MATH 31AH - Homework 4

Merrick Qiu

October 22, 2021

1 Projections

Proof. P_v is linear.

 P_v preserves vector addition since

$$P_v((v, w) + (v', w')) = P_v(v + v', w + w')$$

= $v + v'$
= $P_v(v, w) + P_v(v', w')$.

 P_v also preserves scalar multiplication since

$$P_v(c(v, w)) = P_v(cv, cw)$$
$$= cv$$
$$= cP_v(v, w).$$

Therefore, P_V is a linear map.

 P_v is always surjective since every element $v \in V$ is mapped onto by (v, 0). P_v is only injective when the size of W is 1. If the size of W is greater than 1, then multiple tuples can be projected into V.

2 Linear maps and spanning

Proof. $T(S) := \{T(v) : v \in S\}$ spans Image(T).

Since $Image(T) := \{T(w) : w \in V\}$, we must show that every T(w) can be written as a linear combination of T(v).

Let $v_1, v_2, ..., v_n$ be vectors in T(S) and $c_1, c_2, ..., c_n$ be scalars. We have that

$$T(w) = T(c_1v_1 + c_2v_2 + \dots + c_nv_n)$$

= $c_1T(v_1) + c_2T(v_2) + \dots + c_nT(v_n)$

Therefore, T(S) spans Image(T) since any arbitrary T(w) can be written as a linear combination of vectors in T(S).

3 Linear maps and independence

Proof. $T(I) := \{T(v) : v \in I\}$ is linearly independent.

Since T is injective and linear, we have that

$$c_1T(v_1) + c_2T(v_2) + \dots + c_nT(v_n) = 0 \xrightarrow{Linear}$$

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = 0 \xrightarrow[T^{-1}(0)=0]{Injective}$$

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$$

Therefore, if a nontrivial linear combination of the vectors in T(I) exists, it would imply that a nontrivial linear combination of vectors in I exists, which contradicts the fact that I is linearly independent. Therefore T(I) is linearly independent.

If T was not injective, then it would be possible for two vectors in V to map to the same vector, which would make T(I) not linearly independent. Therefore, it doesn't hold if the assumption of injectivity is removed.

4 Representing matrices

$$\frac{d}{dx}(c_1x^3 + c_2x^2 + c_3x + c_4) = 3c_1x^2 + 2c_2x + c_3$$
$$= (3c_1)(x+1)^2 + (-6c_1 + 2c_2)(x+1) + (3c_1 - 2c_2 + c_3)(1)$$

Therefore,

$$[T]_{\mathcal{C}}^{\mathcal{B}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ -6 & 2 & 0 & 0 \\ 3 & -2 & 1 & 0 \end{bmatrix}$$

.

5 A matrix map

The Kernel of T is the set of all solutions to the equation Ax = 0. This can be found by finding the RREF of A

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{-4} \stackrel{-4}{\longleftarrow} + \frac{1}{1}$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{-7} \stackrel{-7}{\longleftarrow} + \frac{1}{1}$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \xrightarrow{-2} \stackrel{-2}{\longleftarrow} + \frac{1}{3}$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{-1} \stackrel{-1}{\longrightarrow} + \frac{1}{3}$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{-2} \stackrel{+}{\longrightarrow} -2$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Solutions are in the form $\begin{bmatrix} x_3 \\ -2x_3 \\ x_3 \end{bmatrix}$ so $\{\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}\}$ is a basis for Ker(T).

The image of T is the column space of A. This can be found by finding the RREF of A^{T} .

$$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \xrightarrow{-2} \overset{-2}{\longleftarrow} + \\ \Rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 3 & 6 & 9 \end{pmatrix} \overset{-3}{\longleftarrow} + \\ \Rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \overset{-2}{\longleftarrow} + \\ \Rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} | \cdot -\frac{1}{3} \\ \Rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

The top two rows are a linear combination of the columns of A. Since the third row is all-zeros, $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ is a basis for Image(T).

6 Inverses of linear maps

Proof. The inverse of a linear transformation T is also linear.

Since T is linear and additivity is preserved, we have that

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

= $w_1 + w_2$

From this, we have that $T^{-1}(w_1) = v_1$, $T^{-1}(w_2) = v_2$, and $T^{-1}(w_1 + w_2) = v_1 + v_2$. Therefore, we have that

$$T^{-1}(w_1 + w_2) = v_1 + v_2$$

= $T^{-1}(w_1) + T^{-1}(w_2)$

Since T is linear and scalar multiplication is preserved, we have that

$$T(cv) = cT(v)$$
$$= cw$$

. From this, we have that $T^{-1}(cw) = cv$ and $T^{-1}(w) = v$. Therefore, $T^{-1}(cw) = cv = cT^{-1}(w)$. Since addition and scalar multiplication are preserved, T^{-1} is a linear transformation.

