

Digital Media Signal Processing

Prof. Dr.-Ing. Timo Gerkmann

Course Information

- 64-236 Lecture Digital Media Signal Processing
 - Wed. 14:15-15:45
- 64-237 Exercises Digital Media Signal Processing
 - Mo 10-12h F-534
 - Mo 10-12h F-635
 - Mo 12-14h F-534
 - Mo 12-14h F-635
- Exercises and additional Information uploaded on Stine gradually
- Exercises are to be prepared beforehand by students
 - Each student has to present at least once

Course Information

- Lecturer: Prof. Dr.-Ing. Timo Gerkmann
 - gerkmann@informatik.uni-hamburg.de
 - +49 40 42883-2438
 - Office: F-126
 - Office hours: By appointment

Medien

- Ein Medium (lat.: medium = Mitte, Mittelpunkt, von altgr. μέσον méson: das Mittlere; auch Öffentlichkeit, Gemeinwohl, öffentlicher Weg) ist nach neuerem Verständnis ein Vermittelndes im ganz allgemeinen Sinn. Das Wort "Medium" in der Alltagssprache lässt sich oft mit Kommunikationsmittel gleichsetzen.
- Der Plural *Medien* wird etwa seit den 1980er-Jahren für die Gesamtheit aller Kommunikationsmittel und Kommunikationsorganisationen verwendet.

Digitale Medien

Unter digitalen Medien versteht man elektronische Medien, die mit digitalen Codes arbeiten. Digitale Medien sind Kommunikationsmedien, die auf der Grundlage digitaler Informations- und Kommunikationstechnologie funktionieren. Als digitale Medien werden zum anderen technische Geräte zur Digitalisierung, Berechnung, Aufzeichnung, Speicherung, Verarbeitung, Distribution und Darstellung von digitalen Inhalten (Content) bezeichnet.

Digitale Medien

- Beispiel: Aufzeichnung und Speicherung von medialen Inhalten als digitale Daten (Musikstück, Bild, Videosequenz) ist in der Regel ein technisch hochkomplexer Vorgang und gehört zum Gebiet der digitalen Signalverarbeitung.
- In dieser Vorlesung werden die Grundlagen der digitalen Signalverarbeitung vermittelt.
- Anwendungen insbesondere aus der Audio und Bildverarbeitung

Signalverarbeitung ist allgegenwärtig

Bildverarbeitung

- Weichzeichner
- Scharfzeichner
- Kompression (PNG, JPEG)
- Erkennung von Gesichtern und Objekten in Fotos
- Rauschunterdrückung

Audioverarbeitung

- Mastering: Equalizer, Kompressor, Limiter
- Signalverbesserung
- Datenkompression
 - Audio: FLAC, MP3, AAC, MPEG-H
 - Sprache: CELP, A-law, LPC-10, ...

Textbooks

- Proakis and Manolakis: Digital Signal Processing, Pearson.
- Oppenheim and Schafer: Discrete-Time Signal Processing, Pearson.
- Schilling and Harris: Digital Signal Processing using Matlab, Cengage.
- Meyer: Signalverarbeitung, Springer Vieweg.

Lernziele

- Ein solides Verständnis der Grundkonzepte Digitaler Signalverarbeitung, inklusive
 - Implikationen der Digitalisierung analoger Daten
 - Systemtheorie als praktisches Werkzeug kennen lernen
 - Signal- und Systemdarstellungen im Frequenzbereich
- Grundverständnis wie Signalverarbeitung auf Mediensignale angewandt wird, insbesondere
 - Audio- und Sprachsignale
 - Bildsignale

Inhalte

- Grundlagen der Signal- und Systemtheorie
- Frequenztransformationen und deren Anwendungen
- Filtertheorie und Praxis
- Beispiele aus der Audio- und Bildverarbeitung

Signal Processing Group

Was wir machen

- Signalverarbeitung mit dem Schwerpunkt Audio und Sprachsignalverarbeitung
- Insbesondere probabilistische Verfahren

