Proves d'accés a la Universitat. Curs 2007-2008

Matemàtiques

Sèrie 2

Responeu a TRES de les quatre questions i resoleu UN dels dos problemes següents. En les respostes, expliqueu sempre què és el que voleu fer i per què.

Cada qüestió val 2 punts, i el problema, 4 punts.

Podeu utilitzar calculadora, però no es poden fer servir calculadores o altres aparells que portin informació emmagatzemada o que puguin transmetre o rebre informació.

QÜESTIONS

1. Se sap que certa funció derivable F(x) verifica les condicions següents:

$$F'(x) = \frac{1}{\sqrt[4]{x}} i F(1) = 3$$

- a) Trobeu F(x).
- **b**) Calculeu l'àrea compresa entre F(x) i l'eix OX des de x=0 fins a x=1. [1 punt per cada apartat]
- 2. Considereu les matrius $A = \begin{pmatrix} 1 & -3 \\ 2 & 2 \end{pmatrix}$ i $B = \begin{pmatrix} 1 & 3 \\ 2 & -2 \end{pmatrix}$.
 - a) Trobeu la matriu M, quadrada d'ordre 2, tal que $M \cdot A = B$.
 - **b**) Comproveu que $M^2 = I_2$ (matriu identitat d'ordre 2) i deduïu l'expressió de M^n . [1 punt per cada apartat]
- **3.** Discutiu el sistema d'equacions lineals següent en funció dels valors del paràmetre *m*.

$$\begin{cases} x + y + (m-1)z = 1 \\ x + (m-1)y + z = m-1 \\ (m-1)x + y + z = m+2 \end{cases}$$

[2 punts]

4. Trobeu l'equació de la recta perpendicular al pla π : 2x - y + z + 3 = 0, que passa pel punt (-1, 3, a) del pla. [2 punts]

PROBLEMES

5. Considereu una funció tal que la seva representació gràfica a l'interval (–3, 3) és la següent:

- a) Determineu les abscisses dels punts extrems (màxims i mínims) relatius.
- b) Estudieu el creixement i decreixement de la funció a l'interval (-3, 3).
- c) Feu un esbós de la gràfica de la derivada d'aquesta funció.
- d) Sabent que la funció és de la forma $f(x) = ax^4 + bx^2 + c$, trobeu de quina funció es tracta.

[0,5 punts per l'apartat a; 0,5 punts per l'apartat b; 1 punt per l'apartat c; 2 punts per l'apartat d]

6. Donades les rectes r: $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{-1}$ i s: $\frac{x-1}{1} = \frac{y+7}{2} = \frac{z+5}{3}$ i el punt P = (1, 1, -1),

volem trobar l'equació de la recta que passa per P i que talla r i s. Per aconseguir-ho:

- *a*) Trobeu l'equació general o cartesiana (és a dir, l'equació de la forma Ax + By + Cz + D = 0) del pla π que conté la recta r i el punt P.
- b) Trobeu el punt M calculant el punt d'intersecció del pla π amb la recta s.
- c) Trobeu l'equació de la recta que passa pels punts P i M.
- d) Comproveu que la recta trobada en l'apartat anterior és la que busquem. [1 punt per cada apartat]

Proves d'accés a la Universitat. Curs 2007-2008

Matemàtiques

Sèrie 5

Responeu a TRES de les quatre qüestions i resoleu UN dels dos problemes següents. En les respostes, expliqueu sempre què és el que voleu fer i per què.

Cada qüestió val 2 punts, i el problema, 4 punts.

Podeu utilitzar calculadora, però no es poden fer servir calculadores o altres aparells que portin informació emmagatzemada o que puguin transmetre o rebre informació.

QÜESTIONS

1. Trobeu els valors dels paràmetres a i b per tal que la funció següent sigui contínua i derivable en x = 2.

$$f(x) = \begin{cases} ax^2 + 2x + 3 & \text{si } x < 2 \\ x^3 + bx + 5 & \text{si } x \ge 2 \end{cases}$$

[2 punts]

- 2. Considereu la matriu $A = \begin{pmatrix} a+b & 1 \\ 0 & a-b \end{pmatrix}$, on a i b són nombres reals.
 - a) Calculeu el valor de a i b per tal que $A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.
 - **b**) Segons els valors obtinguts en l'apartat anterior, calculeu A^3 i A^4 .
 - c) Si n és un nombre natural qualsevol, doneu l'expressió de A^n en funció de n. [1 punt per l'apartat a; 0,5 punts per l'apartat b; 0,5 punts per l'apartat c]
- 3. Digueu per a quin valor de x la recta tangent a la corba $y = \ln(x^2 + 1)$ és paral·lela a la recta y = x. Escriviu l'equació d'aquesta tangent. [2 punts]
- 4. Donats el pla π : 3x 2y + 5z = 6 i la recta r: $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z+2}{-3}$, busqueu el punt de tall, si existeix. [2 punts]

PROBLEMES

5. Considereu el sistema d'equacions següent:

$$\begin{cases} 2x + y - (a - 1)z = 4 \\ x - 2y + z = -4 \\ 4x - (a + 1)y + z = -2a \end{cases}$$

- a) Discutiu-lo en funció del paràmetre a.
- **b**) Resoleu-lo quan sigui compatible indeterminat.
- *c*) En el cas de l'apartat anterior, trobeu una solució del sistema en què *x*, *y* i *z* tinguin valors enters.

[2,5 punts per l'apartat a; 1 punt per l'apartat b; 0,5 punts per l'apartat c]

- **6.** De tots els triangles rectangles d'hipotenusa 10 cm, trobeu la longitud dels catets del triangle que té el perímetre màxim. Comproveu que la solució trobada correspongui realment al perímetre màxim.
 - [2,5 punts pel càlcul dels catets; 1,5 punts per la comprovació]