Bayesian Ensembles of Crowds and Deep Learners for Sequence Tagging

Edwin Simpson and Iryna Gurevych

Ubiquitious Knowledge Processing Lab Department of Computer Science Technische Universität Darmstadt

https://www.ukp.tu-darmstadt.de
{simpson,gurevych}@ukp.informatik.tu-darmstadt.de

Abstract

Current methods for sequence tagging, a core task in NLP, are data hungry. Crowdsourcing is a relatively cheap way to obtain labeled data, but the annotators are unreliable, so redundant labeling and aggregation techniques are required. We evaluate multiple models of annotator reliability and develop a Bayesian method for aggregating sequence labels from multiple annotators. Typically, the process of data collection, aggregation and training a sequence tagger is a pipeline of discrete steps. We integrate these steps by training black-box sequence taggers as components in the aggregation model and accounting for their unreliability. We evaluate our model on named entity recognition and information extraction tasks, showing that our method outperforms previous methods, particularly in small data scenarios that are encountered at the beginning of a crowdsourcing process. Our code is published to encourage adaptation and reuse.

1 Introduction

The high demand for labeled training data in current NLP methods, particularly deep learning, is widely recognized (Zoph et al., 2016; Rastogi et al., 2016; Gormley et al., 2014). A common NLP task that has benefited from deep learning is sequence tagging, which involves classifying sequences of tokens for tasks such as named entity recognition (NER), part-of-speech tagging (POS), or information extraction (IE). Neural network sequence taggers are typically trained on tens of thousands of documents (Ma and Hovy, 2016; Lample et al., 2016). This requirement for large labeled datasets presents a challenge when facing new domains or tasks, where obtaining labels is often time-consuming or costly.

One way to obtain labeled data relatively cheaply is crowdsourcing, in which large numbers of untrained workers annotate documents instead of more expensive experts. However, this requires aggregating multiple unreliable labels for each document. We could also obtain noisy labels from models trained on different domains, multiple experts, or users of applications who click on and interact with text. Probabilistic methods for aggregating unreliable classifications have been shown to be more accurate than simple heuristics such as majority voting (Raykar et al., 2010; Sheshadri and Lease, 2013; Rodrigues et al., 2013; Hovy et al., 2013). However, work on sequence tagging is less extensive and existing methods cannot model some common annotator error patterns or the effects of the order of annotators' labels (Rodrigues et al., 2014; Nguyen et al., 2017).

The sequence labeling tasks we consider in this paper follow a *beginning*, *inside*, *outside* (*BIO*) scheme, in which the first token in a span of type 'x' is labeled 'B-x', subsequent tokens in the same span are labeled 'I-x', and tokens outside spans are labeled 'O'. We propose an aggregation method that takes advantage of the sequential dependencies between BIO tags to learn the reliability of individual annotators and predict the true sequence.

When learning from noisy or small datasets, commonly-used methods based on maximum likelihood estimation may produce over-confident predictions (Xiong et al., 2011; Srivastava et al., 2014). We therefore apply a Bayesian treatment to our method to account for model uncertainty in our predictions. The resulting posterior probabilities facilitate active learning (Settles, 2010), which aims to reduce the number of labels required to train a model by iteratively selecting the most informative data points to label.

When aggregating crowdsourced data, we can improve performance and make predictions for

unlabeled documents by modeling the text features as well as the annotators (Simpson et al., 2015; Felt et al., 2016). For complex tasks such as sequence tagging, we may wish to exploit existing state-of-the-art models, such as neural networks that do not account for model uncertainty. In this paper, we show how to integrate existing black box methods into the aggregation model to construct ensembles of deep learners and human annotators. Our method learns the reliability of each black box method, since they may not always perform well, particularly given small training datasets, and avoids the need to aggregate crowdsourced data using a separate pre-processing step before training a sequence tagger.

This paper provides the following contributions:

- A theoretical comparison of annotator reliability models and evaluation on sequence tagging tasks
- Bayesian sequence combination (BSC), a method for aggregating sequence labels from multiple annotators that can model sequential dependencies between tags
- A technique for wrapping existing black-box sequence taggers into the aggregation model to improve the quality of aggregated labels

The following sections discuss related work, then detail annotator models for sequence tagging, and present our variational approach that enables us to integrate existing classifiers. We then describe the modular implementation of our proposed method, which is made public with all of our experimental code¹ and can easily be extended to new aggregation problems. The next sections compare different aggregation methods with simulated annotators and two crowdsourced NLP datasets, showing that our Bayesian aggregation method consistently outperforms the previous state-of-the-art. Our experiments evaluate both active and passive learning scenarios with varying dataset sizes, analyze types of errors, and visualize the annotator models learned by our method. Finally, we give conclusions and ideas for future work.

1.1 Related Work

A number of works have investigated methods for aggregating non-sequential classifications from

crowds, including Sheshadri and Lease (2013), who benchmarked several aggregation methods. They found the most consistent performance from the method of Raykar et al. (2010), which employs probabilistic confusion matrices to model the reliability of individual annotators, as proposed by Dawid and Skene (Dawid and Skene, 1979). In this paper, we develop and compare variations of this model for sequence tagging, including a variant based on MACE (Hovy et al., 2013). We focus on the core annotator representation, rather than extensions for clustering annotators (Venanzi et al., 2014; Moreno et al., 2015), modeling their dynamics (Simpson et al., 2013), adapting to task difficulty (Whitehill et al., 2009; Bachrach et al., 2012), or time spent (Venanzi et al., 2016).

For aggregating sequence tags, Rodrigues et al. (2014) proposed a CRF-based model, CRF-MA, that assumes only one annotator is correct for any given label. Recently, Nguyen et al. (2017) proposed an approach that outperformed CRF-MA, based on hidden Markov models (HMMs), called HMM-crowd. Both CRF-MA and HMMcrowd use simpler annotator models than Dawid and Skene (1979) that do not capture the effect of sequential dependencies on annotator reliability. Neither CRF-MA nor HMM-crowd use a fully Bayesian approach, which has been shown to be effective for handling uncertainty due to noise in crowdsourced data for non-sequential classification (Kim and Ghahramani, 2012; Simpson et al., 2013; Venanzi et al., 2014; Moreno et al., 2015). In this paper, we develop a sequential annotator model and a fully Bayesian method for aggregating sequence labels that improves performance over previous approaches.

The HMM adapted by Nguyen et al (2017) uses only a simple conditional independence model of text features. The authors also show how to train neural network sequence taggers directly on crowdsourced data using an additional network layer to handle worker reliability, similar to Rodrigues and Pereira (2018). However, the proposed approaches did not outperform either CRF-MA (Rodrigues and Pereira, 2018) or HMM-crowd(Nguyen et al., 2017). Albarqouni et al. (2016) integrate a CNN classifier for image annotation into an aggregation method based on expectation maximization (EM) (Dempster et al., 1977). Yang et al. (2018) adapt a Bayesian neural network so that it can be trained concurrently

http://github.com/ukplab/
arxiv2018-bayesian-ensembles

with an annotator model, also using EM. In contrast to previous work, we do not require neural networks to be adapted, nor assume that their predictions are reliable when aggregating annotations. Instead, we propose to learn the reliability of existing sequence taggers using a variational approach, allowing untrusted, off-the-shelf sequence taggers to enhance the performance of the aggregation method.

2 Modeling Sequential Annotators

When combining multiple annotators with varying skill levels, we can improve performance by modeling their individual reliability. Several models have previously been applied that do not consider dependencies between a sequence of annotations. In this section, we describe these existing models and provide an extension that captures sequential dependencies. Each of the approaches presented employs a particular function, A, to model the likelihood of the annotator choosing the label c_{τ} given the true label, t_{τ} , for token τ .

