Linear regression model: classical approach

The observed data: (i). Any single observation is given by (Y, z)

Y is the observed variable

 $z = (z_0, \ldots, z_k)$ is the covariate

 $z_0 \in \{0,1,2\}$ is assumed to be a genotype

The distribution of Y is assumed to be a normal; any element z_i of the covariate z can be

nominal (categorical, factor)

ordinal

quantitative (numeric)

Covariates:

the covariate $z_0 \in \{0, 1, 2\}$ (genotype) is assumed to be of special ordinal/nominal type (object "genotype")

type of each other covariate should be specified by user or selected by default

By default

a binary categorical covariate (2 levels) is assumed to be a nominal, and should be converted to 0 and 1 levels:

a categorical covariate having 3-8 levels is assumed to be an ordinal;

other covariates are assumed to be numeric.

(ii). The observed data is a sample (Y, z):

$$Y = (Y_1, \dots, Y_n)'$$
 is $n \times 1$ -vector

 $\mathbf{z} = (z_1, \dots, z_n), \ z_i = (z_{i,0}, \dots, z_{i,k})$ are the covariates

 Y_1, \ldots, Y_n are conditionally independent given \mathbf{z}

 $\mathbb{V}\mathbf{ar}(Y|z) = \sigma^2 \text{ for any } z \ (\mathbb{V}\mathbf{ar}(Y_1) = \ldots = \mathbb{V}\mathbf{ar}(Y_n))$

Linear regression model: (i). Regressor $X : \mathbb{R}^k \to \mathbb{R}^m$; X(z) is defined for any observation

(ii). Linear regression model for single observation

$$\mathbb{E}_{\theta}(Y|z) = X(z)'\beta$$

 $\boldsymbol{\beta} = (\beta_1, \dots, \beta_m)'$ is $m \times 1$ -vector of parameters

 $Y \sim \mathcal{N}(\boldsymbol{X}(\boldsymbol{z})'\boldsymbol{\beta}, \sigma)$, where σ is the nuisance variance parameter

 $\boldsymbol{\theta} = (\beta_1, \dots, \beta_m, \sigma)$ is the full parameter of the model

The linear regression model is determined by formula

$$Y \sim g(z_0) + f(z^*), \quad z^* = (z_1, \dots, z_k),$$

where $g \in \{CD, D, R, A\}$ is the genetic model and f is the covariate term

$$f(z^*) = f_1(z^*) + \ldots + f_r(z^*),$$

 $f_i(\boldsymbol{z}^*) = z_1^{r_{1i}} * \dots * z_k^{r_{ki}}, r_{1i}, \dots, r_{ki} \in \{0, 1, \dots\}$ is of multiple regression type

warning: values $r_{ki} \geq 2$ are not available for factors

The parameter

The intercept parameter is included into the model by default

The covariate z_0 generates

single parameter if $g \in \{D, R, A\}$ (difference with the baseline level $z_0 = 0$) vector of length two if g = CD (main effect with respect to the baseline level $z_0 = 0$)

Term $f(z^*)$ should be transformed to $\sum_{\kappa \in K} z_{\kappa}$, where κ is a multi-index; K is a (ordered) set of subsets of $\{1, \ldots, k\}$

the term $f_i(\boldsymbol{z}^*) = z_1^{r_{1i}} * \ldots * z_k^{r_{ki}}$ generates K_i is the set of non empty subsets of $\{r_{k,i} : r_{k,i} = 1\}$ then $K = \bigcup_{i=1}^{r} K_i$

the elements of K should be sorted (κ 's of smaller length should be sorted before κ 's of larger length)

We associate a number d_{κ} to each index $\kappa \in K$

 $d_i = 1$ if z_i is numeric or ordinal $(\kappa = i)$

 $d_i = r \text{ for } z_i^r$

 $d_i + 1$ is a number of levels of the covariate z_i , if z_i is a factor $(\kappa = i)$

in general case $d_{\kappa} = \prod_{i \in \kappa} d_i$.

The total length of the nuisance (part corresponding to f) parameter is $d = \sum_{\kappa \in K} d_{\kappa}$.

The regressor

The regressor is a vector (x_0, x_K) such that

 $x_0 = (1, z_0) \text{ if } g \in \{D, R, A\}$

 $x_0 = (1, 1\!\!1_{\{z_0=1\}}, 1\!\!1_{\{z_0=2\}})$ if g = "CD" (Model for TEST) $x_0 = (1, z_0)$ if g = "CD" (Model for QAS)

 $x_0 = 1$ (Model for base)

We use the ordered set K to create regressors for nuisance parameter

 $x_i = z_i$ if z_i is numeric or ordinal $(\kappa = i)$

 $x_i = (z_i, z_i^2, \dots, z_i^r)$ for z_i^r

 x_i is a vector of length d_i of $\{0,1\}$ with 1 on j-th position if $z_i = a_{j+1}, a_j$ is the j-th level of z_i (for example (0,0,1,0,0)).

in general case $x_{\kappa} = \text{as.vector}(\otimes_{i \in \kappa} x_i)$, where \otimes is the outer product (vector should be sorted in a proper order).

the regressor x_K , which corresponds to the nuisance parameter is obtained by merging x_{κ} over $\kappa \in K$ in the proper order.

