Bipolar Junction Transistors - II (BJT-II)

Transistor Biasing

Common Emitter (CE) Transistor

β = Common emitter current amplification factor

$$= I_C/I_B$$

Current Gain of the Transistor

$$I_{C} = \beta I_{B} + (\beta+1)I_{CO}$$

$$\beta = \alpha/(1-\alpha)$$
 Example - For α =0.98,
$$\beta = 49$$

 β increases rapidly as $\alpha \rightarrow 1$

Output Characteristic of CE Transistor

Transistor in Cutoff Region

Both the BC and the BE junctions are reverse biased

$$I_E=0$$
 $I_C=I_{CO}\approx 0$ $I_B=-I_C=-I_{CO}\approx 0$

Transistor in Saturation Region

Both the BC and BE junctions are forward biased and $I_C < \beta I_B$

 $V_{BE} \approx 0.7 \text{ V}$ $V_{BC} \approx 0.6 \text{ V}$ $V_{CE} \approx 0.1$

When transistor is used as a switch, it will be forced to operate either in the CUTOFF region or in the SATURATION region.

Transistor in Active Region

The BE junction is forward biased but the BC junction is reverse biased and $I_C \approx \beta I_B$

$$V_{BE}=0.7 V$$

Transistor is operated in this region when we want to use it as an amplifier!

Example: Calculate all the relevant voltages and currents

Note that V_{BC} = 3.49 -7.84 = -4.35 V, i.e. the B-C junction is reverse biased, implying that the transistor is working in the Active Mode

The Bias Point is specified by (V_{CE}, I_C, I_B)

What would happen if we reduced the base resistance to $5K\Omega$?

Note that B-C junction is then forward-biased which violates our earlier assumption that the transistor is in the active region. Therefore, our earlier assumption is WRONG – the transistor will not be in the active region

What would happen if we reduced the base resistance to $5K\Omega$?

Can the transistor be in CUTOFF?

If the transistor is in CUTOFF then $I_B=I_C=I_E=0$. Therefore $V_B=5V$ and $V_E=0V$ but that will forward bias B-E which violates the condition for transistor to be in CUTOFF. Therefore, the transistor cannot be in CUTOFF.

What would happen if we reduced the base resistance to $5K\Omega$?

Can the transistor be in Saturation?

In saturation, $V_{CE(sat)} = 0.1V$ and $V_{BE} = 0.7V$

Note that $I_C = \beta I_B$ will not hold in saturation, but we will still have $I_F = I_B + I_C$

$$+5 = 5I_B + 0.7 + 1.8(I_B + I_C) \implies 6.8I_B + 1.8I_C = 4.3$$

 $+20 = 8I_C + 0.1 + 1.8(I_B + I_C) \implies 1.8I_B + 9I_C = 19.1$

Solving - I_B =0.0745 mA, I_C =2.107 mA & I_E =2.182 mA

Note that

- (a) $I_C > \beta I_B$
- (b) V_E =3.93 V V_B =4.63 V V_C =4.03 V

The transistor is indeed in saturation

Biasing the Transistor

To operate as an amplifier a transistor must be biased in the active region. In that case, the transistor can amplify a *small ac signal* faithfully.

Bias Point (or Quiescent Operating Point, i.e. Q-Point) is decided by the DC voltages applied and the values of the resistances used. (See earlier example.)

The Bias Point is specified by the three quantities V_{CE} , I_{C} and I_{B} . This point must be in the active region of the transistor if we want to use the transistor (with that bias point) as an amplifier.

Biasing the Transistor

$$I_C = \frac{V_{CC} - V_{CE}}{R_C}$$

$$I_C = \frac{V_{CC} - V_{CE}}{R_C} \qquad I_C = -\left(\frac{1}{R_C}\right) V_{CE} + \frac{V_{CC}}{R_C}$$

Plot of I_C vs. V_{CE} is called the 'Load Line"

Bias Point

Intersection of the load line with the I_C-V_{CE} characteristic for the given value of IB decides the bias point.

Notation

 V_{MN} or V_{D} DC voltage between M-N or at D

v_{mn} or v_d AC voltage between M-N or at D

 v_{MN} or v_{D} (DC+AC) voltage between M-N or at D

Note the different ways in which small and capital letters are used to denote DC, AC or DC+AC values

Similar notation used to represent current values

Transistor Circuit under DC Condition

Transistor Circuit with AC Signal applied over the DC bias

Transistor Circuit with AC Signal

$$i_B = I_B + I_b$$

 $i_E = I_E + i_e$
 $i_C = I_C + i_c$

 I_B , I_C , I_E – DC currents

 i_R , i_C , i_F – DC + AC currents

Similarly,

 V_{BE} , V_{CE} – DC Voltages

 v_{be} , v_{ce} – AC Voltages

 V_{BE} , V_{CE} – DC+ AC Voltages

Interpreting "Transistor Gain" (between i_b and i_c) from the characteristics of the transistor

Operating Point or Quiescent Point

A good selection of the operating point Q is essential in order that an amplifier circuit amplifies an A.C signal without any distortion.

