# Topics in Computational Economics - Problem Set 9

Laszlo Tetenyi

April 14, 2016

## Exercise 1

Instead of the hint, I am going to use the Spectral Theorem for self-adjoint (in our specific case, symmetric) matrices:

**Theorem 1.** Spectral Theorem: Let Q be a self-adjoint linear operator in a finite dimensional vector space. Then there exist  $\lambda_1 \ldots \lambda_k$  real numbers (nonnegative if Q is real) and  $P_1 \ldots P_k$  orthogonal projections with  $k \leq \dim V$  such that:

- $\sum_i P_i = I$
- $\sum_{i} \lambda_{i} P_{i} = Q$

## Proof of the exercise:

Show that:  $||A||^2 \le \rho(A'A)$ 

Take any  $x \in \mathbb{R}^n$  st.:  $\langle Ax, Ax \rangle = ||Ax||^2 = ||A||^2 \cdot ||x||^2$  Then using the properties of symmetric linear operators, the Spectral Theorem and that orthogonal projections are idempotent and symmetric:

where the last inequality is true as all the eigenvalues are nonnegative and the norm is non-negative. Continuing and using the second part of the Spectral Theorem:

$$\lambda_{max} \sum_{i} ||P_{i}x|| = \lambda_{max} < \sum_{i} P_{i}x, x >$$

$$= \lambda_{max} < \sum_{i} P_{i}x, x >$$

$$= \lambda_{max} < x, x >$$

$$= \lambda_{max} ||x||^{2}$$

Proving that  $||A||^2 \le \rho(A'A)$ 

Show that:  $||A||^2 \ge \rho(A'A)$ :

Take any  $x \in \mathbb{R}^n$  st.:  $A'Ax = \rho(A'A)x$ . Then:

$$\rho(A'A)||x||^{2} = <\rho(A'A)x, x >$$

$$= < Ax, Ax >$$

$$= ||Ax||^{2}$$

$$\le ||A||^{2} \cdot ||x||^{2}$$

Proving that  $||A||^2 \ge \rho(A'A)$ Overall we have that  $||A||^2 = \rho(A'A)$ 

## **Exercise 2**

Gelfand's formula states that  $\forall A \in \mathcal{M}(n \times n)$  we have that  $||A^k||^{1/k} \to \rho(A)$  as  $k \to \infty$ . This means that for any  $\varepsilon > 0$  there exists a  $K \in \mathbb{N}$  such that  $\forall k \geq K$  we have  $|||A^k||^{1/k} - \rho(A)| < \varepsilon$ . This means that  $\forall k \geq K$ 

$$\begin{split} \|A^k\|^{1/k} - \rho(A) &< \varepsilon \\ \|A^k\|^{1/k} &< \rho(A) + \varepsilon \\ \|A^k\| &< (\rho(A) + \varepsilon)^k \end{split}$$

Since  $\rho(A) < 1$  and we can set  $\varepsilon$  arbitrarily small, let  $r = \rho(A) + \varepsilon < 1$ . Then we have that  $||A^k|| < r^k C$ , where in this case C = 1.

Now, we have

$$\sum_{k=0}^{\infty} \|A^k\| = \sum_{k=0}^{K} \|A^k\| + \sum_{k=K+1}^{\infty} \|A^k\| < \sum_{k=0}^{K} \|A^k\| + \sum_{k=K+1}^{\infty} r^k = \sum_{k=0}^{K} \|A^k\| + \frac{r^{K+1}}{1-r} < \infty$$

where the result of the second summation in the final equality follows from the properties of partial geometric sums. The final inequality follows from the facts that:  $||A^k||$  is well defined for any matrix, and so is finite for any k and a finite sum of finite values is itself finite;  $\frac{r^{k+1}}{1-r} < \infty$  as long as  $r \neq 1$ .

## Exercise 3

If A is diagonalizable, we can express it as  $A = PVP^{-1}$ , where P is matrix whose columns are the eigenvectors of A and form an orthogonal basis of  $\mathbb{R}^n$ , and where V is a diagonal matrix with diagonal elements equal to the eigenvalues of A. We can thus write

$$||A^k|| = ||(PVP^{-1})^k|| = ||PV^kP^{-1}|| \le ||P|| ||V^k|| ||P^{-1}|| \le ||P|| ||P^{-1}|| ||V||^k$$

Now using exercise 1 (and the fact that *V* is symmetric)

$$||V|| = \rho(V) = \rho(A)$$

Now observe that

$$||A^k|| \le ||P|| ||P^{-1}|| ||V||^k = ||P|| ||P^{-1}|| \rho(A)^k$$

and since  $\rho(A) < 1$ , we have that  $||A^k|| \to 0$  as  $k \to \infty$ .

