

Term End Examination - November 2012

Course : MAT101 - Multivariable Calculus and Differential Slot: F2+TF2

Equations

Class NBR : 4362 / 4459 / 4469 / 4558 / 4583 / 4593 / 4619

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> the Questions

1. If
$$u = xy + yz + zx$$
, where $x = e^t$, $y = e^{-t}$ and $y = \frac{1}{t}$ then find $\frac{du}{dt}$.

2. If
$$u = 2xy$$
, $v = x^2 - y^2$, $x = r\cos\theta$, $y = r\sin\theta$, compute $\frac{\partial(u, v)}{\partial(r, \theta)}$.

3. Using double integrals, find the area of a circle of radius a.

4. Show that
$$\int_{0}^{\infty} \frac{e^{-x^2}}{\sqrt{x}} dx = \frac{1}{2} \Gamma\left(\frac{1}{4}\right)$$

- 5. If $\phi = x^3 + y^3 + z^3 3xyz$ then find $\nabla \times \nabla \phi$ at the point (1,2,3).
- 6. Using Green's theorem, evaluate $\int_C \left[(x^2 y^2) dx + 2xy dy \right]$ where C is the boundary of the region enclosed by $y = x^2$ and $y^2 = x$.
- 7. Solve $(D^2 + 2D 1)y = 0$.
- 8. Solve $(D^2 D + 12)y = 0$, given that y(0) = 3 and Dy(0) = 5.
- 9. Find $L(1+te^{-t})^3$.
- 10. Find the Laplace transform of the unit step function

$$H(t) = \begin{cases} 1 & \text{for } t > a \\ 0 & \text{for } t < a \end{cases} \text{ where } a \ge 0$$

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. a) Expand $e^x \sin y$ as a Taylor's series about the point $\left(-1, \frac{\pi}{4}\right)$ up to second degree in x and y.

- b) The temperature T at any point x, y, z in space is $T = 400xyz^2$. Find the highest temperature of unit sphere $x^2 + y^2 + z^2 = 1$.
- 12. a) Evaluate the following integral by changing the order of integration $\int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$ [7]
 - b) Prove that $\int_{0}^{\infty} \frac{e^{-x^2}}{\sqrt{x}} dx \times \int_{0}^{\infty} x^2 e^{-x^4} dx = \frac{\pi}{4\sqrt{2}}$ [7]
- 13. a) Find the values of the constants a, b and c so that $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 cz)\vec{j} + (3xz^2 y)\vec{k} \text{ is irrotational. For these values of a, b, c find the scalar potential of } \vec{F}.$
 - b) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} (2xyz)\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b.
- 14. a) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + 4y = x^4 + \cos^2 x$. [9]
 - b) Solve by the method of undetermined coefficients $(D^2 6D + 9)y = 4e^x$ [5]
- 15. a) The motion of an iron ball attached at the lower end of an elastic string whose upper end is fixed, is given by y'' + 4y' + 8y = 1 with the intial conditions y(0) = 0 and y'(0) = 1. Determine the free vibration y(t) of the ball using Laplace transform technique.
 - b) Find the Laplace transform of the triangular wave function

$$f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases}$$
 [7]

- 16. a) Verify divergence theorem, for $\vec{F} = (x^2)\vec{i} + (z)\vec{j} + (yz)\vec{k}$ over the cube formed by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$.
 - b) Find the jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 if

$$y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}, y_3 = \frac{x_1 x_2}{x_3}.$$
 [7]

- 17. a) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.
 - b) Using convolution theorem find $L^{-1} \left[\frac{1}{(s+1)(s+2)} \right]$. [5]