import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/Customer-Churn-Records (1).csv')

df.head()

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 18 columns):

#	Column		ull Count	Dtype
0	RowNumber		non-null	int64
1	CustomerId	10000	non-null	int64
2	Surname	10000	non-null	object
3	CreditScore	10000	non-null	int64
4	Geography	10000	non-null	object
5	Gender	10000	non-null	object
6	Age	10000	non-null	int64
7	Tenure	10000	non-null	int64
8	Balance	10000	non-null	float64
9	NumOfProducts	10000	non-null	int64
10	HasCrCard	10000	non-null	int64
11	IsActiveMember	10000	non-null	int64
12	EstimatedSalary	10000	non-null	float64
13	Exited	10000	non-null	int64
14	Complain	10000	non-null	int64
15	Satisfaction Score	10000	non-null	int64
16	Card Type	10000	non-null	object
17	Point Earned	10000	non-null	int64
	es: float64(2), int6	object(4)		
memo	ry usage: 1.4+ MB			

df.describe()

₹

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000

df.isnull().sum()

0 RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 0 Geography Gender 0 0 Age Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary Exited 0 Complain 0 Satisfaction Score 0 Card Type 0 Point Earned 0

df.drop_duplicates()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMe
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

10000 rows × 18 columns

df.duplicated().sum()

→ np.int64(0)

df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)

#histogram chart
df.hist(figsize=(10,10))
plt.show()

#bivariate analysis
sns.pairplot(df)
plt.show()


```
#feature engineering
for col in ['Geography', 'Gender', 'Card Type']:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
```

df

<u>-</u>	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	Comp
0	619	0	0	42	2	0.00	1	1	1	101348.88	1	
1	608	2	0	41	1	83807.86	1	0	1	112542.58	0	
2	502	0	0	42	8	159660.80	3	1	0	113931.57	1	
3	699	0	0	39	1	0.00	2	0	0	93826.63	0	
4	850	2	0	43	2	125510.82	1	1	1	79084.10	0	
							•••		•••			
9995	5 771	0	1	39	5	0.00	2	1	0	96270.64	0	
9996	516	0	1	35	10	57369.61	1	1	1	101699.77	0	
9997	7 709	0	0	36	7	0.00	1	0	1	42085.58	1	
9998	3 772	1	1	42	3	75075.31	2	1	0	92888.52	1	
9999	792	0	0	28	4	130142.79	1	1	0	38190.78	0	
4 =	_	_	_		_	_	_	_	_			

#scalar standardization
scaler = StandardScaler()

df_scaled = scaler.fit_transform(df)

df

#label encoding and onehot encoding

df_encoded = pd.get_dummies(df, columns=['Geography', 'Gender', 'Card Type'])

df

4

$\overline{}$													
_ _ *		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	Comp
	0	619	0	0	42	2	0.00	1	1	1	101348.88	1	
	1	608	2	0	41	1	83807.86	1	0	1	112542.58	0	
	2	502	0	0	42	8	159660.80	3	1	0	113931.57	1	
	3	699	0	0	39	1	0.00	2	0	0	93826.63	0	
	4	850	2	0	43	2	125510.82	1	1	1	79084.10	0	
	9995	771	0	1	39	5	0.00	2	1	0	96270.64	0	
	9996	516	0	1	35	10	57369.61	1	1	1	101699.77	0	
	9997	709	0	0	36	7	0.00	1	0	1	42085.58	1	
	9998	772	1	1	42	3	75075.31	2	1	0	92888.52	1	
	9999	792	0	0	28	4	130142.79	1	1	0	38190.78	0	
	4												

```
#model building
X = df.drop('Exited', axis=1)
y = df['Exited']
#import model
from sklearn.model_selection import train_test_split
from \ sklearn. ensemble \ import \ Random Forest Classifier
from sklearn.metrics import classification_report, confusion_matrix
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train, y_train)
    /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status-
     STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       n_iter_i = _check_optimize_result(
      ▼ LogisticRegression
     LogisticRegression()
#prediction
y_pred = model.predict(x_test)
print("y_prediction", y_pred)
→ y_prediction [0 0 0 ... 0 0 0]
#random forest classifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(x_train, y_train)
y_random_prediction = model.predict(x_test)
print("y_prediction", y_random_prediction)
→ y_prediction [0 0 0 ... 1 1 1]
# Evaluate
y_pred = model.predict(x_test)
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
→ Classification Report:
                                 recall f1-score
                                                    support
                                  1.00
                                            1.00
                                                      1607
                                  1.00
                                            1.00
                                                       393
                                            1.00
                                                      2000
        accuracy
                        1.00
                                  1.00
                                            1.00
                                                      2000
        macro avg
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                      2000
     Confusion Matrix:
      [[1606
      [ 1 392]]
# Evaluate
y_random_prediction = model.predict(x_test)
print("Classification Report:\n", classification_report(y_test, y_random_prediction))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_random_prediction))
→ Classification Report:
                    precision
                               recall f1-score
                                                    support
                0
                        1.00
                                 1.00
                                            1.00
                                                      1607
                1
                        1.00
                                 1.00
                                            1.00
                                                       393
                                            1.00
                                                      2000
         accuracy
                        1.00
                                  1.00
        macro avg
                                            1.00
                                                      2000
```

2000

1.00

weighted avg

1.00

1.00


```
#histogram chart random forest and logistic regression
plt.figure(figsize=(10, 6))
plt.hist(y_pred, bins=20, alpha=0.5, label='Logistic Regression')
plt.hist(y_random_prediction, bins=20, alpha=0.5, label='Random Forest')
plt.xlabel('Predicted Values')
plt.ylabel('Frequency')
plt.title('Histogram of Predicted Values')
plt.legend()
plt.show()
```


This project aimed to predict customer churn using a dataset of customer records. Exploratory data analysis (EDA) was performed, including data cleaning (handling duplicates and dropping irrelevant columns), visualization of data distributions (histograms, pairplots), and feature engineering (label encoding categorical features, scaling numerical features). Two models, Logistic Regression and Random Forest, were trained and evaluated using metrics such as classification report and confusion matrix. Visualizations of actual vs predicted values and histograms of the predictions