Rにおけるtidyなデータ処理

石田基広

2019年09月03日

自己紹介

第一部

コード

- · Console
- Script
- Markdown

コードで操作するとは

すべて名前を指定して実行する

- ・オブジェクト
 - df:データの名前
- ・データとの紐付け:<-
 - df <- read.csv("file.csv")

コードで操作するとは

データを関数で操作

- ・関数
- head():処理の名前head(df):データの冒頭表示

データ

```
library(RMeCab)
df <-docDF("doc", type = 1)</pre>
```

head(df)

```
TERM
      POS1
             POS2 1 2 3
                         3
1
               2
                    5
                    2
2
3
              0
                  0
                        2
4
                 1
                      0
5
            1
                  1
                0
```

データの構造

- ・ベクトル
 - c(1, 3, 5, 7, 9)
- ・データフレーム

TERM	POS	FREQ
企業	名詞	2
伝える	動詞	3
高い	形容詞	4

_

分析でよくある操作

特定の列(変数)の指定:\$

#

df\$TERM

条件抽出

添字([行の指定,列の指定])を駆使

```
df [ df$TERM==" " , ]

TERM POS1 POS2 1 2 3
81 1 0 2
```

条件抽出

各テキストでの出現回数を合算すると5を超える単語

```
df [ rowSums( df [,
    c(" 1"," 2"," 3")]) > 5, ]
```

	TERM	POS1	POS2	1	2	3	
1			2	ļ	5		3
2			2	:	2		2
31			3	5		1	
32			2	4		2	
39			2	3		5	
91			1	ļ	5		2

列の追加

各テキストでの出現回数を合算した列

```
df$ <- rowSums(
  df[, c(" 1", " 2", " 3") ] )</pre>
```

```
TERM 1 2 3
   2 5 3 10
1
   2
         2 6
      2
2
3
   0 0 2 2
   0
      1
         0 1
4
        0 2
5
      1
6
   0 1 0 1
```

変数の加工

合計頻度列を標準化

```
df$ <- scale(df$ )</pre>
  TERM 1 2 3
         2
               5
                     3 4.14854297
1
2
         2
               2
                     2 2.08459124
3
        0
                    2 0.02063952
              0
4
        0
              1
                    0 -0.49534841
```

tidyなデータ処理

tidy data

Hadley Wickham

- · Each variable forms a column.
- · Each observation forms a row.
- $\boldsymbol{\cdot}$ Each type of observational unit forms a table.

0 0.02063952

0 -0.49534841

tidyverse

```
install.packages("tidyverse")
library(tidyverse)
```

tidy data

messy data

	TERM	POS1	1	2	3	
1		2	2	5	,	3
2		2	2	2	2	2
3		0		0		2
4		0		1		0
5		1		1		0
6		0		1		0

tidy data

```
# A tibble: 300 x 4
   TERM POS1
                 Doc
                        FREQ
   <chr> <chr>
                <chr> <int>
             1
                    2
 1
 2
             1
                    2
 3
                  0
            1
 4
            1
                  0
 5
            1
                  1
 6
            1
                  0
 7
                    0
             1
 8
                    0
9
                  0
            1
10
            1
# ... with 290 more rows
```

tibble

data.frameの拡張

パイプ演算子

%>%

dplyr::%>%

Passes object on left hand side as first argument (or . argument) of function on righthand side.

```
x %>% f(y) is the same as f(x, y)
y %>% f(x, ., z) is the same as f(x, y, z)
```

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

ドット

dplyr::%>%

Passes object on left hand side as first argument (or . argument) of function on righthand side.

```
x \% f(y) is the same as f(x, y)
y %>% f(x, , z) is the same as f(x, y, z)
```

Why Pipe

```
Name列がBのレコードのYの最大値
```

```
#
temp <- tb [ tb$Name=="B" , ]
max(temp $ Y)</pre>
```

[1] 4

Why Pipe

一時ファイルを作成しない方法

```
#
max( tb [ tb$Name=="B", ] $ Y )
```

[1] 4

Use Pipe

tidyverse流: filterとselectで抽出

[1] 4

列選択

select(列)

