Linear Algebra: Orthogonality

Daven Farnham

August 2015

1 Orthogonality

Two vectors v and w are orthogonal if they are perpendicular to each other. The two vectors' dot product, then, is zero.

The dot product can be thought of as a measure of the degree to which two vectors point in the same direction. Perpendicularity, and a dot product of 0, therefore, denote that the two vectors have no overlap; if you were to find the projection of v onto w, it would be zero.

The matrix of projection onto the x-axis is:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \tag{1}$$

since given any vector in \mathbb{R}^2 , $[x\ y]$, this will isolate the x component.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} \tag{2}$$

Let's say you're given some random vector, say [4 3]. Find the matrix of projection onto this vector.

To create the matrix of projection start with some vector, w, parallel to [4 3], multiplied by a scalar. You can choose any vector w, but then you'll have to scale it to correctly represent the projection.

There's much more to this, but I've done it a number of times on paper. With almost any problem where you're trying to determine a formula for projections, decompose the vector being projected into components: $x^{\parallel} + x^{\perp}$. The perpendicular vector, then, will be orthogonal to some subspace V while the parallel component will be in the subspace. Find an equation for the perpendicular component, then multiply this by any vector u_i in the subspace to get zero, then solve.

If you have an **orthonormal** basis of some subspace, then the projection of some vector x onto the subspace is:

$$proj_V(x) = (x \cdot u_1)u_1 + \dots + (x \cdot u_n)u_n.$$

Thinking of this intuitively, you're just scaling each of the unit vectors by the scalar $(x \cdot u_i)$ to get the correct projection.

If you weren't dealing with orthonormal vectors, then the equation for the projection of a particular vector, x, onto v, given a vector w parallel to v is:

$$\frac{(x \cdot w)}{w \cdot w} w = proj_v x$$

Orthonormal vectors simply make everything easier since they eliminate the denominator from the above equation.

1.1 Creating an Orthonormal Basis

Let's say I want to find the projection of some vector x onto the Image of A, where the rank of A is n.

$$x = x^{\parallel} + x^{\perp}$$

$$x^{\perp} = x - (c_1v_1 + c_2v_2 + \dots + c_nv_n)$$

$$0 = v_i \cdot (x - (c_1v_1 + c_2v_2 + \dots + c_nv_n))$$

$$c_i = v_i \cdot x$$

When you take the dot product of v_i with the linear combination of vectors, if those vectors form an orthonormal basis of the space, then all but the $c_n v_n | i = n$ will evaluate to zero. Doing this for all vectors up to n gives you values for the coefficients. The final equation for $proj_A(x)$ where all vectors v are orthonormal:

$$proj_A(x) = (x \cdot v_1)v_1 + (x \cdot v_2)v_2 + ... + (x \cdot v_n)v_n$$

To construct an orthonormal basis to work with, use Gram-Schmidt. As an example, let's say there are 3 vectors in the Image of A, $\{u_1, u_2, v_3\}$, where u_1 and u_2 are orthonormal. To find the final orthonormal vector, simply take the projection of v_3 onto the plane created by vectors u_1 and u_2 and then subtract this from x. This'll give you a vector orthogonal to the space. Divide by this vector's magnitude and now you have a unit vector, u_3 , that is orthogonal to both u_1 and u_2 .

1.2 Uniqueness

Previously, it was proved that if you have a basis of some subspace, meaning the only linear relation between the vectors is the trivial one, then any representation of some vector x in the subspace is unique. Proving by contradiction, assume there are two ways to represent the same vector:

$$a_1v_1 + \dots + a_nv_n = x$$

$$b_1v_1 + \dots + b_nv_n = x$$

$$a_1v_1 + \dots + a_nv_n = b_1v_1 + \dots + b_nv_n$$

$$(a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n = 0$$

$$a_n = b_n$$

You know this since you're dealing with linearly independent vectors forming a basis of the subspace V; the only way you'll get a linear relation is if it's the trivial one, and that'll only happen when a_n equals b_n .

So given some basis of a subspace V, there is **only one**, **unique representation of a vector x in that subspace**.

