REVIEW

January 25, 2025

Quick Summary of P2P Channels

```
[1]: using Plots, LaTeXStrings
[2]: # Define coordinates for transmitted and received states
     tx = [0, 1]
     rx = [0, 1]
     # Define probabilities as labels
     p = [L"\epsilon", L"1 - \epsilon"];
[3]: # Plot the BSC diagram
     plot(grid=false
         , xaxis=false, yaxis=false
         , framestyle=:none, size = (200,200)
         , title = "BEC"
     )
     plot!([0, 0.5], [1, 0.5], arrow=:arrow, label="", color=:blue) # p line
     plot!([0, 0.5], [0, 0.5], arrow=:arrow, label="", color=:blue) # p line
     plot!([0, 1], [1, 1], label="", color=:black) # 1-p
     plot!([0, 1], [0, 0], label="", color=:black)
     # Annotate the graph
     annotate!(-0.05, 1.05, tx[1]); annotate!(1.05, 1.05, rx[1])
     annotate!(-0.05, -0.05, tx[2]); annotate!(1.05, -0.05, rx[2])
     annotate!(0.4, 0.5, p[1]); annotate!(0.5, -0.1, p[2]); annotate!(0.5, 1.1, p[2])
[3]:
```

1

1 Binary Erasure Channel (BEC)

- 1. Channel Model:
 - Transmits binary symbols (0 or 1).
 - Each transmitted bit is either:
 - Received correctly with probability 1ϵ , or
 - Erased with probability ϵ , represented as an erasure symbol (e).

Example:

- $0 \to 0$ or e,
- $1 \rightarrow 1$ or e.
- 2. Capacity (C): $C = 1 \epsilon$
 - 1: Maximum capacity with no erasures ($\epsilon = 0$).
 - ϵ : Fraction of bits erased by the channel, reducing capacity.
- 3. Behavior:
 - $\epsilon = 0$: Perfect channel, C = 1.
 - $\epsilon = 1$: Completely erasing channel, C = 0.
 - For $0 < \epsilon < 1$: Capacity decreases linearly as ϵ increases.

Compact Intuition: The Binary Erasure Channel (BEC) capacity is the fraction of bits successfully transmitted. Erasures (ϵ) reduce capacity by removing information from the channel.

```
[4]: # Plot the BSC diagram
plot(grid=false
    , xaxis=false, yaxis=false
    , framestyle=:none, size = (200,200)
    , title = "BSC"
)

plot!([0, 1], [1, 0], arrow=:arrow, label="", color=:blue) # p line
plot!([0, 1], [0, 1], arrow=:arrow, label="", color=:blue) # p line
plot!([0, 1], [1, 1], label="", color=:black) # 1-p
```

```
plot!([0, 1], [0, 0], label="", color=:black)

# Annotate the graph
annotate!(-0.05, 1.05, tx[1]); annotate!(1.05, 1.05, rx[1])
annotate!(-0.05, -0.05, tx[2]); annotate!(1.05, -0.05, rx[2])
annotate!(0.4, 0.5, p[1]); annotate!(0.5, -0.1, p[2]); annotate!(0.5, 1.1, p[2])
```

[4]:

2 Binary Symmetric Channel (BSC)

- 1. Channel Model:
 - Transmits binary symbols (0 or 1).
 - Each bit has a probability ϵ of being flipped.
 - Error probability: $P(0 \to 1) = P(1 \to 0) = \epsilon$.
 - Correct transmission probability: $P(0 \to 0) = P(1 \to 1) = 1 \epsilon$.
- 2. Capacity (C_{BSC}) : $C_{BSC} = 1 H_2(\epsilon)$
 - 1: Maximum capacity without errors.
 - $H_2(\epsilon)$: Binary entropy function, representing uncertainty due to errors.
- 3. Binary Entropy Function $(H_2(\epsilon))$: $H_2(\epsilon) = -\epsilon \cdot \log_2(\epsilon) (1 \epsilon) \cdot \log_2(1 \epsilon)$
 - $H_2(0) = 0$: No errors, full capacity.
 - $H_2(0.5) = 1$: Maximum uncertainty, no capacity.
- 4. Behavior:
 - $\epsilon = 0$: Perfect channel, $C_{BSC} = 1$.
 - $\epsilon = 0.5$: Completely noisy, $C_{BSC} = 0$.
 - For $0 < \epsilon < 0.5$: Capacity decreases as ϵ increases.

