Redes de Computadores

Análise e Desenvolvimento de Sistemas 1º Semestre 2025

Parte 1

Introdução às Redes de Computadores

Prof. Alencar de Melo Júnior, Dr. Eng. alencar@iftm.edu.br

Introdução as Redes de Computadores

Objetivos

- Apresentar a história das Redes de Computadores e da Internet.
- •Definir as Redes de Computadores e apresentar os seus principais componentes.
- Apresentar os principais órgãos normalizadores da Internet.
- Discutir os modelos Cliente/Servidor e P2P.
- ·Classificar as Redes quanto à sua extensão geográfica.
- •Discutir as principais tecnologias de acesso a Internet e meios físicos.
- •Discutir diferentes aspectos relacionados à confiabilidade de redes.
- Apresentar as tendências atuais e futuras das Redes de Computadores

ARPAnet

- •1969: A ARPA criou uma rede experimental chamada **ARPANET** (*Advanced Research Projects Agency Network*). Era simultaneamente um *backbone* e uma rede experimental, onde novas aplicações eram testadas.
- •Inicialmente a ARPANET ligou 4 universidades e permitiu aos cientistas partilhar remotamente informação e recursos, por meio principalmente de correio eletrônico e transferência de arquivos.
- •Requisito para o desenvolvimento da Internet: arquitetura descentralizada, de forma a poder suportar ataques inimigos.

ARPAnet

- •A ARPANET continuou a expandir-se durante as décadas de 1970 e 1980. Em 1972 já ligava 37 nós e em 1983 eram 562 nós.
- •1971: o primeiro e-mail é enviado, @ é adotado.
- •O objetivo de interligar LANs e WANs ficou conhecido por Internet, derivado de internetwork.
- •Em 1983 decidiu-se pelo uso da família de protocolos TCP/IP na ARPANET. Generalizouse a partir daí o uso do termo "Internet" para a rede constituída pelas redes que usam os protocolos TCP/IP ou são capazes de comunicar com redes TCP/IP.

Final dos anos 80 e anos 90

- •1984: A **NSFNET** (*National Science Foundation Network*) substituiu a ARPANET, aumentando a velocidade e o alcance da rede.
- ·Mas a grande popularização da Internet se deu a **partir de 1988 com o início de sua abertura para fins comerciais.** No final dos anos 1980 começou a surgir a conexão discada (*dial up*).
- •Em abril de 1995 a NSFNET foi desativada, tendo o controle da infraestrutura da Internet sido transferido para provedores comerciais (AOL, CompuServe etc). Isso marcou o fim da era acadêmica e o início da era comercial da Internet.
- •Tim Berners-Lee, pesquisador do CERN, propôs a World Wide Web (WWW), um sistema de hipertexto para compartilhamento de informações. Em 1991 o primeiro site foi criado (info.cern.ch), marcando o início da Web pública. Mosaic foi o primeiro navegador.

Final dos anos 80 e anos 90

- •Em 1994, a **Netscape** criou o **SSL** (*Secure Sockets Layer*), um protocolo de criptografia, e o integrou ao HTTP, resultando no **HTTPS**. Com o HTTP senhas, números de cartões de crédito, mensagens podiam ser interceptadas por hackers. O Netscape Navigator, navegador de grande sucesso, também foi criado pela Netscape.
- •Surgimento dos Primeiros Sites Comerciais: em 1994 a Pizza Hut começou a vender pizzas online, em 1995 a Amazon (inicialmente uma livraria) e o eBay (leilões online) foram lançados.
- •1998: Google é fundado por Larry Page e Sergey Brin.
- •Boom das "Pontocom": de 1995 a 2000, muitas empresas surgiram tentando lucrar e surfar a onda da Internet. Muitas falharam, algumas se tornaram gigantes (Google, Amazon, etc).

Anos 2000 e atualidade

- ·Com o aumento da velocidade de acesso à Internet, através das tecnologias banda larga, novas aplicações tornam-se possíveis.
- •2000: O estouro da bolha das "Pontocom" levou muitas empresas à falência, mas outras, como Amazon e eBay, sobreviveram e prosperaram.
- •2004: Facebook foi lançado, popularizando a era das redes sociais.
- •2005: O YouTube foi criado, popularizando o compartilhamento de vídeos.
- •2007: O **iPhone** da Apple trouxe a Internet móvel, acelerando o uso de *smartphones* no acesso ubíquo à Internet.
- •2010s: A banda larga móvel permitiu diversas novas aplicações, como streaming de áudio e vídeo e aplicativos como Uber e WhatsApp.