Accuracy model (acc): simply models the annotator's accuracy, π , as follows:

$$A = p(c_{\tau} = i | t_{\tau} = j, \pi) = \begin{cases} \pi & \text{where } i = j \\ \frac{1 - \pi}{J - 1} & \text{otherwise} \end{cases}$$
(1)

where c_{τ} is the label given by the annotator for token τ , t_{τ} is its true label and J is the number of classes. This is the basis of several previous methods (Donmez et al., 2010; Rodrigues et al., 2013). The limitation of this approach is that it assumes reliability is constant, which means that in domains where one class label is far more common than others, a spammer who always selects the most common label will nonetheless have a high π .

MACE spamming model (Hovy et al., 2013): This method again assumes a constant annotator accuracy, π , but also models the case where annotators are incorrect by assuming they label according to a spamming distribution, ξ , that is independent of the true label, t_{τ} .

$$A = p(c_{\tau} = i | t_{\tau} = j, \pi, \boldsymbol{\xi})$$

$$= \begin{cases} \pi + (1 - \pi)\xi_{j} & \text{where } i = j \\ (1 - \pi)\xi_{j} & \text{otherwise} \end{cases} . \tag{2}$$

While MACE can capture spamming patterns, it does not explicitly model different rates of errors

per class. This could be an issue for sequence tagging using the BIO encoding, for example, if an annotator frequently labels longer spans than the true spans by starting the spans one or two tokens early. In this case, they may more frequently mislabel the 'B' tokens than the 'I' or 'O' tokens, but this cannot be modeled by MACE.

Confusion vector (CV): this approach learns a separate accuracy for each class label (Nguyen et al., 2017) using a parameter vector, π , of size J:

$$A = p(c_{\tau} = i | t_{\tau} = j, \boldsymbol{\pi}) = \begin{cases} \pi_j & \text{where } i = j \\ \frac{1 - \pi_j}{J - 1} & \text{otherwise} \end{cases}$$
(3)

For the incorrect label cases where $i \neq j$, $p(c_{\tau} = i | t_{\tau} = j, \pi)$ is constant for all values of i. Therefore, this model does not explicitly capture spamming patterns where one of the incorrect labels has a much higher likelihood than the others.

Confusion matrix (CM) (Dawid and Skene, 1979): this model can be seen as an expansion of the confusion vector so that π becomes a JxJ matrix with values given by:

$$A = p(c_{\tau} = i | t_{\tau} = j, \boldsymbol{\pi}) = \pi_{j,i}. \tag{4}$$

This requires a larger number of parameters, J^2 , compared to the J+1 parameters of MACE or J parameters of the confusion vector. The confusion matrix therefore represents the probability of each individual mistake, so it can model spammers who frequently chose one label regardless of the ground truth. It can also model annotators in sequence tagging tasks who have different error rates for 'B-x', 'I-x' and 'O' labels, for example, if an annotator is better at detecting type 'x' spans than type 'y', or if they frequently mis-label the start of a span as 'O' when the true label is 'B-x', but are otherwise accurate. However, the confusion matrix ignores the dependencies between annotations in a sequence that affect these probabilities. For instance, it is usually not possible for an annotator to assign an 'I' label that is preceded by 'O'.

Sequential Confusion Matrix (seq): we introduce a new extension to the confusion matrix to model the dependency of each label in a sequence on its predecessor. The likelihood of a label can now be written as follows:

$$A = p(c_{\tau} = i | c_{\tau-1} = \iota, t_{\tau} = j, \pi) = \pi_{i,\iota,i}, \tag{5}$$

where π is now three-dimensional with size $J \times J \times J$. In the case of disallowed transitions, e.g. from $c_{\tau-1}$ = 'O' to c_{τ} = 'I', the value $\pi_{j,c_{\tau-1},c_{\tau}}$ = 0, $\forall j$ does not need to be learned. The sequential model can capture phenomena such as a tendency toward overly long sequences, by learning that $\pi_{O,O,O} > \pi_{O,I,O}$, or a tendency to split spans by inserting 'B' in place of 'I' by increasing the value of $\pi_{I,I,B}$ without affecting $\pi_{I,B,B}$ and $\pi_{I,O,B}$.

The annotator models described above are extensions of one another that can be used as part of the model for aggregating sequential annotations described in the next section. The experiments in Section 6 test whether the more expressive seq annotator model, which has more parameters to learn, is beneficial in a realistic setting.

3 A Model for Bayesian Sequence Combination

The generative story for our approach, Bayesian sequence combination (BSC), is as follows. We assume a transition matrix, T, where each entry is $T_{j,\iota} = p(t_{\tau} = \iota | t_{\tau-1} = j)$. We draw each row of the transition matrix, $T_j \sim \mathrm{Dir}(\gamma_j)$, where Dir is the Dirichlet distribution. For each document, n, in a set of N documents, we draw a sequence of class labels, $t_n = [t_{n,1}, ..., t_{n,L_n}]$, of length L_n , from a categorical distribution: $t_{n,\tau} \sim \mathrm{Cat}(T_{t_n,\tau-1})$. The set of all labels for all documents is referred to as $t = \{t_1, ..., t_N\}$.

For each of K annotators, we choose one of the annotator models defined in Section 2. The number of parameters depends on the choice of model: for acc, only one parameter, $\pi^{(k)}$, is drawn for annotator k; for MACE, we draw a single value $\pi^{(k)}$ and a vector $\xi^{(k)}$ of length J, while for CV we draw J independent values of $\pi_i^{(k)}$, and for CM we draw a vector $\pi_j^{(k)}$ of size J for each true label value $j \in \{1,...,J\}$; in the case of seq, we draw vectors $\pi_{i,t}^{(k)}$ for each true label value and each previous label value, ι . All parameters of these annotator models are probabilities, so are drawn from Dirichlet priors. We refer to the set of hyperparameters for k's annotator model as $\alpha^{(k)}$. Given its parameters, the annotator model defines a likelihood function, $A^{(k)}(t_{n,\tau}, \boldsymbol{c}_{n,\tau}, \boldsymbol{c}_{n,\tau-1})$. The argument $c_{n,\tau-1}$ is only required if $A^{(k)}$ is an instance of seq and is ignored by the other annotator models. We draw annotator k's label for each token τ in each document n according to:

$$c_{n,\tau}^{(k)} \sim \text{Cat}([A^{(k)}(t_{n,\tau}, 1, \boldsymbol{c}_{n,\tau-1}^{(k)}), ..., A^{(k)}(t_{n,\tau}, J, \boldsymbol{c}_{n,\tau-1}^{(k)})]).$$
(6)

The annotators are assumed to be conditionally independent of one another given the true labels, t, which means that their errors are assumed to be uncorrelated. This is a strong assumption when considering that the annotators have to make their decisions based on the same input data. However, in practice, dependencies do not usually cause the most probable label to change (Zhang, 2004), hence the performance of classifier combination methods is only slightly degraded, while avoiding the complexity of modeling dependencies between annotators (Kim and Ghahramani, 2012).

