# Algorithmes de Newton stochastiques

A. Godichon-Baggioni

Algorithme de Newton stochastique

•0000

# Algorithme de Newton stochastique

# IDÉE

00000

Algorithme de Newton stochastique

Modèle linéaire :

$$Y = \theta^T X + \epsilon$$

**Gradient stochastique :** Posons  $H = \mathbb{E} [XX^T] = \begin{pmatrix} 10^{-2} & 0 \\ 0 & 10^2 \end{pmatrix}$ .

$$\mathbb{E}\left[\theta_{n+1} - \theta\right] = \begin{pmatrix} 1 - \gamma_{n+1} 10^{-2} & 0\\ 0 & 1 - \gamma_{n+1} 10^{2} \end{pmatrix} \mathbb{E}\left[\theta_{n} - \theta\right]$$

Choix de  $\gamma_n$ ?

# **SIMULATIONS**

Algorithme de Newton stochastique

00000



FIGURE - Evolution des estimateurs de la première coordonnée (en haut) et de la deuxième (en bas) pour, de gauche à droite,  $c_{\gamma} = 0.1, c_{\gamma} = 1 \text{ et } c_{\gamma} = 10.$ 

Algorithme de Newton stochastique

00000

# SIMULATIONS (NEWTON STOCHASTIQUE)



FIGURE - Evolution des estimateurs de la première coordonnée (à gauche) et de la deuxième coordonnée (à droite) pour l'algorithme de Newton stochastique.

# ALGORITHME DE NEWTON STOCHASTIQUE

## Algorithme de Newton stochastique :

$$m_{n+1} = m_n - \frac{1}{n+1} \overline{H}_n^{-1} \nabla_h g(X_{n+1}, m_n)$$

## Hypothèses sur $\overline{H}_n$ :

Algorithme de Newton stochastique

00000

- $ightharpoonup \overline{H}_{n}^{-1}$  est symétrique et définie positive.
- ▶ Il existe une filtration  $(\mathcal{F}_n)$  telle que
  - $ightharpoonup \overline{H}_n$  et  $m_n$  sont  $\mathcal{F}_n = \sigma\left(X_1,\ldots,X_n\right)$  mesurables.
  - $ightharpoonup X_{n+1}$  est indépendant de  $\mathcal{F}_n$ .

# Vitesse de convergence

## CADRE

Algorithme de Newton stochastique

Hypothèses sur la fonction G:

**(PS0")** Il existe une constante *C* telle que

$$\forall h \in \mathbb{R}^d$$
,  $\mathbb{E}\left[\left\|\nabla_h g\left(X,h\right)\right\|^2\right] \leq C + C\left(G(h) - G(m)\right)$ 

**(PS2)** La fonction *G* est deux fois continument différentiable sur une voisinage de *m* et

$$\lambda_{\min} := \lambda_{\min} \left( \nabla^2 G(m) \right) > 0.$$

**(PS5)** La Hessienne de G est uniformément bornée : il existe  $L_{\nabla G}$ tel que

$$\forall h \in \mathbb{R}^d, \quad \|\nabla^2 G(h)\|_{op} \le L_{\nabla G}$$

- ▶ (PS5)  $\Longrightarrow \nabla G(.)$  est  $L_{\nabla G}$  Lipchitz.
- ► *G* fortement convexe + (PS0)  $\Longrightarrow$  (PS0").
- ightharpoonup (PS0") + (PS5)  $\Longrightarrow$  (PS0).

# Hypothèse sur l'estimateur $\overline{H}_n$

**(H1)** On peut contrôler les valeurs propres de  $H_n$ :

$$\lambda_{\max} \left( \overline{H}_n \right) = O(1) \quad p.s$$

$$\lambda_{\max} \left( \overline{H}_n^{-1} \right) = O\left( n^{\beta} \right) \quad p.s$$

avec  $\beta$  < 1/2.

• (H1) 
$$\Longrightarrow \liminf \lambda_{\min} \left( \overline{H}_n^{-1} \right) > 0 \text{ p.s.}$$

# CONVERGENCE

#### Théorème

On suppose que les hypothèses (PS0"), (PS2), (PS5) et (H1) sont vérifiées. Alors

$$m_n \xrightarrow[n \to +\infty]{p.s.} m.$$

# Nouvelle hypothèse sur $\overline{H}_n$

(H2) Si (PS0"), (PS2), (PS5) et (H1) sont vérifées, alors

$$\overline{H}_n \xrightarrow[n \to +\infty]{p.s} H$$
 et  $\overline{H}_n^{-1} \xrightarrow[n \to +\infty]{p.s} H^{-1}$ 

## VITESSE DE CONVERGENCE

## Théorème

On suppose que les hypothèses (PS0") (PS2), (PS5), (H1) et (H2) sont vérifiées. Alors, pour tout  $\delta > 0$ ,

$$||m_n - m||^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right)$$
 p.s.

