Inżynieria Oprogramowania Specyfikacja

Inżynieria Oprogramowania

W poprzednim odcinku ...

ISO/IEC 42010

Architecture: the fundamental concepts or properties of a system in its environment embodied in its elements, their relationships, and in the principles of its design and evolution

W poprzednim odcinku ...

- Dwie warstwy:
 - Klient
 - przeglądarka
 - Serwer
 - LAMP = Linux + Apache + MySQL + PHP

Inżynieria Oprogramowania

W poprzednim odcinku ...

- Trzy warstwy
 - Klient
 - przeglądarka
 - Serwer aplikacji
 - Linux + Apache
 - Baza danych
 - Linux + MySQL

W poprzednim odcinku ...

- Trzy warstwy z częściowym HA
 - Klient
 - przeglądarka
 - Klaster serwerów aplikacji
 - wiele serwerów Apache
 - Baza danych
 - jeden serwer MySQL

Inżynieria Oprogramowania

W poprzednim odcinku ...

- Trzy warstwy z nieco większym HA
 - Klient
 - przeglądarka
 - Klaster serwerów aplikacji
 - wiele serwerów Apache
 - Klaster baz danych
 - jeden serwer MySQL do zapisu
 - wiele serwerów MySQL do odczytu

W poprzednim odcinku ...

- Trzy warstwy z pełnym HA
 - Klient
 - przeglądarka
 - Klaster serwerów aplikacji
 - wiele serwerów Apache
 - Klaster baz danych
 - wiele serwerów MySQL (do zapisu / odczytu)

Inżynieria Oprogramowania

Więcej warstw

Mniej warstw

- Peer-to-peer
 - każdy jest klientem i serwerem

Inżynieria Oprogramowania

Mniej warstw

- Pipe-and-filter
 - Przetwarzanie potokowe

Service-Oriented Architecture

Inżynieria Oprogramowania

?-as-a-Service, ? \in {Software, Platform, Infrastructure, ...}

Cloud Computing

Inżynieria Oprogramowania

Z życia wzięte (www.dilbert.com)

http://dilbert.com/strips/comic/2011-01-07/

Esencja modeli wytwarzania oprogramowania

Inżynieria Oprogramowania

Czym jest specyfikacja?

	Agreement between	
	Producer 🗲	→ Consumer
Requirements	Development	Purchaser
Specification	Contractor	Purchaser
Design	Tunlamantan	System
Specification	Implementor ⇐	architect
Module	Programmer writing	Programmer using
specification	the module 🗲	the module

- Specyfikacja jest umową
 - pomiędzy dostawcą (np. usługi) ...
 - ... a zamawiającym (np. usługi)
- Oprogramowanie musi być wyspecyfikowane gdy
 - istnieje niebezpieczeństwo niezrozumienia (lub zapomnienia) o potrzebach klienta
 - reprezentowane są potrzeby więcej niż jednej osoby
 - więcej niż jedna osoba wytwarza oprogramowanie

Czy specyfikacja oznacza dużo formalizmy?

- Manifesto for Agile Software Development
 - Individuals and interactions over processes and tools
 - Working software over comprehensive documentation
 - Customer collaboration over contract negotiation
 - Responding to change over following a plan
- Principles behind the Agile Manifesto
 - Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
 - Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
 - Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
 - Business people and developers must work together daily throughout the project.
 - Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
 - The most efficient and effective method of conveying information to and within a development team is faceto-face conversation.
 - Working software is the primary measure of progress.
 - Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
 - Continuous attention to technical excellence and good design enhances agility.
 - Simplicity the art of maximizing the amount of work not done is essential.
 - The best architectures, requirements, and designs emerge from self-organizing teams.
 - At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

17

Inżynieria Oprogramowania

Specyfikowanie wymagań

Jeden z powodów zajmowania się specyfikacją wymagań

Inżynieria Oprogramowania

19

Kolejny powód zajmowania się specyfikacją wymagań

- Co jest ważniejsze dla sukcesu projektu? (uporządkuj)
 - A. Doświadczony menedżer
 - B. Elastyczne podejście do wymagań
 - c. Formalna metodyka
 - D. Jasne cele biznesowe
 - E. Poparcie (dla projektu) wysoko umocowanych osób
 - F. Stałe ograniczanie zakresu
 - G. Standardowa architektura
 - н. Wiarygodne oszacowania
 - . Wykwalifikowany zespół
 - J. Zaangażowanie użytkowników

