1. The proof for this is almost identical to the proof of Markov's inequality:

$$\mu(\{x \in X : |h(x)| > c\}) = \frac{1}{c^p} \int_{\{|h(x)| > c\}} c^p d\mu,$$

$$\leq \frac{1}{c^p} \int_{\{|h(x)| > c\}} |h(x)|^p d\mu,$$

$$\leq \frac{1}{c^p} ||h^p||_1.$$

2. We apply the previous problem,

$$\mu\left(\left\{x \in X : \left| h(x) - \int h d\mu \right| \ge c\right\}\right) \le \frac{1}{c^2} \int \left(h - \int h d\mu\right)^2 d\mu,$$

$$= \frac{1}{c^2} \int \left(h^2 - 2h \int h d\mu + \left(\int h d\mu\right)^2\right) d\mu,$$

$$= \frac{1}{c^2} \left(\int h^2 d\mu - \left(\int h d\mu\right)^2\right).$$

4. By way of contradiction, suppose that the constant in the Vitali covering lemma can be replaced by 3ε for $0 < \varepsilon < 3$. Then, let I = (a,b) such that $b - \frac{3}{2}\varepsilon b - \varepsilon > 0$ and $a < b - \varepsilon$. Now, consider $I' = (b - \varepsilon, b - \varepsilon + \ell(I))$. Note that I and I' are not disjoint. So, we proceed to show that the Vitali covering lemma no longer holds with 3ε . It follows that

$$3\varepsilon * (a,b) = \left(a - \frac{3\varepsilon}{2}\ell(I), b + \frac{3\varepsilon}{2}\ell(I)\right).$$

Then,

$$b + \frac{3\varepsilon}{2}\ell(I) = b\left(1 + \frac{3}{2}\varepsilon\right) - a,$$

Since $b-\frac{3}{2}\varepsilon b-\varepsilon>0$, it follows that $2-\frac{\varepsilon}{b}>1-\frac{3}{2}\varepsilon$. Then,

$$< b\left(2 - \frac{\varepsilon}{b}\right) - a.$$

The last inequality implies that $3\varepsilon * (a,b) \not\supset I'$. By symmetry, $3\varepsilon * I' \not\supset I$.

- 6. For any $x\in(0,1)$, there exists an open interval, I, such that $\chi_{[0,1]}(I)=1$. Thus, $h^*((0,1))=1$. On the other hand, if $x\leq 0$, then $\int_{b-t}^{b+t}|h|>0$ only if b+t>0. It also follows that if b+t>1, then $\int_{b-t}^{b+t}|h|$ decreases monotonically. Thus, $h^*(b)=\frac{1}{2(1-b)}$ for b<0. The same holds if b>1. So, applying the same logic, $h^*(b)=\frac{1}{2b}$ for b>1.
- 9. Let $A = \{b \in \mathbf{R} : h^*(b) > c\}$. Then, it suffices to show that for every $b \in A$, there exists some $\varepsilon > 0$ such that $(b \varepsilon, b + \varepsilon) \subset A$. We first consider the case of extending [b, b] to the interval $[b, b + \varepsilon)$ and show that there exists an $\varepsilon > 0$ such that $[b, b + \varepsilon) \subset A$, then by symmetry, $(b \varepsilon, b + \varepsilon) \subset A$. So,

$$\begin{split} \sup_{t>0} \frac{1}{2t} \int_{b-t}^{b+t} |h| &= \sup_{t>0} \frac{1}{2t} \left(\int_{b-t}^{b+t} |h| - \int_{b-t}^{b+\varepsilon-t} |h| + \int_{b+t}^{b+\varepsilon+t} |h| \right), \\ &= \sup_{t>0} \frac{1}{2t} \left(\int_{b-t}^{b+t} |h| - \varepsilon \cdot \sup_{\underbrace{(b-t,b+\varepsilon-t)}_{\text{(a)}}} |h| + \varepsilon \cdot \sup_{\underbrace{(b+t,b+\varepsilon+t)}} |h| \right). \end{split}$$

It remains to show that there exists $\varepsilon>0$ where |h| is bounded on $(b-t,b+\varepsilon+t)$. Then, the ε -terms on the right-hand side can be made arbitrarily small so, it follows that $[b,b+\varepsilon)\subset A$. By way of contradiction, suppose for all $\varepsilon>0$, there does not exist some bounded Lebesgue measurable set L such that $(b-t,b+\varepsilon-t)\subset f^{-1}(L)$. Then, there does not exist a bounded Lebesgue measurable set L such that $\cap_{\varepsilon>0}(b-t,b+\varepsilon-t)\subset f^{-1}(L)$. This implies that $f(b-t)=\infty$ which is a contradiction since $f:\mathbf{R}\to\mathbf{R}$.

11.

13.