

Lectures 7-8 recap

Matrix decompositions and linear systems

In a least-squares, or linear regression, problem, we have measurements $X \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ and seek a vector $\theta \in \mathbb{R}^n$ such that $X\theta$ is close to y. Closeness is defined as the sum of the squared differences:

$$\sum_{i=1}^{m} (x_i^{\top} \theta - y_i)^2 \qquad \|X\theta - y\|_2^2 \to \min_{\theta \in \mathbb{R}^n} \qquad X\theta^* = y$$

Figure 1: Illustration of linear system aka least squares

Lectures 7-8 recap

Moore-Penrose inverse

If the matrix X is relatively small, we can write down and calculate exact solution:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

Moore-Penrose inverse

If the matrix \boldsymbol{X} is relatively small, we can write down and calculate exact solution:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

where X^{\dagger} is called pseudo-inverse matrix. However, this approach squares the condition number of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

എ റ ഉ

Moore-Penrose inverse

If the matrix \boldsymbol{X} is relatively small, we can write down and calculate exact solution:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

where X^{\dagger} is called pseudo-inverse matrix. However, this approach squares the condition number of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition

For any matrix $X \in \mathbb{R}^{m \times n}$ there is exists QR decomposition:

$$X = Q \cdot R,$$

എ റ ഉ

Moore-Penrose inverse

If the matrix X is relatively small, we can write down and calculate exact solution:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

where X^{\dagger} is called pseudo-inverse matrix. However, this approach squares the condition number of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition

For any matrix $X \in \mathbb{R}^{m \times n}$ there is exists QR decomposition:

$$X = Q \cdot R$$
.

where Q is an orthogonal matrix (its columns are orthogonal unit vectors) meaning $Q^{\top}Q = QQ^{\top} = I$ and R is an upper triangular matrix. It is important to notice, that since $Q^{-1} = Q^{\top}$, we have:

$$QR\theta = y \longrightarrow R\theta = Q^{\top}y$$

Now, process of finding theta consists of two steps:

1. Find the QR decomposition of X.

Moore-Penrose inverse

If the matrix X is relatively small, we can write down and calculate exact solution:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

where X^{\dagger} is called pseudo-inverse matrix. However, this approach squares the condition number of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition

For any matrix $X \in \mathbb{R}^{m \times n}$ there is exists QR decomposition:

$$X = Q \cdot R$$

where Q is an orthogonal matrix (its columns are orthogonal unit vectors) meaning $Q^{\top}Q = QQ^{\top} = I$ and R is an upper triangular matrix. It is important to notice, that since $Q^{-1} = Q^{\top}$, we have:

$$QR\theta = y \longrightarrow R\theta = Q^{\top}y$$

Now, process of finding theta consists of two steps:

- 1. Find the QR decomposition of X.
- 2. Solve triangular system $R\theta = Q^{T}y$, which is triangular and, therefore, easy to solve.

Cholesky decomposition

For any positive definite matrix $A \in \mathbb{R}^{n \times n}$ there is exists Cholesky decomposition:

$$X^{\top}X = A = L^{\top} \cdot L,$$

where L is an lower triangular matrix. We have:

$$L^{\top}L\theta = y \longrightarrow L^{\top}z_{\theta} = y$$

Now, process of finding theta consists of two steps:

1. Find the Cholesky decomposition of $X^{\top}X$.

Note, that in this case the error stil proportional to the squared condition number.

େ ଚେଡ

Cholesky decomposition

For any positive definite matrix $A \in \mathbb{R}^{n \times n}$ there is exists Cholesky decomposition:

$$X^{\top}X = A = L^{\top} \cdot L,$$

where L is an lower triangular matrix. We have:

$$L^{\top}L\theta = y \longrightarrow L^{\top}z_{\theta} = y$$

Now, process of finding theta consists of two steps:

- 1. Find the Cholesky decomposition of $X^{\top}X$.
- 2. Find the $z_{\theta} = L\theta$ by solving triangular system $L^{\top}z_{\theta} = y$

Note, that in this case the error stil proportional to the squared condition number.

