Statistical Arbitrage Using Limit-Order Book Imbalance

Anton D. Rubisov

University of Toronto Institute for Aerospace Studies Faculty of Applied Science and Engineering University of Toronto

17 September 2015

Roadmap

Anton D. Rubisov

Backtesting Results

Background Information

Exploratory Data Analysis

Maximizing Wealth via Discrete-Time Stochastic Control

Conclusion and Future Work

Anton D. Rubisov

Background Information

Conclusion and Future Work

Why Do We Care?

Anton D. Rubisov

Rubin, R. and Collins, M. (2015). How an exclusive hedge fund turbocharged its retirement plan. Bloomberg Business.

Market Data Feeds

Order Imbalance

Anton D. Rubisov

Roadmap

Information

Analysis

Stochastic Co

Results

Conclusion an Future Work

From the NASDAQ Historical TotalView-ITCH data feed, we receive real-time notification of order arrivals.

Time	Order ID	Event	Volume	Price
:	:	:	:	:
39960699	72408630	66	100	1107000
39960710	72408630	68	100	1107000
:	:	÷	÷	:

Volume

Volume

Arbitrage with Order Imbalance

Roadmap

Backgrou

Exploratory Data Analysis

Maximizing Wealth
via Discrete-Time
Stochastic Control

Backtesting Results

Conclusion and Future Work

Volume

Price

Arbitrage with Order Imbalance

Anton D. Rubisov

Roadmag

Backgrou

Exploratory Data

Maximizing Wealth
via Discrete-Time

Backtesting Results

Conclusion and Future Work

Volume

Arbitrage with Order Imbalance

Roadma

Background

Exploratory Data Analysis

Maximizing Wealth
via Discrete-Time

Backtesting Results

Conclusion and Future Work

Price

Exploratory Data Analysis

Conclusion and Future Work

Exploratory Data Analysis

Maximizing Wealth via Discrete-Time Stochastic Control

Backtesting Results

Conclusion and Future Work

Imbalance is a ratio of quoted limit order volumes between the bid and ask side.

$$I(t) = rac{V_{bid}(t) - V_{ask}(t)}{V_{bid}(t) + V_{ask}(t)} \in [-1, 1]$$

Volume

Anton D. Rubisov

Arbitrage with Order Imbalance

Anton D. Rubisov

?oadman

Backgroun Information

Exploratory Data Analysis

Maximizing Wealth
via Discrete-Time
Stochastic Control

Backtesting Results

Conclusion and Future Work

Anton D. Rubisov

Smooth it by averaging on a sliding window (1 s).

ackground Iformation xploratory Data

Maximizing Wealt via Discrete-Time Stochastic Contro

Results

Future Work

Model as a continuous-time Markov chain Z(t) with generator G.

Anton D. Rubisov

Roadmap

Background nformation

Exploratory Data Analysis

Stochastic Cont

Backtesting Results

Model as a continuous-time Markov chain Z(t) with generator G.

$$Z = \left\{ \begin{array}{ll} 5, & \rho \in [+\frac{3}{5}, +1], & \text{buy-heavy} \\ 4, & \rho \in [+\frac{1}{5}, +\frac{3}{5}], & \text{buy-biased} \\ 3, & \rho \in [-\frac{1}{5}, +\frac{1}{5}), & \text{neutral} \\ 2, & \rho \in [-\frac{3}{5}, -\frac{1}{5}), & \text{sell-biased} \\ 1, & \rho \in [-1, -\frac{3}{5}), & \text{sell-heavy} \end{array} \right.$$

4,
$$\rho \in [+\frac{1}{5}, +\frac{3}{5}]$$
, buy-biased

3,
$$\rho \in \left[-\frac{1}{5}, +\frac{1}{5}\right)$$
, neutral

2,
$$\rho \in \left[-\frac{3}{5}, -\frac{1}{5}\right)$$
, sell-biased

1,
$$\rho \in [-1, -\frac{3}{5})$$
, sell-heavy

Next, consider a two-dimensional CTMC Z(t) that jointly models imbalance bin $\rho(t)$ and price change $\Delta S(t)$, where

$$\rho(t) \in \{1, 2, \dots, \#_{\mathsf{bins}}\}$$

is the bin corresponding to imbalance averaged over the interval $[t - \Delta t_I, t]$, and

$$\Delta S(t) = \operatorname{sgn}(S(t + \Delta t_S) - S(t)) \in \{-1, 0, 1\}$$

is the sign of the change in midprice of the future time interval Δt_5 .

