# **VMEDAQ**

发布 2019.12.28

Hongyi Wu(吴鸿毅)

2020年05月13日

## content:

| 1 | <b>简介</b><br>1.1<br>1.2<br>1.3<br>1.4                           | 版本                                                                                                                                                                                                       | 3<br>3<br>3<br>4<br>4<br>5                          |
|---|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 2 | <b>软件</b> <sup>5</sup> 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 | 系统要求       CAEN Lib         检查 CAENVMELib 安装       检查 CAENUpgrader 安装         V1718       42818 驱动         A3818 驱动       RIKEN babirl         初始化 babicon       3000 000 000 000 000 000 000 000 000 00 | 7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>9<br>9 |
| 3 | 固件 <sup>3</sup> 3.1<br>3.2                                      | 当前固件版本 查看固件版本 3.2.1 V1718 3.2.2 V2718 3.2.3 A2818 3.2.4 A3818 3.2.5 V1x90                                                                                                                                | 13<br>13<br>13<br>14<br>16<br>17<br>18<br>19        |
| 4 | <b>获取</b> 7<br>4.1<br>4.2<br>4.3<br>4.4<br>4.5                  | 模块安放顺序                                                                                                                                                                                                   | 21<br>21<br>22<br>22<br>22<br>22                    |
| 5 | analy                                                           | sis                                                                                                                                                                                                      | 23                                                  |
| 6 | anaro                                                           | oot                                                                                                                                                                                                      | 25                                                  |

| 7  | checkcnt           |                |  |  |  |  |  |  |
|----|--------------------|----------------|--|--|--|--|--|--|
| 8  | cutpedestal        |                |  |  |  |  |  |  |
| 9  | 9.4 babies/clear.c | 34<br>35<br>35 |  |  |  |  |  |  |
| 10 | httponline         | 37             |  |  |  |  |  |  |
| 11 | online             | 39             |  |  |  |  |  |  |
| 12 | r2root             | 41             |  |  |  |  |  |  |
| 13 | statistics         | 43             |  |  |  |  |  |  |

感谢您选择 VMEDAQ。更多开源程序,请访问我们的 Github 和 吴鸿毅的 Github

content: 1

2 content:

简介

本程序为 北京大学实验核物理组当前使用的 VME 获取。

该获取基于 RIKEN 的获取发展而来。我们已经对原本程序进行较大的修改。如果使用本程序,请严格使用本程序包内程序,请勿随意升级/替换程序包内部程序/固件。

我们将尽快完善本说明书。

## 1.1 版本

我们建议用户下载稳定版本

### 1.1.1 稳定版本

#### 稳定版本 2018.12.28

下载最新版本,请点击: VMEDAQ stable 网页版说明书请访问: 稳定版说明书

#### 1.1.2 准预览版本

#### 准预览版本 2020.05.13

程序下载请访问: VMEDAQ 网页版说明书请访问: 说明书

### 1.2 关于

#### 本程序历史维护:

- 李智焕
- 李晶
- 臧宏亮
- 吴鸿毅 (wuhongyi@qq.com / wuhongyi@pku.edu.cn)

#### 说明书贡献者(按姓名笔画排序):

- 王东玺(中国原子能科学研究院)
- 孙立杰(中国原子能科学研究院)
- 吴鸿毅

## 1.3 性能介绍

- 本获取经过 Scientific Linux 6/7 系统测试。
- 程序默认支持控制器 CAEN V1718/V2718, CAEN V830 Scaler, CAEN V7xx 系列 ADC/QDC/TDC, CAENV1190/V1290 TDC, MESYTEC MADC32
- 支持多个机箱同步获取。将插件分散在多个机箱,可大大减少数据传输的死时间。
- 本获取分软件 busy 跟硬件 busy 两种模式。
- · 对软件 busy 模式
  - 该模式下,一个事件的死时间由 trigger 门宽,7 us 左右模数转换时间,20 us 数据传输中断请求及数据传输时间组成。其中除了数据传输时间,其它三个时间是固定的,大约为30 us。
  - 限制该模式下计数率的因素为数据传输时间,数据越大,所需传输时间也就越长。
  - 以一个机箱, 300-500 路左右输入为例, 平均 10000 个触发能够记录 5000-6000 个事件, 效率在 50-60%
  - 如果以两三个插件为例,则能够达到70%+以上

