TAREA 1

23.4 Emplee la extrapolación de Richardson para estimar la primera derivada de $y = \cos x$ en $x = \pi/4$, con el uso de tamaños de paso de $h_1 = \pi/3$ y $h_2 = \pi/6$. Utilice diferencias centradas de $O(h^2)$ para las estimaciones iniciales.

23.5 Repita el problema 23.4, pero para la primera derivada de $\ln x$ en x = 5, con $h_1 = 2$ y $h_2 = 1$.

23.8 Calcule las aproximaciones por diferencia central de primer orden de $O(h^4)$ para cada una de las funciones siguientes en la ubicación y con el tamaño de paso que se especifica:

a)
$$y = x^3 + 4x - 15$$
 en $x = 0$, $h = 0.25$
b) $y = x^2 + \cos x$ en $x = 0.4$, $h = 0.1$
c) $y = \tan (x/3)$ en $x = 3$, $h = 0.5$
d) $y = \sin (0.5\sqrt{x})/x$ en $x = 1$, $h = 0.2$
e) $y = e^x + x$ en $x = 2$, $h = 0.2$

24.40 La tasa de enfriamiento de un cuerpo (figura P24.40) se expresa como:

$$\frac{dT}{dt} = -k(T - T_a)$$

donde T = temperatura del cuerpo (°C), T_a = temperatura del medio circundante (°C) y k = constante de proporcionalidad (por minuto). Así, esta ecuación (denominada ley de Newton para el enfriamiento) especifica que la tasa de enfriamiento es proporcional a la diferencia de temperaturas del cuerpo y del medio circundante. Si una bola de metal calentada a 80°C se sumerge en agua que se mantiene a T_a = 20°C constante, la temperatura de la bola cambia, así

Tiempo, min	0	5	10	15	20	25
Τ, ℃	80	44.5	30.0	24.1	21.7	20.7

Utilice diferenciación numérica para determinar dT/dt en cada valor del tiempo. Grafique dT/dt versus $T-T_a$, y emplee regresión lineal para evaluar k.