Instructor: Yahya M. Masalmah, PhD

SECOND EXAM (Take-home)

Wednesday, April 14, 2021 at 11:00AM Due: Wednesday, April 14, 2021 before 11:59PM

Do these problems on your own. Do not discuss them with anyone. You may use whatever text, notes, web resources you want. You should reference resources you used.

GOOD LUCK!

NAME Frank F. Fabian Ventura STUDENT ID #501 242357

SCORE:

Question	Grade
1	/30
2	/40
3	/30
Total	/100

Problem I (30 points): (Matrix Properties and Ill-condition systems)

1. considered the following example 3x3 matrix:

$$A = \begin{bmatrix} 8 & 2 & -10 \\ -9 & 1 & 3 \\ 15 & -1 & 6 \end{bmatrix}$$

(a) Find the following norms of the matrix

i.
$$||A||_{\infty} =$$
 $||A||_{\infty} = \max \left(\frac{18}{121} + \frac{1}{121} + \frac{1}{161} \right)$
 $||A||_{\infty} = \max \left(\frac{20}{13.22} \right) = \boxed{22}$
 $||A||_{\infty} = \max \left(\frac{20}{13.22} \right) = \boxed{22}$
 $||A||_{\infty} = 22$
 $||A||_{\infty} = 22$

ii. $||A||_{Frob}$

$$|A|_{\infty} = \max(20, 13, 22) = |22|$$

 $||A||_{Frob}$ ii.

 $||A||_2$ iii.

Find the eigenvalues of the matrix A iv.

$$|A||_{Frob} = \sqrt{\frac{2}{5}} \frac{1}{5} |ai| = \sqrt{8^2 + 2^2 + 10 + 9^2 + 1 + 3^2 + 15^2 + 1^2 + 6^2}$$

$$= \sqrt{64 + 4 + 100 + 81 + 1 + 9 + 225 + 2 + 36}$$

$$|A||_{Frob} = 22.8$$

$$||A||_{2} = \sqrt{\lambda_{max}(A^{*}A)}, A^{*}A = \begin{pmatrix} 8-915 \\ 2 & 1-1 \\ -10 & 3 & 6 \end{pmatrix} \begin{pmatrix} 9 & 2 & -16 \\ -9 & 1 & 3 \\ 15 & -1 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 370 & -8 & -17 \\ -8 & 6 & -23 \\ -17 & -23 & 145 \end{pmatrix}$$

$$|A-XI|=0 \Rightarrow (8-\lambda) - (1-\lambda)(6-\lambda) - (3)(-1)$$

$$-2[-9x(6-\lambda) - (3x15)]$$

$$-10[(-9x-1) - 15(1-\lambda)]=0$$

$$= 7[8-\lambda)[\lambda^2-7\lambda+9]-2[9\lambda-99]-10[15\lambda-6]=0$$

$$= 3 \left[(3 \lambda^{2} - 56 \lambda + 72) - (\lambda^{3} - 7 \lambda^{2} - 9\lambda) - (18 \lambda - 198) - [150 \lambda - 60] = 0 \right]$$

$$= \gamma - \lambda^3 + 15\lambda^2 - 215\lambda^2 + 320=6$$

$$/ = \lambda^{3} - 15\lambda^{2} + 245\lambda^{-326}$$

$$= \lambda = 6.7 \pm 12.9\lambda$$

$$\lambda = 1.56$$

Name:									•		•	
-------	--	--	--	--	--	--	--	--	---	--	---	--

- (b) What is the condition number of this matrix? Use any convenient matrix norms in this calculation.
- (c) Is the system ill-condition? Explain your answer.
- b) the condition of matrix
 = | IAII | | A-'||

C) Since Condition norm 2000 so it is not ill Conditioned

Problem II (40points): Direct Methods

You are to solve the following set of equations directly using the LU decomposition (Crouts method): (You need to show all your steps)

$$[A]\{x\} = \begin{bmatrix} 4 & -1 & 1 \\ 8 & 3 & -1 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \\ 9 \end{bmatrix} = \{b\}$$

- Find L and U with $u_{ii}=1$ (you need to derive the equations)
- Use the obtained L and U to find the determinant of A.
- Solve the system for x
- Use the obtained L and U to find the inverse of A
- Find the infinity norm of A and its inverse
- Find the condition number. Is the system ill-condtion? Justify your answer.

a)
$$A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & -1 & 1 \\ 8 & 3 & -1 \end{bmatrix} R_2 \rightarrow R_2 - 2R_1 2$$

Using Gauss elimination method

$$R_2 - R_2 - 2R_1$$
 (., $l_{21} = 2$)

$$R_{2} = -R_{2} - 2R_{1} \quad (, 0, \lambda_{2}) = C$$

$$A = \begin{bmatrix} 4 & -1 & 1 \\ 8 & 3 - 1 \\ 3 & 1 & 1 \end{bmatrix} \quad R_{2} \rightarrow R_{2} - 2R_{1} \quad \begin{bmatrix} 4 - 1 & 1 \\ 0 & 5 & -3 \\ 3 & 1 & 1 \end{bmatrix} \quad R_{3} \rightarrow R_{3} - 0.75 \quad \begin{bmatrix} 4 - 1 & 1 \\ 0 & 5 & -3 \\ 0 & 1.75 & 0.25 \end{bmatrix}$$

E is Just made up of the multiplier we used in echasion elimination with I an the diadenal.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0.76 & 0.36 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & -1 & 1 \\ 7 & 3 & -1 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0.75 & 0.35 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 0 & 1.3 \end{bmatrix} = LU$$

b)
$$A = LU$$

 $det(A) = det(LU) = det(L) det(U)$
 $= L \cdot (4 \times 5 \times 1.3)$

determinant of upper & lawy triangle matrix is product of

diagonal entry.

$$dot(A) = 20 \times \frac{13}{10} = 26 \Rightarrow [dot(A) = 26]$$

C)
$$Ax = b \Rightarrow Lux b$$

 $Ly = b \Rightarrow Ly = b$
 $Ly = b \Rightarrow [100] [9] [6] [9] [6] [9] [9] [9]$

$$=79_2=10-29_1=10-12=-2=19=-2$$

Now
$$UX = Y \Rightarrow \begin{bmatrix} 4 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \\ 5 & 2 \end{bmatrix}$$

$$5 \times 2 - 3 \times 3 = 6$$

$$5 \times 2 - 3 \times 3 = -2$$

$$1.3 \times 3 = 5.2$$

$$X_3 = \frac{5.2}{1.3} = 4$$
 $X_3 = 4$

$$5x_2 = -2 + 3x_3 = -2 + 12 = 6$$

 $1.3X_3 = 5.2$ $X_3 = \frac{5.2}{1.3} = 4$ $X_3 = 4$ Hence solution of above 5ysterm is $(x_1, x_2, x_3) = (1.2, 1)$

$$A^{-1} = \begin{bmatrix} 4 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 0 & 1.3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & .45 & 0.25 \end{bmatrix}$$

$$V^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & .45 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 1 & 0 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & .45 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2/3 & 1/3 & 1/3 \\ -1/26 & 1/26 & 1/3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/3 \\ 0 & 0 & 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1/3 \\ -1/2 & 1/3 & 1/3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/3 \\ 0 & 0 & 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/3 & 1/3 \\ -1/2 & 1/3 & 1/3 \end{bmatrix}$$

=
$$\max \{9+1+1,8+3+1,3+1+1\}$$

= $\max \{6,12,5\}$

:. || A|| = 12

in Enrity norm of Ais 12
Now
$$||A^{-1}||_{\infty} = \max \left\{ \frac{4+2+2}{26}, \frac{11+1+12}{26}, \frac{1+7+20}{26} \right\}$$

$$=\max\left\{\frac{3}{26},\frac{24}{26},\frac{28}{26}\right\}$$

That is
$$\begin{bmatrix} 4-1 \\ 8 \\ 3 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} \dot{4} & -4 & 1 \\ 3 & 3 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$|A| = U(3+1) + 1(4+3) + 1(8-9)$$
$$= 16+11-1$$

$$= 26$$

$$ad3A = \begin{bmatrix} 4 & -11 & -1 \\ +2 & 1 & -7 \\ -2 & +12 & 20 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -2 \\ -11 & 1 & 12 \\ -1 & -7 & 26 \end{bmatrix}$$

$$=\frac{1}{26}\begin{bmatrix} 4 & 2 & 2 \\ -11 & 1 & 12 \\ -1 & -7 & 20 \end{bmatrix}$$

$$||A|| = \max \left[\frac{4}{26}, \frac{24}{26}, \frac{24}{26} \right] = \frac{24}{26} = 1.077$$

$$\approx 13$$

Problem III (30points): Iterative methods

You are to solve the following set of equations iteratively by the Gauss-Seidel method:

$$[A]\{x\} = \begin{bmatrix} 4 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix} = \{b\}$$

