Relações e Suas Propriedades

QXD0008 - Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

Nesta apresentação:

- Relação Binária
- Relações binárias e funções
- Propriedades da relação binária:
 - o Reflexiva, simétrica, anti-simétrica e transitiva
- Relação Inversa
- Relação Composta

Referências para esta aula

• Seções 9.1 e 9.3 do livro:

Discrete Mathematics and Its Applications.

Author: Kenneth H. Rosen. Seventh Edition. (English version)

• Seção 8.1 e 8.3 (Relações e suas propriedades) do livro: <u>Matemática</u> Discreta e suas Aplicações.

Autor: Kenneth H. Rosen. Sexta Edição.

Introdução

Motivação

- O mundo está "povoado" por relações: família, emprego, governo, negócios, etc.
- Entidades em Matemática e Ciência da Computação também podem estar relacionadas entre si de diversas formas.
- Objetivo:
 - o estudar relações em conjuntos;
 - o estudar formas de representar relações;
 - o estudar propriedades de relações.

 Definição: Sejam A e B dois conjuntos. O produto cartesiano de A e B, denotado por A × B, é o conjunto de todos os pares ordenados (a, b), tal que a ∈ A e b ∈ B. Portanto,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

 Definição: Sejam A e B dois conjuntos. O produto cartesiano de A e B, denotado por A × B, é o conjunto de todos os pares ordenados (a, b), tal que a ∈ A e b ∈ B. Portanto,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Exemplo:

• Qual é o produto cartesiano de $A = \{1, 2\}$ e $B = \{a, b, c\}$?

 Definição: Sejam A e B dois conjuntos. O produto cartesiano de A e B, denotado por A × B, é o conjunto de todos os pares ordenados (a, b), tal que a ∈ A e b ∈ B. Portanto,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Exemplo:

- Qual é o produto cartesiano de $A = \{1, 2\}$ e $B = \{a, b, c\}$?
 - **Resposta:** $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

 Definição: Sejam A e B dois conjuntos. O produto cartesiano de A e B, denotado por A × B, é o conjunto de todos os pares ordenados (a, b), tal que a ∈ A e b ∈ B. Portanto,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Exemplo:

- Qual é o produto cartesiano de $A = \{1, 2\}$ e $B = \{a, b, c\}$?
 - **Resposta:** $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
- Qual é o produto cartesiano de $B = \{a, b, c\}$ e $A = \{1, 2\}$?

 Definição: Sejam A e B dois conjuntos. O produto cartesiano de A e B, denotado por A × B, é o conjunto de todos os pares ordenados (a, b), tal que a ∈ A e b ∈ B. Portanto,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Exemplo:

- Qual é o produto cartesiano de $A = \{1, 2\}$ e $B = \{a, b, c\}$?
 - **Resposta:** $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
- Qual é o produto cartesiano de $B = \{a, b, c\}$ e $A = \{1, 2\}$?
 - **Resposta:** $A \times B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$

- Sejam os conjuntos $A = \{0, 5, 8\}$ e $B = \{3, 7, 9\}$.
- Suponha que um elemento de x ∈ A está relacionado com um elemento y ∈ B se e somente se x < y.
- A notação xRy quer dizer "x está relacionado com y", onde R é o nome da relação (neste caso, x < y).

- Sejam os conjuntos $A = \{0, 5, 8\}$ e $B = \{3, 7, 9\}$.
- Suponha que um elemento de $x \in A$ está relacionado com um elemento $y \in B$ se e somente se x < y.
- A notação xRy quer dizer "x está relacionado com y", onde R é o nome da relação (neste caso, x < y).
- Logo, temos que:

0R3 porque 0 < 3

0R7 porque 0 < 7

0R9 porque 0 < 9

5R7 porque 5 < 7

5R9 porque 5 < 9

 $8R9 \ porque \ 8 < 9$

- Sejam os conjuntos $A = \{0, 5, 8\}$ e $B = \{3, 7, 9\}$.
- Suponha que um elemento de $x \in A$ está relacionado com um elemento $y \in B$ se e somente se x < y.
- A notação xRy quer dizer "x está relacionado com y", onde R é o nome da relação (neste caso, x < y).
- Logo, temos que:

0R3 porque 0 < 3 0R7 porque 0 < 7 0R9 porque 0 < 9 5R7 porque 5 < 7 5R9 porque 5 < 98R9 porque 8 < 9

• Por outro lado, a notação $x\not Ry$ quer dizer que "x não está relacionado com y"

• Por outro lado, a notação $x\not Ry$ quer dizer que "x não está relacionado com y".

- Por outro lado, a notação $x\not Ry$ quer dizer que "x não está relacionado com y".
- Dados os conjuntos $A = \{0, 5, 8\}$ e $B = \{3, 7, 9\}$
- Logo, temos que:

$$5 \cancel{R}3$$
 porque $5 > 3$
 $8 \cancel{R}3$ porque $8 > 3$
 $8 \cancel{R}7$ porque $8 > 7$

- Dados os conjuntos $A = \{0, 5, 8\}$ e $B = \{3, 7, 9\}$ temos que
- O produto cartesiano de A e B é

$$A \times B = \{(0,3), (0,7), (0,9), (5,3), (5,7), (5,9), (8,3), (8,7), (8,9)\}.$$

- Dados os conjuntos $A = \{0, 5, 8\}$ e $B = \{3, 7, 9\}$ temos que
- O produto cartesiano de A e B é

$$A \times B = \{(0,3), (0,7), (0,9), (5,3), (5,7), (5,9), (8,3), (8,7), (8,9)\}.$$

ullet Os elementos que satisfazem à relação R (ou seja, x < y) são

$$R = \{(0,3), (0,7), (0,9), (5,7), (5,9), (8,9)\}$$

• Observação: R é um subconjunto de $A \times B$.

Relação Binária

Relação Binária — Definição

Definição (Relação binária):

- Dados os conjuntos A e B, uma relação binária de A para B é um subconjunto R de A x B.
- Dado um par ordenado (x, y) em A × B, x está relacionado com y por R, escrito xRy, se e somente se (x, y) ∈ R.