Compact Intuition: The BSC capacity is the theoretical maximum rate of reliable data transmission, reduced by the uncertainty caused by errors. Lower ϵ means higher capacity, while higher ϵ reduces it.

2.0.1 AWGN Channel Summary

- 1. Channel Model: $y = x + w, \quad w \sim N(0, N_0)$
 - \bullet x: Transmitted signal.
 - y: Received signal.
 - w: Gaussian noise with zero mean and variance N_0 the noise power spectral density.
- 2. Signal Power: $P = E[|x|^2]$
- 3. Signal-to-Noise Ratio (SNR): $SNR = \frac{P}{N_0}$
- 4. Channel Capacity: $C = \log_2(1 + SNR) = \log_2\left(1 + \frac{P}{N_0}\right)$
 - C: Maximum achievable data rate (in bps/Hz).
- 5. Key Behavior:
 - $P \uparrow$ (high signal power): $C \uparrow$ (more capacity).
 - $N_0 \uparrow$ (high noise): $C \downarrow$ (less capacity).

Insight: The AWGN channel capacity quantifies the theoretical limit of reliable communication over a noisy channel.

```
[5]: using Plots
      # Define the binary entropy function
      function H(\varepsilon)
           if \varepsilon == 0 \mid \mid \varepsilon == 1
                return 0.0
           end
           return -\epsilon * \log 2(\epsilon) - (1 - \epsilon) * \log 2(1 - \epsilon)
      end
      # Define the BSC capacity function
      function C(\varepsilon)
           return 1 - H(\varepsilon)
      end
      # Generate values of \epsilon from 0 to 1
      \epsilon_{values} = 0:0.01:1
      capacities = C.(\epsilon_values)
      # Plot the capacity curve
      plot(\varepsilon_values, capacities,
            label = "BSC Capacity"
           , xlabel = "Error Probability (ε)", ylabel = "Capacity (C)"
           , title = "Binary Symmetric Channel (BSC) Capacity"
           , legend = :top, size = (500,400)
```

```
, xticks = (0:0.5:1, ["0", L"\frac{1}{2}", "1"])
)
```

[5]:

Binary Symmetric Channel (BSC) Capacity

2.1 Communication System Components:

- 1. **Source**: Produces the information $\underline{x} = (x_1, \dots, x_n)$.
- 2. **Encoder**: Transforms \underline{x} into a codeword $\underline{c} = (c_1, \dots, c_n)$, adding redundancy.
- 3. Channel: Transmits \underline{c} , introducing errors, resulting in $\underline{y} = (y_1, \dots, y_n)$.
- 4. **Decoder**: Processes \underline{y} to estimate $\underline{\hat{x}} = (\hat{x}_1, \dots, \hat{x}_n)$, correcting errors.
- 5. **Sink**: Receives $\hat{\underline{x}}$, ideally matching \underline{x} .

2.1.1 Objective:

Ensure $\underline{\hat{x}} = \underline{x}$ despite channel errors.

