Recursion Schemes - Why, How and More

Sergey Vinokurov

serg.foo@gmail.com, @5ergv

2017-11-17

Outline

Introduction

Recursive datatypes 101 - Lists

Recursive datatypes 102 - taking recursion out

On to compilers

Compilers - annotating expressions

Compilers - adding variables

Compilers - adding a bit more type safety

Wrapping up

What

An FP pattern for working with ASTs writing compilers

What

An FP pattern for working with ASTs writing compilers

Get recursion out - can change it later

What

An FP pattern for working with ASTs writing compilers

Get recursion out - can change it later

Let's go, there's lot to cover. Ask questions!

What's in a list?

List is either empty or an element consed onto another list.

```
-- Recursive datatype!

data List a =

Nil

| Cons a (List a)

deriving (Show)
```

Processing lists

```
-- Let's multiply all list elements together.
prodList :: List Double → Double
prodList Nil
prodList (Cons x xs) = x * prodList xs
-- And compute length
lengthList :: List a \rightarrow Int
lengthList Nil
                   = 0
lengthList (Cons _ xs) = 1 + lengthList xs
Expected output
prodList (Cons 1 (Cons 2 (Cons 3 Nil))) \Rightarrow 6.0
lengthList (Cons 1 (Cons 2 (Cons 3 Nil))) \Rightarrow 3
```

Explicit recursion leaves out without modularity

What if we want to fuse prodList and lengthList?

Why? - Say, we'd like to do only one traversal over a list.

Explicit recursion leaves out without modularity

What if we want to fuse prodList and lengthList?

Why? - Say, we'd like to do only one traversal over a list.

Can we reuse already written prodList and lengthList

Explicit recursion leaves out without modularity

What if we want to fuse prodList and lengthList?

Why? - Say, we'd like to do only one traversal over a list.

Can we reuse already written prodList and lengthList

Let's see...

```
Expected output computeBoth (Cons\ 1\ (Cons\ 2\ (Cons\ 3\ Ni\ l))) \Rightarrow\ (3,6.0)
```

Let's see...

```
Expected output computeBoth (Cons\ 1\ (Cons\ 2\ (Cons\ 3\ Nil))) \Rightarrow\ (3,6.0)
```

No way to combine prodList and lengthList. Each function does it's own traversal and we cannot alter that.

Let's see...

```
Expected output computeBoth (Cons 1 (Cons 2 (Cons 3 Nil))) \Rightarrow (3,6.0)
```

No way to combine prodList and lengthList. Each function does it's own traversal and we cannot alter that.

```
computeBoth :: List Double → (Int, Double)
computeBoth Nil = (0, 1)
computeBoth (Cons x xs) =
let (len, pr) = computeBoth xs in (len + 1, x * pr)
```

Let's see...

```
Expected output computeBoth (Cons\ 1\ (Cons\ 2\ (Cons\ 3\ Nil))) \Rightarrow\ (3,6.0)
```

No way to combine prodList and lengthList. Each function does it's own traversal and we cannot alter that.

```
computeBoth :: List Double \rightarrow (Int, Double)

computeBoth Nil = (0, 1)

computeBoth (Cons x xs) =

let (len, pr) = computeBoth xs in (len + 1, x * pr)
```

NB Even foldr does not help us here (homework: convince yourself that it's the case).

The path forward

Key idea: split datatypes into recursive and non-recursive part.

Let's try it with lists. I'll introduce non-recursive part first.

Just go ahead and replace all recursive occurrences with new parameter.

```
-- Base functor that captures the shape of our type.
data ListF a r =
    NilF
    | ConsF a r
    deriving (Show, Functor)
```

The Base Functor

What will happen when we start consing like we did before?

```
-- Base functor that captures the shape of our type.
data ListF a r =
    NilF
    | ConsF a r
    deriving (Show, Functor)

NilF :: ListF a r
ConsF () NilF :: ListF () (ListF a r)
ConsF () (ConsF () NilF) :: ListF () (ListF () (ListF a r))
```

A way to use base functor for lists

Can use this raw functor to specify things like 'list no longer than 3'.

```
-- Base functor that captures the shape of our type.
data ListFar =
    Ni.1.F
  | ConsF a r
  deriving (Show, Functor)
type List3 a = ListF a (ListF a (ListF a ()))
nullList3 :: List3 a → Bool
nullList3 NilF = True
nullList3 = False
```

We need recursion

Still, *List3* is not enough.