#### · 对硬件 busy 模式

- 该模下式,一个事件的死时间由 trigger 门宽,7 us 左右模数转换时间两部分组成。
- 意味着该模式下一个事件的死时间大约在 11 us 左右。
- 该模式模数转换及数据传输同步进行,因而数据高速传输产生的高频信号会对前放/主放的信号带来微小的影响。
- 通过适当抬高阈值可消除该影响。
- 该模式下获取效率极高,平均 10000 个触发能够记录 9000+ 个事件,效率达到 90%

4 Chapter 1. 简介

## 1.4 目录

#### 文件夹内有以下文件/文件夹:

- analysis (一些用来辅助分析的代码)
- anaroot (底层库,用来将原始数据转为 ROOT 及在线统计)
- checkcnt (自动检查数据事件关联情况)
- cutpedo (自动拟合推荐合适 pedestal)
- DAQConfig (获取控制包)
- firmware (固件)
- httponline (基于网页的在线监视)
- online (在线监视能量,能谱)
- r2root (数据转换)
- source (babirl 源码,将会配置自动化安装脚本)
- statistics(时时监视每路信号的计数率,每 10 ns 更新一次)
- README.rst (本文件)
- docs(网页版说明书)
- README (rst 版说明书)
- README.pdf (pdf 说明书)

1.4. 目录 5

6 Chapter 1. 简介

软件安装

本页面安装软件放置在 source 文件夹内, 里面包括 获取驱动、依赖库等以及自动安装脚本。

### 2.1 系统要求

本获取经过 Scientific Linux 6/7 系统测试。建议采用 CentOS 6/7 或者 Scientific Linux 6/7。

本获取要求 CERN ROOT 5/6, 建议优先选择 ROOT 6。

如果没有合适的系统,可参考我们的获取系统安装 Install Scientific 7。安装好系统之后,还需要对基础依赖工具做一些安装及升级,可以下载执行自动化安装脚本自动配置或者按照教程手动安装。

#### 2.2 CAEN Lib

本程序依赖 CAENVMELib/CAENComm/CAENUpgrader 三个库文件。

其中 CAENVMELib/CAENComm 为获取运行必须的库。CAENUpgrader 用来更新固件。

进入 source 文件夹内, 在 ROOT 权限下执行 setup.sh 脚本,将会自动安装以上三个依赖库。

# 在 source 文件夹内, ROOT 权限下执行以下命令 sh setup.sh # 需要 ROOT 权限

## 2.3 检查 CAENVMELib 安装

进入 CheckRegisterToolByV2718 文件夹,make 编译里面程序,如果生成一个名为 pku 的可执行文件,则软件安装成功。

cd CheckRegisterToolByV2718
make

## 2.4 检查 CAENUpgrader 安装

安装后在终端中输入

```
CAENUpgraderGUI
```

将会弹出 CAEN Upgrader GUI 的图形界面。

#### 2.5 V1718

如果您使用 V1718, 则需要安装 USB 驱动。

```
tar -xzvf CAENUSBdrvB-1.5.2.tgz
cd CAENUSBdrvB-1.5.2
make
make install # 需要 ROOT 权限
```

