单元6.1 通路与回路

第二编图论 第七章图

7.2 通路与回路

内容提要

- 通路、简单通路、初级通路
- 回路、简单回路、初级回路
- 扩大路径法

通路(walk)

• 顶点与边的交替序列

其中
$$\Gamma = v_{i_0} e_{j_1} v_{i_1} e_{j_2} \cdots v_{i_{l-1}} e_{j_l} v_{i_l}$$

$$e_{j_r} = (v_{i_{r-1}}, v_{i_r}), r = 1, 2, ..., l$$

起点,终点,通路长度

- v_{i_0} 是起点, v_{i_l} 是终点
- 通路长度 |Γ| = l

回路(closed walk)

• 若
$$v_{i_0} = v_{i_l}$$

$$\Gamma = v_{i_0} e_{j_1} v_{i_1} e_{j_2} \cdots v_{i_{l-1}} e_{j_l} v_{i_0}$$

简单(复杂、初级)通(回)路

• 简单通路: 没有重复边的通路

• 简单回路: 没有重复边的回路

• 复杂通路: 有重复边的通路

• 复杂回路: 有重复边的回路

• 初级通路(路径): 没有重复顶点的通路

• 初级回路(圈): 没有重复顶点的回路

通(回)路的表示

• 可以只用边的序列来表示通(回)路

$$e_{j_1}e_{j_2}\cdots e_{j_l}$$

 $e_{j_1}e_{j_2}\cdots e_{j_l}$ • 简单图可以只用顶点的序列来表示通(回)路

$$V_{i_0}V_{i_1}\cdots V_{i_{l-1}}V_{i_l}$$

- 画出的长度为1的圈
 - 如果是非标定的,则在同构意义下是唯一的
 - 如果是标定的(指定起点,终点),则是l 个不同的圈

周长

• G是含圈的无向简单图

c(G)=最长圈的长度

周长举例

• $c(K_n)=n (n\geq 3) c(K_{n,n})=2n$

围长

• G是含圈的无向简单图

g(G)=最短圈的长度

围长举例

• $g(K_n)=3 (n\geq 3), g(K_{n,n})=4 (n\geq 2)$

定理7.6

· 定理7.6 在n阶(有向或无向)图G中,若从不同顶点v_i到v_j有通路,则从v_i到v_j有长度小于等于n-1的通路证明:下一页

· 推论 在n阶图G中,若从不同顶点 v_i 到 v_j 有通路,则从 v_i 到 v_i 有长度小于等于n-1的路径(初级通路). #

定理7.6证明

• 证: 设 $\Gamma = v_{i_0} e_{j_1} v_{i_1} e_{j_2} \cdots e_{j_l} v_{i_l}, v_{i_0} = v_i, v_{i_l} = v_j,$ 若l>n-1,则 Γ 上顶点数l+1>n,必存在 $0\le s< k\le l$,使 得 $v_{i_s} = v_{i_l}$,于是 Γ 上有从 v_{i_s} 到自身的回路 C_{sk} ,在 Γ 上 删除 C_{sk} 的所有边和除 v_{i_s} 外的所有顶点,得

$$\Gamma' = v_{i_0} e_{j_1} v_{i_1} e_{j_2} \cdots v_{i_s} e_{j_{k+1}} v_{i_{k+1}} \cdots e_{j_l} v_{i_l}$$

则 |Г' |<|Г|,重复进行有限多步为止.#

定理7.6推论

· 在n阶图G中,若从不同顶点v_i到v_j有通路,则从v_i到v_j有 长度小于等于n-1的路径(初级通路). #

定理7.7

· 定理7.7 在n阶图G中,若有从顶点v_i到自身的回路, 则有从v_i到自身长度小于等于n的回路. #

· 推论 在n阶图G中,若有从顶点v_i到自身的简单回路,则有从v_i到自身长度小于等于n的圈(初级回路).

- 在无向简单图中,路径的两个端点不与路径本身以外的顶点相邻,这样的路径称为极大路径
- 在有向图中,路径起点的前驱,终点的后继,都在路径本身上

扩大路径法

任何一条路径,只要不是极大路径,则至少有一个端点与路径本身以外的顶点相邻,则路径还可以扩大,直到变成极大路径为止

例7.6

例7.6: 设G是n(n≥3)阶无向简单图, δ (G)≥2. 证明 G中有长度≥ δ (G)+1的圈证明: $\forall u_0 \in V(G)$, δ (G)≥2⇒ $\exists v_1 \in N_G(v_0)$, $对\Gamma_0=u_0u_1$ 采取扩大路径法,得到极大路径 $\Gamma=v_0v_1...v_k$. $d(v_k)\geq\delta(G)$ ⇒ $k\geq\delta(G)$,

 $d(v_0) \ge \delta(G) \Rightarrow \exists v_i \in N_G(v_0), \delta(G) \le i \le k.$ 于是 $v_0v_1...v_iv_n$ 是长度≥ $\delta(G)$ +1的圈.#

例7.7(有向图的例子)

D是有向简单图,
 δ(D)≥2, δ⁻(D)>0, δ⁺(D)>0,
 证明D中有长度大于等于 max{δ⁻(D),δ⁺(D)}+1的圈

例7.7证明

· 证明:分别考虑v₀,v_k:

(1) $d^{-}(v_0) \ge \delta^{-}(D) \Rightarrow \exists v_i \in N_D^{-}(v_0), \delta^{-} \le i \le k.$

于是 $v_0v_1...v_iv_0$ 是长度≥ δ -+1的圈.

(2) $d^+(v_k) \ge \delta^+(D) \Rightarrow \exists v_j \in N_D^+(v_1), 0 \le j \le k - \delta^+.$

于是 v_iv_{i+1}...v_k v_i是长度≥δ+1的圈.

较长的就是D中长度≥max ${\delta^-, \delta^+}$ +1的圈. #

小结

- 通路、简单通路、初级通路
- 回路、简单回路、初级回路
- 扩大路径法

