Matlab

Tall

Forkorte

```
double(vpa(svar.Ic,4)))
```

Konvertere

Grader

```
rad2deg(angle(U1))
```

Komplekse tall

Skrive e-/vinkel-form i Matlab

```
% I = 0.5 vinkel 60 grader
I = 0.5 * (cosd(60) + 1j * sind(60))
```

Konjugere (Z*)

```
Z = 2+3i
Zc = conj(Z)
>>> Zc = 2.0000 - 3.0000i
```



```
Z = 2+3i;
X = real(Z)
>>> X = 2
```

<u>◆ Ekstrahere imaginær del</u>

```
Z = 2+3i;
Y = imag(Z)

>>> Y = 3
```

→ Finne vinkel og størrelse

```
z = 2*exp(i*0.5)
>> z = 1.7552 + 0.9589i

r = abs(z)
>> r = 2

theta = angle(z)
>> theta = 0.5000

fprintf("Vo = %f V med vinkel %f grader", abs(Vo), rad2deg(angle(Vo)))
>> Vo = 28.118821 V med vinkel -51.330756 grader
```

Symbolsk/algebra

Grenseverdier

Mathematical Operation	MATLAB Command	
$\lim_{x\to 0} f(x)$	limit(f)	
$\lim_{x \to a} f(x)$	limit(f, x, a) or	
	<pre>limit(f, a)</pre>	
$\lim_{x \to a^{-}} f(x)$	<pre>limit(f, x, a, 'left')</pre>	
$\lim_{x \to a+} f(x)$	<pre>limit(f, x, a, 'right')</pre>	
$\lim_{t\to 0^+} f(t) = \lim_{s\to \infty} sF(s), \tag{12.9}$	12.93) ◀ Initial value theorem	
$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s). \tag{12.94}$	4) ◀ Final value theorem	

```
v_inf = limit(s * V(s), s, 0)
il_inf = limit(s * Il(s), s, 0)
```

Laplace

- laplace Laplacetransform
- ilaplace Invers Laplacetransform
- partfrac Delbrøkoppspalting
- simplify Forenkle uttrykk

Lineær algebra

```
clear, clc
R1 = 6; R2 = 4; R3 = 6; R4 = 8;
Xc = -2i; Xl = 1i;
is1 = 6; vs2 = 2;

% Symbolske variabler
syms U1 U2 i2

% Likningene
l1 = is1 - U1/R1 - i2 == 0;
l2 = i2 - U2/(R3 + Xl) - (U2-vs2) /8 == 0;
l3 = i2 == (U1-U2) / (R2 + Xc);

% Løs likningene
svar = solve([l1, l2, l3], [U1, U2, i2])

% Hent ut et svar
U1 = vpa(svar.U1, 3)
```

forenkle likninger

```
V = simplify(svar.V)
```

$$\textit{simplify}(\frac{120 \left(s^2 + 2 \ s + 1\right)}{s \ (10 \ s^2 + 21 \ s + 12)}) = \frac{120 \ (s + 1)^2}{s \ (10 \ s^2 + 21 \ s + 12)}$$

Interaksjon/konsoll

Display

```
disp(' ')
disp('Med dette programmet kan du loese ligninger skrevet paa uordnet
form.')
disp('Eksempel: (U1-U2)/3.5 + (U1-U3)/8 + U1/5 == 15')
```

Formatert

For å få svaret printet som double istedetfor brøk med tanke på lesbarhet

```
fprintf('Vm = %0.3f V\n', abs(result));
```

Formatting operators

Value Type	Conversion	Details
Integer, signed	%d or %i	Base 10
Integer, unsigned	%u	Base 10
%0	Base 8 (octal)	
%x	Base 16 (hexadecimal), lowercase letters a – f	
%X	Same as %x , uppercase letters A-F	
Floating-point number	%f	Fixed-point notation (Use a precision operator to specify the number of digits after the decimal point.)
%e	Exponential notation, such as 3.141593e+00 (Use a precision operator to specify the number of digits after the decimal point.)	
%E	Same as %e, but uppercase, such as 3.141593E+00 (Use a precision operator to specify the number of digits after the decimal point.)	
%g	The more compact of %e or %f, with no trailing zeros (Use a precision operator to	

Value Type	Conversion	Details
	specify the number of significant digits.)	
%G	The more compact of %E or %f, with no trailing zeros (Use a precision operator to specify the number of significant digits.)	
Characters or strings	%c	Single character
%5	Character vector or string array. The type of the output text is the same as the type of formatSpec.	

