ATS Doctoral Thesis Award

November 21-23, 2022 | Taichung, Taiwan

Semi-Final of 2023 TTTC's E. J. McCluskey Doctoral Thesis Award

Study on the High Reliability of MPLD (Memory-based Programmable Logic Device)

Ph.D candidate: Xihong Zhou

Supervisor: Prof. Hiroshi Takahashi

Department of Computer Science,

Ehime University, Japan

Outline

1. What's MPLD

Architecture, Working principle

2. Reliability Issues of MPLD

Manufacturing and Aging defects

3. Manufacturing Defect Testing

Detection & Localization for Interconnect faults

4. Aging Defect Testing

LUT-based Delay-Monitoring

5. Conclusions

Demand for Reconfigurable Devices

Reconfigurable devices (e.g.: FPGAs) are gaining increased attention in IoT, Automotive, and Al field

- **★** Flexibility and scalability
- **★** High performance (parallel computing)
- **★** Better time to market
- ★ Low design cost (shortening of development cycle)

IoT Edge Computing

Edge Computing GW and IoT Solution:

Xlinx's Automotive Solution: Zynq UltraScale+MPSoC

Bing Intelligent Search Engine FPGA accelerator

Accelerating Large-Scale Services – Bing Search

1,632 Servers with FPGAs Running Bing Page Ranking Service (~30,000 lines of C++)

1. What's MPLD ~ Architecture~

A new type reconfigurable device

 Memory-based Programmable Logic Device (MPLD)

 constructed only by MLUT (Multiple Look-Up-Table) array in a special interconnect structure.

1. What's MPLD ~ Architecture~ --- AD-pair Interconnect Structure

 Address lines and Data lines alternately connect with others

D₀

D6

Interconnect Structure

(AD-pair Interconnect)

 Logic data output of a MLUT connects to address input of its neighbor MLUTs

5

A: Address line (logic)

D: Data line (logic)

1. What's MPLD ~ Architecture ~ --- MLUT structure

- basic reconfigurable elements
- multiple SRAM blocks

1. What's MPLD ~ Working principle ~

 Configure the logic function by writing the truth table of the logic circuit (including wiring logic) into the SRAM of MLUT

Outline

1. What's MPLD

Architecture, Working principle

2. Reliability Issues of MPLD

Manufacturing and Aging defects

3. Manufacturing Defect Testing

Detection & Localization for Interconnect faults

4. Aging Defect Testing

LUT-based Delay-Monitoring

5. Conclusions

3. Reliability Issue in MPLD ~ Manufacturing ~

Factors:

- Manufacturing Phase
 - Defect in MLUT (SRAM)
 - ✓ Conventional Memory testing

- Defect between MLUTs
 - ➤ Interconnect defect on Address and Data lines (short, bridge, open, etc.) yield loss and reliability degradation

3. Reliability Issue in MPLD ~ Aging ~

Factors:

- Application phase (in field)
 - Aging in memory elements
 - > HCI, BTI, etc.
 - > Aging-induced delay
 - Different aging progress
 - > system failure
 - > logic circuit performance

(e.g.: sudden system down/reset)

Outline

1. What's MPLD

Architecture, Working principle

2. Reliability Issues of MPLD

Manufacturing and Aging defects

3. Manufacturing Defect Testing

Detection & Localization for Interconnect faults

4. Aging Defect Testing

LUT-based Delay-Monitoring

5. Conclusions

4. Manufacturing Defect Testing ~ Basic Idea ~

4. Manufacturing Defect Testing ~ Test Cube ~

- Route Map (rm) is created by Test Cube (TC) stored into SRAM of MLUTs
- truth table1 route low-order address; truth table2 route high-order address

