Linguistics in ML Embeddings and Linguistic Structure

Александра Муравьёва

Национальный исследовательский университет «Высшая школа экономики»

18 января 2019 г.

Содержание

- 1. Стандартный подход к эмбеддингам
 - Дистрибутивный подход
 - Достоинства и недостатки
- 2. Учёт полисемии
 - Sense per collocation
 - Using multilingual context
 - Multimodal distributions
- 3. Учёт морфологии
 - Subword representations
 - Morphological transformations
 - Сравнение подходов
- 4. Учёт синтаксиса
 - Sentence embeddings: an early attempt
 - Structural embeddings

Word embeddings Дистрибутивный подход

Построение

- 1. Предобработка (токенизация, лемматизация, etc.)
- 2. Построение частотной матрицы
 - элементы счётчики n_{uv} , которые показывают, сколько раз слово u встретилось в определённом контексте v
 - контекст соседние слова в окне размера п
- 3. Частотное взвешивание
- 4. Понижение размерности

Word2vec

- CBOW: пытаемся предсказать слово по контексту и $E = -\log(p(\vec{w_t}|\vec{W_t}))$ минимизируем
- Skipgram: предсказываем контекст по слову

Figure 2: Learning architecture of the CBOW and Skipgram models of Word2vec (Mikolov et al., 2013a).

Лингвистический контекст

- WE основаны на дистрибутивной семантике используют контекст
- Традиционно контекст окно размера п слов
- Однако можно использовать лингвистический контекст
 - глаголы в конструкциях типа субъект-глагол и глагол-объект
 - одно существительное влево и одно существительное вправо для главного существительного в предложении
 - все прилагательные, зависящие от данного существительного

Проблемы дистрибутивного подхода

- Главное качество получившихся векторных представлений

 близость векторов (например, по косинусной мере) для
 семантически близких слов
- Однако векторное представление единственно для разных значений слова: $WE(\kappa_{\rm ЛЮЧ_{\rm родник}}) = WE(\kappa_{\rm ЛЮЧ_{\rm дверной}})$
- Не зависит от принадлежности к семантическому полю: $d(WE(\text{свет}), WE(\text{сиять})) = \infty$
- Или даже от принадлежности к одному словообразовательному гнезду: $d(WE(\text{облако}), WE(\text{облачный})) = \infty$
- Не учитывает perceptual features типа "is curved"

Несколько подходов

- 1. Sense per collocation
- 2. Using multilingual context
- 3. Multimodal distributions

Несколько подходов

- 1. Sense per collocation
- 2. Using multilingual context
- 3. Multimodal distributions

Sense per collocation

- Значение моделируется как скрытая переменная в байесианских моделях
- Опора на эвристику sense per collocation, т.е. что распределение контекстов зависит от значения

Несколько подходов

- 1. Sense per collocation
- 2. Using multilingual context
- 3. Multimodal distributions

Sense per collocation

- Значение моделируется как скрытая переменная в байесианских моделях
- Опора на эвристику sense per collocation, т.е. что распределение контекстов зависит от значения
- Для улучшения качества требуется много training data
- Увеличение размерности *WE* или использование более сложного алгоритма (LSTM) зачастую приводит к таким же результатам

Using multilingual context

- Разные значения могут переводиться на другие языки по-разному: bank (англ.) $\rightarrow banc$ или banque (фр.)
- Используем параллельные корпуса и функции слово-перевод (word alignments) для обучения Т векторов для Т значений слов
- значение Т своё для каждого слова, новое значение добавляется, если его вероятность превышает порог
- Мультилингвальный, а не билингвальный метод: нужно, чтобы вектора для разных переводов лежали в одном пространстве и близко друг к другу
- Для этого конкатенируем корпуса $EN I_1, \ldots, EN I_n$ и обучаем совместно (joint learning)

Multimodal distributions

• Одно слово моделируется в виде смеси гауссиан

$$f_w(\vec{x}) = \sum_{i=1}^K p_{w,i} \, \mathcal{N} \left[\vec{x}; \vec{\mu}_{w,i}, \Sigma_{w,i} \right]$$

где $\mu_{w,i}$ — расположение i-того компонента слова w, соответствует обычным word2vec-эмбеддингам; $p_{w,i}$ — вероятность компонента (вес в смеси); $\Sigma_{w,i}$ — матрица ковариаций компонента

• далее мы выучиваем параметры $\theta = \{\mu_{w,i}, p_{w,i}, \Sigma_{w,i}\}$, максимизируя правдоподобность встретить слово при данном соседнем

[Athiwaratkun, Wilson. ACL 2017]

Центр эллипсоида определяется $\mu_{w,i}$, а контур — $\Sigma_{w,i}$ и отражает тонкости значения и неопределённость

Внизу гауссиана, вверху смесь гауссиан.

