Eruierung von Methoden zur Exploration von Textwiederverwendung in großen Datenmengen am Beispiel der Wikipedia

Verteidigung Bachelorarbeit
Tristan Licht

Gutachter: Junior-Prof. Dr. Matthias Hagen, Prof. Dr.-Ing. Norbert Siegmund

Betreuer : Dr. Martin Potthast, Michael Völske

Ablauf

- 1. Einleitung
- 2. Textabbildungen und Ähnlichkeiten
- 3. Implementierung
- 4. Ergebnisse

Einleitung

Ziele:

- Quantitive Aussage über den Anteil von einzigartigen Textinhalten in Textmengen treffen.
- Einen Ausblick über die Arten von Textwiederverwendung liefern.
- Methoden des Information Retrieval in Hinblick auf die Erkennung von Textwiederverwendung zu analysieren.

Datensätze:

- ClueWeb12 733 Millionen Seiten
- Wikipedia 5.14 Millionen Seiten
- Common Crawl 2 Milliarden Seiten

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Textabbildungen

Bedingungen:

- Der Kreuzvergleich der Artikel des Wikipedia-Datensatzes umfasst 13 Billionen Operationen.
- Ein Vergleich aller Artikel auf Wortebene aller Artikel ist nicht schnell genug berechenbar.

Ziel:

- Für jedes Dokument eine Kandidatenmenge ermitteln, die alle anderen Dokumente des Korpus mit gleichen Textabschnitten umfasst.
- Eine Textrepräsentation finden, deren Vergleichsoperation hinreichend schnell berechenbar ist.

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Textabbildungen

Methoden zur Textabbildung:

- Vector Space Model
- Tf-Idf gewichtetes Vector Space Model
- Simhash Hashverfahren
- Latent Semantic Indexing
- Paragraph Vectors basierend auf Worteinbettungen

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Vector Space Model

Algorithmus:

- 1. Erstellung eines indexierten Wörterbuches anhand der im Korpus enthaltenen Worte.
- 2. Konstruktion eines Nullvektors für jedes Dokument, wobei die Dimensionsgröße der Länge des Wörterbuchs entspricht.
- 3. Für jedes Wort im Dokument wird der Vektor an der Indexposition inkrementiert, welche der Indexposition des Wörterbuches entspricht.

Beispiel:

- I. Der Mann steht auf der Leiter.
- II. Die Frau sitzt vor der Leiter.

1.

Index	1	2	3	4	5	6	7	8	9
Wort	der	mann	steht	auf	leiter	die	frau	sitzt	vor

3.

I	2	1	1	1	1	0	0	0	0
П	1	0	0	0	1	1	1	1	1

- Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Tf-Idf Gewichtung

Probleme:

- Alle Worte besitzen die gleiche Gewichtung.
- Dokumente mit unterschiedlichen Inhalten können als ähnlich Vektoren abgebildet werden.

Term frequency – Inverse document frequency:

term frequency:
$$tf(t,d) = f_{t,d} \qquad \qquad t \in d$$
 inverse document frequency:
$$idf(t,D) = \log \frac{N}{n_t} \qquad \qquad N = |D|$$

$$tfidf(t,d,D) = f_{t,d} \cdot \log \frac{N}{n_t} \qquad d \in D, n_t = |\{d \in D: t \in d\}|$$

Vorteil:

- Terme, die in vielen Dokumenten zu finden sind, bekommen eine niedrigere Gewichtung.
- Worte, die in wenigen Dokumenten auftauchen, bekommen eine h\u00f6here Gewichtung.

- Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Ähnlichkeitsberechnung

Kosinus-Ähnlichkeit

$$\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}$$

Paragraphenähnlichkeit:

- Alternativ zur Ähnlichkeitsberechnung auf Dokumentenebene, können die Dokumente in Absätze geteilt und diese Verglichen werden.
- Als Indiz für Textwiederverwendung zwischen zwei Dokumenten wird dann die höchste Kosinus-Ähnlichkeit zwischen zwei Paragraphen der Dokumente verwendet.

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Vergleich der Retrieval-Methoden

Vergleich der Repräsentationsmethoden:

Gesucht wurde nun die Textabbildungs- und Vergleichsmethode, welche sich am besten eignet, zu einem Anfragedokument alle Dokumente eines Korpus mit gemeinsamen Textabsätzen zu liefern.

- 1. Alle Dokumente des Korpus mit allen Repräsentationsmethoden abbilden.
- 2. Zu jedem Anfragedokument die Ähnlichkeiten mit jedem anderen Dokument des Korpus berechnen.
- 3. Berechnung des Recalls aller Repräsentationen für die ersten 50 Ränge.

