

Final Round, March 12, 2023

swaps • EN

Magic Wands (swaps)

Martha has a permutation $P_0, P_1, \ldots, P_{N-1}$ of the numbers 1 to N. Unfortunately, it is quite scrambled, so she wants to sort it, i.e. get the permutation $1, 2, \ldots, N$.

The Magic Store sells N types of wands. Through the i-th $(1 \le i \le N)$ wand, you can swap the a-th and b-th elements of a permutation if and only if i divides $P_a - P_b$.

A magic wand.

Martha has money for buying **only one** wand. For every i $(1 \le i \le N)$, she wonders whether she would be able to sort the permutation by buying the i-th wand, and what would be the minimum number of swaps needed in that case.

Input

The first line contains the only integer N. The second line contains N integers P_i .

Output

You need to write N integers to the output in a single line, separated by spaces: the i-th should be the minimum number of swaps for the i-th wand, or -1 if it is not possible to sort P using it.

Constraints

- $1 \le N \le 1000000$.
- $1 \le P_i \le N$ for each $i = 0 \dots N 1$.
- $P_i \neq P_j$ if $i \neq j$ for each $i, j = 0 \dots N 1$.

Scoring

- Subtask 1 (0 points)	Examples.
- Subtask 2 (14 points)	$N \leq 8$.
- Subtask 3 (17 points)	$N \le 100.$

swaps Page 1 of 2

- Subtask 4 (23 points) $N \le 5000$.

- **Subtask 5** (46 points) No additional limitations.

Examples

input	output
4 4 3 2 1	2 -1 -1 -1
5 5 2 3 4 1	1 1 -1 1 -1

Explanation

In the **first sample case**, using the 1^{st} wand, we can swap elements 1 and 4 to get [1, 3, 2, 4], then 2 and 3 to get [1, 2, 3, 4].

In the **second sample case**, we can swap elements 1 and 5 using the 1^{st} , 2^{nd} or 4^{th} wand.

swaps Page 2 of 2