

Three Axioms

Imply general results

Three results

Use lego blocks

Three Axioms

Non-negativity $P(A) \ge 0$

$$P(A) \ge 0$$

Short for $\forall A P(A) \geq 0$

Unitarity

$$P(\Omega) = 1$$

Addition rule

A, B disjoint
$$\rightarrow$$
 P(A \cup B) = P(A) + P(B)

$$A_1, A_2,...$$
 disjoint $\rightarrow P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$

Countable unions only

Uncountable later

"Building" Results

Use lego blocks

construct three simple results

Complement rule

Subtraction

nested sets

general sets

Inclusion-exclusion

Complement Rule

Complement rule for counting

$$|A^c| = |\Omega| - |A|$$

$$A \cup A^{c} = \Omega$$

$$\Omega$$
 Ac A

$$P(A) + P(A^c) = P(A \cup A^c) = P(\Omega) = 1$$

$$P(A^c) = 1 - P(A)$$

 $P(A^c) = 1 - P(A)$ Complement rule for probability (-)

Subtraction Rule - Nested Sets

Complement rule

$$A \subseteq \Omega$$

$$P(A^c) = 1 - P(A)$$

$$P(A^c) = 1 - P(A) \qquad P(\Omega - A) = P(\Omega) - P(A)$$

Generalize

$$A \subseteq B$$

$$P(B-A) = P(B) - P(A)$$

$$B = A \cup (B-A)$$

$$P(B-A) = P(B) - P(A)$$

P(B-A) = P(B) - P(A) Subtraction rule for nested sets (-)

Subtraction Rule - General Sets

Nested

 $A \subseteq B$ P(B-A) = P(B) - P(A)

General

 $\forall A, B \quad P(B-A) = P(B) - P(A \cap B) \quad \bigcirc$

 $B - A = B - (A \cap B)$

 $A \cap B \subseteq B$

$$P(B - A) = P(B - (A \cap B)) = P(B) - P(A \cap B)$$

Inclusion Exclusion

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$A \cup B = A \cup B-A$$

$$= P(A) + P(B-A)$$

General subtraction

$$P(B-A) = P(B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A \cap B)$$

More Sets

Two sets

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Three sets

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

- $P(A \cap B) - P(A \cap C) - P(B \cap C)$
+ $P(A \cap B \cap C)$

n sets

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{1 \leq i \leq n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) + \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Probability AXIOMS

Three Axioms

Imply general results

Three results

Use lego blocks

Axioms

