Отчёт по лабораторной работе №6

Артём Дмитриевич Петлин

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	20
Сг	писок литературы	21

Список иллюстраций

4.1 su	8
4.2 bg fg	9
4.3 ctrl + z	9
4.4 &	10
4.5 top	10
4.6 top	10
4.7 su	11
4.8 renice	11
4.9 ps fax grep -B5 dd	12
4.10 kill -9	12
4.11 renice	13
4.12 killa -9	13
4.13 yes	14
4.14 ctrl + z	14
4.15 ctrl + c	14
4.16 yes	15
4.17 yes	15
4.18 nohup	16
4.19 ps -A	16
4.20 yes	17
4.21 kill -1	17
4.22 killall	18
4.23 yes	19
4.24 renice	19

Список таблиц

1 Цель работы

Получить навыки управления процессами операционной системы.

2 Задание

- 1. Продемонстрируйте навыки управления заданиями операционной системы (см. раздел 6.4.1).
- 2. Продемонстрируйте навыки управления процессами операционной системы (см. раздел 6.4.2).
- 3. Выполните задания для самостоятельной работы (см. раздел 6.5)

3 Теоретическое введение

Под процессом в операционной системе понимается абстракция, описывающая вы- полняющуюся программу. Информацию о выполняющихся в операционной системе типа Unix процессах можно получить, например, с помощью команд ps, top, htop.

4 Выполнение лабораторной работы

```
adpetlin@adpetlin:~$ su -
Password:
Last login: Fri Oct 3 10:22:04 MSK 2025 on tty1
root@adpetlin:~# sleep 3600 &
[1] 4294
root@adpetlin:~# dd if=/dev/zero of=/dev/null &
[2] 4311
root@adpetlin:~# sleep 7200
^Z
                             sleep 7200
[3]+ Stopped
root@adpetlin:~# jobs
[1] Running
                              sleep 3600 &
[2]- Running
                             dd if=/dev/zero of=/dev/null &
[3]+ Stopped
                              sleep 7200
root@adpetlin:~#
```

Рисунок 4.1: su -

Получаем полномочия администратора. Запускаем несколько фоновых процессов и один длительный процесс на переднем плане. Введите Ctrl + z , чтобы остановить процесс.

```
root@adpetlin:~# bg 3
[3]+ sleep 7200 &
root@adpetlin:~# jobs
[1]
     Running
                              sleep 3600 &
                             dd if=/dev/zero of=/dev/null &
[2]- Running
                              sleep 7200 &
[3]+ Running
root@adpetlin:~# fg 1
sleep 3600
^C
root@adpetlin:~# jobs
[2]- Running
                             dd if=/dev/zero of=/dev/null &
[3]+ Running
                             sleep 7200 &
root@adpetlin:~#
```

Рисунок 4.2: bg | fg

Возобновляем выполнение приостановленного задания в фоновом режиме и наблюдаем изменение его статуса. Перемещаем одно из заданий на передний план. Завершаем выполнение задания на переднем плане с помощью комбинации клавиш и проверяем изменения в списке заданий.

```
root@adpetlin:~# fg 2
dd if=/dev/zero of=/dev/null
^C216327479+0 records in
216327478+0 records out
110759668736 bytes (111 GB, 103 GiB) copied, 122.092 s, 907 MB/s

root@adpetlin:~# fg 3
sleep 7200
^C
root@adpetlin:~# jobs
root@adpetlin:~#
```

Рисунок 4.3: ctrl + z

Последовательно завершаем оставшиеся задания.

```
adpetlin@adpetlin:~$ dd if=/dev/zero of=/dev/null &
[1] 4497
adpetlin@adpetlin:~$ exir
bash: exir: command not found...
adpetlin@adpetlin:~$ exit
```

Рисунок 4.4: &

На втором терминале запускаем фоновый процесс от имени обычного пользователя. Закрываем второй терминал. На другом терминале проверяем, что процесс продолжает выполняться, с помощью системного монитора.

