Papa Rudin Notes CONTENTS

${\bf Contents}$

1	Abstract Integration
	The Concept of Measurability
	Simple Functions
	Elementary Properties of Measures
	Arithmetic in $[0, \infty]$
	Integration of Positive Functions on (X, \mathfrak{M}, μ)
	Integration of Complex Functions on (X, \mathfrak{M}, μ)
	The Role Played by Sets of Measure Zero
2	Positive Borel Measures
4	
	Vector Spaces
	Topological Preliminaries
	The Riesz Representation Theorem
	Regularity Properties of Borel Measures
	Lebesgue Measure
	Continuity Properties of Measurable Functions

1 Abstract Integration

The Concept of Measurability

1.2 Definition

- $\tau \subseteq \mathscr{P}(X)$, containing both \emptyset and X, is a **topology** if it is closed under finite intersections, and closed under arbitrary unions.
- (X, τ) is a **topological space** and the members of τ are **open sets**.
- $f:(X,\tau_X)\to (Y,\tau_Y)$ is **continuous** if open sets have open preimages.

1.3 Definition

- $\mathfrak{M} \subseteq \mathscr{P}(X)$, containing X, is a σ -algebra if \mathfrak{M} is closed under complementation and countable unions.
- (X,\mathfrak{M}) is a measurable space; elements of \mathfrak{M} are measurable sets.
- $f:(X,\mathfrak{M})\to (Y,\tau)$ is **measurable** if open sets have measurable preimages $(\tau \text{ a topology})$.

Note: Instead of (X,\mathfrak{M}) we just refer to X as the measurable space.

1.6 Comments on Definition 1.3

- $\emptyset \in \mathfrak{M}$.
- Finite unions are in \mathfrak{M} .
- M is closed under finite and countable intersection.
- \mathfrak{M} is closed under set subtraction.

1.7 Composition with Continuous Functions

• X a measurable space, $f: X \to Y$ measurable, $g: Y \to Z$ continuous: $g \circ f$ is measurable.

1.8 Continuous Image of Cartesian Product of Measurable Functions.

• u, v real measurable functions on X, ϕ continuous image of the plane into a topological space Y: $\phi(u(x), v(x))$ is measurable.

1.9 Creating Measurable Functions

- If u, v are real measurable then f = u + iv is complex measurable.
- If f = u + iv is complex measurable then u, v, and |f| are real measurable.
- If f and g are complex measurable then so are f + g and fg.
- Characteristic functions of measurable sets are measurable functions.
- If f is complex measurable then there is a complex measurable function α with $|\alpha|=1$ and $f=\alpha|f|$.

1.10 σ -Algebra Generated by a Set

• $\mathscr{F} \subseteq \mathscr{P}(X)$ is contained in some smallest σ -algebra \mathfrak{M}^* .

1.11 Borel Sets

- The Borel Sets, \mathfrak{B} , is the σ -algebra generated by the topology of a space.
- G_{δ} sets are countable intersections of open sets.
- F_{σ} sets are countable unions of closed sets.
- Borel measurable functions are called **Borel mappings** or **Borel functions**.
- Every continuous function is Borel measurable.

1.12 σ -Algebras Associated with a Function

- \mathfrak{M} a σ -algebra on X, Y a topological space, $f: X \to Y$ a function.
- $\Omega = \{E \subseteq Y : f^{-1}(E) \in \mathfrak{M}\}$ is a σ -algebra on Y.
- If f is measurable, E Borel in Y, then $f^{-1}(E) \in \mathfrak{M}$.
- If $Y = [-\infty, \infty]$ and $f^{-1}((a, \infty]) \in \mathfrak{M}$ for all $\alpha \in \mathbb{R}$ then f is measurable.
- If f is measurable, Z a topological space, $g: Y \to Z$ Borel, then $g \circ f: X \to Z$ is measurable.

1.14 Supremum and Limit Supremum of Measurable Functions

- If $f_n: X \to [-\infty, \infty]$ are measurable then so are $\sup f_n$ and $\limsup f_n$.
- The limit of pointwise convergent sequence of complex measurable functions is measurable.
- f, g measurable then so are $\max\{f, g\}$ and $\min\{f, g\}$.

1.15 Positive and Negative parts of f

- $f^+ = \max\{f, 0\}$ is the **positive part** of f and $f^- = -\min\{f, 0\}$ is the **negative part**.
- $|f| = f^+ + f^-$ and $f = f^+ f^-$.
- If f = g h, $g \ge 0$ and $h \ge 0$ then $f^+ \le g$ and $f^- \le h$.

