Random Variables

Keegan Korthauer

Department of Statistics

UW Madison

RANDOM VARIABLES

Discrete random variables

Continuous random variables

Distribution functions

Mean and variance

Types of Random Variables

Discrete

Gap between assigned values

Finitely or infinitely many countable values

Continuous

Assigned values form continuous intervals

Infinitely many uncountable values

Examples of Random Variables

- The number of imperfections in a computer chip (Discrete)
- The highest temperature in Madison next year (Continuous)
- The sum of two rolls of a die (Discrete)
- The lifetime of a light bulb (Continuous)

Random Variable

- A random variable is an assignment of numerical values to outcomes in a sample space
- Resistor example draw from 2 boxes each with 3 incorrectly labeled resistors (box 1 actual: 9,10,11; box 2 actual: 19,20,21)
 - Random Variable X = Total resistance when connecting the two

Outcome	Х	Probability			
(9, 19)	28	1/9		X	P(X =
(9, 20)	29	1/9		28	1/9
(9, 21)	30	1/9	C: I:C	29	2/9
(10, 19)	29	1/9	Simplify	30	3/9
(10, 20)	30	1/9			
(10, 21)	31	1/9		31	2/9
(11, 19)	30	1/9		32	1/9
(11, 20)	31	1/9			
(11, 21)	32	1/9			

Discrete R.V. - Example

Surface imperfections on computer chips

Number of Imperfections (Y)	0	1	2	3	4	5
Probability	0.09	0.22	0.26	0.20	0.12	0.11

- Y = number of imperfections in a randomly chosen chip
- What are the possible values for Y?
- What is P(Y>3)?

Discrete R.V. - Example

Surface imperfections on computer chips

Number of Imperfections (Y)	0	1	2	3	4	5
Probability	0.09	0.22	0.26	0.20	0.12	0.11

- Y = number of imperfections in a randomly chosen chip
- What are the possible values for Y? {0,1,2,3,4,5}
- What is P(Y>3)? P(Y>3) = P(Y=4) + P(Y=5)= 0.12 + 0.11 = 0.23

Probability Mass Function (Discrete)

Let X be a discrete random variable. The probability mass function (PMF) of X is

$$p(x) = P(X = x)$$

Property of the PMF

The sum of all possible values of p(x) is one:

$$\sum_{x} p(x) = \sum_{x} P(X = x) = 1$$

where the sum is over all possible values of X

Cumulative Distribution Function (Discrete)

Let X be a discrete random variable. The cumulative distribution function (CDF) of X is

$$F(x) = P(X \le x) = \sum_{t \le x} P(X = t)$$

Example – Finding the PMF/CDF

Let Y be the discrete RV representing the sum of numbers on two die. Enumerate the sample space and specify the PMF and CDF.

Population Mean (Discrete)

 Let X be a discrete random variable. The mean of X is given by

$$\mu_X = \sum_{x} x P(X = x)$$

- Sum is over all possible values of X
- Also called the expectation or expected value, can be denoted as E(X) or μ

Population Variance (Discrete)

 Let X be a discrete random variable. The variance of X is given by

$$\sigma_X^2 = \sum_{x} (x - \mu_X)^2 P(X = x)$$
$$= \sum_{x} x^2 P(X = x) - \mu_X^2$$

- May also be denoted by Var(X), V(X), or simply σ^2
- Standard deviation is the square root of the variance, denoted σ or sd(X)

Example – Finding Mean and Variance

A certain community is surveyed for how many cars it contains. Let X represent the number of cars per household and assume that X has the following probability mass function:

Number of Cars (X)	0	1	2	3	4
Probability	0.10	0.25	0.55	0.09	0.01

Find the mean and variance of X

Example – Finding Mean and Variance

A certain community is surveyed for how many cars it contains. Let X represent the number of cars per household and assume that X has the following probability mass function:

Number of Cars (X)	0	1	2	3	4
Probability	0.10	0.25	0.55	0.09	0.01

Find the mean and variance of X

$$E(X) = 1.66 cars$$

$$V(X) = 0.6644 \text{ cars}^2$$

Exercise 2.4.12

Suppose we have a collection of components to test (success = S and failure = F), each with failure probability of 0.2. Let X represent the number of successes among a sample of three components.

- 1. What are the possible values for X?
- 2. Find P(X=3)
- 3. The event that the first component fails and the next two succeed is denoted FSS. Find P(FSS)
- 4. Find P(SFS) and P(SSF)
- 5. Find P(X=0), P(X=1) and P(X=2)
- 6. Find E(X) and V(X)

Exercise 2.4.12

Suppose we have a collection of components to test (success = S and failure = F), each with failure probability of 0.2. Let X represent the number of successes among a sample of three components.

