

Введение в технику физического эксперимента

Лектор – проф. Пальчиков Евгений Иванович

ВТФЭ-2016

Звук – Акустика – Слух – Музыка

Акустические измерения

Взгляд физика со знанием биологии и медицины

Пальчиков Евгений Иванович д.т.н., проф. НГУ, в.н.с. ИГиЛ

Новосибирский Государственный университет Сибирское Отделение Российской академии Наук

Сравнение шкал излучений

Механический и электромагнитный волновые спектры

Зрение и слух – как спектральные анализаторы

Смешивание красного светового потока и зеленого светового потока дают глазу ощущение желтого цветового потока

Любой спектроскоп, в отличие от глаза, видит два цвета

Смешивание звуков «Фа» и «Ля» не дают ощущение звука «Соль»

Ухо, в отличие от глаза, слышит при смешивании оба звука

Источники звука

- Колеблющиеся и движущиеся предметы
- Колеблющиеся и движущиеся границы разных сред (твердое тело, жидкость, газ, плазма)
- Пульсации температуры и плотности среды во времени при поглощении ею энергии, поступающей извне
- Неустойчивости движения среды в пространстве

Источники звука

Электроакустические преобразователи

Электроакустические преобразователи

Электромагнитный излучатель

Электростатический излучатель

Сирена

Магнитный ленточный излучатель

Электромагнитный телефон

Динамическая сирена

Приемники звука Акустоэлектрические преобразователи

- Угольный
- Электродинамический
- Пьезокерамический
- Емкостный
- Магнитострикционный
- Тензорезистивный
- Электретный

Типы волн

Волна – периодическое возмущение, которое перемещается в пространстве.

Распространение звука

- Пифагор Самосский (580-500 до н.э.).
- Звук распространяющиеся во все стороны колебания воздуха.
- Изменения давления P в воздухе, перенос механической энергии.
 - Сжатие (высокое давление).
 - Разрежение (низкое давление).

Звуковое давление

$$P = P(t) - P_{amмocфepнoe}$$

- гармонические колебания.

Единица измерения – паскаль [Па].

Длина волны (λ) [м] или [мм] — расстояние между фазами сжатия и разрежения.

Частота (f) [периодов в сек] = [Гц] – количество осцилляций за 1 сек. (скорость изменения давления).

Период (1/f) [сек] — временная протяженность одного цикла колебаний.

Амплитуда – сила давления, отражает смещение частиц среды.

Фаза – отражает момент времени возникновения колебаний.

Распространение звука

■ Волна в данный момент времени *t*:

■ Волна данной точке пространства z:

■ Волна в два данных момента времени t, что отражает процесс распространения :

Звуковая волна

Распространение звука

Бегущая волна, движущаяся в положительном направлении оси *х*

В точке O частицы водной среды совершают гармонические колебания. Следовательно, смещение частицы относительно точки O во времени t можно записать в таком виде:

$$y = A\sin(\omega t - kx)$$
.

Скорость волны – расстояние, проходимое фронтом волны в единицу времени:

$$v_s = \frac{\omega}{k} = \frac{\lambda}{T}.$$

Продольные или волны сжатия

• Распространяются в твёрдых телах, жидкостях и газах.

Поперечные или волны сдвига

- Колебания частиц направлены поперёк направления распространения волнового движения.
- Могут передаваться только в твёрдых телах.

Поверхностные волны Рэлея

- Распространяются вдоль плоской границы упругого полупространства (твёрдое вещество) и вакуума.
- Быстро затухают вглубь среды.

