# Коллоквиум 1

# Ilya Yaroshevskiy

# 22 апреля 2021 г.

# Содержание

| 1 | Топ               | ология                                                                          |
|---|-------------------|---------------------------------------------------------------------------------|
|   | 1.1               | Топологическое пространство, открытое и замкнутое множество                     |
|   | 1.2               | Внутренность и замыкание множества                                              |
|   | 1.3               | Топология стрелки                                                               |
|   | 1.4               | Дискретная топология                                                            |
|   | 1.5               | Топология на частично упорядоченном множестве                                   |
|   | 1.6               | Индуцированная топология                                                        |
|   | 1.7               | Связность                                                                       |
|   |                   |                                                                                 |
| 2 |                   | исление высказываний 3                                                          |
|   | 2.1               | Метапеременные, пропозициональные переменные, Высказывания                      |
|   |                   | 2.1.1 Язык                                                                      |
|   | 0.0               | 2.1.2 Мета и предметные                                                         |
|   | 2.2               | Схемы аксиом, доказуемость                                                      |
|   | 0.0               | 2.2.1 Теория доказательств                                                      |
|   | 2.3               | Правило Modus Ponens, доказательство, вывод из гипотез                          |
|   | 0.4               | 2.3.1 Правило Modus Ponens и доказательство                                     |
|   | 2.4               | Множество истинностных значений, модель (оценка перменных), Оценка высказывания |
|   | 0.5               | 2.4.1 Теория моделей                                                            |
|   | $\frac{2.5}{2.6}$ | Общезначимость                                                                  |
|   | 2.6               | Выполнимость                                                                    |
|   | 2.7               | Невыполнимость                                                                  |
|   | 2.8               | Следование                                                                      |
|   | 2.9               | Корректность                                                                    |
|   |                   | Полнота                                                                         |
|   |                   | Противоречивость                                                                |
|   |                   | Теорема о дедукции                                                              |
|   |                   | Teopewa o корректности                                                          |
|   | 2.14              | Теорема о полноте ИВ                                                            |
| 3 | Инт               | уиционистское исчисление высказываний 6                                         |
|   | 3.1               | Закон исключенного третьего                                                     |
|   | 3.2               | Закон снятия двойного отрицания                                                 |
|   | 3.3               | Закон Пирса                                                                     |
|   | 3.4               | ВНК-интерпретация логических связок                                             |
|   |                   | 3.4.1 Интуиционистская логика                                                   |
|   | 3.5               | Теорема Гливенко                                                                |
|   | 3.6               | Решетка                                                                         |
|   | 3.7               | Дистрибутивная решетка                                                          |
|   | 3.8               | Импликативная решетка                                                           |
|   | 3.9               | Алгебра Гейтинга                                                                |
|   | 3.10              | Булева алгебра                                                                  |
|   |                   | Геделева алгебра                                                                |
|   |                   | Операция $\Gamma(A)$                                                            |
|   |                   | Алгебра Линденбаума                                                             |
|   |                   | Свойство дизъюнктивности ИИВ                                                    |
|   |                   | Свойство нетабличности ИИВ                                                      |
|   | 3 16              | Молель Крипке Вынужленность                                                     |

| 4 | MCd  | иление предикатов                                                              | Č  |
|---|------|--------------------------------------------------------------------------------|----|
|   | 4.1  | Предикатные и функциональные символы, константы и пропозициональные переменные | 8  |
|   |      | 4.1.1 Исчисление предикатов                                                    | 8  |
|   | 4.2  | Свободные и связанные вхождения предметных переменных в формулу                | 9  |
|   |      | 4.2.1 Вхождение                                                                | 9  |
|   |      | 4.2.2 Свободные подстановки                                                    | 9  |
|   | 4.3  | Свобода для подстановки, Правила вывода для кванторов, аксиомы исчисления пре- |    |
|   |      | дикатов для кванторов, оценки и модели в исчислении предикатов                 | 10 |
|   |      | 4.3.1 Теория доказательств                                                     | 10 |
|   | 4.4  | Теорема о дедукции для исчисления предикатов                                   | 10 |
|   | 4.5  | Теорема о корректности для исчисления предикатов                               | 10 |
|   | 4.6  | Полное множество (бескванторных) формул                                        | 10 |
|   | 4.7  | Модель для формулы                                                             | 11 |
|   |      | 4.7.1 Теория моделей                                                           | 11 |
|   | 4.8  | Теорема Гёделя о полноте исчисления предикатов                                 | 11 |
|   | 4.9  | Следствие из теоремы Гёделя о полноте исчисления предикатов                    | 12 |
|   | 4.10 | Неразрешимость исчисления предикатов (формулировка, что такое неразрешимость). | 12 |
| 5 | Apı  | ифметика и теории первого порядка                                              | 12 |
|   | 5.1  | Теория первого порядка                                                         | 12 |
|   | 5.2  | Модели и структуры теорий первого порядка                                      | 12 |
|   | 5.3  | Аксиоматика Пеано                                                              | 12 |
|   | 5.4  | Определение операций (сложение, умножение, возведение в степень)               | 12 |
|   | 5.5  | Формальная арифметика (язык, схема аксиом индукции и общая характеристика      |    |
|   |      | остальных аксиом)                                                              | 13 |
|   |      | 5.5.1 Формальная арифметика                                                    | 13 |
|   |      |                                                                                |    |