Hierzu wurde der PAN14 Plagiatskorpus genutzt:

- 3.385 Quelldokumente
- 179 Plagiatsdokumente, welche aus bis zu 16 Quelldokumenten plagiiert wurden.
- Kenntnis über alle Plagiatsfälle

- Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Recall von Plagiaten des PAN14-Korpus

RECALL ON DOCUMENT-LEVEL

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Recall von Plagiaten des PAN14-Korpus

RECALL ON PARAGRAPH-LEVEL

- 1. Einleitun
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Preprocessing

Preprocessing des Korpus

- Wikipedia XML-Dump vom 1.5.2016
- Extraktion aller Artikel des "Main namespace"
- Stoppwort Entfernung
- Filterung von Disambugierungsseiten und Artikeln mit weniger als 100 Worten
- Template-Erweiterung

Einteilung der Artikel in Paragraphen

- Unterteilung der Artikel in Paragraphen anhand von Absatzüberschriften
- Zusammenführung von Paragraphen mit weniger als 50 Worten
- 8.507.799 Paragraphen resultieren in 36 Billionen Operationen

Artikel in Namespace 0	5.139.351
Artikel gefiltert durch Länge	2.400.125
Artikel mit Disambiguierung	118.468
Verbleibende Artikel	2.620.758
Anzahl der Paragraphen	8.507.799

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Apache Spark

- High Performance Cluster Computing
- In-Memory Data Storage
- API's in Java, Scala, R, Python
- Lambda-Funktionen auf den Daten

Workspace

- Betaweb Cluster mit 100 Nodes
- 400 Executor mit 7GB RAM und 5 Executor-Kernen
- Webis17 mit 64 GB RAM als Spark Driver

Implementierung

- 1. Preprocessed XML Dokumente als Objekte laden
- 2. Berechnung der Tf-Idf Vektoren mit der Spark Mllib
- 3. Gleichmäßige Verteilung der Vektoren auf allen Worker-Instanzen
- 4. Zweite Kopie der Vektoren partitionieren und einzeln zur Berechnung auf alle Worker kopieren

https://http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/

- 1. Einleitung
- 2. Textabbildunger
- 3. Implementierung
- 4. Ergebnisse

Apache Spark

Ergebnis und Optimierung

- 1% der Ähnlichkeiten nach 8 Stunden berechnet, was in 32 Tage für alle Dokumente enden würde
- Ersetzen der Mllib-Funktion durch Cython-Implementierung
- Verbesserung der Datenverteilung durch Modulo-Restklassen
- → Alle Ähnlichkeiten nach vier Tagen und 13 Stunden berechnet

Kosinus Ähnlichkeit	Anzahl der Dokumentenpaare
[0.9,1.0]	1.440.388
[0.8,0.9)	9.983.895
[0.7,0.8)	160.716.484
[0.6,0.7)	273.926.278
[0.5,0.6)	287.084.295
[0.4,0.5)	307.513.389
[0.3,0.4)	627.619.558
[0.2,0.3)	3.060.431.052
[0.1,0.2)	31.624.808.958

https://cwiki.apache.org/confluence/display/ SPARK/PySpark+Internals

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- Ergebnisse

Textvergleich

Abgleich auf Wortebene

- Die $36.2 * 10^{12}$ Dokumentenpaaren konnten durch Filterung aller Paare mit Kosinus < 0.5 auf $7.33 * 10^8$ reduziert werden.
- Für den Textvergleich der Paare wurde das PicaPica-Textalignment verwendet.
 - → Aus 2 Texten alle ähnliche Passagen extrahieren
- Als Blackbox betrachtet: Durch die Eingabe der Texte und Parametern für Mindestlänge und Ähnlichkeitsschwellwert alle entsprechenden Textpassagen errechnen.

Parallelisierung

- Nutzung der Spark Java-API
- Verteilung der Kandidatenpaar-Indizes auf alle Worker
- Komprimierte Wikipedia-Artikel als Hashmap im Speicher jedes Nodes
- Rechenzeit: 11 Stunden und 22 Minuten auf 130 Nodes

http://www.picapica.org/poster

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Ergebnis

Gefundene Textwiederverwendung

- 4,25 Millionen Dokumentenpaare mit gleichen Textpassagen und 70% Übereinstimmung
- 210.479 beteiligte Artikel

Template-Cluster

- Artikel sortiert nach der Anzahl der gefundenen Textpassagen für einen Artikel
- Themenverwandte Seiten, die auf dem selben Template basieren, resultieren in vielen gefundenen Textwiederverwendungen.
- Beispiele: US School Districts, Städte in der Schweiz

Self-Reuse

- Dokumentenpaare sortiert nach den häufigsten Übereinstimmungen
- Exakte Textwiederverwendung in verschiedenen themenverwandten Artikeln durch den selben Autor
- Beispiele: War in Somalia Operation Indian Ocean

- 1. Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Ergebnis

Text-Reuse

- Stichprobenartige Suche und größte addierte Passagenlänge
- Exakte Kopie ganzer Absätze, Paraphrasierung
- Autor müsste maschinell ermittelt werden
- Beispiele: Rock Music American Rock, Islamic philosophy Early Islamic philosophy

Source-Paraphrasing

- Stichprobenartige Suche
- Paraphrasierung einer externen Quelle
- Beispiel: Traditional Chinese medicine Acupuncture

- Einleitung
- 2. Textabbildungen
- 3. Implementierung
- 4. Ergebnisse

Zukünftige Arbeit

- Parameterverfeinerung des PicaPica-Textalignments
- Ein Großteil der Ergebnisse basiert auf Templates
 - → Wikipedia ohne Template-Erweiterung erneut verarbeiten
- Performance zu gering für größere Datensätze wie ClueWeb
 - → Code-Optimierung der Ähnlichkeitsberechnung und des Textabgleichs
 - → Nutzung von aktuellen GPU

- 1. Einleitung
- Textabbildunger
- 3. Implementierung
- 4. Ergebnisse

Fragen?