Simple Functions

1.16 Definition

• s, complex measurable on X, is **simple** if its range is finite. If $s(X) = \{\alpha_1, \dots, \alpha_n\}$ then

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}, \quad A_i = s^{-1}(\alpha_i).$$

• s is measurable if and only if each A_i is.

1.17 Approximation by Simple Functions

• If $f: X \to [0, \infty]$ is measurable then there exists measurable, simple functions s_n on X such that $0 \le s_1 \le \ldots \le f$ and $s_n(x) \to f(x)$ as $n \to \infty$ for all $x \in X$.

Elementary Properties of Measures

1.18 Definition

• A positive measure is a function from a σ -algebra \mathfrak{M} to $[0,\infty]$ which is countably additive: i.e.

$$\mu\left(\bigcup_{n=1}^{\infty} A_i\right) = \sum_{i=1}^{n} \mu(A_i)$$

when A_i are pairwise disjoint members of \mathfrak{M} .

- A measurable space equipped with a measure is a **measure space**.
- A complex measure is a complex-value countably additive function on a σ-algebra.

1.19 Basic Properties of a Positive Measure μ

- $\mu(\emptyset) = 0$.
- $\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n)$ if the A_i are pairwise disjoint members of \mathfrak{M} .
- $A \subseteq B$ implies $\mu(A) \le \mu(B)$ for $A, B \in \mathfrak{M}$.
- If $A_n \in \mathfrak{M}$ such that $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ then $\mu(A_n) \to \mu(\bigcup_{n=1}^{\infty} A_n)$.
- If $A_n \in \mathfrak{M}$ such that $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ and $\mu(A_1) < \infty$ then $\mu(A_n) \to \mu(\bigcap_{n=1}^{\infty} A_n)$.

1.20 Measure Space Examples

- counting measure: $\mu(E) = |E|$ if $|E| < \infty$ and $\mu(E) = \infty$ otherwise.
- unit mass at x_0 : $\mu(E) = 1$ if $x_0 \in E$ and $\mu(E) = 0$ otherwise.

Arithmetic in $[0, \infty]$

1.22 Definition

- $a + \infty = \infty + a = \infty$
- $\bullet \ a \cdot \infty = \infty \cdot a = \begin{cases} \infty & a \in (0, \infty] \\ 0 & a = 0 \end{cases}$
- With $0 \cdot \infty = 0$ we have commutativity, associativity, and distributivity.
- Cancellation: $a+b=a+c \implies b=c$ only if $a\neq\infty$; $ab=ac \implies b=c$ only if $a\in(0,\infty)$.
- $0 \le a_1 \le a_2 \le \cdots$, $0 \le b_1 \le b_2 \le \cdots$ with $a_n \to a$ and $b_n \to b \implies a_n b_n \to ab$.

Integration of Positive Functions on (X, \mathfrak{M}, μ)

1.23 Definition

• $s: X \to [0, \infty]$ simple and measurable with $s(X) = \{\alpha_1, \dots, \alpha_n\}$. For $E \in \mathfrak{M}$ define

$$\int_E s \, d\mu = \sum_{i=1}^n \alpha_i \mu(A_i \cap E), \quad A_i = s^{-1}(\alpha_i).$$

• If $f: X \to [0, \infty]$ is measurable then for $E \in \mathfrak{M}$ define the **Lebesgue Integral of** f **over** E by

$$\int_{E} f \, d\mu = \sup \int_{E} s \, d\mu,$$

where the supremum is taken over all nonnegative measurable simple functions dominated by f.

1.24 Basic Properties of Lebesgue Integrals

- $0 \le f \le g$ implies $\int_E f \, d\mu \le \int_E g \, d\mu$.
- $A \subseteq B$ and $f \ge 0$ implies $\int_A f \, d\mu \le \int_B f \, d\mu$.
- If $f \ge 0$ and $c \in [0, \infty)$ then $\int_E cf \, d\mu = c \int_E f \, d\mu$.
- If $f \equiv 0$ on E then $\int_E f d\mu = 0$ even if $\mu(E) = \infty$.
- If $\mu(E) = 0$ then $\int_E f d\mu = 0$ if if $f \equiv \infty$ on E.
- If $f \ge 0$ then $\int_E f d\mu = \int_X \chi_E f d\mu$.

