А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

ЛЕКЦИЯ 3

3.1. Основные конструкции нормированных пространств

3.1.1. ℓ^p -суммы и c_0 -суммы

Пусть X и Y — нормированные пространства. Зафиксируем $p \in [1, +\infty)$ и для каждого вектора $(x, y) \in X \oplus Y$ положим

$$||(x,y)||_p = (||x||^p + ||y||^p)^{1/p}.$$

Из неравенства Минковского следует, что $\|\cdot\|_p$ — норма на $X\oplus Y$. Введем также норму $\|\cdot\|_\infty$ на $X\oplus Y$, полагая

$$||(x,y)||_{\infty} = \max\{||x||, ||y||\}.$$

Определение 3.1. Пространство $X \oplus Y$, снабженное нормой $\|\cdot\|_p$ (где $1 \leqslant p \leqslant \infty$), называется ℓ^p -суммой пространств X и Y и обозначается через $X \oplus_p Y$.

Замечание 3.1. Легко проверить, что нормы $\|\cdot\|_p$ и $\|\cdot\|_q$ на $X\oplus Y$ эквивалентны для всех p,q и задают на $X\oplus Y$ обычную топологию прямого произведения. Это можно вывести либо из задачи 1.5 (листок 1), либо из предложения 1.5. Поэтому в тех случаях, когда нас будут интересовать топологические (а не метрические) свойства нормированного пространства $X\oplus_p Y$, мы будем обозначать его просто $X\oplus Y$ и называть npsmoй cymmoй пространств X и Y.

Точно так же определяется ℓ^p -сумма любого конечного числа нормированных пространств. Чтобы определить ℓ^p -сумму бесконечного семейства пространств, введем следующее понятие.

Пусть I — произвольное множество и $\operatorname{Fin}(I)$ — семейство всех его конечных подмножеств.

Определение 3.2. *Суммой* семейства $(a_i)_{i\in I}$ неотрицательных чисел называется величина

$$\sum_{i \in I} a_i = \sup_{J \in \text{Fin}(I)} \sum_{i \in J} a_i \in [0, +\infty].$$

Упражнение 3.1. Покажите, что $\sum_{i \in I} a_i < +\infty$ тогда и только тогда, когда множество $S = \{i \in I : a_i > 0\}$ не более чем счетно, причем если оно счетно, то ряд $\sum_{i \in S} a_i$ сходится при какой-либо (или, что эквивалентно, при любой) нумерации множества S.

Определение 3.3. Пусть $(X_i)_{i \in I}$ — семейство нормированных пространств.

(i) Пусть $1 \leqslant p < \infty$. Положим

$$\left(\bigoplus_{i\in I} X_i\right)_p = \left\{x = (x_i) \in \prod_{i\in I} X_i : \sum_{i\in I} ||x_i||^p < \infty\right\}.$$

Из неравенства Минковского следует, что $(\bigoplus X_i)_p$ — векторное подпространство в $\prod X_i$, и что формула

$$||x||_p = \left(\sum_{i \in I} ||x_i||^p\right)^{1/p}$$

задает норму на $(\bigoplus X_i)_p$. Полученное нормированное пространство $(\bigoplus X_i)_p$ называется ℓ^p -суммой семейства (X_i) .

(ii) Положим

$$\left(\bigoplus_{i\in I} X_i\right)_{\infty} = \left\{x = (x_i) \in \prod_{i\in I} X_i : \sup_{i\in I} \|x_i\| < \infty\right\}.$$

Очевидно, что $(\bigoplus X_i)_{\infty}$ — векторное подпространство в $\prod X_i$, и что оно является нормированным пространством относительно нормы

$$||x||_{\infty} = \sup_{i \in I} ||x_i||.$$

Полученное нормированное пространство $(\bigoplus X_i)_{\infty}$ называется ℓ^{∞} -суммой семейства (X_i) .

