onoio

Introduction to IP Routing

Table of Contents

O

- Routing Basics
- ► IP Routing Process
- Static and Dynamic Routing

- O
- IP routing is the process of sending packets from a host on one network to another host on a different remote network
- This process is usually done by routers
- Routers use routing tables
- Routers don't really care about hosts—they care only about networks and the best path to each network

To be capable of routing packets, a router must know at least the following information:

- Destination network address
- Neighbor routers from which it can learn about remote networks
- Possible routes to all remote networks
- The best route to each remote network
- How to maintain and verify routing information

d

- Each router maintains a routing table
- Routing table is used to determine the path to the destination network
- Each routing table consists of:
 - Network destination and subnet mask
 - Remote router IP address of the router

[Comware] display ip routing-table

Outgoing interface

```
Routing Tables: Public
Destinations: 7 Routes: 7
Destination/Mask
                   Proto
                                      NextHop
                                                  Interface
                          Pre
                              Cost
                                      10.1.1.5
10.2.0.0/18
                   OSPF
                          10
                               110
                                                  Vlan3
10.2.64.0/18
                                      10.1.1.13
                                                  Vlan5
                   OSPF
                          10
                               130
10.2.128.0/17
                   OSPF
                               30
                                      10.1.1.5
                                                  Vlan3
                          10
10.2.192.0/17
                                      10.1.1.13
                                                  Vlan5
                   OSPF
                          10
                               40
<-output omitted->
```


<u>H1</u>

IP Packet

Source: 192.168.1.1 Destination: 192.168.2.2

Data

Is the destination local or remote?

Looks own IP Address and Subnet Mask

Network ID is 192.168.1 Destination is remote

```
C:\Users\H1>ipconfig
Windows IP Configuration
Ethernet adapter Ethernet 1:
    Connection-specific DNS Suffix . : nwl.local
    Link-local IPv6 Address . . . : fe80::88fd:962a:44d6:3a1f%4
    IPv4 Address . . . . . . . . : 192.168.1.1
    Subnet Mask . . . . . . . . . : 255.255.255.0
    Default Gateway . . . . . . . . . : 192.168.1.254
```


<u>H1</u>

The destination host is on another network, so I have to build an ethernet frame but do I know the destination MAC address of the default gateway?


```
C:\Users\H1>arp -a
Interface: 192.168.1.1 --- 0x4
  Internet Address
                        Physical Address
                                               Type
 192.168.1.254
                        fa-16-3e-3f-fd-3c
                                               dynamic
  192.168.1.255
                        ff-ff-ff-ff-ff
                                               static
                        01-00-5e-00-00-16
  224.0.0.22
                                               static
                        01-00-5e-00-00-fb
  224.0.0.251
                                               static
                        01-00-5e-00-00-fc
  224.0.0.252
                                               static
  239.255.255.250
                        01-00 5e-7f-ff-fa
                                               static
```

Ethernet Frame

Source: FA16.3E87.9C2A

Destination: FA16.3E3F.FD3C

Source: 192.168.1.1

Destination: 192.168.2.2

Data

Version Time to Live 255 Header Checksum

FCS is wrong!

FCS

Drop the frame

IP Option

R1

R1#show ip route

Gateway of last resort is not set

Check routing table if destination address matches any

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, GigabitEthernet0/1
L 192.168.1.254/32 is directly connected, GigabitEthernet0/1
S 192.168.2.0/24 [1/0] via 192.168.12.2
L 192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.12.0/24 is directly connected, GigabitEthernet0/2 192.168.12.1/32 is directly connected, GigabitEthernet0/2

Check ARP table if destination address (192.168.12.2) matches any

```
R1#show ip arp
                                       Hardware Addr
Protocol
          Address
                                (min)
                                                        Type
                                                               Interface
                            Age
Internet
          192.168.1.1
                                  58
                                       fa16.3e87.9c2a
                                                        ARPA
                                                               GigabitEthernet0/1
          192.168.1.254
                                       fa16.3e3f.fd3c
                                                               GigabitEthernet0/1
Internet
                                                        ARPA
         192.168.12.1
                                       fa16.3e02.83a1
                                                      ARPA
                                                               GigabitEthernet0/2
Internet
         192.168.12.2
                                       fa16.3e01.0c98
Internet
                                  95
                                                        ARPA
                                                               GigabitEthernet0/2
```