2.1.2 Properties of Linear Block Code

- 1. Linearity:
 - The set of codewords \mathcal{X} forms a linear subspace of \mathbb{F}_2^n .
 - Any linear combination of codewords is also a valid codeword: $\underline{v}_1 + \underline{v}_2 \in \mathcal{X}, \ \forall \underline{v}_1, \underline{v}_2 \in \mathcal{X}.$
- 2. Generator Matrix (G):
 - The $k \times n$ generator matrix G maps k-bit input vectors $(\underline{u} \in \mathbb{F}_2^k)$ to n-bit codewords $(\underline{v} = \underline{u}^\top G)$.
 - Defines the structure of the codebook \mathcal{X} .
- 3. Code Rate (R):
 - The ratio of information bits to total bits: $R = \frac{k}{n}$
 - Indicates the efficiency of the code.
- 4. Code Size ($|\mathcal{X}|$):
 - The number of unique codewords: $|\mathcal{X}| = 2^k$
- 5. Minimum Hamming Distance (d_{\min}) :
 - The smallest Hamming distance between any two distinct codewords.
 - Determines the error-detecting and error-correcting capability: $t = \left| \frac{d_{\min} 1}{2} \right|$
 - -t: Maximum correctable errors.
 - $-d_{\min}-1$: Maximum detectable errors.
- 6. Parity Check Matrix (H):
 - The H matrix defines the null space of $G: HG^{\top} = 0$
 - Used to verify codewords: $\underline{v}H^{\top} = 0 \implies \underline{v} \in \mathcal{X} \subseteq \mathbb{F}_2^n$
- 7. Error Detection and Correction:
 - Error detection: Capable of detecting up to $d_{\min} 1$ errors.
 - Error correction: Can correct up to $\lfloor \frac{d_{\min}-1}{2} \rfloor$ errors.
- 8. Redundancy:
 - The number of redundant bits added for error correction is n-k, where n is the codeword length.

2.1.3 Compact Summary:

- Linear subspace: Codewords form a subspace of \mathbb{F}_2^n .
- Size: $|\mathcal{X}| = 2^k$.
- Rate: $R = \frac{k}{n}$.
- Error capabilities: Based on d_{\min} .
- Defined by:
 - Generator matrix (G).
 - Parity check matrix (H).

Linear error corr. Code \mathcal{X}

Code Rate: $R = \frac{k}{n}$

Explanation:

- Code Rate (R) is the fraction of a codeword used for information:
 - k: Number of information bits.
 - -n: Total number of bits in the codeword (information + redundancy).
- Trade-off:
 - Higher R ($R \to 1$): More efficient but less error protection.
 - Lower R ($R \to 0$): Less efficient but better error correction.

Linear Block Code Definition:

ear Block Code Definition:
$$\mathcal{X} = \{\underline{v} = \underline{u}^{\top}G, \ \underline{u} \in \mathbb{F}_2^k\}$$

Explanation:

- \mathcal{X} : The set of all codewords in the code (codebook).
- \underline{u} : A binary **message vector** of length k ($\underline{u} \in \mathbb{F}_2^k$).
- G: The generator matrix $(k \times n)$ used to map u to a codeword.
- \underline{v} : A binary **codeword** of length n ($\underline{v} \in \mathbb{F}_2^n$).

Key Points:

- 1. Each \underline{u} maps to a unique \underline{v} via $\underline{v} = \underline{u}^{\top}G$.
- 2. The total number of codewords is 2^k (one for each \underline{u}).
- 3. \mathcal{X} is a linear subspace of dimension k in \mathbb{F}_2^n .

Compact Summary: \mathcal{X} is the codebook of a linear block code, where each codeword v is generated by multiplying a k-bit message vector u with the generator matrix G.

Code Size: $|\mathcal{X}| = 2^k$

- k-bit message vectors $(\underline{u} \in \mathbb{F}_2^k)$ are mapped to n-bit codewords $(\underline{v} = \underline{u}^\top G)$ via the generator matrix G.
- \bullet The codebook $\mathcal X$ forms a linear subspace with 2^k unique codewords, corresponding to the k-bit input combinations.

7

• Minimum Hamming Distance:

$$d_{\min} = \min\{d_H(x_i, x_j)\}, \ \forall x_i, x_j \in \mathcal{X}, \ x_i \neq x_j \ (\text{Hamming distance})$$

• Linear Code Minimum Distance:

$$d_{\min} = \min_{\substack{\left(\frac{x_i, x_j \in \mathcal{X}}{x_i \neq x_j}\right)}} \left\{ d_H(x_i, x_j) \right\} = \min_{x \in \mathcal{X}} \left\{ W_H(\underline{x}) \right\}$$

• Parity Check Relation:

$$\underline{v}H^{\top} = 0 \implies \underline{v} \in \mathcal{X} \subseteq \mathbb{F}_2^n$$