Колебание частиц

Распространение волны на поверхности металл – воздух

Скорость звуковых волн

Звуковые волны распространяются со скоростью v_s , которая определяется свойствами среды. В общем случае скорость звука равна

$$v_s = \sqrt{C/\rho}$$
,

где C – это константа, характеризующая жесткость (или упругость) материала (в отсутствие теплового потока, т. е. в «адиабатических» условиях), а ρ – массовая плотность. В твердых веществах константа упругости может зависеть от направления распространения звуковой волны. Она равняется модулю Юнга Y для распространения компрессионных волн по стержню, длина которого намного больше ширины. Для стали v_s = 5960 м/с. В текучей среде (жидкости и газы), C – это объемный модуль упругости В (адиабатический), который описывает, какой величины давление требуется для достижения данного уменьшения объема. В глазах B = γP , где γ – это постоянная адиабата, то есть отношение удельных теплоёмкостей при постоянном давлении (c_P) и постоянном объеме (c_v). (Отношение c_p / c_v находится в диапазоне от 1 – для очень больших молекул – до 5/3 для идеального одноатомного газа; для воздуха, который состоит из двухатомных газов, эта величина составляет 1,4.) скорость звука в газах

$$\sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{m}},$$

где R — универсальная газовая постоянная (R = 8,31 Дж/моль/К), а m — молекулярная масса. Скорость звука в воздухе составляет 343 м/с (при 20°С), что в 15 раз медленнее, чем в стали, тогда как скорость звука в воде равны 1482 м/с.

Интенсивность звуковых волн

Интенсивность звуковой волны I — это энергия, переносимая волной через единицы поверхности за единицу времени (с размерностью Дж/м²/с или $B\tau/m^2$). На расстоянии R от изотропного источника средней звуковой мощности P_{power} , интенсивность составляет P

 $I = \frac{P_{power}}{4\pi R^2}.$

Интенсивность равна кинетической энергии волны на единицу объема, $\rho u^2_{\text{max}}/2$ умноженной на скорость звука v_s ,

$$I = \frac{1}{2} \rho u_{\text{max}}^2 v_s,$$

где $u_{\max} = (\Delta x_{\max}) \omega$ — максимальная скорость молекул при максимальном смещении Δx_{\max} в ходе возмущения.

$$I = \frac{1}{2} \rho v_s \left[\left(\Delta x_{\max} \right) \omega \right]^2.$$

Акустический импеданс среды Z определяется как произведение массовой плотностью среды и скорости звука в ней,

$$Z = \rho v_s$$
.

Интенсивность звуковых волн

Величина максимального изменения давления в звуковой волне связана с максимальным смещением уравнением

$$|P| = (\rho v_s)\omega |\Delta x_{\text{max}}| = Z\omega |\Delta x_{\text{max}}|.$$

Это вытекает из того факта, что давление — это сила, приходящаяся на единицу поверхности, а сила — это изменение импульса в единицу времени, и, таким образом, давление — это изменение импульса на единицу поверхности за единицу времени.

$$I = \frac{1}{2}Z(\Delta x_{\text{max}})^2 \omega^2 = \frac{P^2}{2Z}.$$

I измеряется в [Bт/м 2].

Физиологически обоснованное представление интенсивности звука

В аудиометрии за опорную величину принимается интенсивность I_{ref} звука, который на частоте 2000 Гц едва различим. Причем величины исчисляются в логарифмической шкале с основанием 10 (десятичный логарифм). $I_{ref} = 10^{-12} \ \mathrm{BT/M^2}$

 I_{db} (в дБ) = $20 \cdot \lg \left(\frac{P}{P_{rof}}\right) = 10 \cdot \lg \left(\frac{P}{P_{rof}}\right)^2 = 10 \cdot \lg \left(\frac{I}{I_{rof}}\right)$ дБ

Соответствующее звуковое давление

$$P_{ref}$$
 = $2 \cdot 10^{-4}$ мкбар = $2 \cdot 10^{-5}$ Па $\cong 2 \cdot 10^{-10}$ атм.

1 Белл =
$$\lg \frac{I}{I_{ref}}$$
; $\frac{1}{10}$ Белл = 1дБ

Для справки: 1мкбар = $1.02 \cdot 10^{-6}$ атм = $0.1 \text{ H/m}^2 = 0.1 \text{ Па}$.

