Rotman

INTRO TO R – DATA WRANGLING

R Workshop - 2

Plan

Tidy Data (a way to organize data)

"Data Scientists spend up to 80% of the time on data cleaning and 20 percent of their time on actual data analysis"

-- 33333

- Data manipulation (a continuation)
 - summarise() and group_by()
 - _join() datasets

 Again, we will focus on basics, underlying principles, and best practices

Tidy Data – Motivation (FANG Revenue Data)

- Q1. Is the below table organized well for easy analysis?
- Q2. In general, what's a good way to organize/structure data?

Tidy Data

• A (One) way to organize tabular data

- Definition
 - Each variable forms a column.
 - Each **observation**, or **case**, forms a **row**.
 - Each type of observational unit forms a table
- Why tidy data
 - A great way to organize data for maintainability
 - Once in tidy data, it's easy to use the toolset from tidyverse to manipulate them

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.istatsoft.org/

Tidy Data

Hadley Wickham RStudio

Abstract

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundance data manipulation chores.

Keywords: data cleaning, data tidying, relational databases, R.

1. Introduction

It is often said that 80% of data analysis is spent on the process of cleaning and preparing the data (Dasu and Johnson 2003). Data preparation is not just a first step, but must be repeated many times over the course of analysis as new problems come to light or new data is collected. Despite the amount of time it takes, there has been surprisingly little research on how to clean data well. Part of the challenge is the breadth of activities it encompasses: from outlier checking, to date parsing, to missing value imputation. To get a handle on the problem, this paper focuses on a small, but important, aspect of data cleaning that I call data tidying: structuring datasets to facilitate analysis.

The principles of tidy data provide a standard way to organize data values within a dataset. A standard makes initial data cleaning easier because you do not need to start from scratch and reinvent the wheel every time. The tidy data standard has been designed to facilitate initial exploration and analysis of the data, and to simplify the development of data analysis tools that work well together. Current tools often require translation. You have to spend time

http://vita.had.co.nz/papers/tidy-data.html

Messy Data – Example 1

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

Messy Data – Example 1

	treatmenta	nta treatmentb	
John Smith		2	
Jane Doe	16	11	
Mary Johnson	3	1	

Table 1: Typical presentation dataset.

Values as column names

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

	treatmenta	${\it treatmentb}$
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

Values as column names

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

Table 1: Typical presentation dataset.

Values as column names.

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

Table 1: Typical presentation dataset.

Values as column names.

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

	treatmenta treatment	
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

Messy Data – Example 2

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Table 2: The same data as in Table 1 but structured differently.

The Tidy Version

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

The Tidy Version – Why is it Tidy

- All column-wise operations
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Back to the FANG Revenue Data

From Messy to Tidy (One Example)

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                  <dbl> <dbl>
1 John Smith
                     NA
                    16 11
2 Jane Doe
3 Mary Johnson
pivot_longer(df_messy, -name,
           names to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                  <dbl> <dbl>
1 John Smith
                     NA
                    16 11
2 Jane Doe
3 Mary Johnson
pivot_longer(df_messy, -name,
           names to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                  <dbl> <dbl>
1 John Smith
                     NA
                    16 11
2 Jane Doe
3 Mary Johnson
pivot longer(df_messy, -name,
           names to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
              treatmenta treatmentb
  name
                              <dbl>
  <chr>
                   <dbl>
1 John Smith
                      NA
2 Jane Doe
                      16
                              11
3 Mary Johnson
pivot_longer(df_messy, -name,
            names_to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                   <dbl> <dbl>
1 John Smith
                      NA
2 Jane Doe
                      16
3 Mary Johnson
pivot_longer(df_messy, -name,
            names to = "treatment", values_to = "result")
```

pivot_longer() result

```
# A tibble: 6 x 3
            treatment result
 name
 <chr>
      1 John Smith treatmenta
                         NA
2 John Smith treatmentb
3 Jane Doe treatmenta
                         16
4 Jane Doe treatmentb
                         11
5 Mary Johnson treatmenta
                          3
6 Mary Johnson treatmentb
```

The inverse transformation: pivot_wider()

