ML LAB WEEK 3

REPORT: PES2UG23CS387

TICTACTOE DATASET

Roots and early splits are usually the middle squares because they decide winning conditions.

Class distribution is balanced between win (positive) and loss(negative)

Decision patterns: Tree first checks the critical winning lines

Overfitting indicators: Highly complex tree but still generalizes (87% accuracy)

NURSERY DATASET

Root splits have attributes like parents, has nurs

Class Distribution is very imbalanced because most are **not_recom**, while the other values are rare.

Decision Patterns: Longer and more complex because of many classes and imbalance of values.

Overfitting indicators: Accuracy very high, but recall is lower meaning tree struggles with minority classes. Therefore, it is *overfitting* to the **not_recom** class. (Deeper branches to cover rare cases)

MUSHROOM DATASET

Odor and spore-print-colour dominate the root and early splits.

Class Distribution: Fairly balanced

Decision Patterns: Very simple rules, single feature splits

Overfitting indicators: Achieves 100% accuracy, not overfitting because it is seperable by a few categorical features.

Algorithm Performance:

Highest Accuracy: Mushroom dataset (100%) because features like odor are perfect predictors.

Effect of Dataset Size: Larger datasets (Nursery: 12960, Mushroom: 8124) are more stable and accurate models. Smaller dataset (Tictactoe: 958) leads to lower accuracy, more variance.

Role of Features: More features and multi-valued attributes (Nursery, Mushroom) give richer splits. Tictactoe has only 9 simple attributes, so tree is more complex to capture patterns.

Data Characteristics Impact

Class Imbalance: Nursery has imbalance because tree tends to predict not_recom often; affects macro precision/recall because of bias in predictions. Mushrooms is mostly balanced, so no bias.

Binary vs Multi-valued: Multi-valued categorical features (Mushroom, Nursery) help trees split cleanly and improve accuracy. Binary (Tictactoe outcomes) makes patterns harder to learn.

Practical Applications

Tictactoe: Game AI, strategy modelling, rule-based systems. Advantage: interpretable strategies (which moves lead to wins).

Nursery: Admission or resource allocation systems. Advantage: clear decision rules for fairness/priority.

Mushroom: Food safety and toxicology. Advantage: easily interpretable Eg. If odor = foul, poisonous.

Improving Performance:

Tictactoe: Use pruning or Random Forests to reduce overfitting and capture general patterns.

Nursery: Handle class imbalance (resampling, weighted loss).

Mushroom: Already perfect no improvements needed

CONCLUSION

Mushrooms dataset was clean and separable

simple, perfect model

Nursery dataset was large and imbalanced

very accurate but careful handling of minority classes

Tictactoe dataset was **small** and **binary**

very complex tree lower accuracy