CS3331 – Assignment 1 due Oct. 14, 2014 (latest to submit: Oct. 17)

- 1. (20pt) Build DFSMs for the following languages. Explain why your construction is correct.
 - (a) $\{w \in \{a, b\}^* \mid \text{ every } a \text{ in } w \text{ is immediately preceded and followed by } b\}$.
 - (b) $\{w \in \{a, b\}^* \mid w \text{ does not end in } ba\}.$
 - (c) $\{w \in \{0,1\}^* \mid \text{ none of the prefixes of } w \text{ ends in } 0\}.$
 - (d) $\{w \in \{a,b\}^* \mid (\#_a(w) + 2\#_b(w)) \equiv 0 \pmod{5}\}$. $(\#_a(w) \text{ is the number of } a\text{'s in } w)$.
 - (e) C++ comments: /* ... comment ... */ or // ... comment ... \n.
- 2. (20pt) Consider the language:

$$L = \{w \in \{a, b, c\}^* \mid \text{ the third from the last character is } b\}$$

- (a) Build a NDFSM for L.
- (b) Transform it into a DFSM.
- (c) Build an equivalent regular expression from one of the two FSM above. (*Hint:* It makes a big difference which FSM you choose.)
- 3. (15pt) For the following languages L, describe the equivalence classes of \approx_L . If there are finitely many classes, then build a minimal DFSM that accepts L.
 - (a) $L = \{ww^R \mid w \in \{a, b\}^*\}$
 - (b) $L = \{w \in \{0,1\}^* \mid \#_0(w) \text{ and } \#_1(w) \text{ are both even or both odd}\}$
- 4. (20pt) Consider the regular expression $\alpha = ((a \cup b)^*a)^*$.
 - (a) Construct a NDFSM that accepts $L(\alpha)$. (You can use Thompson's construction but you don't have to.)
 - (b) Transform it into a DFSM.
 - (c) Minimize it.
- 5. (15pt) For each of the following languages L, prove whether L is regular or not:
 - (a) $\{a^i b^j \mid i, j \ge 0 \text{ and } i j = 5\}.$
 - (b) $\{w = xyzy^R x \mid x, y, z \in \{a, b\}^*\}.$
- 6. (10pt) Show that the following problem is decidable: Given $\Sigma = \{a, b\}$ and α a regular expression, does the language defined by α contain all the even length strings in Σ^* ?

Note Submit your solution as a pdf file on owl.uwo.ca.