MAPSI — cours 2 : Rappels de probabilités et statistiques

Pierre-Henri Wuillemin (& Christophe Gonzales)

LIP6 / ISIR - Sorbonne Université, France

Plan du cours n°2

- Indépendance mutuelle
- 2 Indépendance conditionnelle
- Loi de Bernoulli / binomiale
- Loi normale
- Théorème central-limite

Indépendance de deux variables aléatoires discrètes

Rappel : Indépendance de deux variables discrètes

X et *Y* sont *indépendantes* si $\forall x \in X, \forall y \in Y$:

les événements X = x et Y = y sont indépendants

- ② $\forall x, \forall y \ t.q. \ P(Y = y) > 0, \ P(X = x | Y = y) = P(X = x)$
- **3** $\forall y, \forall x \ t.q. \ P(X = x) > 0, \ P(Y = y | X = x) = P(Y = y)$

🚺 🧿 et 🗿 : conditionnement = apport d'information

Indépendance de deux variables aléatoires continues

Rappel : Indépendance de deux variables continues

X et *Y* sont *indépendantes* si $\forall I, \forall J$, intervalles,

les événements $X \in I$ et $Y \in J$ sont indépendants

Il suffit que les fonctions de répartition, F_X , F_Y de X et Y et F_{XY} du couple vérifient :

$$\forall x, y, F_{XY}(x, y) = F_X(x) \times F_Y(y)$$

ou encore que les densités de probabilité p_X , p_Y de X et Y et p_{XY} du couple vérifient :

$$\forall x, y, \, p_{XY}(x, y) = p_X(x) \times p_Y(y)$$

Généralisation : indépendance mutuelle de *n* variables

Définition

Soient n variables aléatoires $(X_1, X_2, \dots, X_k, \dots, X_n)$

Elles sont *mutuellement indépendantes* si tout événement lié à une partie d'entre elles est indépendant de tout événement lié à toute autre partie disjointe de la précédente

⇒ c'est la généralisation naturelle de l'indépendance de deux variables :

Les variables discrètes $(X_1, \ldots, X_k, \ldots, X_n)$ sont mutuellement indépendantes lorsque :

$$\forall x_k, P(x_1, \dots, x_n) = \prod_{k=1}^n P(X_k = x_k) = \prod_{k=1}^n P(x_k)$$

Indépendance mutuelle de *n* variables

Définition

Soient n variables aléatoires $(X_1, X_2, \dots, X_k, \dots, X_n)$

Elles sont *mutuellement indépendantes* si tout événement lié à une partie d'entre elles est indépendant de tout événement lié à toute autre partie disjointe de la précédente

Pour des variables continues $(X_1,\ldots,X_k,\ldots,X_n)$ sont mutuellement indépendantes lorsque :

$$p_{X_1...X_k...X_n}(X_1,...,X_k,...,X_n) = \prod_{k=1}^n p_{X_k}(X_k)$$

L'indépendance mutuelle de n variables entraı̂ne leur indépendance deux à deux.

la réciproque n'est pas vraie

Indépendance conditionnelle (1/2)

Indépendance conditionnelle de deux variables discrètes

X et Y sont *indépendantes conditionnellement* à Z si $\forall x, \forall y, \forall z$, les événements X=x et Y=y sont indépendants conditionnellement à Z=z

$$P(X=x \cap Y=y|Z=z) = P(X=x|Z=z) \times P(Y=y|Z=z)$$

• si P(Y = y|Z = z) > 0 alors :

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$

 \bullet si P(X=x|Z=z) > 0 alors :

$$P(Y = y | X = x, Z = z) = P(Y = y | Z = z)$$

Indépendance conditionnelle (2/2)

Indépendance conditionnelle de deux variables discrètes

X et Y sont indépendantes conditionnellement à Z si :

- $P(X \cap Y|Z) = P(X|Z) \times P(Y|Z)$
- si P(Y|Z) > 0 alors P(X|Y,Z) = P(X|Z)
- si P(X|Z) > 0 alors P(Y|X,Z) = P(Y|Z)