Anos 2000 e atualidade

- •2016: A **Internet das Coisas (IoT)** conectou dispositivos cotidianos (como geladeiras e lâmpadas) à rede.
- •2020s: A **inteligência artificial generativa** e a computação em nuvem estão transformando a forma como interagimos com a Internet.
- •2020s: carros autônomos, drones, robôs domésticos estão se popularizando.
- •Desafios: privacidade, fake news, sustentabilidade e regulamentação governamental são questões críticas atuais.

As Redes de hoje – sem fronteiras

- Mundo sem fronteiras
- Comunidades globais
- •Rede humana

Redes x Sistemas Distribuídos

- •Redes de Computadores: um conjunto de computadores autônomos interconectados de modo a possibilitar a troca de informações, o compartilhamento de recursos (discos, impressora, etc.) e o acesso a serviços.
- Sistemas Distribuídos: conjunto de computadores independentes que se apresentam para os usuários como um único sistema coerente.

- Uma analogia:
 - Redes de computadores: Internet
 - Sistema distribuído: WWW

- Todo computador em uma rede é chamado de *host*, nó ou dispositivo final
- Servidores são computadores que fornecem informações ou serviços aos dispositivos finais:
 - servidores de e-mail
 - servidores web
 - servidor de arquivos
- ·Clientes são computadores que enviam solicitações aos servidores informações recuperar para acessar serviços:
 - a partir de um navegador Web
 - a partir de um cliente de e-mail

Modelo Cliente/Servidor

Tipo de servidor	Descrição
E-mail	O servidor de email executa o software do servidor de email. Os clientes usam o software cliente para acessar o e-mail.
Web	O servidor Web executa software de servidor web. Os clientes usam software do navegador para acessar páginas da Web.
Arquivo	O servidor de arquivos armazena arquivos corporativos e de usuário. Os dispositivos cliente acessam esses arquivos.

Rede Ponto a Ponto

• É possível que um dispositivo seja um cliente e um servidor em uma rede ponto a ponto. Este tipo de arquitetura de rede é recomendado apenas para redes muito pequenas. Note que não existe um switch (ou hub) interconectando os nós.

Vantagens	Desvantagens
Fácil de configurar	Nenhuma administração centralizada
Menos complexo	Não é tão segura
Custo mais baixo	Não é escalável
Usado para tarefas simples: transferência de arquivos e compartilhamento de impressoras	Desempenho mais lento

Dispositivos finais

Um dispositivo final é onde uma mensagem se origina ou onde ela é recebida.
 Os dados se originam em um dispositivo final, fluem pela rede e chegam a outro dispositivo final.

Dispositivos intermediários

- Um dispositivo intermediário interconecta dispositivos finais. Os exemplos incluem comutadores (switch), pontos de acesso sem fio, roteadores e firewalls.
- A medida que os dados são transmitidos através de uma rede, um dispositivo intermediário pode desempenhar diferentes papéis, incluindo:
 - Regenerar e retransmitir sinais de dados.
 - Manter informações sobre quais caminhos existem na rede.
 - Notificar outros dispositivos sobre erros e falhas de comunicação.

Meio físico

- A comunicação através de uma rede é transmitida por um meio que permite a uma mensagem se deslocar da origem até o destino.
- Os meios de interconexão limitam a taxa de transmissão, a taxa de erros e a extensão geográfica da rede.

Tipos de mídia	Descrição
Fios metálicos	Usa impulsos elétricos
Fibras de vidro ou plástico (cabo de fibra óptica)	Usa pulsos de luz.
Transmissão sem fio	Usa modulação de frequências específicas de ondas eletromagnéticas.

Representações de Rede

- Os diagramas de rede, muitas vezes chamados de diagramas de topologia, usam símbolos para representar os dispositivos
- Alguns termos importantes a serem conhecidos:
 - · Placa de rede
 - · Porta Física
 - Interface
 - •Nota: frequentemente os termos porta e interface são usados de forma análoga.

Quanto a extensão geográfica

- LAN (Local Area Network): redes locais, tecnologia que possibilita a interconexão de computadores com altas taxas de transmissão em distâncias relativamente reduzidas (salas, edifícios de 10m a 1 km) e baixa taxa de erros.
- CAN (Campus Area Network): redes de campus, interconectam computadores em nível de campus (fábrica, universidade, etc.) com distâncias não superiores a 10 km. Tipicamente são compostas por várias LANs interligadas por uma rede de alto desempenho (backbone).
- MAN (*Metropolitan Area Network*): redes metropolitanas, interconectam computadores e LANs em nível regional (5 a 100 km). Usualmente envolvem uma ou mais redes de alto desempenho interconectadas. Exemplo: interconexão de filiais de uma empresa em uma mesma cidade ou em cidades vizinhas.

