18/10/2015 Coursera

Feedback — Week 4: PDA's and CFL Properties

Help Center

You submitted this homework on **Sun 18 Oct 2015 2:50 AM CEST**. You got a score of **6.00** out of **6.00**.

Question 1

The language L = {ss | s is a string of a's and b's} is not a context-free language. In order to prove that L is not context-free we need to show that for every integer n, there is some string z in L, of length at least n, such that no matter how we break z up as z = uvwxy, subject to the constraints $|vwx| \le n$ and |vx| > 0, there is some $i \ge 0$ such that uv^iwx^iy is not in L.

Let us focus on a particular z = aabaaaba and n = 7. It turns out that this is the wrong choice of z for n = 7, since there are some ways to break z up for which we can find the desired i, and for others, we cannot. Identify from the list below the choice of u,v,w,x,y for which there is an i that makes uv^iwx^iy not be in L. We show the breakup of aabaaaba by placing four |'s among the a's and b's. The resulting five pieces (some of which may be empty), are the five strings. For instance, aa|b||aaaba| means u=aa, v=b, $w=\epsilon$, x=aaaba, and $y=\epsilon$.

Your Answer	Score	Explanation
aa ba a ab a		
aab a aab a		
a a baaab a 	✓ 1.00	Correct. For instance, for $i = 0$ we get the string abaaab, which is not of the form ss.
aa ba aa ba		
Total	1.00 / 1.00	

Question 2

18/10/2015 Coursera

Apply the CYK algorithm to the input ababaa and the grammar:

```
S \rightarrow AB \mid BC
A \rightarrow BA \mid a
B \rightarrow CC \mid b
C \rightarrow AB \mid a
```

Compute the table of entries X_{ij} = the set of nonterminals that derive positions i through j, inclusive, of the string ababaa. Then, identify a true assertion about one of the X_{ij} 's in the list below.

V A		0	E discours
Your Answer		Score	Explanation
$X_{34} = \{C\}$			
$X_{23} = \{A\}$			
$X_{23} = \{S\}$			
$X_{36} = \{S,A\}$	~	1.00	
Total		1.00 / 1.00	

Question 3

Consider the pushdown automaton with the following transition rules:

- 1. $\delta(q,0,Z_0) = \{(q,XZ_0)\}$
- 2. $\delta(q,0,X) = \{(q,XX)\}$
- 3. $\delta(q,1,X) = \{(q,X)\}$
- 4. $\delta(q,\epsilon,X) = \{(p,\epsilon)\}$
- 5. $\delta(p,\epsilon,X) = \{(p,\epsilon)\}$
- 6. $\delta(p,1,X) = \{(p,XX)\}$
- 7. $\delta(p,1,Z_0) = \{(p,\epsilon)\}$

The start state is q. For which of the following inputs can the PDA first enter state p with the input empty and the stack containing XXZ₀ [i.e., the ID (p, ϵ ,XXZ₀)]?

Your Answer		Score	Explanation	
0101010				
0011011	~	1.00		
O011100				

18/10/2015 Coursera

O11001101

Total 1.00 / 1.00

Question 4

Consider the pushdown automaton with the following transition rules:

- 1. $\delta(q,0,Z_0) = \{(q,XZ_0)\}$
- 2. $\delta(q,0,X) = \{(q,XX)\}$
- 3. $\delta(q,1,X) = \{(q,X)\}$
- 4. $\delta(q,\epsilon,X) = \{(p,\epsilon)\}$
- 5. $\delta(p,\epsilon,X) = \{(p,\epsilon)\}$
- 6. $\delta(p,1,X) = \{(p,XX)\}$
- 7. $\delta(p,1,Z_0) = \{(p,\epsilon)\}$

From the ID (p,1101,XXZ₀), which of the following ID's can NOT be reached?

Your Answer	Score	Explanation
(p,01,XZ ₀)		
(p,ε,XZ₀)	✓ 1.00	Notice that in state p it is not possible to consume a 0 from the input.
(p,101,XZ ₀)		
(p,01,XXXZ ₀)		
Total	1.00 / 1.00	

Question 5

Here are the transitions of a pushdown automaton. The start state is q_0 , and f is the accepting state.

State-Symbol	а	b	3
q ₀ -Z ₀	(q_1,AAZ_0)	(q_2,BZ_0)	(f,ε)
q ₁ -A	(q ₁ ,AAA)	(q ₁ ,ε)	-

_			
q ₁ -Z ₀	_	_	(q_0, Z_0)
q ₂ -B	(q ₃ ,ε)	(q ₂ ,BB)	-
q ₂ -Z ₀	-	-	(q_0, Z_0)
q ₃ -B	_	_	(q ₂ ,ε)
q ₃ -Z ₀	-	-	(q ₁ ,AZ ₀)

Coursera

Describe informally what this PDA does. Then, identify below the one input string that the PDA accepts.

	Score	Explanation
~	1.00	
	1.00 / 1.00	
	•	✓ 1.00

Question 6

If we convert the context-free grammar G:

$$S \rightarrow AS \mid A$$

$$A \rightarrow 0A \mid 1B \mid 1$$

$$B \rightarrow 0B \mid 0$$

to a pushdown automaton that accepts L(G) by empty stack, using the construction given in the slides. which of the following would be a rule of the PDA?

Your Answer		Score	Explanation
\bigcirc $\delta(q,\epsilon,A) = \{(q,1)\}$			
• $\delta(q,\epsilon,B) = \{(q,0B), (q,0)\}$	~	1.00	
\bigcirc $\delta(q,\epsilon,S) = \{(q,AS)\}$			
Total		1.00 / 1.00	

18/1	10/2015	Coursera	