

Nghiên cứu phát triển kỹ thuật đếm số phần tử trên dòng dữ liệu

Học viên: Lê Anh Quốc ID: 2070428

Người hướng dẫn khoa học: PGS. TS. THOẠI NAM

Outline

- 1. Giới thiệu
- 2. Các công trình nghiên cứu liên quan
- 3. Phát biểu bài toán
- 4. Mục tiêu, đối tượng và giới hạn nghiên cứu
- 5. Cơ sở lý thuyết
- 6. Phương pháp thực hiện
- 7. Kế hoạch triển khai

Giới thiệu

Giới thiệu

- Úng dụng và dịch vụ trực tuyến đóng vai trò quan trọng trong cuộc sống hiện đại.
- DAU (Daily Active Users) là chỉ số quan trọng để đánh giá hiệu quả hoạt động của các ứng dụng và dịch vụ này.
- Theo dõi DAU giúp:
 - Đánh giá mức độ tương tác và quan tâm của người dùng.
 - Do lường hiệu quả của chiến dịch marketing và quảng cáo.
 - Hỗ trợ ra quyết định kinh doanh.
- Thách thức:
 - Đếm DAU trên dữ liệu lớn và tốc độ truy cập cao.
 - Tổng hợp DAU từ nhiều nguồn dữ liệu khác nhau.

Các công trình nghiên cứu liên

quan

Các công trình nghiên cứu liên quan

- Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier LogLog Counting of Large Cardinalities, 2003 [1]:
 - Thuật toán ước lượng số lượng phần tử với độ chính xác cao và sử dụng ít bộ nhớ.
- Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier HyperLogLog: The Analysis of a Near-Optimal Cardinality Estimation Algorithm, 2007 [2]:
 - là một cải tiến từ LogLog, thuật toán này có khả năng ước lượng số lượng phần tử lớn hơn 10^9 với sai số khoảng 2% chỉ dụng 1.5 kilobytes bộ nhớ, đồng thời có khả năng song song hoá tối ưu và thích nghi với mô hình cửa sổ trượt (sliding window).
- Stefan Heule, Marc Nunkesser, Alexander Hall
 HyperLogLog in Practice: Algorithmic Improvements for Practical
 Cardinality Estimation Deployments, 2017 [3]:
 - Phiên bản nâng cấp của HyperLogLog với độ chính xác cao hơn và yêu cầu bộ nhớ ít hơn.

Phát biểu bài toán

Phát biểu bài toán

- Bài toán 1: Phát triển thuật toán để ước lượng số lượng phần tử (cardinality estimation) trong một khoảng thời gian trên một dòng dữ liệu (data stream).
- Bài toán 2: Mở rộng thuật toán để ước lượng số lượng phần tử trong một khoảng thời gian trên nhiều dòng dữ liệu.

Mục tiêu, đối tượng và giới hạn nghiên cứu

Mục tiêu

- Phát triển kỹ thuật đếm số lượng phần tử hiệu quả, có chính xác cao trên dòng dữ liệu.
- Nâng cao hiệu suất xử lý dữ liệu lớn, đáp ứng nhu cầu ngày càng tăng trong kỷ nguyên số.
- Thực hiện, phân tích kết quả thí nghiệm, rút ra kết luận và đề xuất hướng nghiên cứu tiếp theo.
- Đóng góp vào sự phát triển của công nghệ dữ liệu lớn, mở ra tiềm năng ứng dụng trong nhiều lĩnh vực.

Giới hạn, đối tượng nghiên cứu

Đối tượng nghiên cứu:

- Dòng dữ liệu dạng **văn bản** có chứa nhiều phần tử cần đếm.
 - userID, IP address, words, etc
- Các kỹ thuật đếm số lượng phần tử.

Giới hạn:

- Nghiên cứu kỹ thuật đếm số lượng phần tử trên dòng dữ liệu dạng văn bản.
- Các kỹ thuật được đề xuất và triển khai có thể chưa áp dụng được cho tất cả các loại dữ liệu.
 - Hình ảnh, âm thanh ...

Cơ sở lý thuyết

Cơ sở lý thuyết

LogLog Algorithm

Sai số tiêu chuẩn δ của thuật toán LogLog:

$$\delta \approx \frac{1.3}{\sqrt{m}}$$

- m = 256, $\delta \approx 8\%$
- m = 1024, nó giảm xuống còn khoảng 4%.

