Calculus and Probability Theory

Organisation and derivatives

Gergely Alpár Institute for Computing and Information Sciences – Digital Security Radboud University Version: Autumn 2015

Outline

Organisation

Foundations

Limits and continuous functions

Derivatives

About this course I - Lectures

- Weekly, 2 hours, on Mondays 10:45 (HG00.303)
- Presence not compulsory . . .
 - but active attitude expected, when present
- Covering the same material as in:
 - Calculus lecture notes by Bernd Souvignier
 - Kansrekening lecture notes by Bernd Souvignier
- Main material is on the lecture slides
- Communication via Blackboard

About this course II - Exercise sessions

- Also weekly meetings
 - Wednesdays from 8:45 to 10:30
 - Two locations: E 2.18 / HG00.633
 - Presence not compulsory
- ► Teaching assistants give the exercise classes
 - Joost Renes
 - Bram Westerbaan
- Activities
 - Questions about lectures/homework
 - Practicing methods
 - Solving problems

About this course III - Homework

- Handing in homework assignments is compulsory (at least five)
 - Homework exercises have to be done individually
- Schedule:
 - New assignment on the web on Tuesday (Blackboard), say in week n
 - You can try them yourself immediately and ask advice on Wednesday morning in week n
 - You can ask final questions, again on Wednesday in week n+1
 - You have to hand-in, via Blackboard (Bb), before Wednesday
 14:30 sharp, in week n+1; late submissions will not be accepted.
- Student assistants correct the assignments
 - Arjen Zijlstra
 - Wouter van der Linde

About this course III - Exercise groups

- There will be two groups for the exercise classes, based on the levels of mathematical skills
- Rate your own skill honestly, according to
 - strong, e.g. $\geq 7\frac{1}{2}$ at secondary school \longrightarrow HG00.633
 - "not so strong" \longrightarrow E 2.18
 - If you are "uncertain",
 - (1) do the self-assessment test (in Bb)
 - (2) check it, results published: Tuesday, 16:00
 - (3) register Tuesday afternoon: J.Renes@cs.ru.nl
- ▶ The classifications of the groups will not be used explicitly

About this course IV - Grading

- Exam: 26 Oct., 12:30-15:30, LIN 3 / LIN 8
- Condition: at least five sufficient homework assignments
- ► Final mark: the result of the written exam

About this course V - How to pass this course ...

- Practice, practice, practice, think, practice . . .
- You don't learn it it by just staring at the slides!
 - Study the lecture slides (and your notes): read, write, compute
 - Look for similar problems, make your own ones (!) and solve them
 - Attend the exercise classes for further practice
 - Solve the homework first on paper, then make a clear assignment
- Exam questions will be in line with the exercises

About this course VI – Some special points

- You can succeed in this course!
- ▶ 3ec means $3 \times 28 = 84$ hours in total
 - Let's say 20 hours for exam
 - 64 hours for 8 weeks means: 8 hours per week!
 - on average 4 hours for studying & making exercises
- Why computer scientists need maths?
 - problem solving
 - thinking in a structured and accurate way
 - programming, esp. for embedded/hybrid systems, machine learning
 - computer hardware and architecture: computer networks, data encryption and compression, . . .

About this course VII - And finally...

- Coming up-to-speed is your own responsibility
- If you lack background knowledge, or have forgotten basic mathematics:
 - Blackboard / Course Content / Voorkennis by Wim Gielen
 - Wikipedia
 - Khan Academy, . . .
- Further help:
 - Computer algebra system: GeoGebra
 - Wolfram Alpha
- Office hours:
 - G. Alpár: Monday, 16:00-17:00 (Mercator 1, 3.03)
 - J. Reenes: Wednesday, 16:00-17:00 (Mercator 1, 2.16 $\stackrel{?}{ o}$ 3.17)

Different numbers

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$

- In the natural numbers $\mathbb N$ one can add and multiply: x+y with 0, $x\cdot y$ with 1.
- ▶ In the integers \mathbb{Z} one can also subtract: x y
- ▶ In the rationals \mathbb{Q} one can divide: $\frac{x}{y}$, for $y \neq 0$
- In the reals \mathbb{R} , with the number line being complete,
 - one can take limits: $\lim_{n\to\infty} r_n$, and
 - thus, one can take roots \sqrt{x} for $x \ge 0$.
- In the complex numbers $\mathbb C$ one can take all roots, in particular $\sqrt{-1}=i$.

