<u>1.]</u>	FUNDAMENTOS DO HARDWARE	2
I.	COMPUTADORES - CONCEITOS	2
Π.	COMPUTADORES - ARQUITETURA SIMPLIFICADA	3
Ш.	- ,	
	COMP CIMBORES TEMPERATORS	
2 1	FUNDAMENTOS DO SOFTWARE	7
<u>Z, </u>	FUNDAMENTOS DO SOFT WARE	/
	~	
I.	INTRODUÇÃO	7
II.	SOFTWARE	
III.		
IV.		11
V.		
VI.		12
VII.	I. DIRETÓRIOS	
3.	INFORMAÇÃO	14
I.	DEFINIÇÃO	1.4
ı. II.	DEFINIÇAU	14
11. III.		14
IV.	UNIDADES DE MEDIDA	17
4.]	BASES DE NUMERAÇÃO E ARITMÉTICA BINÁRIA	
I.	BASES DE NUMERAÇÃO	18
II.	REPRESENTAÇÃO	18
III.		
IV.		
IV.	OI ERAÇUES NA ARLI ME LICA DINARIA	

1. Fundamentos do Hardware

I. COMPUTADORES - CONCEITOS

O que é um computador?

O computador é basicamente uma máquina, eletrônica automática, que lê **dados**, efetua cálculos e fornece resultados. Ou seja, máquina que recebe dados, compara valores, armazena **dados** e move **dados**; portanto trabalha com **dados** e estes bem colocado tornam-se uma informação.

PROCESSOS BÁSICOS

Entrada de dados : ler os dados iniciais ou constantes.

Processamento : efetua os cálculos.

Saída de dados : apresenta os resultados.

CARACTERÍSTICA DE UM COMPUTADOR

(é o que difere das demais máquinas de cálculos)

- 3 alta velocidade na execução de suas operações.
- 3 grande capacidade de armazenar informações (memória).
- 3 capacidade de executar longa sequência alternativa de operações (programa).

VANTAGENS

- 3 grandes quantidades de dados do mesmo tipo para serem processados em cálculos rápidos.
- 3 tarefas longas que requeiram repetições em diversas fases.
- 3 cálculos exatos através de fórmulas ou equações complicadas.

DESVANTAGENS

- 3 não é criativo (só executa tarefas pré-fixadas).
- 3 não corrige erros.
- 3 não consegue ainda interpretar voz humana (isto é, comercialmente, pois em laboratório, já porém apenas de 1 pessoa), nem ler manuscritos.
- 3 alto custo (?)

SERVIÇOS: (APLICAÇÕES)

- 1 CIENTÍFICOS cálculos balísticos
- 2 COMERCIAIS folhas de pagamento, contabilidade
- **3 SIMULAÇÃO** tráfegos, grafos
- 4 CONTROLE DE PROCESSOS usinas nucleares, Petrobrás

HARDWARE

conjunto de circuitos eletrônicos "inalteráveis" - máquina em si

SOFTWARE

☐ conjunto de instruções "alteráveis" - isto porque os programadores podem facilmente mudá-las.

II. COMPUTADORES - ARQUITETURA SIMPLIFICADA

O computador tem 3 partes principais:

- 3 o console (que contém unidade disco, placa-mãe, placa de expansão e a fonte de alimentação)
- 3 o monitor
- 3 o teclado

Na realidade até o nível de CIs e resistores é muito mais complexo. Porém, foram escolhidos 5 áreas principais para discussão.

MICROPROCESSADOR

É o <u>cérebro</u> do computador. Basicamente, ele é uma calculadora muito rápida e um dispositivo de armazenamento. Mas, a capacidade de armazenamento é limitada, precisando então de memória adicional para as info que ele manipula.

Ele deve ser instruído exatamente sobre o que fazer. Ele executa as instruções (conhecidas como software) ao pé da letra. O software é escrito para dizer ao microprocessador o que fazer.

