APPLYING THE SOLUBILITY RULES FOR IONIC COMPOUNDS **NET IONIC EQUATIONS**

- Write net ionic equations for the reactions (if any) which occur when solutions of the 1. following pairs of substances are mixed. If there is no reaction write **no rxn**.
 - sodium chloride & silver nitrate a.
 - barium chloride & sodium sulphate b.
 - copper sulphate & potassium hydroxide c.
 - nickel chloride & potassium sulphate d.
 - sodium carbonate & iron(II) sulphate e.
 - zinc nitrate & ammonium sulphide f.
 - ammonium bromide & lead nitrate g.
 - potassium carbonate & calcium chloride h.
 - iron(II) sulphate & potassium iodide i.
 - silver nitrate & sulphuric acid į.
 - potassium sulphate & magnesium chloride k.
 - nickel chloride & sodium hydroxide ١.
 - copper nitrate & hydrogen sulphide m.

Solutions of what substances would you mix in order to prepare the following compounds by precipitation? Write net ionic equations for your reactions.

a. magnesium carbonate

magnesium hydroxide b.

lead sulphate c.

iron(II) sulphide d. lead iodide

silver bromide e.

- What cations (+ve ions) could be present in a solution which gave a precipitate with 3.

f.

- sodium sulphate solution but not with sodium chloride? a.
- sodium sulphate solution and with sodium chloride? b.
- sodium sulphate solution but not with sodium hydroxide? C.
- sodium carbonate solution but not with sodium hydroxide? d.
- potassium hydroxide but not with ammonium sulphate? e.

Predict whether a reaction occurs when solutions of the following are added together and write balanced net ionic equations.

- iron(III) chloride & caesium phosphate a.
- potassium hydroxide & lead nitrate b.
- magnesium iodide & sodium sulphate c.
- silver nitrate & barium chloride d.
- Use the solubility rules to predict which of the following combinations lead to reaction. 5.
 - calcium nitrate & potassium chloride a.
 - sodium chloride & lead(II) nitrate b.

6.	react	For each of the following pairs of aqueous solutions state whether a precipitation reaction occurs when they are mixed. Write the formulae and names of any precipitates that form.									*	
	a. b. c. d. e. f. g. h.	sodium nitrate & copper(II) sulphate ammonium iodide & silver nitrate potassium carbonate & barium hydroxide aluminium nitrate & sodium phosphate potassium chloride & iron(II) nitrate ammonium sulphate & barium chloride sodium sulphide & nickel(II) sulphate lead(II) nitrate & potassium bromide										
7.	Complete the following precipitation reactions with balanced net ionic equations and identify the spectator ions.											
	a. b. c. d. e. f.	FeSO _{4(aq)} & CaC _{12(aq)} & Na ₂ S _(aq) & Z KOH _(aq) & C Na ₂ S _(aq) & F (NH ₄) ₃ PO _{4(aq)}	Cs3PO4 ZnSO4(a Ca(NO3) Pb(CH3((aq) q) 2 2OO)2(a	aq)							6
8.	Use the solubility rules to predict whether each of the following ionic compounds is soluble in water.											
	a.	BaSO ₄	b.	Pb(N	O3)2	C.	Pbl ₂	(d.	Na ₂ S		
9.	The f i ii	following combinations of aqueous solutions are mixed. In each case predict whether a precipitate will form if a precipitate does form, write a balanced net ionic equation for its formation and give its correct chemical name										
	a. b. c. d. e. f. g. h. i.	ammonium sodium carl barium chlo ammonium potassium h silver nitrate sodium hyd copper(II) s potassium s	bonate oride sulphat nydroxice roxide ulphate	e le	& & & & & & &	calciu potas & & potas copp sodiu		ide droxide n chloric n nitrate dide rate de	de			6
10.	Use t	Use the solubility rules to determine which										
	 a. sodium compounds are soluble in water b. potassium compounds are insoluble c. silver compounds are soluble 											
11.	Predict products and write balanced net ionic equations for											
	a. b. c.	KOH _(aq) Na ₂ S _(aq) (NH ₄) ₃ PO _{4(a}	+ + q) +	Ca(N(Pb(Cl CaCl ₂	I₃ĆOC		$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$,				

by mixing solutions and observing whether or not a precipitate formed. The solutions to be mixed were:								
a.	CuCI _{2(aq)}	&	K ₂ CO _{3(aq)}					
b.	Pb(NO ₃) ₂	&	CuSO _{4(aq)}					
c.	NH4Br _(aq)	&	NaOH _(aq)					
	, <i>v</i>		naOH _(aq) ons the student tried to predict the results that would be					

the WACE Chemistry Data Sheet. For each of the mixtures a to c:

- Indicate whether a precipitate would form. i.
- Write a balanced net ionic equation for any precipitate that you think would ii. form.
- "Milk of Magnesia" is a treatment for indigestion. Chemically it is magnesium 13. hydroxide, Mg(OH)₂. The instructions on a bottle of milk of magnesia say that the bottle should be well shaken before it is taken. Why is this instruction given?