(iii) Положим

$$\left(\bigoplus_{i\in I}X_i\right)_0=\Big\{x=(x_i)\in\prod_{i\in I}X_i:\text{функция }i\mapsto\|x_i\|\text{ исчезает на бесконечности}\Big\}.$$

Очевидно, $(\bigoplus X_i)_0$ — векторное подпространство в $(\bigoplus X_i)_{\infty}$, поэтому оно является нормированным пространством относительно нормы $\|\cdot\|_{\infty}$. Это пространство называется c_0 -суммой семейства (X_i) .

Если $X_i = \mathbb{K}$ для всех $i \in I$, то пространство $(\bigoplus X_i)_p$ обозначается через $\ell^p(I)$, а пространство $(\bigoplus X_i)_0$ — через $c_0(I)$. Отметим, что $\ell^p(\mathbb{N}) = \ell^p$ и $c_0(\mathbb{N}) = c_0$.

3.1.2. Факторпространства

Пусть X — нормированное пространство и $X_0 \subset X$ — векторное подпространство. Наша ближайшая цель будет состоять в том, чтобы ввести норму на факторпространстве X/X_0 .

Обозначим через $Q: X \to X/X_0$ факторотображение, т.е. отображение, действующее по правилу $x \mapsto x + X_0$. Естественно попытаться ввести норму на X/X_0 таким образом, чтобы Q было ограничено. Заметим, что если такая норма существует, то X_0 должно быть замкнутым; в самом деле, $X_0 = \operatorname{Ker} Q = Q^{-1}(\{0\})$, а прообраз замкнутого множества при непрерывном отображении замкнут.

Оказывается, верно и обратное: если X_0 замкнуто в X, то на X/X_0 есть норма с нужным нам свойством. На самом деле таких норм много, но среди них есть одна, которая «лучше всех»; ее-то мы и построим.

Для каждого $u \in X/X_0$ положим

$$||u||^{\wedge} = \inf\{||z|| : z \in Q^{-1}(u)\}.$$
(3.1)

Эквивалентно,

$$||x + X_0||^{\wedge} = \inf\{||x + y|| : y \in X_0\}.$$
(3.2)

Заменяя в формуле (3.2) y на -y, видим, что величина $||x + X_0||$ равна расстоянию $\rho(x, X_0)$ от x до X_0 .

Предложение 3.1. Функция $\|\cdot\|^{\wedge}$ — полунорма на X/X_0 .

Докажите это предложение сами в качестве упражнения.

Предложение 3.2. Функция $\|\cdot\|^{\wedge}$ — норма $\iff X_0$ замкнуто в X.

Доказательство. Функция $\|\cdot\|^{\wedge}$ является нормой на X/X_0 тогда и только тогда, когда $\|x+X_0\|>0$ для всех $x\in X\setminus X_0$. Поскольку $\|x+X_0\|=\rho(x,X_0)$ (см. выше), положительность этого числа для всех $x\in X\setminus X_0$ равносильна замкнутости X_0 .

Определение 3.4. В случае замкнутого подпространства $X_0 \subset X$ построенная выше норма $\|\cdot\|^{\wedge}$ называется факторнормой нормы $\|\cdot\|$ на X. Факторпространство X/X_0 по умолчанию снабжается этой нормой.

Предложение 3.3. Пусть X — нормированное пространство и $X_0 \subset X$ — замкнутое векторное подпространство. Тогда факторотображение $Q \colon X \to X/X_0$ коизометрично.

Доказательство. Из (3.2) следует, что $||x+X_0||^{\wedge} \leq ||x||$ для всех $x \in X$; стало быть, $Q(\mathbb{B}_{1,X}^{\circ}) \subset \mathbb{B}_{1,X/X_0}^{\circ}$. Обратно, пусть $u \in \mathbb{B}_{1,X/X_0}^{\circ}$, т.е. $||u||^{\wedge} < 1$. Тогда из (3.1) получаем, что u = Q(z) для некоторого $z \in X$, ||z|| < 1. Следовательно, $Q(\mathbb{B}_{1,X}^{\circ}) = \mathbb{B}_{1,X/X_0}^{\circ}$, т.е. Q коизометрично.

