Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-08

Anything Wrong? Let the set *Q* be defined by the following: $Q = \{S \mid S \notin S\}$ (R) "The mother of all type errors" Then: **⇒** birth of type theory... $Q \in Q$ $\equiv \langle (R) \rangle$ $Q \in \{S \mid S \notin S\}$ $\equiv \langle (11.3) \text{ Membership in set comprehension} \rangle$ $(\exists S \mid S \notin S \bullet Q = S)$ $\equiv \langle (9.19) \text{ Trading for } \exists, (8.14) \text{ One-point rule } \rangle$ $Q \notin Q$ ≡ ((11.0) Def. ∉) $\neg (Q \in Q)$ With (3.15) $p \equiv \neg p \equiv false$, this proves: — "Russell's paradox" (R') false

Plan for Today

- Sets and Types
- Pairs, Cartesian products
- Relations

```
What is the Type of Set Complement ∼_?
Consider:
   ullet \mathbb{N} : set \mathbb{Z}
   • S_1 = \{1,3,8\}
   • S_1 \in \mathbb{P} \mathbb{N}
   • S_1: set \mathbb{Z}
   \circ \sim S_1 : \mathbf{set} \ \mathbb{Z}
   • \sim S_1 \notin \mathbb{P} \mathbb{N}
Which of the following makes most sense?
   • ~_: PS PS
• ~_: PS Pt
                                               - provided S : \mathbf{set} \ t
- provided S : \mathbf{set} \ t
   \circ \sim_- : \mathbb{P} S \to \mathbf{set} t
    \bullet \sim \_ : set t \to set t
    • set : Type → Type
   • \mathbb{P} : set t \to \text{set } (\text{set } t)
```

Pairs and Cartesian Products

If *b* and *c* are expressions,

• $\mathbb{P} S$: set (set t)

then $\langle b, c \rangle$ is their **2-tuple** or **ordered pair**

— "ordered" means that there is a **first** constituent (*b*) and a **second** constituent (*c*).

— provided $S : \mathbf{set} \ t$

(14.2) Axiom, Pair equality:

 \bullet \rightarrow : Type \rightarrow Type

$$\langle b, c \rangle = \langle b', c' \rangle \equiv b = b' \wedge c = c'$$

(14.3) Axiom, Cross product:

$$S \times T = \{b, c \mid b \in S \land c \in T \bullet \langle b, c \rangle\}$$

(14.4) Membership:

$$\langle b,c\rangle \in S\times T \quad \equiv \quad b\in S \, \wedge \, c\in T$$

Cartesian product of types:

$$b: t_1; c: t_2 \text{ iff } \langle b, c \rangle : \{t_1, t_2\}$$

(14.4p) Axiom, Pair projections:

fst :
$$\langle t_1, t_2 \rangle \rightarrow t_1$$
 fst $\langle b, c \rangle = b$
snd : $\langle t_1, t_2 \rangle \rightarrow t_2$ snd $\langle b, c \rangle = c$

(14.2p) Pair equality: For
$$p, q: t_1 \times t_2$$

(14.2p) **Pair equality:** For
$$p, q: t_1 \times t_2$$
, $p = q \equiv \text{fst } p = \text{fst } q \land \text{snd } p = \text{snd } q$

Some Spice...

Converting between "different ways to take two arguments":

curry :
$$(A \rightarrow B \rightarrow C) \rightarrow (A \times B \rightarrow C)$$

 $(A \rightarrow B \rightarrow C) \rightarrow (A, B) \rightarrow C)$
curry $f \langle x, y \rangle$:= $f x y$
uncurry : $(A \times B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C)$
 $(A, B) \rightarrow C \rightarrow (A \rightarrow B \rightarrow C)$
uncurry $g x y := g \langle x, y \rangle$

These functions correspond to the "Shunting" law:

(3.65) **Shunting:**
$$p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

The "currying" concept is named for Haskell Brooks Curry (1900–1982), but goes back to Moses Ilyich Schönfinkel (1889–1942) and Gottlob Frege (1848–1925).

Predicates and Tuple Types

Relations

- LADM: A **relation** on $B_1 \times \cdots \times B_n$ is a subset of $B_1 \times \cdots \times B_n$ where B_1, \ldots, B_n are sets, and x associates to the left???
- CALCCHECK: A relation on $\{t_1, \ldots, t_n\}$ is a subset of $\{t_1, \ldots, t_n\}$, that is, an item of type set $\{t_1, \ldots, t_n\}$ where t_1, \ldots, t_n are types
- A relation on the tuple (Cartesian product) type $\{t_1, \ldots, t_n\}$ is an *n*-ary relation. "Tables" in relational databases are *n*-ary relations.
- A relation on the pair (Cartesian product) type (t_1, t_2) is a **binary relation**.
- The **type** of binary relations on (t_1, t_2) is written $t_1 \leftrightarrow t_2$, with

$$t_1 \leftrightarrow t_2 := \mathbf{set} \langle t_1, t_2 \rangle$$

What is a Relation?

A **relation**is a subset
of a Cartesian product.

What is a Binary Relation?

A **binary relation** is a set of pairs.

Visualising Binary Relations

```
parentOf = \{\langle Jill, Bob \rangle, \langle Jill, Jane \rangle, \langle Tom, Bob \rangle, \langle Tom, Jane \rangle, \\ \langle Bob, Mary \rangle, \langle Bob, Joe \rangle, \langle Jane, Jack \rangle\}
```


Formulae Expressing Relationship

Consider $R : B \leftrightarrow C$ and x : B and y : C.

$$R: B \leftrightarrow C$$
 $iff \ \langle \text{ Def.} \leftrightarrow \rangle$
 $R: \mathbf{set} \ \langle B, C \rangle$
 $iff \ \langle \text{ Def. set}, \text{"types as sets"} \rangle$
 $R \subseteq B \times C$

"x is in relation R with y"

x(R)y

- explicit membership notation: $(x,y) \in R$
- (traditional infix notation: xRy
- both notations are interchangeable!
- The traditional infix notation gives rise to ambiguities: CALCCHECK: Simple infix notation only for declared infix operators. For other relation expressions R: $x \in \mathbb{R} \setminus y = (x, y) \in \mathbb{R}$

Simple Binary Relations

- The empty relation on $\{t_1, t_2\}$ is $\{\}: t_1 \leftrightarrow t_2$ $x \in \{\}\} y \equiv false$ $\langle x, y \rangle \in \{\} \equiv false$
- The **identity relation** on $B : \mathbf{set} \ t$ is $\mathbb{I} \ B : t \leftrightarrow t$ with $\mathbb{I} \ B = \{x : t \mid x \in B \bullet \langle x, x \rangle\}$:

$$x \in \mathbb{I} B$$
 $y \equiv x = y \in B$
 $\langle x, y \rangle \in \mathbb{I} B \equiv x = y \land y \in B$

- The universal relation on $B \times C$ is $B \times C$ $x (B \times C) y \equiv x \in B \land y \in C$ (14.4) $(x,y) \in B \times C \equiv x \in B \land y \in C$
- The **complement** of relation $R: t_1 \leftrightarrow t_2$ is $\sim R: t_1 \leftrightarrow t_2$:

$$x (\sim R) y \equiv \neg (x (R) y)$$