Tel Aviv University 15/12/2016

Introduction to Modern Cryptography (0368.3049) – Ex. 4 Benny Chor and Orit Moskovich

Submission in singles or pairs to Orr Fischer's Schreiber mailbox (289) until 28/12/2016, 23:59 (IST)

- Appeals/missing grade issues: bdikacs AT gmail.com
- Issues regarding missing/unchecked assignments will be addressed only if a soft copy will be submitted <u>on time</u> to: crypto.f16 AT gmail.com.
 Subject of the email: Ex.4, ID

1. Testing Primality of Charmichael Numbers:

This question deals with a test aimed at determining that Charmichael numbers are composites. As discussed in class (lecture 6, slides 39-40), if m is a Charmichael number, then for every $1 < a \le m-1$, if $\gcd(a,m)=1$, then $a^{m-1}=1 \pmod m$. Thus, if all prime factors of m are large (such numbers do exist), most candidate witnesses will be relatively prime to m and will also provide no evidence for compositeness in the standard Fermat test. In this question we will go through a concrete example for the compositeness test developed for Charmichael numbers.

Consider the Charmichael number m=90256390764228001. Its prime factorization is $m=380251\cdot 410671\cdot 577981$, and m-1 factorization is $m-1=2^5\cdot 3^6\cdot 5^3\cdot 13^2\cdot 19^2\cdot 61\cdot 8317$. Let 1< a< m be an integer. Since $2^5=32$ divides m-1, the exponentiations (all modulo m) $a^{(m-1)/32}, a^{(m-1)/16}, \ldots, a^{(m-1)/2}, a^{m-1}$ are all well defined.

Write a short Sage program that chooses at random 100 a in the range 1 < a < m. For each of those, compute gcd(a, m) and the largest $i, 1 \le i \le 5$ such that $a^{(m-1)/2^i} \ne \pm 1$ (in $Z_m, -1$ is simply m-1), but $a^{(m-1)/2^{i-1}} = 1$.

Submit your code and the following statistics: How many a's had $gcd(a, m) \neq 1$ (with high probability you won't see any), for how many a's the largest such i equals 5, 4, 3, 2, 1, or that no such i exists (though that would surprise us). Briefly explain why any a with $i, 1 \leq i \leq 5$ provides a *proof* that m is composite.

2. Square Roots and Factorization: We are given a composite number, m, which is n bits long, and we are told it is a product of two large primes $m = p \cdot q$. Recall that every square $x = z^2 \in Z_{pq}^*$ has four square roots in Z_{pq}^* .

Suppose we are now supplied with a blackbox deterministic algorithm \mathcal{A} (we can feed it with several inputs and observe the outputs, but have no access to its internal working). On input $y \in Z_{pq}^*$, \mathcal{A} produces one of the following: If y is not a quadratic residue, then \mathcal{A} outputs the text ''go catch a Stellagama stellio'' (it sounds better in Hebrew, as you could see in the original, below). If $y = x^2$ is a quadratic residue, \mathcal{A} outputs one square root of y.

¹taken from a paper by G.E. Pinch, titled "the Charmichael numbers up to 10¹⁷".

Suppose on input y, A takes t(n) steps. Furthermore, assume that gcd of two n bit numbers can be performed in t(n) steps. Show how to use A in order to factor m with high probability in O(t(n)) steps. Explain your analysis, and why randomization is essential in it.

3. Pollard's ρ Algorithm:

Write a short Sage or Python code that implements Pollard's ρ factoring algorithm. Let x_0 (the starting point) and c (of the "random function" $F(z) := z^2 + c$) be two parameters in your program.

1) Choose at random two prime numbers p and q such that $2^{45} and <math>2^{47} < q < 2^{48}$, and let m = pq. Print p,q and m. Run your implementation with c = 1 and with four additional values of c. For each c, run three different starting points x_0 . For each choice print x_0 , c, the number of iterations, i, to factor N, and whether the factor found was p or q. Compare the number of iterations to \sqrt{p} . (Do not print intermediate results. Also set up some upper bound and abort in case a factor is not found after that many iterations.)

Can you make any recommendation of preferred values for c and x_0 based on this small scale experiment?

2) Execute the same instructions as in (1), only this time use the "random function" F(z) := z + c. Did your program terminate in any of the executions? If not, explain why you think this is the case.

4. Implementing RSA:

In this problem we will implement an instance of the RSA cryptosystem using Sage/Python. Start by choosing at random two prime numbers p and q. The prime number p should be 82 digits long and p-1 should have a prime factor that is at least 72 digits long. The prime number q should be 77 digits long and q-1 should have a prime factor that is at least 70 digits long. Let N=pq. Pick at random e and d that are appropriate encryption and decryption RSA exponents.

1) Print (with appropriate headings so we know what these numbers are) the numbers N, p, q, e and d, and also the complete factorizations of p-1 and of q-1. As a "scale for measuring lengths" print 10^{82} and 10^{72} as well so they are aligned with p and q respectively. Explain (in

plain language, not in code) how p and q were found and especially how the random choices were made.