Kolejny powód zajmowania się specyfikacją wymagań

Przyczyny udanych projektów informatycznych

21

Inżynieria Oprogramowania

Specyfikowanie wymagań

- Jest
 - procesem komunikacji
- pomiędzy
 - klientami / zamawiającymi / użytkownikami
- a
- wytwórcami
- systemów informatycznych
- Jest prawdopodobnie
 - największym wyzwaniem
- dla procesu wytwarzania
 - dużych i złożonych
- systemów informatycznych

Specyfikowanie wymagań

- Wymagania określają
 - CO
- zamiast
 - jak
- Wymagania określają
 - zadania systemu
- a nie
 - sposób ich implementacji
- Specyfikacja to
 - zbiór wymagań

23

- IEEE definiuje wymaganie jako:
 - A condition or capability needed by a user to solve a problem or achieve an objective
 - 2) A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document
 - 3) A documented representation of a condition or capability as in 1) or 2)

Inżynieria Oprogramowania

Dobrze wyspecyfikować system nie jest łatwo

- Telefon komórkowy
 - duży wyświetlacz
 - wygodne klawisze
 - aparat o wysokiej rozdzielczości
 - pojemna bateria
 - ...
- Wskazane wymagania są nieprecyzyjne
 - duży, wygodne, pojemne, ...
- Przyjęto wiele założeń niejawnych
 - klawiatura musi być po tej samej stronie co ekran

Czy mogę wydrukować zdjęcie w formacie A3?

> Czy ten wyświetlacz jest duży?

> > Czy klawiatura nie mogłaby być po drugiej stronie?

Zatem jak przeprowadzać specyfikacje?

- Zatem
 - spisanie wymagań
- . =
- dostarczenie systemu zgodnie z potrzebami
- ?
- Niestety nie:
 - Słowa:
 - wieloznaczność
 - Wiedza:
 - świadoma
 - nieświadoma
 - **...**

25

- Specyfikowanie wymagań
 - to
- sztuka
- Nie ma
 - uniwersalnego sposobu
- ale istnieją
 - dobre praktyki

Inżynieria Oprogramowania

Można specyfikować systemy tak...

- Zalety:
 - łatwość spisywania
- Wady:
 - słaba czytelność
 - trudne sprawdzanie kompletności, spójności
- System powinien umożliwić wystawianie faktur
- System powinien generować zestawienie miesięczne faktur
- Faktura powinna zawierać co najmniej jedną pozycję

(tak przez kolejnych 200 stron)

26

Lub tak...

27

Inżynieria Oprogramowania

Współcześnie mówi się raczej o "inżynierii wymagań"

- Ważne etapy procesu:
 - Wydobywanie wymagań w oparciu o model biznesu
 - Analiza i negocjacja wymagań
 - Zatwierdzanie wymagań
 - Zarządzanie zmianami wymagań

Podejście

29

Inżynieria Oprogramowania

Podejście: wszerz, nie wgłąb

Przykład dobrej praktyki

Wizja

Procesy biznesowe

- czynności poza systemem
- automatyzacja

Przypadki użycia

- aktorzy
- scenariusz główny
- scenariusze alternatywne
- model zależności

Specyfikacja pozafunkcjonalna

31

Inżynieria Oprogramowania

Wizja systemu

Składniki wizji systemu

- Postawienie problemu
- Motto dla systemu
- Osoby zainteresowane, kluczowi użytkownicy
- Główne cechy oprogramowania
- Główne ograniczenia środowiska

Wymagania zamawiającego

FURPS

- F unctionality
- **U** sability
- **R** eliability
- P erformance
- S ecurity

- Wymagania funkcjonalne
- Wymagania pozafunkcjonalne

33

Inżynieria Oprogramowania

Proces biznesowy

- 2. Firma pyta o dane podróży.
- 3. Pasażer podaje dane podróży.
- 4. Firma sprawdza dostępność miejsc.
- 4. Firma pobiera zapłatę za bilet.
- 5. Firma wydaje bilet.
- 6. Pasażer odbywa podróż.
- 7. Pasażer zgłasza reklamację.
- 8. Firma sprawdza wielkość spóźnienia......

