Information Security Lab Module 2: Cryptographic Reductions

Dennis Hofheinz

Topic of this module

- Cryptographic building blocks
 - Examples: encryption/signature schemes, zero-knowledge proofs, ...
 - Often not the solution, but a crucial part of the solution (e.g., TLS)
- Question 1: how to construct them/reason about them?
- Question 2: how to use them in a larger system?
- Crucial: good interface between the two
 - Achievable/useful security definition (e.g., for encryption)
- This module: Question 1
 - Goal 1.1: achievable (and universal/useful) security definition
 - Goal 1.2: construct a secure cryptographic scheme with proof
- What about Question 2? (→ remarks/outlook)

Motivation for public-key encryption

- Running example building block: public-key encryption
 - Surprising, relevant, well-studied, instructive
- Scenario: Alice and Bob want to communicate over insecure channel

- Possible solution: perform a key exchange, use symmetric encryption
- Simplified setting: channel authenticated (i.e., Eve can only eavesdrop)

Motivation for public-key encryption

Public-key encryption to the rescue!

- A public-key encryption (PKE) scheme consists of the following algorithms:
 - Key generation: **Gen()** outputs a keypair **(pk,sk)** pk is called "public key", sk is called "secret key"
 - Encryption: Enc(pk,M) outputs a ciphertext C for message M
 - Decryption: Dec(sk,C) outputs the message M
- pk allows to encrypt ("hide" the message M), sk allows to decrypt
- Correctness: Dec(sk,Enc(pk,M)) = M always
- Intuitively, should be hard to obtain M from C without sk
 - Not trivial how to formally capture this, we'll get into that
- Invented 1976 by Diffie and Hellman (or 1970 by Ellis, or 1974 by Merkle)
- First scheme 1977 by Rivest, Shamir, and Adleman (or 1973 by Cocks, or 1974 by Merkle)

Motivation for public-key encryption

Scenario: Alice and Bob want to communicate over insecure channel

- Let's say Alice wants to send a message M to Bob
- Here is how public-key encryption helps (informally):
 - First step: Alice generates a keypair (pk_A,sk_A) and sends pk_A to Bob
 - Second step: Bob encrypts M and sends the ciphertext C=Enc(pk_A,M) to Alice
 - Third step: Alice decrypts C to retrieve M=Dec(sk_A,C)

Motivation for security definitions

So are we there yet?

- Not quite, we should have a definition of security for PKE schemes
 - Provides interface between PKE builders/users
 - Could come in different flavors (e.g., against active/passive adversaries)
 - Allows to argue benefits/shortcomings of different schemes

First goal: identify "good" security definition for PKE schemes

- First attempt: should be hard to compute sk from pk
 - Necessary, but what if it's possible to compute sk' that also decrypts?
- Second attempt: should be hard to compute M from C
 - Not well-defined: for what **M**? Fixed? Uniform? Application-dependent? For uniform **M**, this is often called "one-way security"
 - Also, what if it's possible to retrieve the first half of M?
- Need to work harder

Semantic security

- Goldwasser-Micali 1984: "semantic security"
 - "Everything that can be computed efficiently with C about M...
 ... should also be computable efficiently without C."
 - Intuition: C does not help in any computations involving M
 - More formally:

A PKE scheme PKE=(Gen,Enc,Dec) is <u>semantically secure</u>, if for every distribution D on equal-length messages, every predicate P, and every efficient algorithm A, there exists an efficient simulator S such that

$$Pr[A(pk,C) = P(M)] < Pr[S(pk) = P(M)] + "small"$$

where
$$(pk,sk)\leftarrow Gen(), M\leftarrow D, C\leftarrow Enc(pk,M)$$

("efficient" and "small" are not yet formally defined)

IND-CPA security

- Semantic security intuitive, but somewhat complex
 - Implies secure channels against passive adversaries in arbitrary contexts
 - But: four quantifiers, need to construct simulator **S** for every adversary **A**
- Fortunately, equivalent, but technically simpler notion exists

