

Collision Detection

Interactive Computer Graphics
Professor Eric Shaffer

Collision Detection

- Surprisingly complex topic
 - Even a high-quality engine like Unity has issues
- We will discuss how to simulate two types of collision
 - Sphere-Wall
 - Sphere-Sphere
- We will discuss using bounding volumes to accelerate collision detection

Dynamic Collision Detection

Sphere-Plane Collision

$$(\mathbf{n} \cdot X) = d \pm r \Leftrightarrow$$

$$\mathbf{n} \cdot (C + t\mathbf{v}) = d \pm r \Leftrightarrow$$

$$(\mathbf{n} \cdot C) + t(\mathbf{n} \cdot \mathbf{v}) = d \pm r \Leftrightarrow$$

$$t = (\pm r - ((\mathbf{n} \cdot C) - d)) / (\mathbf{n} \cdot \mathbf{v})$$

Why is it $\pm r$?

(plane equation for plane displaced either way)

(substituting $S(t) = C + t\mathbf{v}$ for X)

(expanding dot product)

(solving for t)

Sphere-Sphere Collision Detection

The vector **d** between the sphere centers at time *t* is given by

$$\mathbf{d}(t) = (C_0 + t\mathbf{v}_0) - (C_1 + t\mathbf{v}_1) = \underbrace{(C_0 - C_1) + t(\mathbf{v}_0 - \mathbf{v}_1)}_{\text{C}}$$

$$\mathbf{d}(t) \cdot \mathbf{d}(t) = (r_0 + r_1)^2 \Leftrightarrow \qquad (original expression)$$

$$(\mathbf{s} + t\mathbf{v}) \cdot (\mathbf{s} + t\mathbf{v}) = r^2 \Leftrightarrow \qquad (substituting \mathbf{d}(t) = \mathbf{s} + t\mathbf{v})$$

$$(\mathbf{s} \cdot \mathbf{s}) + 2(\mathbf{v} \cdot \mathbf{s})t + (\mathbf{v} \cdot \mathbf{v})t^2 = r^2 \Leftrightarrow \qquad (expanding dot product)$$

$$(\mathbf{v} \cdot \mathbf{v})t^2 + 2(\mathbf{v} \cdot \mathbf{s})t + (\mathbf{s} \cdot \mathbf{s} - r^2) = 0 \qquad (canonic form for quadratic equation)$$

This is a quadratic equation in t. Writing the quadratic in the form $at^2 + 2bt + c = 0$, with $a = \mathbf{v} \cdot \mathbf{v}$, $b = \mathbf{v} \cdot \mathbf{s}$, and $c = \mathbf{s} \cdot \mathbf{s} - r^2$ gives the solutions for t as

$$t = \frac{-b \pm \sqrt{b^2 - ac}}{a}.$$

General Collision Detection

Often requires use of bounding volumes or spatial data structures

- 1. Broad Phase: Uses bounding volumes to quickly determine which objects need to be checked closely for collision
- 2. Narrow Phase: Perform careful, expensive collision checks, such as triangle-triangle intersection for meshes

Bounding Volumes

AABB=Axis Aligned Bounding Box

OOBB = Object-Oriented Bounding Box

BVH = Bounding Volume Hierarchy

- How much computation is needed to build the BV?
- How much computation is needed to check for BV intersections
- How many false positive collisions do the BVs generate?

BVH Construction

Can be constructed top down:

- 1. Compute bounding volume enclosing all of the geometry
- 2. Split the geometry into two or more groups
- 3. Compute bounding volume for each group
- 4. Recurse
- 5. Leaf nodes will enclose only one geometric primitive

Can also be built by bottom up merging which offers better parallelism

BVH: How to Split

- Can compute a centroid for each geometric primitive
 - Split on median centroid, along longest axis
 - Split on average centroid, along longest axis
- More sophisticated splitting criteria can be used
 - E.g. Surface Area Heuristic used on BVHs for ray-tracing

BVH: How to Collide

- In a single BVH for scene
 - Two geometric primitives can overlap only if their volumes overlap
- Or, BVHs can be used for each composite object (e.g. mesh)
 - A search tree is constructed that records descent into each BVH
 - Determines if any cells overlap

Two objects described by their precomputed BVHs

