BME2 - Biomedical Ultrasonics

Lecture 2: Transmission, Reflection & Refraction of Plane Waves

Dr. Constantin-C. Coussios

Office: 43 Banbury Road Tel: 01865-(2)74750

Email: constantin.coussios@eng.ox.ac.uk

Acknowledgments: Prof. Ronald A. Roy, George Eastman Visiting Professor 2006-07

De partme n t o f П ngine 0 ľ 1 n ØΘ S C i e nc

Contents

- 2.1 The 1-D wave equation: harmonic plane waves
- 2.2 Acoustic and characteristic impedance
- 2.3 Energetics of plane waves
- 2.4 Transmission and reflection at normal incidence
- 2.5 Transmission, reflection refraction at oblique incidence
- 2.6 Engineering Applications

2.1 The 1-D Wave Equation: Harmonic Plane Waves

If pressure only varies along a single direction x, the 3-D wave equation [1.11] written out in Cartesian coordinates can be simplified to:

$$\left| \frac{\partial^2 p(x,t)}{\partial t^2} = c^2 \left(\frac{\partial^2 p(x,t)}{\partial x^2} \right) \right|$$
 [2.1]

which is known as the 1-D wave equation.

Integrating both sides, this suggests solutions that satisfy:

$$\frac{\partial p(x,t)}{\partial t} = \pm c \left(\frac{\partial p(x,t)}{\partial x} \right)$$

V This implies that the general solution to the 1-D wave equation must be of the form:

$$p(x,t) = f\left(t - \frac{x}{c}\right) + g\left(t + \frac{x}{c}\right)$$
 [2.2]

"Plane wave" traveling in the positive x direction

"Plane wave" traveling in the negative x direction

 \bigvee frequency ω , it can be written in the form Furthermore, if we assume that the plane wave is harmonic at

$$p(x,t) = A\cos\left[\omega\left(t \pm \frac{x}{c}\right)\right] = A\cos(\omega t \pm kx) = \text{Re}\left[\tilde{A}e^{\omega t \pm kx}\right]$$
 [2.3]

- VV Note that harmonic plane waves are periodic both in space and time
- exponential form, and complex quantities can be defined such that: always be REAL. However, it is convenient to work with the complex Note that quantities such as pressure, density and velocity must

$$\begin{aligned} & p(x,t) = \text{Re}[\tilde{p}(x,t)] \\ & \rho(x,t) = \text{Re}[\tilde{\rho}(x,t)] \end{aligned}$$
 [2.4]

omitted altogether. However, it is important to remember that all physical quantities must ultimately be REAL. In many textbooks, the 'Real part of' is often implied and therefore

2.2 Acoustic and Characteristic Impedance

- Many complex systems are characterized by their impedance
- V Impedance is the ratio of a stimulus to a response
- V Impedance is generally complex, as it generally affects both the amplitude and phase of the response.
- Mechanical $\widetilde{Z} = \widetilde{V}/I = Voltage/Current$ $\widetilde{Z} = Force/Velocity$

Acoustical

- $\tilde{Z} = A coustic Pressure / Particle Velocity$
- V Acoustic impedance is a measure of how much a material "complies" to a dynamic pressure disturbance.
- V Acoustic impedance determines the relative magnitude and phase of pressure and velocity at a point, and this play an important role in establishing boundary conditions for acoustic propagation.

 \bigvee In general, acoustic impedance is a COMPLEX quantity that varies with position:

$$\widetilde{Z} = \frac{\widetilde{p}}{\widetilde{v}}$$
 [2.5]

V form of the momentum equation [1.7] takes the form: However, for the special case of a harmonic plane wave, the 1-D

$$\rho_0 \frac{\partial \widetilde{\mathbf{v}}(x,t)}{\partial t} = -\left(\frac{\partial \widetilde{\rho}(x,t)}{\partial x}\right)\mathbf{i}$$

V Substituting the positive-going harmonic plane wave solution for (complex) pressure and integrating with respect to time gives:

$$\widetilde{\mathbf{v}}(x,t) = \pm \frac{\widetilde{A}}{\rho_0 c} e^{-i(\omega r \pm kx)} = \pm \frac{\widetilde{p}}{\rho_0 c}$$
 [2.6]

V is given by This means that, for harmonic plane waves, the acoustic impedance

$$\widetilde{Z} = \frac{\widetilde{p}}{\widetilde{v}} = \pm \rho_0 c = \pm r$$
 [2.7]

where the quantity r is called the *characteristic impedance* of a medium and is a *material property*. It has units of Pa.s / m

 \bigvee Therefore, for the special case of a harmonic plane wave, the impedance is REAL, of magnitude equal to the characteristic propagation. impedance, with a sign that depends on the direction of wave

Steel	Water	Air	Material
7700	998	1.21	ho (kg/m ³)
6100	1481	343	C (m/sec)
47.0 x 10 6	1.48 x 10 6	415	r (Pa•sec/m)

