7 Teoremas de la divergencia y de Stokes

Si X es una hipersuperficie en \mathbb{R}^n que admite una normal unitaria continua $\nu: X \to \mathbb{R}^n$, escribiremos (X, ν) para indicar la **variedad orientada** formada por X y la orientación correspondiente a ν mediante la fórmula (62) del apartado 6.3.

7.1 Notación musical

Sea E un espacio vectorial de dimensión n. Hay dos números $\binom{n}{s}$ iguales a n: $\binom{n}{1} = \binom{n}{n-1} = n$. Por lo tanto los espacios E, $\mathcal{A}^1(E)$ y $\mathcal{A}^{n-1}(E)$ son linealmente isomorfos. Sucede que hay dos isomorfismos lineales de gran utilidad cuando se los efectúa, punto a punto, sobre campos. Utilizaremos símbolos musicales para denotarlos.

Definición 165. Sea $U \subseteq \mathbb{R}^n$ un abierto. A cada campo de vectores $\mathbf{F}: U \to \mathbb{R}^n$ le asociamos la (n-1)-forma \mathbf{F}^{\natural} ("efe becuadro") que en cada punto $x \in U$ es como sigue:

$$\mathbf{F}_{x}^{\natural}(\mathbf{v}_{1},\ldots,\mathbf{v}_{n-1}) = \det \left[\mathbf{F}(x) \, | \, \mathbf{v}_{1} \, | \, \cdots \, | \, \mathbf{v}_{n-1} \, \right],$$

y también le asociamos la 1-forma \mathbf{F}^{\flat} ("efe bemol") que en cada $x \in U$ está dada por:

$$\mathbf{F}_x^{\flat}(\mathbf{v}) \ = \ \mathbf{F}(x) \cdot \mathbf{v} \ .$$

Damos ahora fórmulas concretas para esos isomorfismos. Si $\mathbf{F} = (f_1(x), \dots, f_n(x))$, entonces:

$$\mathbf{F}^{\natural} = \sum_{i=1}^{n} (-1)^{i-1} f_i dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n , \qquad (95)$$

donde el circunflejo $\hat{}$ puesto encima de un factor indica que dicho factor ha sido suprimido. Para n=2:

$$\mathbf{F}^{\natural} = f_1 \, dy - f_2 \, dx \,, \tag{96}$$

y para n=3:

$$\mathbf{F}^{\natural} = f_1 \, dy \wedge dz - f_2 \, dx \wedge dz + f_3 \, dx \wedge dy \,, \tag{97}$$

que algunas personas prefieren escribir $\mathbf{F}^{\natural} = f_1 \, dy \wedge dz + f_2 \, dz \wedge dx + f_3 \, dx \wedge dy$ para exhibir una simetría cíclica, pero no hay simetría cíclica ni en la fórmula (96) ni en la general (95). Se ve claramente en (95) que $\mathbf{F} \mapsto \mathbf{F}^{\natural}$ es biyectiva: para cada (n-1)-forma ω en U hay un único campo de vectores \mathbf{F} en U tal que $\omega = \mathbf{F}^{\natural}$.

Por otra parte, en la fórmula:

$$\mathbf{F}^{\flat} = f_1 \, dx_1 + \dots + f_n \, dx_n \,, \tag{98}$$

claramente vemos que $\mathbf{F} \mapsto \mathbf{F}^{\flat}$ es biyectiva de campos de vectores a formas de Pfaff en U.

Es fácil comprobar que las siguientes identidades se cumplen para todo n:

$$\left(\nabla f\right)^{\flat} = df \tag{99}$$

$$d\left(\mathbf{F}^{\natural}\right) = \left(\operatorname{div}\mathbf{F}\right) \cdot dx_{1} \wedge \cdots \wedge dx_{k}$$
(100)

y que la siguiente se cumple para n = 3:

$$d\left(\mathbf{F}^{\flat}\right) = \left(\mathbf{rot}\,\mathbf{F}\right)^{\natural}.\tag{101}$$

Las identidades $\operatorname{rot} \nabla f = 0$ y div $(\operatorname{rot} \mathbf{F}) = 0$ pueden entenderse, gracias a las fórmulas (99), (100) y (101), como dos casos particulares de la fórmula (86) del apartado 6.9.

