Institut Supérieur d'Informatique et de Multimédia de Gabès

COURS DE Analyse 3

Niveau : Cycle préparatoire intégré

Semestre: Semestre 1

Année universitaire : 2025-2026

Professeur

Nejib Saadaoui

Contents

1	Esp	aces vectoriels normés	3
	1.1	Normes sur un espace vectoriel	3
	1.2	Distance - Espace métrique	5
	1.3	Boules, ensembles et fonctions bornées	6
	1.4	Suites numériques dans un espace vectoriel normé	6
2	Top	ologies des espaces vectoriels normés	8
3	Lim	ites et continuité dans un espace vectoriel normé	9
	3.1	Topologie dans les espaces vectoriels normés	9
		3.1.1 Ensembles ouverts et fermés	9
		3.1.2 Voisinage	9
		3.1.3 Adhérence	10
	3.2	Limites	10
	3.3	Continuité	14
	3.4	Exercices avec solutions	16
4	Cal	cul différentiel	20
	4.1		20
	4.2	Différentielle d'une fonction	21
		4.2.1 Fonctions différentiables	22
		4.2.2 Dérivées partielles	$\frac{-}{24}$
	4.3	Différentielle des fonctions composées et des produits	27
	4.4	Exercices avec solutions	28
5	For	mules de Taylor	29
J	5.1	Dérivées partielles d'ordre 2	
	$5.1 \\ 5.2$	Applications deux fois différentiables	$\frac{23}{31}$
	5.2 5.3	Formule de Taylor à l'ordre 2 et extrema	$\frac{31}{32}$
	ა.ა	5.3.1 Points critiques	33
		•	
		5.3.2 Extrema sur un ouvert	34

Chapitre 1 Espaces vectoriels normés

Dans tout ce chapitre, E désigne un \mathbb{K} -espace vectoriel avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1.1 Normes sur un espace vectoriel

Définition 1

Soit E un \mathbb{K} -espace vectoriel, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Une **norme** sur E est une application

- $\|\cdot\|: E \to \mathbb{R}$ vérifiant pour tout $x, y \in E$ et tout $\lambda \in \mathbb{K}$:
 - 1. Séparation : $(\|x\| = 0) \Rightarrow (x = 0)$.
 - 2. Homogénéité : $\|\lambda x\| = |\lambda| \|x\|$.
 - 3. Inégalité triangulaire : $||x + y|| \le ||x|| + ||y||$.

Un espace vectoriel muni d'une norme est appelé un **espace vectoriel normé** (en abrégé evn).

Exemple

- 1. L'application $x \mapsto |x|$ est une norme sur \mathbb{R} .
- **2.** L'application $z \mapsto |z|$ est une norme sur \mathbb{C} .

Exercice 1. Soit $E = \mathbb{R}^2$. On définit l'application :

$$\|\cdot\|_1: E \to \mathbb{R}^+, \quad x = (x_1, x_2) \mapsto |x_1| + |x_2|.$$

Montrer que $(E, \|\cdot\|_1)$ est un espace vectoriel normé.

Exercice 2. Soit $E = \mathbb{R}^2$. On définit l'application :

$$\|\cdot\|_{\infty}: E \to \mathbb{R}^+, \quad x = (x_1, x_2) \mapsto \max(|x_1|, |x_2|).$$

Montrer que $(E, \|\cdot\|_{\infty})$ est un espace vectoriel normé.

Activité 1.1.1: Inégalité de Cauchy-Schwarz

Soient $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n) \in \mathbb{R}^n$. Le produit scalaire euclidien de x et y est défini par $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$.

On pose
$$||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}$$
 et $||y||_2 = \sqrt{\sum_{k=1}^n y_k^2}$.

On considère le polynôme du second degré P défini par $P(t) = ||y||_2^2 t^2 + 2\langle x, y \rangle t + ||x||_2^2$ pour tout $t \in \mathbb{R}$.

- 1. Montrer que $P(t) = ||x + ty||_2^2$.
- 2. Quel est le signe du discriminant Δ de l'équation du second degré P(t)=0?
- 3. En déduire l'inégalité suivante : $\left(\sum_{k=1}^n x_k y_k\right)^2 \le \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$.

Proposition 1

(Inégalité de Cauchy-Schwarz) Pour tous $x = (x_1, \ldots, x_n)$ et $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, on a : $\left| \sum_{k=1}^n x_k y_k \right| \le \left(\sum_{k=1}^n x_k^2 \right)^{1/2} \left(\sum_{k=1}^n y_k^2 \right)^{1/2}$, avec égalité si et seulement si x et y sont linéairement dépendants.

Exercice 3. Montrer que l'application définie par $||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}$ est une norme sur \mathbb{R}^n .

Proposition 2

Les applications définies par

1.
$$||x||_1 = \sum_{k=1}^n |x_k|,$$

2.
$$||x||_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}$$
,

3. $||x||_{\infty} = \max_{k=1,\dots,n} |x_k|,$

sont des normes sur \mathbb{K}^n , appelées normes ℓ^p avec respectivement $p=1,2,\infty$. La norme $\|\cdot\|_2$ est dite associée au produit scalaire canonique dans le cas où $\mathbb{K}=\mathbb{R}$.

Exercice 4. Soit $(E,\|\cdot\|)$ un espace vectoriel normé. Montrer que :

$$\forall x \in E, \quad \|x\| \ge 0.$$

Exercice 5. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Montrer que :

$$||x|| = 0$$
 si et seulement si $x = 0_E$.

Définition 2

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. On appelle **vecteur unitaire** (ou normé) tout vecteur $x \in E$ tel que $\|x\| = 1$.

À tout vecteur x non nul, on peut associer le vecteur unitaire $\frac{x}{\|x\|}$

Proposition 3

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Alors pour tout $x, y \in E$, on a : $|\|x\| - \|y\|| \le \|x - y\|$

Définition 3

Deux normes $\|\cdot\|_1$ et $\|\cdot\|_2$ sur un espace vectoriel E sont dites **équivalentes** s'il existe des constantes $\alpha > 0$ et $\beta > 0$ telles que $\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1$, $\forall x \in E$.

Théorème 1

L'équivalence de normes est une relation d'équivalence sur l'ensemble des normes de E.

Théorème 2

Sur un \mathbb{K} -espace vectoriel de dimension finie, toutes les normes sont deux à deux équivalentes.

1.2 Distance - Espace métrique

Définition 4

Une **distance** sur un ensemble E est une application d définie sur $E \times E$ à valeurs dans $[0; +\infty[$ vérifiant, pour tout x, y et z dans E:

- 1. d(x,y) = 0 si et seulement si x = y.
- 2. d(x,y) = d(y,x).
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Un espace métrique est un ensemble muni d'une distance.

Exercice 6. Soit E un espace vectoriel normé. Montrez que l'application définie par d(x,y) = ||x-y|| est une distance sur E. C'est la distance associée à la norme sur E.

Définition 5

Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $A \subset E$ non vide.

- 1. Pour $x \in E$, on appelle **distance de** x à A et on note $d(x,A): d(x,A):=\inf\{\|x-a\| \mid a \in A\}.$
- 2. On appelle **diamètre de** A et on note $\operatorname{diam}(A)$: $\operatorname{diam}(A) := \sup\{\|x y\| \mid x, y \in A\} \in \mathbb{R}^+ \cup \{+\infty\}.$

1.3 Boules, ensembles et fonctions bornées

Définition 6

Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $a \in E$ et r > 0. On définit

- 1. la **boule ouverte** de centre a et de rayon r par $B(a,r) = \{x \in E \mid ||x-a|| < r\},$
- 2. la **boule fermée** de centre a et de rayon r par $\overline{B}(a,r) = \{x \in E \mid ||x-a|| \le r\},$
- 3. la **sphère** de centre a et de rayon r par $S(a,r) = \{x \in E \mid ||x-a|| = r\}$.

Les boules de centre 0_E et de rayon 1 sont appelées les **boules unités**.

Définition 7

(Partie convexe) Soient $a, b \in E$. Le segment d'extrémités a et b est l'ensemble $[a; b] = \{(1 - t)a + tb \mid t \in [0; 1]\}$. Un ensemble A est dit convexe si et seulement si $\forall x, y \in A$, $[x, y] \subset A$.

Exercice 7. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $a \in E$ et r > 0. Montrer que les boules B(a, r) et $\overline{B}(a, r)$ sont convexes. La sphère S(a, r) est-elle convexe?

Définition 8

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Une partie $A \subset E$ est dite **bornée** s'il existe $M \in \mathbb{R}^+$ tel que $\forall x \in A$, $\|x\| \leq M$. Ce qui revient à dire que A est incluse dans une boule fermée de centre 0_E .

Définition 9

Soit X un ensemble non vide et $(E, \|\cdot\|)$ un espace vectoriel normé. On dit qu'une fonction vectorielle $f: X \to E$ est **bornée** lorsque son image l'est.

1.4 Suites numériques dans un espace vectoriel normé

Définition 10

On appelle suite dans E toute application $u : \mathbb{N} \to E$. On note une telle application $(u_n)_{n \in \mathbb{N}}$.

Définition 11

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de E converge dans E s'il existe $\ell\in E$ telle que $\lim_{n\to+\infty}\|u_n-\ell\|=0$. On écrit alors $\lim_{n\to+\infty}u_n=\ell$. Une suite $(u_n)_{n\in\mathbb{N}}$ diverge si elle ne converge pas.

Théorème 3

La limite d'une suite, si elle existe, est unique.

Proposition 4

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E qui converge vers $\ell\in E$. On a alors que la suite $(\|u_n\|)_{n\in\mathbb{N}}$ converge vers $\|\ell\|$ dans \mathbb{R} .

Définition 12

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de E est **bornée** s'il existe $M\geq 0$ tel que $||u_n||\leq M$ pour tout $n\in\mathbb{N}$.

Proposition 5

Si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente d'éléments de E, alors $(u_n)_{n\in\mathbb{N}}$ est bornée.

Proposition 6

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites d'éléments de E qui convergent respectivement vers $\ell, k \in E$. Alors, pour tout $\lambda, \mu \in \mathbb{K}$, la suite $(\lambda u_n + \mu v_n)_{n\in\mathbb{N}}$ converge vers $\lambda \ell + \mu k$.

En d'autres termes, l'ensemble des suites convergentes dans E est un \mathbb{K} -espace vectoriel, et l'application définie sur cet espace vectoriel $(u_n)_{n\in\mathbb{N}} \mapsto \lim u_n$ est linéaire.

Proposition 7

Soit E un \mathbb{K} -espace vectoriel de dimension finie $p \in \mathbb{N}^*$ et $\mathcal{B} = (e_1, \dots, e_p)$ une base de E. Soit $u = (u^{(n)})_{n \in \mathbb{N}}$ une suite d'éléments de E. Pour tout $n \in \mathbb{N}$, on peut écrire : $u^{(n)} = u_1^{(n)} e_1 + \dots + u_p^{(n)} e_p$. Les suites scalaires $u_k = (u_k^{(n)})_{n \in \mathbb{N}}$ sont appelées suites coordonnées (ou composantes) de la suite vectorielle u dans la base \mathcal{B} . On a équivalence entre :

- (i) la suite *u* converge,
- (ii) les suites coordonnées u_1, \ldots, u_p convergent.

De plus, si tel est le cas, on a : $\lim_{n \to +\infty} u^{(n)} = \left(\lim_{n \to +\infty} u_1^{(n)}\right) e_1 + \dots + \left(\lim_{n \to +\infty} u_p^{(n)}\right) e_p$.