列選択

- ・R本来の書き方
 - tb \$ Y : (ベクトル)
- · dplyr流
 - tb %>% select(Y): (データフレーム)

返り値はデータフレーム

```
mean(tb$X)
```

[1] 3

```
tb %>% select(X) %>% mean()
[1] NA
tb %>% select(X) %>% pull() %>% mean()
[1] 3
条件抽出
# tidyverse
tb %>% filter(Y >= 5)
# A tibble: 3 x 3
 Name X Y
  <chr> <int> <dbl>
1 C 3 9
2 D 4 16
3 E 5 25
条件抽出
   · R本来
       - tb [ tb Y >= 5, ]

    dplyr

      tb %>% filter(Y >= 5)
変数変換
temp <- tb
temp $ Y <- log(temp$Y)</pre>
変数変換
# tb2 <- tb
# tidyverse
tb %>% mutate(Y = log(Y))
# A tibble: 5 x 3
 Name X Y
 <chr> <int> <dbl>
1 A 1 0
2 B 2 1.39
3 C 3 2.20
4 D 4 2.77
5 E 5 3.22
条件付き変換
dat
```

Y X1 X2 1 A 2 3

```
2 A 3 4
3 B 4 5
4 B 5 6
5 C 6 7
6 C 7 8
```

条件付き変換

数値列だけ対数化

要約

```
X1_mean X1_sd
1 4.5 1.870829
```

6 C 1.9459101 2.079442

要約

数値列だけ平均を求める

```
dat %>% summarise_if(is.numeric, mean)
```

```
X1 X2
1 4.5 5.5
```

要約

平均と分散

```
X1_fn1 X2_fn1 X1_fn2 X2_fn2
1 4.5 5.5 3.5 3.5
```

要約

出力の列名を調整

```
X1_mean X2_mean X1_sd X2_sd
1 4.5 5.5 1.870829 1.870829
```

横型データ

```
yoko
# A tibble: 8 x 4
Name Time1 Time2 Time3
 <chr> <dbl> <dbl> <dbl>
       0.1 0.18 0.11
1 A
2 B
       0.3 0.33 0.35
3 C
      0.2 0.22 0.26
      0.44 0.47 0.43
4 D
5 E
      0.51 0.56 0.55
6 F
      0.6 0.66 0.68
7 G
      0.77 0.78 0.72
      0.81 0.88 0.86
8 H
縦型データへ
yoko %>% gather(
key = time,
 value = score,
 -Name)
# A tibble: 24 x 3
  Name time score
  <chr> <chr> <dbl>
1 A Time1 0.1
      Time1 0.3
2 B
3 C
      Time1 0.2
     Time1 0.44
4 D
5 E Time1 0.51
6 F Time1 0.6
7 G
      Time1 0.77
       Time1 0.81
8 H
9 A
    Time2 0.18
10 B
    Time2 0.33
# ... with 14 more rows
```

gather

```
df %>% gather(key = year, value = n)
```


tidyr::gather(cases, "year", "n", 2:4)

Gather columns into rows.

文書データを縦型へ

```
TERM POS1 POS2 1 2 3
1 2 5 3
2 2 2 2
3 0 0 2
4 0 1 0
5 1 1 0
6 * 0 1 0
```

文書データを縦型へ

変換結果

```
tidy_df %>% filter(TERM == " ")
```

```
TERM POS1 POS2 Doc FREQ
1 1 2
2 2 2
3 3 2
```

実践

退屈なことはRにやらよう

たくさんのExcelファイルを採点

Excelファイル採点

4	А	В
1		Heiaht
2		176.3
3		166.9
4		182.3
5		181.4
6		179.6
7		169.8
8		175.3
9		178.2
10		1728
11	平均値	
12	標準偏差	
13		

