General oracle inequalities for ERM, regularized ERM and penalized ERM with applications to High-Dimensional data analysis

Guillaume Lecué

CNRS, Laboratoire d'analyse mathématiques appliquées, Université Paris-Est Marne-la-vallée

Joint works with **Stéphane Gaïffas** and **Shahar Mendelson**.

Princeton University - ORFE. Friday May 25, 2012

A quick example : an oracle inequality for the "squared LASSO"

Applications to S_1 and ℓ_1 regularization

Data: $(X_i, Y_i)_{i=1}^n$ i.i.d. $\sim (X, Y) \in \mathbb{R}^d \times \mathbb{R}$.

A quick example : an oracle inequality for the "squared LASSO"

Data: $(X_i, Y_i)_{i=1}^n$ i.i.d. $\sim (X, Y) \in \mathbb{R}^d \times \mathbb{R}$. **Assumption**: Y and $\|X\|_{\ell_{\infty}^d}$ are subgaussian.

A quick example : an oracle inequality for the "squared LASSO"

Data: $(X_i, Y_i)_{i=1}^n$ i.i.d. $\sim (X, Y) \in \mathbb{R}^d \times \mathbb{R}$.

Assumption: Y and $||X||_{\ell_{\infty}^d}$ are subgaussian.

The regularized empirical risk minimization (ERM) estimator

$$\hat{\beta}_n \in \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \left(\frac{1}{n} \sum_{i=1}^n (Y_i - \left\langle X_i, \beta \right\rangle)^2 + \lambda \frac{\|\beta\|_{\ell_1}^2}{n\epsilon^2} \right)$$

where $\lambda = \lambda(n, d) = polylog(n, d)$ and $\epsilon > 0$

Data: $(X_i, Y_i)_{i=1}^n$ i.i.d. $\sim (X, Y) \in \mathbb{R}^d \times \mathbb{R}$.

Assumption: Y and $||X||_{\ell_{\infty}^d}$ are subgaussian.

The regularized empirical risk minimization (ERM) estimator

$$\hat{\beta}_n \in \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \Big(\frac{1}{n} \sum_{i=1}^n (Y_i - \left\langle X_i, \beta \right\rangle)^2 + \lambda \frac{\|\beta\|_{\ell_1}^2}{n\epsilon^2} \Big)$$

where $\lambda = \lambda(n, d) = polylog(n, d)$ and $\epsilon > 0$ satisfies, with large probability,

$$\mathbb{E}(Y-\left\langle \hat{\beta}_{n},X\right\rangle)^{2}\leq\inf_{\beta\in\mathbb{R}^{d}}\Big((1+\epsilon)\mathbb{E}(Y-\left\langle \beta,X\right\rangle)^{2}+c_{1}\lambda\frac{(1+\|\beta\|_{\ell_{1}^{d}}^{2})}{n\epsilon^{2}}\Big).$$

A quick example: an oracle inequality for the "squared LASSO"

Data: $(X_i, Y_i)_{i=1}^n$ i.i.d. $\sim (X, Y) \in \mathbb{R}^d \times \mathbb{R}$.

Assumption: Y and $||X||_{\ell^d_{aa}}$ are subgaussian.

The regularized empirical risk minimization (ERM) estimator

$$\hat{\beta}_n \in \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \Big(\frac{1}{n} \sum_{i=1}^n (Y_i - \left\langle X_i, \beta \right\rangle)^2 + \lambda \frac{\|\beta\|_{\ell_1}^2}{n\epsilon^2} \Big)$$

where $\lambda = \lambda(n, d) = polylog(n, d)$ and $\epsilon > 0$ satisfies, with large probability,

$$\mathbb{E}(Y-\left\langle \hat{\beta}_{n},X\right\rangle)^{2}\leq\inf_{\beta\in\mathbb{R}^{d}}\Big((1+\epsilon)\mathbb{E}(Y-\left\langle \beta,X\right\rangle)^{2}+c_{1}\lambda\frac{(1+\|\beta\|_{\ell_{1}^{d}}^{2})}{n\epsilon^{2}}\Big).$$

Question 1 : What is the reason for penalizing by $\|\cdot\|_{\ell_q^d}^2$?

Data: $(X_i, Y_i)_{i=1}^n$ i.i.d. $\sim (X, Y) \in \mathbb{R}^d \times \mathbb{R}$.

Assumption: Y and $||X||_{\ell^d_{aa}}$ are subgaussian.

The regularized empirical risk minimization (ERM) estimator

$$\hat{\beta}_n \in \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \Big(\frac{1}{n} \sum_{i=1}^n (Y_i - \left\langle X_i, \beta \right\rangle)^2 + \lambda \frac{\|\beta\|_{\ell_1}^2}{n\epsilon^2} \Big)$$

where $\lambda = \lambda(n, d) = polylog(n, d)$ and $\epsilon > 0$ satisfies, with large probability,

$$\mathbb{E}(Y-\left\langle \hat{\beta}_n,X\right\rangle)^2 \leq \inf_{\beta\in\mathbb{R}^d} \Big((1+\epsilon)\mathbb{E}(Y-\left\langle \beta,X\right\rangle)^2 + c_1\lambda\frac{(1+\|\beta\|_{\ell_1^d}^2)}{n\epsilon^2}\Big).$$

Question 1 : What is the reason for penalizing by $\|\cdot\|_{\ell_1^d}^2$?

Question 2 : Why is it possible to achieve a fast 1/n-residual term without any "RIP -type" assumption ?

Applications to S_1 and ℓ_1 regularization

General model in learning theory

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$

- $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$
- $\ell:(f,z)\longmapsto \ell(f,z):=\ell_f(z)\in\mathbb{R}:$ loss function of $f:\mathcal{Z}\to\mathbb{R}$

Applications to S_1 and ℓ_1 regularization

- $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$
- $\ell:(f,z)\longmapsto \ell(f,z):=\ell_f(z)\in\mathbb{R}:$ loss function of $f:\mathcal{Z}\to\mathbb{R}$

Applications to S_1 and ℓ_1 regularization

• $R(f) = \mathbb{E}\ell_f(Z)$: risk of f

- Z_1, \ldots, Z_n : n i.i.d. $\sim Z$ random variables in Z
- $\ell:(f,z)\longmapsto \ell(f,z):=\ell_f(z)\in\mathbb{R}$: loss function of $f:\mathcal{Z}\to\mathbb{R}$

- $R(f) = \mathbb{E}\ell_f(Z)$: risk of f
- risk of a statistics \hat{f}_n is

$$R(\hat{f}_n) = \mathbb{E}[\ell_{\hat{f}_n}(Z)|\mathcal{D}]$$

- $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} (Z = (X, Y))$
- $\ell:(f,z)\longmapsto \ell(f,z):=\ell_f(z)\in\mathbb{R}$: loss function of $f:\mathcal{Z}\to\mathbb{R}$

- $R(f) = \mathbb{E}\ell_f(Z)$: risk of f
- risk of a statistics \hat{f}_n is

$$R(\hat{f}_n) = \mathbb{E}[\ell_{\hat{f}_n}(Z)|\mathcal{D}]$$

- $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} (Z = (X, Y))$
- $\ell: (f, z) \longmapsto \ell(f, z) := \ell_f(z) \in \mathbb{R} : \text{loss function of } f: \mathcal{Z} \to \mathbb{R}$ $(\ell_f(z) := \ell_f(x, y) = (y - f(x))^2)$
- $R(f) = \mathbb{E}\ell_f(Z)$: risk of f
- risk of a statistics \hat{f}_n is

$$R(\hat{f}_n) = \mathbb{E}[\ell_{\hat{f}_n}(Z)|\mathcal{D}]$$

- $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} (Z = (X, Y))$
- $\ell: (f,z) \longmapsto \ell(f,z) := \ell_f(z) \in \mathbb{R} : \text{loss function of } f: \mathcal{Z} \to \mathbb{R}$ $(\ell_f(z) := \ell_f(x,y) = (y - f(x))^2)$
- $R(f) = \mathbb{E}\ell_f(Z)$: risk of $f(R(f) = \mathbb{E}(Y f(X))^2)$
- risk of a statistics \hat{f}_n is

$$R(\hat{f}_n) = \mathbb{E}[\ell_{\hat{f}}(Z)|\mathcal{D}]$$

• Assumption : We don't want to assume any particular model (i.e. we don't assume that $Y = f^*(X) + \sigma g$ etc...). No assumption on the model (only tail assumption on $\ell_f(Z)$, $f \in F$).

- Assumption : We don't want to assume any particular model (i.e. we don't assume that $Y = f^*(X) + \sigma g$ etc...). No assumption on the model (only tail assumption on $\ell_f(Z)$, $f \in F$).
- Aim: construct procedures satisfying some oracle inequalities (no control of the approximation term we focus on the stochastic term...) three types of oracle inequalities.

General oracle inequalities for Empirial Risk Minimization

Applications to S_1 and ℓ_1 regularization

Empirical Risk minimization

1 a model F is a class of functions $f: \mathcal{Z} \to \mathbb{R}$

Empirical Risk minimization

- **1** a model F is a class of functions $f: \mathcal{Z} \to \mathbb{R}$
- the empirical risk is

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f, Z_i)$$

Applications to S_1 and ℓ_1 regularization

Empirical Risk minimization

- **①** a model F is a class of functions $f: \mathcal{Z} \to \mathbb{R}$
- 2 the empirical risk is

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f, Z_i)$$

3 the Empirical Risk Minimization procedure is

$$\hat{f}_n^{(ERM)} \in \operatorname*{argmin}_{f \in F} R_n(f)$$

Oracle inequalities for ERM

Three different oracle inequalities. Exemple in aggregation theory.

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Applications to S_1 and ℓ_1 regularization

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Assume |Y|, $\max_{f \in F} |f(X)| \le b$ a.s.. For every $x, \epsilon > 0$, with probability greater than $1 - 4 \exp(-x)$,

$$R(\hat{f}_n^{(ERM)}) \le \min_{f \in F} R(f) + c_0 \sqrt{\frac{x + \log |F|}{n}}$$

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Assume |Y|, $\max_{f \in F} |f(X)| \le b$ a.s.. For every $x, \epsilon > 0$, with probability greater than $1 - 4 \exp(-x)$,

$$R(\hat{f}_n^{(ERM)}) \le \min_{f \in F} R(f) + c_0 \sqrt{\frac{x + \log |F|}{n}}$$

$$R(\hat{t}_n^{(ERM)}) \le (1+\epsilon) \min_{f \in F} R(f) + c_0 \frac{x + \log|F|}{n\epsilon}$$

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Assume |Y|, $\max_{f \in F} |f(X)| \le b$ a.s.. For every $x, \epsilon > 0$, with probability greater than $1 - 4 \exp(-x)$,

$$R(\hat{f}_n^{(ERM)}) \le \min_{f \in F} R(f) + c_0 \sqrt{\frac{x + \log |F|}{n}}$$

$$R(\hat{f}_n^{(ERM)}) \le (1+\epsilon) \min_{f \in F} R(f) + c_0 \frac{x + \log |F|}{n\epsilon}$$

 \bullet and for $f^*(X) = \mathbb{E}[Y|X]$

$$R(\hat{f}_n^{(ERM)}) - R(f^*) \le (1 + \epsilon) \min_{f \in F} \left(R(f) - R(f^*) \right) + c_0 \frac{x + \log |F|}{n\epsilon}$$

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Assume |Y|, $\max_{f \in F} |f(X)| \le b$ a.s.. For every $x, \epsilon > 0$, with probability greater than $1 - 4 \exp(-x)$,

Exact Oracle Inequality

$$R(\hat{f}_n^{(ERM)}) \le \min_{f \in F} R(f) + c_0 \sqrt{\frac{x + \log |F|}{n}}$$

$$R(\hat{t}_n^{(ERM)}) \le (1+\epsilon) \min_{f \in F} R(f) + c_0 \frac{x + \log|F|}{n\epsilon}$$

3 and for $f^*(X) = \mathbb{E}[Y|X]$

$$R(\hat{f}_n^{(ERM)}) - R(f^*) \le (1 + \epsilon) \min_{f \in F} \left(R(f) - R(f^*) \right) + c_0 \frac{x + \log |F|}{n\epsilon}$$

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Assume |Y|, $\max_{f \in F} |f(X)| \le b$ a.s.. For every $x, \epsilon > 0$, with probability greater than $1 - 4 \exp(-x)$,

Exact Oracle Inequality

$$R(\hat{f}_n^{(ERM)}) \le \min_{f \in F} R(f) + c_0 \sqrt{\frac{x + \log |F|}{n}}$$

Non-Exact Oracle Inequality

$$R(\hat{f}_n^{(ERM)}) \le (1+\epsilon) \min_{f \in F} R(f) + c_0 \frac{x + \log |F|}{n\epsilon}$$

3 and for $f^*(X) = \mathbb{E}[Y|X]$

$$R(\hat{f}_n^{(ERM)}) - R(f^*) \le (1 + \epsilon) \min_{f \in F} \left(R(f) - R(f^*) \right) + c_0 \frac{x + \log |F|}{n\epsilon}$$

The ERM over a finite model F w.r.t. the square loss is

$$\hat{f}_n^{(ERM)} \in \operatorname{Arg} \min_{f \in F} R_n(f) \text{ where } R_n(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

