

HOMOMORPHE VERSCHLÜSSELUNG Verfahren zum Rechnen auf verschlüsselten Daten

8. Oktober 2014

Viola Campos

Fachbereich Design Informatik Medien Hochschule RheinMain

GLIEDERUNG

- 1. Einleitung
- 2. Homomorphe Verschlüsselung
- 3. Das Approximate Eigenvektor Schema
- 4. Implementierung
- 5. Ausblick

CLOUD COMPUTING

Ziel: Auslagern von Berechnungen in die Cloud

Problem:

Wie lassen sich vertrauliche Informationen schützen?

SICHERES CLOUD COMPUTING

Idee: Ich möchte die Verarbeitung meiner Daten auslagern ohne den Zugriff auf diese zu erlauben.

Copyright by NAS

Einleituna

00000

SICHERES CLOUD COMPUTING

Gesucht:

Möglichkeit, Funktion mit verschlüsselten Argumenten auszuwerten:

$$Eval(f, Enc(x)) \rightarrow Enc(f(x))$$

Einleituna

00000

ENTWICKLUNG

Entwicklung homomorpher Verschlüsselung

1978	Definition homomorpher Verschlüsselung <i>Rivest, Adleman, Dertouzos</i>
bis 2008	Teilweise homomorphe Verschlüsselungssysteme (homomorph bzgl. Addition oder Multiplikation, keine Kombination)
2009	Erstes voll homomorphes Verschlüsselungssystem <i>Gentry</i> .
seit 2009	Varianten und Weiterentwicklungen von Gentrys System.

Definition

Als **Homomorphismus** oder **Homomorphie** bezeichnet man in der Algebra eine strukturerhaltende Abbildung zwischen zwei algebraischen Strukturen vom selben Typ.

Beispiel: Für zwei Ringe $(R,+,\cdot)$ und (S,\oplus,\otimes) wird die Abbildung $f\colon R\to S$ Ringhomomorphismus genannt, wenn für jedes Element a,b von R gilt:

$$f(a + b) = f(a) \oplus f(b)$$
 und
 $f(a \cdot b) = f(a) \otimes f(b)$

Homomorphes Verschlüsselungssystem:

$$\operatorname{Enc}(m_1 + m_2) = \operatorname{Enc}(m_1) \oplus \operatorname{Enc}(m_2)$$

 $\operatorname{Enc}(m_1 \cdot m_2) = \operatorname{Enc}(m_1) \otimes \operatorname{Enc}(m_2)$

HOMOMORPHE VERSCHLÜSSELUNG 1/2

Definition

Ein **homomorphes Verschlüsselungssystem** ist ein 4-Tupel der folgenden Algorithmen:

Schlüsselerzeugung: $\operatorname{Gen}(\lambda^*) \to (sk, pk, evk^{\dagger})$

Verschlüsselung: $\operatorname{Enc}(pk, m) \to C$ Entschlüsselung: $\operatorname{Dec}(sk, C) \to m$

Homomorphe Berechnung: Eval $(evk, f, C_1, C_2, \dots) \rightarrow C'$

^{*}Sicherheitsparameter

[†]Secret Key, Public Key, Evaluation Key

Anforderungen

Sicherheit, Korrektheit, Kompaktheit

SICHERHEIT

Semantische Sicherheit / IND-CPA[‡]

Ein Angreifer darf einem Geheimtext C, der entweder die Nachricht m_1 oder m_2 verschlüsselt, den zugrundeliegenden Klartext auch dann nicht zuordnen können, wenn er den öffentlichen Schlüssel kennt und m_1 und m_2 selbst gewählt hat.

Semantisch sicheres Verschlüsselungsverfahren muss **probabilistisch** sein.

Problem: Rauschen wird durch homomorphe Berechnungen verstärkt, ab gewissem Betrag ist korrekte Entschlüsselung unmöglich.

[‡]ciphertext indistinguishability under chosen plaintext attacks

KORREKTHEIT 1/2

Korrekte Verschlüsselung:

$$Dec(sk, Enc(pk, m)) = m$$

Korrekte homomorphe Evaluation:

$$Dec(sk, Eval(evk, f, Enc(pk, m))) = f(m)$$

Korrektheit für vollständiges System logischer Operatoren, z.B. (AND, OR, NOT) oder NAND \rightarrow Korrektheit für beliebige Funktionen

Aushlick

KORREKTHEIT 2/2

- · Fully Homomorphic Encryption
 - · Korrektheit für **jede** Funktion *f*
 - · Reduzierung des Rauschens nach einigen Operationen
- · Leveled Fully Homomorphic Encryption
 - Schlüssel werden so erzeugt, dass System Funktionen gewünschter Komplexität korrekt auswerten kann
- · Somewhat Homomorphic Encryption
 - · Korrekte Auswertung **einfacher** Funktionen *f*
 - geringere Komplexität als voll homomorphe Systeme, oft ausreichend

