defect A microscopic flaw in a wafer or in patterning steps that can result in the failure of the die containing that defect.

die The individual rectangular sections that are cut from a wafer, more informally known as chips.

yield The percentage of good dies from the total number of dies on the wafer.

each wafer, creating the transistors, conductors, and insulators discussed earlier. Today's integrated circuits contain only one layer of transistors but may have from two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic flaw in the wafer itself or in one of the dozens of patterning steps can result in that area of the wafer failing. These **defects**, as they are called, make it virtually impossible to manufacture a perfect wafer. To cope with imperfection, several strategies have been used, but the simplest is to place many independent components on a single wafer. The patterned wafer is then chopped up, or *diced*, into these components, called **dies** and more informally known as **chips**. Figure 1.19 is a photograph of a wafer containing microprocessors before they have been diced; earlier, Figure 1.9 on page 20 shows an individual microprocessor die and its major components.

Dicing enables you to discard only those dies that were unlucky enough to contain the flaws, rather than the whole wafer. This concept is quantified by the **yield** of a process, which is defined as the percentage of good dies from the total number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both to the lower yield and the smaller number of dies that fit on a wafer. To reduce the cost, a large die is often "shrunk" by using the next generation process, which incorporates smaller sizes for both transistors and wires. This improves the yield and the die count per wafer.

Once you've found good dies, they are connected to the input/output pins of a package, using a process called *bonding*. These packaged parts are tested a final time, since mistakes can occur in packaging, and then they are shipped to customers.

As mentioned above, an increasingly important design constraint is power. Power is a challenge for two reasons. First, power must be brought in and distributed around the chip; modern microprocessors use hundreds of pins just for power and ground! Similarly, multiple levels of interconnect are used solely for power and ground distribution to portions of the chip. Second, power is dissipated as heat and must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in 2008, which must be removed from a chip whose surface area is just over 1 cm²!

Elaboration: The cost of an integrated circuit can be expressed in three simple equations:

$$\label{eq:cost_per_discrete} \begin{split} \text{Cost per die} &= \frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{yield}} \\ \text{Dies per wafer} &\approx \frac{\text{Wafer area}}{\text{Die area}} \\ \text{Yield} &= \frac{1}{(1 + (\text{Defects per area} \times \text{Die area}/2))^2} \end{split}$$