湛江一中 2023 届高三卓越班 NLXF2023-17

高三数学一轮复习——立体几何复习 2——球的截面、外接球、内切球

一、球的截面、外接与内切问题

2.已知 $\triangle ABC$ 是面积为 $\frac{9\sqrt{3}}{4}$ 的等边三角形,且其顶点都在球 o 的球面上.若球 o 的表面积为 16π ,则点 o 到平面 ABC 的距离为() $A.\sqrt{3}$ $B.\frac{3}{2}$ C.1 $D.\frac{\sqrt{3}}{2}$

3.设 A, B, C, D 是球面上的四个点,且在同一平面内, AB=BC=CD=DA=3,球心到该平面的距离是球的半径的一半,则球的体积是() $A.8\sqrt{6}\pi$ $B.64\sqrt{6}\pi$ $C.24\sqrt{2}\pi$ $D.72\sqrt{2}\pi$

4.已知 H 是球 O 的直径 AB 上一点, AH: HB=1:2 , AB 上平面 α , H 为垂足, α 截球 O 所得截面的面积为 π ,则 球 O 的表面积为______.

5.已知三棱锥 S-ABC 的所有顶点都在球O 的表面上. $\triangle ABC$ 是边长为1 的正三角形,SC 为球O 的直径,且 SC=2 ,

则此三棱锥的体积为 () $A.\frac{1}{4}$ $B.\frac{\sqrt{2}}{4}$ $C.\frac{\sqrt{2}}{6}$ $D.\frac{\sqrt{2}}{12}$

6.已知正三棱锥 P - ABC,点 $P \setminus A \setminus B \setminus C$ 都在半径为 $\sqrt{3}$ 的球面上,若 $PA \setminus PB \setminus PC$ 两两互相垂直,则球心到截面 ABC 的距离为______.

7.已知圆 O 和圆 K 是球 O 的大圆和小圆,其公共弦长等于球 O 的半径, $OK = \frac{3}{2}$,且圆 O 与圆 K 所在的平面所成角为 60° ,则球 O 的表面积等于

8.已知球o 的半径为l,四棱锥的顶点为o,底面的四个顶点在球o 的球面上,则当该四棱锥的体积最大时,其高为() $\mathbf{A}.\frac{1}{3}$ $\mathbf{B}.\frac{1}{2}$ $\mathbf{C}.\frac{\sqrt{3}}{3}$ $\mathbf{D}.\frac{\sqrt{2}}{2}$

9.已知正四棱锥的侧棱长为 l,其各顶点都在同一球面上.若该球的体积为 36π ,且 $3 \le l \le 3\sqrt{3}$,则该正四棱锥的体积的取值范围是(

10.已知正三棱台的高为 1,上下底面的边长分别为 $3\sqrt{3}$ 和 $4\sqrt{3}$,其顶点都在同一球面上,则该球的表面积为() **A.** 100π **B.** 128π **C.** 144π **D.** 192π

11.已知一圆锥的底面圆的直径为 3,高为 $\frac{3\sqrt{3}}{2}$,在该圆锥内放一个棱长为 a 的正四面体,且正四面体在圆锥内可以

任意转动,则 a 的最大值为 () A.3 B. $\sqrt{2}$ C. $\frac{9(\sqrt{3}-\sqrt{2})}{2}$ D. $\frac{3\sqrt{2}}{2}$

12.已知四棱锥 P-ABCD 的顶点都在球 O 的球面上,AB=3,BC=4,CD=1, $AD=2\sqrt{6}$,AC=5,平面 $PAD\perp$ 平面 ABCD,且 $PA\perp PD$,则球 O 的体积为

13.已知在圆柱 O_1O_2 内有一个球 O_2 ,该球与圆柱的上、下底面及侧面均相切,过直线 O_1O_2 的平面截圆柱所得截面

ABCD 的面积为 8,若 P 为圆柱底面圆弧 CD 的中点,则平面 PAB 与球 O 的交线长度为 .

