Advanced Mathematical Logic - Exercises

Janos Tapolczai

May 20, 2014

$$L = \{e/0, \circ/2\}$$

$$F = F_1 \wedge F_2 \wedge F_3$$

$$F_1 = [\forall x, y, z] \circ (\circ(x, y), z) = \circ(x, \circ(y, z))$$

$$F_2 = [\forall x] \circ (e, x) = x$$

$$F_3 = [\forall x][\exists y] \circ (x, y) = e$$

$$S = \{\mathbb{Z}, \{\hat{e}, \hat{\circ}\}\}$$

Prove: $S, \phi \models F$ (for any ϕ).

Solution.

$$S, \phi \models F \equiv S, \phi \models (F_1 \land F_2) \land F_3 \equiv S, \phi \models F_1 \text{ and } S, \phi \models F_2 \text{ and } S, \phi \models F_3$$

•
$$F_1$$
:
 $S, \phi \models F_1 \equiv S, \phi_{a\ b\ c}^{x\ y\ z} \models ((x \circ y) \circ z) = (x \circ (y \circ z)) \text{ for all } a, b, c \text{ in } \mathbb{Z}$

(We will refer to $\phi_{a\ b\ c}^{x\ y\ z}$ by the marco φ and "for all a,b,c in $\mathbb Z$ " will henceforth be ommitted for readability.)

$$S, \phi \models F_1 \equiv (\varphi((x \circ y) \circ z), \ \varphi(x \circ (y \circ z))) \in \hat{=}$$

$$S, \phi \models F_1 \equiv (\varphi(x \circ y) \, \hat{\circ} \, \varphi(z), \, \varphi(x) \, \hat{\circ} \, \varphi(y \circ z)) \in \hat{=}$$

$$S, \phi \models F_1 \equiv ((a \, \hat{\circ} \, b), \ c \, \hat{=} \, a \, \hat{\circ} \, (b \, \hat{\circ} \, c)) \in \hat{=}$$

$$S, \phi \models F_1 \equiv ((a+b) \ c, \ a+(b+c)) \in \hat{=}$$

Associativity; provable by induction on $+$.

•
$$F_2$$
:
 $S, \phi \models F_2 \equiv S, \phi_a^x \models e \circ x = x \text{ for all } a \text{ in } \mathbb{Z}$

$$S, \phi \models F_2 \equiv (\phi_a^x(e \circ x), \ \phi_a^x(x)) \in \hat{=}$$

$$S, \phi \models F_2 \equiv (\phi_a^x(e) \, \hat{\circ} \, \phi_a^x(x), \ a) \in \hat{=}$$

$$S, \phi \models F_2 \equiv (\hat{e} + a, a) \in \hat{=}$$

$$S, \phi \models F_2 \equiv (0 + a, a) \in \hat{=}$$

Unit element; provable by induction on/definition of +.

•
$$F_3$$
:
 $S, \phi \models F_3 \equiv S, \phi_a^x \models [\exists y] x \circ y = e \text{ for all } a \text{ in } \mathbb{Z}$

$$S, \phi \models F_3 \equiv S, \phi_{a\ (-a)}^{x\ y} \models x \circ y = e \text{ for all } a \text{ in } \mathbb{Z}$$

$$S, \phi \models F_3 \equiv S, \phi_{a\ (-a)}^{x\ y} \models x \circ y = e$$

$$S, \phi \models F_3 \equiv (\phi_a^x {}^y_{(-a)}(x \circ y), \ \phi_a^x {}^y_{(-a)}(e)) \in \hat{=}$$

$$S, \phi \models F_3 \equiv (a + (-a), 0) \in \hat{=}$$

Provable by induction on $+$.

Show that $S \models \exists xF$ iff $S \models \neg \forall x \neg F$ and $\exists xF$ is unsatisfiable iff $\forall x \neg F$ is valid.

Solution. Let S be any structure. Case distinction:

1. $S \models \exists xF$. Then there exists a term t s.t. $S, \phi_t^x \models F$ (for any environment ϕ). Now we evaluate $S \models \neg \forall x \neg F$ (again, for any environment ϕ):

$$S, \phi \models \neg \forall x \neg F \quad \equiv S, \phi \not\models \forall x \neg F \\ \equiv S, \phi_d^x \not\models \neg F \text{ for all } d \text{ in } D \\ \text{We choose } d \rightarrow t. \\ \equiv S, \phi_t^x \not\models \neg F \\ \equiv S, \phi_t^x \models F$$

2. $S \not\models \exists xF$. Then there exists no term t s.t. $S, \phi_t^x \models F$. We now evaluate $S \not\models \neg \forall x \neg F$:

$$\begin{array}{ll} S, \phi \not\models \neg \forall x \neg F & \equiv S, \phi \models \forall x \neg F \\ & \equiv S, \phi_d^x \models \neg F \text{ for all } d \text{ in } D \\ & \equiv S, \phi_d^x \not\models F \text{ for all } d \text{ in } D \end{array}$$

Therefore, if we substitute any term t for d, S, $\phi^x_t \models F$ will be false.

Show that $\forall x(P(x) \to Q(x) \to \forall x P(x) \to \forall x Q(x)$ is valid but hat $(\forall x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x))$ is not.

Solution.

The first formula can be proven in LK:

$$\frac{P(\alpha) \vdash P(\alpha) \qquad Q(\alpha) \vdash Q(\alpha)}{P(\alpha) \to Q(\alpha), P(\alpha) \vdash Q(\alpha)} \to l$$

$$\frac{P(\alpha) \to Q(\alpha), \forall x P(x) \vdash Q(\alpha)}{P(\alpha) \to Q(\alpha), \forall x P(x) \vdash Q(\alpha)} \forall l(x := \alpha)$$

$$\frac{\forall x (P(x) \to Q(x), \forall x P(x) \vdash Q(\alpha)}{\forall x (P(x) \to Q(x), \forall x P(x) \vdash \forall x Q(x)} \forall r(x := \alpha)$$

$$\frac{\forall x (P(x) \to Q(x), \forall x P(x) \vdash \forall x Q(x)}{\forall x (P(x) \to Q(x) \vdash \forall x P(x) \to \forall x Q(x)} \to r$$

$$\vdash \forall x (P(x) \to Q(x) \to (\forall x P(x) \to \forall x Q(x))$$

For the second, we can give a counterexample:

$$S = {\mathbb{N}, {(P(x) \mapsto x \text{ is even)}, (Q(x) \mapsto x \text{ is odd)}}}$$

Informally, we can see that $\forall x P(x)$ is false, and hence, $\forall x P(x) \to \forall x Q(x)$ is true. Its consequent, $\forall x (P(x) \to Q(x))$, however, is false because Q(x) is false precisely when P(x) is true. Thereby the formula is falsified.

Prove that the definition of \models is sound for sentences F, i.e. $S, \phi \models F$ iff $S, \phi' \models F$ for all environments ϕ, ϕ' .

Solution. We proceed inductively from the root to the leaves of the formula tree represented by F — that is, we show that, if we take any two ϕ and ϕ' and expand the definition of \models , then the predicates of F will evaluate to the same truth value under ϕ and ϕ' .

The proof has the following structure: when we proceed downward through F's formula tree, the same changes to ϕ and ϕ' are made. Taking that as an assumption, the formula will evaluate to the same value under ϕ and ϕ' when we go back up.

