

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
DEPARTMENT OF INTELLIGENT SYSTEMS

SYSTÉM PRE PODPORU OPTIMALIZÁCE SIETE MESTSKEJ HROMADNEJ DOPRAVY

SYSTEM FOR SUPPORTING THE OPTIMIZATION OF URBAN PUBLIC TRANSPORT NETWORK

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

LUKÁŠ KATONA

AUTHOR

VEDOUCÍ PRÁCE

doc. Ing. FRANTIŠEK ZBOŘIL, Ph.D.

SUPERVISOR

BRNO 2025

Zadání bakalářské práce

Ústav: Ústav inteligentních systémů (UITS)

Student: Katona Lukáš

Program: Informační technologie

Název: Systém pro podporu optimalizace sítě městské hromadné dopravy

Kategorie: Umělá inteligence

Akademický rok: 2024/25

Zadání:

- 1. Prostudujte problematiku vytváření sítě městské hromadné dopravy, její modelování a její optimalizace pro města do půl milionu obyvatel.
- 2. Pro město velikosti krajského města České republiky získejte nebo odhadněte data, ze kterých sestavte model zdejší městské hromadné dopravy.
- 3. Seznamte se s řešeními, které pro optimalizaci takové sítě používají metody umělé inteligence.
- 4. Vytvořte prostředí, které bude sloužit k modelování a optimalizaci takové sítě.
- 5. Na vhodně zvolených příkladech ověřte fungování vašeho systému a diskutujte dosažené výsledky.

Literatura:

- Kate Han, Lee A. Christie, Alexandru-Ciprian Zăvoianu, and John McCall. 2021. Optimising the
 introduction of connected and autonomous vehicles in a public transport system using macro-level
 mobility simulations and evolutionary algorithms. In Proceedings of the Genetic and Evolutionary
 Computation Conference Companion (GECCO '21). Association for Computing Machinery, New
 York, NY, USA, 315–316.
- Yentl Van Tendeloo and Hans Vangheluwe. 2018. Discrete event system specification modeling and simulation. In Proceedings of the 2018 Winter Simulation Conference (WSC '18). IEEE Press, 162–176.

Při obhajobě semestrální části projektu je požadováno: První dva body zadání.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/

Vedoucí práce: Zbořil František, doc. lng., Ph.D.

Vedoucí ústavu: Kočí Radek, Ing., Ph.D.

Datum zadání: 1.11.2024
Termín pro odevzdání: 14.5.2025
Datum schválení: 31.10.2024

Abstrakt

Cieľom tejto práce je optimalizácia mestskej hromadnej dopravy, konkrétne časového rozpisu jednej linky. Zmyslom tohto textu je popis celého riešenia daného problému, od analýzy až po výsledný systém. Informácie získané priamo z Dopravného podniku mesta Brno boli využité na zostrojenie simulačného modelu jednej linky mestskej hromadnej dopravy. Pomocou tohto modelu a genetického algoritmu sa systém pokúsi nájsť najoptimálnejší časový rozpis danej linky. Súčasťou práce je aj nástroj s používateľským rozhraním, ktorý je možné v praxi použiť na analýzu a optimalizáciu terajších časových rozpisov jednotlivých liniek. Nástroj poskytuje širokú škálu rôznych vstupov, ktorými môže analytik obmedziť isté vlastnosti výsledného rozpisu. Vďaka tomuto nástroju by sa mala práca analytikov, ktorí majú nastarosť správu a vytváranie liniek, výrazne zjednodušiť a zvýšiť tak efektivitu meskej hromadnej dopravy.

Abstract

The aim of this work is the optimization of urban public transport, specifically the timetable of one line. The purpose of this text is to describe the entire solution of the given problem, from analysis to the resulting system. Information obtained directly from the Brno Public Transport Company was used to construct a simulation model of one urban public transport line. Using this model and a genetic algorithm, the system will attempt to find the most optimal timetable for the given line. Part of this work is a tool with a user interface that can be used in practice to analyze and optimize the current timetables of individual lines. The tool provides a wide range of different inputs that an analyst can use to restrict certain properties of the resulting timetable. Thanks to this tool, the work of analysts who are responsible for managing and creating lines should be significantly simplified and thus increase the efficiency of urban public transport.

Kľúčové slová

optimalizácia, mestská hromadná doprava, algoritmy inšpirované prírodou, genetický algoritmus, simulácia, DEVS

Keywords

optimization, urban public transport, nature-inspired algorithms, genetic algorithm, simulation, DEVS

Citácia

KATONA, Lukáš. Systém pre podporu optimalizáce siete mestskej hromadnej dopravy. Brno, 2025. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí práce doc. Ing. František Zbořil, Ph.D.

Systém pre podporu optimalizáce siete mestskej hromadnej dopravy

Prehlásenie

Prehlasujem, že som túto bakalársku prácu vypracoval samostante pod vedením pána doc. Ing. Františka Zbořila Ph.D. Ďalšie informácie mi poskytol pán Dr. Ing. Petr Peringer z jeho prezentácií predmetov IMS a SNT a pán Michael Kříž z Dopravného podniku mesta Brno. Uviedol som všetky literárne zdroje, publikácie a ďalšie zdroje, z ktorých som čerpal.

Lukáš Katona 19. apríla 2025

Poďakovanie

Rád by som poďakoval pánovi Zbořilovi za jeho cenné rady a konzultácie, hlavne zo strany optimalizácie a algoritmov z odvetvia umelej inteligencie. Pánovi Křížovi by som rád poďakoval za jeho čas a ochotu poskytnúť informácie o fungovaní MHD v Brne a zároveň za jeho pripomienky z pohľadu možného používatela systému. Nakoniec by som chcel poďakovať môjmu priatelovi Danovi Valníčkovi a jeho starému otcovi za to, že mi vybavili kontakt na pána Kříže a tým umožnili získať potrebné informácie o riešenom probléme priamo z prvej ruky.

Obsah

1	$\acute{\mathbf{U}}\mathbf{vod}$	4
2	Teoretická časť 2.1 DEVS - Descrete Event Simulation System	6
3	Relevantné vlastnosti mestskej hromadnej dopravy 3.1 Konzultácia s analytikom Dopravného podniku	7 7 7
4	Simulačný model linky mestskej hormadnej dopravy 4.1 Popis simulačného modelu	9 13 14
5	Optimalizácia časového rozpisu linky mestskej hormadnej dopravy 5.1 Vstupy potrebné od používateľa	19 19 20 23 26
6	Experimenty 6.1 Experiment s krátkou trasou a krátkym vozidlom	28 29 30 31 32
7	Záver	33
Li	teratúra	3 4
\mathbf{A}	Programová dokumentácia	35
В	Experiment s krátkou trasou a krátkym vozidlom	36
\mathbf{C}	C Experiment s krátkou trasou a dlhým vozidlom	
D	Experiment s dlhou trasou a krátkym vozidlom	
\mathbf{E}	Experiment s dlhou trasou a dlhým vozidlom	42

\mathbf{F}	Mail od pána Michala Hlaváčka	44
\mathbf{G}	Finančný model DPMB	48

Zoznam obrázkov

Schéma simulačného modelu	9
Stavový automat modelu zastávky	11
Stavový automat modelu vozidla	12
Počet cestujúcich, ktorí prišli na zastávku v jednotlivých hodinách	16
Počet cestujúcich, ktorí vystúpili na zastávke v jednotlivých hodinách	16
Počet cestujúcich, ktorí museli čakať na ďalší spoj v jednotlivých hodinách .	17
Čas, ktorý cestujúci strávili čakaním na zastávke v jednotlivých hodinách .	17
Priemerná naplnenosť vozidla na jednotlivých zastávkach	18
Príklad Pareto frontu	22
Počet cestujúcich prichádzajúcich na zastávku za hodinu	36
Priemerný čas strávený čakaním za hodinu	36
Počet cestujúcich prichádzajúcich na zastávku za hodinu	38
Priemerný čas strávený čakaním za hodinu	38
Počet cestujúcich prichádzajúcich na zastávku za hodinu	40
Priemerný čas strávený čakaním za hodinu	40
Počet cestujúcich prichádzajúcich na zastávku za hodinu	42
Priemerný čas strávený čakaním za hodinu	
	Počet cestujúcich, ktorí prišli na zastávku v jednotlivých hodinách Počet cestujúcich, ktorí vystúpili na zastávke v jednotlivých hodinách Počet cestujúcich, ktorí museli čakať na ďalší spoj v jednotlivých hodinách . Čas, ktorý cestujúci strávili čakaním na zastávke v jednotlivých hodinách . Priemerná naplnenosť vozidla na jednotlivých zastávkach

Kapitola 1

$\mathbf{\acute{U}vod}$

Mestskú hromadnú opravu využíva takmer každý človek a preto sa oplatí pracovať na jej efektivite. Zmyslom tejto práce je nazrieť do problematiky vytvárania a správy jednotlivých liniek mestksej hromadnej dopravy, ich analýze a optimalizácie. Ďalej vytvoriť nástroj, ktorý pomôže analytikom pri vytváraní nových liniek alebo optimalizácii existujúcich. Tento nástroj popísať a otestovať na reálnych dátach. Výsledkom celej práce by teda malo byť teoretické zefektívnenie mestskej hromadnej dopravy.

Ľudia odnepamäti nachádzjú inspiráciu pre svoje vynálezy v prírode a tomuto trendu neunikla ani informatika, ktorá má od prírody zo všetkých oborov asi najďalej. Algoritmy inšpirované prírodov prinášaju riešenia na problémy, ktoré by sme inými spôsobmi vedeli vyriešiť len za nereálne dlhý čas. Táto časť informaiky ma veľmi zaujala a preto som sa rozhodol nájsť ďalšie využitie pre jeden z týchto algoritmov. Tieto algoritmy sa používajú pre komplexné problémy s veľkým množstvom navzájom sa ovplyvňujúcich premenných. Jedným z takýchto problémov možu byť optimalizácie rôznych systémov.

Mestská hromadná doprava je systém, ktorý je pre mnoho ľudí veľmi dôležitý, preto sa oplatí investovať čas a námahu do jeho optimalizácie. Keďže aj mne je problém s dlhým čakaním na zastávke alebo preplneným autobusm blízky, rozhodol som sa venovať sa práve jemu.

Cieľom tejto práce je vytvoriť nástroj, ktorý za pomoci genetického algoritmu a používateľských obmedzení nájde čo najoptimálnejší časový rozpis jednej linky mestskej hromadnej dopravy. Zároveň sa tento nástroj bude dať použiť na analýzu už existujúcich rozpisov a ich porovnanie s novými riešeniami. Nástroj bude mať uživateľské rozhranie pre rýchlu manipuláciu so vstupnými dátami a prehľadné zobrazenie výsledkov.

Práca je rozdelená na 8 kapitol vrátane úvodu a záveru, z toho najdoležitejšie sú kapitoly 3 až ??.

Po tomto úvode následuje kapitola 2, v ktorej sú vysvetlené základné pojmy potrebné na porozumenie celej práce. Optimalizácia jednotlivých rozpisov pracuje so simulačným modelom, preto je potrebné poznať základy simulácií. V zhľadom sa systém mestksej hromadnej dopravy, konkrétne príchody vozidiel na zastávky bola zvolená diskrétna simulácia riadená udalosťami. Ďalej je v tejto kapitole vysvetlený genetický algoritmus, jeden z algoritmov inšpirovaných prírodov, ktorý bol zvolený na riešenie problému optimalizácie.

Na zostrojenie simulačného modelu treba najprv vyhodnotiť, ktoré vlastnosti reálneho systému sú pre nás relevantné. V kapitole 3 je popísaná konzultácia s analytikom Dopravného podniku mesta Brno, ktorý poskytol informácie z reálneho života. Popísal postupy a metódy, ktoré sa používajú pre optimalizáciu liniek teraz a vytýčil vlastnosti na ktoré je potrebné sa zamerať.

