DULCES SUEÑOS PREDICTIVOS

DETECTANDO TRASTORNOS DEL SUEÑO CON CIENCIA DE DATOS

Se estima que alrededor del **27,3 % de la población mundial** padece al menos un trastorno del sueño, lo que equivale a aproximadamente **2.100 millones de personas** (basado en una población global de ~7.700 millones).

Algunos trastornos concretos destacan por su magnitud:

Apnea obstructiva del sueño (OSA): afecta cerca de 1.000 millones de adultos de entre 30 y 69 años en todo el mundo.

Insomnio: entre el 10 % y el 30 % de los adultos tienen síntomas de insomnio en un momento dado, lo que supondría entre 770 millones y 2.300 millones de personas.

En conjunto, estos datos reflejan que los trastornos del sueño constituyen un **problema de salud pública de primer orden,** con miles de millones de afectados en todas las edades y regiones.

OBJETIVOS

Este proyecto tiene como objetivo desarrollar un sistema que **permita detectar trastornos del sueño** a partir de datos obtenidos en DataSets de Kaggle. El enfoque se basa en un proceso de 3 etapas:

- 1. Detección binaria: determinar si una persona presenta o no un trastorno del sueño.
- **2. Clasificación del tipo de trastorno**: Identificar de qué trastorno se trata (por ejemplo, insomnio, apnea, narcolepsia, etc.).
- **3. Segmentación de pacientes (Clustering)**: Identificar perfiles de riesgo o patrones de comportamiento.

Finalmente se ha realizado **una aplicación web** interactiva, que, según el tipo de trastorno diagnosticado por el modelo, **ofrece sugerencias prácticas** y adaptadas para mejorar la calidad del descanso.

PARTES DEL PROYECTO

EDA

01

Análisis Univariante:

• Distribución de la variable objetivo (tipo de trastorno)

Conteo de cada categoría: Trastornos del sueño

- Insomnio: 757
- Apnea obstructiva del sueño: 492
- Apnea del sueño: 490
- Síndrome de piernas inquietas: 213
- Narcolepsia: 187Sin trastorno: 117

Análisis Bivariante:

 Relacionar dos variables para ver patrones, en este caso la variable objetivo con distintos features

Clases de trastornos

0 Insomnio · 1 Narcolepsia · 2 Sin trastorno · 3 Apnea obstructiva · 4 Piernas inquietas · 5 Apnea del sueño

Puntos clave de los boxplots

- Actividad física & pasos diarios: Apnea del sueño (5) muestra la mediana y dispersión más altas.
- Edad: Grupo 5 es el más mayor (mediana ≈ 50 años), 0–4 rondan 33–38 años.
- Calidad del sueño: Peor en Insomnio (0, mediana ≈ 7); el resto ≈ 8-9.

Los pacientes con Apnea del sueño son mayores, con mayor presión arterial, frecuencia cardíaca y actividad física muy variable; los de Insomnio destacan por la peor calidad de sueño.

CONSTRUCCIÓN DE MODELOS

Diagnóstico Confirmado (Clasificación Binaria)

Objetivo: Predecir si un paciente tiene un diagnóstico confirmado (Diagnosis_Confirmed).

- Modelos entrenados:
 - Random Forest (base · balanced · SMOTE)
 - XGBoost (ajuste scale_pos_weight)
 - LightGBM (is_unbalanced=True)
 - Red Neuronal (SMOTE + class_weight)
- Métricas clave: Precisión · Recall · F1 · Exactitud · ROC-AUC
- Selección final:
 - ∘ **Red Neuronal con umbral 0.35** → F1-macro 0.72 · AUC 0.7852 · Recall 73% en clase negativa

Modelo	Recall clase 0	F1 macro	ROC AUC	Accuracy
Random Forest (base)	0.24	0.65	_	0.89
Random Forest + balanced	0.75	0.52	_	0.60
Random Forest + SMOTE	0.69	0.54	_	0.63
XGBoost	0.78	0.52	_	0.59
LightGBM	0.24	0.65	_	0.89
Red Neuronal (Keras)	0.73 (umbral 0.35)	0.72	0.7852	0.72

Tipo de Trastorno (Clasificación Multiclase)

Objetivo: Identificar el tipo de trastorno (Sleep_disorder).

