

X4 开发手册

目录

1	I	作机制	1
	1.1	系统工作流程	. 1
2	系	统通信	2
4	2.1	通信机制	. 2
2	2.2	系统命令	. 2
4	2.3	系统报文	. 2
3	数	据协议	3
4	3.1	扫描命令 [A5 60]	. 3
4	3.2	停止命令 [A5 65]	. 6
	3.3	设备信息 [A5 90]	. 6
		健康状态 [A5 91]	
4	3.5	重启命令 [A5 80]	. 7
4	功	耗控制	8
4	4.1	待机控制	. 8
4	4.2	速度控制	. 8
5	修	AT	9

1 工作机制

YDLIDAR X4(以下简称 X4)的系统设置了3种工作模式:空闲模式、扫描模式、停机模式:

- ▶ **空闲模式:** X4 上电时,默认为空闲模式,空闲模式时, X4 的测距单元不工作,激光器不亮。
- ▶ **扫描模式:** 当 **X4** 进入扫描模式时,测距单元点亮激光器,开始工作,不断得对外部环境进行激光采样,并经过后台处理后实时输出。
- ▶ **停机模式:** 当 **X4** 运行有错时,如开启扫描时,激光器不亮,电机不转等状况,**X4** 会自动关闭测距单元,并反馈错误代码。

1.1 系统工作流程

图 1 YDLIDAR X4 系统工作流程图

2 系统通信

2.1 通信机制

X4 是通过串口来和外部设备进行命令和数据的交互。当外部设备发送一个系统命令至 X4,X4 解析系统命令,会返回相应的应答报文,并根据命令内容,来切换相应的工作状态, 外部系统根据报文内容,解析报文,便可获取应答数据。

图 2 YDLIDAR X4 系统通信机制

2.2 系统命令

外部系统通过发送相关的系统命令,便可设置 X4 相应的工作状态,获取相应的数据。X4 的系统命令统一为 2 个字节,其中起始字节统一为 0xA5,第二个字节为命令内容。X4 对外发布的系统命令如下:

系统	命令	描述	模式切换	应答模式
	0x60	开始扫描,输出点云数据	扫描模式	持续应答
	0x65	停机,停止扫描	停机模式	无应答
0xA5 (起始)	0x90	获取设备信息(型号、固件、硬件版本)	不切换	单次应答
() () ()	0x91	获取设备健康状态	不切换	单次应答
	0x80	设备软重启	/	无应答

表 1 YDLIDAR X4 系统命令

2.3 系统报文

系统报文时系统根据接收的系统命令反馈的应答报文,不同的系统命令,系统报文的应 答模式和应答内容也不一样,其中应答模式有三种:无应答、单次应答、持续应答。

无应答表示系统不反馈任何报文;单次应答表示系统的报文长度是有限的,应答一次即结束;持续应答表示系统的报文长度是无限长的,需要持续发送数据,如进入扫描模式时。

单次应答和持续应答的报文采用同一个数据协议,其协议内容为:起始标志、应答长度、应答模式、类型码和应答内容,通过串口16进制输出。

表 2 YDLIDAR X4 系统报文数据协议

起始标志	应答长度	应答模式	类型码	应答内容
16bits	30bits	2bits	8bits	/

字节偏移:

图 3 YDLIDAR X4 系统报文数据协议示意图

- ▶ 起始标志: X4 的报文标志统一为 0xA55A;
- ▶ 应答长度: 应答长度表示的是应答内容的长度,但当应答模式为持续应答时,长度应为 无限大,因此该值失效;
- ▶ **应答模式:** 该位只有 **2**bits,表示本次报文是单次应答或持续应答,其取值和对应的模式 如下:

表 3 YDLIDAR X4 应答模式取值和对应应答模式

应答模式取值	0x0	0x1	0x2	0x3
应答模式	单次应答	持续	未定	至义

- ▶ 类型码: 不同的系统命令,对应不同的类型码:
- ▶ 应答内容:不同的系统命令,反馈不同的数据内容,其数据协议也不同。
- 注 1: X4 的数据通信采用的是小端模式,低位在前。
- 注 2: 应答报文中,第6个字节的低6位属于应答长度,高2位属于应答模式。

3 数据协议

不同的系统命令,有着不同报文的报文内容。而不同类型码的报文中,其应答内容的数据协议也不尽相同。因此,用户需要根据相应的数据协议,来解析应答内容中的数据,如点云数据、设备信息等。

3.1 扫描命令 [A5 60]

当外部设备向 X4 发送扫描命令时, X4 会进入扫描模式, 并反馈点云数据。其应答报文为:

图 4 YDLIDAR X4 扫描报文示意图

其中第6个字节高2为01,因此应答模式取值为0x1,为持续应答,忽略应答长度,类型码为0x81;

应答内容为系统扫描的点云数据,其按照以下数据结构,以 16 进制向串口发送至外部设备。

字节偏移:

图 5 扫描命令应答内容数据结构示意图

表 4 扫描命令应答内容数据结构描述

内容	名称	描述
PH (2B)	数据包头	长度为 2B, 固定为 0x55AA, 低位在前, 高位在后
CT (1B)	包类型	表示当前数据包的类型,CT[bit(0)]=1 表示为一圈数据起始,
CI (ID)	区 大宝	CT[bit(0)]=0 表示为点云数据包,CT[bit(7:1)]为预留位
LSN(1B)	采样数量	表示当前数据包中包含的采样点数量;起始数据包中只有1个起始点的数据,该值为1
FSA (2B)	起始角	采样数据中第一个采样点对应的角度数据
LSA (2B)	结束角	采样数据中最后一个采样点对应的角度数据
CS (2B)	校验码	当前数据包的校验码,采用双字节异或对当前数据包进行校验
Si (2B)	采样数据	系统测试的采样数据,为采样点的距离数据

▶ 起始位&扫描频率解析

当检测到 CT[bit(0)]=0 时,表明该包数据为点云数据包;

当检测到 CT[bit(0)]=1 时,表明该包数据为起始数据包,表示一圈数据的起始,该数据包中 LSN=1,即 Si 的数量为 1;其距离、角度的具体值解析参见下文;同时,起始数据包中,CT[bit(7:1)]扫描频率信息,F=CT[bit(7:1)]/10(当 CT[bit(7:1)]=1 时)。

注: 当 CT[bit(7:1)] = 0 时,CT[bit(7:1)]为预留位,未来版本会用作其他用途,因此在解析 CT 过程中,只需要对 bit(0)位做起始帧的判断。

▶ 距离解析

距离解算公式: Distance $i = \frac{Si}{4}$

其中, Si 为采样数据。设采样数据为 E5 6F, 由于本系统是小端模式, 所以本采样点 S = 0x6FE5, 带入到距离解算公式, 得 Distance = 7161.25mm。

▶ 角度解析:

角度数据保存在 FSA 和 LSA 中,每一个角度数据有如下的数据结构,C 是校验位,其值 固定为 1。角度解析有两个等级:一级解析和二级解析。一级解析初步得到角度初值,二级解析对角度初值进行修正,具体过程如下:

一级解析:

Ang_q2[6:0] C LSB Ang_q2[14:7] MSB

起始角解算公式: $Angle_{FSA} = \frac{Rshiftbit(FSA,1)}{64}$

图 6 角度数据结构示意图

结束角解算公式: $Angle_{LSA} = \frac{Rshiftbit(LSA,1)}{64}$

中间角解算公式:
$$Angle_i = \frac{diff(Angle)}{LSN-1} * (i-1) + Angle_{FSA}$$
 $(i=2,3,...,LSN-1)$

Rshiftbit(data,1)表示将数据 data 右移一位。diff(Angle)表示起始角(未修正值)到结束角(未修正值)的顺时针角度差,LSN表示本帧数据包采样数量。

二级解析:

角度修正公式:
$$Angle_i = Angle_i + AngCorrect_i$$
 $(i = 1,2,...,LSN)$

其中,AngCorrect为角度修正值,其计算公式如下,tand⁻¹为反三角函数,返回角度值:

IF
$$Distance_i == 0$$
 Ang $Correct_i = 0$

ELSE AngCorrect_i =
$$tand^{-1}(21.8 * \frac{155.3 - Distance_i}{155.3 * Distance_i})$$

设数据包中,第4⁸ 字节为28 E5 6F BD 79,所以LSN = 0x28 = 40(dec),FSA = 0x6FE5,LSA = 0x79BD,带入一级解算公式,得:

$$Angle_{FSA} = 223.78^{\circ}$$
, $Angle_{LSA} = 243.47^{\circ}$, $diff(Angle) = 19.69^{\circ}$

$$Angle_i = \frac{19.69^{\circ}}{39} * (i-1) + 223.78^{\circ}$$
 $(i = 2,3,...,39)$

假设该帧数据中,Distance₁ = 1000,Distance_{LSN} = 8000,带入二级解算公式,得:

AngCorrect₁ = -6.7622° , AngCorrect_{LSN} = -7.8374° , 所以:

 $Angle_{FSA} = Angle_1 + AngCorrect_1 = 217.0178^{\circ}$

 $Angle_{LSA} = Angle_{LSA} + AngCorrect_{LSA} = 235.6326^{\circ}$

同理, $Angle_i$ (i = 2,3,...,LSN - 1), 可以依次求出。

▶ 校验码解析:

校验码采用双字节异或,对当前数据包进行校验,其本身不参与异或运算,且异或顺序不是严格按照字节顺序,其异或顺序如图所示,因此,校验码解算公式为:

$$CS = XOR_1^{end}(C_i)$$
 $i = 1, 2, ..., end$

XOR^{end} 为异或公式,表示将元素中从下标 1 到 end 的数进行异或。但异或满足交换律,实际解算中可以无需按照本文异或顺序。

图 7 CS 异或顺序示意图

3.2 停止命令 [A5 65]

当系统处于扫描状态时, X4 一直在对外发送点云数据, 若此时需要关闭扫描, 可以发送此命令, 令系统停止扫描。发送停止命令后, 系统会处于待机状态, 此时, 设备的测距单元处于低功耗模式, 激光器不亮。

该命令是无响应的,因此系统在接收到该命令后,不会有任何报文应答。

3.3 设备信息 [A5 90]

当外部设备向 X4 发送获取设备信息命令(A5 90)时, X4 会反馈设备的型号、固件版本和硬件版本,以及设备出厂序列号。其应答报文为:

图 8 YDLIDAR X4 设备信息报文示意图

按照协议解析: 应答长度 = 0x00000014, 应答模式 = 0x0, 类型码 = 0x04。

即应答内容字节数为 20;本次应答为单次应答,类型码为 04,该类型应答内容满足一下数据结构:

图 9 YDLIDAR X4 设备信息应答内容数据结构示意图

- ▶ 型号: 1 个字节设备机型, 如 X4 的机型代号是 06:
- ▶ 固件版本: 2 个字节, 低字节为主版本号, 高字节为次版本号;
- **▶ 硬件版本: 1** 个字节,代表硬件版本:
- **▶ 序列号:** 16 个字节, 唯一的出厂序列号。

3.4 健康状态 [A5 91]

当外部设备向 X4 发送获取设备健康状态命令(A5 91)时, X4 会反馈设备的状态码。其应答报文为:

图 10 YDLIDAR X4 设备健康状态报文示意图

按照协议解析: 应答长度 = 0x00000003, 应答模式 = 0x0, 类型码 = 0x06。

即应答内容字节数为3;本次应答为单次应答,类型码为06,该类型应答内容满足以下数据结构:

图 11 YDLIDAR X4 设备健康状态应答内容数据结构示意图

- ▶ **状态码:** 1 个字节, 0x0 表示设备运行正常, 0x1 表示设备运行警告, 0x2 表示设备运行 错误
- ▶ **错误代码:** 2 个字节,当出现警告或者错误状态时,具体的错误代号会被记录在该字段当中 0x00 表示设备运行无报错。

3.5 重启命令 [A5 80]

当外部设备向 X4 发送获取设备重启命令(A5 80)时, X4 会进入软重启,系统重新启动。该命令无应答。

4 功耗控制

X4的对外接口中,提供了电机的相关控制接口(M_EN, M_SCTP)和功耗的控制接口(DEV EN),用户可设置该三个控制信号来控制设备的功耗。

4.1 待机控制

为了方便用户快速使用,X4 控制信号的默认值(请参考数据手册)没有实现最低功耗,因此,当用户需要调试出最低功耗的待机状态,需要进一步对 M_EN 、 DEV_EN 进行如下调控: $M_EN = OV$, $DEV_EN = OV$ 。

以此便关闭了电机的使能和测距使能,整个系统便处于最低功耗的待机状态。

4.2 速度控制

同时,用户可以根据实际需要,改变扫描频率来满足需求。通过改变 M_SCTP 管脚输入电压,或改变输入的 PWM 信号的占空比,来调控电机转速(具体控制方法,请参考数据手册)。

5 修订

日期	版本	修订内容
2017-12-01	1.0	初撰
2017-12-26	1. 1	优化排版,修订扫描命令内容细节
2017-12-29	1.2	数据协议中,距离解析和角度解析内容修订
2018-01-15	1. 3	数据协议中,距离解析和角度解析内容修订,新增角度修正值
2018-02-05	1.4	重启命令修正为 A5 80, 同时兼容 A5 40
2018-08-06	1.5	专业术语修改: LLLSB, HHMSB
2019-03-21	1.6	更改文档编码: 01.13.000001