

COMPUTER ENGINEERING DEPARTMENT

SEMESTER-III SCHEME - 2023

COMPUTER ENGINEERING DEPARTMENT

Shri Vile Parle Kelavani Mandal's SHRI BHAGUBHAI MAFATLAL POLYTECHNIC

Learning and Assessment Scheme for Post S.S.C Diploma Programs

Program Name : Diploma In Computer Engineering Programme Code : 2023-24 : CSE With Effect From Academic Year Duration Of Programme : 16 WEEKS : 6 Semester Duration : 2023 Semester : Ш Scheme

	. 11					Lea	rning Scheme	Scheme					As	sessmen	t Scheme	:		
Sr No	Course Title & Code	Course Category	IKS (Hrs)	Actual Contact Hrs./Week		ct	Self- Learning (SL*) (Term		Credits	Paper	Theory (Marks)			Based on LL & TL			Based on Self Learning	Total
- 10		Category	(шз)				Work+	Learning Hr		Duration (Hrs.)				Pra	ctical (M	arks)	Learning	Marks
				CL	TL	LL	Assignment) (Hrs)			(44.17)	FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	
1	Social & Life Skills (SLS238910)	VEC					02	02	01			-		-	•		25	25
2	Programming in JAVA (PRJ238913)	AEC	-	02		04	02	08	04	03	30	70	100	25	25		25	175
3	Data Structure (DST238914)	DSC	*8	04	*	02		06	03	03	30	70	100	25	25		-	150
4	Event Driven & UI Programming (EUP230804)	DSC	20	02	-	04	02	08	04	20	843		1040	50	50	848	25	125
5	Database Management System (DBS238915)	DSC	-	04		02		06	03	03	30	70	100	25	25	(3.5)	-	150
6	Fundamentals of Microprocessor (FMP230805)	AEC		04	-	02		06	03	03	30	70	100	25	25	-	2	150
7	Linux Lab (LXL230806)	DSC		-	-	02	02	04	02			-		25	-	25	25	75
		Total		16	-	16	08	40	20	Total Papers=04	120	280	400	175	150	25	100	850

Abbreviations: IKS - Indian Knowledge System, CL- Classroom Learning, TL- Tutorial Learning, LL-Laboratory Learning, FA - Formative Assessment, SA - Summative Assessment, SLA - Self Learning Assessment, TH-Theory, PR-Practical, OR-Oral Legends: @ Online Examination-

Note:

1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.

2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.

3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.

4. Notional Learning hours for the semester are (CL+TL+LL+SL)Hrs. x 15 Weeks

5. 1 credit is equivalent to 30 Notional Hrs.

6. ^ Self learning hours shall not be reflected in the Time Table.

7. SA-PR,SA-OR: Assessed by Internal and External Examiners Jointly FA-PR, SLA: Assessed by Internal Examiner Only

Course Category: Discipline Specific Course Core (DSC): 4, Discipline Specific Elective (DSE): 0, Value Education Course (VEC): 1, Intern./Apprenti/Project/Community (INP): 0, Ability Enhancement Course (AEC): 2, Skill Enhancement Course (SEC): 0, Generic Elective (GE): 0

Head of Department

3) SWIKES

Secretary CDC

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Programme: CSE/IT Semester: III

Course: Social & Life Skills Course Category: VEC

Course Code: SLS238910 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

	Learn	ing Sc	heme		Assessment Scheme										
Actual Contact Hrs./Week		Self- Learning (SL^)		Pape r	Pape r Theory (Marks)				on LL	Based on Self Learning					
			(Term Work +	Credits	Dura				Practical (Marks)			Laimig	Total		
CL	TL	LL	Assignmen t) (Hrs.)		tion (Hrs.	FA- TH	SA - TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	Marks		
-	-	-	2	1	-	ı	-	-	-		1	25	25		

3. COURSE OBJECTIVE:

Life skills include social skills and interpersonal skills that help individual make informed decisions, solve problems, think critically and creatively, build healthy relationships, empathize with others, by managing one's life. Life skills are essentially those abilities that help to promote overall wellbeing with holistic approach to face the problems of real life. Students learn socio- life skills from parents, teachers and significant others individuals to translate knowledge, attitude and values into actual abilities.

Note: The course offers three different alternatives(modules) for achieving above outcomes. Students must complete any one module from the following given objective.

a. MODULE-I: Unnat Maharashtra Abhiyan (UMA)

b. MODULE-II: National Service Scheme (NSS)

c. MODULE-III: Financial Literacy (NABARD)

The institute can choose to offer any one MODULE to the groups of the students by taking into consideration the resources required and resources available in the institute. Different group of students may be offered different MODULE based on their choices.

COMPUTER ENGINEERING DEPARTMENT

4. SKILL COMPETENCY/INDUSTRY/EMPLOYER EXPECTED OUTCOME

- 1. Decision making
- 2. Problem solving
- 3. Time management
- 4. Presentation and Grooming skills
- 5. Social Skills & Empathy
- 6. Emotional intelligence
- 7. Financial Literacy

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOME
CO1	Develop interpersonal skills and leadership skills for empowerment of self and others
CO2	Provide the opportunity to get social experience while working individually or in group for society.
CO3	Develop financial literacy skills for self & community development.
CO4	Communicate professionally for liaisoning between individual & group.

6. CO-PO, CO- PSO MAPPING TABLE

		Programme Outcomes												
Course and Code	Course Outcom es	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2				
Social & Life	CO 1	-	-	-	-	-	3	1	-	-				
Skills (SLS238910)	CO 2	-	-	-	-	3	1	1	-	-				
,	CO 3	-	-	-	-	2	1	1	-	-				
	CO 4	-	-	-	-	1	3	1	-	-				
	CO Avg.	-	-	-	-	2	2	1	-	-				

COMPUTER ENGINEERING DEPARTMENT

7. COURSE CONTENTS

UNIT	TOPIC/sub topic											
NO												
	MODULE I: Activities Under Unnat Maharashtra Abhiyan (UMA)											
	1.1 Introduction to Societal Needs and respective stakeholders:											
	Regional societal issues that need engineering intervention											
	1.2 Multidisciplinary approach-linkages of academia, society and technology											
	1.3 Stakeholders' involvement											
	1.4 Introduction to Important secondary data sets available such as census,											
	district economic surveys, cropping pattern, rainfall data, road network data etc											
	1.5 Problem Outline and stakeholders:											
	Importance of activity and connection with Mapping of system components											
I	and stakeholders (engineering / societal)											
1	1.6 Various instruments used for data collection - survey templates, simple											
	measuring equipment.											
	1.7 Format for measurement of identified attributes/ survey form and piloting of											
	the same											
	1.8 Fieldwork: Measurement and quantifications of local systems such as											
	agriculture produce, rainfall, Road network, production in local industries,											
	Produce /service which moves from A to B											
	1.9 Analysis and Report writing 1. Introduction of the topic											
	2. Data collected in various formats such as table, pie chart, bar graph etc											
	3. Observations of field visits and data collected.											

