Music genre classification based on song lyrics

BARTŁOMIEJ ELJASIAK ALEKSANDRA NAWROCKA DOMINIKA UMIASTOWSKA

Presentation plan

- 1. Short project description
- 2. Final results of project 1
- 3. Improvements done in project 2
 - 1. New embeddings
 - 2. Sentiment
 - 3. Two-step classification
 - 4. Fine-tuning
 - 5. Custom dataset creation
- 4. Conclusions

Purpose of the project

- Using different embeddings and classifiers we want to find the best way to predict genre based on song lyrics.
- In addition, we want to investigate the influence of sentiment analysis performed on the lyrics on the prediction.
- What is more, we want to create new lyrics dataset to see how our methods deal with the new data.

First project final results

- Overall, ensemble of Base BERT and CNN gave the best results.
- Adding title and text preprocessing also increased the accuracy.

Smaller BERT

Classifier	Accuracy	F1-score
Naive Bayes	43,24%	39,18%
Linear SVM	43,60%	40,03%
XGBoost	42,38%	42,30%
CNN	51,31%	51,05%

CNN

Embedding	Accuracy	F1-score
GloVe (100)	53,73%	53,25%
Smaller BERT (128)	51,31%	51,05%
Base BERT (768)	56,48%	56,55%
Word2vec (300)	52,61%	52,65%

Improvements in the second project

- New embeddings: DistilBERT and SentenceTransformerMPNET
- New classifiers: 2-step CNN classifier and NN classifier
- Fine tuning of DistilBERT
- Ensembling of sentiment pre-trained model with DistilBERT model
- Creation of new lyrics dataset

New embeddings

- Based on DistilBERT and Sentence-TransformerMPNET
- Significantly improved results for all classifiers
- Created from max. 400 words from lyrics
- Singular embedding represents the whole song

DistilBERT

Classifier	Accuracy	F1-score	Acc. change
Naive Bayes	54,40%	53,16%	+ 11,16
Linear SVM	62,06%	61,07%	+ 11,45
XGBoost	63,93%	63,78%	+ 18,46
CNN	65,47%	65,53%	+ 8,99
NN	64,96%	64,99%	-
2StepCNN	62,21%	57,97%	-

SentenceTransformerMPNET

Classifier	Accuracy	F1-score	Acc. change
Naive Bayes	56,23%	55,97%	+ 12,99
Linear SVM	62,83%	61,66%	+ 12,22
XGBoost	62,45%	62,31%	+ 16,98
CNN	65,06%	64,30%	+ 8,58
NN	66,42%	66,08%	-
2StepCNN	63,34%	60,44%	-

Methods comparison

Sentiment

- Based on bert_uncased_L-2_H-128_A-2 (tiny BERT)
- Relatively small model due to GPU memory limitations
- Sentiment defined as 6 dimensional vector
 - Happy, sad, neutral, angry, excited, frustrated

Sentiment - results

Sentiment - further inspections

Two-step classification

- In previous tests we had problems with highly unbalanced main dataset
- Rock genre has 2 times more cases than all other genres altogether
- Therefore, we created a new classifier, which concentrates on separating this one genre

Main dataset results using DistilBERT

CLassifier	Accuracy	Balanced acc.	F1 score
CNN	64,74%	50,71%	60,88%
NN	65,23%	53,08%	62,14%
2-step CNN	52,94%	59,88%	54,11%

Fine-tuning – process

- We tested DistilBERT with 2 dense layers for classification
- Same model and training parameters
- Embeddings from one model were concatenated with sentiment vector

Softmax 5

Dropout 0.3

Dense768

DistilBERT

Fine-tuning – results

- Almost the same models
- Same training parameters

Sentiment	Accuracy	F1 score
yes	0.6412	0.6638
no	0.65	0.6682

Our dataset

- Created using Spotify API and Genius API
- Number of observations: 4092
- 5 genres: pop, rock, metal, country, hip-hop
- Quite balanced

Genre	Number of observations
country	896
metal	887
рор	815
rock	767
hip-hop	727

Our dataset creation – problems

- Recommendations given by Spotify repeat a lot
- By searching for a specific genre only 1000 songs can be returned
- Language of the lyrics cannot be chosen, only the localization that the songs have to be available in
- Genius does not have all of the lyrics
- Even if Genius returns the output there are a lot of cases that not lyrics but strange lists of song titles or artists are returned
- Manual data cleaning is needed

Accuracy for unnormalized lyrics

F1-score for unnormalized lyrics

Accuracy for normalized lyrics

F1-score for normalized lyrics

Conclusions

- More complex embedding models seem to be the key for improving classification results
- Surprisingly fine-tuning pretrained model does not bring significant improvements
- 2-step classifier gave better results when it comes to balanced accuracy for highly unbalanced dataset but besides that provided worse results in most cases
- In the case of small datasets simpler classifiers may give better results and they are faster than training e.g. CNNs for multiple epochs

Thank You For Attention!