규현 03 : 수학2 복습

2016년 11월 26일

차 례

차	례																			1
1	집합																			4
2	명제																			4
3	함수																			6

1 집합

정의 1) 집합과 원소

어떤 조건이나 기준에 의하여 그 대상을 분명히 알 수 있는 것들의 모임을 집합이라고 한다. 또 집합을 이루는 대상 하나하나를 그 집합의 원소라고 한다.

문제 2)

(1) 10보다 작은 자연수의 모	임 (집	합이다,	집합이	아니다)
		1 1 - 1 ,		1 - 1 - 1 /

예시 3)

A를 '8의 약수들의 집합' 이라고 하자. A는 다음의 세 방법으로 나타낼 수 있다.

(1) A의 원소들을 일일이 나열하는 방법(원소나열법);

$$A = \{1, 2, 4, 8\}$$

(2) A에 속하는 조건을 제시하는 방법(조건제시법);

$$A = \{x \mid x$$
는 8의 약수 $\}$

(3) 그림으로 표현하는 방법(벤다이어그램);

이때 2 는 A의 원소이고, 3 은 A의 원소가 아니다. 이것을

 $2 \in A$, $3 \notin A$

로 나타낸다. 또, $B = \{x \mid x$ 는 16의 약수 $\}$ 라고 하면 $B = \{1, 2, 4, 8, 16\}$ 이다. A의 모든 원소가 B에 속하는데 이것을

 $A \subset B$

로 나타낸다. 이때 $A \leftarrow B$ 의 부분집합이라고 한다.

예시 5)

전체집합 $U = \{1, 2, 3, 4, 5, 6\}$ 의 두 부분집합 $A = \{1, 3, 5\}, B = \{2, 3, 4\}$ 에 대하여

 $A \cap B =$

 $A \cup B =$

 $A^c =$

A - B =

정리 6) 분배법칙, 드모르간의 법칙

세 집합 A, B, C에 대해

- $(1) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $(2) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $(3) (A \cap B)^c = A^c \cup B^c$
- $(4) (A \cup B)^c = A^c \cap B^c$

정리 7) 집합의 원소의 개수

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

2 명제

정의 8) 명제

그 내용이 참인지 거짓인지를 명확하게 판별할 수 있는 문장이나 식을 명제라고 한다.

문제 9)

다음 중 명제인 것을 모두 찾고, 그것의 참, 거짓을 판별하여라.

- (1) 삼각형의 세 내각의 크기의 합은 180°이다.
- (2) x = 2이면 2x + 1 = 3이다.
- $(3) x 1 \le 3$
- (4) $\frac{1}{100}$ 은 0에 가까운 수이다.

예시 10) $p \rightarrow q$ 꼴의 명제

명제

x가 3의 약수이면 x는 6의 약수이다.

는 $p \to q$ 꼴의 명제이다. 이때 p를 가정, q를 결론이라고 한다. p,q의 진리집합을 각각 P,Q라고 하면

$$P = \{1, 3\}, \quad Q = \{1, 2, 3, 6\}$$

이다. 따라서 $P\subset Q$ 이므로 $p\to q$ 는 참이다. $p\to q$ 가 참이면 $p\Rightarrow q$ 로 나타내고, p가 q이기 위한 충분조건, q가 p이기 위한 필요조건이라고 한다.

이 명제의 역인

x가 6의 약수이면 x는 3의 약수이다.

는 $q \to p$ 이고 이 명제는 거짓이다. $Q \not\subset P$ 이기 때문이다. 따라서 원래 명제가 참이라고 해서 그 역도 참이라고 할 수는 없다.

하지만 이 명제의 대우인

x가 6의 약수가 아니면 x는 3의 약수가 아니다.

는 참이다. 일반적으로 원래 명제가 참이면 그 대우는 무조건 참이다.

정의 11) 절대부등식

부등식 $(x-1)^2 \ge 0$, $x^2+1 > 0$, |x-1|+1 > 0은 모두 x에 어떤 실수를 대입해도 항상 성립한다. 이와 같이 문자에 어떤 실수를 대입해도 항상 성립하는 부등식을 절대부등식이라고 한다.

정리 12) 산술-기하 부등식

a > 0, *b* > 0 이 면

$$a+b \ge 2\sqrt{ab}$$
.

(단 등호는 a = b일 때 성립한다.)

정리 13) 코시-슈바르츠 부등식

실수 a, b, x, y에 대하여

$$(a^2 + b^2)(x^2 + y^2) \ge (ax + by)^2$$

(단 등호는 <math>a:b=x:y일 때 성립한다.)

예시 14)

 $x^2 + y^2 = 4$ 일 때, 다음을 구하여라.

- (1) xy의 최댓값
- (2) 3x + 4y의 최댓값
 - (1) $4 = x^2 + y^2 \ge 2\sqrt{x^2 \times y^2} = 2|xy|$ 에서 $|xy| \le 2$. 따라서 $-2 \le xy \le 2$. xy의 최댓값은 2이다.
 - (2) $(3^2 + 4^2)(x^2 + y^2) \ge (3x + 4y)^2$ 에서 $(3x + 4y)^2 \le 100$. -10 ≤ $3x + 4y \le 10$. 따라서 3x + 4y의 최댓값은 10 이다.

3 함수

예시 15)

오른쪽 그림과 같은 함수 $f:X\to Y$ 에서 정의역은 $X=\{1,2,3\}$ 이고 공역은 $Y=\{a,b,c\}$ 이다. 또

$$f(1) = c$$

$$f(2) = b$$

$$f(3) = a$$

이므로 함숫값들의 집합인 치역은 $\{a,b,c\}$ 로 공역과 같다. 또

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

이므로 일대일 함수이고, 또한 일대일 대응 이기도 하다.

예시 16)

정의역과 공역이 모두 실수 집합인 함수 $g(x) = x^2$ 의 그래프는 오른쪽 그림과 같다.

이 함수의 치역은 $\{y \mid y \geq 0\}$ 이므로 공역과 같지 않다. 또, 정의역의 서로 다른 두 원소 -2과 2에 대해

$$g(-2) = g(2)$$

이므로 이 함수는 일대일 함수가 아니다. 이 함수는 $x \le 0$ 일 때, 감소함수이고, $x \ge 0$ 일 때, 증가함수이다. 또, y축을 기준으로 대칭이므로 우함수이다.

예시 17) 합성함수

오른쪽 그림과 같이 두 함수 $f:X \to Y,$ $g:Y \to Z$ 를 합성하면 새로운 함수

$$g\circ f:X\to Z$$

를 얻는다. 이 함수는

$$(g \circ f)(x) = g(f(x))$$

로 정의된 함수로

$$(g \circ f)(1) = g(f(1)) = g(a) = 2$$

$$(g \circ f)(2) = g(f(2)) = g(d) = 5$$

$$(g \circ f)(3) = g(f(3)) = g(b) = 7$$

이다.