CSC 212: Data Structures and Abstractions

04: Introduction to Analysis of Algorithms (part 2)

Prof. Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Spring 2025

Whether you're new to computer science or an experienced coder, there's something for you here in Google's Tech Dev Guide.

We've carefully curated materials from various sources, including some made by Google, that you can use to grow your technical skills, supplement your coursework, and prepare for interviews.

Interested in pursuing a career in business? Check out Google's Business Dev Guide.

Data Structures & Algorithms

Familiarize yourself with common data structures and algorithms such as lists, trees, maps, graphs, Big-O analysis, and more!

Suggested prerequisites: Familiarity with basics programming concepts (e.g. if statements, loops, functions)

https://techdevguide.withgoogle.com/

From previous lecture

```
$ q++ -std=c++11 -00 euler.cpp -o proq
        void take\_step(int n, double fn(int)) {
            auto start = std::chrono::high_resolution_clock::now();
            double e = fn(n);
            auto end = std::chrono::high_resolution_clock::now();
            std::chrono::duration<double> elapsed = end - start;
            std::cout << std::fixed << std::setprecision(10);</pre>
            std::cout << e << " " << (double) elapsed.count() << '\t';</pre>
        int main(int argc, char *argv[]) {
   if (argc != 2) {
                std::cerr << "Usage: " << argv[0] << " <steps>\n";
                 return 1;
            int n = 1;
            int steps = std::stoi(argv[1]);
            for (int i = 0; i < steps; i++) {
                take_step(n, &euler1);
                 take_step(n, &euler2);
                std::cout << std::endl;</pre>
                n *= 2:
            return 0:
```

Using -O0

1	2.0000000000	0.0000001340	1	2.0000000000 0.0000000680
2	2.5000000000	0.0000000840	2	2.5000000000 0.0000000500
4	2.7083333333	0.0000000890	4	2.7083333333 0.0000000610
8	2.7182787698	0.0000001640	8	2.7182787698 0.0000000900
16	2.7182818285	0.0000003460	16	2.7182818285 0.0000001450
32	2.7182818285	0.0000011100	32	2.7182818285 0.0000002580
64	2.7182818285	0.0000039970	64	2.7182818285 0.0000004830
128	2.7182818285	0.0000159510	128	2.7182818285 0.0000009450
256	2.7182818285	0.0001041730	256	2.7182818285 0.0000018210
512	2.7182818285	0.0003848000	512	2.7182818285 0.0000035790
1024	2.7182818285	0.0011147290	1024	2.7182818285 0.0000070770
2048	2.7182818285	0.0044453980	2048	2.7182818285 0.0000140490
4096	2.7182818285	0.0178193800	4096	2.7182818285 0.0000280730
8192	2.7182818285	0.0715642710	8192	2.7182818285 0.0000573730
16384	2.7182818285	0.2795817420	16384	2.7182818285 0.0001120670
32768	2.7182818285	1.0806353640	32768	2.7182818285 0.0002190680
65536	2.7182818285	4.5505467900	65536	2.7182818285 0.0004871680
131072	2.7182818285	18.0388929500	131072	2.7182818285 0.0008569540
262144	2.7182818285	73.0555476340	262144	2.7182818285 0.0017519060
524288	2.7182818285	285.4464698470	524288	2.7182818285 0.0035419900

