SEMESTER III. MODULE 4 CO-3 ALGEBRAIC STRUCTURE

MODULE 4 (CO-3) UNIT: 4.1 INTRODUCTION TO ALGEBRAIC STRUCTURE

INTRODUCTION:

In this chapter, we will study, binary operation as a function, and algebraic structures- monoid, semigroups, groups and rings, integral domains, field. They are called an algebraic structure because the operations on the set define a structure on the elements of that set

Definition: BINARY OPERATION

Let A be non empty set A.

- a function $f: A \times A \rightarrow A$ is called a binary operation on a set A
- generally the binary operation is denoted by * on A, then $a * b \in A \ \forall a, b \in A$.

Example:

Q. Is + binary operation on N, the set of natural numbers?

Ans: yes

Q. Is + binary operation on Z, the set of integers?

Ans: yes

Q. Is - binary operation on N, the set of natural numbers ?

Ans: No

Q. Is - binary operation on Z, the set of integers?

Ans: yes

Definition: Associative property

Let A be non empty set A.

* is binary operation on A

$$(a * b) * c = a * (b * c) \forall a, b, c \in A$$

Example:

Q. Is + associative in Z, the set of integers?

Ans: yes

Q. Is - associative in Z, the set of integers?

Ans: No

Q. Is multiplication associative in Z, the set of integers?

Ans: yes

Definition: Identity Property

Let A be non empty set A.

* is binary operation on A

If $e \in A$ and $a * e = a \forall a, \in A$ then e is the identity element of A with respect to * Example:

Q. What is the identity element of R with respect to addition?

Ans:0

Q. What is the identity element of R with respect to multiplication?

Ans: 1

Definition: Inverse property

If for $a \in A$ there exist $b \in A$ such that a * b = e = b*a then b is called inverse of a with respect to *

Example:

Q. What is the inverse of 3 in R with respect to addition?

Ans: -3

Q. What is the inverse of 3 in R with respect to multiplication?

Ans: 1/3

Definition: SEMIGROUP

A non-empty set S together with a binary operation * is called as a semigroup if — binary operation * is associative we denote the semigroup by (S, *)

Definition: Commutative Semigroup

A semigroup (S, *) is said to be

Commutative if * is commutative

Example:

- (z, +) is a commutative semigroup
- (z, .) is a commutative semigroup

Definition: Monoid

- A non-empty set M together with a binary operation
- *defined on it, is called as a monoid if
- i) binary operation * is associative
- ii) M has an identity with respect to * .
- Note: A semi group that has an identity is a monoid

Example:

- (z, +) is a monoid
- (z, .) is a monoid

Definition: Group

- A non-empty set G together with a binary operation
- * defined on it is called a group if
- (i) binary operation * is closed,
- (ii) binary operation * is associative,
- (iii) G has an identity with respect to *
- (iv) Every element in G has inverse in G, with
- respect to *
- We denote the group by (G,*)
- Commutative (Abelian) Group: A group (G, *) is said to be commutative if * is commutative.

Example: Determine whether $A = Z - \{1\}$, the set of integers except 1 is a semigroup, a monoid with respect to * where a * b = a + b - ab

Closure Property: -

Let a, $b \in A= Z-\{1\}$, the set of integers except 1

 \therefore a, b are integers and a $\neq 1$, b $\neq 1$

a * b = a + b - ab is integer

Assume $a * b = 1 \Rightarrow a+b-ab = 1a+(1-a)b=1$

$$\Rightarrow$$
0=1-a -(1-a)b \Rightarrow 0=(1-a) (1-b)

 \Rightarrow a=1 or b=1 but a \neq 1, b \neq 1

Assumption a * b = 1 is wrong $\Rightarrow a*b \neq 1$

a*b=a+b-ab is integer and $a*b\neq 1 \Rightarrow a*b \in A=Z-\{1\}$,

 $\therefore a * b \in A \forall a, b \in A.$

so ½/is²closure.

