Homework

21-721 Probability

Name: Shashank Singh¹

EG.1

Consider the points as pair (P_1, P_2) distributed uniformly over the unit square $[0, 1]^2$. It is easy to see that the three segments can form a triangle if and only if the length of the longest is at most the sum of the shorter two, i.e., all three segments have length at most 1/2. Thus, if $P_1 \leq P_2$ (resp., $P_1 > P_2$), we have a triangle if and only if

- 1. $P_1 < 1/2$ (resp., $P_1 > 1/2$)
- 2. $P_2 > 1/2$ (resp., $P_2 < 1/2$)
- 3. and $P_2 P_1 < 1/2$ (resp., $P_1 P_2 < 1/2$).

Drawing these areas in a square, it becomes clear that satisfying area is 1/4 the area of the square.

EG.2

Let E denote the event that the spaceships can communicate. Then,

$$\mathbb{P}[E] = \mathbb{P}[E|A \text{ both}]\mathbb{P}[A \text{ both}] + \mathbb{P}[E|A \text{ one}]\mathbb{P}[A \text{ one}] = (1)(1/4) + \mathbb{P}[E|A \text{ one}]\mathbb{P}[A \text{ one}].$$

Thus, it remains to show that

$$\mathbb{P}[E|A \text{ one}]\mathbb{P}[A \text{ one}] = \frac{1}{2\pi}.$$

It is easy to see that $\mathbb{P}[A \text{ one}] = 1/2$ and, by symmetry,

$$\mathbb{P}[E|A \text{ one}] = 2\mathbb{P}[B \text{ both}|A \text{ one}],$$

and so a simple illustration shows that

$$\mathbb{P}[E|A \text{ one}]\mathbb{P}[A \text{ one}] = \int_0^{\pi/2} \frac{\operatorname{area}(\theta \text{ lune})}{4\pi} \frac{2\pi \sin \theta}{2\pi} \, d\theta = \int_0^{\pi/2} \frac{2\theta}{4\pi} \sin \theta \, d\theta = \boxed{\frac{1}{2\pi}},$$

where the last line follows from a simple integration by parts.

EG.3

¹sss1@andrew.cmu.edu

T		1
Ŀ	G	•4

E4.1

E4.2

E4.3

E4.4

E4.5

E4.6: Converse to SLLN

E4.7: What's Fair about a Fair Game

Each $\mathbb{E}[X_n] = n^{-2}(n^2 - 1) - (1 - n^{-2}) = 0$. However, notice that, if

$$\mathbb{P}[X_n \neq -1 \text{ ev.}] = \mathbb{P}[X_n = n^2 - 1 \text{ i.o.}] = 0,$$

then $S_n/n \to -1$ a.s. The 1st Borel-Cantelli Lemma confirms that this is the case, since

$$\sum_{n=1}^{\infty} \mathbb{P}[X_n = n^2 - 1] = \sum_{n=1}^{\infty} n^{-2} < +\infty. \quad \blacksquare$$

E4.8: Blackwell's Test of Imagination

E4.9: Tail σ -algebras
E5.1
Trivially, $\forall s \in S$, $f_n(s) \to 0$ as $n \to \infty$, but each $\mu(f_n) = n\left(\frac{1}{n}\right) = 1$. Notice that, $\forall x \in [0,1]$,
$g(x) = \left\lfloor \frac{1}{x} \right\rfloor \ge \frac{1}{x} - 1.$
Hence, $\int_{S} g(x) d\mu \geq \int_{S} \left \frac{1}{x} \right + 1 d\mu = +\infty.$
E5.2: Inclusion-Exclusion Formulae
E7.1: Inverting Laplace Transforms
E7.2: The Uniform Distribution on the Sphere $S^{n-1} \subseteq \mathbb{R}^n$
E9.1
E9.2
E10.1: Pólya's Urn
E10.2: Martingale Formulation of Bellman's Optimality Principle

Note first that, if, $y \in (0, x)$,

$$0 = \frac{d}{dy}p\log(x+y) + q\log(x-y) = (p-q)x - y,$$

then y = (p-q)x, and, since the appropriate second derivative is negative, this is a global maximum.

$$\mathbb{E}_n[\log Z_{n+1} - (n+1)\alpha] = p\log(Z_n + C_{n+1}) + q\log(Z_n - C_{n+1}) - (n+1)\alpha$$

$$= p\log((1+p-q)Z_n) + q\log((1-(p-q))Z_n) - (n+1)\alpha$$

$$= \log Z_n + p\log(2p) + q\log(2q) - (n+1)\alpha = \log Z_n - n\alpha$$

for the optimal strategy $C_{n+1} = (p-q)Z_n$. Hence, $n\alpha \geq \mathbb{E}[\log Z_n - \log Z_0] = \mathbb{E}[\log Z_n/Z_0]$, with equality for this strategy.

E10.3: Stopping Times

Since

$$\{S \wedge T \le n\} = \{S \le n\} \cup \{T \le n\} \in \mathcal{F}_n,$$
$$\{S \vee T \le n\} = \{S \le n\} \cap \{T \le n\} \in \mathcal{F}_n,$$

and

$${S + T \le n} = \bigcup_{k=1}^{n} {S \le k} \cap {T \le n - k} \in \mathcal{F}_n,$$

 $S \wedge T$, $S \vee T$, and S + T are stopping times.

E10.4

E10.5

E10.6: ABRACADABRA

For $n \in \mathbb{N}$, let S_n denote the total amount of money possessed by the first n gamblers at time n. Notice that, necessarily, $S_T = 26^{11} + 26^4 + 26$ (examine the suffixes of 'ABRACADABRA'). Also, $\forall n \in \mathbb{N}$, each of the first n gamblers expects to have \$1 at time n, so that $\mathbb{E}[S_n] = n$. Hence,

$$\mathbb{E}[T] = \mathbb{E}[S_T] = 26^{11} + 26^4 + 26.$$

Since the probability the monkey spells out 'ABRACADABRA' in any particular sequence of 11 letters is $26^{-11} > 0$, by a previous result, $\mathbb{E}[T] < \infty$. Let $C_n = 1$ for all $n \in \mathbb{N}$, and note that each

$$|S_n - n - (S_{n-1} - (n-1))| = 26^{11} + 26^4 + 26 + 1.$$

Then, by the result 10.10(c),

$$\mathbb{E}[S_n - n] = \mathbb{E}\left[\sum_{k=1}^n (S_n - n) - (S_{n-1} - (n-1))\right] = \mathbb{E}[C \cdot M]_T = 0,$$

so that $\mathbb{E}[S_n] = n$.

E10.7

At any time, a sequence of b consecutive cases of X = +1 will result in stopping. Hence, $\forall n \in \mathbb{N}$,

$$\mathbb{P}(T \le n + b|\mathcal{F}_n) > p^b > 0,$$

so that T satisfies the conditions in Questions E10.5.

$$\mathbb{E}_n[M_{n+1}] = M_n \mathbb{E}_n \left(\frac{q}{p}\right)^{X_{n+1}} = M_n \left(p\frac{q}{p} + q\frac{p}{q}\right) = M_n(p+q) = M_n$$

and
$$\mathbb{E}_n[N_{n+1}] = N_n + \mathbb{E}[X_{n+1}] - (p-q) = N_n + (p-q) - (p-q) = N_n$$

so that M_n and N_n are martingales. Define $P:=\mathbb{P}\left(S_T=0\right), Q:=\mathbb{P}\left(S_T=b\right)$. Then,

$$P + Q = 1$$

and
$$\left(\frac{q}{p}\right)^a = M_0 = \mathbb{E}[M_T] = P + Q\left(\frac{q}{p}\right)^b = 1 + Q\left(\left(\frac{q}{p}\right)^b - 1\right),$$

giving

$$Q = \frac{\left(\frac{q}{p}\right)^{a} - 1}{\left(\frac{q}{p}\right)^{b} - 1} = p^{b-a} \frac{q^{a} - p^{a}}{q^{b} - p^{b}} \quad \text{and} \quad P = 1 - Q.$$

Hence,

$$\mathbb{E}[S_T] = Qb = p^{b-a} \frac{q^a - p^a}{q^b - p^b} b. \quad \blacksquare$$

E10.8

 $\forall k \in [n], \text{ since } \Theta \sim \text{Unif}(0,1), \text{ integrating by parts } k \text{ times gives}$

$$P(B_n = k) = \int_0^1 P(B_n = k | \theta = t) dt = \binom{n}{k} \int_0^1 t^k (1 - t)^{n - k} dt = \frac{1}{n + 1}.$$