- Intuition: hard to distinguish ciphertexts of self-chosen messages

More on (IND-CPA) security

- IND-CPA security perhaps less intuitive, but more manageable
 - Theorem (without proof): PKE semantically secure iff PKE IND-CPA secure
 - $|\mathbf{M}_0| = |\mathbf{M}_1|$ requirement concession to correctness (large **M** ⇒ large **C**)
- Observation: IND-CPA security requires randomized encryption
 - Assume Enc is deterministic (i.e., same (pk,M) ⇒ same C)
 - Then adversary A can encrypt M₀,M₁ using pk and compare with C
 - Side remark: do not use textbook RSA (C=M^e mod N) unless you know exactly what you are doing!
- Many IND-CPA secure schemes known on many different platforms (groups, factorization, lattices, coding theory, multivariate equations, ...)
- For active attacks, stronger notions possible (more on this later)

Towards achieving security

- Problem: any reasonable form of PKE security requires assumptions
 - Inefficient attacks against any PKE scheme exist (run Gen() until you get pk)
 - In fact, if **P=NP**, then a poly-time algorithm to get **sk** from **pk** exists
 - Hence, must base any reasonable form of PKE security on <u>assumptions</u>
- Assumption should be "easier to check" than security of scheme
- Popular assumptions:
 - Factoring: given N=PQ for primes P,Q, find P,Q
 - Discrete logarithm (in group $G = \langle g \rangle$): given (g,g^x) , find x
 - Computational Diffie-Hellman (in **G**): given **(g,gx,gy)**, find **gxy**
 - Decisional Diffie-Hellman (in **G**): given **(g,gx,gy)**, distinguish **gxy** from random
 - Learning with errors: given (A, Ax+e) for $A \in Z_q^{m \times n}$, small $e \in Z_q^m$, find $x \in Z_q^n$

Towards achieving security

- Goal: results of the form "if X holds, then PKE is IND-CPA secure"
 - PKE schemes known for X ∈ { factoring, CDH, DDH, LWE } (but not dlog!)
 - Technical means to achieve this: reduction
 - Given any adversary A_{cpa} on PKE's IND-CPA security...
 - \dots construct an adversary $\mathbf{A}_{\mathbf{X}}$ on assumption \mathbf{X}
 - Most of the time, black-box reductions will be possible:

(black-box means that $\mathbf{A}_{\mathbf{x}}$ uses $\mathbf{A}_{\mathbf{cpa}}$ as a black box, without looking inside)

The Decisional Diffie-Hellman assumption

- Example: "if DDH holds, then ElGamal is IND-CPA secure"
- ... but wait, first let's talk about groups
- Popular platform in cryptographic constructions: cyclic groups
 - Given: cyclic group G=<g> of (not necessarily prime) order q
 - Useful: hard problems in **G**, e.g., "Decisional Diffie-Hellman" (DDH):

Intuition: "hard to recognize products in the exponent"

More on DDH

The <u>Decisional Diffie-Hellman (DDH) assumption</u> in a group G=<g> of order q says that no efficient adversary A can win the following experiment with probability significantly larger than $\frac{1}{2}$:

A Challenger

Challenger

A finally wins iff b=b'

• (Un)realistic platforms for the DDH assumption

- Plausible: DDH holds in subgroups of elliptic curves (size around 2²⁰⁰ elements)
- DDH does **not** hold in \mathbf{Z}_{p}^{*} (multiplicative group of prime field with \mathbf{p} elements)
- Plausible: DDH in prime-order subgroups of \mathbf{Z}_{p}^{*} (size of \mathbf{p} around 2000 bits)
- Fun fact: DDH does not hold in commuting subgroups of braid groups

More on DDH

The <u>Decisional Diffie-Hellman (DDH) assumption</u> in a group G=<g> of order q says that no efficient adversary A can win the following experiment with probability significantly larger than $\frac{1}{2}$:

A Challenger

Challenger

A finally wins iff b=b'

Best algorithms (on plausible platforms) on DDH assumption

- Often: best known DDH-solvers actually solve discrete logarithm (DL) problem
 - Compute x from g^x , then compare $(g^y)^x = g^{xy}$ with g^z
 - Notable exceptions: "gap groups" in which DDH is easy, but DL (presumably) hard
- Best known DL-solvers: index calculus (for $\mathbf{Z_p}^*$ -subgroups), generic algorithms

