Práctico 3: Autómatas Finitos

Año 2025

Ejercicio 1. Para cada uno de los AFD que se muestran a continuación, dar una cadena en el alfabeto $\Sigma = \{0, 1\}$ que sea aceptada y otra que sea rechazada por el autómata.

Ejercicio 2. Para cada uno de los AFD del ejercicio 1, determinar el lenguaje aceptado, describiéndolos por comprensión, y luego, mediante una expresión regular.

Ejercicio 3. Para cada uno de los AFD mostrados en las imágenes, determinar el lenguaje aceptado, describiéndolos por comprensión, y luego, mediante una expresión regular.

Ejercicio 4. Para cada uno de los AFD mostrados en las imágenes, determinar el lenguaje aceptado, describiéndolos por comprensión, y luego, mediante una expresión regular.

Ejercicio 5. Sea $\Sigma = \{a,b\}$ un alfabeto, dar un AFD cuyo lenguaje aceptado sea el lenguaje denotado por las siguientes expresiones regulares:

- $e_1 = \lambda$
- $e_2 = a^*$
- $e_3 = a^*b^*$
- $\bullet \ e_4 = b^*ab^*ab^*$
- $e_5 = abb^*$
- $e_6 = ab^* + (ab)^*a$

Ejercicio 6. Sea $\Sigma = \{a, b\}$ un alfabeto, dar un AFD para cada uno de los siguientes lenguajes:

- $L_1 = \Sigma^*$
- $L_2 = \{a, bb, abba\}$
- $L_3 = \{ \alpha \in \Sigma^* : |\alpha| \ es \ par \}$
- $L_4 = \{\alpha \in \Sigma^* : |\alpha|_a \text{ es } par\}$
- $L_5 = \{a^{2i}b^{3j} : i, j \ge 0\}$
- $L_6 = \{ \alpha \in \Sigma^* : aa \ no \ ocurre \ en \ \alpha \}$
- $L_7 = \{\alpha \in \Sigma^* : aa \ ocurre \ una \ sola \ vez \ en \ \alpha\}$

Ejercicio 7. Para cada uno de los AFN que se muestran a continuación hallar, una cadena que sea aceptada por el autómata, otra cadena que sea rechazada y luego describir el lenguaje aceptado por cada uno de ellos:

Ejercicio 8. Dado el AFN de la figura, determine si acepta o no estas cadenas: AAAAC, BCBC, AAAAB, ACCBBB, AABBB. Luego determinice el AFN y escriba una expresión regular para el lenguaje aceptado por estos AF.

Ejercicio 9. Determinizar los siguientes AFN:

Ejercicio 10. Para cada uno de los siguientes AFN λ , determinar su lenguaje aceptado:

Ejercicio 11. Indique si el AFN λ descrito por la tabla de transición acepta o no cada una de las siguientes cadenas: 111, 00010, 010101, 1100, 101, 11. Elimine transiciones λ y determinice el AFN λ .

	λ	0	1
$\rightarrow q_0$	q_1		
q_1	q_2	q_1	q_1
q_2			q_3
q_3		q_4	q_4
q_4^*			

Ejercicio 12. Para cada uno de los siguientes $AFN\lambda$, obtener su AFN equivalente eliminando sus transiciones espontáneas:

Ejercicio 13. Probar que para todo AF M, existe un AF M' tal que L(M') = L(M) y |F'| = 1. Es decir, todo AF tiene un AF equivalente con exactamente un único estado de aceptación.