Numbers: some basic properties

associative laws, for addition and multiplication

$$a + (b + c) = (a + b) + c$$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

commutative laws, for addition and multiplication

$$a+b=b+a$$
 $a \cdot b=b \cdot a$

distributive law

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

existence of an additive and multiplicative identities:

$$a + 0 = a = 0 + a$$
 $a \cdot 1 = a = 1 \cdot a$

existence of additive and multiplicative inverses

$$a + (-a) = 0 = (-a) + a$$
 $a \cdot \frac{1}{a} = 1 = \frac{1}{a} \cdot a$, for $a \neq 0$

Function - Basic definitions

Definition (Functions)

A real function $f: D \to \mathbb{R}$, for $D \subseteq \mathbb{R}$, is a rule which assigns to each $x \in D$ precisely one $f(x) \in \mathbb{R}$.

- In this situation the subset $D \subseteq \mathbb{R}$ is called the domain of f. Sometimes we write D(f) for D.
- ▶ \mathbb{R} is the codomain of f, and the subset $R(f) = \{f(x) | x \in D\} \subseteq \mathbb{R}$ is called the range of f.

Example

- f(x) = |x|, "absolute value", with $D(f) = \mathbb{R}$, $R(f) = [0, \infty)$
- $f(x) = \sqrt{25 4x^2}$
- $f(x) = \operatorname{sign}(x)$

More on functions I

Definition

A function $f: D \to \mathbb{R}$ is injective or one-to-one if f(x) = f(y) implies x = y, for all $x, y \in D$.

A function $f: D \to R (\subseteq \mathbb{R})$ is surjective or onto if its range is equal to its codomain

This means: for any $y \in R$ there is an $x \in D$ such that f(x) = y. Symbolically: $\forall y \in R \exists x \in D \ f(x) = y$.

A function $f: D \to R$ is bijective if it is both injective and surjective. Then it is an isomorphism $f: D \stackrel{\cong}{\longrightarrow} R$.

Definition (Graph of a real function)

For a function $f: D \to \mathbb{R}$, the graph $G(f) \subseteq D \times \mathbb{R}$ of f contains all pairs (x, f(x)). So, we write: $G(f) = \{(x, f(x)) | x \in D\}$.

More on functions II

Definition (Inverse and composition)

If a function $f: D \to \mathbb{R}$, is injective, we can define an inverse function $f^{-1}: R(f) \to D \subseteq \mathbb{R}$, namely:

- \blacktriangleright for $y \in R(f)$, say y = f(x), define $f^{-1}(y) = x$
- ▶ this x is uniquely determined: if f(x) = y = f(x'), then x = x'. since f is injective
- by construction: $f(f^{-1}(y)) = y$ and also $f^{-1}(f(x)) = x$.

The composition of functions $f: X \to Y$ and $g: Y \to Z$ is the function $h = g \circ f : X \to Z$, for which h(x) = g(f(x)), for each $x \in X$.

Definition (Parity of function)

A function $f:(-a,a)\to\mathbb{R}$ is even if f(-x)=f(x), for all $x\in(-a,a)$, and odd if f(-x) = -f(x), for all $x \in (-a, a)$.

Example

$$f(x) = x^3$$
 $g(x) = |x|$ $g \circ f =?, f \circ g =?, \text{ even?, odd?}$

$$g \circ f = ?, f \circ g = ?, \text{even?, odd?}$$

Intuition fo limit

Definition ("Approach to limit")

A function f approaches the limit b at an input a, if we can make f(x) as close as we like to b by requiring that x be sufficiently close, but not equal, to a.

