Short definitions in constraint languages

Jakub Bulín^a, joint work with Michael Kompatscher Midsummer Combinatorial Workshop XXVIII Prague, Aug 1, 2023

^aSupported by Charles University project UNCE/SCI/004 & MEYS Inter-excellence project LTAUSA19070

[1] J. Bulín and M. Kompatscher: *Short definitions in constraint languages*, arXiv:2305.01984 (May 2023), accepted to MFCS 2023

The what and the why

Explaining the title

"... constraint languages"

• A constraint language over a finite domain *A*:

$$\Gamma = \{R_1, \dots, R_m\}$$
 where $R_i \subseteq A^{n_i}$

• Example (2-SAT) $A = \{0, 1\}$, $\Gamma_{2SAT} = \{R_{00}, R_{01}, R_{10}, R_{11}\}$ where $R_{ij} = \{0, 1\}^2 \setminus \{(i, j)\}$ (e.g. R_{01} encodes $x \vee \neg y$)

"... definitions in..."

- A primitive positive (pp-) formula: \exists , \land , = and symbols from Γ
- A pp-definition: $\phi(x_1, ..., x_n)$ defines $R \subseteq A^n$ in the usual way
- The relational clone: $\langle \Gamma \rangle = \{ R \mid R \text{ is pp-definable from } \Gamma \}$

"Short..."

• Each $R \in \langle \Gamma \rangle_n$ has a pp-definition of length polynomial in n

Motivation: constraint satisfaction

$CSP(\Gamma)$

input a pp-sentence Φ over Γ question $\Gamma \models \Phi$?

Example The 2-CNF formula $(x \vee \neg y) \wedge (y \vee z) \wedge (z \vee \neg x)$ is encoded as $\Phi = (\exists x)(\exists y)(\exists z)(R_{01}(x,y) \wedge R_{00}(y,z) \wedge R_{01}(z,x))$

Moreover:

- solution sets are pp-definable
- pp-definitions are gadget reductions

Theorem (Jeavons, Cohen, Gyssens JACM 1997)

If $\Delta \subseteq \langle \Gamma \rangle$, then $\mathrm{CSP}(\Delta)$ reduces to $\mathrm{CSP}(\Gamma)$.

The examples

Nonexamples and boring examples

 Γ has short definitions, if \exists polynomial p(n) such that each $R \in \langle \Gamma \rangle_n$ has a pp-definition $\phi(x_1, \ldots, x_n)$ of length $|\phi| \leq p(n)$.

Nonexamples (3-SAT, Horn-SAT)

Cardinality argument: short definitions $\Rightarrow \langle \Gamma \rangle_n \in 2^{O(n^k)}$

- $\Gamma_{3{
 m SAT}}$ doesn't have short definitions, $\langle \Gamma_{3{
 m SAT}} \rangle_n$ contains all 2^{2^n} n-ary relations
- Similarly for Γ_{HornSAT} , $|\langle \Gamma_{\text{HornSAT}} \rangle|_n$ is double exponential

Boring example (2-SAT)

 Γ_{2SAT} has short definitions: each $R \in \langle \Gamma_{\mathrm{2SAT}} \rangle_n$ satisfies the 2-Helly property (and binary relations are pp-definable from Γ_{2SAT}):

$$R(x_1,\ldots,x_n) \leftrightarrow \bigwedge_{1\leq i\leq j\leq n} \operatorname{pr}_{ij} R(x_i,x_j)$$

 \Rightarrow pp-definitions of length $O(n^2)$

Interesting example

Interesting example (Linear systems over \mathbb{Z}_2)

• $\textit{A} = \{0,1\}$, $\Gamma_{\mathrm{Lin}} = \{\textit{R}_{\mathrm{Lin}}, \textit{C}_{0}, \textit{C}_{1}\}$ where $\textit{C}_{\textit{a}} = \{\textit{a}\}$ and

$$R_{\text{Lin}} = \{(a, b, c) \in \{0, 1\}^3 \mid a + b = c\}$$

- $\langle \Gamma_{\rm Lin} \rangle_n$ consists of all affine subspaces of \mathbb{Z}_2^n
- Each subspace is a conjunction of at most *n* linear equations
- Each equation can be pp-defined in O(n):
 - for example, $x_1 + x_2 + x_3 = 1$ is defined by

$$(\exists u_1)(\exists u_2)(x_1 + x_2 = u_1 \land u_1 + x_3 = u_2 \land u_2 = 1)$$