Let ϕ and ϕ' be two arbitrary environments and F be a sentence. For simplicity, we number the variables in the formula x_1, \ldots and identify these environments by their function graphs over V, that is:

$$\phi = \{(x_1, v_1), (x_2, v_2), \dots\}
\phi' = \{(x_1, v_1'), (x_2, v_2'), \dots\}$$

Now we make a case distinction on F and its subformulas:

- $F = A \wedge B$, $F = A \vee B$, or $F = \neg A$. We proceed by evaluating the subformulas A, B. The environment is neither consulted nor changed.
- $F = \forall x_i A.$ $S, \phi | \phi' \models F$ iff $S, \phi_d^x | \phi_d'^x \models F$ for all $d \in D$. We overwrite x_i with some d in both environments. Per definition, their function graphs (in A) are now:

$$\phi_d^x = \{(x_1, v_1), \dots, (x_i, d), (x_{i+1}, v_{i+1}), \dots\}$$

$$\phi_d^{x} = \{(x_1, v_1'), \dots, (x_i, d), (x_{i+1}, v_{i+1}'), \dots\}$$

• $F = \exists x_i A.$ $S, \phi | \phi' \models F$ iff $S, \phi_d^x | \phi_d'^x \models F$ for some $d \in D$. We again change the function graphs of ϕ, ϕ' (but only in A):

$$\phi_d^x = \{(x_1, v_1), \dots, (x_i, d), (x_{i+1}, v_{i+1}), \dots\}$$

$$\phi_d^{\prime x} = \{(x_1, v_1'), \dots, (x_i, d), (x_{i+1}, v_{i+1}'), \dots\}$$

This is analogous to the \forall -case, but we now choose a concrete element $d \in D$ instead of a variable one.

• $F = P(t_1, \ldots, t_n)$. Per definition of $S, \phi | \phi' \models F$:

$$S, \phi \models F \equiv (\phi(t_1), \dots, \phi(t_n)) \in \hat{P}$$

 $S, \phi' \models F \equiv (\phi'(t_1), \dots, \phi'(t_n)) \in \hat{P}$

 \hat{P} only depends on S, not on the environment. To show that $(\phi(t_1), \ldots, \phi(t_n)) \in \hat{P} \Leftrightarrow (\phi'(t_1), \ldots, \phi'(t_n)) \in \hat{P}$, we prove that $\phi(t_i) = \phi'(t_i)$ for all $1 \leq i \leq n$. Induction on the depth of t_i 's formula tree:

Base case. $t_i = x_j \in V$: Since F was a sentence, x_j was bound (most recently) by a quantifier to some d. Per the \forall/\exists -cases, the function-graphs of ϕ and ϕ' contain the tuple (x_j, d) . Therefore, $\phi(x_j) = \phi'(x_j) = d$.

Step case. $t_i = f(s_1, \ldots, s_m)$. Per definition,

$$\phi(t_i) = \hat{f}(\phi(s_1), \dots, \phi(s_m))$$

$$\phi'(t_i) = \hat{f}(\phi'(s_1), \dots, \phi'(s_m))$$

Per the induction hypothesis, $\phi(s_i) = \phi'(s_i)$ $(1 \le i \le m)$. That is, the arguments of \hat{f} evaluate to the same values under both environments. Since \hat{f} itself depends only on S, it follows that $\phi(t_i) = \phi'(t_i)$.

Prove that $\operatorname{nnf}(\neg A) = \overline{\operatorname{nnf}(A)}$.

Solution. Structural induction on the cases of the definitions of nnf(A) and \overline{A} :

- Base case: A is an atom. By definition, $\overline{\text{nnf}(A)} = \neg A = \text{nnf}(\neg A)$. Note: the base case of nnf is undefined, but $\text{nnf}(\neg A) = \neg A$ for atomic A is assumed.
- Step cases (IH: the equivalence holds for subformulas B, C of A):
 - 1. $A = B \vee C$. By definition:

$$\operatorname{nnf}(\neg(B \vee C)) = \operatorname{nnf}(\neg B) \wedge \operatorname{nnf}(\neg C) \tag{1}$$

By definition of nnf and the complement:

$$\overline{\operatorname{nnf}(B \vee C)} = \overline{\operatorname{nnf}(B) \vee \operatorname{nnf}(C)} = \overline{\operatorname{nnf}(B)} \wedge \overline{\operatorname{nnf}(C)} \tag{2}$$

By the IH, $\operatorname{nnf}(\neg B) \wedge \operatorname{nnf}(\neg C) = \overline{\operatorname{nnf}(B)} \wedge \overline{\operatorname{nnf}(C)}$.

- 2. $A = B \wedge C$. Analogous to the previous case.
- 3. $A = \neg (B \lor C)$. By definition:

$$\operatorname{nnf}(\neg \neg (B \vee C)) = \operatorname{nnf}(B \vee C) = \operatorname{nnf}(B) \vee \operatorname{nnf}(C) \tag{3}$$

By definition of nnf and the complement:

$$\overline{\operatorname{nnf}(\neg(B \vee C))} = \overline{\operatorname{nnf}(\neg B) \wedge \operatorname{nnf}(\neg C)} = \overline{\operatorname{nnf}(\neg B)} \vee \overline{\operatorname{nnf}(\neg C)} \tag{4}$$

By the IH, $\operatorname{nnf}(B) \vee \operatorname{nnf}(C) = \overline{\operatorname{nnf}(\neg B)} \vee \overline{\operatorname{nnf}(\neg C)^1}$.

- 4. $A = \neg (B \land C)$. Analogous to the previous case.
- 5. $A = \exists x B$. By definition:

$$\operatorname{nnf}(\neg \exists x B) = \forall x \ \operatorname{nnf}(\neg B) \tag{5}$$

By definition of nnf and the complement:

$$\overline{\operatorname{nnf}(\exists xB)} = \overline{\exists x \ \operatorname{nnf}(B)} = \forall x \ \overline{\operatorname{nnf}(B)}$$
 (6)

By the IH, $\forall x \text{ nnf}(\neg B) = \forall x \text{ } \overline{\text{nnf}(B)}.$

¹The equivalence can be derived from the IH as follows: $\overline{\inf(\neg F)} = \overline{\inf(F)} = \inf(F)$. This detail will be omitted in the subsequent cases where it applies.

- 6. $A = \forall xB$. Analogous to the previous case (with \exists and \forall exchanged).
- 7. $A = \neg \exists x B$. By definition:

$$\operatorname{nnf}(\neg \neg \exists x B) = \operatorname{nnf}(\exists x B) = \exists x \operatorname{nnf}(B)$$
 (7)

By definition of nns and the complement:

$$\overline{\operatorname{nnf}(\neg \exists x B)} = \overline{\forall x \ \operatorname{nnf}(\neg B)} = \exists x \ \overline{\operatorname{nnf}(\neg B)}$$
 (8)

By the IH, $\exists x \text{ nnf}(B) = \exists x \overline{\text{nnf}(\neg B)}$.

8. $A = \neg \forall x B$. Analogous to the previous case.

