Типовой расчёт Робилко Тимур, гр. 221701, Вариант 10

```
1
                      1.01
              1.04 0.915311
              1.08 0.865912
              1.12 0.789222
              1.16 0.750595
               1.2 0.6875
              1.24 0.656868
              1.28 0.604248
              1.32 0.57966
              1.36 0.535251
               1.4 0.515306
              1.44 0.477431
In[5]:= func =
              1.48 0.461103
              1.52 0.428497
              1.56 0.415023
               1.6 0.386719
              1.64 0.375521
              1.68 0.350765
              1.72 0.341401
              1.76 0.319602
               1.8 0.311728
              1.84 0.292415
              1.88 0.285763
              1.92 0.268555
             1.96 0.262911
     step = 0.04;
     a = 1;
     b = 1.96;
     points = \frac{(b-a)}{\text{step}} + 1;
     funcTable = Table[{func[i, 1], func[i, 2]}, {i, 1, points}];
     pointsPlot = ListPlot[func,
        PlotStyle \rightarrow {PointSize[0.015], Orange}, PlotLabel \rightarrow "Заданная функция"];
     Show[pointsPlot]
```


Задание 1

```
In[*]: Polynomial24 = InterpolatingPolynomial[funcTable, x];
                                                  plot24 = Plot[Polynomial24, \{x, 1, 2\}, PlotStyle \rightarrow \{Gray\}];
                                                  Expand[Polynomial24]
Out[ • ]=
                                                  3.35989 \times 10^{18} - 5.67593 \times 10^{19} \text{ x} + 4.58586 \times 10^{20} \text{ x}^2 - 2.35829 \times 10^{21} \text{ x}^3 + 8.66608 \times 10^{21} \text{ x}^4 -
                                                          2.42182 \times 10^{22} \, x^5 + 5.34814 \times 10^{22} \, x^6 - 9.5727 \times 10^{22} \, x^7 + 1.41336 \times 10^{23} \, x^8 - 1.74261 \times 10^{23} \, x^9 + 1.41336 \times 10^{23} \, x^8 + 1.4136 \times 
                                                          1.80954 \times 10^{23} \text{ x}^{10} - 1.59145 \times 10^{23} \text{ x}^{11} + 1.18921 \times 10^{23} \text{ x}^{12} - 7.55829 \times 10^{22} \text{ x}^{13} + 4.08166 \times 10^{22} \text{ x}^{14} - 1.08166 \times 10^{22} \text{ x}^{14} + 1.08166 \times 10^{22} \text{ x}^{14} 
                                                          1.8669 \times 10^{22} \, x^{15} + 7.19197 \times 10^{21} \, x^{16} - 2.31381 \times 10^{21} \, x^{17} + 6.14086 \times 10^{20} \, x^{18} - 1.32112 \times 10^{20} \, x^{19} + 1.0000 \times 10^{20} \, x^{10} + 1.0000 \times 10^{20} \, x^{10
                                                          2.24618 \times 10^{19} \ x^{20} - 2.90466 \times 10^{18} \ x^{21} + 2.68445 \times 10^{17} \ x^{22} - 1.57934 \times 10^{16} \ x^{23} + 4.4447 \times 10^{14} \ x^{24} + 
        ln[*]: funcTable12 = Table[{func[i, 1], func[i, 2]}, {i, 1, 25, 2}];
                                                  Polynomial12 = InterpolatingPolynomial[funcTable12, x];
                                                  plot12 = Plot[Polynomial12, {x, 1, 2}, PlotStyle → {Black}];
                                                  Expand[Polynomial12]
 Out[ • ]=
                                                  374.044 - 3074.09 \times + 11774.3 \times^2 - 27453.3 \times^3 + 43213.9 \times^4 - 48288. \times^5 + 39238.8 \times^6 -
                                                         23\,350.7\,\,x^{7}\,+\,10\,096.6\,x^{8}\,-\,3092.86\,x^{9}\,+\,637.046\,x^{10}\,-\,79.2108\,x^{11}\,+\,4.49619\,x^{12}
        In[a]: funcTable8 = Table[{func[i, 1], func[i, 2]}, {i, 1, 25, 3}];
                                                  Polynomial8 = InterpolatingPolynomial[funcTable8, x];
                                                  plot8 = Plot[Polynomial8, {x, 1, 2}, PlotStyle → {Blue}];
                                                  Expand[Polynomial8]
Out[ • ]=
                                                 13757.1 - 77753.3 x + 190910. x^2 - 265964. x^3 +
                                                          229 959. x^4 - 126 373. x^5 + 43 111.6 x^6 - 8348.41 x^7 + 702.686 x^8
        In[@]:= indexes = {1, 6, 11, 16, 21, 25};
                                                 funcTable5 = Table[{func[indexes[i]], 1], func[indexes[i]], 2]]}, {i, 1, 6}];
                                                  Polynomial5 = InterpolatingPolynomial[funcTable5, x];
                                                  plot5 = Plot[Polynomial5, {x, 1, 2}, PlotStyle → {Red}];
                                                  Expand[Polynomial5]
Out[ • ]=
                                                 39.111 - 124.429 x + 163.161 x^2 - 107.564 x^3 + 35.3468 x^4 - 4.61544 x^5
```

