Solution of Sensitivity Assignment

Sol. 1) Let, x_I = Number of model-1 is produced

 x_2 = Number of model-2 is produced

Objective function:

Maximize $Z=30x_1+40 x_2$

Subject to:

$$2x_1 + 3x_2 \le 1200$$

$$2x_1 + x_2 \le 1000$$

$$4x_2 \le 800$$

$$x_1 \ge 0, x_2 \ge 0$$

Augmented problem:-

Maximize $Z = 30x_1 + 40 x_2 + 0S_1 + 0S_2 + 0S_3$

S.T:

$$2x_1 + 3x_2 + S_1 = 1200$$

$$2x_1 + x_2 + S_2 = 1000$$

$$4x_2 + S_3 = 800$$

$$x_i \ge 0 \ \forall i = 1...5.$$

Iteration 0

	Z	x_I	x_2	S_{I}	S_2	S_3	RHS
Z	1	-30	-40	0	0	0	0
S_I	0	2	3	1	0	0	1200
S_2	0	2	1	0	1	0	1000
S_3	0	0	4	0	0	1	800

Iteration 1

	Z	x_I	x_2	S_{I}	S_2	S_3	RHS
Z	1	-30	0	0	0	10	8000
S_{I}	0	2	0	1	0	-3/4	600
S_2	0	2	0	0	1	-1/4	800
x_2	0	0	1	0	0	1/4	200

Iteration 2

	Z	x_1	x_2	S_I	S_2	S_3	RHS
Z	1	0	0	15	0	-5/4	17000
x_{I}	0	1	0	1/2	0	-3/8	300
S_2	0	0	0	-1	1	1/2	200
x_2	0	0	1	0	0	1/4	200

Iteration 3

	Z	x_{I}	x_2	S_I	S_2	S_3	RHS
Z	1	0	0	25/2	5/2	0	17500
x_{I}	0	1	0	-1/4	3/4	0	450
S_2	0	0	0	-2	2	1	400
x_2	0	0	1	1/2	-1/2	0	100

Optimal solution:
$$x_1^* = 450$$
; $x_2^* = 100$; $Z = 17,500$

(b) Basis matrix (B):- This is the matrix formed by the variables in the basis of the final table. Its values, however, will be obtained from the initial table.

$$\mathbf{B} = \begin{bmatrix} 2 & 0 & 3 \\ 2 & 0 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

Inverse of the basis matrix (B⁻¹): This matrix is formed by the variables in the basis of initial table and values from final table.

$$\mathbf{B}^{-1} = \begin{bmatrix} -1/4 & 3/4 & 0 \\ -2 & 2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix}$$

Resource (b₁) of milling machine changes from 1200 to 1300.

Changes in resource matrix affect the optimal solution. Therefore, new optimal solution will be:-

$$B^{-1}b = \begin{bmatrix} -1/4 & 3/4 & 0 \\ -2 & 2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 1300 \\ 1000 \\ 800 \end{bmatrix} = \begin{bmatrix} 425 \\ 200 \\ 150 \end{bmatrix}$$

$$x_1^* = 425$$
; $x_2^* = 150$; Z=18,750

(C) Here, Resource (b₂) of Grinding machine changes from 800 to 350

$$B^{-1}b = \begin{bmatrix} -1/4 & 3/4 & 0 \\ -2 & 2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 1200 \\ 1000 \\ 350 \end{bmatrix} = \begin{bmatrix} 450 \\ -50 \\ 100 \end{bmatrix}$$

No, we cannot determine the new optimal solution directly from the given information. Because $S_3 \le 0$ i.einfeasible.

Sol. 2) Formulation of the given problem will be,

Max Z =
$$250x_1 + 300x_2 + 400x_3 + 750x_4$$

S.T $6x_1 + 9x_2 + 10x_3 + 10x_4 \le 1600$
 $x_1 + 2x_2 + 4x_3 + 5x_4 \le 600$
 $x_1 + x_2 + x_3 + x_4 \le 300$
 $x_1, x_2, x_3, x_4 \ge 0$

Initial optimal Table:-

	Z	x_{I}	x_2	χ_3	χ_4	x_5	x_6	<i>X</i> ₇	RHS
Z	1	0	125	250	0	25	100	0	10^{5}
x_{I}	0	1	5/4	1/2	0	1/4	-1/2	0	100
χ_4	0	0	3/20	7/10	1	-1/20	3/10	0	100
<i>x</i> ₇	0	0	-2/5	-1/5	0	-1/5	1/5	1	100

Now, delux recorder is taking only 3 hours (instead of 5 hours) of testing, therefore change in coefficient is -2.

$$\Delta Z = \begin{pmatrix} 25 & 100 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} = -200$$

$$\Delta a_{14} = \begin{pmatrix} 1/4 & -1/2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} = 1$$

$$\Delta a_{24} = \begin{pmatrix} -1/20 & 3/10 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} = -3/5$$

$$\Delta a_{34} = \begin{pmatrix} -1/5 & 1/5 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} = -2/5$$

Due to this changes the initial table will change.