The ElGamal PKE scheme

• Gen() picks generator g and $x \in \{0,...,q-1\}$, outputs

$$pk = (g, X=g^x),$$
 $sk = x$

• Enc(pk,M) picks $y \in \{0,...,q-1\}$, outputs

$$C = (Y=g^y, D=X^y M)$$

Dec(sk,(Y,D)) outputs

$$M = D/Y^{x}$$

• Message space is G, correctness holds because $X^y = g^{xy} = Y^x$

More on the ElGamal PKE scheme

$$pk = (g, X=g^x),$$
 $sk = x,$ $C = (Y=g^y, D=X^y M)$

- Invented in 1985 (but really Diffie-Hellman key exchange in disguise)
- Randomized (unlike textbook RSA)
- Can drop D, then acts as "key encapsulation mechanism"
- Security of ElGamal:
 - IND-CPA secure under the DDH assumption (more on this here)
 - One-way secure under the CDH assumption
 - "Malleable" (homomorphic): ciphertexts can be altered (more on this later)
 - "Tightly secure": many instances as secure as one instance

Security of ElGamal

$$pk = (g, X=g^x),$$
 $sk = x,$ $C = (Y=g^y, D=X^y M)$

- Security of ElGamal: IND-CPA secure under the DDH assumption
 - We need to show: IND-CPA adversary A_{cpa} implies DDH-solver A_{ddh} :

- Idea: A_{ddh} sets $pk = (g, g^x)$, $C^* = (g^y, g^z M)$
- But for which M? And what if z=random? Then C not encryption of M_0 or M_1 !
- Also: how do we set b'_{ddh}? Same as b'_{cpa}? Would that help?

Security of ElGamal

$$pk = (g, X=g^{x}),$$

$$sk = x$$

$$pk = (g, X=g^{x}),$$
 $sk = x,$ $C = (Y=g^{y}, D=X^{y}M)$

- Security of ElGamal: IND-CPA secure under the DDH assumption
 - We need to show: IND-CPA adversary A_{cpa} implies DDH-solver A_{ddh} :

- Idea: A_{ddh} sets $pk = (g, g^x)$, $C^* = (g^y, g^z M_{b''})$ for $b'' \leftarrow \{0,1\}$, and $b'_{ddh} = [b'' == b_{cpa}]$
- If z=xy, then A_{cpa} sees IND-CPA game and $Pr[b'_{ddh}=1]=Pr[A_{cpa}$ wins IND-CPA]
- If z=random, then A_{cpa} 's view independent of b", and $Pr[b'_{ddh}=1]=\frac{1}{2}$
- So: if A_{cpa} wins IND-CPA w.prob. $\gg \frac{1}{2}$, then A_{ddh} wins w.prob. $\gg \frac{1}{2}$

More on the security of ElGamal

So what have we gained?

- Security reduced to "simpler" assumption about problem in groups
- Hope: simpler assumption easier to check/verify (than scheme directly)
- Also: simpler assumption may imply security of many schemes
- Intuitive statement: only way to break scheme is to solve DDH
- "Win-win" situation: scheme secure or algorithmic progress

Does that mean every use of ElGamal is secure?

- Depends on application, but ElGamal will do its job (of being IND-CPA secure)
- Example of "wrong use" of ElGamal: auctions (in a few slides)

- Another intuitive and important building block: digital signatures
 - Motivation: digital analogue of hand-written signature
 - Intuitive goal: tie (digital) document to signer, preserve integrity

- Formally, a digital signature scheme SIG=(Gen,Sig,Ver) consists of:
 - Key generation: Gen() outputs a keypair (pk,sk)
 - Signing: Sig(sk,M) outputs a signature σ for message M
 - Verification: Ver(pk,M,σ) outputs a bit ("verdict")
- Correctness: Ver(pk,M,Sig(sk,M))=1 always

Security of digital signatures

- Intuition: should be hard to forge signatures for yet-unsigned messages
- First attempt at security definition:

- Not very useful:
 - Intuitive reason: application probably has some honestly signed messages
 - Technical reason: trivial schemes (e.g., with σ =sk for any message M!) secure