O termo "binário" é usado para indicar uma relação entre dois conjuntos.

Relação Binária — Definição

Definição (Relação binária):

- Dados os conjuntos A e B, uma relação binária de A para B é um subconjunto R de A × B.
- Dado um par ordenado (x, y) em $A \times B$, x está relacionado com y por R, escrito xRy, se e somente se $(x, y) \in R$.

O termo "binário" é usado para indicar uma relação entre dois conjuntos.

Notação:

• "x está relacionado com y":

$$xRy \iff (x,y) \in R$$

• "x não está relacionado com y":

$$x \not R y \iff (x,y) \notin R$$

Relação binária num conjunto finito

• **Exemplo 1:** Sejam os conjuntos $A = \{1, 2\}$ e $B = \{1, 2, 3\}$ e a relação binária de A para B definida como:

$$\forall (x,y) \in A \times B, \ (x,y) \in R \iff x-y \in par$$

Relação binária num conjunto finito

• **Exemplo 1:** Sejam os conjuntos $A = \{1, 2\}$ e $B = \{1, 2, 3\}$ e a relação binária de A para B definida como:

$$\forall (x, y) \in A \times B, (x, y) \in R \iff x - y \notin par$$

• Logo, temos que:

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

$$R = \{(1,1), (1,3), (2,2)\}$$

 A relação anterior pode ser generalizada para o conjunto de todos os inteiros Z. Neste caso, a relação binária E de Z para Z pode ser definida como:

$$\forall (m, n) \in \mathbb{Z} \times \mathbb{Z}, \ mEn \iff m - n \in par.$$

 A relação anterior pode ser generalizada para o conjunto de todos os inteiros Z. Neste caso, a relação binária E de Z para Z pode ser definida como:

$$\forall (m, n) \in \mathbb{Z} \times \mathbb{Z}, \ mEn \iff m - n \in par.$$

- Os inteiros m e n são relacionados por E sse m mod 2 = n mod 2, ou seja, se os números m e n são pares ou ímpares.
- Quando essa relação é satisfeita, diz-se que m e n são congruentes módulo 2, ou seja, m ≡ n (mod 2).

Exemplo de relação binária

• Seja a relação C de $\mathbb R$ para $\mathbb R$ definida como:

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}, \ (x,y) \in C \iff x^2 + y^2 = 1$$

- $(1,0) \in C$? Sim.
- $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \in C$? Sim.
- $(-2,0) \in C$? Não.

Diagrama de seta de uma relação

- Suponha que R é uma relação de um conjunto A para um conjunto B. O diagrama de seta para R é obtido da seguinte forma:
 - Represente os elementos de *A* numa região e os elementos de *B* como pontos em outra região.
 - Para cada x em A e y em B, desenhe uma seta de x para y sse x é relacionado com y por R.

Diagrama de seta de uma relação

Exemplo: Sejam os conjuntos $A = \{1, 2, 3\}$ e $B = \{1, 3, 5\}$ e a relação:

• $\forall (x, y) \in A \times B, (x, y) \in S \iff x < y$

- Definição: Uma função f de um conjunto A para um conjunto B
 é uma relação de A para B que satisfaz as duas propriedades
 abaixo:
- (1) Para cada elemento $x \in A$, existe um elemento $y \in B$ tal que $(x,y) \in f$. Cada elemento de A é o primeiro elemento de um par ordenado de f.
- (2) Para todos os elementos x ∈ A e y, z ∈ B, se (x, y) ∈ f e (x, z) ∈ f, então y = z.
 Ou seja, não existem dois pares ordenados distintos cujo primeiro elemento seja o mesmo.

Se f é uma função de A para B, temos que:

$$y = f(x) \iff (x, y) \in f$$

Exemplo 1: Sejam os conjuntos $A = \{2,4,6\}$ e $B = \{1,3,5\}$ e a relação:

- $R = \{(2,5), (4,1), (4,3), (6,5)\}.$
- R é uma função?

Exemplo 1: Sejam os conjuntos $A = \{2, 4, 6\}$ e $B = \{1, 3, 5\}$ e a relação:

- $R = \{(2,5), (4,1), (4,3), (6,5)\}.$
- R é uma função?

Não, por causa dos pares (4,1) e (4,3).
 Condição (2) não foi satisfeita

Exemplo 2: Sejam os conjuntos $A = \{2,4,6\}$ e $B = \{1,3,5\}$ e a relação:

- $S = \forall (x, y) \in A \times B, (x, y) \in S \iff y = x + 1.$
- *S* é uma função?

Exemplo 2: Sejam os conjuntos $A = \{2, 4, 6\}$ e $B = \{1, 3, 5\}$ e a relação:

- $S = \forall (x, y) \in A \times B, (x, y) \in S \iff y = x + 1.$
- *S* é uma função?

Não, já que 6 ∈ A mas não existe y ∈ B tal que y = 6 + 1 = 7.
 Condição (1) não foi satisfeita

Exemplo 3: Sejam a relação C de \mathbb{R} para \mathbb{R} definida como:

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}, \ (x,y) \in C \iff x^2 + y^2 = 1$$

• *C* é uma função?

Exemplo 3: Sejam a relação C de \mathbb{R} para \mathbb{R} definida como:

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}, \ (x,y) \in C \iff x^2 + y^2 = 1$$

• C é uma função?

- Não, já que existem números reais x tais que $(x, y) \notin C$, para todo y. Por exemplo, x = 2. Condição (1) não foi satisfeita
- Condição (2) também não é satisfeita

Exemplo 4: Sejam a relação L de $\mathbb R$ para $\mathbb R$ definida como:

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, \ (x, y) \in L \iff y = x - 1$$

• L é uma função?

Exemplo 4: Sejam a relação L de \mathbb{R} para \mathbb{R} definida como:

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, \ (x, y) \in L \iff y = x - 1$$

• L é uma função?

• Sim.

Domínio e Imagem

Domínio e Imagem

Seja R uma relação de A para B.