BIOS - (Basic Input/Output System) - sistema básico de entrada e saída -

É o conjunto de rotinas internas de sw. O BIOS é um C.I. de memo no qual as info estão armazenadas de forma permanente. O BIOS é responsável:

<u>Auto-teste</u>, <u>Autocarregador</u>, <u>Interfaces de baixo nível</u> - comunicação entre o teclado, monitor portas seriais e impressora para o μcp.

RAM (Armazenamento Temporário)

É a memória do computador. Fornece armazenamento temporário para as info que o microprocessador manipula (é o bloco de rascunho do microprocessador). Nessa área ficarão os programas ou dados e info criados pelo programas. Porém, ela é volátil, i.e., quando desligamos o microcomputador ela é apagada.

ARMAZENAMENTO PERMANENTE

É armazenamento de memo igual a RAM, mas não é volátil, é permanente ∴ não desaparece quando desligamos a energia. Ocorre em unidades de disco (disco flexível ou disco rígido) ou em qualquer outro dispositivo de memória (ROM, PROM, EPROM, EEPROM)

HARDWARE DE APOIO

Como as placas de controladores de discos e de vídeos, diversos itens que não estão diretamente relacionados com a manipulação de info nem com o microprocessador, mas que ajudam o computador a fazer tudo o que precisa para processar seu sw de forma apropriada. Entre eles se encontram.

Circuito de apoio - composto por CIs, resistores e outros acessórios que dão suporte ao Microprocessador, BIOS, RAM e as unidades de discos, fazendo com que tudo funcione em conjunto, a tempo e em ordem.

Placas de expansão - são placas de encaixar que se tornam parte de seu sistema ex.: placas de som e modem. Essas placas são conectadas a um barramento (que é a linha direta de comunicações entre o microprocessador e as placas de expansão). Slots, que alojarão os conectores que estão na lateral inferior das placas de expansão.

Podemos ainda incluir e comentar sobre:

Fonte de Alimentação

Retiram a eletricidade da parede, condicionam-na para uso no PC e a distribuem entre as diversas partes.

Monitor/Teclado (fora da unidade principal do sistema)

Linhas de comunicação com o PC. O teclado é por onde o usuário faz as entradas e o monitor é onde o usuário vê o resultado.

Periféricos (fora da unidade do sistema)

Itens adicionais usados pelo computador.

Impressora - obtém um registro permanente dos resultados

Modems, traçadores gráficos, scanners, mouse, digitalizadores de vídeo, sintetizadores de música, etc...

São eles que tornam o computador a ferramenta mais flexível que existe.

III. COMPUTADORES – PERIFÉRICOS

DISPOSITIVOS DE ENTRADA

Convertem dados e informação em sinais eletrônicos que o computador pode utilizar, armazenar e processar. São divididos em manuais e automáticos.

• Manuais:

- 3 teclado
- 3 digitalizador

mesa digitalizadora ou mesa gráfica digitalizador de imagem ou dispositivo de varredura manual

- 3 telas ou superfícies sensíveis ao toque
- 3 canetas luminosas ou eletrônicas
- 3 alavanca, bastão e/ou botão de controle joystick, paddle
- 3 mouse ou dispositivo para apontar e posicionar.
- 3 reconhecimento de voz: **codificação** reproduz palavras/frases pré-gravadas

sintetização - fonemas gerados sem pré-gravação (recebe caracteres e transforma no som correspondente).

• Automáticos:

- 3 dispositivos de entrada/saída unidade de disco unidade de fita modem
- 3 dispositivos de varredura ótica Scanners leitora de caractere ótico impresso com tinta magnética - MICR leitora de caractere ótico - OCR leitora de códigos de barras
- 3 leitora de cartão perfurado (ultrapassado)
- 3 leitora de fita perfurada
- 3 sensores

DISPOSITIVOS DE SAÍDA

Convertem sinais elétricos internamente armazenados para formas úteis externamente.

