Special Topics in Deep Learning

COMP 6211D & ELEC 6910T

Course website

https://course.cse.ust.hk/comp6211d

Who we are

Instructors: Qifeng Chen (cqf@ust.hk)

TA: Hyukryul Yang (hyangbd@connect.ust.hk)
Nayeon Lee (nayeon.lee@connect.ust.hk)

Syllabus

Instructor:

Week 1-2: Overview of Deep Learning: Architecture, Losses, and Optimization

Student presentation:

Week 3-4: Convolutional Neural Networks: Dilated Convolutions, ResNet, Perceptual losses

Week 5: Deep 3D Vision: PointNet++, OctNet, Tangent convolutions Week 6-7: Graph Convolutional Networks for Graph Processing and Optimization

Week 8-9: Sequential Modelling and Signal Processing: RNN, LSTM, TCN, and WaveNet

Week 10-11: Generative Models: GAN, Pix2pix, CycleGAN, CRN, VAE

Week 12-13: Final project presentation and project report due

Grading

Class participation: 10%

In-class presentation: 15%

Homework: 30%

Final project: 45%

Deep Learning Book

Representations Matter

Depth: Repeated Composition

Figure 1.2

Computational Graphs

Figure 1.3

Machine Learning and AI

Learning Multiple Components

Organization of the Book

Historical Waves

Figure 1.7

Historical Trends: Growing Datasets

The MNIST Dataset

8	9	0	1	2	3	4	7	8	9	0	7	2	3	4	5	6	7	8	6
4	2	6	4	7	5	5	4	7	8	9	2	9	3	9	3	8	2	0	5
0																			
3	0	6	2	7	1	1	8	1	1	1	3	8	9	7	6	7	4	1	6
7	5	1	7	1	9	8	0	6	9	4	9	9	3	7	1	9	2	2	5
3					_														
/	2	3	4	5	6	7	8	9	8	1	0	5	5	1	9	0	4	/	9
3	8	4	7	フ	8	5	0	6	5	5	3	3	3	9	8	1	4	0	6
1											_								
8					-							_	-	_	_				
6	5	0	1	2	3	4	5	6	7	ક	9	0		2	3	4	5	6	っ
8	9	O	l	2	3	u	5	6	っ	૪	9	6	4	2	6	4	7	5	6
4					_		_												
4	2	6	5	5	5	4	3	4	I	5	3	0	જ	3	0	6	2	7	I
		1,077									_							7.7	
7	క	1	2	6	7	1	9	જ	0	6	9	4	9	9	6	2	3	7	1
9	2	2	5	3	7	8	0	1	2	3	4	5	6	7	8	0	1	2	3
4	5	6	7	8	0	1	2	3	4	5	6	7	8	9	2	1	2	1	3
9	9	8	5	3	7	0	7	7	5	7	9	9	4	7	0	3	4	1	4
4	7	5	8	1	4	8	4	1	8	6	6	4	6	3	5	7	2	5	9

Connections per Neuron

Figure 1.10

Number of Neurons

Solving Object Recognition

Linear Algebra

Lecture slides for Chapter 2 of $Deep\ Learning$ Ian Goodfellow 2016-06-24

About this chapter

- Not a comprehensive survey of all of linear algebra
- Focused on the subset most relevant to deep learning
- Larger subset: e.g., Linear Algebra by Georgi Shilov

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- We denote it with italic font:

a, n, x

Vectors

• A vector is a 1-D array of numbers:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}. \tag{2.1}$$

- Can be real, binary, integer, etc.
- Example notation for type and size:

Matrices

• A matrix is a 2-D array of numbers:

• Example notation for type and shape:

$$A \in \mathbb{R}^{m \times n}$$

Tensors

- A tensor is an array of numbers, that may have
 - zero dimensions, and be a scalar
 - one dimension, and be a vector
 - two dimensions, and be a matrix
 - or more dimensions.

Matrix Transpose

$$(\mathbf{A}^{\top})_{i,j} = A_{j,i}.$$

$$(2.3)$$

$$\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow \mathbf{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$(\boldsymbol{A}\boldsymbol{B})^{\top} = \boldsymbol{B}^{\top}\boldsymbol{A}^{\top}. \tag{2.9}$$

Matrix (Dot) Product

$$C = AB. (2.4)$$

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}. \tag{2.5}$$

Identity Matrix

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

Figure 2.2: Example identity matrix: This is I_3 .

$$orall oldsymbol{x} \in \mathbb{R}^n, oldsymbol{I}_n oldsymbol{x} = oldsymbol{x}.$$

(2.20)

Systems of Equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.11}$$

expands to

$$\mathbf{A}_{1,:}\boldsymbol{x} = b_1 \tag{2.12}$$

$$\mathbf{A}_{2,:}\boldsymbol{x} = b_2 \tag{2.13}$$

(2.14)

$$\boldsymbol{A}_{m,:}\boldsymbol{x} = b_m \tag{2.15}$$

Solving Systems of Equations

- A linear system of equations can have:
 - No solution
 - Many solutions
 - Exactly one solution: this means multiplication by the matrix is an invertible function