Black-box Sequence Taggers: As an optional extension to our model, we can integrate S automated methods as additional noisy annotators. In comparison to human annotators, sequence taggers can quickly label large numbers of documents, providing a cheap source of additional annotations across the whole dataset. We model each sequence tagger, s, using an annotator model, $B^{(s)}$, of one of the types described in Section 2 (analagous to $A^{(k)}$ for a human annotator), with hyperparameters $\boldsymbol{\beta}^{(s)}$. Each sequence tagger generates a sequence of labels, $\boldsymbol{d}_n^{(s)}$, for each document n (analogous to $\boldsymbol{c}_n^{(k)}$ produced by annotators) according to:

$$d_{n,\tau}^{(s)} \sim \operatorname{Cat}([B^{(s)}(\boldsymbol{t}_{n,\tau}, 1, d_{n,\tau-1}^{(s)}), ..., B^{(s)}(\boldsymbol{t}_{n,\tau}, J, d_{n,\tau-1}^{(s)})]).$$

$$(7)$$

In the generative model, we draw a sequence of text tokens, x_n , from a likelihood, $p\left(x_n|d_n^{(s)},\theta^{(s)}\right)$, given internal parameters, $\theta^{(s)}$, and label sequence, $d_n^{(s)}$. This likelihood is defined by the black-box sequence tagger. If the sequence tagger is Bayesian, its parameters, $\theta^{(s)}$, may also be drawn from an unknown prior distribution. However, since we are treating the tagger as a black box, we do not need to know these internal details. In the next section, we explain how we can avoid computing this likelihood explicitly during inference, and instead use only the sequence tagger's existing training and prediction

functions to learn $\theta^{(s)}$ in parallel with the parameters of the BSC model. Like the human annotators, each sequence tagger is assumed to produce labels that are conditionally independent of the other sequence taggers given t. Due to the fact that sequence taggers will typically use the same features, i.e. the text of the documents, this independence assumption may be violated, yet as with the human annotators, comparable assumptions in other models have been shown not to hamper performance in many practical situations (Zhang, 2004).

Joint distribution: the complete model can be represented by the joint distribution over its random variables, given by:

$$p(\boldsymbol{t}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{T}, \boldsymbol{\theta}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{x} | \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$$

$$= \prod_{k=1}^{K} \left\{ p(A^{(k)} | \boldsymbol{\alpha}^{(k)}) \prod_{n=1}^{N} p(\boldsymbol{c}_{n}^{(k)} | A^{(k)}, \boldsymbol{t}) \right\}$$

$$\prod_{j=1}^{J} p(\boldsymbol{T}_{j} | \boldsymbol{\gamma}_{j}) \prod_{n=1}^{N} \prod_{\tau=1}^{L_{n}} p(\boldsymbol{t}_{n} | \boldsymbol{T}_{t_{n,\tau-1}}) \prod_{s=1}^{S} \left\{ p(\boldsymbol{\theta}^{(s)}) \right\}$$

$$p(B^{(s)} | \boldsymbol{\beta}^{(s)}) \prod_{n=1}^{N} \left\{ p(\boldsymbol{x} | \boldsymbol{d}^{(s)}, \boldsymbol{\theta}^{(s)}) p(\boldsymbol{d}^{(s)} | B^{(s)}, \boldsymbol{t}) \right\}$$

4 Inference using Variational Bayes

Given a set of annotations, $c = \{c^{(1)}, ..., c^{(K)}\}\$ from K annotators, our aim is to obtain a posterior distribution over the sequence labels, t. We present an approximate inference method using variational Bayes (VB) (Attias, 2000). In comparison to other Bayesian approaches such as Markov chain Monte Carlo (MCMC), VB is often faster, readily allows incremental learning, and provides easier ways to determine convergence (Bishop and Nasrabadi, 2007). Unlike maximum likelihood methods such as standard expectation maximization (EM), VB considers prior distributions and accounts for parameter uncertainty in a Bayesian manner. The trade-off is that to apply VB to our BSC model, we need to approximate the posterior distribution over t and the model parameters, T, $\boldsymbol{\theta} = \{\boldsymbol{\theta}^{(1)}, ..., \boldsymbol{\theta}^{(S)}\}, \, \boldsymbol{A} = \{A^{(1)}, ..., A^{(K)}\} \text{ and }$ $\boldsymbol{B} = \{B^{(1)}, ..., B^{(S)}\}$. The labels produced by the sequence taggers, d, can be marginalized, so do not appear in the approximate posterior, which

is given by:

$$p(\boldsymbol{t}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{T}, \boldsymbol{\theta} | \boldsymbol{c}, \boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}) \approx \prod_{k=1}^{K} q(A^{(k)})$$
$$\prod_{j=1}^{J} q(\boldsymbol{T}_{j}) \prod_{n=1}^{N} q(\boldsymbol{t}_{n}) \prod_{s=1}^{S} \left\{ q(B^{(s)}) q(\boldsymbol{\theta}^{(s)}) \right\}. \tag{9}$$

The variational approximation factorizes between subsets of parameters or latent variables, so that each subset, z, has a variational distribution q(z). Due to our choice of conjugate priors, the variational factors for BSC all have the same form as their prior distributions defined in Section 3, and the parameters of each variational distribution can be computed in terms of expectations over the other subsets of variables. The inference algorithm works by updating each of these variational factors, q(z), in turn, taking expectations with respect to the current estimates of the other variational factors. Each iteration reduces the KLdivergence between the true and approximate posteriors of Equation 9, and hence optimizes a lower bound on the log marginal likelihood (also called evidence lower bound or ELBO), as described in (Bishop and Nasrabadi, 2007; Attias, 2000). A summary of the VB procedure for BSC is shown in Algorithm 1.

The remainder of this section provides the variational factors, which can be used to approximate the marginal posterior distributions for the parameters and sequence labels, and explains how to incorporate existing sequence taggers into the algorithm.

Variational factor for t, true sequence labels:

$$\ln q(\boldsymbol{t}_{n}) = \sum_{n=1}^{N} \sum_{\tau=1}^{L_{n}} \left\{ \mathbb{E}_{\boldsymbol{T}} \left[\ln T_{t_{n,\tau-1},t_{n,\tau}} \right] + \sum_{k=1}^{K} \mathbb{E}_{\boldsymbol{A}} \left[\ln A^{(k)}(t_{n,\tau}, c_{n,\tau}^{(k)}, c_{n,\tau-1}^{(k)}) \right] + \sum_{s=1}^{S} \mathbb{E}_{\boldsymbol{B},\boldsymbol{d}^{(s)}} \left[\ln B^{(s)}(t_{n,\tau}, d_{n,\tau}^{(s)}, d_{n,\tau-1}^{(s)}) \right] \right\} + \text{const.}$$
(10)

To compute $q(T_j)$, $q(A^{(k)})$, and $q(B^{(s)})$, we require expectations for the individual true labels $r_{n,\tau,j} = \mathbb{E}_{T,A,B,d}[p(t_{n,\tau} = j|\boldsymbol{c})]$ and transitions from one each label to the next, $s_{n,\tau,j,\iota} = \mathbb{E}_{T,A,B,d}[p(t_{n,\tau-1} = j, t_{n,\tau} = \iota|\boldsymbol{c})]$. These terms can be computed using the forward-backward algorithm (Ghahramani, 2001), which consists of

Input: Annotations, *c*

1 Initialise $\mathbb{E}[\ln A]$, $\mathbb{E}[\ln B]$, $\mathbb{E}[\ln T]$ and $\hat{p}(d_{n,\tau}^{(s)}=i)$, $\forall s, \forall n, \forall \tau, \forall i$ randomly or to expectations with respect to the priors while $\mathbb{E}[t]$ not converged do

2 Update $r_{j,n,\tau}$ and $s_{t_{j,n,\tau-1},t_{\iota,n,\tau}}$, $\forall j, \forall \tau, \forall i, \forall \iota$, given $c, \mathbb{E}[\ln A], \mathbb{E}[\ln B]$ and $\mathbb{E}[\ln T]$ using the forward-backward algorithm (Ghahramani, 2001)

