Локализация сигнала в задаче интерпретации множества статистических ${\sf тестов}^1$

Анастасия Процветкина

14 мая, 2021

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"

Санкт-Петербург, Россия.

¹Руководитель: Сергей Васильевич Малов

Локализация в категориальных

данных

Постановка задачи

Имея таблицу сопряженности размера $m \times n$, можно проверить гипотезу независимости признаков с помощью хи-квадрат статистики.

Известно, что статистика критерия при нулевой гипотезе имеет асимптотическое распределение

$$\chi^2_{(m-1)(n-1)}$$

По определению, хи-квадрат величина X^2 с k степенями свободы есть сумма квадратов k независимых одинаково распределенных нормальных случайных величин X_i , т.е.

$$X^2 = X_1^2 + X_2^2 + \dots + X_k^2$$

Постановка задачи

С каждой таблицей $m \times n$ мы teopetuvecku имеем ассоциированный с ней вектор $\mathbf{X} = (X_1, X_2, \dots, X_{(m-1)(n-1)})^T$, где X_i асимптотически HOPCB из $\mathcal{N}(0,1)$.

Пусть имеется w таких таблиц, имеющих общий признак. Сформируем длинный вектор из всех асимптотически нормальных компонент:

$$\xi = (\underbrace{X_{11}, X_{12}, \dots, X_{1, (m-1)(n-1)}}_{\text{норм. компоненты из 1-й таб.}}, \dots, \underbrace{X_{w1}, X_{w2}, \dots, X_{w, (m-1)(n-1)}}_{\text{норм. компоненты из w-й таб.}})^T$$

Очевидно, что $\pmb{\xi} \Rightarrow \mathcal{N}(0,\Sigma_q), \; q=w(m-1)(n-1).$

Постановка задачи

Teopeма (Rao, Mitra)

$$\psi \sim \mathcal{N}(\mu, \Sigma)$$
, $r = \mathsf{rk}(\Sigma)$,

 Σ^- – обобщенная обратная матрица для Σ

- 1. Квадратичная форма $\psi^T \Sigma^- \psi$ не зависит от выбора Σ^- .
- 2. $\psi^T \Sigma^- \psi \sim \chi^2_{\delta,r} \ (\delta = \mu^T \Sigma^- \mu$ параметр нецентральности).

Комбинированная статистика

Для вектора $\xi \Rightarrow \mathcal{N}(0,\Sigma)$ из всех асимптотически нормальных величин, соответствующих компонентам хи-квадрат статистики из w таблиц сопряженности, построим квадратичную форму

$$\boldsymbol{\xi}^T \Sigma^+ \boldsymbol{\xi} \stackrel{H_0}{\Rightarrow} \chi_r^2,$$

 H_0 : "Ни в одной из $W = \{1, \dots, w\}$ таблиц нет зависимости", $r = \operatorname{rk}(\Sigma), \Sigma^+ -$ обобщенная обратная матрица Мура-Пенроуза.

Хи-квадрат статистика для проверки гипотезы независимости обычно записывается как

$$X^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}},$$

где O_{ij} — наблюденные частоты в ячейке (i,j), E_{ij} — соответствующие ожидаемые частоты при справедливости гипотезы независимости.

 X^2 имеет (m-1)(n-1) степеней свободы, но *алгебраически* является суммой $m\cdot n$ зависимых слагаемых, а нам необходимо представление вида:

$$X^2 = X_1^2 + \dots X_{(m-1)(n-1)}^2$$

⇒ необходимо преобразование.

Решение

Ирвином и Ланкастером было предложено ортогональное преобразование, приводящее хи-квадрат статистику с $m \cdot n$ слагаемыми в сумму квадратов (m-1)(n-1) асимптотических независимых нормальных величин.

Вектор из всех асимп. нормальных компонент сформирован,т.е.

$$\xi = (\underbrace{X_{11}, X_{12}, \dots, X_{1, (m-1)(n-1)}}_{\text{норм. компоненты из 1-й таб.}}, \dots, \underbrace{X_{w1}, X_{w2}, \dots, X_{w, (m-1)(n-1)}}_{\text{норм. компоненты из w-й таб.}})^T$$

получен. Построение квадратичной формы $\xi^T \Sigma^+ \xi$ требует оценивания ковариационной матрицы Σ , т.е. оценивания ковариации между нормальными величинами, соответствующими компонентам хи-квадрат статистики из разных таблиц.

Замечание

Каждая величина X_{ij} представляет одну степень свободы статистики хи-квадрат, поэтому ${\bf var}\,(X_{ij})=1$. В дальнейшем матрицу Σ будем называть корреляционной, нежели просто ковариационной.

Решение

Оценки корреляционной матрицы Σ были получены в частных случаях 2×2 и 3×2 . Формулы громоздки, поэтому не приводятся.

Теоретическая и неизвестная матрица Σ обладает неустойчивым свойством положительной полу-определенности. Оценивание матрицы может привести к его потере, поэтому необходимо учитывать такую потенциальную проблему и иметь решение в случае возникновения.

Решение

Согласно Nigham, ближайшую положительно-определенную матрицу для Σ можно построить, обнулив отрицательные собственные числа Σ .

Результаты

Сравнение распределений: 2 × 2 случай

2a,b: w = 25, **3a,b**: w = 30, **4a,b**: w = 30 N = 1000, маргинальные вероятности по 0.5.

Сравнение распределений: 3×2 случай

Заключение

- Разработан новый метод, позволяющий объединять отдельные слабые сигналы в единый более мощный сигнал
- Получены оценки корреляционной матрицы для асиптотически нормального базисного вектора
- Потенциальные проблемы вырождаемости матрицы Σ и потеря положительной определенности были предвидены и разрешены
- Разработанный метод протестирован на симулированных зависимых данных
- Отмечена сходимость распределений, но для окон малого размера
- Матрица Σ вырождается с увеличением размера окна и зависимости между маркерами