Zo získaných informácií bol vytvorený simulačný model, ktorého popis, stručné zhrnutie implementácie a jednotlivé experimenty s ním sú popísané v kapitole 4. Výstupy simulačného modelu sú základom pre optimalizáciu časového rozpisu linky. Ide o sériu grafov, na ktorých môže používateľ vidieť vyťaženosť linky v priebehu dňa a naprieč zastávkami. Tieto informácie poslúžili k validácii simulačného modelu a na ohodnotenie jednotlivých rozpisov.

V kapitole 5 je popísaný proces optimalizácie časového rozpisu linky mestskej hromadnej dopravy. Jednotlivé rozpisy ohodnotené na základe informácií získaných zo simulácie sa použijú ako jedinci v genetickom algoritme. Genetický aloritmus bude tieto rozpisy spájať a mutovať, aby našiel čo najlepšie riešenie. Výsledky optimalizácie budú porovnané s pôvodnými rozpismi a ohodnotené.

Samotný program by v praxi nebol moc použiteľný bez používateľského rozhrania. V kapitole ?? je popísaný návrh a implementácia uživateľského rozhrania analytického nástroja. Tento nástroj umožňuje používateľovi jednoducho zadať vstupné dáta, spustiť optimalizáciu a zobraziť výsledky. Jednou z najdôležitejších častí tohto rozhrania je zadávanie používateľských obmedzení, ktoré musí výsledny časový rozpis splňovať.

Predposlednou kapitolou je kapitola 6, ktorá sa zaoberá testovaním optimalizácie a simulačného modelu. Na konci tejto kapitoly sa nachádza spätná väzba od analytika, ktorý poskytol informácie o reálnom systéme, a to z pohľadu možného budúceho používateľa tohto nástroja.

V závere práce 7 je uvedené zhrnutie výsledkov a možné budúce rozšírenia a vylepšenia nástroja.

Kapitola 2

Teoretická časť

- ${\bf 2.1}\quad {\bf DEVS Descrete\ Event\ Simulation\ System}$
- 2.2 Genetický algoritmus

Kapitola 3

Relevantné vlastnosti mestskej hromadnej dopravy

Optimalizácia mestskej hromadnej dopravy je veľmi široký pojem a tento úkon sa dá previesť v mnoho rôznych smeroch. Preto je dôležité vybrať si tú časť systému, na ktorej sa oplatí pracovať. Pre toto rozhodnutie sú potrebné informácie o reálnom systéme, doterajších postupoch, spôsoboch analýzy a optimalizácie.

3.1 Konzultácia s analytikom Dopravného podniku

Pre získanie potrebných informácií som sa obrátil na pána Michaela Kříže, analytika Dopravného podniku mesta Brno. Stretnutie s pánom Křížom prebehlo 7. 10. 2024 v priestoroch dopravného podniku. Vďaka získaným informáciam som sa rozhodol zamerať na analýzu a optimalizáciu časového rozpisu jednej linky mestskej hromadnej dopravy. Optimalizovať viac ako jednu linku naraz by pravdepodobne prinieslo lepšie výsledky, ale to len teoreticky. V praxi by sa to z finančných a časových dôvodov neoplatilo. Zhodli sme sa na tom, že najlepšie bude optimalizovať jednu linku a to iba jedným smerom, pretože druhý smer linky sa dá považovať za samostatnú linku, minimálne v rámci nárokov cestujúcich.

3.2 Získané informácie

Informácie, ktoré sú dôležité pre analýzu a optimalizáciu časového rozpisu linky mestskej hromadnej dopravy sú:

- Počet zastávok potrebné pre zostavenie samotného rozpisu aj simulačného modelu, nie je dôležitý len počet, ale aj informácie o jednotlivých zastávkach.
- Čas potrebný na prejdenie od jednej zastávky k druhej tiež je to súčasťou
 rozpisu, zároveň sa touto informáciou riadi plánovanie udalostí v simulačnom modeli,
 viac v kapitole 4.
- Počet odchodov vozidla z jeho prvej zastávky za celý deň týmto sa myslí celkový počet vozidiel, respektíve ciest ktoré vozidlá danej linky za deň absolvujú, tento parameter je dôležitý pre optimalizáciu, pre dopravný podnik je výhodné mať čo najmenší počet vozidiel, ktoré sú v prevádzke, šetrí to palivo, údržbu aj ľudské zdroje.

- Počet odchodov vozidla z jeho prvej zastávky za hodinu myslí sa tým jeden riadok v časovom rozpise, mal by byť priamo úmerný priemernému počtu cestujúcich čakajúcich na danú linku v danej hodine.
- Počet cestujúcich čakajúcich na jednotlivých zastávkach najdôležitejší parameter pre optimalizáciu, časový rozpis musí dostatočne uspokojiť potreby všetkých cestujúcich, zároveň je ťažké získať presné hodnoty. Pri reálnom použití by sa mala spraviť štúdia ktorá by tieto hodnoty získala. Na návrh pána Kříže som na testovacie účely použil hodnoty, ktoré sú úmerné počtu odchádzajúcich vozidiel v hodine a kapacite vozidiel, povedal, že linky v Brne sú už celkom dobre naplánované a preto by mali byť tieto hodnoty približne správne. Jedná sa o nemenný vstup optimalizácie, ktorému sa má časový rozpis prispôsobiť, preto je teoreticky jedno aké hodnoty budú do systému zadané.
- Doba čakania na zastávke druhý z parametrov podstatných pre optimalizáciu, systém by mal zostrojiť taký rozpis, kedy je celková doba čakania všetkych cestujúcich čo najmenšia.
- Počet cestujúcich vo vozidie tretí dôležitý parameter pre optimalizáciu, vysoká
 preplnenosť vozidla má za dôsledok nekomfortné cestovanie, na druhej strane, príliš
 prázdne vozidlo je neefektívne využité zo strany dopravného podniku.
- Kapacita vozidla každé vozidlo prenesie naraz len isté množstvo cestujúcich, zároveň sa od preplnenosti vozidla odvíja komfort cestujúcich.
- Počet cestujúcich, ktorí nenásúpia kvôli preplnenosti vozidla v extrémnych prípadoch može nastať, že bude vozidlo úplne plné a zvyšní cestujúci musia na zastávke čakať do príchodu ďalšieho vozidla, rozpisy pri ktorých sa toto bude diať budú veľmi negatívne ohodnocované aby sa táto zlá vlastnosť čo najviac eliminova, viac v kapitole o optimalizácii 5.
- Počet vystupujúcich cestujúcich na jednotlivých zastávkach tento parameter je potrebný pre simuláciu, keďže do vozidla s istou kapacitou priebežne nastupuje veľa cestujúcich, musia z neho aj vystupovať, získanie presných hodnôt je ešte ťažšie ako pri predošlých parametroch, preto som sa rozhodol každej zastávke prideliť koeficient dôležitosti, ktorý bude určovať aký podiel cestujúcich vystúpi na danej zastávke. Na prvej zastávke je tento koeficient 0, keďze na nej cestujúci iba nastupojú, na poslednej zastávke je koeficient 1, keďže na nej cestujúci iba vystupujú a na zastávkach medzi nimi sa koeficient mení podľa toho aký podiel cestujúcich na danej zastávke priemerne vystupuje, prestupné zastávky budú mať vyšší koeficient ako tie, ktoré cestujúcich len zbierajú.

Po vytvorení simulačného modelu a implementacii optimalizácie som za pánom Krížom prišiel druhýkrát, ukázať mu výsledky, získať spätnú väzbu a zistiť jeho požiadavky na používateľské rozhranie tohto nástroja.

TODO navštíviť ho ešte raz a ukázať mu návrh uživateľského rozhrania.

Kapitola 4

Simulačný model linky mestskej hormadnej dopravy

Druhým hlavným krokom po získaní potrebných informácií je zostrojenie simulačného modelu. Problém optimalizácie časového rozpisu linky mestskej hromadnej dopravy je veľmi komplexný a vytvoriť program ktorý by ho riešil analyticky by bolo veľmi náročné. Na modelovanie bol použitý formalizmus DEVS (Descrete Event Symulation System), po slovensky diskrétna simulácia riadená udalosťami. Ide o typ simulácie, kde sa modelový čas posúva skokovo a to od jednej udalosti k druhej. Viac o tomto formalizme je napísané v kapitole 2.

4.1 Popis simulačného modelu

Na začiatok je potrebné definovať základné prvky modelu (viď obrázok 4.1), ich stavy a vzťahy medzi nimi. Simulačný model je zložený z troch hlavných častí, tými sú:

- Kalendár udalostí dôležitý pre plánovanie udalostí v modeli
- Model zastávky dôležitý pre príchod a odchod cestujúcich
- Model vozidla dôležitý pre prepravu cestujúcich medzi zastávkami

Obr. 4.1: Schéma simulačného modelu

V simulácii sa budú nachádzať viaceré inštancie modelu zastávky, každá reprezentujúc jednu zastávku na linke. Vozidiel bude taktiež viacero, neberieme do úvahy fizcké vozidlá a fakt, že v reálnom živote sa tieto vozidlá na linke v priebehú dňa niekoľkokrát otočia. Dôležitá je trasa, ktorú prejdu, preto jedna inštancia modelu vozidla reprezentuje jednu cestu, ktorú vozidlo prejde. Cestujúcich v modeli nie je potrebné reprezentovať ako samostatný model, sú reprezentovaní len jedným číslom, časom kedy prišli na zastávku. Sú súčasťou modelu zastávky, konkrétne tej na ktorej čakajú.

Kalendár udalostí

Kalendár udalostí je základným prvkom modelu, ktorý riadi priebeh simulácie. V kalendári sú uložené všetky udalosti, ktoré sa majú v modeli stať. Tieto udalosti sú v prípade tohto modelu príchody vozidiel na zastáky. V rámci jednej udalosti sa vykoná rutina obslúženia cestujúcich čakajúcich na zastávke. Všetky udalosti sú naplánované na začiatku simulácie, pretože vďaka časovému rozpisu presne vieme všetky príchody vozidiel na jednotlivé zastávky. Príchody na prvú zastávku sú dané hlavným časovým rozpisom, príchody na ostatné zastávky sú odvodené od času potrebného na prejdenie z jednej zastávky na druhú. Pseudokód plánovania udalostí je uvedený v algoritme 1. V priebehu simulácie už netreba žiadne ďalšie udalosti plánovať.

Algoritmus 1: Plánovanie udalostí

for čas v časovom rozpise počiatočnej zastávky do

Vytvorí sa vozidlo;

for zastávka na linke do

Pridá sa udalosť príchodu vozidla na danú zastávku;

Po naplánovaní všetkých udalostí sa začne simulácia. Postupne sa vykonávajú jednotlivé udalosti a simulácia sa diskrétne posúva vpred, až kým nie je kalendár udalostí prázdny alebo nie je dosiahnutý koncový čas simulácie. Pseudokód riadenia simulácie je popísaný v algoritme 2.

Algoritmus 2: Simulácia riadená udalosťami

while kalendár udalostí nie je prázdny do

Vyberie sa udalosť s najmenším časom v kalendári;

Udalosť sa odstráni z kalendára;

if čas udalosti > koncový čas simulácie then

Simulácia končí;

Modelový čas sa nastaví na čas udalosti;

Udalosť sa vykoná;

Pre potreby časového rozpisu stačí simulovať jeden deň, v prípade rôznych rozpisov v čase pracovnýh dní a v čase sviatkov a víkendov ide o kompletne iný rozpis, ktorý sa musí simulovať a optimalizovať samostatne. Všetky naplánované udalsti by mali byť v rámci jedného dňa, preto by simulácia mala končiť vždy vyprázdnením kalendára udalostí a nie prekročením koncového času.

Model zastávky

Model zastávky slúži na reprezentáciu jednotlivých zastávok na linke. Každá reálna zastávka je v systéme ako samostatná inštancia modelu zastávky. Je pasívna, to znamená, že jej vnútorný stav sa plne odvíja od prichádzajúcich vonkajších signálov.