େ ଚେଡ

Cholesky decomposition

For any positive definite matrix $A \in \mathbb{R}^{n \times n}$ there is exists Cholesky decomposition:

$$X^{\top}X = A = L^{\top} \cdot L,$$

where L is an lower triangular matrix. We have:

$$L^{\top}L\theta = y \longrightarrow L^{\top}z_{\theta} = y$$

Now, process of finding theta consists of two steps:

- 1. Find the Cholesky decomposition of $X^{\top}X$.
- 2. Find the $z_{\theta} = L\theta$ by solving triangular system $L^{\top}z_{\theta} = y$
- 3. Find the θ by solving triangular system $L\theta=z_{\theta}$

Note, that in this case the error stil proportional to the squared condition number.

എ റ ഉ

Matrix decompositions and linear systems. Non-linear data

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal $d_0,\ldots,d_{n-1}.$

Figure 4: Illustration of Gram-Schmidt orthogonalization process

∌ດ Ø

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0, \ldots, d_{n-1} .

Figure 5: Illustration of Gram-Schmidt orthogonalization process

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0,\ldots,d_{n-1} .

Figure 6: Illustration of Gram-Schmidt orthogonalization process

♥ റ ഉ

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0,\ldots,d_{n-1} .

Figure 7: Illustration of Gram-Schmidt orthogonalization process

∌ ດ ⊘

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal $d_0,\ldots,d_{n-1}.$

Figure 8: Illustration of Gram-Schmidt orthogonalization process

∌ ດ ⊘

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Input: n linearly independent vectors u_0,\ldots,u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0, \ldots, d_{n-1} .

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0, \ldots, d_{n-1} .

$$d_0 = u_0 d_1 = u_1 - \pi_{d_0}(u_1)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0,\ldots,d_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal $d_0,\ldots,d_{n-1}.$

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0, \ldots, d_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

$$d_k = u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0, \ldots, d_{n-1} .

$$d_0 = u_0$$

$$d_1 = u_1 - \pi_{d_0}(u_1)$$

$$d_2 = u_2 - \pi_{d_0}(u_2) - \pi_{d_1}(u_2)$$

$$\vdots$$

$$d_k = u_k - \sum_{i=0}^{k-1} \pi_{d_i}(u_k)$$

Input: n linearly independent vectors u_0, \ldots, u_{n-1} .

Output: n linearly independent vectors, which are pairwise orthogonal d_0, \ldots, d_{n-1} .

 $d_1 = u_1 - \pi_{d_0}(u_1)$

 $d_0 = u_0$

$$d_{2} = u_{2} - \pi_{d_{0}}(u_{2}) - \pi_{d_{1}}(u_{2})$$

$$\vdots$$

$$d_{k} = u_{k} - \sum_{k=1}^{k-1} \pi_{d_{k}}(u_{k})$$

$$a_k = a_k - \sum_{i=0}^{n} n_{d_i}(a_k)$$

$$d_k = u_k + \sum_{i=0}^{k-1} \beta_{ik} d_i$$
 $\beta_{ik} = -\frac{\langle d_i, u_k \rangle}{\langle d_i, d_i \rangle}$

Here's how you can structure the final slide to illustrate the **Gram-Schmidt process** in matrix form via QR decomposition:

Gram-Schmidt process in Matrix Form via QR Decomposition

Step-by-step process in matrix notation:

• Given a matrix A with columns $u_0, u_1, \ldots, u_{n-1}$, the goal is to decompose A into:

$$A = QR$$

where:

Gram-Schmidt process in Matrix Form via QR Decomposition Step-by-step process in matrix notation:

• Given a matrix A with columns $u_0, u_1, \ldots, u_{n-1}$, the goal is to decompose A into:

$$A = QR$$

where:

ullet Q: an orthogonal matrix whose columns are the orthonormal vectors $q_0,q_1,\ldots,q_{n-1}.$

Gram-Schmidt process in Matrix Form via QR Decomposition Step-by-step process in matrix notation:

• Given a matrix A with columns $u_0, u_1, \ldots, u_{n-1}$, the goal is to decompose A into:

$$A = QR$$

where:

- Q: an orthogonal matrix whose columns are the orthonormal vectors $q_0, q_1, \ldots, q_{n-1}$.
- R: an upper triangular matrix.

