Introduction to Mobile Robotics

Bayes Filter – Extended Kalman Filter

Wolfram Burgard, Michael Ruhnke, Bastian Steder

Bayes Filter Reminder

$$bel(x_{t}) = \eta p(z_{t} | x_{t}) \int p(x_{t} | u_{t}, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Prediction

$$bel(x_{t}) = \int p(x_{t} | u_{t}, x_{t-1})bel(x_{t-1})dx_{t-1}$$

Correction

$$bel(x_t) = \eta p(z_t | x_t) bel(x_t)$$

Discrete Kalman Filter

Estimates the state *x* of a discrete-time controlled process

$$x_{t} = A_{t} x_{t-1} + B_{t} u_{t} + \varepsilon_{t}$$

with a measurement

$$z_{t} = C_{t} x_{t} + \delta_{t}$$

Components of a Kalman Filter

 A_t Matrix (nxn) that describes how the state evolves from t-1 to t without controls or

noise.

- B_t Matrix (nxl) that describes how the control u_t changes the state from t-1 to t.
- C_t Matrix (kxn) that describes how to map the state x_t to an observation z_t .
- Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Q_t and R_t respectively.

Kalman Filter Update Example

It's a weighted mean!

Kalman Filter Update Example

Kalman Filter Algorithm

- 1. Algorithm **Kalman_filter**(μ_{t-1} , Σ_{t-1} , u_t , z_t):
- 2. Prediction:

3.
$$\mu_t = A_t \mu_{t-1} + B_t \mu_t$$

$$\mathbf{4.} \qquad \boldsymbol{\Sigma}_{t} = \boldsymbol{A}_{t} \boldsymbol{\Sigma}_{t-1} \boldsymbol{A}_{t}^{T} + \boldsymbol{Q}_{t}$$

- 5. Correction:
- **6.** $K_{t} = \sum_{t} C_{t}^{T} (C_{t} \sum_{t} C_{t}^{T} + R_{t})^{-1}$
- 7. $\mu_t = \mu_t + K_t(z_t C_t \mu_t)$
- $\mathbf{8.} \quad \boldsymbol{\Sigma}_{t} = (\boldsymbol{I} \boldsymbol{K}_{t} \boldsymbol{C}_{t}) \boldsymbol{\Sigma}_{t}$
- 9. Return μ_t , Σ_t

Nonlinear Dynamic Systems

 Most realistic robotic problems involve nonlinear functions

$$x_{t} = g\left(u_{t}, x_{t-1}\right)$$

$$z_{t} = h(x_{t})$$

Linearity Assumption Revisited

Non-Linear Function

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!

EKF Linearization: First Order Taylor Expansion

• Prediction:

$$\begin{split} g\left(u_{t}, x_{t-1}\right) &\approx g\left(u_{t}, \mu_{t-1}\right) + \frac{\partial g\left(u_{t}, \mu_{t-1}\right)}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \\ g\left(u_{t}, x_{t-1}\right) &\approx g\left(u_{t}, \mu_{t-1}\right) + G_{t} (x_{t-1} - \mu_{t-1}) \end{split}$$

Correction:

$$h(x_{t}) \approx h(\overline{\mu}_{t}) + \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} (x_{t} - \overline{\mu}_{t})$$
$$h(x_{t}) \approx h(\overline{\mu}_{t}) + H_{t} (x_{t} - \overline{\mu}_{t})$$

Jacobian matrices

Reminder: Jacobian Matrix

- It is a **non-square matrix** $n \times m$ in general
- Given a vector-valued function

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

The Jacobian matrix is defined as

$$\mathbf{F_{x}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix}$$

Reminder: Jacobian Matrix

 It is the orientation of the tangent plane to the vector-valued function at a given point

Generalizes the gradient of a scalar valued function

EKF Linearization: First Order Taylor Expansion

• Prediction:

$$\begin{split} g\left(u_{t}, x_{t-1}\right) &\approx g\left(u_{t}, \mu_{t-1}\right) + \frac{\partial g\left(u_{t}, \mu_{t-1}\right)}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \\ g\left(u_{t}, x_{t-1}\right) &\approx g\left(u_{t}, \mu_{t-1}\right) + G_{t} (x_{t-1} - \mu_{t-1}) \end{split}$$

Correction:

$$h(x_{t}) \approx h(\overline{\mu}_{t}) + \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} (x_{t} - \overline{\mu}_{t})$$
$$h(x_{t}) \approx h(\overline{\mu}_{t}) + H_{t} (x_{t} - \overline{\mu}_{t})$$

Linear function!

