PART-II: CHEMISTRY

SECTION - 1

- This section contains EIGHT (08) questions.
- Each question has **FOUR** options (A), (B), (C) & (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, and both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct

option;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example : in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e., the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 mark.

1. The reaction sequence(s) that would lead to o-xylene as the major product is(are)

(D)
$$\frac{1. O_3, Zn/H_2O}{2. N_2H_4, KOH, heat}$$

Answer (A, B)

2. Correct option(s) for the following sequence of reactions is(are)

(A) $Q = KNO_2$, $W = LiAlH_4$

- (B) R = benzenamine, V = KCN
- (C) $Q = AgNO_2$, R = phenylmethanamine
- (D) $W = LiAlH_4$, V = AgCN

Sol.
$$Ph - CH_3 \xrightarrow{Br_2} Ph - CH_2 - Br \xrightarrow{(ii) AgNO_2 \\ (ii) H_2/Pd - C} Ph - CH_2 - NH_2 \xrightarrow{CHCl_3} Ph - CH_2 - \stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C} (S)$$

$$(R) \qquad \qquad (S) \qquad$$

:. Correct option are

$$W = LiAlH_4$$
, $V = AgCN$

3. For the following reaction

$$2X + Y \xrightarrow{k} P$$

the rate of reaction is $\frac{d[P]}{dt} = k[X]$. Two moles of X are mixed with one mole of Y to make 1.0 L of solution. At 50 s, 0.5 mole of Y is left in the reaction mixture. The correct statement(s) about the reaction is(are) (Use: In 2 = 0.693)

- (A) The rate constant, k, of the reaction is $13.86 \times 10^{-4} \text{ s}^{-1}$.
- (B) Half-life of X is 50 s.

(C) At 50 s,
$$-\frac{d[X]}{dt}$$
 = 13.86 × 10⁻³ mol L⁻¹ s⁻¹.

(D) At 100 s,
$$-\frac{d[Y]}{dt} = 3.46 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$
.

Answer (B,C,D)

Sol. rate =
$$\frac{d[P]}{dt}$$
 = k[X]

$$2X + Y \rightarrow P$$

2 mole 1 mole

1 mole 0.5 mole 0.5 mole

$$-\frac{d[X]}{dt} = k_1[X] = 2k[X] \Rightarrow 2k = k_1$$

$$-\frac{d[Y]}{dt} = k_2[X] = k[X] \Rightarrow k_2 = k$$

$$2k = \frac{1}{50} \ln 2$$

$$k = \frac{1}{100} ln 2 = \frac{0.693}{100} = 6.93 \times 10^{-3} \ s^{-1}$$

$$\left(t_{1/2}\right)_{x} = \frac{\ln 2}{k_{1}} = \frac{\ln 2 \times 100}{2 \times 0.693} = 50 \text{ sec}$$

At 50 sec

$$-\frac{d[X]}{dt} = 2k[X] = 2 \times \frac{0.693}{100} \times 1$$

$$= 13.86 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$

At 100 sec

$$-\frac{d[Y]}{dt} = k_2[X] = k[X] = \frac{0.693}{100} \times \frac{1}{2}$$

(... Concentration of X after 2 half lives =
$$\frac{1}{2}$$
 M)

$$= 3.46 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$

4. Some standard electrode potentials at 298 K are given below:

To a solution containing 0.001 M of X^{2+} and 0.1 M of Y^{2+} , the metal rods X and Y are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of X. The correct combination(s) of X and Y, respectively, is(are)

(Given: Gas constant, R = 8.314 J K⁻¹ mol⁻¹, Faraday constant, F = 96500 C mol⁻¹)

(A) Cd and Ni

(B) Cd and Fe

(C) Ni and Pb

(D) Ni and Fe

Answer (A,B,C)

