

Welcome to DSCI 101

Introduction to Data Science

Week 12 Recap

- Introduction to Machine Learning
 - Supervised, unsupervised and semi-supervised learning
 - Real world examples
- Supervised learning
 - Regression vs. classification
 - Deep learning and Al
- Your first supervised learning model
 - K-nearest neighbor

Week 13 Preview

- Decision trees
 - for classification
 - for regression
- Advantages of tree models
 - interpretability
 - non-linear relationship with interactions
- Ensemble models
 - Random Forest

Decision Tree

• A simple idea:

Example: Iris flower data set

- Data set consists of 150 iris flower measurements
 - Columns: "petal length", "petal width", "sepal length", "sepal width", "species"
- Goal is to predict species from other columns / features
 - 3 different species

h species	petal_width	petal_length	sepal_width	sepal_length
3 versicolor	1.3	4.0	2.5	5.5
3 versicolor	1.3	4.3	2.9	6.4
2 setosa	0.2	1.6	3.4	4.8
2 setosa	0.2	1.5	3.7	5.3
8 virginica	1.8	5.8	2.5	6.7

Tree for Classification

How to grow a tree?

- Partition the feature space into non-overlapping "box" regions
 - predict a response value for each region
- Recursive binary splitting
 - make the optimal split each time by minimizing some loss function
- Any problem?
 - overfitting!!!
 - need a stopping rule: max of splits, min of samples in each leaf region...
 - penalize the size of a tree: grow full and prune back

Example: Hitters data

- Predict salary of baseball players
- With features:
 - number of years in major leagues
 - number of hits made last year
- Salary (log scale) color-coded
 - low: blue, green
 - high: red, yellow

Tree for Regression

Pros and Cons

- Easy to display, interpret and explain!
- Very flexible but tend to overfit!
- For both classification and regression!
- Can easily handle:
 - categorical features
 - missing values
- BUT a single tree tend to perform poorly...

Model Ensemble

What is Ensemble?

Random Forest

- Idea: grow many diverse trees and combine them
- Bootstrap your data:
 - grow one tree for each bootstrap resample
 - only allow a random subset of features for each split
- Ensemble models: combine predictions from each tree
 - average for regression
 - majority of votes for classification

Takeaway

- Random forest consistently wins
 - robust and require minimum tuning
 - gain prediction accuracy but lose interpretability
- Ensemble revolutionized Machine Learning
- More ensemble examples:
 - bagging
 - boosting
 - model stacking and neural nets (similar idea)