SRN				L.		

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE16EE353

MAY 2019: END SEMESTER ASSESSMENT (ESA) B.TECH. VISEMESTER UE16EE353- DIGITAL SIGNAL PROCESSING

Tir	ne: 3	3hours Answer All Questions Max Marks: 100	
1.	a)	Evaluate the sum $S = \sum_{n=0}^{15} x_1(n) x_2(n)$ using $16 - \text{point DFT if}$ $x1(n) = \cos\left(\frac{3\pi n}{8}\right) \text{ and}$ $x2(k) = 3 \text{ in } 0 \le k \le 15.$	6
	b)	If the 10-point DFTs of $x(n) = \delta(n) - \delta(n-1)$ and $h(n) = u(n) - u(n-10)$ are $X(k)$ and $H(k)$, respectively, find the sequence $w(n)$ that corresponds to the 10-point inverse DFT of the product $H(k)X(k)$.	6
	c)	A 498-point DFT X (k) of a real valued sequence x (n) has the following DFT samples: $X(0) = 2;$ $X(11) = 7 + j3.1;$ $X(k1) = -2.2 - j1.5;$ $X(112) = 3 - j0.7;$ $X(k2) = -4.7 + j1.9;$ $X(249) = 2.9;$ $X(309) = -4.7 - j1.9;$ $X(k3) = 3 + j0.7;$ $X(412) = -2.2 + j1.5;$ $X(k4) = 7 - j3.1;$ Remaining DFT samples are zero. Evaluate i) index k1, k2, k3, k4 ii) energy of x (n).	8
2.	a)	How many DFTs and inverse DFTs of length N = 128 are necessary to linearly convolve a sequence x (n) of length 1000 with a sequence h (n) of length 64 using the overlap-save method. Suppose the length is increased to 1040, how many numbers of DFT's & IDFT are necessary if overlap – add method is preferred?	6
	b)	The impulse response of a system is {1, 2}. Suppose the input is {1, 2, 3, 4, 5, 6}, apply overlap – add technique to compute system response. Assume block length as 3.	6
	c)	Apply radix -2 DIT $-$ FFT technique to compute 8 $-$ point DFT of the sequence $x(n) = \{0, 1, 0, -1, 0, 1, 0, -1\}.$	8
3.	a)	The magnitude squared function of Butterworth filter is $\frac{1}{1+(\frac{s}{2})^4}$. Find the order of the filter, cutoff frequency & the prototype filter function.	6
	b)	Use examples to prove that angle of separation between poles is a function of filter order in analog Butterworth filter.	6
	c)	Design a low pass Chebyshev type 1 analog filter to meet the following specifications: > -I dB attenuation in pass band at an edge frequency of 10 rad/s > -12 dB stop band attenuation at an edge frequency of 40 rad/s.	8

SRN	
-----	--

4.	a)	Digitize the analog filter function by impulse invariant method given H (s) = $\frac{s+1}{(s+2)^2}$	6
		Assume $T = 1$ s.	
	b)	The bilinear transformation design gives the causal IIR digital filter function as $H(z) =$	6
		$\frac{5z^2+4z-1}{8z^2+4z}$ with T =2 s. Determine the parent analog filter function.	
	c)	Design a first order Butterworth low pass digital filter to have a 3dB cutoff frequency	8
		of 0.5π rad	
		by i) impulse invariant	
		ii) Bilinear transformation technique.	
		Also verify the design and suggest better technique among them, if applicable.	
5.	a)	Obtain cascaded realization, for the system	6
J.	ay	H (z) = $(1+z^{-1})(1+z^{-1}+\frac{1}{4}z^{-2})(1+\frac{1}{2}z^{-1}+z^{-2})$. Use minimum number of	
		multipliers wherever possible.	
	b)	Design a 7 – tap lowpass linear phase FIR filter using frequency sampling method to have a cutoff frequency of 1000 Hz. Assume sampling frequency as 8000 Hz.	6
	c)	Design a lowpass linear phase FIR filter to satisfy following requirements:	8
		Passband attenuation of – 0.02 dB	
		Stop band attenuation of – 50 dB	
		Passband edge frequency of 100 Hz	
		Stopband edge frequency of 500 Hz	
		Sampling frequency: 1000 Hz.	