

何诗大学

Ch2 离散型随机变量

• 随机变量的概念

定义 设随机试验 E 的样本空间是 Ω ,若对每个 $\omega \in \Omega$,有定义在 Ω 上的一个实数 $X(\omega)$ 与之对 ω ,称这样一个定义在 Ω 上的单值实函数 $X=X(\omega)$ 为随机变量(Random Variable),简记为 Y.Y.

X。随机变量一般用英文大写字母X、Y、Z等表示,也可用希腊字母 ξ 、 η 、 ζ 等表示。

 $\therefore r.v. X : \Omega \rightarrow R$

● ● 一维离散型随机变量的分布律

定义 全部可能取值为有限个或可列无限个的随机 变量为<u>离散型随机变量</u>。

即全部可能取值至多为可列无限个的随机变量为离散型随机变量。

若X为离散型随机变量,其取值为 $x_1, x_2, \dots, x_n, \dots$, X取每个可能值的概率为 $P\{\omega | X(\omega) = x_k\}, k = 1, 2, \dots$

记为 $p_k = P\{X = x_k\}, k = 1, 2, \cdots$

称 $p_k = P\{X = x_k\}$, $k = 1, 2, \dots$ 为r.v.X 的分布律或分布列或概率分布。

r.v. X的分布律 $p_k = P\{X = x_k\}, k = 1, 2, \cdots$ 也可表为

$$X \sim P\{X=x_k\}=p_k, (k=1, 2, ...),$$

或
$$X \sim \frac{X \mid x_1 \mid x_2 \mid \dots \mid x_n \mid \dots}{P \mid p_1 \mid p_2 \mid \dots \mid p_n \mid \dots}$$
 概率分布表

分布律的性质

$$(1)$$
(非负性) $p_k \ge 0, k=1, 2, \cdots;$

(2)(规范性)
$$\sum_{k=1}^{\infty} p_k = 1$$
.

例 设袋中有5只球,编号为1、2、3、4、5,在袋中同时取3只球,以X表示取出的3只球中的最大号码。试写出X的分布律。

例 设X的分布律为:

$$P(X=k)=a e^{-k+2}, k=0,1,2,\cdots$$

→ 求常数a。

- • 几个常见的离散型分布
 - 1. 退化分布(单点分布)

$$X \sim P\{X=a\}=1$$
,其中 a 为常数。

即
$$X \sim \frac{X \mid a}{P \mid 1}$$

2. (0-1)分布(两点分布)

$$X \sim \frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$$

或 $X \sim P\{X=k\} = p^k(1-p)^{1-k}, (0$

3. 几何分布

0

一次试验中只考虑某事件A出现或不出现,设P(A)=p, $P(\overline{A})=1-p$ 。现重复独立地做试验,一旦A发生就立即停止试验。

以X表示A首次发生所需的试验次数,则其分布率为:

 $X \sim P\{X=k\} = (1-p)^{k-1}p, (0 称 X 服从参数为 p的几何分布,记为<math>X \sim G(p)$ 。

4. 二项分布B(n,p)

以 X 记 n重贝努里试验中 A发生的次数,则其分布律为:

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}, k = 0,1,2,\cdots,n$$
 称 X 服从参数为 (n,p) 的二项分布,记为 $X \sim B(n,p)$ 例 一大楼装有5个同类型的供水设备,调查表明 在任一时刻 t 每个设备被使用的概率为0.01。问 在同一时刻:

- (1) 恰有两个设备被使用的概率是多少;
- (2) 至多有三个设备被使用的概率是多少?

5. 泊松(Poisson)分布 P(λ)

若随机变量X的所有取值为一切非负整数,

且其分布律为:
$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}; k = 0,1,2,\cdots$$

其中 $\lambda > 0$ 为常数,称 X 服从参数为 λ 的泊松 (Poisson)分布, 记为 $X\sim P(\lambda)$ 。

若X(t)表示在时间区间[0, t]中某服务台到达的顾客数。若X(t)满足:

- (1) 在不重叠的时间区间内到达的顾客数相互独立(无后效性);
- (2)在时间区间[a,a+t]内到达的顾客数只与时间长度有关,而与区间起点a无关(平稳性);
- (3)当t充分小时,在区间(a, a+t)内到达两个或两个以上的顾客不可能(普通性);
- (4) 在有限区间中只到达有限个顾客且不可能 始终没有顾客到达(非平凡性)。