# 1 Топология

# 1.1 Топологическое пространство, открытое и замкнутое множество

**Определение.** Рассмотрим множество X — **носитель**. Рассмотрим  $\Omega \subseteq 2^X$  — подмножество подмножеств X — **топология**.

- 1.  $\bigcup X_i \in \Omega$ , где  $X_i \in \Omega$
- 2.  $X_1 \cap \cdots \cap X_n \in \Omega$ , если  $X_i \in \Omega$
- $3. \ \emptyset, X \in \Omega$

# 1.2 Внутренность и замыкание множества

Определение.

$$(X)^{\circ} =$$
 наиб. $\{w | w \subseteq X, w$  — откр. $\}$ 

Определение. Замыкание X —  $\overline{X}=$  наим. $\{A\not\in\Omega\big|X\subseteq A$ 

# 1.3 Топология стрелки

Теорема 1.1.

- $\bullet \ a+b=a\cup b$
- $a \cdot b = a \cap b$
- $a \to b = ((X \setminus a) \cup b)^{\circ}$
- $a \leq b$  тогда и только тогда, когда  $a \subseteq b$

 $\underline{\text{Тогда}} \; \langle \Omega, \leq \rangle -$ алгебра Гейтинга

# 1.4 Дискретная топология

 $\mathit{Пример}$ . Дискретная топология:  $\Omega=2^X$  — любое множество открыто. Тогда  $\langle \Omega, \leq \rangle$  — булева алгебра

# 1.5 Топология на частично упорядоченном множестве

Топология на частично упорядоченном множестве  $\langle \Omega, \leq \rangle$  — булева алгебра, где  $\Omega$  — дискретная топология

# 1.6 Индуцированная топология

**Определение. Индуцированная топология** на подпространстве  $\langle X, \Omega \rangle$  — топлогия. Пусть  $Y \subset X$ . Определим  $\Omega_Y$  — семейство подмножеств Y так:

$$\Omega_Y = \{ U \cap Y \big| U \in \Omega \}$$

 $\Omega_Y$  — индуцированная топология на подпространстве Y.

#### 1.7 Связность

Связность – свойство топологических пространства, состоящее в том, что пространство нельзя представить в виде суммы двух отделенных друг от друга частей, или, более строго, непустых непересекающихся открыто-замкнутых подмножеств.

# 2 Исчисление высказываний

#### 2.1 Метапеременные, пропозициональные переменные, Высказывания

#### 2.1.1 Язык

- 1. Пропозициональные переменные  $A_i'$  большая буква начала латинского алфавита
- 2. Связки

$$\begin{matrix} \underline{\alpha} &, \beta-\text{высказывания} \\ \text{Тогда} \ (\alpha\to\beta), (\alpha\&\beta), (\alpha\vee\beta), (\neg\alpha)-\text{высказывания} \end{matrix}$$

2.1.2 Мета и предметные

- $\alpha, \beta, \gamma, \dots, \varphi, \psi, \dots$  метапеременные для выражений
- $\bullet$  X,Y,Z метапеременные для предметные переменные

Метавыражение:  $\alpha \to \beta$ 

Предметное выражение:  $A \to (A \to A)$  (заменили  $\alpha$  на A,  $\beta$  на  $(A \to A)$ )

Пример. Черным — предметные выражения, Синим — метавыражения

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

$$(\alpha \to (A \to X))[\alpha \coloneqq A, X \coloneqq B] \equiv A \to (A \to B)$$

$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

# 2.2 Схемы аксиом, доказуемость

#### 2.2.1 Теория доказательств

Определение. Схема высказывания — строка соответсвующая определению высказывания, с:

• метапеременными  $\alpha, \beta, \dots$ 

Определение. Аксиома — высказывания:

- 1.  $\alpha \to (\beta \to \alpha)$
- 2.  $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3.  $\alpha \to \beta \to \alpha \& \beta$
- 4.  $\alpha \& \beta \rightarrow \alpha$
- 5.  $\alpha \& \beta \to \beta$
- 6.  $\alpha \to \alpha \lor \beta$
- 7.  $\beta \to \alpha \vee \beta$
- 8.  $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9.  $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10.  $\neg \neg \alpha \rightarrow \alpha$

# 2.3 Правило Modus Ponens, доказательство, вывод из гипотез

#### 2.3.1 Правило Modus Ponens и доказательство

**Определение.** Доказательство (вывод) — последовательность высказываний  $\alpha_1, \dots, \alpha_n$ , где  $\alpha_i$ :

- аксиома
- существует k, l < i, что  $\alpha_k = \alpha_l \rightarrow \alpha$

$$\frac{A, A \to B}{B}$$

 $\Pi$ ример.  $\vdash A \to A$ 

**Определение.** Доказательством высказывания  $\beta$  — список высказываний  $\alpha_1, \ldots, \alpha_n$ 

- $\alpha_1, \ldots, \alpha_n$  доказательство
- $\alpha_n \equiv \beta$

# 2.4 Множество истинностных значений, модель (оценка перменных), Оценка высказывания

#### 2.4.1 Теория моделей

- ullet  $\mathcal{P}$  множество предметных переменных
- $\llbracket \cdot \rrbracket : \mathcal{T} \to V$ , где  $\mathcal{T}$  множество высказываний,  $V = \{ \mathrm{И}, \mathrm{Л} \}$  множество истиностных значений
- 1.  $[\![x]\!]: \mathcal{P} \to V$  задается при оценке  $[\![\!]]^{A:=v_1,B:=v_2}$ :
  - $\mathcal{P} = v_1$

• 
$$\mathcal{P} = v_2$$

2. 
$$\llbracket \alpha \star \beta \rrbracket = \llbracket \alpha \rrbracket$$
  $\star$   $\llbracket \beta \rrbracket$ , где  $\star \in [\&, \lor, \neg, \to]$ 

 $\Pi$ ример.

$$\llbracket A \to A \rrbracket^{A:=\mathsf{M},B:=\Pi} = \llbracket A \rrbracket^{A:=\mathsf{M},B:=\Pi} \to \llbracket A \rrbracket^{A:=\mathsf{M},B:=\Pi} = \mathsf{M} \to \mathsf{M} = \mathsf{M}$$

Также можно записать так:

$$[\![A \to A]\!]^{A:=\mathrm{II},B:=\mathrm{JI}} = f_\to([\![A]\!]^{A:=\mathrm{II},B:=\mathrm{JI}},[\![A]\!]^{A:=\mathrm{II},B:=\mathrm{JI}}) = f_\to(\mathrm{I\!I},\mathrm{I\!I}) = \mathrm{I\!I}$$

, где  $f_{
ightarrow}$  определена так:

# 2.5 Общезначимость

 $\Pi puмер. \models \alpha - \alpha$  общезначимо

#### 2.6 Выполнимость

Существует оценка, при которой высказывание истинно

#### 2.7 Невыполнимость

Отрицание выполнимости

# 2.8 Следование

**Определение.** Следование:  $\Gamma \vDash \alpha$ , если

- $\Gamma = \gamma_1, \ldots, \gamma_n$
- Всегда когда все  $[\![\gamma_i]\!] = \mathcal{U}$ , то  $[\![\alpha]\!] = \mathcal{U}$

#### 2.9 Корректность

**Определение.** <del>Теория</del> Исчисление высказываний корректна, если при любом  $\alpha$  из  $\vdash \alpha$  следует  $\vDash \alpha$ 

#### **2.10** Полнота

**Определение.** Исчисление полно, если при любом  $\alpha$  из  $\models \alpha$  следует  $\vdash \alpha$ 

## 2.11 Противоречивость

**Определение.** Множество формул  $\Gamma$  **противоречиво**, если для некоторой формулы  $\alpha$  имеем  $\Gamma \vdash \alpha$  и  $\Gamma \vdash \neg \alpha$ 

# 2.12 Теорема о дедукции

**Теорема 2.1** (о дедукции).  $\Gamma, \alpha \vdash \beta$  тогда и только тогда, когда  $\Gamma \vdash \alpha \rightarrow \beta$ 

