AUTOMATYKA I ROBOTYKA - SEMESTR 2

ANALIZA I RÓWNANIA RÓŻNICZKOWE 2. ZESTAW 1.

Zad. 1. Znaleźć całkę szczególną równania spełniającą podany warunek początkowy

(a)
$$y' = y - y^2$$
, $y(0) = 0.5$

(b)
$$x \cdot y' = \text{tg}y$$
, $y(1/2) = 5\pi/6$

(c)
$$y' = \frac{y-x}{x}$$
, $y(1) = -2$

Zad. 2. Rozwiązać równanie różniczkowe

(a)
$$y' - \frac{2x}{1+x^2} \cdot y = 1+x^2$$

(b)
$$y' + 2xy = xe^{-x^2}$$

$$(c) \quad y' + 4y = 5\sin 3x$$

(d)
$$y' - 2y = \cos x - x \sin x$$

Zad. 3. Znaleźć całkę szczególną równania spełniającą podany warunek początkowy

(a)
$$y' + 2y = 5\cos x$$
, $y(\pi/2) = 1$

(b)
$$y' - \frac{xy}{2(x^2 - 1)} = \frac{x}{2y}, \ y(2) = \sqrt{3}$$

Zad. 4. Znaleźć całkę szczególną równania speniającą podany warunek początkowy

(a)
$$y'' - 4y' = 8x$$
, $y(0) = 1$, $y'(0) = -1$

(b)
$$y'' - 2y' + y = 4\sin^2(x/2)$$
, $y(0) = 2$, $y'(0) = 1$

Zad. 5. Rozwiązać równanie różniczkowe

(a)
$$y'' + y = \operatorname{tg} x$$

(b)
$$y'' - 2y' + y = \frac{e^x}{x^2 + 1}$$

Zad. 6. Przewidzieć rozwiązanie ogólne równania (bez wyznaczania współczynników)

(a)
$$y''' + y'' - 4y' - 4y = e^x + 3xe^{2x} + \cos x$$

(b)
$$y''' - 3y' - 2y = e^{-2x} + xe^{-x} + \sin x$$

(c)
$$y''' - 2y'' + 4y' - 8y = e^{2x} + e^x + \cos 2x$$