2.1.4 Parity Check Matrix

- $H \in \mathbb{F}_2^{(n-k)\times n}$
- $\dim(\operatorname{Im}(G)) = k$
- $H = \text{null}(G^{\top}), \text{ dim} = n k$

```
[6]: using LinearAlgebra
     # Define the parity check matrix H (size 3x7 for (7, 4) code)
        1 0 0 1 1 1 0;
         0 1 0 1 1 0 1;
         0 0 1 1 0 1 1
     ]
     # Define the generator matrix G
     G = [
         1 0 0 0 1 1 0;
         0 1 0 0 1 0 1;
         0 0 1 0 0 1 1;
         0 0 0 1 1 1 1
     ];
[7]: # Message vector
     u = [1 \ 0 \ 1 \ 0]
     # Generate codeword
     v = mod.(u * G, 2)
     println("Generated codeword: ", v) # Should be a valid codeword
    Generated codeword: [1 0 1 0 1 0 1]
[8]: # Parity check validation
     parity\_check = mod.(v * H', 2)
     println("Parity check result: ", parity_check) # Should be [0, 0, 0]
    Parity check result: [0 0 0]
[9]: using LinearAlgebra
     # Define the generator matrix G (4x7 for (7,4) code)
     G = [
        1 0 0 0 1 1 0;
         0 1 0 0 1 0 1;
         0 0 1 0 0 1 1;
         0 0 0 1 1 1 1
     ]
     # Generate all possible messages (4-bit binary combinations)
     messages = [bitstring(i)[end-3:end] for i in 0:2^4-1] # 4-bit binary strings
     u = [parse.(Int, split(m, ""))' for m in messages]; @show u; # Convert to row_
      \rightarrow vectors (1x4) u\underbar
     # Generate all codewords using G
```

```
# Define a function to compute Hamming distance
function hamming_distance(v , v)
    sum(v .!= v) # Count differing elements
end

# Compute the minimum Hamming distance using a comprehension
d = minimum(
    hamming_distance([i], [j]) for (i, j)
        in Iterators.product(1:length(), 1:length()) if i < j
)

# Output the result
println("Minimum distance of the code: ", d)</pre>
```

u = Adjoint{Int64, Vector{Int64}}[[0 0 0 0], [0 0 0 1], [0 0 1 0], [0 0 1 1],
[0 1 0 0], [0 1 0 1], [0 1 1 0], [0 1 1 1], [1 0 0 0], [1 0 0 1], [1 0 1 0], [1
0 1 1], [1 1 0 0], [1 1 0 1], [1 1 1 0], [1 1 1 1]]
= [[0 0 0 0 0 0 0], [0 0 0 1 1 1 1], [0 0 1 0 0 1 1], [0 0 1 1 1 0 0], [0 1 0
0 1 0 1], [0 1 0 1 0 1 0], [0 1 1 0 1 1 0], [0 1 1 1 0 0 1], [1 0 0 0 1 1], [1 0 1 1 0
0], [1 1 1 0 0 0 0], [1 1 1 1 1 1]]
Minimum distance of the code: 3

2.1.5 Parity Check Matrix (H):

- 1. Dimensions: $H \in \mathbb{F}_2^{(n-k) \times n}$
 - n: Codeword length.
 - n-k: Number of parity checks.
- 2. Relation to G:
 - G: Generates the code subspace with: $\dim(\operatorname{Im}(G)) = k$
 - H: Defines the null space of G^{\top} : $H = \text{null}(G^{\top})$
- 3. Validation Condition:
 - A valid codeword satisfies: $vH^{\top} = 0$
- 4. Null Space Dimension: $\dim(\operatorname{null}(G^{\top})) = n k$

2.1.6 Systematic Code:

A linear block code is called **systematic** if: 1. **Codeword Structure**:

$$\underline{v} = [\text{information bits} \mid \text{parity bits}]$$

- The first k bits are the unaltered information bits. The last n-k bits are the parity bits.
 - 2. Generator Matrix:

$$G = [I_k \vdots P_{k \times (n-k)}]_{k \times n}$$

- I_k : Identity matrix for information bits.
- P: Parity matrix for redundancy.
- 3. Parity Check Matrix:

$$H = [I_{n-k} \vdots P_{(n-k)\times k}^{\top}]$$

- 4. Benefits:
 - Direct access to information bits.
 - Simplifies encoding and decoding.

