# ADDRESSING THE POSITIONAL ISSUE FOR BASEBALL HALL OF FAME CANDIDACY

## Nicholas Torsky

#### **Abstract**

Baseball has long proven to be the first frontier for sports analytics. From Henry Chadwick's development of rudimentary statistics like batting average, runs scored, and runs allowed in the mid to late 1800s, to Hy Turkin's *Baseball Encyclopedia* in 1951, to Bill James's *Baseball Abstract*, and finally to the modern analytics systems employed by professional and amateur programs today like the Lahman database, the sport of baseball has been focused the concept of quantitative assessment of the game. Particularly, the source of much debate in the baseball community, particularly in the first few months of the Major League Baseball (MLB) off-season, is election to the Baseball Hall of Fame.

Every year, a list of former MLB players are placed onto a ballot for the Baseball Writers' Association of America (BBWAA) to vote on. Each writer is allowed to cast at most 10 votes (although many writers often cast fewer than this number) as they see fit among the players on the ballot. Players become eligible for the Hall of Fame ballot once they have been retired from the professional ranks for 5 years, provided that they played at least 10 seasons in Major League Baseball. Each player can be on the BBWAA ballot for a maximum of 10 years, with their name being removed only if they are elected into the Hall (>= 75% of the vote in a given year) or are dropped from the ballot (<5% of the vote in a given year). Voting results are usually released within the first few weeks of each new year. For example, although the BBWAA voting will take place in 2020 at this time of writing, the results will be released in early 2021, so it is referred to as the 2021 ballot.

For players who are not Hall of Fame "shoo-ins", hundreds and thousands of writers, fans, and members of the baseball community argue and debate over whether they deserve to be enshrined among baseball history's elite. An oft-repeated phrase used for this concept is "the size of the Hall", referencing how many people should be inducted. If one has a "large Hall", they are likely to cast votes for players that were very good players for their time, but not all-time record setters for various statistics. One with a "small Hall" views the Hall of Fame as a selection of truly elite and dominant players who made lasting impressions of the game. Modern "small Hall" proponents often fail to recognize the effect of a player's defensive position when considering a player's candidacy. Particularly, players at positions with demanding defensive responsibilities like shortstop or catcher often do not receive as much devotion as players at less defensive-minded positions like first base or the corner outfield positions, simply because their hitting numbers (especially for power statistics like home runs and slugging percentage) do not compare as favorably. The idea that players at these positions are not as potent offensive performers is simply a product of the way the game is structured; managers and team front offices have historically been willing to sacrifice premier offensive production at these positions in favor of a sure-handed defender and clubhouse leader. In the past, having players of this type at these positions has proven to be the best strategy to win games. In the entire history of Major League Baseball up until the last 15 years, shortstops and catchers with Hall of Fame-caliber hitting skills rarely have the defensive skills necessary to remain at these positions and are moved to others, and players that have both are exceedingly rare.

Many metrics determining potential Hall of Fame candidacy either neglect to make note of a player's position, or do so in a way that does not maximize the effect of a player's position. In this paper, I will address the positional issue by comparing players who have not earned induction into the Hall of Fame both to players at their positions and to all inductees.

Unfortunately, the availability and efficacy of evaluating a player's defensive performance statistically has not yet caught up to that of a player's offensive prowess. Current metrics fail to take many factors affecting a player's defense into account. For example, fielding percentage — one of the oldest fielding metrics available and comparable to a hitter's batting average — provides the ratio of defensive plays on which a player commits an error, where an error is a play in which a fielder fails to record an out on a play that "should have been made". Clearly, errors are subjective categorization, dependent on the judgement of a game's official scorer, and does not necessarily take into account a play's difficulty, the speed of a runner, or other circumstances relating to the ball put in play. Even the Major League Baseball Official Rules include plenty of stipulations for the ruling of an error (see Appendix 1). Today, player tracking software and long-term fielding data are collected and used for more in-depth metrics, but still present some bias, and their methodology can be difficult to find and replicate, not to mention their extremely limited and recent nature excluding seasons as recent as 15 years ago. For this reason, I will not include fielding metrics for determining Hall of Fame candidacy in this paper.

According to the Baseball Hall of Fame's official website (baseballhall.org), "voting shall be based upon the player's record, playing ability, integrity, sportsmanship, character, and contributions to the team(s) on which the player played". Especially in today's statistically inclined baseball environment, criteria relating to a player's on-field contributions carry more weight than ever before, although, as the analysis will show, writers often invoke the "character clause" to justify voting against players with relevant off-field circumstances. In the past, the BBWAA had limited access to databases and analysis regarding eligible players, and even players already in the Hall of Fame to use as a reference. In this paper, I will estimate the probability of Hall of Fame inclusion for all Major League Baseball players with at least 10 years of service time, conditional on certain career statistics using a logistic regression model. The algorithm will compute a logistic regression on each statistic, giving a 0 to 1 probability of inclusion using leave-one-out cross validation. The 0 to 1 probability for each statistic will be averaged, giving a final 0 to 1 score that estimates Hall of Fame candidacy. Using the percentage of all players in the Hall of Fame, the algorithm compiles three tables: the first, a table of the top n\% of scores amongst all qualified players, signifying players who have a high probability of inclusion (called Hall of Fame Worthy, or HOF worthy); the second, a table of the top n% of scores at each position, signifying players who merit discussion about their Hall of Fame inclusion, if not a high probability of inclusion (colloquially, the Hall of Very Good, or HOVG); the third, a table of "false positives", or players inducted into the Hall whose offensive statistics do not fit the criteria of the logistic regression algorithm (false\_positives). This third case is of particular interest, and is discussed at length in the "Results" section. The n percentages for the entire Hall of Fame, as well as at each position, are listed in Table 1.

| Position    | % of players in HOF |
|-------------|---------------------|
| All         | 7.54                |
| Catcher     | 3.90                |
| First Base  | 10.90               |
| Second Base | 8.26                |
| Third Base  | 6.09                |
| Shortstop   | 8.76                |
| Outfield    | <b>8.</b> 33        |

Table 1

## Data

As the development of new statistics for baseball has progressed, so too has the accessibility and quality of baseball data. Information about any number of baseball related data is available from a variety of sources, chiefly through

the work of volunteers. The data included here is the most recent incarnation of the Lahman Database -- a collection of tables containing hitting, pitching, fielding, and other statistics from 1871 to 2019, developed and compiled by Sean Lahman. Conveniently, the Lahman Database exists as an R package, which is where the calculations will take place. All data for the purposes of this paper will come from the Lahman database.

The tables in the Lahman package include hitting data from all players and all seasons from 1871 through 2019, and Hall of Fame election results as of the end of the 2019 season. As such, the players elected after the 2019 season (Derek Jeter, Ted Simmons, and Larry Walker), as well as players inducted during the 2019 season (Edgar Martinez and Harold Baines), are not included in the HallofFame table. They are, however, clearly represented as potential Hall of Famers by the model.

The Lahman database provides season-by-season data for counting statistics like hits, home runs, and games played, and each row of the table corresponds to a unique player ID, year, team, league, and stint (number of times a player has played games for a given time during a distinct period of his career). The package also provides a function, battingStats, to calculate rate statistics like batting average, on-base percentage, and slugging percentage. For the purposes of both usefulness and data availability, I modify or completely omit the categories describing stolen bases, times caught stealing, strikeouts, intentional walks, times hit by pitch, times grounded into double plays, sacrifice bunts, sacrifice flies, triples, and batting average on balls in play (BABIP). Particularly, I found that triples tend to disproportionately favor players from before the so-called "Live Ball Era", named for the period in baseball after 1920 in which rule changes (particularly to how the baseball is treated) resulted in a marked increase in offensive statistics like home runs. The relationships between Hall of Fame inductees and non-Hall of Fame inductees for each of these statistics are represented graphically in Figure 1. Especially for players from the earlier periods of baseball, some of these statistics were not fully developed, and thus their values are either non-reliable or non-existent (i.e. caught steading, sacrifice hits/flies, and grounded into double play). Interestingly, players with excellent career stolen base totals (Rickey Henderson, for example) and players with few career strikeout totals relative to walk totals (George Sisler, Ted Williams, for example) often compiled exemplary career numbers in other statistics, so the exclusion of these statistics as predictors did not harm the model.