Se suele decir, a la vista de las fórmulas (99), (100) y (101), que la derivada exterior unifica en un único concepto los tres operadores del Cálculo Vectorial: gradiente, divergencia y rotacional.

Esto es parcialemnte cierto: en justicia, hay que reconocer que el rotacional tiene aspectos importantes que quedan ocultos en la derivada exterior. Uno de estos aspectos es que **rot** es un **endomorfismo** del espacio $\ker(\operatorname{div}) = \{\mathbf{F} : \operatorname{div}(\mathbf{F}) = 0\}$ y, como tal, tiene (muchas) **autofunciones**, por ejemplo el campo de vectores $\mathbf{F} = (\cos(\lambda z), -\cos(\lambda x) - \sin(\lambda z), \sin(\lambda x))$ es tal que **rot** $\mathbf{F} = \lambda \mathbf{F}$. En cambio la derivada exterior, de 1-formas a 2-formas en \mathbb{R}^3 , no es un endomorfismo y, para que pueda tener autofunciones, es preciso modificarla.

7.2 Flujo a través de un trozo de hipersuperficie

Definición 166. Sean $X \subset \mathbb{R}^n$ una hipersuperficie orientable, $\nu : X \to \mathbb{R}^n$ la normal unitaria correspondiente a una de las orientaciones de X y $P \subseteq X$ una parcela. El flujo a través de P en el sentido de ν de un campo de vectores $\mathbf{F} : P \to \mathbb{R}^n$ es el siguiente número que puede ser positivo, cero o negativo, según como sea \mathbf{F} :

$$\int_{P} (\mathbf{F} \cdot \mathbf{\nu}) \ d \, \text{área} \,, \tag{102}$$

El flujo a través de P y el isomorfismo musical $\mathbf{F} \longmapsto \mathbf{F}^{\natural}$ están relacionados por el siguiente resultado.

Proposición 167. En las condiciones de la definición 166 se cumple la siguiente igualdad:

$$\int_{(P,\nu)} \mathbf{F}^{\natural} = \int_{P} (\mathbf{F} \cdot \nu) \, d \, \text{área} \,. \tag{103}$$

Véase el apartado 7.7 para la demostración.

A pesar de que las integrales $\int_P f d$ área son del tipo (par), descrito en los apartados 6.4 y 6.5, los dos miembros de la igualdad (103) cambian de signo al cambiar la orientación de P porque la función $\mathbf{F} \cdot \nu$, que estamos integrando en el miembro de la derecha, es sensible a ese cambio. Esto hace posible la proposición 167.

7.3 Dominios elementales

Consideramos una hipersuperficie X en \mathbb{R}^n tal que existe un abierto $U \subset \mathbb{R}^n$ con Fr U = X. Esto requiere que X sea un subconjunto cerrado. Suponemos, además, que U está a un solo lado de X. Esto quiere decir que, dado cualquier punto $p \in X$ y las dos normales unitarias que X tiene en p, hay un camino $\alpha(t):[0,\varepsilon)\to\mathbb{R}^n$ empezando en $\alpha(0)=p$, con velocidad una de esas normales y disjunto con U, y hay otro camino $\beta(t):[0,\delta)\to\mathbb{R}^n$ que empieza en p con velocidad la otra normal y que está contenido en U para $0 < t < \delta$.

Veamos un ejemplo. Dada la esfera $S^{n-1} \subset \mathbb{R}^n$, hay exactamente tres abiertos que la tienen por frontera:

$$B(\mathbf{0},1)$$
 , $\mathbb{R}^n \setminus \overline{B}(\mathbf{0},1)$ y $B(\mathbf{0},1) \cup (\mathbb{R}^n \setminus \overline{B}(\mathbf{0},1))$.

El primer abierto y el segundo están cada uno a un lado de la esfera, mientras que el tercero está a ambos lados.

Una vez que el abierto U está a un solo lado de $X = \operatorname{Fr} U$, de las dos normales unitarias que tiene X en cada punto $p \in X$ llamamos **normal exterior a** U a la que es velocidad

de caminos empezando en p y disjuntos con U. La otra normal unitaria se llamama **normal** interior a U, pero no la vamos a utilizar.

