Name: _____

There are 2 questions for 20 points. 15 minutes individually and 10 minutes of group time.

1. **Small-Step Substitution Semantics: Arithmetic Expressions with Binding**. Consider an arithmetic expression language with binding:

$$e ::= n | x | e_1 + e_2 | e_1 * e_2 |$$
const $x = e_1; e_2$

where n and x correspond to numbers (e.g., 0, 1, 42) and variable identifiers (e.g., x, y), respectively. The values of this language are simply numbers n. The operators + and + are the usual arithmetic operators. The **const** $x = e_1$; e_2 expression binds a variable x to the value e_1 , which is then in scope in expression e_2 .

A one-step evaluation judgment for this language has the following form: $e \rightarrow e'$. Informally, this judgment says "Closed expression e takes one step of evaluation to expression e'." This judgment gives a small-step operational semantics for this language, which we define in this question.

(a) 3 points Suppose that rules to evaluate expressions of the form $e_1 + e_2$ are as follows:

$$\frac{n' = n_1 + n_2}{n_1 + n_2 \longrightarrow n'} \qquad \frac{e_1 \longrightarrow e_1'}{e_1 + e_2 \longrightarrow e_1' + e_2} \qquad \frac{e_2 \longrightarrow e_2'}{e_1 + e_2 \longrightarrow e_1 + e_2'}$$

where the + in the first rule is bolded to emphasize that it is the mathematical plus. What is stated about the order of evaluation for + in the above rules? Explain in 1–2 sentences.

Solution: These rule say that the evaluation of $e_1 + e_2$ is non-deterministic. The evaluator can interleave steps of evaluating e_1 or e_2 .

(b) 5 points Give rules for evaluating $e_1 * e_2$ such that the evaluation short-circuits if e_1 is 0.

Solution:

The highlighted premise ensures that the DoTimesZero rule is the only one that applies when the left expression evaluates to 0.

Name: _____

(c) 4 points Give rules for evaluating **const** $x = e_1$; e_2 expressions where first e_1 must be evaluated to a value and then e_2 is evaluated. Recall that x is in scope in e_2 and refers to the value of e_1 . You may use the notation e[e'/x] for the capture-avoiding substitution in e of e' for x.

Solution: $\frac{e_1 \longrightarrow e_1'}{\mathbf{const} \ x = n_1; e_2 \longrightarrow e_2[n_1/x]} \qquad \frac{e_1 \longrightarrow e_1'}{\mathbf{const} \ x = e_1; e_2 \longrightarrow \mathbf{const} \ x = e_1'; e_2}$

2. **Big-Step Environment Semantics: Dynamic Scoping**. Consider the following JAVASCRIPTY expression:

const
$$x = 1$$
; const $g = (function (y) x); (function (x) g(2))(3)$

Recall that **function** p(x) e is an abbreviation for **function** p(x) { **return** e }.

(a) 4 points What is the value of this expression under static scoping? Under dynamic scoping? Hint: this example expression, should look very familiar.

Solution: Static scoping: 1. Dynamic scoping: 3.

(b) 4 points Recall that a derivation of a judgment is an application of inference rules arranged in a tree. Using the big-step operational semantics with dynamic scoping as in Lab 3 (see Figure 1), let us consider a derivation that specifies the value of the above expression. After the evaluation of the two top-level **const** bindings, there is one sub-derivation of the following form:

$$\frac{\mathscr{D}_1 \quad \mathscr{D}_2 \quad \mathscr{D}_3}{E_1 \vdash \big(\mathbf{function}\,(\mathbf{x})\,\mathbf{g}(2)\big)(3)\,\Downarrow\, \square} \, \mathsf{CALL}$$

where $E_1 \stackrel{\text{def}}{=} \cdot [\mathtt{x} \mapsto 1][g \mapsto \textbf{function}(\mathtt{y}) \mathtt{x}]$ and with three sub-derivations \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_3 . Derivations \mathcal{D}_1 and \mathcal{D}_2 are given as follows:

$$\mathcal{D}_{1} \stackrel{\text{def}}{=} \overline{E_{1} \vdash \mathbf{function} (x) g(2) \Downarrow \mathbf{function} (x) g(2)}$$
VAL
$$\mathcal{D}_{2} \stackrel{\text{def}}{=} \overline{E_{1} \vdash 3 \Downarrow 3}$$
VAL

Complete the derivation above by filling in the box above for the value of the expression and give the sub-derivation \mathcal{D}_3 below. Hint: sub-derivation \mathcal{D}_3 consists of applications of 4 inference rules.

Solution: The box gets filled in with the value 3. The sub-derivation \mathcal{D}_3 is as follows:

$$\frac{v_{1} = \mathbf{function} (y) \times \frac{v_{1}}{E_{1}[x \mapsto 3] \vdash g \Downarrow v_{1}} V_{AR}}{E_{1}[x \mapsto 3] \vdash 2 \Downarrow 2} V_{AL} \frac{1}{E_{1}[x \mapsto 3][y \mapsto 2] \vdash x \Downarrow 3} V_{AR}}{E_{1}[x \mapsto 3] \vdash g(2) \Downarrow 3} C_{ALL}$$

Name: _____

$$\frac{\text{VAR}}{E \vdash x \Downarrow E(x)} \qquad \frac{\text{VAL}}{E \vdash v \Downarrow v} \qquad \frac{\text{CALL}}{E \vdash e_1 \Downarrow \text{function } (x) \ e' \qquad E \vdash e_2 \Downarrow v_2 \qquad E[x \mapsto v_2] \vdash e' \Downarrow v'}{E \vdash e_1(e_2) \Downarrow v'}$$

Figure 1: Big-step operational semantics with dynamic scoping for JAVASCRIPTY (select rules).