UNIVERSITÉ DE MONTPELLIER FACULTÉ DES SCIENCES

Année 2017-2018

Licence L2 - Techniques mathématiques EEA (HLMA306)

Devoir surveillé n^{o} 3 – 04/12/2017 – Durée : 1h30 – Aucun document

Barème indicatif: .

Exercice 1

- (3 pts) 1) Pour tout entier $n \ge 2$ calculer la surface S_n du domaine Δ_n du plan délimitée par les courbes d'équations $y = x^n$ et $x = y^n$.
- 2) Montrer que $\lim_{n\to+\infty} S_n = 1$ sans utiliser la valeur de S_n .

Exercice 2

(3 pts) Calculer le volume du cône de \mathbb{R}^3 , d'origine O, d'axe de révolution 0z, d'angle d'ouverture $\pi/6$ par rapport à cet axe, et de hauteur 1.

Exercice 3

- (5 pts) On considère le domaine $\Delta = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le z^4, 0 \le z \le 1\}.$
- a) Dessiner et caractériser géométriquement Δ .
- b) Calculer son volume V.
- c) Calculer la hauteur z_G de son centre de gravité G sur l'axe 0z, donnée par la formule :

$$z_G = \frac{1}{V} \iiint_{\Delta} z \, dx \, dy \, dz.$$

Exercice 4

- $(4 \text{ pts}) \text{ Pour } R>0, \text{ on considère le domaine } \Delta=\{(x,y,z)\in\mathbb{R}^3, \ x^2+y^2+z^2\leq R^2, \quad \mathbf{z}\geq \mathbf{0}\}.$
- a) Dessiner et caractériser géométriquement Δ .
- b) Donner son volume V sans faire obligatoirement de calcul.
- c) Calculer la hauteur z_G de son centre de gravité G sur l'axe 0z, donnée par la formule :

$$z_G = \frac{1}{V} \iiint_{\Delta} z \, dx \, dy \, dz.$$

(On rappellera au tableau l'élément d'intégration en coordonnées sphériques.)

Exercice 5

(3 pts) Résoudre l'équation différentielle :
$$y'(x) - 2y(x) = e^{2x}x^2$$
 avec $y(0) = 0$.

Exercice 6

(3 pts) Résoudre l'équation différentielle : y'' - 3y' + y = x