Dispositivo di Fletcher

Dennis Angemi¹, Federica Ingrassia¹, Giuseppe Di Silvestre¹, and Giulia De Luca¹

¹Dipartimento di Fisica e Astronomia "Ettore Majorana" - Università degli Studi di Catania

14 Marzo 2022

Abstract

Si è verificata la dipendenza lineare tra forza e accelerazione dalla misura dei tempi impiegati da un carrello a percorrere un piano in assenza di attrito. Successivamente si è calcolato il valore della massa del carrello e i valori ottenuti risultano essere in buon accordo con il valore aspettato.

1 Introduzione e cenni teorici

La Macchina di Fletcher è un dispositivo che studia e analizza il secondo principio della dinamica, cioè la proporzionalità diretta tra la forza applicata ad un punto materiale e l'accelerazione che si ottiene. Il sistema è formato da un carrello collegato tramite un filo inestensibile ad una massa libera di muoversi verticalmente tramite una carrucola (considerata ideale). Sul sistema agiscono le forze indicate in figura:

Figure 1: Diagramma delle forze

Il carrello si muove di moto rettilineo uniformemente accelerato e non risente delle forze di attrito. Considerando $s_0=0$ e $t_0=0$ abbiamo:

$$s = \frac{1}{2}at^2\tag{1}$$

Da cui si ottiene $a = \frac{2s}{t^2}$.

Considerando le forze applicate al sistema negli assi x e y otterremo:

$$\begin{cases}
T = Ma & \text{nell'asse x} \\
mg - T = ma & \text{nell'asse y}
\end{cases}$$
(2)

In cui:

- ullet T è la tensione applicata sul filo, che in questo caso è anche la forza motrice del carrello sul piano
- ullet M indica la massa del carrello
- a è l'accelerazione del carrello (e quindi anche delle massa in caduta)
- m rappresenta la massa attaccata al filo, libera di muoversi verticalmente

La prima equazione del sistema (2) esprime la seconda legge della dinamica sull'asse x in cui è assente la forza di attrito radente, in quanto annullata della spinta dell'aria sul carrello. La seconda equazione del sistema (2) esprime, invece, la seconda legge della dinamica sull'asse y. In quest'equazione, oltre la tensione, compare la forza peso della massa applicata che ovviamente cadrà con accelerazione pari a quella del carrello. Risolvendo il sistema si ottiene:

$$M = \frac{m(g-a)}{a} = m\left(\frac{g}{a} - 1\right). \tag{3}$$

2 Apparato sperimentale

2.1 Descrizione apparato

Il macchinario è costituito da un carrello di massa M, su cui è agganciata un'estremità di un filo, che si solleva dalla guida tramite la pressione esercitata dall'aria grazie ad una pompa. Tra la guida e il carrello non è presente nessuna forza d'attrito. La rotaia è dotata di un'elettrocalamita di sgancio del carrello comandata da un pulsante che tiene il carrello fermo. La seconda estremità del filo è agganciata ad un gancio di massa m_0 al quale vengono applicate diverse masse (m_1, m_2, m_3, m_4) . Al di sopra della guida sono posizionate 2 fotocellule disposte ad una distanza $s = s_1 - s_2 = 0.670 \pm 0.002$ m, collegate ad un timer digitale con una sensibilità di 0.001 s.

Figure 2: Apparato sperimentale

2.2 Procedura di misura

Per l'esperimento sono state utilizzate 5 masse diverse nelle seguenti configurazioni: m_0 ; $m_0 + m_1$; $m_0 + m_2$; $m_0 + m_3$; $m_0 + m_4$. Per ogni configurazione sono state effettuate 20 misure dell'intervallo di tempo t impiegato per percorrere lo spazio s.

Corpo	Massa (g)
$\overline{\mathrm{m}0}$	9.85 ± 0.01
m1	10.23 ± 0.01
m2	20.10 ± 0.01
m3	30.33 ± 0.01
m4	40.21 ± 0.01
M	296.5 ± 0.1

2.3 Strumenti di misura

tool	uncertainty	uom
Bilancia	0.01	g
Metro	0.001	m
Cronometro	0.001	\mathbf{s}

3 Analisi dei dati e propagazione degli errori

Dalla seconda legge della dinamica e secondo il diagramma delle forze illustrato in Figura 1

$$\begin{cases} T = Ma \\ mg - T = ma \end{cases} \implies M = m\left(\frac{g}{a} - 1\right) \tag{4}$$