### 2.6 A2818 驱动

如果您使用 A2818, 则安装以下驱动。

```
# A2818Drv-1.20-build20161118.tgz
# 将该文件夹复制到 /opt 并安装在该位置
tar -zxvf A2818Drv-1.20-build20161118.tgz
cp -r A2818Drv-1.20 /opt # 需要 ROOT 权限
cd /opt/A2818Drv-1.20 # 需要 ROOT 权限
cp ./Makefile.2.6-3.x Makefile # 需要 ROOT 权限
make # 需要 ROOT 权限

# 设置开机自动执行该脚本
# 在文件 /etc/rc.d/rc.local 中添加以下一行内容
/bin/sh /opt/A2818Drv-1.20/a2818_load
# 或者在开启电脑之后执行以上命令
```

#### 重启机箱后,在终端内输入 dmesglgrep a2818 将会看到以下的 A2818 驱动加载信息

```
a2818: CAEN A2818 CONET controller driver v1.20s
a2818: Copyright 2004, CAEN SpA
pci 0000:05:02.0: enabling device (0000 -> 0003)
pci 0000:05:02.0: PCI INT A -> GSI 19 (level, low) -> IRQ 19
a2818: found A2818 adapter at iomem 0xf7800000 irq 0, PLX at 0xf7900000
a2818: CAEN A2818 Loaded.
a2818: CAEN A2818: 1 device(s) found.
```

## 2.7 A3818 驱动

如果您使用 A3818,则安装以下驱动。安装该驱动时,电脑机箱必须插入 A3818 卡,否则将会报安装失败。

```
tar -zxvf A3818Drv-1.6.1.tgz
cd A3818Drv-1.6.1
make
make install # 需要 ROOT 权限
```

#### 然后在终端内输入 dmesg 将会看到以下的 A3818 驱动加载信息

```
fuse init (API version 7.14)
CAEN A3818 PCI Express CONET2 controller driver v1.6.0s
   Copyright 2013, CAEN SpA
pci 0000:02:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16
   alloc irq_desc for 33 on node -1
   alloc kstat_irqs on node -1
pci 0000:02:00.0: irq 33 for MSI/MSI-X
pci 0000:02:00.0: setting latency timer to 64
Found A3818 - Common BAR at iomem ffffc900067d4000 irq 0
Found A3818 with 1 link(s)
found A3818 Link 0 BAR at iomem ffffc900067d6000 irq 0
   CAEN A3818 Loaded.
   CAEN PCIe: 1 device(s) found.
```

#### 2.8 RIKEN babirl

#### babirl 自动化安装方法

```
# 在个人用户目录下安装理研 babirl 库
# 在普通权限下执行以下脚本
sh autoinstallbabirl.sh
```

#### 安装脚本会自动添加环境变量安装结束后查看.bashrc 文件,最后将多了三行如下内容

```
PATH=$PATH:/home/wuhongyi/babirl/bin/
export TARTSYS=/home/wuhongyi/VMEDAQ/anaroot
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TARTSYS/lib:$TARTSYS/sources/Core
# 其中 wuhongyi 为电脑当前用户名
```

```
# 在 ROOT 权限下执行以下脚本
sh afterinstallbabirl.sh [user name] # 需要 ROOT 权限

# 其中这里的 [user name] 换成你的帐号用户名,例如我的用户名为 wuhongyi
# sh afterinstallbabirl.sh wuhongyi
```

### 2.9 初始化 babicon

执行 DAQConfig 中的 StartDAQ.sh 开启进程

运行 babicon(安装后第一次需输入以下初始化)

新打开一个终端, 然后输入

babicon

2.8. RIKEN babirl 9

#### 回车之后将看到以下界面

```
wuhongyi@ScientificLinux:~/VMEDAQ/DAQConfig
文件(F) 编辑(E) 查看(V) 搜索(S) 终端(T) 帮助(H)
Run information

Run name : data

Run number : 0

Run status : IDLE

Start date : 01-Jan-70 08:00:00

Stop date : 01-Jan-70 08:00:00
  Header
   Ender
On/Off: off
Start :
Stop :
DB connection
On/Off : off
DBHost :
DBName :
DBUser :
DBPass : ******
UDP Client list
ID : HOSTNAME
localhost>
```

