

Benchmarking of 2D Fingerprints and Machine-Learning Methods

Sereina Riniker 2nd RDKit UGM, Genome Campus, Hinxton UK October 2, 2013

Ligand-Based Virtual Screening

Similarity search

Assumption: similar molecules have similar properties.

Ligand-Based Virtual Screening

Similarity search

Assumption: similar molecules have similar properties.

Benchmarking of Standard 2D Fingerprints

Data sets I (original)

Baseline fps: ECFC0, MACCS

 Path-based fps: atom pairs (AP), torsions (TT), Avalon, RDK5

- Circular (bit vector) fps: ECFP4, ECFP6, FCFP4
- Circular (counts) fps: ECFC4, FCFC4
- Normal size: 1024 bits
- Long (16384 bits) for: Avalon, ECFP4, ECFP6

→ Inter-target differences larger than intra-target

MAX fusion for basic fingerprint Average of 50 repetitions Query molecules: 10

Benchmarking of Standard 2D Fingerprints

Data sets I (original)

Statistical analysis: pairwise post-hoc Friedman tests

AUC EF(5%)

	TT	AP	ECFC4	RDK5	Avalon	lAvalon	FCFP4	ECFP4	FCFC4	ECFP6	ECFP4	ECFP6	MACCS	ECFC0	Rank
	F					1	Ξ.	=	1	=	Ξ.	I	4	Ī	
TT		X	X	X	X	-	-	-	-	-	-	-	-	-	1
AP			X	X	X	X	O	O	-	-	-	-	-	-	1
ECFC4				X	X	X	X	X	O	O	O	-	-	-	1
RDK5					X	X	X	X	X	O	O	-	-	_	1
Avalon						X	X	X	X	O	O	_	_	_	1
lAvalon							X	X	X	X	X	X	-	_	1
FCFP4								X	X	X	X	X	_	_	1
lECFP4									X	X	X	X	-	-	1
FCFC4										X	X	X	O	_	1
lECFP6											X	X	O	O	1
ECFP4												X	O	O	1
ECFP6													X	O	1
MACCS														X	1
ECFC0															1

	IECFP4	TT	IECFP6	ECFP4	ECFC4	ECFP6	FCFP4	RDK5	AP	Avalon	lAvalon	FCFC4	MACCS	ECFC0	Rank
lECFP4		X	X	X	X	О	О	O	-	-	-	-	-	-	1
TT			X	X	X	X	X	X	O	O	-	-	_	-	1
lECFP6				X	X	X	X	X	O	O	O	-	_	-	1
ECFP4					X	X	X	X	X	X	X	-	-	-	1
ECFC4						X	X	X	X	X	X	-	-	-	1
ECFP6							X	X	X	X	X	O	-	-	1
FCFP4								X	X	X	X	-	-	-	1
RDK5									X	X	X	O	-	-	1
AP										X	X	O	-	-	1
Avalon											X	X	-	-	1
lAvalon												X	-	-	1
FCFC4													-	-	1
MACCS														X	13
ECFC0															13

→ Majority of fingerprints show no statistically significant difference

Data Sets

Two common use cases of virtual screening (VS)

Use case 1:

- A small set of diverse actives from e.g. a HTS is available
 - → data sets I
- Use case 2:
 - A small set of related actives, i.e. compounds sharing one or two common scaffolds, from a publication or patent is available
 - → data sets II

Benchmarking of Standard 2D Fingerprints

Performance of 4 fingerprints

MAX group fusion for standard fingerprint Average of 50 repetitions Query molecules: 10 MAX group fusion for standard fingerprint Average of papers

hashed AP, hashed TT, ECFP4, RDK5

S. Riniker, N. Fechner, G. Landrum, J. Chem. Inf. Model. (2013), submitted.

Benchmarking of Machine-Learning Methods

Performance of random forest and naïve Bayes

S. Riniker, N. Fechner, G. Landrum, J. Chem. Inf. Model. (2013), submitted.

Heterogeneous Classifier Fusion

Take advantage of differences among ML methods / fingerprints

Heterogeneous Classifier Fusion

Take advantage of differences among ML methods / fingerprints

Why Do Machine-Learning Methods Help?