## Exercise 4

We want to show that the set of positive semidefinite matrices ( $\mathcal{PS}(n \times n)$  from here on) is a closed subset of ( $\mathcal{M}(n \times n)$ ,  $\|\cdot\|$ ). To do this, we will show that for any sequence of positive semidefinite matrices { $M_k$ }, its limit point, M, is also a positive semidefinite matrix.

First, note that for any matrix, A, positive semidefiniteness means that  $z'Az \ge 0$  for all  $z \in \mathbb{R}^n/\{0\}$ . Notice, also, that quadratic form is a continuous function in A, i.e. f(A) := z'Az for some z. To see this suppose  $A_k \to A$  in matrix norm but then  $|f(A) - f(A_k)| = |z'Az - z'A_kz| = |z'(A - A_k)z| \le |||z'|| ||(A - A_k)|| ||z|| < \varepsilon(z, \delta)$  where  $||(A - A_k)|| < \delta$ .

Now, let  $M_k$  be a sequence of positive semidefinite matrices such that  $M_k \to M$  as  $k \to \infty$  under the matrix norm,  $\|\cdot\|$ . We will work towards a contradiction. Suppose the limit point M is such that z'Mz for some  $z \in \mathbb{R}^n \setminus \{0\}$  (i.e. M is not positive semidefinite).

 $M_k \to M$  means that  $\|M_k - M\| < \varepsilon \ \forall k \ge K \in \mathbb{N}$ . Because  $f(\cdot)$  is a continuous function we know that for all  $\varepsilon > 0$  and all  $k \ge K$ , there exists a  $\delta > 0$  such that  $\|M_k - M\| < \delta$  implies that  $|f(M_k) - f(M)| < \varepsilon$ .

Now, since  $\varepsilon$  is arbitrary, let  $\varepsilon = \frac{z'Mz}{2}$ . Then  $|f(M_k) - f(M)| = |z'M_kz - z'Mz| < \frac{z'Mz}{2}$  implies that  $-\frac{z'Mz}{2} < z'M_kz - z'Mz < \frac{z'Mz}{2}$ . Rearranging, we find that  $\frac{z'Mz}{2} < z'M_kz < \frac{3z'Mz}{2}$ . Since we assumed that z'Mz < 0, this implies that  $z'M_kz < 0$ , which is a contradiction.

Therefore, it must be that the limit point, M, is also a positive semidefinite matrix. Thus, all sequences in the set of positive semidefinite matrices have limit points that also fall inside the set. Therefore, the set of positive semidefinite matrices is a closed subset of  $(\mathcal{M}(n \times n), \|\cdot\|)$ .

## Exercise 5

For this question, we will make use of the following theorem:

**Theorem 2** (Corollary to the Contraction Mapping Theorem). *If T is a uniform contraction on a Banach space*  $(S, d(\cdot))$ ,  $T: S' \to S'$ , and  $S' \subset S$ , then the fixed point Tv = v is such that  $v \in S'$ . Further, if  $TS' \subseteq S'' \subset S$ , then  $v \in S''$ .

Now, let *L* be the Lyapunov operator on  $(\mathcal{M}(n \times n), \|\cdot\|)$ , where

$$LX = AXA' + M \tag{1}$$

From the lecture notes we know that L is a uniform contraction on  $(\mathcal{M}(n \times n), \|\cdot\|)$ , and so has a unique fixed point  $X^*$ .

#### **Part 1:** M symmetric $\Rightarrow X^*$ symmetric

Consider the solution to the Lyapunov equation,  $X^*$ . We have  $X^* = AX^*A' + M$ . We know that M is symmetric. We know that for any  $X^* \in \mathcal{M}(n \times n)$ , it will be the case that

$$(X^*)' = (AX^*A' + M)' = (AX^*A')' + M' = A(X^*)'A' + M$$

This means that there is another solution to the Lyapunov equation,  $(X^*)'$ , but we know that there is only a unique solution, therefore  $X^* = (X^*)'$ . And so we have showed that if M is symmetric, then so is  $X^*$ .

#### Part 2: M positive semidefinite $\Rightarrow X^*$ positive semidefinite

Denote the set of positive semidefinite matrices as  $\mathcal{PS}(n \times n)$ . As we saw in the previous problem, a positive semidefinite matrix B has the property that  $z'Bz \geq 0$  for all  $z \in \mathbb{R}^n/\{0\}$ . Let M be a positive semidefinite matrix. Consider our Lyapunov operator in (1). Note that for any  $X \in \mathcal{M}(n \times n)$ , AXA' is positive semidefinite because AXA' is a quadratic form, and so is automatically positive semidefinite. Because the set of positive semidefinite matrices is also a linear subspace, it is closed under addition, and so AXA' + M is also positive semidefinite. Thus, we can see that if X is positive semidefinite, the Lyapunov operator is such that:  $L: \mathcal{PS}(n \times n) \to \mathcal{PS}(n \times n)$ .

As I proved in exercise 4,  $\mathcal{PS}(n \times n) \subset \mathcal{M}(n \times n)$ . So we can apply the Corollary to the Contraction Mapping Theorem again, and we immediately see that the fixed point of the Lyapunov operator,  $X^*$ , is contained in  $\mathcal{PS}(n \times n)(n \times n)$ . Thus, M positive semidefinite  $\Rightarrow X^*$  positive semidefinite, as we wanted to show.

#### Part 3: M positive definite $\Rightarrow X^*$ positive definite

Denote the subset of positive definite matrices as  $\mathcal{P}(n \times n)$ . A positive definite matrix B has the property that z'Bz > 0 for all  $z \in \mathbb{R}^n/\{0\}$ . Let M be a positive definite matrix. Consider our Lyapunov operator in (1). Note that for any  $X \in \mathcal{M}(n \times n)$ , AXA' is positive semidefinite because AXA' is a quadratic form, and so is automatically positive semidefinite.

Now, note that z'(AXA' + M)z = z'AXA'z + z'Mz. We argued that AXA' is positive semidefinite, and since z'AXA'z is another quadratic form and must be greater than or equal to zero. So we have  $z'AXA'z \ge 0$  and z'Mz > 0 and so z'AXA'z + z'Mz > 0. Thus, we know that the Lyapunov operator takes the set of positive semidefinite matrices to the set of positive definite matrices  $L: \mathcal{PS}(n \times n) \to \mathcal{P}(n \times n)$ .

Again from above, we know that  $P.S.D(n \times n) \subset \mathcal{M}(n \times n)$ . Note, too, that that  $\mathcal{P}(n \times n) \subset \mathcal{PS}(n \times n)$ .

This time we can apply the second part of the Corollary to the Contraction Mapping Theorem:  $L(\mathcal{PS}(n \times n)) \subseteq \mathcal{PS}(n \times n) \subset \mathcal{PS}(n \times n)$  implies that the fixed point,  $X^*$ , is contained in  $\mathcal{P}(n \times n)$ . Thus, M positive definite  $\Rightarrow X^*$  positive definite, as we wanted to show.

## Exercise 6

```
In [4]: def Ljapunov(beta,A,C,D,P = None,tol = 1e-10):
            w,v = sp_linalg.eig(A)
            if np.max(np.abs(w)) >= 1.0 / beta ** (1/2):
                print("The largest eigenvalue is too large")
                Res = np.max(np.abs(w))
            else:
                if P is None:
                    P = np.eye(A.shape[0], A.shape[0])
                conv = 1.0
                while conv > tol:
                    P_next = contraction(P,beta,A,C,D)
                    conv = np.sum(np.abs(P_next - P))
                    np.copyto(P,P_next)
                delta = beta / (1.0 - beta) * np.trace(C.T @ (D + P) @ C)
                Res = P , delta
            return Res
In [5]: P , delta = Ljapunov(beta,A,C,D)
In [6]: def price(x,P,delta):
            return x.T @ P @ x + delta
In [7]: price(np.array([1.1,1.0]),P,delta)
Out[7]: 51.063505005906883
In [8]: matplotlib.rcParams['xtick.direction'] = 'out'
        matplotlib.rcParams['ytick.direction'] = 'out'
        plt.figure() # Create a new figure window
        n = 100
        xlist = np.linspace(-10.0, 10.0, n) # Create 1-D arrays for x,y dimensions
        ylist = np.linspace(-10.0, 10.0, n)
        X,Y = np.meshgrid(xlist, ylist) # Create 2-D grid xlist,ylist values
        Z = np.empty(X.shape)
        for i in range(len(xlist)):
            for j in range(len(ylist)):
                Z[i ,j] = price(np.array([X[i,j],Y[i,j]]),P,delta)
        CS = plt.contourf(X, Y, Z,5)
```

```
plt.clabel(CS, inline=0, colors = 'b', fontsize=10)
plt.title('Equilibrium price function')
plt.show()
```