ln[*]:= Show[ListPlot[funcTable5, PlotStyle \rightarrow {PointSize[0.013], Orange}], plot5, PlotLabel → "Интерполирующий многочлен заданной функции 5 степени"] Show[ListPlot[funcTable8, PlotStyle → {PointSize[0.013], Orange}], plot8, PlotLabel → "Интерполирующий многочлен заданной функции 8 степени"] Show[ListPlot[funcTable12, PlotStyle → {PointSize[0.013], Orange}], plot12, PlotLabel → "Интерполирующий многочлен заданной функции 12 степени"] Show[ListPlot[funcTable, PlotStyle → {PointSize[0.013], Orange}], plot24, PlotLabel → "Интерполирующий многочлен заданной функции 24 степени"]

Out[•]=


```
Inf* := Show[ListPlot[DifferencesTable24, PlotStyle → {PointSize[0.013], Orange}],
       PlotLabel → "Абс. погрешность многочлена 24 степени в заданных точках"]
     Polynomial24S = Sum [ ((Polynomial24 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points} ]
     Show[ListPlot[DifferencesTable12, PlotStyle → {PointSize[0.013], Orange}],
       PlotLabel → "Абс. погрешность многочлена 12 степени в заданных точках"]
     Polynomial12S = Sum [(Polynomial12 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
     Show[ListPlot[DifferencesTable8, PlotStyle → {PointSize[0.013], Orange}],
       PlotLabel → "Абс. погрешность многочлена 8 степени в заданных точках"]
      Polynomial8S = Sum[((Polynomial8 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
     Show[ListPlot[DifferencesTable5, PlotStyle → {PointSize[0.013], Orange}],
       PlotLabel → "Абс. погрешность многочлена 5 степени в заданных точках"]
     Polynomial5S = Sum [(Polynomial5 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
```

Out[•]=

Out[•]=

 1.78726×10^{-31}

Outf • l=

0.00144011

0.00771268

0.00151517

Таким образом, наилучшим в сравнении по сумме квадратов разностей функции в заданных узлах оказался многочлен 24-й степени. По графикам можно заметить, что погрешность увеличивается ближе к крайним значениям интерполируемой функции. Несмотря на это, интерполяция не гарантирует, что поведение полученной функции между узлами интерполяции будет повторять поведение исходной функции. Об этом свидетельствует увеличение погрешности в узлах, которые не были выбраны для интерполяции 12, 8 и 5 степеней, а также графики многочленов высоких степеней (в частности, ближе к крайним значениям отрезка интерполяции).

Задание 2

```
In[*]: Spline5 := Interpolation[funcTable5, x, Method → "Spline"]
      SplinePlot5 = Plot[Spline5, {x, 1, 2}, PlotStyle → {Red}];
      Spline8 := Interpolation[funcTable8, x, Method → "Spline"]
     SplinePlot8 = Plot[Spline8, \{x, 1, 2\}, PlotStyle \rightarrow \{Blue\}];
      Spline12 := Interpolation[funcTable12, x, Method → "Spline"]
      SplinePlot12 = Plot[Spline12, {x, 1, 2}, PlotStyle → {Black}];
      Spline24 := Interpolation[funcTable, x, Method → "Spline"]
      SplinePlot24 = Plot[Spline24, {x, 1, 2}, PlotStyle → {Gray}];
In[*]:= Show[ListPlot[funcTable5, PlotStyle → {PointSize[0.015], Orange}],
       SplinePlot5, PlotLabel → "Аппроксимирующий сплайн заданной функции 5 степени"]
     Spline5S = Sum[((Spline5 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
     Show[ListPlot[funcTable8, PlotStyle → {PointSize[0.015], Orange}],
       SplinePlot8, PlotLabel → "Аппроксимирующий сплайн заданной функции 8 степени"]
     Spline8S = Sum[((Spline8 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
      Show[ListPlot[funcTable12, PlotStyle → {PointSize[0.015], Orange}], SplinePlot12,
       PlotLabel → "Аппроксимирующий сплайн заданной функции 12 степени"]
      Spline12S = Sum[((Spline12 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
     Show[ListPlot[funcTable24, PlotStyle → {PointSize[0.015], Orange}], SplinePlot24,
       PlotLabel → "Аппроксимирующий сплайн заданной функции 24 степени"]
     Spline24S = Sum [(Spline24 /. x \rightarrow func[i, 1]) - func[i, 2])^2, {i, points}]
```