Write dissociation equations for

- NaOH_(s) a.
- Na₃PO_{4(s)}
- C. NH₄C_{I(s)}
- d. A/C/3(s)
- 15. Write net ionic equations for the following aqueous reactions
 - barium chloride a. calcium nitrate b.
- & magnesium sulphate
- & sodium carbonate
- potassium hydroxide c.
- calcium nitrate &
- sodium sulphide d. ammonium phosphate e.
- lead ethanoate & calcium chloride
- Which of the following compounds would appear as a precipitate in solution? 16.
 - ammonium sulphate a.
- barium nitrate b.

barium sulphate c.

- d. ammonium hydroxide
- Which of the following is **NOT** a correctly balanced net ionic equation?

$$SO_4^{2-}(ag) \rightarrow BaSO_4(s)$$

b.
$$HSO_4^-(aq)$$

$$H_2O_{(I)}$$

$$\rightarrow$$
 SO₄²⁻(aq)

c.
$$2H^{+}(aq) + SO_{4}^{-}(aq) + 2K^{+}(aq) + 2OH^{-}(aq) \rightarrow SO_{4}^{2-}(aq) + 2K^{+}(aq) + 2H_{2}O_{(1)}$$

d.

18.

$$H^+(aq)$$
 +

+

$$\rightarrow$$
 H₂O₍₁₎

- Solutions of ammonium chloride & potassium nitrate are mixed a.
- Solutions of magnesium bromide & sodium hydroxide are mixed b.
- Solutions of hydrochloric acid & silver nitrate are mixed b.
- Solutions of barium hydroxide & sulphuric acid are mixed C.

Write net ionic equations for the reactions which do occur in 18. above.

	a. b. c. d. e. f.	Ca(OH) _{2(s)} H ₂ SO _{4(aq)} Fe(OH) _{3(s)} BaC <i>I</i> _{2(aq)} AgNO _{3(aq)} K ₂ CrO _{4(aq)}	+ + + + +	H ₃ PO _{4(aq)} A/(OH) _{3(s)} HC/ _(aq) (NH ₄) ₂ CO ₃₍ H ₂ S _(g) Pb(NO ₃) _{2(ac)}		$ \begin{array}{ccc} \rightarrow & & \\ \rightarrow $					
20.		Write a balanced net ionic equation, showing the physical states of reactants and products, for each of the following aqueous reactions.									
	a. b. c.	silver nitrate aluminium n barium chlor	itrate	& sodi	um chlo um hyd ssium p		$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$				
21.	Hard water can be caused by the presence of calcium ions (in calcium chloride or calcium hydrogen carbonate). Hard water reacts with soap forming a precipitate, soap may be represented by the formula NaOOC(CH ₂) ₁₄ CH ₃ . These calcium ions can be removed by adding sodium carbonate (washing soda) solution to the hard water.										
	a. b.					on of hard wa on of hard wa		•	(
22.	22. A precipitation reaction produces zinc phosphate as one of its products. a. Suggest two reactants that may have participated in this reaction. b. Write a balanced net ionic equation for this reaction.										
23.	ldenti	fy the substar	nces fro	m the follow	ing list v	which are sol	uble in v	water.			
	a. d. g. j.	Cal ₂ BaSO ₄ Na ₂ S A/(OH) ₃	b. e. h. k.	KOH AgI MgC <i>l</i> ₂ PbI ₂	c. f. i. l.	AgC/ NH₄C/ CuS Fe(OH)₃			,		
24.	Predict whether a precipitate will form when solutions of the following are mixed:										
	a. c. e. g.	AgNO ₃ H ₂ SO ₄ (NH ₄) ₃ PO ₄ (NH ₄) ₂ S	& & & &	KC <i>I</i> NaC <i>I</i> CaC <i>I</i> ₂ NaNO₃	b. d. f. h.	H ₂ SO ₄ NaNO ₃ (NH ₄) ₂ S CaC <i>l</i> ₂	& & & &	BaC <i>l</i> ₂ KC <i>I</i> Pb(NO ₃) ₂ NaBr			
25.	Write net ionic equations for the reactions which did occur in 25. above.										

