

Universidade do Minho

Relatório do Trabalho Prático 2:

Protocolo IPv4 :: Datagramas IP e Fragmentação

Ano letivo 2021/2022

Abril 2022

Licenciatura em Engenharia Informática
Unidade Curricular de Redes de Computadores

Ana Gonçalves a93259

Luís Faria a93209

Jéssica Fernandes a93318

Índice

Introdução	4
Parte 1	5
Questão 1 (Xubuntu)	5
Questão 2 (Máquina Nativa: Ubuntu)	8
Questão 3 (Máquina Nativa: Ubuntu com Tamanho de pacote = 4071)	12
Parte 2	16
Questão 1	16
Questão 2	20
Questão 3	24
Conclusão	26

Índice de Figuras

Figura 1: Topologia de Rede Core	
FIGURA 1: TOPOLOGIA DE REDE CORE	
FIGURA 3: TRÁFEGO CAPTURADO APÓS TRACEROUTE	
FIGURA 4: PACOTE SELECIONADO COMO O PRIMEIRO PACOTE ENVIADO PELO HOST DESTINO	
FIGURA 5: COMANDO TRACEROUTE COM MAIOR NÚMERO DE REPETIÇÕES, NO HOST BELA PARA O HOST MONSTRO	
FIGURA 6: PACOTE DE STANDARD QUERY FEITA PELA MÁQUINA NATIVA	
FIGURA 7: PRIMEIRO PACOTE ENVIADO PELA MÁQUINA NATIVA	
FIGURA 8: PRIMEIRO PACOTE ENVIADO PELA MÁQUINA NATIVA	
FIGURA 9: PRIMEIRO PACOTE ENVIADO PELA MÁQUINA NATIVA	
FIGURA 10: PRIMEIRO PACOTE ENVIADO	
FIGURA 11: SEGUNDO PACOTE ENVIADO	
FIGURA 12: TERCEIRO PACOTE ENVIADO	
FIGURA 13: QUARTO PACOTE ENVIADO	
FIGURA 14: PRIMEIRO PACOTE RECEBIDO POR TTL EXCEDIDO	
FIGURA 15: PRIMEIRO FRAGMENTO ENVIADO	12
Figura 16: Primeiro fragmento enviado	
Figura 17: Segundo fragmento enviado	13
FIGURA 18: TERCEIRO E ÚLTIMO FRAGMENTO DO PRIMEIRO DATAGRAMA ORIGINAL	13
Figura 19: Primeiro fragmento	14
Figura 20: Segundo Fragmento	14
FIGURA 21: TERCEIRO E ÚLTIMO FRAGMENTO	14
Figura 22: Topologia da Rede	16
Figura 23: Comando Ping de Bela para SA	17
FIGURA 24: COMANDO PING DE JASMIN PARA SB	17
FIGURA 25: COMANDO PING DE ERIC PARA SC	17
Figura 26: Comando ping de Nala para SD	17
Figura 27: Comando ping de Bela para SB	18
Figura 28: Comando Ping de Bela para SC	18
Figura 29: Comando Ping de Bela para SD	18
Figura 30: Comando Ping de Eric para SB	18
FIGURA 31: COMANDO PING DE ERIC PARA SD	18
Figura 32: Comando Ping de Simba para SB	
Figura 33: Comando Ping de Bela para RISP	
Figura 34: Tabela de Encaminhamento de Bela	
Figura 35: Tabela de Encaminhamento de RA	
Figura 36: Eliminação da rota default	
Figura 37: Comandos utilizados para repor rotas necessárias para desfazer efeito de c)	
FIGURA 38: NOVA TABELA DE ENCAMINHAMENTO DO SERVIDOR A	
Figura 39: Comando ping do Dep. C para o servidor A	
Figura 40: Comando Ping do Dep.D para o servidor A	
FIGURA 41: COMANDO PING DO DEP. B PARA O SERVIDOR A	
Figura 42: Topologia com sub-netting	
FIGURA 42: TOPOLOGIA COM SOB-NETTING	
FIGURA 43: COMANDO PING ENTRE DEPARTAMENTO A E B	
FIGURA 44: COMANDO PING ENTRE DEPARTAMENTO A E C	
FIGURA 47: COMANDO DING ENTRE DEPARTAMENTO B E C	
FIGURA 49: COMANDO DING ENTRE DEPARTAMENTO B E D	25 عد

Introdução

Neste relatório será abordado a resolução do trabalho prático da UC Redes de Computadores, cujo enunciado tinha como objetivo o aprofundamento do conhecimento sobre o protocolo IP, nomeadamente o formato de um pacote, a sua fragmentação, endereçamento e finalmente encaminhamento.

Deste modo, será apresentado neste documento, as resoluções da parte 1 e parte 2, constituídas pelas perguntas e respostas justificadas, juntamente com uma conclusão do trabalho prático.

Parte 1

Questão 1 (Xubuntu)

a) Active o wireshark ou o tcpdump no host Bela. Numa shell de Bela execute o comando traceroute -I para o endereço IP do Monstro

Figura 1: Topologia de Rede Core

```
root@Bela:/tmp/pycore.40631/Bela.conf# traceroute -I 10.0.5.20
traceroute to 10.0.5.20 (10.0.5.20), 30 hops max, 60 byte packets
1 10.0.0.1 (10.0.0.1) 0.036 ms 0.007 ms 0.006 ms
2 10.0.1.2 (10.0.1.2) 0.047 ms 0.008 ms 0.010 ms
3 10.0.3.2 (10.0.3.2) 0.041 ms 0.012 ms 0.011 ms
4 10.0.5.20 (10.0.5.20) 0.031 ms 0.013 ms 0.013 ms
root@Bela:/tmp/pycore.40631/Bela.conf# ■
```

Figura 2: Resultado de Traceroute no host Bela

b) Registe e analise o tráfego ICMP enviado pelo sistema Bela e o tráfego ICMP recebido como resposta. Comente os resultados face ao comportamento esperado.

1 0.00000000 10.0.0.1	227.0.0.0	0011	TO HOLLO LUCKOL				
_ 2 1.165386657 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
3 1.165414939 10.0.0.1	10.0.0.20	ICMP	102 Time-to-live exceeds	ed (Time to live excee	ded in transit)		
4 1.165422904 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request	id=0x0032, seq=2/512	ttl=1 (no response		
5 1.165428428 10.0.0.1	10.0.0.20	ICMP	102 Time-to-live exceeds	ed (Time to live excee	ded in transit)		
6 1.165433789 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
7 1.165440037 10.0.0.1	10 0 0 20	ICMP	102 Time-to-live exceeds				
8 1.165445814 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
9 1.165469568 10.0.1.2	10 0 0 20	ICMP	102 Time-to-live exceed				
10 1.165474129 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
11 1.165482791 10.0.1.2	10.0.0.20	ICMP	102 Time-to-live exceed				
12 1.165487584 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
	10.0.5.20						
13 1.165497258 10.0.1.2		ICMP	102 Time-to-live exceed				
14 1.165503008 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
15 1.165533248 10.0.3.2		ICMP	102 Time-to-live exceed				
16 1.165537382 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
17 1.165547274 10.0.3.2		ICMP	102 Time-to-live exceed				
18 1.165550896 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request	id=0x0032, seq=9/230	4, ttl=3 (no respons		
19 1.165560502 10.0.3.2	10.0.0.20	ICMP	102 Time-to-live exceed	ed (Time to live excee	ded in transit)		
20 1.165564729 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request	id=0x0032, seq=10/25	60, ttl=4 (reply in		
21 1.165584469 10.0.5.20	10.0.0.20	ICMP	74 Echo (ping) reply	id=0x0032, seq=10/25	60, ttl=61 (request		
22 1.165589750 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
23 1.165602024 10.0.5.20	10.0.0.20	ICMP	74 Echo (ping) reply	id=0x0032, seg=11/28			
24 1.165605645 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
25 1.165617721 10.0.5.20	10.0.0.20	ICMP	74 Echo (ping) request		72, ttl=61 (request		
26 1.165621930 10.0.0.20	10.0.5.20	ICMP	74 Echo (ping) request				
27 1.165633872 10.0.5.20	10.0.0.20	ICMP	74 Echo (ping) reply	id=0x0032, seq=13/33	28, ttl=61 (request		
Fig. Ethernet II, Src: 00:00:00_aa:00:00\((\) Internet Protocol Version 4, Src: 10.6 0100 = Version: 4	▼ Internet Protocol Version 4, Src: 10.0.0.20, Dst: 10.0.5.20						
0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) Total Length: 60 Identification: 0xf869 (63593) Flags: 0x0000 Fragment offset: 0							
Time to live: 1							
Protocol: ICMP (1)							
Header checksum: 0xa830 [validation							
[Header checksum status: Unverified Source: 10.0.0.20	1]						
Destination: 10.0.5.20							
▶ Internet Control Message Protocol							
F Internet Control Message Protocol							

