ON CAMPUS DELIVERY ROBOT

by

MUHANNAD SAEED ALGHAMDI 1846525 SULIMAN ABDULLAH ABBAS 1845862 WAEL RABAH ALDHAHERI 1846987

TEAM NO.:03 FALL-2021 INTAKE

Project Advisor

DR. MOHAMMED BILAL

CHECKED AND APPROVED (ADVISOR):

Project Co-advisor: **N/A**

Project Customer: DR. MOHAMMED BILAL

SDP Evaluator:

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING **FACULTY OF ENGINEERING** KING ABDULAZIZ UNIVERSITY JEDDAH - SAUDI ARABIA

NOV. 2021 G - RABI' II 1443 H

EXECUTIVE SUMMARY

On Campus Delivery Robot

According to our information gathering, it is apparent that there is a need for an on-campus delivery solution. Which would benefit the administrators in efficiently completing their work and students by reducing time wasted going back and forth between buildings.

The university campus consists of different terrains which might make traversal more challenging for a ground robot. In addition to that, there are moving objects (people, cars) which might necessitate obstacle avoidance.

We want to create a unified and comprehensive delivery network across the KAU campus without human involvement.

Our lower-level objectives are connecting the whole university buildings into a single automated delivery network, improving productivity of employees/students by saving their time, reducing the use of fuel and manpower in the delivery process.

Our higher-level objectives are Pushing to increase development in the tech field industry in Saudi Arabia, raising awareness to decrease the carbon emission, by providing electrical alternatives., encouraging upcoming generations to R&D autonomous solutions.

For the alternative solutions, we started by brainstorming some ideas for possible solutions. We then generated some new alternatives using a morphological chart. We then ruled out some of the alternatives using a KTDA table. After the analysis, the alternatives that passed are the RoboDog, Robot Train and the Ground Robot.

We then compared the pros and cons of each alternative. The chosen solution was the Ground Robot. We picked the ground robot because it had the lowest cost, it is moderately complex, and the parts needed are easily obtained.

We then tried to further improve our baseline design. We made some adjustments, the most substantial one was replacing some of the parts (wheels, motors) with a hoverboard. In addition to that, we added ventilation holes and a hole for cable management.

Index Terms — Navigation, obstacle avoidance, delivery robot.

TEAM ACTIVITY PORTFOLIO CONTENTS

TEAM MEMBERS

			Team-03		
Photograph	Name	Computer Number	Phone Number	Email	Specialization
	Muhannad Saeed Alghamdi	1846525	0555664661	Mhdghd2@gmail.com	Computer Engineering
	Sulaiman Abdullah Abbas	1845862	0504624355	Cursoldsulaiman@gmail.com	Computer Engineering
	Wael Rabah Aldhaheri	1846987	0506615899	WaAldhaheri@gmail.com	Biomedical Engineering

TEAM RULES, ROLES, AND CONTRIBUTIONS

Roles and Contributions			
Role	Technical Role	Name	Responsibility
Team leader/ Project manger	Navigating algorithms	Muhannad Saeed AlGhamdi	Planning and organizing the completion of tasks within the project.
Organizer, Gatekeeper	Obstacle avoidance algorithms	Sulaiman Abdullah Abbas	Organizes team meetings time and place and the meeting outcomes, ensures that all goals are achieved.
Idea Challenger, Recorder	Hardware & code Deployment	Wael Rabah Aldhaheri	Plays the role of the devil's advocate, types the meeting minutes

PROJECT TASKS AND TIMETABLE

Figure 1 - Tasks' list from MS Project

Figure 2 - Gantt chart (Red tasks are critical)

CURRICULAR RESOURCES

Muhannad Saeed:

NO.	Course title	Course link
1	MATLAB	https://www.youtube.com/watch?v=NSSTkkKRabI
2	MATLAB plot	https://www.youtube.com/watch?v=gDmpqn92s5U
3	Simulink (*)	https://www.youtube.com/watch?v=vxzR3W2BcRk

should be able to:

- use the simple MATLAB commands & functions
- build some (.m) file files for training
- build Simulink models
- include some MATLAB code in the Simulink model
- construct 2D plots using MATLAB

4	Ros introduction (*)	https://www.youtube.com/watch?v=96XsJ7xfsS8&t=214s
5	Ros using MATLAB	https://www.mathworks.com/help/ros/ug/get-started-with-ros.html

should be able to:

- to distinguish the different ROS components
- build simple projects include Nodes, Services, Messages etc.
- train on building full, simple projects.

