Álgebra I Práctica 4-Números enteros (Parte 1)

Divisibilidad

1. Decidir cuáles de las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$

i) $a \cdot b \mid c \Rightarrow a \mid c \quad y \quad b \mid c$

vi) $a \mid c \quad y \quad b \mid c \Rightarrow a \cdot b \mid c$

ii) $4 \mid a^2 \Rightarrow 2 \mid a$

vii) $a \mid b \Rightarrow a \leq b$

iii) $2 \mid a \cdot b \Rightarrow 2 \mid a \text{ \'o } 2 \mid b$

viii) $a \mid b \Rightarrow |a| < |b|$

iv) $9 \mid a \cdot b \Rightarrow 9 \mid a \text{ \'o } 9 \mid b$

ix) $a \mid b + a^2 \Rightarrow a \mid b$

v) $a \mid b + c \Rightarrow a \mid b$ ó $a \mid c$

 $x) \ a \mid b \Rightarrow a^n \mid b^n, \forall n \in \mathbb{N}$

2. Hallar todos los $n \in \mathbb{N}$ tales que

i) $3n - 1 \mid n + 7$

iii) $2n+1 \mid n^2+5$

ii) $3n-2 \mid 5n-8$

iv) $n-2 \mid n^3-8$

3. Sean $a, b \in \mathbb{Z}$.

i) Probar que $a-b \mid a^n-b^n$ para todo $n \in \mathbb{N}$ y $a \neq b \in \mathbb{Z}$.

ii) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n - b^n$.

iii) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.

4. Sea a un entero impar. Probar que $2^{n+2} \mid a^{2^n} - 1$ para todo $n \in \mathbb{N}$.

5. Sea $n \in \mathbb{N}$.

i) Probar que si n es compuesto, entonces 2ⁿ - 1 es compuesto. (Los primos de la forma 2^p - 1 para p primo se llaman primos de Mersenne, por Marin Mersenne, monje y filósofo francés, 1588-1648. Se conjetura que existen infinitos primos de Mersenne, pero aún no se sabe. Se conocen a la fecha 51 primos de Mersenne (Enero 2021). El más grande producido hasta ahora es 2^{82.589.933} - 1, que tiene 24.862.048 dígitos, y es el número primo más grande conocido a la fecha.)

ii) Probar que si 2^n+1 es primo, entonces n es una potencia de 2. (Los números de la forma $\mathcal{F}_n=2^{2^n}+1$ se llaman números de Fermat, por Pierre de Fermat, juez y matemático francés, 1601-1665. Fermat conjeturó que cualquiera sea $n\in\mathbb{N}_0$, \mathcal{F}_n era primo, pero esto resultó falso: los primeros $\mathcal{F}_0=3$, $\mathcal{F}_1=5$, $\mathcal{F}_2=17$, $\mathcal{F}_3=257$, $\mathcal{F}_4=65537$, son todos primos, pero $\mathcal{F}_5=4294967297=641\times6700417$. Hasta ahora no se conocen más primos de Fermat que los 5 primeros mencionados.)

6. i) Probar que el producto de n enteros consecutivos es divisible por n!.

ii) Probar que $\binom{2n}{n}$ es divisible por 2.

7. Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$

i) $99 \mid 10^{2n} + 197$

iii) $56 \mid 13^{2n} + 28n^2 - 84n - 1$

ii) $9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$

iv) $256 \mid 7^{2n} + 208n - 1$

Algoritmo de División

8. Calcular el cociente y el resto de la división de a por b en los casos:

i)
$$a = 133$$
, $b = -14$.

iv)
$$a = b^2 - 6$$
, $b \neq 0$.

ii)
$$a = 13$$
, $b = 111$.

v)
$$a = n^2 + 5$$
, $b = n + 2 \ (n \in \mathbb{N})$.

iii)
$$a = 3b + 7, \quad b \neq 0.$$

vi)
$$a = n + 3$$
, $b = n^2 + 1 \ (n \in \mathbb{N})$.

