BBM 205 - Discrete Structures: Quiz 3 - Solutions Date: 31.10.2018

Name: Student ID:

1. (10 points) Use proof by induction to show that the following statement is true for all $n \geq 0$.

$$1 + 2 + \dots + 2^n = 2^{n+1} - 1.$$

Solution: P(n) is the statement $1 + 2 + \cdots + 2^n = 2^{n+1} - 1$.

Base case: P(0) is true, since $1+2+\cdots+2^0=2^0=1$, which is equal to $2^{0+1}-1=1$. **Inductive Step:** We can assume that P(n) is true (called inductive hypothesis, I.H.)

to show that P(n+1) is true.

 $1+2+\cdots+2^n+2^{n+1}$ can be separated into two parts:

Let the first part be $1 + 2 + \cdots + 2^n$, which is equal to $2^{n+1} - 1$ by I.H. Now, adding the second part 2^{n+1} to this gives $(2^{n+1} - 1) + 2^{n+1}$. This equals

 $2 \cdot 2^{n+1} - 1 = 2^{n+2} - 1$, we are done.

2. (10 points) Use proof by induction to show that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for all $n \ge 0$.

Solution: P(n) is the statement that $7^{n+2} + 8^{2n+1}$ is divisible by 57.

Base case: P(0) is true, since $7^{0+2} + 8^{2 \cdot 0 + 1} = 7^2 + 8 = 57$, divisible by 57.

Inductive Step: We can assume that P(n) is true (called inductive hypothesis, I.H.)

to show that P(n+1) is true.

Observe that $7^{(n+1)+2} + 8^{2(n+1)+1}$ can be rewritten as $7 \cdot 7^{n+2} + 7 \cdot 8^{2n+1} + 57 \cdot 8^{2n+1}$.

The first part $7 \cdot 7^{n+2} + 7 \cdot 8^{2n+1} = 7 \cdot (7^{n+2} + 8^{2n+1})$ and this is divisible by 57 by I.H.

The second part $57 \cdot 8^{2n+1}$ is also divisible by 57, done.