Matrix Inversion

• Matrix inverse:

$$\boldsymbol{A}^{-1}\boldsymbol{A} = \boldsymbol{I}_n. \tag{2.21}$$

• Solving a system using an inverse:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.22}$$

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \tag{2.23}$$

$$\boldsymbol{I}_{n}\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b} \tag{2.24}$$

• Numerically unstable, but useful for abstract analysis

Invertibility

- Matrix can't be inverted if...
 - More rows than columns
 - More columns than rows
 - Redundant rows/columns ("linearly dependent", "low rank")

Norms

- Functions that measure how 'large' a vector is
- Similar to a distance between zero and the point represented by the vector
 - $f(x) = 0 \Rightarrow x = 0$
 - $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (the triangle inequality)
 - $\forall \alpha \in \mathbb{R}, f(\alpha \boldsymbol{x}) = |\alpha| f(\boldsymbol{x})$

Norms

• L^p norm

$$||\boldsymbol{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

- Most popular norm: L2 norm, p=2
- L1 norm, p=1: $||x||_1 = \sum_i |x_i|$. (2.31)
- Max norm, infinite $p: ||x||_{\infty} = \max_{i} |x_i|$. (2.32)

Special Matrices and Vectors

• Unit vector:

$$||\mathbf{x}||_2 = 1.$$
 (2.36)

• Symmetric Matrix:

$$\boldsymbol{A} = \boldsymbol{A}^{\top}.\tag{2.35}$$

• Orthogonal matrix:

$$\mathbf{A}^{\top} \mathbf{A} = \mathbf{A} \mathbf{A}^{\top} = \mathbf{I}.$$

$$\mathbf{A}^{-1} = \mathbf{A}^{\top}$$
(2.37)

Eigendecomposition

• Eigenvector and eigenvalue:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}.\tag{2.39}$$

• Eigendecomposition of a diagonalizable matrix:

$$\mathbf{A} = \mathbf{V} \operatorname{diag}(\lambda) \mathbf{V}^{-1}. \tag{2.40}$$

• Every real symmetric matrix has a real, orthogonal eigendecomposition:

$$\boldsymbol{A} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \tag{2.41}$$

Effect of Eigenvalues

Singular Value Decomposition

- Similar to eigendecomposition
- More general; matrix need not be square

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{\top}.\tag{2.43}$$

Moore-Penrose Pseudoinverse

$$x = A^+ y$$

- If the equation has:
 - Exactly one solution: this is the same as the inverse.
 - No solution: this gives us the solution with the smallest error $||Ax y||_2$.
 - Many solutions: this gives us the solution with the smallest norm of \boldsymbol{x} .

Computing the Pseudoinverse

The SVD allows the computation of the pseudoinverse:

$$\mathbf{A}^{+} = \mathbf{V} \mathbf{D}^{+} \mathbf{U}^{\top}, \tag{2.47}$$

Take reciprocal of non-zero entries

Trace

$$\operatorname{Tr}(\boldsymbol{A}) = \sum_{i} \boldsymbol{A}_{i,i}.$$
 (2.48)

$$Tr(\mathbf{ABC}) = Tr(\mathbf{CAB}) = Tr(\mathbf{BCA})$$
 (2.51)

Learning linear algebra

- Do a lot of practice problems
- Start out with lots of summation signs and indexing into individual entries
- Eventually you will be able to mostly use matrix and vector product notation quickly and easily

Probability and Information Theory

Lecture slides for Chapter 3 of *Deep Learning*www.deeplearningbook.org
Ian Goodfellow
2016-09-26

Probability Mass Function

- The domain of P must be the set of all possible states of x.
- $\forall x \in x, 0 \le P(x) \le 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1, and no state can have a greater chance of occurring.
- $\sum_{x \in \mathbf{x}} P(x) = 1$. We refer to this property as being **normalized**. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring.

Example: uniform distribution: $P(\mathbf{x} = x_i) = \frac{1}{k}$

Probability Density Function

- The domain of p must be the set of all possible states of x.
- $\forall x \in x, p(x) \ge 0$. Note that we do not require $p(x) \le 1$.
- $\bullet \int p(x)dx = 1.$

Example: uniform distribution: $u(x; a, b) = \frac{1}{b-a}$.