Si procede alla propagazione degli errori

$$\delta M = \left| \frac{\partial M}{\partial m} \right| \delta m + \left| \frac{\partial M}{\partial g} \right| \delta g + \left| \frac{\partial M}{\partial a} \right| \delta a \tag{5}$$

$$\delta M = \left(\frac{g}{a} - 1\right) 2\delta m + \frac{m}{a}\delta g + \frac{mg}{a^2} \left[\frac{2}{\langle t \rangle^2} \left(\delta s + \frac{2s}{\langle t \rangle} \delta t \right) \right]$$
 (6)

4 Risultati e conclusioni

Bla bla

configuration	acceleration (m/s^2)	relative error
$\overline{m_0}$	0.339 ± 0.002	0.59~%
$m_0 + m_1$	0.688 ± 0.006	0.87~%
$m_0 + m_2$	1.002 ± 0.008	0.80~%
$m_0 + m_3$	1.320 ± 0.007	0.53~%

configuration	acceleration (m/s^2)	relative error
$\overline{m_0 + m_4}$	1.600 ± 0.009	0.56 %

configuration	force (N)	relative error
$\overline{m_0}$	0.093 ± 0.001	1.08 %
$m_0 + m_1$	0.183 ± 0.002	1.09 %
$m_0 + m_2$	0.263 ± 0.003	1.14~%
$m_0 + m_3$	0.341 ± 0.004	1.17~%
$m_0 + m_4$	0.410 ± 0.006	1.46~%

configuration	mass (g)	relative error
$\overline{m_0}$	275 ± 5	1.82 %
$m_0 + m_1$	266 ± 6	2.26~%
$m_0 + m_2$	263 ± 6	2.28~%
$m_0 + m_3$	258 ± 5	1.94~%
$m_0 + m_4$	256 ± 5	1.95~%

Figure 3: Forza-accelerazione, correlazione lineare e retta teorica

5 Additional notes

5.1 Data Availability

The data that support the findings of this study are openly available in dennisangemi/lab1-dfa GitHub Repository at https://github.com/dennisangemi/lab1-dfa/tree/main/exp-3/data under CC-BY 4.0 license.

5.2 Code Availability

The MATLAB code written to get the findings of this study is openly available in dennisangemi/lab1-dfa GitHub Repository at https://github.com/dennisangemi/lab1-dfa/tree/main/exp-3/script

5.3 Software used

• MATLAB: Data Analysis

• Google Spreadsheet: Data entry

• Adobe Experience Design: Images designing

• GitHub: Resource sharing

6 Bibliography

• Taylor, J. (1999). Introduzione all'analisi degli errori: Lo studio delle incertezze nelle misure fisiche. Zanichelli

• Bevington P. (2002). Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Education

• Malthe-Sørenssen, A. (2015). Elementary Mechanics Using Matlab: A Modern Course Combining Analytical and Numerical Techniques. Springer

7 Appendice A

7.1 Tabella 6

dimension	value	uncertainty	uom
s1	1.775	0.001	MTR
s2	1.105	0.001	MTR
s3	0.425	0.001	MTR
su	0.539	0.001	MTR
m0	9.85	0.01	GRM
m1	10.23	0.01	GRM
m2	20.10	0.01	GRM
m3	30.33	0.01	GRM
m4	40.21	0.01	GRM
<u>M</u>	296.5	0.1	GRM

7.2 Tabella 7

index	mass	t1	uncertainty	uom
1	m_0	1.983	0.001	SEC
2	m_0	1.983	0.001	SEC
3	m_0	1.981	0.001	SEC
4	m_0	1.989	0.001	SEC
5	m_0	1.990	0.001	SEC
6	m_0	1.984	0.001	SEC
7	m_0	1.988	0.001	SEC
8	m_0	1.991	0.001	SEC
9	m_0	1.984	0.001	SEC
10	m_0	1.990	0.001	SEC
11	m_0	1.990	0.001	SEC
12	m_0	1.993	0.001	SEC
13	m_0	1.987	0.001	SEC
14	m_0	1.985	0.001	SEC
15	m_0	1.994	0.001	SEC
16	m_0	1.986	0.001	SEC
17	m_0	1.982	0.001	SEC
18	m_0	1.984	0.001	SEC
19	m_0	1.998	0.001	SEC
20	m_0	1.985	0.001	SEC
1	$m_0 + m_1$	1.402	0.001	SEC
2	$m_0 + m_1$	1.400	0.001	SEC
3	$m_0 + m_1$	1.400	0.001	SEC
4	$m_0 + m_1$	1.402	0.001	SEC
5	$m_0 + m_1$	1.404	0.001	SEC
6	$m_0 + m_1$	1.389	0.001	SEC
7	$m_0 + m_1$	1.393	0.001	SEC
8	$m_0 + m_1$	1.396	0.001	SEC
9	$m_0 + m_1$	1.390	0.001	SEC
10	$m_0 + m_1$	1.402	0.001	SEC
11	$m_0 + m_1$	1.389	0.001	SEC
12	$m_0 + m_1$	1.402	0.001	SEC
13	$m_0 + m_1$	1.390	0.001	SEC
14	$m_0 + m_1$	1.393	0.001	SEC
15	$m_0 + m_1$	1.393	0.001	SEC
16	$m_0 + m_1$	1.394	0.001	SEC
17	$m_0 + m_1$	1.394	0.001	SEC
18	$m_0 + m_1$	1.394	0.001	SEC
19	$m_0 + m_1$	1.392	0.001	SEC
20	$m_0 + m_1$	1.394	0.001	SEC
1	$m_0 + m_2$	1.151	0.001	SEC
2	$m_0 + m_2$	1.154	0.001	SEC
3	$m_0 + m_2$	1.159	0.001	SEC
4	$m_0 + m_2$	1.159	0.001	SEC
5	$m_0 + m_2$	1.159	0.001	SEC