9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de

i) la división de
$$a^2 - 3a + 11$$
 por 18.

iii) la división de
$$4a + 1$$
 por 9.

iv) la división de
$$7a^2 + 12$$
 por 28.

i) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7. **10**.

ii) Si
$$a \equiv 13$$
 (5), hallar el resto de dividir a $33a^3 + 3a^2 - 197a + 2$ por 5.

iii) Hallar, para cada
$$n \in \mathbb{N}$$
, el resto de la división de $\sum_{i=1}^{n} (-1)^i \cdot i!$ por 12.

i) Probar que $a^2 \equiv -1$ (5) $\Leftrightarrow a \equiv 2$ (5) $oldsymbol{o} a \equiv 3$ (5).

ii) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)

iii) Probar que $a^7 \equiv a$ (7) para todo $a \in \mathbb{Z}$.

iv) Probar que $7 \mid a^2 + b^2 \Leftrightarrow 7 \mid a \text{ y } 7 \mid b$.

v) Probar que $5 \mid a^2 + b^2 + 1 \Rightarrow 5 \mid a \text{ ó } 5 \mid b$; Vale la implicación recíproca?

i) Probar que $2^{5k} \equiv 1$ (31) para todo $k \in \mathbb{N}$. **12**.

ii) Hallar el resto de la división de 2⁵¹⁸³³ por 31.

iii) Sea $k \in \mathbb{N}$. Sabiendo que $2^k \equiv 39$ (31), hallar el resto de la división de k por 5.

iv) Hallar el resto de la división de $43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999}$ por 31.

13. Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$:

$$a_1 = 3$$
, $a_2 = -5$ y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$ para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

Sistemas de numeración

14. i) Hallar el desarrollo en base 2 de

(c)
$$3 \cdot 2^{13}$$

(c)
$$3 \cdot 2^{13}$$
 (d) $13 \cdot 2^n + 5 \cdot 2^{n-1}$

ii) Hallar el desarrollo en base 16 de 2800.

15. Sea $a = (a_d a_{d-1} \dots a_1 a_0)_2$ un número escrito en base 2 (o sea escrito en bits). Determinar simplemente cómo son las escrituras en base 2 del número 2a y del número a/2 cuando a es par, o sea las operaciones "multiplicar por 2" y "dividir por 2" cuando se puede. Esas operaciones se llaman shift en inglés, o sea corrimiento, y son operaciones que una computadora hace en forma sencilla.

16. Enunciar y demostrar criterios de divisibilidad por 8 y por 9.

i) Sea $k \in \mathbb{N}$, $k = (aaaa)_7$. Probar que $8 \mid k$.

ii) Sea $k \in \mathbb{N}, \ k = (\underbrace{a \dots a}_d)_7$. Determinar para qué valores de $d \in \mathbb{N}$ se tiene que $8 \mid k$.

Máximo común divisor

18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:

Práctica 4

i)
$$a = 2532, b = 63.$$

iii)
$$a = n^4 - 3, b = n^2 + 2 \ (n \in \mathbb{N}).$$

ii)
$$a = 131, b = 23.$$

- 19. Sean $a, b \in \mathbb{Z}$. Sabiendo que el resto de dividir a a por b es 27 y que el resto de dividir b por 27 es 21, calcular (a:b).
- **20**. Sea $a \in \mathbb{Z}$.
 - i) Probar que (5a + 8 : 7a + 3) = 1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 23 da 41.
 - ii) Probar que $(2a^2 + 3a 1 : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 41.
 - iii) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ ó 4, y exhibir un valor de a para cada caso. (Para este ítem es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).
- **21**. Sean $a, b \in \mathbb{Z}$ coprimos. Probar que 7a 3b y 2a b son coprimos.
- **22**. Sean $a, b \in \mathbb{Z}$ con (a : b) = 2. Probar que los valores posibles para (7a + 3b : 4a 5b) son 2 y 94. Exhibir valores de a y b para los cuales da 2 y para los cuales da 94.
- **23**. i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
 - ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
 - iii) Determinar todos los $a \in \mathbb{Z}$ tales que $\frac{2a+3}{a+1} + \frac{a+2}{4} \in \mathbb{Z}$.