Example: Determine whether $A= Z-\{1\}$, the set of integers except 1 is a semigroup, a monoid with respect to * where a * b = a + b - abAssociative Property:

a*(b*c) = a*(b+c-bc) = a+(b+c-bc) - a(b+c+bc) = a+b+c-bc-ab-ac-abcAnd (a*b)*c = (a+b-ab)*c = (a+b-ab)+c-(a+b+ab)c = a+b+c-ab-ac-bc-abc.Hence, a*(b*c) = (a*b)*c. \therefore * is associative.

Example: Determine whether A= Z-{1}, the set of integers except 1 is a semigroup, a monoid with respect to * where a * b = a + b - abExistence of identity: Let e be the identity element a * e = aa + e - ae = ae(1-a) = 0e = 0 or a = 1But a≠1 e = 0 is the identity element

Example :Determine whether $S = \{1, 2, 3, 6, 12\}$ is a monoid ,a semigroup, with respect to * where a * b = G.C.D.(a, b)

Closure Property: Since all the elements of the table ∈ S, closure property is satisfied.

Associative Property : Since

$$a*(b*c) = a*(b*c) = a*GCD\{b,c\} = GCD\{a,b,c\}$$

And
$$(a * b) * c = GCD\{a, b\} * c = GCD\{a, b, c\}$$

$$\therefore a*(b*c)=(a*b)*c$$

- ∴ * is associative.
- ∴ (S, *) is a semigroup.

Existence of identity: From the table we observe that $12 \in S$ is the identity

:: (S, *) is a monoid.

```
Example: Prove that A is a group with respect to *
Where A= R-{1}, the set of real numbers except 1
And a * b = a + b - ab
Closure Property: -
Let a, b \in A= R-\{1\}, the set of real numbers except 1
\therefore a, b are real numbers and a\neq 1, b\neq 1
a * b = a + b - ab is real numbers
Assume a * b = 1 \Rightarrow a+b-ab = 1a+(1-a)b=1
\Rightarrow0=1-a -(1-a)b \Rightarrow 0=(1-a) (1-b)
\Rightarrow a=1 or b=1 but a\neq1, b\neq1
Assumption a * b = 1 is wrong \Rightarrow a*b \neq 1
a * b = a + b - ab is real and a*b \ne 1 \Rightarrow a*b \in A= R-\{1\},
\therefore a * b \in A \forall a, b \in A.
```

Deepali Phalak

16

so *o/is2closure.

Example: Prove that A is a group with respect to * Where A= R-{1}, the set of real numbers except 1 And a * b = a + b - ab

Associative Property:

a*(b*c) = a*(b+c-bc) = a+(b+c-bc) - a(b+c+bc) = a+b+c-bc-ab-ac-abcAnd (a*b)*c = (a+b-ab)*c = (a+b-ab)+c-(a+b+ab)c = a+b+c-ab-ac-bc-abc.Hence, a*(b*c) = (a*b)*c. \therefore * is associative.

10/16/2020 Deepali Phalak 17

```
Example: Prove that A is a group with respect to *
Where A= R-{1}, the set of real numbers except 1
And a * b = a + b - ab
Existence of identity:
Let e be the identity element
a * e = a
a + e - ae = a
e(1-a) = 0
e = 0 \text{ or } a = 1
But a≠1
e = 0 is the identity element
```

```
Example: Prove that A is a group with respect to *
Where A= R-{1}, the set of real numbers except 1
And a * b = a + b - ab
Existence of Inverse:
Let b be the inverse of a
a * b = e = b*a
a + b - ab = 0
a+b(1-a)=0
b=a/(1-a) and a/(1-a) is real number as a\neq 1
Inverse of a with respect to * is a/(1-a) in A.
A is a group with respect to *
```

Example :Determine whether $S = \{1, 2, 3, 6, 9, 18\}$ is a semigroup, a monoid, commutative monoid with respect to * where a * b = L.C.M.(a, b)

*	1	2	3	6	9	18	
1	1	2	3	6	9	18	
2	2	2	6	6	18	18	
3	3	6	3	6	9	18	
6	6	6	6	6	18	18	
9	9	18	9	18	9	18	
18	18	18	18	18	18	18	

Closure Property: Since all the elements of the table ∈ S, closure property is satisfied.