2.1.7 The Generator Matrix (G):

- 1. **Definition**:
 - $G \in \mathbb{F}_2^{k \times n}$, maps k-bit messages \underline{u} to n-bit codewords \underline{v} : $\underline{v} = \underline{u}^{\top} G$
- 2. **Structure** (for systematic codes):

 $G = [I_k : P_{k \times (n-k)}]_{k \times n} - I_k : k \times k \text{ identity matrix (information bits).} - P: k \times (n-k) \text{ parity matrix (defines redundancy).}$

- 4. Steps to Generate G:
 - Determine code parameters: n, k, and n k.
 - Design P to ensure $HG^{\top} = 0$, where H is the parity-check matrix.
 - Combine I_k and P to construct G.
- 5. **Example** ((7,4) Hamming Code): The (7,4) Hamming code has:
- k = 4 information bits.
- n = 7 total bits (n k = 3 parity bits).
- -> Steps:
 - I_k is a 4×4 identity matrix.

•
$$P$$
 is a 4×3 matrix: $P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

G encodes k = 4 information bits into n = 7 codeword bits.

2.1.8 The parity check matrix (H)

For systematic linear block codes like the Hamming code, the parity check matrix H is typically written in the form:

10

$$H_{(n-k)\times n} = [I_{n-k} \vdots P_{(n-k)\times k}^{\top}]$$

This is the **standard form** of the parity check matrix.

2.1.9 Formulation of H:

1. Structure:

- I_{n-k} : Identity matrix of size $(n-k) \times (n-k)$, representing the parity bits.
- P^{\top} : Transpose of the parity matrix P from $G = [I_k \ P]$.

The matrix H ensures that: $HG^{\top} = 0$

2. Dimensions:

- $H \in \mathbb{F}_2^{(n-k) \times n}$:
 - Rows: n k (number of parity check equations).
 - Columns: n (length of the codeword).

2.1.10 Example: (7, 4) Hamming Code

- 1. Generator Matrix G: $G = \begin{bmatrix} I_4 & P \end{bmatrix}$ where: $P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- 2. Transpose of $P: P^{\top} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$
- 3. Identity Matrix I_{n-k} : $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 4. Parity Check Matrix H: Combine I_{n-k} and P^{\top} : $H = \begin{bmatrix} I_3 & P^{\top} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$

2.1.11 Summary:

- For systematic codes, the parity check matrix is: $H = \begin{bmatrix} I_{n-k} & P^{\top} \end{bmatrix}$
- It is derived to satisfy: $HG^{\top} = 0$
- In the (7,4) Hamming code, H has dimensions 3×7 , combining I_3 and P^{\top} .
- Parity Check Matrix is used to decode the RX vector when Decoding is **not optimal** (generally), when you work with Tanner graph which representation of H.

11

2.1.12 Hamming Code:

```
H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}^{\downarrow 7 \text{ variable nodes}}_{\rightarrow 3 \text{ check nodes}} (n-k):
```

3 linear equations, that may valid, non-erroneous TX must satisfy

```
[56]: using Graphs # For graph representation

# Create a directed graph
tanner = DiGraph(5) # A directed graph with 5 nodes

# Add edges to create an acyclic structure
add_edge!(tanner, 1, 2)
add_edge!(tanner, 1, 4)
add_edge!(tanner, 3, 2)
add_edge!(tanner, 5, 2)
add_edge!(tanner, 5, 4)

println("Is Bipartite: ", is_bipartite(tanner))
# Display basic properties of the graph
println("Number of nodes: ", nv(tanner)) # Number of vertices
println("Number of edges: ", ne(tanner)) # Number of edges

# Print edges of the graph
gplot(tanner, nodelabel=1:5)
```

Is Bipartite: true Number of nodes: 5 Number of edges: 5 [56]:

When writing large codes:

Tanner Graphs (bipartite graph): | Variable nodes | Check nodes | | |-|-|-| | | | |
$$C_1 + C_2 + C_3 + C_5 = 0$$
 | | | | $C_1 + C_3 + C_4 + C_6 = 0$ | | | $C_1 + C_2 + C_7 = 0$

Tanner Graph representation used in decoding codes in an **soft** manner. **Soft Decoding**: - [Passing **likelihood information** for each node votes]. - **Soft decoding** is generally **suboptimal**, unless it is such that the corresponding Tanner graph has **no cycles**.

