Sieci urządzeń mobilnych

Część 3 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - O Dlaczego mobilność?
 - Rynek dla mobilnych urządzeń
 - Dziedziny badań
- Transmisja radiowa
- □ Protokoły wielodostępowe
- ☐ Systemy GSM
- Systemy satelitarne
- Bezprzewodowe sieci lokalne

Multipleksacja

- □ Multipleksacha w 4 wymiarach
 - o przestrzeń (s;)
 - czas (†)
 - o częstotliwość (f)
 - o kod (c)
- Cel: wspólne wykorzystanie współdzielonego medium
- Ważne: potrzebne przestrzenie ochronne!

Multipleksacja częstotliwościowa

- □ Podział całego spektrum w mniejsze pasma częstotliwości
- Kanał otrzymuje pewne pasmo na czas komunikacji
- □ Zalety:
 - nie potrzeba dynamicznej koordynacji
 - działa także dla sygnałów analogowych
- Wady:
 - marnowanie przepustowości, jeśli ruch rozkłada się nierównomiernie
 - Sztywny podział
 - przestrzenie ochronne

Multipleksacja czasowa

Kanał otrzymuje całe spektrum na pewien okres czasu

Multipleksacja czasowo-częstotliwościowa

- Połączenie obu metod
- □ Kanał otrzymuje pewne pasmo na pewien okres czasu
- □ Przykład: GSM
- □ Zalety:
 - ochrona przed podsłuchem
 - ochrona przed zakłóceniami pewnych częstotliwości
 - wyższa przepustowość w porównaniu z mult. kodowa
- ale: potrzebna precyzyjna koordynacja

Multipleksacja kodowa

Każdy kanał ma niepowtarzalny kod

- □ Wszystkie kanały używają całego spektrum jednocześnie
- □ Zalety:
 - wydajne wykorzystanie przepustowości
 - nie potrzeba koordynacji ani synchronizacji
 - dobra ochrona przed zakłóceniami i podsłuchem
- Wady:
 - o mniejsze przepustowości
 - o bardziej złożona regeneracja

Modulacja

- Modulacja cyfrowa
 - Dane cyfrowe wysyłane sygnałem analogowym (podstawowe pasmo)
 - ASK, FSK, PSK
 - o różnią się wydajnością częstotliwości, mocy, odpornością
- Modulacja analogowa
 - przesuwa centralną częstotliwość pasma podstawowego do częstotliwości sygnału nośnego
- □ Cel
 - mniejsze antenty (n.p., $\lambda/4$)
 - Frequency Division Multiplexing
 - o charakterystyki medium
- Metody
 - Modulacja amplitudy (AM)
 - Modulacja częstotliwości (FM)
 - Modulacja fazy (PM)

Modulacja i demodulacja

nadajnik radiowy

Modulacja cyfrowa

- Modulacja sygnałów cyfrowych zwana Shift Keying
- □ Amplitude Shift Keying (ASK):
 - o bardzo prosta
 - wymaga małej przepustowości
 - bardzo wrażliwa na zakłócenia
- Frequency Shift Keying (FSK):
 - potrzebuje większego pasma
- □ Phase Shift Keying (PSK):
 - bardziej złożona
 - odporna na zakłócenia

Technologie rozszerzania pasma

- Tłumienie zależne od częstotliwości może zakłócić sygnały w wąskim paśmie częstotliwości
- Rozwiązanie: rozszerzyć wąskie pasmo sygnału na szerokie pasmo, używając kodu

- o współdzielenie pasma przez wiele sygnałów bez koordynacji
- odporność na podsłuch
- Alternatywne metody: Direct Sequence, Frequency Hopping

Efekty rozszerzania i zakłóceń

Rozszerzanie i tłumienie częstotliwościowe

kanały w wąskim paśmie

kanały w rozszerzonym paśmie

DSSS (Direct Sequence Spread Spectrum)

