Combinational logic circuits

EIC 0844091

Digital Circuit and Logic Design

Associate Prof. Luo Jie

Huazhong University of Science & Technology

Presentation Outline

- Combinational logic circuits
- Logic circuit analysis
- Logic circuit design

Combinational logic circuits

- Logic circuits are classified into two types, "combinational" and "sequential."
- A combinational logic circuit is one whose outputs depend only on its current inputs.

Structurally, there are no storage elements in combinational logic circuit.

Next topic

- Combinational logic circuits
- Logic circuit analysis
- Logic circuit design

Analysis

The process to obtain the logic function of a logic circuit is called analysis.

The process usually includes following steps:

- 1. Derive the Boolean expressions of outputs from logic circuit.
- 2. Derive the truth table from Boolean expressions.
- 3. Determine the logic function according to truth table or Boolean expressions.

□ Analysis

Example 1

A logic diagram is shown in figure. Determine its logic function.

Solution:

Boolean expressions

$$Z = A\overline{B} + \overline{A}B = A \oplus B$$

$$L = Z\overline{C} + \overline{Z}C = Z \oplus C = A \oplus B \oplus C$$

Truth table

Truth table					
ABC	Z	L			
0 0 0	0	0			
0 0 1	0	1			
0 1 0	1	1			
0 1 1	1	0			
1 0 0	1	1			
1 0 1	1	0			
1 1 0	0	0			
1 1 1	0	1			

Analysis

Solution:

Boolean expressions

$$Z = A\overline{B} + \overline{A}B = A \oplus B$$

$$L = Z\overline{C} + \overline{Z}C = Z \oplus C = A \oplus B \oplus C$$

Truth table

Analyzing the logic function

When the number of 1s on the inputs is odd, the output \boldsymbol{L} is 1. It is called 3-input odd parity checker.

How to construct a 4-input odd parity checker?

Truth table						
ABC	Z	L				
0 0 0	0	0				
0 0 1	0	1				
0 1 0	1	1				
0 1 1	1	0				
1 0 0	1	1				
1 0 1	1	0				
1 1 0	0	0				
1 1 1	0	1				

even parity output

How to construct a 4-input odd parity checker?

$$L = A \oplus B \oplus C$$

$$A \longrightarrow A \oplus B$$

$$B \longrightarrow L = A \oplus B \oplus C$$

$$C \longrightarrow D \longrightarrow Y$$

$$Y = A \oplus B \oplus C \oplus D$$
$$= (A \oplus B) \oplus (C \oplus D) = A \oplus (B \oplus C \oplus D)$$

How to construct a 4-input even parity checker?

Truth table						
ABCD	L	Y	W			
0000	0	0	1			
0001	0	1	0			
0010	1	1	0			
0011	1	0	1			
0100	1	1	0			
0101	1	0	1			
0110	0	0	1			
0111	0	1	0			
1000	1	1	0			
1001	1	0	1			
1010	0	0	1			
1011	0	1	0			
1100	0	0	1			
1101	0	1	0			
1110	1	1	0			
1111	1	0	1			

□ Analysis

Example 2

Note:

Ignoring the transition time and propagation delay usually when analyzing only logic function unless otherwise stated.

Determine the output waveform X for the logic circuit in figure, with input waveforms A and B as shown.

operation

Marking intermediate variables

 $X = AB + \overline{A}\overline{B}$

Next topic

- Combinational logic circuits
- Logic circuit analysis
- Logic circuit design

Logic circuit design

Design

The process to implement the logic function using a certain logic circuit is called design.

The process usually includes following steps:

- 1. From the specification of the logic function, determine the required number of inputs and outputs and assign a symbol to each.
- 2. Derive the truth table that defines the required relationship between inputs and outputs.
- 3. Obtain the simplified Boolean expressions for each output.
- 4. Draw the logic diagram.

Logic circuit design

Design

Example 1

Design a logic circuit for converting BCD code to Excess-3 code.

Solution:

Inputs: A_3, A_2, A_1, A_0

Outputs: Y_3, Y_2, Y_1, Y_0

Truth table

Dec	$A_3A_2A_1A_0$	$Y_3Y_2Y_1Y_0$
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100
10	1010	XXXX
11	1011	XXXX
12	1100	XXXX
13	1101	XXXX
14	1110	XXXX
15	1111	XXXX

Y_0 A_3 A_2	A_0	01	11	10
00	1			1
01	1			1
11	Х	Х	X	Х
10	1		X	X

$A_{3'}$	A_2	A_1	A_0	Y_3	Y_2	Y_1	$\overline{Y_0}$
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