Единицы измерения

1 Белл =
$$\lg \frac{I}{I_{ref}}$$
; $\frac{1}{10}$ Белл = 1 дБ

При $I=10^{-8}~{\rm BT/M^2}=10^4~I_{ref}$, $I~({\rm B}~{\rm дБ})=10~{\rm lg}~(10^4)=10\cdot 4=40~{\rm дБ}.$

Шкала децибел также применяется для того, чтобы показать относительные величины интенсивности, например I_2 к I_1 . При

$$\begin{split} I_1(\text{в дБ}) = &10 \cdot \lg \frac{I_1}{I_{ref}} \quad \text{и} \quad I_2(\text{в дБ}) = &10 \cdot \lg \frac{I_2}{I_{ref}}, \\ I_2(\text{в дБ}) - I_1(\text{в дБ}) = &10 \lg \frac{I_2}{I_{ref}} - &10 \cdot \lg \frac{I_1}{I_{ref}} = &10 \cdot \lg \frac{I_2}{I_1}. \end{split}$$

Повышение интенсивности звука на 20 дБ соответствует множителю 10^2 или 100-кратному увеличению I.

В ультразвуковой медицинской диагностике интенсивность импульса излучения может превышать интенсивность эхо импульса в 10^6 раз.

Логарифмическая функция «сжимает» большие отношения и «растягивает» маленькие в более обозримый диапазон.

21

Взаимодействие зависит от акустических свойств вещества

Акустический импеданс

Взаимодействия

- **Отражение** возникает на границах материалов (акустический импеданс соседствующих веществ).
- **Преломление** изменение направления движения передаваемой механической энергии.
- **Рассеяние** возникает при отражении или преломлении. Энергия рассеивается во многих направлениях.
- Поглощение энергия звука переходит в тепло (теряется).
- Затухание потеря интенсивности из-за поглощения и рассеяния.

Аналогия с оптикой

$$\lambda = v/f$$

Длины волн слышимых звуков измеряются метрами, т. е. длина волны существенно больше размеров источника звука. Вследствие этого звуковые волны исходят из источника звука в виде сферических волн и распространяются в пространстве по всем направлениям.

С увеличением частоты распространение звука все больше напоминает распространение света. При высоких частотах распространение ультразвуковых волн происходит почти по прямой. В этой области применимы те же законы отражения, фокусировки, рассеяния, что и для света. Здесь могут применяться отражатели и звуковые линзы.

Взаимодействие звука с границей раздела двух сред

Аналогия с оптикой

Отражение и прохождение ультразвуковых волн на границе двух сред

Акустика — Аналог — Оптика

$$Z = \rho v_s$$
 Коэффициент преломления $\rho -$ плотность $v_s -$ скорость звука

• Коэффициент отражения – отношение интенсивностей отраженных к падающим волнам.

Акустика

$$R = \left(\frac{\rho_1 v_{s1} - \rho_2 v_{s2}}{\rho_1 v_{s1} + \rho_2 v_{s2}}\right)^2$$

Оптика

$$\left(\frac{n_1-n_2}{n_1+n_2}\right)^2$$

Отражение, пропускание и акустический импеданс

Отражение и прохождение звуковых волн на границе двух сред

$$R_{I} = \frac{I_{r}}{I_{i}} = \left(\frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}}\right)^{2}$$

- Интенсивность прошедшей волны.
- Коэффициент пропускания (T_I) доля падающей интенсивности, прошедшей через границу раздела тканей.
- Закон сохранения энергии $-T_I = 1 R_I$.

Преломление на границе раздела

- Подобно свету звук преломляется, если падающая волна распространяется не по нормали к границе раздела сред.
- Частота звуковой волны не изменяется на границе раздела.
- Скорость звука (как прошедшего, так и отраженного) изменяется.
- Углы отражения и преломления зависят от изменения скорости звука.