Замечание 3.2. Поскольку факторотображение Q коизометрично, оно открыто. Отсюда нетрудно вывести (сделайте это), что топология на X/X_0 — это в точности фактортопология топологии на X; иными словами, подмножество $U \subset X/X_0$ открыто тогда и только тогда, когда множество $Q^{-1}(U)$ открыто в X.

Теперь мы можем ответить на вопрос, почему факторнорма — это наиболее «правильная» норма на X/X_0 . Дело в том, что факторпространство X/X_0 , снабженное этой нормой, обладает следующим универсальным свойством, полностью его характеризующим.

Теорема 3.4. Пусть X — нормированное пространство, $X_0 \subset X$ — замкнутое подпространство, $Q: X \to X/X_0$ — факторотображение. Тогда для каждого нормированного пространства Y и каждого оператора $T \in \mathcal{B}(X,Y)$, удовлетворяющего условию $T(X_0) = 0$, существует единственный оператор $\widehat{T} \in \mathcal{B}(X/X_0,Y)$, делающий следующую диаграмму коммутативной:

$$X \xrightarrow{T} Y$$

$$Q \downarrow \qquad \qquad \uparrow$$

$$X/X_0 \qquad (3.3)$$

 Πpu этом $\|\widehat{T}\| = \|T\|$.

Доказательство. Существование и единственность линейного оператора \widehat{T} , делающего диаграмму (3.3) коммутативной, известны из курса алгебры. Докажем его ограниченность. Из коммутативности диаграммы и условия $T(X_0)=0$ получаем, что для любых $x\in X$ и $y\in X_0$ справедливы равенства

$$\widehat{T}(x+X_0) = T(x) = T(x+y),$$

и, следовательно,

$$\|\widehat{T}(x+X_0)\| = \|T(x+y)\| \le \|T\|\|x+y\|.$$

Беря inf по всем $y \in X_0$, получаем неравенство

$$\|\widehat{T}(x+X_0)\| \le \|T\| \|x+X_0\|^{\wedge}.$$

Следовательно, оператор \widehat{T} ограничен, причем $\|\widehat{T}\| \leq \|T\|$. Для доказательства противоположного неравенства заметим, что если $X/X_0 \neq 0$ (т.е. $X \neq X_0$), то $\|Q\| = 1$, т.к. Q — коизометрия. Следовательно,

$$||T|| = ||\widehat{T}Q|| \leqslant ||\widehat{T}|| ||Q|| = ||\widehat{T}||.$$

Вместе с уже доказанной оценкой $\|\widehat{T}\| \leqslant \|T\|$ это дает нужное равенство $\|\widehat{T}\| = \|T\|$. При $X/X_0=0$ это равенство также справедливо по очевидным причинам.

Доказанную теорему можно по-другому сформулировать так:

Теорема 3.5. Для любого нормированного пространства Y отображение

$$\mathscr{B}(X/X_0,Y) \to \{T \in \mathscr{B}(X,Y) : T(X_0) = 0\} \subset \mathscr{B}(X,Y), \quad S \mapsto S \circ Q,$$

является изометрическим изоморфизмом.

Замечание 3.3. На категорном языке теорема 3.4, как и эквивалентная ей теорема 3.5, означают, что пара $(X/X_0, Q)$ есть $\kappa o \pi \partial p o$ вложения $X_0 \hookrightarrow X$ (как в категории $\mathscr{N}orm$, так и в категории $\mathscr{N}orm_1$). Это и есть наиболее «правильное» объяснение того, почему норма на факторпространстве вводится именно так, а не иначе.

Упражнение 3.2. Докажите, что в категориях *Norm* и *Norm*₁ (см. замечание 2.2) каждый морфизм имеет ядро и коядро.

Следствие 3.6. Пусть X и Y — нормированные пространства, $X_0 \subset X$ и $Y_0 \subset Y$ — замкнутые подпространства, $Q_X \colon X \to X/X_0$ и $Q_Y \colon Y \to Y/Y_0$ — соответствующие факторотображения. Тогда для каждого оператора $T \in \mathcal{B}(X,Y)$, удовлетворяющего условию $T(X_0) \subset Y_0$, существует единственный оператор $\bar{T} \in \mathcal{B}(X/X_0,Y/Y_0)$, делающий следующую диаграмму коммутативной:

$$X \xrightarrow{T} Y \\ Q_X \downarrow \qquad \qquad \downarrow Q_Y \\ X/X_0 - \frac{}{\bar{T}} > Y/Y_0$$

 Πpu этом $\|\bar{T}\| \leqslant \|T\|$.