## 2.13 Теорема о корректности

**Теорема 2.2** (о корректности). Пусть  $\vdash \alpha$  Тогда  $\models \alpha$ 

# 2.14 Теорема о полноте ИВ

**Теорема 2.3** (о полноте). Пусть  $\models \alpha$ , тогда  $\vdash \alpha$ 

# 3 Интуиционистское исчисление высказываний

# 3.1 Закон исключенного третьего

$$\vdash A \lor \neg A$$

#### 3.2 Закон снятия двойного отрицания

$$\vdash \neg \neg A \to A$$

## 3.3 Закон Пирса

$$\vdash ((A \to B) \to A) \to A$$

# 3.4 ВНК-интерпретация логических связок

#### 3.4.1 Интуиционистская логика

 $A \lor B$  — плохо

Пример. Докажем: существует a,b, что  $a,b\in\mathbb{R}\setminus\mathbb{Q},$  но  $a^b\in\mathbb{Q}$  Пусть  $a=b=\sqrt{2}.$  Рассмотрим  $\sqrt{2}^{\sqrt{2}}\in\mathbb{R}\setminus\mathbb{Q}$ 

- Если да, то ОК
- ullet Если нет, то возьмем  $a=\sqrt{2}^{\sqrt{2}}, b=\sqrt{2}, \ a^b=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^2=2$

ВНК-интерпретация.  $\alpha, \beta$ 

- $\alpha \& \beta$  есть  $\alpha, \beta$
- $\alpha \lor \beta$  есть  $\alpha$  либо  $\beta$  и мы знаем какое
- $\alpha \to \beta$  есть способ перестроить  $\alpha$  в  $\beta$
- $\bot$  конструкция без построения  $\neg \alpha \equiv \alpha \rightarrow \bot$

# 3.5 Теорема Гливенко

**Теорема 3.1.** Обозначим доказуемость высказывания  $\alpha$  в классической логике как  $\vdash_{\kappa} \alpha$ , а в интуицонистской как  $\vdash_{\mathfrak{u}}$ . Оказывается возможным показать, что какое бы ни было  $\alpha$ , если  $\vdash_{\kappa} \alpha$ , то  $\vdash_{\mathfrak{u}} \neg \neg \alpha$ 

# 3.6 Решетка

# Определение. Фиксируем A

Частичный порядок — антисимметричное, транзитивное, рефлексивное отношение Линейный — сравнимы любые 2 элемента

- $\bullet \ a \leq b \vee b \leq a$
- Наименьший элемент S такой  $k \in S$ , что если  $x \in S$ , то  $k \le x$
- ullet Минимальный элемент S такой  $k \in S$ , что нет  $x \in S$ , что  $x \le k$

#### Определение.

- Множество верхних граней a и b:  $\{x | a \le x \& b \le x\}$
- Множество нижних граней a и b:  $\{x | x \le a \& x \le b\}$

Определение.

- $\bullet$  a+b нименьший элемент множества верхних граней
- ullet  $a \cdot b$  наибольший элемент множества нижних граней

**Определение. Решетка** =  $\langle A, \leq \rangle$  — структура, где для каждых a,b есть как a+b, так и  $a\cdot b$ , т.е.  $a\in A,b\in B\implies a+b\in A$  и  $a\cdot b\in A$ 

# 3.7 Дистрибутивная решетка

Определение. Дистрибутивная решетка если всегда  $a\cdot(b+c)=ab+a\cdot c$ 

#### 3.8 Импликативная решетка

**Определение. Импликативная решетка** — решетка, где для любых a,b есть  $a \to b$ 

#### 3.9 Алгебра Гейтинга

Определение. Псевдобулева алгебра (алгебра Гейтинга) — импликативная решетка с 0

#### 3.10 Булева алгебра

**Определение. Булева алгебра** — псевдобулева алгебра, такая что  $a + (a \to 0) = 1$ 

#### 3.11 Геделева алгебра

**Определение.** Гёделева алгебра — алгебра Гейтинга, такая что из  $\alpha+\beta=1$  следует что  $\alpha=1$  или  $\beta=1$ 

# **3.12** Операция $\Gamma(A)$

Определение. Пусть  $\mathfrak A$  — алгебра Гейтинга, тогда:

1.  $\Gamma(\mathfrak{A})$ 



7

Добавим новый элемент  $1_{\Gamma(\mathfrak{A})}$  перенеименуем  $1_{\mathfrak{A}}$  в  $\omega$ 

