Name:	
Roll Number:	

Practice Midsem

$\operatorname{MTH}302$ - Set Theory and Mathematical Logic

(Odd Semester 2024/25, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains 4 + 1 questions and is worth 30% of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) For every countable infinite limit ordinal α , there is an ordinal β such that $\alpha = \beta + \omega$.
- (ii) There is a subset of plane that intersects every circle at exactly 2 points.
- (iii) Every chain in $(\mathcal{P}(\omega), \subseteq)$ is countable.
- (iv) There is an injective function $f: \mathbb{R}^3 \to \mathbb{R}$ such that for every $\vec{x}, \vec{y} \in \mathbb{R}^3$, $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$.
- (v) $(((\neg p) \lor q) \implies (p \implies q))$ is a tautology.

Solution.

- (i) False. Consider $\alpha = \omega \cdot \omega$.
- (ii) False. See homework.
- (iii) False. See homework.
- (iv) True. Both are isomorphic as vector spaces over \mathbb{Q} .
- (v) True.

Page 3 MTH302

Question 2. [7 Points]

- (a) [1 Point] State Schröder-Bernstein theorem.
- (b) [2 Points] Show that there is a bijection from [0,1] to \mathbb{R} .
- (a) [4 Points] Let \mathcal{B} be the set of all bijections from \mathbb{Q} to \mathbb{Q} . Show that $|\mathcal{B}| = \mathfrak{c}$.

Solution.

- (a) If there are injective functions from A to B and from B to A, then there is a bijection from A to B. \Box
- (b) By Schröder-Bernstein theorem, it suffices to show that there are injections from [0,1] to \mathbb{R} and from \mathbb{R} to [0,1]. The identity function on [0,1] is clearly an injection from [0,1] to \mathbb{R} . Next check that $f(x) = (\pi/2 + \arctan x)/\pi$ is a bijection from \mathbb{R} to [0,1] and hence also an injection from \mathbb{R} to [0,1]. \square
- (a) Let \mathcal{F} be the set of all bijection from ω to ω . We first claim that $|\mathcal{F}| = |\mathcal{B}|$. Since $|\mathbb{Q}| = \omega$, we can fix a bijection $h: \omega \to \mathbb{Q}$. Now check that $H: \mathcal{B} \to \mathcal{F}$ defined by H(f)(x) = f(h(x)) for every $f \in \mathcal{F}$ and $x \in \omega$ is well-defined (i.e. $H(f) \in \mathcal{F}$) and a bijection. So $|\mathcal{F}| = |\mathcal{B}|$.

Since
$$\mathcal{F} \subseteq \omega^{\omega} \subseteq \mathcal{P}(\omega \times \omega)$$
, we get $|\mathcal{F}| \leq |\mathcal{P}(\omega \times \omega)| = |\mathcal{P}(\omega)| = \mathfrak{c}$.

So it suffices to show $|\mathcal{F}| \geq \mathfrak{c}$. As $|\mathcal{P}(\omega)| = \mathfrak{c}$, it is enough to find an injection $G : \mathcal{P}(\omega) \to \mathcal{F}$. Define $H(A) = f_A$ where $f_A : \omega \to \omega$ is defined by: (i) If $k \in A$, then $f_A(2k) = 2k + 1$ and $f_A(2k + 1) = 2k$. (ii) If $k \notin A$, then $f_A(2k) = 2k$ and $f_{2k+1} = 2k + 1$. Now check that f_A is a bijection from ω to ω and $A \neq B \implies f_A \neq f_B$. Therefore, G is an injection and we are done.

Page 4 MTH302

Question 3. [6 Points]

Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}$,

$$f(x + y) = f(x) + f(y) + f(x)f(y).$$

- (a) [2 Points] Define h = 1 + f. Show that h(x + y) = h(x)h(y).
- (b) [4 Points] Suppose f is continuous and not identically equal to -1. Show that $f(x) = a^x 1$ for some a > 0.

Solution.

(a)
$$h(x+y) = 1 + f(x) + f(y) + f(x)f(y) = (1+f(x))(1+f(y)) = h(x)h(y)$$
.

(b) By Homework problem 15, either h is identically zero or $h(x) = a^x$ where a = h(1) > 0. In the former case, f is identically -1 and in the latter case, $f(x) = a^x - 1$ where a = 1 + f(1) > 0.

Page 5 MTH302

Question 4. [7 Points]

- (a) [5 Point] Using transfinite recursion, show that there exists $X \subseteq \mathbb{R}^2$ such that for every line $\ell \subseteq \mathbb{R}^2$, $|X \cap \ell| = 5$.
- (b) [2 Points] Let $\mathcal{L} = \{ \prec \}$ where \prec is a binary relation symbol. Show that there is an \mathcal{L} -theory T such that for every \mathcal{L} -structure $\mathcal{M} = (M, \prec^{\mathcal{M}})$,

$$\mathcal{M} \models T$$
 iff " $(M, \prec^{\mathcal{M}})$ is a linear ordering".

Solution.

- (a) Let $\langle \ell_{\alpha} : \alpha < \mathfrak{c} \rangle$ enumerate all lines in \mathbb{R}^2 . Using transfinite recursion, we are going to construct $\langle X_{\alpha} : \alpha < \mathfrak{c} \rangle$ such that the following hold for every $\alpha < \mathfrak{c}$.
 - (1) $X_{\alpha} \subseteq \mathbb{R}^2$ and $X_0 = \emptyset$.
 - (2) For every $\beta < \alpha$, $X_{\beta} \subseteq X_{\alpha}$.
 - (3) If α is a limit ordinal, then $X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$.
 - (4) $|X_{\alpha}| \leq \max(\omega, |\alpha|) < \mathfrak{c}$.
 - (5) $|X_{\alpha+1} \cap \ell_{\alpha}| = 5$.
 - (6) No 6 points in X_{α} are collinear.

