

Asignatura: Programación Paralela y Multicore

1. IDENTIFICACIÓN DEL CURSO.

•	TT •	• 4	•
Centro	Univer	'SITA	rio

Centro Universitario de Ciencias Económico Administrativas

Departamento:

Departamento de Sistemas de Información

Nombre de la unidad de aprendizaje

Estructura de Datos Avanzados y Minería de Datos

Clave de la materia:	Horas de Teoría:	Horas de práctica:	Total de Horas:	Valor en Créditos
I7644	11	40	51	00

Tipo de curso:	Nivel en que se ubica:	Carrera:	Prerrequisitos:
Curso-taller	Optativa	Doctorado en Tecnologías	Conocimientos de
		de Información	Programación en C,
			Bases: matemáticas
			y programación

Área de Formación

Optativa abierta

Elaborado por:

Dra. Liliana Ibeth Barbosa Santillán

Fecha de elaboración	Fecha de última actualización
2014	Enero del 2015

2. PRESENTACIÓN

El curso analiza los conceptos principales de programación paralela con CUDA el cual tiene como objetivo introducir a las arquitecturas paralelas, concentrándose en los procesadores GPU contemporáneos que permiten implementar aplicaciones masivamente paralelas, y rendimientos de 50 a 300 veces con respecto a un CPU convencional. Diversas aplicaciones han comenzado a tener auge con los GPU de última generación, que van más allá de gráficos 3D, análisis de imágenes y visión por computadora, robótica, bioinformática, aplicaciones médicas, etc.

3. UNIDAD DE COMPETENCIA

El alumno será capaz de desarrollar cualquiera de estos conceptos.

- Aprender a programar procesadores masivamente paralelos.
- Lograr funcionalidad, facilidad de mantenimiento, y escalamiento en programación paralela.

4. SABERES

10 0010 0 = 0.0	 Capacidad para lograr funcionalidad y escalamiento en programación paralela. Capacidad para operar en la plataforma CUDA.
	 Conocer los elementos que componen la tarjeta GTX780. Conocer los conceptos relacionados con la plataforma CUDA y programación paralela.
Saberes formativos	 Desarrollar la habilidad para programación de procesadores masivamente paralelos.

5. CONTENIDO TEÓRICO PRÁCTICO. Temas, prácticas y tareas por sesión.

Programación Paralela y Multicore

1. Introducción al curso, objetivos y forma de evaluación

Tarea: Lectura 71

2. Cómputo paralelo

Computación con GPU

CUDA

Arquitectura de la tarjeta GTX780 Actividad: Lectura de artículo

Práctica: configuración e instalación de drivers

Tarea: Lectura 3, 5

3. CUDA-C

Plataforma CUDA Modelo de memoria

API

Espacios de memoria y Overhead

Rendimiento del kernel Práctica: HelloWorld Práctica: VectorAdd Tarea: Lectura 11, 12

4. Hardware

Memoria

Conflictos de bancos Soporte para hilos

Ejecución de hilos paralelos

Paso de mensajes Prácticas: 1DStencil Tarea: Lectura 14, 15

5. Aplicaciones

Multiplicación de matrices

Multiplicación de matrices con memoria compartida

Práctica: Multiplicación de matrices. Práctica: martel-reduce-scansort

Tarea: Lectura 8

6. Precisión

Librerías

Introducción to Thrust

Práctica: Jacobi_Optimization

7. Simple Peer-to-Peer Transfers with Multi-GPU

8. Casos de estudio

CUDA en cómputo científico

CUDA en gráficas por computadora y aplicaciones 3D

CUDA en visión por computadora Práctica: CUDA FFT Ocean Simulation

Tarea: Lectura 9

9. Vision

Cloud Computing, clusters, almacenamiento y acceso

Práctica: Advanced Quicksort

Tarea: Lectura 10, 18

10. Monte Carlo Option Pricing with Multi-GPU support

Tarea: Lectura 17 11. Práctica: Sobol

Quasirandom Number Generator

12. Práctica: Quad Tree (CUDA Dynamic Parallelism)

Tarea: Lectura 1

13. Práctica: Advanced Quicksort (CUDA Dynamic Parallelism)

Tarea: Lectura 5

14. Práctica: Function Pointers

Tarea: Lectura 8
15. Práctica: Merge Sort
Tarea: Lectura 9

16. Exposición de proyectos

17. Exposición de proyectos

6. ACCIONES

- Sesiones presenciales de 3 horas de duración una vez a la semana con exposición del profesor y los alumnos de los diversos temas.
- Involucración de los alumnos en actividades grupales e individuales para la resolución de prácticas.

- Preparación con antelación cada sesión por parte de los alumnos de acuerdo a las instrucciones del profesor.
- Realización de prácticas apropiadas y exposiciones de prácticas en lenguaje CUDA por los estudiantes.
- Todas las prácticas deberán contener la siguiente leyenda: Los resultados presentados no son directa o indirectamente copiados de otra fuente.

ELEMENTOS PARA LA EVALUACIÓN

7. Evidencias de aprendizaje	8. Criterios de desempeño	9. Campo de aplicación
 Prácticas solicitadas en clase. Entrega de un proyecto final. 	1	 Reducción de tiempo y esfuerzos necesarios para acelerar las aplicaciones científicas, empresariales y de ingeniería, mediante las GPU.

10. CALIFICACIÓN

- 40% Prácticas
- 60% Proyecto Final

TOTAL 100%

11. ACREDITACIÓN

- Cumplir con el 80% de las asistencias
- Obtener como mínimo 60 de calificación

12. BIBLIOGRAFÍA

a) Bibliografía básica

CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley, 2011., Jason Sanders Kandrot.

Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2010. David B. Kirk, Wen-mei W. Hwu.