Tutorcial-5

- 1) Let r = (x, y, 2). Then prove the following

 i) $\nabla \cdot \nabla \left(\frac{1}{||x||^2}\right) = 0$ ii) $\nabla \cdot \left(\frac{r}{||x||^2}\right) = 0$.
- DE valuate the line integred of fds where f and of arre given below

 is f(2 a) = 2 2 2 2 3 8 is the line segment from
 - i) $f(x, y) = 3x^2 2y$ & d is the line segment from (3.6) to (1,-1).
 - ii) $f(x,y) = 2yz^2 4x$ & 3 is the lower half of the circle centred at oreign of radius 3 with clocknise direction.
 - 3) Evaluate the following line integred JF. ds of the given vector field F.
 - $F(x,y) = (y^2, 3x 6y)$ and g is the line segment joining (g,7) and (1,2).
 - ii) $F(x,y) = (3y, x^2-y)$ and it be the upper half of the circle of readins 1 & centreed at (0,0) and the partion of $y=x^2-1$ from x=-1 to x=1 with counter clackwise resolution.

i)
$$F(x,y) = (x^3 - 4xy^2 + 2, 6x - 7y + x^3y^3)$$

ii) $F(x,y) = (2x \sin(2y) - 3y^2, 2 - 6xy + 2x^2 \cos(2y))$
Both the vector field defined on whole R^2

(5) i) Verify Green's Theorem fore
$$\int_{\mathcal{S}} (2y^2+x^2) dx + (4x-1) dy$$
 where $\partial_{\mathcal{S}} (0,3)$

- 6 Evaluate the following surface integral I f ds where f is a scalar function, f(x,y,z) = 2y and S is surface $y^2+z^2=4$ between x=0 and 2+z=3.
- Fraluate II F.ds where F = (2, 2y, -2) and S is the partion of $y = 3x^2 + 3z^2$ that lies behind y = 6 orderted in the positive y axis direction (i.e, inward direction).

8) Use divergence Theorem to evaluate $\iint F \cdot ds$ where $F = (2y, -\frac{1}{2}y^2, 2)$ and S is the surface consists of three surfaces, $2 = 4 - 3z^2 - 3y^2$, $1 \le 2 \le 4$ on the top, $2^2 + y^2 = 1$, $0 \le 2 \le 1$ on the sides and 2 = 0 on the bottom.