• O domínio da relação R é o conjunto

$$Dom(R) = \{ a \in A \mid \exists b \in B((a, b) \in R) \}$$

• A imagem ou contradomínio da relação R é o conjunto

$$Img(R) = \{b \in B \mid \exists a \in A((a,b) \in R)\}\$$

Obs.: O conjunto de pares ordenados R é uma relação de A para B se e somente se $Dom(R) \subseteq A$ e $Img(R) \subseteq B$.

Domínio e Imagem — Exemplos

- Seja R a relação {(1,4),(2,5),(3,5)}.
 Temos que Dom(R) = {1,2,3} e Img(R) = {4,5}.
- Seja R a relação $\{(x, x^2): x \in \mathbb{Z}\}$. Quem é Dom(R) e Img(R)?

Domínio e Imagem — Exemplos

- Seja R a relação $\{(1,4),(2,5),(3,5)\}.$
 - Temos que $Dom(R) = \{1, 2, 3\}$ e $Img(R) = \{4, 5\}$.
- Seja R a relação $\{(x, x^2) : x \in \mathbb{Z}\}$. Quem é Dom(R) e Img(R)?
 - Temos que $Dom(R) = \mathbb{Z}$ e Img(R) é o conjunto dos quadrados perfeitos $\{0, 1, 4, 9, \ldots\}$.
- Seja $A = \mathbb{Z}$ e $R = \{(a, b): aRb \Leftrightarrow a = 2b\}$. Quem é Dom(R) e Img(R)?

Domínio e Imagem — Exemplos

- Seja R a relação $\{(1,4),(2,5),(3,5)\}.$
 - Temos que $Dom(R) = \{1, 2, 3\}$ e $Img(R) = \{4, 5\}$.
- Seja R a relação $\{(x, x^2) : x \in \mathbb{Z}\}$. Quem é Dom(R) e Img(R)?
 - Temos que $Dom(R) = \mathbb{Z}$ e Img(R) é o conjunto dos quadrados perfeitos $\{0, 1, 4, 9, \ldots\}$.
- Seja $A = \mathbb{Z}$ e $R = \{(a, b): aRb \Leftrightarrow a = 2b\}$. Quem é Dom(R) e Img(R)?
 - ∘ Temos que Dom(R) é o conjunto dos inteiros pares e $Img(R) = \mathbb{Z}$.

Endorrelações:

Relações binárias em um conjunto

Relações binárias em um conjunto

Em casos de $R \subseteq A \times B$ com B = A, relacionamos elementos de A entre eles.

Relações de um conjunto A em si próprio são de especial interesse.

Relações binárias em um conjunto

Em casos de $R \subseteq A \times B$ com B = A, relacionamos elementos de A entre eles.

Relações de um conjunto A em si próprio são de especial interesse.

Definição: Seja A um conjunto. Então, uma relação $R \colon A \to A$ é dita uma endorrelação.

Neste caso, afirma-se que R é uma relação binária em A.

Relações binárias em um conjunto

Em casos de $R \subseteq A \times B$ com B = A, relacionamos elementos de A entre eles.

Relações de um conjunto A em si próprio são de especial interesse.

Definição: Seja A um conjunto. Então, uma relação $R \colon A \to A$ é dita uma endorrelação.

Neste caso, afirma-se que R é uma relação binária em A.

Exemplos de relações no conjunto dos inteiros:

- $R_1 = \{(a, b) : a \leq b\}$
- $R_2 = \{(a, b): a > b\}$
- $R_4 = \{(a, b): a = b\}$

Obs.: Também pode-se anotar " $R \subseteq A \times A$ " como " $R \subseteq A^2$ ".

Propriedades de Endorrelações

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 1

Seja
$$A = \{1, 2, 3\}$$
, considere $R_1 \subseteq A^2$ tal que $R_1 = \{(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)\}$.

Como A é finito e pequeno, podemos verificar se R_1 é reflexiva por exaustão

- Como $1 \in A$, precisamos ter $(1,1) \in R_1$.
- Como $2 \in A$, precisamos ter $(2,2) \in R_1$.
- Como $3 \in A$, precisamos ter $(3,3) \in R_1$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 1

Seja
$$A = \{1, 2, 3\}$$
, considere $R_1 \subseteq A^2$ tal que $R_1 = \{(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)\}$.

Como A é finito e pequeno, podemos verificar se R_1 é reflexiva por exaustão

- Como $1 \in A$, precisamos ter $(1,1) \in R_1$.
- Como $2 \in A$, precisamos ter $(2,2) \in R_1$.
- Como $3 \in A$, precisamos ter $(3,3) \in R_1$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 1

Seja
$$A = \{1, 2, 3\}$$
, considere $R_1 \subseteq A^2$ tal que $R_1 = \{(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)\}$.

Como A é finito e pequeno, podemos verificar se R_1 é reflexiva por exaustão

- Como $1 \in A$, precisamos ter $(1,1) \in R_1$.
- Como $2 \in A$, precisamos ter $(2,2) \in R_1$.
- Como $3 \in A$, precisamos ter $(3,3) \in R_1$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 2

Considere $R_2 \subseteq \mathbb{Z}^2$ tal que $R_2 = \{(a, b): a \text{ divide } b\}$. R_2 é reflexiva?

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 2

Considere $R_2 \subseteq \mathbb{Z}^2$ tal que $R_2 = \{(a,b) : a \text{ divide } b\}$. R_2 é reflexiva?

Como \mathbb{Z} é infinito, garantir que R_2 é reflexiva exige uma **prova de generalização**.

Neste caso, porém, temos um contra-exemplo: como $0 \in \mathbb{Z}$, precisaríamos ter $(0,0) \in R_2$, mas este não é o caso, pois uma das condições para que a divida b é termos $a \neq 0$.

Resumidamente, $0 \in \mathbb{Z}$, mas $(0,0) \notin R_2$. Portanto, R_2 não é reflexiva.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 2

Considere $R_3 \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ tal que $R_3 = \{(a, b): a \text{ divide } b\}$. R_3 é reflexiva?

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 2

Considere $R_3 \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ tal que $R_3 = \{(a, b): a \text{ divide } b\}$. R_3 é reflexiva?

Como \mathbb{Z}^+ é infinito, garantir que R_3 é reflexiva exige uma **prova de generalização**.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Exemplo 2

Considere $R_3 \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ tal que $R_3 = \{(a, b): a \text{ divide } b\}$. R_3 é reflexiva?

Como \mathbb{Z}^+ é infinito, garantir que R_3 é reflexiva exige uma **prova de generalização**.

Prova

Seja k um elemento qualquer de \mathbb{Z}^+ , precisamos provar que $(k,k) \in R_3$. Como $k \cdot 1 = k$ e $k \neq 0$, podemos aplicar a definição de divisibilidade para concluir que k divide k. Portanto, $(k,k) \in R_3$. Como provamos que $(k,k) \in R_3$ para um elemento qualquer de \mathbb{Z}^+ , isto vale para todo $k \in \mathbb{Z}^+$. Portanto, R_3 é reflexiva.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Quais das relações abaixo são reflexivas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b): a \leq b\}$
- $R_2 = \{(a, b): a > b\}$
- $R_3 = \{(a, b): a = b \text{ or } a = -b\}$
- $R_4 = \{(a, b): a = b\}$
- $R_5 = \{(a, b): a = b + 1\}$
- $R_6 = \{(a, b): a + b \leq 3\}$

Definição: Uma relação R no conjunto A é reflexiva se e somente se $(a, a) \in R$ para todo elemento $a \in A$.

Quais das relações abaixo são reflexivas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b) : a \leq b\}$
- $R_2 = \{(a, b): a > b\} \times$
- $R_3 = \{(a, b): a = b \text{ or } a = -b\} \checkmark$
- $R_4 = \{(a, b): a = b\}$
- $R_5 = \{(a,b): a = b+1\}$ X
- $R_6 = \{(a,b): a+b \leq 3\}$ **X**

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$ R_5 **é simétrica?**

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$ R_5 **é simétrica?**

Como A é finito e pequeno, podemos verificar se R_5 é simétrica por exaustão

- Como $(1,1) \in R_5$, precisamos ter $(1,1) \in R_5$.
- Como $(1,2) \in R_5$, precisamos ter $(2,1) \in R_5$.
- Como $(2,1) \in R_5$, precisamos ter $(1,2) \in R_5$.
- Como $(1,3) \in R_5$, precisamos ter $(3,1) \in R_5$.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$ R_5 **é simétrica?**

Como A é finito e pequeno, podemos verificar se R_5 é simétrica por exaustão

- Como $(1,1) \in R_5$, precisamos ter $(1,1) \in R_5$.
- Como $(1,2) \in R_5$, precisamos ter $(2,1) \in R_5$.
- Como $(2,1) \in R_5$, precisamos ter $(1,2) \in R_5$.
- Como $(1,3) \in R_5$, precisamos ter $(3,1) \in R_5$.

Portanto, R₃ não é simétrica.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a, b) \in R$ também temos que $(b, a) \in R$.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a, b): a + b \in par\}$. $R_6 \in simétrica$?

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \colon a+b \text{ \'e par}\}$. R_6 $\acute{\textbf{e}}$ simétrica? Como \mathbb{Z} $\acute{\textbf{e}}$ infinito, garantir que R_6 $\acute{\textbf{e}}$ simétrica exige uma prova de generalização.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a, b) \in R$ também temos que $(b, a) \in R$.

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) : a+b \in par\}$. $R_6 \in simétrica$?

Como \mathbb{Z} é infinito, garantir que R_6 é simétrica exige uma **prova de generalização**.

Prova

Sejam c, d dois inteiros quaisquer (Instanciação),

suponha que $(c, d) \in R_6$ (Hipótese da Prova Direta).

Pela definição de R_6 , c+d é par.

Como c + d = d + c (Comutatividade da Soma), d + c também é par.

Pela definição de R_6 , temos que $(d, c) \in R_6$.

Portanto, R_6 é simétrica.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a, b) \in R$ também temos que $(b, a) \in R$.

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Quais das relações abaixo são simétricas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b): a \leq b\}$
- $R_2 = \{(a, b): a > b\}$
- $R_3 = \{(a, b): a = b \text{ or } a = -b\}$
- $R_4 = \{(a, b): a = b\}$
- $R_5 = \{(a, b): a = b + 1\}$
- $R_6 = \{(a, b): a + b \leq 3\}$

Definição: Uma relação R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Quais das relações abaixo são simétricas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b) : a \leq b\}$ Não
- $R_2 = \{(a, b): a > b\}$ Não
- $R_3 = \{(a, b): a = b \text{ or } a = -b\}$ Sim
- $R_4 = \{(a, b): a = b\}$ Sim
- $R_5 = \{(a, b): a = b + 1\}$ Não
- $R_6 = \{(a, b): a + b \le 3\}$ Sim

Relações Anti-Simétricas

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

$$\forall a \in A, \ \forall b \in A \ [((a,b) \in R \land a \neq b) \implies (b,a) \notin R]$$

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

$$\forall a \in A, \ \forall b \in A \ [((a,b) \in R \land a \neq b) \implies (b,a) \notin R]$$

Observações:

- A anti-simetria é independente da simetria. Estas propriedades não contrariam nem impedem uma à outra.
- Intuitivamente, a anti-simetria é um tipo de **simetria restrita** que admite exclusivamente a simetria de pares do tipo (x, x) na relação.

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo 1

Seja $A = \{1, 2, 3\}$, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

Como A é finito e pequeno, podemos verificar se R_5 é anti-simétrica por exaustão

- Como $(1,1) \in R_5$, mas 1=1, não há o que verificar neste caso.
- Como $(1,2) \in R_5$ e $1 \neq 2$, precisamos ter $(2,1) \notin R_5$.
- Como $(2,1) \in R_5$ e $2 \neq 1$, precisamos ter $(1,2) \notin R_5$.
- Como $(1,3) \in R_5$ e $1 \neq 3$, precisamos ter $(3,1) \notin R_5$.

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo 1

Seja $A = \{1, 2, 3\}$, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

Como A é finito e pequeno, podemos verificar se R_5 é anti-simétrica por exaustão

- Como $(1,1) \in R_5$, mas 1=1, não há o que verificar neste caso. \checkmark
- Como $(1,2) \in R_5$ e $1 \neq 2$, precisamos ter $(2,1) \notin R_5$.
- Como $(2,1) \in R_5$ e $2 \neq 1$, precisamos ter $(1,2) \notin R_5$.
- Como $(1,3) \in R_5$ e $1 \neq 3$, precisamos ter $(3,1) \notin R_5$.

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo 2

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b): a+b \in par\}$ $R_6 \in anti-simétrica?$

Definição (Alternativa 1): Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo 2

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b): a+b \in par\}$ $R_6 \in anti-simétrica?$

Como \mathbb{Z} é infinito, garantir que R_6 é anti-simétrica exige uma **prova de generalização**.

Neste caso, porém, temos um contra-exemplo:

 $(1,3) \in R_6$ e $1 \neq 3$, mas $(3,1) \in R_6$.

Portanto, R₆ não é anti-simétrica.

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a, b \in A$, se $(a, b) \in R$ e $(b, a) \in R$, então a = b.

$$\forall a \forall b [((a,b) \in R \land (b,a) \in R) \Longrightarrow (a=b)]$$

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a, b \in A$, se $(a, b) \in R$ e $(b, a) \in R$, então a = b.

$$\forall a \forall b [((a,b) \in R \land (b,a) \in R) \Longrightarrow (a=b)]$$

Qual definição usar?

• A que você preferir entre estas. Elas são equivalentes.

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a, b \in A$, se $(a, b) \in R$ e $(b, a) \in R$, então a = b.

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a, b \in A$, se $(a, b) \in R$ e $(b, a) \in R$, então a = b.

Exemplo

Considere $R_8 \subseteq \mathbb{N}^2$ tal que $R_8 = \{(a, b) : a \leq b\}$

Como \mathbb{N} é infinito, garantir que R_8 é anti-simétrica exige uma **prova de generalização**.

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a, b \in A$, se $(a, b) \in R$ e $(b, a) \in R$, então a = b.

Exemplo

Considere $R_8 \subseteq \mathbb{N}^2$ tal que $R_8 = \{(a, b) : a \leq b\}$

Como $\mathbb N$ é infinito, garantir que R_8 é anti-simétrica exige uma **prova de generalização**.

Prova

- Sejam c, d naturais quaisquer. (Instanciação)
- Por prova direta, suponha que $(c, d) \in R_8$ e $(d, c) \in R_8$.
- Pela definição de R_8 , isso significa que $c \le d$ e $d \le c$.
- Isso nos permite concluir que c = d.
- Portanto, R₈ é anti-simétrica.

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a, b \in A$, se $(a, b) \in R$ e $(b, a) \in R$, então a = b.

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a,b \in A$, se $(a,b) \in R$ e $(b,a) \in R$, então a=b.

Quais das relações abaixo são anti-simétricas?

Considere $a, b \in \mathbb{R}$.

•
$$R_1 = \{(a, b): a \leq b\}$$

•
$$R_2 = \{(a, b): a > b\}$$

•
$$R_3 = \{(a, b): a = b \text{ or } a = -b\}$$

•
$$R_4 = \{(a,b): a = b\}$$

•
$$R_5 = \{(a, b): a = b + 1\}$$

•
$$R_6 = \{(a, b): a + b \leq 3\}$$

Definição (Alternativa 2): Uma relação binária R no conjunto A é anti-simétrica se e somente se, para todo $a,b \in A$, se $(a,b) \in R$ e $(b,a) \in R$, então a=b.

Quais das relações abaixo são anti-simétricas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b) : a \leq b\}$ Sim
- $R_2 = \{(a, b): a > b\}$ Sim
- $R_3 = \{(a, b): a = b \text{ or } a = -b\}$ Não
- $R_4 = \{(a, b): a = b\}$ Sim
- $R_5 = \{(a, b): a = b + 1\}$ Sim
- $R_6 = \{(a, b): a + b \le 3\}$ Não

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a,b,c\in A$, sempre que $(a,b)\in R$ e $(b,c)\in R$, então $(a,c)\in R$.

$$\forall a \in A, \forall b \in A, \forall c \in A, [((a,b) \in R \land (b,c) \in R) \Longrightarrow (a,c) \in R]$$

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a, b, c \in A$, sempre que $(a, b) \in R$ e $(b, c) \in R$, então $(a, c) \in R$.

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a, b, c \in A$, sempre que $(a, b) \in R$ e $(b, c) \in R$, então $(a, c) \in R$.

Exemplo

Seja $A = \{1, 2, 3\}$, considere $R_9 = A^2$ tal que $R_9 = \{(1, 1), (1, 3), (3, 1)\}$

Como A é finito e pequeno, podemos verificar se R_9 é transitiva por exaustão

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a, b, c \in A$, sempre que $(a, b) \in R$ e $(b, c) \in R$, então $(a, c) \in R$.

Exemplo

Seja $A = \{1, 2, 3\}$, considere $R_9 = A^2$ tal que $R_9 = \{(1, 1), (1, 3), (3, 1)\}$

Como A é finito e pequeno, podemos verificar se R_9 é transitiva por exaustão

- Como $(1,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter $(1,3) \in R_9$
- Como $(1,3) \in R_9$ e $(3,1) \in R_9$, precisamos ter $(1,1) \in R_9$
- Como $(3,1) \in R_9$ e $(1,1) \in R_9$, precisamos ter $(3,1) \in R_9$
- Como $(3,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter $(3,3) \in R_9$

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a, b, c \in A$, sempre que $(a, b) \in R$ e $(b, c) \in R$, então $(a, c) \in R$.

Exemplo

Seja $A = \{1, 2, 3\}$, considere $R_9 = A^2$ tal que $R_9 = \{(1, 1), (1, 3), (3, 1)\}$

Como A é finito e pequeno, podemos verificar se R_9 é transitiva por exaustão

- Como $(1,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter $(1,3) \in R_9$ 🗸
- Como $(1,3) \in R_9$ e $(3,1) \in R_9$, precisamos ter $(1,1) \in R_9$
- Como $(3,1) \in R_9$ e $(1,1) \in R_9$, precisamos ter $(3,1) \in R_9$
- Como $(3,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter $(3,3) \in R_9$ **X**

Exemplo

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \colon a+b \text{ \'e par}\}\ R_6$ **\'e transitiva?** Como \mathbb{Z} \acute{e} infinito, garantir que R_6 \acute{e} transitiva exige uma **prova de generalização**.

Exemplo

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \colon a+b \text{ \'e par}\}$ $R_6 \text{ \'e transitiva?}$ Como \mathbb{Z} \'e infinito, garantir que R_6 \'e transitiva exige uma prova de generalização.

Prova

- (1) Sejam c, d, e inteiros quaisquer (Instanciação).
- (2) Por prova direta, suponha que $(c, d) \in R_6$ e $(d, e) \in R_6$.
- (3) Pela definição de R_6 , isso significa que c + d é par e d + e é par.
- (4) Portanto, existem inteiros k, l tais que c + d = 2k e d + e = 2l.
- (5) Então $(c+d) + (d+e) = 2k + 2l \Longrightarrow c + 2d + e = 2k + 2l$,
- (6) o que implica c + e = 2k + 2l 2d = 2(k + l d).
- (7) Como k, l, d são inteiros, k + l d é um número inteiro.
- (8) Logo, c + e é um número par, o que significa que $(c, e) \in R_6$.
- (9) Portanto, R_6 é transitiva.

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a, b, c \in A$, sempre que $(a, b) \in R$ e $(b, c) \in R$, então $(a, c) \in R$.

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a,b,c\in A$, sempre que $(a,b)\in R$ e $(b,c)\in R$, então $(a,c)\in R$.

Quais das relações abaixo são transitivas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b) : a \leq b\}$
- $R_2 = \{(a, b): a > b\}$
- $R_3 = \{(a, b): a = b \text{ or } a = -b\}$
- $R_4 = \{(a,b): a = b\}$
- $R_5 = \{(a, b): a = b + 1\}$
- $R_6 = \{(a, b): a + b \leq 3\}$

Definição: Uma relação binária R no conjunto A é transitiva se e somente se, para todo $a,b,c\in A$, sempre que $(a,b)\in R$ e $(b,c)\in R$, então $(a,c)\in R$.

Quais das relações abaixo são transitivas?

Considere $a, b \in \mathbb{R}$.

- $R_1 = \{(a, b) : a \leq b\}$ Sim
- $R_2 = \{(a, b): a > b\}$ Sim
- $R_3 = \{(a, b): a = b \text{ or } a = -b\}$ Sim
- $R_4 = \{(a, b): a = b\}$ Sim
- $R_5 = \{(a, b): a = b + 1\}$ Não
- $R_6 = \{(a, b): a + b \le 3\}$ Não

Grafo de uma endorrelação

Representação gráfica de uma endorrelação

 Toda endorrelação R: A → A pode ser representada como uma estrutura matemática chamada grafo direcionado.

Representação gráfica de uma endorrelação

- Toda endorrelação R: A → A pode ser representada como uma estrutura matemática chamada grafo direcionado.
- A representação de uma endorrelação $R \colon A \to A$ como grafo direcionado é como segue:
 - cada elemento do conjunto A é representado como um ponto e é denominado vértice.
 - o cada par $(a, b) \in R$ é representado por uma seta, com origem em a e destino em b, denominada aresta.

Representação gráfica de uma endorrelação

- Toda endorrelação R: A → A pode ser representada como uma estrutura matemática chamada grafo direcionado.
- A representação de uma endorrelação R: A → A como grafo direcionado é como segue:
 - cada elemento do conjunto A é representado como um ponto e é denominado vértice.
 - o cada par $(a, b) \in R$ é representado por uma seta, com origem em a e destino em b, denominada aresta.

Exemplo:

Seja $A = \{1, 2, 3, 4\}$ e a relação binária R em A definida como $R = \{(1, 2), (2, 4), (3, 4), (1, 1), (1, 3)\}.$

Grafo direcionado de uma endorrelação

- O grafo direcionado de uma endorrelação pode ser usado para determinar se a relação tem as seguintes propriedades:
 - o reflexiva
 - o simétrica
 - o anti-simétrica
 - o transitiva

Grafo direcionado de uma endorrelação

- O grafo direcionado de uma endorrelação pode ser usado para determinar se a relação tem as seguintes propriedades:
 - o reflexiva
 - simétrica
 - anti-simétrica
 - o transitiva

Exercício:

Determine se as relações para os grafos direcionados ao lado são reflexivas, simétricas, anti-simétricas e/ou transitivas.

(b) Directed graph of S

- Sejam $A = \{a_1, a_2, \dots, a_m\}$ e $B = \{b_1, b_2, \dots, b_n\}$ conjuntos.
- Seja R uma relação binária de A em B.
- R pode ser representada por uma matriz booleana $M_R = [m_{i,j}]$ em que

$$m_{i,j} = \begin{cases} 1 & \text{se } (a_i, b_j) \in R, \\ 0 & \text{se } (a_i, b_j) \notin R. \end{cases}$$

- Sejam $A = \{a_1, a_2, \dots, a_m\}$ e $B = \{b_1, b_2, \dots, b_n\}$ conjuntos.
- Seja R uma relação binária de A em B.
- R pode ser representada por uma matriz booleana $M_R = [m_{i,j}]$ em que

$$m_{i,j} = \begin{cases} 1 & \text{se } (a_i, b_j) \in R, \\ 0 & \text{se } (a_i, b_j) \notin R. \end{cases}$$

Exemplo:

Seja
$$A = \{1, 2, 3\}, B = \{1, 2\}$$

e $R_1: A \to B$ tal que $M_{R_1} = \{(2, 1), (3, 1), (3, 2)\}.$ $M_{R_1} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

- Sejam $A = \{a_1, a_2, \dots, a_m\}$ e $B = \{b_1, b_2, \dots, b_n\}$ conjuntos.
- Seja R uma relação binária de A em B.
- R pode ser representada por uma matriz booleana $M_R = [m_{i,j}]$ em que

$$m_{i,j} = \begin{cases} 1 & \text{se } (a_i, b_j) \in R, \\ 0 & \text{se } (a_i, b_j) \notin R. \end{cases}$$

Exemplo:

Seja
$$A = \{1, 2, 3\}, B = \{1, 2\}$$

e $R_1 : A \to B$ tal que $R_1 = \{(2, 1), (3, 1), (3, 2)\}.$ $M_{R_1} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

Obs.: matrizes booleanas são geralmente usadas para representação de relações em programas de computador.

 Seja A um conjunto e R uma relação binária em um conjunto A com n elementos. A matriz booleana que representa a endorrelação R é uma matriz quadrada.

Matriz booleana de uma endorrelação

 Seja A um conjunto e R uma relação binária em um conjunto A com n elementos. A matriz booleana que representa a endorrelação R é uma matriz quadrada.

Exemplo:

Seja $A = \{1, 2, 3, 4\}$ e $R: A \rightarrow A$ tal que $R = \{(1, 2), (2, 4), (1, 3), (1, 1)\}.$

$$M_R = egin{bmatrix} 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

Matriz booleana de uma endorrelação

 Seja A um conjunto e R uma relação binária em um conjunto A com n elementos. A matriz booleana que representa a endorrelação R é uma matriz quadrada.

Exemplo:

Seja $A = \{1, 2, 3, 4\}$ e $R: A \rightarrow A$ tal que $R = \{(1, 2), (2, 4), (1, 3), (1, 1)\}$.

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• Obs.: É possível verificar através de um programa se uma endorrelação *R* é reflexiva, simétrica, anti-simétrica ou transitiva.

Verificando propriedades de relações

reflexiva

Verificando propriedades de relações

simétrica

reflexiva

Verificando propriedades de relações

simétrica

anti-simétrica

reflexiva

• **Definição:** Seja *R* uma relação de *A* para *B*. A relação inversa *R*⁻¹ de *B* para *A* é definida como:

$$R^{-1} = \{(b, a) \in B \times A \colon (a, b) \in R\}.$$

• **Definição:** Seja *R* uma relação de *A* para *B*. A relação inversa *R*⁻¹ de *B* para *A* é definida como:

$$R^{-1} = \{(b, a) \in B \times A \colon (a, b) \in R\}.$$

• Essa definição pode ser reescrita operacionalmente como

$$\forall a \in A, \ \forall b \in B, \ (b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$$

Exemplo: Sejam os conjuntos $A = \{2,3,4\}$ e $B = \{2,6,8\}$ e seja R a relação "divide" de A para B: $\forall (x,y) \in A \times B$, $xRy \iff x \mid y$

- $R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$
- $R^{-1} = \{(2,2), (6,2), (8,2), (6,3), (8,4)\}$

Exemplo: Sejam os conjuntos $A = \{2,3,4\}$ e $B = \{2,6,8\}$ e seja R a relação "divide" de A para B: $\forall (x,y) \in A \times B$, $xRy \iff x \mid y$

- $R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$
- $R^{-1} = \{(2,2), (6,2), (8,2), (6,3), (8,4)\}$

 $R^{-1}: \forall (y,x) \in B \times A, \ yR^{-1}x \iff y \text{ \'e um m\'ultiplo de x}.$

Definição (Relação composta): Sejam *A*, *B*, *C* conjuntos. Seja *R* uma relação de *A* para *B* e *S* uma relação de *B* para *C*.

A relação composta de R e S é o conjunto dos pares ordenados (a,c), onde $a \in A$, $c \in C$ e para o qual existe um elemento $b \in B$ tal que $(a,b) \in R$ e $(b,c) \in S$.

Denotamos a composta de R e S por $S \circ R$.

Definição (Relação composta): Sejam *A*, *B*, *C* conjuntos. Seja *R* uma relação de *A* para *B* e *S* uma relação de *B* para *C*.

A relação composta de R e S é o conjunto dos pares ordenados (a,c), onde $a \in A$, $c \in C$ e para o qual existe um elemento $b \in B$ tal que $(a,b) \in R$ e $(b,c) \in S$.

Denotamos a composta de R e S por $S \circ R$.

Exemplo

Qual é a composta das relações R e S, em que R é a relação de $\{1,2,3\}$ em $\{1,2,3,4\}$, com $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$, e S é a relação de $\{1,2,3,4\}$ em $\{0,1,2\}$, com $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?

Definição (Relação composta): Sejam *A*, *B*, *C* conjuntos. Seja *R* uma relação de *A* para *B* e *S* uma relação de *B* para *C*.

A relação composta de R e S é o conjunto dos pares ordenados (a,c), onde $a \in A$, $c \in C$ e para o qual existe um elemento $b \in B$ tal que $(a,b) \in R$ e $(b,c) \in S$.

Denotamos a composta de R e S por $S \circ R$.

Exemplo

Qual é a composta das relações R e S, em que R é a relação de $\{1,2,3\}$ em $\{1,2,3,4\}$, com $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$, e S é a relação de $\{1,2,3,4\}$ em $\{0,1,2\}$, com $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?

Resposta: $S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$

Definição (Potência de uma relação):

Seja R uma relação no conjunto A.

As potências R^n , $n=1,2,3,\ldots$ são definidas recursivamente por

$$R^1 = R$$
 e $R^{n+1} = R^n \circ R$.

Definição (Potência de uma relação):

Seja R uma relação no conjunto A.

As potências R^n , n = 1, 2, 3, ... são definidas recursivamente por

$$R^1 = R$$
 e $R^{n+1} = R^n \circ R$.

Exercício: Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Encontre as potências $R^n \text{ com } n \ge 2$.

Definição (Potência de uma relação):

Seja R uma relação no conjunto A.

As potências R^n , n = 1, 2, 3, ... são definidas recursivamente por

$$R^1 = R$$
 e $R^{n+1} = R^n \circ R$.

Exercício: Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Encontre as potências $R^n \text{ com } n > 2$.

Solução Parcial: Como
$$R^2 = R \circ R$$
, encontramos $R^2 = \{(1,1),(2,1),(3,1),(4,2)\}.$

Definição (Potência de uma relação):

Seja R uma relação no conjunto A.

As potências R^n , n = 1, 2, 3, ... são definidas recursivamente por

$$R^1 = R$$
 e $R^{n+1} = R^n \circ R$.

