Problem Solving with AI Techniques Bayesian Networks: Learning

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

- How to Build a Bayesian Network?
 - Introduction
 - Parameter Learning
 - Structure Learning

Specifying a Bayes Net

How to specify the structure?

- From prior knowledge of (causal or other) relationships
- From domain experts
- From data (i.e., structure learning)
- By choosing a certain structure

How to specify the conditional probabilities (CPTs or CPDs)?

- From prior knowledge
- From experts
- From data (e.g., parameter learning)

- 1 How to Build a Bayesian Network?
 - Introduction
 - Parameter Learning
 - Structure Learning

Problem Decomposition: Example

If the structure of the Bayes net is known, the problem of learning the conditional probabilities can be decomposed into independent ones.

from Gormley

$$\mathbb{P}(X_{1:5}) = \mathbb{P}(X_1)\mathbb{P}(X_2 \mid X_1)\mathbb{P}(X_3)\mathbb{P}(X_4 \mid X_2, X_3)\mathbb{P}(X_5 \mid X_5)$$

- ullet Assumption: Data is generated by a parametric model $\mathbb{P}(oldsymbol{X} \,|\, oldsymbol{ heta})$
- General ML Principle: Given i.i.d. training data $\mathcal{D} = \{ \mathbf{x}^1, \dots, \mathbf{x}^N \}$
 - compute the likelihood

$$\mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta}) = \prod_{i=1}^N \mathbb{P}(oldsymbol{x}^i \,|\, oldsymbol{ heta})$$

ullet choose the most likely parameter $oldsymbol{ heta}^*$

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta}} \mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta})$$

- ullet Assumption: Data is generated by a parametric model $\mathbb{P}(oldsymbol{X} \,|\, oldsymbol{ heta})$
- General ML Principle: Given i.i.d. training data $\mathcal{D} = \{\mathbf{x}^1, \dots, \mathbf{x}^N\}$
 - compute the likelihood

$$\mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta}) = \prod_{i=1}^{N} \mathbb{P}(oldsymbol{x}^i \,|\, oldsymbol{ heta})$$

ullet choose the most likely parameter $oldsymbol{ heta}^*$

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta})$$

In practice, one rather works with the log-likelihood. Why?

- ullet Assumption: Data is generated by a parametric model $\mathbb{P}(oldsymbol{X} \,|\, oldsymbol{ heta})$
- General ML Principle: Given i.i.d. training data $\mathcal{D} = \{x^1, \dots, x^N\}$
 - compute the likelihood

$$\mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta}) = \prod_{i=1}^N \mathbb{P}(oldsymbol{x}^i \,|\, oldsymbol{ heta})$$

ullet choose the most likely parameter $oldsymbol{ heta}^*$

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta})$$

- In practice, one rather works with the log-likelihood. Why?
 - Log-likelihood

$$\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \mathbb{P}(\boldsymbol{x}^i \mid \boldsymbol{\theta})$$

- ullet Assumption: Data is generated by a parametric model $\mathbb{P}(oldsymbol{X} \,|\, oldsymbol{ heta})$
- General ML Principle: Given i.i.d. training data $\mathcal{D} = \{\mathbf{x}^1, \dots, \mathbf{x}^N\}$
 - compute the likelihood

$$\mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta}) = \prod_{i=1}^N \mathbb{P}(oldsymbol{x}^i \,|\, oldsymbol{ heta})$$

ullet choose the most likely parameter $oldsymbol{ heta}^*$

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{P}(\mathcal{D} \,|\, oldsymbol{ heta})$$

- In practice, one rather works with the log-likelihood. Why?
 - Log-likelihood

$$\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \mathbb{P}(\boldsymbol{x}^i \mid \boldsymbol{\theta})$$

 $\bullet \; \boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} \log \mathbb{P}(\mathcal{D} \,|\, \boldsymbol{\theta}) = \argmax_{\boldsymbol{\theta}} \sum_{i=1}^N \log \mathbb{P}(\boldsymbol{x}^i \,|\, \boldsymbol{\theta})$

ML Application to Previous Example

Variables	1	2	3	4	5
X_1	Α	Α	В	С	С
X_2	Т	F	Т	F	F
<i>X</i> ₃	Т	Т	F	F	Т
X_4	0	1	1	2	0
X_5	F	F	Т	Т	F

- Application: learn $\mathbb{P}(X_1)$ in previous example
 - What are the parameters for this problem?
 - What is the log-likelihood?

ML Application to Previous Example

Variables	1	2	3	4	5
X_1	Α	Α	В	С	С
X_2	Т	F	Т	F	F
<i>X</i> ₃	Т	Т	F	F	Т
X_4	0	1	1	2	0
X_5	F	F	Т	Т	F

- Application: learn $\mathbb{P}(X_1)$ in previous example
 - What are the parameters for this problem?
 - What is the log-likelihood?
- Application: learn $\mathbb{P}(X_3 | X_5)$ in previous example
 - What are the parameters for this problem?
 - What is the log-likelihood?