Prove that $\vdash \operatorname{nnf}(A \to B)$ implies $\vdash \{\overline{\operatorname{nnf}(A)}, \operatorname{nnf}(B)\}.$

Solution. $\operatorname{nnf}(A \to B) = \inf_{\to -\operatorname{def}} \operatorname{nnf}(\neg A \vee B) = \inf_{\operatorname{nnf-def}} \operatorname{nnf}(\neg A) \vee \operatorname{nnf}(B)$. Therefore,

$$\vdash \operatorname{nnf}(A \to B) \Leftrightarrow \vdash \operatorname{nnf}(\neg A) \vee \operatorname{nnf}(B)$$

Case distinction:

• $\vdash \operatorname{nnf}(\neg A)$. In the previous example, we proved that $\operatorname{nnf}(\neg A) = \operatorname{nnf}(A)$. Therefore, $\vdash \operatorname{nnf}(\neg A) \Leftrightarrow \vdash \overline{\operatorname{nnf}(A)}$ and $\vdash \operatorname{nnf}(\neg A) \vee \operatorname{nnf}(B) \Leftrightarrow \vdash \overline{\operatorname{nnf}(A)} \vee \operatorname{nnf}(B)$. For the latter statement, it suffices to provide an LK-proof (since LK is complete):

$$\frac{\frac{P_A}{\vdash \overline{\mathrm{nnf}(A)}}}{\vdash \overline{\mathrm{nnf}(A)} \vee \mathrm{nnf}(B)} \vee r$$

By the assumption $\vdash \operatorname{nnf}(\neg A)$, the proof P_A exists.

• $\vdash \text{nnf}(B)$. We again provide an LK-proof:

$$\frac{P_B}{\frac{-\ln \operatorname{nnf}(B)}{-\ln \operatorname{nnf}(A) \vee \operatorname{nnf}(B)}} \vee r$$

By the assumption $\vdash \operatorname{nnf}(B)$, the proof P_B exists.

• The third case is that A = B. In that case, neither $\vdash \operatorname{nnf}(\neg A)$ nor $\vdash \operatorname{nnf}A$ has to hold in general. The statement $\vdash \operatorname{nnf}(\neg A) \vee \operatorname{nnf}(A)$ is still true, however. First, we "unapply" the \vee -case of nnf: $\operatorname{nnf}(\neg A) \vee \operatorname{nnf}(A) \Rightarrow \operatorname{nnf}(\neg A \vee A)$. Now let us observe that nnf preserves provability for any formula P, i.e. $\vdash P \Leftrightarrow \vdash \operatorname{nnf}(P)^2$. Applying this to our example, we get: $\vdash \operatorname{nnf}(\neg A \vee A) \Rightarrow \vdash \neg A \vee A$. Now it suffices to give a proof of $\neg A \vee A^3$:

$$\frac{A \vdash A}{\vdash \neg A \lor A} \neg r$$

Since the semantics of $\vdash \{\overline{\mathrm{nnf}(A)}, \mathrm{nnf}(B)\}$ are " $\vdash \overline{\mathrm{nnf}(A)}$ or $\vdash \mathrm{nnf}(B)$ " and we have showed that either A = B, or at least one of P_A, P_B exists, the proof is complete.

²This can be easily proven by induction on the definition of nnf, but will be omitted here.

³This technique would have been powerful enough to cover the other two cases too, but the third case was a later addition.

Prove that $\vdash A \to B$ and $\vdash A$ imply that $\vdash B$.

Solution. Instead of LK, we now use the sequent calculus from Definition 6 in the script.

We show the following⁴: $\vdash A \land (A \to B) \to B$. By the definition of \to , this is equivalent to: $\vdash \neg A \lor (A \lor \neg B) \lor B$.

Sequent proof:

$$\begin{array}{lll} 1. & \{A, \neg A, B\} & \text{Axiom} \\ 2. & \{\neg A, \neg B, B\} & \text{Axiom} \\ 3. & \{A \wedge \neg B, \neg A, B\} & \wedge \text{-rule} \\ 4. & \{\neg A \vee (A \wedge \neg B), B\} & \vee \text{-rule} \\ 5. & \{\neg A \vee (A \wedge \neg B) \vee B\} & \vee \text{-rule} \\ \end{array}$$

Which was to be proven.

 $[\]overline{{}^4A, A \to B \vdash B}$ is transformed into $\vdash A \land (A \to B) \to B$ by the deduction theorem.

Complete the proof of Proposition 2 (soundness: $A \vdash \Gamma$ implies $A \models I(\Gamma)$).

Solution. By induction on the length of the sequent proof π . The base cases have already been described; the step cases remain. As induction hypothesis, we take the soundness up to the sequent Γ_{n-1} . For simplicity, we will denote the contents of Γ' as $\{F_1, \ldots, F_k\}$. Case distinction on the derivation of the sequent Γ_n :

- 1. $\Gamma_n = \Gamma' \cup \{A \vee B\}$ and there exists a j < n s.t. $\Gamma_j = \Gamma' \cup \{A, B\}$. Then, by definition, $I(\Gamma_j) = I(\Gamma') \vee I(\{A, B\}) = F_1 \vee F_2 \vee \cdots \vee F_k \vee A \vee B$. The interpretation I of Γ_n is $I(\Gamma_n) = I(\Gamma') \vee I(\{A \vee B\}) = I(\Gamma_j)^5$.
- 2. $\Gamma_n = \Gamma' \cup \{A \wedge B\}$ and there exist j, l < n s.t. $\Gamma_j = \Gamma' \cup \{A\}$ and $\Gamma_l = \Gamma' \cup \{B\}$. Let M be a model of Γ_j^6 . There are two sub-cases:
 - a) $M \models I(\Gamma')$. Then, since I interprets its argument as a disjunction, $M \models I(\Gamma' \cup X)$ for any X especially for the case $X = \{A \land B\}$.
 - b) $M \not\models I(\Gamma')$. By the IH (applied to Γ_j and Γ_l), it must hold that $M \models I(\{A\})$ and $M \models I(\{B\})$. Consequently, $M \models I(\{A \land B\})$ and $M \models I(\Gamma_n)$.
- 3. $\Gamma_n = \Gamma' \cup \{\exists x F(x)\}$ and there exists a j < n s.t. $\Gamma_j = \Gamma' \cup \{\exists x F(x), F(t)\}$ for some term t.

Take again a model M of Γ_j . Again, there are two sub-cases:

- a) $M \models I(\Gamma')$. See above.
- b) $M \not\models I(\Gamma')$. Then $M \models I(\{\exists x F(x), F(t)\})$. If $M \models I(\{\exists x F(x)\})$, then $M \models I(\Gamma_n)$ and we are done. If, instead, $M \models I(\{F(t)\})$, then $M, \phi_t^x \models I(\{F(x)\})$. By the semantics of $\exists x F(x)$, this implies that $M \models I(\{\exists x F(x)\})$ and we are, again, done.
- 4. $\Gamma_n = \Gamma' \cup \{ \forall x F(x) \}$. This case is shown in the script.
- 5. There exist j, l < n and a formula C s.t. $\Gamma_j = \Gamma_n \cup \{C\}$ and $\Gamma_l = \Gamma_n \cup \{\overline{C}\}$. By the IH, there exists a model M_j of Γ_j and a model M_l of Γ_l . If either is also a model Γ_n , we are done. If we cannot find such M_l , M_j s.t. at least one of them is a model of Γ_n , then there are models for both C and \overline{C} . This means that the system is inconsistent and therefore, no models of Γ_j , Γ_l exist, contradicting the IH!