Obr. 4.2: Stavový automat modelu zastávky

Ako je vidieť na obrázku 4.2, model zastávky má tri stavy:

- Cestujúci čakajú na zastávke nie je žiadne vozidlo
- Vozidlo na zastávke na zastávku práve prišlo vozidlo
- Cestujúci nastupojú cestujúci nastupujú do vozidla

Dôletitejšie sú však vstupné signály, ktorími je celý stavový automat riadený. Zároveň sa pri prechodoch medzi stavmi vykonávajú akcie pre obsluhu cestujúcich.

Vstpný signál **?Vozidlo_prišlo** mení vnútorný stav zastávky z **Cestujúci čakajú** na **Vozidlo na zastávke**. Taktiež s vypočíta dĺžka intervalo medzi posledným príchodom vozidla a terajším príchodom. Tento údaj slúži pre vygenerovanie prichádzajúcich cestujúcich.

Vstupný signál **?Začiatok_nastupovania** mení vnútorný stav zastávky z **Vozidlo** na zastávke na **Cestujúci nastupujú**. Pri tomto prechode sa vygenerujú časi všetkých cestujúcich, ktorí prišli od posledného príchodu vozidla.

Vstupný signál **?Koniec_nastupovania** mení vnútorný stav zastávky z **Cestujúci nastupujú** na **Cestujúci čakajú**. Prepíše sa čas posledného príchodu vozidla.

Generovanie cestujúcich

Cestujúci sa generujú na základne exponenciálneho rozdelenia s parametrom λ . Tento parameter je v rámci jednej zastávky každú hodinu iný, pretože počet prichádzajúcich cestujúcich sa v priebehu dňa mení. V algoritme 3 je popísaný proces generovania cestujúcich na zastávke.

Algoritmus 3: Generovanie cestujúcich

získanie λ pre danú zastáku a hodinu;

while modelový čas < čas príchodu autobusu do

vygenerovanie času príchodu cestujúceho;

pridanie cestujúceho do fronty;

zmena modelového času na čas príchodu cestujúceho;

Model vozidla

Každé vozidlo, respektíve jedna trasa ktorú vozidlo podľa časového rozpisu prejde, je reprezentovaná jednou inštanciou modelu vozidla. Model vozidla je na rozdiel od modelu zastávky aktívnym prvkom, nemá žiadne vstupné signály, iba výstupné. Tieto výstupné signály sú prepojené so vstupnými signálmi modelu zastávky ako je vidieť na obrázku 4.1.

Obr. 4.3: Stavový automat modelu vozidla

Na obrázku 4.3 je vidieť stavový automat modelu vozidla. Model vozidla má tri stavy:

- Na ceste vozidlo sa pohybuje medzi zastávkami
- Na zastávke vozidlo práve prišlo na zastávku
- Nakladá cestujúcich vozidlo nakladá cestujúcich

Výsupný signál **!Príchod** mení vnútorný stav vozidla z **Na ceste** na **Na zastávke**. Pri tomto prechode vystúpia cestujúci podľa koeficientu zastávky na ktorú vozidlo práve prišlo. Napríklad ak je vo vozidle 100 cestujúcich a koeficient zastávky je 0.7, pretože sa jedná o prestupnú zastávku, vystúpi 70 cestujúcich.

Výstupný signál !Nastupovanie mení vnútorný stav vozidla z Na zastávke na Nakladá cestujúcich. Zastávka, na ktorej sa vozidlo práve nachádza tento signál zachytí a vygeneruje nových cestujúcich. Pokiaľ to dovoluje kapacita vozidla, všetci cestujúci nastúpia. V opačnom prípade nastúpia len tí, ktorí prišli skôr a tí čo prišli neskôr musia ostať čakať na ďalšie vozidlo.

Výstupný signál !Odchod mení vnútorný stav vozidla z Nakladá cestujúcich na Na ceste. Informuje sa príslušná zastávka a nič viac sa pri tomto prechode nevykonáva.

Obsluha zastávky

Každé vozidlo začina na prvej zastávke v rozpise, ale počas simulácie sa musí pohybovat medzi zastávkami. Proces ktorý vozidlo vykoná pri príchode na každú zastávku je popísaný v algoritme 4.

Algoritmus 4: Obsluha zastávky

prepojenie výstupných signálov vozidla so vstupnými signálmi zastávky; aktivácia výstupného signálu **!Príchod**; aktivácia výstupného signálu **!Nastupovanie**; aktivácia výstupného signálu **!Odchod**;

Udalosť príchodu vozidla na zastávku

V rámci jednej udalosti sa vykoná rutina obslúženia cestujúcich, ktorí čakajú na zastávke. Táto rutina je popísaná v algoritme 4. Parametre tejto udalosti sú:

- Čas príchodu čas, kedy vozidlo prichádza na zastávku
- Zastávka zastávka, na ktorej sa udalosť vykonáva
- Vozidlo vozidlo, ktoré prichádza na zastávku

Vozidlo začína udalosť v stave **Na ceste**, príde na zastávku uvedenú v parametri udalosti, vykoná rutinu nástupu a výstupu cestujúcich a odíte na ďalšiu zastávku. Za jednu udalosť teda vozidlo prejde všetkými svojimi vnútorným stavmi, udalosť končí v opaäť v stave **Na ceste**. Zastávka ktorá je uvedená v parametri udalosti tiež prejde všetkými svojimi vnútornými stavmi na základe posielaných signálov od vozidla.

4.2 Implementácia simulačného modelu

Simulačný model je implementovaný v jazyku Python bez využitia externých knižníc. Trieda EventCalendar obsahuje kód základných operácií nad kalendárom udalostí:

- isEmpty() vráti True ak je kalendár udalostí prázdny, inak False
- addEvent(event) pridá udalosť do kalendára
- getNextEvent() vráti udalosť s najmenším časom v kalendári a odstráni ju z kalendára

Trieda Event reprezentuje jednu udalosť. Obsahuje:

- metóda __call__() vykoná akciu
- atribúty action a actionArgument

len metódu __call__(), ktorá vykoná udalosť uloženú v atribúte action s argumentami volania uloženými v actionArgument.

Modelový čas je implementovaný v triede Simulation. Obsahuje:

- metódy forward(time) a getHour()
- atribúty startTime, currentTime a endTime

Trieda BusStop reprezentuje jednu zastávku, rovnako tak trieda Bus reprezentuje jedno vozidlo. Tieto dve triedy sú písané podľa vzoru DEVS formalizmu. Obsahujú stavy, vstupné a výstupné signály a metódy, v ktorých sa nachádzjú akcie pre jednotlivé prechody medzi stavmi. Cestujúci sú uložení ako pole čisel, časov ich príchodu, v jednotlivých zastávkach v atribúte waitingPassengersArrivalTimes.

Na generovanie náhodného príchodu cestujúcich slúži trieda RandomNumberGenerator, ktorá obsahuje statické metódy na generovanie náhodných čísel.

Zber a agregácia štatistík (viď kapitola 4.3) sú implementované v triedach Statistics, BusStatistics a BusStopStatistics.

Podrobnejšie informácie o kóde sa nachádzajú v programovej dokumentácii, v prílohe A. Programová dokumentácia bola vygenerovaná pomocou nástroja Sphynx.

4.3 Výstupy simulačného modelu

Hlavný zmisel simulácie je zber informácií, ktoré by sme inak museli získať z pozorovania reélnej prevádzky linky. Efektivitu každého jedného časového rozpisu, ktorý program vytvorí je potrebné otestovať a ohodnotiť aby sme našli ten najlepší z nich, skôr ako ho začneme používať v reálnej prevádzke. Na ohodnotenie jednotlivých rozpisov slúžia štatistiky získané počas simulácie. Štatistiky sa zbierajú pre každú zastávku aj pre každý autobus osobitne. Následne sa agregujú do jednoho objektu Statistics, ktorý obsahuje:

- totalNumberOfBuses počet spojov v priebehu dňa na linke
- busStopStatistics agregované štatistiky zastávok
- busStatistics agregované štatistiky vozidiel

Trieda busStopStatistics slúži na ukladanie informácii o jednotlivých zastávkach, ale ako bolo spomenuté vyššie tak aj na uloženie agregovaných dát. Táto trieda slúži na zber následujúcich informácií:

- totalPassengersArrived počet cestujúcich, ktorí prišli na zastávku za celý deň
- totalPassengersDeparted počet cestujúcich, ktorí vystúpili na zastávke za celý deň
- totalPassengersLeftUnboarded počet cestujúcich, ktorí museli čakať na ďalší spoj
- totalTimeSpentWaiting celkový čas, ktorý cestujúci strávili čakaním na zastávke
- totalPassengersLeftUnboarded počet cestujúcich, ktorých po celom dni nezobral žiaden spoj
- passengersArrivedPerHour počet cestujúcich, ktorí prišli na zastávku v jednotlivých hodinách
- passengersDepartedPerHour počet cestujúcich, ktorí vystúpili na zastávke v jednotlivých hodinách
- passengersLeftUnboardedPerHour počet cestujúcich, ktorí museli čakať na ďalší spoj v jednotlivých hodinách
- timeSpentWaitingPerHour čas, ktorý cestujúci strávili čakaním na zastávke v
 jednotlivých hodinách

Trieda busStatistics má rovnaký účel ako trieda busStopStatistics, ale pre vozidlá. Zbiera informácie:

- capacity kapacita vozidla
- averageLoad priemerná naplnenosť vozidla
- averageLoadInPercent priemerná naplnenosť vozidla v percentách
- loadPerBusStop naplnenosť vozidla na jednotlivých zastávkach
- loadInPercentPerBusStop naplnenosť vozidla na jednotlivých zastávkach v percentách

Počet spojov v priebehu dňa na linke

Tento údaj slúži pre optimalizáciu, z pohľadu dopravného podniku chceme, aby bol pocet spojov čo najmenší aby ušetrili na prevádzkových nákladoch. Z pohľadu cestujúcich chceme aby bol počet spojov čo najväčší, aby nemuseli čakať na spoj dlhšie ako je nutné. Je potrebné nájsť kompromis medzi týmito dvoma extrémami.

Počet cestujúcich, ktorí prišli na zastávku za celý deň

Celkový počet cestujúcich za deň je dobrím indikátorom toho, ako sú namáhané jednotlivé časti linky. V prípadoch, kedy na zastávky v strede trasy prichádza oveľa viac cestujúcich ako na koncové zastávky, posilňuje dopravný podnik práve túto strednú časť ďalšími spojmi. Tieto spoje však na koncové zastávky už nechodia.

Počet cestujúcich, ktorí vystúpili na zastávke za celý deň

Je potrebné aby sme v rámci simulácie rátali aj s cestujúcimi, ktorí z vozidiel vystupujú, inak by sa kapacita vozidla hneď naplnila. Ide o dôležitú časť reálneho systému, ktorú nemôžeme zanedbať ani pri simulácii. Slúži na validáciu modelu.

Počet cestujúcich, ktorí museli čakať na ďalší spoj

Občas sa stane, že je vozidlo tak preplnené, že nie všetci cestujúci, ktorí čakali na zastávke do neho nastúpia. V reálnom živote ide asi o subjektívny pocit, či nastúpiť alebo nie. V simulačnom modeli cestujúci prestanú nastupovať v momente keď naplnenosť vozidla dosiahne jeho maximálnu kapacitu. Rozpisy, pri ktorých sa tento jav vyskytne budú mať horšie hodnotenie.

Celkový čas, ktorý cestujúci strávili čakaním na zastávke

Z pohľadu optimalizácie chceme, aby bol tento čas čo najnižší. Príliš dlhé čakanie na zastávke bude rozpisy ohodnocovať negatívne. V prípade, že cestujúci musel čakať na ďalší spoj, tento šas bude ešte dlhší. Treba rátať aj s cestujúcimi, ktorí na zastávku prídu tesne pred odchodom vozidla. Napríklad ak chodí spoj dvakrát za hodinu, je oveľa vyššia pravdepodobnosť, že cestujúci nepríde v náhodný čas, ale svoj príchod na zastávku si naplánuje.