Sol.
$$X + Y^{2+} \rightarrow X^{2+} + Y$$

$$E = E^{\circ} - \frac{0.06}{2} \log_{10} \left(\frac{10^{-3}}{10^{-1}} \right)$$

$$E = E^{\circ} + 0.06$$

(A)
$$E^{\circ} = -(-.4) + (-.24) = .16 > 0$$

(B)
$$E^{\circ} = -(-.4) + (-.44) = -.04 < 0$$
 and $E_{cell} = -0.04 + 0.06 = +0.02 > 0$

(C)
$$E^{\circ} = -(-.24) + (-.13) = .11 > 0$$

(D)
$$E^{\circ} = -(-.24) + (-.44) = -.2 < 0$$

$$\therefore$$
 E_{cell} = -0.2 + 0.06 = -0.14 < 0

 \therefore If $E_{cell} > 0$ then the cell construction is possible.

5. The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)

(Note: py = pyridine

Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)

- (A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$
- (B) $[Co(CO)_4]^-$ and $[CoCl_4]^{2-}$
- (C) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$
- (D) $[Cu(py)_{\underline{a}}]^+$ and $[Cu(CN)_{\underline{a}}]^{3-}$

Answer (A,B,D)

Sol. $[FeCl_A]^- \rightarrow Fe^{3+}$, $3d^5$ (weak field ligand) = sp^3

$$[Fe(CO)_4]^{-2} \to Fe^{2-}, 3d^{10} \to sp^3$$

$$[Co(CO)_{a}]^{-} \rightarrow Co^{-}, 3d^{10} \rightarrow sp^{3}$$

 $[CoCl_{\Delta}]^{2-} \rightarrow Co^{2+}$, $3d^{7}$ (weak field ligand) $\rightarrow sp^{3}$

$$[Ni(CO)_4] \rightarrow Ni, 3d^{10} \rightarrow sp^3$$

 $[Ni(CN)_{A}]^{2-} \rightarrow Ni^{2+}$, $3d^{8}$ (strong field ligand) $\rightarrow dsp^{2}$

$$[Cu(py)_4]^+ \rightarrow Cu^+, 3d^{10} \rightarrow sp^3$$

$$[Cu(CN)_{\downarrow}]^{3-} \rightarrow Cu^+, 3d^{10} \rightarrow sp^3$$

In $3d^{10}$ electronic configuration only sp^3 hybridisation and tetrahedral geometry is possible.

- 6. The correct statement(s) related to oxoacids of phosphorous is(are)
 - (A) Upon heating, H₃PO₃ undergoes disproportionation reaction to produce H₃PO₄ and PH₃.
 - (B) While H₃PO₃ can act as reducing agent, H₃PO₄ cannot.
 - (C) H₃PO₃ is a monobasic acid.
 - (D) The H atom of P-H bond in H₃PO₃ is not ionizable in water.

Answer (A,B,D)

Sol.
$$4H_3PO_3 \xrightarrow{\Delta} PH_3 + 3H_3PO_4$$

In H_3PO_4 , phosphorous is present in highest oxidation state, i.e., +5. So H_3PO_4 cannot acts as reducing agent. Structure of H_3PO_3 ,

It is a dibasic acid.

H atom present in P-H bond is not ionizable.

These P-H bonds are not ionisable to give H^+ and do not play any role in basicity. Only those H atoms which are attached with oxygen in P-OH form are ionisable and cause the basicity. Thus, H_3PO_3 and H_3PO_4 are dibasic and tribasic, respectively as the structure of H_3PO_3 has two P-OH bonds and H_3PO_4 three.

SECTION - 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place.

Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $y \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3y \times 10^2$ S cm² mol⁻¹.

