Model czynnika roboczego

Rodzaje czynników

- para wodna i woda
- powietrze
- spaliny
- czynniki chłodnicze
- wodór
- dwutlenek węgla

Woda i para wodna

Początek prac lata 20 – te XX wieku

W latach 60 – tych XX wieku powstał International Formula Committee

1967 - IFC Formulation for Industrial Use

1968 - IFC Formulation Scientific Use

1977 The International Association for the Properties of Water and Steam

1997 - IF 97 (for Industrial Use)

2007 - Revised Release on the IAPWS Industrial Use

Podstawowe zależności

Tablica 3.1

Związki pomiędzy parametrami termodynamicznymi – oparte na funkcjach kanonicznych energia swobodna właściwa – funkcja *Helmholtza*, entalpia swobodna właściwa – funkcja *Gibbsa*)

Wielkość Oznaczenie, definicja		Funkcja Gibbsa	Funkcja Helmholtza	
funkcje kanoniczne	g, f	g = u + pv - Ts	f = u - Ts	
entalpia właściwa	h = f + pv + -Ts $h = g + Ts$	$h = g - T \left(\frac{\partial g}{\partial T} \right)_{p}$	$h = f - v \left(\frac{\partial f}{\partial v} \right)_T - T \left(\frac{\partial f}{\partial T} \right)$	
objętość właści- wa, ciśnienie	v, p	$v = \left(\frac{\partial g}{\partial p}\right)_T$	$p = -\left(\frac{\partial f}{\partial T}\right)_T$	
entropia właściwa	S	$S = -\left(\frac{\partial g}{\partial T}\right)_{p}$	$s = -\left(\frac{\partial f}{\partial T}\right)_{t}$	

Zakres parametrów

Fig. 1. Regions and equations of IAPWS-IF97.

Aproksymacja funkcji Gibbsa

5.1 Basic Equation

The basic equation for this region is a fundamental equation for the specific Gibbs free energy g. This equation is expressed in dimensionless form, $\gamma = g/(RT)$, and reads

$$\frac{g(p,T)}{RT} = \gamma(\pi,\tau) = \sum_{i=1}^{34} n_i (7.1 - \pi)^{I_i} (\tau - 1.222)^{J_i}, \tag{7}$$

where $\pi = p/p^*$ and $\tau = T^*/T$ with $p^* = 16.53$ MPa and $T^* = 1386$ K; R is given by Eq. (1). The coefficients n_i and exponents I_i and J_i of Eq. (7) are listed in Table 2.

Aproksymacja funkcji Gibbsa c.d.

$$u'_{t} = 0 \; ; \; s'_{t} = 0 \; .$$
 (8)

In order to meet this condition at the temperature and pressure of the triple point

$$T_{\rm t} = 273.16 \text{ K [8]} \quad p_{\rm t} = 611.657 \text{ Pa [9]},$$
 (9)

the coefficients n_3 and n_4 in Eq. (7) have been adjusted accordingly. As a consequence, Eq. (7) yields for the specific enthalpy of the saturated liquid at the triple point

$$h'_{\rm t} = 0.611 \, 783 \, \text{J kg}^{-1} \,.$$
 (10)

Aproksymacja funkcji Gibbsa c.d.

Table 2. Numerical values of the coefficients and exponents of the dimensionless Gibbs free energy for region 1, Eq. (7)

i	I_i	J_i	n_i	i	I_i	J_i	n_i
1	0	-2	0.146 329 712 131 67	18	2	3	$-0.441\ 418\ 453\ 308\ 46 \times 10^{-5}$
2	0	-1	-0.845 481 871 691 14	19	2	17	$-0.72694996297594 \times 10^{-15}$
3	0	0	$-0.37563603672040 \times 10^{1}$	20	3	-4	$-0.31679644845054 \times 10^{-4}$
4	0	1	$0.33855169168385 \times 10^{1}$	21	3	0	$-0.28270797985312 \times 10^{-5}$
5	0	2	-0.957 919 633 878 72	22	3	6	$-0.852\ 051\ 281\ 201\ 03 \times 10^{-9}$
6	0	3	0.157 720 385 132 28	23	4	-5	$-0.224\ 252\ 819\ 080\ 00 \times 10^{-5}$
7	0	4	$-0.166\ 164\ 171\ 995\ 01 \times 10^{-1}$	24	4	-2	$-0.65171222895601 \times 10^{-6}$
8	0	5	$0.812\ 146\ 299\ 835\ 68 \times 10^{-3}$	25	4	10	$-0.143\ 417\ 299\ 379\ 24 \times 10^{-12}$
9	1	- 9	$0.283\ 190\ 801\ 238\ 04 \times 10^{-3}$	26	5	-8	$-0.405\ 169\ 968\ 601\ 17 \times 10^{-6}$
10	1	-7	$-0.60706301565874 \times 10^{-3}$	27	8	-11	$-0.12734301741641 \times 10^{-8}$
11	1	-1	$-0.18990068218419 \times 10^{-1}$	28	8	-6	$-0.17424871230634 \times 10^{-9}$
12	1	0	$-0.325\ 297\ 487\ 705\ 05 \times 10^{-1}$	29	21	-29	$-0.68762131295531 \times 10^{-18}$
13	1	1	$-0.21841717175414 \times 10^{-1}$	30	23	-31	$0.14478307828521 \times 10^{-19}$
14	1	3	$-0.52838357969930 \times 10^{-4}$	31	29	-38	$0.263\ 357\ 816\ 627\ 95 \times 10^{-22}$
15	2	-3	$-0.47184321073267 \times 10^{-3}$	32	30	-39	$-0.11947622640071 \times 10^{-22}$
16	2	0	$-0.300\ 017\ 807\ 930\ 26 \times 10^{-3}$	33	31	-40	$0.182\ 280\ 945\ 814\ 04 \times 10^{-23}$
17	2	1	$0.476\ 613\ 939\ 069\ 87 \times 10^{-4}$	34	32	-41	$-0.935\ 370\ 872\ 924\ 58 \times 10^{-25}$

Zależności liczone wprost i iteracyjnie

Zależności zapisane wprost w równaniach oraz wymagające obliczeń iteracyjnych. Przypadek zastosowania ciśnienia oraz temperatury jako zmiennych wejściowych

Wielkość, związek pomiędzy parametrami	Funkcja <i>Gibbsa</i> ciśnienie i temperatura	Funkcja $Helmholtza$ ciśnienie i objętość właściwa	
Równania wyjściowe, zmienne niezależne: ciśnienie i temperatura, lub ciśnienie i objętość właściwa	v = f(p, T) $h = f(p, T)$ $s = f(p, T)$		
Własności transportowe, zmienne niezależne: ciśnienie i objętość właściwa	$v = f(p, T), \lambda = f(v, T)$ $v = f(p, T), \mu = f(v, T)$	$\lambda = f(v, T)$ $\mu = f(v, T)$	
Wielkości dane	Ciśnienie,	temperatura	
Zależności najczęściej potrzebne w obliczeniach, uzyskiwane drogą postępowania iteracyjnego z wykorzystaniem równań wyjściowych	v = f(p, h) $T = f(p, h)$ $s = f(p, h)$ $h = f(p, s)$ $T = f(p, s)$ $p = f(h, s)$ $T = f(h, s)$	v = f(p, T) v = f(p, h) T = f(p, h) s = f(p, h) h = f(p, s) T = f(p, s) p = f(h, s) T = f(h, s)	

 $\langle P \rangle$

Dla dowolnej pary czy gazu można formalnie napisać równanie stanu w posta-

$$pv = zRT (2.16)$$

pdzie współczynnik ściśliwości z charakteryzuje odchylenia rozpatrywanego zymnika od właściwości gazu doskonałego, dla którego z=1. Ogólnie współczynnik z jest złożoną funkcją parametrów stanu

$$z = f(p, v)$$

Wprowadzając pojęcie pary doskonałej Eichelberga (nazwa nawiązuje do gazu doskonalego), tj. ogólniejszego niż gaz doskonały (czy półdoskonały) modelu własności czynnika roboczego, postuluje się istnienie czynnika (pary) o następu-pacych właściwościach [14]:

rozpatrywany czynnik nie spełnia równania stanu gazu doskonałego, tj. jego współczynnik ściśliwości z nie jest równy 1;

mimo to wymagamy, aby entalpia czynnika była określona zależnością (jak dla gazu doskonałego)

$$di = \frac{k}{k-1}d(pv) \tag{2.17}$$

ponadto wymagamy, aby zależność parametrów czynnika od wykładnika izentropy k była na tyle nieznaczna, że parametry te mogą być wyznaczane przy stalym (uśrednionym) wykładniku k, w stosunkowo dużych zakresach zmian.

W tych warunkach zależność (2.17) można scałkować, otrzymując

$$i = j + i_0, \quad j = \frac{k}{k-1} pv$$
 (2.18)

pdzie / jest tzw. entalpią normalną, i_0 – stałą związaną z wybranym stanem odniesienia (np. 0°C).

Model pary idealnej

Wylaniają się teraz dwa zasadnicze pytania: czy przyjęte wymagania odnośnie w laza twości pary doskonałej nie są sprzeczne z zasadami termodynamiki oraz jeditak, to czy istnieją w przyrodzie podobne czynniki. Odpowiedź na oba pytania jed potwierdzająca.

