

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 22 Jan 2022 1 of 7

Sample Information

Patient Name: 張黃玉香 Gender: Female ID No.: K201582834 History No.: 42128938

Age: 77

Ordering Doctor: DOC6258D 林益庭

Ordering REQ.: 0BRCLKW Signing in Date: 2022/01/22

Path No.: S111-98213 **MP No.:** MY22002

Assay: Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2022/01/13

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Myelodysplastic Syndrome

Table of Contents	Page
Variants (Exclude variant in Taiwan	2
BioBank with >1% allele frequency)	
Biomarker Descriptions	2
Prognostic Details	4

Report Highlights 2 Relevant Biomarkers

0 Therapies Available0 Clinical Trials

Relevant Myelodysplastic Syndrome Variants

Gene	Finding	Gene	Finding
ASXL1	ASXL1 p.(Q733*) c.2197C>T	NPM1	None detected
BCOR	None detected	NRAS	None detected
CBL	None detected	NUP214	None detected
CREBBP	None detected	RUNX1	None detected
ETV6	None detected	SF3B1	None detected
EZH2	None detected	SRSF2	SRSF2 p.(P95L) c.284C>T
FLT3	None detected	STAG2	None detected
GATA2	None detected	TP53	None detected
IDH2	None detected	U2AF1	None detected
KIT	None detected	WT1	None detected
KMT2A	None detected	ZRSR2	None detected
MECOM	None detected		

Relevant Biomarkers

Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
SRSF2 p.(P95L) c.284C>T serine and arginine rich splicing factor 2 Allele Frequency: 24.62%	None	None	0
Prognostic significance: NCCN: Poor Diagnostic significance: None			
ASXL1 p.(Q733*) c.2197C>T	None	None	0
ASXL transcriptional regulator 1			
Allele Frequency: 25.90%			
Prognostic significance: NCCN: Poor Diagnostic significance: None			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources DNMT3A p.(R729G) c.2185C>G

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
DNMT3A	p.(R729G)	c.2185C>G		chr2:25463308	38.00%	NM_022552.4	missense	2000
SRSF2	p.(P95L)	c.284C>T	COSM146288	chr17:74732959	24.62%	NM_003016.4	missense	1962
ASXL1	p.(Q733*)	c.2197C>T		chr20:31022712	25.90%	NM_015338.6	nonsense	2000

Biomarker Descriptions

ASXL1 (ASXL transcriptional regulator 1)

Background: The ASXL1 gene encodes the ASXL transcriptional regulator 1 protein, a ligand-dependent co-activator and epigenetic scaffolding protein involved in transcriptional regulation^{1,2}. ASXL1 belongs to the ASXL gene family, which also includes ASXL2 and ASXL3². ASXL proteins contain a conserved c-terminal plant homeodomain (PHD) which facilitates interaction with DNA and histones^{2,3}. ASXL1 influences chromatin remodeling and transcription through interaction with BAP1 and polycomb repressive complex (PRC) proteins, as well as other transcriptional activators and repressors^{2,4}. In cancer, ASXL1 is the target of somatic mutations which often result in a truncated ASXL1 protein and loss of its PHD^{5,6,7}. Such mutations can lead to impaired protein function and consequent upregulation of HOXA gene expression, supporting a tumor suppressor role for ASXL1⁸.

Alterations and prevalence: Missense, nonsense, and frameshift mutations in ASXL1 are reported in 3-6% of de novo acute myeloid leukemia (AML), up to 36% of secondary AML, approximately 15% of myelodysplastic syndromes (MDS), up to 23% of myeloproliferative neoplasms (MPN), up to 30% of systemic mastocytosis (SM), and approximately 45% of chronic myelomonocytic leukemia (CMML)4,9,10,11,12,13,14,15,16. The ASXL1 G646Wfs*12 mutation accounts for over 50% of ASXL1 mutated cases in myeloid malignancies^{6,11,17}. This mutation results from a single nucleotide expansion that occurs within an eight base pair guanine repeat that extends from c.1927 to c.1934. It is proposed that the high prevalence of the G646Wfs*12 variant is due to replication slippage which can occur in areas of repetitive sequence¹⁸. As a consequence, detection of G646Wfs*12 may result as an artifact of PCR and/ or sequencing¹⁹. However, multiple studies observe an increase in the frequency of G646Wfs*12 in myeloid cancer relative to normal suggesting that G646Wfs*12 is a bona fide somatic mutation^{9,18,20}.