Dataset	sg*	w2g*	w2g/mc	w2g/el	w2g/me	w2gm/mc	w2gm/el	w2gm/me
SL	29.39	32.23	29.35	25.44	25.43	29.31	26.02	27.59
WS	59.89	65.49	71.53	61.51	64.04	73.47	62.85	66.39
WS-S	69.86	76.15	76.70	70.57	72.3	76.73	70.08	73.3
WS-R	53.03	58.96	68.34	54.4	55.43	71.75	57.98	60.13
MEN	70.27	71.31	72.58	67.81	65.53	73.55	68.5	67.7
MC	63.96	70.41	76.48	72.70	80.66	79.08	76.75	80.33
RG	70.01	71	73.30	72.29	72.12	74.51	71.55	73.52
YP	39.34	41.5	41.96	38.38	36.41	45.07	39.18	38.58
MT-287	-	-	64.79	57.5	58.31	66.60	57.24	60.61
MT-771	-	-	60.86	55.89	54.12	60.82	57.26	56.43
RW	-	-	28.78	32.34	33.16	28.62	31.64	35.27

[Athiwaratkun, Wilson. ACL 2017]

Корреляция Спирмена для разных датасетов word similarity

- mc: maximum cosine similarity
- el: expected kernel likelihood
- me: minimum euclidean distance
- w2gm мультимодальная модель

Subword representations

- 1. Слово в виде множества признаков, включающих морфологическую информацию: <cat, noun, sg, 1,...>
- 2. Слово как сумма репрезентаций морфем: WE(no) + WE(pяд) + WE(ok)
- Слово как сумма n-граммных векторов символов:
 WE(<wh) + WE(whe) + WE(her) + WE(ere) + WE(re>) + WE(<where>)
- 4. Морфологические трансформации: WE(create) + suffix: є:s

Morphological transformations. Soricut and Och

- Извлечь кандидатов правил суффиксального/префиксального словообразования
- Вне зависимости от этого обучить обычные эмбеддинги
- Выбрать из правил лучшие, основываясь на частоте их использования
- Для оценивания близости слов использовать эмбеддинги и правила совокупно: косинусная мера и ранг с пороговыми значениями >0.5 и <15 в исследовании
- ullet Hit rate число попаданий Ev выше $t_0=100$, где Ev

$$Ev^{F}((w_{1}, w_{2}), (w, w')) = F_{E}(w_{2}, w_{1} + \uparrow d_{w}) \quad (1)$$
$$(w_{1}, w_{2}), (w, w') \in S_{r}, \quad \uparrow d_{w} = w' - w$$

и F – cosine similarity rank function

Morphological transformations

			w_1	w_2	rank	cosine
rule	hit rate	Example $\uparrow d_w$	create	created	0	0.58
suffix:er:o	0.8	$\uparrow d_{\mathrm{Vot}\underline{\mathrm{er}}}$	create	creates	0	0.65
suffix:ton: ϵ	1.1	$\uparrow d_{\text{Galeton}}$	create	creates	1	0.62
prefix:S: ϵ	1.6	$\uparrow d_{\mathrm{SDK}}$	created	create	0	0.65
prefix: ϵ :in	28.8	$\uparrow d_{ m _competent}$	creation	create	0	0.52
suffix:ly: ϵ	32.1	$\uparrow d_{\text{officially}}$	creation	created	0	0.54
prefix: ϵ :re	37.0	$\uparrow d_{\rm sited}$	recreations	recreate	2	0.59
prefix:un:re	39.0	$\uparrow d_{\mathrm{unmade}}$	recreations	recreating	1	0.53
suffix:st:sm	52.5	$\uparrow d_{\text{egoist}}^{-}$	recreations	Recreations	81	0.64
suffix:ted:te	54.9	$\uparrow d_{\mathrm{imitated}}$				

[Soricut and Och. NAACL 2015]

Примеры правил и сравнение близости слов

Достоинства и недостатки

- Близость векторных представлений для морфологически связанных слов (create creation)
- Особенное улучшение качества для синтетических языков: тех, в которых словоизменение происходит с помощью внутрисловных морфем, а не отдельных слов (делает - is doing)
- Качество плохо улучшается для высокофлективных языков: тех, у которых на стыке морфем происходят изменения (мести - метёшь)
- Недостаток 1 и 2: необходимость морфологического парсера

Сравнение разных морфологических моделей

	DE		EN		Es	FR
	GUR 350	ZG222	WS353	RW	WS353	RG65
Luong et al. (2013)	-	-	64	34	-	-
Qiu et al. (2014)	-	-	65	33	-	-
Soricut and Och (2015)	64	22	71	42	47	67
sisg	73	43	73	48	54	69

[Bojanowski et al. ACL 2017]

- Luong et al. сумма репрезентаций морфем
- Qui et al. skipgram-модель
- Soricut and Och морфологические трансформации
- sisg сумма n-граммных векторов символов

