

Processo seletivo

Modelo de Concessão de Crédito

Índice

- Projeto
- Entendimento dos dados
- Análise exploratória
 - Análise descritiva
 - Análise distribuição geográfica
- Pré processamento
- Treinamento e otimização
- Análise técnica
- Análise financeira
- Escoragem base out-of-time
- Melhorias futuras

Cientista de dados

Antônio Ramos

- Engenheiro de Produção
- Mestrando em Computação Inteligente
- Cientista de Dados
- Atuação em projeto envolvendo IA na área da saúde, indústria, moda, tecnologia, e outros.

Projeto

Projeto

Objetivo: Desenvolver um modelo de concessão de crédito.

Etapas:

- 1. Entendimento da base e análise exploratória dos dados.
- 2. Pré-processamento das variáveis.
- 3. Treinamento de um modelo de classificação binária.
- 4. Análise técnica da performance do modelo, medida sobre a base de Teste.
- 5. Análise financeira do modelo. Para este ponto, observe a subseção `Análise financeira`.
- 6. Escoragem da base Out-of-time, para posterior avaliação da performance nessa base com o alvo detido pelo Prophet/Neurolake.

Entregáveis:

- 1. Um Jupyter Notebook legível, contendo as etapas do projeto;
- 2. Apresentação do projeto;
- 3. Base Out-of-time com previsões.

Entendimento dos dados

Entendimento dos dados

Dados de treinamento

- Tamanho da base (linhas,colunas): (120.750, 151)
- Inicio da base: 02/01/2017
- Fim da base: 31/08/2017
- Clientes únicos: 120.750
- Clientes duplicados: 0
- Colunas com mais de 65% de valores nulos: 29
- Balanceamento das classes:
 - O (Bom pagador): 91.163 / 75%
 - 1 (Mau pagador): 29.587 / 25%

Análise exploratória

Análise descritiva

Análise descritiva

Mapeando variáveis potencialmente mais informativas

1) Teste t de Student para Variáveis Numéricas:

Apliquei o teste t de Student (independente) para comparar as médias de cada variável numérica entre os grupos de Bom Pagador e Mau Pagador. Essas variáveis são potencialmente mais informativas para o modelo.

2) Teste Qui-quadrado para Variáveis Categóricas:

Para as variáveis categóricas, utilizei o teste Qui-quadrado de independência. Este teste é apropriado para verificar se existe uma associação significativa entre a variável categórica e a variável alvo.

3) Seleção de Variáveis:

Criei listas de variáveis numéricas e categóricas que demonstraram diferenças ou associações significativas com a variável alvo.

Esta abordagem foca o modelo nas variáveis mais informativas.

Exemplo de variável numérica e categórica que passaram na análise

Análise distribuição geográfica

Análise distribuição geográfica

A análise teve como foco entender como a propensão de ser um bom pagador varia entre diferentes regiões geográficas.

É possível perceber que, geograficamente, os bons pagadores estão bem disseminados, o que é um ótimo sinal pois não corremos o risco de ter uma viés por parte da localização geográfica.

Porém vale ressaltar que temos alguns estados com maior concentração.

Pré processamento

Pré processamento

Balanceamento de Classes (Downsampling)

Separei as observações da classe majoritária (0: Bom Pagador) e minoritária (1: Mau Pagador) e reduzi aleatoriamente a classe majoritária para ter o mesmo número de observações que a classe minoritária.

Transformação dos Dados (SimpleImputer, OneHotEncoder, StandardScaler) Construí pipelines separados para tratar as variáveis numéricas e categóricas. Para as numéricas, apliquei imputação de média e normalização. Para as categóricas, apliquei imputação constante e codificação one-hot.

Seleção de Recursos (SelectFromModel)

Usei um modelo XGBClassifier com o método SelectFromModel para selecionar as características mais importantes.

Treinamento e otimização

Treinamento e otimização

XGBClassifier

Escolhi o XGBoost pois ele atua com o bootstrapping, que é uma técnica de reamostragem com substituição. Isso permite que o modelo não seja apenas robusto contra overfitting, mas também maneje a variância de uma maneira que melhore a generalização.

