Tuya camera Model: U6N

Firmware version: V3.2.5

Product ID: 6cff9b4a5e422faef1saam

After authentication, when sending commands to a camera via the Tuya Smart APP based on the MQTT protocol through a server, as shown in Figure 1, it was found that the device on the APP would temporarily go offline. At the same time, when capturing the communication packets between the device and the server, it was discovered that the device would actively send a FIN packet to terminate the current communication connection, as shown in Figures 2 and 3. This vulnerability leads to a denial of service for a period of time. The specific implementation involves triggering the execution of any control command to generate network traffic on the app side, then performing a man-in-the-middle attack between the APP and the server to decrypt the SSL/TLS packets. By reverse engineering the encryption algorithm, the original control commands are deduced. Subsequently, the control command ID and corresponding values are modified as shown in Figure 1. Afterward, new packets are generated according to the encryption and coding rules and sent to the server. The server then forwards these packets to the device side. Upon receiving these packets, the device behaves abnormally, resulting in the device going offline.

Figure 1 The plaintext of a control command that can trigger an exception sending by App

42.192.31.13	10.42.0.228	TLSv1.2	219 8883	57334	Application Data
10.42.0.228	42.192.31.13	TCP	54 57334	8883	57334 → 8883 [ACK] Seq=8545 Ack=13785 Win=17424 Len=0
10.42.0.228	42.192.31.13	TCP	54 57334	8883	57334 - 8883 [FIN, ACK] Seq=8545 Ack=13785 Win=17424 Len=0
42.192.31.13	10.42.0.228	TCP	54 8883	57334	8883 - 57334 [FIN, ACK] Seq=13785 Ack=8546 Win=150016 Len=0
10.42.0.228	42.192.31.13	TCP	54 57334	8883	57334 → 8883 [ACK] Seq=8546 Ack=13786 Win=17424 Len=0
10.42.0.228	42.192.31.13	TCP	74 57350	8883	57350 - 8883 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 SACK_PERM=1
42.192.31.13	10.42.0.228	TCP	66 8883	57350	8883 → 57350 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412
10.42.0.228	42.192.31.13	TCP	54 57350	8883	57350 → 8883 [ACK] Seq=1 Ack=1 Win=2920 Len=0
10.42.0.228	42.192.31.13	TLSv1.2	194 57350	8883	Client Hello
42.192.31.13	10.42.0.228	TCP	54 8883	57350	8883 → 57350 [ACK] Seg=1 Ack=141 Win=67072 Len=0
42.192.31.13	10.42.0.228	TLSv1.2	1466 8883	57350	Server Hello

Figure 2 Communication packets between the server and the camera

```
64 bytes from 10.42.0.228: icmp_seq=9 ttl=64 time=1.16 ms
64 bytes from 10.42.0.228: icmp_seq=10 ttl=64 time=1.17 ms
From 10.42.0.1 icmp_seq=16 Destination Host Unreachable
From 10.42.0.1 icmp_seq=17 Destination Host Unreachable
From 10.42.0.1 icmp_seq=20 Destination Host Unreachable
From 10.42.0.1 icmp_seq=21 Destination Host Unreachable
From 10.42.0.1 icmp_seq=22 Destination Host Unreachable
From 10.42.0.1 icmp_seq=23 Destination Host Unreachable
From 10.42.0.1 icmp_seq=24 Destination Host Unreachable
From 10.42.0.1 icmp_seq=24 Destination Host Unreachable
64 bytes from 10.42.0.228: icmp_seq=27 ttl=64 time=10.2 ms
64 bytes from 10.42.0.228: icmp_seq=28 ttl=64 time=9.44 ms
```

Figure 3 Devices within the local network will be unable to ping for a period of time after receiving a packet