Ant Climate Project

Path analysis using PCA - Regional

Louis Bell-Roberts

November 27, 2023

Contents

1	Initial comments Summary			2
2				2
3 Create alternative causal models			ernative causal models	2
4	Path analysis			3
	4.1	Tropical		3
		4.1.1	NCuniform stem tree	3
		4.1.2	NCuniform crown tree	4
		4.1.3	FBD stem tree	7
		4.1.4	FBD crown tree	9
	4.2 Tempe		erate	10
		4.2.1	NCuniform stem tree	10
		4.2.2	NCuniform crown tree	11
		4.2.3	FBD stem tree	12
		4.2.4	FBD crown tree	13
	4.3	Both		15
		4.3.1	NCuniform stem tree	15
		4.3.2	NCuniform crown tree	16
		4.3.3	FBD stem tree	19
		4.3.4	FBD crown tree	21
5	Pan	el plot	us S	22

1 Initial comments

- Read in the ant data and prepare the variables for path analysis. There are 474 species for which data is available for colony size and climatic variables, excluding special ants. Process repeated on the 4 different PCA datasets created using the 4 different MCC trees.
- We use PCA for phylogenetic path analysis as path analysis with both temperature and rainfall variables in the same models were always rejected, unless causal paths were drawn between climatic variables. This is likely because of the correlation between climatic variables. Path analysis with PCA allows us to analyse both temperature and rainfall in the same causal models.
- The potential model set is reduced to just four models for each analysis, assuming that colony size has a direct effect on the number of worker castes (Bell-Roberts et al., 2023).

2 Summary

• Greater colony size favours both greater worker size variation and allows invasion into drier regions. Both path coefficients are significant.

3 Create alternative causal models

4 Path analysis

4.1 Tropical

4.1.1 NCuniform stem tree

Factor loading PC1: TMP: negative; PRE: negative

4.1.2 NCuniform crown tree

Factor loading PC1: TMP: positive; PRE: positive

standardized regression coefficient ± CI

4.1.3 FBD stem tree

bar labels are p-values, signficance indicates rejection

4.1.4 FBD crown tree

4.2 Temperate

4.2.1 NCuniform stem tree

Factor loading PC1: TMP: negative; PRE: negative

4.2.2 NCuniform crown tree

Factor loading PC1: TMP: positive; PRE: positive

4.2.3 FBD stem tree

4.2.4 FBD crown tree

4.3 Both

4.3.1 NCuniform stem tree

Factor loading PC1: TMP: negative; PRE: negative

4.3.2 NCuniform crown tree

Factor loading PC1: TMP: positive; PRE: positive

bar labels are p-values, signficance indicates rejection

4.3.3 FBD stem tree

bar labels are p-values, signficance indicates rejection

4.3.4 FBD crown tree

Factor loading PC1: TMP: negative; PRE: negative

5 Panel plots

pdf ## 2

pdf ## 2

pdf ## 2

