Topology general exam

Solve 7 of the following 8 problems.

- 1. (a) Describe the fundamental group and universal cover of the torus $S^1 \times S^1$.
- (b) Prove that any smooth map from the two-sphere S^2 to the torus has (mod 2) degree equal to zero.
- **2.** Let M be a 2-dimensional submanifold of \mathbb{R}^3 , and let $d: M \longrightarrow \mathbb{R}$ be the distance to the origin. Suppose the origin lies in the complement of M. Show that the critical points of d are precisely the points of M where M is tangent to some sphere centered at the origin.
- **3.** Let (X, \mathcal{T}) be a topological space. Let Y be the union of X and a point p (not in X). Let \mathcal{S} be the collection of subsets of Y given by
- (1) if $U \subset Y$ and $p \notin U$, then $U \in \mathcal{S}$ if and only if U is open in X,
- (2) if $U \subset Y$ and $p \in U$, then $U \in \mathcal{S}$ if and only if $Y \setminus U$ is closed and compact in X.

Show that:

- (1) S is a topology for Y.
- (2) Y is compact.
- (3) X is an open subset of Y and the topology induced on X from \mathcal{S} is \mathcal{T} .
- (4) X is dense in Y if and only if (X, \mathcal{T}) is not compact.
- (5) Y is a T_1 space if and only if X is T_1 .
- (6) Y is Hausdorff if and only if X is Hausdorff and locally compact.
- (7) If $X = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | \sum_{i=1}^n x_i^2 < 1\}$ with the standard topology, prove that Y is homeomorphic to S^n .
- **4.** (a) Let X be a topological space. Let U_1 , U_2 be dense open subsets. Prove that their intersection is a dense subset of X.
- (b) Let X be a compact Hausdorff space. Let A be a subset of X and let U be an open subset of X such that $\operatorname{closure}(A) \subset U$. Prove that there exists an open set W such that $\operatorname{closure}(A) \subset W$ and $\operatorname{closure}(W) \subset U$.
- (c) Let X be a compact Hausdorff space. Let $\{U_n\}$ be a countable collection of dense open subsets of X. Prove that their intersection is a dense subset of X.
- (d) Give an example of a compact space X, and a countable collection of dense open subsets of X, such that the intersection is not dense in X.
- **5.** (a) Describe the universal cover of the figure eight $S^1 \vee S^1$.
- (b) Describe a non-trivial two-fold covering space of $S^1 \vee S^1$. How many different two-fold covering spaces of $S^1 \vee S^1$ are there?

- **6.** Show that the special linear group $SL(n,\mathbb{R})$ is a smooth manifold.
- 7. Let M be a non-empty smooth n-dimensional manifold, and $f: M \longrightarrow \mathbb{R}$ be a smooth map.
- (a) Show that if M is compact then there are elements r in \mathbb{R} which are not regular values.
- (b) If $S^n = \{(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} | \sum_{i=0}^n x_i^2 = 1 \}$ and $f : S^n \longrightarrow \mathbb{R}$ is given by $f(x_0, \dots, x_n) = x_0^2$, what are the regular values of f? Show that $f^{-1}(r)$ is a submanifold of S^n for all values of r.
- **8.** Prove that any smooth map $f: D^n \longrightarrow D^n$ has a fixed point, for any $n \geq 1$.