# Modélisation Géométrique

Notions de Géométrie Différentielle II

Stefanie Hahmann

Ensimag - Laboratoire LJK - Inria/Imagine

— version 2014 —

Surfaces

- Surfaces réglées
- Surfaces développables

**4** Technique de Modélisation Surfacique (Freeform)

#### Sommaire

- Surfaces
- Surfaces réglées
- 3 Surfaces développables
- 4 Technique de Modélisation Surfacique (Freeform)

Surfaces



## Surface paramétrique

Un morceau de surface paramétrique régulière, dite surface, de classe  $C^r$  (r > 1)est une application de classe  $C^r$ 

$$\left(\begin{array}{c} \mathbf{X}:\Omega \to \mathbb{R}^3 \\ (u,w) \mapsto \mathbf{X}(u,w) = \left[\begin{array}{c} x(u,w) \\ y(u,w) \\ z(u,w) \end{array}\right] \right)$$

qui est de rang 2 dans  $\Omega$ .

 $\Omega \subset \mathbb{R}^2$  est le domaine de paramètre.

$$\left. \begin{array}{l} u \mapsto \mathbf{X}(u,w), w = const. \\ w \mapsto \mathbf{X}(u,w), u = const. \end{array} \right\} \text{ lignes de paramètre}$$

$$\mathbf{X}$$
 de rang  $2 \Rightarrow [\mathbf{X}_u, \mathbf{X}_w] \neq 0$ 

$$(\mathbf{X}_u := \frac{\partial \mathbf{X}}{\partial u}, \, \mathbf{X}_w := \frac{\partial}{\partial u}$$

#### Plan tangent en p = (u, w)

$$T_p \mathbf{X} = \{ \mathbf{X}(u, w) + \lambda \mathbf{X}_u(u, w) + \nu \mathbf{X}_w(u, w) \mid (\lambda, \nu) \in \mathbb{R}^2 \}$$

#### Normale de la surface

$$\mathbf{N}(u, w) := \frac{\mathbf{X}_u \times \mathbf{X}_w}{\|\mathbf{X}_u \times \mathbf{X}_w\|}$$



 $\{\mathbf{X}_u, \mathbf{X}_w, \mathbf{N}\}$  repère orienté positivement  $\Rightarrow$  système de coordonnées local.

- ullet Changement de paramètre  $\Phi:\widetilde{\Omega} o \Omega$
- Relation d'équivalence  $\overline{\mathbf{X}} = \mathbf{X} \circ \Phi^{-1}$
- Invariants géométriques: plan tangent, image de  $\mathbf{X}(\Omega)$ , direction de  $\mathbf{N}$ .

#### Courbe sur la surface

Soit  $C: I \to \Omega$ ,  $c(t) \mapsto \begin{bmatrix} u(t) \\ w(t) \end{bmatrix}$  une courbe paramétrique de classe  $C^1$ :

$$\left(\begin{array}{c} \overline{\mathbf{X}} = \mathbf{X} \circ C : I \to I\!\!R^3 \\ t \mapsto C(t) \mapsto \overline{\mathbf{X}}(t) = \mathbf{X}(u(t), w(t)) \end{array}\right)$$









forme matricielle dans la base canonique  $\{\mathbf{X}_u,\mathbf{X}_w\}$  de  $T_p\mathbf{X}$  en p=(u,w)

$$G = (g_{ij})_{i,j=1,2} = \begin{bmatrix} \langle \mathbf{X}_u, \mathbf{X}_u \rangle & \langle \mathbf{X}_u, \mathbf{X}_w \rangle \\ \langle \mathbf{X}_w, \mathbf{X}_u \rangle & \langle \mathbf{X}_w, \mathbf{X}_w \rangle \end{bmatrix}$$

Forme bilinéaire symétrique  $I_p$ 

$$\begin{pmatrix} I_p: T_p \mathbf{X} \times T_p \mathbf{X} \to \mathbf{I} R \\ (A, B) \mapsto < A, B > \end{pmatrix}$$

Elle est issue de la restriction du produit scalaire usuel de  $I\!\!R^3$  au pan tangent à la surface  $\mathbf{X}(u,w)$ .

La première forme fondamentale  $I_p$  et ainsi G, est un invariant géométrique. Les  $g_{ij}$  ne le sont pas.

Elles est positive définie en tous les points réguliers de la surface.

## Deuxième forme fondamentale $II_p$

forme matricielle

$$H = (h_{ij})_{i,j=1,2} = \begin{bmatrix} \langle \mathbf{X}_{uu}, \mathbf{N} \rangle & \langle \mathbf{X}_{uw}, \mathbf{N} \rangle \\ \langle \mathbf{X}_{wu}, \mathbf{N} \rangle & \langle \mathbf{X}_{ww}, \mathbf{N} \rangle \end{bmatrix}$$

Forme bilinéaire symétrique  $II_p$ 

$$\begin{pmatrix} II_p: T_p \mathbf{X} \times T_p \mathbf{X} \to \mathbb{R} \\ (A, B) \mapsto < L_p(A), B > \end{pmatrix}$$

avec  $L_p(A) = -d\mathbf{N} \circ d\mathbf{X}^{-1}(A)$  l'application de Weingarten ( $T_p\mathbf{X} \to T_p\mathbf{X}$ ).



