Linear Algebra Review

Here, we will review some of the most relevant matrix identities and operations that we will use in this course. Given square matrices A, B, C of size $n \times n$ and vectors v_i of size n:

- A_{ij} is the entry in the i^{th} row and j^{th} column.
- A set of vectors is linearly dependent if one can be written as the linear combination of the others: $v_1 = \alpha_2 v_2 + \alpha_3 v_3 + \cdots + \alpha_n v_n$, α_k is a number and not all are zero. Otherwise, they are linearly independent.
- Matrix multiplication is defined C = AB, $C_{ij} = \sum_{k=0}^{n} A_{ik} B_{kj}$, which multiplies the i^{th} row of A and the j^{th} column of B element-by-element.
- In general, $AB \neq BA$.
- A^T transforms the matrix A by swapping row and columns visually this is done by flipping it over its diagonal.
- A matrix is called symmetric if $A = A^T$.
- · A matrix is called diagonal if it only has non-zero elements on the diagonal.
- A matrix is called upper [lower] triangular if it only has non-zero elements on or above [below] the diagonal.
- The rank of a matrix is the number of linearly independent columns or linearly independent rows.
- A matrix has an inverse $(A^{-1}$ such that $AA^{-1} = I)$ if and only if it has rank equal to n.
- Eigenvalues λ_i are real numbers such that $Av_i = \lambda_i v_i$, for some non-zero v_i .
- Eigenvectors are the vectors v_i corresponding to eigenvalues λ_i such that $Av_i = \lambda_i v_i$.
- If a matrix has n distinct eigenvalues, then it has n linearly independent eigenvectors.
- A matrix is diagonalizable ($A = P\Lambda P^{-1}$) if and only if it has n linearly independent eigenvectors. Λ is the diagonal matrix of eigenvalues and P is the matrix whose columns are the eigenvectors.
- A symmetric matrix has real (not imaginary) eigenvalues and we can always find eigenvectors that are orthogonal (i.e., $v_i \cdot v_j = 0$, for $i \neq j$).
- An orthogonal matrix $U = [v_1 \ v_2 \ \dots \ v_n]$ has columns v_i that are orthogonal to each other (i.e., $v_i \cdot v_j = 0$, for $i \neq j$) and of unit length (i.e., $||v_i|| = v_i \cdot v_i = 1$). The transpose of an orthogonal matrix is its inverse: $U^T = U^{-1}$.
- A symmetric matrix is always diagonalizable, where P, the matrix of eigenvectors, is orthogonal. Therefore, $A = U\Lambda U^T$
- Left eigenvalues (σ_i) and eigenvectors (u_i) obey a similar relation: $u_i A = \sigma_i u_i$.