λCoq exercises for beginners

```
July 12, 2014 - Tagged as: coq, en.
```

Formalizing abstractions/data structures and proving theorems about them in Coq is so r simple exercises that consist of encoding some abstractions and laws we know from alge and then proving that some particular set + some operations on that set obeys the laws.

Using my amazing(!) JavaScript skills, I set up some "show/hide answer" buttons after eac but the latter ones are relatively harder. Some abstractions/laws are inspired by Haskell.

Please note that I'm a beginner so my solutions probably have some flaws if you want to programs:) I'm currently learning about typeclasses and records of Coq and I'm open to:

In exercises, when we talk that an abstraction should obey some laws, you need to enforce need to make constructors in a way that user would have to prove that the data structure

```
Require Import List.
Import ListNotations.
Open Scope list scope.
```

Exercise 1

A <u>semigroup</u> is a set together with an associative binary function. For example, natural nuform a semigroup, because we know/can prove that addition function is associative. More

```
forall (n1 \ n2 \ n3 : nat), n1 + (n2 + 3) = (n1 + n2) + n3.
```

Encode semigroups in Coq.

```
Show solution (ex. 1.1)
```

Now prove that lists together with append operation form a semigroup. Use standard Co

```
Theorem list_semigroup : forall A, semigroup (list A) (@app A).
Proof.
  intro. apply Semigroup_intro. intros.
  induction a1.
  + reflexivity.
  + simpl. f_equal. induction a2; auto.
Qed.
```

Exercise 2

A monoid is a semigroup with an identity element. In our addition example, identity element to the monoid function(addition) as first or second argument, results is the other argument.

```
forall (n : nat), 0 + n = n / n + 0 = n.
```

Encode monoids in Coq.

```
Inductive monoid A Op (sg : semigroup A Op) (U : A) : Prop :=
| Monoid_intro :
    semigroup A Op -> (forall (a : A), Op U a = Op a U /\ Op U a = a
```

```
Hide solution (ex. 2.1)
```

Now prove that lists with empty list as unit element together with the proof that lists are previous exercise, form a monoid.

```
Theorem list_monoid : forall A, monoid (list A) (@app A) (@list_semi
Proof.
  intro. apply Monoid_intro. apply list_semigroup.
  intro. split.
  + rewrite app_nil_r. reflexivity.
  + reflexivity.
Oed.
```

Hide solution (ex. 2.2)

Exercise 3

In this exercise and exercise 4, we'll be talking about Haskell definitions of abstractions, ir (although they may coincide)

A functor is a type with one argument(in Haskell terms, a type with kind * -> *) and a fu If you're unfamiliar with functors of Haskell, you may want to skip this, or read Typeclasson

A Cog definition would use these to encode functors:

- Functor type: F: Type -> Type
- Functor operation: forall t1 t2, (t1 -> t2) -> f t1 -> f t2 (let's call it fmax

A functor should obey these laws:

```
• fmap id = id
```

```
• fmap (fun x \Rightarrow g(h x)) = fun x \Rightarrow (fmap g(fmap h x))
```

Encode functors in Coq.

```
Show solution (ex. 3.1)
```

Now prove that lists with standard map function form a functor.

```
Show solution (ex. 3.2)
```

Exercise 4

A monad is a functor with two more operations; let's call bind and lift and some more I functor type)

```
• bind: forall t1 t2, F t1 -> (t1 -> F t2) -> F t2
```

```
• lift: forall t, t -> F t
```

Laws:

- Left identity: forall t1 t2 a f, bind t1 t2 (lift t1 a) f = f a
- Right identity: right id : forall t m, bind t t m (lift t) = m
- Associativity: forall t1 t2 t3 m f g, bind t2 t3 (bind t1 t2 m f) g = bin t3 (f x) g)

Encode monads in Coq.

```
Show solution (ex. 4.1)
```

Now prove that lists form a monad. You need to figure out what functions to use for lift

```
Show solution (ex. 4.2)
```

Exercise 5

Prove that standard option type with some operations form a semigroup, monoid, functivelevant operations.

What restrictions do you need on options type argument? (A in option A) Does it need to form a monoid?

```
Definition map_option (A B : Type) (f : A -> B) (opt : option A) :=
  match opt with
  | None => None
  | Some t => Some (f t)
  end.
```

Definition append_option A OpA (sg : semigroup A OpA) (a b : option

```
match a, b with
  | None, None => None
  | None, Some b' => Some b'
  | Some a', None => Some a'
  | Some a', Some b' => Some (OpA a' b')
  end.
Theorem option semigroup: forall A OpA (sg: semigroup A OpA),
  semigroup (option A) (append option A OpA sg).
Proof.
  intros. apply Semigroup intro. intros. destruct al.
  + destruct a2.
    - destruct a3.
      * simpl. f equal. inversion sq. apply H.
      * simpl. reflexivity.
    - destruct a3; simpl; reflexivity.
  + destruct a2; destruct a3; auto.
Oed.
Theorem option monoid: forall A OpA (sg: semigroup A OpA),
  monoid (option A) (append option A OpA sg) (option semigroup A OpA
Proof.
  intros. apply Monoid intro. apply option semigroup.
  intros. split. auto. destruct a; auto.
Oed.
Definition option map A B (f : A -> B) (o : option A) : option B :=
  match o with
  | None => None
  | Some a => Some (f a)
  end.
Theorem option functor: functor option option map.
Proof.
  apply Functor intro; intros; destruct f; auto.
Definition option bind A B (o1 : option A) (f : A -> option B) : opt
  match ol with
  None => None
  | Some a => f a
  end.
Theorem option monad : monad option.
  apply Monad intro with (fmap := option map) (lift := Some) (bind :
  + apply option functor.
 + intros. auto.
  + intros. destruct m; auto.
  + intros. destruct m; auto.
Oed.
```

Exercise 6

I only have a partial solution to this one and it's not strictly a Coq exercise, but it's still fun

A group is a monoid with inverse element of every element. In Coq syntax:

forall e, exists e i -> op e e 1 = U

where op is monoid operation and U is unit of monoid.

Can you come up with a data structure that forms a group?

Show solution (ex. 6.1)

0 Comments osa1.net

Start the discussion...

LOG IN WITH OR SIGN UP WITH DISQUS (?)

DED Name

Be the first to comment.

ALSO ON OSA1.NET

Separating lexing and parsing stages in Parsec

1 comment • 5 years ago

David Piepgrass — A simplified version of your "ide"
tokenizer:ide :: ParsecT String () Identity Tokenide = withPos (do
{ first <- oneOf firstChar; rest <- many (oneOf (firstChar ++ ...</pre>

Pygame ve düzensiz sprite sheetlerle çalışmak

1 comment • 5 years ago

Metehan Özbek — Kodun resim belirtilen kod kısmındaki colorkey değişkeni arka planı tutuyorsa eğer ben bi sprite üzerinde kodu denedim, ama görünen ekranı işaretledi.

Implicit casts

2 comments • 5 years ago

osa1.net

3 comments • 6 years ago

Samet Szk — Yazı harika edersen daha güzel olur, yazımı v.siyi günler.