Assume |Y|, $\max_{f \in F} |f(X)| \le b$ a.s.. For every $x, \epsilon > 0$, with probability greater than $1 - 4 \exp(-x)$,

Exact Oracle Inequality

$$R(\hat{f}_n^{(ERM)}) \le \min_{f \in F} R(f) + c_0 \sqrt{\frac{x + \log |F|}{n}}$$

Non-Exact Oracle Inequality

$$R(\hat{f}_n^{(ERM)}) \le (1+\epsilon) \min_{f \in F} R(f) + c_0 \frac{x + \log |F|}{n\epsilon}$$

and for $f^*(X) = \mathbb{E}[Y|X]$ Non-Exact Oracle Inequality for the estimation problem

$$R(\hat{f}_n^{(ERM)}) - R(f^*) \le (1 + \epsilon) \min_{f \in F} \left(R(f) - R(f^*) \right) + c_0 \frac{x + \log |F|}{n\epsilon}$$

Three oracle inequalities with two different residual terms :

Three oracle inequalities with two different residual terms :

• fast decaying residual term for the "non-exact oracle inequality" and "non-exact oracle inequality for the estimation problem" :

$$\frac{x + \log |F|}{n} \sim \frac{\text{comp}(F)}{n}$$

Three oracle inequalities with two different residual terms:

 fast decaying residual term for the "non-exact oracle inequality" and "non-exact oracle inequality for the estimation problem":

$$\frac{x + \log |F|}{n} \sim \frac{\text{comp}(F)}{n}$$

Applications to S_1 and ℓ_1 regularization

 slow decaying residual term (non-improvable : there exists lower bounds) for the "exact oracle inequality":

$$\sqrt{\frac{x + \log |F|}{n}} \sim \sqrt{\frac{\operatorname{comp}(F)}{n}}$$

Three oracle inequalities with two different residual terms :

• fast decaying residual term for the "non-exact oracle inequality" and "non-exact oracle inequality for the estimation problem":

$$\frac{x + \log |F|}{n} \sim \frac{\text{comp}(F)}{n}$$

Applications to S_1 and ℓ_1 regularization

 slow decaying residual term (non-improvable : there exists lower bounds) for the "exact oracle inequality" :

$$\sqrt{\frac{x + \log |F|}{n}} \sim \sqrt{\frac{\text{comp}(F)}{n}}$$

Question: why is there such a difference between the three oracle inequalities (exact, non-exact, non-exact for estimation)?

Three oracle inequalities with two different residual terms :

• fast decaying residual term for the "non-exact oracle inequality" and "non-exact oracle inequality for the estimation problem":

$$\frac{x + \log |F|}{n} \sim \frac{\text{comp}(F)}{n}$$

 slow decaying residual term (non-improvable : there exists lower bounds) for the "exact oracle inequality" :

$$\sqrt{\frac{x + \log |F|}{n}} \sim \sqrt{\frac{\text{comp}(F)}{n}}$$

Question: why is there such a difference between the three oracle inequalities (exact, non-exact, non-exact for estimation)?(Fundamental reasons? Geometry - complexity -concentration)

loss functions class :

$$\ell_F := \{\ell_f : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

Exact and non-exact oracle inequalities in a general framework

loss functions class :

Oracle inequalities for ERM

$$\ell_F := \{\ell_f : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions class : for $f_F^* \in \operatorname{argmin}_{f \in F} R(f)$

$$\mathcal{L}_F := \{\ell_f - \ell_{f_F^*} : f \in F\} = \ell_F - \ell_{f_F^*}$$

Exact and non-exact oracle inequalities in a general framework

loss functions class :

Oracle inequalities for ERM

$$\ell_F := \{\ell_f : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions class : for $f_F^* \in \operatorname{argmin}_{f \in F} R(f)$

$$\mathcal{L}_{F} := \{\ell_{f} - \ell_{f_{F}^{*}} : f \in F\} = \ell_{F} - \ell_{f_{F}^{*}}$$

 excess loss functions class for the estimation problem : for $f^* \in \operatorname{argmin}_f R(f)$

$$\mathcal{E}_F := \{\ell_f - \ell_{f^*} : f \in F\} = \ell_F - \ell_{f^*}$$

Exact and non-exact oracle inequalities in a general framework

loss functions class :

$$\ell_F := \{\ell_f : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions class : for $f_F^* \in \operatorname{argmin}_{f \in F} R(f)$

$$\mathcal{L}_{F} := \{\ell_{f} - \ell_{f_{F}^{*}} : f \in F\} = \ell_{F} - \ell_{f_{F}^{*}}$$

 excess loss functions class for the estimation problem : for $f^* \in \operatorname{argmin}_f R(f)$

$$\mathcal{E}_F := \{ \ell_f - \ell_{f^*} : f \in F \} = \ell_F - \ell_{f^*}$$

For every functions class H, the star-shaped hull of H in 0 is

$$V(H) = \text{star}(H, 0) := \{\theta h : 0 \le \theta \le 1, h \in H\}$$

loss functions class :

$$\ell_F := \{\ell_f : f \in F\}$$

• excess loss functions class : for $f_F^* \in \operatorname{argmin}_{f \in F} R(f)$

$$\mathcal{L}_{F} := \{\ell_{f} - \ell_{f_{F}^{*}} : f \in F\} = \ell_{F} - \ell_{f_{F}^{*}}$$

• excess loss functions class for the estimation problem : for $f^* \in \operatorname{argmin}_f R(f)$

$$\mathcal{E}_F := \{\ell_f - \ell_{f^*} : f \in F\} = \ell_F - \ell_{f^*}$$

For every functions class H, the star-shaped hull of H in 0 is

$$V(H) = \text{star}(H, 0) := \{\theta h : 0 \le \theta \le 1, h \in H\}$$

and its *localized set at level* $\lambda > 0$ is

$$V(H)_{\lambda} := \{ g \in V(H) : \mathbb{E}g < \lambda \}$$

Oracle inequalities for ERM

Exact and non-exact oracle inequalities in a general framework

Applications to S_1 and ℓ_1 regularization

Applications to S_1 and ℓ_1 regularization

Oracle inequalities for ERM

Oracle inequalities for ERM

Exact and non-exact oracle inequalities in a general framework

Non-exact oracle inequalities

Applications to S_1 and ℓ_1 regularization

12 / 56

$$||P - P_n||_H := \sup_{h \in H} |Ph - P_n h|$$

where

$$Ph := \mathbb{E}h(Z)$$
 and $P_nh := \frac{1}{n}\sum_{i=1}^n h(Z_i)$

$$||P - P_n||_H := \sup_{h \in H} |Ph - P_n h|$$

Applications to S_1 and ℓ_1 regularization

where

Oracle inequalities for ERM

$$Ph := \mathbb{E}h(Z) \text{ and } P_nh := \frac{1}{n}\sum_{i=1}^n h(Z_i)$$

Two important fixed points driving exact and non-exact oracle inequalities:

$$||P - P_n||_H := \sup_{h \in H} |Ph - P_n h|$$

Applications to S_1 and ℓ_1 regularization

where

$$Ph := \mathbb{E}h(Z) \text{ and } P_nh := \frac{1}{n}\sum_{i=1}^n h(Z_i)$$

Two important fixed points driving exact and non-exact oracle inequalities:

for exact oracle inequalities :

$$\mu^* := \inf \left(\mu > 0 : \mathbb{E} \| P - P_n \|_{V(\mathcal{L}_F)_\mu} \le \mu/8 \right)$$

$$||P - P_n||_H := \sup_{h \in H} |Ph - P_n h|$$

where

$$Ph:=\mathbb{E}h(Z)$$
 and $P_nh:=rac{1}{n}\sum_{i=1}^n h(Z_i)$

Two important fixed points driving exact and non-exact oracle inequalities:

for exact oracle inequalities :

$$\mu^* := \inf \left(\mu > 0 : \mathbb{E} \| P - P_n \|_{V(\mathcal{L}_F)_\mu} \le \mu/8 \right)$$

non-exact oracle inequalities :

$$\lambda_{\epsilon}^* := \inf \left(\lambda > 0 : \mathbb{E} \| P - P_n \|_{V(\ell_F)_{\lambda}} \le (\epsilon/4) \lambda \right)$$

Exact oracle inequality

Theorem (Bartlett and Mendelson)

Let F be a class of functions and assume that there exists B > 0 such that for every $f \in F$,

$$P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$$

Let
$$\mu^* > 0$$
 be s.t. $\mathbb{E} \| P_n - P \|_{V(\mathcal{L}_F)_{\mu^*}} \le \mu^* / 8$

Exact oracle inequality

Theorem (Bartlett and Mendelson)

Let F be a class of functions and assume that there exists B > 0 such that for every $f \in F$,

$$P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$$

Let $\mu^* > 0$ be s.t. $\mathbb{E} \| P_n - P \|_{V(\mathcal{L}_F)_{\mu^*}} \le \mu^* / 8$ Then, for every x > 0, with probability greater than $1 - 8 \exp(-x)$,

$$R(\hat{f}_n^{ERM}) \leq \inf_{f \in F} R(f) + \rho_n(x)$$

Theorem (Bartlett and Mendelson)

Let F be a class of functions and assume that there exists B > 0 such that for every $f \in F$,

$$P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$$

Let $\mu^* > 0$ be s.t. $\mathbb{E} \| P_n - P \|_{V(\mathcal{L}_F)_{\mu^*}} \le \mu^* / 8$ Then, for every x > 0, with probability greater than $1 - 8 \exp(-x)$,

$$R(\hat{f}_n^{ERM}) \le \inf_{f \in F} R(f) + \rho_n(x)$$

where ρ_n is an increasing function s.t. for every x > 0,

$$\rho_n(x) \geq \max\left(\frac{\mu^*}{n}, c_0 \frac{(\|\mathcal{L}_F\|_{\infty} + B)x}{n}\right).$$

Exact oracle inequality

Theorem (Bartlett and Mendelson)

Let F be a class of functions and assume that there exists B > 0 such that for every $f \in F$,

$$P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$$

Let $\mu^* > 0$ be s.t. $\mathbb{E}\|P_n - P\|_{V(\mathcal{L}_F)_{\mu^*}} \le \mu^*/8$ Then, for every x > 0, with probability greater than $1 - 8 \exp(-x)$,

$$R(\hat{f}_n^{ERM}) \le \inf_{f \in F} R(f) + \rho_n(x)$$

where ρ_n is an increasing function s.t. for every x > 0,

$$\rho_n(x) \geq \max\left(\frac{\mu^*}{n}, c_0 \frac{(\|\mathcal{L}_F\|_{\infty} + B)x}{n}\right).$$

cf. similar results in [Massart and Nédélec], [Koltchinskii],...

Applications to S_1 and ℓ_1 regularization

Oracle inequalities for ERM

Theorem (L. and Mendelson)

Let F be a class of functions and assume that there exists $B \ge 0$ such that for every $f \in F$,

$$P\ell_f^2 \le BP\ell_f + B^2/n$$

Let $0 < \epsilon < 1$ and consider $\lambda_{\epsilon}^* > 0$ for which

$$\mathbb{E}\|P_n-P\|_{V(\ell_F)_{\lambda_{\epsilon}^*}}\leq (\epsilon/4)\lambda_{\epsilon}^*$$

Oracle inequalities for ERM

Theorem (L. and Mendelson)

Let F be a class of functions and assume that there exists B > 0 such that for every $f \in F$,

$$P\ell_f^2 \le BP\ell_f + B^2/n$$

Let $0 < \epsilon < 1$ and consider $\lambda_{\epsilon}^* > 0$ for which

$$\mathbb{E}\|P_n-P\|_{V(\ell_F)_{\lambda_{\epsilon}^*}}\leq (\epsilon/4)\lambda_{\epsilon}^*$$

Then, for every x > 0, with probability greater than $1 - 8 \exp(-x)$,

$$R(\hat{f}_n^{ERM}) \le (1 + 2\epsilon) \inf_{f \in F} R(f) + \tilde{\rho}_n(x)$$

Non-exact oracle inequality

Theorem (L. and Mendelson)

Let F be a class of functions and assume that there exists $B \ge 0$ such that for every $f \in F$,

$$P\ell_f^2 \le BP\ell_f + B^2/n$$

Let $0 < \epsilon < 1$ and consider $\lambda_{\epsilon}^* > 0$ for which

$$\mathbb{E}\|P_n-P\|_{V(\ell_F)_{\lambda_{\epsilon}^*}}\leq (\epsilon/4)\lambda_{\epsilon}^*$$

Then, for every x > 0, with probability greater than $1 - 8 \exp(-x)$,

$$R(\hat{f}_n^{ERM}) \le (1 + 2\epsilon) \inf_{f \in F} R(f) + \tilde{\rho}_n(x)$$

where ρ_n is an increasing function s.t. for every x > 0

$$\tilde{\rho}_n(x) \geq \max\left(\frac{\lambda_{\epsilon}^*}{n_{\epsilon}}, c_0 \frac{(\|\ell_F\|_{\infty} + B/\epsilon)x}{n_{\epsilon}}\right).$$

Applications to S_1 and ℓ_1 regularization

The Bernstein Condition

① Exact oracle inequality : $\forall f \in F, P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$;

The Bernstein Condition

- **1** Exact oracle inequality : $\forall f \in F, P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$;
- **2** Non-exact oracle inequality : $\forall f \in F, P\ell_f^2 \leq BP\ell_f + B^2/n$.

