

NATIONAL OPEN UNIVERSITY OF NIGERIA 14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MARCH/APRIL 2014 EXAMINATION

COURSE CO COURSE TI TIME ALLO INSTRUCTION	TLE: WED	INORGANI : 3HOURS				
1ai. Briefly e	xpla	in why XeF ₄	has squa	re plai	nar structure.2mks	i.
ii. Juxtapose down the gro	-		als force b	etwee	en the noble gas at	oms increase
bi. Write sho	rt no	tes on the f	following;			
i. ii. iii.	•					
c. Using che	mica	l equations	show the	forma	tion of Xenon Tetra	a fluoride.3mks
2ai. Write ba metal with:	alanc	ed chemica	l equation	s to d	escribe the reactio	n of potassium
(i) oxygei	n	(ii) water	(iii) chlor	ine (6 marks)	
b. Work out	the c	xidation sta	ates of xer	non in	XeF ₄ and XeF ₆	2mks)
	in Co				•	ds of noble gases the basis of VSEPF
		umn I XeOF ₄		(ii)	Column	
	(ii)	XeO ₄		(iii)		
	(iii)	XeF ₆		(iii)		

d. State three State four uses of hydrogen. (3mks)

Question Three

- 3a. (i) List and describe the isotopes of hydrogen (3 marks)
 - (ii) What do you understand by the term 'active hydrogen'? (2 marks)
- b. Discuss the classification of ligands in coordination chemistry (6 marks)

Question Four

- 4ai. What are β rays? (2 marks)
- b. Discuss briefly the principles of the valence bond theory (6 marks)
- c. Highlight the differences between the valence bond and molecular orbital theories (6marks)

Ouestion Five

- 5a (i) What is the difference between gangue and slag? (4 mks)
 - (ii) Write balanced chemical equations to show how the flux forms the slag in an iron blast furnace. (4 mks)
- (b) (i) Why is it necessary to concentrate the ores before extracting metals from them?(2 mks)
 - (ii) Describe the froth flotation process for the concentration of ores. (4mks)

Question Six

- 6ai. List and give the electronic configurations of the 3d transition elements (8 mks)
- (b) What are rare earth elements? Why are they so called? (2 mks)
- (c) (i) Identify the most common oxidation state for the lanthanides and the actinides (2 mks)
 - (ii) How is this oxidation state formed? (2 mks)

Question Seven

- 7ai. How do the following properties vary in the transition elements? (6 marks)
 - (i) Atomic size
 - (ii) Ionisation energy
 - (iii) Electronegativity
- (b) Highlight four characteristics of transition metals (4 mks)

- (c) (i) Explain briefly why CuSO4 is blue while ZnSO4 is white (2 marks)
 - (ii) Predict the spin-only magnetic moment for: (2 marks)

Fe²⁺