Predicting
house prices
using multiple
linear
regression

King County housing data set

Dataset

 The king county housing data set contains information about houses including; size, location, condition and other features.

Analysis Question

- The analysis aims towards identifying the most appropriate variables from the dataset that can create a multiple linear regression.
- The model will help home owners interested in selling their homes by informing them on the most important factors to consider in order to improve sale prices.

Data preparation

- The data was prepared for analysis by dealing with missing values and getting rid of outliers.
- One hot encoding was also performed on one of the columns which contained categorical data.

Correlation

- The features that were highly correlated with price were considered for inclusion in the model.
- The variables that were highly correlated with each other were excluded from the model.

Simple Linear Regression model

- Simple linear regression models were constructed with the selected variables to confirm that the assumptions of linear regression have been met.
- The variables were checked for linearity, normality and homoscedasticity.

Final Multiple Linear Regression model

```
Y= 0.7079 + 0.0221sqft_living + 0.0102sqft_living15 - 0.0076bedroom + ε
```

- \circ R² = 0.488
- The adjusted R squared value shows that the model accounts for 48.8% variability in price

Hypothesis Testing

- Null hypothesis: no relationship exists between the chosen explanatory variables and response variable.
- Alternative hypothesis: a relationship exists between the chosen explanatory variables and response variable.
- The model coefficients all display a p value 0.00 that is below 0.05
- The null hypothesis is rejected. This evidently shows that a relationship exists between the explanatory variables and response variable. The model is therefore statistically significant.

Multiple linear regression model

- Since the model has log transformed predictors and a log transformed target, the coefficient values are interpreted as percentages.
- A lack of change in sqft_living, bedrooms and sqft_living 15, sale price would be 70.79%.
- A 1% increase in square footage of living space in the home is associated with a 2% increase in sale price.
- A 1% increase in number of bedrooms results in a 0.76% decrease in sale price.
- A1% increase in square footage of interior living space for the nearest 15 neighbors is associated with a 1% increase in sale price.

Conclusions

Square footage of the living space, number of bedrooms and square footage of interior living space for the nearest 15 neighbours strongly predict house prices in a multiple linear regression.

Recommendations

- Expand square footage of living space
- Encourage the neighbours to expand square footage of living space and enhance interior design.
- o Reduce the number of bedrooms.

Recommendations for further study

- Checking on the best predictors for price in other counties.
- Determining how analysis changes if extreme values are excluded in the model.