Quanto a extensão geográfica

- WAN (Wide Area Network): redes de longa distância, espalhadas por centenas ou milhares de quilômetros, podem alcançar vários países e continentes. Normalmente, as velocidades são menores que nas LANs e as taxas de erros são maiores. Exemplo: Internet.
- PAN (Personal Area Network): possuem abrangência menor do que as LANs, tipicamente até 10 m, com taxas ao redor de 1 Mbps. Sua função básica é eliminar fios e facilitar a interconexão entre diversos dispositivos: tablets, celulares, microcomputadores, periféricos etc. Exemplo Bluetooth (IEEE 802.15).

Interconexão de LANs

Outras siglas

- WLAN (Wireless LAN): tem como principal objetivo fornecer mobilidade. Vantagens: mobilidade, facilidade e rapidez de instalação, adequada para ser usada em prédios que não podem sofrer alterações etc. Desvantagens: menor segurança, interferências. Exemplo: Wi-Fi (802.11).
- WMAN (Wireless MAN): tinha como objetivo diminuir custos de infraestrutura de banda larga para conexão com o usuário final (*last mile*), com altas taxas de transmissão (até 1Gbps), em até 50 Km. Exemplo: WiMAx (802.16), que está praticamente descontinuado, tendo perdido força para tecnologias como 5G e LTE.

Gerações do Wi-Fi

Resumo das Gerações do Wi-Fi

Padrão	Nome Comercial	Ano	Banda	Velocidade Máxima
802.11	Wi-Fi Original	1997	2,4 GHz	2 Mbps
802.11b	Wi-Fi 1	1999	2,4 GHz	11 Mbps
802.11a	Wi-Fi 2	1999	5 GHz	54 Mbps
802.11g	Wi-Fi 3	2003	2,4 GHz	54 Mbps
802.11n	Wi-Fi 4	2009	2,4/5 GHz	600 Mbps
802.11ac	Wi-Fi 5	2013	5 GHz	6,9 Gbps
802.11ax	Wi-Fi 6	2019	2,4/5/6 GHz	9,6 Gbps
802.11be	Wi-Fi 7	2024/25	2,4/5/6 GHz	46 Gbps

Internet: Órgãos Normalizadores

- A Internet é uma coleção mundial de LANs e WANs interconectadas.
- •A internet não é de propriedade de nenhum indivíduo ou grupo. Os órgãos a seguir foram desenvolvidos para ajudar a manter a estrutura na Internet.
- •**IETF** (*Internet Engineering Task Force*): grupo que cria e padroniza os protocolos da Internet (como TCP/IP, HTTP, DNS).
- •ICANN (Internet Corporation for Assigned Names and Numbers): controla os nomes de domínio (como .com, .org) e endereços IP da Internet.
- •IAB (Internet Architecture Board): define a arquitetura geral da Internet e supervisiona o IETF e o IRTF.

Internet: Tecnologias de Acesso

Conexão	Descrição
Fibra ou Híbrido Cabo-Fibra	Internet de alta largura de banda, sempre ativada, oferecida por provedores de serviços de televisão a cabo ou outros
DSL	alta largura de banda, sempre ativada, conexão à Internet que passa por uma linha telefônica.
Celular	usa uma rede de telefone celular para se conectar à internet.
Satélite	maior benefício para áreas rurais sem provedores de serviços de Internet.
Conexão discada (dial-up)	uma opção barata e de baixa largura de banda usando um modem.

