

A Derivation of n-Dimensional Spherical Coordinates

Author(s): L. E. Blumenson

Source: The American Mathematical Monthly, Vol. 67, No. 1 (Jan., 1960), pp. 63-66

Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2308932

Accessed: 09/02/2015 03:56

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.



Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

http://www.jstor.org

 $V^i$ ,  $R^i$ , I and  $D_1 \neq D_2^i$  for all i. Hence  $D_1 \oplus R(G)$  and  $D_2 \oplus R(G)$ . Finally  $HR^2 = V = R^2H$ . But  $H \neq V^i$ ,  $R^i$ ,  $D_1^i$ ,  $D_2^i$ , I and  $R^2 \neq H^i$  for all i. Hence  $H \oplus R(G)$ . Thus AC(G): I, R,  $R^2$ , and  $R^3$ .

The converses of Theorem 2 and Theorem 4 are false as Example 2 indicates. Finally the AC(G) is, in general nontrivial, as is demonstrated by Example 3.

In a later paper, the author hopes to obtain results concerning G/AC(G), some relations between the center and the anticenter, and to explore more fully the effect of isomorphism and homomorphism on the anticenter.

## References

- 1. R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Boston, 1937.
- 2. A. Speiser, Theorie der Gruppen von endlicher Ordnung, 3d ed., Berlin, 1937.
- 3. H. Zassenhaus, The Theory of Groups (translated by Saul Kravetz), New York, 1949.

## CLASSROOM NOTES

EDITED BY C. O. OAKLEY, Haverford College

All material for this department should be sent to C. O. Oakley, Department of Mathematics, Haverford College, Haverford, Pa.

## A DERIVATION OF n-DIMENSIONAL SPHERICAL COORDINATES

L. E. Blumenson, Columbia University Electronics Research Laboratories

An instructive example in linear algebra is the derivation of *n*-dimensional spherical coordinates without appealing to geometric intuition. The method of derivation is based on concepts from linear algebra; namely, bases of a vector space, scalar product, angle between vectors and projection of a vector onto a subspace. Spherical coordinates in *n*-dimensions are a generalization of the usual three-dimensional spherical coordinates and are particularly useful in evaluating certain integrals taken over the surface of an *n*-dimensional sphere. Later we shall give an example of such an integration.

Let  $E_n$  denote real *n*-dimensional euclidean space. Vectors in  $E_n$  will be denoted by bold-faced letters. If  $\mathbf{x}$  and  $\mathbf{y}$  are two vectors in  $E_n$  with components  $\xi_j$  and  $\eta_j$ ,  $j=1, \dots, n$ , respectively, we define the scalar product of  $\mathbf{x}$  and  $\mathbf{y}$  by

$$\mathbf{x} \cdot \mathbf{y} = \sum_{j=1}^{n} \xi_{j} \eta_{j}.$$

The nonnegative number  $\|\mathbf{x}\| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$  is called the norm of  $\mathbf{x}$ . The angle between  $\mathbf{x}$  and  $\mathbf{y}$  is defined by  $\cos \phi = \mathbf{x} \cdot \mathbf{y} / \|\mathbf{x}\| \|\mathbf{y}\|$ , where  $\phi$  is restricted to the range  $0 \le \phi \le \pi$ . A set of vectors  $\mathbf{x}_1, \dots, \mathbf{x}_n$  is an orthonormal set in  $E_n$  if  $\mathbf{x}_i \cdot \mathbf{x}_j = 0$  or 1 accordingly as  $i \ne j$  or i = j. Any set of n orthonormal vectors forms a basis for  $E_n$ .

Let  $e_1, \dots, e_n$  be any orthonormal basis in  $E_n$ . Let x be any vector on the *n*-dimensional sphere of radius r about the origin, that is,  $\|\mathbf{x}\| = r$ . If  $\mathbf{x} = \sum_{i=1}^{n} \xi_i \mathbf{e}_i$ then  $\|\mathbf{x}\|^2 = \sum_{i=1}^n \xi_i^2$ . If  $\theta_i$  is the angle between  $\mathbf{x}$  and  $\mathbf{e}_i$  then  $\xi_i = \mathbf{x} \cdot \mathbf{e}_i = r \cos \theta_i$ . Hence  $\mathbf{x} = \sum_{i=1}^{n} r \cos \theta_i \mathbf{e}_i$  and  $\mathbf{x}$  can be specified by giving its length r and the nangles  $\theta_i$ . But since  $r^2 = \mathbf{x} \cdot \mathbf{x} = r^2 \sum_{i=1}^n \cos^2 \theta_i$  we see that the  $\theta_i$  are not independent of each other. Spherical coordinates in n-dimensions show us how to pick out n-1 angles  $\phi_1, \dots, \phi_{n-2}, \theta$  which are independent of each other and which, when combined with the norm r, completely describe the vector  $\mathbf{x}$  with respect to the given orthonormal basis.