We can specify a list of any fixed length, but we cannot nest ListF's to get infinitely-long lists - we will get infinite type!

The missing recursion bit

Let's define a type that will add recursion to the ListF.

- -- Recursive part of our datatype.
- -- NB use newtype to avoid extra layers and have the same runtime
- -- representation as we had before.

```
newtype Fix f = Fix (f (Fix f))
```

```
-- Unwrap one layer
unFix :: Fix f → f (Fix f)
unFix (Fix x) = x
```

Recovering List

```
Fix\ (ListF\ a) will give us exactly the List\ a we had before! data List\ a=Nil\ |\ Cons\ a\ (List\ a) newtype Fix\ f=Fix\ (f\ (Fix\ f)) data ListF\ a\ r=NilF\ |\ ConsF\ a\ r
```

-- Convenient type alias that does the job type List' a = Fix (ListF a)

Recovering List

 $Fix\ (ListF\ a)$ will give us exactly the $List\ a$ we had before!

data $List\ a=Nil\ |\ Cons\ a\ (List\ a)$ newtype $Fix\ f=Fix\ (f\ (Fix\ f))$ data $ListF\ a\ r=NilF\ |\ ConsF\ a\ r$

- -- Convenient type alias that does the job type List' a = Fix (ListF a)
 - ightharpoonup Nil \Leftrightarrow Fix NilF
 - ▶ $Cons \ 1 \ Nil \Leftrightarrow Fix \ (ConsF \ 1 \ (Fix \ NilF))$
 - ▶ Cons 1 (Cons 2 Nil) \Leftrightarrow Fix (ConsF 1 (Fix (ConsF 2 (Fix NilF))))

How to work with this

Great, now we can rewrite List a as Fix (ListF a)!!

What now??

How to work with this

Great, now we can rewrite List a as Fix (ListF a)!!

What now??

Let's actually look at recursion schemes.

Our first recursion scheme

The most basic recursion scheme bears proud name catamorphism.

The name comes from from the Greek: $\kappa\alpha\tau\alpha$ "downwards" and $\mu o \rho \phi \eta$ "form, shape". (Wikipedia).

One cool bit is that catamorphism's definition can be inferred from its commutative diagram (how cool is that!).

Catamorphism from a commutative diagram

But let's write function's type first. We actually want something this:

```
cata :: (f a \rightarrow a) \rightarrow Fix f \rightarrow a
```

We'll revise this a bit afer looking at the diagram.

For now just note that first argument is called algebra and that catamorphism collapses possibly infinitely many layers with an algebra.

The diagram

cata :: (f a
$$\rightarrow$$
 a) \rightarrow Fix f \rightarrow a
$$f (Fix f) \qquad \qquad f a$$

$$Fix f \xrightarrow{\text{cata f}}$$
 a

The diagram 2

The diagram 3

cata :: $(f a \rightarrow a) \rightarrow Fix f \rightarrow a$

The complete diagram

Read the diagram into a function

```
cata :: Functor f => (f a → a) → Fix f → a
cata alg = go
  where
  go = alg · fmap go · unFix
```


Let's compute length with our new tool

```
cata :: Functor f => (f a \rightarrow a) \rightarrow Fix f \rightarrow a
lenAlg :: ListF a Int \rightarrow Int
lenAlg = \case
  NilF \rightarrow 0
  ConsF _ x \rightarrow x + 1
lengthListF :: List' a → Int
lengthListF = cata lenAlg
Run it
lengthListF (Fix (ConsF 3 (Fix (ConsF 4 (Fix NilF)))))
\Rightarrow 2
```

Let's compute product with our new tool

```
cata :: Functor f => (f a \rightarrow a) \rightarrow Fix f \rightarrow a
prodAlg :: ListF Double Double → Double
prodAlg = \case
  NilF \rightarrow 1
  ConsF \times y \rightarrow x * y
prodListF :: List' Double → Double
prodListF = cata prodAlg
Run it
prodListF (Fix (ConsF 3 (Fix (ConsF 4 (Fix NilF)))))
\Rightarrow 12.0
```