7 Polynomial change of basis

These are the transformations of the basis vectors from \mathcal{B} to \mathcal{C} :

$$1 = 1$$
$$x + 1 = 2(1) + 1(x - 1)$$

$$x^{2} + x + 1 = 2(1) + 2(x - 1) + (x^{2} - x + 1)$$

$$x^{3} + x^{2} + x + 1 = 2(1) + 2(x - 1) + 2(x^{2} - x + 1) + (x^{3} - x^{2} + x - 1)$$

Therefore, the transition matrix can be written as $[T]_{\mathcal{C}}^{\mathcal{B}} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

These are the transformations of the basis vectors from \mathcal{C} to \mathcal{B} :

$$1 = 1$$

$$x - 1 = -2(1) + 1(x + 1)$$

$$x^{2} - x + 1 = 2(1) - 2(x+1) + 1(x^{2} + x + 1)$$

$$3 - x^2 + x - 1 = -2(1) + 2(x+1) - 2(x^2 + x + 1) + 1(x^3 + x^2 + x + 1)$$

 $x^{2} - x + 1 = 2(1) - 2(x+1) + 1(x^{2} + x + 1)$ $x^{3} - x^{2} + x - 1 = -2(1) + 2(x+1) - 2(x^{2} + x + 1) + 1(x^{3} + x^{2} + x + 1)$ Therefore, the transition matrix can be written as $[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 1 & -2 & 2 & -2 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

Invariant subspaces and block matrices 8

Proof. There exists an ordered basis of $V, \mathcal{B} = (v_1, v_2, ..., v_m, v_{m+1}, v_{m+2}, ..., v_n)$, such that $(v_1, v_2, ..., v_m)$ is an ordered basis of W.

Let $(v_1, v_2, ..., v_m)$ be an ordered basis for W. Since W is a finite linearly independent subset of V, and using problem 7 from problem set 3, $(v_1, v_2, ..., v_m)$ can be completed to formed an ordered basis of V.

Proof. T is invariant iff the lower-left block of the representing matrix is zeros.

Since \mathcal{B} is linearly independent, none of the vectors $(v_{m+1}, v_{m+2}, ..., v_n)$ can be formed as a linear combination of the vectors from $(v_1, v_2, ..., v_m)$. Since $(v_1, v_2, ..., v_m)$ is a basis for W, the vectors $(v_{m+1}, v_{m+2}, ..., v_n)$ are not in W. Therefore, the corresponding vector in \mathbb{F}^n for a vector $w \in W$ must have zeros in indexes m+1 to n.

If a vector, w, has zeros in indexes m+1 to n, then it will be a linear combination of the vectors in $(v_1, v_2, ..., v_m)$. Since $(v_1, v_2, ..., v_m)$ is a basis for W, then $w \in W$. Therefore a vector is in W if and only if it has zeros in indexes m+1 to n.

W is invariant under T if and only if the any vector with zeros in indexes m+1 to n maintains zeros in indexes m+1 to n after the transformation T. If the bottom left $(n-m)\times(m)$ block of $[T]_{\mathcal{B}}^{\mathcal{B}}$ is not all zeros, then it is possible for T(w) to have a nonzero value in indexes m+1 to n when w has zero values for these indexes. Therefore W is only invariant under T if and only if the bottom left $(n-m)\times(m)$ block of $[T]^{\mathcal{B}}_{\mathcal{B}}$ is all zeros.

9 Optional Question

Proof. $\mathbb{F} := 0, 1, 2, ..., p - 1 \subseteq \mathbb{K}$

Let $a, b \in \mathbb{F}$. Since the characteristic of \mathbb{F} is p, we have that

$$a + b = \overbrace{1 + 1 + \dots + 1}^{a} + \overbrace{1 + 1 + \dots + 1}^{b}$$

$$= \overbrace{1 + 1 + \dots + 1}^{np}$$

$$= \overbrace{1 + 1 + \dots + 1}^{(a+b)} + \overbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \overbrace{1 + 1 + \dots + 1}^{(a+b)} + \overbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + 1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + \dots + 1}^{(a+b)}$$

$$= \underbrace{1 + 1 + \dots + 1}^{(a+b)} + \underbrace{1 + \dots + 1}^{(a+b)}$$

Since $(a+b) \mod p \in \mathbb{F}$, \mathbb{F} is closed under addition.

We also have that

$$ab = \overbrace{1+1+...+1}^{a} + \underbrace{1+1+...+1}^{a}$$

$$= \overbrace{1+1+...+1}^{ab}$$

$$= \overbrace{1+1+...+1}^{(ab) \mod p}$$

$$= \overbrace{1+1+...+1}^{(ab) \mod p}$$

$$= \overbrace{1+1+...+1}^{(ab) \mod p}$$

$$= \underbrace{1+1+...+1}_{(ab) \mod p}$$

$$= \underbrace{(ab) \mod p}$$

Since $(ab) \mod p \in \mathbb{F}$, \mathbb{F} is closed under multiplication. Since \mathbb{F} is closed under addition and multiplication, \mathbb{F} is a subfield of \mathbb{K} .

Proof. Any finite field has size equal to some power p^r of a prime number p, where r > 0 is an integer.

It has already been proven that all fields either have a characteristic that is prime, or a characteristic that is zero. If a field has a size that is not a power of a prime number, then [Proof goes here] \Box