A informação pode sair do sistema em 5 (cinco) formas diferentes:

- 3 dados: caracteres alfanuméricos arranjados na forma de dados.
- 3 **texto:** palavras, números e outros símbolos arranjados na forma de texto.
- 3 imagens: gráficos e figuras
- 3 som: voz e música
- 3 **digital:** formas que outro sistema possa ler.

Alguns dispositivos podem apresentar mais de uma forma de saída; outros são voltados para uma única forma.

• DISPOSITIVOS DE ENTRADA/SAÍDA

- 3 unidade de disco
- 3 unidade de fita
- 3 modem

DISPOSITIVOS DE SAÍDA TEMPORÁRIO/VOLÁTIL

3 monitores de vídeo

DISPOSITIVOS DE SAÍDA PERMANENTE

- 3 impressoras de impacto (matricial/serial, linear, margarida) não impacto (jato de tinta, térmica, eletrostática, laser)
- 3 traçadores de gráficos, plotters
- 3 impressão direta em filme microfilme, slide e filme fotográfico
- 3 cartão ou fita perfurada (obsoleto) perfuradores

2. Fundamentos do Software

I. INTRODUÇÃO

O Software ultrapassou o Hardware como a chave para o sucesso de muitos sistemas baseados em computador. Seja o computador usado para dirigir um negócio, controlar um produto ou capacitar um sistema, o software é um fator que **diferencia**. O software através do oferecimento de informações, capacidade de ser "amigável ao ser humano", a inteligência e a função é o que diferencia 2 produtos de consumo ou indústrias idênticas.

A IMPORTÂNCIA DO SOFTWARE

Durante as 3 primeiras décadas da era do computador, o principal desafio era desenvolver um hardware que reduzisse o custo de processamento e armazenagem de dados. Ao longo da década de 1980, avanços na microeletrônica resultaram em maior poder de computação a um custo cada vez mais baixo. Hoje o problema é diferente, o principal desafio durante a década de 1990 é melhorar a qualidade (e reduzir o custo) de soluções baseadas em computador - soluções que são implementadas com o software.

O poder de um computador mainframe da década de 1980 agora está à disposição sobre uma escrivaninha. As assombrosas capacidades de processamento e armazenagem do moderno hardware representam um grande potencial de computação. O software é o mecanismo que nos possibilita aproveitar e dar vazão a esse potencial.

O PAPEL EVOLUTIVO DO SOFTWARE

- $\underline{1950} \sim \underline{1965}$: O hardware dedicava-se à execução de um único programa, que por sua vez, dedicava-se a uma aplicação específica. O software era projetado sob medida e era desenvolvida e usada pela própria pessoa. Portanto, o projeto era realizado no cérebro de alguém e a documentação muitas vezes não existia.
- <u>1965 ~ 1975</u>: A 2ª era: A multiprogramação e os sistemas multiusuários introduziram novos conceitos de interação homem-máquina. Sistemas de tempo real podiam coletar, analisar e transformar dados de múltiplas fontes. 1ª geração de sistemas de G.B.D. "Softwares Houses" e Manutenção de Software (adaptar as condições do usuário e correção de falhas).
- $\underline{1975} \sim 1989$ "até hoje": A 3ª era: Sistemas distribuídos, múltiplos computadores, cada um executando funções concorrentemente e comunicando-se um com o outro. As redes globais e locais. Uso dos microprocessadores, computadores pessoais e poderosas estações de trabalho (Workstations) produtos inteligentes.

Hardware - produto primário. Software - diferencia.

 $1985 \sim 2000$: A 4ª era: Tecnologia orientadas a objetos. Os sistemas especialistas e o software de Inteligência Artificial finalmente saíram do laboratório. O software rede neural artificial

abriu possibilidades para o relacionamento de padrões e processamento de informações semelhantes às humanas. E portanto, são adotadas práticas de engenharia.