Figura 3: Tráfego capturado após Traceroute

Correspondem aos 3 pacotes enviados para o host Monstro com TTL de 1
 Correspondem aos 3 pacotes enviados para o host Monstro com TTL de 2
 Correspondem aos 3 pacotes enviados para o host Monstro com TTL de 3

E o ciclo continua até receber o primeiro pacote que confirma que chegou ao host Monstro.

O comportamento esperado do Traceroute, consistia no envio de X pacotes com TTL a crescer linearmente, de modo a chegar ao destino pretendido. E com a figura acima apresentada podemos confirmar que é esse o comportamento que efetivamente acontece. Neste caso específico são enviados 3 pacotes com TTL igual, inicializado a 1.

c) Qual deve ser o valor inicial mínimo do campo TTL para alcançar o servidor Monstro ? Verifique na prática que a sua resposta está correta

Como verificamos na questão anterior, o host Bela recebeu 3 sequencias de 3 pacotes que não alcançaram o destino. Sendo que cada sequência está associada a um pacote enviado com TTL de 1,2 e 3 correspondentemente, podemos confirmar que o valor mínimo de TTL para alcançar o servidor Monstro é de 4.

- 1	10 0.04/10413/	T0.0.0.T0	10.0.5.10	ICMP	/4 ECNO (ping) request _10=0x0024, seq=13/3328, ttl=0 (repi
	17 0.547154838	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=14/3584, ttl=5 (repl
	18 0.547156064	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=15/3840, ttl=5 (repl
	19 0.547156855	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seg=16/4096, ttl=6 (repl
- 1	20 0.567343492	10.0.0.1	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	21 0.567352165	10.0.0.1	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	22 0.567353904	10.0.0.1	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	23 0.568720507	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seg=17/4352, ttl=6 (repl
	24 0.568734894	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=18/4608, ttl=6 (repl
	25 0.568743055	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=10/4000, ttl=0 (repl
	26 0.587874978	10.0.1.2	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	27 0.587884074	10.0.1.2	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	28 0.587885885	10.0.1.2	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
ſ	29 0.588641116	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=20/5120, ttl=7 (repl
	30 0.588654875	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=21/5376, ttl=7 (repl
	31 0.588663879	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seq=22/5632, ttl=8 (repl
- 1	32 0.628657238	10.0.3.2	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	33 0.628668468	10.0.3.2	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
	34 0.628671106	10.0.3.2	10.0.0.10	ICMP	102 Time-to-live exceeded (Time to live exceeded in transit)
- 1	35 0.629682584	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seg=23/5888, ttl=8 (repl
	36 0.629697130	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seg=24/6144, ttl=8 (repl
	37 0.629705875	10.0.0.10	10.0.5.10	ICMP	74 Echo (ping) request id=0x0024, seg=25/6400, ttl=9 (repl
	38 0.670597684	10.0.5.10	10.0.0.10	ICMP	74 Echo (ping) reply id=0x0024, seq=10/2560, ttl=61 (req
	39 0.670606912	10.0.5.10	10.0.0.10	ICMP	74 Echo (ping) reply id=0x0024, seq=11/2816, ttl=61 (req
	40 0.670608642	10.0.5.10	10.0.0.10	ICMP	74 Echo (ping) reply id=0x0024, seq=12/2010, ttl=01 (req
	41 0.670610314	10.0.5.10	10.0.0.10	ICMP	74 Echo (ping) reply id=0x0024, seq=13/3328, ttl=61 (req

Figura 4: Pacote selecionado como o primeiro pacote enviado pelo host destino

Nesta figura, conseguimos identificar que o pacote selecionado foi enviado com sucesso do host Monstro, em resposta ao pacote com TTL de 4.

d) Calcule o valor médio do tempo de ida-e-volta (RTT - Round-Trip Time) obtido no acesso ao servidor. Para melhorar a média, poderá alterar o número pacotes de prova com a opção -q.

```
root@Bela:/tmp/pycore.40631/Bela.conf# traceroute -q 5 10.0.5.20
traceroute to 10.0.5.20 (10.0.5.20), 30 hops max, 60 byte packets
1 10.0.0.1 (10.0.0.1) 0.037 ms 0.006 ms 0.006 ms 0.005 ms 0.005 ms
2 10.0.1.2 (10.0.1.2) 0.019 ms 0.010 ms 0.009 ms 0.009 ms 0.009 ms
3 10.0.3.2 (10.0.3.2) 0.030 ms 0.013 ms 0.015 ms 0.011 ms 0.012 ms
4 10.0.5.20 (10.0.5.20) 0.045 ms 0.025 ms 0.015 ms 0.027 ms 0.014 ms
```

Figura 5: Comando traceroute com maior número de repetições, no host Bela para o host Monstro

Tratando-se a última linha dos vários RTT calculados, a média é igualada a 0.0198 ms.

e) O valor médio do atraso num sentido (One-Way Delay) poderia ser calculado com precisão dividindo o RTT por dois? O que torna difícil o cálculo desta métrica?

Não, o facto de que o caminho percorrido na transmissão Bela->Mostro poder ser diferente do caminho percorrido na transmissão Monstro->Bela implica que a divisão por 2 do RTT não vai ser uma versão fiável do One-Way Delay. Isto porque, se o caminho de ida for muito mais demorado, ao contrário do caminho de volta, o One-Way Delay num sentido vai ser muito mais elevado ao real, e o contrário acontece para o sentido oposto.

Questão 2 (Máquina Nativa: Ubuntu)

a) Qual é o endereço IP da interface ativa do seu computador?

	0 01211200200 20212001200120	1.2.20.0.00		00.100220022011.0020
	4 0.177156627 172 26 3 68	162.159.135.234	TCP	54 59710 → 443 [ACK] Seq=52 Ack=33 Win=1639 Len
7*	5 2.364235(43 172.26.3.68	193.137.16.145	DNS	86 Standard query 0xfb44 A marco.uminho.pt OPT
	6 2,364346028 1/2,26,3,68	193.137.16.145	DNS	86 Standard guery 0xd7ff AAAA marco.uminho.pt 08

Figura 6: Pacote de Standard Query feita pela máquina nativa

Como podemos verificar o IP da interface do computador pessoal é 172.26.3.68

b) Qual é o valor do campo protocolo? O que permite identificar?

Na seguinte figura verificamos que o valor do campo do protocolo é ICMP, e é identificado pelo valor entre parentesis, que no caso de ICMP é 1.