Another potential source of bias is in the nature of the statistics used. Many of the statistics in the Batting table are counting statistics, meaning that the longer a player plays, the better chance he has at accumulating the statistics necessary for Hall of Fame consideration under the model. While longevity is a crucial component for potential induction into the Hall, such statistics ignore relatively short-lived, yet dominant careers. For this reason, I considered using Lahman's AwardsPlayers table to favor players with shares of MVP voting and All-Star selections, but decided not to, as this would introduce a whole new bias. All-Star teams are decided mid-season rather than at season's end, so a player who performs better after the All-Star game may not be appropriately rewarded. Furthermore, All-Star and MVP voting are notorious for favoring players who play in larger media markets and tend to reflect a player's notoriety more so than his performance. Therefore, I decided to ignore the imbalance of counting statistics and rate statistics, instead addressing the Hall of Fame players whom the logistic regression model did not favor in the false\_positives table.

I created a series of tables for filtering data dependent on useful information. HOFers was used to initially find Hall of Fame players elected by the BBWAA from HallOfFame (the table includes inductees from other election committees, as well as non-player inductees), HOF\_field was created from Fielding and used for finding the primary position of Hall of Fame players, and information from each of these tables were combined with Batting into HOF. Similar processes were used for the creation and use of all\_field and all\_batters. allHall includes all inducted Hall of Famers, regardless of the method by which they were voted in.



Figure 1

#### **Methods**

The methods involved in calculating the scores amongst all inductees and inductees at each position were slightly different. Comparing to all inductees, Hall of Fame candidacy was predicted using four generalized linear models (GLM) with two different sets of predictors. For the first, the GLM used statistics conventionally deemed significant for the BBWAA, including runs scored, hits, doubles, triples, home runs, runs batted in, batting average, and OPS. For the second, the GLM used all predictors deemed significant by the graphical analysis from Figure 1, with the exception of OPS (OPS stands for on-base percentage plus slugging percentage, and these two predictors are included in the model already). Both of these models are an initial GLM to obtain means and scales for the coefficients for each predictor, including the intercept, which were then fed into a Bayesian GLM, yet I used these models to create predictions as well (represented in the acc\_LOOCV1 and acc\_LOOCV2 columns of all\_batters). Using leave-one-out cross validation and the optimalCutoff() function, the 0 to 1 predicted values for each of the four methods were cut off at the value given by optimalCutoff() (optimized for misclassification error), with values greater than the cutoff assigned a 1 (probable Hall of Famer) and values less than or equal to the cutoff assigned a 0 (not a probable Hall of Famer). For each position, the GLM performed a logistic regression on one predictor at a time, adding the predictor to a running sum vector containing the scores for each player only if the misclassification error was less than or equal to 0.1. The GLM used all predictors, as in the second model for all batters (the positional model included OPS, as the regression was performed one predictor at a time).

Due to many statistics spanning at least two orders of magnitude, some predictors were transformed onto a logarithmic scale. The predictors not transformed are listed in keep\_these, and were rejoined to the transformed predictors in log all batters. This data frame was then split into subsets by position.

Ultimately, the decision to employ different models for the positional models and the overall model was driven by runtime. The four overall models using leave-one-out cross validation took a substantial amount of time already and implementing a logistic regression model on each predictor one by one for over 2000 entries, unfortunately, took too long to be effective.

There are a number of different metrics currently employed to determine Hall of Fame candidacy, and most are point-based systems developed by Bill James. Under these systems, players are awarded or deducted points for various career achievements. More information about these statistics can be found in the References section. These types of counting frameworks are designed less with the idea of measuring a player's greatness in mind, and more toward a player's probability of induction into the Hall. One advantage of these metrics is that it accounts for seasonby-season performance - which serves to benefit players like Kirby Puckett, who only played 12 professional seasons, as well as other premier players with shorter careers – as well as playoff appearances and seasonal awards. The score developed in this paper differs from such methodologies in that it operates under the assumption that a player's career offensive greatness, especially given his primary defensive position, is the only factor affecting his chances of entering the Hall of Fame. As a result, of these so-called "Jamesian" metrics, the analysis presented here can be most likened to Similarity Scores. The Similarity Score compares one player to another, starting with 1000 points, and deducts points for differences between the two players' career stat totals at given intervals which are different for each statistic. One could apply a Similarity Score to any two players across baseball history to find the similarity in their career numbers, including a Hall of Fame inductee and a player in contention for Hall of Fame election. Rather than applying Similarity Scores pairwise to all qualified players in the Lahman database (needless to say, a computationally costly endeavor), the methods employed here take a distribution of players already deemed worthy of Hall of Fame induction and quantify the probability that a given player is better than the average Hall of Fame inductee at his position.

#### **Simulations**

The logistic regression model used leave-one-out cross validation (LOOCV) to generate Hall of Fame prediction probabilities, training the model on all entries in the data frame and testing the model on one entry while iterating through all n entries in the data frame. This method prevents overfitting data – that is, when the model fits the data to the response too closely, not taking noise into consideration. Overfitting is characterized by good accuracy, but poor out-of-sample results. LOOCV in particular can be contrasted with k-fold cross validation by looking at the bias-variance tradeoff: LOOCV results in higher variance and lower bias, while k-fold cross validation exhibits the opposite property.

Because the problem of predicting Hall of Fame candidacy is one of binary classification, the primary measure of fit is misclassification error. The tables representing the overall misclassification error rates can be found in Appendix 3. Equation 1 describes the method by which misclassification error is calculated.

Actual HOF a b 
$$MCE = \frac{b+c}{a+b+c+d} = \frac{error}{total}$$
 Eqn. 1

Actual non-HOF c

The optimalCutoff() function in the InformationValue R package was instrumental in finding the ideal cutoff values for each logistic regression model, with each model achieving better than 94.6% accuracy. Such miniscule out-of-sample prediction errors suggest, in general, the logistic regression models were extremely effective at classifying players while still allowing room for the premier non-inducted players (especially those active, not yet

ballot eligible, or currently on the ballot). The nature of minimizing misclassification error prevented a large number of players who did not accumulate Hall of Fame-worthy career statistics from inclusion in the final data frames.

The effectiveness of the models can also be described using True Positive Rate (TPR) and False Positive Rate (FPR). These metrics describe the proportion of each class that were correctly and incorrectly identified, respectively. Their equations are described in Equations 2 and 3.

$$TPR = \frac{a}{a+b} = \frac{\text{Predicted HOF } AND \text{ Actual HOF}}{\text{Actual HOF}}$$

$$FPR = \frac{c}{c+d} = \frac{Predicted HOF \ AND \ Actual non-HOF}{Actual non-HOF}$$
Eqn. 3

The FPR and TPR values for each of the four models are found in Appendices 4.1 and 4.2. The TPR values tended to be lower than one might expect: around 62.5%. This is largely due to the inclusion of pre-Live-Ball era players presenting outliers in various predictors, which is discussed at greater length in the Results section, as well as the relatively low percentage of players in the table who are classified as Hall of Fame inductees (see Table 1). The FPR values are each considerably small: near 2%. Again, this is largely due to the large number of players who have not been honored with Hall of Fame induction.

The final model performance metric is Lift, with its formula given in Equation 4, and is described as the ratio of target response to the average response, or the ratio of the percentage of correctly classified Hall of Famers to the ratio of correctly classified players in general. Lift is very similar is function to the power or receiver operating characteristic (ROC) curve. The Lift values for all four models for Hall of Fame prediction are shown in Appendix 5. Interpreting the high Lift values (over 9 in each model), players with logistic regression scores above the cutoff value for each model are nine times more likely to be inducted into the Hall of Fame as players drawn from all\_batters at random.

$$Lift = \frac{a/(a+b)}{(a+c)/(a+b+c+d)} = \frac{TPR}{(Correctly Classified) / (All Players)}$$
Eqn. 4

## **Results**

The results of the logistic regression model were separated into three tables: HOF\_worthy (containing the 44 players the algorithm misclassified as Hall of Fame inductees), false\_positives (containing the 41 players the algorithm misclassified at NOT Hall of Fame inductees), and pos\_only (containing the 31 players in the top n% of hitters at their position by Table 1, but correctly classified by the algorithm). All other players, while significant in their own rights, were correctly classified, and therefore do not merit further discussion here. For the sake of discussion, each of the three tables will be broken down into four groups: the active players (only applicable to HOF\_worthy and pos\_only), the old-timers (players whose careers were long enough ago that their relevance in today's voting procedures are largely forgotten), the steroid users, and the edge cases (players who do not fit into the three other categories). For each group, their career statistics and regression scores, along with the appropriate Hall of Fame statistical means, will be displayed in a table for context. Additionally, Figure 2 shows a smoothed

regression line for each of the 15 statistics, with the points on the top of each graph (y=1) representing the corresponding x-axis coordinates of each Hall of Famer for the described statistic and the bottom points (y=0) to those not elected.