# EFFICACITÉ ASYMPTOTIQUE

Algorithme de Newton stochastique

(H3) On suppose que les hypothèses (PS0") (PS2), (PS5), (H1) et **(H2)** sont vérifiées, alors il existe  $p_H > 0$  tel que

$$\|\overline{H}_n - H\|_{op} = O\left(\frac{1}{n^{p_H}}\right) \quad p.s$$

$$\|\overline{H}_n^{-1} - H^{-1}\|_{op} = O\left(\frac{1}{n^{p_H}}\right) \quad p.s$$

Avoir une vitesse pour  $m_n$  implique d'avoir une vitesse pour  $\overline{H}_n$ .

# EFFICACITÉ ASYMPTOTIQUE

#### Théorème

Algorithme de Newton stochastique

On suppose que les hypothèses (PS0"), (PS2) à (PS5), et (H1) à (H3) sont vérifiées, alors

$$\sqrt{n} \left( m_n - m \right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N} \left( 0, H^{-1} \Sigma H^{-1} \right)$$

avec 
$$H = \nabla^2 G(m)$$
 et  $\Sigma = \Sigma(m)$ .

Algorithme de Newton stochastique

Régression linéaire

•000000000

# UNE FORMULE MAGIQUE

Algorithme de Newton stochastique

**Formule de Riccati**: Soit  $A \in \mathcal{M}_d(\mathbb{R})$  une matrice inversible et  $u, v \in \mathbb{R}^d$ . Si  $1 + v^T A^{-1} u \neq 0$ , alors  $A + uv^T$  est inversible et

$$(A + uv^T)^{-1} = A^{-1} - (1 + v^T A^{-1}u)^{-1} A^{-1}uv^T A^{-1}.$$

Cas particulier: Soit A une matrice définie positive, pour tout  $u \in \mathbb{R}^d$  et  $\lambda > 0$ , on a  $1 + \lambda u^T A^{-1} u > 1$  et donc

$$(A + \lambda u u^{T}) = A^{-1} - \lambda (1 + \lambda u^{T} A^{-1} u)^{-1} A^{-1} u u^{T} A^{-1}.$$

# L'ALGORITHME

Algorithme de Newton stochastique

## Algorithme de Newton stochastique :

$$\theta_{n+1} = \theta_n + \frac{1}{n+1} \overline{H}_n^{-1} (Y_{n+1} - X_{n+1}^T \theta_n) X_{n+1}$$

$$H_{n+1}^{-1} = H_n^{-1} + (1 + X_{n+1}^T H_n^{-1} X_{n+1})^{-1} H_n^{-1} X_{n+1} X_{n+1}^T H_n^{-1}$$

avec  $H_0$  positive et  $\overline{H}_n = (n+1)H_n^{-1}$ .

## Réécriture de $H_n$ :

$$\overline{H}_n = \frac{1}{n+1} \left( H_0 + \sum_{k=1}^n X_k X_k^T \right).$$

## VITESSE DE CONVERGENCE

#### Théorème

Algorithme de Newton stochastique

On suppose qu'il existe  $\eta > 0$  tel que X et  $\epsilon$  admettent des moments d'ordre  $4 + \eta$  et  $2 + \eta$ . Alors pour tout  $\delta > 0$ ,

$$\|\theta_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n} \left(\theta_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \sigma^2 H^{-1}\right)$$

# **SIMULATIONS**



FIGURE – Evolution de l'erreur quadratique moyenne des estimateurs de gradient  $\theta_n$  (SGD), de leur version moyennée  $\overline{\theta}_n$  (ASGD) et des estimateurs de Newton stochastique  $\tilde{\theta}_n$  (SN) en fonction de la taille de l'échantilon dans le cadre du modèle linéaire.

# Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC: Sous H0,

Algorithme de Newton stochastique

$$\sqrt{n} \frac{\left(\theta_n - \theta_0\right)^T H \left(\theta_n - \theta_0\right)}{\sigma^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

**Application**: Soit  $\overline{H}_n$  et  $\hat{\sigma}_n^2$  des estimateurs consistants. Alors

$$K_n := \sqrt{n} \frac{(\theta_n - \theta_0)^T \overline{H}_n (\theta_n - \theta_0)}{\hat{\sigma}_n^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

# Construction de $\overline{H}_n$ et $\sigma_n^2$

#### **Ecriture directe:**

Algorithme de Newton stochastique

$$\overline{H}_{n} = \frac{1}{n+1} \left( H_{0} + \sum_{k=1}^{n} X_{k} X_{k}^{T} \right)$$

$$\hat{\sigma}_{n}^{2} = \frac{1}{n+1} \sum_{k=1}^{n} \left( Y_{k} - X_{k}^{T} \theta_{k-1} \right)^{2}$$

#### **Ecriture récursive :**

$$\overline{H}_{n+1} = \overline{H}_n + \frac{1}{n+2} \left( X_{n+1} X_{n+1}^T - \overline{H}_n \right) 
\hat{\sigma}_{n+1}^2 = \hat{\sigma}_n^2 + \frac{1}{n+2} \left( \left( Y_{n+1} - X_{n+1}^T \theta_n \right)^2 - \hat{\sigma}_n^2 \right)$$

Régression linéaire

0000000000

# **SIMULATIONS**



FIGURE – Comparaison des fonctions de répartition de  $C_n$  et  $K_n$ , pour n = 5000, et de la fonction de répartition d'une Chi 2 à 10 degrés de liberté dans le cadre du modèle linéaire.