7. The value of α is _____.

Answer (0.215)

8. The value of y is _____.

Answer (0.86)

Sol. Solution of Question Nos. 7 and 8

Molar conductivity of HX at infinite dilution

$$\Lambda_{\rm m}^{\infty}$$
 = 4 × 10² S cm² mol⁻¹

Molar conductivity of HX at conc. $c_1 = y \times 10^2 \text{ S cm}^2 \text{ mol}^{-1}$

$$\alpha_1 = \frac{\Lambda_m^{c_1}}{\Lambda_m^{\infty}} = \frac{y \times 10^2}{4 \times 10^2} = \frac{y}{4}$$

On 20 times dilution of the solution of HX

$$\alpha_2 = \frac{\Lambda_m^{c_2}}{\Lambda_m^{\infty}} = \frac{3y \times 10^2}{4 \times 10^2} = \frac{3y}{4} \qquad \qquad \left[c_2 = \frac{c_1}{20}\right]$$

$$\frac{\alpha_1}{\alpha_2} = \frac{1}{3} \qquad \Rightarrow \alpha_2 = 3\alpha_1$$

$$\mathsf{K}_{\mathsf{a}} = \frac{\mathsf{c}_{\mathsf{1}}\alpha_{\mathsf{1}}^2}{1 - \alpha_{\mathsf{1}}} = \frac{\mathsf{c}_{\mathsf{2}}\alpha_{\mathsf{2}}^2}{1 - \alpha_{\mathsf{2}}} = \frac{\mathsf{c}_{\mathsf{1}}(3\alpha_{\mathsf{1}})^2}{20(1 - 3\alpha_{\mathsf{1}})}$$

$$\frac{1}{1-\alpha_1} = \frac{9}{20(1-3\alpha_1)}$$

$$20 - 60\alpha_1 = 9 - 9\alpha_1$$
 \Rightarrow $\alpha_1 = \frac{11}{51} = 0.215$

$$y = 4\alpha_1 = 0.86$$

Question Stem for Question Nos. 9 and 10

Question Stem

Reaction of x g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with y g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol⁻¹) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

9. The value of x is _____.

Answer (3.57)

10. The value of y is _____.

Answer (1.23)

Sol. Solution of Question Nos. 9 and 10

⇒ Moles of ammonium salt =
$$\frac{1.29}{129}$$
 = 0.01

⇒ Moles of nitrobenzene = 0.01

$$\Rightarrow y = 0.01 \times \text{Molar mass of nitrobenzene}$$
$$= 0.01 \times 123$$
$$y = 1.23$$

Also

No. of eq. of nitrobenzene = No. of eq. of $SnCl_2$

$$6 \times (0.01) = 2 \times n_{SnCl_2}$$

$$n_{SnCl_2} = 0.03$$

$$\Rightarrow n_{Sn} = 0.03$$

$$w_{Sn} = 0.03 \times 119$$

$$x = 3.57$$

Question Stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of 0.03 M $\rm KMnO_4$ solution to reach the end point. Number of moles of $\rm Fe^{2+}$ present in 250 mL solution is x × 10⁻² (consider complete dissolution of $\rm FeCl_2$). The amount of iron present in the sample is y% by weight.

(Assume: KMnO₄ reacts only with Fe²+ in the solution

Use: Molar mass of iron as 56 g mol⁻¹)

11. The value of x is _____.

Answer (1.875)

12. The value of y is _____.

Answer (18.75)

Sol. Solution of Question Nos. 11 and 12

$$8H^+ + 5Fe^{2+} + MnO_4^- \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

For 25 ml,

meq of Fe²⁺ = meq of MnO₄⁻
=
$$12.5 \times 0.03 \times 5$$

For 250 ml,

mmoles of
$$Fe^{2+} = \frac{12.5 \times 0.03 \times 5 \times 250}{25}$$

moles of Fe²⁺ =
$$\frac{18.75}{1000}$$
 mol
= 18.75×10^{-3} mol
= 1.875×10^{-2} mol

$$x = 1.875$$

Weight of
$$Fe^{2+} = 1.875 \times 10^{-2} \times 56 = 1.05 g$$

% purity of Fe²⁺ =
$$\frac{1.05}{5.6} \times 100 = 18.75\%$$

$$y = 18.75\%$$

SECTION - 3

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Paragraph

The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the energy required for homolytic cleavage of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by s-character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:

$$H_3$$
C $-H(g) \longrightarrow H_3$ C $(g) + H(g) \Delta H^\circ = 105 \text{ kcal mol}^{-1}$

$$CI - CI(g) \longrightarrow CI(g) + CI(g) \Delta H^{\circ} = 58 \text{ kcal mol}^{-1}$$

$$H_3C - Cl(g) \longrightarrow H_3C'(g) + Cl'(g) \Delta H^\circ = 85 \text{ kcal mol}^{-1}$$

$$H - Cl(g) \longrightarrow H(g) + Cl(g) \Delta H^{\circ} = 103 \text{ kcal mol}^{-1}$$

