Ensembles et applications

Ensembles

I.1 Notion d'ensemble

Déf. • Ensemble, appartenance

Un **ensemble** *E* est une collection non ordonnée et sans répétition d'objets. Ces objets sont appelé les éléments de E.

Lorsque a est un élément de E, on dit que a appartient à E et on note ceci $a \in E$.

Illustr @

Ex. * Sur les notes de cours, divers exemples d'ensembles de nombres ainsi que d'autres types d'ensembles.

- Petits ensembles
 - 1) Il existe un seul ensemble ne comprenant aucun élément : il s'agit de l'ensemble vide qui est noté Ø.
 - 2) Un singleton est un ensemble comprenant un seul élément.
 - 3) Un ensemble fini est un ensemble comprenant un nombre fini d'éléments ; dans le cas contraire on parle d'ensemble infini.

Quand un ensemble est fini, on peut l'écrire en listant ses éléments, séparés par des virgules et encadrés par des accolades :

 $E = \{1, 4, 5\}$ est l'ensemble comprenant les trois éléments 1, 4 et 5.

La notation analogue pour les ensembles infinis est l'écriture en extension. Par exemple, l'ensemble comprenant tous les carrés d'entiers naturels s'écrit

$$C = \left\{ n^2, \quad n \in \mathbb{N} \right\}.$$

Cette écriture se lit « ensemble des n^2 , où n appartient à \mathbb{N} » ou encore « ensemble des n^2 lorsque n parcourt \mathbb{N} ». Si k est un objet quelconque, on aura

$$k \in C \iff \exists n \in \mathbb{N}, k = n^2.$$

Propr. • Égalité d'ensembles

Deux ensembles A et B sont égaux si et seulement si ils ont exactement les mêmes éléments, autrement dit, si et seulement si on a :

$$x \in A \iff x \in B$$
.

I.2 Notion de partie (ou sous-ensemble)

Déf. • Notion de partie

Soit A et B deux ensembles.

- 1) On dit que A est inclus dans B et on note $A \subset B$ lorsque tout élément de A est également un élément de B.
- 2) Lorsque A est inclus dans B, on dit aussi que A est une partie de B ou que A est sous-ensemble de B.

Illustr.

Attention $\ ^{\bullet}$ Ne pas confondre $a \in B$, où a est un objet et B est un ensemble, et $A \subset B$, où A et B sont deux ensembles.

Méthode \mathscr{O} Pour démontrer que $A \subset B$, on prend un élément quelconque de A et on démontre qu'il se trouve obligatoirement dans B.

Exercice 1 \blacktriangleright Montrer que si $A \subset B$ et $B \subset C$, alors $A \subset C$.

Quand on fabrique un ensemble *A* en partant d'un ensemble *E* et en ne conservant que les éléments qui vérifient une certaine propriété, on peut écrire ces ensembles **en compréhension** :

$$\mathbb{R}_{+} = \{ x \in \mathbb{R} \ / \ x \ge 0 \}, \qquad \mathbb{U} = \{ z \in \mathbb{C} \ / \ |z| = 1 \}.$$

La barre oblique (parfois verticale) se lit « tels que ». Traduction formelle :

$$x \in \mathbb{R}_+ \iff \begin{cases} x \in \mathbb{R} \\ x \geqslant 0 \end{cases}, \qquad z \in \mathbb{U} \iff \begin{cases} z \in \mathbb{C} \\ |z| = 1. \end{cases}$$

Exercice 2 \blacktriangleright Expliciter l'ensemble $\mathcal{S} = \{x \in \mathbb{R} \mid 6x^3 + x^2 - 10x + 3 = 0\}.$

Exercice 3 ► Comparer $A = \{(x, y) \in \mathbb{R}^2 / y = x^2\}$ et $B = \{(u, v) \in \mathbb{R}^2 / v^2 = u^4\}$.