7 2.369968921	193.137.16.145	172.26.3.68	DNS	140 Standard query response 0xd7ff AAAA marco.um:						
8 2.370008010	193.137.16.145	172.26.3.68	DNS	102 Standard query response 0xfb44 A marco.uminh						
9 2.370466725	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=1/256, ti						
10 2.370486834	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=2/512, t1						
11 2.370492136	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=3/768, t1						
12 2.370497572	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=4/1024, 1						
13 2.370502402	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=5/1280, t						
14 2.370507073	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=6/1536, t						
15 2.370512565	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=7/1792, t						
16 2.370517318	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=8/2048, t						
17 2.370522075	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=9/2304, t						
18 2.370527245	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=10/2560,						
19 2.370532210	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=11/2816,						
20 2.370537040	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=12/3072,						
21 2.370542420	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=13/3328,						
22 2.370548096	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=14/3584,						
23 2.370553087	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=15/3840,						
24 2.370558279	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=16/4096,						
25 2.373466931	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded						
26 2.373516457	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=17/4352,						
27 2.373831811	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded						
28 2.373877780	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=18/4608,						
29 2.374678781	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded						
30 2.374715580	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=19/4864,						
31 2.375488886	172.26.254.254	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded						
•				• • • • • • • • • •						
				interface wlp0s20f3, id 0						
				:_ff:94:00 (00:d0:03:ff:94:00)						
		.26.3.68, Dst: 193.136.	9.240							
0100 = Vers										
0101 = Header Length: 20 bytes (5)										
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)										
Total Length: 60										
Identification:	0x148d (5261)									
	> Flags: 0x0000									
Fragment offset:	0									
Time to live 1										
Protocol: ICMP (
Header checksum:	Header checksum: 0x2a5e [validation disabled]									

Figura 7: Primeiro Pacote enviado pela máquina nativa

c) Quantos bytes tem o cabeçalho IPv4? Quantos bytes tem o campo de dados (payload) do datagrama? Como se calcula o tamanho do payload?

Para poder verificar estas informações é necessário selecionar o pacote ICMP correto, e recolher o tamanho do pacote IP 60 bytes. Sendo o tamanho do overhead de 20 bytes, fica confirmado que o tamanho do campo de dados é de:

7 2.369968921	193.137.16.145	172.26.3.68	DNS	140 Standard query response 0xd7ff AAAA marco.u					
8 2.370008010	193.137.16.145	172.26.3.68	DNS	102 Standard query response 0xfb44 A marco.umir					
9 2.370466725	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=1/256,					
10 2.370486834	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=2/512,					
11 2.370492136	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=3/768,					
12 2.370497572	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=4/1024,					
13 2.370502402	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=5/1280,					
14 2.370507073	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=6/1536,					
15 2.370512565	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=7/1792,					
16 2.370517318	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=8/2048,					
17 2.370522075	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=9/2304,					
18 2.370527245	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=10/2560					
19 2.370532210	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=11/2816					
20 2.370537040	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=12/3072					
21 2.370542420	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=13/3328					
22 2.370548096	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=14/3584					
23 2.370553087	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=15/3846					
24 2.370558279	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=16/4096					
25 2.373466931	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceede					
26 2.373516457	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=17/4352					
27 2.373831811	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceede					
28 2.373877780	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=18/4608					
29 2.374678781	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceede					
30 2.374715580	172.26.3.68	193.136.9.240	ICMP	74 Echo (ping) request id=0x0003, seq=19/4864					
31 2.375488886	172.26.254.254	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceede					
	on wire (502 hite)	74 bytes captured (59)	2 hite) on	interface wlp0s20f3, id 0					
				_ff:94:00 (00:d0:03:ff:94:00)					
		.26.3.68, Dst: 193.136		_11.54.00 (00.00.00.11.54.00)					
0100		20.0.00, DSC. 100.100	.0.240						
	er Length: 20 bytes	(5)							
Differen		(DSC): CSO, ECN: Not-	ECT)						
Total Length: 60									
Identification: 0	0x148d (5261)								
> Flags: 0x0000									
Fragment offset:	0								
Time to live: 1									
Protocol: ICMP (:	1)								
	Ov2a5e [validation	disabledl							

 $Tamanho\ IP\ -\ Overhead\ =\ 60\ -\ 20\ =\ 40\ bytes$

Figura 8: Primeiro Pacote enviado pela máquina nativa

d) O datagrama IP foi fragmentado? Justifique

Não, podemos confirmar através da leitura do wireshark que não existe nenhuma notificação de fragmentação de pacote: através da flag a indicar mais fragmentos nem de offsets diferentes de 0.

Figura 9: Primeiro pacote enviado pela máquina nativa

e) Ordene os pacotes capturados de acordo com o endereço IP fonte (e.g., selecionando o cabeçalho da coluna Source), e analise a sequência de tráfego ICMP gerado a partir do endereço IP atribuído à interface da sua máquina. Para a sequência de mensagens ICMP enviadas pelo seu computador, indique que campos do cabeçalho IP variam de pacote para pacote.

Figura 13: Quarto pacote enviado

As figuras anteriores apresentam os campos de IP do primeiro, segundo, terceiro e quarto pacote, respetivamente. Como são enviados 3 pacotes por 1 TTL, dentro desses grupos de 3 pacotes (Figura 11, 12 e 13 correspondem ao primeiro grupo enviado), varia apenas o identificador. De grupo em grupo, o TTL varia adicionalmente.

f) Observa algum padrão nos valores do campo de Identificação do datagrama IP e TTL?

Sim, verificamos que o identificador aumenta linearmente a cada pacote, e o TTL aumenta linearmente de 3 em 3 pacotes, iniciando o ciclo em TTL igual a 1.

g) Ordene o tráfego capturado por endereço destino e encontre a série de respostas ICMP TTL excedido enviadas ao seu computador. Qual é o valor do campo TTL? Esse valor permanece constante para todas as mensagens de resposta ICMP TTL excedido enviados ao seu host? Porquê?

No.	Time	Source	Destination	▼ Protocol I	ength Info				
	1 0.000000000	172.26.3.68	162.159.135.234	TLSv1.2	105 Application Data				
	4 0.177156627	172.26.3.68	162.159.135.234	TCP	54 59710 → 443 [ACK] Seq=52 Ack=33 Win=1639 Len=				
	2 0.034409580	162.159.135.234	172.26.3.68	TCP	54 443 → 59710 [ACK] Seq=1 Ack=52 Win=76 Len=0				
	3 0.177135133	162.159.135.234	172.26.3.68	TLSv1.2	86 Application Data				
	7 2.369968921	193.137.16.145	172.26.3.68	DNS	140 Standard query response 0xd7ff AAAA marco.um:				
	8 2.370008010	193.137.16.145	172.26.3.68	DNS	102 Standard query response 0xfb44 A marco.uminho				
	25 2.373466931	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	27 2.373831811	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	29 2.374678781	172.16.2.1	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	31 2.375488886	172.26.254.254	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	32 2.375634366	172.26.254.254	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	33 2.375911996	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=10/2560,				
	35 2.376348210	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=13/3328,				
	36 2.376987848	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=11/2816,				
	37 2.377219755	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=12/3072,				
	38 2.377498094	172.16.115.252	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	39 2.378755670	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=14/3584,				
	40 2.378756847	172.16.115.252	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	41 2.378755743	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=15/3840,				
	42 2.378756901	172.16.115.252	172.26.3.68	ICMP	70 Time-to-live exceeded (Time to live exceeded				
	43 2.378755790	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=16/4096,				
	44 2.378756994	193.137.16.145	172.26.3.68	DNS	152 Standard query response 0x0541 No such name F				
	46 2.381356231	193.137.16.145	172.26.3.68	DNS	141 Standard query response 0x0541 No such name F				
	48 2.383342760	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=17/4352,				
	49 2.383342937	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=18/4608,				
	50 2.383342981	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=19/4864,				
	51 2.383343030	193.136.9.240	172.26.3.68	ICMP	74 Echo (ping) reply id=0x0003, seq=20/5120,				
	53 2.393887683	193.137.16.145	172.26.3.68	DNS	94 Standard query response 0xda08 Refused PTR 1				
	55 2.395736679	193.137.16.75	172.26.3.68	DNS	94 Standard query response 0xda08 Refused PTR 1				
	57 2.397806646	193.137.16.65	172.26.3.68	DNS	94 Standard query response 0xda08 Refused PTR 1				
4	59 2.400132131	193.137.16.145	172.26.3.68	DNS	94 Standard query response 0xda08 Refused PTR 1				
→ F					interface wlp0s20f3, id 0 75:c3:76 (f0:77:c3:75:c3:76)				
+ I	nternet Protocol Ve	ersion 4, Src: 172.	16.2.1, Dst: 172.26.3.	. 68					
	0100 = Versi	on: 4							
	0101 = Heade	r Length: 20 bytes	(5)						
•	Differentiated Se	rvices Field: 0x00	(DSCP: CS0, ECN: Not-I	ECT)					
	Total Length: 56								
	Identification: 0	xcc66 (52326)							
•	Flags: 0x0000								
	Fragment offset								
	Time to live: 254								
	Protocol: ICMP (1)								
	Header checksum: 0x92ee [validation disabled]								
		status: Unverified]							
	Source: 172.16.2.								
	Destination: 172.								
· I	nternet Control Me	ssage Protocol							

Figura 14: Primeiro pacote recebido por TTL excedido

Nos vários pacotes ICMP com Time-to-live excedido, foi verificado que os TTL recebidos são todos elevados e maioritariamente constantes (254 / 255). Isto deve-se ao facto de que os routers e o host não terem informação da quantidade de saltos que os pacotes vão ter de percorrer para chegar ao destino. E por isso, é necessário um valor alto de TTL para confirmar a sua chegada ao destino correto.

a) Localize a primeira mensagem ICMP. Porque é que houve necessidade de fragmentar o pacote inicial?

A primeira mensagem ICMP enviada foi a seleciona na seguinte figura:

3 0.003330032	150.101.10.140	112.20.3.00	DNO	140 Stanuaru query response 0x0/44 AAAA marco.umiino.pt 30A uns.u
4 0.005336118	193.137.16.145	172.26.3.68	DNS	102 Standard guery response 0xdd14 A marco.uminho.pt A 193.136.9
5 0.005705150	172.26.3.68	193.136.9.240	IPv4	151 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26a) [Reasse
6 0.005718578	172.26.3.68	193.136.9.240	IPv4	151 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26a) [Rea
7 0.005721774	172.26.3.68	193.136.9.240	ICMP	112 5 ceno (ping) request id =0x0004, seq=1/256, ttl=1 (no response

Figura 15: Primeiro fragmento enviado

Esta fragmentação ocorreu por uma única razão: o tamanho do pacote que foi forçado. O facto de o traceroute enviar um pacote de tamanho tão grande, obrigou a uma fragmentação deste, mais especificamente, em 3 pacotes.

b) Imprima o primeiro fragmento do datagrama IP segmentado. Que informação no cabeçalho indica que o datagrama foi fragmentado? Que informação no cabeçalho IP indica que se trata do primeiro fragmento? Qual é o tamanho deste datagrama IP?

Selecionando o primeiro fragmento do enviado, verificamos que podemos confirmar que se trata de um pacote fragmento graças à flag levantada que anuncia a existência de mais pacotes fragmentos por receber.

Identificamos que se trata do primeiro fragmento pois o seu offset é igual a 0, o que implica que na reconstrução do pacote original, ele vai ser inserido no início do pacote construído.

E finalmente, como podemos verificar pela figura, o tamanho do primeiro datagrama fragmentado é de 1500 bytes.

3 0.005336652	193.137.16.145	172.26.3.68	DNS	140 Standard guery response 0x0744 AAAA marco.uminho.pt SOA dns.u				
4 0.005336118	193.137.16.145	172.26.3.68	DNS	102 Standard guery response 0xdd14 A marco.uminho.pt A 193.136.9				
5 0.005705150	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26a) [Reasse				
6 0.005718578	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26a) [Rea				
 7 0.005721774 	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=1/256, ttl=1 (no response				
8 0.005733379	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26b) [Reasse				
9 0.005736174	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26b) [Rea				
10 0.005738845	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=2/512, ttl=1 (no response				
11 0.005748813	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26c) [Reasse				
12 0.005751577	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26c) [Rea				
13 0.005754229	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=3/768, ttl=1 (no response				
14 0.005765680	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26d) [Reasse				
15 0.005768529	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26d) [Rea				
16 0.005771268	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=4/1024, ttl=2 (no respons				
17 0.005781071	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26e) [Reasse				
18 0.005783749	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26e) [Rea				
19 0.005786452	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=5/1280, ttl=2 (no respons				
20 0.005796634	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26f) [Reasse				
21 0.005799332	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26f) [Rea				
22 0.005802005	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=6/1536, ttl=2 (no respons				
23 0.005812025	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d270) [Reasse				
24 0.005814789	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d270) [Rea				
25 0.005818290	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=7/1792, ttl=3 (no respons				
26 0.005827934	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d271) [Reasse				
27 0.005830552	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d271) [Rea				
28 0.005833107	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=8/2048, ttl=3 (no respons				
29 0.005842873	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d272) [Reasse				
30 0.005845608	172.26.3.68	193.136.9.240	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d272) [Rea				
31 0.005848488	172.26.3.68	193.136.9.240	ICMP	1125 Echo (ping) request id=0x0004, seq=9/2304, ttl=3 (no respons				
32 0 005850550		102 126 0 240	TDVA	1514 Fragmented ID protocol (proto-TCMD 1 off-A ID-d273) [Deasse				
				its) on interface wlp0s20f3, id 0				
				_ff:94:00 (00:d0:03:ff:94:00)				
		26.3.68, Dst: 193.136	.9.240					
0100 = Versi		(E)						
	er Length: 20 bytes	(DSCP: CSO, ECN: Not-	ECT)					
Total Length: 156		(DSCP: CS0, ECN: NOL-	ECI)					
	10 (53866)							
Flags: 0x2000, More fragments Fragment offset: 0								
Fragment offset: 0								
Protocol: IGMP (1)								
Protocol: LWP (1) Header checksum: 0x46e0 [validation disabled]								
neader Checksum status: Unverified] [Header checksum status: Unverified]								
[Header checksum status: Unverified] Source: 172.26.3.68								
Destination: 193.								
Reassembled IPv4								
Data (1480 bytes)	In Traile, I							
. Data (1400 bytes)								

Figura 16: Primeiro fragmento enviado

c) Imprima o segundo fragmento do datagrama IP original. Que informação do cabeçalho IP indica que não se trata do 1º fragmento? Há mais fragmentos? O que nos permite afirmar isso?

