Homework Assignment 2

Due September 12, 8:30am

Michael Perkins, Ph.D Instructor, CMU-Africa

1 Problems

- 1. What are the matrices that implement the elemental matrix inversion operations on *columns* instead of rows (i.e. scale columns, transpose columns, add one column to another)? Do these matrices multiply the target matrix on the left or on the right?
- 2. Let $\mathcal{X} = \{\underline{\mathbf{x}}_1, \underline{\mathbf{x}}_2, \dots, \underline{\mathbf{x}}_N\}$ be an arbitrary set of equal-length vectors. Prove that the set of all possible linear combinations of the vectors in \mathcal{X} is a vector space.
- 3. Decide whether or not the following vectors are linearly independent by looking for non-zero scalar multipliers of each vector such that they sum to zero. Justify your answer.

$$\underline{\mathbf{v}}_{1} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \qquad \underline{\mathbf{v}}_{2} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \qquad \underline{\mathbf{v}}_{3} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \qquad \underline{\mathbf{v}}_{4} = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$$
 (1)

- 4. Describe geometrically the subspace of \mathbb{R}^3 spanned by
 - (a) (0,0,0), (0,1,0), (0,2,0)
 - (b) (0,0,1), (0,1,1), (0,2,1)
 - (c) All six of the vectors. Which 2 of them form an orthonormal basis for the subspace?

- (d) The set of all vectors with only positive components
- 5. consider the following 4 vectors

$$\underline{\mathbf{v}}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \qquad \underline{\mathbf{v}}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} \quad \underline{\mathbf{v}}_3 = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix} \quad \underline{\mathbf{v}}_4 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$$
 (2)

- (a) Are these four vectors all mutually orthogonal? Justify your answer
- (b) Can these vectors be scaled such that they form an orthonormal basis? If so, by what factor is each vector scaled?
- (c) Let $\underline{\mathbf{u}}_i = \alpha_i \underline{\mathbf{v}}_i$ where α_i are the scale factors you chose above. Let

$$A = \begin{bmatrix} \underline{\mathbf{u}}_1^T \\ \underline{\mathbf{u}}_2^T \\ \dots \\ \underline{\mathbf{u}}_N^T \end{bmatrix}$$
 (3)

What is A^T ? (write it out)

- (d) What is AA^T ?
- (e) Let $\underline{\mathbf{u}}_i$ be a set of orthonormal vectors. Let A be the matrix with the $\underline{\mathbf{u}}_i^T$ as its rows. We demonstrated above that $AA^T = I$ and hence that $A^{-1} = A^T$. We call A a transform matrix, and its inverse is A^T . Note that $A\underline{\mathbf{x}}$ computes the projection of $\underline{\mathbf{x}}$ onto each basis vector (make sure you understand this!). The transform above is the Hadamard transform. It is useful because it is similar to a DFT, i.e., the rows are rather "sinusoidal" in appearance. It is nice because it can be computed with only additions and subtractions. Sketch a graph of the 4 basis functions of the Hadamard transform.