Syntax -Parsing I

Pawan Goyal

CSE, IIT Kharagpur

Week 5: Lecture 2

Grammar Rewrite Rules

 $S \rightarrow NP VP$ $Det \rightarrow that \mid this \mid a \mid the$ $S \rightarrow Aux NP VP$

 $\mathsf{Noun} \to \mathit{book} \mid \mathit{flight} \mid \mathit{meal} \mid \mathit{man}$

 $S \rightarrow VP$ $Verb \rightarrow book \mid include \mid read$

 $Aux \rightarrow does$

 $NP \rightarrow Det NOM$ NOM → Noun

NOM → Noun NOM

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

Grammar Rewrite Rules

 $S \rightarrow NP VP$

 $\mathsf{S} \to \mathsf{Aux}\;\mathsf{NP}\;\mathsf{VP}$

 $S \rightarrow VP$

 $NP \rightarrow Det NOM$

 $\mathsf{NOM} \to \mathsf{Noun}$

 $NOM \rightarrow Noun NOM$

 $\mathsf{VP} \to \mathsf{Verb}$

 $\mathsf{VP} \to \mathsf{Verb} \; \mathsf{NP}$

 $Det \rightarrow that \mid this \mid a \mid the$

 $\mathsf{Noun} \to \mathit{book} \mid \mathit{flight} \mid \mathit{meal} \mid \mathit{man}$

 $Verb \rightarrow book \mid include \mid read$

 $Aux \rightarrow does$

 $S \rightarrow NP VP$

- \rightarrow Det NOM VP
- \rightarrow *The* NOM VP
- \rightarrow *The* Noun VP
- \rightarrow The man VP
- \rightarrow *The man* Verb NP
- \rightarrow The man read NP
- ightarrow The man read Det NOM
- ightarrow The man read this NOM
- → The man read this Noun
- → The man read this book

Parse Tree

- $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$
- \rightarrow Det NOM VP
- \rightarrow The NOM VP
- \rightarrow *The* Noun VP
- \rightarrow The man VP
- → The man Verb NP
- \rightarrow The man read NP
- → The man read Det NOM
- \rightarrow The man read this NOM
- \rightarrow The man read this Noun
- → The man read this book

Parse Tree

- $S \rightarrow NP VP$
- \rightarrow Det NOM VP
- \rightarrow The NOM VP
- → The Noun VP
- \rightarrow The man VP
- \rightarrow The man Verb NP
- \rightarrow The man read NP
- \rightarrow The man read Det NOM
- \rightarrow The man read this NOM
- → The man read this Noun
- → The man read this book

 The process of taking a string and a grammar and returning all possible parse trees for that string

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol S, which cover exactly the words in the input

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol S, which cover exactly the words in the input

What are the constraints? "book that flight"

- There must be three leaves, book, that and flight
- The tree must have one root, the start symbol S

- The process of taking a string and a grammar and returning all possible parse trees for that string
- That is, find all trees, whose root is the start symbol S, which cover exactly the words in the input

What are the constraints? "book that flight"

- There must be three leaves, book, that and flight
- The tree must have one root, the start symbol S
- Give rise to two search strategies: top-down (goal-oriented) and bottom-up (data-directed)

Parsing

Grammar

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \to VP$

 $NP \rightarrow Pronoun$

NP → Proper-Noun

 $NP \rightarrow Det Nominal$

Nominal → Noun

 $Nominal \rightarrow Nominal\ Noun$

 $Nominal \rightarrow Nominal \ PP$

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Lexicon

Det \rightarrow the | a | that | this

 $Noun \rightarrow book \mid flight \mid meal \mid money$

 $Verb \rightarrow book \mid include \mid prefer$

Pronoun \rightarrow I | he | she | me

 $Proper-Noun \rightarrow Houston \mid NWA$

 $Aux \rightarrow does$

Prep \rightarrow from | to | on | near | through

Parsing

 Searches for a parse tree by trying to build upon the root node S down to the leaves

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- Start by assuming that the input can be derived by the designated start symbol S

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- \bullet Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S on the left-hand side

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S on the left-hand side
- Trees are grown downward until they eventually reach the POS categories at the bottom

- Searches for a parse tree by trying to build upon the root node S down to the leaves
- Start by assuming that the input can be derived by the designated start symbol S
- Find all trees that can start with S, by looking at the grammar rules with S
 on the left-hand side
- Trees are grown downward until they eventually reach the POS categories at the bottom
- Trees whose leaves fail to match the words in the input can be rejected

S

13/60

14/60

22/60

23/60

27/60

- The parser starts with the words of the input, and tries to build trees from the words up, by applying rules from the grammar one at a time
- Parser looks for the places in the parse-in-progress where the right-hand-side of some rule might fit.

book that flight

(ロト (個) (世) (世) (世) (世) (1) (1) (1)

 Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.
- Relative amounts of wasted search depend on how much the grammar branches in each direction.

 To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve $O(n^3)$ recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

 CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar

Dynamic Programming Parsing Methods

- CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar
- Earley Parser top-down, does not require normalizing grammar, more complex

Dynamic Programming Parsing Methods

- CKY (Cocke-Kasami-Younger) algorithm: bottom-up, requires normalizing the grammar
- Earley Parser top-down, does not require normalizing grammar, more complex
- More generally, chart parsers retain completed phrases in a chart and can combine top-down and bottom-up searches.

CKY Algorithm

- Grammar must be converted to Chomsky normal form (CNF) in which all productions must have
 - Either, exactly two non-terminals on the RHS
 - Or, 1 terminal symbol on the RHS

CKY Algorithm

- Grammar must be converted to Chomsky normal form (CNF) in which all productions must have
 - Either, exactly two non-terminals on the RHS
 - Or, 1 terminal symbol on the RHS
- Parse bottom-up storing phrases formed from all substrings in a triangular table (chart)

Converting to CNF

Original Grammar

 $S \to NP \, VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → Pronoun

 $NP \rightarrow Proper-Noun$

 $NP \rightarrow Det Nominal$

Nominal → Noun

Nominal → Nominal Noun

 $Nominal \rightarrow Nominal \ PP$

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

 $Pronoun \rightarrow I \ | \ he \ | \ she \ | \ me$

Noun \rightarrow book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$

 $\textbf{Proper-Noun} \rightarrow \textbf{Houston} \mid \textbf{NWA}$

Converting to CNF

Original Grammar

 $S \to NP \, VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $NP \rightarrow Pronoun$

NP → Proper-Noun

 $NP \rightarrow Det\ Nominal$

 $Nominal \rightarrow Noun$

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → Prep NP

 $Pronoun \rightarrow I \mid he \mid she \mid me$

Noun → book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$

Proper-Noun \rightarrow Houston | NWA

Chomsky Normal Form

 $S \rightarrow NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

NP → Houston | NWA

NP → Det Nominal

 $Nominal \rightarrow book \mid flight \mid meal \mid money$

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

 $Pronoun \rightarrow I \mid he \mid she \mid me$

Noun \rightarrow book | flight | meal | money

Verb → book | include | prefer Proper-Noun → Houston | NWA