

Prova Modelo n.º 3

12.º ANO DE ESCOLARIDADE

Site: http://recursos-para-matematica.webnode.pt/

Facebook: https://www.facebook.com/recursos.para.matematica

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Considere um conjunto de doze bolas, seis azuis, indistinguíveis, duas pretas, indistinguíveis e quatro encarnadas, numeradas de 1 a 4.

De quantas maneiras distintas se podem colocar as doze bolas numa só fila, de modo que as azuis ocupem posições consecutivas?

- **A** $\frac{7!}{2!}$
- $\mathbf{B} \quad \frac{7! \times 6}{2!}$
- $\frac{12!}{2! \times 6!}$
- **D** 7! × 6!
- **2.** A distribuição de probabilidades de uma variável aleatória X é dada pela tabela:

x_i	0	1	2
$P(X=x_i)$	$\frac{{}^{2012}C_{298} + {}^{2012}C_{300}}{{}^{2014}C_{300}}$	$\frac{a}{^{2014}C_{300}}$	$\frac{^{2012}C_{1713}}{^{2014}C_{300}}$

(a designa um número real positivo)

Qual é o valor de a?

- **A** $^{2012}C_{298}$
- B $^{2012}C_{299}$
- C 2013 C_{298}
- **D** $^{2013}C_{299}$
- **3.** Na figura está representado num referencial o.n. Oxyz um cubo no qual se assinalaram 20 pontos, os vértices e pontos médios das suas arestas. Quatro dos vértices do cubo estão identificados com as letras A, B, C e D.

Sabe-se que a aresta [AB] está contida no eixo Oz e a face [ABCD] contida no plano yOz.

Escolhem-se, simultaneamente e ao acaso, dois dos pontos assinalados.

Qual é a probabilidade de definirem uma recta perpendicular ao eixo Oy?

 $\frac{12}{95}$

 $\frac{16}{95}$

4. Seja a um número real positivo tal que $\log_4 a = \frac{1}{2}$. Qual é o valor de $\log_{16}(16a^3) - \log_4(a^3)$?

 $A \frac{1}{4}$

 $\mathbf{B} \frac{1}{2}$

 $C \frac{3}{4}$

D 1

5. Na figura está representado parte do gráfico de uma função f de domínio $\mathbb{R}\setminus\{1\}$.

Sabe-se que as retas de equação x=1, y=0 e y=1 são assíntotas do gráfico de f.

Seja (x_n) uma progressão geométrica tal que:

$$x_2 = -\frac{16}{3}$$

$$x_2 = -\frac{16}{3}$$
 e $x_5 = -\frac{128}{81}$

Qual é o valor de $\lim f(x_n + 1)$?

D +∞

6. Nas figuras estão representadas, num referencial o.n. xOy, parte dos gráficos de duas funções polinomiais $f \in g$.

Seja h uma função de domínio \mathbb{R} , tal que $h''(x)=(f\times g)(x)$. Em qual das opções seguintes pode estar representado parte do gráfico da função -h(x+1)?

В

D

7. No plano complexo da figura está representado um decágono regular inscrito numa circunferência centrada na origem. Os vértices do decágono são as raízes de índice n de um número complexo z. O vértice D tem abcissa $-\frac{\sqrt{2}}{2}$ e o vértice I tem ordenada $-\frac{\sqrt{6}}{2}$.

Qual é o número complexo cuja imagem é o ponto G?

$$\frac{\sqrt{2}}{2}$$
 cis $\frac{27\pi}{20}$

B
$$\sqrt{2} \operatorname{cis} \frac{19\pi}{15}$$

$$\frac{\mathbf{C}}{2} \operatorname{cis} \frac{19\pi}{15}$$

8. Em \mathbb{C} , conjunto dos números complexos, considere a seguinte condição:

$$z \times \bar{z} \le 4$$
 \wedge $\frac{2\pi}{3} \le \arg(z+1-i) \le \frac{5\pi}{4}$

Em qual das seguintes opções pode estar representado o conjunto de pontos definido pela condição?

