

AMATEŘSKÉ RÁDIO

NOSITEL
VYZNAMENÁNÍ
ZA BRANOU
VÝCHOVU
I. A II. STUPNĚ

ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ

ROČNÍK XXXV/1986 • • ČÍSLO 4

V TOMTO SEŠITĚ

Vynálezy a zlepšovací návrhy	121
ZAJÍMAVÁ A PRAKTICKÁ ZAPOJENÍ	
Měřicí technika a dílenstské pomůcky	
Přesný digitální měřicí kapacity	122
Poznámky k stavbě	126
Digitální měřicí kapacity	128
Měřicí kapacit - přípravek k DVM	130
Jednoduchý měřicí kapacit	132
Měřicí kapacit ICL7106	132
Měřicí relativní vlhkosti	134
Měření teploty	134
Digitální teploměr	137
Digitální otáčkoměr PLL	138
Logická sonda s CMOS	139
Impulsní generátor	140
Nové zapojení generátoru funkci	141
Výhody zapojení	143
Nízkofrekvenční rozmitá	143
Navíječka s regulaci a digitálním počítadlem	145
Elektroskop s tranzistory	146
Indikátory, spínače, časovací zařízení	
Časový spínač i sáz 100 minut	146
Digitální signální hodiny	146
Indikátor kolisání síťového napětí	150
Indikátor změny napětí	150
Elektronické zapalování zářivek	151
Buzení digitronů a fluorescenčních displejů z C520D	152
Přesný termostat	152
Bezkontaktní regulátor teploty	154
Video a nf technika	
Přepínač video signálů	154
Videoinvertor	154
Mixzážní zařízení pro videorekordéry	156
TV modulátor	156
Elektronická výhybka	157
Zesilovače PMD	158
Doplnky pro motorová vozidla	159

VYNÁLEZY A ZLEPŠOVACÍ NÁVRHY

V souvislosti s nutností pracovat zcela jinak při přechodu z extenzivního na intenzivní způsob hospodaření a výroby vyvstává do popředí i nutnost rozvoje vynálezců a zlepšovatelské činnosti. Abychom si mohli utvořit představu o přenosu vynálezů a zlepšovatelů pro naše národní hospodářství, je vhodné uvést několik čísel. Problematikou a přínosem vynálezců a zlepšovatelství se v Technických novinách široce zabýval Dr. Andrej Henkel, předseda komise ÚR ČSVTS pro vynálezců a zlepšovatelství, který uvádí, že celkový společenský prospěch z realizovaných vynálezů, zlepšovacích návrhů a průmyslových vzorů byl za dobu 7. pětiletky 55 miliard korun (oproti plánovaným 45 miliardám). Z uvedených čísel je zřejmé, že přínos této činnosti je značný a významně pomáhá jak při výrobě plnění plánu podniků, tak i probíhajících nové cesty při výrobě a její přípravě.

Na začátku 7. pětiletky bylo v plánu vytvořit takové podmínky, aby se více než 10 % zaměstnanců, pracujících v organizacích, účastnilo na vynálezeckém a zlepšovatelském hnutí. Při hodnocení výsledků 7. pětiletky se ukázalo, že všude tam, kde vedoucí hospodářští pracovníci vytvořili pro vynálezce a zlepšovatele alespoň základní podmínky, se na technické tvořivé práci podílelo skutečně více než 10 % pracovníků, celostátní průměr je však mnohem nižší. Na vině nejsou ovšem jen vedoucí hospodářští pracovníci, někdy celou věc komplikují i sami zlepšovatelé a vynálezci, kteří se neorientují na řešení nejdůležitějších úkolů, nesprávně zpracovávají přihlášky zlepšovacích návrhů atd.

Přetrvávajícím nedostatkem je i nedostatečné využívání výsledků tvořivé technické činnosti, ať již vynálezů, zlepšovacích námětů a návrhů i průmyslových vzorů. V celostátním průměru se totiž ukazuje, že pouze asi kolem 50 % výsledků tvořivé činnosti pracujících se realizuje v plném rozsahu. To má kromě uvedeného i mnohé jiné důvody, někdy i malou informovanost vynálezů a zlepšovatelů o úrovni světové techniky v tom či onom oboru. Přitom v některých oblastech techniky jde vývoj ve světě tak rychle dopředu, že jen soustavným studiem co největšího množství zahraničních pramenů a rychlou realizací získaných poznatků lze se udržet nebo dostat na současnou světovou úroveň.

Při hodnocení výsledků 7. pětiletky proto komise ÚR ČSVTS zdůraznila, že je třeba, aby příslušní pracovníci v organizacích si vzali za povinnost informovat vynálezce a zlepšovatele o světové technice, poskytovat jim příslušnou literaturu v přijatelné formě, tj. v překladech tak, aby z ní bylo možno čerpat poznatky pro další tvůrčí technickou činnost. V této souvislosti je také třeba využít všech možností komplexních rationalizačních brigád, brigád socialistické práce i společenských organizací, zejména ČSVTS, SSM, Svařarmu.

V 8. pětiletce, v níž se počítá se zvýšením společenského přínosu vynálezecké-

ho a zlepšovatelského hnutí na 70 miliard korun, je třeba učinit organizační, technická a jiná opatření tak, aby byl úkol splněn, aby se hnutí vynálezů a zlepšovatelů dále rozšiřovalo a aby se zkvalitnily vynálezy i zlepšovací návrhy tak, aby jich bylo možno realizovat mnohem více než dosavadních asi 50 %. Po zvážení všech nedostatků a rezerv je zřejmé, že se musí klást důraz především na jakost a rychlou realizaci vynálezů a zlepšovacích návrhů. Splitit požadavek jakosti znamená kromě jiného poskytovat pracovníkům již vzpomenuté moderní a komplexní informace o špičkových výrobcích a technologiích, materiálních atd. Proto nestačí jako dosud jednou ročně pořádat aktivity vynálezů a zlepšovatelů, ale je třeba je soustavně vzdělávat a učit. Také dosavadní způsob školení o právních a ekonomických otázkách je třeba z větší míry nahradit či vystřídat školením o technické tvůrčnosti. Přitom tato školení nemohou být jen věcí útvarů pro vynálezy a zlepšovací návrhy, ale do vzdělání se musí zapojit také útvary vědeckotechnických informací, které soustředí technickou literaturu a rozšiřují poznatky. Navíc je třeba orientovat se na mládež, nový způsob práce s vynálezci a zlepšovateli spočívá i v nutnosti, pracovat s předem vtipovanými pracovníky, kteří mají smysl pro tvořivou činnost, zprvu je při práci vést a postupně je přivádět k samostatnému řešení čím dál tím složitějších a náročnějších úkolů.

Vzhledem k tomu, že v 8. pětiletce má být podle plánu přijato a především realizováno alespoň 60 % podaných zlepšovacích návrhů, bude třeba dát vynálezům a zlepšovatelům i materiál a prostředky, které umožní urychlit realizaci zlepšovacích návrhů a vynálezů, a bude třeba zainteresovat je i hmotně (odměnami) na účasti při zkoušení a zavádění vynálezů a zlepšovacích návrhů do praxe.

Mnohem větší celkový přínos z vynálezů a zlepšovacích návrhů by byl jistě přineslo i to, kdyby byly osvědčené vynálezy a zlepšovací návrhy mnohem více rozšířovány mezi podniky a závody jednoho koncernu, popř. i mezi podniky a závody koncernu s příbuznou výrobou. Nezanedbatelná je i otázka mezinárodní spolupráce, spočívající v tomto případě v lepší a důslednejší dělbě práce mezi jednotlivými zeměmi RVHP.

Skromným příspěvkem redakce AR k tvůrčí činnosti amatérů i profesionálů jsou právě ta čísla AR řady B s obsahem, podobným obsahu tohoto čísla. Při přípravě Zajímavých a praktických zapojení není cílem redakce pouze uveřejnit taková zapojení, v nichž by se pouhou náhradou zahraničních obvodů dosáhlo stejných výsledků jako v originálních zapojeních, ale především ukázat na přístroje a zapojení, která přinásejí něco nového, ať již po stránce elektrického zapojení, mechanického řešení nebo použití mo-

AMATÉRSKÉ RÁDIO ŘADA B

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51-7. Šéfredaktor Ing. Jan Klaba, Redakční radu řídí Ing. J. T. Hyán. Redaktor L. Kalousek, OKIFAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně vydeje 6 čísel. Cena výtisku 5 Kčs, poštění předplatné 15 Kčs. Rozšíření PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyfizuje PNS, ústřední expedice a doručení a dovoz tisku, závod 01, Káfkova 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 160 05 Praha 6, Vlastina ulice č. 889/23. Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.

Toto číslo má výtisk podle plánu 9. 8. 1986.

© Vydavatelství NAŠE VOJSKO.

derních součástek. Pak již jen závisí na realizátoruvi zapojení nebo přístroje, aby využil s použitím našich součástek těch částí zapojení nebo přístroje, které umožní např. zlepšit funkci třeba i stávajících přístrojů, ušetřit energii, materiál, součástky apod.

V neposlední řadě je i zřejmé, že při dnešním rozšíření elektroniky do všech

oblastí života společnosti není možné ani účelné, aby náš průmysl dovázel nebo vyráběl součástky a přístroje, které jsou jednoúčelové nebo slouží jen malému okruhu lidí, je však užitečné poskytovat v časopise takové podklady a informace, aby si zájemci mohli postavit i výlučná zařízení, pokud je potřebují a využijí. I takové informace a přístroje jsou obsa-

hem Zajímavých a praktických zapojení.

A především... Nejdé o to, je třeba znova zdůraznit, bezduše kopirovat zahraniční zapojení, ale pracovat s nimi tvořivě, promyšleně a se znalostí věci – tak by bylo třeba přistupovat i k obsahu tohoto čísla AR řady B pro konstruktéry.

L.K.

ZAJÍMAVÁ A PRAKTIČKÁ ZAPOJENÍ

Ing. Josef Ludvík

Co psát úvodem? O rychlém rozvoji elektroniky? O množství nových integrovaných obvodů, které se téměř každodenně objevují v publikovaných zapojeních, o nichž nelze dlouho sehnat potřebné údaje? O nemožnosti, jak tyto obvody nahradit obvody, které lze u nás sehnat? Každý zná tuto situaci a v té či oné podobě se s ní setkal, stejně jako s nedostatkem (někdy přechodným, někdy trvalým) některých součástek na našem trhu. Ze je třeba probrat doslova haldy zahraničních časopisů, než se najde námět, který by bylo možno v našich podmínkách realizovat? To je také notoricky známá skutečnost. A tak nezbývá než se pustit do popisu vybraných zapojení s tím, že čtenář pochopí situaci autora a jeho snahu přinést něco, co „tady ještě nebylo“ a to často i za cenu složitosti nebo momentální nerealizovatelnosti z běžně dostupných součástek.

Měřicí technika a dílenské pomůcky

Přesný digitální měřič kapacity do 1 μF

Popsaný přístroj pracuje na odlišném principu, než většina dosud popsaných podobných přístrojů, měří náboj kondenzátoru. Využívá se velkou rozlišovací schopnosti (zlomky μF), dobrou linearietou a stabilitou. Lze na něm měřit nejen jednotlivé kondenzátory, ale i rozdíl kapacit dvou kondenzátorů. Měřený kondenzátor může být připojen i přívody, dlouhými až 2 m, přived neovlivňuje výsledek měření.

Některé technické údaje

Princip měření:	měření náboje.
Třída přesnosti:	asi 0,2.
Doba ustálení:	asi 10 minut.
Rozsah indikace:	-99 až 999.
Ss napětí na měřeném kondenzátoru:	asi 3,6 V.
Rozsah pracovních teplot:	+10 až +40 °C.
Teplotní součinitel nuly na rozsahu 9,99 μF :	$\leq 0,005\ %/\text{K}$.
nuly na ostatních rozsazích:	$0,001\ %/\text{K}$.
nuly při měření na přívodech:	$0,05\ %/\text{K}$,
max. kapacity:	$0,015\ %/\text{K}$.

Princip zapojení je schematicky na obr. 1. Přístroj se skládá z řídící části (tranzistory T_a , T_b , T_c), přepínače (tranzistory $T_{3,1}$ až $T_{3,5}$), vyhodnocovací části (IO_2 , T_4) a číslicového voltmetu (na obrázku není zakreslen).

Pro funkce přepínací části jsou nutná řídící napětí U_{s1} a U_{s2} , odvozená od stabilního oscilátoru. Při tom je nutné dodržet podmínu: $U_{s1} - U_{s2} = 0$, aby sériově zapojen tranzistory $T_{3,1}$ a $T_{3,2}$, popř. $T_{3,5}$ a $T_{3,4}$ nevedly současně. V první polovině přepínací periody jsou T_a a T_b zavřeny a T_c vede. Zdroj proudu I_{s3} je v této době zkratován tranzistorem T_c . $T_{3,1}$ a $T_{3,5}$ jsou uzavřeny. Zdroje proudu I_{s1} a I_{s2} napájejí báze tranzistorů $T_{3,2}$ a $T_{3,4}$, které jsou otevřeny, to vede k úplnému vybití kondenzátorů připojených k X_1 až X_4 . Ve druhé polovině periody vedou T_a a T_b , T_c je uzavřen. Pak teče proud I_{s3} do bází $T_{3,1}$ a $T_{3,5}$. Kondenzátory C_x , $C_{10/12}$ a $C_{11/17}$ jsou nabité proudem, jehož velikost je dána proudem I_{s3} a zesilovacím činitelem tranzistorů. Přímým připojením bází obou tranzistorů je

zajištěn časově shodný průběh zvětšování napětí na všech kondenzátoch.

Napětí se přestane zvětšovat v okamžiku, kdy napětí na kolektoru $T_{3,2}$ je větší než $U_{ref} + U_{D3}$. Dioda D_3 se otevře a blokuje tak další zvětšování napětí na bázích $T_{3,1}$ a $T_{3,5}$ a tedy i další nabíjení připojených kondenzátorů.

Náboj potřebný k nabítí kondenzátorů je odebrán z C_8 a C_9 , a podle rovnice

$$Q = CU$$

je závislý na maximálním nabíjecím napětí, v našem případě U_{ref} a kapacitách kondenzátorů, nikoli však na průběhu nabíjecího napětí. Energie, odebraná z C_8 a C_9 , je nahrazena přes rezistor R_{17} a R_{18} ze zdroje U_{cc} . Je-li $C_8 \gg C_{10/12} + C_x$ a $C_9 \gg C_{11/17}$, jsou proudy

$$I_{R17} = f(C_{10-12} + C_x) U_{ref}$$

$$I_{R18} = f C_{11/17} U_{ref}$$

Vyhodnocovací část s operačním zesilovačem IO_2 vyhodnocuje rozdíl těchto proudů. Úbytek napětí na R_{13} úměrný proudu $/R_{17}$ zmenšuje napětí na neinvertujícím vstupu IO_2 . Je-li úbytek na $R_{14/15} + R_{16}$, daný proudem $/R_{18}$, menší než úbytek na R_{13} , otevří IO_2 tranzistor T_4 , tak, až přidavný proud tekoucí rezistorem $R_{14/15}$ a tranzistorem T_4 posune napětí na invertujícím vstupu na stejnou velikost, jakou má napětí na neinvertujícím vstupu.

Obr. 1. Princip zapojení měřiče kapacit

Výpočtem lze stanovit I_m :

$$I_m = I_{R17} \frac{R_{13}}{R_{14/15}} - I_{R18} \left(1 + \frac{R_{16}}{R_{14/15}} \right)$$

Za podmínky $R_{13} = R_{14/15} + R_{16}$ a dosazováním do vzorce vyjde

$$I_m = \frac{R_{13}}{R_{14/15}} U_{rel}(C_{x1} C_{10/12} - C_{16/17})$$

Zvolené napětí s dvojitým provedením přepínačního obvodu a diferenciálním vy-

hodnocením má přednost v tom, že proudy, působené parazitními kapacitami, se nazvážejí ruši. Optimální výsledek a dobré stabilitu nuly dosáhneme použitím spínacích tranzistorů T_3 ve společném pouzdře a těsnou teplonové vazbou s D_3 .

Další výhodou tohoto zapojení je možnost měření rozdílu kapacit. Podle poslední rovnice je I_m úměrný rozdílu kapacit $C_x - C_{ref}$. Kondenzátor C_{17} slouží v obou způsobech měření ke kompenzaci externích parazitních kapacit. Jeho základní kapacita je upravena kondenzátorem C_{12} .

Další možností je měřit kapacity na nepřístupných místech. Přepnutím přepínače do polohy I je větev $R_{18}, T_{3,5}, T_{3,4}$ napájena přímo ze zdroje U_{cc} . K nastavení nuly, to znamená ke kompenzaci $C_{10/12}$ a montážních kapacit je nutné zavést do invertujícího vstupu IO_2 proud přímo z řízeného zdroje. Tím se sice zhorší stabilita

Obr. 2. Zapojení měřiče kapacit
Resistory s čárkou uprostřed = TR 161, 162

měření pomocí šíjár
 P_{T_2} v poloze I

měření pomocí šíjár
 P_{T_2} v poloze II

nuly na 0,05 %/K, ale získá se možnost měřit pomocí měřicích šnúr. K nulování (svorku X₂) použijeme běžnou laboratorní šnúru. Měřený kondenzátor připojíme na svorku X₁ stíněným vodičem, jeho stínění je připojeno na X₃. Pro zjednodušení je pro tento vodič použita svorka X₄. Na svorce X₃ – tedy na stínění – je napětí vyrazené měřicí větve. Protože paralelním spojením bází T_{3,1} a T_{3,5} se mění napětí na X₁ a X₃ souhlasně, není mezi nimi – tedy mezi vnitřním vodičem a stíněním žádný potenciálový rozdíl a tedy ani žádný náboj. Vnitřní drát stíněného vodiče slouží výhradně k přivádění náboje do měřeného kondenzátoru.

Realizované zapojení přístroje je na obr. 2. Řidící napětí získáme z krystalového oscilátoru 1 MHz a z připojených děličů. Jednotlivé signály různých kmitočtů z děličů přepínáme Př_{1,6} a pívádime je na řidici část, složenou z děliče IO_{9a} (1:2) a hradel IO₁₄. Klíčovací poměr je 0,5, takže nabíjecí a vybijecí časy jsou zcela shodné.

Tranzistory T_a, T_b a T_c podle obr. 1 jsou realizovány hradly IO₁₄ (7406), tranzistory T₃ jsou ve společném pouzdře po dvou (KC510). Řidící proudy pro T_{3,2} a T_{3,4} jsou odebrány z vnitřního zdroje 10 V přes R₈ a R₉. Pro horní dvojici tranzistorů (T_{3,1} a T_{3,5}) je proudovým zdrojem T₂. Vyhodnocovací část je osazena k dosažení lepší teplotní stability operačním zesilovačem MAA725. Pro nastavení přesného rozdílového napětí slouží R₁₅. Výstupní napětí je na kolektoru T₄ jako úbytek na rezistorech R₂₄ až R₃₀. Konstantní napětí je získáno ze zdroje referenčního napětí MAC01. Původně byl místo MAC01 použit operační zesilovač, ukázalo se však, že je zbytečný a byl vynechán, proto není na obr. 2 IO₁ zakreslen. T₁ pracuje jako omezovač proudu pro celou analogovou část tak, aby zkraty na svorkách X₁ až X₄ nemohly poškodit tranzistory T₃. Tranzistor T₁ současně dává z emitoru napětí 15 V pro napájení operačních zesilovačů.

V číslicovém voltmetu je použit obvod C520D. Přepustí R₃₁, C₁₅, R₃₂, C₁₆ jsou potlačeny vlivy rušivých napětí, které se mohou vyskytnout hlavně na rozsahu 999 nF. Zobrazení výsledku je třímístné, čtvrtá číslice, která byla použita, indikuje rozsah pF (segment b) a nF (segment C). K obvodu C520D – ekvivalent AD2020 Analog Devices – patří dekodér 9374 Fairchild, s použitým dekodérem 7447 nebo D147 je nezvyklé zobrazení přetížení a znaménka mínus [Ja].

K přepínání desetičinných teček je použit přepínač Př_{1,3} pro indikaci rozsahů Př_{1,1}. Abysto bylo možno využít možnosti obvodu C520D indikovat záporné hodnoty až -99 pro měření záporných rozdílů a pro snazší nastavení nuly je vstup pro C_x (X₁) „zatižen“ kondenzátory C₂₈ až C₃₇. Ty mají kapacitu 1/10 konečné kapacity příslušného rozsahu. Tyto kondenzátory mohou být kvalitní s minimální teplotní a časovou závislostí. Kapacity kondenzátorů přesné nastavíme paralelním (sériovým) spojením kondenzátorů tak, aby napětí na kolektoru T₄ bylo 100 mV na všech rozsazích. Děličem R₃₃, R₃₄ získáme rovněž 100 mV na vstupu 10 IO₄, takže napětí na diferenciálních vstupech 10 a 11 bude právě nulové. Obvod C520D má sice možnost nastavení nuly na vstupech 8 a 9, ale rozdílná velikost odporů rezistorů vzhledem k napájecímu napětí zmenšuje teplotní stabilitu nuly.

V původním článku autor rozebrá ne-přesnosti, které vyplývají z použitého

principu měření a naměřené výsledky linearity. Pro zlepšení jsou vstupy zatíženy kondenzátory C₁₀, C₁₁ asi 68 pF. Dalšího zlepšení bylo dosaženo sériovým zařazením rezistorů 75 Ω do přívodů X₁ a X₃. R₆₀ a R₆₁ zlepšují linearitu v rozsazích nanofarad. Z naměřených výsledků vyplývá, že nejkritičtější je rozsah 999 pF, kde křivka odchylek protiná nulu při C_x = 750 pF. Tato kapacita je tedy nutná pro nastavování. Podobně to platí i pro rozsah 999 nF. Při měření šnúrami je podle impedance stíněného vodiče možné, že bude nutné nastavit odpor rezistoru R₄₅ rovněž při C_x = 750 pF na rozsahu 999 pF.

Stavba přístroje

Přístroj je postaven na deskách s plošnými spoji podle obr. 3, vnitřní a vnější vzhled přístroje jsou na obr. 4 a 5. Kontrolujeme napájecí napětí 10 V, 15 V a 5 V. Jestliže pracuje i digitální voltmetr a přístroj reaguje na změnu kapacit na vstupních svorkách při Př₂ v poloze I (měření se šnúrami), po deseti minutách můžeme přistoupit k nastavení.

Kmitočet oscilátoru nastavíme trimrem C₂ a na svorkách X₁, X₂ na rozsahu 9,99 pF musíme naměřit signál o kmitočtu 500 kHz. Uplně přesné nastavení není důležité, ale bude výhodné tehdy, když chceme mít po ruce pro jiná měření přesný, kalibrovaný kmitočet, a to na úrovni TTL. Některé krystaly mají snažku kmitat na harmonických nebo nekmitat vůbec, v tomto případě obvod upravíme změnu kapacity kondenzátoru C₁ (jejím zvětšením až desetkrát), příp. zvětšením R₂ na 2,2 kΩ. V tabulce jsou správné kmitočty oscilátoru a děliče:

Poloha přepínače Př ₁	kmitočet
1, 2	1 MHz
3	500 kHz
4	50 kHz
5	5 kHz
6	500 Hz

Na výstupu z IO_{9a} má být signál polovičního uvedených kmitočtů – to je řídící kmitočet.

Při dosažení dobré stability je třeba ke stavbě použít někde rezistory TR 161 až 162. Nastavovačí odpory jsou typu WK 67911, protože obyčejně trimry se pro jemné nastavování nehodí. Jako sdružené tranzistory použijeme KC510 (T_{3,1} a T_{3,5}, T_{3,2} a T_{3,4}). Rychlá dioda D₃ je připevněna nebo jinak tepelně vodivě spojena (silikonová vazeliná, „chladič“ vazeliná) s pouzdrem T_{3,1} + T_{3,5}. Kondenzátory C₈ a C₉ jsou tantalové. Otočný přepínač Př₁ je typu TS 121 do plošných spojů a má 6 poloh. Př₂ je miniaturní pouzdrový přepínač, který je připevněn na čelní desku. Kondenzátor C₁₇ je také na čelní desce, má kapacitu 2 až 15 pF, nejlepší je vzdutový, miniaturní. R₃ by měl být několika-tučkový Arivot, ale ten je nedostupný a proto byl z nouze použit WK 67911 na opěrné desce připevněn na čelním panelu, ovlatelný šroubovákem. Transformátor je „na zeleze“ M17: L₁ má 3000 z o Ø 0,14 mm, L₂ má 270 z o Ø 0,14 mm, L₃ má 110 z o Ø 0,6 mm..

Při nastavování potřebujeme přesné kondenzátory pro každý rozsah (asi 75 % max. kapacity, tedy 7,5 pF, 75 pF, 750 pF, 7500 pF, 75 nF a 750 nF), 750 nF potřebujeme dva. Na IO₄ (který je lépe dávat do objímky) měříme napětí 100 mV číslicovým voltmetrem.

Plné přesnosti dosáhneme až po 10 minutách zahřátí, po zapnutí můžeme ovšem měřit ihned, nevadí-li odchylka asi 1 až 3 %. Na rozsazích nF je měření bez problémů. Potíže se vyskytují především u rozsahu 9,99 pF, kde se uplatňuje i vliv kapacit přívodů, naší ruky apod. Proto je výhodné udělat si přípravek, který natravilo zasuneme do svorek, do něhož můžeme kondenzátory uchytit u „kořene“ jejich vývodů. Rozsah 9,99 pF není určen pro měření pomocí šnúr, protože se uplatňuje i vliv jejich polohy a nastavení nuly je obtížné.

