Multivariate models

Matthieu Stigler Matthieu.Stigler@gmail.com

November 5, 2008

Lectures list

- Stationarity
- ARMA models for stationary variables
- Some extensions of the ARMA model
- Non-stationarity
- Seasonality
- Non-linearities
- Multivariate models
- Structural VAR models
- Ocintegration the Engle and Granger approach
- Cointegration 2: The Johansen Methodology
- Multivariate Nonlinearities in VAR models
- Multivariate Nonlinearities in VECM models

- 1 Lectures
- Multivariate models
 - Spurious regression
 - Autoregressive distributed lag model (ARDL)
 - Partial adjustment model
 - Vector autoregressive model (VAR)
 - historical approach and the Sims (1980) criticism to simultaneous models
 - Selection of the lag order
 - Estimation
 - Diagnostic checks
 - Granger Causality
 - Forecast

- 1 Lectures
- Multivariate models
 - Spurious regression
 - Autoregressive distributed lag model (ARDL)
 - Partial adjustment model
 - Vector autoregressive model (VAR)
 - historical approach and the Sims (1980) criticism to simultaneous models
 - Selection of the lag order
 - Estimation
 - Diagnostic checks
 - Granger Causality
 - Forecast

- 1 Lectures
- Multivariate models
 - Spurious regression
 - Autoregressive distributed lag model (ARDL)
 - Partial adjustment model
 - Vector autoregressive model (VAR)
 - historical approach and the Sims (1980) criticism to simultaneous models
 - Selection of the lag order
 - Estimation
 - Diagnostic checks
 - Granger Causality
 - Forecast

- Lectures
- Multivariate models
 - Spurious regression
 - Autoregressive distributed lag model (ARDL)
 - Partial adjustment model
 - Vector autoregressive model (VAR)
 - historical approach and the Sims (1980) criticism to simultaneous models
 - Selection of the lag order
 - Estimation
 - Diagnostic checks
 - Granger Causality
 - Forecast

- Lectures
- Multivariate models
 - Spurious regression
 - Autoregressive distributed lag model (ARDL)
 - Partial adjustment model
 - Vector autoregressive model (VAR)
 - historical approach and the Sims (1980) criticism to simultaneous models
 - Selection of the lag order
 - Estimation
 - Diagnostic checks
 - Granger Causality
 - Forecast

VAR example:
$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$
 or, equivalently, as the following system of two equations
$$\begin{cases} y_{1,t} &= c_1 + A_{1,1}y_{1,t-1} + A_{1,2}y_{2,t-1} + e_{1,t} \\ y_{2,t} &= c_2 + A_{2,1}y_{1,t-1} + A_{2,2}y_{2,t-1} + e_{2,t} \end{cases}$$

VAR(p) as VAR(1): $y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + e_t$ can be recast as the VAR(1) model $\begin{bmatrix} y_t \\ y_{t-1} \end{bmatrix} = \begin{bmatrix} c \\ 0 \end{bmatrix} + \begin{bmatrix} A_1 & A_2 \\ I & 0 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ y_{t-2} \end{bmatrix} + \begin{bmatrix} e_t \\ 0 \end{bmatrix}$

VMA representation

VAR(1):

$$y_t = A_1 y_{t-1} + \varepsilon_t \tag{1}$$

$$=A_0+\sum_{i=0}^{\infty}A_1^i\varepsilon_{t-i} \tag{2}$$

$$Y_t = \mathbf{A}_1 Y_{t-1} + E_t \tag{3}$$

$$=\sum_{i=0}^{\infty}\mathbf{A}_{1}^{i}E_{t-i}\tag{4}$$

Estimation

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

Define:

$$\mathsf{Cov}egin{bmatrix} e_{1,t} \ e_{2,t} \end{bmatrix} = egin{bmatrix} \mathsf{Var}(e_1) & \mathsf{Cov}(e_1,e_2) \ \mathsf{Cov}(e_1,e_2) & \mathsf{Var}(e_2) \end{bmatrix} \equiv \Sigma$$

Parameters to estimate: $\{A_0, A_1, \dots, A_p, \Sigma\}$

Rewrite:

•
$$\mathbf{Y} = [Y_1, \dots, Y_T]$$
, a $k \times T$ matrix

$$ullet$$
 $\mathbf{Y}=ig[A_0,A_1,\ldots,A_pig]$, a $k imes kp+1$ matrix

So we have aVAR(1): Y = AZ + UThe estimator of A is given by: $\hat{A} = YZ'(ZZ')^{-1}$