<u>Potential relevance:</u> The majority of frameshift and nonsense mutations in ASXL1 that result in protein truncation and removal of the PHD domain are considered pathogenic²¹. Mutations in ASXL1 confer poor/adverse risk in AML and are associated with poor

Biomarker Descriptions (continued)

outcomes and adverse risk¹⁶. Additionally, ASXL1 nonsense or frameshift mutations are independently associated with poor prognosis in MDS and CMML²². Moreover, ASXL1 mutations are independently associated with inferior overall survival (OS) in patients with MPN or SM^{23,24}.

DNMT3A (DNA methyltransferase 3 alpha)

Background: The DNMT3A gene encodes the DNA methyltransferase 3 alpha which functions as a de novo methyltransferase (DNMT) with equal methylation efficiency for unmethylated and hemimethylated DNA²⁵. Methylation of DNA occurs at CpG islands, a region of DNA consisting of sequential cytosine/guanine dinucleotide pairs. CpG island methylation plays an important role in development as well as stem cell regulation. Alterations to global DNA methylation patterns are dependent on DNMTs, which are associated with cancer initiation and progression^{26,27}.

Alterations and prevalence: DNMT3A mutations are observed in approximately 25% of all acute myeloid leukemia (AML) including 29-34% of AML with normal karyotype (NK-AML)^{12,16,28,29,30,31,32}. Mutations in DNMT3A are also reported in 12-18% of myelodysplastic syndromes (MDS) as well as 4-6% of melanoma, lung adenocarcinoma, and uterine cancer^{12,22}. The majority of mutations in DNMT3A are missense however, frameshift, nonsense, and splice site mutations have also been reported^{12,28}. Missense mutations at R882 are most prevalent and are observed to coexist with NPM1 and FLT3 mutations^{33,34}. The R882 mutations occur at the dimer/tetramer interface within the catalytic domain, which leads to disruption of DNMT3A tetramerization and loss of CpG methylation^{35,36}. However, DNMT3A mutations observed in AML at positions other than R882 also contribute to pathogenesis by mechanisms that do not involve methyltransferase activity³⁷.

Potential relevance: DNMT3A mutations confer shorter overall survival (OS) in patients with AML including those with NK-AML^{28,31,32,34}. DNMT3A mutations are a useful in the diagnosis of angioimmunoblastic T-cell lymphoma (AITCL) when trying to differentiate from other peripheral T-cell lymphomas (PTCL)³⁸.

SRSF2 (serine and arginine rich splicing factor 2)

<u>Background:</u> The SRFS2 gene encodes the serine/arginine (SR)-rich splicing factor 2, a member of the SR-rich family of pre-mRNA splicing factors which make up part of the spliceosome. SRFS2 contains an RNA recognition motif (RRM) that recognizes and binds exonic splicing enhancers (ESE) in a sequence-specific manner³⁹. SR proteins are essential regulators of alternative RNA splicing due to their ability to bind RNA and interact with other splicing factors. These proteins can influence the exclusion of cassette exons, a form of alternative splicing also known as exon skipping, which allows for the production of different protein isoforms^{39,40}. SRSF2 is the target of somatic missense mutations and in-frame deletions in hematological malignancies, particularly myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), and myeloproliferative neoplasms (MPN)^{41,42,43}. Such mutations in SRSF2 result in a differential gain of function which influences cassette exon exclusion, thereby supporting an oncogenic role in cancer⁴⁴.

Alterations and prevalence: Mutations in SRSF2 are observed in approximately 10% of MDS cases and 30-40% of CMML^{42,45,46}. Missense mutations at P95 are most recurrent, which leads to an amino acid change from proline to histidine (H), leucine (L), or arginine (R)⁴⁶. Specifically, the P95H substitution alters SRSF2 affinity for ESEs and drives preferential recognition of cassette exons containing C- versus G-rich ESEs^{43,44}. Although less prevalent, recurrent in-frame deletions (P95H_R102del) are observed in primary myelofibrosis (PMF)⁴⁷. This mutation results in the deletion of 8 amino acids which has been shown to exhibit greater variation of splicing events relative to the P95 missense mutation alone⁴⁸.