	ROS using Simulink (*)	https://www.youtube.com/watch?v=lictXPCP5M4&list=PLzP7tGk94hQWmr
۰ ا		9052g6-UbRijg_zZsaD

should be able to:

- drag and drop to use the ROS components
- build full, simple projects using Simulink and ROS.

-	Power apps (*)	https://www.youtube.com/watch?v=aVsWQgoWC0I&list=PLib8Q64STW-
,		tLkyHqf_U4Gu7CWDz1E7kE&index=1
8	Power apps portals (*)	https://www.youtube.com/watch?v=mbn6-BPv34E

should be able to:

- build a very detailed prototype
- convert that protype to a real power app project
- use/test the project on r phone

9	SolidWorks revision	https://www.youtube.com/watch?v=qtgmGkEPXs8
---	---------------------	---

should be able to:

- build basic components using SolidWorks
- build some expected components for training purposes

Suliman Abbas:

NC	. Course title	Course link
1	Power apps (*)	https://www.youtube.com/watch?v=aVsWQgoWC0I&list=PLib8Q64STW-tLkyHqf_U4Gu7CWDz1E7kE&index=1
2	Power apps portal (*)	https://www.youtube.com/watch?v=mbn6-BPv34E

should be able to:

- build a very detailed prototype
- convert that protype to a real power app project
- use/test the project on r phone

_	SolidWorks	Lucy/
3	revision	https://www.youtube.com/watch?v=qtgmGkEPXs8

should be able to:

- build basic components using SolidWorks
- build some expected components for training purposes

4	MATLAB	https://www.youtube.com/watch?v=NSSTkkKRabI
5	MATLAB plot	https://www.youtube.com/watch?v=gDmpqn92s5U
6	Simulink (*)	https://www.youtube.com/watch?v=vxzR3W2BcRk

should be able to:

- use the simple MATLAB commands & functions
- build some (.m) file files for training
- build Simulink models
- include some MATLAB code in the Simulink model
- construct 2D plots using MATLAB

7	Ros introduction	https://www.youtube.com/watch?v=96XsJ7xfsS8&t=214s
8	Ros using	https://www.mathworks.com/help/ros/ug/get-started-with-ros.html
	MATLAB	https://www.mathworks.com/neip/ros/ag/get-started-with-ros.html

should be able to:

- to distinguish the different ROS components
- build simple projects include Nodes, Services, Messages etc.
- train on building full, simple projects.

	ROS using	https://www.youtube.com/watch?v=lictXPCP5M4&list=PLzP7tGk94hQWmr9052g6-
7	Simulink	UbRijg_zZsaD

should be able to:

- drag and drop to use the ROS components
- build full, simple projects using Simulink and ROS.

Wael Aldhaheri:

NO	Course title	Course link
1	MATLAB	https://www.youtube.com/watch?v=NSSTkkKRabI
2	MATLAB plot	https://www.youtube.com/watch?v=gDmpqn92s5U
3	Simulink (*)	https://www.youtube.com/watch?v=vxzR3W2BcRk

should be able to:

- use the simple MATLAB commands & functions
- build some (.m) file files for training
- build Simulink models
- include some MATLAB code in the Simulink model
- construct 2D plots using MATLAB

4 Soli	dWorks revision	https://www.youtube.com/watch?v=qtgmGkEPXs8
--------	-----------------	---

should be able to:

- build basic components using solidworks
- build some expected components for training purposes

5	Ros introduction (*)	https://www.youtube.com/watch?v=96XsJ7xfsS8&t=214s
6	Ros using MATLAB	https://www.mathworks.com/help/ros/ug/get-started-with-ros.html

should be able to:

- to distinguish the different ROS components
- build simple projects include Nodes, Services, Messages etc.
- train on building full, simple projects.

7	ROS using Simulink (*)	https://www.youtube.com/watch?v=lictXPCP5M4&list=PLzP7tGk94hQWmr
		9052g6-UbRijg_zZsaD

should be able to:

- drag and drop to use the ROS components
- build full, simple projects using Simulink and ROS.

8	Power apps (*) Power apps portals (*)	https://www.youtube.com/watch?v=aVsWQgoWC0I&list=PLib8Q64STW-
		tLkyHqf_U4Gu7CWDz1E7kE&index=1 https://www.youtube.com/watch?v=mbn6-BPv34E
	rower apps portais ()	https://www.youtube.com/watch:v=hbhb-bi-v54E

should be able to:

- build a very detailed prototype
- convert that protype to a real power app project
- use/test the project on r phone

DESIGN NOTES AND DRAFTS

Figure 4 - Cart Sketch

Figure 3 - Navigation handwritten notes

Reciever

@ point within range

Krypor off code sunt to

where should be should be should be should be should be soint.

Figure 5 - Project scope notes