

RAPORT PODSUMOWUJĄCY Data przyjęcia sprawozdania Podpis osoby przyjmującej sprawozdanie Numer sprawozdania CZĘŚĆ I: OKRES ROZLICZENIOWY Miesiąc i rok CZĘŚĆ II: RAPORT WYKONAŁ Imię i nazwisko Łukasz Miazio

DANE KONTAKTOWE

Kontakt

Numer telefonu 509-116-692

Adres e-mail lukasz.miazio@uwm.edu.pl

CZĘŚĆ III: INFORMACJE O PRZEBIEGU PRAC BADAWCZYCH

Informacji nt. efektów i rezultatów wykonanych prac

Na początku prac opracowano założeń konstrukcyjnych do platformy pływającej. Założenia te są następujące:

ŻD/ŻC*	Założenia konstrukcyjne do projektu platformy pływającej:
ŻD	Zaprojektować modułową platformę pływającą.
ŻD	2. Kadłub w kształcie katamaranu.
ŻD	3. Wyporność 10 ton.
ŻC	4. Zanudzenie projektowe: 0,4 m
ŻD	5. Zanurzenie maksymalne: 0,75 m
ŻD	6. Długość: 12 m.
ŻD	7. Szerokość: maksymalnie 4,5 m.
ŻC	8. Maksymalna wysokość całkowita z relingiem głównym: 4,5 m.
ŻC	9. Prędkość projektowa: 15km/h.
ŻD	10. Konstrukcja wykonana z aluminium.
ŻD	11. Na pokładzie może przebywać max. 12 osób.
ŻD	12. Dwa spalinowe silniki zaburtowe.
ŻC	13. Kategoria projektowa CE "D"
ŻD	14. Odporność na warunki zimowe.
ŻC	15. Dostęp do czystej wody i gromadzenie zanieczyszczeń zaspokajające
	potrzeby dla 4 osób w okresie 2 tygodni.
ŻD	16. Zintegrowany system kontroli szczelności.
ŻC	17. Instalacja elektryczna dla max. 12 osób zasilana z agregatu prądotwórczego
	wspomaganego akumulatorami (oświetlenie zewnętrzne punktowe LED x 16
	sztuk; oświetlenie wewnętrzne punktowe LED x 14 sztuk; lodówka 12V; TV

29" 12V; czajnik elektryczny 12V; mikrofalówka; suszarka do włosów; ładowarka do telefonu; podgrzewacz wody; pompa wody szarej; pompa wody czarnej; pompa paliwa).

*ŻD – żądanie, ŻC - życzenie

Wybrano stopów aluminium na budowę platformy:

- Stop aluminium AW-5754 (PA11), w stanie dostawy H111, posiadający średnią wytrzymałość na rozciąganie, wysoką odporność na korozję w warunkach morskich, wodzie morskiej i atmosferze przemysłowej. Odznaczają się wysoką wytrzymałością zmęczeniową, są podatne do spawania oraz anodowania.
- Stop aluminium AW-5083 (PA13), w stanie dostawy H111, charakteryzujący się wysoką wytrzymałością zmęczeniową, bardzo dobrą spawalnością oraz odpornością na korozję w wodzie morskiej i atmosferze morskiej.

Stopy te zostały wybrane również ze względu na dobrą dostępność w handlu.

Wykonano próbę rozciągania aluminium PA11 (EN AW-5754) w stanie utwardzenia H111, w temperaturze pokojowej (+20°C). Próba rozciągania została wykonana zgodnie z polską normą PN-EN ISO 6892-1:2016-09, pt.: "Metale - Próba rozciągania - Część 1: Metoda badania w temperaturze pokojowej". Na podstawie przeprowadzonych prób określona zostanie wytrzymałość na rozciąganie (R_m) i granica plastyczności (R_e). Określenie tych parametrów w temperaturze pokojowej będzie punktem odniesienia do badań rozciągania próbek w temperaturze -20°C.