3.2 GHz 6-Core Intel Core i7 (using a single core)

Using -O3

1	2.0000000000 0.0000001160	1	2.0000000000 0.0000000470
2	2.5000000000 0.0000000710	2	2.5000000000 0.0000000460
4	2.7083333333 0.0000000790	4	2.7083333333 0.0000000540
8	2.7182787698 0.0000001370	8	2.7182787698 0.0000000550
16	2.7182818285 0.0000002430	16	2.7182818285 0.0000000580
32	2.7182818285 0.0000005280	32	2.7182818285 0.0000000700
64	2.7182818285 0.0000015410	64	2.7182818285 0.0000001040
128	2.7182818285 0.0000057720	128	2.7182818285 0.0000001700
256	2.7182818285 0.0000252330	256	2.7182818285 0.0000002980
512	2.7182818285 0.0001099880	512	2.7182818285 0.0000005820
1024	2.7182818285 0.0004630170	1024	2.7182818285 0.0000011220
2048	2.7182818285 0.0019061790	2048	2.7182818285 0.0000020220
4096	2.7182818285 0.0077172340	4096	2.7182818285 0.0000039080
8192	2.7182818285 0.0311110110	8192	2.7182818285 0.0000078850
16384	2.7182818285 0.1249416530	16384	2.7182818285 0.0000153770
32768	2.7182818285 0.4870702990	32768	2.7182818285 0.0000290200
65536	2.7182818285 2.0076935130	65536	2.7182818285 0.0000612600
131072	2.7182818285 8.0763145900	131072	2.7182818285 0.0001146470
262144	2.7182818285 32.0460794660	262144	2.7182818285 0.0002447660
524288	2.7182818285 128.4794438710	524288	2.7182818285 0.0004891970

3.2 GHz 6-Core Intel Core i7 (using a single core)

Computational cost analysis

- · Definition and importance
 - \sim computational cost T(n) represents the resources (primarily time) required by an algorithm to process input of a given size n
 - essential for algorithm comparison and optimization in realworld applications (without implementing/running a program)
 - ✓ forms the theoretical foundation for algorithm analysis
- Mathematical framework (<u>HW/SW independent</u>)
 - ✓ based on counting (primitive/elementary) operations
 - arithmetic operations (additions, multiplications), comparisons, assignments, memory access operations, etc.
 - focus on asymptotic behavior

Theoretical analysis

"mathematical models for analyzing running time"

Example

• Count the <u>total number of operations</u> as a function of the input size *n*

```
// calculate the sum of all elements in the array
int sum(int *A, int n) {
   int sum = 0;
   for (int i = 0; i < n; i++) {
      sum = sum + A[i]; // do not worry about overflow
   }
   return sum;
}</pre>
```

Operation	Count	Time (ps)				
variable declaration	2					
assignment	2 + n		depends on specific HW			
comparison (less than)	n + 1					
addition	n		counting all operations is tricky repetitive, and time-consuming			
array access	n		repetitive, and time-consuming			
increment	n					

8

Computational cost analysis

- · Asymptotic behavior analysis
 - count only elementary operations that are <u>relevant</u> to the problem
 - approximating the total number of operations
 - √ ignore constant factors and lower-order terms
 - ✓ examples:
 - calculate the sum of all elements in an array of length n
 - count the total number of array accesses
 - find max value in an array of length n
 - count the total number of comparisons
- Formal assumptions
 - ✓ each <u>elementary operation</u> requires one time unit
 - ✓ operations execute sequentially
 - ✓ infinite memory available

Some rules ...

- Single loops
 - typically the number of iterations × the number of operations at each iteration
 - ✓ loop range determination <u>requires careful analysis</u> of initial and final values, and step size
- Nested loops
 - count operations from the innermost loop outward, multiplying the number of iterations at each level
 - dependent loops often result in operation counts that are not simply the product of the loop ranges, but rather require summation formulas to determine the exact count
- Consecutive statements
 - just add the counts

10

Practice

• Count the elementary operations (multiplications)

```
for (int i = 0 ; i < n ; i ++) {
    sum = sum * i;
}</pre>
```

Practice

• Count the elementary operations (divisions)

```
for (int i = 0; i < n; i ++) {
   for (int j = 0; j < n; j ++) {
      sum = sum / j;
   }
}</pre>
```

Practice

• Count the elementary operations (additions)

```
for (int i = 0; i < n; i ++) {
    for (int j = 0; j < n; j ++) {
        for (int k = 0; k < n; k ++) {
            sum = sum + j;
        }
    }
}</pre>
```

Practice

• Count the elementary operations (multiplications)

```
for (int i = 0 ; i < n ; i ++) {
   for (int j = 0 ; j < n*n ; j ++) {
      sum = sum * j;
   }
}</pre>
```

