

Course Information

Course: CSE105 Structured Programming (Sections: 9)

Teaching Scheme:

	Theory	Laboratory	Total		
Credits	3	1	4		
Contact	3 Hours/Week for 13	2 Hours/Week for 13	5 Hours/Week for 13		
Hours	Weeks	Weeks	Weeks		

Prerequisite: NONE

Instructor Information

Instructor: Md. Shamsujjoha

M.S. and B.Sc.in Computer Science and Engineering, University of

Dhaka, Dhaka-1000, Bangladesh

Senior Lecturer, Department of Computer Science & Engineering, East West

University, Dhaka-1212, Bangladesh

Assistant Proctor, East West University, Dhaka-1212, Bangladesh

Office: Room # 646

Tel. No.: 09666775577 (hunting) ext. 107

E-mail: msj@ewubd.edu, dishacse@yahoo.com, shamsujjoha.cse@gmail.com

URL: www.ewubd.edu/~msj

Group: http://groups.yahoo.com/group/cse_msj/files
TA: Ariful Islam Ron, Nabila Bilkis Shova

Class Routine and Office Hour

Day	11.50-01.20	01.30-03.00	03.10-04.40	04.50-06.50	
Cundou	CSE 245 (1)	Office Hour	CSE 101 (2)	Office Hour	
Sunday	Room: 357		Room: 530	Office Hour	
Mondov	CSE 245 (2)	Office Hour	CSE 105 (9)	Office Hour	
Monday	Room: 217		Room: 359	Office Hour	
Tuesday	CSE 245 (1)	Office Hour	Office Hour	CSE 105 (9) Lab	
Tuesday	Room: 357		Office Hour	Room: 533	
Wednesday	CSE 245 (2)	Office Hour	CSE 105 (9)	CSE 245 (1) Lab	
Wednesday	Room: 217		Room: 359	Room: 637	
Thursday		Office Hour	CSE 101 (2)	CSE 245 (2) Lab	
Thursday			Room: 534	Room: 637	

Course Objective

This is the first course in the computer science programming sequence and is required of all computer science and engineering major with no prior programming experience. The purpose of this course is to introduce to students to the field of programming using C language. The students will be able to enhance their analyzing and problem-solving skills and use the same for writing programs in C. Knowledge of this course will be needed as prerequisite knowledge for future courses such as CSE107 Object Oriented Programming, CSE205 Discrete Mathematics, CSE207 Data Structures, CSE245 Algorithms, CSE301 Database Systems, CSE345 Digital Logic Design, CSE365 Artificial Intelligence, CSE405 Computer Networks and many others.

Course Outcomes (COs)

After completion of this course students will have:

CO1	Ability to understand the fundamentals of programming and basic structure of C					
	programming language.					
CO2	Ability to choose the appropriate decision making and control statements, and arrays to					
	solve computational problems.					
CO3	Ability to use functions to solve computational problems in a modular and hierarchical					
	style.					
CO4	Ability to use pointers, structures, unions, user defined data types, dynamic memory and					
	file to develop programs for solving moderately complex computational problems.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												X
CO2		X	X									X
CO3		X	X									X
CO4	X	X	X		X					X		X

Program Outcomes (POs)

PO1	Computer Science and Engineering Knowledge: Apply knowledge of mathematics,						
	natural sciences, algorithm, and hardware design to the solution of complex problems of						
	different areas of Computer Science and Engineering such as Software Systems,						
	Information Systems, Intelligent Systems, Hardware Systems, and Networking Systems.						
PO2	Problem Analysis: Identify, formulate, research literature, and analyse complex						
	Computer Science and Engineering problems reaching substantiated conclusions using						
	principles of mathematics, natural sciences, algorithm, and hardware design.						
PO3	Design/Development of Solutions: Design solutions for complex Computer Science and						
	Engineering problems and design systems, components, or processes that meet specified						
	needs with appropriate consideration for realistic constraints.						
PO4	Investigation: Conduct investigation into complex Computer Science and Engineering						
	problems using research based knowledge and research methods including design of						
	experiments, analysis and interpretation of data, and synthesis of information to provide						
	valid conclusions.						

PO5	Modern Tool Usage: Create, select and apply appropriate techniques, resources, and modern Software Engineering, Hardware Engineering, and Information Technology tools to complex Computer Science and Engineering activities, with an understanding of
	the limitations.
PO6	Computer and Society: Apply reasoning informed by contextual knowledge to assess societal, legal and cultural issues and the consequent responsibilities relevant to professional Computer Science and Engineering practice.
PO7	Contemporary Issues and Sustainability: Understand the impact of professional
	Computer Science and Engineering solutions in societal and contemporary contexts and demonstrate knowledge of and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.
PO9	Individual Work and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
PO10	Communication: Communicate effectively on complex Computer Science and Engineering activities with the computing community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project Management: Demonstrate knowledge and understanding of Computer Science and Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-Long Learning
	Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
l .	