Applications to S_1 and ℓ_1 regularization

Applications to S_1 and ℓ_1 regularization

The Bernstein Condition

- **1** Exact oracle inequality : $\forall f \in F, P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$;
- **2** Non-exact oracle inequality : $\forall f \in F, P\ell_f^2 \leq BP\ell_f + B^2/n$.

Lemma

For every function f s.t. $\ell_f \geq 0$ a.s. and $\|\ell_f(Z)\|_{\psi_1} \leq D$ for some $D \geq 1$, we have, for every n,

$$P\ell_f^2 \le (c_0 D \log(en)) P\ell_f + \frac{(c_0 D \log(en))^2}{n}.$$

The Bernstein Condition

- **1** Exact oracle inequality : $\forall f \in F, P\mathcal{L}_f^2 \leq BP\mathcal{L}_f$;
- **②** Non-exact oracle inequality : $\forall f \in F, P\ell_f^2 \leq BP\ell_f + B^2/n$.

Lemma

For every function f s.t. $\ell_f \geq 0$ a.s. and $\|\ell_f(Z)\|_{\psi_1} \leq D$ for some $D \geq 1$, we have, for every n,

$$P\ell_f^2 \leq (c_0 D \log(en)) P\ell_f + \frac{(c_0 D \log(en))^2}{n}.$$

Conclusion 1 : In the case of non-exact oracle inequalities, the Bernstein condition for ℓ_F is almost trivially satisfied.

$$\bullet f_2(X)$$

$$\bullet f_1(X)$$

$$\bullet f_2(X)$$

$$\textit{F} = \{\textit{f}_1,\textit{f}_2\}$$

$$\bullet f_1(X)$$

$$\bullet f_2(X)$$

$$F = \{f_1, f_2\}$$

$$R(f) = \mathbb{E}(Y - f(X))^2$$

$$\bullet f_1(X)$$

$$F = \{f_1, f_2\}$$

$$R(f) = \mathbb{E}(Y - f(X))^2$$

Oracle inequalities for RERM

Conclusion 2: In the case of exact oracle inequalities, the Bernstein condition depends in a very strong way of the geometry of the couple (F, Y).

Conclusion 2 : In the case of exact oracle inequalities, the Bernstein condition depends in a very strong way of the geometry of the couple (F, Y).

This explains the gap in the aggregation problem : for this problem, the set of multiple minimizer M_F is never empty. So it is always possible to find a target Y in a "bad" position leading to an excess loss class \mathcal{L}_F with a trivial Bernstein constant $(B \sim \sqrt{n})$ and thus a slow residual term $\sim \sqrt{\operatorname{Comp}(F)/n}$.

Conclusion 2 : In the case of exact oracle inequalities, the Bernstein condition depends in a very strong way of the geometry of the couple (F, Y).

This explains the gap in the aggregation problem : for this problem, the set of multiple minimizer M_F is never empty. So it is always possible to find a target Y in a "bad" position leading to an excess loss class \mathcal{L}_F with a trivial Bernstein constant $(B \sim \sqrt{n})$ and thus a slow residual term $\sim \sqrt{\operatorname{Comp}(F)/n}$.

1 When the class F is convex : the Bernstein condition of \mathcal{L}_F is always satisfied (quadratic loss).

Conclusion 2: In the case of exact oracle inequalities, the Bernstein condition depends in a very strong way of the geometry of the couple (F,Y).

Applications to S_1 and ℓ_1 regularization

This explains the gap in the aggregation problem: for this problem, the set of multiple minimizer M_F is never empty. So it is always possible to find a target Y in a "bad" position leading to an excess loss class \mathcal{L}_F with a trivial Bernstein constant $(B \sim \sqrt{n})$ and thus a slow residual term $\sim \sqrt{\text{Comp}(F)/n}$.

- **1** When the class F is convex : the Bernstein condition of \mathcal{L}_F is always satisfied (quadratic loss).
- When the class F is not convex : the ERM is likely to be a suboptimal procedure but there are some possibilities to "improve the geometry" of F: by "starification" (Audibert) or "pre-selection-convexification" (L. and Mendelson).

The complexity terms : μ^* and λ_{ϵ}^* - Part 1

The fixed points μ^* and λ^* characterize the isomorphic properties of \mathcal{L}_F and ℓ_F respectively :

Applications to S_1 and ℓ_1 regularization

The complexity terms : μ^* and λ_{ϵ}^* - Part 1

The fixed points μ^* and λ^* characterize the isomorphic properties of \mathcal{L}_F and ℓ_F respectively :

Theorem (Bartlett and Mendelson)

If H is a class of functions s.t.

$$Ph^2 \leq BPh, \forall h \in H,$$

The complexity terms : μ^* and λ_{ϵ}^* - Part 1

The fixed points μ^* and λ^* characterize the isomorphic properties of \mathcal{L}_F and ℓ_F respectively:

Theorem (Bartlett and Mendelson)

If H is a class of functions s.t.

$$Ph^2 \leq BPh, \forall h \in H$$

then for every x > 0, with probability greater than $1 - 4 \exp(-x)$,

$$(1/2)P_nh \le Ph \le (3/2)P_nh$$

for every $h \in H$ s.t. $Ph \ge \max(\kappa^*, x/n)$ where

$$\kappa^* := \inf (\kappa > 0 : \mathbb{E} \|P - P_n\|_{V(H)_{\kappa}} \le \kappa/8).$$

Oracle inequalities for ERM

Exact and non-exact oracle inequalities in a general framework - Part 4

Applications to S_1 and ℓ_1 regularization

$$V(\ell_F)_{\lambda} = \{g \in V(\ell_F) : \mathbb{E}g \leq \lambda\}$$

Non-exact oracle inequalities

$$\mathbb{E}\|P - P_n\|_{V(\ell_F)_{\lambda^*}} \le (\epsilon/4)\lambda_{\epsilon}^*$$

Exact oracle inequalities

$$\mathbb{E}\|P-P_n\|_{V(\mathcal{L}_F)_{\mu^*}} \leq \mu^*/8$$

Applications to S_1 and ℓ_1 regularization

[Peeling argument :]

[Peeling argument :] H a class of functions s.t. $Ph \ge 0, \forall h \in H$:

$$V(H)_{\lambda} \subset \bigcup_{i=0}^{\infty} \{\theta h : 0 \leq \theta \leq 2^{-i}, h \in H, Ph \leq 2^{i+1}\lambda\}.$$

Applications to S_1 and ℓ_1 regularization

Therefore, setting $H_{\lambda} = \{h \in H : Ph < \lambda\}$,

$$\mathbb{E} \|P - P_n\|_{V(H)_{\lambda}} \le \sum_{i=0}^{\infty} 2^{-i} \mathbb{E} \|P - P_n\|_{H_{2^{i+1}_{\lambda}}}$$

Oracle inequalities for ERM

An example of computation of the fixed points λ_{ϵ}^* and μ^*

[Peeling argument :] H a class of functions s.t. $Ph \geq 0, \forall h \in H$:

$$V(H)_{\lambda} \subset \bigcup_{i=0}^{\infty} \{\theta h : 0 \leq \theta \leq 2^{-i}, h \in H, Ph \leq 2^{i+1}\lambda\}.$$

Applications to S_1 and ℓ_1 regularization

Therefore, setting $H_{\lambda} = \{h \in H : Ph < \lambda\}$,

$$\|\mathbb{E}\|P - P_n\|_{V(H)_{\lambda}} \le \sum_{i=0}^{\infty} 2^{-i} \mathbb{E}\|P - P_n\|_{H_{2^{i+1}\lambda}}$$

Different ways of computing $\mathbb{E}||P-P_n||_{H_n}$:

Symetrization+Contraction principle+Dudley entropy integrale;

[Peeling argument :] H a class of functions s.t. $Ph \geq 0, \forall h \in H$:

$$V(H)_{\lambda} \subset \bigcup_{i=0}^{\infty} \{\theta h : 0 \leq \theta \leq 2^{-i}, h \in H, Ph \leq 2^{i+1}\lambda\}.$$

Applications to S_1 and ℓ_1 regularization

Therefore, setting $H_{\lambda} = \{h \in H : Ph < \lambda\}$,

$$\|\mathbb{E}\|P - P_n\|_{V(H)_{\lambda}} \le \sum_{i=0}^{\infty} 2^{-i} \mathbb{E}\|P - P_n\|_{H_{2^{i+1}\lambda}}$$

Different ways of computing $\mathbb{E}||P-P_n||_{H_n}$:

- Symetrization+Contraction principle+Dudley entropy integrale;
- Some particular chaining methods;

[Peeling argument :] H a class of functions s.t. $Ph \geq 0, \forall h \in H$:

$$V(H)_{\lambda} \subset \bigcup_{i=0}^{\infty} \{\theta h : 0 \leq \theta \leq 2^{-i}, h \in H, Ph \leq 2^{i+1}\lambda\}.$$

Applications to S_1 and ℓ_1 regularization

Therefore, setting $H_{\lambda} = \{h \in H : Ph < \lambda\}$,

$$\mathbb{E} \|P - P_n\|_{V(H)_{\lambda}} \le \sum_{i=0}^{\infty} 2^{-i} \mathbb{E} \|P - P_n\|_{H_{2^{i+1}_{\lambda}}}$$

Different ways of computing $\mathbb{E}||P-P_n||_{H_n}$:

- Symetrization+Contraction principle+Dudley entropy integrale;
- Some particular chaining methods;
- Gaussian complexities;

Oracle inequalities for ERM

An example of computation of the fixed points λ_{ϵ}^* and μ^*

[Peeling argument :] H a class of functions s.t. $Ph \geq 0, \forall h \in H$:

$$V(H)_{\lambda} \subset \bigcup_{i=0}^{\infty} \{\theta h : 0 \leq \theta \leq 2^{-i}, h \in H, Ph \leq 2^{i+1}\lambda\}.$$

Applications to S_1 and ℓ_1 regularization

Therefore, setting $H_{\lambda} = \{h \in H : Ph < \lambda\}$,

$$\|\mathbb{E}\|P - P_n\|_{V(H)_{\lambda}} \le \sum_{i=0}^{\infty} 2^{-i} \mathbb{E}\|P - P_n\|_{H_{2^{i+1}_{\lambda}}}$$

Different ways of computing $\mathbb{E}||P-P_n||_{H_n}$:

- Symetrization+Contraction principle+Dudley entropy integrale;
- Some particular chaining methods;
- Gaussian complexities;
- Bourgain a priori method (in particular Rudelson method),...

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss:

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss:

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss:

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

$$P_{\sigma}F := \{(f(X_1), \cdots, f(X_n)) : f \in F\}$$

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss:

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

$$P_{\sigma}F := \{(f(X_1), \cdots, f(X_n)) : f \in F\} \text{ and } U_n(F^{(\mu)}) := \mathbb{E}\gamma_2(P_{\sigma}F^{(\mu)}, \ell_{\infty}^n)^2$$

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss :

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

$$P_{\sigma}F := \{(f(X_1), \cdots, f(X_n)) : f \in F\} \text{ and } U_n(F^{(\mu)}) := \mathbb{E}\gamma_2(P_{\sigma}F^{(\mu)}, \ell_{\infty}^n)^2$$

where $\gamma_2(T, d) := \inf_{\{T_s\}} \sup_{t \in T} \sum_{s=0}^{\infty} 2^{-s/2} d(t, T_s) \text{ and } |T_s| \leq 2^{2^s} \text{ and } \tilde{A} = A - A \text{ and } F^{(\mu)} := \{f \in F : P\ell_f \leq \mu\}$

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss :

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

Applications to S_1 and ℓ_1 regularization

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

Complexity measure of F:

$$P_{\sigma}F := \{(f(X_1), \cdots, f(X_n)) : f \in F\} \text{ and } U_n(F^{(\mu)}) := \mathbb{E}\gamma_2(P_{\sigma}F^{(\mu)}, \ell_{\infty}^n)^2$$

where $\gamma_2(T,d) := \inf_{\{T_s\}} \sup_{t \in T} \sum_{s=0}^{\infty} 2^{-s/2} d(t,T_s)$ and $|T_s| \le 2^{2^s}$ and $\tilde{A} = A - A$ and $F^{(\mu)} := \{f \in F : P\ell_f < \mu\}$

Lemma

Computation of λ_{ϵ}^* and μ^* in the case of the Regression model with quadratic loss :

$$\ell_F := \{\ell_f : (y, x) \longmapsto (y - f(x))^2 : f \in F\}$$

and

$$\mathcal{L}_F := \{ \mathcal{L}_f : (y, x) \longmapsto (y - f(x))^2 - (y - f_F^*(x))^2 : f \in F \}.$$

Complexity measure of F:

$$P_{\sigma}F := \{(f(X_1), \cdots, f(X_n)) : f \in F\} \text{ and } U_n(F^{(\mu)}) := \mathbb{E}\gamma_2(P_{\sigma}F^{(\mu)}, \ell_{\infty}^n)^2$$

where $\gamma_2(T,d):=\inf_{(T_s)}\sup_{t\in T}\sum_{s=0}^\infty 2^{-s/2}d(t,T_s)$ and $|T_s|\leq 2^{2^s}$ and $\tilde{A}=A-A$ and $F^{(\mu)}:=\{f\in F:P\ell_f\leq \mu\}$

