

Physical Computing

1. Analog Signal

Analog เป็นภาษากรีก มาจากคำว่า analogous แปลว่า เหมือนกัน คล้ายคลึงกัน อุปมาเหมือน

สัญญาณ Analog คือ สัญญาณที่คงรูปเดิมเหมือนกับต้นฉบับ จะมี ลักษณะรูปคลื่นเป็นสัญญาณที่ต่อเนื่อง

จากลักษณะทางกายภาพของสัญญาณ Analog แปลงมาเป็น สัญญาณทางไฟฟ้าเพื่อแสดงให้เห็นจริง (วัดได้) จะใช้อุปกรณ์ที่ เรียกว่า Sensor

ตัวอย่างสัญญาณ Analog

ตัวอย่างสัญญาณ Analog

ตัวอย่างสัญญาณ Analog

Figure 2. Example of speech signal

Example of ECG Signal

2. Analog Signal Processing

การประมวลผลสัญญาณ (signal processing) เช่น การขยายสัญญาณ (amplifier) การกำจัดสัญญาณรบกวน (filter) การผสมสัญญาณ (Mix)

ตัวอย่าง Analog Signal Processing circuit

ตัวอย่าง Analog Signal Processing

ตัวอย่าง การ filter สัญญาณ

3. Digital Signal Processing

ในอดีต การประมวลสัญญาณ นิยมต่อวงจร ซึ่งมีข้อจำกัดคือ วงจรมีขนาดใหญ่ เสียเวลาใน การต่อ การผลิต และต่อมาเทคโนโลยี chip มีการพัฒนามากขึ้น สามารถทำงานได้ไวขึ้น จึงมีแนวคิด นำสัญญาณมาแปลงเป็นสัญญาณดิจิทัล แล้วทำสัญญาณดิจิทัลนั้น มา ประมวลด้วยการเขียนโปรแกรม จึงเป็นที่มาของ Digital Signal Processing

มี Block Diagram หลักๆ ดังรูป

Digital Signal Processing

Digital Signal Processing

DSP

ข้อดี คือ ประมวลผลด้วยการเขียนโปรแกรม วงจรไม่สลับซับซ้อน สามารถทำงานได้แม่นยำกว่า

ข้อเสีย คือ ต้องมีความรู้ในการเขียนโปรแกรม มีความเข้าใจในสมการคณิตศาสตร์ และ Chip อาจจะมีราคาแพงกว่าการต่อวงจรอนาล็อค

4. การส่งค่า Analog Output ออก port (DAC)

analogWrite()

Description

- Writes an analog value (<u>PWM wave</u>) to a pin.
 Can be used to light a LED at varying
 brightnesses or drive a motor at various
 speeds. After a call to **analogWrite()**,
 the pin will generate a steady square wave of
 the specified duty. The frequency of the
 PWM signal is approximately 490 Hz.
- On most Arduino boards (those with the ATmega168 or ATmega328), this function works on digital pins 3, 5, 6, 9, 10, and 11.
- You do not need to call pinMode() to set the pin as an output before calling analogWrite().

Arduino Uno R4 Board

Analog Output : ขาที่มีสัญลักษณ์ ~ (3,5,6,9,10,11)

Analog Input (ADC)

PWM Signal

2V

Mean Output

การส่งค่า Analog Output ออก port (DAC)

analogWrite(9,25)

analogWrite(9,127)

analogWrite(9,229)

$$V_{DC \text{ output}} = (duty \text{ cycle}) \times V_{cc}$$

การทดลองที่ 3. LED Fading: Off to Full bright

 The PWM pins work with the "analogWrite (pin, value)" command where

pin: the pin to write to.

value: the duty cycle: between 0 (always off) and 255 (always on).

To turn LED to half-bright, use analogWrite(9,128)

โปรแกรม LED Fading : Off to Full bright

```
void setup() {
        pinMode(9, OUTPUT);
void loop() {
        for (int fadeValue = 0 ; fadeValue <= 255; fadeValue += 5)</pre>
                analogWrite(9, fadeValue);
                delay(30);
```

Note!!