Mapping of Course Outcomes (COs) to Knowledge Profile

CO	K1	K2	K3	K4	K5	K6	K7	K8
CO1	X							
CO2	X	X						
CO3	X	X						
CO4	X	X	X					

Knowledge Profile

1211(wiedge i forme
	Attribute
K1	A systematic, theory-based understanding of the natural sciences applicable to Computer
	Science and Engineering.
K2	Conceptually-based mathematics, numerical analysis, statistics and formal aspects of
	computer and information science to support analysis and modelling applicable to
	Computer Science and Engineering.
K3	A systematic, theory-based formulation of engineering fundamentals required in Computer
	Science and Engineering.
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of
	knowledge for the accepted practice areas in Computer Science and Engineering; much is at
	the forefront of Computer Science and Engineering.

K5	Knowledge that supports engineering design in a practice area of Computer Science and
	Engineering.
K6	Knowledge of engineering practice (technology) in the practice areas in the Computer
	Science and Engineering.
K7	Comprehension of the role of engineering in society and identified issues in engineering
	practice in Computer Science and Engineering: ethics and the professional responsibility of
	an engineer to public safety; the impacts of engineering activity: economic, social, cultural,
	environmental and sustainability.
K8	Engagement with selected knowledge in the research literature of Computer Science and
	Engineering.

Complex Problem Solving

CO	PO	Attributes
CO2	PO2, PO3	Range of conflicting requirements
CO3	PO2, PO3	Range of conflicting requirements
CO4	PO1, PO2, PO3	Range of conflicting requirements, Depth of analysis required, Depth of
		knowledge required, Extent of applicable codes, and Interdependence

Range of Complex Problem Solving:

Attribute	Complex Problems
Range of conflicting	Involve wide-ranging or conflicting technical, engineering and other
requirements	issues
Depth of analysis	Have no obvious solution and require abstract thinking and
required	originality in analysis to formulate suitable models.
Depth of knowledge	Requires research-based knowledge, much of which is at, or informed
required	by, the forefront of Computer Science and Engineering and that
	allows a fundamental-based, first-principles analytical approach.
Familiarity of issues	Involve infrequently encountered issues.
Extent of applicable	Are outside problems encompassed by standards and codes of
codes	practice for professional Computer Science and Engineering.
Extent of stakeholder	Involve diverse groups of stakeholders with widely varying needs.
involvement and level of	
conflicting requirements	
Consequences	Have significant consequences in a range of contexts.
Interdependence	Are high-level problems that include many component parts or sub-
	problems.

Complex Engineering Activities

CO	PO	Attributes
CO4	PO5, PO10	Range of resources, Level of interaction, Innovation, and Familiarity

Complex Engineering Activities

Attribute	Complex Problems
Range of resources	Involve the use of diverse resources (for this purpose, resources
	include people, money, equipment, materials, information and
	technologies)
Level of interaction	Require resolution of significant problems arising from interactions
	between wide-ranging or conflicting technical, engineering or other
	issues
Innovation	Involve creative use of Computer Science and Engineering
	principles and research-based knowledge in novel ways
Consequences to society	Have significant consequences in a range of contexts, characterized
and the environment	by difficulty of prediction and mitigation
Familiarity	Outside problems encompassed by standards and codes of practice
	for professional Computer Science and Engineering

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching-	CO	Mark of			Mark	Exam	
	Learning			Cogi	nitive		of	(Mark)
	Method		Lea	arnin	g Lev	vels	COs	
			C 1	C2	C3	C4		
Introduction to computers and	Lecture, Class	CO1	2.5				2.5	Midterm
programming languages,data	Discussion,							Exam I
representation in computer.	Discussion							(15)
flowchart for problem solving,	Outside Class							
	with							
	Instructor/							
	Teaching							
	Assistant							
Introduction to C Programming	Do	CO1		2.5			2.5	
(input, output, variables, data								
type, operators, expressions,								
assignments)								
Conditional	Do	CO2		2.5	2.5		5	
ControlStatements(if, if-								
else,ifelse-if, nested if, switch)								
Repeating Statement (while, for	Do	CO2		2.5	2.5		5	
and dowhile), break and								
continue statements								
Introduction to Arrays (Arrays,	Do	CO2	2.5		2.5		5	Midterm
Declaring Arrays, Manipulating								Exam II
the Arrays)		901		2.5	2 -			(15)
Nested Repeating Statement	Do	CO2		2.5	2.5		5	
Multidimensional Array	Do	CO2	2.5		2.5		5	

