ÁLGEBRA LINEAR I

20 SEMESTRE DE 2022

EXERCÍCIOS DE REVISÃO PARA A P2

Estes são uns exercícios de revisão para a segunda prova. As perguntas nos review questions de **PNK** (Capítulos 6, 7, 8, 9 e 12) devem também ser revisados.

- **Q1** Prove o seguinte fato: não há n+1 vetores linearmente independentes em \mathbb{F}^n . Procure dar uma prova simples e completa, que dependa o menos possível de fatos provados na disciplina (ou inclua a prova dos fatos que você usar, para sua prova ficar completa).
- **Q2** Prove o seguinte fato: se M é uma matriz quadrada $n \times n$ com posto n, então M é inversível. Procure dar uma prova simples e completa, que dependa o menos possível de fatos provados na disciplina (ou inclua a prova dos fatos que você usar, para sua prova ficar completa).
- **Q3** Seja $U \in \mathbb{F}^{m \times n}$ uma matriz na forma escalonada, com m_1 linhas não-nulas e m_2 linhas nulas (naturalmente, $m = m_1 + m_2$). Quantas colunas linearmente independentes tem a matriz U?
- Q4 Para cada uma das afirmações abaixo, diga se ela é verdadeira ou não. Em cada caso, justifique sua resposta.
 - (i) Seja $U\subset \mathbb{F}^n$ um espaço vetorial. Vale que $\mathbb{F}^n=U\oplus U^\circ.$
 - (ii) Seja $U\subset \mathbb{F}^n$ um espaço vetorial. Vale que $\dim U+\dim U^\circ=n.$
 - (iii) Seja $U \subset \mathbb{R}^n$ um espaço vetorial e $\langle \cdot, \cdot \rangle$ um produto interno em \mathbb{R}^n . Vale que $\mathbb{R}^n = U \oplus U^{\perp}$.
 - (iv) Seja $U \subset \mathbb{R}^n$ um espaço vetorial e $\langle \cdot, \cdot \rangle$ um produto interno em \mathbb{R}^n . Vale que $\dim U + \dim U^{\perp} = n$.
- **Q5** Suponha que as matrizes $A \in \mathbb{F}^{m \times n}$ e $B \in \mathbb{F}^{n \times m}$ são tais $AB = I_m$, onde $I_m \in \mathbb{F}^{m \times m}$ é a matriz identidade.
 - (i) Prove que as colunas de B são linearmente independentes.
 - (ii) Prove que as colunas de A geram \mathbb{F}^m .
- **Q6** Seja M uma matriz tal que $M^{\top}M$ é a matriz identidade. É verdade que MM^{\top} é a matriz identidade? Por quê? Há alguma hipótese simples sobre M que garanta a resposta positiva?
- **Q7** Fixe $b_1 \in GF(2)$ e $b_2 \in GF(2)$ e considere 'bitstrings' $\mathbf{x} = (x_1, \dots, x_6) \in GF(2)^6$. Tais bitstrings \mathbf{x} são chamados do tipo (b_1, b_2) se $x_1 + x_3 + x_5 = b_1$ e $x_2 + x_4 + x_6 = b_2$. Quantos bitstrings do tipo (b_1, b_2) existem?

Data: 2022/12/8, 6:14pm

Q8 Considere a matriz

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$
 (1)

- (i) Prove que A é inversível como uma matriz real.
- (ii) Prove que A não é inversível como uma matriz sobre GF(2).
- **Q9** Considere a matriz $A_n = (a_{ij})_{1 \le i,j \le n} \in \mathrm{GF}(2)^{n \times n}$ com

$$a_{ij} = \begin{cases} 0 & \text{se } i = j \\ 1 & \text{caso contrário.} \end{cases}$$
 (2)

- (i) Prove que A é inversível no caso em que n é par.
- (ii) Prove que A não é inversível no caso em que n é impar.
- (iii) Prove que A tem posto n-1 no caso em que n é impar.
- **Q10** Seja $A \in \mathbb{F}^{n \times n}$ uma matriz quadrada. Monte a matriz

$$A' = \begin{bmatrix} A & I_n \end{bmatrix}, \tag{3}$$

onde $I_n \in \mathbb{F}^{n \times n}$ é a matriz identidade. Suponha que executamos operações de escalonamento, e conseguimos transformar A' na matriz

$$\begin{bmatrix} I_n & B \end{bmatrix}. \tag{4}$$

Note que não apenas escalonamos A, mas prosseguimos o processo até obter a identidade I_n (é fácil ver que isso é possível de se fazer caso obtenhamos no processo de escalonamento de A uma matriz U que tem todos seus elementos diagonais não nulos). Prove que B é a inversa de A. [Observação. Esse fato sugere um algoritmo para se inverter A.]

- **Q11** Suponha que executamos o algoritmo sugerido na Questão **Q10** para inverter uma matriz A, mas a matriz escalonada que obtemos no meio do processo é tal que há zeros na diagonal. Prove que A não é inversível.
- **Q12** Considere a equação $A\mathbf{x} = \mathbf{b}$ sobre GF(2), onde

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}. \tag{5}$$

Prove que esta equação não tem solução, considerando o vetor $\mathbf{y} = [1 \ 0 \ 1 \ 1]^{\top} \in \mathrm{GF}(2)^4$. [Sugestão. Multiplique por \mathbf{y}^{\top} .]

Q13 Considere a equação $U\mathbf{x} = \mathbf{b}$, onde $U \in \mathbb{F}^{m \times n}$ é uma matriz escalonada e $\mathbf{b} = [b_1 \dots b_m]^{\top} \in \mathbb{F}^m$. Suponha que U tenha m_1 linhas não-nulas e m_2 linhas nulas

2

(naturalmente $m=m_1+m_2$). Prove que $U\mathbf{x}=\mathbf{b}$ admite uma solução se e só se $b_{m_1+1}=\cdots=b_m=0$.

- **Q14** Considere a equação $A\mathbf{x} = \mathbf{b}$, onde $A \in \mathbb{F}^{m \times n}$ e $\mathbf{b} \in \mathbb{F}^m$. Considere as duas afirmações abaixo:
 - (A) A equação $A\mathbf{x} = \mathbf{b}$ admite solução (isto é, existe $\mathbf{x}_0 \in \mathbb{F}^n$ tal que $A\mathbf{x}_0 = \mathbf{b}$).
 - (B) Existe $\mathbf{y} \in \mathbb{F}^m$ tal que $\mathbf{y}^\top A = \mathbf{0}$ e $\mathbf{y}^\top \mathbf{b} \neq 0$.

Prove os seguintes dois fatos:

- (i) As afirmações (A) e (B) não podem valer simultaneamente.
- (ii) Necessariamente, ou a afirmação (A) vale ou a afirmação (B) vale.
- **Q15** Sejam $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^n$ vetores dois a dois ortogonais e seja $\mathbf{u} = \sum_{1 \leq i \leq n} \mathbf{u}_i$. Prove que

$$\|\mathbf{u}\|^2 = \sum_{1 \le i \le n} \|\mathbf{u}_i\|^2. \tag{6}$$

Q16 Seja

e sejam $\mathbf{b}_1, \dots, \mathbf{b}_4 \in \mathbb{R}^4$ as colunas de H. Assim $H = [\mathbf{b}_1 \mid \dots \mid \mathbf{b}_4]$. Seja $V = \operatorname{Span}\{\mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4\}$ e $\mathbf{e}_1 = [1 \ 0 \ 0 \ 0]^\top \in \mathbb{R}^4$. Encontre a projeção ortogonal sobre V de \mathbf{e}_1 e a projeção ortogonal $a \ V$ de \mathbf{e}_1 . Isto é, encontre $\mathbf{e}_1^{\parallel V}$ e $\mathbf{e}_1^{\perp V}$ de forma que $\mathbf{e}_1 = \mathbf{e}_1^{\parallel V} + \mathbf{e}_1^{\perp V}$, $\mathbf{e}_1^{\parallel V} \in V$ e $\langle \mathbf{e}_1^{\perp V}, \mathbf{v} \rangle = 0$ para todo $\mathbf{v} \in V$.

- **Q17** Sejam $\mathbf{a}_1, \dots, \mathbf{a}_m$ vetores em \mathbb{R}^n . Suponha que $\mathbf{x} \in \mathbb{R}^n$ é tal que $\langle \mathbf{x}, \mathbf{b} \rangle = 0$ para todo $\mathbf{b} \in \mathbb{R}^n$ tal que $\langle \mathbf{a}_i, \mathbf{b} \rangle = 0$ para todo $1 \le i \le m$. Prove que $\mathbf{b} \in \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$.
- **Q18** Considere o sistema linear $A\mathbf{x} = \mathbf{b}$, onde $A \in \mathbb{R}^{m \times n}$ e $\mathbf{b} \in \mathbb{R}^m$. Queremos encontrar $\hat{\mathbf{x}} \in \mathbb{R}^n$ tal que

$$||A\hat{\mathbf{x}} - \mathbf{b}|| = \min\{||A\mathbf{x} - \mathbf{b}|| : \mathbf{x} \in \mathbb{R}^n\}.$$
(8)

- (i) Diga por que podemos supor que as colunas de A são linearmente independentes. Nos itens a seguir, supomos que as colunas de A são linearmente independentes.
- (ii) Prove que $A^{\top}A$ é inversível.
- (iii) Prove que $\hat{\mathbf{x}} = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$ satisfaz (8).
- Q19 Sejam

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{u}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} . \tag{9}$$

Defina \mathbf{u}_t $(t \ge 1)$ pondo $\mathbf{u}_t = A\mathbf{u}_{t-1}$. Defina F_t $(t \ge 0)$ pondo $F_t = t$ para t = 0 e t = 1 e $F_t = F_{t-1} + F_{t-2}$ para $t \ge 2$.

- (i) Prove que $\mathbf{u}_t = [F_t \ F_{t-1}]^{\top}$ para todo $t \ge 1$.
- (ii) Deduza que, para todo $t \ge 0$,

$$F_t = \frac{1}{\sqrt{5}} \left(\varphi_1^t - \varphi_2^t \right), \tag{10}$$

onde $\varphi_1 = (1 + \sqrt{5})/2$ e $\varphi_2 = (1 - \sqrt{5})/2$.