

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

*910196515

CHEMISTRY 9701/22

Paper 2 AS Level Structured Questions

May/June 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 The melting points of some solids are shown in Table 1.1.

Table 1.1

solid	melting point/K
magnesium	923
phosphorus	317
sodium chloride	1074
sulfur	392

(a) (i	State the type of bonding present in magnesium and in sodium chloride.	
	bonding in magnesium	
	bonding in sodium chloride	 [1]
(ii	Explain the difference in the melting points of magnesium and sodium chloride.	
(iii	Explain the difference in the melting points of phosphorus and sulfur in terms of struct and bonding.	ure
		[2]
(b) (i) Define electronegativity.	
		[1]
(ii	Explain why electronegativity increases across a period.	

two molecules of I	NH ₃ (I).		
Include any releva	nt lone pairs of e	electrons and dipoles	
The melting points	of ice and amm	nonia are shown in Ta	hlo 1 2
The metang points		able 1.2	510 1.2.
	solid	melting point/K	
			_
	ice	273	

[1]

- 2 Chlorine is a reactive element. It forms many compounds.
 - (a) (i) Complete Table 2.1 to show the maximum oxidation number of the elements Na to P in their chlorides.

Table 2.1

element	Na	Mg	Al	Si	Р
maximum oxidation number					

State what determines the maximum oxidation number of elements in Period 3.[1] **(b)** An excess of cold water is added to the chloride of silicon. Write an equation for the reaction between an excess of cold water and the chloride of silicon.[1] Suggest the pH of the solution produced in (b)(i). [1] (c) An excess of cold water is added to the chloride of phosphorus. Write an equation for the reaction between an excess of cold water and the chloride of phosphorus.[1] Suggest the pH of the solution produced in (c)(i).[1] (d) (i) Write an equation for the reaction of chlorine with water.[1] Write an equation for the reaction of chlorine with hot NaOH(aq).[1]

		·
(e)		ach is used as a cleaning product to kill bacteria. It is made by adding compounds like ium chlorate(I), NaC $\it l$ O, to water.
	(i)	Identify the formula of the ion present in bleach that kills bacteria.
		[1]
	(ii)	Sodium chlorate(I), NaC $\it l$ O, reacts with hydrogen peroxide to produce sodium chloride, water and oxygen gas.
		Construct an equation for this reaction.
		[1]
	(iii)	A sample of bleach \boldsymbol{W} contains an unknown concentration of sodium chlorate(I).
		$10.0\mathrm{cm^3}$ of W is diluted with distilled water to make a total volume of $100\mathrm{cm^3}$ of bleach solution. $25.0\mathrm{cm^3}$ of this diluted bleach solution is added to an excess of hydrogen peroxide and the volume of gas produced measured under room conditions. The experiment is repeated and on average $25.0\mathrm{cm^3}$ of diluted bleach solution produces $42.0\mathrm{cm^3}$ of gas.
		Calculate the concentration, in gdm^{-3} , of sodium chlorate(I) in \boldsymbol{W} .
		concentration of NaC l O in W = g dm ⁻³ [3]
		[Total: 13]

3 Fig. 3.1 describes a sequence of reactions that can be used to produce a food additive, compound **Y**, from CH₃CH₂C*l*.

Fig. 3.1

(a)	(i)	State the reagent and conditions for step 1 in Fig. 3.1.

......[1]

(ii) Give the systematic name of **X**.

(iii) Identify the type of reaction that occurs when dilute acid is added to X in step 2.

(iv) In step 3, Y and a gas are produced. Construct an equation for step 3.

[0]
121

(b) ${\rm CH_3CH_2COOH\ can\ also\ be\ formed\ from\ propan-1-ol\ and\ potassium\ dichromate}(VI).$ State the conditions required.

(c) Complete Table 3.1 to show the number of sigma bonds (σ) and pi bonds (π) present in a molecule of **X**.

Table 3.1

type of bond	number of bonds in X
sigma (σ)	
pi (π)	

[2]

[Total: 8]

4 In industry, ethanol is made by reacting ethene with steam in the presence of H₃PO₄.

reaction 1
$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

(a) Use the bond energy values in Table 4.1 to calculate the enthalpy change, $\Delta H_{\rm r}$, for reaction 1.

Table 4.1

bond energy/kJ mol ⁻¹
350
610
840
410
360
740
460

$\Lambda H =$	 kJ mol ^{−1}	[2]
△ r	 NO ITIOI	[-]

(b) Reaction 1 reaches equilibrium at constant temperature and pressure.

Deduce what effect increasing the pressure will have on the amount of ethanol in the new equilibrium mixture. Use Le Chatelier's principle to explain your answer.

effect of increasing pressure
explanation

[2]

(c) The mechanism for reaction 1 can be described in three steps. Steps 1 and 2 for reaction 1 are shown in Fig. 4.1.

Fig. 4.1

(i)	Describe the behaviour of H ₃ PO ₄ in step 1 in Fig. 4.1. Explain your answer.
	[1]
(ii)	Identify the species that behaves as an electrophile in step 2 in Fig. 4.1. Explain your answer.
	[1]

(iii) Complete Fig. 4.2 to show the mechanism for step 3 of reaction 1. Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Fig. 4.2

[2]

(iv)	Describe how a catalyst affects a reaction. Explain your answer.
	[2
(v)	Use Fig. 4.1 and Fig. 4.2 to justify why H ₃ PO ₄ is described as a catalyst in reaction 1.
	[1
(vi)	Propene also reacts with steam. A mixture of organic products is produced.
	Explain why propan-2-ol is produced in the higher yield.