В

С

D

GRUPO II - ITENS DE RESPOSTA ABERTA

1. Em \mathbb{C} , conjunto dos números complexos, considere $z = \frac{\sin \alpha + i \cos(\alpha - \pi)}{\operatorname{cis}(3\alpha) \times (-1 - \sqrt{3}i)}$, com $\alpha \in \left] \frac{\pi}{2}$, $\pi \right[$.

Determine o valor de α de modo que $(z \times i^{9-16n})^2$ seja um número real negativo $(n \in \mathbb{N})$.

- 2. Mostre que $|z w|^2 = |z|^2 2\text{Re}(\bar{z} \times w) + |w|^2$, $\forall z, w \in \mathbb{C}$.
- 3. Seja S o espaço de resultados associados a uma certa experiência aleatória. Sejam A e B dois acontecimentos possíveis ($A \subset S$ e $B \subset S$) tais que $P(A \cap B) \neq 0$.

3.1. Mostre que
$$\frac{(1-P(\bar{A}|\bar{B}))\times(1-P(B))}{P(A\cap B)} = \frac{P(\bar{B}|A)}{P(B|A)}$$

- 3.2. Num grupo de amigos sabe-se que:
 - o número de amigos que gosta de música pop é o triplo do número de amigos que gosta de música rock;
 - 10% gosta de ambos os tipos de música (pop e rock);
 - dois em cada três dos amigos que gostam de música rock, também gostam de música pop;

Escolhendo ao acaso um dos amigos, qual é a probabilidade de não gostar de música rock, sabendo que não gosta de música pop? Apresente o resultado na forma de fracção irredutível.

Sugestão: Pode utilizar a igualdade enunciada em 3.1. Nesse caso, deverá começar por caracterizar claramente os acontecimentos A e B, no contexto da situação apresentada.

4. Considere a função f, de domínio $\mathbb{R}\setminus\{-2\}$, definida por:

$$f(x) = \begin{cases} \frac{4-x^2}{1-e^{-2x-4}} - 1 & \text{se } x \le 0\\ \ln^2 x - \ln x & \text{se } x > 0 \end{cases}$$

- **4.1.** Estude a função f quanto à existência de assimptotas do seu gráfico, paralelas aos eixos coordenados. Caso existam, indique as suas equações.
- **4.2.** Estude, para $x \in \mathbb{R}^+$, a função f quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
- **4.3.** Na figura está representado, num referencial o.n. xOy, parte do gráfico da função f e um triângulo [ABP].

Sabe-se que:

- os pontos A e B pertencem ao gráfico da função f, têm ordenada 2 e têm abcissa positiva;
- o ponto P desloca-se sobre o gráfico da função f, no segundo quadrante. Para cada posição do ponto P a sua abcissa, x, pertence ao intervalo]-2,0].

Determine as abcissas dos pontos P de modo que a área do triângulo [ABP] seja igual a 2.

Na sua resposta deve:

- Determinar, analiticamente, o valor exacto das abcissas dos pontos A e B;
- escrever uma condição que permite resolver o problema;
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema;
- indicar as abcissas dos pontos P que são solução do problema, apresentando-as arredondadas às centésimas.

5. Na figura está representado, num referencial o.n. xOy, parte do gráfico de uma função f, contínua em \mathbb{R} .

Sabe-se que:

• a função f tem um único zero em x=1 e o ponto de coordenadas (2,2e-2) pertence ao seu gráfico;

- a recta t é tangente ao gráfico de f no ponto de abcissa 1 e contém o ponto de coordenadas (0, -2);
- a recta de equação y=-2 é assimptota horizontal do gráfico de f , quando $x \longrightarrow -\infty$.

Sejam g e h as funções de domínio \mathbb{R} definidas por $g(x) = e^{x-1} \times (f(x)+1)$ e $h(x) = \begin{cases} 3g(x) & \text{se} & x \leq 1 \\ \frac{2\ln x}{x-1} & \text{se} & x > 1 \end{cases}$

Qual das seguintes a afirmações não é necessariamente verdadeira?