Snippets

```
fprintf("Vo = %f V med vinkel %f grader", abs(Vo), rad2deg(angle(Vo)))
fprintf("vo(t) = %f * cos(10000t%f)", abs(Vo), rad2deg(angle(Vo)))

>> Vo = 28.118821 V med vinkel -51.330756 grader
>> vo(t) = 28.118821 * cos(10000t-51.330756)
```

```
clear, clc
 2
           R1 = 6; R2 = 4; R3 = 6; R4 = 8;
 3
           Xc = -2i; Xl = 1i;
 4
           is1 = 6; vs2 = 2;
 5
           syms U1 U2 i2
 6
           11 = is1 - U1/R1 - i2 == 0;
           12 = i2 - U2/(R3 + X1) - (U2-vs2) /8 == 0;
                                                                             svar = struct with fields:
 8
           13 = i2 == (U1-U2) / (R2 + Xc);
                                                                                U1: 18609/905 - 1707i/905
 9
                                                                                U2: 8726/905 + 1812i/905
10
           svar = solve([l1, l2, l3], [U1, U2, i2])
                                                                                 i2: 4657/1810 + 569i/1810
                                                                             U1 = 20.6 - 1.89 i
11
           U1 = vpa(svar.U1, 3)
           fprintf("U1 = %f V med vinkel %f", U1, rad2deg(angle(U1)))
12
                                                                             U1 = 20.562431 \text{ V med vinkel } -5.241064
13
                                                                             U1 = 20.562431 * cos(1000t-5.241064)
14
           fprintf("U1 = %f * cos(1000t%f)", U1, rad2deg(angle(U1)))
```

Input

```
eq1 = input('Skriv ligning nr.1: ');
```

Strukturer

For-løkke

```
for k = 1:n
fprintf('U%s %d%s = %f + %s%f = %f%s%f
```

```
grader\n',vp,k,rp,u_rect_r(k),'j',u_rect_i(k),
u_pol_abs(k),vt,u_pol_arg(k))
end
```

Nyttige funksjoner

Kommentarer

```
% KOMMENTAR
```

Housecleaning

```
clear % Sletter gamle variabler
clc % Sletter skjermen for gamle utregninger
close % Lukker plots?
```

Snippets og oppgaver

ELE142: Eksamenstrening 2017 Vår Kont oppg 1

.

```
clear, clc, close
Vg = 40; Xc = -6.67j; Xl1 = 60j; Xl2 = 20j; R = 10;

Zp = (Xl1 * (R + Xl2)) / (Xl1 + (R + Xl2));
Va = Zp / (Xc + Zp) * Vg;

Vb = Xl2 / (R + Xl2) * Va;

Vo = Va - Vb;
fprintf("Vo = %f V med vinkel %f grader", abs(Vo), rad2deg(angle(Vo)))
fprintf("vo(t) = %f * cos(10000t%f)", abs(Vo), rad2deg(angle(Vo)))

Zth = ((Xl1 + Xl2) * R) / ((Xl1 + Xl2) + R)
Vth = Vo;
fprintf("Vth = %f V med vinkel %f grader", abs(Vth),
rad2deg(angle(Vth)))
fprintf("Vth(t) = %f * cos(10000t%f)", abs(Vth), rad2deg(angle(Vth)))
```

```
Zl = 10-50i;
Pl = (Vth^2) / (4*Zl)
```

ELE142: Eksamenstrening 2017 Vår Kont oppg 2

```
clear, clc, close

syms V Il s

l1 = Il - V / 5 - (V - 12/s) / (1 / (2*s)) == 0;
l2 = Il == (12/s - V) / (1 + s*0.5);

svar = solve([l1, l2], [V, Il]);

V(s) = simplify(svar.V)
Il(s) = simplify(svar.Il)

V = vpa(ilaplace(V(s)),3)
Il = vpa(ilaplace(Il(s)),3)
```