Suppose $\langle X_{\beta} : \beta < \alpha \rangle$ has been defined. We define X_{α} as follows.

Case (i) $\alpha = 0$. Define $X_0 = \emptyset$.

Case (ii) α is a limit ordinal. Define $X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$.

Case (iii) α is a successor ordinal Say $\alpha = \beta + 1$. Let \mathcal{T} be the set of all lines that pass through 2 points in X_{β} . Let B be the set of points of intersection of ℓ_{β} with all the lines in $\mathcal{T} \setminus \{\ell_{\beta}\}$. Since two distinct lines can intersect at at most 1 point, we must have $|B| \leq \max(\omega, |\mathcal{T}|) < \mathfrak{c}$. Put $n = |X_{\beta} \cap \ell_{\beta}|$. Then $n \leq 5$ (by clause (6)). If n = 5, define $X_{\alpha} = X_{\beta}$. Otherwise, choose 5 - n distinct points from $\ell_{\beta} \setminus B$ and add them to X_{β} to get X_{α} .

It is easy to check that clauses (1)-(10) are satisfied. The main point is that Clause (6) continues to hold by out choices in Case (iii). Define $X = \bigcup_{\alpha < \mathfrak{c}} X_{\alpha}$. Let us check that X is as required. Let $\ell \subseteq \mathbb{R}^2$ be any line,. Fix $\alpha < \mathfrak{c}$ such that $\ell_{\alpha} = \ell$. Then by Clause (5), $|X_{\alpha+1} \cap \ell| = 5$. Since $X_{\alpha+1} \subseteq X$, we get $|X \cap \ell| \ge 5$.

To get the other inequality, towards a contradiction, assume $|X \cap \ell| \ge 6$ and fix $\{p_i : 1 \le i \le 6\} \subseteq X \cap \ell$. Choose $\alpha_1, \dots, \alpha_6 < \mathfrak{c}$ such that $p_i \in X_{\alpha_i}$ for each $1 \le i \le 6$. Let $\alpha = \max(\alpha_1, \dots, \alpha_6)$. Then by Clause (2), $|X_{\alpha} \cap \ell| \ge 6$. But this violates Clause (6). Hence $|X \cap \ell| = 5$.

(b) Take $T = \{\phi_1, \phi_2, \phi_3\}$ where

$$\phi_1 \equiv (\forall x)(\neg(x \prec x))$$

$$\phi_2 \equiv (\forall x)(\forall y)(\forall z)(((x \prec y) \land (y \prec z)) \implies (z \prec z))$$

$$\phi_3 \equiv (\forall x)(\forall y)((x = y) \lor (x \prec y) \lor (y \prec x))$$

Page 6 MTH302

Bonus Question [5 Points]

Let \mathcal{F} be an uncountable family of finite subsets of \mathbb{R} . Show that there exists an uncountable $\mathcal{A} \subseteq \mathcal{F}$ and a finite set $W \subseteq \mathbb{R}$ such that for every $X, Y \in \mathcal{A}$,

$$X \neq Y \implies X \cap Y = W.$$

Solution

For each $1 \le n < \omega$, define $\mathcal{F}_n = \{X \in \mathcal{F} : |X| = n\}$. Then $\mathcal{F} = \bigcup \{\mathcal{F}_n : 1 \le n < \omega\}$. Since the union of a countable family of countable sets is countable and \mathcal{F} is uncountable, we can fix some n such that \mathcal{F}_n is uncountable.

By induction on n, we will show that for every uncountable family \mathcal{G} of sets each of size n, there exist an uncountable $\mathcal{A} \subseteq \mathcal{G}$ and a finite set $W \subseteq \mathbb{R}$ such that for every $X,Y \in \mathcal{A}$, $(X \neq Y \implies X \cap Y = W)$. This clearly suffices.

If n = 1, then $\mathcal{A} = \mathcal{G}$ and $W = \emptyset$ are as required.

Next assume that \mathcal{G} is an uncountable family of sets each of size n+1. For each $A \in \mathcal{G}$, fix some $x_A \in A$ (using AC). Define $\mathcal{G}' = \{A \setminus \{x_A\} : A \in \mathcal{G}\}$. Since each set in \mathcal{G}' has size n, by the inductive hypothesis, we can find an uncountable $\mathcal{A}' \subseteq \mathcal{G}'$ and $W' \subseteq \mathbb{R}$ such that for every $X \neq Y$ in \mathcal{A}' , $X \cap Y = W'$. We now have the following two cases.

Case (1). $\{x_A : A \in \mathcal{A}'\}$ is uncountable. Choose, using Zorn's lemma, a maximal subfamily $\mathcal{A} \subseteq \mathcal{A}'$ such that for every $A, B \in \mathcal{A}$, $(A \neq B \implies x_A \neq x_B)$. Observe that \mathcal{A} must be uncountable since $\{x_A : A \in \mathcal{A}'\}$ is uncountable. It is clear that $\mathcal{A}, W = W'$ are as required.

Case (2). $\{x_A : A \in \mathcal{A}'\}$ is countable. Since \mathcal{A}' is uncountable, we can fix some x and an uncountable $\mathcal{A} \subseteq \mathcal{A}'$ such that for every $A \in \mathcal{A}$, $x_A = x$. Then \mathcal{A} and $W = W' \cup \{x\}$ are as required.

.