subject: MC

Important quiz questions

1) If
$$A = \begin{bmatrix} 3-2i & 5+i \\ 1+i & 2 \end{bmatrix}$$
 then $A^{\theta} = \underline{}$

2) If
$$A = \begin{bmatrix} 1 & -3 \\ 4 & 5 \end{bmatrix}$$
, the symmetric part of matrix $A = \underline{\hspace{1cm}}$

3) If
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
 then $|A| =$

4) If $A = \begin{bmatrix} 1+i & 3 \\ 2-i & 4+2i \end{bmatrix}$ then $\overline{A} =$

4) If
$$A = \begin{bmatrix} 1+i & 3\\ 2-i & 4+2i \end{bmatrix}$$
 then $\overline{A} = \underline{\hspace{1cm}}$

- 5) The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ 6) The rank of the matrix $\begin{bmatrix} k & -1 & 0 \\ 0 & k & -1 \\ -1 & 0 & k \end{bmatrix}$ is 2 for k=_____
- 7) The rank of 3X3 matrix whose elements are all 2 is
- 8) The maximum value of the rank of a 3X4 matrix is _____

9) The solution of system of equations
$$\begin{bmatrix} 2 & 5 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -30 \end{bmatrix}$$
 is _____

- 10) The product of two unitary matrices of equal order is _____
- 11) The number of solutions of system of equations x + 2y z = 0, 2x + y + z = 0, x 4y + 5z = 00 is_____
- 12) If AX=B is a system of equations in three unknowns and the rank of A is 3 then the system equations will have
- 13) If the system of equations $x 3y 8z = 0.3x + y \lambda z = 0.2x + 3y + 6z = 0$ possess a nontrivial solution then $\lambda =$

14) If
$$A = \begin{bmatrix} 3 & a & b \\ -2 & 2 & 4 \\ 7 & 4 & 5 \end{bmatrix}$$
 is symmetric then $(a,b) =$ ______

15) The system of equations
$$x + y + z = 3$$
, $x + 2y + 3z = 4$, $x + 4y + 9z = 6$ will have

- 16) The Eigen values of $\begin{bmatrix} 6 & -3 \\ 2 & 1 \end{bmatrix}$ are
- 17) The Eigen values of $\begin{bmatrix} 5 & 2 \\ -1 & 2 \end{bmatrix}$ are 3 and 4 then the eigen vectors are
- 18) The Necessary and sufficient condition for diagonalization of a matrix

19) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ 1 & 1 & 5 \end{bmatrix}$$
 then eigen values of $A^{-1} =$

20) The symmetric matrix corresponding to the quadratic form
$$8x^2 + 2y^2 + 3z^2 - 12xy$$

21) The Quadratic form corresponding to the matrix
$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 2 \end{bmatrix}$$

22) The Nature of the Quadratic form
$$2x^2 + 2y^2 + 2z^2$$
 is

23) The matrix of the quadratic form
$$2xy + 2yz + 2zx$$

24) If The eigen value of matrix A is 2 then eigen value of The matrix $A^2 + 2A +$

25) If $A = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	3 5 -4 7 0 2 then ei	gen values of A c	are
-			then eigen values of A areen values of 3A are
28) If the eige	en values of matrix A	A are 1,3,4 then trac	re of A =
29) The char	acteristic equatior	of $\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$ is	
31) The deter	rminant of a $2X2$ 1	matrix is 50. If one	$6z^2$ is eigen value is 5, the other eigen value is
32) Write the	quadratic form cor	responding to the m	atrix $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 3 \\ 0 & 3 & 5 \end{bmatrix}$ is
33) The natu	re of the quadratic	form $2x^2 - 3y^2 +$	$+z^2$ is
34) If A Is an	orthogonal matri	x then A^{-1} is	
A)symmetric	B) skew- symmetric	C)orthogonal	D) Hermitian
35) If the Eige	en values of A are 2	,-1,0 Then A is	
A) Symmetric	B)singular	C) Non- singular	D) Can't Determine
36) The Diag	gonal elements of S	Skew-Hermitian ma	atrix are
A) Zero	B) complex number	C)Purely imaginary or zero	D) real
37) If A is an orth	ogonal matrix the	n A =	-
A) 2	B) ± 1	C) 0	D) Can't determine
38) If $A = \begin{bmatrix} 1 & 4 \end{bmatrix}$	then $A^2 =$		
A) 4A	then $A^2 =$	C) 5 <i>I</i>	D) 4A + 5I
39) If A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	then $A^3 =$		

A) $2A^2 + 5A$ B) $4A^2 + 2A$ C) $2A^2 + 5A$ D) $5A^2 + 2A$

1) If
$$A = \begin{bmatrix} 3 - 2i & 5 + i \\ 1 + i & 2 \end{bmatrix}$$
 then $A^{\theta} = \begin{bmatrix} 3 + 2i & 1 - i \\ 5 - i & 2 \end{bmatrix}$.

2) If
$$A = \begin{bmatrix} 1 & -3 \\ 4 & 5 \end{bmatrix}$$
, the symmetric part of matrix $A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 5 \end{bmatrix}$.