Počet cestujúcich, ktorých po celom dni nezobral žiaden spoj

Podobne ako v prípade cestujúcich, ktorí museli čakať na ďalší spoj, aj týchto cestujúcich by sme mali rátať a rozpis by mal byť ohodnotený veľmi negatívne. Tento jav by mohol v reálnom svete nastať asi iba ak by cestujúci išiel na posledný spoj v dni a toto vozidlo by bolo úplne preplnené. Ale keďže optimalizácia v tomto programe je riešená genetickým algoritmom, je veľká šanca že sa tento jav vyskytne častejšie. Táto vlastnosť je nežiaduca a je potrebné ju eliminovať.

Počet cestujúcich, ktorí prišli na zastávku v jednotlivých hodinách

Tento údaj má skôr informatívny charakter, pretože ide o vstup programu. Algoritmus sa snaží vytvoriť rozpis, ktorý by bol schopný prepraviť všetkých cestujúcich. Na grafe 4.4 je vidieť, že v priebehu dňa sa počet cestujúcich prichádzajúcich na zastávku mení. Obzvlášť

v ranných a poobedných hodinách je tento počet výrazne vyšší ako počas dňa. V týchto časoch by malo chodiť viac spojov.

Obr. 4.4: Počet cestujúcich, ktorí prišli na zastávku v jednotlivých hodinách

Počet cestujúcich, ktorí vystúpili na zastávke v jednotlivých hodinách

Ide o rovnaký údaj ako bol počet cestujúcich, ktorí vystúpili na zastávke za celý deň, ale rozdelený na jednotlivé hodiny dňa. Je vidieť, že graf 4.5 má podobný tvar ako graf 4.4. To je správne, pretože počet cestujúcich, ktorí vystúpili na zastávke by mal byť rovnaký ako počet cestujúcich, ktorí prišli na zastávku. Mohlo by sa stať, že tieto dve hodnoty by sa líšili, v prípade, že ostatnú cestujúci, ktorí sa v priebehu dňa nezmestili do žiadneho vozidla.

Obr. 4.5: Počet cestujúcich, ktorí vystúpili na zastávke v jednotlivých hodinách

Počet cestujúcich, ktorí museli čakať na ďalší spoj v jednotlivých hodinách

Na ľavej strane grafu 4.6 je vidieť, že v priebehu ďňa žiaden z cestujúcich nemusel čakať na ďalší spoj. Toto je ideálny stav. Na pravej strane grafu 4.6 je vidieť, že v priebehu dňa sa počet cestujúcich, ktorí museli čakať na ďalší spoj mení. Ráno a okolo obeda nemusel na

ďalší spoj čakať nikto, ale v poobednej špičke je vidieť zjavný nedostatok spojov, pretože cestujúci musia čakať na ďalší spoj.

Obr. 4.6: Počet cestujúcich, ktorí museli čakať na ďalší spoj v jednotlivých hodinách

Čas, ktorý cestujúci strávili čakaním na zastávke v jednotlivých hodinách

Čas strávený čakaním na zastávke by mal byť počas celého dňa približne rovnaký. Na ľavej strane grafu 4.7 je tento optimálny stav vidieť. Bez ohľadu na to, kedy cestujúci prídu na zastávku, čakajú na spoj rovnako dlho. Naopak na prave strane grafu 4.7, ktorý je výstupom rovnakej simulácie ako pravá strana grafu 4.6, je zrejmé, že čas čakania na zastávke sa v poobedných hodinách výrazne zvýšil práve kvoli tomu, že cestujúci museli čakať na ďalší spoj.

Obr. 4.7: Čas, ktorý cestujúci strávili čakaním na zastávke v jednotlivých hodinách

Kapacita vozidla

Tento parameter je dôležitý, pretože na základe neho sa rozhoduje, koľko cestujúcich môže nastúpiť do vozidla. Zároveň slúži pre výpočet naplnenosti vozidla v percentách. Príliš malá alebo príliš veľká naplnenosť vozidla môže byť nežiaduca. Na ohodnotenie toho, ako moc je vozidlo naplnené teda treba poznať aj jeho kapacitu.

Priemerná naplnenosť vozidla

Priemerná naplnenosť vozidla je dôležitý parameter, ktorý nám hovorí, ako moc sú vozidlá využívané. Z pohľadu cestujúcich je lepšie, ak je vozidlo prázdnejšie, ale z pohľadu dopravného podniku je to nevyužitý potenciál. Preto je potrebné nájsť kompromis medzi týmito dvoma požiadavkami. To aká naplnenosť je optimálna je už úlohou analytika, ktorý bude tento program využívať. Povedzme, že sa rozhodne pre naplnenosť 70%. Potom čim ďalej bude priemerná naplnenosť vozidiel od tejto hodnoty, tým horšie bude rozpis ohodnotený.

Celkový počet prevezených cestujúcich

Celkový počet prevezených cestujúcich záleží od toho, koľko cestujúcich prišlo na jednotlivé zastávky a či sa im podarilo nastúpiť do vozidiel. V ideálnom prípade sa tento počet bude rovnať počtu cestujúcich, ktorí prišli na zastávky. V extrémnych prípadoch sa môže stať, že niektorí cestujúci zostanú na zastávkach a nezoberie ich žiadne vozidlo. V prípade štatistiky jednotlivých vozidiel, môže byť tento počet použitý na ich porovnanie. Počas dňa by mali všetky vozidlá prepraviť približne rovnaký počet cestujúcich. Ak tomu tak nie je a sú vyťažené nerovnomerne, rozpis by sa mal ohodnotiť negatívne.

Naplnenosť vozidla na jednotlivých zastávkach

Na grafe 4.8 je znázornené ako sa naplnenosť vozidiel mení počas ich jazdy. Konkrétne sa jedná o linku 46 v Brne. Naplnenosť sa postupne zvyšuje až kým nepríde na jednu z hlavných prestupných zastávok, Štefánikova čtvrť. Tu vystúpi veľké množstvo cestujúcich a naplnenosť vozidla sa zníži. Pokiaľ má linka príliš veľké výkivy v naplnenosti vozidiel naprieč svojou trasou, môže to byť znakom toho, že je potrebné trasu na určitých úsekoch posilniť inou linkou.

Obr. 4.8: Priemerná naplnenosť vozidla na jednotlivých zastávkach

Kapitola 5

Optimalizácia časového rozpisu linky mestskej hormadnej dopravy

Optimalizácia časového rozpisu je zložitý problém s veľkým množstvom premenných a obmedzení. Táto kapitola pojednáva o daných vstupoch, obmedzeniach, použitej optimalizačnej metóde a výstupoch optimalizácie.

Na optimalizáciu bol použitý genetický algoritmus. Genetický algoritmus je heuristická optimalizačná metóda, ktorá sa inšpiruje evolučnou biológiou. Je založená na princípe prírodného výberu, kde sa najlepšie jedince z populácie vyberajú na reprodukciu a vytvárajú novú generáciu. Tento proces sa opakuje, až kým sa nenájde optimálne riešenie alebo sa nedosiahne maximálny počet generácií. Na ohodnotenie jedinca sa používa fitness funkcia, ktorá hodnotí kvalitu riešenia na základe zadaných kritérií. V prípade časových rozpisov MHD sa na výpočet fitness funkcie používajú štatistiky zo simulácie, ktoré sú popísané v kapitole 4.3.

5.1 Vstupy potrebné od používateľa

Na to aby mohol algoritmus fungovať, je potrebné zadať niekoľko vstupných parametrov. Najdôležitejším z nich sú informácie o zastávkach. O každej zastávke je potrebné zadať:

- Názov zastávky názov zastávky, ktorý sa zobrazuje na výstupoch
- Čas príchodu čas potrebný na prejdenie vzdialenosti od prvej zastávky po túto zastávku
- Štatistika o príchodoch cestujúcich priemerný počet prichádzajúcich cestujúcich v každej hodine dňa
- Pravdepodobnosť výstupu cestujúceho údaj potrebný pre priebežné vyprázdnenie vozidla

Tieto informácie sa zadávajú vo forme textového súboru, každá zastávka je na samostatnom riadoku a jednotlivé údaje sú oddelené dvojbodkou. Príklad toho ako by mal vyzeraž záznam o jednej zastávke je:

```
Lesná, Haškova:0:[(5, 60), (6, 90), ..., (21, 40), (22, 30)]:0
Brechtova:1:[(5, 60), (6, 90), ..., (21, 40), (22, 30)]:0.1
Blažkova:2:[(5, 60), (6, 90), ..., (21, 40), (22, 30)]:0.1
```

Ďalšie dôležité informácie o linke sú:

- Kapacita vozidla maximálny počet cestujúcich, ktorý sa zmestí do vozidla
- Miest na sedenie počet miest na sedenie v vozidle
- Celkové náklady udávané v Kč/100 miesto-km (tabuľková hodnota)
- **Dĺžka trasy** dĺžka trasy v km

Kapacita vozidla a počet miest na sedenie sú potrebné pre výpočet naplnenosti vozidla, od ktorého sa potom odvíja spokojnosť cestujúcich. Celkové náklady na 100 miestokilometrov a dĺžka trasy sú potrebné pre výpočet nákladov na prevádzku linky. Podrobnejší popis výpočtu celkovej spokojnosti a nákladov na prevádzku je v kapitole 5.2.

Potom je potrebné zadať parametre genetického algoritmu, ktoré sú:

- Veľkosť populácie počet jedincov v jednej generácii
- Počet generácií počet generácií, ktoré sa majú vykonať
- Pravdepodobnosť mutácie pravdepodobnosť, že sa v jedincovi vyskytne mutácia
- Maximálny počet spojov za hodinu maximálny počet spojov, ktorý môže byť vygenerovaný za hodinu

Poslednou informáciou, ktorá je od používateľa potrebná sú obmedzenia na počet spojov za hodinu. Používateľ takto môže nastaviť fixný počet spojov, ktorý sa má vygenerovať za hodinu. Toto sa využíva hľavne pri plánovaní náväznosti liniek, kedy je potrebné aby sa niektoré spoje stretli na prestupnej zastávke. Obvykle sa to robí tak, že sa nastaví rovnaký počet spojov pre všetky prestupné linky, ktoré sa na tejto zastávke stretávajú. Toto obmedzenie využíva aj predbežná analýza, ktorá sa vykonáva pred optimalizáciou. V prípade ak pre niektorú hodinu neexistuje údaj o priemernom počte prichádzajúcich cestujúcich naprieč všetkými zastávkami, nastaví sa fixný počet spojov v danej hodine na 0. Tento krok výrazne prispieva k lepším výsledkom optimalizácie, pretože dopredu vieme, že v tejto hodine nebude žiaden spoj potrebný. Zároveň s nižším počtom spojov vo všetkých rozpisoch počas optimalizácie sa výpočet výrazne urýchli.

5.2 Základná implementácia genetického algoritmu

Na optimalizáciu časového rozpisu bol použitý genetický algoritmus. Genetický algoritmus je heuristická optimalizačná metóda, ktorá sa inšpiruje Darwinovou teóriou evolúcie. Podľa citátu od Charlesa Darwina, "V prírode je prežitie a úspech otázkou tých najschopnejších a najpríťažlivejších", aj genetický algoritmus sa snaží nájsť najlepšie riešenie problému pomocou evolučného procesu. Používajú sa postupy ako je náhodná mutácia jedinca a rozne typy výberu a kríženia jedincov. Myšlienka je, že najlepší jedinci v generácii buď splňujú požiadavky alebo sú veľmi blízko k optimálnemu riešeniu. Predpokladá sa, že týto jedinci majú najlepšie predispozície na to, aby ich potomkovia boli o krok bližšie k optimálnemu riešeniu. Využitie genetického algoritmu je efektívne v prípadoch, kedy by deterministické metódy trvali príliš dlho alebo by vôbec neboli schopné nájsť optimálne riešenie. Genetický

algoritmus bol prvýkrát predstavený okolo roku 1960 Johnom Hollandom na Univerzite v Michigane (viď [3]).