## 3.13 Алгебра Линденбаума

**Определение.** X — все формулы логики

- $\alpha \leq \beta$  это  $\alpha \vdash \beta$
- $\alpha \approx \beta$ , если  $\alpha \vdash \beta$  и  $\beta \vdash \alpha$
- $[\alpha]_{\approx} = \{\gamma | \gamma \approx \alpha\}$  класс эквивалентности

Свойство 1.  $\langle X/_{\approx}, \leq \rangle$  — алгебра Линденбаума, где  $X/_{\approx} = \{ [\alpha]_{\approx} | \alpha \in X \}$ 

#### 3.14 Свойство дизъюнктивности ИИВ

Определение. Дизъюнктивность ИИВ:  $\vdash \alpha \lor \beta$  влечет  $\vdash \alpha$  или  $\vdash \beta$ 

#### 3.15 Свойство нетабличности ИИВ

Определение. Назовем модель табличной для ИИВ:

- V множество истинностных значений  $f_{\to}, f_{\&}, f_{V}: V^{2} \to V, \ f_{\neg}: V \to V$  Выделенные значения  $T \in V$   $[\![p_{i}]\!] \in V \ f_{p}: p_{i} \to V$
- $\begin{aligned} \bullet & \ p_i = f_{\P}(p_i) \\ & \ [\![\alpha \star \beta]\!] = f_{\star}([\![\alpha]\!], [\![\beta]\!]) \\ & \ [\![\neg \alpha]\!] = f_{\neg}([\![\alpha]\!]) \end{aligned}$

Eели  $\vdash \alpha$ , то  $\models \alpha$  означает, что  $\llbracket \alpha \rrbracket = T$ , при любой  $f_\P$ 

Теорема 3.2. У ИИВ не существует полной табличной модели

# 3.16 Модель Крипке, Вынужденность

- 1.  $W = \{W_i\}$  множество миров
- 2. частичный порядок(≿)
- 3. отношение вынужденности:  $W_j \Vdash p_i$  ( $\Vdash$ )  $\subseteq W \times \P$  При этом, если  $W_j \Vdash p_i$  и  $W_j \preceq W_k$ , то  $W_j \Vdash p$

# 4 Исчиление предикатов

# 4.1 Предикатные и функциональные символы, константы и пропозициональные переменные

#### 4.1.1 Исчисление предикатов

Определение. Язык исчисление предикатов

- логические выражения "предикаты"/"формулы"
- предметные выражния "термы"

 $\Theta$  — метаперменные для термов

Термы:

- Атомы:
  - $-\ a,b,c,d,\ldots$  предметные переменные
  - -x,y,z метапеременные для предметных перменных
- Функциональные Символы
  - -f,g,h Функциональные символы (метаперемнные)
  - $-f(\Theta_1,\ldots\Theta_n)$  применение функциональных символов
- Логические выражения:

Если n=0, будем писать f,g — без скобок

- P метаперменные для предикатных символов
- -A, B, C предикатный символ
- $-P(\Theta_1,...,\Theta_n)$  применение предикатных символов
- $-\ \&, \lor, \lnot, \rightarrow -\$ Связки
- $\forall x.\varphi$  и  $\exists x.\varphi$  кванторы

"<квантор> <переменная>.<выражение>"

1. Сокращение записи И.В + жадность  $\forall,\exists$ 

Метавыражение:

$$\forall x.(P(x)\&(\forall y.P(y)))$$

Квантор съедает все что дают, т.е. имеет минимальный приоритет.

Правильный вариант(настоящее выражние):

$$\forall a.B(A)\&\forall b.B(b)$$

# 4.2 Свободные и связанные вхождения предметных переменных в формулу

#### 4.2.1 Вхождение

Пример.

$$(P(\underset{1}{x}) \lor Q(\underset{2}{x})) \to (R(\underset{3}{x}) \& (\underbrace{\forall \underset{1}{x}.P_1(\underset{5}{x})}_{\text{область } \forall \text{ по } x}))$$

1, 2, 3 — свободные, 5 — связанное, по пермененной 4

Пример.

$$\underbrace{\forall x. \forall y. \forall x. \forall y. \forall x. P(x)}_{\text{область } \forall \text{ no } x}$$

3десь x в P(x) связано. x не входит свободно в эту формулу, потому что нет свободных вхождений

**Определение.** Переменная x входит свободно если существует свободное вхождение

Определение. Вхождение свободно, если не связано

Можно относится к свободно входящим перменным как с перменным из библиотеки, т.е. мы не имеем права их переименовывать