Por ejemplo, la normal unitaria de S^{n-1} exterior a la bola Euclídea $B(\mathbf{0},1)$ es $\nu(x)=x$. Se demuestra que la normal exterior es continua. Por lo tanto define, a través de la fórmula (62) del apartado 6.3, una orientación preferida de la hipersuperficie X, que resulta ser orientable.

Ejemplo. El abierto $U = \{(x,y) : 4 < x^2 + y^2 < 9\}$ es la corona circular abierta con radio menor 2 y radio mayor 3. Su frontera $X = \operatorname{Fr} U$ tiene dos componentes conexas por caminos: la circunferencia de radio 2 y la circunferencia de radio 3. De las *cuatro* orientaciones que admite X, la normal unitaria exterior a la corona elige una preferida. La siguiente figura muestra la normal unitaria exterior a la corona; también muestra las correspondientes orientaciones de las circunferencias, vistas como sentidos de recorrido.

En realidad, para decidir cuál es la normal exterior a U en un punto frontera p no necesitamos conocer todo U ni tampoco toda su frontera: nos basta con lo que ocurre en un pequeño entorno de p. Aplicamos esta observación a un abierto U cuya frontera sea una unión $P_1 \cup \cdots \cup P_s$ de parcelas $P_i \subset X_i$ de unas hipersuperficies X_i , $i=1,\ldots,s$. Fijado i definimos $Y_i \subseteq P_i$ como el interior de P_i relativo a X_i . Entonces Y_i es una hipersuperficie y en cada punto $p \in Y_i$ está bien determinada la normal unitaria exterior a U.

La siguiente figura muestra el cuadrado $U=(-1,1)^2\subset\mathbb{R}^2$, cuya frontera es unión de cuatro segmentos compactos. Los correspondientes segmentos abiertos son variedades de dimensión 1 en las que la normal unitaria exterior al cuadrado está bien definida y los convierte en curvas orientadas. La figura muestra las normales exteriores al cuadrado y las orientaciones de los segmentos vistas como sentidos de recorrido.

El resto de la frontera del cuadrado (lo que no está en los segmentos abiertos) son las "bisagras": los vértices donde se encuentran dos segmentos distintos.

Definición 168. Un dominio elemental es un abierto acotado $U \subseteq \mathbb{R}^n$ y que cumple las siguientes condiciones:

- 1. Fr U es unión de una **parte suave** $\partial U = Y_1 \cup \cdots \cup Y_s$, con las Y_i hipersuperficies, y una **parte bisagra** $FrU \setminus \partial U$ que a su vez es una unión finita de variedades de dimensiones no mayores que n-2.
- 2. En todo punto $p \in \partial U$ el abierto U está de un solo lado de ∂U .

Por lo explicado, cada una de las "partes suaves" Y_i de Fr U tiene una orientación preferida, inducida, según la fórmula (62) del apartado 6.3, por la normal unitaria ν exterior a U. En la parte bisagra puede no estar definida la normal. Pero el área de esta parte es nula y no influye en el valor de las integrales. De hecho, para todo integrando paramétrico L se tiene:

$$\int_{\operatorname{Fr} U} L = \int_{\partial U} L.$$

7.4 Teorema de la divergencia

El siguiente enunciado se conoce como **teorema de la divergencia.** En el caso particular n=3 también se lo llama **teorema de Gauss.**

Teorema 169. Sea $U \subset \mathbb{R}^n$ un dominio elemental cuyo cierre \overline{U} (que es compacto) está contenido en un abierto un poco mayor: $\overline{U} \subset U_1$. Para todo campo de vectores $\mathbf{F}: U_1 \to \mathbb{R}^n$ de clase \mathcal{C}^1 , se tiene:

$$\int_{U} \operatorname{div} \mathbf{F} \, dx_{1} \cdots dx_{n} = \int_{\partial U} (\mathbf{F} \cdot \nu) \, d \operatorname{área}$$
(104)

siendo ν la normal unitaria exterior a U.

Hacemos algún comentario sobre la demostración en el apartado 7.7.