COMPUTER ENGINEERING DEPARTMENT

	MODULE II : National Service Scheme (NSS)									
	2.1 Contacting Village/Area Leaders									
	2.2 Primary socio -economic survey of few villages in the vicinity of the institute.									
	2.3 Selection of the village for adoption - conduct of activities									
	2.4 Comprehensive Socio Economic Survey of the Village/Area									
	2.5 Identification of Problem(s)									
II	2.6 Dissemination of information about the latest developments in agriculture,									
	watershed management, wastelands development, non-conventional energy, low									
	cost housing, sanitation, nutrition and personal hygiene, schemes for skill									
	development, income generation, government schemes, legal aid, consumer									
	protection and allied fields.									
	2.7 A liaison between government and other development agencies for the									
	implementation of various development schemes in the selected village / slum.									
	MODULE-III : Financial Literacy									
	3.1 Introduction - Life Goals and financial goals									
	3.2 Savings and Investments - Three pillars of investments, Popular asset classes,									
	Government schemes, Mutual Funds, Securities markets (Shares and bonds), Gold, Real									
	Estate, Do's and Don'ts of investments									
Ш	3.3 Retirement planning									
111	3.4 Cashless transactions									
	3.5 Income, expenditure and budgeting – Concepts and Importance									
	3.6 Inflation- Concept, effect on financial planning of an individual									
	3.7 Loans – Types, Management of loans, Tax benefits									
	3.8 Insurance – Types, Advantages, selection									
	3.9 Dos and Donts in Financial planning and Transactions									

COMPUTER ENGINEERING DEPARTMENT

8. List of activities for Self Learning:

Following list is an illustrative list of the type of activities that can be undertaken. Under this course it would be open to undertake one of these or many other activities which may seem suitable to local needs.

- 1) Plantation of trees, their preservation and upkeep
- 2) Construction & maintenance of village streets, drains.
- (3) Cleaning of village ponds and wells.
- (4) Popularization and construction of Gobar Gas Plants, use of non-conventional Energy.
- (5) Disposal of garbage & composting.
- (6) Prevention of soil erosion and work for soil conservation.
- (7) Watershed management and wasteland development.
- (8) Preservation and upkeep of monuments, and creation of consciousness about the preservation of cultural heritage among the community.
- (9) Health education, AIDS Awareness and preliminary health care.
- (10) Working with cancer patients / orphans/ old age home/ welfare organizations of women with NGO.
- (11) Empowering women by creating awareness among them and imparting training in sewing, embroidery, knitting and other skills wherever possible to make them financially independent.
- (12) Organizing Blood donation/Eye check Up/Body donation camp.
- (13) Popularization of small savings and assistance in procuring bank loans of government schemes, mutual funds and share market, financial planning.
- (14) Organization of youth clubs, rural land indigenous sports in collaboration with Nehru Yuva Kendras;
- (15) Assisting the authorities in distribution of rations, medicine, clothes, immunization, supply of medicine, relief and rescue operation; collection of clothes and other materials, and sending the same to the affected areas

COMPUTER ENGINEERING DEPARTMENT

9. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Industry visit
- 2. Guest/Expert lectures
- 3. Demonstrations
- 4. Slides
- 5. Self-Learning Online Resources
- 6. Case Study
- 7. Role Play
- 8. Collaborative learning

10.SUGGESTED LEARNING RESOURCES

Sr.No.	Title of Book	Author	Publication
1	Compendium of Training Materials for the Capacity Building on 'IMPROVING THE PERFORMANCE OF RURAL WATER SUPPLY AND SANITATION SECTOR IN MAHARASHTRA' Districts Economic survey reports	IRAP, Hyderabad, CTARA, IIT Bombay and UNICEF, Mumbai	UNICEF
2	Manual on Water Supply and Treatment	Central Public Health and Environmental Engineering Organization	Ministry of Urban Development, New Delhi
3	Indian Standards (IS) Codes and Indian Roads Congress (IRC) Codes	Specifications And Standards Committee	Bureau of Indian Standards and The Indian Road Congress
4	Sample Case Studies on UMA website	Local college students, UMA staffs	IITB-UMA team

11 LEARNING WEBSITE & PORTALS

- 1 https://gr.maharashtra.gov.in/Site/Upload/Government
- 2 https://gr.maharashtra.gov.in/Site/
- 3 https://censusindia.gov.in/census.website/
- 4 https://gsda.maharashtra.gov.in/english/
- 5 https://mrsac.gov.in/MRSAC/map/map
- 6 https://ejalshakti.gov.in/jjmreport/JJMIndia.aspx
- 7 https://cpcb.nic.in/
- 8 http://www.mahapwd.com/#
- 9 http://tutorial.communitygis.net/
- 10 https://nss.gov.in/

COMPUTER ENGINEERING DEPARTMENT

12. ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- 1. Self-Learning
- 2. Seminar/Presentation
- 3. Report and presentation of fieldwork activities
- 4. Assignment

13. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME	sign
1	Internal	Mr. Balaji M. Pande, Senior Lecturer in English	
2	Internal	Mrs. Keerti P. Bhave Lecturer (Selection Grade)	
3	Internal	Mr. Prasad S. Dhuri , Lecturer EXTC	

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Programme: CSE/IT Semester: III

Course: Programming in Java Course Category: AEC

Course Code: PRJ238913 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

Learning Scheme					Assessment Scheme										
Contact Hrs./Week (SL^) (T		Self-Learning (SL^) (Term Work +	Credits	Paper	Theory (Marks)			Base	d on LL &	& TL	Based on Self	Total Marks			
			Assignment)		Duration (Hrs.)				Practical (Marks)				Learning		
CL	TL	LL	(Hrs)			FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)			
02	-	04	02	04	03	30	70	100	25	25	-	25	175		

Total IKS Hrs for the course :00

3. COURSE OBJECTIVE

Java is one of the most powerful object-oriented programming languages. It supports development of secured, portable, concurrent, and distributed applications. From laptops to data centres, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere! This course is designed to provide basics of Java Language.

4. SKILL COMPETENCY/INDUSTRY/EMPLOYER EXPECTED OUTCOME

- Write Java programs using Inheritance, Exception Handling and Multithreading.
- Develop desktop GUI applications.

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOME
CO1	Write code for basic problems in Java
CO2	Use class & object to solve object-oriented problems
CO3	Implement programs based on Inheritance and packages
CO4	Demonstrate exception handling mechanism
CO5	Write multithreaded Java programs
CO6	Design GUI applications using AWT and SWING controls

COMPUTER ENGINEERING DEPARTMENT

6. CO-PO, CO- PSO MAPPING TABLE - Computer Engineering

Course and Code	Course Outcomes			Progran	nme Ou	itcomes	1		Programme Specific Outcomes		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	
	CO1	3	2	2	2	-	3	2	3	-	
	CO2	3	2	2	2	-	3	3	3	-	
	CO3	3	3	3	2	-	3	3	3	-	
Programming in Java	CO4	3	1	2	2	-	3	2	3	-	
(PRJ238913)	CO5	3	2	2	2	-	3	2	3	-	
	CO6	3	1	1	1		3	2	3	-	
	CO Avg.	3	1.83	2	1.83		3	2.33	3	-	

CO-PO, CO-PSO MAPPING TABLE - Information Technology

Course and Code	Course Outcomes			Progran	nme Ou	itcomes	\$		Programme Specific Outcomes			
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
	CO1	3	2	2	2	-	3	2	3	-		
	CO2	3	2	2	2	-	3	3	3	-		
	CO3	3	3	3	2	-	3	3	3	-		
Programming in Java	CO4	3	1	2	2	=	3	2	3	-		
(PRJ238913)	CO5	3	2	2	2	-	3	2	3	-		
	CO6	3	1	1	1		3	2	3	-		
	CO Avg.	3	1.83	2	1.83		3	2.33	3	-		