<u>**R1**</u>

Build a new frame and send to R2

Source: Destination: Source: Destination: 192.168.1.1 Destination: Data

<u>R2</u>

- Check the FCS of the Ethernet frame
- De-encapsulate the IP packet, discard the frame
- Check the IP header checksum
- Check the destination IP address

Destination:

Source:

R2 Check its routing table for destination IP address

```
FA16.3E87.9C2A FA16.3E01.0C98 192.168.1.1 192.168.2.2 Data

R2#show ip route

S 192.168.1.0/24 [1/0] via 192.168.12.1

192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.2.0/24 is directly connected, GigabitEthernet0/1

192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.12.0/24 is directly connected, GigabitEthernet0/1

192.168.12.0/24 is directly connected, GigabitEthernet0/2

192.168.12.0/24 is directly connected, GigabitEthernet0/2

192.168.12.2/32 is directly connected, GigabitEthernet0/2
```

Source:

Decrease TTL to 253 and check the ARP table if destination address (192.168.2.2) matches any

Destination:

```
R2#show ip arp
Protocol Address
                           Age (min)
                                      Hardware Addr
                                                      Type
                                                             Interface
         192.168.2.2
                                      fa16.3e4a.f598
                                                             GigabitEthernet0/1
Internet
                                121
                                                      ARPA
                                                             GigabitEthernet0/1
Internet 192.168.2.254
                                      fa16.3e3c.7da4
                                                      ARPA
Internet 192.168.12.1
                                111
                                      fa16.3e02.83a1
                                                      ARPA
                                                             GigabitEthernet0/2
Internet
         192.168.12.2
                                      fa16.3e01.0c98
                                                      ARPA
                                                             GigabitEthernet0/2
```

<u>R2</u>

Build a new frame and send to H2

Source: Destination: Source: Destination: 192.168.1.1 Destination: Data

<u>H2</u>

- Checks the FCS
- Finds its own MAC address as the destination MAC address
- De-encapsulates the IP packet from the frame
- Finds its own IP address as the destination in the IP packet

The host has a simple decision to make:

- Is the destination on the local network?
 - Check ARP table for **destination** IP address, if empty, send an ARP request.
- Is the destination on a remote network?
 - Check ARP table for **default gateway** IP address, if empty, send an ARP request.

The router has to perform a number of tasks:

- When it receives an Ethernet frame, checks if the FCS is correct. If not, drops the frame
- Checks if the destination address of the frame is:
 - destined to router's MAC address
 - destined to a broadcast address of the network router's interface is in
 - destined to a multicast address that the router listens to
- De-encapsulates the IP packet from the frame, discard the Ethernet frame
- Looks for a match in the routing table for the destination IP address, figures out what the outgoing interface and optionally, the next hop IP address is
- Decreases the TTL field in the IP header, recalculates the header checksum
- Encapsulates the IP packet in a new Ethernet frame
- Checks the ARP table for the destination IP address or next hop IP address
- Transmits the frame

IP Routing Flow Chart - Remote Network

O

- How routers know the IP destinations?
- In static routing (or non-adaptive) routing, tables created and updated manually

- In dynamic routing (or adaptive) routing, tables created and updated automatically using routing protocols
- Dynamic routing is used in larger networks
- Finds the optimal route (fastest path)
- Reacts to topology changes and failures, recalculates optimal path

Static	Dynamic
Routes are user defined	Routes are updated according to the topology
Does not use complex routing algorithms	Uses complex routing algorithms
Provides high or more security	Provides less security
Manual	Automated
Implemented in small networks	Implemented in large networks
Additional resources are not required	Additional resources are required

