Flexible Gesture Recognition Using Wearable Inertial Sensors

2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 16-19 October 2016, Abu Dhabi, UAE

장갑형태의 장치를 개발하여 각 손가락과 손 등에 소형 IMU 센서를 부착하고 회전 데이터를 얻음

관절움직임에 따라 측정되어진 quaternion 특징을 추출하여 Linear Discriminant Analysis 라는 기계 학습을 통해 동작 인식을 진행함

LDA는 높은 차원수를 낮추어 계산양을 줄이고 클 러스터링을 통해 정확도를 높이는 장점을 가짐

Fig. 2: Sensors Positioned on the Hand

미국 수화에 해당하는 American Sign Language를 실시간으로 측정

움직임이 필요한 J와Z를 제외한 24개의 알파벳을 5명이 수행하여 총 120회의 샘플 데이터로 테스트 진행

동작이 유사한 U와V에서 오류가 관측되었고 85%의 정확도를 보임

Copyright © 2008 StartASL.com

Fig. 2: Sensors Positioned on the Hand

Copyright © 2008 StartASL.com

A Wearable System for Recognizing American Sign Language in Real-time Using IMU and Surface EMG Sensors

Wu, Jian et al. IEEE Journal of Biomedical and Health Informatics 20 (2016): 1281-1290.

IMU센서와 sEMG 센서를 팔부위에 부착하여 얻어진 데이터들을 통해 특징을 추출하고 필터링을 통해 가장 적합한 특징 subset을 선별한다.

80가지의 가장 자주 사용되는 ASL(American Sign Language) 수화 동작을 수행하고 트레이닝-테스트 과정을 거쳐 각 동작의 정확도를 측정

4가지의 classification 방식에 따른 성능 비교와 사용되는 특징 수에 따른 정확도, sEMG 데이터의 유무에 따른 차이 등을 비교하였음.

sEMG는 팔 움직임이 유사한 동작을 구분하기 위해 필요하며 10% 이상의 정확도를 향상시키는 결과를 보임

40개의 특징을 사용한 LibSVM에서 96.16%의 정확도를 보였으나 변수 설정에 따라 68%까지 정확도의 범위가 많은 차이를 나타내었음

https://youtu.be/NO5Ek1XylcY

Fig. 5. Placement of sEMG electrodes.

Fig. 4. Diagram of proposed system.

4개의 주요 근육 부위에 센서를 부착

추출된 특징들을 가지고 트레이닝 및 테스팅 과정을 거침

TABLE I. SEMG FEATURES

Feature name (dimension)	Feature name (dimension)
Mean Absolute Value (1)	Variance (1)
Four order Reflection	Willison Amplitude in 5 amplitude
Coefficients (4)	ranges (5)
Histogram (1)	Modified Median Frequency (1)
Root Mean Square (1)	Modified Mean Frequency (1)
Four order AR coefficients (4)	

TABLE II. IMU SENSOR FEATURES

Feature name (dimension)	Feature name (dimension)		
Mean (1)	Variance (1)		
Standard Deviation (1)	Integration (1)		
Root Mean Square (1)	Zero Cross Rate (1)		
Mean Cross Rate (1)	Skewness (1)		
Kurtosis (1)	First three orders of 256-point FFT		
	Coefficients (3)		
Entropy (1)	Signal Magnitude Area (1)		
AR coefficients (10)			

4개의 채널에서 추출되는 sEMG dimension은 76개 3 axis accelerometer, 3 axis gyroscope 와 각 magnitude 1개씩으로 IMU의 dimension은 192개로

두 센서의 특징 벡터를 합쳐 268개의 차원수를 가짐

많은 차원수로 인한 계산량 부담을 줄이고 각 classifier에 가장 적합한 특징 subset을 구하기 위해

Information gain filter를 사용하여 특징별로 순위를 매김

TABLE V. FOURTY SELECTED FEATURES

Rank#	Feature name	Rank#	Feature name	Rank#	Feature name	Rank#	Feature name
1	Mean of Acc_y	11	RMS of Gyro_x	21	RMS of sEMG1	31	Signal magnitude area of Acc_x
2	Mean of Acc_z	12	RMS of amplitude of accelerometer	22	Zero cross rate of Acc_y	32	Variance of sEMG4
3	RMS of Acc_x	13	Mean of amplitude of accelerometer	23	Variance of Gyro_z	33	Entropy of Gyro_x
4	RMS of Acc_z	14	Mean of Acc_x	24	Standard deviation Of Gyro_z	34	RMS of sEMG4
5	RMS of Acc_y	15	Signal magnitude area of Acc_x	25	Variance of Acc_y	35	Signal magnitude area of Gyro_x
6	Integration of Acc_y	16	Standard deviation of Acc_z	26	Standard deviation of Acc y	36	Zero cross rate of Acc_z
7	Integration of Acc_x	17	Variance of Acc_z	27	Modified mean frequency of sEMG1	37	Mean absolute value of sEMG4
8	Integration of Acc_z	18	Standard deviation of Gyro_z	28	Mean absolute value of sEMG1	38	Signal magnitude area of Gyro_z
9	Entropy of Acc_x	19	Variance of Gyro_x	29	First auto-regression coefficient of Acc_x	39	RMS of sEMG2
10	RMS of Gyro_z	20	Variance of sEMG1	30	Mean absolute value of sEMG2	40	Mean of amplitude of gyroscope

선택된 특징들과 순위

Accelerometer, gyroscope, sEMG 순으로 중요도가 나열됨

TABLE VI. RESULTS OF INTRA-SUBJECT VALIDATION

	NaiveBayes	DT	NN	LibSVM
Subject 1	88.81%	83.89%	96.6%	98.22%
Subject 2	97.01%	91.54%	99.16%	99.48%
Subject 3	92.74%	81.97%	92.89%	96.61%
Subject 4	91.15%	77.98%	95.77%	97.23%
Average	93.68%	83.85%	96.11%	97.89%

Fig. 7. Results of inter-subject testing.

NaiveBayes, Decision Tree, Nearest Neighbor, Support Vector Machine 4가지의 classification 방식을 intra-subject, inter-subject 방식으로 실험 하였을 때 많은 차이를 보이는데

Intra방식은 실험자마다 각자의 데이터를 사용하여 훈련, 테스트를 진행하며

Inter방식은 자신을 제외한 3명의 실험자 데이터 를 바탕으로 훈련하여 테스트를 진행하기에 정확 도가 많이 떨어짐

높은 정확도를 위해서는 각 실험자마다 트레이닝을 따로 시켜야 하는 단점을 확인할 수 있음