Dictionary-Free MRI Parameter Estimation via Kernel Ridge Regression

Gopal Nataraj*, Jon-Fredrik Nielsen†, & Jeffrey A. Fessler*

Int'l Symposium on Biomedical Imaging 2017

Departments of *EECS and †BME University of Michigan

Quantitative MRI (QMRI) Parameter Estimation

Given: MR image sequence informative about a physical process

- flow
- diffusion
- multi-compartmental relaxation
- ..

Quantitative MRI (QMRI) Parameter Estimation

Given: MR image sequence informative about a physical process

- flow
- diffusion
- multi-compartmental relaxation
- ...

Task: estimate MR tissue properties characterizing the process

- flow velocity
- diffusivity
- compartmental relaxivity
- . . .

QMRI Problem Statement

Given: at each voxel, image sequence $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$y = s(x, \nu) + \epsilon \tag{1}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{s}: \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$
- $oldsymbol{\epsilon} \in \mathbb{C}^D$

latent free parameters

known parameters

signal model

noise $\sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma})$

QMRI Problem Statement

Given: at each voxel, image sequence $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{1}$$

• $\mathbf{x} \in \mathbb{R}^L$ latent free parameters

• $\nu \in \mathbb{R}^K$ known parameters

• $\mathbf{s}: \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$ signal model

 $oldsymbol{\epsilon} \in \mathbb{C}^D$ noise $\sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \boldsymbol{\nu})$

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- ullet signal ullet might be difficult to write in closed form

Task: construct fast estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters

Task: construct fast estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters
- grid search e.g., for MR fingerprinting [Ma et al., 2013]

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
(1-compartment) relaxivity	3	$\sim 100^2$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
(1-compartment) relaxivity	3	$\sim 100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	${\sim}100^6$
2-3 compartment relaxivity		$\sim \! 100^5 - 100^9$

5

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
(1-compartment) relaxivity	3	${\sim}100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	${\sim}100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Can we scale computation with L more gracefully?

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\operatorname{Re}(\mathbf{y}_n)^\mathsf{T}, \operatorname{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

Idea: learn a nonlinear estimator from simulated training data

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$(\widehat{h}_l, \widehat{b}_l) \in \left\{ \arg \min_{\substack{h_l \\ b_l \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_l(\mathbf{q}_n) + b_l - x_{l,n})^2 \right\}$$

6

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\text{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \text{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$(\widehat{h}_l, \widehat{b}_l) \in \left\{ \arg \min_{\substack{h_l \\ b_l \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_l(\mathbf{q}_n) + b_l - x_{l,n})^2 \right\}$$
 ill-posed!

Idea: learn a nonlinear estimator from simulated training data

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\text{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \text{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\} \quad (2)$$

Solution: solve a kernel ridge regression (KRR) problem

- restrict function space over which we optimize
- include function regularization

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with *reproducing property*

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

7

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with reproducing property

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

Relevant facts

- Bijection between RKHS \mathbb{H} and RK k [Aronszajn, 1950]
- Function $k(\cdot, \mathbf{q}) \in \mathbb{H}$ called a *feature mapping*

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

- Nonlinear kernel corresponds to nonlinear estimation
- ullet We use $k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-rac{1}{2}ig\|\mathbf{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}')ig\|_2^2
 ight)$

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(3)

8

Choose: RK $k: \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(3)

• Optimal \hat{h}_l over \mathbb{H} takes form [Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
 (4)

Choose: RK $k: \mathcal{Q}^2 \mapsto \mathbb{R}$, which induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, ..., L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(3)

• Optimal \hat{h}_l over \mathbb{H} takes form [Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
(4)

• Plug (4) into (3); solve now instead for $(\widehat{a}_l, \widehat{b}_l)$; construct:

$$\widehat{x}_{l}(\cdot) = \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n}) + \widehat{b}_{l}$$
 (5)

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(6)

• $\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T}$ training pt regressands

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(6)

$$\bullet \ \mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T} \qquad \text{training pt regressands}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$$
 Gram matrix

C

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M} (\mathsf{K} \mathsf{M} + N \rho_{l} \mathsf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(6)