1.25 Basic Properties of the Lebesgue Integral of Simple Functions

- If s is a nonnegative measurable simple function then $\varphi:\mathfrak{M}\to [0,\infty]$ sending E to $\int_E s\,d\mu$ is a measure.
- If s and t are nonnegative measurable simple functions then $\int_X (s+t) d\mu = \int_X s d\mu + \int_X t d\mu$.

1.26 Lebesgue's Monotone Convergence Theorem

• If $f_n: X \to [0, \infty]$ are measurable functions such both $\{f_n(x)\}$ is non-decreasing $f_n(x) \to f(x)$ hold for every $x \in X$ then f is measurable and

$$\int_X f_n \, d\mu \to \int_X f \, d\mu.$$

1.27 Interchange of Summation and Integration

• If $f_n: X \to [0, \infty]$ are measurable and $f(x) = \sum_{n=1}^{\infty} f_n(x)$ then

$$\int_X f \, d\mu = \sum_{n=1}^\infty f_n \, d\mu.$$

1.28 Fatou's Lemma

• If $f_n: X \to [0, \infty]$ are measurable then

$$\int_{X} \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_{X} f \, d\mu.$$

1.29 Change of Measure

• If $f: X \to [0, \infty]$ is measurable then $\varphi: \mathfrak{M} \to [0, \infty]$ sending E to $\int_E f \, d\mu$ is a measure and

$$\int_X g \, d\varphi = \int_X g f \, d\mu.$$

Sometimes this is written as $d\varphi = f d\mu$, although no independent meaning is given to these symbols.

Integration of Complex Functions on (X, \mathfrak{M}, μ)

1.30 Definition

• The Lebesgue Integrable Functions or Summable Functions with respect to μ , denoted by $L^1(\mu)$ is the collection of all complex measurable functions f on X such that $\int_X |f| d\mu < \infty$.

1.31 Definition

• If f = u + iv with u, v real measurable functions and $f \in L^1(\mu)$ then for $E \in \mathfrak{M}$:

$$\int_E f \, d\mu = \left(\int_E u^+ \, d\mu - \int_E u^- \, d\mu \right) + i \left(\int_E v^+ \, d\mu - \int_E v^- \, d\mu \right).$$

• It is useful define the integral of a function $f: X \to [-\infty, \infty]$ to be

$$\int_E f \, d\mu = \int_E f^+ \, d\mu - \int_E f^- \, d\mu$$

for $E \in \mathfrak{M}$ and provided only one term on the right is infinite.

1.32 Linearity of $L^1(\mu)$

• For $f, g \in L^1(\mu)$ and $\alpha, \beta \in \mathbb{C}$ we have $\alpha f + \beta g \in \mathbb{L}^{\mathbb{M}}(\mu)$ and

$$\int_X (\alpha f + \beta g) \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu.$$

1.33 Interchange of Modulus and Integration

• $\left| \int_{Y} f d\mu \right| \leq \int_{Y} |f| d\mu \text{ for } f \in L^{1}(\mu).$

1.34 Lebesgue's Dominated Convergence Theorem

• f_n are complex measurable functions such that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in X$. If

$$|f_n(x)| \leq g(x)$$
, for all $n \in \mathbb{N}$

for some $g \in L^1(\mu)$ then $f \in L^1(\mu)$,

$$\lim_{n \to \infty} \int_X |f_n - f| \, d\mu = 0,$$

and

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$

The Role Played by Sets of Measure Zero

1.35 Definition

- If μ is a measure on a σ -algebra \mathfrak{M} , $E \in \mathfrak{M}$, then a statement P holds **almost everywhere** (a.e.) on E if there exists $N \subseteq E$ with $\mu(N) = 0$ such that P is true on $E \setminus N$.
- Example: for f, g measurable if $\mu(\{x: f(x) \neq g(x)\}) = 0$ then f = g a.e. and we write $f \sim g$. \sim is an equivalence relation and if $f \sim g$ then for $E \in \mathfrak{M}$ we have $\int_E f \, d\mu = \int_E g \, d\mu$. Thus sets of measure zero are negligible with respect to integration.
- Note: It is not the case that a subset of a negligible set is negligible as it may not even be measurable!

1.36 Existence of Completions

- (X, \mathfrak{M}, μ) is a measure space. Define \mathfrak{M}^* to be all $E \subseteq X$ such that $A \subseteq E \subseteq B$ for $A, B \in \mathfrak{M}$ such that $\mu(B \setminus A) = 0$. Defining $\mu(E) = \mu(A)$, $(X, (M)^*, \mu)$ is a measure space,
- The extended μ is **complete** as all subsets of negligible sets are measurable.
- \mathfrak{M}^* is the μ -completion of \mathfrak{M} .