定理

在上述条件下,在长度为 t 的时间区间上到达的顾客数 X(t) 服从参数为 λ t 的Poisson 分布,其中 $\lambda > 0$ 是一个常数。

6. 负二项分布

以X记可列重贝努里试验中A恰好发生r次所需的试验次数,则其分布律为:

$$P(X=k)=C_{k-1}^{r-1}(1-p)^{k-r}p^r, k=r,r+1,r+2,\cdots$$

称X服从参数为(r, p)的负二项分布,记为

$$X\sim NB(r, p)$$

负二项分布又叫帕斯卡(Pascal)分布

7. 超几何分布

设N个元素分为两类,其中M个属于第 一类,N-M个属于第二类。现从中按不重 复抽样取n个,以X记这n个中属于第一类元 素的个数。则X的分布律为:

$$P(X = k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, \quad k = 0,1,2,\dots, \min(n,M)$$

称X服从参数为(N, M, n)的超几何分布。

- 常见分布律之间的关系
 - 1. (0-1)分布和二项分布的关系 (0-1)分布是二项分布B(n,p)中n=1时的特款。
 - 2. 几何分布和负二项分布的关系

几何分布是负二项分布NB(r,p)中r=1时的特款。

3. 超几何分布和二项分布的关系

定理 设在超几何分布中, n是一个取定的正整数,

而
$$\lim_{N \to \infty} = \frac{M}{N} = p$$
,则
$$\lim_{N \to \infty} \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} = C_N^k p^k (1-p)^{n-k},$$
 $k=0,1,2,...,n$

即 当N充分大时,超几何分布趋向于二项分布。 事实上:超几何分布用来描述不放回抽样的情况; 而二项分布则用来描述放回抽样的情况; 当N充分大时,两种抽样方式的差别很小。 4. 二项分布和泊松分布的关系

定理 设随机变量 $X_n \sim B(n, p_n), (n = 0, 1, 2, \dots)$, 且

$$\lim_{n\to\infty} np_n = \lambda > 0 , \lambda 为常数,则$$

$$\lim_{n\to\infty} C_n^k p_n^k (1-p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda},$$

$$\lim_{n\to\infty} R = 0, 1, 2, \cdots$$

该定理也称为泊松定理。

泊松定理表明,泊松分布是二项分布的极限分布,当n很大,p很小时,二项分布就可近似地看成是泊松分布,即

$$(C_n^k p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda},$$

其中 $\lambda = np$.

一般的,当 $n \ge 10$, $p \le 0.1$ 时就可用泊松分布 一近似代替二项分布。 例 某人射击的命中率为0.02,他独立射击400次,试求其命中次数不少于2的概率。

解 设X表示400次独立射击中命中的次数,

则 $X\sim B(400, 0.02)$,故

$$P\{X \ge 2\} = 1 - P\{X = 0\} - P\{X = 1\}$$

$$=1-0.98^{400}-(400)(0.02)(0.98^{399})=0.997165$$

另解(用泊松分布) 由于 $\lambda ≈ np = (400)(0.02) = 8$,

故
$$X \sim P\{X=k\} = \frac{8^k}{k!}e^{-8}, k \ge 0$$
 近似地有

$$P\{X \ge 2\} = 1 - P\{X = 0\} - P\{X = 1\}$$

$$= 1 - e^{-8} - 8e^{-8} = 0.996981$$

• 二维离散型随机变量

1. 联合分布律

若二维随机变量(X, Y)只能取至多可列个值 (x_i, y_j) , $(i, j=1, 2, \cdots)$,则称(X, Y)为二维离散型随机变量。

若二维离散型随机变量(X, Y) 取 (x_i, y_j) 的概率为 p_{ij} ,即 $P\{X=x_i, Y=y_j\}=p_{ij}$, $(i,j=1,2,\cdots)$ 则称 p_{ij} 为二维离散型随机变量(X, Y)的分布律,或随机变量(X, Y)的联合分布律。