Stiffer, denser materials have greater characteristic impedances

2.3 Energetics of Plane Waves

Acoustic Intensity:

$$\vec{I}_i = p\vec{v} = \pm \frac{p^2}{\rho_o c}\hat{n}$$
 ; $(I = \pm P_{rms}V_{rms} = \pm \frac{P_{rms}}{\rho_o c})$

Acoustic Energy Density:

$$e_i = \frac{1}{2}\rho_o \left(v^2 + \frac{p^2}{\rho_o^2 c^2}\right) = \frac{pv}{c} = \rho_o v$$

$$\left(e = \frac{P_{rms} V_{rms}}{c}\right)$$

Superposition

Match the Boundary Conditions

$$p_i + p_r = p_t$$
 Continuity of pressure at $x = 0$
 $v_i + v_r = v_t$ Continuity of normal velocity at $x = 0$
 $p_i + p_r$
 p

- impedance is continuous. impedance. The boundary condition calls for the continuity of specific acoustic impedance. Note that this *does not* imply that the characteristic
- What are the implications for sound transmission and reflection?

$$\mathbf{T} = \frac{\mathbf{P}_{t}}{\mathbf{P}_{t}} \qquad T_{t} = \frac{I_{t}}{I_{t}} = \frac{r_{1}}{r_{2}} |\mathbf{T}|^{2}$$

$$\mathbf{R} = \frac{\mathbf{P}_{t}}{\mathbf{P}_{t}} \qquad R_{t} = \frac{I_{t}}{I_{t}} = |\mathbf{R}|^{2}$$

Substituting and rearranging yields

$$\mathbf{R} = \frac{r_2 - r_1}{r_2 + r_1} \qquad \mathbf{T} = \frac{2r_2}{r_2 + r_1} \qquad R_I = \left(\frac{r_2 - r_1}{r_2 + r_1}\right)^2 \qquad T_I = 4\frac{r_1/r_2}{\left(1 + r_1/r_2\right)^2}$$

• Note that:
$$T = 1 + R$$

Limiting Behavior

• For
$$r_1 = r_2$$
: R = 0 & T = 1

• For
$$r_1 << r_2 : R = +1 & T = 2$$

• For
$$r_1 >> r_2$$
: R = -1 & T = 0

Reflection From a "Hard" (rigid) Boundary

$$r_1 << r_2 = \infty$$
 R = +1 & T = 2

wave coming in from the right. In essence, you replace the reflecting boundary with a plane wave source on the right hand side You have in-phase reflection of the pressure wave, hence R = +1. The contribution of the boundary is equivalent to having an in-phase

Reflection From a "Hard" Boundary

$$\chi_2 = \infty$$
 $R = +1 \& T = 2$

The total pressure at the boundary is doubled. This is the pressure of the transmitted wave, hence, T = 2.

Reflection From a "Hard" Boundary

$$<< r_2 = \infty$$
 R = +1 & T = 2

The reflected velocity wave is out of phase. The total particle velocity at the boundary equals 0. This is a rigid boundary.

Reflection From a "Soft" Boundary

$$r_1 >> r_2 = 0$$

$$R = -1 \& T = 0$$

pressure at the boundary equals 0. This is a pressure release The reflected pressure wave is out of phase. The total boundary.

Transmission Through a Layer

except you have two boundaries to deal with. In the case of layers, the problem is solved in the same manner,

Transmission Through a Layer

Applying the boundary conditions and working though the algebra:

$$\mathbf{R} = \frac{\left(1 - \frac{r_1}{r_3}\right) \cos k_2 L + i \left(\frac{r_2}{r_3} - \frac{r_1}{r_2}\right) \sin k_2 L}{\left(1 + \frac{r_1}{r_3}\right) \cos k_2 L + i \left(\frac{r_2}{r_3} + \frac{r_1}{r_2}\right) \sin k_2 L}$$

$$T_{I} = \frac{4}{2 + \left(\frac{r_{3}}{r_{1}} + \frac{r_{1}}{r_{3}}\right)\cos^{2}k_{2}L + \left(\frac{r_{2}^{2}}{r_{1}r_{3}} + \frac{r_{1}r_{3}}{r_{2}^{2}}\right)\sin^{2}k_{2}L}$$

Engineering Application: Acoustic Windows

• Same fluid at inlet and outlet:
$$r_1 = r_3$$
 $T_I = \left[1 + \frac{1}{4} \left(\frac{r_2}{r_1} - \frac{r_1}{r_2}\right)^2 \sin^2 k_2 L\right]^{-1}$

- For $L << \lambda$, you get perfect transmission
- For $k_2L = n\pi$, you get perfect transmission:
- For $k_2 L = (2n-1)\pi/2$, you have: $L = \frac{(2n-1)}{4} \lambda$

$$T_{I} = 4r_{1}r_{3} / \left(r_{2} + \frac{r_{1}r_{3}}{r_{2}}\right)^{2}$$
; $T_{I} \approx 1$ for $r_{2} = \sqrt{r_{1}r_{3}}$