Lemma

- $\bullet \mathbb{E} \|P P_n\|_{(\ell_F)_{\mu}} \lesssim \sqrt{\mu \frac{U_n(F^{(\mu)})}{n}};$

Then combining

1
$$\mathbb{E}\|P - P_n\|_{V(H)_{\lambda}} \le \sum_{i=0}^{\infty} 2^{-i} \mathbb{E}\|P - P_n\|_{H_{2^{i+1}_{\lambda}}}$$
 for $H = \ell_F, \mathcal{L}_F$

Applications to S_1 and ℓ_1 regularization

Then combining

Oracle inequalities for ERM

$$\bullet \ \mathbb{E} \|P - P_n\|_{V(H)_\lambda} \leq \textstyle \sum_{i=0}^\infty 2^{-i} \mathbb{E} \|P - P_n\|_{H_{2^{i+1}_\lambda}} \text{ for } H = \ell_F, \mathcal{L}_F$$

Applications to S_1 and ℓ_1 regularization

$$\mathbb{E} \|P - P_n\|_{(\ell_F)_{\mu}} \lesssim \sqrt{\mu \frac{U_n(F^{(\mu)})}{n}} \text{ and }$$

$$\mathbb{E} \|P - P_n\|_{(\mathcal{L}_F)_{\mu}} \lesssim \sqrt{(\mu + R^*) \frac{U_n(F^{(\mu)})}{n}}$$

Then combining

Oracle inequalities for ERM

$$\bullet \mathbb{E} \|P - P_n\|_{V(H)_{\lambda}} \leq \sum_{i=0}^{\infty} 2^{-i} \mathbb{E} \|P - P_n\|_{H_{2^{i+1}_{\lambda}}} \text{ for } H = \ell_F, \mathcal{L}_F$$

Applications to S_1 and ℓ_1 regularization

$$\mathbb{E} \|P - P_n\|_{(\ell_F)_{\mu}} \lesssim \sqrt{\mu \frac{U_n(F^{(\mu)})}{n}} \text{ and }$$

$$\mathbb{E} \|P - P_n\|_{(\mathcal{L}_F)_{\mu}} \lesssim \sqrt{(\mu + R^*) \frac{U_n(F^{(\mu)})}{n}}$$

roughtly, we obtain

Then combining

Oracle inequalities for ERM

$$\bullet \mathbb{E} \|P - P_n\|_{V(H)_{\lambda}} \leq \sum_{i=0}^{\infty} 2^{-i} \mathbb{E} \|P - P_n\|_{H_{2^{i+1}_{\lambda}}} \text{ for } H = \ell_F, \mathcal{L}_F$$

Applications to S_1 and ℓ_1 regularization

$$\mathbb{E} \|P - P_n\|_{(\ell_F)_{\mu}} \lesssim \sqrt{\mu \frac{U_n(F^{(\mu)})}{n}} \text{ and }$$

$$\mathbb{E} \|P - P_n\|_{(\mathcal{L}_F)_{\mu}} \lesssim \sqrt{(\mu + R^*) \frac{U_n(F^{(\mu)})}{n}}$$

roughtly, we obtain

2
$$\mu^* \lesssim \sqrt{U_n(F^{(\mu^*)})/n}$$
.

An example of computation of the fixed points λ_{ϵ}^* and μ^*

Then combining

1
$$\mathbb{E}\|P - P_n\|_{V(H)_{\lambda}} \leq \sum_{i=0}^{\infty} 2^{-i} \mathbb{E}\|P - P_n\|_{H_{2i+1_{\lambda}}}$$
 for $H = \ell_F, \mathcal{L}_F$

Applications to S_1 and ℓ_1 regularization

$$\mathbb{E} \|P - P_n\|_{(\ell_F)_{\mu}} \lesssim \sqrt{\mu \frac{U_n(F^{(\mu)})}{n}} \text{ and }$$

$$\mathbb{E} \|P - P_n\|_{(\mathcal{L}_F)_{\mu}} \lesssim \sqrt{(\mu + R^*) \frac{U_n(F^{(\mu)})}{n}}$$

roughtly, we obtain

Because $R^* = \inf_{f \in F} R(f) \neq 0$ in general, λ_{ϵ}^* will be the square of μ^* (of course in some particular cases, we can obtain fast rates for exact oracle inequalities).

From this point of view, the differences between exact and non-exact oracle inequalities have two sources :

• The geometry of *F* is very important for Exact-oracle inequalities and has no particular effects on non-exact oracle inequality : Bernstein condition;

From this point of view, the differences between exact and non-exact oracle inequalities have two sources:

- The geometry of F is very important for Exact-oracle inequalities and has no particular effects on non-exact oracle inequality: Bernstein condition:
- **2** The complexities of $V(\mathcal{L}_F)_{\lambda}$ and $V(\ell_F)_{\lambda}$ are very different.

Applications to classification

Classification model

• $(X_1, Y_1), \dots, (X_n, Y_n) : n \text{ i.i.d.} \sim (X, Y) \text{ random variables in}$ $\mathcal{X} \times \{0,1\}$

Applications to S_1 and ℓ_1 regularization

Classification model

• $(X_1, Y_1), \dots, (X_n, Y_n) : n \text{ i.i.d.} \sim (X, Y) \text{ random variables in}$ $\mathcal{X} \times \{0,1\}$

• $\ell: (f, (x, y)) \longmapsto \mathbb{I}_{f(x) \neq y} : 0 - 1$ -loss function of $f: \mathcal{X} \to \{0, 1\}$

Classification model

- $(X_1, Y_1), \dots, (X_n, Y_n) : n \text{ i.i.d.} \sim (X, Y) \text{ random variables in}$ $\mathcal{X} \times \{0,1\}$
- $\ell: (f, (x, y)) \longmapsto \mathbb{I}_{f(x) \neq y} : 0 1$ -loss function of $f: \mathcal{X} \to \{0, 1\}$

Applications to S_1 and ℓ_1 regularization

• $R(f) = \mathbb{P}[f(X) \neq Y]$: risk of f

Applications to S_1 and ℓ_1 regularization

Classification model

- $(X_1, Y_1), \dots, (X_n, Y_n) : n \text{ i.i.d.} \sim (X, Y) \text{ random variables in } \mathcal{X} \times \{0, 1\}$
- $\ell:(f,(x,y))\longmapsto \mathbb{I}_{f(x)\neq y}:0-1$ -loss function of $f:\mathcal{X}\to\{0,1\}$
- $R(f) = \mathbb{P}[f(X) \neq Y]$: risk of f
- F a class of $\{0,1\}$ -valued functions; $f_F^* \in \operatorname{argmin}_{f \in F} R(f)$; $f^* \in \operatorname{argmin}_f R(f)$ (Bayes rule).

Classification model

- $(X_1, Y_1), \ldots, (X_n, Y_n) : n \text{ i.i.d.} \sim (X, Y) \text{ random variables in } \mathcal{X} \times \{0, 1\}$
- $\ell:(f,(x,y))\longmapsto \mathbb{I}_{f(x)\neq y}:0-1$ -loss function of $f:\mathcal{X}\to\{0,1\}$
- $R(f) = \mathbb{P}[f(X) \neq Y]$: risk of f
- F a class of $\{0,1\}$ -valued functions; $f_F^* \in \operatorname{argmin}_{f \in F} R(f)$; $f^* \in \operatorname{argmin}_f R(f)$ (Bayes rule).

$$\mathcal{L}_f = \ell_f - \ell_{f_E^*}$$
 and $\mathcal{E}_f = \ell_f - \ell_{f^*}$.

The VC dimension of a class F of $\{0,1\}$ -valued functions is

$$V = \max\Big(N: \textit{max}_{x_1, \cdots, x_N \in \mathcal{X}} \mathrm{Card}\big\{ (f(x_1), \ldots, f(x_N)) : f \in F \big\} = 2^N \Big).$$

The VC dimension of a class F of $\{0,1\}$ -valued functions is

$$V = \max \Big(N : \textit{max}_{x_1, \cdots, x_N \in \mathcal{X}} \mathrm{Card} \big\{ (f(x_1), \ldots, f(x_N)) : f \in F \big\} = 2^N \Big).$$

M.&N. If
$$P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}$$
, $\forall f \in F \ (0 \leq \beta \leq 1)$ Bernstein condition then $\forall x \geq 1$, w.p. $\geq 1 - 4e^{-x}$,

$$R(\hat{f}_n^{(ERM)}) \leq \inf_{f \in F} R(f) + c_0 \left(\frac{xV \log(enB^{1/\beta}/V)}{n}\right)^{\frac{1}{2-\beta}}.$$

The VC dimension of a class F of $\{0,1\}$ -valued functions is

$$V = \max \Big(N: \max_{x_1, \cdots, x_N \in \mathcal{X}} \operatorname{Card} \big\{ (f(x_1), \cdots, f(x_N)) : f \in F \big\} = 2^N \Big).$$

M.&N. If $P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}$, $\forall f \in F \ (0 \leq \beta \leq 1)$ Bernstein condition then $\forall x \geq 1$, w.p. $\geq 1 - 4e^{-x}$,

$$R(\hat{f}_n^{(ERM)}) \leq \inf_{f \in F} R(f) + c_0 \left(\frac{xV \log(enB^{1/\beta}/V)}{n}\right)^{\frac{1}{2-\beta}}.$$

M.&N. If $P\mathcal{E}_f^2 \leq B(P\mathcal{E}_f)^{\beta}$, $\forall f \in F \ (0 \leq \beta \leq 1)$ Margin assumption then $\forall x \geq 1$, w.p. $\geq 1 - 4e^{-x}$,

$$R(\hat{f}_n^{(ERM)}) - R(f^*) \leq (1+\epsilon) \inf_{f \in F} \left(R(f) - R(f^*) \right) + c_0 \left(\frac{xV \log(enB^{1/\beta}/V)}{n\epsilon} \right)^{\frac{1}{2-\beta}}.$$

The VC dimension of a class F of $\{0,1\}$ -valued functions is

$$V = \max \Big(N : max_{x_1, \dots, x_N \in \mathcal{X}} \operatorname{Card} \{ (f(x_1), \dots, f(x_N)) : f \in F \} = 2^N \Big).$$

M.&N. If $P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1)$ Bernstein condition then $\forall x > 1$. w.p. $> 1 - 4e^{-x}$.

$$R(\hat{f}_n^{(ERM)}) \leq \inf_{f \in F} R(f) + c_0 \left(\frac{xV \log(enB^{1/\beta}/V)}{n}\right)^{\frac{1}{2-\beta}}.$$

M.&N. If $P\mathcal{E}_f^2 \leq B(P\mathcal{E}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1)$ Margin assumption then $\forall x > 1$. w.p. $> 1 - 4e^{-x}$.

$$R(\hat{f}_n^{(ERM)}) - R(f^*) \leq (1+\epsilon) \inf_{f \in F} \left(R(f) - R(f^*) \right) + c_0 \left(\frac{xV \log(enB^{1/\beta}/V)}{n\epsilon} \right)^{\frac{1}{2-\beta}}.$$

L. Since $P\ell_f^2 \leq BP\ell_f, \forall f \in F$ is always true then $\forall x \geq 1$, w.p. $> 1 - 4e^{-x}$.

$$R(\hat{f}_n^{(ERM)}) \le (1+\epsilon) \inf_{f \in F} R(f) + c_0 \frac{xV \log(enB^{1/\beta}/V)}{n\epsilon}.$$

 $\bullet \ \text{ for exact oracle inequalities} : P\mathcal{L}_{f}^{2} \leq B\big(P\mathcal{L}_{f}\big)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

• for exact oracle inequalities : $P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

Applications to S_1 and ℓ_1 regularization

$$\mathbb{E}(\ell_f - \ell_{f_F^*})^2 \leq B\big(\mathbb{E}(\ell_f - \ell_{f_F^*})\big)^{\beta}.$$

(hard to characterize from a geometrical point of view because the loss is not convex).

• for exact oracle inequalities : $P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

$$\mathbb{E}(\ell_f - \ell_{f_F^*})^2 \leq B\big(\mathbb{E}(\ell_f - \ell_{f_F^*})\big)^{\beta}.$$

Applications to S_1 and ℓ_1 regularization

(hard to characterize from a geometrical point of view because the loss is not convex).

for non-exact oracle inequalities for the estimation problem : $P\mathcal{E}_f^2 < B(P\mathcal{E}_f)^{\beta}, \forall f \in F \ (0 < \beta < 1).$

• for exact oracle inequalities : $P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

$$\mathbb{E}(\ell_f - \ell_{f_F^*})^2 \leq B\big(\mathbb{E}(\ell_f - \ell_{f_F^*})\big)^{\beta}.$$

(hard to characterize from a geometrical point of view because the loss is not convex).

② for non-exact oracle inequalities for the estimation problem : $P\mathcal{E}_f^2 \leq B(P\mathcal{E}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

$$\mathbb{E}(\ell_f - \ell_{f^*})^2 \leq B\big(\mathbb{E}(\ell_f - \ell_{f^*})\big)^{\beta}.$$

Statistical condition on the model:

$$P\mathcal{E}_f^2 \leq B(P\mathcal{E}_f), \forall f \Leftrightarrow \exists c > 0, \mathbb{P}[|f^*(X) - 1/2| \geq c] = 1 \text{ (where } f^*(X) = \mathbb{E}[Y|X] = \mathbb{P}[Y = 1|X]).$$

• for exact oracle inequalities : $P\mathcal{L}_f^2 \leq B(P\mathcal{L}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

$$\mathbb{E}(\ell_f - \ell_{f_F^*})^2 \leq B\big(\mathbb{E}(\ell_f - \ell_{f_F^*})\big)^{\beta}.$$

(hard to characterize from a geometrical point of view because the loss is not convex).

② for non-exact oracle inequalities for the estimation problem : $P\mathcal{E}_f^2 \leq B(P\mathcal{E}_f)^{\beta}, \forall f \in F \ (0 \leq \beta \leq 1).$

$$\mathbb{E}(\ell_f - \ell_{f^*})^2 \le B(\mathbb{E}(\ell_f - \ell_{f^*}))^{\beta}.$$

Statistical condition on the model:

$$P\mathcal{E}_f^2 \leq B(P\mathcal{E}_f), \forall f \Leftrightarrow \exists c > 0, \mathbb{P}[|f^*(X) - 1/2| \geq c] = 1 \text{ (where } f^*(X) = \mathbb{E}[Y|X] = \mathbb{P}[Y = 1|X]).$$

3 for non-exact oracle inequalities : $P\ell_f^2 = P\ell_f \leq BP\ell_f, \forall f$.

Oracle inequalities for regularized ERM

Applications to S_1 and ℓ_1 regularization

Regularized Empirical risk minimization - Part 1

A problem in learning theory is given by

A problem in learning theory is given by

① Observations : $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$;

A problem in learning theory is given by

① Observations : $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$;

Applications to S_1 and ℓ_1 regularization

2 Loss function : $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$;

A problem in learning theory is given by

① Observations : Z_1, \ldots, Z_n : n i.i.d. $\sim Z$ random variables in \mathcal{Z} ;

- 2 Loss function : $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$;
- **3** model : $F \subset L_2(P_Z)$.

A problem in learning theory is given by

• Observations : Z_1, \ldots, Z_n : n i.i.d. $\sim Z$ random variables in \mathcal{Z} ;

Applications to S_1 and ℓ_1 regularization

- 2 Loss function : ℓ : $(f, z) \mapsto \ell_f(z) \in \mathbb{R}$;
- \bullet model : $F \subset L_2(P_Z)$.

Choosing a particular F means that we believe that an oracle f_F^* in F $(R(f_F^*) = \min_{f \in F} R(f))$ is close to the best element f^* minimizing the risk $\min_f R(f)$ (over $L_2(P_Z)$ or other large class of functions).

A problem in learning theory is given by

① Observations : $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$;

Applications to S_1 and ℓ_1 regularization

- 2 Loss function : ℓ : $(f, z) \mapsto \ell_f(z) \in \mathbb{R}$;
- **3** model : $F \subset L_2(P_7)$.

Choosing a particular F means that we believe that an oracle f_F^* in F $(R(f_F^*) = \min_{f \in F} R(f))$ is close to the best element f^* minimizing the risk $\min_f R(f)$ (over $L_2(P_Z)$ or other large class of functions).

Example in regression: when we construct

$$\hat{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in F} \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

A problem in learning theory is given by

① Observations : $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$;

Applications to S_1 and ℓ_1 regularization

- 2 Loss function : $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$;
- \bullet model : $F \subset L_2(P_Z)$.

Choosing a particular F means that we believe that an oracle f_F^* in F $(R(f_F^*) = \min_{f \in F} R(f))$ is close to the best element f^* minimizing the risk $\min_f R(f)$ (over $L_2(P_Z)$ or other large class of functions).

Example in regression: when we construct

$$\hat{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in F} \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

we hope that F will be chosen in such a way that \hat{f}_n^{ERM} will be close to the oracle

$$f_F^* \in \operatorname{Arg} \min_{f \in F} \mathbb{E}(Y - f(X))^2$$

A problem in learning theory is given by

- **①** Observations : $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z}$;
- 2 Loss function : $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$:
- \bullet model : $F \subset L_2(P_Z)$.

Choosing a particular F means that we believe that an oracle f_F^* in F $(R(f_F^*) = \min_{f \in F} R(f))$ is close to the best element f^* minimizing the risk $\min_f R(f)$ (over $L_2(P_Z)$ or other large class of functions). Example in regression: when we construct

$$\hat{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in F} \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

we hope that F will be chosen in such a way that \hat{f}_n^{ERM} will be close to the oracle

$$f_F^* \in \operatorname{Arg} \min_{f \in F} \mathbb{E}(Y - f(X))^2$$

(=> Oracle inequalities)

A problem in learning theory is given by

- **①** Observations : Z_1, \ldots, Z_n : n i.i.d. $\sim Z$ random variables in Z;
- 2 Loss function : $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$;
- $\bullet \text{ model} : F \subset L_2(P_Z).$

Choosing a particular F means that we believe that an oracle f_F^* in F $(R(f_F^*) = \min_{f \in F} R(f))$ is close to the best element f^* minimizing the risk $\min_f R(f)$ (over $L_2(P_Z)$ or other large class of functions).

Example in regression : when we construct

$$\hat{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in F} \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2,$$

we hope that F will be chosen in such a way that \hat{f}_n^{ERM} will be close to the oracle

$$f_F^* \in \operatorname{Arg} \min_{f \in F} \mathbb{E}(Y - f(X))^2$$

(=> Oracle inequalities) And, we hope that f_F^* will be close to the regression function f^* :

$$f^* \in \operatorname{Arg} \min_{f \in L^2(P_X)} \mathbb{E}(Y - f(X))^2.$$

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F.

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F. But, for a given property on f^* (for instance, smoothness or low-dimensional structure), it is not always possible to construct a class F (with a "reasonable complexity") so that, thanks to this property, f^* will be close to F.

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F. But, for a given property on f^* (for instance, smoothness or low-dimensional structure), it is not always possible to construct a class F (with a "reasonable complexity") so that, thanks to this property, f^* will be close to F. In this situation, it is common to introduce a function

Applications to S_1 and ℓ_1 regularization

$$\operatorname{crit}:\mathcal{F}\subset L_2(P_Z)\longmapsto \mathbb{R}$$

called a criterion. So that

$$\operatorname{crit}(f)$$
 is small $\Rightarrow f$ has this property.

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F. But, for a given property on f^* (for instance, smoothness or low-dimensional structure), it is not always possible to construct a class F (with a "reasonable complexity") so that, thanks to this property, f^* will be close to F. In this situation, it is common to introduce a function

Applications to S_1 and ℓ_1 regularization

$$\operatorname{crit}:\mathcal{F}\subset L_2(P_Z)\longmapsto \mathbb{R}$$

called a criterion. So that

$$\operatorname{crit}(f)$$
 is small $\Rightarrow f$ has this property.

Ex.1 :
$$\operatorname{crit}(f) = \int (f')^2$$
;

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F. But, for a given property on f^* (for instance, smoothness or low-dimensional structure), it is not always possible to construct a class F (with a "reasonable complexity") so that, thanks to this property, f^* will be close to F. In this situation, it is common to introduce a function

Applications to S_1 and ℓ_1 regularization

$$\operatorname{crit}: \mathcal{F} \subset L_2(P_Z) \longmapsto \mathbb{R}$$

called a criterion. So that

crit(f) is small $\Rightarrow f$ has this property.

Ex.1 : $\operatorname{crit}(f) = \int (f')^2$; $\operatorname{crit}(f)$ small $\Rightarrow f$ is smooth.

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F. But, for a given property on f^* (for instance, smoothness or low-dimensional structure), it is not always possible to construct a class F (with a "reasonable complexity") so that, thanks to this property, f^* will be close to F. In this situation, it is common to introduce a function

Applications to S_1 and ℓ_1 regularization

$$\operatorname{crit}: \mathcal{F} \subset L_2(P_Z) \longmapsto \mathbb{R}$$

called a criterion. So that

$$\operatorname{crit}(f)$$
 is small $\Rightarrow f$ has this property.

Ex.1 :
$$\operatorname{crit}(f) = \int (f')^2$$
; $\operatorname{crit}(f)$ small $\Rightarrow f$ is smooth.
Ex.2 : $\mathcal{F} := \{ f_{\beta} = \langle \cdot, \beta \rangle : \beta \in \mathbb{R}^d \}$ and $\operatorname{crit}(f_{\beta}) = |\operatorname{Supp}(\beta)|$;

Idea: By choosing F, it is implicitly said that we believe that f^* has some properties so that f^* is close to F. But, for a given property on f^* (for instance, smoothness or low-dimensional structure), it is not always possible to construct a class F (with a "reasonable complexity") so that, thanks to this property, f^* will be close to F. In this situation, it is common to introduce a function

$$\operatorname{crit}: \mathcal{F} \subset L_2(P_Z) \longmapsto \mathbb{R}$$

called a criterion. So that

$$\operatorname{crit}(f)$$
 is small $\Rightarrow f$ has this property.

Ex.1 : $\operatorname{crit}(f) = \int (f')^2$; $\operatorname{crit}(f)$ small $\Rightarrow f$ is smooth. Ex.2 : $\mathcal{F} := \{f_{\beta} = \langle \cdot, \beta \rangle : \beta \in \mathbb{R}^d\}$ and $\operatorname{crit}(f_{\beta}) = |\operatorname{Supp}(\beta)|$; $\operatorname{crit}(f_{\beta})$ small $\Rightarrow f_{\beta}$ has a low-dimensional structure.

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

• $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$: a loss function

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$: a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$: a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Aim: We want to construct \hat{f}_n having a small criterion and having a good empirical behaviour:

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}:$ a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Aim: We want to construct \hat{f}_n having a small criterion and having a good empirical behaviour: Regularized Empirical Risk Minimization (RERM):

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} (R_n(f) + \operatorname{reg}(f)),$$

(for instance, $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$;

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}$: a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Aim: We want to construct \hat{f}_n having a small criterion and having a good empirical behaviour: Regularized Empirical Risk Minimization (RERM):

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} (R_n(f) + \operatorname{reg}(f)),$$

(for instance, $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$; λ (regularization parameter), α : parameters to be chosen).

Applications to S_1 and ℓ_1 regularization

Model:

- $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$
- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}:$ a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Aim: We want to construct \hat{f}_n having a small criterion and having a good empirical behaviour: Regularized Empirical Risk Minimization (RERM):

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} (R_n(f) + \operatorname{reg}(f)),$$

(for instance, $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$; λ (regularization parameter), α : parameters to be chosen). We hope that w.h.p.

$$R(\hat{f}_n^{RERM}) + \operatorname{reg}(\hat{f}_n^{RERM}) \le (1 + \epsilon) \min_{f \in \mathcal{F}} (R(f) + \operatorname{reg}(f)).$$

Model:

Oracle inequalities for ERM

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}:$ a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Aim: We want to construct \hat{f}_n having a small criterion and having a good empirical behaviour: Regularized Empirical Risk Minimization (RERM):

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} (R_n(f) + \operatorname{reg}(f)),$$

(for instance, $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$; λ (regularization parameter), α : parameters to be chosen). We hope that w.h.p.

$$R(\hat{f}_n^{RERM}) + \operatorname{reg}(\hat{f}_n^{RERM}) \le (1 + \epsilon) \min_{f \in \mathcal{F}} (R(f) + \operatorname{reg}(f)).$$

 $\bullet = 0$: Exact oracle inequality;

Model:

• $Z_1, \ldots, Z_n : n \text{ i.i.d.} \sim Z \text{ random variables in } \mathcal{Z} \text{ (observations)};$

Applications to S_1 and ℓ_1 regularization

- $\ell:(f,z)\longmapsto \ell_f(z)\in\mathbb{R}:$ a loss function
- \mathcal{F} and crit: $\mathcal{F} \longmapsto \mathbb{R}$

Aim: We want to construct \hat{f}_n having a small criterion and having a good empirical behaviour: Regularized Empirical Risk Minimization (RERM):

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} (R_n(f) + \operatorname{reg}(f)),$$

(for instance, $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$; λ (regularization parameter), α : parameters to be chosen). We hope that w.h.p.

$$R(\hat{f}_n^{RERM}) + \operatorname{reg}(\hat{f}_n^{RERM}) \le (1 + \epsilon) \min_{f \in \mathcal{F}} (R(f) + \operatorname{reg}(f)).$$

- $\bullet = 0$: Exact oracle inequality;
- ellipsi $\epsilon > 0$: Non-exact oracle inequality.

