

دانشکاه صنعتی شریف

دانشکده مهندسی کامپیوتر

الراحي پايگاه دادها

(فعل هشتم : عملیات در پایکاه داده رابطهای)

مهدي دادبخش

mahdi.dadbakhsh@sharif.edu

شماره درس: ۴۰۳۸۴

یکشنبه - سهشنبه (۱۶:۳۰ الی ۱۸:۰۰)

14-1-14-4

جبر رابطهای

حساب رابطهای

پایان

جبر رابطهای

عملگرهای متعارف عملگر گزینش عملگر پرتو عملگر تغییرنام عملگر پیوند

عملكرهاي متعارف

- خاصیت بسته بودن: حاصل ارزیابی هر عبارت جبر رابطهای معتبر، باز هم یک رابطه است (که تاپل
 تکراری ندارد).
 - :باشند: Type Compatible) باشند عملگر o و o ، باید عملوندها نوع -سازگار (Type Compatible) باشند
- \Box پیش شرط: $H_{R_1} = H_{R_2}$
- \square $R_3 = R_1 \ op \ R_2$ $H_{R_3} = H_{R_1} = H_{R_2}$
 - 🖵 بدنه نتیجه، حاصل انجام هر یک از اَعمال اجتماع، اشتراک و یا تفاضل دو مجموعه بدنه است.
 - در عملگر ضرب کارتزین (TIMES): \Box
 - $H_{R_2} \cap H_{R_1} = \emptyset$. باید صفت همنام وجود داشته باشد. G
- است. $H_{R_2} \times H_{R_1}$ و بدنه نتیجه برابر ضرب کارتزین دو مجموعه بدنه است.
 - SQL در SQL چگونه شبیهسازی میشود؟

عملکر کزینش (Restrict)

عملگر گزینش ، یک عبارت منطقی تشکیل شده از شرطهای ساده به صورت Ai OP Aj و یا Ai OP value میباشد که در آن OP یکی از عملگرهای = ، ≠ ، > ، < ، ≥ و ≤ است و value یک مقدار ثابت است.

.ماد ریاضی که در آن σ_c که در آن σ_c که در آن که در

RESTRICT R WHERE c و یا $^{\circ}$ R WHERE $^{\circ}$ R $^{\circ}$ (R) $^{\circ}$

این عملگر تک عملوندی است.

عملکرد (در نمایش جدولی رابطه) : زیرمجموعه ای از تاپلهای رابطه است که دارای شرایط مورد نظر هستند.

مثال : مشخصات کامل دانشجویان پسر بالای ۲۰ سال را نمایش دهد :

 $\sigma_{gen=true \ \land \ age>20}$ (student)

نکته: عملگر گزینش جابجایی پذیر است ، یعنی :

 $\sigma_{c1} \left(\sigma_{c2}(R) \right) = \sigma_{c2} \left(\sigma_{c1}(R) \right) = \sigma_{c1 \wedge c2} \left(\mathsf{R} \right)$

عبارات جبری معادل:

R where (c1 and c2) \equiv (R where c1) intersect (R where c2) R where (c1 or c2) \equiv (R where c1) union (R where c2)

R where not $c \equiv R$ minus (R where c)

عملکر پرتو (Project)

عملگر پرتو ، صفات خاصی از یک رابطه را نمایش میدهد.

نماد ریاضی : ∏

PROJECT R OVER (L) و یا (R) [L] ، $\prod_{< L>}$ (R) (R) شکل کلی :

این عملگر تک عملوندی است.

عملکرد (در نمایش جدولی رابطه) : زیرمجموعه ای از ستونهای رابطه است.

مثال ۱: شماره دانشجویی و نام خانوادگی تمام دانشجویان را نمایش دهد:

 $\prod_{\langle stno, LastName \rangle}$ (student)

مثال ۲: شماره دانشجویی دانشجویانی که درسی انتخاب نکرده اند را نمایش دهد:

 $R := \prod_{\langle stno \rangle} (student) - \prod_{\langle stno \rangle} (SelectedLesson)$

مثال ۳: شماره دانشجویی و نام خانوادگی دانشجویان پسر را نمایش دهد:

 $\prod_{\langle stno, LastName \rangle} (\sigma_{gen=true} \text{ (student))}$

نکته : در SQL استاندارد Select در حالت کلی ترکیبی از دو عملگر Restrict و Project است.

نکته : در لیست صفات پرتو، می توان از توابع حسابی استفاده کرد و صفت (صفاتی) با مقادیر حاصل از اجرای تابع (توابع) در رابطه جواب داشت.

عملکر تغییرنام (Rename)

این عملگر، برای نامیدن رابطه حاصل از یک عبارت جبر رابطهای به کار میرود.

ho :نماد ریاضی

شکل کلی : ρ_R که در آن R نام رابطه حاصل از عبارت جبر رابطهای E است.

این عملگر تک عملوندی است.

عملکرد: رابطه حاصل از عبارت جبر رابطهای E را با نام R برمی گرداند.

نکته : از این عملگر برای تغییرنام صفات نیز استفاده می شود :

R RENAME A_i AS B_j

عملکر پیوند (Join)

عملگر پیوند انواع مختلفی دارد :

Theta Join

Natural Join

Semi Join

Left Outer Join

Right Outer Join

Full Outer Join

عملکر پیوند – Theta Join

نکته : R1 ⋈_C R2= σ_C (R1×R2) در حالت عمومی، زیرمجموعهای افقی از ضرب کارتزین است که در آن تاپلهایی که حائز شرط پیوند هستند حضور دارند.

عملکر پیوند – Natural Join

- پیوند طبیعی نو ع خاصی از پیوند theta است که در آن فقط شرط مساوی بودن بررسی میشود .
 - صفات پیوند یک بار در جواب ظاهر میشوند .
 - صفت یا صفات پیوند باید هم نام هم باشند .

R := Major ⋈ Lesson

mcode	mname	stcount
1	فناورى اطلاعات	۲٠
۲	سخت افزار	•
۳۰۰	معماری	٣٠

lcode	Iname	 mcode
1 • • •	بانک اطلاعاتی	1
7	طراحى الگوريتم	1
٣٠٠٠	نقشه کشی	۳۰۰
۴٠٠٠	تاريخ	Null
۵۰۰۰	فارسى	Null

mcode	mname	stcount	lcode	Iname
1	فناورى اطلاعات	۲٠	1	بانک اطلاعاتی
١	فناورى اطلاعات	۲٠	7	طراحى الگوريتم
٣٠٠	معماری	٣٠	٣٠٠٠	نقشه کشی

عملکر پیوند – Semi Join

- این عملگر با هر پیوند theta قابل اعمال است .
- عملگر نیم پیوند در دو حالت نیم پیوند چپ و نیم پیوند راست موجود است.
 - نیم پیوند چپ : تاپلهای پیوند شدنی از رابطه چپ نمایش داده میشوند.
- نیم پیوند راست : تاپلهای پیوند شدنی از رابطه راست نمایش داده میشوند.

 $R := Major \bowtie_{major \ . \ mcode = lesson \ . \ Mcode} Lesson$

R := Major ⋉ Lesson

mcode	mname	stcount
1	فناورى اطلاعات	۲٠
1	فناورى اطلاعات	۲٠
۳۰۰	معماری	٣٠

lcode	Iname	mcode
1 • • •	بانک اطلاعاتی	1
7	طراحى الگوريتم	1 • •
٣٠٠٠	نقشه کشی	٣٠٠

عملکر پیوند – Left Outer Join

■ در این نوع پیوند، علاوه بر تاپلهای مشترک و پیوند شدنی در هر دو رابطه، تاپلهایی پیوند نشدنی از رابطه سمت چپ نیز نشان داده میشوند.

R := Major □ Lesson

mcode	mname	stcount	lcode	Iname
1	فناورى اطلاعات	۲٠	1 • • •	بانک اطلاعاتی
1	فناورى اطلاعات	۲٠	7	طراحى الگوريتم
٣٠٠	معماری	٣٠	** · · ·	نقشه کشی
۲۰۰	سخت افزار	•	Null	Null

عملکر پیوند – Right Outer Join

■ در این نوع پیوند، علاوه بر تاپلهای مشترک و پیوند شدنی در هر دو رابطه، تاپلهایی پیوند نشدنی از رابطه سمت راست نیز نشان داده میشوند.

R := Major ⋈□Lesson

mcode	mname	stcount	lcode	Iname
1	فناورى اطلاعات	۲٠	1 • • •	بانک اطلاعاتی
1	فناورى اطلاعات	۲٠	۲	طراحى الگوريتم
٣٠٠	معماری	٣٠	٣٠٠٠	نقشه کشی
Null	Null	Null	۴٠٠٠	تاريخ
Null	Null	Null	۵۰۰۰	فارسى

عملکر پیوند — Full Outer Join

■ در این نوع پیوند، علاوه بر تاپلهای مشترک و پیوند شدنی در هر دو رابطه، تاپلهایی پیوند نشدنی از رابطه سمت چپ و همچنین تاپلهای پیوند نشدنی از رابطه سمت راست نیز نشان داده می شوند.

R := Major □⋈□ Lesson

mcode	mname	stcount	lcode	Iname
1	فناورى اطلاعات	۲٠	1 • • •	بانک اطلاعاتی
1	فناورى اطلاعات	۲٠	۲	طراحى الگوريتم
٣٠٠	معماری	٣٠	٣٠٠٠	نقشه کشی
۲	سخت افزار	•	Null	Null
Null	Null	Null	۴٠٠٠	تاريخ
Null	Null	Null	۵۰۰۰	فارسى

حساب رابطهای

- حساب رابطهای شاخهای از منطق ریاضی و منطق مسندات است .
- حساب رابطهای و جبر رابطهای معادل هم هستند ، یعنی هر رابطهای را که بتوان با یک عبارت جبر رابطهای نوشت، میتوان با عبارتی از حساب رابطهای نیز نوشت و برعکس.
 - حساب رابطهای حالت توصیفی (Descriptive) دارد ولی جبر رابطهای حالت دستوری (Prospective) دارد.
 - در حساب رابطهای به کمک عبارات منطقی، شرایط ناظر بر رابطه را برای سیستم توصیف میکنیم.
 - در جبر رابطهای دستوراتی را به سیستم میدهیم.

متغیر تاپلی / متغیر طیفی

سورها

عبارت حساب رابطهای

مثال

متغیر تاپلی / متغیر طیفی

متغير تاپلي (Tuple Variable) يا متغير طيفي (Tuple Variable) :

■ متغیری است که مقادیر آن تاپلهای یک رابطه است (هر لحظه یک تاپل).

- RANGVAR SX RANGES OVER S;
- RANGVAR PX RANGES OVER P;
- RANGVAR SPX RANGES OVER SP;

■ که در آن S تهیه کننده ، P قطعه و SP تهیه کننده-قطعه میباشد.

S#	SName	Status	City
S1	Α	20	C1
S2	В	17	C2
S3	С	10	C4
S4	D	13	C2
S 5	Е	5	C3
S6	F	16	C1
S7	G	20	C2

Color	
Blue	
Red	
Yellow	
Green	
Blue	
	Blue Red Yellow Green

S#	P#	
S1	P1	
S1	Р3	
S2	P1	
S6	P5	
S3	P4	
S5	P5	
S4	P2	
S4	P1	

(Quantifiers) اسورها

- سور وجودی (EXISTS X(F) : حداقل یک مقدار برای متغیر X وجود دارد به نحوی که به ازای آن، فرمول F به درست ارزیابی شود.
 - سور عمومی FOR ALL X (F): به ازای تمام مقادیر متغیر X، فرمول F به درست ارزیابی میشود.
 - مثال: با فرض اینکه X از مجموعه اعداد صحیح مثبت مقدار می گیرد، داریم:

- ► EXISTS X (X<10) TRUE :حاصل ارزیابی</p>
- ➤ FOR ALL X (X<10) FALSE -حاصل ارزیابی:</p>

یاد آوری: بین این دو سور روابط زیر وجود دارد.

- ➤ FOR ALL X (F) = NOT EXISTS X (NOT F)
- EXISTS X (F) = NOT (FORALL X (NOT F))
- \triangleright FORALL X (F) \Rightarrow EXISTS X (F)
- \triangleright NOT EXISTS X (F) \Longrightarrow NOT FORALL X (F)

- بر اساس روابط فوق می توان روابط پیچیده دیگری را نیز استنباط کرد مانند روابط هم ارزی زیر:
- FORALL X (F AND G) = NOT EXISTS X (NOT(F) OR NOT(G))
- FORALL X (F OR G) = NOT EXISTS X (NOT(F) AND NOT(G))
- > EXISTS X (F OR G) = NOT FORALL X (NOT(F) AND NOT(G))
- EXISTS X (F AND G) = NOT FORALL X (NOT(F) OR NOT(G))

عبارت حساب رابطهای

■ اگر Y (Y و ...) متغیرتاپلی روی رابطه S) R(A1,A2,...,A_n) و ...) باشد، شکل کلی عبارت حساب رابطهای بدین صورت است :

(target-items) [WHERE F]

که در آن target-items فهرستی از صفات متغیر تاپلی Y) X و ...) به صورت X.A1, X.A2, ..., X.A_n) و F یک فرمول خوش ساخت است.

- در واقع، عبارت حساب رابطهای توصیف کننده مجموعه تاپلهایی است که شرایط F را ارضا مینمایند.
 - مثال:

- شماره تمام دانشجویان در رابطه STX.STID STT
- سماره دانشجویان گروه آموزشی D11 ′ STX.STID WHERE STX.STDEID='D11′ D11 هماره دانشجویان گروه آموزشی
- (STX.STID, STX.STL) WHERE EXISTS STCOX (STX.STID=STCOX.STID AND STCOX.COID='COM11')

شماره دانشجویی و مقطع تحصیلی آنهایی که درس COM11را انتخاب کردهاند.

مثال تهیه کننده و قطعه

■ مثال ۱: شماره همه تهیه کنندگان

SX.S#

■ مثال ۲: نام تهیه کنندگان شهر C2 که وضعیت آنها بزرگتر از ۱۵ باشد.

SX . SName WHERE SX . City = 'C2' AND SX . Status > 15

■ مثال ۳: نام تهیه کنندگانی که حداقل یک قطعه آبی رنگ تهیه کرده اند.

SX . SName WHERE EXISTS SPX (SPX . S# = SX . S# AND EXISTS PX (PX . P# = SPX . P# AND PX . Color = 'Blue'))

■ مثال ۴: نام جفت تهیه کنندگانی که در یک شهر بوده و حداقل یک قطعه مشترک تولید کرده اند.

SX . SName , SY . SName WHERE SX . City = SY . City AND NOT (SX . S# = SY . S#)
AND EXISTS SPX (EXISTS SPY (SPX . S# = SX . S# AND SPY . S# = SY . S# AND SPX . P# = SPY . P#)

پایان فصل هشتم

مهدي دادبخش

mahdi.dadbakhsh@sharif.edu

14-1-14-4