Lectures 7-8 recap

Gram-Schmidt process in Matrix Form via QR Decomposition Step-by-step process in matrix notation:

• Given a matrix A with columns $u_0, u_1, \ldots, u_{n-1}$, the goal is to decompose A into:

$$A = QR$$

where:

- Q: an orthogonal matrix whose columns are the orthonormal vectors $q_0, q_1, \ldots, q_{n-1}$.
- R: an upper triangular matrix.

Lectures 7-8 recap

Gram-Schmidt process in Matrix Form via QR Decomposition

Step-by-step process in matrix notation:

• Given a matrix A with columns $u_0, u_1, \ldots, u_{n-1}$, the goal is to decompose A into:

$$A = QR$$

where:

- Q: an orthogonal matrix whose columns are the orthonormal vectors $q_0, q_1, \ldots, q_{n-1}$.
- R: an upper triangular matrix.

Illustration:

$$v_k = u_k - \sum_{k=1}^{k-1} \langle u_k, q_i \rangle q_i \qquad q_k = \frac{v_k}{\|v_k\|} \qquad R_{ij} = \langle u_j, q_i \rangle \qquad \text{for } i \leq j$$

$$\text{For } A = \begin{bmatrix} | & | & & | \\ u_0 & u_1 & \cdots & u_{n-1} \\ | & | & & | \end{bmatrix} \quad \rightarrow \quad Q = \begin{bmatrix} | & | & & | \\ q_0 & q_1 & \cdots & q_{n-1} \\ | & | & & | \end{bmatrix}, \quad R = \begin{bmatrix} r_{00} & r_{01} & \cdots & r_{0(n-1)} \\ 0 & r_{11} & \cdots & r_{1(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{(n-1)(n-1)} \end{bmatrix}$$

QR decomposition

⊕ ೧ Ø

Schur form

$$A = egin{bmatrix} egin{bmatrix} \lambda_1 \ U \end{bmatrix}_{n imes n} egin{bmatrix} \lambda_1 \ \lambda_n \end{bmatrix}_{n imes n} egin{bmatrix} U^* \end{bmatrix}_{n imes n}$$

Schur

- ightharpoonup U is unitary
- $\triangleright \lambda_1, \dots, \lambda_n$ are eigenvalues
- columns of U are Schur vectors

Figure 10: Decomposition

♥೧0

QR algorithm

• The QR algorithm was independently proposed in 1961 by Kublanovskaya and Francis.

QR algorithm

- The QR algorithm was independently proposed in 1961 by Kublanovskaya and Francis.
- Do not mix QR algorithm and QR decomposition!

Lectures 7-8 recap

QR algorithm

- The QR algorithm was independently proposed in 1961 by Kublanovskaya and Francis.
- Do not mix QR algorithm and QR decomposition!
- QR decomposition is the representation of a matrix, whereas QR algorithm uses QR decomposition to compute the eigenvalues!

SVD

♥ ೧ 0

Suppose $A \in \mathbb{R}^{m \times n}$ with rank A = r. Then A can be factored as

$$A = U\Sigma V^T$$

Suppose $A \in \mathbb{R}^{m \times n}$ with rank A = r. Then A can be factored as

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ satisfies $U^T U = I$, $V \in \mathbb{R}^{n \times n}$ satisfies $V^T V = I$, and Σ is a matrix with non-zero elements on the main diagonal $\Sigma = \operatorname{diag}(\sigma_1,...,\sigma_r) \in \mathbb{R}^{m \times n}$, such that

Suppose $A \in \mathbb{R}^{m \times n}$ with rank A = r. Then A can be factored as