3 Set current true label predictions $\mathbb{E}[t_{n,\tau} = j] = r_{j,n,\tau}$

4 Retrain sequence taggers using $\mathbb{E}\left[t\right]$ as training labels

5 Use sequence taggers to predict $\hat{p}(d_{n,\tau}^{(s)}=i), \forall s, \forall n, \forall \tau, \forall i$

6 Update $q(\mathbf{A})$ given current $\mathbf{c}, r_{j,n,\tau}$

7 Update $q(\boldsymbol{B})$ given current $\boldsymbol{d}, r_{j,n,\tau}$

8 Update q(T) given current $s_{t_j,n,\tau-1},t_{t,n,\tau}$

Recompute $\mathbb{E}[\ln A]$, $\mathbb{E}[\ln B]$, $\mathbb{E}[\ln T]$

end

Output: Posteriors for true labels, $\mathbb{E}[t]$, most probable sequences of true labels, \hat{t}

Algorithm 1: The VB algorithm for BSC.

two passes. The forward pass is run for each document n, starting from $\tau=1$, and computes for each value of τ the posterior given crowdsourced annotations for tokens $\leq \tau$.

$$\ln r_{n,\tau,j}^{-} = \ln \sum_{\iota=1}^{J} \left\{ r_{n,\tau-1,\iota}^{-} \exp \mathbb{E}[\ln T_{\iota,j}] \right\} + ll(j,n,\tau), \tag{11}$$

where the log likelihood $ll(n,\tau)$ of the annotations from the crowd and sequence taggers for token τ in document n is:

$$ll(j, n, \tau) = \sum_{k=1}^{K} \mathbb{E}_{A} \left[\ln A^{(k)} \left(j, c_{n,\tau}^{(k)}, c_{n,\tau-1}^{(k)} \right) \right] + \sum_{s=1}^{S} \sum_{i=1}^{J} \sum_{\iota=1}^{J} \mathbb{E}_{B} \left[\ln B^{(s)} \left(j, i, \iota \right) \right] \hat{p}(d_{n,\tau}^{(s)} = i)$$

$$\hat{p}(d_{n,\tau}^{(s)} = \iota), \tag{12}$$

where $\hat{p}(d_{n,\tau}^{(s)} = i)$ is the probability of label $d_{n,\tau}^{(s)}$ produced by the sequence tagger s, which we explain in more detail below (see Equation 26).

For the first token in each sequence, $r_{n,0,\iota}^-=1$ where ι corresponds to the 'O' label and is 0 otherwise. After the forward pass is complete, the

backwards pass starts from $\tau = L_n$ and scrolls backwards, computing the likelihoods of the annotations at positions from $\tau + 1$ to L_n , as follows:

$$\ln \lambda_{n,L_n,j} = 0$$

$$\ln \lambda_{n,\tau,j} = \ln \sum_{\iota=1}^{J} \exp \left\{ \ln \lambda_{i,\tau+1,\iota} + \mathbb{E}[\ln T_{j,\iota}] + ll(\iota, n, \tau + 1) \right\}.$$
(13)

Since the terms may become small over a long sequence, we normalize $r_{n,\tau,j}^-$ and $\lambda_{n,\tau,j}$ after each iteration of the forward and backward pass by dividing by their sum over j. By taking the exponents and applying Bayes' rule we arrive at the terms $r_{n,\tau,j}$ and $s_{n,\tau,j,\iota}$:

$$r_{n,\tau,j} = \frac{r_{n,\tau,j}^{-} \lambda_{n,\tau,j}}{\sum_{\iota=1}^{J} r_{n,\tau,\iota}^{-} \lambda_{n,\tau,\iota}}$$
(14)

$$\ln \tilde{s}_{n,\tau,j,\iota} = \ln r_{n,\tau-1,j}^- + \ln \lambda_{n,\tau,\iota} + \mathbb{E}[\ln T_{j,\iota}] + ll(\iota, n, \tau)$$
(15)

$$s_{n,\tau,j,\iota} = \frac{\tilde{s}_{n,\tau,j,\iota}}{\sum_{j=1}^{J} \sum_{\iota=1}^{J} \tilde{s}_{n,\tau,j,\iota}}$$
(16)

The $r_{i,\tau,j}$ terms provide the output predictions of the class labels.

Variational factor for *T*: each row of the transition matrix has a separate factor:

$$\ln q(\mathbf{T}_j) = \sum_{\iota=1}^{J} N_{j,\iota} + \ln \operatorname{Dir}(\mathbf{T}_j | \gamma_j) + \operatorname{const}$$

$$= \ln \operatorname{Dir}([N_{j,\iota} + \gamma_{j,\iota}, \forall \iota \in \{1, ..., J\}]), \qquad (17)$$

where $N_{j,\iota} = \sum_{n=1}^N \sum_{\tau=1}^{L_n} s_{n,\tau,j,\iota} \ln T_{j,\iota}$ is the pseudo-count of the number of times that label ι follows label j. The variational factor q(t) requires the following expectations for the transition matrix:

$$\mathbb{E}[\ln T_{j,\iota}] = \Psi \left(N_{j,\iota} + \gamma_{j,\iota} \right) - \Psi \left(\sum_{\iota=1}^{J} (N_{j,\iota} + \gamma_{j,\iota}) \right), \tag{18}$$

where Ψ is the digamma function.

Variational factors for A and B: The variational factor for each annotator model is a distribution over its parameters, which differs between

models. For seq, the variational factor is given by:

$$\ln q\left(A^{(k)}\right) = \sum_{j=1}^{J} \sum_{l=1}^{J} \left\{ \sum_{m=1}^{J} N_{j,l,m}^{(k)} \ln \pi_{j,l,m}^{(k)} \right\}$$

$$= \ln p\left(\boldsymbol{\pi}_{j,l}^{(k)} | \boldsymbol{\alpha}_{j,l}^{(k)} \right) \left\{ + \operatorname{const}, \right\}$$

$$= \sum_{j=1}^{J} \sum_{l=1}^{J} \operatorname{Dir}\left(\left[\boldsymbol{N}_{j,l,m}^{(k)} + \boldsymbol{\alpha}_{j,l,m}^{(k)}, \forall m \in \{1,..,J\}\right]\right), \quad \approx \ln p(\boldsymbol{\theta}^{(s)}) + \ln p\left(\boldsymbol{x}|\boldsymbol{\theta}^{(s)}, \mathbb{E}\left[\boldsymbol{d}_{n}^{(s)}|B^{(s)}, \boldsymbol{t}_{n}\right]\right)$$

$$(19)$$

$$N_{j,l,m}^{(k)} = \sum_{n=1}^{N} \sum_{\tau=1}^{L_n} r_{n,\tau,j} \delta_{l,c_{n,\tau-1}^{(k)}} \delta_{m,c_{n,\tau}^{(k)}},$$
(20)

where δ is the Kronecker delta. For the *CM* model, the variational factor is simplified to:

$$\ln q \left(A^{(k)} \right) = \sum_{j=1}^{J} \operatorname{Dir} \left(\left[\sum_{n=1}^{N} \sum_{\tau=1}^{L_n} r_{n,\tau,j} \delta_{m,c_{n,\tau}^{(k)}} + \alpha_{j,m}^{(k)}, \forall m \in \{1, ..., J\} \right] \right). \tag{21}$$

For MACE, CV and acc, the factors follow a similar pattern of summing pseudo-counts of correct and incorrect answers. For reasons of space, we omit the equations for these variants. The variational factor q(t) also requires the following expectation terms for seq models:

$$\mathbb{E}\left[\ln A^{(k)}(j,l,m)\right] = \Psi\left(N_{j,l,m}^{(k)} + \alpha_{j,l,m}^{(k)}\right) - \Psi\left(\sum_{m'=1}^{J} \left(N_{j,l,m'}^{(k)} + \alpha_{j,l,m'}^{(k)}\right)\right).$$
(22)

For CM, the equation can be adapted by omitting the l subscripts on the right-hand side, which refer to the previous annotation in the sequence.