W tabeli numer 1 zawarto wyniki z sześciu prób rozciągania i określono średnie wartości wytrzymałości na rozciąganie $R_m=216\ \text{MPa}$, granicy plastyczności $R_e=116\ \text{MPa}$ i umownej granicy plastyczności $R_{0,2}=133\ \text{MPa}$.

Tabela 1. Zestawienie wartości wytrzymałość na rozciąganie R_m , granica plastyczności R_e i umowna granica plastyczności $R_{0,2}$, aluminium PA11 (EN AW-5754)

	R _e [MPa]	R _{0.2} [MPa]	R _m [MPa]
Próba 1	115	132	214
Próba 2	119	136	219
Próba 3	117	134	215
Próba 4	121	138	220
Próba 5	110	127	213

Próba 6	114	131	214
Średnia	116	133	216

Następnie wykonano próbę rozciągania aluminium PA13 (EN AW-5083) w stanie utwardzenia H111, w temperaturze pokojowej (+20°C). Próba rozciągania została wykonana zgodnie z polską normą PN-EN ISO 6892-1:2016-09, pt.: "Metale - Próba rozciągania - Część 1: Metoda badania w temperaturze pokojowej". Na podstawie przeprowadzonych prób określona zostanie wytrzymałość na rozciąganie (R_m) i granica plastyczności (Re). Określenie tych parametrów w temperaturze pokojowej będzie, tak jak w przypadku aluminium PA11, punktem odniesienia do badań rozciągania próbek w temperaturze -20°C.

W tabeli numer 2 zawarto wyniki z sześciu prób rozciągania i określono średnie wartości wytrzymałości na rozciąganie $R_m=307\ \text{MPa}$, granicy plastyczności $R_e=149\ \text{MPa}$ i umownej granicy plastyczności $R_{0,2}=175\ \text{MPa}$.

Tabela 2. Zestawienie wartości wytrzymałość na rozciąganie R_m , granica plastyczności R_e i umowna granica plastyczności $R_{0,2}$, aluminium PA13 (EN AW-5083)

	R _e [MPa]	R _{0.2} [MPa]	R _m [MPa]
Próba 1	146	160	306
Próba 2	145	156	305
Próba 3	148	164	309
Próba 4	147	160	305
Próba 5	148	168	309
Próba 6	160	180	309
Średnia	149	165	307

Wykonano test udarności aluminium PA11 (EN AW-5754) i PA13 (EN AW-5083) w stanie utwardzenia H111, w temperaturze pokojowej (+20°C) i w temperaturze obniżonej (-20°C). Próba udarności została wykonana zgodnie z polską normą PN-EN ISO 148-1:2017-02, pt.: "Metale - Próba udarności sposobem Charpy'ego - Część 1: Metoda badania".

Wykonana została również próba rozciągania ww. stopów aluminium w temperaturze -20°C. Próbę tą wykonano zgodnie z polską norma PN-EN ISO 6892-3:2015-06, pt.:" Metale - Próba rozciągania - Część 3: Metoda badania w obniżonej temperaturze". Raport z tej próby został zamieszczony w załączniku nr 3.

Analizując próby przeprowadzone w temperaturze 20°C i -20°C można zauważyć niewielki wzrost

wytrzymałości w przy spadku temperatury. Wynika z tego, że w przypadku dalszych obliczeń konstrukcji platformy pływającej należy przyjąć właściwości wytrzymałościowe odpowiadające temperaturze pokojowej.

Ze względu na potrzebę zamontowania pompy zenzowej oraz wentylacji pływaków z akumulatorami, przyjęty system szczelności składać będzie się z jednego włącznika pływakowego i pompy zęzowej w każdym pływaku. Do tego na panelu kontrolnym zostaną zamieszczone kontrolki sygnalizujące pracę pompy zęzowej. Co będzie informowało i wystąpieniu przecieku w danym pływaku. Schemat systemu kontrolni szczelności zamieszczono w załączniku nr 1.