Out[•]= Аппроксимирующий сплайн заданной функции 5 степени

0.00113297

1.4

1.6

1.6

1.8

1.8

1.2

1.2

Out[•]= 0.0010783

Out[*]=

Аппроксимирующий сплайн заданной функции 12 степени

1.0

0.8

0.4

0.2

Out[•]= 0.00144203

Out[•]=

 $\textbf{1.17097} \times \textbf{10}^{-31}$

Out[*]=
Аппроксимирующий сплайн заданной функции 24 степени

1.0

0.8

0.4

0.2

1.2

1.4

1.6

1.8

Таким образом, наилучшим в сравнении по сумме квадратов разностей функции в заданных узлах оказался сплайн 24 - й степени . Погрешность оказалась меньше, чем в случае

интерполяционного многочлена из задания 1.

Задание 3

```
In[*]:= P1 = Fit[funcTable, {1, x}, x];
      P2 = Fit[funcTable, \{1, x, x^2\}, x];
      PPlot = Plot[{P1, P2}, {x, 1, 2},
         PlotStyle \rightarrow {Red, Blue}, PlotLegends \rightarrow {"P1*(x)", "P2*(x)"}];
      Show[ListPlot[funcTable, PlotStyle → {PointSize[0.015], Orange}],
       PPlot, PlotLabel → "Многочлены наилучшего
      среднеквадратичного приближения"]
```

Out[•]=

$$In[\ \circ\]:= \quad \begin{array}{ll} S1 = Sum \big[\ (\ (P1\ /.\ x \to func \ [i,\ 1]\) - func \ [i,\ 2]\)^2, \ \{i,\ points\} \big] \\ S2 = Sum \big[\ (\ (P2\ /.\ x \to func \ [i,\ 1]\) - func \ [i,\ 2]\)^2, \ \{i,\ points\} \big] \\ Out[\ \circ\]:= \\ 0.0828803 \\ Out[\ \circ\]:= \end{array}$$

0.00547391

Таким образом, многочлен наилучшего среднеквадратичного приближения второго порядка показал лучшую точность как графически, так и исходя из высчитанной суммы квадратов разностей

Задание 4

Метод левых прямоугольников

0.504976

Метод правых прямоугольников

$$ln[*]:=$$
 RightRectangle = step * $\sum_{i=2}^{points}$ func[i, 2]

Out[•]=

0.475092

Метод средних прямоугольников

AverageRectangle =

$$step* \sum_{i=1}^{points-1} rac{func [i, 2] + func [i+1, 2]}{2}$$
 (* В данном случае аналогичен методу трапеций,

так как функция задана таблично и значение функции в середине отрезка принимается среднему арифметическому крайних значений на отрезке *)

Out[•]=

0.490034

Метод трапеций

$$lo[*]:= Trapezoidal = step * \sum_{i=1}^{points-1} \frac{func[i, 2] + func[i+1, 2]}{2}$$

Out[•]=

0.490034

Метод Симпсона

n = 12;
h =
$$\frac{(b-a)}{2n}$$
;
For[i = 0, i \le 2 * n, i++, y_i = func[i+1, 2]];]
Simpsons = $\sum_{i=0}^{n-1} \frac{h}{3} * (y_{2i} + 4y_{2i+1} + y_{2i+2})$

Out[-]=

0.48817

Таким образом, методы правых и левых прямоугольников могут давать завышенные или заниженные результаты в зависимости от производной исходной функции. Методы трапеций и Симпсона позволяют получить более точный результат.

