

BEST AVAILABLE COPY

(12)特許協力条約に基づいて公開された国際出願

6
9

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年12月23日 (23.12.2004)

PCT

(10) 国際公開番号
WO 2004/111644 A1

(51) 国際特許分類⁷: G01N 33/53, 37/00, 21/64,
C12M 1/00, C12N 15/00, C12Q 1/68

五県和光市広沢2番1号 独立行政法人理化学研究所内 Saitama (JP).

(21) 国際出願番号: PCT/JP2004/008413

(74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒1040031 東京都中央区京橋一丁目8番7号 京橋日殖ビル8階 Tokyo (JP).

(22) 国際出願日: 2004年6月9日 (09.06.2004)

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2003-170051 2003年6月13日 (13.06.2003) JP
特願2003-391083 2003年11月20日 (20.11.2003) JP

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) 出願人(米国を除く全ての指定国について): 独立行政法人理化学研究所 (RIKEN) [JP/JP]; 〒3510198 埼玉県和光市広沢2番1号 Saitama (JP).

添付公開書類:
— 國際調査報告書

(72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 田代 英夫 (TASHIRO, Hideo) [JP/JP]; 〒3510198 埼玉県和光市広沢2番1号 独立行政法人理化学研究所内 Saitama (JP). 近藤 耕光 (KONDOH, Yasumitsu) [JP/JP]; 〒3510198 埼玉県和光市広沢2番1号 独立行政法人理化学研究所内 Saitama (JP). 橋内 徳司 (KITSUNAI, Tokaji) [JP/JP]; 〒3510198 埼玉県和光市広沢2番1号 独立行政法人理化学研究所内 Saitama (JP). 昌山 哲 (HATAKEYAMA, Satoshi) [JP/JP]; 〒3510198 埼

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドノート」を参照。

(54) Title: SUBSTRATE FOR BIOMOLECULE MICROARRAY, BIOMOLECULE MICROARRAY, DEVICE AND METHOD FOR INTERACTION ACCELERATION, AND INTERACTION DETECTING METHOD

(54) 発明の名称: 生体分子マイクロアレイ用基板、生体分子マイクロアレイ、相互作用促進用装置および方法、ならびに、相互作用の検出方法

(57) Abstract: A substrate for a biomolecule microarray having one or more spots for biomolecule immobilization. Each spot projects from the surface of the substrate and has a flat surface for a spot at the top, and at least the areas of the substrate around the projecting spots, a projecting spot side surface, and the flat surface are made of a conductive material. Alternatively, each spot projects from the surface of the substrate and has a flat surface for a spot at the top, adjacent projecting spots are jointed with their projecting spot side surfaces, and at least projecting spot side surface and the flat surface are made of a conductive material. A biomolecule interaction acceleration device is also disclosed which has an electrode so disposed as to face the surface of the microarray on which a biomolecule immobilization spot is provided and a power supply for applying an electric field between the microarray and the electrode.

WO 2004/111644 A1

/統葉有/

(57) 要約:

基板表面に、生体分子固定化用スポットを1つ以上有する生体分子マイクロアレイ用基板。前記生体分子固定化用スポットは、基板表面から突出し、かつ頂上にスポット用平面を有し、かつ少なくとも、前記突出スポット部周辺の基板表面、突出スポット不足面、およびスポット用平面は、導電性物質からなるか、または、基板表面から突出し、かつ頂上にスポット用平面を有し、隣り合う突出スポット部は、突出スポット部側面によって隣接しており、かつ少なくとも、前記突出スポット部側面及びスポット用平面は、導電性物質からなる。前記マイクロアレイの生体分子固定化スポットを有する面に対向するように設けられた電極、および前記マイクロアレイと前記電極との間に電界を印加するための電源を有する生体分子の相互作用促進用装置。

明細書

生体分子マイクロアレイ用基板、生体分子マイクロアレイ、相互作用促進用装置 および方法、ならびに、相互作用の検出方法

技術分野

本発明は、生体分子固定の定量化及びデジタル解析が可能な生体分子マイクロアレイ用基板、前記基板に生体分子が固定されていることを特徴とする生体分子マイクロアレイ、前記マイクロアレイを用いる、生体分子の相互作用促進用装置および相互作用促進方法、ならびに、生体分子の相互作用の検出方法に関する。

背景技術

遺伝子診断や病原菌の特定、あるいは一塩基多型の検出等、ある種の核酸(ターゲット核酸)を検出する目的で、プローブ核酸とターゲット核酸とのハイブリダイゼーションが利用されている。近年、多数のプローブ核酸を基板に固定したDNAチップやDNAマイクロアレイが実用されるようになり、ターゲット核酸の検出に使用されている。

DNAチップやDNAマイクロアレイの作製においては、基板にDNAを多数スポットとして整列させて固定化する必要がある。DNAの固定化には、例えば、チオールを一本鎖DNAに接合させ、チオール化した一本鎖DNAを、例えば、金属基板に固定化する方法が取られている。そして、固定化されたDNAに被検

体であるターゲットDNAを作用させ、ハイブリダイゼーションの有無を検出する。ハイブリダイゼーションの有無は、例えば、蛍光法を用いて、ターゲットDNAとハイブリダイズした固定化DNAのスポットの蛍光を測定することによって検出することができる。

スポットティング型のDNAマイクロアレイは、プローブDNAを含む液滴を基板上に載せて乾かすことによって作製される。そのため、安価に作製できるという利点がある反面、基板上に固定されるDNAの均一さが保証されない、すなわち、DNA検出スポット部の寸法や形状がばらつくという欠点がある。これらの欠点は、例えばDNA固定化基板において基板全面にDNA固定化処理（PLL処理）がされていることや、また基板面が平らであることなどに起因する。

さらに、スポットティング型のDNAマイクロアレイの場合、DNA検出スポット部の周囲に付着した固相化剤の存在により、ターゲットDNAが非特異的に基板上に吸着し、ノイズの上昇を引き起こし、S/N比を低下させるという問題もあった。

また、蛍光測定時において、蛍光部分を特定するグリッディングという操作が行われる。グリッディングは、アレイ上のスポットの縦横の数やスポット間隔、スポットの直径の大きさを入力し、スポットを円で囲む操作をいう（「必ずデータが出るDNAマイクロアレイ実践マニュアル 基本原理、チップ作製技術からバイオインフォマティクスまで」、第1版、羊土社、2002年12月1日、p. 19-21、35、106-108参照）。しかし、スタンプ形状および位置が安定していないと、蛍光解析時のグリッディング操作に非常に時間がかかる上、正確

な解析が困難となる。また、グリッティングは、スポットの位置がずれているとスポットを正確に囲むことが出来ないため、ソフトウェアに、自動で位置を補正する機能が付いている。しかるに、すべての操作が自動になっているわけではなく、手動でスポットの開始点の設定や目視によりすべてのスポットのグリッドを確認し補正する必要がある。この操作は非常に煩雑であり、DNAスポットの数が数千以上になると非常に時間がかかる作業となり、解析スピードを遅らせる要因となっている。

一方、基板上に固定化されたプローブDNAと試料ターゲットDNAをハイブリダイゼーションさせるには、通常、十数時間要し、しかも、多量の試料ターゲットDNAが必要とされる。そのため、ハイブリダイゼーション時間および大量の試料の調製に、莫大な時間と費用、労力が必要とされている。特に、低発現遺伝子の解析を行う場合、極めて多くのターゲット試料が必要となる。

そこで本発明の目的は、生体分子マイクロアレイに一定形状の生体分子固定化領域をもつ基板及び生体分子の相互作用、特に核酸のハイブリダイゼーションを高速に行い、かつ微量サンプルの相互作用を促進させ、さらに高速・高感度に相互作用を検出し解析する手段を提供することである。

更に、本発明は、生体分子の相互作用を促進して、相互作用し得る生体分子間で効率的に相互作用を形成させることができる相互作用促進用装置および方法を提供することを目的とする。

更に、本発明は、グリッティング操作を自動で行う手段を提供することにより、

生体分子マイクロアレイからの蛍光データの収集およびデジタル解析の自動化を可能にすることを目的とする。

より詳しくは、本発明は、高感度で生体分子の相互作用を検出でき、好ましくは、併せてグリッティングを自動で行うこともできる生体分子マイクロアレイ用基板、そのような基板に生体分子が固定化された生体分子マイクロアレイを提供することを目的とする。

更に、本発明は、グリッティングを自動で行うことを可能にする生体分子の相互作用の検出方法を提供することを目的とする。

発明の開示

上記本発明の目的を達成するための手段は、以下の通りである。

(1) 基板表面に、生体分子固定化用スポットを1つ以上有する生体分子マイクロアレイ用基板であって、

前記生体分子固定化用スポットが、基板表面から突出し、かつ頂上にスポット用平面を有し(以下、「突出スポット部」という)、かつ

少なくとも、前記突出スポット部周辺の基板表面、突出スポット部側面、およびスポット用平面が、導電性物質からなることを特徴とする基板。

(2) 前記突出スポット部周辺の基板表面が、略V字型底面を形成する(1)に記載の基板。

(3) 基板表面に、生体分子固定化用スポットを1つ以上有する生体分子マイクロアレイ用基板であって、

前記生体分子固定化用スポットが、基板表面から突出し、かつ頂上にスポット用平面を有し（以下、「突出スポット部」という）、

隣り合う突出スポット部は、突出スポット部側面によって隣接しており、かつ、少なくとも、前記突出スポット部側面およびスポット用平面が、導電性物質からなることを特徴とする基板。

（4）前記導電性物質が、金、ニッケル、白金、銀、チタン、アルミニウム、ステンレス、銅、導電性酸化物、または導電性プラスチックである（1）～（3）のいずれかに記載の基板。

（5）前記基板は、基板全体が導電性物質からなるか、または、基板表面に導電性物質被覆層を有する（1）～（4）のいずれか1項に記載の基板。

（6）前記導電性被覆層を有する基板が、ガラス、金属、シリコン、またはプラスチックからなる（5）に記載の基板。

（7）前記突出スポット部の高さが、 $10 \sim 500 \mu m$ である（1）～（6）のいずれかに記載の基板。

（8）前記突出スポット部頂上のスポット用平面と前記突出スポット部側面とのなす角が、90度以上である（1）～（7）のいずれかに記載の基板。

（9）前記スポット用平面が粗面化されている（1）～（8）のいずれかに記載の基板。

（10）（1）～（9）のいずれか1項に記載の基板および生体分子を含み、生体分子は、前記基板上の少なくともスポット用平面に固定化されていることを特徴とする生体分子マイクロアレイ。

（11）前記生体分子は、DNA、RNA、PNA、蛋白、ポリペプチド、糖化合物、脂質、天然低分子、および合成低分子からなる群から選ばれる少なくとも一種である（10）に記載の生体分子マイクロアレイ。

(12) 基板上に1つ以上の生体分子固定化スポットを有する生体分子マイクロアレイ、

前記マイクロアレイの生体分子固定化スポットを有する面に対向するように設けられた電極、および

前記マイクロアレイと前記電極との間に電界を印加するための電源を有する、生体分子の相互作用促進用装置であって、

前記生体分子マイクロアレイを構成する基板は、基板表面から突出し、かつ頂上にスポット用平面を有する生体分子固定化用スポット(以下、「突出スポット部」という)を有し、

少なくとも前記突出スポット部は導電性物質表面を有し、

前記スポット用平面の導電性物質表面に生体分子が固定化され、前記生体分子固定化スポットが形成されており、かつ

前記基板は、前記基板上の突出スポット部以外の表面に、前記突出スポット部の導電性物質表面と通電可能な端子を有することを特徴とする、生体分子の相互作用促進用装置。

(13) 前記基板上の突出スポット部以外の表面は、導電性物質被覆層を有し、前記端子は、前記導電性物質被覆層に含まれるか、または、前記導電性物質被覆層と通電可能であり、かつこの導電性物質被覆層と突出スポット部の導電性物質表面とは、一体の導電性物質被覆層として設けられている(12)に記載の装置。

(14) 前記生体分子マイクロアレイが、(10)または(11)に記載の生体分子マイクロアレイである(12)または(13)に記載の装置。

(15) 前記スポット用平面と電極との距離が、1～500μmである(12)～(14)のいずれかに記載の装置。

(16) 前記マイクロアレイと電極との間に、非導電性スペーサーを有する(1

2) ~ (15) のいずれかに記載の装置。

(17) 前記マイクロアレイの生体分子スポットを有する面に対向するように設けられた電極が、透明電極である (12) ~ (16) のいずれかに記載の装置。

(18) 温度制御手段を更に有する (12) ~ (17) のいずれかに記載の装置。

(19) (12) ~ (18) のいずれかに記載の装置を用いる、生体分子の相互作用促進方法であつて、

前記マイクロアレイと電極との間に、ターゲット生体分子を含む溶液を配置し、かつ、

前記マイクロアレイと電極との間に電界を印加することを特徴とする、生体分子の相互作用促進方法。

(20) 前記マイクロアレイと電極との間に印加される電界が、0.001~1.0MV/mである (19) に記載の方法。

(21) 前記ターゲット生体分子が、蛍光標識されている (19) または (20) に記載の方法。

(22) 前記ターゲット生体分子を含む溶液が、フェニルアラニン、ヒスチジン、カルノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー物質を含む、(19) ~ (21) のいずれかに記載の方法。

(23) ターゲット生体分子と相互作用し得る環境下に置かれているか、または、ターゲット生体分子と相互作用し得る環境下に置かれていた (10) または (11) に記載のマイクロアレイの各生体分子固定化スポット上の生体分子と前記ターゲット生体分子との間の相互作用を、共焦点型検出器によって検出することを特徴とする生体分子の相互作用の検出方法。

(24) 前記マイクロアレイは、(19) ~ (22) のいずれかに記載の方法を用いて、ターゲット生体分子と相互作用し得る環境下に置かれているか、または、

ターゲット生体分子と相互作用し得る環境下に置かれていた、(23)に記載の方法。

(25) 前記固定化スポット上の生体分子および／または前記ターゲット生体分子が蛍光標識されている(23)または(24)に記載の方法。

(26) 前記共焦点型検出器によって、マイクロアレイ表面の突出スポット部とそれ以外の部分の高さおよび／または形状の差による反射光強度の相違から、マイクロアレイ上の前記突出スポット部を反射像として検出する(23)～(25)のいずれかに記載の方法。

(27) 前記反射像として検出された突出スポット部からの蛍光を検出することにより、生体分子の相互作用を検出する(26)に記載の検出方法。

(28) 基板表面に生体分子が固定化されたスポットを1つ以上有する生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させ、前記固定化された生体分子とターゲット生体分子とを相互作用させる方法であって、

前記ターゲット生体分子を含む溶液に、フェニルアラニンを含有させ、かつ、前記生体分子固定化スポットに向けて溶液中のターゲット生体分子が泳動するよう前に前記溶液に電界を印加して、前記相互作用を促進する、前記方法。

(29) 前記マイクロアレイが、生体分子固定化スポットを表面に設けた電極を基板上に有するものであり、前記基板上の電極と対向する電極を用い、かつ前記ターゲット生体分子を含む溶液が前記2つの電極と接触する状態で、前記電極間に前記電界の印加を行う(28)に記載の方法。

(30) 基板表面に生体分子が固定化されたスポットを1つ以上有する生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させ、前記固定化された生体分子とターゲット生体分子とを相互作用させる方法であって、

前記ターゲット生体分子を含む溶液は、フェニルアラニン、ヒスチジン、カル

ノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー物質を含有し、

前記基板は、生体分子固定化スポットを設けた面と同一の面上に、少なくとも1つの対向する一対の電極を、前記一対の電極間に生体分子固定化スポットが位置するように設けたものであり、かつ

前記ターゲット生体分子を含む溶液が上記一対の電極と接触する状態で、上記電極間に電界の印加を行い、前記相互作用を促進する、前記方法。

図面の簡単な説明

図1は、本発明で使用される共焦点型検出器の光学系の概略図である。

図2は、本発明の基板上の突出スポット部の概略図である。

図3は、本発明の基板の粗面化されたスポット用平面の一例（部分拡大図）を示す。

図4は、略V字型底面を有する基板の一部の拡大図を示す。

図5は、本発明の第二の態様の基板の一例を示す。

図6は、本発明の生体分子の相互作用促進用装置の概略図を示す。

図7は、反射光と蛍光とを同時に検出することができる共焦点型スキャナーの光学系の概略図を示す。

図8は、実施例1で作製した基板のデジタルカメラ像および共焦点顕微鏡像である。

図9は、実施例2で得られた蛍光像（a）、反射像（b）、および、蛍光像と反射像とを重ね合わせた像（c）である。

図10は、実施例3で得られた反射像および蛍光像である。

図11は、実施例4で得られた反射像および蛍光像である。

図12は、実施例4におけるターゲット濃度と蛍光強度との相関を示すグラフである。

図13は、本発明の生体分子を相互作用させる方法に使用することができる基板の一例である。

図14は、実施例5で得られたハイブリダイゼーションシグナル強度を示すグラフである。

図15は、実施例6において、電界を印加した場合に得られたハイブリダイゼーションシグナルと電界を印加しなかった場合に得られたハイブリダイゼーションシグナルを比較したグラフである。

発明を実施するための最良の形態

以下、本発明について更に詳細に説明する。

[基板]

本発明の生体分子マイクロアレイ用基板は、基板表面に、生体分子固定化用スポットを1つ以上有する生体分子マイクロアレイ用基板であって、前記生体分子固定化用スポットが、基板表面から突出し、かつ頂上にスポット用平面を有する(以下、「突出スポット部」という)。更に、本発明の生体分子マイクロアレイ用基板は、少なくとも、前記突出スポット部周辺の基板表面、突出スポット部側面、およびスポット用平面が、導電性物質からなるか(以下、「第一の態様」という)、または、隣り合う突出スポット部は、突出スポット部側面によって隣接しており、かつ、少なくとも、前記突出スポット部側面およびスポット用平面が、導電性物

質からなる（以下、「第二の態様」という）ことを特徴とする。

本発明の基板では、生体分子固定化用スポットが、突出スポット部の頂上の平面に設けられている。そのため、本発明の第一の態様の基板では、前記突出スポット部頂上のスポット用平面（生体分子固定化用スポット）は、前記突出スポット部周辺の基板表面より一段高い位置にあり、両者間に高低差が生じる。

一方、本発明において、生体分子の相互作用の検出に用いられる共焦点型検出器は、試料上の焦点面からの反射光や蛍光を、光学系の結像面に置かれたピンホールに通して検出する。図1に、本発明で使用される共焦点型検出器10の光学系の概略図を示す。図1の実線aは、入射光を表す。実線bは、焦点面からの反射光または蛍光を表し、破線は、非焦点面からの反射光または蛍光を表す。共焦点型検出器10では、マイクロアレイ1上の焦点面から反射した反射光、および、試料上の焦点面から放出された蛍光は、対物レンズ2を通ってビームスプリッター3へ入射し、ビームスプリッター3によって、検出レンズ4へ垂直に入射するように光路が修正され、検出レンズ4を経て、結像面5へ入射する。共焦点型検出器10は、試料上での焦点が、結像面でも焦点となるように設計されている。よって、試料上の焦点面からの光は、結像面5で焦点を結び、ピンホール6を通過して、検出部7で検出される。一方、試料上の非焦点面からの光は、結像面5で焦点を結ばないため、大部分がピンホール6を通過せず、検出部7において検出されない。このように、共焦点型検出器によれば、焦点面からの光を、選択的に検出することができる。

本発明の第一の態様の基板では、前記突出スポット部周辺の基板表面と、前記突出スポット部頂上のスポット用平面（生体分子固定化用スポット）との高低差

が、生体分子とターゲット生体分子との相互作用の検出において使用する共焦点型検出器の焦点深度以上であれば、共焦点型検出器の焦点を、突出スポット部頂上のスポット用平面の高さに合わせることにより、検出器において、突出部周辺の基板表面からの蛍光や反射光よりも、突出スポット部頂上のスポット用平面からの蛍光や反射光を、より高い強度で検出することができる。従って、本発明の基板の突出スポット部頂上のスポット用平面に生体分子を固定化したマイクロアレイでは、スポット上の情報、例えば、ターゲット生体分子との相互作用の有無を、高感度で検出することができる。

本発明の第二の態様の基板は、隣り合う突出スポット部が、突出スポット部側面によって隣接しており、かつ、少なくとも、前記突出スポット部側面およびスポット用平面が、導電性物質からなることを特徴とする。本発明の第二の態様の基板の一例を、図5に示す。

本発明の第一および第二の態様の基板において、前記突出スポット部頂上のスポット用平面と前記突出スポット部側面とのなす角は、90度以上であることが好ましい。好ましくは、90～135度である。図2(a)は、本発明の基板の一部の断面図である。ここで、「突出スポット部頂上のスポット用平面と突出スポット部側面とのなす角」とは、図2(a)における角度 θ をいう。角度 θ は、例えば、突出スポット部を、突出スポット部周辺の基板表面に対して垂直に切断し、その断面から求めることができる。

このように、本発明の基板において、突出スポット部頂上のスポット用平面と突出スポット部側面とのなす角が90度以上であることにより、即ち、突出ス

ット部底面の大きさが、突出スポット部頂上のスポット用平面の大きさ以上であることにより、グリッティングを自動で行って、生体分子固定化用スポットの位置および大きさを特定することができるという利点がある。以下に、この点について、詳述する。

図2 (a) に示すように、突出スポット部頂上のスポット用平面と突出スポット部側面とのなす角が90度以上である場合、共焦点型の検出器を使用して反射光を検出する際に、突出スポット部頂上のスポット用平面に対して垂直な方向から照射した光（図2 (a) に矢印で表される光）に対する突出スポット部側面からの反射光は、入射光と同一方向には反射しない。一方、突出スポット部頂上のスポット用平面からの反射光は、入射光と同一方向に反射する。このため、共焦点型検出器では、突出スポット部頂上のスポット用平面からの反射光のみが検出され、側面からの反射光は検出されない。こうして得られた反射像には、突出スポット部頂上のスポット用平面に相当する像が、反射像として得られ、突出スポット部側面に相当する部分は、反射光がほとんど検出されないので黒色の縁取りとして表れる。この反射像では、黒い縁取りの内部が生体分子スポットに相当するため、この反射像により、スポットの大きさおよび位置を特定することができる。本発明では、このような原理により、自動グリッティングを行うことが可能である。

また、本発明の第一の態様の基板において、突出スポット部の高さが相互作用の検出に使用する共焦点型検出器の焦点深度以上である場合は、共焦点型検出器の焦点を、突出スポット部頂上のスポット用平面の高さに合わせれば、突出スポット部周辺の基板表面からの反射光は、焦点が合わないため、突出スポット部頂

上のスポット用平面からの反射光よりもはるかに弱い強度でしか、検出されない。本発明では、この高低差を利用して自動グリッティングを行うことも可能である。但し、前記突出スポット部の高さが相互作用の検出に使用する共焦点型検出器の焦点深度より小さい場合であっても、前述のように、反射像において、突出スポット部側面に相当する部分が黒色の縁取りとして表れれば、スポットの大きさおよび位置を特定することが可能である。

また、本発明の第一の態様の基板では、前記突出スポット部頂上のスポット用平面と突出スポット部側面とのなす角が90度未満であっても、突出スポット部の高さが相互作用の検出に使用する共焦点型検出器の焦点深度以上である場合は、スポット用平面と、突出スポット部周辺の基板表面との高低差を利用して、反射像によって、スポット用平面の位置および大きさを特定し、自動でグリッティングを行うことができる。前記突出スポット部頂上のスポット用平面と突出スポット部側面とのなす角が90度である場合、前記突出スポット部の形状は、例えば、円柱状または角柱状であることができる。

さらに、本発明の第一の態様の基板は、前記突出スポット部頂上のスポット用平面と前記突出スポット部側面とのなす角が、90度以上であり、かつ、前記突出スポット周辺の基板表面が、略V字型底面を形成する基板であることもできる。このような基板では、共焦点型検出器で検出されるスポット用平面からの反射光強度が、基板上のスポット用平面以外の部分からの反射光強度より強くなるため、この反射光強度の違いにより、スポット用平面の位置および大きさを特定することができる。図4は、「略V字型底面」を有する基板の一部の拡大図である。本発明において、「略V字型底面」とは、例えば、隣り合う突出スポット部間の突出ス

スポット部周辺の基板表面が平面ではなく、図4に示すように、略V字を形成していることをいう。

更に、本発明の第一の態様の基板は、少なくとも、前記突出スポット部周辺の基板表面、突出スポット部側面、およびスポット用平面が、導電性物質からなることを特徴とする。製造の容易さや製造コストを考慮すれば、本発明の第一の態様の基板は、基板上の、前記突出スポット周辺以外の基板表面も、導電性物質からなるものであることが好ましい。また、本発明の第二の態様の基板は、少なくともと突出スポット部側面および突出スポット部平面が、導電性物質からなることを特徴とする。

本発明では、前記のように、第一の態様の基板においては、少なくとも、突出スポット部周辺の基板表面、突出スポット部側面、およびスポット用平面が、第二の態様の基板においては、少なくとも、突出スポット部側面およびスポット用平面が、導電性物質からなることにより、後述するように、前記基板に対向する電極を設け、電界を印加することによって、スポット用平面に固定化された生体分子とターゲット生体分子との相互作用を促進することができる。例えば、ターゲット生体分子の濃度が低い場合でも、良好な相互作用結果を得ることができ、また、濃度が同一の場合には、より短時間で所定の相互作用結果を得ることができる。

また、本発明では、前記導電性物質が、光を反射する性質を有するものであれば、反射光によって、生体分子固定化スポットの大きさおよび位置を特定し、自動でグリッティングを行うことができる。この点については後述する。

本発明において、前記突出スポット部の高さは、相互作用の検出において使用する共焦点型検出器の焦点深度以上の高さになるように、適宜設定することができる。通常の共焦点型検出器の焦点深度を考慮すると、前記突出スポット部の高さは、例えば、 $10 \sim 500 \mu m$ とすることができます。但し、前述のように、基板上の突出スポット部頂上のスポット用平面とそれ以外の部分との形状の差による反射光強度の相違を検出することによって自動グリッティングを行う場合は、前記突出スポット部の高さが相互作用の検出に使用する共焦点型検出器の焦点深度より小さくても、自動グリッティングが可能である。この点については、後述する。

また、前記突出スポット部の高さを決定する際は、生体分子のスポット形成(スタンピング)に使用するニードルの直径や、プローブ核酸等の生体分子溶液のスポット量も考慮する必要がある。例えば、直径 $100 \mu m$ の円形の突出スポット部に対して直径 $130 \mu m$ 程度のニードルを用いて生体分子をスポットする場合、突出スポット部の高さが $15 \mu m$ 以上であれば、表面張力のため、突出スポット部頂上のスポット用平面から生体分子溶液が流れ出すことなく、固定化用スポットのみに、生体分子が固定化されるため、好ましい。

本発明の基板において、突出スポット部頂上のスポット用平面の形状は、スポットされた生体分子を保持し得る形状であれば、いずれの形状であることもでき、例えば、円形や正方形であることができる。前記スポット用平面の大きさは、スポットに用いるニードルやスポットする生体分子溶液の量に応じて適宜設定することができ、例えば、 $10 \sim 500 \mu m$ とすることができます。ここで、「スポット

用平面の大きさ」とは、例えば、スポット用平面の形状が円形の場合は、その直径をいい、スポット用平面の形状が正方形の場合は、その一边の長さをいう。

突出スポット部底面の形状は、特に限定されないが、製造の容易さ等を考慮すれば、スポット用平面と同様の形状であることが好ましい。図2（b）は、本発明の基板上の突出スポット部の概略図である。ここで、「突出スポット部底面の形状」とは、図2（b）の斜線部をいう。

前記突出スポット部頂上のスポット用平面は、粗面化されていてもよい。例えば、前記突出スポット部頂上のスポット用平面は、深さ方向と略水平方向に、相互作用の検出において使用する共焦点型検出器の焦点深度以内の深さの凹凸を有していてもよい。図3に、粗面化されたスポット用平面の一例（部分拡大図）を示す。粗面化されたスポット用平面の一例としては、図3に示すような、数 μm 角の格子状の形状を設けたスポット用平面を挙げることができる。このように、スポット用平面が粗面化されていることにより、後述するように、電気泳動または誘電泳動によるターゲット生体分子の濃縮効果を得る場合に、凹凸の角（エッジ）部分に強電界が生じ、相互作用が更に促進されるという利点がある。

スポット用平面の粗面化方法は特に限定されず、例えば、本発明の基板がプラスチック成型基板の場合、フォトリソグラフィーによりエッチングした母材を、電鋳法により反転写した微細加工金型を用いることにより、スポット用平面が粗面化された基板を製作することができる。

本発明の基板は、基板全体が導電性物質からなるか、また、基板表面に導電性物質被覆層を有するものであることができる。

前述のように、反射像によって自動グリッティングを行う場合には、前記導電性物質は、光を反射する性質を有する物質から選択する。

また、金属とチオール基との結合を利用して、プローブ核酸の固定化を行う場合は、前記導電性物質は、チオール基と結合性を有する金属から選択する。

前記導電性物質としては、例えば、金属（例えば、金、ニッケル、白金、銀、チタン、アルミニウム、ステンレス、銅）、導電性酸化物（例えば、 In_2O_5/SnO_2 ）および導電性プラスチック（例えば、ポリアセチレン）を挙げることができる。

また、導電性物質被覆層を有する基板としては、ガラス、シリコン、プラスチック、具体的には、ポリプロピレン等の基板の表面に、前記導電性物質を被覆したものを見ることができる。基板上の導電性物質被覆層の厚さは、特に限定されるものではなく、例えば、 $0.1 \sim 10 \mu m$ とすることができる。

本発明において、前記基板が、金属からなるものである場合は、所望の形状の突出スポット部に対応した凹部を有する鋳型に、熔融した金属を注入して鋳造することにより、本発明の基板を得ることができる。また、プレス成形によって、金属製基板を得ることもできる。本発明の基板は、金属からなる基板の上に、導電性物質を被覆したものであることもできる。

本発明の基板が、シリコンまたはプラスチック製の基板上に導電性物質の被覆を有するものである場合は、例えば、所望の形状の突出スポット部に対応した凹部を有する成形型を用いてシリコンまたはプラスチックを成形し、そのシリコン

またはプラスチック製の基板上に、導電性物質を、蒸着、メッキ等によって被覆することにより、本発明の基板を得ることができる。

また、本発明の基板は、平板状の基板上に導電性被覆層を被覆した後に、エッチング等により突出スポット部を形成することによって製造することもできる。

次に、本発明の基板が、ガラス基板上に金被覆層を有するものである場合の、基板の製造方法の一例を説明する。但し、本発明はこの態様に限定されるものではない。

まず、スライドガラスの表面に、真空蒸着装置により、クロム、チタン、ニッケル等を蒸着し、次いで、その上に金を蒸着する。この金蒸着スライドガラス上に、ポジ型レジストをスピンドルコーターで塗布し、例えば60°Cでオーブンにより1時間ベーキングする。

次いで、紫外線露光装置により、フォトマスクを通してスライドガラスに紫外線を照射する。このとき、フォトマスクとしては、所望の形状の突出スポット部に対応したパターンを有するものを使用する。紫外線照射後、現像液によって現像を行えば、金蒸着スライドガラス表面に、レジストパターンを形成することができる。

次いで、レジストパターン周辺の金表面を、金エッチャントによってエッチングする。金エッチャング後の基板を超純水によって洗浄した後、金の下に蒸着されたクロム、チタン、ニッケル等を除去するために、エッチャントにより更にエッチャングを行い、超純水によって洗浄する。

アセトン等によってレジストを溶解した後、超純水によって洗浄し、更に残つ

ているレジストを完全に除去するために、ピラニア溶液（硫酸：過酸化水素 = 1 : 1）に例えれば 10 分間漬けて、超純水で洗浄する。これにより、フォトマスクに対応した金パターンを有するガラス基板を得ることができる。

次に、上記基板を、フッ化水素酸に浸漬し、露出しているガラス表面をエッチングする。このときに使用するフッ化水素酸の濃度および浸漬時間は、所望の突出スポット部の高さに応じて適宜設定することができる。

次に、前述と同様に、金およびクロム等のエッチングを行った後、ピラニア溶液および超純水によって基板を洗浄し、所望の形状の突出スポット部を有するガラス基板を得ることができる。

このガラス基板に、前述と同様に、クロム等を蒸着し、次いで、金を蒸着することによって、突出部を有し、かつ、金被覆を有する基板を得ることができる。

本発明において、基板全体の大きさ、基板上の突出スポット部の数および集積度は特に限定されず、適宜設定することができる。例えば、本発明の基板は 10 ~ 20, 000 mm² の大きさの基板上に、突出スポット部を、10 ~ 50, 000 個程度有するものであることができる。

[生体分子マイクロアレイ]

本発明の核酸マイクロアレイは、本発明の基板および生体分子を含み、生体分子は、前記基板上の少なくともスポット用平面に固定化されていることを特徴とする生体分子マイクロアレイである。前記生体分子は、DNA、RNA、PNA、蛋白、ポリペプチド、糖化合物、脂質、天然低分子、および合成低分子からなる

群から選ばれる少なくとも一種であることができ、目的に応じて選択することができる。

ここで、糖化合物としては、例えば、単糖、オリゴ糖、多糖、糖鎖複合体、糖蛋白質、糖脂質、およびそれら誘導体などを挙げることができる。

脂質としては、例えば、脂肪酸、リン脂質、糖脂質、グリセリドなどを挙げることができる。

天然低分子としては、例えば、ホルモン分子や抗生物質、毒物、ビタミン類、生理活性物質、二次代謝産物などを挙げることができる。

合成低分子としては、例えば、天然低分子の合成物、およびそれら誘導体などを挙げることができる。

本発明では、生体高分子が核酸であり、かつ、前記導電性物質が金属である場合、プローブ核酸を生体分子固定化用スポット（突出スポット部）に固定化するために、突出スポット部頂上のスポット用平面の金属と反応性を有する基を一端に有する核酸を含む溶液を、スポットティング溶液として用いることができる。そのような基としては、チオール基を挙げることができる。チオール基を有する核酸鎖の金属表面への固定化は、公知の方法によって行うことができ、例えば、J. Am. Chem. Soc. 1998, 120, 9787-9792 を参照することができる。

金属表面へのDNAの固定化方法としては、金属（表面酸化被膜を活性化させ水酸基を提示させたもの）に対して以下の処理を行う方法を用いることもできる。

(1) アミノシラン処理した基板表面に、UV照射することにより、DNAを固定化する。

(2) アミノシラン、NHS (N-ヒドロキシスクシンイミド) -ビオチン、アビジン

によって順次処理した基板表面に、ビオチン化DNAを固定化する。

- (3) アミノシラン、マレイミド-ビオチン、アビジンによって順次処理した基板表面に、ビオチン化DNAを固定化する。
- (4) アミノシラン、次いでグルタルアルデヒドによって処理した基板表面に、アミノ化DNAを固定化する。
- (5) アミノシラン、次いでカルボジイミドによって処理した基板表面に、アミノ化DNAを固定化する。
- (6) アミノシラン処理した基板表面に、カルボキシ化DNAを固定化する。
- (7) アミノシラン処理した基板表面に、リン酸化DNAを固定化する。
- (8) アミノシラン、次いでNHS-マレイミド化合物によって処理した基板表面に、チオール化DNAを固定化する。
- (9) エポキシシラン処理した基板表面に、アミノ化DNAを固定化する。
- (10) チオールシラン処理した基板表面に、チオール化DNAを固定化する。

また、DNA以外の生体分子についても、上記のような、UV照射による固定化や、チオール基、アミノ基、カルボキシル基、リン酸基などの官能基を介しての固定化が可能である。

前記スポット用平面への生体分子溶液のスポットティングは、常法により行うことができ、例えば、先端に生体分子溶液を保持したニードルを、突出スポット部頂上のスポット用平面に接触させることにより行うことができる。ここで使用されるスポットティング用装置としては、例えば、特開2001-46062号公報および特開2003-57236号公報に記載の装置を挙げることができる。スポット量は、スポット用平面から生体分子溶液が流れ出さないように、スポット

用平面の大きさや、突出スポット部の高さに応じて、適宜設定することができる。

[相互作用促進用装置、相互作用促進方法]

本発明は更に、

基板上に1つ以上の生体分子固定化スポットを有する生体分子マイクロアレイ、

前記マイクロアレイの生体分子固定化スポットを有する面に対向するように設けられた電極、および

前記マイクロアレイと前記電極との間に電界を印加するための電源を有する、生体分子の相互作用促進用装置であって、

前記生体分子マイクロアレイを構成する基板は、基板表面から突出し、かつ頂上にスポット用平面を有する生体分子固定化用スポット（突出スポット部）を有し、

少なくとも前記突出スポット部は導電性物質表面を有し、

前記スポット用平面の導電性物質表面に生体分子が固定化され、前記生体分子固定化スポットが形成されており、かつ

前記基板は、前記基板上の突出スポット部以外の表面に、前記突出スポット部の導電性物質表面と通電可能な端子を有することを特徴とする、生体分子の相互作用促進用装置

に関する。このような生体分子の相互作用としては、例えば、プローブ核酸とターゲット核酸とのハイブリダイゼーション、抗原一抗体相互作用、レセプターリガンド相互作用、タンパクータンパク相互作用、DNA一タンパク相互作用を挙げることができる。

前記基板上の突出スポット部以外の表面は、導電性物質被覆層を有し、前記端子は、前記導電性物質被覆層に含まれるか、または、前記導電性物質被覆層と通

電可能であり、かつこの導電性物質被覆層と突出スポット部の導電性物質表面とは、一体の導電性物質被覆層として設けられていることが好ましい。前記装置における生体分子マイクロアレイは、前記本発明の生体分子マイクロアレイであることができる。

更に、本発明は、前記の生体分子の相互作用促進用装置を用いる、生体分子の相互作用促進方法であって、

前記マイクロアレイと電極との間に、ターゲット生体分子を含む溶液を配置し、かつ、

前記マイクロアレイと電極との間に電界を印加することを特徴とする、生体分子の相互作用促進方法
に関する。

前記装置における生体分子マイクロアレイは、突出スポット部を有するため、マイクロアレイ上の突出部頂上の生体分子が固定化された平面と、前記マイクロアレイの生体分子スポットを有する面に対向するように設けられた電極（対向電極）の、前記平面と対向する面との間で電界密度が高まり、溶液中のターゲット生体分子が、電気泳動（直流電源を使用した場合）または誘電泳動（交流電源を使用した場合）によって突出部近傍に濃縮される。

これにより、突出スポット部に固定化された生体分子と、ターゲット生体分子との相互作用を促進させることができる。特に、前記生体分子マイクロアレイにおいて、生体分子が固定化されたスポット平面が粗面化されている場合、例えば、スポット平面に、共焦点型検出器の焦点深度以内で深さ方向と略水平方向に凹凸を有する場合は、凹凸の角（エッジ）部分に強電界が生じ、相互作用が更に促進

されるという利点がある。

前記対向電極は、前記生体分子マイクロアレイと対向電極との間に電界を印加することができるものであれば、特に制限はない。図6（a）に、本発明の生体分子の相互作用促進用装置の概略図を、図6（b）に、本発明の生体分子の相互作用促進用装置の断面図を示す。本発明において、対向電極は、導電性物質、例えば、金属、導電性酸化物、導電性プラスチック、等からなる基板であることができ、また、マイクロアレイと対向する面に、導電性物質被覆層を有する基板からなるものであることもできる。本発明では、特に、前記対向電極が、例えば、ITO（酸化インジウムスズ）、酸化スズなどの透明電極であれば、生体分子の相互作用中に、同時に、透明電極の上から、共焦点型検出器で反射光および蛍光の検出を行うことができ、相互作用をリアルタイムで検出することができる。また、前記生体分子マイクロアレイを構成する基板が、光透過性のガラスやプラスチック上に、透明の導電性被覆層を設けたものである場合や、基板全体が透明の導電性物質からなる場合も、同様に、相互作用をリアルタイムで検出することができる。

また、前記相互作用促進用装置において、生体分子マイクロアレイと対向電極との間に電界を印加するための電源は、直流電源でも、交流電源でもよい。より好ましくは、交流電源が用いられる。直流電源を使用する場合は、高電圧をかけると、ターゲット生体分子溶液が高電圧により電気分解し、気泡等が発生しやすいという懸念があるため、低電圧を使用することが好ましい。ターゲット生体分子としてDNAを使用する場合には、DNAがマイナスに荷電されているため、直流電源を使用する場合は、突出スポット部側が、プラスになるように電界を印

加することが好ましい。交流電源を使用する場合は、低周波交流では、ターゲット生体分子溶液の電気分解により気泡等が発生しやすいという懸念があるため、高周波交流を使用することが好ましい。

前記相互作用促進用装置において、生体分子マイクロアレイと対向電極との間には、生体分子マイクロアレイの突出スポット部を有する領域が覆われないように、非導電性材料からなるスペーサーを挟むことができる。前記非導電性材料としては、例えば、ゴム、ガラス、プラスチックを挙げることができる。本発明の装置では、このスペーサーの厚さにより、生体分子マイクロアレイ上のスポット用平面と対向電極との距離を設定することができ、また、このスペーサーによって囲まれた空間に、ターゲット生体分子を含む溶液を充填することができる。前記スポット用平面と対向電極との距離は、電気泳動または誘電泳動によるターゲット生体分子濃縮の効果が得られる範囲で適宜設定することができ、例えば、 $1 \sim 500 \mu\text{m}$ とすることができる。

前記相互作用促進用装置は、ヒーター等の温度制御手段を更に有することが好ましい。温度制御手段によって、生体分子周辺の環境を、相互作用に適した温度に制御することにより、相互作用を更に促進することができる。

前記装置において、生体分子マイクロアレイと対向電極との間に印加される電界は、前記の生体分子マイクロアレイと対向電極との間の距離を考慮しつつ、電気泳動または誘電泳動によるターゲット生体分子の濃縮の効果が得られる範囲で適宜設定することができ、例えば、 $0.001 \sim 10 \text{ MV/m}$ とすることができる。また、後述するように、ターゲット生体分子溶液に用いるバッファーの種類

に応じて、高い相互作用促進効果が得られるように、印加電界を適宜設定することが好ましい。

本発明では、共焦点検出器によって蛍光を検出することにより生体分子間の相互作用を検出するために、前記の相互作用促進方法に用いられるターゲット生体分子は、蛍光標識されているものであることが好ましい。ターゲット生体分子の蛍光標識は、公知の方法で行うことができる。また、本発明では、マイクロアレイに固定化される生体分子が、蛍光標識されていてもよい。マイクロアレイに固定される生体分子の蛍光標識も、公知の方法で行うことができる。

本発明において、ターゲット生体分子溶液はバッファーを含むことができる。ターゲット生体分子溶液に用いるバッファーとして、好ましいものとしては、約6～8付近の解離定数(pKa)を有するものが挙げられる。プローブ核酸とターゲット核酸とのハイブリダイゼーションを効率よく起こさせるためには、pHが中性域であることが好ましいため、中性域で緩衝能を有するバッファーを使用することが好ましい。具体的には、以下のバッファー物質を含むバッファーが挙げられる；フェニルアラニン、カルノシン、アルギニン、ヒスチジン、MES (2-(*N*-モルホリン)エタンスルホン酸)、マレイン酸、3,3-ジメチルグルタル酸、炭酸、4-ヒドロキシメチルイミダゾール、クエン酸、ジメチルアミノエチルアミン、プロリン酸、グリセロール-2-リン酸、PIPES (ピペラジン-*N,N'*-ビス(2-エタンスルホン酸))、エチレンジアミン、イミダゾール、MOPS (3-(*N*-モルホリン)プロパンスルホン酸)、リン酸、TES (*N*-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸)、4-メチルイミダゾール、HEPES (*N*-2-ヒドロキシエチルピペラジン-*N'*-2-エタンスルホン酸)、*N*-エチルモルホリン、トリエタノールアミン、トリ

ス(トリス(ヒドロキシメチル)アミノメタン)。

ターゲット生体分子溶液に用いるバッファーの伝導率が過度に高いと、バッファー中のイオンの移動により、ターゲット生体分子の濃縮効果が低減するおそれがある。そこで、本発明では、伝導率が $10 \sim 500 \mu\Omega^{-1}/m$ のバッファーを用いることが好ましく、伝導率が $10 \sim 100 \mu\Omega^{-1}/m$ のバッファーを用いることが更に好ましい。バッファーの伝導率が上記範囲内であれば、生体分子の相互作用を良好に促進することができる。また、バッファーの濃度は、上記範囲内の伝導度が得られるように、適宜調整することが好ましい。

以上の観点から、好ましいバッファーの具体例としては、バッファー物質として、フェニルアラニン、ヒスチジン、カルノシン、アルギニンを含むバッファーを挙げることができる。後述する実施例5に示すように、プローブ核酸とターゲット核酸とのハイブリダイゼーションを、フェニルアラニンを含有するターゲット生体分子溶液を用いて行うと、特に高いハイブリダイゼーションシグナル強度を得ることができ、しかも、電界印加により、電界を印加しない場合と比べて2倍以上のハイブリダイゼーションシグナル強度を得ることができる。このように、フェニルアラニンは、電界を印加することにより生体分子の相互作用を促進する本発明において、特に効果を発揮するバッファー物質である。

なお、マイクロアレイと電極との間に印加する電界は、高い生体分子相互作用促進効果が得られるように、使用するバッファーに応じて適宜設定することが好ましい。例えば、フェニルアラニンをバッファーとして用いる場合には、 $0.5 \sim 1.0 MV/m$ 、ヒスチジンの場合は、 $0.5 \sim 1.0 MV/m$ 、カルノシン

の場合は、0.25～0.75MV/m、アルギニンの場合は、0.1～0.3MV/m、の範囲の電界を印加することが好ましい。

[相互作用の検出方法]

本発明は更に、ターゲット生体分子と相互作用し得る環境に置かれているか、または、ターゲット生体分子と相互作用し得る環境に置かれていた、本発明のマイクロアレイの各生体分子固定化スポット上の生体分子と前記ターゲット生体分子との間の相互作用を、共焦点型検出器によって検出することを特徴とする生体分子の相互作用の検出方法にも関する。共焦点型検出器による反射光および蛍光の検出原理については、前述の通りである。本発明の相互作用の検出方法では、共焦点型検出器を用いて、前述の原理で反射像によってスポットの大きさおよび位置を特定することで、自動グリッティングを行うことができる。即ち、本発明によれば、マイクロアレイ表面の生体分子固定化スポットとそれ以外の部分の高さおよび／または形状の差による反射光強度の相違から、マイクロアレイ上の生体分子固定化スポットを、反射像として検出することができる。更に、共焦点型検出器によって、マイクロアレイからの蛍光を検出するときに、マイクロアレイ上の突出スポット部頂上のスポット平面の高さに、共焦点型検出器の焦点を合わせれば、前記スポット平面上の蛍光標識された生体分子（スポットに固定化された生体分子および／またはターゲット生体分子）からの蛍光を選択的に検出して、スポットに対応する蛍光像を得ることができる。本発明では、こうして得られた反射像と蛍光像を重ね合わせることによって、マイクロアレイ上の相互作用が起こっているスポットを特定することができ、その蛍光強度により、相互作用の程度を測定することができる。なお、本発明では、インターラーテーを用いて、インターラーテーからの蛍光を測定することによって相互作用を検出すること

もできる。

特に、本発明では、反射光と蛍光とを同時に検出することができる共焦点型スキャナーを用いることが好ましい。そのような装置の一例を、図7に示す。図7に示す装置では、励起光源（レーザー）21から発生した励起光はミラー22、ダイクロックミラーミラー23、ミラー26、対物レンズ24、を介して試料（マイクロアレイ）25に照射される。反射光は対物レンズ24、ミラー26、ダイクロックミラー23（反射光の一部を透過（数パーセント以下））、ダイクロックミラー27、減光フィルター28、検出レンズ29、ピンホール30を介して反射光検出部31に導かれる。蛍光は2つのダイクロックミラー23、27を透過し、ミラー32にて反射しカットフィルター33、検出レンズ34、ピンホール35を介して蛍光検出部36に導かれる。このような装置によれば、マイクロアレイ表面の生体分子固定化スポットとそれ以外の部分の高さおよび／または形状の差による反射光強度の相違から、マイクロアレイ上の生体分子固定化スポットを反射像として検出し、同時に、そのスポットからの蛍光を検出することによって、生体分子の相互作用を検出することができる。

更に、本発明は、基板表面に生体分子が固定化されたスポットを1つ以上有する生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させ、前記固定化された生体分子とターゲット生体分子とを相互作用させる方法であって、前記ターゲット生体分子を含む溶液に、フェニルアラニンを含有させ、かつ、前記生体分子固定化スポットに向けて溶液中のターゲット生体分子が泳動するよう前に記溶液に電界を印加して、前記相互作用を促進する、前記方法、にも関する。

前記方法において使用される生体分子の種類、基板表面への生体分子の固定化方法、生体分子の相互作用の種類については、前述の通りである。生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させる方法としては、ターゲット生体分子を含む溶液に、生体分子マイクロアレイを浸漬する方法や、ターゲット生体分子を含む溶液を、マイクロアレイの生体分子固定化スポットを含む面上に滴下する方法等が挙げられる。また、後述するように、前記マイクロアレイと対向する電極を設ける場合には、マイクロアレイと電極との間に溶液を配置することにより、生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させることができる。

前記方法では、基板上の生体分子固定化スポットに向けて、ターゲット生体分子を含む溶液中のターゲット生体分子が泳動するように、前記溶液に電界を印加する。この場合、直流電源を用いて電界を印加する場合には、ターゲット生体分子は、基板上の生体分子固定化スポットに向けて電気泳動し、交流電源を用いて電界を印加する場合には、ターゲット生体分子は、基板上の生体分子固定化スポットに向けて誘電泳動する。前記本発明の生体分子を相互作用させる方法では、このように、電界を印加して、基板上の生体分子スポットに向けてターゲット生体分子を泳動させることにより、生体分子スポット近傍のターゲット生体分子濃度を高め、生体分子相互作用を促進することができる。更に、本発明では、伝導率が低く、かつ、電界印加による生体分子相互作用促進効果が顕著に高いフェニルアラニンを、ターゲット生体分子溶液に含有させることにより、生体分子相互作用を顕著に促進することができる。

前記本発明の生体分子を相互作用させる方法において使用されるフェニルアラニンの伝導率は、前述のように、 $10 \sim 500 \mu \Omega^{-1}/m$ であることが好ましく、 $10 \sim 100 \mu \Omega^{-1}/m$ であることがより好ましい。フェニルアラニンの濃度は、前記範囲の伝導率が得られるように、適宜調整することが好ましい。

前記生体分子を相互作用させる方法において用いられる生体分子マイクロアレイは、生体分子固定化スポットを表面に設けた電極を基板上有する生体分子マイクロアレイであることができる。そのようなマイクロアレイとしては、前記本発明の生体分子マイクロアレイを用いることができる。

生体分子固定化スポットを表面に設けた電極を基板上有する生体分子マイクロアレイを用いる場合、前記基板上の電極と対向する電極を用い、かつ、電界印加による相互作用促進効果が顕著に高いフェニルアラニンを含有するターゲット生体分子溶液を含む溶液が前記2つの電極と接触する状態で、前記電極間に電界を印加して生体分子固定化スポット近傍のターゲット生体分子濃度を高めることにより、基板表面に固定化された生体分子とターゲット生体分子との相互作用を促進することができる。前記方法では、生体分子固定化スポットを表面に設けた電極を基板上有するマイクロアレイと前記基板上の電極と対向する電極とを含み、かつ、マイクロアレイと電極との間にターゲット生体を含む溶液を配置して、生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させることができる、前記本発明の生体分子相互作用促進用装置を用いることもできる。また、電極間に印加する電界については、先に、本発明の生体分子相互作用促進用装置の説明で記載したとおりである。

更に、本発明は、基板表面に生体分子が固定化されたスポットを1つ以上有する生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させ、前記固定化された生体分子とターゲット生体分子とを相互作用させる方法であって、

前記ターゲット生体分子を含む溶液は、フェニルアラニン、ヒスチジン、カルノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー物質を含有し、

前記基板は、生体分子固定化スポットを設けた面と同一の面上に、少なくとも1つの対向する一対の電極を、前記一対の電極間に生体分子固定化スポットが位置するように設けたものであり、かつ

前記ターゲット生体分子を含む溶液が上記一対の電極と接触する状態で、上記電極間に電界の印加を行い、前記相互作用を促進する、前記方法、にも関する。

前記方法において使用される生体分子の種類、基板表面への生体分子の固定化方法、生体分子の相互作用の種類については、前述の通りである。生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させる方法としては、ターゲット生体分子を含む溶液に、生体分子マイクロアレイを浸漬する方法や、ターゲット生体分子を含む溶液を、マイクロアレイの生体分子固定化スポットを含む面上に滴下する方法等が挙げられる。

前記方法で用いられる基板は、生体分子固定化スポットを設けた面と同一の面上に、少なくとも1つの対向する一対の電極を、前記一対の電極間に生体分子固定化スポットが位置するように設けたものである。そのような基板の一例を、図13に示す。図13に示す基板は、例えば、光リソグラフィー技術等によって、導電性物質からなる層を基板上的一部分に作製して一対の対向電極としたものであ

る。前記方法では、このような基板上に、生体分子を固定化して作製した生体分子マイクロアレイを用いることができる。前記方法では、このようなマイクロアレイを用いて、電極間に生体分子固定化スポットを有する生体分子マイクロアレイとターゲット生体分子を含む溶液とを接触させ、かつ、前記電極とターゲット生体分子溶液とを接触させた状態で、電極間に電界を印加する。これにより、ターゲット生体分子を生体分子固定化スポットに向けて誘電泳動（交流電源を用いた場合）または電気泳動（直流電源を用いた場合）させて生体分子固定化スポット近傍のターゲット生体分子濃度を高めることができ、生体分子の相互作用を促進することができる。特に、本発明では、電界印加による生体分子相互作用促進効果が顕著に高いフェニルアラニン、ヒスチジン、カルノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー物質、特にフェニルアラニンを、ターゲット生体分子溶液に含有させることにより、生体分子の相互作用を顕著に促進することができる。電極間に印加する電界は、使用するバッファー物質の種類に応じて、電気泳動または誘電泳動によるターゲット生体分子の濃縮の効果が得られる範囲で適宜設定することができ、例えば、0.5～1.0MV/mとすることができます。また、使用する電源は、先に記載した理由から、高周波交流電源を用いることが好ましい。

前記本発明の生体分子を相互作用させる方法において使用されるフェニルアラニン、ヒスチジン、カルノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー物質の伝導率は、前述のように、 $10 \sim 500 \mu \Omega^{-1}/m$ であることが好ましく、 $10 \sim 100 \mu \Omega^{-1}/m$ であることがより好ましい。バッファー物質の濃度は、前記範囲の伝導率が得られるように、適宜調整することが好ましい。

実施例

以下、本発明を実施例によって更に説明する。

実施例 1

核酸マイクロアレイ用基板の作製

- 1) 表面研磨したスライドガラスの表面に、真空蒸着装置により、クロムを 250 Å 厚で蒸着した後、金をその上に 2500 Å 厚で蒸着した。
- 2) 金蒸着スライドガラス上にポジ型レジスト S 1813 (シプレー社) をスピンコーダーで塗布し、60 °C オーブンにより 1 時間ベーキングした。
- 3) 紫外線露光装置により、フォトマスクを通して上記スライドガラスに紫外光を照射した。フォトマスクは、直径 200 μm の円と 1 辺 200 μm の正方形のパターンがそれぞれ 11 × 11 個形成されているものを使用した。照射後、現像液 CD-26 (シプレー社) により現像を行い、直径約 200 μm の円と正方形のレジストパターンを金表面上に形成した。
- 4) 円と正方形のレジストパターンの周辺分の露出している金表面を金エッチャント (ヨウ化カリウム : ヨウ素 : 水 = 6 : 1 : 80) により金をエッチングした。超純水で洗浄した後、金のエッチングにより露出したクロムをクロムエッチャント (10 % 硝酸ニセリウムアンモニウム (IV)) によりエッチングを行い、超純水で洗浄した。
- 5) アセトンにつけ、レジストを溶解後、超純水で洗浄し、さらに残っているレジストを完全に除去するために、ピラニア溶液 (硫酸 : 過酸化水素 = 1 : 1) に 10 分間つけ、超純水で洗浄した。この段階で、ファトマスク通りに円と正方形

の金パターンを有するガラス基板が作製された。

6) 次に露出しているガラス表面をエッチングするために、上記の金パターンガラス基板を4. 6% フッ化水素酸に50分間浸漬した。これにより、ガラス表面は、約 $50\text{ }\mu\text{m}$ の深さ分だけ腐食され、またアンダーカットにより金パターンの下も横方向から侵食され、直径約 $200\text{ }\mu\text{m}$ の円と1辺約 $200\text{ }\mu\text{m}$ の正方形のパターンは、約 $90\text{ }\mu\text{m}$ （直径又は1辺）のパターンとなった。

7) 4) と同様に、金とクロムのエッチングを行った後、ピラニア溶液、超純水で基板を洗浄した。

8) 1) と同様に、クロムと金を蒸着し、金が表面に蒸着された核酸マイクロアレイ用基板を作製した（図8）。

図8 a) は、実施例1で作製された基板をデジタルカメラにて撮影したものである。凹凸が形成されていることが像からわかる。図8 b) は、正方形のスポットについて、共焦点顕微鏡により光学切片を撮像し、3次元構築したものである。基板上に、頂上にスポット用平面を有する突出スポット部が形成されていることがわかる。正方形のスポットの高さは、約 $50\text{ }\mu\text{m}$ の高さを有していた。実施例1で得られた基板上のスポット用平面の大きさは、 $90\text{ }\mu\text{m}$ であり、突出スポット部周辺の基板表面と、突出スポット部側面とのなす角は、110度であった。

実施例2

核酸マイクロアレイ用基板へのDNAスタンピング

5' - 蛍光色素C y 3を標識したDNA溶液 (tatgacaatg aatacggcta cagcaa cagg gtgggtggacc tcatg (配列番号1) (遺伝子名 GAPDH) 溶液組成： $50\text{ }\mu\text{M}$ in 1×マイクロスポットティング溶液 (テレケム社)) を、理研で開発したDNA

アレイヤーにより、実施例1で作製した核酸マイクロアレイ用基板の突出スポット部頂上のスポット用平面へスタンプした。スタンプ針の先端は、直径 $130\mu m$ の円形であった。図7に示す蛍光と反射光とを同時に計測することができるDNAマイクロアレイスキャナーによって、DNA溶液をスタンプした基板からの蛍光および反射光の計測を行った(図9)。(a)が蛍光像、(b)が反射光像、(c)が二つの画像の重ね合わせである。ここで使用したDNAマイクロアレイスキャナーでは、蛍光像は赤色で、反射像は緑色で表示される。円形のスポットでは、赤色で表示された円形の蛍光像が観察でき、また、正方形のスポットでは、赤色で表示された正方形の蛍光像が観察できた。また、これらの蛍光像を、緑色で表示された反射像と重ね合わせたところ、蛍光像のスポットの形と一致したことから、DNAスタンプ溶液が、基板上の突出スポット部頂上のスポット用平面のみにスタンピングされたことが証明された。このように、本発明の基板によれば、反射像により、基板上の突出スポット部頂上のスポット用平面の位置および大きさを認識し、DNAがスタンプされた領域を特定することができる。

なお、本実施例で使用したスキャナーの反射用の焦点深度は $500\mu m$ であったため、突出スポット部周辺の基板表面(突出スポット部頂上のスポット平面との高低差： $50\mu m$)からの反射光も、スポット平面からの反射光とほぼ同様の強度で検出された。但し、本実施例では、突出スポット部周辺の基板表面と、突出スポット部側面とのなす角が、 110 度であったため、反射像で、側面部に相当する部分が黒い縁取りとして表れることにより、スポットの位置および大きさを特定することができた。

実施例3

電気泳動によるハイブリダイゼーションの促進効果の検証(直流電荷)

実施例 1 で得られた核酸マイクロアレイ用基板の突出スポット部頂上のスポット用平面に、チオール化DNAプローブ (tatgacaatg aatacggcta cagcaacagg g tgggtggacc tcatg (配列番号 2)、遺伝子名 *GAPDH*) を固定化し、蛍光標識マウス脳 c RNAをターゲットとしてハイブリダイゼーションを行った。

DNAマイクロアレイとITO電極を向かい合うようにし、その間に絶縁のために0. 17 mmのガラスをはさみ、基板と電極とをクリップにより固定した。0. 17 mmの空間に上記ターゲットを含有するハイブリダイゼーション溶液(cRNA : 1. 45 μg (mRNA 0. 05 μgに相当)、ハイブリダイゼーションバッファー : 50 mMヒスチジン)を入れ、DNAマイクロアレイ側には、プラス電極をつなぎ、ITO電極には、マイナス電極をつなぎ、室温で、3 Vの直流電荷を2分間かけた。その後、2×SSC+0. 1% SDS、1×SSC (150 mM 塩化ナトリウム、15 mM クエン酸ナトリウム)、0. 1×SSCで洗浄を行った。

図7に示す蛍光と反射光とを同時に計測することができるDNAマイクロアレイスキャナーによって、このマイクロアレイを観察した結果、図10に示すように、電荷をかけたもの(c)では、電荷をかけなかったもの(b)に比べ明らかに高い蛍光シグナルが得られ、電気泳動により、ハイブリダイゼーションの促進効果があることが明らかとなった。またこの蛍光像を、反射像(a)と重ね合わせれば、ハイブリダイゼーションの生じたスポットを特定することができる。

実施例 4

誘電泳動によるハイブリダイゼーションの促進効果の検証(交流電荷)

実施例 1 で得られた核酸マイクロアレイ用基板の突出スポット部頂上のスポット用平面に、5種類のDNAプローブ(配列番号3: ggccgttctgcttacagtggcttg

cagagcagctcctacttgatg・遺伝子名 *NFL*、配列番号 4：gtaccaacattgcctcctaggaga
gaagtgtgtgtgagaagcc・遺伝子名 *Ubiquitin2e*、配列番号 5：ttttgtccccccaaact
tcatgttatgaaggcttggtctccctggg 遺伝子名 β -actin、配列番号 6：gcagtggcaaag
tggagattgttgcacatcaacgaccgcatttgc 遺伝子名 *gapdh*、配列番号 7：agccagggaaat
ttgtcgagagcgcagccacttcttcagtgttgc 遺伝子名 *psbP* を末端固定し、5' 蛍光 C
y3 標識した各相補オリゴDNAをターゲットとしてハイブリダイゼーションを行った。ハイブリダイゼーション溶液は 50mM ヒスチジンとし、各相補鎖オリゴDNAの最終ターゲット濃度を、配列番号 3 のDNAプローブについては 0.001 μ M、配列番号 4 のDNAプローブについては 0.01 μ M、配列番号 5 のDNAプローブについては 0.1 μ M、配列番号 6 のDNAプローブについては 1 μ M、配列番号 7 のDNAプローブについては 0 μ M（無添加）として調製混合した。マイクロアレイと対向金電極を向かい合うようにし、その間に絶縁のために 0.03mm のゴムシートをはさみ、マイクロアレイと電極とをクリップにより固定した。0.03mm の空間に上記ターゲットを有するハイブリダイゼーション溶液を入れ、マイクロアレイと対向金電極とを、電源・発振器につなぎ、1MHz、0.2MV/m の交流電荷を 2 分間かけた。図 7 に示す蛍光と反射光とを同時に計測することができるDNAマイクロアレイスキャナーによって、このマイクロアレイを観察した結果、図 1 1 に示すように、電荷をかけたもの（a）では、電荷をかけなかったもの（b）に比べ明らかに高い蛍光シグナルが得られた。ターゲット濃度と蛍光強度との相関を、図 1 2 に示す。図 1 1 および図 1 2 より、マイクロアレイと対向電極との間に交流電荷を印加することによって、誘電泳動によるハイブリダイゼーションの促進効果が得られることがわかる。また、本実施例で、ターゲット濃度に依存した蛍光シグナルが得られていること、および、ネガティブコントロールでシグナルが検出されなかったことから、蛍光強度により、ハイブリダイゼーションの程度を測定

することができる。また、図11(a)の蛍光像を、図11(c)の反射像と重ね合わせれば、ハイブリダイゼーションの生じたスポットを特定することができる。

実施例5

誘電泳動によるハイブリダイゼーションにおけるバッファーの影響

実施例1で作製した基板に、高密度アレイヤーにより、プローブDNA溶液(1×マイクロスポットティング溶液(テレケム社)、0.1%Tween20)を、 $180\mu M$ の濃度でスタンプした。スタンプしたプローブ遺伝子は GAPDH (5' -gcagtggcaa
agtggagatt gttgccatca acgaccctt cattg-3' (配列番号8)) であり、5'側にアレイ用リンカー(日清紡績(株))修飾を施したものを使用した。スタンプ後処理として、基板を $600mJ/cm^2$ で UV 照射し、超純水で 5min. × 2 回洗浄し乾燥させた。ターゲットDNA溶液($1\mu M$ 5'末端 Cy3 蛍光-オリゴDNA(プローブDNAの相補的な配列)、10~50mM のフェニルアラニン、ヒスチジン、カルノシン、またはアルギニン含有バッファー)を調製した後、前記アレイを $45^\circ C$ にセットしたサーマルサイクラー上に置き、 $30\mu m$ 厚の絶縁フィルム(帝人デュポンフィルム)をスペーサーとしてアレイ周辺部に配置し、ターゲットDNA溶液 $20\mu l$ をスタンプエリアにアプライした。引続き、ITO(インジウム・酸化スズ)膜でコートしたスライドガラス基板(対向電極)をかぶせ、両基板を固定した(図6)。マイクロアレイと対向電極との間に、10分間 $1MHz \cdot V_{p-p}$ $0 \sim 50V$ の電界を印加しながらハイブリダイゼーション反応を行った。反応後、アレイを洗浄した後にハイブリダイゼーションシグナル強度を算出した。結果を図14に示す。(a)は、印加電界とハイブリダイゼーションシグナル強度との相関を示すグラフであり、(b)は、電界を印加せずにハイブリダイゼーションを行った場合に得られた

シグナルとの強度比（以下、「シグナル増加率」ともいう）を示すグラフである。更に、下記表1に、各バッファーについて、シグナル増加率が最大であった電界における結果をまとめた。表1に示したように、無電界ハイブリダイゼーションと比べて、フェニルアラニンは、電界 0.8M V_{p-p/m}において 6.54 倍、L-ヒスチジンは、電界 0.78M V_{p-p/m}において 3.66 倍、カルノシンは、電界 0.53M V_{p-p/m}において 2.16 倍、L-アルギニンは、電界 0.25M V_{p-p/m}において 2.66 倍のハイブリダイゼーションシグナル増加率を示した（図 3-1, 2：図番は後で変更）。これらの結果から、フェニルアラニン、ヒスチジン、カルノシン、アルギニンを含むバッファーを用いた場合に、特に、フェニルアラニンを用いた場合に、本発明の生体分子相互作用促進方法において、高いハイブリダイゼーション促進効果が得られることがわかる。

表 1

バッファー	濃度 (mM)	伝導率 ($\mu \Omega^{-1}/$ M)	電界 (MVpp/m)	ハイブリダイゼーションシグナル強度		シグナル増加率 (電界印加 /無電界)
				電界印加	無電界	
DL-フェニルアラニン	10	24	0.80	18804	2874	6.54
L-ヒスチジン	50	33	0.78	15557	4248	3.66
カルノシン	50	51	0.53	11001	5089	2.16
L(+)-アルギニン	50	61	0.25	9615	3612	2.66

実施例 6

実サンプル c DNA を用いた誘電ハイブリダイゼーション促進効果

実施例 1 で作製した基板に、高精度アレイヤーによりプローブDNA溶液 (1 ×マイクロスポットティング溶液(テレケム社)、0.1%Tween20) を、180 μM の濃度でスタンプした。スタンプした 11 種類のプローブ遺伝子名と配列は下記表 2 に記載の通りであり、5' 側にアレイ用リンカー (日清紡績 (株)) 修飾を施したものを使用した。スタンプ後処理として、基板を 600mJ/cm² で UV 照射し、超純水で 5min. × 2 回洗浄し乾燥させた。

ターゲットDNA溶液 (5ng/μl Cy3-マウス脳 c DNA、50mM L-ヒスチジン) を調製した後、95°Cで 1 分間加熱し、2 分間室温に放置した。こうして得られた DNAマイクロアレイを、45°Cにセットしたサーマルサイクラー上に置き、30 μm 厚の絶縁フィルム (帝人デュポンフィルム) をスペーサーとしてアレイ周辺部に配置し、ターゲットDNA溶液 20 μl をスタンプエリアにアプライした。引続き ITO (インジウム・酸化スズ) 膜でコートしたスライドグラス基板 (対向電極) を

かぶせ、両基板を固定した。

マイクロアレイと対向電極との間に 20 分間 1MHz で、30 V_{p-p} で電界を印加しながらハイブリダイゼーション反応を行った。反応後、アレイを 2×SSC/0.1%SDS、1×SSC、0.2×SSC 溶液により、各々 5 分間室温で洗浄した後、蛍光スキャナー（ジーンスコープ II (Gene Scope II) ; ジーンフォーカス (Gene Focus) 社製）でハイブリダイゼーションシグナル強度を算出した。各配列について、電界を印加しなかった場合に得られたシグナルと電界を印加した場合に得られたシグナルとの強度比を、図 15 上欄に示す。各配列について、電界印加時のシグナル強度を縦軸に、電界を印加しなかった場合のシグナルを横軸にとってプロットして得られたグラフを、図 15 下欄に示す。

図 15 に示すように、各種配列に対して、電界を印加した場合には、電界を印加しなかった場合と比べて、5 倍強の蛍光シグナル強度の増加が示された(図 15)。

表 2

(1)beta-actin	5'-TTTGTCCCCCAACTGATGTATGAAGGCTTGGTCTCCCTGGG-3' (配列番号9)
(2)NF-L	5'-GCCGTTCTGCTTACAGTGGCTTGAGAGCAGCTCTACTTGATG-3' (配列番号10)
(3)Ubiquitin 2e	5'-GTACCAACATTGCCTCTAGCAGAGAAGTGTGTGTGAGAAGCC-3' (配列番号11)
(4)hsc70	5'-CCTATGGTGCAGCTGTCAGGCAGCCATTCTATCTGGAGACAAGT-3' (配列番号12)
(5)rpL3	5'-GGTGAGGTGACCAATGACTTCATCATGCTCAAAGGCTGTGAGTG-3' (配列番号13)
(6)Akt	5'-GCTGGACAAGGACGGCACATCAAGATAACGGACTTCGGCTGTG-3' (配列番号14)
(7)Transthyretin	5'-ACCATCGCAGCCCTGCTCAGCCCATACTCCTACAGCACCACGGCT-3' (配列番号15)
(8)rpS5	5'-CATTGCTGTGAAGGAGAAGTATGCCAAGTACCTGCCAACAGTGC-3' (配列番号16)
(9)HCN1	5'-GTGCCACAGCGTGTACCTGTTAGACAGATGTCCTGGAGCC-3' (配列番号17)
(10)GAPDH	5'-GCAGTGGCAAAGTGGAGATTGTTGCCATCAACGACCCCTTCATTG-3' (配列番号8)
(11)Lbb1B2	5'-ACTCAAGTTATCCTCATGGAGCTGTTGAAGGCTACAGAGTCGCC-3' (配列番号18)

産業上の利用可能性

本発明によれば、生体分子マイクロアレイに一定形状の生体分子固定化領域を持つ基板及び生体分子の相互作用、特にハイブリダイゼーションを高速に行い、かつ微量サンプルの相互作用を促進させ、さらに高速・高感度に相互作用を検出し解析する手段を提供することができる。

請求の範囲

1. 基板表面に、生体分子固定化用スポットを1つ以上有する生体分子マイクロアレイ用基板であって、

前記生体分子固定化用スポットが、基板表面から突出し、かつ頂上にスポット用平面を有し（以下、「突出スポット部」という）、かつ

少なくとも、前記突出スポット部周辺の基板表面、突出スポット部側面、およびスポット用平面が、導電性物質からなることを特徴とする基板。

2. 前記突出スポット部周辺の基板表面が、略V字型底面を形成する請求項1に記載の基板。

3. 基板表面に、生体分子固定化用スポットを1つ以上有する生体分子マイクロアレイ用基板であって、

前記生体分子固定化用スポットが、基板表面から突出し、かつ頂上にスポット用平面を有し（以下、「突出スポット部」という）、

隣り合う突出スポット部は、突出スポット部側面によって隣接しており、かつ、少なくとも、前記突出スポット部側面およびスポット用平面が、導電性物質からなることを特徴とする基板。

4. 前記導電性物質が、金、ニッケル、白金、銀、チタン、アルミニウム、ステンレス、銅、導電性酸化物、または導電性プラスチックである請求項1～3のいずれか1項に記載の基板。

5. 前記基板は、基板全体が導電性物質からなるか、または、基板表面に導電性物質被覆層を有する請求項1～4のいずれか1項に記載の基板。

6. 前記導電性被覆層を有する基板が、ガラス、金属、シリコン、またはプラスチックからなる請求項5に記載の基板。

7. 前記突出スポット部の高さが、 $10 \sim 500 \mu\text{m}$ である請求項1～6のいずれか1項に記載の基板。

8. 前記突出スポット部頂上のスポット用平面と前記突出スポット部側面とのなす角が、90度以上である請求項1～7のいずれか1項に記載の基板。

9. 前記スポット用平面が粗面化されている請求項1～8のいずれか1項に記載の基板。

10. 請求項1～9のいずれか1項に記載の基板および生体分子を含み、生体分子は、前記基板上の少なくともスポット用平面に固定化されていることを特徴とする生体分子マイクロアレイ。

11. 前記生体分子は、DNA、RNA、PNA、蛋白、ポリペプチド、糖化合物、脂質、天然低分子、および合成低分子からなる群から選ばれる少なくとも一種である請求項10に記載の生体分子マイクロアレイ。

12. 基板上に1つ以上の生体分子固定化スポットを有する生体分子マイクロアレイ、

前記マイクロアレイの生体分子固定化スポットを有する面に対向するように設けられた電極、および

前記マイクロアレイと前記電極との間に電界を印加するための電源を有する、生体分子の相互作用促進用装置であって、

前記生体分子マイクロアレイを構成する基板は、基板表面から突出し、かつ頂上にスポット用平面を有する生体分子固定化用スポット(以下、「突出スポット部」という)を有し、

少なくとも前記突出スポット部は導電性物質表面を有し、

前記スポット用平面の導電性物質表面に生体分子が固定化され、前記生体分子固定化スポットが形成されており、かつ

前記基板は、前記基板上の突出スポット部以外の表面に、前記突出スポット部の導電性物質表面と通電可能な端子を有することを特徴とする、生体分子の相互作用促進用装置。

1 3．前記基板上の突出スポット部以外の表面は、導電性物質被覆層を有し、前記端子は、前記導電性物質被覆層に含まれるか、または、前記導電性物質被覆層と通電可能であり、かつこの導電性物質被覆層と突出スポット部の導電性物質表面とは、一体の導電性物質被覆層として設けられている請求項 1 2 に記載の装置。

1 4．前記生体分子マイクロアレイが、請求項 1 0 または 1 1 に記載の生体分子マイクロアレイである請求項 1 2 または 1 3 に記載の装置。

1 5．前記スポット用平面と電極との距離が、 $1 \sim 500 \mu\text{m}$ である請求項 1 2 ~ 1 4 のいずれか 1 項に記載の装置。

1 6．前記マイクロアレイと電極との間に、非導電性スペーサーを有する請求項 1 2 ~ 1 5 のいずれか 1 項に記載の装置。

1 7．前記マイクロアレイの生体分子スポットを有する面に対向するように設けられた電極が、透明電極である請求項 1 2 ~ 1 6 のいずれか 1 項に記載の装置。

1 8．温度制御手段を更に有する請求項 1 2 ~ 1 7 のいずれか 1 項に記載の装置。

1 9．請求項 1 2 ~ 1 8 のいずれか 1 項に記載の装置を用いる、生体分子の相互作用促進方法であって、

前記マイクロアレイと電極との間に、ターゲット生体分子を含む溶液を配置し、かつ、

前記マイクロアレイと電極との間に電界を印加することを特徴とする、生体分子の相互作用促進方法。

2 0．前記マイクロアレイと電極との間に印加される電界が、 $0.001 \sim 10 \text{ MV/m}$ である請求項 1 9 に記載の方法。

21. 前記ターゲット生体分子が、蛍光標識されている請求項19または20に記載の方法。
22. 前記ターゲット生体分子を含む溶液が、フェニルアラニン、ヒスチジン、カルノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー物質を含む、請求項19～21のいずれか1項に記載の方法。
23. ターゲット生体分子と相互作用し得る環境下に置かれているか、または、ターゲット生体分子と相互作用し得る環境下に置かれていた請求項10または11に記載のマイクロアレイの各生体分子固定化スポット上の生体分子と前記ターゲット生体分子との間の相互作用を、共焦点型検出器によって検出することを特徴とする生体分子の相互作用の検出方法。
24. 前記マイクロアレイは、請求項19～22のいずれか1項に記載の方法を用いて、ターゲット生体分子と相互作用し得る環境下に置かれているか、または、ターゲット生体分子と相互作用し得る環境下に置かれていた、請求項23に記載の方法。
25. 前記固定化スポット上の生体分子および／または前記ターゲット生体分子が蛍光標識されている請求項23または24に記載の方法。
26. 前記共焦点型検出器によって、マイクロアレイ表面の突出スポット部とそれ以外の部分の高さおよび／または形状の差による反射光強度の相違から、マイクロアレイ上の前記突出スポット部を反射像として検出する請求項23～25のいずれか1項に記載の方法。
27. 前記反射像として検出された突出スポット部からの蛍光を検出することにより、生体分子の相互作用を検出する請求項26に記載の検出方法。
28. 基板表面に生体分子が固定化されたスポットを1つ以上有する生体分子マイクロアレイにターゲット生体分子を含む溶液を接触させ、前記固定化された生

体分子とターゲット生体分子とを相互作用させる方法であって、

前記ターゲット生体分子を含む溶液に、フェニルアラニンを含有させ、かつ、

前記生体分子固定化スポットに向けて溶液中のターゲット生体分子が泳動する
ように前記溶液に電界を印加して、前記相互作用を促進する、前記方法。

29. 前記マイクロアレイが、生体分子固定化スポットを表面に設けた電極を基
板上に有するものであり、前記基板上の電極と対向する電極を用い、かつ前記タ
ーゲット生体分子を含む溶液が前記2つの電極と接触する状態で、前記電極間に
前記電界の印加を行う請求項28に記載の方法。

30. 基板表面に生体分子が固定化されたスポットを1つ以上有する生体分子マ
イクロアレイにターゲット生体分子を含む溶液を接触させ、前記固定化された生
体分子とターゲット生体分子とを相互作用させる方法であって、

前記ターゲット生体分子を含む溶液は、フェニルアラニン、ヒスチジン、カル
ノシン、およびアルギニンからなる群から選ばれる少なくとも1つのバッファー
物質を含有し、

前記基板は、生体分子固定化スポットを設けた面と同一の面上に、少なくとも
1つの対向する一対の電極を、前記一対の電極間に生体分子固定化スポットが位
置するように設けたものであり、かつ

前記ターゲット生体分子を含む溶液が上記一対の電極と接触する状態で、上記
電極間に電界の印加を行い、前記相互作用を促進する、前記方法。

図 1

図 2

(a)

(b)

図 3

図 4

図 5

図 6

(a)

(b)

図 7

図 8

a) 基板全体のデジタルカメラ像

b) 正方形スポットの共焦点顕微鏡像（拡大像）

図 9

図 10

図 11

図 12

図 1 3

(a)ハイブリダイゼーション強度
(b)ハイブリダイゼーション強度比 (I_e / I_0)

図14

図 15

SEQUENCE LISTING

<110> RIKEN

<120> Substrate for biomolecule microarray, biomolecule microarray, device and method for accelerating interaction and detecting method of interaction

<130> A45123H

<160> 18

<210> 1

<211> 45

<212> DNA

<213> GAPDH

<400> 1

tatgacaatg aatacggcta cagcaacagg gtgggtggacc tcatg 45

<210> 2

<211> 45

<212> DNA

<213> GAPDH

<400> 2

tatgacaatg aatacggcta cagcaacagg gtgggtggacc tcatg 45

<210> 3

<211> 45

<212> DNA

<213> NFL

<400> 3

ggccgttctg cttacagtgg cttgcagagc agctcctact tgatg 45

<210> 4

<211> 45

<212> DNA

<213> Ubiquitin2e

<400> 4

gtaccaacat tgcctccat cagagaagtg tgtgtgtgag aagcc 45

<210> 5

<211> 45

<212> DNA

<213> β -actin

<400> 5

ttttgtcccc ccaactttagt gtatgaaggc tttgggtctcc ctggg 45

<210> 6

<211> 45

<212> DNA

<213> gapdh

<400> 6

gcagtgccaa agtggagatt gttgccatca acgaccctt cattg 45

<210> 7

<211> 45

<212> DNA

<213> psbP

<400> 7

agccaggaaa tttgtcgaga gcgcagccac ttctttcagt gttgc 45

<210> 8

<211> 45

<212> DNA

<213> gapdh

<400> 8

gcagtggcaa agtggagatt gttgccatca acgaccctt cattg 45

<210> 9

<211> 45

<212> DNA

<213> beta-actin

<400> 9

ttttgtcccc ccaacttcat gtatgaaggc tttggctcc ctggg 45

<210> 10

<211> 45

<212> DNA

<213> NF-L

<400> 10

ggccgttctg cttacagtgg ctgcagagc agctcctact tgatg 45

<210> 11

<211> 45

<212> DNA

<213> Ubiquitin 2e

<400> 11

gtaccaacat tgcctcctag cagagaagtg tgtgtgttag aagcc 45

<210> 12

<211> 45

<212> DNA

<213> hsc70

<400> 12

cctatggtgc agctgtccag gcagccattc tatctggaga caagt 45

<210> 13

<211> 45

<212> DNA

<213> rpL3

<400> 13

ggtgaggta ccaatgactt catcatgctc aaaggctgtg tggtg 45

<210> 14

<211> 45

<212> DNA

<213> Akt

<400> 14

gctggacaag gacgggcaca tcaagataac ggacttcggg ctgtg 45

<210> 15

<211> 45

<212> DNA

<213> Transthyretin

<400> 15

accatgcag ccctgctcag cccatactcc tacagcacca cggtc 45

<210> 16

<211> 45

<212> DNA

<213> rpS5

<400> 16

cattgctgtg aaggagaagt atgccaaagta cctgccccac agtgc 45

<210> 17

<211> 45

<212> DNA

<213> HCN1

<400> 17

gtgccacagc gtgtcacctt gttcagacag atgtcctcg 45

<210> 18

<211> 45

<212> DNA

<213> Lhb1B2

<400> 18

actcaaggta tcctcatggg agctgttgaa ggctacagag tcgcc 45

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/008413

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ G01N33/53, G01N37/00, G01N21/64, C12M1/00, C12N15/00, C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ G01N33/53, G01N37/00, G01N21/64, C12M1/00, C12N15/00, C12Q1/68,
G01N27/26, G01N27/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JICST (JOIS), CA (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2003-514227 A (CLINICAL MICRO SENSORS, INC.), 15 April, 2003 (15.04.03),	1, 4-17, 19-21
Y	Abstract; Par. Nos. [0005], [0022], [0024],	18
A	[0044], [0062], [0084]; Fig. 1 & WO 01/35100 A & EP 1254372 A	2, 3, 22-30
Y	JP 11-127900 A (Commissariat a L'Energie Atomique), 18 May, 1999 (18.05.99),	18
A	Abstract & EP 0890651 A & US 6255677 B1	1-17, 19-30
A	JP 2003-156442 A (The Institute of Physical and Chemical Research), 30 May, 2003 (30.05.03), & WO 03/44527 A	1-30

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
21 July, 2004 (21.07.04)

Date of mailing of the international search report
10 August, 2004 (10.08.04)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2004/008413
--

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2001-194309 A (Yokogawa Electric Corp.), 19 July, 2001 (19.07.01), & EP 1055925 A	1-30
A	JP 2002-191397 A (Toshiba Corp.), 09 July, 2002 (09.07.02), (Family: none)	1-30
A	JP 2003-21636 A (Matsushita Electric Industrial Co., Ltd.), 24 January, 2003 (24.01.03), (Family: none)	1-30

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/008413

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

"The special technical feature" of the inventions of claims 1-27 relates to a substrate characterized in that the substrate is for a biological microarray and a spot for biomolecule immobilization projects from the surface of the substrate and has a flat surface for spot at the top.

"The special technical feature" of the inventions of claims 28-30 relates to a technical matter that biomolecules immobilized on the surface of the substrate of a microarray is made to interact by electrophoresis with target biomolecules in a solution containing at least one buffering material selected from the group consisting of phenyl alanine, histidine, carnosine and arginine.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C17 G01N33/53, G01N37/00, G01N21/64, C12M1/00,
C12N15/00, C12Q1/68

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 G01N33/53, G01N37/00, G01N21/64, C12M1/00,
C12N15/00, C12Q1/68, G01N27/26, G01N27/30

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2004年
日本国登録実用新案公報	1994-2004年
日本国実用新案登録公報	1996-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

JICST (JOIS), CA (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2003-514227 A (クリニカル・マイクロ・センサーズ・インコーポレイテッド) 2003.04.15 【要約】、【0005】、【0022】、【0024】、 【0044】、【0062】、【0084】、図1 & WO01/35100 A & EP1254372 A	1, 4-17, 19-21, 18
Y		2,
A		3, 22-30

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

21.07.2004

国際調査報告の発送日

10.8.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

山村 祥子

2 J 3312

電話番号 03-3581-1101 内線 3251

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 11-127900 A (コミサリヤ ア レネルジ アトミック) 1999. 05. 18 【要約】	18
A	& EP0890651 A & US6255677 B1	1-17, 19-30
A	JP 2003-156442 A (理化学研究所) 2003. 05. 30 & WO03/44527 A	1-30
A	JP 2001-194309 A (横河電機株式会社) 2001. 07. 19 & EP1055925 A	1-30
A	JP 2002-191397 A (株式会社東芝) 2002. 07. 09 (ファミリーなし)	1-30
A	JP 2003-21636 A (松下電器産業株式会社) 2003. 01. 24 (ファミリーなし)	1-30

第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 _____ は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
2. 請求の範囲 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1～27に係る発明の「特別な技術的な特徴」は、生体マイクロアレイ用基板であって、生体分子固定化用スポットが、基板表面から突出し、かつ頂上にスポット用平面を有することを特徴とする基板に関する。

請求の範囲28～30に係る発明の「特別な技術的な特徴」は、マイクロアレイの基板表面に固定化された生体分子とターゲット生体分子を電気泳動により相互作用させる際に、ターゲット生体分子を含む溶液にフェニルアラニン、ヒスチジン、カルノシン、およびアルギニンからなる群から選ばれる少なくとも一つのバッファー物質を含有することに関する。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがなかった。

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.