Introduction to Scikit-Learn: Machine Learning with Python

Unsupervised Learning

郭耀仁

Unsupervised Learning

About unsupervised learning

Unsupervised Learning addresses a different sort of problem. Here the data has no labels and we are interested in finding similarities between the objects in question.

Some more involved unsupervised learning problems are:

- given detailed observations of distant galaxies, determine which features or combinations of features best summarize the information.
- given a mixture of two sound sources (for example, a person talking over some music), separate the two (this is called the <u>blind source separation</u> (http://en.wikipedia.org/wiki/Blind signal separation) problem).
- given a video, isolate a moving object and categorize in relation to other moving objects which have been seen.

About Principal Component Analysis

Principal Component Analysis is a unsupervised method for *dimensionality reduction* in data. It is easiest to visualize a two-dimensional dataset.

```
In [2]: plt.show()
```


A definite trend in the data

What PCA seeks to do is to find the **Principal Axes** in the data, and explain how important those axes are in describing the data distribution.

In [4]: plt.show()

One vector is longer than the other

• Direction in the data is somehow more "important" than the other direction

Another way to think of it is that the second principal component could be **completely ignored** without much loss of information! Let's see what our data look like if we only keep 95% of the variance:

```
In [5]: pca = PCA(0.95) # keep 95% of variance
    X_trans = pca.fit_transform(X)
    print(X.shape)
    print(X_trans.shape)

(200, 2)
    (200, 1)
```

The data is now compressed by a factor of 50%

We throw away 5% of the variance! Let's see what the data look like after this compression:

```
In [7]: plt.show()
```


The Effect of PCA

- After truncating 5% of the variance of this dataset, the "most important" features of the data are maintained, and we've compressed the data by 50%!
- This is the sense in which "dimensionality reduction" works: if you can approximate a data set in a lower dimension, you can often have an easier time visualizing it or fitting complicated models to the data.

Application of PCA to MNIST

In [9]: train.head()

Out[9]:

	label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	•••	pixel774	pixel775	pixel776	pixel777	pixel778	р
C	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0

 $5 \text{ rows} \times 785 \text{ columns}$

In [11]: | plt.show()

₁	O ₀	1	44	٥	.0	⁷ 7	3	, 5	3
	, 9							_	
88	6	2	٩	2	3	ا	, 9	, 9	77
8	٩	4	.	 2	ا ا	.3	, 7	, /	4
, 9	,]	4	4	2	.6	3	7	,7	4
,7	. 5	, l	,q	O ₀	<u>_</u> 2	2 .	3	, 9	, (
, 	1	<u>5</u>	.	6	₃ 3	4	8	, /	٥٥٥
,3	.9	کھ	ر	6	44	77 .	₁ (4	₁ /
<u>ح</u>	4	. 8	, 7	₂ 2	P _e	.9	$\mathcal{B}_{\scriptscriptstyle{8}}$	9	م ا
3	6	44	6	<u>a</u>	.7	1	2	O	ج

```
In [12]: X_train = train.loc[:, "pixel0":]
    y_train = train.loc[:, "label"]
    pca = PCA(2) # project from 784 to 2 dimensions
    Xproj = pca.fit_transform(X_train)
    print(X_train.shape)
    print(Xproj.shape)
```

(42000, 784) (42000, 2)

8.39146030e-19 ..., -0.00000000e+00

-0.0000000e+00 -0.0000000e+00]

[3.64894853e-17 -1.56859475e-17 -0.00000000e+00 -0.00000000e+00]]

Out[14]: <matplotlib.colorbar.Colorbar at 0x1a1ca7aef0>

In [15]: plt.show()

We have found the optimal stretch and rotation in 784dimensional space

Choosing the Number of Components

But how much information have we thrown away? We can figure this out by looking at the **explained variance** as a function of the components:

```
In [16]: pca = PCA().fit(X_train)
   plt.plot(np.cumsum(pca.explained_variance_ratio_))
   plt.xlabel('number of components')
   plt.ylabel('cumulative explained variance')
```

Out[16]: <matplotlib.text.Text at 0x1a1ea1c518>

```
In [17]: plt.show()
```


We'd need about 100 components to retain 90% of the variance

Looking at this plot for a high-dimensional dataset can help you understand the level of redundancy present in multiple observations.

Clustering: K-Means

About K-Means

- K Means is an algorithm for **unsupervised clustering**: that is, finding clusters in data based on the data attributes alone (not the labels)
- K Means searches for cluster centers which are the mean of the points within them, such that every point is closest to the cluster center it is assigned to

```
In [19]: plt.show()
```


K-Means is an example of an algorithm which uses an *Expectation-Maximization* approach to arrive at the solution.

Expectation-Maximization is a two-step approach

- 1. Guess some cluster centers
- 2. Repeat until converged
 - A. Assign points to the nearest cluster center
 - B. Set the cluster centers to the mean

```
In [20]: from sklearn.cluster import KMeans

kmeans = KMeans(4) # 4 clusters
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='rainbow')
```

Out[20]: <matplotlib.collections.PathCollection at 0x1a2acbacf8>

```
In [21]: | plt.show()
```


Application of KMeans to MNIST

In [23]:

train.head()

Out[23]:

	label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	 pixel774	pixel775	pixel776	pixel777	pixel778	р
0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0

 $5 \text{ rows} \times 785 \text{ columns}$

```
In [24]: kmeans = KMeans(n_clusters=10)
    clusters = kmeans.fit_predict(train.loc[:, "pixel0":])
    print(kmeans.cluster_centers_.shape)
    print(clusters)
```

```
(10, 784)
[4 0 9 ..., 5 6 1]
```

We see ten clusters in 784 dimensions

Let's visualize each of these cluster centers to see what they represent.

```
In [25]: fig = plt.figure(figsize=(8, 3))
    for i in range(10):
        ax = fig.add_subplot(2, 5, 1 + i, xticks=[], yticks=[])
        ax.imshow(kmeans.cluster_centers_[i].reshape((28, 28)), cmap=plt.cm.binary)
```


With apologies to the number 4, 5, or 7!

Let's use our PCA visualization and look at the true cluster labels and K-means cluster labels

```
In [27]: from sklearn.decomposition import PCA

X = PCA(2).fit_transform(train.loc[:, "pixel0":])

kwargs = dict(cmap = plt.cm.get_cmap('rainbow', 10), edgecolor='none', alpha=0.6)
fig, ax = plt.subplots(1, 2, figsize=(8, 4))
ax[0].scatter(X[:, 0], X[:, 1], c=clusters, **kwargs)
ax[0].set_title('learned cluster labels')
ax[1].scatter(X[:, 0], X[:, 1], c=train.loc[:, "label"], **kwargs)
ax[1].set_title('true labels')
```

Out[27]: <matplotlib.text.Text at 0x1a1d8b8160>

```
In [28]: plt.show()
```