#### 以下进行基本的变量设置

```
seteflist 10 add localhost localhost sethdlist 0 path /home/wuhongyi/data # 这里为数据存储路径 setclinfo 0 add localhost #localhost 为本机器 setclinfo 0 id 0 # 如果设置给远程电脑 setclinfo 0 add [ip] #[ip] 为接收端电脑 IP setclinfo 0 id 0
```

```
wuhongyi@ScientificLinux:~/VMEDAQ/DAQConfig
文件(F) 编辑(E) 查看(V) 搜索(S) 终端(T) 帮助(H)
DBName :
DBUser :
DBPass : ******
ID : HOSTNAME
localhost> seteflist 10 add localhost localhost
 ID Hostname
                 Nickname
                               on/off
 10 localhost localhost (on)
localhost> sethdlist 0 path /home/wuhongyi/data
 o /home/wuhongyi/data
                                          816GB free
localhost> setclinfo 0 add localhost
 JDP Client list
ID : HOSTNAME
0 : localhost (SHMID = 0)

localhost> setclinfo 0 id 0

UDP Client list
      HOSTNAME
 0 : localhost (SHMID = 0)
localhost>
```

### 2.10 防火墙设置

将共享数据发送到 Online 电脑,需要做以下设置或者关闭防火墙

对 Scientific Linux 6,终端 ROOT 权限下输入 **setup**,选择 **防火墙配置**,去掉 **启用**。对 cientific Linux 7,ROOT 权限下终端输入以下信息关闭 firewall

```
systemctl stop firewalld.service # 停止 firewall systemctl disable firewalld.service # 禁止 firewall 开机启动 firewall-cmd --state # 查看默认防火增状态 (关闭后显示 notrunning, 开启后显示 running)
```

如果机器不联网,可以不需要开启以下 iptables 防火墙,反正不会被黑

```
# 在 /etc/sysconfig/iptables 添加以下一行 (不能放到最后一行, 其中 IP 替换为发送 DAQ 电脑的 IP)

-A INPUT -p udp -m state --state NEW -m udp --dport 17500:17510 -s 222.29.111.201 -

-j ACCEPT
```

#### 之后在 ROOT 权限下执行以下命令

```
systemctl restart iptables.service # 最后重启防火墙使配置生效 systemctl enable iptables.service # 设置防火墙开机启动
```

2.10. 防火墙设置 11

### 固件要求

#### 注意

- 请确保所使用的所有插件固件版本与以下一致。
- 我们尽可能及时更新保证采用较新/最新的固件。
- 由于新版本软件/固件我们需要经过大量评估测试,用户请不要随意升级我们未推荐的版本。

## 3.1 当前固件版本

```
V1718 2.17
V2718 FW CONET2 Compliant 2.17_1.5
A2818 新版的 CONET2 1.0 旧版的 CONET1 0.8
A3818 0.5
v1190 1.1
MADC32 0224
```

## 3.2 查看固件版本

V1718/V2718/A2818/A3818 查 看 固 件 版 本 采 用 CAENUpgraderGUI 程 序, V1718/V2718/A2818/A3818/V1x90 升级固件版本同样采用 CAENUpgraderGUI 程序。即在终端中执行

CAENUpgraderGUI

升级固件时候,Browse 选择固件之后会弹出一个警告窗口,提示你"You have chosen to use a raw binary file",点击确认,然后点击右下角的 Upgrade。等待升级结束,将会有一个窗口提示你重启。

#### 3.2.1 V1718

如下图,查看 V1718 的固件版本,点击 Get Fw Rel 按钮。





#### 3.2.2 V2718

V2718 上固件包括主板 V2718 及子板上的 A2719。

如下图,查看 V2718 主板的固件版本,点击 Get Fw Rel 按钮。





如下图,查看子板 A2719 的固件版本,点击 Get Fw Rel 按钮。

3.2. 查看固件版本 15





#### 3.2.3 A2818

16

如下图,查看 A2818 的固件版本,点击 Get Fw Rel 按钮。





#### 3.2.4 A3818

如下图,查看 A3818 的固件版本,点击 Get Fw Rel 按钮。

3.2. 查看固件版本 17





#### 3.2.5 V1x90

- V1190/V1290
  - Firmware Revision Register(Base Address + 0x1026, read only, D16)

- This register contains the firmware revision number coded on 8 bit.