Practice

• Count the elementary operations (multiplications)

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

```
for (int i = 0; i < n; i ++) {
   for (int j = 0; j < i; j ++) {
      sum = sum * j;
   }
}</pre>
```

Some useful series

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1$$
https://tug.org/texshowcase/cheat.pdf

Practice

 \cdot What is T(n) for the following examples?

```
// returns the index of the minimum
// element in the array
                                             // returns the index of the first
int argmin(int *A, int n) {
                                             // occurrence of k in the array
   int idx = 0;
                                             int argk(int *A, int n, int k) {
    int current = A[0];
                                                 for (int i = 0; i < n; i ++) {
   for (int i = 1; i < n; i ++) {
                                                     if (A[i] == k) {
       if (A[i] < current) {</pre>
                                                         return i;
           current = A[i];
            idx = i;
                                                 return -1;
   return idx;
```

Case analysis

- An algorithm may run faster on some inputs than it does on others of the same size
 - e.g., a sorting algorithm may run faster on already sorted data
- Algorithms can be analyzed using different cases:
 - best case: minimum time of algorithm on any input
 - worst case: maximum time of algorithm on any input
 - provides a guaranteed upper bound on resource usage (time/space), essential for safety-critical systems and real-time applications.
 - <u>average case</u>: the expected time of the algorithm (over all inputs)
 - quite challenging in practice as it requires knowledge of the input distribution

Image credit: Data Structures and Algorithms in C++, Goodrich, Tamassia, Mount 18

Practice

- Provide T(n) for the worst-, average-, and best-case
 - ✓ find value in an unsorted sequence (return first occurrence)
 - ✓ finding the maximum element
 - ✓ factorial of a number iterative algorithm

Asymptotic behavior

- Behavior of T(n) as the input size $n \to \infty$
 - we are interested in the <u>behavior</u> of the algorithm as the size of the input **grows**, not in the exact number of operations
- In practice:
 - · ignore constant factors (coefficients) and lower-order terms
 - when n is large, constants and lower-order terms are negligible

$$3n^3 + 50n + 24$$

$$\Theta(n^3)$$

$$0.001n^2 + 10^{10}n + 10^5$$

$$\Theta(n^2)$$
 used to express rate of growth, more on this later
$$4\log n + n\log n$$

$$\Theta(n\log n)$$
 Big Theta

20

Order-of-growth classifications

description	order of growth	typical code framework	description	example	
constant	1	a = b + c;	statement	add two numbers	1400 1200 1000 1000
logarithmic	$\log N$	[see page 47]	divide in half	binary search	800
linear	N	<pre>double max = a[0]; for (int i = 1; i < N; i++) if (a[i] > max) max = a[i];</pre>	loop	find the maximum	200 10 20 30
linearithmic	$N \log N$	[see algorithm 2.4]	divide and conquer	mergesort	400 n! 2"
quadratic	N^2	<pre>for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i] + a[j] == 0) cnt++;</pre>	double loop	check all pairs	200
cubic	N^3	for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0) cnt++;	triple loop	check all triples	100 0 5 10 Input size n
exponential	2^N	[see Chapter 6]	exhasutive search	check all subsets	
	ht	tns://algs4 cs.nrinceton.edu/14analy	vsis/		https://opendsa-server.cs.vt.edu/ODS

Order-of-growth for different input sizes

Size of Input	T(n) = log n	T(n) = n	$T(n) = n^2$	T(n) = n ³
n = 1	0	1	1	1
n = 10	3.32	10	100	1,000
n = 100	6.64	100	10,000	1,000,000
n = 1,000	9.97	1,000	1,000,000	1,000,000,000
n = 10,000	13.29	10,000	100,000,000	1,000,000,000,000
n = 100,000	16.61	100,000	10,000,000,000	1,000,000,000,000,000
n = 1,000,000	19.93	1,000,000	1,000,000,000,000	1,000,000,000,000,000,000
n = 10,000,000	23.25	10,000,000	100,000,000,000,000	1,000,000,000,000,000,000,000

22