

Tug of war Ground (G) (i) FRA - FAR (iii) FAG - FGA (iV) FBG - FGA (ii) FRB - FBR A Linear momentum 4 p = mv + It is a vector quantity. 1 Unit is kgms-1 or Ns. + It is the total quantity of motion. + Explains amount of force a body can apply lin motion when it collides. p=mu, where mass is constant Thus change in momentum is due to change in velocity. Veto change in velocity is due to change in force

Newton's second law

the rate of change of linear momentum of a body is directly proportional to the resultant force acting on the body and takes place in the direction of the force.

F = dP/dt

= dmv/at

= m dv/at [m is constant]

= ma ...

Force is the rate of change of linear momentum.

m O O B

F = mv-mu = m.v-u = ma "

.. The product ft = mu-muis called the impulse of the force.

. SI unit of linear momentum is also Ns (Ft).

F = dP/at

dp = Fdt

For constant change in momentum, when change in time is high; force is less. Thus cricketers lower hand in creasing time of impact when catching a ball.

Use of F = ma

- + Fis resultant torse in N. m is in kg and a is in mls?
 + Fip and dpare all in same direction.
- + concept of free body diagrams where we consider a single body at a time and show forces acting on a body.
- # Lift moves with 2mls acceleration. Calculate reaction of floor on man of 50 kg mars standing in lift when lift is

(i) moving upwards

- Forces acting = weight of man downwards
Reaction force / normal contact force
due to lif opwards (R)

As acceleration is in upward direction, resultant toxie should also be in upward direction. For this R>W. F = R-W W a R = F+W = 50 (2+9.87) = mg+ma = 500.5 € 500 N4 MUTA OF MARKE AFORM (ii) moving down As acceleration is in downward discition. occultant force must also be in same direction for this W>R W F=W-R () = 50 (0.81-2) on R=W-F = 390,5 ≈ 390 N4 # A truck A of mass 2000kg is pulling trailer of mass 3000 kg on a road. Frictional torse on A is 1000N and on B is 2000 N , engile exerts goodn force. (alcolate a on truck a trailer and tension on town bar, to ubod sinnin 1 TT 1000 kg 38000 N #Note = Tension on A is towards trailer B; while tension on B is towards A lonsidering both bodies as one. m = 4000 kg F = 8000 - 2000 - 1000 = 5000 N Draing primara Now considering B f = ma F = T-2000 F = ma a. a = 5000/4000 $\alpha = 1.25 \text{ m/s}^2$ m = 3000 T-1000 = 3000x1.25 a=1.25 m/s2 T=5750 N/

Principle of conservation of linear momentum.

If no resultant (unbalanced) force acts on a system the total linear momentum of the system remains constant.

If F = 0, dP/d+ = 0, [dp = 0, dt = 0(x)] ip is constant (Derivative is 0):

For coliding objects

(A) (B) (B) (B)

Force on A due to B

 $F_{AB} = \frac{dpA}{dt} = \frac{m_1 V_1 - m_1 u_1}{t}$ $\frac{dt}{dt} = \frac{dpB}{dt} = \frac{m_2 V_2 - m_2 u_2}{t}$

From third law, FAB = FBA

M1 V1 - M1 41 = ML42 - MLV2

M1V1 + M2V2 = M1U1 + M2U2

Total momentum after collision = Total momentum before collision Vector sum of momentum

.25

		6	
	•	4	\
1		0	7
5/	' (V	

	500	Page
		Collision
ctly	, ,	Interaction between objects for a short interval of time.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	there are forces (normally large) acting between objects.
	4	Trese is change in velocity, momentum & Kinetic energy.
site	Verse out to 3	Inelastic collision: total linear momentum is conserved
	3 . 2-7-3-8	but kinetic energy is not concerved, it is converted.
>		Elastic collision: Both linear momentum and Kirtic
		energy are conserved.
# * * * * * * * * * * * * * * * * * * *		Relative velocity, elastic collision
C		VAB = VA - VB
\$		where VAB is the relative velocity of A with respect to B
		mivi+ mivz = miui+mauz
2	<i>y</i> :	$m_1(v_1-u_1) = m_2(u_2-v_2) (i)$
2.74		1/2 m1 V12 + 1/2 m2 V22 = 1/2 m1 U,2 + 1/2 m2 U22
	,	$m_1(v_1^2 - u_1^2) = m_2(u_2^2 - v_2^2) (ii)$
	10000	
		$m(v_1^2-u_1^2) = m(u_1^2-v_1^2)$ $m(v_1-u_1) = m(u_2-v_1^2)$
	6.	$V_{2} + u_{2} = \mathcal{G} u_{2} + V_{2}$
		U1 + V2 = U2 + U2
		$U_1 - U_2 = V_2 - V_1$
	21,	U12 = V21
	The second second second second	Relative velocities are equal.