## 待补充

## 3.2.6 MADC32

- madc32
  - 0x600E firmware\_revision

#### 待补充

3.2. 查看固件版本 19

获取配置

## 4.1 模块安放顺序

为了方便用户配置 DAQ,这里我们建议用户按照以下顺序依次插入采集模块(如果没有某些类型模块,则调过相应类型的模块):

- 控制器 V1718/V2718
- 定标器 V830
- V7xx
- V1x90
- MADC32

## 4.2 程序修改建议顺序

- anaroot/CBLT.hh
- DAQConfig/StartDAQ.sh
- DAQConfig/StopDAQ.sh
- DAQConfig/bbcaenvme/babies/bbmodules.h
- DAQConfig/bbcaenvme/babies/start.c
- DAQConfig/bbcaenvme/babies/evt.c
- DAQConfig/bbcaenvme/babies/clear.c
- DAQConfig/bbcaenvme/babies/stop.c
- DAQConfig/bbcaenvme/init/daqinitrc.sh

修改程序,请先仔细阅读 DAQConfig 页面中的说明。

## 4.3 V1718/V2718

V1718/V2718 PCB 板上 DIP 开关: Prog: 0 off, 1 off, 2 off, 3 on, 4 off, I/O NIM v1718/V2718 前面板 5 个 LEMO 输出口,分别为 0-4

通电时候输出口 0-3 处于高电平,输出口 4 处于低电平。因此软件 BUSY 模式时候采用输出口 4,硬件 BUSY 模式采用输出口 3。

## 4.4 软件 BUSY 模式

待补充

## 4.5 硬件 BUSY 模式

待补充

|    |    |    |   | _ |   |
|----|----|----|---|---|---|
| CH | lΑ | РΊ | Е | R | U |

analysis

存放辅助分析程序,当前只放置一个 MakeProcess 模板。

anaroot

如果采用 CBLT 模式读取数据,则先修改 CBLT.hh 文件,不采用 CBLT 模式则不用修改。设置好之后,执行该目录下的自动编译、安装脚本 auto PKU.sh 即可

```
sh autoPKU.sh
```

修改 CBLT.hh 文件,其中设置应该与 CBLT 模式下的插件设置顺序一致。

当前 CBLT chain 支持 v830、v7xx、v1190、v1290、madc 五种类型的插件,如下所示:

```
#define v830m
#define v7xxm
#define v1190m
#define v1290m
#define madcm
```

#### 获取中如果没有哪一种类型插件,则需注释掉该类型的定义!!!

以下 xxxn 为启用插件的数据顺序,从 0 开始编码,如果五种类型插件都有,则为以下设置:

```
#define v830n 0
#define v7xxn 1
#define v1190n 2
#define v1290n 3
#define madcn 4
```

如果只含有 v7xx、madc 两种类型的插件,则定义如下:

```
#define v7xxn 0 #define madcn 1
```

如果只含有 v830、v7xx、madc 三种类型的插件,则定义如下:

```
#define v830n 0
#define v7xxn 1
#define madcn 2
```

以下定义用来指定每种类型插件的个数

```
#define v830num
#define v7xxnum
#define v1190num
#define v1290num
#define madcnum
```