Algoritmus 5: Genetický algoritmus

Inicializácia prvej populácie;

Definovanie fitness funkcie;

Výpočet fitness funkcie pre každého jedinca v populácii;

while nie je nájdené optimálne riešenie alebo nebol dosiahnutý maximálny počet generácií do

Výber rodičov z populácie;

Kríženie rodičov na vytvorenie potomkov;

Mutácia potomkov;

Výpočet fitness funkcie pre každého potomka;

Výber najlepšieho jedinca z populácie;

V prípade optimalizácie časového rozpisu MHD sa jedincami stávajú samotné časové rozpisy. Na základe simulácie jedného dňa na linke s použitým časovým rozpisom sa získajú štatistiky, ktoré sa následne použijú na ohodnotenie kvality jedinca.

Výpočet cieľov, spokojnosť cestujúcich a náklady na prevádzku

Pre ohodnotenie kvality časového rozpisu sa zvolili dva hlavné ciele:

- Spokojnosť cestujúcich priemerné percentuálne zhodnotenie spokojnosti všetkých cestujúcich, ktorí prišli za deň na zastávku
- Náklady na prevádzku celkové náklady na prevádzku linky za deň, udávané v Kč/100 miesto-km

Výpočet spokojnosti cestujúceho sa vykonáva v čase nástupu do vozidla. Zhodnocuje sa aktuálna naplnenosť vozidla a na základe toho sa vypočíta percentuálne zhodnotenie spokojnosti. Potrebné parametre pre výpočet sú kapacita vozidla, počet miest na sedenie a aktuálna naplnenosť vozidla. Výpočet sa riadi následujúcimi troma podmienkami:

- 1. Ak sú vo vozidle voľné miesta na sedenie, cestujúci si sadne a jeho spokojnosť je 1
- 2. Ak je vozidlo úplne plné a cestujúci sa do neho nezmestí, jeho spokojnosť je 0
- 3. Ak je vo vozidle miesto, ale už len na státie, spokojnosť vozidla závisí od aktuálnej naplnenosti vozidla a je vypočítaná ako:

$$spokojnost = 1 - \frac{aktualna naplnenost vozidla - počet miest na sedenie}{kapacita vozidla - počet miest na sedenie}$$
(5.1)

Nakonci sa vypočíta priemer spokojnosti všetkých cestujúcich. Hodnota sa pohybuje od 0 do 1 a genetický algoritmus uprednostňuje vyššie hodnoty, teda spokojnejších cestujúcich.

Celkové náklady na prevádzku linky sú vypočítané z počtu spojov v časovom rozpise, kapacity použitých vozidiel, dĺžky trasy a nákladov na jeden miestokilometer. Jeden miestokilometer je definovaný ako vzdialenosť jedného kilometra, ktorú prejde jedno miesto vo vozidle. Potom vozidlo s kapacitu 80 miest, ktoré prejde 10 km, prejde 800 miestokilometrov. Miestokilometre sa môžu násobiť aj počtom vozidiel, potom dve takéto vozidlá

by prešli 1600 miestokilometrov. Informácie o tejto jednotke sú prevzaté od pána Michala Hlaváčka, zamestnanca Dopravného podniku mesta Brno, pomoocu mailovej komunikácie, ktorá je dostupná v prílohe F. Tento údaj je potrebný pretože náklady vo finančnom pláne Dopravného podniku mesta Brno sú udávané v českých korunách na 100 miestokilometrov. Finančný plán na rok 2025 je v prílohe G. Celý výpočet nákladov na prevádzku linky teda závisí od štyroch premenných a je daný vzorcom:

ceľkové náklady =
$$\frac{\text{dĺžka trasy} \cdot \text{počet spojov} \cdot \text{kapacita vozidla}}{100} \cdot \text{náklady}$$
 (5.2)

Tieto dva ciele sú v konflikte, pretože čím viac spojov je na linke, tým je spokojnosť cestujúcich vyššia, ale náklady na prevádzku sú tiež vyššie. Tento problém rieši multi-objektívna optimalizácia, ktorá sa snaží nájsť optimálne riešenie pre oba ciele naraz.

Genetický algoritmus s viacero cieľmi

Genetický algoritmus, v ktorom sa snažíme dosiahnuť optimálneho kompromisu medzi viacero cieľmi sa nazýva multi-objektívny genetický algoritmus. Jeho myšlienka spočíva v nájdení Pareto frontu, čo je množina všetkých možných riešení, ktoré sú optimálne z pohľadu všetkých cieľov. To znamená, že neexistuje žiaden iný jedinec, ktorý by bol lepší v oboch cieľoch naraz. Ak je jeden jedinec lepší v oboch cieľoch, hovoríme, že dominuje iného jedinca. V prípade, že dominuje iba v jendom, ale v druhom nie, patria do rovnakej skupiny, sú si rovnocenní. Ak je jedinec horší v oboch cieľoch, hovoríme, že je dominovaný. Každá generácia sa rozdelí do rovnocenných skupín, pri výbere rodičov sa uprednostňujú jedinci z lepšej skupiny. Najlepšia skupina sa nazýva Pareto front, ide o množinu takých jedinov, nad ktorými nedominuje žiaden iný jedinec. Na obrázku 5.1 je znázornený Pareto front pre dva ciele, spokojnosť a náklady. Multi-objektívne genetické algoritmy dokážu pracovať aj s viac ako dvoma cieľmi. Pre optimalizáciu časového rozpisu však stačia dva, jeden zo strany zákazníka (spokojnosť) a druhý zo strany dopravného podniku (náklady). Tieto základné informácie o fungovaní multi-objektívnych genetických algoritmov s použitím Pareto frontu sú prevzaté z článku [4].

Obr. 5.1: Príklad Pareto frontu

5.3 Implementácia multi-objektívneho genetického algoritmu

Pre účely multi-objektívnej optimalizácie bol použitý algoritmus NSGA-II (Non-dominated Sorting Genetic Algorithm II). V článku [2] je porovnanie tohto algoritmu s inými multi-objektívnymi genetickými algoritmami. NSGA-II vo viacerých testoch preukázal, že má lepšie rozloženie a diverzitu jedincov v Pareto fronte ako iné algoritmy. Práve pre túto vlastnosť bol zvolený aj pre túto prácu. Okrem testov je v článku [2] aj podrobný popis fungovania algoritmu. Algoritmy 7, 8, 9 a 10 boli z tohto článku prevzaté a mierne upravené pre účely tejto práce.

NSGA-II je založený na triedení jedincov do frontov na základe ich dominancie nad inými jedincami. Pri výbere jedincov pri krížení sa uprednostňujú jedinci z lepších frontov. V prípade, že treba porovnať dvoch jedincov z rovnakého frontu, použije sa zhluková vzdialenosť. Zhluková vzdialenosť zaisťuje vysokú diverzitu jedincov, pretože sa uprednostňujú jedinci, ktorí sú od seba najďalej, teda majú veľké rozdiely v hodnotách cieľov.

Oproti klasickému genetickému algoritmu NSGA-II spracováva elitizmus inak. V NSGA-II neexistuje konštanta, ktorá by udávala počet elitných jedincov, ktorí sa prenesú do ďalšej generácie. Pri vytváraní novej generácie sa najprv vytvorí nová populácia z rodičov a ich potomkov. Táto, dvojnásobne veľká populácia sa následne rozdelí do frontov a pre každého jedinca sa vypočíta zhluková vzdialenosť na základe jeho vzdialenosti od svojich susedov vo fronte. Potom sa najepšie fronty prenesú do novej generácie. Posledný prenášaný front sa pravdepodobne nezmestí celý, vtedy sa vyberie toľko jedincov z daného frontu aby bola populácia rovnako veľká naprieč všetkými generáciami. Jedinci z posledného frontu sa vyberajú na základe zhlukovej vzdialenosti, aby sa zachovala vyššia diverzita.

Inicializácia prvej generácie

Populácia prvej genrácie sa musí spracovať trochu inak ako ostatné generácie. Hlavný cyklus algoritmu NSGA-II sa začína spojením rodičov a potomkov do jedného celku. Na začiatku však žiadnych potomkov nemáme. Algoritmus 6 popisuje ako sa vytvorí populácia prvej generácie a jej potomkovia. Najprv sa vytvorí prvá generácia jedincov, tým sa náhodne vygenerujú chromozómy. Následne sa týto jedinci roztriedia na fronty pomocou rýchleho nedominantného triedenia. V rámci každého frontu sa vypočíta zhluková vzdialenosť každého jedinca. Na základe získaných ohodnotení sa vyberú tí lepší rodičia a za pomoci kríženia a mutácie sa vytvorí prvá generácia potomkov.

Algoritmus 6: Inicializácia prvej generácie

Hlavná slučka algoritmu NSGA-II

Po inicializácii prvej generácie sa ostatné môžu spracovávať rovnako. Ako je vidieť v algoritme 7, hlavná slučka začína spojením rodičov a potomkov do jednej populácie. Novo vzniknutá populácia sa následne rozdelí do frontov na základe ich dominancie. Následuje kombinovaný cyklus na spracovanie jednotlivých frontov, ktorý ma dve úlohy:

- 1. Priradenie zhlukovej vzdialenosti jedincov v aktuálnom fronte
- 2. Priradenie jedincov aktuálneho frontu do novej generácie

Tento cyklus sa vykonáva pokým sa celý následujúci front zmestí do novej generácie. Posledný front, ten ktorý sa už nezmestí celý, sa musí spracovať osobitne. Prvky z tohot frontu sa usporiadajú na základe zhlukovej vzdialenosti a do novej generácie sa prenesú len tie jedince, ktoré sa tam zmestia. Z novovzniknutej populácie sa následne vytvorí nová generácia potomkov. Vo všeobecnosti sa táto slučka vykonáva pokiaľ nie je dosiahnutý maximálny počet generácií alebo pokiaľ nebol nájdený optimálny jedinec. V prípade tejto práce sa však bere do úvahy iba maximálny počet generácií.

Algoritmus 7: Hlavná slučka algoritmu NSGA-II

```
R_t \leftarrow P_t \cup Q_t \text{ (zlučovanie rodičov a potomkov)};
F \leftarrow \text{rýchle}\_\text{nedominantn\'e}\_\text{triedenie}(R_t);
P_{t+1} \leftarrow \emptyset \text{ (inicializ\'acia novej popul\'acie)};
i \leftarrow 0;
\mathbf{while} | P_{t+1}| + | F_i| \leq N \text{ do}
| \text{priradenie}\_\text{zhlukovej}\_\text{vzdialenosti}(F_i);
P_{t+1} \leftarrow P_{t+1} \cup F_i;
| i \leftarrow i+1;
sort(F_i, \prec_n);
P_{t+1} \leftarrow P_{t+1} \cup F_i[0:N-|P_{t+1}|];
Q_{t+1} \leftarrow \text{vytvorenie}\_\text{nov\'ych}\_\text{potomkov}(P_{t+1}) \text{ (kr\'iženie a mut\'acia)};
t \leftarrow t+1;
```

Rýchle nedominantné triedenie

Rýchle nedominantné triedenie je základom NSGA-II. Triedi jedincov do frontov na základe ich dominancie nad inými jedincami. Jedince dominuje iného jedinca iba v prípade, ak je vo všetkých cieľoch aspoň rovnako dobrý a v aspoň jednom je lepší. Jedince, ktoré sa navzájom nedominujú, patria do rovnakej skupiny, frontu, preto sa toto triedenie nazýva nedominantné. Triedenie sa vykonáva v dvoch krokoch:

- Výpočet S_p a n_p pre každého jedinca a pridanie jedincov bez dominancie do prvého frontu
- Vytvorenie zvyšných frontov za základe získaných hodnôt S_p a n_p z predchádzajúceho kroku

V prvom kroku sa musia porovnať všetci jedinci navzájom. Pre každého jedinca p v prvom cykle algoritmu 8 sa vypočíta množina S_p , ktorá obsahuje všetkých jedincov, ktorých

dominuje p a počet n_p , ktorý udáva počet jedincov, ktorí dominujú p. Pokiaľ je $n_p = 0$, jedinec p je nie je nikým dominovaný a pripojí sa do prvého frontu. Taktiež sa mu priradí hodnota $p_{rank} = 1$. Rank je hodnota, ktorá udáva v akom fronte sa jedinec nachádza, čím nižšia hodnota, tým je jedinec lepší.