14.在三棱锥 P-ABC 中, PA 上平面 ABC , $\angle BAC$ = 120° , AP = 3 , AB = 2 $\sqrt{3}$, Q 是边 BC 上的动点,且直线 PQ 与平面 ABC 所成角的最大值为 60° ,则三棱锥 P-ABC 的外接球的表面积为_____.

15.已知球 O 的直径 AB=4, C、 D 是球 O 的球面上两点,且 CD=2,则三棱锥 A-BCD 体积的最大值是

16.在三棱锥 P-ABC 中, PA 上 平面 ABC , AB \perp BC , PA=AB=1 , $AC=\sqrt{2}$, 三棱锥 P-ABC 的所有顶点都在球 O 的表面上,则球 O 的半径为____,若点 M 是 $\triangle ABC$ 的重心,则过点 M 的球 O 的平面截球 O 所得截面的面积的最小值为_____.

17.如图 1 所示,已知矩形 ABCD 满足 $AB = 2\sqrt{3}$,AD = 2,现将 $\triangle ABD$ 沿 BD 翻折到 $\triangle A'BD$ 的位置,使平面 $A'BD \perp$ 平面 BCD,M、N 分别为 A'B、CD 的中点,如图 2 所示,则直线 MN 被四面体 A'BCD 的外接球截得的线段的长为_____.

二. 外接球问题

(1) 能在正方体(长方体)内还原的立方体,即长方体切割体的外接球设长方体相邻的三条边棱长分别为a, b, c.

图 1 墙角体

图1 鳖臑

图 3 挖墙角体

图 4 对角线相等的四面体

- 图 1 有重垂线, 三视图都是三个直角三角形, 侧面(侧棱)两两垂直,
- 图 2 有重垂线, 所有面均为直角三角形, (线面垂直+线线垂直);
- 图 3 无重垂线,俯视图是一矩形,AC为虚线,主视图和左视图为直角三角形,
- 图 4 若是长方体则为对角巷相等的四面体,若是正方体则是正四面体(所有棱长均相等)

图 4 中 (长方体),
$$AD = BC$$
 $AC = BD$ $\Rightarrow \begin{cases} a^2 + b^2 = BC^2 = \alpha^2 \\ b^2 + c^2 = AC^2 = \beta^2 \Rightarrow a^2 + b^2 + c^2 = \frac{\alpha^2 + \beta^2 + \gamma^2}{2} \Rightarrow R = \sqrt{\frac{\alpha^2 + \beta^2 + \gamma^2}{8}}, \\ c^2 + a^2 = AB^2 = \gamma^2 \end{cases}$

 $V_{A-BCD} = abc - \frac{1}{6}abc \times 4 = \frac{1}{3}abc$.

【例 1】若棱长为 $2\sqrt{3}$ 的正方体的顶点都在同一球面上,则该球的表面积为(

A. 12π

- B. 24π
- \mathbf{C} . 36π
- D. 144π

【例 2】在球面上有四个点 $P \times A \times B \times C$.如果 $PA \times PB \times PC$ 两两互相垂直,且 PA = PB = PC = a,则这个球的 表面积是_____.

【例 3】在三棱锥 A-BCD中,侧棱 $AB \setminus AC \setminus AD$ 两两垂直, $\triangle ABC \setminus \triangle ACD \setminus \triangle ADB$ 的面积分别为 $\frac{\sqrt{2}}{2} \setminus \frac{\sqrt{3}}{2}$

 $\frac{\sqrt{6}}{2}$,则三棱锥 A-BCD 的外接球的体积为() A. $\sqrt{6}\pi$ B. $2\sqrt{6}\pi$ C. $3\sqrt{6}\pi$ D. $4\sqrt{6}\pi$

【例 4】如图所示,已知球 O 的面上有四点 $A \setminus B \setminus C \setminus D$, $DA \perp BABC$, $AB \perp BC$, $DA = AB = BC = \sqrt{2}$,则球 O的体积等于 .