(d) Describe the covalent bonds present between the carbon atoms in an ethene molecule by completing Table 4.2.

Table 4.2

	sigma (σ)	pi (π)
type of orbitals involved in bond		
how the orbitals overlap		

[2]

[Total: 15]

5	(a)	Describe structural isomeric	sm.			
						[1]
	(b)	A and B are structural isom	ners with molec	cular formula C	₅ H ₁₀ O.	
		They are both straight-chai	ned molecules	with only one	functional group.	
		Table 5.1 describes observe reagents.	ations when se	eparate sample	es of A and B are added to d	ifferent
			Table	e 5.1		
		reagent	1	A	В	
		2,4-dinitrophenylhydrazine (2,4-DNPH reagent)	orange precip	oitate appears	orange precipitate appears	
		Tollens' reagent	silver mirro	or appears	no reaction	
		alkaline I ₂ (aq)	no rea	action	no reaction	
		(i) Name the functional gr	roup present in	both A and B .		
						[1]
		(ii) Draw the structures of	A and B in the	boxes.		
		Α			В	
						[2]

 $\boldsymbol{\mathsf{C}}$ is straight chained and has two functional groups.

C shows only one type of stereoisomerism.

Table 5.2 describes observations when separate samples of ${\bf C}$ are added to different reagents.

Table 5.2

reagent	С
2,4-dinitrophenylhydrazine (2,4-DNPH reagent)	no reaction
Br ₂ (aq)	orange to colourless
alkaline I ₂ (aq)	yellow precipitate appears

(i) Draw the structure of **C** in the box.

[2]

(ii)	Name the type of stereoisomerism shown by molecules of C .

[1]

(d) ${\bf D}$ reacts in the presence of a sulfuric acid catalyst to form ${\bf E}$ and water.

The structure of **E** is shown in Fig. 5.1.

Fig. 5.1

(i)	Name the fu	nctional group present in E .	
(ii)	Identify the t	ype of reaction that occurs when D reacts to form	
(iii)	Draw the str	ucture of D in the box.	[1]
		D	

(iv) The infrared spectrum of **E** is shown in Fig. 5.2.

Fig. 5.2

Table 5.3

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3600

Use Fig. 5.2 and Table 5.3 to predict two differences in the absorptions above 1500 croof the infrared spectrum of D compared to E . Explain your answer.	m ^{−1}
	[2]

[Total: 12]

BLANK PAGE

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 \rm K (25 ^{\circ} C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

	~	_ a:) ξ ς		Φ	Ę 0		_	e e:			ng 8:	_	(D)	e ω	<u>"</u>	_	no	8		sson
	18	r Ť	helium 4.0	10	ž	nec.	18	∢	argon 39.9	36	Y	kryp.	122	×	xen 131	86	₫	rade	11	Ő	ogane
	17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ā	bromine 79.9	53	Н	iodine 126.9	85	Ą	astatine	117	<u>⊳</u>	tennessine -
	16			80	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъо	polonium –	116	_	livermorium -
	15			7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	:Ē	bismuth 209.0	115	Mc	moscovium -
	14			9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	90	Sn	tin 118.7	82	Pb	lead 207.2	114	LΙ	flerovium
	13			5	В	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	84	11	thallium 204.4	113	R	nihonium -
									12	30	Zu	zinc 65.4	48	g	cadmium 112.4	80	윈	mercury 200.6	112	ပ်	copernicium
									7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium
dn									10	78	z	nickel 58.7	46	Pd	palladium 106.4	78	പ	platinum 195.1	110	Ds	darmstadtium -
Group									6	27	ဝိ	cobalt 58.9	45	뫈	rhodium 102.9	77	Ļ	iridium 192.2	109	¥	meitnerium -
		- I	hydrogen 1.0						_∞	56	Fe	iron 55.8	4	R	ruthenium 101.1	9/	SO	osmium 190.2	108	H _s	hassium
				J					7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium
					О	- S			9	24	ပ်	chromium 52.0	42	Мо	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	q	niobium 92.9	73	<u>⊾</u>	tantalum 180.9	105	op O	dubnium
				at	ator	relati			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Έ	hafnium 178.5	104	꿒	rutherfordium -
							T		က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids	
	2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium
	_			က	<u></u>	lithium 6.9	11	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	ъ	francium -

		_	
71	LU lutetium 175.0	103	LI lawrencium -
	ytterbium 173.1		
69 F	thulium 168.9	101	IVIC mendelevium
68 П	erbium 167.3	100	fermium -
29	holmium 164.9	66	einsteinium –
99	dysprosium 162.5	88 7	californium
65 H	terbium 158.9	97	DA berkelium
4 C	gadolinium 157.3	96 C	Surium I
63	europium 152.0	95	americium
62	samarium 150.4	8 G	plutonium
61	promethium	83	neptruinm
09	neodymium 144.4	92	uranium 238.0
59	praseodymium 140.9	91	protactinium 231.0
288	cerium 140.1	96 7	thorium 232.0
57	lanthanum 138.9	88	actinium

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.