Corolario 170. Sea $\nu = (\nu_1, \dots, \nu_n)$ la normal exterior a U. Para toda función f de clase C^1 en U_1 y todo $i \in \{1, \dots, n\}$ se tiene:

$$\int_{U} f_{x_{i}} dx_{1} \cdots dx_{n} = \int_{\partial U} f \nu_{i} d \operatorname{área}$$
(105)

Resulta de aplicar el teorema de la divergencia al campo $\mathbf{F} = f \mathbf{e}_i$.

Corolario 171. (Integración por partes). Dadas f, g de clase C^1 en U_1 y dado un índice $i \in \{1, ..., n\}$ se tiene:

$$\int_{U} f_{x_i} g \, dx_1 \cdots x_n = -\int_{U} f \, g_{x_i} \, dx_1 \cdots dx_n + \int_{\partial U} (f \, g \, \nu_i) \, d \operatorname{area}.$$

A continuación enunciamos el corolario que más nos interesa aquí. Se llama **teorema de Stokes** para funciones paramétricas.

Teorema 172. Sea un abierto $V \subseteq \mathbb{R}^N$ en el que hay definida una (k-1)-forma ω . Sea un dominio elemental $U \subset \mathbb{R}^k$, cuyo cierre \overline{U} está contenido en un abierto un poco más grande U_1 , y sea ∂U la parte suave de Fr U orientada por la normal ν exterior a U. Dada una función $\Phi: U \to V$, restricción de una $\Psi: U_1 \to V$ de clase al menos C^2 , se tiene:

$$\left| \int_{\Phi} d\omega = \int_{(\partial U, \nu)} \Phi^* \omega \right| \tag{106}$$

A veces se define el **borde orientado** $\partial \Phi$ de Φ como el par $(\Phi|_{\partial U}, \mathcal{O})$ formado por la restricción de Φ a ∂U y la orientación \mathcal{O} de ∂U inducida por la normal ν exterior a U. Entonces $\int_{(\partial U, \nu)} \Phi^* \omega = \int_{(\partial U, \mathcal{O})} \Phi^* \omega$ también se denota $\int_{\partial \Phi} \omega$ y (106) queda $\int_{\Phi} d\omega = \int_{\partial \Phi} \omega$.

Demostración del teorema 172.

Tenemos $\Psi^*\omega = \mathbf{F}^{\natural}$ para un único campo de vectores $\mathbf{F}: U_1 \to \mathbb{R}^k$. Entonces:

$$\int_{\Phi} d\omega = \int_{U} \Phi^{*} d\omega \stackrel{(*)}{=} \int_{U} d\Phi^{*} \omega = \int_{U} d(\mathbf{F}^{\natural}) = \int_{U} (\operatorname{div} \mathbf{F}) du_{1} \cdots du_{k}.$$

En la igualdad marcada con (*) hemos utilizado la fórmula (91) del apartado 6.10 y la hipótesis de que Ψ es al menos \mathcal{C}^2 . Por otra parte, por la proposición 167:

$$\int_{(\partial U, \nu)} \Phi^* \omega = \int_{(\partial U, \nu)} \mathbf{F}^{\natural} = \int_{\partial U} (\mathbf{F} \cdot \nu) d \operatorname{área}.$$

Se deduce la igualdad (106) aplicando el teorema de la divergencia en \mathbb{R}^k .

7.5 Teorema de Stokes para variedades

Definición 173. Sea X una variedad en \mathbb{R}^n de dimensión k. Una variedad con borde es un subconjunto $Y \subset X$ que está separado del complemento $X \setminus Y$ por otra variedad $Z \subset X$ con dim Z = k - 1. La dimensión de Y es k. La variedad Z se denota ∂Y y se llama borde de Y.

Ejemplos. La bola cerrada $\overline{B}(p,r)$ es una variedad con borde de dimensión n en \mathbb{R}^n . Su borde es la variedad de dimensión n-1 que la separa del resto de \mathbb{R}^n , es decir la esfera de centro p y radio r.

El segmento $Y = \{2\} \times [0,1] \times \{4\}$ es una variedad con borde de dimensión 1 en \mathbb{R}^3 , contenida en la recta $X = \{x = 2, z = 4\}$. El borde ∂Y es el conjunto de dos puntos $\{(2,0,4),(2,1,4)\}$, pues separa el segmento del resto de la recta X.