Diferenciální měření je výhodné pro měření odchylek od normálu. Referenční

Postup nastavování

Při seřizování je přepínač Př₂ v poloze II – přímé a diferenciální měření

Rozsah Př ₁	Na vstup. svorkách	Nastavíme pomocí na displeji
999 nF	C _x = C _{ref} = 0	R ₄₁ : 000
999 nF	C _x = 750 nF, C _{ref} = 0	R ₄₂ : kapacita C _x
999 nF	C _x = 750 nF, C _{ref} = 750 nF	přečteme údaj na displeji (h ₁)
999 nF	vyměníme C _x s C _{ref}	přečteme údaj na displeji (h ₂)
999 nF	ponecháme	vypočteme: 0,5(h ₁ -h ₂) a výsledek pomocí R ₁₅ nastavíme na displeji
999 nF	C _x = 750 nF, C _{ref} = 0	R ₄₂ : kapacita C _x
999 nF	všechny postupy od začátku opakujeme, až výsledky jsou správné a při změně C _x a C _{ref} zůstávají stejné	
Seřízení nuly		
9,99 pF	C _x = C _{ref} = 0, R ₁₇ ve střední poloze	změnou kondenzátoru mezi měřicími svorkami přibl.: 000
9,99 pF	C _x = C _{ref} = 0	C ₁₇ : 000
99,9 pF	C _x = C _{ref} = 0	C ₂₈ : 000
999 pF	C _x = C _{ref} = 0	C ₃₀ : 000
9,99 nF až 99,9 nF	C _x = C _{ref} = 0	C ₃₂ , popř. C ₃₄ : 000
Seřízení horní meze rozsahů		
9,99 pF	C _x = 7,5 pF, C _{ref} = 0	R ₂₉ : kapacita C _x
99,9 pF	C _x = 75 pF, C _{ref} = 0	R ₂₇ : kapacita C _x
999 pF	C _x = 750 pF, C _{ref} = 0	R ₂₅ : kapacita C _x
	kontrolujeme obdobně v rozsazích nF	
Měření šnúrami		
999 pF	C _x = 750 pF	kontrola, popř. nastavení R ₄₅

propojovací drát nebo nýtek

Osazené desky s plošnými spoji měříce kapacit, nahoře základní deska, dole deska přepínače Př. Třetí deska (viz další strana) je určena pro zobrazovače VQE24 (VQE14) z NDR

kondenzátor zapojíme na svorky X_2 , X_3 (C_{ref}) a měřený na svorky X_1 – X_2 (C_x). Přístroj ukáže odchylku od kapacity referenčního – normálového – kondenzátoru, buď kladným nebo záporným číslem. Důležité je, aby kápacity kondenzátorů nepřekročily příliš horní mez nastaveného rozsahu, protože by se mohly uplatnit rozdíl v linearitě obou měřicích větví. Nezapomeňme také, že záporná maximální indikace je 99.

Spokojíme-li se s přesností menší než 0,5 %, pak připojením $C_{ref} = 1$, 2 nebo 3 μF obdržíme měřicí rozsahy 1 až 2, 2 až 3 a 3 až 4 μF . Můžeme měřit i větší kapacity – měříme pak sériové zapojení kondenzátoru menší známé kapacity a kondenzátor neznámé kapacity a tu určíme výpočtem. *Radio Fernsehen Elektronik č. 2-3/1985*

Obr. 3. Desky s plošnými spoji měřiče kapacit (deska U224, U225, U226)

Poznámky ke stavbě

Protože se jedná o poměrně přesný měřicí přístroj, bude třeba použít většinou stabilní odpor, jak jsou uvedeny v seznam-

mu součástek, a některé bude třeba i skládat. Některá pořadová čísla nejsou obsazena, tato čísla nejsou uvedena ani v seznamu součástek. O vynechání IO, již byla zmínka v textu.

Původně byl použit displej Siemens HA21321 (dvojitý), ale deska s plošnými spoji je navržena pro dvojici číselic z NDR, která se prodává i u nás: VQE14 (24). Základní deska s plošnými spoji je oboustranná. Na předním okraji jsou pájecí plošky pro kolmé upevnění desky s displejem, v pravé polovině základní desky jsou rovněž pájecí plošky pro připojení kolmé desky s přepínacem rozsahů a normálovými kondenzátory. Na základní desce jsou označeny body, které je třeba propojit s druhou stranou desky kouskem drátu pájením. Vývody součástek nikde nejsou propojkami, které by bylo třeba pájet i na straně součástek.

Zapojení je vyzkoušené, jsou v provozu dva přístroje, které pracují velmi uspokojivě.

Seznam součástek

Kondenzátory

C ₁	56 pF, keram.
C ₂	trimax. 60 pF
C ₃	10 nF, keram.
C ₄	TE 004, 50 µF
C ₆ , C ₇	47 nF, keram.
C ₈ , C ₉	TE 152, 50 µF
C ₁₀ , C ₁₁	68 pF, keram.
C ₁₂	15 pF, keram.
C ₁₃	47 pF, keram.
C ₁₄	22 nF, keram.
C ₁₅ , C ₁₆	TC 215, 1 µF
C ₁₇	otočný kondenzátor na panelu
C ₁₈	TE 004, 50 µF
C ₂₁	TC 215, 0,22 µF
C ₂₂ , C ₂₃	100 nF, keram.
C ₂₄	TE 982, 100 µF

C ₂₅	100 nF, keram.
C ₂₆	TE 986, 500 µF
C ₂₇	TE 673, 2200 µF
C ₂₈	keram. trimr 6 pF
C ₂₉	5,6 pF, keram.
C ₃₀	keram. trimr 40 pF
C ₃₁	82 pF, keram.
C ₃₂ , C ₃₃	1 nF, svitek + dopln.
C ₃₄ , C ₃₅	10 nF, svitek + dopln.
C ₃₆ , C ₃₇	100 nF, svitek + dopln.
C ₃₈	TE 986, 20 µF
C ₄₀	100 nF, keram.
C ₄₁ , C ₄₂ , C ₄₃	100 nF, keram.
C ₄₄ , C ₄₅ , C ₄₆	TE 152, 50 µF
C ₄₇	100 nF, keram.

Rezistory

R ₁ , R ₂	1,5 kΩ
R ₆	2,2 kΩ
R ₈ , R ₉	68 kΩ
R ₁₀	20 kΩ, TR 161
R ₁₁	2,84 kΩ, TR 161
R ₁₂	1,62 kΩ, TR 161
R ₁₃	1 kΩ, TR 161
R ₁₄	316 Ω, TR 161
R ₁₅	100 Ω, WK 67911
R ₁₆	681 Ω, TR 161
R ₁₇ , R ₁₈	470 Ω
R ₁₉ , R ₂₀	75 Ω, TR 161
R ₂₁	10 Ω
R ₂₂	39 Ω
R ₂₃	100 Ω
R ₂₄	383 Ω, TR 161
R ₂₅	100 Ω, WK 67911
R ₂₆	316 Ω, TR 161
R ₂₇	330 Ω, WK 67911
R ₂₈	1,78 kΩ, TR 161
R ₂₉	3,3 kΩ, WK 67911
R ₃₀	17,8 kΩ, TR 161

R₂₉ R₂₇ R₂₆ R₁₅ R₄₁ R₄₂

Obr. 4. Přesný digitální měřič kapacity do 1 µF (2. str. obálky)

Obr. 5. Vnitřní uspořádání měřiče kapacit (2. str. obálky)

Položidové součástky diskrétní i IO

T ₁	KF508
T ₂	BC179
T _{3.1} + T _{3.5}	KC510
T _{3.2} + T _{3.4}	KC510
T ₄	BC179
T ₅	KC509
T ₆ až T ₈	BC179
IO ₂	MAA725
IO ₃	MAA741
IO ₄	C520D
IO ₅	MAA7805
IO ₇	D147C (D146C)
IO ₈	MH7400
IO ₉	MH7474
IO ₁₁ až IO ₁₃	MH7490
IO ₁₄	UCY7406N

Digitální měřič kapacity s rozsahem od 1 pF do 10 000 μF (10 mF)

Měření kapacit podle obr. 6 je založeno na měření času, potřebného pro nabítí kondenzátoru C_x přes odporník R₁ na napětí 2/3 U_s. Potřebný čas se měří klasicky čítačem, přičemž vhodnou volbou R₁ a kmitočtu lze dosáhnout toho, že údaj na displeji udává přímo kapacitu měřeného kondenzátoru.

Přístroj se skládá z vlastního měřicího obvodu, zdroje přesného kmitočtu, čítače s displejem a s řídicí logiky. Měřicí obvod využívá všech dobrých vlastností časovače 555.

Aby bylo možno vykompenzovat vliv parazitních kapacit a případných přívodů, vstup je stále zatištěn kondenzátorem C_p a začátek měření je posunut o jeho kapacitu.

Při popisu funkce měřicího přístroje vycházíme podle obr. 6 od okamžiku, kdy je měřicí obvod TO₁ spuštěn sestupnou hranou impulsu z klopového obvodu KL₂. Vnitřní vybíjecí tranzistor (vývod DIS) obvodu TO₁ (555) se zavírá, kondenzátory C_x a C_p se začínají nabíjet přes R₁ ze zdroje U_s podle rovnice:

$$t = (-\ln 1 - \frac{U_h}{U_s})R(C_x + C_p)$$

a výstup OUT přechází do logického stavu H. Protože výstup Q₂ přešel na úroveň L, na hradlo HR₁ je úroveň L a hradlo HR₂ je nepropustné pro signál o kmitočtu f_m. Po uplynutí doby t₁, odvozené od kmitočtu f₁, odpovídající kapacitě C_p, se uvede výstup Q₂ KL₂ do stavu H, hradlo HR₁ na H a začíná propouštět signál o kmitočtu f_m z osciloskopu a děliče do čítače. Zatím se zvětšuje stále napětí na vstupu THR IO₁, až dosáhne úrovně 2/3 U_s. V tom okamžiku (t₂) vnitřní komparátor 555 překlopí jeho výstup do stavu L, otevře se vybíjecí tranzistor, který rychle vyboje C_x a C_p. (V definativní verzi hotového přístroje byly přidány tranzistory T₃ a T₄, aby velké náboje kondenzátorů velkých kapacit mohly být rychle vybité.) Na výstupu 555 je stav L, hradlo HR₁ také přechází do stejněho stavu a hradlo HR₂ ukončí plnění čítače.

Sestupnou hranou výstupního signálu je spuštěn klopový obvod KL₂, který vyše záporný impuls na vstup E čítače, čímž se jeho obsah přenese do paměti a na displej. Tentýž impuls spustí i časovací obvod KL₃, který se zpožděním asi 0,3 s vyšle přes hradlo HR₃ nulovací impuls jednak do čítače a jednak do klopového obvodu

Obr. 7. Schéma zapojení měřiče kapacit

pomocí hradel IO_{19-1} až IO_{19-4} ovládá obvod pro potlačení přebytečných nul.

Čítač pracující v paralelním režimu byl sestaven z obvodů SN74143, což je desítkový čítač, paměť, dekódér pro LED s vnitřními odpory. Při naplnění čítače na 9999 se pomocí hradel IO_{20-3} , IO_{20-1} , IO_{20-6} , IO_{20-2} , a IO_{5-1} zablokuje v. IO_{5-2} přenos hodinových impulsů do čítače, takže na displeji zůstanou devítky jako indikace přeplnění.

Protože obvody SN74143 nejsou běžně dostupné, je na obr. 9 modifikace z dostupných prvků 7490, 7475 a D146 (147). V obr. 8 jsou označeny návaznosti podle obr. 7, přičemž nové prvky nejsou číslovány. Zapojení je celkem běžné; pro indikaci

přeplnění je využit přechod výstupu Q₀ poslední dekády z H na L, kterým se překlopí obvod D do stavu L a výstupem Q zablokuje čítacovou řadu ve stavu 9999. Tento stav ukončí příchod nulovacího impulsu na vstup S.

Obr. 8. Časový diagram průběhu v jednotlivých bodech měřiče kapacit

Jak vyplývá z popisu funkce, pro přesnost celého zařízení jsou určující R_s , U_h , U_l , f_m , které se navzájem ovlivňují. Mimo to musíme vztít i vliv saturačního napětí vybíjecího tranzistoru a předpokládali jsme, že měřené kondenzátory se začínají nabíjet od nuly, ale to ve skutečnosti není pravda. Protože se jednotlivé impulsy navzájem ovlivňují, můžeme změnou jednoho kompenzovat chybu druhého.

Nejdůležitější je zajistit „tvrdé“ a stálé napájecí napětí U_h , zajistit vhodným děličem a pro krystalový oscilátor zajistit maximální stabilitu – potom případné odchyly vyrovnat změnou R_s . Protože C_{14} i R_{18} mají velké tolerance, může se stát, že při měření na nejvyšších rozsazích spustí multivibrátor dříve, než skončí doba měření. Pak stačí C_{14} nebo R_{18} zvětšit tak, aby při měření kapacit větších než asi 12 000 μF přístroj ukázal přeplnění.

Stavba měřiče kapacity je dost náročná práce. Podle obr. 7 byly postaveny dva identické přístroje, které jsou již sest let v provozu. Po zapnutí u obou naskočí nějaké náhodné – ale vždy stejně – číslo; asi po dvaceti sekundách se objeví nula, přístroj je připraven k měření. Případný posuv nuly u nejnižšího rozsahu vyrovnané C_{12} . Při měření – to platí především u elektrolytických kondenzátorů – vlivem svodu se čísla mění, ale měření i v tom případě dosahuje přesnosti lepší než 2 %.

Přístroj byl postaven na oboustranné plátnové desce velikosti 190 × 145 mm, displej byl na zvláštní desce (obr. 10 a 11). Vzhledem k tomu, že součástky – i pasivní – z velké části nebyly tuzemského původu a SN74143 je prakticky nedostupný, ne-považují otiskání nákresu desky s plošnými spoji za účelné.

Radio Electronics 9/1978

Obr. 10. Digitální měřič kapacit s rozsahem 1 až 10 000 μF (2. str. obálky)

Obr. 11. Vnitřní uspořádání měřiče kapacit (2. str. obálky)

Měřič kapacit – přípravek k 3 1/2místnému DVM

Měřicí metoda

Měřicí metoda je na obr. 12. Neznámá kapacita C_x je určena měřením napětí na děliči C_x/R_s . Zvolíme-li odpor R_s mnohonásobně menší než kapacitní odpor X_C po střídavý proud, pak C_x bude

$$C_x = \frac{U_1/U}{2\pi f R_s}$$

kde U , f , R_s jsou známé a konstantní veličiny, takže jedinou proměnnou je U_1 . Samozřejmě nechceme pracovat při měření kapacity s kalkulačkou, ale chceme kapacitu číst přímo.

Blokové schéma a princip činnosti

Na obr. 13 je blokové schéma zapojení, v němž je ještě navíc usměrňovač a digitální voltmetr. Generátor vyrábí napětí trojúhelníkovitého průběhu, které se přivádí na měřený kondenzátor zapojený v obvodu diferenciátoru. Na výstupu diferenciátoru se objevuje napětí pravoúhlého průběhu, jehož amplituda je měřítkem velikosti C_x (jako U_1). Poté je tento signál usměrněn a změřen číslicovým voltmetrem.

Usměrňovač je zapojen jako „fázově citlivý synchronní usměrňovač“, což znamená, že funkce je snadno pochopitelná. Signál pravoúhlého průběhu je přiváděn ve fázi na spínač S_1 (nebo

Obr. 9. Uprava čítače pro měřic kapacit s našimi součástkami

Obr. 12. Princip měřicí metody -

invertovaný na S_2). Spínače jsou řízeny (synchronně s napětím trojúhelníkovitého průběhu) tak, že spínají pouze kladné půlperiody napětí pravoúhlého průběhu. Signály ze spínačů se sčítají, takže dostáváme ss napětí.

Na obr. 14 jsou průběhy napětí v jednotlivých částech. Sešikmení signálu pravoúhlého průběhu nastává, protéká-li měřeným kondenzátorem zbytkový

Obr. 14. Průběhy napětí ve vybraných bodech.

proud. Tento proud nevstupuje do měření ze dvou důvodů. Předně zmizí vytvořením střední hodnoty – průběh C – a dále není vůbec usměrňovačem registrovaný, protože vůči napětí trojúhelníkovitého průběhu je posunut o 90° .

Zapojení

Konkrétní zapojení na obr. 15 (IO_1 , IO_2) tvoří funkční generátor. IO_1 je zapojen jako Schmittův klopový obvod. Ten dodává konstantní napětí integrátoru IO_2 , které integrátor převádí na stoupající. Dosáhne-li stoupající napětí prahové úrovni klopového obvodu, změní integrující napětí polaritu. Pak se integrované napětí zmenší až do dosažení druhého stavu klopového obvodu. Tímto způsobem zísaváme napětí na výstupu IO_1 pravoúhlého a na výstupu IO_2 trojúhelníkovitého průběhu. Napětí trojúhelníkovitého průběhu je zkusebním napětím pro kondenzátor C_x , který je zapojen jako součást diferenciátoru IO_3 . Na výstupu IO_3 je tedy napětí pravoúhlého průběhu úměrné kapacitě měřeného kondenzátoru. Usměrňovač je tvořen integrovanými spínači ($MHB4066$ – 4 spínače v jednom pouzdře) S_5 , S_6 a dostává signál buď přímo nebo přes invertor IO_4 . Řídící signál pro spínače je odebíráno z IO_1 a přichází jednou přímo na S_5 a po druhé invertovaný pomocí S_4 na S_6 . Výstupní signály z S_5 a S_6 se sčítají

Obr. 16. Měřič kapacit jako doplněk k DVM (2. str. obálky)

Obr. 17. Vnitřní uspořádání měřiče kapacit (2. str. obálky)

Obr. 13. Blokové schéma měřiče kapacit jako doplňku k DVM

Obr. 15. Celkové schéma zapojení měřiče kapacit jako doplnku k DVM

a jsou přiváděny přes R_{20} a P_2 na vstup číslicového voltmetu.

Dolní propust P_1 , R_6 , C_2 formuje napětí pravoúhlého průběhu z IO_1 na trojúhelníkový průběh. Tento signál přichází přes C_3 na vstup IO_3 . Protože zkusební signál je vůči tomuto signálu invertován, je možné tímto způsobem kompenzovat parazitní kapacitu na vstupních svorkách. V praxi to znamená, že při otevřeném vstupu nastavíme P_1 tak, aby ukazoval nulu.

Při špatném zvoleném rozsahu způsobuje výstupní signál z IO_5 indikaci přeplnění na DVM. Je-li totiž kapacita kondenzátoru C_x příliš velká pro nastavený rozsah, pracuje IO_3 nikoli jako diferenciátor, ale jako komparátor. Proto se na výstupu IO_3 objeví napětí pravoúhlého průběhu, které je vůči správnému signálu posunuto o 90° . Usměrňovač tedy nedostává žádné napětí a DVM by ukazoval nulu. IO_5 proto sepne při určité vstupní úrovni spínače S_7 a na vstup DVM přichází napětí přes R_{21} , takže DVM ukáže přeplnění.

Ještě několik slov k měřicím rozsahům a zkusebním signálům. Rozsahy se přepínají přepínačem P_1 . Při kondenzátoru 0 až 2 μF je amplituda signálu trojúhelníko-

vitého průběhu asi 1,8 V při 1 kHz. U elektrolytických kondenzátorů nad 2 μF je mezihradová velikost zkušebního signálu 18 mV při 100 Hz mimo rozsah 20 mF, při kterém by byl příliš zatížen operační zesilovač. Proto je kmitočet rozsahu snížen na 10 Hz. Presnost měření na všech rozsazích by měla být 1 % mimo poslední rozsah, kdeje 10 až 15 %. Chceme-li měřit elektrolytické kondenzátory na rozsahu 2 μF , sepneme přepínač P_2 . Tím se zvětší

zapneme a údaj zaznamenáme. Pak přepneme P_1 do polohy $2\ \mu F$ a trimrem P_2 nastavíme stejný údaj. Poloha desetinné tečky nehraje roli. Pak odstraníme náhradní R_{12} a C_{10} a připojíme na jejich místo předepsané součástky.

Konečně připojíme na svorky kondenzátor $10\ nF$, 1% , přepneme P_1 do polohy $20\ nF$ a trimrem P_2 nastavíme na displeji přesně $10,00\ nF$. Na přesnost tohoto kondenzátoru závisí přesnost nastavení. Pokud použijeme k měření hotový multimeter, nebudu souhlasit polohy desetinných teček. Použijeme-li panelový voltmeter (např. ICL7106, 7107), můžeme desetinné tečky přepínat třetí sekcí P_1 .

Pokud bychom chtěli rozšířit měřicí kapacity o rozsahy $2\ nF$, $200\ nF$, $20\ \mu F$, budou pro ně členy RC v diferenciátoru $332\ k\Omega/15\ pF$, $3,32\ k\Omega/1,5\ nF$, $33,2\ k\Omega/1,5\ nF$.

Před měřením musíme vždy kondenzátor vybit!

Elektor 2/84

Jednoduchý měřič kapacit jako doplněk multimetru

Přístroj je určen pro panelový voltmetr s rozsahem $200\ mV$ s obvodem ICL7106. Princip měření ukazuje blokové schéma na obr. 18. Signál z vývodu 21 (back plane) obvodu ICL7106 zpracováváme ve zdroji spouštěcích impulsů (obr. 19). Jejich šířka je $50\ ns$ a jsou záporné. Tyto impulsy spouštějí monostabilní klopný obvod. Jeho konstanta RC je dána normálovými rezistory a měřeným kondenzátorem C_x . Šířka výstupního impulsu je potom přímo úměrná neznámé kapacitě. V integrátoru dostáváme napětí přímo úměrně šířce impulsu z monostabilního klopného obvodu (MKO), které měříme panelovým voltmetrovem. Kondenzátor C_x zvětšuje kapacitu původního kondenzátoru hodin obvodu ICL7106. Tím se prodlouží perioda (asi na $20\ ms$) spouštěcího kmitočtu tak, že můžeme měřit až do rozsahu $20\ \mu F$ (perioda $20\ ms$).

Zapojení měřiče kapacit je na obr. 20. Zdroj spouštěcích impulsů je vytvořen z oddělovacích tranzistorů T_1 , T_2 . Mezi nimi je zapojen derivační článek, který zkraje impulsy na $50\ ns$, a dioda, která odřezává zápornou část signálu.

Samotný MKO je tvořen verzí CMOS časovače 555 s označením ICM7555. Lze použít i 555, ale ten má větší spotřebu (asi $2\ mA$) a na rozsahu $20\ \mu F$ nepracuje vždy spolehlivě (není lineární). Výběrem lze však získat i 555 s vhodnými parametry. Integrátor se skládá z kondenzátoru C_3 a rezistoru R_{11} . Z C_3 odeberáme napětí, které na potřebnou velikost nastavíme trimrem P_2 . Jehož běžec je připojen na vstup IN HI voltmetru. Vstup IN LO je oddělen od COMMON a je na něj přivedeno napětí, kterým nulujeme měřič kapacit, aby neměřil parazitní kapacitu přívodů. Kondenzátor C_4 se připojuje navíc, původní člen RC mezi vývody 40, 39, 38 zůstává zachován.

Přepínání desetinných teček a případné přepínání funkcí U , I , R , C na multimeteru je třeba řešit podle typu přístroje. Závisí na použité konstrukci a dostupných prvcích. Přesnost měření kapacity je asi $\pm 2\ %$.

Practical Electronics 7/81

Obr. 18. Blokové schéma měřiče kapacit k panelovému voltmetu

Obr. 19. Průběhy napětí v měřiči kapacit

Měřič kapacit s obvodem ICL7106.

Jedná se o malý měřič kapacit v rozsahu $1\ pF$ až $20\ \mu F$ s přesností $\pm 0,5\ %$, napájený devítivoltovou baterií. Odběr je asi $2\ mA$.

Princip měření bude objasněn na zjednodušeném zapojení na obr. 21. Referenční napětí je transformováno sériovým zapojením integračního a derivačního stupně. Integrační stupeň pracuje s pevnými hodnotami, zatímco derivační stupeň pracuje s měřeným C_x a normálovými R_N .

Princip měření

Během měřicího cyklu jsou všechny spínače v nakreslené poloze. Na výstupu IO₁ vzniká napětí pilovitého průběhu se sklonem $10\ V/S$. Operační zesilovač IO₂ má zavedenu zpětnou vazbu rezistorem R_N , takže na jeho vstupu je trvale nula. Měřený kondenzátor C_x je vybijen konstantní

rychlosťí. Na výstupu IO₂ se projeví vybijecí proud jako ekvivalentní napětí, které je v digitálním voltmetru s dvojí integrací srovnáno s referenčním napětím. Protože U_{ref} je i na začátku měřicího řetězce, nemá žádný vliv na výsledek měření. Údaj displeje se řídí rovnicí:

$$\text{údaj} = K \frac{C_x R_N}{C_1 R_1},$$

kde K je dělící poměr R_{29}/R_{28} referenčního napětí v DVM.

Systém nezpůsobuje žádné chyby mezi měřicími rozsahy. Parazitní vstupní kapacity derivačního stupně se neuplatní, protože vstup IO₂ je bez paměti. Na konci měřicího cyklu se všechny spínače sepnou. Výstup IO₁ přechází do kladných hodnot, takže C_x se opět nabije.

Jeden ze spínačů přemostuje IO₂, protože na jeho výstupu objeví vstupní rozdílové napětí. Protože vstup DVM je v této fázi uzemněný, nabije se C_7 na velikost vstupního rozdílového napětí a způsobuje tak automatické vyrovnaní nuly.

Po $200\ ms$ přechází všechny spínače do výchozí polohy a měřicí cyklus začíná znova. Uvnitř měřicí fáze DVM startuje po $100\ ms$ později. Časový rozdíl je nutný, aby mohly odeznít zákmity derivačního stupně.

Zapojení (obr. 22)

Přístroj je postaven z obvodů CMOS a operačních zesilovačů s malým odběrem, z čehož vyplývá i malá spotřeba asi

Obr. 20. Zapojení měřiče kapacit

Obr. 21. Blokové schéma měření kapacity a průběhy napětí ve vybraných bodech

Obr. 22. Zapojení měřiče kapacit s ICL7106

2,5 mA. V integračním stupni musí mít R_1 a C_1 malý teplotní součinitel (použijeme např. rezistory TR 161 a kondenzátory REMIX C 219 nebo TC 215). Diody D_1 až D_6 , D_8 a rezistory R_5 , R_{11} , R_{12} , R_{13} slouží jako přepěťová ochrana při nabitéch kondenzátorech. Proto jsou přípustná napětí až 400 V.

Derivační stupeň reaguje citlivě na sebemenší zákmity napětí pilovitého průběhu a na šum integrátoru. Na dolních měřicích rozsazích ruší na výstupu IO_2 šum, který je potlačen zpětnou vazbou C_4 až C_6 na přípustnou velikost. Na horních rozsazích se uplatňuje rušivé hlavně zákmity. Ty jsou potlačovány rezistorem R_4 . Kondenzátor C_7 slouží, jak už bylo popsáno, k automatickému nastavení nuly. Během tohoto pochodu mohou téci větší vyrůvňávací proudy, přes spínač 4 (CMOS), které mohou zvětšovat napětí na vývodu COMMON voltmetu směrem k záporným hodnotám; R_{14} omezuje tyto proudy. Filtr R_{15} , C_8 má potlačit pronikání brumu při dolních rozsazích.