Bayes Rule gives

$$f_{\Theta}(\theta|B_{1},...,B_{n}) = \frac{\mathbb{P}(B_{1},...,B_{n}|\Theta=\theta)f_{\Theta}(\theta)}{\mathbb{P}(B_{1},...,B_{n})}$$
$$= \frac{\binom{n}{B_{n}}\theta^{B_{n}}(1-\theta)^{n-B_{n}}}{\frac{1}{n+1}} = \frac{(n+1)!}{B_{n}!(n-B_{n})!}\theta^{B_{n}}(1-\theta)^{n-B_{n}}.$$

E10.9

$$\mathbb{E}[X_T; T < \infty] = \mathbb{E}[\liminf_n X_{n \wedge T}; T < \infty] \le \liminf_n \mathbb{E}[X_{n \wedge T}; T < \infty] \qquad \text{(Fatou's Lemma)}$$

$$\le \mathbb{E}[X_0; T < \infty] \qquad \text{(E10.4)}$$

$$\le \mathbb{E}[X_0]. \qquad (X_0 \ge 0)$$

For $\varepsilon \in (0, c)$, define a stopping time $T_{\varepsilon} := \inf\{n : X_n > c - \varepsilon\}$ (with $T_{\varepsilon} = \infty$ if all $X_n \le c - \varepsilon$).

$$(c-\varepsilon)\mathbb{P}\left(\sup_{n}X_{n}\geq c\right)\leq (c-\varepsilon)\mathbb{P}(T_{\varepsilon}<\infty)\leq \mathbb{E}[X_{T_{\varepsilon}};T_{\varepsilon}<\infty]\leq \mathbb{E}[X_{0}].\quad\blacksquare$$

E10.10

E10.11

E12.1: Branching Process

$$\mathbb{E}_n\left[\frac{Z_{n+1}}{\mu^{n+1}}\right] = \mathbb{E}_n\left[\sum_{k=1}^{Z_n} \frac{X_k^{(n+1)}}{\mu^{n+1}}\right] = \sum_{k=1}^{Z_n} \frac{\mathbb{E}_n[X_k^{(n+1)}]}{\mu^{n+1}} = \sum_{k=1}^{Z_n} \frac{1}{\mu^n} = \frac{Z_n}{\mu^n}.$$

Since (X_n) is independent,

$$\mathbb{E}_{n} \left[Z_{n+1}^{2} \right] = \mathbb{E}_{n} \left[\sum_{k=1}^{Z_{n}} \left(X_{k}^{(n+1)} \right)^{2} + 2 \sum_{1 \leq i < j \leq Z_{n}} X_{i}^{(n+1)} X_{j}^{(n+1)} \right]$$

$$= \sum_{k=1}^{Z_{n}} \mathbb{E}_{n} \left(X_{k}^{(n+1)} \right)^{2} + 2 \sum_{1 \leq i < j \leq Z_{n}} \mathbb{E}_{n} [X_{i}^{(n+1)}] \mathbb{E}_{n} [X_{j}^{(n+1)}]$$

$$= \left(\sigma^{2} + \mu^{2} \right) Z_{n} + \mu^{2} \left(Z_{n}^{2} - Z_{n} \right) = \mu^{2} Z_{n}^{2} + \sigma^{2} Z_{n}.$$

Note that, since (M_n) is a martingale, each $\mathbb{E}[M_n] = \mathbb{E}[M_0] = 1$. Inducting on n, we see that

$$\begin{split} \mathbb{E}[M_n^2] &= \mathbb{E}\left[\frac{\mu^2 Z_{n-1}^2 + \sigma^2 Z_{n-1}}{\mu^{2n}}\right] = \mathbb{E}\left[M_{n-1}^2 + \frac{\sigma^2 M_{n-1}}{\mu^{n+1}}\right] \\ &= \mathbb{E}[M_{n-1}^2] + \frac{\sigma^2}{\mu^{n+1}} \\ &= \mathbb{E}[M_0^2] + \frac{\sigma^2}{\mu^2} \sum_{k=0}^{n-1} \mu^{-k} \uparrow 1 + \frac{\sigma^2}{\mu^2} \left(\frac{1}{1 - 1/\mu}\right) = 1 + \frac{\sigma^2}{\mu(\mu - 1)}. \end{split}$$

for all $n \in \mathbb{N}$ if and only if $\mu > 1$. Since (M_n) is bounded in \mathcal{L}_2 , $\lim_{n \to \infty} \mathbb{E}[M_n^2] = \mathbb{E}[M_\infty^2]$, and so

$$\mathbb{V}[M_{\infty}] = \mathbb{E}[M_{\infty}^2] - \mathbb{E}[M_{\infty}]^2 = 1 + \frac{\sigma^2}{\mu(\mu - 1)} - 1^2 = \frac{\sigma^2}{\mu(\mu - 1)}. \quad \blacksquare$$

