IN2090 - Databaser og datamodellering

07 – Funksjonelle avhengigheter

Leif Harald Karlsen (Evgenij Thorstensen) leifhka@ifi.uio.no

Funksjonell avhengighet

- ◆ Et attributt A er **funksjonelt avhengig** av an mengde attributter X hvis det bare kan finnes en verdi av A for hver mengde verdier av attributtene i X.
- Det skrives $X \to A$, og en slik formel kalles en funksjonell avhengighet (FD).
- For eksempel er Karakter funksjonelt avhengig av {Brnavn, Kurskode} i Karakter-tabellen:

Karakter				
Brnavn	Kurskode	Kara		
evgenit	IN2090	В		
peternl	IN2090	A		
evgenit	IN2080	В		
leifhka	IN2090	В		
leifhka	IN3110	C		

• Og både Navn, Etternavn og Adresse er funksjonelt avhengig av Brnavn i Student-tabellen:

Student				
Navn	Etternavn	Adresse		
Evgenij	Thorstensen	Addr1		
Petter	Nilsen	Addr2		
Leif H.	Karlsen	Addr3		
	Navn Evgenij Petter	Navn Etternavn Evgenij Thorstensen Petter Nilsen		

FDer, data og virkeligheten

- FDer uttrykker det vi mener er sant i virkeligheten som dataene våre beskriver
- F.eks. er brukernavnet til en student faktisk unikt for hver student, mens adressen kanskje ikke trenger å være det
- Kan fort bli et komplisert spørmål om verdens tilstand
- FDer forteller oss hvilke data hører sammen, og hva de hører til

Syntaks for FDer

◆ Jeg leser ofte pilen som "bestemmer", så

$$X \rightarrow Y$$

leses enten "X bestemmer Y" eller "Y er funksjonelt avhengig av X"

◆ Vi dropper ofte mengde-tegnene i FDer, så skriver f.eks. i stedet for

$$\{\texttt{Brnavn}, \texttt{Kurskode}\} \rightarrow \{\texttt{Karakter}\}$$

skriver vi ofte

 $\mathtt{Brnavn}, \mathtt{Kurskode} o \mathtt{Karakter}$

 Dersom attributtene er enkle bokstaver (A, B, osv.) dropper vi ofte også komma og skriver f.eks. i stedet for:

$$A, B \rightarrow X, Y, Z$$

skriver vi ofte

$$AB \rightarrow XYZ$$

FDers oppførsel

Vi kan samle opp høyresider i FDer, og skrive

$$X \rightarrow A, B$$

dersom vi både har $X \to A$ og $X \to B$.

- FDer er transitive: Hvis $X \to Y$ og $Y \to Z$, så har vi at $X \to Z$.
- ♦ En FD $X \rightarrow Y$ hvor $Y \subseteq X$ kalles triviell, f.eks.:

$$\mathtt{Brnavn},\mathtt{navn} o \mathtt{navn}$$

 Vi ignorerer slike trivielle FDer, fordi de alltid er sanne og dermed ikke gir oss noe informasjon

Eksempel, FDer

R(Brnavn, Navn, Etternavn, Adresse, Kurskode, Tittel, Beskrivelse, AntSP, Karakter)

Jeg foreslår følgende FDer:

- lacktriangle Brnavn ightarrow Navn, Etternavn, Adresse
- ◆ Kurskode → Tittel, Beskrivelse, AntSP
- lacktriangle Brnavn, Kurskode ightarrow Karakter

Nøkler

- En **supernøkkel** for en relasjon er jo enhver mengde attributter som sammen er unike for relasjonen
- En kandidatnøkkel er en ⊆-minimal supernøkkel
- Dersom en mengde attributter er unike forekommer jo hver kombinasjon av disse kun i et tuppel, og bestemmer derfor de andre verdiene i tuplet
- Med andre ord, en nøkkel (enten super eller kandidat) er en mengde attributter som bestemmer de andre attributtene i relasjonen
- FDer sier jo hvilke attributter som bestemmer hvilke andre attributter
- Altså, FDene sier hvilke supernøkler og kandidatnøkler vi har!

FDer og nøkler

- ◆ Dersom R er en relasjon med attributter X, så vil:
 - $Y \subseteq X$ være en supernøkkel for R hvis $Y \to X \setminus Y$, som er evivalent med $Y \to X$
 - $Y \subseteq X$ er en kandidatnøkkel for R hvis Y er en minimal supernøkkel
- For å sjekke om X er en supernøkkel, sjekk om alt er avhengig av X
- Altså, bruk FDene og finn alle attributter som er avhengige av X, de som er avhengige av disse igjen, osv.