Digitální voltmetr je postaven se známým obvodem ICL7106. Vývod COMMON dává vztazné napětí pro celý přístroj a je proto na schématu označen jako zem. Mezi tímto vývodem a kladným pólem baterie je referenční napětí (2,8 V). IO_8 je napájen z DVM, protože napětí pravouhlého průběhu z IO_8 a IO_9 musí přesně souhlasit, aby se nezkracovala doba životnosti displeje LCD. Ostatní IO jsou napájeny ze stabilizovaného zdroje přes tranzistor T_1 .

Nedostatkem ICL7106 je, že nemá vyveden vnitřní řídící takt. Poněkud komplikovaným zapojením může být tento signál

odvozen z vývodu 28. Postupně jsou na tomto vývodu napětí COMMON, kladné měřicí napětí a záporné referenční napětí. Přechod mezi měřicím a referenčním napětím je časový bod, který potřebujeme získat. IO_6 a IO_7 jsou klopné obvody s prahem asi 75 mV. Na začátku deintrace spustí referenční napětí přes IO_7 a IO_5 monostabilní klopny obvod IO_4 . Při otevřeném měřicím vstupu se objeví referenční napětí jen jako jehlový impuls kladné nebo záporné polarity. Protože v druhém případě by chyběl takt, spouští tento impuls přes IO_6 a IO_5 monostabilní obvod. Protože však i kladné měřicí napětí může vytvárat stejný jev, je u IO_6 využita jen týlová hrana a v IO_5 je přeměněna v jehlový impuls. Monostabilní obvod je nastaven na 200 ms a řídí spínače CMOS.

Realizace

Jako operační zesilovače jsou použity CA3130, neboť mají malé napájecí napětí (± 2 V) a malý odběr. Bylo by je možné nahradit obvody B061 z NDR; pak by nutné vypustit kompenzační kondenzátory C_2 , C_3 , C_{11} , C_{12} . Spínače (MHB4066), hradla (MHB4011, MHB4030) vyrábí nebo bude vyrábět TESLA Piešťany. Monostabilní obvod CD4047 lze zakoupit např. v MLR. Obvod DVM ICL7106 se má u nás začít vyrábět v roce 1986. Displej LCD již vyrábí TESLA Vrchlabí pod označením 4DR822, jinak jej lze také dostát v MLR.

Při dobrém prověření a odstínění svorek (plechem, na který je připevněme a který spojíme s kladným pólem baterie) bude údaj na displeji při rozpojených svorkách 1 pF.

Nastavení

Deska s plošnými spoji se osadí s výjimkou R_1 , R_{16} a R_{27} . Místo těchto rezistorů zapojíme trimry předem nastavené na odpovídající hodnoty.

Nejprve zkontrolujeme napájecí napětí 5 V $\pm 10\%$ na C_{13} . Pak připojíme přesný kondenzátor (>10 nF) na měřicí svorky a nastavíme příslušný rozsah. Referenční napětí DVN nastavíme pomocí R_{29} na 100 mV (měřeno mezi vývody 35 a 36 na IO_8).

Pro optimální potlačení brumu musí být měřicí čas celistvým násobkem síťové periody. Měřicí cyklus se nastaví rezistorem R_{27} na 400 ms (měřeno na vývodu 10 IO_4). Překlápnění monostabilního obvodu IO_4 se nastaví na 200 ms rezistorem R_{16} (také na vývodu 10 IO_4). Rezistory R_{16} a R_{27} se nyní nahradí pevnými rezistory odpovídajících odporů. Údaj displeje se nastaví rezistorem R_1 na přesnou kapacitu podle měřeného kondenzátoru. Trimr nahradíme rezistorem, přičemž údaj by se neměl lišit o více než 5 %. Nakonec nastavíme potenciometrem R_{29} přesný údaj kapacity.

Při měření je důležité, aby kondenzátory malých kapacit byly zasunuty přímo do měřicích svorek, protože parazitní kapacity přívodních šnůr by zkresily výsledek a rovněž pronikání brumu by způsobilo kolísání údaje.

Funkschau 26/80

Měříč relativní vlhkosti

K příjemnému pocitu doma nebo na pracovišti nestačí jen správná teplota v místnosti. Důležitým činitelem je také relativní vlhkost vzduchu, která by se měla pohybovat v rozmezí 30 až 65 %. V místnostech, v nichž je větší možnost vzniku elektrostatického náboje a v nichž nenivodivá podlaha, se doporučuje relativní vlhkost 50 %. Tato relativní vlhkost by tedy měla být ve všech dílnách a laboratořích, kde se pracuje s tranzistory a integrovanými obvody MOSFET a CMOS.

Vlhkoměry rovněž potřebují zahrádkáři do svých skleníků, využívají se jich v muzeích a obrazárnách atd.

Klasické vlhkoměry jsou založeny na principu změny délky lidského vlasu v závislosti na vlhkosti. Změna délky je pomocí pákového mechanismu převedena na ručičku přístroje nebo na zapisovač. Tyto vlhkoměry jsou však v levném provedení dosti poruchové a choulöstivé. Proto firmy Siemens a Valvo využívají elektronické čidlo snímající vlhkost vzduchu. Čidlo je založeno na principu kondenzátoru, jehož kapacita se mění v závislosti na vlhkosti. Výrobek firmy Valvo mění svou kapacitu v rozmezí vlhkosti 0 až 100 % od 110 pF do 150 pF. Čidlo firmy Siemens má označení KHY10. Zapojuje se do oscilátoru 200 kHz tak, že se se změnou kapacity mění i střídavý signál. Dále již budeme uvažovat pouze čidlo Valvo.

Aby se umožnilo číslicové vyhodnocení, je s čidlem a hradly vytvořen oscilátor RC, kmitající v závislosti na kapacitě snímače v okolí 300 kHz. Druhý laditelný oscilátor je zhotoven z hradel téhož obvodu. Kmitá konstantním kmitočtem a slouží jako referenční. Každý oscilátor řídí binární čítač. Z obou signálů se pak vytváří rozdílový impuls, který slouží jako časový úsek, ve kterém se impulsy referenčního oscilátoru čítají ve dvojitém čítači BCD. Na příklad při relativní vlhkosti 30 % načítá čítač 30 impulsů, toto číslo se pak přes dekodér objeví na displeji LCD.

Úplné zapojení měřiče vlhkosti je na obr. 23. Při stanovení koncepce byl položen zvláštní důraz na malou spotřebu. Proto byly použity obvody CMOS. Spotřeba je při 9 V 200 µA, při 5 V asi 80 µA. Měřič může proto pracovat s napájením z baterie (baterie 9 V nebo 4 tužkové baterie) a stavba síťového zdroje je zbytečná.

Oba oscilátory jsou postaveny z invertorů IO₁, CD4069, vždy tři invertory na jeden oscilátor. Lze použít také výkonové invertory MHB4049. V horním oscilátoru je zapojeno čidlo jako určující kapacitu. Dolní referenční oscilátor má pevný kondenzátor C₁, 100 pF, paralelně s kapacitním trimrem C₂, 4 až 40 pF nebo 10 až 60 pF. Jako C₁ musí být použit kondenzátor s kladným TK asi +100 ppm/K, v krajním případě s TK blízkým nule. Předností tohoto zapojení je to, že stárnutí a teplotní změny obou oscilátorů neovlivňují výsledek měření.

Podle výrobce musí být ještě k čidlu připojena paralelně kapacita C_p, 36 pF. Část této kapacitě je tvorena spojí, část tvoří vstupní kapacitu obvodu CD4069 a přívody k čidlu, jestliže není umístěno přímo na desce s plošnými spoji. Zbytek, 10 až 20 pF, je jako pevný kondenzátor. Tento kondenzátor by měl mit stejnou vlastností jako C₁.

Oba výstupy oscilátorů řídí po jednom binárním čítači IO₂, IO₃, CD4040. Jsou to

Obr. 23. Měříč vlhkosti

dvanáctistupňové binární čítače. V nouzi by bylo možno nahradit dvěma do série zapojenými sedmstupňovými čítači MHB4024. V nich jsou impulsy upraveny (rozšířeny) pro další zpracování. Pro co nejmenší spotřebu jsou oba oscilátory spouštěny pomocí taktového oscilátoru jen jednou za sekundu po dobu 5 ms přes tranzistor T₁. To stačí k měření, protože vlhkost se mění většinou jen pomalu. Taktovací generátor tvoří obvod IO₄, CD4060, což je čtrnáctistupňový binární čítač s oscilátorem. Lze jej nahradit obvodem MHB4020 s příslušným oscilátorem z hradel obvodu např. MHB4011.

Protože charakteristika vlhkostního čidla není úplně lineární, musí být tyto odchyly vykompenzovány. Průběh charakteristiky z katalogu lze approximovat třemi přímkami v měřicím rozsahu 10 až 95 % téměř ideálně. Stoupání přímek je v poměru 2:3:4.

Zapojení pro linearizaci s obvody IO₅, CD4023, a IO₆, CD4071, slouží k tomu, aby čítače BCD IO₇, MHB4518, čítaly do vlhkosti 40 % všechny impulsy, od 40 % do 70 % jen tři impulsy ze čtyř impulsů a nad 70 % dva impulsy ze čtyř impulsů. Tím jsou vytvořeny tři různé strmosti odpovídající katalogové křivce čidla. Obvod CD4023 je trojice trivstupových hradel NAND a obvod CD4071 je čtveřice dvoustupňových hradel OR. Oba obvody lze samozřejmě nahradit ekvivalentní kombinací dostupných hradel.

Udaj z čítačů BCD je převeden do kódů pro sedmisegmentové displeje obvody IO₈, IO₉, MHB4543.

Jako displej LCD lze použít některý z typů vyráběných k. p. TESLA Vrchlabí – DR401, DT401.

Není-li čidlo montováno přímo na desce, neměl by přívod k němu překročit délku 1 m. Vedení má být stočené, stíněné není nutné.

Vlhkoměr se nastavuje kapacitním trimrem C₂ nejlépe na 50 % relativní vlhkosti. Můžeme jej nastavovat pomocí přesného vlhkometru nebo v klimatizační komoře. Přidavné chyby může způsobit

znečištění čidla. Proto jestliže měříme v prašném prostředí, měl by být před čidlem zařazen vzduchový filtr. Přesnost měření je asi $\pm 0,5\%$, tedy méně, než 1 číslo.

Přístroj má minimální odběr, ale přesto je nutné baterie občas kontrolovat, protože oscilátory jsou napěťově závislé. Stabilizátor však přesto není vhodný, protože jeho odběr je mnohonásobně větší než odběr celého přístroje.

Funkschau 6/84

Měření teploty

Teplotu jako elektrickou veličinu měříme nejčastěji převodem na elektrické napětí, a to buď přímo, nebo přes elektrický odpór. Převodníky teplota/napětí musí být v potřebném rozsahu lineární, pouze u převodníků pro termostaty a regulátory není tento požadavek nutný. Měřicí převodníky teplota/napětí připojujeme nejčastěji k číslicovým voltmetrům. Mohou být provedeny jako přídavek k digitálnímu multimetu nebo spolu s panelovým měřidlem vytvořit jednoúčelové měřidlo teploty. Ručkové přístroje používáme pro menší požadovanou přesnost měření; v dnešní době však klesají ceny panelových číslicových voltmetrů tak, že se je vyplatí používat místo ručkových měřidel. Ručkové přístroje se však používají tam, kde teplota často kolísá, protože pak je analogový údaj vhodnější. V takovém případě lze použít i analogovou stupnice z diod LED.

Jedním ze způsobů měření teploty je měření pomocí termočlánků, které převádějí teplotu přímo na elektrické napětí. K převodu využívají termoelektrického jevu. Princip spojíme v tom, že jestliže mechanicky spojíme dva různé kovy, vznikne na nich rozdíl napětí, který je značně závislý na teplotě.

Výhodou termočlánků je malá teplotní setrvačnost, jejich závislost napětí na teplotě je v některých úsecích prakticky

lineární, lze s nimi měřit teploty v širokém rozmezí teplot a je také možné je zhotovit doma amatérsky (např. měd.-konstantan, železo-konstantan). Nejlepší je svařit konce obou drátů např. kondenzátorovou svářeckou.

Nevýhodou termočlánků je nutnost při přesnějších měření použít referenční prostředí. To znamená, že při použití jednoho termočlánku kolísá údaj na svorkách měřidla podle okolní teploty (na svorkách vzniká také termoelektrické napětí). Proto se při průmyslových a laboratorních měřeních zapojují termočlánky dva do série tak, aby se jejich napětí odčítala. Jeden termočlánek je měřicí, druhý je referenční. To má za následek, že na svorky měřidla je přiveden vždy stejný kov, takže nevzniká nezádoucí svorkové napětí závislé na teplotě. Při měření v laboratořích se referenční termočlánek udržuje na teplotě 0 °C (termoska s ledovou trášti ve vodě), při průmyslových měřeních se ohřívá na 50 °C.

Obe tyto metody se však nedají u číslcových přenosných měřidel teploty použít. Proto se místo druhého referenčního termočlánku používá polovodičové snímání čidla teploty, které kompenzuje teplotu okolí a tím vlastně napětí, vznikající na svorkách termočlánku.

Takové zapojení vidíme na obr. 24. Jedná se o lineární převodník teplota-napětí s rozsahem měřených teplot 0 až 700 °C. V rozsahu teplot 0 až 400 °C je chyba menší než $\pm 0,5$ °C. Termočlánek je zdrojem napětí, které odpovídá rozdílu teplot mezi měřicím bodem a referenčním bodem (okolní teplotou). K vyhodnocení musí být tedy použity obě teploty. V našem případě jsou oba napěťové zdroje řazeny v sérii a přivedeny na zesilovač. Protože průběh napětí v takovém rozsahu teplot není lineárně závislý na teplotě, musí být naměřený údaj korigován v linearizačním obvodu. Aby byly snáze zvládnutelné potíže s tolerancemi součástek, je signál korigován až po zesílení,

Popis zapojení

Jako termočlánek je použita kombinace železo-konstantan. Se zvyšující se teplotou se zmenšuje $\Delta U / \Delta t$ a nad 150 °C zůstává konstantní. Teplotní závislost přechodu B – E křemíkového tranzistoru je využita k získání svorkového napětí. R_1 a R_2 dělí průběh křivky napětí/teplota termočlánku v rozsahu 0 až 50 °C. Jako operační zesilovač je použit v původním zapojení ICL7650, jehož napěťový offset je jen 0,01 μ V/K. Z našich OZ vyhovuje pouze WSH222, který má obdobné parametry. MAA725 má již offset 100x horší. Na invertujícím vstupu jsou malá napěťová offset a základní napětí křemíkového snímače kompenzována rezistorem R_{10} . Rezistor R_6 nastavuje výstupní napětí převodníku.

Charakteristika použitého termočlánku a požadovaná přesnost linearizace určuje

Tab. 1. Napětí termočlánku Fe-Co (železo-konstantan). Referenční teplota 0 °C.

°C	0	1	2	3	4	5	6	7	8	9	[mV]
0	0,00	0,05	0,10	0,16	0,21	0,26	0,31	0,36	0,42	0,47	
10	0,52	0,57	0,63	0,68	0,73	0,78	0,84	0,89	0,94	1,00	
20	1,05	1,10	1,16	1,21	1,26	1,31	1,37	1,42	1,47	1,53	
30	1,58	1,63	1,69	1,74	1,79	1,84	1,90	1,95	2,00	2,06	
40	2,11	2,16	2,22	2,27	2,33	2,38	2,43	2,49	2,54	2,60	
50	2,65	2,70	2,76	2,81	2,87	2,92	2,97	3,03	3,08	3,14	
60	3,10	3,24	3,30	3,35	3,41	3,46	3,51	3,57	3,62	3,68	
70	3,73	3,78	3,84	3,89	3,95	4,00	4,05	4,11	4,16	4,22	
80	4,27	4,32	4,38	4,43	4,49	4,54	4,60	4,65	4,71	4,77	
90	4,82	4,87	4,93	4,98	5,04	5,09	5,15	5,20	5,26	5,32	
100	5,37	5,42	5,48	5,53	5,59	5,64	5,70	5,75	5,81	5,87	
110	5,92	5,97	6,03	6,08	6,14	6,19	6,25	6,30	6,36	6,42	
110	5,92	5,97	6,03	6,08	6,14	6,19	6,25	6,30	6,36	6,42	
120	6,47	6,53	6,58	6,64	6,69	6,75	6,81	6,86	6,92	6,97	
130	7,03	7,09	7,14	7,20	7,25	7,31	7,37	7,42	7,48	7,53	
140	7,59	7,65	7,70	7,76	7,81	7,87	7,93	7,98	8,04	8,09	
150	8,15	8,21	8,26	8,32	8,37	8,43	8,49	8,54	8,60	8,65	
160	8,71	8,77	8,82	8,88	8,93	8,99	9,05	9,10	9,16	9,21	
170	9,27	9,33	9,38	9,44	9,49	9,55	9,61	9,66	9,72	9,77	
180	9,83	9,89	9,94	10,00	10,05	10,11	10,17	10,22	10,28	10,33	
190	10,39	10,45	10,50	10,56	10,61	10,67	10,73	10,78	10,84	10,89	
200	10,95	11,01	11,06	11,12	11,17	11,23	11,29	11,34	11,40	11,45	
210	11,51	11,57	11,62	11,68	11,73	11,79	11,85	11,90	11,96	12,01	
220	12,07	12,13	12,18	12,24	12,29	12,35	12,41	12,46	12,52	12,57	
230	12,63	12,69	12,74	12,80	12,85	12,91	12,97	13,02	13,08	13,13	
240	13,19	13,25	13,30	13,36	13,41	13,47	13,53	13,58	13,64	13,69	
250	13,75	13,81	13,86	13,92	13,97	14,03	14,09	14,14	14,20	14,25	
260	14,31	14,37	14,42	14,48	14,54	14,59	14,65	14,71	14,76	14,82	
270	14,88	14,94	14,99	15,05	15,10	15,16	15,22	15,27	15,33	15,38	
280	15,44	15,50	15,55	15,61	15,66	15,72	15,78	15,83	15,89	15,94	
290	16,00	16,06	16,11	16,17	16,22	16,28	16,34	16,39	16,45	16,50	
300	16,56	16,62	16,67	16,73	16,78	16,84	16,90	16,95	17,01	17,06	
310	17,12	17,18	17,23	17,29	17,34	17,40	17,46	17,51	17,57	17,62	
320	17,68	17,74	17,79	17,85	17,90	17,96	18,02	18,07	18,13	18,18	
330	18,24	18,30	18,35	18,41	18,46	18,52	18,58	18,63	18,69	18,74	
340	18,80	18,86	18,91	18,97	19,02	19,08	19,14	19,19	19,25	19,30	
350	19,36	19,42	19,47	19,53	19,58	19,64	19,70	19,75	19,81	19,85	
360	19,92	19,98	20,03	20,09	20,14	20,20	20,26	20,31	20,37	20,42	
370	20,48	20,54	20,59	20,65	20,70	20,76	20,82	20,87	20,93	20,98	
380	21,04	21,10	21,15	21,21	21,26	21,32	21,38	21,43	21,49	21,54	
390	21,60	21,66	21,71	21,77	21,82	21,88	21,94	21,99	22,05	22,10	
400	22,16	22,22	22,27	22,33	22,38	22,44	22,50	22,55	22,61	22,66	
410	22,72	22,78	22,83	22,89	22,95	23,00	23,06	23,12	23,18	23,23	
420	23,29	23,35	23,40	23,46	23,52	23,57	23,63	23,69	23,74	23,80	
430	23,86	23,92	23,97	24,03	24,09	24,14	24,20	24,26	24,32	24,37	
440	24,43	24,49	24,54	24,60	24,66	24,71	24,77	24,83	24,89	24,94	
450	25,00	25,06	25,11	25,17	25,23	25,28	25,34	25,40	25,46	25,51	
460	25,57	25,63	25,68	25,74	25,80	25,85	25,91	25,97	26,03	26,08	
470	26,14	26,20	26,25	26,31	26,37	26,42	26,48	26,54	26,60	26,65	
480	26,71	26,77	26,82	26,88	26,94	26,99	27,05	27,11	27,17	27,22	
490	27,28	27,34	27,39	27,45	27,51	27,56	27,62	27,68	27,74	27,79	
500	27,85	27,91	27,97	28,02	28,08	28,14	28,20	28,26	28,31	28,37	
510	28,43	28,49	28,55	28,60	28,66	28,72	28,78	28,84	28,89	28,95	
520	29,01	29,07	29,13	29,18	29,24	29,30	29,36	29,42	29,47	29,53	
530	29,59	29,65	29,71	29,76	29,82	29,88	29,94	30,00	30,05	30,11	
540	30,17	30,23	30,30	30,34	30,40	30,46	30,52	30,58	30,63	30,69	
550	30,75	30,81	30,87	30,92	30,98	31,04	31,10	31,16	31,21	31,27	
560	31,33	31,39	31,45	31,50	31,56	31,62	31,68	31,74	31,79	31,85	
570	31,91	31,97	32,03	32,08	32,14	32,20	32,26	32,32	32,37	32,43	
580	32,49	32,55	32,61	32,66	32,72	32,78	32,84	32,90	32,96	33,02	
590	33,08	33,14	33,20	33,26	33,32	33,38	33,43	33,49	33,55	33,61	
600	33,67	33,73	33,79	33,85	33,91	33,97	34,02	34,08	34,14	34,20	
610	34,26	34,32	34,38	34,44	34,50	34,56	34,61	34,67	34,73	34,79	

Obr. 24. Převodník teplota/napětí pro termočlánek železo-konstantan

mezi D_1 a D_5 tři napěťové úrovně odpovídají teplotám 25 °C, 75 °C, 150 °C. Diody D_2 , D_3 , D_4 jsou použity k rozdělení této úrovně; D_1 a D_5 slouží k teplotní kompenzaci. Jsou zapojeny tak, že proud děličem je nezávislý na teplotě. Poměry v děliči se tedy nemohou měnit. Přesnost tedy určuje nikoli absolutní vlastnosti, ale výhradně teplotní souběh diod D_1 až D_5 .

Přístroj se nastavuje termočlánek, jehož referenční konec je na 0 °C. Napětí měříme milivoltmetrem. Příslušné teploty najdeme v tab. 1.

°C	0	1	2	3	4	5	6	7	8	9
	[mV]									
620	34,85	34,91	34,97	35,03	35,09	35,15	35,20	35,26	35,32	35,38
630	35,44	35,50	35,56	35,62	35,68	35,74	35,80	35,86	35,92	35,98
640	36,04	36,10	36,16	36,22	36,28	36,34	36,40	36,46	36,52	36,58
650	36,64	36,70	36,76	36,82	36,88	37,95	37,01	37,07	37,13	37,19
660	37,25	37,30	37,36	37,42	37,48	37,55	37,61	37,67	37,73	37,79
670	37,85	37,91	37,97	38,04	38,10	38,16	38,22	38,28	38,35	38,41
680	38,47	38,53	38,59	38,66	38,72	38,78	38,84	38,90	38,97	39,03
690	39,09	39,15	39,22	39,28	39,34	39,41	39,47	39,53	39,59	39,66
700	39,72	39,78	39,85	39,91	39,97	40,04	40,10	40,16	40,22	40,29
710	40,35	40,41	40,48	40,54	40,60	40,67	40,73	40,80	40,86	40,93
720	40,98	41,04	41,11	41,17	41,23	41,30	41,36	41,43	41,49	41,56
730	41,62	41,69	41,75	41,82	41,88	41,95	42,01	42,08	42,14	42,21
740	42,27	42,34	42,40	42,47	42,53	42,60	42,66	42,73	42,79	42,86
750	42,92	42,99	43,05	43,12	43,18	43,25	43,31	43,38	43,44	43,51
760	43,57	43,64	43,70	43,77	43,83	43,90	43,97	44,03	44,10	44,16
770	44,23	44,30	44,36	44,43	44,49	44,56	44,63	44,69	44,76	44,82
780	44,89	44,96	45,02	45,09	45,15	45,22	45,29	45,35	45,42	45,48
790	45,55	45,62	45,68	45,75	45,82	45,89	45,95	46,02	46,09	46,15
800	46,22	46,29	46,35	46,42	46,49	46,56	46,62	46,69	46,76	46,82
810	46,89	46,96	47,03	47,09	47,16	47,23	47,30	47,37	47,43	47,50
820	47,57	47,64	47,71	47,77	47,84	47,91	47,98	48,05	48,11	48,18
830	48,25	48,32	48,39	48,46	48,53	48,60	48,66	48,73	48,80	48,87
840	48,94	49,01	49,08	49,15	49,22	49,29	49,35	49,42	49,49	49,56
850	49,63	49,70	49,77	49,84	49,91	49,98	50,04	50,11	50,18	50,25
860	50,32	50,39	50,46	50,53	50,60	50,67	50,74	50,81	50,88	50,95
870	51,02	51,09	51,16	51,23	51,30	51,37	51,44	51,51	51,58	51,65
880	51,72	51,79	51,86	51,93	52,00	52,08	52,15	52,22	52,29	52,36
890	52,43	52,50	52,57	52,64	52,71	52,79	52,86	52,93	53,00	53,07
900	53,14	-	-	-	-	-	-	-	-	-

Obr. 25. Měření teploty termočlánkem s obvodem AD594

S nem v oboru měření teploty termočlánkem jsou integrované obvody, na něž přímo připojíme termočlánek, a které si kompenzují svorkové napětí podle okolní teploty samy. Takovým obvodem je např. obvod firmy Analog Devices AD594. Je určen pro termočlánek železo-konstantan. Zapojení je na obr. 25. Rozsah měřicích teplot je od -200 do 760 °C. Linearity v celém rozsahu je asi 5 %. V rozsahu od 20 do 200 °C je signál na výstupu obvodu 10 μ V/°C. Dó 20 °C je 9,65 μ V/°C a od 200 °C výš je 10,7 μ V/°C. Napájení je pro kladné teploty 5 až 30 V. Pokud chceme měřit záporné teploty, je třeba ještě připojit záporné napětí max. -25 V. Obvod má také indikaci přerušení termočlánku.

Odporové kovové snímače teploty

Tyto snímače využívají závislosti elektrického odporu na teplotě. Používají se snímače niklové nebo platinové. Platino-

vé čidlo, které má odpor 100 Ω při 0 °C se používá v současnosti nejčastěji. V tab. 2 je závislost pro toto čidlo v rozsahu -200 až 600 °C. Závislost není přesně lineární,

ale lze ji poměrně dobře linearizovat. Zapojení linearizovaného převodníku bylo několikrát uveřejněno (např. ST 7/1976, s. 243, AR/B 5/1980, s. 171). V těchto zapojeních však je používán operační zesilovač MAA502. Mnohem vhodnější je použít OZ MAA725, který má podstatně menší drift napětí.