⁵This is so because the set of first-order formulas \mathcal{F} , together with \vee , forms a monoid.

 $^{^6{}m The}$ existence of a model is guaranteed by the IH.

Let $L = \{P/1\}$ and $F = \forall x (P(x) \vee \neg P(x))$. Let $T = CL(\{F\})$. Show that T is incomplete.

Solution. Per Definition of "completene", T being incomplete means:

$$\exists S(F \not\vdash S \land F \not\vdash \neg S).$$

Since **LK** (without cut) is complete, it suffices to find a formula S s.t. not proof of either S or $\neg S$ exists. Let S be $\forall x P(x)$.

$$\frac{\frac{\cancel{I}}{\frac{\vdash P(y), P(y)}{\vdash P(y), P(t)}}t \leftarrow y}{\frac{\vdash P(y), P(t)}{\lnot P(t) \vdash P(y)}} \neg l \qquad \frac{P(y) \vdash P(y)}{P(t) \vdash P(y)}t \leftarrow y$$

$$\frac{P(t) \lor \neg P(t) \vdash P(y)}{\frac{\forall x(P(x) \lor \neg P(x)) \vdash P(y)}{\forall x(P(x) \lor \neg P(x)) \vdash \forall x P(x)}} \forall l$$
that the \mathcal{I}-branch cannot possibly be closed, what

We can easily see that the \mathcal{I} -branch cannot possibly be closed, whatever term we assign to t. The only way in which we could permute the rule applications is by applying $\forall l$ first. This, however, would be fruitless, as the subsequent application of $\forall r$ would then require the introduction of an eigenvariable which did not occur on the left side. Structural rules.

Since LK is also sound, we can provide a model both F and S and thereby prove that F cannot prove $\neg S$. Let D be some non-empty domain and I and interpretation with $I(P) = \emptyset$. Clearly, both F and S evaluate to true under I. Therefore, there exists a model of F and S and no sound calculus can prove $F \vdash \neg S$ (assuming consistency).

Prove Proposition 3: Let A be a set of sentences [over \mathcal{L}]. Then T = CL(A) is a theory, and A is an axiomatisation of T. Let S be a structure for \mathcal{L} . Then $\{F \mid S \models F, F \text{ sentence over } \mathcal{L}\}$ is a theory.

Solution. The first claim is that the deductive closure T = CL(A) of A is a theory. A theory is defined as fulfilling the condition CL(T) = T. If we replace T with CL(A), this statement becomes CL(CL(A)) = CL(A), i.e. that CL is idempotent. CL(A) is the deductive closure, defined as $\{F \mid S \models F, F \text{ sentence over } \mathcal{L}\}$ (we will henceforth assume "F sentence over \mathcal{L} " implicitly). Therefore:

$$CL(CL(A)) = CL(A)$$

$$CL(\{F \mid A \vdash F\}) = \{F \mid A \vdash F\}$$

$$\{G \mid \{F \mid A \vdash F\} \vdash G\} = \{F \mid A \vdash F\}$$

Since $A \vdash A$, CL(CL(A)) can be expressed as

$$\{G \mid A \cup CL(A) \vdash G\} = \{F \mid A \vdash F\}.$$

Now we show the inclusion in both directions. First, let F be a formula in CL(A), i.e. a proof $A \vdash F$ exists. To that proof, we can introduce CL(A) via left weakening:

$$\frac{A \vdash F}{A, CL(A) - A \vdash F} WL$$

$$A \cup CL(A) \vdash F$$

Therefore, $CL(CL(A)) \supseteq CL(A)$. For the converse case, let G be a formula in CL(CL(A)), i.e. a proof $CL(A) \vdash G$ exists. Since such a proof can only make use of a finite number of assumptions, it is implied that a proof $F_1, \ldots, F_n \vdash G$ also exists (for some $\{F_1, \ldots, F_n\} \subseteq CL(A)$). We can now construct a proof $A \vdash G$ via iterated application of the cut-rule:

$$\frac{A \vdash F_1 \qquad F_1, F_2, \dots, F_n \vdash G}{A, F_2, \dots, F_n \vdash G} \text{ cut}$$

$$\frac{A, A, F_3, \dots, F_n \vdash G}{\vdots$$

$$\frac{A}{A \vdash G} CL^*$$

A proof of $A \vdash G$ implies that $G \in CL(A)$. Therefore $CL(CL(A)) \subseteq CL(A)$. The two inclusions thus shown imply CL(CL(A)) = CL(A).

The second claim is that A is an axiomatisation of T. This is simply true by definition of "axiomatisation": CL(A) = T.

The third claim is that $\{F \mid S \models F, F \text{ sentence over } \mathcal{L}\}$ is a theory. This is simply the set of sentences which, under S, evaluate to true — let us call this set T and form its deductive closure:

$$\begin{array}{rcl} CL(T) & = & CL(\{F \mid S \models F\}) \\ & = & \{G \mid \{F \mid S \models F\} \vdash G\} \end{array}$$

Let, as previously, $F_1, \ldots, F_n \vdash G$ be a proof in the end sequent of which only the finite subset $\{F_1, \ldots, F_n\} \subseteq T$ of assumptions occurs. Per the correctness of \mathbf{LK} ,

$$F_1, \ldots, F_n \vdash G \Leftrightarrow F_1, \ldots, F_n \models G.$$

 $F_1, \ldots, F_n \models G$, in turn, means that any model of F_1, \ldots, F_n is also a model of G. Since S is, by assumption, a model of F_1, \ldots, F_n , it must also be a model of G. Therefore, $\forall G.G \in CL(T) \Rightarrow G \in T$, i.e. $CL(T) \subseteq T$. The converse $-T \subseteq CL(T)$ holds trivially, since $\ldots, F, \cdots \vdash F$ is an axiom of \mathbf{LK} .

A theory T is called maximally consistent if all theories $T' \supset T$ are inconsistent.

1. Prove that a theory is maximally consistent iff it is complete and consistent.

Solution. Per the definition of consistency for a theory T, T is consistent iff there is no sentenced F s.t. both $T \vdash F$ and $T \vdash \neg F$. It is complete iff, for every sentence F, $T \vdash F$ or $T \vdash \neg F$ hold.

The \Rightarrow -direction. Let T be a complete and consistent theory and let T' be its superset. T' being a superset implies that $F \in (T'-T)$ for some sentence F. Since F is not in T and T is complete, $T \vdash \neg F$ must hold. That, in turn, implies that $\neg F \in T'$, making T inconsistent.

The \Leftarrow -direction. Let T be a maximally consistent theory. We show its completeness:

Completeness Suppose there is a sentence F s.t. $F \notin T$ and $\neg F \notin T$. Then we could add either to T, obtaining a consistent superset. This contradicts the definition of maximal consistency.

Consistency, in general, doesn't hold for maximally consistent theories as defined here. Suppose that $T = \{F | F \text{ is a sentence over } \mathcal{L}\}$. Then no theory T' which is a strict superset of T exists and therefore, "all" superset-theories of T are inconsistent, but T itself is not consistent. Consistency therefore has to be added to the definition of "maximally consistent".