Characters and Strings (String	Do	CO2	2.5		2.5	5	Final
search, compare, etc.)							Exam
Introduction to Functions	Do	CO3			2.5	2.5	(20)
(Function Definitions, Function							
Prototypes and Argument,							
Header Files). Solving complex							
problem in modular fashion							
using user defined function							
Introduction to recursive	Do	CO3		2.5		2.5	
definition and solving problem							
using recursive function							
Pointers (Pointer variable	Do	CO4			2.5	2.5	
declarations, pointer operators,							
passing arguments to functions							
by reference with pointers,							
pointer expressions and pointer							
arithmetic, arrays of pointers,							
and function pointers)							
Structures (Structure	Do	CO4	2.5			2.5	
Definitions and Initialization,							
Accessing Structure Members,							
Structure with Function and							
Pointer)							
File Management (Files and	Do	CO4			2.5	2.5	
Streams, creating a File,							
Reading Data from File, writing							
data to File, and Updating							
Files)							
Dynamic Memory Allocation,	Do	CO4		2.5		2.5	
and Linked Lists							

Laboratory Experiments/Project, Teaching-Learning Method, and Assessment Scheme:

Experiment	Teaching-Learning	CO		Mar	k of		CO
	Method		I	Psycho	motor	•	Mark
			Le	arnin	g Leve	els	
			P2	P3	P4	P5	
Solving problem using basic	Preparing flow chart,	CO1	0.5		0.5		1
arithmetic operator	Preparing Post-Lab						
	Report						
Solving problem using	Do	CO2	0.5		0.5		1
conditional statement							
Solving problem using loop	Do	CO2	0.5		0.5		1
Solving problem which required	Do	CO2	0.5		0.5		1
array manipulation							
Solving problem which required	Do	CO2	0.5		0.5		1
nested loop							

Lab Exam	Individual Lab Exam	CO1	2		2		4
		CO2					
Solving problem which required	Preparing flow chart,	CO2	0.5		0.5		1
multi-dimensional array	Preparing Post-Lab						
	Report						
Solving problem which required	Do	CO2	0.5		0.5		1
string manipulation							
Solving problem using user	Do	CO3	0.5		0.5		1
defined function							
Solving problem which take	Do	CO4	0.5		0.5		1
input from a file and write result							
into another file							
Solving problem which required	Do	CO4	0.5		0.5		1
user defined data type e.g.							
structure and/or union							
Lab Exam	Individual Lab Exam	CO2	2		2		4
		CO3					
		CO4					
Project	Team-based Project	CO2		2	2	3	7
	with report writing,	CO3					
	presentation and/or	CO4					
	viva-voce						
Total			9	2	11	3	25

Learning Taxonomy: Cognitive Domain

Level	Category	Meaning	Keywords
C1	Knowledge	Ability to observe and remember	Arrange, Underline, Label,
		previously learned information;	Name, Identity, Enumerate,
		knowledge of specific facts, terms,	List, State, Indicate, Select,
		concepts, principles, ideas, events,	Define, Read, Describe,
		places etc.; mastery of subject	Record.
		material.	
C2	Comprehension	Ability to understand information	Infer, Review, Explain, Report,
		and grasp material; translating	Rewrite, Estimate, Distinguish,
		knowledge from one form to	Describe, Trace, Identity,
		another; interpreting, comparing	Classify, Indicate, Discuss,
		and contrasting material; predicting	Recognize, Translate, Give
		consequences and future trends.	examples, Defend, Summarize,
			Paraphrase.
C3	Application	Ability to use information, learned	Change, Apply, Manipulate,
		material, methods, concepts,	Teach, Illustrate, Use, Report,
		theories, principles, laws and	Determine, Solve, Construct,
		theories in new situations; problem	Write, Interpret, Organize,
		solving using required knowledge	Provide, Employ, Investigate,
		or skills.	Translate.

C4	Analysis	Ability to break down material and	Analyze, Solve, Test, Debate,
		recognition of organization	Compare, Contrast, Diagram,
		structure; identification of	Determine, Criticize, Prioritize,
		components and relationships	Categorize, Experiment, Sub-
		between components; recognitions	divide, Calculate, Questions,
		of patterns and hidden meanings.	Illustrate, Appraise, Relate,
			Examine.
C5	Synthesis	Ability to combine parts or apply	Assemble, Combine, Propose,
		prior skills and knowledge to	Set Up, Compile, Devise,
		produce a new whole; integrate	Compose, Adapt, Explain,
		ideas into a solution; generalize	Manage, Intervene, Arrange,
		from given facts; propose a plan of	Categorize, Reorganize,
		action; formulate new	Structure, Validate, Substitute,
		classification methods.	Generate, Integrate, Express,
			Perform, Plan, Prepare,
			Negotiate, Model.
C6	Evaluation	Ability to judge and assess the	Enumerate, Interpret, Predict,
		value of theories and presentation,	Attach, Reframe, Choose,
		based on their value, logic or	Evaluate, Estimate, Conclude,
		adequacy, for a given purpose;	Revise, Judge, Support,
		compare and make choices based	Compare, Measure, Critique,
		on reasoned argument; verify the	Decide, Defend, Rate, Grade,
		value of argument; verify the value	Criticize, Appraise, Contrast,
		of evidence; recognize subjectivity.	Justify, Assess, Score, Argue.