Преломление

Угол преломления возрастает пропорционально разности скоростей и угла падения, согласно закону преломления Снелла:

$$\frac{\sin \theta_t}{\sin \theta_i} = \frac{v_{s2}}{v_{s1}}.$$

Если $v_{s2} > v_{s1}$, то $\theta_2 > \theta_1$.

Если $v_{s2} < v_{s1}$, то $\theta_2 < \theta_1$.

Отраженная часть падающего пучка движется от границы раздела под углом $\theta_r = \theta_i$.

Рассеяние

- Зеркальный отражатель гладкая граница между средами; однородная среда.
- Диффузный отражатель неровная поверхность или неоднородная среда:
 - отражает совсем небольшое эхо,
 - может вызывать уменьшение амплитуды эха вследствие деструктивной интерференции.
- Два случая рассеяния:
 - на границе для более коротких длин волн граница становится «грубой» и отражение становится диффузным,
 - небольшие отражающие включения в среде картина диффузного рассеяния характеризует специфический объект в среде или структуру среды.

Взаимодействия с границей

Взаимодействия внутри ткани. Акустическое рассеяние

Небольшие отражающие включения размером $\leq \lambda$

Поглощение звука

- Поглощение звука результат трения частиц вещества друг об друга.
- Большая часть поглощённой энергии преобразуется в тепло, меньшая вызывает необратимые структурные изменения вещества.
- Зависит от среды и частоты звука. Коэффициент поглощения, показывающий как уменьшается интенсивность звука в среде, обычно пропорционален квадрату частоты.
- Глубина проникновения звука в среду глубина при которой интенсивность уменьшается наполовину. Или в *е* раз (Обратно пропорциональна поглощению)

Виды звуковых полей в реальных условиях

- плоское звуковое поле: Звуковое поле в открытом пространстве от плоского излучателя на расстоянии меньшем размера излучателя.
- сферическое звуковое поле: Звуковое поле в открытом пространстве от излучателя на расстоянии много большем размера излучателя.
- **свободное звуковое поле** (free sound field): Звуковое поле при условии, что стены комнаты оказывают пренебрежимо малое влияние на звуковые волны.
- квазисвободное звуковое поле (quasi-free sound field):
 Звуковое поле при условии, что стены комнаты оказывают незначительное влияние на звуковые волны.
- диффузное звуковое поле (diffuse sound field): Звуковое поле, которое имеет в данной области статистически однородную плотность энергии, причем направление его распространения изотропно.

Эффекты связанные с отражением, наложением (интерференцией), огибанием и рассеянием (дифракцией) волн

- Эхо
- Тень
- Диаграмма направленности излучения
- Реверберация
- Резонанс в открытых и закрытых резонаторах
- Эффект Доплера

Резонаторы

Отражение звука от стен. В резонаторе может быть две, три и более стенок. Он может быть открытым, или закрытым. Может быть одна стенка в виде трубы.

Механический эквивалент резонатора Гельмгольца

Роль грузика играет воздух в горлышке, роль пружинки – воздух внутри объема

Резонаторы академика Христиана Кранцерштейна, 1779 г, Санкт-Петербург, выговаривали буквы «а, э, и о, у».

$$f_H = \frac{v}{2\pi} \sqrt{\frac{S}{V_0 L}}$$

 f_H — частота, Гц;

v — скорость звука в воздухе (340 м/с);

S — сечение отверстия, м 2 ;

L — длина отверстия, м;

 V_0 — объем резонатора, м $^{\scriptscriptstyle 3}$.

Оценка направления на источник

Расчет разности хода лучей (ITD) от источника до левого и правого уха

Такой способ определения направления прихода звука используется мозгом в полосе частот от 300 Гц до 1 кГц.

Направление прихода звука для частот выше 1 кГц определяется мозгом человека путем анализа громкости звука. Дело в том, что звуковые волны с частотой выше 1 кГц быстро затухают в воздушном пространстве.

