

Introduction to AI and Machine Learning

School of Engineering Nanyang Polytechnic

- 1. Overview of AI, ML, and DL
- 2. Machine Learning Types and Techniques
- 3. Machine Learning Modeling Process
- 4. Practical: Regression Models in ML

3. Machine Learning Modelling Process

- 3.1. The Machine Learning Pipeline
- 3.2. Use Case and Applications
- 3.3. Activity: Business Problem and Formulation

3.1. The Machine Learning Pipeline

ML is not a solution for every type of problem

You can solve it with simple rule or computations

- You cannot code the rule to make a prediction
- You cannot scale predictions

Machine learning may help address a variety of business needs

- Categorization
- Predictive routing
- Fraud detection
- Personalized Advertising
- Voice assistants
- Dynamic pricing
- Email filtering
- Self-driving cars
- Customer churn prediction

Applying the ML Process

3.2. Use Case and Applications

Case study: The Amazon call center problem

Business problem and problem formulation phase

Business Problem

How do you route customers to the correct agent?

ML Problem

Identifying patterns in customer data that we could use to predict accurate customer routing.

Data collection and integration phase

Since we wanted to base our prediction on past data from customer service calls we were dealing with supervised learning

Data pre-processing and visualization phase

This phase includes data cleaning and exploratory data analysis

Data pre-processing and visualization phase (Cont'd)

Visual analysis to better understand the data

Model training phase

Model Training:

Used 80% of the data to develop (train) the model

Used 10% of the data to improve the model with each training iteration

Model evaluation phase

Model Evaluation:

Used 10% of the data to verify that model is performing at or above necessary accuracy

- How often did it route calls correctly on the first try?
- How many times on average did calls have to be rerouted?
- Do these results meet our business needs

Model tuning and feature engineering phase

After running a training job, we evaluated our model and began a process of iterative tweaks to the model and our data to control how fast or slow our model was learning

Model tuning and feature engineering phase (Cont'd)

Model tuning and feature engineering phase (Cont'd)

Problem Formulation

- Defining the problem
- Choosing data
- Identifying success
- Summary

Defining the business problem

Example: some products are overstocked and some are understocked, leading to increased overhead costs and missed sales.

What model do we choose?

Use this information to determine the type of machine learning problem you are working with.

Other Problems: Product sales predictions

You want to determine if you should carry a product in stock at all.

You've decided to rule out any product that will have less than 100 sales

Prediction: No

This is a binary classification problem

Example: Product sales predictions

You want to determine the best month to put each product on sales

This is a multi-class classification problem

Frame the simplest solution

... but try not to lose important information

Choosing data

Get an understanding of your data

- How much data do you have and where is it?
- Do you have access to that data

Get a domain expert

- Do you have the data you need to try to address this problem
- Is your data representative?

Evaluate the quality of your data

Product name	Price	Max stock	Current stock	Sales this week
Soap	1.99	20	14	49
Shampoo	6.99	20	2	23
Hair brushes	12.95	30	12	2
Toothpaste	3.50	30	13	40
Toothbrushes	5.00	20	?	?
Lotion	8.75	10	?	?

Start identifying features and labels you already have

	Features		Already known		
Customer	Date of transaction	Vendor	Charge amount	Was this fraud?	
ABC	10/5	Store 1	10.99	No	
DEF	10/5	Store 2	999.99	Yes	
GHI	10/5	Store 2	15.00	No	
JKL	10/6	Store 2	699.99	?	
MNO	10/6	Store 1	999.99	Yes	

Do you need a lot of labelled data?

Example: Training data for autonomous driving requires a lot of labels

Ground Truth

You can get help for generating labelled data, e.g.

Sends a sample of your data...

... to human who label it and send it...

... back to a service where Al can help with labelling the ground truth

Ground Truth (Cont'd)

The AI sees how the humans labelled the data...

...then uses AI/ML to learn to add label to unseen data where...

accurate training dataset that's ready to use

Choose the type of workforce

Publicly crowdsourced workforce

You own internal workforce

Pre- approved third- party vendors

Identify Success

How will you know you're doing it right?

Model Performance metrics

- Used during the testing and evaluation sections of ML pipeline
- Typically expressed in terms of accuracy

Business goal metrics

- Used after the model has been deployed
- Measure how well the model is performing in the real world
- Can identify an inappropriate model performance metric

Identify Success (Cont'd)

How will you know you're doing it right?

Model Performance metrics

 Example: "The model needs to accurately identify at least 75% of the fraudulent transactions in the test datasets."

Business goal metrics

 Example: "Six month after the model has been deployment, we should have at least 50% fewer customer who cancel their cards due to fraudulent transactions

3.3 Activity: Business Problem and Formulation Exercise

Activity

Choose a project and form teams

1. Choose the project you would like to work on (refer to the activity sheet).

Activity

Choose a project and form teams

- 1. Choose the project you would like to work on (refer to the activity sheet).
- 2. Move to your project designated area of the classroom / breakout rooms

- 3. Introduce yourself, talk about your background and relevant skills.
 - A . Break into teams of 2-4 peoples (3 is ideal)
 - **B.** Each team should try to have a diverse set of background and skills, to emulate how real world ML teams typically function
 - **C.** Feel free to change project if that makes it easier to form a team.
 - D. You can work in you own notebooks individually, but consult with each other as a team to develop strategies and troubleshoot problem. Share you expertise with each other, just like you would have to in a real world environment.

Share outs

Periodically, you will asked to shared what you're finding:

- Summarize your finding;
- Talk about any challenges you ran into
- If you'd like, you can use a PowerPoint presentation

Problem formulation activity

Estimated completion time for each team: 30min

Read through each business scenario and:

- Determine if and why ML is an appropriate solution to deploy
- 2. Formulate the business problem, success metrics, and desired ML output
- 3. Identify the type of ML problem you're dealing with
- 4. Analyze the appropriateness of data you're working with

Group Sharing

Estimated time for all groups (depending on number of groups): 45 min

Share with the class

- What is the proposed solution from your group?
- Did your group come to a different conclusion? Why?
- What kinds of data would you want to have access to in order to best address the problem?

End of Chapter 3

Q&A