# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

## ОТЧЕТ

по лабораторной работе №4 по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножение матриц

| Студентка гр. 0304 | Говорющенко А.В. |
|--------------------|------------------|
| Преподаватель      | Сергеева Е.И.    |

Санкт-Петербург 2023

### Цель работы.

Изучить умножения матриц с помощью алгоритма Штрассена с разбиением на потоки и сравнить производительность разных алгоритмов.

### Задание.

4.1 Реализовать параллельный алгоритм умножения матриц с масштабируемым разбиением по потокам.

Исследовать масштабируемость выполненной реализации с реализацией из работы 1.

4.2 Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации).

Проверить, что результаты вычислений реализаций 4.1 и 4.2 совпадают.

Сравнить производительность с реализацией 4.1 на больших размерностях данных (порядка  $10^4 - 10^6$ )

# Выполнение работы.

За основу данной работы был взят код из первой лабораторной с классом Matrix, который был расширен методами для реализации алгоритма Штрассена.

Алгоритм Штрассена заключается в перемножении матриц, размерность п которых является степенью двойки, в случае если размерность будет не соответствовать данным условиям работа алгоритма не будет начата. Вычисление проводятся рекурсивно за счет того, что в самом перемножении используются подматрицы размера n/2. Таким образом получаем подматрицы исходной матрицы:



Теперь необходимо вычислить 7 промежуточных матриц размерности n/2, из которых будет вычисляться результирующая матрица. Вычисления выполняются в соответствии с формулами представленными ниже.

Матрицы перемножаются рекурсивно с помощью того же алгоритма. Так как на матрицах малых размеров простое умножение работает эффективнее, то на большой глубине рекурсии вместо алгоритма Штрассена применяется оно.

Для получения доступа к подматрице был создан метод getSubmatrix и метод для записи в участок матрицы setSubmatrix.

Были проведены измерения времени от размеров вычисляемых матриц, результаты приведены в таблице 1.

Таблица 1 — Зависимость времени от размера матриц.

| Размер    | Простой алгоритм, | Параллельный | Алгоритм      |
|-----------|-------------------|--------------|---------------|
|           | мс                | алгоритм, мс | Штрассена, мс |
| 16x16     | 0.216748          | 0.754479     | 0.637789      |
| 32x32     | 1.88019           | 1.26431      | 1.27589       |
| 64x64     | 8.65574           | 7.38064      | 5.17074       |
| 256x256   | 314               | 187          | 103           |
| 1024x1024 | 20987             | 12592        | 4300          |
| 2048x2048 | 553211            | 219707       | 29606         |

Из полученных результатов видно, что для матриц небольших размеров (16х16) наиболее эффективным оказался простой алгоритм, а уже для больших размеров — алгоритм Штрассена. Начиная с матриц размера 1024 отличии во времени вычисления уже идет на порядок.

# Выводы.

В ходе работы был исследован и реализован алгоритм Штрассена для быстрого умножения матриц. По итогам сравнения данный алгоритм оказался самым быстрым, следующим за ним идет параллельный алгоритм и затем простое умножение матриц.