$(Y_0)_{A_1}$ A_3A_2	A ₀ 00	01	11	10
00	1			1
01	1			1
11	Х	Х	Х	Х
10	<u>J</u>		X	Х

$(Y_1)_{A_1}$	A_0			
A_3A_2	00	01	11	10
00	1		1	
01	1		1	
11	Х	X	x	X
10	1		х	X

$(Y_2)_{A_1}$ A_3A_2	A_0	.01	.11.	10,
$\begin{array}{c} A_3 A_2 \\ 00 \end{array}$	UU	1	1	1
01	1			
11	X	Х	X	х
10		$\sqrt{1}$	Х	X

$Y_0 = \overline{A}_0$
$Y_1 = \overline{A}_1 \overline{A}_0 + A_1 A_0$
$Y_2 = \overline{A}_2 A_0 + \overline{A}_2 A_1 + A_2 \overline{A}_1 \overline{A}_0$
$Y_3 = A_3 + A_2 A_0 + A_2 A_1$

$(Y_3)_{A_1}$ A_3A_2	$oldsymbol{A_0}{oldsymbol{00}}$	01	11	10
00				
01		1	1	1
11	X	х	x	х
10	1	1	Х	X

$A_3A_2A_1A_0$		Y_3	Y_2	Y_1	Y_0)		
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	
1	0	1	0	X	X	X	X	
1	0	1	1	X	X	X	X	
1	1	0	0	X	X	X	X	
1	1	0	1	X	X	X	X	
1	1	1	0	X	X	X	X	
1	1	1	1	X	X	X	X	

The logic diagram

$$\begin{split} Y_0 &= \overline{A}_0 \\ Y_1 &= \overline{A}_1 \overline{A}_0 + A_1 A_0 \\ Y_2 &= \overline{A}_2 A_0 + \overline{A}_2 A_1 + A_2 \overline{A}_1 \overline{A}_0 \\ Y_3 &= A_3 + A_2 A_0 + A_2 A_1 \end{split}$$

Transformation

$$Y_{0} = \overline{A}_{0}$$

$$Y_{1} = \overline{A}_{1}\overline{A}_{0} + A_{1}A_{0}$$

$$= \overline{A}_{1} + \overline{A}_{0} + A_{1}A_{0}$$

$$Y_{2} = \overline{A}_{2}A_{0} + \overline{A}_{2}A_{1} + A_{2}\overline{A}_{1}\overline{A}_{0}$$

$$= \overline{A}_{2}(A_{1} + A_{0}) + A_{2}(\overline{A}_{1} + \overline{A}_{0})$$

$$Y_{3} = A_{3} + A_{2}A_{0} + A_{2}A_{1}$$

$$= A_{3} + A_{2}(A_{1} + A_{0})$$

Note:

when the circuit have more than one output, the common parts in output expressions are more, the final circuit is more simpler.

In this case, we hope the expressions contain most possible common parts.

Logic circuit design

Design

Example 2

Design a logic circuit for converting Gray code to binary code.

Solution:

Inputs: G_3, G_2, G_1, G_0

Outputs: B_3, B_2, B_1, B_0

Truth table

Binary $B_3B_2B_1B_0$	Gray $G_3G_2G_1G_0$
$\begin{array}{c} 0000 \\ 0001 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0111 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \end{array}$	0000 0001 0001 0011 0010 0110 0111 0101 1100 1101 1111
1100 1101 1110 1111	1010 1011 1011 1001 1000

Logic circuit design

Design

Example 2

Design a logic circuit for converting Gray code to binary code.

Solution:

Inputs: G_3, G_2, G_1, G_0

Outputs: B_3, B_2, B_1, B_0

Truth table

Input	Output
Gray	Binary
$G_3G_2G_1G_0$	$B_3B_2B_1B_0$
0000	0000
0001	0001
0011	0010
0010	0011
0110	0100
0111	0101
0101	0110
0100	0111
1100	1000
1101	1001
1111	1010
1110	1011
1010	1100
1011	1101
1001	1110
1000	1111

Input	Output
Gray	Binary
$G_3G_2G_1G_0$	$B_3B_2B_1B_0$
0000	0000
$0\ 0\ 0\ 1$	0001
$0\ 0\ 1\ 1$	0010
0010	0011
0110	0100
0111	0101
0101	0110
0100	0111
1100	1000
1101	1001
1111	1010
1110	1011
1010	1100
1011	1101
1001	1110
1000	1111