Pоловodičové odpornové teploměry

Nejnámějším polovodičovým prvkem, termistorem, se zabývat nebudeme, protože již byl popsán mnohokrát.

Druhým snímacím čidlem je přechod p-n, neboli polovodičová dioda. Ta má výhodu, že při konstantním proudě diodou je závislost napětí na teplotě prakticky lineární. Jako diody se používají křemíkové diody (KA206), přechod B-E tranzistoru (KC509), nebo varikapy. V poslední době však některé světové výrobci uvedli na trh křemíkové součástky, přímo určené pro měření teploty. Součástky, přestože obsahují přechody p-n, se navenek chovají jako odpor závislý na teplotě. To znamená, že u nich nezáleží na polaritě. Firma Siemens uvedla na trh snímače teploty KTY10 až KTY16. Liší se od sebe tolerancemi, setrvačnostmi a rozsahem teplot. Většinou jsou určeny pro teploty -50 až 150 °C, toleranci mají ± 1 až ± 5 % a odpor při teplotě 25 °C je 2000 Ω . Cena těchto prvků je až 10 DM. Nejčastěji jsou v pouzdře plastového tranzistoru. Na obr. 26 je zapojení panelového voltmetru ICL7106 s tímto čidlem jako měřící venkovní teploměr. Jedná se běžné zapojení obvodu jako voltmetru s rozsahem 200 mV. Tranzistor T₁ spíná desetinnou tečku. Trimrem P₃ jemně nastavujeme linearitu. Potenciometrem P₁ nastavujeme při ponoření čidla do ledové tríšťe ve vodě 0 °C a potenciometrem P₂ nastavujeme 100 °C podle bodu varu (podle tlaku vzduchu není bod varu vždy 100 °C – lepě je použít teploměr.) Nastavování potenciometry P₁, P₂, P₃ několikrát opakujeme, až všechny údaje souhlasí. Dosazená přesnost je ± 0,2 °C.

Firma Philips uvedla na trh podobné křemíkové snímače teploty s označením KTY81/82/83. Odpor při teplotě 25 °C má již 1000 Ω . Podstatně se však liší typ KTY84. Tento typ je ve skleněném pouzdře (jako diody KZ260). Technologickými úpravami jeho struktury bylo dosaženo, že rozsah měřených teplot je od 0 do 300 °C, což je vzhledem k vlastnostem křemíku obdivuhodné.

Tab. 2. Údaje pro platinový a odporový snímač teploty Pt 100

°C	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	Ω/°C
-200	18,53	16,43	12,35	-10,41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-100	60,20	58,17	56,13	54,09	52,04	49,99	47,93	45,87	43,80	41,73	39,65	37,57	35,48	33,38	31,28	29,17	27,05	24,92	22,78	20,65	18,53	0,42
0	100,00	98,04	96,07	94,10	92,13	90,15	88,17	86,19	84,21	82,23	80,25	78,27	76,28	74,29	72,29	70,29	66,28	66,27	64,25	62,23	60,20	0,40
°C	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	Ω/°C
0	100,00	101,95	103,90	105,85	107,79	109,73	111,67	113,61	115,54	117,47	119,40	121,32	123,24	125,16	127,07	128,98	130,89	132,80	134,70	136,60	138,50	0,38
100	138,50	140,39	142,28	144,18	146,06	147,94	149,82	151,70	153,57	155,45	157,32	159,18	161,04	162,90	164,76	166,62	168,47	170,32	172,16	174,00	175,84	0,37
200	175,84	177,68	179,51	181,34	183,17	185,00	186,82	188,64	190,46	192,27	194,08	195,89	197,70	199,50	201,30	203,09	204,88	206,68	208,46	210,25	212,03	0,36
300	212,03	213,81	215,58	217,36	219,13	220,90	222,66	224,42	226,18	227,94	229,69	231,44	233,19	234,93	236,67	238,41	240,15	241,88	243,61	245,34	247,06	0,35
400	247,06	248,78	250,50	252,21	253,93	255,64	257,34	259,05	260,75	262,45	264,14	265,83	267,52	269,21	270,89	272,57	274,25	275,92	277,60	279,27	280,93	0,34
500	280,93	282,60	284,26	285,91	287,57	289,22	290,87	292,51	294,16	295,80	297,43	299,07	300,70	302,33	303,95	305,58	307,20	308,81	310,43	312,04	313,65	0,33
600	313,65	315,25	316,86	318,46	320,05	321,65	323,24	324,83	326,41	327,99	329,57	331,15	332,72	334,29	335,86	337,43	338,99	340,55	342,10	343,66	345,21	0,32
700	345,21	346,76	348,30	349,84	351,38	352,92	354,45	355,98	357,51	359,03	360,55	362,07	363,59	365,10	366,61	368,12	369,62	371,12	372,62	374,12	375,61	0,30
800	375,61	377,10	378,59	380,07	381,55	383,03	384,50	385,98	387,45	388,91	390,38	-	-	-	-	-	-	-	-	-	-	0,29

Obr. 27. Převodník teplota-napětí pro rozsah 0 až 100 °C

Na obr. 27 je zapojení převodníku teplota-napětí čidlem KTY81. Rozsah měřených teplot je 0 až 100 °C. Při dobrém nastavení lze dosáhnout přesnosti ±0,02 °C. Výstupní napětí je 50 mV/°C. Operační zesilovač OZ₁ pracuje jako zdroj konstantního proudu. Z něj napájíme můstek, v jehož věti pracuje čidlo teploty. Odchylku způsobenou rozvážením můstku zesiluje OZ₂. Jako operační zesilovač je použit dvojitý OZ NE532. Můžeme jej nahradit např. dvěma OZ MAA725 nebo MAC155. Také lze použít obvod z NDR BO82, což je dvojitý „fetový“ OZ.

Závěrem lze říci, že i v tak známé a propracované oblasti, jako je měření teploty, dochází díky vývoji v polovodičové technice k podstatným změnám. Tyto změny mají za následek nové aplikace tam, kde se dříve měřila teplota jen obtížně. Např. velmi přesné termočlánkové teploměry se dnes vejdou do kapsy a není k nim potřeba termoska s ledem atd.

Funkschau 6/83; Elektronik 13/82, 1/83

Digitální teploměr s C520D (1)

S obvodem C520D můžeme sestavit digitální teploměr s rozlišovací schopností 0,1 K, můžeme s ním měřit nejen teplotu v místnosti nebo venkovní, ale i teplotu těla. Nevýhodou zapojení je, že k provozu potřebuje několik napětí, neobejdje se tedy bez síťového zdroje.

Na obr. 28a je vstupní část teploměru, měnič teplota-napětí. Jako snímač slouží přechod báze-emitor tranzistoru T₂ (v původním pramu SF137). U něhož je – jako u většiny křemíkových tranzistorů – tepelná změna asi 2 mV/K. Chceme-li použít rozlišovací schopnost 0,1 K, pak tuto malou změnu musíme zvětšit na 10 mV/K, abychom na displeji mohli číst přímo teplotu ve stupních a v desetinách stupňů Celsia. Toho dosáhneme použitím operačního zesilovače IO₂. Referenční napětí pro IO₂ získáme ze stabilizátora napětí IO₁. Snímačem je tedy T₂, který umístíme do pouzdra fixu nebo staré kuličkové tužky a propojíme s přístrojem šňůrou s konektorem pro miniaturní slu-

cím ledem a změnou R_1 nastavíme na displeji nulu. Potom kalibrujeme teplomér se snímačem ve vařící vodě a na displeji změnou R_2 nastavíme 99,9. Kalibraci opakujeme několikrát ze sebou.

Transformátor zdroje (obr. 28c) má jádro M42, obě sekundární vinutí dodávají střídavé napětí asi 8 V.

Funkamatér 6/1984

Digitální teplomér s obvodem C520D (2)

Poněkud odlišná analogová část než na obr. 28 se používá u digitálního teploměru na obr. 29. Měřicí rozsah autor udává od -9,9 do 99,9 °C. Ke snímání se používá stejná sonda jako u přístroje na obr. 28, tj. přechod emitor-báze křemíkového tranzistoru s tepelnou změnou 2 mV/K. Snímač (v původním článku zdvojený a přepínačitelný pro měření vnější a vnitřní teploty) je napájen ze zdroje konstantního proudu (D_2 , D_3 , T_1) 0,1 mA.

Změny napětí na snímači, vyvolané změnou teploty, se přivádějí na invertující vstup operačního zesilovače, který je zesílen pětkrát. Referenční napětí napájí neinvertující vstup a je odvozeno od napájecího napětí diodou D_1 a děličem R_2 až R_4 . Offset se nastavuje trimrem R_{13} . Na výstupu operačního zesilovače je dolní propust z rezistorů R_{14} , R_{15} a kondenzátoru 2 μ F, která chrání vstup číslicového voltmetu před rušivými impulsy ze síťového napětí.

V původním zapojení se používá operační zesilovač A109, který odpovídá MAA503. K dosažení lepší stability bylo možné použít bez změny zapojení přistrojový zesilovač MAA725.

Zapojení číslicového voltmetu s C520D je stejné jako na obr. 28b. Bez připojené analogové části se na displeji nastaví 0,0 odporovým trimrem R_1 . Potom na vstup (vývod 11) přivedeme napětí 900,5 mV a trimrem R_2 nastavíme údaj na displeji tak, aby svítily střídavě číslice 90,0 a 90,1. Po tomto cejchování připojíme k převodníku výstup analogové části. Potom nastavíme offset. R_7 odpájíme z bodu A, R_7 připojíme k bodu B a změnou R_{13} na displeji nastavíme 00,0. Potom R_7 opět připojíme.

Snímač není přesně lineární. Přístroj se cejchuje se snímačem v tajícím ledu (0 °C se nastaví změnou R_3).

Funkamatér 8/1985

Digitální otáčkoměr (k čítači) s fázovým závěsem (PLL)

Mnohdy potřebujeme přesně změřit rychlosť otáčení nejrůznějších motorů

Obr. 30. Zapojení otáčkoměru s fázovým závěsem

nebo jiných točivých strojů, ke kterým je špatný přístup. V takovém případě měříme opticky: k otáčivé části připevníme nějakou odrazovou plošku (papír), nebo, je-li otáčivou částí kupř. kolo s paprskem nebo vrtulí, nepotřebujeme nic navíc a otáčivou část osvětlíme. Odražené nebo přerušované světlo necháme dopadat na čidlo. Jíž bylo zveřejněno několik takových přístrojů, některé indikovaly rychlosť otáčení panelovým ručkovým měřidlem, některé digitálním voltmetrem s obvodem C520D, ale většinou nebyly přístroje příliš přesné.

Dále popsaný přístroj pracuje, popř. vyhodnocuje rychlosť otáčení poněkud odlišným způsobem. Výsledný údaj – použijeme-li šestimístný čítač – reprezentuje rychlosť otáčení asi od 100 do 150 000 ot/min až do posledního čísla. Protože takový přístroj nepoužíváme denně, byl navržen jako doplněk k čítači (se samostatným napájením).

Snímáme-li odražené nebo přerušované světlo z točícího se objektu a takto vzniklé impulsy přivedeme na měřicí kmitočtu, dostaneme údaj v jednotkách Hz. Kupř. otáčí-li se hřídel 3000krát za minutu, měřicí kmitočtu ukáže 50 Hz (3000:60 s = 50). Někdo může namítnout, že údaj v Hz můžeme vynásobit šedesáti a dostaneme počet otáček za minutu. To je sice pravda, ale přece bude výhodnější požadovaný údaj vidět na displeji přímo a sledovat – bez neustálého násobení šedesáti – jeho příp. kolísání. Tedy princip zařízení spočívá v tom, že kmitočet, který snímáme opticky, násobíme šedesátkrát, abychom dostali počet otáček za minutu.

Tedy se jedná o násobení kmitočtu. Byl vyzkoušen násobič kmitočtu podle AR-A č. 9/1980, ale zapojení nedávalo použitelné výsledky, protože výstupní „vynásobené“ impulzy se objevovaly ve skupinách a zkreslovaly výsledek měření, čítač počítal náhodný počet impulsů při každé čítací periodě, čísla na displeji se neustále měnila.

Proto byl použit jiný způsob násobení kmitočtu, s použitím fázového závěsu

(PLL). Použitý obvod CMOS MHB4046 (42 Kčs) obsahuje napěťově řízený oscilátor (VCO), dva komparátory, stabilizační diodu, emitorový sledovač a obvod pro automatické nastavení předpěti vstupu. S tímto obvodem je možné násobit kmitočet vstupního signálu v širokých mezech, v našem případě jsme násobili 60krát. Tento způsob násobení lze použít i v jiných aplikacích, zvláště při měření velmi nízkých kmitočtů.

Zapojení připravku je na obr. 30. Odražené nebo přerušované světlo snímá fototranzistor T_1 . Nejlepší výsledky byly dosaženy s KPX81, ale využívají i KP101 nebo 102, mají však poměrně malý úhel snímání. Fototranzistor umístíme do pouzdra (ze starého fixu), aby nerušilo boční světlo při měření. Impuls zachycené fototranzistorem (je možné použít i fotodiodu) přivedeme na všeobecnou spinaci obvod A301D. Tento obvod obsahuje i stabilizační diodu, není proto třeba stabilizovat napájecí napětí. Na jeho výstupu – Q – dostaneme signál úrovně TTL, jeho druhý výstup – \bar{Q} – indikuje systém LED libovolného typu, že na vstupu obvodu je impuls, tedy že T_1 snímá. Nesvíti-li LED, znamená to, že na fototranzistor nedopadá světlo, svítí-li intenzívne nepřerušovaně, je fototranzistor svělem zahlcen. Svítí-li slabě – vlastně přerušovaně, znamená to, že fototranzistor snímá impulzy. Z výstupu Q v tomto případě odeberáme signál úrovně TTL, počet výstupních impulzů odpovídá rychlosti otáčení měřeného objektu v jednotkách Hz. IO_2 spolu s IO_3 , IO_4 , IO_5 pracuje jako násobič. Kmitočet výstupního signálu MHB4046 je šedesátinásobkem kmitočtu, který je na jeho vstupu, protože IO_4 a IO_5 dělí kmitočet výstupního signálu šedesáti, a srovnává se tak se vstupním kmitočtem. Výsledkem dosti složité funkce obvodu 4046 (viz ST č. 10/1983) je na jeho výstupu žádaný signál. Přes hradla IO_3 přivádíme výsledný signál na čítač a na displeji přímo čteme počet otáček za minutu. Má-li však měřený objekt vrtule nebo paprsky kol, nezapomeňte výsledek dělit počtem vrtulí nebo paprsků.

Obr. 29. Digitální teplomér s C520D – analogová část (a) a zdroj (b)

Obr. 30a. Deska s plošnými spoji otáčkoměru (deska U227)

Protože přístroj nemá žádný nastavovací prvek, lze ho jednoduše vyzkoušet měřením kmitočtu sítě. Fototranzistor namířme na svítici žárovku (na její okraj nebo pod ní na bílou podložku) a na displej by se mělo objevit číslo 6000. Většinou však bude displej ukazovat údaj kolem 5940, protože sít nemá kmitočet 50, ale jen asi 49,5 Hz. Aby nedošlo k mylce: neměříme přímo 50 Hz, ale 100 Hz, protože žárovka zhasiná a rozsvěcuje se v jedné periodě dvakrát.

Obr. 31. Vnější vzhled otáčkoměru

Obr. 32. Vnitřní uspořádání otáčkoměru

Obr. 30b. Schéma zapojení otáčkoměru

Všechny součástky jsou na jedné desce s plošnými spoji velikosti 60 × 70 mm (obr. 31, 32). Dioda D₂ slouží jednak k ochraně před přepólováním napájecího zdroje, jednak ke zmenšení napájecího napětí 6 V na 5 V pro napájení integrovaných obvodů. Celkový odběr proudu je asi

100 mA, pro krátkodobá měření proto postačí čtyři tužkové články. I_{O2} doporučují dát do objímky. Jak již bylo řečeno, přístroj nemá nastavovací prvky, jen v případě potřeby lze nastavit citlivost fototranzistoru změnou R₁.

Vstup	Tvar	Indikace
log. 0	—	□ □
log. 1	—	□ □
sym. signál.	□ □ □ □ □ □	□ □
impulsy kladné	□ □ □ □ □ □	□ □
impulsy záporné	□ □ □ □ □ □	□ □
signál nesym. záporný	□ □ □ □ □ □	□ □ Částečný sví
signál nesym. kladný	□ □ □ □ □ □	□ □

Obr. 33. Logická sonda s CMOS; blokové zapojení (a) a znaky na displeji (b)

Logická sonda s obvody CMOS

V minulosti bylo zveřejněno mnoho různých zapojení logických sond jednoduchých i „inteligentních“ a tuto řadu chci rozmnosit sondou, sestavenou z obvodů CMOS. Má několik výhod: malou spotřebu, zdroj je zatěžován jen odběrem segmentu displeje, indikace umožní poznat sedm stavů zkoušeného obvodu, kromě log. 0 a log. 1 zhruba i tvar měřeného signálu, výhodou je i napájecí napětí, které se může pohybovat mezi 5 a 15 V, a použité součástky jsou dostupné.

Princip zapojení je na obr. 33a. Vstup je chráněn proti přetížení i proti přivedení signálu nesprávné polarity. Vstupní signál postupuje na detektory stavu log. 0 a log. 1. Při zkoušení tvarových kmitů by však signál z detektorů nestačil rozsvěcovat segmenty, proto se používají dva monostabilní klopné obvody, spouštění klad-

nými, popř. zápornými impulsy, které trvání impulsů prodlouží. Výstupní impulsy z monostabilních obvodů (které jsou prodlouženy asi na 100 ms) se vedou na směšovač a přes spínací tranzistor na segment g. Tímto způsobem lze detektovat i rozlišovat tvary různých signálů a je zaručeno, že ve stejném okamžiku nikdy nesvíti segmenty několik.

Celkové zapojení sondy je na obr. 34. Sonda se skládá z obvodů s hradly NOR - MH4001. Zenerova dioda D_3 chrání vstup proti přivedené nadmernému napětí, proto střídavému a zápornému napětí. Vstupní napětí nesmí být nikdy větší než napájecí, k tomu slouží D_2 .

Cínnost sondy si objasníme na příkladu. Přivedeme-li např. na vstup log. 0, na výstupu hradla 1 bude log. 1, tranzistor T_1 se otevře a segment b svítí, indikuje vstupní úroveň: log. 0. Log. 0 na vstupu uvede i vstup hradla 3 na log. 0, T_2 zůstává uzavřen. Při vstupní úrovni log. 1 výstup hradla 1 bude na úrovni log. 0, T_1 zůstává uzavřen, výstup hradla 3 bude nyní ve stavu log. 1, T_2 se otevře a segment e indikuje log. 1. Není-li na vstupu žádné napětí, nebude svítit žádný segment, protože R_2 přivádí na vstup asi. poloviční napájecí napětí – na indikaci log. 0 je to mnoho, na log. 1 málo.. Přivedeme-li na vstup sondy tvarové kmity, funkce pro indikaci log. 0 a log. 1 zůstávají zachovány, ale změny stavu na výstupu hradel 1 a 3 uvedou v činnost monostabilní obvody z hradel 4, 5 a 6, 7. Diody D_4 a D_5 plní funkci OR (nebo) a tranzistor T_3 rozsvěcuje kromě segmentů b a nebo e i segment g při kladných i záporných impulsech. Jsou-li tvarové kmity symetrické, pak svítí (střídavě, což naše oči nepostráhnou) segmenty b i e. Jsou-li kmity nesymetrické, segmenty b nebo e svítí slaběji.

Desetinná tečka svítí stále, indikuje stav zapnuté sondy, kdy na vstupu není signál. Sonda nastavíme trimrem R_3 tak, že na vstup přivedeme log. 1 – má svítit segment e, potom log. 0 – má svítit segment b. Při volném vstupu má svítit jen desetinná tečka. Kdyby některý segment svítil, otáčíme trimrem tak dlouho, až zhasne.

Electronique pratique č. 78

Impulsní generátor

Pro práci s číslicovou technikou je nezbytnou pomůckou generátor impulsů, u nichž můžeme měnit kmitočet, šířku i mezery, a který je použitelný jak u obvodů TTL, tak i CMOS.

Generátor, který je dále popsán, vyhovuje všem uvedeným požadavkům a navíc je stabilní, protože je řízen kryšlovým

oscilátorem. Z pevného kmitočtu 10 MHz se odvozují všechny časy, trvání impulsů i mezer. Délky impulsů můžeme nastavit od 100 ns po dekadách a tyto časy násobit 1 až 9krát. Totéž platí pro mezery, takže obě tyto veličiny můžeme nastavit libovolně, kupř. impuls o délce 200 ns střídat s mezerou 8 s, nebo třeba obráceně. Provoz generátoru je nepřeružitý, ale přepnutím přepínače můžeme zvolit i jiný druh provozu: na vstup generátoru můžeme přivést tlačítkem jen jediný impuls libovolné délky.

Princip zapojení generátoru je na obr. 35. Signál z oscilátoru 10 MHz se vede do pravého a levého čítače. Log. 1 na výstupu klopného obvodu RS (Q) uazívá čítače na pravé straně, čítače na levé straně pracují na kmitočtu nastaveném přepínači P_{r3} a P_{r5} . Po ukončení impulsu se logickej úroveň na výstupu klopného obvodu mění (\bar{Q}), čítače na levé straně jsou zablokovány, pracuje jen pravá strana. Touto úpravou dosaheme, že levá strana dává impulsy podle nastavení, pravá strana „vyrábí“ intervaly mezi jednotlivými impulsy v závislosti na nastavení přepínačů P_{r4} a P_{r6} .

Délka impulsu se vypočte ze vztahu

$$t = N \frac{1}{f}$$

kde je trvání signálu, N je dekadické číslo nastavené přepínači P_{r3} a P_{r5} , a f je kmitočet nastavený přepínači P_{r3} a P_{r4} . Podrobné zapojení signálního generátoru je na obr. 36. Protože nemáme k dispozici potřebné obvody TTL s malou spotřebou (LS), byl generátor sestaven z obyčejných TTL.

Obr. 35. Princip zapojení generátoru impulsů

Oscilátor 10 MHz je v obvyklém zapojení s hradly IO₃ (byly použity obvody 74S00). Kmitočet oscilátoru nastavíme přesně na 10 MHz kondenzátorovým trimrem pomocí čítače. Kromě tohoto nastavení kondenzátor nepotřebuje žádné další cejchování nebo nastavení. Obvody IO₄ až IO₁₉ jsou dekadické čítače 7490. Potřebné časy se hrubě nastavují přepínači P_{r3} (trvání impulsu) a P_{r4} (doba mezer): 1 s, 100 ms, 1 ms, 100 μ s, 10 μ s a 100 ns. Abychom mohli dobu impulsu i trvání mezer nastavit jemněji, můžeme přepínači P_{r5} a P_{r6} hrubě nastavené časy vynásobit jednou až devětkrát. Tímto způsobem můžeme nastavit kupř. 10, 20, 30 atd. milisekund, ale nemůžeme nastavit mezikrátké hodnoty, kupř. 25 ms.

Přepínač P_{r2} slouží ke změně provozu, po jeho přepnutí na výstupu nebude žádny signál, stisknutím tlačítka P_{r1} můžeme přivést přes IO₂ na výstup jeden impuls (podle nastavení).

Výstupy generátoru jsou voleny tak, že výstupy Q a \bar{Q} mají obvyklou úroveň TTL (50Ω), další pár výstupů Q a \bar{Q} slouží pro práci s obvody CMOS. Ke každému výstupu CMOS patří i zdírka označená $+U_b$, do níž je třeba přivést kladné napájecí napětí zkoušeného obvodu a CMOS. Do zdírky zem je třeba připojit zem zkoušeného obvodu s CMOS.

Výstupy pro TTL jsou na koaxiálních konektorech, výhodné jsou miniaturní typu TX 661. Výstupy CMOS, $+U_b$ a zem jsou na běžných izolovaných zdírkách, aby se nemohly zaměnit výstupy pro TTL a CMOS.

Protože je v generátoru použit značný počet integrovaných obvodů, hlavně čítačů, je výhodné použít pro ně objímky, protože při vadném IO je výměna obvodu, především při stěsnané montáži, obtížná.

Při realizaci generátoru nesmíme zapomenout zapojit do rozvodu napájecího napětí dostatečné množství keramických kondenzátorů 68 až 100 nF.

Zdroj je obvyklý, stabilizovaný, výstupní napětí je 5 V, transformátor má být navržen asi na 10 VA, odběr je asi 1 A. Možné uspořádání celního panelu je na obr. 37.

Obr. 36. Zapojení generátoru impulsů (IO₄ až IO₁₉ = 5 – +5 V, 10 – zem, ostatní 14 – +5 V – zem)

(Vývody 6 a 7 u IO₁₁ až IO₁₇ jsou spojeny se zemí)

Nové zapojení generátoru funkcí s XR2206

Byl navržen malý generátor funkcí s obvodem XR2206, který snesne srovnání s podobnými přístroji známých výrobců. Jeho zapojení odstraňuje některé nedostatky dosud známých zapojení s XR2206, která byla dříve uveřejněna. Výhody tohoto zapojení budou popsány ve zvláštní kapitole.

Generátor má tři základní průběhy (sinus, trojúhelník, obdélník). Stupeň je lineární a je-li přístroj správně nastaven, tak přesně souhlasí. Pro praxi je důležitý velký rozsah výstupního napětí s nastavitelnou stejnosměrnou úrovni. Na výstupu DC (obr. 39) je mezivrcholové napětí až 10 V na impedanci 50 Ω. Stejnosměrná úroveň je nastavitelná v rozsahu ±5 V a dovoluje mnohostranné využití pravouhlé signálů v úrovni TTL nebo CMOS. Na samostatném výstupu pro použití v ní technice je mezivrcholové napětí 0 až 1 V s výstupní impedance 600 Ω.

Obr. 37. Možné uspořádání čelního panelu generátoru impulsů

Obr. 38. Vnitřní uspořádání generátoru impulsů

Aby byly průběhy výstupního signálu co nejpřesnější, je generátor upraven stejnosměrným zosilovačem s velkou šírkou přenášeného pásma. Tak jako u všech podobných generátorů není sinusový signál odvozený z trojúhelníkovitého nezkreslený, není proto vhodný pro měření u přístrojů hi-fi. Přesto s dosaženým zkreslením 0,5 % můžeme být spokojeni.

Dalším důležitým detailem zapojení je to, že stejnosměrné napětí 0,1 až 10 V na vstupu VCO řídí kmitočet lineárně v rozsahu 1:100, takže rozmitání není žádným problémem.

