Diszkrét matematika II Számelmélet témakör jegyzete

Készült Burcsi Péter előadásai és Harrison-Juhász Zsófia gyakorlatai alapján

Sárközi Gergő, 2021-22-1. félév Nincsen lektorálva!

Tartalomjegyzék

1.	Osz	thatóság 3				
	1.1.	Definíció				
	1.2.	Z-beli oszthatóság				
		N-beli oszthatóság				
	1.4.	Lineáris kombincáiós tulajdonság				
2.		nagyobb közös osztó				
	2.1.	LNKO létezésének bizonyítása				
	2.2.	Bővített euklideszi algoritmus				
	2.3.	Euklideszi algoritmus a gyakorlatban				
	2.4.	Bővített euklideszi algoritmus a gyakorlatban				
3.	Prímszámok					
	3.1.	Prím vs felbonthatatlan				
	3.2.	$Felbonthatatlan = prim \dots \dots$				
		Számelmélet alaptétele				
		Tétel: végtelen sok prím van				
		Prímszámtétel				
	3.6.	Prímfelbontás kanonikus alakja				
	3.7.	Szám osztóinak száma				
	3.8.	LNKO kiszámítása prímtényezőkből				
4.	Legkisebb közös többszörös					
	4.1.	Definíció				
		Kiszámítása				
		LNKO, LKKT kapcsolata				

5.	Kon	igruencia	12				
	5.1.	Definíció	12				
	5.2.	Tulajdonságok	12				
	5.3.	Modulus tulajdonságai, gyakorlatról trükkök	13				
		5.3.1. Ekvivalens átalakítás	13				
		5.3.2. Gyorshatványozás	13				
	5.4.	Kínai maradéktétel	14				
		5.4.1. Állítás	14				
		5.4.2. Bizonyítás	14				
	5.5.	Euler-Fermat tétel	15				
		5.5.1. Bevezetés	15				
		5.5.2. Euler-féle φ függvény	15				
		5.5.3. Euler-Fermat tétel	15				
		5.5.4. Euler-féle φ függvény kiszámítása	16				
	5.6.	Egyváltozós lineáris kongruenciák	17				
		5.6.1. Megoldási módszer	17				
		5.6.2. Megoldás diofantikus egyenlet alapján	17				
	5.7.	Lineáris kongruencia rendszerek	18				
		5.7.1. Kínai maradéktétellel, páronként relatív prímek esetén	18				
		5.7.2. Kínai maradéktétellel, nem relatív prímek esetén	18				
		5.7.3. Behelyetessítős módszerrel	18				
6.	Két	változós lineáris diofantikus egyenletek	19				
7.	Szá	mrendszerek	20				
	7.1.	Gyakorlati trükkök	20				
8.	ZH	1-re összefoglaló jegyzet	21				
	8.1.	Kanonikus alak	21				
	8.2.	Oszthatóság	21				
	8.3.	Kongruencia	21				
	8.4.						
	8.5.						
	8.6.	Kétváltozós lineáris diofantikus egyenletek	22				
	8.7.	Kongruenciarendszerek, kínai maradéktétel	22				
	8.8	Trijkkök	22				

1. Oszthatóság

1.1. Definíció

- $\bullet \ \ a,b \in \mathbb{Z}: \exists c \in \mathbb{Z}: a*c = b \implies a|b$
 - TODO nem kétirányú a reláció?
- elnevezés: a osztója b-nek, b többszöröse a-nak, a osztja b-t
- példa: 3|21, 7|105
- 0|0

1.2. Z-beli oszthatóság

- $\forall a: 1|a$
- $\forall a : a | a \text{ (reflexív)}$
- $\bullet \ \forall a:a|0$
- $\forall a:0|a \implies a=0$
- $\bullet \ \, \forall a,b,k: a|b \implies a*k|b*k$
- $\forall a, b : a|b \wedge a'|b' \implies aa'|bb'$
 - bizonyítás: ak = b és a'k' = b', tehát aa' * kk' = bb'
- $\bullet \ \forall a,b,k: k \neq 0 \land ak|bk \implies a|b$
- $\forall a, b, c : (a|b \land b|c) \implies a|c \text{ (tranzitiv)}$

1.3. N-beli oszthatóság

- minden igaz, amit felsoroltam \mathbb{Z} alatt
- ha az alaphalmaz \mathbb{N} , akkor $a,b\in\mathbb{N}:(a|b)\Leftrightarrow (\exists c\in\mathbb{N}:a*c=b)$
 - TODO Ez ℤ-ben is igaz, nem? lásd 1.4 lin komb bizonyítás
- $\bullet \ \forall a,b: (a|b \wedge b|a) \implies a = b \ (\text{antiszimmetria})$
 - Z-ben nem igaz: 7 | - 7 és -7|7
- reflexív, antiszimmetrikus és tranzitív: tehát részbenrendezés N-ben