En cada punto $p \in \partial Y$ tenemos dos **conormales unitarias**, que son los vectores unitarios tangentes a X y normales a ∂Y . Entre ellas se distingue la **conormal exterior a** Y de manera enteramente análoga a lo explicado para dominios en el apartado 7.3. Si además Y está orientada entonces se induce una orientación en ∂Y de la siguiente manera. Dado $p \in \partial Y$, una base ordenada $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ de $T_p \partial Y$ pertenece a la orientación inducida si al añadir en el primer puesto la conormal η_p exterior a Y resulta una base ordenada $\{\eta_p, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ perteneciente a la orientación de Y.

Enunciamos ya el teorema de Stokes para variedades.

Teorema 174. Sea $U \subseteq \mathbb{R}^n$ un abierto en el que hay definida una (k-1)-forma ω . Sea Y una variedad **compacta** con borde de dimensión k contenida en U. Si Y está orientada Y damos a ∂Y la orientación inducida, entonces:

$$\int_{Y} d\omega = \int_{\partial Y} \omega \tag{107}$$

Idea de la demostración. Para una parcela $P \subset Y$ y su borde ∂P el teorema es un corolario del 172. En general Y no se puede cubrir por una única parametrización biyectiva $\Phi: U \to Y$, por lo que es preciso hacerle una parcelación. Entonces $\int_Y d\omega$ es la suma de las integrales de $d\omega$ sobre las parcelas. Dicha suma es igual a la suma Σ de las integrales de ω sobre los bordes orientados de las parcelas. Una parte del borde común a dos parcelas recibe orientaciones opuestas de ellas, por lo que contribuye cero a la suma total de integrales de ω . Las partes pertenecientes al borde de una sola parcela forman una parcelación de ∂Y y tienen la misma orientación que ∂Y , luego la suma Σ es igual a $\int_{\partial V} \omega$.

Nos fijamos ahora en un caso particular: n=3 y k=2. Tenemos, pues, un abierto $U\subseteq\mathbb{R}^3$, una forma de Pfaff ω definida en U y una superficie compacta con borde $Y\subset U$ que además está orientada por una normal unitaria ν . El borde ∂Y es una unión de curvas cerradas orientadas. Tomamos el único campo de vectores $\mathbf{F}:U\to\mathbb{R}^3$ tal que $\omega=\mathbf{F}^{\flat}$ y tenemos:

$$\int_{\partial V} \mathbf{F}^{\flat} = \int_{V} d\mathbf{F}^{\flat} = \int_{V} (\mathbf{rot} \, \mathbf{F})^{\natural} = \int_{V} (\mathbf{rot} \, \mathbf{F}) \cdot \nu \, d \, \text{área} \,,$$

Es decir $\int_{\partial Y} \mathbf{F} \cdot d\mathbf{s} = \int_{Y} \mathbf{rot} \mathbf{F} \cdot d\mathbf{S}$, que es el **teorema de Stokes clásico.**

La demostración a base de parcelas que hemos hecho del teorema 174 sirve también para el caso en que Y es una **variedad cerrada**, es decir compacta con borde vacío, obteniéndose:

$$\partial Y = \varnothing \implies \int_{Y} d\omega = 0.$$
 (108)

En efecto, hacemos una parcelación de Y y ahora resulta que todo trozo de borde es común a dos parcelas; luego contribuye cero a la suma de integrales de ω sobre los bordes orientados de las parcelas. Entonces dicha suma es nula, que es lo que se afirma en (108).

Proposición 175. Fijamos un abierto $U \subseteq \mathbb{R}^n$. Para que una k-forma μ sea exacta en U es **necesario** que sea cerrada y además que su integral sobre cualquier variedad cerrada $Y \subset U$ de dimensión k sea nula.