3) If
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
 then $|A| = 1$

3) If
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
 then $|A| = 1$.
4) If $A = \begin{bmatrix} 1+i & 3 \\ 2-i & 4+2i \end{bmatrix}$ then $A = \begin{bmatrix} 1-i & 3 \\ 2+i & 4-2i \end{bmatrix}$.

- 5) The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ is **3**. 6) The rank of the matrix $\begin{bmatrix} k & -1 & 0 \\ 0 & k & -1 \\ -1 & 0 & k \end{bmatrix}$ is 2 for k=**1**.
- 7) The rank of 3X3 matrix whose elements are all 2 is 1.
- 8) The maximum value of the rank of a 3X4 matrix is 3.

9) The solution of system of equations
$$\begin{bmatrix} 2 & 5 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -30 \end{bmatrix}$$
 is $\begin{cases} 2x + 5y = 2, \\ -4x + 3y = -30 \end{cases}$.

- 10) The product of two unitary matrices of equal order is unitary matrices.
- **11)** The number of solutions of system of equations x + 2y z = 0, 2x + y + z = 0, x 4y + 5z = 0

0 is Infinite number of Solutions.

- 12) If AX=B is a system of equations in three unknowns and the rank of A is 3 then the system equations will have Unique Solution.
- 13) If the system of equations $x 3y 8z = 0.3x + y \lambda z = 0.2x + 3y + 6z = 0$ possess a nontrivial solution then $\lambda = 18$.

14) If
$$A = \begin{bmatrix} 3 & a & b \\ -2 & 2 & 4 \\ 7 & 4 & 5 \end{bmatrix}$$
 is symmetric then $(a,b) = (-2,7)$.

- 15) The system of equations x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6 will have **Unique** Solution.
- 16) The Eigen values of $\begin{bmatrix} 6 & -3 \\ 2 & 1 \end{bmatrix}$ are **4,3**.
- 17) The Eigen values of $\begin{bmatrix} 5 & 2 \\ -1 & 2 \end{bmatrix}$ are 3 and 4 then the eigen vectors are $\begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
- 18) The Necessary and sufficient condition for diagonalization of a matrix is non singular.

19) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ 1 & 1 & 5 \end{bmatrix}$$
 then eigen values of $A^{-1} = 1,1/3,1/5$.

- 20) The symmetric matrix corresponding to the quadratic form $8x^2 + 2y^2 + 3z^2 12xy = \begin{bmatrix} 8 6 & 0 \\ -6 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
- 21) The Quadratic form corresponding to the matrix $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 2 \end{bmatrix}$ is **2x-1y+2z=0**, **1y+3z=0**, **2x+3y+2z=0**.
- 22) The Nature of the Quadratic form $2x^2 + 2y^2 + 2z^2$ is **Positive Definite**.
- 23) The matrix of the quadratic form 2xy + 2yz + 2zx is $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

24) If The eigen value of matrix A is 2 then eigen value of The matrix $A^2 + 2A + 3I$ is 11.

25) If
$$A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & -4 & 7 \\ 0 & 0 & 2 \end{bmatrix}$$
 then eigen values of A are **2,-4,2**.

- 26) If A is a 2X2 matrix whose trace is 5 and |A| = 6 then eigen values of A are 2,3.
- 27) The Eigen values of A are (2,3,4) then the Eigen values of 3A are 6,9,12.
- 28) If the eigen values of matrix A are 1,3,4 then trace of A = 8.
- 29) The characteristic equation of $\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$ is $\mathbf{x^2} 3\mathbf{x} + 5$.
- 30) The nature of the quadratic form $x^2 + 5y^2 + 6z^2$ is Positive Definite.
- 31) The determinant of a 2X2 matrix is 50. If one eigen value is 5, the other eigen value is 10.
- 32) Write the quadratic form corresponding to the matrix $\begin{bmatrix} 1 1 & 0 \\ -1 & 2 & 3 \\ 0 & 3 & 5 \end{bmatrix}$ is $\mathbf{x^2+2y^2+5z^2-2xy+6yz}$.
- 33) The nature of the quadratic form $2x^2 3y^2 + z^2$ is Indefinite.
- 34) If A is an orthogonal matrix then A^{-1} is A^{T} .

A)symmetric	A)symmetric B) skew-		D) Hermitian	
	symmetric			

35) If the Eigen values of A are 2,-1,0 Then A is D.

A) Symmetric	A) Symmetric B)singular		D) Can't	
		singular	Determine	

36) The Diagonal elements of Skew-Hermitian matrix are **B**.

A) Zero	B) complex	C)Purely	D) real
	number	imaginary or	
		zero	

37) If A is an orthogonal matrix then $|A| = \mathbf{B}$.

A) 2	B) ± 1	C) 0	D) Can't
			determine

38) If $A = [1 \ 4 \ 2 \ 3]$ then $A^2 = \mathbf{D}$.

<u> </u>	n - 1	[1 + 2 3]	$\mathbf{HCH} H = \mathbf{D}$.				
	A)	4A	B) 4 <i>A</i> - 5 <i>I</i>	C)	5 <i>I</i>	D) 5 <i>I</i>	4A +

39) If A = $[1 \ 2 \ 3 \ 4]$ then $A^3 =$

A) $2A^2 + 5A$	B) $4A^2 + 2A$	$C)2A^2 + 5A$	$D)5A^2 + 2A$