```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, StratifiedKFold
from \ sklearn.preprocessing \ import \ Standard Scaler, \ Robust Scaler
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_curve, auc, recall_score
from sklearn.pipeline import Pipeline
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline as ImbPipeline
import warnings
warnings.filterwarnings('ignore')
# Load the data
df = pd.read_csv('/content/healthcare-dataset-stroke-data.csv')
# Data exploration and preprocessing
print("Original shape:", df.shape)
print("Missing values:\n", df.isnull().sum())
→ Original shape: (5110, 12)
     Missing values:
     id
     gender
     age
     hypertension
                            0
     heart disease
     ever married
                           0
     work_type
                           0
     Residence_type
                           0
     avg_glucose_level
                           0
     bmi
                          201
     smoking_status
                            0
                            0
     stroke
     dtype: int64
# Feature engineering and improved preprocessing
# Handle missing values better - impute BMI instead of dropping
df['bmi'] = df['bmi'].fillna(df['bmi'].median())
# Drop the ID column
df = df.drop(columns=['id'])
# Check for 'Other' in gender and handle it
if 'Other' in df['gender'].values:
    # Either combine with majority class or create a new category
    df = df[df['gender'] != 'Other'] # Removing for simplicity as these are typically few
# Convert 'ever_married' to binary
df['ever_married'] = df['ever_married'].map({'Yes': 1, 'No': 0})
# Create age groups that might be more predictive
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 50, 65, 100],
                labels=['Child', 'Young_Adult', 'Adult', 'Senior', 'Elderly'])
\# Feature interaction: BMI \times age might be important for stroke
df['bmi_age'] = df['bmi'] * df['age']
# Handling glucose levels - create categories
df['glucose_level'] = pd.qcut(df['avg_glucose_level'], q=4, labels=['Low', 'Medium', 'High', 'Very_High'])
# Better encoding
# One-hot encoding for categorical variables
cat_features = ['gender', 'work_type', 'Residence_type', 'smoking_status', 'age_group', 'glucose_level']
df_encoded = pd.get_dummies(df, columns=cat_features, drop_first=True)
# Separate features and target
X = df_encoded.drop('stroke', axis=1)
y = df_encoded['stroke']
# Print column names to verify encoding
```

print("\nFeatures after preprocessing:")

```
print(X.columns.tolist())
print(f"Total features: {X.shape[1]}")
     Features after preprocessing:
     ['age', 'hypertension', 'heart_disease', 'ever_married', 'avg_glucose_level', 'bmi', 'bmi_age', 'gender_Male', 'work_type_Never_worked', 'work_typ
     Total features: 23
# Split data with stratification to maintain class distribution
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
print("Class distribution in training set:")
print(y_train.value_counts(normalize=True))
Transport Class distribution in training set:
     stroke
     0
         0.951309
          0.048691
     Name: proportion, dtype: float64
# Function to evaluate and print model performance
def evaluate_model(model, X_test, y_test, model_name="Model"):
    y_pred = model.predict(X_test)
   y_prob = model.predict_proba(X_test)[:, 1]
    # Calculate metrics
   acc = accuracy_score(y_test, y_pred)
    tn, fp, fn, tp = confusion_matrix(y_{test}, y_{pred}).ravel()
    sensitivity = recall_score(y_test, y_pred, pos_label=1)
   specificity = tn / (tn + fp)
   print(f"\n{model_name} Results:")
   print(f"Accuracy : {round(acc * 100, 2)}%")
    print(f"Sensitivity (Recall for 1): {round(sensitivity * 100, 2)}%")
    print(f"Specificity (Recall for 0): {round(specificity * 100, 2)}%")
    print("\nClassification Report:")
   print(classification_report(y_test, y_pred))
    # Plot confusion matrix
   plt.figure(figsize=(6, 4))
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
   plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title(f"Confusion Matrix - {model_name}")
   plt.show()
   # ROC curve
    fpr, tpr, _ = roc_curve(y_test, y_prob)
   roc_auc = auc(fpr, tpr)
    plt.figure(figsize=(6, 4))
   plt.plot(fpr, tpr, label=f'AUC = {roc_auc:.3f}')
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlabel("False Positive Rate")
   plt.ylabel("True Positive Rate")
    plt.title(f"ROC Curve - {model_name}")
    plt.legend()
   plt.show()
    return acc, sensitivity, specificity, roc_auc
# ----- APPROACH 1: Advanced Logistic Regression with proper scaling ------
\ensuremath{\text{\#}} Create a pipeline with scaling and logistic regression
pipe_lr = Pipeline([
    ('scaler', StandardScaler()),
    ('classifier', LogisticRegression(max_iter=1000, class_weight='balanced', C=0.1))
1)
# Train the model
pipe_lr.fit(X_train, y_train)
\rightarrow
                 Pipeline
           StandardScaler ?
           LogisticRegression
```

```
# Evaluate
lr_metrics = evaluate_model(pipe_lr, X_test, y_test, "Logistic Regression with Scaling")
     Logistic Regression with Scaling Results:
     Accuracy
               : 69.47%
     Sensitivity (Recall for 1): 82.0%
    Specificity (Recall for 0): 68.83%
    Classification Report:
                   precision
                                recall f1-score
                                                   support
                0
                        0.99
                                  0.69
                                                       972
                                            0.81
                1
                        0.12
                                  0.82
                                            0.21
                                                        50
                                                      1022
         accuracy
                                            0.69
```


