Computing with Probabilities: Law of Total Probability

Law of Total Probability (aka "summing out" or marginalization)

$$P(a) = \Sigma_b P(a, b)$$

= $\Sigma_b P(a \mid b) P(b)$ where B is any random variable

Why is this useful?

given a joint distribution (e.g., P(a,b,c,d)) we can obtain any "marginal" probability (e.g., P(b)) by summing out the other variables, e.g.,

$$P(b) = \sum_{a} \sum_{c} \sum_{d} P(a, b, c, d)$$

Less obvious: we can also compute <u>any conditional probability of interest</u> given a joint distribution, e.g.,

$$P(c \mid b) = \Sigma_a \Sigma_d P(a, c, d \mid b)$$

$$= 1 / P(b) \Sigma_a \Sigma_d P(a, c, d, b)$$
where 1 / P(b) is just a normalization constant

Thus, the joint distribution contains the information we need to compute any probability of interest.

We can always write

$$P(a, b, c, ... z) = P(a | b, c, ... z) P(b, c, ... z)$$
 (by definition of joint probability)

Repeatedly applying this idea, we can write

$$P(a, b, c, ... z) = P(a | b, c, ... z) P(b | c, ... z) P(c | ... z) ... P(z)$$

This factorization holds for any ordering of the variables

This is the chain rule for probabilities

- 2 random variables A and B are conditionally independent given C iff
 P(a, b | c) = P(a | c) P(b | c) for all values a, b, c
- More intuitive (equivalent) conditional formulation
 - A and B are conditionally independent given C iff
 P(a | b, c) = P(a | c)
 OR P(b | a, c) P(b | c), for all values a, b, c
 - Intuitive interpretation:

 $P(a \mid b, c) = P(a \mid c)$ tells us that learning about b, given that we already know c, provides no change in our probability for a, i.e., b contains no information about a beyond what c provides

- Can generalize to more than 2 random variables
 - E.g., K different symptom variables X1, X2, ... XK, and C = disease
 - $P(X1, X2,.... XK \mid C) = \Pi P(Xi \mid C)$
 - Also known as the naïve Bayes assumption

Bayesian Networks

- A Bayesian network specifies a joint distribution in a structured form
- Represent dependence/independence via a directed graph
 - Nodes = random variables
 - Edges = direct dependence
- Structure of the graph

 Conditional independence relations

 In general,

$$p(X_1, X_2, X_N) = \prod p(X_i \mid parents(X_i))$$

The full joint distribution

The graph-structured approximation

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
 - The graph structure (conditional independence assumptions)
 - The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian network

$$p(A,B,C) = p(C|A,B)p(A)p(B) \longleftrightarrow C$$

- Probability model has simple factored form
- Directed edges => direct dependence
- Absence of an edge => conditional independence
- Also known as belief networks, graphical models, causal networks
- Other formulations, e.g., undirected graphical models

Marginal Independence: p(A,B,C) = p(A) p(B) p(C)

Conditionally independent effects: p(A,B,C) = p(B|A)p(C|A)p(A)

B and C are conditionally independent Given A

e.g., A is a disease, and we model B and C as conditionally independent symptoms given A

Independent Causes: p(A,B,C) = p(C|A,B)p(A)p(B)

"Explaining away" effect: Given C, observing A makes B less likely e.g., earthquake/burglary/alarm example

A and B are (marginally) independent but become dependent once C is known

Markov dependence: p(A,B,C) = p(C|B) p(B|A)p(A)

- Consider the following 5 binary variables:
 - B = a burglary occurs at your house
 - E = an earthquake occurs at your house
 - A = the alarm goes off
 - J = John calls to report the alarm
 - M = Mary calls to report the alarm
 - What is P(B | M, J) ? (for example)
 - We can use the full joint distribution to answer this question
 - Requires 2⁵ = 32 probabilities
 - Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian Network: Step 1