COMPUTER ENGINEERING DEPARTMENT

7. COURSE CONTENTS

7. COU	RSE CONTENTS
UNIT NO.	TOPIC/Sub-topic
I	Introduction to object-oriented programming 1.1 Creation of java, java byte code, java characteristics 1.2 Abstraction, OOP PrinciplesEncapsulation, Inheritance and Polymorphism 1.3 Constant, Variables and Data Types, Type casting 1.4 Operator and Expression, Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operator, Increment and Decrement Operator, Bit wise Operator, Special Operator 1.5 Decision making with simple if, if else, else if ladder statements, The switch statement, The conditional operator 1.6 Decision Making with Loops i.e. while, do and for statement, Jumps in Loops, Labelled Loops
п	Classes, Objects and Methods 2.1 Class Fundamentals, The General Form of a Class, A Simple Class 2.2 Declaring Objects, A Closer Look at new, Assigning Object Reference Variables 2.3 Introducing Methods, adding a Method to the Class, returning a Value, adding a Method that takes parameters 2.4 Constructors, Parameterized Constructors 2.5 'this' Keyword 2.6 static data, method, and blocks 2.7 String class and its methods
III	Inheritance, Interfaces and Packages 3.1 Inheritance Basics, 3.2 Member Access and Inheritance, 3.3 A Superclass Variable Can Reference a Subclass Object 3.4 Use of super keyword 3.5 Creating a Multilevel Hierarchy, 3.6 Method Overriding, Dynamic Method Dispatch, Abstract classes 3.7 Defining an Interface, Implementing Interfaces, applying interfaces, Variables in Interfaces, 3.8 Implementing Multiple Inheritance (Multiple Inheritance), Interfaces Can Be Extended 3.9 Packages, defining a Package, Finding Packages and CLASSPATH, 3.10 Access Protection, Importing Packages
IV	 Exception Handling 4.1 Exception-Handling Fundamentals, Exception class hierarchy 4.2 Uncaught Exceptions, try and catch, Multiple catch Clauses, nested try Statements, throw, throws, finally clauses 4.3 Java's Built-in Exceptions - Checked and Unchecked Exceptions 4.4 Creating Your Own Exception Subclasses using Exceptions

COMPUTER ENGINEERING DEPARTMENT

	Multithreading						
	5.1 The Java Thread Model, The Thread Life Cycle, Thread class methods						
	5.2 The Thread Class and the Runnable Interface						
v	5.3 The Main Thread, creating a Thread, Extending Thread, Implementing Runnable						
V	5.4 Creating Multiple Threads, Using isAlive() and join()						
	5.5 Thread Priorities, Synchronization, Using Synchronized Methods, The synchronized Statement						
	5.6 Interthread Communication						
	AWT and SWING Controls						
	6.1 Abstract Window toolkit, AWT classes						
	6.2 Event handling, Delegation event model, Event model, Event classes, source of events, event listener interface,						
VI	6.3 windows fundamentals, creating a frame window, working with frame window, working with graphics						
	6.4 Introduction to AWT controls, inserting user interfaces like buttons, checkbox, list, scrollbar text field and text areas, layout managers.						
	6.5 Introduction to SWING GUI Controls						

8. LIST OF PRACTICALS/ASSIGNMENTS/ TUTORIALS/DRAWINGS

Term Work consists of Journal containing minimum no of -12 Experiments/assignments/drawings.

			-
Sr. No.	Title of Experiment/Assignment/Exercise/Tutorial/Drawings	Approx. Hrs required	CO
1	To Install and Set up Jdk18 on Windows OS to write, compile, and execute a sample Program.	2	CO1
2	To test various data types and typecasting concept available in Java	2	CO1
3	To define a class having overloaded constructors and instantiating objects of the same class. (2 problems)	2	CO2
4	To implement the concept of array of objects in Java (2 problems)	4	CO2
5	To take user inputs through command line arguments. (2 problems)	2	CO2
6	To implement single and multi-level inheritance	6	CO3
7	To implement Dynamic Method Dispatch in Java.	2	CO3
8	To implement multiple Inheritance.	4	CO3
9	To create packages with access controls and importing them in appropriate classes.	4	CO3
10	To handle exceptions generated in Java	4	CO4
11	To create a user defined exception class.	4	CO4
12	To create user defined threads to achieve multitasking.	6	CO5
13	To achieve synchronization among multiple threads.	2	CO5
14	To develop GUI application using AWT controls and handling events.	8	CO6
15	To develop GUI application using SWING controls and handling events.	8	CO6
	TOTAL	60	

COMPUTER ENGINEERING DEPARTMENT

9. SUGGESTED MICRO PROJECT/ASSIGNMENT/ACTIVITES FOR SPECIFIC LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

Assessment to be based on one of the following tools and rubrics for evaluation of SLA to be well defined by course teacher.

1. Micro project

- a. Bank Management System Develop savings and fixed deposit modules
- b. Quiz management system Generate technical quiz for testing knowledge
- c. Airline Reservation System Books tickets for domestic/international flights
- d. Healthcare System Implement doctor, patient, and hospital modules
- e. College Management System Develop student admission, course management modules (Use OOPs principles to develop aforementioned Java applications)

2. Assignment

Practice problems on array of objects, inheritance, exception handling, multithreading, and desktop GUI

10. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Teaching Plan
- 2. Minimum no of practical/assignments
- 3. Guest/Expert lectures
- 4. Slides
- 5. Self-Learning Online Resources

11. SUGGESTED LEARNING RESOURCES (minimum 3 to 5)

Sr.No.	Title of Book	Author	Publication
1	Java The Complete Reference	Herbert Schildt	Tata McGraw Hill
2	Core Java TM Volume I Fundamentals	Cay S. Horstmann ,Gary Cornel	Prantice Hall
3	Java How To Program	Paul Deitel, Harvey Deitel	Pearson
4	Effective Java	Joshua Bloch	Addison Wesley

12. LEARNING WEBSITE & PORTALS

- 1. https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
- 2. https://www.javatpoint.com/java-tutorial
- 3. https://www.guru99.com/java-tutorial.html
- 4. http://tutorials.jenkov.com/java/index.html
- 5. https://www.digitalocean.com/community/tutorials/core-java-tutorial

13. ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- Test
- 2. Rubrics for COs Assignment
- 3. Self-Learning

COMPUTER ENGINEERING DEPARTMENT

- 4. Term Work
- 5. Seminar/Presentation

Summative Assessment (Assessment of Learning)

- 1. End Term Exam
- 2. Micro-project

14. SUGGESTED WEIGHTAGE FOR LEARNING EFFORTS & ASSESMENT PURPOSE (Specification Table)

Unit		Aligned	Learning	Distribution of Theory Marks					
No.	Unit Title	COs	Hours	R Level	U Level	A Level	Total Marks		
I	Introduction to object- oriented programming	CO1	04	02	04	-	06		
II	Classes, Objects and Methods	CO2	05	03	03	06	12		
III	Inheritance, Interfaces and Packages	CO3	08	04	08	08	20		
IV	Exception Handling	CO4	04	02	04	04	10		
V	Multithreading	CO5	04	02	04	04	10		
VI	AWT and SWING Controls	CO6	05	02	04	06	12		
	GRANI	D TOTAL	30	15	27	28	70		

R Remember, U Understand, A Apply and above, (Bloom's revised taxonomy levels)

NOTE: This specification table provides general guidelines to assist students for their learning and to teachers to teach and assess students with respect to attainment of COs. The actual distribution of marks at different taxonomy levels (R, U, A) in the question paper may vary from above table.

15. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME
1	Internal	Mr. Manish R Solanki
2	Internal	Mrs. Geetha S
3	External	Siddhesh Vaidya System Analyst, National Stock Exchange, Mumbai

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Programme: CSE/IT Semester: III

Course: Data Structure Course Category: DSC

Course Code: DST238914 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

Learning Scheme					Assessment Scheme								
Actual Contact Hrs./Week		Self-Learning (SL^) (Term Work +	Credits			Theory (Marks)			d on LL &	& TL	Based on Self	Total	
			Assignment) (Hrs)		Duration (Hrs.)			Practical (Marks)			Learning	Marks	
CL	TL	LL	(IIIs)			FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	ì
04	-	02	-	03	-	30	70	100	25	25	-	-	150

Total IKS Hrs for the course:00

3. COURSE OBJECTIVE

This subject intends to teach the students the core requisites of Computer programming which is storing and analysing data in various structures like stacks, queues, linked lists, trees, graphs etc.