- Security of digital signatures (second attempt)
 - Intuition: should be hard to forge signatures for yet-unsigned message
 - ... even if adversary already knows honestly generated signatures

- Sig-oracle allows **A** to get a view like in an application with many signatures
 - EUF-CMA standard security notion for digital signatures, achievable and useful
 - More (in particular on constructions) in "Digital Signatures" lecture

Interlude: random oracle model

- Sometimes difficult to prove (PKE or signature) schemes secure
 - Compromise: consider "idealized" hash function ("random oracle")
 - Scheme uses hash function H
 - In real world, **H** is implemented with a concrete hash function (e.g., SHA-3)
 - But in analysis/reduction, **H** is treated as truly random function ("random oracle")

- Both adversary and challenger/scheme have only has black-box access to H
- Enables reductions for simple and elegant schemes (→ task!)
- ... but analysis now only shows security for over-idealized version of scheme

Cryptographic reductions: recap

- Motivation for security definitions
 - Goal: interface between building block designers and users
- Our goal here: designing/analyzing building blocks (not: using them)
 - Basic tool: cryptographic reduction
 - Convert (hypothetical) adversary into problem-solver

- Examples: ElGamal is IND-CPA secure under DDH assumption
- Today: examples of more complex definitions/reductions

- Hence: strategy to prove security...
 - ... in the sense of EUF-CMA security for a given signature scheme...
 - ... in the random oracle model...
 - ... under the CDH (Computational Diffie-Hellman) assumption
- Need to construct/implement A_{cdh} in the following diagram
 - This requires implementing also Sig(sk, ·) and H(·) for given A_{cpa}

- Example: RSA-FDH ("RSA full domain hash") signature scheme:
 - pk = (N,e), sk = (N,d), for N = PQ and $d = e^{-1} \mod (P-1)(Q-1)$
 - Sig(sk,M) = $H(M)^d \mod N$, $Ver(pk,M,\sigma) = 1 \text{ iff } \sigma^e = H(M) \mod N$
- RSA assumption: given (N,e,Xe mod N), hard to find X
 - To prove that RSA-FDH EUF-CMA secure under RSA assumption in ROM:

- Need to set pk, convert (M^*,σ^*) to X, and implement H and Sig oracles

• Specifically: implementation of Arsa:

- Easy: set pk = (N,e) for (N,e) from RSA assumption input
- Problem: do not know sk, cannot implement Sig oracle directly
- Solution: answer H(M) queries such that Sig(M) can be computed
- Concretely (specific for RSA-FDH, different strategy for other schemes):
 - If $H(M) = R^e \mod N$ for random, known R, then Sig(M) = R
 - If $H(M) = X^e \mod N$ for given challenge X^e , then only valid signature is X
 - → guess which H-query refers to M*, set H(M*)=Xe, else H(Mi)=Rie

... back to our main program...

When not to use ElGamal/IND-CPA security

- Imagine a digital auction with host/auctioneer H and bidders B₁, B₂:
 - H wants to sell an item, bidders want to spend as little money as possible
 - Bids are encrypted numbers (amounts) under H's public key pk_H
 - Channel to/from H itself insecure (authenticated but not secret)

- H sells to bidder B_i with $x_i > x_{3-i}$

When not to use ElGamal/IND-CPA security

Now imagine B₂ is malicious

- Assume encryption scheme is multiplicatively homomorphic
- That is: $Enc(pk, x) \cdot Enc(pk, y) = Enc(pk, x \cdot y)$ (for a suitable · operation)
- Then, B_2 could wait for B_1 's bid and choose its own bid adaptively:

- Note: \mathbf{x}_1 hidden, but $\mathbf{x}_2 = \mathbf{x}_1 \cdot 1.01 > \mathbf{x}_1$, and \mathbf{B}_2 gets the item
- This attack works for ElGamal (depending on encoding of bids as **G**-elements)

... now what?

What is the lesson learned from this auction example?