Бинауральный эффект

Механизмы локализации в горизонтальной плоскости:

- а разность хода лучей по времени ITD;
- б разность по интенсивности ПО

Слуховой анализатор. Бинауральная система. Пути похождения сигнала и узлы обработки сигнала

Глубинная локализация (оценка расстояния до источника звука)

- При изменении расстояния до источника меняются одновременно *громкость*и *тембр*, что и служит различительными признаками. Общая точность глубинной локализации не очень велика, при смещении широкополосного звукового источни ка от 50 до 150 см ошибки составляют 15-30%;
- Среди основных факторов, определяющих оценку глубины, можно выделить следующие:
 - уменьшение уровня звукового давления с расстоянием. П ри отсутствии визуального контроля в условиях свободного поля решающим признаком, по которому оценивается расстояние до источника, является уровень звуково го давления в месте расположения эксперта.
 - затухание звука, которое начинает сказываться при больших расстояниях, проходимых звуковой волной (больше 15 м). При э том высокочастотные составляющие затухают быстрее и спект ральный состав сигнала при удалении источника меняется (тембр становится «темнее»).
 - на близком расстоянии (менее 3 м) на глубинную локализацию начинает оказывать влияние также **дифракция** на ушной раковине и голове, т. е. сказываются разности уровней интенсивностей (выше 1500 Гц) и временные задержки (ниже 1500 Гц), как и в предыдущих случаях.
- Таким образом, существенную роль для глубинной локализации играет личный опыт: если слушателю знаком сигнал или если он имеет возможность сделать визуальную оценку, тогда точность глубинной локализации многократно увеличивается.
- Точность глубинной локализации звукового источника значительно повышается в закрытом помещении. При перемещении звукового источника по глубине меняется отношение энергии прямого звука к энергии отраженного (реверберационного) звука, что помогает точнее определить расстояние до источника.
- Важнейшее значение имеет также разность по времени между при ходом прямого звука и приходом первых отражений и их соотношениях по уровням.

Музыкальная нотация

UT queant laxis
REsonare fibris
MIra gestorum
FAmuli tuorum
SOLve polluti
LAbii reatum
Sancte Ioannes

- Современная музыкальная нотация восходит к трудам Гвидо д'Ареццо первой половины XI века (990 1050), который начал записывать ноты на четырёхлинейном нотном стане с обозначением высоты звука на каждой линии начальными буквами латинского алфавита (используются и поныне), и ключ.
- Впоследствии система дорабатывалась (добавилась пятая линейка, изменился внешний вид нот и ключи и т. д.), и в современном виде она существует с XVII века.
- В дидактических целях (быстрое разучивание незнакомых песнопений) Гвидо д'Ареццо придумал систему сольмизации, в которой установил сохранившиеся до наших дней слоговые названия ступеней звукоряда (ut, re, mi, fa, sol, la) на основе акростиха молитвы к Иоанну Крестителю из шести нот. В дальнейшем ут был заменён на до (Дж. Дони, около 1540 года) и добавлена нота си.
- Около 1700 года немецкий ученый и музыкант Андреас Веркмейстер предложил логарифмически равномерную двенадцатитоновую музыкальную шкалу и изготовил фортепиано, настроенное в соответствии с ней.

Скрипичный ключ

37

Есть подозрение (моё личное), что форма скрипичного ключа навеяна формой раковины, слегка разрушенной прибоем. Это видно на фотографии такой раковины, которую я держу в руке.

Басовый ключ

9:

Есть подозрение (моё личное), что форма басового ключа навеяна формой раковины, разрушенной прибоем. Это видно на фотографии обломков раковин, приведенных на снимке.