13. Correct match of the C-H bonds (shown in bold) in Column J with their BDE in Column K is

Column J

Column K

Molecule

BDE (kcal mol-1)

- (P) **H-C**H(CH₃)₂
- (i) 132
- (Q) **H-C**H₂Ph
- (ii) 110
- (R) **H-C**H=CH₂
- (iii) 95
- (S) **H-C**≡CH
- (iv) 88
- (A) P iii, Q iv, R ii, S i
- (B) P i, Q ii, R iii, S iv
- (C) P iii, Q ii, R i, S iv
- (D) P ii, Q i, R iv, S iii

Answer (A)

Sol.
$$H - CH(CH_3)_2 \longrightarrow H\dot{C} - CH_3$$

 CH_3

$$H - CH_2Ph \longrightarrow {}^{\bullet}CH_2 - Ph$$
Benzyl radical

$$H - CH = CH_2 \rightarrow {}^{\bullet}CH = CH_2$$

$$H - C \equiv CH \rightarrow {}^{\bullet}C \equiv CH$$

Order of stability of free radical

Stability of free radical $\propto \frac{1}{\text{Bond energy}}$

:. Order of bond energy:

14. For the following reaction

$$CH_4(g) + Cl_2(g) \xrightarrow{light} CH_3Cl(g) + HCl(g)$$

the correct statement is

- (A) Initiation step is exothermic with $\Delta H^{\circ} = -58$ kcal mol⁻¹
- (B) Propagation step involving ${}^{\bullet}CH_3$ formation is exothermic with $\Delta H^{\circ} = -2$ kcal mol⁻¹
- (C) Propagation step involving CH₃Cl formation is endothermic with Δ H° = +27 kcal mol⁻¹
- (D) The reaction is exothermic with $\Delta H^{\circ} = -25 \text{ kcal mol}^{-1}$

Answer (D)

Sol. (1) $\text{Cl}_2 \rightarrow 2\text{Cl}^{\bullet}$ (Initiation step) $\Delta \text{H} = 58 \text{ kcal/mol}$

Step (1) → Endothermic (bond breaking)

Step (2)
$$\rightarrow \Delta H = 105 - 103$$

= 2 kcal/mol (Endothermic)

Step (3)
$$\rightarrow \Delta H$$
 = 58 - 85
= -27 kcal/mol (Exothermic)

For complete reaction

$$CH_4(g) + CI_2(g) \xrightarrow{light} CH_3CI(g) + HCI(g)$$

 $\Delta H = 58 + 105 - 85 - 103$
= -25 kcal/mol

Paragraph

The reaction of $K_3[Fe(CN)_6]$ with freshly prepared $FeSO_4$ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the $FeSO_4$ solution in complete absence of air produces a white precipitate X, which turns blue in air. Mixing the $FeSO_4$ solution with $NaNO_3$, followed by a slow addition of concentrated H_2SO_4 through the side of the test tube produces a brown ring.

15. Precipitate X is

(A) $\operatorname{Fe_4[Fe(CN)_6]_3}$

(B) Fe[Fe(CN)₆]

(C) K₂Fe[Fe(CN)₆]

(D) KFe[Fe(CN)₆]

Answer (C)

- 16. Among the following, the brown ring is due to the formation of
 - (A) $[Fe(NO)_2(SO_4)_2]^{2-}$
 - (B) $[Fe(NO)_2(H_2O)_4]^{3+}$
 - (C) $[Fe(NO)_4(SO_4)_2]$
 - (D) $[Fe(NO)(H_2O)_5]^{2+}$

Answer (D)

Sol. Solution of Question Nos. 15 and 16

$$Fe^{2+} + K_3[Fe(CN)_6] \rightarrow Fe_3[Fe(CN)_6]_2 \downarrow$$
Turnbull's blue ppt.