Rewrite and complete the following equations as balanced net ionic equations.

19.

APPLYING THE SOLUBILITY RULES FOR IONIC COMPOUNDS & NET IONIC EQUATIONS

ANSWERS:

1.	a.	Ag+(aq) +	ŀ	CI ⁻ (aq)	\longrightarrow	AgCl _(s)							
	b.	Ba ²⁺ (aq) +	 	SO ₄ ²⁻ (aq)	\rightarrow	BaSO _{4(s)}							
	C.	Cu ²⁺ (aq) -		20H ⁻ (aq)	\longrightarrow	Cu(OH) _{2(s)}							
	d.	no rxn		. ,,									
	e.	Fe ²⁺ (aq) +	-	CO ₃ ²⁻ (aq)	\rightarrow	FeCO _{3(s)}							
	f.	Zn ²⁺ (aq) +		S ²⁻ (aq)	\rightarrow	ZnS _(s)							
	g.	Pb ²⁺ (aq) +		21-(aq)	\rightarrow	Pbl _{2(s)}							
	h.	Ca ²⁺ (aq) +		CO ₃ ²⁻ (aq)	\rightarrow	CaCO _{3(s)}							
	i.	no rxn	•	CCo (aq)		20.2.2.0(0)							
	j.	2Ag+(aq) +	-	SO ₄ ²⁻ (aq)	 →	Ag ₂ SO _{4(s)}		·					
	k.	no rxn		(-4)		0 .,							
	1.	Ni ²⁺ (aq) +	F	20H ⁻ (aq)	\rightarrow	Ni(OH) _{2(s)}							
	m.	Cu ²⁺ (aq) +		S ²⁻ (aq)	\rightarrow	CuS _(s)							
	,,,,,	- (aq) .		- (=4)		\- /							
2.	a.	magnesi	um nitr	ate & sodium ca	arbonate	•		· .					
	b.			ate & sodium h	ydroxide								
_	C.			odium sulfate									
	d.			sodium sulfide				•					
(e. f.	silver nitrate & sodium bromide lead nitrate & sodium iodide											
	1.	ieau milia	ale a so	diam lodice									
3.	a.	Sr ²⁺ (aq), B	3a ²⁺ (ag).	Ca ²⁺ (ag)									
.	b.			Sr ²⁺ (aq), Ba ²⁺ (aq),	Ca ²⁺ (aq)								
	C.	Ba ²⁺ (aq)											
	e.	Ca ²⁺ (aq)											
				_									
4.	a.	Fe ³⁺ (aq) +		PO ₄ ³⁻ (aq)	\rightarrow	FePO _{4(s)}							
	b.	Pb ²⁺ (aq) +	 	$2OH^{-}_{(aq)} \rightarrow$	Pb(OH))2(s)							
	c.	no rxn											
	d.	Ag ⁺ (aq) +	۲	CI ⁻ (aq)	\rightarrow	AgCl _(s)							
0		no ryn											
2.	a. b.	no rxn Pb ²⁺ (aq) +	•	2Cl ⁻ (aq)	\rightarrow	PbCl _{2(s)}							
	υ.	r D= (aq) +	r	201 (aq)	,	1 5012(8)							
6.	a.	no rxn											
0.	b.		Agl _(s)										
(c.		3aCO _{3(s}	s)									
	d.	yes A	Al2(SO4))3(s)									
	e.	no rxn											
	f.		3aSO _{4(s}	s)									
	g. i.		NiS _(s) PbBr _{2(s)}										
	1.	yes F	DD12(s)										
7.	a.	Ba ²⁺ (aq) +	-	SO ₄ ²⁻ (aq)	\rightarrow	BaSO _{4(s)}	spectator ions:	Fe ²⁺ (aq) & OH ⁻ (aq)					
•	b.	3Ca ²⁺ (aq)-		2PO ₄ ³⁻ (aq)	→	Ca ₃ (PO ₄) _{2(s)}	spectator ions:						
	c.	Zn ²⁺ (aq) +		S ²⁻ (aq)	\rightarrow	ZnS _(s)	•	Na+ _(aq) & SO ₄ ²⁻ _(aq)					
	d.	Ca ²⁺ (aq) +		20H ⁻ (aq)	=	Ca(OH) _{2(s)}	•	K ⁺ (aq) & NO ₃ ⁻ (aq)					
	e.	Pb ²⁺ (aq) +		S ²⁻ (aq)	— →	PbS _(s)		Na ⁺ (aq) & CH ₃ COO ⁻ (aq)					
	f.	3Ca ²⁺ (aq)-		2PO ₄ ³⁻ (aq)	$\stackrel{'}{\rightarrow}$	Ca ₃ (PO ₄) _{2(s)}	•	NH ₄ ⁺ (aq) & Cl ⁻ (aq)					
	1.	J∪a" (aq)-	т	∠ i ∪4 (aq)	,	Jas(1 04/2(S)	oposition long.						
8.	a.	no											
	b.	yes											
	c.	no.											
	d.	yes											

```
9.
                                              Cu^{2+}(aq) +
                                                                          2OH^{-}(aq) \longrightarrow
                               yes
                 a.
                                                                                                       Cu(OH)<sub>2(s)</sub>
                                              Ca<sup>2+</sup>(aq) +
                                                                          CO<sub>3</sub><sup>2-</sup>(aq)
                 b.
                               yes
                                                                                                                     CaCO<sub>3(s)</sub>
                 c.
                               no rxn
                 d.
                               no rxn
                 e.
                               yes
                                              Ca^{2+}(aq) +
                                                                          20H^{-}_{(aq)} \rightarrow
                                                                                                      Ca(OH)<sub>2(s)</sub>
                 f.
                               yes
                                             Ag^+(aq) +
                                                                          1-(aq)
                                                                                                                     Agl<sub>(s)</sub>
                                             Cu^{2+}(aq) +
                                                                          20H⁻<sub>(aq)</sub>--->
                 g.
                               ves
                                                                                                      Cu(OH)<sub>2(s)</sub>
                 h.
                               no rxn
                i.
                                             Ba^{2+}(aq) +
                              yes
                                                                          SO<sub>4</sub><sup>2-</sup>(aq)
                                                                                                                    BaSO<sub>4(s)</sub>
  10.
                a.
                               all soluble no exceptions
                b.
                               none insoluble
                              all insoluble except silver nitrte (AgNO<sub>3</sub>) and silver ethanoate (CH<sub>3</sub>COOAg)
                c.
  11.
                a.
                              calcium hydroxide
                                                                         Ca^{2+}(ag) +
