Support Vector Machines (SVM)

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"The key to artificial intelligence has always been the representation"
-Jeff Hawkins

What are Support Vector Machines?

*This lesson refers to chapter 9 of the GIDS book

What you will learn

- Support Vector Machines (SVM)
 - Overview
 - Dual Representation
 - Kernel Functions
 - Margin of Error

Datasets

- Datasets used : iris dataset
- Example Workflows:
 - "SVM on iris dataset "https://kni.me/w/DTfbNITUngKQVF8v
 - Normalization
 - SVM

General idea:

- For classification, linear separation is enough
- For regression, linear regression is enough
- → Given that data is transformed to a space where linear methods work

- Explicit transformation is not necessary
- All you need is a kernel function $\Phi(\cdot)$ describing the transformation to the linear space

Overview

Main idea of Kernel Methods

- Embed data into suitable vector space
- Find linear classifier (or other linear pattern of interest) in new space
- Needed: a Mapping

$$\Phi$$
: $x \in X \to \Phi(x) \in F$

Kernel Trick

- Information about relative position is often all that is needed by learning methods
- The inner products between points in the projected space can be computed in the original space using special functions (kernels).

Linear Discriminant Function

- Consider a binary classification problem, with ±1 as the classes
- Linear discriminat function f(x) return which side of the discrimating line ℓ a point x lies

$$f(x) = w^T x + b = b + ||w|| ||x|| \cos(\angle(w, x))$$

– Desicion function h(x) classify x according to h(x) = sign(f(x))

Linear Discriminant Function

Linear discriminants represent hyperplanes in feature space

$$f(x) = w^T x + b = b + ||w|| ||x|| \cos(\angle(w, x))$$

Linear Discriminant Function

-x lies either side of the discriminant function depending on the angle $\angle(w,x)$

Support Vectors

- To represent w, we only need points which lie closest to the separating hyperplane → known as support vectors
- The margin γ distance between the hyperplane and a support vector
- The margin γ is calculated as: $\gamma = \max_{\mathbf{w}} \min_{j} \mathbf{w}^{T} \mathbf{x}_{j}$

Dual Representation

Dual Representation

Weight vector w is a weighted sum of input x_j

$$\mathbf{w} = \sum_{j=1}^{n} \alpha_j \cdot y_j \cdot \mathbf{x}_j$$

Where α_i represents how much x_i contributes to w

- Large α_i : x_i is difficult to classify higher information content
- Small or zero α_i : x_i easy to classify smaller information content
- \rightarrow This representation with α_j 's known as **dual representation**
- We can now represent the discriminant function as

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \left(\sum_{j=1}^n \alpha_j \cdot y_j \cdot \mathbf{x}_j^T \mathbf{x}\right) + b$$

Dual Representation Learning Algorithm

- Both $lpha_i$ and b can be updated iteratively
- At iteration t,
- IF:

$$y_j \cdot \left(\sum_{j'} \alpha_{j'} \cdot y_{j'} \cdot x_{j'}^T x_j + b\right) < 0$$

– THEN:

$$\alpha_j^{(t+1)} = \alpha_j^{(t)} + y_j$$

$$b_j^{(t+1)} = b_j^{(t)} + y_j \cdot R^2$$

- Where $R = \max_{j} ||x_j||$

Dual Representation

```
Dual Representation of Learning Algorithm:
Given a training set S
    \vec{\alpha} \leftarrow \mathbf{0}: b \leftarrow 0
    R \leftarrow \max_{1 \leq i \leq m} ||x_i||
    repeat
              for i = 1 to m
                 if y_i(\sum_{i=1}^m \alpha_i y_i \langle \vec{x_i}, \vec{x_i} \rangle + b) \leq 0 then
                      \alpha_i \leftarrow \alpha_i + 1
                      b \leftarrow b + y_i R^2
                   end if
             end for
    until no mistakes made within the for loop
    return (\vec{\alpha}, b)
```

Projection to Other Spaces

- So far, we have seen training via computation of inner products
- \rightarrow Indicating which side of the linear decision boundary x falls into
- Say, it is hard to find a linear boundary in the original space

 Solution: project to another space, find the linear boundary in the projected space, classify in the projected space