(iii). Linear regression model for the observed data

$$\mathbb{E}(Y|\mathbf{z}) = \mathbf{X}'\boldsymbol{\beta}$$

 $\mathbf{X} = (\mathbf{X}(\mathbf{z}_1), \dots, \mathbf{X}(\mathbf{z}_n))$ is the $m \times n$ -matrix of regressors

 β is the 1 × m-vector of parameters

assumption $Y \sim \mathcal{N}(\mathbf{X}'\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$, \mathbf{I}_n is the identity matrix

the matrix $\mathbf{X} = (\mathbf{X}'_q, \mathbf{X}^{*'})'$, where \mathbf{X}_q contains the regressors related to g and \mathbf{X}^* are the last d rows of the matrix X

Nuisance parameter reduction

the parameter related to (z_1, \ldots, z_k) is not a subject of our interests

If the matrix \mathbf{X}^* , which contains the last d rows of the matrix \mathbf{X} , is not of the full rank d, we reduce the matrix \mathbf{X}^* to \mathbf{X}° by choosing only basis vectors of the linear space generated by rows of the matrix X^*

The reduced matrix X is determined by changing block X^* to X° in the matrix X

QAS and P-value. Under XX' is of full rank (positively definite), the least square estimator (LSE) is given by

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}\mathbf{X}')^{-1}\mathbf{X}\,\mathbf{Y}$$

The sum of squares

$$S(\boldsymbol{\beta}) = \| \boldsymbol{Y} - \mathbf{X}' \boldsymbol{\beta} \|^2 = (\boldsymbol{Y} - \mathbf{X}' \boldsymbol{\beta})' (\boldsymbol{Y} - \mathbf{X}' \boldsymbol{\beta})$$

Notations ("Model for QAS" is equal to "Model for TEST" if g = A, D, R"):

 $\mathbf{X}/\mathbf{X}_q/\mathbf{X}_0$ is the regressors in the "Model for TEST"/"Model for QAS"/"Baseline model" respectively

 $\hat{\boldsymbol{\beta}}/\hat{\boldsymbol{\beta}}_q/\hat{\boldsymbol{\beta}}_0$ is the LSE from the "Model for TEST"/"Model for QAS"/"Baseline model" respectively

 $S(\widehat{\boldsymbol{\beta}})/S_q(\widehat{\boldsymbol{\beta}}_q)/S_0(\widehat{\boldsymbol{\beta}}_0)$ is the sums of squares from the "Model for TEST"/"Model for QAS"/ "Baseline model" respectively

The algorithm

The input data contain: "phenotype" (numeric vector), "genotype", "covariates" (matrix), "covariate types" (vector) and "formula"

- (i) Create regressors related to covariates X^*
- (ii) Check that the rank of the matrix \mathbf{X}^* is full

if the rank of matrix \mathbf{X}^* is not equal to d, apply nuisance parameter reduction $\mathbf{X}^* := \mathbf{X}^\circ$.

(iii) Loop by genotypes

Create regressors \mathbf{X}_g for "Model for TEST", for "Model for QAS" and for "Baseline model" Check that the rank of the matrix \mathbf{X}_g related to g is maximal (2 if g = A, D, R" or 3 if g = CD")

if the rank of the matrix \mathbf{X}_g in the "Model for TEST" is not maximal, report qas[i] = NA and pv[i] = NA otherwise, continue

Create matrix **X** by merging \mathbf{X}_g and \mathbf{X}^*

If the rank of matrix \mathbf{X} is not equal to its number of rows use nuisance parameter reduction to whole \mathbf{X} (\mathbf{X}_q should not be changed)

Fit the "Model for QAS"

assign qas[i] the coefficient, related to z_0 (second element of the vector $\widehat{\beta}$)

Fit the "Model for TESTS" and the "Baseline model"

$$SS_e = S(\widehat{\boldsymbol{\beta}}); \overline{SS}_e = SS_e/\mathrm{df}, \text{ where df} = n - \mathbf{rk}(\mathbf{X})$$

 $SS_h = S_0(\widehat{\boldsymbol{\beta}}_0) - SS_e; \overline{SS}_h = SS_H/\mathrm{df}_h, \text{ where df}_h = 2 \text{ if } g = CD \text{ and df}_h = 1 \text{ if } g = A,D,R$

 $\mathbb{F} = \overline{SS_h}/\overline{SS_e}$ is the F-statistic, which has under null hypothesis $F_{\mathrm{df}_h,\mathrm{df}}$ -distribution assign $pv[i] := 1 - F_{\mathrm{df}_h,\mathrm{df}}(\mathbb{F})$, where $F_{\mathrm{df}_h,\mathrm{df}}$ is the distribution function of the Fisher–Snedecor distribution $F_{\mathrm{df}_h,\mathrm{df}}$

(iii) Return the vectors pv and qas.