Hypothesis testing

Null and alternative hypotheses

► Tell me...

Null and alternative hypotheses

- ► Tell me...
- ▶ Null hypothesis: there is no difference between groups.

Null and alternative hypotheses

- ► Tell me...
- ▶ **Null hypothesis**: there is no difference between groups.
- ► Alternative hypothesis: groups are different.

► Tell me...

- ► Tell me...
- ▶ Very complicated concept: even statisticians fail to describe it well.

- ► Tell me...
- Very complicated concept: even statisticians fail to describe it well.
- Probability of observing data as or more extreme than these if H0 was true.

- ► Tell me...
- Very complicated concept: even statisticians fail to describe it well.
- ▶ Probability of observing data as or more extreme than these *if H0 was true*.
- ▶ Low P-value: data unlikely if H0 was true.

- ► Tell me...
- Very complicated concept: even statisticians fail to describe it well.
- ▶ Probability of observing data as or more extreme than these *if H0 was true*.
- ▶ Low P-value: data unlikely if H0 was true.
- ▶ Large P-value: data not unusual if H0 was true.

▶ If p < 0.05, we **reject** H0.

- ▶ If p < 0.05, we **reject** H0.
- If p > 0.05, we fail to reject H0

- ▶ If p < 0.05, we **reject** H0.
- ▶ If p > 0.05, we fail to reject H0
- (which is **NOT** the same as 'H0 is true')

- ▶ If p < 0.05, we **reject** H0.
- If p > 0.05, we fail to reject H0
- ▶ (which is **NOT** the same as 'H0 is true')
- **CAUTION:**

- ▶ If p < 0.05, we **reject** H0.
- If p > 0.05, we fail to reject H0
- ▶ (which is **NOT** the same as 'H0 is true')
- ► CAUTION:
- ▶ This is **very widespread**, **but incorrect** practice.

- ▶ If p < 0.05, we **reject** H0.
- ▶ If p > 0.05, we **fail to reject** H0
- ▶ (which is **NOT** the same as 'H0 is true')
- ► CAUTION:
- ▶ This is **very widespread**, **but incorrect** practice.
- P-value is continuous. We must avoid binary decisions based on arbitrary thresholds.

- ▶ If p < 0.05, we **reject** H0.
- ▶ If p > 0.05, we **fail to reject** H0
- ▶ (which is **NOT** the same as 'H0 is true')
- ► CAUTION:
- ▶ This is very widespread, but incorrect practice.
- ► P-value is continuous. We must **avoid binary decisions** based on **arbitrary thresholds**.
- More on this later.

Let's do the test

t.test(h.sevi, h.out)

mean of x mean of y 174.2 176.5

Are heights different then?

```
Welch Two Sample t-test

data: h.sevi and h.out

t = -0.35784, df = 4.7983, p-value = 0.7357

alternative hypothesis: true difference in means is not equal to

95 percent confidence interval:

-19.03344 14.43344

sample estimates:
```

Rejecting hypotheses: two types of error

Figure 1:

Rejecting hypotheses: two types of error

Figure 2:

Understanding NHST

http://rpsychologist.com/d3/NHST/

Example: biased coin

```
[1] 0 0 0 0 1 1 1 1 0 0
```

1-sample proportions test with continuity correction

```
data: sum(coin) out of ntrials, null probability 0.5
X-squared = 0.1, df = 1, p-value = 0.7518
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.1369306 0.7263303
sample estimates:
    p
0.4
```

Correlation between variables

http://rpsychologist.com/d3/correlation/

A must read

Eur J Epidemiol (2016) 31:337–350 DOI 10.1007/s10654-016-0149-3

ESSAY

Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations

Sander Greenland¹ · Stephen J. Senn² · Kenneth J. Rothman³ · John B. Carlin⁴ · Charles Poole⁵ · Steven N. Goodman⁶ · Douglas G. Altman⁷

https://doi.org/10.1007/s10654-016-0149-3

Good reading

esa

ECOSPHERE

Applied statistics in ecology: common pitfalls and simple solutions

E. Ashley Steel, 1, Thaureen C. Kennedy, Patrick G. Cunningham, and John S. Stanovick 4

Figure 3:

 $\begin{array}{l} http://dx.doi.org/10.1890/ES13-00160.1 \\ Also \ http://www.statisticsdonewrong.com/ \end{array}$

First things first

Always

First things first

- Always
- Always

First things first

- Always
- Always
- Always

Plot data and models

Figure 4:

Don't use statistics blindly: Visualise

https:

//janhove.github.io/teaching/2016/11/21/what-correlations-look-like

Don't use statistics blindly: Visualise

https:

//janhove.github.io/teaching/2016/11/21/what-correlations-look-like

Don't use statistics blindly: Visualise

https:

//janhove.github.io/teaching/2016/11/21/what-correlations-look-like

Plot. Check models. Plot. Check assumptions. Plot.

Lavine 2014 Ecology

News: Hamburgers increase risk of heart attack

▶ In a sample of 10,000 people, it was found that people eating >2 hamburgers a week had 20% higher probability of heart attack.

News: Hamburgers increase risk of heart attack

- ▶ In a sample of 10,000 people, it was found that people eating >2 hamburgers a week had 20% higher probability of heart attack.
- ▶ Do hamburgers increase heart attacks?

