World Within: Microbiomes and Anthropology

Elizabeth M. Miller
Department of Anthropology
University of South Florida

Photo: Kharlamova / Thinkstock via https://www.motherjones.com/environment/2014/10/microbiome-health-gut-bacteria/

The microbiome: A cure for what ails you

Could gut bacteria microbes make you fat?

BBC News - Feb 12, 2019

Studies involving twins have shown that **obesity** has a heritability rate – how Researchers transplanted an **obese**-associated **microbiome**, ...

Morris Animal Foundation awards \$1M for canine, feline studies

American Veterinary Medical Association - 2 hours ago

"Evaluation of the recovery of the gut **microbiome** and metabolome of dogs following an acute diarrhea episode," Dr. Rachel Pilla, Texas A&M ...

Current Trends in Microbiome Work

Microbiome and health

Characterizing global microbial diversity

 Microbiology/metagenomics of microbiomes

Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. *BMJ*, *361*, k2179.

What is the place of anthropology in microbiome work?

Global perspectives

Past populations

 Theory, critical approaches, and meaning-making

Fossilized plaque may hold clues about ancient civilizations.

PHOTOGRAPH BY ANDREW OZGA

Tooth Plaque May Hold Clues About Ancient Life

Human Evolution

- Human evolution is a story of human migration
- Biological Anthropology: "Who we are and how we got here" –John Marks

Credit: C.J. Bae et al., Science (2017). Image by Katerina Douka and Michelle O'Reilly

Human Variation

• The study of humankind is fraught with misunderstandings of human biological variation, past and present

Linnaeus, Systema Naturae

Scientific desire to classify

Linnaeus	Cuvier (1790)	Coon (1962)
African	Caucasoid	Australoid
American	Mongoloid	Capoid
Asian	Negroid	Caucasoid
European		Congoid
		Mongoloid

And many more....

Blumenbach's cranial classification

Categories assumed a static, unchanging world

Race concept emerges

• Desire to categorize swept science from 1700s – 1950s

- Assumptions of race categories:
 - Humans can be divided into types
 - Types reflect a group's moral and mental capabilities
 - Race predicts an individual's ability

Clines

- Cline: pattern of gene frequencies over geography
- Lactase persistence in Europe

"There are no races, there are only clines" –Frank Livingstone

The color denotes the frequency of the lactase persistence allele

Clines

• Skin color

• Distributed <u>continuously</u>, not <u>categorically</u>

Lewontin 1972

Table 4. Proportion of Genetic Diversity Accounted for Within and Between Populations and Races

		Proportion						
Gene	$_{H_{species}}^{\rm Total}$	Within Populations	Within Races Between Populations	Between Races				
Нр	.994	.893	.051	.056				
Ag	.994	.834	-	-				
Lp	.639	.939	-	_				
Xm	.869	.997	_	_				
Ap	.989	.927	.062	.011				
6PGD	.327	.875	.058	.067				
PGM	.758	.942	.033	.025				
Ak	.184	.848	.021	.131				
Kidd	.977	.741	.211	.048				
Duffy	.938	.636	.105	.259				
Lewis	.994	.966	.032	.002				
Kell	.189	.901	.073	.026				
Lutheran	.153	.694	.214	.092				
P	1.000	.949	.029	.022				
MNS	1.746	.911	.041	.048				
Rh	1.900	.674	.073	.253				
ABO	1.241	.907	.063	.030				
Mean		.854	.083	.063				

Clines can overlap...

...but trying to distinguish a race using clines is impossible

Discovering how human variation exists over geography is the stronger position, rather than categorization!

Human Variation

• "Global" human genomic populations are, in fact, terribly undersampled in many regions

• Map of the 26 populations sampled for the 1000 Genomes Project

Human Variation

Distribution map of human populations used in this study. Pie chart indicates the relative abundance of two bacterial phyla: Firmicutes (dark grey) and Bacteroidetes (light grey). The numbers indicate Map ID (see table 1).

Table 1.									
Six etudiae included	in this study								

sample locations	latitude	sample size	no. of i	ndividuals	per age cla	SS			female (%)	reference	map ID
			Z (<1)	A (1-10)	B (11-20)	C (21-54)	D (>60)	no data			
Coromoto, Venezuela	5.4	53	6	19	6	16	4	2	57	[7]	1
Platanillal, Venezuela	5.4	45	1	24	7	8	5	-	58	[7]	2
Burkina Faso	12.3	14	_	14	_	_	_	_	36	[2]	3
Chamba, Malawi	15.3	21	5	6	_	3	_	7	56	[7]	4
Mayaka, Malawi	15.4	51	9	17	_	12	_	13	73	[7]	5
Mbiza, Malawi	16.0	31	11	5	_	6	_	9	83	[7]	6
Makwhira, Malawi	16.2	5	2	1	_	1	_	1	75	[7]	7
Shanghai, China	31.2	56	_	_	_	56	_	_	54	[<u>6</u>]	8
Missouri, USA	38.6	120	_	_	82	38	_	_	100	<u>[5]</u>	9
Missouri, USA	38.6	30	_	_	_	23	_	7	100	[7]	10
St Louis, USA	38.6	235	22	12	106	95	_	_	54	[7]	11
Boulder, USA	40.0	9	1	7	_	1	_	_	67	[7]	12
Philadelphia, USA	40.0	23	_	13	_	10	_	_	78	[7]	13
Camerino, Italy	43.1	58	_	_	_	20	38	_	53	[4]	14
Tuscany, Italy	43.4	13	_	13	_	_	_	_	31	[2]	15
Paris, France	48.9	48	_	_	_	22	26	_	58	[4]	16
France	48.9	21	_	_	_	21	_	_	52	[3]	17
UK	51.5	10	_	_	_	10	_	_	80	[3]	18
Netherlands	52.4	20	_	_	_	20	_	_	70	[3]	19
Potsdam, Germany	52.4	58	_	_	_	21	37	_	62	<u>[4]</u>	20
Germany	52.5	20	_	_	1	19	_	_	80	[3]	21
Denmark	55.7	20	_	3	1	16	_	_	55	[3]	22
Stockholm, Sweden	59.3	59	_	_	_	20	39		53	[4]	23

^aMap ID corresponds to figure 1. See more details in the electronic supplementary material, table S8.

Biocultural Approaches

- Feedback systems that involve human biology, culture, society, political economy, activity, environment, etc.
- Many other models!

Embodiment

• The body's entanglements with the world

• What role does the microbiome play in embodying everyday experiences and social structure?

• Microbiome: a means to "get under the skin?"

HUMAN BIOLOGY

ORIGINAL RESEARCH ARTICLE

Social networks, cooperative breeding, and the human milk microbiome

Courtney L. Meehan , Kimberly A. Lackey, Edward H. Hagen, Janet E. Williams, Jennifer Roulette, Courtney Helfrecht, Mark A. McGuire, Michelle K. McGuire

Spearman's correlation coefficient ($r_{\rm s}$) of alpha diversity indices with social network and caregiving variables (PC1 and PC2).

***P* < .01; **P* < .05