The variational factor, $q(B^{(s)})$, for each sequence tagger's annotator model follows the same form as $q(A^{(k)})$, substituting $\delta_{l,c_{n,\tau-1}^{(k)}}$ for $\hat{p}(d_{n,\tau}^{(s)} =$ i), as defined in below in Equation 26.

Black-box sequence taggers: Our inference approach can incorporate either pre-trained sequence taggers, or train the sequence tagger using the crowdsourced data while performing inference over the complete BSC model. In both cases, the tagger's reliability will be modeled by an annotator model, $B^{(s)}$, so it is possible to incorporate noisy sequence taggers into the ensemble. With pre-trained sequence taggers, we assume that the

tagger's parameters, $\theta^{(s)}$, or their distribution are already fixed and we do not update the variational factor $q(\boldsymbol{\theta}^{(s)})$. For sequence taggers that we wish to train as part of our VB algorithm, the variational factor is:

$$\ln q(\boldsymbol{\theta}^{(s)}) = \ln p(\boldsymbol{\theta}^{(s)}) + \mathbb{E}_{\boldsymbol{d}_n^{(s)}} \left[\ln p(\boldsymbol{x}|\boldsymbol{\theta}^{(s)}, \boldsymbol{d}_n^{(s)}) \right]$$

$$\approx \ln p(\boldsymbol{\theta}^{(s)}) + \ln p\left(\boldsymbol{x}|\boldsymbol{\theta}^{(s)}, \mathbb{E}\left[\boldsymbol{d}_n^{(s)}|B^{(s)}, \boldsymbol{t}_n\right] \right)$$
(23)

The approximation above enables us to train the sequence tagger using its standard training or fitting function: we compute $\ln q(\boldsymbol{\theta}^{(s)})$ by running the training function of the black-box sequence tagger, passing in a set of expectations over the labels in place of gold labels:

$$\tilde{p}(d_{n,\tau}) = \mathbb{E}\left[p(d_{n,\tau}^{(s)} = i|B^{(s)}, t_{n,\tau})\right]$$

$$= \sum_{j=1}^{J} \sum_{\iota=1}^{J} r_{n,\tau,j} \tilde{p}(d_{n,\tau-1}) \mathbb{E}[B^{(s)}(j,i,\iota)]$$
(24)

The term $d_{n,\tau}^{(s)}$ can be marginalized without recourse to its own variational factor. since it is independent of all other variables given $t_{n,\tau}, x_n, B^{(s)}$, $d_{n, au-1}^{(s)}$ and $oldsymbol{ heta}^{(s)}$. Depending on its implementation, it may be necessary to train the sequence tagger using discrete labels, in which case we take the most probable values at each token instead of Equation 24:

$$\tilde{d}_{n,\tau}^{(s)} = \underset{i}{\operatorname{argmax}} \mathbb{E}\left[p(d_{n,\tau}^{(s)} = i|B^{(s)}, t_{n,\tau})\right].$$
(25)

If we use discrete labels to train a sequence tagger, our inference procedure becomes a hybrid between VB and a maximum a posteriori (MAP) expectation maximization (EM) solution (Bishop and Nasrabadi, 2007). Similarly, if the sequence tagger may not employ an explicit prior, $p(\boldsymbol{\theta}^{(s)})$, or may optimize point values for the parameters in $\theta^{(s)}$, rather than marginalizing them. This is typically the case for most neural network methods, which perform maximum likelihood optimization. When integrating such sequence taggers, the complete procedure becomes a hybrid between maximum likelihood EM for $\theta^{(s)}$ and VB for the other

The forward and backward passes used to update q(t) require expectations over $d_n^{(s)}$, defined

$$\hat{p}(d_{n,\tau}^{(s)} = i) = \mathbb{E}_{\boldsymbol{\theta}^{(s)}} \left[p(d_{n,\tau}^{(s)} = i | \boldsymbol{x}_n, \boldsymbol{\theta}^{(s)}) \right].$$
(26)

If possible, we obtain this posterior through the prediction function of the sequence tagger. However, some sequence tagger implementations may output only discrete predictions of the following form:

$$\hat{d}_{n,\tau}^{(s)}(i) = \underset{i}{\operatorname{argmax}} \ p\left(d_{n,\tau}^{(s)} = i | \boldsymbol{x}_n, \hat{\boldsymbol{\theta}}^{(s)}\right), \quad (27)$$

where $\hat{\boldsymbol{\theta}}^{(s)}$ is the value of $\boldsymbol{\theta}^{(s)}$ learned using maximum likelihood or MAP optimization. As in Equation 25, we can use these discrete predictions in place of probabilities to perform an M-step from maximum likelihood-EM in place of taking expectations over $\boldsymbol{d}^{(s)}$.

Our method requires only training and prediction functions to integrate a sequence tagger. Its annotator model, $B^{(s)}$, accounts for the sequence tagger's error rates and provides confidence estimates based on their reliability. This means we can treat sequence taggers as black boxes and ignore their internal details, even if their predictions are noisy or overly confident, as may be the case when a tagger is not optimized for the current domain.

4.1 Predicting the Sequence Labels

Two types of output from the BSC inference algorithm are of particular interest: (1) posterior probabilities of the true labels, $\mathbb{E}[t]$, which provide confidence estimates for the labels; (2) the most probable sequence of labels, \hat{t} . The latter can be computed using the Viterbi algorithm using the converged variational factors to compute the transition matrix, $\mathbb{E}[T]$, and the likelihood or emission probabilities as a function of $\mathbb{E}[A]$, $\mathbb{E}[B]$ and $\hat{p}(d_{n,\tau}^{(s)}=i)$, $\forall s, \forall n, \forall \tau, \forall i$. The most probable sequence is particularly useful because, unlike $\mathbb{E}[t]$, the sequence will be consistent with any transition constraints imposed by the priors on the transition matrix T, such as preventing 'O' \rightarrow 'I' transitions by assigning them zero probability.

We can also make predictions for unlabelled documents in a similar manner. In this case, we omit the human annotations, c, and rely only on the black-box sequence taggers.

5 Modular Implementation of Variational Inference

The variational inference method described in Section 4 is naturally suited to a modular implementation. We divide the BSC model, as defined in Section 3 and Equation 8, into three modules: (a) the true label model, (b) the annotator model, and (c) black-box sequence taggers. The true label model defines the distribution over sequences of labels, $q(t_n)$, and implements lines 2, 3 and 8 in Algorithm 1. The annotator model may be one of those described in Section 2 and implements lines 6 and 7. The black-box sequence taggers are existing implementations that provide training and prediction functions to predict true labels given text tokens, and are used in lines 4 and 5.

The true label model exposes methods to compute $r_{n,\tau,j}$ and $s_{n,\tau,j,\iota}, \ \forall n, \forall \tau, \forall j, \forall \iota$. In BSC, the true label model learns a transition matrix, \boldsymbol{B} , which assumes a first-order Markov chain, but true label models with longer memory could also be used, as long as they provide the terms $r_{n,\tau,j}$ and $s_{n,\tau,j,\iota}$ required by the other components. The annotator models must provide methods to initialise the variational distributions $q(\boldsymbol{A})$ and $q(\boldsymbol{B})$, update $q(\boldsymbol{A})$ and $q(\boldsymbol{B})$ during the VB algorithm, and compute expectations involving \boldsymbol{A} and \boldsymbol{B} required for other parts of the model. As discussed in Section 2, various annotator models are possible.