・ 学生は指定したシートの指定したセルに式を入力している

ファイル一覧

ファイル一覧

> files %>% str_ex	xtract("\\d{8,10}	·\\p{Han}*.xlsx\$")
[1] "101705		"10180511
[3] "101805:	并子.xlsx"	"101805153() xlsx"
[5] "101805.	与里.xlsx"	"1018051164"xlsx"
[7] "101805:	也.xlsx"	"1018051521#### 🗸 lsx"
[9] "101805(xlsx"	"101805125" sx"
[11] "101805	実.xlsx"	"101805006"
[13] "101805	.xlsx"	"101805111" xlsx"
[15] "101805(香.xlsx"	"101805052fffffffc\range\class"
[17] "101805(太.xlsx"	NA STREET,
[19] "101805	都.xlsx"	NA

採点用原簿

4	А	В	Messy	/ Tablo	E
1		Name		B23	C34
3	123456789	石田基広	SUM(A2:A10)	AVERAGE(B2:B20)	STDEV(C2:C30)
4		Name	CELL	Formula	Tidy
	123456789			SUM(A2:A10)	2
6	123456789 123456789 123456789	石田基広	B23	SUM(A2:A10) AVERAGE(B2:B20) STDEV(C2:C30)	Table

原簿と結合

作業ファイルを、学生番号で原簿ファイルと結合

	Α	В	С	D	E	F	G	ŀ
1	No	年度	所属名	学生番号	氏名	性別	確定した評	平価
2	1	2018	地球科学	701900	ロイン マンファイン ロイン ロイン ロイン ロイン ロイン ロイン ロイン ロイン ロイン ロ	女		
3	2	2018	地球科学	701900	松本安未	女		
4	3	2018	地球科学	701900	翻訳がさと	女		
5	4	2018	地球科学	701900		女		
6	5	2018	地球科学	701900560	四藤	女		
7	6	2018	地球科学	701900		男		
8	7	2018	地球科学	701900	基本	男		
9	8	2018	地球科学	701900	基档	女		
10	9	2018	地球科学	7019003012	建	女		
11	10	2018	地球科学	701900	操声毫法	男		
12	11	2018	地球科学	701900	優	女		
13	12	2018	地球科学	701900	外 先成時	女		
14	13	2018	地球科学	701900367	建 工作里	女		
15	14	2018	地球科学	701900		男		
16	15	2018	地球科学	701900	東東	女		
17	16	2018	地球科学	7019003049	松川森咲	女		
18	17	2018	地球科学	7019002020	多衣	女		
19	18	2018	地球科学	701905		男		
20	19	2018	地球科学	701905753	基本的 弥	男		

リスト読み込み

提出ファイルXLConnectで読み込み

```
library(XLConnect)
wb <- loadWorkbook(files[1])</pre>
```

ファイル名処理

- ・ 番号と名前を抽出
- ・全角の場合が多い
- · 1018051458石田.xlsx

文字処理

stringrパッケージ, stringiパッケージ

[1] "1018051458 .xlsx"

シートとセル

式を取得

```
A11 <- getCellFormula(wb, "Sheet1",
```

```
#
11, 1)
```

出力用データ

```
seiseki <- tibble(
  Id = { } ,
  Name = { } ,
  A11 = { } ,
  B11 = { } ,
  C11 = { } )</pre>
```

式の採点

```
if_else(): 正答ならば1さもなければ0
seiseki <- seiseki %>%
    mutate(
    A11a = if_else(
    A11 == "AVERAGE(A2:A10)",
    1, #
    0) #
```

評価の重み

A11は38点、B11は36、C11は26点

評価の決定

採点ファイル

	学生番号	名前	確定成績
	<chr></chr>	<chr></chr>	<db1></db1>
1	7019010	86 出題 太良	77
2	7019010	7. 上海、赤佳	96
3	7019010	3/旗数料 蒼	84
4	7019010	1. 一种果	79
5	7019010	的母語等果	81
6	7019010	多多种影花	83
7	7019010	88海挪和道	68
8	7019010	沙海田愛美	91
9	701901C	松 電響音将	68
10	7019010	司信奉合奈	92
		 	

ファイルを結合

left_join(()