ELE142: Eksamenstrening 2018 Vår oppg 1

- Knutepunktslikninger
- Thevenin med kortslutningsstrøm
- Maksimal effektoverføring
- Kompleks effekt

```
clear, clc

z1 = 10i; z2 = 10; z3 = 5-5i; z4 = 1-2i; vs = 10;

% c
syms v1 v2
l1 = (v1-vs)/z1 + v1/z2 + (v1-v2)/z3 == 0;
l2 = (v2-v1)/z3 + v2/z4 == 0;

svar = solve([l1,l2], [v1, v2]);

v1 = svar.v1;
```

```
vth = svar.v2
fprintf("vth = %f V med vinkel %f grader", abs(vth),
rad2deg(angle(vth)))
fprintf("vth(t) = %f * cos(20000t%f) V", abs(vth), rad2deg(angle(vth)))

%d
syms v1 i
l1 = (v1-vs)/z1 + v1/z2 + i == 0;
l2 = i == v1/z3;
svar = solve([l1,l2], [v1, i]);
i = vpa(svar.i)
zth = vth/i

%e
zl = conj(zth)
```

ELE142: Eksamenstrening 2018 Vår oppg 2

- Finne krets i frekvensdomenet
- Finne et potensiale
- Bruke grenseverditeoremet

```
clear, clc

syms s v t

V = 15/s; R = 625; C = 25e-9; L = 25e-3; v0 = 0; i0 = 0;

% b
%l1 = (v-V) / R + s*C*v + v / (s*L)
%svar = solve(l1, v)
%ilaplace(svar)

V(s) = 15 / (s + (s^2) * 15625 * 10e-9 + 25000)

% c
Il(s) = V(s) / (s * L)

% d
v_inf = limit(s * V(s), s, 0)
il_inf = vpa(limit(s * Il(s), s, 0))
```

```
% f
il(t) = ilaplace(Il(s))
% Spolen og kondensatoren virker på hverandre og skaper en
% vekselstrømseffekt
```

ELE142: Eksamenstrening 2019 Vår oppg 1

- Finne steady state-spenning og -strøm
- Finne kompleks effekt (gjennomsnittlig og reaktiv)

```
clc, clear all, close
Is1 = 6; Vs2 = 2;
R1 = 6; R2 = 8;
Z1 = 4-2j; Z2 = 6+1j;
syms V1 V2 I2
l1 = -Is1 + V1 / R1 + I2 == 0;
12 = -I2 + V2 / Z2 + (V2-Vs2) / R2 == 0;
l3 = I2 == (V1-V2) / Z1;
svar = solve([l1, l2, l3],[V1, V2, I2])
V1 = svar.V1
V2 = svar.V2
fprintf("V1 = %f V med vinkel %f grader", abs(V1), rad2deg(angle(V1)))
fprintf("v1(t) = %f * cos(10^4t%f)", abs(V1), rad2deg(angle(V1)))
I2 = svar.I2
fprintf("I2 = %f V med vinkel %f grader", abs(I2), rad2deg(angle(I2)))
fprintf("i2(t) = %f * cos(10^4t + %f)", abs(I2), rad2deg(angle(I2)))
Vz1rms = (V1-V2)/sqrt(2);
I2rms = I2/sqrt(2);
S = vpa(Vz1rms * conj(I2rms),3)
```

```
fprintf("P2 = %f W", real(S))
fprintf("Q2 = %f VAR", imag(S))
```

ELE142: Eksamenstrening 2019 Vår oppg 2

- Finne uttrykk for spenning/strøm i s-domenet
- Laplacetransformere til tidsdomenet

```
clc, clear all, close
Vs = 12; R1 = 1; L = 0.5; R2 = 5; C = 2;

syms s Ils

l1 = Ils * R1 + Ils * 0.5*s + 1 + Ils * (1/(2*s)) + 10/s == 12/s;

Il(s) = solve(l1, [Ils])

Vc(s) = Il(s) * (1/(2*s) + 10/s)

syms t
il(t) = ilaplace(Il(s))
vc(t) = ilaplace(Vc(s))
```