Доказательство. Достаточно применить теорему 3.4 к оператору Q_YT .

Сформулируем полезное добавление к теореме 3.4.

Предложение 3.7. В обозначениях теоремы 3.4 справедливы следующие утверждения:

- (i) \widehat{T} $om\kappa p \omega m \iff T$ $om\kappa p \omega m$;
- (ii) \widehat{T} коизометричен \iff T коизометричен.

Доказательство. Поскольку оператор Q коизометричен, из коммутативности диаграммы (3.3) следует равенство $\widehat{T}(\mathbb{B}_{1,X/X_0}^{\circ}) = T(\mathbb{B}_{1,X}^{\circ})$. Из него понятным образом вытекает как (i), так и (ii).

Следствие 3.8. Пусть X и Y — нормированные пространства и $T \in \mathcal{B}(X,Y)$. Обозначим через $\widehat{T} \in \mathcal{B}(X/\operatorname{Ker} T,Y)$ оператор, делающий диаграмму

$$X \xrightarrow{T} Y$$

$$Q \downarrow \qquad \qquad \widehat{T}$$

$$X/\operatorname{Ker} T$$

$$(3.4)$$

коммутативной (он существует в силу теоремы 3.4). Тогда

- (i) \widehat{T} топологический изоморфизм \iff T открыт;
- (ii) \widehat{T} изометрический изоморфизм $\iff T$ коизометричен.

Доказательство. Заметим, что $\ker \widehat{T} = 0$. Поэтому оба утверждения следуют из предложения 3.7 с учетом того, что инъективный оператор \widehat{T} является топологическим (соответственно, изометрическим) изоморфизмом тогда и только тогда, когда он открыт (соответственно, коизометричен).

Замечание 3.4. Обратите внимание на отличие следствия 3.8 от его алгебраических аналогов, коротко формулируемых фразой «фактор по ядру изоморфен образу». Отличие состоит в том, что в категориях *Norm* и *Norm*₁ морфизм $X/\operatorname{Ker} T \to Y$, индуцированный эпиморфизмом $T: X \to Y$, вовсе не обязан быть изоморфизмом¹.

3.2. Банаховы пространства

Напомним, что последовательность (x_n) в метрическом пространстве (X, ρ) называется фундаментальной (или последовательностью Коши), если для каждого $\varepsilon > 0$ найдется такое $N \in \mathbb{N}$, что $\rho(x_n, x_m) < \varepsilon$ при n, m > N. Каждая сходящаяся последовательность фундаментальна, но обратное в общем случае неверно. Метрические пространства, в которых всякая фундаментальная последовательность сходится, называются полными.

 $^{^{1}}$ По этой причине аддитивная категория Norm не является абелевой в отличие от, скажем, категорий векторных пространств, абелевых групп, или — более общим образом — модулей над произвольным кольцом.

Определение 3.5. Нормированное пространство называется *банаховым*, если оно полно относительно метрики $\rho(x,y) = ||x-y||$.

Пример 3.1. В курсе классического анализа доказывается, что \mathbb{R} полно (критерий Коши), а также что $\mathbb{R}_2^n = (\mathbb{R}^n, \|\cdot\|_2)$ полно. Отождествляя стандартным образом \mathbb{C}^n с \mathbb{R}^{2n} , видим, что и $\mathbb{C}_2^n = (\mathbb{C}^n, \|\cdot\|_2)$ полно.

Как и раньше, обозначим через \mathbb{K} любое из полей \mathbb{R} или \mathbb{C} , и будем рассматривать нормированные пространства над \mathbb{K} . Будет ли \mathbb{K}^n банаховым пространством, если снабдить его какой-нибудь нормой, отличной от евклидовой нормы $\|\cdot\|_2$? Чтобы ответить на этот вопрос, сделаем следующее несложное наблюдение.

