Recommender Systems: Latent Factor Models

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)
- Netflix's system RMSE: 0.9514

Competition

- 2,700+ teams
- \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

Matrix R

17,700 movies

←					
1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

480,000 users

Utility Matrix R: Evaluation

BellKor Recommender System

The winner of the Netflix Challenge

Multi-scale modeling of the data:

Combine top level, "regional" modeling of the data, with a refined, local view:

Global:

Overall deviations of users/movies

Factorization:

Addressing "regional" effects

Collaborative filtering:

Extract local patterns

Global effects

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

Joe will rate The Sixth Sense 4 stars

- Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - ⇒ Final estimate:
 Joe will rate The Sixth Sense 3.8 stars

Recap: Collaborative Filtering (CF)

- Earliest and most popular collaborative filtering method
- Derive unknown ratings from those of "similar" movies (item-item variant)
- Define similarity measure s_{ij} of items i and j
- Select k-nearest neighbors, compute the rating
 - N(i; x): items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

 s_{ij} ... similarity of items i and j r_{uj} ...rating of user x on item j N(i;x)... set of items similar to item i that were rated by x

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean rating

 b_x = rating deviation of user x

= $(avg. rating of user x) - \mu$

 $\mathbf{b}_i = (avg. \ rating \ of \ movie \ \mathbf{i}) - \boldsymbol{\mu}$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- A few notes:
 - We sum over all movies j that are similar to i and were rated by x
 - $lackbox{ } lackbox{ } lac$
 - We allow: $\sum_{j \in N(i,x)} w_{ij} \neq 1$
 - w_{ij} models interaction between pairs of movies (it does not depend on user x)
 - N(i; x) ... set of movies rated by user x that are similar to movie i

Idea: Interpolation Weights w_{ij}

- $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} b_{xj})$
- How to set w_{ij} ?
 - Remember, error metric is SSE: $\sum_{(i,u)\in R} (\hat{r}_{ui} r_{ui})^2$
 - Find w_{ii} that minimize SSE on training data!
 - Models relationships between item i and its neighbors j
 - w_{ij} can be learned/estimated based on x and all other users that rated i

Why is this a good idea?

Recommendations via Optimization

- Here is what we just did:
 - Goal: Make good recommendations
 - Quantify goodness using SSE:So, Lower SSE means better recommendations

- We want to make good recommendations on items that some user has not yet seen. Can't really do this. Why?
- Let's set values w such that they work well on known (user, item) ratings
 - And **hope** these **w**s will predict well the unknown ratings
- This is the first time in the class that we see
 Optimization methods

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!

$$\min_{w_{ij}} \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$

Think of w as a vector of numbers

Interpolation Weights

- We have the optimization problem, now what?
- Gradient decent

- $\min_{w_{ij}} \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj}) \right] r_{xi} \right)^{2}$
- Iterate until convergence: $w = w \eta \nabla w$

 η ... learning rate

• where ∇w is gradient (derivative evaluated on data):

$$\nabla w = \left[\frac{\partial}{\partial w_{ij}}\right] = 2\sum_{x} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik} (r_{xk} - b_{xk}) \right] - r_{xi} \right) (r_{xj} - b_{xj})$$

for
$$j \in \{N(i; x), \forall i, \forall x\}$$

else $\frac{\partial}{\partial w_{ij}} = \mathbf{0}$

■ **Note:** we fix movie i, go over all r_{xi} , for every movie $j \in N(i; x)$, we compute $\frac{\partial}{\partial w_{ii}}$

while
$$|w_{new} - w_{old}| > \varepsilon$$
:
 $w_{old} = w_{new}$
 $w_{new} = w_{old} - \eta \cdot \nabla w_{old}$

Interpolation Weights

- So far: $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$
 - Weights \mathbf{w}_{ij} derived based on their role; no use of an arbitrary similarity measure $(\mathbf{w}_{ij} \neq \mathbf{s}_{ij})$
 - Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model
 - Extract "regional" correlations

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learnt weights: 0.91

Grand Prize: 0.8563

Latent Factor Models (e.g., SVD)

Latent Factor Models

SVD: $A = U \Sigma V^T$

■ "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x^T
$=\sum$	q_{if}	$\cdot p_{xf}$
= -	= row <i>i</i> o = colum	of Q n x of P ^T
P_X -	- coluiti	

items	.1	4	.2
	5	.6	.5
	2	.3	.5
	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

users .3 .5 -.5 .3 -.2 -2 1.1 -.4 .7 .5 1.4 1.4 2.9 -1 -.7 -.4 1.7 2.4 -.3 .4

f factors

2.4

-.1

-.6

-.9

1.3

1.4

1.2

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x^T
$=\sum$	q_{if}	$\cdot p_{xf}$
	: row <i>i</i> o = columi	f Q n x of P ^T

items	.1	4	.2	
	5	.6	.5	
	2	.3	.5	
	1.1	2.1	.3	
	7	2.1	-2	
	-1	.7	.3	

users .3 .5 -.5 .3 2.4 -.2 1.4 -.9 1.1 -2 -.4 .7 .5 1.4 1.4 2.9 1.2 -1 -.7 1.3 -.1 -.4 1.7 2.4 -.3 .4 -.6

PT

f factors

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x^T
$=\sum$	q_{if}	$\cdot p_{xf}$
= -	= row <i>i</i> o = colum	of Q n x of P ^T
P_X -	- coluiti	

(0	.1	4	.2		
	5	.6	.5		
items	2	.3	.5		
ite	1.1	2.1	.3		
	7	2.1	-2		
	-1	.7	.3		
f factors					

ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
acto	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
ff	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

USERS

PT

Latent Factor Models

Latent Factor Models

Recap: SVD

Remember SVD:

- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values

SVD gives minimum reconstruction error (SSE!)

$$\min_{U,V,\Sigma} \sum_{ij} \left(A_{ij} - \left[U \Sigma V^{\mathrm{T}} \right]_{ij} \right)^2$$
 The sum goes over all entries. But our R has missing entries!

■ So in our case, "SVD" on Netflix data: $R \approx Q \cdot P^T$

$$A = R$$
, $Q = U$, $P^{T} = \sum V^{T}$

$$\hat{\boldsymbol{r}}_{xi} = \boldsymbol{q}_i \cdot \boldsymbol{p}_x^T$$

But, we are not done yet! R has missing entries!

Latent Factor Models

- SVD isn't defined when entries are missing!
- Use specialized methods to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in\mathbb{R}} (r_{xi} - q_i \cdot p_x^T)^2$$

$$\hat{r}_{xi} = q_i \cdot p_x^T$$

- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - The most popular model among Netflix contestants

Dealing with Missing Entries

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data

- Want large f (# of factors) to capture all the signals
- But, SSE on test data begins to rise for f > 2
- Regularization is needed!
 - Allow rich model where there are sufficient data
 - Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x^T)^2 + \lambda \left[\sum_{x} \|p_x\|^2 + \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 λ ... regularization parameter

Stochastic Gradient Descent

Want to find matrices P and Q:

$$\min_{\substack{P,Q \text{ training} \\ \text{Gradient decent:}}} (r_{xi} - q_i \ p_x^T)^2 + \lambda \left[\sum_{x} \left\| p_x \right\|^2 + \sum_{i} \left\| q_i \right\|^2 \right]$$

- - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Do gradient descent:

$$\blacksquare$$
 P ← *P* - η · ∇ P

•
$$Q \leftarrow Q - \eta \cdot \nabla Q$$

How to compute gradient of a matrix? Compute gradient of every element independently!