Figure 2

Each of the final four columns corresponds to the four logistic regression models used to compare all 2094 entries in the all\_batters data frame on a 0 to 1 scale. These values can be interpreted as 0% to 100% probabilities of induction into the Hall of Fame. Recall that models 1 and 3 use predictors conventionally deemed significant by the BBWAA, while models 2 and 4 use all selected predictors. Also, models 3 and 4 are Bayesian Generalized Linear Models, using coefficients from models 1 and 2 as prior distributions.

As is the nature of complex systems like baseball, many of the players in each of these tables have reasons for their election or rejection from the Hall of Fame that go beyond their offensive production. Their candidacy will be discussed primarily in regard to their statistics and logistic regression probabilities, but with note of their extracurricular circumstances as well.

First, the "active Hall of Famers". While it is true that these players, as of the conclusion of the 2020 MLB season, are still demonstrating the ability to bolster their career statistics for at least one more season, the logistic regression algorithm has deemed their achievements to date worthy still of Hall of Fame induction. Miguel Cabrera and Albert Pujols earned Hall of Fame scores of around 80% and 87%, respectively. As evidenced by Table 2, these players are better than the Hall of Fame average in nearly every statistic considered (Cabrera has one season to eclipse the Hall of Fame mean career length, although we should recall that the Lahman database does not include the 2020

season at the time of publication). Given that the optimal cutoff values for each of the four models were just shy of 40%, these two players pass the eye test for induction (the cutoff values for each of the four models can be found in Appendix 2).

|         | years | G    | AB    | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | m1    | m2    | m3    | m4    |
|---------|-------|------|-------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Cabrera | 17    | 2400 | 8949  | 1429 | 2815 | 577 | 477 | 1694 | 1135 | 0.315 | 10236 | 4857 | 0.543 | 0.392 | 0.935 | 0.789 | 0.799 | 0.802 | 0.800 |
| Pujols  | 19    | 2823 | 10687 | 1828 | 3202 | 661 | 656 | 2075 | 1322 | 0.300 | 12231 | 5863 | 0.549 | 0.379 | 0.928 | 0.871 | 0.866 | 0.882 | 0.866 |
| Average | 18    | 2161 | 8008  | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |

Table 2

The "old-timers" in the HOF worthy table include Jake Daubert (1910-1924), Jack Doyle (1889-1905), Joe Judge (1915-1934), Stuffy McInnis (1909-1927), Fred Tenney (1894-1911), Cupid Childs (1888-1901), Buddy Myer (1925-1941), Lave Cross (1887-1907), Larry Gardner (1908-1924, Steve Brodie (1890-1902), Doc Cramer (1929-1948), Patsy Donovan (1890-1907), Jimmy Ryan (1885-1903), George Van Haltren (1887-1903), Bobby Veach (1912-1925), Bill Dahlen (1891-1911), Ed McKean (1887-1899), Mike Tiernan (1887-1899), and "Shoeless" Joe Jackson (1908-1919). These players, as we can see from the years in which they played, are from a period of baseball that was very different than the one we see today, as most of them played the bulk of their careers prior to the dawn of the aforementioned "Live-Ball era". These players' regression scores were challenging ones to interpret, as they were premier players of their time, yet the style of the game in which they played resulted in very different career statistics compared to more recent comparisons, as shown in Table 3. Only two of the players (Ryan and Tiernan) eclipsed 100 career home runs, and many of these players' career statistics were close to or below the Hall of Fame averages. Their inclusion in the HOF worthy data frame is a result of the logistic regression algorithm reading the similar statistics of Hall of Fame inductees from the same era (although the algorithm is unaware of the period in which any player played) and making prediction with that in mind. I toyed with the idea of omitting seasons prior to 1920 from consideration, but deemed it unfair to these players, and the idea of drawing an arbitrary line in the sand at the year 1920 worked to the detriment of even some modern players who employed a similar style of play. The inclusion of these players certainly affected the results of the algorithm, as these players and their Hall of Fame inducted counterparts skewed many of the regression coefficients for certain predictors (namely the power statistics like home runs and slugging percentage, as well as triples, as mentioned earlier). Particularly, the players in this section of the table tended to record fewer career hits, runs, and runs batted in than the average Hall of Famer, but with generally better-than-average career lengths, batting averages, and on-base percentages, as evidenced in Table 3. Many of these players' careers ended before the inception of the Hall of Fame in 1939, and several were therefore ineligible even for consideration on the BBWAA ballot. With this in mind, they may still earn baseball's highest honor via the Veterans' Committee - a series of committees, each devoted to a particular period in baseball history, specifically designed to consider players who are long since ineligible for the BBWAA ballot.

|         |       | Lo   | 1    | l 5  | 1 ** | Lyon | l *** | L nnr | Lpp  | Lni   | Lni   | COD  | Loro  | ODD   | ODG   |       | 1 0   | 1 0   |       |
|---------|-------|------|------|------|------|------|-------|-------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
|         | years | G    | AB   | R    | Н    | X2B  | HR    | RBI   | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
| Steve   | 12    | 1438 | 5703 | 886  | 1728 | 191  | 25    | 900   | 420  | 0.303 | 6342  | 2172 | 0.381 | 0.365 | 0.746 | 0.471 | 0.409 | 0.463 | 0.408 |
| Brodie  |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Cupid   | 13    | 1457 | 5622 | 1214 | 1721 | 205  | 20    | 743   | 991  | 0.306 | 6766  | 2188 | 0.389 | 0.416 | 0.805 | 0.647 | 0.691 | 0.644 | 0.691 |
| Childs  |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Doc     | 20    | 2239 | 9140 | 1357 | 2705 | 396  | 37    | 842   | 572  | 0.296 | 9933  | 3430 | 0.375 | 0.340 | 0.715 | 0.543 | 0.489 | 0.552 | 0.489 |
| Cramer  |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Lave    | 21    | 2277 | 9084 | 1338 | 2651 | 411  | 47    | 1378  | 466  | 0.292 | 9741  | 3475 | 0.383 | 0.329 | 0.712 | 0.775 | 0.739 | 0.784 | 0.739 |
| Cross   |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Bill    | 21    | 2444 | 9036 | 1590 | 2461 | 413  | 84    | 1234  | 1064 | 0.272 | 10405 | 3452 | 0.382 | 0.358 | 0.740 | 0.516 | 0.515 | 0.520 | 0.515 |
| Dahlen  |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Jake    | 15    | 2014 | 7673 | 1117 | 2326 | 250  | 56    | 722   | 623  | 0.303 | 8742  | 3074 | 0.401 | 0.360 | 0.761 | 0.412 | 0.535 | 0.413 | 0.535 |
| Daubert |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Patsy   | 17    | 1824 | 7505 | 1321 | 2256 | 208  | 16    | 738   | 457  | 0.301 | 8172  | 2662 | 0.355 | 0.348 | 0.703 | 0.767 | 0.724 | 0.772 | 0.724 |
| Donovan |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |
| Jack    | 17    | 1569 | 6055 | 977  | 1811 | 316  | 25    | 971   | 440  | 0.299 | 6589  | 2330 | 0.385 | 0.351 | 0.736 | 0.390 | 0.354 | 0.383 | 0.354 |
| Doyle   |       |      |      |      |      |      |       |       |      |       |       |      |       |       |       |       |       |       |       |