On to fusion

```
cata :: Functor f => (f a \rightarrow a) \rightarrow Fix f \rightarrow a
fmap :: Functor f \Rightarrow (a \rightarrow b) \rightarrow f a \rightarrow f b
fst :: (a, b) \rightarrow a
snd :: (a, b) \rightarrow b
fuseAlgs
   :: Functor f
   => (f a \rightarrow a)
  \rightarrow (f b \rightarrow b)
  \rightarrow (f (a, b) \rightarrow (a, b))
fuseAlgs f g = \xspace x \rightarrow (f (fmap fst x), g (fmap snd x))
lenWithProdListF :: List' Double → (Int, Double)
lenWithProdListF = cata (fuseAlgs lenAlg prodAlg)
```

On to fusion

```
cata :: Functor f => (f a \rightarrow a) \rightarrow Fix f \rightarrow a
fmap :: Functor f \Rightarrow (a \rightarrow b) \rightarrow f a \rightarrow f b
fst :: (a, b) \rightarrow a
snd :: (a, b) \rightarrow b
fuseAlgs
   :: Functor f
  => (f a \rightarrow a)
  \rightarrow (f b \rightarrow b)
  \rightarrow (f (a, b) \rightarrow (a, b))
fuseAlgs f g = \xspace x \rightarrow (f (fmap fst x), g (fmap snd x))
lenWithProdListF :: List' Double → (Int, Double)
lenWithProdListF = cata (fuseAlgs lenAlg prodAlg)
lenWithProdListF (Fix (ConsF 3 (Fix (ConsF 4 (Fix NilF)))))
\Rightarrow (2,12.0)
```

Compiler datatypes

Compilers work with abstract syntax trees.

We need a simple tree type for illustration purposes.

Compiler datatypes

Compilers work with abstract syntax trees.

We need a simple tree type for illustration purposes.

Hutton's Razor - very simple AST to try ideas on.

```
data HuttonExpr =
   Lit Double
   | Add HuttonExpr HuttonExpr
```

Compiler datatypes from a visual standpoint

Trees branch, lists are linear.

Add (Add (Lit 5) (Add (Lit 2) (Lit 3))) (Lit 7)

What we do with expressions - Evaluate

Let's evaluate *HuttonExpr*

```
evalHutton :: HuttonExpr \rightarrow Double
evalHutton (Lit n) = n
evalHutton (Add x y) = evalHutton x + evalHutton y
```

What we do with expressions - Evaluate

```
Let's evaluate HuttonExpr
```

```
evalHutton :: HuttonExpr \rightarrow Double
evalHutton (Lit n) = n
evalHutton (Add x y) = evalHutton x + evalHutton y
```

```
Run it
```

```
evalHutton (Add (Add (Lit 5) (Add (Lit 2) (Lit 3))) (Lit 7)) \Rightarrow 17.0
```

What we do with expressions - Evaluate

```
Let's evaluate HuttonExpr
```

```
evalHutton :: HuttonExpr \rightarrow Double
evalHutton (Lit n) = n
evalHutton (Add x y) = evalHutton x + evalHutton y
```

```
Run it
```

```
evalHutton (Add (Add (Lit 5) (Add (Lit 2) (Lit 3))) (Lit 7)) \Rightarrow 17.0
```

What we do with expressions - Compute height

Say, we want to place all arguments on a stack when generating code.

We'd like to know the maximum depth of the stack we'll need...

```
depthHutton :: HuttonExpr \rightarrow Int
depthHutton (Lit_) = 1
depthHutton (Add x y) =
1 + (depthHutton x 'max' depthHutton y)
```

What we do with expressions - Compute height

Say, we want to place all arguments on a stack when generating code.

We'd like to know the maximum depth of the stack we'll need...

```
depthHutton :: HuttonExpr \rightarrow Int
depthHutton (Lit_) = 1
depthHutton (Add \times y) =
1 + (depthHutton x \text{ `max' depthHutton } y)
```

```
Run it depthHutton (Add (Add (Lit 5) (Add (Lit 2) (Lit 3))) (Lit 7)) \Rightarrow 4
```

Unfix the HuttonExpr

All issues that plagued prodList and lengthList will show up with evalHutton and depthHutton as well. Let's fix them

```
data HuttonExprF r =
    LitF Double
    | AddF r r
    deriving (Show, Functor, Foldable)

type HuttonExpr' = Fix HuttonExprF
```