Popis zapojení

Napájení je symetrické, stabilizované, ± 15 V. Jsou použity dva stabilizátory MA7815 (obvody není třeba chladit). Protože samotný obvod XR2206 musí mít napájení max. 26 V, omezují dvě Zenerovy diody (D_7 a D_8) napětí na ± 8 V. Na toto napájecí napětí nejsou kladený žádné zvláště nároky, neboť XR2206 má interní velmi stabilní zdroj referenčního napětí 3 V (vztaheno k zápornému napájecímu napětí), vyvedený na vývod 10, blokováný kondenzátorem C_1 . Toto napětí slouží jako vztahné pro nastavení kmitočtu pomocí P_2 . OZ IO_2 je zapojen jako napěťový sledovač, aby byl vývod 10 co nejméně zatěžován. Na vývodu 7 je rovněž napětí 3 V. Kmitočet generátoru je lineárně úměrný proudu, který teče z vývodu 7. Tento proud (a tím i kmitočet) závisí na napětí na běžci P_2 . Je-li napětí blízké 3 V, teče přes R_{10} jen malý proud, kmitočet je nejnižší - f_{\min} . Při nejmenším napětí na běžci P_2 (blízké 0 V) se nastaví nejvyšší kmitočet - f_{\max} . Trimry P_1 a P_3 lze nastavit nejnižší a nejvyšší kmitočet podle stupnice.

Vývodem 9 (FSK) lze u XR2206 přepnout nastavení kmitočtu z vývodu 7 na vývod 8. Tato možnost je využita pro externí nastavení-kmitočtu. Po přepnutí P_{2b} je kmitočet určován proudem z vývodu 8 a vývod 7 je odpojen. Proud vývodu 8 je odvislý od napětí na R_8 , které je určeno přes OZ IO_3 vnějším řidícím rozpětím na vstupu VCO-IN.

IO_3 invertuje řidící napětí, takže jeho zvětšení má za následek zvýšení kmitočtu (u napětí na P_2 je tomu obráceně). Mimoto slouží IO_3 k přípůsobení vnějšího napětí na požadovaný rozsah kmitočtové změny, proto je také spojeno referenční napětí na vývod 10 s neinvertujícím vstupem IO_3 přes dělič R_6/R_7 .

Kdo nepožaduje vstup VCO, vynechá jednoduše IO_3 , R_5 až R_9 a místo P_{2b} dá spojku v poloze INT.

Kmitočtový rozsah je definován kondenzátory C_{17} až C_{21} , přepínánými P_1 , Pro první rozsah 1 až 11 Hz jsou použity dva tantalové elektrolytické kondenzátory $22 \mu F$ zapojeny bipolárně. Pokud máme však možnost použít svítkový kondenzátor $10 \mu F$, je to výhodnější.

Přepínač P_3 přepíná tvar výstupního signálu. V poloze „a“ produkuje obvod sinusový signál. P_{3a} připíná elektronicky (MOSFET KF521) trimr P_4 (nastavení tvaru) na vývody 13 a 14. P_{3b} zablokovává napětím -8 V tranzistor T_2 , aby se zabránilo „přeslechům“ pravouhlého signálu do sinusového. P_{3c} konečně připíná signál z emitorového sledovače T_3 na koncový stupeň.

výstupu. Výstup AC je stejnosměrně oddělen kondenzátory C₄ a C₅. Dělič R₃₄, R₄₄ zmenšuje výstupní napětí a zvětšuje impedanční výstup 600 Ω. K omezení vlivu napájecího napětí je zesilovač i generátor samostatně blokován C₆, C₇, popř. C₁₅, C₁₆.

Nastavení

Před zapnutím přístroje nastavíme P₈ na max., odporový trimr na střed odporevé dráhy, P₂ je v poloze INT, P₃ v poloze „obdělník“, P₁ na 1 kHz. Po zapnutí kontrolujeme signál na výstupu DC. Potenciometrem P₉ nastavíme 0 V a poznáme si potřebné údaje. Potom P₃ přepneme na „trojúhelník“ a trimrem P₆ nastavíme výstupní napětí (mezivrcholové) na shodnou velikost jako u „obdělníku“. Současně trimrem P₅ nastavíme nulovou stejnosměrnou složku. Tyto úkony P₅ a P₆ několikrát opakujeme, až jsou „trojúhelník“ i s úroveň v pořádku.

Potom P₃ přepneme na sinusový průběh a P₇ a P₄ nastavíme minimální zkreslení. Nakonec přístroj ocejchujeme. Ukažatel na P₂ nastavíme tak, aby na obou koncích stupnice přesahoval. Potom nastavíme P₂ na začátek stupnice a pomocí P₁ dodáme na f = 1 kHz. Na konci stupnice nastavíme pomocí P₃ 10 kHz. Ostatní rozsahy souhlasí pak automaticky, ovšem v rozsahu odchylek kondenzátorů C₁₇ až C₂₁, tedy asi ±5 %. Výjimku tvoří první rozsah, mají-li tantalové kondenzátory větší toleranci.

Výhody tohoto zapojení

U standardního zapojení s XR2206 vzniká při sinusovém a trojúhelníkovitému signálu ve vrcholové části průběhu dosti velký základní, který nelze odstranit. Toto nové zapojení tento jev prakticky odstraňuje.

První příčinou tohoto jevu je jakákoli kapacitní zátěž na vývodech 13 a 14. Stačí krátké přívodní dráty k trimru a přepínači nebo delší spoj na desce. Jediným řešením jsou extrémně krátké spoje mezi vývody IO. Proto připínáme trimr elektronicky tranzistorem MOSFET.

Druhou příčinou je skutečnost, že XR2206 je generátor signálů pravoúhlého a trojúhelníkovitého průběhu s následnou konverzí „trojúhelník-sinus“. Pravoúhlý průběh svými strmými hranami ovlivňuje i ostatní průběhy. Není-li vývod 11 (kolektor spínacího tranzistoru v IO) zapojen nebo zkratován, je sinusovka ještě „čistá“. Jakmile však zapojíme na tento výstup rezistor proti kladnému napětí, vznikají opět rušivé impulsy. Nechceme-li se pravoúhlého napěti vzdát, musíme udržet jeho amplitudu co nejmenší. V našem zapojení je báze tranzistoru T₂ přímo na vývodu 11, dioda B-E omezuje proto amplitudu na 0,6 V. To by ovšem málo pomohlo, kdyby na kolektoru T₂ byl dálé strmý mezivrcholový signál 16 V. Proto přepínačem P₃ zkratujeme T₂, pokud je žádán jiný signál než pravoúhlý.

Třetí možnou příčinou je rušení „sinusu obdělníkem“ přímo uvnitř obvodu. To se podstatně změní, pokud vývod 1 obvodu, který je určen pro nastavení stejné úrovni sinusového a trojúhelníkovitého signálu, připojíme na kladné napětí +4 V. Pokud bychom rezistor na vývodu 1 přepnali, posouvala by se také ss úroveň. Proto jsou amplituda a ss úroveň pevně nastaveny P₆, P₅ a amplituda je korigována na výstupu děličem R₂₃, R₂₄. Aby bylo možné použít dělič s rezistory malých odporů, bylo nutné zařadit T₃ jako emitorový sledovač. Dělič (5,6 kΩ/3,3 kΩ) při-

mo na vývodu 2 by sice emitorový sledovač uspoří, ale za cenu většího zkreslení a větší citlivosti vůči rušení.

Další výhodou je linearita průběhu nastavení kmitočtu způsobená tím, že potenciometrem neřídíme odpor na výstupu 7, ale napětí na rezistoru. P₂ je zapojen jako dělič napětí, z jehož jezdce je odebíráno napětí na R₁₀. Dělič P₂ není zapojen na napájecí napětí, aby nebyl jeho kolísáním ovlivňován, ale na výstup stabilního OZ. Tento zesilovač je řízen napětím z vývodu 10, což je interní referenční napětí. To má hlavní přednost v tom, že kmitočet je stabilní.

Také při externém nastavení přes VCO slouží napětí na výstupu 10 jako reference pro optimální stabilitu.

Závěr

Nesymetrické průběhy „pila“ a „impuls“ vyžadují přepnutí časových konstant. Jejich průběh není zdaleka ideální, proto nebyly použity. Vyšší kmitočty (nad 100 kHz) lze sice získat, ale při značném zmenšení amplitudy (na 1 MHz o více než 10 dB).

Generátor byl také vyzkoušen s číslicovým přednastavením kmitočtu. K tomu byla použita číslicová část generátoru uveřejněná v AR 8, 9, 10/85. Beze změny se použije zapojení obr. 4 a 5 z AR 8/85. Tím získáme číslicový generátor TTL a CMOS. Fázový detektor 2 z obr. 9 z AR 9/85 pozemně, viz obr. 40. Bod K propojíme se vstupem VCO, bod L s dosavadním výstupem TTL generátoru s XR2206. Body O, H zůstávají zapojeny stejně. Ta-

kto upravený generátor pracuje velmi přesně až do 2 MHz, ovšem při výše zmíněném značném zmenšení amplitudy výstupního signálu. Rovněž rychlosť „zavěšení“ a stabilita jsou dobré, pouze na kmitočtech pod 100 Hz jsou časy delší.

Realizovaný přístroj je na obr. 41 a 42.

Elektronika 12/84

Obr. 41. Vnější vzhled generátoru funkcí (viz 4. str. obálky).

Obr. 42. Vnitřní uspořádání generátoru funkcí (viz 4. str. obálky)

Nízkofrekvenční rozmítací

Nízkofrekvenční rozmítací je určen pro spolupráci s již popsáným generátorem s obvodem XR2206. Kdo by chtěl tímto rozmítacem doplnit jiný generátor, musí dbát na to, aby generátor mohl zpracovat napětí VCO od 0,1 V do 10 V. To odpovídá poměru kmitočtů 1:100. Jinak by bylo nutné přizpůsobit úrovně.

Blokové zapojení

Nízkofrekvenční rozmítací (obr. 43) dodává signály, které bezpodmínečně potřebujeme například k zobrazení průběhu spektra kmitočtů filtru na obrazovce obyčejného osciloskopu. Nejpodstatnější částí přístroje je generátor pilovitých kmitů. Protože osciloskop pracuje při rozmítání v režimu X-Y, musí být interní časová základna osciloskopu nahrazena vnějším zdrojem. Současně řídí tento externí generátor pilovitých kmitů VCO generátoru funkci. Je-li napětí pilovitého průběhu nulové, je kmitočet nf generátoru nízký a paprsek osciloskopu je vlevo. Zvětšuje-li se, posouvá se paprsek doprava a současně se zvyšuje i kmitočet. Na obrazovce se objeví vodorovná kmitočtová osa.

Amplitudová osa probíhá ve svíslém směru. Přivedeme-li tedy výstupní signál nf generátoru na měřený objekt, např. filtr, a výstup z něj na vstup Y osciloskopu, pak dostaneme na obrazovce kmitočtový průběh filtru (amplituda je funkcí kmitočtu). Totolik k základní funkci rozmítací. Blokové schéma však ukazuje ještě více.

Obr. 43. Blokové schéma rozmítací

Perioda signálu pilovitého průběhu je proměnná mezi 100 μ s až 10 s. Tím je i pro nízké kmitočty „pila“ dostatečně „dlouhá“. Pilovitý signál může být ještě před vstupem do VCO generátoru ještě upravován. Za prvé můžeme počáteční a koncový kmitočet rozmitání nastavit dvěma potenciometry. Potenciometrem P_4 volíme počátek, tím se mění novou polohu pilovitého napětí. Potenciometrem P_3 se nastavuje horní hranice kmitočtu. To odpovídá maximálnímu napětí VCO, popř. kmitočtu. Cítačem můžeme kmitočty „start“ i „stop“ nastavit snadno. Mimoto signalizuje LED D_3 chybné nastavení (indikuje překročení hranice $U_{VCO} = 10$ V). Je-li P_1 v poloze a, je P_3 zkratován a pilovité napětí je odpojeno. Dále nastavíme potenciometrem R_4 ss napětí, které jako U_{VCO} odpovídá určitému kmitočtu nf generátoru. V tomto případě nejnižším, startovacím. Cítačem pak můžeme na výstupu generátoru funkcí přesné změřit kmitočet. P_1 je nyní v poloze b a potenciometrem P_3 můžeme nastavit horní kmitočet.

Dále je u rozmitáče možnost měnit průběh kmitočtové osy z lineárního na logaritmický, což je běžné u zobrazování kmitočtových charakteristik. Průběhy se přepínají přepínačem P_2 . K tomu je nutné dodat, že nastavení horní a dolní hranice kmitočtu platí jen pro lineární nebo logaritmický průběh. Proto nejdříve zvolíme druh provozu a potom teprve nastavujeme kmitočty.

Zobývá ještě popsat činnost P_6 . Tím se nastavuje značkovací kmitočet. Při lineárním průběhu můžeme celkem snadno přečíst na kmitočtové ose kmitočet. Při

logaritmickém průběhu to není tak jednoduché. Proto je důležité zavést dělení kmitočtu. Potenciometrem P_6 nastavíme ss napětí, které je porovnáváno s napětím VCO. Jsou-li obě shodná, vznikne impuls, který zadrží na krátkou dobu běh pilovitého napětí. Tím vznikne na obrazovce výrazný svítý svislý pruh. Je-li P_1 v poloze d, můžeme cítačem změřit značkovací kmitočet. Značkovací je samozřejmě v provozu i v lineárním režimu. Z popisu funkce vyplývá, že v polohách a, b; d přepínače P_1 přístroj nerozmítá.

Zapojení

Generátor signálu pilovitého průběhu se skládá z operačních zesilovačů A_1 , A_2 , A_4 , tranzistoru T_2 a časovače IO_1 . A_1 a T_2 tvoří napětím řízený zdroj proudu, který nabije kondenzátor C_2 podle polohy P_{2b} proudem 0,45 až 45 μ A. IO_1 , časovač, je zapojen tak, že kondenzátor je při 5 V na vývodech 6 a 2 (10 V na C_2) opět vybijen. Je-li kondenzátor vybit tak, že na vývodech 6 a 2 je 0 V (5 V na C_2), pak počíná nové nabijení. Jako časovač je použit obvod CMOS ICM7555. Lze však použít i běžný časovač BE555. Pilovité napětí je vedené přes budíč (operační zesilovač A_2) na potenciometr P_3 pro nastavení koncového kmitočtu. A_3 slouží signály z P_3 a P_4 a vyrábí úrovňě tak, aby VCO byl plně vybuzen. Trimrem P_5 se nastavuje minimální napětí VCO, asi 100 mV, pro lineární rozmitání. Přes přepínače P_{1b} jde signál pilovitého průběhu na vstup VCO nf generátoru. V poloze d přepínače P_1 je na VCO přivedeno stejnosměrné napětí, nastavene-

né potenciometrem P_9 – značkovací kmitočet. A_9 porovnává tato napěti s řidicím pilovitým napětím a při jejich rovnosti přejde výstup A_9 na asi -15 V. Záporná hrana tohoto impulsu po vytvarování obvodem C_1 , R_3 , potenciometr P_{2a} uvede do vodivého stavu FET T_1 a tím je „běh“ pilovitého napětí pozdržen tak dlouho, dokud impuls trvá. Aby byla délka značkovacího impulsu úměrná nabíjecí době kondenzátoru C_2 , je v obvodu zařazen potenciometr P_{2a} .

Kontrolní dioda LED D_3 svítí tehdy, zjistí-li komparátor A_{10} , že je napětí VCO příliš velké. Všeobecně bude tato úroveň menší než 10 V a lze ji nastavit trimrem P_7 . Je-li této úrovni dosaženo, překlopí se A_{10} a přes „prodlužovač impulsů“ A_{11} je sepnuta dioda LED D_3 .

Protože osciloskop pracuje v režimu X-Y, je zpětný běh paprsku poněkud vidět (s výjimkou roztaženého sinusového signálu). Kdo má k dispozici osciloskop se vstupem Z (zpětný běh), může tento nedostatek snadno odstranit. Je jen třeba příslušně propojit výstup 3 časovače IO_1 a osciloskop, popř. lze tento signál invertovat nebo se musí upravit jeho úroveň.

Převodník lineárního průběhu na logaritmický má standardní zapojení, které najdeme v každé učebnici. Zapojení A_6 , A_7 je sice teplotně kompenzováno T_3 , T_4 , ale pro naše účely to nestačí. T_3 a T_4 musí být udržovány na konstantní teplotě. Zapojení se skládá z A_8 , T_5 , T_6 , T_7 . Tranzistory T_3 až T_7 jsou ve společném pouzdro. Tak lze teplotu tranzistorů T_3 a T_4 snadno kontrolovat a regulovat. T_5 pracuje jako teplotní čidlo (2 mV/°C). Rozdíl napětí E-B (asi 0,6 V) a napětí na R_{20} je zesílen v A_8 . Taktéž získané napětí řídí proudové zdroje s T_6 a T_7 . Je-li U_{B-E} větší než $U_{R_{20}}$, teče proud přes T_6 a T_7 a ohřívá čip s tranzistory. Dosahne-li teplota čipu velikost nastavené P_9 , zmenší se i řidící proud pro T_6 a T_7 . Tak se nastaví rovnovážný stav, který propouští přes T_6 a T_7 právě takový proud, aby čip měl správnou teplotu. Teplelná vazba je realizována uvnitř pouzdra, takže nepotřebujeme žádný zvláštní termostat.

Má-li obvod správnou teplotu, zhasne dioda LED D_2 . Napětí na výstupu A_8 je -5 V až 0 V. Pět tranzistorů v jednom čipu vyrábí několik firem např. pod označením CA3086, CA3046, TBA331 atd.

Jako operační zesilovače jsou použity čtyřnásobné „fetové“ OZ TL084, které se vyrábějí také v NDR pod označením B084.

Nastavení

Rozmitáč spojíme s generátorem. Nejprve nastavíme termostat. Číslicovým voltmetrem změříme napětí mezi vývody 12 a 13 A_8 (I_{O_3}). Toto napětí se trimrem P_9 nastaví na 60 mV (vývod 12 je „kládny“). Pak přístroj vypneme a mezi body A-B připájíme drátovou propojku. Zapneme-li různý opět přístroj, pak musí po krátké době dioda LED D_2 zhasnout. Potom vytocíme potenciometr P_2 zcela vlevo. Na výstup X připojíme osciloskop (pozor – zde ještě propojit se vstupem Y podle obr. 45) a zkонтrolujeme napětí pilovitého průběhu. Osciloskop je nastaven na ss provozu a 50 mV/dílek.

Na generátoru nastavíme rozsah 1 kHz. Na výstup TTL připojíme čítač, P_1 , nasta-

Obr. 44. Schéma zapojení rozmitáče (A, až A₄ - IO₂, TL084, A₅ až A₈ - IO₃, TL084, A₉ až A₁₁ - 3/4 IO₄, TL084, T₃ až T₇ - IO₅, CA3046, T₁ - BF256, T₂ - BC177, D₂ až D₄ - LQ1132)

Obr. 45. Zapojení pro oživování

víme do polohy a a P₂ do polohy „lineární rozmitání“. P₄ vytocíme zcela doleva. Triemr P₅ nastavíme nejprve doleva a potom otáčíme tak dlouho zpět, až čítací ukáže kmitočet 1 kHz.

Pak přepneme P₂ do polohy „logaritmické rozmitání“, P₄ nastavíme zcela doleva. Rozmitáč vypne. P₆ nastavíme doleva (ve směru k R₁₁). Nyní přístroj opět zapneme a P₈ otáčíme pomalu zpět, až čítací ukáže 1 kHz.

Potom nastavíme P₁ do polohy b, P₄ je na minimum a P₃ na maximu. Rídíci napětí U_{VCO} se nyní nastaví trimrem P₁₀ na ± 11 V.

Poslední nastavení spočívá v tom, že P₃ nastavíme na minimum, P₂ na lineární rozmitání, P₁ do polohy b. Otáčíme trimrem P₃ tak, až se na čítaci objeví 102 kHz. Pak nastavíme P₇ tak, aby dioda LED D₄ právě zhasla. Zvýšíme-li kmitočet, musí se dioda D₃ opět rozsvítit. Tím je nastavování skončeno.

Zdroj není blíže popsán. Je potřeba stabilizovaný zdroj se čtyřmi napěti, +15 V, +10 V, -5 V, -15 V; +10 V a -5 V vytvoříme z ± 15 V např. obvody MAA723. Napětí ± 15 V můžeme přivést z generátoru nebo postavíme zdroj ze stabilizátoru MA7815. V původní verzi byly použity nedostupné zahraniční stabilizátory.

Na obr. 46 je typické uspořádání měřicího pracoviště. Chceme-li rozmitat převáž-

Obr. 46. Uspořádání měřicího pracoviště

ně logaritmicky, můžeme P₃ nahradit lineárním typem, čímž se usnadní nastavování kmitočtu. Přepínač rozsahů generátoru nesmí být nastaven na 10 kHz, je-li připojen rozmitáč. Kmitočtový rozsah je totiž max. 100 kHz, zatímco VCO by v tomto případě nastavovalo až 1 MHz.

Elektron 11/85

Navječka s regulací a digitálním počítadlem

Kdo staví často různá zařízení, obvykle potřebuje navinout menší transformátor nebo cívku. Transformátor „na míru“ většinou nedostane a cívku jakýmsi, tedy nezbývá nic jiného, než vlastnoruční výroba. Transformátor můžeme sice vinout ručně, počítat však několik tisíc závitů není právě nejlepší zábava. Proto jsem si před několika lety sestavil jakýsi navječec kombajn, na který jsem měl několik požadavků:

1. možnost navijet drátem o $\varnothing 0,05$ mm až do 0,5 mm (závisí na hnacím motoru a převodech);
2. možnost plynule reguloval rychlosť navijení;
3. jednoduché mechanické díly;
4. nepoužít mechanický počítáč závitů;
5. reguloval rychlosť a tah nožním pedálem, aby obě ruce byly volné.

Nejprve je třeba sehnat pohonnou jednotku. Nejhodnější je univerzální motor (který se dá regulovat) asi 100 W. Je možné použít i elektrickou vrtačku, pro kterou bude třeba udělat vhodné uchytení (obr. 47). V tomto případě nepotřebuje-

Obr. 47. Navječka cívek s digitálním počítadlem závitů (viz 4. strana obálky)

me zvláštní motor, vrtačka i nadále může sloužit i svému původnímu účelu. V zařízení jsem použil starou elektrickou vrtačku 42 V/100 W, která byla již jako vrtačka téměř nepoužitelná, měla „vyběhanou“ ložiska, ale v navječce ještě slouží k plné spokojenosnosti. Dalším mechanickým dílem je převodová „skříň“, sloužící i pro uchycení navijené cívky. Je vhodný převod do rychla (2 až 5krát). Potom od motoru může být ozubenými koly, řemenem nebo řetězem, záleží na tom, co lze sehnat. K upevnění navijené cívky postačí dvěřné špalíky různých velikostí podle nejčastěji používaných cívek transformátorů (M nebo EI), které přesně v ose provrátáme a šroubem upevníme na hřidel navječky. Na stejný hřidel upevníme i kolečko z plastu nebo dřeva, na jehož obvod přilepíme (zahlučebně) malý feritový magnet. Nejlépe se hodí váleček o \varnothing asi 5 mm. Tímto magnetem budeme snímat otáčky – tedy počítat závitů. Na podložku, na níž je celé zařízení upevněno, pevně přišroubujeme dostatečně tlustý hřidel se šroubem na konci pro cívku s drátem, jímž vineme transformátor. Budeme-li používat větší cívky s tenkým drátem, pak buď třeba hřidel opatřit jemnými kuličkovými ložisky, aby se těžká cívka snadno otáčela, jinak se drát bude trhat. Sestava by principiálně měla vypadat podle obr. 48. Tolik o mechanice navječky, kterou každý zájemce si musí přizpůsobit svým možnostem.

Obr. 48. Základní uspořádání navječky

Elektronická část se skládá ze dvou dílů:

1. regulátor rychlosti otáčení motoru (pomalý rozbeh);
2. počítadlo otáček (závitů) s magnetickým bezkontaktním snímačem.

Obr. 49. Regulační obvod pro napájení navječky

Regulace rychlosti otáčení motoru a pomalý rozbeh

Zapojení je na obr. 49. V uvedeném zapojení můžeme použít univerzální motor 42 V nebo 220 V – přepínač dámě jen do odpovídající polohy. Rychlosť motoru je regulovala triakem, jeho otevíráni a zavírání řídí integrovaný obvod MAA436 pro fázové řízení tyristorů a triaků s pomocným obvodem. Řídicím prvkem je potenciometr, zapojený jako proměnný odpor, zvětšováním odporu zvětšujeme rychlosť otáčení motoru. Použitý motor začíná pracovat při odporu P asi 2000 Ω . Potenciometr upravíme tak, že ho budeme ovládat nožním pedálem, pomalým stlačováním pedálu se motor velmi pomalu začíná otáčet, rychlosť otáčení se postupně zvětšuje, při navijení se proto nepetrhrne ani velmi tenký drát. Pomalý rozbeh trvá několik sekund, pak již řídíme tah i rychlosť podle potřeby. Termistor může být libovolný, místo něj lze použít i rezistor stejněho odporu. Velmi důležitý je výběr kondenzátoru C. Jmenovitá kapacita kondenzátoru je 47 nF, zmenšíme-li ji na 33 nF, motor se nezastaví, zvětšíme-li ji na 68 nF, velmi zpoždějeme rozbeh motoru. Při zapnutí jsou kondenzátory C₁ a C₂ bez náboje, tranzistor je uzavřen, řídící elektroda triaku je bez napěti. Motor stojí. Pomalým nabijením kondenzátorů se otevírá tranzistor (podle polohy běžeče potenciometru P), triak se pomalu otevřívá a napěti na motoru se pomalu zvětšuje a motor se pomalu a plynule rozebíhá. Zastavení motoru při uvolnění pedálu je okamžité.

Navijený drát vedený ručně, mechanické vedení by vyžadovalo velmi přesnou a náročnou mechanickou práci; podle mnohaletých zkušeností je ruční vedení zcela vyhovující.

Počítadlo s magnetickým snímačem

V zásadě bylo možno počítat navinuté závitý i mechanickým počítadlem (kupř. z vyřazeného elektroměru apod.); to však není moderní řešení a má i různé „mouchy“. Vzhledem k tomu, že se ve výrodeji objevují levné digitrony, použil jsem čítací z nich se spojení s bezkontaktním snímačem otáčení hřidele jako počítadlo počtu závitů. Jedinou nevýhodou tohoto způsobu je, že při případném odvýení závitů „neumí“ počítadlo závitý odpočítávat. Zařízení je na obr. 50.