Následuje druhý hlavný cyklus algoritmu 8, ktorý vytvorí zvyšné fronty. Princíp je taký, že pre každého jedinca p v posledne vytvorenom fronte sa upravia hodnoty n_q všetkých jedincov q z množiny S_p . To vpodstate znamená odstránenie jedinca p z riešeného problému. Na konci tohto cyklu by sa mal z problému odstrániť celý front F_i . TO znamená, že niektorí jedinci by sa mali stať tými najlepšími v tomto obmedzenom probléme. Práve títo jedinci sa pridajú do ďalšieho frontu F_{i+1} . Tento cyklus sa opakuje až pokým sa do najnovšieho frontu nemá kto pridať.

Toto triedenie teda iteratívne nachádza najlepší front a odstraňuje ho z problému až pokým sa nenájdu všetky fronty.

Algoritmus 8: Rýchle nedominantné triedenie

```
Input: Populácia P
Output: Fronty nedominovaných jedincov F
F \leftarrow \emptyset (množina frontov);
for ka\check{z}d\acute{y} jedinec p \in P do
     S_p \leftarrow \emptyset (množina jedincov, ktorých dominuje p);
     n_p \leftarrow 0 (počet jedincov, ktorí dominujú p);
     for ka\check{z}d\acute{y} jedinec q \in P : q \neq p do
          if p dominuje q then
           S_p \leftarrow S_p \cup \{q\};
         else if q dominuje p then
          n_p \leftarrow n_p + 1;
     if n_p = 0 then
        p_{rank} \leftarrow 1;
          F_1 \leftarrow F_1 \cup \{p\} (pridanie jedinca p do prvého frontu);
i \leftarrow 1:
while F_i \neq \emptyset do
     Q \leftarrow \emptyset (množina jedincov ďalšieho frontu);
     for ka\check{z}d\acute{y} jedinec p \in F_i do
          for každý jedinec q \in S_p do
               n_q \leftarrow n_q - 1;
               if n_q = 0 then
                 \begin{bmatrix} q_{rank} \leftarrow i + 1; \\ Q \leftarrow Q \cup \{q\}; \end{bmatrix}
     i \leftarrow i + 1;
     F_i \leftarrow Q;
return F;
```

Priradenie zhlukovej vzdialenosti

V rámci jednoho frontu sa jedinci porovnávajú na základe zhlukovej vzdialenosti. Zhluková vzdialenosť je definovaná ako vzdialenosť jedinca od jeho susedov vo fronte. Vypočítava sa pre každý cieľ zvlášť a následne sa spočíta. Najdôležitejšou časťou algoritmu 9 je cyklus, ktorý sa vykonáva pre každý cieľ c. Najprv sa jedinci zoradia podľa dosiahnutých hodnôt cieľa c. Následne sa vytýčia krajné body, jedincom s najmenšou a najväčšou hodnotou cieľa c sa priradí nekonečná zhluková vzdialenosť, pretože sú najviac diverzní. Pre všetkých ostatných jedincov vo fronte a pre cieľ c sa vypočíta zhluková vzdialenosť ako podiel rozdielu hodnôt susedov a rozdielu krajných jedincov. Tieto dielčie vzdialenosti sa postupne sčítavajú do celkovej zhlukovej vzdialenosti jedinca.

Algoritmus 9: Priradenie zhlukovej vzdialenosti

```
Input: Front L
l \leftarrow |L| \text{ (počet jedincov frontu);}
for každ\acute{y} jedinec \ p \in L \text{ do}
p_{vzdialenost} \leftarrow 0 \text{ (inicializácia zhlukovej vzdialenosti);}
for každ\acute{y} ciel \ c \text{ do}
L \leftarrow sort(L, c) \text{ (zoradenie jedincov podľa hodnôt cieľa } c);
L[0] \leftarrow \infty \text{ (priradenie nekonečnej vzdialenosti najmenšiemu jedincovi);}
L[l-1] \leftarrow \infty \text{ (priradenie nekonečnej vzdialenosti najväčšiemu jedincovi);}
for i=1 \ do \ l-2 \ do
L[i]_{vzdialenost} \leftarrow L[i]_{vzdialenost} + \frac{L[i+1].c-L[i-1].c}{L[l-1].c-L[0].c};
```

```
Algoritmus 10: Porovnávací operátor \prec_n

Input: Jedinci p a q

Output: True ak p dominuje q, inak False

return p_{rank} < q_{rank} \lor (p_{rank} = q_{rank} \land p_{vzdialenost} > q_{vzdialenost});

(dá sa rozšíriť aj o obmedzenia);
```

Tento typ kríženia je známy ako *uniform crossover* a je veľmi populárny v genetických algoritmoch. Porovnanie rôznych typov kríženia je v článku [1]. Na základe výsledkov v tomto článku bol zvolený typ kríženia s najväčšou diverzitou výsledkov aby sa zamedzilo predčasnej konvergencii, teda aby sa algoritmus nezastavil na lokálnom minime.

5.4 Výstupy optimalizácie

Algoritmus 11: Vytvorenie nových potomkov Input: Populácia POutput: Noví potomkovia Q $Q \leftarrow \emptyset$ (inicializácia nových potomkov); while |Q| < N do $p_1 \leftarrow \text{výber_rodiča}(P);$ $p_2 \leftarrow \text{výber_rodiča}(P);$ $q_1, q_2 \leftarrow \text{kríženie_rodičov}(p_1, p_2);$ mutácia_jedinca (q_1, p_2) ;

return Q;

Algoritmus 12: Výber rodiča

mutácia_jedinca (q_2) ; $Q \leftarrow Q \cup \{q_1, q_2\}$;

Algoritmus 13: Kríženie rodičov

```
Input: Rodičia p_1 a p_2
Output: Potomkovia q_1 a q_2
for ka\check{z}d\acute{y} g\acute{e}n g v p_1 do

if random(0,1) < 0,5 then

q_1[g] \leftarrow p_1[g];
q_2[g] \leftarrow p_2[g];
else
q_1[g] \leftarrow p_2[g];
q_2[g] \leftarrow p_1[g];
return q_1, q_2;
```

Algoritmus 14: Mutácia jedinca

```
Input: Jedinec p
for ka\check{z}d\acute{y} g\acute{e}n g v p do

| if random(0,1) < pravdepodobnosť mut\'acie then
| p[g] \leftarrow náhodný gén;
```

Kapitola 6

Experimenty

V tejto kapitole sú podrobne popísané experimentálne scenáre, ktoré boli navrhnuté na posúdenie výkonnosti optimalizačného algoritmu aplikovaného na plánovanie liniek MHD. Cieľom bolo preskúmať, ako algoritmus reaguje na zmeny v parametroch ako sú dĺžka trasy, dĺžka vozidla a počet zastávok.

Každý experiment bol vykonaný s rovnakými parametrami pre genetický algoritmus, aby sa zabezpečila konzistentnosť výsledkov:

- Počet jedincov v populácii 50 pre krátku trasu, 10 pre dlhú trasu ¹
- Počet generácií 100
- Pravdepodobnosť mutácie 5%
- Maximálny počet spojov za hodinu 15

Ostatné parametre sú špecifické pre jednotlivé experimenty a sú uvedené v tabuľkách v príslušných sekciách.

Parametre zariadenia na ktorom boli experimenty vykonané sú:

- Operačný systém Windows 11 Pro 64-bit
- Procesor Intel Core i7-9750H CPU @ 2.60GHz
- **RAM** 16 GB DDR4

Všetky experimenty boli vykonané na rovnakom zariadení, aby sa zabezpečila konzistentnosť výsledkov, a v rovnakom čase, aby sa minimalizoval vplyv vonkajších faktorov. Každý experiment trval približne od 45 minút do 1.5 hodiny v závislosti od dĺžky trasy a počtu zastávok.

¹Tento počet bol znížený z dôvodu dlhšej doby výpočtu.

6.1 Experiment s krátkou trasou a krátkym vozidlom

Cieľom tohto experimentu je zistiť, ako sa algoritmus vyrovnáva s krátkou trasou a krátkym vozidlom. Ako referencia bola zvolená linka 46 v Brne, ktorej trasa pozostáva z 11 zastávok. Parametry experimentu sú uvedené v tabuľke 6.1.

Vstup	Hodnota
Kapacita vozidla	80
Miest na sedenie	30
Celkové náklady	92,82 Kč/100 miesto-km
Dĺžka trasy	3,8 km

Tabuľka 6.1: Parametre vozidla a trasy

Ako je vidieť v tabuľke 6.2, optimalizácia prebehla úspešne. Algoritmus bol schopný vygenerovať rozpis, pri ktorom je spokojnosť cestujúcich 94% a počet cestujúcich. Vozidlá sú v priemere zaplnené do jednej tretiny, pretože ich je až 115, to je o 3 spoje menej ako je aktu8lny rozpis linky 46.

Výstup	Hodnota
Počet príchodov cestujúcich	11603
Počet prevezených cestujúcich	11603
Počet neobslúžených cestujúcich	0 (0,0%)
Celkový čas strávený čakaním	$54625 \min$
Priemerný čas strávený čakaním	5 min
Celkové náklady	32450 Kč
Priemerná spokojnosť cestujúcich	94,0 %
Celkový počet vozidiel	115
Priemerná naplnenosť vozidiel	25 (31,02 %)

Tabuľka 6.2: Výstupy simulácie

Celý rozpis zastávok, časový rozpis a grafy podrobnejšie popisujúce tento experiment sú uvedené v prílohe B.

6.2 Experiment s krátkou trasou a dlhým vozidlom

Cieľom tohto experimentu je zistiť, ako sa algoritmus vyrovnáva s krátkou trasou a dlhým vozidlom. Ako referencia bola zvolená linka 46 v Brne, ktorej trasa pozostáva z 11 zastávok. Parametry experimentu sú uvedené v tabuľke 6.3.

Vstup	Hodnota
Kapacita vozidla	160
Počet miest na sedenie	60
Celkové náklady	92,82 Kč/100 miesto-km
Dĺžka trasy	3,8 km

Tabuľka 6.3: Parametre vozidla a trasy

V tabuľke 6.4 sú vidieť zmeny oproti predošlému experimentu. Navýšenie kapacity jednoho vozidla má vplyv na:

- Priemerná čakacia doba sa zvýšila o 2 minúty
- Spokojnosť cestiujúcich sa zvýšila o 4,54%
- Počet vozidiel sa znížil o 43 kusov
- Priemerná naplnenosť vozidiel sa znížila o 6,42%

Výstup	Hodnota
Počet príchodov cestujúcich	11528
Počet prevezených cestujúcich	11528
Počet neobslúžených cestujúcich	0 (0,0%)
Celkový čas strávený čakaním	86013 min
Priemerný čas strávený čakaním	7 min
Celkové náklady	40633 Kč
Priemerná spokojnosť cestujúcich	$98,\!54\%$
Celkový počet vozidiel	72
Priemerná naplnenosť vozidiel	39 (24,6%)

Tabuľka 6.4: Výstupy simulácie

Celý rozpis zastávok, časový rozpis a grafy podrobnejšie popisujúce tento experiment sú uvedené v prílohe C.

