This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:
C12N 15/00

A2

(11) Internationale Veröffentlichungsnummer: WO 99/63071

(43) Internationales
Veröffentlichungsdatum: 9. Dezember 1999 (09.12.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01684

(22) Internationales Anmeldedatum:

2. Juni 1999 (02.06.99)

(30) Prioritätsdaten:

198 24 811.3

3. Juni 1998 (03.06.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
DEUTSCHES KREBSFORSCHUNGSZENTRUM
STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE];
Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): ROTHBARTH, Karsten [DE/DE]; Im Brünnel 20, D-69493 Hirschberg (DE). STAMMER, Hermann [DE/DE]; Linsenbühl 3, D-69221 Dossenheim (DE). WERNER, Dieter [DE/DE]; Neuer Weg 22, D-69118 Heidelberg (DE).
- (74) Anwalt: SCHÜSSLER, Andrea; Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: METHOD FOR TRIGGERING APOPTOSIS IN CELLS
- (54) Bezeichnung: VERFAHREN ZUR AUSLÖSUNG VON APOPTOSE IN ZELLEN

(57) Abstract

The invention relates to a method for triggering apoptosis, whereby the C1D gene in cells, more particularly, in tumor cells, is overexpressed. This occurs, for instance, by introducing corresponding expression constructs in the cells or by exogenous stimulation of the expression of the cell's own C1D gene.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Auslösung von Apoptose, in dem in Zellen, insbesondere Tumorzellen, das C1D-Gen überexprimiert wird. Dies geschieht beispielsweise durch Einbringen entsprechender Expressionskonstrukte in die Zellen oder durch exogene Stimulation der Expression des zelleigenen C1D-Gens.

4/08/13

Unser Zeichen: K 2686 - hu / sch / msl

Verfahren zur Auslösung von Apoptose in Zellen

Die vorliegende Erfindung betrifft ein Verfahren zur Auslösung von Apoptose in Zellen, insbesondere Tumorzellen.

Apoptose ist der programmierte Zelltod. Dieser unterliegt einer genauen Regulation, wobei Apoptose induziert bzw. inhibiert werden kann.

Die Induktion von Apoptose kann bekanntermaßen über eine Reihe von sog. Todesrezeptoren, d.h. Rezeptoren, die eine "Death Domain" (DD) enthalten, wie CD95, TNF-RI, DR3, DR4 oder DR5, erfolgen, die nach Bindung ihrer Liganden Apoptose-Signalwege induzieren. Beispielsweise interagiert nach Bindung des CD95-Liganden der CD95-Rezeptor mit dem Adapterprotein FADD/MORT1, wodurch das "Recruitment" und die Aktivierung der Protease FLICE/Caspase-8, am DISC "Death Inducing Signalling Complex" induziert werden. FADD und FLICE enthalten jeweils "Death Effector Domains" (DED). Die Induktion der Apoptose über diese Apoptose-Signalwege ist von außen beispielsweise durch die Gabe von Zellgiften (cytotoxischen Substanzen), Bestrahlung, Viren, Entzug von Wachstumsfaktoren oder machanische Zellverletzung möglich. Diese Möglichkeiten der Apoptose-Induktion sind allerdings von bestimmten Nachteilen begleitet. So führt die Gabe von Zellgiften, wie Zytostatika, oder die Bestrahlung bei Krebszellen zur Resistenzentwicklung und darüberhinaus zu einer Schädigung normaler Zellen, bei denen eigentlich keine Apoptose ausgelöst werden sollte.

So besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren bereitzustellen, mit der Apoptose, z.B. zur Bekämpfung von malignem Wachstum, unter Reduktion der oben beschriebenen Nebenwirkungen ausgelöst werden kann.

Erfindungsgemäß wird dies durch die Gegenstände in den

Patentansprüchen erreicht.

Die vorliegende Erfindung beruht auf den Erkenntnissen der Erfinder, daß in Tieren, besonders Säugetieren ganz besonders dem Menschen, ein Protein vorliegt, das sich zur Induktion von Apoptose eignet. Ein solches Protein weist eine Größe von ca. 16 kD auf und wurde bisher als DNA-bindendes Protein charakterisiert (Nehls et al., Nucleic Acids Research, 26, S. 1160-1166 (1998).

Von den Erfindern wurde erkannt, daß das zur Induktion von Apoptose geeignete Protein (nachstehend mit C1D bezeichnet) in jeder Zelle, auch in Tumorzellen vorhanden ist, und dort in einer vom Organismus vorgegebenen Menge exprimiert wird. Kommt es zu einer Überexpression des C1D-Genprodukts, wird in den überexprimierenden Zellen Apoptose ausgelöst. Aber gerade in Tumorzellen ist eine durch Überexpression erzielte Apoptose wünschenswert. Diese Überexpression kann per se die Tumorzellen abtöten. Weiter könnte sie die durch die übliche Tumorbehandlung, wie Chemotherapie oder Bestrahlung, bewirkte Apoptose verstärken. Außerdem könnte in Tumorzellen Apoptose bewirkt werden, bei denen sich durch übliche Behandlungswege schon eine Resistenz entwickelt hat. Von den Erfindern wurde jetzt herausgefunden, daß die Auslösung von Apoptose dadurch bewirkt werden kann, daß das C1D-Gen zur Überexpression gebracht wird, d.h. die Konzentration der zellulären C1D-Genprodukts erhöht wird. Dies kann beispielsweise dadurch geschehen, daß die Zellen mit Expressionskonstrukten transfiziert werden, die das C1D-Gen exprimieren oder das endogene C1D-Gen zur Überexpression stimuliert wird.

