9, 12, MP

Homework Assignment 2 Solution [Compiled on July 1, 2009]

Problem 1

1. $(p \land q) \supset p$ PL2. $\Box((p \land q) \supset p)$ Gen 3. $\Box(p \supset q) \supset (\Box p \subset \Box q)$ K 4. $\Box((p \land q) \supset p) \subset (\Box(p \land q) \supset p)$ $3.[(p \wedge q)/p,p/q]$ 5. $\Box(p \land q) \supset \Box p \ 2, 4, MP$ 6. $(p \land q) \supset q$ PL7. $\Box((p \land q) \supset q)$ Gen 8. $\Box((p \land q) \supset q) \subset (\Box(p \land q) \supset q)$ $4.[(p \wedge q)/p,q/q]$ 9. $\Box(p \land q) \supset \Box q$ 7, 8, MP 10. $(p \supset q) \supset ((p \supset r) \supset (p \supset (q \land r)))$ PL11. $(\Box(p \land q) \supset \Box p) \supset ((\Box(p \land q) \supset \Box q) \supset (\Box(p \land q) \supset (\Box p \land \Box q)))$ $10.[\Box(p \land q)/p, \Box p/q, \Box q/r]$ 12. $(\Box(p \land q) \supset \Box q) \supset (\Box(p \land q) \supset (\Box p \land \Box q))$ 5, 11, MP

Problem 2

13. $\Box(p \land q) \supset (\Box p \land \Box q)$

1. $\varphi \supset \Box \Diamond \varphi$ 2. $(p \supset q) \supset ((q \supset r) \supset (p \supset r))$ 3. $(\varphi \supset \Box \Diamond \varphi) \supset ((\Box \Diamond \varphi \supset \Box \psi) \supset (\varphi \supset \Box \psi))$ 4. $(\Box \Diamond \varphi \supset \Box \psi) \supset (\varphi \supset \Box \psi)$ 1. 3, MP

5.
$$\Box(p \supset q) \supset (\Box p \supset \Box q)$$

K

6.
$$\Box(\Diamond\varphi\supset\psi)\supset(\Box\Diamond\varphi\supset\Box\psi)$$

 $5.[\lozenge \varphi/p, \psi/q]$

- 7. $(\Box(\Diamond\varphi\supset\psi)\supset(\Box\Diamond\varphi\supset\Box\psi))\supset(((\Box\Diamond\varphi\supset\Box\psi)\supset(\varphi\supset\Box\psi))\supset(\Box(\Diamond\varphi\supset\psi)\supset(\varphi\supset\Box\psi)))$ $(\Box(\Diamond\varphi\supset\psi)/p,\Box\Diamond\varphi\supset\Box\psi/q,\varphi\supset\Box\psi/r)$
- 8. $((\Box \Diamond \varphi \supset \Box \psi) \supset (\varphi \supset \Box \psi)) \supset (\Box (\Diamond \varphi \supset \psi) \supset (\varphi \supset \Box \psi)))$

6, 7, MP

9.
$$(\Box(\Diamond\varphi\supset\psi)\supset(\varphi\supset\Box\psi)))$$

4, 8, MP

Problem 3

We shall prove that $\Diamond \varphi \supset \Box \Diamond \varphi$ is valid in every model $\mathfrak{M} = (W, R, \pi)$ which is Euclidean.

For every $w \in W$, suppose $\mathfrak{M}, w \Vdash \Diamond \varphi$, then there exists $u \in W$ such that $(w, u) \in R$ and $\mathfrak{M}, u \Vdash \varphi$. Then for every $v \in W$ such that $(w, v) \in R$, by Euclidean, $(v, u) \in R$, i.e. $\mathfrak{M}, v \Vdash \Diamond \varphi$.

This means $\mathfrak{M}, w \Vdash \Box \Diamond \varphi$, and $\Diamond \varphi \supset \Box \Diamond \varphi$ is valid in \mathfrak{M} .

Problem 4

Let $\mathfrak{M} = (W, R, \pi)$. Suppose $w, u \in W, w \neq u, (w, u) \in R$, by canonical,

$$\{\varphi \mid \Box \varphi \in \Sigma_w\} \subseteq \Sigma_u$$

Since the system contains B, $\varphi \supset \Box \Diamond \varphi \in \Sigma_w$. For every $\varphi \in \Sigma_w$,

1. $\varphi \in \Sigma_w$

2. $\Box \Diamond \varphi \in \Sigma_w$

by B

3. $\Diamond \varphi \in \Sigma_u$

by canonical

4. $\{ \Diamond \varphi \mid \varphi \in \Sigma_w \} \subseteq \Sigma_u$

by 1, 3

5. $\{\varphi \mid \Box \varphi \in \Sigma_u\} \subseteq \Sigma_w$

by Maximality II.1

6. $(u, w) \in R$ by canonical

So that \mathfrak{M} is a symmetric model.