Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, \neg , \land/\lor , \Rightarrow/\Leftarrow , $\equiv/\not\equiv$.

Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it is symmetric and has identity true.

Discrepancy (difference) ' $\not\equiv$ ' is symmetric, associative, has identity 'false', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$. Finally, negation commutes with difference: $\neg (p \equiv q) \equiv \neg p \equiv q$.

Implication has the alternative definition $p \Rightarrow q \equiv \neg p \lor q$, thus having **true** as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties:

Shunting
$$p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

Contrapositive $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
Leibniz $e = f \Rightarrow E[z = e] = E[z := f]$

$$\begin{array}{cccc} \textbf{Modus Ponens} & & & p \wedge (p \Rightarrow q) & \equiv & p \wedge q \\ & & p \wedge (q \Rightarrow p) & \equiv & p \\ & & p \wedge (p \Rightarrow q) & \Rightarrow & q \end{array}$$

It is a linear order relation generated by 'false \Rightarrow true'; whence "from false, follows anything": false \Rightarrow p. Moreover it has the useful properties "(3.62) Contextualisation": $p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$ —we have the context p in each side of the equivalence— and $p \Rightarrow (q \Rightarrow r) \equiv p \land q \Rightarrow p \land r$. Implication is "Subassociative": $((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$. Finally, we have " \equiv - \equiv Elimination": $(p \equiv q \equiv r) \Rightarrow s \equiv p \Rightarrow s \equiv q \Rightarrow s \equiv r \Rightarrow s$.

Conjunction and disjunction distribute over one another, are both associative and symmetric, \vee has identity false and zero true whereas \wedge has identity true and zero false, \vee distributes over $\vee, \equiv, \wedge, \Rightarrow, \Leftarrow$ whereas \wedge distributes over $\equiv -\equiv$ in that $p \wedge (q \equiv r \equiv s) \equiv p \wedge q \equiv p \wedge r \equiv p \wedge s$, and they satisfy,

Most importantly, they satisfy the "Golden Rule": $p \land q \equiv p \equiv q \equiv p \lor q$.

The many other properties of these operations —such as weakening laws and other absorption laws and case-analysis (\sqcup -char)— can be found by looking at the list of *lattice properties* —since the Booleans are a lattice.

Orders

An *order* is a relation $_ \sqsubseteq _ : \tau \to \tau \to \mathbb{B}$ satisfying the following three properties: **Reflexivity** Transitivity Mutual Inclusion $a \sqsubseteq a$ $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$ $a \sqsubseteq b \land b \sqsubseteq a \equiv a = b$

Indirect Inclusion is like 'set inclusion' and Indirect Equality is like 'set extensionality'.

Indirect Equality (from above)
$$x = y \equiv (\forall z \bullet x \sqsubseteq z \equiv y \sqsubseteq z)$$
 Indirect Inclusion (from above) $x \sqsubseteq y \equiv (\forall z \bullet x \sqsubseteq z \equiv z)$ Indirect Equality (from below) $x = y \equiv (\forall z \bullet z \sqsubseteq x \equiv z \sqsubseteq y)$ Indirect Inclusion (from below) $x \sqsubseteq y \equiv (\forall z \bullet z \sqsubseteq x \Rightarrow z \sqsubseteq y)$

An order is bounded if there are elements \top , \bot : τ being the lower and upper bounds of all other elements:

Top Element $a \sqsubseteq \top$ Bottom Element $\bot \sqsubseteq a$ Top is maximal $\top \sqsubseteq a \equiv a = \top$ Bottom is minimal $a \sqsubseteq \bot \equiv a = \top$

Lattices

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup .

Let \Box be one of \sqcap or $\sqcup,$ then:

v	Symmetry of \square Associately		•		1 0	
$a\Box b = b\Box a$	$(a\square b)\square$]c =	$a\Box(b\Box c)$	$a\Box a =$	a	
Zero of \Box Id						
$a \sqcup \top = \top \qquad a$	$\sqcup \bot = a$	$a \sqcap (b \sqcup$	a) = a	$a\Box(b\Box c) = (a\Box$	$\Box b)\Box ($	$(a\square c)$
$a\sqcap\bot=\bot \qquad a\sqcap\top=a \qquad \qquad a\sqcup(b\sqcap a)=a$						
Weakening	Induced Def	fs. of In	clusion	Golden Rul	e	
/ Strengthening				$a \sqcap b = a$		
	$a \sqsubseteq b \equiv a \sqcap b$	b = 0	a	$a \sqcap b = a \sqcup b$		
$a \sqcap b \sqsubseteq a$				$a \sqcup b \sqsubseteq a \sqcap b$	\equiv	a = b
$a \sqcap b \sqsubseteq a \sqcup b$	Monotonicity of \square					
	$a \sqsubseteq b \land c \sqsubseteq d \Rightarrow a \Box c \sqsubseteq b \Box d$					

Duality Principle:

If a statement S is a theorem, then so is $S[(\sqsubseteq, \sqcap, \sqcup, \top, \bot) := (\supseteq, \sqcup, \sqcap, \bot, \top)].$

Conditionals

if junctivity

"if to \wedge " may be taken as axiom from which we may prove the remaining 'alternative definitions' "if to \cdots ".

```
\begin{array}{lll} P[z \coloneqq \text{if } b \text{ then } x \text{ else } y \text{ fi}] & \equiv & (b \Rightarrow P[z \coloneqq x]) \ \land \ (\neg b \Rightarrow P[z \coloneqq x]) \\ P[z \coloneqq \text{if } b \text{ then } x \text{ else } y \text{ fi}] & \equiv & b \land P[z \coloneqq x] \not\equiv \ \neg b \land P[z \coloneqq x] \\ P[z \coloneqq \text{if } b \text{ then } x \text{ else } y \text{ fi}] & \equiv & (b \land P[z \coloneqq x]) \ \lor \ (\neg b \land P[z \coloneqq x]) \\ P[z \coloneqq \text{if } b \text{ then } x \text{ else } y \text{ fi}] & \equiv & b \Rightarrow P[z \coloneqq x] \\ & \Rightarrow P[z \coloneqq x] & \Rightarrow \neg b \Rightarrow P[z \coloneqq x] \end{array}
if to \wedge
if to ≢
if to \vee
if to \equiv
if true
                                             if true then x else y fi = x
if false
                                             if false then x else y fi = y
                                             if R then true else P fi = R \vee P
 then true
 then false
                                             if R then false else P fi = \neg R \land P
else true
                                             if R then P else true fi = R \Rightarrow P
else false
                                             if R then P else false fi = R \wedge P
if swap
                                             if b then x else u fi = if \neg b then u else x fi
if idempotency
                                             if b then x else x fi = x
if guard strengthening
                                                               if b then x else y fi = if b \wedge x \neq y then x else y fi
if Context
                                                                if b then E else F fi = if b then E[b := true] else F[b := false] fi
                                                                P[z \coloneqq \text{if } b \text{ then } x \text{ else } y \text{ fi}] = \text{if } b \text{ then } P[z \coloneqq x] \text{ else } P[z \coloneqq y] \text{ fi}
if Distributivity
```

= if b then $(x \oplus x')$ else $(y \oplus y')$ fi

(if b then x else y fi) \oplus (if b then x' else y' fi)

```
Set Theory
```

```
Axiom (11.3) "Set membership": F \in \{ x \mid R \bullet E \} \equiv (\exists x \mid R \bullet F = E)
```

Theorem (11.7) "Simple Membership": $e \in \{x \mid P\} \equiv P/x = e/y$

Theorem (11.6) "Mathematical formulation of set comprehension": $\{x \mid P \bullet E \} = \{ y \mid (\exists x \mid P \bullet y = E) \}$

Theorem (11.9) "Simple set comprehension equality": $\{x \mid Q\} = \{x \mid R\} \equiv (\forall x \bullet Q \equiv R)$

Axiom (11.13) "Subset" "Definition of \subseteq " "Set inclusion": $S \subseteq T \equiv (\forall e \mid e \in S \bullet e \in T)$

More coming soon!