Redefine our functions

```
data HuttonExprF r =
    LitF Double
  | AddF r r
  deriving (Show, Functor, Foldable)
fold :: (Foldable f, Monoid a) \Rightarrow f a \rightarrow a
depthAlg :: HuttonExprF Int → Int
depthAlg = \case
  LitF \rightarrow 1
  AddF \times y \rightarrow 1 + (x 'max' y)
```

Redefine our functions

```
data HuttonExprF r =
    LitF Double
  | AddF r r
  deriving (Show, Functor, Foldable)
fold :: (Foldable f, Monoid a) \Rightarrow f a \rightarrow a
depthAlg :: HuttonExprF Int → Int
depthAlg = \case
  LitF \rightarrow 1
  AddF \times y \rightarrow 1 + (x 'max' y)
```

Monoids simplify algebras a lot

```
newtype SumMonoid = SumMonoid Double deriving (Show)
instance Monoid SumMonoid where
  mempty = SumMonoid 0
  mappend = coerce ((+) @Double)
evalAlg :: HuttonExprF SumMonoid → SumMonoid
evalAlg = \case
  I.i.t.F \times \rightarrow SumMonoid \times
  e → fold e
```

Can fuse those with function we defined before

```
fuseAlgs
  :: Functor f
  => (f a \rightarrow a)
  \rightarrow (f b \rightarrow b)
  \rightarrow (f (a, b) \rightarrow (a, b))
fuseAlgs f g = \xspace x \rightarrow (f (fmap fst x), g (fmap snd x))
evalWithDepth :: HuttonExpr' → (Double, Int)
evalWithDepth = coerce (cata (fuseAlgs evalAlg depthAlg))
 evalWithDepth
   (Fix (AddF
      (Fix (AddF
         (Fix (LitF 5))
         (Fix (AddF (Fix (LitF 2)) (Fix (LitF 3)))))
      (Fix (LitF 7))))
\Rightarrow (17.0,4)
```

Annotating all nodes with a common value

Say, we are parsing our expressions from a file.

Each expression has position that we'd like to keep around.

What do we usually do to add positions to each node?

```
-- Just an example

newtype Line = Line Int

newtype Column = Column Int

data Position = Position String Line Column

-- Try adding annotations here

data HuttonExpr =

Lit Double

| Add HuttonExpr HuttonExpr
```

For one, we can just go ahead and annotate each constructor

```
data HuttonExpr =
   Lit Position Double
   | Add Position HuttonExpr HuttonExpr
```

data Position = ...

For one, we can just go ahead and annotate each constructor

```
data Position = ...

data HuttonExpr =
    Lit Position Double
    | Add Position HuttonExpr HuttonExpr
```

Pro: very simple

For one, we can just go ahead and annotate each constructor

```
data Position = ...

data HuttonExpr =
    Lit Position Double
    | Add Position HuttonExpr HuttonExpr
```

Pro: very simple Cons:

Not really feasible if expression type has nearly 100 constructors (a real case).

For one, we can just go ahead and annotate each constructor

```
data Position = ...

data HuttonExpr =
    Lit Position Double
    | Add Position HuttonExpr HuttonExpr
```

Pro: very simple Cons:

- Not really feasible if expression type has nearly 100 constructors (a real case).
- When constructing expressions we must always some position. This leads to lots of meaningless positions

Okay, we can factor out common field

```
data Position = ...

data HuttonExpr = HuttonExpr Position HuttonExprBase

data HuttonExprBase =
    Lit Double
    | Add HuttonExpr HuttonExpr
```

Okay, we can factor out common field

```
data Position = ...

data HuttonExpr = HuttonExpr Position HuttonExprBase

data HuttonExprBase =
    Lit Double
    | Add HuttonExpr HuttonExpr
```

Pro: still pretty simple

Okay, we can factor out common field

```
data Position = ...

data HuttonExpr = HuttonExpr Position HuttonExprBase

data HuttonExprBase =
    Lit Double
    | Add HuttonExpr HuttonExpr
```

Pro: still pretty simple Cons:

Now data type is less convenient to work with - try matching 2 or 3 levels deep in a function

Okay, we can factor out common field

```
data Position = ...

data HuttonExpr = HuttonExpr Position HuttonExprBase

data HuttonExprBase =
    Lit Double
    | Add HuttonExpr HuttonExpr
```

Pro: still pretty simple Cons:

- Now data type is less convenient to work with try matching 2 or 3 levels deep in a function
- Still lots of dummy positions when constructing expressions

A solution through factored recursion

This is where Cofree comes in. Compare against Fix.

That's the cofree comonad you might've heard of. It's also helpful without *Comonad* instance.

```
newtype Fix f = Fix (f Fix)

data Cofree f a = a :< Cofree f a
    deriving (Show, Functor, Foldable)

data HuttonExprF r =
    LitF Double
    | AddF r r
    deriving (Show, Functor, Foldable)</pre>
```

type AnnotatedHuttonExpr = Cofree HuttonExprF Position

A solution through factored recursion

This is where *Cofree* comes in. Compare against *Fix*.

That's the cofree comonad you might've heard of. It's also helpful without *Comonad* instance.

```
newtype Fix f = Fix (f Fix)

data Cofree f a = a :< Cofree f a
    deriving (Show, Functor, Foldable)

data HuttonExprF r =
    LitF Double
    | AddF r r
    deriving (Show, Functor, Foldable)</pre>
```

type AnnotatedHuttonExpr = Cofree HuttonExprF Position

Pro: can ignore all positions and get Fix'ed HuttonExprF

A solution through factored recursion

This is where Cofree comes in. Compare against Fix.

That's the cofree comonad you might've heard of. It's also helpful without *Comonad* instance.

```
data Cofree f a = a :< Cofree f a
  deriving (Show, Functor, Foldable)
data HuttonExprF r =</pre>
```

newtype Fix f = Fix (f Fix)

LitF Double
| AddF r r
deriving (Show, Functor, Foldable)

 $\textbf{type} \ \textit{AnnotatedHuttonExpr} = \textit{Cofree} \ \textit{HuttonExprF} \ \textit{Position}$

Pro: can ignore all positions and get Fix'ed HuttonExprF Cons: requires unfixed type

On to functions

We want to model functions with our *HuttonExpr*.

Functions have arguments. Functions of 1 argument with currying will be enough

Quiz: where to put variables if we had old *HuttonExpr*?

-- If you thought annotations were easy, try adding variables here!! $data\ \textit{HuttonExpr} =$

a muccombapi

 $Lit\ Double$

| Add HuttonExpr HuttonExpr

On to functions

We want to model functions with our *HuttonExpr*.

Functions have arguments. Functions of 1 argument with currying will be enough

Quiz: where to put variables if we had old *HuttonExpr*?

-- If you thought annotations were easy, try adding variables here!! data HuttonExpr =

Lit Double

| Add HuttonExpr HuttonExpr

There's simply no place to do this! We have to add new costructor and rewrite all our functions to handle it.

```
data HuttonExprVars a =
    Lit Double
    | Add HuttonExpr HuttonExpr
    | Var a
```

This is actually pretty good.

Via clever introduction of the new parameter, we can recover old expressions without variables by using *Void*, a type without costructors.

- -- No constructors, ergo no values
- -- (except undefined, but it's morally correct to forget it) data *Void*

type HuttonExpr = HuttonExprVars Void

```
data HuttonExprVars a =
    Lit Double
    | Add HuttonExpr HuttonExpr
    | Var a
```

 ${\tt type} \ \textit{HuttonExpr} = \textit{HuttonExprVars} \ \textit{Void}$

Pro: may be good enough to get the job done

```
data HuttonExprVars a =
    Lit Double
    | Add HuttonExpr HuttonExpr
    | Var a
```

type HuttonExpr = HuttonExprVars Void

Pro: may be good enough to get the job done

Cons:

Used a parameter - our type may already have a few of those (5 is not a limit in the RealWorld™)

```
data HuttonExprVars a =
    Lit Double
    | Add HuttonExpr HuttonExpr
    | Var a
```

```
type HuttonExpr = HuttonExprVars Void
```

Pro: may be good enough to get the job done

Cons:

- Used a parameter our type may already have a few of those (5 is not a limit in the RealWorld™)
- Pattern match completeness checker will still expect us to handle new Var case even when working with HuttonExprVars Void

Can modularized recursion help us here?

Sure it can! Meet Free - a categorical $^{\text{M}}$ dual of Cofree.

That's the free monad you might've heard of. It's also helpful without *Monad* instance.

```
data Free f a =
    Pure a
    | Free (f (Free f a))
    deriving (Functor, Foldable)

newtype DeBruijn = DeBruijn Int

type HuttonExprVars = Free HuttonExprF DeBruijn
```

More complicated ASTs may have invariants

That was fun! However, what if our expr can produce either an integer or a bool when evaluated?

Can represent invalid expressions...

```
data IntBoolExpr =
    LitInt Int
  | LitBool Bool
  | IBAdd IntBoolExpr IntBoolExpr
  | IBLessThan IntBoolExpr IntBoolExpr
  | TBTF
      IntBoolExpr -- must be a bool expr
      IntBoolExpr -- can be any expr
      IntBoolExpr -- can be any expr
-- Breaches every invariant we have...
wat :: IntBoolExpr
wat =
  TRTF
    (LitInt 10)
    (LitBool True)
    (IBAdd (LitBool False) (LitInt 1))
```

Let's add types so that ill-typed terms will be unrepresentable

GADTs to the rescue

It works Does not compile

EIf (ELitInt 10) (ELitBool True) (EAdd (ELitBool False) (ELit <interactive>:1:6: error:

* Couldn't match type 'Int' with 'Bool' Expected type: Expr Bool

Actual type: Expr Int

* In the first argument of 'EIf', namely '(ELitInt 10) In the expression:

(ELitInt 10) (ELitBool True) (EAdd (ELitBool Fai

In the expression:

* Couldn't match type 'Int' with 'Bool'

<interactive>:1:35: error:

F.T f

Expected type: Expr Bool Actual type: Expr Int * In the third argument of 'EIf', namely '(EAdd (ELitBool False) (ELitInt 1))'

But I want my recursion schemes goodness back!

We just need higher-order recursion schemes.

Observe that Expr has a type parameter but it is not a Functor. It's something different.

Let's start with a base functor, as before.

Indexed base functor

Replace all the recursive positions, add new parameter. The only difference: parameter has to be indexed.

```
data ExprF h ix where
```

```
\begin{array}{lll} \textit{ELitIntF} & :: & \textit{Int} & \rightarrow \textit{ExprF} \text{ h} & \textit{Int} \\ \textit{ELitBoolF} & :: & \textit{Bool} & \rightarrow \textit{ExprF} \text{ h} & \textit{Bool} \end{array}
```

EIfF :: h Bool \rightarrow h a \rightarrow h a \rightarrow ExprF h a

Indexed base functor with kind signatures

I have just added kind signatures to the parameters

```
data ExprF (h :: k \rightarrow *) (ix :: k) where ELitIntF :: Int \rightarrow ExprF h Int ELitBoolF :: Bool \rightarrow ExprF h Bool EAddF :: h Int \rightarrow h Int \rightarrow ExprF h Int ELessThanF :: h Int \rightarrow h Int \rightarrow ExprF h Bool EIfF :: h Bool \rightarrow h a \rightarrow h a \rightarrow ExprF h a
```

Indexed recursion combinator

Without further ado, this is how Fix should look like for GADTs with a parameter (with polykinds):

```
-- Just ignore the kinds if they upset your senses...
newtype HFix (f :: (k → *) → k → *) (ix :: k) =
HFix (f (HFix f) ix)
unHFix :: HFix f ix → f (HFix f) ix
unHFix (HFix x) = x
```

We still need functors

To define cata we needed a *Functor*. Here it's similar enough - our functor should preserve indices:

```
class HFunctor (f :: (k \rightarrow *) \rightarrow k \rightarrow *) where
  hfmap :: (\forall ix' \cdot g ix' \rightarrow h ix') \rightarrow f g ix \rightarrow f h ix
-- Can derive with TH, if you like
instance HFunctor ExprF where
  hfmap h = \case
     ELitIntF n \rightarrow ELitIntF n
     ELitBoolF b → ELitBoolF b
     EAddF \times y \rightarrow EAddF (h \times) (h y)
     ELessThanF \times y \rightarrow ELessThanF (h \times) (h y)
     EIfF c t f \rightarrow EIfF (h c) (h t) (h f)
```

Find 10 differences with cata...