6.3 Experiment s dlhou trasou a krátkym vozidlom

Cieľom tohto experimentu je zistiť, ako sa algoritmus vyrovnáva s dlhou trasou a krátkym vozidlom. Ako referencia bola zvolená okružná linka 84 v Brne, ktorej trasa pozostáva zo 44 zastávok. Parametry experimentu sú uvedené v tabuľke 6.5.

Vstup	Hodnota
Kapacita vozidla	80
Počet miest na sedenie	30
Celkové náklady	92,82 Kč/100 miesto-km
Dĺžka trasy	$23,0~\mathrm{km}$

Tabuľka 6.5: Parametre vozidla a trasy

Z tabuľky 6.6 je vidieť, že algoritmus bol schopný vygenerovať rozpis, pri ktorom je spokojnosť cestujúcich viac ako 98%. Priemerná čakacia doba, počet vozidiel a priemerná naplnenosť vozidiel sú veľmi podobné ako v prípade krátkej trasy. Oproti nej však vzrástol počet cestujúcich a teda aj celkový čas strávený čakaním. Taktiež sa zvýšili celkové náklady na prevádzku.

Výstup	Hodnota
Počet príchodov cestujúcich	49041
Počet prevezených cestujúcich	49041
Počet neobslúžených cestujúcich	0 (0,0%)
Celkový čas strávený čakaním	253052 min
Priemerný čas strávený čakaním	5 min
Celkové náklady	189576 Kč
Priemerná spokojnosť cestujúcich	98,1 %
Celkový počet vozidiel	111
Priemerná naplnenosť vozidiel	$22\ (27,67\ \%)$

Tabuľka 6.6: Výstupy simulácie

Celý rozpis zastávok, časový rozpis a grafy podrobnejšie popisujúce tento experiment sú uvedené v prílohe D.

6.4 Experiment s dlhou trasou a dlhým vozidlom

Cieľom tohto experimentu je zistiť, ako sa algoritmus vyrovnáva s dlhou trasou a dlhým vozidlom. Ako referencia bola zvolená okružná linka 84 v Brne, ktorej trasa pozostáva zo 44 zastávok. Parametry experimentu sú uvedené v tabuľke 6.7.

Vstup	Hodnota
Kapacita vozidla	160
Počet miest na sedenie	60
Celkové náklady	92,82 Kč/100 miesto-km
Dĺžka trasy	23,0 km

Tabuľka 6.7: Parametre vozidla a trasy

Výstupy experimentu je možné vidieť v tabuľke 6.8. Oproti experimentu s dlhou cestou ale krátkym vozidlom sa zmenili následovné parametre:

- Priemerná čakacia doba sa zvýšila o 2 minúty
- Spokojnosť cestiujúcich sa zvýšila o 1,88%
- Počet vozidiel sa znížil o 29 kusov
- Priemerná naplnenosť vozidiel sa znížila o $9{,}04\%$

Výstup	Hodnota
Počet príchodov cestujúcich	48358
Počet prevezených cestujúcich	48358
Počet neobslúžených cestujúcich	0 (0,0%)
Celkový čas strávený čakaním	314379 min
Priemerný čas strávený čakaním	7 min
Celkové náklady	280094 Kč
Priemerná spokojnosť cestujúcich	99,98 %
Celkový počet vozidiel	82
Priemerná naplnenosť vozidiel	30 (18,63%)

Tabuľka 6.8: Výstupy simulácie

Celý rozpis zastávok, časový rozpis a grafy podrobnejšie popisujúce tento experiment sú uvedené v prílohe E.

Kapitola 7

Záver

Literatúra

- [1] Bala, A. a Sharma, A. K. A comparative study of modified crossover operators. In: 2015 Third International Conference on Image Information Processing (ICIIP). 2015, s. 281–284.
- [2] Deb, K.; Pratap, A.; Agarwal, S. a Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation*, 2002, zv. 6, č. 2, s. 182–197.
- [3] IMMANUEL, S. D. a CHAKRABORTY, U. K. Genetic Algorithm: An Approach on Optimization. In: 2019 International Conference on Communication and Electronics Systems (ICCES). 2019, s. 701–708.
- [4] NGATCHOU, P.; ZAREI, A. a EL SHARKAWI, A. Pareto Multi Objective Optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems. 2005, s. 84–91.

Príloha A

Programová dokumentácia

Príloha B

Experiment s krátkou trasou a krátkym vozidlom

Obr. B.1: Počet cestujúcich prichádzajúcich na zastávku za hodinu

Obr. B.2: Priemerný čas strávený čakaním za hodinu

Zastávka	#
Lesná, Haškova	0
Brechtova	1
Blažkova	2
Arbesova	3
Heleny Malířové	4
Lesná, nádraží	5
Štefánikova čtvrť	6
Provozníkova	7
Lesnická	9
Zemědělská	10
Černá Pole, Erbenova	11

Tabuľka B.1: Rozpis zastávok

h	Odchody
05	00, 10, 20, 30, 40, 50
06	00, 06, 12, 18, 24, 30, 36, 42, 48, 54
07	00, 06, 13, 20, 26, 33, 40, 46, 53
08	00, 08, 17, 25, 34, 42, 51
09	00, 15, 30, 45
10	00, 12, 24, 36, 48
11	00, 12, 24, 36, 48
12	00, 15, 30, 45
13	00, 08, 17, 25, 34, 42, 51
14	00, 10, 20, 30, 40, 50
15	00, 06, 12, 18, 24, 30, 36, 42, 48, 54
16	00, 10, 20, 30, 40, 50
17	00, 06, 12, 18, 24, 30, 36, 42, 48, 54
18	00, 07, 15, 22, 30, 37, 45, 52
19	00, 08, 17, 25, 34, 42, 51
20	00, 10, 20, 30, 40, 50
21	00, 15, 30, 45
22	00

Tabuľka B.2: Časový rozpis

Príloha C

Experiment s krátkou trasou a dlhým vozidlom

Obr. C.1: Počet cestujúcich prichádzajúcich na zastávku za hodinu

Obr. C.2: Priemerný čas strávený čakaním za hodinu

Zastávka	#
Lesná, Haškova	0
Brechtova	1
Blažkova	2
Arbesova	3
Heleny Malířové	4
Lesná, nádraží	5
Štefánikova čtvrť	6
Provozníkova	7
Lesnická	9
Zemědělská	10
Černá Pole, Erbenova	11

Tabuľka C.1: Rozpis zastávok

h	Odchody
05	00, 10, 20, 30, 40, 50
06	00, 10, 20, 30, 40, 50
07	00, 10, 20, 30, 40, 50
08	00, 20, 40
09	00, 20, 40
10	00, 20, 40
11	00, 15, 30, 45
12	00, 12, 24, 36, 48
13	00, 20, 40
14	00, 15, 30, 45
15	00, 12, 24, 36, 48
16	00, 10, 20, 30, 40, 50
17	00, 12, 24, 36, 48
18	00, 15, 30, 45
19	00, 20, 40
20	00, 20, 40
21	00, 30
22	00

Tabuľka C.2: Časový rozpis

Príloha D

Experiment s dlhou trasou a krátkym vozidlom

Obr. D.1: Počet cestujúcich prichádzajúcich na zastávku za hodinu

Obr. D.2: Priemerný čas strávený čakaním za hodinu

Zastávka	#
Židenice, Stará osada	0
Gajdošova	2
Otakara Ševčíka	3
Škroupova	4
Tržní	6
Hladíkova	8
Autobusové nádraží	10
Opuštěná	12
Křídlovická	15
Poříčí	16
Mendlovo náměstí	20
Křížkovského	21
Výstaviště	22
Riviéra	24
Pisárky	26
Anthropos	28
Pod Jurankou	29
Veslařská	30
Jundrov, hřiště	31
Jundrovský most	32
Vozovna Komín	34
Hlavní	35
Štursova	36
Rosického náměstí	37
Přívrat	39
Záhřebská	40
Skácelova	42
Slovanské náměstí	43
Husitská	44
Semilasso	46
Královo Pole, nádraží	47
Mojmírovo náměstí	48
Kociánka	49
Královopolská strojírna	50
Divišova čtvrť	51
U Tunýlku	52
Halasovo náměstí	54
Poliklinika Lesná	55
Lesná, nádraží	56
Štefánikova čtvrť	57
Merhautova	59
Tomkovo náměstí	61
Židenice, kasárna	63
Židenice, Stará osada	65

Tabuľka D.1: Rozpis zastávok

h	Odchody
05	00, 10, 20, 30, 40, 50
06	00, 07, 15, 22, 30, 37, 45, 52
07	00, 10, 20, 30, 40, 50
08	00, 12, 24, 36, 48
09	00, 12, 24, 36, 48
10	00, 07, 15, 22, 30, 37, 45, 52
11	00, 07, 15, 22, 30, 37, 45, 52
12	00, 10, 20, 30, 40, 50
13	00, 07, 15, 22, 30, 37, 45, 52
14	00, 12, 24, 36, 48
15	00, 15, 30, 45
16	00, 12, 24, 36, 48
17	00, 10, 20, 30, 40, 50
18	00, 07, 15, 22, 30, 37, 45, 52
19	00, 15, 30, 45
20	00, 10, 20, 30, 40, 50
21	00, 08, 17, 25, 34, 42, 51
22	00, 10, 20, 30, 40, 50

Tabuľka D.2: Časový rozpis

Príloha E

Experiment s dlhou trasou a dlhým vozidlom

Obr. E.1: Počet cestujúcich prichádzajúcich na zastávku za hodinu

Obr. E.2: Priemerný čas strávený čakaním za hodinu

Zastávka	#
Židenice, Stará osada	0
Gajdošova	2
Otakara Ševčíka	3
Škroupova	4
Tržní	6
Hladíkova	8
Autobusové nádraží	10
Opuštěná	12
Křídlovická	15
Poříčí	16
Mendlovo náměstí	20
Křížkovského	21
Výstaviště	22
Riviéra	24
Pisárky	26
Anthropos	28
Pod Jurankou	29
Veslařská	30
Jundrov, hřiště	31
Jundrovský most	32
Vozovna Komín	34
Hlavní	35
Štursova	36
Rosického náměstí	37
Přívrat	39
Záhřebská	40
Skácelova	42
Slovanské náměstí	43
Husitská	44
Semilasso	46
Královo Pole, nádraží	47
Mojmírovo náměstí	48
Kociánka	49
Královopolská strojírna	50
Divišova čtvrť	51
U Tunýlku	52
Halasovo náměstí	54
Poliklinika Lesná	55
Lesná, nádraží	56
Štefánikova čtvrť	57
Merhautova	59
Tomkovo náměstí	61
Židenice, kasárna	63
Židenice, Stará osada	65

Tabuľka E.1: Rozpis zastávok

h	Odchody
05	00, 12, 24, 36, 48
06	00, 12, 24, 36, 48
07	00, 15, 30, 45
08	00, 15, 30, 45
09	00, 15, 30, 45
10	00, 15, 30, 45
11	00, 12, 24, 36, 48
12	00, 10, 20, 30, 40, 50
13	00, 12, 24, 36, 48
14	00, 15, 30, 45
15	00, 10, 20, 30, 40, 50
16	00, 12, 24, 36, 48
17	00, 10, 20, 30, 40, 50
18	00, 12, 24, 36, 48
19	00, 20, 40
20	00, 12, 24, 36, 48
21	00, 12, 24, 36, 48
22	00

Tabuľka E.2: Časový rozpis

Príloha F

Mail od pána Michala Hlaváčka

From: Hlaváček Michal <mhlavacek@dpmb.cz>

Date: 3/25/25 22:10 (GMT+01:00)

To: 'xkaton00' <xkaton00@stud.fit.vutbr.cz>

Cc: Kříž Michael <mkriz@dpmb.cz>

Subject: RE: Bakalárska práca - optimalizácia MHD

Dobrý den,

jednoduchá otázka, složitá odpověď, přesto se pokusím to popsat srozumitelně a jednoduše, sám nejsem ekonom.

