Section 8.1: The Inverse Sine, Cosine, and Tangent Functions

Review of Properties of Functions and Their Inverses

- **1.** $f^{-1}(f(x)) = x$ for every x in the domain of f and $f(f^{-1}(x)) = x$ for every x in the domain of f^{-1} .
- **2.** Domain of $f = \text{range of } f^{-1}$, and range of $f = \text{domain of } f^{-1}$.
- **3.** The graph of f and the graph of f^{-1} are symmetric with respect to the line y = x.
- **4.** If a function y = f(x) has an inverse function, the equation of the inverse function is x = f(y). The solution of this equation is $y = f^{-1}(x)$.

The Inverse Sine Function

$$y = \sin x, -\infty < x < \infty, -1 \le y \le 1$$

Definition:

$$y = \sin^{-1} x$$
 means $x = \sin y$
where $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y = \sin^{-1} x$$
, $-1 \le x \le 1$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

1 Find the Exact Value of an Inverse Sine Function

Example: 1

Find the exact value of: $\sin^{-1} 1$

We seek the angle θ , $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, whose sine equals 1.

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin heta$	- 1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Example: 2 Find the exact value of $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Example: 3 Find the exact value of $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

Use your calculator: Example: 4

Find an approximate value of:

(a)
$$\sin^{-1} \frac{1}{3}$$

(b)
$$\sin^{-1}\left(-\frac{1}{4}\right)$$

3 Use Properties of Inverse Functions to Find Exact Values of Certain Composite Functions

Properties of Inverse Functions

$$f^{-1}(f(x)) = \sin^{-1}(\sin x) = x$$
, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 $f(f^{-1}(x)) = \sin(\sin^{-1} x) = x$, where $-1 \le x \le 1$

Example:5:

Find the exact value of each of the following composite functions:

(a)
$$\sin^{-1}\left(\sin\frac{\pi}{8}\right)$$

(b)
$$\sin^{-1}\left(\sin\frac{5\pi}{8}\right)$$

Example:6

Find the exact value, if any, of each composite function.

(a)
$$\sin(\sin^{-1} 0.5)$$

(b)
$$\sin(\sin^{-1} 1.8)$$

The Inverse Cosine Function

$$y = \cos x, -\infty < x < \infty, \\ -1 \le y \le 1$$

$$y = \cos x, 0 \le x \le \pi, -1 \le y \le 1$$

$$y = \cos^{-1} x$$
 means $x = \cos y$
where $-1 \le x \le 1$ and $0 \le y \le \pi$

Example:7 (a) Find the exact value of $\cos^{-1}\left(\frac{1}{2}\right)$

θ	$\cos heta$			
0	1			
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$			
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$			
$\frac{\pi}{3}$	$\frac{1}{2}$			
$\frac{\pi}{2}$	0			
$\frac{2\pi}{3}$	$-\frac{1}{2}$			
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$			
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$			
π	-1			

Example:7(b) Find the exact value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

Properties of Inverse Functions

$$f^{-1}(f(x)) = \cos^{-1}(\cos x) = x$$
, where $0 \le x \le \pi$
 $f(f^{-1}(x)) = \cos(\cos^{-1} x) = x$, where $-1 \le x \le 1$

Example:8 Find the exact value of $\cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$

Example:9 Find the exact value of $\cos\left(\cos^{-1}\left(\frac{5}{2}\right)\right)$

Example:10 Find the exact value of $\cos^{-1}\left(\cos\left(\frac{3\pi}{4}\right)\right)$

The Inverse Tangent Function

$$y = \tan x, -\infty < x < \infty, x \text{ not equal}$$
 $y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2},$ to odd multiples of $\frac{\pi}{2}, -\infty < y < \infty$ $-\infty < y < \infty$

$$y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2},$$

 $-\infty < y < \infty$

$$y = \tan^{-1} x$$
 means $x = \tan y$
where $-\infty < x < \infty$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$

$$y = \tan^{-1} x,$$

$$-\infty < x < \infty,$$

$$-\frac{\pi}{2} < y < \frac{\pi}{2}$$

Example: 11 Find the exact value of $\tan^{-1} \sqrt{3}$

θ	an heta
$-\frac{\pi}{2}$	Undefined
$-\frac{\pi}{3}$	$-\sqrt{3}$
$-\frac{\pi}{4}$	-1
$-\frac{\pi}{6}$	$-\frac{\sqrt{3}}{3}$
0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	1
$\frac{\pi}{3}$	$\sqrt{3}$
$\frac{\pi}{2}$	Undefined

Example: 12 Find the exact value of $tan^{-1} 0$

Properties of Inverse Functions

$$f^{-1}(f(x)) = \tan^{-1}(\tan x) = x$$
 where $-\frac{\pi}{2} < x < \frac{\pi}{2}$
 $f(f^{-1}(x)) = \tan(\tan^{-1} x) = x$ where $-\infty < x < \infty$

Section 8.2: The Inverse Trigonometric Functions (Continued)

1 Find the Exact Value of Expressions Involving the Inverse Sine, Cosine, and Tangent Functions

Example: 1 Find the exact value of $\sin\left(\cos^{-1}\frac{1}{2}\right)$

Example: 2 Find the exact value of $\tan \left(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$

Example: 3 Find the exact value of $\sin \left(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$

2 Define the Inverse Secant, Cosecant, and Cotangent Functions

$$y = \sec^{-1} x$$
 means $x = \sec y$

where
$$|x| \ge 1$$
 and $0 \le y \le \pi$, $y \ne \frac{\pi}{2}$

$$y = \sec x, -\infty < x < \infty, x \text{ not equal}$$
 to odd multiples of $\frac{\pi}{2}$, $|y| \ge 1$

$$y = \csc^{-1} x$$
 means $x = \csc y$

where
$$|x| \ge 1$$
 and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0^{\dagger}$

$$y = \csc x, -\infty < x < \infty, x \text{ not equal to integer multiples of } \pi, |y| \ge 1$$

$$y = \cot^{-1} x$$
 means $x = \cot y$
where $-\infty < x < \infty$ and $0 < y < \pi$

multiples of $\pi, -\infty < \mathsf{y} < \infty$

Example: 4 Find the exact value of $\sec^{-1} \sqrt{2}$

Example: 5 Find the exact value of $csc^{-1} 2$

Example: 6 Find the exact value of $\cot^{-1} \sqrt{3}$

Section 8.3: Trigonometric Equations

Example: 1 Determine whether $\theta = \frac{\pi}{4}$ is a solution of the equation

$$2\sin\theta + \sqrt{2} = 0.$$

Is
$$\theta = \frac{5\pi}{4}$$
 a solution?

Example: 2 Solve the equation $2\cos\theta - \sqrt{3} = 0$ on the interval $0 \le \theta \le 2\pi$.

Example: 3 Solve the equation $2\sin^2\theta - 3\sin\theta + 1 = 0$ on the interval $0 \le \theta \le 2\pi$.

Example: 5 Use your graphing calculator to find all solutions in $[0, 4\pi]$ for $3\cos x + x = 4$. Round to two decimal places.