(NATURAL SCIENCE)

Vol. 62 No. 10 JUCHE105 (2016).

암흑물질의 열적생성을 리용한 진동우주모형의 제한조건

리은경, 김남혁, 강진우

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《소립자론과 마당론은 물질세계의 본질을 해명하기 위한 기초원리적인 과학분야이므로 리론물리학부문에서는 마땅히 여기에 힘을 넣어야 합니다.》(《김정일전집》 제4권 410~411폐지)

진동우주모형은 우주론에서 가장 중요한 우주의 초기특이성문제를 해결하기 위한 모형[1]으로서 최근시기 많이 연구되고있다. 우주론과 소립자물리에서 가장 주목되고있는 물질인 암흑물질은 현재 우주의 에네르기밀도의 대부분을 차지하고있다. 특히 암흑물질이 우주의 초시기에 형성되였다고 보고 암흑물질을 비표준우주론의 출발점으로 리용하려는 연구[2]가 활발히 진행되고있다.

론문에서는 진동우주에서 암흑물질이 비평형상태로부터 형성되였다는 가정[3]에 기초 하여 이러한 물림새가 현재 관측된 잔존량을 만족시킬수 있는 가능성을 준다는것과 이 연구가 진동우주에 대한 일부 정보를 준다는데 대하여 밝혔다.

암흑물질립자 γ의 립자수밀도변화는 볼츠만방정식[4]에 의하여 결정된다.

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle (n_{\chi}^2 - n_{\chi}^2)$$
 (1)

여기서 H와 $n_{\chi
m phi phi}$ 는 각각 하블상수, 평형상태에서 χ 의 립자수밀도이다.

무본량 $x=m_\chi/T$, $Y=n_\chi/s$, $Y_{sps}=n_{\gamma sps}/s$ 을 리용하여 식 (1)을 다시 쓰면

$$\frac{dY}{dx} = -\frac{s}{xH} \langle \sigma v \rangle (Y^2 - Y_{\text{rel}}^2)$$
 (2)

로 된다. 여기서 엔트로피밀도, 하블상수는 각각 $s=\left(\frac{2\pi^2}{45}\right)h_*T^3$, $H=\frac{\pi T^2}{M_p}\sqrt{\frac{g_*}{90}}$, h_* 은 엔트로피밀도의 상대론적자유도, g_* 은 에네르기밀도의 상대론적자유도이다.

인플레이숀우주모형[5, 6]에서도 암흑물질의 생성이 연구되였다. 암흑물질이 비평형에서 생성되였다고 가정하면 동결이 없고 잔존밀도가 자름면에 비례하며 따라서 초기우주를 다룰수 있는 가능성을 준다. 이로부터 이 방법은 비표준우주론을 제한하는데 리용되여왔다.[7] 이러한 리유로부터 론문에서는 암흑물질생성의 비평형물림새를 받아들인다. 암흑물질이 평형에 이르지 못하도록 하기 위하여서는 자름면적 $\langle \sigma v \rangle$ 가 매우 작아야 한다. 이로부터 식 (2)의 오른변에서 Y^2 항을 무시하였다.

암흑물질생성의 비평형물림새와 진동우주의 우주론적진화를 결합시키기 위하여 먼저 진동우주모형에 대하여보자.

진동우주는 다음과 같은 세 단계로 나눌수 있다.

1단계(진동이전의 수축단계(H < 0)): 이 기간 우주에는 열평형을 이룬 복사배경이 우세하다. 우주는 수축할수록 온도가 더 높아진다. 온도 T_b^- 에서 수축하는 복사우세기가 끝나고 진동을 주는 비표준물리가 우세해진다.

2단계(진동이후의 팽창단계(H>0)): 최대온도 T_b^+ 에서 우주는 다시 표준복사기로 돌아온다. 이 단계는 뜨거운 표준대폭발이다. T_b^+ 는 인플레이숀우주론에서 재가열온도와 류사하다. 간단히 하기 위하여 $T_b^+ \approx T_b^-$ 로 가정하고 $T_b^\pm = T_b$ 로 놓는다. T_b 는 표준물리가 성립하는 구역으로부터 진동을 일으키는 새로운 물리가 성립하는 구역으로의 상변화림계온도로 볼수 있다.

