MATH 104

Reza Pakzad

Davis Foote*

University of California, Berkeley

August 27th, 2015 – December 10th, 2015

CONTENTS

1 Defining Numbers 1	
1.1 Natural Numbers	
1 Defining Numbers	
1.1 Natural Numbers	Lecture 1
1.1 DEFINITION. Peano axioms for the set of natural numbers:	August 27 th , 2015
(N1) $1 \in \mathbb{N}$	
(N2) $n \in \mathbb{N} \Rightarrow \exists n+1 \in \mathbb{N}$, called the successor of n	
(N ₃) 1 is not the successor of any element of $\mathbb N$	
(N ₄) $n+1 = m+1 \Rightarrow n = m$	
(N5) A subset of $\mathbb N$ containing 1 and containing $n+1$ whenever it contains n must be the entire set $\mathbb N$.	
	Lecture 2 September 1 st , 2015
There are some intuitions about the natural numbers which are not repre-	

*djfoote@berkeley.edu

sented directly by these axioms. For example, we know that any natural num-

ber which is not 1 is the successor of some natural number.

1.2 Theorem. $\forall n \in \mathbb{N} : n \neq 1 \Rightarrow \exists m \in \mathbb{N} : n = m+1$

Proof. Let $n \in \mathbb{N}$ s.t. $n \neq 1$. Suppose $\forall m \in \mathbb{N}$, $n \neq m+1$. Let $S = \mathbb{N} \setminus \{n\}$. Let $q \in S$. Then $q \in \mathbb{N}$ and $q \neq n$. Since $q+1 \in \mathbb{N}$ by N2 and $q+1 \neq n$ (since n is not the successor of any natural number), then $q+1 \in S$. Since $n \neq 1$, $1 \in S$. Therefore $S = \mathbb{N}$ by N5. But $n \in \mathbb{N}$ and $n \notin S$. Contradiction.

1.3 THEOREM (Well-Ordering Principle). Any subset of the natural numbers admits a "least element." Logically,

$$\forall S \subseteq \mathbb{N} : \exists n_0 \in S : \forall n \in S : n_0 \leq n+1$$

TODO: Proof of WOP based on these Peano postulates

1.4 DEFINITION. For some $S \subseteq \mathbb{N}$, if

- 1. 1 ∈ *S*
- 2. Whenever $\{1, 2, ..., n\} \subset S$, then $n + 1 \in S$

then $S = \mathbb{N}$. This is called **strong induction**.

Nicholas Bourbaki: school of thought putting forth that there are three main types of structures in mathematics:

- Algebraic structures $\xrightarrow{\text{binary operations}}$ Algebra
- Order structures $\xrightarrow{\text{inequalities}}$ Analysis
- $\bullet \ \, \text{Topological structures} \xrightarrow{\text{continuums, stretches}} \text{Geometry/Topology}$

Goal: identify the "optimal" sets of axioms (related to the above three structures) which will uniquely determine the set of real numbers.

Lecture 3 September 3^{rd} , 2015