**Derivation of the coordinates.** Let  $e_1, \dots, e_n$  and x be as above. Let  $\phi_1$  be the angle between  $\mathbf{x}$  and  $\mathbf{e}_1$ ,  $0 \le \phi_1 \le \pi$ . Then  $\xi_1 = \mathbf{x} \cdot \mathbf{e}_1 = r \cos \phi_1$  and

$$\mathbf{x} = r \cos \phi_1 \mathbf{e}_1 + \sum_{j=2}^n \xi_j \mathbf{e}_j.$$

Now

$$r^2 = ||\mathbf{x}||^2 = r^2 \cos^2 \phi_1 + \sum_{j=2}^n \xi_j^2 \text{ or } \sum_{j=2}^n \xi_j^2 = r^2 \sin^2 \phi_1.$$

Setting  $\xi_j = \alpha_j r \sin \phi_1$ ,  $j = 2, \dots, n$ , we have

$$\mathbf{x} = r \cos \phi_1 \mathbf{e}_1 + r \sin \phi_1 \sum_{i=2}^n \alpha_i \mathbf{e}_i,$$

where  $\sum_{j=2}^{n} \alpha_j^2 = 1$ . (If  $\phi_1$  is 0 or  $\pi$ , then  $\mathbf{x} = \pm r\mathbf{e}_1$ .) Let  $\mathbf{u}_2 = \sum_{j=2}^{n} \alpha_j \mathbf{e}_j$ . The vector  $\mathbf{u}_2$  is a unit vector (that is  $||\mathbf{u}_2|| = 1$ ) in the direction of the projection of x onto the (n-1)-dimensional subspace spanned by  $e_2, \dots, e_n$ . If  $\phi_2$  is the angle between  $u_2$  and  $e_2$  then  $\cos \phi_2 = u_2 \cdot e_2 = \alpha_2$ ,  $0 \leq \phi_2 \leq \pi$ , and

$$\mathbf{u}_2 = \cos \phi_2 \mathbf{e}_2 + \sum_{i=3}^n \alpha_i \mathbf{e}_i.$$

Hence,

$$1 = ||u_2||^2 = \cos^2 \phi_2 + \sum_{i=3}^n \alpha_i^2$$
 or  $\sum_{i=3}^n \alpha_i^2 = \sin^2 \phi_2$ .

If we set  $\alpha_j = \beta_j \sin \phi_2$ ,  $j = 3, \dots, n$ , then

$$\mathbf{u}_2 = \cos \phi_2 \mathbf{e}_2 + \sin \phi_2 \sum_{j=3}^n \beta_j \mathbf{e}_j,$$

where  $\sum_{j=3}^{n} \beta_j^2 = 1$ . Thus

$$\mathbf{x} = r \cos \phi_1 \mathbf{e}_1 + r \sin \phi_1 \cos \phi_2 \mathbf{e}_2 + r \sin \phi_1 \sin \phi_2 \sum_{i=3}^n \beta_i \mathbf{e}_i.$$

In general, let  $\mathbf{u}_j$  be the unit vector in the direction of the projection of  $\mathbf{x}$  onto the space spanned by  $\mathbf{e}_j$ ,  $\mathbf{e}_{j+1}$ ,  $\cdots$ ,  $\mathbf{e}_n$ , j=2,  $\cdots$ , n-1 and let  $\phi_{j-1}$  be the angle between  $\mathbf{u}_j$  and  $\mathbf{e}_j$ ,  $0 \le \phi_j \le \pi$ , j=2,  $\cdots$ , n-1. Then

$$\mathbf{x} = \sum_{j=1}^{n-2} r_k^{\frac{r}{2}} \left( \prod_{k=1}^{j-1} \sin \phi_k \right) \cos \phi_j \mathbf{e}_j + r \left( \prod_{k=1}^{n-2} \sin \phi_k \right) \mathbf{u}_{n-1}.$$

Now  $\mathbf{u}_{n-1} = \delta_{n-1}\mathbf{e}_{n-1} + \delta_n\mathbf{e}_n$ , where  $\mathbf{1} = \|\mathbf{u}_{n-1}\|^2 = \delta_{n-1}^2 + \delta_n^2$ . If now we define an angle  $\theta$  by  $\cos \theta = \delta_n$ ,  $\sin \theta = \delta_{n-1}$ , we see that  $0 \le \theta \le \pi$  will not suffice since  $\delta_{n-1}$  can be negative and  $\sin \alpha \ge 0$  for  $0 \le \theta \le \pi$ . In order to include all possible combinations of  $(\delta_{n-1}, \delta_n)$  we must have  $0 \le \theta < 2\pi$ .