2. Assume that T is a theory over a language \mathcal{L} containing =. Prove that the following are equivalent: (a) T is inconsistent, (b) $T = \{F | F \text{ sentence over } \mathcal{L}\}$, (c) $(\exists xx \neq x) \in T$.

Solution. I shall prove this via a cycle of implications.

(a) \Rightarrow (b) . If T is inconsistent, there exists a sentence G s.t. $G \in T$ and $\neg G \in T$. From the assumptions $G, \neg G$, any sentence F follows, as this LK-proof shows:

$$\frac{G \vdash G, F}{G, \neg G \vdash F} \neg -1$$

Since theories are, by definition, deductively closed, F must also be in T. That, in turn, is exactly the definition (b).

(b) \Rightarrow (c) The implication trivially holds, since $(\exists x.x \neq x)$ is a sentence of any language that includes =.

(c) \Rightarrow (a) . $\exists x.x \neq x$ is defined as $\exists x. \neg (x=x)$, which can be further reduced to $\neg (\forall x.x=x)$. This is a direct negation of the reflexivity axiom: $\forall x.x=x$). Thereby, T is inconsistent.

Prove the following properties of the deductive closure, where $(\Gamma_i)_{i\in\mathbb{N}}$ are sets of sentences:

1. $\Gamma_1 \subseteq \Gamma_2$ implies $CL(\Gamma_1) \subseteq CL(\Gamma_2)$,

Solution. Let F be any sentence in $CL(\Gamma_1)$ and let P_F be a proof of F using the assumptions $\Delta \subseteq \Gamma_1$. Since $\Gamma_1 \subseteq \Gamma_2$, $\Delta \subseteq \Gamma_2$, and therefore, F can be proven in Γ_2 too.

More generally (and to contrast the classical \vdash -relation to that of non-monotonic logics), we can add any set of assumptions to a proof P_F without diminishing the provability of sentences. It is because of that that the addition of new sentences to a theory cannot take away any element from its deductive closure.

- 2. $CL(CL(\Gamma_1)) = CL(\Gamma_1)$, **Solution.** See the proof in the solution to Exercise 10.
- 3. $\bigcup_{i\in\mathbb{N}} CL(\Gamma_i) \subseteq CL(\bigcup_{i\in\mathbb{N}} \Gamma_i),$

Solution. $\bigcup_{i\in\mathbb{N}} CL(\Gamma_i)$ is the union of the deductive closure of every $CL(\Gamma_i)$ $(i\in\mathbb{N})$. Therefore, it suffices to show that every sentence F which occurs in $CL(\Gamma_k)$ (for some $k\in\mathbb{N}$) is also in $CL(\bigcup_{i\in\mathbb{N}}\Gamma_i)$.

Let k thus be an index and let F be a sentence in $CL(\Gamma_k)$. This implies that $\Gamma_k \vdash F$. Per the monotonicity discussed in 1., $\Gamma_k \vdash F$ implies that $\Delta \cup \Gamma_k \vdash F$ for any Δ and, specifically, $\left(\bigcup_{i \in \mathbb{N} - \{k\}} \Gamma_i\right) \cup \Gamma_k \vdash F \Leftrightarrow \left(\bigcup_{i \in \mathbb{N}} \Gamma_i\right) \vdash F$. Therefore, $F \in CL(\bigcup_{i \in \mathbb{N}} \Gamma_i)$.

Show that for all $n, k \in \mathbb{N}$ the function $c_{k,n} : \mathbb{N}^n \to \mathbb{N} : (x_1, \dots, x_n) \mapsto k$ is primitively recursive. Further show that the functions neg, or, IfThenElse are primitively recursive.

Solution. $c_{n,k}$ is the *n*-ary constant function which discards its arguments and returns k (note that k is a constant, not an argument). It can be realized primitively recursively thus:

$$c_{n,k} \equiv \operatorname{Cn}[\underbrace{s \circ \cdots \circ s}_{k \text{ times}}, z_n]$$
 where $f \circ g \equiv \operatorname{Cn}[f, g]$

Equational reasoning proves the correctness of the definition:

$$c_{n,k}(x_1, \dots, x_n) = \operatorname{Cn}[\underbrace{s \circ \dots \circ s}_{k \text{ times}}, z_n](x_1, \dots, x_n)$$

$$= \underbrace{s \circ \dots \circ s}_{k \text{ times}}(z_n(x_1, \dots, x_n))$$

$$= \underbrace{s \circ \dots \circ s}_{k \text{ times}}(0)$$

$$= k$$

• $sgn : \mathbb{N} \to \mathbb{N}$. sgn returns 0 if its argument is 0 and 1 otherwise. Its p.r. definition is:

$$\operatorname{sgn} \equiv \Pr[z_0, c_{1,1} \circ id_2^1]$$

For $x_1 = 0$, $\operatorname{sgn}(x_1) = z_0() = 0$). For $x_1 \neq 0$, $\operatorname{sgn}(x_1)$ first projects out x_1 and then calls the constant function $c_{1,1}$, returning 1.

• $neg : \mathbb{N} \to \mathbb{N}$. neg returns 1 if its argument is 0 and 1 otherwise. Its definition:

$$neg \equiv Pr[c_{0.1}, z_2]$$

For the base case of x_1 , the constant function $c_{0,1}$ is returned. Otherwise, z_2 returns 0.

• or: $\mathbb{N}^2 \to \mathbb{N}$. or returns 0 if both its arguments are 0 and 1 otherwise.

$$or \equiv sgn \circ plus$$

plus is defined in the script and simply performs addition. It is easy to see that it, composed with sgn, delivers the correct result.

• If Then Else: $\mathbb{N}^3 \to \mathbb{N}$. If $x_1 \neq 0$, x_2 is returned, otherwise x_3 .

$$\begin{split} &\texttt{IfThenElse} \equiv Cn[\texttt{if}, id_3^3, id_2^3, id_1^3] \\ &\text{where} \\ &\text{if} \equiv Pr[id_1^2, id_2^4] \end{split}$$

We first rearrange (x_1, x_2, x_3) into (x_3, x_2, x_1) . Then we use Pr to perform a case distinction: if $x_1 = 0$, we select x_3 (the else-branch). Otherwise, we select x_2 (the if-branch).

1. Show that if $S \subseteq \mathbb{N}^n$ is p.r., then $\mathbb{N}^n - S$ is p.r.

Solution. Let χ_S be the p.r. characteristic function of S, i.e. $\chi_S(x_1, \ldots, x_n) = 1$ if $(x_1, \ldots, x_n) \in S$ and $\chi_S(x_1, \ldots, x_n) = 0$ otherwise. We define the characteristic function $\chi_{\mathbb{N}^n - S}$ for $\mathbb{N}^n - S$ thus:

$$\chi_{\mathbb{N}^n-S} \equiv \mathsf{neg} \circ \chi_S$$

The correctness of this function is trivial: we simply execute χ_S and then flip the result with neg. Thereby, $\chi_{\mathbb{N}^n-S}$ will return 1 exactly for those tuples which are not in S and 0 for those which are.

2. Show that if $S, T \subseteq \mathbb{N}^n$ are p.r., then $S \cap T$ and $S \cup T$ are p.r.

Solution. We again define the characteristic functions of these sets:

$$\begin{split} \chi_{S \cup T} & \equiv \operatorname{Cn}[\operatorname{or}, \chi_S, \chi_T] \\ \chi_{S \cap T} & \equiv \operatorname{Cn}[\operatorname{and}, \chi_S, \chi_T] \\ \text{where} \\ & \text{and} & \equiv \operatorname{Cn}[(\operatorname{neg} \circ \operatorname{or}), (\operatorname{neg} \circ \chi_S), (\operatorname{neg} \circ \chi_T)] \end{split}$$

Again, the correctness of these characteristic functions is trivial: we simply execute both of them. If χ_S or χ_T returns 1, the corresponding tuple is in $S \cup T$. If both χ_S and χ_T returns 1, the tuple is in $S \cap T$. and in the second case is just a translation of De Morgan's law $(A \wedge B) \Leftrightarrow \neg(\neg A \vee \neg B)$ into p.r. parlance.

3. Do these statement still hold if we replace "primitive recursive" by "total recursive"?

Solution. Yes. For t.r. functions $f: D \to \mathbb{N}$ dom(f) = D and therefore, the characteristic functions of S and T are defined for every tuple. The characteristic functions we constructed from these only perform p.r. transformations⁷ on these and therefore still result in total functions.

⁷The transformations can be seen as p.r. if we take the characteristic functions χ_S and χ_T as primitives exempt from the requirements of primitive recursiveness.

1. For $x, y \in \mathbb{N}$, write the relation $|: \mathbb{N}^2 \to \mathbb{N}$ s.t. |(x, y)| = 1 if there exists a $k \in \mathbb{N}$ with x * k = y and |(x, y)| = 0 otherwise.

Solution.

We first define the binary relation =, making use of and as defined above and of m as defined in the script:

$$\begin{split} &= \equiv \operatorname{Cn}[(\mathtt{neg} \circ \mathtt{or}), m', m] \\ &\text{where} \\ &m' = \operatorname{Cn}[m, \mathrm{id}_2^2, \mathrm{id}_1^2] \end{split}$$

Through m and m', we compute x-y and y-x and, through $neg \circ or$, check that both result in 0. If so, x=y. We then move on to |:

```
\begin{split} | & \equiv \text{Cn}[\texttt{trymult}, \text{id}_1^2, s \circ \text{id}_2^2, \text{id}_2^2] \\ \text{where} \\ & \texttt{trymult} \equiv \Pr[c_{2,0}, \texttt{rec}] \\ & \texttt{rec} \equiv \text{Cn}[\texttt{IfThenElse}, \texttt{check}, c_{4,1}, \text{id}_4^4] \\ & \texttt{check} \equiv \text{Cn}[=, \text{id}_2^4, \text{Cn}[\texttt{mult}, \text{id}_1^4, \text{id}_3^4]] \end{split}
```

In functional notation, the algorithm is written thus:

First, we duplicate the larger number +1 $(s \circ id_2^2)$ and then use it as a counter⁸. At each step, rec checks whether x * i = y. If so, it returns 1 $(c_{4,1})$. Otherwise, it decrements the counter and recurses $(id_4^4 \text{ in rec})$. If the counter reaches 0, trymult returns 0 $(c_{4,0})$.

2. Show that the sets $E = \{(x, x) | x \in \mathbb{N}\}$ and $D = \{(x, y) | x, y \in \mathbb{N}, |(x, y)\}$ are p.r.

Solution.

$$\chi_E \equiv =$$
 $\chi_D \equiv |$

The previously defined p.r. functions = and | serve as the characteristic functions of E and D and therefore, E and D are p.r.

⁸The successor function s is used to cover the edge case $x_1 = 1$.

• Show that if a set $S \in \mathbb{N}^2$ is p.r., then the set

$$\pi(S) = \{ n \mid \forall m < n : (n, m) \in S \}$$

is p.r.

Solution. We give a p.r. characteristic function for $\pi(S)$. First, we define the template forall, which is instantiated with a predicate $P: \mathbb{N}^2 \to \mathbb{N}$. It takes a number n and returns 1 if P(m) = 1 for all m < n and 0 otherwise:

$$\begin{aligned} & \texttt{forall}_P \equiv \text{Cn}[\text{Pr}[c_{0,1},\texttt{rec}], \text{id}_1^1, \text{id}_1^1] \\ & \text{where} \\ & \texttt{rec} \equiv \text{Cn}[\texttt{IfThenElse}, \text{Cn}[P, \text{id}_1^3, \text{id}_1^3], \text{id}_3^3, c_{3,0}] \end{aligned}$$

In functional notation, forall reads:

```
forall{P}(n) = forall'(n,n)
where forall'(n,0) = 1
    forall'(n,m+1) = if P(n,m) then forall'(n,m) else 0
```

We copy n (say, into m) and begin counting that copy m down to 0, checking at each stage whether P(n, m) holds. If so, we recurse; if not, we halt and return 0. When m reaches 0, 1 is returned.

The characteristic function of $\pi(S)$ is now easily defined and its correctness follows from that of forall:

$$\chi_{\pi(S)} \equiv \mathtt{forall}_{\chi_S}$$

• Show that the set of primes

$$\mathbb{P} = \{ p \mid p > 1 \land \forall n \in \mathbb{N} : n | p \Rightarrow (n = 1 \lor n = p) \}$$

is p.r.

Solution. Again, we can make good use of the forall template in giving a p.r. characteristic function for \mathbb{P} .

```
\begin{split} \chi_{\mathbb{P}} &\equiv \text{Cn}[\text{and}, \text{gt1}, \text{forall}_{\text{factor}}] \\ \text{where} \\ &\text{gt1} \equiv \text{Cn}[(\text{sgn} \circ m), \text{id}_1^1, c_{1,1}] \\ &\text{factor} \equiv \text{Cn}[\text{IfThenElse}, |', \text{cond}, c_{2,1}] \\ |' &\equiv \text{Cn}[|, \text{id}_2^2, \text{id}_1^2] \\ &\text{cond} \equiv \text{Cn}[\text{or}, =, \text{Cn}[=, c_{2,1}, \text{id}_2^2]] \end{split}
```

 $\chi_{\mathbb{P}}$ is a rather straightforward encoding of the definition of \mathbb{P} . and was defined above; gt1 stands for "greater than 1", factor encodes the condition $n|p \Rightarrow (n = 1 \lor n = p)$, |' is | with its arguments flipped and cond encodes $(n = 1 \lor n = p)$.

The only thing of note is that, in the definition of \mathbb{P} , an unbounded universal quantification was used, whereas forall is bounded from above. This is not a problem: the quantified variable n is only used in the test n|p and, of course, all factors of p are $\leq p$. Here, the bounded quantification of forall is sufficient.

We can quite easily see that the construction is correct and that thereby, \mathbb{P} is p.r.

Prove the Theorem 10 formally: let $S, \overline{S} \subseteq \mathbb{N}^n$ be r.e. sets. Then, S, \overline{S} are recursive sets.

Solution. Per the definition of "recursive set" in the script, there exist recursive functions $\varphi_S, \varphi_{\overline{S}} : \mathbb{N} \to \mathbb{N}^n$ which, given an index y, will produce the yth tuple/element of the corresponding set.