1.37 Expanding the Definition of What is a Measurable Function

- Since integration is agnostic to functions equal a.e., we now call f defined on $E \in \mathfrak{M}$ measurable on X if $\mu(E^c) = 0$ and $f^{-1}(V) \cap E$ is measurable for every open set V.
- In the above, we can define $f \equiv 0$ on E^c to get a measurable function on X.

1.38 Lebesgue's Dominated Convergence Theorem with Negligible Sets

• f_n complex measurable functions defined a.e. on X such that

$$\sum_{n=1}^{\infty} \int_{X} |f_n| \, d\mu < \infty.$$

Then $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges for almost all x and $f \in L^1(\mu)$ with

$$\int_X f \, d\mu = \sum_{n=1}^\infty \int_X f_n \, d\mu.$$

1.39 Integration and Properties That Hold Almost Everywhere

- If $f: X \to [0, \infty]$ measurable, $E \in \mathfrak{M}$ with $\int_E f \, d\mu = 0$ then f = 0 a.e. on E.
- If $f \in L^1(\mu)$ with $\int_E f d\mu = 0$ for every $E \in \mathfrak{M}$ then f = 0 a.e. on X.
- If $f \in L^1(\mu)$ and

$$\left| \int_X f \, d\mu \right| = \int_X |f| \, d\mu$$

then there exists $\alpha \in \mathbb{C}$ such that $\alpha f = |f|$ a.e. on X.

1.40 Averages Lying in a Closed Set

• If $\mu(X) < \infty$, $f \in L^1(\mu)$, $S \subseteq \mathbb{C}$ is closed, and the averages

$$A_E(f) = \frac{1}{\mu(E)} \int_E f \, d\mu$$

lie in S for every $E \in \mathfrak{M}$ with positive measure then $f(x) \in S$ for almost all $x \in X$.

1.41 Finite Set Membership

• If $E_k \subseteq X$ are measurable with $\sum_{k=1}^{\infty} \mu(E_k) < \infty$ then almost all $x \in X$ lie in finitely many E_k .

2 Positive Borel Measures

Vector Spaces

2.1 Definition

- A **complex vector space** is one with complex scalars.
- A function Λ between vector spaces is a **linear transformation** if $\Lambda(\alpha x + \beta y) = \alpha \Lambda x + \beta \Lambda y$.
- A linear functional is a linear transformation where the codomain is the field of scalars of the domain.

2.2 Integration as a Linear Functional

- For any positive measure μ , $f \mapsto \int_X f d\mu$ is a linear functional on $L^1(\mu)$.
- If g is a bounded measurable function then $f \mapsto \int_X fg \, d\mu$ is a linear functional on $L^1(\mu)$.
- A positive linear functional is a linear functional Λ such that $\Lambda f \geq 0$ whenever $f \geq 0$.
- If C is the vector space of continuous complex functions on [0, 1] then

$$\Lambda f = \int_0^1 f(x) \, dx$$

is a positive linear functional on C (with the integral being the Riemann integral).

Topological Preliminaries

2.3 Definitions

- E is **closed** if its complement is open.
- The closure of E, denoted \overline{E} , is the smallest closed set containing E.
- $K \subseteq X$ is **compact** if every open cover of K contains a finite subcover.
- A **neighborhood** of $p \in X$ is any open set containing p.
- X is **Hausdorff** if any two $p \neq q$ can be separated by open sets.
- X is **locally compact** if every points has a neighborhood with compact closure.
- Recall Heine-Borel: Subsets of Euclidean space are compact exactly when they are closed and bounded. Thus \mathbb{R}^n is locally compact.
- Recall: Every metric space is Hausdorff.

2.4 Closed Subsets of Compact Sets

- $F \subseteq K$, F closed, K compact. Then F is compact.
- If $A \subseteq B$ and B has compact closure then so does A.

2.5 Separating a Compact Set from a Point

• If X is Hausdorff with K compact in X then any $p \notin K$ can be separated from K by open sets.

2.6 Intersections of Compact Sets

• If $K_{\alpha} \subseteq X$ are compact, X Hausdorff, and $\cap_{\alpha} K_{\alpha} = \emptyset$ then some finite subset has empty intersection.

2.7 Sandwiching Sets

• If U is open in X, Hausdorff, and $K \subseteq U$ is compact then there exists V, open, with $K \subseteq V \subseteq \overline{V} \subseteq U$.

