2025年普通高等学校招生全国统一考试

数学

注意事项:

A. 3

1.	答卷前,	老生多必将自己的姓名、	准考证号等填写在答题卡上。
1.			

- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。

— 、	选择题:	本题共8小题,	每小题 5 分,	共 40 分。	在每小题给出的四个选项中,	只
	有一项是符合题目要求的。					

	有一项是符合题目要求的。			
1	. 样本数据 2, 8, 14	,16,20的平均数为	J	
	A. 8	B. 9	C. 12	D. 18
2	. 已知 z=1+i,则一	<u>1</u> =		
	Аі	B. i	C1	D. 1
3	. 已知集合 A = {-4,0	$,1,2,8$ },集合 $B = \{x \mid$	$x^3=x$ },则 $A\cap B=$	
	A. {0,1,2}	B. {1,2,8}	C. {2,8}	D. {0,1}
4	. 不等式 $\frac{x-4}{x-1} \ge 2$ 的	解集是		
	$A. \{x \mid -2 \le x \le 1\}$		B. $\{x \mid x \leq -2\}$	
	C. $\{x \mid -1 \le x < 1\}$		D. $\{x \mid x > 1\}$	
5	. 在△ABC中,BC	$= 2$, $AC = 1 + \sqrt{3}$,	$AB = \sqrt{6}$, $\mathbb{M} A =$	
	A. 45°	B. 60°	C. 120°	D. 135°

6. 抛物线 $C: y^2 = 2px$ (p > 0) 的焦点为F,点 $A \in C$ 上,过 $A \in C$ 的准线的垂线,

数学试题第1页 (共4页)

C. 5

D. 6

垂足为 B. 若直线 BF 的方程是 y = -2x + 2 ,则 |AF| =

B. 4

7.	设 S_n 为等差数列 $\{a_n\}$ 的前 n 项和.若 $S_3=6$, $S_5=-5$,则 $S_6=$				
	A. –20	В. –15	C10	D5	
8.	已知 $\alpha \in (0,\pi)$, cos	$\frac{\alpha}{2} = \frac{\sqrt{5}}{5}$,则 $\sin(\alpha - \frac{\pi}{4})$)=		
	A. $\frac{\sqrt{2}}{10}$	B. $\frac{\sqrt{2}}{5}$	C. $\frac{3\sqrt{2}}{10}$	D. $\frac{7\sqrt{2}}{10}$	
二、		小题,每小题 6 分, 部选对的得 6 分,部分		给出的选项中,有多项 有选错的得 0 分。	
9.	设 S_n 为等比数列 $\{a_n\}$	$}$ 的前 n 项和, q 为 ${}$	a_n }的公比, $q > 0$.	若 $S_3 = 7$, $a_3 = 1$, 则	
	A. $q = \frac{1}{2}$	B. $a_5 = \frac{1}{9}$	C. $S_5 = 8$	$D. a_n + S_n = 8$	
10.	已知 $f(x)$ 是定义在 R 上的奇函数,且当 $x>0$ 时, $f(x)=(x^2-3)e^x+2$,则			3)e ^x +2,则	
	A. $f(0) = 0$		B. 当x<0时, f(x	$=-(x^2-3)e^{-x}-2$	
	C. f(x)≥2当且仅	$\stackrel{\text{\tiny \pm}}{=} x \geqslant \sqrt{3}$	D. $x = -1$ 是 $f(x)$ 的	的极大值点	
11.	双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $(a > 0, b > 0)$ 的左、右焦点为 F_1 , F_2 , 左、右顶点为 A_1 ,			,左、右顶点为 <i>4</i> ,	
	A_2 ,以 F_1F_2 为直径的圆与 C 的一条渐近线交于 M , N ,且 $\angle NA_1M = \frac{5\pi}{6}$,则				
	A. $\angle A_1 M A_2 = \frac{\pi}{6}$				
	B. $ MA_1 = 2 MA_2 $				
	C. C 的离心率为 $\sqrt{13}$				
	D. 当 $a = \sqrt{2}$ 时,四边形 NA_1MA_2 的面积为 $8\sqrt{3}$				
三、	填空题: 本题共3/	小题,每小题 5 分,	共 15 分。		
12.	已知平面向量 $\mathbf{a} = (x,1)$, $\mathbf{b} = (x-1,2x)$, 若 $\mathbf{a} \perp (\mathbf{a} - \mathbf{b})$, 则 $ \mathbf{a} = $				
13.	设 $x=2$ 是函数 $f(x)=(x-1)(x-2)(x-a)$ 的极值点,则 $f(0)=$				
14.	一个底面半径为4cm, 高为9cm 的封闭圆柱形容器(容器壁厚度忽略不计)内有				
	两个半径相等的铁球,则铁球半径的最大值为cm.				
		数学试题第2页(共 4页)		

四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。

15. (13分)

已知函数
$$f(x) = \cos(2x + \varphi)$$
 $(0 \le \varphi < \pi)$, $f(0) = \frac{1}{2}$.

- (1) 求 φ ;
- (2) 设函数 $g(x) = f(x) + f(x \frac{\pi}{6})$, 求 g(x) 的值域和单调区间.

16. (15分)

椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$$
的离心率为 $\frac{\sqrt{2}}{2}$,长轴长为4.

- (1) 求 C 的方程;
- (2) 过点(0,-2)的直线l与C交于A,B两点,O为坐标原点.若 $\triangle OAB$ 的面积为 $\sqrt{2}$,求|AB|.

17. (15分)

如图,四边形 ABCD 中, AB/CD , $\angle DAB = 90^{\circ}$, F 为 CD 中点, E 在 AB 上, EF/AD , AB = 3AD , CD = 2AD . 将四边形 EFDA 沿 EF 翻折至四边形 EFD'A' , 使得面 EFD'A' 与面 EFCB 所成的二面角为 60° .

- (1) 证明: A'B // 平面 CD'F;
- (2) 求面 BCD'与面 EFD'A' 所成的二面角的正弦值.

18. (17分)

已知函数
$$f(x) = \ln(x+1) - x + \frac{1}{2}x^2 - kx^3$$
, 其中 $0 < k < \frac{1}{3}$.

- (1) 证明: f(x) 在区间 $(0,+\infty)$ 存在唯一的极值点和唯一的零点;
- (2) 设 x_1 , x_2 分别为f(x)在区间 $(0,+\infty)$ 的极值点和零点.
- (i)设函数 $g(t) = f(x_1 + t) f(x_1 t)$. 证明: g(t) 在区间 $(0, x_1)$ 单调递减;
- (ii) 比较 $2x_1$ 与 x_2 的大小,并证明你的结论.

数学试题第3页 (共4页)

19. (17分)

甲、乙两人进行乒乓球练习,每个球胜者得1分,负者得0分. 设每个球甲胜的概率为 $p(\frac{1}{2} ,乙胜的概率为<math>q$,p+q=1,且各球的胜负相互独立. 对正整数 $k \ge 2$,记 p_k 为打完k个球后甲比乙至少多得2分的概率, q_k 为打完k个球后乙比甲至少多得2分的概率.

- (1) 求 p₃, p₄ (用 p 表示);
- (3) 证明: 对任意正整数m, $p_{2m+1} q_{2m+1} < p_{2m} q_{2m} < p_{2m+2} q_{2m+2}$.