 $\mathbf{L} = \mathbf{H}\mathbf{G}^{-1}$  est symétrique et réelle.

Elle admet valeur propres réelles  $\kappa_{min}$  et  $\kappa_{max}$  avec des vecteurs propres orthogonales  $\lambda_{min}$  et  $\lambda_{max}$ .

La courbure normales de X en un point (u, w)

$$\kappa_n(\lambda) = \frac{h_{11} + 2h_{12}\lambda + h_{22}\lambda^2}{g_{11} + 2g_{12}\lambda + g_{22}\lambda^2}, \quad \lambda = dw/du = \tan \alpha$$

est une fonction quadratique rationelle. Les valeurs extrêmes  $\kappa_{min}$  et  $\kappa_{max}$  correspondent aux racines  $\lambda_1,\lambda_2$  de

$$\det \left| \begin{array}{ccc} \lambda^2 & -\lambda & 1 \\ g_{11} & g_{12} & g_{22} \\ h_{11} & h_{12} & h_{22} \end{array} \right| = 0$$



## **Courbures principales**

 $\kappa_{min}$  et  $\kappa_{max}$  s'appellent les courbures principales de  ${\bf X}$  en (u,w).

 $\lambda_1 = \lambda_{min}, \lambda_2 = \lambda_{max}$  sont les directions principales.

Comme vecteurs propres de l'application de Weingarten  ${\cal L}$  les directions principales sont orthogonales.

## Lignes de courbures

Réseau de lignes orthogonales dont le tangentes sont égales aux directions principales.

#### Courbure de Gauß

$$K = \kappa_{min} \cdot \kappa_{max}$$

$$K = \frac{\det H}{\det G} = \frac{h_{11}h_{22} - h_{12}^2}{g_{11}g_{22} - g_{12}^2}$$

## Courbure moyenne

$$M = \frac{1}{2}(\kappa_{min} + \kappa_{max})$$

$$M = \frac{h_{11}g_{22} - 2h_{12}g_{12} + h_{22}g_{11}}{2\det G}$$

Inversement:

$$\kappa_{min,max} = M \pm \sqrt{M^2 - K}$$

Remarque: Les formes fondamentales  $I_p, II_p$  et les courbure principales sont des invariants géométriques.

*Remarque*: sur une sphère:  $\kappa_{min} = \kappa_{max} = const$  en tout point.

## Caractérisation des points de la surface

en fonction du signe de la courbure de Gauß (resp. des courbures principales)



point elliptique

point hyperbolique

point parabolique

#### On alshingue 4 cas pour caraclériser & (Uso):

#### Representation focule de la ourface

\*. I - 2 be be posenthing the limit of I

(10, 10) distance the point \* (10, 10, 10, 10, 10) due
plantangent as us.



4 (4, 4) = 4 (40 + x (10 + 1) + \$ x (10 + 1) + \$ x (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 + 1) + \$ (10 +

" £ Ajje'e' + 0(119)"/
On definit le pombuloid asculatur

on deprint the promised of combitation of Print ) = \*\*(121) + \*\*(121) + \*\*(121) + \*\*\*(121) \*\*(121) \*\*(121) \*\*(121) \*\*(121) \*\*\*(121) \*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121) \*\*\*(121

(4) POINT ELLIPTIONE

Aijus 12 2 defini positive (40 Krus) > 0

Pest un ponobosia adaptique



(2) Point HyperBolique



(3) PONT PARABOLIQUE



- (4) POINT PLANAIRE

  Aljunto (\*) (00 = 20 = 20 = 40 .

  UMBLIC
  Point Signific , pas de altertous principales
- o Consulèrisation Locale de les ourface par les

#### Sommaire

- Surfaces
- 2 Surfaces réglées
- 3 Surfaces développables
- 4 Technique de Modélisation Surfacique (Freeform)

## Surface réglée

 $\mathbf{X}:\Omega \to I\!\!R^3$  est appleé surface réglée, si il existe une paramétrisation t.q.

$$\mathbf{X}(t,v) = \mathbf{a}(t) + v \cdot \mathbf{r}(t), \qquad t \in I, v \in \mathbb{R}$$

point  $\mathbf{a}(t)$ , vecteur  $\mathbf{r}(t) \neq 0$ ,  $\|\mathbf{r}\| = 1$ .

La droite  $D_t$  engendré par  $\mathbf{r}(t)$  s'appelle génératrice.

La courbe  $\mathbf{a}(t)$  s'appelle directrice.

autre définition:  $\mathbf{r}(t) := \mathbf{b}(t) - \mathbf{a}(t)$ , où 2  $\mathbf{a}(t)$ ,  $\mathbf{b}(t)$  sont 2 courbes gauches.