This Cycle Consideration brought to the fore - Low-Density Parity Check Codes (LDPC). Gallager 1960 - LDPC codes have a sparse H.

• LDPC

- -H is sparse.
- Number of edges in the Tanner graph grows only linearly in n.
- LDPC facilitates soft (iterative) decoding.
- Iterative exchange of information.
- Allows for simple local passing of information (at the node).

• Regular LDPC

- -n, J, k
 - * n: Codeword length.
 - * J: Degree of each variable node.
 - * k: Degree of each check node.

Location of ones in H is chosen to have a certain randomness, subject to a structure that guarantees decoding performance.

Gallager (n = 20, J = 3, k = 4) Construction

•
$$H = 15 \times 20$$

Pick at Random

Columns of first submatrix

Turbo Codes (uses Convolutional Codes)

- Three Main powerful Codes
 - Turbo Codes ≈ 1992
 - LDPC Codes Gallager ≈ 1960
 - Polar Codes
- All 3 codes achieve Capacity (\approx) with easier decoding
 - LDPC easier to decode than Turbo
 - Polar has smaller error decay (a little bit slower)

3 Polar Codes

3.0.1 Notation:

• $X, Y \sim P_{X,Y}$:

- Higher
$$H$$
: More uncertainty $-H(X|Y)$: Joint Entropy $I(X;Y) = \underbrace{H(X) - H(X|Y)}_{10} - \underbrace{H(X|Y)}_{-7} = 3$ Bits of Information $\#\#\#$ Formulas: -

•
$$I(X;Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$\bullet \ X^n = (X_1, \dots, X_n)$$

•
$$Y^n = (Y_1, \dots, Y_n)$$
 $(X^n, Y^n) \approx P_{x^n, Y^n}$

3.0.2 Chain Rule:

$$H(X^n|Y^n) = \sum_{i=1}^{n} H(X_i|Y^n, X^{i-1})$$

Where $X^{i-1} = (X_1, ..., X_{i-1})$

$$H(X_1|Y^n) + H(X_2|X_1,Y^n) + H(X_3|\underbrace{X_1,X_2}_{(::)},Y^n) + \dots$$

(::) know the 2 previous days, (this is the chain rule).

Result (math)

3.0.3 Principle of Polarization

- Let $X \sim P_X$, $\mathcal{X} = \{0, 1\}$
- Let X_1, X_2, \ldots i.i.d. $\sim X$
- Let $N = 2^n, n > 1$
- Let $X^n = \{X_1, X_2, \dots, X_n\}$

$$F^{\otimes 2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$F^{\otimes 3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

• Let $u^N = x^N \cdot F^{\otimes n}$

3.0.4 Theorem:

• For any fixed $\delta > 0$:

•
$$\left[\lim_{N \to \infty} \frac{1}{N} \left| \{ i \in \{1, 2, \dots, N\} \mid H(u_i | u^{i-1}) \in [\delta, 1 - \delta] \} \right| = 0 \right]$$

• It says that: $H(u_i|u^{i-1}) \to \begin{cases} 0 & \text{nothing in between them} \\ 1 & \end{cases}$

no uncertainty

3.0.5 Polarization Kernel and Kronecker Power

1. Base Matrix F: $F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

2. Kronecker Power $F^{\otimes n}$:

• Recursive definition: $F^{\otimes n} = F^{\otimes (n-1)} \otimes F$

 \bullet \otimes : Kronecker product.

3. Examples:

$$\bullet \ F^{\otimes 1} = F \\ \bullet \ F^{\otimes 2} \colon \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \\ \bullet \ F^{\otimes 3} \colon \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

4. Purpose:

- $F^{\otimes n}$ transforms $X^N \to U^N = X^N \cdot F^{\otimes n}$.
- Enables **channel polarization**, splitting channels into highly reliable and unreliable sets for polar codes.