- 1. What are the possible values for X? 0,1,2,3
- 2. Find P(X=3) = 0.512
- 3. The event that the first component fails and the next two succeed is denoted FSS. Find P(FSS) = 0.128
- 4. Find P(SFS) and P(SSF) = 0.128
- 5. Find P(X=0) = 0.008, P(X=1) = 0.096 and P(X=2) = 0.384
- 6. Find E(X) = 2.4 and V(X) = 0.48

Types of Random Variables

Gap between assigned values Discrete Finitely or infinitely many (countable) values Assigned values form continuous intervals Continuous Infinitely many (uncountable) values

Probability Histogram (Discrete)

FIGURE 2.11 Probability histogram for X, the number of flaws in a randomly chosen piece of wire. The area corresponding to values of X greater than 1 is shaded. This area is equal to P(X > 1).

Equal vs. Unequal Bin Widths

- Histograms of continuous measurement of vehicle emissions
- Using equal bin widths, there are intervals with no observations
- With larger sample, would likely observe values near 16 and 22

Histogram for Large Continuous Sample

FIGURE 2.12 The histogram for a large continuous population could be drawn with extremely narrow rectangles and might look like this curve.

Continuous Random Variable

- The emission levels of a randomly chosen vehicle can be treated as a (continuous) random variable X
- In the probability histogram, the probability that X falls between any two values a and b is equal to the area under the histogram between a and b

Probability Density Function (Continuous)

- For continuous RVs, probabilities are given by areas under a curve
- The curve is called the probability density function or PDF (analogous to the pmf for discrete RVs)
- Integrate the curve between two points to find the proportion of values of the RV that lie in that interval
- Let X be a continuous RV, and a < b

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Properties of the PDF

 The area does not depend on whether the endpoints of the interval are included

$$P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$$

 The area under the entire curve must sum to one (the probability that X is between -∞ and +∞ is equal to one)

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Cumulative Distribution Function (Continuous)

 For a continuous RV X that has probability density function f(x), the cumulative distribution function (CDF) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt = 1$$

 Analogous to the CDF of a discrete RV, except using an integral instead of summation

Continuity of the CDF

The CDF of a continuous RV is always continuous (unlike the CDF of a discrete RV)

Example – Exercise 2.4.13

- Resistors labeled 100 ohms have true values between 80 and 120
- Let X be the resistance of a randomly chosen resistor
- The PDF of X is

$$f(x) = \begin{cases} \frac{x - 80}{800} & 80 < x < 120\\ 0 & \text{otherwise} \end{cases}$$

 What proportion of resistors have resistances more than 110?

Example – Exercise 2.4.13

- Resistors labeled 100 ohms have true values between 80 and 120
- Let X be the resistance of a randomly chosen resistor
- The PDF of X is

$$f(x) = \begin{cases} \frac{x - 80}{800} & 80 < x < 120\\ 0 & \text{otherwise} \end{cases}$$

 What proportion of resistors have resistances more than 110?

0.4375

Mean and Variance of Continuous RVs

 The mean (or expectation/expected value) of a continuous RV X is given by

$$\mu_X = \int_{-\infty}^{\infty} x f(x) \, dx$$

The variance of a continuous RV X is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$$

$$= \int_{-\infty}^{\infty} x^2 f(x) dx - \mu_X^2$$

Exercise 2.4.13 Continued

Find the mean and variance of X

$$f(x) = \begin{cases} \frac{x - 80}{800} & 80 < x < 120\\ 0 & \text{otherwise} \end{cases}$$

Exercise 2.4.13 Continued

Find the mean and variance of X

$$f(x) = \begin{cases} \frac{x - 80}{800} & 80 < x < 120\\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = 106.67 \text{ ohms}$$

 $Var(X) = 88.89 \text{ ohms}^2$

Percentiles

- The pth percentile is the point x_p where p% of the values in the population are less than x_p (0 \leq p \leq 100)
- To find x_p solve the equation

$$F(x_p) = P(X \le x_p) = \int_{-\infty}^{x_p} f(x) dx = p/100$$

Median

FIGURE 2.14 (a) Half of the population values are less than the median x_m . (b) Ninety percent of the population values are less than the 90th percentile x_{90} .

Example 2.45

A certain radioactive mass emits alpha particles from time to time. The time between emissions, in seconds, is random, with probability density function

$$f(x) = \begin{cases} 0.1e^{-0.1x} & x > 0\\ 0 & x \le 0 \end{cases}$$

Find the median time between emissions. Find the 60th percentile of the times.

Probability Bounds

- The standard deviation is a measure of the degree of spread around the center (mean)
- The probability that a random variable differs from its mean by k or more standard deviations is less than or equal to $1/k^2$
- This rule is called Chebyshev's Inequality

$$P(|X - \mu_X| \ge k\sigma) \le \frac{1}{k^2}$$

Next

• Functions of random variables (2.5)