1.4. Lineáris kombincáiós tulajdonság

- Legyen:
 - $-a \in \mathbb{Z}$
 - $-b_1, b_2, ..., b_n \in \mathbb{Z}$
 - $\forall i : a|b_i$
- Akkor:

$$- a | \sum_{i=1}^{n} x_i * b_i (x_1, x_2, ..., x_n \in \mathbb{Z})$$

- Bizonyítás:
 - $-a|b_i \Leftrightarrow \exists k_i : a * k_i = b_i$

$$-\sum_{i=1}^{n} x_i * b_i = \sum_{i=1}^{n} x_i * a * k_i = a * \sum_{i=1}^{n} x_i * k_i$$

• Következmények:

$$-a|b \wedge a|c \implies a|(k_1 * b + k_2 * c) \ (k_i \in \mathbb{Z})$$

2. Legnagyobb közös osztó

- $a, b, d \in \mathbb{Z}$ ('d' 'a' és 'b' legnagyobb közös osztója, ha...)
- d|a és d|b (közös osztó)
- $\forall d' \in \mathbb{Z} : (d'|a \wedge d'|b) \implies d'|d)$ (legnagyobb = minden másik osztja)
- Példa: 18, 30-nak 6 és -6 is LNKO

2.1. LNKO létezésének bizonyítása

- Tétel: $a, b \in \mathbb{Z} \implies \exists d : LNKO \land \exists x, y \in \mathbb{Z} : ax + by = d$
- Bizonyítás:
 - elég a,b > 0-ra belátni
 - ha 0 < b < a akkor {a és b közös osztói} = {a-b és b közös osztói}
 - * lineáris kombináció miatt igaz:
 - $* (d|a \wedge d|b) \implies d|a-b=1*a-1*b$
 - $* (d|a-b \wedge d|b) \implies d|a=1*(a-b)+1*b$
 - lépés: ({} jelezze a rendezetlen párt, ne a halmazt)
 - * ha a > b akkor $\{a, b\} \rightarrow \{a b, b\}$
 - * ha $b \geq a$ akkor $\{a,b\} \rightarrow \{b-a,a\}$
 - * ez nem változtatja meg a közös osztókat
 - előbb-utóbb 0-hoz és egy pozitív számhoz jutunk
 - tehát létezik LNKO
 - $-\exists s, t : d = (a b) * s + b * t \implies \exists x, y : d = a * x + b * y$
 - * megoldás: x=s, y=t-s

2.2. Bővített euklideszi algoritmus

```
• Bemenet: a, b \in \mathbb{Z}^+
   • Kimenet: d, x, y \in \mathbb{Z} (d az LNKO és d = ax + by)
function extended_gcd(a, b)
    (old_r, r) := (a, b)
    (old_s, s) := (1, 0)
    (old_t, t) := (0, 1)
    while r != 0 do
         quotient := old_r div r //egészrészes osztás
         (old_r, r) := (r, old_r - quotient \times r)
         (old_s, s) := (s, old_s - quotient x s)
         (old_t, t) := (t, old_t - quotient \times t)
    return (old_r, old_t, old_s) //t=x, s=y
//Extra: normál, nem bővített euklideszi algoritmus
function gcd(a, b)
    while b != 0
         t := b
         b := a \mod b
         a := t
    return a
   • d=LNKO: {a és b közös osztói} = {d osztói}
        – mert minden lépésnél d osztja r-t és old-r-t
   • lineáris kombinációs rész, indukció:
        - (d osztja a-t és b-t, tehát a és b lineáris kombinációt is)
        - eredeti old-r = a = a*old-s + b*old-t
        - eredeti r = b = a*s + b*t

    következő r is lineáris kombináció lesz
```

2.3. Euklideszi algoritmus a gyakorlatban

$$a = b * q_1 + r_1$$

$$b = r_1 * q_2 + r_2$$

$$r_1 = r_2 * q_3 + r_3$$

...

Ha $r_i = 0$, akkor $lnko(a, b) = r_{i-1}$

Ezt táblázatként a bővített algoritmus részeként láthatjuk.

