Boosting

AdaBoost, Gradient Boosting, XGboost

DS 6030 | Fall 2023

boosting.pdf

Contents

1	B00	Boosting	
2	AdaBoost		
	2.1	Adaboost Algorithm	4
	2.2	AdaBoost Details	11
	2.3	R package ada	12
3	Gradient Boosting		
	3.1	Gradient Descent	15
	3.2	L_2 Boosting	15
	3.3	GBM (Gradient Boosting Machine)	18
	3.4	xgboost (Extreme Gradient Boosting)	19
	3.5	CatBoost	
	3.6	LightGBM	21
4	App	endix: L2 Tree Boosting R Code	22

1 Boosting

Boosting is a sequential ensemble method.

- A boosting model can be written as a generic ensemble
 - M is the number of base learners
 - \hat{a}_k is the weight for the kth base learner ($\hat{a}_k \ge 0$).
 - $\hat{q}_k(x)$ is the prediction from the kth base learner

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{a}_k \, \hat{g}_k(x)$$

• The key distinction of boosting models is that the base learners are **fitted sequentially**, and the best model at stage m is dependent on all models fit prior to stage m.

$$\hat{f}_{m+1}(x) = \underset{a, g(x)}{\arg\min} \sum_{i=1}^{n} L(y_i, \hat{f}_m(x_i) + a g(x_i))$$

- Boosting is primarily a bias reducer
 - The base models are often simple/weak (low variance, but high bias) models (like shallow trees)
- The complexity of the final model is based on i) the complexity of the base learners and ii) the number of iterations
 - Boosting models will overfit as the number of iterations increases
 - * Early stopping is necessary
 - * Less of a problem for hard classification problems with balanced data
 - Can apply *shrinkage* (making a_k smaller), to reduce complexity
- There are two main versions of boosting:
 - Gradient Boosting: fits the next model in the sequence $\hat{g}_k(x)$ to the (pseudo) residuals calculated from the predictions on the previous models
 - AdaBoost: fits the next model to sequentially weighted observations. The weights are proportional
 to the how poorly the current models predict the observation.

2 AdaBoost

AdaBoost was motivated by the idea that many *weak* leaners can be combined to produce a *strong* aggregate model.

- · AdaBoost is for binary classification problems
- Trees are a popular base learner
 - Weak learners are usually used. For trees, this means shallow depth.
- At each iteration, the current model is evaluated.
 - The *ensemble weight* of model k is based on its performance (on all the training data)
 - The observation weight of observation i is increased if it is mis-classified and decreased if it is correctly classified.
 - Thus, at each iteration, those observations that are mis-classified are weighted higher and get extra attention in the next iteration.
- Because Adaboost uses hard-classifiers, it is sensitive to unbalanced data and unequal misclassification costs.
 - Because the thresholds are set at p > .50
 - There are, of course, ways to account for unbalance and unequal costs in the algorithm
 - An improvement to AdaBoost, LogitBoost explicitly attempts to estimate the class probability during each iteration which will allow easier post-fitting adjustments for unequal costs

Weighted Loss Functions (with observations weights)

Let $w_i \ge 0$ be a weight associated with observation i. The weighted loss for predictions $\hat{\mathbf{y}} = \hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ is

$$L(\mathbf{y}, \hat{\mathbf{y}}, \mathbf{w}) = \sum_{i=1}^{n} w_i L(y_i, \hat{y}_i)$$

2.1 Adaboost Algorithm

Algorithm: AdaBoost (Discrete)

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n$, where $y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{q}
- Maximum number of iterations, M or other stopping criteria

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i
- 2. For k = 1 to M:
 - a. Fit a classifier $\hat{g}_k(x)$ that maps (x_i, w_i) to $\{-1, 1\}$. In other words, the classifier must make a hard classification using weighted observations.
 - b. Compute the weighted mis-classification rate

$$e_k = \frac{\sum_{i=1}^n w_i \, \mathbb{1}(y_i \neq \hat{g}_k(x_i))}{\sum_{i=1}^n w_i}$$

Note: $0 \le e_k \le .5$ since model fit and evaluated on same training data.

c. Calculate the *coefficient* for model *k* (*ensemble weight*)

$$\hat{a}_k = \log\left(\frac{1 - e_k}{e_k}\right)$$

Note: $0 \le a_k < \infty$.

d. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$\begin{split} \tilde{w}_i &= w_i \cdot \exp\left(\hat{a}_k \cdot \mathbb{1}(y_i \neq \hat{g}_k(x_i))\right) \\ &= \begin{cases} w_i \frac{1 - e_k}{e_k} & \text{if obs } i \text{ is misclassified} \\ w_i & \text{if obs } i \text{ is correctly classified} \end{cases} \\ w_i &= \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j} & \textit{(re-normalize weights)} \end{split}$$

3. Output final ensemble $\hat{f}_M(x)$

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{a}_k \, \hat{g}_k(x)$$

- Where $\hat{f}_k(x) = \hat{a}_k \, \hat{g}_k(x)$ Hard classification: $\hat{f}_M(x) > 0$
- Or remap to a probability $\hat{p}(x) = \frac{e^{2\hat{f}(x)}}{1 + e^{2\hat{f}(x)}}$ for thresholding

2.1.1 Illustration with Stumps (depth = 1, n.nodes=2)

2.1.2 Illustration with depth = 2, n.nodes=4

0 x1

-2

2

-2

AdaBoost, Gradient Boosting, XGboost

2.2 **AdaBoost Details**

- Adaboost uses an outcome variable of $y \in \{-1, 1\}$
- AdaBoost implicitly uses the loss function:

$$\begin{split} L(y,f) &= e^{-yf} \\ &= \begin{cases} e^{-f} & y = +1 \\ e^f & y = -1 \end{cases} \end{split}$$

• Adaboost estimates the probability that Y = +1 as

$$\hat{p}(x) = \frac{e^{\hat{f}_M(x)}}{e^{-\hat{f}_M(x)} + e^{\hat{f}_M(x)}}$$
$$= \frac{e^{2\hat{f}_M(x)}}{1 + e^{2\hat{f}_M(x)}}$$

where
$$p(x) = \Pr(Y = +1 \mid X = x)$$

• And $\hat{f}(x)$ is an estimate of

$$\hat{f}_M(x) = \frac{1}{2} \log \frac{\hat{p}(x)}{1 - \hat{p}(x)}$$
$$= \frac{1}{2} \operatorname{logit} \hat{p}(x)$$

- Comparison with logistic regression (using log-loss / negative binomial log-likelihood)

 - $-\hat{f}(x) = \operatorname{logit} \hat{p}(x)$ $-\hat{p}(x) = \frac{e^{\hat{f}_{M}(x)}}{1 + e^{\hat{f}_{M}(x)}}$
 - Log-loss: $\log(1 + e^{-yf})$ (using $y \in \{-1, +1\}$)

2.3 R package ada

The R package ada provides an implementation of AdaBoost (and related methods).

- See Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive Logistic Regression: A statistical view of boosting. Annals of Statistics, 28(2), 337-374. for the details of model variations
 - {Discrete, Real, Gentle} AdaBoost
 - Logitboost

Algorithm: Real AdaBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n, \text{ where } y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{g}
- Maximum number of iterations, M

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i
- 2. For k = 1 to M:
 - a. Fit a model $\hat{g}_k(x)$ that uses weighted inputs (x_i, w_i) to estimate a probability $\hat{p}_k(x) = \widehat{\Pr}(Y = 1 \mid X = x)$. In other words, the classifier must make a soft classification using weighted observations.
 - b. Set $f_m(x) = \frac{1}{2} \operatorname{logit} \hat{p}_k(x)$
 - c. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$ilde{w}_i = w_i \cdot \exp\left(-y_i \hat{f}_m(x_i)\right)$$

$$w_i = \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j} \qquad (re\text{-normalize weights})$$

3. Output final ensemble $\hat{f}_M(x)$

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{f}_k(x)$$

- Hard classification: $\hat{f}_M(x) > 0$
- Or remap to a probability $\hat{p}(x) = \frac{e^{2f}}{1 + e^{2f}}$ for thresholding

Algorithm: Gentle AdaBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n$, where $y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{g}
- Maximum number of iterations, M

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i and $f_0(x) = 0$
- 2. For k = 1 to M:
 - a. Fit a model $\hat{g}_k(x)$ with weighted least squares that estimates y_i using features x_i and weights w_i .
 - b. Update the *observations weights*. Increase weights for observations that are mis-classified by model \hat{g}_k and decrease weights for the correctly classified observations.

$$\tilde{w}_i = w_i \cdot \exp\left(-y_i \hat{g}_m(x_i)\right)$$

$$w_i = \frac{\tilde{w}_i}{\sum_{j=1}^n \tilde{w}_j} \qquad (\textit{re-normalize weights})$$