- Is IND-CPA security the wrong notion of security?
 - ... in this particular context, yes
 - ... but sometimes, only security against passive adversaries required
- Avoid multiplicatively homomorphic schemes?
 - ... but sometimes, homomorphic properties can be useful
- Need security notion that guarantees security against active adversaries?
 - ... by all means! (Next up)

Security against active adversaries

Recall our definition of IND-CPA security:

A PKE scheme PKE=(Gen,Enc,Dec) is <u>indistinguishable under chosen-plaintext</u> <u>attacks (IND-CPA secure)</u>, if no efficient adversary A can win the following experiment with probability significantly larger than $\frac{1}{2}$:

A finally wins iff $|M_0| = |M_1|$ and b = b'

- We will start from this notion since it's simpler than semantic security
- Here, A only listens, gets no feedback on how modified ciphertexts decrypt
 - First attempt: give A decryption oracle (i.e., access to Dec(sk,·))
 - Problem: A could decrypt challenge ciphertext C* with this oracle
 - Second attempt: give A decryption oracle Dec(sk,·) that does not work on C*

Security against active adversaries

Our new definition of IND-CCA security (changes in red):

- Decryption oracle will reject query Dec(sk,C*)
- IND-CCA security equivalent to semantic security against active adversaries
- IND-CCA security implies secure channels (from authenticated channels) against active adversaries
- Most popular notion for new PKE scheme proposals

The trouble with IND-CCA security

IND-CCA security is hard to achieve:

- Proposed in 1989 (in weaker form), first efficient scheme 1998 (or 1993, depending on whether you accept proof heuristics)
- Implementing the decryption oracle during a reduction is difficult:

- Dilemma:
 - If A_{χ} knows sk, then A_{cca} is not very helpful, since A_{χ} could break scheme on its own
 - If A_{χ} does not know **sk**, then it is not clear how A_{χ} can answer A_{cca} 's **Dec** queries

The trouble with IND-CCA security

Possible ways to overcome IND-CCA dilemma:

- Dilemma:
 - If A_x knows sk, then A_{cpa} is not very helpful, since A_x could break scheme on its own
 - If A_X does not know sk, then it is not clear how A_X can answer A_{cpa} 's Dec queries
- Kobayashi-Maru solution: random oracle model (→ RSA-FDH assignment)
- Possible: A_x knows "all-but-one" secret keys that allow to decrypt all C ≠ C*
 - Difficulty: need a lot of structure of produce such keys
- Or: give "special" C^* to A_X , while Dec only decrypts "normal" C correctly
 - Difference to "all-but-one" sk: Dec works on all C, but gives wrong result on some
 - Difficulty: need a lot of structure to define "special" and "normal" C
- Next up: example of (almost) IND-CCA secure scheme and reduction

Towards IND-CCA security: IND-CCA1

• Stepping stone: IND-CCA1 security (changes to IND-CCA in red):

- Naming: victim left its computer (decryption ability) unlocked during lunch
- Guarantee between IND-CPA and IND-CCA
- Achieving IND-CCA1 already requires solving the IND-CCA dilemma

Simplified Cramer-Shoup

Simplified version of Cramer-Shoup cryptosystem:

- Setting: group G=<g> (as with ElGamal)
- Public key: $pk = (g, X=g^x, U=g^cX^d)$
- Secret key: sk = (c, d)
- Assume mapping H: $G \rightarrow \{0,1\}^{2n}$
 - Requirement: **H(uniform input) = close-to-uniform output**
 - Write $H(x) = H_1(x) || H_2(x)$ for $H_1, H_2: G \rightarrow \{0,1\}^n$
- Ciphertext for $M \in \{0,1\}^n$: $C = (R=g^r, S=X^r, h=H_1(U^r), P=M \oplus H_2(U^r))$
- Decryption computes $T=R^cS^d$ (=U^r), checks $h==H_1(T)$, outputs $P\oplus H_2(T)$

More on simplified Cramer-Shoup

Simplified version of Cramer-Shoup cryptosystem:

- Public key: $pk = (g, X=g^x, U=g^cX^d)$
- Secret key: sk = (c, d)
- Ciphertext for $M \in \{0,1\}^n$: $C = (R=g^r, S=X^r, h=H_1(U^r), P=M \oplus H_2(U^r))$
- Decryption computes $T=R^cS^d$ (=U^r), checks $h==H_1(T)$, outputs $P \oplus H_2(T)$
- Intuition: "hashed" ElGamal with additional S and authentication tag h
 - If **R** or **S** or **h** is tampered with, something breaks, and decryption check fails
 - But: still malleable, since **P** can be tampered with (XOR-homomorphic)
 - Hence: not IND-CCA secure ("full" Cramer-Shoup also protects P)
- Correctness: clear (since $T=R^cS^d=U^r$)
- Important observation: **pk** does not uniquely fix **sk**

Game hopping

Strategy for proof (DDH ⇒ IND-CCA1 security):

- Several arguments necessary
- Single reduction to DDH possible, but complex
- Instead: "game hopping" technique (several small steps)

Game hopping:

- Start from IND-CCA1 experiment (with challenger and A)
- Make small refinements, show that A's winning probability is preserved
- ... until A's winning probability is ½ by definition of changed experiment

Game 0: the original IND-CCA1 experiment

Rules:

- $pk = (g, X=g^{x}, U=g^{c}X^{d}), sk = (c, d)$
- $C^*=(R^*=g^{r^*}, S^*=X^{r^*}, h^*=H_1(U^{r^*}), P^*=M_b \oplus H_2(U^{r^*}))$
- Dec(sk,(R,S,h,P)) computes $T=R^cS^d$ (=U^r), checks $h==H_1(T)$, outputs $P \oplus H_2(T)$
- Goal: want to bound Pr[A wins]

Game 1: challenge ciphertext computed differently

First modification:

- $pk = (g, X=g^{x}, U=g^{c}X^{d}), sk = (c, d)$
- $C^*=(R^*=g^{r^*}, S^*=X^{r^*}, h^*=H_1(R^{*c}S^{*d}), P^*=M_b \oplus H_2(R^{*c}S^{*d}))$
- Dec(sk,(R,S,h,P)) computes $T=R^cS^d$ (=U^r), checks $h==H_1(T)$, outputs $P \oplus H_2(T)$
- Reason for change: need r* only for computing R*,S* (but not h*,P*)
- Only conceptual change, no change in A's view or winning probability

Game 2: changed challenge ciphertext

Second modification:

- $pk = (g, X=g^{x}, U=g^{c}X^{d}), sk = (c, d)$
- $C^*=(R^*=g^{r^*}, S^*=X^{s^*}, h^*=H_1(R^{*c}S^{*d}), P^*=M_b \oplus H_2(R^{*c}S^{*d}))$ for fresh s^*
- Dec(sk,(R,S,h,P)) computes $T=R^cS^d$ (=U^r), checks $h==H_1(T)$, outputs $P \oplus H_2(T)$
- Intuition and justification: coming up

Game 2: changed challenge ciphertext

Justification: reduction to DDH

- Game 1: $R^*=g^{r^*}$, $S^*=X^{r^*}$, Game 2: $R^*=g^{r^*}$, $S^*=X^{s^*}$
- Reduction to DDH interprets its input as (g,X,R*,S*), runs game above
 - If (g,X,R*,S*) is of the form (g,g^x,g^y,g^{xy}), then S*=X^{r*}, and this runs Game 1
 - If $(g,X,R^*,S^*) = (g,g^X,g^Y,g^Z)$ for random z, then $S^*=X^{S^*}$, and this runs Game 2
- Reduction outputs whether **A** wins or not
- A wins more often in Game 2 ⇒ reduction wins DDH with probability ≫ ½

Game 2: changed challenge ciphertext

- Intuition: challenge ciphertext C* is now "special"
 - R*=g^{r*}, S*=X^{s*}, with r*≠s* with overwhelming probability
 - Observation: this randomizes $T^*=R^{*c}S^{*d}$ computed during encryption of M_b :
 - Public key reveals only $U=g^cX^d=g^{c+xd}$ (i.e., one linear equation) about sk=(c,d)
 - For **r***≠**s***, the value **T***=**R***^c**S***^d=**g**^{r*c+s*xd} reveals different linear equation about **sk**
 - This blinds T^* and $H_2(T^*)$ and $P^*=M_b\oplus H_2(T^*)\to A$'s view independent of b
 - Problem: **Dec(sk,·)** may reveal additional information about **sk**