2.4. Bővített euklideszi algoritmus a gyakorlatban

Kezdő értékek:

$$r_{-1} = a, r_0 = b$$

$$x_{-1} = 1, x_0 = 0$$

$$y_{-1}=0, y_0=1$$

Minden $i \ge 1$ esetén:

$$q_i = \lfloor r_{i-2}/r_{i-1} \rfloor$$

$$x_i = x_{i-2} - q_i * x_{i-1}$$

$$y_i = y_{i-2} - q_i * y_{i-1}$$

$$r_i = a * x_i + b * y_i$$

i	q_i	r_i	x_i	y_i
-1	-	a	1	0
0	-	b	0	1
i	$\lfloor r_{i-2}/r_{i-1} \rfloor$	$r_{i-2} \mod r_{i-1}$	$x_{i-2} - q_i * x_{i-1}$	
		•••		
n-1	?	lnko(a,b)	?	?
n	?	0		

i	q_i	r_i	x_i	y_i
-1	-	86	1	0
0	-	31	0	1
1	2	24	1	-2
2	1	7	-1	3
3	3	3	4	-11
4	2	1	-9	25
5	3	0	-	-

3. Prímszámok

3.1. Prím vs felbonthatatlan

- $f \in \mathbb{Z}$ felbonthatatlan (irreducibilis), ha $f \neq 0$, $f \neq \pm 1$ és f-nek a ± 1 és $\pm f$ -en (triviális osztókon) kívül nincs más osztója
 - $-f = a * b \implies (a = \pm 1) \lor (b = \pm 1)$
- $p \in \mathbb{Z}$ primszám (rendelkezik a prímtulajdonsággal), ha $p \neq 0$ és $p \neq \pm 1$ és $\forall a, b \in \mathbb{Z} : p|a * b \implies p|a \vee p|b$
 - nem prím példa: 15|3 * 5, de 15 //3 és 15 //5

3.2. Felbonthatatlan = prím

- Cél: felbonthatatlanság \Leftrightarrow prímtulajdonság
- Bizonyítás: p prím \implies p felbonthatatlan
 - Indirekt, Tfh. (tegyük fel hogy) $p = a * b \ (a \neq \pm 1, a \neq \pm p)$
 - $-p|a*b \implies (\text{mert prim}) \ p|a \lor p|b$
 - $-p = a * b \implies a|p \wedge b|p$
 - $-p|a \wedge a|p \implies p = \pm a \ (a \text{ helyett } b\text{-re ugyan ezek felírhatók})$
 - ellentmondás
- Bizonyítás: f felbonthatatlan \implies f prím
 - f-nek 4 osztója van: $\pm 1, \pm f$
 - kérdés, hogy igaz-e: $f|a*b \implies f|a \vee f|b$
 - ha f|a*b, de $f \not a$:
 - * f és a közös osztói: ±1 (egyben LNKO)
 - * LNKO = 1 = x * f + y * a (lásd LNKO szekció)
 - * /*b után: b = b * x * f + b * y * a
 - * f osztja az első tagot: f|b*x*f
 - * f|a*b (kikötés), tehát f osztja a második tagot: f|a*y*b
 - \ast tehát fosztjab-tis, hiszenb felírható olyan számok lineáris kombinációjaként, amiket foszt

3.3. Számelmélet alaptétele

- Legyen $n \in \mathbb{Z}, n \neq 0, n \neq \pm 1$. Ekkor n lényegében (előjeltől és sorrendtől eltekintve) felirható prímszámok szorzataként.
- Bizonyítás: létezik felírás
 - Elég $n \ge 2$ esetben
 - Indukció: n=2
 - Legyen n > 2. Minden n-nél kisebbhez létezik felírás
 - Ha n prím, akkor kész vagyunk
 - Ha n nem prím, akkor $\exists 1 < n_1, n_2 < n : n = n_1 * n_2$
 - $\ast\,$ De ekkor n felírható n_1 és n_2 szorzataként, szóval van felírás
- Bizonyítás: egyértelműség
 - Tfh. $n = p_1 * p_2 * ... * p_r = q_1 * q_2 * ... * q_s (p_i \text{ és } q_i \text{ prímek})$
 - p_1 prím és $p_1|q_1*q_2*...*q_s$ ezért $\exists l$ index, hogy $p_1|q_l$
 - * de q_l prím, azaz osztói: $\{\pm 1, \pm q\}$
 - * p_1 nem lehet ± 1 , mert prím
 - * tehát $p_1 = \pm q_l$
 - Folytatva: $\frac{n}{p_1} = p_2 * ... * p_r = \pm q_1 * ... * q_{l-1} * q_{l+1} * ... * q_s = \pm \frac{n}{q_l}$
 - Azaz kisebb számmal folytatjuk, így előbb-utóbb végzünk és arra jutunk, hogy a két szorzat pontosan ugyanazokat a tényezőket tartalmazza (sorrendtől és előjeltől eltekintve)

