Биоинформатика: Домашнее задание 2

Выполнил: Козолий Михаил

Группа: 22214

Взять человеческий ген (Gene symbol)

Выбранный фенотип

Gene Symbol: FOXP2

Полное название: forkhead box P2

Ссылка: ОМІМ #605317 ℯ

Описание:

Роль: транскрипционный фактор, критически важен для нейроразвития и речевой функции.

Описание с ОМІМ:

Ген **FOXP2** кодирует **forkhead box P2** — предполагаемый транскрипционный фактор, содержащий **полиглутаминовый тракт** и **домен связывания с ДНК типа forkhead** (Lai и др., 2001).

Получение последовательности FOXP2 в формате FASTA

Была получена нуклеотидная последовательность человеческого гена **FOXP2** (транскрипт **NM_014491.4**) из базы данных **NCBI Nucleotide**.

Последовательность сохранена в формате **FASTA** в виде текстового файла с именем:

FOXP2.fasta

С помощью NCBI BLAST найти не менее 10 (десяти) гомологичных генов в других видах.

Использование протеиновой версии

Для поиска гомологичных генов был использован протеиновый BLAST (protein BLAST). В качестве исходного белкового последовательности взята белковая версия транскрипта **NM_014491.4**, а именно — **NP_055306.1**.

Параметј	ры:
Источник и ф	райл для поиска:
NCBI: https:	//www.ncbi.nlm.nih.gov/protein/17017963
Приложен	ие: FOXP2_protein_isoform.fasta
Query subr	ange
From:	
To:	
Database:	Non-redundant protein sequences (nr)
Organism:	_
Exclude: _	-
Entrez Que	ery:
Algorithm:	Quick BlastP

Проведение поиска protein BLAST

Поиск выполнен с использованием базы данных "non-redundant protein sequences (nr)" при сохранении остальных параметров по умолчанию.

В результате фильтруем значение "Homo sapience", получаем результат:

Выбор организмов для анализа

В итоговую выборку включил три вида птиц, три наиболее схожих варианта из верхних строк, а также четыре случайных варианта из различных классов.

Hомер Accession	Вид / Класс	Краткое описание
XP_066175109.1	Sylvia atricapilla (Птица)	Певчий дрозд (класс Aves)
XP_059672351.1	Gavia stellata (Птица)	Морская гагара (класс Aves)

Hомер Accession	Вид / Класс	Краткое описание
XP_061873476.1	Colius striatus (Птица)	Вид птицы (класс Aves)
XP_006882717.1	Elephantulus edwardii (Насекомоядное)	Африканский слонокрот
XP_064230320.1	Aotus nancymaae	Ночной обезьяна Нэнси (род Aotus)
XP_023084003.2	Piliocolobus tephrosceles	Красный колобус (вид мартышковых обезьян)
NP_001009020.1	Pan troglodytes	Шимпанзе обыкновенный (Common chimpanzee)
KAL2777572.1	Daubentonia madagascariensis (Лемур)	Лемур (отряд Lemuriformes)
XP_012576466.1	Condylura cristata (Насекомоядное)	Крот (отряд Soricomorpha)
AFN11569.1	Eospalax fontanierii baileyi (Грызун)	Подземный хомяк (отряд Rodentia)

Построить единое множественное выравнивание полученных последовательностей

Объединяем все последовательности в одну и воспользовавшись несколькими программами получаем выравнивания для всех 10 видов:

Clustal Omega (EMBL-EBI):

Приложение: CLUSTAL_RES.aln-clustal_num

MAFFT online

Приложение: MAFFT_RES.aln-clustalw

MUSCLE online

Приложение: MUSCLE_RES.aln-clustalw

Проанализировать полученное выравнивание с точки зрения консервативных участков

Анализ выравнивания, полученного с помощью Muscle

1. Высококонсервативный N-конец:

- ◆ Первые ~60 аминокислот (начиная с MMQESATETISNSSMN ...)
 полностью идентичны у всех последовательностей.
- В строке консенсуса:

 Вероятно, этот регион важен для запуска трансляции или начального сворачивания белка.

2. Сильная консервативность центральной части:

- ◆ Участки с повторами QQQ ... сохраняются почти полностью.
 Повторяющиеся глутамины (Q) часто встречаются в транскрипционных факторах и могут быть важны для связывания ДНК или белок-белковых взаимодействий.
- Несмотря на присутствие отдельных вариаций (например, замен S→K или R→E), общая структура сохраняется.

3. Гипервариабельный участок (~позиции 120–140):

- ◆ В некоторых последовательностях есть делеций или вставки, например, последовательность XP_012576466.1 содержит дополнительный фрагмент QQVMTFWDSGLENFRAALEK.
- Это может свидетельствовать о изоформе с дополнительным доменом или вставкой, влияющей на функцию.

4. Консервативность С-конца:

- ◆ Последние 100+ аминокислот (начиная с MEDNGIKHGGLDLTTN ...)
 практически идентичны.

Анализ выравнивания, полученного с помощью MAFFT

1. Начальные 60 остатков

Почти полная идентичность: вариации только у 3-х из 10 белков и только в одной позиции. Это свидетельствует о высоко консервативном сигнал-пептиде или домене, важном для начальной сборки белка.

2. Участок с мотивами Q и L

Большая часть остатков — глутамин (Q) и лейцин (L) — характерны для регуляторных белков, участвующих во взаимодействиях с другими белками. Небольшие вариации в позициях 17–19 (KG/KS) не затрагивают общую консервативность.

3. Центральный участок с Q-мотивами

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAA ********	QQQQQQQQQQQ———		
********	QQQQQQQQQQQQQQHPGKQAKEQQ	QQQQQQQQLAA	*****
00000000	********	*****	

Здесь прослеживается длинный глутамин-обогащённый участок (polyQ-мотив), характерный для белков, вовлечённых в транскрипционную регуляцию. Это типичный функционально значимый регион, чувствительный к длине и составу повтора.

4. Участок с PGL и HL-мотивами

Устойчивость глутамина (Q), пролина (P), глицина (G) и лейцина (L) указывает на важность этого участка. Пролин-глициновые мотивы часто участвуют в формировании гибких петель.

5. С-концевой участок

Полностью консервативен — что крайне редко для С-концевых областей, что может указывать на участие в важной клеточной функции, например, в ядерной локализации или взаимодействиях.

С помощью баз данных биологической систематики определить ближайший таксон, объединяющий виды, полученные в результате анализа.

Вот таксономические линии (lineage) для каждого вида, оформленные в структурированном, читаемом виде для удобного сравнения.

В PDF документ таблица войдет не полностью

1. Sylvia atricapilla (Птица)	2. Gavia stellata (Птица)	3. Colius striatus (Птица)	4. ec (H
Cellular organisms	Cellular organisms	Cellular organisms	С
Eukaryota	Eukaryota	Eukaryota	Е
Opisthokonta	Opisthokonta	Opisthokonta	0
Metazoa	Metazoa	Metazoa	M
Eumetazoa	Eumetazoa	Eumetazoa	Е
Bilateria	Bilateria	Bilateria	В
Deuterostomia	Deuterostomia	Deuterostomia	D
Chordata	Chordata	Chordata	С
Craniata	Craniata	Craniata	С
Vertebrata	Vertebrata	Vertebrata	V
Gnathostomata	Gnathostomata	Gnathostomata	G
Teleostomi	Teleostomi	Teleostomi	Te
Euteleostomi	Euteleostomi	Euteleostomi	E
Sarcopterygii	Sarcopterygii	Sarcopterygii	S
Dipnotetrapodomorpha	Dipnotetrapodomorpha	Dipnotetrapodomorpha	D
Tetrapoda	Tetrapoda	Tetrapoda	Te
Amniota	Amniota	Amniota	A
Sauropsida	Sauropsida	Sauropsida	M

1. Sylvia atricapilla (Птица)	2. Gavia stellata (Птица)	3. Colius striatus (Птица)	4. ec (H
Sauria	Sauria	Sauria	TI
Archelosauria	Archelosauria	Archelosauria	Е
Archosauria	Archosauria	Archosauria	A [·]
Dinosauria	Dinosauria	Dinosauria	M
Saurischia	Saurischia	Saurischia	M
Theropoda	Theropoda	Theropoda	E
Coelurosauria	Coelurosauria	Coelurosauria	
Aves	Aves	Aves	
Neognathae	Neognathae	Neognathae	
Neoaves	Neoaves	Neoaves	
Telluraves	Aequornithes	Telluraves	
Australaves	Gaviiformes	Coraciimorphae	
Passeriformes	Gaviidae	Coliiformes	
Sylvioidea	Gavia	Coliidae	
Sylviidae		Colius	
Sylviinae			
Sylvia			

График показывающий где расходятся виды.

Ответ: ближайший общий таксон — *Amniota Амниоты*

Amniota — это таксон позвоночных животных, объединяющий всех животных, которые откладывают яйца с амнионом — специализированной оболочкой, которая защищает эмбрион и позволяет развиваться вне водной среды.

Проще говоря, амниотами называют группу животных, включающую:

- Рептилий (ящерицы, змеи, черепахи, крокодилы, динозавры и птицы)
- Млекопитающих

Результаты

Название выбранного гена (Gene Symbol)

Gene Symbol: FOXP2

Полное название: forkhead box P2

Ссылка: ОМІМ #605317 <

Параметры BLAST, использованные для поиска гомологичных генов

Источник і	иd	hайп	лпа	поиска.
	/I Y	pariii	ואונאב	HOMORA.

NCBI: https://www.ncbi.nlm.nih.gov/protein/17017963

Приложение: FOXP2 protein isoform.fasta

Query subrange

From:

To:

Database: Non-redundant protein sequences (nr)

Organism: _

Exclude:

Entrez Query:

Algorithm: Quick BlastP

Таблицу с названиями полученных гомологичных генов (Gene Symbol), систематических названий видов и русских названий видов

Номер Accession	Вид / Класс	Краткое описание
XP_066175109.1	Sylvia atricapilla (Птица)	Певчий дрозд (класс Aves)
XP_059672351.1	Gavia stellata (Птица)	Морская гагара (класс Aves)
XP_061873476.1	Colius striatus (Птица)	Вид птицы (класс Aves)
XP_006882717.1	Elephantulus edwardii (Насекомоядное)	Африканский слонокрот

Номер Accession	Вид / Класс	Краткое описание
XP_064230320.1	Aotus nancymaae	Ночной обезьяна Нэнси (род Aotus)
XP_023084003.2	Piliocolobus tephrosceles	Красный колобус (вид мартышковых обезьян)
NP_001009020.1	Pan troglodytes	Шимпанзе обыкновенный (Common chimpanzee)
KAL2777572.1	Daubentonia madagascariensis (Лемур)	Лемур (отряд Lemuriformes)
XP_012576466.1	Condylura cristata (Насекомоядное)	Крот (отряд Soricomorpha)
AFN11569.1	Eospalax fontanierii baileyi (Грызун)	Подземный хомяк (отряд Rodentia)

Краткий анализ консервативности полученного выравнивания в произвольной форм

Анализ выравнивания, полученного с помощью MAFFT

1. Начальные 60 остатков

Почти полная идентичность: вариации только у 3-х из 10 белков и только в одной позиции. Это свидетельствует о высоко консервативном сигнал-пептиде или домене, важном для начальной сборки белка.

2. Участок с мотивами Q и L

ARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVITPQQMQQILQQQVLSPQQ	LQ
**************************************	**
*	

Большая часть остатков — глутамин (Q) и лейцин (L) — характерны для регуляторных белков, участвующих во взаимодействиях с другими белками. Небольшие вариации в позициях 17–19 (KG/KS) не затрагивают общую консервативность.

3. Центральный участок с Q-мотивами

Здесь прослеживается длинный глутамин-обогащённый участок (polyQ-мотив), характерный для белков, вовлечённых в транскрипционную регуляцию. Это типичный функционально значимый регион, чувствительный к длине и составу повтора.

4. Участок с PGL и HL-мотивами

Устойчивость глутамина (Q), пролина (P), глицина (G) и лейцина (L) указывает на важность этого участка. Пролин-глициновые мотивы часто

участвуют в формировании гибких петель.

Полностью консервативен — что крайне редко для С-концевых областей, что может указывать на участие в важной клеточной функции, например, в ядерной локализации или взаимодействиях.

Полученное название объединяющего таксона на латыни и на русском и краткое описание таксона в произвольной форме

Ответ: ближайший общий таксон — *Amniota* | *Амниоты*

Amniota — это таксон позвоночных животных, объединяющий всех животных, которые откладывают яйца с амнионом — специализированной оболочкой, которая защищает эмбрион и позволяет развиваться вне водной среды.

Проще говоря, амниотами называют группу животных, включающую:

- Рептилий (ящерицы, змеи, черепахи, крокодилы, динозавры и птицы)
- Млекопитающих