Das C1D-Genprodukt umfaßt die Sequenz von Fig. 1 bzw. 2 oder eine hiervon durch eine oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz. Der Ausdruck "eine durch eine oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz" umfaßt jegliche für ein C1D-(verwandtes) Protein kodierende Aminosäuresequenz, deren DNA-Sequenz mit der DNA von Fig. 1 bzw. 2 hybridisiert. Bezüglich des Begriffs "hybri-

and the state of the second section in the second

disiert" wird auf die nachstehenden Ausführungen verwiesen.

Für die Ausführung des erfindungsgemäßen Verfahrens ist insbesondere eine für C1D kodierende Nukleinsäure in Form einer DNA, insbesondere cDNA, geeignet. Bevorzugt ist eine DNA, die folgendes umfaßt:

- (a) Die DNA von Fig. 1 bzw. 2 oder eine hiervon durch ein oder mehrere Basenpaare unterschiedliche DNA, wobei letztere DNA mit der DNA von Fig. 1 oder 2 hybridisiert, oder
- (b) eine mit der DNA von (a) über den degenerierten genetischen Code verwandte DNA.

Die Sequenzdaten der C1D cDNAs gemäß Fig. 1 bzw. 2 sind in der Genbank unter den folgenden Accessionnummern verfügbar:

Maus cDNA: X95591; Mensch cDNA: X95592

Der Ausdruck "eine durch ein oder mehrere Basenpaare unterschiedliche DNA" umfaßt jegliche für ein C1D-(verwandtes) Protein kodierende DNA-Sequenz, die mit der DNA von Fig. 1 oder 2 hybridisiert. Die DNA kann sich von der DNA von Fig. 1 oder 2 durch Additionen, Deletionen, Substitutionen und/oder Inversionen von ein oder mehreren Basenpaaren oder andere im Stand der Technik bekannte Modifikationen, z.B. alternatives Splicing, unterscheiden. Erfindungsgemäß umfaßt der Begriff "DNA" auch Fragmente dieser DNA. Der Begriff "Fragment" soll einen Ausschnitt bzw. Segment des ursprünglichen Nucleinsäuremoleküls umfassen, wobei das durch dieses Fragment codierte Protein noch die Apoptose auslösenden Eigenschaften von C1D Dazu zählen auch Allelvarianten. Verfahren zur aufweist. Erzeugung der vorstehenden Änderungen in der Nucleinsäuresequenz sind dem Fachmann bekannt und in Standardwerken der Molekularbiologie beschrieben, beispielsweise in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2. Ausgabe, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989).

endogene DNA-Degradation.

Der Fachmann ist auch in der Lage zu bestimmen, ob ein von einer so veränderten Nucleinsäuresequenz codiertes Protein noch über die biologische Aktivität der Apoptose-Induktion verfügt, z.B. durch Nachweis von Apoptose-typischem Zelltod gekennzeichnet durch z.B. Morphologie, multizentrische Chromatinkondensation, typische Membranveränderungen und

Der Ausdruck "DNA mit hybridisiert" weist auf eine DNA hin, die unter üblichen Bedingungen, insbesondere bei 20°C unter dem Schmelzpunkt der DNA, mit einer DNA von Fig. 1 bzw. 2 hybridisiert. Der Begriff "hybridisieren" bezieht sich dabei auf konventionelle Hybridisierungsbedingungen, vorzugsweise auf Hybridisierungsbedingungen, bei denen als Lösung 5xSSPE, 1% SDS, 1xDenhardts-Lösung verwendet wird und die Hybridisierungstemperaturen zwischen 35°C und 70°C, vorzugsweise bei 65°C liegen. Nach der Hybridisierung wird vorzugsweise zuerst mit 2xSSC, 1% SDS und danach mit 0,2xSSC bei Temperaturen zwischen 35°C und 70°C, vorzugsweise bei 65°C gewaschen (zur Definition von SSPE,SSC und Denhardts-Lösung siehe Sambrook et al., supra). Besonders bevorzugt sind stringente Hybridisierungsbedingungen, wie sie beispielsweise in Sambrook et al., supra, beschrieben sind.

Um das C1D-Genprodukt herzustellen, das zur Ausführung des erfindungsgemäßen Verfahren geeignet ist, wird die für C1D kodierende DNA in einen Vektor bzw. Expressionsvektor inseriert, z.B. pBlueScript, pQE8, pUC- oder pBr322-Derivate. In einer bevorzugten Ausführungsform ist das erfindungsgemäße Nucleinsäuremolekül im Vektor mit regulatorischen Elementen funktionell verknüpft, die dessen Expression in eukaryotischen Wirtszellen erlauben. Solche Vektoren enthalten neben den regulatorischen Elementen, beispielsweise einem Promotor, typischerweise einen Replikationsursprung und spezifische Gene, die die phänotypische Selektion einer transformierten Wirtszelle erlauben. Zu den regulatorischen Elementen für die Expression in Eukaryonten zählen der CMV-, SV40-, RVS-40-Promotor, sowie CMV- oder SV40-Enhancer. Weitere Beispiele für

geeignete Promotoren sind der Metallothionein I- und der Polyhedrin-Promotor.