Exercício: Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}.$

Encontre as potências R^n com $n \ge 2$.

Solução Parcial: Como $R^2 = R \circ R$, encontramos

$$R^2 = \{(1,1), (2,1), (3,1), (4,2)\}.$$

Como $R^3 = R^2 \circ R$, temos $R^3 = \{(1,1), (2,1), (3,1), (4,1)\}.$

Definição (Potência de uma relação):

Seja R uma relação no conjunto A.

As potências R^n , n = 1, 2, 3, ... são definidas recursivamente por

$$R^1 = R$$
 e $R^{n+1} = R^n \circ R$.

Exercício: Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}.$

Encontre as potências R^n com $n \ge 2$.

Solução Parcial: Como $R^2 = R \circ R$, encontramos

$$R^2 = \{(1,1), (2,1), (3,1), (4,2)\}.$$

Como
$$R^3 = R^2 \circ R$$
, temos $R^3 = \{(1,1), (2,1), (3,1), (4,1)\}.$

Como
$$R^4 = R^3 \circ R$$
, temos $R^4 = \{(1,1),(2,1),(3,1),(4,1)\} = R^3$.

Definição (Potência de uma relação):

Seja R uma relação no conjunto A.

As potências R^n , n = 1, 2, 3, ... são definidas recursivamente por

$$R^1 = R$$
 e $R^{n+1} = R^n \circ R$.

Exercício: Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}.$

Encontre as potências R^n com $n \ge 2$.

Solução Parcial: Como $R^2 = R \circ R$, encontramos

$$R^2 = \{(1,1), (2,1), (3,1), (4,2)\}.$$

Como
$$R^3 = R^2 \circ R$$
, temos $R^3 = \{(1,1),(2,1),(3,1),(4,1)\}.$

Como
$$R^4 = R^3 \circ R$$
, temos $R^4 = \{(1,1),(2,1),(3,1),(4,1)\} = R^3$.

Como $R^4 = R^3$, isso implica que $R^n = R^3$ para n = 4, 5, 6, ... (provar isso)

Teorema: Seja R uma relação no conjunto A. A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Demonstração:

Teorema: Seja *R* uma relação no conjunto *A*.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Demonstração:

Seja A um conjunto e R uma relação em A.

(←) Prova direta. Suponha que $R^n \subseteq R$ para todo $n \ge 1$.

Em particular, $R^2 \subseteq R$.

Queremos provar que R é transitivo.

Sejam então, $a, b, c \in A$ tais que $(a, b) \in R$ e $(b, c) \in R$.

Pela definição de composição, temos que $(a, c) \in R^2$.

Como $R^2 \subseteq R$, isso implica que $(a, c) \in R$.

Portanto, R é transitivo, como queríamos demonstrar.

Teorema: Seja R uma relação no conjunto A.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Teorema: Seja *R* uma relação no conjunto *A*.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Caso Base: n = 1. Claramente verdadeiro, dado que $R^1 = R \subseteq R$.

Teorema: Seja R uma relação no conjunto A.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Caso Base: n = 1. Claramente verdadeiro, dado que $R^1 = R \subseteq R$.

Hipótese de Indução: Suponha que $R^n \subseteq R$, para um inteiro positivo n.

Teorema: Seja R uma relação no conjunto A.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Caso Base: n = 1. Claramente verdadeiro, dado que $R^1 = R \subseteq R$.

Hipótese de Indução: Suponha que $R^n \subseteq R$, para um inteiro positivo n.

Passo Indutivo: Devemos provar que $R^{n+1} \subseteq R$.

Seja $(a,b) \in R^{n+1}$. Pela definição de R^{n+1} , temos que $R^{n+1} = R^n \circ R$.

Teorema: Seja R uma relação no conjunto A.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Caso Base: n = 1. Claramente verdadeiro, dado que $R^1 = R \subseteq R$.

Hipótese de Indução: Suponha que $R^n \subseteq R$, para um inteiro positivo n.

Passo Indutivo: Devemos provar que $R^{n+1} \subseteq R$.

Seja $(a,b) \in R^{n+1}$. Pela definição de R^{n+1} , temos que $R^{n+1} = R^n \circ R$.

Logo, existe um elemento $x \in A$ tal que $(a, x) \in R$ e $(x, b) \in R^n$.

Teorema: Seja R uma relação no conjunto A.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Caso Base: n = 1. Claramente verdadeiro, dado que $R^1 = R \subseteq R$.

Hipótese de Indução: Suponha que $R^n \subseteq R$, para um inteiro positivo n.

Passo Indutivo: Devemos provar que $R^{n+1} \subseteq R$.

Seja $(a,b) \in R^{n+1}$. Pela definição de R^{n+1} , temos que $R^{n+1} = R^n \circ R$.

Logo, existe um elemento $x \in A$ tal que $(a, x) \in R$ e $(x, b) \in R^n$.

Pela HI, como $R^n \subseteq R$, obtemos que $(x, b) \in R$.

Teorema: Seja R uma relação no conjunto A.

A relação R é transitiva se e somente se $R^n \subseteq R$ para todo $n \ge 1$.

Continuação da Demonstração:

 (\rightarrow) Suponha que R é transitiva. Vamos usar indução matemática em n para provar que $R^n \subseteq R$ para todo $n \ge 1$.

Caso Base: n = 1. Claramente verdadeiro, dado que $R^1 = R \subseteq R$.

Hipótese de Indução: Suponha que $R^n \subseteq R$, para um inteiro positivo n.

Passo Indutivo: Devemos provar que $R^{n+1} \subseteq R$.

Seja $(a,b) \in R^{n+1}$. Pela definição de R^{n+1} , temos que $R^{n+1} = R^n \circ R$.

Logo, existe um elemento $x \in A$ tal que $(a, x) \in R$ e $(x, b) \in R^n$.

Pela HI, como $R^n \subseteq R$, obtemos que $(x, b) \in R$.

Como R é transitivo e $(a, x) \in R$ e $(x, b) \in R$, segue que $(a, b) \in R$.

Isso mostra que $R^{n+1} \subseteq R$, completando a prova.

FIM