2.8 Definition

- f is lower semicontinuous if $f^{-1}((\alpha, \infty])$ is open.
- f is upper semicontinuous if $f^{-1}([\infty, \alpha))$ is open.
- χ_U is lower semicontinuous if U is open.
- χ_F is upper semicontinuous if F is closed.
- The supremum of any collection of lower semicontinuous functions is again lower semicontinuous.
- The infimum of any collection of upper semicontinuous functions is again upper semicontinuous.

2.9 Definition

- The **support** of $f: X \to \mathbb{C}$ is the closure of $f^{-1}(\mathbb{C} \setminus \{0\})$.
- $C_c(X)$ is the vector space of functions with compact support.

2.10 Image of a Compact Set

- The continuous image of a compact set is compact.
- The range of $f \in C_c(X)$ is compact subset of \mathbb{C} .

2.11 Notation

- $K \prec f$ means K is compact, $0 \le f(x) \le 1$ and f = 1 on K.
- $f \prec V$ means V is open and f's support lies in V.
- $K \prec f \prec V$ combines the above.

2.12 Urysohn's Lemma

- For $K \subseteq V \subseteq X$ with K compact, V open, and both X locally compact and Hausdorff, there exists $f \in C_c(X)$ with $K \prec f \prec V$.
- In terms of characteristic functions this means there is a continuous f with $\chi_K \leq f \leq \chi_V$.

2.13 Partition of Unity

- For X locally compact and Hausdorff and V_1, \ldots, V_n open in X and $K \subseteq V_1 \cup \cdots \cup V_n$ is compact, there exists functions $h_i \prec V_i$ with $h_1 + \cdots + h_n = 1$ on K.
- This is called a **partition of unity on** K subordinate to the cover $\{V_1, \ldots, V_n\}$.

The Riesz Representation Theorem

2.14 The Riesz Representation Theorem

- For X locally compact and Hausdorff with Λ a positive linear functional on $C_c(X)$ there exists:
 - 1. a σ -algebra \mathfrak{M} containing all the Borel sets of X;
 - 2. a unique positive measure μ on \mathfrak{M} representing Λ :
 - $-\Lambda f = \int_X f d\mu$ for all $f \in C_c(X)$
 - $-\mu(K) < \infty$ for any compact K
 - $-\mu(E) = \inf \{ \mu(V) : E \subseteq V, V \text{ open} \} \text{ for all } E \in \mathfrak{M}$
 - $-\mu(E) = \sup \{\mu(K) : K \subseteq E, K \text{ compact}\}\$ for every $E \in \mathfrak{M}$ open or $\mu(E) < \infty$
 - $-E \in \mathfrak{M}, \mu(E) = 0$ implies every subset of E is in \mathfrak{M} .

Regularity Properties of Borel Measures

2.15 Definition

- μ is a **Borel measure** if it is defined on the Borel sets. Let μ be a positive Borel measure and $E \subseteq X$ be Borel. Then:
- E is **outer regular** if the infimum property in 2.14 holds.
- E is **inner regular** if the supremum property in 2.14 holds.
- \bullet E is **regular** if both hold.

2.16 Definition

- E is σ -compact if it is the countable union of compact sets.
- E is σ -finite if it is the countable union of sets with finite measure.

2.17 Regularity of σ -Compact Spaces

- X a locally compact, σ -compact Hausdorff space and \mathfrak{M}, μ are as in 2.14. Then:
 - For $E \in \mathfrak{M}$, $\epsilon > 0$, there is $F \subseteq E \subseteq V$ with F closed, V open, and $\mu(V \setminus F) < \epsilon$.
 - $-\mu$ is a regular Borel measure on X.
 - There exists an $F_{\sigma}A$ and a $G_{\delta}B$ with $A \subseteq E \subseteq B$ and $\mu(B \setminus A) = 0$. Thus, every $E \in \mathfrak{M}$ is the union of an F_{σ} and a negligible set.

2.18 Regularity in the Presence of σ -Compact Open Sets

• X a locally compact Hausdorff space in which every open set is σ -compact. Then any positive Borel measure that is finite on compact sets is regular.