• in general, $x_{i_1} + x_{i_2} + \cdots + x_{i_k} = a$ is defined by

$$(\exists u_1) \dots (\exists u_{k-1}) (\bigwedge_{1 < j < k-1} R_{\operatorname{Lin}}(x_{i_j}, x_{i_{j+1}}, u_j) \wedge C_{\mathsf{a}}(u_k))$$

 \Rightarrow pp-definitions of length $O(n^2)$

The conjecture and the result

Few subpowers

 Γ has few subpowers if $|\langle \Gamma \rangle_n| \leq 2^{p(n)}$ for some polynomial p(n)

Theorem ([B]IMMVW TransAMS+SICOMP 2010)

A constraint language has $2^{O(n^k)}$ subpowers iff it is invariant under a k-edge function. In that case, $\mathrm{CSP}(\Gamma)$ can be solved by a Gaussian-elimination-like algorithm. Otherwise, it has $\Omega(2^{c^n})$ subpowers for some c>1.

- Γ_{2SAT} is invariant under the 2-edge function called majority: 2 $\operatorname{maj}(x,x,y) = \operatorname{maj}(x,y,x) = \operatorname{maj}(y,x,x) = x$
- $\Gamma_{
 m Lin}$ is invariant under the 2-edge Mal'tsev function x-y+z

(general k-edge is a "combination" of those two types of behavior)

²In general, a *k*-ary function $f(x, x, ..., x, y) = \cdots = f(y, x, ..., x) = x$, called near-unanimity is equivalent to the *k*-Helly property (boring!)

Few subpowers = short definitions?

Conjecture (B., Kompatscher)

(weak) Γ has short definitions iff it has few subpowers. (strong) Γ has $O(n^k)$ definitions iff it has a k-edge function.

- Short definitions imply few subpowers (cardinality argument)
- True for $|A|=\{0,1\}$: essentially only $\Gamma_{\rm 2SAT}$ and $\Gamma_{\rm Lin}$ (Post's lattice 1941, first noted by Lagerkvist, Wahlström 2014)
- True if invariant under a near-unanimity (Helly property)

Main theorem (B., Kompatscher)

True if the algebra of polymorphisms of Γ generates a residually finite variety.³

Corollary True if |A| = 3.

³For groups, this means being an A-group (Sylow subgroups are abelian)

The proof

Proof overview

- I. Switch to the right formalism (algebras, multisorted)
- II. Get rid of the boring case (reduce to parallelogram relations)
- III. Reduce to "equation-like" relations (critical, reduced)
- IV. Simlulate the "shortening" construction for linear equations⁴

⁴Step IV. is the only place where we need residual finiteness. Otherwise, in

[&]quot;x+y=u" the domain for u may grow too fast (in general, " $x+y\neq y+x$ ").

Step I – Switch to the right formalism: algebras

 $R \subseteq A^n$ is invariant under $f : A^k \to A$, write $R \perp f$:

$$\mathbf{a^i} \in R \text{ for } 1 \leq i \leq k \ \Rightarrow \ f(\mathbf{a^1}, \dots, \mathbf{a^k}) \in R$$

Fact: $\langle \Gamma \rangle = (\Gamma^{\perp})^{\perp}$, and also $\langle \mathcal{F} \rangle = (\mathcal{F}^{\perp})^{\perp}$ (the function clone, i.e. all term functions built from \mathcal{F})

Examples

- $\langle \Gamma_{2SAT} \rangle = \{ maj \}^{\perp}$
- $\langle \Gamma_{\rm Lin} \rangle = \{x y + z\}^{\perp}$
- $\{\leq\}^{\perp}$ = all monotone Boolean functions

Observe: If $\langle \Gamma \rangle = \langle \Gamma' \rangle$, then Γ has short definitions iff Γ' does.