II. SOFTWARE

DEFINIÇÃO FORMAL

- Instruções (programas de computador) que quando executadas, produzem a função desempenhos desejados.
- Estruturas de dados que possibilitam que os programas manipulem adequadamente a informações.
- Documentos que descrevem a operação e uso dos programas.

CARACTERÍSTICAS

- quando o hardware é construído, evolui para um produto físico (chips, placas, fontes, etc). O software, por sua vez, é um elemento de sistema lógico, e não físico.
- o hardware com o passar do tempo sofre os efeitos cumulativos de poeira, vibração, temperaturas extremas, já, o software não é sensível aos problemas ambientais, portanto o software não se desgasta, mas se deteriora, isto é, durante sua vida, o software enfrentará mudanças (manutenção) que quando estas são feitas, é provável que novos defeitos sejam introduzidos, logo depois outra mudança é solicitada, lentamente o nível de falhas começa a se elevar e o software está-se deteriorando devido às mudanças.
- quando se desgasta, um componente de hardware é substituído por uma "peça de reposição". Não existem peças de reposição para o software, toda falha de software indica um erro no projeto. Portanto, a manutenção de software envolve consideravelmente mais complexidade do que a manutenção do hardware.
- para o projeto de hardware, o projetista desenha um esquema simples do circuito digital e depois vai à estante onde existem catálogos de componentes. Cada circuito integrado (C.I) tem uma numeração de peça, uma função definida. Depois que cada componente é escolhido, o hardware pode ser encomendado. Infelizmente, os projetistas de software não podem permitir-se a esse luxo. A maioria dos softwares é feita sob medida em vez de ser montada à partir de componentes existentes Com poucas exceções, não existem catálogos de componentes de softwares. É possível encomendar software, mas somente como uma unidade completa, não como componentes que possam ser montados novamente em programas. (Esta situação está mudando rapidamente, o uso difundido de programas orientados a objeto resultou na criação de "CIs de Software" "reusabilidade de software").

III. COMPONENTES DO SOFTWARE

As formas de linguagem em uso são

Linguagem de Máquina = representação simbólica de zeros e uns (0 ou 1).

Linguagem Assembly = representação simbólica de instrução da CPU.

Linguagem de Alto Nível = permite programa ser independente da máquina (necessitam de interpretadores e compiladores).

Tradicionais = COBOL e FORTRAN

Modernas = PASCAL, C e ADA

Orientada a Objetos = C ++, OBJECT, PASCAL, DELPHI, etc...

Especializadas = APL, LISP, OPS5, PROLOG (p/aplicações específicas)

Máquina, Assembly, Alto Nível = 3 primeiras gerações ou linguagens procedimentais (específica a ação)

4ª geração ou Não-Procedimental = aplicação banco de dados

(específica o resultado desejado)

O software é uma informação que existe em 2 formas básicas :

- Componentes não executáveis em máquina
- Componentes executáveis em máquina

SOFTWARE APLICATIVO

É o programa específico escrito ou testado para executar alguma operação (ou resolver um problema) de interesse do usuário. Em geral é escrito em Linguagem de Alto Nível pelo próprio usuário.

SOFTWARE BÁSICO

É o conjunto de programas que supervisionam e auxiliam a execução dos diversos softwares aplicativos. O software básico é. em geral, formado pelos seguintes programas principais:

- **Sistema Operacional ou Programa Supervisor**: que controla e supervisiona a execução de todos os outros programas (exemplos: CP/M, WINDOWS 95, UNIX, DOS, etc);
- Compiladores e Interpretadores: que traduzem ou interpretam os programas escritos em diferentes linguagens.
- Carregador editor: que junta trechos de programas independentes em um único programa ou carrega um programa do disco magnético para a memória e vice-versa.
- Programa de utilidade: que efetua a conversão, cópia, classificação de diversos programas.

O software básico é fornecido pelo próprio fabricante do computador e, em geral, está escrito em linguagem de máquina.

Tanto o software aplicativo como o básico trabalham em linguagem de máquina, isto é, em código binário, que é a única codificação aceita pelo hardware ou arquitetura do computador.