Exact and non-exact oracle inequalities for RERM - Part 1

The choice of the regularizing function $reg(f) = \lambda crit^{\alpha}(f)$ is dictated by the complexity of the sequence of models $(F_r)_{r>0}$ where

Applications to S_1 and ℓ_1 regularization

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

Exact and non-exact oracle inequalities for RERM - Part 1

The choice of the regularizing function $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$ is dictated by the complexity of the sequence of models $(F_r)_{r>0}$ where

Applications to S_1 and ℓ_1 regularization

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

For every r > 0:

loss functions classes :

$$\ell_{F_r}:=\{\ell_f:f\in F_r\} \text{ and } \mathbb{E}\|P_n-P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}}\leq (\epsilon/4)\lambda_\epsilon^*(r)$$

Exact and non-exact oracle inequalities for RERM - Part 1

The choice of the regularizing function $\operatorname{reg}(f) = \lambda \operatorname{crit}^{\alpha}(f)$ is dictated by the complexity of the sequence of models $(F_r)_{r\geq 0}$ where

Applications to S_1 and ℓ_1 regularization

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \le r \}.$$

For every $r \geq 0$:

loss functions classes :

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_{\epsilon}^*(r)}} \le (\epsilon/4)\lambda_{\epsilon}^*(r)$$

excess loss functions classes :

$$\mathcal{L}_{F_r} := \{ \mathcal{L}_{r,f} := \ell_f - \ell_{f_{F_r}^*} : f \in F_r \} \text{ and } \mathbb{E} \| P_n - P \|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \le \mu^*(r) / 8$$
(where $R(f_{F_r}^*) = \min_{f \in F_r} R(f)$).

Assume that there are non-decreasing functions ϕ_n and B such that

Applications to S_1 and ℓ_1 regularization

Assume that there are non-decreasing functions ϕ_n and B such that

Applications to S_1 and ℓ_1 regularization

- $\| \max_{1 \le i \le n} \sup_{f \in F_r} f(Z_i) \|_{\psi_1} := b_n(\ell_{F_r}) \le \phi_n(r)$
- ② $P\ell_f^2 \le B(r)P\ell_f^2 + B^2(r)/n, \forall r \ge 0, f \in F_r$.

Oracle inequalities for ERM

Assume that there are non-decreasing functions ϕ_n and B such that

Applications to S_1 and ℓ_1 regularization

$$P\ell_f^2 \leq B(r)P\ell_f^2 + B^2(r)/n, \forall r \geq 0, f \in F_r.$$

Let $0 < \epsilon < 1/2$ and assume that for every $(r, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$,

$$\rho_n(r,x) \ge \max\Big(\lambda_{\epsilon}^*(r), c_0 \frac{(\phi_n(r) + B(r)/\epsilon)(x+1)}{n\epsilon}\Big).$$

Oracle inequalities for ERM

Assume that there are non-decreasing functions ϕ_n and B such that

$$P\ell_f^2 \le B(r)P\ell_f^2 + B^2(r)/n, \forall r \ge 0, f \in F_r.$$

Let $0 < \epsilon < 1/2$ and assume that for every $(r, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$,

$$\rho_n(r,x) \ge \max\Big(\lambda_{\epsilon}^*(r), c_0 \frac{(\phi_n(r) + B(r)/\epsilon)(x+1)}{n\epsilon}\Big).$$

Let x > 0 and set

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} \left(R_n(f) + \frac{1}{1+\epsilon} \rho_n(\operatorname{crit}(f) + 1, x) \right).$$

Oracle inequalities for ERM

Assume that there are non-decreasing functions ϕ_n and B such that

- $\| \max_{1 \le i \le n} \sup_{f \in F_r} f(Z_i) \|_{\psi_1} := b_n(\ell_{F_r}) \le \phi_n(r)$
- 2 $P\ell_{\mathfrak{s}}^2 < B(r)P\ell_{\mathfrak{s}}^2 + B^2(r)/n, \forall r > 0, f \in F_r$

Let $0 < \epsilon < 1/2$ and assume that for every $(r, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$,

$$\rho_n(r,x) \ge \max\Big(\lambda_{\epsilon}^*(r), c_0 \frac{(\phi_n(r) + B(r)/\epsilon)(x+1)}{n\epsilon}\Big).$$

Let x > 0 and set

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} \Big(R_n(f) + \frac{1}{1+\epsilon} \rho_n(\operatorname{crit}(f) + 1, x) \Big).$$

Then, with probability greater than $1-10\exp(-x)$,

$$R(\hat{f}_n^{RERM}) + \rho_n(\operatorname{crit}(\hat{f}_n^{RERM}), x) \leq \inf_{f \in \mathcal{F}} \left[(1 + 2\epsilon)R(f) + 2\rho_n(\operatorname{crit}(f) + 1, x) \right].$$

Oracle inequalities for ERM

Assume that there are non-decreasing functions ϕ_n and B such that

Applications to S_1 and ℓ_1 regularization

- $\| \max_{1 \le i \le n} \sup_{f \in F} |f(Z_i)| \|_{\psi_1} := b_n(\ell_{F_r}) \le \phi_n(r)$
- $P_{\ell_f}^2 < B(r)P_{\ell_r}^2 + B^2(r)/n, \forall r > 0, f \in F_r$

Let $0 < \epsilon < 1/2$ and assume that for every $(r, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$,

$$\rho_n(r,x) \ge \max\left(\lambda_{\epsilon}^*(r), c_0 \frac{(\phi_n(r) + B(r)/\epsilon)(x+1)}{n\epsilon}\right).$$

Let x > 0 and set

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} \left(R_n(f) + \frac{1}{1+\epsilon} \rho_n(\operatorname{crit}(f) + 1, x) \right).$$

Then, with probability greater than $1-10\exp(-x)$,

$$R(\hat{f}_n^{RERM}) + \rho_n(\operatorname{crit}(\hat{f}_n^{RERM}), x) \leq \inf_{f \in \mathcal{F}} \left[(1 + 2\epsilon)R(f) + 2\rho_n(\operatorname{crit}(f) + 1, x) \right].$$

Theorem (Bartlett, Neeman and Mendelson)

Assume that there are non-decreasing functions ϕ_n and B such that

- $\| \max_{1 \le i \le n} \sup_{f \in F} |f(Z_i)| \|_{\psi_1} := b_n(\ell_{F_r}) \le \phi_n(r)$
- 2 $P_{L_f}^2 < B(r)P_{L_r}^2 + B^2(r)/n, \forall r > 0, f \in F_r$

Let $0 < \epsilon < 1/2$ and assume that for every $(r, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$,

$$\rho_n(r,x) \ge \max\left(\mu^*(r), c_0 \frac{(\phi_n(r) + B(r)/\epsilon)(x+1)}{n\epsilon}\right).$$

Let x > 0 and set

Oracle inequalities for ERM

$$\hat{f}_n^{RERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}} \left(R_n(f) + \frac{1}{1+\epsilon} \rho_n(\operatorname{crit}(f) + 1, x) \right).$$

Then, with probability greater than $1-10\exp(-x)$,

$$R(\hat{f}_n^{RERM}) + \rho_n(\operatorname{crit}(\hat{f}_n^{RERM}), x) \leq \inf_{f \in \mathcal{F}} \left[\frac{1}{1} \times R(f) + 2\rho_n(\operatorname{crit}(f) + 1, x) \right].$$

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(F_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

Applications to S_1 and ℓ_1 regularization

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(F_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \le r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_{\epsilon}^*(r)}} \leq (\epsilon/4) \lambda_{\epsilon}^*(r)$$

Applications to S_1 and ℓ_1 regularization

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(\mathcal{F}_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_{\epsilon}^*(r)}} \leq (\epsilon/4) \lambda_{\epsilon}^*(r)$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions classes : for all r > 0,

$$\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_{F_r}^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \le \mu^*(r)/8.$$

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(\mathcal{F}_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}} \le (\epsilon/4)\lambda_\epsilon^*(r)$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions classes : for all r > 0,

$$\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_{F_r}^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \le \mu^*(r)/8.$$

• RERM with regularizing function $reg(f) \gtrsim \lambda_{\epsilon}^*(crit(f))$

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(\mathcal{F}_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \le r \}.$$

Applications to S_1 and ℓ_1 regularization

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}} \le (\epsilon/4)\lambda_\epsilon^*(r)$$

- excess loss functions classes : for all r > 0, $\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_r^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \le \mu^*(r)/8.$
- RERM with regularizing function $reg(f) \gtrsim \lambda_{\epsilon}^*(crit(f)) \Longrightarrow$ Non-exact oracle inequality;

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(\mathcal{F}_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}} \le (\epsilon/4)\lambda_\epsilon^*(r)$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions classes : for all r > 0,

$$\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_{F_r}^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \leq \mu^*(r)/8.$$

- RERM with regularizing function $\operatorname{reg}(f) \gtrsim \lambda_{\epsilon}^*(\operatorname{crit}(f)) \Longrightarrow$ Non-exact oracle inequality;
- **2** RERM with regularizing function $reg(f) \gtrsim \mu^*(crit(f))$

We are given \mathcal{F} and crit : $\mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(\mathcal{F}_r)_{r>0}$:

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}} \le (\epsilon/4)\lambda_\epsilon^*(r)$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions classes : for all r > 0,

$$\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_{F_r}^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \leq \mu^*(r)/8.$$

- RERM with regularizing function $\operatorname{reg}(f) \gtrsim \lambda_{\epsilon}^*(\operatorname{crit}(f)) \Longrightarrow$ Non-exact oracle inequality;
- 2 RERM with regularizing function $reg(f) \gtrsim \mu^*(crit(f)) \Longrightarrow exact$ oracle inequality.

We are given \mathcal{F} and $\operatorname{crit}: \mathcal{F} \longmapsto \mathbb{R}$. We consider the models $(F_r)_{r \geq 0}:$

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \leq r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}} \le (\epsilon/4)\lambda_\epsilon^*(r)$$

Applications to S_1 and ℓ_1 regularization

• excess loss functions classes : for all r > 0,

$$\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_{F_r}^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \leq \mu^*(r)/8.$$

- RERM with regularizing function $\operatorname{reg}(f) \gtrsim \lambda_{\epsilon}^*(\operatorname{crit}(f)) \Longrightarrow$ Non-exact oracle inequality;
- **2** RERM with regularizing function $\operatorname{reg}(f) \gtrsim \mu^*(\operatorname{crit}(f)) \Longrightarrow \operatorname{exact}$ oracle inequality.

Remark: Usually, we have to regularize more to get an exact oracle inequality than for a non-exact oracle inequality.

We are given $\mathcal F$ and $\mathrm{crit}:\mathcal F\longmapsto\mathbb R.$ We consider the models $(F_r)_{r\geq 0}:$

$$F_r := \{ f \in \mathcal{F} : \operatorname{crit}(f) \le r \}.$$

• loss functions classes : for all r > 0,

$$\ell_{F_r} := \{\ell_f : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\ell_{F_r})_{\lambda_\epsilon^*(r)}} \le (\epsilon/4)\lambda_\epsilon^*(r)$$

• excess loss functions classes : for all r > 0,

$$\mathcal{L}_{F_r} := \{\ell_f - \ell_{f_{F_r}^*} : f \in F_r\} \text{ and } \mathbb{E} \|P_n - P\|_{V(\mathcal{L}_{F_r})_{\mu^*(r)}} \leq \mu^*(r)/8.$$

- RERM with regularizing function $\operatorname{reg}(f) \gtrsim \lambda_{\epsilon}^*(\operatorname{crit}(f)) \Longrightarrow$ Non-exact oracle inequality;
- **2** RERM with regularizing function $\operatorname{reg}(f) \gtrsim \mu^*(\operatorname{crit}(f)) \Longrightarrow \operatorname{exact}$ oracle inequality.

Remark: Usually, we have to regularize more to get an exact oracle inequality than for a non-exact oracle inequality.

Ex. : [Bousquet, Blanchard, Massart] : regularization by $\|\cdot\|_{\mathcal{H}}$ or in [Bartlett, Neeman, Mendelson] : regularization by $\|\mathbf{u}\|_{\mathcal{H}}$ up to $\|\cdot\|_{\mathcal{H}}^2$.

Applications in matrix completion

Model:

• $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in}$ $\mathbb{R} \times \mathbb{R}^{m \times T}$:

Applications to S_1 and ℓ_1 regularization

Model:

- $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^{m \times T}$;
- $\ell^{(q)}: \mathbb{R}^{m \times T} \times \mathbb{R} \times \mathbb{R}^{m \times T} \longmapsto \mathbb{R}$ such that $\ell^{(q)}_A(Y,X) = |Y \langle A, X \rangle|^q$ where $\langle A, X \rangle = \text{Tr}(A^\top X)$ and $q \ge 2$.

Model:

- $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^{m \times T}$;
- $\ell^{(q)}: \mathbb{R}^{m \times T} \times \mathbb{R} \times \mathbb{R}^{m \times T} \longmapsto \mathbb{R}$ such that $\ell^{(q)}_A(Y,X) = |Y \langle A,X \rangle|^q$ where $\langle A,X \rangle = \text{Tr}(A^\top X)$ and $q \ge 2$.

Notation:

• $\ell_A^{(q)}: L_q$ -loss function of a matrix $A \in \mathbb{R}^{m \times T}$

Model:

- $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^{m \times T}$;
- $\ell_A^{(q)}: \mathbb{R}^{m \times T} \times \mathbb{R} \times \mathbb{R}^{m \times T} \longmapsto \mathbb{R}$ such that $\ell_A^{(q)}(Y, X) = |Y \langle A, X \rangle|^q$ where $\langle A, X \rangle = \text{Tr}(A^\top X)$ and $q \ge 2$.