0.75

0.51

1022


```
# --------
# Create a pipeline with SMOTE
smote_pipe = ImbPipeline([
    ('scaler', StandardScaler()),
    ('smote', SMOTE(random_state=42)),
    ('classifier', LogisticRegression(max_iter=1000, C=0.1))
])
```

smote_pipe.fit(X_train, y_train)

macro avg

0.55

Evaluate
smote_metrics = evaluate_model(smote_pipe, X_test, y_test, "Logistic Regression with SMOTE")

```
Logistic Regression with SMOTE Results:
Accuracy : 69.47%
Sensitivity (Recall for 1): 82.0%
Specificity (Recall for 0): 68.83%
```

Classification Report:

grid_search.fit(X_train, y_train)

support	f1-score	recall	precision	
972	0.81	0.69	0.99	0
50	0.21	0.82	0.12	1
1022	0.69			accuracy
1022	0.51	0.75	0.55	macro avg
1022	0.78	0.69	0.94	weighted avg

Confusion Matrix - Logistic Regression with SMOTE

ROC Curve - Logistic Regression with SMOTE


```
GridSearchCV

best_estimator_:
RandomForestClassifier

RandomForestClassifier
```

```
# Get the best model
best_rf = grid_search.best_estimator_
print(f"\nBest RF Parameters: {grid_search.best_params_}")
```

•

Best RF Parameters: {'class_weight': 'balanced', 'max_depth': 10, 'min_samples_split': 5, 'n_estimators': 100}

Evaluate the best model
rf_metrics = evaluate_model(best_rf, X_test, y_test, "Optimized Random Forest")

Optimized Random Forest Results:
Accuracy : 91.1%
Sensitivity (Recall for 1): 34.0%
Specificity (Recall for 0): 94.03%

Classification Report:

	precision	recall	f1-score	support
0	0.97	0.94	0.95	972
1	0.23	0.34	0.27	50
accuracy			0.91	1022
macro avg	0.60	0.64	0.61	1022
weighted avg	0.93	0.91	0.92	1022


```
₹
```

 ${\tt GradientBoostingClassifier}$ GradientBoostingClassifier(n_estimators=200, random_state=42)

gb_metrics = evaluate_model(gb, X_test, y_test, "Gradient Boosting")

Gradient Boosting Results:

Accuracy : 94.62%

Sensitivity (Recall for 1): 4.0%

Specificity (Recall for 0): 99.28%

Classification Report:

	precision	recall	f1-score	support
0	0.95 0.22	0.99 0.04	0.97 0.07	972 50
-	0.22	0.04	0.07	30
accuracy			0.95	1022
macro avg weighted avg	0.59 0.92	0.52 0.95	0.52 0.93	1022 1022

ROC Curve - Gradient Boosting


```
# ----- APPROACH 5: SVM with class weights and proper scaling -----
svm_pipe = Pipeline([
```

('scaler', RobustScaler()), # RobustScaler is good for datasets with outliers

('classifier', SVC(probability=True, class_weight='balanced', C=1.0, gamma='scale', kernel='rbf'))

Train

svm_pipe.fit(X_train, y_train)


```
→
```

```
Support Vector Machine Results:
Accuracy : 73.19%
Sensitivity (Recall for 1): 76.0%
Specificity (Recall for 0): 73.05%
```

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.73	0.84	972
1	0.13	0.76	0.22	50
accuracy			0.73	1022
macro avg weighted avg	0.56 0.94	0.75 0.73	0.53 0.81	1022 1022