DAS APPROXIMATE EIGENVEKTOR SCHEMA

Eigenwert und Eigenvektor

Für eine $n \times n$ -Matrix C nennt man einen n-dimensionalen Vektor \vec{v} Eigenvektor und einen Skalar m Eigenwert von C, wenn gilt:

$$\mathbf{C}\cdot\vec{v}=m\cdot\vec{v}$$

Beobachtung: Für Matrizen C_1 , C_2 mit gemeinsamem Eigenvektor \vec{v} und dazugehörigen Eigenwerten m_1, m_2 gilt:

$$(\mathbf{C}_1 + \mathbf{C}_2) \cdot \vec{v} = (m_1 + m_2) \cdot \vec{v}$$
$$(\mathbf{C}_1 \cdot \mathbf{C}_2) \cdot \vec{v} = (m_1 \cdot m_2) \cdot \vec{v}$$

Idee: $\vec{v} =$ geheimer Schlüssel, $\mathbf{C} =$ Geheimtext, m = Nachricht ⇒ Homomorphie bzgl. Addition und Multiplikation

SICHERHEIT

Problem: System ist unsicher, Eigenvektoren lassen sich leicht bestimmen.

 \Rightarrow Geheimtexte müssen einen kleinen zufälligen Fehler \vec{e} enthalten.

$$\mathbf{C} \cdot \vec{v} = m \cdot \vec{v} + \vec{e} \approx m \cdot \vec{v}$$

 $ec{v}$ Geheimer Schlüssel

C Geheimtext

m Nachricht

 \vec{e} Fehlervektor

Alle Berechnungen finden in \mathbb{Z}_q , im Ring der ganzen Zahlen modulo einer positiven ganzen Zahl q statt.

Sicherheit des Systems lässt sich auf ›Learning with Errors<-Problem zurückführen.

Ziel: Wenn C_1 und C_2 Verschlüsselungen von m_1 und m_2 sind, soll gelten:

$$\mathbf{C}_1 + \mathbf{C}_2 = \mathsf{Enc}(m_1 + m_2)$$

$$\mathbf{C}_1 \cdot \mathbf{C}_2 = \mathsf{Enc}(m_1 \cdot m_2)$$

Zur Erinnerung: $\mathbf{C}_1 \cdot \vec{v} = m_1 \vec{v} + \vec{e}_1$

$$\mathbf{C}_1 \cdot \vec{v} = m_1 \vec{v} + \vec{e}_1$$

$$\mathbf{C}^{+} \cdot \vec{v} = (\mathbf{C}_{1} + \mathbf{C}_{2}) \cdot \vec{v}$$

$$= \mathbf{C}_{1} \vec{v} + \mathbf{C}_{2} \vec{v}$$

$$= m_{1} \vec{v} + \vec{e}_{1} + m_{2} \vec{v} + \vec{e}_{2}$$

$$= (m_{1} + m_{2}) \vec{v} + \underbrace{(\vec{e}_{1} + \vec{e}_{2})}_{\vec{e}_{odd}}$$

$$\mathbf{C}_2 \cdot \vec{v} = m_2 \vec{v} + \vec{e}_2$$

$$\mathbf{C}^{\times} \cdot \vec{v} = \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \vec{v}$$

$$= \mathbf{C}_1 \cdot (m_2 \vec{v} + \vec{e}_2)$$

$$= m_2 \cdot (m_1 \vec{v} + \vec{e}_1) + \mathbf{C}_1 \vec{e}_2$$

$$= (m_1 \cdot m_2) \vec{v} + \underbrace{m_2 \vec{e}_1 + \mathbf{C}_1 \vec{e}_2}_{\vec{e}_{mult}}$$

BEGRENZUNG DES FEHLERS

Möglichkeiten, das Fehlerwachstum während der homomorphen Evaluation zu reduzieren:

- · Bitweise Verschlüsselung
 - · Nachrichten m stammen aus dem Nachrichtenraum $\{0,1\}$
- Ciphertext Flattening
 - Zeitweise Zerlegung der Vektor- und Matrix-Elemente in deren binäre Repräsentation
 - · reduziert Maximumsnorm \Rightarrow geringeres Fehlerwachstum
- · Sequentielle Funktionsauswertung
 - Fehler wächst asymmetrisch während homomorpher Multiplikation
 - · geschickter Aufbau der auszuwertenden Schaltkreise
- Bootstrapping

Verwendete Technologien: Python und Computeralgebrasystem Sage

Implementierung in zwei Varianten:

- Approximate Eigenvector System von Gentry, Sahai und Waters
- · System mit Optimierungen von Brakerski und Vaikuntanathan

SPEICHERBEDARF

n	q	Private Key	Public Key	Ciphertext
16	16 ⁴	0.56kB	12.75kB	163.12kB
32	32 ⁴	1.69kB	72.18kB	1.14MB
64	64 ⁴	4.76kB	414.37kB	7.55MB
128	128 ⁴	12.78kB	2.20MB	46.71MB
256	256 ⁴	33.12kB	11.54MB	274.38MB
512	512 ⁴	83.41kB	56.69MB	1.51GB

Tabelle: Speicherbedarf eines GSW Systems mit Gitterdimension n und Modulus q. Ciphertext bezeichnet den Geheimtext, der erzeugt wird, um ein Klartext-Bit zu verschlüsseln.

