Basic Electrical and Electronics Engineering

LECTURE 2.2

Dr. Sonam Shrivastava/ Assistant Professor (Sr.) /SELECT

BEEE102L

Basic Electrical and Electronics Engineering

- 1. DC Circuits
- 2. AC Circuits
- 3. Magnetic Circuits
- 4. Electrical Machines
- 5. Semiconductor Devices and Applications
- 6. Digital Systems
- 7. Sensors and Transducers

$$e = E_m \sin \alpha$$
 (V)

is the instantaneous angular position of the coil.

Angular Velocity (0)

The rate at which the generator coil rotates is called its **angular velocity**

$$\alpha = \omega t$$

$$t = \frac{\alpha}{\omega}$$
 (s)

$$\omega = \frac{\alpha}{t}$$

Radian Measure

In practice, ω is usually expressed in radians per second, where radians and degrees are related by the identity

 $2\pi \text{ radians} = 360^{\circ}$

Relationship between ω , T, and f

$$\omega T = 2\pi$$
 (rad)

$$\omega = \frac{2\pi}{T}$$
 (rad/s)

$$\omega = 2\pi f$$
 (rad/s)

$$\alpha_{\rm radians} = \frac{\pi}{180^{\circ}} \times \alpha_{\rm degrees}$$

$$\alpha_{\rm degrees} = \frac{180^{\circ}}{\pi} \times \alpha_{\rm radians}$$

(a) Degrees

(b) Radians

(c) Period

we observe that
$$\omega T \stackrel{\text{\tiny (a)}}{=} 2\pi$$
,

$$v(t) = V_m \sin \omega t$$

$$T = \frac{2\pi}{\omega}$$

The fact that v(t) repeats itself every T seconds is shown by replacing t by t + T

$$v(t+T) = V_m \sin \omega (t+T) = V_m \sin \omega \left(t + \frac{2\pi}{\omega}\right)$$
$$= V_m \sin(\omega t + 2\pi) = V_m \sin \omega t = v(t)$$

Hence,

$$v(t+T) = v(t)$$

Let us now consider a more general expression for the sinusoid,

$$v(t) = V_m \sin(\omega t + \phi)$$

where $(\omega t + \varphi)$ is the argument and φ is the phase. Both argument and phase can be in radians or degrees.

Let us examine the two sinusoids

$$v_1(t) = V_m \sin \omega t$$
 and $v_2(t) = V_m \sin(\omega t + \phi)$

The starting point of v2 in Figure occurs first in time.

Therefore, we say that v2 leads v1 by φ or that v1 lags v2 by φ .

If $\varphi = 0$, then v1 and v2 are said to be in phase; they reach their minima and maxima at exactly the same time.

Representation

$$v(t) = V_m \sin \omega t$$

 V_m = the amplitude of the sinusoid ω = the angular velocity in radians/s ωt = the argument of the sinusoid

In general

$$v(t) = V_m \sin(\omega t + \emptyset)$$

 $(\omega t + \varphi)$ is the argument and \emptyset is the phase. Both argument and phase can be in radians or degrees

Voltages and Currents with Phase Shifts

If a sine wave does not pass through zero at t = 0 s it has a **phase shift.** Waveforms may be shifted to the left or to the right

$$v = V_m \sin(\omega t + \theta)$$

$$v = V_m \sin(\omega t - \theta)$$

(a)
$$v = V_m \sin(\omega t + \theta)$$

(b)
$$v = V_m \sin(\omega t - \theta)$$

Example Problem 1

Find the amplitude (Vm), phase (Φ), period
 (T), and frequency (F) of the sinusoid

$$v(t) = 12\sin(50t + 10^{\circ})$$

$$v(t) = V_m \sin(\omega t + \varphi)$$

Example Problem 1

• Find the amplitude, phase, period, and frequency of the sinusoid

$$v(t) = 12\sin(50t + 10^{\circ})$$

Solution:

The amplitude is $V_m = 12 \text{ V}$.

The phase is $\phi = 10^{\circ}$.

The angular frequency is $\omega = 50 \text{ rad/s}$.

The period
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{50} = 0.1257 \text{ s.}$$

The frequency is
$$f = \frac{1}{T} = 7.958$$
 Hz.

Example Problem 2

Find the amplitude (Vm), phase (Φ), period
 (T), and frequency (F) of the sinusoid

$$5 \sin(4\pi t - 60^{\circ})$$

$$v_2(t) = V_m \sin(\omega t + \phi)$$

Answer: $5, -60^{\circ}, 0.5 \text{ s}, 2 \text{ Hz}.$

EXAMPLE 13.9

- a. Determine the angle at which the magnitude of the sinusoidal function $v = 10 \sin 377t$ is 4 V.
- b. Determine the time at which the magnitude is attained.

EXAMPLE 13.9

- a. Determine the angle at which the magnitude of the sinusoidal function $v = 10 \sin 377t$ is 4 V.
- b. Determine the time at which the magnitude is attained.

Solutions:

a. Eq. (13.15):

$$\alpha_1 = \sin^{-1} \frac{v}{E_m} = \sin^{-1} \frac{4 \text{ V}}{10 \text{ V}} = \sin^{-1} 0.4 = 23.58^{\circ}$$

However, Fig.13.19 reveals that the magnitude of 4 V (positive) will be attained at two points between 0° and 180°. The second intersection is determined by

$$\alpha_2 = 180^{\circ} - 23.578^{\circ} = 156.42^{\circ}$$

In general, therefore, keep in mind that Eqs. (13.15) and (13.16) will provide an angle with a magnitude between 0° and 90°.

b. Eq. (13.10): $\alpha = \omega t$, and so $t = \alpha/\omega$. However, α must be in radians. Thus,

$$\alpha \text{ (rad)} = \frac{\pi}{180^{\circ}} (23.578^{\circ}) = 0.412 \text{ rad}$$

$$t_1 = \frac{\alpha}{\omega} = \frac{0.412 \text{ rad}}{377 \text{ rad/s}} = 1.09 \text{ ms}$$

and

For the second intersection,

$$\alpha \text{ (rad)} = \frac{\pi}{180^{\circ}} (156.422^{\circ}) = 2.73 \text{ rad}$$

$$t_2 = \frac{\alpha}{\omega} = \frac{2.73 \text{ rad}}{377 \text{ rad/s}} = 7.24 \text{ ms}$$