Равномерно темперированный строй

- В настоящее время приняты следующие названия нот (в том порядке, в котором они соответствуют белым клавишам фортепиано): до, ре, ми, фа, соль, ля, си. Ноты, расстояние между которыми кратно октаве, называются одинаково.
- За эталон частоты ноты берётся нота ля первой октавы, частота которой должна быть равной 440 Гц.
- Шкала между нотами на нотном стане НЕРАВНОМЕРНАЯ. На одну октаву из 7 нот приходится 12 полутонов (12 клавиш фортепиано):
 до, до-диез, ре, ре-диез, ми, фа, фа-диез, соль, соль-диез, ля, ля-диез, си.
- В равномерно темперированном строе отношение частот двух соседних полутонов (например, до и до-диез) равно $\frac{12\sqrt{2}}{2}$
- Таким образом, можно видеть, что отношение частот нот, отстоящих друг от друга на октаву, равно двум.

Музыкальная гармония

- Первичный объект гармонии музыкальные интервалы, художественное освоение которых составляет основной стержень исторического развития музыкального искусства.
- «Согласное» звучание звуков даёт первую категорию гармонии консонанс, противопоставляемый диссонансу.
- Для человеческого слуха отношения между частотами звуковых колебаний, составляющих приятные созвучия, отвечают ряду отношений целых чисел, представляющих интервалы:
 - 1:1 и 1:2 (унисон и октава),
 - 2:3 и 3:4 (квинта и кварта),
 - 4:5 и 5:6 (терции) и т. д.
- Очевидно, что с помощью логарифмической равномерно темперированной шкалы, в которой отношения частот между соседними нотами равно иррациональному числу ½√2, можно соблюсти перечисленные целые пропорции только для унисона и октавы. Все остальные интервалы будут ПРИБЛИЗИТЕЛЬНЫМИ.
- Также оказалось, что из-за нелинейности спектральных ощущений слуха человека даже целочисленная шкала работает только в нижнем диапазоне частот, а начиная с 500 Гц и выше гармония в ней не соблюдается
- Именно приблизительность интервалов и нелинейность шкал делают музыку неповторимым искусством.

Интервал	Равномерно темперированные интервалы	Натуральные интервалы	Разница в центах
Прима	$\sqrt[12]{2^0} = 1 = 0 \text{Cent}$	$\frac{1}{1} = 1 = 0 \operatorname{Cent}$	0
Малая секунда	$\sqrt[12]{2^1} = \sqrt[12]{2} \approx 1,059463 = 100 \text{Cent}$	$\frac{16}{15} \approx 1,066667 \approx 111,73 \mathrm{Cent}$	-11,73
Большая секунда	$\sqrt[12]{2^2} = \sqrt[6]{2} \approx 1,122462 = 200 \text{Cent}$	$\frac{9}{8} = 1{,}125 \approx 203{,}91\mathrm{Cent}$	-3,91
Малая терция	$\sqrt[12]{2^3} = \sqrt[4]{2} \approx 1,189207 = 300 \text{Cent}$	9	-15,64
Большая терция	$\sqrt[12]{2^4} = \sqrt[3]{2} \approx 1,259921 = 400 \text{Cent}$	$\frac{5}{4} = 1,25 \approx 386,31 \mathrm{Cent}$	13,69
Кварта	$\sqrt[12]{2^5} = \sqrt[12]{32} \approx 1,334840 = 500 \text{Cent}$	A	
Тритон	$\sqrt[12]{2^6} = \sqrt{2} \approx 1,414214 = 600 \text{Cent}$	02	
Квинта	$\sqrt[12]{2^7} = \sqrt[12]{128} \approx 1,498307 = 700 \text{Cent}$	$\frac{3}{2} = 1.5 \approx 701.96 \text{Cent}$	-1,96
Малая секста	$\sqrt[12]{2^8} = \sqrt[3]{4} \approx 1,587401 = 800 \text{Cent}$		-13,69
Большая секста	$\sqrt[12]{2^9} = \sqrt[4]{8} \approx 1,681793 = 900 \text{Cent}$	O O	
Малая септима	$\sqrt[12]{2^{10}} = \sqrt[6]{32} \approx 1,781797 = 1000 \text{Cent}$	$\frac{16}{9} \approx 1,777778 \approx 996,09 \text{Cent}$	3,91
Большая септима	$\sqrt[12]{2^{11}} = \sqrt[12]{2048} \approx 1,887749 = 1100 \mathrm{Cent}$	$\frac{15}{8} = 1,875 \approx 1088,27 \mathrm{Cent}$	11,73
Октава	$\sqrt[12]{2^{12}} = 2 = 1200 \text{Cent}$	$\frac{16}{8} = 2 = 1200 \text{Cent}$	0