 $\rho(t)$ is the imbalance bin of the time-weighted average of I(t) over this past interval.

 $\Delta S(t)$ is the sign of the midprice change over this future interval.

$$\mathbf{P}(\Delta t_I) = [p_{ij}(\Delta t_I)] = e^{\mathbf{G}\Delta t_I}$$

called our *one-step transition probability matrix*. Matrix entries give the probability of transition from one (imbalance, price change) pair to another over the time interval Δt_I . This can be written semantically as

$$p_{ij} = \mathbb{P}\left[\varphi(\rho_{\mathsf{curr}}, \Delta S_{\mathsf{future}}) = j \mid \varphi(\rho_{\mathsf{prev}}, \Delta S_{\mathsf{curr}}) = i\right]$$

Exploratory Data Analysis

Maximizing Wealth via Discrete-Time

Backtesting Results

Conclusion and Future Work

Using Bayes' Rule, we can transform the P matrix to

$$\mathbb{P}\left[\Delta S_{\text{future}} = j \mid \substack{\rho_{\text{curr}} = i \\ \rho_{\text{prev}} = k \\ \Delta S_{\text{curr}} = m}}\right] = \frac{\mathbb{P}\left[\rho_{\text{curr}} = i, \Delta S_{\text{future}} = j \mid \substack{\rho_{\text{prev}} = k \\ \Delta S_{\text{curr}} = m}}\right]}{\mathbb{P}\left[\rho_{\text{curr}} = i \mid \substack{\rho_{\text{prev}} = k \\ \Delta S_{\text{curr}} = m}}\right]}$$

This allows us to predict future price moves.

We'll call the collection of these probabilities the ${f Q}$ matrix.

Predicting Future Price Change

Sample Q matrix calibrated on MMM, 2013-05-15.

	$\Delta S_{curr} < 0$			$\Delta S_{curr} = 0$			$\Delta S_{curr} > 0$		
	$ ho_{\it curr}=1$	2	3	1	2	3	1	2	3
$\Delta S_{\text{future}} < 0$									
$ ho_{prev} = 1$	0.53	0.15	0.12	0.05	0.10	0.14	0.08	0.13	0.14
$ ho_{prev} = 2$	0.10	0.58	0.14	0.07	0.04	0.10	0.13	0.06	0.12
$\rho_{prev} = 3$	0.08	0.12	0.52	0.09	0.06	0.03	0.11	0.10	0.05
$\Delta S_{\text{future}} = 0$									
$ ho_{prev} = 1$	0.41	0.75	0.78	0.91	0.84	0.79	0.42	0.79	0.77
$ ho_{prev} = 2$	0.79	0.36	0.71	0.83	0.92	0.82	0.75	0.37	0.78
$ ho_{prev} = 3$	0.79	0.74	0.40	0.81	0.83	0.91	0.70	0.76	0.39
$\Delta S_{\text{future}} > 0$									
$ ho_{prev} = 1$	0.06	0.10	0.09	0.04	0.06	0.07	0.50	0.09	0.09
$ ho_{prev} = 2$	0.10	0.06	0.15	0.10	0.04	0.08	0.12	0.57	0.10
$ ho_{prev} = 3$	0.13	0.14	0.08	0.10	0.11	0.05	0.19	0.14	0.56

Order Imbalance

Anton D. Rubisov

Roadmap

Background nformation

exploratory L Analysis

laximizing Weal a Discrete-Time cochastic Contro

Conclusion and

Anton D. Rubisov

Maximizing Wealth via Discrete-Time Stochastic Control

Conclusion and Future Work

State $\vec{x}_k = \begin{pmatrix} x_k \\ s_k \\ \mathbf{z}_k \end{pmatrix}$ cash stock price Markov chain state, as above

inventory

 $\begin{array}{c} \text{Control } \vec{u}_k = \begin{pmatrix} \delta_k^\top \\ \delta_k^\top \\ M_{k-}^+ \end{pmatrix} & \text{bid posting depth} \\ \text{ask posting depth} \\ \text{buy market order - binary control} \\ \vdots & \vdots \\ \end{array}$ sell market order - binary control

other agent buy market orders Random $\vec{w}_k = \begin{pmatrix} K_k \\ K_k^- \end{pmatrix}$ other agent buy market orders other agent sell market orders random variable uniformly distributed on [0,1]

