MATH 424 HW3

Dilys Wu

February 8, 2024

1 Q1

Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three sequences of real numbers with $a_n \leq b_n \leq c_n$ for all n. Prove that if $\{a_n\}$, $\{c_n\}$ converge, and if they converge to the same number L, then $\{b_n\}$ converges to L as well. Here and in the rest of this homework assignment \mathbb{R} is given the standard metric unless noted otherwise.

Proof:

Since $\{a_n\}$, $\{c_n\}$ converges to L, $\forall \varepsilon > 0$, $\exists N_1, N_2$ s.t. $d(a_n, L) < \frac{\varepsilon}{2}$ for $n > N_1$, and $d(c_n, L) < \frac{\varepsilon}{2}$ for $n > N_2$. Then for $n > \max(N_1, N_2)$, $d(a_n, c_n) \le d(a_n, L) + d(c_n, L) = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, which is the same as $L - \varepsilon < a_n < L + \varepsilon$, $L - \varepsilon < c_n < L + \varepsilon$. Note that also $a_n \le b_n \le c_n$ for all n, hence $L - \varepsilon \le a_n \le b_n \le c_n \le L + \varepsilon$, which suggests that $\{b_n\}$ converges to L as well.

2 Q2

Suppose $\{x_n\}$, $\{y_n\}$ are two Cauchy sequences of rational numbers (the set \mathbb{Q} of the rationals is given the standard metric). Prove that their sum $\{x_n + y_n\}$ and product $\{x_n \cdot y_n\}$ are also Cauchy.

Proof:

Since $\{x_n\}, \{y_n\}$ are Cauchy, $\forall \varepsilon > 0$, $\exists N_1, N_2$ s.t. for $n, m > N_1, k, l > N_2$, $d(x_n, x_m) < \frac{\varepsilon}{2}$, $d(y_k, y_l) < \frac{\varepsilon}{2}$. Let $N > \max(N_1, N_2)$, then for r, s > N, $d(x_r + y_r, x_s + y_s) = |(x_r + y_r) - (x_s + y_s)| \le |x_r - x_s| + |y_r - y_s| = d(x_r, x_s) + d(y_r, y_s) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, so their sum is Cauchy.

Now consider the case for the product. Recall that Cauchy sequences are bounded, and let M be greater than the least upper bound of the two sequences. Hence $\exists N', N''$ s.t. $\forall n > N', \ |x_n| \leq M, \ \text{and} \ \forall n' > N'', \ |y_n| \leq M.$ Similarly as above, since $\{x_n\}, \{y_n\}$ are Cauchy, $\exists K$ s.t. $i, j > K, \ |x_i - x_j| < \frac{\varepsilon}{2M}, \ |y_i - y_j| < \frac{\varepsilon}{2M}.$ Hence, $|x_iy_i - x_jy_j| = |x_iy_i - x_iy_j + x_iy_j - x_jy_j| \leq |x_i(y_i - y_j)| + |y_j(x_i - x_j)| = |x_i||y_i - y_j| + |y_j||x_i - x_j| < |x_i||\frac{\varepsilon}{2M} + |y_j||\frac{\varepsilon}{2M} \leq 2M \cdot \frac{\varepsilon}{2M} = \varepsilon,$ so the product is Cauchy.

3 Q3

Suppose a sequence $\{s_n\}$ of real numbers is bounded: there is M>0 so that $|s_n|< M$ for all n.

- (a) Prove that there is a subsequence $\{s_{n_k}\}$ that converges to $\lim\inf s_n$.
- (b) Prove that the limit L of any convergent subsequence of $\{s_n\}$ satisfies $\liminf s_n \leq L \leq \limsup s_n$.