## Exemples de surface réglées

• hyperboloïde de révolution  $x^2 + y^2 - z^2 = 1$ 

$$\mathbf{x}(t,v) = \begin{pmatrix} \cos t \\ \sin t \\ 0 \end{pmatrix} + v \cdot \begin{pmatrix} -\sin t \\ \cos t \\ 1 \end{pmatrix}$$

• paraboloïde hyperbolique z = kxy,  $k \neq 0$ 

$$\mathbf{x}(t,v) = \begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix} + v \cdot \begin{pmatrix} -0 \\ 1/k \\ t \end{pmatrix}$$

• hélicoïde réglée







### **Théorème**

Pour une surface réglée la courbure de Gauß est  $K \leq 0$  en tout point régulier.









#### Sommaire

- Surfaces
- Surfaces réglées
- 3 Surfaces développables
- 4 Technique de Modélisation Surfacique (Freeform)

## Surface développable

Une surface  $C^1$  est appelée développable si chaque point a un voisinage qui peut être développé de faon isométrique au plan, tel que la longueur d'arc est préservée.





## propriétés

- Une surface développable peut être déroulée (développée) sur un plan sans étirements ni compressions (préservation des longueurs).
- Une surface est dévelopable ssi sa courbure de Gauß K=0 en tout point régulier.
- Le vecteur normal  $\mathbf{n}$  est constant lelong de la génératrice  $D_t$ .



## propriétés (suite)

- La Gauß map d'une surface développable est une courbe.
- Les surfaces suivantes sont développables:

$$\mathbf{X}(t, v) = \mathbf{a}(t) + v \cdot \mathbf{r}$$
 surface cylindrique,

$$\mathbf{X}(t,v) = v \cdot \mathbf{r}(t)$$
 surface conique

 $\mathbf{X}(u,v) = \mathbf{a}(t) + v \cdot \mathbf{a}'(t)$  développée tangentielle le plan.

#### Cylindre généralisée

 $\mathbf{a}(t) \in \mathsf{plan}$ ,

 $\mathbf{r}(t)$  tous parallel



### Cône généralisée

 $D_t$  passent toutes par un même point  ${\bf p}$ 



### Développée tangentielle



## **Applications**



# Applications (Batiments réalisés à partir de surf. dév.)

L'opéra de Ténérife par l'architecte Santiago Calatrava

Le musée Guggenheim de Bilbao par l'architecte Frank Gehry.



# **Applications** (suite)



Figure 1: The Morphosense ribbon alone and laying on a physical surface.



Figure 2: Plateforme de contrôle

#### Sommaire

- Surfaces
- Surfaces réglées
- Surfaces développables
- 4 Technique de Modélisation Surfacique (Freeform)

## Surface par interpolation



#### Lagrange interpolation

$$\mathbf{X}(u,w) = \sum \sum \mathbf{P}_{ij} L_i(u) L_j(w)$$

#### Hermite interpolation

$$\mathbf{X}(u,w) = \sum \mathbf{P}_{ij} H_i H_j + \sum \mathbf{P}'_{ij} \overline{H}_i \overline{H}_j$$

## **Surface spline**



#### Bézier surface

$$\mathbf{X}(u,w) = \sum \sum \mathbf{b}_{ij} B_i^n(u) B_j^m(v)$$

#### B-spline surface

$$\mathbf{X}(u,w) = \sum \sum \mathbf{d}_{ij} N_{i,n}(u) N_{j,m}(v)$$



[images 3DSmax]

#### Surface offset



$$\begin{aligned} \mathbf{S}(u,w) &= \\ \mathbf{X}(u,w) + k \cdot \mathbf{N}(u,w), \quad k \in \mathbb{R} \end{aligned}$$

Attention aux auto-intersections quand  $k>1/\kappa_{max}$  (rayon courbure minimal)

#### Surface de révolution

Surface paramétrique de  $IR^3$ , balayée par rotation d'une courbe plane, appelée méridienne.



#### **Surface d'extrusion**

Extrusion d'un profil le long une direction (droite).



[images 3DSmax]

## Surface par balayage (sweep)

Balayage d'un profil lelong d'une trajectoire courbe.



1-rail sweep surface Changing the position of the rail can change the shape of the surface.



Sweep surface created with two rails

[images 3DSmax]

## Surface fillet / congé

Congé de raccord de continuité  $C^1$  ou  $C^2$  entre 2 surfaces (pas nécessairement planes).



# Surface blending raccord de continuité $C^1$ ou $C^2$

#### **Surface loft**



Interpolation de courbes contour.

## Freeform surface modeling software

CATIA source: wikipedia

Solidworks

ICEM Surf

ProEngineer ISDX

NX (Unigraphics -> Siemens PLM)

ProEngineer

Autodesk Inventor

Geomagic

Alias StudioTools (Autodesk)

Blender

Rhinoceros 3D

VSR Virtual Shape (Autodesk)

SolidThinking Evolve, Inspire

SpaceClaim Engineer, Cobalt (Ashlar-Vellum), form-Z, PowerSHAPE, GenesisIOD, OmniCAD (Siemens), Thinkdesign, MicroStation (Bentley Systems Inc), Shark FX (Punch!), Moi3D Moment of Inspiration 3D modeling for designers and artists.