Przypadek użycia

35

Inżynieria Oprogramowania

Przypadek użycia

Przypadek użycia – scenariusze

- Niektóre zdarzenia mogą prowadzić w różnych kierunkach
 - w zależności od decyzji użytkownika lub stanu systemu
- Scenariusz to jedno z wystąpień przypadku użycia
- Scenariusz główny
 - podstawowy przebieg przypadku użycia ("happy end").
- Scenariusze alternatywne
 - inne przebiegi przypadku użycia
 - 5'. System pokazuje okno blędu danych

 - wprowadzonymi danymi wyposażenia.
 - 8'. Magazynier wprowadza dane wyposażenia. 9. <<Dalej jak od pkt. 4>>

wyposażenia. 6'. Magazynier wybiera opcję kontynuacji. 7'. System pokazuje okno danych wyposażenia z numeru seryjnego

5'. System pokazuje okno blędu danych

6'. Magazynier wybiera opcję rezygnacji.

37

Inżynieria Oprogramowania

Specyfikacja funkcjonalna – podsumowanie

Specyfikacja pozafunkcjonalna

Inżynieria Oprogramowania

Specyfikacja pozafunkcjonalna

Dobry przypadek użycia

- Fraza czasownikowa w nazwie
- Aktor, scenariusz i rozszerzenia
 - Nadrzędny cel: czytelność!
 - Scenariusz główny najbardziej prawdopodobna ścieżka
 - Alternatywne scenariusze kiedy coś pójdzie nie tak
- Obojetność technologiczna
 - technologia jest zmienna
 - niepotrzebne ograniczenia
 - szczegóły GUI zaciemniają obraz
 - klient nie rozumie terminów technicznych
- Historia możliwa do opowiedzenia na różnych poziomach szczegółów
 - Hierarchiczne scenariusze
 - Można rozwijać lub zwijać w celu pokazania lub ukrycia szczegółów

41

Inżynieria Oprogramowania

Dobra specyfikacja

- Poprawność:
 - Czy rzeczywiście tak ma działać system?
 - Wyraża faktyczne wymagania
- Jednoznaczność:
 - Czy wymagania mają tylko jedną interpretację?
 - Każde stwierdzenie może być odczytane w dokładnie jeden sposób
 - Pojęcia mylące są definiowane w słowniku
 - Jest przejrzysta (zrozumiała dla nie-informatyków)
- Kompletność
 - Czy zamieszczono wszystkie wymagania funkcjonalne i pozafunkcjonalne?
 - Określa wszystkie rzeczy, jakie system musi robić
 - …oraz wszystkie rzeczy, których nie może robić
 - Odpowiada na wszystkie typy danych wejściowych
 - Brak elementów wymagających uzupełnienia (kompletność strukturalna)
- Konieczność
 - Czy wszystkie wymagania są istotne dla zamawiającego?
 - Nie zawiera niczego, co nie jest rzeczywiście potrzebne

Dobra specyfikacja

- Spójność
 - Czy wymagania zamawiającego są zgodne z wizją i niesprzeczne ze sobą?
 - Nie zaprzecza samej sobie (np. jest spełnialna)
 - Jednolicie korzysta z pojęć
- Możliwość porządkowania wymagań
 - Czy każde wymaganie ma atrybuty umożliwiające określenie wagi i znaczenia?
- Weryfikowalność:
 - Czy każde wymaganie ma przyporządkowane kryterium jakości, które można przetestować?
 - Istnieje procedura pozwalająca na przetestowanie spełnienia każdego z wymagań
 - Każde wymaganie jest opisane deklaratywnie
- Modyfikowalność
 - Czy można w łatwy sposób wprowadzać zmiany do specyfikacji wymagań?
 - Dobrze zorganizowana
 - Minimalna redundancja
 - Możliwość śledzenia
- Utrzymywanie śladu
 - Czy wymagania posiadają identyfikatory i wynikają bezpośrednio z wymagań wyższego poziomu?

43

Inżynieria Oprogramowania

Śledzenie zależności

Śledzenie zależności

