МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №3 по курсу «Параллельная обработка данных»

Технология МРІ и технология ОрепМР

Выполнил: М.А.Трофимов

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы. Совместное использование технологии MPI и технологии OpenMP. Реализация метода Якоби. Решение задачи Дирихле для уравнения Лапласа в трехмерной области с граничными условиями первого рода. **Вариант:** 2. Распараллеливание в общем виде с разделением работы между нитями вручную ("в стиле CUDA").

Программное и аппаратное обеспечение

Характеристики GPU "NVIDIA GeForce GTX 950"

CUDA Driver Version / Runtime Version 11.4 / 11.4

CUDA Capability Major/Minor version number: 5.2

Total amount of global memory: 1997 MBytes (2094137344 bytes)

(006) Multiprocessors, (128) CUDA Cores/MP: 768 CUDA Cores GPU Max Clock rate: 1278 MHz (1.28 GHz)

Memory Clock rate: 3305 Mhz
Memory Bus Width: 128-bit

L2 Cache Size: 1048576 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total shared memory per multiprocessor: 98304 bytes Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Характеристики CPU Intel i5-4460

of Cores 4

of Threads 4

Processor Base Frequency 3.20 GHz

Max Turbo Frequency 3.40 GHz

Cache 6 MB Intel® Smart Cache

Bus Speed 5 GT/s

Intel® Turbo Boost Technology 2.0 Frequency 3.40 GHz TDP 84 W

Характеристики RAM

Total 15 Gi

Swap 2 Gi

Операционная система: Ubuntu 20.04 LTE

IDE Sublime Text 3

Compiler nvcc for cuda 11.4

Метод решения

На каждый процесс приходится один блок 3хмерной сетки. Блок тоже является 3хмерной сеткой. Процесс итерационно решает уравнение. В конце каждой итерации каждый процесс обменивается с "соседними" процессами граничными точками. Обмен происходит неблокирующими isend и irecv, а проверка сходимости определяется с помощью allreduce. Итерация решателя распараллеливается на CPU с помощью ОреnMP. Обмен граничными условиями сделан с помощью subarray типа.

Описание программы

В программе всё вынесено в разные функции:

f max - самодельный max двух даблов.

read Args - считать аргументы из stdin.

bcast Args - разослать аргументы всем остальным процессам.

init - инициализировать массив точек блока.

swap - обмен местами двух указателей

print data - печать данных в файл arg.name

do math - одна итерация решателя распараллеленная с помощью openmp.

calc eps - подсчёт ошибки на всех данных.

init buff - инициализация типов, для общения между процессами.

pre_proc_max - создание массива разностей значений между итерациями и зануление границ, чтобы thrust::max_element нашёл именно максимальный элемент внутри сетки. sync_edges - функция обмена границами между процессами.

Демонстрация работы

Процессы решают задачи на области от 0 до 1 по каждой оси и сеткой 10 точек на каждую ось, кроме оz, по оz 100 точек.

размер сетки процессов	время работы, ms
cpu	6734.14
1,1,1	7161.37
1,1,2	3747.48
1,2,1	3691.02
1,2,2	182719
2,2,1	225014

Выводы

Научился работать с технологией OpenMP, благодаря которой можно достаточно неплохо параллелить программы. Как видно, на компьютере с 4х ядерном процессоре и одной видеокарте увеличение скорости работы наблюдается только на кофигурации с 2мя главными процессами, т.к. не все процессы работают одновременно физически, а чередуют свою работу.