If I'm given some matrix A in \mathbb{R}^n , with column vectors $v_1, v_2, ..., v_n$, then to create some other vector x in \mathbb{R}^n I need to find the coefficients of the column vectors. For example:

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix} \tag{3}$$

$$x_1 \begin{bmatrix} 1\\2 \end{bmatrix} + x_2 \begin{bmatrix} 4\\7 \end{bmatrix} = \begin{bmatrix} 0\\8 \end{bmatrix} \tag{4}$$

$$32\begin{bmatrix}1\\2\end{bmatrix} - 8\begin{bmatrix}4\\7\end{bmatrix} = \begin{bmatrix}0\\8\end{bmatrix} \tag{5}$$

I solved the above through Gaussian Elimination, but if the vectors you're dealing with are orthonormal, it's much easier to find the coefficients to the linear combination. If, say, I had a different matrix B:

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{6}$$

It's obvious when working with the standard vectors that the answer is going to be 0 and 8. However, given some non-obvious orthonormal vectors, simply find the projection of [0 8] onto each of the basis vectors and that'll give you the coefficients.

$$\left(\begin{bmatrix} 0 \\ 8 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = 0 \tag{7}$$

$$\left(\begin{bmatrix} 0 \\ 8 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = 8 \tag{8}$$

The projection equation for orthonormal vectors makes use of this fact; it is simply adding up the projection of a particular vector onto each of the basis vectors.

1.3 Least-Squares and Approximations

Orthogonality and projections come in handy when trying to approximate an equation for some system that **isn't consistent**. A system that's inconsistent is one that can't be solved through Gaussian elimination: you'll end up with some row where 0 = !0.

Let's say I have some matrix A and another vector, b, that isn't a member of the image of A. This means $A\overrightarrow{x} = \overrightarrow{b}$ will be an inconsistent system of equations, since no coefficient vector \overrightarrow{x} will give you \overrightarrow{b} .

The goal, then, is to find a coefficient vector x^* that'll give you a vector in the image of A that is as close as possible to b. This vector has to be the projection of b onto the image of A. So, you want to find the vector that minimizes the error from $b - Ax^*$:

$$b - Ax^*$$

$$A^T(b - Ax^*) = 0$$

$$A^Tb - A^TAx^* = 0$$

$$A^Tb = A^TAx^*$$

$$(A^TA)^{-1}A^Tb = x^*$$

The reason you can use the transpose of the A matrix is because you know Ax^* is the $proj_{Im(A)}b$. Therefore, $b-A^*$ will give you a vector that is orthogonal to the image of A. This vector, dotted with any vector in the Image of A, will give you zero.

$$image(A) = \{v_1, v_2, v_3\} = \begin{bmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{bmatrix}$$
 (9)

If you dot each one of these column vectors with a vector orthogonal to the image, you'll get zero. You could write it like this:

$$\begin{bmatrix} v_2 \\ \cdot \\ \end{bmatrix} \cdot \begin{bmatrix} (b - A^*) \\ \end{bmatrix} = 0$$
(11)

$$\begin{bmatrix} v_3 \\ \cdot \\ (b - A^*) \\ \end{bmatrix} = 0 \tag{12}$$

But an easier way is to notice that, if you flip the matrix and use its transpose, then you can use simple matrix-vector multiplication:

$$\begin{bmatrix} - & v_1 & - \\ - & v_2 & - \\ - & v_3 & - \end{bmatrix} \begin{bmatrix} | \\ (b - A^*) \end{bmatrix} = 0$$
 (13)

1.3.1 Examples

This comes in handy in any situation where you don't have a consistent system. Let's say you have a scatter plot of 3 points: $\{1, 2\}$, $\{0, 3\}$, $\{2, 8\}$. You can't draw a line between these. The slope between $\{1, 2\}$ and $\{0, 3\}$ is -1 while the slope between $\{1, 2\}$ and $\{2, 8\}$ is 4. Instead, let's write this as a system of equations.

Using mx + b = y:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix} \tag{14}$$

Use the above least-squares equation to approximate a line for the plot:

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} x^*$$
 (15)

Solving for x^* you find the coefficient vector for m and b that creates a vector within the image of the matrix (i.e. makes the system consistent). So this coefficient vector in \mathbb{R}^2 , when multiplied by the matrix, creates a vector in \mathbb{R}^3 that makes the system consistent and is the closest possible approximation to $[2\ 3\ 8]$.

That two dimensional vector, then, (in this case $[\frac{5}{2}, \frac{11}{6}]$) represents the line that most closely, or fits best, those nonlinear points. It makes a vector in \mathbb{R}^3 that makes the matrix consistent and is the closest approximation to $[\mathbf{2} \ \mathbf{3} \ \mathbf{8}]$.

It should be noted you can get the same answer from taking the projection of b onto the image of A, then using Gaussian elimination to solve for x in $Ax = proj_A(x)$. $(A^TA)^{-1}A^Tb = x^*$, however, is a more concise equation.

See Mathematica Notebook "Approximations".

1.3.2 Conclusion

You don't just have to use least squares approximations for straight lines. You can also approximate curves with this method. Overall, this is a super powerful method; you're eliminating noise and trying to match a best fit line to the data by minimizing error.