PDE'S - EXERCISES 21-27

ALEXANDER ZAHRER

In all these exercises we use the abbreviations $H^s := H^s(\mathbb{R}^d)$, $\dot{H}^s := \dot{H}^s(\mathbb{R}^d)$, $\mathscr{S} := \mathscr{S}(\mathbb{R}^d)$, $\mathscr{S}' := \mathscr{S}'(\mathbb{R}^d)$, $\mathscr{S}_b := \mathscr{C}_b(\mathbb{R}^d)$, $\mathscr{C}_b := \mathscr{C}_c^\infty(\mathbb{R}^d)$. Moreover, for r > 0 we define $B_r := \{x \in \mathbb{R}^d \mid |x| < r\}$ and $S^{d-1} := \{x \in \mathbb{R}^d \mid |x| = 1\}$.

1 EXERCISE 21:

From exercises 17 and 18 we deduce that $F \mapsto \phi_F$ is an antilinear map $H^s \to \mathscr{S}'(\mathbb{R}^d)$. We now need to show that for $s \ge 0$ this map is actually injective. It suffices to show that if $F \in H^s$ satisfies $\phi_F = 0$, then F = 0. Let $(f_k) \subset \mathscr{S}$ be a representative for F in H^s . First observe that $g_k := \mathscr{F}^{-1}\left[\langle . \rangle^{2s}\mathscr{F}f_k\right] \in \mathscr{S}$. A rather dull calculation shows $\|f_k - f_l\|_{H^s}^2 \xrightarrow[(l \to \infty)]{} \|f_k\|_{H^s}^2 + \|F\|_{H^s}^2$. Indeed,

$$\|f_k - f_l\|_{H^s}^2 = \left(\langle . \rangle^s \mathscr{F}(f_k - f_l) \mid \langle . \rangle^s \mathscr{F}(f_k - f_l)\right) = \|f_k\|_{H^s}^2 + \|f_l\|_{H^s}^2 - 2\Re \mathfrak{e}\left(\langle . \rangle^s \mathscr{F} f_k \mid \langle . \rangle^s \mathscr{F} f_l\right) \tag{1}$$

$$=\|f_k\|_{H^s}^2+\|f_l\|_{H^s}^2-2\mathfrak{Re}\left(\langle.\rangle^{2s}\mathscr{F}f_k\mid\mathscr{F}f_l\right)=\|f_k\|_{H^s}^2+\|f_l\|_{H^s}^2-2\mathfrak{Re}\left(\mathscr{F}^{-1}\left[\langle.\rangle^{2s}\mathscr{F}f_k\right]\mid f_l\right) \tag{2}$$

$$= \|f_k\|_{H^s}^2 + \|f_l\|_{H^s}^2 - 2\Re(g_k \mid f_l) \underset{(l \to \infty)}{\longrightarrow} \|f_k\|_{H^s}^2 + \|F\|_{H^s}^2 \qquad (3)$$

where we have used that $(g_k | f_l) \to 0$ (which holds since $\phi_F = 0$). Using this we obtain

$$0 = \lim_{k} \lim_{l} ||f_k - f_l||_{H^s}^2 = 2||F||_{H^s}$$

and therefore F = 0, as wanted.

2 EXERCISE 22:

Fix $s,t \in \mathbb{R}$ with $s \le t$. We have to prove that there exists a linear embedding $H^t \hookrightarrow H^s$. Let $F \in H^t$ and pick some representative $(f_l) \subset \mathcal{S}$ for F. Clearly

$$||f_l - f_k||_{H^s} \le ||f_l - f_k||_{H^t}$$

and therefore the sequence (f_l) is also Cauchy in H^s and hence defines an element $[(f_l)]_{H^s} \in H^s$. If $(g_l) \subset \mathscr{S}$ is another representative of F, then of course

$$||f_l - g_l||_{H^s} \le ||f_l - g_l||_{H^t} \to 0$$

which shows that $[(f_l)]_{H^s} \in H^s$ is independent of the chosen representative for F. In particular, this yields that the map

$$\iota : H^t \to H^s \qquad F = \big[(f_l) \big]_{H^t} \mapsto \big[(f_l) \big]_{H^s}$$

is a well defined map. Of course ι is linear and it is continuous, since if $F = [(f_l)]_{H^l}$ with $(f_l) \subset \mathscr{S}$ Cauchy then

$$\|\iota(F)\|_{H^s} = \lim_l \|f_l\|_{H^s} \le \lim_l \|f_l\|_{H^t} = \|F\|_{H^t}$$

In particular, if we view $\mathscr S$ as a subset of both H^s and H^t , then $\iota|_{\mathscr S}\colon \mathscr S\subset H^t\to \mathscr S\subset H^s$ is just the "identity". It remains to show that $\iota(F)=0$ implies F=0. But if $F\in H^t$ satisfies $\iota(F)=0$, then we of course must also have $\phi_{\iota(F)}=0$ and therefore for all $f\in \mathscr S$

$$0 = \phi_{\iota(F)}(f) = \lim_{l} (f \mid f_l) = \phi_F(f) \qquad (\star)$$

However, in exercise 21 we showed that the antilinear map

$$H^t \mapsto \mathscr{S}' \qquad G \mapsto \phi_G$$

is injective and from (\star) we deduce $\phi_F = 0$. Thus F = 0, as wanted.

The second part of exercise 22 asks whether an analogous statement for homogeneous Sobolev spaces is true. The answer to this question is no and we verify this by a counterexample. It suffices to prove that the approximate inequality

$$\int |.|^{2s}|f|^2 \lesssim \int |.|^{2t}|f|^2$$

is not uniformly satisfied for $f \in \mathscr{S}$ (this is sufficient because then $\|.\|_{\dot{H}^s} \lesssim \|.\|_{\dot{H}^t}$ cannot hold and thus the proof in the case of H^s respective H^t from before cannot be executed analogously and in particular we cannot find an embedding $\iota \colon \dot{H}^t \hookrightarrow \dot{H}^s$ such that $\iota(f) = f \in \dot{H}^s$ for all $f \in \mathscr{S} \subset \dot{H}^t$). To construct our counterexample: Let $(\varphi_l) \subset \mathscr{C}_c^\infty \subset \mathscr{S}$ be a sequence of bump functions such that $\sup(\varphi_l) \subset B_{1/l}$ and $\varphi_l|_{\overline{B_{1/(2l)}}} \equiv 1$ (we know that such a sequence exists from lectures on analysis). We then estimate

$$\int |.|^{2t} |\varphi_l|^2 \le \int_{B_{1/l}} \frac{1}{l^{2t}} = \frac{\operatorname{Vol}(B_{1/l})}{l^{2t}} = \frac{\operatorname{Vol}(S^{d-1})}{l^{2t+d}d}$$
(4)

$$\int |.|^{2s} |\varphi_l|^2 \ge \int_{B_{1/2l}} |.|^{2s} = \operatorname{Vol}(S^{d-1}) \int_0^{1/2l} r^{2s+d-1} dr = \left(\frac{1}{2l}\right)^{2s+d} \frac{\operatorname{Vol}(S^{d-1})}{2s+d}$$
 (5)

and therefore we calculate

$$\frac{\int |.|^{2s} |\varphi_l|^2}{\int |.|^{2t} |\varphi_l|^2} \ge \frac{\int_{B_{1/l}} \frac{1}{l^{2t}}}{\int_{B_{1/2l}} |.|^{2s}} \simeq l^{2(t-s)} \xrightarrow[l \to \infty]{} \infty$$
(6)

3 EXERCISE 23:

It is standard knowledge from functional analysis that the space $(\mathscr{C}_b, \|.\|_{\infty})$ is a Banach space. Suppose first that the dimension d is equal to 1. Now if we are given a sequence $(f_l) \subset \mathscr{C}_b^1$ satisfying

$$||f'_l - f'_k||_{\infty} + ||f_l - f_k||_{\infty} \to 0$$

then since $(f_l), (f'_l) \subset \mathscr{C}_b$ we have that there exist unique functions $f, g \in \mathscr{C}_b$ such that $f_l \to f$ and $f'_l \to g$ in the uniform topology. A quick application of the fundamental theorem of calculus along with the fact that uniform convergence allows us to interchange limit and integral shows

$$f(x) \underset{(l \to \infty)}{\longleftarrow} f_l(x) = f_l(0) + \int_0^x f_l'(t) dt \xrightarrow[(l \to \infty)]{} f(0) + \int_0^x g(t) dt$$

and therefore again by the FTC f'=g, which verifies completeness of $(\mathscr{C}_b^1,\|.\|_{W^{1,\infty}})$ in the case for d=1. Now let's get to the general statement where d and $k\geq 1$ are arbitrary. Let $(f_l)\subset \mathscr{C}_b^k$ be Cauchy with respect to the norm