4. SKILL COMPETENCY/INDUSTRY/EMPLOYER EXPECTED OUTCOME

- Write and implement algorithms to store and manipulate data in various data structure
- To implement and compare various searching –sorting algorithms and analyse the complexities

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOME
CO1	Perform operations on an array and analyze an algorithm for its time and space complexity.
CO2	Implement searching and sorting techniques
CO3	Implement the static linear data structure
CO4	Apply the dynamic linear data structure
CO5	Describe non-linear data structure

COMPUTER ENGINEERING DEPARTMENT

6. CO-PO, CO-PSO MAPPING TABLE: Computer Engineering

Course and Code	Course Outcomes				Programme Specific Outcomes					
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
	CO1	3	2	2	1	-	-	2	3	-
	CO2	3	2	2	2	-	-	2	3	-
Data Structure	CO3	2	1	2	1	-	=	2	3	-
(DST238914)	CO4	2	1	2	1	-	-	2	3	-
	CO5	1	-	1	1	=	=	2	3	-
	CO Avg.	2.2	1.5	1.8	1.2	-	-	2	3	-

CO-PO, CO- PSO MAPPING TABLE: Information Technology

Course and Code	Course Outcomes				Programme Specific Outcomes					
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
	CO1	3	2	2	1	-	-	2	3	-
	CO2	3	2	2	2	-	-	2	3	-
Data Structure	CO3	2	1	2	1	-	-	2	3	-
(DST228914)	CO4	2	1	2	1	-	-	2	3	-
	CO5	1	-	1	1	-	-	2	3	-
	CO Avg.	2.2	1.5	1.8	1.2	-	-	2	3	-

COMPUTER ENGINEERING DEPARTMENT

7. COURSE CONTENTS

UNIT	RSE CONTENTS Topics/Sub-Topics
NO.	Topics/Sub Topics
I	Introduction to data structure 1.1 Linear & Non linear 1.2 Algorithm Basic Concepts 1.3 Introduction to Time and Space complexity of algorithms, Big O Notation and theta notations 1.4 Definition, implementation and notation of Array- Numerical and character 1.5 Basic operation such as addition, deletion, String operations Sorting and Searching 2.1 Sorting Techniques
II	2.1.1 Selection sort 2.1.2 Bubble sort 2.1.3 Insertion sort 2.1.4 Quick sort 2.1.5 Heap Sort 2.2 Searching 2.2.1 Linear search 2.2.2 Binary searching
Ш	Static Linear Data Structure: Stacks and Queues 3.1 Introduction to Stacks 3.2 Stacks as an Abstract Data Type 3.3 Primitive operations of stacks 3.4 Representation of Stacks through Arrays 3.5 Application of Stack 3.6 Stack and Recursion 3.7 Introduction to Queues 3.8 Queue as an abstract data type 3.9 Representation of a Queue as an array 3.10 Types of Queue 3.10.1 Circular Queue 3.10.2 Double Ended Queue 3.10.3 Priority Queue 3.11 Applications of Queue
IV	Dynamic Linear Data Structure: Linked List 4.1 Terminologies 4.1.1 Node 4.1.2 Address, Pointer 4.1.3 Information 4.1.4 Next, NULL Pointer 4.1.5 Empty list 4.2 Representation of Linked list in memory 4.3 Operations on a singly linked list (only algorithm) 4.3.1 Traversing a singly linked list 4.3.2 Searching a linked list

 \mathbf{V}

SHRI VILE PARLE KELAVANI MANDAL'S SHRI BHAGUBHAI MAFATLAL POLYTECHNIC

COMPUTER ENGINEERING DEPARTMENT

- 4.3.3 Inserting a new node in a linked list
- 4.3.4 Deleting a node from a linked list
- 4.3.5 Header Linked list
- 4.4 Doubly linked list Introduction, memory representation

Non-Linear Data Structure

- 5.1 Trees Terminologies: Tree, Degree of a node, Degree of a tree, level of a node, leaf node, Depth / Height of a tree, In-degree & Out-Degree, Directed edge, Path Ancestor & descendant nodes
- 5.2 Storage representation of binary tree
- 5.3 Type of Trees
 - 5.3.1 General tree
 - 5.3.2 Binary tree
 - 5.3.3 Binary search tree (BST): Searching, Inserting, Deleting
- 5.4 Binary Tree Traversal Methods
 - 5.4.1 In order traversal
 - 5.4.2 Preorder traversal
 - 5.4.3 Post order traversal
- 5.5 Height Balanced, Weight Balanced Trees
- 5.6 Graphs Terminologies: graph, node (Vertices), arcs (edge), directed graph, indegree, out-degree, adjacent, successor, predecessor, relation, weight, path, length
- 5.7 Representations of a graph
 - 5.7.1 Sequential Representation (Adjacency Matrix, Path Matrix)
 - 5.7.2 Linked Representation
- 5.8 Graph Traversal: BFS, DFS

8. LIST OF PRACTICALS/ASSIGNMENTS/TUTORIALS/DRAWINGS

Term Work consists of Journal containing minimum no of 10 Experiments

Sr. No.	Title of Experiment/Assignment/Exercise/Tutorial/Drawings	Approx. Hrs required	СО
1	A program for inserting and deleting an element in an array.	2	CO1
2	A program for Linear Search	2	CO2
3	A program for Binary Search	2	CO2
4	A program for selection sort.	2	CO2
5	A program for quick sort.	2	CO2
6	A program for Insertion Sort	4	CO2
7	A program for pushing and popping an element into a STACK	2	CO3
8	A program for inserting and deleting an element in a circular queue.	2	CO3
9	A program for converting an infix expression to postfix using STACK	2	CO3
10	A program for creating and traversing a linked list.	4	CO4
11	A program for various operations on a linked list	2	CO4
12	A program to perform traversing of a binary tree.	4	CO5
	TOTAL	30	

COMPUTER ENGINEERING DEPARTMENT

9. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Teaching Plan/Tutorials
- 2. Minimum 10 no. of practical/assignments etc.
- 3. Slides
- 4. Self-Learning Online Resources

10. SUGGESTED LEARNING RESOURCES

Sr.	Title Of Book	Author	Publication
No.			
1	Data Structures with C	Lipschutz	Schaum's series
2	Algorithms in C	Robert Sedgewick	Addison-Wesley
3	Data structures using C	Reema Thareja	Oxford Publication

11 LEARNING WEBSITE & PORTALS

- 1. www.csbdu.in/econtent/datastructures
- 2. www.nptel.iitm.ac.in/courses.php
- 3. www.gatesit.org/gitdownloads/c&ds.pdf
- 4. www.opendatastructure.org/ods-cpp.pdf

12. ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- 1. Rubrics for Cos Assignment
- 2. Term work

Summative Assessment (Assessment of Learning)

1. End Term Exam

13. SUGGESTED WEIGHTAGE FOR LEARNING EFFORTS & ASSESMENT PURPOSE (Specification Table)

Distribution of Theory Aligned **Teaching COs** Marks Hours Unit No. **Unit Title** R U Total A Marks Level Level Level Introduction to data Ι structure and CO₁ 08 4 6 10 classification Sorting and Searching II CO₂ 10 6 8 14 Static Linear Data Ш CO3 8 16 4 6 18 Structure Dynamic Linear Data IV CO4 10 4 4 8 16 Structure Non Linear Data V CO₅ 16 4 4 4 12 Structure **GRAND TOTAL** 70 **60** 16 **26** 28

COMPUTER ENGINEERING DEPARTMENT

R Remember, U Understand, A Apply and above, (Bloom's revised taxonomy levels)

NOTE: This specification table provides general guidelines to assist students for their learning and to teachers to teach and assess students with respect to attainment of COs. The actual distribution of marks at different taxonomy levels (R, U, A) in the question paper may vary from above table.

14. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME
1	Internal	Mrs. Radhika Patwardhan
2	Internal	Ms. Neha More
3	External	Mr. Prasad Wadkar
	LACINAL	Organization: Sr. Consultant, Infosys, Mumbai

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Programme: Computer Engineering Semester: III

Course: Event Driven & UI Programming Group: DSC

Course Code: EUP230804 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

	Learning Scheme							1	Assessm	ent Schei	me		
Cont	Actual Contact Hrs./Week Self-Learning (SL^) (Term		Credits Paper		Theory (Marks)		Based on LL & TL			Based on Self			
		Work + Duration (Assignment) (Hrs.)			Practical (Marks)			Learning	Total Marks				
CL	TL	LL	(Hrs)			FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	
2	-	4	2	4	-	-	-	-	50	50	-	25	125

Total IKS Hrs for the course:00

3. COURSE OBJECTIVE

Event driven programming based on object oriented concepts can be used to develop GUI applications. These applications include various user friendly controls to accept and display data in a customized manner. This course will help the students attain in depth understanding of event driven programming and GUI applications development.

4. SKILL COMPETENCY/INDUSTRY/EMPLOYER EXPECTED OUTCOME

- Design programs using visual development tools
- Develop user friendly graphical interfaces.

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOME
CO1	Demonstrate familiarity with Integrated development environment.
CO2	Design a user-friendly visual interface using windows forms
CO3	Develop GUI application using classic controls of windows form
CO4	Develop GUI application using custom controls of windows form
CO5	Apply database controls to establish database connectivity
CO6	Use data binding techniques for GUI application

COMPUTER ENGINEERING DEPARTMENT

6. CO-PO, CO- PSO MAPPING TABLE

Course and Code	Course Outcomes		Programme Outcomes							Programme Specific Outcomes		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
	CO1	3	2	2	2	-	-	2	2	-		
	CO2	2	2	3	3	-	-	3	2	-		
Event Driven	CO3	1	2	3	3	-	-	3	3	-		
& UI Programming	CO4	1	2	3	3	-	-	3	3	-		
(EUP230804)	CO5	1	3	3	3	-	-	2	2	2		
	CO6	1	2	3	3	-	-	2	2	2		
	CO Avg.	1.5	2.16	2.83	2.83	-	-	2.5	2.3	2		

7. COURSE CONTENTS

UNIT NO.	TOPIC/Sub-topic	СО	Teaching hours
	Overview of GUI Programming		
	1.1 Introduction to .Net Framework		
	1.2 Overview of .Net Framework	GO1	0.4
	1.3 Common Language Runtime Program element in C# IDE (CLR).	CO1	04
I	1.4 Microsoft Intermediate Namespaces in C#.net application, MSIL.		
_	1.5 Introduction to Event handlers and Events.		
	1.6 Just-In-Time Compiler.		
	1.7 Exploring C#.Net IDE		
	1.8 System Namespaces in C#.Net ,Events and Event handling		
	Introduction to Windows Forms		
	2.1 Windows Forms Class Hierarchy		
	2.2 Form Class, Form Class Methods, Building a Form, Application Class		
II	2.3 Common Control Properties, Common control events	CO2	05
	2.4 Resizable forms, splitting windows, shaped form contents, visual inheritance		
	2.5 Inheritance and form class, use enumerations and resource classes		

COMPUTER ENGINEERING DEPARTMENT

	Classic Controls of Windows Forms		
	3.1 Types of controls, Invisible, provider, ActiveX control, Labels, Link, Label,	CO2	06
III	Button, Textbox, Rich Textbox, Checkbox, Radio button, Picture Box, List Controls, other Domain Controls	CO3	06
	3.2 Date Controls, DateTimePicker, MonthCalender		
	3.3 Container Controls, Tab Control		
	Custom Controls of Windows Forms		
	4.1Understanding user control, Progress user control, creating, testing the		
	progress user control, user control design, automatic progress bar		
IV	4.2 The Bitmap Thumbnail viewer, Creating and testing bitmap thumbnail	CO4	06
	viewer		
	4.3 Understanding derived controls, Project tree control		
	4.4ToolStrip Basics, Status Strip and Menu Strip		
	4.5 Image List, List View, Tree View		
	ADO.NET: Developing Database Applications		
	5.1 A Brief History of Universal Data Access Providers		
	5.2. Architecture of ADO.Net.	CO5	05
	5.3 Connecting to a SQL Server Database		
T 7	5.4 Connecting to an OLE DB Data Source		
V	5.5 Reading Data into a Dataset		
	5.6 Relations Between Data Tables in a Dataset		
	5.7 Binding a dataset to a Windows Forms Data Grid		
	5.8 Reading Data Using a Data Reader		
	5.9 Executing Stored Procedures Through a SQL Command Object		
	Data Binding and Data Grids		
	6.1. Use Simple Data binding for setting Properties of the given form control at	CO6	04
X 7 X	run time using text box, Check box, Label, Lists		
VI	6.2. Complex Data Binding using Combo box and List box.		
	6.3. Data Grids, Formatting Data Grids, Data exchange and data grids		
	6.4. Custom data sources, type descriptors, type conversion, list data sources		
	TOTAL		30

COMPUTER ENGINEERING DEPARTMENT

8. LIST OF PRACTICALS/ASSIGNMENTS/ TUTORIALS/DRAWINGS

Term Work consists of Journal containing minimum no of -10 Experiments/assignments

Sr. No.	Title of Experiment/Assignment/Exercise/Tutorial/Drawings	Approx. Hrs required	СО
1	Installation of Visual Studio IDE	2	CO1
2	Creating custom dialog box and Designing an MDI application with menu	6	CO2
3	Design and data validation of Login form	4	CO2
4	Implement programs based on OOPS concept using form controls	4	CO2
5	Design of windows forms using classic controls	6	CO3
6	Design of windows forms using custom controls	6	CO4
7	Design of windows forms using user controls	6	CO4
8	Design of windows forms using advanced controls	6	CO4
9	Implement a Program to establish a connection between dataset and forms using ADO.NET	6	CO5
10	Implement a Program to retrieve data from database using ADO.NET	6	CO5
11	Implement Data binding techniques using form controls	4	CO6
12	Implement properties of Data Grid Control	4	CO6
	TOTAL	60	

9. SUGGESTED MICRO PROJECT/ASSIGNMENT/ACTIVITES FOR SPECIFIC LEARNING / SKILL DEVELOPMENT (SELF LEARNING):

Assessment to be based on one of the following tools and rubrics for evaluation of SLA to be well defined by course teacher.

1. Micro project

Design a windows based application using classic and custom controls. Design a database using MySQL server. Establish a connection between windows form and database using ADO.Net.

2. Assignment

Practice problems on GUI Programming, classic &custom controls, Database connectivity.

10. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Teaching Plan
- 2. Minimum no of practical/assignments.
- 3. Guest/Expert lectures
- 4. Demonstrations
- 5. Slides
- 6. Self-Learning Online Resources

COMPUTER ENGINEERING DEPARTMENT

11. SUGGESTED LEARNING RESOURCES

Sr.No.	Title of Book	Author	Publication
1	Windows Forms Programming with C#	Erik E.Brown	Manning Publication
2	Windows Forms Programming in C#	Chris Sells	Addison Wesley Professional
3	Application development using C# & .Net	Robert J Oberg, Michael Stiefel	Prentice Hall Professional
4	A Programmer's Introduction to C#	Eric Gunnerson	Apress Publications

12. LEARNING WEBSITE & PORTALS

- 1. http://www.onlinewebtutorials.com
- 2. https://docs.microsoft.com/en-us/dotnet
- 3. https://visualstudio.microsoft.com/vs/features/net-development
- 4. https://learn.microsoft.com/en-us/visualstudio/ide
- 5. https://www.c-sharpcorner.com

13.ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- 1. Rubrics for COs Assignment
- 2. Self-Learning
- 3. Term Work
- 4. Seminar/Presentation

Summative Assessment (Assessment of Learning)

1. End Term Exam

14. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME
1	Internal	Mrs.Rupali Pawar
2	Internal	Mrs.Geetha.S
3	External	Mr. Yogesh Salunkhe Organization: Ingram Micro SSC Pvt.Ltd,Mumbai

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Programme: CSE/IT Semester: III/III
Course: Database Management System Course Category: DSC
Course Code: DBS238915 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

Learning Scheme							I	Assessm	ent Sche	me			
Actual Self-Learning Contact Hrs./Week (SL^) (Term Work +		Credits			Theory (Marks)			d on LL &	& TL	Based on Self			
a-			Assignment) (Hrs)		Duration (Hrs.)			Practical (Marks)			Learning	Total Marks	
CL	TL	LL	(IIIs)			FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	
04	-	02	-	03	03	30	70	100	25	25	-	-	150

Total IKS Hrs for the course :00

3. COURSE OBJECTIVE

This subject will enable the students to comprehend the Database concepts at both practical and theoretical levels. The aim of this subject is to understand the use of Structured Query Language (SQL) and learn SQL syntax. The students will understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

4. SKILL COMPETENCY

- Perform data modelling using ER diagram
- Apply database management concept using SQL to manipulate the data in database and to query the database.