- □ XOR sygnału z pseudolosową liczbą
 - ciąg części (chipping sequence)
 - o więcej części na 1 bit (n.p., 128) oznacza większą częstotliwość sygnału
- Zalety
 - zmniejsza tłumienie częstotliwościowe
 - w sieciach komórkowych
 - stacje bazowe mogą używać tego samego pasma
 - wiele stacji bazowych może wykryć i odebrać sygnał
 - soft handover
- Wady
 - o potrzebne jest precyzyjne sterowanie mocą

t_h: okres bitu

t_c: okres części

FHSS (Frequency Hopping Spread Spectrule

- Dyskretne zmiany częstotliwości nośnej
 - o ciąg zmienianych częstotliwości jest pseudolosowy
- □ Dwie wersje
 - Szybkie skakanie: kilka częstotliwości na 1 bit
 - Powolne skakanie:
 kilka bitów na 1 częstotliwość
- Zalety
 - zakłócanie i tłumienie częstotliwościowe są ograniczone do krótkiego okresu czasu
 - prosta implementacja
 - w danej chwili, używa tylko małej części pasma
- Wady
 - nie tak odporne jak DSSS
 - prostsze do wykrycia

FHSS II

t_b: okres bitu

 $t_{\mbox{\tiny d}}$: czas przebywania w paśmie

Struktura komórek

- □ Implementuje multipleksację przestrzenną: stacja bazowa obsługuje pewien obszar (komórkę)
- Urządzenia mobilne komunikują się tylko za pośrednictwem stacji bazowych
- □ Zalety struktury komórkowej:
 - o zwiększenie zasobów, większa ilość użytkowników
 - zmniejszenie mocy transmisyjnej
 - o bardziej odporne, mniej scentralizowane
 - stacja bazowa raszu zarządza zakłóceniami, obszarem transmisji itp. lokalnie

Struktura komórek

- Problemy:
 - przewodowa sieć potrzebna do łączenia stacji bazowych
 - o przekazywanie (zmiana komórek) potrzebne
 - o zakłócenia z innymi komórkami
- Rozmiary komórek: rzędu 100 m w miastach, n.p., 35 km na wsi (GSM) - dla wyższych częstotliwości muszą być mniejsze

Zwiększenie przepustowości w systemie komórkowym

- Porównajmy: 1 silny nadajnik, obsługujący 35 kanałów głosowych na obszarze 100 km²
- Albo: 7 słabszych nadajników, które obsługują 12 kanałów każdy, na obszarze 14 km²
- □ Wtedy: Na tym samym obszarze jest dostępnych 7*12=84, zamiast 35 kanałów głosowych
- System obsługuje więcej połączeń. Koszt jednego nadajnika jest mniejszy. Większy koszt jest za to na rozstawienie nadajników (zakup lub wynajem lokalizacji)

Planowanie częstotliwości I

- Ponowne użycie częstotliwości tylko przy dostatecznej odległości między stacjami bazowymi
- □ Standardowy układ z 7 częstotliwościami:

- □ Stałe przypisanie częstotliwości:
 - o pewne częstotliwości są przypisane pewnym komórkom
 - o problem: różne obciążenie ruchowe w różnych komórkach
- Dynamiczne przypisywanie częstotliwości:
 - stacja bazowa wybiera częstotliwości, zależnie od częstotliwości używanych przez sąsiednie komórki
 - o więcej zasobów w komórkach, w których jest więcej ruchu
 - o przypisanie może także posługiwać się pomiarami zakłóceń

Planowanie częstotliwości II

Grona 3 komórek

Grona 7 komórek

Grona 3 komórek z anetami 3-sektorowymi

Planowanie częstotliwości III

∃ Grona komórek ang. cluster

Figure Cell clusters

Planowanie częstotliwości IV

<u>Planowanie częstotliwości V</u>

- □ Załóżmy, że mamy 1001 kanałów radiowych, każda komórka ma 6 km2, a cały system ma pokryć 2100 km2.
 - 1. Oblicz ilość kanałów w systemie, gdy rozmiar grona jest N=7
 - 2. Ile razy trzeba powtórzyć grono rozmiaru N=4, żeby pokryć cały obszar?
 - 3. Oblicz ilość kanałów w systemie, gdy rozmiar grona jest N=4.
 - 4. Czy zmiejszenie rozmiaru grona zwiększyło ilość kanałów?

□ Rozwiązanie:

- \circ 1. J = 1001/N = 143, M = 2100/(6*N) = 50, C = M*J*N = 50050 kanałów
- \circ 2. N = 4 -> M = 2100/(6*N) = 87
- \circ 3. N = 4 -> J = 1001/4 = 250 kanałów w komórce. C = M*J*N = 87000
- 4. TAK! Zmniejszenie N z 7 do 4 zwiększyło C z 50050 do 87000 kanałów.