Example: No limit of $\sin\left(\frac{1}{x}\right)$ at 0

Limits

Definition

A function $f: D \to \mathbb{R}$ has limit b for $x \to a$ if:

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in D \quad 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon.$$

In that case we write $\lim_{x\to a} f(x) = b$. "the limit of f of x as x approaches a equals b" (Note: a does not have to be in D.)

Example

- $\lim_{x \to 3} \frac{x^2 9}{x 3} = \lim_{x \to 3} \frac{(x 3)(x + 3)}{x 3} = \lim_{x \to 3} (x + 3) = 6.$

Limits involving infinity

We also need $\lim_{x\to\infty} f(x)$ or $\lim_{x\to-\infty} f(x)$. What does this mean?

Definition

A function $f: D \to \mathbb{R}$ has limit b for $x \to \infty$ if:

$$\forall \varepsilon > 0 \,\exists n \in \mathbb{N} \,\forall x \in D \, x > n \Rightarrow |f(x) - b| < \varepsilon.$$

In that case we write $\lim_{x\to\infty} f(x)=b$. Formulate yourself what $\lim_{x\to-\infty} f(x)=b$ means.

Example

$$\lim_{x \to \infty} \frac{1}{x} = 0 \qquad \lim_{x \to -\infty} \frac{1}{x} = 0 \qquad \lim_{x \to \pm \infty} \frac{11x^2 - 2x + 3}{5x^2 + 3x - 1} \qquad \lim_{x \to \infty} \frac{-2.5x^5}{100x^4 + 1}$$

Continuous functions

Definition

A function $f: D \to \mathbb{R}$ is continuous in point $a \in D$ if f(x) is close to f(a) for each x that is close to a.

More formally: $f: D \to \mathbb{R}$ is continuous in point $a \in D$ if:

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in D \,|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Note: this is the same as $a \in D$, $\exists \lim_{x \to a} f(x)$ and $\lim_{x \to a} f(x) = f(a)$.

A function $f: D \to \mathbb{R}$ is continuous if it is continuous in all $a \in D$.

Example

The function f(x) = sign(x) is not continuous in 0.

Indeed, $\exists \varepsilon > 0 \, \forall \delta > 0 \, \exists x \text{ with } |x - 0| = |x| < \delta \text{ but}$

$$|f(x)-f(0)|=|f(x)|\geq \varepsilon$$

Choose $\varepsilon = \frac{1}{2}$, then any $x \neq 0$ with $|x| < \delta$ has |sign(x)| = 1. The function values around 0 do not fall into the ε -interval.

Recall: Points and lines

- Equation of a line
 - y-intercept (b), slope (m)
 - most convenient: y = mx + b
 - can be determined from e.g., two points, or a point and the slope
- ▶ Distance of two points (x_1, y_1) and (x_2, y_2)
 - by Pythagorean theorem
 - $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

Example

- ▶ What is the intercept and the slope: 3x 4y = -8?
- ▶ Determine the distance of points (2, -3) and (-3, 9).
- ▶ Equation of the line? Slope: m = 2/5, a point on it: (-1,2).

Derivatives

Definition

A function $f:D\to\mathbb{R}$ is differentiable at a if $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ exists. In this case the limit is denoted f'(a) and is called the derivative of f at a.

f is differentiable if f is differentiable at a for every $a \in D$.

We also define the tangent line to f at a to be the line through $(a, f(a)) \in G(f)$ with slope f'(a).

If f is a differentiable function then f' ("Lagrange notation") is sometimes written as $\frac{df}{dx}$ ("Leibniz notation").

More examples

Example (Geometric interpretation)

Find a tangent line of a curve $f(x) = \frac{1}{x}$ in a = 2.

Example

Check that f(x) = |x| is *not* differentiable in 0.

(Differentiable implies continuous, but not the other way around, as this example shows.)