Na seguinte figura, verificamos que não se trata do primeiro fragmento visto que offset já não se encontra igual a 0. No entanto, ainda existem mais fragmentos por enviar pois a flag "more fragments" ainda se encontra levantada.

```
172.26.3.68
                                                                                                                                 86 Standard guery 0xdd14 A marco.uminho.pt OPT
                                    172.26.3.68
193.137.16.145
                                                                         193.137.16.145
172.26.3.68
                                                                                                                                86 Standard query 0x0744 AAAA marco.uminho.pt OPT
140 Standard query response 0x0744 AAAA marco.uminho.pt SOA dns.uminho.pt OPT
        2 0.000109236
        4 0.005336118
                                    193.137.16.145
                                                                         172.26.3.68
                                                                                                                                102 Standard query response 0xdd14 A marco.uminho.pt A 193.136.9.240 OP7
                                                                                                                            1125 Echo (ping) request id=0x0004, seq=1/256, ttl=1 (no response found!)
1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=d26b) [Reassembled in #10]
1514 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=d26b) [Reassembled in #10]
        7 0.005721774 172.26.3.68
                                                                        193.136.9.240
 Frame 6: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface wlp0s20f3, id 0
Index 0. 1214 Dytes on whre (LELIZ DIES), 1514 Dytes captured (12112 bits) on interface wlp0s20f3, 1 Ethernet II, Src: Intellor_75:c3.76 (f0:77:c3.75:c3.76), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)

Internet Protocol Version 4, Src: 172.26.3.68, Dst: 193.136.9.240

0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
Total Length: 1500
     Total Length: 1500

Identification: 0xd26a (538
     Flags: 0x20, More fragments
Fragment Offset: 1480
     Time to Live: 1
     Protocol: ICMP (1)
Header Checksum: 0x4627 [validation disabled]
     [Header checksum status: Unverified]
     Source Address: 172.26.3.68
Destination Address: 193.136.9.240
     [Reassembled IPv4 in frame: 7]
```

Figura 17: Segundo fragmento enviado

d) Quantos fragmentos foram criados a partir do datagrama original?

Como podemos verificar, foram criados 3 fragmentos apartir de um datagrama de tamanho 4071 bytes.

Figura 18: Terceiro e último fragmento do primeiro datagrama original

f) Indique, resumindo, os campos que mudam no cabeçalho IP entre os diferentes fragmentos, e explique a forma como essa informação permite reconstruir o datagrama original.

Considerando um pacote original fragmentado, cada um dos fragmentos vai ter o mesmo identificadores e um offset diferente. Para construir o datagrama original, será necessário reunir todos os pacotes recebidos com o mesmo identificador até a flag de "more fragments" já não estiver levantada, e reuni-los de acordo com os seus offsets, começando pelo offset igual a 0.

```
Total Length:
   Identification: 0xd26a (53866)
   Flags: 0x20, More fragments
   Fragment Offset: 0
   Time to Live: 1
   Protocol: ICMP (1)
   Header Checksum: 0x46e0 [validation disabled]
   [Header checksum status: Unverified]
   Source Address: 172.26.3.68
   Destination Address: 193.136.9.240
   [Reassembled IPv4 in frame: 7]
Figura 19: Primeiro fragmento
  Total Length: 1500
  Identification: 0xd26a (53866)
  Flags: 0x20, More fragments
  Fragment Offset: 1480
  Time to Live:
  Protocol: ICMP (1)
  Header Checksum: 0x4627 [validation disabled]
  [Header checksum status: Unverified]
  Source Address: 172.26.3.68
  Destination Address: 193.136.9.240
  [Reassembled IPv4 in frame: 7]
Figura 20: Segundo Fragmento
   Identification: 0xd26a (53866)
   Flags: 0x01
   Fragment Offset: 2960
   Protocol: ICMP (1)
  Header Checksum: 0x66f3 [validation disabled]
```

> [3 IPv4 Fragments (4051 bytes): #5(1480), #6(1480), #7(1091)]

Figura 21: Terceiro e último fragmento

[Header checksum status: Unverified] Source Address: 172.26.3.68 Destination Address: 193.136.9.240

e) Verifique o processo de fragmentação através de um processo de cálculo.

Sendo o tamanho original do datagrama de 4071, vamos verificar como ocorreu a fragmentação capturada pelo wireshark.

Se não ocorrer fragmentação, seria enviado um pacote com tamanho de 4071 bytes, em que 20 deles corresponderiam ao overhead e 4051 de conteúdo. No entanto, com a fragmentação, isso não aconteceu.

O que efetivamente aconteceu foi que um dos pacotes foi preenchido com o máximo de conteúdo possível, 1480 bytes, juntamente com 20 bytes, correspondendo a um tamanho total de 1500 bytes, como se pode verificar na figura 20 e 21. Esta situação ocorre 2 vezes, pois o tamanho do pacote obriga a recorrer a 3 pacotes fragmentados. No entanto, no terceiro fragmento, a quantidade de dados restante vai ser igual a 4051 – 1480 – 1480 = 1091. Sendo esta a quantidade de dados, e 20 bytes de overhead, vai resultar num pacote de tamanho de 1111, confirmado pela figura 22.

h) Escreva uma expressão lógica que permita detetar o último fragmento correspondente ao datagrama original

Através de pseudocódigo conseguimos fazer esta identificação:

Parte 2

Questão 1

a) Indique que endereços IP e máscaras de rede foram atribuídos pelo CORE a cada equipamento. Para simplificar, pode incluir uma imagem que ilustre de forma clara a topologia definida e o endereçamento usado.

Figura 22: Topologia da Rede

b) Tratam-se de endereços públicos ou privados? Porquê?

Uma das faixas de endereços que está reservada é para os endereços privados, que varia entre os 10.0.0.0/24 e 10.255.255.255/24. E assim confirmamos pelos endereços da figura 23 que estão todos dentro dessa gama, e por isso são privados.

c) Porque razão não é atribuído um endereço IP aos switches?

Os ethernet switches são instrumentos que operam apenas no nível 2 da pilha protocolar. Isto significando que eles não operam a nível da rede e por isso não precisam de adotar um endereço IP.

d) Usando o comando ping certifique-se que existe conectividade IP interna a cada departamento (e.g. entre um laptop e o servidor respetivo).

```
root@Bela:/tmp/pycore.45005/Bela.conf# ping 10.0.4.10
PING 10.0.4.10 (10.0.4.10) 56(84) bytes of data.
64 bytes from 10.0.4.10: icmp_seq=1 ttl=64 time=0.427 ms
64 bytes from 10.0.4.10: icmp_seq=2 ttl=64 time=0.186 ms
64 bytes from 10.0.4.10: icmp_seq=3 ttl=64 time=0.207 ms
64 bytes from 10.0.4.10: icmp_seq=4 ttl=64 time=0.206 ms
64 bytes from 10.0.4.10: icmp_seq=5 ttl=64 time=0.157 ms
```

Figura 23: Comando Ping de Bela para SA

```
root@Jasmin:/tmp/pycore.45005/Jasmin.conf# ping 10.0.1.1
PING 10.0.1.1 (10.0.1.1) 56(84) bytes of data.
64 bytes from 10.0.1.1: icmp_seq=1 ttl=64 time=0.600 ms
64 bytes from 10.0.1.1: icmp_seq=2 ttl=64 time=0.162 ms
64 bytes from 10.0.1.1: icmp_seq=3 ttl=64 time=0.192 ms
64 bytes from 10.0.1.1: icmp_seq=4 ttl=64 time=0.162 ms
64 bytes from 10.0.1.1: icmp_seq=5 ttl=64 time=0.704 ms
64 bytes from 10.0.1.1: icmp_seq=6 ttl=64 time=0.127 ms
```

Figura 24: Comando Ping de Jasmin para SB

```
root@Eric:/tmp/pycore.45005/Eric.conf# ping 10.0.6.1
PING 10.0.6.1 (10.0.6.1) 56(84) bytes of data.
64 bytes from 10.0.6.1: icmp_seq=1 ttl=64 time=0.543 ms
64 bytes from 10.0.6.1: icmp_seq=2 ttl=64 time=0.178 ms
64 bytes from 10.0.6.1: icmp_seq=3 ttl=64 time=0.204 ms
```

