Студент: Сергеев Александр

Группа: 8304

Дата: 17 апреля 2020 г.

Специальные разделы алгебры Индивидуальное домашнее задание Вариант №41 (8123034)

Задача 1. Функция $f:(\alpha;+\infty)\to(\beta;+\infty)$ задана формулой $f(x)=2x^2-7x+3$. Найдите наименьшие α и β , при которых функция f биективна.

Решение. Функция биективна в той области, где она одновременно и инъективна и сюръективна. Функция инъективна тогда, когда она строго монотонна. Поскольку верхний предел дан в условии, найдем минимальное значение на оси абсцисс, начиная с которого функция f возрастает. Построим график функции и отметим на нем вершину параболы красной точкой:

Очевидно, что как раз от вершины функция начинает монотонно возрастать. Следовательно, α равна абсциссе вершины параболы.

Функция сюръективна тогда, когда ее область значения непрерывна. Очевидно, что область значения данной функции непрерывна начиная от вершины параболы и выше. Следовательно, β равна ординате вершины параболы.

Other:
$$\alpha = 1.75, \beta = -3.125$$
.

Задача 2. Является ли функция $f:(1,\ldots,8) \to (1,\ldots,6)$ заданная таблицей $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 1 & 1 & 2 & 5 & 6 & 1 \end{pmatrix}$ интективной? сюртективной? биективной?

Pemenue. Функция является инъективной, если элементы ее образа не повторяются. Как видно из таблицы, 3, 4 и 8 переходят в 1. Следовательно, функция f не инъективна.

Функция является сюръективной, если все элементы образа имеют соответствующий им элемент в прообразе. Так как образ содержит все числа от 1 до 6, функция f сюръективна.

 Φ ункция биективна тогда, когда она и инъективна и сюръективна одновременно. Следовательно, f не биективна.

- Задача 3. (1) Является ли группой множество корней 6-й степени из 1 с операцией сложения?
 - (2) Является ли группой множество невырожденных верхнетреугольных матриц размера $n \times n$ над \mathbb{R} с операцией умножения?
 - (3) Является ли группой множество дробно-рациональных функций на расширенной вещественной оси с операцией композиции?

1

Pewenue. Множество является группой относительно операции \cdot , если операция \cdot ассоциативна, в множестве есть нейтральный элемент относительно \cdot , и для любого элемента множества существует обратный ему элемент.

Рассмотрим данные три случая:

- (1) Множество корней 6-й степени из 1 подмножество множества С. В множестве С операция сложения ассоциативна. Единственный нейтральный элемент множества С - (0,0) не принадлежит множеству корней 6-й степени из 1. Следовательно, в нём нет нейтрального элемента, и группой оно не является.
- (2) Операция умножения любых матриц ассоциативна. Ее нейтральный элемент единичная матрица является элементом множества невырожденных верхнетреугольных матриц размера $n \times n$. Обратные матрицы (обратные элементы) для верхнетреугольных матриц также принадлежат этому множеству. Следовательно, это множество являктся группой.
- (3) Множество дробно-рациональных функций не является замкнутым относительно операции композиции, а, следовательно, не является и группой.

 \Box

 ${f 3}$ адача 4. ${\it 3anucamb nepecmanosky} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 7 & 8 & 10 & 1 & 2 & 6 & 4 & 9 & 5 \end{pmatrix}$ в виде произведения независимых циклов и найти ее порядок.

Решение. Обозначим перестановку квадратными скобками, а циклы - круглыми. Разложим на циклы: $[3\ 7\ 8\ 10\ 1\ 2\ 6\ 4\ 9\ 5] = (1\ 3\ 8\ 4\ 10\ 5)(2\ 7\ 6)(9)$

Порядок перестановки равен НОК длин всех простых циклов: 6

Задача 5. Найдите произведение перестановок: $(1\ 3\ 7\ 8\ 4)(5\ 6)\cdot(1\ 5\ 6\ 7\ 3\ 8)(2\ 4)$, ответ в циклической форме.

Решение. Представим произведения в виде перестановки:

$$(1\ 3\ 7\ 8\ 4)(5\ 6) = (3\ 2\ 7\ 1\ 6\ 5\ 8\ 4)$$

 $(1\ 5\ 6\ 7\ 3\ 8)(2\ 4) = (5\ 4\ 8\ 2\ 6\ 7\ 3\ 1)$

Перемножим перестановки:

$$(3\ 2\ 7\ 1\ 6\ 5\ 8\ 4)\cdot (5\ 4\ 8\ 2\ 6\ 7\ 3\ 1) = (1\ 3\ 7\ 8\ 4)(5\ 6)\cdot (1\ 5\ 6\ 7\ 3\ 8)(2\ 4) = (6\ 1\ 4\ 2\ 5\ 8\ 7\ 3)$$

Представим перестановку в циклической форме:

$$(6\ 1\ 4\ 2\ 5\ 8\ 7\ 3) = (1\ 6\ 8\ 3\ 4\ 2)(5)(7) = (1\ 6\ 8\ 3\ 4\ 2)$$

Задача 6. Пусть $G = \mathbb{R} - 1$. Зададим операцию \star формулой $x \star y = x + y + xy$. Проверьте, что (G, \star) - группа.

