VACACIONES DIVERTIÚTILES

TRIGONOMETRY

Chapter 2

5rd SECONDARY

Razones Trigonométricas de un Ángulo Notable y Propiedades de las R.T.

TRIGONOMETRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

LOS ÁNGULOS NOTABLES

MOTIVATING STRATEGY

Play

Resumen

HELICO THEORY

TRIÁNGULOS NOTABLES

Son aquellos triángulos más importantes y conocidos de las matemáticas, donde los lados son proporcionales. Entre los más conocidos tenemos:

CÁLCULO DE LAS R.T DE ÁNGULOS NOTABLES

Para calcular las R.T. de los ángulos notables tenemos que recordar los triángulos notables ya que de ahí es de donde se deducen.

Tenemos que recordar:

sen	cos	tan	cot	sec	CSC
Со	Ca	Со	Ca	Н	Н
Н	Н	Ca	Со	Ca	Со

$$sen 37^{\circ} = \frac{\text{Co}}{\text{H}} = \frac{3\cancel{k}}{5\cancel{k}} = \frac{3}{5}$$

$$\therefore \text{ sen } 37^{\circ} = \frac{3}{5}$$

Si hacemos para todos los triángulos tenemos:

RT	30°	60°	45°	37°	53°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{3}{5}$	$\frac{4}{5}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	<u>4</u> 5	$\frac{3}{5}$
tan	$\frac{\sqrt{3}}{3}$	√3	1	$\frac{3}{4}$	$\frac{4}{3}$
cot	√3	$\frac{\sqrt{3}}{3}$	1	<u>4</u> 3	<u>3</u>
sec	$\frac{2\sqrt{3}}{3}$	2	$\sqrt{2}$	<u>5</u> 4	<u>5</u> 3
csc	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	5/3	<u>5</u>

PROPIEDADES DE LAS R.T DE ÁNGULOS AGUDOS

R.T. RECÍPROCAS

sen α .csc α =1

 $\cos\alpha.\sec\alpha=1$

 $tan\alpha.cot\alpha = 1$

iguales

 R.T. DE ÁNGULOS COMPLEMENTARIOS

Son ángulos complementarios

$$sen \alpha = \frac{a}{c}$$

$$cos\beta = \frac{\alpha}{c}$$

secα=cscβ

 \bigcirc

Problema 03

Problema 04

Problema 05

1. Calcular el valor de x, si:

$$sen(4x+20^{\circ}) \cdot csc(6x-20^{\circ}) = 1$$

Resolución:

 $sen(4x+20^{\circ}) \cdot csc(6x-20^{\circ}) = 1$ iguales

$$4x + 20^{\circ} = 6x - 20^{\circ}$$

$$\therefore x = 20^{\circ}$$

Aplicamos la propiedad De las R.T. recíprocas

2. calcule el valor de α , si:

 $\cos(3\alpha-5^{\circ}) \cdot \sec(\alpha + 27^{\circ}) = 2 \cdot \sin 30^{\circ} \cdot \tan 45^{\circ}$

ASOCIACIÓN EDUCATIVA SACO OLIVEROS SISTEMA HELICOIDAL

Resolución:

$$cos(3\alpha-5^{\circ}). sec(\alpha +27^{\circ}) = 2 sen30^{\circ} \cdot tan45^{\circ}$$

$$cos(3\alpha-5^{\circ}) .sec(\alpha +27^{\circ}) =1$$
iguales

Igualando tenemos:

$$3\alpha - 5^{\circ} = \alpha + 27^{\circ}$$

$$\alpha = 16^{\circ}$$

Resolución

N

3. Si sen(4y-10°)=cos(30°-2y) Calcule $P = sec^2(y + 10°)$

Resolución:

sen(4y-10°)=cos(30°-2y) 。

Suman 90°

$$4y - 10^{\circ} + 30^{\circ} - 2y = 90^{\circ}$$

$$2y = 70^{\circ}$$

$$y = 35^{\circ}$$

Aplicamos la propiedad De las R.T. de ángulos complementarios

Nos piden:

$$P = sec^2(y + 10^\circ)$$

$$45^\circ$$

$$P = sec^2(45^\circ)$$

$$P=(\sqrt{2})^2$$

$$\therefore \quad \boxed{P=2}$$

Ŋ

4. Calcular el valor de β , si

$$\tan(5\beta - 15^{\circ}) = \sqrt{3}.\cot(2\beta + 35^{\circ}).\tan 30^{\circ}$$

Resolución:

$$\tan(5\beta - 15^{\circ}) = \sqrt{3}.\cot(2\beta + 35^{\circ}).\tan 30^{\circ}$$

Suman 90°

Sumando tenemos:

$$5\beta - 15^{\circ} + 2\beta + 35^{\circ} = 90^{\circ}$$
$$7\beta = 70^{\circ}$$

$$\therefore \beta = 10^{\circ}$$

5. Si $tan(\alpha + \beta)cot64^{\circ} = 1$

 $sen(\alpha + 15^\circ) = cos(25^\circ - \beta)$

 $M = 5sen(\alpha - 20^{\circ}) + \sqrt{3}tan(4\beta + 2^{\circ})$

Resolución:

$$tan(\alpha + \beta). cot64^{\circ} = 1$$
Iguales

$$\alpha + \beta = 64^{\circ} \dots (I)$$

$$sen(\alpha + 15^{\circ}) = cos(25^{\circ} - \beta)$$

Suman 90°

$$\alpha + 15^{\circ} + 25^{\circ} - \beta = 90^{\circ}$$

$$\alpha - \beta = 50^{\circ} \dots (II)$$

$$De(I)y(II)$$
:

$$\alpha = 57^{\circ}$$
 $\beta = 7^{\circ}$

Piden:

$$M = 5sen(37^\circ) + \sqrt{3}tan(30^\circ)$$

$$M = 5\left(\frac{3}{5}\right) + \sqrt{3}\left(\frac{1}{\sqrt{3}}\right)$$

$$M = 4$$

Calcula

 \bigcirc

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

Si $tan3\theta = cot2\theta$, calcule el valor de:

 $H=csc(2\theta-6^{\circ}).$

- A) 1 B) 2 C) 3
 - D) 4 E) 5

Problema 07

Si senx.secy = 1, calcule:

$$M = 4sen(\frac{x+y}{3}) + sec^2(\frac{x+y}{2})$$

- A) 1 B) 2 C) 3
- D) 4 E) 5

Simplifique

$$E = \frac{3sen(24^{\circ} - 2x)}{\cos(2x + 66^{\circ})} + \frac{5\tan(5y - 31^{\circ})}{\cot(121^{\circ} - 5y)}$$

- A) 5 B) 6 C) 7
 - D) 8 E) 9

Carlitos quiere ir a jugar canicas y recuerda que tiene "x" canicas en su mochila. Calcular cuantas canicas tiene Carlitos, si:

$$tan45^{\circ}.sec(5x+10^{\circ}) = csc(3x+16^{\circ})$$

- A) 10 B) 14
- C)12
- D) 8
- E) 6

Sarita ha ido a chasa vea a comprar y le dieron de vuelto "m-15" soles que dio de propina al cuidador del estacionamiento. Calcular cuanto dio de propina Sarita, si:

$$sen(5m+15)^{\circ} = cos(25-3m)^{\circ}$$

- A) 10soles B) 12soles C) 13soles
 - D) 15soles E) 20soles

