Square Root Calculator

Nikolaos Dimou

1.12.2016

General Description

The Square Root Calculator is an area-efficient implementation of a fast converging square root algorithm. The Square root calculator is pipelined in order to provide high throughput results. The arithmetic calculation performed is:

$$output = \sqrt{input}$$

Design was based on [1]. The implemented algorithm is based on the bisection method presented by E. W. Dijkstra for approximating the square root of a given non-negative integer x. Result can be rounded instead of truncated with minor changes.

Features

- VHDL description
- Device independent description.
- No DSPs, BRAMS used.
- Parametric input resolution.
- Truncated result.
- Latency: If 2N is input's resolution, then Latency = N clock cycles.

Block Diagram

I/O pins

- Input Pins
 - clk: clock.
 - rst: reset.
 - num_in: non-negative integer(parametric, must be even).
 - valid_in= 1-bit valid signal.
- Output Pins
 - num_out: Result (same resolution as input.
 - valid_out: 1-bit valid signal.

Implementation

The design was successfully implemented in XC7K325T-2FFG900C FPGA chip.

	8-bit	16-bit	20-bit	32-bit
LUTs	48	278	489	1426
FFs	46	174	267	666
Freq.(MHz)	605.33	364.30	338.07	294.55

Testbench screenshot

					10	0.067	ns			122.																
Name	Value	80	ins		10	0 ns				0 ns	. 1	10	15	0 ns	1	[1	50 ns		1	180	ns		2	00 n	s .	
1a clk	0	П	ш	П	Г	ш	П		П		П	П			Т	ш	П			Ī	т	Г	ш	п	П	п
Un rst	0				L																					
▶ ■ num_in[7:0]	0		0		L	XI.)(2	D)C	3 (X	5 X	6 (7	0	(9	(10	(11)	2)(1	3 (14	(15)	16	(17	18	19 (20 X	21	22)(
Tel valid_in	1				Г															T				Т		
num_out[7:0]	0				0						\subset	1				2	\Box	=		t	3			ΧТ	4	
Valid_out	0				L															T				Т		

References

[1] Matti T. Tommiska, Area-efficient implementation of a fast square root alorithm, IEEE, 2000.