472 Recitation

Week 7

Constraint Satisfaction Problem

CSP formulation:

- A set of variables $\mathcal{X} = \{X_1, ..., X_n\}$.
- A set of domains $\mathcal{D} = \{D_1, ..., D_n\}$.
- A set of constraints $C = \{C_1, ..., C_m\}$ that specifies allowable combination of values.

Solve CSP:

- Constraint Propagation (arc-consistency)
- Backtracking

Backtracking

```
function BACKTRACKING-SEARCH(csp) returns a solution or failure
  return BACKTRACK(csp. { })
                                        Start with an empty assignment
function BACKTRACK(csp, assignment) returns a solution or failure
  if assignment is complete then return assignment
  var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp, assignment)
  for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
      if value is consistent with assignment then
        add \{var = value\} to assignment
                                                          // arc-, path-, or k-consistency
        inferences \leftarrow Inference(csp, var, assignment)
                                                          // forward checking, etc.
        if inferences \neq failure then
           add inferences to csp
           result \leftarrow BACKTRACK(csp, assignment)
                                                       Recursive
           if result \neq failure then return result
          remove inferences from csp
        remove \{var = value\} from assignment
  return failure
```

Variable & Value Selection

Variable Selection (fail-first)

- Minimum Remaining Values (MRV): Choose the variable with the fewest "legal" values.
- Use the *degree heuristic* as a tie-breaker or at the start

Value Selection (fail-last)

 For the selected variable, choose its value that rules out the fewest choices for the neighboring variables in the constraint graph

Forward Checking

After assign a value for one variable X, modify the domain of the unassigned variables connected to X.

Assignment X = v

For every unassigned Y connected to X, delete any value from Y's domain that is inconsistent with v.

Local Search

Every state corresponds to a complete assignment.

Back tracking starts with empty assignment

Search changes the value of one variable at a time.

Min-conflicts heuristic:

- Start with a complete assignment.
- Randomly choose a conflicted variable.
- Select the value that results in the least conflicts with other variables

Structure of CSP

Independent subproblems

- Connected components in the constraint graph
- Each subproblem can be solved independently

Tree-Structured CSP:

- Generate a topological order of the variables O(n)
- Visit variables in the order and modify their domain based on arc-consistency $O(nd^2)$
- Visit variables again and assign values O(n)

Knowledge-based agents

Intelligent agents need *knowledge about the world* in order to carry out reasoning for good decision making.

```
function KB-AGENT(percept) returns an action

persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE(action, t)) // tells what action
t \leftarrow t + 1 // was chosen

return action
```

Logic

- A systematic study of rules of inference.
- A formal language for representing information such that conclusions can be drawn.
- Syntax what expressions are legal (well-formed sentences)
- Semantics what the "meanings" of sentences are.

Model *m*: assigns values to variables.

m satisfies a sentence α , or m is a model of α , if α is true in m.

 $M(\alpha)$: set of all models of α .

$$\alpha \models \beta$$
 if and only if $M(\alpha) \subseteq M(\beta)$

The sentence α entails the sentence β

Logic

Semantics **Syntax** If S, S_1 and S_2 are sentences: $\neg S$ is a sentence negation S is false is true iff S₁ is true and S₂ is true $S_1 \wedge S_2$ is true iff $S_1 \wedge S_2$ is a sentence conjunction $S_1 \vee S_2$ is true iff S₁is true or S2 is true $S_1 \Rightarrow S_2$ is true iff S₁ is false or S₂ is true $S_1 \vee S_2$ is a sentence disjunction i.e., is false iff S₁ is true and S₂ is false $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true $S_1 \implies S_2$ is a sentence implication $S_1 \iff S_2$ is a sentence biconditional

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Inference – Model Checking

Q. Does $KB = \neg P_{1,2}$?

Enumerate the models of KB and check if $\neg P_{1,2}$ is true in every model.

	$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
	false false	false $false$	false $false$	false $false$	false $false$	false $false$	$false \ true$	true $true$	true $true$	$true \\ false$	true $true$	false $false$	$false \\ false$
128 rows	: false	$\vdots \\ true$	\vdots false	: false	$\vdots \\ \mathit{false}$: false	\vdots false	$\vdots \\ true$	$\vdots\\ true$	$\vdots \\ \mathit{false}$	$\vdots\\ true$	$\vdots \\ true$	$\vdots \\ \mathit{false}$
	false false false	true true true	false false false	false false false	false false false	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\frac{true}{true}$ $\frac{true}{true}$
	false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

Validity: A sentence is valid if it is true in all models Satisfiability:

- A sentence is satisfiable if it is true in, or satisfied by, some model.
- A sentence is unsatisfiable if it is false in all models

Inference Rules

Modus Ponens

$$\alpha \Rightarrow \beta, \qquad \alpha$$

$$\beta$$

And-elimination

$$\alpha \wedge \beta$$
 α

$$\frac{\neg(\alpha \lor \beta)}{\neg \alpha \land \neg \beta}$$
 De Morgan and-elimination