```
treatment result
 name
       <chr> <dbl>
 <chr>
1 John Smith a
                           NA
2 Jane Doe
                           16
3 Mary Johnson a
4 John Smith b
5 Jane Doe
6 Mary Johnson b
pivot_wider(df tidy,
           names_from = treatment, values_from = result)
```

The inverse transformation: pivot_wider()

```
treatment
                          result
  name
               <chr>
                           <dbl>
  <chr>
1 John Smith
                              NA
                              16
2 Jane Doe
3 Mary Johnson
4 John Smith
                              11
5 Jane Doe
6 Mary Johnson b
pivot_wider(df_tidy,
            names_from = treatment, values from = result)
```

The inverse transformation: pivot_wider()

```
treatment result
  name
  <chr>
             <chr>
                           <dbl>
1 John Smith
                              NA
                              16
2 Jane Doe
3 Mary Johnson a
4 John Smith
5 Jane Doe
6 Mary Johnson b
pivot_wider(df_tidy,
            names from = treatment, values from = result)
```

pivot_wider() result

```
# A tibble: 3 x 3
 name
 <chr> <dbl> <dbl>
1 John Smith
              NA
2 Jane Doe 16 11
3 Mary Johnson
```

Try Yourself: "Tidy up" the FANG revenue data

```
# A tibble: 16 x 4
   Ticker `Fiscal Year` Quarter Revenue
   <chr>>
                   <int> <chr>
                                    <dbl>
 1 AMZN
                    2018 Q1
                                    51.0
                    2018 Q2
                                    52.9
 2 AMZN
                    2018 Q3
 3 AMZN
                                    56.6
                    2018 Q4
 4 AMZN
                                    72.4
                    2018 Q1
 5 FB
                                    12.0
                    2018 Q2
                                    13.2
 6 FB
```

•••

Many Ways of Being Messy:(

- Messy datasets have 5 common problems (Wickham, 2014)
 - 1. Column headers are values, not variable names.
 - 2. Multiple variables are stored in one column.
 - Variables are stored in both rows and columns.
 - 4. Multiple types of observational units are stored in the same table.
 - 5. A single observational unit is stored in multiple tables.

Messy Data – Example 3

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the original table, but can be computed from date.entered and week.

Messy Data – Example 3

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the original table, but can be computed from date.entered and week.

The Tidy Version

id	artist	track	time	\overline{id}	date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
$\overline{2}$	2Ge+her	The Hardest Part Of	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000-03-25	87
6	98^0	Give Me Just One Nig	3:24	1	2000-04-01	94
7	A*Teens	Dancing Queen	3:44	1	2000-04-08	99
8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66

Table 13: Normalised billboard dataset split up into song dataset (left) and rank dataset (right). First 15 rows of each dataset shown; genre omitted from song dataset, week omitted from rank dataset.

http://vita.had.co.nz/papers/tidy-data.html

Tidy Data and Its Eco-system

Tidyverse

- "an opinionated <u>collection of R packages</u> designed for data science"
- "All packages share an underlying design philosophy, grammar, and data structures."

ggplot2

readr

tsibble

string

- Other tools in the eco-system (especially for finance)
 - <u>tidyquant</u>, a package for quantitative finance
 - <u>tidyvert</u>, a set of tidy tools for time series
 - Forecasting: Principles and Practice (3ed), a free book using this toolset

Plan

Tidy Data

- Data manipulation (a continuation)
 - summarise() and group_by()
 - _join() datasets
- Again, we will focus on basics, underlying principles, and best practices

"Data Scientists spend up to 80% of the time on data cleaning and 20 percent of their time on actual data analysis"

-- ?????

Data manipulation: dplyr()

- Filter observations: filter()
- Select variables: select()
- Reorder rows: <u>arrange()</u>
- Create new variables: mutate()
- Collapse column values to a single summary: <u>summarise()</u>
- Group by: group by()

The Employees Table

```
> employees %>% select(FirstName, LastName, Country)
# A tibble: 9 x 3
  FirstName LastName
                    Country
 <chr> <chr> <chr>
1 Nancy Davolio USA
2 Andrew
           Fuller USA
           Leverling USA
3 Janet
4 Margaret
           Peacock
                    USA
5 Steven
           Buchanan
                    UK
```

Count Number of Employees By Country (1)