go = alg · hfmap go · unHFix

```
cata :: Functor f => (f a → a) → Fix f → a
cata alg = go
   where
      go = alg · fmap go · unFix

hcata :: ∀ f g ix · HFunctor f => (∀ ix · f g ix → g ix) → H
hcata alg = go
   where
      go :: ∀ ix · HFix f ix → g ix
```

Now we can evaluate safely

heval = hcata hevalAlg

```
data Value ix where
  VInt :: Int \rightarrow Value Int
  VBool :: Bool → Value Bool
deriving instance Show (Value ix)
hevalAlg :: ExprF Value ix → Value ix
hevalAlg = \case
  EI.i.t.Tn.t.F n
                                   \rightarrow VTn.t. n
  EI.i.t.Bool.F b
                                   → VBool b
  EAddF (VInt x) (VInt y) \rightarrow VInt (x + y)
  ELessThanF (VInt x) (VInt y) \rightarrow VBool (x < y)
  EIfF (VBool c) t f \rightarrow if c then t else f
type Expr' = HFix ExprF
heval :: Expr' ix \rightarrow Value ix
```

Does it actually run??

data Value ix where

Yes it does!!

VTn.t. 42.

```
heval :: Expr' ix → Value ix

heval

(HFix (EIfF

(HFix (ELitBoolF False))

(HFix (ELitIntF 1))

(HFix (ELitIntF 42))))
```

 $VInt :: Int \rightarrow Value Int$ $VBool :: Bool \rightarrow Value Bool$

I have only scratched the surface. Look:

► Folding to a value

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time

- Folding to a value
 - ► Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - Futumorphism multiple levels at a time

- Folding to a value
 - ► Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - Futumorphism multiple levels at a time
- Fused

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - ► Futumorphism multiple levels at a time
- Fused
 - ► Metamorphism = ana · cata

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - ▶ Futumorphism multiple levels at a time
- Fused
 - ► Metamorphism = ana · cata
 - Hylomorphism = cata · ana

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - ▶ Futumorphism multiple levels at a time
- Fused
 - ► Metamorphism = ana · cata
 - Hylomorphism = cata · ana
 - ▶ Dynamorphism = histo · ana

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - Futumorphism multiple levels at a time
- Fused
 - ► Metamorphism = ana · cata
 - ► Hylomorphism = cata · ana
 - Dynamorphism = histo · ana
 - ► Chronomorphism = futu · histo

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - Futumorphism multiple levels at a time
- Fused
 - ▶ Metamorphism = ana · cata
 - ► Hylomorphism = cata · ana
 - Dynamorphism = histo · ana
 - ► Chronomorphism = futu · histo
- Just a joke

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - ► Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - Futumorphism multiple levels at a time
- Fused
 - ► Metamorphism = ana · cata
 - ► Hylomorphism = cata · ana
 - Dynamorphism = histo · ana
 - ► Chronomorphism = futu · histo
- Just a joke
 - Zygohistomorphic prepromorphism

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - ► Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- Unfolding from a value
 - Anamorphism one level at a time
 - Futumorphism multiple levels at a time
- Fused
 - ► Metamorphism = ana · cata
 - ► Hylomorphism = cata · ana
 - Dynamorphism = histo · ana
 - ► Chronomorphism = futu · histo
- Just a joke
 - Zygohistomorphic prepromorphism

I have only scratched the surface. Look:

- Folding to a value
 - Catamorphism you have learned it in this talk. Well done!
 - Paramorphism folding with access to the original expression
 - Zygomorphism neat combination of several algebras so that they can use results of each other
 - Histomorphism dynamic programming, algebra has access to all previously computed results for a tree
- ▶ Unfolding from a value
 - ► Anamorphism one level at a time
 - Futumorphism multiple levels at a time
- Fused
 - ▶ Metamorphism = ana · cata
 - ► Hylomorphism = cata · ana
 - ▶ Dynamorphism = histo · ana
 - ► Chronomorphism = futu · histo
- Just a joke
 - Zygohistomorphic prepromorphism

Comonads can also help to unify some of those.

References

Lots of resources. In order of increasing difficulty:

- ► Bartosz Milewski blog post "Understanding F-Algebras"
- ► Tim Williams slides "Recursion Schemes by Example"
- Tim Williams blog post "Fixing GADTs"
- Wouter Swierstra Data Types à la Carte

Thank you!

Questions?

Thank you!