Jako nejvhodnější postup pro vyčíslení vícenákladů nebo naopak úspor u změny dopravního řešení či parametrů jednotlivých linek bych doporučil **výpočet přes přepravní výkony**, které jsou základní jednotkou, ve které DPMB "obchoduje" s městem Brnem.

V příloze zasílám platný Finanční model, který je součástí smluvního vztahu mezi Brnem a DPMB, tudíž se jedná o veřejně přístupný dokument.

Je vidět, že část nákladů je variabilních, ale většina je fixních – resp. část variabilních nákladů je zde považována za fixní, což má své důvody. Např. pokud nějakými úsporami ušetřím jeden autobus do výpravy, ušetříme naftu a hodiny řidiče, ale nebude propuštěn mechanik nebo paní na předprodeji jízdních dokladů, ani se tím nezlevní dovoz mýdla na WC na konečné. V případě nějakých opravdu zásadních změn by zřejmě došlo ke změně výše "fixních" nákladů, ale ne tak výrazně, aby bylo nutné se tím zabývat.

Dále je z tabulky možné zjistit celkovou výši kompenzace a ztráty.

Doporučený zjednodušený postup pro ekonomickou kalkulaci navržených změn:

- pro každou kategorii vozu spočítat roční změnu výkonů vozokilometrů tj. denní vozové kilometry vynásobit počty provozních dnů
- přepočíst vozokilometry na místokilometry tj. roční výkony vynásobit obsaditelností
- takto získané přepravní výkony vydělit 100 (údaje ve finančním modelu se vztahují ke 100 mkm)
- celkový objem přepravních výkonů (mkm/100) v jednotlivých typech dopravy vynásobit finančním oceněním jednotky 100 mkm opět pro jednotlivé druhy dopravy – viz příloha, řádek kompenzace (tramvaj 55,59 – trolejbus 72,97 – autobus 66,35 – lodě nás snad nezajímají)
- výsledkem je finanční hodnota výkonů (náklad) za celý kalendářní rok

Nápověda 1:

Počty provozních dnů pro rok 2025: pracovní dny - 188, soboty - 82, neděle - 33, pracovní dny prázdniny - 62

Nápověda 2:

Statistická obsaditelnost pro výpočet mkm

Kategorie vozidla	Vozidla ve flotile DPMB	Obsaditelnost
Tramvaj – sólo (cca 15 m)	T3, T6, VarioLF	110
Tramvaj – kloubová (cca 20 m)	K2, Anitra, VarioLF2, EVO 2	157
Tramvaj – dlouhá (cca 30 m)	K3, KT8, 13T, 45T	220
Trolejbus – klasický a velký trolejbus (cca 12/15 m)	21 Tr, 26 Tr, 32 Tr, SOR TNS 12	70
Trolejbus – kloubový trolejbus (cca 18 m)	27 Tr, 31 Tr	120
Autobus - minibus (cca 8 m)	Dekstra LF 38, Isuzu NOVO	35
Autobus – malý autobus (cca 10 m)	SOR ICN 9,5	50
Autobus – klasický a velký autobus (cca 12/15 m)	Crossway LE 12M, Crossway 14,5M, Citelis 12M, Urbanway 12M, SOR NBG 12, SOR NS 12	70
Autobus – kloubový autobus (cca 18 m)	Urbanway 18M, Solaris Urbino 18	110

Příklad

Rozhodnul jsem se nahradit o víkendu 10 km jízdy soupravy 2 × T3, místo které pojede 10 km kloubový autobus. Výpočet tramvaj: 10 km × 115 dní = 1 150 vozkm = 253 000 mkm (každý vůz sopuravy, tj. 1 150 × 220) = při vydělení 100 = 2 530 × 55,59 = roční úspora 140 642,70 Kč

Výpočet autobus: $10 \text{ km} \times 115 \text{ dní} = 1 150 \text{ vozkm} = 126 500 \text{ mkm} (1 150 \times 110) = při vydělení <math>100 = 1 256 \times 66,35 = \text{roční navýšení } 83 932,75 \text{ Kč}.$

Dosáhli jsme tak roční úspory 56 709,95 Kč.

Jak je patrné, jedná se o značně zjednodušený výpočet, ale domnívám se, že pro potřeby teoretických kalkulací by měl být dostačující.

Samozřejmě, i když jsou peníze vždy až na prvním místě, je třeba při návrzích změn vzít v potaz celou řadu dalších aspektů.

S pozdravem

Michal Hlaváček

Odbor přípravy provozu Dopravní podnik města Brna, a.s. p.p. 46, Hlinky 151, 656 46 Brno pracoviště: Hlinky 151, Brno - Pisárky

Tel.: 543 171 409

E-mail: mhlavacek@dpmb.cz

2000-2025

From: Kříž Michael <mkriz@dpmb.cz>
Sent: Thursday, March 13, 2025 2:10 PM
To: 'xkaton00' <xkaton00@stud.fit.vutbr.cz>
Cc: Hlaváček Michal <mhlavacek@dpmb.cz>
Subject: RE: Bakalárska práca - optimalizácia MHD

Dobré odpoledne,

veřejná hromadná doprava je už ze svého principu vždy ztrátová a je nutné její provoz dotovat z veřejných zdrojů.

Co se ale týče podrobnějšího ekonomického vyhodnocení, nemám sám takový přehled, abych si troufl prezentovat nějaká konkrétní čísla.

Více k tomu ví kolega Michal Hlaváček, kterého přidávám do kopie a který se Vám ozve. Děkuji za spolupráci a přeji pěkný den.

Ing. Michael Kříž

Analytik – administrátor dopravních aplikací Oddělení dopravních informací Odbor přípravy provozu

Dopravní podnik města Brna, a.s. Hlinky 151, 603 00 Brno pracoviště: Novobranská 18, 602 00 Brno

e-mail: mkriz@dpmb.cz telefon: 5 4317 4261

From: xkaton00 < xkaton00@stud.fit.vutbr.cz >

Sent: Friday, March 7, 2025 1:23 PM **To:** Kříž Michael <<u>mkriz@dpmb.cz</u>>

Subject: Bakalárska práca - optimalizácia MHD

Dobrý deň,

Píšem ohľadom mojej bakalar práce na tému optimalizácia MHD. Pred nedávnom sme sa osobne stretli a veľmi mi to pomohlo. Chcel by som Vás požiadať o ďalšie stretnutie. Ak by ste mali čas niekedy v blízkej budúcnosti, rád by som Vám ukázal doterajšie výsledky a opýtal sa na pár nových informácií. V rámci optimalizácie mi vedúci práce odporučil ohodnocovať jednotlivé rozpisy liniek z ekonomického pohľadu. Momentálne to mám spravené len ako taký abstraktný bodový systém pretože si vôbec neviem predstaviť aké všetky náklady sú spojené s prevádzkou jednej linky a aký je priemerný zárobok za jedného cestujúceho. Tieto informácie potrebujem aby som vedel ohodnotiť či je daný vygenerovaný rozpis stratový alebo ziskový. Chápem že tieto presné informácie môžu byť dôverné, ale minimálne by som potreboval sa o tejto téme porozprávať aby som mal aspoň v akých jednotkách sa tieto čísla približne pohybujú. Samozrejeme, čím bližšie budú získané informácie k realite, tým kvalitnejší by mal byť výsledok mojej práce.

Za skorú odpoveď vopred ďakujem. S pozdravom, Lukáš Katona.

Sent from my Galaxy

Príloha G

Finančný model DPMB

				ED		TD		AD	_	Lodě	dě
Тур	Položka		číslo řádku	v tis.Kč	Kč/100 místkm	v tis.Kč	Kč/100 místkm	v tis.Kč	Kč/100 místkm	v tis.Kč	v Kč/100 místkm
variabilní		Trakční energie a palivo	1	204 508	8,50	45 627	7,79	269 594	19,15	1 368	21,39
variabilní	i	Kola, pneu	2	3	0,00	3 697	0,63	16 796	1,19	0	
		Materiál	S	96 423	4,01	16 723	2,85	59 161	4,20	915	
five	nc	Netrakční energie a palivo	4	9 280	0,39	3 956	0,68	5 089	0,36	272	4,26
1		Externí opravy	5	11 520	0,48	1 200	0,20	4 292	0,30	831	12,99
		Externí služby	6	16 890	0,70	4 869	0,83	12 266	0,87	962	15,05
×		Celkem (ř.1+ř.2+ř.3+ř.4+ř.5+ř.6)	7	338 624	14,07	76 072	12,98	367 198	26,08	4 348	68,00
		Mzdové náklady	8	434 466	18,06	195 094	33,30	481 804	34,21	11 342	177,36
fixní	obi klad	Sociální,zdravotní,úrazové pojištění	9	148 631	6,18	66 742	11,39	164 825	11,70	3 880	60,67
		Celkem (ř.8+ř.9)	10	583 096	24,24	261 836	44,69	646 629	45,92	15 222	238,04
	Cestovné		11	10	0,00	9	0,00	11	0,00	1	
	Odpisy dlouhod.majetku	.majetku	12	319 471	13,28	80 176	13,68	91 543	6,50	9 825	153,64
	Silniční daň		13	0	0,00	0	0,00	0	0,00	0	
	Elektronické mýto a ceniny	to a ceniny	14	0	0,00	3	0,00	18	0,00	2	
fixní	Pojištění		15	9 993	0,42	3 594	0,61	12 734	0,90	247	3,87
	Ostatní přímé náklady	áklady	16	25 568	1,06	9 343	1,59	21 593	1,53	485	
	Vnitropodnikové náklady	náklady	17	486 668	20,23	78 037	13,32	25 144	1,79	-2 095	-32,76
	Provozní režie		18	104 485	4,34	35 462	6,05	72 023	5,11	3 977	62,20
	Správní režie		19	112 091	4,66	24 413	4,17	70 111	4,98	344	5,38
	Náklady celken	láklady celkem (ř.7+ř.10+ř.11+ř.12+ř.13+ ř.14+ř.15+ř.16+ř.17+ř.18+ř.19)	20	1 980 007	82,30	568 945	97,11	1 307 004	92,82	32 358	505,98
	sy	Tržby z jízdného	21	546 810	22,73	121 996	20,82	331 194	23,52	12 128	189,64
	no	Ostatní tržby z přepravy	22	36 090	1,50	8 052	1,37	21 859	1,55	0	
	Vý	Ostatní výnosy vč.dotací jiných zdrojů	23	69 407	2,88	14 208	2,43	26 147	1,86	1 159	18,12
	Výnosy celkem (ř.21+ř.22+ř.23)	I (F.21+F.22+F.23)	24	652 307	27,11	144 256	24,62	379 200	26,93	13 286	207,76
	Kompenzace		25	1 337 600	55,59	427 534	72,97	934 338	66,35	19 233	300,7
	Hodnota provozních aktiv	ních aktiv	26	×	×	×	×	×	×	×	×
	Cistý přijem (ř.25+ř.24-ř.20)	55+ř.24-ř.20)	27	9 900	0,41	2 845	0,49	6 535	0,46	162	
	Ztráta ze ZVS	(ř.20-ř.24)	28	1 327 700	55,18	424 690	72,49	927 803	65,89	19 071	298,22
	Přepravní výko	Přepravní výkony (v tis.míst.km)	29	2 405 981		585 882		1 408 165		6 395	
	* Poznámka: Vyčísl pracují s podstatně	Poznámka: Vyčisem zráty vychází z údajú sledovaných v Kča náklady na jednoky výkonu jsou zobrazeny pro každou pokáčku výkazu samostalné se zaokouhlením na 2 desetimá mísia, přičemž viastní výpočby v 18 SAP pracují s podstatně výším počlem míst.	ky výkonu jsou zob	razeny pro každou	položku výkazu	ı samostatně se z	aokrouhlením r	ıa 2 desetinná n	nísta, přičemž v	/lastní výpočty v	v IS SA
		Celkem ztráta Celkem kompenzace		2 699 264 2 718 705							
		Čietý přílom		10000							