Домашнее задание по дискретной математике

Захаров Дмитрий, МП-11, 1 академическая группа

Задача 5(в). Доказать, что верно или построить контрпример (A, B, C - произвольные множества)

$$A \cap B \subset \overline{C} \land A \cup C \subset B \implies A \cap C = \emptyset$$

Решение. Запишем наше выражение на 'языке' элементов множеств x:

$$A \cap B \subset \overline{C} \iff \forall x : x \in A \land x \in B \implies x \notin C$$

$$A \cup C \subset B \iff \forall x : x \in A \lor x \in C \implies x \in B$$

$$A \cap C = \emptyset \iff \forall x : x \notin A \lor x \notin C$$

Обозначим следующие утверждения таким образом:

$$\hat{A} = x \in A, \ \hat{B} = x \in B, \ \hat{C} = x \in C$$

Нам нужно доказать, что следующая операция всегда даёт '1':

$$((\hat{A} \land \hat{B} \Rightarrow \neg \hat{C}) \land (\hat{A} \lor \hat{C} \Rightarrow \hat{B})) \Rightarrow (\neg \hat{A} \lor \neg \hat{C})$$

Для этого построим таблицу. Введу следующие обозначения:

$$P_{1} = \hat{A} \wedge \hat{B}$$

$$P_{2} = \hat{A} \vee \hat{C}$$

$$P_{3} = \hat{A} \wedge \hat{B} \Rightarrow \neg \hat{C}$$

$$P_{4} = \hat{A} \vee \hat{C} \Rightarrow \hat{B}$$

$$P_{5} = (\hat{A} \wedge \hat{B} \Rightarrow \neg \hat{C}) \wedge (\hat{A} \vee \hat{C} \Rightarrow \hat{B})$$

$$P_{6} = (\neg \hat{A} \vee \neg \hat{C})$$

$$P_{7} = ((\hat{A} \wedge \hat{B} \Rightarrow \neg \hat{C}) \wedge (\hat{A} \vee \hat{C} \Rightarrow \hat{B})) \Rightarrow (\neg \hat{A} \vee \neg \hat{C})$$

Теперь нарисуем таблицу:

\hat{A}	\hat{B}	Ĉ	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1	1	1	1	1	0	1	0	1	1
1	1	0	1	1	1	1	1	1	1
1	0	1	0	1	1	0	0	1	1
0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	1	0	0	1	1
0	1	0	0	0	1	1	1	0	1
0	0	1	0	1	1	0	0	1	1
0	0	0	0	0	1	1	1	0	1

Как видим, весь самый правый столбец, отвечающий за наше изначальное выражение, состоит из '1', поэтому данное утверждение верно.

Задача 6(а). Доказать, что:

$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$

Решение. Запишем последовательно определения операций:

$$(A \cup B) \setminus C = \{x \mid (x \in A \lor x \in B) \land x \notin C\}$$

$$(A \setminus C) \cup (B \setminus C) = \{x \mid (x \in A \land x \notin C) \lor (x \in B \land x \notin C)\}$$

Введём следующие утверждения:

$$\hat{A}=x\in A,\;\hat{B}=x\in B,\;\hat{C}=x\notin C$$

В таком случае, чтобы доказать, что $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$, следуя из выше описанных свойств множеств, нам нужно проверить, выполняется ли:

$$(\hat{A} \vee \hat{B}) \wedge \hat{C} = (\hat{B} \wedge \hat{C}) \vee (\hat{A} \wedge \hat{C})$$

Снова построим таблицу:

\hat{A}	\hat{B}	\hat{C}	$\hat{A} \lor \hat{B}$	$(\hat{A} \vee \hat{B}) \wedge \hat{C}$	$\hat{B} \wedge \hat{C}$	$\hat{A} \wedge \hat{C}$	$((\hat{B} \wedge \hat{C}) \vee (\hat{A} \wedge \hat{C}))$
0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0
1	0	1	1	1	0	1	1
0	1	1	1	1	1	0	1
$\parallel 1$	1	1	1	1	1	1	1

Как видим, столбцы $(\hat{A} \vee \hat{B}) \wedge \hat{C}$ и $((\hat{B} \wedge \hat{C}) \vee (\hat{A} \wedge \hat{C}))$ совпадают, а значит наше изначальное условие верно.

Задача 6(б). Доказать, что:

$$B \cap C \subset A \iff (B \setminus A) \cap (C \setminus A) = \emptyset$$

Решение. Заметим, что $(B \setminus A) \cap (C \setminus A) = (B \cap C) \setminus A$ (это можно доказать аналогичным способом, как мы делали для пункта 6(a)). По условию любой элемент пересечения B и C принадлежит множеству A. Однако, если мы из пересечения множеств B и C, все элементы которого лежат в A, отнимем множество A, то очевидным образом получим пустое множество.

Докажем утверждение в обратном направлении. Заметим, что если $(B\cap C)\setminus A=\emptyset$, то это значит, что $\nexists x,x\in B\land x\in C:x\notin A$. Однако это эквивалентно тому, что $\forall x,x\in B\land x\in C:x\in A$, что аналогично тому, что $B\cap C\subset A$.

Задача 8. Кого больше: котов, кроме тех котов, которые не Васьки, или Васек, кроме тех Васек, которые не являются котами. Запишите соответствующие множества символами.

Решение. Рационально будет ввести следующие множества: A - множество котов, а B - множество Васек. Тогда коты, которые не Васьки, можно записать, как $A \setminus B$. Следовательно коты, кроме котов, которые не Васьки, можно записать, как $A \setminus (A \setminus B)$. Аналогичным образом можем

получить, что всех Васек, кроме Васек, которые не являются котами, можно записать как $B \setminus (B \setminus A)$.

Нарисуем круги Эйлера, чтобы понять, чему это равно (см. рис. 1). Заметим, что если мы из всего множества A отгрызём кусочек, выделенный красным (т.е. $A \setminus B$), то мы как раз получим пересечение множеств A и B. Аналогичные рассуждения можно проделать и для множества B. Таким образом, мы получили, что:

$$A \setminus (A \setminus B) = B \setminus (B \setminus A) = A \cap B$$

Таким образом, количество котов, кроме тех котов, которые не Васьки, и Васек, кроме тех Васек, которые не являются котами, одинаковое.

Рис. 1: Визуализация задачи