ИТМО Кафедра Вычислительной техники

Отчет по лабораторной работе №7 «Синтез команд БЭВМ»

Выполнил: студент группы Р3117

Плюхин Дмитрий

Преподаватель: Перминов И. В.

1. Задание

Синтезировать цикл исполнения для выданной преподавателем команды. Разработать тестовые программы, которые проверяют синтезированную команду. Загрузить в микропрограммную память БЭВМ цикл исполнения синтезированной команды, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Команда для синтеза: MAND M - побитовое И аккумулятора с ячейкой памяти с записью результата в ячейку памяти и установкой C/N/Z

2. Текст синтезированной микропрограммы

Адрес МП	Микрокоманды	Действие : Комментарий								
В0	1120	А & РД -> БР	: Записываем в БР результат побитового							
			: И аккумулятора с регистром данных							
			: (где в данный момент находится							
			: содержимое выбранной ячейки памяти)							
B1	4072	БР -> C,N,Z,РД	: Устанавливаем C/N/Z и пересылаем							
			: результат конъюнкции в РД							
B2	0002	РД → ОП (РА)	: Пересылаем результат конъюнкции из							
			: РД в ячейку памяти							
В3	8390	GOTO	: Переходим на цикл прерывания							

3. Текст тестовых программ

J. 10	.KCI ICCIOL	bix lipolpan	VIIVI
ORG 210 NUMT:	WORD	0005	; Количество тестов
ORG 008 RZS:	WORD	0010	;Адрес начала массива промежуточных результатов
ORG 015 RZULT: TWORD1: TWORD2: BUFF: TW2ADR: COUNTR:		FACE FEED ? 0017	;Первое тестовое слово ;Второе тестовое слово ;Буфер для временного хранения данных
ORG BEGIN:	JSR (JSR \ JSR \ JSR \	CHK_C0 CHK_C1 /ALNUL /ALFUL /ALCUR	;Основная программа ;Проверка сохранения нулевого состояния бита С ;Проверка сброса бита С ;Проверка логического умножения на 16 нулей ;Проверка логического умножения на 16 единиц ;Выдача конечного результата тестирования
SVTW2:	MOV E	rword2	охранение второго тестового слова
RETW2:	WORD ? CLA ADD	;Bo	осстановление второго тестового слова

```
MOV
               TWORD2
          BR
               (RETW2)
                       ;Проверка сохранения нулевого состояния бита С
CHK CO: WORD
               ?
                       ;Адрес возврата
         JSR
              SVTW2
         CLA
         CMA
        AND TWORD1 ;MAND TWORD2
         BCS WRT1
        CLA
              WRTRZS
WRT1:
        JSR
        JSR
               RETW2
               (CHK CO)
        BR
                      ;Проверка сброса бита С
               ?
CHK C1:
        WORD
                       ;Адрес возврата
        JSR SVTW2
         CLA
         CMA
        AND
              TWORD1
              TWORD2 ;Подбираем такие тестовые слова, чтобы при их
        ADD
                                             сумме происходил перенос
        WORD 7017
BCS WRT2
                      ; MAND TWORD2
                       ;Если бит С оказался сброшен после команды MAND
                                         то такой результат корректен
        CLA
WRT2:
                WRTRZS
        JSR
        JSR
                 RETW2
        BR
                (CHK C1)
                       ;Проверка логического умножения на 16 нулей
VALNUL: WORD
                       ;Адрес возврата
       JSR SVTW2
       CLA
       WORD
              7017
                     ; MAND TWORD2
       CLA
       ADD
               TWORD2 ;Должны были получить 0 в ячейке TWORD2
               WRTRZS
       JSR
       JSR
              RETW2
               (VALNUL)
       BR
                       ;Проверка логического умножения на 16 единиц
VALFUL: WORD
                       ;Адрес возврата
       JSR
             SVTW2
       CLA
        CMA
       WORD 7017 ; MAND TWORD2
       CLA
       ADD
             TWORD2 ;Значение TWORD2 не должно было измениться
       SUB
             BUFF
       JSR
             WRTRZS
       JSR
              RETW2
```

BR

(VALFUL)

;Проверка логического умножения ячейки с использованием косвенной адресации

VALCUR: WORD ? ;Адрес возврата CLA TWORD1 ADD AND (TW2ADR) VOM BUFF ;Запишем результат побитового И CLA ADD TWORD1 WORD 7819 ; MAND (TW2ADR) CLA ADD (TW2ADR) BUFF ;Побитовое И и команда MAND должны были SUB одинаково преобразовать аргументы JSR WRTRZS (VALCUR) WRTRZS: WORD ;Запись успешности прохождения теста BEQ NOERR ;Если в аккумуляторе 0, то ошибки не возникло CLA VOM (RZS) BR (WRTRZS) NOERR: CLA INC MOV (RZS) BR (WRTRZS) ALLOK: WORD ;Запись успешности прохождения теста CLASUB NUMT MOV COUNTR ADD RZS VOM RZS CLALOOP: ADD (RZS) ISZ COUNTR BR LOOP SUB NUMT WRTRZS JSR

4. Таблица трассировки цикла исполнения микрокоманды (для 5-го теста)

BR

(ALLOK)

Сч. МК до	Содержимое памяти и регистров процессора после выборки и исполнения МК											
выборки МК	яч. 0000	PMK	CK	PA	PK	РД	A	С	БР	N	Z	СчМК
2A	0000	83B0	065	017	7819	FEED	FACE	0	00004	1	0	В0
Цикл исполнения												
В0	0000	1120	065	017	7819	FEED	FACE	0	0FACC	1	0	В1
B1	0000	4072	065	017	7819	FACC	FACE	0	0FACC	1	0	В2
В2	0000	0002	065	017	7819	FACC	FACE	0	00000	1	0	В3
В3	0000	8390	065	017	7819	FACC	FACE	0	00004	1	0	90

Вывод

Так, в результате лабораторной работы на практике были освоены принципы микропрограммирования и разработки адресных команд. Я узнал, как в базовой ЭВМ осуществляется разработка собственных команд, их загрузка в микропрограммную память и использование. Изученный материал можно использовать как основу для изучения принципов работы микропроцессорных наборов.