Пример. Некорректная формула

$$\alpha_1 \ x = 0 \rightarrow x = 0$$

$$\alpha_2 \ (\exists x.x=0) \rightarrow (x=0)$$
 — не доказано

$$\alpha_2' \ (\exists t.x=0) \rightarrow (x=0) - (\text{правило } \exists)$$

Пример.

$$(n)$$
  $x=0 \rightarrow y=0$  — откуда то

$$(n+1)$$
  $(\exists x.x=0) \rightarrow (y=0)$  — (правило  $\exists$ )

## 4.2.2 Свободные подстановки

**Определение.**  $\Theta$  свободен для подстановки вместо x в  $\varphi$ , если никакая свободная перменная в  $\Theta$  не станет связанной в  $\varphi[x:=\Theta]$ 

**Определение.**  $\varphi[x:=\Theta]$  — "Заменить все свободные вхождения х в  $\varphi$  на  $\Theta$ "

 $\Pi$ ример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$

 $\Pi$ ример.

$$P(x) \lor \forall x. P(x) \ [x := y] \equiv P(y) \lor \forall x. P(y)$$

Пример.

$$(\forall y.x = y) \ [x := \underbrace{y}_{\equiv \Theta}] \equiv \forall y.y = y$$

 $FV(\Theta)=\{y\}$  — свободные перменные в  $\Theta.$  Вхождение y с номером 1 стало связанным

Пример.

$$P(x)\&\forall y.x = y \ [x := y + z] \equiv P(y + z)\&\forall y.y + z = y$$

Здесь при подстановке вхождение y с номером 1 стало связанным. x — библиотечная функция, переименовали x во что-то другое.

# 4.3 Свобода для подстановки, Правила вывода для кванторов, аксиомы исчисления предикатов для кванторов, оценки и модели в исчислении предикатов

#### 4.3.1 Теория доказательств

Все аксимомы И.В + M.Р.

(схема 11) 
$$(\forall x.\varphi) \rightarrow \varphi[x := \Theta]$$

(**c**xema 12) 
$$\varphi[x := \Theta] \to \exists x. \varphi$$

Если  $\Theta$  свободен для подстановки вместо x в  $\varphi$ .

**Определение. Свободен для подстановки** — никакое свободное вхождение x в  $\Theta$  не станет связанным

Пример.

```
int y;
int f(int x) {
    x = y;
    4 }
```

Заменим у := х. Код сломается, т.к. у нас нет свобод для подстановки

(Правило ∀)

$$\frac{\varphi \to \psi}{\varphi \to \forall x.\psi}$$

(Правило ∃)

$$\frac{\psi \to \varphi}{\exists x. \psi \to \varphi}$$

В обоих правилах x не входит свободно в  $\varphi$ 

Пример.

$$\frac{x=5 \rightarrow x^2 = 25}{x=5 \rightarrow \forall x. x^2 = 25}$$

Между x и  $x^2$  была связь, мы ее разрушили. Нарушено ограничение  $\Pi pumep.$ 

$$\exists y.x = y$$
 
$$\forall x. \exists y. x = y \rightarrow \exists y. y + 1 = y$$

Делаем замену  $\mathbf{x}:=\mathbf{y+1}$ . Нарушено требование свобод для подстановки. y входит в область действия квантора  $\exists$  и поэтому свободная переменная x стала связанная.

#### 4.4 Теорема о дедукции для исчисления предикатов

**Теорема 4.1.** Пусть задана  $\Gamma$ ,  $\alpha$ ,  $\beta$ 

- 1. Если  $\Gamma, \alpha \vdash \beta$ , то  $\Gamma \vdash \alpha \to \beta$ , при условии, если b в доказательстве  $\Gamma, \alpha \to \beta$  не применялись правила для  $\forall, \exists$  по перменным, входящим свободно в  $\alpha$
- 2. Если  $\Gamma \vdash \alpha \rightarrow \beta$ , то  $\Gamma, \alpha \vdash \beta$

## 4.5 Теорема о корректности для исчисления предикатов

# 4.6 Полное множество (бескванторных) формул

Определение.  $\Gamma$  — непротиворечивое множество формул, если  $\Gamma \not\vdash \alpha \& \neg \alpha$  ни при каком  $\alpha$ 

**Определение.** Полное непротиворечивое замкнутых бескванторных формул — такое, что для каждой замкнутой бескванторной формулы  $\alpha$ : либо  $\alpha \in \Gamma$ , либо  $\neg \alpha \in \Gamma$ 