Opracowany projekt platformy oraz modułów pływaków zamieszczono w załącznikach nr 2 - 4. Platforma pływająca będzie miała wyporność 10 ton. Kadłub platformy pływającej będzie się składał z dwóch pływaków i ramy pokładowej. Każdy pływak katamaranu składa się z dwóch modułów. Moduły łączone będą śrubami z uszczelką 5mm pomiędzy modułami. Rama pokładowa składać się będzie z dwunastu profili 200x100x4, przykręcanych do pływaków. Dookoła jednostki znajdować się będzie profil 250x100x4, przykręcany do profili 200x100x4 i do pływaków.

Z wykonanego bilansu energetycznego (tabela 3) obliczono zapotrzebowania na energie elektryczną dla czterech osób przez dobę. Wyznaczono w ten sposób minimalną pojemność akumulatorów, jakie należy zamontować na platformie. Uwzględniono sytuacja kiedy jednostka jest przycumowana. W projektowanej jednostce należy zmontować akumulatory o sumarycznej objętości powyżej 585 Ah. Jednak aby zapewnić dłuższą trwałość akumulatorów przy cyklicznym rozładowywaniu i ładowaniu, nie należy rozładowywać akumulatorów kwasowo-ołowiowych poniżej 50% ich objętości. W związku z tym pojemność akumulatorów musi wynosić 1170Ah. W obliczeniach nie uwzględniono instrumentów nawigacyjnych i GPS, ponieważ będą one używane jedynie podczas pracy silnika zaburtowego (przemieszczania się platformy)

Dodatkowo, aby zapewnić prawidłowe funkcjonowanie jednostki należy wyposażyć ją w agregat prądotwórczy o znamionowej mocy nie mniejszej niż 2,5 kW. Zapewni on jednoczesną możliwość korzystania ze wszystkich odbiorników prądu (jednak ta sytuacja występuje rzadko) i jednoczesne ładowanie akumulatorów. Ponadto w projektowanej instalacji należy uwzględnić przetwornicę prądy stałego 12V na prąd przemienny 230V o mocy nie mniejszej niż 2 kW, aby zapewnić komfortowe przebywanie na jednostce dla 4 osób.

Tabela 3. Bilans energii elektrycznej na dobę.

Lp.	Urządzenie	Мос	Czas	Napięcie	Prąd	Sprawność	Pobór
			pracy			przetwornicy	prądu 12V
		[W]	[h]	[V]	[A]	[1]	[Ah]
1	Telewizor 40"	50	6	230	0,2	0,9	27,8

2	Bojler	1500	2	230	6,5	0,9	277,8
3	Lodówka	65	12	12	5,4	1	65,0
4	Pompa wody szarej	336	2	12	28,0	1	56,0
5	Pompa wody czarnej	370	1	12	30,8	1	30,8
6	Hydrofor	72	3	12	6,0	1	18,0
7	Oświetlenie wewnętrzne	16x5W = 80	8	12	6,7	1	53,3
8	Oświetlenie zewnętrzne	14x5W = 70	8	12	5,8	1	46,7
9	UKF	5	24	12	0,4	1	10,0
	Suma	2548					585

Obliczono również natężenie przepływu powietrza wentylacji mechanicznej przedziałów akumulatorowych w pływakach. Obliczenia wentylacji mechanicznej wykonano na podstawie wzoru: $Q=0.11\cdot I\cdot n$

gdzie:

n – liczba ogniw baterii [szt.] (standardowo akumulator 12V posiada 6 ogniw po 2V),

I – prąd ładowania podczas wydzielania się gazów, lecz nie mniejszy niż 25% największego prądu ładowania [A],

Q – wydatek powietrza [m 3 /h].

W przypadku zastosowania akumulatorów z zaworami (typu zamkniętego) wg normy PN-EN 50342, obliczona wentylacja może być zmniejszona do 25% w stosunku do obliczonej dla akumulatorów wentylowanych. Wymagania dotyczące wentylacji pomieszczeń akumulatorów i skrzyń akumulatorowych podano w rozdziale 11.8 Przepisów Klasyfikacji i Budowy Statków Morskich, Część VI Urządzenia Maszynowe i Urządzenia Chłodnicze.