I will provide the recursive characteristic function χ_S for S. The one for \overline{S} is fully analogous.

```
\begin{split} \chi_S & \equiv \operatorname{Cn}[\texttt{IfThenElse}, \operatorname{Cn}[=, \operatorname{id}_1^1, (\varphi_S \circ \texttt{firstHit})], c_{1,1}, c_{1,0}] \\ \text{where} \\ & \texttt{firstHit} \equiv \operatorname{Mn}[\operatorname{Cn}[\operatorname{neg} \circ \mathit{or}, \operatorname{inS}, \operatorname{inScomp}]] \\ & \operatorname{inS} \equiv \operatorname{Cn}[=, \operatorname{id}_1^2, \varphi_S \circ \operatorname{id}_2^2] \\ & \operatorname{inScomp} \equiv \operatorname{Cn}[=, \operatorname{id}_1^2, \varphi_{\overline{S}} \circ \operatorname{id}_2^2] \end{split}
```

Partial correctness Using Mn, we find the first index y for which $x_1 = \varphi_S(y)$ or $x_1 = \varphi_{\overline{S}}(y)$ (firstHit). Having obtained y, we check $x_1 = \varphi_S(y)$. If that check returns 1, we know that x_1 is in S and return 1. Otherwise, Mn must have halted because of $x_1 = \varphi_{\overline{S}}(y)$ and, correspondingly, we return 0.

Termination Because x_1 must either be in S or \overline{S} and because both of these sets are recursively enumerable, the call to Mn will always terminate: we enumerate all elements of both sets in parallel and are bound to encounter x_1 after finite time.

Show that if t is a ground term, then there is a $k \in \mathbb{N}$ such that $\mathbf{Q} \vdash t = k$.

Solution. The theory \mathbf{Q} and the here used language $L = (\mathbb{N}, \{0 \setminus 0, s \setminus 1, + \setminus 2, \cdot \setminus 2, = \setminus 2, < \setminus 2\})$ are defined in section 7 "Formal arithmetic". We prove the proposition via structural induction. To avoid confusion, we'll denote \mathbf{Q} 's language-level equality as = and our syntactic equality as =. Note that, in addition to \mathbf{Q} 's axioms, we also need the equality axioms Refl, Symm, Trans and Ext. Ext is the axiom schema of extensionality and allows us to replace a subterm x_i of $f(x_1, \ldots, x_n)$ with a subterm y_i if $x_i = y_i$ (for all $f \in L$ and all $1 \le i \le n$).

$$\operatorname{Refl} \equiv \left[\forall x \right] x = x,$$

$$\operatorname{Symm} \equiv \left[\forall x, y \right] x = y \Rightarrow y = x,$$

$$\operatorname{Trans} \equiv \left[\forall x, y, z \right] x = y \land y = z \Rightarrow x = z,$$

$$\operatorname{Ext}_{f,i} \equiv \left[\forall x_1, \dots, x_n, y_i \right] x_i = y_i \Rightarrow f(x_1, \dots, x_i, \dots, x_n) = f(x_1, \dots, y_i, \dots, x_n).$$

Base case. $t \equiv s(\cdots s(0) \cdots) \equiv s^n(0)$. This follows from Refl: $s^n(0) = s^n(0)$.

Step case "+1".
$$t \equiv t' + 0$$
. IH: $t' = s^n(0)$.
Per (3), $t' + 0 = t'$.
Per Trans, $(t' + 0 = t') \wedge (t' = s^n(0)) \Rightarrow (t' + 0 = s^n(0))$.
Therefore, $t' + 0 = s^n(0)$.

Step case " $+_2$ ". $t \equiv t' + s(r)$. IH: $t' = s^n(0)$ and $r = s^m(0)$ and $s^n(0) + s^m(0) = s^{n+m}(0)$. Per (4), t' + s(r) = s(t' + r).

Now we apply Symm two times, followed by $\operatorname{Ext}_{+,1}$ and $\operatorname{Ext}_{+,2}$, instantiating x_i, y_i with the parts of the IH:

$$\begin{array}{lll} t' = s^n(0) & \Rightarrow & s^n(0) = t' \\ r = s^m(0) & \Rightarrow & s^m(0) = r \\ s^n(0) = t' & \Rightarrow & s^n(0) + s^m(0) = t' + s^m(0) \\ s^m(0) = r & \Rightarrow & s^n(0) + s^m(0) = t' + r \end{array}$$

We now know that $s^n(0) + s^m(0) = t' + r$. Applying Symm, we get $t' + r = s^n(0) + s^m(0)$. We again apply Ext_s , 1 to the term s(t' + r):

$$t' + r = s^{n}(0) + s^{m}(0) \implies s(t' + r) = s(s^{n}(0) + s^{m}(0))$$

We apply Ext_s, 1 again to this, using the third part of the IH:

$$s^{n}(0) + s^{m}(0) = s^{n+m}(0) \implies s(s^{n}(0) + s^{m}(0)) = s(s^{n+m}(0))$$

Through repeated application of Trans, we get

$$t \equiv t' + s(r) = s(t' + r) = s(s^{n}(0) + s^{m}(0)) = s(s^{n+m}(0)) \equiv s^{n+m+1}(0)$$

Step case "·1". $t \equiv t' \cdot 0$. IH: $t' = s^n(0)$. Per (5), t' + 0 = 0. Per Trans, $(t' \cdot 0 = 0) \wedge (t' = s^n(0)) \Rightarrow (t' \cdot 0 = 0)$. Therefore, $t' \cdot 0 = 0$.

Step case "·2".
$$t \equiv t' \cdot s(r)$$
. IH: $t' = s^n(0)$ and $r = s^m(0)$ and $s^n(0) \cdot s^m(0) = s^{n \cdot m}(0)$ and $s^{n \cdot m}(0) + s^n(0) = s^{n \cdot (m+1)}(0)$. Per $(6), t' \cdot s(r) = (t' \cdot r) + t$.

This case is basically analogous to $+_2$. We again apply Sym and Ext., Ext., 2:

$$\begin{array}{lll} t' = s^n(0) & \Rightarrow & s^n(0) = t' \\ r = s^m(0) & \Rightarrow & s^m(0) = r \\ s^n(0) = t'(0) & \Rightarrow & s^n(0) \cdot s^m(0) = t' \cdot s^m(0) \\ s^m(0) = r & \Rightarrow & s^n(0) \cdot s^m(0) = t' \cdot r \end{array}$$

Through Sym, we get $t' \cdot r = s^n(0) \cdot s^m(0)$ and, through the IH and Trans, $t' \cdot r = s^{n \cdot m}(0)$. We now apply $\text{Ext}_{+,1}$, $\text{Ext}_{+,2}$ to $(t' \cdot r) + t'$:

$$\begin{array}{ll} t' \cdot r = s^{n \cdot m}(0) & \Rightarrow & (t' \cdot r) + t' = s^{n \cdot m}(0) + t' \\ t' = s^n(0) & \Rightarrow & (t' \cdot r) + t' = s^{n \cdot m}(0) + s^n(0) \end{array}$$

We apply the last part of the IH and Trans to get

$$(t' \cdot r) + t' = s^{n \cdot m}(0) + s^n(0) = s^{n \cdot (m+1)}(0)$$

The induction hypotheses (especially $s^n(0) + s^m(0) = s^{n+m}(0)$ and $s^n(0) \cdot s^m(0) = s^{n \cdot m}(0)$) might seem problematic, but these are always indeed always proven in the last lines of "+2" and "·2". The hypothesis $s^{n \cdot m}(0) + s^n(0) = s^{n \cdot (m+1)}(0)$ can be derived from these two if we substitute suitable values for n and m.