Differentiation rules

Let $f, g: D \to \mathbb{R}$ be differentiable functions in $a \in D$

- For a constant function $f(x) = c, c \in \mathbb{R}$, we have f'(x) = 0
- f(x) = x, then f'(x) = 1.
- ▶ sum/subtraction rule $(f \pm g)'(a) = f'(a) \pm g'(a)$.
- ightharpoonup scalar rule: $(c \cdot f)'(a) = c \cdot f'(a)$.
- ▶ product rule $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.
- b division rule $(\frac{f}{g})'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g^2(a)}$.
- ▶ chain/composition rule $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$
- ▶ if f has an inverse f^{-1} , then $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$

Derivatives of powers

Lemma

- (1) For $n \in \mathbb{N}$ and $f(x) = x^n$ we have $f'(x) = nx^{n-1}$ This can be shown by induction on n
- (2) In fact, for $n \in \mathbb{Z}$ and $f(x) = x^n$ we have $f'(x) = nx^{n-1}$
 - This follows from the previous point, using the division rule.
- (3) It can be shown that $(x^a)' = ax^{a-1}$, for any $a \in \mathbb{R}$.

Derivation exercises

Example

- f(x) = (-1 + 7x)(3 4x). Find f'.
- $f(x) = \frac{-1+7x}{3-4x}$. Find f'.
- $y = x^6 3x^4 + 4x 3$. Find f'.
- $f(x) = x^2$. Find $(f^{-1})'$.
- $f(x) = \sqrt{2 5x}. \text{ Find } f'.$

Recall exponential and logarithm

Exponential, for $a \ge 0$

- $a^0 = 1, \ a^{x+y} = a^x \cdot a^y$
- $a^1 = a, a^{x \cdot y} = (a^x)^y$
- $a^{-x} = \frac{1}{a^x}$, and thus $a^{x-y} = \frac{a^x}{a^y}$

The logarithm is defined as inverse of power: $x = \log_a(y) \iff a^x = y$, for y > 0.

Logarithm

Introducing Euler's number e

Consider $f_a(x) = a^x$. Then:

$$f_a'(x) = (a^x)' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$
$$= a^x \cdot \lim_{h \to 0} \frac{a^{0+h} - a^0}{h} = a^x \cdot \lim_{h \to 0} \frac{f_a(0+h) - f_a(0)}{h}$$
$$= a^x \cdot f_a'(0).$$

- We have: $f'_a(0) = 1$ for a = e = 2.71828...
- ▶ and thus $(e^x)' = e^x$
- ► The natural logarithm In uses base e; notation: In $\equiv \log_e$

Important derivatives with logarithms

$$(a^{x})' = a^{x} \cdot \ln(a)$$
 and $(\ln(y))' = \frac{1}{y}$

- ▶ We have $(e^{f(x)})' = e^{f(x)} \cdot f'(x)$ by the chain rule
- Thus: $(a^x)' = a^x \cdot \ln(a)$, since:

$$(a^{x})' = ((e^{\ln(a)})^{x})' = (e^{\ln(a) \cdot x})' = e^{\ln(a) \cdot x} \cdot \ln(a) = a^{x} \cdot \ln(a).$$

- For $f(x) = e^x$ we have $f'(x) = e^x$ and $f^{-1}(y) = \ln y$
- We use the inverse function law $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
- ► Thus $\ln'(y) = \frac{1}{f'(\ln y)} = \frac{1}{e^{\ln y}} = \frac{1}{y}$.

Logarithmic differentiation

Definition

According to the chain rule:

$$(\ln f(x))' = \ln'(f(x)) \cdot f'(x) = \frac{1}{f(x)} \cdot f'(x) = \frac{f'(x)}{f(x)}$$

Briefly: $(\ln f)' = \frac{f'}{f}$. This is called the logarithmic derivative of f and this law is called logarithmic differentiation.

