<u>Acknowledgements</u>

Remark on the master's dissertation and the oral presentation

Abstract

Table of contents

1 Introduction	2
1.1 Motivation	2
1.1.a Research questions	2
2 Programmable photonics	3
2.1 Photonic processors	3
2.1.a Feedforward and recirculating mesh	3
2.1.b Potential use cases of photonic processors	3
2.1.c Embedding of photonic processor in a larger system	3
2.2 Circuit representation	3
2.2.a Bi-directional systems	3
2.2.b Feedforward approximation	3
2.3 Initial design requirements	3
2.3.a Interfacing	3
2.3.b Programming	3
2.3.c Reconfigurability	3
2.3.d Tunability	3
3 Programming of photonic processors	4
3.1 Analysis of existing software ecosystems	
3.1.a Compiler and runime	4
3.1.b Code editors	4
3.1.c Formatting	
3.1.d Linting	4
3.1.e Testing	4
3.1.f Debugging	
3.2 Analysis of programming paradigms	
3.2.a Imperative programming	4
3.2.b Functional programming	4
3.2.c Object-oriented programming	
3.2.d Logic programming	4
3.2.e Dataflow programming	
4 Translation of intent	
5 The PHÔS programming language	
6 Examples of photonic circuit programming	
6.1 Using traditional programming languages	
7 Extending PHÔS to generic circuit design	
8 Simulation in PHÔS	
8.1 Co-simulation with digital electronic	
8.2 Towards co-simulation with analog electronic	
9 Future work	
10 Conclusion	
11 Conclusion	
12 Conclusion	
13 Conclusion	
14 Conclusion	
15 Conclusion	12

16 Conclusion	. 12	2
17 Conclusion	1:	2

<u>Glossary</u>

List of figures

List of tables

<u>List of code listings</u>

Introduction Motivation Research questions

Programmable photonics

Photonic processors

Feedforward and recirculating mesh

Potential use cases of photonic processors

Embedding of photonic processor in a larger system

Circuit representation

Bi-directional systems

Feedforward approximation

Initial design requirements

Interfacing

Programming

Reconfigurability

Tunability

<u>Programming of photonic processors</u>

Analysis of existing software ecosystems

Compiler and runime

Code editors

Formatting

Linting

Testing

Debugging

Analysis of programming paradigms

Imperative programming

Functional programming

Object-oriented programming

Logic programming

Dataflow programming

Translation of intent

The PHÔS programming language

Examples of photonic circuit programming

<u>Using traditional programming languages</u>

Extending PHÔS to generic circuit design Simulation in PHÔS

Co-simulation with digital electronic Towards co-simulation with analog electronic

Future work

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion