重庆理工大学本科生课程考试试卷

2021 ~ 2022 学年第 2 学期

开课学院 <u>理学院</u> 课程名称 <u>高等数学【(2) 机电】</u> 考试时间 <u>120</u> 分钟 <u>A 卷</u>	_ 考核方式 <u>闭卷</u> 第 1 页 共 3 页
考生姓名	考生学号
一、 选择题(本大题共 5 小题,每小题 2 分,总计 10 分 1. 微分方程 $xy'+y=1$ 满足初始条件 $y _{x=1}=0$ 的特解为()
(A) $y = x - \frac{1}{x}$; (B) $y = 1 - \frac{1}{x}$; (C) $y = x - \frac{1}{x}$	$\frac{1}{x^2}$; (D) $y = 1 - \frac{1}{x^2}$.
2. 在空间,方程 $\left\{ \frac{x^2}{4} + \frac{y^2}{9} = 1 \right\}$ 所表示的图形为()	
(A) 椭圆柱面; (B) 椭圆曲线; (C) 抛物	柱面; (D) 抛物线.
3. 直线 L_1 : $\frac{x-2}{1} = \frac{y-3}{-2} = \frac{z-8}{1}$ 与 L_2 : $\begin{cases} x-y=-2 \\ 2x+z=1 \end{cases}$ 的夹	英角为 ()
(A) $\frac{\pi}{6}$; (B) $\frac{\pi}{4}$; (C) $\frac{\pi}{3}$; (D)	$\frac{\pi}{2}$.
4. 设Σ是平面 $x + y + z = 2$ 被柱面 $x^2 + y^2 = 1$ 截出的有限部	部分,则 $\iint_{\Sigma} (x+y+z)dS = ($
(A) $2\sqrt{3}\pi$; (B) 2π ; (C) π ; 5. 下列级数收敛的是 ((D) 0.
(A) $\sum_{n=1}^{\infty} \frac{1}{2+n}$; (B) $\sum_{n=1}^{\infty} \left(\frac{3^n}{2^n} - \frac{1}{2^n}\right)$; (C) $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2^n}$	$\sum_{n=1}^{\infty} \frac{2+n^2}{2+n^3}; \qquad \text{(D)} \sum_{n=1}^{\infty} \frac{2+n}{2+n^3}.$
二、填空题(本大题共10小题,每小题2分,总计20	分)
6. 微分方程 y" = sin x 的通解为	
7. 已知某二阶常系数齐次线性微分方程的通解为 $y=C_1$	+ <i>C₂e^x</i> ,则该方程是
8. 微分方程 $y'' + y' - 2y = 2xe^x$ 的一特解可设为 $y^* =$;
9. 将 xoz 面上的抛物线 $z = 2x^2$ 绕 z 轴旋转而成的曲面方	程是
10. 设 $\vec{a} = 4\vec{i} + 3\vec{j} + 2\vec{k}$, $\vec{b} = \vec{i} - 2\vec{j} + 2\vec{k}$, 则 $Prj_{\vec{b}} = \vec{a} = $	·

重庆理工大学本科生课程考试试卷

2021 ~ 2022 学年第 2 学期

开课学院 <u>理学院</u>	课程名称 <u>高等数学【(2) 机电】</u> _	考核方式 <u>闭卷</u>
考试时间 120 分钟	·A 卷	第2页共3页
考生姓名	考生班级	考生学号

- 11. 极限 $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{1-\sqrt{x^2+y^2+1}} = \underline{\hspace{1cm}}$
- 12. 函数 $u = xy^2z^2$ 在点 P(1,-1,1) 处方向导数的最大值为______
- 13. 交换二重积分的积分顺序: $\int_{1}^{2} dy \int_{y}^{2} f(x,y) dx =$ _____.
- 15. 设函数 f(x) 是以 2π 为周期的周期函数,在 $\left[-\pi,\pi\right]$ 上有 $f(x) = \begin{cases} 1-x & -\pi \leq x < 0 \\ 1+x & 0 \leq x \leq \pi \end{cases}$,则 f(x) 的傅里叶级数在 x = 1 处收敛于_______.
- 三、解答题(本大题共5小题,每小题12分,总计60分)
- 16. (1) 设 $z = xy + f(x^2 y^2)$, f(u)为可导函数, 求 $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$;
 - (2) 设二元函数 $z = \arctan \sqrt{x^2 + 1} + xe^{xy}$, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1\\y=0}}$.
- 17. 设函数 z = f(x, y) 由方程 $e^z xyz + 2x y = 1$ 确定,
 - (1) 求函数 z = f(x, y) 的全微分 dz;
 - (2) 求曲面 $e^z xyz + 2x y = 1$ 在点(1, 2, 0)处的切平面方程.
- 18. (1) 计算 $\int_L (x-2y-z)ds$, 其中L为连接点(1,0,2)与点(1,3,-2) 的直线段.
 - (2) 计算 $\oint_L (2x^2 y)dx + (xy 1)dy$, 其中L为正向圆周 $x^2 + y^2 = 2x$.
- 19. 计算曲面积分 $I = \bigoplus_{\Sigma} (2 + xy^2) dy dz + zx^2 dx dy$,其中 Σ 是介于 z = 0 与 z = 3 之间的圆

柱体 $x^2 + y^2 \le 4$ 的整个表面的外侧.

重庆理工大学本科生课程考试试卷

2021 ~ 2022 学年第 2 学期

开课学院	『_ 高等数学【(2) 机电】	考核方式闭卷	
考试时间120分钟	<u>A 卷</u>	第3页共3页	
考生姓名	考生班级	考生学号	
20. 给定幂级数 $\sum_{n=1}^{\infty} \frac{n}{3^n} x^n$.			
求:(1)该幂级数的收敛域; (2)该幂级数在收敛域内的和函数.			
四、应用题(本大题共1小题,总计10分)			
21. 设有一正方形铁板占有平面闭区域 $\{(x,y) \ 0 \le x \le 5, 0 \le y \le 5\}$, 该铁板被加热, 在点			
(x,y) 处的温度为 $T(x,y) = 2(x+2y)-x^2-2y^2$,在铁板内,即 $\{(x,y) 0 < x < 5,0 < y < 5\}$ 内			
求一点,其温度最高。			