Maximum A Posteriori

- Assumptions: Data is generated by a parametric model $\mathbb{P}(X \mid \theta)$ and we have an a priori distribution over parameters θ
- General MAP Principle: Given i.i.d. training data $\mathcal{D} = \{ \mathbf{x}^1, \dots, \mathbf{x}^N \}$ and assuming that one has a priori distribution $\pi(\boldsymbol{\theta})$
 - compute the posterior

$$\mathbb{P}(\boldsymbol{\theta} \,|\, \mathcal{D})$$

ullet choose the most probable eta after observing data

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta}} \mathbb{P}(oldsymbol{ heta} \, | \, \mathcal{D})$$

Maximum A Posteriori

- Assumptions: Data is generated by a parametric model $\mathbb{P}(X \mid \theta)$ and we have an a priori distribution over parameters θ
- General MAP Principle: Given i.i.d. training data $\mathcal{D} = \{ \mathbf{x}^1, \dots, \mathbf{x}^N \}$ and assuming that one has a priori distribution $\pi(\boldsymbol{\theta})$
 - compute the posterior

$$\mathbb{P}(\boldsymbol{\theta} \,|\, \mathcal{D})$$

ullet choose the most probable $oldsymbol{ heta}$ after observing data

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta}} \mathbb{P}(oldsymbol{ heta} \, | \, \mathcal{D})$$

• In practice, one rather optimizes $\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \log \pi(\boldsymbol{\theta})$. Why?

Maximum A Posteriori

- Assumptions: Data is generated by a parametric model $\mathbb{P}(X \mid \theta)$ and we have an a priori distribution over parameters θ
- General MAP Principle: Given i.i.d. training data $\mathcal{D} = \{ \mathbf{x}^1, \dots, \mathbf{x}^N \}$ and assuming that one has a priori distribution $\pi(\boldsymbol{\theta})$
 - compute the posterior

$$\mathbb{P}(\boldsymbol{\theta} \,|\, \mathcal{D})$$

ullet choose the most probable heta after observing data

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{P}(oldsymbol{ heta} \, | \, \mathcal{D})$$

• In practice, one rather optimizes $\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \log \pi(\boldsymbol{\theta})$. Why?

$$\begin{split} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \mathbb{P}(\boldsymbol{\theta} \,|\, \mathcal{D}) \\ &= \arg\max_{\boldsymbol{\theta}} \frac{\mathbb{P}(\mathcal{D} \,|\, \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})} \\ &= \arg\max_{\boldsymbol{\theta}} \log \mathbb{P}(\mathcal{D} \,|\, \boldsymbol{\theta}) + \log \pi(\boldsymbol{\theta}) \end{split}$$

MAP Application to Previous Example

	1	2	3	4	5
X_1	Α	Α	В	С	С
X_2	T	F	Т	F	F
X_3	Т	Т	F	F	Т
X_4	0	1	1	2	0
X_5	F	F	Т	Т	F

- Application: learn $\mathbb{P}(X_1)$ in previous example
 - Assume the prior is Dirichlet(1, 1, 1). What does it mean?
 - What is the function to be maximized?

MAP Application to Previous Example

	1	2	3	4	5
X_1	Α	Α	В	С	С
X_2	Т	F	Т	F	F
X_3	Т	Т	B T F	F	Т
X_4	0	1	1	2	0
X_5	F	F	Т	Т	F

- Application: learn $\mathbb{P}(X_1)$ in previous example
 - Assume the prior is Dirichlet(1, 1, 1). What does it mean?
 - What is the function to be maximized?
- Application: learn $\mathbb{P}(X_3 | X_5)$ in previous example
 - Assume the prior is Beta(5,1) for $X_5 = T$ and it is Beta(1,4) for $X_5 = F$. What does it mean?
 - What is the function to be maximized?

- 1 How to Build a Bayesian Network?
 - Introduction
 - Parameter Learning
 - Structure Learning

Structure Learning

• Problem formulation: $\max_{G \in \mathcal{G}} f(G, \mathcal{D})$ where \mathcal{G} = all DAGs with nnodes, $\mathcal{D} = \{ \mathbf{x}^1, \dots, \mathbf{x}^N \} = \text{i.i.d.}$ training data

Structure Learning

- Problem formulation: $\max_{G \in \mathcal{G}} f(G, \mathcal{D})$ where $\mathcal{G}=$ all DAGs with n nodes, $\mathcal{D}=\{\boldsymbol{x}^1,\ldots,\boldsymbol{x}^N\}=$ i.i.d. training data
- Learning the structure of Bayes net is NP-hard
 - Size of space of DAG is super-exponential in number of variables
 - Comparatively, learning the CPTs is easy