For any $\delta > 0$, in fact $\delta \approx 2^{-\sqrt{n}}$ (i.e. δ can be as low as?)

3.0.6 Example:

•
$$n = 2$$
, $F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
 $(u_1, u_2) = (x_1, x_2) \cdot \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = [x_1 \oplus x_2, x_2]$

•
$$n = 4$$
, $F^{\otimes 2} = \begin{bmatrix} 10 & 00 \\ 11 & 00 \\ 10 & 10 \\ 11 & 11 \end{bmatrix}$

$$(u_1, u_2, u_3, u_4) = (x_1, x_2, x_3, x_4) \cdot F^{\otimes 2} = \underbrace{[x_1 \oplus x_2 \oplus x_3 \oplus x_4, \underbrace{x_2 \oplus x_4}_{u_1}, \underbrace{x_2 \oplus x_4}_{u_2}, \underbrace{x_3 \oplus x_4}_{u_3}, \underbrace{x_4}_{u_4}]$$

3.0.7 Kronecker Product:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22}s & \\ \vdots & & \end{bmatrix}, B \qquad A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & \cdots \end{bmatrix}$$

3.0.8 key result in polar codes and channel polarization

$$x_1, x_2, \dots, x_n \qquad X \sim \text{i.i.d.}$$

$$u^n = x^n \cdot F^n$$

Corollary:
$$\frac{\left[\{i:H(u_i|u^{i-1})>1-\delta\}\right]}{N}=H(X)$$

3.0.9 **Proof:**

$$H(u^n) = H(x^n) = n H(x)(i.i.d)$$

This describes a key result in **polar codes** and **channel polarization**, where the **entropy** and structure of the polar transformation are analyzed mathematically.

Explanation:

1. Setup:

- x_1, x_2, \ldots, x_n : A sequence of independent and identically distributed (i.i.d.) random variables from the source X.
- $u^n = x^n \cdot F^n$: The transformation of x^n using the **Kronecker power** of F (polarization matrix) to produce the vector u^n .
 - This defines the encoding operation in polar codes.

2. Corollary:

- The fraction of indices i for which the **conditional entropy** $H(u_i|u^{i-1}) > 1 \delta$ (i.e., where uncertainty is high) is proportional to the **source entropy** H(X): $\frac{\left|\{i:H(u_i|u^{i-1})>1-\delta\}\right|}{N} = H(X).$
- This result demonstrates how the **polarization process** concentrates certain indices with high entropy (bad channels) and others with low entropy (good channels).

3. Proof Outline:

- Since x_1, x_2, \ldots, x_n are i.i.d., the total entropy of the source sequence x^n is: $H(x^n) = n \cdot H(X)$.
- The polar transformation preserves entropy (it's a linear transformation), so: $H(u^n) = H(x^n) = n \cdot H(X)$.

• This shows that the entropy is distributed across the components of u^n , leading to the polarization effect.

Key Idea:

- Channel Polarization:
 - The transformation F^n polarizes the "channels" (indices i) into two categories:
 - 1. Channels with **high reliability** $(H(u_i|u^{i-1}) \approx 0)$: These are the "good" channels used to carry information.
 - 2. Channels with **low reliability** $(H(u_i|u^{i-1}) \approx 1)$: These are the "bad" channels, which are "frozen" (fixed to known values).
- The corollary quantifies this polarization, stating that the fraction of good channels corresponds to the source entropy H(X).

Summary:

- Transformation: $u^n = x^n \cdot F^n$ is the polar transformation.
- Result: The fraction of "good" channels (low-entropy) matches the source entropy H(X).
- **Proof**: Entropy is conserved, and the polarization process redistributes it across the indices of u^n .