# 4.7 Модель для формулы

#### 4.7.1 Теория моделей

Оценка формулы в исчислении предикатов:

- 1. Фиксируем D предметное множетво
- 2. Кажодму  $f_i(x_1,\ldots,x_n)$  сопоставим функцию  $D^n\to D$
- 3. Каждому  $P_j(x_1,\ldots,x_m)$  сопоставим функцию(предикат)  $D^2 \to V$
- 4. Каждой  $x_i$  сопоставим элемент из D

Пример.

$$\forall x. \forall y. \ E(x,y)$$

Чтобы определить формулу сначала определим  $D=\mathbb{N}$ 

$$E(x,y) = \begin{cases} \Pi & , x = y \\ \Pi & , x \neq y \end{cases}$$

- $\bullet \|x\| = f_{x_i}$
- $\llbracket \alpha \star \beta \rrbracket$  смотри ИИВ
- $\llbracket P_i(\Theta_1, \dots, \Theta_n) \rrbracket = f_{P_i}(\llbracket \Theta_1 \rrbracket, \dots, \llbracket \Theta_n \rrbracket)$
- $[f_i(\Theta_1,\ldots,\Theta_n)] = f_{f_i}([\Theta_1],\ldots,[\Theta_n])$

•

$$[\![\forall x.\varphi]\!] = \begin{cases} \mathsf{И} & \text{, если } [\![\varphi]\!]^{f_x=k} = \mathsf{И} \text{ при всех } k \in D\\ \mathsf{Л} & \text{, иначе} \end{cases}$$

•

$$[\![\exists x.\varphi]\!] = egin{cases} \mathbb{M} &, \text{если } [\![\varphi]\!]^{f_x=k} = \mathbb{M} \text{ при некотором } k \in D \\ \mathbb{J} &, \text{иначе} \end{cases}$$

$$\llbracket \forall x. \forall y. E(x,y) \rrbracket = \Pi$$

т.к.  $[E(x,y)]^{x:=1, y:=2} = Л$ 

Пример.

$$\forall \left[ arepsilon > 0 \right] \exists N \ \forall \left[ \left[ \mathbf{n} \right] > \left[ \mathbf{N} \right] \right] \left[ \left[ \mathbf{a}_n - a \right] < \left[ \varepsilon \right] \right]$$

Синим отмечены функциональные конструкции(термы), зеленым предикатные

$$\forall \varepsilon. (\varepsilon > 0) \to \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

Обозначим:

- (>)(a,b) = G(a,b) предикат
- $\bullet \mid \bullet \mid (a) = m_{\mid}(a)$
- $(-)(a,b) = m_{-}(a,b)$
- $0() = m_0$
- $a_{\bullet}(n) = m_a(n)$

$$\forall e. \boxed{\mathbf{G}(\underline{\mathbf{e}}, \underline{\mathbf{m}_0})} \rightarrow \exists n_0. \forall n. \boxed{\mathbf{G}(\mathbf{n}, \mathbf{n}_0)} \rightarrow \boxed{\mathbf{G}(\underline{\mathbf{e}}, \underline{\mathbf{m}_1(m_-(m_a(n), a))})}$$

#### 4.8 Теорема Гёделя о полноте исчисления предикатов

**Теорема 4.2** (Геделя о полноте). Если  $\Gamma$  — полное неротиворечивое множество замкнутых(не бескванторных) фомул, то оно имеет модель

#### 4.9 Следствие из теоремы Гёделя о полноте исчисления предикатов

Следствие 4.2.1. Пусть  $\models \alpha$ , тогда  $\vdash \alpha$ 

# 4.10 Неразрешимость исчисления предикатов (формулировка, что такое неразрешимость).

**Определение. Язык** — множество слов. Язык  $\mathcal L$  разрешим, если существует A — алгоритм, что по слову w:

A(w) — останавливается в '1', если  $w \in \mathcal{L}$  и '0', если  $w \notin \mathcal{L}$ 

Теорема 4.3. ИП неразрешимо

# 5 Арифметика и теории первого порядка

## 5.1 Теория первого порядка

**Определение. Теория I порядка** — Исчесление предикатов + нелогические функции + предикатные символы + нелогические (математические) аксиомы.

# 5.2 Модели и структуры теорий первого порядка

Назовём структурой теории первого порядка такую модель исчисления предикатов, что для всех нелогических функциональных и предикатных символов теории в ней задана оценка. Назовём моделью теории первого порядка такую структуру, что все нелогические аксиомы данной теории в ней истинны.