可记为

$$(X, Y) \sim P\{X = x_i, Y = y_i\} = p_{ij}, (i, j = 1, 2, \dots)$$

 $P{X=x_i, Y=y_j}=p_{ij}, (i,j=1,2,\cdots)$

· 联合分布律的<mark>性质</mark>

(1)(非负性) $p_{ij} \ge 0$, $i,j=1,2,\cdots$;

(2)(规范性)
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$$

二维离散型随机变量的联合分布律也可列表 表示如下:

XY	y_1	y ₂	•••	y_j	•••
x_1	<i>p</i> ₁₁	p_{12}	•••	p_{1j}	•••
x_2	p_{21}	p_{22}	•••	p_{2j}	•••
:	:	•		•	
x_i	p_{i1}	p_{i2}	•••	p_{ij}	•••
•	l •	•		:	

例 盒子里装有3只黑球,2只红球,2只白球,今 \rightarrow 在其中任取4只球,以X 表示取到黑球的数目, 以Y表示取到红球的数目。试写出X和Y的联合 一 分布律; 求 $P{X \le 1, Y \ge 2}$ 。

• 边缘分布律

若随机变量 X 与 Y 的联合分布律为

$$(X, Y) \sim P\{X = x_i, Y = y_j\} = p_{ij}, (i, j = 1, 2, \dots)$$

则称

$$P\{X=x_i\}=p_i.=\sum_{j=1}^{\infty}p_{ij}, i=1,2,\cdots$$

为(X,Y)关于X的边缘分布律;

同理
$$P{Y=y_j}=p_{.j}=\sum_{i=1}^{n}p_{ij}, j=1,2,\cdots$$

称为(X,Y)关于Y的边缘分布律。

$$P\{X=x_i\}=p_i.=\sum_{j=1}^{\infty}p_{ij}, i=1,2,\cdots$$

$$P{Y=y_j}=p_{.j}=\sum_{i=1}^{n}p_{ij}, j=1, 2, \cdots$$

→ 边缘分布律自然也满足分布律的性质:

(1)
$$p_{i.} \ge 0; (p_{.j} \ge 0)$$

(2)
$$\sum_{i=1}^{\infty} p_{i.} = 1.(\sum_{j=1}^{\infty} p_{.j} = 1)$$

二维离散型随机变量的边缘分布律也可列表表示如下:

XY	y_1 y_2	y _j	p_i .
x_1	$p_{11} p_{12}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p_1 .
x_2	$p_{21} p_{22}$	p_{2j}	p_2 .
÷	: :	:	:
x_i	p_{i1} p_{i2}	$$ p_{ij} $$	$ p_i $
÷	: :	ŧ	:
	$p_{\cdot 1}$ $p_{\cdot 2}$	p _{.j}	

$$p_{i.} = \sum_{j=1}^{\infty} p_{ij}$$
, $p_{.j} = \sum_{i=1}^{\infty} p_{ij}$

例 设(X, Y)的联	X^{Y}	-1	1	2
合分布律如右表。	0	1	0	3
试求 (1) 双和双约为4		12	1	12
(1) X 和 Y 的边缘 分布律;	3	$\frac{2}{12}$	$\frac{1}{10}$	$\frac{1}{10}$
$(2) P\{X \leq 1\}$ 和	2	12 3	12	12
$P\{Y \ge 1\}_{\circ}$	2	$\frac{3}{12}$	$\frac{1}{12}$	0
- (- - -) •			14	

• 条件分布律

设随机变量X与Y的联合分布律为

$$(X, Y) \sim P\{X = x_i, Y = y_j\} = p_{ij}, (i, j = 1, 2, \dots)$$

X和Y的边缘分布律分别为

$$P\{X=x_i\}=p_i$$
, $i=1, 2, \cdots$

和
$$P{Y=y_i}=p_{\cdot i}$$
, $j=1,2,\cdots$

若对固定的j, $p_{.j} > 0$, 则称

$$P\{X = x_i \mid Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{.j}},$$

$$i = 1, 2, \dots$$

为 $Y = y_j$ 的条件下,X的条件分布律。

记为
$$p_{i|j} = P\{X = x_i \mid Y = y_j\} = \frac{p_{ij}}{p_{ij}}$$
.