Tester 
$$x_0^T \theta = x_0^T \theta_0$$

Algorithme de Newton stochastique

#### Réécriture du TLC

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{\sigma^2 x_0^T H^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,1\right).$$

**Application:** Sous H0,

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{\hat{\sigma}_n^2 x_0^T \overline{H}^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,1\right).$$

# **SIMULATIONS**

Algorithme de Newton stochastique



FIGURE – Comparaison de la densité de  $C_{e_1}$ , pour n = 1000 (à gauche) et n = 5000 (à droite), et de la densité d'une loi normal centrée réduite dans le cadre de la régression linéaire.

Algorithme de Newton stochastique

Régression linéaire

# L'ALGORITHME

#### Algorithme de Newton stochastique:

$$\begin{split} &\alpha_{n+1} = \pi \left(\theta_n^T X_{n+1}\right) \left(1 - \pi \left(\theta_n^T X_{n+1}\right)\right) \\ &\theta_{n+1} = \theta_n + \frac{1}{n+1} \overline{H}_n^{-1} \left(Y_{n+1} - \pi \left(\theta_n^T X_{n+1}\right)\right) X_{n+1} \\ &H_{n+1}^{-1} = H_n^{-1} - \alpha_{n+1} \left(1 + \alpha_{n+1} X_{n+1}^T H_n^{-1} X_{n+1}\right)^{-1} H_n^{-1} X_{n+1} X_{n+1}^T H_n^{-1} \\ &\text{avec } H_0^{-1} \text{ symétrique et définie positive, } \overline{H}_n^{-1} = (n+1) H_n. \end{split}$$

# **Réécriture de** $\overline{H}_n$ :

$$\overline{H}_n = rac{1}{n+1} \left( H_0 + \sum_{k=1}^n \pi \left( heta_n^T X_{n+1} 
ight) \left( 1 - \pi \left( heta_n^T X_{n+1} 
ight) 
ight) X_k X_k^T 
ight)$$

Algorithme de Newton stochastique

## Algorithme de Newton stochastique tronqué :

$$\alpha_{n+1} = \pi \left(\theta_n^T X_{n+1}\right) \left(1 - \pi \left(\theta_n^T X_{n+1}\right)\right)$$

$$\theta_{n+1} = \theta_n + \frac{1}{n+1} \overline{H}_n^{-1} \left(Y_{n+1} - \pi \left(\theta_n^T X_{n+1}\right)\right) X_{n+1}$$

$$H_{n+1}^{-1} = H_n^{-1} - a_{n+1} \left(1 + a_{n+1} X_{n+1}^T H_n^{-1} X_{n+1}\right)^{-1} H_n^{-1} X_{n+1} X_{n+1}^T H_n^{-1}$$

$$\text{avec } a_{n+1} = \max \left\{\alpha_{n+1}, \frac{c_{\beta}}{(n+1)^{\beta}}\right\} \text{ avec } c_{\beta} > 0 \text{ et } \beta \in (0, 1/2)$$

## **Réécriture** de $\overline{H}_n$ :

$$\overline{H}_n = \frac{1}{n+1} \left( H_0 + \sum_{k=1}^n \max \left\{ \alpha_{k+1}, \frac{c_\beta}{(k+1)^\beta} \right\} X_k X_k^T \right)$$

## VITESSE DE CONVERGENCE

#### Théorème

Algorithme de Newton stochastique

On suppose que X admet un moment d'ordre 4. Alors pour tout  $\delta > 0$ ,

$$\|\theta_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n} \left(\theta_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, H^{-1}\right)$$

# SIMULATIONS



FIGURE – Evolution de l'erreur quadratique moyenne des estimateurs de gradient (SGD), de leur version moyennée (ASGD) et des estimateurs de Newton stochastique (SN) en fonction de la taille de l'échantillon dans le cadre de la régression logistique.

# Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC: Sous H0,

$$\sqrt{n} \left(\theta_n - \theta_0\right)^T H \left(\theta_n - \theta_0\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

**Application**: Sous H0,

Algorithme de Newton stochastique

$$K_n := \sqrt{n} \left(\theta_n - \theta_0\right)^T \overline{H}_n \left(\theta_n - \theta_0\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

## SIMULATIONS



FIGURE – Comparaison de la fonction de répartition de  $K_n$ , pour n = 5000, et de la fonction de répartition d'une Chi 2 à 10 degrés de liberté.

Régression linéaire

# TESTER $x_0^T \theta = x_0^T \theta_0$

#### Réécriture du TLC

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{x_0^T H^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,1\right).$$

**Application:** Sous H0,

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{x_0^T \overline{H}^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1).$$

## SIMULATIONS



FIGURE – Comparaison de la densité de  $C_{e_1}$ , pour n=1000 (à gauche) et n=5000 (à droite), et de la densité d'une loi normal centrée réduite.