Proof:

(a) Since $\{s_n\}$ is bounded, it is bounded from above and from below. Since it is nonempty, it has a supremum and an infimum. By Bolzano-Let $L=\liminf s_n$. Let $V_N:=\inf\{s_n|n\geq N\}$, then by definition $L=\inf_{N\to\infty}V_N$. Then $\forall \varepsilon>0, \exists k$ s.t. $N\geq k \implies L-\varepsilon < V_N < L+\varepsilon$. Also, $\exists i$ s.t. $L-\varepsilon < s_i \leq V_N < L+\varepsilon$. When $\varepsilon=1, \exists K_1$ s.t. for $n_1\geq K_1, L-1< s_{n_1}< L+1$. When $\varepsilon=1/2, \exists K_2$ s.t. for $n_2\geq K_2, L-1/2< s_{n_2}\leq V_{n_2}< L+1/2$. If we replace K_2 by $\min\{K_2,n_1-1\}$, we may assume that $n_2\leq K_2< n_1$. Then continuing the construction by taking $\varepsilon=1/2^k, k\in\mathbb{N}$ we will get a sequence $s_{n_1}>s_{n_2}>\cdots>s_{n_k}>s_{n_{k+1}}>\cdots$ so that $L-1/2^k< s_{n_k}< L+1/2^k, \forall k$, hence $s_{n_k}\to L=\liminf s_n$.

(b) Let $\{s_{n_k}\}$ be a convergent subsequence of $\{s_n\}$ that converges to L, then \limsup of the subsequence exists and is equal to L. We look at the \limsup of these two. We have

$$\limsup s_{n_k} = \lim s_{n_k} = L = \limsup \{S_{n_k} | n \ge N\}$$
$$\lim \sup s_n = \lim \sup \{S_n | n \ge N\}$$

and since $\{S_{nk}\}\subseteq \{S_n\}$, we have $\sup\{S_{nk}\}\leq \sup\{S_n\}$ by a theorem in class, and thus $L=\limsup s_{nk}\leq \limsup s_n$. The proof for $\liminf s_n\leq L$ is similar.

4 Q4

Recall that two metrics d, d' on a set E are equivalent if there are $c_1, c_2 > 0$ so that $c_1 d(x, y) \le d'(x, y) \le c_2 d(x, y)$ for all $x, y \in E$ (see lecture 8).

- (a) Prove that the relation of being equivalent is in fact an equivalence relation on the set of all metrics on the set E.
- (b) Prove that if d, d' are two equivalent metrics on a set E then $C \subset E$ is bounded with respect to d if and only if it is bounded with respect to d'.
- (c) Prove that if d, d' are two equivalent metrics on a set E then a sequence $\{s_n\}$ in E is Cauchy with respect to d if and only if it's Cauchy with respect to d'.

Proof:

- (a) We prove reflexivity, symmetry, and transitivity.
- (i) Reflexivity. Take $c_1 = c_2 = 1$, then clearly $c_1 d(x, y) \le d(x, y) \le c_2 d(x, y)$ for all $x, y \in E$, and thus $d \sim d$.
- (ii) Symmetry. If $d \sim d'$, then $\exists c_1, c_2 > 0$ s.t. $c_1 d(x,y) \leq d'(x,y) \leq c_2 d(x,y)$ for all $x,y \in E$. Take $c'_1 = \frac{1}{c_2}, c'_2 = \frac{1}{c_2}$, then we have $d(x,y) \leq c'_2 d'(x,y)$ and $c'_1 d(x,y) \leq d(x,y)$, which combines to $c'_1 d'(x,y) \leq d(x,y) \leq c'_2 d'(x,y)$ for all $x,y \in E$.