Potential relevance: In CMML, SRSF2 mutations are often enriched and can be used to support diagnosis^{22,49}. SRSF2 mutations confer poor prognosis in MDS and systemic mastocytosis (SM) and are associated with decreased overall survival (OS)^{22,24,50}. In MPN, SRSF2 mutations are considered high-risk mutations and are independently associated with inferior OS as well as leukemia-free survival^{23,51}. Additionally, SRSF2 mutations are predictive of leukemic transformation in patients with PMF²³.

Prognostic Details

Current NCCN Information

NCCN information is current as of 2021-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

SRSF2 p.(P95L) c.284C>T

Prognostic significance: NCCN: Poor

Cancer type: Myelodysplastic Syndrome Variant class: SRSF2 P95 mutation

NCCN Recommendation category: 2A

Summary:

■ NCCN Guidelines® associate the biomarker with poor prognosis

Reference: NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2022]

ASXL1 p.(Q733*) c.2197C>T

Prognostic significance: NCCN: Poor

Cancer type: Myelodysplastic Syndrome Variant class: ASXL1 truncating mutation

NCCN Recommendation category: 2A

Summary:

■ NCCN Guidelines® independently associate the biomarker with poor prognosis in MDS and CMML

Reference: NCCN Guidelines® - NCCN-Myelodysplastic Syndromes [Version 1.2022]

Date: 22 Jan 2022 5 of 7 **Signatures**

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Katoh. Functional and cancer genomics of ASXL family members. Br. J. Cancer. 2013 Jul 23;109(2):299-306. PMID: 23736028
- 3. Gelsi-Boyer et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol. 2009 Jun;145(6):788-800. PMID: 19388938
- 4. Gelsi-Boyer et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012 Mar 21;5:12. doi: 10.1186/1756-8722-5-12. PMID: 22436456
- 5. Larsson et al. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol. Cancer Res. 2013 Aug;11(8):815-27. PMID: 23645565
- 6. Alvarez et al. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr Med Res Opin. 2018 May;34(5):757-763. PMID: 28027687
- 7. Yang et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018 Jan 18;131(3):328-341. PMID: 29113963
- Abdel-Wahab et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012 Aug 14;22(2):180-93. PMID: 22897849
- Alberti et al. Discriminating a common somatic ASXL1 mutation (c.1934dup; p.G646Wfs*12) from artifact in myeloid malignancies using NGS. Leukemia. 2018 Aug;32(8):1874-1878. PMID: 29959414
- 10. Kakosaiou et al. ASXL1 mutations in AML are associated with specific clinical and cytogenetic characteristics. Leuk. Lymphoma. 2018 Oct;59(10):2439-2446. PMID: 29411666
- 11. Paschka et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015 Mar;100(3):324-30. PMID: 25596267
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Jawhar et al. The clinical and molecular diversity of mast cell leukemia with or without associated hematologic neoplasm. Haematologica. 2017 Jun;102(6):1035-1043. PMID: 28255023
- 14. Jawhar et al. KIT D816 mutated/CBF-negative acute myeloid leukemia: a poor-risk subtype associated with systemic mastocytosis. Leukemia. 2019 May;33(5):1124-1134. PMID: 30635631
- 15. Damaj et al. ASXL1 but not TET2 mutations adversely impact overall survival of patients suffering systemic mastocytosis with associated clonal hematologic non-mast-cell diseases. PLoS ONE. 2014;9(1):e85362. PMID: 24465546
- 16. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 3.2021]
- 17. Boultwood et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia. 2010 May;24(5):1062-5. doi: 10.1038/leu.2010.20. Epub 2010 Feb 25. PMID: 20182461
- 18. Yannakou et al. ASXL1 c.1934dup;p.Gly646Trpfs*12-a true somatic alteration requiring a new approach. Blood Cancer J. 2017 Dec 15;7(12):656. doi: 10.1038/s41408-017-0025-8. PMID: 29242575
- 19. Abdel-Wahab et al. The most commonly reported variant in ASXL1 (c.1934dupG;p.Gly646TrpfsX12) is not a somatic alteration. Leukemia. 2010 Sep;24(9):1656-7. doi: 10.1038/leu.2010.144. Epub 2010 Jul 1. PMID: 20596031
- 20. Montes-Moreno et al. Clinical molecular testing for ASXL1 c.1934dupG p.Gly646fs mutation in hematologic neoplasms in the NGS era. PLoS ONE. 2018;13(9):e0204218. PMID: 30222780
- 21. Landrum et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018 Jan 4;46(D1):D1062-D1067. PMID: 29165669
- 22. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2022]
- 23. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 2.2021]
- 24. NCCN Guidelines® NCCN-Systemic Mastocytosis [Version 1.2020]
- 25. Okano et al. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998 Jul;19(3):219-20. PMID: 9662389
- 26. Fernandez et al. A DNA methylation fingerprint of 1628 human samples. Genome Res. 2012 Feb;22(2):407-19. PMID: 21613409
- 27. Jones et al. The epigenomics of cancer. Cell. 2007 Feb 23;128(4):683-92. PMID: 17320506
- 28. Ley et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 2010 Dec 16;363(25):2424-33. PMID: 21067377
- 29. Marková et al. Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia. Eur. J. Haematol. 2012 Feb;88(2):128-35. PMID: 21967546
- 30. Yang et al. DNMT3A in haematological malignancies. Nat. Rev. Cancer. 2015 Mar;15(3):152-65. PMID: 25693834

