《大学物理 AII》作业 No.01 机械振动

班级	吸 学号			姓名				_ 成绩				
	*****	******	二章教	学要	读求**	***	***	***				
1、理解简谐 2、理解简谐 动。						掌握月	用旋轴	告矢量	法研	究简	谐振	
3、理解简谐 4、掌握同方 5、理解同方 振动的合成 6、了解阻尼	向同频率简 向不同频率 ^{该规律,了}	简谐振动的 ^{《简谐振动} 解李萨如	的合成图。	 划		解拍	现象。	理解	相互	垂直	简谐	
一、填空题 1 、 描	述 简	谐振	动	的	三	个	特	征	量	分	别	
是:	`	,			; =	其中_			由	系统	本身	
性质决定;_			_由出社	刃始急	条件决	定。						
2. 用 60N 的 物体,才能像								立挂_		k	g的	
3. 两个同频如图所示,则		- ()	- ()		$I_{ m m}$ €	1 -		i_1	i_2		► ţ	
4. 一质点作作 所示。根据此 用 余 弦 函 φ ₀ =	比图,它的 的数描:				0 - 2		2		Δ	t	$\overrightarrow{(s)}$	
5、一个系统	做无阻尼自	自由振动时	十,其 排	辰 动步	页率由	Ī				<i>\</i>	₹定;	
当其做受迫挑												
尼不太大, 且												
共振现象。												

二、选择题

- 1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度 θ ,如图所示,然 后由静止放手任其振动,从放手时开始计时。若用余弦函数表示 其运动方程,则该单摆振动的初相位为
- [](A) θ ;

- (B) $\frac{3}{2}\pi$; (C) 0; (D) $\frac{1}{2}\pi$.

- 2. 轻弹簧上端固定,下系一质量为 m_1 的物体,稳定后在 m_1 下边又系一质量为 m, 的物体,于是弹簧又伸长了 Δx 。若将m,移去,并令其振动,则振动周期为
-] (A) $T = 2\pi \sqrt{\frac{m_2 \Delta x}{m_1 g}}$
 - (C) $T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$
- (B) $T = 2\pi \sqrt{\frac{m_1 \Delta x}{m_2 g}}$
 - (D) $T = 2\pi \sqrt{\frac{m_2 \Delta x}{(m_1 + m_2)\varrho}}$
- 3. 一劲度系数为 k 的轻弹簧截成两等份, 将它们并联在一起, 下面挂一质量为 m 的物体,如图所示。则振动系统的频率为
-] (A) $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$ (B) $\frac{1}{\pi}\sqrt{\frac{k}{m}}$ (C) $\frac{1}{2\pi}\sqrt{\frac{2k}{m}}$ (D) $\frac{1}{2\pi}\sqrt{\frac{k}{2m}}$

- 4. 一弹簧振子作简谐振动,总能量为 E_1 ,如果简谐振动振幅增加为原来的三倍, 重物的质量增加为原来的两倍,则它的总能量E变为
- [] (A) $E_1/9$
- (B) $3E_1/2$
- (C) $3E_1$
- (D) $9E_1$
- 5. 一质点作简谐振动,周期为T。质点由平衡位置向x轴负方向运动时,由平 衡位置到正的最大位移处这段路程所需要的最短时间为
- [] (A) $\frac{T}{4}$ (B) $\frac{3T}{4}$ (C) $\frac{T}{2}$

三、计算题

- 1. 一质量 m = 0.2kg 的物体,在弹性恢复力作用下沿 x 轴运动,弹簧的劲度系数 k = 20N·m⁻¹。
 - (1) 求振动的周期 T 和角频率 ω ;
 - (2) 如果振幅 A = 10cm, t = 0 时位移 $x_0 = 5$ cm 处,物体沿 x 轴反向运动,求 初速度 v_0 及初相 φ_o ;
 - (3) 写出该振动的表达式。

- 2. 一质点作简谐振动, 其振动曲线如图所示。若质点的振动规律用余弦函数描述, 求:
 - (1) 振动方程;
 - (2) t = 1.5s 时速度大小;
 - (3) t=1s 时加速度大小。

3. 一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

$$x_1 = 0.02\cos(\omega t + \pi/4)$$

$$x_2 = 0.02\cos(\omega t + 19\pi/12)$$

用旋转矢量法求其合振动的运动方程。

4. 如图所示,桌面上一质量为m的滑块与劲度系数为k的弹簧相连,另一质量为M=3m的滑块用一根轻绳绕过一个质量可忽略不计的定滑轮与滑块m连接。t=0时弹簧处于原长状态且由此时松手系统开始振动,求滑块M的运动方程。(以M的平衡位置为坐标原点,以向下方向为正方向,不计m与桌面的摩擦力)。