HyperLogLog algorithm

- Đã được đề xuất bởi Philippe Flajolet, Eric Fusy, Olivier Gandouet và Frederic Meunier vào năm 2007 [2].
- Sử dụng hàm băm 32-bit và hàm đánh giá có các sửa lỗi bias khác nhau.
- Xử lý các định lượng lên đến 10⁹ với một hàm băm 32-bit đơn lẻ h chia tập dữ liệu thành m = 2^p tập con, với p ∈ 4...16.
- Sử dụng trung bình điều hoà (hamonic mean) thay vì sử dụng trung bình hình học (geometric mean) như phiên bản gốc LogLog

HyperLogLog algorithm

```
Let h: \mathcal{D} \to [0,1] \equiv \{0,1\}^{\infty} hash data from domain \mathcal{D} to the binary domain.
Let \rho(s), for s \in \{0,1\}^{\infty}, be the position of the leftmost 1-bit (\rho(0001\cdots)=4).
Algorithm HYPERLOGLOG (input \mathcal{M}: multiset of items from domain \mathcal{D}).
assume m=2^b with b\in\mathbb{Z}_{>0};
initialize a collection of m registers, M[1], \ldots, M[m], to -\infty;
for v \in \mathcal{M} do
        set x := h(v):
        set j = 1 + \langle x_1 x_2 \cdots x_b \rangle_2; {the binary address determined by the first b bits of x}
        set w := x_{b+1}x_{b+2}\cdots; set M[j] := \max(M[j], \rho(w));
compute Z := \left(\sum_{j=1}^{m} 2^{-M[j]}\right)^{-1}; {the "indicator" function}
return E := \alpha_m m^2 Z with \alpha_m as given by Equation (3).
```

Với α_m:

$$\alpha_m = \left(m \int_0^\infty \left(\log_2\left(\frac{2+x}{1+x}\right)\right)^m dx\right)^{-1} \tag{3}$$

HyperLogLog algorithm

• Tương tự LogLog, sai số tiêu chuẩn δ :

$$\delta \approx \frac{1.04}{\sqrt{m}}$$
.

Yêu cầu bộ nhớ không tăng tuyến tính theo số lượng phần tử,
 m = 2^p bộ đếm, bộ nhớ cần thiết là:

$$\lceil \log_2 (M+1-p) \rceil \cdot 2^p$$
 bits

- Ví dụ, **Redis** duy trì cấu trúc dữ liệu *HyperLogLog* của **12 KB** để xấp xỉ các định lượng $\delta \approx 0.81.\%$.
 - $\log_2(64+1-14)*2^{14}$, sử dụng hàm băm 64-bit và p =14
 - $\delta pprox rac{1.04}{\sqrt{2^{14}}} = 0.008125$

HyperLogLog: các thư viện và công cụ nổi bật

- Apache DataSketches: một thư viện Java cung cấp các thuật toán xác suất và thống kê. Được sử dụng rộng rãi trong các hệ thống Big Data như Apache Druid, Apache Kafka và Apache Hive.
- Redis: hệ thống lưu trữ dữ liệu dạng key-value phổ biến, cung cấp cấu trúc dữ liệu HyperLogLog tích hợp sẵn. Sử dụng các lệnh như PFADD, PFCOUNT và PFMERGE để làm việc với HLL.
- Google BigQuery: sử dụng HyperLogLog++ cho các chức năng thống kê và phân tích dữ liệu lớn.
- PostgreSQL: Extension postgreSQL-hll giúp thực hiện các truy vấn với số lượng phần tử duy nhất một cách hiệu quả.
- Amazon Redshift: hỗ trợ HyperLogLog để tối ưu hóa các truy vấn thống kê và giảm thiểu dung lượng bộ nhớ cần thiết.
- Apache Flink: một nền tảng xử lý luồng dữ liệu phân tán, có tích hợp HyperLogLog để xử lý các phép tính phức tạp trên dữ liệu luồng.

Ví dụ: Redis (1/3)

Redis là một hệ thống lưu trữ dữ liệu dạng key-value phổ biến và hỗ trợ nhiều cấu trúc dữ liệu mạnh mẽ, trong đó có HyperLogLog. Redis cung cấp các lệnh chuyên biệt để làm việc với HyperLogLog, bao gồm PFADD, PFCOUNT và PFMERGE.