•
$$\mathbf{x}_{l} := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_{1}, \mathbf{q}_{1}) & \cdots & k(\mathbf{q}_{1}, \mathbf{q}_{N}) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_{N}, \mathbf{q}_{1}) & \cdots & k(\mathbf{q}_{N}, \mathbf{q}_{N}) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_{N} - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}}$ de-meaning operator

C

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M} (\mathsf{K} \mathsf{M} + N \rho_{l} \mathsf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(6)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt re

• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix

• $M := I_N - \frac{1}{N} I_N I_N^T$

•
$$\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$$

training pt regressands

de-meaning operator nonlin kernel embedding

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(6)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^{\mathsf{T}}$ de-meaning operator
• $\mathbf{k}(\cdot) := [k(\cdot, \mathbf{q}_1), \dots, k(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$ nonlin kernel embedding

Can we scale computation with L more gracefully?

• Yes, in fact (6) separable in $I \in \{1, ..., L\}$ by construction

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(6)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^{\mathsf{T}}$ de-meaning operator
• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$ nonlin kernel embedding

Can we scale computation with *L* more gracefully?

- Yes, in fact (6) separable in $l \in \{1, ..., L\}$ by construction
- However, explicitly computing **K** may be undesirable...

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\dots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$ $\mathbf{K} \approx \tilde{\mathbf{Z}}^T \tilde{\mathbf{Z}}. \tag{7}$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (7)

Plugging (7) into KRR solution (6) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathbf{1}_{N} + \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} \left(\frac{1}{N} \widetilde{\mathsf{Z}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} + \rho_{l} \mathsf{I}_{Z} \right)^{-1} \left(\widetilde{\mathsf{z}}(\cdot) - \frac{1}{N} \widetilde{\mathsf{Z}} \mathbf{1}_{N} \right)$$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for dim $(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (7)

Plugging (7) into KRR solution (6) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \left(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \right)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(8)

which is regularized ("ridge") Z-dimensional affine regression!

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\dots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (7)

Plugging (7) into KRR solution (6) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \Big(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \Big)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(8)

which is regularized ("ridge") Z-dimensional affine regression!

Does such a $\tilde{\mathbf{z}}$ exist and work well in practice?

- Yes, e.g. for "shift invariant" kernels (like our Gaussian) of form $k(\mathbf{q}, \mathbf{q}') \equiv k(\mathbf{q} \mathbf{q}')$ [Rahimi and Recht, 2007]
- ullet In such cases, can reduce from $\sim\!N^2$ to $\sim\!NZ$ computations

Application: Myelin Water Fraction (MWF) Imaging

Application: Myelin Water Fraction (MWF) Imaging

simple two-compartment model

Application: Myelin Water Fraction (MWF) Imaging

simple two-compartment model

Goal: rapidly estimate f_F (proxy for MWF) in white matter (WM)

Application: MWF Imaging

Problem dimensions (per voxel)

- $\mathbf{x} \leftarrow [f_{\mathrm{F}}, T_{1,\mathrm{F}}, T_{2,\mathrm{F}}, T_{1,\mathrm{S}}, T_{2,\mathrm{S}}, m_0]^{\mathsf{T}}$
- u \leftarrow flip angle variation
- y ← voxel values from 10 datasets

[Nataraj et al., 2017]

Application: MWF Imaging

Problem dimensions (per voxel)

- $\mathbf{x} \leftarrow [f_{\mathrm{F}}, T_{1,\mathrm{F}}, T_{2,\mathrm{F}}, T_{1,\mathrm{S}}, T_{2,\mathrm{S}}, m_0]^{\mathsf{T}}$
- ullet u \leftarrow flip angle variation
- y ← voxel values from 10 datasets

[Nataraj et al., 2017]

Use KRR to estimate just $f_{\rm F}$

- Separable prior on \mathbf{x} : f_{F}, m_0 uniform; others log-uniform
- $N \leftarrow 10^6$ training points
- $Z \leftarrow 10^3$ kernel approximation order

Application: MWF Imaging

Problem dimensions (per voxel)