O usuário. em geral, não manipula diretamente valores ou códigos binários, mas trabalha com valores decimais, hexadecimais e códigos Basic. Pascal, C, etc. Os programas do software básico encarregam-se de efetuar a tradução dos códigos e a conversão dos valores.

IV. APLICAÇÕES DO SOFTWARE

SOFTWARE BÁSICO

Programa para dar apoio a outros programas. Forte interação com o hardware.

Ex.: compiladores, editores.

SOFTWARE TEMPO REAL

Monitora, analisa e controla eventos do mundo real.

tempo real interativo time-sharing (tempo compartilhado).

Ex.: coleta de dados.

SOFTWARE COMERCIAL

Área de aplicação. Ex.: folhas de pagamento, contas à pagar.

SOFTWARE CIENTÍFICO E DE ENGENHARIA

Algoritmos numéricos convencionais e Novas aplicações. Ex.: CAD

SOFTWARE EMBUTIDO

Na ROM usado para produtos e sistemas. Ex.: BIOS

SOFTWARE COMPUTADOR PESSOAL

Interface com seres humanos.

Ex.: processador de textos, planilhas, computação gráfica, gerenciamento de dados.

SOFTWARE INTELIGÊNCIA ARTIFICIAL

Algoritmos não numéricos. Ex.: sistemas especialistas, reconhecimentos (voz e imagem)

V. SISTEMA OPERACIONAL

O **Sistema Operacional** é responsável pela interface (interação) entre hardware e o usuário, o hardware e outros softwares aplicativos, como está representado na figura abaixo

Hardware
Sistema Operacional
Linguagens
(Basic, Cobol, Pascal, C,)
Ferramentas ao usuário final:
(Ex.: Versa CAD, Wordstar,)
Programas de Aplicação

O **Sistema Operacional** deve ser adaptado ás características do hardware assim como as linguagens de programação e as ferramentas do usuários final devem ser adaptados ao Sistema Operacional.

Conhecer o **Sistema Operacional** pode ajudar a resolver alguns problemas que a princípio nos parecem complicados. Além disso possue utilitários especiais para a formatação de discos, listagens em vídeo/impressora, criação/copia/exclusão e alterações de arquivos.

Podemos dizer que o **Sistema Operacional** é um conjunto de rotinas, ou seja, uma lista de instruções passadas para o microprocessador com a finalidade promover a comunicação do usuário com o hardware.

VI. TRATAMENTO DE NOMES DE ARQUIVOS

Cada arquivo (Programa/Dados) possui um nome.

Arquivo Programa

Conjunto de instruções para o computador juntados em um só arquivo.

Arquivo Dados

Conjunto de caracteres (dados) que podem ser documentos, banco de dados e etc.

Devem ser utilizados nome de arquivos de fáceis associações ao assunto a que se referem. Os nomes de arquivos normalmente possuem duas partes separadas por um ponto. Sendo que a segunda parte (extensão) é o opcional.

Geralmente a extensão especifica o tipo de arquivo. Exemplos:

EXTENSÃO

- .COM Utilizado para arquivos de comandos (Programas)
- .EXE Utilizado para arquivos executáveis (Programas)
- .BAT Utilizado para arquivos de lote (Batch) que são criados em um editor de texto qualquer e possuem uma sequência de comandos do DOS
- .PAS Arquivos de Programas em Pascal
- .C Arquivos de Programas em C
- .DBF Arquivos de dados
- .DOC Arquivos de textos
- .XLS Arquivos de planilhas

Esses nomes de arquivos devem possuir de 1 a 8 (máximo) caracteres (essa limitação ocorre apenas no Sistema Operacional DOS) com extensão opcional de 1 a 3 (máximo) caracteres.

VII. DIRETÓRIOS

São uma "espécie" de armários e gavetas, cuja função é organizar os arquivos.