By allowing individual functions to be replaced without rewriting the inference method, the modular implementation makes it easier to adapt the model to different types of annotations, and to test each component part. For example, new annotator models could, in future, be used to aggregate continuous-valued ratings or pairwise preferences.

6 Experiments

We evaluate Bayesian sequence combination (BSC) against alternative methods to test (a) the different annotator models described in Section 3, (b) the performance of BSC on unreliable or small training sets, and (c) the benefits of including sequence taggers into the probabilistic model. The first experiment uses simulated annotators to investigate the effects of different annotator flaws on aggregation methods. We then introduce two NLP datasets to test aggregation performance in passive and active learning scenarios, analyze errors, visualize the learned annotator models, and test LSTM

(d) Number of good workers out of a crowd of 10, where the rest are random.

Figure 1: F1 scores with simulated annotators. Each plot shows the effect of varying one characteristic.

sequence taggers (Lample et al., 2016) trained using our proposed method.

6.1 Evaluated Methods

established non-sequential baselines, token-level majority voting (MV), MACE (Hovy et al., 2013), Dawid-Skene (DS) (Dawid and Skene, 1979) and independent Bayesian classifier combination (IBCC) (Kim and Ghahramani, 2012), a Bayesian treatment of Dawid-Skene. We also test the sequential HMM-crowd method (Nguyen et al., 2017), which uses a combination of maximum a posteriori (or smoothed maximum likelihood) estimates for a confusion vector (CV) annotator model and variational inference for an integrated hidden Markov model. We also introduce a *clustering* baseline, that aggregates spans from multiple annotators by grouping them together using kernel density estimation (Rosenblatt, 1956).

BSC is tested with each of the different annotator models described in Section 2 and integrating different text models. As the default set-up, we integrate a simple black-box classifier that treats all text features as conditionally independent of each other and of the sequence of labels. This set-up is tested with all annotator models. The BSC-seq variant is also tested without a text model (notext), and with an integrated LSTM (Lample et al., 2016), labeled BSC-seq+LSTM. We also use HMM-crowd and BSC-seq to produce training labels for the LSTM as a separate pre-processing step, labeled in our results as \rightarrow LSTM.

The MACE and IBCC methods are non-sequential variants of BSC-MACE and BSC-CM, and serve to show the benefits of the sequential BSC model. The HMM-Crowd and DS methods also allow us to compare non-Bayesian methods against their Bayesian variants, BSC-CV and IBCC, respectively.

6.2 Simulated Annotators

Simulated data allows us to test the effect of one type of error in the crowdsourced data, while keeping other characteristics of the data constant. We generate crowds of 10 annotators for four experiments, which test the effect of varying (a) average annotator accuracy, (b) short span bias, i.e. the probability of not including the last tokens in a span, (c) missed span bias, i.e. the probability of missing a span entirely, and (d) the ratio of good to uninformative annotators in the crowd. We

simulate annotators using the generative model of BSC-seq, drawing annotator labeling probabilities from Dirichlet distributions. By default, Dirichlet parameters corresponding to incorrect answers are 1, those for correct answers are 2.5, and disallowed transitions $(O \rightarrow I)$ are close to 0. We then change the parameters of these Dirichlet distributions to obtain the variations described above. We repeat each experiment 25 times, in each case generating 25 documents of 100 tokens each.

Figure 1 shows the F1-scores for our tested methods. Where annotator accuracy is high, majority voting and clustering are less accurate than methods that model individual annotator behavior, although the difference decreases as we introduce more errors. Clustering performs better with high short span bias, as density estimation can compensate for short spans but may over-estimate those of the correct length. Among the BSC variants, performance increases with the complexity of the annotator model, from BSC-acc to BSC-seq, suggesting that this richer model can be successfully learned on a small dataset. There are some benefits for the Bayesian approaches, IBCC and BSC-CV, over the similar models, DS and HMM-crowd, respectively, in handling all four types of annotator error.

6.3 Crowdsourced Datasets

We use two datasets containing both crowdsourced and gold sequential annotations. The CoNLL 2003 named-entity recognition dataset (Tjong Kim Sang and De Meulder, 2003), NER, contains gold labels for four named entity categories (PER, LOC, ORG, MISC), with crowdsourced labels provided by (Rodrigues et al., 2014). PICO (Nguyen et al., 2017), consists of medical paper abstracts that have been annotated by a crowd to indicate text spans that identify the population enrolled in a clinical trial. Further information about the datasets is shown in Table 6.2. Note that NER spans are typically much shorter than those in PICO.

6.4 Evaluation Metrics

For NER we use the CoNLL 2003 F1-score, which considers only exact span matches to be correct. For PICO, we use the relaxed F1-measure (Nguyen et al., 2017), which counts the matching fractions of spans when computing precision and recall. Since the spans in PICO are longer than those of NER, partial matches may

still contain much of the required information. We also compute the cross entropy error (*CEE*) at the level of tokens to compare the probability estimates produced by aggregation methods, which are useful for decision-making tasks such as active learning.

6.5 Aggregating Crowdsourced Labels

In this task, we use the aggregation methods to combine multiple crowdsourced labels and predict the true labels for the same documents. For both datasets, we provide all the crowdsourced labels as input to the aggregation method. In both cases, we split the gold-labelled documents into 50% validation and test sets. For NER, we use the split given by Nguyen et al. (2017), while for PICO, the split was not available so our results are not directly comparable to theirs.

We tune the hyperparameters using a validation set. To limit the number of hyperparameters to tune, we optimize only three values for BSC. Hyperparameters of the transition matrix, γ_j , are set to the same value, γ_0 , except for disallowed transitions, (O \rightarrow I, transitions between types, e.g. I-PER \rightarrow I-ORG), which are set to 0.1. For the annotator models (both \boldsymbol{A} and \boldsymbol{B}), all values are set to 0.1, then ϵ_0 is added to hyperparameters corresponding to correct annotations (e.g. diagonal entries in a confusion matrix). We use validation set F1-scores to choose values from [0.1, 1, 10, 100], training on a small subset of 250 documents for NER and 500 documents for PICO.

The results of this task are shown in Table 2. Although DS and IBCC do not consider sequence information nor the text itself, they both perform well against HMM-crowd on NER, and BSC-CM variants on PICO. The improvement of DS over the results given by Nguyen et al. (2017) may be due to implementation differences. Neither BSCacc nor BSC-MACE perform strongly, with F1scores sometimes falling below MV. The annotator models of BSC-CV and BSC-CM are better, although BSC-CM performs worse on PICO. The sequential annotator model of BSC-seq performs strongly, despite having a larger number of parameters to learn. When the text model is removed, BSC-seq-notext performs worse than BSC-seq, suggesting that incorporating even a simple text model provides a valuable boost. Using the predictions from HMM-crowd or BSC-seq to train an

Dataset	Docs		Sent	Tokens	Workers		Span	Gold	Span 1	ength	
	total	gold	crowd	-ences		total	/doc	type	spans	mean	std.
NER	1393	1393	415	6503	179323	47	4.9	PER	6282	1.19	0.49
								LOC	6482	1.73	0.57
								ORG	5789	1.55	0.92
								MISC	3059	1.44	0.80
PICO	4740	191	4740	9480	1424721	312	6.0	population	700	7.74	7.38

Table 1: Numbers of documents, spans, annotators, tokens and sentences for our test datasets.