Structure Learning

- Problem formulation: $\max_{G \in \mathcal{G}} f(G, \mathcal{D})$ where $\mathcal{G}=$ all DAGs with n nodes, $\mathcal{D}=\{\mathbf{x}^1,\ldots,\mathbf{x}^N\}=$ i.i.d. training data
- Learning the structure of Bayes net is NP-hard
 - Size of space of DAG is super-exponential in number of variables
 - Comparatively, learning the CPTs is easy
- Two families of methods for structure learning
 - Methods based on satisfying conditional independences
 - Idea: Statistical test (conditional) independences
 - deterministic given data
 - relatively fast (when limiting the number of tests)
 - clear stopping criteria (e.g. threshold for statistical independence tests)
 - initial errors snowball
 - Bayesian methods based on maximizing a score (BIC, MDL, BD...)
 - Idea: From prior on graph structures, update belief with data
 - handle missing data
 - may get stuck in local optimum
 - solution depends on initial conditions

Paul Weng (UM-SJTU JI) Bayesian Networks VE593, Fall 2018

Heuristic Method: Maximum Weight Spanning Tree

- Maximum Weight Spanning Tree: Given a connected valued graph, find a spanning tree (i.e., connected acyclic subgraph) with maximum weight
 - Polynomial problem
 - Kruskal algorithm or Prim algorithm

 Principle of heuristic: Define a score (e.g., mutual information) for each pair of variables, compute MWST, choose root and orient edges

$$I(X, Y) = D(\hat{\mathbb{P}}(X, Y)||\hat{\mathbb{P}}(X)\hat{\mathbb{P}}(Y))$$

Heuristic Method: K2 Algorithm

- Problem simplification: $\max_{G \in \mathcal{G}'} f(G, \mathcal{D})$ where $\mathcal{G}' = \mathsf{DAGs}$ satisfying a fixed topological order (wlog X_1, X_2, \ldots, X_n)
- Principle of heuristic: For i = 2, ..., n, choose parents of X_i as arg $\max_{I \subseteq \{1,...,i-1\}, |I| = K}$ score (X_i, X_I, \mathcal{D}) in a greedy way

```
1 K2((X_1,...,X_n), K, \mathcal{D})
2 for i = 1 to n do
          parents[i] \leftarrow { }; s \leftarrow \text{score}(X_i, \text{parents}[i], \mathcal{D}); continue \leftarrow true
3
          while continue and |parents[i]| < K do
4
                j^* \leftarrow \operatorname{arg\,max}_i \operatorname{score}(X_i, \operatorname{parents}[i] \cup \{X_i\}, \mathcal{D})
5
                sNew \leftarrow score(X_i, parents[i] \cup \{X_{i^*}\}, \mathcal{D})
6
                if sNew > s then
7
                   s \leftarrow sNew; parents[i] \leftarrow parents[i] \cup \{X_{i^*}\}
8
                 else continue ← false ;
9
```

10 return parents

13 / 16

Score Function of Original K2 Algorithm

- ullet Original K2 algorithm considers $\mathbb{P}(B\,|\,\mathcal{D})$ where B is a Bayes net
- Under four assumptions, $\mathbb{P}(B \mid \mathcal{D})$ can be decomposed into a tractable score function
 - All variables are discrete
 - ullet The data points of ${\mathcal D}$ are independently generated given a BN
 - No missing data
 - The distributions over CPTs are uniform given a BN

•
$$score(X, X_I, D) = \prod_{j=1}^{q_I} \frac{(r-1)!}{(N_j + r - 1)!} \prod_{k=1}^r N_{jk}!$$

where r is the number of possible values of X, q_I the number of instantiations of X_I , N_{jk} the number of occurrences of k-th value of X_i and j-th value of X_I in \mathcal{D} , and $N_i = \sum_{k=1}^r N_{jk}$

Example

	1	2	3	4	5	6	7	8	9	10
X_1	1	1	0	1	0	0	1	0	1	0
X_2	0	1	0	1	0	1	1	0	1	0
X_1 X_2 X_3	0	1	1	1	0	1	1	0	1	0

- Assume the order is X_1, X_2, X_3
- Take K=2
- Run the K2 algorithm.
- Which structure does it return?

Other Score Function: Bayesian Information Criterion

- Issue: Using the likelihood favors Bayes nets with too many parents
- Idea: Use a score function that penalizes such solutions:

$$BIC(B, \mathcal{D}) = 2\log(\mathbb{P}(\mathcal{D} \mid B, \hat{\theta}_B)) - n_B\log(N)$$

where $\hat{\theta}_B$ is the ML estimator of the parameters of B, n_B is the dimension of B, which is its number of free parameters.

- Remark: Bayesian Information Criterion is usually defined with the opposite sign
- The computation of this score can be decomposed over nodes:

$$\mathit{bic}(X,\mathit{parents}(X),\mathcal{D}) = 2\log(\mathbb{P}(\mathcal{D}_{X,\mathit{parents}(X)} \,|\, B, \hat{\theta}_{X,B})) - \mathit{n}_{X,B}\log(N)$$

where $\mathcal{D}_{X,parents(X)}$ is the data restricted to X and its parents, $\hat{\theta}_{X,B}$ is the ML estimator of the parameters for node X, and $n_{X,B}$ is the number of free parameters for node X.

16 / 16

Paul Weng (UM-SJTU JI) Bayesian Networks VE593, Fall 2018