ELE142: Eksamenstrening 2019 Vår oppg 5

Transistor

```
clc, clear all, close
R1 = 1e4; R2 = R1; Rc = 2e3; Re = 1e3; Rl = 1e3; Vcc = 10; Rs = 100;
Vbe = 0.7; beta = 100;

syms IR1 IR2 IC IE IB
R1 = 10E3; R2 = 10E3; RC = 2E3; RE = 1000;
B = 100; VBE = 0.7; VCC = 10;
EQ1 = VCC - IR1*R1 - IR2*R2 == 0;
EQ2 = VCC - IR1*R1 - VBE - IE*RE == 0;
EQ3 = IB + IC == IE;
EQ4 = IC == B*IB;
EQ5 = IR1 == IR2 + IB;
svar = solve([EQ1, EQ2, EQ3, EQ4, EQ5], [IB, IC, IE, IR1, IR2]);
```

```
Ib = double(svar.IB)
Ic = double(svar.IC)
Ie = double(svar.IE)
```

ELE142: Eksamenstrening 2022 Høst oppg 2

Thevenin-ekvivalent av steady-state-krets

```
clc, clear all, close
Vs = 120; R = 10; Xl = 8j; Xc = -8j; I = 0.5 * (cosd(60) + 1j * 10)
sind(60));
syms V1 V2 Isc
l1 = (V1 - Vs) / R + V1 / Xl + (V1 - V2) / Xc == 0;
l2 = (V2 - V1) / Xc - I == 0;
svar = solve([l1,l2], [V1, V2]);
%V1 = svar.V1
%Vth = double(svar.V2)
Vth = svar.V2;
fprintf("Vth = %f V med vinkel %f grader", abs(Vth),
rad2deg(angle(Vth)))
fprintf("Vth(t) = %f * cos(10^4t%f)", abs(Vth), rad2deg(angle(Vth)))
syms V1 Isc
l1 = (V1 - Vs) / R + V1 / Xl + (V1) / Xc == 0;
l2 = Isc == V1 /Xc + I;
svar = solve([l1,l2], [V1, Isc]);
Isc = svar.Isc;
Zth = double(Vth / Isc)
```

ELE142: Eksamenstrening 2022 Høst oppg 3

Finn uttrykket i s-planet

```
clc, clear all, close
syms s I0
V1 = 100;
Vc = 100/s; C = 10^9 / (125*s);
R1 = 4e3; R2 = R1;
L = s/2;
```

```
l1 = V1 == I0 * R2 + I0 * L;
svar = solve(l1,[s,I0])

I0 = V1 / (R2 + L)
i0 = ilaplace(I0)
```

PDFer

Generelt

Løsning an lineære likninger med MATLAB

Løse n likninger med n ukjente

Vi tar utgangspunkt i følgende likningssett av tre likninger med tre ukjente:

$$2x + 3y - z = -5$$

$$x + y - z = -3$$

$$x - y - 2z = -2$$

Til informasjon er svaret på dette likningssettet at x=2, y=-2 og z=3, men det skal vi finne ut ved hjelp av MATLAB. Først og fremst, MATLAB er ikke forkortelse for «matematikklaboratorium», men «matriselaboratorium». Matriseregning er tema i MAT106, så denne beskrivelsen er kun en kokebokmetode for å løse denne typen likninger.