| Larry<br>Gardner           | 17 | 1923 | 6688 | 867  | 1931 | 301 | 27  | 934  | 654 | 0.289 | 7685 | 2571 | 0.384 | 0.355 | 0.739 | 0.333 | 0.485 | 0.323 | 0.485 |
|----------------------------|----|------|------|------|------|-----|-----|------|-----|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Shoeless<br>Joe<br>Jackson | 13 | 1332 | 4981 | 873  | 1772 | 307 | 54  | 785  | 519 | 0.356 | 5690 | 2577 | 0.517 | 0.423 | 0.940 | 0.733 | 0.874 | 0.736 | 0.874 |
| Joe<br>Judge               | 20 | 2171 | 7898 | 1184 | 2352 | 433 | 71  | 1034 | 965 | 0.298 | 9171 | 3316 | 0.420 | 0.378 | 0.798 | 0.514 | 0.593 | 0.517 | 0.593 |
| Stuffy<br>McInnis          | 19 | 2128 | 7822 | 872  | 2405 | 312 | 20  | 1063 | 380 | 0.307 | 8623 | 2979 | 0.381 | 0.343 | 0.724 | 0.795 | 0.811 | 0.798 | 0.811 |
| Ed<br>McKean               | 13 | 1655 | 6894 | 1227 | 2084 | 272 | 67  | 1124 | 636 | 0.302 | 7626 | 2873 | 0.417 | 0.365 | 0.782 | 0.577 | 0.591 | 0.581 | 0.592 |
| Buddy<br>Myer              | 17 | 1923 | 7038 | 1174 | 2131 | 353 | 38  | 850  | 965 | 0.303 | 8187 | 2858 | 0.406 | 0.389 | 0.795 | 0.500 | 0.565 | 0.499 | 0.565 |
| Jimmy<br>Ryan              | 18 | 2014 | 8172 | 1643 | 2513 | 451 | 118 | 1093 | 804 | 0.308 | 9124 | 3632 | 0.444 | 0.375 | 0.819 | 0.647 | 0.661 | 0.659 | 0.662 |
| Fred<br>Tenney             | 17 | 1994 | 7595 | 1278 | 2231 | 270 | 22  | 688  | 874 | 0.294 | 8809 | 2721 | 0.358 | 0.371 | 0.729 | 0.496 | 0.579 | 0.497 | 0.579 |
| Mike<br>Tiernan            | 13 | 1478 | 5915 | 1316 | 1838 | 257 | 106 | 853  | 748 | 0.311 | 6732 | 2737 | 0.463 | 0.392 | 0.855 | 0.432 | 0.467 | 0.431 | 0.467 |
| George<br>Van<br>Haltren   | 17 | 1990 | 8043 | 1642 | 2544 | 286 | 69  | 1015 | 871 | 0.316 | 9017 | 3359 | 0.418 | 0.386 | 0.804 | 0.883 | 0.902 | 0.891 | 0.902 |
| Bobby<br>Veach             | 14 | 1821 | 6656 | 953  | 2063 | 393 | 64  | 1166 | 571 | 0.310 | 7557 | 2942 | 0.442 | 0.370 | 0.812 | 0.443 | 0.561 | 0.442 | 0.561 |
| HOF<br>Average             | 18 | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913 | 0.302 | 9110 | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Table 3                    |    |      |      |      |      |     |     |      |     |       |      |      |       |       |       |       |       |       |       |

David Ortiz, Barry Bonds, Rafael Palmeiro, Sammy Sosa, Manny Ramirez, Gary Sheffield, and Alex Rodriguez constitute the "steroid users" portion of the HOF worthy table. These players are either confirmed (Rodriguez, Bonds, Palmeiro, Sheffield, and Ramirez) or suspected (Ortiz, Sosa) to have tested positive for the use of anabolic steroids - a performance enhancing drug (PED) strictly prohibited by MLB's substance abuse policy - during their playing careers. The BBWAA, as well as public opinion, tends to negatively impact the Hall of Fame chances of players whose names are involved in PED rumors by using the Hall's "character clause" criterion (with a few notable exceptions'). Bonds in particular is the all-time career home run champion, as well as the all-time leader in walks and intentional walks, and was called the greatest hitter in baseball history by many during his career. With these statistics and his PED history in mind, however, Bonds's name appears on the Hall of Fame ballot for the 9th time in 2021, never having received greater than 60% of the vote in a given year. Without steroid allegations surrounding his name, his career statistics - and his logistic regression scores - in Tables 4 and 6 point to his obvious Hall of Fame candidacy. The results of his final two ballot eligible years will be followed closely by the baseball community. Palmeiro, Sosa, Ramirez, and Sheffield were all prolific sluggers of their time as well, landing at 13th, 9th, 15th, and 26<sup>th</sup> on the all-time home run leaderboard, respectively, with the complementary statistics and logistic regression scores to back them up. Specifically, Palmeiro is one of two players on this list to surpass the 3000 hit benchmark, although he failed to receive the minimum 5% of the vote to stay on the ballot after his 4th year in 2014, receiving a maximum vote share of only 12.2% in 2012. Sosa, Ramirez, and Sheffield appear on the ballot in 2021 in their 9th,  $5^{\circ}$ , and  $7^{\circ}$  years, respectively. Rodriguez and Ortiz have yet to appear on a Hall of Fame ballot, but both will become eligible for the first time on the 2022 ballot. These players are 4th and 17th in all-time home runs, respectively, with generally above-average Hall of Fame peripheral numbers to match. While this algorithm measures strictly offensive performance, it is important to note that Ortiz spent much of his career as a designated hitter rather than a first baseman, as he is listed in this analysis. Only one other primary DH has earned Hall of Fame induction (Edgar Martinez in 2019), largely due to the lack of defensive impact. Table 5 shows Martinez and Ortiz compared separately. Rodriguez, meanwhile, is considered to be among the greatest all-around hitters in baseball history, as the regression score shows (one of only 29 players to achieve greater than 90% probability under all four models), but his two positive PED tests and suspensions may prove to hurt his candidacy much in the same way as it has

<sup>&</sup>lt;sup>1</sup> Mike Piazza, inducted 2016, admitted to PED use before ban; Ivan Rodriguez, inducted 2017, accused but not proven; Jeff Bagwell, inducted 2017, accused but not proven; Tim Raines, inducted 2017, admitted to cocaine use

Bonds. Table 6 compares Rodriguez and Bonds to other all-time best hitter candidates Willie Mays, Babe Ruth, Stan Musial, and Ted Williams.

| names             | years | G     | AB    | R    | H    | X2B  | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|-------------------|-------|-------|-------|------|------|------|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Barry             | 22    | 2986  | 9847  | 2227 | 2935 | 601  | 762 | 1996 | 2558 | 0.298 | 12606 | 5976 | 0.607 | 0.444 | 1.051 | 0.973 | 0.962 | 0.976 | 0.962 |
| Bonds             |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| David             | 20    | 2408  | 8640  | 1419 | 2472 | 632  | 541 | 1768 | 1319 | 0.286 | 10091 | 4765 | 0.552 | 0.380 | 0.932 | 0.561 | 0.515 | 0.566 | 0.515 |
| Ortiz             |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Rafael            | 20    | 2831  | 10472 | 1663 | 3020 | 585  | 569 | 1835 | 1353 | 0.288 | 12046 | 5388 | 0.515 | 0.371 | 0.886 | 0.730 | 0.716 | 0.743 | 0.716 |
| Palmeiro          |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Manny<br>Ramirez  | 19    | 2302  | 8244  | 1544 | 2574 | 547  | 555 | 1831 | 1329 | 0.312 | 9774  | 4826 | 0.585 | 0.411 | 0.996 | 0.889 | 0.876 | 0.897 | 0.876 |
| Alex<br>Rodriguez | 22    | 2784  | 10566 | 2021 | 3115 | 548  | 696 | 2086 | 1338 | 0.295 | 12207 | 5813 | 0.550 | 0.380 | 0.930 | 0.929 | 0.925 | 0.935 | 0.925 |
| Gary              | 22    | 2576  | 9217  | 1636 | 2689 | 467  | 509 | 1676 | 1475 | 0.292 | 10947 | 4737 | 0.514 | 0.393 | 0.907 | 0.807 | 0.813 | 0.816 | 0.814 |
| Sheffield         |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Sammy             | 18    | 2354  | 8813  | 1475 | 2408 | 379  | 609 | 1667 | 929  | 0.273 | 9896  | 4704 | 0.534 | 0.344 | 0.878 | 0.501 | 0.515 | 0.505 | 0.515 |
| Sosa              |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| HOF               | 18    | 2161  | 8008  | 1338 | 2419 | 417  | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average           |       |       |       |      |      |      |     |      |      |       |       |      |       | ļ     | ļ     |       |       | ļ     |       |
| Table 4           |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
|                   |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| names             | years | G     | AB    | R    | Н    | X2B  | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | m1    | m2    | m3    | m4    |
| Edgar             | 18    | 2055  | 7213  | 1219 | 2247 | 514  | 309 | 1261 | 1283 | 0.312 | 8672  | 3718 | 0.515 | 0.418 | 0.933 | 0.527 | 0.538 | 0.531 | 0.538 |
| Martinez          |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| David             | 20    | 2408  | 8640  | 1419 | 2472 | 632  | 541 | 1768 | 1319 | 0.286 | 10091 | 4765 | 0.552 | 0.380 | 0.932 | 0.561 | 0.515 | 0.566 | 0.515 |
| Ortiz             |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| HOF               | 18    | 2161  | 8008  | 1338 | 2419 | 417  | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average           |       | l     |       | J    |      |      |     |      |      |       |       |      | ļ     |       | ļ     |       | ļ     | ļ     |       |
| Table 5           |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
|                   |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| names             | years | G     | AB    | R    | H    | X2B  | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
| Stan              | 22    | 3026  | 10972 | 1949 | 3630 | 725  | 475 | 1951 | 1599 | 0.331 | 12712 | 6134 | 0.559 | 0.417 | 0.976 | 0.978 | 0.978 | 0.981 | 0.978 |
| Musial            |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Babe              | 22    | 2503  | 8398  | 2174 | 2873 | 506  | 714 | 2217 | 2062 | 0.342 | 10616 | 5793 | 0.690 | 0.474 | 1.164 | 0.997 | 0.996 | 0.998 | 0.996 |
| Ruth              |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Ted               | 19    | 2292  | 7706  | 1798 | 2654 | 525  | 521 | 1839 | 2021 | 0.344 | 9791  | 4884 | 0.634 | 0.482 | 1.116 | 0.988 | 0.982 | 0.989 | 0.983 |
| Williams          |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Barry             | 22    | 2986  | 9847  | 2227 | 2935 | 601  | 762 | 1996 | 2558 | 0.298 | 12606 | 5976 | 0.607 | 0.444 | 1.051 | 0.973 | 0.962 | 0.976 | 0.962 |
| Bonds             | 00    | 070 1 | 10500 | 0001 | 0117 | 5.40 | COC | 0000 | 1000 | 0.007 | 10005 | 5010 | 0.550 | 0.000 | 0.000 | 0.000 | 0.007 | 0.007 | 0.007 |
| Alex              | 22    | 2784  | 10566 | 2021 | 3115 | 548  | 696 | 2086 | 1338 | 0.295 | 12207 | 5813 | 0.550 | 0.380 | 0.930 | 0.929 | 0.925 | 0.935 | 0.925 |
| Rodriguez         | I     | I     | l     | I    |      | I    | I   | 1    | I    | I     | I     | l    | I     | l     | l     | I     | I     | l     | I     |
| Table 6           |       |       |       |      |      |      |     |      |      |       |       |      |       |       |       |       |       |       |       |