Figura 25: Comando Ping de Eric para SC

```
root@Nala:/tmp/pycore.45005/Nala.conf# ping 10.0.7.1

PING 10.0.7.1 (10.0.7.1) 56(84) bytes of data.

64 bytes from 10.0.7.1: icmp_seq=1 ttl=64 time=0.638 ms

64 bytes from 10.0.7.1: icmp_seq=2 ttl=64 time=0.171 ms

64 bytes from 10.0.7.1: icmp_seq=3 ttl=64 time=0.167 ms

64 bytes from 10.0.7.1: icmp_seq=4 ttl=64 time=0.177 ms
```

Figura 26: Comando ping de Nala para SD

Podemos verificar pelas figuras acima que em todos os departamentos é possível estabelecer conectividade interna.

e) Execute o número mínimo de comandos ping que lhe permite verificar a existência de conetividade IP entre departamentos.

```
root@Bela:/tmp/pycore.45005/Bela.conf# ping 10.0.5.10
PING 10.0.5.10 (10.0.5.10) 56(84) bytes of data.
64 bytes from 10.0.5.10: icmp_seq=1 ttl=62 time=0.666 ms
64 bytes from 10.0.5.10: icmp_seq=2 ttl=62 time=0.298 ms
64 bytes from 10.0.5.10: icmp_seq=3 ttl=62 time=0.297 ms
64 bytes from 10.0.5.10: icmp_seq=4 ttl=62 time=0.310 ms
64 bytes from 10.0.5.10: icmp_seq=5 ttl=62 time=0.358 ms
```

Figura 27: Comando ping de Bela para SB

```
root@Bela:/tmp/pycore.45005/Bela.conf# ping 10.0.6.10
PING 10.0.6.10 (10.0.6.10) 56(84) bytes of data.
64 bytes from 10.0.6.10: icmp_seq=1 ttl=62 time=0.638 ms
64 bytes from 10.0.6.10: icmp_seq=2 ttl=62 time=0.378 ms
64 bytes from 10.0.6.10: icmp_seq=3 ttl=62 time=0.312 ms
64 bytes from 10.0.6.10: icmp_seq=4 ttl=62 time=0.316 ms
```

Figura 28: Comando Ping de Bela para SC

```
root@Bela:/tmp/pycore.45005/Bela.conf# ping 10.0.7.10
PING 10.0.7.10 (10.0.7.10) 56(84) bytes of data.
64 bytes from 10.0.7.10: icmp_seq=1 ttl=61 time=5.50 ms
64 bytes from 10.0.7.10: icmp_seq=2 ttl=61 time=0.961 ms
64 bytes from 10.0.7.10: icmp_seq=3 ttl=61 time=0.420 ms
64 bytes from 10.0.7.10: icmp_seq=4 ttl=61 time=2.78 ms
64 bytes from 10.0.7.10: icmp_seq=5 ttl=61 time=1.53 ms
```

Figura 29: Comando Ping de Bela para SD

Com estes 3 comandos confirmamos o estabelecimento da ligação entre A com B,C e D. E o facto de se tratar de um estabelecimento de ligação podemos afirmar que as ligações inversas também estão operacionais. A seguir temos as ligações que faltavam averiguar relativamente ao departamento C

```
root@Eric:/tmp/pycore.45005/Eric.conf# ping 10.0.5.10
PING 10.0.5.10 (10.0.5.10) 56(84) bytes of data.
64 bytes from 10.0.5.10: icmp_seq=1 ttl=61 time=0.764 ms
64 bytes from 10.0.5.10: icmp_seq=2 ttl=61 time=0.428 ms
64 bytes from 10.0.5.10: icmp_seq=3 ttl=61 time=0.536 ms
64 bytes from 10.0.5.10: icmp_seq=4 ttl=61 time=0.397 ms
64 bytes from 10.0.5.10: icmp_seq=5 ttl=61 time=0.418 ms
64 bytes from 10.0.5.10: icmp_seq=6 ttl=61 time=0.539 ms
```

Figura 30: Comando Ping de Eric para SB

```
root@Eric:/tmp/pycore.45005/Eric.conf# ping 10.0.7.10
PING 10.0.7.10 (10.0.7.10) 56(84) bytes of data.
64 bytes from 10.0.7.10: icmp_seq=1 ttl=62 time=0.587 ms
64 bytes from 10.0.7.10: icmp_seq=2 ttl=62 time=0.279 ms
64 bytes from 10.0.7.10: icmp_seq=3 ttl=62 time=0.331 ms
64 bytes from 10.0.7.10: icmp_seq=4 ttl=62 time=0.423 ms
```

Figura 31: Comando Ping de Eric para SD

E finalmente, temos a confirmação da ligação restante, D e B:

```
root@SImba:/tmp/pycore.45005/SImba.conf# ping 10.0.5.10
PING 10.0.5.10 (10.0.5.10) 56(84) bytes of data.
64 bytes from 10.0.5.10: icmp_seq=1 ttl=62 time=0.630 ms
64 bytes from 10.0.5.10: icmp_seq=2 ttl=62 time=0.203 ms
64 bytes from 10.0.5.10: icmp_seq=3 ttl=62 time=0.270 ms
64 bytes from 10.0.5.10: icmp_seq=4 ttl=62 time=0.327 ms
```

Figura 32: Comando Ping de Simba para SB

Concluindo, para realizar a testagem de ligação entre departamentos são necessários no mínimo 6 comandos pings nesta topologia.

f) Verifique se existe conectividade IP do portátil Bela para o router de acesso RISP

```
root@Bela:/tmp/pycore.45005/Bela.conf# ping 10.0.8.1

PING 10.0.8.1 (10.0.8.1) 56(84) bytes of data.

64 bytes from 10.0.8.1: icmp_seq=1 ttl=63 time=0.887 ms

64 bytes from 10.0.8.1: icmp_seq=2 ttl=63 time=0.244 ms

64 bytes from 10.0.8.1: icmp_seq=3 ttl=63 time=0.236 ms

64 bytes from 10.0.8.1: icmp_seq=4 ttl=63 time=0.250 ms

64 bytes from 10.0.8.1: icmp_seq=5 ttl=63 time=0.333 ms
```

Figura 33: Comando Ping de Bela para RISP

Confirmamos com esta figura que efetivamente existe uma conectividade entre Bela e o Router ISP.

Questão 2

a) Execute o comando netstat —rn por forma a poder consultar a tabela de encaminhamento unicast (IPv4). Inclua no seu relatório as tabelas de encaminhamento obtidas; interprete as várias entradas de cada tabela. Se necessário, consulte o manual respetivo (man netstat).

```
oot@Bela:/tmp/pycore.45005/Bela.conf# netstat -rn
 ernel IP routing table
                                                  Flags
                                                           MSS Window
                                                                        irtt Iface
Destination
                                  Genmask
0.0.0.0
10.0.4.0
                                  0.0.0.0
                                                  UG
                                                             0 0
                                                                           0 eth0
                                                             0.0
                                                  U
                                                                           0 eth0
                 0.0.0.0
 oot@Bela:/tmp/pycore.45005/Bela.conf#
```

Figura 34: Tabela de Encaminhamento de Bela

Através do comando netstat -rn conseguimos obter a tabela de encaminhamento de Bela, e com isto podemos passar à sua análise sucinta. A tabela tem apenas 2 entradas, a segunda consiste na situação de quando um pacote com destino à sub-rede 10.0.4.0/24 alcançar Bela, ele próprio vai redirecionar esses pacotes a toda a sua sub-rede, e por isso é que o seu próximo salto vai ser ele mesmo. Logo o 0.0.0.0 da segunda entrada vai corresponder a 10.0.4.20. A primeira entrada corresponde a todos os outros destinos que não sejam a sua sub-rede e vai encaminhá-los para o seu router, 10.0.4.1.