#### 以下是 v830 的其它设置

```
#define v830chn 8 // 这里设置 830 开启路数
#define v830head 1 // 不要修改
#define v830geo 0 // 不要修改
```

26 Chapter 6. anaroot

# $\mathsf{CHAPTER}\, 7$

checkcnt

用来辅助检查文件中事件是否关联。执行程序之后将会在该文件夹内生成一个 pdf 文件,检查该文件内每张图数值是否有异常。

## cutpedestal

用来辅助设置 pedestal 数值。高斯拟合 pedestal,并给出三倍 sigma 的上限作为推荐数值,并生成初始文件夹 init 内脚本。

**DAQConfig** 

首先修改 **StartDAQ.sh/StopDAQ.sh** 两个文件,将文件内的 *wuhongyi* 替换成当前 LINUX 的用户名。然后 修改 bbcaenvme 文件夹下 babies、init 文件夹内文件。

修改文件之前,我们需要先理解硬件地址与 GEO 编号。每个插件模块侧面都有四个拨盘,每个拨盘代表一个 16 进制位,例如,当四个拨盘从左到右分别为 1,2,3,4 时,表示其硬件地址为 0x1234。控制器与模块的通讯依靠该硬件地址来寻址,每个控制器下的模块地址应该具有唯一性。同时,我们可以通过软件对每个模块设置一个 GEO 编号,该模块输出数据中都会带有该 GEO 标记,方便我们对数据进行解码。GEO 编号范围为 0-31。

这里我们对硬件地址设置进行如下约定(当然以下约定不是强制要求,用户可以任意修改),

- v7xx 模块硬件地址从 0x1000 开始, 然后 0x1001, 有多少个模块就依次往后设置。
- MADC32 硬件地址从 0x2000 开始, 然后 0x2001, 有多少个模块就依次往后设置。
- v1x90 硬件地址从 0x4000 开始, 然后 0x4001, 有多少个模块就依次往后设置。
- v830 模块硬件地址从 0x5000 开始, 然后 0x5001, 有多少个模块就依次往后设置。

这里我们对 GEO 地址设置进行如下约定(当然以下约定不是强制要求,用户可以任意修改),

- 一般 v830 使用 1-2 个模块而已,因此 GEO 编号 30/31 我们预留给 v830。第一个 v830 的 GEO 为 30, 第二个 v830 的 GEO 为 31。
- 实验中一般 v7xx 和 MADC32 模块使用较多,如果每种模块均不超过 10 个的话,我们默认 0-9 预留给 v7xx, 10-19 预留给 MADC32。如果某种模块超过 10 个话,那么 v7xx 和 MADC32 的 GEO 按照 0-19 的编号依次往下进行分配。
- 实验中 v1x90 模块的使用数量一般不会超过 5 个,这里我们为 v1x90 预留 20-24,编号从 20 开始依次往后进行分配。
- 剩余的 GEO 编号 25-29 进行机动使用。

整个 DAQ 的程序配置中,需要在文件 babies/bbmodules.h 中进行硬件地址设置。然后还需对文件夹 init 内的文件进行硬件地址和 GEO 的设置。

#### 9.1 babies/bbmodules.h

修改 ADCADDR、MADCADDR、V1x90ADDR、SCAADDR 使之与硬件地址匹配(可以多余设置,不可少设置)。其它不要修改。

这里我们按照之前的约定, V7xx 硬件地址从 0x1000 开始编号, 用 ADC[x]ADDR 来表示不同模块。MADC32 硬件地址从 0x2000 开始编号, 用 MADC[x]ADDR 来表示不同模块。V1x90 硬件地址从 0x4000 开始编号, 用 V1x90ADDR[x] 来表示不同模块。V830 硬件地址从 0x5000 开始编号, 用 SCAADDR[x] 来表示不同模块。(其中 [x] 代表不同的数字)

如果您依照我们的约定来设置,则不需要修改本文件。

如果您使用控制器 V1718,则需要注释以下代码。否则开启以下代码

```
//....ooo0000000oo.....ooo000000oo.....ooo00000ooo.....ooo00000ooo.....
// 以下部分用户需要修改

// 以上部分用户需要修改
// 以上部分用户需要修改
//....ooo000000ooo.....ooo00000ooo.....
```