Internet: Tecnologias de Acesso

Resumo das Principais Opções no Brasil

Tecnologia	Velocidade	Disponibilidade
Fibra óptica (FTTH)	100 Mbps – 10 Gbps	Grandes cidades
HFC (Cabo)	Até 1 Gbps	Capitais e médias cidades
4G / 5G	10 Mbps – 3 Gbps	Nacional (5G em expansão)
Internet via Rádio	10-100 Mbps	Interior e zonas rurais
Satélite (Starlink)	50–300 Mbps	Todo o Brasil (custo alto)

• FTTH: Fiber To The Home

HFC: Hybrid Fiber-Coaxial

Arquitetura

- A arquitetura de rede refere-se às tecnologias e decisões de projeto que apoiam a infraestrutura responsável por transferir os dados através da rede.
- Há quatro características básicas que as arquiteturas subjacentes precisam considerar para atender às expectativas dos usuários:
 - Tolerância a falhas
 - Escalabilidade
 - Qualidade de Serviço (QoS)
 - Segurança

- Uma rede tolerante a falhas limita o impacto de uma falha, ao limitar o número de dispositivos afetados. Para ter tolerância a falhas é necessário redundância de recursos
- As redes confiáveis fornecem redundância implementando uma rede comutada por pacotes:
 - A comutação de pacotes divide os dados do tráfego em pacotes que são trafegados por uma rede.
 - Cada pacote, teoricamente, pode percorrer um caminho até o destino diferente.
- Isso não é possível com redes de comutação de circuitos que estabelecem circuitos dedicados.

Tolerância a Falhas

Escalabilidade

- Uma rede escalável pode se expandir de modo rápido e fácil para comportar novos usuários e aplicações, sem causar impacto no desempenho dos serviços fornecidos aos usuários atuais.
- Os projetistas de rede seguem normas e protocolos aceitos para tornar as redes escaláveis.

- As transmissões de vídeo ao vivo e de voz requerem parâmetros mais exigentes para uma melhor experiência do usuário.
- Você já assistiu a um vídeo ao vivo com intervalos e pausas constantes? Isso pode acontecer quando há uma maior demanda por largura de banda que a disponível e QoS não está disponível.
- Com uma política de QoS em vigor, o roteador pode gerenciar de modo mais adequado o fluxo de dados e o tráfego de voz.

Qualidade de Serviço (QoS)

- Serviço Melhor-Esforço: não oferece garantias de QoS. A qualidade do serviço oferecido degrada a medida que o nível de utilização da rede aumenta.
- Parâmetros de QoS:
 - Banda: "quantos dados passam por segundo". Ex: 100 Mbps, 1 Gbps.
 - Atraso (Latência): "tempo que um dado leva para ir e voltar".
 Ex: 10 ms, 20 ms
 - Jitter: "variação do atraso", medida de imprevisibilidade.
 - Perda: "dados que saem e não chegam"

Qualidade de Serviço (QoS)

Segurança

- Dois tipos principais de segurança da rede que devem ser considerados:
 - Segurança física: protege o hardware e a infraestrutura. Ex.: câmeras, controle de acesso, proteção contra desastres.
 "Protege o que pode ser tocado".
 - Segurança lógica: protege os dados e as comunicações. Ex.: firewall, antivírus, criptografia, autenticação. "Protege o que é digital".

Segurança

Pilares da Segurança da Informação:

- Confidencialidade: somente os destinatários desejados podem ler os dados. Ex.: criptografia, VPNs etc.
- Integridade: garantia de que os dados não foram alterados durante a transmissão. Ex.: assinatura digital, checksum etc.
- Disponibilidade: garantia de que os usuários autorizados terão acesso pontual e confiável aos dados sempre que necessário. Ex.: proteção contra DDoS, backup etc.
- Não repúdio: ninguém pode negar uma ação realizada. Ex.: logs auditáveis, certificados digitais etc.

Tendências Atuais em Redes

Tendência	Descrição	Impacto
5G e 6G	Redes móveis ultra-rápidas (até 10 Gbps no 5G) e baixa latência.	Habilitam IoT massivo, veículos autônomos e realidade aumentada.
Wi-Fi 6/6E e Wi-Fi 7	Maior velocidade (até 46 Gbps no Wi-Fi 7) e eficiência em ambientes lotados.	Melhora conexões em cidades inteligentes e escritórios híbridos.
Redes Definidas por Software (SDN)	Separação do plano de controle e dados via software.	Flexibilidade na gestão de redes (ex. data centers em nuvem).
Zero Trust Security	"Nunca confie, sempre verifique" (acesso granular a recursos).	Reduz ataques internos/externos (vírus, vazamentos).
Edge Computing	Processamento de dados na borda da rede (próximo ao usuário).	Diminui latência para aplicações críticas (ex.: telemedicina, fábricas 4.0).
IPv6	Substituição do IPv4 para endereçar bilhões de dispositivos IoT.	Elimina a escassez de endereços IP.
Redes Privadas 5G/LTE	Redes corporativas dedicadas (ex.: indústrias, hospitais).	Maior controle e segurança para operações críticas.
IA em Redes (AIOps)	Uso de IA para automação e otimização de redes (detecção de falhas).	Reduz custos operacionais e melhora desempenho.
Quantum Networking	Comunicação baseada em qubits (proteção contra ataques quânticos).	Futuro: criptografia inquebrável (em estágio experimental).