$$\|.\|_{W^{k,\infty}} = \sum_{|\alpha| \le k} \|\partial^{\alpha}.\|_{\infty}$$

Of course we then must have that for every multi-index $\alpha \in \mathbb{N}^d$ with $|\alpha| \le k$ the sequence $(\partial^{\alpha} f_l) \subset \mathscr{C}_b$ is Cauchy in \mathscr{C}_b and thus it has a limit $g_{\alpha} \in \mathscr{C}_b$. Let $x = (x_1, ..., x_d) \in \mathbb{R}^d$. To make notation a tiny bit

more convenient we write $(\bar{x}, y) = (x_1, ..., x_k, y_1, ..., y_{d-j})$ for $y \in \mathbb{R}^{d-j}$ and $j \ge 1$. Similarly to what we did before we have by the FTC

$$f_l(x) = f_l(\bar{x}, 0) + \int_0^{x_d} \partial_d f_l(\bar{x}, t_1) dt_1 = f_l(\bar{x}, 0) + x_d \partial_d f_l(\bar{x}, 0) + \int_0^{x_d} \int_0^{t_1} \partial_d^2 f_l(\bar{x}, t_2) dt_2 dt_1 = \dots$$
 (7)

$$= \sum_{v=0}^{m-1} \frac{x_d^v}{v!} \partial_d^v f_l(\bar{x}, 0) + \int_0^{x_d} \int_0^{t_1} \dots \int_0^{t_{m-1}} \partial_d^m f_l(\bar{x}, t_m) dt_m \dots dt_1$$
 (8)

It follows immediately by the same arguments as before that sending $l \to \infty$ yields

$$f(x) = \sum_{v=0}^{m-1} \frac{x_d^v}{v!} g_{(0,\dots,0,v)}(\bar{x},0) + \int_0^{x_d} \int_0^{t_1} \dots \int_0^{t_{m-1}} g_{(0,\dots,m)}(\bar{x},t_m) dt_m \dots dt_1$$

Thus $\partial^{(0,\dots,m)} f = g_{(0,\dots,m)}$. Taking an arbitrary multi-index $\alpha \in \mathbb{N}^d$ works analogously by an inductive procedure and therefore indeed $\partial^{\alpha} f = g_{\alpha} \in \mathscr{C}_b$ for all $\alpha \in \mathbb{N}^d$ with $|\alpha| \leq k$. This proves that $(\mathscr{C}_b^k, \|.\|_{W^{k,\infty}})$ is indeed a Banach space for every $k \geq 1$ and for every possible dimension $d \geq 1$.

4 EXERCISE 24:

Let $s > \frac{d}{2}$ and suppose $k \in \mathbb{N}$. We are asked to prove the Sobolev embedding $H^{s+k} \hookrightarrow \mathscr{C}_b^k$. Let $F \in H^{s+k}$ and suppose $(f_l) \subset \mathscr{S}$ is a representative for F in H^{s+k} . Now fix some multi-index $\alpha \in \mathbb{N}^d$ with $|\alpha| \leq k$, then by means of Lemma 2.9 from the lecture we get

$$\|\partial^{\alpha}(f_k - f_l)\|_{\infty} \lesssim \|\partial^{\alpha}(f_k - f_l)\|_{H^s} = \|\langle . \rangle^s \mathscr{F}(\partial^{\alpha}(f_k - f_l))\|_2 \tag{9}$$

$$\simeq \|\langle \cdot \rangle^{s} \xi^{\alpha} \mathscr{F}(f_k - f_l)\|_{2} \lesssim \|\langle \cdot \rangle^{s+k} \mathscr{F}(f_k - f_l)\|_{2} = \|f_k - f_l\|_{H^{s+k}} \tag{10}$$

Hence in total $\|\partial^{\alpha}(f_k-f_l)\|_{\infty}\lesssim \|f_k-f_l\|_{H^{s+k}}$ and therefore $(\partial^{\alpha}f_l)\subset \mathscr{C}_b$ is Cauchy with respect to the uniform topology for all $\alpha\in\mathbb{N}$ with $|\alpha|\leq k$. In particular this means that $(f_l)\subset \mathscr{S}\subset \mathscr{C}_b^k$ is Cauchy with respect to the norm $\|.\|_{W^{k,\infty}}$ and by Exercise 23 we already know that the space $(\mathscr{C}_b^k,\|.\|_{W^{k,\infty}})$ is a Banach space. Thus there exists $f\in \mathscr{C}_b^k$ such that (f_l) converges to f with respect to $\|.\|_{W^{k,\infty}}$. By means of this procedure define the map