Transistor Biasing - Fixed Bias

$$I_B = \frac{V_{CC} - 0.7}{R_B}$$

Assuming transistor in active region

$$I_C = \beta I_B = \frac{\beta (V_{CC} - 0.7)}{R_B}$$

$$V_{CE} = V_{CC} - I_C R_C = V_{CC} - \beta \frac{R_C}{R_B} (V_{CC} - 0.7)$$

DC Equivalent

C₁ and C₂ will be open circuit under DC

Emitter and Collector Feedback Bias

DC Equivalent

$$V_{CC} = (I_C + I_B)R_C + I_BR_B + V_{BE} + (\beta + 1)I_BR_E$$

Using
$$I_C = \beta I_B$$
, we get

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)(R_{C} + R_{E})}$$

$$V_{CE} = V_{CC} - (I_{C} + I_{B})(R_{C} + R_{E})$$

and

$$V_{CE} = V_{CC} - (I_C + I_B)(R_C + R_E)$$

 V_{CC}

Emitter and Collector Feedback Bias

Note the desirable feature that I_C is independent of β as long as we choose a transistor which has a large β . This is an example of Bias Stabilization – making the bias point insensitive to β .

Can you give a qualitative argument as to why I_C tends to get stabilized?

Voltage Divider Bias

It is convenient to replace the biasing circuit at the base by its Thevenin's Equivalent using -

$$V_{\mathrm{Th}} = V_{CC} \, rac{R_2}{R_1 + R_2} = V_{BB} \qquad R_{\mathrm{Th}} = R_B = rac{R_1 R_2}{R_1 + R_2}$$

Voltage Divider Bias

Assuming transistor in active region

For large β , I_C independent of β

$$I_B = \frac{V_{\text{Th}} - V_{\text{BE}}}{(\beta + 1)R_E}$$
$$I_C = \frac{V_{\text{Th}} - V_{\text{BE}}}{R_E}$$

$$\begin{split} V_{\text{Th}} = & V_{CC} \, \frac{R_2}{R_1 + R_2} \qquad R_{\text{Th}} = \frac{R_1 R_2}{R_1 + R_2} \\ V_{\text{Th}} = & I_B R_{\text{Th}} + V_{BE} + (\beta + 1) I_B R_E \\ V_{CE} = & V_{CC} - I_C R_C - I_E R_E \\ \text{with } I_{\text{C}} = & \beta I_{\text{B}} \quad \text{and} \quad I_{\text{E}} = (\beta + 1) I_{\text{B}} \end{split}$$

Solve the above to get the Q-point where the transistor has been biased, i.e. I_C , I_B and V_{CE}

This biasing also provides bias stabilization against changes in β . It also provides stabilization against changes in temperature (not shown here).

Problem – Verifying if a transistor is in saturation

If V_{CC} =+10 V, R_1 = R_2 =100 K Ω , R_C =10 K Ω , R_E =5 K Ω , can the transistor Q be in saturation? Assume $V_{CE, Sat}$ =0.1 V, β =50

$$V_{BB}$$
=5 V R_{B} =50 K Ω

$$5 = 50I_B + 0.7 + 5(I_B + I_C)$$
 $55I_B + 5I_C = 4.3$

$$10=10I_C+0.1+5(I_C+I_B)$$
 $5I_B+15I_C=9.9$

Solving these, we get –

$$I_{\rm C}$$
=0.66 mA $I_{\rm B}$ = 0.019 mA

 I_C =0.66< βI_B =0.95, therefore transistor is indeed in saturation

If we assume transistor in active region, then we get I_B =0.0143 mA, I_C =0.717 mA, I_E =0.731 mA. This gives V_E =3.66 V, V_B =4.36 V and V_C =2.83 V. Since B-C junction is forward biased, transistor CANNOT BE IN ACTIVE REGION.

Assume transistor is in saturation, i.e.V_{CE.sat}=0.1 V

$$20I_B + 2(I_B + I_C) = 5.3$$

$$10I_C + 2(I_B + I_C) = 11.9$$

Solving, we get I_B =0.153 mA I_C =0.967 mA

Confirm that transistor is indeed in saturation as I_C =0.967< βI_B =15.3 mA

Bias Point: V_{CE} =0.1 V, I_{C} =0.967 mA I_{B} =0.967 mA

If we had assumed the transistor to be in the active region –

$$I_B = \frac{6 - 0.7}{20 + 101(2)} = 0.024 \text{mA}$$

$$I_C$$
= 2.4 mA, I_E = 2.424 mA
 V_E = 4.85 V, V_B = 5.55 V
 V_C =12 - 2.4x10= -12 V

This is clearly impossible so transistor cannot be in the active region

Our assumption of the transistor being in the active region MUST be wrong!

Note that $I_C=3.99 < \beta I_B=5.46$, therefore the transistor is indeed in saturation as assumed in the beginning

Can the transistor be in saturation?

If it was in saturation, the B-C junction would be forward-biased. In that case, the current I as shown will be negative and therefore I_B will also be negative.

If I_B is negative, then the BE junction cannot be driven into forward-bias and therefore the transistor cannot be in saturation!

Therefore, the transistor must be in the active region and we can then assume that $I_C=\beta I_B$

Transistor is in the active region

$$\frac{0.7+1.2\times21I_{B}}{40}=I-I_{B} \quad I = 1.63I_{B} + 0.0175$$

$$V_E = 25.2I_B$$
 $V_B = 0.7 + 25.2I_B$ $V_C = 10 - 1.2(I + 20I_B) = 9.98 - 26I_B$

$$I = \frac{V_{CB}}{10} = \frac{V_{C} - V_{B}}{10} = 0.928 - 5.12I_{B}$$

Equating the two expressions for I, we can solve for I_B to get –

$$I_B$$
=0.135 mA, I_C =2.7 mA, I_E =2.835 mA V_E =3.4V, V_B =4.1V and V_C =6.47V

Note that the B-C junction is reverse biased so the transistor is indeed in the active region.