GLM Optimization Method Comparison Table

Module/Framework/Package	Name & Description of the Algorithm	Example Where It's Superior to Base R (Identify Python Equivalent)
Base R (glm in stats)	Uses Iteratively Reweighted Least Squares to estimate parameters via maximum likelihood. Efficient for small to medium datasets but lacks parallelization.	The model faces challenges when dealing with very large datasets because of memory constraints. The equivalent Python implementation uses statsmodels.api.GLM which implements Iteratively Reweighted Least Squares.
Big Data R (bigglm in biglm package)	A streaming-based IRLS approach is implemented to handle large datasets that do not fit in RAM. It uses incremental updates rather than loading all data at once.	The best tool for handling millions of patient records in healthcare when a dataset is too large for Base R. Equivalent in Python: Scikit-learn's SGDClassifier (which also processes data incrementally).
Dask ML (dask-ml.linear_model.LinearRegression & dask-ml.glm package)	The algorithm implements Stochastic Gradient Descent (SGD) and Newton's Method which are suitable for distributed computing. The system allows out-of-core learning when the dataset exceeds memory capacity.	Works better when training a large logistic regression model on 100+ million transactions in financial fraud detection. Equivalent in Python: Scikitlearn's SGDClassifier, but Dask processes data in parallel.
Spark R (spark.glm in SparkR package)	Uses L-BFGS (Limited- memory BFGS), which is an iterative, memory- efficient optimization method. Optimized for	Outperforms Base R for real-time analytics on streaming healthcare claims data, where processing speed is crucial.

	T 41 4 7 4	I
	distributed Spark	Equivalent in Python:
	environments.	Scikit-learn's
		SGDClassifier
		running on a Spark
		cluster.
Spark MLlib Optimization	Implements L-BFGS and	Ideal for predictive
(mllib.optimization in Spark MLlib)	SGD in a distributed	modeling on terabytes
	fashion, making it	of e-commerce data,
	suitable for massive	where Base R would
	datasets. L-BFGS is	crash. Equivalent in
	preferred for logistic	Python: Scikit-learn's
	regression due to its	SGDClassifier with L-
	efficiency in high-	BFGS solver.
	dimensional problems.	
Scikit-learn	Supports multiple solvers,	More efficient than
(sklearn.linear_model.LogisticRegression	including Newton's	Base R for handling
and SGDClassifier)	method, L-BFGS, and	high-dimensional
	SGD, providing	genetic data (e.g.,
	flexibility for different	predicting disease risk
	dataset sizes and	from genome
	computational needs.	sequences).
		Equivalent in R: glm
		but with IRLS (less
		scalable).