Assignment 10/24

1 Problem 1

1.1 a)

 $[[if (e) then \{c_1\} else \{c_2\}]].err = [[e]].err \cup test_true([[e]]) \circ [[c_1]].err \cup test_false([[e]]) \circ [[c_2]].err$

1.2 b)

 $[[if (e) then \{c_1\} else \{c_2\}]].inf = test_true([[e]]) \circ [[c_1]].inf \cup test_false([[e]]) \circ [[c_2]].inf$

2 Problem 2

2.1 a)

自反性

因为 (B, \leq_B) 是一个偏序集,所以 $\forall b \in B, b \leq_B b$. 由题知, $f \leq_{A \to B} f \iff \forall a. f(a) \leq_B f(a)$,成立。

传递性

如果 $f \leq_{A \to B} g, g \leq_{A \to B} h$. 即 $\forall a \in A, f(a) \leq g(a), \forall a' \in A, g(a') \leq h(a')$. 令 a' = a, 则 $\forall a \in A, f(a) \leq g(a) \leq h(a)$, 由于 (B, \leq_B) 是一个偏序集,满足传递性。所以有 $\forall a \in A, f(a) \leq h(a)$,即 $f \leq_{A \to B} h$. 即传递性成立。

反对称性

如果 $f \leq_{A \to B} g, g \leq_{A \to B} f$. 即 $\forall a \in A, f(a) \leq g(a), \forall a' \in A, g(a') \leq f(a')$. 令 a' = a, 则由于 (B, \leq_B) 是一个偏序集,满足反对称性。 $\forall a \in A, f(a) \leq g(a), g(a) \leq f(a)$,所以有 $\forall a \in A, f(a) = h(a)$,由函数的性质知,有 f = g. 即反对称性成立。

综上, $(A \to B, \leq_{A \to B})$ 是一个偏序集。

2.2 b)

偏序性已证,现只需证完备性。

先考虑空集: 对于链 $\emptyset \in A \to B$, 要说明完备性,则首先需说明其有最小元。由于已知 B 为完备集,所以有最小元,设为 l, 那么由于 $A \to B$ 是 A 到 B 的所有函数,因而函数 $L := L(a) = l, \forall a \in A$ 属于 $A \to B$ 。因为对任意 $f \in A \to B$,有 $\forall a \in A, f(a) \leq_B l$,所以 L 为 $A \to B$ 的最小元。(:= 表示"定义为")

非空集情况: 对于任意 $S \subseteq A \to B$, 如果其中任意两个元素都可以进行大小 $(\leq_{A \to B})$ 比较,结合偏序集的传递性,即等价于:

$$orall a \in A, f_1(a) \leq_B f_2(a) \leq_B \cdots f_i(a) \leq_B f_{i+1}(a) \leq_B \cdots$$

这里 $f_i \in S, i = 1, 2, 3, \cdots$ 可以为有穷序列,也可以是无穷序列。我们已知 (B, \leq_B) 是一个完备偏序集,而 $\forall a \in A, \{f_i(a) \mid i = 1, 2, 3, \cdots\}$ 是 B 上的一条链,那么其有上确界,记为 $lub(a) \in B$. 下面我们证明 S 的上确界为:

$$F:=F(a)=lub(a), orall a\in A$$

其中 $\mathbb{1}_{(a)}=1$ 当且仅当 a=x. 显然 F 是 $A\to B$ 的一个函数,所以 $F\subseteq A\to B$

首先证明其 sound.

 $\forall f \in S, f \leq_{A \to B} F \iff \forall a \in A, f(a) \leq_B F(a).$ 而由定义知, $\forall a \in A, f(a) \leq_B lub(a)$. 从而成立!

再证明其 tight.

如果存在某个 $g \in A \to B$ 使得对每个 $f \in S$, 均有 $f \leq_{A \to B} g$, 则说明 $\forall a \in A, g(a) \geq_B lub(a)$. 从而 $F \leq_{A \to B} g$.

2.3 c)

我们已经证明其为偏序集。

先考虑空集: 对于 $\emptyset \in A \to B$,我们首先说明其有上确界。由于已知 B 为完备格,所以也为完备集,所以有最小元,设为 l,那么显然函数 $L := L(a) = l, \forall a \in A$ 属于 $A \to B$,为 $A \to B$ 的最小元,即为 \emptyset 的上确界。

非空集情况: 如果 (B, \leq_B) 为完备格,那么其 B 的任意子集 S 均有上确界. 而对于 $A \to B$ 的任意子集 S', 有 $\forall a \in A, \{f(a), f \in S'\} \subseteq B$ 有上确界记做 lub(a).

事实上, 只需和上题一样取

即可。和上一题类似证明:

首先证明其 sound.

 $\forall f \in S, f \leq_{A \to B} F \iff \forall a \in A, f(a) \leq_B F(a).$ 而由定义知, $\forall a \in A, f(a) \leq_B lub(a)$. 从而成立!

再证明其 tight.

如果存在某个 $g \in A \to B$ 使得对每个 $f \in S$, 均有 $f \leq_{A \to B} g$, 则说明 $\forall a \in A, g(a) \geq_B lub(a)$. 从而 $F \leq_{A \to B} g$. 从而得证 $A \to B$ 为完备格。

3 Problem 3

考虑集合 $A = \{\emptyset, \{1\}, \{2\}\}$ 上的包含关系(\subseteq)。首先,它是一个偏序集。

- 自反性: 对于任意 $a \in A, a \leqslant_A a$, 成立。
- 传递性: 对于任意 $a,b,c\in A$, 如果 $a\leqslant_A b$ 、 $b\leqslant_A c$, 那么 $a\leqslant_A c$, 成立。
- 反对称性: 对于任意 $a,b \in A$, 如果 $a \leq_A b$ 、 $b \leq_A a$, 那么 a = b, 成立。

而它是一个完备偏序集。因为其上的链 $S_1=\{\{1\}\}, S_2=\{\{2\}\}, S_3=\{\emptyset\}, S_4=\emptyset, S_5=\{\{1\},\emptyset\}, S_6=\{\{2\},\emptyset\}$ 均有上确界,然而由于 $A\subseteq A$,但是 A 并没有上确界,因为 $\{1,2\}\not\in A$. 从而不为完备格。