Harold Baines, Derek Jeter, Edgar Martinez, and Larry Walker have each been elected, either on the 2019 or 2020 ballots<sup>2</sup>. As previously mentioned, the Lahman database is not up to date at the time of this writing, but these players are Hall of Famers nonetheless.

Adrian Beltre, Ichiro Suzuki, and Carlos Beltran have each seen their playing careers end, but have not yet reached the minimum 5 years of retirement to be eligible for the Hall of Fame ballot. Each of these players is compared to the Hall averages in Table 7. Beltre, with his 3000+ hits and strong peripherals prove his candidacy (3000 hits is a common rule-of-thumb benchmark for induction), although his relatively low career batting average, on-base percentage, and walk total hurt his regression score. Suzuki (or Ichiro, as he is known both in the United States and his home nation of Japan) has compiled over 3000 career hits as well, albeit with very low power numbers (home runs, doubles, slugging percentage, runs batted in) and walk total, compared to Hall of Fame contemporaries. Ichiro is a prime example of a beneficiary of the inclusion of pre-live-ball era Hall of Famers, as his high-contact, low-power style of play is reminiscent of the much older style of baseball, and he is contrasted with the great hitters of that time (Ty Cobb, Billy Hamilton, Rogers Hornsby, and Ed Delahanty) in Table 8. Although he can be compares well to these players, Ichiro will ultimately be remembered for the relatively short period of dominance at the

<sup>&</sup>lt;sup>2</sup> Baines was elected via the Veterans' Committee in 2019.

beginning of his career, during which he posted ten consecutive seasons of more than 200 hits, including one in which he logged 262 – both MLB records. Beltran and Bobby Abreu are very similar players, as Table 10 suggests (although, generally, Beltran was better), and both players will be discussed in the next paragraph.

| names   | years | G    | AB    | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|---------|-------|------|-------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Adrian  | 21    | 2933 | 11068 | 1524 | 3166 | 636 | 477 | 1707 | 848  | 0.286 | 12130 | 5309 | 0.480 | 0.339 | 0.819 | 0.549 | 0.507 | 0.565 | 0.508 |
| Beltre  |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Carlos  | 20    | 2586 | 9768  | 1582 | 2725 | 565 | 435 | 1587 | 1084 | 0.279 | 11031 | 4751 | 0.486 | 0.350 | 0.836 | 0.439 | 0.500 | 0.448 | 0.500 |
| Beltran |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Ichiro  | 19    | 2653 | 9934  | 1420 | 3089 | 362 | 117 | 780  | 647  | 0.311 | 10734 | 3994 | 0.402 | 0.355 | 0.757 | 0.573 | 0.480 | 0.589 | 0.481 |
| Suzuki  |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008  | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

Table 7

| names     | years | G    | AB    | R    | H    | X2B | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | m1    | m2    | m3    | m4    |
|-----------|-------|------|-------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Ty Cobb   | 24    | 3035 | 11436 | 2247 | 4189 | 724 | 117 | 1944 | 1249 | 0.366 | 13071 | 5854 | 0.512 | 0.433 | 0.945 | 0.999 | 1.000 | 0.999 | 1.000 |
| Ed        | 16    | 1837 | 7510  | 1600 | 2597 | 522 | 101 | 1466 | 742  | 0.346 | 8400  | 3794 | 0.505 | 0.411 | 0.916 | 0.949 | 0.964 | 0.954 | 0.965 |
| Delahanty |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Billy     | 14    | 1594 | 6283  | 1697 | 2164 | 242 | 40  | 742  | 1189 | 0.344 | 7608  | 2716 | 0.432 | 0.455 | 0.887 | 0.924 | 0.954 | 0.930 | 0.954 |
| Hamilton  |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Rogers    | 23    | 2259 | 8173  | 1579 | 2930 | 541 | 301 | 1584 | 1038 | 0.358 | 9475  | 4712 | 0.577 | 0.434 | 1.011 | 0.987 | 0.992 | 0.988 | 0.992 |
| Hornsby   |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Ichiro    | 19    | 2653 | 9934  | 1420 | 3089 | 362 | 117 | 780  | 647  | 0.311 | 10734 | 3994 | 0.402 | 0.355 | 0.757 | 0.573 | 0.480 | 0.589 | 0.481 |
| Suzuki    |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
|           |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

Table 8

Todd Helton, Omar Vizquel, and Bobby Abreu are still on the ballot without any PED allegations, in their 3rd, 4th, and 2<sup>nd</sup> years in 2021, respectively. Their career statistics are on display in Table 9. Abreu barely survived his first ballot year in 2020, receiving only 5.5% of the vote. As mentioned, Abreu and Carlos Beltran posted very similar statistics across the life of their careers, with Beltran earning a slight advantage in nearly every category, as seen in Table 10. It is particularly interesting to see these players included in the HOF worthy table, considering the fact that both players contributed significant value to their teams via stolen bases - a metric not considered in the logistic regression. Even without stolen bases, these players' career achievements earned them around 46% and 40% Hall of Fame probability from the models, respectively. Respectable, if unspectacular, hits, runs, and at bats totals with similarly mediocre (by Hall of Fame standards) rate statistics place these two players toward the bottom of this table in terms of Hall of Fame candidacy. Vizquel inches closer to election each year, earning 37.0%, 42.8%, and 52.6% of vote shares in 2018, 2019, and 2020, respectively. Aided by his high hit total and impressive longevity, Vizquel is conventionally known for his defensive prowess. The BBWAA models were far less favorable to his offensive statistics than the overall model, to the tune of 34% versus 43% - largely due to his lackluster on-base percentage and power numbers seen in Table 9. However, his exceptionally long career and solid career hit and walk totals were enough for at least two of the models to consider him an all-time great, and positional analysis would have placed him in the pos only table were these statistics slightly less impressive. Helton faces the same barrier that Larry Walker overcame when Walker earned election to the Hall in 2020: both players played most or all of their careers in notoriously hitter-friendly Denver, Colorado. Denver baseball is played 4,000 feet higher in elevation than any other MLB stadium, leading the BBWAA (and the baseball community in general) to be wary of "inflated" offensive statistics from players who play the majority of their games there. Walker had the advantage in that he demonstrated premier offensive ability in eight of his 18 seasons away from Denver, but in Helton's case, the BBWAA may have a valid case. Figure 3 shows Helton's career splits at home (in Denver) versus on the road, and the results clearly portray Helton as a solid hitter over his career, but hardly a Hall of Fame worthy one considering he was a member of the Colorado Rockies for all of his 17 seasons.