Các lệnh cơ bản của HyperLogLog trong Redis:

- PFADD: Thêm các phần tử vào HyperLogLog.
- PFCOUNT: Ước lượng số phần tử duy nhất trong HyperLogLog.
- PFMERGE: Hợp nhất nhiều HyperLogLog thành một.

Ví dụ: Redis (2/3)

Giả sử chúng ta có một ứng dụng web và muốn theo dõi số lượng người dùng duy nhất truy cập vào website mỗi ngày.

Các lệnh cơ bản của HyperLogLog trong Redis:

- Cài đặt Redis:
 - sudo apt-get update
 - sudo apt-get install redis-server
- Khởi động Redis server:
 - redis-server
- Kết nối tới Redis:
 - redis-cli

Ví dụ: Redis (3/3)

Thêm người dùng:

```
PFADD unique_visitors:2024-05-25T08 user1 user2 user3

PFADD unique_visitors:2024-05-25T08 user2 user4

PFADD unique_visitors:2024-05-25T09 user5 user6

PFADD unique_visitors:2024-05-25T10 user1 user7
```

Ước lượng số người dùng trong giờ 08:00 ngày 2024-05-25:

```
PFCOUNT unique visitors:2024-05-25T08
```

 Giả sử chúng ta muốn hợp nhất dữ liệu người dùng duy nhất từ ba giờ khác nhau (08:00, 09:00, và 10:00).:

```
PFMERGE unique_visitors:2024-05-25:morning
unique_visitors:2024-05-25T08
unique_visitors:2024-05-25T09
unique_visitors:2024-05-25T10
PFCOUNT unique_visitors:2024-05-25:morning
```

Cách HyperLogLog lưu trữ dữ liệu trong Redis

Redis sử dụng "sparse representation" cho các bộ đếm nhỏ và "dense representation" cho các bộ đếm lớn hơn.

Dung lượng bộ nhớ phụ thuộc vào số lượng thanh ghi (registers), và mỗi thanh ghi lưu trữ thông tin về vị trí của bit đầu tiên là 1 trong chuỗi băm.

Số lượng thanh ghi (m):

- $m = 2^p$, trong đó p là số bit để xác định số thanh ghi.
- Giá trị mặc định p trong Redis là 14 = > có $2^{14} = 16384$ thanh ghi.

Dung lượng bộ nhớ cần thiết

- Mỗi thanh ghi cần 6 bit để lưu trữ vị trí của bit đầu tiên là 1.
- Tổng dung lượng bộ nhớ cần thiết cho HyperLogLog trong Redis có thể tính theo công thức (với m = 16384 thanh ghi):
 Memory = 16384 x 6 bits = 98304 bits = 12288 bytes = 12 KB

Tính toán dung lượng cần thiết cho nhiều tập hợp HLL

Nếu bạn muốn lưu trữ nhiều tập hợp HyperLogLog trong Redis, ví dụ như theo dõi số người dùng duy nhất theo giờ, cần nhân dung lượng bộ nhớ của một tập hợp HLL với số lượng tập hợp bạn có.

Giả sử bạn muốn lưu trữ dữ liệu người dùng duy nhất cho mỗi giờ trong một ngày (24 giờ):

Total Memory =
$$12 \text{ KB} \times 24 = 288 \text{ KB}$$

Nếu bạn muốn lưu trữ dữ liệu theo từng giờ cho nhiều ngày, bạn chỉ cần nhân thêm số lượng ngày:

Total Memory for 30 days = 288 KB/day \times 30 = 8640 KB = **8.64 MB**

Phương pháp thực hiện

Bài toán 1

Phát triển thuật toán để ước lượng số lượng phần tử (cardinality estimation) trong một khoảng thời gian trên một dòng dữ liệu (data stream):

- Bước 1: Xác định khoảng thời gian Đầu tiên, chúng tôi sẽ xác định khoảng thời gian mà chúng tôi muốn đếm số lượng phần tử. Ví dụ, mỗi giờ hoặc mỗi phút.
- Bước 2: Lưu trữ HyperLogLog Tiếp theo, chúng tôi sẽ lưu trữ cấu trúc HyperLogLog cho mỗi khoảng thời gian. Cấu trúc dữ liệu sẽ bao gồm cặp $\langle T, HLL_1 \rangle$, trong đó T là thời điểm đại diện cho khung thời gian cụ thể.
- Bước 3: Sử dụng kết quả Cuối cùng, khi cần, chúng tôi có thể truy vấn và sử dụng kết quả từ các cấu trúc HyperLogLog lưu trữ theo khung thời gian để ước lượng số lượng phần tử trong mỗi khoảng thời gian.

