Corollaries of BV Decomposition

Cor. 1 Assume additive noise;

if
$$\exists w^*$$
, $g(x) = f(x_1)w^* = w^*$, $x > then (g(x) - E_{\epsilon}[f_{LS}|X_{\delta}])^2 = 0$
 $g^2 - 2g E_{\epsilon}[K(X)]X(g+\epsilon) + E_{\epsilon}^2[K(X)]X(g+\epsilon)]$
 $= g^2 - 2g E_{\epsilon}[X_{\delta}(X)]X(g+\epsilon) + E_{\epsilon}^2[X_{\delta}(X)]X(g+\epsilon)]$
 $= g^2 - 2g E_{\epsilon}[X_{\delta}(XX)]X(g+\epsilon) + E_{\epsilon}^2[X_{\delta}(XX)]X(g+\epsilon)]$
 $= g^2 - 2g E_{\epsilon}[X_{\delta}(XX)]X(x) + E_{\epsilon}^2[X_{\delta}(XX)]X(x)$
 $= g^2 - 2g E_{\epsilon}[X_{\delta}(XX)]X(x)$
 $= g^2 - 2g E_{\epsilon}[X_{\delta}(XX)]$

= $+r[hh^T E_{\epsilon}[e^T e]]$ = $+r[hh^T E_{\epsilon}[e^T e]]$ = $tr[hh^T . G^T]$ = $-tr[h^T a]$ = -tr[hh] = $-tr(ah^T) = +r[h^T a]$ = -tr[h] = $-tr[h^T a]$