Versuchsbericht zu

M5 - Jo-Jo und Kreisel

Gruppe 6Mi

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 13.12.2017 betreut von Kristina Mühlenstrodt

Inhaltsverzeichnis

1	Kurzfassung	3
2	Methoden	3
3	Ergebnisse und Diskussion 3.1 Beobachtung	3 3
4	Schlussfolgerung	3
5	Beantwortung der ufgaben zur Vorbereitung	3

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

- 3.1 Beobachtung
- 3.2 Diskussion

4 Schlussfolgerung

5 Beantwortung der Aufgaben zur Vorbereitung

1.

$$0 = \frac{dE}{dt} = \frac{d}{dt} (\frac{1}{2}mv^2 + \frac{1}{2}J_S\omega^2 - mgh)$$
 (1)

$$= mva + \frac{J_S}{R^2}va - mgv \tag{2}$$

$$\frac{mg}{a} = m + \frac{J_S}{R^2} \tag{3}$$

$$\Rightarrow a(t) = g \frac{mR^2}{mR^2 + J_S} \tag{4}$$

$$\Rightarrow h(t) = \frac{1}{2}g \frac{mR^2}{mR^2 + J_S} t^2 + v_0 t + h_0 \tag{5}$$

2. Die Kraft mit der das abrollende Rad an der Aufhängevorichtung zieht ergibt sich aus

$$F = ma (6)$$

und beträgt folglich $mg\frac{mR^2}{mR^2+J_S}$. Dass die Kraft, bzw. Beschleunigung, konstant ist, ist auch in Abbildung 2 der Einführung zum Versuch dargestellt. Der Unterschied zur Gewichtskraft des Rades besteht in dem Faktor $\frac{mR^2}{mR^2+J_S}$, welcher stets kleiner als 1 ist, somit fällt das Rad langsamer als im freien Fall.

3. Die Kraft wirkt nach wie vor in die gleiche Richtung mit gleichem Betrag.