3.4. Tétel: végtelen sok prím van

- Tfh. összesen n prím van: $p_1, p_2, ..., p_n$
- $x = p_1 * p_2 * ... * p_n + 1$
- ullet x felbontható prímekre, hiszen minden szám felbontható prímekre
- $\bullet \ x-1$ osztható az összes prímmel, tehát xnem osztható egyikkel sem (ellentmondás)

3.5. Prímszámtétel

- $\lim_{x \to \infty} \frac{\pi(x)}{x/ln(x)} = 1$, ahol $\pi(x) = 1 \le p < x$ prímek száma
- $\bullet\,$ Jelentés: prímek száma nagyjából $\frac{x}{\ln(x)}$
- Random szám x körül: 1/ln(x) eséllyel prím
 - -ln(x) arányos x számjegyeinek számával

3.6. Prímfelbontás kanonikus alakja

- Prímfelbontás kanonikus alakja: $n=p_1^{\alpha_1}*p_2^{\alpha_2}*\dots$ (ahol p_i különböző)
- $\bullet\,$ n osztói pontosan azok az $m=p_1^{\beta_1}*p_2^{\beta_2}*...$ számok ahol $\forall i:0\leq\beta_i\leq\alpha_i$
- Bizonyítás:
 - m-nek lenne más prímosztója q
 - $-q|m\wedge m|n\implies q|n\implies$ q n egy tényezője, ellentmondás

3.7. Szám osztóinak száma

- $n=p_1^{\alpha_1}*p_2^{\alpha_2}*\dots$ szám pozitív osztóinak száma: $(\alpha_1+1)*(\alpha_2+1)*\dots$
- mert β_i -re ennyi lehetőség van

3.8. LNKO kiszámítása prímtényezőkből

- $n=p_1^{\alpha_1}*p_2^{\alpha_2}*\dots$ és $m=p_1^{\beta_1}*p_2^{\beta_2}*\dots$ és $\alpha_i=0,\ \beta_i=0$ is meg van engedve
- $\bullet \ LNKO(n,m) = p_1^{\min(\alpha_1,\beta_1)} * p_2^{\min(\alpha_2,\beta_2)} * \dots$

4. Legkisebb közös többszörös

4.1. Definíció

- Legyen $n, m \in \mathbb{Z}$ és $t = LKKT(n, m) \in \mathbb{Z}$
- Ekkor $n|t \wedge m|t$ és $\forall t': (n|t' \wedge m|t') \implies t|t'$
- Kettő LKKT van, normáls esetben a pozitívra gondolunk

4.2. Kiszámítása

- Ha $n=p_1^{\alpha_1}*p_2^{\alpha_2}*\dots$ és $m=p_1^{\beta_1}*p_2^{\beta_2}*\dots$

4.3. LNKO, LKKT kapcsolata

- LNKO(a,b) * LKKT(a,b) = a * b
- Tehát LKKT-t ki lehet számítani a két szám szorzatából és LNKO-ból

5. Kongruencia

5.1. Definíció

- $m, a, b \in \mathbb{Z}$ esetén $a \equiv b \pmod{m} \Leftrightarrow m|a-b|$
- Másik jelölés: $a \equiv b \text{ (m)}$

5.2. Tulajdonságok

- reflexív: $\forall a : a \equiv a \pmod{m}$
- szimmetrikus: $\forall a, b : a \equiv b \pmod{m} \Leftrightarrow b \equiv a \pmod{m}$
 - $-\ m|a-b \Leftrightarrow m|b-a$ (mindkettő lineáris kombináció)
- tranzitív: $\forall a, b, c : a \equiv b \pmod{m} \land b \equiv c \pmod{m}$ $\implies a \equiv c \pmod{m}$

$$-\ m|a-b\wedge m|b-c \implies m|a-c \ (\mathrm{mert}\ a-c = (a-b) + (b-c))$$

- reflexív, szimmetrikus, tranzitív: ekvivalencia reláció
 - mod m szerinti osztályok: m szerinti (modulo m) maradékosztályok

5.3. Modulus tulajdonságai, gyakorlatról trükkök

- $a + b \mod m = (a \mod m + b \mod m) \mod m$
- $a * b \mod m = (a \mod m) * (b \mod m) \mod m$
- $a^x \mod m = (a \mod m)^x \mod m$
- Kis-fermat tétel: $a^p \mod p = a^1 \mod p$ (ahol p prím)
 - Átfogalmazva: $a^{p-1} \mod p = 1$
 - Következmény: $a^x \mod p = a^{(x \mod (p-1))} \mod p$