Impulse Control

impulse Control
$$\left\langle x_{k}\right\rangle =\left\langle x_{k}\right\rangle$$

$$\begin{pmatrix} x_k \\ s_k \\ \mathbf{z}_k \\ q_k \end{pmatrix} = \begin{pmatrix} x_k \\ s_k \\ \mathbf{z}_k \\ q_k \end{pmatrix} + \begin{pmatrix} s_k - \xi \\ 0 \\ 0 \\ -1 \end{pmatrix} M_k^- + \begin{pmatrix} -(s_k + \xi) \\ 0 \\ 0 \\ 1 \end{pmatrix} M_k^+$$

System Evolution

$$\begin{pmatrix} x_{k+1} \\ s_{k+1} \\ \mathbf{z}_{k+1} \\ q_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ s_k + \eta_{k+1, T(\mathbf{z}_k, \omega_k)} \\ T(\mathbf{z}_k, \omega_k) \\ q_k \end{pmatrix} + \begin{pmatrix} s_k + \xi + \delta_k^- \\ 0 \\ 0 \\ -1 \end{pmatrix} L_k^-$$

$$+ \begin{pmatrix} -(s_k - \xi - \delta_k^+) \\ 0 \\ 0 \\ 1 \end{pmatrix} L_k^+$$

Other agents' market orders are Poisson distributed, so

$$\mathbb{P}[K_k^+ = 0] = \frac{e^{-\mu^+(\mathbf{z})\Delta t}(\mu^+(\mathbf{z})\Delta t)^0}{0!} = e^{-\mu^+(\mathbf{z})\Delta t}$$

and

$$\mathbb{P}[K_k^+>0]=1-e^{-\mu^+(\mathbf{z})\Delta t}$$

- assume the aggregate of the orders walks the LOB to depth p_k
- if $p_k > \delta^-$, our sell limit order is lifted
- assume this occurs with probability $e^{-\kappa\delta^-}$.

$$\mathbb{E}[L_k^-] = (1 - e^{-\mu^+(\mathsf{z})\Delta t})e^{-\kappa\delta^-} = \underbrace{p(\delta^-)}_{\mathsf{short-hand}}$$

Intro to Dynamic Programming

Arbitrage with Order Imbalance

Anton D. Rubisov

Roadma

Background nformation

Exploratory Data Analysis

Maximizing Wealth
via Discrete-Time

Backtesting Results

Conclusion and

Made by Derrick Coetzee. Available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.

Exploratory Data

Maximizing Wealth via Discrete-Time Stochastic Control

Backtesting Results

Conclusion and Future Work

Our performance criterion is our terminal wealth:

$$\begin{split} \boldsymbol{V}_{k}^{\delta^{\pm}}(\boldsymbol{x}, \boldsymbol{s}, \mathbf{z}, \boldsymbol{q}) &= \mathbb{E}_{k, \boldsymbol{x}, \mathbf{s}, \mathbf{z}, \boldsymbol{q}} \left[\boldsymbol{W}_{T}^{\delta^{\pm}} \right] \\ &= \mathbb{E}_{k, \boldsymbol{x}, \mathbf{s}, \mathbf{z}, \boldsymbol{q}} \big[\underbrace{\boldsymbol{X}_{T}^{\delta^{\pm}}}_{\text{cash}} + \underbrace{\boldsymbol{Q}_{T}^{\delta^{\pm}} \left(\boldsymbol{S}_{T} - \boldsymbol{\xi} \operatorname{sgn}(\boldsymbol{Q}_{T}^{\delta^{\pm}}) \right)}_{\text{book value of assets}} - \underbrace{\boldsymbol{\alpha}(\boldsymbol{Q}_{T}^{\delta^{\pm}})^{2}}_{\text{penalty}} \big] \end{split}$$

So that our dynamic programming equations are

$$\begin{split} V_{T}(x,s,\mathbf{z},q) &= x + q(s - \xi \operatorname{sgn}(q)) - \alpha q^{2} \\ V_{k}(x,s,\mathbf{z},q) &= \max \bigg\{ \sup_{\delta^{\pm}} \big\{ \mathbb{E}_{\mathbf{w}} \left[V_{k+1}(f((x,s,\mathbf{z},q),\mathbf{u},\mathbf{w}_{k})] \right\} ; \\ V_{k}(x + s_{k} - \xi, s_{k}, \mathbf{z}_{k}, q_{k} - 1) ; \\ V_{k}(x - s_{k} - \xi, s_{k}, \mathbf{z}_{k}, q_{k} + 1) \bigg\} \end{split}$$

