Homework III Introduction to Physical Chemistry

Basil R. Yap 1001690

2018 February 08

1 Question 1

$$E = -(2.18 \times 10^{-18}) \frac{Z^2}{n^2}$$
(a)
$$= -(2.18 \times 10^{-18}) \frac{3^2}{1^2}$$

$$= -1.96 \times 10^{-17} J$$

(b) **Figure 1**:

Figure 1: Line Spectrum

(a) $1s^1$

(b)
$$E = -(2.18 \times 10^{-18}) \frac{Z^2}{n^2}$$
$$= -(2.18 \times 10^{-18}) \frac{4^2}{3^2}$$
$$= -3.876 \times 10^{-18} J$$

$$E = hv$$

$$v = \frac{E}{h}$$
(c)
$$= \frac{3.876 \times 10^{-18}}{6.626 \times 10^{-34}}$$

$$= 5.849 \times 10^{15} \text{Hz}$$

$$E = -(2.18 \times 10^{-18}) \frac{Z^2}{n^2}$$

$$= -(2.18 \times 10^{-18}) \frac{1^2}{3^2}$$

$$= -9.69 \times 10^{-19} J$$

The binding energy of a H electron is higher than that of a Be electron. This is because the nuclear charge of a beryllium ion is higher than the nuclear charge of a hydrogen ion, requiring more energy to remove an electron from the second excitation level.

(e) This is an emission of a photon, as the electron goes from a lower potential energy level to a higher potential energy level.

$$\Delta E = -(2.18 \times 10^{-18}) \left(\frac{Z^2}{n_1^2} - \frac{Z^2}{n_2^2} \right)$$

$$= -(2.18 \times 10^{-18}) \left(\frac{4^2}{3^2} - \frac{4^2}{1^2} \right)$$

$$= 3.1 \times 10^{-17}$$

$$E = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E}$$

$$= \frac{6.626 \times 10^{-34} \times 2.99 \times 10^8}{3.1 \times 10^{-17}}$$

$$= 6.39 \times 10^{-9} m$$

$$KE = \frac{hc}{\lambda} - \Phi$$
(a)
$$= \frac{6.626 \times 10^{-34} \times 2.99 \times 10^{8}}{9.89 \times 10^{-10}} - \Phi$$

$$= 2 \times 10^{-16} - \Phi$$

Energy levels	Φ	KE
2s	273 eV	1.563×10^{-16}
2p	205 eV	1.672×10^{-16}
3s	21 eV	1.966×10^{-16}
3p	10 eV	1.984×10^{-16}

Figure 2: Stick Spectrum

$$Z_{eff} = Z - S$$

(b) = 17 - 10
= +7

(a) Figure 3

Figure 3: Molecular Orbital Diagram of $N_2(above)$ & $Ne_2(below)$

- (b) N₂: $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2px})^2(\pi_{2py})^2(\sigma_{2pz})^2$ • Ne₂: $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2pz})^2(\pi_{2px})^2(\pi_{2py}^*)^2(\pi_{2px}^*)^2(\pi_{2py}^*)^2(\sigma_{2pz}^*)^2$
- (c) From the the MO Diagram,
 - N₂: 3
 - Ne₂: 0

 N_2 is more stable than Ne_2 because it has a higher bond order. This is because both molecules have the same number of bonding orbitals but N_2 has fewer anti-bonding orbitals.

(d) Yes, there is a difference between the positions of the σ_{2p} and π_{2p} orbitals of the two molecules. In N₂, the π_{2p} orbital is at a lower energy level than σ_{2p} , and the opposite is true for Ne₂. This is due to a phenomena called s-p mixing, where molecules made of elements with lower nuclear charge have small differences in energy level between σ_{2p} and π_{2p} . At higher nuclear charges, such as Ne, the difference becomes significant enough for the energy level of π_{2p} to be higher than that of σ_{2p}

5 Question 5

- (a) A: B
 - Bond order = 1.5
- (b) D: Be
 - Bond order = 0
- (c) E: F
 - Bond order = 2

(a) **Figure 4**:

Figure 4: MO Diagram of FO

- (b) The MO bond order of OF = 1.5
- (c) The MO bond order of $OF^+=2$ The bond shortens because the electron in the π_{2px}^* orbital is removed, reducing the number of electrons populating the anti-bonding orbitals by one, thereby increasing the bond order and decreasing the bond length.
- (d) HOMO: π_{2px}^*
 - LUMO: σ_{2pz}^*
- (e) Paramagnetic