

Дрво

Да разгледаме **дрво** што се состои од N **темиња**, нумерирани со целите броеви од 0 до N-1. Темето 0 се нарекува **корен**. Секое теме, освен коренот, има точно еден **родител**. За секое i, такво што $1 \leq i < N$, родител на темето i е темето P[i], каде P[i] < i. Претпоставуваме дека P[0] = -1.

За кое било теме i ($0 \le i < N$), **поддрво** на i е множеството од следните темиња:

- i, и
- кое било теме чиј родител е темето i, и
- кое било теме чиј родител на родителот е темето i, и
- кое било теме чиј родител на родителот на родителот е темето i, и
- итн

Сликата подолу прикажува пример за дрво што се состои од N=6 темиња. Секоја стрелка поврзува дадено теме со неговиот родител, освен коренот, кој нема родител. Поддрвото на темето 2 ги содржи темињата 2,3,4 и 5. Поддрвото на темето 0 ги содржи сите 0 темиња на дрвото, а поддрвото на темето 0 го содржи само темето 0.

На секое теме му се доделува ненегативна целобројна **тежина**. Тежината на темето i ($0 \le i < N$) ќе ја означуваме со W[i].

Ваша задача е да напишете програма којашто ќе одговара на Q прашанки (анг. queries), секоја специфицирана со пар од позитивни цели броеви (L,R). Одговорот на секоја прашанка треба да се пресмета како што е објаснето во продолжение.

Да разгледаме доделување на цел број, наречен **коефициент**, на секое теме од дрвото. Ваквото доделување е опишано со низа $C[0],\dots,C[N-1]$, каде C[i] ($0\leq i < N$) е коефициентот којшто е доделен на темето i. Оваа низа ќе ја нарекуваме **низа од**

коефиценти. Да забележиме дека елементите на низата од коефициенти може да бидат негативни, 0, или пак позитивни.

За дадена прашанка (L,R), една низа од коефициенти се нарекува **валидна** ако, за секое теме i $(0 \le i < N)$, важи следниот услов: збирот од коефициентите на темињата во поддрвото на темето i не е помало од L и не е поголемо од R.

За дадена низа од коефициенти $C[0], \ldots, C[N-1]$, **цената** на теме i е $|C[i]| \cdot W[i]$, каде |C[i]| ја означува апсолутната вредност на C[i]. Конечно, **вкупната цена** е збирот од цените на сите темиња. Ваша задача е да ја пресметате, за секоја прашанка, **минималната вкупна цена** што може да се постигне со некоја валидна низа од коефициенти.

Може да се покаже дека за која било прашанка постои барем една валидна низа од коефициенти.

Имплементациски детали

Треба да ги имплементирате следните две процедури:

```
void init(std::vector<int> P, std::vector<int> W)
```

- $P,\ W$: низи од цели броеви со должина N што ги специфицираат родителите и тежините, соодветно.
- Оваа процедура се повикува точно еднаш на почетокот од интеракцијата помеѓу оценувачот и вашата програма во секој тест случај.

```
long long query(int L, int R)
```

- L, R: цели броеви кои опишуваат прашанка.
- ullet Оваа процедура се повикува точно Q пати по инвокацијата на init во секој тест случај.
- Оваа процедура треба да го врати одговорот на дадената прашанка.

Ограничувања

- $1 \le N \le 200\,000$
- $1 \le Q \le 100\,000$
- P[0] = -1
- ullet $0 \leq P[i] < i$ за секое i такво што $1 \leq i < N$
- ullet $0 \leq W[i] \leq 1\,000\,000$ за секое i такво што $0 \leq i < N$
- $1 \leq L \leq R \leq 1\,000\,000$ во секоја прашанка

Подзадачи

Подзадача	Поени	Дополнителни ограничувања	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ за секое i такво што $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ за секое i такво што $0 \leq i < N$	
5	11	$W[i] \leq 1$ за секое i такво што $0 \leq i < N$	
6	22	L=1	
7	19	Нема дополнителни ограничувања.	

Примери

Да ги разгледаме следните повици:

Дрвото се состои од 3 темиња, коренот и неговите 2 деца. Сите темиња имаат тежина 1.

Во оваа прашанка L=R=1, што значи дека збирот од коефициентите во секое поддрво мора да биде еднаков на 1. Да ја разгледаме низата од коефициенти [-1,1,1]. Дрвото и соодветните коефициенти (во засенчени правоаголници) се илустрирани подолу.

За секое теме i ($0 \le i < 3$), збирот од коефициентите на сите темиња во поддрвото на i е еднаков на 1. Според тоа, оваа низа од коефициенти е валидна. Вкупната цена се пресметува како што следува:

Теме	Тежина	Коефициент	Цена
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$\mid 1 \mid \cdot 1 = 1$

Според тоа, вкупната цена е 3. Ова е единствената валидна низа од коефициенти, па значи овој повик треба да врати 3.

```
query(1, 2)
```

Минималната вкупна цена за оваа прашанка е 2, и истата се постигнува кога низата од коефициенти е [0,1,1].

Пример-оценувач

Формат на влез:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

каде L[j] и R[j] (за $0 \le j < Q$) се влезните аргументи во j-от повик до query. Да забележиме дека втората линија од влезот содржи **само** N-1 **цели броеви**, бидејќи пример-оценувачот не ја чита вредноста P[0].

Формат на излез:

```
A[0]
A[1]
...
A[Q-1]
```

каде A[j] (за $0 \leq j < Q$) е вредноста што е вратена од j-от повик до query.