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ satisfies $U^T U = I$, $V \in \mathbb{R}^{n \times n}$ satisfies $V^T V = I$, and Σ is a matrix with non-zero elements on the main diagonal $\Sigma = \text{diag}(\sigma_1, ..., \sigma_r) \in \mathbb{R}^{m \times n}$, such that

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0.$$

Suppose $A \in \mathbb{R}^{m \times n}$ with rank A = r. Then A can be factored as

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ satisfies $U^T U = I$, $V \in \mathbb{R}^{n \times n}$ satisfies $V^T V = I$, and Σ is a matrix with non-zero elements on the main diagonal $\Sigma = \text{diag}(\sigma_1, ..., \sigma_r) \in \mathbb{R}^{m \times n}$, such that

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0.$$

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular vectors of A, the columns of V are right singular vectors, and the numbers σ_i are the singular values. The singular value decomposition can be written as

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T,$$

where $u_i \in \mathbb{R}^m$ are the left singular vectors, and $v_i \in \mathbb{R}^n$ are the right singular vectors.

i Question

Suppose, matrix $A \in \mathbb{S}_{++}^n$. What can we say about the connection between its eigenvalues and singular values?

i Question

Suppose, matrix $A \in \mathbb{S}^n_{++}$. What can we say about the connection between its eigenvalues and singular values?

i Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?

 $f \to \min_{x,y,z}$

Simple, yet very interesting decomposition is Skeleton decomposition, which can be written in two forms:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Simple, yet very interesting decomposition is Skeleton decomposition, which can be written in two forms:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

The latter expression refers to the fun fact: you can randomly choose r linearly independent columns of a matrix and any r linearly independent rows of a matrix and store only them with the ability to reconstruct the whole matrix exactly.

Simple, yet very interesting decomposition is Skeleton decomposition, which can be written in two forms:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

The latter expression refers to the fun fact: you can randomly choose r linearly independent columns of a matrix and any r linearly independent rows of a matrix and store only them with the ability to reconstruct the whole matrix exactly. Use cases for Skeleton decomposition are:

Model reduction, data compression, and speedup of computations in numerical analysis: given rank-r matrix with $r \ll n, m$ one needs to store $\mathcal{O}((n+m)r) \ll nm$ elements.

Figure 12: Illustration of Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can be written in two forms:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

The latter expression refers to the fun fact: you can randomly choose r linearly independent columns of a matrix and any r linearly independent rows of a matrix and store only them with the ability to reconstruct the whole matrix exactly. Use cases for Skeleton decomposition are:

- Model reduction, data compression, and speedup of computations in numerical analysis: given rank-r matrix with $r \ll n, m$ one needs to store $\mathcal{O}((n+m)r) \ll nm$ elements.
- Feature extraction in machine learning, where it is also known as matrix factorization

Figure 12: Illustration of Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can be written in two forms:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

The latter expression refers to the fun fact: you can randomly choose r linearly independent columns of a matrix and any r linearly independent rows of a matrix and store only them with the ability to reconstruct the whole matrix exactly. Use cases for Skeleton decomposition are:

- Model reduction, data compression, and speedup of computations in numerical analysis: given rank-r matrix with $r \ll n, m$ one needs to store $\mathcal{O}((n+m)r) \ll nm$ elements.
- Feature extraction in machine learning, where it is also known as matrix factorization
- All applications where SVD applies, since Skeleton decomposition can be transformed into truncated SVD form.

Figure 12: Illustration of Skeleton decomposition

∂ ດ **⊘**

Canonical tensor decomposition

One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which implies representing the tensor as a sum of r primitive tensors.

Figure 13: Illustration of Canonical Polyadic decomposition

i Example

Lectures 7-8 recap

Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring (TR), and others. In the tensor case, we do not have a straightforward definition of rank for all types of decompositions. For example, for TT decomposition rank is not a scalar, but a vector.

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1,A_2,A_3\in\mathbb{R}^{3 imes 3}$ - random square dense matrices and $x\in\mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

1. $A_1A_2A_3x$ (from left to right)

Check the simple **\$\rightarrow\$**code snippet after all.