Lebesgue Measure

2.19 Euclidean Spaces

- \mathbb{R}^k is the k-dimension Euclidean space with all the familiar operations.
- If $E \subseteq \mathbb{R}^k$ and $x \in \mathbb{R}^k$ then $E + x = \{y + x : y \in E\}$ is a **translate** of E.
- A k-cell is a set of the form $\{(\xi_1, \dots, \xi_k) \in \mathbb{R}^k : \alpha_i < \xi_i < \beta_i, 1 \le i \le k\}$. Either inequality may be replaced with \le . The **volume** of a k-cell is $\operatorname{vol}(W) = \prod_{i=1}^k (\beta_i \alpha_i)$.
- If $a \in \mathbb{R}^k$ and $\delta > 0$ then a δ -box with corner at a is

$$Q(a,\delta) = \{(\xi_1, \dots, \xi_k) \in \mathbb{R}^k : \alpha_i \le \xi_i < \alpha_i + \delta, 1 \le i \le k\}.$$

- If P_n are points whose coordinates are multiples of 2^{-n} and Ω_n are the 2^{-n} boxes with corners at the elements of P_n then we use the following properties:
 - $-\Omega_n$ covers \mathbb{R}^k disjointly.
 - If r < n and $Q' \in \Omega_n$, $Q'' \in \Omega_r$ then either $Q' \subseteq Q''$ or $Q' \cap Q'' = \emptyset$.
 - vol $Q = 2^{-rk}$ for $Q \in \Omega_r$ and if n > r then $|P_n \cap Q| = 2^{(n-r)k}$.
 - Any non-empty open set is the countable disjoint union of elements of $\bigcup_{n=1}^{\infty} Q_n$.

2.20 Existence of the Lebesgue Measure

- There exists $(\mathbb{R}^k, \mathfrak{M}, m)$ such that
 - -m(W) = vol(W) for every k-cell W.
 - $-\mathfrak{M}$ contains the Borel sets of \mathbb{R}^k
 - $-E \in \mathfrak{M}$ iff $A \subseteq E \subseteq B$ with A is F_{σ} , B is G_{δ} , and $m(B \setminus A) = 0$.
 - m is regular.
 - -m(x+E)=m(E) for all $E\in\mathfrak{M}$ and $x\in\mathbb{R}^k$.
 - If μ is any positive translation-invariant Borel measure on \mathbb{R}^k which is finite on compact sets then $\mu(E) = cm(E)$ for some $c \in \mathbb{R}$ and all Borel sets E.
 - $-m(T(E)) = \Delta(T)m(E), \ \Delta(T) \in \mathbb{R}$, for every linear transformation $T : \mathbb{R}^k \to \mathbb{R}^k$ and $E \in \mathfrak{M}$. More specifically, $\Delta(T) = 1$ if T is a rotation.
- Elements of \mathfrak{M} are Lebesgue measurable sets and m is the Lebesgue measure on \mathbb{R}^k .

2.21 Remarks

- If m is the Lebesgue measure on \mathbb{R}^k we write $L^1(\mathbb{R}^k)$ instead of $L^1(m)$.
- Instead of $f \in L^1$ on E we write $f \in L^1(E)$ (in the measure space with m restricted to subsets of E).
- If I is an interval in \mathbb{R} and $f \in L^1(I)$ we write $\int_a^b f(x) dx$ instead of $\int_I f dm$.
- If f is continuous on [a, b] then the Riemann and Lebesgue integrals agree.
- Most sets are not Borel sets.

2.22 Sufficient Condition for Measure Zero

- If $A \subseteq \mathbb{R}$ and every subset of A is Lebesgue measurable then m(A) = 0.
- Every set of positive measure has unmeasurable subsets.

2.23 Determinants

• The $\Delta(T)$ in 2.20 is $|\det T|$.

Continuity Properties of Measurable Functions

We assume in this section that μ is a measure on a locally compact Hausdorff space with the properties listed in $2.14 - \mu$ could be the Lebesgue measure on some \mathbb{R}^k .

2.24 Lusin's Theorem

• f complex measurable, $\mu(A) < \infty$, and f = 0 outside A. Then for $\epsilon > 0$ there exists $g \in C_c(X)$ with

$$\mu(\{x: f(x) \neq g(x)\}) < \epsilon.$$

We may pick g so that

$$\sup_{x \in X} |g(x)| \le \sup_{x \in X} |f(x)|.$$

• If $|f| \leq 1$ then there is a sequence $g_n \in C_c(X)$, $|g_n| \leq 1$, with

$$f(x) = \lim_{n \to \infty} g_n(x)$$
 a.e.

2.25 Vitali-Carathéodory Theorem

• If $f \in L^1(\mu)$ is real valued and $\epsilon > 0$ then there exists u, upper semicontinuous and bounded from above, and v, lower semicontinuous and bounded from below, such that $u \leq f \leq v$ and $\int_X (v-u) \, d\mu < \epsilon$.