Дискретная математика

Домашнее задание №8 «Деление чисел с плавающей запятой» Вариант №57

Выполнил: Бободжонов Комронджон (гр. Р3113)

Варианты задания

A	В
4,6	0,06

Ход работы

1. Формат Ф1

$$A = (4.6)10 = (4,99999A)16 = (0,499999A)16 \cdot 16^{1}$$

$$0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$$

$$B = (0.06)10 = (0.0F5C29)16 = (0.F5C29)16 \cdot 16^{-1}$$

$$0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0$$

$$\begin{split} XC &= XA - XB + d \\ d + P_C &= \frac{P_A + d - P_B - d}{P_C} + d \end{split}$$

$$XC = 1 - (-1) + 64 = 66$$

$$PC = 2$$

N шага	Действие			Į	Įеј	ш	М0	e	Частное											
0	M_A	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0		
	$[-M_{ m B}]_{ m ДО\Pi}$	1	0	0	0	0	1	0	1	0										
	R_0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0		
1	$\leftarrow R_0$	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0		
	$[\mathrm{M_B}]_{\mathrm{np}}$	0	1	1	1	1	0	1	1	0										
	R_1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0		
2	$\leftarrow R_1$	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0		
	$[\mathrm{M_B}]_{\mathrm{np}}$	0	1	1	1	1	0	1	1	0										
	R_2	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1		

3	$\leftarrow R_2$	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	0
	$[-M_{ m B}]_{ m доп}$	1	0	0	0	0	1	0	1	0								
	R_3	1	0	1	1	0	1	1	1	0	0	0	0	0	0	0	1	0
	\leftarrow R ₃	0	1	1	0	1	1	1	0	0	0	0	0	0	0	1	0	0
4	$[M_B]_{\pi p}$	0	1	1	1	1	0	1	1	0								
	R_4	1	1	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0
	$\leftarrow R_4$	1	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0
5	$[\mathrm{M_B}]_{\pi\mathrm{p}}$	0	1	1	1	1	0	1	1	0								
	R_5	0	1	0	0	1	1	0	1	0	0	0	0	0	1	0	0	1
	\leftarrow R ₅	1	0	0	1	1	0	1	0	0	0	0	0	1	0	0	1	0
6	$[-M_B]_{ m доп}$	1	0	0	0	0	1	0	1	0								
	R_6	0	0	0	1	1	1	1	1	0	0	0	0	1	0	0	1	1
	$\leftarrow R_6$	0	0	1	1	1	1	1	0	0	0	0	1	0	0	1	1	0
7	$[-M_{ m B}]_{ m доп}$	1	0	0	0	0	1	0	1	0								
	R_7	1	1	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0
8	\leftarrow R ₇	1	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0
	$[\mathrm{M_B}]_{\mathrm{np}}$	0	1	1	1	1	0	1	1	0								
	R_8	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	1

$$C^* = (0.4D)16 \cdot 16^2 = 77.$$

Определим абсолютную и относительную погрешности результата:

$$\Delta C = 76,66666667 - 77 = -0,333333333$$

$$\delta C = \begin{vmatrix} -0,333333333 \\ 76,666666667 \end{vmatrix} \cdot 100\% = 0,43478261\%$$

$$\delta C = \left| \frac{-0.53535353}{76,666666667} \right| \cdot 100\% = 0.43478261\%$$

2. Формат Ф2

$$A = (4.6)10 = (4,99999A)16 = (0,100100110011001101)2 \cdot 2^{3}$$

$$\boxed{0 \ \ 1 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 1 \ \ 1} \ \boxed{0 \ \ 0 \ \ 1 \ \ 1}$$

$$B = (0.06)10 = (0.0F5C29)16 = (0.1111010111)2 \cdot 2^{-4}$$

$$\boxed{0} \ \boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0}$$

$$XC = XA - XB + d$$

$$d + P_C = \frac{P_A + d - P_B - d}{P_C} + d$$

$$XC = 3 - (-4) + 128 = 135$$

$$PC = 7$$

N шага	Действие	,		Ţ	[е л	ш	MO	e		Частное											
	M_A	0	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0			
0	$[-M_B]_{доп}$	1	0	0	0	0	1	0	1	0											
	R_0	1	1	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0			
	$\leftarrow R_0$	1	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0			
1	$[M_B]_{\pi p}$	0	1	1	1	1	0	1	1	0											
	R_1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1			
	$\leftarrow R_1$	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0			
2	$[-M_B]_{доп}$	1	0	0	0	0	1	0	1	0											
	R_2	1	0	1	1	0	1	0	1	0	0	0	0	0	0	0	1	0			
	$\leftarrow R_2$	0	1	1	0	1	0	1	0	0	0	0	0	0	0	1	0	0			
3	$[M_B]_{\pi p}$	0	1	1	1	1	0	1	1	0											
	R_3	1	1	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0			
	← R ₃	1	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0			
4	$[M_B]_{\pi p}$	0	1	1	1	1	0	1	1	0											
	R_4	0	1	0	0	0	1	0	1	0	0	0	0	_	1	0	0	1			
	$\leftarrow R_4$	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0			
5	$[-M_{ m B}]_{ m доп}$	1	0	0	0	0	1	0	1	0											
	R_5	0	0	0	0	1	1	1	1	0	0	0	0	1	0	0	1	1			
	\leftarrow R ₅	0	0	0	1	1	1	1	0	0	0	0	1	0	0	1	1	0			
6	$[-M_B]_{доп}$	1	0	0	0	0	1	0	1	0											
	R_6	1	0	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0			
	\leftarrow R ₆	0	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0			
7	$[M_B]_{\pi p}$	0	1	1	1	1	0	1	1	0											
	R ₇	1	1	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0			
	← R ₇	1	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0			
8	$[M_B]_{\pi p}$	0	1	1	1	1	0	1	1	0											
	R_8	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	0			
	$M_C \rightarrow$										0	1	0	0	1	1	0	0	0		

$$C^* = (0.10011)2 \cdot 2^7 = 76.$$

Определим абсолютную и относительную погрешности результата: $\Delta C = 76,66666667 - 76 = 0,66666667$ $\delta C = \left| \frac{0,66666667}{76,66666667} \right| \cdot 100\% = 0,86956522\%$

$$\delta C = \left| \frac{0,66666667}{76,66666667} \right| \cdot 100\% = 0,86956522\%$$

Погрешности результатов вызваны неточным представлением операндов. $\Phi 1$ оказался точнее из-за отсутствия округления результата в $\Phi 2$ перед переводом в формат.