#### 9.2 babies/start.c

根据文件内提示设置,有该类型插件则开启对应代码,开启对应类型 busy 代码。其它不要修改。 busy 模式

如果您使用软件 busy 模式时,则开启以下代码行,如果您使用硬件 busy 模式时,则注释掉以下行代码。

```
//...ooo000000oo...ooo000000oo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000oooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000ooo...ooo00000oooo....
```

#### V830

```
//....oooO00000ooo......oooO0000ooo......oooO0000ooo.....oooO0000ooo......
// 以下部分用户需要修改
// 以上部分用户需要修改
//....oooO0000ooo......oooO0000ooo.....oooO000ooo.....
```

用户需要修改以上代码段,如果您不使用 V830 模块,则注释掉以上区域的代码。如果您使用一个 V830 模块,则添加代码:

```
v830_clear_all(SCAADDR0);
```

如果您使用两个 V830 模块,则添加代码:

```
v830_clear_all(SCAADDR0);
v830_clear_all(SCAADDR1);
```

#### V7xx

(下页继续)

(续上页)

```
// 有 V7xx 插件
// 每个插件单独设置
v7xx_rst_counter(ADC0ADDR);
v7xx_rst_counter(ADC1ADDR);
v7xx_rst_counter(ADC2ADDR);
// v7xx_rst_counter(ADC3ADDR);
// v7xx_rst_counter(ADC4ADDR);
// v7xx_rst_counter(ADC5ADDR);
// v7xx_rst_counter(ADC6ADDR);
// v7xx_rst_counter(ADC7ADDR);
v7xx_clear(ADC0ADDR);
v7xx_clear(ADC1ADDR);
v7xx_clear(ADC2ADDR);
// v7xx_clear(ADC3ADDR);
// v7xx_clear(ADC4ADDR);
// v7xx_clear(ADC5ADDR);
// v7xx_clear(ADC6ADDR);
// v7xx_clear(ADC7ADDR);
// 以上部分用户需要修改
```

用户需要修改以上代码段,如果您不使用 V7xx 模块,则注释掉以上区域的代码。

如果您使用一个 V7xx 模块,则添加代码:

```
v7xx_rst_counter(ADC0ADDR);
v7xx_clear(ADC0ADDR);
```

如果您使用两个 V7xx 模块,则添加代码:

```
v7xx_rst_counter(ADC0ADDR);
v7xx_rst_counter(ADC1ADDR);
v7xx_clear(ADC0ADDR);
v7xx_clear(ADC1ADDR);
```

使用更多 V7xx 则依次类推。

#### V1x90

```
//...oooOOOOOooo...oooOOOOooo...oooOOOOooo...oooOOOOooo...
// 以下部分用户需要修改

// 有 V1190/V1290 插件
// 每个插件单独 clear
// v1190_clear(V1x90ADDR0);
// v1290_clear(V1x90ADDR1);

v1190_clear(V1x90ADDR1);
// v1290_clear(V1x90ADDR1);
// v1290_clear(V1x90ADDR1);
// V1290_clear(V1x90ADDR1);
// 以上部分用户需要修改
//...oooOOOOOooo...oooOOOOOooo...oooOOOOooo....
```

用户需要修改以上代码段,如果您不使用 V1x90 模块,则注释掉以上区域的代码。如果您只使用一个 V1190 模块,则添加代码:

```
v1190_clear(V1x90ADDR0);
```

9.2. babies/start.c 33

如果您只使用两个 V1190 模块,则添加代码:

```
v1190_clear(V1x90ADDR0);
v1190_clear(V1x90ADDR1);
```

如果您使用一个 V1190, 一个 V1290, 则添加代码:

```
v1190_clear(V1x90ADDR0);
v1290_clear(V1x90ADDR1);
```

更多模块使用的组合, 请以此类推。

#### MADC32

用户需要修改以上代码段,如果您不使用 MADC32 模块,则注释掉以上区域的代码。如果您使用了 MADC32 模块,不管使用了多少个模块,只需要开启以上代码即可对所有的模块完成初始化。