- (iii) Transitivity. If $d \sim d'$ and $d' \sim d''$, then $\exists c_1, c_2, c_3, c_4 > 0$ s.t. $c_1d(x,y) \leq d'(x,y) \leq c_2d(x,y)$ and $c_3d'(x,y) \leq d''(x,y) \leq c_4d'(x,y)$ for all $x,y \in E$. Combining these inequalities gives $c_1d(x,y) + c_3d'(x,y) \leq d'(x,y) + d''(x,y)(1)$ and $d'(x,y) + d''(x,y) \leq c_2d(x,y) + c_4d'(x,y)$ (2). For (1), simplifying gives $c_1d(x,y) + (c_3-1)d'(x,y) \leq d''(x,y)$, so we choose c_1' s.t $c_1'd(x,y) \leq c_1d(x,y) + (c_3-1)d'(x,y) \leq d''(x,y)$. For (2), similarly, we choose c_2' s.t. $d''(x,y) \leq c_2d(x,y) + (c_4-1)d'(x,y) \leq c_2'd(x,y)$. Combining these two gives $c_1'd(x,y) \leq d''(x,y) \leq c_2'd(x,y)$
- (b) We prove the forward direction since the converse is similar. If $C \subset E$ is bounded with respect to d, then $\exists x \in E, r > 0$, s.t. $C \subseteq B_r^d(x)$. Since d, d' are two equivalent metrics, $\exists c_1, c_2 > 0$ s.t. $c_1 d'(x, y) \leq d(x, y) \leq c_2 d'(x, y)$ for all $x, y \in E$. Now consider $B_{r'}^{d'}(x)$, where $r' = c_2 r$. Choose $z \in E$ s.t. d'(x, z) = r'. Let $a \in B_r^d(x)$, then $d(a, x) < r \leq c_2 r = r' = d'(x, z)$, which suggests that $B_r^d(x) \subseteq B_{r'}^{d'}(x)$, so $C \subseteq B_r^d(x) \subseteq B_{r'}^{d'}(x)$ and thus C is bounded with respect to d'.
- (c) We prove the forward direction and the converse is similar. Suppose $\{s_n\} \subseteq E$ is Cauchy with respect to d, then $\forall \varepsilon > 0$, $\exists N$ s.t. $\forall n, m > N$, $d(s_n, s_m) < \varepsilon$. Since d, d' are two equivalence relations, $\exists c_1, c_2 > 0$ s.t. $c_1 d(x, y) \le d'(x, y) \le c_2 d(x, y)$ for all $x, y \in E$. Now we choose M s.t. $\forall r, t > M$, $d(s_r, s_t) < \frac{\varepsilon}{c_2}$. Then we have $d'(s_r, s_t) \le c_2 d(s_r, s_t) < c_2 \cdot \frac{\varepsilon}{c_2} = \varepsilon$, so $\{s_n\}$ is Cauchy with respect to the metric d'.

5 Q5

Let (E,d) be a metric space. Recall that the function $\bar{d}: E \times E \to [0,\infty)$ defined by $\bar{d}(x,y) = \min\{1,d(x,y)\}$. is a metric.

- (a) Prove that a sequence $\{s_n\}$ is Cauchy with respect to d if and only if it's Cauchy with respect to \bar{d} .
- (b) Show that in general, the metrics d and \bar{d} are not equivalent.
- (c) Consider \mathbb{R} with the standard metric d:d(x,y)=|x-y|. Is it true that every sequence $\{s_n\}$ in \mathbb{R} which is bounded with respect to \bar{d} has a convergent subsequence? Is (\mathbb{R},\bar{d}) complete?

Proof:

- (a) Suppose $\{s_n\}$ is Cauchy with respect to d, then $\forall \varepsilon > 0$, $\exists N$ s.t. $\forall n, m > N$, $d(s_n, s_m) < \varepsilon$. Note that we have $\bar{d}(x, y) \leq d(x, y)$ for all $x, y \in E$, so $\bar{d}(s_n, s_m) \leq d(s_n, s_m) < \varepsilon$, and thus $\{s_n\}$ is Cauchy with respect to d. Conversely, suppose that $\{s_n\}$ is Cauchy with respect to \bar{d} , then $\forall \varepsilon > 0$, $\exists N$ s.t. $\forall k, l > N$, $\bar{d}(s_k, s_l) < \varepsilon$. When $\varepsilon > 1$, we have $\bar{d}(s_k, s_l) \leq 1 < \varepsilon$
- (b) Note that \bar{d} is bounded by 1. We choose x,y s.t. d(x,y)=2. Now consider the inequality $cd(x,y) \leq \bar{d}(x,y)=1$. We can choose c=1/2, then $cd(x,y)=1/2\cdot 2=1\leq \bar{d}(x,y)$. But for the two metrics to be equivalent, this inequality must hold for all $x,y\in E$ for a constant c, which is impossible since it clearly fails if we pick y, s.t. d(x,y)=3.
- (c) If we have a sequence $\{s_n\}$ that is bounded in \mathbb{R} with respect to \bar{d} , then it is Cauchy. It is also Cauchy with respect to d and thus bounded with respect

