15.4: Double Integrals in Polar Form

The area of a polar region is based on the area of a sector of a circle.

- Area of a circle: πr^2
- ullet Area of a sector: $rac{ heta}{2\pi}\cdot\pi r^2=rac{1}{2}r^2 heta$

Area of a sector
$$= rac{ heta}{2\pi} \cdot \pi r^2 = rac{1}{2} r^2 heta$$

$$egin{aligned} ext{Area of polar region} &= \int_{lpha}^{eta} rac{1}{2} r^2 \, d heta \ &= \int_{lpha}^{eta} \int_{a}^{b} r \, dr \, d heta \ &= \iint_{R} r \, dr \, d heta \end{aligned}$$

(Note that $\int_a^b r\,dr = rac{1}{2}r^2ig|_a^b$)

$$dA = r dr d\theta = dx dy$$

Given $F(r,\theta)$ is continuous on $\Gamma: a \leq r \leq b, \alpha \leq \theta \leq \beta$:

$$\iint_{\Gamma} F(r, heta) r \, dr \, d heta = \int_{lpha}^{eta} \int_{a}^{b} F(r, heta) r \, dr \, d heta$$

Given $F(r, \theta)$ is continuous on $\Omega : \alpha \leq \theta \leq \beta, \rho_1(\theta) \leq r \leq \rho_2(\theta)$:

$$\iint_{\Omega} F(r, heta) r \, dr \, d heta = \int_{lpha}^{eta} \int_{
ho_1(heta)}^{
ho_2(heta)} F(r, heta) r \, dr \, d heta$$

<u>Fubini's theorem</u> still applies, so these integration bounds can be rearranged as expected.

Volume

If $F(r,\theta) \geq 0$ over region R, then volume with R as base, bounded above by $F(r,\theta)$ is:

$$V = \iint_R F(r, heta) r \, dr \, d heta$$

(same as double integrals above)

#module3 #week8