MiB S	wap:	5120.0	tota	al,	5120.	0 free,		0.0	used.	3080	.1 avail	Mem
P.	ID USEF	? F	PR N	II	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
44	97 adpe	etlin 2	20	0	226848	1828	1828	R	99.0	0.0	0:41.42	dd
14	45 root	t 2	20	0 1	129804	314688	24076	S	9.0	5.4	0:22.45	packageki

Рисунок 4.5: top

MiB Swap	5 120. 0	0 to	tal,	5120	. 0 free,	, (0.0	used.	295	6.5 avail	Mem
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
3962	adpetlin	20	0	4197632	287480	101224	S	7.3	5.0	0:11.07	ptyxis
2579	adpetlin	20	0	5574080	410604	137764	S	6.6	7.1	1:16.79	gnome-she
							_				

Рисунок 4.6: top

Завершаем оставшийся процесс через системный монитор.

Рисунок 4.7: su -

Получаем полномочия администратора. Запускаем несколько фоновых процессов. Просматриваем информацию о запущенных процессах, фильтруя нужные нам процессы.

```
root@adpetlin:~# renice -n 5 5018
5018 (process ID) old priority 0, new priority 5
```

Рисунок 4.8: renice

Изменяем приоритет одного из процессов, используя его идентификатор.

```
4816 ? Ssl 0:02 \_ /usr/bin/ptyxis --gapplication-service

4823 ? Ssl 0:00 \_ /usr/libexec/ptyxis-agent --socket-fd=3

4880 pts/0 S 0:00 \_ /usr/bin/bash

4908 pts/0 S 0:00 \_ su -

4954 pts/0 S 0:00 \_ -bash

5018 pts/0 RN 0:55 \_ dd if=/dev/zero of=/dev/null

5019 pts/0 R 0:54 \_ dd if=/dev/zero of=/dev/null

5025 pts/0 R 0:53 \_ dd if=/dev/zero of=/dev/null

5078 pts/0 R+ 0:00 \_ ps fax

5079 pts/0 S+ 0:00 \_ grep --color=auto -B5 dd

oot@adpetlin:~#
```

Рисунок 4.9: ps fax | grep -B5 dd

Изучаем иерархию процессов, просматривая связи между родительскими и дочерними процессами.

```
270 kill -9 4816
271 history
root@adpetlin:~#
```

Рисунок 4.10: kill -9

Завершаем родительский процесс, что приводит к автоматическому завершению всех связанных дочерних процессов.

```
root@adpetlin:~# dd if=/dev/zero of=/dev/null &
[1] 5433
root@adpetlin:~# dd if=/dev/zero of=/dev/null &
[2] 5438
root@adpetlin:~# dd if=/dev/zero of=/dev/null &
[3] 5439
root@adpetlin:~# renice -n 5 5438
5438 (process ID) old priority 0, new priority 5
root@adpetlin:~# renice -n -5 5438
5438 (process ID) old priority 5, new priority -5
root@adpetlin:~# renice -n -15 5438
5438 (process ID) old priority -5, new priority -15
root@adpetlin:~# top
```

Рисунок 4.11: renice

Запускаем три фоновых процесса. Повышаем приоритет одного из процессов, устанавливая отрицательное значение. Дополнительно изменяем приоритет того же процесса, устанавливая другое значение, и анализируем разницу в приоритетах.

Рисунок 4.12: killa -9

Завершаем все запущенные процессы.

Рисунок 4.13: yes

Запускаем фоновый процесс с перенаправлением вывода. Запускаем процесс на переднем плане с перенаправлением вывода, приостанавливаем его, затем возобновляем и завершаем.

```
y
y
y
y
y

Y

Y

Y

Y

Y

^Z

[1]+ Stopped yes

root@adpetlin:~# fg 1
```

Рисунок 4.14: ctrl + z

```
y
y
y
y
y
y
y^C
root@adpetlin:~#
```

Рисунок 4.15: ctrl + c

Запускаем процесс на переднем плане без перенаправления вывода, приостанавливаем, возобновляем и завершаем его.

```
root@adpetlin:~# jobs
root@adpetlin:~# yes > /dev/null &
[1] 6489
root@adpetlin:~# fg 1
yes > /dev/null
^C
root@adpetlin:~#
```

Рисунок 4.16: yes

Проверяем состояния всех заданий. Переводим фоновый процесс на передний план и останавливаем его.

Рисунок 4.17: yes

Переводим процесс с перенаправлением вывода в фоновый режим.