- Where ∇Q is gradient/derivative of matrix Q: $\nabla Q = [\nabla q_{if}]$ and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x^T)p_{xf} + 2\lambda q_{if}$
 - lacktriangle Here q_{if} is entry f of row $oldsymbol{q}_i$ of matrix $oldsymbol{Q}$
- **Observation: Computing gradients is slow!**

Stochastic Gradient Descent

- Gradient Descent (GD) vs. Stochastic GD
 - Observation: $\nabla Q = [\nabla q_{if}]$ where

$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$$

- Here q_{if} is entry f of row q_i of matrix Q
- $Q = Q \eta \nabla Q = Q \eta \left[\sum_{x,i} \nabla Q (r_{xi}) \right]$
- Idea: Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step
- GD: $\mathbf{Q} \leftarrow \mathbf{Q} \eta \left[\sum_{r_{xi}} \nabla \mathbf{Q}(r_{xi}) \right]$
- SGD: $Q \leftarrow Q \eta \nabla Q(r_{xi})$
 - Faster convergence!
 - Need more steps but each step is computed much faster

SGD vs. GD

Convergence of GD vs. SGD

Iteration/step

GD improves the value of the objective function at every step.

SGD improves the value but in a "noisy" way.

GD takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!

Stochastic Gradient Descent

Stochastic gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:

For each r_{xi} :

$$\bullet \ \varepsilon_{xi} = r_{xi} - q_i \cdot p_x^T$$

$$q_i \leftarrow q_i + \eta \left(\varepsilon_{xi} \, p_x - \lambda \, q_i \right)$$

$$p_x \leftarrow p_x + \eta \left(\varepsilon_{xi} \ q_i - \lambda \ p_x \right)$$

2 for loops:

- For until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

(derivative of the "error")

(update equation)

(update equation)

 η ... learning rate

Extending Latent Factor Model to Include Biases

Modeling Biases and Interactions

user bias

movie bias

user-movie interaction

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition
 - $\mu = \mu$ = overall mean rating
 - $\mathbf{b}_{\mathbf{x}}$ = bias of user \mathbf{x}
 - $\mathbf{b}_{i}^{\hat{}}$ = bias of movie \mathbf{i}

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x^T$$

Overall

mean rating

Overall

user x

Bias for movie i

interaction

Example:

- Mean rating: $\mu = 3.7$
- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

Fitting the New Model

$$\min_{Q,P} \sum_{(x,i)\in R} \left(r_{xi} - (\mu + b_x + b_i + q_i p_x^T) \right)^2$$
goodness of fit

$$+\lambda \left(\sum_{i} \|q_i\|^2 + \sum_{x} \|p_x\|^2 + \sum_{x} \|b_x\|^2 + \sum_{i} \|b_i\|^2\right)$$
regularization

 λ is selected via gridsearch on a validation set

- Stochastic gradient decent to find parameters
 - Note: Both biases b_{ij} , b_{ij} as well as interactions q_{ij} , p_{ij} are treated as parameters (we estimate them)

Performance of Various Methods

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

The Netflix Challenge: 2006-09

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Movie age
 - Users prefer new movies without any reasons
 - Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x^T$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x^T$$

- Make parameters b_u and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i,\operatorname{Bin}(t)}$$

- Add temporal dependence to factors
 - $p_x(t)$... user preference vector on day t

Adding Temporal Effects

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize! (2)
Getting desperate.
Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture

Solution of BellKor's Pragmatic Chaos

Standing on June 26th 2009

June 26th submission triggers 30-day "last call"

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

- Submissions limited to 1 a day
 - Only 1 final submission could be made in the last 24h
- 24 hours before deadline...
 - BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's
- Frantic last 24 hours for both teams
 - Much computer time on final optimization
 - Carefully calibrated to end about an hour before deadline
- Final submissions
 - BellKor submits a little early (on purpose), 40 mins before deadline
 - Ensemble submits their final entry 20 mins later
 -and everyone waits....

Netflix Prize

Home

Rules

Leaderboard

Update

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning To	sam: BellKor's Pragn	natic Chans	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8002	J.9	001012:4:4-
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
В	<u>Dace</u>	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progr	<u>ess Prize 2008</u> - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
9	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	acmehill	0.8668	9.00	2009-03-21 16:20:50

Million \$ Awarded Sept 21st 2009

Acknowledgments

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth
- Further reading:
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
 - http://www2.research.att.com/~volinsky/netflix/bpc.html
 - http://www.the-ensemble.com/