3. Output final ensemble $\hat{f}_M(x)$

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{g}_k(x)$$

• Hard classification: $\hat{f}_M(x) > 0$

Algorithm: LogitBoost

Inputs:

- $D = \{(x_i, y_i)_{i=1}^n$, where $y_i \in \{-1, 1\}$
- Tuning parameters for base model \hat{g}
- Maximum number of iterations, M
- Let $y_i^* = (y+1)/2 \in \{0,1\}$

Algorithm:

- 1. Initialize observation weights $w_i = 1/n$ for all i and $f_0(x) = 0$
- 2. For k = 1 to M:
 - a. Like in newton-raphson for logistic regression, calculate the working response and weights for all observations

$$z_{i} = \frac{y_{i}^{*} - p_{i}}{p_{i}(1 - p_{i})}$$
$$w_{i} = p_{i}(1 - p_{i})$$

- b. Fit a model $\hat{g}_k(x)$ with weighted least squares that estimates z_i using features x_i and weights w_i .
- c. Update $\hat{f}_k(x)=\hat{f}_{k-1}(x)+\hat{g}_k(x)/2$ and $p_i=e^{\hat{f}_k(x)}/(e^{\hat{f}_k(x)}+e^{-\hat{f}_k(x)})$
- 3. Output final ensemble $\hat{f}_M(x) \in \mathbb{R}$

$$\hat{f}_M(x) = \sum_{k=1}^{M} \frac{1}{2} \, \hat{g}_k(x)$$

- Where $\hat{f}_k(x) = \frac{1}{2} \hat{g}_k(x)$.
- Hard classification: $\hat{f}_M(x) > 0$
- Or remap to a probability $\hat{p}(x) = \frac{e^{2f}}{1+e^{2f}}$ for thresholding

3 Gradient Boosting

The boosting model:

$$\hat{f}_M(x) = \sum_{k=1}^M \hat{a}_k \, \hat{g}_k(x)$$

Sequential Fitting:

$$\hat{f}_{k+1}(x) = \underset{a, g(x)}{\operatorname{arg\,min}} \sum_{i=1}^{n} L(y_i, \hat{f}_k(x_i) + a g(x_i))$$

The concept of gradient boosting is sequentially re-fit to the negative (functional) gradients of the loss function (or *pseudo* residuals).

- The same structure can be used for many different loss functions
 - it works the same for regression and classification
 - survival analysis, ranking, etc.

3.1 Gradient Descent

- Our objective is to find the model (or model parameters) that minimize the loss function
- From any starting point, we can move toward the optimum using gradient descent:

$$f_{k+1} = f_k - \nu_k L'(f_k)$$

- $\nu_k > 0$ is the step-size
- $L'(f_k)$ is the functional derivative of the loss with respect to the model f_k
- Boosting fits models sequentially:

$$\hat{f}_{k+1}(x) = \hat{f}_k(x) + \hat{a}_k \, \hat{g}_k(x)$$

• So we see a parallel; each boosting model $\hat{g}_k(x)$ can be viewed as estimating the *negative derivative* of the loss function.

3.2 L_2 Boosting

 L_2 boosting is based on the squared error loss function

$$L(y_i, \hat{f}(x_i)) = \frac{1}{2}(y_i - \hat{f}(x_i))^2$$

• The negative gradients are

$$r_{i} = \left[-\frac{\partial L(y_{i}, f_{i})}{\partial f_{i}} \right]_{f_{i} = \hat{f}(x_{i})}$$
$$= y_{i} - \hat{f}(x_{i})$$

• L2 Boosting is simply re-fitting to the residuals.

Algorithm: L_2 Boosting

- 1. Initialize $\hat{f}_0(x) = \bar{y}$
- 2. For k = 1 to M:
 - a. Calculate residuals $r_i = y_i \hat{f}_{k-1}(x_i)$ for all i
 - b. Fit a base learner (e.g., regression trees) to the residuals $\{(x_i, r_i)\}_{i=1}^n$ to get the model $\hat{g}_k(x)$
 - c. Update the overall model $\hat{f}_k(x) = f_{k-1}(x) + \nu \hat{g}_k(x)$ $0 \le \nu \le 1$ is the step-size (shrinkage)
- 3. Final model is $\hat{f}_M(x) = \bar{y} + \sum_{k=1}^M \nu \hat{g}_k(x)$
- Like AdaBoost, emphasis is given to observations that are predicted poorly (large residuals)

3.2.1 Illustration using stumps (depth=1, n.nodes=2, $\nu=.1$)

3.3 GBM (Gradient Boosting Machine)

- R package gbm
- GBM Documentation
- GBM is a first order approach. It does not consider Hessian.

3.3.1 Model/Tree Tuning Parameters

- Tree depth (interaction.depth)
 - Grows trees to a depth specified by interaction.depth (unless there are not enough observations in the terminal nodes)
- Minimum number of observations allowed in the terminal nodes (n.minobsinnode)
- Sub-sampling (bag.fraction)
 - Stochastic Gradient Boosting
 - Sample (without replacement) at each iteration
- Loss Function (distribution)
 - The loss function is determined by the distribution argument
 - Use distribution="gaussian" for squared error
 - Other options are: bernoulli (for logistic regression), poisson (for Poisson regression), pairwise (for ranking/LambdaMart), adaboost (for the adaboost exponential loss), etc.

3.3.2 Boosting Tuning Parameters

- Number of iterations/trees (n.trees)
 - Use cross-validation (or out-of-bag) to find optimal value
 - Can use the helper function gbm.perf() to get the optimal value
- Shrinkage parameter (shrinkage)
 - Set small, but the smaller the shrinkage, the more iterations/trees need to be used
 - "Ranges from 0.001 to 0.100 usually work"
- Cross-validation (cv.folds)
 - gbm has a built in cross-validation
 - no way to manually set the folds

3.3.3 Computational Settings

- Number of Cores (n.cores)
 - Only used when cross-validation is implemented

3.4 xgboost (Extreme Gradient Boosting)

- R package xgboost
- xgboost Documentation
- xgboost Model
- xbgoost Paper

3.4.1 Model/Tree Tuning Parameters

- Different base leaners (booster)
 - gbtree is a tree
 - gblinear creates a (generalized) liner model (forward stagewise linear model)
- Tree building (tree_method)
 - To speed up the fitting, only consider making splits at certain quantiles of the input vector (rather than considering every unique value)
- Sub-sampling (subsample)
 - Stochastic Gradient Boosting
 - Sample (without replacement) at each iteration
- Feature sampling (colsample_bytree, colsample_bylevel, colsample_bynode)
 - Like used in Random Forest, the features/columns are subsampled
 - Can use a subsample of features for each tree, level, or node

Model Complexity Parameters

- Tree depth (max_depth)
 - Grows trees to a depth specified by max_depth (unless there are not enough observations in the terminal nodes)
 - Trees may not reach max_depth if the gamma or min_child_weight arguments are set.
- Minimum number of observations (or sum of weights) allowed in the terminal nodes (min_child_weight)
- Pruning (gamma or min_split_loss)
 - Minimum loss reduction required to make a further partition on a leaf node of the tree
 - The larger gamma is, the more conservative the algorithm will be
- ElasticNet type penalty (lambda and alpha)
 - lambda is an L_2 penalty
 - alpha is an L_1 penalty

Note

• Recall that trees model the response as a *constant* in each region

$$\hat{f}_T(x) = \sum_{m=1}^M \hat{c}_m \, \mathbb{1}(x \in \hat{R}_m)$$

· Cost-complexity pruning found the optimal tree as the one that minimized the penalized loss objective

function:

$$C_{\gamma}(T) = \sum_{m=1}^{|T|} \text{Loss}(T) + \gamma |T|$$

• XGBoost selects a tree at each iteration using the following penalized loss:

$$C_{\gamma,\lambda,\alpha}(T) = \sum_{m=1}^{|T|} \operatorname{Loss}(T) + \gamma |T| + \frac{\lambda}{2} \sum_{m=1}^{|T|} \hat{c}_m^2 + \alpha \sum_{m=1}^{|T|} |\hat{c}_m|$$

- Loss Function (objective)
 - The loss function is determined by the objective argument
 - Use reg: squarederror for squared error
 - Other options are: reg:logistic or binary:logistic (for logistic regression), count:poisson (for Poisson regression), rank:pairwise (for ranking/LambdaMart), etc.

3.4.2 Boosting Tuning Parameters

- Shrinkage parameter (eta or learning_rate)
 - Set small, but the smaller the eta, the more iterations/trees need to be used
- Number of iterations/trees (num_rounds)
 - Use cross-validation (or out-of-bag) to find optimal value
- Cross-validation (xqb.cv)
 - xgboost has a built in cross-validation
 - It is possible to manually set the folds

3.4.3 Computational Settings

- Number of Threads (nthread)
- GPU Support (https://xgboost.readthedocs.io/en/latest/gpu/index.html)
 - Used for finding tree split points and evaluating/calculating the loss function

3.5 CatBoost

- R package: (https://github.com/catboost/catboost/tree/master/catboost/R-package)
- CatBoost Documentation
- Model/Tree Tuning Parameters:

• Boosting Tuning Parameters:

3.6 LightGBM

- R Package: https://github.com/microsoft/LightGBM/tree/master/R-package
- LightGBM Documentation
- Model/Tree Tuning Parameters:

• Boosting Tuning Parameters:

Appendix: L2 Tree Boosting R Code

```
#: L2 Boost Algorithm
library(rpart)
# L2boost()
# L2 boosted trees (boosted regression trees)
# x,y: training data. x should be data frame or matrix, y a vector
# x.test optional test data (data frame or matrix)
# M: number of iterations
# depth: tree depth. depth = 2 gives 4 leaf nodes.
# nu: shrinkage parameter
# Outputs:
# YHAT: matrix of in-sample predictions (predicting x)
  R: matrix of residuals
# YHAT.test: matrix of predictions for x.test
# TREE: list of rpart trees
L2boost <- function(x, y, x.test=NULL, M=100, depth=2, nu=.1) {
  #- use training data if test data is not specified
 if(is.null(x.test)) {
   x.test = x
  #- storage
  n = length(y)
  R = YHAT = matrix(NA_real_, n, M)
  YHAT.test = matrix(NA_real_, nrow(x.test), M)
  colnames(YHAT) = colnames(YHAT.test) = colnames(R) = paste0("iter = ", 1:M)
  TREE = vector("list", M)
  names(TREE) = paste0("iter = ", 1:M)
  #-- 1) initialize model
  yhat = rep(mean(y), nrow(x))
  yhat.test = rep(mean(y), nrow(x.test))
  for (m in 1:M) {
```

```
#-- 2a) Calculate Residuals
    r = y - yhat
    R[,m] = r
    #-- 2b) Fit regression tree
    tree = rpart (r ~ ., data=x,
                 maxdepth = depth, # control tree depth
                 cp = -1,  # no pruning
minsplit = 0,  # allow all splits
minbucket = 1,  # no minimum on leaf size
                 method = "anova", # least-squares loss function
                 xval = 0)
                                   # no cross-validation
    TREE[[m]] = tree
    #-- 2c) Update model
    yhat = yhat + nu*predict(tree, x)
    YHAT[, m] = yhat
    yhat.test = yhat.test + nu*predict(tree, x.test)
    YHAT.test[, m] = yhat.test
  #-- 3) Output
  return(list(YHAT=YHAT, R=R, YHAT.test=YHAT.test, TREE=TREE))
#: Data Generation
n = 100
                                        # number of observations
generate_x <- function(n) runif(n)</pre>
                                       # U[0,1]
f \leftarrow function(x) 1 + 2*x + 5*sin(5*x) # true mean function
sd = 2
                                        # stdev for error
set.seed(825)
                                        # set seed for reproducibility
x = generate_x(n)
                                        # get x values
y = f(x) + rnorm(n, sd=sd)
                                        # get y values
data_train = data.frame(x, y)
                                       # training data
                                # evaluation points
x_{eval} = seq(0, 1, length=500)
#: Implement L2 boosting
L2 = L2boost(data.frame(x), y, x.test=data.frame(x=x_eval), # data
             depth = 1, M = 100, nu = .1) # tuning parameters
#: Plotting
library(tidyverse) # for ggplot2 package
library(rpart.plot) # for prp()
# set iteration
i = 1
# Residual Plot
ggplot(data_train, aes(x)) +
  geom_point(aes(y = L2$R[,i]), col="black") +
  geom_hline(yintercept=0, col="black") +
  scale_x_continuous(breaks=seq(0, 1, by=.20)) +
  coord_cartesian(ylim=c(-8, 8)) +
  labs(y="residual", title=colnames(L2$R)[i])
```

```
# Tree
prp(L2$TREE[[i]], type=1, extra=1, branch=1, roundint=FALSE)

# Model prediction
ggplot(data_train, aes(x, y)) +
   geom_point() +
   annotate("line", x=x_eval, y=f(x_eval), color = "black") +
   geom_line(data=tibble(x=x_eval, y=L2$YHAT.test[,i]), col=2) +
   scale_x_continuous(breaks=seq(0, 1, by=.20)) +
   labs(title=colnames(L2$R)[i])
```