Associative Property: Since $a*(b*c) = a*LCM\{b,c\} = LCM\{a,b,c\}$

And
$$(a * b) * c = LCM\{a, b\} * c = LCM\{a, b, c\}$$

* is associative.

10/16/2020 (S,*) is a semigroup.

Example :Determine whether $S = \{1, 2, 3, 6, 9, 18\}$ is a semigroup, a monoid, commutative monoid with respect to * where a * b = L.C.M.(a, b)

Existence of identity: From the table we observe that $1 \in S$ is the identity.

∴ (S, *) is a monoid.

Commutative property: Since LCM $\{a, b\} = LCM\{b, a\}$ we have a*b=b*a. Hence * is commutative.

Therefore A is commutative monoid.

Result

If G is a group.

- (i) The identity element is unique.
- (ii) Each a in G has unique inverse

Example: Prepare table for multiplication in $G = Z_7 - \{0\}$ And find inverse of 2,3,6

*	1 2 3 4 5 6	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

From the table we observe that $1 \in G$ is identity.

From the table we get $2^{-1} = 4$, $3^{-1} = 5$, $6^{-1} = 6$

Definition: Ring

- (R, \oplus, \otimes) is said to be ring if
- (i) (R, \oplus) is a commutative group
- (ii) (R, \otimes) is a semigroup
- (iii) a \otimes (b \oplus c)= a \otimes b \oplus a \otimes c

Definition: Field

- (R, \oplus, \otimes) is said to be field if
- (i) (R, \oplus) is a commutative group
- (ii) $(R-\{0\}, \otimes)$ is a commutative group
- (iii) a \otimes (b \oplus c)= a \otimes b \oplus a \otimes c

Example: Prove that $(Z_5 +,...)$ is field $(Z_5 +) & (Z_5 -\{0\})$ are commutative groups

X	0	1	2	3	4
0	0	0	Λ	0	
1	0	1 2 3 4	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Definition: Commutative Ring

- (R, \oplus, \otimes) is said to be commutative ring if
- (i) (R, \oplus, \otimes) is a ring
- (ii) \otimes is commutative

Definition: Ring with unity

- (R, \oplus, \otimes) is said to be ring with unity if
- (i) (R, \oplus, \otimes) is a ring
- (ii) Identity w.r.t. ⊗ exits in R

Definition: Integral Domain

- (R, \oplus, \otimes) is said to be Integral Domain if
- (i) (R, \oplus, \otimes) is commutative ring with unity
- (ii) R has no zero divisors

Example: Prove that set $\{\overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ is a commutative ring modulo 10.

+	0	2	4	6	8	
0	0	2	4	6	8	
2	0 2 4 6	4	6	8	0	
4	4	6	8	0	2	
6	6	8	0	2	4	
8	8	0	2	4	6	

×	0	2	4	6	8
0	0	0	0	0	0
2	0 0 0 0	4	8	2	6
4	0	8	6	4	8
6	0	2	4	6	8
8	0	6	2	8	4

Definition: Zero divisors

 (R, \oplus, \otimes) is ring if $a \otimes b = 0$ (0- identity w.r.t. \oplus) but $a \neq 0 \& b \neq 0$ then a & b are said to be zero divisors

Example:

In ring $(Z_6 +,.)$

2.3=0 but 2 ≠0 ,3 ≠0

4.3=0 but 4 ≠0 ,3 ≠0

2,4& 3 are zero divisors of Z₆

Definition: Units

 (R, \oplus, \otimes) is ring and 1 is identity w.r.t. \otimes if b is inverse of a w.r.t. \otimes then a & b are called units Example :

In ring $(Z_9 +,.)$

2.5 = 1

2& 5 are units of Z_9

Definition: Integral Domain

- (R, \oplus, \otimes) is said to be Integral Domain if
- (i) (R, \oplus, \otimes) is commutative ring with unity
- (ii) R has no zero divisors

Example :ring $(Z_5 +,..)$ is Integral Domain

Note:

Ring $(Z_p +,.)$ is Integral Domain and field if p is prime In Z_n , a is unit if G.C.D (a,n)=1 In Z_n , a is zero divisor if G.C.D $(a,n) \neq 1$