5.3.1. Ekvivalens átalakítás

- Legyen a kongruencia $a \equiv b \mod m$
- $c \neq 0$ -val szorozni a-t, b-t és m-t
- Legyen $c \neq 0$ és qcd(m,c) = 1, ekkor a, b beszorozható c-vel (m marad)
- Legyen $c \neq 0$, hogy c|a és c|b, ekkor a és b leosztható c-vel, m pedig leosztható qcd(m,c)-vel

5.3.2. Gyorshatványozás

 $(n^x \mod m)$: az x szám felírása 2-es számrendszerben és $n^{(2^k)} \mod m$ értékekhez táblazatot készíteni $(k \in \mathbb{N}_0)$. Itt a következő érték mindig az előző érték négyzete, mod m. Ekkor az n kettő hatványokra emelt mod m értékeiből összerakni az n^x értéket: $n^x \mod m = (\prod n^{(2^k)} \mod m) \mod m$

Példa Legven a feladat 2019¹⁰ mod 7

10 a kettes számrendszerben: 1010

 $Tehát \ 2019^{10} = 2019^{2^3} * 2019^{2^1}$

Tudjuk, hogy $2019^{10} \mod 7 = (2019^{2^3} \mod 7) * (2019^{2^1} \mod 7)$

A táblázatban számoljuk ki $2019^{(2^k)} \mod 7$ értékeket

Tudjuk, hogy $2019^{(2^k)} \mod 7 = (2019 \mod 7)^{(2^k)} \mod 7$ Tudjuk, hogy $2019^{(2^{k+1})} \mod 7 = (2019^{(2^k)} \mod 7)^2 \mod 7$

Táblázatból kiolvasva: $2019^{10} \mod 7 = (2*2) \mod 7$

k	0	1	2	3
$2019^{(2^k)} \mod 7$	3	2	4	2

5.4. Kínai maradéktétel

5.4.1. Állítás

- Legyen $m_1, m_2, ..., m_n$ tetszőleges 1-nél nagyobb egészek, melyek páronként relatív prímek
 - páronként relatív prím: $i \neq j \implies LNKO(m_i, m_i) = 1$
- Ekkor
 - az alábbi szimultán kongruenciarendszer megoldható minden $a_1, a_2, ..., a_n$ egészek esetén
 - az x-ek maradékosztályt alkotnak modulo $M=m_1*m_2*...*m_n$
- $x \equiv a_1 \mod m_1$ $x \equiv a_2 \mod m_2$... $x \equiv a_n \mod m_n$

5.4.2. Bizonyítás

- Legyen n=2 (ha nagyobb, akkor indukcióval megoldható)
- $LNKO(m_1, m_2) = 1 = m_1 * x_1 + m_2 * x_2$
- $A = a_2 * m_1 * x_1 + a_1 * m_2 * x_2$
 - $-A \equiv 0 + a_1 * m_2 * x_2 \mod m_1$
 - $-1 = m_1 * x_1 + m_2 * x_2 \implies 1 \equiv m_1 * x_1 + m_2 * x_2 \mod \text{bármi}$
 - $-1 \equiv m_1 * x_1 + m_2 * x_2 \equiv m_2 * x_2 \mod m_1$
 - $-A \equiv a_1 * m_2 * x_2 \equiv a_1 \mod m_1$
- $A \equiv a_1 \mod m_1$ és $A \equiv a_2 \mod m_2$
- Ezért $x \equiv A \mod m_1 * m_2$
- Be kell látni: A és A' is jó $\Longrightarrow A \equiv A' \mod m_1 * m_2$
 - $-A' \equiv A \equiv a_1 \mod m_1 \implies m_1|A A'|$
 - $-A' \equiv A \equiv a_2 \mod m_2 \implies m_2|A A'|$
 - Ezekből következik: $m_1 * m_2 | A A'| (m_1, m_2)$ relatív prímek)

5.5. Euler-Fermat tétel

5.5.1. Bevezetés

- $ax \equiv ax' \mod m$ és (a, m) = 1 akkor $x \equiv x' \mod m$
 - Bizonyítás: $ax \equiv ax' \mod m$
 - $\Leftrightarrow m|ax ax' = a(x x')$
 - $\implies (\text{mert } (a, m) = 1) \implies m | (x x')$
 - $\Leftrightarrow x \equiv x' \mod m$
- Általánosabban: $ax \equiv ax' \mod m \implies x \equiv x' \mod \frac{m}{(a,m)}$

5.5.2. Euler-féle φ függvény

- $\varphi(m) = |\{x = 1, ..., m \mid (x, m) = 1\}|$
 - -azaz 1 és mközötti, m-mel relatív prím számok száma
- Példa: $\varphi(10) = 4$, mert: 1,3,7,9