Предложение 3.9. Пусть X u Y - нормированные пространства.

- (i) Если (x_n) фундаментальная последовательность в X, то (Tx_n) фундаментальная последовательность в Y для любого $T \in \mathcal{B}(X,Y)$.
- (ii) Если X и Y топологически изоморфны и X полно, то и Y полно.

Доказательство. Утверждение (i) следует из оценки $||Tx_n - Tx_m|| \le ||T|| ||x_n - x_m||$. Чтобы доказать утверждение (ii), достаточно заметить, что топологический изоморфизм устанавливает биекцию между классами сходящихся последовательностей в X и Y. В силу (i), он же устанавливает биекцию между классами фундаментальных последовательностей в X и Y. Дальше ясно.

Отметим, что при произвольных гомеоморфизмах метрических пространств полнота сохраняться вовсе не обязана (приведите пример!).

Следствие 3.10. Если $\|\cdot\|'$ и $\|\cdot\|''$ — эквивалентные нормы на векторном пространстве X и $(X,\|\cdot\|')$ полно, то и $(X,\|\cdot\|'')$ полно.

Следствие 3.11. Конечномерное векторное пространство полно относительно любой нормы.

Доказательство. Достаточно воспользоваться предложением 1.5 и примером 3.1.

Напомним следующий несложный факт (если вы с ним незнакомы, обязательно докажите его в качестве упражнения).

Предложение 3.12. Пусть X — метрическое пространство и $Y \subset X$.

- (i) Eсли X полно u Y замкнуто в X, то Y полно.
- (ii) Eсли Y полно, то Y замкнуто в X.

Объединяя этот факт со следствием 3.11, получаем следующее.

Следствие 3.13. Конечномерное векторное подпространство нормированного пространства замкнуто.

Вот еще одно непосредственное следствие из предложений 3.9 и 3.12.

Следствие 3.14. Пусть X и Y — нормированные пространства, причем X полно. Тогда любой топологически инъективный оператор $T\colon X\to Y$ имеет замкнутый образ.

Вернемся к примерам банаховых пространств. Следующий пример знаком вам из курса анализа.

Пример 3.2. $\ell^{\infty}(X)$ — банахово пространство для любого множества X.

Поскольку предел равномерно сходящейся последовательности непрерывных функций также является непрерывной функцией (см. курс анализа), получаем следующий пример.

Пример 3.3. Для любого топологического пространства X пространство $C_b(X)$ замкнуто в $\ell^{\infty}(X)$ и является, следовательно, банаховым пространством.

Упражнение 3.3. Для любого топологического пространства X пространство $C_0(X)$ замкнуто в $C_b(X)$ и является, следовательно, банаховым пространством. В частности, $c_0 = C_0(\mathbb{N})$ — банахово пространство.

Пример 3.4. Пусть (X, μ) — пространство с мерой. Из курса анализа вы знаете, что пространства $L^1(X,\mu)$ и $L^2(X,\mu)$ полны. Точно так же доказывается, что пространство $L^p(X,\mu)$ полно для любого $p \in [1,+\infty)$. Для $p = \infty$ это утверждение тоже верно и доказывается еще проще (убедитесь!). Как следствие, пространство ℓ^p полно для любого $p \in [1,+\infty]$.

Упражнение 3.4. Полезное упражнение — доказать полноту пространств ℓ^p «в лоб», не используя общей теоремы о полноте пространств $L^p(X,\mu)$.

Обсудим теперь, какие из стандартных конструкций сохраняют полноту. Следующее предложение докажите сами в качестве упражнения (действуйте по той же схеме, что и в упражнении 3.4).

Предложение 3.15. Пусть $(X_i)_{i \in I}$ — семейство банаховых пространств. Тогда $(\bigoplus X_i)_p$ (где $1 \leq p \leq \infty$) и $(\bigoplus X_i)_0$ — банаховы пространства.

Предложение 3.16. Пусть X — банахово пространство $u X_0 \subset X$ — замкнутое векторное пространство. Тогда $u X/X_0$ — банахово пространство.

