Part 4: Sampling

Building a GPS receiver from scratch

Chris Doble

- Hardware
- Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- 3 I/Q samples
 - Definition
 - Different frequencies
 - Complex values

- Hardware
- 2 Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- I/Q samples
 - Definition
 - Different frequencies
 - Complex values

Hardware

• Software defined radio (SDR) dongle

Hardware

- Hardware
- Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- I/Q samples
 - Definition
 - Different frequencies
 - Complex values

- Hardware
- Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- I/Q samples
 - Definition
 - Different frequencies
 - Complex values

Centre frequency

$$f = 1575.42 \, \text{MHz}$$

- Hardware
- Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- 3 I/Q samples
 - Definition
 - Different frequencies
 - Complex values

The power spectrum of BPSK

The power spectrum of BPSK

Chris Doble Part 4: Sampling 10/26

Bandwidth

$$B = 2.046 \, \mathrm{MHz}$$

- Hardware
- 2 Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- I/Q samples
 - Definition
 - Different frequencies
 - Complex values

$$f_{L1} = 1575.42 \, \text{Mhz} \approx 1.6 \, \text{GHz}$$

The Nyquist-Shannon sampling theorem

If the maximum frequency contained within a signal is f_{max} , then the signal can be determined from its samples if the sampling rate is greater than $2f_{\text{max}}$.

$$f_{\mathsf{max}} = f + \frac{B}{2}$$

$$f_{\text{max}} = f + \frac{B}{2}$$

$$= 1575.42 \,\text{MHz} + \frac{2.046 \,\text{MHz}}{2}$$

$$f_{\text{max}} = f + \frac{B}{2}$$
= 1575.42 MHz + $\frac{2.046 \text{ MHz}}{2}$
= 1576.443 MHz
 $\approx 1.6 \text{ GHz}$

$$f_{\sf max} = f + rac{B}{2}$$
 $= 1575.42 \, {\sf MHz} + rac{2.046 \, {\sf MHz}}{2}$
 $= 1576.443 \, {\sf MHz}$
 $pprox 1.6 \, {\sf GHz}$
 $f_s = 2 f_{\sf max}$
 $pprox 3.2 \, {\sf GHz}$

15 / 26

What is the RTL-SDRs sample rate?

The maximum sample rate is 3.2 MS/s (mega samples per second). However, the RTL-SDR is unstable at this rate and may drop samples. The maximum sample rate that does not drop samples is 2.56 MS/s, however some people have had luck with 2.8MS/s and 3.2 MS/s working well on some USB 3.0 ports.

https://www.rtl-sdr.com/about-rtl-sdr/

$$f_s = 2.046 \,\mathrm{MHz}$$

$$f_s = 2.046 \, \text{MHz}$$

• Large enough that aliases don't overlap

$$f_s = 2.046 \, \text{MHz}$$

- Large enough that aliases don't overlap
- $\bullet~1/770$ of the L1 frequency \Rightarrow alias at 0~Hz

$$f_s = 2.046 \, \text{MHz}$$

- Large enough that aliases don't overlap
- 1/770 of the L1 frequency \Rightarrow alias at $0\,\mathrm{Hz}$
- ullet $f_{\text{max}}=1.023\,\text{MHz}$ \Rightarrow $f_{\text{Nyquist}}=2.046\,\text{MHz}$ \Rightarrow within SDR dongle's capabilities

- Hardware
- 2 Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- 3 I/Q samples
 - Definition
 - Different frequencies
 - Complex values

- Hardware
- 2 Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- I/Q samples
 - Definition
 - Different frequencies
 - Complex values

$$f(t) = A(t)\cos(2\pi ft + \phi(t))$$

$$f(t) = A(t)\cos(2\pi f t + \phi(t))$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$f(t) = A(t)\cos(2\pi ft + \phi(t))$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$f(t) = A(t)[\cos(2\pi ft)\cos(\phi(t)) - \sin(2\pi ft)\sin(\phi(t))]$$

$$f(t) = A(t)[\cos(2\pi f t)\cos(\phi(t)) - \sin(2\pi f t)\sin(\phi(t))]$$

$$-\sin(\theta) = \cos(\theta + \pi/2)$$

$$f(t) = A(t)[\cos(2\pi f t)\cos(\phi(t)) - \sin(2\pi f t)\sin(\phi(t))]$$

$$-\sin(\theta) = \cos(\theta + \pi/2)$$

$$f(t) = A(t)[\cos(2\pi ft)\cos(\phi(t)) + \cos(2\pi ft + \pi/2)\sin(\phi(t))]$$

$$f(t) = A(t)[\cos(2\pi ft)\cos(\phi(t)) + \cos(2\pi ft + \pi/2)\sin(\phi(t))]$$

= $A(t)\cos(\phi(t))\cos(2\pi ft) + A(t)\sin(\phi(t))\cos(2\pi ft + \pi/2)$

$$f(t) = A(t)[\cos(2\pi f t)\cos(\phi(t)) + \cos(2\pi f t + \pi/2)\sin(\phi(t))]$$

= $A(t)\cos(\phi(t))\cos(2\pi f t) + A(t)\sin(\phi(t))\cos(2\pi f t + \pi/2)$
= $I(t)\cos(2\pi f t) + Q(t)\cos(2\pi f t + \pi/2)$
where $I(t) = A(t)\cos(\phi(t))$ and $Q(t) = A(t)\sin(\phi(t))$.