Kernel Functions

Kernel Functions

- A **kernel function** K is the inner product of data projected by the function Φ

$$K(\boldsymbol{x}_1, \boldsymbol{x}_2) = \Phi(\boldsymbol{x}_1)^T \Phi(\boldsymbol{x}_2)$$

- It is not necessary to transform the original data into the projected space before learning linear SVM
- The discriminant function in the projected space

$$f(\mathbf{x}) = \left(\sum_{j=1}^{n} \alpha_j \cdot y_j \cdot \Phi(\mathbf{x})^T \Phi(\mathbf{x}_j)\right) + b$$

 $-\,$ Or with the kernel function K

$$f(\mathbf{x}) = \left(\sum_{j=1}^{n} \alpha_j \cdot y_j \cdot K(\mathbf{x}, \mathbf{x}_j)\right) + b$$

Gram Matrix

All data necessary for

- The decision function h(x)
- The training of the coefficients

Can be pre-computed using a Gram matrix *K*

$$K = \begin{pmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_m) \\ K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_m) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_m, x_1) & K(x_m, x_2) & \cdots & K(x_m, x_m) \end{pmatrix}$$

Rules for a Gram Matrix

For Gram Matrices, interesting observations hold

- Symmetric
- Positive definite
- Eigenvectors of the matrix correspond to the input vectors

Moreover,

Every positive definite & symmetric matrix is a Gram matrix

Examples of Kernels

Polynomial kernel of degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + c)^d$$

Examples of Kernels

Gaussian kernel

$$K(\mathbf{x}, \mathbf{y}) = e^{-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}}$$

Also known as radial basis function (RBF) kernel

Margin of Error

Soft and Hard Margin Classifiers

- What can we do if no linear separating hyperplane exists?
- Solution: allow minor violations also known as soft margins
 - → In contrast, avoiding any misclassifications ≡ *hard margins*

Soft and Hard Margin Classifiers

- How do we implement soft margins? o via **slack variables** $arepsilon_j$
- Introducing the slack variables to the minimization constraint

$$\forall j = 1, ..., n: \quad y_j \cdot (\mathbf{w}^T \mathbf{x}_j + b) \ge 1 - \varepsilon_j$$

- Misclassifications are allowed if slack $\varepsilon_i > 1$ is allowed
- The minimization problem is solved using Lagrange multipliers

$$\arg\min\frac{1}{2}\|w\|^2 + C\sum_{j}\varepsilon_{j}$$

- Subject to: $y_j \cdot (\mathbf{w}^T \mathbf{x}_j + b) \ge 1 \varepsilon_j$
- − The regularization parameter C > 0 controls the "hardness" of the margins (large $C \rightarrow$ hard margins, small $C \rightarrow$ soft margins)

Multi-Class SVM

How do we separate more than two classes?

- Transform the problem into a set of binary classification problems
 - One class vs. all other classes.
 - One class vs. another class, for all possible class pairs
- The class with the farthest distance from the hyperplane wins

Support Vector Regression

The key idea: change the optimization

$$\arg\min\frac{1}{2}\|w\|^2$$

- Subject to: $y_j - (\mathbf{w}^T \mathbf{x}_j + b) \le \varepsilon$ for $1 \le j \le n$

- This require the prediction error to be within a margin arepsilon
- We can introduce slack variables to tolerate larger errors

Support Vector Machines

Support Vector Machine

- Classifier as weighted sum over inner products of training pattern (or only support vectors) and the new pattern.
- Training analog

Kernel-Induced feature space

- Transformation into higher-dimensional space (where we will hopefully be able to find a linear separation plane).
- Representation of solution through few support vectors (> 0).

Maximum Margin Classifier

- Reduction of Capacity (Bias) via maximization of margin (and not via reduction of degrees of freedom).
- Efficient parameter estimation.

Relaxations

Soft Margin for non separable problems.

Practical Examples with KNIME Analytics Platform

Workflow training an SVM model to classify the iris data set

SVM on the Iris Data

- The configuration window of the SVM Learner node
- Allows a selection of a kernel and the associated parameters
- Overlapping penalty controls the margin hardness

Thank you

For any questions please contact: education@knime.com