

Machine Learning Operations (MLOps)

Overview, Definition, and Architecture

Abolfazl Yarian Spring 2023

Outline

Data science steps for ML

- Data extraction
- Data analysis
- Data preparation
 - Data cleaning
 - Data splitting
 - Transformation and feature engineering

Data science steps for ML

- Model training
 - Implement different algorithm
 - Hyperparameter tuning
- Model evaluation/validation
- Model serving
 - Microservices
 - Edge device
- Model monitoring

MLOps

MLOps (Machine Learning Operations) refers to the practice of applying DevOps (Development Operations) principles to the machine learning workflow. It involves a set of processes, tools, and techniques to build, deploy, monitor, and manage machine learning models in production environments

MLOps

- MLOps manages and automates the end-to-end lifecycle of machine learning models.
- Combines DevOps and data science to streamline development, deployment, and monitoring.
- Improves collaboration, efficiency, and scalability by standardizing tools, processes, and infrastructure.
- Enables continuous integration and delivery, ensuring reliability, security, and performance in production.
- Involves monitoring, testing, and updating ML models to remain accurate and relevant.
- Accelerates innovation, reduces costs, and improves customer satisfaction.

What percentage of your data scientists' time is spent deploying ML models?

36% of survey participants said their data scientists spend **a quarter** of their time deploying ML models

36% of survey participants said their data scientists spend **a quarter to half** of their time deploying ML models

20% of survey participants said their data scientists spend half to three-quarters of their time deploying ML models

7% of survey participants said their data scientists spend **more than three-quarters** of their time deploying ML models

1% of respondents said they were unsure.

MLOps level 0: Manual process

Characteristics

- Manual, script-driven, and interactive process
- Disconnection between ML and operations
- Infrequent release iterations
- No CI/CD
- Deployment refers to the prediction service
- Lack of active performance monitoring

Challenges

- Maintain model's accuracy in production
 - Actively monitor the quality of your model in production
 - Frequently retrain your production models
 - Continuously experiment with new implementations to produce the model

 Set up CT/CI/CD to rapidly test, build and deploy new implementation of the ML pipeline

MLOps level 1: ML pipeline automation(CT)

Data validation

- Data schema skews (stop)
 - Unexpected features
 - Unexpected values
 - Lack of all expected features
- Data value skew (retrain)

Model validation (offline)

- Evaluate predictive quality on test dataset
- Compare with current model performance
- Check for consistency across data segments
- Test for deployment and infrastructure compatibility
- Conduct online validation through canary or A/B testing

Feature store

- Discover and reuse existing feature sets to avoid duplication
- Serve up-to-date feature values from the feature store.
- Use the feature store for experimentation, CT, and online serving to avoid

training-serving skew.

- avoid training-serving skew for:
 - Experimentation (offline)
 - continuous training
 - Online prediction

Metadata management

- Record pipeline versions, timestamps, and executor for lineage, reproducibility, and debugging
- Store parameter arguments passed to the pipeline
- Store pointers to the artifacts produced by each step of the pipeline
- Store pointers to previous models and evaluation metrics for comparison

MLOps level 2: CI/CD pipeline automation

Characteristics

- Development and experimentation
- Pipeline continuous integration
- Pipeline continuous delivery/deployment
- Automated triggering
- Model continuous delivery
- Monitoring

Continuous integration

- Unit tests for feature engineering and model methods in implementation
- Tests for model convergence and avoiding NaN values
- Testing that each component in the pipeline produces the expected artifacts
- Testing integration between pipeline components.

Continuous delivery

- Verify the compatibility of the model with the target infrastructure before deployment
- Test the prediction service by calling the service API with expected inputs
- Test prediction service performance by load testing to capture metrics such as QPS and model latency
- Validate data for retraining or batch prediction
- Verify that models meet predictive performance targets before deployment
- Automate deployment to a test environment triggered by code push to development branch

Open-source libraries

MLOps Stage	Open-source Tool	Alternatives
Source Code	Github	Bitbucket
Feature Store	Feast	Hopsworks
ML Pipeline	Kubeflow	Polyaxon
Model Validation Testing/Maintenance	Deepchecks	Etiq AI, Great Expectations
Model Registry	ml/low MLflow	Neptune
Model Serving	C Ortex	Seldon Core
Model Monitoring	Deepchecks	Prometheus, Grafana

Ihanksi

Any questions?