Linearity Assumption Revisited

Non-Linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

EKF Algorithm

1. Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

2. Prediction:

$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1}) \qquad \qquad \overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$$

$$\frac{\overline{\Sigma}_{t}}{\Sigma_{t}} = G_{t} \Sigma_{t-1} G_{t}^{T} + Q_{t} \qquad \qquad \overline{\Sigma}_{t} = A_{t} \Sigma_{t-1} A_{t}^{T} + Q_{t}$$

5. Correction:

$$K_{t} = \overline{\Sigma}_{t} H_{t}^{T} (H_{t} \overline{\Sigma}_{t} H_{t}^{T} + R_{t})^{-1} \qquad K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + R_{t})^{-1}$$

7.
$$\mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - h(\overline{\mu}_{t})) \qquad \qquad \mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t}H_{t})\Sigma_{t} \qquad \qquad \Sigma_{t} = (I - K_{t}C_{t})\Sigma_{t}$$

9. Return μ_t , Σ_t

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

Example: EKF Localization

EKF localization with landmarks (point features)

1. EKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Prediction:

3.
$$G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial \mu_{t-1}} = \begin{bmatrix} \frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial \theta'}{\partial \mu_{t-1,x}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,\theta}} \end{bmatrix}$$

Jacobian of g w.r.t location

$$V_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial u_{t}} = \begin{vmatrix} \frac{\partial x'}{\partial v_{t}} & \frac{\partial x'}{\partial \omega_{t}} \\ \frac{\partial y'}{\partial v_{t}} & \frac{\partial y'}{\partial \omega_{t}} \\ \frac{\partial \theta'}{\partial v_{t}} & \frac{\partial \theta'}{\partial \omega_{t}} \end{vmatrix}$$

Jacobian of g w.r.t control

1.
$$Q_{t} = \begin{pmatrix} (\alpha_{1} | v_{t} | + \alpha_{2} | \omega_{t} |)^{2} & 0 \\ 0 & (\alpha_{3} | v_{t} | + \alpha_{4} | \omega_{t} |)^{2} \end{pmatrix}$$

Motion noise

$$2. \quad \overline{\mu}_{t} = g(u_{t}, \mu_{t-1})$$

 $\mathbf{3.} \quad \overset{-}{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + V_{t} Q_{t} V_{t}^{T}$

Predicted mean Predicted covariance (V maps Q into state space)

EKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Correction:

3.
$$\hat{z}_{t} = \begin{pmatrix} \sqrt{(m_{x} - \overline{\mu}_{t,x})^{2} + (m_{y} - \overline{\mu}_{t,y})^{2}} \\ \tan 2(m_{y} - \overline{\mu}_{t,y}, m_{x} - \overline{\mu}_{t,x}) - \overline{\mu}_{t,\theta} \end{pmatrix}$$
 Predicted measurement mean (depends on observation type)

5.
$$H_{t} = \frac{\partial h(\overline{\mu}_{t}, m)}{\partial x_{t}} = \begin{bmatrix} \frac{\partial r_{t}}{\partial \overline{\mu}_{t, x}} & \frac{\partial r_{t}}{\partial \overline{\mu}_{t, y}} & \frac{\partial r_{t}}{\partial \overline{\mu}_{t, y}} \\ \frac{\partial \varphi_{t}}{\partial \overline{\mu}_{t, x}} & \frac{\partial \varphi_{t}}{\partial \overline{\mu}_{t, y}} & \frac{\partial \varphi_{t}}{\partial \overline{\mu}_{t, y}} \end{bmatrix}$$
 Jacobian of h w.r.t location

$$R_{t} = \begin{pmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{r}^{2} \end{pmatrix}$$

7.
$$S_t = H_t \overline{\Sigma}_t H_t^T + R_t$$

$$8. K_t = \overline{\Sigma}_t H_t^T S_t^{-1}$$

$$9. \quad \mu_t = \overline{\mu}_t + K_t(z_t - \hat{z}_t)$$

10.
$$\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$

Innovation covariance

Kalman gain

Updated mean

Updated covariance

EKF Prediction Step Examples

EKF Observation Prediction Step

EKF Correction Step

Estimation Sequence (1)

Estimation Sequence (2)

Extended Kalman Filter Summary

- Ad-hoc solution to deal with non-linearities
- Performs local linearization in each step
- Works well in practice for moderate nonlinearities
- Example: landmark localization
- There exist better ways for dealing with non-linearities such as the unscented Kalman filter called UKF