	NER		Нур	erpara	ams.	PICO				Hyperparams.				
	Prec.	Rec.	F1	CEE	γ_0	ϵ_0	α_0	Prec.	Rec.	F1	CEE	γ_0	ϵ_0	α_0
Best worker	76.4	60.1	67.3	17.1				64.8	53.2	58.5	17.0			
Worst worker	55.7	26.5	35.9	31.9				50.7	52.9	51.7	41.0			
MV	79.9	55.3	65.4	6.2				82.5	52.8	64.3	2.6			
MACE	74.4	66.0	70.0	1.0	.1	.1	0	25.4	84.1	39.0	58.2	.1	.1	0
DS	79.0	70.4	74.4	2.8				71.3	66.3	68.7	0.4			
IBCC	79.0	70.4	74.4	0.5	.1	1	.1	72.1	66.0	68.9	0.3	.1	10	10
HMM-crowd	80.5	69.4	74.6	1.0	0	.1	0	76.5	66.2	71.0	0.8	0	.1	0
HMM-	81.8	69.5	75.2	12.2	0	.1	0	76.5	66.5	71.2	12.9	0	.1	0
crowd→LSTM														
BSC-acc	83.4	54.3	65.7	1.0	10	.1	10	89.4	45.2	60.0	1.6	.1	.1	10
BSC-MACE	67.9	74.1	70.9	0.9	10	10	1	46.7	84.4	60.1	2.0	.1	100	.1
BSC-CV	81.4	64.7	72.1	0.9	10	1	1	74.9	67.2	71.1	0.8	.1	1	.1
BSC-CM	79.9	72.2	75.8	1.5	.1	100	.1	60.1	78.8	68.2	1.5	.1	100	1
BSC-seq	80.3	74.8	77.4	0.7	.1	1	1	72.9	77.6	75.1	1.1	100	1	1
BSC-seq-	81.0	69.8	75.0	0.5	.1	1	1	81.2	59.2	68.5	0.7	.1	.1	.1
notext														
BSC-	80.2	75.3	77.7	11.0	.1	1	1	75.7	75.4	75.5	25.5	100	1	1
seq→LSTM														
BSC-seq	82.3	75.9	78.9	0.6	.1	1	1	78.7	78.6	78.7	1.2	100	1	1
+LSTM														

Table 2: Aggregating Crowdsourced Labels: estimating true labels for documents labelled by the crowd.

Method	Data-	exact	type	partial	mis-	false	late	early	late	early	fused	split
	set	match	wrong	match	sing	+ve	start	start	fin-	fin-	spans	span
			only		span				ish	ish		
MV	NER	4307	304	228	1773	100	96	10	15	85	17	26
HMM-crowd	NER	4519	361	256	924	182	101	15	26	97	28	22
BSC-CV	NER	4431	275	243	1245	177	100	17	23	89	29	16
BSC-CM	NER	4534	387	258	734	269	111	23	37	86	39	12
BSC-seq+LSTM	NER	4581	351	261	564	195	93	42	33	85	39	17
MV	PICO	168	0	32	185	48	9	11	1	0	3	9
HMM-crowd	PICO	190	0	47	124	81	13	21	0	0	5	8
BSC-CV	PICO	196	0	46	117	81	10	25	0	0	11	0
BSC-CM	PICO	203	0	54	77	192	18	15	8	0	4	18
BSC-seq+LSTM	PICO	81	0	421	75	216	20	6	232	3	24	393

Table 3: Counts of different types of span errors.

Figure 2: Clusters of confusion matrix representations from each BSC-*** annotator model trained on PICO.

LSTM produces a small improvement, but is outperformed by BSC-seq+LSTM.

To get a deeper understanding of the key methods, we categorize the errors they make and list the counts for each category in Table 3. All machine learning methods shown reduce the number of spans that were completely missed by majority voting. BSC-seq+LSTM increases the number of exact span matches on NER, but reduces this number substantially on PICO while increasing the number of partial matches and false postives (where no true span was present). This appears to be due to a larger number of split spans, where a 'B' token is inserted incorrectly inside a span. Therefore, while BSC-seq outperforms the alternatives in terms of F1-score and missing spans, further work may be required to improve the distinction between 'B' and 'I' tokens.

Table 2 shows a benefit of using the sequential annotator model over CM, CV and acc. To understand how BSC uses the richer model in practice, we plot the learned annotator models for PICO as probabilistic confusion matrices in Figure 2. To enable us to visualize the large number of annotator models, we clustered annotators into five groups by applying K-means to their posterior expected values. In all clusters, BSC-CV has different heights for the diagonal entries for B, I and O, showing that it learns differences in accuracy for each of these label values. BSC-CM has more distinctive clusters and the first, fourth and fifth have off-diagonal values with different heights for the same true label value. The second cluster for BSC-CM appears to encode very weakly informative labelers who usually choose 'O' regardless of the ground truth. Unlike BSC-CM, BSC-seq improved performance on PICO over BSC-CV. Its confusion matrices are very different depending on the worker's previous annotation. Each column in the figure shows the confusion matrices corresponding to the same cluster of annotators. The first column, for example, shows annotators with a tendency toward $I \rightarrow I$ or $O \rightarrow O$ transitions, while the following clusters indicate very different labeling behavior. The model therefore appears able to learn distinct confusion matrices for different workers given previous labels, which supports the use of sequential annotator models.

6.6 Small Data and Active Learning

We investigate the performance of the aggregation methods with smaller datasets, and the effectiveness of active learning at improving performance with fewer annotations. Two set-ups were evaluated on NER and PICO: the first tests our methods on random subsamples of crowdsourced data of increasing size; the second starts with a random initial subsample, then uses uncertainty sampling, a well-established active learning heuristic (Settles, 2010), to iteratively select additional crowd labels given posterior label predictions from a model trained on the previous subset. To compute the uncertainty of each document, we take the mean shannon entropy H of the labels, $H(t|c_{\text{current}})/L_n$, where c_{current} is the current set of crowd labels. We used the same random samples for all methods and repeated the experiments ten times with different initializations.

Figure 3 plots the F1 score at each iteration of the random sampling and active learning procedures. BSC performs best with smaller datasets, where it may benefit from a Bayesian approach. Uncertainty sampling appears to have a greater improvement over random sampling on NER after around 7000 labels have been obtained, suggesting that a different strategy could be beneficial while the dataset is very small. On PICO, with its smaller sample sizes, the effect of active learning is only observed with BSC-seq+LSTM. BSC-seq→LSTM and HMM-crowd→LSTM are effective on NER with smaller datasets, improving over BSC-seq and HMM-crowd methods that use only a simple independent text model to make predictions for unlabeled data. However, on PICO, they underperform BSC-seq and HMM-crowd respectively. BSC-seq+LSTM accounts for uncertainty in the predictions of the integrated LSTM, enabling it to outperform BSC-seq→LSTM when active learning aquires more than 10000 labels. We observe that BSC-seq→LSTM learns different values for the accuracy of the integrated LSTM depending on the true class label, even with only 1486 tokens labeled by the crowd.

6.7 Prediction with Crowd-Trained LSTMs

We compare the LSTM sequence taggers (Lample et al., 2016) trained by HMM-crowd and BSC-seq on test data from NER and PICO. For NER, we use the original CoNLL English test set (Tjong Kim Sang and De Meulder, 2003), while for

Figure 3: Small data subsamples: increasing span-level F1-score.