LAUFZEITMESSUNG

Testumgebung: 2.4GHz Core, 8GB RAM, Implementierung in Python, Zeiten in \boldsymbol{s}

n	Level	KeyGen	Enc	Dec	Add	Mult		
Implementierung nach GSW13								
16	1	0.03	3.00	0.00	1.53	1.51		
32	1	0.10	32.19	0.01	16.10	16.22		
64	1	0.62	350.70	0.04	133.14	133.91		
128	1	4.86	-	-	-	-		
Implementierung mit Optimierungen aus BV14								
16	10	0.02	4.63	0.00	3.75	8.22		
32	10	0.07	61.38	0.00	56.88	123.36		
64	10	0.59	865.84	0.03	796.75	2878.05		
128	10	4.01	-	-	-	-		

FAZIT

- Implementiertes Schema erreicht leveled homomorphes System durch Wahl passender Systemparameter $q^{\$}$, n^{\P} und e^{**} .
 - · Problem: riesige Parameter und geringere Sicherheit
 - · widersprüchliche Anforderungen für Sicherheit und homomorphe Fähigkeiten des Systems
- Nutzung eines sequentiellen Modells (Branching Tree) für die homomorphe Funktionsauswertung reduzierte Fehlerwachstum deutlich
- · Schwäche des Systems: Geheimtextexpansion

 $[\]S$ Modulus von \mathbb{Z}_q

[¶]Dimension der Geheimtextmatrizen und Schlüssel

^{**} Maximaler Fehlerbetrag

OFFENE PROBLEME

Effizientere Systeme

- · Riesiger Overhead $\frac{Time(Eval(f))}{Time(f)}$ aktueller FHE Systeme
- · hoher Speicherbedarf für Schlüssel und Geheimtexte

FHE Systeme basierend auf neuen kryptographischen Annahmen

 Alle aktuellen Systeme stammen aus dem Gebiet der gitterbasierten Kryptographie

· Bounded Malleability

- Möglichkeit, nur bestimmte homomorphe Operationen zuzulassen
- Schutz vor unerlaubten Veränderungen an verschlüsselten Daten

· Alternative zu Bootstrapping

· effizientere Methode der Fehlerreduzierung

BOOTSTRAPPING

Problem:

Fehler in Geheimtexten wächst mit jeder homomorphen Operation. Wie lassen sich beliebig viele Operationen ermöglichen?

Idee: Homomorphe Auswertung der eigenen Entschlüsselungsfunktion reduziert Rauschen ohne Klartext offenzulegen.

Für 2 Schlüsselpaare (sk_1, pk_1) und (sk_2, pk_2) und einen mit pk_1 verschlüsselten Geheimtext C gilt:

$$\text{Eval}(evk, f_{\text{Dec}}, C, \text{Enc}(pk_2, sk_1)) = \text{Enc}(pk_2, m)$$

Fehler im Ergebnis entspricht frisch verschlüsseltem Geheimtext.

ENTSCHLÜSSELUNG

 ${f C}$ verschlüsselt m, wenn ${f C}\cdot \vec{v}=m\cdot \vec{v}+\vec{e}$

- Alle Berechnungen finden in \mathbb{Z}_q , im Ring der ganzen Zahlen modulo einer positiven ganzen Zahl q statt.
- * Klartexte werden bitweise verschlüsselt, Nachrichten m stammen also aus $\{0,1\}$.
- · Der geheime Schlüssel \vec{v} enthält ein großes Element $\vec{v}[i] = \frac{q}{2}$.

Dann gilt $(\mathbf{C} \cdot \vec{v})[i] = \frac{q}{2} \cdot m + \vec{e}[i]$ und m lässt sich durch Runden bestimmen.

Bedingung für korrekte Entschlüsselung: $\| \vec{e} \| < rac{q}{4}$

BRANCHING PROGRAM

Permutation Branching Program der Breite 5 [?] für eine Funktion $f: \{0,1\}^2 \rightarrow \{0,1\}.$

(0,2,1,4,3) Kanten für $x_i=1$ sind durchgezogen, für $x_i=0$ gestrichelt dargestellt.

(0.1.3.4.2) Das Beispiel berechnet $f = \mathsf{AND}(x_1, x_2).$

(0,3,4,1,2)

(0,2,4,3,1)

SEQUENTIELLE AUSWERTUNG

KOMPAKTHEIT

Ziel: Die Laufzeit von Dec(sk, C) ist für Ausgaben von Enc(pk, m) und Eval(evk, f, C) gleich.

Kompaktheit

- · Die Länge der Verschlüsselung eines Bits hängt nur vom Sicherheitsparameter λ ab.
- Insbesondere ist die Länge der Ausgabe von Eval $(evk, f, C_1, C_2, \dots)$ unabhängig von der ausgewerteten Funktion f und der Anzahl ihrer Eingabewerte.

OPTIMIERUNGSMÖGLICHKEITEN

- · Batching
- · Hybride voll homomorphe Verschlüsselung