

Resumen Ejecutivo Ciencia y Analítica de datos

Profesora: María de la Paz Rico Fernandez

Equipo 71:

- Ignacio Antonio Quintero Chávez | A01794419
- Francisco Xavier Bastidas Moreno | A01794188

Fecha: 18 de Noviembre del 2022.

Contenido

01

Dataset

Introducción al data set "Datos de calidad del agua de sitios de monitoreo de aguas subterráneas"

04

Técnicas utilizadas

Desarrollo de Decision Trees y Random Forest

Describe los principales hallazgos del análisis y clasificación de los datos por medio de los modelos de Decision Trees y Random Forest. La presentación deberá incluir todos los pasos del pipeline seguidos, limpieza, análisis, kmeans, clasificación, resultados y conclusiones.

02

Limpieza y analisis

Selecciona de variables independientes y dependiente (semáforo).

05

Resultados

Presentación de las métricas seleccionadas y grafica de confusión del modelo.

03

Modelo y metricas

Balanceo de clases y creación del clasificador

06

Conclusiones

Principales hallazgos y análisis final

1. Dataset

Nombre del dataset: Datos_de_calidad_del_agua_de_sitios_de_monitoreo_de_aguas_subterraneas_2020.

• Columnas: 57

• Filas: 1068

 Algunas de las columnas representan información general, mientras que otras presentan información numérica que es relevante para el análisis.

2. Limpieza y Análisis

- 1. Se exploraron los datos y que tipo son.
- 2. Se obtuvo la suma de valores perdidos por cada columna.
- 3. Determinamos las columnas que son numéricas.
- 4. Obtenemos los valores únicos de cada columna.
- 5. Se convirtieron los datos de tipo objeto a tipo flotante.
- 6. Se utilizó la mediana para imputar los datos.

1068 rows × 15 columns

- 7. Identificamos correlaciones y utilizamos un diagrama de caja y bigote para identificar outliers.
- 8. Se utilizó un mapa de calor para identificar la correlación de nuestras variables.

		ALC_mg/L	CONDUCT_mS/cm	SDT_mg/L	SDT_M_mg/L	FLUORUROS_mg/L	DUR_mg/L	COLI_FEC_NMP/100_mL	N_NO3_mg/L	AS_TOT_mg/L	CD_TOT_mg/L	CR_TOT_mg/L	HG_TOT_mg/L	PB_TOT_mg/L	MN_TOT_mg/L	FE_TOT_mg/L
	0	229.990	940.0	NaN	603.6	0.9766	213.732	<1.1	4.184656	0.0161	<0.003	<0.005	<0.0005	<0.005	<0.0015	0.0891
	1	231.990	608.0	NaN	445.4	0.9298	185.0514	<1.1	5.75011	0.0134	<0.003	<0.005	<0.0005	<0.005	<0.0015	<0.025
	2	204.920	532.0	NaN	342	1.8045	120.719	<1.1	1.449803	0.037	<0.003	<0.005	<0.0005	<0.005	<0.0015	<0.025
	3	327.000	686.0	NaN	478.6	1.1229	199.879	<1.1	1.258597	0.0154	<0.003	0.005	<0.0005	<0.005	<0.0015	<0.025
	4	309.885	1841.0	NaN	1179	0.2343	476.9872	291	15.672251	<0.01	<0.003	<0.005	<0.0005	<0.005	<0.0015	<0.025
1	1063	231.045	2350.0	NaN	1545.8	<0.2	752.096	<1.1	14.615488	<0.01	<0.003	<0.005	<0.0005	<0.005	<0.0015	<0.025
1	064	256.000	529.0	NaN	297	<0.2	273	<1.1	77.392	<0.01	<0.003	<0.005	<0.0005	<0.005	0.00709	0.07578
1	1065	330.690	2600.0	NaN	1873	0.7574	660.2126	620	36.477104	<0.01	<0.003	<0.005	<0.0005	<0.005	0.0242	0.2129
1	066	193.140	873.0	NaN	690.6667	0.7108	406.368	<1.1	<0.02	<0.01	<0.003	<0.005	<0.0005	<0.005	0.012	0.1786
1	067	263.070	817.0	NaN	495	0.4002	362.544	<1.1	0.811876	<0.01	<0.003	<0.005	<0.0005	<0.005	<0.0015	<0.025

3. Modelo y métricas

Mediante un mapa de calor podemos notar que existe una fuerte correlacion positiva entre las columnas MN_TOT_mg/L (valor de Manganeso Total, en miligramos por litro), FE_TOT_mg/L (Valor de Hierro Total, en miligramos por litro), y HG_TOT_mg/L (Valor de Mercurio Total, en miligramos por litro).

- 0.75

- 0.25

- -0.25

Resultados de agrupamiento de latitudes y longitudes con K means en el mapa de la República Mexicana

Potable - Excelente: 739 acuíferos.

Buena Calidad: 208 acuíferos.

Aceptable: 60 acuíferos.

Contaminada: 49 acuíferos.

Fuertemente contaminada: 12 acuíferos.

4. Técnicas utilizadas

Decision Tree

Exactitud: 0.8971962615156478

4. Técnicas utilizadas

Random Forest

Exactitud: 0.9408099686726584

5. Resultados

Decision Tree

Exactitud: 0.8971962615156478

Random Forest

Exactitud: 0.9408099686726584

6. Conclusiones

- Una de las primeras conclusiones es con referencia a la limpieza de datos. Encontrar las columnas que son relevantes para el análisis fue un proceso directo debido a que para este estudio se debían contar con las numéricas. Se utilizó la mediana para imputar los datos faltantes.
- Utilizando K-Means, pudimos encontrar una relación entre la calidad del agua y su ubicación dentro de la República Mexicana. La zona Norte y zona Sur presentan una calidad de agua excelente y aceptable.
 Mientras que en ciertas ubicaciones de la zona Centro, la calidad del agua no es tan buena.
- Para los dos técnicas DT y RF se encontró que las variables con más importancia eran "Fluoruros" y "DUR" (mg/l) siendo las que mayor impacto generaban el modelo, debido a la complejidad de RF esta empezó a encontrar mayores relaciones y fue esta la que mostró mayor exactitud para predecir con un porcentaje de 94% siendo esta mayor por 5% sobre DT