Maksymalny prąd ładowania przy generatorze 2,5kW może wynieść 208A, stąd 25% największego prądu ładowania I = 52A. Z wcześniejszych obliczeń wynika, że należy zastosować akumulatory o łącznej pojemności ponad 1170Ah. Stosując dwanaście akumulatorów po 100Ah każdy otrzymano 72 ogniwa, jednak akumulatory zostaną rozłożone przynajmniej do dwóch pływaków. Dlatego przyjęto n = 36 szt.. Daje to wydatek powietrza na poziomie Q = 205,9 [m³/h]. Należy, więc dobrać wentylator/wentylatory zapewniające taki przepływ.

Dobrano również wodny agregat grzewczy o mocy nie mniejszej niż 7,6 kW. Zapewni on ogrzewanie

nadbudowy platformy i podgrzewanie wody w bojlerze. Rozważano również agregat powietrzny jednak zapewnia on jedynie ogrzewanie nadbudowy platformy (nie podgrzewa wody sanitarnej). Należy rozważyć ogrzewanie wody sanitarnej jedynie za pomocą agregaty grzewczego. Do instalacji grzewczej dobrano nagrzewnicę z wentylatorem oraz opracowano schemat instalacji (załącznik 6). W salonie należy zastosować dwie nagrzewnice o mocy nie mniejszej niż 3kW, w sypialniach po jednej nagrzewnicy o mocy 1,8 kW. W łazience należy zamontować jeden grzejnik łazienkowy o mocy nie mniejszej niż 650W. Policzono również niezbędną pojemność zbiornika na paliwo do zasilenia agregatu grzewczego. Agregat zużywa w ciągu godziny 1.08 litra paliwa, podczas pracy przy pełnej mocy. Zakładając, że będzie pracował 12h na dobę, to żeby zapewnić paliwo na zakładane czternaście dni należy zamontować zbiornik o pojemności co najmniej 180 litrów.

W tabeli 4 przedstawiono bilans energetyczny z wykorzystaniem agregaty grzewczego. Bilans uwzględnia ogrzewanie platformy, które to nie było uwzględnione w poprzednim bilansie. Moc odbiorników spadła do 1131W, czyli o 55,6%. Z kolei pobór prądu wyniósł 391Ah (-33,2%). W związku z tym pojemność akumulatorów musi wynosić 782Ah, czyli osiem akumulatorów 100Ah. Również można zastosować przetwornicę 12V-230V o znacznie mniejszej mocy (zasilanie telewizora, radia, ładowarka do telefonu komórkowego), np. 500W

Tabela 4. Bilans energii elektrycznej na dobę z wykorzystaniem agregaty grzewczego

Lp.	Urządzenie	Мос	Czas	Napięcie	Prąd	Sprawność	Pobór
			pracy			przetwornicy	prądu
		[W]	[h]	[V]	[A]	[1]	[Ah]
1	Telewizor 40"	50	6	230	0.2	0.9	27.8
2	Agregat grzewczy	83	12	12	6.9	1	83.0
3	Lodówka	65	12	12	5.4	1	65.0
4	Pompa wody szarej	336	2	12	28.0	1	56.0
5	Pompa wody czarnej	370	1	12	30.8	1	30.8
6	Hydrofor	72	3	12	6.0	1	18.0
7	Oświetlenie wewnętrzne	16x5W = 80	8	12	6.7	1	53.3
8	Oświetlenie zewnętrzne	14x5W = 70	8	12	5.8	1	46.7
9	UKF	5	24	12	0.4	1	10.0
		1131					391

Zaproponowano opcjonalny montaż czterech paneli o łącznej mocy ponad 1kW, można naładować akumulatory o pojemności 400Ah w ciągu 5h, czyli pojemność akumulatorów, która zostanie zużyta w ciągu doby. Należy zastosować panele o mocy nie mniejszej niż 250W oraz inwerter (falownik) fotowoltaiczny o mocy 1,5 kW. Na koniec opracowano schemat instalacji elektrycznej, zamieszczony w załączniku 5.