Solve one depth numerically (here the optimal sell depth):

$$\begin{split} \delta^{-*} &= \max \bigg\{ 0 \ ; \ \frac{1}{\kappa} + \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] - 2\xi \mathbb{1}_{q \geq 1} + \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} \bigg[h_{k+1}(\mathbf{j},q) - h_{k+1}(\mathbf{j},q-1) \bigg] \\ &- \big(1 - e^{\mu^{-}(\mathbf{z})\Delta t} \big) e^{-\kappa \max \big\{ 0 \ ; \ \frac{1}{\kappa} - \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] - 2\xi \mathbb{1}_{q \leq -1} + \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} \Big[h_{k+1}(\mathbf{j},q) - h_{k+1}(\mathbf{j},q+1) \Big] \\ &- \big(1 - e^{\mu^{+}(\mathbf{z})\Delta t} \big) e^{-\kappa \delta^{-*}} \big(2\xi \mathbb{1}_{q=0} - \aleph(q) \big) \bigg\} \ (2\xi \mathbb{1}_{q=0} - \aleph(q)) \bigg\} \end{split}$$

And substitute to solve for other depth:

$$\delta^{+*} = \max \left\{ 0 \; ; \; \frac{1}{\kappa} - \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] - 2\xi \mathbb{1}_{q \le -1} + \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} [h_{k+1}(\mathbf{j},q) - h_{k+1}(\mathbf{j},q+1)] \right.$$
$$\left. - p(\delta^{-}) \left(2\xi \mathbb{1}_{q=0} - \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} [h_{k+1}(\mathbf{j},q-1) + h_{k+1}(\mathbf{j},q+1) - 2h_{k+1}(\mathbf{j},q)] \right) \right\}$$

Simplified Dynamic Programming Equation

Arbitrage with
Order Imbalance

Anton D. Rubisov

Roadmap

Background nformation

Analysis

Maximizing Wealth
via Discrete-Time

Backtesting

Conclusion and Future Work

$$\begin{split} h_k(\mathbf{z},q) &= \max \bigg\{ q \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] + \frac{1}{\kappa} (p(\delta^{+*}) + p(\delta^{-*})) \\ &+ \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} h_{k+1}(\mathbf{j},q) \\ &+ p(\delta^{+*}) p(\delta^{-*}) \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} \big[h_{k+1}(\mathbf{j},q-1) \\ &+ h_{k+1}(\mathbf{j},q+1) \\ &- 2h_{k+1}(\mathbf{j},q) \big] \ ; \\ &- 2\xi \cdot \mathbb{1}_{q \geq 0} + h_k(\mathbf{z},q+1) \ ; \\ &- 2\xi \cdot \mathbb{1}_{q \leq 0} + h_k(\mathbf{z},q-1) \bigg\} \end{split}$$

solve this numerically.

Anton D. Rubisov

Backtesting Results

Conclusion and Future Work

Calibrate and backtest on the NASDAQ Historical TotalView-ITCH, timestamped to the millisecond

Ticker	Company	Average Daily Volume
FARO	FARO Technologies Inc.	200,000
NTAP	NetApp, Inc.	4,000,000
ORCL	Oracle Corporation	15,000,000
INTC	Intel Corporation	30,000,000
AAPL	Apple Inc.	50,000,000

Analysis Maximizing Weal[,]

acktesting

Conclusion

Future Work

Global parameters for backtesting

Parameter	Value	Description
Δt_S	1000ms	time window for computing price change
Δt_I	1000ms	time window for averaging order imbalance
$\#_{\mathit{bins}}$	5	number of imbalance bins
κ	100	fill probability constant

$\kappa=$ 100 implies:

- $lackbox{ Orders posted at } \delta = 0$ filled with probability 1
- ▶ Orders posted at $\delta = \$0.01$ filled with probability 0.37
- ▶ Orders posted at $\delta = \$0.02$ filled with probability 0.13

Calculated parameters for backtesting

Parameter	Equation		
G	infinitesimal generator matrix		
Р	transition probability matrix		
μ^\pm	market order arrival intensities		
$H(t,x,s,\mathbf{z},q)$	dynamic programming value function		
δ^{\pm}	limit order posting depths		

Exploratory Data Analysis

> a Discrete-Time tochastic Contro

acktesting esults

Conclusion and Future Work

Non- \mathcal{F} -predictable calibration

 $\rho(t)$ is the imbalance bin of the time-weighted average of I(t) over this past interval.

