1+52 --- >

chapter 1 SETS (24 J2)

SETS :

A set is a well-defined collection of distinct objects

sets are denoted by capital Letters D, B, C. etc

Elements

The members of a set are called its elements

if it is an element of a set D. cue denote it as DCEA [read as

De belongs to A] [E-Epsilon]

le 'ac' is not an element of B; eve

denote. De & Pi [read as De does not

belongs to A)

Commonly used sets in Mathematics

N: The Set of all natural numbers

Z: The sat of all integers

Q: The set of all rational numbers

R! The set of all real numbers

24: The set of all the integers

Qt: The set of all the rationals

Rt: Seb of all the real numbers

Representation of sets

A set can be represented by two forms

- 1) Roster form / tabular form
- 1) Sat buildor form

In Rostor form we just arrange the district objects in arbitrary manner by introducing comma blue them and enclose them with braces ({}).

Eg!- set of all the even integers less than as

= {2,4,6,8,10}

sets are represented by stating their common

proposty. The mambers are described by the letter of (60 y ar 2. etc.) which is followed by the colon (:) (or road as such that) after orders. The colon we write the characterister proposty of the members of the set. finally one enclose these within the braces.

Egg- Consider the set of all the even integers less than or equal to 10.

In set builder form it is written as

{X: DC is a positive even integer and X ≤ 10}

1. Consider the set {x: DC= 2°+1, n EN, nes} write thes set in Rostor form

 $= \{2^{1} + 1, 2^{1} + 1, 2^{3} + 1, 2^{4} + 1, 2^{5} + 1\}$ $= \{3, 5, 9, 17, 33\}$

o write the solution of the eqn di-500+6

e) DC2-50C 16 => (x-2)(x-3)=0 DC = 2,3 : Set A = {2,3} Write the Collowing sets in the set bold (am A = {a: scis on integer and -3 < sc < 73 n = {-2, -1, 0, 1, 2, 3, 4, 5, 6} B = { DC : DC is an a point number which is a divisor of 603 a) B = {2,3,5,3 write the following sets in the set builds from 1 { 3, 6, 9, 12} Seb buildes form = { oc: x = 30 ns anatoral number, n < \$ 53 1) { 2, 4, 6} set builder Posm= {x: x=2n and n:se natural numbers

cosite the Glowing sets in roster form 1) = { x : x is a natural number less than 6} n={1, 2, 3, 4,5} Consider the sets @= { x: x is an integer ; 0 < 26 < 66 } 10 = {0,1,2,3} 1) B= {X: x 15 a prime number less than 5} 8 8 2 33 write the following sets in sot builded from 1) {1,3,5,7,93 set buildes form - { oc: ocis an odd natural number less than 10} {x: x= 2n+1; where nEW, nsq} 11) { 2, 33 Set builder form = { De : ac 13 a natural number 142663

a marke solution of the eqn set of -2 =0

 $2^{2} + 2 - 2 = 0$ (212)(2-1) = 0 3c = -2, 1 $3c = (2-2, 1)^{3}$

Null set or Empty Set

Det which is not containing any elements called a null set or an empty set or the void set. It is denoted by 'd' (Phi) or {3.

1. LOL A = {x:12x22, oceN3

Then A is an empty set, because there is no hatural number blue 1 and 2.

Then Bis & an empty seb because the eqn

22=4 is not satisfied by any odd values of it.

Finite and infinite Seb

(definite numbers) of elements is called a finite set. Other cuise, the set is infinite.

681- {2,4,6,8,10} is a Provide set

Then a is an # infinite set.

1. {x:xEN and (x-1)(x-2)=03

Criven Set = {1,23, Idence it is a finite set.

2. {x: xEN and # x is odd 3

Since there are infinitely many odd numbers
the given set is infinite

of null set

set of odd natural numbers divisible by?

set of even point numbers.

Ex 1 x 1s a natural number , DC < 5 & x > 73 V

emptyset booz x 5 9 9

State which of the following sets at Einite or infinite:) {x: x EN and x2-3x +2 = 03 22-3x +2 =0 2) (X-2)(X-1)=0 x=2,1 seb = {1,23 Idence it is finite i) {x: x EN and x is even } as Since there are infinity many even returned numbers, the given set is infinite 11) {x: x EN and Di= -23 a) Square of a number coil never become -ve for any real number so, the given set is an empty set it is also limite IV) The set of lines which are persalled to ixa x as Infinite set. Because there are many no; of Parallel lines as Real numbers which is also infinite.

The set of letters to the English
Alphabet

no: Lebboss in English Alphabet = 26 So, the given set is finite

Equal Sels

The two sets A and B are said to be equal if every element of A u an element of B u an element of B and element A.

In such a case we write A = B

E8: Set A = { a : ac (N 3 < ac < 83 and

B = { 4,6,7,53 Then 0 = 8

[Since 3 < ac < 8 = { 4,5,6,7} = { 4,6,7,63}]

Let A = {x: x is a letter in word follow}

B = {y: y is a letter in the word worl}

Wolf}

A = {F,0,L,W3 B = {W.0,L,F3 .. A=B// a. Are the following pair of sets equals Crive reasony. 1) = (2,3] B = { a : x is a solution of 2004 5x +6=0} a) 07 x2+5x +6 =0 (2+2) (x+3) = 0 => dc = -2, -3 1e, B= {-a, -3} = {a, 3} SO Set A 7 Sel 8 n) A= {2,4,6,8,103 B= {a: a is a tre even Integer < 103 B= { 2.4.6.8,10] an) so set A = Set B// (iii) B = { a: oc is writible of 103 8= { lo, 15, 20, 25, 30... 3 set A + Set B 2) Since set B contains multiples of 5

Aset 'A' is said to be a subset of a set of B is to an account of B. we can write in symbol ACB [read as A 18 a Subset of B of A is contained in B).

Note: - 2) 18 ACB and BCA, then A=B

4) For any Set B, ACA and ØCA

5) Let B and B be two sets. 18 ACB

and A & B then B is called a proper

Subset of B and B is called the Supersot

of B.

eg:- 10 = {1,2,33 is a proper subset of B = {1,2,3,43.

Singleton set;
a set containing only one element is called a Singleton set.

d 18 A 15 not Contained in B then we write A & B. farp.

C9:- 10 = {7,8,9} 0 = {1,2,33 B = {2, 3, 4, 5, 1} Then A & B @ D C B a Examine who they the following statements asc 1 08 F · {a, b} \$ {b, c}, a} - F {a, e} c { x : x is a vowel in the } a write down all the substets of the Collowing sets {a} Subsets - Ø, {a} {1,2}-S-bseb- arc - 9, {1}, {2}, {2}, {1,23 iii . § a, b, c } Subseb - 0, {a}, {b}, {B}, {B}, {q,b}, {q,c} {b,c}, {a,b,c}

19 { 1, 2, 33 Subsets and -

= \emptyset , $\{13$, $\{23$, $\{83\}$, $\{1,23\}$ $\{1,33\}$ $\{3,23\}$ $\{1,2,33\}$.

\$\langle \text{Subsets are only \$\phi \text{bess likele}\$ (\text{bco2} \langle 20=1).

Four types of intervals

Il a. b. ER so that acb, the we may define lours types of interval.
as follows

Closed interval: [a,b]

Left open right closed interval: (a,b)

= $\{x: x \in R \text{ and } a < x \leq b\}$ eg: $(6,11] = \{x: x \in R \text{ and } 6 < b \leq 11\}$

Call closed Right open Interval: [a,b] = {SC: SC & R and a < oc < b} Gai- (-22,5) = {X: X & R and -22 < SC < S}

(-4.16) as intervals

{ >c: >c∈R. -4 < >c ≤ 63

ii) {x:x CR, -12 < 3c < -10}

Set builder form.

i) [6, 12] - {x: >c ER & 6 < >c < 12}

1) (-5,0) - {x: x ER & -5< x<0}

m) (8,12) - {x:xER & 8 < x < 123

iv) [-23, 5) - {x: xCER & -28 < xC < 5}

If 'A' is any set then the set all possible subset of B' is remed as the powerset of 'A' and it is denoted by P(A).

Note :-

the A' contains 'n' elements, then A will have 22 subsets.

Eg: Consider (A = {1,2,33}

Then P(A) = {0, {1}, {2}, {23, {1,23, {1,33, 2,33}}}

{1,2,33,3}

n(a) = 3 n(P(a)) = 23=8/1

Universal Seb

In any discussion of sets, it is possible to Identify a super set containing all other sets in the discussion. Such as a superset is called the Universal set and it is denoted by 'U'

(G!- In the Study of sets of all sets centaining real numbers, R is the Universal Set.

and c= {0,2,4,6,83 which of the following onay be considered as universal Sales for all the three A. B and C.

1) {0,1,2,3,4,5,63

(i) & Q

(11) {0,1,2,3,4,5, -- 10}

14) {1,2,3,6-.83

a write down all the powersets of the following

a) 10 = {a,b,c}

a) P(A) = {6, {a3, {b3, {c3, {ab3, {bc3, {arc3 } [ab, c]}

2) A= {1,23

a) P(n) = {\$\phi\$, \{13, \{23, \{1,23\}\}}

3. Hows many elements has P(A) il

If A = O A contains no element.

'A has only one subjet which is O

Itself.

only one element.

(1 (a) = 0. (P(a))=2°=1

Veno diagram

Pictorical representation of sets.

est suppose U= {1,2,5,4,5,6}

0= {1,2,3,43 and B= {2,3,43

Then we may represent these sets as shown

- 1) Introduced by John Venn (English Logician)
- d) lovented by Leonhard Guler (mathemoterica)

Operation of sets

(1) Union of Sets

Combining two sets.

The Union of DAB (AUB) Fread or A union B) is the set of all sedements which are worther contained in A and 8.

in set builder form

BUB= {x: xEM 00 X 6 B3 CS:- Suppose U= {1,2,3,4,53 Then BUB = {1,2,3,4,53

Intersection of A and B

The Intersection of two sets say Ands (ANB-read as Aintersection B) is the seld elements common in A and B.

(A) MAB = { & : SCEA and & CB3

eol- U= {1,2, -...63 A= {1,2,43 B= {3,4,63 Then ONB={3,43

Disjoint sets

ANB= & then A and B are colled disjoint sels

eg!- n= {a,b,i} and B= {e,f,g} are
disjoint sets booz AnB= 0

Properties

1. AUB - BUA & BAA AUB = BAA (commutative)

1. (AUB)UC = AU(BUC); (ANB)NC = AN(BNU Causos) laws)

AUD = A ; AND = A (Identity laws)

AUA = A : ANA = 13 (Idempotent Laws)

5. AUV = V; ANØ = Ø

6. AU(BOW) = (AUB) N (AUC) (Distributive law)
AN(BUW) = (ANB) U(ANC)

6) IP ACB. then AUB = B and ANB=A Q (R Q= {1,2,3,43 B= {3,4,5,6} C= {5, 6,7,83 Find? DAUB = {1,2,3,4,5,63 BUA - 1 ni) (AUB) UC = {1,2,3.... 83 10) AU(BUC) = {1,2,31...83 W BOB = {3.43 " v) (ANB) nc = 0 U1) An(Bnc) = 0 VII) AUA = A = {1,2,3,43 (XX) 1000 = A = 17 AU(BNC) = {1,2,3,4,5,6} (AUC) (AUC) 18 An (BUC) = {3,43 (Ang) U(Anc) = {3,43

Venn diagrams for operations ensets

Let A. B. Care Line sets

1) NO DUB

3) 000

Difference of sets

of A and B are two sets, then the difference of A and B is defended as the set of all elements in A which doesnot belong to B and its.

It is written as symbolically as ABB in Set builder from AB = {X X 4BB}

If X = {a, b, c, d} & Y = {(, b, d, 9)}

Ord is X-Y

Ord is X

xn y = 8 b.d3 If to goe; or is a latter in the word , WULLIEWULICZ, 3 B= { y: y is a lolles in the word statistion then find 1 A-B ii) A AB 07 = [M, A, I, H, E;], C, S] B - ES. I. A.1. C3 D 18-B = {M, 14, 6} i) . BOB = { S. T. A. I, C3. Draw Venn diagrams. 1) An (BUC) Assuming that \$ set A and set Box are not disjoint. And s B + (8UC) h an(auc)

3. AU(BOC) il sil A, B. C. and not disjoint. adonc) Case ,2 10 Set (BOC) and Set (BOC) are dissoint AU(BAC) a Let A = Exc soir a poine number less than 1/3 and B= { a: x = is an integer such that 2506583 Cosite C= ANB A = {2,3,5,73 B- {2,3 4,5,6,7,83 AAB= {2,3,5,73 a Let A = { 20: 20 EN, 15 20 553 B = {2,3,6,93 & C= {1,4,5,8,9,10}

verily BO(BUC) = (AOB) UGAM Tr= \$1, 2, 3, 4,53 13= 12,3,6,93 C- {1,4,5,8,9,10} BUC= {1,2,3,4,5,6,8,9,18 A 03={2,33 12 U (BOC) = {1,2,3,4,53 | 12 U = {1,4,53 (AUB) 0(UUC)=4 = {1,2,3,4,5} 1dence, 120 (1800) = (1900) 0 (1900) = {1,2,3,4,5} H · Vernéired a 16 U is the Universal Set and A is & any set. then Una= 0 a 18 of is a subset of the set B then ANB=A AUB=B

Let A = { DC: DCEW; DCZ 53 and B = { DC: DC is a prime number less than 5} U= { DC: DCE is an Integer, O & SCE \$3 write a. B. in soster Com (A = { 0, 1, 2, 3, 4} 13 = {2,3,3 Find (A-B) U (B-A) a A-B = {0,1,a} ; B-A= { } or \$ 50 (10-0) 0 (0-10) = {0,1,43 Consider the Set A= {2,3,5,73 and B= {1,2,3,4,6,123 a) Find ANB b) Find 10-B, B-A and hence show that (AUB) n (4-B) n (8-B) = UB c) write the power set of ANB a) a) a) B = {2,3,3

A-8- {1, 4, 6, 123 \$ {5,73 B-A= {-5,7-3 \$1,4,6,123 aub= { 1,2,3,4,5,6,7,12] (MOB) U(A-B) U(B-A) = \$1,2,3,4,5,6,7/11 So, Honce Vosition / By vono diagrams A.O B.O (2,3) (3,4) (5) (3,4) (3,4) (3,4) (3,6) (3 = $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ + $\begin{pmatrix} 5 \\ 7 \end{pmatrix}$ + $\begin{pmatrix} 5 \\ 6 \\ 12 \end{pmatrix}$ Idence verified. Q C) M N B = {2.33 P(nos) = { P, {23, {33}, {2,33}}

a 10 D= {3,6,9,12,15, 18, 213 13= {4,8,12,16,203 C= { 2, 4, 6, 8, 10, 12, 14, 163 D - { 5, 10, 15, 20} Eind (1) 17-B (1) 17-C 111) 10-0 IM) B-10 NS-10 NJO-10 ND 8-6 (11) B-D 1X) D-B C-B x) D-B xi) C-D xii) D-c 1) 13-B= {3,6,9,+0 15, 18,213 (12 u som) 11) A-C = {3.9, 15, 18, 213 (6, 12 4 gone) iii) AD = {3,6,9,12,18,213(1515- gone) (N) B-A = {4, 8, 16, 20} (12 is gon) V) C-A = {2, 4,8,10,14,163 (6,12 gone) vi) D-A = {5, 10, 203 (15 15 gone) NI) B-C = \$ {203 (4,12, 16,890m) VIII) 2 = {4,8,12,16} (20 sone) 1X) C-B = {2,10,6,14} X) D-B = {5, 10, 15} (20 0200)

XI) D-C = {2, 4, 6, 8, 12, 14, 163 (0 500) XII) D-C = {5, 15, 203 (10 800)

Comprenent of a Set:

of A is defined as the set of all elements to which donot belong to a.

The Complement of A is denoted by

(A) or (A) or (A).

Co:- Let $V=\{1,2,3,4,5,16,7,8,9\}$ $A=\{1,2,3,4,53\}$ and $B=\{5,6,7,8,9\}$ Then $A'=\{6,7,8,9\}$ and $B'=\{1,2,3,4\}$

: A'OB' = \$ & A'UB' = {1,2,3,4,6,7,8,93

 $V-A = \{6,7,8,9\} = A'$ $A-B = \{1,2,3,4\}$ $A \cap B' = \{1,2,4,3\}$

13-B = Ang' =

Properties of Complement nun'= U & ann'= 0 congression (wig), = w, us, & De wordows parts 3. 0' = U and U' = Ø. Venn diagram of n' n' for she'did 10 0- {1,2,3,4,5,6,7,8,93 A = {2,4,6,83 and 8= {2,3,5,73 voily the taws De morganis laws) (008) = U, UB, 5 (QUO) = {2, 4, 6, 8, 5, 0) - {1,93/1

n'= {1,35,7,9} , b'= {1,4,6,8,93 0'08' = {1,93// 1dence (AUB)'= B'OB' (ii) AOB = {2} (AAB) = {1,3,4,5,6,7,8,93 10'UB' = \$1,3,4,5,6,7,8,98 1dence (Ans) = 10'00'/ a consider the set U= { 9, 6, 6, d, e, 6, 9} A = {b, l, d, e} and B = {a, l, 9} Gind A' and B' and vorily that (AUB)'= A'OB' 5) 0'={a, e, 9}, B'= {b, d, e, e, e} ans' = { = 3 (AUB) = {a,b, c,d,e,93 = {e3 Idence (AUB) = A' NB' (Josifica)

Theory i) If A is any set than the number of elements in a is decord by Maj 5 15 0 and B are any two sals than 0 (008) = de) + 0(8) -0 (008) If A and B are disjunt sels than ~ (A) + (B) + (B) (1) is (3) B and Care any three sets the (30800) = (3) + (3) + (1) - (1000) -0(anc) - n (anc) + n (anon of the ford care park wise disjoint his n(AUBUC) = n(A) + n(C) Co. Il & and Y are two sets such that XUY has so elements. K has 28 elements and Y has 32 elements. I dow many elements does xny haven a) Crever theb n(x04) = 50 / MAUB)= Mand 86=(X) o n (y) = 32

& U(xuA)=3 (a(xuA)= u(x)+a(x)+a(x) · w(xuA) = UE + UA wxnA = 28 + 32 - 50 = 10// If X and Y are two sets such that n(x)-17 n(4)= 23, and n(xux)= 38. (VAX) n bors crives that n(x)=17 ~ (X) = 33 n(xa04) = 38 cue know n(xvy)= nox+ny-nxny so nxay = 17123 -38 = 2// In a stoup of a soprople, 250 can speak Idende and 200 can speak English. How many people can speak both Isradi and English aiven daba - Wind: - 250 Englah - 200 Total People - 600 u(aub)= ua 108-u(and) = 250 1200 -600 = 50//

in a committee . So people speck for So speak Spenish, and 10 speak both Spenish and French. Idou many speak attends one of these languages? cas criver dala - N French - 50, Nspanish - 20 N French (Spenie) = 10 & n (Geneh Uspenish) = ? n(000) = da) + da) + - n(000) · · · (French U Spanul) = 50+20-10 In a school there are do toucher who beach Mathematics or physics of these 12 teachers teach mather and la teach physics. Idas many teach both of the Subdect D(w)=12, D(P)=12 n (mup)=20 (90m) = nem)+n(p)-n(mop) = 12 +12'-20 = 4/1

A to a committee, so people speak French 20 spench spanish and to speak both >0(0) - 0(0) - 0(0) -> 0 (U-B) = 0 (U) - U(UUB) -> If ACB then n(8-0) = n(B)-n(d) -> n(n'n8') = n(u) -n(QUB) -> U(U, AB) = U(A) - U(UUB) a la a group of 65 people, 40 like corcket slike both cricket and tennis. Idan many like termis only and not cricket? low many like tennis? Given daba n(c) = 40 n (cm)=10 1(0) = 65 0(0) - U(0) + U(0) - U(0) = 65 200 - 60 = 35/1 like Tonnic only = 35-10= 25/

a in a group of people, Sopeoplo Speak Winds,

20 speak English and 10 speak English and

To speak both Idendi and English.

i) and the number of people speaking on 1dindi ? 1) Grad the number of people speaking only English in) End the number of people speaking of least one of these two longuages. as i) n (1d) = 50 | we have n(1dnE) = n(1d). n(e) = 20 n(160e) = 10 = 80 - 10 = 40/(i) den11) - v(e) - v(ev11) = 20-10=1011 (in) o (EUII) = O(11) + O(E) - n(18 n G) = 50120-10=60// a in a survey of 600 students in a school, 150 students were found to be taking tea. 225 taking Coffee, 100 were baking both Gea and collec. Find how many Students were taking neither ton nor Cosfec. Given dat U=600 ay n(T)=150, n(T)=225

001 = (200) Deither Tea now colle manne 1(0) - ~ (cor) つ(という) この(こ) その(の) この(のの) 150 + 225 - 100 11500 02013

20)-0(CUI) - 60-· か(い) - か(いい) = 600- 275= 325