E12.2: Use of Kronecker's Lemma

Define $X_k := \frac{Y_k - 1/k}{\log k}$ for $k \ge 2$. Note that each

$$\mathbb{E}[X_k] = \frac{\mathbb{E}[Y_k] - 1/k}{\log k} = \frac{1/k - 1/k}{\log k} = 0,$$

and

$$\mathbb{V}[X_k] = \mathbb{E}[X_k^2] = \frac{(1/k)(1 - 1/k)^2 - (1 - 1/k)(1/k)^2}{\log^2 k} \in O\left(\frac{1}{k \log^2 k}\right).$$

Noting that

$$\int_{2}^{n} \frac{1}{x \log^{2} x} dx = -\frac{1}{\log x} \Big|_{x=2}^{x=n} \to \frac{1}{\log 2}$$

as $n \to \infty$, we see that $\sum_k \mathbb{V}[X_k]$ converges, by the integral test. Hence, $\sum_k \frac{Y_k - 1/k}{\log k} = \sum_k X_n$ converges a.s. Recalling that the sum of the first n harmonic numbers approaches $\gamma + \log n$,

$$\lim_{n\to\infty}\frac{N_n}{\log n}-1=\lim_{n\to\infty}\frac{N_n-\log n}{\log n}=\lim_{n\to\infty}\frac{N_n-(\log n+\gamma)}{\log n}=\lim_{n\to\infty}\frac{\sum_{k=1}^nY_k-1/k}{\log n}=0,$$

by Kronecker's Lemma.

E12.3

EA13.1: Modes of Convergence

(a) Let $\varepsilon > 0$. Then,

$$\mathbb{P}[|X_n - X| > \varepsilon] \le \mathbb{P}\left[\bigcup_{m \ge n} \{|X_m - X| > \varepsilon\}\right]$$

$$\downarrow \mathbb{P}\left[\bigcap_{n=1}^{\infty} \bigcup_{m \ge n} \{|X_m - X| > \varepsilon\}\right] = \mathbb{P}[|X_m - X| > \varepsilon \text{ i.o.}] = 0,$$

since $X_n \to X$ a.s.

(b) Suppose (X_n) are independent Bernoulli RV's with $\mathbb{P}[X_n=1]=1/n$. Then, $\forall \varepsilon > 0$,

$$\mathbb{P}[|X_n| > \varepsilon] \le 1/n \to 0$$

as $n \to \infty$, but, by the 2^{nd} Borel-Cantelli Lemma, $\mathbb{P}[X_n = 1 \text{ i.o.}] = 1$, and so $X_n \not\to 0$ a.s.

(c) By the 1st Borel-Cantelli Lemma,

$$\mathbb{P}[X_n \not\to X] = \mathbb{P}\left[\bigcup_{k \in \mathbb{N}} \{|X_n - X| \ge 1/k \text{ i.o.}\}\right] = 0. \quad \blacksquare$$

- (d) Since, $\forall \varepsilon > 0$, $\mathbb{P}[|X_n X| > \varepsilon] \to 0$ as $n \to \infty$, there is a subsequence (X_{n_k}) of (X_n) such that each $\mathbb{P}[|X_{n_k} X| > 1/k] \le 1/k^2$. Hence, by part (c), $X_{n_k} \to X$ a.s. as $k \to \infty$.
- (e) \Rightarrow follows immediately from part (d). If $X_n \not\to X$ in \mathbb{P} , then there exists $\varepsilon > 0$ and a subsequence (X_{n_k}) such that each $\mathbb{P}[|X_{n_k} X| > \varepsilon] > \varepsilon$. Clearly, no subsequence of this can converge almost surely to X.