In einer für gentherapeutische Zwecke bevorzugten Ausführungsform ist der die C1D-DNA enthaltende Vektor ein Virus, beispielsweise ein Adenovirus, Vaccinia-Virus oder Adeno-abhängige Parvoviren (AAV). Besonders bevorzugt sind Retroviren. Beispiele für geeignete Retroviren sind MoMuLV, HaMuSV, MuMTV, RSV oder GaLV. Für Zwecke der Gentherapie können die erfindungsgemäßen Nucleinsäuremoleküle auch in Form von kolloidalen Dispersionen zu den Zielzellen transportiert werden. Dazu zählen beispielsweise Lipososmen oder Lipoplexe (Mannino et al., Biotechniques 6 (1988), 682).

Allgemeine auf dem Fachgebiet bekannte Verfahren können zur Konstruktion von Expressions- und insbesondere Gentherapievektoren, die die oben genannten Nucleinsäuremoleküle und geeignete Kontrollsequenzen enthalten, verwendet werden. Zu diesen Verfahren zählen beispielsweise in vitro-Rekombinationstechniken, synthetische Verfahren, vivo-Rekombinationsverfahren, wie sie beispielsweise Sambrook et al., supra, beschrieben sind. Der Fachmann weiß somit, in welcher Weise eine erfindungsgemäße DNA in einen Expressionsvektor inseriert werden muß. Ihm ist auch bekannt, daß diese DNA in Verbindung mit einer für ein anderes Protein bzw. Peptid kodierenden DNA inseriert werden kann, so daß die erfindungsgemäße DNA in Form eines Fusionsproteins exprimiert werden kann. Beispielsweise in Form eines Fusionsproteins, bei dem der andere Teil GFP (das grün fluoreszierende Protein von Aequorea Victoria) ist.

Für die Expression des C1D-Gens werden die oben genannten Expressionsvektoren in Wirtszellen eingeführt. Zu diesen Wirtszellen zählen Tierzellen, vorzugsweise Säugerzellen, sowohl in Kultur wie auch im lebenden Organismus. Bevorzugt sind die tierischen Zellen L, 3T3, FM3A, CHO, COS, Vero und HeLa. Verfahren zur Transformation dieser Wirtszellen, zur Erkennung erfolgter Transformation und Expression der erfin-

dungsgemäßen Nucleinsäuremoleküle unter Verwendung der vorstehend beschriebenen Vektoren sind auf dem Fachgebiet bekannt.

Des weiteren kennt der Fachmann Bedingungen, transformierte bzw. transfizierte Zellen zu kultivieren. Auch sind ihm Verfahren bekannt, das durch die erfindungsgemäße DNA exprimierte Protein bzw. Fusionsprotein zu isolieren und zu reinigen.

Um das erfindungsgemäße Verfahren auszuführen, wird in einer bevorzugten Ausführungsform die C1D-DNA in einen Expressionsvektor, insbesondere einen Gentherapievekor, inseriert und in Zellen, bevorzugt Tumorzellen, eingeführt. Dort kommt es zur Expression von C1D-Protein, das zusätzlich zum zelleigenen Protein, zur Auslösung von Apoptose führt. Das Einbringen der Vektoren in die Zellen erfolgt unter den dem Fachmann bekannten Bedingungen. Hinsichtlich der in-vivo Gentherapie wird insbesondere auf "K.W. Culver, Gene Therapy, A Handbook for Physicans, Mary Ann Libert, Inc., New York, 1994" und "P.L. Chang, Sonatic Gene Therapy, CRC Press, London, 1995" verwiesen.

In einer weiteren bevorzugten Ausführungsform wird das zelleigene C1D-Gen zu einer vermehrten Expression stimuliert, z.B. durch exogene Stimulation des endogenen C1D-Promoters. Als Promoter bezeichnet man 5'-Nachbarsequenzen eines Gens, die als Startpunkte der RNA Polymerase II dienen, welche im Zusammenwirken mit Transkriptionsfaktoren die Expression des Gens bewirkt. Bei vielen Genen, wie auch bei C1D, ist dieser Prozeß durch exogene Faktoren induzierbar bzw. stimulierbar. Faktoren, die die spezifische Expression eines Gens bewirken sind sehr zahlreich und reichen von physikalischen Faktoren (wie Licht, Wärme, Kälte), über niedermolekulare anorganische Stoffe (wie Salze, Metallionen) und niedermolekulare organische Stoffe (Peptide, Nukleinsäurebausteiene, biogene Amine, Steroide) bis zu höhermolekularen Stoffen (Serum, Wachstumsfaktoren, Immun-Stimulantien). Die für das C1D-Gen

spezifischen Stimulantien werden dadurch erkannt, daß 5'Nachbarsequenzen, vorhanden auf z.B. den BAC (bacterial
arteficial chromosome) Klonen mit einem Reportergen, z.B. CAT
oder EGFP, kombiniert und hinsichtlich der ReportergenExpression bzw. deren Stimulation durch exogene Faktoren, ggf.
mit einem "high-throughput"-Verfahren, untersucht werden.

Somit stellt die vorliegende Erfindung erstmalig eine Möglichkeit bereit, Apoptose nicht über die üblichen Signalwege auszulösen, sondern durch Überexpression eines bestimmten Gens. Dies kann eine besondere Bedeutung bei vielen Erkrankungen haben, insbesondere Tumorerkrankungen. Insbesondere hat sich als vorteilhaft herausgestellt, daß Tumorzellen auf eine Überexpression von C1D sehr viel empfindlicher als normale Zellen reagieren. Für normale Zellen bestehen deshalb keinerlei Nebenwirkungen, während Tumorzellen den sicheren Zelltod erleiden.

