MATH 190A: Homework #9

Due on Mar 12, 2025 at 12:00pm

Professor McKernan

Section A02 8:00AM - 8:50AM Section Leader: Zhiyuan Jiang

 $Source\ Consulted:\ Textbook,\ Lecture,\ Discussion$

Ray Tsai

A16848188

Show that an arbitrary product of Hausdorff spaces is Hausdorff.

Proof. Let $\{X\alpha\}$ be a collection of Hausdorff spaces and consider

$$X = \prod_{\alpha} X_{\alpha}.$$

Let $x, y \in X$ such that $x \neq y$. Then there exists some index β such that $x_{\beta} \neq y_{\beta}$. Since X_{β} is Hausdorff, there exists disjoint open sets $U, V \subset X_{\beta}$ such that $x_{\beta} \in U$ and $y_{\beta} \in V$. Let $p_{\beta} : X \to X_{\beta}$ be the natural projection map. Then $p_{\beta}^{-1}(U)$ and $p_{\beta}^{-1}(V)$ are open in X and $x \in p_{\beta}^{-1}(U)$. $y \in p_{\beta}^{-1}(V)$. Moreover, $p_{\beta}^{-1}(U)$ and $p_{\beta}^{-1}(V)$ are disjoint and U, V are joint, so X is Hausdorff.

Show that an arbitrary product of connected sets is connected.

Proof. Let $\{X_{\alpha}\}$ be a collection of connected spaces and consider

$$X = \prod_{\alpha \in \Lambda} X_{\alpha}.$$

First note that since X_{α} is connected, $\prod_{\alpha \in F} X_{\alpha}$ is connected for all finite $F \subseteq \Lambda$. Suppose for sake of contradiction that X may be partitioned into two disjoint nonempty open sets U, V. Fix $a \in X$. For $\alpha \in \Lambda$, let

$$Z_{\alpha} = \{ x \in X \mid x_{\beta} = a_{\beta}, \beta \neq \alpha \},\$$

the set of points in X that agree with a in all coordinates except α . Then $f_{\alpha}: X_{\alpha} \to Z_{\alpha}$ which sends k to (x_{β}) where $x_{\beta} = a_{\beta}$ for $\beta \neq \alpha$ and $x_{\alpha} = k$ is a homeomorphism. Since X_{α} is connected, Z_{α} is connected. Hence, for each $\alpha \in \Lambda$, Z_{α} is contained in either U or V. Since U, V are nonempty, we may find $Z_{\alpha_1}, Z_{\alpha_2}$ such that $Z_{\alpha_1} \subseteq U$ and $Z_{\alpha_2} \subseteq V$. Now consider $W = Z_{\alpha_1} \cup Z_{\alpha_2} \subset X$. Then the function $g: X_{\alpha_1} \times X_{\alpha_2} \to W$ which sends (k, m) to (x_{β}) where $x_{\beta} = a_{\beta}$ for $\beta \neq \alpha_1, \alpha_2$ and $(x_{\alpha_1}, x_{\alpha_2}) = (k, m)$ is a homeomorphism. But then this implies that $W = (W \cap U) \cup (W \cap V)$ is connected, contradiction.

Problem 3

Let $f: X \to Y$ be a continuous and surjective function.

(i) Show that f is a quotient map if and only if Y has the finest topology such that f is continuous (that is, $V \subset Y$ is open if and only if $U = f^{-1}(V)$ is open).

Proof. Suppose f is a quotient map.

- (ii) Show that if f is open then f is a quotient map.
- (iii) Show that if f is closed then f is a quotient map.
- (iv) Show that if X is compact and Y is Hausdorff then f is a quotient map.
- (v) Show that if f has a right inverse, that is, there is a continuous function $g: Y \to X$ such that $f \circ g: Y \to Y$ is the identity, then f is a quotient map.
- (vi) Show that if $p: X \times Y \to Y$ is the projection then p is a quotient map.
- (vii) Let X be a topological space and let $Y \subset X$ be a subspace. We say that r is a retraction of X onto Y if $r: X \to Y$ is a continuous map whose restriction to Y is the identity, $r|_Y = i_Y$. If $r: X \to Y$ is a retraction then show that r is a quotient map.
- (viii) Show that the composition of quotient maps is a quotient map.

Let

$$X = \{(x, y) \mid \text{ either } x \ge 0 \text{ or } y = 0\} \subset \mathbb{R}^2.$$

Let $p:\mathbb{R}^2 \to \mathbb{R}$ denote projection onto the first factor and let

$$f:X\to\mathbb{R}$$

be the restriction of p to X.

Show that f is a quotient map, even though f is neither open nor closed and X.

Consider the Möbius strip X_1 and the closed unit ball X_2 in \mathbb{R}^2 . The boundary of both is homeomorphic to S^1 (in fact the boundary of the closed unit ball is S^1). Define a topological space X by taking the quotient of the disjoint union of X_1 and X_2 , modulo an equivalence relation that identifies the two boundaries (in other words, pick a homeomorphism between the two boundaries and identify corresponding points).

Show that X is homeomorphic to the real projective plane.