【例 5】四面体 A-BCD中, AB=CD=5, $AC=BD=\sqrt{34}$, $AD=BC=\sqrt{41}$,则四面体 A-BCD 外接球的表面积 为() **A.** 50π **B.** 100π **C.** 150π **D.** 200π

【解题总结】

此类题做题时先画图,在图中标注题干条件,综合条件整理看看是否符合上述四类还原型的外接球类型:(有重垂 线考虑是墙角或者鳖臑: 无重垂线考虑是挖墙脚体或者是对棱相等的四面体: 有一些数据给的比较多的, 多利用勾 股或者解三角形证明直角, 从而找到重垂线), 确定模型后, 可在长方体内重新作图, 找到原始模型, 确定长方体 长宽高,从而利用公式 $R = \frac{\sqrt{a^2 + b^2 + c^2}}{2}$ 求解球半径.

【训练】

1.已知三棱锥 A-BCD 的所有顶点都在球 O 的球面上,且 $AB \perp$ 平面 BCD , $AB=2\sqrt{3}$, AC=AD=4 , $CD=2\sqrt{2}$, 则球 O 的表面积为() A. 20π B. 18π C. 36π D. 24π

2.已知三棱锥 ABCD, $AB = CD = \sqrt{3}$, AD = BC = 2 , $AC = BD = \sqrt{5}$,则三棱锥 ABCD 外接球的体积是(

A. $2\sqrt{6}\pi$

- **B.** $\sqrt{6}\pi$
- C. 6π
- **D.** 3π

3.已知四面体P-ABC中, $AB\perp AC$, $AB\perp PB$,且AB=PB=2AC=2,PC=3,则该四面体的外接球的体积为() **A.** 9π **B.** $\frac{9}{2}\pi$ **C.** 8π **D.** $\frac{27}{4}\pi$

4.《九章算术·商功》有如下叙述:"斜解立方,得两堵斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也."(阳马和鳖臑是我国古代对一些特殊锥体的称谓).取一个长方体,按如图所示将其一分为二,得两个一模一样的三棱柱,均称为堑堵,再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个.其中以矩形为底,有一棱与底面垂直的四棱锥,称为阳马.余下的三棱锥是由四个直角三角形组成的四面体,称为鳖臑.那么如图所示,a=3,b=4,c=5的阳马外接球的表面积是(

A. $20\sqrt{2}\pi$

B. $25\sqrt{2}\pi$

C. 50π

D. 200π

5.已知三棱锥 P-ABC 的四个顶点在球 O 的球面上, PA=PB=PC , $\triangle ABC$ 是边长为 2 的正三角形, E , F 分别是 PA , AB 的中点, $\angle CEF=90^{\circ}$,则球 O 的体积为 () A . $8\sqrt{6}\pi$ B. $4\sqrt{6}\pi$ C. $2\sqrt{6}\pi$ D. $\sqrt{6}\pi$

7.沿正三角形 ABC 的中线 AD 翻折,使点 B 与点 C 间的距离为 $\sqrt{2}$,若该正三角形边长

为 2,则四面体 ABCD 外接球表面积为 .

(2) 常规型一 (底面外心O', 球心O, 上顶点A在同一直线上)

对于常规型一的外接球问题我们可以采用如下解题步骤(我们以棱长为a的正四面体为例,如图 1):Step1: 先找到立体体底面外接圆的圆心O',如图 2:

(本题底面 $\triangle BCD$ 是等边三角形,外心 O' 在中线 BE 的 $\frac{2}{3}$ 处,即外接圆半径 $r = BO' = \frac{2}{3}BE = \frac{\sqrt{3}}{3}a$,或者直接利用

正弦定理, $2r = \frac{a}{\sin A}$ 可以求出)

Step2:将底面外接圆的圆心O'垂直底面拉高到一定高度(高度为h)形成球心O,如图3;

(在这个步骤中,底面外接圆圆心O',垂直拉高过程中始终保持到底面三顶点的距离相等,即O'B=O'C=O'D,若拉到一定高度是的O'A=O'B=O'C=O'D,此时的O'即为外接球球心O,这就是此步骤的原理)

Step3: 连接球心 O 和任意下顶点 B ,形成 $Rt \triangle OBO'$,解 $Rt \triangle OBO'$ 求球半径 $R: R^2 = r^2 + h^2$,即

$$R^2 = (\frac{\sqrt{3}}{3}a)^2 + (\frac{\sqrt{6}}{3}a - R)^2$$
解之得 $R = \frac{\sqrt{6}}{4}a$,如图 4.

