<u>SÖZDİZİM</u> ÇÖZÜMLEME (2)

1

Temel Ayrıştırma Yöntemleri

- Ayrıştırıcı bir sözcük katarının L(G) dilinin kuralları ile türetilir olup olmadığını inceler ve bu süreç boyunca sözcük katarına ilişkin bir ayrıştırma ağacı oluşturur
- Ayrıştırma yöntemleri ağacın oluşturulma düzenine göre ikiye ayrılır
 - Yukarıdan-aşağıya (top-down)
 - Aşağıdan-yukarıya (bottom-up)

Yukarıdan-aşağıya Ayrıştırma

Yukarıdan-aşağıya ayrıştırma:

Bu grupta yer alan yöntemler başlangıç simgesi S'ten başlar, S'i ağacın köküne yerleştirir ve sözcük katarını yapraklarda elde edene kadar ağacı derinliğine doğru kuracak olan türetim adımlarını gerçekleştirirler

Aşağıdan-yukarıya Ayrıştırma

Aşağıdan-yukarıya ayrıştırma:

Bu grupta yer alan yöntemler ise sözcüklerden başlayıp, bunları yapraklara yerleştirirler ve bu yaprakları türeten kuralları bulup ara düğümleri oluşturarak, ağacı aşağıdan yukarıya doğru kurarlar. Amaç, köke S başlangıç simgesini yerleştirebilmektir

Yukarıdan-aşağıya Ayrıştırma Yöntemi

Amaç:Bir sözcük katarını üreten en-soldan türetimler dizisi oluşturmak

$S \rightarrow E + S \mid E$
$E \rightarrow sayı \mid (S)$

Kısmen türetilmiş katar	sonraki sözcük ayrı	<u>ştırılmış/ayrıştırılmamış</u>
\rightarrow E + S	((1+2+(3+4))+5
\rightarrow (S) + S	1	(1+2+(3+4))+5
\rightarrow (E+S)+S	1	(1+2+(3+4))+5
\rightarrow (1+S)+S	2	(1+2+(3+4))+5
\rightarrow (1+E+S)+S	2	(1+2+(3+4))+5
\rightarrow (1+2+S)+S	2	(1+2+(3+4))+5
\rightarrow (1+2+E)+S	((1+2+(3+4))+5
\rightarrow (1+2+(S))+S	3	(1+2+(3+4))+5
\rightarrow (1+2+(E+S))+S	3	(1+2+(3+4))+5
→		

5

Yukarıdan-aşağıya Ayrıştırmada Sorun

 Bir sonraki giriş sözcüğüne bakarak hangi türetim kuralının seçileceğine karar verebilmek gerekir

```
S \rightarrow E + S \mid E

E \rightarrow \text{sayı} \mid (S)

Örnek giriş 1: "(1)" S \rightarrow E \rightarrow (S) \rightarrow (E) \rightarrow (1)

Örnek giriş 2: "(1)+2" S \rightarrow \underline{E+S} \rightarrow (S)+S \rightarrow (E)+S \rightarrow (1)+E \rightarrow (1)+2
```

Örnek 2'de, "E+S" türetiminin seçimine nasıl karar verilir? Eğer "E+S" yerine "(S)" seçilmiş olsaydı işlem başarıyla sonuçlanır mıydı?

Sorunun Kaynağı Gramerdir

$$S \rightarrow E + S \mid E$$

 $E \rightarrow sayı \mid (S)$

- Bu gramer ile, yalnızca <u>bir tane</u> "sonraki sözcük" kullanılarak yukarıdan-aşağıya ayrıştırma işlemi yapılamaz → LL(1) grameri değildir!
 - LL(1) = bir tane (1) sonraki sözcük ile, en soldan türetimler kullanılarak (<u>L</u>eft-most derivation), soldansağa taranabilir(<u>L</u>eft-to-right scanning) gramer
 - Yukarıdan-aşağıya ayrıştırmanın mümkün olabilmesi için, grameri yeniden düzenleyip LL(1) hale getirmek gerekir.