This result is central to the design and analysis of **polar codes**, enabling efficient encoding and decoding.

$$H(u^N) = \sum_{i=1}^N \underbrace{H(u_i|u^{i-1})}_{\text{(chain rule)}} = N \cdot H(X)(:)$$

But recall (from theorem) that the # of terms where: $H(u_i|u^{i-1}) \in (\delta, 1-\delta)$ is near zero.

$$\approx 0 \cdot \left| \underbrace{H(u_i|u^{i-1})}^{\text{#of times}} \approx 0 \right| + 1 \cdot \left| \underbrace{H(u_i|u^{i-1})}^{\text{#of times}} \approx 1 \right|$$

All the entropy accumulated in summation is due to K terms where: $H(u_i|u^{i-1}) \in (1-\delta,1)$.

3.0.10 Accumulated Entropy:

$$K \cdot 1 = N \cdot H(X)$$
 (from \therefore) $\Longrightarrow \frac{K}{N} = H(X)$.
 $H(X) \approx 0.3$ 30% of $H(u_i|u^{i-1}) \approx 1's$, 70% ≈ 0 .

Explanation of $K \cdot 1 = N \cdot H(X) \implies \frac{K}{N} = H(X)$ This equation arises in the context of **polar codes** and **channel polarization**, describing how the total entropy is distributed among the indices of the polar transformation.

Definitions and Context:

1. Terms:

- K: The number of indices i where the **conditional entropy** $H(u_i|u^{i-1})$ contributes meaningfully to the total entropy (i.e., $H(u_i|u^{i-1}) \approx 1$).
- N: The total block length (number of indices in u^N).
- H(X): The entropy of the source variable X, which determines the overall proportion of good (reliable) channels in the polarization process.

2. Accumulated Entropy:

• The total entropy of the transformed vector u^N is: $H(u^N) = N \cdot H(X)$, since entropy is preserved during the linear transformation $u^N = x^N \cdot F^N$.

Key Idea:

• Entropy Contribution:

- The entropy $H(u^N)$ is primarily accumulated in the K terms where $H(u_i|u^{i-1})\approx 1$ (good channels).
- For other indices, $H(u_i|u^{i-1}) \approx 0$, meaning they contribute negligible entropy.

• Total Accumulated Entropy:

– If K terms contribute nearly 1 unit of entropy each, the total entropy contributed by these terms is: $K \cdot 1 = N \cdot H(X)$.

• Proportion of Good Channels:

– Dividing through by N, we find that the proportion of indices i where $H(u_i|u^{i-1})\approx 1$ is: $\frac{K}{N}=H(X)$.

Meaning:

- $\frac{K}{N} = H(X)$ indicates that the fraction of "good channels" (indices i where $H(u_i|u^{i-1})$ is significant) corresponds to the source entropy H(X).
- For example:

– If H(X) = 0.3, then 30% of the channels are reliable, while 70% are unreliable (contributing $H(u_i|u^{i-1}) \approx 0$).

Importance in Polar Codes: This relationship quantifies channel polarization, where: - A fraction H(X) of the channels becomes highly reliable (used for transmitting information). - The remaining fraction 1 - H(X) becomes unreliable (frozen).

This ensures that polar codes can efficiently encode and decode data based on the structure of F^N .

3.0.11 Channel Polarization

 $X \to W \to Y$ X is Input to the memoryless channel W.

Recall: $(x,y) \sim P_{X,Y}(x,y)$

\$

$$P(X,Y) = P_X(x) \cdot P_{Y|X}(y|x) \tag{1}$$

$$= P_X(x) \cdot W_{Y|X}(y|x) \tag{2}$$

\$

Using Bayes' Rule: $P_{X|Y}(x|y) = \frac{P_{Y|X}(y|x) \cdot P_X(x)}{P_Y(y)}$ (Channel Fixed).

Assume: - $X \sim X_1, X_2, \dots, X_n$,

- X is discrete, $X \in \{0,1\}$,
- Assume Binary Symmetric Channel (BSC).

For $N=2^n$: $U^N=X^N\cdot F^n\ U^N$: Input of the following **bigger channel**:

3.0.12 Diagram:

- W: Memoryless channel,
- U_1, U_2, \ldots, U_N : Input,
- Y_1, Y_2, \ldots, Y_N : Output.

This process creates bad and good channels, enabling channel polarization.

[]: