530 Interblocage

INF3173

Principes des systèmes d'exploitation

Jean Privat

Université du Québec à Montréal

Hiver 2021

Interblocage

Alias

- Deadlock
- Verrou fatal
- Étreinte fatale
- Embrasse mortelle

Principe

 Plusieurs processus* sont bloqués entre eux et ne peuvent progresser

Jean Privat (UQAM) 530 Interblocage INF3173 Hiver 2021 2/19

^{*}Sans perte de généralité on utilise « processus », mais ça s'applique pareil aux threads, tâches noyau ou toute autre entité logicielle en cours d'exécution.

Ressources

Quelques ressources (au sens large)

- Imprimante
- CPU
- Sémaphore
- Section critique (mutex)

Ressources et interblocages

• Les interblocages découlent de l'allocation des ressources

Ressources

Événements liés aux ressources

- Demander la ressource
- Utiliser la ressource
- Libérer la ressource

Si un processus demande une ressource déjà prise

- Erreur
- Attente
- Attente temporisée

Interblocage

Définition plus formelle

- Un ensemble de processus sont en interblocage si chaque processus dans cet ensemble est en attente d'un événement que seulement un autre processus de ce même ensemble peut déclencher — Tanenbaum
- L'événement peut-être est la libération d'une ressource

En cas d'interblocage un processus ne peut

- Ni continuer son exécution Car il est bloqué
- Ni débloquer un autre processus En libérant une ressource Car il est bloqué

Caractérisation d'un interblocage

Les 4 conditions nécessaires et suffisantes de l'interblocage

- Exclusion mutuelle
 La ressource est soit disponible, soit assignée
- Détention multiple (hold and wait)
 Un processus qui détient une ressource peut en demander d'autres
- Pas de réquisition
 Une ressource détenue par un processus doit être libérée par lui
- Attente circulaire
 Il doit y avoir un cycle dans les attentes d'événements

Description des allocations

Graphe biparti orienté

- (a) Ressource R assignée au processus A
- (b) Processus B demande et attend S
- (c) C et D sont en interblocage

Gestion des interblocages

Quatre stratégies

- Ignorer le problème
- Détecter et résoudre
- Prévenir le problème
- Éviter dynamiquement

Ignorer le problème

Principe

• Prétendre que le problème n'existe pas

Raisonnable si

- Interblocages rares
- Autres solutions trop coûteuses/restrictives

Avantage

- Facile à comprendre
- Facile à mettre en œuvre

Détecter et résoudre

Principe

• Vérifier si les processus sont en interblocage et les débloquer

Comment savoir s'il y a interblocage

- Modélisation et analyses de graphe
- Tester

Comment débloquer (sans tout casser)

- Échec du verrouillage
- Retirer de force une ressource
- Restauration d'un état antérieur (rollback)
- Éliminer un processus

Prévenir le problème

Principe

• Éliminer une condition de l'interblocage

Exemples

- Spooling: seul un processus a la ressource
- Ressources toutes demandées d'un coup
- Permettre la préemption
- Ordonner les ressources (donc les demandes)
- → Aucun n'est nécessairement faisable

Éviter dynamiquement

Principe

- Forcer l'ordonnanceur à faire le bon choix
- C'est possible via des informations supplémentaires

Idée

- Un état est sûr s'il existe une séquence d'allocations qui permet aux processus d'aller jusqu'au bout
- Exécuter une allocation que si l'état qui en résulte est sûr

Résolutions en pratique

Pas de solution ultime

 Le coût et l'efficacité d'une technique dépendent fondamentalement de la nature des ressources

En pratique,

- Les SE actuels ignorent le problème pour les utilisateurs
- Seuls les SE critiques prennent éventuellement en compte ce genre de problème

Problème cousin - Livelock

Jeu de mots sur deadlock

- Les processus ne sont pas bloqués
- Mais ne progressent pas non plus
- → Le CPU est utilisé seulement pour retenter
 - Transformer un deadlock en livelock n'est pas un progrès

Problème cousin - Famine

Synonymes

- Starvation
- Privation de ressource

Définition

- Un groupe de processus partagent une ressource
- Sans interblocage
- Certains processus n'obtiennent jamais la ressource
- → Problème de l'attente infinie

Problème cousin - inversion de priorité

Scénario explicatif

- ullet 3 processus de priorité stricte P1 > P2 > P3
- P3 arrive, s'exécute, demande et acquiert une ressource R
- P2 arrive et s'exécute (préempte P3)
- P1 arrive, s'exécute (préempte P2), demande la ressource R
 ... et passe à bloqué
- P2 s'exécute alors à nouveau

Problème

- P2 passe devant tout le monde
- P1 termine dernier, c'était pourtant le plus prioritaire

Solutions

- Revoir la conception: est-ce normal que P3 puisse bloquer P1 ?
- Renforcement de la priorité

Renforcement de la priorité

Augmentation temporaire de priorité

- P3 devrait passer avant P2
- Jusqu'à sortir de sa section critique et libérer son mutex
- Pour pouvoir débloquer P1 le plus tôt possible

Nécessite la coopération du système d'exploitation

- Mutex avec priorité statique (PTHREAD_PRIO_PROTECT)
 Le processus qui détient le mutex (P3) gagne en priorité
- Héritage de priorité (PTHREAD_PRIO_INHERIT)
 Le processus qui attend un mutex (P1) transfert
 automatiquement sa propre priorité au détenteur du mutex (P3)
- Renforcement aléatoire (exemple Windows)
 Comme P3 détient un mutex, il peut-être va gagner un petit boost pour peut-être sortir de sa section critique.

Dîner des philosophes (Dijkstra)

Données

- 5 philosophes. Chacun pense ou mange (temps inconnu)
- 5 fourchettes
- 5 plats de spaghettis
- 2 fourchettes sont nécessaires pour manger

Problème

Comment faire tourner le système sans bogue ?

- Sans corruption
- Sans famine
- Sans interblocage
- Efficacement