CIS 551: Assignment 5

Steven Walton

November 25, 2019

Problem 1: 19.2

Consider a relation R with five attributes ABCDE. You are given the following dependencies.

Part 1)

List all keys for R

We can see that $A \to B$ which means we can rewrite the relationships as ACDE. Giving us

$$egin{array}{cccc} A & C & D & E \\ \uparrow & & & & & \\ \hline \end{array}$$

With A and C we are given E. Thus we have

A C D

And we no longer have any relationships. Similarly we can get the other keys. Giving us the answer: ACD, BCD, CDE

Part 2)

Is R in 3NF?

Yes. B,E,A (the right sides from the FDs) are all part of keys.

Part 3)

Is R in BCNF?

No. None of the left sides of the FDs contain a key and there is no super key.

Problem 2: 19.6

Suppose that we have the following three tuples in a legal instance of a relation scheme S with three attributes ABC (listed in order): (1, 2, 3), (4, 2, 3), and (5, 3, 3).

Part 1)

Which of the following dependencies can you infer does *not* hold over scheme S? (a) $A \to B$, (b) $BC \to A$, (c) $B \to C$

We'll look at the following three pictures

We see that the third diagram is the only legal dependency, which is where the dependency $BC \to A$ is removed. \therefore (b) does **not** hold.

Part 2)

Can you identify any dependencies that hold over S?

We are only given an instance of S and can't determine what relationships hold for all instances of S.

Problem 3

Removed from assignment

Problem 4

Consider relation R = ABCDE with the below relationships. Convert to BCNF.

Problem 5: 19.13

Consider a relation R with five attributes ABCDE

Part 1)

For each of the following instances of R, state whether it violates (a) the FD $BC \to D$ and (b) the MVD $BC \to D$

- (a) {} No.
- (b) $\{(a,2,3,4,5),(2,a,3,5,5)\}\ BC\to D$ is violated if a=2
- (c) $\{(a,2,3,4,5),(2,a,3,5,5),(a,2,3,4,6)\}$ $BC \to D$ and $BC \to D$ are both violated if a=2. We need another tuple that ends in 5,6.
- (d) $\{(a, 2, 3, 4, 5), (2, a, 3, 4, 5), (a, 2, 3, 6, 5)\}\ BC \to D$ is violated because if a = 2 then there is a duplicate row.
- (e) $\{(a,2,3,4,5), (2,a,3,7,5), (a,2,3,4,6)\}$ Both $BC \to D$ and $BC \to D$ are violated. $BC \to D$ is violated because of the second tuple. $BC \to D$ is violated because we must have another tuple that pairs with the second tuple.
- (f) $\{(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5), (a,2,3,6,6)\}\ BC \to D$ is violated because there is not a unique value defined by BC. $BC \to D$ is violated because the entry for the Dth column in the 4^{th} tuple isn't the same as in the 1^{st} tuple.
- (g) $\{(a,2,3,4,5), (a,2,3,6,5), (a,2,3,6,6), (a,2,3,4,6)\}$ Just $BC \to D$ is violated because the third tuple's last entry isn't also a 5.

Part 2)

If each instance for R listed above is legal, what can you say about the DF $A \to B$? We cannot say anything, because there are not unique relationships.

Problem 6

Let R be a relation, X a set of attributes of R, and A an attribute of R. (Also denote that XA the result of adding A to X) Define the support of X, written as #X, as the number of distinct tuples in R|X (R restricted to, or projected onto, the attributes of X). Prove that if $X \to A$, then #X = #XA.

Proof by contradiction:

Let X = BC such that $BC \to A$.

A	В	С
1	2	3
4	5	6
7	2	3

We see here that there is a violation in the third row because #X = 2 and #XA = 3. This is not a legal relationship. We note that we only have legal schemas if there is an injective relationship. If we have an injective relationship (onto) then we would have the relationship $\#X \le \#XA$ (allows for surjection). For strict equality to hold, there needs to be a bijective relationship.

Problem 7

Prove that if R is in 3NF and has only one candidate key, then R is in BCNF.

Problem 8

Insert the following values into an initially empty B+ tree with parameter d=2 and values 17, 11, 50, 22, 5, 35, 42, 60, 15, 30, 25, 27, 37, 40, 20.

Problem 9

Repeat the previous problem with d=3

Problem 10: 10.8 part 1

Assume that you have just built a dense B+ tree index using Alternative (2) on a heap file containing 20,000 records. The key field for this B+ tree index is a 40-byte string, and it is a candidate key. Pointers (le., record ids and page ids) and (at most) 10-byte values. The size of one disk page is 1000 bytes. The index was built in a bottom-up fashion using the bulk loading algorithm, and the nodes at each level were filled up as much as possible.

Part 1)

How many levels does the resulting tree have?