Następnie zaprojektowano ramę do mocowania akumulatorów (załącznik 7 i 8). Rama przystosowana jest do mocowania czterech akumulatorów o pojemności 100Ah i wymiarach 276x175x190 mm.

Kolejnym etapem był dobór średnicy przewodów elektrycznych pomiędzy akumulatorami w pływakach a rozdzielnią główną. Maksymalny pobór prądu wynosi 94A, montując akumulatory w dwóch pływakach, prąd zmaleje o połowę. Spadek napięcia na kablach łączących akumulatory z rozdzielnią główną nie powinien przekraczać 1%. W związku z tym przy długości przewodu 6 metrów, przekrój przewodu powinien wynieść nie mniej niż 95mm². Z kolei spadek napięcia dla pozostałych obwodów nie powinien być większy niż:

10% dla odbiorników oświetleniowych i sygnalizacyjnych,

10% dla odbiorników siłowych na pracę dorywczą i przerywaną,

7% dla odbiorników siłowych i grzewczych,

5% dla świateł nawigacyjnych.

Wynika z tego, że w przypadku zasilania pomp do wody szarej i czarnej należy zastosować przewody o przekroju minimum 10mm². Zasilanie świateł nawigacyjnych, hydrofor, lodówka – 4mm². Pozostałe oświetlenie – 2,5mm².

Przyjęto, że zbiorniki na wodę czystą będą miały łączną pojemność minimum 500 l, jak i zbiorniki na wodę szarą, natomiast zbiornik na fekalia minimum 250 l.

Opracowano schemat instalacji sanitarnej (załącznik nr 9). Przyjęto, że umywalka, sedes, prysznic i zlewozmywak zastosowane zostaną takie, jak do użytku domowego. Za to zostaną zastosowane studzienki z pompą, która będzie przepompowywała nieczystości do odpowiednich zbiorników znajdujących się w pływakach. Pozwoli to na swobodny wybór elementów ceramiki sanitarnej według upodobań przyszłego użytkownika. Z sedesu nieczystości zostaną spłukane i przepompowane do osobnego zbiornika na fekalia za pomocą pompy elektrycznej. Z kolei woda szara z umywalki, prysznica i zlewozmywaka będzie odprowadzana do studzienki z automatycznie włączaną pompa elektryczna. Wydajność pompy powinna zapewnić odprowadzenie jednocześnie wodą z prysznica (średnie zużycie wody 10 l/min), umywalki (6 l/min) i zlewozmywaka (6 l/min), co daje w sumie minimalna wydajność pompy 22 l/min.

Instalacja wody czystej składać się będzie z hydroforu, czyli z pompy ze zbiornikiem przeponowym, oraz bojlera do cieplej wody. Bojler wyposażony będzie w grzałkę elektryczną i wężownice. Dzięki wężownicy woda będzie mogą być podgrzewana wodnym agregatem grzewczym. Dodatkowo zastosowano

dwa zawory do cyrkulacji wody. Woda z najdalej oddalonego punktu będzie wracała z powrotem do zbiornika. Takie rozwiązanie zostało przetestowane w skali w temperaturze -5° C, przez okres 12 h. Takie rozwiązanie umożliwi eksploatacji instalacji w warunkach zimowych, kiedy okresowo spada temperatura do -5°C. Dodatkowy otwierając zawór od cyrkulacji ciepłej wody można podnieść temperaturę wody w zbiorniki i zapobiec zamarznięciu nawet w niższej temperaturze.

Zbiorniki wyposażone powinny być w odpowietrznik z filtrem bezzapachowym. Zbiorniki na wodę pitna wyposażone zostaną w wlot wody. Z kolei zbiorniki na nieczystości muszą być wyposażone w złącze do wypompowanie ścieków na pokładzie platformy. W przypadku dwóch zbiorników na nieczystości wymagana jest pompa do przepompowywania ścieków pomiędzy zbiornikami w celu wyrównania poziomów. Dodatkowo zbiorniki powinny być wyposażone w czujnik poziomu cieczy, np. ultradźwiekowy czujnik poziomu. Zbiorniki, hydrofor, pompa do ścieków i pompa wody pitnej będą zabudowane w pływakach.