Thus natural to consider the polymorphism algebra $\mathbf{A} = (A; \Gamma^{\perp})$. Invariant relations are sub-[universes of]powers of \mathbf{A} , $R \leq \mathbf{A}^n$.

Step I – Switch to the right formalism: multisorted

Fundamental theorem of...

- arithmetic: $n = p_1^{e_1} \cdots p_k^{e_k}$ e.g. $6 = 2 \cdot 3$
- abelian groups: $G = \mathbb{Z}_{p_1}^{e_1} \times \cdots \times \mathbb{Z}_{p_k}^{e_k}$ e.g. $\mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3$
- general algebras: $\mathbf{A} \leq \mathbf{A_1} \times \cdots \times \mathbf{A_k}$ where $\mathbf{A_i} \in \mathrm{HSP}(\mathbf{A})$ are subdirectly irreducible (SI)

Working with subdirect decompositions...

- Residually finite = finite bound on SIs = $\exists N$ all $\mathbf{A_i} \in \mathrm{HS}(\mathbf{A}^N)$
- Multisorted relations: $R \leq A^n \longleftrightarrow R' \leq \prod_{j=1}^m \mathbf{A}_{\mathbf{i}_j}$
- \bullet Multisorted definitions over a family of algebras $\{\textbf{A}_1,\dots\,\textbf{A}_k\}$
- A has pp-definitions of length O(n^k) iff {A₁,... A_k} does,
 etc. (some technical work needed here)

Step II – Get rid of the boring case

Lemma (Kearnes, Szendrei 2012 + Brady 2022)

If Γ is invariant under a k-edge function, then every $R \in \langle \Gamma \rangle$ can be written as

$$R = R' \wedge \bigwedge_{|I| \le k} \operatorname{proj}_{I}(R)$$

for some $R' \in \langle \Gamma \rangle$ with the parallelogram property:

For every $I \subset [n]$:

$$(\bar{x},\bar{y}),(\bar{x},\bar{v}),(\bar{u},\bar{y})\in R'$$

 \Rightarrow $(\bar{u}, \bar{v}) \in R'$

[Picture by Michael]

Examples

- Γ_{Lin} : R' = R (affine subspaces have the parallelogram property)
- Γ_{2SAT} : $R' = A^n$, already $R = \bigwedge_{|I| < 2} \operatorname{proj}_I(R)$ (boring!)

Step III – Reduce to "equation-like" relations

 $R \in \langle \Gamma \rangle$ is critical if it is \land -irreducible and has no dummy variables

Lemma: Every parallelogram relation is an intersection of at most $n \cdot |A|^2$ critical parallelogram relations (c.p.r.'s).

Proof: somewhat like choosing codimension-many linear equations to define a subspace

Similarity "
$$x_1 + x_2 = x_1' + x_2'$$
 iff for some u , $x_1 + x_2 = u$ and $x_1' + x_2' = u$ "

The linkedness congruence \sim_I on $\operatorname{proj}_I R$:

$$\mathbf{x} \sim_I \mathbf{x}'$$
 iff $(\exists \mathbf{z})(R(\mathbf{x}, \mathbf{z}) \wedge R(\mathbf{x}', \mathbf{z}))$

R is reduced if $\sim_{\{i\}}$ is trivial for any $i \in [n]$.

Easy: C.p.r.'s can be defined from reduced c.p.r.'s in O(n)

Key Lemma: If R is a reduced c.p.r., then for any $I \subset [n]$ the algebra $\mathbf{A_I} = \operatorname{proj}_I R/_{\sim_I}$ is SI. (multisorted Kearnes, Szendrei)

 $\Gamma'=$ all multisorted 3-ary relations over $\mathrm{HS}(\mathbf{A}^N)$. By induction on n: a reduced c.p.r. $R\in\langle\Gamma'\rangle$ has a O(n)-long pp-definition.