		A.conf# netstat -rn				
Kernel IP rou						
Destination	Gateway	Genmask	Flags	MSS Window	irtt Ifa	ace
10.0.0.0	0.0.0.0	255,255,255.0	U	0 0	0 eth	:h0
10,0,1,0	10.0.0.2	255,255,255,0	UG	0 0	0 eth	:h0
10,0,2,0	10.0.3.1	255,255,255,0	UG	0 0	0 eth	h1
10.0.3.0	0.0.0.0	255,255,255,0	U	0 0	0 eth	.h1
10.0.4.0	0.0.0.0	255,255,255,0	U	0 0	0 eth	:h2
10.0.5.0	10.0.0.2	255,255,255,0	UG	0 0	0 eth	:h0
10.0.6.0	10.0.3.1	255,255,255,0	UG	0 0	0 eth	h1
10,0,7,0	10.0.0.2	255,255,255,0	UG	0 0	0 eth	:h0
10.0.8.0	0.0.0.0	255 <u>.</u> 255.255.0	U	0 0	0 eth	:h3
root@RA:/tmp/	pycore.45005/RA	A.conf# 🛮				

Figura 35: Tabela de Encaminhamento de RA

Relativamente à tabela de encaminhamento do router A, esta é constituída por 9 entradas. Para facilitar a interpretação foi criada a seguinte tabela que permite melhor visualizar e interpretar a tabela acima apresentada.

Destino	Pacote já se encontra na rede destino?	Próximo Salto	Observações
10.0.0.0	Sim	10.0.0.1	O pacote já se encontra na ligação ponto a ponto
			destino, por isso, ele próprio vai encaminhar o pacote.
10.0.1.0	Não	10.0.0.2	O pacote tem de chegar a ligação ponto a ponto entre B
			e D, e sendo B o mais próximo, o pacote vai ser
			encaminhado para a interface do router de B.
10.0.2.0	Não	10.0.3.1	O pacote tem de chegar a ligação ponto a ponto entre C
			e D, e sendo C o mais próximo, o pacote vai ser
			encaminhado para a interface do router de C.
10.0.3.0	Sim	10.0.0.1	O pacote já se encontra na ligação ponto a ponto
			destino, por isso, ele próprio vai encaminhar o pacote.
10.0.4.0	Sim	10.0.0.1	O pacote já se encontra na ligação ponto a ponto
			destino, por isso, ele próprio vai encaminhar o pacote.
10.0.5.0	Não	10.0.0.2	O pacote tem de chegar à sub-rede do departamento B,
			então o pacote vai ser encaminhado para a interface do
			router B.
10.0.6.0	Não	10.0.3.1	O pacote tem de chegar à sub-rede do departamento C,
			então o pacote vai ser encaminhado para a interface do
			router C.
10.0.7.0	Não	10.0.0.2	O pacote tem de chegar à sub-rede do departamento D,
			então o pacote vai ser encaminhado para a interface do
			router B, para ser encaminhado por seguida para a
			interface do router D.
10.0.8.0	Sim	10.0.0.1	O pacote já se encontra na ligação ponto a ponto
			destino, por isso, ele próprio vai encaminhar o pacote.

b) Diga, justificando, se está a ser usado encaminhamento estático ou dinâmico (sugestão: analise que processos estão a correr em cada sistema, por exemplo, ps -ax ou equivalente).

Como podemos verificar pela seguinte figura, no RouterISP, confirmamos que existe um processo a decorrer, ospfd (open shortest path first daemon). Correspondendo a um processo que procura constantemente o melhor caminho para fazer o encaminhamento, por isso, tratase de um encaminhamento dinâmico.

```
root@RISP:/tmp/pycore.37079/RISP.conf# ps -ax
PID TTY STAT TIME COMMAND
1 ? S 0:00 vnoded -v -c /tmp/pycore.37079/RISP -l /tmp/pycore.
39 ? Ss 0:00 /usr/local/sbin/zebra -d
47 ? Ss 0:00 /usr/local/sbin/ospf6d -d
51 ? Ss 0:00 /usr/local/sbin/ospfd -d
58 pts/3 Ss 0:00 /bin/bash
65 pts/3 R+ 0:00 ps -ax
root@RISP:/tmp/pycore.37079/RISP.conf#
```

c) Admita que, por questões administrativas, a rota por defeito (0.0.0.0 ou default) deve ser retirada definitivamente da tabela de encaminhamento do servidor SA. Use o comando route delete para o efeito. Que implicações tem esta medida para os utilizadores da LEI-RC que acedem ao servidor. Justifique.

```
root@HostA:/tmp/pycore.43025/HostA.conf# route delete default
root@HostA:/tmp/pycore.43025/HostA.conf# netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.4.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
root@HostA:/tmp/pycore.43025/HostA.conf#
```

Figura 36: Eliminação da rota default

Com a eliminação da rota por defeito, torna-se impossível alguma comunicação feita para fora da rede 10.0.4.0/24 que tenha sido direcionada para o servidor A. Isto acontece, pois, quando algum pacote chega ao servidor A, este não vai saber qual será o seu redireccionamento quando não for da sua própria rede (pois a entrada correspondente à sua rede ainda existe, e esses pacotes, o servidor consegue entregá-los ele próprio).

 d) Não volte a repor a rota por defeito. Adicione todas as rotas estáticas necessárias para restaurar a conectividade para o servidor SA, por forma a contornar a restrição imposta na alínea c). Utilize para o efeito o comando route add e registe os comandos que usou.

Figura 37: Comandos utilizados para repor rotas necessárias para desfazer efeito de c)

e) Teste a nova política de encaminhamento garantindo que o servidor está novamente acessível, utilizando para o efeito o comando ping. Registe a nova tabela de encaminhamento do servidor.

root@HostH:/ti Kernel IP rout		5/HostA.conf# netsta	at -rn		
Destination	Ğateway	Genmask	Flags	MSS Window	irtt Iface
10.0.4.0	0.0.0.0	255,255,255,0	U	0 0	0 eth0
10.0.5.0	10.0.4.1	255,255,255,0	UG	0 0	0 eth0
10.0.6.0	10.0.4.1	255,255,255.0	UG	0 0	0 eth0
10.0.7.0	10.0.4.1	255,255,255,0	UG	0 0	0 eth0
root@HostA:/tm	np/pycone.43025	5/HostA.conf#			

Figura 38: Nova tabela de encaminhamento do servidor A

Com esta nova tabela de endereçamento, verificamos que está novamente funcional através das seguintes figuras a provar que existe conexão de novo para cada um dos departamentos.

```
root@Eric:/tmp/pycore.43025/Eric.conf# ping 10.0.4.10

PING 10.0.4.10 (10.0.4.10) 56(84) bytes of data.
64 bytes from 10.0.4.10: icmp_seq=1 ttl=62 time=0.705 ms
64 bytes from 10.0.4.10: icmp_seq=2 ttl=62 time=0.358 ms
64 bytes from 10.0.4.10: icmp_seq=3 ttl=62 time=0.647 ms
^C
--- 10.0.4.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2032ms
rtt min/avg/max/mdev = 0.358/0.570/0.705/0.151 ms
root@Eric:/tmp/pycore.43025/Eric.conf#
```