EA13.2

Recall the Law of the Iterated Logarithm we proved: almost surely,

$$\limsup_{n} \frac{S_n}{\sqrt{2n\log\log n}} = 1.$$

Notice that

$$\mathbb{P}[X_n \not\to X] = \mathbb{P}\left[\bigcup_{k \in \mathbb{N}} \{X_n > 1/k \text{ i.o.}\}\right] = \mathbb{P}\left[\bigcup_{k \in \mathbb{N}} \{aS_n > bn - \log k \text{ i.o.}\}\right]$$

Hence, if b > 0, then $\mathbb{P}[X_n \not\to X] = 0$, whereas, if $b \le 0$, then $\mathbb{P}[X_n \not\to X] = 1$. On the other hand,

$$\mathbb{E}[X_n^r] = \mathbb{E}\left[\exp\left(ra\sum_{k=1}^n \xi_k - rbn\right)\right] = e^{-rbn}\mathbb{E}\left[\left(\prod_{k=1}^n e^{ra\xi_k}\right)\right]$$
$$= e^{-rbn}\prod_{k=1}^n \mathbb{E}[e^{ra\xi_k}] = e^{-rbn}\prod_{k=1}^n e^{(ra)^2/2} = e^{((ra)^2/2 - rb)n}.$$

Hence,

$$\lim_{n \to \infty} \mathbb{E}[X_n^r] \to 0 \quad \Leftrightarrow \quad (ra)^2/2 - rb < 0 \quad \Leftrightarrow \quad r < 2b/a^2. \quad \blacksquare$$

E13.1

 (\Rightarrow) If $k \in \mathbb{N}$ such that

$$\sup_{X \in \mathcal{C}} \mathbb{E}\left[|X|1_{|X| > k}\right] \le 1,$$

then, $\forall X \in \mathcal{C}$,

$$\mathbb{E}[|X|] = \mathbb{E}[|X|1_{\{|X|>k\}}] + \mathbb{E}[|X|1_{\{|X|< k\}}] \leq 1 + kE[1_{\{|X|< k\}}] \leq 1 + k,$$

and so \mathcal{C} is bounded in \mathcal{L}_1 . If $\varepsilon > 0$, for $k \in \mathbb{N}$ such that

$$\sup_{X \in \mathcal{C}} \mathbb{E}\left[|X|1_{|X| > k}\right] \le \varepsilon/2,$$

and $\delta = \frac{\varepsilon}{2k}$, if $\forall F \in \mathcal{F}$ with $\mathbb{P}[F] < \delta$, then

$$\mathbb{E}[X1_F] = \mathbb{E}[|X|1_{F \cap \{|X| > k\}}] + \mathbb{E}[|X|1_{F \cap \{|X| < k\}}] \le \varepsilon/2 + k\mathbb{P}[F] < \varepsilon. \quad \blacksquare$$

 (\Leftarrow) Let $\varepsilon > 0$. Pick $\delta > 0$ such that, $\forall F \in \mathcal{F}$ with $\mathbb{P}[F] < \delta$,

$$\sup_{X\in\mathcal{C}}\mathbb{E}[|X|1_F]<\varepsilon.$$

By Markov's Inequality, for $k := 2A/\delta$,

$$\mathbb{P}[|X|>k] \leq \mathbb{E}[|X|]/k \leq A/k = \delta/2 \quad \Rightarrow \quad \sup_{X \in \mathcal{C}} \mathbb{E}[|X|1_{\{|X|>k\}}] < \varepsilon. \quad \blacksquare$$

E13.2

By the triangle inequality, if $A, B \in \mathbb{R}$ such that $\mathbb{E}[|X|] < A$ and $\mathbb{E}[|Y|] < B$ for all $X \in \mathcal{C}, Y \in \mathcal{D}$, then $\mathbb{E}[X + Y] < A + B$ for all $X + Y \in \mathcal{C} + \mathcal{D}$.

Let $\varepsilon > 0$. If $\exists \delta_1, \delta_2 > 0$ such that, $\forall F \in \mathcal{F}$ with $\mathbb{P}[F] < \delta_1$, $\sup_{X \in \mathcal{C}} \mathbb{E}|X| 1_F < \varepsilon/2$ and $\forall F \in \mathcal{F}$ with $\mathbb{P}[F] < \delta_1$, $\sup_{Y \in \mathcal{D}} \mathbb{E}|Y| 1_F < \varepsilon/2$, then, for $\delta := \min\{\delta_1, \delta_2\}$, $\forall F \in \mathcal{F}$ with $\mathbb{P}[F] < \delta$, $\sup_{X+Y \in \mathcal{C}+\mathcal{D}} \mathbb{E}|Y| 1_F < \varepsilon$. Hence, by the result of Exercise 13.1, $\mathcal{C} + \mathcal{D}$ is UI.

E13.3

E14.1

E14.2

(a) Since the function $x \mapsto e^{\theta x}$ is convex, as secant bound gives

$$e^{\theta Y} \le \frac{c - Y}{2c} e^{-\theta c} + \frac{c + Y}{2c} e^{\theta c} = \cosh(\theta c) + Y \sinh(\theta c).$$

Hence,

$$\mathbb{E}\left[e^{\theta Y}\right] \leq \mathbb{E}\left[\cosh(\theta c) + Y \sinh(\theta c)\right] = \cosh(\theta c),$$

since $Y \in [-c, c]$ and $\mathbb{E}[Y] = 0$. Also note that, $\forall x \in \mathbb{R}$,

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \le \sum_{k=0}^{\infty} \frac{(x^2/2)^k}{k!} = e^{x^2/2}. \quad \blacksquare$$

(b) By Doob's Maximal Inequality, $\forall \theta > 0$,

$$\begin{split} \mathbb{P}\left[\sup_{k\leq n} M_k \geq x\right] &= \mathbb{P}\left[\sup_{k\leq n} e^{\theta M_k} \geq e^{\theta x}\right] \leq \mathbb{E}\left[e^{\theta M_n}\right] e^{-\theta x} \\ &= \mathbb{E}\left[\prod_{k=1}^n e^{\theta (M_k - M_{k-1})}\right] e^{-\theta x} \\ &= \mathbb{E}\left[\prod_{k=1}^n \cosh(\theta c_k) + (M_k - M_{k-1}) \sinh(\theta c_k)\right] e^{-\theta x} \\ &= e^{-\theta x} \prod_{k=1}^n \cosh(\theta c_k) \\ &\leq e^{-\theta x} \prod_{k=1}^n e^{\frac{1}{2}\theta^2 c_k^2} = \exp\left(\frac{1}{2}\theta^2 \sum_{k=1}^n c_k^2 - \theta x\right). \end{split}$$

Let $c := \sum_{k=1}^{n} c_k^2$. To minimize over $\theta > 0$, we minimize $\frac{1}{2}\theta^2 c - \theta x$ (which is clearly convex), for which we use $\theta = x/c$, giving

$$\mathbb{P}\left[\sup_{k\leq n} M_k \geq x\right] \leq \exp\left(-\frac{1}{2}x^2/c\right). \quad \blacksquare$$

E16.1

For $0 < \varepsilon < T$, integrate e^{iz}/z around the contour composed of the intervals $[-T, -\varepsilon]$ and $[\varepsilon, T]$ and the semicircles spanning them. The integrals along the intervals approach $2i \int_0^\infty \frac{\sin(x)}{x} dx$. The

integral along the outer	semicircle approaches 0.	The integral a	along the inner	semicircle a	approaches
$-\pi i$ (using a first order	Taylor approximation of	$f e^{iz}$).			

E16.2

$$\phi_Z(\theta) = \frac{1}{2} \int_{-1}^1 e^{i\theta Z} \, dz = \frac{1}{2} \int_{-1}^1 \cos(\theta z) + i \sin(\theta z) \, dz = \frac{1}{2} \int_{-1}^1 \cos(\theta z) \, dz = \frac{1}{2} (\sin(\theta) - \sin(-\theta)) / \theta = \frac{\sin(\theta)}{\theta}.$$

If X and Y are IID RV's, then

$$\phi_{X-Y} = \phi_X \phi_{-Y} = \phi_X \overline{\phi_Y} = \phi_X \overline{\phi_X} = |\phi_X|^2 \ge 0,$$

and so $\phi_{X-Y} \neq \frac{\sin(\theta)}{\theta}$.

T2-1	c	o
P/I	n.	1

E16.4

E16.5

Use the definition of ϕ to show the LHS is the expectation of a modulus.

E16.6

E18.1

E18.2

E18.3

E18.5			
E18.6			
E18.7			