Logarithmic differentiation: Example

For $f(x) = \frac{6x}{\sqrt{x-1}}$ we can compute f'(x) via the fraction rule, but also by first taking logarithms on both sides:

$$\ln(f(x)) = \ln\left(\frac{6x}{\sqrt{x-1}}\right) = \ln(6x) - \ln((x-1)^{\frac{1}{2}}) = \ln(6x) - \frac{1}{2}\ln(x-1)$$

Differentiating on both sides gives:

$$\frac{f'(x)}{f(x)} = \frac{6}{6x} - \frac{1}{2} \cdot \frac{1}{x-1} = \frac{1}{x} - \frac{1}{2(x-1)} = \frac{2(x-1)-x}{2x(x-1)} = \frac{x-2}{2x(x-1)}$$

Hence:

$$f'(x) = f(x) \cdot \frac{x-2}{2x(x-1)} = \frac{6x}{\sqrt{x-1}} \cdot \frac{x-2}{2x(x-1)} = \frac{3(x-2)}{(x-1)^{\frac{3}{2}}}$$

Recall sine, cosine and tangent

- ▶ Geometric interpretation with $sin(90^\circ) = sin(\frac{\pi}{2}) = 1$ etc.
- Sum rules:
 - $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$

 - $\sin(x-y) = \sin(x)\cos(y) \cos(x)\sin(y)$

Another example

Logarithmic differentation is useful for reducing products to sum, fractions to differences, and powers to products.

Take
$$f(x) = (\sin x)^x$$
.

$$\ln f(x) = \ln \left((\sin x)^x \right) = x \cdot \ln(\sin x)$$

$$\frac{f'(x)}{f(x)} = \ln(\sin x) + x \cdot \frac{1}{\sin x} \cdot \cos x$$

And:

$$f'(x) = f(x) \cdot \left(\ln(\sin x) + \frac{x \cos x}{\sin x} \right) = (\sin x)^x \left(\ln(\sin x) + \frac{x \cos x}{\sin x} \right).$$

Overview: derivatives of special functions

- $f(x) = a^x$ then $f'(x) = a^x \cdot \ln a$. Special case $(e^x)' = e^x$
- $(\log_a x)' = \frac{1}{x \cdot \ln a}, \text{ with special case } (\ln x)' = \frac{1}{x}$
- $(\sin x)' = \cos x$
- $(\cos x)' = -\sin x$
- \blacktriangleright $(\tan x)' = \frac{1}{\cos^2 x}$, where $\tan x = \frac{\sin x}{\cos x}$
- \blacktriangleright (arcsin x)' = $\frac{1}{\sqrt{1-x^2}}$ where arcsin = \sin^{-1}
- \blacktriangleright (arccos x)' = $\frac{-1}{\sqrt{1-x^2}}$ where arccos = cos⁻¹
- $(\arctan x)' = \frac{1}{1+x^2} \text{ where arctan} = \tan^{-1}$

L'Hôpital's rule

Let $f,g:D\to\mathbb{R}$ be functions that are differentiable and

- \blacktriangleright $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists with
- ▶ $g'(x) \neq 0$ (except for perhaps at a), then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Example

$$\lim_{x \to 0} \frac{\sin(x)}{x} \stackrel{*}{=} \lim_{x \to 0} \frac{\cos(x)}{1} = \cos(0) = 1;$$

$$\lim_{x \to \infty} \frac{\int_{0}^{x} \frac{1}{\sqrt{x}} = \lim_{x \to \infty} \frac{1}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2\sqrt{x}}{x} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0;$$

Higher order derivatives

Let f(x) be a real function.

- ▶ One writes $f' = \frac{df}{dx}$
- ► The second derivative is written as: $f'' = \frac{d}{dx}f' = \frac{d^2f}{dx^2}$
- The *n*-the derivative is: $f^{(n)} = \frac{d}{dx} f^{(n-1)}$ with $f^{(0)} = f$

Example

Let $f(x) = x^n$, find $f^{(n)}(x)$.

Monotonicity and the derivative

Definition

Let $f: D \to \mathbb{R}$ be a function.