Route Maps	Test Cubes		
rm ₁ : horizontal route map	TC ⁽¹⁾	truth table1	$D_{m-1:m/2} = A_{0:m/2-1}$ $D_{m/2-1:0} = aII-0$
		truth table2	$D_{m-1:m/2} = aII-0$ $D_{m/2-1:0} = A_{m/2:m-1}$
rm ₂ : vertical route map	TC ⁽²⁾	truth table1	$D_{m-1:m/2} = aII-0$
			$D_{m/2-1:0} = A_{0:m/2-1}$
		truth table2	$D_{m-1:m/2} = A_{m/2:m-1}$
			$D_{m/2-1:0} = aII-0$
rm ₃ : diagonal route map	TC ⁽³⁾	truth table1	$D_{m-1:m/2} = A_{m/4:m/2-1}:A_{0:m/4-1}$
			$D_{m/2-1:0} = aII-0$
		truth table2	$D_{m-1:m/2} = aII-0$
			$D_{m/2-1:0} = A_{3m/4:m-1}:A_{m/2:3m/4-1}$

4. Manufacturing Defect Testing ~ External Test Pattern~

 External Test Patterns for exciting the stuck-at and bridge interconnect faults by applying walking-zero/one vectors.

Fault Types	External Test Patterns (walking-zero/one vectors)
stuck-at-1	all-zero vector: 00
stuck-at-0	all-one vector: 11
AND-bridge	shift one-cold vector:101
OR-bridge	shift one-hot vector:010

4. Manufacturing Defect Testing ~ Testing Procedure~

Definitions:

- N_{rm} : number of route maps.
- rm_i : route map i; $i \in [1, N_{rm}]$.
- $TC^{(i)}$: test cubes creating rm_i .
- $N_{FE}^{(i)}$: number of observed fault effects under rm_i .
- $FP_k^{(i)}$: fault propagation path k obtained under rm_i ; $k \in [1, N_{FE}^{(i)}]$.
- $FP^{(i)}$: fault propagation path set under rm_i .
- F_{loc} : fault location.

Process:

- (1) Test under rm_i for $i \in [1, N_{rm}]$:
 - (a) Configure $TC^{(i)}$ into each MLUT to create rm_i .
 - (b) Apply external test patterns to the input ports of MPLD.
 - (c) Observe fault effects. If $N_{FE}^{(1)}=0$, end testing (fault-free).
 - (d) Obtain the fault propagation path set: $FP^{(i)} = \bigcup_{k=1}^{N_{FE}^{(i)}} FP_k^{(i)}$.
- (2) Identify fault location: $F_{loc} = \bigcap_{i=1}^{N_{rm}} FP^{(i)}$.

4. Manufacturing Defect Testing ~ example ~ --- testing stuck-at-1 fault

4. Manufacturing Defect Testing ~ example ~ --- AND-bridge fault

 $F_{loc} = FP^{(1)} \cap FP^{(2)}$

$$(FP^{(1)}=\bigcup_{k=1}^{2}FP_{k}^{(1)}, FP^{(2)}=\bigcup_{k=1}^{2}FP_{k}^{(2)})$$

4. Manufacturing Defect Testing ~ simulation~

4. Manufacturing Defect Testing ~ simulation ~ --- stuck-at-0 fault

Testing under Horizontal Route Map

 $FP^{(1)} = \{li[10] \rightarrow x_1 y_0 A_{13} \rightarrow x_2 y_1 A_2 \rightarrow x_3 y_0 A_{13} \rightarrow x_4 y_1 A_2 \rightarrow x_5 y_0 A_{13} \rightarrow ro[6]\},$

4. Manufacturing Defect Testing ~ simulation ~ --- stuck-at-0 fault

Testing under Vertical Route Map

$$FP^{(2)} = \{ti[14] \rightarrow x_1y_0A_5 \rightarrow x_2y_1A_2 \rightarrow x_1y_1A_5 \rightarrow x_2y_2A_2 \rightarrow x_1y_2A_5 \rightarrow x_2y_3A_2 \rightarrow x_1y_3A_5 \rightarrow x_2y_4A_2 \rightarrow x_1y_4A_5 \rightarrow x_2y_5A_2 \rightarrow x_1y_5A_5 \rightarrow bo[14]\}$$

$$F_{loc} = \bigcap_{i=1}^{2} FP^{(i)} = FP^{(i)} \cap FP^{(2)} = \mathbf{x_2} \mathbf{y_1} \mathbf{A_2}$$

