Rechnen mit Matrizen

1. Transponieren: Sei A= $(a_{ij})_{m\times n}\in K^{m\times n}$

Dann ist
$$A^T := (b_{ij})_{m \times n} \in K^{n \times m}$$
 mit $b_{ij} = a_{ji}$
Beispiel: $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}, A^T = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$

2. Skalarmultiplikation: Sei $k \in K$, k fest, $A \in K^{m \times n}$, $A = (a_{ij})_{m \times n}$. Dann ist $k * A := (k * a_{ij})_{m \times n} \in K^{m \times n}$

Beispiel:
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $k = \pi \Rightarrow k * A = \begin{pmatrix} \pi & 2\pi \\ 3\pi & 4\pi \end{pmatrix}$

3. Addition: Sei A,B∈
$$K^{m\times n}$$
, A= $(a_{ij})_{m\times n}$, B= $(b_{ij})_{m\times n}$
Dann ist A+B:= $(c_{ij})_{m\times n}$ ∈ $K^{m\times n}$ mit $c_{ij} = a_{ij} + b_{ij}$
Beispiel: A= $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$,B= $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ \Rightarrow A+B=C= $\begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$

4. Multiplikation: Sei $A \in K^{m \times n}$, $B \in K^{n \times p}$, $A=(a_{ij})_{m \times n}$, $B=(b_{ij})_{n \times p}$

Multiplikation: Set
$$A \in K^{m \times n}$$
, $B \in K^{n \times p}$, $A = (a_{ij})_n$
Dann ist $A * B := (c_{ij})_{m \times p}$ mit $c_{ij} = \sum_{k=1}^n a_{ik} * b_{kj}$
Beispiel: $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2 \times 3}$, $B = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}_{3 \times 2}$
 $(A * B)_{2 \times 2} = \begin{pmatrix} 1a + 2b + 3c & 1d + 2e + 3f \\ 4a + 5b + 6c & 4d + 5e + 6f \end{pmatrix}$

$$(A * B)_{2 \times 2} = \begin{pmatrix} 1a + 2b + 3c & 1d + 2e + 3f \\ 4a + 5b + 6c & 4d + 5e + 6f \end{pmatrix}$$

Matrixschreibweise für Lineare Gleichungssysteme

- $A=(a_{ij})$ Koeffizientenmatrix
- (A|b) Erweiterte Koeffizientenmatrix

$$A * \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = b$$