Notation:

- $\ell_A^{(q)}: L_q$ -loss function of a matrix $A \in \mathbb{R}^{m \times T}$
- $R^{(q)}(A) = \mathbb{E}|Y \langle A, X \rangle|^q : L_q$ -risk of a matrix $A \in \mathbb{R}^{m \times T}$

Model:

- $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^{m \times T}$;
- $\ell_A^{(q)}: \mathbb{R}^{m \times T} \times \mathbb{R} \times \mathbb{R}^{m \times T} \longmapsto \mathbb{R}$ such that $\ell_A^{(q)}(Y, X) = |Y \langle A, X \rangle|^q$ where $\langle A, X \rangle = \text{Tr}(A^\top X)$ and $q \ge 2$.

Notation:

- $\ell_{A}^{(q)}: L_{a}$ -loss function of a matrix $A \in \mathbb{R}^{m \times T}$
- $R^{(q)}(A) = \mathbb{E}|Y \langle A, X \rangle|^q : L_q$ -risk of a matrix $A \in \mathbb{R}^{m \times T}$
- The L_q -risk of a statistic $\hat{f}_n = \langle \cdot, \hat{A}_n \rangle$ is $R^{(q)}(\hat{A}_n) = \mathbb{E}[|Y \langle \hat{A}_n, X \rangle|^q |\mathcal{D}].$

Model:

- $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^{m \times T}$;
- $\ell_A^{(q)}: \mathbb{R}^{m \times T} \times \mathbb{R} \times \mathbb{R}^{m \times T} \longmapsto \mathbb{R}$ such that $\ell_A^{(q)}(Y, X) = |Y \langle A, X \rangle|^q$ where $\langle A, X \rangle = \text{Tr}(A^\top X)$ and $q \ge 2$.

Notation:

- $\ell_A^{(q)}: L_q$ -loss function of a matrix $A \in \mathbb{R}^{m \times T}$
- $R^{(q)}(A) = \mathbb{E}|Y \langle A, X \rangle|^q : L_q$ -risk of a matrix $A \in \mathbb{R}^{m \times T}$
- The L_q -risk of a statistic $\hat{f}_n = \langle \cdot, \hat{A}_n \rangle$ is $R^{(q)}(\hat{A}_n) = \mathbb{E}[|Y \langle \hat{A}_n, X \rangle|^q |\mathcal{D}].$

Problem : mT >> n (more variables than observations) but we believe that $Y \approx \langle A_0, X \rangle$ where A_0 is of low rank (rank(A_0) < n) (This is not an assumption!)

Model:

- $Z_1 = (Y_1, X_1), \dots, Z_n = (Y_n, X_n) : n \text{ i.i.d. random variables in}$ $\mathbb{R} \times \mathbb{R}^{m \times T}$.
- \bullet $\ell^{(q)} \cdot \mathbb{R}^{m \times T} \times \mathbb{R} \times \mathbb{R}^{m \times T} \longmapsto \mathbb{R}$ such that $\ell_A^{(q)}(Y,X) = |Y - \langle A,X \rangle|^q$ where $\langle A,X \rangle = \text{Tr}(A^\top X)$ and $q \geq 2$.

Notation:

- $\ell_A^{(q)}: L_q$ -loss function of a matrix $A \in \mathbb{R}^{m \times T}$
- $R^{(q)}(A) = \mathbb{E}|Y \langle A, X \rangle|^q : L_q$ -risk of a matrix $A \in \mathbb{R}^{m \times T}$
- The L_q -risk of a statistic $\hat{f}_n = \langle \cdot, \hat{A}_n \rangle$ is $R^{(q)}(\hat{A}_n) = \mathbb{E}[|Y - \langle \hat{A}_n, X \rangle|^q |\mathcal{D}].$

Problem : mT >> n (more variables than observations) but we believe that $Y \approx \langle A_0, X \rangle$ where A_0 is of low rank $(\operatorname{rank}(A_0) < n)$ (This is not an assumption!)

$$\mathcal{F} := \{\langle \cdot, A \rangle : A \in \mathbb{R}^{m \times T} \}$$
 and $\operatorname{crit}(A) = \operatorname{rank}(A)$.

Matrix Completion - Convexification

 $A \longmapsto \operatorname{rank}(A)$ is not convex \Longrightarrow not possible to use it in practice as a regularizing function.

 $A \longmapsto \operatorname{rank}(A)$ is not convex \Longrightarrow not possible to use it in practice as a regularizing function.

```
Convexification: The convex envelope of rank(\cdot) on
\{A \in \mathbb{R}^{m \times T} : \|A\|_{S_{\infty}} \le 1\} is the nuclear norm (\|A\|_{S_1} = \|\operatorname{spec}(A)\|_{\ell_1^{m \wedge T}}).
```

 $A \longmapsto \operatorname{rank}(A)$ is not convex \Longrightarrow not possible to use it in practice as a regularizing function.

Convexification : The convex envelope of $\operatorname{rank}(\cdot)$ on $\{A \in \mathbb{R}^{m \times T} : \|A\|_{\mathcal{S}_{\infty}} \leq 1\}$ is the nuclear norm $(\|A\|_{\mathcal{S}_{1}} = \|\operatorname{spec}(A)\|_{\ell_{1}^{m \wedge T}})$.

 \implies We use the nuclear norm as a criterion : $\operatorname{crit}(A) = ||A||_{S_1}$.

 $A \longmapsto \operatorname{rank}(A)$ is not convex \Longrightarrow not possible to use it in practice as a regularizing function.

Convexification : The convex envelope of rank(·) on $\{A \in \mathbb{R}^{m \times T} : \|A\|_{\mathcal{S}_{\infty}} \leq 1\}$ is the nuclear norm $(\|A\|_{\mathcal{S}_{1}} = \|\operatorname{spec}(A)\|_{\ell_{1}^{m \wedge T}})$.

 \implies We use the nuclear norm as a criterion : $\operatorname{crit}(A) = \|A\|_{S_1}$. bibliography :

1 Candés, Tao, Romberg, Plan, Recht, Fazel, Parillo, Gross,... (Exact reconstruction problem : $Y = \langle X, A_0 \rangle$ and often $X \sim \mathrm{Unif}(e_i e_i^\top : 1 \leq i \leq m, 1 \leq j \leq T)$);

 $A \longmapsto \operatorname{rank}(A)$ is not convex \Longrightarrow not possible to use it in practice as a regularizing function.

Convexification : The convex envelope of rank(·) on $\{A \in \mathbb{R}^{m \times T} : \|A\|_{\mathcal{S}_{\infty}} \leq 1\}$ is the nuclear norm $(\|A\|_{\mathcal{S}_{1}} = \|\operatorname{spec}(A)\|_{\ell_{1}^{m \wedge T}})$.

 \implies We use the nuclear norm as a criterion : $\operatorname{crit}(A) = \|A\|_{S_1}$. bibliography :

- **①** Candés, Tao, Romberg, Plan, Recht, Fazel, Parillo, Gross,... (Exact reconstruction problem : $Y = \langle X, A_0 \rangle$ and often $X \sim \mathrm{Unif}(e_i e_i^\top : 1 \leq i \leq m, 1 \leq j \leq T)$);
- 2 Tsybakov, Rohde, Koltchinskii, Lounici, Negahban, Wainright, Bach,... (statistical point of view).

Matrix Completion - Application of the general result

$$F_r := \{A \in \mathbb{R}^{m \times T} : \operatorname{crit}(A) \leq r\} = rB_{S_1}$$

Matrix Completion - Application of the general result

$$F_r := \{A \in \mathbb{R}^{m \times T} : \operatorname{crit}(A) \leq r\} = rB_{S_1}$$

For non-exact oracle inequalities for RERM:

$$\lambda_{\epsilon}^*(r) := \inf \left(\lambda > 0 : \mathbb{E} \| P - P_n \|_{V(\ell_{F_r}^{(q)})_{\lambda}} \le (\epsilon/4) \lambda \right).$$

where
$$\ell_{F_r}^{(q)}:=\{\ell_A^{(q)}:\|A\|_{\mathcal{S}_1}\leq r\}$$
 and $\ell_A^{(q)}(y,x)=|y-\left\langle x,A\right\rangle|^q.$

Matrix Completion - Application of the general result

$$F_r := \{A \in \mathbb{R}^{m \times T} : \operatorname{crit}(A) \leq r\} = rB_{S_1}$$

For non-exact oracle inequalities for RERM:

$$\lambda_{\epsilon}^*(r) := \inf \left(\lambda > 0 : \mathbb{E} \| P - P_n \|_{V(\ell_{F_r}^{(q)})_{\lambda}} \le (\epsilon/4) \lambda \right).$$

where
$$\ell_{F_r}^{(q)} := \{\ell_A^{(q)} : \|A\|_{S_1} \le r\}$$
 and $\ell_A^{(q)}(y,x) = |y - \langle x, A \rangle|^q$.

For exact oracle inequalities for RERM:

$$\mu^*(r) := \inf \Big(\mu > 0 : \mathbb{E} \| P - P_n \|_{V(\mathcal{L}_F^{(q)})_\mu} \le \mu/8 \Big).$$

where
$$\mathcal{L}_{F_r}^{(q)} = \ell_{F_r}^{(q)} - \ell_{A^*}^{(q)}$$
 and $R^{(q)}(A_r^*) = \min_{A \in F_r} R^{(q)}(A)$.

Applications to S_1 and ℓ_1 regularization

Computation of the fixed point

Applications to S_1 and ℓ_1 regularization

Computation of the fixed point

Lemma (L. and Mendelson)

$$U_n = \mathbb{E}\gamma_2^2(\widetilde{P_\sigma F}, \ell_\infty^n)$$
 where $P_\sigma F = \{(f(X_1), \cdots, f(X_n)) : f \in F\}.$

Lemma (L. and Mendelson)

$$U_n = \mathbb{E}\gamma_2^2(\widetilde{P_{\sigma}F}, \ell_{\infty}^n)$$
 where $P_{\sigma}F = \{(f(X_1), \cdots, f(X_n)) : f \in F\}.$

$$\mathsf{q}{=}2 \ \mathbb{E}\|P-P_n\|_{(\ell_F^{(2)})_\mu} \leq \mathsf{max}\left[\sqrt{\mu \frac{U_n}{n}}, \frac{U_n}{n}\right]$$

Computation of the fixed point

Lemma (L. and Mendelson)

$$\begin{split} &U_{n} = \mathbb{E}\gamma_{2}^{2}(P_{\sigma}F,\ell_{\infty}^{n}) \text{ where } P_{\sigma}F = \{(f(X_{1}),\cdots,f(X_{n})): f \in F\}.\\ &q = 2 \ \mathbb{E}\|P - P_{n}\|_{(\ell_{F}^{(2)})_{\mu}} \leq \max\left[\sqrt{\mu\frac{U_{n}}{n}},\frac{U_{n}}{n}\right]\\ &q > 2 \ \mathbb{E}\|P - P_{n}\|_{(\ell_{F}^{(q)})_{\mu}} \leq \\ &\max\left[\sqrt{\mu\frac{U_{n}}{n}}\sqrt{\left(M\log n\right)^{1-2/q}},\frac{U_{n}}{n}\left(M\log n\right)^{1-2/q},\frac{M\log n}{n}\right]\\ &\text{where } M = \|\sup_{\ell \in \ell_{r}^{(q)}}|\ell|\|_{\psi_{1}}. \end{split}$$

Assume that $q \ge 2$, $\|Y\|_{\psi_q}$, $\|\|X\|_{S_2}\|_{\psi_q} \le K(mT)$ for some constant K(mT) which depends only on the product mT.

Assume that $q \ge 2$, $\|Y\|_{\psi_q}$, $\|\|X\|_{S_2}\|_{\psi_q} \le K(mT)$ for some constant K(mT) which depends only on the product mT. Let x > 0 and $0 < \epsilon < 1/2$, and put $\lambda(n, mT, x) = c_0 K(mT)^q (\log n)^{(4q-2)/q} (x + \log n)$.

Assume that $q \geq 2$, $||Y||_{\psi_q}$, $|||X||_{S_2}||_{\psi_q} \leq K(mT)$ for some constant K(mT) which depends only on the product mT. Let x > 0 and $0 < \epsilon < 1/2$, and put $\lambda(n, mT, x) = c_0 K(mT)^q (\log n)^{(4q-2)/q} (x + \log n)$. Consider the RERM procedure

$$\hat{A}_n \in \operatorname{Arg} \min_{A \in \mathcal{M}_{m \times T}} \left(R_n^{(q)}(A) + \lambda(n, mT, x) \frac{\|A\|_{S_1}^q}{n\epsilon^2} \right)$$

Assume that $q \geq 2$, $\|Y\|_{\psi_q}$, $\|\|X\|_{S_2}\|_{\psi_q} \leq K(mT)$ for some constant K(mT) which depends only on the product mT. Let x > 0 and $0 < \epsilon < 1/2$, and put $\lambda(n, mT, x) = c_0 K(mT)^q (\log n)^{(4q-2)/q} (x + \log n)$. Consider the RERM procedure

$$\hat{A}_n \in \operatorname{Arg} \min_{A \in \mathcal{M}_{m \times T}} \left(R_n^{(q)}(A) + \lambda(n, mT, x) \frac{\|A\|_{S_1}^q}{n\epsilon^2} \right)$$

Then, with probability greater than $1-10\exp(-x)$,

$$R^{(q)}(\hat{A}_n) \leq \inf_{A \in \mathcal{M}_{m \times T}} \Big((1+2\epsilon)R^{(q)}(A) + c_1\lambda(n, mT, x) \frac{(1+\|A\|_{S_1}^q)}{n\epsilon^2} \Big).$$

Remarks:

• Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$,etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.