Ejemplo. Sea $U = \mathbb{R}^3 \setminus \{0\}$. En este abierto consideramos la siguiente 2-forma:

$$\mu = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \left(x \, dy \wedge dz - y \, dx \wedge dz + z \, dx \wedge dy \right),\,$$

y se comprueba que $d\mu \equiv 0$, o sea que μ es cerrada. Además $\mu = \mathbf{F}^{\natural}$, donde $\mathbf{F} = \mathbf{r}/r^3$ es el **campo gravitatorio** (o el electrostático). La esfera unidad S^2 está contenida en U y el flujo de \mathbf{F} a su través, según la normal exterior a la bola $\nu = \mathbf{r}$, es:

$$\int_{S^2} \left(\mathbf{F} \cdot \boldsymbol{\nu} \right) \, d \, \mathrm{\acute{a}rea} \; = \; \int_{S^2} \, r^{-3} \left(\mathbf{r} \cdot \mathbf{r} \right) \, d \, \mathrm{\acute{a}rea} \; = \; \int_{S^2} 1 \cdot d \, \mathrm{\acute{a}rea} \; = \; \mathrm{\acute{a}rea} \left(S^2 \right) \; = \; 4 \pi \; ,$$

distinto de cero. Luego μ es cerrada pero no exacta en U. En vista de la fórmula (101), este resultado nos dice que el campo gravitatorio \mathbf{F} no tiene nigún **potencial vector** en U, es decir no existe ningún campo \mathbf{G} de clase al menos \mathcal{C}^1 en todo U y tal que $\mathbf{F} = \mathbf{rot} \mathbf{G}$. Por supuesto, sí que tiene potenciales vector en cada abierto $convexo\ V \subset U$; lo que ocurre es que es imposible "pegar" esos potenciales vector de modo a obtener uno definido en todo U. Los libros de Física no muestran un potencial vector para el campo gravitatorio en $\mathbb{R}^3 \setminus \{\mathbf{0}\}$... por una buena razón.

7.6 Casos especiales

Cuando k=n=2 el teorema de Stokes es el **teorema de Green,** que afirma que si $\omega \equiv P(x,y)\,dx + Q(x,y)\,dy$ es una forma de Pfaff, definida en un abierto del plano que contenga la adherencia \overline{U} de un dominio elemental U, y damos al borde ∂U la orientación inducida por la normal exterior a U, entonces:

$$\int_{\partial U} (P dx + Q dy) = \iint_{U} (Q_x - P_y) dx dy.$$

Pero ahora tenemos una ayuda para recordar, sin equivocarnos, cuál es el integrando de la integral doble, porque:

$$d(P dx + Q dy) = dP \wedge dx + dQ \wedge dy =$$

$$= (P_x dx + P_y dy) \wedge dx + (Q_x dx + Q_y dy) \wedge dy =$$

$$= P_y dy \wedge dx + Q_x dx \wedge dy = (Q_x - P_y) dx \wedge dy.$$

Por último vamos a estudiar el caso k=1. Ahora tenemos una 0-forma en un abierto $U\subseteq \mathbb{R}^n$, es decir una función escalar $f:U\to\mathbb{R}$. El dominio elemental es un intervalo $U=(a,b)\subset\mathbb{R}$ y la función paramétrica es un camino $\alpha(t):(a,b)\to U$ restricción de un $(a',b')\to U$ definido en un intervalo más grande: a'< a y b'> b; por lo tanto también está definido $\alpha:[a,b]\to U$.

Definiciones 176. Sea $M \subset \mathbb{R}^n$ una variedad compacta de dimensión 0, es decir un conjunto finito de puntos. Una **orientación** de M es un objeto \mathcal{O} que coloca en cada punto $p \in M$ una de las dos etiquetas "salida" o "llegada".

 $Si(M, \mathcal{O})$ es una variedad orientada de dimensión 0 y f es una función escalar (una 0-forma) definida en los puntos de M, la **integral de** f **sobre** (M, \mathcal{O}) es el número:

$$\int_{(M,\mathcal{O})} f \stackrel{\text{def}}{=} \sum_{\substack{p \text{ punto de llegada } \in M}} f(p) - \sum_{\substack{p \text{ punto de salida } \in M}} f(p) .$$

Para
$$M = \emptyset$$
 definition $\int_M f = 0$.

Un conjunto M de N puntos tiene 2^N orientaciones. El caso que aquí nos interesa es el de un camino $\alpha(t):[a,b]\to U$ y $M=\{\alpha(a),\alpha(b)\}$ el conjunto de sus extremos. Cuando el camino no es cerrado, este conjunto tiene dos elementos y admite 4 orientaciones. De entre estas cuatro elegimos la "especial", para la cual el punto inicial $\alpha(a)$ es de salida y el punto final $\alpha(b)$ es de llegada.

