	PHVS 107 - Week 12 - Wednesday
	Laminar flow versus turbulence laminar flow: no mixing, sheamlined turbulent flow: eddies, swirls, caused by - swift flow
	laminar flow: no mixing, sheamlined
	turbulent flow: eddies, swirls, caused by - swift flow - obtacles, corners
	Where is the transition? How do we know when flow will be turbulent or laminar?
	Define Reynolds number $N_R = \frac{2 \text{g v r}}{2} \left(\frac{\text{for tube of}}{\text{radius } r} \right)$
	If NR >3000: turbulent in between: ill-determined, If NR < 2000: laminar unstable
1	Flow will be more turbulent when:
	density higher
	- velocity higher
	- characteristic length scale larger - viscosity smaller
	- V-SCENING SANCOSE
	Scaling up or down: if Ne is the same for a scaled up
	Scaling up or down: if Ne is the same for a scaled up or scaled down version of geometry, system, Then the flow will behave similarly
	the flow will behave smillerly
0,48	

	Example: At what speed will blood flow turn turbalent in an artery that has $n = 2 \text{ mm}$? $f = 1030 \frac{kg}{m^3}$, $y = 2.08 \times 10^{-3} \text{ Pa.s.}$
	in an astery that has n=2 mm?
	P=1030 kg/23, N=2.08 x10-3 Pass
	J L L
	No = 3000 il v = NRM = 3.0 m/
	$N_R = 3000 \text{ if } v = \frac{N_R m}{2 pr} = 3.0 \text{ m/s}$
	Note that the calculated blood flow is 1.9 m/s in pulmonary artery. Obstruction of half diameter -> turbulence!
	pulmonary aftery. Obstruction of half diameter -
	turbulence!
	* Generally NR = for L where L = characteristic length L = 22 for tube or sphere
	n length
	L= 22 las tubre or subore
	Evans la trong Norma Praides
4	Cx congre tocome various voluge:
	When will a cable of a supension bridge cause turbulence?
	When will a cable of a suspension bridge cause turbulence?
	When will a cable of a suspension bridge cause turbulence? at what wind speed $V = M N_E = (10^{-3} Pa.s)(3000) = 4 M/s$
	When will a cable of a suspension bridge cause turbulence? at what wind speed $V = \frac{9}{9} \frac{V}{L} = \frac{(10^{-3} \text{Pa.s.})(3000)}{(1.29 \frac{\text{kg/m}^3}{21 \text{ inch}})} \frac{1}{1}$
	Example: Tocoma Narrows bridge: When will a cable of a suspension bridge cause turbulence? at what wind speed $V = \frac{9}{4} \frac{V}{E} = \frac{(10^{-3} \text{Pa.s.})(3000)}{(1.29 \frac{\text{kg/m}^3}{21 \text{ inch}})} \frac{1}{11}$
	JMBA
CHARLES AND ADDRESS OF THE PROPERTY OF THE PRO	JMBA
	When will a cable of a supension bridge cause turbulence? at what wind speed $V = \frac{N}{N}E = \frac{(0^{-3}Pa.s)(3000)}{(1.29 \frac{ky}{m^3})(2i \text{ inch})} = \frac{1}{1}$ Thenomenon called "vorter" shedding "causes the ludge to vibrate "in resonance" (see later).
	Thenomenen called "vorker" shedding "causes the bridge to vibrate "in resonance" (see later).
	JMBA

	* Diffusion, random walk, Brownian motion
	Brownian motion of nane-particles in water -> water molecules collide with nano-particles -> move the nano-particles around Video Brownian Motion
	position x is a random variable that changes randomly over time, but $\langle x \rangle = \overline{x} = average position remains$
	Root-mean-square $\sqrt{\langle x^2 \rangle} = x_{RMS}$ is not recolut describes how widely the particles disperse from their original position
_	* Diffusion of ink on paper
	(x)=0 $(x)=0$ $(x)=0$ $(x)=0$ $(x)=0$ $(x)=0$ $(x)=0$ $(x)=0$
	Diffusion law: $x_{RMS} = \sqrt{2Dt}$ with $D = diffusion$ constant in units $\frac{m^2}{s}$
	D depends on the molecule and the medium it is in
	×

* Diffusion defines the size of cells and their time scale
Amoela: how long does it take for Or to diffuse?
Amoeba: how long does it take for O_2 to diffuse? $ x_{RMS} = \sqrt{2Dt} \rightarrow t = \frac{x_{RMS}}{2D} \approx 100.5 $
Red blood cell: t= $\frac{\alpha_{\rm RMS}}{2D_{\rm hemoglobin}} \approx 0.55$ s breathing
Chromosome : t = xems = 20s
How long would it take for DNA to diffuse through an amoeba? t= 27 hours
Diffusion determines the short distance travel in alls
For longer distances, cells need active mechanism: flagella, molecular motors, ATP
juguen, more incre mores, 111

* Osmosis diffusion will happen until the concentrations are equal
If membrane does not allow one type of molecules through - pressure builds up
C, I gh-osmotic prese