

Physics-Informed Operator Learning on Latent Spaces

Somdatta Goswami
Civil and Systems Engineering, Johns Hopkins University
January 10, 2025

Physics-based Models

Can represent the Processes of Nature

☐ Physics-based models are approximated viaODEs/PDEs

To model earthquake:
$$m \frac{d^2u}{dt^2} + k \frac{du}{dt} + F_0 = 0$$

To model waves:
$$\frac{\partial^2 u}{\partial t^2} - v^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$

☐ Computational Mechanics helps us simulate these equations.

Simulation of Orion Spacecraft Launch Abort System (NASA Ames)

Detailed flow around an Aircraft's landing gear (NASA Ames)

CFD Simulation of a Patient-Specific Intracranial Aneurysm

Challenges with Numerical Methods

- Require knowledge of conservation laws, and boundary conditions
- Time consuming and strenuous simulations.
- Difficulties in mesh generation.
- Solving inverse problems or discovering missing physics can be prohibitively expensive.

Develop Physics-based surrogate models for these systems to create a fast-to-evaluate alternative.

Surrogate Modeling Techniques

- Discretized Data
- Discretization dependent
- Queries on mesh
- Learning functions between vector spaces

PCA Auto-encoders

Diffusion maps

Finite Dimensional

K-PCA

PINNs

Functional Data

Data-driven

Physics-Informed

- Discretization Invariant
- Continuous quantities
- Learning <u>operators</u> between function spaces

DeepONet LNO WNO

Infinite Dimensional

PI-DeepONet PINO

Operator Learning Framework

Input-output map $\Phi: \mathcal{U} \to \mathcal{S}$

Data $\{\mathcal{U}_n, \mathcal{S}_n\}_{n=1}^N$ and/or Physics

$$S_n = \Phi(\mathcal{F}_n)$$
 , $\mathcal{F}_n \sim \mu i.i.d$

Operator learning

$$\Psi: \times \Theta \to S$$
 such that $\Psi(., \theta^*) \approx \Phi$

Training
$$\theta^* = \operatorname{argmin}_{\theta} l(\{\mathcal{U}_n, \Psi(\mathcal{S}_n, \theta)\})$$

$$u(.) \xrightarrow{\circ} S(.)$$
(approximate)

NOs promise low generalization errors when trained with sufficiently rich dataset employing overparametrized networks for sufficiently large number of epochs.

Operator Learning Framework

NOs promise low generalization errors when trained with sufficiently rich dataset employing overparametrized networks for sufficiently long time.

So, to take advantage of both the solutions, we propose Physics-Informed Operator Learning on Latent Spaces

Physics-Informed Operator Learning on Latent Spaces

Part – I: Data-driven operator learning on reduced spaces

Part – II: Integrating physics and data to learn operator on reduced spaces

Outline

Physics-Informed Operator Learning on Latent Spaces

Part – I: Data-driven operator learning on reduced spaces

Part – II: Integrating physics and data to learn operator on reduced spaces

Article

https://doi.org/10.1038/s41467-024-49411-w

Learning nonlinear operators in latent spaces for real-time predictions of complex dynamics in physical systems

Viscous Shallow water equation

- Model the dynamics of large-scale atmospheric flows
- Perturbation is used to induce the development of barotropic instability

$$\frac{\mathrm{d}\boldsymbol{V}}{\mathrm{d}t} = -f\boldsymbol{k} \times \boldsymbol{V} - g\nabla h + \nu\nabla^{2}\boldsymbol{V}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -h\nabla\cdot\boldsymbol{V} + \nu\nabla^{2}h$$

$$h'(\lambda, \phi) = \hat{h}\cos(\phi)e^{-(\lambda/\alpha)^{2}}e^{-[(\phi_{2} - \phi)/\beta]^{2}}$$

$$rvs: \alpha \sim U[0.\overline{1}, 0.5] \beta \sim U[0.0\overline{3}, 0.2]$$

Operator: $G: h'(\lambda, \varphi, t = 0) \mapsto u(\varphi, \lambda, t)$

Input Dimension: 65,536

Gaussian Random Perturbation

Output Dimension: 4,718,592

Atmospheric Flow

DeepONet for Viscous Shallow water equation

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

 \mathcal{X} : the perturbed height field, $h_i'(\lambda, \varphi, t = 0)$

 \mathcal{Y} : the velocity field, $u(\varphi, \lambda, t)$

Latent DeepONet for Viscous Shallow Water

Vanilla DeepONet

Latent DeepONet for Viscous Shallow Water

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

Results

- $\Omega = [0.2\pi]x[0.2\pi]$, $(n_x x n_y) = (256x256)$ mesh points
- Output dimensionality: 72x256x256 = 4,718,592
- Simulation: $t = [0.360h], \delta t = 0.1\overline{6}h$, Time steps: $n_t = 72$

Training Time (seconds)

MLAE + Latent DON: 15, 218

Full DeepONet: 379,022

Results

Latent DeepONet and Full DeepONet

Fracture: Shear failure of plate with notch

- Unit square plate with horizontal crack
- Both location y_c and length ℓ_c of the crack are considered random
- Boundary conditions: u(x,0) = v(x,0) = 0, $u(x,1) = \Delta u$
- Data: N = 261, $y_c \in [0.2, 0.675]$, $\ell_c \in [0.3, 0.65]$
- Input dimension: 162x162 Output dimension: 8x162x162

Fracture: Shear failure of plate with notch

Error metric:
$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

Comparison with Benchmark DeepONet

Outline

Physics-Informed Operator Learning on Latent Spaces

Part – I: Data-driven operator learning on reduced spaces

Part – II: Integrating physics and data to learn operator on reduced spaces

To incorporate the governing physics, we have to introduce a one step learning process (latent encoding + operator learning).