Definición 177. Sea $\alpha(t):[a,b]\to U$ un camino. El **borde de** α es el objeto $\partial \alpha$ que se define de la manera siguiente. Si α es un camino cerrado entonces $\partial \alpha=\varnothing$. Si α no es cerrado entonces $\partial \alpha$ es la variedad de dimensión cero $\{\alpha(a),\alpha(b)\}$ con la orientación para la cual $\alpha(a)$ es de salida y $\alpha(b)$ es de llegada.

Con esas definiciones, tenemos:

$$\int_{\partial \alpha} f = f(\alpha(b)) - f(\alpha(a)),$$

tanto si α es cerrado como si no lo es. Pero sabemos desde el capítulo 5 que:

$$f(\alpha(b)) - f(\alpha(a)) = \int_{\alpha} df$$
.

Juntando las dos igualdades, deducimos:

$$\int_{\alpha} df = \int_{\partial \alpha} f.$$

7.7 Demostraciones

Demostración de la proposición 167. En el apartado 1.1 hemos definido el concepto de **matriz** de Gram de una sucesión de vectores $\mathbf{v}_1, \dots, \mathbf{v}_k$, que es semidefinida positiva y por lo tanto

con determinante no negativo. Por ejemplo, para $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$ y $\mathbf{v}_2 = \begin{bmatrix} 7 \\ 2 \\ 2 \end{bmatrix}$ dicha matriz es:

$$\begin{bmatrix} \mathbf{v}_1 \cdot \mathbf{v}_1 & \mathbf{v}_1 \cdot \mathbf{v}_2 \\ \mathbf{v}_2 \cdot \mathbf{v}_1 & \mathbf{v}_2 \cdot \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^t \mathbf{v}_1 & \mathbf{v}_1^t \mathbf{v}_2 \\ \mathbf{v}_2^t \mathbf{v}_1 & \mathbf{v}_2^t \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 3 \\ 7 & 2 & 2 \end{bmatrix} \begin{bmatrix} -2 & 7 \\ 1 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 14 & -6 \\ -6 & 57 \end{bmatrix}.$$

De igual modo, la matriz de Gram de las columnas $\Phi_{u_1}, \ldots, \Phi_{u_k}$ de $D\Phi$ es la matriz $(D\Phi)^t D\Phi$ que en el apartado 6.5 hemos llamado "matriz pequeña". La fórmula (70) de dicho apartado es consecuencia inmediata de la siguiente identidad algebraica:

$$\|\Delta(\mathbf{v}_1,\ldots,\mathbf{v}_k)\|_2^2 = \det\left(\text{matriz de Gram de }\mathbf{v}_1,\ldots,\mathbf{v}_k\right).$$
 (109)

Tenemos una parametrización regular y biyectiva $\Phi(u_1, \ldots, u_{n-1}) : D \to P$, compatible con ν según la fórmula (62) del apartado 6.3. Para cada $u \in D$ los vectores:

$$\nu(\Phi(u)), \Phi_{u_1}(u), \ldots, \Phi_{u_{n-1}}(u),$$

forman una base de \mathbb{R}^n con determinante positivo. La utilizamos para describir cualquier campo $\mathbf{F}: P \to \mathbb{R}^n$ como combinación lineal:

$$\mathbf{F}(\Phi(u)) = g_1(u) \nu(\Phi(u)) + g_2(u) \Phi_{u_1}(u) + \dots + g_n(u), \Phi_{u_{n-1}}(u) .$$

Nótese que $g_1 = \mathbf{F} \cdot \nu$. El miembro izquierdo de (103) es igual a lo siguiente:

$$\int_{D} \det \left[\mathbf{F}(\Phi(u)) \mid \Phi_{u_{1}} \mid \cdots \mid \Phi_{u_{n-1}} \right] du_{1} \cdots du_{n-1} =$$

$$= \int_{D} \det \left[g_{1}(u) \nu(\Phi(u)) \mid \Phi_{u_{1}} \mid \cdots \mid \Phi_{u_{n-1}} \right] du_{1} \cdots du_{n-1} =$$

$$= \int_{D} \left(\mathbf{F} \cdot \nu \right)_{\Phi(u)} \det \left[\nu(\Phi(u)) \mid D\Phi \right] du_{1} \cdots du_{n-1} .$$