- สำหรับ Arduino uno R4 จะมีค่า Default ของ Resolution DAC เท่ากับ 8 bit
 - ดังนั้น analogWrite(255) = duty cycle 100% = 5V

- ถ้าต้องการปรับค่า Resolution สามารถทำได้โดยใช้คำสั่ง
 - analogWriteResolution(xx) xx = 8,9,10,11,12
 - ใน UNO R4 นี้ มีค่า resolution สูงสุดคือ 12 บิต
 - เช่น analogWriteResolution(12)
 - analogWrite(4095) = duty cycle 100% = 5V

แบบฝึกหัดที่ 1. จงเขียนโปรแกรม LED Fading

- เลือกใช้ PWM Pin อื่นๆ เป็นจำนวน 4 Pin
- โดยแต่ละ Pin มีการ Fading ดังนี้
 - LED1 Fading จาก Off ไปยัง Full-Bright
 - LED2 Fading จาก Off ไปยัง Full-Bright เร็วเป็นสองเท่าของ LED1
 - LED3 Fading จาก Full-Bright ไปยัง Off
 - LED4 Fading จาก Half-Bright ไปยัง Full-Bright

Evil Glowing Eyes

5. Analog to Digital Convertor (ADC)

กระบวนการแปลงสัญญาณ Analog ไปเป็นสัญญาณ Digital จะมีขั้นตอนหลักๆ คือ

- การ Sampling (ต้อง Sampling ด้วยความถี่ ที่มากกว่า $\mathbf{2}$ เท่าของความถี่ สูงสุดของสัญญาณที่เข้ามา $\mathbf{f_s} \geq \mathbf{2f_m}$)
- การ Encoding หรือ การ Quantize (กำหนดโดยค่า Resolution)

Analog to Digital

Quantizing and Digitizing a Signal

ถ้า sample ไม่ตรงระดับ จะเกิด Quantize Noise

Analog to Digital

- Many states, not just two (HIGH/LOW)
- Number of states (or values, or "bins") is resolution
- Common computer resolutions:
 - 8-bit = 256 values
 - 16-bit = 65,536 values
 - 32-bit = 4,294,967,296 values

6. Resolution

Resolution

พิจารณา ตัวอย่าง sample ที่ 12

4bit อยู่ที่ระดับที่ 14 = 1110 3 bit อยู่ที่ระดับที่ 7 = 111

2 bit อยู่ที่ระดับที่ 3 = 11

Resolution ตัวอย่าง 5 bit

Analog Input

- Arduino has six ADC inputs
- (ADC = Analog to Digital Converter)
- Reads voltage between 0 to 5 volts
- Resolution is 10-bit (1024 values)
- In other words, 5/1024 = 4.8 mV smallest voltage change you can measure

Analog Input

The default resolution is set to 10-bit, but can be updated to 12 and 14-bit resolutions. To do so, use the following method in the setup() of your sketch.

- analogReadResolution(10) (default)
- analogReadResolution(12)
- analogReadResolution(14)

```
void setup(){
         analogReadResolution(14); //change to 14-bit resolution
}

void loop(){
        int reading = analogRead(A3); // returns a value between 0-16383
}
```

How to make a varying voltage?

การทดลองที่ 1. อ่านค่า สัญญาณ Analog

Note: คำสั่ง analogRead ใช้ได้กับขา Analog IN pin: A0, A1, ...A5 คำสั่ง analogWrite ใช้ได้กับขา Digital pin: 3, 5, 6, 9, 10, 11.

โปรแกรมอ่านค่าจากตัวต้านทานปรับค่าได้ แสดงค่าออก LED

```
void setup() {
   Serial.begin(9600);
   pinMode(9, OUTPUT);
void loop() {
   int adc_value = analogRead(A0);
   int brightness = map(adc_value, 0, 1023, 0, 255);
   analogWrite(9, brightness);
   Serial.print("Analog: ");
   Serial.print(adc_value);
   Serial.print(", Brightness: ");
   Serial.println(brightness);
   delay(100);
```

Note: 1. การระบุขา analog input ต้องมีตัว A น้ำหน้า เช่นขา A0, A1,...A5

2.การใช้งานขา analog input ไม่ต้องใช้คำสั่ง pinMode เนื่องจากทำหน้าที่เป็น input อยู่แล้ว

