

AIM OF THE PROJECT

With the structure of our choice, been applied with a range of loads, we are Analyzing factor of safety and damage upon its life as well as predicting the fatigue life with the help of deep learning.

WHAT IS THE STRUCTURE?

WHAT IS THE STRUCTURE?

WHAT IS THE STRUCTURE?

☐ Material – MILD STEEL

	A	В	С	D	E	
1	Contents of Engineering Data	0	8	Source	Description	
2	■ Material					
3	📎 Structural Steel	▼		₽ 0	Fatigue Data at zero mean stress comes from 1998 ASME BPV Code, Section 8, Div 2, Table 5 -110.1	
*	Click here to add a new material					

☐ Material PROPERTIES:

operties of Outline Row 3: Structural Steel				•	Д,	
	A	В	С	D	E	
1	Property	Value	Unit	8		
2	Material Field Variables	Table				
3	Density	7850	kg m^-3	-		
4	Isotropic Secant Coefficient of Thermal Expansion					
6	Isotropic Elasticity					
12	Strain-Life Parameters		73			
20		Tabular				
24	🔀 Tensile Yield Strength	2.5E+08	Pa	-	8	
25	Compressive Yield Strength	2.5E+08	Pa			
26	Tensile Ultimate Strength	4.6E+08	Pa	-		
27	Compressive Ultimate Strength	0	Pa	-		

FACTOR OF SAFETY ANALYSIS

0.750

FACTOR OF SAFETY ANALYSIS

FACTOR OF SAFETY ANALYSIS

Node Num	Safety Factor	()
1	5.434	
2	5.434	
3	7.6234	
4	7.6234	
5	5.9444	
6	5.9444	
7	6.4635	
8	6.4635	
9	6.9166	
10	6.9166	
11	7.8988	
12	7.8988	
13	8.3126	
14	8.3126	
15	7.9842	
16	7.9842	
17	6.4614	
18	6.4614	
19	7.0083	
20	7.0083	
21	8.3349	
22	8.3349	
23	7.3372	
24	7.3372	
25	6.8561	

DAMAGE UPON THE STRUCTURE

0.750

DAMAGE UPON THE STRUCTURE

DAMAGE UPON THE STRUCTURE

Node Num	Damage ()	
1	1.15E-02	
2	1.15E-02	
3	3.85E-03	
4	3.85E-03	
5	8.68E-03	
6	8.68E-03	
7	6.70E-03	
8	6.70E-03	
9	5.38E-03	
10	5.38E-03	
11	3.41E-03	
12	3.41E-03	
13	2.85E-03	
14	2.85E-03	
15	3.29E-03	
16	3.29E-03	
17	6.71E-03	
18	6.71E-03	
19	5.14E-03	
20	5.14E-03	
21	2.83E-03	
22	2.83E-03	
23	4.39E-03	
24	4.39E-03	
25	5.54E-03	

FATIGUE LIFE

FATIGUE LIFE

Name	Force X Component [N]	Safety Factor Minimum	Damage Maximum	Life Minimum
DP 0	10000000	15	6.00E-05	1.66667E+13
DP 1	10990000	15	6.00E-05	1.66667E+13
DP 2	11980000	15	8.77E-05	1.14001E+13
DP 3	12970000	15	0.000138559	7.21715E+12
DP 4	13960000	15	0.000211625	4.72535E+12
DP 5	14950000	15	0.00030873	3.23908E+12
DP 6	15940000	14.32399869	0.00038959	2.5668E+12
DP 7	16930000	13.48638747	0.000484783	2.06278E+12
DP 8	17920000	12.74132434	0.000595785	1.67846E+12
DP 9	18910000	12.07427483	0.00072565	1.37807E+12
DP 10	19900000	11.47359467	0.000875037	1.14281E+12
DP 11	20890000	10.92984865	0.001045628	9.56363E+11
DP 12	21880000	10.43530769	0.001239213	8.06964E+11
DP 13	22870000	9.983582838	0.001457638	6.86042E+11
DP 14	23860000	9.569343671	0.001702805	5.87266E+11
DP 15	24850000	9.188109917	0.001976675	5.059E+11
DP 16	25840000	8.836089043	0.00228126	4.38354E+11
DP 17	26830000	8.510045954	0.002618631	3.81879E+11
DP 18	27820000	8.207208349	0.002990907	3.34347E+11

FATIGUE LIFE PREDICTION USING DEEP LEARNING

Training code:

https://colab.research.google.com/drive/1UA4Ov C56gpr016dVZQaJPqDG8BFQfKnl?usp=sharing

