Mathematical background

- Sets and De Morgan's laws
- Sequences and ther limits
- Infinite series
 - The geometric series
- Sums with multiple indices
- Countable and uncountable sets

Sets

A collection of distinct elements

$$\{a,b,c,d\}$$
 funite R: real numbers infinite $\{x \in \mathbb{R} : \cos(x) > 1/2 \}$

12: universal set

2c € S

Unions and intersections

 $S_n = 1, 2, ...$

Set properties

$$\Rightarrow S \cup T = T \cup S,$$

$$\Rightarrow S \cap (T \cup U) = (S \cap T) \cup (S \cap U),$$

$$\Rightarrow (S^c)^c = S,$$

$$S \cup \Omega = \Omega,$$

$$\Rightarrow S \cup T = T \cup S,$$

$$\Rightarrow S \cap (T \cup U) = (S \cap T) \cup (S \cap U),$$

$$\Rightarrow (S^c)^c = S,$$

$$S \cup \Omega = \Omega,$$

$$S \cup T \cup U$$

$$S \cup (T \cup U) = (S \cup T) \cup U,$$

$$\Rightarrow S \cup (T \cap U) = (S \cup T) \cap (S \cup U),$$

$$S \cap S^c = \emptyset,$$

$$S \cap \Omega = S.$$

Sn(Tnu)=(snT)nu

De Morgan's laws

$$S \rightarrow S^{\circ} T \rightarrow T^{\circ}$$

 $S^{\circ} \rightarrow S T^{\circ} \rightarrow T$
 $(S^{\circ} \cap T^{\circ})^{\circ} = SUT$
 $S^{\circ} \cap T^{\circ} = (SUT)^{\circ}$

$$\left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

$$\left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c}$$

Mathematical background: Sequences and their limits

$$a_1, a_2, a_3, \dots$$
 $i \in |N = \{1, 2, 3, \dots\}$

sequence $a_i, \{a_i\}$
 $a_i \in S$
 $s = |R|$
 $f(i) = a_i$
 $a_i \Rightarrow a$
 $a_i \Rightarrow a$
 $i \Rightarrow a$
 $a_i \Rightarrow a$

Mathematical background: When does a sequence converge?

- If $a_i \le a_{i+1}$, for all i, then either:
 - the sequence "converges to ∞ "
 - the sequence converges to some real number \boldsymbol{a}

• If $|a_i - a| \le b_i$, for all i, and $b_i \to 0$, then $a_i \to a$

7

Mathematical background: Infinite series

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$$
 provioled from it exists

• If $a_i \geq 0$: limit exists \leftarrow

- ullet if terms a_i do not all have the same sign:
 - limit need not exist

If a series is not monotonic then:-

- -> If series of abs of numbers is finite then original series is also finite upon reordering or doing some alg manipulation(see the underlined term)
- -> else the series DNE
- limit may exist but be different if we sum in a different order
- Fact: limit exists and independent of order of summation if $\sum_{i=1}^{\infty} |a_i| < \infty$

8

Mathematical background: Geometric series

$$\sum_{i=0}^{\infty} \alpha^{i} = 1 + \alpha + \alpha^{2} + \dots = \frac{1}{1-\alpha}$$
 $|\alpha| < 1$

$$n \rightarrow 00$$

$$(1-\alpha) 5 = 1$$

$$|S=1+\sum_{i=1}^{\infty} d^{i}=1+d\sum_{i=0}^{\infty} d^{i}=1+dS=\frac{1}{2} S(1-d)=1$$

$$|S<00| \text{ taken for granted}$$

9

About the order of summation in series with multiple indices

About the order of summation in series with multiple indices

Countable versus uncountable infinite sets

- Countable: can be put in 1-1 correspondence with positive integers
 - positive integers
 1,2,3,...
 - integers 0,1,-1,2,-2,3,-3,...

- rational numbers q, with 0 < q < 1

- Uncountable: not countable
 - the interval [0, 1]
 - the reals, the plane,...

The reals are uncountable

Cantor's diagonalization argument

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.