5.5.3. Euler-Fermat tétel

- $(a, m) = 1 \implies a^{\varphi(m)} \equiv 1 \mod m$
 - Máshogy: $a^x \equiv a^{x \mod \varphi(m)} \mod m$
- Bizonyítás:
 - Legyen $a_1, a_2, ..., a_{\varphi(m)}$ mindegyike egy különböző szám $\{0, 1, ..., \varphi(m) 1\}$ -ből (melyek relatív prímek m-hez)
 - $-a*a_1, a*a_2, ..., a*a_{\varphi(m)}$ páronként különböznek mod m $*a*a_i \equiv a*a_j \implies a_i \equiv a_j \implies \text{ellent mondás}$
 - $a \cdot a_i = a \cdot a_j \quad , \quad a_i = a_j \quad , \quad \text{elementation}$
 - tehát a $a_1,...,a_{\varphi(m)}$ és a $a*a_1,...,a*a_{\varphi(m)}$ maradékosztályok ugyan azok, legfeljebb más sorrendben
 - * redukált maradékrendszerek, ezeket viszont nem vettük
 - $\implies a_1 * \dots * a_{\varphi(m)} \equiv (a * a_1) * \dots * (a * a_{\varphi(m)}) \mod m$
 - $\implies a_1 * \dots * a_{\varphi(m)} \equiv a^{\varphi(m)} * (a_1 * \dots * a_{\varphi(m)}) \mod m$
 - $\implies 1 \equiv a^{\varphi(m)} \mod m$
- Példa: $7^4 \equiv 1 \mod 10$

5.5.4. Euler-féle φ függvény kiszámítása

- Állítás:
 - Legyen $m = p^{\alpha}$ valami p prímre, $\alpha \ge 1$
 - Akkor $\varphi(m) = p^{\alpha} p^{\alpha-1} = (p-1) * p^{\alpha-1} = \frac{p-1}{p} * m$
 - Példa: $\varphi(125) = \varphi(5^3) = 5^3 5^2 = 100$
- Bizonyítás:
 - $-LNKO(p^{\alpha}, a) = 1 \Leftrightarrow p / a$
 - $-\varphi(p^{\alpha}) = |\{a = 1, ..., p^{\alpha} \mid p \not| a\}| = p^{\alpha} p^{\alpha-1}$
 - * Mert p-vel $p^{\alpha-1}$ pozitív szám osztható (ami $\leq p^{\alpha})$
 - * Más megközelítés: minden p-edik szám kiesik, azaz $p^{\alpha-1}$ darab
- Állítás: φ multiplikatív
 - Legven a, b relatív prímek
 - $-\varphi(a*b) = \varphi(a)*\varphi(b)$
- Bizonyítás:
 - $-x \equiv a_1 \mod a$ és $x' \equiv a_1 \mod a$ esetén: lnko(x, a) = lnko(x', a)
 - Tehát x relatív prím $a*b \Leftrightarrow x$ relatív prím a és b
 - Ez kell: $x \equiv a_1 \mod a$ és $x \equiv b_1 \mod b$
 - * ahol $lnko(a, a_1) = 1$ és $lnko(b, b_1) = 1$
 - $-a_1$ -ből $\varphi(a)$ db van, stb.
 - Kínai maradéktétel miatt biztos van megoldás
- Következmény:
 - Ha $n=p_1^{\alpha_1}*p_2^{\alpha_2}*\ldots*p_r^{\alpha_r}$ (kanonikus alak)
 - Akkor $\varphi(n) = \prod_{k=1..r} (p^{\alpha_k} p^{\alpha_k-1}) = n * \prod_{k=1..r} (1 \frac{1}{p_k})$
 - Példa: $\varphi(100 = 2^2 * 5^2) = (2^2 2^1)(5^2 5^1) = 2 * 20 = 40$

5.6. Egyváltozós lineáris kongruenciák

- $a*x \equiv b \mod m$ ahol a, b, m adott
- ha x megoldás, akkor minden $x' \equiv x \mod m$ is

5.6.1. Megoldási módszer

- $ax \equiv b \mod m$
- Átírva: $\exists y \in \mathbb{Z} : ax b = my$, azaz ax + my = b
- LNKO(a,m) kiszámítása: as + mt = d = (a, m)
- $(a, m) \not| b \implies \text{nincs megoldás}$
- $(a,m) \mid b \implies x \equiv s * \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$ $\left(\frac{a}{(a,m)}, \frac{m}{(a,m)}\right) = 1 = \frac{a}{d} * s + \frac{m}{d} * t$ $\implies \frac{a}{(a,m)} * s = 1 \frac{m}{(a,m)} * t$ $\implies \frac{a}{(a,m)} * s = 1 \frac{m}{(a,m)} * t \equiv 1 \mod \frac{m}{(a,m)}$ $\implies \frac{a}{(a,m)} * \left(s * \frac{b}{(a,m)}\right) \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$
- x' megoldás $\Leftrightarrow x \equiv x' \mod \frac{m}{(a,m)}$