3단계(진동단계): 여기서는 비표준동력학 실례로 유령응축이 진동을 일으킨다. 이 단계는 단계 I 과 단계 II를 련결하여준다. 진동하는 동안에는 엔트로피의 생성이 없다고 가정하며 따라서 이 단계에서 엔트로피는 보존된다고 본다.

진동이 대단히 빨리 일어난다고 가정하자. 구체적으로 진동의 특성시간(물질소멸속도 $\Gamma_\chi = n_\chi \langle \sigma v \rangle$ 의 역수)이 암흑물질의 반응시간보다 훨씬 짧다고 가정한다. 그러면 3단계에 서는 암흑물질이 생성되거나 소멸되지 않는다고 볼수 있다. 다시말하여 1단계의 마감량이 2단계의 초기량으로 넘어간다.

웃첨자 -를 수축(1단계), +를 팽창(2단계)을 의미하는것으로 약속하면 우의 과정은 $Y^-(x_h^+) \approx Y^+(x_h^+)$ 로 표시된다.

f=sx/H로 놓으면 식 (2)는 다음과 같다.

$$\frac{dY^{\pm}}{dx} = \mp f \frac{\langle \sigma v \rangle}{r^2} ((Y^{\pm})^2 - Y_{\text{rel}}^2 \tilde{v}_{\text{el}}^2)$$
 (3)

식 (3)을 $Y^\pm \ll Y_{\rm ggg}$ 의 가정밑에 적분하여 잔존량 $Y_\infty \equiv Y^+(x \gg x_b)$ 를 얻을수 있다. 이때 경계조건은

$$Y^{-}(x \gg x_b) \approx 0$$
, $Y^{-}(x_b) \approx Y^{+}(x_b)$. (4)

이제 두가지 극한경우 즉 저온 $(T_b \ll m_\chi)$ 과 고온 $(T_b \gg m_\chi)$ 의 극한경우를 보자.

저온극한 $(T_b \ll m_\chi)$ 의 경우에 χ 립자는 1단계와 2단계에서 비상대론적이다.

저온극한에서 $Y_{평형}^2 = cx^3e^{-2x}$, $c = 0.021g_\chi^2/g_*^2$ 이다. 비상대론의 경우 소멸자름면면적의 열평균은 $\langle \sigma v \rangle = a + (6b/x) + 0(1/x^2)$ 이며 간단히 $\langle \sigma v \rangle \approx a$ 로 근사화할수 있다.

식 (3)을 저온극한에서 적분하면

$$Y^{\pm} \approx \pm \frac{1}{2} f ca(x_i^{\pm} e^{-2x_i^{\pm}} - x e^{-2x}) + Y_i^{\pm}$$
 (5)

이다. 밑첨자 i는 초기값을 나타낸다. 1단계에서 $x_i^-\gg x$, $x_i^+=x_b$ 임을 고려하면

$$Y^{-}(x_b) \approx 0.014 g_{\chi}^2 g_{*}^{-\frac{3}{2}} m_{\chi} M_p a x_b e^{-2x_b}$$
 (6)

$$Y_{\infty} = Y^{+}(x \gg x_b) \approx 2Y^{-}(x_b) \tag{7}$$

이다. 인플레이숀모형에서 저온의 경우와 비교하면 x_b 는 x_0 에 대응된다. 인수 2는 팽창 단계에 진동이전의 수축단계가 더해진 결과이다.

고온극한 $(T_b\gg m_{_Y})$ 의 경우에 암흑물질은 대부분 상대론적으로 생성된다. 상대론적립

자에 대하여 Y_{gg} 은 온도에 무관계하다. 따라서 $Y_{gg} \approx 0.278 g_{\hat{H}_{\bar{\Delta}}}/g_*$ 이다. 보존과 페르미온에 대하여 $g_{\hat{H}_{\bar{\Delta}}}$ 는 각각 g_{χ} , $3g_{\chi}/4$ 이다. 이때 $\langle \sigma v \rangle \approx \sigma_0 x^{-n}$ 이다.

$$Y^{\pm} \approx \pm \frac{0.001 g_{\tilde{\Pi}, \tilde{\Sigma}}^{2} f \sigma_{0}}{g_{*}^{2} (n+1)} \left(\frac{1}{(x_{i}^{\pm})^{n+1}} - \frac{1}{x^{n+1}} \right) + Y_{i}^{+}$$
 (8)

경계조건 (4)를 리용하면

$$Y^{-}(x_b) \approx \frac{0.102g_{\tilde{\pi} \tilde{\Xi}}^2 g_x^{-\frac{3}{2}} m_{\chi} M_p \sigma_0}{(n+1)x_b^{n+1}}.$$
 (9)

이러한 론의가 어디까지 유효한가를 고려하여야 한다.

볼츠만방정식 (1)로부터 비평형조건을 이끌어내면

$$\langle \sigma v \rangle 10^{10} (\text{GeV})^2 < x_b \tag{10}$$

로 된다. 이 조건은 자름면면적과 온도에 대한 제한조건으로 된다.

우에서 론의한 두가지 경우에 잔존밀도는

$$\Omega_{\chi} h^2 \approx 5.6 \times 10^8 m_{\chi} Y^-(x_b) \text{GeV}^{-1}$$
. (11)

식 (11)로부터 $\Omega_\chi h^2$, $x_b(T_b)$, 자름면면적(저온인 경우에는 a, 고온인 경우에는 σ_0), m_χ 사이의 관계 즉 제한조건이 나온다.

저온과 고온의 경우 잔존밀도와 자름면면적에 따르는 x_b 의 관계는 그림과 같다.

그림. 저온(ㄱ))과 고온(ㄴ))인 경우 잔존밀도와 자름면면적에 따르는 x_b 의 변화 1-4는 잔존밀도가 10^{-3} , 10^{-2} , 0.1, 1인 경우

그림은 저온과 고온의 경우에 각각 $m_\chi=100{\rm GeV}$ 로 하여 계산한 결과를 보여주었다. 그림에서 알수 있는것처럼 고정된 자름면면적에서 x_b 가 감소함에 따라 즉 T_b 가 증가함에 따라 잔존량이 증가한다는것을 알수 있다. 한편 x_b 가 주어진 경우에는 자름면면적이 증가할수록 잔존량이 증가한다. 이것은 비평형생성의 결과이다.

이상의 론의로부터 관측결과를 만족시키기 위하여서는 온도 T_b 가 임의의 값으로 되지 못하며 모형파라메터들인 $\Omega_\chi h^2$, 자름면면적(저온인 경우에는 a, 고온인 경우에는 σ_0), m_χ 등에 의존한다는것을 알수 있다.

맺 는 말

론문에서는 진동우주모형의 팽창단계와 수축단계에서 암흑물질이 열적으로 생성되는 물림새를 연구하였다. 암흑물질이 비평형상태에서 형성되며 진동이 충분히 빨리 일어나 단위공변체적당 암흑물질의 수는 변하지 않는다는 가정을 하여 다음의 결과를 얻었다.

- 1) 잔존량은 수축과 팽창단계에서 복사우세기가 끝나는 온도와 시작하는 온도에 관계된다. 이 온도는 표준물리학이 새로운 물리학(진동을 일으키는)으로 넘어가는 림계온도로 볼수 있다.
- 2) 저온극한과 고온극한에서 이 온도는 관측된 암흑물질의 잔존량에 의해 제한된다. 연구결과는 암흑물질생성의 이 방안이 진동우주모형을 연구하는 수단으로 될수 있다 는것을 보여준다.

참 고 문 헌

- [1] M. Novello et al.; Phys. Rept., 463, 127, 2008.
- [2] J. U Kang et al.; Phys. Lett., B 677, 6, 2009.
- [3] C. Li et al.; arXiv:1403.5625.
- [4] E. W. Kolb et al.; The Early Universe, Addison-Wesley Press, 115~151, 1994.
- [5] D. J. H. Chung et al.; Phys. Rev. Lett., 81, 4048, 1998.
- [6] M. Drees et al.; Phys. Rev., D 73, 123502, 2006.
- [7] M. Drees et al.; Phys. Rev., D 76, 103524, 2007.

주체105(2016)년 6월 5일 원고접수

Constraints of the Bouncing Universe Model using Thermal Production of Dark Matter

Ri Un Gyong, Kim Nam Hyok and Kang Jin U

We investigate a new scenario of dark matter's thermal production in a bouncing universe model.

Our study demonstrates the possibility for using the mechanism of dark matter's production from out-of chemical equilibrium as a mean of probing a bouncing universe.

Key words: dark matter, bouncing universe