同理,若对固定的i, p_i .>0, 则称

$$P_{j|i} = P\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{p_{i}}, j = 1, 2, \dots$$

为 $X = x_i$ 的条件下,Y的条件分布律。

条件分布律也满足分布律的性质。

例 一射手进行射击,命中目标的概率为p(0<p<1),射击进行到命中目标两次为止,现 用X表示首次命中目标所进行的射击次数, 用Y表示总共进行的射击次数。试求X和Y的 联合分布律及条件分布律。

• 离散型随机变量的相互独立性

设随机变量X与Y的联合分布律为

$$(X, Y) \sim P\{X = x_i, Y = y_j\} = p_{ij}, (i, j = 1, 2, \dots)$$

若对任意的 i、j,有 $p_{ij} = p_i \cdot p_{ij}$,

$$\mathbb{P}\{X=x_i, Y=y_j\} = P\{X=x_i\} \cdot P\{Y=y_j\}$$

则称随机变量X与Y相互独立。

例 设随机变量(X, Y)的分布律为

Y	1	2	且X与Y相互独立,
1	$\frac{1}{8}$	b	一 试求 <i>a、b</i> 的值。
2	a	4	
3	$\frac{1}{24}$	$\frac{1}{8}$	

上述独立的概念不难推广到n维离散型随机变量的情形。

设 X_1 , X_2 , …, X_n 为一个n维离散型随机变量, 若对任意的 x_1 , x_2 , …, x_n 有:

$$P\{X_1=x_1, X_2=x_2, \dots, X_n=x_n\}$$

$$= P\{X_1 = x_1\} \cdot P\{X_2 = x_2\} \cdots P\{X_n = x_n\}$$

则称随机变量 X_1 , X_2 , …, X_n 相互独立。

以X记n重贝努里试验中A发生的次数,则

$$X \sim B(n, p)$$

若记 $X_i = \begin{cases} 1,$ 若在第 i 次试验中 A 发生;
 $0,$ 若在第 i 次试验中 A 不发生。

$$X_i \sim \frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$$
且 X_1, X_2, \dots, X_n 相互独立

于是有:
$$X = X_1 + X_2 + \cdots + X_n$$

若 $r.v. X_1, X_2, \cdots, X_n$ 相互独立且服从同一 $(0-1)$

分布,则
$$\sum_{i=1}^{n} X_i \sim B(n, p)$$
。

- 离散型随机变量函数的分布律
- 1. 一维离散型随机变量函数的分布律

定理 设X一个随机变量,若 y=g(x)是一元单值实函数,则Y=g(X)也是一个随机变量。

若 $X \sim P\{X = x_k\} = p_k, k = 1, 2, \dots$ 则

$$Y=g(X) \sim P\{Y=g(x_k)\}=p_k, k=1, 2, \cdots$$

其中 $g(x_k)$ 有相同的,其对应概率合并。

显然,Y的分布律也满足分布律的性质。

例 设 r.v. X的分布律为:

X	-2	-1	0	1	3
p	0.2	0.1	0.3	0.3	0.1

求 $Y=X^2$ 及Z=2X+3的分布律。

2. 多维离散型随机变量函数的分布律 定理 设 X_1 , X_2 , …, X_n 一个n 维随机变量,若 $y=g(x_1,x_2,…,x_n)$ 是一个n 元实值函数,则 $Y=g(X_1,X_2,…,X_n)$ 也是一个随机变量。

写出 $Y=g(X_1, X_2, \dots, X_n)$ 的所有可能取值,然后求其取每一个值的概率。

例 设随机变量(X, Y)的分布律为

XY	0	1	2	3	4
0	0.1 0.04 0.13 0.08	0.05	0.01	0.02	0.01
1	0.04	0.06	0.02	0.03	0.04
2	0.13	0.08	0.01	0.05	0.03
3	0.08	0.11	0.05	0.06	0.02

- (1) 求 $P{X=2|Y=2}$;
- (2) 求S=X+Y的分布律;
- (3) 求T = 2Y X的分布律;
- (4) 求 $V=\max(X,Y)$ 的分布律;
- (5) 求 $U = \min(X, Y)$ 的分布律。

例 设 $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$, 且 X = Y相互独立, 求 Z = X + Y的分布律。 推论 设 $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$, 且 X = Y相互独立, 则 $X + Y \sim P(\lambda_1 + \lambda_2)$ 。