ASHRAE Kaggle Competition

Alissa Stover, Sophia Skowronski, Ying Hua

Introduction

Purpose of competition¹: create a baseline model for which to compare improvements buildings make to their energy efficiency

Data available for competition: building characteristics, meter readings, weather data

¹https://www.kaggle.com/c/ashrae-energy-prediction

Data Journey

What are factors that impact energy use? Can you predict it for particular buildings?

Data cleaning

Subset data from 20,216,100 rows \rightarrow 12,060,910 rows Merge datasets and clean \rightarrow 12,060,311 rows

Data exploration and feature engineering

Univariate statistics, examine distributions, create new variables (16 columns \rightarrow 29 columns)

Data modeling

Examining linear relationships between variables & evaluated models with Root Mean Squared Logarithmic Error (RMSLE)

Data prep - Noticed data anomalies

disguised as 0 meter
reading; random spike in
energy reading

Data prep - Dealing with missing variables

Different

Treatments

for different

types of

missing data

		Treatment	of Missing Variables		
Variable Name		% Missing	Treatment	Note	
Outcome Variable	meter_reading	4%	Imputation using linear regression	No NA but we have reason to believe some data reported as 0 are erroneous Also tried other methods of imputation including KNN, Naive Bayes. Linear regression were the most efficient to run and gave good results	
Explanatory Variables	Building Variables				
	year_built	75%	Imputation using KNN	Also tried other methods of imputation including linear regression, Naive Bayes. KNN gave the best results	
	floor_count	53%			
	Weather Variables				
	air_temperature	0.03%	Imputation using average of the values before and after; if NA,	Because temperature data is bounded by time and specific location, we think this method is most appropriate	
	dew_temperature	0.08%	using backfill		
	cloud_coverage	49%			
	precip_depth_1hr	36%	Ignored	 Most of the weather data did not have significant correlation with the response variable. As such, we priorities other variables to impute. 	
	sea_level_pressure	7%			
	wind_direction	4%		 If we had more time we would impute these using a similar method for temperature 	
	wind_speed	0.2%			

Data prep - Timezone merge

Meter data:

- Variables: building_id, meter, timestamp, meter_reading
- If merged w/ Building data: site_id

Weather data:

Variables: site_id, timestamp,
 air_temperature, cloud_coverage,
 dew_temperature, precip_depth_1_hr,
 sea_level_pressure, wind_direction,
 wind_speed

Daily patterns vary
significantly between
primary uses

Daily Trends by Season

Holidays

Cold weather

driving high energy

consumption

Interesting patterns

when we look at

electricity use by

temperature & time

Model Building

Model Building

3 predictive models and

good RMSLE scores vs.

Kaggle leaderboard

(0.93)

Type	Variables	Model 1	Model 2	Model 3
Meta	Square Ft	✓	~	~
	Floor Count	√	1	1
	Primary Use	✓	~	V
	Site ID	✓	1	1
	Year Built			V
Temporal	Day of the Week	✓	✓	✓
	Hour of Day	✓	V	✓
Weather	Air Temperature		1	V
	Dew Temperature			
Results	RMSLE on test data	1.0133	1.0124	0.9824

Key takeaways

- What they say is true: data preparation accounts for 80% of work
- Datetime methods for time series
- Different plotting tools
 - Seaborn is pretty awesome!
 - Plotly is a good intro to interactive visualization
 - Matplotlib(a classic)
- Dabbled a bit into sklearn and ML
 - For imputing missing variables (KNN, Naive Bayes, Linear regression)
 - Building models (tried random forest but ran out of memory)

If we had more time...

- Examine and model all meter types (not just electricity)
- Examine in more detail weather data we did not include in our model (cloud coverage, sea level pressure, wind, etc)
- Try other model building techniques (higher order, ML models)
 - Attempted random tree but ran out of memory