Jak již bylo řečeno, na hřidle navječky je upevněno kolečko s magnetem. Při každém otočení hřidele, tedy při každém závitě magnet přeběhne v těsné blízkosti magnetického spínače MH1SS1 (Hallův generátor, ve spojení s klopním obvodem). Působením magnetického pole se na výstupu klopného obvodu objeví log. 1

Obr. 50. Počítač s magnetickým snímačem a zdroj pro navíječku

a připojený čítač dostane jeden impuls, který čítá. Tedy každé otočení hřidele (každý navinutý závit) je počítán čítačem. Ctyřmístný čítač umí počítat do 9999, potom začíná znovu. První místo – tisice – je potlačeno, pokud není indikováno ale spolehlivě číslo 1, nula na tomto místě není tedy indikována.

Magnetický snímač MH1SS1 (MH1SD1) je třeba stabilně upevnit tak, aby jeho aktívna plocha byla těsně nad rotujícím magnetem ve vzdálenosti asi 0,5 mm, a aby otresy nemohly měnit jeho polohu. Jeho vývody vedeme do krabice čítače, která je umístěna někde poblíž.

Čítač je obvyklého provedení, impulsy ze snímače, které jsou na úrovni TTL; zpracovávají desítkové čítače 74.90 a přenášejí do dekodérů 74.141, které budí digitrony. Tlačítko TI (Isostat) slouží k nulování čítače při zapnutí a podle potřeby. Zdroj je jednoduchý, k napájení logiky dává stabilizované napětí 5 V a k napájení digitronů po jednoduchém usměrnění a vyhlazení asi 180 V.

Elektroskop s tranzistory

Dříve narozeni ještě pamatuji z fyzikálních kabinetů láhev, na jejím hrdle kovovou kouli a uvnitř dva staniolové pásky. Když se profesor koule dotkl ebonitovou tyčí, kterou předtím několikrát přetřel liščím ocasem, staniolové pásky se od sebe oddávaly: indikovaly přítomnost statického elektrického náboje. To byl elektroskop.

Bez liščího ocasu (který prodejní radiotechnického materiálu vedle jiných potřebnějších součástek nemají na skladě) můžeme indikovat elektrostatické pole podle obr. 51. V podstatě se jedná o dva oddělené tranzistorové stupně s mimořádně velkým zesílením. Jedna strana reaguje na záporné, druhá na kladné pole statické elektriny. Velkého zesílení dosahujeme čtyřstupňovým Darlingtonovým zapojením tranzistorů, získáme nejen velké zesílení, ale i velkou vstupní impedanci.

Obr. 51. Elektroskop s tranzistory

Předpokládejme, že proudové zesílení tranzistorů je 200 a impedance emitoru T_4 200 Ω . Na bázi T_4 bude vstupní impedance $200^2 = 40 \text{ k}\Omega$, na bázi T_3 $200^2 = 8 \text{ M}\Omega$ a tak dále, na bázi T_1 to bude 320 G Ω . Proudové zesílení od báze T_1 do emitoru T_4 bude 200^4 – proto na vstupu, tj. na bázi T_1 postačí proud 10 pA (pikoampér), aby se tranzistory otevřely. Více tranzistorů do větve už nemůžeme zapojit, protože proud křemíkových tranzistorů je již rádově stejný.

Statický náboj malé „antény“ v bázi T_1 , popř. T_6 postačuje, aby se tranzistory T_1 až T_5 , popř. T_6 až T_{10} otevřely. Je-li statické pole stálé, diody LED budou svítit stálým světlem, je-li pole slabé nebo mění-li se, LED budou blikat. Přístroj může např. v letech měsících indikovat blížící se bouři již na značně větším vzdálenostech.

K napájení postačí devítivoltová destičková baterie, deska s plošnými spoji musí být z kvalitního materiálu, nikoli z cuprexcartu. Přístroj má být vestavěn do kovové krabice. „Antény“ v délce asi 10 až 15 cm jsou z měděného drátu s polyetylénovou izolací.

ELO 12/1977

může, v kuchyni při vaření, při různých procesech s lepidly, při chemických pokusech, při nahrávání atd.

Pro jednoduchost a menší náklady nepoužijeme krystalový oscilátor; přesnost 1 %, které můžeme dosáhnout i bez krystalu, pro uvedené účely postačuje.

Zapojení spínače je na obr. 52. K napájení potřebujeme stabilizovaný zdroj napájení obvodů TTL. Jako síťový transformátor vyhoví typ pro odběr proudu 300 až 400 mA při napájení asi 8 až 9 V. Usměrněním a stabilizovaným napětím pak napojíme celé zařízení.

Místo krystalového oscilátoru použijeme časovač 555, který je schopen s R_1 a kondenzátorem C_1 generovat časové intervaly asi od deseti do šedesáti sekund. Zmáčknutím tlačítka TI sepneme relé a zároveň se začíná čítat čas – čítače jsou otevřeny. IO díl dělí kmitočet oscilátoru a po načítání devíti impulsů přes hradla H_2 až H_4 se na tranzistor T_1 dostane záporný impuls, který jej uzavře a kotva relé odpadne. Potenciometrem P nastavíme čas jemně, přepínačem P při každém časovém období podle požadavku. Změnou P a C_1 můžeme dobu spinání nastavit v širokých mezích. Spínačem S_2 můžeme zátěž Z spinat nezávisle.

Revista Espanola, leden 1984

Digitální signální hodiny s dvojím nastavitelem časem

V současné době je stavba digitálních hodin z jednotlivých integrovaných obvodů anachronismem, protože existují de-

Indikátory, spínače, časovací zařízení

Časový spínač 1 s až 100 minut

Časový spínač od 1 sekundy do 100 minut má široké možnosti využití. Může být užitečným pomocníkem v temné ko-

Obr. 52. Časový spínač od 1 s do 100 minut

sítky druhů speciálních integrovaných hodinových obvodů pro tento účel, k nimž se připojí jen napájecí napětí, ovládací prvky a displej, příp. oscilátor (u nás není kmitočet sítě většinou přesně 50 Hz).

Protože však u nás nejsou integrované hodinové obvody běžně dostupné, zájemci, pokud chtějí mít digitální hodiny, jsou je nutenci stavět z řady integrovaných obvodů. Když však už chceme postavit digitální hodiny tohoto druhu, pak je můžeme vybavit dvěma, nebo i několika ovládacími prvky pro buzení, popř. signalizaci. To znamená, že na hodinách bude několik přepínačů, každý z nich bude možné nastavit na jiný čas a při každém nastaveném času hodiny dávají signál nebo sepnou relé – podle našich potřeb. Protože hodiny indikují 24 hodin, intervaly mezi signály je možné nastavit od dvou minut do 23 hodin 58 minut. Trvání signálu je jedná minuta.

Hodiny se skládají z krystalem řízeného oscilátoru, z dělícího řetězce, nastavovacího obvodu, z dekodérů s indikací, z nastavovacích obvodů signalizace, z vybavovacího obvodu a ze zdroje.

Na obr. 53a je oscilátor s dělícem a nastavovacím obvodem. Oscilátor je velmi jednoduchý, skládá se jen z jednoho hradla obvodu 4011, které spolehlivě rozkmitá krystal 32,768 kHz. Krystal pochází z nepracujících digitálních náramkových hodin, které se dají obvykle sehnat. Kondenzátory C₁ a C₂ slouží k přes-

němu nastavení kmitočtu, obvykle postačí měnit C₂. Kdyby se hodiny opoždovaly i po nastavení, je třeba zmenšit kapacitu kondenzátoru C₁ (nebo obráceně). Tlačítkem STOP při nastavování zastavíme oscilátor. Pokud zbyvající tři hradla z IO, nepoužijeme, spojíme jejich vstupy a uzemníme je.

Signál z oscilátoru vedeme na čtrnáctibitový dvojkový čítač IO₂ (MHB4020), na jeho výstupu dostaneme kmitočet 2 Hz. Protože k řízení potřebujeme kmitočet 1 Hz, použijeme polovinu klopového obvodu MHB4013, na jehož výstupu bude signál 1 Hz (1 s). Toto hradlo můžeme nahradit obvodem TTL 7474 (viz obr. 53a). Signál 1 Hz přes tranzistor T₁ pivedeme na dvě svítivé diody zapojené v sérii, které umístíme mezi číslicemi hodin a minut; LED budou blikat a indikovat tak činnost oscilátoru, tj. hodin.

Sekundový signál vedeme na dva čítače 7490, na výstupu IO₅ dostaneme minutové intervaly, které již budou řídit chod hodin. Pomoci IO₆ a IO₇ můžeme hodiny nastavovat. Zmáčkneme-li přepínač P₁ (může být Isostat bez aretace nebo mikrospínač), budou přemostěny děliče IO₄ a IO₅ a sekundové impuly projdou hradly a „minuty“ budou skákat po sekundách. To je pomalé nastavování. Stiskneme-li současně P₁ a P₂, pivedeme signál 64 Hz, hodiny běží rychle. Po nastavení žádaného času hodiny zastavíme tlačítkem STOP, počkáme na signál z rozhlasu

nebo TV, a vybavením tlačítka uvedeme hodiny do chodu na sekundu přesně.

Z IO₇ postupuje minutový signál na další dělící řetěz složený z IO₈ až IO₂₃, řídící dekodéry IO₂₀ až IO₂₃, přes které jsou indikovány minuty, desítky minut, hodiny a desítky hodin (obr. 54). Indikace je čtyřiadvacetihodinová, po 23.59 se hodiny vynulují.

Signalizace je řešena převodníky z kódu BCD na kód 1 z deseti: IO₁₂ až IO₁₉. Ke každému čítači, IO₈ až IO₁₁, jsou na výstupy BCD připojeny dva dekodéry 7442, aby bylo možné nastavit dva, na sobě nezávislé časy. Na výstupech IO₁₂ až IO₁₉ dostaneme v číselném vyjádření kód BCD, který je přes dekodéry IO₂₀ až IO₂₃ přiváděn na displeje (také v číselné formě). Z těchto údajů snímáme stav hodin přepínači P_{A1} až P_{A4}, popř. P_{B1} až P_{B4}. Na každém segmentu přepínače musí být log. 1 nebo log. 0, tyto logické úrovně přes invertory přivádíme na vstupy hradla IO₂₅. Bude-li přepínač nastaven na určité číslo (tj. určitý čas v minutách a hodinách) a budou-li hodiny ukazovat stejný čas, na všech výstupech hradla IO₂₅ budejú úrovně log. 1, na jeho výstupu bude log. 0, přes inverter a diodu D₃ (D₄) se otevře tranzistor T₂ a napájí generátor signálu (nebo relé). Tento stav trvá jednu minutu, protože se mění na hodinách minuta, na výstupech hradla již nesouhlasí logické stavy, výstup hradla se překlopí, tranzistor T₂ se uzavře.

Pro nastavení signalizace budou nejvýhodnejší tzv. palcové přepínače (otočný číslíkový spínač TS 212). Potřebujeme dva po čtyřech segmentech (dva časy – čtyři čísla). U prvního segmentu postačí zapojit jen 0, až 2, u třetího 0 až 5, u ostatních všechny od 0 do 9 – ostatní čísla se na hodinách nepoužívají. Přepínač A se čtyřmi segmenty je pro nastavení prvního „signálního“ času, přepínač B pro nastavení druhého.

Generátor signálu je jednoduchý oscilátor podle obr. 53c, můžeme použít i jiný druh, příp. se zesilovačem. Místo generátoru lze použít i relé, které může spínat různé obvody: zpoždování, prodlužování signálu, vybavovací apod. podle potřeby.

Zdroj (obr. 53b) je jednoduchý, k napájení všech integrovaných obvodů potřebujeme stabilizované napětí 5 V, spotřeba je kolem 1 A. Použijeme transformátor asi na 10 VA, stabilizátor umístíme na chladicí. Nezapomenejme umístit v napájecích větvích keramické kondenzátory 50 až 100 nF.

Signál během jeho trvání můžeme vypnout přetočením kteréhokoli segmentu na jiné číslo. Natrvalo jej lze vypnout tak,

Obr. 53. Digitální signální hodiny s dvojím nastavitelem časem; a) oscilátor, dělící a ovládání, b) zdroj, c) generátor signálu

Obr. 54. Děkódér s indikací a nastavení signálů pro hodiny z obr. 53.

že segment 1 nebo 3 natočíme na nepoužité číslo (segment 1 kupř. na 3; 30 hodin není), signál bude stále vypnuty.

Realizované hodiny jsou na obr. 55 a 56.

Signální hodiny

Signálních hodin již bylo popsáno v technické literatuře mnoho, popisované však mají několik nezanedbatelných výhod. Mají nastavitelný rozsah od 1 minuty do 100 hodin, také je lze používat pro děje neopakující se po 24 hodinách. Jsou řízeny krystalem, proto jsou velmi přesné. Hlavní výhodou je však to, že jsou postaveny z obvodů CMOS. Z toho vyplývá, že spotřeba je pouze 2 až 3 mA a lze proto použít bateriové napájení (obr. 57, 58).

Na obr. 59 je blokové zapojení hodin. Generátor normálového kmitočtu je řízen miniaturním krystalem 32 768 Hz z běžných náramkových hodinek. Můžeme jej získat jednak z vadních hodinek (krystallen prakticky nikdy vadný), nebo ze starých digitálních hodinek s diodami LED, které se prodávaly i v „bazarech“. Signál z generátoru dělíme třemi děličkami na 60 sekund a přivedeme jej do přednastavitele čítače. Na palcovém přepínači se přednastaví požadovaná doba po přivedení spouštěcího impulu začnou čítače od této doby odečítat. Až se všechny čítače vynulují, vyhodnocovací obvod spustí zvukové znamení, které trvá 1 minutu. Samozřejmě místo něj lze zapojit bistabilní klopový obvod, který spíná relé.

Obr. 56. Vnitřní uspořádání hodin

Obr. 57. Vnější vzhled signálních hodin

Konkrétní zapojení je na obr. 60. Jako generátor je použito běžné zapojení krytalového oscilátoru s jedním hradlem NAND (1/4 MHB4011). Kondenzátorem C_2 nastavujeme přesný kmitočet 32 768 Hz. Dělič se skládá ze tří obvodů, IO_1 až IO_3 . IO_1 dělí v poměru 1:2¹⁴, čtrnáctistupňový binární čítač MHB4020. Z něj vychází signál o periodě 0,5 s do druhého děliče, který dělí dvanácti. Je tvořen 4bitovým binárním čítačem s přednastavením, IO_2 , MHB4029. Vstupy předvolby jsou připojeny na zem. Výstupy Q_C a Q_D jsou připojeny na hradlo AND, jehož výstup je před oddělovací diodou přiveden na vstup „přepis předvolby“. Jakmile čítač načítá dvanáct, další vstupní impuls vyvolá na vstupech Q_C a Q_D úroveň H, H se objeví i na výstupu hradla AND a čítač se přednastaví na nulu. Třetí dělič, IO_3 , dělí deseti. Vychází z něj signál o periodě 1 minuta. Je použit obvod MHB4029, zapojený jako čítač BCD.

Výstupní signál z děličů přichází na čtyřstupňový čítač BCD s přednastavením. Je sestaven z obvodů IO_4 až IO_7 , MHB4029. Předvolba se nastavuje palcovým přepínačem P_{r1} . IO_4 , IO_6 a IO_7 jsou zapojeny tak, že čítají od devíti do nuly. IO_5 „odečítá“ od pěti do nuly. Jakmile čítač IO_5 dočítá do nuly, objeví se při dalším impulsu na vstupech Q_A a Q_B úroveň H a přes hradlo AND, IO_9 , MHB4081, a oddělovací diodu D_5 se přednastaví číslo, které je na vstupech čítače. Přednastavovací vstup dostává řídící impuls ze dvou míst. Jednak díky zmíněnému hradlu AND se přednastaví vždy po nule do pětky – to je zajištěno použitím hradel AND a NAND na vstupech čítače, jednak

Obr. 59. Blokové schéma signálních hodin

Obr. 60. Zapojení signálních hodin

Obr. 58. Vnitřní uspořádání signálních hodin

přichází impuls od P_{r2} , který při zapnutí vynuluje čítače IO_1 , IO_2 , IO_3 a přednastaví číslo zadávané na vstupech IO_4 , IO_5 , IO_6 , IO_7 . Tento impuls dále uvolní hradly IO_{10} a $1/2 IO_8$, čímž se přednastavené číslo dostane přes ně na výstup IO_5 . Kondenzátor C_3 prodlužuje dobu uvolnění hradel.

Spouštěcí impuls je získán při zapnutí napájení hodin derivacním členem C_4 , R_{19} . Je vytvarován hradly NAND, $1/2 IO_8$.

Vyhodnocovací obvod je vytvořen čtyřstupňovým hradlem NOR, $1/2 IO_{11}$. Na jeho vstupy jsou přivedeny přenosy z čítačů IO_4 až IO_7 . Při jejich současném vynulování se na výstupu hradla objeví úroveň H a sepne se tranzistor T_2 .

Obvod indikace z telefonního sluchátka nebo reproduktoru je napojen přes tranzistor T_1 . Přerušovaný signál získáme sloučením signálů o kmitočtu 2 Hz a 1 kHz v hradle NAND, $1/4 IO_8$, jehož výstupem budíme tranzistor T_1 . Odběr ze zdroje při signalizaci je dán použitým reproduktorem.

Obr. 61. Indikace kolísání sítového napětí

Indikace kolísání síťového napětí

Výhodné můžeme použít „roztaženou“ stupnici ze svítivých diod při indikaci kolísání síťového napětí v rozsahu +10 až -20 % kolem jmenovité velikosti. Při stupnici ze šestnácti svítivých diod každá dioda indikuje změnu 4 V mezi 180 až 240 V. Je-li napětí sítě např. 182 V, pak budou svítit diody „180 V“ a „184 V“.

Podle obr. 61 použijeme malý transformátor s sekundárním napětím 10 až 12 V. Napětí usměrňme můstkově a stejnospěrným napětím (bez stabilizace) napájíme integrovaný obvod UAA170 a svítivé diody, které můžeme pro výraznější indikaci rozlišit barevně: kupř. zelené pro napětí menší než 220 V a červené pro napětí větší než 220 V.

Vstupní napětí – tedy síťové – usměrníme a po úpravě přivedeme na vstup UAA170. Vstupní dělič je integračním řešením, který omezuje rušící impulsy ze sítě, které by jinak nepříjemně ovlivňovaly indikaci.

K cejchování potřebujeme přesné měřidlo a regulační transformátor. Nejprve na vývodu 13 UAA170 nastavíme odpovídým trimrem P_1 napětí 4,87 V a potom při síťovém napětí (regulačním transformátorem) 218 V na vývodu 11 odpovídým trimrem P_2 přesné 4,35 V. Při správném nastavení mají při napětí sítě 218 V svítidly č. 11 a 12.

Rádiotechnika 1/1986

Neobvyklý převodní transformátor z 220 na 120 V. 1000 W

Řekne-li někdo transformátor pro 1000 VA, každému se vybaví transformátor úctyhodné velikosti, jehož jádro má hmotnost kolem 11 kg. Proto jsem byl mírně udiven, když se mi dostala do rukou krabička velikosti $35 \times 35 \times 55$ s nápisem: „Voltage converter 220-240VAC to 110-120VAC“. Model 18/21 s dodatkem, že se jedná o převodník pro ohřívací tělesa a přenosné motory do příkonu 1000 W. „Krabička“ je výrobkem fy Franzus z New Yorku a je určena především pro americké návštěvníky Evropy (nebo jiných „exotických“ zemí), v nichž je napětí sítě 220 V, aby i v těchto zemích mohli používat své holci přístroje kávovar.

Převodníkem jsem napájel pistolovou vrtáčku, žehličku i digitální hodiny – všechny přístroje pracovaly bez závad. Zařízení má jedinou nevýhodu: jako každý spínač s triakem (není-li regulován v nule) silně ruší. Každopádně převodník by mohl dělat dobré služby v domácnostech, v nichž po změně síťového napětí ze 120 na 220 V zůstaly nevyužity různé drahé spotřebiče na 120 V.

Tvar výstupního napětí je na obr. 62b.

Indikátor změny napětí

Na obr. 63 je zapojení ke kontrole a indikaci pracovního napětí. Přístroj je vhodný pro stálou kontrolu provozního napětí zvláště u přístrojů, které jsou stále zapnuty (nebo u bateriových zařízení). Přístroj stálým svitem svítivé diody indiku-

Obr. 62. Neobvyklý převodní „transformátor“ 220/120 V, 1000 W; a) schéma zapojení, b) tvar výstupního napětí

vary, mixery, žehličky, grilovací trouby, vysavače apod. Výrobce tento převodník nedoporučuje pro napájení ledniček, fotografických blesků, sušiček s kuklou, promítáček, TVP a hodin. Pro rozhlasové přijímače, magnetofonů, kalkulačky, blesky, nabíječky doporučujeme model F11 s příkonem 50 W.

Model 18/21 se zasune do zásuvky 220 V, na čelní stěně krabičky je zásuvka pro ploché americké zástrčky.

„Cernou krabičku“ jsem samozřejmě otevřel, jejíž zapojení je na obr. 62. Jedná se o triakový spínač, který je nastaven tak, aby na výstupu bylo napětí 120 V. Triak je typu SC142D, 8 A/400 V, v podstatě jej lze nahradit naším KT207/400. Původní triak je přišroubován ke krabičce jako ke chladiči, nás musíme odizolovat, protože kovové chladiče a upevněvací křídlo je galvanicky spojeno s vnitřním systémem. Diák D₁ je typu ST2, má spinaci napětí 28 až 36 V, odpovídá v podstatě našemu KR106. Dva další diaky D₂ a D₃ nemají značení, ale v sérii mají otevírací napětí 60 V, tedy jako v sérii zapojené naše diaky KR105. Jejich funkce je ochranná, při zvětšování napětí na děliči přivírají triak. Výstupní napětí není stabilizované, níž změně vstupního

je, že napětí je v dovolených mezích, zvětší-li se z důvodu nad určitou horní hranici, nebo změní-li se pod stanovenou minimální úroveň, LED začíná blikat a tak upozorní obsluhu na závadu v obvodu napájení. Dolní i horní mez dovoleného napětí je možno nastavit v širokých mezech, každou zvlášť odporovými trimry R₂ a R₄.

Funkce přístroje je založena na tom, že obvody CMOS pracují v širokém rozsahu napájecího napětí a že jejich překlápací napětí je asi polovinou napájecího napětí. Výhodou je, že vstupy hradel CMOS jsou odolné proti rušení, což neplatí u obvodů TTL, proto zapojení nelze realizovat s obvodem TTL.

Hradla H_3 a H_4 jsou zapojena jako astabilní multivibrátor, který kmitá na kmitočtu asi 0,5 Hz. Na výstupu 4 je pravoúhlý signál jen tehdy, je-li na vstupu 6 určité velké napětí (vlastně log. 1 v podmínkách CMOS). V tomto případě se tranzistor T_1 otevírá a uzavírá v rytmu pravoúhlého signálu a LED v tomto rytmu – 0,5 Hz – blíká. Přivedeme-li na vstup 6 malé napětí (log. 0), na výstupu bude stále velké napětí, T_1 stále vede a LED nepřetržitě svítí.

Obr. 63. Indikátor změny napětí

větší než požadované (nastavené), výstupní signál z H_1 a H_2 bude mít úroveň L, LED začne blikat a hlásí, že něco není v pořádku.

Porovnávací obvod pracuje takto: Referenční napětí 5 V je nastaveno diodami D_1 a D_2 . Má-li být pracovní napětí U_b menší, obě diody jsou uzavřeny, D_1 je zapojena do napájecího napětí obvodu MHB4011, tedy napájecí napětí U_{DD} se rovná napětí U_b . Děliče R_1 , R_2 a R_3 , R_4 jsou nastaveny trimry tak, že napětí na vstupech U_F a U_A budou menší, než 45 % U_b (popř. nyní U_{DD}). Podle vlastnosti CMOS se tedy U_A a U_F počítá za malé napětí. Proto je na vstupu hradla H_1 úroveň L, na výstupu (10) bude úroveň L a tak jeden vstup H_2 (13) bude na úrovni L, druhý (12) na H. Podle pravidlostí tabulky hradel NAND proto na výstupu hradla H_2 bude úroveň H. Napětí o úrovni H na vývodu 11 umožní přenášení kmity multivibrátoru a LED bude blikat. Překročili-li napájecí napětí nastavenou spodní hranici U_b (např. 5 V), změní se stav výstupu 11, diody D_1 i D_2 se otevřou a U_{DD} bude mít jmenovitou velikost. Úrovň L a H budou přesně definovány: napětí menší než 2,3 V bude L, větší než 2,3 V bude H. Vstup 13 hradla H_2 se dostane na úroveň log. 1 (H), na vstupu 12 bude velká úroveň H, při zvoleném pracovním napájecím napětí U_b svůj stav nemění, protože R_1 , R_2 dělí napětí a U_F se počítá za úroveň L. Na vstupech H_2 bude úroveň log. 1, na výstupu log. 0, LED trvale svítí – napájecí napětí je mezi.

Zvětšme-li napájecí napětí U_F o 50 % nad napětí 5 V, hradlo H se překlopí, na výstupu bude H, výstup 11 změní svůj stav a LED začíná blikat.

Zpětné zavedení signálu z výstupu 11, na spojené vstupy 8, 9 H, slouží jako slabá zpětná kladná vazba, působící rychleji překlápení – a takto zavedená hystereze ulehčuje nastavení.

Oporovým trimrem R_4 nastavujeme nejmenší zvolené napětí U_b (které nemůže být menší než 5 V), trimrem R_2 nastavíme horní mez napětí U_b (nemůže být menší než 10 V). Zapojení umožňuje nastavit velmi úzké tolerance napětí U_b , kupř. $\pm 0,5$ V.

Obvod má řídbír proudu závislý pouze na proudu svíticí diody. Její proud nastavíme volbou R_{10} asi na 15 mA.

Funkschau 7/1983

Stabilizátor síťového napětí bez železa

Stabilizátory síťového napětí jsou obvykle značně těžké a jejich domácí výroba je náročná, protože ji ztěžuje navijení velkého transformátoru a tlumivky. Popsané zapojení je bez transformátoru a bez tlumivky, zato však potřebujeme několik rezistorů na velké zatížení – inu nic není zadarmo. Stabilizátor je určen především k napájení žárovky 100 W ve zvětšovacích přístrojích pro barevnou fotografii, ale může být použit i pro jiné účely při záťaze 100 W.