Wykorzystując I i II zasadę termodynamiki można wykazać [14], że istnienie pary doskonalej jest teoretycznie możliwe, a jej osobliwością jest to, że współczynnik ściśliwości z jest funkcją tylko entropii s

Właściwość (? 19) może być uważana za określenie pary doskonałej, tj. czynnika, który w przemianie izentropowej zachowuje są, jak paz doskonały

Współczynnik ściśliwości z pary wodnej w funkcji ciśnienia i temperatury (z liniami stałcj cutropu)

Obliczenia i analizy przy wykorzystaniu pary doskonałej są bardzo podobne jak w przypadku gazu doskonałego. Jako zmienne niezależne należy wybrać p oraz j (2.22) zamiast p oraz T, a uzyskiwane przy tym zależności mają tę samą strukturę matematyczną. Praktycznie oznacza to, że przejście od gazu doskonałego do pary idealnej wymaga jedynie zapisania równań w takiej postaci, aby wyeliminować temperaturę, tj. zastąpić odpowiednio:

- temperaturę
$$T$$
 przez $\frac{k-1}{k} \frac{j}{R}$,

- ciepło właściwe c_p przez $\frac{k}{k-1} R$,

ciepło właściwe c_v przez $\frac{1}{k-1} R$,

entropię s przez RY .

Funkcja Y określona jest tu jako

$$dY = \frac{k}{k-1} \frac{dq_{\text{rev}}}{j} = \frac{k}{k-1} \frac{dj}{j} - \frac{dp}{p}, \quad dq_{\text{rev}} = Tds$$
 (2.20)

pdzie j oraz p oznaczają wartości w stanie odniesienia.

Przykładowo, zamiast równania stanu gazu doskonałego

$$pv = RT$$

otrzymujemy dla pary doskonałej równanie

$$pv = \frac{k-1}{k}j$$

Powietrze i spaliny

Gaz półdoskonały

Spaliny: mieszanina powietrza i spalin stechiometrycznych

Współrzędne stanu : ciśnienie, temperatura, udział spalin stechiometrycznych u_{ss} udział powietrza $u_{pp} = 1 - u_{ss}$

Błąd modelu – gaz połdoskonały

$$c_{pp} = f(T) \tag{8.14}$$

$$c_{pS} = f(T) \tag{8.15}$$

- równanie opisujące ciepło właściwe czynnika roboczego zgodnie z własnościami roztworu doskonałego

$$c_{p} = (1 - u_{ss})c_{pp} + u_{ss} c_{ps}$$
 (8.16)

zależność określająca indywidualną stałą gazową czynnika roboczego

$$R = (1 - u_{SS}) R_p + u_{SS} R_{SS}$$
 (8.17)

- równanie określające entalpię czynnika roboczego w funkcji temperatury

$$h = \int_{p}^{T} c_{p}(T) dT$$

$$(8.18)$$

przy założeniu że
$$h_0 = h(273 \text{ K}) = h(0 ^{\circ}\text{C}) = 0;$$

- zależność określająca izentropowy spadek entalpii w turbinie gazowej

$$\Delta h_{st} = \overline{c}_p T_{\alpha} \left[1 - \left(\frac{p_{\omega}}{p_{\alpha}} \right)^{\frac{k-1}{k}} \right]$$
 (8.19)

lub sprężarce

$$\Delta h_{sk} = \overline{c}_p T_{\alpha} \left[\left(\frac{p_{\omega}}{p_{\alpha}} \right)^{\frac{k-1}{k}} - 1 \right]$$
 (8.20)

przy czym

$$\overline{c}_{p} = \int_{T_{\omega}}^{T_{\alpha}} \frac{c_{p}(T) dT}{T_{\alpha} - T_{\omega}} \cong c_{p} \left(\frac{T_{\alpha} + T_{\omega}}{2}\right)$$
(8.21)

jest średnim ciepłem właściwym w przedziale temperatury $(T_{\alpha} \div T_{\omega})$, k zaś jest wykładnikiem izentropy uśrednionym w tym przedziale temperatur;

- równanie stanu czynnika roboczego (gaz półdoskonały)

$$\rho = \frac{p}{RT}$$

- zależności określające pochodne termodynamiczne dla czynnika roboczego

$$\left(\frac{\partial h}{\partial T}\right)_{p,u_{SS}} = c_p = (1 - u_{SS})c_{pp} + u_{SS}c_{pS}$$

$$\left(\frac{\partial h}{\partial p}\right)_{T,u} = 0$$

$$\left(\frac{\partial h}{\partial u}_{SS}\right)_{p,T} = T(c_{pS} - c_{pp})$$

$$\left(\frac{\partial p}{\partial T}\right)_{p,u_{SS}} = -\frac{p}{RT^2}$$

$$\left(\frac{\partial \rho}{\partial p}\right)_{T,u_{SS}} = \frac{1}{RT}$$

$$\left(\frac{\partial \rho}{\partial u_{SS}}\right)_{p,T} = \frac{p(R_{SS} - R_p)}{R^2 T}$$