5.6.2. Megoldás diofantikus egyenlet alapján

- $ax \equiv b \mod m \Leftrightarrow \exists y \in \mathbb{Z} : ax + my = b$
- megoldjuk a diofantikus egyenletet
- $x_t = x_0 + \frac{m}{(a,m)}t$ (t = 0, 1, ..., (a, m) 1)
- megoldások: $[x_0] \cup [x_1] \cup ... \cup [x_{(a,m)-1}]$
 - $\{x_0 + mk \mid k \in \mathbb{Z}\} \cup \{x_1 + mk \mid k \in \mathbb{Z}\} \cup ...$
 - $[x] = \{ x' \in \mathbb{Z} \mid x' \equiv x \mod m \}$
- $\bullet \,$ egyszerűsítés: ha megoldható, akkor ekvivalens: $\frac{ax}{(a,m)} \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$

5.7. Lineáris kongruencia rendszerek

5.7.1. Kínai maradéktétellel, páronként relatív prímek esetén

- Legyen i kongruenciánk: $x \equiv c_i \mod m_i$
- m_i páronként relatív prímek
- i-1 lépésben oldjuk meg: mindig 2 kongruenciából csinálunk 1 újat
 - Legyen ez a kettő kongruencia i=1 és i=2
 - $-x \equiv c_2 * m_1 * x_1 + c_1 * m_2 * x_2 \mod m_1 * m_2$
 - Ahol x_1 és x_2 innen jön: $m_1 * x_1 + m_2 * x_2 = 1$ (mindig megoldható)
 - Végül egyetlen kongruencia marad: $x \equiv ? \mod \prod m_i$

5.7.2. Kínai maradéktétellel, nem relatív prímek esetén

- Legyen i kongruenciánk: $x \equiv c_i \mod m_i$
- Ha bármelyik m_j és m_k nem relatív prímek, akkor bontsuk őket szét 2 vagy több kongruenciára, hogy azok legyenek, vagy egymás hatványai.
 - Példa: $x \equiv 4 \mod 15$ és $x \equiv 4 \mod 10$
 - Elsőből: $x \equiv 4 \mod 5$ és $x \equiv 4 \equiv 1 \mod 3$
- Ezek után ha bármelyik $m_i | m_k$ (pl. 2|2 vagy 2|4)
 - vagy ellentmondanak egymásnak és nincs megoldás
 - vagy nem mondanak ellen egymásnak, m_j eldobható
- Ezek után relatív prímek m_i -k és megoldhatók a fenti módszerrel

5.7.3. Behelyetessítős módszerrel

- Legyen i kongruenciánk: $a_i * x \equiv c_i \mod m_i$
- i-1 lépésben oldjuk meg: mindig 2 kongruenciából csinálunk 1 újat
 - Legyen ez a kettő kongruencia i=1 és i=2
 - Elsőből kifejezzük x-et: $x \equiv y \mod m$ (ahol y és m ismert)
 - Felírjuk egyenletként: $x = y + k * m \ (k \in \mathbb{Z})$
 - Behelyettesítjük másodikba: $a_2*(y+k*m) \equiv c_2 \mod m_2 \ (k \in \mathbb{Z})$
 - Megoldjuk k-ra: $k \equiv ? \mod ?$
- Végül egyetlen kongruencia marad: $x \equiv ? \mod ?$

6. Kétváltozós lineáris diofantikus egyenletek

- ax + by = c ahol $a, b, c, x, y \in \mathbb{Z}$ és x, y = ?
- Bővített euklideszi algoritmus: ap + bq = (a, b)
 - megszorozva $\frac{c}{(a,b)}$ -vel:
 - $-x_0 = p * \frac{c}{(a,b)}$
 - $-y_0 = q * \frac{c}{(a,b)}$
 - $-ax_0 + by_0 = c$
- $\bullet \ ax_t + by_t = c$
 - $-x_t = x_0 + \frac{b}{(a,b)}t$
 - $-y_t = y_0 \frac{a}{(a,b)}t$
- Ha csak pozitív megoldások érdekelnek:
 - $x_t>0 \land y_t>0$ egyenletrendszert meg kell oldani

7. Számrendszerek

7.1. Gyakorlati trükkök

• Számrendszer váltás: a számot folyamatosan leosztjuk az új bázissal. A maradékot feljegyezzük. Ha nullához értünk, akkor végeztünk: a maradékot fordított sorrendben (utoljára feljegyzett van a legtöbbet érő helyiértéken) kiolvassuk.

