
Moscow	102	57	31	18	13		
Catania	7.2	4.3	2.6	1.8	1.3		
Düsseldorf South	2.1	1.5	1.1	0.87	0.73		

18%

- Complete DTA Iteration Results:
 - ◆ Route Choice + Flow Generation + Flow Propagation
 - Simulation horizon 75 minutes
 - Time step 12 seconds

	Total co	Total computation time by number of threads [s]				
Region	1 Thr	2 Thr	4 Thr	8 Thr	16 Thr	
5T-Piedimont	227	135	65	42	29	13%
Moscow	102	57	31	18	13	13%
Catania	7.2	4.3	2.6	1.8	1.3	
Düsseldorf South	2.1	1.5	1.1	0.87	0.73	18%

 The A* Dynamic Shortest Path Algorithm may be sped up 2x to 4x by parallel node extraction

- The A* Dynamic Shortest Path Algorithm may be sped up 2x to 4x by parallel node extraction
- A much better use of resources is to process sequential path searches in parallel

- The A* Dynamic Shortest Path Algorithm may be sped up 2x to 4x by parallel node extraction
- A much better use of resources is to process sequential path searches in parallel
- The Route Choice phase of DTA can be made to run 10x faster using 16 parallel threads

- The A* Dynamic Shortest Path Algorithm may be sped up 2x to 4x by parallel node extraction
- A much better use of resources is to process sequential path searches in parallel
- The Route Choice phase of DTA can be made to run 10x faster using 16 parallel threads
- Flow propagation by GLTM is highly parallelisable and runs about 9x faster on 16 threads

- The A* Dynamic Shortest Path Algorithm may be sped up 2x to 4x by parallel node extraction
- A much better use of resources is to process sequential path searches in parallel
- The Route Choice phase of DTA can be made to run 10x faster using 16 parallel threads
- Flow propagation by GLTM is highly parallelisable and runs about 9x faster on 16 threads
- Each iteration of a Dynamic Traffic Assignment can run 7.7x faster using 16 parallel threads

- The A* Dynamic Shortest Path Algorithm may be sped up 2x to 4x by parallel node extraction
- A much better use of resources is to process sequential path searches in parallel
- The Route Choice phase of DTA can be made to run 10x faster using 16 parallel threads
- Flow propagation by GLTM is highly parallelisable and runs about 9x faster on 16 threads
- Each iteration of a Dynamic Traffic Assignment can run 7.7x faster using 16 parallel threads

...on an AMD Opteron 6272 16 core CPU @2.1GHz - 128GB RAM

Thank you for your attention