Computing Marginal Probability with the Sum Rule

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y). \tag{3.3}$$

$$p(x) = \int p(x,y)dy. \tag{3.4}$$

Conditional Probability

$$P(y = y \mid x = x) = \frac{P(y = y, x = x)}{P(x = x)}.$$
 (3.5)

Chain Rule of Probability

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)} \mid \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)}).$$
(3.6)

Independence

$$\forall x \in x, y \in y, \ p(x = x, y = y) = p(x = x)p(y = y).$$
 (3.7)

Conditional Independence

$$\forall x \in x, y \in y, z \in z, \ p(x = x, y = y \mid z = z) = p(x = x \mid z = z)p(y = y \mid z = z).$$
(3.8)

Expectation

$$\mathbb{E}_{\mathbf{x}\sim P}[f(x)] = \sum_{x} P(x)f(x),\tag{3.9}$$

$$\mathbb{E}_{\mathbf{x}\sim p}[f(x)] = \int p(x)f(x)dx. \tag{3.10}$$

linearity of expectations:

$$\mathbb{E}_{\mathbf{x}}[\alpha f(x) + \beta g(x)] = \alpha \mathbb{E}_{\mathbf{x}}[f(x)] + \beta \mathbb{E}_{\mathbf{x}}[g(x)], \tag{3.11}$$

Variance and Covariance

$$\operatorname{Var}(f(x)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^2 \right]. \tag{3.12}$$

$$Cov(f(x), g(y)) = \mathbb{E}\left[\left(f(x) - \mathbb{E}\left[f(x)\right]\right)\left(g(y) - \mathbb{E}\left[g(y)\right]\right)\right]. \tag{3.13}$$

Covariance matrix:

$$Cov(\mathbf{x})_{i,j} = Cov(\mathbf{x}_i, \mathbf{x}_j). \tag{3.14}$$

Bernoulli Distribution

$$P(x = 1) = \phi$$

$$P(x = 0) = 1 - \phi$$

$$P(x = x) = \phi^{x} (1 - \phi)^{1-x}$$

$$\mathbb{E}_{x}[x] = \phi$$

$$Var_{x}(x) = \phi(1 - \phi)$$
(3.16)
(3.17)
(3.18)
(3.19)

Gaussian Distribution

Parametrized by variance:

$$\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{3.21}$$

Parametrized by precision:

$$\mathcal{N}(x;\mu,\beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left(-\frac{1}{2}\beta(x-\mu)^2\right). \tag{3.22}$$

Gaussian Distribution

Multivariate Gaussian

Parametrized by covariance matrix:

$$\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right). \tag{3.23}$$

Parametrized by precision matrix:

$$\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\beta}^{-1}) = \sqrt{\frac{\det(\boldsymbol{\beta})}{(2\pi)^n}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\beta}(\boldsymbol{x} - \boldsymbol{\mu})\right). \tag{3.24}$$

More Distributions

Exponential:

$$p(x;\lambda) = \lambda \mathbf{1}_{x>0} \exp(-\lambda x). \tag{3.25}$$

Laplace:

Laplace
$$(x; \mu, \gamma) = \frac{1}{2\gamma} \exp\left(-\frac{|x - \mu|}{\gamma}\right).$$
 (3.26)

Dirac:

$$p(x) = \delta(x - \mu). \tag{3.27}$$

Empirical Distribution

$$\hat{p}(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \delta(\mathbf{x} - \mathbf{x}^{(i)})$$
(3.28)

Mixture Distributions

$$P(x) = \sum_{i} P(c = i)P(x \mid c = i)$$
 (3.29)

Gaussian mixture with three

components

 x_1

Figure 3.2

Logistic Sigmoid

Figure 3.3: The logistic sigmoid function.

Commonly used to parametrize Bernoulli distributions

Softplus Function

Figure 3.4: The softplus function.

Bayes' Rule

$$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}.$$
 (3.42)

Change of Variables

$$p_x(\mathbf{x}) = p_y(g(\mathbf{x})) \left| \det \left(\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} \right) \right|.$$
 (3.47)

Information Theory

Information:

$$I(x) = -\log P(x). \tag{3.48}$$

Entropy:

$$H(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim P}[I(x)] = -\mathbb{E}_{\mathbf{x} \sim P}[\log P(x)]. \tag{3.49}$$

KL divergence:

$$D_{\mathrm{KL}}(P||Q) = \mathbb{E}_{\mathbf{x} \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \mathbb{E}_{\mathbf{x} \sim P} \left[\log P(x) - \log Q(x) \right]. \tag{3.50}$$

Entropy of a Bernoulli Variable

Figure 3.5

The KL Divergence is Asymmetric

Figure 3.6

Directed Model

Figure 3.7

$$p(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) = p(\mathbf{a})p(\mathbf{b} \mid \mathbf{a})p(\mathbf{c} \mid \mathbf{a}, \mathbf{b})p(\mathbf{d} \mid \mathbf{b})p(\mathbf{e} \mid \mathbf{c}).$$

(3.54)

Undirected Model

$$p(a, b, c, d, e) = \frac{1}{Z} \phi^{(1)}(a, b, c) \phi^{(2)}(b, d) \phi^{(3)}(c, e).$$

(3.56)