ผลลัพธ์ที่ได้

```
COM6
Analog: 0, Voltage: 0.00
Analog: 0, Voltage: 0.00
Analog: 126, Voltage: 0.62
Analog: 281, Voltage: 1.37
Analog: 517, Voltage: 2.53
Analog: 754, Voltage: 3.69
Analog: 906, Voltage: 4.43
Analog: 1023, Voltage: 5.00
Analog: 1023, Voltage: 5.00
   Autoscroll Show timestamp
                                                  Newline
```

การทดลองที่ 2. อ่านค่า Sensor อุณหภูมิ

แสดงขาของ Sensor อุณหภูมิ MCP9700 และกราฟคุณสมบัติของเซ็นเซอร์ ดังรูป

FIGURE 2-16: Output Voltage vs. Ambient Temperature.

จากกราฟ เห็นว่า ที่อุณหภูมิ 50 **องศา** แรงดันเอาท์พุต มีค่า 1 **โวลต์** ที่อุณหภูมิ 125 **องศา** แรงดันเอาท์พุต มีค่า 1.75 **โวลต์**

คำนวณหาความสัมพันธ์ของ อุณหภูมิกับแรงดันเอาท์พุต

จากกราฟ เห็นว่า ที่อุณหภูมิ 50 **องศา** แรงดันเอาท์พุต มีค่า 1 **โวลต์** ที่อุณหภูมิ 125 **องศา** แรงดันเอาท์พุต มีค่า 1.75 **โวลต์**

คำนวณหา ความชั้นของกราฟ

$$m = \frac{\Delta y}{\Delta x} = \frac{\Delta output\ Voltage}{\Delta Temp} = \frac{1.75 - 1}{125 - 50} = \frac{0.75}{75} = \frac{7.5}{750}$$

คำนวณหา สมการเส้นตรง

$$y-y_1=m(x-x_1)$$
Output $Voltage-Output\ Voltage_1=m(Temp-Temp_1)$
Output $Voltage-1=rac{7.5}{750}(Temp-50)$ หรือจัดรูปได้ว่า
 $Temp=rac{750}{75}(Output\ Voltage-1)+50$

คำนวณหาความสัมพันธ์ของ อุณหภูมิกับแรงดันเอาท์พุต

จากสมการ

Temp = 100*(Output Voltage - 1)+50

เนื่องจากค่า Voltage ที่อ่านได้จาก A/D เป็นค่าดิจิทัลขนาด 10 bit ซึ่งแปลงมาจากค่า Analog Voltage ช่วง 0-5V และได้ค่าดิจิตอลเป็น 0 - 1023

ถ้ากำหนดให้ Val = ค่าดิจิทัลที่อ่านได้ จะได้ว่า Analog Voltage = (Val*5)/1023

แทนค่า Analog Voltage ลงไปในสมการ Temp จะได้ว่า Temp = 100*((Val*5)/1023) - 1)+50

การทดลองที่ 2. อ่านค่า Sensor อุณหภูมิ*

ต่อวงจร Sensor อุณหภูมิ และเขียนโปรแกรมแสดงค่าอุณหภูมิที่วัดได้

fritzing

การทดลองที่ 3. Thermistor

Thermistor คือ เป็นอุปกรณ์ที่ค่าความต้านทาน จะเปลี่ยนแปลงตาม

Thermistor Equation

Thermistor Equation

$$B_{(T1/T2)} = \frac{T_2 \times T_1}{T_2 - T_1} \times In\left(\frac{R_1}{R_2}\right)$$

Where:

 T_1 is the first temperature point in Kelvin

 T_2 is the second temperature point in Kelvin

R₁ is the thermistors resistance at temperature T1 in Ohms

 R_2 is the thermistors resistance at temperature T2 in Ohms

จากสมการ Thermistor Equation

ทำการจัดรูปสมการ แทน $R_2=R_0$, $T_2=T_0$ จะได้ว่า

$$T = rac{T_0 \cdot B}{T_0 \cdot \ln(R/R_0) + B}$$

 $T_0 = 298.15 K$ (Note that the formula uses Kelvin, R_0 is given for 25°C=298.15K