#### busy 模式

```
//....oooO0000ooo.....oooO0000ooo....oooO000ooo.....oooO000ooo.....oooO000ooo......oooO000ooo......oooO000ooo......oooO000ooo.....oooO000ooo.....oooO000oooo.....oooO000oooo.....oooO000oooo.....oooO000oooo.....oooO000oooo.....oooO000oooo.....oooO000ooooo.....oooO000oooo.....oooO000oooo.....oooO000oooo.....oooO000ooooo.....oooO000ooooo.....oooO000ooooo.....oooO000ooooo.....oooO000ooooo......oooO000ooooo......oooO000ooooo......oooO000ooooo.......oooO000ooooo.......oooO000ooooo.......
```

如果您是软件 busy 模式,则开启代码:

```
v2718_pulse_ioport(4);
```

如果您是硬件 busy 模式或者软件 busy 模式下的多机箱同步方案下,则需要开启代码:

```
v2718_clear_ioport(3);
```

### 9.3 babies/evt.c

根据文件内提示设置。其它不要修改。

(下贝继续)

(续上页)

用户需要修改以上代码段,如果您不使用 MADC32 模块,则注释掉以上区域的代码。如果您使用了 MADC32 模块,不管使用了多少个模块,只需要开启以上代码即可对所有的模块完成清除。

当然,在软件 busy 模式下,对每个模块的寄存器进行相应的寄存器配置,可以不用以上清除指令自动进行清除,此时每个事件能够节约 20 us 左右的时间,该方案建议对 DAQ 比较熟悉的用户使用。

#### 9.4 babies/clear.c

根据文件内提示设置,有该类型插件则开启对应代码,开启对应类型 busy 代码。其它不要修改。 如果您使用软件 busy 模式时,则开启以下代码行,如果您使用硬件 busy 模式时,则注释掉以下行代码。

## 9.5 babies/stop.c

根据文件内提示设置,有该类型插件则开启对应代码,开启对应类型 busy 代码。其它不要修改。 MADC32

用户需要修改以上代码段,如果您不使用 MADC32 模块,则注释掉以上区域的代码。如果您使用了 MADC32 模块,不管使用了多少个模块,只需要开启以上代码即可对所有的模块发送结束采集指令。

#### busy 模式

如果您是硬件 busy 模式或者软件 busy 模式下的多机箱同步方案下,则需要开启代码,否则注释掉以下代码:

(下页继续)

9.4. babies/clear.c 35

(续上页)

## 9.6 init/daqinitrc.sh

修改该文件内对应脚本,使之与获取插件对应,用来初始化插件。

重点是修改 cblt.hh 文件,对启用的插件设置 CBLT ADDR 为 0xbb, 其中 MADC 还得设置 MCST ADDR 为 0xdd。还得设置每一个插件在 CBLT 中的顺序,first、mid、last。至少得两个插件才能组成 CBLT.

init/daqinitrc.sh 文件包含以下内容:

```
#!/bin/sh
/bin/sh ./v830.sh
/bin/sh ./v7xx_all.sh
# /bin/sh ./v7xx_thres.sh
/bin/sh ./v1190_0.sh
/bin/sh ./v1190_1.sh
# /bin/sh ./v1290.sh
/bin/sh ./madcall.sh
# /bin/sh ./madc_thres.sh
/bin/sh ./cblt.sh
```

如果您使用了 V830 则开启以下代码,否则注释掉以下代码:

```
/bin/sh ./v830.sh
```

#### 待补充

httponline

基于网页的在线监视。

online

时时监视每路信号的能量信息。 按照提示修改 Online.cc 文件

图形化界面开发中。。。

40 Chapter 11. online

r2root

仅仅需要修改插件定义即可,无需修改其它代码。 修改文件 UserDefine.hh,按照提示修改即可。

42 Chapter 12. r2root

statistics

用来监视每路的计数率。