Выявление взаимосвязи между метками с помощью алгоритма, основанного на собственном внимании для задачи классификации с несколькими метками

Г. Л. Боева, научный руководитель: А.А.Зайцев

Московский физико-технический институт

16 декабря 2023 г.

Постановка задачи

Проблема

Большая часть доступной пользовательской информации может быть представлена в виде последовательности событий с отметками времени. Современные подходы фокусируются на архитектуре преобразования последовательных данных, вводящей self-attention к элементам в последовательности. В этом случае мы учитываем временные взаимодействия событий, но теряем информацию о взаимозависимостях меток.

Цель работы

Создание подхода, основанного на механизме собственного внимания над метками, предшествующими прогнозируемому шагу.

Задачи работы

- 1) изучение существующих моделей, работающих в области предсказаний множества меток
- 2) разработка метода на основе внимания для предсказания множества меток
- 3) валидация разработанных методов

Постановка задачи

Рассмотрим классификацию с несколькими метками для последовательности $S=\left(X_i,Y_i\right)_{i=1}^{t1}.$ Y_i - набор меток, X_i - набор признаков, специфичных для каждой временной метки от 1 до t-1.

Множество $Yi\subseteq Y$, где $Y=1,2,\ldots,K$ - множество всех возможных меток. Размер набора X_i равен размеру набора Y_i . Также введем дополнительный вектор признаков z, описывающий рассматриваемую последовательность S в целом, например, идентификатор пользователя.

Цель: спрогнозировать Y_t для следующей временной метки.

Функция $f(X_{t-\tau},\ldots,X_{t-1},Y_{t-\tau},\ldots,Y_{t-1},z)\in[0,1]^K$, которая принимает историческую информацию о событиях в качестве входных данных и выводит вектор вероятностей присутствия для каждой из K меток.

 $S^t = \{(X_j, Y_j)\}_{j=t- au}^{t-1}$, где au означает количество событий, предшествующих временной метки t.

 $g(f(\cdot))$ - модель принятия решений по меткам, которая преобразует доверительные баллы в метки, сравнивая оценку для k-й метки с выбранным пороговым значением β_k :

$$g(f_k(\cdot)) = \begin{cases} 1, & f_k(\cdot) > \beta_k \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Данные

II	Date	Labels	Features	:	:	:	;
1	12-08-2016	[1, 18, 89]	$\boxed{[2.1, 0.4, 0.7]}$				2 2
	21-08-2016	[3, 8]	[0.3, 1.5]				??
	23-08-2016	[1, 18]	[1.7, 0.5]				\longrightarrow
0.	28-08-2016		. , ,	ťi	t2	t3	t4

Рис.: Образец набора данных событий с метками времени, который можно использовать в задаче классификации по нескольким меткам и ее визуализация.

Dataset	# events	Median	Max	# unique	Diff
		set size	set size	labels	
Sales	$47\ 217$	16	48	84	0.0632
Demand	$5\ 912$	13	24	33	0.0957
Liquor	$291\ 029$	14	66	107	0.0413
Transactions	$784\ 520$	3	23	77	0.1079
Orders	$226\ 522$	2	13	61	0.0518

Рис.: Характеристики наборов данных, используемых в задачах последовательной классификации по нескольким меткам.

Предложенный метод

Рис.: Общий пайплайн получения глобальных представлений

Основные результаты

Model	Macro-AUC	Macro-F1
LSTM	0.752	0.222
Transformer	0.750	0.228
LANET	0.954	0.451

Таблица: Сравнение показателей из базовых показателей и LANET в наборе данных электронной коммерции.

	LSTM	TransformerBase	CLASS2C2AE	LANET (ours)
Micro-AUC	2	3.2	3.6	1.2
Macro-AUC	2	3.2	3.6	1.2
Micro-F1	<u>1.8</u>	3.4	3.4	1.6
Macro-F1	1.8	3.2	2.8	<u>2.2</u>

Рис.: Средний ранг для различных показателей, усредненный по 5 рассмотренным наборам данных. Лучшие значения выделены жирным шрифтом, а вторые лучшие значения подчеркнуты.

Дополнительные исследования

Рис.: а. Зависимость micro-AUC от параметра au. б. Зависимость micro-AUC от размера векторных представлений.

au - означает количество событий, предшествующих рассматриваемому событию с временной меткой t, которой присваивается целевая метка Y_t .

Inputs	Micro-AUC↑	Macro-AUC↑	Micro-F1↑	Macro-F1↑
All	0.881 ± 0.007	0.737 ± 0.017	0.704 ± 0.018	0.591 ± 0.003
No amount	0.825 ± 0.051	0.705 ± 0.039	0.698 ± 0.010	0.574 ± 0.014
No time	0.869 ± 0.007	0.721 ± 0.020	0.698 ± 0.004	0.590 ± 0.003
No ID	0.880 ± 0.003	0.732 ± 0.006	0.703 ± 0.022	0.588 ± 0.004

Рис.: Как различные типы представлений в LANET влияют на качество.

Выводы

- ▶ Проведены исследования по анализу различных наборов данных, используемых при сравнении реализованной модели LANET.
- Проведены ряд экспериментов для задачи классификации с несколькими метками на пяти различных выборках и сравнение с базовыми подходами в данной области.
- ▶ Проведена оценка метрики в зависимости от гиперпараметра, отвечающего за информацию о предыдущих временных метках, размера входных представлений или влияния признаков на конечный результат.

Список литературы

- 1. Kovtun E., Boeva G. Label Attention Network for sequential multi-label classification: you were looking at a wrong self-attention // arXiv 2023.
- 2. Zhuzhel, V., Grabar, V., Boeva, G., Zabolotnyi, A., Stepikin, A., Zholobov, V., Ivanova, M., Orlov, M., Kireev, I., Burnaev, E., Rivera-Castro, R., Zaytsev, A.:Continuous-time convolutions model of event sequences (2023)

Следующий этап работы

Проблема

В рассмотренной литературе не рассматриваются подходы, которые улавливают связь меток в задаче Next Basket Recommndation.

Цель работы

Создание подхода, основанного на механизме собственного внимания над метками, который был бы применен в задачах рекомендаций набора меток для пользователя.

Задачи работы

- 1) изучение существующих моделей, работающих в области предсказаний множества меток
- 2) разработка метода на основе внимания для предсказания множества меток
- 3) валидация разработанных методов

Следующий этап работы

Постановка задачи

Корзина ${\bf b}$ — набор элементов, т. е. ${\bf b}=\{i_1,i_2,\ldots,i_j,\ldots,i_{|{\bf b}|}\}$, где $i_j\in \mathcal{I}$, и где \mathcal{I} обозначает вселенную всех предметов. Для данного пользователя у нас есть доступ к последовательности n исторических корзин (по возрастанию в хронологическом порядке, так что более свежие элементы находятся в конце) обозначается как $\mathcal{H}=[{\bf b}_1,{\bf b}_2,\ldots,{\bf b}_i,\ldots,b_n]$, где $b_i\subset \mathcal{I}$. Цель исследования создать модель, которая учитывает исторические корзины \mathcal{H} в качестве входных данных и прогнозирует следующую корзину ${\bf b}_{n+1}$ в качестве рекомендации.

Список литературы

- 1. Hui Fang, Guibing Guo, Danning Zhang, and Yiheng Shu. Deep learningbased sequential recommender systems: Concepts, algorithms, and evaluations. In Web Engineering: 19th International Conference, ICWE 2019, Daejeon, South Korea, June 11–14, 2019, Proceedings 19, pages 574–577. Springer, 2019.
- 2. Ming Li, Sami Jullien, Mozhdeh Ariannezhad, and Maarten de Rijke. A next basket recommendation reality check. ACM Transactions on Information Systems, 41(4):1–29, 2023.