<u>Principais</u> <u>impulsionadores:</u>

- **IoT exponencial** (30+ bilhões de dispositivos até 2025).
- Nuvem híbrida e multicloud (demanda por redes ágeis).
- Cibersegurança avançada (ameaças mais sofisticadas).

Desafios:

- Escassez de profissionais qualificados.
- Complexidade na integração de tecnologias legadas.

33

Tendências Futuras em Redes

Tendência	Descrição	Impacto Esperado
Redes 6G	Sucessor do 5G, com velocidades de 1 Tbps e latência abaixo de 1ms.	Habilitará holografia, sensores omnipresentes e IA integrada à rede.
Wi-Fi 7 e além	Velocidades de 100+ Gbps , canais de 320 MHz e multi-link operation (MLO).	Conexões estáveis para metaverso, cirurgias remotas e indústria 4.0.
Redes Cognitivas	Redes autogerenciáveis com IA integrada (auto-otimização e reparo).	Redução de falhas humanas e custos operacionais.
Quantum Networking	Comunicação quântica com criptografia inquebrável (QKD).	Segurança absoluta para bancos, governos e infraestruturas críticas.
Internet Tátil	Rede com feedback háptico em tempo real (<1ms de latência).	Aplicações em telecirurgia, controle remoto de robôs e realidade virtual imersiva.
Redes de Nanocomunic ação	Comunicação entre nanodispositivos (ex.: implantes médicos inteligentes).	Revolução na medicina (monitoramento contínuo do corpo humano).
Redes sem Backhaul	Arquiteturas puramente descentralizadas (ex.: mesh + satélite + edge).	Internet global resiliente, mesmo em desastres naturais.
Green Networking	Redes energeticamente eficientes (protocolos e hardware sustentáveis).	Redução do consumo energético em data centers e operadoras.
Redes Bioinspiradas	Algoritmos baseados em sistemas biológicos (ex.: redes neurais em roteadores).	Adaptação dinâmica a congestionamentos e ataques cibernéticos.

<u>Principais</u> <u>impulsionadores:</u>

- Explosão do Metaverso (demanda por redes ultrarápidas e imersivas)
- Internet das Coisas (IoT) em escala planetária.
- Ameaças cibernéticas avançadas (ex.: ataques quânticos).

Desafios:

- Escalabilidade para bilhões de dispositivos IoT.
- Ética e privacidade em redes autônomas (IA tomando decisões).

Comandos de Rede

Execute no prompt no Windows

- ipconfig
- ping "site" ou ping "site" -n 10
- tracert "site"
- · netstat -a
- nslookup "site"
- ·arp -a
- route print

Exercícios

- Usando os comandos de rede disponíveis no prompt do sistema Windows, faça:
 - a) descubra o endereço IP e o endereço MAC do seu computador
 - b) descubra o endereço IP do roteador default da rede em que você está conectado
 - c) escolha um site e descubra o endereço IP do mesmo e o número de roteadores entre o seu computador e o site escolhido
 - d) considerando o item anterior, qual dos roteadores está apresentando o maior *jitter*? Por quê?
- Meça a sua velocidade de acesso à Internet (pesquise uma ferramenta disponível online).
- 3. Internet e WWW são sinônimos? Por quê?
- 4. Qual parâmetro de QoS é mais importante para o download de um programa executável? E para uma chamada de áudio? Por quê?

Exercícios

- 5. Estabeleça uma comparação entre redes baseadas em comutação de pacotes e comutação de circuitos.
- 6. Considerando os **pilares da segurança** apresentado, indique o mais relevante para os seguintes casos:
 - a) enviar uma mensagem com conteúdo secreto
 - b) impedir que um poema publicado por um autor seja modificado por terceiros
 - c) garantir que um cliente de banco não possa negar uma transação que o mesmo tenha efetuado
- 7. Analise as tendências atuais e futuras das Redes de Computadores. Você consegue vislumbrar outras tendências, desafios e aplicações impulsionadoras que não foram mencionadas?

Agradecimento

Slides adaptados a partir de material utilizado em disciplina ministrada em conjunto com o Prof. Dr. Júlio Pedroso no IFSP Câmpus Campinas.