                                                                                                     2OH^{-}_{(aq)} \rightarrow
                                                                                                                                  Ca(OH)<sub>2(s)</sub>
                b.
                              lead sulfide
                                                                                                      S<sup>2-</sup>(aq)
                                                                         Pb^{2+}(aq) +
                                                                                                                                                PbS<sub>(s)</sub>
                c.
                              calcium phosphate
                                                                         3Ca<sup>2+</sup>(aq)+
                                                                                                     2PO<sub>4</sub>3-(aq)
                                                                                                                                                Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2(s)</sub>
  12.
                a.
                              ves
                                             Cu^{2+}(aq) +
                                                                         CO<sub>3</sub><sup>2-</sup>(aq)
                                                                                                                    CuCO<sub>3(s)</sub>
                                                                         SO<sub>4</sub>2-(aq)
                a.
                              ves
                                             Pb^{2+}(aq) +
                                                                                                                    PbSO<sub>4(s)</sub>
                c.
                              no rxn
  13.
                Magnesium hydroxide is insoluble in water. The shaking is so the insoluble solid gets suspended in the solu-
  14.
                              NaOH(s)
                a.
                                                                         Na^{+}_{(aq)} +
                                                                                                     OH-(aq)
                              Na<sub>3</sub>PO<sub>4(s)</sub>
                b.
                                                                         3Na+(aq) +
                                                                                                     PO<sub>4</sub>3-(aq)
                              NH<sub>4</sub>CI<sub>(s)</sub>
                c.
                                                                         NH_4^+(aq) +
                                                                                                     CI-(aq)
                d.
                              A/C/3(s)
                                                                         A^{(3+)}(aq) +
                                                                                                     3CI-(aq)
  15.
                a.
                              Ba^{2+}(aq) +
                                                          SO<sub>4</sub><sup>2-</sup>(ag)
                                                                                                     BaSO<sub>4(s)</sub>
                b.
                              Ca^{2+}(aq) +
                                                          CO<sub>3</sub><sup>2-</sup>(aq)
                                                                                       ___
                                                                                                     CaCO<sub>3(s)</sub>
                c.
                              Ca^{2+}(aq) +
                                                          2OH^{-}_{(aq)} \rightarrow
                                                                                       Ca(OH)<sub>2(s)</sub>
                d.
                              Pb^{2+}(aq) +
                                                          S^{2-}(aq)
                                                                                                     PbS<sub>(s)</sub>
                              3Ca<sup>2+</sup>(aq)+
                e.
                                                          2PO<sub>4</sub>3-(aq)
                                                                                                     Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2(s)</sub>
 16.
               c.
                              BaSO<sub>4(s)</sub>
 17.
               c.
 18.
                             no rxn
               a.
               b.
                             Mg^{2+}(aq) +
                                                         2OH^{-}_{(aq)} \rightarrow
                                                                                      Mg(OH)<sub>2(s)</sub>
                                                         Cl<sup>-</sup>(aq)
               c.
                             Ag^+(aq) +
                                                                                                    AgCl(s)
               d.
                             Ba^{2+}(aq) +
                                                         SO<sub>4</sub><sup>2-</sup>(aq)
