Assignment (due: 2016/10/26)

Black-Scholes 가격 계산기 클래스를 구현하고, 주어진 옵션의 가격을 계산하는 프로그램을 작성하시오.

(1) Option 클래스

- ▶ 추상클래스로 PlainVanillaOption과 DigitalOption의 base class임
- ▶ 멤버함수
 - ✓ double npv() = 0
 - ✓ void setPricingMethod(PricingMethod) : 가상함수 아님
 - ✓ void setMarketVariables(MarketVariable) : 가상함수 아님

▶ 멤버변수

- ✓ 옵션의 잔여만기(double)
- ✓ 옵션의 행사가격(double)
- ✓ call / put을 구분하는 옵션타입
- ✓ pricingMethod,
- ✓ marketVariables
- ▶ npv는 가격(double)을 리턴하는 함수이며, setPricingMethod와 setMarketVarialbles는 void 함수로 각각 pricingMethod와 marketVariables를 변경 또는 입력하는 함수임
- ▶ pricingMethod는 Analytic, MonteCarlo, BinomialTree 의 세 유형의 enum 변수이며, 생성 자에서 pricingMethod를 Analytic으로 초기화함
- 생성자는 옵션의 잔여만기(double)와 옵션의 행사가격(double), call / put을 구분하는 옵션타입을 입력 받음

(2) PlainVanillaOption 클래스

- > Option 클래스에서 상속받은 derived class임
- ▶ Option의 순수가상함수를 Plain-vanilla 옵션에 대해 구현함

(3) DigitalOption 클래스

- ▶ Option 클래스에서 상속받은 derived class임
- ▶ Option의 순수가상함수를 Digital 옵션에 대해 구현함

(4) MarketVariables 클래스

- ▶ 주가, 금리, 배당, 변동성의 시장변수를 멤버변수로 가지는 클래스
- > set 함수와 get 함수를 구현함
- ▶ Option 클래스에서 MarketVariable을 hsa-a 관계로 접근함
- (5) void calcPrice(Option&, PricingMethod) 함수에서 인자로 입력된 Plain-Vanilla 옵션 또는 Digital 옵션의 가격을 계산하고 출력하도록 구현함

(Option& 의 위치에 PlainVanillaOption 또는 DigitalOption의 객체를 입력할 수 있으며, overriding 가상함수를 통해 해당 옵션의 가격 함수를 호출할 수 있음)

(6) main함수

아래의 옵션을 종류에 따라 instance를 생성하고 calcPrice 함수를 통해 가격을 출력하시오.

옵션 종류	타입	행사가	만기
PV	Call	250	0.1
PV	Put	260	0.2
DG	Put	240	0.15
PV	Call	270	0.25
DG	Call	230	0.2

시장데이터: 주가=250, 금리=0.02, 배당=0.01, 변동성=0.2

☆ 가급적 중복된 코드를 사용하지 않도록 함.