

Model Optimization and Tuning Phase

Date	19 June 2025
Team ID	SWTID17449620488
Project Title	Early Prediction for Chronic Kidney Disease Detection: A Progressive Approach to Health Management
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre>#Logistic Regression from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV import warnings from sklearn.exceptions import ConvergenceWarning # Suppress convergence warnings warnings.filterwarnings("ignore", category=ConvergenceWarning) param_grid_lr = {</pre>	<pre>accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") Accuracy: 0.925</pre>

Gradient Boosting	### ### ##############################	accuracy_gbc = accuracy_score(y_test, y_pred_gbc) print("Accuracy_of gradient Boosting classifier: {accuracy_gbc}") Accuracy_of Gradient Boosting classifier: 1.0
Decision Tree	a secision tree from Atharm.tree input bedisionsreetlancifier paragid dt. 4 paragid dt	accuracy_dtc = accuracy_score(y_test, y_pred_dtc) print(**Accuracy_of Decision Tree classifier: {accuracy_dtc}*') Accuracy_of Decision Tree classifier: 8.975
Random Forest	### ### ##############################	accuracy_rfc = accuracy_score(y_test, y_pred_rfc) print(f"Accuracy_of Random Forest classifier: (accuracy_rfc)") Accuracy of Random Forest Classifier: 1.0

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Logistic Regression	from sklearn.metrics import classification_report print["Classification Report for Logistic Regression:"] print(classification_report(y_test, y_pred)) Classification Report for Logistic Regression:
Gradient Boosting	[] from sklearn.metrics import classification_report print("\nClassification Report for Gradient Boosting Classifier:") print(classification_report(y_test, y_pred_gbc)) Classification Report for Gradient Boosting Classifier:

Classification Report for Decision Tree Classifier:	→	<pre>print(classification_r</pre>	n Report for		ree Classifier:")
Decision Tree 1 0.93 1.00 0.96 26	C				
Decision Tree accuracy macro avg macro avg weighted avg macro m		0 1.0	0.96	0.98	54
accuracy	Tree	1 0.9	3 1.00	0.96	26
Confusion Matrix of Decision Tree Classific [[52 2] [0 26]] from sklearn.metrics import classification_report print("\nClassification Report for Random Forest Classific print(classification_report(y_test, y_pred_rfc)) Classification Report for Random Forest Classifier:	1100	accuracy		0.97	80
Confusion Matrix of Decision Tree Classific [[52 2] [0 26]] from sklearn.metrics import classification_report print("\nClassification Report for Random Forest Classific print(classification_report(y_test, y_pred_rfc)) Classification Report for Random Forest Classifier:		-	6 0.98		80
[[52 2] [0 26]] from sklearn.metrics import classification_report print("\nClassification Report for Random Forest Classific print(classification_report(y_test, y_pred_rfc)) Classification Report for Random Forest Classifier:	We	weighted avg 0.9	8 0.97	0.98	80
<pre>print("\nClassification Report for Random Forest Classification report(y test, y pred rfc)) Classification Report for Random Forest Classifier:</pre>	[[52	2 2]	f Decisi	on Tree	Classifier:
Classification Report for Random Forest Classifier:	р	<pre>print("\nClassificatio</pre>	n Report for	Random For	est Classifier:")
·	_	Classification Bonont	fon Bandom F	onest Class	ifion
precision recall f1-score support					support
9 1.00 1.00 1.00 54		0 1.0	0 1.00	1.00	54
1 1.00 1.00 1.00 26					
Random Forest	Forest	accuracy		1.00	80
macro avg 1.00 1.00 1.00 80			0 1.00		80
weighted avg 1.00 1.00 80	W	weighted avg 1.0	0 1.00	1.00	80
Confusion Matrix of Random Forest Classifie [[54 0] [0 26]]		fusion Matrix o	f Random	Forest	Classifier:

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	It achieved the highest validation accuracy among all tuned models. It also handles high-dimensional data well, reduces overfitting through bagging, and was optimized using hyperparameter tuning.