Àlex Batlle Casellas

12. Si $A \subset \mathbb{R}^{m}$, demostreu que:

- a) \mathring{A} és el conjunt obert més gran contingut en A. És a dir, si B és un obert dins A, aleshores $B \subset \mathring{A}$.
- b) \bar{A} és el conjunt tancat més petit que conté A. És a dir, si C és un tancat que conté A, aleshores $\bar{A} \subset C$.

Resolució

- a) B és obert $\iff \mathring{B} = B \iff \forall p \in B \ \exists B_r(p) \subset B \implies \forall p \in B \subset A \ \exists B_r(p) \subset B \subset A \implies \mathring{B} \subset \mathring{A} \implies B \subset \mathring{A}.\square$
- b) $\forall p \in \bar{A} \ (\forall B_r(p) \ A \cap B_r(p) \neq \emptyset) \implies \forall p \in \bar{A} \ (\forall B_r(p) \ C \cap B_r(p) \neq \emptyset) \implies \forall p \in \bar{A}, p \in \bar{C} = C \implies \bar{A} \subset C.\Box$
- **13.** Donats dos conjunts A, B, es defineix $A + B = \{x + y \mid x \in A, y \in B\}$. Suposeu A obert.
 - a) Demostreu que si $y \in B$, el conjunt $A + \{y\}$ és obert.
 - b) Demostreu que el conjunt A + B és obert.

Resolució

a)

b)

15. Demostreu que:

- a) La intersecció d'un nombre arbitrari (finit o infinit) de subconjunts compactes de \mathbb{R}^n també és compacte.
- b) La unió d'un nombre finit de subconjunts compactes de \mathbb{R}^n també és compacte.
- c) La unió d'un nombre infinit de subconjunts compactes de \mathbb{R}^n pot no ser compacte. (Doneu-ne exemples).

Resolució

a) Com que ens trobem a \mathbb{R}^n , n'hi ha prou amb demostrar que la intersecció arbitrària de tancats és tancada i que la intersecció arbitrària de fitats és fitada.

Tancada.

Fitada.

b)

c)