Updated Initial table

	Z	x_1	x_2	<i>X</i> ₃	χ_4	<i>X</i> ₅	<i>x</i> ₆	<i>x</i> ₇	RHS
Z	1	0	125	250	-200	25	100	0	10 ⁵
x_1	0	1	5/4	1/2	1	1/4	-1/2	0	100
<i>X</i> ₄	0	0	3/20	7/10	2/5	-1/20	3/10	0	100
<i>x</i> ₇	0	0	-2/5	-1/5	-2/5	-1/5	1/5	1	100

Iteration 1:

	Z	x_1	x_2	<i>X</i> ₃	χ_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	RHS
Z	1	0	200	600	0	0	250	0	10 ⁵
x_1	0	1	7/8	-5/4	0	3/8	-5/4	0	-150
<i>X</i> ₄	0	0	3/8	7/4	1	-1/8	3/4	0	250
<i>x</i> ₇	0	0	-1/4	1/2	0	-1/4	1/2	1	200

Applying dual simplex method

Iteration 2:

	Z	x_{I}	x_2	x_3	x_4	x_5	x_6	x_7	RHS
Z	1	200	375	350	0	75	0	0	120000
x_6	0	3/5	9/10	1	1	1/10	0	0	160
χ_4	0	-4/5	-7/10	1	0	-3/10	1	0	120
<i>x</i> ₇	0	2/5	-1/10	0	0	-1/10	0	1	140

New optimal solution is $x_6^* = 160$; $x_4^* = 120$; $x_7^* = 140$; Z=120000

3 (a). augmented problem

$$Z^* = -z = x_1 - 2x_2 - x_3 + 0x_4 + 0x_5$$
s.t
$$x_1 + x_2 + x_3 + x_4 = 6$$

$$x_1 - 2x_2 + x_5 = 4$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Iteration 0

	Z^*	x_1	x_2	<i>x</i> ₃	χ_4	x_5	RHS
Z^*	1	1	-2	-1	0	0	0
χ_4	0	1	1	1	1	0	6
χ_5	0	1	-2	0	0	1	4

Iteration 1

	Z^*	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	RHS
Z*	1	3	0	1	2	0	12
x_2	0	1	1	1	1	0	6
<i>X</i> ₅	0	3	0	2	2	1	16

optimum solution is $x_1=0$, $x_2=6$ and $x_3=0$,

$$z = -12$$

(b) adding new constraint

$$-x_2+2x_3 \ge 4$$

Current optimal solution is $x_1=0$, $x_2=6$ and $x_3=0$, $\mathbf{Z}=-12$

Does it satisfy the new constaint?

No, so the new constaint is not redundant and there be change in the optimal solution.

Now, we have to express all the basic variables in terms of non-basic variables x_1 , x_3 , and x_4 ,

$$x_2 = 6 - x_1 - x_3 - x_4$$

 $x_5 = 16 - 3x_1 - 2x_3 - 2x_4$

the new constraint $-x_2+2x_3 \ge 4$ or $-x_2+2x_3-x_6+A_1=4$ should be expressed in the final table of x_2 and x_5 . This is possible by replacing x_2 with $6-x_1-x_3-x_4$.

Hence,
$$x_1 + x_3 + x_4 - 6 + 2x_3 - x_6 + A_1 = 4$$

 $x_1 + 3x_3 + x_4 - x_6 + A_1 = 10$ to add to the final table.

Iteration 0

	$\mathbf{Z}^{}$	x_1	x_2	<i>X</i> ₃	χ_4	χ_5	x_6	A_1	RHS
Z*	1	3-M	0	1-3M	2-M	0	M	0	2+2M
x_2	0	1	1	1	1	0	0	0	6
<i>X</i> ₅	0	3	0	2	2	1	0	0	16
A_1	0	1	0	3	1	0	-1	1	10

Iteration 1

	Z^*	x_1	x_2	<i>x</i> ₃	χ_4	<i>x</i> ₅	x_6	RHS
Z^*	1	8/3	0	0	5/3	0	1	26/3
x_2	0	2/3	1	0	2/3	0	1/3	8/3
<i>x</i> ₅	0	7/3	0	0	4/3	1	2/3	28/3
Х3	0	11/3	0	1	1/3	0	-1/3	10/3

Optimal solution is $x_1=0$, $x_2=8/3$ and $x_3=10/3$,

$$z = -26/3$$

4.(a) Augmented problem

Max
$$z = 3x_1 + x_2 + 0x_3 + 0x_4$$

s.t $x_1 + x_2 + x_3 = 6$
 $2x_1 + 3x_2 + x_4 = 8$

$$x_1, x_2, x_3, x_4, \geq 0$$

	Z^*	x_1	x_2	χ_3	χ_4	RHS
Z*	1	-3	-1	0	0	0
х3	0	1	1	1	0	6
<i>X</i> ₄	0	2	3	0	1	8

	Z^*	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	RHS
Z*	1	0	7/2	0	3/2	12
<i>x</i> ₃	0	0	-1/2	1	-1/2	2
x_1	0	1	3/2	0	1/2	4

Optimal solution z=12

(b)
$$\Delta a_{12} = 1$$
, $\Delta a_{22} = -3$

$$\Delta(z \quad c) = \begin{pmatrix} 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = -\frac{9}{2}$$

$$\Delta^* a_{12} = (1 \quad -1/2) \begin{pmatrix} 1 \\ -3 \end{pmatrix} = 5/2$$

$$\Delta^* a_{12} = (0 \quad 1/2) \begin{pmatrix} 1 \\ -3 \end{pmatrix} = -3/2$$

	Z^*	x_1	x_2	<i>X</i> ₃	<i>X</i> ₄	RHS
Z*	1	0	-1	0	3/2	12
<i>x</i> ₃	0	0	2	1	-1/2	2
x_1	0	1	0	0	1/2	4

	Z^*	x_1	x_2	x_3	<i>X</i> ₄	RHS
Z*	1	0	0	1/2	5/4	13
x_2	0	0	1	1/2	-1/4	1
x_1	0	1	0	0	1/2	4

Ne optimal solution : z=13, $x_1=4$ and $x_2=1$