Proposition

If the residuals are white noise and plim $ZZ'/T = \Gamma$ then: the MLS estimator is the same as the conditionnal MLE estimator and hence is:

- Convergent
- Asymptotically efficient
- Normally distributed: $\sqrt{T} \operatorname{vec}(\hat{B} B) \sim \mathcal{N}(0, \Gamma^{-1} \otimes \Sigma)$

The estimator of Σ is given by:

- MLE: $\hat{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} \hat{\epsilon}_t \hat{\epsilon}_t'$
- OLS: $\hat{\Sigma} = \frac{1}{T kp 1} \sum_{t=1}^{T} \hat{\epsilon}_t \hat{\epsilon}_t'$ for a model with a constant, "k" variables and "p" lags

These both estimators are convergent

In a matrix notation, this gives:

$$\hat{\Sigma} = \frac{1}{T - kp - 1} (Y - \hat{B}Z)(Y - \hat{B}Z)'$$

Note that for the GLS estimator the covariance matrix of the errors becomes:

The covariance matrix of the parameters can be estimated as $\hat{C}ov(Vec(\hat{B})) = (ZZ')^{-1} \otimes \hat{\Sigma}$

Proposition

The multivariate least square (MLS) is equal to the OLS applied equation by equation

Note: this is because every equation has the same explanatory variables.

2

d

- Tests
 - ▶ LR ratio
- Criteria
 - ▶ MSE criterion
 - Information criterions

LR ratio test

```
Test VAR(p) against VAR(q): T\left(\log(|\Sigma_p|-\log(|\Sigma_q|)) \quad p < q \right. It has teh distribution: LR \sim \chi^2\left((q-p)k^2\right) Note: on can reduce the test by T-c where c=nubmer of parameter estimated in each equation of the unrestricted model (so q*k+ const/trend)
```

discuss/analyse Clarida, Gali, Gutler

Conditions for stability

Theorem (AR(1))

The characteristics roots must lie within the unit circle.

Forecast

Recall from lecture 2:

Notation (Forecast)

 $\hat{y}_{t+j} \equiv \mathsf{E}_t(y_{t+j}) = \mathsf{E}(y_{t+j}|y_t,y_{t-1},\ldots,\varepsilon_t,\varepsilon_{t-1},\ldots)$ is the conditional expectation of y_{t+j} given the information available at t.

Definition (J-step-ahead forecast error)

$$e_t(j) \equiv y_{t+j} - \hat{y}_{t+j}$$

Forecast of a VAR(1)

Take the VAR(1): $Y_t = A_0 + A_1 Y_{t-1} + A_2 Y_{t-2} + \varepsilon_t$ The 1-step-ahead forecast is: $\hat{Y}_{t+1} \equiv \mathsf{E}_t(Y_{t+1}) = A_0 + A_1 Y_t$ And the 1-step-ahead forecast error is:

$$\textit{err}_t(j) \equiv \textit{y}_{t+j} - \hat{\textit{y}}_{t+j} = \overbrace{\textit{A}_0 + \textit{A}_1 \textit{Y}_t}^{\hat{\textit{Y}}_{t+1}} - \overbrace{\textit{A}_0 + \textit{A}_1 \textit{Y}_t + \varepsilon_t}^{\textit{Y}_{t+1}} = \varepsilon_t$$

Proposition (Generalization)

And the j-ahead forecast is:
$$\hat{Y}_{t+j} = (I + A_1 + A_1^2 + \ldots + A_1^{j-1} +)A_0 + A_1^j Y_t$$

The error is: $\varepsilon_{t+j} + A_1 \varepsilon_{t+j-1} + A_1^2 \varepsilon_{t+j-2} + \ldots + A_1^{j-1} \varepsilon_{t+1}$

So the variance of the forecast error is increasing!

Similarly, starting from the VMA(∞) representation:

$$Y_t = \mu + \sum_{i=0}^{\infty} \Phi_i u_{t+n+1}$$

- > library(vars)
- > data(Canada)
- $> var.2c \leftarrow VAR(Canada, p = 2, type = "const")$
- > var.2c.prd <- predict(var.2c, n.ahead = 8, ci = 0.95)
- > fanchart(var.2c.prd)

Fanchart for variable e

Fanchart for variable prod

Fanchart for variable rw

Fanchart for variable U