Figura 39: Comando ping do Dep. C para o servidor A

```
root@SImba:/tmp/pycore.43025/SImba.conf# ping 10.0.4.10
PING 10.0.4.10 (10.0.4.10) 56(84) bytes of data.
64 bytes from 10.0.4.10: icmp_seq=1 ttl=61 time=0.839 ms
64 bytes from 10.0.4.10: icmp_seq=2 ttl=61 time=0.898 ms
64 bytes from 10.0.4.10: icmp_seq=3 ttl=61 time=0.443 ms
^C
--- 10.0.4.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2057ms
rtt min/avg/max/mdev = 0.443/0.726/0.898/0.202 ms
root@SImba:/tmp/pycore.43025/SImba.conf#
```

Figura 40: Comando ping do Dep.D para o servidor A

```
root@Jasmin:/tmp/pycore.43025/Jasmin.conf# ping 10.0.4.10

PING 10.0.4.10 (10.0.4.10) 56(84) bytes of data.

64 bytes from 10.0.4.10: icmp_seq=1 ttl=62 time=0.683 ms

64 bytes from 10.0.4.10: icmp_seq=2 ttl=62 time=0.325 ms

64 bytes from 10.0.4.10: icmp_seq=3 ttl=62 time=0.302 ms

C
--- 10.0.4.10 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2040ms

rtt min/avg/max/mdev = 0.302/0.436/0.683/0.174 ms

root@Jasmin:/tmp/pycore.43025/Jasmin.conf#
```

Figura 41: Comando ping do Dep. B para o servidor A

a) Considere que dispõe apenas do endereço de rede IP 192.168.XXX.128/25, em que XXX é o decimal correspondendo ao seu número de grupo (PLXX). Defina um novo esquema de endereçamento para as redes dos departamentos (mantendo as redes de acesso externo e backbone inalteradas), sabendo que o número de departamentos pode vir a aumentar no curto prazo. Atribua endereços às interfaces dos vários sistemas envolvidos. Assuma que todos os endereços de sub_redes são usáveis. Justifique as opções tomadas no planeamento.

Considerando que o endereço IP disponível para realizar a sub-netting em todos os departamentos tem como mascara de 25, sobram 7 bits. Optamos por utilizar 4 bits para sub-redes e 3 bits para hosts.

Figura 42: Topologia com sub-netting

b) Qual a máscara de rede que usou (em formato decimal)? Quantos hosts IP pode interligar em cada departamento? Quantos prefixos de sub-rede ficam disponíveis para uso futuro? Justifique

Optamos por reservar 3 bits para o host (de cada departamento) possibilitando a existência de $2^{3 \ (nr \ de \ bits)} - 2 \ (reservados) = 6$ hosts conectados a cada departamento. Sobram assim 4 bits para sub-redes, que se constatou que corresponde ao maior número de departamentos possíveis de ser endereçados, $2^{4 \ (nr \ de \ bits)} = 16$ departamentos, 12 departamentos para endereçamento futuro. Em relação a máscara, esta aumentou para 29 bits (255.255.255.248).

c) Verifique e garanta que a conectividade IP interna na rede local LEI-RC é mantida. No caso de não existência de conetividade, reveja a atribuição de endereços efetuada e eventuais erros de encaminhamento por forma a realizar as correções necessárias. Explique como procedeu.

O grupo verificou que algumas alterações tiveram de ser feitas, mais especificamente a troca de endereçamento dos 4 routers pelo endereço menor da sua sub-rede de modo a criar tabelas de endereçamento cuja entrada default tenha como gateway o router de cada um dos departamentos. Só com esta alteração foi possível a comunicação entre departamentos, pois o endereçamento para a sua própria rede é possível de ambas as formas.

Finalmente, verificamos a existência de conexão com um ping entre departamentos:

```
root@Bela:/tmp/pycore.35169/Bela.conf# ping 192,168,071,140
PING 192,168,071,140 (192,168,57,140) 56(84) bytes of data.
64 bytes from 192,168,57,140: icmp_seq=1 ttl=62 time=0,972 ms
64 bytes from 192,168,57,140: icmp_seq=2 ttl=62 time=0,286 ms
64 bytes from 192,168,57,140: icmp_seq=3 ttl=62 time=0,345 ms
```

Figura 43: Comando ping entre Departamento A e B

```
root@Bela:/tmp/pycore.35169/Bela.conf# ping 192.168.071.147
PING 192.168.071.147 (192.168.57.147) 56(84) bytes of data.
64 bytes from 192.168.57.147: icmp_seq=1 ttl=62 time=0.956 ms
64 bytes from 192.168.57.147: icmp_seq=2 ttl=62 time=0.374 ms
64 bytes from 192.168.57.147: icmp_seq=3 ttl=62 time=0.539 ms
64 bytes from 192.168.57.147: icmp_seq=4 ttl=62 time=0.152 ms
```

Figura 44: Comando ping entre departamento A e C

```
root@Bela:/tmp/pycore.35169/Bela.conf# ping 192.168.071.156
PING 192.168.071.156 (192.168.57.156) 56(84) bytes of data.
64 bytes from 192.168.57.156: icmp_seq=1 ttl=61 time=1.11 ms
64 bytes from 192.168.57.156: icmp_seq=2 ttl=61 time=0.491 ms
64 bytes from 192.168.57.156: icmp_seq=3 ttl=61 time=0.522 ms
64 bytes from 192.168.57.156: icmp_seq=4 ttl=61 time=0.455 ms
```

Figura 45: Comando ping entre departamento A e D

```
root@Jasmin:/tmp/pycore.35169/Jasmin.conf# ping 192.168.071.147
PING 192.168.071.147 (192.168.57.147) 56(84) bytes of data.
64 bytes from 192.168.57.147: icmp_seq=1 ttl=61 time=0.975 ms
64 bytes from 192.168.57.147: icmp_seq=2 ttl=61 time=0.539 ms
64 bytes from 192.168.57.147: icmp_seq=3 ttl=61 time=0.380 ms
64 bytes from 192.168.57.147: icmp_seq=4 ttl=61 time=0.404 ms
```

Figura 46: Comando ping entre departamento B e C

```
root@Jasmin:/tmp/pycore.35169/Jasmin.conf# ping 192.168.071.156

PING 192.168.071.156 (192.168.57.156) 56(84) bytes of data.

64 bytes from 192.168.57.156: icmp_seq=1 ttl=62 time=0.761 ms

64 bytes from 192.168.57.156: icmp_seq=2 ttl=62 time=0.347 ms

64 bytes from 192.168.57.156: icmp_seq=3 ttl=62 time=0.385 ms

64 bytes from 192.168.57.156: icmp_seq=4 ttl=62 time=0.392 ms
```

Figura 47: Comando ping entre departamento B e D

```
root@Eric:/tmp/pycore.35169/Eric.conf# ping 192.168.071.156
PING 192.168.071.156 (192.168.57.156) 56(84) bytes of data.
64 bytes from 192.168.57.156: icmp_seq=1 ttl=62 time=0.826 ms
64 bytes from 192.168.57.156: icmp_seq=2 ttl=62 time=0.314 ms
64 bytes from 192.168.57.156: icmp_seq=3 ttl=62 time=0.356 ms
64 bytes from 192.168.57.156: icmp_seq=4 ttl=62 time=0.336 ms
```

Figura 48: Comando ping entre departamento C e D

Conclusão

Terminado o trabalho prático 2, foram atingidos todos os objetivos propostos pelos docentes. Os resultados obtidos estão maioritariamente em concordância com os resultados esperados das experiências realizadas. Além disso, encontramo-nos bastante satisfeitos com o mais àvontade sobre tópicos como endereçamento de pacotes, subnneting e tabelas de endereçamento. As dúvidas que restaram de aulas teóricas foram completamente extintas com a elaboração deste trabalho prático e esperamos que ocorra o mesmo nos próximos trabalhos de modo a construir uma base robusta para eventuais avanços na dificuldade.