4. Manufacturing Defect Testing ~ simulation ~ --- OR-bridge fault

Testing under Horizontal Route Map

 $FP_{2}^{(1)} = \{ li[35] \rightarrow x_{1}y_{3}A_{12} \rightarrow x_{2}y_{4}A_{3} \rightarrow x_{3}y_{3}A_{12} \rightarrow x_{4}y_{4}A_{3} \rightarrow x_{5}y_{3}A_{12} \rightarrow ro[31] \}$

$$FP^{(1)} = \bigcup_{k=1}^{2} FP_k^{(1)} = FP_1^{(1)} \cup FP_2^{(1)}$$

4. Manufacturing Defect Testing ~ simulation ~ --- OR-bridge fault

Testing under Vertical Route Map

Outline

1. What's MPLD

Architecture, Working principle

2. Reliability Issues of MPLD

Manufacturing and Aging defects

3. Manufacturing Defect Testing

Detection&Localization for Interconnect faults

4. Aging Defect Testing

LUT-based Delay-Monitoring

5. Conclusions

4. Aging Defect Testing ~ ATD Delay~

- ATD is extremely sensitive to delay variation
- Aging phenomena increase the threshold voltage of the transistors in ATD
 - > slow down the switching speed
 - > false detection of the address change

4. Aging Defect Testing ~ Ring oscillator (RO) ~

- Ring oscillator is effective way as on-chip digital delay sensor
 - to measure circuit delay variation in a target device (such as in ASIC)

Ring routing path Delay (Transmission time: D_{RO}) Oscillation period (T_{RO})

We can calculate Transmission Delay D_{RO} through the oscillation number $N_{OSC}^{t_{RO}}$ within a certain oscillation operation time t_{RO} :

$$D_{RO} = \frac{T_{RO}}{2} = \frac{t_{RO}}{2N_{OSC}^{t_{RO}}}$$

4. Aging Defect Testing ~ LUT-based Delay-Monitoring ~

4. Aging Defect Testing ~ LUT-based Delay-Monitoring ~ --- Implementation Procedure

Implementation Procedure

```
Step 1: select measurement area (MLUTs);
```

Step 2: deploy RO and counter;

Step 3: create the truth tables for each MLUT in the area;

Step 4: write the truth tables into corresponding MLUTs;

Step 5: set the MPLD to logic operation mode;

Step 6: set oscillation operation time (EN=1);

Step 7: observe the oscillation number (counter outputs).

4. Aging Defect Testing

~ Simulation for LUT-based Delay-Monitoring

Logic simulation experiment using ModelSim:

1: route the RO pass through 10 AD interconnects in the measurement area ($N_{AD}=10$).

2: inject the 5.5ns delay in the ATD circuit ($D_{ATD} = 5.5$ ns) for each MLUT and the overall oscillation operation time of the RO to 2000ns (t_{RO}).

4. Aging Defect Testing

~ Simulation result ~

$$N_{OSC}^{t_{RO}} = (00010010)_2 = 1$$

$$D_{MLUT} = \frac{t_{RO}}{2N_{RO}^{t_{RO}}} = \frac{2000ns}{2 \times 18 \times 10} = 5.5ns$$

confirmed

$$= D_{ATD} = 5.5$$
ns

Outline

1. What's MPLD

Architecture, Working principle

2. Reliability Issues of MPLD

Manufacturing and Aging defects

3. Manufacturing Defect Testing

Detection&Localization for Interconnect faults

4. Aging Defect Testing

LUT-based Delay-Monitoring

5. Conclusions

5. Conclusions

- To guarantee the long-term reliability of the MPLD device, this study proposed
 - test method
 - to identify the interconnect defects under the production phase
 - LUT-based delay monitoring
 - to detect the aging-caused failures in the field

- To evaluate the proposed methods, this study
 - designed an MPLD with a 6×6 MLUTs array
 - performed logic simulations by injecting faults into MPLD
 - confirmed the effectiveness of the proposed methods

Thank you for your listening

Q&A