UNIVERSIDAD NACIONAL DE COLOMBIA

Dirección Nacional de Programas de Pregrado

FICHA DE ASIGNATURAS DE PREGRADO

0. CÓDIGO ASIGNATURA:	4100889
1. IDENTIFICACIÓN DE LA ASIGNATUI	RA
1.1 Fecha solicitud	
1.2 Sede	MANIZALES
1.3 Facultad	FACULTAD DE INGENIERÍA Y ARQUITECTURA
1.4 Unidad Académica Básica:	DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y COMPUTACIÓN MANIZALES
1.5 Nivel:	PREGRADO
1.6 Nombre de la asignatura:	SEÑALES Y SISTEMAS

2. DURACIÓN					
A LA SEMANA					
HAP =	6	HAI =	6	THS = (HAP + HAI) =	12
AL SEMESTRE					
Nro de semanas =	16	THP = (THSxSemanas)	192	Nro_de Créditos (THP/48)	4

CONVENCIONES UTILIZADAS

HAP: Horas de Actividad Presencial a la semana o intensidad horaria

HAI: Horas de Actividad Independiente a la semana **THS**: Total Horas de actividad académica por Semana

Semanas: Número de semanas por periodo académico (o semestre)

3. VALIDABLE		
ASIGNATURA VALIDABLE =>	ASIGNATURA NO VALIDA	3LE => X

4. PORCENTAJE DE ASISTENCIA					
%	75	Total de Horas presenciales al semestre (HAP x Semanas)	96	Mínimo de horas Semestre	72
Porce	Porcentajes aceptados: 75, 80, 85, 90, 95 y 100%				

5. TIPOLOGÍA Y PLANES DE ESTUDIO ASOCIADOS

5.1. TIPOLOGÍA							
Asign	Asignatura de Libre Elección (C) - Componente Disciplinar SI						
Escril	oa SI o NO al fren	ite de la casilla en	la columna azul				
5.2. P	LANES DE ES	TUDIO A LOS C	QUE SE ASOCIA	LA ASIGNATURA			
Plan	4022 Ingeniería	eléctrica					
1	REQUISITOS						
	Código	Código Nombre Tipo					
	10000007	Ecuaciones diferenciales Prerrequisito					
	10000006 Cálculo vectorial Prerrequisito						
	Tipo = Prerrequisito o Correquisito						
Plan	4028 Ingeniería	electrónica					
2	REQUISITOS						
	Código Nombre Tipo						
	10000007 Ecuaciones diferenciales Prerrequisito			Prerrequisito			
	10000006 Cálculo vectorial Prerrequisito						
	Tipo = Prerrequisito o Correquisito						

6. DESCRIPCIÓN DE LA ASIGNATURA

6.1. DESCRIPCIÓN

El curso de señales y sistemas describe las herramientas básicas de tratamiento y modelado de sistemas lineales orientadas a la presentación y manejo de información de naturaleza continua y discreta en el dominio del tiempo y la frecuencia.

<u>Objetivo general:</u> Desarrollar competencias en análisis abstracto y modelado matemático orientadas al estudio de señales y sistemas a partir de herramientas matemáticas y computacionales para el manejo de información de naturaleza continua y discreta.

Obietivos específicos:

- Estimular el espíritu crítico y generar actitudes ético científicas dentro de los cuales se orienta el plan de estudios.
- Formar ingenieros emprendedores a partir de una sólida fundamentación técnico-científica en el análisis de señales y sistemas en el dominio del tiempo y la frecuencia.
- Desarrollar competencias de aprendizaje autónomo en aras de adaptarse a las necesidades del medio, en concordancia con el continuo cambio tecnológico y científico en el área de la ingeniería.
- Leer y comprender una segunda lengua de influencia científica, posibilitando la asimilación de literatura técnica en otro idioma relacionada con su área de conocimientos.
- Facilitar la orientación hacia determinados campos de trabajo e investigación, característicos de la ingeniería eléctrica y electrónica.

Metodología: clases magistrales acompañadas con simulaciones en Python (mediante servicios de cómputo en la nube) orientadas al estudio de señales y sistemas en tiempo y frecuencia (continuo y discreto). Esta metodología será complementada mediante la realización de talleres en clase que incluyen aplicaciones reales relacionadas con la adquisición, manipulación y análisis de señales, promoviendo siempre la participación de los estudiantes a través de discusiones

Evaluación:

- Tres parciales teórico-prácticos (incluyen simulaciones en Python) relacionados con los conetenidos del curso (75%): Semana 6 (Módulos 1 y 2); Semana 10 (Módulos 3 y 4), Semana 15 (Módulos 5 y 6).
- Ejercicios y talleres en clase (25%): Todas las semanas.

6.2. CONCEPTOS PREVIOS NECESARIOS

Se requieren conceptos básicos en: cálculo diferencial, cálculo integral, algebra lineal, circuitos eléctricos y programación.

7. CONTENIDOS BÁSICOS

		1	Repaso programación en Python
1. Conceptos preliminares		2	Repaso algebra matricial y vectorial
	Conceptos preliminares	3	Definición y clasificación de señales y sistemas.
		4	Transformación de variable independiente
		5	Funciones exponenciales y senoidales.
		1.	Conceptos básicos de convolución.
	Cistomas lineales inverientes en al tiempe (CLIT)	2.	Representación de SLIT
2.	Sistemas lineales invariantes en el tiempo (SLIT)	3.	Propiedades de SLIT
		4.	Descripción de SLIT
		•	
		1.	Ortogonalidad y representación
	Series de Fourier	2.	Serie de Fourier compleja.
3.	Series de Fourier	3.	Serie de Fourier trigonométrica
		4.	Aplicaciones de la serie de Fourier.
		1.	Transformada de Fourier continua.
		2.	Transformada de Fourier discreta.
4.	Transformada de Fourier	3.	Propiedades de la transformada de Fourier.
		4.	Representación de SLIT con Fourier
		1.	Definicion de transformada de Laplace.
5.	Transformada de Laplace	2.	Propiedades de la transformada Laplace
		3.	Modelado de SLIT con Laplace
		1	
		1.	Definicion de transformada Z.
	Turn of a war a die 7	2.	Propiedades transformada Z
6.	Transformada Z	3.	Modelado de SLIT discretos con transforada Z

8. BIBLIOGRAFÍA BÁSICA				
Autor (es)	Título	Editorial-Revista-País	Año	

OPPENHEIM, Alan V	Signals and systems.	Prentice Hall.	1997
HWEI PSU	Análisis de Fourier.	Iberoamerica.	1987
PHILLIPS, Charles L	Signals, systems and transforms.	Prentice Hall.	1995
PROAKIS, Jhon G	Tratamiento digital de señales.	Prentice Hall.	1998
OPPENHEIM, Alan V	Digital signal processing.	Prentice Hall.	1975
UNPINGCO, José	Python for signal processing	Springer	2013

Formato adaptado para DIEEyC por LFDC

GitHub: https://github.com/amalvarezme/SenalesSistemas