Similarity maps of Carbonic anhydrase II ligands

training active

$$0 \xrightarrow{\mathsf{H}} S \\ \mathsf{N} - \mathsf{SO}_2 \mathsf{NH}_2$$

 $s_{Dice}(ECFP4) = 0.77$ probability(RF) = 0.61

other actives found by the random forest (RF) trained with ECFP4

→ RF picks up important motif for binding (zinc ion in active site)

green: removing bits decreases similarity; pink: removing bits increases similarity

Benchmarking Platform

For ligand-based virtual screening

- Virtual screening in 3 steps: scoring, validation, analysis
- For standard fingerprints and machine-learning methods
- Access to source code and data sets:
 - supplementary material of J. Cheminf. (2013), 5, 26
 - from github: rdkit/benchmarking_platform

S. Riniker, G. Landrum, J. Cheminf. (2013), 5, 26.

S. Riniker, N. Fechner, G. Landrum, J. Chem. Inf. Model. (2013), subm.

Benchmarking Platform

For ligand-based virtual screening

Files:

- configuration_file.py
- compounds/ → ChEMBL/, MUV/, DUD/
- query_lists/ → ChEMBL/, MUV/, DUD/
- scoring/ → calculate_scored_lists.py, fingerprint_lib.py
- validation/ → calculate_validation_methods.py
- analysis/ → run_analysis.py, run_method_summary.py, run_fp_summary.py, run_stat_analysis.py, Friedman_Test.Target_x_FP_Data.R
- Data sets from three public data sources:
 - MUV:^[1] 17 targets
 - DUD:^[2] 21 targets
 - ChEMBL:^[3] 50 medium (+ 30 hard targets)

[1] S. G. Rohrer, K. Baumann, J. Chem. Inf. Model. (2009), 49, 169.
[2] A. Zahn et al., J. Cheminf. (2009), 1, 14.
[3] K. Heikamp, J. Bajorath, J. Chem. Inf. Model. (2011), 51, 1831.

Benchmarking Platform

For ligand-based virtual screening

Three subsets:

- data sets I (original): (currently available)
 - 17 MUV targets
 - 21 DUD targets
 - 50 medium ChEMBL targets
- data sets I (difficulty filtered): AUC(ECFC0) < 0.8
 - 16 MUV targets
 - 3 DUD targets
 - 21 medium ChEMBL targets
 - 29 hard ChEMBL targets
- data sets II:
 - 37 ChEMBL targets
- Coming soon:
 - additional ChEMBL targets and ML-adapted scoring scripts

1. Step: Scoring – 2D Fingerprints

Fingerprint library

In calculate_scored_lists.py:

```
import fingerprint_lib

def getFPDict(fpnames, smiles):
   fp_dict = {}
   for fp in fpnames:
        fp_dict[fp] = fingerprint_lib.CalculateFP(fp, smiles)
        return fp_dict
```

- In fingerprint_lib.py:
 - Fingerprint library using other sources can be used as well
 - needs only to provide a function CalculateFP (input: name, SMILES; output: fp)

```
from rdkit import Chem, MACCSkeys
from rdkit.Chem import rdMolDescriptors as rdM

fpdict = {}
fpdict['ecfc0'] = lambda m: rdM.GetMorganFingerprint(m, 0)
fpdict['ecfp4'] = lambda m: rdM.GetMorganFingerprintAsBitVect(m, 2, nBits=nbits)
fpdict['maccs'] = lambda m: MACCSkeys.GenMACCSKeys(m)
fpdict['rdk5'] = lambda m: Chem.RDKFingerprint(m, maxPath=5, fpSize=nbits)
fpdict['hashap'] = lambda m: rdM.GetHashedAtomPairFingerprintAsBitVect(m, nBits=nbits)

def CalculateFP(fp_name, smiles):
    m = Chem.MolFromSmiles(smiles)
    return fpdict[fp_name](m)
```


1. Step: Scoring – 2D Fingerprints

Similarity metric

In calculate_scored_lists.py:

```
simil_dict = {}
simil_dict['Dice'] = lambda x,y: DataStructs.BulkDiceSimilarity(x,y)
simil_dict['Tanimoto'] = lambda x,y: DataStructs.BulkTanimotoSimilarity(x,y)
simil_dict['Manhattan'] = lambda x,y: DataStructs.BulkAllBitSimilarity(x,y)
simil_dict['Cosine'] = lambda x,y: DataStructs.BulkCosineSimilarity(x,y)

def getBulkSimilarity(fp, fp_list, simil_metric):
    simils = simil_dict[simil_metric](fp, fp_list)
    simils.sort(reverse=True)
    return simils
```