Game 3: changed decryption oracle

- Third modification:
 - Dec'(sk,(R,S,h,P)) rejects ciphertext whenever R=g^r, S=X^s for r≠s
 - This makes the experiment inefficient
- Intuition: suppress additional leakage of information about sk
- Justification: the original Dec would reject such ciphertexts anyway
 - Dec would check $h==H_1(R^cS^d)$, where R^cS^d is independently random

Game 3: changed decryption oracle

Analysis of Game 3:

- Dec'(sk,(R,S,h,P)) rejects ciphertext whenever R=g^r, S=X^s for r≠s
- A now only gets information from pk, Dec about c+xd, but not r*c+s*xd
- $P^*=M_b \oplus H_2(R^{*c}S^{*d})$ completely blinded by $H_2(R^{*c}S^{*d})=H_2(g^{r^*c+s^*xd})$
- Hence, A's view statistically independent of b
- Thus, A can win (b=b') only with probability exactly ½

Summary of proof strategy

Proof steps:

- Game 0: original IND-CCA1 experiment
- Game 1: C* computed differently (using sk)
- Game 2: S* randomized (reduction to DDH)
- Game 3: Dec-leakage about sk prevented
- A's winning probability preserved (up to small changes) during games
- A's winning probability in Game 3 exactly ½
 - ⇒ A's winning probability in IND-CCA1 experiment close to ½
 - ⇒ The modified Cramer-Shoup scheme IND-CCA1 secure

Theorem: Under the DDH assumption, the modified Cramer-Shoup scheme is IND-CCA1 secure.

More on full IND-CCA security

Full IND-CCA security achieved by Cramer-Shoup and other schemes

- Idea: "authentication tag" also for message-dependent part P
- Optimizations \Rightarrow |C| = |M| + |2 G-elements| + |1 MAC tag| (|MAC tag|≈100 bits)
- Open: can we do better?
- IND-CCA secure PKE schemes known from factoring/DDH/LWE/...
- ... but not from general one-way functions (or hash functions)

Does this scale to many ciphertexts/users?

- We have considered simple one-user, one-ciphertext definitions
- Many-user, many-ciphertext definitions asymptotically equivalent
- But: generic equivalence loses factor in reduction success
- Hence: look for "tightly secure" schemes

Where are we now?

- Achievable/intuitive security definitions (IND-CPA/IND-CCA)
 - Intuitive because of relation to semantic security
 - Achievable by ElGamal/Cramer-Shoup (and many other schemes)

- How about the usefulness of such definitions?
 - Intuitive because of relation to semantic security
 - Useful in larger contexts: implies security (but not authenticity)
 - IND-CPA/IND-CCA default notions in literature

Next up: overview over other cryptographic building blocks

Other cryptographic building blocks

Digital signatures

- Shameless plug: upcoming lecture on digital signatures!
- Interesting phenomenon: generically implied by one-way functions...
- ... but efficient signatures apparently harder to achieve than efficient PKE
- Example open problem: efficient signatures from factoring

Key exchange

- Conceptually similar to PKE, but additional properties like "forward secrecy"
- Example open problem: non-interactive key exchange that scales well

More encryption variants: symmetric, identity-based, homomorphic

Another shameless plug: lecture on advanced encryption schemes!

Even more cryptographic building blocks

Not (directly) related to secure communication

- Zero-knowledge protocols/schemes
 - Convince someone of the fact that you know information without revealing it
 - ... e.g.: you own a certified digital passport that confirms that you are above 18
 - Highly useful in mixnets, anonymous credentials, e-voting, blockchain, ...
- Multi-party computation protocols
 - Replace trusted party with interaction for auctions, negotiations, elections, ...
 - Solves many cryptographic problems with interaction, can be complex
- Smaller building blocks: commitments, hash functions, one-way functions, ...

Current hot topic: code obfuscation

- Old concept, cryptographic formalization new and very versatile
- Open problem: (efficient) code obfuscation from standard assumptions