$$\psi \colon H^{s+k} \to \mathscr{C}_b^k \qquad [(f_l)] \mapsto f$$

Of course ψ is well defined, for if $(f_l), (g_l) \subset \mathscr{S}$ are both representatives for $F \in H^{s+k}$, then $||f_l - g_l||_{\infty} \lesssim ||f_l - g_l||_{H^{s+k}} \to 0$. Moreover, ψ is a linear embedding. Linearity is trivial, so now let $F \in H^{s+k}$ be such that $\psi(F) = 0$. Let $(f_l) \subset \mathscr{S}$ be a representative for F, then $||f_l||_{W^{k,\infty}} \to 0$ (so in particular $||f_l||_{\infty} \to 0$) and thus for any $f \in \mathscr{S}$ we have

$$|\phi_{f_l}(f)| \leq ||f||_1 ||f_l||_{\infty} \to 0$$

This yields that $\phi_{f_k} \to 0 \in \mathscr{S}'$. However, $f_l \to F$ in H^{s+k} yields $\phi_{f_l} \to \phi_F$ in \mathscr{S}' and therefore $\phi_F = 0$ (by uniqueness of limits). Making use of Exercise 21 we deduce F = 0, which concludes the proof.

5 EXERCISE 25:

Recall that the space of tempered distributions \mathscr{S}' is the space of all those linear functionals $\phi: \mathscr{S} \to \mathbb{C}$ such that there exists $N \in \mathbb{N}$ so that

$$|\phi(f)| \lesssim \sum_{|\alpha| \leq N} \|\langle . \rangle^N \partial^{\alpha} f\|_{\infty}$$

for all $f \in \mathcal{S}$. For $\alpha \in \mathbb{N}^d$ the distributional derivative $\partial^{\alpha} \phi$ of some distribution $\phi \in \mathcal{S}'$ evaluated at $f \in \mathcal{S}$ is given by

$$\partial^{\alpha} \phi(f) = (-1)^{|\alpha|} \phi(\partial^{\alpha} f)$$

We are asked to verify that $\partial^{\alpha}\phi \in \mathscr{S}'$. It is clear that $\partial^{\alpha}\phi$ is again linear. Moreover, for $f \in \mathscr{S}$ we have

$$|\partial^{\alpha}\phi(f)| = |\phi(\partial^{\alpha}f)| \lesssim \sum_{|\beta| \leq N} \|\langle . \rangle^{N} \partial^{\beta+\alpha}f\|_{\infty} \leq \sum_{|\beta| \leq N + |\alpha|} \|\langle . \rangle^{N+|\alpha|} \partial^{\beta}f\|_{\infty}$$

which verifies $\partial^{\alpha} \phi \in \mathscr{S}'$.

6 EXERCISE 26:

We already made use of the multi-index derivative for tempered distributions in the preceding exercise. The original definition given in the lecture was

$$\partial_i \phi(f) := -\phi(\partial_i f)$$

Now let $\alpha \in \mathbb{N}^d$, then we calculate

$$(\partial^{\alpha}\phi)(f) = (\partial_{1}^{\alpha_{1}}...\partial_{d}^{\alpha_{d}}\phi)(f) = (-1)^{\alpha_{1}}(\partial_{2}^{\alpha_{2}}...\partial_{d}^{\alpha_{d}}\phi)(\partial_{1}^{\alpha_{1}}f) = ... = (-1)^{|\alpha|}\phi(\partial^{\alpha}f)$$

7 EXERCISE 27:

Suppose $s > \frac{d}{2}$ and $g \in H^s \subset \mathscr{C}_b$. We are asked to show that

$$\phi_g(f) = (f \mid g)$$

for all $f \in \mathscr{S}$. We use the notation of exercise 24. By construction of the Sobolev embedding we know that if $F \in H^s$, then $\psi(F) \in \mathscr{C}_b$ is given by $\psi(F) = \lim f_l$ (limit is taken with respect to the uniform topology) for some representative $(f_l) \subset \mathscr{S}$ for F. But from that we easily obtain

$$|\phi_F(f) - (f | \psi(F))| = \lim |(f|f_l - f_l)| = 0$$

In other words

$$\phi_F = (. \mid \psi(F))$$

which is exactly what we wanted to prove.