- more RDKit similarity metrics:
 - Russel
 - Kulczynski
 - McConnaughey
 - RogotGoldberg
- other similarity/distance metrics can be added

1. Step: Scoring – ML Methods

Changes to calculate_scored_lists.py

- Using scikit-learn
- Only a single fingerprint is calculated

```
import fingerprint_lib

def getFP(fpname, smiles):
   return fingerprint_lib.CalculateFP(fpname, smiles)
```

Fingerprints are converted to numpy arrays (for speed)

```
def getNumpy(inlist):
   outlist = []
   for fp in inlist:
       arr = numpy.zeros((1,))
       DataStructs.ConvertToNumpyArray(fp[1], arr) # fp is second element of i
       outlist.append(arr)
   return outlist
```

ML model is retrained with new training molecules each repetition

2. Step: Validation

- Required input: pickled file per target
 - entry for each fingerprint > [fpname, scored_lists]
 - scored_lists = list with ranked list for each repetition (i.e. 50 elements)
 - ♦ each repetition = ranked list of length N_{test molecules}
 - \$\\$\\$\\$\ element of ranked list = [similarity, {other similarities...}, internal ID, 0/1]

```
import gzip, cPickle

scores = {}

myfile = gzip.open(scored_list, 'r')

while 1:
   try: tmp = cPickle.load(myfile)
   except (EOFError): break
   else: scores[tmp[0]] = tmp[1] # [fpname, list of scored lists]
```

Evaluation methods: rdkit.ML.Scoring

```
from rdkit.ML.Scoring import Scoring

results['AUC'] = Scoring.CalcAUC(scores[fp][q], -1)
results['EF5'] = Scoring.CalcEnrichment(scores[fp][q], -1, [0.05])[0]
results['RIE20'] = Scoring.CalcRIE(scores[fp][q], -1, 20.0)
results['BEDROC20'] = Scoring.CalcBEDROC(scores[fp][q], -1, 20.0)
```


3. Step: Analysis

Workflow

Similarity Maps

Code example for standard fingerprints

- Atom pairs: SimilarityMaps.GetAPFingerprint
 - fpType = 'normal', 'hashed', 'bv'
- Torsions: SimilarityMaps. GetTTFingerprint
 - fpType = 'normal', 'hashed', 'bv'
- Circular fingerprints: SimilarityMaps. GetMorganFingerprint
 - fpType = 'bv', 'count'
 - useFeatures = False, True
- Similarity metric: any function taking two fps and returning a float
 - Default: Dice similarity

S. Riniker, G. Landrum, *J. Cheminf.* (2013), **5**, 43.

Similarity Maps

Code example for random forest

```
from rdkit import Chem, DataStructs
from rdkit.Chem.Draw import SimilarityMaps as rdSM
from sklearn.ensemble import RandomForestClassifier
import cPickle

mol = Chem.MolFromSmiles('clccccl')
rf = cPickle.load(open('rf.pkl', 'r')) # a previously trained RF model

# metric
def getProba(fp, predictionFunction):
    return predictionFunction(fp)[0][1]

# with Morgan fingerprint
fig, maxweight = rdSM.GetSimilarityMapsForModel(mol,
    lambda x,y: rdSM.GetMorganFingerprint(x, y, radius=2, fpType='bv'),
    lambda x: getProba(x, rf.predict_proba))
```

- Same fingerprint functions
- «Similarity» metric: any function taking a fp and returning a float
 - no default
 - sklearn models return an array [n_samples, n_classes]
 - for naïve Bayes: use nb.predict_log_proba

Summary

- Benchmarking platform in 3 steps: scoring, validation, analysis
- Inter-target differences larger than intra-target differences between standard fingerprints
 - TT (from 1987) among the top fingerprints in all evaluation methods
- Evaluation methods:
 - high correlations between the «early-recognition» methods
- Use of machine-learning methods increases performance
- Similarity maps:
 - visualization of atomic contributions to similarity or predicted probability of machine-learning models

Acknowledgements

- Greg Landrum
- Nikolas Fechner
- Hanspeter Gubler
- Michael Berthold (Uni Konstanz)