O Sistema Operacional **DOS** permite o gerenciamento dos arquivos (*dados/programas*) em forma de árvore onde cada galho é chamado Diretório/ Subdiretório.

Vejamos:

Isso significa que dentro do diretório principal C: temos um diretório chamado DOS5, outro diretório chamado DADOS e finalmente outro diretório chamado WINDOWS. Porém dentro do diretório DADOS temo três outros diretórios assim intitulados: CONTAB, COMPRAS, VENDAS.

Dentro da melhor forma necessária poderão ser criados subdiretórios, notamos o seguinte as regras para os nomes dos diretórios são as mesmas de arquivos com uma exceção: que dentro de um diretório não poderá haver um arquivo e um diretório com o mesmo nome (ao menos que as extensões sejam diferentes).

3. INFORMAÇÃO

I. DEFINIÇÃO

Dados - São fatos que descrevem **eventos** e **entidades**. Os dados referem a mais de um fato. Um único fato é referido com item.

Evento - Algo que acontece em um certo tempo; ocorrência significativa para um sistema de informação.

Entidade - Pessoa, lugar ou coisa; objeto de interesse para um sistema de informação.

Os dados são representados por diversos tipos de símbolos tais como letras do alfabeto, números, pontos e traços, sinais, figuras, etc... . Estes símbolos podem ser arrumados e rearrumados em diversas combinações representando fatos. Quando são arrumados de forma utilizável, denominam-se **informação**.

Informação - É um conjunto de dados significativos e relevantes que descrevem eventos ou entidades. No sentido mais comum "informação" significa **fatos**.

No mundo da computação a informação está presente sempre que um sinal é transmitido de um lugar para outro.

A informação pode ser armazenada em: livros, discos, fitas, diagramas, etc...

Quando nos referimos ao armazenamento, transmissão, combinação, comparação de mensagens, dizemos que há: **Processamento de Informações**.

II. REPRESENTAÇÃO

Dois termos que aparecem com freqüência na terminologia da informática são **bit** e o **byte**. Cada sinal elétrico que o computador processa é chamado de **BIT** – <u>Bi</u>nary Digi<u>t</u> e é representado por "0" ou "1".

"1" \rightarrow 5 volts (ligados, i.e., passando corrente elétrica)

"0" \rightarrow 0 volts (desligado, i.e., não passando corrente elétrica)

BIT

É a menor partícula de informação em um computador, mas um único bit não consegue representar todas as letras, números e caracteres especiais com os quais o computador trabalha. É necessário agrupá-los e cada grupo é chamado de **Byte**.

BYTE

É usualmente um grupo (conjunto) de 8 bits e equivale a um caracter.

Caracter

É a unidade básica de armazenamento de informação na maioria dos sistemas, ou seja, é a representação gráfica de uma letra, número ou símbolo especial do alfabeto. A tabela de código representada por bytes chama-se **ASCII** (<u>American Standard Code for Information Interchange</u>).

ASCII

É o conjunto de caracteres contém os dígitos de 0 a 9, todas as letras minúsculas e maiúsculas, sinais de pontuação, 32 caracteres de controle e 128 caracteres especiais que incluem frações, letras de alfabeto estrangeiro e gráficos de linha para desenhar quadros e formas.

Microprocessadores (para fazer cálculos, comparações, etc...)

	1 byte - 8 bits	2 bytes - 16 bits	4 bytes - 32 bits por vez
--	-----------------	-------------------	---------------------------

PALAVRA

É a quantidade de bits que a **CPU** processa por vez. Nos de 8 bits os termos byte, caractere e palavra se confundem, pois todos têm 8 bits. Nos microprocessadores modernos já temos palavra de 16 a 64 bits, i.e., 2 a 8 bytes.

Exercício:

Transferir da memória para o microprocessador a palavra ARTE.