Our Proposed framework

Physics-Informed Latent Neural Operator: Integrating Physics and Data using Reduced Order Modeling

Manuscript in preparation

Framework I: Physics Informed Latent Neural Operator

Framework II: Physics Informed Latent Neural Operator

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

 $\it N$ is either zero or very small

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}) &= \mathcal{L}_{\text{data-driven}}(\boldsymbol{\theta}) + \mathcal{L}_{\text{physics-informed}}(\boldsymbol{\theta}), \\ \mathcal{L}_{\text{data-driven}}(\boldsymbol{\theta}) &= \frac{1}{n_{\text{train}}(n_t+1)n_{\boldsymbol{x}}} \sum_{i=1}^{n_{\text{train}}} \sum_{j=0}^{n_t} \sum_{k=1}^{n_{\boldsymbol{x}}} \left(u(\boldsymbol{\xi}^{(i)}, j\Delta t, \boldsymbol{x}^{(k)}) - \hat{u}(\boldsymbol{\xi}^{(i)}, j\Delta t, \boldsymbol{x}^{(k)}) \right)^2, \\ \mathcal{L}_{\text{physics-informed}}(\boldsymbol{\theta}) &= \mathcal{L}_r(\boldsymbol{\theta}) + \mathcal{L}_{bc}(\boldsymbol{\theta}) + \mathcal{L}_{ic}(\boldsymbol{\theta}). \end{split}$$

Advantages

Allows for temporal and spatial interpolation
Introduces separability and accelerates training

Case	Diffusion-reaction dynamics	Burgers' transport dynamics	Advection
PDE	$ \frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + ku^2 + s(x), D = 0.01, k = 0.01, (t, x) \in (0, 1] \times (0, 1], u(0, x) = 0, x \in (0, 1) u(t, 0) = 0, t \in (0, 1) u(t, 1) = 0, t \in (0, 1) \mathcal{G}_{\mathcal{\theta}} : s(x) \to u(t, x). $	$\begin{split} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} &= 0, \\ \nu &= 0.01, \\ (t, x) \in (0, 1] \times (0, 1], \\ u(0, x) &= g(x), \ x \in (0, 1) \\ u(t, 0) &= u(t, 1) \\ \frac{\partial u}{\partial x}(t, 0) &= \frac{\partial u}{\partial x}(t, 1) \\ \mathcal{G}_{\boldsymbol{\theta}} : g(x) \to u(t, x). \end{split}$	$\begin{split} \frac{\partial u}{\partial t} + s(x) \frac{\partial u}{\partial x} &= 0, \\ (t, x) \in (0, 1] \times (0, 1], \\ u(0, x) &= \sin(\pi x) \ \forall \ x \in (0, 1), \\ u(t, 0) &= \sin(0.5\pi t) \ \forall \ t \in (0, 1), \\ s(x) &= v(x) - \min_{x} v(x) + 1 \\ \mathcal{G}_{\boldsymbol{\theta}} : v(x) \to u(t, x). \end{split}$
Input Function	$s(x) \sim \text{GP}(0, k(x, x')),$ $\ell_x = 0.2, \ \sigma^2 = 1.0,$ $k(x, x') = \sigma^2 \exp\left\{-\frac{\ x - x'\ ^2}{2\ell_x^2}\right\}.$	$g(x) \sim \mathcal{N}\left(0, 25^2 \left(-\Delta + 5^2 I\right)^{-4}\right),$	$v(x) \sim \text{GP}(0, k(x, x')),$ $\ell_x = 0.2, \ \sigma^2 = 1.0,$ $k(x, x') = \sigma^2 \exp\left\{-\frac{\ x - x'\ ^2}{2\ell_x^2}\right\}.$
Samples	0.8 - 0.576 -	0.8 - 0.17 - 0.11 - 0.05 - 0.00 - 0.05 - 0.01 - 0.15 - 0.1	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.8 - 0.80 0.8 - 0.60 0.4 - 0.20 0.4 - 0.20 0.4 - 0.20 0.4 - 0.80 0.4 - 0.80 0.5 - 0.80 0.6 - 0.80 0.7 - 0.80 0.8 -	0.50 0.25 0.6 0.6 0.7 0.00 0.0	100 088 089 069 069 069 069 069 069 069 069 069 06

Reaction Diffusion Dynamics

Accuracy Comparison

Runtime Scaling

Memory Scaling

Learning the heat equation with PI-Latent Neural Operator

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

$$\frac{\partial T}{\partial t} = D\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + s(x, y, a) \quad \forall (x, y) \in [-L, L]^2, t \in [0, T]$$

$$L = 2, T = 1, D = 1, \text{ and } u = u(t, x, y)$$

$$u_{\partial \Omega} = 0 \quad \forall (x, y) \in \partial \Omega \text{ and } u(0, x, y) = 0$$

 \mathcal{X} : the source field image, s(x, y, a) – varying geometries and the filament intensity

 \mathcal{Y} : the temperature field, T(t, x, y)

Considered Geometries

Error Comparison

Results Comparison

Ground Truth

Vanilla PI-DeepONet

PI-Latent DeepONet with $\#N_{train}=0$

Runtime Comparison

Key Takeaways

- These methods have a niche in real world problems, where partially physics in known and some measurements of quantities of interest are available.
- These methods are best implemented when complemented with mature methods like FEM.
 - Heterogenous multiscale modeling
 - > Hybrid fast solvers
- These frameworks offer a possibility to seamlessly blend data and physics.