- ▶ f is increasing if $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$, for all $x_1, x_2 \in D$
- ▶ f is strictly increasing if $x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$, for all $x_1, x_2 \in D$
- ▶ f is decreasing if $x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$, for all $x_1, x_2 \in D$
- ▶ f is strictly decreasing if $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$, for all $x_1, x_2 \in D$

Proposition

- ▶ If $f'(x) \ge 0$, $\forall x \in [a, b] \Rightarrow f$ is increasing on [a, b].
- ▶ If $f'(x) \le 0$, $\forall x \in [a, b] \Rightarrow f$ is decreasing on [a, b].

Absolute vs local, for extreme (= minimum or maximum)

Definition

A real function $f: D \to \mathbb{R}$ has in $a \in D$ <u>absolute</u> minimum (or absolute maximum) if $f(a) \le f(x)$ (or $f(a) \ge f(x)$), for all $x \in D$.

This f has in $a \in D$ a <u>local</u> minimum (or maximum) if $\exists \, \delta > 0$ such that $f(a) \leq f(x)$ (or $f(a) \geq f(x)$), for all $x \in (a - \delta, a + \delta)$.

Lemma

Let $f: D \to \mathbb{R}$ be differentiable in a. If f has a local minimum or a local maximum in a then f'(a) = 0.

Note: the first derivative need not exist in a local extreme. Example: f(x) = |x| has a minimum in 0.

Absolute vs local, for extreme. Example

Extremes and critical points

Definition

A critical point of a function $f: D \to \mathbb{R}$, is a point $a \in D$ such that f'(a) = 0. The value f(a) is called a critical value of f.

Fact

- ▶ We saw: extremes are critical if the function is differentiable
- ► The reverse fails, see $f(x) = x^3$ in 0

In order to find the maximum and minimum of $f:D\to\mathbb{R}$ three kinds of points must be considered:

- \blacktriangleright the critical points of f in D,
- points x in D such that f is not differentiable at x,
- points on the edge of D, that is, points $x \in D$ with $[x \delta, x) \cap D = \emptyset$ or $(x, x + \delta] \cap D = \emptyset$ for all $\delta \ge 0$.

Sufficient conditions for extremes

Theorem

A differentiable function f(x) has a local minimum in a if $\exists \, \delta > 0$ such that f'(a) = 0, $f'(x) \leq 0$ for $x \in (a - \delta, a)$ and $f'(x) \geq 0$ on $(a, a + \delta)$. Especially, if f'(a) = 0 and f''(a) > 0, so that f' is increasing.

A differentiable function f(x) has a local maximum in a if $\exists \, \delta > 0$ such that f'(a) = 0, $f'(x) \geq 0$ for $x \in (a - \delta, a)$ and $f'(x) \leq 0$ on $(a, a + \delta)$. Especially, if f'(a) = 0 and f''(a) < 0.

Example

Consider the function $f(x) = x^4 - 2x^2$. Critical points are -1, 0, 1. Which of them are min/max?

Convexity and Concavity

Definition

A function f is convex (or concave) on an interval if for all a and b in the interval, the line segment joining (a, f(a)) and (b, f(b)) lies above (or below) the graph of f.

Simply: $convex = \bigcirc$ $concave = \bigcirc$

(Convex and concave are sometimes called concave up and concave down, respectively.)

A point of inflection on a curve y = f(x) is a point at which f changes from concave to convex or vice versa.

Theorem

- ▶ If f''(x) > 0, for all $x \in (a, b)$, then f is convex on (a, b).
- ▶ If f''(x) < 0, for all $x \in (a, b)$, then f is concave on (a, b).
- If f has an inflection point at x and f" exists in $(x \delta, x + \delta)$, for some $\delta > 0$, then f''(x) = 0.