The induction in this proof is not part of \mathbf{Q} , but works on a metalinguistical level. Since t is a concrete (but arbitrary) term, this is not a problem, however: for any given t, we can unfold the definitions of \mathbf{Q} 's formulas and obtain a finitely long proof which, is constructed by induction, but isn't inductive itself.

Show that if

1. If s, t are ground terms, then either $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash s \neq t$.

Solution. In the previous example, we showed that all ground terms s,t are equal (=) to terms of the form $s^n(0), s^m(0)$. If n=m, then, through Refl, $\mathbf{Q} \vdash s=t$. Suppose, on the other hand, that $n \neq m$ and, w.l.o.g., n < m. We can give an indirect inductive proof:

Step case. If $s(s^{n-1}(0)) = s(s^{m-1}(0))$, then, per (2), $s^{n-1}(0) = s^{m-1}(0)$.

Base case. Since we assumed n < m, we must at some point come to the assertion that $0 = s^{m-k}(0)$ (for some k). However, this contradicts (1). Consequently, $s^n(0) = s^m(0)$ cannot hold if $n \neq m$ and thus, $s^n(0) \neq s^m(0)$.

We can encode this proof in \mathbf{Q} through the following formula:

$$s^{n}(0) = s^{m}(0) \Rightarrow s^{n-1}(0) = s^{m-1}(0) \Rightarrow \cdots \Rightarrow 0 = s^{m-k}(0)$$

By using $0 \neq s(x)$, we show $\neg (0 = s^{m-1}(0))$ and therefrom "roll up" the chain of implications until we get $\neg (s^n(0) = s^m(0))$.

2. If s, t are ground terms, then either $\mathbf{Q} \vdash s > t$ or $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash s < t$.

Solution. This follows immediately from (9). The semantics of $Q \vdash s < t \lor s = t \lor s > t$ are precisely " $\mathbf{Q} \vdash s > t$ or $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash s < t$ ".

Prove Proposition 10: for all $k \in \mathbb{N}$ we have $\mathbf{Q} \vdash [\forall x] \ x < k \Leftrightarrow (x = 0 \lor x = 1 \lor \cdots \lor x = (k-1))$.

Solution. We can unroll (8) by repeatedly instantiating y to attain this formula. We can construct the proof inductively, in a sense: we construct a proof for k = 1 and, having a proof of k = n, we can construct a proof for k = n + 1. Merely the *construction* of the proof is inductive, the proof itself won't be.

Optional base case. It's not clear whether the formula is defined for k = 0, but we can do so if we assume the empty disjunction to be \perp (the neural element of \vee).

As we can see, even this case is quite cumbersome; I will therefore sketch the other two somewhat more informally.

Base case. Let k = 1 = s(0). We have to construct a proof s.t.

$$\mathbf{Q} \vdash [\forall x] x < s(0) \Leftrightarrow x = 0$$

We can instantiate (8) with $y \to s(0)$. It becomes:

$$[\forall x] \ x < s(0) \Leftrightarrow x < 0 \lor x = 0$$

From (7), we know that x < 0 is false and thus, if we appropriately unpack and re-pack the formula above, we get, $[\forall x] x < s(0) \Leftrightarrow x = 0$ remains, which is what we wanted.

1. Let $k = n + 1 = s^{n+1}(0)$ and let us assume the existence of a proof P_n for k = n as the IH — that is:

$$\frac{P_n}{\mathbf{Q} \vdash \left[\forall x \right] x < s^n(0) \Leftrightarrow \left(x = 0 \lor \dots \lor x = s^{n-1}(0) \right)}$$

From this, we construct a proof P_{n+1} by instantiating (8) with $y \to s^{n+1}(0)$, getting

$$[\forall x] \ x < s^{n+1}(0) \Leftrightarrow x < s^n(0) \lor x = s^n(0)$$

Now we use the IH and replace $s^n(0)$ with $(x = 0 \lor \cdots \lor x = s^{n-1}(0))$, again by unpacking and re-packing the formula according to the rules of \Leftarrow and $\forall r$. We get:

$$|\forall x| \, x < s^{n+1}(0) \Leftrightarrow x = 0 \lor \dots \lor x = s^{n-1}(0) \lor x = s^n(0)$$

If we write this procedure down as an LK proof, we get P_{n+1} s.t.

$$\frac{P_{n+1} \text{ (containing } P_n)}{\left[\forall x\right] x < s^{n+1}(0) \Leftrightarrow x = 0 \lor \dots \lor x = s^{n-1}(0) \lor x = s^n(0)}$$

Prove that if F is a ground formula, then either $\mathbf{Q} \vdash F$ or $\mathbf{Q} \vdash \neg F$.

Solution. We can proceed via structural induction. The base cases consists of atoms of the form s = t or s < t, since = and < are the only two predicates in L. The step cases are formed via logical connectives.

Base case "=". Let F be an atom of the form s=t. In Exercise 19, showed that, if s,t are ground terms, then $\mathbf{Q} \vdash s=t$ or $\mathbf{Q} \vdash s\neq t$.

Base case "<". Let F be an atom of the form s < t. Also in Exercise 19, we showed that $\mathbf{Q} \vdash s < t$ or $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash t < s$. Two sub-cases:

- If $\mathbf{Q} \vdash s < t$, then $\mathbf{Q} \vdash F$.
- If $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash t < s$, then, $s \neq 0 \land \cdots \land s \neq t 1^9$. Per Exercise 20, this is a direct negation of s < t. Thereby, we can prove $s \nleq t$.

Step case. Let F be $\neg F_1$, $F_1 \lor F_2$ or $F_1 \land F_2$. Without quantifiers, any complete, propositional calculus (like LK) suffices to show $\mathbf{Q} \vdash F$ or $\mathbf{Q} \vdash \neg F$.

Prove Proposition 11: If F(x) is a formula with x being the only free variable, then $\mathbb{N} \models [\exists x] F(x)$ iff $\mathbf{Q} \vdash [\exists x] F(x)$.

Solution.

 \Rightarrow -direction. Suppose that $\mathbb{N} \models [\exists x] F(x)$. Then there exists a witness n s.t. F(n) is true. Since F(n) is ground, there exists a proof P_F for F(n) with the theory \mathbf{Q} , as we showed above. That proof can be transformed into one of $[\exists x] F(x)$ thus:

$$\frac{P_F}{\mathbf{Q} \vdash F(n)} \exists r$$

 \Leftarrow -direction. Suppose that \mathbf{Q} is consistent. Since we know that LK is sound and complete, it follows that LK with theory \mathbf{Q} is also sound — that is, if $\mathbf{Q} \vdash [\exists x] F(x)$, then $\mathbb{N} \models [\exists x] F(x)$. \mathbf{Q} is consistent if it has a model; we assume \mathbb{N} to be such a model, although no proof of that exists in \mathbf{Q} itself.

⁹This is so because otherwise, there would be two distinct numbers n_1, n_2 s.t. $n_1 \neq n_2$ and $s = n_1$ and $s = n_2$. Applying Trans would then lead to a contradiction.