Deep Learning code

```
import numpy as np
  import matplotlib.pyplot as plt
  import tensorflow as tf
  import pandas as pd
  from sklearn.model selection import train test split
  from tensorflow.keras.layers import Dense
  def linear scaling(data , max val , min val):
      scaled data = (data - min val) / (max val - min val)
     return scaled data
                                                             + Code
                                                                      + Markdown
  data = pd.read csv("data2.csv" , on bad lines='skip')
  data.tail()
                              P2
       Name
                                            P3 P4
               996040000 0.229232 1.000000e+32 0.0
      DP 996
997
      DP 997
              997030000 0.229005 1.000000e+32 0.0
               998020000 0.228778 1.000000e+32 0.0
      DP 998
      DP 999
              999010000 0.228551
                                  1.000000e+32 0.0
1000 DP 1000 1000000000 0.228325 1.000000e+32 0.0
```



```
big_data = pd.concat([data , data2] , axis = 0)
   tag_data.tail()
                      P1
                              P2
                                           P3 P4
        Name
       DP 996
               996040000 0.229232 1.000000e+32 0.0
  996
       DP 997
               997030000 0.229005 1.000000e+32 0.0
  997
               998020000 0.228778 1.000000e+32 0.0
  998
       DP 998
               999010000 0.228551 1.000000e+32 0.0
  999
       DP 999
 1000 DP 1000 1000000000 0.228325 1.000000e+32 0.0
   x = data['P1'] 🕝
   x.tail() 🖁
996
        996040000
997
        997030000
998
        998020000
999
        999010000
       1000000000
1000
Name: P1, dtype: int64
   a = max(x)
   b = \min(x)
   for i in range(len(x)):
       x[i] = linear_scaling(x[i] , a , b)
   a = max(data['P3'])
   b = min(data['P3'])
   print( a,b )
   y2 = data['P3']
   for i in range(len(y2)):
        y2[i] = linear_scaling(y2[i] ,a,b )
```



```
a = max(data['P4'])
  # = min(data['P4'])
  print( a,b )
  y3 = data['P4']
v for i in range(len(y3)):
   y3[i] = linear_scaling(y3[i] ,a,b )
 x_train , x_test , y_train , y_test = train_test_split(x , y , test_size=0.1 , random_state=69) $\epsilon$
 def custom_activation(x):
   return x
 model = tf.keras.Sequential([
 Dense(16384 , activation = 'relu' , input_shape = (1,)),
 Dense(4096 , activation = 'relu'),
 Dense(2048 , activation = 'relu'),
    Dense(1024 , activation = 'relu'),
    Dense(512 , activation = 'relu'),
    Dense(3 , activation = custom activation)
 model.compile(
 tf.keras.optimizers.Adam(learning_rate=0.00001, clipvalue=1.0),
  loss = 'binary_crossentropy',
    metrics=['accuracy']
 model.summary()
```



```
train loss = history.history['loss']
chochs = range(1, len(train_loss) + 1)
plt.figure()
plt.plot(epochs, train loss, label='Training loss')
plt.plot(epochs , history.history['accuracy'] , label = 'accuracy')
plt.title('Training')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig(f"trained models/{EPOCHS}.png")
plt.show()
def inverse linear scaling(x , a , b):
   return 1.0*x*(b-a) + 1.0*a
output[0][0] = inverse_linear_scaling(output[0][0] , 15.0 , 0.2283245321309487)
htput[0][1] = inverse linear scaling(output[0][1] , 1e+32 , 6e-05)
for x in output[0]:
   print(x)
```


Code generated accuracy and loss

```
Epoch 1/50
Epoch 3/50
Epoch 4/50
29/29 [============ ] - 41s 1s/step - loss: 0.2834 - accuracy: 0.4844
Epoch 6/50
Epoch 8/50
29/29 [================== ] - 37s 1s/step - loss: 0.1732 - accuracy: 0.5056
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
Epoch 13/50
. . .
Epoch 49/50
```

An accuracy of 91.56% is obtained by using the model

Loss and Accuracy plot

Sample Results

```
Microsoft Windows [Version 10.0.19045.3086]
(c) Microsoft Corporation. All rights reserved.
D:\Deep Learning\trained models>python test.py
2023-11-11 03:13:29.321216: I tensorflow/core/platform/cpu feature guard.cc:182] This TensorFlow binary is optimized to
use available CPU instructions in performance-critical operations.
To enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA, in other operations, rebuild TensorFlow
with the appropriate compiler flags.
2023-11-11 03:13:29.444078: W tensorflow/tsl/framework/cpu allocator impl.cc:83] Allocation of 268435456 exceeds 10% of
free system memory.
2023-11-11 03:13:29.871735: W tensorflow/tsl/framework/cpu allocator impl.cc:83] Allocation of 268435456 exceeds 10% of
free system memory.
2023-11-11 03:13:30.368995: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 268435456 exceeds 10% of
free system memory.
2023-11-11 03:13:32.733851: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 268435456 exceeds 10% of
free system memory.
2023-11-11 03:13:32.734380: W tensorflow/tsl/framework/cpu allocator impl.cc:83] Allocation of 268435456 exceeds 10% of
free system memory.
model loaded!
Please enter the force value(Newtons)87655432
1/1 [================== ] - 0s 273ms/step
Safety Factor Minimum : 11.559394
Damage Maximum : 1.0270868e+32
Life Minimum : 16963813000000.0
D:\Deep Learning\trained models>
```


THANK YOU!!