Kurze Beschreibung der Figuren:

- Fig. 1 zeigt die DNA- und Aminosäuresequenz von C1D aus Mensch
- Fig. 2 zeigt die DNA- und Aminosäuresequenz von C1D aus Maus
- Fig. 3 zeigt den zeitlichen Verlauf eines durch Überexpression von C1D ausgelösten Apoptoseprozesses in Zellen des Ehrlich Ascites Tumors (Fluoreszenzmikroskopie; Anregung: 480 nm, Emission: 520 nm)
- Fig. 4 zeigt Beispiele von morphologischen Besonderheiten im Verlauf eines durch Überexpression von C1D ausgelösten Apoptoseprozesses in Zellen des Ehrlich Ascites Tumors (Phasenkontrastaufnahmen)

Die vorliegende Erfindung wird durch die nachstehenden Beispiele erläutert.

Beispiel 1: Induktion von Apoptose durch Expression d s C1D-Gens

pcDNA 3 - C1D-Expressionskonstrukte

Die im Bluescript-Vektor (KS+, Fa. Stratagene) klonierte cDNA kodierend für menschliches bzw. murines C1D wurden durch PCR amplifiziert. Dabei wurden die folgenden Primer verwendet:

für menschliche cDNA:

Primer vorwärts:

5'-GGGGTACCATGGCAGGTGAAGAATTAATGAAGACTAT

Primer rückwärts:

5'-GGGTCGACTTAACTTTTACTTTTTCCTTTATTGGCAAC

(bewirkt Amplifikation der Nukleotidsequenz von Base 118 bis Base 540 gemäß Fig. 1)

für Maus cDNA:

Primer vorwärts:

5'-GGGGTACCATGGCAGGTGAAGAATGAATGAAGATTAT

Primer rückwärts:

5'-GGGTCGACGTGTTTGCTTTTTCCCTTTATTAGCCACTTT

(bewirkt Amplifikation der Nukleotidsequenz von Base 78 bis Base 500 gemäß Fig. 2)

Mit diesen Primern wurde eine Kpn-Schnittstelle vor dem ATG-Startcodon und eine Sal I-Restriktionsstelle vor den Stop-Kodon eingeführt (sodaß das Stopkodon entfiel). Die PCR-Reaktion wurde mittels PCR Kit der Fa. Clontech (K1906-1) nach den Angaben des Herstellers unter Verwendung der Kitbestandteile in 50 μ l Volumina durchgeführt:

 $5 \mu l (500 ng)$

Wasser 38,8 μ l 10x Puffer 5 μ l Mg-Acetat 2,2 μ l Primer-Vor 1 μ l (10 μ M) Primer-Rück 1 μ l (10 μ M)

C1D-Templat

50x dNTP 1 μ l Kit-Polymerase 1 μ l

Cyclerprogramm:

1. Initiale Denaturierung	94°C,	1 Min.
2. Denaturierung	94°C,	30 Sec.
Annealing-Extension		3 Min.
4. End-Extension	68°C,	3 Min.
5. Abkühlung	4°C	
Schritte 2/3 werden 35 mal	durchgeführt	

Nach Restriktionsverdau des Amplifikationsansatzes mit Kpn I/Sal I wurden die Fragmente zunächst im Bluescript-Vektor (Kpn I/Sal I - vorbehandelt) rekloniert. Nach Ausschneiden der

Fragmente aus dem Bluescript-Vektor mit Kpn I/Not I konnten die Sequenzen im entsprechend vorbehandelten pcDNA 3-Vektor

(Fa. InVitrogen) einkloniert werden.

- pcDNA3-C1D-EGFP-Expressionskonstrukte

Die Fusion zwischen C1D und GFP (grün fluoreszierendes Protein von Aequorea Victoria) mit durchgehendem Leserahmen erfolgte auf der pBluescript-Ebene. Dazu wurden die oben beschriebenen pBluescript-(Kpn I)-C1D-(Sal I)-Plasmide durch Verdau mit Sal I/Hind III geöffnet.

Die für EGFP kodierende Sequenz (Fa. Clontech; EGFP bedeutet "enhanced green fluorescent protein" und ist eine von der Fa. Clontech hergestellte Mutante, die verbesserte Eigenschaften hinischtlich Excitation/Emission hat) wurde durch PCR amplifiziert. In dieser PCR wurden die folgenden Primer eingesetzt:

Primer vorwärts:

5'-GGGTCGACATGGTGAGCAAGGGCGAGGAGCTGTTC

Primer rückwärts:

5'-CCAAGCTTTGGAATTCTAGAGTCGCGGCCGCTTTA

um am 5-Ende eine Sal I-Stelle und am 3'-Ende (hier nach dem Stopcodon) eine Hind III-Stelle einzufügen. Die PCR wurde analog wie zuvor beschrieben durchgeführt.

Nach Verdau der PCR-Amplifikationsprodukte mit Sal I und Hind

III konnten diese in die oben vorbereiteten Bluescript-(Kpn I)-C1D-(Sal I) (Hind III)-Plasmide ligiert werden. Danach wurde die Fusionskassette (Kpn I)-C1D-EGFP-(NotI) durch entprechenden Verdau aus dem Bluescript-Vektor herausgeschnitten und in den entprechend vorbehandelten pcDNA 3-Vektor (Kpn I/Not I) rekloniert.