- Modelos entrenados: RF (balanced) · XGBoost · LightGBM · Stacking· Red Neuronal
- Métrica principal: F1-ponderado · Exactitud
- Resultado:
 - ∘ Random Forest mejor rendimiento → F1 weighted 0.563
 - o Red Neuronal se quedó cerca, pero no superó al ensemble

Modelo	Accuracy	F1-score (w)	
RandomForest	0.531	0.563	
XGBoost	0.588	0.560	
LightGBM	0.531	0.563	
Stacking	0.540	0.495	
Red Neuronal	0.546	0.560	

Segmentación de Pacientes (Clustering No Supervisado)

- Métodos probados:
 - K-Means (k óptimo = 4)
 - DBSCAN (demasiado ruido)
 - Clustering jerárquico (Ward)
- Preprocesamiento: StandardScaler + PCA(2D)
- Elección final:
 - \circ K-Means (k=4) \rightarrow perfiles diferenciados, validado con PCA

Cluster	Edad	Sueño (Duración/Calida d)	Actividad	Estrés	Salud Física
0	~41	Largo y de calidad	Moderada	Bajo	IMC y presión bajos
1	~49	Corto y de baja calidad	Muy alta	Alto	IMC y presión altos
2	~37	Moderado y de baja calidad	Baja	Medio	Presión media
3	~53	Largo y de muy buena calidad	Alta	Muy bajo	IMC alto

PREDICCIÓN Y RESULTADOS FINALES 01 02 03

Diagnóstico Binario

- **Técnicas de balanceo** (SMOTE, class_weight, scale_pos_weight...) son clave en datos desbalanceados.
- **Métricas múltiple**s permiten evaluar distintos aspectos (errores de cada tipo).
- Ajustar el umbral (de 0.5 a 0.35)
 ayuda a optimizar la métrica que más
 nos importa (por ejemplo, maximizar
 Recall).

La elección final recaía en el modelo y umbral que dieran el **mejor F1-macro** y AUC manteniendo un **nivel aceptable de errores en la clase negativa.**

Clasificación Multiclase

- En problemas multiclase con datos desequilibrados, a veces un Random Forest con class_weight='balanced' rinde tan bien o mejor que modelos más complejos.
- El **stacking suele ayudar**, pero aquí el RF puro fue suficiente para liderar.

La **métrica F1-ponderado** es clave cuando queremos un buen desempeño en todas las clases, no sólo en las más frecuentes.

Segmentación de Pacientes

- El preprocesamiento con escalado y PCA facilita el análisis y la visualización.
- K-Means con k=4 dio grupos bien diferenciados; DBSCAN generó demasiado "ruido" y el clustering jerárquico fue menos claro.
- La validación visual en el espacio de las dos componentes principales confirma que los perfiles son consistentes.

Estos **clusters** permiten ahora entender mejor la población de pacientes y diseñar intervenciones específicas para cada grupo.

APLICACIÓN INTERACTIVA EN STREAMLIT

CONCLUSIONES FINALES

Conclusiones Principales

- Es viable detectar y clasificar trastornos del sueño con datos clínicos y de estilo de vida, logrando buen rendimiento tras balancear clases (SMOTE, class_weight).
- La aplicación en **Streamlit** facilita la interpretación y despliegue de los resultados para el usuario final.

Áreas de Mejora

• Datos sintéticos y origen limitado: falta reflejar la variabilidad clínica real.

Futuros Pasos

- 1. Enriquecer el dataset con fuentes reales (hospitales, clínicas).
- 2. Incorporar **nuevas variables** (historial médico, hábitos nocturnos...).
- 3. Probar **arquitecturas avanzadas** (redes recurrentes, transformers) para captar dependencias temporales.
- 4. **Mejorar la app** añadiendo generación automática de informes y conexión con dispositivos de monitoreo.

MUCHAS GRACIAS!!