Define:

$$R(x_1,\ldots,x_n) \leftrightarrow (\exists u \in \mathbf{A_{12}})(Q(x_1,x_2,u) \land R'(u,x_3,\ldots,x_n))$$

[Picture by Michael]

By Key Lemma, $\mathbf{A_{12}} = ^{\mathrm{proj}_{12} R}/_{\sim_{12}}$ is SI, so by residual finiteness it is in $\mathrm{HS}(\mathbf{A}^N)$. Thus $Q \in \Gamma'$; the arity of R' is n-1.

 $\Gamma'=$ all multisorted 3-ary relations over $\mathrm{HS}(\mathbf{A}^N)$. By induction on n: a reduced c.p.r. $R\in\langle\Gamma'\rangle$ has a O(n)-long pp-definition.

Define:

$$R(x_1,\ldots,x_n) \leftrightarrow (\exists u \in \mathbf{A_{12}})(Q(x_1,x_2,u) \land R'(u,x_3,\ldots,x_n))$$

By Key Lemma, $\mathbf{A_{12}} = \frac{\operatorname{proj}_{12} R}{\sim_{12}}$ is SI, so by residual finiteness it is in $\operatorname{HS}(\mathbf{A}^N)$. Thus $Q \in \Gamma'$; the arity of R' is n-1.

 $\Gamma'=$ all multisorted 3-ary relations over $\mathrm{HS}(\mathbf{A}^N)$. By induction on n: a reduced c.p.r. $R\in\langle\Gamma'\rangle$ has a O(n)-long pp-definition.

Define:

$$R(x_1,\ldots,x_n)\leftrightarrow (\exists u\in \mathbf{A_{12}})(Q(x_1,x_2,u)\wedge R'(u,x_3,\ldots,x_n))$$

By Key Lemma, $\mathbf{A_{12}} = \operatorname{proj}_{12} R/_{\sim_{12}}$ is SI, so by residual finiteness it is in $\operatorname{HS}(\mathbf{A}^N)$. Thus $Q \in \Gamma'$; the arity of R' is n-1.

 $\Gamma'=$ all multisorted 3-ary relations over $\mathrm{HS}(\mathbf{A}^N)$. By induction on n: a reduced c.p.r. $R\in\langle\Gamma'\rangle$ has a O(n)-long pp-definition.

Define:

$$R(x_1,\ldots,x_n)\leftrightarrow (\exists u\in \mathbf{A_{12}})(Q(x_1,x_2,u)\wedge R'(u,x_3,\ldots,x_n))$$

By Key Lemma, $\mathbf{A_{12}} = ^{\mathrm{proj}_{12}} R/_{\sim_{12}}$ is SI, so by residual finiteness it is in $\mathrm{HS}(\mathbf{A}^N)$. Thus $Q \in \Gamma'$; the arity of R' is n-1.

The application

Representing relations

A "representation" of $R \in \langle \Gamma \rangle$ must be both small and efficient

Examples

- basis of a vector subspace (+ row reduction)
- SGS of a permutation group (+ sifting in Schreier-Sims algo)

Fact: Few subpowers ⇔ small generating sets (BIMMVW 2010) But are they efficient?

Subpower membership problem SMP(A):

A is a finite algebra (e.g. the polymoprhism algebra of Γ)

input tuples $\mathbf{b}, \mathbf{a}^1, \dots, \mathbf{a}^k$ from A^n

question is **b** in the subpower generated by a^1, \ldots, a^k ?

Question (BIMMVW 2010)

Is SMP(A) in P for A with few subpowers?

Polynomial evaluability

Let **A** have few subpowers

- Question: SMP(A) in P? (BIMMVW 2010)
- Theorem: SMP(A) in NP. (Bulatov, Mayr, Szendrei 2019) If A generates a residually small variety, then SMP(A) in P.

Fact (B., Kompatscher)

Short definitions \Rightarrow SMP(**A**) in NP \cap co-NP

Proof: Guess $\phi(x_1, ..., x_n)$, verify $\phi(\mathbf{a^i})$ for $1 \le i \le k$ but $\neg \phi(\mathbf{b})$

Question (B., Kompatscher)

Given generators for R, can we compute a short pp-definition in polynomial time?

- If true, then SMP(A) in P
- True for $A = \{0, 1\}$, otherwise open