In air Fe²⁺ gets oxidised to Fe³⁺

Fe³⁺ + [Fe(CN)₆]⁴⁻
$$\longrightarrow$$
 Fe₄[Fe(CN)₆]₃ \downarrow Prussian blue
 $2NO_3^- + 4H_2SO_4 + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2NO^{\uparrow} + 4SO_4^{2-} + 4H_2O$
[Fe(H₂O)₆]²⁺ + NO \longrightarrow [Fe(H₂O)₅NO]²⁺ + H₂O

$$[\text{Fe}(\text{H}_2\text{O})_6]^{2^+} + \text{NO} \longrightarrow [\text{Fe}(\text{H}_2\text{O})_5\text{NO}]^{2^+} + \text{H}_2\text{O}$$
 Compound responsible for brown ring

$$\therefore$$
 X = K₂Fe[Fe(CN)₆]

Brown ring is due to $[Fe(H_2O)_5NO]^{2+}$

SECTION - 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;

Zero Marks : 0 In all other cases.

17. One mole of an ideal gas at 900 K, undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two processes are same, the value of $\ln \frac{V_3}{V_2}$ is ____.

(U: internal energy, S: entropy, p: pressure, V: volume, R: gas constant)

(Given: molar heat capacity at constant volume, $C_{V, m}$ of the gas is $\frac{5}{2}R$)

Answer (10)

Sol. Process I is adiabatic reversible

Process II is reversible isothermal process

Process I - (Adiabatic Reversible)

$$\frac{\Delta U}{R} = 450 - 2250$$

$$\Delta U = -1800R$$

$$W_1 = \Delta U = -1800R$$

Process II - (Reversible Isothermal Process)

$$T_1 = 900 \text{ K}$$

Calculation of T_2 after reversible adiabatic process

$$-1800R = nC_v(T_2 - T_1)$$

$$-1800R = 1 \times \frac{5}{2}R(T_2 - 900)$$

$$T_2 = 180 \text{ K}$$

$$W_{II} = -nRT_2 \ln \frac{v_3}{v_2} = W_I$$

$$\Rightarrow -1 \times R \times 180 \ln \frac{v_3}{v_2} = -1800R$$

$$\ln \frac{v_3}{v_2} = 10$$

18. Consider a helium (He) atom that absorbs a photon of wavelength 330 nm. The change in the velocity (in cm s^{-1}) of He atom after the photon absorption is _____.

(Assume: Momentum is conserved when photon is absorbed.

Use: Planck constant = 6.6×10^{-34} J s, Avogadro number = 6×10^{23} mol⁻¹, Molar mass of He = 4 g mol⁻¹)

Answer (30)

Sol. Momentum of photon $=\frac{h}{\lambda} = \frac{6.6 \times 10^{-27}}{330 \times 10^{-7}} \text{ gm cm s}^{-1}$

Momentum of 1 mole of He-atoms = $m\Delta v$

$$\therefore \quad m\Delta v = N_A \times \frac{h}{\lambda}$$

$$4 \times \Delta v = \frac{6 \times 10^{23} \times 6.6 \times 10^{-27}}{330 \times 10^{-7}}$$

$$\Delta v = \frac{6 \times 6.6 \times 10^2}{33 \times 4} = 30 \text{ cm s}^{-1}$$

- \therefore Change in velocity of He-atoms = 30 cm s⁻¹
- 19. Ozonolysis of CIO₂ produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is _____.

Answer (6)

Sol. CIO_2 contains an odd electron and is paramagnetic. It reacts with ozone to give O_2 and CI_2O_6 .

$$2\text{CIO}_2 + 2\text{O}_3 \rightarrow \text{CI}_2\text{O}_6 + 2\text{O}_2$$

In Cl₂O₆, the average oxidation state of Cl is +6.