- Will the Gauss-Seidel method converge for this problem? Justify your answer. (a)
- Rewrite the system in the form of $\mathbf{x} = \mathbf{C}\mathbf{x} + \mathbf{d}$, identify C, and d. (b)
- Perform (only) two (2) full iterations numerically, and calculate the approximate error of (c) each iteration.
- Solve the previous system using SOR with $\lambda = 1.5$ (Only Two iterations), and calculate the approximate error of each iteration. Comment on your results. Compare the result you obtained using SOR with those you obtained using Gauss-Seidel. Do you think different value of λ will improve the results? Justify your answer.

$$\begin{bmatrix} A \end{bmatrix} \{ x \} = \begin{bmatrix} 4 & 0 & \Delta \\ \Delta & 3 & 0 \\ 0 & \Delta & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$3 4 x_1 + 0 x_2 + x_3 = 9$$

$$x_1 + 3x_2 + 0x_3 = 6$$

$$0x_1 + x_2 + 2x_3 = 9$$

$$(X_1)_{X+1} = \frac{1}{4} \left(8 - O(X_2)_{X} - (X_3)_{X} \right)$$

$$(X_2)_{X+1} = \frac{1}{3} \left(6 - (X_1)_{X+1} - O(X_3)_{X} \right)$$

$$(X_2)_{x+1} = \frac{1}{3} \left(6 - (X_1)_{x+1} - O(X_3)_{x} \right)$$

$$(X_3)_{X+1} = \frac{1}{2} (4 - (X_2)_{X+1} - 0 (X_1)_{X+1})$$

= initial gaus
$$(X_1, X_2, X_3) = (0,0,0)$$

$$[X_i]_{i} = \frac{1}{4}(8-0-0) = \frac{1}{4}(8) = 2$$

$$(x_2)_1 = \frac{1}{3}(6-2) = \frac{1}{3}(4) = \frac{1.33}{1}$$

$$(X_3)_1 = \frac{1}{2}(Y_{-1.3333}) = \frac{1}{2}(2.66667) = 1.3333$$

2nd Aproximation

$$(X_1)_2 = \frac{1}{4}(8-1.3333) = \frac{1}{4}(6.66667) = 1.66667$$

$$(X_1)_2 = \frac{1}{4}(8-1.3333) = \frac{1}{4}(0.33333) = 1.4444$$

 $(X_2)_2 = \frac{1}{3}(6-1.68056) = \frac{1}{3}(4.33333) = 1.4444$

$$(\chi_2)_2 = \frac{1}{3}(6-1.68056) = \frac{1}{3}(4.3555)$$

 $(\chi_3)_3 = \frac{1}{2}(4-1.44444) = \frac{1}{2}(2.5556) = 1.2779$

$$3^{1d}$$
 Aproximation
 $(X)_3 = \frac{1}{4}(7-1.27778) = \frac{1}{4}(6.72222) = 1.68056$

$$(x)_3 = \frac{1}{4}(3 - 1.21 + 10) - \frac{1}{4(8.1944)} = 1.43981$$

 $(x_2)_3 = \frac{1}{3}(6 - 1.69056) = \frac{1}{3}(4.31944) = 1.2800$

$$(X_2)_3 = \frac{1}{3}(6-2.69056) = \frac{1}{3}(9.56019) = 1.25009$$

 $(X_3)_3 = \frac{1}{2}(9-1.43991) = \frac{1}{2}(2.66019) = 1.25009$

4th Approximation

$$(X_1)_4 = \frac{1}{4}(8 - 1.28000) = \frac{1}{4}(6.71991) = 1.67998$$

$$(X_2)_4 = \frac{1}{3}(6 - 1.67998) = \frac{1}{3}(4.32002) = 1.44001$$

$$(x_8)_4 = \frac{1}{2}(4-1.44001) = \frac{1}{2}(2.55999) = 1.29$$

Nalutian by Gours reidel meteras

a) Yes Gauss-Seidel method Converges For this Problem as we get X1=1.68 X2=1.44 X3=1.28 Hence we can say that Gauss-Seidel method Converges For this.

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 3 & 0 \\ 6 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Error of 3rd and 4th iterations

[1.6817-1.6806], [1.66497-1244902], [1.2776-1.27729]

=> [0.0011, 0.000432, 0.00621]: Su required errors

d) $X_1 = 1$, $X_2 = 1$ $X_3 = 1$ $X_1 = 2 - \frac{1}{4} \times 3$ $X_2 = 2 - \frac{1}{3} \times 1$ $X_3 = 2 - \frac{1}{2} \times 2$

Firt I teration $X_1 = 1.7500 \times 2 = 1.6667 \times 3 = 1.5000$ Second I teration $X_1 = 1.5625 \times 2 = 1.4444 \times 3 = 1.6250$ Third I teration $X_2 = 1.6094 \times 2 = 1.5185 \times 3 = 1.4583$