Oddychanie komórek

- Systemy CDM: rozmiar komórki zależy od obciążenia ruchowego
- Dodatkowy ruch to zakłócenia dla pozostałych użytkowników

 Gdy zakłócenia są za duże, użytkownicy wypadają z komórek

Mapa wykładu

- Wprowadzenie
 - O Dlaczego mobilność?
 - Rynek dla mobilnych urządzeń
 - Dziedziny badań
- Transmisja radiowa
- □ Protokoły wielodostępowe
- ☐ Systemy GSM
- Systemy satelitarne
- Bezprzewodowe sieci lokalne

Motywacja

- Czy da się zastosować protokoły wielodostępowe rodem z sieci przewodowych?
- □ Przykład CSMA/CD
 - Carrier Sense Multiple Access / Collision Detection
 - wysyłać, gdy tylko medium jest wolne, nasłuchiwać w celu wykrywania kolizji (IEEE 802.3)
- Problemy w sieciach bezprzewodowych
 - o zanik mocy sygnału proporcjonalnie do kwadratu odległości
 - nadawca chce zastosować CS oraz CD, ale kolizje następują u odbiorcy
 - może się zdarzyć, że nadawca nie "słyszy" kolizji, czyli CD nie zawsze działa
 - w dodatku, CS też może nie działać jeśli, n.p., urządzenie jest "ukryte"

Ukryte i widoczne urządzenia

- Ukryte terminale
 - O A wysyła do B, C nie odbiera od A
 - C chce wysłać do B, C wyczuwa "wolne" medium (CS nie działa)
 - kolizja u B, A nie wykrywa kolizjia (CD nie działa)

A jest "ukryty" dla C

- Widoczne terminale
 - B wysyła do A, C chce wysłać do innego terminala (nie A ani B)
 - O C musi czekać, CS wskazuje, że medium jest używane
 - lecz A jest poza zasięgiem C, zatem czekanie nie jest potrzebne
 - O C jest "widoczny" dla B SKO2

Bliskie i dalekie terminale

- □ Terminale A i B wysyłają C odbiera
 - o moc sygnału maleje proporcjonalnie do kwadratu odległości
 - o sygnał terminalu B zagłusza sygnał terminalu A
 - C nie odbiera sygnału A

- □ Jeśli, n.p., C jest koordynatorem protokołu wielodostępowego, B zagłuszy terminal A całkowicie
- □ Problem istotny dla sieci CDMA
 - o potrzebna precyzyjna kontrola mocy

Multipleksacje SDMA/FDMA/TDMA

- SDMA (Space Division Multiple Access)
 - o podział przestrzeni na sektory, użycie anten kierunkowych
 - struktura komórkowa
- ☐ FDMA (Frequency Division Multiple Access)
 - kanał komunikacyjny otrzymuje pewną częstotliwość
 - stałe (n.p., rozgłaszanie radiowe), powoli zmienne (n.p., GSM), szybko zmienne (FHSS, Frequency Hopping Spread Spectrum)
- □ TDMA (Time Division Multiple Access)
 - kanał otrzymuje pewną częstotliwość na określony okres czasu
- Multipleksacja wymaga także protokołów wielodostępowych!

FDD/FDMA - przykład: GSM

TDD/TDMA - przykład: DECT

Aloha/slotted aloha

Mobilne-33

- losowa, rozprzoszona (bez koordynatora) multipleksacja czasowa
- Slotted Aloha dodatkowo używa szczelin, wysyłanie musi się rozpoczynać na początku szczeliny czasowej

 Wydajność kanału tylko 18% dla Aloha, 36% dla Slotted Aloha

SK₀2

DAMA - Demand Assigned Multiple Access

- Rezerwacje mogą zwiększyć wydajność do 80%
 - o nadawca rezerwuje przyszłą szczelinę czasową
 - o nadawanie w tej szczelinie jest możliwe bez kolizji
 - o rezerwacje mogą powodować wyższe opóźnienia
 - o podejście typowe dla łącz satelitarnych
- Przykłady algorytmów z rezerwacjami:
 - Explicit Reservation according to Roberts (Reservation-ALOHA)
 - Implicit Reservation (PRMA)
 - Reservation-TDMA