Asymptotes

Definition

- A vertical line x = a is called a vertical asymptote of f if both limits from below $\lim_{x \to a^{-}} f(x)$ or from above $\lim_{x \to a^{+}} f(x)$ are infinite.
- A horizontal line y = b is called a horizontal asymptote of f if $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.
- A line y = ax + b is called a slant asymptote of f if $\lim_{x \to \pm \infty} f(x) (ax + b) = 0$.
 - find a, b as: $a = \lim_{x \to \infty} \frac{f(x)}{x}$ and $b = \lim_{x \to \infty} f(x) ax$

Example

$$f(x) = \frac{x^2 + 3x + 2}{x - 2}$$
 has slant asymptote $y = x + 5$, since

$$a = \lim_{x \to \infty} \frac{x + 3 + \frac{2}{x}}{x - 2} = 1, \quad b = \lim_{x \to \infty} \frac{x^2 + 3x + 2}{x - 2} - \frac{x^2 - 2x}{x - 2} = \lim_{x \to \infty} \frac{5x + 4}{x - 2} = 5.$$

Curve Sketching

These steps should be followed to investigate function f(x):

- (1) domain of f
- (2) parity i.e. is f even or odd
- (3) points of intersection with x-axis and y-axis
- (4) behaviour of f on the edges of the domain
- (5) asymptotes
- (6) monotonicity and min/max
- (7) concavity/convexity and points of inflection
- (8) table and sketch

Example

Example

Sketch the graph of $f(x) = xe^{-x}$.

Example 2.

Example

Sketch the graph of $f(x) = x^2 + \frac{2}{x}$.

$$f'(x) = 2x - \frac{2}{x^2}$$
 $f''(x) = 2 + \frac{4}{x^3}$

	$(-\infty, -\sqrt[3]{2})$	_ 3 √2	$(-\sqrt[3]{2},0)$	0	(O, 1)	1	$(1, +\infty)$
f	$\lim_{-\infty} f = +\infty$	0	$\lim_{n \to \infty} f = -\infty$	∉ D(f)	$\lim_{0^+} f = +\infty$	3	$\lim_{+\infty} f = +\infty$
f'		_	, 0		_	0	+
f		>		İ	>	loc.min.	7
f"	+	0	_		+		
f)	infl	_		$\overline{}$		

Functions in several variables

- So far we have seen functions $f(x) = \cdots$ in one variable x.
- One can also have functions in several variables: $f(x, y) = \cdots$ or $g(x_1, \dots, x_n) = \cdots$
 - These are functions $D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^n$, for some $n \in \mathbb{N}$

Example

- ▶ Distance from origin in \mathbb{R}^2 , given by $f(x,y) = \sqrt{x^2 + y^2}$
- In physics: $f(x, y, t) = e^{-t} \cdot (\sin x + \cos y)$ describes heat distribution in a plane, as a function of position and time.
- Arbitrarily looking functions: $f(x_1, x_2, x_3) = \sin(x_3) \cdot \frac{x_2^{10}}{\ln(x_1)}$

Differentiation in several variables: partial derivatives

- ▶ Given a function in several variables, say f(x, y), one can take the derivative in each variable separately. These are called partial derivatives.
- Now the 'Leibniz' notation $\frac{df}{dx}$ and $\frac{df}{dy}$ is convenient. For partial derivatives they are written as curly d, as in: $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- Thus:

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} \qquad \frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

► The standard rules for derivatives apply, where the 'other' variables are treated as constants.

Second partial derivatives

- $\qquad \text{Consider } f(x,y,t) = e^{-t} \cdot (\sin x + \cos y)$
- ► Then:

$$\bullet \quad \frac{\partial f}{\partial y} = -e^{-t} \cdot \sin y$$

$$\bullet \quad \frac{\partial f}{\partial t} = -e^{-t} \cdot (\sin x + \cos x)$$

▶ We can continue with successive partial derivatives:

$$\frac{\partial^2 f}{\partial x \partial t} = -e^{-t} \cdot \cos x$$

The Theorem of Schwarz says that it does not matter in which order you take the two partial derivatives:

$$\frac{\partial^2 f}{\partial x \partial t} = \frac{\partial^2 f}{\partial t \partial x}$$

(assuming all these derivatives exist and are continuous).