Using K-Map to simplify the function for each output

B_1	G_{0}			
G_3G_2	00	01	_11_	10
00			[1	1
01	1	1		
11			1	1
10	1	1		

			B_2 _{G1}	$G_0 \ 00$			
01	11	10	G_3G_2	00	01	11	10
	1	1	00				
1			01	1	1	1	1
	1	1	11				
1			10	1	1	1	1

$B_3 = G_3$
$B_2 = \overline{G}_3 G_2 + G_3 \overline{G}_2$
$B_1 = G_3 \overline{G}_2 \overline{G}_1 + G_3 G_2 G_1$
$+\overline{G}_3G_2\overline{G}_1+\overline{G}_3\overline{G}_2G_1$
$R = G \oplus G \oplus G \oplus G$

G_3G_1	G ₀	01	11	10
00				
01				
11	1	1	1	1
10	1	1	1	1

Output
Binary
$B_3B_2B_1B_0$
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Output

Innut

The logic diagram

$$B_3 = G_3 \qquad B_2 = \overline{G}_3 G_2 + G_3 \overline{G}_2$$

$$B_1 = G_3 \overline{G}_2 \overline{G}_1 + G_3 G_2 G_1 + \overline{G}_3 G_2 \overline{G}_1 + \overline{G}_3 \overline{G}_2 G_1$$

$$B_0 = G_3 \oplus G_2 \oplus G_1 \oplus G_0$$

Transformation

$$B_{3} = G_{3}$$

$$B_{2} = \overline{G}_{3}G_{2} + G_{3}\overline{G}_{2} = G_{3} \oplus G_{2}$$

$$B_{1} = G_{3}\overline{G}_{2}\overline{G}_{1} + G_{3}G_{2}G_{1} + \overline{G}_{3}G_{2}\overline{G}_{1} + \overline{G}_{3}\overline{G}_{2}G_{1}$$

$$= (G_{3}\overline{G}_{2} + \overline{G}_{3}G_{2})\overline{G}_{1} + (G_{3}G_{2} + \overline{G}_{3}\overline{G}_{2})G_{1}$$

$$= (G_{3} \oplus G_{2})\overline{G}_{1} + (\overline{G}_{3} \oplus G_{2})G_{1}$$

$$= G_{3} \oplus G_{2} \oplus G_{1} = B_{2} \oplus G_{1}$$

$$B_{0} = G_{3} \oplus G_{2} \oplus G_{1} \oplus G_{0} = B_{1} \oplus G_{0}$$

Example 3

A water tank supply is shown in figure. The feed-tank are supplied with water by two water pumps L_1 and L_2 . A, B and C represent three water level detecting elements respectively. When the water level is above their position on the feed-tank, the outputs of them are LOW. When the water level is below their position, the outputs of them are HIGH.

Design a logic circuit to control water pumps L_1 and L_2 It is required:

- 1. When the level is above the position of C, both L_1 and L_2 are stopping.
- 2. When the level is above the position of B and below the position of C, only L_1 is running.
- 3. When the level is above A and below B, only L_2 is running.
- 4. When the level is below A, both L_1 and L_2 are running.

Solution:

Definition

Inputs: A, B, C

A, B and C indicate output of detecting elements respectively

Each of them is 0 if water level is above it, and it is 1 if water level is below it.

Outputs: L_2, L_1

When each of them is 1,

the corresponding pump is running.

When each of them is 0,

the corresponding the pump is stopping.

Solution: Inputs: A, B, C

It is 0 if water level is above it.

It is 1 if water level is below it.

Outputs: L_2, L_1

It is 1, the corresponding pump is running.

It is 0, the corresponding the pump is stopping.

Truth table

It is required:

- 1. When the level is above the position of C, both L_1 and L_2 are stopping.
- 2. When the level is above the position of B and below the position of C, only L_1 is running.
- 3. When the level is above A and below B, only L_2 is running.
- 4. When the level is below A, both L_1 and L_2 are running.

Truth t	able
ABC	L_2L_1
0 0 0	0 0
0 0 1	0 1
0 1 0	ХХ
0 1 1	1 0
1 0 0	X X
1 0 1	X X
1 1 0	хх
1 1 1	1 1

Four states never occur

Solution:

The expressions and simplification

Truth table			
ABC	L_2L_1		
0 0 0	0 0		
0 0 1	0 1		
0 1 0	ХХ		
0 1 1	1 0		
1 0 0	хх		
1 0 1	хх		
1 1 0	ХХ		
1 1 1	1 1		

The logic diagram

□ Example 4

Given the input and output waveforms in figure. Design a logic circuit to implement the logic relationship between inputs and output.

Example 4

What is its truth table if the waveforms are shown in figure?

Truth table			
\boldsymbol{C}	B	\boldsymbol{A}	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	X
1	0	1	X
1	1	0	0
1	1	1	1

For the combinations of inputs those don't appear in waveforms corresponding outputs are filled with 'x'.