Interprétation

- Conditionnement = apport de connaissances
- Si l'on connaît la valeur de la variable Z, alors connaître celle de Y n'apporte rien sur la connaissance de X

Ces formules s'étendent si X, Y et/ou Z sont remplacés par des ensembles de variables aléatoires disjoints 2 à 2

Dissection du produit de deux probabilités

$$P(A,B|C) = \begin{pmatrix} a_1 & a_2 & a_1 & a_2 \\ \hline 0.15 & 0.18 & 0.07 & 0.56 \\ \hline 0.15 & 0.12 & 0.63 & 0.14 \end{pmatrix} b_1 = \begin{pmatrix} a_1 & a_2 \\ \hline 0.5 & 0.6 & 0.1 & 0.8 \\ \hline 0.5 & 0.4 & 0.9 & 0.2 \\ \hline 0.5 & 0.4 & 0.9 & 0.2 \end{pmatrix} b_2 \times \begin{pmatrix} a_1 & a_2 \\ \hline 0.3 & 0.7 \\ \hline 0.4 & 0.9 \\ \hline 0.5 & 0.4 \\$$

$$P(I,C|B) = \begin{pmatrix} b_1 & b_2 & P(I|C) & P(C) \\ \hline c_1 & c_2 & \hline c_1 & c_2 \\ 0.48 & 0.08 & 0.48 & 0.08 \\ 0.12 & 0.32 & 0.12 & 0.32 \end{pmatrix} i_1^{i_1} = \begin{pmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{pmatrix} i_2^{i_1} \quad \mathbf{x} \quad \begin{pmatrix} 0.6 & 0.4 \\ 0.0 & 0.4 \end{pmatrix}$$

probabilités ⇒ produits terme à terme!

Loi de Bernoulli

Définition

Épreuve de Bernoulli = expérience aléatoire qui ne peut prendre que deux résultats (*succès* et *échec*)

p = proba de succès, et q = 1 - p = proba d'échec.

Loi de Bernoulli

Variable X à support $\mathcal{X} = \{0, 1\}$ telle que :

$$P(X = 1) = p$$
 et $P(X = 0) = 1 - p$

$$E(X) = p \quad V(X) = p(1 - p)$$

 \implies X = le nombre de succès de l'épreuve de Bernoulli

Loi binomiale

Définition

Épreuve binomiale = expérience aléatoire telle que :

- on répète *n* fois la même épreuve de Bernoulli,
- les probas p et q restent inchangées pour chaque épreuve de Bernoulli,
- les épreuves de Bernoulli sont toutes réalisées indépendamment les unes des autres.

Loi binomiale de paramètres n et p

- X = nombre de succès de l'épreuve binomiale
- $X \sim \mathcal{B}(n,p)$
- $P(X = k) = C_n^k p^k (1 p)^{n-k}, \forall k = 0, ..., n$
- $E(X) = np \quad V(X) = np(1-p)$

Loi normale

Loi extrêmement importante : souvent une très bonne approximation de la loi réelle

Définition : loi normale de paramètres μ et σ^2

- notée $\mathcal{N}(\mu, \sigma^2)$
- s'applique pour des variables aléatoires continues
- lacktriangle densité positive sur tout $\mathbb R$:

$$f(x) = \frac{1}{\sqrt{2\pi}.\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

•
$$E(X) = \mu \quad V(X) = \sigma^2$$

Fonction de densité de la loi normale

Loi normale en pratique

Théorème

$$X \sim \mathcal{N}(\mu; \sigma^2)$$

Alors la variable Y = aX + b obéit à la loi $\mathcal{N}(a\mu + b; a^2\sigma^2)$.

⇒ toute transformée affine d'une variable aléatoire suivant une loi normale suit aussi une loi normale

Corollaire

• X une variable aléatoire obéissant à une loi $\mathcal{N}(\mu; \sigma^2)$

$$\Longrightarrow Z = \frac{X - \mu}{\sigma}$$
 suit la loi $\mathcal{N}(0; 1)$

 Z suit une loi normale centrée (à cause de la moyenne en 0) réduite (à cause du σ² égal à 1)

Table de la loi normale centrée réduite

z_{α}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2297	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0859	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0466	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233

Loi normale bi-dimensionnelle

Définition : loi normale bi-dimensionnelle

- couple de variables (X, Y)
- \bullet densité dans \mathbb{R}^2 :

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right]\right\}$$

où
$$ho = rac{cov(X,Y)}{\sigma_X \sigma_y} = coefficient de corrélation linéaire$$

Digression : convergence des distributions

Convergences pour les distributions

- Convergence en loi : $X_n \stackrel{loi}{\to} X$
- Convergence en probabilité : $X_n \stackrel{P}{\to} X$
- Convergence presque sûre : $X_n \stackrel{p.s.}{\to} X$

Hiérarchie des convergences

$$X_n \stackrel{p.s.}{\to} X \quad \Rightarrow \quad X_n \stackrel{P}{\to} X \quad \Rightarrow \quad X_n \stackrel{loi}{\to} X$$

Convergence en loi

Définition

- \bullet $(X_n)_{n\in\mathbb{N}}$: suite de variables
- \bullet F_n : fonction de répartition de X_n
- X : variable de fonction de répartition F
- La suite X_n converge en loi vers X lorsque F_n(x) tend vers F(x) en tout point de continuité x de F

$$\forall x, \lim_{n\to\infty} F_n(x) = F(x)$$

Convergence en probabilité

Définition

- $(X_n)_{n\in\mathbb{N}}$: suite de variables
- X : variable aléatoire
- (X_n) converge en probabilité vers X si, pour tout $\epsilon > 0$ la probabilité que l'écart absolu entre X_n et X dépasse ϵ tend vers 0 quand $n \to \infty$:

$$\lim_{n\to\infty} P(\mid X_n - X\mid \geq \epsilon) = 0$$

Aire hachurée tend vers 0 quand $n \to \infty$

Convergence presque sûre

Définition

- \bullet $(X_n)_{n\in\mathbb{N}}$: suite de variables
- X : variable
- (X_n) converge presque sûrement vers X s'il y a une proba 1 que la suite des réalisations des X_n tende vers X :

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1$$

$$\iff P\left(\lim_{n\to\infty} \sup_{k\geq n} |X_k - X| \geq \epsilon\right) = 0$$

Définition la plus exigeante!

Loi faible des grands nombres

Loi faible

- lacktriangle $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires :
 - de même loi
 - d'espérance m
 - ullet possédant une variance σ^2
 - deux à deux indépendantes
- alors la suite des variables $\overline{X}_n = \frac{\sum_{k=1}^n X_k}{n}$ converge en probabilité vers m

\overline{X}_n est appelée moyenne empirique

$$E(\overline{X}_n) = m$$

$$V(\overline{X}_n) = \frac{\sigma^2}{n}$$

conséquence : échantillons de grandes tailles \implies bonne chance d'estimer m

Loi forte des grands nombres

Loi forte

- $(X_n)_{n\in\mathbb{N}}$: suite de variables aléatoires
 - de même loi
 - d'espérance m
 - possédant une variance σ^2
 - mutuellement indépendantes
- alors la suite des variables $\overline{X}_n = \frac{\sum_{k=1}^n X_k}{n}$ converge presque sûrement vers m

Interprétation : échantillon de grande taille \implies bonne estimation de m

Théorème central-limite

Théorème central-limite

- $(X_n)_{n\in\mathbb{N}}$: suite de variables
 - de même loi
 - \bullet d'espérance μ
 - de variance σ^2
 - mutuellement indépendantes
- alors la suite des moyennes empiriques centrées réduites

 $\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}}$ tend en loi vers la loi normale centrée réduite :

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{loi}{\rightarrow} \mathcal{N}(0, 1)$$