	NER				PICO			
	Prec.	Recall	F1	CEE	Prec.	Recall	F1	CEE
HMM-crowd→LSTM	78.7	59.0	67.5	15.9	75.6	61.6	67.9	13.5
BSC-seq→LSTM	74.3	62.8	68.1	15.65	82.3	66.4	73.5	19.6
BSC-seq+LSTM	72.3	64.2	68.0	0.6	87.4	57.9	69.7	0.9
LSTM trained on gold labels	76.4	77.0	76.7	11.10				

Table 4: Prediction performance on test datasets with training on crowdsourced labels.

PICO, we train the aggregators on the 3,649 documents without gold labels, then evaluate on the gold-labelled test data split used in Section 6.5.

The results in Table 4 show that the LSTM trained with BSC-seq predictions outperforms that trained using the outputs of HMM-crowd, the previous state-of-the-art (Nguyen et al., 2017). However, while BSC-seq+LSTM also outperforms HMM-crowd→LSTM and produces the lowest cross entropy error, its F1-scores are lower than those of BSC-seq→LSTM.

7 Conclusions

Previous work has demonstrated the benefits of modeling annotator reliability when aggregating noisy data, such as crowdsourced labels. We proposed BSC-Seq, a fully Bayesian approach to aggregating sequence labels, which models the effect of label sequences on annotator reliability, and showed how it improves the state-of-the-art, particularly with small datasets. To further improve the quality of aggregated labels, we integrate existing sequence taggers, such as deep neural networks, into our variational inference approach as black-box training and prediction functions. Our results show that this technique can improve aggregated data quality on both active and passive learning tasks.

Future work will evaluate integrating sequence taggers that use Bayesian methods for deep learning, which may improve active learning. We will also investigate alternative data selection strategies to bootstrap active learning, and how to set priors

for the reliability of black-box methods by testing them on other training sets of similar size.

References

- Shadi Albarqouni, Christoph Baur, Felix Achilles, Vasileios Belagiannis, Stefanie Demirci, and Nassir Navab. 2016. Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. *IEEE transactions on medical imaging*, 35(5):1313–1321.
- Hagai Attias. 2000. A variational Bayesian framework for graphical models. In *Advances in Neural Information Processing Systems* 12, pages 209–215. MIT Press.
- Yoram Bachrach, Tom Minka, John Guiver, and Thore Graepel. 2012. How to grade a test without knowing the answers: a Bayesian graphical model for adaptive crowdsourcing and aptitude testing. In *Proceedings of the 29th International Conference on Machine Learning*, pages 819–826. Omnipress.
- C. M Bishop and N. M Nasrabadi. 2007. Pattern recognition and machine learning. *Journal of Electronic Imaging*, 16(4):9901.
- A. P. Dawid and A. M. Skene. 1979. Maximum likelihood estimation of observer error-rates using the EM algorithm. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 28(1):20–28.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38.
- Pinar Donmez, Jaime Carbonell, and Jeff Schneider. 2010. A probabilistic framework to learn from multiple annotators with time-varying accuracy. In *Proceedings of the 2010 SIAM International Conference on Data Mining*, pages 826–837. SIAM.
- Paul Felt, Eric K. Ringger, and Kevin D. Seppi. 2016. Semantic annotation aggregation with conditional crowdsourcing models and word embeddings. In *International Conference on Computational Linguistics*, pages 1787–1796.

- Zoubin Ghahramani. 2001. An introduction to hidden markov models and Bayesian networks. *International Journal of Pattern Recognition and Artificial Intelligence*, 15(01):9–42.
- Matthew R. Gormley, Margaret Mitchell, Benjamin Van Durme, and Mark Dredze. 2014. Low-resource semantic role labeling. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1177–1187. Association for Computational Linguistics.
- Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard H Hovy. 2013. Learning whom to trust with MACE. In *HLT-NAACL*, pages 1120–1130.
- Hyun-chul Kim and Zoubin Ghahramani. 2012. Bayesian classifier combination. In *International Conference on Artificial Intelligence and Statistics*, pages 619–627.
- Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In *Proceedings of NAACL-HLT*, pages 260–270.
- Xuezhe Ma and Eduard Hovy. 2016. End-toend sequence labeling via bi-directional LSTM-CNNs-CRF. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, volume 1, pages 1064–1074.
- Pablo G. Moreno, Yee Whye Teh, and Fernando Perez-Cruz. 2015. Bayesian nonparametric crowdsourcing. *Journal of Machine Learning Research*, 16:1607–1627.
- An T Nguyen, Byron C Wallace, Junyi Jessy Li, Ani Nenkova, and Matthew Lease. 2017. Aggregating and predicting sequence labels from crowd annotations. In *Proceedings of the conference*. Association for Computational Linguistics. Meeting, volume 2017, page 299. NIH Public Access.
- Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. 2016. Weighting finite-state transductions with neural context. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Lin-*

- guistics: Human Language Technologies, pages 623–633.
- V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy. 2010. Learning from crowds. *Journal of Machine Learning Research*, 11:1297–1322.
- Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2013. Learning from multiple annotators: distinguishing good from random labelers. *Pattern Recognition Letters*, 34(12):1428–1436.
- Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2014. Sequence labeling with multiple annotators. *Machine learning*, 95(2):165–181.
- Filipe Rodrigues and Francisco Camara Pereira. 2018. Deep learning from crowds. In *The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI)*, 2018.
- Murray Rosenblatt. 1956. Remarks on some nonparametric estimates of a density function. *The Annals of Mathematical Statistics*, 27(3):832– 837.
- Burr Settles. 2010. Active learning literature survey. *University of Wisconsin, Madison*, 52(55-66):11.
- Aashish Sheshadri and Matthew Lease. 2013. Square: A benchmark for research on computing crowd consensus. In *First AAAI Conference on Human Computation and Crowdsourcing*.
- E. Simpson, S. Roberts, I. Psorakis, and A. Smith. 2013. Dynamic Bayesian combination of multiple imperfect classifiers. *Intelligent Systems Reference Library series*, Decision Making with Imperfect Decision Makers:1–35.
- Edwin D Simpson, Matteo Venanzi, Steven Reece, Pushmeet Kohli, John Guiver, Stephen J Roberts, and Nicholas R Jennings. 2015. Language understanding in the wild: Combining crowdsourcing and machine learning. In *Proceedings of the 24th International Conference on World Wide Web*, pages 992–1002. International World Wide Web Conferences Steering Committee.

- Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, 15(1):1929–1958.
- Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In *Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4*, pages 142–147. Association for Computational Linguistics.
- Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shokouhi. 2014. Community-based Bayesian aggregation models for crowdsourcing. In 23rd international conference on World wide web, pages 155–164.
- Matteo Venanzi, John Guiver, Pushmeet Kohli, and Nicholas R Jennings. 2016. Time-sensitive Bayesian information aggregation for crowd-sourcing systems. *Journal of Artificial Intelligence Research*, 56:517–545.
- Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L Ruvolo. 2009. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In *Advances in neural information processing systems*, pages 2035–2043.
- Hui Yuan Xiong, Yoseph Barash, and Brendan J Frey. 2011. Bayesian prediction of tissueregulated splicing using rna sequence and cellular context. *Bioinformatics*, 27(18):2554–2562.
- Jie Yang, Thomas Drake, Andreas Damianou, and Yoelle Maarek. 2018. Leveraging crowdsourcing data for deep active learning an application: Learning intents in Alexa. In *Proceedings of the 2018 World Wide Web Conference on World Wide Web*, pages 23–32. International World Wide Web Conferences Steering Committee.
- Harry Zhang. 2004. The optimality of naïve Bayes. In *Proceedings of the Seventeenth In*ternational Florida Artificial Intelligence Research Society Conference, FLAIRS 2004. AAAI Press.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learning for low-resource neural machine translation. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 1568–1575.