TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	iv
	LIST OF FIGURE	ix
	LIST OF ABBREVIATIONS	X
1	INTRODUCTION	1
	1.1 OVERVIEW OF WASTE	1
	SEGREGATION	
	1.1.1 Methods	2
	1.2 TYPES OF WASTES	3
	1.2.1 Solid Waste	3
	1.2.2 Liquid Waste	4
	1.3 NEED OF WASTE MANAGEMENT	4
	1.4 E-WASTE MANAGEMENT	5
	1.5 TYPES OF WASTE SEGREGATION	5
	1.5.1 incineration	5
	1.5.2 Landfill	6
	1.5.3 Recycling	6
	1.5.4 Re-usage of waste	7
	1.5.4.1 Pyrolysis	7
	1.5.4.2 Biological Processing	7

2	LITERATURE SURVEY	9
	2.1 INTERNET OF THINGS [IOT] BASED	9
	SMART GARBAGE MONITORING	
	AND CLEARANCE SYSTEM	
	2.2 AUTOMATED WASTE BIN MONITOR	10
	2.3 SENSOR BASED SMART DUSTBIN	10
	FOR WASTE SEGREGATION AND	
	STATUS ALERT	
	2.4 INVOLUNTARY METHOD FOR	11
	SEPERATING WASTES BY REGIONAL	
	SENSORS	
	2.5 AUTOMATIC METAL, GLASS AND	12
	PLASTIC WASTE SORTER	
	2.6 IOT BASED SMART GARBAGE AND	13
	WASTE COLLECTION BIN	
	2.7 AUTOMATIC WASTE SEGREGATOR	13
	AND MONITORING SYSTEM	
	2.8 AUTOMATIC WASTE (METAL AND	14
	NON-METAL) SEPARATION USING	
	IR SENSOR LEARNING	
	2.9 AN ECONOMIC AUTOMATIC WASTE	15
	SEGREGATOR USING ARDUINO	
	2.10 SMART BIN IMPLEMENTATION FOR	15
	SMART CITIES	
2	EXISTING METHODOLOGY	15

	3.1 MANUAL SORTING	19
	3.2 MOBILE SORTING	20
	3.3 ENHANCED RESOLUTION	21
	3.4 COMPACT SORTING	22
	3.5 ONE COG IN A LARGER WHEEL	24
	3.6 FROM EUROPE TO CHINA	24
	3.7 GLOBAL MARKET	25
4	PROPOSED METHODOLOGY	27
	4.1 PRINCIPLE OF OPERATION	27
	4.1.1 Detection	29
	4.1.2 Segregation	29
	4.1.2.1 Metal Detection	29
	4.1.2.2 Degradable Waste Detection	30
	4.1.2.3 Control Unit	32
	4.1.3 Waste Storage and Management	32
5	HARDWARES AND SOFTWARES USED	34
	5.1 LCD DISPLAY	35
	5.2 ULTRASONIC SENSOR	36
	5.3 MSP430G2 MICROCONTROLLER	39
	5.3.1 Analog	44
	5.3.2 Timers	46
	5.3.3 System	47
	5.3.4 Communication and Interface	49
	5.3.5 Metering	51

	5.3.6 Display	52
	5.3.7 MSP430G2 Architecture	52
	5.3.8 Working of MSP430G2	53
	5.3.9 Programming in MSP430G2	54
	5.4 DC GEAR MOTOR	55
	5.5 L298N MOTOR DRIVER	56
	5.5.1 Operation	59
	5.6 INDUCTIVER PROXIMITY SENSOR	60
	5.7 MOISTURE SENSOR	62
	5.8 NODE MCU	64
	5.9 ENERGIA IDE	66
	5.9 BLYNK API	67
	5.10.1 The Blynk App	68
	5.10.2 Blynk Server	70
	5.10.2 Blynk With Arduino IDE	71
6	RESULT	72
7	CONCLUSION	74
	APPENDIX	75
	REFERENCES	84