Задание 5

Первая производная (1 порядок точности)

In[*]:* FirstDerivativesFirstAccuracy = Table[

$$\left\{i,\, \mathsf{func}[\![i,\,1]\!],\, \frac{\mathsf{func}[\![i+1,\,2]\!] - \mathsf{func}[\![i,\,2]\!]}{\mathsf{step}}\right\},\, \{i,\,1,\,\mathsf{points-1}\}\right];\, (*\,\,\mathsf{Узлы}\,\,1-24\,\,*)$$

TableForm[FirstDerivativesFirstAccuracy,

TableHeadings \rightarrow {None, {"Узел", " x_i ", " y'_i "}},]

Out[•]//TableForm=

Узел	x_i	y' _i
1	1	-2.36723
2	1.04	-1.23497
3	1.08	-1.91725
4	1.12	-0.965675
5	1.16	-1 . 57738
6	1.2	-0.7658
7	1.24	-1.3155
8	1.28	-0.6147
9	1.32	-1.11022
10	1.36	-0.498625
11	1.4	-0.946875
12	1.44	-0.4082
13	1.48	-0.81515
14	1.52	-0.33685
15	1.56	-0.7076
16	1.6	-0.27995
17	1.64	-0.6189
18	1.68	-0.2341
19	1.72	-0.544975
20	1.76	-0.19685
21	1.8	-0.482825
22	1.84	-0.1663
23	1.88	-0.4302
24	1.92	-0.1411

Первая производная (2 порядок точности)

In[*]:= FirstDerivativesSecondAccuracy = Table

$$\left\{i,\, \mathsf{func}[\![i,\,1]\!],\, \frac{\mathsf{func}[\![i+1,\,2]\!] - \mathsf{func}[\![i-1,\,2]\!]}{2 * \mathsf{step}}\right\},\, \left\{i,\,2,\, \mathsf{points-1}\right\} \right];\, (*\,\,\mathsf{Узлы}\,\,2-24\,\,*)$$

TableForm[FirstDerivativesSecondAccuracy,

TableHeadings \rightarrow {None, {"Узел", " x_i ", " y'_i "}},]

Out[•]//TableForm=

abieroiiii-		
Узел	x_i	у'і
2	1.04	-1.8011
3	1.08	-1.57611
4	1.12	-1.44146
5	1.16	-1.27152
6	1.2	-1.17159
7	1.24	-1.04065
8	1.28	-0.9651
9	1.32	-0.862462
10	1.36	-0.804425
11	1.4	-0.72275
12	1.44	-0.677538
13	1.48	-0.611675
14	1.52	-0.576
15	1.56	-0.522225
16	1.6	-0.493775
17	1.64	-0.449425
18	1.68	-0.4265
19	1.72	-0.389538
20	1.76	-0.370913
21	1.8	-0.339838
22	1.84	-0.324563
23	1.88	-0.29825
24	1.92	-0.28565

Вторая производная (2 порядок точности)

SecondDerivativesSecondAccuracy = Table

$$\Big\{ \text{i, func[[i, 1]], } \frac{\text{func[[i+1, 2]] - 2 * func[[i, 2]] + func[[i-1, 2]]}}{\text{step}^2} \Big\}, \; \{ \text{i, 2, points - 1} \} \Big];$$

TableForm[SecondDerivativesSecondAccuracy,

TableHeadings → {None, {"Узел", " x_i ", " y''_i "}},]

Out[35]//TableForm=

Узел	x_i	y'' _i
2	1.04	28.3063
3	1.08	-17.0 569
4	1.12	23.7894
5	1.16	-15.2925
6	1.2	20.2894
7	1.24	-13.7425
8	1.28	17.52
9	1.32	-12.3881
10	1.36	15.29
11	1.4	-11.2063
12	1.44	13.4669
13	1.48	-10.1737
14	1.52	11.9575
15	1.56	-9.26875
16	1.6	10.6913
17	1.64	-8.47375
18	1.68	9.62
19	1.72	-7.77188
20	1.76	8.70313
21	1.8	- 7 . 14 938
22	1.84	7.91313
23	1.88	-6.5975
24	1.92	7.2275

Таким образом, использование формул численного дифференцирования может дать удовлетворительные результаты для нахождения производных 1 и 2 порядка. Однако при шаге сетки, близком к нулю, неустранимые погрешности в значениях функции оказывают сильное влияние на результат (замечание из лекции 10), о чём свидетельствуют вычисленные значения 2 - й производной.