Guía de ejercicios para al Evaluación Parcial 02

EXAMEN PARCIAL 02 VIERNES 29-MARZO-2019 De 19:00 a 21:00 HORAS - Salón P-108

- 1. Sean (X, τ_X) , (Y, τ_Y) y (Z, τ_Z) espacios topológicos. Consideremos $f: X \to Y$, $g: X \to Y$, $\varphi: Y \to Z$ y $\psi: Y \to Z$ funciones continuas. Demostrar que:
 - a) Si $f \simeq g$ relativo a $A \subseteq X$ entonces $\varphi \circ f \simeq \varphi \circ g$ relativo a A.
 - b) Si $\varphi \simeq \phi$ relativo a $B \subseteq Y$ entonces $\varphi \circ f \simeq \psi \circ f$ relativo a $f^{-1}[B]$
- 2. Sean (X, τ_X) y (Y, τ_Y) espacios topológicos. Demostrar que si Y es conectable por trayectorias entonces para cualesquiera $f: X \to Y$ y $g: X \to Y$ funciones continuas nulhomotópicas se tiene que $f \simeq g$.
- 3. Demostrar que la relación de homotopía entre espacios topológicos es una relación de equivalencia en la clase de todos los espacios topológicos.
- 4. Sean (X, τ_X) , (Y, τ_Y) y (Z, τ_Z) espacios topológicos.
 - a) Demostrar que si $\varphi:(X,x)\to (Y,y)$ y $\psi:(Y,y)\to (Z,z)$ son funciones basadas entonces

$$(\psi \circ \varphi)_* = \psi_* \circ \varphi_* : \pi(X, x) \to \pi(Z, z)$$

b) Demostrar que si $Id_X:(X,x)\to (X,x)$ es la función identidad en X.

$$(Id_X)_* = Id_{\pi(X,x)}$$

- 5. Demostrar que si (X, τ_X) es un espacio topológico, $f: X \to \mathbb{S}^2$ y $g: X \to \mathbb{S}^2$ son funciones continuas tales que $\forall x \in X, \ f(x) \neq g(x)$ entonces $f \simeq g$.
- 6. Sean (X, τ_X) un espacio topológico simplemente conexo y $\{x_0, x_1\} \subseteq X$. Demostrar que si $f: I \to X$ y $g: I \to X$ son dos trayectorias con $f(0) = g(0) = x_0$ y $f(1) = g(1) = x_1$ entonces $f \simeq g$.
- 7. Sean (Y, τ_Y) y (Z, τ_Z) espacios topológicos y $\rho: Y \to Z$ una función cubriente. Demostrar que para todo $z \in Z$ el subespacio $p^{-1}(z)$ es un espacio discreto en Y.
- 8. Encontrar una función cubriente de \mathbb{S}^1 en \mathbb{S}^1 distinta de la función identidad.
- 9. Demostrar que \mathbb{R} es un espacio cubriente de \mathbb{S}^1 .
- 10. Demostrar que \mathbb{R}^2 es un espacio cubriente de la botella de Klein.

Tarea 02 Marzo 2019