- 8 bits = 1 byte = 1 caractere por vez. necessita 4 operações, uma para cada letra.
- 16 bits = 2 bytes = 2 caracteres por vez necessita 2 operações, uma para cada letra.
- 32 bits = 4 bytes = 4 caracteres por vez necessita 1 operação, uma para cada letra.
- 64 bits = 8 bytes = 8 caracteres por vez necessita 1 operação, uma para cada letra e poderia ainda transferir mais 4 caracteres.

Portanto quanto mais bits → mais veloz

Nos três microprocessadores byte = 8 bits, o que mudou foi a palavra da CPU.

III. BASES DE NUMERAÇÃO

☐ Base 10 ou decimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) ☐ Base 2 ou binária (0, 1)

REPRESENTAÇÃO

Números Inteiros:

$$315_{(10)} = 3.10^{2} + 1.10^{1} + 5.10^{0}$$

$$300 + 10 + 5$$

$$315$$

$$11011_{(2)} = 1.2^{4} + 1.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0}$$

$$16 + 8 + 0 + 2 + 1$$

$$27_{(10)}$$

Obs.:

 $10_2 = 2$ $10_8 = 8$ $10_{10} = 10$ $10_{16} = 16$

Números Fracionários:

$$81,53_{(10)} = 8.10^{1} + 1.10^{0} + 5.10^{-1} + 3.10^{-2}$$

$$80 + 1 + 0,5 + 0,03$$

$$0,1111_{(2)} = 0.2^{0} + 1.2^{-1} + 1.2^{-2} + 1.2^{-3} + 1.2^{-4}$$

$$0 + 1.0,5 + 1.0,25 + 1.0,125 + 1.0,0625$$

$$0,9375_{(10)}$$

P.S.:

 $2^3 = 8$ combinações

 $2^4 = 16$

 $2^8 = 256$ combinações (números, letras maiúsculas e minúsculas e caracteres especiais)

IV. UNIDADES DE MEDIDA

Tanto para quantificar a memória principal do equipamento como para indicar a capacidade de armazenamento, são usados múltiplos de bytes, como:

(mil - decimal) K - Kilo

M - Mega (milhão - decimal)

G - Giga (bilhão - decimal)

T - Tera (trilhão - decimal)

bit = 0 ou 1

byte = $8 \text{ bits} = 2^8 = 256 \text{ combinações (números)}$

 $1 \text{ Kb} = 2^{10} = 1024 \text{ bytes (Kilobytes)}$ $1 \text{ Mb} = 2^{20} = 1024 \text{ Kbytes} = 1.048.576 \text{ bytes (Megabytes)}$ $1 \text{ Gb} = 2^{30} = 1024 \text{ Mbytes} = 1.073.741.824 \text{ bytes (Gigabytes)}$

4. BASES DE NUMERAÇÃO e ARITMÉTICA BINÁRIA

I. BASES DE NUMERAÇÃO

- * Base 10 ou decimal (0,1,2,3,4,5,6,7,8,9);
- * Base 2 ou binária (0,1);
- * Base 8 ou octal (0,1,2,3,4,5,6,7);
- * Base 16 ou hexadecimal (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F);

EXEMPLOS:

$$15_{(10)} = 1111_{(2)} = 17_{(8)} = F_{(16)}$$

II. REPRESENTAÇÃO

Números Inteiros

$$315_{(10)} = 3*10^2 + 1*10^1 + 5*10^0$$

$$3*100+1*10+5*1=300+10+5=315_{(10)}$$

$$11011_{(2)} = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 =$$

$$=16+8+0+2+1=27_{(10)}$$

$$26_{(8)} = 2*8^1 + 6*8^0 = 16 + 6 = 22_{(10)}$$

$$1F_{(16)} = 1*16^1 + F*16^0 = 16+15 = 31_{(10)}$$

Números Fracionários

$$81,53_{(10)} = 8*10^{1} + 1*10^{0} + 5*10^{-1} + 3*10^{-2} =$$

$$= 80 + 1 + 5*\frac{1}{10^{1}} + 3*\frac{1}{10^{2}} = 80 + 1 + 5*0,1 + 3*0,01 =$$