Tillukning

- ◆ Tillukningen X⁺ av X på en mengde FDer er mengden attributter som er funksjonelt avhengige av X
- Hvis $X \to A$, så er $A \in X^+$ sant
- ◆ Hvis $A \notin X^+$, så er ikke $X \to A$ sant
- Tillukningen kan regnes ut ved å bruke FDene om og om igjen:
 - ◆ sett X⁺ = X
 - ◆ sålenge X⁺ forandres:
 - finn en FD $Y \rightarrow Z \mod Y \subseteq X^+$
 - sett $X^+ = X^+ \cup Z$

Eksempel tillukning

Gitt følgende FDer:

- lacktriangle Brnavn ightarrow Navn, Adresse
- lacktriangle Kurskode ightarrow Grad
- lacktriangle Brnavn, Kurskode ightarrow Karakter
- lacktriangle Grad, Karakter ightarrow Bestått

Så har vi følgende tillukninger:

- ◆ Brnavn⁺ = Brnavn, Navn, Adresse
- $\qquad \qquad \\ \\ \{ \texttt{Brnavn}, \texttt{Kurskode} \}^+ = \texttt{Brnavn}, \texttt{Kurskode}, \texttt{Navn}, \texttt{Adresse}, \texttt{Grad}, \texttt{Karakter}, \texttt{Bestått} \\ \\ \\ \\ \end{aligned}$
- ◆ Navn⁺ = Navn
- ◆ Grad⁺ = Grad

Finne kandidatnøkler

- Vi må sjekke alle delmengder av attributter, nedenfra. Men, følgende to regler hjelper oss:
 - Hvis A ikke forekommer i noen høyreside, er A med i alle kandidatnøkler.
 - Hvis A forekommer i minst en høyreside, men ingen venstresider, er A ikke del av noen kandidatnøkkel.
- Så begynn med alle attributter som ikke forekommer på høyre side. Beregn tillukningen.
- Hvis alle attributter er med, sjekk minimalitet. Hvis ikke, utvid i tur og orden med ett og ett nytt attributt.

Eksempel (lett)

R(Brnavn, Navn, Etternavn, Adresse, Kurskode, Tittel, Beskrivelse, AntSP, Karakter)

- lacktriangle Brnavn ightarrow Navn, Etternavn, Adresse
- Kurskode → Tittel, Beskrivelse, AntSP
- Brnavn, Kurskode → Karakter

Attributter som ikke er på høyresider: Brnavn, Kurskode

Attributter som er i høyresider, men ikke venstre: Alle andre!

Ergo er {Brnavn, Kurskode} eneste kandidatnøkkel.

R(Brnavn, Navn, Adresse, Kurskode, Tittel, Beskrivelse, AntSP, Karakter, Bestått)

- lacktriangle Brnavn ightarrow Navn, Adresse
- ◆ Kurskode → Tittel, Beskrivelse, AntSP
- ◆ Tittel → Kurskode, Beskrivelse, AntSP
- ullet Brnavn, Kurskode o Karakter
- lacktriangle Karakter ightarrow Bestått

Ikke på høyresider: Brnavn

la game sidem. M

Kun på høyresider: Navn, Adresse, Beskrivelse, AntSP, Bestått

Forsøke å utvide med: Kurskode, Tittel, Karakter

 $oldsymbol{\mathit{X}} = \hspace{0.1cm} \mathtt{Brnavn}, \mathtt{Navn}, \mathtt{Adresse}$

R(Brnavn, Navn, Adresse, Kurskode, Tittel, Beskrivelse, AntSP, Karakter, Bestått)

- lacktriangle Brnavn ightarrow Navn, Adresse
- ◆ Kurskode → Tittel, Beskrivelse, AntSP
- ◆ Tittel → Kurskode, Beskrivelse, AntSP
- ◆ Brnavn, Kurskode → Karakter
- ◆ Karakter → Bestått

Ikke på høyresider: Brnavn

Kun på høyresider: Navn, Adresse, Beskrivelse, AntSP, Bestått

Forsøke å utvide med: Kurskode, Tittel, Karakter

Kandidatnøkler: {Brnavn, Kurskode}

R(Brnavn, Navn, Adresse, Kurskode, Tittel, Beskrivelse, AntSP, Karakter, Bestått)

- lacktriangle Brnavn ightarrow Navn, Adresse
- ◆ Kurskode → Tittel.Beskrivelse,AntSP
- ◆ Tittel → Kurskode, Beskrivelse, AntSP
- ◆ Brnavn, Kurskode → Karakter
- ◆ Karakter → Bestått

Ikke på høyresider: Brnavn

Kun på høyresider: Navn, Adresse, Beskrivelse, AntSP, Bestått

Forsøke å utvide med: Kurskode, Tittel, Karakter

Kandidatnøkler: {Brnavn, Kurskode}, {Brnavn, Tittel}

R(Brnavn, Navn, Adresse, Kurskode, Tittel, Beskrivelse, AntSP, Karakter, Bestått)

- lacktriangle Brnavn ightarrow Navn, Adresse
- ◆ Kurskode → Tittel, Beskrivelse, AntSP
- ◆ Tittel → Kurskode, Beskrivelse, AntSP
- ◆ Brnavn, Kurskode → Karakter
- ◆ Karakter → Bestått

Ikke på høyresider: Brnavn

Kun på høyresider: Navn, Adresse, Beskrivelse, AntSP, Bestått

Forsøke å utvide med: Kurskode, Tittel, Karakter

$$m{X} = m{Brnavn}$$
, Karakter $m{X}^+ = m{Brnavn}$, Karakter, Navn, Adresse, Bestått

Kandidatnøkler: {Brnavn, Kurskode}, {Brnavn, Tittel} ← alle kandidatnøklene for R

Oppsummering så langt

- Skjemaer som er dårlig designet inneholder anomalier
- Som regel skyldes dette at ikke-relatert informasjon er i samme tabell
- FDer sier hvilken informasjon som henger sammen, samt hvilke nøkler tabeller har
- FDer og nøkler gir oss dermed det vi trenger for å spesifisere kriterier for når vi får anomalier og ikke
- Disse kriteriene definerer ulike normalformer

Takk for nå!

Neste video vil handle om normalformer.