W celu doboru mocy silnika napędowego należy określić siły oporów ruchu platformy. Opory te dzielimy na hydrodynamiczne i aerodynamiczne. Do wyznaczenia oporów aerodynamicznych niezbędne będzie określenie kształtu i wymiarów nadbudowy platformy. W tym celu pracowano nad konstrukcją nadbudowy platformy. Opracowano dwa koncepcje/ projekty nadbudowy. Nadbudowę tak zwaną "lekką" i "ciężką" dla której będą określane opory aerodynamiczne. Nadbudowa "ciężka" przystosowana jest do cięższych warunków (większa siła wiatru i większa fala), w których może poruszać się platforma. Projekt nadbudowy "lekkiej" stanowi załącznik nr 10 niniejszego raportu, natomiast "ciężkiej" załącznik nr 11.

Wyznaczeniem teoretyczne zapotrzebowania na moc P_h platformy pływającej, oporów ruchu w wodzie. Dla czterech wyporności pływaka (i wynikających z tego zanurzenia) przeprowadzono symulacje dla czterech prędkości, dla jednego pływaka. Uzyskane wyniki zamieszczono w tabeli nr 5. Prędkość V=7,17 m/s dotyczy sytuacji kiedy platforma poruszała się z prędkością 4,17 m/s (15 km/h) w górę rzeki, gdy prędkość nurtu rzeki wynosi 3 m/s (nie uwzględniając oporów aerodynamicznych platformy).

Tabela 5. Zapotrzebowanie na moc P_h pływaka w funkcji prędkości.

V [m/s]	V	$P_h[W]$					
	[km/h]	10T	8T	6T	4T		
1,39	5	472	384	372	272		
2,78	10	3656	2956	2878	2084		
4,17	15	12058	9758	9466	6850		
7,17	25,8	59140	47974	46340	33468		

W tabeli 6 zestawiono policzone zapotrzebowanie na moc P_a nadbudowy platformy poruszającej się pod wiatr z prędkością 15 km/h przy różnej sile wiatru. Dodając interesujące nas wartości P_{a i} P_h można dobrać teoretyczna moc silnika do zakładanych warunków przy których platforma będzie się poruszała.

Tabela 1. Zapotrzebowanie na moc nadbudowy platformy w funkcji siły wiatru.

Siła	Prędkość	MOC
wiatru	wiatru	
[°B]	V _w [m/s]	P _a [W]
0	0	646
1	1.5	1194
2	3.3	2075
3	5.4	3404
4	7.9	5400
5	10.7	8115
6	13.8	12037
7	17.1	16612
8	20.7	23261

Na przykład, dla platformy poruszającej się po jeziorze (wody stojące) przy maksymalnej sile wiatru 6 stopni w skali Beaufort 'a przy pełnym zakładanym obciążeniu z prędkością 15km/h uzyskujemy mocy silnika 24,1 kW (32,8 KM). Uwzględniając 80% sprawność śruby napędowej minimalna moc silnika powinna wynieść 41KM.

Kolejnym krokiem było zaprojektowanie "łamacz fal", który opcjonalnie może być zastosowany przy budowie platformy lub w który platforma może być doposażona w późniejszym etapie. Służy on do "wygładzenia" wody przed silnikami. Chroni on przed wyjściem śruby napędowej z pod lustra wody. Projekt "łamacz fal" zamieszczono w załącznik nr 12.

Platformę należy zaopatrzyć w silnik przystosowany do pawęży o wysokości ok. 600 mm. Istotnym jest również dobór mocy silników, która powinna uwzględniać obciążenia jednostki pływającej. Zakres doboru mocy będzie miał bezpośrednie przełożenie na parametry jednostki związane z zdolnością do uzyskiwanych zakładanych prędkości.

