Система управления шестиногим шагающим роботом

Дипломный проект выполнил Карандаев В.Ю.

Техническое задание

- 1. Произвести энергетический расчет, рассчитать и подобрать двигатели для каждого звена ноги робота.
- 2. Произвести частотный синтез и коррекцию следящего привода трехзвенного манипулятора, чтобы обеспечить следующие условия:
 - Длительность переходного процесса $t_{
 m nn} \leq 0.1$ сек;
 - Перерегулирование $\sigma \leq 30\%$;
 - Ошибка вращения элемента $\varepsilon \leq 0.5^\circ$;
- 3. Решить обратную кинематическую задачу для трехзвенного манипулятора с 3-мя степенями свободы.
- 4. Реализовать прохождение кратчайшего пути по заданной карте местности с использованием волнового алгоритма.
- 5. Провести натурный эксперимент и определить ошибки в прохождении заданной траектории.
- 6. Разработать плату стабилизации напряжения.
- 7. Разработать технологический процесс сборки ноги робота.
- 8. Рассчитать затраты на проектирование и изготовление робота.
- 9. Проанализировать опасные и вредные факторы для человека при разработке системы управления роботом. Устранить наиболее опасный фактор.
- 10. Проанализировать влияние на окружающую среду технологического процесса сборки печатной платы для системы управления роботом. Устранить наиболее опасный фактор.

ДПТ TowerPro SG92R

$U_{ m дH}$, В	<i>P</i> _н , Вт	$n_{_{ m H}}$, об/мин	$R_{\mathfrak{A}}$, Ом	i _{дв н} , А	$J_p \cdot 10^{-6}$, кг \cdot м 2	$m_{ m ДB}$,	$\lambda_{ m KД}$
6±1	0.675	600	13	0.250	0.575	0.009	11

Нескорректированная система

Структурная схема замкнутой системы

Ошибка нескорректированной системы

Скорректированная система

Структурная схема замкнутой системы

Ошибка скорректированной системы

Скорректированная система

ЛАЧХ и ЛФЧХ разомкнутой системы

График переходной функции

Решение обратной задачи кинематики

Кинематическая расчетная схема

Задача на пересечение двух окружностей

Моделирование решения обратной задачи кинематики

Блок-схема робота

Блок-схема ноги робота

Моделирование решения обратной задачи кинематики

Графики изменения положения звеньев ноги №5

Схема поворота ноги Nº5

Программный код для управления движением

Блок — схема алгоритма программы управления движением робота

Реализация Алгоритма Ли для поиска кратчайшего пути по заданной карте местности

Блок-схема работы алгоритма

Реализация Алгоритма Ли для поиска кратчайшего пути по заданной карте местности

Визуализация работы волнового алгоритма Ли

Натурный эксперимент

№ Эксперимента	1000 мм по прямой	90° по часовой	90° против часовой		
Sherieparierima	Результаты эксперимента				
1	1010	86	91		
2	950	88	90		
3	973	86	95		
4	1018	87	94		
5	964	86	89		
6	1068	85	96		
7	1050	89	92		
8	920	86	95		
9	988	88	91		
10	990	85	93		
Среднее значение отклонения	36,1	3,4	2,8		
Среднее значение отклонения в %	3,6	3,8	3,1		

Nº	О поворотов	1 поворот	2 поворота	3 поворота		
Эксперимента	Результаты эксперимента					
1	V	~	~	~		
2	V	~	~	Х		
3	V	~	~	V		
4	V	V	V	~		
5	V	~	~	Х		
6	~	~	~	~		
7	V	~	Х	V		
8	~	~	~	Х		
9	~	~	~	~		
10	/	~	~			
Сумма правильных отработок	10	10	9	7		
Сумма неправильных отработок	0	0	1	3		

Натурный эксперимент. Результаты

- 1. Ошибки в случае движения по прямой 3,6%, в случае движения по часовой стрелке 3,8%, в случае движения против часовой стрелки 3,1%.
- 2. При прохождении простых траекторий с нулем и одним поворотами проблем с прохождением траектории не возникло. При прохождении двух поворотов один раз из десяти робот не отработал траекторию. При прохождении трех поворотов робот трижды неправильно отработал траекторию.
- 3. Для третьей части эксперимента было рассмотрено три случая:
 - В случае полностью заряженного аккумулятора робот полностью отрабатывает траекторию на высокой скорости.
 - В случае напряжения 5,0 В траектория так же выполняется без ошибок, но время исполнения команд увеличивается и робот шагает медленнее.
 - В случае разряженного аккумулятора с напряжением ниже 4,8 В робот продолжает принимать команды, но выполняет их неправильно и не решает поставленной задачи.

Проектирование платы стабилизации напряжения

Номинальные значения и типы выбранных элементов:

- DA1 микросхема LM2596S-3.3
- R1 = 1kOm, ±1% (E96), 1Bm, 2010;
- R2 = 10k0m, ±10%, 1Bm, 3006P–1–103 (Bourns);
- C1 = 470мкФ, 50V, Алюминиевый электролитический (Vishay);
- C2 = 220мкФ F, 35V, Алюминиевый электролитический (Vishay);
- L1 = 68mk[H 3.4A (EPCOS / TDK);
- D1 Диод Шоттки, MBR350 50B 3A (Vishay);
- XP1 Вилка штыревая 2.54мм 2x3 прямая, PLD-6(DS1021–2x3S).

Требования к плате:

- Выходное напряжение 6В ± 5%;
- Диапазон входного напряжения питания 4B-7B;
- Максимальный потребляемый ток 1A (1 канал / 1 сервопривод);
- Диапазон рабочих температур от **-**20 до +40 °C;

Организационно — экономическая часть

Продолжительность всех стадий работ

Стадия	№ этапа	Содержание этапов в стадиях	Исполнители		
			Категория	Кал-ва	Прадалжит льность Тож,раб.дн.
/ Подг.	1	Назначения робота, определение его характеристик, формирование	Вед.инж.	1	12
	100	технического задания и разработка теоретической части	Инж.	2	
II Изгот.	1	Разработка платы управления	Вед.инж.	1	9
			Инж.	3	
	2	Разработка корпусных элементов	Вед.инж.	1	7
			Инж.	3	
III Сбарка	1	Сборка корпусных элеметнов	Инж.	2	1
	2	Сборка платы управления	Инж	2	1
	3	Отладка платы управления	Инж.	2	8
IV Оформл	1	Оформление чертежей	Вед. инж. Инж.	1 2	5
	2	Оформление расчетно- пояснительной записки	Секр. машинист	2	5

Общая структура затрат на проектирование

Охрана труда и экологии

Схема расположения светильников

Схема системы вентиляции

Фильтр очистки воздуха

Решенные задачи

- 1. Подобраны двигатели для каждого звена ноги робота.
- 2. Произведен частотный синтез и коррекция следящего привода с соблюдением условий по Т3
- 3. Решена обратная кинематическая задача для ноги робота.
- 4. Реализовано прохождение кратчайшего пути по заданной карте местности.
- 5. Проведены натурные эксперименты и определены ошибки в прохождении заданной траектории.
- 6. Разработана плата стабилизации напряжения.
- 7. Разработан технологический процесс сборки ноги робота.
- 8. Рассчитаны затраты на проектирование и изготовление робота.
- 9. Проведен анализ опасных факторов для человека при разработке системы управления роботом. Предложено решение устранения наиболее опасного фактора.
- 10. Проведен анализ влияния на окружающую среду технологического процесса сборки печатной платы для системы управления роботом. Предложено решение устранения наиболее опасного фактора.

Спасибо за внимание!