Transfektion der Vektoren in Tumorzellen Die oben erhaltenen Expressionsvektoren wurden getrennt voneinander per Elektroporation (Potter et al., Proc. Natl. Acad. Sci. USA, 81, S. 7161-7165 (1984) bzw. Lipofektion (SuperFect Transfection Reagent Handbook, Fa. Qiagen, Hilden, 02/97, 1997) in Zellen des Ehrlich Ascites Tumors transfiziert. Transfizierte (lebende Zellen) wurden im Mikroskop (Fluoreszenzoptik) beobachtet und fotografiert (Fig. 3).

Etwa 12 Stunden nach Transfektion haben 20-60% eine schwache Grünfluoreszenz im Zellkern (nicht gezeigt). Dies verweist auf die zunächst moderate Expression des Fusionsproteins. Morphologisch sind keine Besonderheiten zu erkennen. Ab etwa 24 Stunden nach Transfektion des Vektorkonstrukts treten in einzelnen Zellen Verdichtungen des Fusionsproteins auf (Fig. 3 links). Diese Verdichtungen sind auch im Phasenkontrastbild (Fig. 4) zu beobachten. Im weiteren zeitlichen Verlauf werden diese Verdichtungen stärker (Fig. 3 von links nach rechts) und das Phasenkontrastbild (Fig. 4) entspricht dem typischen Bild einer Zelle in Apoptose.

Nicht alle Zellen, die gleichzeitig transfiziert wurden, zeigen auch gleichzeitig die im Bild zu sehende übersteigerte Expressionsrate des Fusionsproteins. Zellen wie in Fig. 3 links werden auch noch nach 48-72 Stunden beobachtet, wohingegen andere Zellen schon den Endpunkt (Fig. 3 rechts) erreicht haben. Dies zeigt, daß die Zellen einer Kultur "gestaffelt" in den Apoptose-Prozeß eintreten. Bei ausreichend hoher Transfektionsrate sind letzlich alle Zellen einer Kultur, auch solche, die nicht transfiziert wurden, abgetötet. Dieser Zeitpunkt ist abhängig von der initialen

Transfektionsrate. Durch die Apoptose der transfizierten Zellen werden Faktoren abgegeben, die für nicht-transfizierte Zellen in der Kultur schädlich sind und schließlich zu Abtötung auch dieser nicht-transfizierten Zellen führen (sog. "Bystander-Effekt").

Es soll angemerkt werden, daß GFP (grün fluoreszierendes Protein von Aequorea Victoria) nur zur Unterscheidung transfizierter und nicht-transfizierter Zellen verwendet wurde bzw. zur Sichtbarmachung der Überexpression. GFP-Expression allein hat keinerlei Effekt auf die Zellmorphologie bzw. auf die Überlebensfähigkeit von Zellen. GFP-Fusionsproteine haben grundsätzlich die funktionellen Eigenschaften (und auch die intrazellulären Verteilungen) wie das funktionelle Genprodukt. Die in den Figuren gezeigten apoptotischen Prozesse beruhen deshalb auf einer C1D-Funktion. Die gezeigte Morphologie (und der Zellzahlverlust) wurde in Kontrollexperimenten auch durch Konstrukte bewirkt, die nur die C1D-Sequenz enthielten (z.B. durch die oben beschriebenen pcDNA 3-C1D-Expressionskontrukte).

10

30

Patentansprüche

- 1. Verfahren zur Auslösung von Apoptose in Zellen durch Überexpression des C1D-Gens.
- Verfahren nach Anspruch 1, wobei die Zellen Tumorzellen
 sind.
 - 3. Verfahren nach Anspruch 1 oder 2, wobei das C1D-Genprodukt die Aminosäuresequenz von Fig. 1 bzw. 2 oder eine hiervon durch eine oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz aufweist, wobei die DNA-Sequenz der letzteren Aminosäuresequenz mit der DNA von Fig. 1 bzw. 2 hybridisiert.
- Verfahren nach einem der Ansprüche 1 bis 3, wobei die
 Zellen mit einem Expressionsvektor enthaltend
 - (a) die DNA von Fig. 1 bzw. 2 oder eine hiervon durch ein oder mehrere Basenpaare unterschiedliche DNA, wobei letztere DNA mit der DNA von Fig. 1 bzw. 2 hybridisiert, oder
- 20 (b) eine mit der DNA von (a) über den degenerierten genetischen Code verwandte DNA. transfiziert werden.
- 5. Verfahren nach einem der Ansprüche 1 bis 3, wobei das in den Zellen endogen enthaltene C1D-Gen stimuliert wird.
 - 6. Verfahren nach Anspruch 5, wobei der Promotor des endogenen C1D-Gens durch extrazelluläre Faktoren stimuliert wird.

K 2686

Zusammenfassung

Verfahren zur Auslösung von Apoptose

5

10

Die vorliegende Erfindung betrifft ein Verfahren zur Auslösung von Apoptose, in dem in Zellen, insbesondere Tumorzellen, das C1D-Gen überexprimiert wird. Dies geschieht beispielsweise durch Einbringen entsprechender Expressionskonstrukte in die Zellen oder durch exogene Stimulation der Expression des zelleigenen C1D-Gens.

Nukleotidsequenz und Übersetzung der Mensch-C1D cDNA

CTI	TCC	GGG	AGA	CTG	GAG	TCG	AAG	GCC	GTG	AGT	ATT	TTC	TAA	GCC
AGT	GTT	TAG	AGA	GTA	TGT	GAG	GCA	AGA	GTA	CCT	ATA	GAA	CCC	GGA
GGA	GGG	TGA	GGA	GCA	GAG	CTG	GCC	ATA	ATG	GCA	GGT	GAA	GAA	ATT
									M	Α	G	E	E	I
AAT	GAA	GAC	TAT	CCA	GTA	GAA	ATT	CAC	GAG	TAT	TTG	TCA	GCG	TTT
N	E	D	Y	P	V	E	I	H	E	Y	L	s	Α	F
GAG	AAT	TCC	ATT	GGT	GCT	GTG	GAT	GAG	ATG	CTG	AAG	ACC	ATG	ATG
E	N	S	I	G	Α	V	D	E	M	L	K	${f T}$	M	M
TCT	GTT	TCT	AGA	AAT	GAG	TTG	TTG	CAG	AAG	TTG	GAT	CCA	CTT	GAA
s	V	S	R	N	Ε	L	L	Q	K	L	D	P	L	E
CAA	GCA	AAA	GTG	GAT	TTG	GTT	TCT	GCA	TAC	ACA	TTA	AAT	TCA	ATG
Q	A	K	V	D	L	V	S	Α	Y	\mathbf{T}	L	N	S	M
TTT	TGG	GTT	TAT	TTG	GCA	ACC	CAA	GGA	GTT	AAT	CCT	AAG	GAA	CAT
F	W	V	Y	L	Α	\mathbf{T}	Q	G	V	N	P	K	F.	H
CCA	GTA	AAA	CAG	GAA	TTG	GAA	AGA	ATC	AGA	GTA	TAT	ATG	AAC	AGA
P	V	K	Q	Ε	L	E	\mathbf{R}^{-}	I	R	V	Y	M	N	R
GTC	AAG	GAA	ATA	ACA	GAC	AAG	AAA	AAG	GCT	GGC	AAG	CTG	GAC	AGA
V	K	E	I	${f T}$	D	K	K	K	Α	G	K	L	D	R
GGT	GCA	GCT	TCA	AGA	TTT	GTA	AAA	AAT	GCC	CTC	TGG	GAA	CCA	AAA
G	Α	Α	S	R	F	V	K	N	A	L	W	E	P	K
TCG	AAA		GCA		AAA	GTT	GCC	AAT	AAA	GGA	AAA	AGT	AAA	AGT
S	K	N	Α	S	K	V	Α	N	K	G	ĸ	S	K	S
						GTA						TAC	ATT	
	TAA										TCC	TCT	CCA	AAG
						TTA				ATT	TTA	ACA	TTG	TGA
	ATT									TGA			TCT	TAT
TTC						CTT	_					TAA		
	AAA												TAT	TTT
	TGA												TGA	
	AGG						_						CGT	
	ACT										ACT		TCA	
	CAT										TTA			GTG
	CTA					TGT							TTG	
	TGT													ATG
	AAT													
GTA	CTC	TCA	ATA	A_AG	GCT	GAA	AAT	GTT	GTA	AAA.				

Fig. 1

Nukleotidsequenz und Übersetzung der Maus-C1D cDNA

ACA GGC GTC CAC GGT ATT GAG TTG GTC ACA ATG GCA GGT GAA GAA G M Α ATG AAT GAA GAT TAT CCC GTA GAA ATT CAC GAG TCT TTA ACA GCC M N E D Y P V E I H E S L T A CTG GAG AGC TCC CTG GGT GCT GTG GAC GAC ATG CTG AAG ACC ATG L E S S L G A V D D M L K T M ATG GCT GTT TCT AGA AAC GAG TTG TTG CAG AAG TTG GAC CCA TTG M A V S R N E L L Q K L D P L GAA CAA GCA AAG GTG GAT TTA GTT TCT GCA TAC ACC TTA AAT TCA E O A K V D L V S A Y T L N S ATG TTT TGG GTT TAT TTG GCA ACT CAA GGA GTT AAT CCC AAA GAG M F W V Y L A T Q G V N P K E CAT CCA GTG AAG CAG GAA CTG GAA AGA ATC AGA GTC TAC ATG AAC H P V K Q E L E R I R V Y M N AGA GTT AAA GAA ATA ACA GAC AAG AAG AAG GCT GCC AAG CTG GAC RVKEITDKKKAAKLD AGA GGT GCT TCG AGA TTT GTC AAG AAG GCA CTC TGG GAA CCC R G A A S R F V K K A L W E.. P AAA CGA AAA AGC ACA CCA AAA GTG GCT AAT AAA GGG AAA AGC AAA KRKST P K V A N K G K S K CAC TAA TCT TTT GGT TTT GAT GTA CAT GTT TTC AAA AAG TAC ATC Н CTT TTT AAT CAG TTT ACA ATG TAG TTA TGT GAC CAT GTG GTG TTT AAA TGG ATT CCT TTT GGA ATT CAT GTA TAA ATT TAC ACA TTA CAT