Otimização de hiperparâmetros

A otimização utilizou uma pesquisa de grade. Defini um conjunto de parâmetros a serem testados, incluindo o número de estimadores, a taxa de aprendizado e a profundidade máxima das árvores.

```
param_grid = {
    'n_estimators': [100, 200, 300, 500, 1000],
    'learning_rate': [0.001, 0.01, 0.05, 0.1, 0.3],
    'max_depth': [3, 4, 5, 8, 10],
}
```

Melhores parâmetros:

learning_rate: 0.05

• max_depth: 5

n_estimators: 500

Melhor AUC-ROC no conjunto de teste:

0.7067

Análise técnica

Análise técnica

A área sob a curva (AUC-ROC) de aproximadamente 0.7067 é um indicador de que o modelo tem uma capacidade razoável de discriminar entre as classes de bom e mau pagador

Este valor é superior ao que seria obtido por um modelo que faz escolhas ao acaso (AUC-ROC = 0.5, indicado pela linha pontilhada), mas ainda há espaço para melhoria.

Análise técnica

O modelo acerta **64.60%** dos verdadeiros negativos (Bom pagador) e **65.87%** dos verdadeiros positivos (Mau pagador). Isto indicar que não há um viés forte em favor de uma classe sobre a outra.

No entanto, a taxa de erro também é notável, com **35.40%** dos negativos verdadeiros previstos incorretamente e **34.13%** dos positivos verdadeiros.

Análise financeira

Análise financeira

Política AS-IS Política TO-BE

O ponto de corte são **clientes com 28 anos ou menos.**

Carteira de crédito aprovado para o mês de agosto de 2017 foi de **R\$5.432.000.**

O ponto de corte é o cliente ter uma probabilidade igual ou maior a 59,28% (Mediana da probabilidade) de ser bom pagador.

Carteira de crédito aprovado para o mês de agosto de 2017 foi de **R\$3.653.000.**

A política TO-BE pode estar contribuindo para uma carteira de maior qualidade ao evitar empréstimos a clientes com maior probabilidade de inadimplência. Porém, ainda é preciso melhorar a qualidade do modelo para tornar a regra mais robusta.

Escoragem base out-of-time

Escoragem base out-of-time

```
y oot pred = xgb best.predict(X oot)
   y oot proba = xgb best.predict proba(X oot)
[ ] df oot['TARGET'] = y oot pred
   df oot['proba bom pagador label 0'] = y oot proba[:,0]
   df oot['proba mau pagador label 1'] = y oot proba[:,1]
[ ] df oot = df oot[['ID','TARGET','proba bom pagador label 0','proba mau pagador label 1']]
          ID TARGET proba bom pagador label 0 proba mau pagador label 1
    0 61900
                                  0.454969
    1 300199
                                  0.732929
                                  0.804951
                                                         0.195049
    3 153386
    4 321676
                                  0.797648
[ ] df oot.TARGET.value counts()
      61700
       30265
[] df oot.to csv('/content/drive/MyDrive/Neurotech - Cientista de Dados III/challenge-data-scientist/datasets/credit 01/df oot with target.csv', index=False)
```

61.700 Bons pagadores 30.265 Maus pagadores

Melhorias futuras

Melhorias futuras

Em virtude do tempo para entrega do desafio, faltaram o teste de algumas técnicas que podemos pontuar como melhorias futuras para o modelo.

1. Rebalanceamento de Classes:

 Atualmente, o modelo pode estar sofrendo de um desequilíbrio de classes, o que pode ser abordado por técnicas de rebalanceamento mais avançadas, como SMOTE ou CTGAN, para garantir que o modelo não seja enviesado em favor da classe majoritária.

2. Avaliação de Hiperparâmetros:

 Podemos também utilizar técnicas mais sofisticadas de otimização de hiperparâmetros, como pesquisa aleatória ou otimização bayesiana, que podem ser mais eficientes que a pesquisa em grid e encontrar um conjunto de hiperparâmetros mais ótimo.

3. Validação Cruzada:

 Não conseguimos implementar uma estratégia de validação cruzada k-fold para uma avaliação mais robusta do desempenho do modelo, o que pode ajudar a identificar se a variação no desempenho é devida a peculiaridades do conjunto de teste ou a uma característica do modelo.

Melhorias futuras

4. Testar outros modelos:

Rodar o pycaret para identificar o desempenho dos dados em outros modelos, como:
 Gradient Boosting Machines (GBM), LightGBM e CatBoost, regressões, Decision three e outros.

5. Interpretabilidade do Modelo:

Aplicação das técnicas como **SHAP** (SHapley Additive exPlanations) ou **LIME** (Local Interpretable Model-Agnostic Explanations) para entender melhor como as variáveis estão afetando as previsões do modelo, o que poderia ajudar na identificação de possíveis viéses ou na melhoria da interpretabilidade do modelo.

6. Estratégias de Ensemble:

 Investigação da possibilidade da utilização de técnicas de ensemble, como **stacking** ou **blending**, para combinar o **XGBoost** com outros modelos e verificar se há ganhos de desempenho.

NEUROTECH