index	mass	t1	uncertainty	uom
6	$m_0 + m_2$	1.161	0.001	SEC
7	$m_0 + m_2$	1.154	0.001	SEC
8	$m_0 + m_2$	1.152	0.001	SEC
9	$m_0 + m_2$	1.154	0.001	SEC
10	$m_0 + m_2$	1.151	0.001	SEC
11	$m_0 + m_2$	1.152	0.001	SEC
12	$m_0 + m_2$	1.158	0.001	SEC
13	$m_0 + m_2$	1.158	0.001	SEC
14	$m_0 + m_2$	1.160	0.001	SEC
15	$m_0 + m_2$	1.161	0.001	SEC
16	$m_0 + m_2$	1.159	0.001	SEC
17	$m_0 + m_2$	1.159	0.001	SEC
18	$m_0 + m_2$	1.157	0.001	SEC
19	$m_0 + m_2$	1.154	0.001	SEC
20	$m_0 + m_2$	1.152	0.001	SEC
1	$m_0 + m_3$	1.012	0.001	SEC
2	$m_0 + m_3$	1.010	0.001	SEC
3	$m_0 + m_3$	1.010	0.001	SEC
4	$m_0 + m_3$	1.009	0.001	SEC
5	$m_0 + m_3$	1.008	0.001	SEC
6	$m_0 + m_3$	1.009	0.001	SEC
7	$m_0 + m_3$	1.010	0.001	SEC
8	$m_0 + m_3$	1.009	0.001	SEC
9	$m_0 + m_3$	1.009	0.001	SEC
10	$m_0 + m_3$	1.008	0.001	SEC
11	$m_0 + m_3$	1.006	0.001	SEC
12	$m_0 + m_3$	1.007	0.001	SEC
13	$m_0 + m_3$	1.007	0.001	SEC
14	$m_0 + m_3$	1.008	0.001	SEC
15	$m_0 + m_3$	1.006	0.001	SEC
16	$m_0 + m_3$	1.006	0.001	SEC
17	$m_0 + m_3$	1.005	0.001	SEC
18	$m_0 + m_3$	1.005	0.001	SEC
19	$m_0 + m_3$	1.004	0.001	SEC
20	$m_0 + m_3$	1.005	0.001	SEC
1	$m_0 + m_4$	0.913	0.001	SEC
2	$m_0 + m_4$	0.913	0.001	SEC
3	$m_0 + m_4$	0.914	0.001	SEC
4	$m_0 + m_4$	0.913	0.001	SEC
5	$m_0 + m_4$	0.914	0.001	SEC
6	$m_0 + m_4$	0.915	0.001	SEC
7	$m_0 + m_4$	0.912	0.001	SEC
8	$m_0 + m_4$	0.914	0.001	SEC
9	$m_0 + m_4$	0.914	0.001	SEC
10	$m_0 + m_4$	0.916	0.001	SEC
11	$m_0 + m_4$	0.918	0.001	SEC
12	$m_0 + m_4$	0.918	0.001	SEC

index	mass	t1	uncertainty	uom
13	$m_0 + m_4$	0.915	0.001	SEC
14	$m_0 + m_4$	0.918	0.001	SEC
15	$m_0 + m_4$	0.918	0.001	SEC
16	$m_0 + m_4$	0.915	0.001	SEC
17	$m_0 + m_4$	0.915	0.001	SEC
18	$m_0 + m_4$	0.915	0.001	SEC
19	$m_0 + m_4$	0.915	0.001	SEC
20	$m_0 + m_4$	0.916	0.001	SEC