Для доказательства предложения 3.16 удобно воспользоваться следующей леммой.

Лемма 3.17. Следующие свойства нормированного пространства X эквивалентны:

- (i) X полно;
- (ii) $ecnu x_1, x_2, \ldots \in X \ u \sum_n ||x_n|| < \infty, mo pad \sum_n x_n cxodumcs.$

Сходимость ряда в этой лемме понимается в том же смысле, что и сходимость числовых рядов: по определению, ряд в нормированном пространстве сходится, если сходится последовательность его частичных сумм. Докажите эту лемму сами в качестве упражнения; при доказательстве импликации (ii) \Longrightarrow (i) выделите из произвольной фундаментальной последовательности (y_n) подпоследовательность (y_{n_k}) , для которой $||y_{n_k}-y_{n_{k-1}}|| \le 1/2^k$, докажите ее сходимость и выведите отсюда сходимость последовательности (y_n) .

Доказательство предложения 3.16. Пусть элементы $u_1, u_2, u_3, \ldots \in X/X_0$ таковы, что $\sum_n \|u_n\|^{\wedge} < \infty$. С учетом леммы 3.17 достаточно показать, что ряд $\sum_n u_n$ сходится в X/X_0 . Обозначим через Q факторотображение X на X/X_0 . По определению факторнормы, для каждого n существует такой $x_n \in Q^{-1}(u_n)$, что $\|x_n\| \leq \|u_n\|^{\wedge} + 1/2^n$. Тогда $\sum_n \|x_n\| < \infty$, поэтому в силу леммы 3.17 ряд $\sum_n x_n$ сходится к некоторому $x \in X$. Применяя отображение Q, получаем, что ряд $\sum_n u_n$ сходится к Q(x). Следовательно, X/X_0 полно.

Теорема 3.18. Пусть X и Y — нормированные пространства, причем Y полно. Тогда и пространство $\mathcal{B}(X,Y)$ полно.

Доказательство. Пусть (T_n) — фундаментальная последовательность в $\mathscr{B}(X,Y)$. Тогда $(T_n(x))$ — фундаментальная последовательность в Y для любого $x \in X$, поэтому она сходится. Положим $T(x) = \lim_n T_n(x)$. Получаем (очевидно, линейный) оператор $T \colon X \to Y$. Покажем, что T ограничен и $T_n \to T$ по норме. Фиксируем $\varepsilon > 0$ и подберем $N \in \mathbb{N}$ так, чтобы $\|T_n - T_m\| \leqslant \varepsilon$ при n, m > N. Тогда $\|T_n(x) - T_m(x)\| \leqslant \varepsilon$ для любого $x \in \mathbb{B}_{1,X}$. Фиксируем n > N; тогда при $m \to \infty$ получим $\|T_n(x) - T(x)\| \leqslant \varepsilon$ для любого $x \in \mathbb{B}_{1,X}$. Отсюда следует, во-первых, что $T_n - T \in \mathscr{B}(X,Y)$, так что $T \in \mathscr{B}(X,Y)$, а во-вторых — что $\|T_n - T\| \leqslant \varepsilon$ при n > N. Значит, $T_n \to T$ по норме, и все доказано. \square

Замечание 3.5. Приведенное выше доказательство полноты пространства $\mathcal{B}(X,Y)$ иллюстрирует общую схему, по которой доказывается полнота многих классических пространств, состоящих из отображений со значениями в банаховом пространстве Y — в частности, многих пространств \mathbb{K} -значных функций, таких, как $\ell^{\infty}(X)$ или ℓ^{p} . Сначала берется фундаментальная последовательность, доказывается, что последовательность ее значений в каждой точке фундаментальна, а значит, и сходится (так как Y полно). В итоге получается «кандидат на предел» — отображение, к которому наша последовательность сходится поточечно. А затем надо еще раз воспользоваться фундаментальностью последовательности и доказать, что этот «кандидат на предел» на самом деле лежит в нашем пространстве и наша последовательность сходится к нему по норме. Обычно два последних утверждения доказываются «одним махом», как и в предыдущей теореме.