(此时
$$OA = R, O'A = \sqrt{AB^2 - BO'^2} = \sqrt{a^2 - (\frac{\sqrt{3}}{3}a)^2} = \frac{\sqrt{6}}{3}a$$
, $OO' = h = O'A - OA = \frac{\sqrt{6}}{3}a - R$.)

【例 1】在四边形 ABCD 中, $AB = BC = \sqrt{2}$, $\angle ABC = 90^{\circ}$, $\triangle ACD$ 为等边三角形,将 $\triangle ACD$ 沿边 AC 折起,使得平 面 $ACD \perp$ 平面 ABC ,则三棱锥 D - ABC 外接球的表面积为(

【训练】

1. 知为球O的球面上的三个点, \bigcirc O_1 为 $\triangle ABC$ 的外接圆.若 \bigcirc O_1 的面积为 4π , $AB=BC=AC=OO_1$,则球O 的表

面积为() A. 64π

B. 48π

C. 36π

D. 32π

2. 已知 $\triangle ABC$ 是面积为 $\frac{9\sqrt{3}}{4}$ 的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为 16π ,则球O 到平面

() A. $\sqrt{3}$ B. $\frac{3}{2}$ C. 1 D. $\frac{\sqrt{3}}{2}$

3.已知正三棱锥的四个顶点P,A,B,C都在球O的球面上, $\triangle ABC$ 是正三角形,正三棱锥P-ABC的高为 3, 且 $\angle APO = \angle BPO = \angle CPO = 30^{\circ}$,则球O的体积为()A. 4π B. 12π C. 16π D. $\frac{32}{3}\pi$

(3) 常规型二 (底面外心O', 球心O, 上顶点A在不在同一直线上)

对于常规型二的外接球问题整体步骤和常规型一一致,在 step3 有细节区别,具体解题步骤如下(我们以墙角体模 型 (侧面 (棱) 两两垂直) 为例, CA = CB = CD = a, 如图 1):

Step1: 先找到立体体底面外接圆的圆心O',如图 2:

(ΔBCD 是直角三角形,外心即为斜边 BD 中点,外接圆半径 $r = O'B = \frac{BD}{2} = \frac{\sqrt{2}a}{2}$)

Step2:将底面外接圆的圆心O'垂直底面拉高到一定高度(高度为h)形成球心O,如图 2;

(此题中很明显拉到的高度 OO' 所在直线是与 AC 平行的)

Step3: 连接球心 O 和任意下顶点 B ,形成 $Rt \triangle OBO'$,解 $Rt \triangle OBO'$ 求球半径 $R: R^2 = r^2 + h^2$ ①,即

(在 step2 中容易发现底面外心O',球心O,上顶点A在不在同一直线上,导致高度h不好求,光一个 $Rt_{\triangle}OBO'$ 解 不出,需要借助其他三角形,故有了 Step4),如图 3.

Step4: 连接球心O和上顶点A,过球心O向AC(AC即过上顶点A的重垂线)作垂线OE交AC于点E,形成第二个 $Rt \triangle OAE$,解 $Rt \triangle OAE$: $OA^2 = OE^2 + AE^2$ 即 $R^2 = OE^2 + (AC - h)^2$ ②,如图 4;

(如图 4 中,四边形 OO'CE 为矩形,即 CE = OO' = h, OE = CO' = r , 当然不是每个题中 OE 的长都恰好是底面外接圆半径 r , 但均可利用矩形 OO'CE 求解)

【解题总结】

图 4

1. 由 常 规 型 二 Step4 可知,当几何体侧棱垂直于底面时,底面外接圆的圆心 O' 垂直底面拉高到一定高度 h 即为整个几何体高的一半,即 $h=\frac{H}{2}$ (秒杀技巧);

图 5

- 2. 当底面外接圆半径 r 不好求时,可利用正弦定理 $2r = \frac{a}{\sin A}$ 求解.
- 3. 有关外接球更细致的分类在秒 2 系列和接下来的二轮复习中一一剖析, 敬请期待.
- 【例 2】在直三棱柱 $ABC A_1B_1C_1$ 中, AB = BC = 2 , $\angle ABC = \frac{\pi}{2}$,若该直三棱柱的外接球表面积为 16π ,则此直三棱柱的高为(

【例 3】四面体 ABCD 的四个顶点都在球 O 上,且 AB = AC = BC = BD = CD = 4, $AD = 2\sqrt{6}$,则球 O 的表面积为(

)

C. 30π

D. 40π

【跟踪训练】

- 1. 设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为(
 - A. 5π
- C. $\frac{11}{3}\pi$ D. $\frac{7}{3}\pi$
- 2. 已知三棱锥 P-ABC, $\angle BAC=\frac{\pi}{3}$, $BC=\sqrt{3}$, $PA\perp$ 平面 ABC 且 $PA=2\sqrt{3}$, 则此三棱锥的外接球的体积为 (ABC)
 - **A.** $\frac{16\pi}{3}$ **B.** $4\sqrt{3}\pi$
- C. 16π D. $\frac{32\pi}{3}$
- 3. 已知长方体 $ABCD A_iB_iC_iD_i$ 的底面是边长为 2 的正方形,高为 4, E 是 DD_i 的中点,则三棱锥 $B_i C_iEC$ 的外接 球的表面积为() **A.** 12π **B.** 20π **C.** 24π **D.** 32π
- 4. 已知四棱锥 P-ABCD 的底面 ABCD 是矩形,其中 AD=1 , AB=2 ,平面 $PAD \perp$ 平面

ABCD, PA = PD,且直线 PB 与 CD 所成角的余弦值为 $\frac{2\sqrt{5}}{5}$,则四棱锥 P - ABCD 的外接球表面积为(

- **B.** $\frac{76\pi}{2}$
- C. $\frac{64\pi}{3}$ D. $\frac{19\pi}{3}$

(4) 含二面角的外接球终极公式

双距离单交线公式: $R^2 = \frac{m^2 + n^2 - 2mn\cos\alpha}{\sin^2\alpha} + \frac{l^2}{4}$

如右图, 若空间四边形 ABCD 中, 二面角 C-AB-D 的平面角大小为 α , ABD 的外接圆 圆心为 O_1 , ABC的外接圆圆心为 O_2 , E为公共弦AB中点,则 $\angle O_1EO_2=\alpha$, $O_1E=m$,

 $O_2E=n$, $AE=\frac{l}{2}$, OA=R , 由于 $O\setminus O_1\setminus E\setminus O_2$ 四点共圆,且 $OE=2R'=\frac{O_1O_2}{\sin\alpha}$, 根据余弦定理

$$\left|O_{1}O_{2}\right|^{2} = m^{2} + n^{2} - 2mn\cos\alpha$$
, $R^{2} = \left|OE\right|^{2} + \left|AE\right|^{2} = \frac{m^{2} + n^{2} - 2mn\cos\alpha}{\sin^{2}\alpha} + \frac{l^{2}}{4}$.

注意: 1. 此公式最好配合剖面图,需要求出两个半平面的外接圆半径,和外接圆圆心到公共弦的距离,通常是, 剖面图能很快判断出两条相等弦的优先使用公式 $R^2 = r^2 + (h-r)^2 \tan^2 \frac{\alpha}{2}$.

2. 当二面角是直二面角是可直接用双半径单交线公式秒杀:

双半径单交线公式: $R^2 = R_1^2 + R_2^2 - \frac{l^2}{4}$

$$R^2 = OD^2 = OO_1^2 + O_1D^2 = O_2E^2 + O_1D^2$$

$$= (O_2C^2 - CE^2) + O_1D^2 = O_2C^2 - (\frac{1}{2}BC)^2 + O_1D^2 = R_1^2 + R_2^2 - \frac{l^2}{4}$$

双半径单交线公式适合所有的直二面角模型,两个半平面的外接圆半径分别为 R_1 和 R_2 ,两半平面交线长度为l,此公式属于一种开挂般的存在,在前面的直三棱柱切割体模型当中也可以使用,一旦两个半平面的二面角不是 90° 时,此公式将不再适用。

【例 1】已知三棱锥 D-ABC 所有顶点都在球 O 的球面上, $\triangle ABC$ 为边长为 $2\sqrt{3}$ 的正三角形, $\triangle ABD$ 是以 BD 为 斜边的直角三角形,且 AD=2,二面角 C-AB-D 为 120° ,则球 O 的表面积为(

A.
$$\frac{148\pi}{3}$$

B.
$$28\pi$$

C.
$$\frac{37\pi}{3}$$

【例 2】在四面体 S-ABC 中, $AB\perp BC$, $AB=BC=\sqrt{2}$, $\triangle SAC$ 为等边三角形,二面角 S-AC-B 的余弦值为 $-\frac{\sqrt{3}}{3}$,则四面体 S-ABC 的外接球表面积为

【跟踪训练】

1.在三棱锥 A-BCD 中, $BC=BD=\sqrt{2}$, AC=AD=CD=2 ,当二面角 A-CD-B 的余弦值为 $\frac{\sqrt{3}}{6}$ 时,三棱锥 A-BCD 外接球的表面积为() $A=\frac{15\pi}{6}$, $B=\frac{30\pi}{6}$ C $\frac{60\pi}{6}$ D $\frac{120\pi}{6}$

A - BCD外接球的表面积为()A. $\frac{15\pi}{11}$ B. $\frac{30\pi}{11}$ C. $\frac{60\pi}{11}$ D. $\frac{120\pi}{11}$

2.在四面体 ABCD 中,AB=AC=BC=AD=CD=2,二面角 B-AC-D 为 120° ,则四面体 ABCD 的外接球的表面 积为_____.

3.已知四棱锥 P-ABCD 的顶点均在球 O 的球面上,底面 ABCD 是矩形, $AB=2\sqrt{3}$, AD=2 , $∠APB=60^\circ$,二面 角 P-AB-C 大小为120° ,当 △PAB 面积最大时,球 O 的表面积为_____.

三、 内切球

1.已知圆维的底面半径为1, 母线长为3, 则该圆锥内半径最大的球的体积为_____.

2.正三棱锥S-ABC,底面边长为3,侧棱长为2,则其外接球和内切球的半径是

3.在封闭的直三棱柱 $ABC - A_iB_iC_i$ 内有一个体积为V 的球,若 $AB \perp BC$, AB = 6 ,

BC = 8, $AA_1 = 3$, 则V的最大值是() A. 4π B. $\frac{9\pi}{2}$ C. 6π D. $\frac{32\pi}{3}$

4.若某正四面体内切球的体积为 $\frac{4\pi}{3}$,则正四面体外接球的表面积为()**A.** 4π **B.** 16π **C.** 36π **D.** 64π

5.已知圆锥的底面周长 2π , 母线长为 3,则该圆锥的内切球的体积为 () A. $\frac{\sqrt{2}}{3}\pi$ B. $\frac{\sqrt{3}}{3}\pi$ C. $\frac{4}{3}\pi$ D. 2π

6.三棱锥 P-ABC 中,顶点 P 在底面 ABC 的投影为 $\triangle ABC$ 的内心,三个侧面的面积分别为 **12**,**16**,**20**,且底面面积为 **24**,则三棱锥 P-ABC 的内切球的表面积为()A. $\frac{4\pi}{3}$ B. 12π C. $\frac{16\pi}{3}$ D. 16π

7.已知三棱锥 P-ABC 的底面 ABC 是边长为 6 的等边三角形, $PA=PB=PC=\sqrt{21}$,先在三棱锥 P-ABC 内放入一个内切球 O_1 ,然后再放入一个球 O_2 ,使得球 O_2 与球 O_1 及三棱锥 P-ABC 的三个侧面都相切,则球 O_1 的体积为______,球 O_2 的表面积为______.