1.1 A Brief Intro to the Internet

- Origins
 - ARPAnet late 1960s and early 1970s
 - Network reliability
 - For ARPA-funded research organizations
 - BITnet, CSnet late 1970s & early 1980s
 - email and file transfer for other institutions
 - NSFnet 1986
 - Originally for non-DOD funded places
 - Initially connected five supercomputer centers
 - By 1990, it had replaced ARPAnet for nonmilitary uses
 - Soon became the network for all (by the early 1990s)
 - NSFnet eventually became known as the Internet
- What the Internet is:
 - A world-wide network of computer networks
 - At the lowest level, since 1982, all connections use TCP/IP

1.1 A Brief Intro to the Internet (continued)

- Internet Protocol (IP) Addresses
 - Every node has a unique numeric address
 - Form: 32-bit binary number
 - New standard, IPv6, has 128 bits (1998)
 - Organizations are assigned groups of IPs for their computers
- Domain names
 - Form: host-name.domain-names
 - First domain is the smallest; last is the largest
 - Last domain specifies the type of organization
 - Fully qualified domain name the host name and all of the domain names
 - DNS servers convert fully qualified domain names to IPs
- Problem: By the mid-1980s, several different protocols had been invented and were being used on the Internet, all with different user interfaces (Telnet, FTP, Usenet, mailto)

1.2 The World-Wide Web

- A possible solution to the proliferation of different protocols being used on the Internet
- Origins
 - Tim Berners-Lee at CERN proposed the Web in 1989
 - Purpose: to allow scientists to have access to many databases of scientific work through their own computers
 - Document form: hypertext
 - Hypermedia more than just text images, sound, etc.
- Web or Internet?
 - The Web uses one of the protocols, http, that runs on the Internet--there are several others (telnet, mailto, etc.)

1.3 Web Browsers

- Mosaic NCSA (Univ. of Illinois), in early 1993
 - First to use a GUI, led to explosion of Web use
 - Initially for X-Windows, under UNIX, but was ported to other platforms by late 1993
- Browsers are clients always initiate, servers react (although sometimes servers require responses)
- Most requests are for existing documents, using HyperText Transfer Protocol (HTTP)

1.4 Web Servers

 Provide responses to browser requests, either existing documents or dynamically built documents

1.4 Web Servers (continued)

- All communications between browsers and servers use Hypertext Transfer Protocol (HTTP)
- Web servers run as background processes in the operating system
- All current Web servers came from either
 - 1. The original from CERN
 - 2. The second one, from NCSA
- Web servers have two main directories:
 - 1. Document root (servable documents)
 - 2. Server root (server system software)
- Document root is accessed indirectly by clients
 - Its actual location is set by the server configuration file
 - Requests are mapped to the actual location
- Virtual document trees
- Virtual hosts

1.4 Web Servers (continued)

- Proxy servers
- Web servers now support other Internet protocols
- Apache (open source, fast, reliable)
 - Began as the NCSA server, httpd
 - Maintained by editing its configuration file
- IIS
 - Maintained through a program with a GUI interface

1.5 **URLs**

- General form:

scheme:object-address

- The scheme is often a communications protocol, such as telnet or ftp
- For the http protocol, the object-address is: fully qualified domain name/doc path
- For the file protocol, only the doc path is needed
- Host name may include a port number, as in zeppo:80 (80 is the default, so this is silly)
- URLs cannot include spaces or any of a collection of other special characters (semicolons, colons, ...)
- The doc path may be abbreviated as a partial path
 - The rest is furnished by the server configuration

1.6 Multipurpose Internet Mail Extensions (MIME)

- Originally developed for email
- Used to specify to the browser the form of a file returned by the server (attached by the server to the beginning of the document)
- Type specifications
 - Form: type/subtype
 - Examples: text/plain, text/html, image/gif, image/jpeg
- Experimental types
 - Subtype begins with xe.g., video/x-msvideo
 - Experimental types require the server to send a helper application or plug-in so the browser can deal with the file

1.7 The HyperText Transfer Protocol

- The protocol used by ALL Web communications
- Request Phase
 - Form:
 HTTP method domain part of URL HTTP ver.
 Header fields
 blank line
 Message body
 - An example of the first line of a request:

```
GET /cs.uccp.edu/degrees.html HTTP/1.1
```

- Most commonly used methods:

GET - Fetch a document

POST - Execute the document, using the data in body

HEAD - Fetch just the header of the document

PUT - Store a new document on the server

DELETE - Remove a document from the server

1.7 The HyperText Transfer Protocol (continued)

- Four categories of header fields:

General, request, response, and entity

- Common request fields:

Accept: text/plain

Accept: text/*

If-Modified_since: date

- Common response fields:

Content-length: 488

Content-type: text/html

-Can communicate with HTTP without a browser

> telnet blanca.uccs.edu http

GET /user1 /respond.html HTTP/1.1 Host: blanca.uccs.edu

1.7 The HyperText Transfer Protocol (continued)

- Response Phase
 - Form:

 Status line
 Response header fields
 blank line
 Response body
 - Status line format: HTTP version status code explanation
 - Example: HTTP/1.1 200 ок (Current version is 1.1)
 - Status code is a three-digit number; first digit specifies the general status
 - 1 => Informational
 - 2 => Success
 - 3 => Redirection
 - 4 => Client error
 - 5 => Server error
 - The header field, Content-type, is required

1.7 The HyperText Transfer Protocol (continued)

- An example of a complete response header:

HTTP/1.1 200 OK

Date: Sat, 25 July 2009 20:15:11 GMT

Server: Apache /2.2.3 (CentOS)

Last-modified: Tues, 18 May 2004 16:38:38 GMT

Etag: "1b48098-16a-3dab592dc9f80"

Accept-ranges: bytes Content-length: 364 Connection: close

Content-type: text/html, charset=UTF-8

- Both request headers and response headers must be followed by a blank line

1.8 Security

- There are many kinds of security problems with the Internet and the Web
- One fundamental problem is getting data between a browser and a server without it being intercepted or corrupted in the process

1.8 Security

- Security issues for a communication between a browser and a server:
 - 1. Privacy
 - 2. Integrity
 - 3. Authentication
 - 4. Nonrepudiation
 - The basic tool to support privacy and integrity is encryption
 - Originally, a single key was used for both encryption and decryption, which requires the sender of an encrypted document to somehow transmit the key to the receiver
 - Solution: (1976, Diffie and Hellman)
 - Public-key encryption
 - Use a public/private key pair
 - Everyone uses your public key to encrypt messages sent to you
 - You decrypt them with your matching private key
 - It works because it is virtually impossible to compute the private key from a given public key

1.8 Security

- RSA is the most widely used public-key algorithm
- Another security problem: destruction of data on computers connected to the Internet
 - Viruses and worms
- Yet another common security problem: Denial-of-Service (DoS)

1.9 The Web Programmer's Toolbox

- HTML
 - To describe the general form and layout of documents
 - An HTML document is a mix of content and controls
 - Controls are tags and their attributes
 - Tags often delimit content and specify something about how the content should be arranged in the document
 - Attributes provide additional information about the content of a tag
 - Tools for creating HTML documents
 - HTML editors make document creation easier
 - Shortcuts to typing tag names, spell-checker,
 - WYSIWYG HTML editors
 - Need not know HTML to create HTML documents

- Plug ins
 - Integrated into tools like word processors, effectively converting them to WYSIWYG HTML editors
- Filters
 - Convert documents in other formats to HTML
- Advantages of both filters and plug-ins:
 - Existing documents produced with other tools can be converted to HTML documents
 - Use a tool you already know to produce HTML
- Disadvantages of both filters and plug-ins:
 - HTML output of both is not perfect must be fine tuned
 - HTML may be non-standard
 - You have two versions of the document, which are difficult to synchronize

- XML
 - A meta-markup language
 - Used to create a new markup language for a particular purpose or area
 - Because the tags are designed for a specific area, they can be meaningful
- JavaScript
 - A client-side HTML-embedded scripting language
 - Provides a way to access elements of HTML documents and dynamically change them

- Flash
 - A system for building and displaying text, graphics, sound, interactivity, and animation (movies)
 - Two parts:
 - 1. Authoring environment
 - 2. Player
 - Supports both motion and shape animation
- PHP
 - A server-side scripting language
 - Great for form processing and database access through the Web

- Ajax
 - Asynchronous JavaScript + XML
 - No new technologies or languages
 - Much faster for Web applications that have extensive user/server interactions
 - Uses asynchronous requests to the server
 - Requests and receives small parts of documents, resulting in much faster responses
- Java Web Software
 - Servlets server-side Java classes
 - JavaServer Pages (JSP) a Java-based approach to server-side scripting
 - JavaServer Faces adds an event-driven interface model on JSP

- ASP.NET
 - Does what JSP and JSF do, but in the .NET environment
 - Allows.NET languages to be used as server-side scripting language
- Ruby
 - A pure object-oriented interpreted scripting language
 - Every data value is an object, and all operations are via method calls
 - Most operators can be redefined by the user
 - Both classes and objects are dynamic

- Rails
 - A development framework for Web-based applications
 - Particularly useful for Web applications that access databases
 - Written in Ruby and uses Ruby as its primary user language