Order the variables in terms of causality (may be a partial order)

e.g.,
$$\{E, B\} \rightarrow \{A\} \rightarrow \{J, M\}$$

• P(J, M, A, E, B) = P(J, M | A, E, B) P(A | E, B) P(E, B)

$$\sim P(J, M \mid A) \qquad P(A \mid E, B) P(E) P(B)$$

$$\sim P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$$

These CI assumptions are reflected in the graph structure of the Bayesian network

The Resulting Bayesian Network

Constructing this Bayesian Network: Step 2

P(J, M, A, E, B) =
 P(J | A) P(M | A) P(A | E, B) P(E) P(B)

- There are 3 conditional probability tables (CPDs) to be determined:
 P(J | A), P(M | A), P(A | E, B)
 - Requiring 2 + 2 + 4 = 8 probabilities
- And 2 marginal probabilities P(E), P(B) -> 2 more probabilities
- Where do these probabilities come from?
 - Expert knowledge
 - From data (relative frequency estimates)
 - Or a combination of both see discussion in Section 20.1 and 20.2 (optional)

The Bayesian network

Number of Probabilities in Bayesian Networks

- Consider n binary variables
- Unconstrained joint distribution requires O(2ⁿ) probabilities

- If we have a Bayesian network, with a maximum of k parents for any node, then we need O(n 2^k) probabilities
- Example
 - Full unconstrained joint distribution
 - n = 30: need 10⁹ probabilities for full joint distribution
 - Bayesian network
 - n = 30, k = 4: need 480 probabilities

The Bayesian Network from a different Variable Ordering

The Bayesian Network from a different Variable Ordering

Given a graph, can we "read off" conditional independencies?

A node is conditionally independent of all other nodes in the network given its Markov blanket (in gray)

Inference (Reasoning) in Bayesian Networks

- Consider answering a query in a Bayesian Network
 - Q = set of query variables
 - e = evidence (set of instantiated variable-value pairs)
 - Inference = computation of conditional distribution $P(Q \mid e)$

- Examples
 - P(burglary | alarm)
 - P(earthquake | JCalls, MCalls)
 - P(JCalls, MCalls | burglary, earthquake)

- Can we use the structure of the Bayesian Network to answer such queries efficiently? Answer = yes
 - Generally speaking, complexity is inversely proportional to sparsity of graph

Example: Tree-Structured Bayesian Network

p(a, b, c, d, e, f, g) is modeled as p(a|b)p(c|b)p(f|e)p(g|e)p(b|d)p(e|d)p(d)

Say we want to compute p(a | c, g)

Direct calculation: $p(a|c,g) = \sum_{bdef} p(a,b,d,e,f \mid c,g)$

Complexity of the sum is $O(m^4)$

Reordering:

$$\Sigma_{\rm d}$$
 p(a|b) $\Sigma_{\rm d}$ p(b|d,c) $\Sigma_{\rm e}$ p(d|e) $\Sigma_{\rm f}$ p(e,f|g)

Complexity is O(m), compared to O(m⁴)

General Strategy for inference

Want to compute P(q | e)

Step 1:

$$P(q \mid e) = P(q,e)/P(e) = \alpha P(q,e)$$
, since $P(e)$ is constant wrt Q

Step 2:

$$P(q,e) = \Sigma_{a...z} P(q, e, a, b, z)$$
, by the law of total probability

Step 3:

$$\Sigma_{\text{a..z}}$$
 P(q, e, a, b, z) = $\Sigma_{\text{a..z}}$ Π_{i} P(variable i | parents i) (using Bayesian network factoring)

Step 4:

Distribute summations across product terms for efficient computation

Inference Examples

Examples worked on whiteboard

Complexity of Bayesian Network inference

- Assume the network is a polytree
 - Only a single directed path between any 2 nodes
- Complexity scales as O(n m K+1)
 - n = number of variables
 - m = arity of variables
 - K = maximum number of parents for any node
 - Compare to O(mⁿ⁻¹) for brute-force method
- Network is not a polytree?
 - Can cluster variables to render the new graph a tree
 - Very similar to tree methods used for
 - Complexity is $O(n m^{W+1})$, where W = num variables in largest cluster