- lacksquare A recta de equação y=3x-2 é tangente ao gráfico de g no ponto de abcissa 1.
- $oxed{\mathsf{B}}$ A equação g(x)=e tem pelo menos uma solução no intervalo [1,2].
- lacktriangle A equação $h(x)=rac{5}{2}$ tem pelo menos uma solução no intervalo [1,2].
- \square A recta de equação y=0 é assimptota horizontal do gráfico de h, quando $x \longrightarrow -\infty$.

Numa pequena composição indique a opção correcta e explique as razões que o levam a rejeitar as restantes opções. Apresente três razões, uma por cada opção rejeitada.

6. Na figura estão representados em referencial o.n. xOy um círculo trigonométrico e um triângulo [OAB].

Sabe-se que:

• o ponto A desloca-se sobre a circunferência, no segundo quadrante (eixo Ox não incluído). O ponto C acompanha o movimento de A, de modo que [AC] é sempre paralelo a Oy;

- o ponto B pertence ao eixo Ox;
- o arco de circunferência AB está centrado em C;
- α é a amplitude, em radianos, do ângulo POA, com $\alpha \in \left[\frac{\pi}{2}, \pi\right[$.

Seja g a função que dá a área do triângulo [OAB] em função de α .

- **6.1.** Mostre que $g(\alpha) = \frac{\sin^2 \alpha \sin \alpha \cos \alpha}{2}$. Determine $g\left(\frac{\pi}{2}\right)$ e interpreta geometricamente o resultado obtido.
- **6.2.** Mostre que $g'(\alpha) = \frac{\sin(2\alpha) \cos(2\alpha)}{2}$ e determine o valor de α para o qual a área do triângulo [OAB] é máxima
- 7. Na figura está representado, num referencial o.n. Oxyz, um prisma em que as bases são paralelogramos.

Sabe-se que:

- a base [OABC] está contida no plano xOy;
- a aresta [OE] está contida no eixo Oz;
- o ponto A tem ordenada -2;
- uma equação do plano $ABG \in 5x 2y = 24$;
- uma equação da recta CG é $(x, y, z) = (-2,7, -4) + k(4, -2,4), k \in \mathbb{R}$.

Escreva uma equação cartesiana do plano ACG.

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. A 2.

3. D

4 A

5. D

6. C

7. B

8. (

GRUPO II - ITENS DE RESPOSTA ABERTA

1.
$$\alpha = \frac{7\pi}{12}$$

- 3.2. $\frac{10}{11}$
- **4.1.** A.V.: x = 0; A.H.: y = -1, quando $x \rightarrow -\infty$.
- **4.2.** $f''(x) = \frac{3-2\ln x}{x^2}$; Para $x \in \mathbb{R}^+$, o gráfico de f tem a concavidade voltada para baixo em $\left[\sqrt{e^3}, +\infty\right[$, tem a concavidade voltada para cima em $\left]0, \sqrt{e^3}\right]$ e tem ponto de inflexão em $x = \sqrt{e^3}$.
- **4.3.** A altura do triângulo é dada por $\left|2 \left(\frac{4-x^2}{1-e^{-2x-4}} 1\right)\right| = \left|3 \frac{4-x^2}{1-e^{-2x-4}}\right|$ e a sua área por $\left|3 \frac{4-x^2}{1-e^{-2x-4}}\right| \times \frac{e^2 e^{-1}}{2}$. Assim:

$$\left| 3 - \frac{4 - x^2}{1 - e^{-2x - 4}} \right| \times \frac{e^2 - e^{-1}}{2} = 2 \Leftrightarrow x = a \quad \forall \quad x = b, \text{ com } a \approx -1,72 \text{ e } b \approx -0.92$$

5. C

- **6.1.** $g\left(\frac{\pi}{2}\right) = \frac{1}{2}$. Quando $\alpha = \frac{\pi}{2}$, o triângulo [OAB] é rectângulo e isósceles. A medida do comprimento dos seus catetos é 1 e a sua área $\frac{1}{2}$.
- **6.2.** $\alpha = \frac{5\pi}{8}$
- 7. 7x + 2y 6z = 24