17b. Měření rozptylového magnetického pole transformátoru

Úkol měření

- 1. Určete potřebné parametry měřicí cívky: konstantu K_{CH} , vlastní rezonanční úhlový kmitočet ω_r a hodnoty prvků L_s a C_p paralelního náhradního schématu.
- 2. Změřte rozptylové magnetické pole transformátoru. Měření proveďte ve vodorovné rovině procházející středním sloupkem transformátoru (viz obr. 4).
- 3. Z výsledků měření určete, v jaké vzdálenosti lze pole transformátoru považovat za pole dipólového charakteru.

Schéma zapojení - viz obr. 2 a 3

Poznámky k měření

Pro periodické průběhy s jedním průchodem nulou během periody, lze magnetickou indukci vypočítat ze vztahu

$$B_{\rm m} = \frac{U_{\rm s}}{4f \, S \, N} \tag{1}$$

kde $B_{\rm m}$ je maximální hodnota složky měřené indukce B(t) (T),

 U_s aritmetická střední hodnota napětí U(t) (po dvoucestném usměrnění) indukovaného v měřicí cívce (V),

f kmitočet základní harmonické měřeného napětí (Hz),

N počet závitů měřicí cívky,

S plocha průřezu měřicí cívky (m²).

Maximální hodnotu intenzity magnetického pole $H_{\rm m}$ vypočítáme ze vztahu

$$H_{\rm m} = \frac{B_{\rm m}}{\mu_0} \left(\text{A m}^{-1}; \text{ T, } \mu_0 = 4\pi \cdot 10^{-7} \,\text{H m}^{-1} \right)$$
 (2)

Budeme-li napětí indukované v měřicí cívce měřit voltmetrem udávajícím hodnotu $U_{\rm ef}$ získanou měřením střední hodnoty $U_{\rm s}$ po dvoucestném usměrnění a násobením činitelem tvaru 1,11 pro sinusový průběh, můžeme hodnotu $U_{\rm s}$ získat vydělením údaje přístroje 1,11. (Pozor, pro neharmonický průběh neodpovídá údaj efektivní hodnotě).

Měřený objekt

V některých případech lze zdroj magnetického pole, jehož siločáry se uzavírají převážně vzduchem, přibližně nahradit polem magnetického dipólu (viz obr. 1).

Obr. 1 Souřadnicový systém pro měření dipólového pole v rovině xy

Za předpokladu, že $\Delta \ll x$ resp. y, lze intenzitu magnetického pole v rovině xy na osách x a y vyjádřit vztahy

$$H_x = \frac{m_{\rm C}}{2\pi\mu_0 x^3}, \quad H_y = \frac{m_{\rm C}}{4\pi\mu_0 y^3}$$
 (3)

kde $m_{\rm C}$ je Coulombův magnetický moment (Wb·m = T·m³), μ_0 je magnetická konstanta (permeabilita vakua) = $4\pi \cdot 10^{-7}$ (H·m⁻¹),

x, y jsou vzdálenosti měřených bodů od středu dipólu (m).

Lze-li měřením složek H_x a H_y dokázat, že v určité vzdálenosti od měřeného objektu má magnetické pole dipólový charakter, je v této oblasti zcela určeno hodnotou m_C .

Určení parametrů měřicí cívky

Odpor vinutí cívky $R_S = k\Omega$ (lze určit libovolnou stejnosměrnou metodou). Celkovou impedanci cívky změříme např. Ohmovou metodou. Předem musíme ale znát hodnotu vlastního rezonančního kmitočtu f_r cívky, který zjistíme např. měřením v zapojení podle obr. 2.

Obr. 2 Obvod pro stanovení vlastního rezonančního kmitočtu

Obvod je napájen ze zdroje konstantního napětí U. Při rezonančním kmitočtu f_r , kdy je impedance cívky maximální, je proud I minimální. Platí

$$f_{\rm r} = \frac{1}{2\pi\sqrt{L_{\rm s}C_{\rm p}}}\tag{4}$$

Poznámka: Kapacita C_p je fiktivní a nahrazuje účinek jednotlivých mezizávitových kapacit. Náhradní obvod dobře vyhovuje pro nejnižší rezonanční kmitočet, kapacita C_p je zde tvořena hlavně kapacitou kabelu.

Impedanci měřicí cívky měříme při $f_m = 0,1 f_r$, kdy je vliv C_p zanedbatelný. Pro impedanci při kmitočtu f_m platí

$$Z_{\rm m} = \frac{U_{\rm m}}{I_{\rm m}} = \sqrt{R_{\rm s}^2 + \omega_{\rm m}^2 L_{\rm s}^2}, \quad L_{\rm s} = \frac{1}{\omega_{\rm m}} \sqrt{Z_{\rm m}^2 - R_{\rm s}^2}$$
 (5)

kde $U_{\rm m}$ je napětí měřené při kmitočtu $f_{\rm m}$, $I_{\rm m}$ je proud měřený při kmitočtu $f_{\rm m}$.

Hodnotu C_p vypočteme ze vztahu (4), kde známe změřený rezonanční kmitočet f_r a indukčnost L_s .

Určení konstanty měřicí cívky

Konstantu K_{CH} měřicí cívky určíme ve známém poli Helmholtzových cívek v zapojení podle obr. 3. Protože magnetické pole cívek má stejnou frekvenci (50 Hz) a stejný průběh (harmonický) jako rozptylové pole transformátoru, platí

$$K_{\rm CH} = \frac{H_{\rm max}}{U_{\rm ef}} = \frac{\sqrt{2}I_{\rm ef}K_{\rm HZ}}{U_{\rm ef}} \tag{6}$$

kde $K_{\rm HZ}$ - konstanta Helmholtzových cívek (m⁻¹),

 $I_{\rm ef}$ - proud Helmholzových cívek (A),

 $U_{\rm ef}$ - napětí indukované v měřicí cívce (V).

Obr. 3 Obvod pro stanovení konstanty měřicí cívky

Měření intenzity rozptylového pole transformátoru

Měření rozptylového magnetického pole transformátoru provedeme v uspořádání dle obr. 4.

V několika vzdálenostech na osách x a y od středu transformátoru změříme napětí indukovaná v měřicí cívce a s využitím vztahu (6) vypočteme hodnoty intenzity $H_{xmax} = K_{CH} \cdot U_{Hx} = f(x)$ a $H_{ymax} = K_{CH} \cdot U_{Hy} = f(y)$.

Z naměřených hodnot vypočteme podle (3) $m_{\rm C}$ a zjistíme, v jakých vzdálenostech měřené pole odpovídá poli dipólového charakteru ($m_{\rm C}$ = konst).

Obr. 4 Umístění sondy pro měření rozptylového pole

Poznámka: Před měřením je nutno při vypnutém napájení transformátoru pro každou polohu měřicí cívky zkontrolovat napětí vyvolané rušivým magnetickým, resp. elektrickým polem. Jeho hodnota musí být zanedbatelná vzhledem k napětí indukovanému rozptylovým polem transformátoru.