洛必达法则

高等数学 I-信息、统计外招

Weiwen Wang(王伟文)

暨南大学

2025 年秋季学期

课程网页

如果当 $x \to a$ (或 $x \to \infty$) 时,两个函数 f(x) 与 F(x) 都趋于零或都趋于无穷大,那么极限 $\lim_{\substack{x \to a \ (x \to \infty)}} \frac{f(x)}{F(x)}$ 可能存在、也可能不存在. 通常把这种极限叫做未定式,分别简记为 $\frac{0}{0}$ 或 $\frac{\infty}{0}$.

- $\lim_{x\to 0} \frac{\sin x}{x}$.
- $\bullet \lim_{x \to +\infty} \frac{\ln x}{x^n} (n > 0).$

定理 1

设

- (1) 当 $x \rightarrow a$, 函数 f(x) 及 F(x) 都趋于零;
- (2) 在点 α 的某个去心邻域内, f'(x) 及 F'(x) 都存在且 $F'(x) \neq 0$;
- (3) $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ 存在 (或为无穷大),

则

$$\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$$

 $x \to a$ 时, 未定式 \approx 同样适用洛必达法则.

求 $\lim_{x\to 0} \frac{\sin ax}{\sin bx} (b \neq 0)$

求
$$\lim_{x\to 0} \frac{\sin ax}{\sin bx} (b \neq 0)$$

解

$$\lim_{x\to 0} \frac{\sin ax}{\sin bx} = \lim_{x\to 0} \frac{a\cos ax}{b\cos bx} = \frac{\lim_{x\to 0} (a\cos ax)}{\lim_{x\to 0} (b\cos bx)} = \frac{a}{b}.$$

$$\Re \lim_{x\to 0} \frac{x-\sin x}{x^3}$$

解

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \lim_{x \to 0} \frac{\sin x}{6x} = \frac{1}{6}$$

定理 2

设

- (1) 当 $x \to \infty$, 函数 f(x) 及 F(x) 都趋于零;
- (2) 存在正数 X, 当 |x| > X 时, f'(x) 及 F'(x) 都存在且 $F'(x) \neq 0$;
- (3) $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ 存在 (或为无穷大),

则

$$\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)}$$

● $x \to \infty$ 时, 未定式 \approx 同样适用洛必达法则.

解

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{nx^{n-1}} = \lim_{x \to +\infty} \frac{1}{nx^n} = 0.$$

其他未定式转换为 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$

- $0 \cdot \infty$: $0 \cdot \frac{1}{0}$ 或 $\frac{1}{\infty} \cdot \infty$
- $\infty \infty$: $\frac{1}{0} \frac{1}{0} = \frac{0-0}{0}$
- 0^0 : $\ln 0^0 \rightarrow 0 \cdot \infty$
- ∞^0 : $\ln \infty^0 \to 0 \cdot \infty$
- 1^{∞} : $\ln 1^{\infty} \rightarrow \infty \cdot 0$

 $\vec{R} \lim_{x \to 0^+} x^n \ln x \ (n > 0)$

 $\vec{\mathcal{R}} \lim_{x \to 0^+} x^n \ln x \ (n > 0)$

解 此极限为 0.∞ 型未定式, 转化为 № 型

$$\lim_{x \to 0^+} x^n \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x^n}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-nx^{-n-1}} = \lim_{x \to 0^+} \frac{1}{-nx^{-n}} = \lim_{x \to 0^+} \frac{x^n}{-n} = 0.$$

求 $\lim_{x\to 0^+} x^x$.

求 $\lim_{x\to 0^+} x^x$.

解 这是 0^0 型未定式, 用对数变换转换为 $0.\infty$ 型.

求
$$\lim_{x\to 0^+} x^x$$
.

解 这是 0^0 型未定式, 用对数变换转换为 $0 \cdot \infty$ 型.

因为
$$\lim_{x\to 0^+} x \ln x = 0$$
, 故

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln x^x} = \lim_{x \to 0^+} e^{x \ln x} = e^{\lim_{x \to 0^+} x \ln x} = e^0 = 1.$$

随堂练习

1. 使用洛必达法则求极限

- (1) $\lim_{x \to 1} \frac{x^2 1}{\ln x}$
- $(2) \lim_{x\to 0} \frac{e^x e^{-x}}{\sin x}$
- (3) $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$
- 2. 验证极限 $\lim_{x\to\infty} \frac{x+\sin x}{x}$ 存在, 但不能用洛必达法则得出.

随堂练习

1. 使用洛必达法则求极限

(1)
$$\lim_{x \to 1} \frac{x^2 - 1}{\ln x} = 2$$

(2)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = 1$$

(3)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right) = \frac{1}{2}$$

2. 验证极限 $\lim_{x\to\infty} \frac{x+\sin x}{x}$ 存在, 但不能用洛必达法则得出.

解 因为 $\lim_{x\to\infty} \frac{\sin x}{x} = 0$, 故

$$\lim_{x\to\infty}\frac{x+\sin x}{x}=\lim_{x\to\infty}\left(1+\frac{\sin x}{x}\right)=\lim_{x\to\infty}1+\lim_{x\to\infty}\frac{\sin x}{x}=1+0=1.$$

2. 验证极限 $\lim_{x\to\infty} \frac{x+\sin x}{x}$ 存在, 但不能用洛必达法则得出.

解 因为 $\lim_{x\to\infty} \frac{\sin x}{x} = 0$, 故

$$\lim_{x\to\infty}\frac{x+\sin x}{x}=\lim_{x\to\infty}\left(1+\frac{\sin x}{x}\right)=\lim_{x\to\infty}1+\lim_{x\to\infty}\frac{\sin x}{x}=1+0=1.$$

若使用洛必达法则

$$\lim_{x \to \infty} \frac{x + \sin x}{x} = \lim_{x \to \infty} (1 + \cos x)$$

2. 验证极限 $\lim_{x\to\infty} \frac{x+\sin x}{x}$ 存在, 但不能用洛必达法则得出.

解 因为 $\lim_{x\to\infty} \frac{\sin x}{x} = 0$, 故

$$\lim_{x\to\infty}\frac{x+\sin x}{x}=\lim_{x\to\infty}\left(1+\frac{\sin x}{x}\right)=\lim_{x\to\infty}1+\lim_{x\to\infty}\frac{\sin x}{x}=1+0=1.$$

若使用洛必达法则

$$\lim_{x \to \infty} \frac{x + \sin x}{x} = \lim_{x \to \infty} (1 + \cos x)$$

因为极限 $\lim_{x\to\infty}\cos x$ 不存在, 故极限 $\lim_{x\to\infty}(1+\cos x)$ 不存在, 从而不满足洛必达法则使用条件 (3).

作业

• 教材习题 3-2: 1(1)(5)(6)(12)(13)(15); 3.