DAMA - przykład: Explicit Reservation

- □ Explicit Reservation (Reservation Aloha):
 - o dwa tryby:
 - tryb ALOHA dla rezerwacji: konkurencja o małe szczeliny rezerwujące, możliwe kolizje
 - tryb zarezerwowany dla transmisji danych w zarezerwowanych szczelinach (bez kolizji)
 - wszystkie stacje muszą utrzymywać spójność list rezerwacji w dowolnej chwili, i dlatego stacje muszą się synchronizować

DAMA - przykład: PRMA

□Rezerwacja domyślna (PRMA - Packet Reservation MA):

- o pewna ilość szczelin tworzy ramkę, ramki się powtarzają
- o stacje konkurują o puste szczeliny stosując Slotted Aloha
- gdy stacja zarezerwuje szczelinę, automatycznie otrzymuje szczelinę we wszystkich następnych ramkach, tak długo jak ma dane do wysłania
- konkurencja o tę szczelinę rozpocznie się znowu, jak tylko pozostanie pusta w jednej z ramek

DAMA - przykład: Reservation-TDMA

Reservation Time Division Multiple Access

- każda ramka skłąda się z N mini-szczelin i x szczelin danych
- każda stacja ma własną mini-szczelinę i może rezerwować do k ramek danych używając tej mini-szczeliny (tzn. x = N * k).
- o inne stacje mogą wysyałac dane w niewykorzystanych szczelinach według kolejności round-robin (ruch best-effort)

SK₀2

MACA - unikanie kolizji

- MACA (Multiple Access with Collision Avoidance)
 używa krótkich pakietów sygnalizacyjnych dla unikania kolizji
 - RTS (request to send): nadawca prosi odbiorcę o prawo do nadawanie wysyłając krótki pakiet RTS przed pakietem danych
 - CTS (clear to send): odbiorca zezwala na wysyłanie gdy jest gotowy do odbioru
- □ Pakiety sygnalizacyjne zawierają
 - adres nadawcy
 - adres odbiorcy
 - rozmiar pakietu
- □ Wariant tej metody stosowany w IEEE 802.11 DFWMAC (Distributed Foundation Wireless MAC)

Przykłady MACA

- MACA unika problemu ukrytych terminali
 - O A i C chca wysłać do B
 - A pierwszy wysyła RTS
 - O C czeka po CTS od B

- MACA unika problemu widocznych terminali
 - B chce wysłać do A, C do innego terminala
 - teraz C nie musi czekać, bo nie otrzyma CTS od A

Mechanizmy odpytywania

- Jeśli jeden terminal jest w zasięgu wszystkich pozostałych (n.p. stacja bazowa) może odpytywać pozostałe według pewnego algorytmu
- □ Przykład: Randomly Addressed Polling
 - o stacja bazowa sygnalizuje gotowość wszystkim terminalom
 - terminale gotowe do nadawania wysyłają losową liczbę bez kolizji, za pomocą CDMA lub FDMA (losowa liczba jest dynamicznym adresem)
 - stacja bazowa wybiera jeden adres do odpytywania z listy wszystkich adresów (kolizja, jeśli dwa terminale wybiorą ten sam adres)
 - stacja bazowa potwierdza poprawny pakiet i kontynuuje odpytywanie następnego terminala
 - o cykl powtarza się po odpytaniu wszystkich terminali

ISMA (Inhibit Sense Multiple Access)

- Aktualny stan medium jest sygnalizowany przez "sygnał zajętości"
 - stacja bazowa sygnalizuje na łączu "downlink" (od stacji do terminali) czy medium jest wolne
 - o terminale nie mogą wysyłać, jeśli medium jest zajęte
 - o terminale mogą wysyłać, gdy ustanie "sygnał zajętości"
 - stacja bazowa sygnalizuje kolizje lub poprawne transmisje za pomocą sygnału zajętości lub potwierdzeń (dostęp do mediów nie jest koordynowany)

mechanizm jest stosowany, n.p.,
 w CDPD (USA, zintegrowane
 z AMPS)

SK₀2

<u>CDMA</u>

□CDMA (Code Division Multiple Access)

- wszystkie terminale wysyłają na tej samej częstotliwości, prawdopodobnie w tym samym czasie, i mogą używać całej przepustowości kanału
- każdy nadawca ma niepowtarzalny, losowy numer, i oblicza XOR sygnału z tym numerem
- odbiorca może "dostroić się" do sygnału jeśli zna numer, dostrajanie się odbywa się przez funkcję korelacji

CDMA

□ Wady:

- większa złożoność odbiorcy (odbiorca nie może po prostu słuchać medium i odbierać, gdy pojawi się sygnał)
- wszystkie sygnały powinny mieć tę samą moc u odbiorcy

□Zalety:

- wszystkie terminale używają tej samej częstotliwości
- duża przestrzeń kodów (n.p. 2³²) w porównaniu do częstotliwości
- o zakłócenia (n.p. biały szum) nie są kodowane
- łatwo użyć szyfrowania i kodów nadmiarowych

Teoria CDMA

■ Nadawca A

- \circ wysyła $A_d = 1$, klucz $A_k = 010011$ (uwaga: "0"= -1, "1"= +1)
- \circ sygnat: $A_s = A_d * A_k = (-1, +1, -1, -1, +1, +1)$

■ Nadawca B

- \circ wysyła $B_d = 0$, klucz $B_k = 110101$
- \circ sygnat $B_s = B_d * B_k = (-1, -1, +1, -1, +1, -1)$

Oba sygnały nakładają się na siebie

- o ignorujemy na razie zakłócenia
- $A_s + B_s = (-2, 0, 0, -2, +2, 0)$

Teoria CDMA

- Odbiorca chce odebrać sygnał od A
 - o używa klucza A_k bitowo (iloczyn wektorowy)

•
$$A_{e} = (-2, 0, 0, -2, +2, 0) \bullet A_{k} = 2 + 0 + 0 + 2 + 2 + 0 = 6$$

- wynik większy niż 0, zatem orginalny bit to było "1"
- odbierając od B
 - $B_e = (-2, 0, 0, -2, +2, 0)$ $B_k = -2 + 0 + 0 2 2 + 0 = -6,$ czyli "0"

SAMA - Spread Aloha Multiple Access

- Aloha ma bardzo małą wydajność, CDMA potrzebuje złożonych odbiorników żeby odbierać od różnych nadawców z różnymi kodami w tym samym czasie
- Pomysł: używać tylko jednego kodu (chipping sequence) dla wszystkich nadawców, którzy mają dostęp do kanału za pomocą Aloha

SK₀2

Porównanie SDMA/TDMA/FDMA/CDMA

Metoda	SDMA	TDMA	FDMA	CDMA
Idea	podział przestrzeni na komórki / sektory	podział czasu na rozłączne szczeliny, wzór ustalony lub zależny od ruchu	podział pasma częstotliwości na rozłączne mniejsze pasma	Podział za pomocą ortogonalnych kodów
Terminale	tylko jeden terminal może nadawać w jednej komórce / sektorze	wszystkie terminale są aktywne w krótkich szczelinach czasu na tej samej częstotliwości	każdy terminal ma własną częstotliwość przez cały czas	wszystkie terminale mogą nadawąc w tym samym miejscu, tym samym czasie i częstotliwości
Oddzielanie sygnałów	struktura komórkowa, anteny kierunkowe	synchronizacja w czasie	filtrowanie według częstotliwości	kod i specjalny odbiornik
Zalety	bardzo proste, zwiększa ilość użytkoników /km²	znane, w pełni cyfrowe, elastyczne	proste, znane, odporne	elastyczne, zużywa mniej częstotliwości, miękkie przekazywanie

Porównanie SDMA/TDMA/FDMA/CDMA

Metoda	SDMA	TDMA	FDMA	CDMA		
Wady	nie jest elastyczne, anteny zwykle są nieruchome	potrzebuje przestrzeni ochronnych (propagacja wielościeżkow a), trudna synchronizacja	nie jest elastyczne, częstotliwości są rzadkim zasobem	złożone odbiorniki, potrzeba skomplikowanego sterowania mocą nadawcy		
Komentarz	użyteczne tylko w połączeniu z TDMA, FDMA lub CDMA	standard w sieciach przewodowych , używane razem z FDMA/SDMA w wielu sieciach mobilnych	zwykle łączone z TDMA (skakanie po częstotliwościa ch) i SDMA (ponowne wykorzystanie częstotliwości)	wciąż są problemy, większa złożoność, mniejsze oczekiwania; integrowane z TDMA/FDMA		

Mapa wykładu

- Wprowadzenie
 - O Dlaczego mobilność?
 - Rynek dla mobilnych urządzeń
 - Dziedziny badań
- Transmisja radiowa
- Protokoły wielodostępowe
- □ Systemy GSM
- Systemy satelitarne
- Bezprzewodowe sieci lokalne