#### 5.3 Аксиоматика Пеано

Определение. Будем говорить, что N соответсвует аксиоматике Пеано если:

- задан (') :  $N \to N$  инъективная функция (для разных элементов, разные значения)
- задан  $0 \in N$ : нет  $a \in N$ , что a' = 0
- если P(x) некоторое утверждение, зависящее от  $x \in N$ , такое, что P(0) и всегда, когда P(x), также и P(x'). Тогда P(x)

# 5.4 Определение операций (сложение, умножение, возведение в степень)

Определение.

$$a+b = \begin{cases} a & b=0\\ (a+c)' & b=c' \end{cases}$$

Определение.

$$a \cdot b = \begin{cases} 0 & b = 0 \\ (a \cdot c) + a & b = c' \end{cases}$$

Определение.

$$a^b = \begin{cases} 1 & b = 0\\ (a^c) \cdot a & b = c' \end{cases}$$

# 5.5 Формальная арифметика (язык, схема аксиом индукции и общая характеристика остальных аксиом).

#### 5.5.1 Формальная арифметика

Определение. Исчесление предикатов:

- Функциональные символы:
  - -0-0-местный
  - (') 1-местный
  - (·) 2-местный
  - -(+)-2-местный
- ullet (=) 2-местный предикатный символ

Аксимомы:

- 1.  $a = b \rightarrow a' = b'$
- 2.  $a = b \rightarrow a = c \rightarrow b = c$
- 3.  $a' = b' \to a = b$
- 4.  $\neg a' = 0$
- 5. a + b' = (a + b)'
- 6. a + 0 = a
- 7.  $a \cdot 0 = 0$
- 8.  $a \cdot b' = a \cdot b + a$
- 9. Схема аксиом индукции:

$$(\psi[x := 0])\&(\forall x.\psi \to (\psi[x := x'])) \to \psi$$

x входит свободно в  $\psi$ 

# Свойство 1.

$$((a+0=a) \to (a+0=a) \to (a=a))$$

Доказательство.

$$\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow \forall b. \forall c. (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$$

$$\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$$

$$(\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c) \rightarrow \forall c. (a + 0 = a \rightarrow a + 0 = c \rightarrow a = c)$$

$$\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$$

$$(\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c) \rightarrow a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a = a$$

$$b. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(0 = 0 \rightarrow 0 = 0 \rightarrow 0 = 0)$$

$$(\forall b. \forall c. a = b \rightarrow a = c \ tob = c) \rightarrow (0 = 0 \rightarrow 0 = 0) \rightarrow \phi$$

Исправить

Определение.  $\exists !x. \varphi(x) \equiv (\exists x. \varphi(x)) \& \forall p. \forall q. \varphi(p) \& \varphi(q) \rightarrow p = q$  Можно также записать  $\exists !x. \neg \exists s. s' = x$  или  $(\forall q. (\exists x. x' = q) \lor q = 0)$ 

**Определение.**  $a \leq b$  — сокращение для  $\exists n.a + n = b$ 

Определение.

$$0^{(n)} = \begin{cases} 0 & n = 0 \\ 0^{(n-1)'} & n > 0 \end{cases}$$

**Определение.**  $W \subseteq \mathbb{N}_0^n$ . W — выразимое в формальной арифметике. отношение, если существует формула  $\omega$  со свободными переменными  $x_1, \ldots, x_n$ . Пусть  $k_1, \ldots, k_n \in \mathbb{N}$ 

• 
$$(k_1,\ldots,k_n)\in W$$
, тогда  $\vdash \omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$ 

• 
$$(k_1,\ldots,k_n)\not\in W$$
, тогда  $\vdash \neg\omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$ 

$$\omega[x_1 := \Theta_1, \dots, x_n := \Theta_n] \equiv \omega(\Theta_1, \dots, \Theta_n)$$

**Определение.**  $f:\mathbb{N}^n \to \mathbb{N}$  — представим в формальной арифметике, если найдется  $\varphi$  — фомула с n+1 свободными переменными  $k_1,\dots,k_{n+1}\in\mathbb{N}$ 

• 
$$f(k_1,\ldots,k_n)=k_{n+1}$$
, to  $\vdash \varphi(\overline{k_1},\ldots,\overline{k_{n+1}})$ 

$$\bullet \vdash \exists ! x. \varphi(\overline{k_1}, \dots, \overline{k_n}, x)$$