```
> employees %>% select(FirstName, LastName, Country) %>%
   group_by(Country)
# A tibble: 9 x 3
# Groups: Country [2]
 FirstName LastName Country
 <chr>
        1 Nancy Davolio USA
2 Andrew
          Fuller USA
3 Janet
          Leverling USA
```

Count Number of Employees By Country (2)

```
> employees %>% select(FirstName, LastName, Country) %>%
   group by(Country) %>%
    summarise(count = n())
# A tibble: 2 x 2
  Country count
 <chr> <int>
1 UK
2 USA
```

Count Number of Employees By Country (3)

```
> employees %>% select(FirstName, LastName, Country) %>%
   group by(Country) %>%
    summarise(count = n()) %>%
   arrange(desc(count))
# A tibble: 2 x 2
 Country count
  <chr> <int>
1 USA
2 UK
```

More on Data Aggregation

- summarise() works with many aggregation functions
 - Aggregation function: n input -> 1 output
 - e.g. mean(), median(), min(), max(), first(), last(), n_distinct(), ...
- There are also Windows functions (useful for time series data)
 - Windows functions: n input -> n output
 - aggregation variations: cumsum(), cummean(),...
 - ranking and ordering: rank(), percent_rank(),...
 - offsets: lead(), lag(),...

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/articles/window-functions.html

Plan

• Tidy Data

• Data manipulation (a continuation)

- summarise() and group_by()
- _join() datasets

 Again, we will focus on basics, underlying principles, and best practices

"Data Scientists spend up to 80% of the time on data cleaning and 20 percent of their time on actual data analysis"

-- ?????

Motivation: Relation between Datasets/Tables

Relation between Datasets/Tables – Zoom In

Relation between Datasets/Tables – Zoom In

Primary key

Relation between datasets/tables - Zoom In

- Primary key
- Foreign key

Relation between datasets/tables – Zoom In

- Primary key
- Foreign key
- 1-to-Many Relationship

Relation between Tables – Another Example

Join – Inner Join

_	-			4
- 1	2	n	16	1
	а	v	le	: Т

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
1	а	С
1	a	d

inner_join(Table1, Table2, by = c("pk" = "fk"))

Join – Left (Outer) Join

Ta	abl	le1	
- 10	וטג	$I \subset T$	

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
1	а	С
1	а	d
2	b	NA

left_join(Table1, Table2, by = c("pk" = "fk"))

Join - Left (Outer) Join With Exclusion

т_		1 _ 1
Ta	n	
ıч	\sim	-

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
2	b	NA

```
Table1 %>%
  left_join(Table2, by = c("pk" = "fk")) %>%
  filter(is.na(t2c1))
```

More on Join Variations (learn them yourself)

- More join variation illustrations in the next few slides
 - right join, full join, ...
- Read the "two-table verbs" vignette (in the dplyr package doc)
 - https://dplyr.tidyverse.org/articles/two-table.html
- Read the reference (see the "two table verbs" section)
 - https://dplyr.tidyverse.org/reference/index.html
- For data manipulation tasks in general
 - reading dplyr related articles are a good start, https://dplyr.tidyverse.org/articles/

Join - Right (Outer) Join*

Table1		
pk	t1c1	
1	а	
2	h	

Table2		
fk	t2c1	
1	С	
1	d	
3	е	

pk	t1c1	t2c1
1	а	С
1	а	d
3	NA	е

Note: can use left_join as well.

Join - Right (Outer) Join With Exclusion*

Ta	hl	e	1
ıa	νı	L	_

pk	t1c1
1	а
2	b

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
3	NA	е

```
Table1 %>%
  right_join(Table2, by = c("pk" = "fk")) %>%
  filter(is.na(t1c1))
```

Join – Full Outer Join

_	-			4
-1	а	n	le	1

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
1	а	С
1	а	d
2	b	NA
3	NA	е

full_join	(Table1,	Table2,	by =	c("pk"	=	"fk"))
-----------	----------	---------	------	--------	---	--------

Join — Full Outer Join With Exclusion

			_	
_		I_ I	_ 1	
	_	n	ΙДΙ	
	а	LJ	I C. I	

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
2	b	NA
3	NA	е

```
Table1 %>%
  full_join(Table2, by = c("pk" = "fk")) %>%
  filter(is.na(t1c1) | is.na(t2c1))
```