Propr. • Égalité d'ensembles par double inclusion

Soit A et B deux ensembles. Alors A = B si et seulement si $A \subset B$ et $B \subset A$.

Rem.

Quand on utilise cette propriété pour démontrer que deux ensembles sont égaux, on dit que l'on procède par double inclusion.

Exercice 4 \blacktriangleright Montrer que $\{x^2, x \in \mathbb{Q}_+\} = \{x^2, x \in \mathbb{Q}\}.$

Opérations sur les ensembles

I.3.1 Réunion

Déf. • Réunion de deux ensembles

Soit A et B deux parties d'un ensemble E. La réunion de A et B est l'ensemble comprenant les éléments qui se trouvent dans l'ensemble A, ou dans l'ensemble B, ou dans les deux à la fois.

On la note $A \cup B$, ce qu'on lit « A union B ».

Formellement, on a

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$
 et $\forall x \in E, x \in A \cup B \iff x \in A \text{ ou } x \in B.$

Illustr.

Exercice 5 \blacktriangleright Résoudre l'équation $\cos(2x) = \frac{1}{4}$ d'inconnue $x \in \mathbb{R}$.

- Propr. Soit A, B et C trois parties de E. Alors on a :
 - 1) $A \cup A = A$, $A \cup E = E$ et $A \cup \emptyset = A$.
 - 2) La réunion est commutative : $A \cup B = B \cup A$.
 - 3) La réunion est associative : $(A \cup B) \cup C = A \cup (B \cup C)$.
 - **4)** $A \subset A \cup B$ et $B \subset A \cup B$.
 - **5)** $A \subset B \iff A \cup B = B$.

1.3.2 Intersection

Déf. • Intersection de deux ensembles

Soit *A* et *B* deux parties d'un ensemble *E*.

1) L'intersection de A et B est l'ensemble comprenant les éléments qui se trouvent à la fois dans l'ensemble A et dans l'ensemble B. On la note $A \cap B$, ce qu'on lit « A inter B ». Formellement, on a :

$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$$
 et $\forall x \in E, x \in A \cap B \iff x \in A \text{ et } x \in B.$

2) On dit que *A* et *B* sont des ensembles disjoints lorsque $A \cap B = \emptyset$. Illustr @

Ex. *** 1)**
$$]-1,1[\cap[0,2]=]0,1],]-1,1[\cup[0,2]=]-1,2].$$

2) $\mathbb{Z} \cap \mathbb{R}_+ = \mathbb{N}_+$

Exercice 6 ► Soit
$$P_1 = \{(x, y, z) \in \mathbb{R}^3 / 3x - 2y + z = 1\}$$
 et $P_2 = \{(x, y, z) \in \mathbb{R}^3 / 2x - y - z = 2\}$. Déterminer $P_1 \cap P_2$.

- Propr. Soit A, B et C trois parties de E. Alors on a :
 - 1) $A \cap A = A$, $A \cap E = A$ et $A \cap \emptyset = \emptyset$.
 - 2) L'intersection est commutative : $A \cap B = B \cap A$.
 - 3) L'intersection est associative : $(A \cap B) \cap C = A \cap (B \cap C)$.
 - **4)** $A \cap B \subset A$ et $A \cap B \subset B$.
 - **5)** $A \cap B = A \iff A \subset B$.
 - **6)** L'intersection se distribue sur la réunion : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - 7) La réunion se distribue sur l'intersection : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

1.3.3 Complémentaire

Déf. • Complémentaire d'une partie

Soit *E* un ensemble, *A* une partie de *E*.

On appelle **complémentaire de** *A* **dans** *E* l'ensemble comprenant tous les éléments de E qui ne se trouvent pas dans A. On le note $\mathbf{c}_E A$ ou $E \setminus A$, ou encore, lorsque l'ensemble E peut être sous-entendu, \overline{A} . Formellement, on a :

$$\overline{A} = \{ x \in E / x \notin A \}$$
 et $\forall x \in E$, $x \in \overline{A} \iff x \notin A$.

Illustr.

- **Propr.** Soit A et B deux parties de E. Alors on a :
 - 1) $\overline{\varnothing} = E$, $\overline{E} = \varnothing$.
 - 2) $\overline{(\overline{A})} = A$.
 - **3)** $A \cup \overline{A} = E$, $A \cap \overline{A} = \emptyset$.
 - 4) Règles de De Morgan : $\overline{A \cup B} = \overline{A} \cap \overline{B}$ et $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Exercice 7 \blacktriangleright Montrer que si $A \subseteq B$, alors $\overline{B} \subseteq \overline{A}$.

1.3.4 Différence ensembliste

 $[Déf.] \bullet Soit E un ensemble, A et B deux parties de E.$ On appelle **différence ensemblistes de** *A* **et** *B* l'ensemble comprenant tous les éléments de A qui ne se trouvent pas dans B. On le note $A \setminus B$ ou A - B, et on le lit « A privé de B ». Formellement,

$$A \setminus B = \{x \in A \mid x \notin B\} = A \cap \overline{B}$$
 et $\forall x \in E, x \in A \setminus B \iff x \in A \text{ et } x \notin B.$

- Attention Attention Attention And pas confondre \ (« privé de », pour les différences ensemblistes) et / (« tel que », pour les définitions d'ensembles en compréhension).
- **Exercice 8** \triangleright Soit A, B et C trois parties d'un ensemble E. Démontrer que : $A \setminus (B \cup C) = (A \setminus B) \setminus C$.

1.3.5 Produits cartésiens

- Déf. Produit cartésien de deux ensembles
 - 1) Un **couple** est une liste ordonnée de deux éléments. On note (a, b) le couple formé des éléments a et b pris dans cet ordre.
 - 2) Soit E et F deux ensembles. Le produit cartésien de E par F est l'ensemble comprenant tous les couples formés, dans cet ordre, d'un élément de E et d'un élément de F. On le note $E \times F$, ce qu'on lit « E croix F ».

Ex. *** 1)** Si
$$A = \{1, 2, -1\}$$
 et $B = \{0, 1\}$, alors $A \times B = \{(1, 0), (1, 1), (2, 0), (2, 1), (-1, 0), (-1, 1)\}$.

- **2)** $A \times \{1\} = \{(1,1),(2,1),(-1,1)\},$ $A \times \{0\} = (1,0), (2,0), (2,-1)$
- 3) $A \times \emptyset = \emptyset$

Ouelques manipulations formelles:

$$(a,b) \in E \times F \iff a \in E \land b \in F$$

 $u \in E \times F \iff \exists a \in E, \exists b \in F, u = (a,b)$
 $(a,b) = (c,d) \iff a = c \land b = d$
 $(a,b) \neq (c,d) \iff a \neq c \lor b \neq d$

On généralise maintenant aux produits cartésiens de plusieurs ensembles :

- Déf. Produit cartésien d'un nombre finis d'ensembles Soit *n* un entier naturel non nul.
 - 1) Un *n*-uplet est une liste ordonnée (a_1, a_2, \dots, a_n) de *n* éléments.
 - 2) Si E_1, E_2, \dots, E_n sont des ensembles, leur produit cartésien est l'en**semble** $E_1 \times E_2 \times \cdots \times E_n$ comprenant tous les *n*-uplets d'éléments choisis (dans cet ordre) dans E_1, E_2, \ldots, E_n :

$$E_1 \times E_2 \times \cdots \times E_n = \{(a_1, a_2, \dots, a_n), a_1 \in E_1 \land a_2 \in E_2 \land \dots \land a_n \in E_n\}.$$

3) L'ensemble E^n est le produit cartésien $\underbrace{E \times E \times \cdots \times E}_{}$.

Exercice 9 \blacktriangleright Soit $E = \{0,1\}$, $F = \{1,2\}$ et $G = \{0,3\}$. Déterminer E^2 , $E \times F \times G$ et E^3 .

I.4 Ensemble des parties

Déf. • Ensemble des parties d'un ensemble

Soit *E* un ensemble. L'**ensemble des parties de** *E* est l'ensemble comprenant toutes les parties de E. On le note $\mathcal{P}(E)$.

Ainsi, les éléments de $\mathcal{P}(E)$ sont des ensembles : ce sont les sous-ensembles A de l'ensemble *E* :

$$A \subset E \iff A \in \mathscr{P}(E).$$

- **Exercise** 10 \triangleright Soit $E = \{a, b, c\}$ un ensemble comprehant trois éléments distincts.
 - 1) Décrire complètement l'ensemble $\mathscr{P}(E)$.
 - 2) Que peut-on dire de a et de $\{a\}$ par rapport à E et à $\mathcal{P}(E)$?
 - 3) Décrire $\mathscr{P}(\{1\})$ puis $\mathscr{P}(\emptyset)$.

Applications

Concept d'application

- Application, ensembles de départ et d'arrivée, images et antécédents Soit *E* et *F* deux ensembles non vides.
 - 1) Une application (ou fonction) f de E dans F est un procédé qui permet d'associer à chaque élément $x \in E$ un unique élément de F, que l'on note alors f(x). On écrit alors :

$$f: E \longrightarrow F$$

 $x \longmapsto f(x).$

- E est l'ensemble de définition (ou de départ) de f et F est l'ensemble d'arrivée de f.
- 3) Lorsque t = f(x), on dit que t est l'image de x par fet que x est un antécédent de t par f.

Pour montrer qu'une application $f: E \to F$ est bien définie, on montre que :

- 1) tout élément de *E* admet bien une et une seule image (elle existe bel et bien et elle n'est pas amibiguë);
- **2)** cette image se trouve bien dans *F*.

Ex. \bigstar 1) $\rho: \mathbb{C} \to \mathbb{R}_+, z \mapsto |z|$, arg: $\mathbb{C} \to \mathbb{R}, z \mapsto \arg(z)$.

- 2) $\tau: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto M^T$
- 3) tr: $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$, $M \mapsto \operatorname{tr}(M)$,
- **4)** Ω étant un point du plan et $\theta \in \mathbb{R}$, $r: \mathscr{P} \to \mathscr{P}, M \mapsto M'$ image de M par la rotation de centre Ω et d'angle θ .

Propr. • Égalité de deux fonctions

Deux fonctions f et g sont égales lorsque :

- 1) Elles ont même ensemble de définition et même ensemble d'arrivée E:
- 2) Pour tout $x \in E$, on a f(x) = g(x).

Déf. • Graphe d'une application

Soit $f: E \to F$. Le **graphe de la fonction** f est l'ensemble comprenant tous les couples (x, f(x)) pour x variant dans E. C'est une partie de $E \times F$.

II.2 Notions générales liées aux applications

Déf. • Applications particulières

Soit *E* un ensemble non vide.

1) L'identité de E est l'application de E dans E qui associe lui-même à chaque élément x de E. On note cette application Id_E . Ainsi :

$$\operatorname{Id}_E \colon E \longrightarrow E$$
 ainsi : $\forall x \in E$, $\operatorname{Id}_E(x) = x$.

2) Pour chaque partie A de l'ensemble E, la fonction indicatrice de A est l'application de E dans IR qui, à chaque élément x de E, associe 1 si $x \in A$ et 0 si $x \notin A$. On la note $\mathbb{1}_A$:

$$\begin{array}{ll} 1\!\!1_A\colon E\longrightarrow \mathbb{R} & \text{ainsi}: \quad \forall \ x\in E, \ 1\!\!1_A(x)=\begin{cases} 1 & \text{si} \ x\in A, \\ 0 & \text{si} \ x\not\in A. \end{cases}$$

$$x\longmapsto \begin{cases} 1 & \text{si} \ x\in A, \\ 0 & \text{si} \ x\not\in A. \end{cases}$$

Ex. * Avec $E = \mathbb{R}$, on a $\mathbb{1}_{[0,+\infty)}(3) = 1$ et $\mathbb{1}_{[0,+\infty)}(-2) = 0$.

Exercice 11 \triangleright Soit E un ensemble non vide, A et B deux parties de E. Montrer que $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$ et que $\mathbb{1}_{\overline{A}} = 1 - \mathbb{1}_A$.

Déf. • Ensembles de fonctions

Soit E et F deux ensembles non vides. L'ensemble comprenant toutes les fonctions de E dans F est noté $\mathcal{F}(E,F)$ ou encore F^E .

Ex. * $\mathbb{R}^{\mathbb{N}} = \mathscr{F}(\mathbb{N}, \mathbb{R})$ n'est autre que l'ensemble des suites réelles.

Soit $f: E \to F$ et $g: F \to G$, A une partie de E.

- 1) La **restriction de** f à A est la fonction $f|_A$ de A dans F telle que pour tout $x \in A$, $f|_{A}(x) = f(x)$.
- 2) La composée de f par g est l'application, de E dans G, qui à chaque xde l'ensemble E associe g(f(x)). On la note $g \circ f$.

II.3 Image directe et image réciproque d'une partie

Déf. • Image directe d'une partie

Soit $f: E \to F$, A une partie de E. L'image directe de A par la fonction f est l'ensemble comprenant les images de tous les éléments de *A* par la fonction *f* . On la note f(A). Formellement, on a

$$f(A) = \{f(x), x \in A\}$$

$$t \in f(A) \iff \exists x \in A, t = f(x).$$

Important \bullet Si B = f(A), A est une partie de l'espace de départ de f et B est une partie de l'espace d'arrivée de f.

Méthode **Pour déterminer** f(A):

- 1) Si f est une fonction de IR dans IR, utiliser le théorème de l'image directe.
- 2) Sinon procéder par conjecture/démonstration : pour prouver que $t \in f(A)$ il faut réussir à mettre t sous la forme $f(\star)$ où \star est un élément de A.

Déf. • Image réciproque d'une partie

Soit $f: E \to F$, B une partie de F. L'image réciproque de B par la fonction f est l'ensemble comprenant tous les antécédents des éléments de B par la fonction f. On la note $f^{-1}(B)$. Formellement, on a

$$f^{-1}(B) = \{x \in E / f(x) \in B\}$$
$$x \in f^{-1}(B) \iff f(x) \in B.$$

Important \bullet Si $A = f^{-1}(B)$, B est une partie de l'espace d'arrivée de f et A est une partie de l'espace de départ de f.

Méthode **Pour déterminer** $f^{-1}(B)$, on résout le problème « $f(x) \in B$ » d'inconnue $x \in E$. L'ensemble des solutions est alors $f^{-1}(B)$.

Exercice 12 \blacktriangleright Soit f la fonction carré, de IR dans IR. Déterminer $f^{-1}(]-1,3]$), $f^{-1}(]-3,-2[$) et $f^{-1}(\{5\})$.

Surjections, injections, bijections

III.1 Surjections

Déf. • Application surjective

Soit *E* et *F* deux ensembles non vides, $f: E \rightarrow F$.

On dit que f est surjective (ou que f est une surjection) si tout élément de l'espace d'arrivée de f admet au moins un antécédent par f. Formellement :

$$\forall t \in F, \exists x \in E, t = f(x).$$

Illustr.

Ex. * 1) Fonctions $x \mapsto x^2$ avec divers ensembles de départ et d'arrivée.

2) Fonction $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (2x - y + z, x + y - z)$

Propr. • Caractérisation des applications surjectives

Soit $f: E \to F$. Alors f est surjective si et seulement si f(E) = F.

Méthode Conséquence pratique : pour prouver qu'une application de IR dans IR est surjective, on peut essayer de calculer f(E) à l'aide du théorème de l'image directe.

Lorsqu'une application $f: E \to F$ n'est pas surjective, on peut toujours la « rendre surjective » en modifiant son espace d'arrivée : l'application $\tilde{f}: E \to f(E), x \mapsto f(x)$ est toujours surjective de manière évidente.

Propr. • La composée de deux surjections est une surjection.

Démo. Sur les notes de cours.

III.2 Injections

Déf. • Application injective

Soit *E* et *F* deux ensembles non vides, $f: E \to F$.

On dit que f est injective (ou que f est une injection) si tout élément de l'espace d'arrivée de f admet au plus un antécédent par f.

Illustr @

Ex. $\star \varphi: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (1+3t,2t)$, $\psi: \mathbb{R}^2 \to \mathbb{C}$, $(r,\theta) \mapsto r e^{i\theta}$, $k: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

Propr. • Caractérisation des applications injectives

Soit $f: E \to F$. Alors f est injective si et seulement si

$$\forall (x, x') \in E^2, \quad f(x) = f(x') \implies x = x'$$

Démo. Sur les notes de cours.

Ex. * Pour traiter la dérivation définie sur l'ensemble @ des fonctions réelles dérivables sur IR et sur $\mathcal{D}_0 = \{ f \in \mathcal{D} / f(1) = 0 \}.$

Méthode Pour prouver qu'une application est injective :

- 1) pour les fonctions réelles, on peut utiliser la stricte monotonie ;
- 2) sinon utiliser la caractérisation ci-dessus : supposer que f(x) = f(x') et prouver qu'alors x = x'.

• La composée de deux injections est une injection.

Démo. Sur les notes de cours.

III.3 Bijections

Déf. • Application bijective

Soit *E* et *F* deux ensembles non vides, $f: E \rightarrow F$.

On dit que f est bijective (ou que f est une bijection) si f est à la fois une injection et une surjection, autrement dit si tout élément de l'espace d'arrivée de f admet un et un seul antécédent par f.

Illustr.

Ex. *** 1)**
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{\sqrt{x}} + x$$
,

2) $\Phi: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto AM$ où A est une matrice inversible d'ordre n.

Méthode Pour montrer qu'une application est bijective :

- 1) Pour les fonctions d'une partie de IR dans IR, utiliser le théorème de la bijection monotone.
- 2) Montrer séparément injectivité et surjectivité.
- 3) Chercher les antécédents d'un élément quelconque t de l'espace d'arrivée de f et constater qu'il y en a toujours un et un seul.

Déf. • Bijection réciproque

Soit $f: E \to F$ une application bijective. On appelle bijection réciproque **de** f l'application de F dans E qui, à chaque élément t de F associe son unique antécédent par f. On la note f^{-1} .

Important \bullet Quand f est bijective, $f^{-1}(t)$ désigne donc l'unique antécédent de t par la fonction f.

Attention \$ Différents sens possibles pour la notation f^{-1} .

Propr. Propriétés algébriques des bijections réciproques

- 1) $f^{-1}: F \longrightarrow E$.
- 2) $\forall x \in E$, $f^{-1}(f(x)) = x$ autrement dit : $f^{-1} \circ f = \mathrm{Id}_{F}$.

- **3)** $\forall t \in F$, $f(f^{-1}(t)) = t$ autrement dit : $f \circ f^{-1} = \mathrm{Id}_F$.
- **4)** $\forall x \in E, \forall t \in F, f(x) = t \iff x = f^{-1}(t).$

Propr. • La composée de deux bijections est une bijection

Soit $f: E \to F$ et $g: F \to G$ deux fonctions bijectives. Alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Démo. Sur les notes de cours.