- $\mathbf{x} \leftarrow [f_{F}, T_{1,F}, T_{2,F}, T_{1,S}, T_{2,S}, m_{0}]^{\mathsf{T}}$
- ullet u \leftarrow flip angle variation
- y ← voxel values from 10 datasets

[Nataraj et al., 2017]

Use KRR to estimate just $f_{\rm F}$

- Separable prior on \mathbf{x} : f_{F}, m_0 uniform; others log-uniform
- $N \leftarrow 10^6$ training points
- $Z \leftarrow 10^3$ kernel approximation order

Compare against grid search

- ullet unconstrained search would require $\sim \! 100^5$ dictionary atoms
- we artificially constrain search here to limit computation

MWF Imaging: Simulation Result

Fast-fraction $f_{\rm F}$ estimates, in simulation:

MWF Imaging: Simulation Result

Fast-fraction $f_{\rm F}$ estimates, in simulation:

 \sim 4h 40s training, 2s testing

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

• Full-scale grid search intractable on typical desktop

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

- Full-scale grid search intractable on typical desktop
- KRR estimates in single slice took about 70s

Fast-fraction $f_{\rm F}$ estimates, from 3D Cartesian data

- Full-scale grid search intractable on typical desktop
- KRR estimates in single slice took about 70s
- KRR MWF estimates in WM comparable to literature

Contributions

• Fast KRR method for nonlin MRI multiparameter estimation

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels
- Proof-of-concept in vivo application to MWF imaging

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert *nonlinear estimation* problem into *nonlinear regression* problem that we solve in closed-form with kernels
- Proof-of-concept in vivo application to MWF imaging

Ongoing work

- Conceptual: model selection, performance analysis
- Experimental: validation studies

Contributions

- Fast KRR method for nonlin MRI multiparameter estimation
 - Key insight: even with complicated MR signal models, can simulate training points "for free"
 - Convert nonlinear estimation problem into nonlinear regression problem that we solve in closed-form with kernels
- Proof-of-concept in vivo application to MWF imaging

Ongoing work

- Conceptual: model selection, performance analysis
- Experimental: validation studies

References i

Aronszajn, N. (1950).

Theory of reproducing kernels.

Trans. Amer. Math. Soc., 68(3):337-404.

Bertsimas, D. and Tsitsiklis, J. (1993).

Simulated annealing.

Statistical Science, 8(1):10-15.

Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J. L., Duerk, J. L., and Griswold, M. A. (2013).

Magnetic resonance fingerprinting.

Nature, 495:187-93.

References ii

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017).

Myelin water fraction estimation from optimized steady-state sequences using kernel ridge regression.

In *Proc. Intl. Soc. Mag. Res. Med.* To appear.

Rahimi, A. and Recht, B. (2007).

Random features for large-scale kernel machines.

In NIPS.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In *Proc. Computational Learning Theory (COLT)*, pages 416–426. LNCS 2111.

Backup: An Overview of Model Selection

Some model parameters require manual selection...

• Kernel shape
$$k(\mathbf{q}, \mathbf{q}') \leftarrow \exp\left(-\frac{1}{2} \left\| \mathbf{\Lambda}^{-1} (\mathbf{q} - \mathbf{q}') \right\|_2^2\right)$$

Backup: An Overview of Model Selection

Some model parameters require manual selection...

• Kernel shape
$$k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-\frac{1}{2} \left\| \mathbf{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}') \right\|_2^2\right)$$

Backup: An Overview of Model Selection

Some model parameters require manual selection...

$$ullet$$
 Kernel shape $k(\mathbf{q},\mathbf{q}') \leftarrow \exp\left(-rac{1}{2}ig\|oldsymbol{\Lambda}^{-1}(\mathbf{q}-\mathbf{q}')ig\|_2^2
ight)$

- Prior on **x** from tissue properties
- *N*, *Z* empirical methods

...but others tuned automatically

- Kernel smoothing length-scale $\Lambda \leftarrow \mathsf{diag}\Bigl(\sum_{n=1}^{N} \mathbf{q}_n\Bigr)$
- Regularization parameters $\rho_l \leftarrow \frac{1}{N^2} \mathbf{x}_l^\mathsf{T} \mathbf{M} \mathbf{x}_l$
- ullet Prior on known u density estimation