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOME
CO1	Describe core concepts of database models
CO2	Create and manage data tables using SQL commands.
CO3	Understand the architecture of NoSQL and distinguish the different types of NoSQL database
CO4	Apply concepts of normalization to relational database design
CO5	Conceptualize query processing and transaction management
CO6	Explain the importance of concurrency and recovery in database management system

COMPUTER ENGINEERING DEPARTMENT

6. CO-PO, CO- PSO MAPPING TABLE – Information Technology

Course and Code	Course Outcomes		Programme Outcomes							Programme Specific Outcomes		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
	CO1	3	_	1	-	-	-	1	3	-		
	CO2	3	2	2	2	-	-	2	3	-		
Database	CO3	2	2	1	-	-	-	-	3	1		
Management	CO4	2	3	2	-	-	-	2	3	1		
System (DBS238915)	CO5	2	2	-	-	-	-	1	3	-		
	CO6	2	-	_	-	-	-	1	3	-		
	CO Avg.	2.33	2.25	1.5	2	-	-	1.4	3	-		

CO-PO, CO- PSO MAPPING TABLE – Computer Engineering

Course and Code	Course Outcomes		Programme Outcomes							Programme Specific Outcomes		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
	CO1	3	-	1	-	-	-	1	3	-		
	CO2	3	2	2	2	-	-	2	3	-		
Database	CO3	2	2	1	-	-	-	_	3	-		
Management	CO4	2	3	2	-	-	-	2	3	-		
System (DBS238915)	CO5	2	2	-	-	-	_	1	3	-		
	CO6	2	-	_	_	-	-	1	3	-		
	CO Avg.	2.33	2.25	1.5	2			1.4	3			

COMPUTER ENGINEERING DEPARTMENT

7. COURSE CONTENTS

	SE CONTENTS TODIC/Sub-tonic
UNIT NO.	TOPIC/Sub-topic
	Introduction to DBMS
	1.1 Introduction to database management system:
	1.1.1 Concept of data, database and DBMS
	1.1.2 Advantages of DBMS over file processing,
	1.1.3 Data abstraction, data independence
I	1.2 Data Models:
	1.2.1 Entity Relationship model,
	1.2.2 Relational Model,
	1.2.3 Network Model
	1.2.4 Hierarchical Model
	1.3 Database Users and Administrators
	1.4. Database system structure
	Overview of SOI
	Overview of SQL
	2.1. SQL Data Definition2.1.1 Basics structure of SQL queries (DDL, DML, DCL, TCL)
	2.1.1 Basics structure of SQL queries (DDL, DWL, DCL, TCL) 2.1.2 Additional Basic Operations
	2.1.2 Additional Basic Operations 2.1.3 Modification of the database (Update, Delete, Alter Drop)
***	2.1.3 Modification of the database (Opdate, Belete, After Brop) 2.2 Integrity constraints –
II	key constraints, Domain Constraints, Referential integrity, check constraints
	2.3 SQL Clauses – group by clause, Having clause, order by clause
	2.4 Set Operations and Aggregate functions
	2.5 Date, Time and String Functions
	2.6 Sub Queries and Views
	2.7 JOINS
	2.7.1 INNER JOIN
	2.7.2 OUTER JOIN: left, right and outer join
	2.8 Introduction to PL/SQL
	NoSQL Databases
	3.1 Overview of NoSQL
	3.1.1 Features of NoSQL
	3.1.2 Advantages and disadvantages of NoSQL
III	3.1.3 Difference between RDBMS and NoSQL databases
	3.1.4 Types of NoSQL
	3.2 MongoDB:
	3.2.1 Key features,
	3.2.2 MongoDB Query Language: Data type,
	create database Collections and Documents, Updating and querying
	database, Querying through Indexes,
	3.3 Cassandra: Overview,
	3.3.1 CQL: Shell commands,
	3.3.2 Cassandra Data types
	3.3.3 CRUD operations

COMPUTER ENGINEERING DEPARTMENT

	Dalatianal Databasa Dasign
	Relational Database Design
	4.1. Relational database design:
	4.1.1 Functional Dependencies
	4.1.2 Armstrong's Axioms in DBMS
IV	4.1.2 Features of good relational database design
	4.2 Decomposition: properties of decomposition
	4.3 Normalization
	4.3.1 Types of anomalies in database
	4.3.2 First Normal Form, Second Normal Form, Third Normal Form and 3.5
	Normal Form
	Query Processor and Optimizer, Transactions
	5.1. Overview of query processing.
	5.1.1 Relational algebra operations: Select, project, Union, Set difference,
	Cartesian product, rename
	5.2 Query optimization: Cost of query
	5.3 Transaction:
\mathbf{V}	5.3.1 Concept of transaction,
*	5.3.2 Transaction Model
	5.3.3 ACID Properties of transaction
	5.4 Serializability
	5.4.1 Conflict Serializability
	5.4.2 View Serializability
	5.4.3 Recoverability of schedules
	Concurrency Control and Recovery system
	6.1. Lock-based protocols
	6.1.1 Shared lock and exclusive lock
	6.1.2 Compatibility function
	6.1.3 Starvation
	6.2 Deadlock Handling
VI	6.3 Two-Phase locking protocol: Growing and Shrinking Phase
, <u> </u>	6.4 Timestamp-Based protocols
	6.5 Validation-Based protocols
	6.6 Recovery System
	6.6.1 Failure classification
	6.6.2 Storage structure
	6.6.3 Log-Based recovery shadow paging and checkpoints
	ı

COMPUTER ENGINEERING DEPARTMENT

8. LIST OF PRACTICALS/ASSIGNMENTS/ TUTORIALS/DRAWINGS

Term Work consists of Journal containing minimum no of -10 Experiments/assignments/drawings

Sr. No.	Title of Experiment/Assignment/Exercise/Tutorial/Drawings	Approx. Hrs required	CO
1.	Design an ER model for statement of problem	2	CO1
2.	Creation of table with constraints and insertion of data	4	CO2
3.	Running simple SQL queries	4	CO2
4.	Execution of Alter, Update, Delete and drop	2	CO2
5.	Implementation of aggregate and character functions	2	CO2
6.	Implementation of various clauses (Where, Group by and	2	CO2
	Having) in SQL.		
7.	Execution of string, comparison and set operations	2	CO2
8.	Implementation of various types of joins	2	CO2
9.	Implementation of views.	2	CO2
10.	Perform CRUD operations in MongoDB	2	CO3
11.	Assignment 1: Normalization of a sample database – Show	2	CO4
	decomposition from 1NF,2NF and 3NF		
12.	Using case study of a banking system – apply the concept of	2	CO5
	transaction processing and recovery to the system		
13.	Assignment 2: Concurrency control	2	CO6
	Total	30	

9. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Teaching Plan
- 2. Minimum no of practical/assignments.
- 3. Guest/Expert lectures
- 4. Demonstrations
- 5. Slides
- 6. Self-Learning Online Resources

10. SUGGESTED LEARNING RESOURCES

Sr.	Title Of Book	Author	Publication
No. 1.	Database System Concepts	Silberschatz, Korth	McGraw hill, Sixth Edition
1.	Database System Concepts	Shoersenatz, Kortii	Wedraw iiii, Sixiii Editioli
2.	mirodaetion to Batabase	Mark L. Gillenson Paulraj Ponniah	Wiley, India
3.	Database Management Systems	Ramakrishnan, Gehrke	McGraw hill, Third Edition
4.	NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence	Pramod J. Sadalage, Martin Fowler	Addison-Wesley Professional

COMPUTER ENGINEERING DEPARTMENT

11. LEARNING WEBSITE & PORTALS

- 1. www.w3schools.com/sql
- 2. www.tutorialpoint.com/dbms
- 3. www.khanacademy.org/computing/computer-programming/sql
- 4. www.techonthenet.com/sql
- 5. www.beginnersbook.com

12. ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- 1 Test
- 2. Rubrics for COs Assignment
- 3. Term Work
- 4. Seminar/Presentation

Summative Assessment (Assessment of Learning)

1. End Term Exam

13. SUGGESTED SPECIFICATION TABLE FOR OUESTION PAPER DESIGN

		Aligned	Learning	Di	stribution of	Theory Ma	rks
Unit No.	Unit Title	COs	Hours	R Level	U Level	A Level	Total Marks
I	Introduction to DBMS	CO1	08	2	4	6	12
II	Overview of SQL	CO2	12	2	4	6	12
III	NoSQL Databases	CO3	10	4	4	4	12
IV	Relational Database Design	CO4	10	2	4	4	10
V	Query Processor and Optimizer, Transactions	CO5	10	4	8	-	12
VI	Concurrency Control and Recovery system	CO6	10	6	6	-	12
	GRAN	D TOTAL	60	20	30	20	70

R Remember, U Understand, A Apply and above, (Bloom's revised taxonomy levels)

NOTE: This specification table provides general guidelines to assist students for their learning and to teachers to teach and assess students with respect to attainment of COs. The actual distribution of marks at different taxonomy levels (R, U, A) in the question paper may vary from above table.

COMPUTER ENGINEERING DEPARTMENT

14. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME
1	Internal	Mr. Pankaj Rathod
2	Internal	Mr. Siddhesh Masurkar
2	External	Dr. Chetashri Bhadane
3	External	Organization: Assistant Professor, D. J. Sanghvi College of engineering

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Program: Computer Engineering Semester: III

Course: Fundamentals of Microprocessor Course Category: AEC

Course Code: FMP230805 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

	Le	arning S	cheme					A	ssessm	ent Schei	me		
Actual Contact Hrs./We		4		Credits	Paper	Theo	ry (Ma	rks)	Based	d on LL &	& TL	Based on Self	
			Assignment)	Duration (Hrs.)				Practical (Marks)		arks)	Learning	Total Marks	
CL	TL	LL	(Hrs)			FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	
4	-	2	-	6	3	30	70	100	25	25	-	-	150

Total IKS Hrs for the course :00

3. COURSE OBJECTIVE

A microprocessor is an integrated circuit incorporating the core functions of a computer's central processing unit. This course provides exposure to the architecture and instruction set of the 8086 microprocessor. It introduces the programming and interfacing techniques of 8086 with other peripherals.

4. SKILL COMPETENCY

• Assembly language programmer

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOMES
CO1	Conceptualize the working of 8086 microprocessor.
CO2	Develop Assembly language programming skills.
CO3	Illustrate bus logic and interrupt structure of 8086.
CO4	Interpret AVR microcontroller architecture.
CO5	Write Assembly Language program / C program for AVR microcontroller.
CO6	Summarize the architecture and pipelining mechanism of Pentium processor.

COMPUTER ENGINEERING DEPARTMENT

6. CO-PO, CO- PSO MAPPING TABLE

Course and Code	Course Outcomes			Progran	nme Ou	itcomes	i		Spe	ramme ecific comes
Code	Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
	CO1	3	1	-	-	-	-	1	3	-
	CO2	3	3	3	2	1	1	3	3	1
	CO3	3	1	1	1	-	-	1	3	-
Fundamentals of Microprocessor	CO4	3	2	-	1	1	1	2	3	-
(FMP230805)	CO5	3	3	2	2	1	1	2	3	-
	CO6	3	1	-	-	1	1	1	3	1
	CO Avg.	3	1.83	2	1.5	1	1	1.6	3	1

7. COURSE CONTENTS

UNIT NO.	TOPIC/Sub-topic
	The 8086 microprocessor
	1.1 Introduction to Microprocessors
	1.2 Features of 8086
_	1.3 Architecture of 8086 – BIU and EU
I	1.4 Pin diagram of 8086
	1.5 Instruction Queue
	1.6 Memory segmentation of 8086
	1.7 Memory bank & memory accessing
	Instruction set of 8086
	2.1 Addressing modes of 8086
	2.2 Instruction types – Data transfer group
II	2.3 Arithmetic group
11	2.4 Bit manipulation, program transfer instructions
	2.5 String instructions
	2.6 IO programming Instructions, Stack instruction
	2.7 Process control instructions.

COMPUTER ENGINEERING DEPARTMENT

	8086 system bus & Interrupt Structure
	3.1 Signals for modes of 8086
	3.2 Modes of 8086 – minimum and maximum
	3.3 Timing diagram: T- state, Machine cycle, Instruction cycle
III	3.4 Multiprocessor system - Bus arbitration
	3.5 Types of interrupts- H/W v/s S/W, maskable v/s non maskable,
	vectored v/s non vectored, internal v/s external
	3.6 ISR (Interrupt Service Routine) & IVT (Interrupt Vector Table)
	3.7 8086 interrupt structure, interrupt control instruction
	AVR Microcontroller Architecture
	4.1 Introduction to microcontroller.
	4.2 Overview of AVR family,
IV	4.3 AVR architectural overview
	4.4 Introduction to ATmega 32
	4.5 Memory organization
	in a grant and
	AVR Microcontroller Internal Hardware & Programming
	5.1 I/O port structure and programming
\mathbf{V}	5.2 Interrupts
,	5.3 Timer/ Counter
	5.4 Serial port
	Introduction to Intel Pentium Architecture
	6.1 Features of Pentium processor.
	6.2 Pentium Superscalar architecture.
VI	6.3 Pipelining.
	6.4 Branch Prediction.
	6.5 Instruction and Data cache.