Проверяем состояния заданий, обращая внимание на процессы, выполняющиеся в фоновом режиме.

```
adpetlin@adpetlin:~$ nohup sleep 1000 &
[1] 4916
nohup: ignoring input and appending output to 'nohup.out'
adpetlin@adpetlin:~$ jobs
[1]+ Running nohup sleep 1000 &
adpetlin@adpetlin:~$
```

Рисунок 4.18: nohup

Запускаем процесс таким образом, чтобы он продолжал работу после закрытия терминала.

```
4916 ? 00:00:00 sleep
4938 ? 00:00:00 kworker/2:1-events
5023 ? 00:00:00 kworker/5:0-mm_percpu_wq
5094 ? 00:00:00 ptyxis
5101 ? 00:00:00 ptyxis-agent
5155 pts/1 00:00:00 bash
5187 pts/1 00:00:00 ps
adpetlin@adpetlin:~$
```

Рисунок 4.19: ps -A

Закрываем и заново открываем терминал, проверяя продолжение работы процесса. Изучаем информацию о запущенных процессах с помощью системного монитора.

```
adpetlin@adpetlin:~$ yes > /dev/null &
[1] 5213
adpetlin@adpetlin:~$ yes > /dev/null &
[2] 5219
adpetlin@adpetlin:~$ yes > /dev/null &
[3] 5221
adpetlin@adpetlin:~$ kill -9 5213
                              yes > /dev/null
[1] Killed
adpetlin@adpetlin:~$ kill -9 %2
                              yes > /dev/null
[2]- Killed
adpetlin@adpetlin:~$ jobs
[3]+ Running
                              yes > /dev/null &
adpetlin@adpetlin:~$
```

Рисунок 4.20: yes

Запускаем три дополнительных фоновых процесса с перенаправлением вывода. Завершаем два процесса разными способами: по идентификатору процесса и по идентификатору задания.

```
adpetlin@adpetlin:~$ kill -1 4916
adpetlin@adpetlin:~$ kill -1 5221
[3]+ Hangup yes > /dev/null
adpetlin@adpetlin:~$
```

Рисунок 4.21: kill -1

Отправляем сигнал завершения процессу, запущенному с защитой от разрыва связи, и обычному процессу, сравнивая их поведение.

```
adpetlin@adpetlin:~$ jobs
[1]
                              yes > /dev/null &
      Running
                              yes > /dev/null &
[2]
      Running
[3]
     Running
                              yes > /dev/null &
[4]
     Running
                              yes > /dev/null &
                              yes > /dev/null &
[5]
     Running
[6]
     Running
                              yes > /dev/null &
     Running
                              yes > /dev/null &
[7]
[8]
      Running
                              yes > /dev/null &
[9]
      Running
                              yes > /dev/null &
[10] Running
                               yes > /dev/null &
[11]- Running
                               yes > /dev/null &
[12]+ Running
                               yes > /dev/null &
adpetlin@adpetlin:~$ killall yes
[1]
     Terminated
                              yes > /dev/null
[2]
     Terminated
                              yes > /dev/null
[3]
     Terminated
                              yes > /dev/null
[4]
     Terminated
                              yes > /dev/null
[5]
     Terminated
                              yes > /dev/null
[7]
     Terminated
                              yes > /dev/null
[8]
     Terminated
                              yes > /dev/null
     Terminated
                              yes > /dev/null
[9]
[10] Terminated
                               yes > /dev/null
[11]- Terminated
                              yes > /dev/null
[12]+ Terminated
                               yes > /dev/null
[6]+ Terminated
                              yes > /dev/null
adpetlin@adpetlin:~$
```

Рисунок 4.22: killall

Запускаем несколько дополнительных фоновых процессов. Завершаем все процессы одновременно с помощью команды группового завершения.

```
5649 14 5 yes
5675 19 0 ps
adpetlin@adpetlin:~$
```

Рисунок 4.23: yes

Запускаем два процесса с разными приоритетами и сравниваем их абсолютные и относительные приоритеты.

```
5649 0 19 yes

5731 19 0 kworker/4:1-events

5747 19 0 kworker/u29:1-events_unbound

5770 19 0 yes
```

Рисунок 4.24: renice

Выравниваем приоритеты двух процессов, изменяя значение приоритета для одного из них.

5 Выводы

Мы получили навыки управления процессами операционной системы.

Список литературы

- 1. Поттеринг Л. Systemd для администраторов: цикл статей. 2010. URL: http://wiki.opennet.ru/Systemd.
- 2. Neil N. J. Learning CentOS: A Beginners Guide to Learning Linux. CreateSpace Inde-pendent Publishing Platform, 2016.
- 3. Systemd. -2022.- URL: https://wiki.archlinux.org/title/Systemd.