原簿と結合

4	Α	В	С	D	E	F	G	H
1	No	年度	所属名	学生番号	氏名	性別	確定した評	栖
2	1	2018	地球科学	701900	ログラ 実	女		
3	2	2018	地球科学	701900	松本安未	女		
4	3	2018	地球科学	701900544	課題もさと	女		
5	4	2018	地球科学	701900		女		
6	5	2018	地球科学	70190000000	四藤	女		
7	6	2018	地球科学	701900		男		
8	7	2018	地球科学	701900	基本	男		
9	8	2018	地球科学	7019000000	差結束	女		
10	9	2018	地球科学	7019003012	基 · 基	女		
11	10	2018	地球科学	701900	强力毫法	男		
12	11	2018	地球科学	701900	(A)	女		
13	12	2018	地球科学	701900	松连麻尋	女		
14	13	2018	地球科学	701900367	源。珠里	女		
15	14	2018	地球科学	701900		男		
16	15	2018	地球科学	701900	東東	女		
17	16	2018	地球科学	7019003049	以	女		
18	17	2018	地球科学	7019000000	表表	女		
19	18	2018	地球科学	701900		男		
20	19	2018	地球科学	701900	基本的 弥	男		

left_join

```
genbo <- genbo %>%
left_join(seiseki,
  by = " ")
```

	学生番号	名前	確定成績
	<chr></chr>	<chr></chr>	<db1></db1>
1	7019010	86 出聽太良	77
2	7019010	7.1	96
3	7019010	3個数料 蒼	84
4	7019010	1 月 開晃	79
5	7019010	49公徽等果	81
6	701901C	多交通開幕花	83
7	7019010	88海湖和道	68
8	701901C	沙海田愛美	91
9	701901C	松 事語主将	68
10	701901C	引播茶奈	92
-		'.= . 	

join

```
単語頻度表からストップワード削除
```

```
TERM
      POS1
                             POS2 1 2 3
1
                             0
                                   0
                                        2
2
                            0
                                 1
                                      0
3
                                 1
                                      0
4
                                          0
                                0
                                     1
5
                  0
                       1
                            1
6
                                   0
                                        3
                             0
```

グラフ作成

日本語

Macでは必須

```
source("http://rmecab.jp/R/Rprofile.R")
```

http://rmecab.jp/R/dot.Rprofile.txt

ggplot2

gapminderパッケージ

gapminder

tidyなデータ

横型はNG

A tibble: 142 x 14

```
country continent `1952` `1957` `1962` `1967` `1972` `1977` `1982`
  <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                         <dbl>
1 Afghan~ Asia
                   28.8
                                                    38.4
                                                          39.9
                           30.3
                                 32.0
                                       34.0
                                              36.1
2 Albania Europe
                   55.2
                          59.3
                                 64.8
                                       66.2
                                             67.7
                                                    68.9
                                                          70.4
3 Algeria Africa
                    43.1
                           45.7
                                 48.3
                                       51.4
                                             54.5
                                                    58.0
                                                          61.4
4 Angola Africa
                    30.0 32.0
                                34
                                       36.0 37.9
                                                    39.5
                                                          39.9
5 Argent~ Americas 62.5 64.4 65.1 65.6 67.1
                                                    68.5
                                                         69.9
6 Austra~ Oceania 69.1
7 Austria Europe 66.8
                          70.3 70.9
                                      71.1
                                             71.9
                                                    73.5
                                                          74.7
                                       70.1
                          67.5
                                69.5
                                             70.6
                                                    72.2
                                                          73.2
8 Bahrain Asia
                   50.9
                           53.8 56.9 59.9 63.3
                                                    65.6
                                                          69.1
9 Bangla~ Asia
                   37.5
                           39.3
                                41.2
                                       43.5 45.3
                                                    46.9
                                                          50.0
                           69.2
                                       70.9
                                             71.4
                                                    72.8
10 Belgium Europe
                   68
                                 70.2
                                                          73.9
# ... with 132 more rows, and 5 more variables: `1987` <dbl>,
# `1992` <dbl>, `1997` <dbl>, `2002` <dbl>, `2007` <dbl>
```

