

Introdução a Aprendizagem de máquina para Bioinformática

Aulas

Msc. Amanda Araújo Serrão de Andrade

Biomédica, Mestre em Modelagem Computacional e Doutoranda em Genética

Orientadora: Dra. Ana Tereza Ribeiro de Vasconcelos

Apresentação

- Amanda Araújo Serrão de Andrade
- Biomédica (Faculdade Integrada Brasil Amazônia)
- Mestre em Modelagem Computacional pelo Laboratório Nacional de Computação Científica
- Doutoranda em Genética pela Universidade Federal do Rio de Janeiro
- "Classificação de Arbovírus e Vírus vetor-específico utilizando algoritmos de Aprendizagem de Máquina"

Overview do minicurso

Aula 1

- Obtenção dos conjuntos de dados
- Representações numéricas de sequências biológicas
- Redução da dimensionalidade do conjuntos de dados
- Seleção de características

Aula 2

- Desbalanceamento
- Validação cruzada
- Classificação
- Clusterização e Regressão

Aula 3

- Principais métricas de avaliação
- Resultados
- Comparação de performance

Dependências e repositório do curso

- Foi criado um repositório que contem todas as aulas práticas e conteúdos adicionais relacionado a este minicurso.
- https://github.com/aandradebio/ML simposioPGGEN

\$ wget https://github.com/aandradebio/ML_simposioPGGEN/archive/refs/heads/main.zip

Dependências e repositório do curso

- Abram o RStudio na pasta descompactada do repositório.
- Dependências através do script install_dependencies.R depositado no GitHub ou através do comando abaixo:
- install.packages(c("seqinrR","kmer", "caret", "MLeval", "ggplot2", "ggtree", "dplyr", "ape", "tidyverse","e1071", "randomForest", "ranger", "tidyr", "adabag", "extraTrees","ISLR","caretEnsemble"))

Inteligência artificial

- Inteligência Artificial: a capacidade das máquinas de aprender e decidir, sem interferência humana.
- A Aprendizagem de máquina é um dos campos da Inteligência Artificial, utiliza algoritmos com a finalidade de extrair informações de dados brutos, representá-los por meio de algum tipo de modelo matemático e fazer predições.
- A *Deep Learning* utiliza algoritmos inspirados na arquitetura natural do cérebro humano aprendendo com grandes quantidades de dados.

Os principais tipos de Aprendizagem de máquina

Aprendizagem de máquina

Supervisionada
Não supervisionada
Classificação Regressão Clusterização Redução da dimensionalidade

- Supervisionada: o modelo é construído a partir dos dados de entrada, apresentados na forma de pares ordenados (instância — classe desejada). Dizemos que estes dados são rotulados, pois sabemos de antemão a classe esperada para cada instância de dados.
- Classificação: Classes categóricas. Essa classificação pode ser binária (duas classes, 1 ou 0) ou multiclasse (três ou mais classes). Exemplo: prever se um tumor é maligno ou benigno.
- Regressão: o modelo deve prever uma classe a partir de uma faixa contínua de valores possíveis. A exatidão de um algoritmo de regressão é calculada com base na variação entre a classe precisa e a classe prevista. Exemplo: prever a idade

Os principais tipos de Aprendizagem de máquina

Aprendizagem de máquina

Supervisionada Não supervisionada

Classificação Regressão Clusterização Redução da dimensionalidade

- Não supervisionada: consiste em treinar uma máquina a partir de dados que não estão rotulados e/ou classificados. Os algoritmos encontram padrões complexos entre as instâncias. Utiliza medidas de similaridade e de diferenças.
- Clusterização: Agrupamento de instâncias similares, de tal forma que elementos em um cluster compartilhem um conjunto de propriedades comuns que os diferencie dos elementos de outros clusters.
- Redução da dimensionalidade: Identificar a correlação entre diferentes instâncias de um conjunto de dados. Visualização da estrutura dos dados.

Qual algoritmo utilizar de acordo com o problema de pesquisa?

Fig 1. Algoritmos de Aprendizagem de Máquina e suas aplicações.Fonte: www.malicksarr.com/how-to-choose-the-right-algorithm-in-machine-learning/

Qual algoritmo utilizar de acordo com o problema de pesquisa?

Dever de casa: Dê exemplos de trabalhos na área da Bioinformática para os diferentes tipos de Aprendizado.

Classificação supervisionada: Identificar se um vírus desconhecido infecta plantas ou mosquitos?

