

Hidrocarbonetos!

Formados por átomos de carbono (C) e hidrogênio (H)

$$H_3C$$
— CH_2 — CH_2 — CH_3

$$CH_2 = C = CH - CH_2 - CH_3$$

$$H_2C = C - CH_2 - CH_2 - CH_3$$
 CH_3

 $H_3C-CH_2-CH_2-CH_2-OH$

$$H_3C$$
— S — CH_2 — CH_3

Não são hidrocarbonetos

Alcanos

$$H_3C - CH_2 - CH_3$$
 $H_3C - CH_2 - CH_2 - CH_3$
 $H_3C - CH_2 - CH - CH_3$
 I
 CH_2

Alcenos

$$H_{2}C = CH - CH_{3}$$
 $H_{3}C - CH = CH - CH_{2} - CH_{3}$
 $H_{3}C - CH_{2} - C = CH - CH_{3}$
 CH_{3}
 CH_{3}

Alcinos

HC
$$\equiv$$
C-CH₃

HC \equiv C-CH₂-CH₃

H₃C-C \equiv C-CH-CH₃

CH₃

Alcadieno

$$H_3C$$
 — CH — CH — CH_2

Ciclano

Cicleno

Aromático

☐ Os <u>alcanos</u> são hidrocarbonetos de cadeia aberta e saturada;

Fórmula molecular C₄H₁₀

$$H_3C - CH_2 - CH_3$$

Fórmula molecular C₃H₈

Fórmula molecular C₅H₁₂

Número de carbonos da molécula

☐ Os<u>alcenos</u> são hidrocarbonetos de cadeia aberta com uma ligação dupla;

Fórmula molecular C₄H₈

$$H_2C = CH - CH_3$$

Fórmula molecular C₃H₆

Fórmula molecular C₆H₁₂

FÓRMULA GERAL

C_nH_{2n}

☐ Os <u>alcinos</u> são hidrocarbonetos de cadeia aberta com uma ligação tripla;

$$HC \equiv C - CH_2 - CH_3$$

$$HC \equiv C - CH_3$$

Fórmula molecular C_4H_6

Fórmula molecular C₃H₄

Fórmula molecular C₆H₁₀

FÓRMULA GERAL

C_nH_{2n-2}

☐ Os <u>alcadienos</u> são hidrocarbonetos de cadeia aberta com duas ligações duplas;

$$H_2C = CH - CH = CH_2$$

Fórmula molecular C_4H_6

$$H_2C = C = CH_2$$

Fórmula molecular C₃H₄

$$H_3C$$
 — CH — CH — CH — CH

Fórmula molecular C₅H₈

☐ Os <u>ciclanos ou cicloalcanos</u> são hidrocarbonetos de cadeia fechada e saturados;

Fórmula molecular C₄H₈

Fórmula molecular C_6H_{12}

Fórmula molecular C₃H₆

FÓRMULA GERAL

C_nH_{2n}

☐ Os <u>ciclenos ou cicloalcenos</u> são hidrocarbonetos de cadeia fechada e insaturados;

Fórmula molecular C_4H_6

Fórmula molecular C₆H₁₀

Fórmula molecular C₅H₈

FÓRMULA GERAL

C_nH_{2n-2}

☐ Os <u>aromáticos</u> são hidrocarbonetos que possuem um ou mais grupos benzênicos;

Naftaleno

Antraceno

Fenantreno

Nomenclatura de Hidrocarbonetos

Nomenclatura dos compostos orgânicos

União Internacional de Química Pura e Aplicada

IUPAC

Prefixo + Infixo (intermediário) + Sufixo

O **infixo** indica o tipo de ligação

Infixo	Tipo de ligação
an	Simples
en	Dupla
in	Tripla

Nomenclatura de Hidrocarbonetos

O prefixo indica o número de carbonos na cadeia

Prefixo	Número de carbonos
Met	1
Et	2
Prop	3
But	4
Pent	5
Hex	6
Hept	7
Oct	8
Non	9
Dec	10

Nomenclatura de Hidrocarbonetos

O **sufixo** indica o tipo de função orgânica

Sufixo	Composto orgânico
0	Hidrocarboneto
ol	Álcool
al	Aldeído
ona	Cetona
oico	Ácido Carboxílico

Nomenclatura dos Alcanos

1 carbono

Prefixo = met

Terminação "**o**" porque é um hidrocarboneto.

1 CH₄

Metano

Prefixo = Pent

Infixo = an

Pentano

2 carbonos

Prefixo = Et

Etano

Ligação simples

Infixo = an

Nomenclatura dos Alcenos com até de 3 carbonos

2 carbonos

Prefixo = Et

Eteno

Ligação dupla

Infixo = en

3 carbonos

Prefixo = Prop

Ligação dupla

Infixo = en

Propeno

Nomenclatura dos Alcenos com mais de 3 carbonos

Indicar a posição da insaturação.

$$Infixo = en$$

$$Infixo = en$$

Nomenclatura dos Alcinos com até de 3 carbonos

2 carbonos

Prefixo = Et

Etino

Ligação dupla

Infixo = in

3 carbonos

Prefixo = Prop

Ligação dupla

Infixo = in

Propino

Nomenclatura dos Alcinos com mais de 3 carbonos

Indicar a posição da insaturação.

$$Infixo = in$$

$$Infixo = en$$

$$Infixo = en$$

Nomenclatura dos Alcadienos

$$\frac{1}{CH_2} = \frac{2}{C} = \frac{3}{CH} = \frac{4}{CH_3}$$

y duas ligações

Ciclanos

Deve-se acrescentar o prefixo "ciclo" antes do nome.

Hidrocarbonetos Ramificados

Devemos inicialmente conhecer o que vem a ser um grupo Substituinte (Radical)

É qualquer grupo de átomos que apareça com frequência nas moléculas

Retirando um átomo de hidrogênio

Hidrocarbonetos Ramificados

Para a nomenclatura das ramificações a terminação ano é trocada por il ou ila

isopropil

 CH_3

Hidrocarbonetos ramificados

1

Nomear a cadeia principal

Hidrocarbonetos ramificados

No caso de duas sequências com iguais números de carbonos

a cadeia principal é a mais ramificada

4 ramificações

3 ramificações

 CH_3 $CH - CH_3$

Hidrocarbonetos ramificados

A cadeia principal é a sequência de átomos de carbono que possua o maior número de insaturações, de ramificações e maior quantidade de átomos de carbono;

Os grupos que não pertencem à cadeia principal são grupos substituintes (Radicais);

Numeração da cadeia principal

Se a cadeia for saturada

ramificação → menor número possível 2 Se a cadeia for instaurada

Instauração → menor número possível

insaturação > ramificação

Regras para hidrocarbonetos Ramificados

- 1 Identificar a cadeia principal
- 2 Identificar os substituintes
- O nome do substituinte vem antes
- As insaturações são indicadas por n° antes do infixo.
- ★ Terminação "o"

Exemplos:

$$H_3^4 - CH - CH = CH_2$$

3-metilbut-1-eno

Regras para hidrocarbonetos Ramificados

Exemplos:

Regras para hidrocarbonetos Ramificados

Exemplos:

