BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 12 Phylogenetic Tree - UPGMA Instructor: Lei Qian Fisk University

Phylogenetic inference

1. Selection of sequences for analysis

- DNA:
 - Higher phylogenetic signal:
 - Synonymous vs nonsynonymous substitutions
- Protein:
 - Phylogenetic signal less predominant than in DNA
 - Better to construct a tree for evolutionary distant species or genes
- RNA: rRNA often used for constructing species trees

Phylogenetic inference

2. Multiple sequence alignment

- This is a critical step in the analysis as in many cases the alignment of amino acids or nucleotides in a column implies that they share a common ancestor
- If you misalign a group of sequences you will still be able to produce a tree. However, it is not likely to be biologically meaningful.

Crap in is crap out!

- Inspect the alignment to be sure that all sequences are homologous
- Some times with ClustalW distantly related sequences are not well aligned. Try different gap and extension parameters to improve the alignment
- Only use these columns of the multiple alignment for which you have data for all organisms or sequences. Delete the columns for which this is not the case.
- Delete columns with gaps

Phylogenetic inference

3. Tree building

	Character-based methods	Non-character based methods
Methods based on an explicit model of evolution	Maximum Likelihood Methods/Bayesian Phylogeny	Pairwise distance methods
Methods not based on an explicit model of evolution	Maximum Parsimony Methods	

Phylogenetic Tree

Definition of the "best"

- Distance-based

 a distance is a measure of the overall
 differences/similarities between two objects
- Character-based

 a character is a characteristic that has well-defined, limited number of states
- Maximum likelihood
 Finds a tree such that the likelihood of the data given the tree structure is maximum

Distance based Methods

Distance based methods:

- calculate the distances between molecular sequences using some distance metric
- A clustering method (UPGMA, neighbour joining) is used to infer the tree from the pairwise distance matrix
- treat the sequence from a horizontal perspective, by calculating a single distance between entire sequences
- Advantage:
 - Fast
 - Allow using evolutionary models
- Disadvantage:
 - sequences reduced to one number

Distance based Methods

Character based methods:

- treat the sequences from a vertical perspective
- they search for each column of the alignment, the simplest explanation for how the characters evolved.
- For instance, MP involves a search for a tree with the fewest number of amino acid (or nucleotide character) changes that account for the observed differences between the protein (gene) sequences.

Distance Calculation

Approach:

- align pairs of sequences and count the number of differences (Hamming distance).
- For an alignment of length N with n sites at which there are differences: D=(n/N*100).

Problem:

- observed differences <> actual genetic distances between the sequences.
- => dissimilarity is an underestimation of the true evolutionary distance, because of the fact that some of the sequence positions are the result of multiple events

Solution:

Use an evolutionary model that corrects for multiple mutations

Distance Calculation

A model of evolution is based on certain presumptions!

E.g. substitution model of Jukes & Cantor (1969)

- all substitutions are independent
- all sequence positions are equally likely to change
- substitutions occur randomly among the four types of nucleotides: there is no bias in the direction of change
- no insertions or deletions have occurred

Based on a model of evolution, we can derive an equation that expresses the relationship between dissimilarity (fraction of observed differences) and evolutionary distance (fraction of expected differences)

$$D_{AB} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} f_{AB} \right)$$

Distance Calculation

Step 1
Estimation of evolutionary distances

Convert dissimilarity into evolutionary distance by correcting for multiple events per site e.g. Jukes & Cantor (1969):

$$d_{AB} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} \cdot 0.266 \right) = 0.328$$

Step 2
Infer tree topology on the basis of estimated evolutionary distances

UPGMA (Unweight Pair Group Method using Arithmetic averages)

- One of the most popular phylogenetic tree algorithms.
- Produce a rooted tree (unlike MP method).
- UPGMA produces **ultrametic** trees. The distance from any internal node (including the root) to its descendant leaves is identical!
- Assume a constant rate of evolution rate (molecular clock hypothesis).

- Create a distance matrix between all pairs of taxa
- Iteratively do following until all taxa are merged
 - * Merge the pair (x, y) with smallest distance d(x, y) and form xy
 - * Set distance

*
$$d(z, xy) = \frac{d(z,x) + d(z,y)}{2}$$
 for all z

- For clusters,
 - * $d(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{p \ in \ C_i, q \ in \ C_j} d(p, q)$ ($|C_i|$ is the number of taxa in C_i)

*
$$d(z, C_i C_j) = \frac{d(z, C_i)|C_i| + d(z, C_j)|C_j|}{|C_i| + |C_j|}$$

Choose two clusters with minimum distance and combine them

A B C

	A	В	C	D	Е
Α	0	10	12	8	7
В		0	4	4	14
C			0	6	16
D				0	12
E					0

$$\frac{d(A,BC)}{d(A,BC)} = \frac{d(A,B) + d(B,C)}{2} = \frac{10 + 12}{2} = 11$$

Distance of new cluster to nodes in original clusters is half of original distance

	Α	В	С	D	Е
4	0	10	12	8	7
В		0	4	4	14
С			0	6	16
D				0	12
E					0

	Α	ВС	D	Ε
Α	0	11	8	7
ВС		0	5	15
D			0	12
Е				0

Update distance matrix

	Α	BC	D	E
Α	0	11	8	7
BC		0	5	15
D			0	12
Ε				0

d(A, BCD) =	2*d(A,BC)+d(A,D)
	2 + 1
$=\frac{2*11+8}{}$	= 10
3	10

$$d(E,BCD) = \frac{2*15+12}{2+1} = 14$$

	A	BC	D	E
A	0	11	8	7
BC		0	5	15
D			0	12
E				0

	Α	BCD	E
Α	0	10	7
BCD		0	14
E			0

	Α	BCD	Ε
Α	0	10	7
BCD		0	14
E			0

	Α	BCD	E
Α	0	10	7
BCD		0	14
E			0

	AE	BCD
AE	0	12
BCD		0

			_		
	K	В	C	D	E
A	0	10	12	8	7
В		0	4	4	14
С			0	6	16
D				0	12
E					0

produced tree (((B, C), D), (A, E))

UPGMA Result

	Α	В	С	D	Е
A	0	10	12	8	7
В		0	4	4	14
C			0	6	16
D				0	12
E					0

	Α	В	С	D	E
A	0	10	12	10	7
В		0	4	4	13
С			0	6	15
D				0	13
E					0

UIUC TeachEnG UPGMA game

http://teacheng.illinois.edu/PhylogeneticTree