LL(1) Gramerine Dönüştürme (1)

$$A \rightarrow \alpha \beta \mid \alpha \gamma$$

Sorun: A'in hangi seçeneğini tercih edilmesi gerektiğine, ancak ilk ifadeyi (α) izleyen sözcüğü gördükten sonra karar verilebilmesi Çözüm: A seçeneklerinin ortak olan bölümünü (α) alıp, karar noktasına yeni bir nonterminal (A') ekle. A' tanımında, türetimlerin geriye kalan bölümlerine yer ver.

$$A \rightarrow \alpha \beta \mid \alpha \gamma \quad \Longrightarrow \quad A \rightarrow \alpha A'$$
$$A' \rightarrow \beta \mid \gamma$$

LL(1) Gramerine Dönüştürme (2)

 $S \rightarrow E + S$

 $S \rightarrow E$

 $E \rightarrow say1$

 $E \rightarrow (S)$

 $S \rightarrow ES'$ $S' \rightarrow \varepsilon$

 $S \rightarrow \varepsilon$ $S' \rightarrow +S$

E → sayı

 $E \rightarrow (S)$

• Sorun: S'in hangi seçeneğini tercih edilmesi gerektiğine, ancak ilk ifadeyi (E) izleyen sözcüğü gördükten sonra karar verilebilmesi

• Çözüm: S tanımlarının ortak olan bölümünü (E) alıp, karar noktasına yeni bir nonterminal (S') ekle.

S' tanımında, türetimlerin geriye kalan bölümlerine yer ver.

 $S' \rightarrow +S \text{ ve } S' \rightarrow \varepsilon$

Yeni Gramer ile Ayrıştırma

 $S \rightarrow ES'$

 $S' \rightarrow \varepsilon \mid +S$

 $E \rightarrow say_1 \mid (S)$

kısmen türetilmiş katar	sonraki sözcük	ayrıştırılmış/ayrıştırılmamış
→ES'	((1+2+(3+4))+5
\rightarrow (S)S'	1	(1+2+(3+4))+5
→ (ES')S'	1	(1+2+(3+4))+5
→ (1S')S'	+	(1+2+(3+4))+5
→ (1+ES')S'	2	(1+2+(3+4))+5
\rightarrow (1+2S')S'	+	(1+2+(3+4))+5
\rightarrow (1+2+S)S'	((1+2+(3+4))+5
\rightarrow (1+2+ES')S'	((1+2+(3+4))+5
\rightarrow (1+2+(S)S')S'	3	(1+2+(3+4))+5
\rightarrow (1+2+(ES')S')S'	3	(1+2+(3+4))+5
\rightarrow (1+2+(3S')S')S'	+	(1+2+(3+4))+5
→(1+2+(3+E)S')S'	4	(1+2+(3+4))+5

Tahmine Dayalı Ayrıştırma

- LL(1) gramer:
 - Belirli bir non-terminal için, bir sonraki sözcük (lookahead symbol) uygulanacak olan türetim kuralını kesinlikle belirler
 - Yukarıdan aşağıya ayrıştırma → "Tahmine Dayalı Ayrıştırma" (Predictive Parsing) adını alır
 - Doğru tahminleri yönlendiren bir ayrıştırma tablosu yardımıyla adımlar yürütülür.
 - Tablonun her satırı bir non-terminale, her sütünü da bir terminal sözcüğe karşı düşer:

non-terminal x terminal → türetim kuralları

11

Tablo ile Ayrıştırma

 $S \rightarrow ES'$

kısmen türetilmiş katar sonraki sözcük ayrıştırılmış/ayrıştırılmamış \rightarrow ES' (1+2+(3+4))+5 \rightarrow (S)S' 1 (1+2+(3+4))+5**→**(ES')S' (1+2+(3+4))+5**→**(1S')S' (1+2+(3+4))+5 \rightarrow (1+S)S' 2 (1+2+(3+4))+5 \rightarrow (1+ES')S' (1+2+(3+4))+5 \rightarrow (1+2S')S' (1+2+(3+4))+5Avristirma Tablosu

 $S' \rightarrow \varepsilon \mid +S$

 $E \rightarrow say1 | (S)$

	sayı	+ 1	()	\$
S	→ ES'		→ ES'		
S'		→ +S		→ ε	→ ε
Е	→ sayı		→ (S)		

Ayrıştırıcının Gerçeklenmesi

- Tablo kolaylıkla bir "Rekürsif İniş Ayrıştırıcısı" na (Recursive Descent Parser) dönüştürülebilir
- Her biri ayrı bir nonterminali ayrıştırmak üzere, 3 fonksiyona gerek olacaktır:

```
ayrıştır_S(), ayrıştır _S'(), and ayrıştır _E()
```

	num	+	()	\$
S	→ ES'		→ ES'		
S'		→ +S		→ ε	→ ε
Е	→ num		→ (S)		

1.

