<u>Bioinformatics Assignment - 4</u>

1. OGlobal Alignment (Needleman - Wusch Algorithm)

Here,
$$F(0,0) = 0$$
, $F(i,0) = -id$, $F(0,i) = -id$,

$$F(i,j) = \max \left\{ F(i-1,j-1) - S_{ij} \\ F(i,j-1) - d \quad \text{[where } d = 3 \text{]} \\ F(i,j-1) - d \quad \text{[where } d = 3 \text{]} \right\}$$

Alignment:

S1: GGCTGCAACTAGCTC

 S_2 : GGGTA-AGCTTG-C

Score: 23

· Local Alignment (Smith-Waterman Algorithm)

Here,
$$F(0,0) = F(i,0) = F(0,i) = 0$$

$$F(i,j) = \max \left\{ F(i-1,j-1) - S_{ij} \quad \text{[where d=3]} \right\}$$

$$F(i-1,j) - d$$

$$F(i,j-1) - d$$

Alignment:

S1: GGCTGCAACTAGCTC

52: GGGTA-AGCTTGC--

Score: 29

2.	Taking match to be I and mismatch to be-I, we get repeat sequence	
	CACACTCACACACACACA, with a score of 15.	

- · Such a case is considered as an overlap between the sequences
- Dynamic programming may be employed for both identification and quantification of the overlap

0	Overlap Case	Colobal Case
	F(0,0) = 0	F(0,0) = 0
	F(i,0) = 0	F(i,0) = -id
	F(0,j)=0	F(0,j) = -jd
	ď	
	F(i-1, i/-1) - Sii	F(i-1, j-1) - Siz
	$F(i,j) = \max \begin{cases} F(i-1,j-1) - S_{ij} \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$	$F(i,j) = \max \begin{cases} F(i-1,j-1) - S_{ij} \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$
	F(i, i-1) - d	F(i, i-1) - d
	ι , γ,	ι, γ

Recurrence relationship of DP for overlaps is identical to that for dobal alignment, while both differ in the boundary conditions.

- 4. o Presence of continuous gaps are often caused by a single mutation, which led to continuous insertions or deletions.
 - Affine gap scores are more sensitive to this, in comparison to other scoring techniques.
 - · Extensions are penalised much lower than gap-opening penalty, resulting in a much more realistic scoring system.
 - * Further, the complexity of this method, O(nm), is much lower than the general method, whose complexity is O(n3)
 - · This makes it highly suitable for comparing long DNA sequences.
- 5. For global alignment algorithm, backtracking is alway performed from the bottom right (n, m) cell of the matrix and terminates in the top-left (0,0) cell.
 - · Thus, global alignment algorithm always results in global alignment.
 - · For local alignment algorithm, a case such that backtracking is done from the bottom - right (n, m) cell of the matrix and such that it terminates in the top-left (0,0) cell is possible.
 - · Thus, local alignment algorithm may results in global alignment.
- 6. O Both space & time complexity of alignment using DP is O(mn).
 - · High time complexity would result in unpractical orun-times.

 Considering sequences of order (06 (1 million) will result in run-times in the orders of several hours.
 - · Similarly, high space complexity would result in unpractical storage

space requirements. For example, genomes of the order of few MBs will require several TBs of storage space.

7. Query-length = 10^3 bases Computation time = 10^7 cells/sec

> Size of Uni Prot Database = 7527 1144009 bases Size of Gren Bank Database = 940513260726 bases

⇒ Time taken for UniProt Database = 7527 114400 9 x 10³ x 10⁻⁷ = 7527 1144009 seconds $\approx 87 \text{ days}$

Time taken for Gren Bank Database = $940513260726 \times 10^{3} \times 10^{-7}$ = 94051326.0726 seconds ≈ 1089 days