News: Hamburgers increase risk of heart attack

- ▶ In a sample of 10,000 people, it was found that people eating >2 hamburgers a week had 20% higher probability of heart attack.
- Do hamburgers increase heart attacks?
- https://pollev.com/franciscorod726

Bigger flowers increase reproductive success

 \blacktriangleright We found that plants with big flowers produced 30% more seeds. . .

Bigger flowers increase reproductive success

- \blacktriangleright We found that plants with big flowers produced 30% more seeds. . .
- ▶ Do big flowers increase reproductive success?

Bigger flowers increase reproductive success

- ▶ We found that plants with big flowers produced 30% more seeds. . .
- ▶ Do big flowers increase reproductive success?
- https://pollev.com/franciscorod726

Correlation vs Causation

Divorce rate in Maine correlates with Per capita consumption of margarine

Figure 5:

http://tylervigen.com/spurious-correlations

Learning statistics through xkcd

P-value depends on sample size

► Same real difference is detected as significant or not depending on sample size:

Real difference = 40 g

Figure 6:

P-value depends on sample size

With big sample size, we can find highly significant but biologically unimportant differences.

Real difference = 1 g

▶ Statistically significant = unlikely to be zero

- Statistically significant = unlikely to be zero
- ▶ Suggestion: Try to avoid 'significant' all together

- Statistically significant = unlikely to be zero
- Suggestion: Try to avoid 'significant' all together
- Suggested reading: significantly misleading

- ▶ Statistically significant = unlikely to be zero
- Suggestion: Try to avoid 'significant' all together
- ► Suggested reading: significantly misleading
- ▶ Beyond significance, look at *effect sizes*.

'Not significant' does NOT mean 'there is no effect'

Figure 8:

▶ Absence of evidence != Evidence of absence

Failure to reject H0 != H0 is true

0.05 is an arbitrary threshold

The Difference Between "Significant" and "Not Significant" is not Itself Statistically Significant

Andrew GELMAN and Hal STERN

Figure 10:

http://dx.doi.org/10.1198/000313006X152649

Multiple hypothesis testing

Figure 11:

http://dx.doi.org/10.1002/prp2.93

How to	make	your	results	significant:	p-hacking
--------	------	------	---------	--------------	-----------

1. Test multiple variables, then report the ones that are significant.

- 1. Test multiple variables, then report the ones that are significant.
- 2. Artificially choose when to end your experiment.

- 1. Test multiple variables, then report the ones that are significant.
- 2. Artificially choose when to end your experiment.
- 3. Add covariates until effects are significant.

- 1. Test multiple variables, then report the ones that are significant.
- 2. Artificially choose when to end your experiment.
- 3. Add covariates until effects are significant.
- 4. Test different conditions (e.g. different levels of a factor) and report the ones you like.

- 1. Test multiple variables, then report the ones that are significant.
- 2. Artificially choose when to end your experiment.
- 3. Add covariates until effects are significant.
- 4. Test different conditions (e.g. different levels of a factor) and report the ones you like.
- ▶ To read more: Simmons et al 2011

https://www.youtube.com/watch?v=ZaNtz76dNSI

▶ P-values do not measure the **probability of hypothesis** being true, or the probability that the data were produced by **random chance** alone.

- P-values do not measure the probability of hypothesis being true, or the probability that the data were produced by random chance alone.
- Scientific conclusions or policy decisions should NOT be based only on whether a p-value passes a specific threshold.

- P-values do not measure the probability of hypothesis being true, or the probability that the data were produced by random chance alone.
- Scientific conclusions or policy decisions should NOT be based only on whether a p-value passes a specific threshold.
- ▶ P-value, or statistical significance, does not measure the **size of an effect** or the **importance** of a result.

- P-values do not measure the probability of hypothesis being true, or the probability that the data were produced by random chance alone.
- Scientific conclusions or policy decisions should NOT be based only on whether a p-value passes a specific threshold.
- ▶ P-value, or statistical significance, does not measure the **size of an effect** or the **importance** of a result.
- ▶ By itself, a p-value does NOT provide a good measure of evidence regarding a model or hypothesis.

The New Statistics

Aim for estimation of effects and their uncertainty.

PSYCHOLOGICAL SCIENCE

General Article

The New Statistics: Why and How

Psychological Science 2014, Vol. 25(1) 7–29 © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797613504966 pss.sagepub.com

Geoff Cumming
La Trobe University

Figure 12:

http://dx.doi.org/10.1177/0956797613504966

▶ **Type I**: False positive (incorrect rejection of null hypothesis).

- ▶ **Type I**: False positive (incorrect rejection of null hypothesis).
- ▶ **Type II**: False negative (failure to reject false null hypothesis).

- ▶ **Type I**: False positive (incorrect rejection of null hypothesis).
- ▶ **Type II**: False negative (failure to reject false null hypothesis).
- ► Type S (Sign): estimating effect in opposite direction.

- ▶ **Type I**: False positive (incorrect rejection of null hypothesis).
- ▶ **Type II**: False negative (failure to reject false null hypothesis).
- ► Type S (Sign): estimating effect in opposite direction.
- ► **Type M (Magnitude)**: Misestimating magnitude of the effect (under or overestimating).

- ▶ **Type I**: False positive (incorrect rejection of null hypothesis).
- ▶ **Type II**: False negative (failure to reject false null hypothesis).
- ▶ **Type S (Sign)**: estimating effect in opposite direction.
- ► **Type M (Magnitude)**: Misestimating magnitude of the effect (under or overestimating).
- Beyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) Errors