| names  | years | G    | AB   | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4       |
|--------|-------|------|------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|----------|
| Bobby  | 18    | 2425 | 8480 | 1453 | 2470 | 574 | 288 | 1363 | 1476 | 0.291 | 10081 | 4026 | 0.475 | 0.395 | 0.870 | 0.410 | 0.403 | 0.415 | 0.404    |
| Abreu  |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       | <u> </u> |
| Todd   | 17    | 2247 | 7962 | 1401 | 2519 | 592 | 369 | 1406 | 1335 | 0.316 | 9450  | 4292 | 0.539 | 0.414 | 0.953 | 0.681 | 0.678 | 0.692 | 0.679    |
| Helton |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       | 1     | ĺ        |

| Omar<br>Vizquel | 24 | 2968 | 10586 | 1445 | 2877 | 456 | 80  | 951  | 1028 | 0.272 | 12013 | 3727 | 0.352 | 0.336 | 0.688 | 0.338 | 0.430 | 0.341 | 0.430 |
|-----------------|----|------|-------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| HOF<br>Average  | 18 | 2161 | 8008  | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Table 9         |    |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
|                 |    |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

| names   | years | G    | AB   | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA    | ТВ   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|---------|-------|------|------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Bobby   | 18    | 2425 | 8480 | 1453 | 2470 | 574 | 288 | 1363 | 1476 | 0.291 | 10081 | 4026 | 0.475 | 0.395 | 0.870 | 0.410 | 0.403 | 0.415 | 0.404 |
| Abreu   |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Carlos  | 20    | 2586 | 9768 | 1582 | 2725 | 565 | 435 | 1587 | 1084 | 0.279 | 11031 | 4751 | 0.486 | 0.350 | 0.836 | 0.439 | 0.500 | 0.448 | 0.500 |
| Beltran |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

Table 10

| Split | G    | GS   | PA   | AB   | R   | Н    | 2B  | 3B | HR  | RBI | SB | CS | ВВ  | 50  | BA   | OBP  | SLG  | OPS   | TB   | GDP | HBP | SH | SF | IBB | ROE | BAbip | tOPS+ |
|-------|------|------|------|------|-----|------|-----|----|-----|-----|----|----|-----|-----|------|------|------|-------|------|-----|-----|----|----|-----|-----|-------|-------|
| Home  | 1141 | 1084 | 4841 | 4038 | 874 | 1394 | 321 | 28 | 227 | 859 | 24 | 15 | 710 | 514 | .345 | .441 | .607 | 1.048 | 2452 | 97  | 29  | 2  | 60 | 99  | 46  | .348  | 119   |
| Away  | 1106 | 1052 | 4612 | 3924 | 527 | 1125 | 271 | 9  | 142 | 547 | 13 | 14 | 625 | 661 | .287 | .386 | .469 | .855  | 1840 | 89  | 28  | 1  | 33 | 86  | 38  | .312  | 80    |

Figure 3

Finally, the modern players whose lives on the Hall of Fame ballot came and passed: Julio Franco, Fred McGriff, Al Oliver, Dave Parker, and Rusty Staub. These five players are the epitome of baseball's colloquial "Hall of Very Good". Certainly, strong cases can be made for each of these five players, given how they match up against the Hall of Fame means in Table 11. Each player compiled above-Hall average career lengths, at-bats, hits, and plate appearances, with only Franco posting below-average doubles, runs batted in, and total bases – all by narrow margins. Franco, particularly, deserves more credit than his measly 1.1% of the vote share in 2013, his first and only year on the ballot, implies. Franco complied an impressive 23 seasons in Major League Baseball between the ages of 23 and 48 – even more impressive considering he missed the entire 1995 (labor strike), 1998 (Japan), and 2000 (Korea) seasons. His .365 career on-base percentage ranked 4th all-time amongst live-ball era shortstops, and his career hit totals and batting average are better than contemporaries Alan Trammell, Barry Larkin, and Ozzie Smith (Table 12). Each of the four logistic regression algorithms gave him around a 61% Hall of Fame probability, second only to Alex Rodriguez among shortstops not inducted. Considering the positional adjustment, Franco is likely deserving of Hall of Fame induction. Much like the pre-live-ball era players, these players all still have the opportunity to be inducted via the Veterans' Committee.

| names   | years | G    | AB   | R    | H    | X2B | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|---------|-------|------|------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Julio   | 23    | 2527 | 8677 | 1285 | 2586 | 407 | 173 | 1194 | 917  | 0.298 | 9731  | 3620 | 0.417 | 0.365 | 0.782 | 0.588 | 0.625 | 0.595 | 0.626 |
| Franco  |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Fred    | 19    | 2460 | 8757 | 1349 | 2490 | 441 | 493 | 1550 | 1305 | 0.284 | 10174 | 4458 | 0.509 | 0.377 | 0.886 | 0.517 | 0.485 | 0.521 | 0.486 |
| McGriff |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Al      | 18    | 2368 | 9049 | 1189 | 2743 | 529 | 219 | 1326 | 535  | 0.303 | 9778  | 4083 | 0.451 | 0.344 | 0.795 | 0.408 | 0.342 | 0.418 | 0.343 |
| Oliver  |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Dave    | 19    | 2466 | 9358 | 1272 | 2712 | 526 | 339 | 1493 | 683  | 0.29  | 10184 | 4405 | 0.471 | 0.339 | 0.810 | 0.387 | 0.358 | 0.394 | 0.358 |
| Parker  |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Rusty   | 23    | 2951 | 9720 | 1189 | 2716 | 499 | 292 | 1466 | 1255 | 0.279 | 11229 | 4185 | 0.431 | 0.362 | 0.793 | 0.415 | 0.445 | 0.418 | 0.445 |
| Staub   |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
|         |       |      |      |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

Table 11

| names    | vears | G    | AB   | R    | Пп    | X2B | HR  | RBI  | ВВ   | BA    | PA    | ТВ   | SLG   | OBP   | OPS   | m1    | m2    | m3    | m4    |
|----------|-------|------|------|------|-------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
|          | _     |      |      |      | 20.10 |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Barry    | 19    | 2180 | 7937 | 1329 | 2340  | 441 | 198 | 960  | 939  | 0.295 | 9057  | 3527 | 0.444 | 0.371 | 0.815 | 0.238 | 0.260 | 0.238 | 0.260 |
| Larkin   |       |      |      |      |       |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Ozzie    | 19    | 2573 | 9396 | 1257 | 2460  | 402 | 28  | 793  | 1072 | 0.262 | 10778 | 3084 | 0.328 | 0.337 | 0.665 | 0.143 | 0.163 | 0.139 | 0.162 |
| Smith    |       |      |      |      |       |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Alan     | 20    | 2293 | 8288 | 1231 | 2365  | 412 | 185 | 1003 | 850  | 0.285 | 9375  | 3442 | 0.415 | 0.352 | 0.767 | 0.183 | 0.213 | 0.182 | 0.213 |
| Trammell |       |      |      |      |       |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| Julio    | 23    | 2527 | 8677 | 1285 | 2586  | 407 | 173 | 1194 | 917  | 0.298 | 9731  | 3620 | 0.417 | 0.365 | 0.782 | 0.588 | 0.625 | 0.595 | 0.626 |
| Franco   |       |      |      |      |       |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

