

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

May 25, 2023

Lehrstuhl Informatik 2 Fakultät für Informatik

Motivation

- das Rechnen mit ganzen oder rationalen Zahlen ist ein Grundbaustein vieler Algorithmen
- wir stellen die Werkzeuge dafür bereit

Zahldarstellungen im Rechner

- Datentypen int, unsigned int
- Fließkommazahlen
- rationale Zahlen

Elementare Rechenoperationen

- die Darstellunglänge einer Zahl $n \in \mathbb{N}$ ist $O(\log n)$
- Addition/Subtraktion
- Division mit Rest
- Multiplikation (!)

Teilbarkeit

Seien $x, y \in \mathbb{Z}, x \neq 0$

- $y \mod x$ ist der Divisionsrest
- x teilt y, falls y mod x = 0
- Schreibweise: x | y

Größter gemeinsamer Teiler

Der ggT von $x, y \in \mathbb{Z}$, $x \neq 0$, ist die größte Zahl $z \in \mathbb{N}$, mit $z \mid x$ und $z \mid y$.

Euklidischer Algorithmus Euclid(a, b)

- **1.** falls a < b, vertausche a und b
- **2.** setze $a_0 = a$, $a_1 = b$, i = 1.
- 3. solange $a_i > 0$
- **4.** berechne $q_i \in \mathbb{Z}$, $a_{i+1} \in \{0, 1, ..., a_i 1\}$, so daß $a_{i-1} = q_i a_i + a_{i+1}$.
- erhöhe i um 1
- 6. gib a_{i-1} aus

Satz

 $\operatorname{Euclid}(a,b)$ gibt $\operatorname{ggT}(a,b)$ aus und führt $O(\log(|a|+|b|))$ Division aus.

Korollar

Für je zwei Zahlen $a, b \in \mathbb{N}$ gibt es Zahlen $u, v \in \mathbb{Z}$, so daß ggT(a, b) = au + bv.

Definition

- eine Zahl $z \in \mathbb{Z} \setminus \{-1, 1\}$ heißt irreduzibel, falls $y \nmid z$ für alle 1 < y < |z|.
- eine Zahl $z \in \mathbb{Z} \setminus \{-1,0,1\}$ heißt *Primzahl*, falls für alle $x,y \in \mathbb{Z}$ mit $z|x \cdot y$ gilt, daß z|x oder z|y.
- mit P wird die Menge aller Primzahlen bezeichnet

Lemma

Jede Primzahl ist irreduzibel.

Lemma

Jede Zahl z > 1 besitzt einen irreduziblen Teiler.

Lemma

Jede irreduzibele Zahl ist eine Primzahl.

Theorem

Zu jeder Primzahl $p \in \mathbb{P}$ gibt es eine Abbildung $w_p : \mathbb{N} \to \mathbb{N}_0$, so daß für jede natürliche Zahl $z \in \mathbb{N}$ gilt

$$z=\prod_{p\in\mathbb{P}}p^{w_p(z)}.$$

Diese Abbildungen w_p sind eindeutig bestimmt.

Modulare Arithmetik

Seien $x, y \in \mathbb{Z}$ und $m \in \mathbb{Z} \setminus \{0\}$. Wir schreiben

 $x \equiv y \mod m$

falls

 $m \mid x - y$

Sprich: "x is kongruent zu y modulo m".

Lemma

Seien $x, y, x', y' \in \mathbb{Z}$ und $m \in \mathbb{Z} \setminus \{0\}$. Wenn

$$x \equiv y \mod m$$
 und $x' \equiv y' \mod m$, dann $x + x' \equiv y + y' \mod m$ und $x \cdot x' \equiv y \cdot y' \mod m$.

Lemma

Angenommen $x, y \in \mathbb{Z}$, $m, n \in \mathbb{Z} \setminus \{0\}$ und $n \mid m$. Wenn

 $x \equiv y \mod m$

dann

 $x \equiv y \mod n$.

Lemma

Angenommen $x, y \in \mathbb{Z}$, $m, n \in \mathbb{Z} \setminus \{0\}$ und ggT(m, n) = 1. Wenn

 $x \equiv y \mod m$ und $x \equiv y \mod n$ dann $x \equiv y \mod m \cdot n$

Chinesischer Restsatz

Angenommen $m, n \in \mathbb{N}$ sind relativ prim. Dann gibt es für je zwei ganze Zahlen x, y eine ganze Zahl z, so daß

 $z \equiv x \mod m$

und

 $z \equiv y \mod n$.

Schnelles Potzenzieren

■ gegeben $x \in \mathbb{Z}$ und $\ell, m \in \mathbb{N}$ suchen wir $z \in \mathbb{Z}$ mit

$$x^{\ell} \equiv z \mod m$$

lacktriangle es wäre offenbar *nicht* effizient, x^ℓ durch ℓ -faches Multiplizieren zu berechnen

Algorithmus Schnelles Potenzieren

- **1.** Bestimme die Darstellung von ℓ im Dualsystem: $\ell = \sum_{i=0}^{k} \ell_i 2^i$
- **2.** Sei y_0 der Divisonsrest von x durch m.
- **3.** Für i = 1, ..., k:
- **4.** sei y_i der Divisionsrest von y_{i-1}^2 durch m.
- **5.** Setze z = 1.
- **6.** Für i = 0, ..., k:
- 7. sei r der Rest von $z \cdot y_i^{\ell_i}$ durch m.
- 8. setze z auf den Wert r.
- **9.** Gib *z* aus.

Faktorisieren

- lacktriangle gegeben $x \in \mathbb{Z}$ ist es unser Ziel, die Primfaktorzerlegung von x zu bestimmen
- dafür ist derzeit kein effizienter Algorithmus bekannt
- wir lernen aber einen Algorithmus kennen, der für Zahlen x = pq mit p, q prim und |p q| "klein" gut funktioniert

Fermat-Faktorisierung

Eingabe: eine ungerade zusammengesetzte Zahl n > 1.

- **1.** Setze $x = 2\lfloor \sqrt{n} \rfloor + 1$, y = 1, $r = \lfloor \sqrt{n} \rfloor^2 n$.
- 2. Solange $r \neq 0$
- 3. erhöhe r um x und anschließend x um zwei
- **4.** verringere *r* um *y* und erhöhe anschließend *y* um zwei
- 5. falls r > 0, gehe zurück zu (4).
- **6.** gib die Faktorisierung $n = \left(\frac{x-y}{2}\right) \left(\frac{x+y-2}{2}\right)$ aus

Zusammenfassung

- wir haben einige grundlegende Konzepte aus der Zahlentheorie kennengelernt
- modulare Arithmetik, euklidischer Algorithmus, chinesischer Restsatz
- schnelles Potzenzieren, Fermat-Faktorisierung