Ahora bien:

$$\det\left(\left[\nu\left(\Phi(u)\right)|D\Phi\right]\right)^{2} = \det\left(\left[\nu\left(\Phi(u)\right)|D\Phi\right]^{t}\left[\nu\left(\Phi(u)\right)|D\Phi\right]\right) =$$

$$= \det\left(\left[\frac{\nu\left(\Phi(u)\right)^{t}}{(D\Phi)^{t}}\right]\left[\nu\left(\Phi(u)\right)|D\Phi\right]\right) = \det\left[\frac{1}{\mathbf{0}}\frac{\mathbf{0}}{(D\Phi)^{t}D\Phi}\right].$$

En la última matriz son nulas las cajas fuera de la diagonal porque los vectores $\Phi_i(u)$ son tangentes a la parcela P en el punto $\Phi(u)$, luego ortogonales a $\nu(\Phi(u))$. Así llegamos a la identidad det $\left(\left[\nu(\Phi(u))\mid D\Phi\right]\right)^2 = \det\left((D\Phi)^t D\Phi\right)$ y, utilizando (109), obtenemos:

$$\det\left(\left[\nu\left(\Phi(u)\right)|D\Phi\right]\right)^{2} = \|\Delta(D\Phi)\|_{2}^{2}, \tag{110}$$

Como por hipótesis Φ es compatible con ν , es det $([\nu(\Phi(u)) | D\Phi]) > 0$ y de (110) deducimos que det $([\nu(\Phi(u)) | D\Phi]) = ||\Delta(D\Phi)||_2$, luego:

$$\int_{(P,\nu)} \mathbf{F}^{\natural} = \int_{D} (\mathbf{F} \cdot \nu)_{\Phi(u)} \|\Delta(D\Phi)\|_{2} du_{1} \cdots du_{n-1} = \int_{P} (\mathbf{F} \cdot \nu) d \operatorname{área}.$$

Demostración del teorema 169. Exisen básicmente tres demostraciones: por particiones de la unidad, por cálculo de variaciones y por flujos. Aquí sólo explicamos algunas ideas de la demostración por flujos.

El **flujo**³ de un campo de vectores \mathbf{F} es una familia de difeomorfismos φ_t entre abiertos de \mathbb{R}^n que satisface el sistema de ecuaciones diferenciales $\frac{\partial}{\partial t} \varphi_t(x) = \mathbf{F}(\varphi_t(x))$ y además $\varphi_0 = \mathrm{id}$. Para dominios muy pequeños $E \subset U$ y un punto $p \in E$, se tiene

$$(\operatorname{div} \mathbf{F})_p \cdot \operatorname{Vol}(E) \approx \left. \frac{d}{dt} \right|_{t=0} \operatorname{Vol}(\varphi_t(E)),$$

con un error que, a medida que reducimos E, se va haciendo despreciable frente a Vol(E). Si vamos partiendo U en dominios cada vez más pequeños, en el límite obtenemos:

$$\int_{U} (\operatorname{div} \mathbf{F}) \, dx_{1} \cdots dx_{n} = \left. \frac{d}{dt} \right|_{t=0} \operatorname{Vol} \left(\varphi_{t}(U) \right) . \tag{111}$$

Por otra parte la diferencia de volúmenes $\operatorname{Vol}(\varphi_t(U)) - \operatorname{Vol}(U)$ viene dada por lo que $\varphi_t(U)$ sobresale de U menos lo que se mete dentro de U. Partiendo de esta idea, no es difícil ver que

$$\operatorname{Vol}(\varphi_t(U)) - \operatorname{Vol}(U) = t \cdot \int_{\partial U} (\mathbf{F} \cdot \nu) \ d \text{ área} + \operatorname{o}(|t|),$$

de donde:

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Vol}\left(\varphi_t(U)\right) = \int_{\partial U} (\mathbf{F} \cdot \nu) \ d \text{ área }.$$
 (112)

Juntando (111) y (112) tenemos el teorema de la divergencia.

³No confundir con "flujo a través", que es un número definido en el apartado 7.2.