

## Varianta 10

Subjectul I

a) 
$$\sqrt{29}$$
 b)  $AC = \sqrt{2}$  c)  $\frac{\sqrt{3} + 1}{2}$  d)  $\begin{cases} a = 1 \\ b = -13 \end{cases}$  e)  $S_{ABC} = \frac{3}{2}$  f)  $a = \frac{11}{17}$ ,  $b = \frac{7}{17}$ 

Subjectul II

1. a) 
$$\hat{6}^{2007} = \hat{6}$$
. b)  $C_9^4 - C_9^5 = 0$ .c)  $x^2 = t$ ,  $t^2 - 3t + 2 = 0$ ,  $t_1 = 1$ ,  $t_2 = 2$ .  $x_{1,2} = \pm 1$ ,  $x_{3,4} = \pm \sqrt{2}$ .

d) Unica solutie reala este x = 1. e) Probabilitatea ceruta este  $\frac{4}{5}$ .

2. a) 
$$f'(x) = e^x + 1$$
. b)  $\int_0^1 f(x) dx = e + \frac{1}{2}$ . c)  $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0) = 2$ .

d) 
$$f''(x) = e^x > 0, \forall x \in \mathbf{R} \Rightarrow f \text{ convexă pe } \mathbf{R}. e)$$

Subjectul III

a) 
$$rangA = 2 \Rightarrow \exists n, r \in \{1, 2, 3, 4\}$$
 astfel ca  $det \begin{pmatrix} a_n & a_r \\ b_n & b_r \end{pmatrix} \neq 0$ .

b) 
$$B = A^T \cdot A = \begin{pmatrix} a_1^2 + b_1^2 & \dots & a_1 a_4 + b_1 b_4 \\ \vdots & \dots & \vdots \\ a_4 a_1 + b_4 b_1 & \dots & a_4^2 + b_4^2 \end{pmatrix} = \begin{pmatrix} \vec{v}_1 \cdot \vec{v}_1 & \dots & \vec{v}_1 \cdot \vec{v}_4 \\ \vdots & \dots & \vdots \\ \vec{v}_4 \cdot \vec{v}_1 & \dots & \vec{v}_4 \cdot \vec{v}_4 \end{pmatrix}.$$

- c)  $rangB \le min\{rangA^T, rangA\} = 2$ .
- d) Deoarece  $rangB \le 2$  și  $B \in M_4(R) \Rightarrow \det B = 0$ .
- e) Considerăm vectorii  $\vec{v}_n$ ,  $1 \le n \le 4$ , cu originea în O(0,0). Cum suma unghiurilor în jurul lui O este  $360^\circ$  rezultă că cel puțin unul din unghiurile formate de doi vectori alăturați este cel mult  $90^\circ$ .
- f) Evident  $b_{11}, b_{22}, b_{33}, b_{44} \ge 0$  și cum mai există 2 vectori  $\vec{v}_n, \vec{v}_r, n \ne r$ , care au unghiul dintre ei de cel mult  $90^\circ$  rezultă că  $b_{nr} = b_m = \vec{v}_n \cdot \vec{v}_r = \left| \vec{v}_n \right| \cdot \left| \vec{v}_r \right| \cdot \cos \alpha \ge 0$ . Deci matricea B are cel putin 6 elemente nenegative.
- g) Calcul direct.

Subiectul IV

a)Calcul direct. b)Calcul direct. c) 
$$\lim_{n\to\infty} e_n(a) = \lim_{n\to\infty} \left[ \left(1 + \frac{1}{n}\right)^n \right] \frac{n+a}{n} = e$$
.

d)Să observăm că are loc relația:  $e_n(a) = e^{f_a(n)}$ ,  $n \in \mathbb{N}^*$ ,  $\operatorname{deci}_n(0) = e^{f_o(n)}$ 



Cum  $f''(x) = -\frac{x}{x^2(x+1)^2} < 0, \forall x > 0$ , rezultă că  $f_0'$  este strict descrescătoare pe  $(0, \infty)$ , deci  $f_0'(x) > \lim_{x \to \infty} f_0'(x) = 0, \forall x > 0$ , deci  $f_0$  este strict crescătoare pe  $(0, \infty)$ , deci  $(e_n(0))_{n \ge 0}$  este strict crescător.

- e) Din  $\lim_{x \to \infty} f_a(x) = \lim_{x \to \infty} \ln \left( 1 + \frac{1}{x} \right)^{x+a} = 1 \Rightarrow y = 1$  este asimptotă orizontală.
- f) Arătăm că  $f_{\frac{1}{2}}$  și  $f_1$  sunt funcții strict descrescătoare pe  $(0,\infty)$ . Avem

$$f_{\frac{1}{2}}''(x) = \frac{1}{2x^2(x+1)^2} > 0, \forall a \in (0,\infty) \Rightarrow f_{\frac{1}{2}}'$$
 este strict crescătoare pe  $(0,\infty)$ , deci

- $f_{\frac{1}{2}}'(x) < \lim_{x \to \infty} f_{\frac{1}{2}}'(x) = 0, \forall x > 0 \Rightarrow f_{\frac{1}{2}}$  este strict descrescătoare pe  $(0, \infty)$ . Analog se arată
- că  $f_1$  este strict descrescătoare.
- g) Arătăm că  $a = \frac{1}{2}$  este numărul căutat. Dacă  $a \in \left[0, \frac{1}{2}\right]$  rezultă că ecuația  $f_a$ "(x) = 0

admite rădăcina  $x_0 = \frac{a}{1-2a} > 0$ . Ținând seama de semnul lui  $f_a$ " rezultă că  $f_a$ ' este

descrescătoare pe  $[x_0, \infty) \Rightarrow f_a'(x) > \lim_{x \to \infty} f_a'(x) = 0, \forall x \in [x_0, \infty), \text{ deci } f_a \text{ este crescătoare}$ 

 $\operatorname{pe}[x_0,\infty)$ . Prin urmare şirul  $(e_n(a))_{n\geq x_0}$  este strict crescător dacă  $a\in \left[0,\frac{1}{2}\right]$ . Deci  $a=\frac{1}{2}$  este numarul cautat.