Intervals, Transformations, and Slope Solution (version 2)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -4) \cup (-2, 7)$
Negative	$(-9, -7) \cup (-4, -2)$
Increasing	$(-9, -5) \cup (-3, 6)$
Decreasing	$(-5, -3) \cup (6, 7)$
Domain	(-9,7)
Range	(-1,8)

Intervals, Transformations, and Slope Solution (version 2)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

 $y = f(2 \cdot x)$

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=94$ and $x_2=98$. Express your answer as a reduced fraction.

$$\frac{f(98) - f(94)}{98 - 94} = \frac{46 - 56}{98 - 94} = \frac{-10}{4}$$

The greatest common factor of -10 and 4 is 2. Divide numerator and denominator by the greatest common factor.

$$\mathrm{AROC} = \frac{-5}{2}$$

2