Сравнение лучшей с неморфологическими моделями

	sg	cbow	sisg-	sisq
WS353	51	52	54	55
GUR350	61	62	64	70
GUR65	78	78	81	81
ZG222	35	38	41	44
RW	43	43	46	47
WS353	72	73	71	71
WS353	57	58	58	59
RG65	70	69	75	75
WS353	48	52	51	54
HJ	59	60	60	66
	GUR350 GUR65 ZG222 RW WS353 WS353 RG65	WS353 51 GUR350 61 GUR65 78 ZG222 35 RW 43 WS353 72 WS353 57 RG65 70 WS353 48	WS353 51 52 GUR350 61 62 GUR65 78 78 ZG222 35 38 RW 43 43 WS353 72 73 WS353 57 58 RG65 70 69 WS353 48 52	WS353 51 52 54 GUR350 61 62 64 GUR65 78 78 81 ZG222 35 38 41 RW 43 43 46 WS353 72 73 71 WS353 57 58 58 RG65 70 69 75 WS353 48 52 51

Table 1: Correlation between human judgement and similarity scores on word similarity datasets. We

- sg skipgram-модель
- sisg- сумма n-граммных векторов символов с нулевыми векторами для новых слов
- sisg— сумма n-граммных векторов символов с предсказанными векторами для новых слов

Синтаксис

- Большинство современных моделей использует модель language is sequences of words
- Recurrent NNs лучше учитывают зависимости, которые зависят от количества слов в последовательности между ними
- Однако часто стоит учитывать long-term зависимости:
 У человека, которого я видел вчера утром после завтрака, когда сидел в кресле и читал интересную книгу, не было волос.
- Syntactic recency часто работает лучше, чем sequential recency
- Используем модели, учитывающие синтаксис, и прежде всего Constituency Trees и Dependency Trees

Sentence embeddings

Зачем

- Использование информации о соседних словах в виде эмбеддинга предложения
- Снижение размерности признаковых описаний предложений и параграфов
- Оценка близости более сложных языковых единиц: "decline to comment" \approx "would not disclose the terms"

Sentence embeddings

An early attempt

Figure 1: An example tree with a simple Recursive Neural Network: The same weight matrix is replicated and used to compute all non-leaf node representations. Leaf nodes are *n*-dimensional vector representations of words.

[Socher, Manning, Ng. NIPS 2010]

Sentence embeddings

Method	F1
Model 1 (Greedy RNN) Model 2 (Greedy, context-sensitive RNN) Model 3 (Greedy, context-sensitive RNN + category classifier) Model 4 (Global, context-sensitive RNN + category classifier)	76.55 83.36 87.05 92.06
Left Corner PCFG, [MC97] Current Implementation of the Stanford Parser, [KM03]	90.64 93.98

Table 1: Unlabeled Bracketing F-measure computed by evalb on section 22 of the WSJ dataset. Maximum sentence length is 15.

[Socher, Manning, Ng. NIPS 2010]

Эта модель была лучше практически всех других на тот момент, за исключением Stanford Parser

Structural Embeddings

- Применить синтаксический парсер (например, StanfordCoreNLP)
- Для каждого слова определить синтаксическую последовательность – синтаксические теги вплоть до вершины дерева
- Закодировать синтаксические последовательности в эмбеддинги с помощью RNN или CNN

Structural Embeddings

[Liu et al. CL 2017]

Результирующее представление слова $[Ew, u_0, v_4]$, где Ew - это заранее заданный эмбеддинг для coordinator, например, word2vec

Structural Embeddings

Method	Sin	gle	Ensemble		
Method	\mathbf{EM}	F1	\mathbf{EM}	F1	
BiDAF	67.69	77.07	72.33	80.33	
SECT-LSTM	68.12	77.21	72.83	80.58	
SEDT-LSTM	68.48	77.97	73.02	80.84	

Table 2: Performance comparison on the official blind test set. Ensemble models are trained over the five single runs with the identical network and hyper-parameters.

[Liu et al. CL 2017]

Улучшение результатов в задаче Machine Comprehension на датасете SQuAD

Итоги

- В получении эмбеддингов для слов оказывается полезным учитывать полисемию и морфологию
- Для учёта полисемии можно обучать свой вектор для каждого значения или использовать мультимодальное распределение
- Для учёта морфологии можно представлять слово в виде суммы репрезентаций морфем или n-грамм
- Учёт морфологии работает достаточно хорошо для богатых морфологией языков
- Хорошо бы учитывать синтаксис, т.к. во многих задачах имеет значение не sequential recency, a syntactic recency
- Для этого в эмбеддинги нужно включать информацию из деревьев

References

- http://www.abigailsee.com/2017/08/30/four-deep-learningtrends-from-acl-2017-part-1.html
- Li, Jurafsky. ACL 2015. Do Multi-Sense Embeddings Improve Natural Language Understanding?
- Athiwaratkun, Wilson. ACL 2017. Multimodal Word Distributions
- Soricut and Och. NAACL 2015. Unsupervised Morphology Induction Using Word Embeddings
- Bojanowski et al. ACL 2017. Enriching Word Vectors with Subword Information
- Liu et al. CL 2017. Structural Embedding of Syntactic Trees for Machine Comprehension
- Socher, Manning, Ng. NIPS 2010. Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Naturales