Table 12

The false positives data frame is where one will find the "exceptions" among Hall of Fame inductees (at least, according to the logistic regression scores). Many of these players received low logistic regression scores largely due solely to the lack of reliable data available. Frank Chance, High Pockets Kelly, Home Run Baker, Johnny Evers, Roger Bresnahan, Buck Ewing, Ray Schalk, Max Carey, Earle Combs, Elmer Flick, Harry Hooper, King Kelly, Tommy McCarthy, Hack Wilson, Ross Youngs, Dave Bancroft, Travis Jackson, Joe Tinker, and John Ward all played most or all of their careers before 1920, and are featured as exceptions mainly due to the inclusion of the pre-1920 Hall of Fame players already discussed. Data from this time, especially pre-1900, can be incomplete, as records of games rely almost entirely on newspaper box scores and even then do not include some of today's commonplace statistics. Jackie Robinson (the first player to break MLB's color barrier in 1947), Larry Doby (the first American League player to break the color barrier, also in 1947), and Roy Campanella<sup>3</sup> each spent many years of their professional careers playing in the Negro Leagues, depriving them of their ability to accumulate the same professional statistics as their white contemporaries<sup>4</sup>. Statistics from these leagues are nearly non-existent, and the few records that do exist are not provided in the Lahman database. Some of the players in this data frame at defensefirst positions (shortstop, second base, and catcher) were primarily inducted for just that reason - their defense including Bill Mazeroski, Luis Aparicio, and others. Omission of these players may have been prudent for a strictly offensive algorithm like this one, but BBWAA voters rarely provide motive or justification for their votes, so determining why a player was elected is effectively impossible. Ralph Kiner (back) and Kirby Puckett (glaucoma) experienced unfortunate and untimely ends to their decidedly dominant baseball careers, with both retiring at relatively young ages (32 and 36, respectively). As each player's career statistics illustrate in Table 13, these players would likely not be included in this data frame (rather, correctly classified as Hall of Famers) had their bodies afforded them the luxury of more professional seasons.

| names   | years | G    | AB   | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA   | TB   | SLG   | OBP   | OPS   | m1    | m2    | m3    | m4    |
|---------|-------|------|------|------|------|-----|-----|------|------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Ralph   | 10    | 1472 | 5205 | 971  | 1451 | 216 | 369 | 1015 | 1011 | 0.279 | 6256 | 2852 | 0.548 | 0.398 | 0.946 | 0.084 | 0.055 | 0.077 | 0.055 |
| Kiner   |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |
| Kirby   | 12    | 1783 | 7244 | 1071 | 2304 | 414 | 207 | 1085 | 450  | 0.318 | 7831 | 3453 | 0.477 | 0.360 | 0.837 | 0.251 | 0.205 | 0.254 | 0.205 |
| Puckett |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110 | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |

Table 13

In stark contrast to the PED argument, Orlando Cepeda and Ron Santo were aided rather than hurt by the Hall of Fame's "character clause". Cepeda's and Santo's statistics and logistic regression probabilities point to their likely inclusion in the infamous "Hall of Very Good", but eventually were elected based on their philanthropy, charity, and off-the-field contributions to society. Cepeda's and Santo's career statistics versus the Hall of Fame averages are shown in Table 14. As we can see, both players are extremely close to the Hall averages for all statistics, with neither having enough above-average numbers to sway the algorithm to correctly predict their inductions.

| names   | years | G    | AB   | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA   | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|---------|-------|------|------|------|------|-----|-----|------|------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Orlando | 17    | 2124 | 7927 | 1131 | 2351 | 417 | 379 | 1365 | 588  | 0.297 | 8695 | 3959 | 0.499 | 0.350 | 0.849 | 0.331 | 0.285 | 0.333 | 0.285 |
| Cepeda  |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |
| Ron     | 15    | 2243 | 8143 | 1138 | 2254 | 365 | 342 | 1331 | 1108 | 0.277 | 9396 | 3779 | 0.464 | 0.362 | 0.826 | 0.190 | 0.225 | 0.187 | 0.225 |
| Santo   |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110 | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |
|         |       |      |      |      |      |     |     |      |      |       |      |      |       |       |       |       |       |       |       |

Table 14

<sup>&</sup>lt;sup>3</sup> Monte Irvin was initially included in the all\_batters table and spent multiple seasons in the Negro Leagues as well, but was the only player removed after adding the 10 year career length filter to the HOF table.

<sup>&</sup>lt;sup>4</sup> Willie Mays, Hank Aaron, and Ernie Banks each spent some time in the Negro Leagues as well, but the periods were shirt enough that they ultimately were each able to compile the requisite MLB statistics for the logistic regression to correctly classify them.

Still, there are players who have no extenuating circumstances, and simply compiled respectable careers that ultimately fail to match Hall of Fame standards. George Kell's statistics are listed in Table 15.

| names   | years | G    | AB   | R    | Н    | X2B | HR  | RBI  | BB  | BA    | PA   | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|---------|-------|------|------|------|------|-----|-----|------|-----|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| George  | 15    | 1795 | 6702 | 881  | 2054 | 385 | 78  | 870  | 621 | 0.306 | 7528 | 2773 | 0.414 | 0.367 | 0.781 | 0.145 | 0.150 | 0.141 | 0.150 |
| Kell    |       |      |      |      |      |     |     |      |     |       |      |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913 | 0.302 | 9110 | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |      |      |      |     |     |      |     |       |      |      |       |       |       |       |       |       |       |

Table 15

The pos only designation constitutes the very definition of the previously discussed "Hall of Very Good", but the primary purpose is to outline the players who were among the best offensive producers at their respective positions. As expected, players at traditional defensive-minded positions occupy the top of this table. One of these players has earned election in via the Veterans' Committee, one is still active, three are featured on the 2021 ballot, four have not yet reached the 5-year retirement requirement for ballot eligibility, and the remaining 22 players have seen their BBWAA ballot time come and go. Based on the logistic regression scores and difference between the players' scores and the mean scores at their positions, Table 16 includes the career statistics of Jeff Kent, Mark McGwire, Jason Giambi, Bernie Williams, Johnny Damon, Dwight Evans, Luis Gonzalez, Robinson Cano, Jimmy Rollins, Chase Utley, and Joe Mauer. Coupled with career statistics that are not quite Hall of Fame-caliber, McGwire, Giambi, Gonzalez, and Cano will likely never see election to the Hall due to PED use, assuming current voting trends continue. Jeff Kent is in his 8th season of ballot eligibility, earning his maximum 27.5% of vote shares in 2020 after hovering around 16% for his first 6 ballots. Williams, Damon, and Evans all failed to receive the necessary 5% of votes to stay on the ballot within their first three years of eligibility, owing largely to their generally below Hall of Fame average career statistics and high number of productive offensive players at the outfield position. Utley, Mauer, and Rollins each rank among the top offensive players in the history of their positions, but only Mauer managed to eclipse a .300 career batting average. Out of all 11 players in Table 16, overall career numbers and positional adjustments make Mauer and Kent the most likely Hall of Famers, with Kent having a positional regression score 47% better than the mean second baseman and Mauer 36% better than the mean catcher.

| names              | vears | l G  | AB   | R    | Н    | X2B | HR  | RBI  | ВВ   | BA    | l PA  | ТВ   | SLG   | ОВР   | OPS   | l m1  | m2    | m3    | m4    |
|--------------------|-------|------|------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Robinson<br>Cano   | 15    | 2185 | 8502 | 1234 | 2570 | 562 | 324 | 1272 | 607  | 0.302 | 9264  | 4170 | 0.490 | 0.352 | 0.842 | 0.256 | 0.190 | 0.261 | 0.190 |
| Johnny<br>Damon    | 18    | 2490 | 9736 | 1668 | 2769 | 522 | 235 | 1139 | 1003 | 0.284 | 10917 | 4214 | 0.433 | 0.352 | 0.785 | 0.299 | 0.304 | 0.307 | 0.304 |
| Dwight<br>Evans    | 20    | 2606 | 8996 | 1470 | 2446 | 483 | 385 | 1384 | 1391 | 0.272 | 10569 | 4230 | 0.470 | 0.370 | 0.840 | 0.312 | 0.341 | 0.312 | 0.341 |
| Jason<br>Giambi    | 20    | 2260 | 7267 | 1227 | 2010 | 405 | 440 | 1441 | 1366 | 0.277 | 8908  | 3753 | 0.516 | 0.399 | 0.915 | 0.375 | 0.343 | 0.368 | 0.343 |
| Luis<br>Gonzalez   | 19    | 2591 | 9157 | 1412 | 2591 | 596 | 354 | 1439 | 1155 | 0.283 | 10531 | 4385 | 0.479 | 0.367 | 0.846 | 0.331 | 0.318 | 0.335 | 0.318 |
| Jeff Kent          | 17    | 2298 | 8498 | 1320 | 2461 | 560 | 377 | 1518 | 801  | 0.29  | 9537  | 4246 | 0.500 | 0.356 | 0.856 | 0.332 | 0.324 | 0.336 | 0.324 |
| Joe<br>Mauer       | 15    | 1858 | 6930 | 1018 | 2123 | 428 | 143 | 923  | 939  | 0.306 | 7960  | 3040 | 0.439 | 0.388 | 0.827 | 0.168 | 0.168 | 0.166 | 0.168 |
| Mark<br>McGwire    | 16    | 1874 | 6187 | 1167 | 1626 | 252 | 583 | 1414 | 1317 | 0.263 | 7660  | 3639 | 0.588 | 0.394 | 0.982 | 0.352 | 0.297 | 0.336 | 0.296 |
| Jimmy<br>Rollins   | 17    | 2275 | 9294 | 1421 | 2455 | 511 | 231 | 936  | 813  | 0.264 | 10240 | 3889 | 0.418 | 0.324 | 0.742 | 0.046 | 0.047 | 0.045 | 0.047 |
| Chase<br>Utley     | 16    | 1937 | 6857 | 1103 | 1885 | 411 | 259 | 1025 | 724  | 0.275 | 7863  | 3189 | 0.465 | 0.358 | 0.823 | 0.059 | 0.047 | 0.056 | 0.047 |
| Bernie<br>Williams | 16    | 2076 | 7869 | 1366 | 2336 | 449 | 287 | 1257 | 1069 | 0.297 | 9053  | 3756 | 0.477 | 0.381 | 0.858 | 0.370 | 0.397 | 0.374 | 0.397 |

