Lecture 24: Magnetic Potentials, Magnetic Forces

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

- Magnetic Potentials
- 2 Magnetic Force on a Current-Carrying Conductor
- 3 Examples of Force Calculations

Poisson's Equation

Magnetic Circuits	Ampère's Law
$\mathbf{\nabla}^2 \mathbf{A} = -\mu_0 \mathbf{J}$	$oldsymbol{ abla} imes oldsymbol{B} = \mu_0 oldsymbol{J}$
Easy to solve for A	Hard to solve for $oldsymbol{B}$
Then find $oldsymbol{B} = oldsymbol{ abla} imes oldsymbol{A}$	from point form
Source J Fields B, H	
Integration path 2 Potentials Differentiation path 2	
V_m or $m{A}$	

Vector Potential and Magnetic Flux

$$\Psi = \iint_S m{B} \cdot dm{S}$$

Apply Stokes theorem.

Example: Infinitely Long Coaxial Cable

124 = -MJx

 $A_{z} = \frac{-\mu_{0}I}{2\pi} \ln(\frac{f}{h})$

only Z component, A_{X} A_{Y} $\nabla^{2}A_{Z} = -\mu_{0} J_{X}$ $\nabla^{2}A_{Z} = -\mu_{0} J_{X}$

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial Az}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 Az}{\partial \phi^2} + \frac{\partial^2 Az}{\partial z^2}$$

In source free region

$$\frac{1}{1}\frac{\partial}{\partial \rho}\left(\rho\frac{\partial \rho}{\partial \rho}\right) = 0$$

$$e^{\frac{dAz}{dp}} = C_1 \Rightarrow Az = C_1 \ln e + C_2$$

$$\nabla^2 f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

$$Az = G \ln \rho - C \cdot \ln b = G \ln (1/b)$$

$$Line 1/b = G \ln (1/b)$$

上山鄉家

Let Az= 0 @ a distance Example: Two Parallel Wires

4cm away from each conductor.

Consider two parallel wires of 1 cm radius, each carrying 12 A. Find \boldsymbol{A} at a) (0,0,z); b) (0,8 cm, z); c) (4 cm, 4 cm, z); d) (2 cm, 4 cm, z).

a)
$$Az = 0$$
b) $Az = 0$

$$Az = -\frac{100}{2\pi} \ln(\frac{12}{4})$$

$$Az_1 = -\frac{10}{2\pi} \ln \left(\frac{1}{6} \right) = \frac{-\frac{1}{10} \times 12}{2\pi} \ln \left(\frac{180}{4} \right)$$

Magnetic Force on a Current-Carrying Conductor

Recall magnetic force on a moving charge is:

Contour Integrals for Force Calculations

Example: Force on a Semicircular Conductor

A semicircular loop lies in a uniform field ${\bf B}=\hat{{\bf y}}B_0$. Calculate the force on the loop if it carries a current I.

Example: Force on a Loop

Calculate the force on the loop if it carries a current as shown.

