Statistics 630 - Assignment 7

(due Friday, 29 October 2021)

Use R for simulation, data computation, graphing, etc. You do not need to report your routines (R commands) – just show the results. But I recommend that you save your routines for later reference.

- 1. Chapter 4 Exercise 4.2.12. Note: $M_n = \bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n)$, the mean of a sample of n data. Use R to generate the random exponential variables with rexp. The second argument for rexp (a value that you provide) is the parameter λ in the book's notation. The mean of a vector x is given by mean(x).
- 2. Chapter 4 Exercise 4.4.4.
- 3. Chapter 4 Exercise 4.4.12. Add (d-f) Determine the exact distribution of the average time to service for the first n customers, when n = 16, 36, 100. (Hint: use the mgf.) Then use the pgamma function in R to find the exact probability and compare it to the normal approximation.
- 4. Chapter 4 Exercise 4.4.16.
- 5. Chapter 4 Exercises 4.6.1, 4.6.2, 4.6.7.
- 6. Chapter 4 Exercises 4.6.10. The book says "compute the distribution of" but all you need is to identify the distribution using the results in Section 4.6.
- 7. Suppose X_1, \ldots, X_n are iid random variables from the exponential(λ) distribution. Write down the joint pdf for the random vector (X_1, \ldots, X_n) and show that it can be expressed in terms of n, λ and $x_1 + \cdots + x_n$.
- 8. Suppose T_1, \ldots, T_n are iid random variables from the binomial $(4, \theta)$ distribution. Write down the joint pmf for the random vector (T_1, \ldots, T_n) and show that it can be factored as $a(\theta)g(t_1, \ldots, t_n)h(t_1 + \cdots + t_n, \theta)$.
- 9. Recall the Laplace pdf $f(x) = \frac{1}{2}e^{-|x|}$ (Exer. 2.4.22 and Exer. 3.4.16). This can be generalized to a location-scale family with parameters (μ, β) by $f(x) = \frac{1}{2\beta}e^{-|x-\mu|/\beta}$. Let X_1, \ldots, X_n be iid random variables from this distribution, for some (μ, β) , and write down the joint pdf for the random vector (X_1, \ldots, X_n) . Simplify as possible.
- 10. Use R to simulate $N = 10^4$ random samples (Z_1, \ldots, Z_n) from the normal (0,1) distribution and compute $T = \max(Z_1, \ldots, Z_n)$ for each sample. Use n = 20 (but you can try larger n for comparison, if you have time and would like to.) $\max(\mathbf{x})$ gets the maximum value in a vector \mathbf{x} . Use hist and boxplot to obtain a histogram and box-plot of your N values of T. Comment on the histogram shape and symmetry.