ARM Experiment -9

Building an SoC by interfacing Timer peripheral with ARM Cortex M0

Introduction

The purpose of this experiment is to build a System on Chip-Integrating a Timer peripheral with ARM Cortex M0 processor using AHB Lite bus interface and to Synthesis and Check the behavior of the same.

Objective

- Insert a value maximum count of 0F to load value register.
- Interface Timer peripheral that runs in Free running mode mode with prescaler with ARM Cortex M0 processor.

Software tools Requirement

Modelsim (Siemens)/ Xilinx Vivado/ Icarus Verilog

arm Keil µvision 5.37

Software programming:

Program the Cortex-M0 processor using arm assembly language and generate the hex file using **arm Keil µvision 5.37**

Synthesis

Synthesis the same on ARTY A7 FPGA Kit.

Results should have

Synthesis Report

RTL Schematic

Pin Mapping Report

Screenshot of the Remote Lab-Showing outputs (if any)

Lab Manual-Verilog/FPGA

Note: You can use Virtual Input /Output to give inputs and View outputs or you may use Chipscope (ILA) for viewing the outputs.

Block Diagram

Memory Map of Peripherals

Peripheral	Base address	End address	Size
SRAM	0x0000_0000	0x00FF_FFFF	16MB
Timer	0x5200_0000	0x52FF_FFFF	16MB

Timer Peripheral Registers

Register	Base address	Size
Load value	0x5200_0000	4 bytes
Current value	0x5200_0004	4 bytes
Control value	0x5200_0008	4 bytes

Outcome

After this experiment, the learner would get a basic idea about designing a simple SoC based on arm cores, how to interface peripherals to the core using the AHB Lite bus, and how to program the processor using Assembly language

Reference

Demo video in session 13