to d. Now it will have a convergent subsequence $\{s_{n_k}\}$ by Bolzano-Weierstrass. Since it is induced from $\{s_n\}$, a sequence bounded with respect to \bar{d} indeed has a convergent subsequence $\{s_{n_k}\}$. Now let $\{a_n\}$ be a convergent sequence with respect to \bar{d} . Then it is Cauchy and thus Cauchy with respect to d by part (a). Since $\{\mathbb{R}, d\}$ is complete, all Cauchy sequences with respect to d converges, and so is $\{a_n\}$. Since $\{a_n\}$ is arbitrary, we conclude that (\mathbb{R}, \bar{d}) is complete.

6 Q6

Let $\{s_n\}$ be a sequence in \mathbb{R}^n which is bounded with respect to the Euclidean metric d_2 (and hence with respect to d_1 and d_{∞} by Q4). Prove that $\{s_n\}$ has a convergent subsequence.

Proof:

This question is to prove the Bolzano-Weierstrass Theorem in \mathbb{R}^n for d_2 . Note that being bounded with respect to d_2 is the same as being bounded with respect to d_1 since by Q4. We have shown in class that when n=1, a bounded sequence will have a convergent subsequence. Let $\{x^m\}$ be a bounded sequence in Rn. The sequence $\{x_1^m\}$ of first components of the terms of xm is a bounded real sequence, which has a convergent subsequence $\{x_1^{mk}\}$. Let $\{x^{mk}\}$ be the corresponding subsequence of $\{x^m\}$. Then the sequence $\{x_2^{mk}\}$ of second components of $\{x^{mk}\}$ is a bounded sequence of real numbers, so it too has a convergent subsequence, and we again have a corresponding subsequence of $\{x^{mk}\}$ (and therefore of $\{x^m\}$), in which the sequences of first and second components both converge. Continuing for n iterations, we end up with a subsequence $\{z^m\}$ of $\{x^m\}$ in which the sequences of first, second, ..., nth components all converge, and therefore the subsequence $\{z^m\}$ itself converges in \mathbb{R}^n .

7 Q7

Let $f: X \to Y$ be a function between two sets, and $d: Y \times Y \to [0, \infty)$ a metric. Prove that

$$d': X \times X \to [0, \infty), d'(x, y) := (f(x), f(y))$$

is a metric on X if and only if f is injective.

Proof:

If d' is a metric, then $d'(x,y)=d'(y,x)\iff x=y$. Then we have f(x)=f(y) by definition of d', which suggests that f is injective. Conversely, suppose f is injective. We define a function $h:X\times X\to [0,\infty), (x,y)\mapsto (f(x),f(y))\mapsto [0,\infty)$ by h(x,y)=d(f(x),f(y)). Since d is a metric, $d(f(x),f(y))=0\iff x=y$. Also, $h(x,y)=h(y,x)\equiv d(f(x),f(y))=d(f(y),f(x))$ when $x\neq y$ since d is a metric, and thus d'(x,y)=d(f(x),f(y))=d(f(y),f(x))=d'(y,x). For the Triangle Inequality part, again we have $h(x,z)=d'(x,z)=d(f(x),f(z))\leq d(f(x),f(y))+d(f(y),f(z))=h(x,y)+h(y,z)=d'(x,y)+d'(y,z)$ since d is a metric.