Pewenue. Множество является группой относительно операции \star , если операция \star ассоциативна, в множестве есть нейтральный элемент относительно \star , и для любого элемента множества существует обратный ему элемент.

Так как G - подмножество \mathbb{R} , а операция \star состоит из операций сложения и умножения, которые, в свою очередь, ассоциативны на \mathbb{R} , операция \star ассоциативна на G.

Нейтральный элемент для операции \star , определенной на G - 0, так как он является нейтральным для операции сложения, а при умножении обращает результат в 0.

Обратный элемент для операции \star вычисляется по формуле: $y=-\frac{x}{x+1}$. Исключение из множества $\mathbb R$ элемента $\{-1\}$ никак не повлияло на тот факт, что для каждого элемента G можно найти обратный, так как -1 не имеет обратного элемента (уравнение $\frac{x}{x+1}-1=0$ не имеет решений). Следовательно, множество G - группа.

Задача 7. Пусть μ подгруппа в \mathbb{C}^* , состоящая из всех корней степени 3 из 1. Докажите, что $\mathbb{C}^*/\mu\cong\mathbb{C}^*$.

Решение. Как известно, корни из 1 образуют группу по умножению:

Любая степень корня из 1 тоже является корнем из 1.

Обратный элемент для каждого из элементов группы совпадает с сопряжённым ему. В данном случае, $\frac{-1+i\sqrt{3}}{2}\cdot\frac{-1-i\sqrt{3}}{2}=1$.

Нейтральным элементом является комплексная единица.

Докажем, что $\mathbb{C}^*/\mu \cong \mathbb{C}^*$:

По критерию гомоморфизма групп для функции $\phi \in Hom(A, B)$:

$$A/ker(\phi) \cong im(\phi)$$

Пусть существует такая функция $\phi: \mathbb{C} \to \mathbb{C}$, что $ker(\phi) = H$, а $im(\phi) = \mathbb{C}$.

Зададим составную функцию ϕ :

$$\phi(x) = \begin{cases} 1, & x \in H \\ x - 1, & x \in H^+ \\ x, & x \in \mathbb{C}/(H \cup H^+) \end{cases}$$
$$H^+ = \{ y + n | y \in H, n \in \mathbb{N} \}$$

Очевидно, что ϕ удовлетворяет условиям. Следовательно, $\mathbb{C}^*/ker(\phi) \cong im(\phi) \to \mathbb{C}^*/H \cong \mathbb{C}^*$

Задача 8. (a) Гомоморфизм групп. Эпиморфизм, мономорфизм, изоморфизм. Ядро и образ гомоморфизма. Свойства ядра и образа.

(b) Чему равен образ гомоморфизма $\phi: G \to H$, если его ядро равно G?

Решение. (а) Гомоморфизм групп (A,\cdot) и (B,*) - это такое отображение $\phi:A\to B$, что $\forall x,y\in A:\phi(x\cdot y)=\phi(x)*\phi(y)$. Другими словами, гомоморфизм сохраняет алгебраическую структуру.

Эпиморфизм - это сюръективный гомоморфизм.

Мономорфизм - это инъективный гомоморфизм.

Изоморфизм - это биективный гомоморфизм.

Ядро гомоморфизма - это множество $ker(\phi) = \{x \in A | \phi(x) = e_B\}$

Образ гомоморфизма - это множество $im(\phi) = \{\phi(y) \in B | y \in A\}$

Свойства ядра и образа гомоморфизма:

- (a) $\phi(e_A) = e_B$
- (b) $\forall x \in A : \phi(x^{-1}) = (\phi(x))^{-1}$
- (c) $ker(\phi) \triangleleft A$
- (d) $im(\phi) \leq A$
- (e) $A/ker(\phi) \cong im(\phi)$
- (b) Если $\ker(\phi) = G$, значит $\forall x \in G : \phi(x) = e_H$. Следовательно, $\{\phi(y) \in B | y \in A\} = \{e_H\}$. $\operatorname{im}(\phi) = e_H$.

3