

IZG – cvičení #4. Zobrazování 2D křivek

Autor: Jiří Venera

Upravili: Radovan Jošth, Pavel Svoboda

Obsah

- Úvodní část
 - Rekapitulace 2D křivek
- Cvičení ukázka
 - Fergusnova kubika
- Cvičení samostatný projekt
 - Úvod
 - Racionální Bézierova křivka

Rekapitulace 2D křivek

- Vyjádření křivek
 - Explicitní, Implicitní
 - Parametrické
- Použití 2D křivek
 - Definice fontů
 - Šablonování
 - Definice objektů
 - Animační křivky
 - **•** ...

[F. Alexandr]

Rekapitulace 2D křivek

Typy křivek

- Aproximační (obecně neprochází řídícími body), interpolační (prochází řídícími body)
- Racionální (váhové koeficienty řídících bodů), neracionální (váhové koeficienty rovny 1)

[F. Alexandr]

Co projedeme společně?

Fergusnovu kubiku!

Autor: Jiří Venera

Upravili: Radovan Jošth, Pavel Svoboda

Fergusnova kubika

- Nejčastější interpolační křivka P₀
- Určena dvěma koncovými body
- P_0 ; P_1 (poloha)
- A dvěma tečnými vektory
- $\overrightarrow{P_0}$; $\overrightarrow{P_1}$ (vyklenutí)
- Neintuitivní řízení tvaru
- Nelokální změna tvaru

$$Q(t) = \mathbf{T} \cdot \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_0 \\ P_1 \\ \vec{P}'_0 \\ \vec{P}'_1 \end{bmatrix}$$

$$Q(t) = P_0 \cdot F_1(t) + P_1 \cdot F_2(t) + \vec{P}_0' \cdot F_3(t) + \vec{P}_1' \cdot F_1(t)$$

Hermitovy polynomy:

Figure 7. For each of the first section
$$F_1(t) = 2 \cdot t^3 - 3 \cdot t^2 + 1$$

$$F_2(t) = -2 \cdot t^3 + 3 \cdot t^2$$

$$F_3(t) = t^3 - 2 \cdot t^2 + t$$

$$F_4(t) = t^3 - t^2$$

$$C_1 \rightarrow \begin{bmatrix} P_0 \\ P_1 \\ \vec{P}'_0 \\ \vec{P}'_1 \end{bmatrix} \leftrightarrow$$

Samostatná práce?

Racionální bézierova křivka!

Neracionální Bézierova křivka

 Váhové koeficienty řídících bodů rovny jedné: w=1, ve vzorci proto nejsou zapsány

• Křivka n-tého stupně je dána n+1 body $P_i = [x_i, y_i]$ řídícího polygonu P_0 , P_1 , ..., P_n $Q(t) = \sum_{i=0}^n P_i B_i^n(t)$

kde B_iⁿ jsou Bernsteinovy polynomy *n-tého* stupně

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}, t \in \langle 0,1 \rangle, i = 0, \dots, n$$

Generování se provádí postupným dosazováním parametru t

Bézierova kubika

- Počet bodů řídícího polygonu je roven čtyřem P₀, P₁, P₂, P₃
- Maticový zápis

$$Q(t) = T \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

kde
$$T = [t^3, t^2, t^1, t^0 = 1]$$

 Jiný zápis kde B_i jsou Bernsteinovy polynomy stupně 3

$$Q(t) = P_0 B_0^3(t) + P_1 B_1^3(t) + P_2 B_2^3(t) + P_3 B_3^3(t) = \sum_{i=0}^3 P_i B_i^3(t)$$

Algoritmus de Casteljau

- Výpočet bodů Bézierovy křivky
 - Využívá rekurzivní definice Bersteinova polynomu

$$P_{j,i}(t) = (1-t)P_{j-1,i}(t) + tP_{j-1,i-1}(t)$$

kde i = 1, 2, ..., n; j = i, i+1, ..., n a t určuje poměr dělení stran řídícího polynomu

Racionální Bézierova křivka

- Váhové koeficienty řídících bodů nabývají proměnných hodnot
- Křivka n-tého stupně je dána n+1 body $P_i = [x_i, y_i]$ řídícího polygonu P_0 , P_1, \ldots, P_n a váhovými koeficienty jednotlivých bodů ω_i
- Racionální Bézierovy polynomy

$$R_{i}^{n}(t) = \frac{\omega_{i}B_{i}^{n}(t)}{\sum_{i=0}^{n}\omega_{i}B_{i}^{n}(t)}$$

kde B_i^n jsou Bernsteinovy polynomy *n-tého* stupně definované stejně jako u neracionální Bézierovy křivky

Racionální Bézierova křivka

Výpočet bodů racionální Bézierovy křivky

$$Q(t) = \sum_{i=0}^{n} P_i R_i^n(t) = \frac{\sum_{i=0}^{n} \omega_i P_i B_i^n(t)}{\sum_{i=0}^{n} \omega_i B_i^n(t)}$$

Shrnutí a doporučení

Bernsteinovy polynomy *n-tého* stupně

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}, t \in \langle 0,1 \rangle, i = 0, \dots, n$$

Racionální Bézierova křivka

$$Q(t) = \sum_{i=0}^{n} P_i R_i^n(t) = \frac{\sum_{i=0}^{n} \omega_i P_i B_i^n(t)}{\sum_{i=0}^{n} \omega_i B_i^n(t)}$$

Projekt – Kam psát zdrojový kód?

- Soubor student.cpp
 - Funkce void Bezier(int quality, const T_PointVector & points, T_PointVector & line_points)
 - quality hladkost výsledné křivky (počet bodů)
 - points pole bodů řídícího polygonu
 - ◆ line_points výsledný vektor vygenerovaných bodů křivky
 - Pozn.: Nic nevykreslujte, body ukládejte do vektoru!

Základní struktury v main.h

Bod ve 2D

- Vektor/pole bodů
 - typedef vector<S_Point> T_PointVector;
 - Šablona vector knihovna STL
 - Dynamické pole velikost lze měnit za běhu programu
 - #include <vector>
 - direktivou using zpřístupnit jmenný prostor std using namespace std

Autor: Jiří Venera Upravili: Radovan Jošth, Pavel Svoboda

STL šablona vector

- Nastavení velikosti pole/vektoru
 - Při vytváření parametr konstruktoru
 - Př.: T_PointVector P(n);
 - Metoda resize(n)
- Indexace pole
 - Operátor [] přístup k prvkům jako obyčejné pole
 - ◆ Př.: **P[i]** = prvek;
- Metody
 - Funkce definované "uvnitř" struktury/třídy
 - ◆ Pro volání použijte '.' případně '->' notaci
 - push_back(prvek) zvětší pole o 1 a vloží prvek na konec
 - clear() vyprázdnění pole, nová velikost = 0
 - size() vrací aktuální velikost pole

Literatura

- Přednášky IZG + uvedená literatura
- L. Alexandr: Výuka křivek formou WWW, 1999.
- http://lubovo.misto.cz/_MAIL_/curves/index.ht
 ml
- www.google.com
 BSpline

Kontakty

- ijosth@fit.vutbr.cz
- isvoboda@fit.vutbr.cz