Rekürsif-İniş Ayrıştırıcısı

```
void ayrıştır_S() {
    switch (sözcük) {
        case sayı: ayrıştır_E(); ayrıştır_S'(); return;
        case '(': ayrıştır_E(); ayrıştır_S'(); return;
        default: AyrıştırmaHatası();
    }
}
```

	sayı	+	()	\$
S	→ ES'		→ ES'		
S'		\rightarrow +S		→ ε	⇒ ε
Е	→ sayı	\rightarrow	(S)		

Rekürsif-İniş Ayrıştırıcısı(2)

```
void ayrıştır_S'() {
    switch (sözcük) {
        case '+': sözcük = input.read(); ayrıştır_S(); return;
        case ')': return;
        case EOF: return;
        default: AyrıştırmaHatası();
    }
}
```

	sayı	+	()	\$
S	→ ES'		→ ES'		
S'		→ +S		→ ε	⇒ ε
Е	→ sayı	\rightarrow	(S)		

15

Rekürsif-İniş Ayrıştırıcısı(3)

Çağrı Ağacı = Ayrıştırma Ağacı

17

Ayrıştırma Tablosunun Oluşturulması

Verilen gramerden ayrıştırma tablosunu otomatik olarak üretecek bir algoritmaya gereksinim vardır.

$$S \rightarrow ES'$$

 $S' \rightarrow \varepsilon \mid +S$
 $E \rightarrow sayı \mid (S)$

	sayı	+	()	\$
S	EŠ'		ÈS'		
S'		+S		ε	3
Е	sayı		(S)		

Ayrıştırma Tablosunun Oluşturulması

- Ayrıştırıcının oluşturulabilmesi için:
 - Bir non-terminal simgeyi izleyebilecek her sonraki sözcüğün en fazla bir türetim kuralıyla indirgenebilir olması gerekir
 - İki yardımcı kavram yararlı olacaktır:
 İLK ve İZLE (FIRST ve FOLLOW) kümeleri

19

<u>İLK VE İZLE KÜMELERİ</u>

- İLK(β):(β: herhangi terminal/non-terminal simgeleri katarı)
 - β' nın her farklı açılımında ilk simge olarak yer alabilecek olan tüm terminal simgeler kümesi
- İZLE(X): (X: bir non-terminal)
 - X'in türetimini izleyebilecek olan tüm giriş simgeleri kümesi

Ayrıştırma Tablosu Girişleri

- $X \rightarrow \beta$ türetimini ele alalım:
- Tablonun X satırını seçip, İLK(β) kümesinde yer alan her simgenin gösterildiği her sütuna "→ β" ekle
- Eğer β'dan boş katar (ε) türetilebilir ise, İZLE(β) kümesinde yer alan her simgenin gösterildiği sütuna da "→" β ekle
- Sonuç tabloda çelişen girişler oluşmaz ise gramer LL(1)'dir

$S \rightarrow ES'$
$S' \rightarrow \varepsilon \mid +S$
$E \rightarrow say1 \mid (S)$

	sayı	+	()	\$
S	EŠ,		ÈS'		
S'		+S		3	3
Е	sayı		(S)		

2

İLK Kümesinin Belirlenmesi

İLK (X) kümesinin oluşturulması:

- 1. X bir <u>terminal</u> ise, $ILK(X) = \{X\}$
- 2. X bir <u>non-terminal</u> ve $X \rightarrow a\alpha$ ise, a terminalini $\dot{I}LK(X)$ kümesine ekle.
- 3. $X \rightarrow \varepsilon$ ise, ε İLK(X) kümesine ekle
- 4. X bir <u>non-terminal</u> ve X → Y1Y2...Yk ise, eğer a € İLK(Yi) ve ε € İLK(Yj), j = 1...i-1 ise, a terminalini İLK(X) kümesine ekle (Y1...Yi-1 katarının ε indirgenebilme durumu)
- 5. ε € İLK(Y1Y2...Yk) ise ε İLK(X) kümesine ekle

İLK Kümesi İçin Örnek

 $ILK(E) = \{say1, (\}$

 $S \rightarrow ES'$

2

İZLE Kümesinin Belirlenmesi

İZLE (X) kümesinin oluşturulması:

- 1. S başlangıç simgesi ise, \$ simgesini İZLE(S) kümesine ekle
- 2. $A \rightarrow \alpha B\beta$ ise, $\dot{I}LK(\beta)$ kümesinin ϵ dışındaki tüm elemanlarını $\dot{I}ZLE(B)$ kümesine ekle
- 3. A $\rightarrow \alpha B$ veya A $\rightarrow \alpha B \beta$ ve $\epsilon \in \dot{I}LK(\beta)$ ise, $\dot{I}ZLE(A)$ kümesinde yer alan tüm elemanları $\dot{I}ZLE(B)$ kümesine ekle

İZLE Kümesi İçin Örnek