8. LIST OF PRACTICALS/ASSIGNMENTS/TUTORIALS/DRAWINGS

 $Term\ Work\ consists\ of\ Journal\ containing\ minimum\ no\ of\ -10\ Experiments/assignments/drawings$

Sr. No.	Title of Experiments	Approx. Hrs. required	СО		
1	To draw the architecture of 8086 and explain each block	02	CO1		
2	To perform arithmetic operations on 8 bit and 16 bit data.	04	CO2		
3.	To find 2's complement using logical instructions of 8086.	02	CO2		
4	To calculate sum and average of an array.	04	CO2		
5.	To search a number and its index from an array.	02	CO2		
6	To sort an array in ascending/descending order.	02	CO2		
7	To separate even and odd numbers from given array.				
8	To perform string instruction of 8086.	04	CO2		
9.	Draw the timing diagram of memory and IO read/write operation of 8086 minimum mode.	02	CO3		

COMPUTER ENGINEERING DEPARTMENT

14 15.	To perform AVR serial port programing in C Compare Pentium processors with latest processors	04	CO5 CO6
13.	To perform AVR Interrupt programming in C	04	CO5
12.	To perform AVR Timer programming in C	04	CO5
11.	To perform AVR I/O programming in C	04	CO4
10.	Case study: Interrupts used in Windows X operating system	02	CO4

9. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Teaching Plan
- 2. Minimum 10 no of practical/assignments.
- 3. Demonstrations
- 4. Slides
- 5. Self-Learning Online Resources

10. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication
1.	Microprocessor and Interfacing, Programming & Hardware	Douglas V Hall	Tata McGraw Hill
2.	8086 Microprocessor Programming and Interfacing the PC	Kenneth Ayala	West Publication
3.	Microcomputer Systems: 8086/8088 family Architecture, Programming and Design	Liu, Gibson	PHI Publication
4.	The 8088 and 8086 Microprocessors	Triebel, Walter A.,Singh, Avtar	Pearson Publications
5.	Pentium Processor System Architecture	Don Anderson, Tom Shanley	Addison-Wesley
6.	The INTEL Microprocessors, Architecture, Programming and Interfacing	Barry B. Brey	Pearson Publishers
7.	The 8051 Microcontroller And Embedded Systems	Muhammad Ali Mazidi	Pearson Publishers

11. WEB REFERENCES

- 1. www.intel.com
- 2. www.pcguide.com/ref/CPU
- 3. www.CPU-World.com/Arch/

12. ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- 1. Test
- 2. Rubrics for Cos Assignment
- 3. Term work

Summative Assessment (Assessment of Learning)

1. End Term Exam

COMPUTER ENGINEERING DEPARTMENT

13. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

		Aligned		Distribution of Theory Marks					
Unit No.	Unit Title	COs	Learning Hours	R Level	U Level	A Level	Total Marks		
I	The 8086 Microprocessors	CO1	10	6	6	-	12		
II	Instruction set of 8086	CO2	12	-	6	6	12		
III	8086 system bus & Interrupt Structure	CO3	10	6	6	-	12		
IV	AVR Microcontroller Architecture	CO4	12	4	6	4	14		
AVR Microcontroller V Internal Hardware & Programming		CO5	10	2	4	6	12		
VI	Introduction to Intel Pentium Architecture	CO6	6	4	4	-	8		
	GRA	60	22	32	16	70			

R Remember, U Understand, A Apply and above, (Bloom's revised taxonomy levels)

NOTE: This specification table provides general guidelines to assist students for their learning and to teachers to teach and assess students with respect to attainment of COs. The actual distribution of marks at different taxonomy levels (R, U, A) in the question paper may vary from above table.

14. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME
1	Internal	Ms. Sharyu Kadam
2	Internal	Mrs. Prachi Arora
3	External	Mr. Anil Gurav
	External	St. Xavier's College, Mumbai

COMPUTER ENGINEERING DEPARTMENT

1. COURSE DETAILS

Program : Computer Engineering Semester: III

Course: Linux Lab Course Category: DSC

Course Code: LXL230806 Duration:16 Weeks

2. LEARNING AND ASSESSMENT SCHEME

	Learning Scheme				Assessment Scheme								
Cor	Actual Contact Hrs./Week Self-Learning (SL^) (Term		Credits	Credits Paper	Theory (Marks)		Based on LL & TL		Based on Self				
			Work + Assignment)		Duration (Hrs.)			Practical (Marks)			Learning	Total Marks	
CL	TL	LL	(Hrs)			FA- TH	SA- TH	Total	FA- PR	SA- PR	SA- OR	SLA (Marks)	
-	-	2	2	2	-	-	-	-	25	-	25	25	75

Total IKS Hrs for the course :00

3. COURSE OBJECTIVE

Linux is the most widely used and best-known open-source operating system and can be found in embedded systems, smartphones, web servers, and supercomputers. Over the decades, Linux has become a key component in the infrastructure of nearly every major enterprise. Linux is also part of the backbone of the DevOps world, where it serves as both a development and distribution platform for many key tools.

4. SKILL COMPETENCY

• Setting up and managing Linux Environment

5. COURSE OUTCOMES (COs): At the end of the semester student will be able to: -

CO No.	COURSE OUTCOME
CO1	Select and install Linux Distribution
CO2	Demonstrate the File system Hierarchy System and Linux commands
CO3	Configure TCP/IP in Linux
CO4	Write Linux shell scripts

COMPUTER ENGINEERING DEPARTMENT

6. CO-PO, CO- PSO MAPPING TABLE

Course and Code	Course Outcomes		Programe Outcomes						progra Spec	cific
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
	CO1	2	-	-	3	-	-	3	3	-
	CO2	2	-	-	1	-	-	2	3	-
Linux Lab (LXL230806)	CO3	2	-	-	2	-	-	2	2	-
	CO4	3	-	-	1	-	-	1	1	-
	CO Avg.	2.25	-	-	2.25	-	-	2	2.25	-

7. LIST OF PRACTICALS/ASSIGNMENTS/TUTORIALS/DRAWINGS

Term Work consists of Journal containing minimum no of 12 experiments.

Sr.	Title of Experiment/Assignment/Exercise/Tutorial/Drawings	Approx.Hr	CO
No.		s required	
1	To Demonstrate the use of OS installer such Anaconda and Boot	4	CO1
	Loaders (Boot loaders, Boot options, File locations)		
2	To Install Linux with partitioning and on Virtual Machine	4	CO1
3	To install, configure, and monitor kernel modules	2	CO1
	(lsmod, insmod,modprobe,modinfo,dmesg,rmmod)		
4	To demonstrate File Hierarchy System (FHS) in Linux	2	CO2
5	To create, modify, and redirect files and directories.	2	CO2
	Text editors, File readers, Output redirection, Text processing and File		
	and directory operations		
6	To execute System and utility commands	4	CO2
7	To create and manage a root user	2	CO2
8	To configure TCP/IP in Linux	2	CO3
9	To Execute Networking Commands in Linux	2	CO3
10	Write a shell script to find factorial of a given number	2	CO4
11	Write a shell Script to Display a pattern using nested loop	2	CO4
12	Write a shell script to list all of the directory files in a directory	2	CO4
	Total	30	

8. SUGGESTED MICRO PROJECT/ASSIGNMENT/ACTIVITES FOR SPECIFIC LEARNING / SKILL DEVELOPMENT (SELF LEARNING):

Assessment to be based on one of the following tools and rubrics for evaluation of SLA to be well defined by course teacher.

1. Assignment - a) Practice problems on shell programming and Linux commands.

COMPUTER ENGINEERING DEPARTMENT

9. IMPLEMENTATION STRATEGY (PLANNING)

- 1. Minimum no of practical/assignments.
- 2. Hands on Practice on the laboratory

10. SUGGESTED LEARNING RESOURCES

Sr.No.	Title of Book	Author	Publication
1	Linux Administration Cookbook	Adam K. Dean	Packt Publishing
2	Linux Administration Best Practices	Scott Alan Miller	Packt Publishing
3	Linux System Administration	Tom Adelstein, Bill Lubanovic	O'Reilly Media

11. LEARNING WEBSITE & PORTALS

- 1. https://access.redhat.com/documentation
- 2 https://www.comptia.org
- 3. https://www.javatpoint.com/linux-commands
- 4. https://www.tutorialspoint.com/unix/shell_scripting.htm
- 5. https://linuxjourney.com/

12.ASSESMENT METHODOLOGIES/TOOLS

Formative Assessment (Assessment for Learning)

- 1. Rubrics for COs Assignment
- 2. Self-Learning
- 3. Term Work
- 4. Seminar/Presentation

Summative Assessment (Assessment of Learning)

1. End Term Exam

13. COURSE EXPERT COMMITTEE MEMBERS

Sr. No.		NAME
1	Internal	Mr Janardan Kulkarni
2	Internal	Mr Pratik Shah
3	External	Ms Heena Sarvaiya Organization: Senior Information Technology Analyst CPP Investments, Mumbai

