Introduction to nuclear and particle physics PH5211 - Problem Set 4 To be submitted in class on Tuesday 30th of August 2022

Any queries contact me at libby@iitm.ac.in

Suggested references:

- Problem 1: Krane 10.1-10.4
- Problem 2: Perkins 2.11 and Krane 11.8
- Problem 3: Krane 8.4
- Problem 4: Krane 9.1 9.4
- 1. Discuss the role of angular momentum and parity in the γ decay of nuclei. Describe how the changes in nuclear spin and parity lead to a classification of the transitions and indicate how these spin changes influence the decay rate.
- 2. The partial wave expansion of a plane wave $\psi_{\rm inc}=Ae^{ikz}=Ae^{ikr\cos\theta}$ when kr>>l is

$$\psi_{\text{inc}} = \frac{A}{2kr} \sum_{l=0}^{\infty} i^{l+1} (2l+1) \left[e^{-i(kr-l\pi/2)} - e^{+i(kr-l\pi/2)} \right] P_l(\cos \theta) ,$$

where l is the angular momentum associated with a component and $P_l(\cos \theta)$ are Legendre polynomials normalised such that $\int P_l P_{l'} d\Omega = 4\pi \delta_{ll'}/(2l+1)$. Introduce a complex factor η_l to represent the effect of the scattering centre for each partial wave to show that for a particular angular momentum l:

- $\sigma_{\rm el} = \pi \lambda^2 (2l+1) |1 \eta_l|^2$,
- $\sigma_{\text{inel}} = \pi \lambda^2 (2l+1) (1 |\eta_l|^2)$, and
- $\sigma_{\text{max}} = 4\pi\lambda^2(2l+1)$,

where $\sigma_{\rm el}$, $\sigma_{\rm inel}$ and $\sigma_{\rm max}$ are the elastic, inelastic and maximum cross sections, respectively. Here $k = \lambda^{-1}$.

3. Describe briefly the physical process occurring in alpha decay. Without detailed calculation, give a qualitative explanation of the dependence of the transition rate on the Z of the daughter nucleus and the energy released in the transition Q.

The figure shows the α -decay scheme of $^{244}_{96}$ Curium to $^{240}_{94}$ Plutonium. The transitions are marked with the branching fraction in percent. According to a simple formula the transition rate, λ , for the ground state to ground state transition is given by $\ln \lambda = C - DZ/Q^{1/2}$, where C = 132.8 and D = 3.97 (MeV^{1/2} when λ is in s⁻¹. Calculate the mean lifetime of $^{244}_{96}$ Cm.

If the same C and D are assumed to apply to the transition from the ground state of the $^{244}_{96}$ Cm to the $^{6+}_{94}$ level of $^{240}_{94}$ Pu, show the formula overestimates the rate for that transition and suggest a reason for the discrepancy.

- 4. The ground state of ¹⁴O decays by β^+ emission predominantly (99.4%) to an excited state in ¹⁴N, the maximum kinetic energy of the β^+ being 1.810 MeV. The ¹⁴N excited state decays to the ¹⁴N ground state emitting a γ ray of energy 2.313 MeV. The ground state of ¹⁴C decays by β^- emission to the ¹⁴N ground state, the maximum β^- kinetic energy being 0.156 MeV.
 - (a) Assuming that the nuclear radius R is given in terms of the nuclear mass number A by $R = 1.4 \times A^{1/3}$ fm, explain why the above facts are consistent with the hypothesis that the ¹⁴O ground state, the ¹⁴C ground state and the ¹⁴N excited state all have approximately the same binding energy due to the strong interaction.
 - (b) Suggest spin and parity assignments for the $^{14}{\rm O}$ and $^{14}{\rm C}$ ground states. Given that the γ ray decay in $^{14}{\rm N}$ is an M1 transition, assign spins and parities to the ground state and to the excited state in $^{14}{\rm N}$.
 - (c) Discuss what your results in parts (a) and (b) imply concerning the nature of the strong internucleon potential.
 - (d) Indicate qualitatively why the ¹⁴O β^+ decay to the ¹⁴N ground state is so suppressed (0.6%) relative to the β^+ decay to the ¹⁴N excited state.