

YLIOPPILASTUTKINTO-LAUTAKUNTA

20.3.2009

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (\star) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.

- 1. a) Sievennä $\frac{a^2}{3} \left(\frac{-a}{3}\right)^2$.
 - **b)** Ratkaise epäyhtälö $(x-3)^2 > (x-1)(x+1)$.
 - c) Määritä suorien $\frac{x}{3} + \frac{y}{2} = 1$ ja 3x 2y + 3 = 0 leikkauspiste.
- **2.** a) Laske $\int_0^1 \sqrt[3]{x} \, dx$.
 - **b)** Ratkaise yhtälö $(e^x)^3 = e^{x^2}$.
 - c) Minkä funktion integraalifunktio on $\frac{1}{2}\cos(2x)$?
- **3.** a) Määritä vektoreiden $\bar{a}=2\bar{i}+5\bar{j}$ ja $\bar{b}=\bar{i}-2\bar{j}$ summavektori ja summavektorin suuntainen yksikkövektori.
 - b) Kuinka monta prosenttia suurempi on neliön ympäri piirretyn ympyrän kehän pituus kuin neliön piirin pituus? Anna vastaus yhden desimaalin tarkkuudella.
- **4.** Neljännen asteen polynomilla $3x^4 8x^3 18x^2 + 7$ ja sen derivaatalla on yhteinen nollakohta. Määritä tämä yhteinen nollakohta.
- **5.** a) Ratkaise yhtälö $\lg x + \lg (x + 30) = 3$, missä \lg on 10-kantainen logaritmi.
 - **b)** Tutki, onko funktio $f(x) = \ln(x+1) \ln x$, x > 0, monotoninen.
- **6.** Tehdas valmistaa hehkulamppuja siten, että kone A valmistaa 60 prosenttia, kone B 30 prosenttia ja kone C 10 prosenttia hehkulampuista. Koneen A viallisten hehkulampujen määrä on 2 prosenttia, koneen B 3 prosenttia ja koneen C 4 prosenttia.
 - a) Mikä on todennäköisyys, että tehtaan valmistama lamppu on viallinen?
 - **b)** Tehtaan valmistama viallinen lamppu valitaan umpimähkään. Millä todennäköisyydellä se on koneen C valmistama?
- 7. Paraabelin $y = x^2$ pisteeseen $(x_0, y_0), x_0 \in]0, 1]$, piirretty tangentti, x-akseli ja suora x = 1 muodostavat kolmion. Millä arvolla x_0 tämä kolmio on pinta-alaltaan suurin?
- **8.** Taso T kulkee pisteiden $A=(3,0,0),\,B=(0,4,0)$ ja C=(1,2,3) kautta. Muodosta tason yhtälö muodossa ax+by+cz+d=0.
- 9. Määritä käyrien $y=\sin(\frac{2\pi}{3}-x)$ ja $y=\sin x$ yhteiset pisteet $(x\in\mathbb{R})$. Anna koordinaattien tarkat arvot. Laske kahden peräkkäisen leikkauspisteen välisten kaarien rajoittaman alueen pinta-ala.

- 10. Kun funktion e^{-x} , $x \in [0, a]$, kuvaaja pyörähtää x-akselin ympäri, syntyy pyörähdyskappale, jonka tilavuus on V(a). Määritä V(a) ja $V_{\infty} = \lim_{a \to \infty} V(a)$. Millä a:n arvolla $V(a) = 0.99V_{\infty}$? Anna vastaus yhden desimaalin tarkkuudella.
- 11. Määritä kaikki positiiviset kokonaisluvut n, joille

$$\frac{9n^2 + 117n + 34}{3n + 5}$$

on myös positiivinen kokonaisluku.

- 12. Määritä Newtonin menetelmällä yhtälön $x^3 = x + 2$ juuri kahden desimaalin tarkkuudella. Osoita, että yhtälöllä on täsmälleen yksi juuri välillä $[1, \infty[$.
- 13. Miten määritellään sarjan $\sum_{i=1}^{\infty} a_i$ n:s osasumma S_n ? Mitä tarkoitetaan sarjan $\sum_{i=1}^{\infty} a_i$ suppenemisella? Osoita, että sarja $\sum_{n=1}^{\infty} S_n$ ei suppene, jos $a_i > 0$ kaikilla $i = 1, 2, 3, \ldots$
- **★14.** Vinon pyramidin pohja on neliö, jonka sivu on a. Pyramidin kahden vastakkaisen sivutahkon kulmat pohjan kanssa ovat 30 ja 135 astetta (pyramidin sisäpuolelta mitattuina).
 - a) Laske pyramidin korkeus. (3 p.)
 - b) Määritä pyramidin tilavuus. (2 p.)
 - c) Kahden muun sivutahkon kulmat pohjan kanssa ovat keskenään yhtä suuret. Määritä tämä kulma asteen tarkkuudella. (4 p.)
- *15. Suljetulla välillä [0,1] derivoituvan funktion f derivaatalle pätee $f'(x) \ge 2$ jokaisella $x \in [0,1]$, ja $\int_0^1 f(x) dx = 1$. Osoita:
 - a) $f(x) \ge f(0) + 2x$, kun $x \in [0, 1]$. (3 p.)
 - **b)** $f(0) \le 0.$ (3 p.)
 - c) Funktiolla f on täsmälleen yksi nollakohta välillä [0,1]. (3 p.)