Lecture #10: Counting and Probability I Summary

Aaron Tan

10. Counting and Probability 1

9.1 Introduction

This lecture is based on Epp's book chapter 9. Hence, the section numbering is according to the book.

Random process, sample space, event and probability

9.2 Possibility Trees and the Multiplication Rule

- Possibility trees
- The multiplication/product rule
- Permutations

9.3 Counting Elements of Disjoint Sets

- The addition/sum rule
- The difference rule
- The inclusion/exclusion rule

9.4 The Pigeonhole Principle (PHP)

• Pigeonhole principle, general pigeonhole principle

Reference: Epp's Chapter 9 Counting and Probability

9.1 Introduction

Definitions

A **sample space** is the set of all possible outcomes of a random process or experiment. An **event** is a subset of a sample space.

Notation

For a finite set A, |A| denotes the number of elements in A.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the **probability** of E, denoted P(E), is

$$P(E) = \frac{\text{The number of outcomes in } E}{\text{The total number of outcomes in } S} = \frac{|E|}{|S|}$$

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and $m \le n$, then there are n - m + 1 integers from m to n inclusive.

Theorem 9.2.1 The Multiplication/Product Rule

If an operation consists of k steps and the first step can be performed in n_1 ways, the second step can be performed in n_2 ways (regardless of how the first step was performed),

the $k^{\rm th}$ step can be performed in n_k ways (regardless of how the preceding steps were performed), Then the entire operation can be performed in

$$n_1 \times n_2 \times n_3 \times ... \times n_k$$
 ways.

9.2 Possibility Trees and Multiplication Rule

Theorem 9.2.2 Permutations

The number of permutations of a set with $n \ (n \ge 1)$ elements is n!

Definition

An **r**-permutation of a set of *n* elements is an ordered selection of *r* elements taken from the set.

The number of r-permutations of a set of n elements is denoted P(n, r).

Theorem 9.2.3 *r*-permutations from a set of *n* elements

If n and r are integers and $1 \le r \le n$, then the number of r-permutations of a set of n elements is given by the formula

$$P(n, r) = n(n-1)(n-2) \dots (n-r+1)$$
 first version

or, equivalently,

$$P(n, r) = \frac{n!}{(n-r)!}$$
 second version

9.3 Counting Elements of Disjoint Sets

Theorem 9.3.1 The Addition/Sum Rule

Suppose a finite set A equals the union of k distinct mutually disjoint subsets $A_1, A_2, ..., A_k$. Then $|A| = |A_1| + |A_2| + ... + |A_k|$.

Theorem 9.3.2 The Difference Rule

If A is a finite set and $B \subseteq A$, then $|A \setminus B| = |A| - |B|$.

Formula for the Probability of the Complement of an Event

If S is a finite sample space and A is an event in S, then $P(\bar{A}) = 1 - P(A)$.

Theorem 9.3.3 The Inclusion/Exclusion Rule for 2 or 3 Sets

If A, B, and C are any finite sets, then

$$|A \cup B| = |A| + |B| - |A \cap B|$$

and

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

9.4 The Pigeonhole Principle

Pigeonhole Principle (PHP)

A function from one finite set to a smaller finite set cannot be one-to-one: There must be at least 2 elements in the domain that have the same image in the co-domain.

Generalized Pigeonhole Principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if k < n/m, then there is some $y \in Y$ such that y is the image of at least k + 1 distinct elements of X.

Generalized Pigeonhole Principle (Contrapositive Form)

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if for each $y \in Y$, $f^{-1}(\{y\})$ has at most k elements, then X has at most km elements; in other words, $n \le km$.

END OF FILE