基本的作画の流れ

- ・ ggplot で初期化
- ・ aes で変数を指定
- · geom_でグラフの種類

Gapminder

```
gap <- gapminder %>%
  filter(country %in%
    c("Japan", "China", "Korea, Rep."))
```

(簡単のため国を3つに絞る)

ggplo初期化

データセットをggplot2に指定

```
library(ggplot2)
p <- gap %>%
    ggplot()
#p<-ggplot(gap)</pre>
```

Aesthetic mappings

col =country)

```
データと軸やカラーを対応させる
p <- p +
aes(x = year,
y = lifeExp,
size = pop,
```


土台とデータ対応

aes で水準ごとの指定

散布図

```
p <- p+geom_point()</pre>
```


aesの外で

色を指定

```
p0 <- gap %>%
  ggplot(aes(
  x = year,
  y = lifeExp,
  size = pop))
p0<-p0+geom_point(
  show.legend =
  FALSE,
  col = "red") #</pre>
```


geom_族

geom_bar

geom_point

geom_line

geom_boxplot

バーチャート

各年の個人GDP平均

```
gap %>%
group_by(year) %>%
summarise(AVG = mean(gdpPercap))
```

```
# A tibble: 12 x 2
           AVG
   year
   <int> <dbl>
 1 1952 1549.
2
   1957 2127.
3
   1962 2867.
4 1967 4163.
5
   1972 6162.
6
   1977
        7336.
7
   1982 8656.
```

```
8 1987 10763.
```

- 9 1992 13528.
- 10 1997 15700.
- 11 2002 16986.
- 12 2007 19988.

summary

```
stat = "summary"
```

```
p <- gap %>%
  ggplot(aes(year,
     gdpPercap))
p <- p +
  geom_bar(stat =
     "summary",
  fun.y = "mean")</pre>
```


geom_bar

もし集計済みデータだった場合

```
# A tibble: 12 x 2
    year AVG
    <int> <dbl>
1 1952 1549.
2 1957 2127.
```

```
1962 2867.
4
   1967 4163.
5
   1972 6162.
6
   1977 7336.
7
   1982 8656.
8
  1987 10763.
9
   1992 13528.
10 1997 15700.
11 2002 16986.
12 2007 19988.
```

geom_bar

```
stat ="identity"
```

```
p <- gap_avg %>%
    ggplot(
    aes(year, AVG))
p <- p +
    geom_bar(
    stat ="identity")</pre>
```


stat_summary

エラーバー

```
p <- p +
stat_summary(
  geom = "bar",
  fun.y = "mean") +
stat_summary(
  geom = "errorbar",
  fun.data =
        "mean_se")</pre>
```


品詞の頻度

geom_histogram

```
中国人口
```

```
china <- gap %>%
filter(
  country == "China")
p <- china %>%
  ggplot(
  aes(lifeExp))+
  geom_histogram()
```


binの指定

bins, binwidth

```
p <- china %>%
ggplot(
  aes(lifeExp)) +
geom_histogram(
  bins = 6)
```


密度指定

```
..density..

p <- china %>%
    ggplot(
    aes(lifeExp,
    y=..density..))+
    geom_histogram(
    bins = 6)

p + geom_density()
```


geom_line

```
p <- gap %>%
  ggplot(aes(year,
    lifeExp,
    group=country))
p <- p + geom_line()</pre>
```


geom_boxplot

facet

facet_grid, facet_wrap

```
p_f <- p +
  facet_grid(
    . ~ country)</pre>
```


face_wrap

```
facet_grid(行[縦軸] ~ 列[横軸])
```

facet_wrap(~ 変数)

grid or wrap

gridと wrapの違い

```
p + facet_grid(
  country~year)
```



```
p + facet_wrap(
  country~year)
```


scales

no_scales

テーマ

背景を消したい theme_*

```
p <- p +
  theme_classic()</pre>
```

theme_bw() theme_light() theme_minimal()

referance

https://r4ds.had.co.nz/graphics-for-communication.html