Na obr. 64 je zapojení jednoduchého stabilizátoru. Síťové napětí usměrníme diodou D_1 a napětí filtrujeme kondenzátorem C_1 . Tímto jednocestným usměrňovačem napájíme žárovku 100 W. Rezistor R_1 omezuje proudový náraz při zapnutí, kdy je vláknina žárovky ještě studené a představuje v podstatě zkrat. Na elektrodách kondenzátoru C_1 bez zatížení bude asi 310 V; při zatížení se napětí zmenší. Z kondenzátoru napájíme žárovku, která spolu s R_3 , R_4 , R_5 a tranzistorem T_1 tvoří dělič napětí. Tranzistor T_1 je vlastním

Obr. 64. Stabilizátor síťového napětí bez železa

stabilizátorem, na jeho bázi je díky R_2 , D_2 konstantní napětí 6,2 V. Emitorové napětí tranzistoru bude menší o 0,6 až 0,8 V. Tranzistor svůj emitorový proud, který protéká přes R_4 , stabilizuje, a na rezistoru R_4 bude spád napětí 5,6 až 5,8 V. Proud žárovky je z větší části čerpán z kolektoru tranzistoru a je stabilní. Když se proud protékající žárovkou z nějakých důvodů zmenší, zmenší se i napětí na R_4 , tranzistor se více otevře (bude mít menší odpor), paralelní spojení T_1 – R_3 bude mít menší odpor a proud žárovky dosáhne původní velikosti a naopak. Zatížitelnost rezistorů je určena podle žárovky 100 W, při jiné záťaze je třeba rezistory upravit.

Tranzistor musí být připevněn na odpovídajícím chladiči, musíme chladit i Zenerovu diodu. Protože rezistory vyzařují poměrně značné teplo, skříňku přístroje bude třeba opatřit větracími děrami s ohledem na bezpečnostní předpisy.

Rádiotechnika 2/1983

Elektronické zapalování zářivek

Při zapalování zářivek – zvláště u starších nebo nekvalitních trubic – vzniká silné rušení v pásmu rozhlasových vln a stává se také, že zářívka špatně zapalují, zhasnou, blikají apod. Mnohdy má na těchto neuctivých vlnách startér. Provozní napětí rozsvícené zářivky je asi 80 V, proto ji musíme připojit k síti 220 V přes tlumivku (obr. 65a). Kondenzátor C slouží ke zlepšení fázových poměrů pro indukční záťaze,

z provozu. Tento děj se odehrává během několika stovek milisekund.

Startér můžeme nahradit elektronickým spínačem, který sepne žhavení zářivky a po jejím ohřátí opět žhavení vypne. Tuto funkci vykonává obvod podle obr. 65b.

Elektronický spínač je připojen v bodech 1 a 2, tedy tlumivka, kondenzátor C a zářívka zůstanou jako u klasického zařízení. Po zapnutí napájecího napětí se tranzistor v první kladné půlvlně síťového napětí otevře, protože na děliči R_1 , R_2 překročí kladné napětí zapalovací napětí diaku, který se stane vodivým a otevře tranzistor. Náboj kondenzátoru zabezpečuje potřebný proudový impuls. Tranzistor na konci kladné půlvlny přestane vést, ale po příchodu další kladné půlvlny se opět otevře, a tak během několika půlperiod síťového napětí se žhavicí vlákno ohřeje a při následujícím vypnutí tranzistoru se trubice zapálí. Tím se zmenší napětí na zářívce natolik, že tranzistor již přes dělič nemůže dostat potřebné napětí k zapálení a zůstává uzavřen. Obvyklý filtrační člen C_2 , R_4 slouží k ochraně tranzistoru, zmenšuje rušení a zabraňuje případnému otevření tranzistoru.

Výhody tohoto zapojení spočívají v tom, že má neomezenou dobu života, trubice se rychleji rozsvítí. Jeho použití se vysplati tam, kde se často zapíná a vypíná osvětlení.

Celé zařízení je možné umístit na malou destičku s plošnými spoji, která se vejde do pouzdra (bez odrušovacího členu).

Elektronika 6/1982

Jednoduchý detektor průchodu síťového napětí nulou

Tyristorová a podobná zařízení, při nichž spináme síťové napětí do indukčního nebo odporové záťaze, mají nepříjemný průvodní zjev: silné rušení, které se šíří vedením i volně, a ruší rozhlas, televizi i jiná zařízení. Proto jsou v novějších přístrojích používány více nebo méně

Obr. 65. Elektronické zapalování zářivek: a) zářívka se startérem, b) zářívka s elektronickým „startérem“

jinak neovlivňuje funkci zářivky. Jeho kapacita je několik mikrofaradů (podle příkonu trubice). Startér S je k trubici paralelně připojená speciální doutnavka, která má bimetálovou elektrodu a paralelně k doutnavce připojený kondenzátor C_2 o kapacitě kolem 10 nF.

Zapneme-li síťové napětí, zářívka se hned nezapálí. Napětí se přes tlumivku a žhavicí vlákna dostane na zářívku, doutnavka startérů zapálí, ale zářívka – protože její zapalovací napětí je větší – ještě nezáplní. Studenou trubici zkratuje i zapálená doutnavka. V doutnavce se ohřívá bimetálová elektroda, která se za určitou dobu teplem ohřeje a spojí se s druhou elektrodou a zářívku úplně zkratuje – doutnavka zhasne. Přes žhavicí vlákna trubice teče velký proud, který ohřeje zářívku. Mezi tím doutnavka vychladne, přeruší se zkrat, žhavicí vlákny zářívky proud nepoteče. Při přerušení proudu vznikne indukční proudový náraz, který zahřátou trubici zapálí. Startér je vyřazen

složité obvody, popř. speciální integrované obvody, které zabezpečují, že se záťaze připne v okamžiku, kdy síťové sinusové napětí právě prochází nulou, a nemůže vznikat žádné rušení.

Na obr. 66 je jednoduché zařízení, které je možné použít pro tento účel. Z malého transformátoru po jednocestném usměrnění dostaneme asi 17 V (na kondenzátoru C_1). Dělič R_1 , R_2 dává řídící síťové napětí 50 Hz. Bude-li na rezistoru R_3 kladná půlvlna síťového napětí, T_1 povede a výstupní napětí obvodu bude nulové. Bude-li půlvlna záporná, vedou tranzistory T_3 a T_2 , výstupní napětí je opět nulové. Tedy při obou půlvlnách síťového napětí je na výstupu nula, tyristor nedostane otevírací impuls. V okamžiku průchodu

18 k Ω rozsvěcuje číslice, které jsou napájeny přes dekodér 74141. Vstupy dekódéru jsou řízeny v kódu BCD, příslušné výstupy přivádějí napětí na číslice, které mají být indikovány.

Funkamateu r 1/1985

Obr. 66. Jednoduchý detektor průchodu sinusovky nulou

sítového napětí nulou nevede žádný tranzistor, na výstupu se na okamžik objeví přes R_4 krátký impuls, který krátce otevře tvristor nebo triak.

Podle typu spínaného tyristoru nebo triaku bude možná třeba na výstup zařadit tranzistor, zesilující otevírací impuls, příp. pozmenit R_4 . Nezapomeňme, že zařízení je galvanicky spojeno se sítí!

Elektor 7-8/1985

Buzení digitronů obvodem C520D

O možnostech použití převodníku A/D z NDR - C520D - bylo již otiskáno na stránkách AR několik článků, i v tomto čísle. AR řady B je několik možností použití. Jedná se o základní třímístný modul k měření napětí, který se různými úpravami hodí pro měření a indikace nejrůznějších údajů.

V klasickém zapojení se obvod používá s dekodérem, aby v multiplexním provozu budil sedmsegmentové displeje se svítivými diodami. V těchto zapojeních se používají dekodéry 7446 nebo 7447 (D146, D147). Může se však stát, že bude výhodnejší (z cenových nebo konstrukčních důvodů) použít pro indikaci digitrony, a v tomto případě můžeme použít zapojení podle obr. 67.

Obvod C520D je v obvyklém zapojení. Katody digitronů v multiplexním provozu nemůžeme napájet přímo, bude třeba použít budící tranzistory pro větší napětí. Napájecí napětí katod digitronů můžete koloem 180 V. V klidovém stavu jsou tranzistory otevřeny a číslice nemohou svítit. Tranzistor se v rytmu multiplexu uzavírá a v tom čase kladná napětí přes rezistor

Obr. 68. Fluorescenční displeje s C520D

Na obr. 68b je použit dekodér CMOS 40511 (NDR), nebo 4511. Výhodou tříhoto dekodéru je, že k rozsvěcování segmentů nepotřebuje žádné další aktívni nebo pasivní součástky, jeho výstupy jsou připojeny přímo na příslušné segmenty lumeniscenčního displeje. Škoda jen, že tyto dekodéry nejsou běžně dostupné.

Na obr. 69 se k buzení segmentů používá běžný dekodér D146 (nebo D147). Vzhledem k tomu, že displej potřebuje větší napájecí napětí, výstupy dekodérů musí mít tranzistorové spinaci stupně (s tranzistory p-n-p) a děliče, čímž je zlepšeno složitění.

FunkamateuR 8/1985

Přesný termostat

Zapojení termostatů k udržování konstantní teploty jsou všeobecné známá. Jsou používány různé varianty s teplotním čidlem (perličkový, příp. hmotový termistor), které je zapojeno v můstku, s komparátorem s tranzistory nebo operačním zesilovačem apod. Spínání a odpojování záťahu může zabezpečovat relé, tyristor nebo triak.

Zapojení na obr. 70 se liší od uvedených v tom, že místo termistoru používá křemíkovou diodu a její závislost na teplotě. Uvedené řešení má výhodu v tom, že perlíčkové termistory mnohdy je těžké,

Obr. 67. Digitrony s C520D

Obr. 69. Fluorescenční displeje s C520D

ne-li vůbec nemožné sehnat, křemíkovou diodou v miniaturním provedení a ve skleněném pouzdře má k dispozici každý.

Napětí na křemíkové diodě se při protékajícím konstantním proudu mění v závislosti na okolní teplotě. Se zvyšováním okolní teploty se napětí na diodě zmenší až o $2 \text{ mV}/^{\circ}\text{C}$ a obráceně. Tato teplotní závislost je téměř lineární, ale bez výběru diod a doplňujících linearizačních obvodů se k měření teploty s dostatečnou přesností nehodí. Pro nás účel tato nelinearita vůbec nevadí, protože teplotní závislosti využíváme jen v jednom bodě a v něm je konstantní.

Diodu D napojíme konstantním proudem a její napětí přivádíme na invertující vstup operačního zesilovače. Na neinvertujícím vstupu je napětí z pevného děliče. Teplotu, kterou máme v úmyslu udržovat, nastavíme odporovým trimrem R tak, že diodu umístíme v prostředí se zvolenou teplotou. Sniží-li se zvolená teplota jen o zlomek stupně, rovnováha na vstupu OZ se naruší, na výstupu komparátoru se objeví napětí, které sepne tranzistor a tím i relé.

V podstatě můžeme použít každou křemíkovou diodu. Jediným hlediskem při výběru bude druh pouzdra, protože na něm je závislá rychlosť odezvy a možnost použití kupř. v tektutém nebo v plynném prostředí. Drátové vývody skleněných diod s axiálními vývody je třeba v kapalném prostředí izolovat tak, aby se kapalina drátů nemohla dotýkat. Tyto diody rychle reagují na změnu teploty prostředí. Diody v kovovém pouzdře (elektrody nejsou spojeny s pouzdrem) jsou tvarově výhodnější, ale jejich reakce na změnu teploty je pomalejší. Totéž platí pro diody v plastu. Podle literatury snad nejrychlejší reakci mají varikapy typu KB.

Funktechnik 13/1975

Obr. 70. Přesný termostat

obvody CMOS. Řídící části hodin (obr. 71) je IO₁. Obvod 4060 je čtrnáctibitový dvojkový čítač-dělič s vestavěným oscilátorem. Bylo by možné použít i obvod MHB4020, který je totožný, ten však nemá oscilátor, který by bylo třeba postavit zvlášť. Pro jednoduchost v hodinách nepoužijeme krytalový oscilátor, jen člen RC (R₂ až R₄, P, C), který sestavíme ze stabilních součástek. Na výstupu IO₁ dostaneme jeden impuls po 300, tj. po pěti minutách. Přesnost nastavíme trimrem P. Abychom nemuseli dlouho čekat, na Q₁₂ je perioda 75 sekund, na Q₁₁ - 37,5 s, na Q₁₀, 9 a 8 vždy polovina z předchozího času. Impulzy můžeme pozorovat buď na osciloskopu, nebo na příslušný výstup přes odpor 150Ω připojíme LED a pozorujeme jeho světlo, a tak měříme čas. Svítit bude jen polovina času; protože se jedná o úplnou periodu. Celkový četec je 54,61 Hz.

Přes tranzistor T₁ vedeme impulsy do

Obr. 71. Neobvyklé hodiny se svítivými diodami

čítačů IO₂, IO₃, IO₇. Na jejich výstupech postupně rozsvěcuje 12 diod LED, vždy po pěti minutách. Po rozsvícení diody označující 55. minutu se rozsvítí nultá dioda, a čítání začne znova.

Nultá minuta vynuluje IO₂ a začíná počítání hodin, na IO₄, IO₅ a IO₈ se postupně rozsvěcují diody, každou hodinu jedna.

Bude výhodné používat LED různých velikostí a barev, aby bylo možné odlišit, na první pohled hodiny a minuty.

Přístroj nastavujeme sepnutím tlačítka „nulování“, minutky tlačítka „minuty“ a hodiny tlačítka „hodiny“.

IO₂, IO₃, IO₄ a IO₅ jsou desítkové čítače 4017, které se u nás nevyrobají, místo nich se používají dovážené sovětské K176IE8.

Zdroj je jednoduchý s monolitickým stabilizátorem, Zenerovou diodou zvětšíme výstupní napětí na 6,5 V. Zároveň s napájením hodin nabijíme pět NiCd akumulátorů (tužkové akumulátorů) o kapacitě 450 mAh proudem asi 1 až 5 mA (upravíme odpor rezistoru R), aby hodiny pracovaly i při výpadku sítě. Protože spotřeba je velmi malá (obvody CMOS spotřebují jen několik set mikroampér, dvě LED jen 20 mA), zdroj může nahradit síťové napájení i po několik hodin. Transformátor postačuje malý, na 50 až 100 mA.

Electronique pratique č. 82

Bezkontaktní regulátor teploty s řízením v nule

Dvoupolohový regulátor teploty (při snížení teploty sepne, při dosažení nastavené teploty vypne spotřebiče) s tyristory 15 A může pracovat se zátěží až 3 kW (budou-li tyristory na odpovídajících chladičích). Regulace je celovlnná; protože jsou použity dva antiparalelně zapojené tyristory a tím jsou využity obě půlvlny síťového napětí (obr. 72). Další nezanedbatelnou výhodou tohoto zapojení je, že při spínání a odpojování zátěže neruší, protože sepne, popř. odpojí zátěž v tom okamžiku, kdy střídavé napětí prochází nulou.

Obr. 72. Bezkontaktní regulátor teploty

Člen R₁, C₁ je omezovacím odporem, přes nějž se napájí řídící část (abychom nemuseli použít zvláštní napájecí transformátor). Když teplota – nastavená trimrem R na požadovanou úroveň – bude vysoká, odpor termistoru R₁ bude malý, T₁ povede a část záporných půlvln uzavírá výkonové tyristory, zátěž není napájena. Sníží-li se teplota, odpor termistoru se zvětší, tranzistor T₁ se uzavírá a uzavírá i řídící tyristor T_y. Při průchodu síťového napětí nulou se otevře T_y a po dobu

půlperiody napájí spotřebič. Při příchodu další půlvlny se otevře T_y a opět napájí zátěž. Vlivem střídavého otevírání a zavírání obou tyristorů je zátěž stále napájena, dokud teplota opět nedosáhne nastavené velikosti.

Elektor 7-8/1985

Video a nf technika

Videozesilovače pro videomagnetofony

Video (obrazové) zesilovače lze ve videotechnice využít různě. Jednak je můžeme používat při propojení dvou zařízení dlouhým kabelem, kdy útlum by již mohl ovlivnit kvalitu signálu. Také se používají ve spojení s různými filtry pro úpravu kmitočtové charakteristiky (např. k rozštěrení obrysu a tím k optickému zmenšení šumu obrazu). Dále tyto zesilovače používáme při přepisu špatných nahrávek, kdy je již tak nízká úroveň synchronizačních impulsů, že se obraz „pokládá“. Nejčastější použití je však při paralelním nahrávání několika zdrojů z jednoho zdroje signálu. U strojů firmy Grundig je použití videozesilovačů nutné, protože nemají oddělený videovstup a výstup. I když se běžně používá u většiny strojů sériového propojení, má to nevhodou, že jestliže je v řetězci zapojen stroj horší kvality, tak ovlivní nahrávku následujícím strojem. Proto je lepší použít videozesilovač s paralelními výstupy.

Na obr. 73 je zapojení nejjednoduššího videozesilovače s jedním výstupem: Tran-

Obr. 73. Jednoduchý videozesilovač

zistory T₁ a T₂ tvoří zesilovač a T₃ pracuje jako impedanční převodník. Napájení je 12 V a odběr ze zdroje 20 mA. Kmitočtový rozsah 20 MHz. K napájení použijeme stabilizovaný zdroj s MA7812. Některé videomagnetofony mají výstup pro kameru 12 V/0,5 A, takže z nich lze videozesilovače napájet přímo.

Při uvedení do provozu zkontrolujeme pouze ss pracovní body, jinak by zesilovač měl pracovat okamžitě.

Další videozesilovač je na obr. 74. Má již tři paralelní výstupy a regulaci zesílení od jednoho do čtyřnásobku výstupního napětí. Přenosové pásmo je 5 MHz. Tranzistory T₁ a T₂ tvoří zesilovač, T₃ pracuje jako emitorový sledovač. Napájení je opět 12 V, odběr ze zdroje asi 150 mA pro tři připojené stroje. Zesilovač nastavíme tak, že trimrem P₁ nastavíme na bázi T₁ napětí 1 V, potom by na rezistoru R₈ mělo být

7,5 V. Potenciometrem P₂ regulujeme zesílení. Jestliže máme k dispozici osciloskop do 10 MHz a sinusový generátor do 10 MHz, je vhodné jimi ověřit funkci zesilovače.

Na obr. 75 je nejpropracovanější typ videozesilovače. Má 5 možných paralelních výstupů. Při vstupním mezihradlovém napětí 1 V má výstupní napětí regulovatelné od 0 do 4 V. Přenosové pásmo je 30 MHz. Zesilovač má na rozdíl od předchozích dvojiciný koncový stupeň s T₅, T₆ a diferenciální vstup T₁ a T₂. Napájení 12 V, odběr ze zdroje je menší než 250 mA. Zapojení by mělo pracovat na první pokus, ale je potřeba zkontovalovat průběh signálu osciloskopem.

Impedance vstupů a výstupů všech zesilovačů je 75 Ω. Rezistory 75 Ω získáme jako paralelní kombinaci dvou rezistorů 150 Ω. Celý zesilovač lze umístit do skřínky U5 (obr. 76).

Elektor 7-8/85, 12/83

Přepínač videosignálů

Potřebujeme-li zdroj videosignálu z několika zařízení, například ze dvou videomagnetofonů nebo z videomagnetofonu a z počítače atd., musíme při kontrole na monitoru neustále přehazovat kably. Zařízení na obr. 77 tu toto nepříjemnost odstraňuje. Jedná se o přepínač dvou videosignalů. Signál y se přepíná přivedením log. 1 nebo 0 na řídící vstup přepínače. Přenosové pásmo je až 8 MHz, což plně dostačuje. Odběr ze zdroje je 1 až 2 mA, takže přepínač můžeme napájet i z baterie. Celé zařízení se skládá ze dvou integrovaných obvodů MHB4066. Jedná se o čtyři řízené spínače v jednom pouzdře.

Pokud chceme připojit kanál 1, přivedeme na řídící vstup log. 1. Spínače S₇ a S₈ jsou sepnuty, S₇ připojí vstupy S₅, S₆, S₃, S₄ na zem, takže zůstávají rozpojeny, S₈ navíc zkratuje výstup z S₅. S₁ a S₂ jsou sepnuty, protože jejich vstup je přes R₂ připojen na kladný pól napájecího napětí.

Chceme-li připojit kanál 2, přivedeme na řídící vstup log. 0. S₇, S₈ rozpojení, tím se na vstupy S₅, S₆, S₄, S₃ dostane přes R₃ kladné napětí a tyto spínače sepnou. Signál z kanálu 2 prochází, S₄ zkratuje signál v kanálu 1 a na řízení spínačů S₁ a S₂ je přes S₃ zavedena zem, takže jsou rozpojeny.

Elektor 7-8/85

Videoinvertor

Tento přístroj po zapojení do cesty videosignálu invertuje obraz. Lze jej využít nejen při „hraní si na obrazovce“, ale také při filmování pro trikové účely. Může jej také využívat fotoamatér při vyhodnocování negativů jako pozitivů. K tomu je však třeba vlastnit kameru s makroobjektivem.

Přístroj umožňuje inverzi barev a jasu, inverzi jasu a plynule nastavitelnou změnu barev až po tzv. pseudo-normál nebo zrušení inverze, kdy je přístroj trvale připojen a neovlivňuje procházející signál.

Obr. 74. Videozesilovač se třemi výstupy

Obr. 75. Videozesílovač s pěti výstupy

Obr. 76. Provedení videozesílovače se třemi výstupy

Některé další trikové možnosti budou vyšvětleny později.

Videoinvertor pracuje s běžným videosignálem z videorekordéru nebo videokamery (BNC, zásuvka AV). Nepracuje s výstupním signálem!

Možnosti zapojení a použití:

1. Přístroj je zapojen mezi výstup videore-

negativu. Musíme mít také dobrou kameru s makroobjektivem, protože jinak nedostaneme použitelné výsledky.

Zapojení

Zapojení videoinvertoru je na obr. 79. Funkce přepínače P_1 je jasná, můžeme jím v poloze 1 invertor vyřadit z činnosti. V poloze 2 (inverze) postupuje signál přes vstupní obvod C_1 , C_2 , R_1 , R_2 na aktivní obnovovač s složkou videosignalu, osazenou OZ IO_2 a IO_3 . Tý přizpůsobí opět nezáporný signál obrazové řádku na úroveň 0 V. Stejnou směrnou úroveň signálu se ztrácí na vstupním obvodu, který je nutný k získání malého zkreslení a správného impedančního přizpůsobení přicházejícího signálu. Složka se obnovuje pomocí IO_2 a P_1 , IO_2 a P_3 pracují na velké impedanci, protože je nutný ještě napěťový sledovač IO_1 . Výstupní signál je přiveden na potenciometr P_1 , kterým se nastaví dostatečná úroveň signálu. Za ním se

dostane zbylá část obrazového řádku je invertována, včetně barevného signálu. Přes dělič R_9 , P_3 a ES_3 je na neinvertujícím vstupu IO_6 referenční napětí, které zajistuje správnou úroveň signálu. Absolutní hodnota signálu by byla jinak negativní, musí být přesunuta do kladné oblasti.

Přepneme-li P_2 do polohy 2 a představíme si, že běžec P_2 je na dolním konci odporové dráhy, je invertován celý řádek. Signál jde nyní během klopení IO_3 přes obvody kolem T_1 a je jimi fázově otočen o 180° . Tím je zrušena inverze barevného signálu (inverzi první části řádku se ruší inverze barevného signálu). Odporovým trimrem P_2 jsou oba signály (invertovaný a neinvertovaný) svedeny dohromady, takže je možno inverzi barev plynule nastavit. Ve střední poloze běžce P_2 zmizí barva úplně. Vytvoříme-li P_2 „nahoru“ (nikoli však na døraz), jsou barevy zeslabeny. Potenciometrem P_2 tedy můžete intenzitu barev plynule nastavena mezi normální a komplementární.

Obr. 77. Přepínač videosignálů

do výstupu videorekordéru.

Některé další trikové možnosti budou vyšvětleny později.

Videoinvertor pracuje s běžným videosignálem z videorekordéru nebo videokamery (BNC, zásuvka AV). Nepracuje s výstupním signálem!

Možnosti zapojení a použití:

1. Přístroj je zapojen mezi výstup videore-

Obr. 78. Videoinvertor

2. Pro aktivní „videofilmáře“, které vlastní kameru a videorekordér, umožňující stříh. Přístroj je zapojen mezi výstup kamery a vstup videorekordéru a může měnit záznam.
3. Pro ty, kteří vlastní dva videorekordéry. Ti mohou nahrané záběry zpracovávat a měnit až doma tak, že trikové změny provedou při sestřihu. Invertor je zapojen mezi oběma stroji.
4. Pro fotoamatéry při vyhodnocování negativů jako pozitivů. Tako lze však vyhodnocovat pouze černobílé negativy, protože je značně obtížné kompenzovat oranžovou masku na barevném

videosignálu dělí do dvou cest. Jedna cesta vede na komparátor IO_3 , který obnoví synchronizační signál. Výstupním signálem IO_3 je (náběžnou hranou synchronizačního impulsu) spouštěn monostabilní obvod IO_4 , který řídí elektronické přepínače ES_1 až ES_4 . ES_4 je řízen přímo výstupem komparátoru.

Sledujeme nyní druhou signálovou cestu nejprve s přepínačem P_1 v poloze 1. Výstup Q IO_4 zůstává na úrovni H, signál postupuje proto přes ES_2 na neinvertující vstup IO_6 . Zatím není ještě tato část řádku invertována. Jakmile proběhne doba klopení IO_1 , Q přejde na L a Q na H. ES_1 a ES_3 se rozpojí. Přes ES_1 je nyní signál přiveden na invertující vstup IO_6 .

Obr. 79. Zdroj k videoinvertoru

Obvod T_2 , ES_4 , který je řízen přímo z IO_3 , zajišťuje, že synchronizační signál je předáván v neinvertované podobě k dalšímu zpracování. T_3 , R_{16} , R_{17} zajistí správnou výstupní impedanci 75Ω .

Síťová část je zřejmá ze schématu na obr. 79.

Stavba a nastavení

Zapojení obsahuje dva integrované obvody, které u nás nemají ekvivalent. Je to videozesilovač $\mu A733$ (LM733) a CMOS monostabilní klopný obvod CD4047. Obvykle obvody lze koupit např. v MLR, kde můžeme také koupit obvod MHB4066, který zatím u nás není k sehnání. Pokud budeme chtít využít veškerých trikových možností, použijeme jako P_1 až P_3 potenciometry. Přívody k nim musí být stíněným vodičem.

