Chapter 5 Link Layer

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- * If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Computer
Networking: A
Top Down
Approach
7th edition
Jim Kurose, Keith
Ross
Addison-Wesley
April 2016

Chapter 5: Link layer

our goals:

- understand principles behind link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - local area networks: Ethernet, VLANs

Link layer, LANs: outline

- 5.1 introduction, services
- 5.2 error detection, correction
- 5.3 multiple access protocols

5.4 LANs addressing, ARP Ethernet switches VLANS

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment =
 communication link
- * transportation mode = link layer protocol
- travel agent = routing algorithm

Link layer services

- * framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, dest
 - different from IP address!
- reliable delivery between adjacent nodes
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates

Link layer services (more)

* flow control:

 pacing between adjacent sending and receiving nodes

* error detection:

- errors caused by signal attenuation, noise.
- receiver detects presence of errors:
 - signals sender for retransmission or drops frame

error correction:

 receiver identifies and corrects bit error(s) without resorting to retransmission

* half-duplex and full-duplex

 with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- * in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Adaptors communicating

- * sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.

- receiving side
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Link layer, LANs: outline

- 5.1 introduction, services
- 5.2 error detection, correction
- 5.3 multiple access protocols

- **5.4** LANS
- addressing, ARP
- Ethernet
- switches
- VLANS

Error detection

EDC= Error Detection and Correction bits (redundancy)

D = Data protected by error checking, may include header fields

- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Parity checking

single bit parity:

detect single bit errors

two-dimensional bit parity:

* detect and correct single bit errors

Internet checksum (review)

goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:

- treat segment contents as sequence of 16-bit integers
- * checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- * check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

Cyclic redundancy check

- * more powerful error-detection coding
- * widely used in practice (Ethernet, 802.11 WiFi)
- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), G
- * goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!

CRC example

want:

 $D^{.}2^{r}XORR = nG$ equivalently:

 $D^{.}2^{r} = nG XOR R$ equivalently:

if we divide D.2^r by G, want remainder R to satisfy:

$$R = remainder[\frac{D \cdot 2^r}{G}]$$

	A XOR B
00	0
0 1	1
10	1
1 1	0

CRC properties

- * Standard generators of 8,12,16 and 32 bits were defined
- * For instance, the CRC₃₂ for several data link protocols is:

 $G_{CRC-32} = 100000100110000010001110110110111$

- * CRC can detect:
 - ♦ burst of error less than r+1 bits
 - *all odd numbers of bit errors

Link layer, LANs: outline

- 5.1 introduction, services
- 5.2 error detection, correction
- 5.3 multiple access protocols

5.4 LANS addressing, ARP Ethernet switches VLANS

Multiple access links, protocols

two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- * single shared broadcast channel
- * two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- * communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Ideal multiple access protocol

given: broadcast channel of rate R bps desiderata:

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning protocols:TDMA

TDMA: time division multiple access

- * access to channel in "rounds"
- * each station gets fixed length slot (length = pkt trans time) in each round
- * unused slots go idle

Channel partitioning protocols:FDMA

FDMA: frequency division multiple access

- * channel spectrum divided into frequency bands
- * each station assigned fixed frequency band
- unused transmission time in frequency bands go idle

Random access protocols

- * when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- * two or more transmitting nodes → "collision",
- * random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- * examples of random access MAC protocols:
 - slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- * all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- * idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- * prob that given node has success in a slot = $p(1-p)^{N-1}$
- * prob that any node has a success = $Np(1-p)^{N-1}$

- max efficiency: find p* that maximizes
 Np(1-p)^{N-1}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

max efficiency = 1/e = .37

at best:

channel used for useful transmissions 37% of time!

CSMA (carrier sense multiple access)

CSMA: listen before transmit: if channel sensed idle: transmit entire frame

* if channel sensed busy, defer transmission

human analogy: don't interrupt others!

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

 t_1

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- * collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- * human analogy: the polite conversationalist

CSMA/CD (collision detection)

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

CSMA/CD efficiency

- * $t_{prop} = max prop delay between 2 nodes in LAN$
- t_{trans} = time to transmit max-size frame

efficiency=
$$\frac{1}{1+5t_{prop}/t_{trans}}$$

- * efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking turns" protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking turns" protocols

polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- * concerns:
 - polling overhead
 - latency
 - single point of failure (master)

slaves

"Taking turns" protocols

token passing:

- control token passed from one node to next sequentially.
- * token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Summary of MAC protocols

- * channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- * taking turns
 - polling from central site, token passing
 - bluetooth, token ring