Thus if  $e_1, \dots, e_n$  is a given orthonormal basis in  $E_n$  and  $\mathbf{x}$  is a vector of norm r with components  $\xi_j$  with respect to this basis, then

$$\xi_1 = r \cos \phi_1,$$

$$\xi_j = r \cos \phi_j \prod_{k=1}^{j-1} \sin \phi_k \qquad (j = 2, \dots, n-2),$$

$$\xi_{n-1} = r \sin \theta \prod_{k=1}^{n-2} \sin \phi_k,$$

$$\xi_{n-1}^{\#} = r \cos \theta \prod_{k=1}^{n-2} \sin \phi_k,$$

where  $0 \le \phi_j \le \pi$ ,  $j=1, \dots, n-2$ ;  $0 \le \theta < 2\pi$ ;  $0 \le r < \infty$ .

**Application to integration.** Let  $f(\xi_1, \dots, \xi_n)$  be a continuous real-valued function defined in  $E_n$  which may be written in the form

$$f(\xi_1, \dots, \xi_n) = g(\alpha_1 \xi_1 + \dots + \alpha_n \xi_n, \xi_1^2 + \dots + \xi_n^2),$$

where the  $\alpha_i$  are constants independent of the  $\xi$ 's. We wish to compute the integral of f over the surface of the n-dimensional sphere of radius r with the origin as center. If  $\mathbf{x}$  is the vector with coordinates  $\xi_j$  and  $\mathbf{a}$  the vector with coordinates  $\alpha_j$  (these coordinates being with respect to some given orthonormal basis  $\mathbf{e}_1, \dots, \mathbf{e}_n$ ) then

$$\int_{\xi_1^2+\cdots+\xi_n^2=r^2} f(\xi_1,\cdots,\xi_n) dS = \int_{\|\mathbf{x}\|=r} g(\mathbf{a}\cdot\mathbf{x},\|\mathbf{x}\|^2) dS,$$

where dS is the surface differential.

Let  $\mathbf{a}_1 = \mathbf{a}/\|\mathbf{a}\|^*$  and choose vectors  $\mathbf{a}_2, \dots, \mathbf{a}_n$  to complete an orthonormal basis in  $E_n$ . Let the coordinates of  $\mathbf{x}$  with respect to the basis  $\mathbf{a}_1, \dots, \mathbf{a}_n$  be  $\zeta_1, \dots, \zeta_n$ . Then  $\mathbf{a}_1 \cdot \mathbf{x} = \zeta_1$ . Make the spherical coordinate transformation

<sup>\*</sup> If a=0, then  $a_1$  may be any unit vector.

given by (\*) with  $\xi_j$  replaced by  $\zeta_j$ ,  $j=1, \dots, n$ . The Jacobian of the transformation is

$$J = r^{n-1} \prod_{k=1}^{n-2} \sin^k \phi_{n-1-k}.$$

Also,  $\mathbf{a}_1 \cdot \mathbf{x} = \zeta_1 = r \cos \phi_1$ . Thus the integral becomes

$$2\pi r^{n-1} \left[ \prod_{k=1}^{n-3} \int_0^{\pi} \sin^k \phi_{n-1-k} d\phi_{n-1-k} \right] \int_0^{\pi} g(\|\mathbf{a}\| r \cos \phi_1, r^2) \sin^{n-2} \phi_1 d\phi_1$$

$$= \frac{2r^{n-1} \pi^{(n-1)/2}}{\Gamma((n-1)/2)} \int_0^{\pi} g(\|\mathbf{a}\| r \cos \phi_1, r^2) \sin^{n-2} \phi_1 d\phi_1.$$

Thus we have reduced the integral over the surface of an n-dimensional sphere to a single integral on the real line. In particular, if  $f \equiv 1$ , we obtain  $[2\pi^{n/2}/\Gamma(n/2)]r^{n-1}$  for the surface area of an n-dimensional sphere of radius r and, integrating from 0 to r, we obtain  $[2\pi^{n/2}/(n\Gamma(n/2))]r^n$  for the volume of the sphere.

## MATRIX INTEGRATION OF $x^k \exp(-\beta^2 x^2)$

ROSCOE B. WHITE, University of Minnesota

Let V be the vector space of finite linear combinations of  $x^k \exp(-\beta^2 x^2)$ , fixed  $\beta$ ,  $k = 0, 1, \dots$ , with basis  $\{x^k \exp(-\beta^2 x^2)\}$ . Let D be a linear transformation on V which differentiates a vector belonging to V.

Since  $(x^k \exp(-\beta^2 x^2))D = kx^{k-1} \exp(-\beta^2 x^2) - 2\beta^2 x^{k+1} \exp(-\beta^2 x^2)$ , the matrix of D is

V is closed under D and the kernel of D consists of the zero vector alone. The calculation of  $D^{-1}$  may be carried out algebraically, giving an interesting equation for  $\int x^k \exp(-\beta^2 x^2) dx$ .

Because of the nature of D,  $D^{-1}$  may be calculated in four independent steps depending on whether k and j are even or odd, where  $||D^{-1}|| = ||a_{kj}||$ . Using  $DD^{-1} = I$ , we obtain the following expressions for  $a_{kj}$ .

(1) 
$$j$$
 odd,  $k$  odd:  $a_{kj} = 0$ ;