Primos y factorización

- 24. Probar que existen infinitos primos positivos congruentes a 3 módulo 4. Sugerencia: probar primero que si $a \in \mathbb{N}$ satisface $a \equiv 3 \pmod{4}$, entonces existe p primo, $p \equiv 3 \pmod{4}$ tal que $p \mid a$. Luego probar que si existieran sólo finitos primos congruentes a 3 módulo 4, digamos p_1, p_2, \ldots, p_n , entonces $a = -1 + 4 \prod_{i=1}^n p_i$ sería mayor que 1 y no es divisible por ningún primo congruente a 3 módulo 4.
- **25**. Sea p primo positivo.
 - i) Probar que si 0 < k < p, entonces $p \mid \binom{p}{k}$.
 - ii) Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p \pmod{p}$.

- 26. Decidir si existen enteros a y b no nulos que satisfagan
 - i) $a^2 = 3b^3$

- ii) $7a^2 = 8b^2$
- **27**. Sea $n \in \mathbb{N}$, $n \geq 2$. Probar que si p es un primo positivo entonces $\sqrt[n]{p} \notin \mathbb{Q}$.
- **28.** Sean $p \setminus q$ primos positivos distintos y sea $n \in \mathbb{N}$. Probar que si $p \mid q \mid a^n$ entonces $p \mid q \mid a$.
- **29**. Determinar cuántos divisores positivos tienen 9000, $15^4 \cdot 42^3 \cdot 56^5$ y $10^n \cdot 11^{n+1}$. \downarrow Y cuántos divisores en total ?
- **30**. Hallar la suma de los divisores positivos de $2^4 \cdot 5^{123}$ y de $10^n \cdot 11^{n+1}$.
- **31.** Hallar el menor número natural n tal que $6552\,n$ sea un cuadrado (Es decir que exista $k\in\mathbb{N}$ tal que $6552\,n=k^2$).
- **32**. Sean $a, b \in \mathbb{N}$, $a, b \ge 2$. Probar que si ab es un cuadrado en \mathbb{N} y (a : b) = 1, entonces tanto a como b son cuadrados en \mathbb{N} .
- **33**. Hallar todos los $n \in \mathbb{N}$ tales que
 - i) $(n:945) = 63, (n:1176) = 84 \text{ y } n \le 2800$
 - ii) (n:1260) = 70 y n tiene 30 divisores positivos
- **34.** Hallar el menor número natural n tal que (n:3150)=45 y n tenga exactamente 12 divisores positivos.
- **35**. i) Sea $k \in \mathbb{N}$. Probar que $(2^k + 7^k : 2^k 7^k) = 1$.
 - ii) Sea $k \in \mathbb{N}$. Probar que $(2^k + 5^{k+1} : 2^{k+1} + 5^k) = 3$ ó 9, y dar un ejemplo para cada caso.
 - iii) Caracterizar para cada $k \in \mathbb{N}$ el valor que toma $(12^k 1 : 12^k + 1286)$.
- **36**. Sean $a, b \in \mathbb{Z}$. Probar que si (a : b) = 1 entonces $(a^2 \cdot b^3 : a + b) = 1$.
- **37**. Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 5.
 - i) Calcular los posibles valores de (ab: 5a 10b) y dar un ejemplo para cada uno de ellos.
 - ii) Para cada $k \in \mathbb{N}$, calcular $(a^{k-1}b: a^k + b^k)$.
- 38. i) Sean $a, b \in \mathbb{Z}$ tales que (a : b) = 3. Calcular los posibles valores de $(a^2 + 15b + 57 : 4050)$ y dar un ejemplo para cada caso.
 - ii) Sean $a, b \in \mathbb{Z}$. Sabiendo que $b \equiv 6 \pmod{24}$ y que (a:b) = 13, calcular $(5a^2 + 11b + 117 : 624)$.
- **39**. Hallar todos los $n \in \mathbb{N}$ tales que
 - i) [n:130] = 260.

- ii) [n:420] = 7560.
- **40**. Hallar todos los $a, b \in \mathbb{N}$ tales que
 - i) (a:b) = 10 y [a:b] = 1500.
- ii) $3 \mid a, (a:b) = 20 \text{ y } [a:b] = 9000.$