Algorithms

Dana Shapira
Lesson #6:
Minimum Spanning Trees (MST)

Minimum Spanning Tree

Given a graph G = (V, E) and an assignment of weights w(e) to the edges of G, a **minimum spanning tree** T of G is a spanning tree with minimum total edge weight

$$w(T) = \sum_{e \in T} w(e).$$

How To Build A Minimum Spanning Tree

- General strategy:
 - 1. Maintain a set of edges A such that (V, A) is a spanning forest of G and such that there exists a MST (V, F) of G such that $A \subseteq F$.
 - 2. As long as (V, A) is not a tree, find an edge that can be added to A while maintaining the above property.
- Two greedy variants of this strategy:
 - Kruskal's algorithm
 - Prim's algorithm

Cuts

A *cut* (X, Y) of a graph G = (V, E) is a partition of the vertex set V into two sets X and $Y = V \setminus X$.

An edge (v, w) is said to cross the cut (X, Y) if $v \in X$ and $w \in Y$.

A cut (X, Y) respects a set A of edges if no edge in A crosses the cut.

3

A Cut Theorem

Theorem: Let A be a subset of the edges of some minimum spanning tree of G; let (X, Y) be a cut that respects A; and let e be a minimum weight edge that crosses (X, Y). Then $A \cup \{e\}$ is also a subset of the edges of a minimum spanning tree of G; edge e is **safe**.

A Cut Theorem

Theorem: Let A be a subset of the edges of some minimum spanning tree of G; let (X, Y) be a cut that respects A; and let e be a minimum weight edge that crosses (X, Y). Then $A \cup \{e\}$ is also a subset of the edges of a minimum spanning tree of G; edge e is safe.

A Cut Theorem

Theorem: Let A be a subset of the edges of some minimum spanning tree of G; let (X, Y) be a cut that respects A; and let e be a minimum weight edge that crosses (X, Y). Then $A \cup \{e\}$ is also a subset of the edges of a minimum spanning tree of G; edge e is safe.

A Cut Theorem

 $w(e) \le w(f)$

 $w(T') \le w(T)$

7

Kruskal's Algorithm

Kruskal(G)

- 1 $A \leftarrow \emptyset$
- for every edge e = (v, w) of G, sorted by weight
- do if v and w belong to different connected components of (V, A)
- 4 **then** add edge e to A

(a, d):1(h, i):1 (c, e):1(f, h):2 (g, h):2 (b, c):3(b, f):3 (b, e):4 (c, d):5(f, g):5 (e, i):6 (d, g):8 (a, b):9 (c, f):12

9

Correctness Proof

Sorted edge sequence: $e_1, e_2, e_3, e_4, e_5, e_6, ..., e_i, e_{i+1}, e_{i+2}, e_{i+3}, ..., e_n$

Every edge e_i that cross the cut have a weight $w(e_i) \ge w(e_i)$ for j > i.

Hence, edge e_i is safe.

10

Union-Find Data Structures

11

- •Union-find data structures solve the following problem:
- •Given a set S of n elements, maintain a partition of S into subsets $S_1, S_2, ..., S_k$
- Support the following operations:
 - •Union(x, y): Replace sets S_i and S_j such that $x \in S_i$ and $y \in S_j$ with $S_i \cup S_j$ in the current partition
 - •Find(x): Returns a member $r(S_i)$ of the set S_i that contains x
- •In particular, Find(x) and Find(y) return the same element if and only if x and y belong to the same set.
- •It is possible to create a data structure that supports the above operations in $\mathcal{O}(\alpha(n))$ amortized time, where α is the inverse Ackermann function.

Kruskal's Algorithm Using Union-Find Data Structure

Kruskal(G)

- $A \leftarrow 0$
- Initialize a union-find data structure S that partitions V into singleton sets $\{v\}$.
- for every edge e = (v, w) of G, sorted by weight
- 4 **do if** Find(v) \neq Find(w)
- 5 **then** add edge e to A
- 6 Union(v, w)
 - Analysis:
 - $\mathcal{O}(m \log m)$ time for everything except the operations on S
 - •Cost of operations on S:
 - $ullet \mathcal{O}(\alpha(\textit{n}))$ amortized time per operation on \mathcal{S}
 - •n-1 Union operations
 - m Find operations
 - •Total: $O((n + m)\alpha(n))$ time
 - •Total running time: $O(m \log m)$

12

Prim's Algorithm

```
Prim(G)
          Q \leftarrow V
           for each u \in Q
             do key [u] \leftarrow \infty
           s \leftarrow some vertex of G
           \text{key } [s] \leftarrow 0
           \pi [s] \leftarrow NULL
           while Q is not empty
9
             do \mathbf{u} \leftarrow \text{DeleteMin}(Q)
10
             for each v \in Adj[u]
                then if v \in Q and w(u,v) < key[v]
11
12
                  then \pi[v] \leftarrow u
13
                          \text{key } [v] \leftarrow \text{w(u,v)}
```


13

Correctness Proof

Corollary: *Prim's algorithm constructs a minimum spanning tree of G.*