Likningene ovenfor kan på matriseform skrives på følgende måte:

$$\begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & -2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -5 \\ -3 \\ -2 \end{bmatrix}$$

Altså at «koeffisientmatrise» · «variabelvektor» = «svarvektor». Tallene i koeffisientmatrisen er de samme som de respektive faktorene i likningssettet øverst. På generell form kan vi si at:

$$\mathbf{K} \cdot \mathbf{v} = \mathbf{s}$$

Man skulle tro at ved å dividere svarvektoren på koeffisientmatrisen så kan vi finne variabelmatrisen (altså x, y og z), men det er bare nesten sant. Vi må multiplisere svarmatrisen med den inverse koeffisientmatrisen.

$$\mathbf{v} = \mathbf{K}^{-1} \cdot \mathbf{s}$$

Komplekse tall med MATLAB

Til bruk ved kretsanalyse i ELE142

Dette er en rask gjennomgang av følgende funksjoner til bruk for å regne med komplekse tall i MATLAB:

- i Imaginær enhetj Imaginær enhet
- abs Absoluttverdi og kompleks magnitude
- angle Fasevinkel
- cart2pol Fra rektangulær til polar form
 pol2cart Fra polar til rektangulær form
- real Reell del av et komplekst tall
 imag Imaginær del av et komplekst tall
 conj Kompleks konjugert

Alle eksempler er i gule tekstbokser. Hver ny «boks» fordrer at tidligere variabler er slettet med «clear»-funksjonen.

De imaginære enhetene «i» og «j»

De kjente imaginære enhetene «*i*» og «*j*» er begge gyldige i MATLAB, selv om MATLAB oversetter «*j*»-en til en «*i*». Legg også merke til at vi må skrive «*j*»-en og/eller «*j*»-en etter tallverdien, altså:

```
>> tall1 = 3 + 5i; % Standard innmating av tall med «i»
>> tall2 = 2 - 4j; % Standard innmating av tall med «j»
>> tall3 = i + 3; % Det komplekse tallet kan komme først
>> tall4 = i + j + 3; % Det kan også være et sett av tall
```

- Tips 1: Bak %-tegnet i Matlabs funksjonsvindu kan vi skrive våre egne kommentarer
- Tips 2: Et semikolon bak funksjonen gjør at MATLAB ikke gjentar det vi nettopp har skrevet

Variablene (Workspace oppe i høyre hjørne) ser nå slik ut:

Name	Value	
tall1	3.0000 + 5.0000i	Akkurat slik vi matet dataene inn
tall2	2.0000 – 4.0000i	Legg merke til at «j»-en ble en «i»
tall3	3.0000 + 1.0000i	Legg merke til at «i»-leddet ble flyttet til siste ledd
tall4	3.0000 + 2.0000i	Legg merke til at de to imaginære leddene er summert

mcm@hvl.no 06.01.2017 Side 1 av 7

Laplacetransform med MATLAB

Til bruk ved kretsanalyse i ELE142

Dette er en rask gjennomgang av funksjoner til bruk for å regne Laplacetransformer i MATLAB med hovedvekt på følgende funksjoner

- laplace Laplacetransform
 ilaplace Invers Laplacetransform
 partfrac Delbrøkoppspalting
- simplify Forenkle uttrykk

Alle eksempler er i gule tekstbokser. For lesbarhetens skyld er unødvendige linjeskift og mellomrom fjernet (med mindre annet er spesifisert). Alle gule tekstbokser forutsetter at vi starter med blanke ark, altså at følgende kommandorekke er utført:

```
>> clear % Sletter gamle variabler
>> clc % Sletter skjermen for gamle utregninger
```

Videre er kommentarer skrevet med grønt, feilmeldinger i rødt og alle svar med blått. Også dette for å øke lesbarheten.

1 Laplacetransform og invers Laplacetransform

Laplacetransformen omformer fra tidsplanet til det komplekse frekvensplanet, bedre kjent som splanet. Denne gjennomgangen tar utgangspunkt i læreboken til Nilsson/Riedel (Electric Circuits, 9th edition), og da spesielt tabell 12.1 samt oppgavene underveis i kapittel 12 og 13, kalt "Assessment Problems".

TABLE 12.1 An Abbreviated List of Laplace Transform Pairs

Туре	$f(t) \ (t>0-)$	F(s)
(impulse)	$\delta(t)$	1
(step)	u(t)	$\frac{1}{s}$
(ramp)	t	$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sinc)	sin wt	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	cos ωt	$\frac{s}{s^2 + \omega^2}$
(damped ramp)	te ^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$