Do sterowania silnikami przyczepnymi rekomendowane jest zastosowanie sterowanie hydrauliczne ze względy na odległość silników od kokpitu sterowniczego. W przypadku dwunastometrowej platformy problem, w przypadku sterociągów będzie dostępność odpowiedniej długości linki. Ponadto w przypadku

silników dużej mocy bardziej komfortowe w obsłudze jest zastosowanie sterowania hydraulicznego. Umożliwia ono zastosowanie przewodów (węży) o praktycznie nieograniczonej długości. Należy zastosować siłownik odpowiadający mocy zamontowanych silników. Do sterowania dwoma silnikami wystarczy jeden siłownik, a silniki należy połączyć za pomocą cięgna, np. OB1000 firmy Vetus. W przypadku silników o rekomendowanej mocy powyżej 90 KM, proponowany jest siłownik OBC125 połączony z pompa HTP3010R firmy Vetus (lub podobne).

Rozpatrzono również opcjonalny montaż sterów strumieniowych, żeby poprawić sterowność platformy w przypadku silnego wiatru. Przy całkowitej długości łodzi wynoszącej 1 = 12 m oraz całkowitej powierzchni, na którą oddziałuje wiatr A = 36 m². Oczekując sterowności platformy przy sile wiatru wynoszącej do 6 stopni w skali Beaufort 'a. Przy danej sile wiatru nacisk na burtę będzie wynosił p = 123 N/m². Na tej podstawie można obliczyć wymaganą siłę ciągu.

$$F = \frac{p \cdot A \cdot 0.75 \cdot l}{2 \cdot l_n} = \frac{123 \cdot 36 \cdot 0.75 \cdot 12}{2 \cdot 10.5} = 1898[N] \approx 193[kgf]$$

 $l_p = 10{,}5~\mathrm{m}$ - odległość między osią pędnika dziobowego, a punktem przyłożenia.

W związku z powyższym należało by zamontować np. dwa pędniki dziobowe o sile ciągu 95 kgf, jeden na pływak. Proponowane jest zastosowanie np. pędników BOW9512D firmy Vetus (lub podobnych), zasilanych napięciem 12V.

Testy pawęży potwierdziły możliwość montażu do niej silniki Yamaha F70 i F30. Montaż i testy potwierdziły poprawność zaprojektowanego mocowania i możliwość montażu jednego silnika centralnie lub dwóch silników w układzie tandem. Montaż silnika F30 bezpośrednio na pływakach wykazał możliwość zastosowania takiego rozwiązania co ułatwia manewrowanie jednostką, jednak przy próbach konstrukcja pływaka nie wytrzymała obciążeń generowanych przez silnik, i przy zastosowaniu takiego rozwiązania wymagane byłoby przeprojektowanie końcowego pływaka. W związku z tym zrezygnowano z montażu silnika na pływaku.

Przeprowadzono też próbę montażu silników w tandemie F70 + F30. Takie rozwiązanie jest możliwe, jednak nastręczałoby trudności w sterowaniu jednostką i utrzymaniu prostej linii poruszania się jednostki. Przy zastosowaniu takiego tandemu platforma montażowa składająca się z dwóch pływaków końcowych i pawęży wykazywała tendencję do skręcania. Sytuację poprawiło bliższe zamontowanie silników do osi platformy, jednak po konsultacji z producentem silników odrzucono koncepcję ze względu na możliwość uszkodzenia silników oraz spadek ich efektywności (oddziaływanie drgań, możliwość uszkodzenia śruby i przekładni w przypadku uszkodzenia sterowania i kontaktu ze sobą obu silników, strumienie wody

00 KM umieszczony centralnie, jednak przy tak ciężkiej jednostce powinien to być typowy silnik ucia Opcją zdecydowanie podnoszącą zdolności manewrowe jednostki i komfort użytkowania byłby i Iwóch silników wykazujących się jednakowymi parametrami, o jednakowym przełożeniu i śrubach o						
ku, o mocy n	ie mniejszej niż 8	0 KM każdy.				

wyrzucane przez śruby napędowe wzajemnie zakłócałyby pracę silników).