Psychomotor Domain

	motor Domain		
Level	Category	Meaning	Keywords
P1	Imitation	Copy action of another; observe	Relate, Repeat, Choose, Copy,
		and replicate.	Follow, Show, Identify, Isolate.
P2	Manipulation	Reproduce activity from	Copy, response, trace, Show,
		instruction or memory	Start, Perform, Execute,
			Recreate.
P3	Precision	Execute skills reliably;	Assemble, Implement,
		independent of help.	Organize, Calibrate,
			Demonstrate, Build, Perfect,
			Control, Complete, Measure.
P4	Articulation	Adapt and integrate expertise to	Modify, Master, Develop,
		satisfy a non-standard objective.	Adapat, Formulate, Coordinate,
			Combine, Solve, Integrate.
P5	Naturalization	Automated, unconscious mastery	Design, Rank, Manage,
		of activity and related skills at	Compose, Develop, Specify,
		strategic level.	Construct, Invent.

Overall Assessment Scheme

	СО				Assessment Area
					Mark
Assessment Area	CO1	CO ₂	CO ₃	CO4	
Class Participation	1.25	1.25	1.25	1.25	5
Class Test/Quiz	2.5	2.5	2.5	2.5	10
Midterm Exam - I	5	10			15
Midterm Exam -II		15			15
Final Exam		5	5	10	20
Assignment with report and presentation	2.5	2.5	2.5	2.5	10
Laboratory Experiments, Exam, and Lab	2	12	5	6	25
Project					
Total Mark	13.25	48.25	16.25	22.25	100

Student Learning Time (SLT)

Activity	Hours
Theory	
Contact Hours (3 Hours/Week × 13 Weeks)	39.0
Final Examination on 14th Week	1.5
Review Lessons and Preparation for Class Tests/Quizzes (3 Hours/Week × 13 Weeks)	39.0
Preparation for Exams (Midterm Exam I=10, Midterm ExamII=10, Final Exam=10.5)	30.5
Carryout Assignment	10.0
Subtotal	120.0
Laboratory	
Lab Works (2 Hours/Lab Work×10Lab Work)	20.0
Lab Examination	4.0
Preparation for Lab Work (0.5 Hour/Lab Work×10Lab Work)	5.0
Lab Project including Report and Presentation	11.0
Subtotal	40.0
Total	160.0

Teaching Materials/Equipment

Text book: Paul Deitel, Harvey Deitel, *C: How to Program*, Prentice Hall, 6th Edition.

Reference book:

Herbert Schildt, Teach Yourself C, Osborne, latest Edition

E. Balagurusamy, Programming in ANSI C, Tata McGraw-Hill, latest Edition

Lab Manual: Lab manual will be provided.

Project Description: Project description will be provided.

Equipment/Software: Any C/C++ IDE: As example, Visual C++, Code::Block, or Dev-C++

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
97-100	A+	4.00	73-76	C+	2.30
90-96	A	4.00	70-72	C	2.00
87-89	A-	3.70	67-69	C-	1.70
83-86	B+	3.30	63-66	D+	1.30
80-82	В	3.00	60-62	D	1.00
77-79	B-	2.70	Below 60	F	0.00

Exam Dates

Exam	Section 2	Notes
Name		
Mid Term 1	Wednesday	Monday, 16 October 2017 is earmarked for Mid Term I
	18 October 2017	Exams for students who will have more than two exams
		on a single day as per the schedule above.
Mid Term 2	Wednesday 15	Monday, 13 November 2017 is earmarked for Mid Term
	November 2017	II Exams for students who will have more than two exams
		on a single day as per the schedule above.
Final	Wednesday 13	Monday, 11 December 2017 is earmarked for Final
	December 2017	Exams for students who will have more than two exams
		on a single day as per the schedule above.

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.

- Normally there will be NO make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor within 48 hours of the exam time. Proper supporting documents in favor of the reason of missing the exam have to be presented with the application.
- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student misses the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is **zero tolerance for cheating** in exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is **expulsion for several semesters as decided by the Disciplinary Committee of the university**.