<sup>&</sup>lt;sup>5</sup> Ted Simmons, C, inducted 2020

<sup>&</sup>lt;sup>6</sup> Robinson Cano, 2B

<sup>&</sup>lt;sup>7</sup> Jeff Kent, 2B, 8th ballot; Scott Rolen, 3B, 4th ballot; Aramis Ramirez, 3B

<sup>&</sup>lt;sup>8</sup> Victor Martinez, C; Joe Mauer, C; Chase Utley, 2B; Jimmy Rollins, SS

| HOF      | 18 | 2161 | 8008 | 1338 | 2419 | 417 | 224 | 1232 | 913 | 0.302 | 9110 | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
|----------|----|------|------|------|------|-----|-----|------|-----|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Average  | J  |      |      |      |      |     |     |      |     |       |      |      |       |       |       |       |       |       |       |
| Table 16 |    |      |      |      |      |     |     |      |     |       |      |      |       |       |       |       |       |       |       |

Finally, we come to Pete Rose. Rose's career statistics and logistic regression scores in Table 17 paint the picture of a top-10 hitter across baseball history, especially bolstered by his 4,256 career hits, 14,053 career at-bats, and 3,562 career games played – all MLB records – alongside 24 professional seasons and stellar peripheral statistics. He played from 1963 to 1986 so he was well within the live-ball era. He was never suspended or even accused of taking PEDs, either. For each of the features included in the regression model, he ranks close to or above the Hall of Fame average. It was not his play, the time of his career, nor his drug use that disqualifies him for Hall of Fame candidacy, but rather a permanent ban from professional baseball issued to him in 1989 surrounding allegations that he gambled on MLB games during his tenure as manager of the Cincinnati Reds. This conflict of interest may cost one of the greatest hitters in baseball history his opportunity at induction into the Hall of Fame.

| names   | years | G    | AB    | R    | Н    | X2B | HR  | RBI  | BB   | BA    | PA    | TB   | SLG   | OBP   | OPS   | ml    | m2    | m3    | m4    |
|---------|-------|------|-------|------|------|-----|-----|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| Pete    | 24    | 3562 | 14053 | 2165 | 4256 | 746 | 160 | 1314 | 1566 | 0.303 | 15861 | 5752 | 0.409 | 0.375 | 0.784 | 0.905 | 0.897 | 0.917 | 0.897 |
| Rose    |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| HOF     | 18    | 2161 | 8008  | 1338 | 2419 | 417 | 224 | 1232 | 913  | 0.302 | 9110  | 3720 | 0.464 | 0.376 | 0.840 | 0.517 | 0.515 | 0.520 | 0.515 |
| Average |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |
| - 11    |       |      |       |      |      |     |     |      |      |       |       |      |       |       |       |       |       |       |       |

Table 17

#### Discussion

Ultimately, the logistic regression model is imperfect, based on voting history and public perception. Were a survey to be published, asking a population to judge the classification of the algorithm, some players would almost certainly be deemed by many baseball fans to be under the wrong classification. A potentially significant predictor not included in the model could be a factor describing the status of a player's PED allegations and/or suspensions, especially given that in recent memory, the BBWAA tends to penalize players whose integrity in this regard is in doubt. Additionally, it would be interesting to see the consideration and effect on the model of players with statistical outliers – players who dominated a particular statistic not included in the model, like Sam Crawford's triples (309; an advantage of 118 over the Paul Waner's 191, the highest total of a player who spent his entire career in the liveball era) or Rickey Henderson's stolen bases (1406; an advantage of 468 over second place Lou Brock, a record that may never be broken).

Wins Above Replacement (WAR; a single composite statistical measure of a player's on-field value), 7-year peak WAR (the greatest 7-year sum of single season WAR totals in a player's career), JAWS (the average of a player's career WAR and 7-year peak), and other Jamesian Hall of Fame metrics negate the need for such linear regression analysis to varying degrees, as Hall of Famers are generally considered using a single threshold value for these numbers. However, the WAR statistics in particular present as intriguing candidates for predictors in a similar algorithm. Although Jamesian statistics can be notoriously difficult to obtain in bulk, the comparison of these metrics to the logistic regression scores shown here may indicate significant relationships, and may indicate differences or overlooked features as well.

A clustering algorithm on a wider set of predictors may also be an interesting and fruitful approach that mirrors Ball James's Similarity Scores. Especially taking the positional issue into account, a clustering approach to grouping players may be a conceptually sensible one, and would allow a direct and straightforward analysis, both visually and computationally.

While imperfect, the logistic regression Hall of Fame scoring algorithm provides a reliably accurate baseline metric for assessing induction candidacy to professional baseball's highest honor, at least from an offensive perspective. Most importantly, positional considerations show that Hall of Fame voting trends at less premier offensive positions like catcher, shortstop, and third base fail to consider candidates' offensive contributions relative to players at their shared position, especially in recent memory. The H0F\_worthy data frame clearly and effectively lists Hall of Fame-caliber players' offensive careers relative to all hitters who qualify for the Hall of Fame, while pos\_only does the same with those who were in the top echelon of Hall of Fame inductees at each position – with the unique added feature of each player's performance above the mean player at their position. These final data frames contribute scalable, easy to parse scores and comparisons for players across baseball, giving the necessary positional consideration where it is due. Whether voters consider themselves to be "small Hall" or "large Hall" proponents, the regression scores both overall and positionally provide valid arguments for a large number of players from a wide range of playing styles and eras. I implore all BBWAA voters to make use of these considerations as they continue to hold the fate of the pinnacle of a player's baseball career in their hands.

## References

Freindly, Michael, et al. "Lahman." 6 June 2020. https://cran.r-project.org/web/packages/Lahman/Lahman.pdf

"Leaderboard Glossary." *Baseball*, www.baseball-reference.com/about/leader\_glossary.shtml.

"Similarity Scores." Baseball, www.baseball-reference.com/about/similarity.shtml.

Alderson, Sandy, et al. "2019 Official Baseball Rules." The Office of the Commissioner of Baseball, 2019.

Cawley, Gavin & Talbot, Nicola. (2008). Efficient approximate leave-one-out cross-validation for kernel logistic regression. Machine Learning. 71. 243-264. 10.1007/s10994-008-5055-9.

## **Appendix**

Appendix 1

The reproduction or transmission of the Official Baseball Rules is prohibited without the express written consent of the Office of the Commissioner of Baseball. However, the Rules are publicly available on Major League Baseball's website here.

## Appendix 2

| Optimal Cutoff |
|----------------|
| 0.37868        |
| 0.39950        |
| 0.37896        |
| 0.39951        |
|                |

## Appendix 3

| Model | Misclassification Error |
|-------|-------------------------|
| m1    | 0.94747                 |
| m2    | 0.94651                 |
| m3    | 0.94747                 |
| m4    | 0.94651                 |
|       |                         |

#### Appendix 4 Appendix 4.1 TPR Model m10.64331 m20.61446 m30.64331 0.61446 m4Appendix 4.2 Model **FPR** 0.02168 m1m20.02117 m30.02168 0.02117 m4Appendix 5 Model Lift m19.42025 m29.34604

9.42025 9.34604

m3

m4