TTG TGA TAC TGA ATC TTT TTT TTG CTG AGA AAG ATT AAG TTG TCT TTG TTG ATT TTC ATA TAA AGC ATC ATG ATG TGT TTA ATA TTG TAA GAT ATT CTA TAA GCA GTT GTG AAA TCC AAA TGT TCT CTG TAA ACA TTT GTA GTG TTT GAA ATG AAC AAT GAT ATT ATG AAG TGT GCT ATC TGT AGA CCT CGA GGT GTA AGG ACA TTT GTT TTC AGT AAT GAT GAG AAA TAC AGT GAC TTA AAT ACC CAC TCT GTT TCT GTT CAG TTA GTT CAA CAT GTT TCG TGA TTT TTT TTT TTT TTT GAG TAA TTC TGT CTT GAT ATT CAA AGT CAA AAT TGA AAC CTT AAG GCT GTA CTT TAA TTC TTC ATG TTC CAT TTA AAA TAA AAT GTT CTC ATT AAC TCT GAT GGA

GAA GCC GTG TCA TGG CGT CAT CAT CGT GCG ACC TAT TTC CCG GAG

Fig. 2

AAA

Fig. 3

Fig. 4

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

- (i) ANMELDER:
 - (A) NAME: Deutsches Krebsforschungszentrum
 - (B) STRASSE: Im Neuenheimer Feld 280
 - (C) ORT: Heidelberg
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: 69120
- (ii) BEZEICHNUNG DER ERFINDUNG: Verfahren zur Ausloesung von Apoptose in Zellen
- (iii) ANZAHL DER SEQUENZEN: 10
- (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
 - (v) DATEN DER JETZIGEN ANMELDUNG: noch nicht bekannt
 - (vi) DATEN DER VORANMELDUNG:

ANMELDENUMMER: DE 198 24 811.3

ANMELDETAG: 3-JUN-1998

- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1156 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 118..540
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 - (B) LAGE: 118..540

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

					•										
CTTTCCG	GGA	GACT	GGAG'	rc G	AAGG	CCGT	G AG	TATT	PTCT	AAG	CCAG	rgt '	TTAG	AGAGTA	60
TGTGAGG	CAA	GAGT	ACCT	AT A	GAAC	CCGG	A GG	AGGG'	rgag	GAG	CAGA	GCT (GGCC	ATA	117
ATG-GCA Met Ala 1	GGT Gly	GAA Glu	GAA Glu 5	ATT Ile	AAT Asn	GAA Glu	GAC Asp	ТАТ Туг 10	CCA Pro	GTA Val	GAA Glu	ATT Ile	CAC His 15	GAG Glu	165
TAT TTG Tyr Leu	TCA Ser	GCG Ala 20	TTT Phe	GAG Glu	AAT Asn	TCC Ser	ATT Ile 25	GGT Gly	GCT Ala	GTG Val	GAT Asp	GAG Glu 30	ATG Met	CTG Leu	213
AAG ACC Lys Thr	ATG Met 35	Met	TCT Ser	GTT Val	TCT Ser	AGA Arg 40	AAT Asn	GAG Glu	TTG Leu	TTG Leu	CAG Gln 45	AAG Lys	TTG Leu	GAT Asp	261
CCA CTT Pro Leu 50															309
TCA ATG Ser Met 65															357
CAT CCA His Pro															405
GTC AAG Val Lys															453
GCA GCT Ala Ala		Arg													501
AAT GCA Asn Ala 130												TAAC	CTTT	rtg	550
GTTTTGAT	rgt i	ACACA	rtat.	C AA	AAA	TACA	ATT A	LATAI	GTA	ATCA	CAGI	'AA '	ratgi	raaagc	610
TAAATACT	TTC (CTCTC	CAAA	G AI	CATT	ATCI	TTA	ATTGA	ATTA	GCAC	TGAG	GA :	ITTTI	AACATT	670
GTGATATA	ATT I	ATATA	ATTT.	T AA	ATTT2	CCAI	CTC	TTGA	TGA	GACI	CTTA	TT ?	rctt	ATATA	730
GGTCAGTC	CTT (GCAAG	TACC	LT A	PATT	AAGC	AGC	TGTC	SAAA	TTTA	AGTG	SAA A	ATGTT	CTTTG	790
TAAACATI	TG :	TACTA	TTTT	'A AA	\TGAA	raat.	GAC	CTTA	TGA	AGTA	TGCT	TA	CTGT	AGGCTG	850
AAATTATA	AGG 1	TACAT	CTGT	T TI	CACI	rata'	GAT	ATTA	AGA	AAGC	GTGA	TA.	GACTI	TAAATG	910
TTCATTTT	TT :	TCTGI	ATAG	A TA	CTTI	ATCA	TGT	TTTC	ATG	ATTI	TAGG	AA?	rtaci	CCTTT	970

Asn Ala Ser Lys Val Ala Asn Lys Gly Lys Ser Lys Ser

(2) ANGABEN ZU SEQ ID NO: 3:

. 44.

. 7

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 1040 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: cDNA (iii) HYPOTHETISCH: NEIN (iv) ANTISENSE: NEIN

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS (B) LAGE:78..500

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: mat_peptide
- (B) LAGE: 78..500

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

CAG	AAGC	CGT (GTCA'	TGGC	GT C	ATCA	rcgr	G CG	ACCT	TTTA	CCC	GGAG.	ACA	GGCG'	rccacg	}	60
GTA'	TTGA(GTT (GGTC								AAT (Asn (110
											AGC Ser						158
_											TCT Ser						206
											GTG Val 55						254
											TTG Leu						302
				-	-						CTG Leu	_			_		350
											AAG Lys					٠	398
AAG	CTG	GAC	AGA	GGT	GCT	GCT	TCG	AGA	TTT	GTC	AAG	AAG	GCA	CTC	TGG		446

Lys Leu Asp Arg Gly Ala Ala Ser Arg Phe Val Lys Lys Ala Leu Trp

110 115 GAA CCC AAA CGA AAA AGC ACA CCA AAA GTG GCT AAT AAA GGG AAA AGC 494 Glu Pro Lys Arg Lys Ser Thr Pro Lys Val Ala Asn Lys Gly Lys Ser _125 130 135 AAA CAC TAATCTTTTG GTTTTGATGT ACATGTTTTC AAAAAGTACA TCCTTTTTAA 550 140 TCAGTTTACA ATGTAGTTAT GTGACCATGT GGTGTTTAAA TGGATTCCTT TTGGAATTCA 610 TGTATAAATT TACACATTAC ATTTGTGATA CTGAATCTTT TTTTTGCTGA GAAAGATTAA 670 GTTGTCTTTG TTGATTTTCA TATAAAGCAT CATGATGTGT TTAATATTGT AAGATATTCT 730 ATAAGCAGTT GTGAAATCCA AATGTTCTCT GTAAACATTT GTAGTGTTTG AAATGAACAA 790 TGATATTATG AAGTGTGCTA TCTGTAGACC TCGAGGTGTA AGGACATTTG TTTTCAGTAA 850 TGATGAGAAA TACAGTGACT TAAATACCCA CTCTGTTTCT GTTCAGTTAG TTCAACATGT 910 TTCGTGATTT TTTTTTTTT TTGAGTAATT CTGTCTTGAT ATTCAAAGTC AAAATTGAAA 970 CCTTAAGGCT GTACTTTAAT TCTTCATGTT CCATTTAAAA TAAAATGTTC TCATTAACTC 1030 TGATGGAAAA 1040

(2) ANGABEN ZU SEQ ID NO: 4:

ij,

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 141 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Met Ala Gly Glu Glu Met Asn Glu Asp Tyr Pro Val Glu Ile His Glu
1 5 10 15

Ser Leu Thr Ala Leu Glu Ser Ser Leu Gly Ala Val Asp Asp Met Leu 20 25 30

Lys Thr Met Met Ala Val Ser Arg Asn Glu Leu Leu Gln Lys Leu Asp 35 40 45

Pro Leu Glu Gln Ala Lys Val Asp Leu Val Ser Ala Tyr Thr Leu Asn 50 55 60

Ser Met Phe Trp Val Tyr Leu Ala Thr Gln Gly Val Asn Pro Lys Glu

65

70

75

80

38

His Pro Val Lys Gln Glu Leu Glu Arg Ile Arg Val Tyr Met Asn Arg 85 90 95

Val Lys Glu Ile Thr Asp Lys Lys Lys Ala Ala Lys Leu Asp Arg Gly
100 105 110

Ala Ala Ser Arg Phe Val Lys Lys Ala Leu Trp Glu Pro Lys Arg Lys
115 120 125

Ser Thr Pro Lys Val Ala Asn Lys Gly Lys Ser Lys His 130 135 140

- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 38 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear

 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5: GGGGTACCAT GGCAGGTGAA GAAATTAATG AAGACTAT
- (2) ANGABEN ZU SEQ ID NO: 6:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 38 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN

			•		7	•
•	(iv)	ANTISENSE	: NEIN			
Ç.	(xi)	SEQUENZBE	SCHRETBUNG	: SEO ID N	۱ ۵ ۰	
	-	TT AACTTT				
	GGGTCGAC	II AACIIII	ACT TITICC	IIIA IIGG	AAC	
•						
	(2) ANGA	BEN ZU SEQ	ID NO: 7:			
:	(i)	(B) ART: (C) STRA	NNZEICHEN: E: 38 Base Nucleotid NGFORM: Ei LOGIE: lin	nzelstrang	ı	
	(ii)	ART DES M	OLEKÜLS: S HREIBUNG:	onstige Nu /desc = "	ıcleinsäı Primer"	ıre
	(iii)	нүротнеті	SCH: NEIN			
	(iv)	ANTISENSE	: NEIN			
	(xi)	SEQUENZBE	SCHREIBUNG	: SEQ ID N	io: 7:	
	GGGGTACC	AT GGCAGGT	GAA GAAATG	AATG AAGAT	'TAT	
	(2) ANGAI	BEN ZU SEQ	ID NO: 8:			
•	(i)	(B) ART: (C) STRAI	NNZEICHEN: E: 38 Base Nucleotid NGFORM: Ein LOGIE: line	nzelstrang		
	(ii)	ART DES MO		onstige Nu /desc = "		ıre

(A) LÄNGE: 38 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
(A) BESCHREIBUNG: /desc = "Primer"

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

GGGTCGACGT GTTTGCTTTT CCCTTTATTA GCCACTTT

(2) ANGA	BEN 20 SEQ ID NO: 9:
- (i)	SEQUENZKENNZEICHEN: (A) LÄNGE: 35 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
(ii)	ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
(iii)	HYPOTHETISCH: NEIN
(iv)	ANTISENSE: NEIN
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 9:
GGGTCGAC	AT GGTGAGCAAG GGCGAGGAGC TGTTC
(2) ANGAI	BEN ZU SEQ ID NO: 10:
(i)	SEQUENZKENNZEICHEN: (A) LÄNGE: 35 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
(ii)	ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
(iii)	HYPOTHETISCH: NEIN
(iv)	ANTISENSE: NEIN
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 10:
CCAAGCTT	TG GAATTCTAGA GTCGCGGCCG CTTTA