iTowns を用いた データ分析・可視化 WebGIS アプリ

基本設計書

< 目次 >

1	システム	概要	.1
	1.1.1	システム全体構成の概要	
	1.1.2	動作環境	. 1
	1.1.3	制約事項	. 1
2	ソフトウ	ェア機能	າ
_	2219	二 / 1)及旧	• ~
	2.1 デー	- タ管理システム	. 2
	2.1.1	テーブル構成	. 2
	2.1.2	ファイル管理構成	. 2
	2.1.3	データ収集仕様	. 2
	2.1.4	ユーザ管理	. 3
	2.2 デー	- 夕取得 WebAPI	. 4
	2.2.1	Webサーバ構成	. 4
	2.2.2	API種別	. 4
	2.2.3	API利用ユーザ制御	. 4
	2.3 デー	-タ分析・可視化機能	. 6
	2.3.1	3 次元WebGISエンジン	. 6
	2.3.2	利用ライブラリ	. 6
	2.3.3	製作ライブラリ	. 8
	2.4 テン	プレート WebGIS アプリケーション	10
	2.4.1	機能項目	10
	2.5 サン	プル WebGIS アプリケーション	12
	2.5.1	災害状況可視化WebGISアプリ	12

1 システム概要

1.1.1 システム全体構成の概要

図 1-1 システムの全体構成

本システムは、主にサーバサイドでのデータ及びファイル管理機能、ユーザのデバイス上で動作する WebGIS アプリケーション、データ配信用の WebAPI を提供する Web サーバで構成されます。

1.1.2 動作環境

- 本システムが動作する Web サーバは、NICT テストベッド(JGN)が用意する VM 上に構築します。OS は Ubuntu LTS の最新版として、Ubuntu 20.04 LTS を使用します。
- Web クライアントの動作環境は次の通りとします。
 - Windows, Mac, Linux (2 種類以上の主要なディストリビューションとして、 Ubuntu と CentOS (あるいはその他の RedHat 系 OS)) で動作するようにします。
 - ▶ 特定のプラグイン (Java, Flash, .NET 等) のインストールを要さず、主要な Web ブラウザ (Chrome, Edge, Firefox, Safari (それぞれ開発時点での最新版)) 上で動作するようにします。

1.1.3 制約事項

● 一部のデータは NICT の時空間データ GIS プラットフォームが有するデータとなります。これらのデータの参照は、本システム上にデータをコピーするのではなく、本システムのホストマシンから VLAN で共通のネットワークとして接続し、データ領域をマウントしてアクセスするか、Web 公開されているデータについては https により URL アクセスして参照します。

2 ソフトウェア機能

2.1 データ管理システム

本システムの対象データを管理するため、データの特性に応じて DBMS、GeoServer、Web サーバを使い分ける仕組みとします。

• DBMS

PostgreSQL v13.4+PostGIS v3.1.4 を利用します。

GeoServer

GeoServer のバージョンは 2.19.2 とします。WMTS による配信を行う GeoTIFF 形式データについて、GeoServer にデータを登録して配信します。また、DBMS で管理するデータについては GeoServer へ Data Store として登録の上、配信します。

● Web サーバ

JSON、GeoJSON ファイル、XYZ 形式による配信を行うラスタータイル(標高タイルを含む)、ベクタータイルについて、ファイル/ディレクトリ形式で直接アクセス可能な形で配信します。

2.1.1 テーブル構成

DBMS で管理するデータについては地図レイヤとテーブルが 1 対 1 になる構成を標準とします。また、地理情報については PostGIS の提供する GIS オブジェクトで定義することを標準とします。

2.1.2 ファイル管理構成

ファイル/ディレクトリ形式で直接アクセス可能な形で配信するデータについて、XYZタイル形式などのデファクトスタンダードに従い、使用性を考慮した構成で管理します。また、DBMS や GeoServer を介して配信するデータの元データについても JGN 上で管理するものとします。

XYZタイル形式については以下を参照下さい。

国土交通省 国土地理院: https://maps.gsi.go.jp/development/siyou.html

2.1.3 データ収集仕様

対象データとして選択されたデータについて収集を行うとともに、対象データー覧表を 作成します。対象データー覧表は詳細設計書の別表として管理し、利用時の注意点等のデー タ配信に必要な情報を集約するものとします。