Thermistor เบอร์ TTC05103

Datasheet <u>https://www.es.co.th/Schemetic/PDF/TTC05.PDF</u>

■ Electrical Characteristics

Part No.	Zero Power Resistance at 25℃	Tolerance of R ₂₅	B _{25/50} Value	Max. Power Rating at 25℃	Dissipation Factor	Thermal Time Constant	Operating Temperature Range	Safety Approvals			
								UL	CSA	TUV	cqc
	$R_{25}(\Omega)$	(±%)	(K)	P _{max} (mW)	δ(mW/℃)	т(Sec.)	$T_L \sim T_U(\mathfrak{C})$	02	00/1		
TTC05005	5		2400						V	V	V
TTC05010	10		2800						V	V	V
TTC05015	15		2800					\checkmark	V	V	V
TTC05020	20		2800					V	V	V	V
TTC05025	25		2900					V	V	V	V
TTC05045	45		3100					V	V	V	V
TTC05050	50		3100					V	V	V	V
TTC05060	60		3100]				V	V	V	V
TTC05085	25		3200	1		l		1	1	1	1

TTC05802	8000		4050					V	V	V	V
TTC05103	10000		4050					V	V	V	V
TTC05123	12000		4050					V	V	V	V
TTC05153	15000		4150					V	V	V	V
TTC05203	20000		4250					V	V	V	V
TTC05303	30000		4250					V	V	V	V
TTC05473	47000		4300					V	V	V	V
•		•		-	•	•	•				

การทดลองที่ 3. Thermistor

ต่อวงจรตามรูปจะได้ว่า
ค่าแรงดันที่เข้าขา input ของ
ADC จะมีค่า

Vout =
$$\frac{R_{\text{thermistor}}}{(10k + R_{\text{thermistor}})} (5)$$

จงเขียนโปรแกรม แสดงค่าอุณหภูมิที่วัดได้ เทียบกับค่าที่ได้จาก mcp9700

Hint : แปลงแรงดัน เป็นค่าความต้านทาน แล้วแปลงไปเป็น อุณหภูมิ

แนวทางการพัฒนา

• นำไปใช้อ่านค่าจาก Resistive Sensor ต่างๆ ได้ เช่น

Flex sensors

• Flex sensors change their resistance when they are bent at varying angles: they're often used in interactive gloves

Ultrasonic Module

โมดูล HC-SR04 เป็นอุปกรณ์อิเล็กทรอนิกส์ราคา ถูก สำหรับวัดระยะห่างด้วยคลื่นอัลตราโซนิค (ใช้ คลื่นเสียงความถี่ ประมาณ 40kHz)

ในการวัดระยะห่างแต่ละครั้ง จะต้องสร้างสัญญาณแบบ Pulse ที่มีความกว้าง (Pulse Width) อย่าง น้อย 10 micro second ป้อนให้ขา TRIG และหลังจากนั้นให้วัดความกว้างของสัญญาณช่วง HIGH จากขา ECHO ถ้าวัตถุอยู่ใกล้ ความกว้างของสัญญาณ Pulse ที่ได้ก็จะน้อย แต่ถ้าวัตถุอยู่ใกลออกไป ก็จะได้ค่าความกว้างของสัญญาณ Pulse ที่มากขึ้น (ความกว้าง = ระยะเวลาที่ไป-กลับ)

การใช้งานคำสั่ง pulseIn

• ใช้วัดความกว้าง Pulse ของสัญญาณ

pulseIn(pin, value)
pulseIn(pin, value, timeout)

รูป (a) value = HIGH รูป (b) value = LOW timeout คือช่วงเวลาสูงสุดที่ฟังก์ชันนี้ยังทำงานอยู่ ค่า default คือ 1 วินาที หรือ 1,000,000 ไมโครวินาที

การทดลองที่ 4. การใช้งาน pulseIn

โปรแกรมวัดระยะทาง แสดงผลออก Serial monitor

The speed of sound is 340 m/s or 29 microseconds per centimeter

```
void setup()
    Serial.begin(9600);
    pinMode(4, OUTPUT); // 4 = Trig
   pinMode(2, INPUT); // 2 = Echo
void loop()
    digitalWrite(4, HIGH);
    delayMicroseconds (10);
    digitalWrite(4, LOW);
    int pulseWidth = pulseIn(2, HIGH);
    Serial.print("Pulse Width: ");
    Serial.println(pulseWidth);
    long distance = pulseWidth/29/2;
    Serial.print("Distance: ");
    Serial.println(distance);
    delay(1000);
                                  46
```