K oživení potřebujeme zdroj videosignálu se zkoušeným obrazem. Postačí k tomu i videorekordér, na který jsme si zkoušený obraz zaznamenali. Přepínač P_1 přepneme do polohy 2 – inverze, P_2 do polohy 1, P_1 a P_3 nastavíme tak, aby barvy na obrazovce byly syté při vysokém kontrastu. Potom přepneme P_2 do polohy 2 a musí být možné měnit plynule potenciometrem P_2 barvy od normálních (dolní doraz) do inverzního obrazu.

Triky

Zařízení má ještě další možnosti použití. Chceme-li, aby polovina obrazu byla normální a polovina invertovaná, zapojíme do série k rezistoru R_{10} odporový trimr. Překlápací čas se tedy nechá prodloužit tak, že na inverzi se přístroj přepne někde uprostřed obrazového rádku. Prodloužíme-li tento čas ještě více, přístroj se přepne až při následující rádce. Tedy jedna rádka bude normální, jedna inverzní. Při extrémním prodloužení lze dosáhnout toho, že popsaný jev je jen na části obrazu. Pro tyto možnosti volíme potenciometr $P_2 = 100 \text{ k}\Omega$.

Celé zařízení je na rozdíl od komerčních velmi levné. Můžeme tedy klidně zhotovit dva a několik kusů a zařadit je do série. Tím vznikne velké množství možností různých triků, které nelze ani probírat. Např. zařadíme-li dva invertory za sebe, druhým invertujeme barvu, ale prvním nikoli, obdržíme obraz, u něhož souhlasí černá–bílá, ale barvy jsou inverzní. Druhá možnost spočívá v tom, že první inverter je nastaven tak, že část obrazu je normální. U druhé části obrazu uprostřed je invertovaná černá–bílá. Druhý inverter invertuje černou–bílou zase zpátky na normál a invertuje barvu. Celý obraz je potom rozdělen na tři části – normální, invertující černou–bílou, invertující barvu. K tomu ovšem musí být na obou invertorech přidány potenciometry $100 \text{ k}\Omega$.

Obr. 80. Současné připojení videorekordéru a monitoru

Pokud chceme na výstup invertoru kromě videorekordéru zapojit současně monitor, upravíme výstupní obvody podle obr. 80.

Elektronika 10/1984

Jako operační zesilovače IO_1 až IO_4 můžeme použít typy MAC156 nebo MAB356. Vyhodnější je však použít čtyřnásobný OZ z NDR, B084 (ekvivalent TL084), který se v poslední době prodává v prodejnách TESLA.

Směšovací zařízení lze napájet např. ze dvou devítivoltových baterií, případně z jednoduchého síťového zdroje $\pm 9 \text{ V}$.

TV modulátor

Velká většina u nás prodávaných televizorů nemá vstup video, nýbrž pouze vstupy VHF a UHF. Pokud chceme k takovému TV připojit videorekordér bez tunerové části nebo doma zhotovený počítač, musíme si zhotovit ještě modulátor VHF-UHF. TV modulátor je vlastně malý televizní vysílač. Zpravidla se jednoduchým oscilátorem získá signál nosného kmitočtu někde v rozsahu VHF nebo UHF. Signál nosného kmitočtu je amplitudově modulován videosignálem a současně kabelem veden do TV přijímače. Pak stačí naladit televizor na kmitočet nosné.

Zapojení

Tak jednoduchá celá věc ovšem zase není, protože na minivysílač je kladena celá řada požadavků. Kmitočet musí být velice stabilní, rovněž na kvalitu obrazu musí být při návrhu pamatováno. Stabilitu lze zajistit krystalem. Kvality obrazu dosahujeme asi jako na běžném televizoru, to znamená, že 80 znaků na řádku je dobré čitelných, samozřejmě ne však v kvalitě monitoru.

Nebolo by dobré, kdyby přístroj dodával pouze jeden, i když „krystalově stabilní“ signál, protože použijeme-li starší televizor, může být na některém kmitočtu (kanálu) jakost obrazu horší či lepší. Mimo to lze signál nosné na několika kmitočtech při ladění snáze najít. Proto je za oscilátorem 27 MHz zařazen generátor harmonických. Tím se výstupní signál oscilátoru mění ve spektrum, které mimo základní kmitočet obsahuje množství signálů jeho celistvých násobků. Při měření tyto signály zjistíme až do 1800 MHz . Kmitočtové spektrum zaručuje, že minimálně jeden signál najdeme v pásmu I, minimálně jeden v pásmu III a nespočet v pásmu IV/V.

Zatím jsme mluvili o základním kmitočtu 27 MHz , protože krystal 27 MHz je dobrý a levný. Použit však můžeme jakýkoli krystal v rozsahu 25 až 30 MHz .

Zapojení modulátoru je na obr. 82. Oscilátor je vytvořen z tranzistoru T_1 (BFR91, výrobce např. Siemens). Signál oscilátoru je amplitudově modulován vý-

Obr. 81. Mixážní zařízení pro videorekordéry

Obr. 82. Televizní modulátor

deosignálem v bázi T_1 . Více se nedá o oscilátoru uvést. Snad jen to, že součástky kolem T_1 musí být v úzkých tolerancích a kvalitní. To ale platí ve vý technice všeobecně.

Generátor harmonických je tvořen dvěma Schottkyho diodami D_1 a D_2 . Protože musí velice rychle spínat (v rytmu 27 MHz), postaráj se o harmonické až do oblasti gigahertzů.

Odpovědovým trimrem P_1 můžeme nastavit hlobubku modulace, zatím co P_2 nastavuje ss režim oscilátoru. Nastavováním obou odporových trimrů můžeme nastavit jak pozitivní, tak negativní modulaci, jak bude vysvětleno později.

Jako napájecí napětí můžeme použít nestabilizovaný zdroj napětí 8 až 30 V, popř. stabilizované napětí 5 V (například z počítače). V tom případě odpadá připojení IO_1 a C_7 .

Stavba

Desku s plošnými spoji můžeme zhotovit jako jednostrannou, oboustranná deska není pro stabilitu podmínkou. Cívky L_1 a L_2 mají 3,5 závitu drátu Ø 0,2 mm CuL na feritovém toroidu 3,5 x 3,5 mm. L_3 je na feritovém jádře a má mít indukčnost 1 μ H. L_4 tvoří jeden závit drátu o Ø 0,8 až 1 mm CuL na trnu o průměru 8 mm. Krystal je nejlevnější a nejdostupnější použít z mozdlařských souprav RC (27 MHz). Jako UHF Schottkyho diody můžeme použít např. typy: BA280, HSCH1001, 1N6263, BA481 atd. U nás podobné typy, zatím k dispozici nejsou.

Nastavení

Nastavení TV modulátoru vyžaduje jistý cit. Jednoduchý recept, jak všechny trimry nastavíme do střední polohy, zde neplatí, protože při nastavování velmi záleží na tom, kterou harmonickou naladíme. Nejlépe, když budete postupovat takto:

1. Jas a kontrast na televizoru nastavíme na maximum.
2. Na vstup videomodulátoru připojíme zdroj zkušebního obrazce (monoskop, videorekordér se záznamem monoskopu nebo zkušební obrazec z počítače) a výstup připojíme souosým kabelem 75 Ω na vstup televizního přijímače.
3. P_2 nastavíme do střední polohy a P_1 na nulový odpor.
4. Přijímač naladíme na některou harmoniku – nejlépe v pásmu VHF (2. až 12. kanál). Naladění poznáme podle toho, že z obrazovky zmizí „sníh“, popř. obraz ztmavne.

Obr. 83. Stereofonní simulátor

5. Nyní otáčíme P_1 , až je vidět obraz.
6. Potom trimrem P_2 nastavíme kvalitu signálu. Není-li výsledek uspokojivý, dodládíme P_1 a potom opět P_2 .
7. Nepodaří-li se dostat dobrý obraz, přeladíme televizor na nejbližší harmoniku a nastavování opakujeme.

Při použití videorekordéru jako zdroje zkušebního signálu musíme mít na paměti, že šířka pásma je u této přístrojů mnohem menší než šířka TV signálu. Kvalita obrazu je tedy horší než originální televizní obraz a zlepšit dodávaný signál modulátor neumi.

Elektor 1/85

Stereofonní simulátor

Toto jednoduché zařízení vytváří z monofonního signálu dva signály. Stereofonní efekt vytváří kmitočtovým rozlišením kanálů. Zařízení je na obr. 83, IO_{1a} a IO_{2a} jsou oddělovací zesilovače. Za nimi následují IO_{1b} a IO_{2b} , které jsou zapojeny jako pásmové propusti se strmostí 12 dB/okt. IO_{1b} pracuje jako dolní propust, IO_{2b} jako horní propust. Dělicí kmitočet je 2 kHz. Odběr zařízení je asi 3 mA. K napájení lze použít libovolný symetrický zdroj napětí ± 10 až ± 15 V, stabilizovaného Zenerovými diodami. Jak operační zesilovače je použit dvojitý operační zesilovač MA1458. Původní zapojení používalo čtyřnásobný OZ LM348. Jinak lze použít např. MAA748, MAC155, MAC157 atd.

Electronics today 9/77

Elektronická výhybka se strmostí 24 dB/okt pro aktivní reprodukторové soustavy

V poslední době se v oblasti techniky hi-fi prosazují aktivní reproduktory soustavy. Jejich výhody nespočívají jen v úspore místa pro výkonový zesilovač, který je vestavěn přímo v „bednách“, ale

také v tom, že reproduktory jsou buzeny signály otevřených kmitočtových pásem, takže se do nich nedostanou nevhodné kmitočty, na které nejsou konstruovány. Také lze dobře regulovat úroveň vybuzení jednotlivých reproduktorů, a tím i poměr výkonů v jednotlivých kmitočtových pásmech.

Nevýhodou aktivních reproduktory soustav je především jejich cena a složitost. Proto jsou určeny pro náročné posluchače.

Na obr. 84 je blokové schéma aktivní reproducitorové soustavy. Je to triplásmová soustava. Každý reproduktor má svůj výkonový zesilovač. Konstrukce výkonových zesilovačů neuvádí, protože se jedná o běžné libovolné typy koncových stupňů (např. Transiwatt, Texan, Sinclair atd.), které byly již mnohokrát v AR uveřejněny.

Výškový zesilovač je napájen přes horní propust. Středový zesilovač je napájen z kombinace horní a dolní propusti a hloubkový zesilovač je napájen z dolní propusti. Na výstupu každé propusti je zařazen regulátor zesílení. Všechny jejich vstupy jsou spojeny do jednoho bodu a jsou přes oddělovací zesilovač napájeny signálem z předzesilovače. Propusti bývají nejčastěji Besselova typu. Strmost použitých propustí byla volena 24 dB/okt. V tom také spočívá její výhoda oproti dříve uveřejněovaným, které mely většinou 12 dB/okt., maximálně 18 dB/okt.

Schéma výhybky je na obr. 85. Dělicí kmitočty můžeme zvolit podle potřeby podle vzorců na obr. 86. V našem případě jsme volili 500 Hz a 3500 Hz. Celé zapojení je realizováno z operačních zesilovačů. Nejlépe je použít OZ NE5534 (TDA-1034) s malým šumem nebo ještě lépe dva v jednom pouzdro, NE5532. Tyto obvody se však u nás nevyrobí. Proto můžeme s poněkud horšími šumovými parametry použít „fetové“ operační zesilovače MAC155 (MAB355) nebo MAC156 (MAB356). Také by bylo možné použít ekvivalenty „fetových“ operačních zesilovačů TL071, které se vyrábějí v NDR.

Obr. 84. Blokové schéma aktivní reproducitorové soustavy

Obr. 85. Elektronická výhybka

Kondenzátory používáme pokud možno svítkové, odpory metalizované s tolerancí 5 %. Hodnoty součástek získaných výpočtem zaokrouhlíme na nejbližší hodnotu v řadě E24, nebo sestavíme jako paralelní, či sériovou kombinaci.

Elektor 9/84

Zesilovače PDM

Rovněž v nízkofrekvenční oblasti pokračuje digitalizace přenosových systémů. Začínají se uplatňovat „digitální“ koncové zesilovače. Zvláštní pozornost zasluhuje zesilovače pracující na principu pulsní délkové modulace, které jsou označovány jako PDM nebo zesilovače třídy D. Nezávisle na označení jde o stejný princip. Analogový nf signál je proměněn v pravoúhlý, přičemž informace je obsažena v proměnlivé délce impulsu.

Na obr. 87 je blokové schéma, které je společné takřka všem zesilovačům PDM. Symetrický pravoúhlý signál je šířkově modulován nf signálem. Výsledný signál bude koncový stupeň zesilovače, který odvezdává požadovaný výkon. Koncový stupeň nepracuje jako obvyklé s analogovými prvky, které více či méně vedou v závislosti na budicím signálu, ale s elektronickými spínači. Protože ty mají (teoreticky) pouze dva stavů, nemůže mít takový zesilovač teoreticky žádný ztrátový výkon ve formě tepla. V praxi je účinnost zesilovačů PDM větší než zesilovačů analogových. Další přednosti jsou malé nároky na linearity koncového stupně (připomeňme si obávané přechodové zkreslení) ve srovnání s analogovými ekvivalenty. Problematické je odfiltrování vysokofrekvenčního přepínacího kmitočtu. Kdybychom ne-

Obr. 86. Vztahy pro výpočet propustí: a) dolní, b) horní propust

Obr. 88. Blokové schéma zesilovače PDM do auta

se vstupním signálem. Systém se samochodně nastavuje tak, aby na obou OZ bylo stejně napětí. To je však možné jen tehdy, mění-li se šířka impulsů. Nerůží-li to možné, systém se přizpůsobuje snižováním kmitočtu kmitání. Na obr. 89 je vpravo řídící polovina můstku tvořena IO₂, H₁ až H₆, T₁ a T₃. Druhou polovinu tvoří H₇ až H₁₂, které dávají řídící protifázový signál pro T₂ a T₄. Nevýhodou tohoto uspořádání je to, že „protifázový podíl“ není v záporné zpětné

Obr. 89. Zapojení zesilovače PDM do auta

Obr. 90. Hlasitý domáci telefon

vazbě, ale v kladné vazbě. Mimoto nastává přechodové zkreslení, protože spinaci rychlosť není nekonečná. Přesto jsou vlastnosti zapojení natolik dobré, že signálný v obou zesilovačů jsou zavedeny na vstupy IO, jako zpětná vazba.

Vlastnostmi se tento zesilovač vyznává svému většímu analogovému protějšku. Výstupní výkon je závislý na použitých tranzistorech. Pár BD131/BD132 dává výstupní výkon 10 W při zkreslení 0,3 %, maximálně 12 W při zkreslení 10 %. U tranzistorů nezáleží pouze na výkonu, ale také na spínacích vlastnostech.

Protože tento zesilovač byl určen pro provoz v automobilu, platí všechny údaje pro napájení 13,8 V. Vstupní signál je minimálně 800 mV. K filtrace napájecího napětí je použita cívka 1 mH a kondenzátor 2200 μ F/25 V.

Celý zesilovač se vejde na destičku 90×60 mm. Tranzistory T_1 a T_2 , T_3 a T_4 můžeme dát na společný chladič. Cívky L_1 a L_2 musí mít indukčnost $0,4 \mu\text{H}$ a jmenovitý proud 3 A. Cívky lze navinout na feritový toroid o průměru 25 mm.

Elektor 9/79, 7-8/83

Hlasitý domácí telefon

Zapojení podle obr. 90 můžeme použít především jako hlasitého vrátného, ale také pro spojení v rozlehlych budovách a komunikovat s lidmi na různých místech. Pro signalizaci však musíme použít zvonkový systém.

Ridicí středisko je centrálovou, má po ruce přepínač příjem-vysílání, ostatní stanice v místech s reproduktory (slouží také jako mikrofony) jsou jen pasivní (že do nich hovořit pouze po jejich připojení centrálovou). Je-li přepínač P₁ v poloze příjem, je připojen na výstup zesilovače vlastní reproduktoru a hovor z externího reproduktoru jede na výstup zesilovače. Přepínač P₁ v poloze vysílání připojí vlastní reproduktor na výstup zesilovače a externí na výstup zesilovače, kde bude slyšet náš hlas. Přepínač P₂ umožňuje zvolit místo, se kterým chceme mluvit.

Použité zapojení má velké zesílení. Tranzistor T_1 pracuje jako předzesilovač

s uzemněným emitorem. Člen RC na vstupu omezuje šířku pásma, ale k přenášení hovoru šířka pásma bohatě postačuje. Šířku pásma můžeme měnit změnou kapacit kondenzátorů 470 pF a $3,3\text{ nF}$ (jelikož je třeba měnit i v tom případě, kdy by měl zesilovač sklon k rozkmitávání; obvyklý Boucherotův člen (100 nF , 1Ω) slouží k podobnému účelu). Zesílení můžeme měnit změnou odporu rezistoru $56\text{ }\Omega$ (jeho zvětšením se zesílení zmenší a obráceně), změnou zesílení se mění i stabilita a kmitočtové pásma. Integrator a zesilovač není výkonově plně využit, v zapojení na obr. 90 získáme na reproduktoru 4Ω při napájení 9 V výkon až $1,5\text{ W}$, to je však více než dostatečné. Potenciometrem P můžeme změnit hlasitost: Reproduktory mohou mít impedanci 4 až 16Ω . Vedení k externím reproduktům by měla být stíněná. K napájení postačí dvě ploché baterie – pokud zařízení nebude stále v provozu. Jinak bude třeba napájet zařízení z malého síťového zdroje 9 V.

Rádiótechnika 1/1983

Doplňky pro motorová vozidla

Otáčkoměr pro „diesel“

Otáčkoměrů pro benzínové motory již bylo uveřejněno i na stránkách AR velmi mnoho, ale dosud nebyl zveřejněn popis otáčkoměru pro dieselovy motory. Zapojení podle obr. 91 cíhe vyplnit tuto mezeru.

U otáčkoměrů pro benzínové motory získáváme řídící impulsy z přerušovače, u dieselových motorů přerušovače nejsou. Signál, který by byl úměrný rychlosti otáčení motoru, můžeme získat jedině z alternátoru. Vycházíme proto z toho, že rychlosť otáčení trifázového alternátoru je lineárně závislá na rychlosťi otáčení motoru – když nebereme v úvahu skluz klinového řemenu, který je většinou zanedbatelný. Signál odeberáme z některé z cívek statoru alternátoru (obr. 91a – body A, B nebo C), kde můžeme naměřit

kladné půlvlny asi 15 V. Kmitočet signálu se pohybuje podle rychlosti otáčení v mezech asi 100-Hz až 1 kHz a je ovlivněn převodem mezi motorem a alternátorem.

Získané krátké půlvlny na vstupu otáčkoměru se po filtrace, omezení a formování přivádějí na invertující vstup operačního zesilovače. Dioda D_2 omezová záporné půlvlny a omezuje kladné asi na 12 V. Operační zesilovač pracuje jako komparátor s velkým zesílením a kladnou zpětnou vazbou jako spínáč. Na jeho výstupu bude signál pravoúhlého průběhu o velikosti plného napájecího napětí, jehož kmitočet bude odpovídat rychlosti otáčení motoru. Tento signál diferencujeme (C_3 , R_8), omezujeme (D_3) a tím získáme záporné impulsy, kterými spustíme IO_2 , který pracuje ve režimu spouštěného monostabilního multivibrátoru. Na výstupu časovače dostaneme pravoúhlé impulsy s konstantní šířkou a s amplitudou napájecího napětí, jejichž kmitočet bude úměrný rychlosti otáčení motoru. Šířku impulsu určují P_1 , R_9 a C_4 . Z toho vyplývá, že střední usměrněné výstupní napětí IO_2 bude lineárně závislé na rychlosti otáčení motoru, tedy na četnosti spouštěcích impulsů. Střední hodnotu výstupního signálu integruje člen R_{11} , C_6 po omezení R_{10} , D_4 . Na kondenzátoru C_6 bude stejnosemněné napětí, úměrné rychlosti otáčení motoru, které měříme ručkovým měřidlem. Stupnice můžeme kalibrovat odporovým trimrem P_1 známou metodou (se signálním generátorem). Celkové zapojení otáčkoměru je na obr. 91b.

Otáčkoměr lze vylepšit již jinde popsáným zapojením pro digitální indikaci.

Ročenka Rádiotechnika 1986

Otačkoměr pro auto se světelnou indikací

Na obr. 92 je otáčkoměr, který má světelnou indikaci ze svítivých diod k měření rychlosti otáčení motoru. Na vstupní obvod byl použit známý prvek z NDR - A301D, který je zde jako monostabilní multivibrator. Protože má vnitřní stabilizaci napětí, máme zaručenou stálou amplitudu výstupních impulsů.

Rídící signál odebíráme z přerušovače, výstupní signál z monostabilního multivibrátoru – vývod 10 – má konstantní amplitudu. Stabilizované napětí IO_1 je zároveň referenčním napětím pro IO_2 , pomocí děliče R_8, R_9, P_1 nastavíme napětí $U_{r\max}$ a $U_{r\min}$ na IO_2 . Tato napětí odpovídají rozsvícení D_1 a D_{12} – tím je nastavena celá stupnice s D_1 až D_{12} . Výstupní impulsy monostabilního multivibrátoru řídí emitor tranzistoru T_1 , tranzistor během trvání impulsů vede. V této době se náboj kondenzátoru C_2 převede do kondenzátoru C_3 , napětí na něm bude úměrné rychlosti otáčení motoru. Napětí na kondenzátoru C_3 je řídícím napětím na vstupu IO_2 .

Obr. 91. Otáčkoměr pro dieselovy motory

Obr. 92. Otáčkomér pro auto se světelnou indikací

Otačkomér se cejchuje trimry P₁ a P₂. Jednotlivé svítivé diody indikují rychlosť otáčení po pěti stech otáčkách, D_i indikuje 500, D₁₂ pak 6000 ot/min.

Fototranzistorem T₂ se automaticky reguluje jas svítivých diod podle okolního osvětlení, pro nastavení slouží P₃. Fototranzistor umístíme tak, aby byl osvětlen okolím, na kterém závisí viditelnost rozsvícení diod LED.

Otačkomér cejchujeme přesným generátorem a pravouhlými impulzy.

Ročenka Rádiotechnika 1985

Otačkomér do auta s indikací krouticího momentu

Otačkomery dávají jen jedinou informaci: rychlosť otáčení motoru v otáčkách za minutu. Důležitou veličinou je však i krouticí moment, protože motor pracuje optimálně jen v určitém rozsahu rychlosťi otáčení a v tomto rozsahu má i optimální krouticí moment. V tomto rozsahu je jízda nejekonomičtější s nejmenší spotřebou.

Každý typ vozu má svůj graf, v němž je uvedena křivka závislosti krouticího momentu na rychlosťi otáčení motoru. Kupř. na obr. 93 je křivka, podle které má motor maximální krouticí moment při 4000 otáčkách za minutu. Optimální pro tento motor bude tedy rychlosť otáčení od 3300 do 4500 otáček za minutu. Abychom to viděli i názorně a nemuseli stále odvozovat od rychlosťi otáčení motoru, uspořádáme svítivé diody v počtu třícti (různobarevné, pokud možno hranaté) do křivky grafu krouticího momentu a při jízdě můžeme sledovat naš způsob jízdy jako na osciloskopu: v rozsahu malých rychlosťi otáčení budou svítit diody žluté, při optimální rychlosťi zelené a při velkých rychlosťech červené. Tak jediným pohledem zjistíme

Obr. 93. Křivka krouticího momentu a indikace diodami LED

intenzitu jasu svítivých diod podle okolního osvětlení. Jednoduchý stabilizátor napětí slouží k napájení IO₄, místo IO₃ postačuje i Zenerova dioda.

K nastavení potřebujeme generátor – nejlépe pravouhlého signálu, příp. čítač. Přepočteme „otáčky“ na kmitočet:

$$f [\text{Hz}] = uPB,$$

kde u je počet otáček za minutu, P počet válců a B počet zapálení směsi ve válcích během 1 ot/min, pro čtyřdobý motor je to 0,5.

Kupř. pro čtyřdobý motor, čtyři válce: 2000 otáček:

$$f = 2000/60 \cdot 4 \cdot 0,5 = 66,67 \text{ Hz},$$

6000 otáček: $f = 6000/60 \cdot 4 \cdot 0,5 = 200 \text{ Hz}$. Generátor nastavíme asi na 130 Hz, P₁ až P₃ jsou ve střední poloze. Otáčíme P₃, aby se ve středu stupnice rozsvítila jedna dioda. Potom pomocí P₁ dosáhneme, že se při malé změně kmitočtu rozsvítí D₁₅ a zhasne D₁₆ a obráceně. Nastavíme-li P₁ přesně, potom při kmitočtu 66 Hz se má rozsvítit D₁ a při 200 Hz D₃₀. Při zvyšování kmitočtu od 66 Hz se mají jednotlivé diody postupně rozsvěcovat, svítit má vždy jen jedna dioda.

Elektron 4/1985

Obr. 94. Zapojení otáčkoměru s indikací krouticího momentu

sobný klopný obvod v provedení CMOS (4093) a UAA170 také nemůžeme plně nahradit obvodem A277. Problém bude i sehnání třícti různobarevných svítivých diod, i když se u nás vyrábějí.

Zapojení přístroje je na obr. 94. Impulsy z pěterušovače vedeme na měnič, který z nich podle jejich četnosti vytvoří určité stejnosměrné napětí. Čím jsou impulsy četnější, tím bude stejnosměrné napětí větší. Tímto napětím se pak řídí rozsvěcování svítivých diod.

R₁₁, D₃₅ a C₅ připravují impulsy z pěterušovače ke vstupu hradla H₁, které s H₂, C₆, R₁₂ a P₃ tvoří monostabilní klopný obvod, z jehož výstupu se přes H₃ a H₄ dostává signál na integrátor R₁₃ až R₁₅, C₇ až C₉, kde se objeví stejnosměrné napětí, jehož velikost je úměrná počtu impulsů, tedy rychlosťi otáčení motoru. Trimrem P₂ řídíme napětí potřebné k postupnému rozsvěcování svítivých diod. Dva obvody UAA170 jsou spojeny v kaskádě a postupně rozsvěcují LED podle napětí, které přivádíme na jejich vstupy. Trimrem P₁ vyrovnáme rozdíly mezi IO₁ a IO₂. R₉ je fotorezistor libovolného typu, který řídí

INZERCE

Inzerci přijímá osobně a poštou Vydatelství Naše vojsko, inzerční oddělení (inzerce AR), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 13. 6. 1986, do kdyžme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejnou cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

RLC můstek (480), různé přístroj. skříňky a 80). Jiří Forejt, Nad úpadem 439, 149 00 Praha 4.