Reduced *Eimeria* and pinworms loads in hybrid mice of the European house mouse hybrid zone

Alice Balard^{1,2}, Victor Hugo Jarquín-Díaz^{1,2}, Jenny Jost¹, Iva Martincová³, Ľudovít Ďureje³, Jaroslav Piàlek³, Miloš Macholán⁴, Joëlle Goüy de Bellocq³, Stuart J.E. Baird³, and Emanuel Heitlinger^{1,2}

 1 Institute for Biology. Department of Molecular Parasitology. Humboldt University Berlin, Germany 2 Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany

³Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Czech Republic

4Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Czech Republic

General

- Parasite models:
- Eimeria spp., obligate intracellular parasite (Apicomplexa: Coccidia). High impact on host health expected
- Pinworms (Aspiruluris tetraptera and Syphacia obvelata). Low impact on host health expected
- Host model: Mus musculus domesticus, M. m. musculus and their hybrids
- Aim of the study: Investigating hybrid susceptibility/resistance of house mice to parasites presenting different pathogenicity, using prevalence and intensity data in a new transect of the European house mouse hybrid zone

Material & Methods

- ullet Sampling 660 mice over 4 years; Host genotyping (4-14 diagnostic markers) on a 0 to 1 scale (equal admixture hybrids = 0.5)
- Eimeria load estimated by quantitative PCR
- Pinworm load estimated by count
- Modellisation of parasite load along hybridization index, test hybrid effect by maximum likelihood
- Logistic regression presence/absence of parasite in direction of the hybrid zone center
- Body condition = residuals body length/body weight. Modellisation of body condition along hybridization index, test hybrid effect by maximum likelihood, test difference between infected/non-infected

Results: Eimeria spp. and pinworm load lower in hybrids than in parental mice

- Equal parasite prevalence along the hybrid index
- Statistically significant lower parasite load in the center of the hybrid zone
- No indication of differential body condition between infected/non-infected / along hybrid gradient

Conclusion

- Increased resistance of hybrid mice compared to parental strains for both lower pathogenic parasite (pinworms) and high pathogenic one (Eimeria)
- Control for density troughs: no evidence of a lower parasite prevalence in the centre of the hybrid zone (exclude external ecological epidemiological factors)
- Independance of hybrid resistance from the parasite pathogenicity level

References

Balard et al. (unpublished) Reduced Eimeria and pinworms loads in hybrid mice of the European house mouse hybrid zone R package used for modelling: Balard, A., and E. Heitlinger. 2019. Alicebalard/parasiteLoad DOI: 10.5281/zenodo.2535547

