Centro Universitário São Miguel

Toxicologia

Toxicodinâmica

Prof. M.Sc. Yuri Albuquerque

A toxicologia se baseia no paradigma de Paracelsus (1493-1541) de que toda substância química pode causar algum efeito tóxico à saúde, e de que a diferença entre o agente terapêutico e o agente tóxico está na magnitude da exposição (dose).

A toxicología trabalha com a possibilidade de prevenir e/ou minimizar a incidência de mortes ou doenças decorrentes da interação das substâncias químicas com o organismo.

Desse modo, a toxicidade é a propriedade potencial de substâncias químicas de promover injúrias às estruturas biológicas, em consequência da sua introdução e distribuição (toxicocinética) e interação (toxicodinâmica) com o organismo.

O efeito tóxico (intoxicação) é geralmente proporcional à concentração do agente tóxico, ou dose efetiva deste, no sitio molecular de ação (descrito também como sitio-alvo).

Prof.: SILVA, Y. J. de A.

Um agente tóxico em questão pode ser a substância química inicial ou seu metabólito gerado após o processo de biotransformação

A toxicidade dificilmente está relacionada com um evento molecular único, sendo geralmente consequência de uma cascata de eventos que se inicia com a exposição, seguida da introdução da substância química no organismo, ou seja, a passagem de substâncias do local de contato para a corrente sanguínea e posterior distribuição, biotransformação e, finalmente, interação do agente tóxico com biomoléculas-alvo e expressão dos sinais e sintomas da intoxicação. Ela pode ser atenuada pela excreção do agente tóxico e de seus metabólitos ou também pelo sistema de reparo endógeno, quando ativado.

Uma vez que o agente tóxico ou seu metabólito alcança o seu alvo em concentração adequada, desencadeará alterações moleculares, bioquímicas ou fisiológicas que serão responsáveis por seu efeito tóxico (dano).

FASE DA TOXICODINÂMICA

Será o que o xenobiótico fará com o organismo

A progressão do dano pode ser interceptada por mecanismos de reparo que agem em nível molecular, celular e tecidual. Contudo, o mecanismo de reparo pode falhar ou não ser ativado e, com isso, a toxicidade ser expressa.

Relação entre toxicocinética e toxicodinâmica. Após a exposição à substância química, a dose efetiva do agente tóxico desencadeia alterações nos sistemas biológicos decorrente de sua interação com seu sítio-alvo, o que resulta em alterações estruturais e funcionais do sítio-alvo e, consequentemente, a manifestação dos sinais e sintomas da Intoxicação. Todas essas etapas são influenciadas por fatores de suscetibilidade.

ETAPAS DA TOXICODINÂMICA NO DESENVOLVIMENTO DA TOXICIDADE

IMPORTÂNCIA DA TOXICODINÂMICA

- Auxiliar na avaliação do risco, análise da probabilidade de uma substância química causar efeitos deletérios e definir qual população pode ser atingida
- Conceitos uma vez que o agente tóxico ou seu metabólito
- Auxiliar o desenvolvimento de substâncias químicas menos perigosas, ou mais seletivas, por exemplo, praguicidas que apresentem maior seletividade de ação ao organismo-alvo
- Melhor compreensão dos processos fisiológicos e bioquímicos, uma vez que os estudos de mecanismos de toxicidade de substâncias químicas têm auxiliado no entendimento de processos de reparo de DNA, carcinogênese, entre outros
- Estabelecer ou desenvolver procedimentos que visam prevenir ou tratar intoxicações.

Prof.: SILVA, Y. J. de A.

CLASSIFICAÇÃO DE ACORDO COM A EXPOSIÇÃO

1. Aguda:

- exposição <u>única</u> ou <u>múltiplas exposições</u> em curto período de tempo (24 h)
- efeitos imediatos ou após alguns dias (máx. 2 semanas)
- avaliação experimental: mínimo 3 espécies animais
 - √ observação de sinais/sintomas
 - ✓ determinação do percentual de mortalidade

Parâmetros para determinar o grau de toxicidade:

- ✓ DL₅₀ ou DL₁₀: doses letais para 50 ou 10% dos animais testados
- > toxicidade inversamente proporcional ao valor da DL
- para medicamentos:
- ✓ DE₅₀ ou DE₉₀: doses efetivas (efeito esperado) para 50 ou 90% dos testados
- ✓ Para medicamentos:
- \checkmark <u>Índice Terapêutico</u> (IT) \rightarrow IT = DL₅₀/DE₅₀
- ✓ Margem de Segurança (MS) \rightarrow MS = $DL_{10} DE_{90}$ X 100 DE_{90}
- ➤IT e MS: inversamente proporcionais ao risco de intoxicação.

CLASSIFICAÇÃO DOS AGENTES TÓXICOS

Critérios:

- químico: metais, aminas aromáticas, hidrocarbonetos halogenados, etc...
- > físico: gás, líquido e sólido
- bioquímico: inibidor de enzimas específicas, metemoglobinizantes, etc.
- ➤ farmacológico: bloqueio de receptores nicotínicos, canais de Cl-, etc...

Seletividade de ação:

- 1 **não-seletivos**: mesmo efeito em qualquer estrutura do organismo; ex.: ácidos e bases corrosivos
- 2 seletivos: danos a estruturas/órgãos específicos → alvo biológico
 - receptores, inibição da expressão gênica)
 - fatores: diferenças fisiológicas/bioquímicas entre espécies e tipos celulares
 - ex.: antibióticos, fungicidas, inseticidas

> A intensidade da intoxicação depende do alvo biológico:

- capacidade de regeneração: tecido epitelial, hepático e nervoso
- capacidade funcional de reserva: rins, pulmões, hemoglobina

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

- I. Interação com receptores
- II. Interferência na excitabilidade de membranas
- III. Inibição da fosforilação oxidativa
- IV. Complexação/reação com biomoléculas
- V. Perturbação da homeostase cálcica

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

1 Interação com receptores

Exemplo de mecanismo de ação mediado por receptores:

Bloqueio colinérgico em receptores nicotínicos da junção neuromuscular *d-tubocurarina*: alcalóide presente no <u>curare</u> (usado em flechas para caça de animais) estrutura polar (quaternário de amônio) → protótipo de fármacos.