- 2) Use the simple coding scheme presented in class (space=00, A=01, B=02,...,Z=26). Make up a short text, encode it (ascii to numbers), encrypt it under your public key, then decrypt using the private key. Print the plaintext message, its encryption and the decryption.
- 5. Let p be a prime and let $g \in \mathbb{Z}_p^*$ be a generator. Suppose that there exists a polynomial-time algorithm A that given $p, g, g^x \mod p$ finds x for $\frac{1}{1000}$ of the possible x's. Show how to use A as a subroutine to construct a probabilistic polynomial time algorithm B that solves the DL problem for all instances (i.e., for every $x \in \mathbb{Z}_p^*$) with probability $\geq \frac{1}{2}$. Analyze the running time of B.
- 6. Consider the following public-key encryption scheme. The public key is $(G, q, g, h = g^x)$ and the private key is x, generated exactly as in the ElGamal encryption scheme. In order to encrypt a bit b, the sender does the following:
 - If b = 0 then choose a random $y \in \mathbb{Z}_q$ and compute $c_1 = g^y$ and $c_2 = h^y$. The ciphertext is (c_1, c_2) .
 - If b = 1 then choose independent random $y, z \in \mathbb{Z}_q$, compute $c_1 = g^y$ and $c_2 = g^z$, and set the ciphertext equal to (c_1, c_2) .
 - (a) Show that it is possible to decrypt efficiently (with some negligible error probability) given knowledge of the secret-key x.
 - (b) Prove that this encryption scheme is CPA-secure if the Decisional Diffie-Hellman problem is hard.
- 7. Theorem: If an encryption scheme is ε -CPA-secure (for one message), then it is ε_t -CPA-secure for t messages.

We have proved that if an encryption scheme is ε -CPA-secure, then it is ε_2 -CPA-secure for encryption of 2 messages.

In this question, we will generalize the hybrid argument we have seen in class to t messages:

Step 1: Define the vectors:

$$C^{i} = \left(\underbrace{Enc_{pk}(m_{0}^{1}), ..., Enc_{pk}(m_{0}^{i})}_{i \text{ terms}}, \underbrace{Enc_{pk}(m_{1}^{i+1}), ... Enc_{pk}(m_{1}^{t}))}_{t-i \text{ terms}}\right)$$

Step 2: Define the experiment for A_{mult} as follows:

- (a) A random key (pk, sk) is generated using Gen
- (b) A_{mult} is given pk and outputs a pair of vectors $M_0 = (m_0^1, ..., m_0^t)$ and $M_1 = (m_1^0, ..., m_1^t)$
- (c) A random bit $b \leftarrow \{0,1\}$ is chosen
- (d) The vector $C = (Enc_{pk}(m_b^1), ..., Enc_{pk}(m_b^t))$ is given to A_{mult}

(e) A_{mult} outputs a bit b'

Step 3: Define A_1 as follows:

- (a) A random key (pk, sk) is generated using Gen
- (b) A_1 is given pk and runs A_{mult} to obtain a pair of vectors $M_0 = (m_0^1, ..., m_0^t)$ and $M_1 = (m_1^0, ..., m_1^t)$
- (c) A_1 chooses a random index $i \leftarrow \{1,...,t\}$ and outputs the pair m_0^i, m_1^i
- (d) A random bit $b \leftarrow \{0,1\}$ is chosen
- (e) A_1 is given $c^i = Enc_{pk}(m_b^1)$
- (f) For j < i: A_1 computes $c^j = Enc_{pk}(m_0^j)$
 - For j > i: A_1 computes $c^j = Enc_{pk}(m_1^j)$
 - A_1 generates the vector $C = (c_1, ..., c_i, ..., c_t)$ and give the result to A_{mult}
- (g) A_1 outputs the bit that is output by A_{mult}

Then, assuming the encryption scheme is ε -CPA secure:

$$Pr[A_1 \text{ wins}] \le \frac{1}{2} + \varepsilon$$

Step 4: (This is your task!) Use A_1 in order to prove:

$$\begin{split} Pr[A_{mult} \text{ wins}] &= \frac{1}{2} \cdot Pr[A_{mult} \text{ outputs 0 on } (Enc_{pk}(m_0^1), ..., Enc_{pk}(m_0^t))] \\ &+ \frac{1}{2} \cdot Pr[A_{mult} \text{ outputs 1 on } (Enc_{pk}(m_1^1), ..., Enc_{pk}(m_1^t))] \\ &= \frac{1}{2} \cdot Pr[A_{mult} \text{ outputs 0 on } C^0] \\ &+ \frac{1}{2} \cdot Pr[A_{mult} \text{ outputs 1 on } C^t] \\ &\leq \frac{1}{2} + \varepsilon_t \end{split}$$

For this, you might want to consider $Pr[A_1 \text{ outputs } 0|b=0] = ?$ and $Pr[A_1 \text{ outputs } 1|b=0] = ?$ in terms of i (use the law of total probability).

- 8. Let p,q be two n-bit primes, chosen at random in the corresponding range. Let m=pq, and a be chosen at random in the range 2 < a < m-2. Given a positive integer t, how many modular multiplications of O(n) bit numbers does it take to compute $a^{2^t} \pmod{m}$, as a function of t and t (using good old iterated squaring, which you all saw back in the CS1001.py course):
 - When the factorization of m is unknown.
 - When the factorization of m is known.