OpenMP Cell Distances Benchmarking Impact of Caches on Performance

Stefano Ribes

Chalmers University of Technology

Overview

- Algorithm Implementation
- Effect of buffer sizes on performance

Algorithm Implementation

- Load next cells into the buffers
- 2. Compute distances within buffers
- 3. Determine next block(s) to load
- If all cells loaded in both dimensions then exit, otherwise repeat
- Both block dimensions can be changed at compile time

Algorithm Implementation

- Load next cells into the buffers
- 2. Compute distances within buffers
- 3. Determine next block(s) to load
- 4. If all cells loaded in both dimensions then exit, otherwise repeat
- Both block dimensions can be changed at compile time

Algorithm Implementation

- Load next cells into the buffers
- 2. Compute distances within buffers
- 3. Determine next block(s) to load
- If all cells loaded in both dimensions then exit, otherwise repeat
- Both block dimensions can be changed at compile time

Benchmark Setup

Benchmarking:

- Number of cells: 10⁵
- Running threads: 20
- Average runs: 5

Machine Specifications

- Cores (w/ hyperthreading = 2): 56
- Logical Processors: 112
- Sockets: 2
- Total L1d: 236 KB (56 instances)
- Total L2: 730 KB (56 instances)
- o Total L3: 80,740 KB (2 instances)

Formulas

- Cores Utilization = Hyperthreading / #Threads = 2 / 20
- Element Bytes = 2B
- Block Bytes = Block Size X * Block Size Y * Element Bytes
- Bytes per Thread = Block Bytes * Cores Utilization
- L2 Utilization = Bytes per Thread / L2 Size

Block Byte Size vs. Execution Time

Benchmarking:

- Number of cells: 10⁵
- Running threads: 20
- Average runs: 5
- Machine Specifications
 - Cores (w/ hyperthreading = 2): 56
 - Logical Processors: 112
 - Sockets: 2
 - Total L1d: 236 KB (56 instances)
 - o Total L2: 730 KB (56 instances)
 - Total L3: 80,/40 KB (2 instances)
- Formulas
 - Cores Utilization = Hyperthreading / #Threads = 2 / 20 ~10%
 - Element Bytes = 2B
 - Block Bytes = Block Size X * Block Size Y * Element Bytes
 - Bytes per Threads = Block Bytes * Cores Utilization
 - L2 Utilization = Bytes per Threads / L2 Size

8192 * 10% ~ 800KB, close to the total L2 size

L2 Utilization vs. Execution Time

- Benchmarking:
 - Number of cells: 10⁵
 - Running threads: 20
 - Average runs: 5
- Machine Specifications
 - Cores (w/ hyperthreading = 2): 56
 - Logical Processors: 112
 - Sockets: 2
 - Total L1d: 236 KB (56 instances)
 - Total L2: 730 KB (56 instances)
 - Total L3: 80,740 KB (2 instances)
- Formulas
 - Cores Utilization = Hyperthreading / #Threads = 2 / 20
 - Element Bytes = 2B
 - Block Bytes = Block Size X * Block Size Y * Element Bytes
 - Bytes per Threads = Block Bytes * Cores Utilization
 - L2 Utilization = Bytes per Threads / L2 Size

Sweet Spot: we find a <u>local minimum</u> at around 100%, as expected

L2 Utilization vs. Execution Time

Benchmarking:

- Number of cells: 10⁵
- Running threads: 20
- Average runs: 5

Machine Specifications

- Cores (w/ hyperthreading = 2): 56
- Logical Processors: 112
- o Sockets: 2
- Total L1d: 236 KB (56 instances)
- o Total L2: 730 KB (56 instances)
- o Total L3: 80,740 KB (2 instances)

Formulas

- Cores Utilization = Hyperthreading / #Threads = 2 / 20
- Element Bytes = 2B
- Block Bytes = Block Size X * Block Size Y * Element Bytes
- Bytes per Threads = Block Bytes * Cores Utilization
- L2 Utilization = Bytes per Threads / L2 Size

High perf. for larger block sizes might be due to <u>prefetching</u>, since the access pattern is very regular

Block Dimensions vs. Execution Time

Benchmarking:

Number of cells: 10⁵

Running threads: 20

Average runs: 5

Machine Specifications

- Cores (w/ hyperthreading = 2): 56
- Logical Processors: 112
- o Sockets: 2
- Total L1d: 236 KB (56 instances)
- o Total L2: 730 KB (56 instances)
 - Total L3: 80,740 KB (2 instances)

Formulas

- Cores Utilization = Hyperthreading / #Threads
 = 2 / 20
- Element Bytes = 2B
- Block Bytes = Block Size X * Block Size Y * Element Bytes
- Bytes per Thread = Block Bytes * Cores
 Utilization
- L2 Utilization = Bytes per Thread / L2 Size

Backups

"lscpu" Command

```
Architecture:
                                  x86 64
     CPU op-mode(s):
                                  32-bit, 64-bit
     Address sizes:
                                  46 bits physical, 48 bits virtual
                                  Little Endian
     Byte Order:
CPU(s):
                                  112
     On-line CPU(s) list:
                                  0 - 111
Vendor ID:
                                  GenuineIntel
     Model name:
                                  Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz
           CPU family:
                                  6
           Model:
                                  85
           Thread(s) per core:
           Core(s) per socket:
                                  28
           Socket(s):
Caches (sum of all):
     L1d:
                                  1.8 MiB (56 instances) 1887436.8 B
                                  1.8 MiB (56 instances) 1887436.8 B
     L1i:
                                  56 MiB (56 instances) 58720256 B
     L2:
     L3:
                                  77 MiB (2 instances) 80740352 B
```

"lscpu --caches" Command

NAME ONE-SIZE ALL-SIZE WAYS			TYPE	LEVEL	SETS	PHY-LINE COHERENCY-SIZE		
L1d	32K	1.8M	8	Data	1	64	1	64
L1i	32K	1.8M	8	Instruction	1	64	1	64
L2	1M	56M	16	Unified	2	1024	1	64
L3	38.5M	77M	11	Unified	3	57344	1	64