2.1.4 ユーザ管理

a システム環境

AuthO が提供するクラウドサーバ(バックグラウンドは AWS の日本国内サーバ)を使用します。

b 管理者アカウント

NICT 担当者が管理をします。

- ・アカウント作成時にメールアドレスが必要です
- ・二要素認証を実施します。

c 設定内容

- ・本システムの URL などを設定します。
- ・本システムを利用するユーザを登録します。Web アプリからは登録不可とします。

ユーザ情報はメールアドレスとユーザ ID およびパスワードです。

2.2 データ取得 WebAPI

2.2.1 Web サーバ構成

Web サーバの構成について下図に示します。クライアントからは、Https のみのアクセスとし、WebAPIへのアクセスは Apache の ReverseProxy を利用して行います。また多様なサービス及び内部ストレージからデータを取得する必要があることから、小さな API を多数用意する必要があります。それを踏まえ、汎用的な設計を実現するため WebAPI ゲートウェイである krakenD を採用します。

データーベースアクセスも API 化するため、FastAPI を採用し WebAPI として実装します。

一部の地図は外部サイトからの参照としますが、本システムで利用する際は WebAPI 経由でのアクセスとします。

API 利用ユーザ制御については 3.2.3 で記述しますが、クラウドサービスである Auth0 を利用してユーザ単位での API 制御を実現します。

図 Web サーバ構成図

2.2.2 API 種別

API 種別としては、REST API を採用します。

2.2.3 API 利用ユーザ制御

API 利用ユーザ制御を行う際に、各 API で認証を実装するよりも、全 API を統括する krakenD 上で実施するのが理想的であるため、クラウドサービスとなるが krakenD との 相性や利用実績から AuthO でのユーザ管理を採用します。

Auth0 を使用した際の認証フローを下図に示します。実際には 3.2.1 で記述したとおり Apache による ReverseProxy にてアクセスしますが、説明上 Apache との通信部分は省略しています。

図 WebAPI 認証フロー

2.3 データ分析・可視化機能

2.3.1 3 次元 WebGIS エンジン

3次元 Web エンジンとして、iTowns を用います。

バージョンは着手時点の最新版である 2.35.0(2021-09-16)を標準とし、iTowns の公式リポジトリ(https://github.com/iTowns/itowns)から取得するものとします。また、本システムの開発期間中に新規のリリースがあった場合は必要に応じて更新を行うものとします。

● iTowns の利用方法(JGN 環境への導入)について

iTowns の公式リポジトリ内(https://github.com/itowns/itowns#how-to-use) の記述に従い、nmp (Node Package Manager) により導入する形を標準とします。nmp について、JGN 環境へ Node.js をインストールし、同梱のものを利用するものとします。

- iTowns の依存ライブラリについて
 - https://github.com/iTowns/itowns/blob/v2.35.0/package.json
 - https://github.com/iTowns/itowns/blob/v2.35.0/package-lock.json を参照(バージョン部分は更新に合わせて参照ください)。

2.3.2 利用ライブラリ

データ分析・可視化機能を実現するため、以下のライブラリを利用いたします。 それぞれのライブラリには以下の機能が実装されています。

- タイムスライダー
 - ▶ スライダーUI
 - ✓ 横方向の時間軸バーおよび摘みを描画します。
 - ▶ 現在時刻表示機能
 - ✓ 時間軸バーの摘み位置により、現在時刻を示す。またデジタル形式の時計でも現在時刻を表示します。
 - ▶ 現在時刻変更機能
 - ✓ 摘みの位置で Web アプリの現在時刻を示し、左右にドラッグすることで現 在時刻を変更します。
 - ▶ 時間軸バー縮尺変更
 - ✓ 時間軸バーでホイールを操作すると時間軸バー目盛の縮尺を変更します。
 - ▶ 時間軸バー両端時刻変更機能
 - ✓ ボタン操作により時間軸バーの左右の端が示す日時を変更します。
 - ▶ 自動現在時刻変更機能
 - ✓ ボタン操作により現在時刻を指定の間隔で自動的に変更し、それに合わせ 時間軸バーのつまみ、デジタル形式の時刻表示も変更します。

● 時空間同期機能

- ▶ 日時情報同期機能
 - ✓ 別ウィンドウで表示された 2 つの WebGIS アプリにおいて、操作中のアプリが保持する現在時刻及び、タイムスライダーの時間軸バーの両端の時刻を、他方のアプリへ同期します。

➢ 空間情報同期機能

✓ 別ウィンドウで表示された 2 つの WebGIS アプリにおいて、操作中のアプリの地図の中心位置、左上端位置、右上端位置、右下端位置、左下端位置及び、方位情報、拡縮情報を他方のアプリへ同期します。

● 360 度画像保存

- ▶ 360 度画像用サブビューの表示/非表示切り替え機能
 - ✓ バックグラウンドでキューブマップを作成しているサブビューを表示します。
- ▶ 360 度画像作成機能
 - ✓ 360 度画像の作成を開始します。作成が終了すると、自動的にダウンロードを行います。
- ▶ 360 度画像の解像度設定機能
 - ✓ 解像度を設定できます。単位は[px]で、最低 0[px]、最大解像度は 1024[px] となります。
 - ✓ 最終的にできる全天球画像は、解像度をsとすると、 $4s \times 2s$ となります。
- ▶ 360 度画像用サブビュー作成の待ち時間設定機能
 - ✓ キューブマップ作成時、現在の視点での読み込み予定のタイル画像がサーバ上に存在しない場合の、画像取得のタイムアウト時間を設定できます。 単位は「秒」です。

2.3.3 製作ライブラリ

データ分析・可視化機能を実現するため、以下の機能を有するライブラリを作成いたします。

設計、作成するライブラリ及び、それらに実装する機能を以下に記載します。

1. ViewURL

- ➤ WebGIS アプリが表示している時空間情報や可視化されたデータの表示状況を文字情報に変換し、URL に付与することで一時記録する機能
- ▶ ViewURL で変換された、時空間情報や可視化されたデータについても文字列を読み取り、WebGIS アプリの表示へ復元する機能

2. 連続画像キャプチャ

- ➤ WebGIS アプリの時間情報を一定間隔で変更し、時間変更ごとに画面キャ プチャを 1 回取得する機能
- ▶ 対応する Web ブラウザは Google Chrome

3. データ選択メニュー

➤ WebGIS アプリケーションの目的により、ユーザが動的に可視化対象のデータを選択するメニュー機能

4. 点群表示ライブラリ

- ▶ 複数の点群データを WebGIS アプリ上に可視化表示する機能
 - ✓ 一部の値が欠損したデータをエラーなくも取り扱えるよう実装します。
 - ✓ 時刻、位置情報、1種類以上の数値情報、または属性等のメタ情報を有 する点群データを取り扱えるよう実装します。
 - ✓ Potree 等の階層型データ構造に対応します。
 - ✓ 可視化対象のデータ数は無制限に扱えるように実装します。
- ▶ WebGIS アプリの現在時刻に合わせた点群データを可視化表示する機能
- ▶ 点群データを DBMS から WebAPI にから取得する機能。
- ▶ 点群データの数値や属性、及びデータの有無により、各面の表示・非表示を 切り替える機能
- ▶ 点群データの数値に応じて各点のテクスチャ色を変更する機能
- ▶ 点群と他のポリゴン系データ(点、線、面)の相対的位置関係を判定する機能

5. 面群表示ライブラリ

- ➤ 複数の面群データ(エリア情報)を WebGIS アプリ上に可視化表示する機能。
 - ✓ 一部の値が欠損したデータをエラーなくも取り扱えるよう実装します。
 - ✓ 時刻、位置情報、1種類以上の数値情報または属性等のメタ情報を有するデータを取り扱えるように実装します。
 - ✓ 可視化対象のデータ数は無制限に扱えるように実装します。
- ▶ WebGIS アプリの現在時刻に合わせた面群データを可視化表示する機能
- ▶ 面群データを DBMS から WebAPI により取得する機能
- ▶ 面群データの数値や属性、及びデータの有無により、各面の表示・非表示を 切り替える機能
- ▶ 面群データの数値に応じて各面のテクスチャ色及び透明度を変更する機能✓ 複数の面群をオーバーレイ表示できる機能を実装します。
 - ✓ 面群を一つにまとめることで、対象エリア全体をヒートマップの様な グラデーションによる表現ができるように実装します。
 - ✓ 可視化対象のデータ数は無制限に扱えるように実装します。
- ▶ 面群とポリゴン系データ(点、線、面)の相対的位置関係を判定できる機能
- ➤ 面群は任意サイズの矩形や円(楕円を含む)等の標準的な形状で表示する機能
 - ✓ 緯度・経度、距離(kmなど)から選択できるように実装します。

6. 立体グラフ表示ライブラリ

- ▶ 空間分布する時系列データを WebGIS アプリ上で立体的に表示する機能
- ▶ 立体グラフの高さやテクスチャ色(濃淡を含む)がデータに応じて設定される機能
- ▶ デザインをユーザが選択する機能
 - ✓ 高さや太さを選択できるように実装します。
 - ✓ デザインやテクスチャ色を選択する UI (メニュー) を実装します。

7. 3次元オブジェクトのテクスチャ変更機能

- ▶ WebGIS アプリの 3 次元オブジェクトについてはテクスチャ色(濃淡を含む)をユーザが選択できる機能
 - ✓ テクスチャを選択するための UI を実装します。

2.4 テンプレート WebGIS アプリケーション

テンプレート WebGIS アプリケーション(以下「テンプレート WebGIS アプリ」)として、本システムの対象データを時系列及び3次元で可視化します。

2.4.1 機能項目

- テンプレート WebGIS アプリに実装する機能を以下に記載します。
 - 1. WebGIS の標準機能
 - ✓ ラスタデータの可視化機能
 - ✔ ベクタデータの可視化機能
 - ✓ ベクタデータの属性表示機能
 - ✓ 表示位置及び縮尺の制御機能(マウスによるビュー操作及びスライダー 等の GUI 操作)
 - ✓ 表示方向(視線のチルトを含めた回転)の制御機能(マウスによるビュー 操作及びスライダー等の GUI 操作)
 - ✓ ランドマークへの表示位置移動機能

2. 時系列データの可視化機能

- ✓ タイムスライダーライブラリを iTwons に組み込み、タイムスライダー の現在時刻によりテンプレート WebGIS アプリの現在時刻を定義する。 対象データのうち時系列データについて、現在時刻に対応したデータ を可視化する。
- ✓ タイムスライダーが備える自動現在時刻変更機能と連動し、テンプレート WebGIS アプリで可視化する時系列データの時刻を変更する。

3. ユーザ操作による時系列データ表示時刻の指定機能

- ✓ ユーザはタイムスライダーを操作することにより時系列データ表示時刻の指定できるものとする、ユーザが指定した時刻の設定に従い、テンプレート WebGIS アプリで時系列データを可視化する。
- 4. 複数データの地図上への表示/非表示の選択機能
 - ✓ テンプレート WebGIS アプリでは任意の対象データを可視化できるものとし、その一覧をユーザが操作可能なレイヤツリー又はレイヤリスト(以下「レイヤパネル」)の形でテンプレート WebGIS アプリ内に一覧表示する。
 - ✓ レイヤパネルに一覧表示された対象データはそれぞれに表示/非表示をコントロールするための UI(チェックボックスまたは選択可能リスト)を装備する。

✓ テンプレート WebGIS アプリはレイヤパネルで表示設定された複数の レイヤを重畳表示する。

2.5 サンプル WebGIS アプリケーション

テンプレート WebGIS アプリをベースとして、「災害状況可視化 WebGIS アプリ」として、本システムの対象データのから特定の主題に沿ったデータを抽出し、主題において重要な時系列データを可視化します。

2.5.1 災害状況可視化 WebGIS アプリ

- 災害状況可視化 WebGIS アプリのうち、テンプレート WebGIS アプリに装備しない機能を以下に記載します。
 - 1. 時系列 360 度画像の作成機能
 - ✓ 360 度画像保存ライブラリの機能を用いて、時系列 360 度画像を作成する。