Adversarial Uncertainty Quantification in Physics-Informed Neural Networks

Yibo Yang, Paris Perdikaris

University of Pennsylvania

26.05.2023

The model: UQPINN

UQPINN = GAN + PINN

- UQPINN : Uncertainty Quantification Physics-Informed Neural Network
- 2. **GAN** : Generative Adversarial Network
- 3. **PINN**: Physics-Informed Neural Network

Novalty

"we will develop a flexible variational inference framework that will allow us to train such models directly from noisy input/output data, and predict outcomes of non-linear dynamical systems that are partially observed with quantified uncertainty"

- Yibo Yang, Paris Perdikaris

Novalty

"we will develop a flexible variational inference framework that will allow us to train such models directly from noisy input/output data, and predict outcomes of non-linear dynamical systems that are partially observed with quantified uncertainty"

- Yibo Yang, Paris Perdikaris

Using adversarial approach to handle randomness in observations.

$$egin{array}{l} \max_{\psi} \mathcal{L}_{\mathcal{D}}(\psi) \ \min_{\theta, \phi} \mathcal{L}_{\mathcal{G}}(\theta, \phi) + eta \; \mathcal{L}_{\textit{PDE}}(\theta) \end{array}$$

$$\begin{aligned} & \underset{\psi}{\operatorname{argmin}} \frac{\rho(y=+1|x,t,u)}{\rho(y=-1|x,t,u)} \\ & p_{\theta}(x,t,u) = \rho(x,t,u|y=+1) \\ & q(x,t,u) = \rho(x,t,u|y=-1) \end{aligned}$$

$$\begin{aligned} & \underset{\psi}{\operatorname{argmin}} \frac{\rho(y=+1|x,t,u)}{\rho(y=-1|x,t,u)} \\ & \rho_{\theta}(x,t,u) = \rho(x,t,u|y=+1) \\ & q(x,t,u) = \rho(x,t,u|y=-1) \end{aligned}$$

$$T_{\psi} \approx \rho(y = +1|x, t, u)$$

$$\mathcal{L}_{D}(\psi) = \mathbb{E}_{q(x,t)p(z)}[\log \sigma(T_{\psi}(x,t,f_{\theta}))] + \mathbb{E}_{q(x,t,u)}[\log(1-\sigma(T_{\psi}))]$$

 $\mathop{argmax}_{\theta} \, \mathbb{KL} \left[p_{\theta}(\textbf{x},t,u) \| \, q(\textbf{x},t,u) \right]$

$$\mathop{argmax}_{\theta} \mathbb{KL}\left[p_{\theta}(x,t,u) \| q(x,t,u)\right]$$

$$\mathcal{L}_{\textit{G}}(heta, \psi) = \mathbb{E}_{q(x,t)p(z)}[T_{\psi}(x, t, f_{ heta}(x, t, z)) + (1 - \lambda)log(q_{\phi}(z|x, t, f_{ heta}(x, t, z)))]$$

Experiment Setup

Author's Experiment Setup

GPU NVIDIA Tesla P100(16GB)

DL framework Tensorflow v1.10

Formula

1. pedagogical ODE

2. Burgers' equation

3. Darcy flow

Model UQPINN

Experiment Setup

	Author's Experiment Setup	My Experiment Setup
GPU	NVIDIA Tesla P100(16GB)	MX450(2GB)
DL framework	Tensorflow v1.10	Pytorch v1.9.0
Formula	 pedagogical ODE Burgers' equation Darcy flow 	 pedagogical ODE Burgers' equation Darcy flow
Model	UQPINN	 UQPINN PINN

Experiment Setup

Author's Experiment Setup	My Experiment Setup
NVIDIA Tesla P100(16GB)	MX450(2GB)
Tensorflow v1.10	Pytorch v1.9.0
 pedagogical ODE Burgers' equation Darcy flow 	 pedagogical ODE Burgers' equation Darcy flow
UQPINN	 UQPINN PINN
	NVIDIA Tesla P100(16GB) Tensorflow v1.10 1. pedagogical ODE 2. Burgers' equation 3. Darcy flow

parameters are set to be the same as the author's

pedagogical ODE

$$\begin{split} \frac{\partial^2 u}{\partial x^2} - u^2 \frac{\partial u}{\partial x} f(x) & x \in [-1, 1] \\ f(x) &= -\pi^2 sin(\pi x) - \pi cos(\pi x) sin(\pi x)^2 \\ u(x) &\sim \mathcal{N}(sin(\pi), noise) & x = \{-1, 1\} \end{split}$$

п

X

Burgers Equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = 0 \qquad x \in [-1, 1], t \in [0, 1]$$

$$u(0, x) = -\sin(\pi x)$$

$$u(t, x) = 0 \qquad x = \{-1, 1\}$$

$$\nu = \frac{0.01}{\pi}$$

Darcy

$$\begin{split} \nabla_{\vec{x}}(K(u)\nabla_{\vec{x}}u(\vec{x})) &= 0 & \vec{x} \in [0, L_1] \times [0, L_2] \\ u(\vec{x}) &= 0 & x_1 = L_1 \\ -K(u)\frac{\partial u(\vec{x})}{\partial x_1} &= q & x_1 = 0 \\ K(u) &= K_s\sqrt{s(u)}\left(1 - (1 - s(u)^{\frac{1}{m}})^m\right)^2 & x_2 = \{0, L_2\} \\ s(u) &= \left(1 + (\alpha(u_g - u))^{\frac{1}{1-m}}\right)^{-m} \end{split}$$