ROC Curve - Support Vector Machine 1.0 - AUC = 0.792 0.8 - 0.6 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 False Positive Rate

```
# ------ APPROACH 6: Ensemble of models (Voting) ------
from sklearn.ensemble import VotingClassifier

# Create a voting classifier
voting_clf = VotingClassifier(
    estimators=[
        ('lr', pipe_lr),
        ('rf', best_rf),
        ('gb', gb),
        ('svm', svm_pipe)
    ],
    voting='soft' # Use probability estimates for prediction
)
```

```
# Train
voting_clf.fit(X_train, y_train)
```



```
VotingClassifier
                                                                            gb
StandardScaler
                              RandomForestClassifier
                                                             GradientBoostingClassifier
                                                                                                    ▶ RobustScaler
LogisticRegression
                                                                                                        ▶ SVC
```

```
# Evaluate
ensemble_metrics = evaluate_model(voting_clf, X_test, y_test, "Ensemble Model (Voting)")
```

```
Ensemble Model (Voting) Results:
Accuracy
             : 94.52%
Sensitivity (Recall for 1): 10.0%
Specificity (Recall for 0): 98.87%
```

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.99	0.97	972
1	0.31	0.10	0.15	50
accuracy			0.95	1022
macro avg weighted avg	0.63 0.92	0.54 0.95	0.56 0.93	1022 1022

Confusion Matrix - Ensemble Model (Voting)

ROC Curve - Ensemble Model (Voting)


```
# Compare all models
models = ["Logistic Regression", "LR with SMOTE", "Random Forest", "Gradient Boosting", "SVM", "Ensemble"]
metrics = [lr_metrics, smote_metrics, rf_metrics, gb_metrics, svm_metrics, ensemble_metrics]
```

```
# Create comparison dataframe
comparison = pd.DataFrame({
   'Model': models,
     'Accuracy (%)': [round(m[0]*100, 2) for m in metrics],
     'Sensitivity (%)': [round(m[1]*100, 2) for m in metrics], 'Specificity (%)': [round(m[2]*100, 2) for m in metrics],
      'AUC': [round(m[3], 3) for m in metrics]
})
```

```
print("\n--- Model Comparison ---")
print(comparison)
\overline{2}
         Model Comparison ---
                       Model Accuracy (%)
                                             Sensitivity (%)
                                                               Specificity (%)
     0
        Logistic Regression
                                      69.47
                                                         82.0
                                                                          68.83
                                                                                 0.833
     1
               LR with SMOTE
                                      69.47
                                                         82.0
                                                                          68.83
                                                                                 0.834
     2
                                      91.10
                                                         34.0
                                                                          94.03
                                                                                 0.800
               Random Forest
     3
                                                                          99.28
                                                                                 0.787
          Gradient Boosting
                                      94.62
                                                          4.0
     4
                         SVM
                                      73.19
                                                                          73.05
                                                                                 0.792
                                                         76.0
     5
                    Ensemble
                                      94.52
                                                                          98.87
                                                                                 0.826
                                                         10.0
# Visualize model performance
plt.figure(figsize=(12, 8))
comparison.set_index('Model')['Sensitivity (%)'].plot(kind='bar', color='skyblue')
plt.axhline(y=69.05, color='r', linestyle='--', label='Original\ Model\ (69.05\%)')
plt.ylabel('Sensitivity (%)')
plt.title('Model Comparison - Sensitivity')
plt.legend()
plt.tight_layout()
plt.show()
Model Comparison - Sensitivity
                                                                                                                                       Original Model (69.05%)
                                                                                                                                       Sensitivity (%)
         80
         70
         60
      Sensitivity (%)
         40
         30
         20
         10
```

```
# Feature importance from best model (if Random Forest or Gradient Boosting is best)
if 'feature_importances_' in dir(best_rf):
    importances = best_rf.feature_importances_
    indices = np.argsort(importances)[::-1]

plt.figure(figsize=(12, 8))
plt.title('Feature Importance')
plt.bar(range(X.shape[1]), importances[indices], align='center')
plt.xticks(range(X.shape[1]), X.columns[indices], rotation=90)
plt.tight_layout()
plt.show()

print("\nTop 10 Most Important Features:")
for i in range(min(10, X.shape[1])):
    print(f"{i+1}. {X.columns[indices[i]]}: {importances[indices[i]]:.4f}")
```

Model

Random Forest

Gradient Boosting

SVM

LR with SMOTE

Logistic Regression

Top 10 Most Important Features:
1. bmi_age: 0.2323

2. age: 0.2183 3. bmi: 0.1145

4. avg_glucose_level: 0.1038 5. age_group_Elderly: 0.0865 6. age_group_Young_Adult: 0.0293 7. hypertension: 0.0242 8. ever_married: 0.0211