References (continued)

- 31. Renneville et al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia. 2012 Jun;26(6):1247-54. PMID: 22289988
- 32. Marcucci et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J. Clin. Oncol. 2012 Mar 1;30(7):742-50. PMID: 22291079
- 33. Kumar et al. DNMT3A (R882) mutation features and prognostic effect in acute myeloid leukemia in Coexistent with NPM1 and FLT3 mutations. Hematol Oncol Stem Cell Ther. 2018 Jun;11(2):82-89. PMID: 29079128
- 34. Thol et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J. Clin. Oncol. 2011 Jul 20;29(21):2889-96. PMID: 21670448
- 35. Sandoval et al. Mutations in the DNMT3A DNA methyltransferase in acute myeloid leukemia patients cause both loss and gain of function and differential regulation by protein partners. J. Biol. Chem. 2019 Mar 29:294(13):4898-4910. PMID: 30705090
- 36. Holz-Schietinger et al. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J. Biol. Chem. 2012 Sep 7;287(37):30941-51. PMID: 22722925
- 37. Russler-Germain et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell. 2014 Apr 14;25(4):442-54. PMID: 24656771
- 38. NCCN Guidelines® NCCN-T-Cell Lymphomas [Version 1.2021]
- 39. Liang et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia. 2018 Dec;32(12):2659-2671. PMID: 29858584
- 40. Cui et al. Comparative Analysis and Classification of Cassette Exons and Constitutive Exons. Biomed Res Int. 2017;2017:7323508. doi: 10.1155/2017/7323508. Epub 2017 Dec 4. PMID: 29349080
- 41. Meggendorfer et al. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2018 May;103(5):e192-e195. PMID: 29700173
- 42. Arbab et al. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology. 2018 Dec;23(10):778-784. PMID: 29757120
- 43. Kim et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell. 2015 May 11;27(5):617-30. PMID: 25965569
- 44. Zhang et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl. Acad. Sci. U.S.A. 2015 Aug 25;112(34):E4726-34. PMID: 26261309
- 45. Ethan et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017 Aug;7(8):818-831. PMID: 28572459
- 46. Thol et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012 Apr 12;119(15):3578-84. PMID: 22389253
- 47. Lasho et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood. 2012 Nov 15;120(20):4168-71. PMID: 22968464
- 48. Komeno et al. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Mol. Cell. Biol. 2015 Sep 1;35(17):3071-82. PMID: 26124281
- 49. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 50. Jawhar et al. Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis. Leukemia. 2016 Dec;30(12):2342-2350. PMID: 27416984
- 51. Vannucchi et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013 Sep;27(9):1861-9. PMID: 23619563