- antagonista competitivo de receptores colinérgicos na placa motora
- impede despolarização e propagação de estímulo nervoso aos músculos estriados
- efeitos: flacidez muscular (face membros tronco respiratoria)

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

Interações com receptores:

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

II. Interferência na excitabilidade de membranas

✓ interação do toxicante com canais iônicos de células excitáveis → influência no fluxo de íons → efeitos na transmissão nervosa e/ou contração muscular

ex.1: canais de Na+ voltagem dependente:

despolarização da membrana de axônios e potencial de ação*

► <u>Tetrodotoxina</u> (fugu e baiacu):

√ <u>bloqueio</u> de canais de Na⁺ na membrana dos axônios impede impulso nervoso e liberação de Ach (placa motora) → fraqueza muscular, paralisia e morte

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

Interferências com membranas excitáveis:

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

II. Interferência na excitabilidade de membranas

✓ Outros Mecanismos:

➤ Bloqueio da liberação de Ach no terminal axônico:

- toxinas botulínicas (*Clostridium botulinum*) → alimentos enlatados
- β-bungarotoxina (veneno da Naja)
 sintomas: paralisia progressiva até parada respiratória,
 SNA (boca seca, visão turva, dificuldade para engolir)

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

Inseticidas inibidores da colinesterase: Organofosforados (OF) e

Carbamatos (CARB)

Modo de ação

Acetilcolinesterase é inibida, há o acumulo de acetilcolina nos receptores muscarinicos, nicotínicos

SÍNDROME COLINERGICA

-Organofosforados: Irreversível/ Complexo mais estável

- Carbamatos: reversível/ complexo menos estável
- Antidoto: ATROPINA

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

III . Inibição da fosforilação oxidativa:

A fosforilação oxidativa é uma via metabólica que utiliza energia libertada pela oxidação de nutrientes de forma a produzir trifosfato de adenosina (ATP). O processo refere-se à fosforilação do ADP em ATP, utilizando para isso a energia libertada nas reações de oxidação-redução

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

III . Inibição da fosforilação oxidativa:

Oxidação de carboidratos

Sintese de ATP

- Consequências:
- Integridade da membrana plasmática
- Funcionamento das bombas iônicas
- Depleção de energia perda das funções celulares

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

IV. Complexação/reação com biomoléculas

a) Enzimas:

<u>Inibidores enzimáticos</u> – ex.: inseticidas organofosforados (paration), carbamatos

- ✓ <u>organofosforados</u>: inibem de forma irreversível a acetilcolinesterase (ligação a sítio esterásico*, fosforilando a enzima)
- √ <u>carbamatos</u>: inibição competitiva rápida e reversível
 - Efeito: reforço do estímulo colinérgico
 - <u>Sintomas neurológicos difusos</u>: miose/midríase, lacrimejamento, visão turva, fotofobia, salivação, bradicardia, paralisia respiratória

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

Complexação com biomoléculas (PROTEÍNAS):

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

Complexação com biomoléculas (LIPIDEOS):

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

IV. Complexação/reação com biomoléculas

c) Ácidos nucleicos:

- espécies reativas (eletrófilos) podem reagir em vários sítios do DNA: modificação estrutural de nucleotídeos
- ex.: metabólito epóxido da aflatoxina B1 (hepatotóxico e carcinogênico)
- *Consequências*: alteração da expressão gênica, síntese proteica, morte celular, câncer
- Mecanismos de reparo: reversão e manutenção da integridade do DNA (se falhar haverá propagação do gene alterado → mutação)

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

- Interações entre agentes tóxicos:
- # Efeito aditivo: efeito tóxico final é igual a soma dos efeitos separadamente

Chumbo + arsênico inibição biossíntese do heme

Efeito sinérgico: efeito final é maior que a soma dos efeitos individuais

CCl₄ + aromáticos clorados hepatotoxicidade sinérgica

Potenciação: efeito de um xenobiótico é aumentado por interagir com outro, que inicialmente não produzia tal efeito

Propranolol não é hepatotóxico

Propranolol + CCl₄ aumento da hepatotoxicidade do CCl₄

MECANISMOS GERAIS DE AÇÃO DE AGENTE TÓXICO

• Interações entre agentes tóxicos:

Antagonismo competitivo: antagonista compete com o agonista pelo mesmo sítio de ação

Organofosforado e acetilcolina acetilcolinesterase

Antagonismo químico: antagonista inativa o agonista

AAS + bicarrbonato de sódio

Antagonismo funcional: quando dois agonistas agem no mesmo sistema, produzindo efeitos contrários

Cardiotônicos glicosídeos aumento da PA

Bloqueadores α-adrenérgicos diminuição da PA

REFERÊNCIAS

- MOREAU, Regina Lúcia de Moraes. Ciências Farmacêuticas Toxicologia Analítica. 2ª edição. Rio de Janeiro, 2015.
- MARCÃO, Renato. Tóxicos. 11ª edição. São Paulo, 2016.
- KLAASSEN, Curtis D.; WATKINS III, John B. Fundamentos em Toxicologia de Casarett e **Doull (Lange)**. 2ª edição. Porto Alegre, 2012.

https://yurialb.github.io

E-mail: yuri.albuquerque@outlook.com