                                                                                                    BaSO<sub>4(s)</sub>
 19.
               a.
                             3Ca(OH)_{2(s)} + 6H^{+}_{(aq)} + 2PO_4^{3-}_{(aq)}
                                                                                                    Ca_3(PO_4)_{2(s)} + 6H_2O_{(l)}
               b.
                             2AI(OH)3(s) +
                                                         6H+(aq))
                                                                                                    2AI^{3+}(s) + 6H_2O(0)
                                                         6H+(aq))
               c.
                             2Fe(OH)3(s) +
                                                                                                    2Fe^{3+} (s) + 6H_2O_{(I)}
               d.
                             Ba^{2+}(aq) +
                                                         CO<sub>3</sub>2-(aq)
                                                                                                    CaCO<sub>3(s)</sub>
                            2Ag^{+}_{(aq)} +
               e.
                                                         S^{2-}(aq)
                                                                                                    Ag<sub>2</sub>S<sub>(s)</sub>
              f.
                             Pb^{2+}(aq) +
                                                         CrO<sub>4</sub><sup>2-</sup>(aq)
                                                                                                    PbCrO<sub>4(s)</sub>
20.
                            Ag^{+}(aq) +
              a.
                                                         Cl<sup>-</sup>(aq)
                                                                                                   AgCI<sub>(s)</sub>
                            Al<sup>3+</sup>(aq) +
              b.
                                                         3OH^{-}_{(aq)} \rightarrow
                                                                                     Al(OH)3(s)
                            3Ba<sup>2+</sup>(aq)+
              c.
                                                         2PO<sub>4</sub>3-(aq)
                                                                                                   Ba<sub>3</sub>(PO<sub>4</sub>)<sub>2(s)</sub>
21.
                            Ca^{2+}_{(aq)} + 2 CH_3(CH_2)_{14}COO^{-}_{(aq)} \rightarrow
              a.
                                                                                                   Ca(CH<sub>3</sub>(CH<sub>2</sub>)<sub>14</sub>COO)<sub>2(s)</sub>
                            Ca^{2+}(aq) +
              b.
                                                        CO<sub>3</sub><sup>2-</sup>(aq)
                                                                                                   CaCO<sub>3(s)</sub>
22.
                            zinc nitrate & sodium phosphate
              a.
                            3Zn<sup>2+</sup>(aq)+
                                                        2PO<sub>4</sub>3-(aq)
              a.
                                                                                                   Zn_3(PO_4)_{2(s)}
```

```
23.
                        soluble
            a.
                        soluble
            b.
                        insoluble
            c.
            d.
                        insoluble
                        insoluble
            e.
                        soluble
            f.
                        soluble
            g.
            ĥ.
                        soluble
                        insoluble
            i.
                        insoluble
            j.
                        insoluble
            k.
                        insoluble
            l.
24. & 25.
                                    Ag^{+}_{(aq)} +
                                                             Cl<sup>-</sup>(aq)
                                                                                                  AgCl<sub>(s)</sub>
            a.
                        yes
                                    Ba<sup>2+</sup>(aq) +
                                                                                                  BaSO<sub>4(s)</sub>
                                                             SO<sub>4</sub><sup>2-</sup>(aq)
            b.
                        yes
            c.
                        no rxn
            d.
                        no rxn
                                                            2PO<sub>4</sub><sup>3-</sup>(aq)
                                                                                                  Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2(s)</sub>
                                    3Ca<sup>2+</sup>(aq)+
            e.
                        yes
                                                                                                  PbS<sub>(s)</sub>
            f.
                                    Pb^{2+}(aq) +
                                                             S^{2-}(aq)
                        yes
            g.
                        no rxn
            h.
                        no rxn
```