Feuille d'exercice n° 07 : Théorie des ensembles

Exercice 1 ($^{\circ}$) Donner la liste des éléments de $\mathscr{P}[\mathscr{P}(\{1,2\})]$.

Exercice 2 ($^{\circ}$) Soit $E = \{x, y, z\}$ un ensemble. Les propositions suivantes sont-elles vraies ou fausses? Justifier les réponses.

- 1) $x \in E$
- 3) $\{x\} \subset E$
- 5) $\varnothing \subset E$
- **7)** $\{x, y\} \subset E$

- **2)** $\{x\} \in E$
- 4) $\varnothing \in E$
- 6) $\{\varnothing\} \subset E$
- 8) $\{y,z\} \subset E \setminus \{x\}$

Exercice 3 Un ensemble est dit « décrit en compréhension » lorsqu'il réunit les éléments d'un ensemble vérifiant une propriété. Un ensemble est dit « décrit en extension » lorsqu'on cite ses éléments.

Par exemple, $\{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, n = 2k\}$ et $\{2k \mid k \in \mathbb{Z}\}$ sont des descriptions respectivement en compréhension et en extension de l'ensemble des entiers pairs.

- 1) Décrire en compréhension et en extension l'ensemble $\{1, 3, 5, 7, \ldots\}$.
- 2) Décrire en compréhension et en extension l'ensemble $\{1, 10, 100, 1000, \ldots\}$.
- 3) Décrire en extension l'ensemble des nombres rationnels.
- 4) Décrire en compréhension l'ensemble [0, 1]. Pensez-vous qu'il soit possible de décrire cet ensemble en extension ?
- 5) Décrire en compréhension et en extension l'ensemble des valeurs prises par une fonction $f: \mathbb{R} \to \mathbb{C}$.
- 6) Décrire en compréhension l'ensemble des antécédents d'un complexe y par une fonction $f: \mathbb{R} \to \mathbb{C}$.

Exercice 4 ($^{\circ}$) Montrer que si F et G sont des sous-ensembles de E:

$$(F \subset G \iff F \cup G = G), \quad (F \subset G \iff F \cap G = F) \quad \text{et} \quad (F \subset G \iff F^C \cup G = E).$$

En déduire que :

$$(F \subset G \iff F \cap G^C = \varnothing).$$

Exercice 5 (\bigcirc) Soit E un ensemble, A, B, C trois parties de E. Montrer les propriétés suivantes.

- 1) $(A \setminus C) \cap (B \setminus C) = (A \cap B) \setminus C$
- **2)** $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$
- **3)** $(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C = A \setminus (B \cup C)$

Exercice 6 Soient E un ensemble et $A, B \in \mathcal{P}(E)$. Résoudre dans $\mathcal{P}(E)$ les équations suivantes.

1) $X \cup A = B$

2) $X \cap A = B$

3) $X \setminus A = B$

Exercice 7 Soient E et F deux ensembles. Quelle relation y a-t'il

- 1) entre les ensembles $\mathcal{P}(E \cup F)$ et $\mathcal{P}(E) \cup \mathcal{P}(F)$?
- 2) entre les ensembles $\mathcal{P}(E \cap F)$ et $\mathcal{P}(E) \cap \mathcal{P}(F)$?
- 3) entre les ensembles $\mathcal{P}(E \times F)$ et $\mathcal{P}(E) \times \mathcal{P}(F)$?

Exercice 8 ($^{\otimes}$) Soient E, F, G trois ensembles. Montrer que $(E \times G) \cup (F \times G) = (E \cup F) \times G$.

