Linear Algebra

Trong

2018

Part I February

M19F18

1 Eigenvectors of a normal operator

Proposition. Let T be a normal linear operator on an inner product space V with eigenvalue λ and eigenvector x, then x is an eigenvector of T^* corresponding to eigenvalue $\overline{\lambda}$.

Part II March

2 18156 2593 600 50 2018-04-04 Wed 23:55:16

Theorem. The inner product is unique up to an orthonormal basis. Specifically, let V be a finite-dimensional inner product on C or R, and β and γ be any orthonormal bases for V, and x, y be vectors in V. Then

$$\langle x, y \rangle = \overline{y}^T x = [y]_{\beta} [x]_{\beta} = [y]_{\gamma} [x]_{\gamma}.$$

In other words, the dot product of two vectors is the same in any orthonormal basis.

Proof. TODO. Might need the fact that

$$w_i = \sum_{j=1}^n \langle w_i, v_j \rangle \, v_j$$

from Theorem 6.3 and cor in the book.

Definition. A linear operator T on a finite dimensional inner product space V is called positive definite if T is self-adjoint and $\langle T(x), x \rangle > 0$ for all $x \neq 0$. It's called positive semidefinite if $\langle T(x), x \rangle \geq 0$ for all $x \neq 0$. Similarly for a square matrix A.

Problem. Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let $A = [T]_{\beta}$, where β is an orthonormal basis for V. Prove:

- 1. T is positive definite (semidefinite) iff all of its eigenvalues are positive (nonnegative).
- 2. T is positive definite iff

$$\sum_{i,j} A_{ij} a_j \overline{a}_i > 0$$

for all $(a_1, \ldots, a_n) \neq 0$. [What about semidefinite? Also true.]

- 3. T is positive definite semidefinite iff $A = B^*B$ for some square matrix B.
- 4. If T and U are positive semidefinite operators s.t. $T^2 = U^2$, then T = U.
- 5. If T and U are positive definite operators s.t. TU = UT, then TU is positive definite.
- 6. T is positive definite (semidefinite) iff A is.

Proof 1. We'll show definite, semi is similar. Let T be positive definite, and let λ be an eigenvalue, and $x \neq 0$. Then

$$\langle T(x), x \rangle > 0$$

 $\langle \lambda x, x \rangle >$
 $\lambda \langle x, x \rangle >$
 $\lambda |x|^2 > 0.$

Since |x| > 0, λ must also be > 0. Conversely, suppose that all eigenvalues of T are positive. Let v_i be the eigenvectors of T with corresponding eigenvalues λ_i . Then

$$T(v_i) = \lambda_i v_i$$
.

Now let x be any vector, and $x = \sum a_i v_i$. Then

$$\langle T(x), x \rangle = \left\langle T\left(\sum a_i v_i\right), \sum a_i v_i \right\rangle = \left\langle \sum a_i \lambda_i v_i, \sum a_i v_i \right\rangle = \sum \lambda_i |v_i|^2$$

(because the v_i 's are orthonormal).

Proof 2. The result follows immediately once we realize that

$$\sum_{i,j} A_{ij} a_j \overline{a}_i = \overline{a}^T A a = \overline{\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}} \begin{bmatrix} A_{ij} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

This is equal to

 $\langle T\left(x\right),x\rangle$

since β is an orthonormal basis (recall that the dot product of two vectors is the same in any orthonormal basis).