Bài toán 2

- Mở rộng thuật toán để ước lượng số lượng phần tử trong một khoảng thời gian trên nhiều dòng dữ liệu:
 - Ví dụ khi chúng ta cần biết có bao nhiêu người dùng đã đăng nhập vào hệ thống vào ngày hôm qua, do dữ liệu người dùng được lưu ở trên nhiều hệ thống như web, application và cũng như trên các bộ phận khác nhau của doanh nghiệp.
- Bước 1: Lưu trữ dữ liệu
 - Lưu trữ dữ liệu theo khung thời gian $\langle T, \textit{HLL} \rangle$
- Bước 2: Tổng hợp HLL từ các dữ liệu từ nhiều nơi khác nhau: $\langle T, HLL_1 \rangle, \langle T, HLL_2 \rangle, ..., \langle T, HLL_N \rangle$
 - T là khoảng thời gian cần tổng hợp
 - HLL₁ là dữ liệu HyperLogLog trong khoảng thời gian
- Bước 3: Ước lượng số phần tử

Kế hoạch triển khai

Kế hoạch triển khai

#	Tuần	Nội dung công việc
1	1 - 2	Bài báo liên quan mới nhất và bổ sung cơ sở lý thuyết
		về các kỹ thuật ước lượng số lượng trên dòng dữ liệu
2	3 - 4	Thu thập dữ liệu, chuẩn hoá và tiền xử lý. Hiện thực
		bài toán 1 ước lượng số lượng phần tử trên dòng dữ liệu
3	5 - 6	Mở rộng để ước lượng số lượng phần tử trên
		nhiều dòng dữ liệu. Đánh giá hiệu suất và độ chính xác.
4	7 - 8	Phân tích và so sánh kết quả, đánh giá ưu nhược điểm.
		Đề suất phương pháp tối ưu hiệu suất và độ chính xác.
5	9 - 10	Ứng dụng kết quả nghiên cứu.
		Đề suất hướng phát triển và nghiên cứu tiếp theo.
6	11 - 12	Đề xuất và đánh giá các giải pháp
7	1 - 14	Tổng hợp kết quả và viết báo cáo

Nội dung dự kiến của luận văn

- **Chương 1: Giới thiệu**. Tầm quan trọng của việc phát triển kỹ thuật đếm số phần tử trên dòng dữ liệu trong ngữ cảnh dữ liệu lớn.
- Chương 2: Các công trình nghiên cứu liên quan. Các công trình nghiên cứu liên quan, phương pháp giải quyết vấn đề. Đánh giá tính khả thi của đề tài.
- **Chương 3: Kiến thức nền tảng.** Giới thiệu về tính chất, phương pháp truy vấn và xử lý trên dòng dữ liệu. Giới thiệu về HyperLogLog và nguyên lý hoạt động và đánh giá hiệu suất, độ chính xác trên dòng dữ liệu.
- **Chương 4: Hiện thực và thử nghiệm.** Trong chương này sẽ trình bày chi tiết cách thức hiện thực của từng thuật toán.
- **Chương 5: Kết quả và đánh giá.** Trong chương này sẽ nêu ra các kết quả đạt được của các kỹ thuật, cũng như phương pháp đánh giá dựa trên kết quả thực nghiệm.
- **Chương 6: Kết luận.** Đánh giá ưu điểm và nhược điểm của mô hình và đề xuất hướng nghiên cứu phát triển kỹ thuật đếm số phần tử trong tương lai.

Tài liêu tham khảo

M. Durand and P. Flajolet, "Loglog counting of large cardinalities," in Algorithms-ESA 2003: 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003. Proceedings 11, pp. 605-617, Springer, 2003.

P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, "Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm," Discrete mathematics & theoretical computer science, no. Proceedings, 2007.

S. Heule, M. Nunkesser, and A. Hall, "Hyperloglog in practice: Algorithmic engineering of a state of the art cardinality estimation algorithm," in Proceedings of the 16th International Conference on Extending Database Technology, pp. 683-692, 2013.

Q & A

Chân thành cảm ơn!