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1, A_2, A_3 \in \mathbb{R}^{3 \times 3}$ - random square dense matrices and $x \in \mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)

Check the simple **code** snippet after all.

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1,A_2,A_3\in\mathbb{R}^{3\times 3}$ - random square dense matrices and $x\in\mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)
- 3. It does not matter

Check the simple *code snippet after all.

Suppose, you have the following expression

$$b = A_1 A_2 A_3 x,$$

where the $A_1,A_2,A_3\in\mathbb{R}^{3\times 3}$ - random square dense matrices and $x\in\mathbb{R}^n$ - vector. You need to compute b.

Which one way is the best to do it?

- 1. $A_1A_2A_3x$ (from left to right)
- 2. $(A_1(A_2(A_3x)))$ (from right to left)
- 3. It does not matter
- 4. The results of the first two options will not be the same.

Check the simple **code** snippet after all.

Find SVD of the following matrix:

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Find SVD of the following matrix:

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Solution

1. Compute A^TA :

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1^{2} + 2^{2} + 3^{2} = 14.$$

The singular values σ_i are the square roots of the eigenvalues of A^TA . Since A^TA is a 1×1 matrix with value 14, the singular value is $\sigma = \sqrt{14}$.

Find SVD of the following matrix:

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Solution

1. Compute A^TA :

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1^{2} + 2^{2} + 3^{2} = 14.$$

The singular values σ_i are the square roots of the eigenvalues of A^TA . Since A^TA is a 1×1 matrix with value 14, the singular value is $\sigma=\sqrt{14}$.

2. Since V is an $n \times n$ orthogonal matrix (1 \times 1 in this case), it can be V = [1] (or V = [-1]). We choose V = [1].

Find SVD of the following matrix:

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Solution

1. Compute A^TA :

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = 1^{2} + 2^{2} + 3^{2} = 14.$$

The singular values σ_i are the square roots of the eigenvalues of A^TA . Since A^TA is a 1×1 matrix with value 14, the singular value is $\sigma=\sqrt{14}$.

2. Since V is an $n \times n$ orthogonal matrix (1 \times 1 in this case), it can be V = [1] (or V = [-1]). We choose V = [1].

$$A = U\Sigma V^T = \begin{bmatrix} \frac{1}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \\ \frac{1}{\sqrt{14}} \end{bmatrix} \begin{bmatrix} \sqrt{14} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

3. The simplest form of SVD allows us to write:

Find SVD of the following matrix:

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Solution

1. Compute A^TA :

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1^{2} + 2^{2} + 3^{2} = 14.$$

The singular values σ_i are the square roots of the eigenvalues of A^TA . Since A^TA is a 1×1 matrix with value 14, the singular value is $\sigma=\sqrt{14}$.

2. Since V is an $n \times n$ orthogonal matrix (1×1) in this case), it can be V = [1] (or V = [-1]). We choose V = [1].

3. The simplest form of SVD allows us to write:

$$A = U\Sigma V^T = \begin{bmatrix} \frac{1}{\sqrt{14}} \\ \frac{1}{\sqrt{14}} \\ \frac{1}{\sqrt{14}} \end{bmatrix} \begin{bmatrix} \sqrt{14} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

4. However, if you would like to use another form with square singular matrices:

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{14}} & \frac{1}{\sqrt{3}} & \frac{-5}{\sqrt{42}} \\ \frac{2}{\sqrt{14}} & \frac{1}{\sqrt{3}} & \frac{4}{\sqrt{42}} \\ \frac{3}{\sqrt{14}} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{42}} \end{bmatrix} \begin{bmatrix} \sqrt{14} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

Find SVD of the following matrix:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 3 \\ 2 & 1 \end{bmatrix}$$

Find R matrix in QR decomposition for matrix $A=ab^T$, where a=[1,2,1,2,1,2,1], b=[1,2,3,4,5,6,7,8,9]

Solution