Высота тона как параметр раздражения и как параметр ощущения

Частота f_2 тонов, высота которых ощущается, как вдвое более низкая, чем частота f_1 .

- Только на частотах f_1 ниже 500 Гц , f_2 = ½ f_1 , что соответствует определению частоты звука в физике.
- На частоте выше 500 Гц частота f_2 становится все меньше и меньше половины f_1 .
- Именно здесь параметр ощущения «высота звука» начинает отличаться от параметра раздражения, называемого частотой.

42

Зависимость субъективно ощущаемой высоты тона z от частоты f

Следует различать:

- Частоту тона как физический параметр раздражения (шкала в Герцах).
- Гармоническую высоту тона, которая используется при нотной записи и в основе своей является ничем иным, как логарифмом частоты, т.е. параметром раздражения.
- Высоту тона, как субъективный параметр ощущения (шкала в МЕЛах)
- По аналогии с с гармонической высотой мелодическую высоту тона, которая образуется логарифмированием субъективной высоты тона.

Пороги различимости чистоты тонов

Минимально ощущаемая девиация Δf тона в функции его частоты (частота модуляции 4 Γ μ)

Аудиометр Бекеши

Кривая порога слышимости

Плоскость слышимости

- Сплошная линия порог слышимости
- Штриховая линия болевой предел
- Вертикальная штриховка область музыкальных звуков
- Горизонтальная штриховка область речевых зыуков

Устройство слухового анализатора человека

Устройство слухового анализатора человека

Строение улитки

Система согласования акустического импеданса воздушной среды в слуховом канале и жидкостной среды в улитке

Кортиев орган

Схематическое представление слухового аппарата человека и поперечный разрез улитки внутреннего уха

- 1 внутреннее ухо (улитка); 2 среднее ухо;
- 3 наружное ухо; 4— овальное окно;
- 5 слуховые косточки; 6 барабанная перепонка;
- 7— круглое окно; 8 перегородка улитки; 9 геликотрема; 10 основная мембрана; 11 —

кортиев орган; 12 — овальное окно

- 1 мембрана Рейснера;
- 2 покровная мембрана;
- 3 кортиев орган с чувствительными клетками;
- 4 основная мембрана;
- 5 перегородка улитки;
- 6 слуховой нерв.

Естественные шкалы основной мембраны

В кортиевом органе 4 ряда клеток по 3500 клеток в каждом ряду

Спектр сигнала анализируется ухом параллельно независимо и одновременно. Нажав одновременно клавиши «до» и «ми» нам не удастся услышать «ре». Для глаза, смешав желтую и синюю спектральные чистые линии мы увидим зеленый свет (чего не покажет спектроскоп).

Шумы

- Белый шум
- Равномерно маскирующий шум
- «Розовый» шум
- Равномерно воздействующий шум
- Полосовой шум (узкополосный и широкополосный)

Субъективное восприяте громкости

Приращение уровня звукового давления тона частотой 1 *кГц* при удвоении его субъективной громкости

Взаимосвязь между субъективной громкостью N и уровнем громкости L_Γ

Кривые равной громкости на плоскости слышимости в плоском звуковом поле

В сетчатке глаза 100 000 000 клеток Во внутреннем ухе всего 14000 нервных клеток.

Берегите слух!

Вопросы есть?