Regressão supervisionada: Identificar a probabilidade da ocorrência de recombinação entre diferentes sequências (Regressão logística)

Clusterização: Alinhamento global de sequências para identificar proximidade entre elas (Clustering hierárquico)

Redução da dimensionalidade: Identificação de *motifs* capazes de discriminar a proteína L de diferentes vírus segmentados (Engenharia de características)

Exemplo prático: Como identificar se um virus desconhecido infecta plantas ou mosquitos?

5) Algoritmo de Aprendizagem

Aprendizagem de máquina a partir de sequências biológicas

- Todos os dados de entrada devem ser numéricos, sejam provenientes de sequências biológicas ou não.
- Existem diferentes representações numéricas:
- K-mers;
- Codificação de janelas das sequências;
- Obtenção e codificação da estrutura secundária do RNA;
- One-hot-encoding (resultado binário);
- Frequency Chaos Game Representation;
- Vantagens e desvantagens.

Aprendizagem de máquina a partir de sequências biológicas

- Os *k-mers* são subsequências de nucleotídeos que apresentam tamanho *k*;
- O número de ocorrência dos k-mers é utilizado para a obtenção das suas frequências relativas;
- Quanto maior o k, maior o custo computacional;

Matriz de características (feature Matrix)

- Dados de entrada para os algoritmos; Base para a aprendizagem;
- Os vetores resultantes são as representação numérica das características encontradas em uma sequência de nucleotídeos;

Exemplo de matriz de características

	ID	AAA	AAC	AAG		TTG	TTT	Classes
Instâncias	NC_58966	0.07	0.05	0.00	-	0.00	0.01	plant.vir
	NC_78544	0.06	0.02	0.00	-	0.00	0.11	mosquito.vir
	NC_96874	0.04	0.08	0.00	-	0.10	0.20	plant.vir

Características

Informações sobre as instâncias

Matriz de características (feature Matrix)

- Dados de entrada para os algoritmos; Base para a aprendizagem;
- Os vetores resultantes são as representação numérica das características encontradas em uma sequência de nucleotídeos;

Essencial para a aprendizagem supervisionada

Exemplo prático: Como identificar se um virus desconhecido infecta plantas ou mosquitos?

5) Algoritmo de Aprendizagem

A maldição da dimensionalidade

- A Maldição da Dimensionalidade é um fenômeno que aparece quando temos uma grande quantidade de dados e muitas características para um mesmo problema.
- Relacionado a maiores custos computacionais;
- Menor poder preditivo do modelo treinado;
- Overfitting (o modelo erra a predição de dados desconhecidos);
- Então, para evitar isso, utilizamos técnicas de Redução de Dimensionalidade.

Pré-processamento e redução da dimensionalidade

Por quê utilizar estas técnicas?

Simplificar os dados, remover ruídos, facilitar o processamento computacional e visualização.

Podem ser aplicadas as características numéricas e categoricas.

Filtro de acordo com a pergunta biológica (exemplo: remoção de certas famílias virais);

Remoção de dados duplicados (pode enviesar o modelo preditivo na etapa de teste com novos dados);

Remoção e substituição de dados indisponíveis (NA or NAN);

Remoção de características altamente correlacionadas (entender como as características se relacionam entre si e se existe redundância);

Pré-processamento e redução da dimensionalidade

- Seleção de características com as funções varIMP e RFE do pacote Caret. Medida em proporções, quão importante aquela característica é para o modelo, onde quanto maior o valor, mais importante (Prática)
- A importância de uma característica é calculada a partir do impacto causado na acurácia da classificação pela sua remoção.
- O pré-processamento da matriz de característica depende do algoritmo que pretende usar. Algumas características podem ser importantes para a classificação e dispensáveis para a regressão, por exemplo.

Desbalanceamento de dados

- Desproporção entre as instâncias de diferentes classes.
- O desbalanceamento influencia negativamente a classificação, pois o algoritmo tende a classificar a classe majoritária.
- Exemplo: comparação entre classes de vírus mais estudados e menos estudados.

Fig 2. Exemplo de conjunto de dados desbalanceados. Fonte: https://blog.strands.com/unbalanced-datasets

Como lidar com uma matriz de características desbalanceada?

- Undersampling (Prática);
- Oversampling (Prática);
- Random resampling (Prática);
- Gerar dados artificialmente;

Fig 2. Principais estratégias para lidar com dados desbalanceados. Fonte:https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets

Referências e material de apoio

- https://machinelearningmastery.com/machine-learning-in-r-step-by-step/
- https://topepo.github.io/caret/
- https://github.com/aandradebio/ML_simposioPGGEN
- https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/
- https://rpubs.com/DeclanStockdale/799284
- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning: with Applications in R. New York: Springer, 2013.
- machinelearningmastery.com

