

Prototyping Transparent and Flexible Electrochromic Displays

Markus Löchtefeld

Aalborg University mloc@create.aau.dk

Walther Jensen

Aalborg University bwsj@create.aau.dk

Overview

- EU funded Horizon2020 project
- 4 year project (January 2018 – December 2021)
- 7M€ total budget
- 14 partner organisations from 9 countries

The Goal:

Electrochromic?

Basically it is Rust...

Ink that can can be oxidized and reduced through

electricity

- BUT:
 - In one of the states it is transparent!
 - Reversible Process!

How does it work?

Smart Windows...

Production

Technology Strong Points

Technology Strong Points

Application Cases

- Switchable Logo's and Sign's
 - Simple switch of the two sides
 - Exploit possibility of transparency and flexibility
 - Context adaptive

Application Cases

- Switchable Logo's and Sign's
 - Simple switch of the two sides
 - Exploit possibility of transparency and flexibility
 - Context adaptive

Application Cases

- Interactive Paper Overlays
 - Exploit cheap printed graphics and make them interactive
 - Low-Energy Consumption

Smarter Windows

ShadowLamp

Banksy

Shoes

What's next?

Vision – Smart Furniture

Vision – Smart Buildings

Vision – Active Life

Follow our Progress!

Website: https://decochrom.com/

Facebook: https://www.facebook.com/decochrom/

Instagram: @decochrom

Please if you post something about today: #decochrom

Construction of Electrochromic Displays

How does it work?

How does it work?

What you need

PET-ITO PEDOT:PSS Electrolyte

What you need

Spacermaterial

Copper Tape

Printing

Ink-Jet

Silkscreen

Difference in Printing Methods?

However...

• Ink-Jet printed Fraunhofer "Prussian Blue"

Assembly of the Display

- How do we put this together?
 - Cut the PET-ITO
 - Spacer Alignment
 - Add Electrolyte
 - Distribute Electrolyte
 - Add copper tape & test Display

Assembly of the Display

Step 1: Cutting PET-ITO

- Put on gloves
- Cut off excess PET-ITO
 - Try not to touch the printed area
- Stick lead area to something
 - This will keep the side fixed
 - Remember to keep ITO (conductive) side up

Step 2: Spacer and Alignment

- Add spacer to stuck layer
 - As precise as possible
- Align top with bottom
 - (TIP) Use one hand to keep it in place

• This will help keep the alignment

Step 3: Add Electrolyte

Flip top layer over

Dispense electrolyte

- Remove top part of spacer protection
 - Make sure top parts of the PET-ITO are connected by the spacer before electrolyte reaches edge

Step 4: Distribute Electrolyte

Slowly press electrolyte towards edges

- Remove spacer protection as electrolyte is distributed
 - Make sure spacer is adhered before electrolyte reaches it
- Air bubbles will most likely form. Make sure they are moved to one corner and slowly pushed out.

Step 5: Finish Display

Add copper-tape to leads

Test with 1.5V (e.g. one AAA Battery)

• If it works? Celebrate!

On YouTube

https://www.youtube.com/watch?v=NQZ86fj5fMw

Design of Electrochromic Displays

Design

Conductive Lead Spacer area Registration lines Print area

Design the display

One side needs to be flipped!

What to take into account?

Space between ink electrodes vs speed

Size of ink electrodes

Balancing the ink on both sides

Adobe Illustrator Plug-In

https://github.com/DecoChrom/IllustratorExtension

Co-Planar?