 $\Delta S(t)$ is the sign of the midprice change over this future interval.

Regular calibration

 $\rho(t)$ unchanged.

 $\Delta S(t)$ calculated over the same past interval.

Dynamics of Posting Depths

-15

-10

Time [s]

Inventory Level Q

10

15

22 / 32

Anton D. Rubisov

Dynamics of Posting Depths

BUY Posting Depth δ^+ [\$] at $Z = (\rho = -1, \Delta S = -1)$

SELL Posting Depth δ^- [\$] at $Z = (\rho = +1, \Delta S = +1)$

Time [s]

Anton D. Rubisov

Sample Strategy Performance

Anton D. Rubisov

Roadmap

Backgroun nformation

Exploratory Data Analysis

Maximizing Wealth via Discrete-Time

Backtesting Results

Conclusion an

Single day performance for ORCL on 2013-05-15

Sample Strategy Performance

Anton D. Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Wealth via Discrete-Time Stochastic Control

Backtesting Results

Conclusion and Future Work

Single day performance for ORCL on 2013-05-15

Sample Strategy Performance

Single day performance for ORCL on 2013-05-15

Anton D. Rubisov

34.02

34

34.02

- average return increases as the underlying stock liquidity increases;
- average return increases as the underlying stock bid-ask spread decreases;
- average return is stable and risk-adjusted return is improved when calibrating over a larger period of time, and is therefore preferred;
- there is no clear victor between regular calibration and the nFPC method.

Out-Of-Sample Backtesting: Annual Calibration

Strategy	Average Return	Risk Adj Return	# MO	# LO	Average Invntry	% Win
INTC						
Continuous —	0.209	2.112	2118	1758	0.44	98%
Discrete —	0.372	1.591	949	1770	-5.89	98%
Continuous with nFPC —	0.483	2.364	704	1693	1.46	100%
Discrete with nFPC —	0.515	2.033	490	1629	2.81	100%
AAPL						
Continuous —	0.378	1.571	3853	6297	-5.80	96%
Discrete —	0.761	2.457	830	5566	4.05	100%
Continuous with nFPC —	0.710	2.479	1276	5689	2.93	100%
Discrete with nFPC —	0.764	2.442	796	5559	3.85	100%

Anton D. Rubisov

Background
Information
Exploratory Data
Analysis

Maximizing We via Discrete-Tin Stochastic Cont Backtesting

Conclusion an Future Work Back-of-the-envelope calculation:

Trade 100 shares at a time \times average strategy return \times average share price \times 249 (trading days)

Trading INTC would have generated revenue of \$384,705.

Trading AAPL would have generated revenue of \$1,807,200.

Capital requirements: 100 shares \times average share price \times 20 (maximum inventory) = \$250,000.

Return on investment (ROI) is 877%.

Conclusion and Future Work

Information

Analysis

via Discrete-Time Stochastic Control

Backtesting Results

Conclusion and Future Work

Futur

- ▶ 877% ROI on INTC and AAPL
- ► Factor in colocation fees, data subscription fees...
- ► ROI down to 359%
- Other high liquidity, low bid-ask spread stocks: DELL, MSFT
- Can we take this strategy to market?

Starting a Hedge Fund

Arbitrage with Order Imbalance

Anton D. Rubisov

Roadma

Backgrour Informatio

Exploratory Data Analysis

Maximizing Wealth
via Discrete-Time
Stochastic Control

Backtesting Results

Conclusion and Future Work

- ► Market order costs
- ▶ Discrete posting depths in increments of 1 tick
 - Can be solved by rounding...
- Our impact on the market (short-term price impact)
- Accounting for non-homogeneity
- Backtesting engine: information latency
- Backtesting engine: algorithm latency
- ▶ Backtesting engine: tracking LOB queue position
 - $e^{-\kappa\delta}$ fill probability is highly flawed

toadmap

Information

Maximizing Weal

Stochastic Contro

acktesting esults

Conclusion an Future Work

Thank you!

Order Imbalance

Anton D. Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Wealth via Discrete-Time Stochastic Control

Backtesting Results

Conclusion and Future Work

Questions?