Lecture	6 Appli	ed E	M	
Review	1			
- bound	ury conditions	Compo	nents	
	Éabou	Ε´	5+4p 0	
	Ebelov		:end;nvers	
	<u> </u>			donble
- p	_	PNRY	Si Savge	(F) \$ (F) 2 Coun 20 E ²
	3 F	- 11	7 (dV \frac{1}{2}	E _o E ²
\$ =			() , _	
Conducto	rs			
Metal:	Ferni surface		Seni conduct	ws
	7777		T=0	room temp
band	half-filled			7717177
(_	ally filled	_	~	{
valence 7	1///	7	////	
band				//////
	(w.		Si. be.	
Insula	turs			
	^		band-gap	mentioned
	Enery gap			
7//	too great			

valence band - stays with atom
- conduction band elections float — sea of char
Ideal conductors in électrostatics
equilibrium implies $\Sigma E=0$ inside and.
Eindned = - Eapplied
Ideal conductors in electrostatics equilibrium implies $\Sigma \overline{E} = 0$ inside and. Einanud = - Eapplied this is the ideal assumption
- + is I metal called in Mac
Eapplied Application of the position of the po
OF inside is 0
2) P.E=0-> p=0 inside conductor
3) all charge on boundary (4) \$\P\$ = \int \text{E} \cdot d\vec{s} = constant within conductor}
(5) ontside of condudor $E = \frac{\sigma}{2\sigma} \hat{n}$ I to surface
of E allal to confine the 1 ld some on surface
The ideal conductor minimizes total potential energy
1 eq. solid changed sphere P. R = 302 = = = = = = = = = = = = = = = = = = =
charged surface = $\frac{\omega^2}{2} = W_{surf}^2$ by conductor
The ideal conductor minimizers total potential energy [eg. solid charged sphere of R = 307 & 2 wol > reduction of w charged surface = $\frac{62^2}{8725} = \text{Word} \approx \text{by conductor}$ [O.15 > 0.125 facto
Induced charges

Induced charges

and of cavity

Forely (Forely Cage)

50 induced charge = -q Conductor is neutral -> outer change = + q onter of distribution does not depend on location of cavity/charge SO $E_{\text{out}} = \frac{q}{4\pi\epsilon_0} \frac{r}{r^2} = \frac{\sigma}{\epsilon_0} \hat{r}$ where $\sigma = \frac{q}{4\pi\epsilon_1^2}$ is constant sphere acts as point charge @ center For surface charge F= qE -> Force per unit aven f= 5 E type & Fulp doesn't include field due to itself Enter= Eyen, where + Enpp -below = Eyon, below + Earp Eabore = Eapp + 280 û Ebelow = Eapp - 280 û Eapp = all field not due to Eapp = Eabore + Ebelow 2 f= 5 (Eabore + Ebelow) force per area Condudor: Ebelin = $\bar{0}$ Eabone = $\frac{\sigma}{\epsilon_0}$ \hat{r} Then $\hat{f} = \frac{\sigma^2}{2\epsilon_0} \hat{n} \rightarrow always$ pointed outwards ($\sigma^2 \geq 0$) f = electrostalic pressure Conclusion: field "felt by" surface = $\frac{E_1 + E_2}{2}$, pres. $f = \frac{5^2}{2E_0}\hat{n} = \frac{E_0 E_{00} + \hat{n}}{2}$ electrostalia pressure deputs on magnitude of surface change durate,
La determed by field outsile, change elsewhere on surface.

Capacitance between 2 conducturs

more Q:

potential diff $E = I_1 - I_2 = \int_{-\overline{E}}^{T} dx$ capacitance $C = \frac{Q}{2} \left[\frac{C}{V} = F \right]^{-1}$

Recall $\Phi = \frac{1}{4\pi \xi_0} \left(\frac{p(\bar{r}')}{|\bar{r} - \bar{r}'|} dv' \right)$

I, p superposition -> C is constant

C is a purely geometric quantity of the conductors + didedice

Energy skered in a capacitor

W to more
$$Q \rightarrow \int dq$$
 $dW = dq \varphi(q)$
 $\varphi(q) = \frac{q}{c}$

$$\int dq \frac{q}{c} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q \overline{\Phi} = \frac{1}{2} C \overline{\Phi}^2$$

Fx. parallel place cap