Chris Doble Part 4: Sampling 20 / 26

Determining a signal's phase

$$Q/I =$$

Determining a signal's phase

$$Q/I = \frac{A(t)\sin(\phi(t))}{A(t)\cos(\phi(t))}$$

Determining a signal's phase

$$Q/I = rac{A(t)\sin(\phi(t))}{A(t)\cos(\phi(t))}$$
 $= \tan(\phi(t))$

Determining a signal's phase

$$Q/I = rac{A(t)\sin(\phi(t))}{A(t)\cos(\phi(t))}$$
 $= \tan(\phi(t))$
 $\phi(t) = \arctan(Q/I)$

Topics

- Hardware
- 2 Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- I/Q samples
 - Definition
 - Different frequencies
 - Complex values

 f_1

$$f_1 f_2 = f_1 + \Delta f$$

$$egin{aligned} f_1 \ f_2 &= f_1 + \Delta f \ f(t) &= A\cos(2\pi f_2 t) \end{aligned}$$

$$egin{aligned} f_1 \ f_2 &= f_1 + \Delta f \ f(t) &= A\cos(2\pi f_2 t) \ &= A\cos(2\pi (f_1 + \Delta f) t) \ &= A\cos(2\pi f_1 t + 2\pi \Delta f t) \end{aligned}$$

$$f_1$$
 $f_2 = f_1 + \Delta f$
 $f(t) = A\cos(2\pi f_2 t)$
 $= A\cos(2\pi (f_1 + \Delta f)t)$
 $= A\cos(2\pi f_1 t + 2\pi \Delta f t)$
 $= A\cos(2\pi f_1 t + \phi(t))$

where $\phi(t) = 2\pi \Delta f t$.

Topics

- Hardware
- 2 Parameters
 - Centre frequency
 - Bandwidth
 - Sampling rate
- 3 I/Q samples
 - Definition
 - Different frequencies
 - Complex values

 \bullet I + jQ

- \bullet I + jQ
- Bandpass sampling

- \bullet I + jQ
- Bandpass sampling
 - ullet Real-valued samples \Rightarrow carrier wave replaced with a real-valued constant

- \bullet I + jQ
- Bandpass sampling
 - Real-valued samples ⇒ carrier wave replaced with a real-valued constant
 - ullet Complex-valued samples \Rightarrow carrier wave replaced with a complex-valued constant

- \bullet I + iQ
- Bandpass sampling
 - ullet Real-valued samples \Rightarrow carrier wave replaced with a real-valued constant
 - Complex-valued samples ⇒ carrier wave replaced with a complex-valued constant
 - Using Euler's formula $z=Ae^{i\phi}$ where A is the carrier wave's amplitude and ϕ is its phase

- \bullet I + iQ
- Bandpass sampling
 - ullet Real-valued samples \Rightarrow carrier wave replaced with a real-valued constant
 - Complex-valued samples ⇒ carrier wave replaced with a complex-valued constant
 - Using Euler's formula $z=Ae^{i\phi}$ where A is the carrier wave's amplitude and ϕ is its phase

$$\hat{D}_i(t)P\hat{R}N_i(t)=\pm 1$$

- \bullet I + iQ
- Bandpass sampling
 - ullet Real-valued samples \Rightarrow carrier wave replaced with a real-valued constant
 - Complex-valued samples ⇒ carrier wave replaced with a complex-valued constant
 - Using Euler's formula $z=Ae^{j\phi}$ where A is the carrier wave's amplitude and ϕ is its phase

$$\hat{D}_i(t)P\hat{R}N_i(t) = \pm 1$$
 $z\hat{D}_i(t)P\hat{R}N_i(t) = z(\pm 1)$
 $= Ae^{j\phi}(\pm 1)$
 $= \pm Ae^{j\phi}$

- Hardware
 - GPS antenna
 - SDR dongle

- Hardware
 - GPS antenna
 - SDR dongle
- Parameters
 - Central frequency $f = 1575.42 \, \text{MHz}$
 - Bandwidth $B = 2.046 \,\mathrm{MHz}$
 - Sampling rate $f_s = 2.046 \, \text{MHz}$

- Hardware
 - GPS antenna
 - SDR dongle
- Parameters
 - Central frequency $f = 1575.42 \,\mathrm{MHz}$
 - Bandwidth $B = 2.046 \,\mathrm{MHz}$
 - Sampling rate $f_s = 2.046 \, \text{MHz}$
- I/Q samples

- Hardware
 - GPS antenna
 - SDR dongle
- Parameters
 - Central frequency $f = 1575.42 \,\mathrm{MHz}$
 - Bandwidth $B = 2.046 \,\mathrm{MHz}$
 - Sampling rate $f_s = 2.046 \, \text{MHz}$
- I/Q samples
 - Pairs of numbers that describe the signal

- Hardware
 - GPS antenna
 - SDR dongle
- Parameters
 - Central frequency $f = 1575.42 \,\mathrm{MHz}$
 - Bandwidth $B = 2.046 \,\mathrm{MHz}$
 - Sampling rate $f_s = 2.046 \, \text{MHz}$
- I/Q samples
 - Pairs of numbers that describe the signal
 - Often expressed as a single complex number

- Hardware
 - GPS antenna
 - SDR dongle
- Parameters
 - Central frequency $f = 1575.42 \,\mathrm{MHz}$
 - Bandwidth $B = 2.046 \,\mathrm{MHz}$
 - Sampling rate $f_s = 2.046 \, \text{MHz}$
- I/Q samples
 - Pairs of numbers that describe the signal
 - Often expressed as a single complex number
 - \bullet If the signal has a different frequency, the I/Q samples will continually rotate