$$= 80 + 1 + 0,5 + 0,03 = 81,53_{(10)}$$

$$0,1111_{(2)} = 0*2^{0} + 1*2^{-1} + 1*2^{-2} + 1*2^{-3} + 1*2^{-4} =$$

$$= 0 + 1*\frac{1}{2} + 1*\frac{1}{2^{2}} + 1*\frac{1}{2^{3}} + 1*\frac{1}{2^{4}} =$$

$$= 0 + 1*0,5 + 1*0,25 + 1*0,125 + 1*0,0625 =$$

$$= 0,9375_{(10)}$$

$$0.16_{(8)} = 0*8^{0} + 1*8^{-1} + 6*8^{-2} =$$

$$= 0*1 + 1*\frac{1}{8} + 6*\frac{1}{8^{2}} = 0 + 1*0,125 + 6*0,015625 =$$

$$= 0.21875_{(10)}$$

$$0.10_{(16)} = 0*16^{0} + 1*16^{-1} + 0*16^{-1} =$$

$$= 0 + 1*\frac{1}{16} + 0 = 0.0625_{(10)}$$

III. CONVERSÃO ENTRE BASES

Qualquer base para base 10

$$1101_{(2)} = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 13_{(10)}$$

$$247_{(8)} = 2*8^2 + 4*8^1 + 7*8^0 =$$

= $2*64 + 4*8 + 7*1 = 167_{(10)}$

$$B2,1A_{(16)} = B*16^{1} + 2*16^{0} + 1*16^{-1} + A*16^{-2} =$$

$$= 11*16 + 2*1 + 1*\frac{1}{16} + 10*\frac{1}{16^{2}} =$$

$$= 176 + 2 + 0,0625 + 10*\frac{1}{256} = 178,101562_{(10)}$$

Base 10 para qualquer base

- Parte Inteira: divisões sucessivas;
- Parte Fracionária: multiplicações sucessivas, extraindo a parte inteira.
- Decimal para Binário:

Portanto, 15,875₍₁₀₎=1111,111₍₂₎.

• Decimal para Octal:

Portanto, 15,875₍₁₀₎=17,7₍₈₎.

• Decimal para Hexadecimal:

$$26,171875_{(10)} = \begin{array}{c|c} 26 & 16 \\ 10 & 1 \end{array} \quad \begin{array}{c|c} 0,171875*16 = 2,75 \\ 0,75*16 = 12,0 \end{array}$$

Na base hexadecimal, 10=A e 12=C.

Portanto, 26,171875₍₁₀₎=1A,2C.

Base 2 para bases 8 e 16

• Binário para Octal:

BINÁRIO	OCTAL
$2^2 \ 2^1 \ 2^0$	
(4) (2) (1)	
0 0 0	0
0 0 1	1
0 1 0	2
0 1 1	3
1 0 0	4
1 0 1	5
1 1 0	6
1 1 1	7

• Binário para hexadecimal:

BINÁRIO	HEXADECIMAL
23 22 21 20	
(8) (4) (2) (1)	
0 0 0 0	0
0 0 0 1	1
0 0 1 0	2
0 0 1 1	3
0 1 0 0	4
0 1 0 1	5
0 1 1 0	6
0 1 1 1	7
1 0 0 0	8
1 0 0 1	9
1 0 1 0	A
1 0 1 1	В
1 1 0 0	С
1 1 0 1	D
1 1 1 0	Е
1 1 1 1	F

1 5 E, 7
$$8_{(16)}$$

Base 8 para bases 2 e 16

• Octal para Binário

• Octal para Hexadecimal

Base 16 para bases 2 e 8

• Hexadecimal para Binário:

• Hexadecimal para Octal

IV. OPERAÇÕES NA ARITMÉTICA BINÁRIA

• ADIÇÃO

• SUBTRAÇÃO

MULTIPLICAÇÃO

Exs.:

Soma

Subtração

Multiplicação