8. ZH 1-re összefoglaló jegyzet

8.1. Kanonikus alak

- Legyen $n = p_1^{a_1} * p_2^{a_2} * \dots$ és $m = p_1^{b_1} * p_2^{b_2} * \dots$
- n osztóinak száma: $(a_1+1)*(a_2+1)*...$
- $\varphi(p^a) = p^a p^{a-1}$ és $\varphi(x * y) = \varphi(x) * \varphi(y)$
- $\bullet \ \ LNKO(n,m) = gcd(n,m) = (n,m) = p_1^{min(a_1,b_1)} * p_2^{min(a_2,b_2)} * \dots$
- $\bullet \ \ LKKT(n,m) = lcm(n,m) = [n,m] = p_1^{\max(a_1,b_1)} * p_2^{\max(a_2,b_2)} * \dots$
- LNKO, LKKT összefüggés: n * m = (n, m) * [n, m]

8.2. Oszthatóság

- $a, b \in \mathbb{Z} : \exists c \in \mathbb{Z} : a * c = b \implies a|b$
- $\forall a: 1 | a \land a | 0$ viszont $0 | a \implies a = 0$
- $a|b \wedge a|c \implies a|(k_1*b+k_2*c)$ (lineáris kombinációs tulajdonság)
- N-ben részbenrendezés: reflexív, tranzitív és antiszimmetrikus
 - Z-ben nem antiszimmetrikus: 7 | - 7 és
 -7|7
- Bővített euklideszi algoritmus: $gcd(a,b) = a*x+b*y \quad (q,r,x,y \text{ táblázat})$

8.3. Kongruencia

- $m, a, b \in \mathbb{Z} : a \equiv b \mod m \Leftrightarrow m|a-b|$
- Ekvivalencia reláció: reflexív, szimmetrikus, tranzitív
- $a*+b \equiv a \mod m*+b \mod m \text{ és } a^x \equiv (a \mod m)^x \pmod m$

8.4. Kis-Fermat tétel, Euler-Fermat tétel

- Kis-Fermat tétel: p prím $\implies a^{p-1} \equiv 1 \mod p$
- Euler-Fermat tétel: $(a,m)=1 \implies a^{\varphi(m)} \equiv 1 \mod m$

8.5. Kongruencia ekvivalens átalakításai

- $a \equiv b \mod m$
- $c \neq 0$: $ac \equiv bc \mod mc$
- gcd(m,c) = 1 és $c \neq 0$: $ac \equiv bc \mod m$
- $c \neq 0$ és c|a és c|b: $\frac{a}{c} \equiv \frac{b}{c} \mod \frac{m}{(m,c)}$

8.6. Kétváltozós lineáris diofantikus egyenletek

- ax + by = c ahol x, y ismeretlen
- $(a,b)|c \Leftrightarrow \text{megoldhat}$ ó
 - Bővített euklideszi algoritmus: ap + bq = (a, b)
 - $a * (p * \frac{c}{(a,b)}) + b * (q * \frac{c}{(a,b)}) = c = a * x_0 + b * y_0$
 - $-x_t = x_0 + \frac{b}{(a,b)}t$ és $y_t = y_0 \frac{a}{(a,b)}t$
- Kongruenciából: $ax \equiv n \mod m \implies \exists y : ax + my = n$
 - Megoldás: $[x_0] \cup [x_1] \cup \dots$ ahol $0 \le t < (a, m)$
 - Egyszerűsítés: $\frac{a}{(a,m)}x \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$ (ekkor csak t=0)

8.7. Kongruenciarendszerek, kínai maradéktétel

- Legyen i db kongruenciánk: $x \equiv c_i \mod m_i$
- Ha m_i páronként relatív prímek: megoldható, kettesével
 - $x \equiv c_2 * m_1 * x_1 + c_1 * m_2 * x_2 \mod m_1 * m_2$
 - Ahol x_1 és x_2 innen jön: $m_1 * x_1 + m_2 * x_2 = 1$ (mindig megoldható)
- Egyébként bontsuk kanonikus formára az m_i -ket: vagy ellentmondás lesz vagy elhagyható m_1 ha $m_1|m_2$ (pl. 2|4).

8.8. Trükkök

- Gyorshatványozás: $a^{12} = a^8 * a^4$ és $a^8 \equiv (a^4 \mod m)^2 \mod m$ Azaz mindig csak az előző eredményt kell négyzetre emelni.
- $\bullet \ (a,m)=1 \implies a^{b^c} \equiv a^n \mod m \text{ \'es } n \equiv b^c \mod \varphi(m)$