Remarks:

● Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.

Applications to S_1 and ℓ_1 regularization

② For q=2, we regularize by the square $||A||_{S_1}^2$. We have fast rates $\sim ||A_0||_{S_1}^2/n$.

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- **②** For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

Imagine that we "know" more : for instance, that $Y pprox \left\langle X, A_0 \right
angle$ where

• A₀ is low-rank

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- **②** For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

Imagine that we "know" more : for instance, that $Y pprox \left\langle X, A_0 \right
angle$ where

• A_0 is low-rank $\Longrightarrow \operatorname{crit}(A) = \|A\|_{S_1}$;

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- **②** For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

- A_0 is low-rank $\Longrightarrow \operatorname{crit}(A) = ||A||_{S_1}$;
- \bullet and, the singular values of A_0 are well-spread

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- **②** For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

- A_0 is low-rank $\Longrightarrow \operatorname{crit}(A) = ||A||_{S_1}$;
- and, the singular values of A_0 are well-spread \Longrightarrow $\operatorname{crit}(A) = r_1 ||A||_{S_1} + r_2 ||A||_{S_2}^2$;

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- **②** For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

- A_0 is low-rank $\Longrightarrow \operatorname{crit}(A) = ||A||_{S_1}$;
- and, the singular values of A_0 are well-spread \Longrightarrow $\operatorname{crit}(A) = r_1 ||A||_{S_1} + r_2 ||A||_{S_2}^2$;
- and, A_0 has many zeroes

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- ② For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

- A_0 is low-rank $\Longrightarrow \operatorname{crit}(A) = ||A||_{S_1}$;
- and, the singular values of A_0 are well-spread \Longrightarrow $\operatorname{crit}(A) = r_1 \|A\|_{S_1} + r_2 \|A\|_{S_2}^2$;
- and, A_0 has many zeroes \Longrightarrow $\operatorname{crit}(A) = r_1 ||A||_{S_1} + r_2 ||A||_{S_2}^2 + r_3 ||A||_{\ell_v^{mT}}$;

Remarks:

- **●** Almost no assumption (no RIP type of assumption, we don't need to assume that $\mathbb{E}(Y|X) = \langle X, A_0 \rangle$, etc..). Assumptions only on the tails of Y and $\|X\|_{S_2}$.
- ② For q=2, we regularize by the square $\|A\|_{S_1}^2$. We have fast rates $\sim \|A_0\|_{S_1}^2/n$.

Imagine that we "know" more : for instance, that $Y pprox \left\langle X, A_0 \right
angle$ where

- A_0 is low-rank $\Longrightarrow \operatorname{crit}(A) = ||A||_{S_1}$;
- and, the singular values of A_0 are well-spread \Longrightarrow $\operatorname{crit}(A) = r_1 \|A\|_{S_1} + r_2 \|A\|_{S_2}^2$;
- and, A_0 has many zeroes \Longrightarrow $\operatorname{crit}(A) = r_1 ||A||_{S_1} + r_2 ||A||_{S_2}^2 + r_3 ||A||_{\ell_n^{m^T}};$

We can obtain exact and non-exact oracle inequalities for a RERM based on the criterion

$$\operatorname{crit}(A) = r_1 \|A\|_{S_1} + r_2 \|A\|_{S_2}^2 + r_3 \|A\|_{\ell_1^{mT}}$$

Theorem (Gaïffas and L.)

Assume that $\|Y\|_{\psi_2}, \|\|X\|_{S_2}\|_{\psi_2} \le K(mT)$ for some constant K(mT)which depends only on the product mT.

Theorem (Gaïffas and L.)

Assume that $\|Y\|_{\psi_2}, \|\|X\|_{S_2}\|_{\psi_2} \le K(mT)$ for some constant K(mT) which depends only on the product mT. Fix any $x, r_1, r_2, r_3 > 0$, and consider

$$\hat{A}_n \in \operatorname*{argmin}_{A \in \mathcal{M}_{m,T}} \left\{ R_n^{(2)}(A) + \frac{\lambda_{n,mT,x}}{\sqrt{n}} (r_1 \|A\|_{S_1} + r_2 \|A\|_{S_2}^2 + r_3 \|A\|_1) \right\}$$

Theorem (Gaïffas and L.)

Assume that $\|Y\|_{\psi_2}$, $\|\|X\|_{S_2}\|_{\psi_2} \le K(mT)$ for some constant K(mT) which depends only on the product mT. Fix any $x, r_1, r_2, r_3 > 0$, and consider

$$\hat{A}_n \in \operatorname*{argmin}_{A \in \mathcal{M}_{m,T}} \left\{ R_n^{(2)}(A) + \frac{\lambda_{n,mT,x}}{\sqrt{n}} (r_1 \|A\|_{S_1} + r_2 \|A\|_{S_2}^2 + r_3 \|A\|_1) \right\}$$

Then, with probability larger than $1 - 5e^{-x}$,

$$R^{(2)}(\hat{A}_n) \leq \inf_{A \in \mathcal{M}_{m,T}} \left\{ R^{(2)}(A) + \frac{\lambda_{n,mT,x}}{\sqrt{n}} (1 + r_1 ||A||_{S_1} + r_2 ||A||_{S_2}^2 + r_3 ||A||_1)) \right\}$$

Model:

• $(Y_1, X_1), \ldots, (Y_n, X_n)$: n i.i.d. random variables in $\mathbb{R} \times \mathbb{R}^d$;

Applications to S_1 and ℓ_1 regularization

Model:

- $(Y_1, X_1), \ldots, (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^d$;
- $\ell^{(q)}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \longmapsto \ell^{(q)}(\beta, (y, x)) = \ell^{(q)}_{\beta}(y, x) = |y \langle \beta, x \rangle|^q$.

Applications to S_1 and ℓ_1 regularization

Model:

- $(Y_1, X_1), \ldots, (Y_n, X_n)$: n i.i.d. random variables in $\mathbb{R} \times \mathbb{R}^d$;
- $\ell^{(q)}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \longmapsto \ell^{(q)}(\beta, (y, x)) = \ell^{(q)}_{\beta}(y, x) = |y \langle \beta, x \rangle|^q$.

Notation:

 $ullet \ \ell_{eta}^{(q)}: L_q$ -loss function of a vector $eta \in \mathbb{R}^d$

Model:

- $(Y_1, X_1), \ldots, (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^d$;
- $\ell^{(q)}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \longmapsto \ell^{(q)}(\beta, (y, x)) = \ell^{(q)}_{\beta}(y, x) = |y \langle \beta, x \rangle|^q$.

Applications to S_1 and ℓ_1 regularization

Notation:

- $\ell_{\beta}^{(q)}$: L_{α} -loss function of a vector $\beta \in \mathbb{R}^d$
- $R^{(q)}(\beta) = \mathbb{E}|Y \langle \beta, X \rangle|^q : L_q$ -risk of a vector $\beta \in \mathbb{R}^d$

Model:

- $(Y_1, X_1), \dots, (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^d$;
- $\ell^{(q)}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \longmapsto \ell^{(q)}(\beta, (y, x)) = \ell^{(q)}_{\beta}(y, x) = |y \langle \beta, x \rangle|^q$.

Notation:

- $\ell_{\beta}^{(q)}$: L_q -loss function of a vector $\beta \in \mathbb{R}^d$
- $R^{(q)}(\beta) = \mathbb{E}|Y \langle \beta, X \rangle|^q : L_q$ -risk of a vector $\beta \in \mathbb{R}^d$

Problem : d >> n (more variables than observations) but we believe that $Y \approx \langle \beta_0, X \rangle$ where β_0 is of short support ($|\text{Supp}(\beta_0)| < n$) (This is not an assumption!)

Oracle inequalities for ERM

Model:

- $(Y_1, X_1), \dots, (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^d$;
- $\ell^{(q)}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \longmapsto \ell^{(q)}(\beta, (y, x)) = \ell^{(q)}_{\beta}(y, x) = |y \langle \beta, x \rangle|^q$.

Notation:

- $\ell_{\beta}^{(q)}$: L_q -loss function of a vector $\beta \in \mathbb{R}^d$
- $R^{(q)}(\beta) = \mathbb{E}|Y \langle \beta, X \rangle|^q : L_q$ -risk of a vector $\beta \in \mathbb{R}^d$

Problem : d >> n (more variables than observations) but we believe that $Y \approx \langle \beta_0, X \rangle$ where β_0 is of short support ($|\text{Supp}(\beta_0)| < n$) (This is not an assumption!)

$$\mathcal{F} := \{\langle \cdot, \beta \rangle : \beta \in \mathbb{R}^d \} \text{ and } \operatorname{crit}(\beta) = |\operatorname{Supp}(\beta)| \Rightarrow$$

Model:

- $(Y_1, X_1), \ldots, (Y_n, X_n) : n \text{ i.i.d. random variables in } \mathbb{R} \times \mathbb{R}^d$;
- $\ell^{(q)}: \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \longmapsto \ell^{(q)}(\beta, (y, x)) = \ell^{(q)}_{\beta}(y, x) = |y \langle \beta, x \rangle|^q$.

Notation:

- $ullet \ \ell_{eta}^{(q)}: L_q$ -loss function of a vector $eta \in \mathbb{R}^d$
- $R^{(q)}(\beta) = \mathbb{E}|Y \langle \beta, X \rangle|^q : L_q$ -risk of a vector $\beta \in \mathbb{R}^d$

Problem : d >> n (more variables than observations) but we believe that $Y \approx \langle \beta_0, X \rangle$ where β_0 is of short support ($|\operatorname{Supp}(\beta_0)| < n$) (This is not an assumption!)

$$\mathcal{F}:=\{\left\langle \cdot,\beta\right\rangle : \beta\in\mathbb{R}^d\} \text{ and } \operatorname{crit}(\beta)=|\operatorname{Supp}(\beta)|\Rightarrow \mathsf{Convexification}$$

$$\operatorname{crit}(\beta) = \|\beta\|_1$$

Oracle inequalityy for the square LASSO

Let $q \geq 2$. Assume that there exists some constant $c_d > 0$ (which may depend only on d) such that $\|Y\|_{\psi_q}$, $\|\|X\|_{\ell_\infty^d}\|_{\psi_q} \leq c_d$.

Oracle inequalityy for the square LASSO

Let $q\geq 2$. Assume that there exists some constant $c_d>0$ (which may depend only on d) such that $\|Y\|_{\psi_q}$, $\|\|X\|_{\ell^d_\infty}\|_{\psi_q}\leq c_d$. For x>0 and $0<\epsilon<1/2$, let

$$\lambda(n, d, x) = c_0 c_d^q (\log n)^{(4q-2)/q} (\log d)^2 (x + \log n)$$

Oracle inequalityy for the square LASSO

Let $q\geq 2$. Assume that there exists some constant $c_d>0$ (which may depend only on d) such that $\|Y\|_{\psi_q}$, $\|\|X\|_{\ell^d_\infty}\|_{\psi_q}\leq c_d$. For x>0 and $0<\epsilon<1/2$, let

$$\lambda(n, d, x) = c_0 c_d^q (\log n)^{(4q-2)/q} (\log d)^2 (x + \log n)$$

and consider the regularized ERM estimator

$$\hat{\beta}_n \in \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \left(R_n^{(q)}(\beta) + \lambda(n,d,x) \frac{\|\beta\|_{\ell_1}^q}{n\epsilon^2} \right).$$

Oracle inequalityy for the square LASSO

Let $q\geq 2$. Assume that there exists some constant $c_d>0$ (which may depend only on d) such that $\|Y\|_{\psi_q}$, $\|\|X\|_{\ell^d_\infty}\|_{\psi_q}\leq c_d$. For x>0 and $0<\epsilon<1/2$, let

$$\lambda(n, d, x) = c_0 c_d^q (\log n)^{(4q-2)/q} (\log d)^2 (x + \log n)$$

and consider the regularized ERM estimator

$$\hat{\beta}_n \in \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \left(R_n^{(q)}(\beta) + \lambda(n,d,x) \frac{\|\beta\|_{\ell_1}^q}{n\epsilon^2} \right).$$

Then, with probability greater than $1-12\exp(-x)$, the L_q -risk of $\hat{\beta}_n$ satisfies

$$R^{(q)}(\hat{\beta}_n) \leq \inf_{\beta \in \mathbb{R}^d} \Big((1+2\epsilon)R^{(q)}(\beta) + c_1\lambda(n,d,x) \frac{(1+\|\beta\|_{\ell_1}^q)}{n\epsilon^2} \Big).$$

Oracle inequalities for penalized estimators

 $\ensuremath{\mathcal{M}}$: a countable collection of models.

 ${\mathcal M}$: a countable collection of models.

 \mathcal{M} : a countable collection of models.

- 2 construct pen : $\mathcal{M} \to \mathbb{R}_+$ and define

$$\hat{m} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} (R_n(\hat{f}_m) + \operatorname{pen}(m)).$$

 \mathcal{M} : a countable collection of models.

- 2 construct pen : $\mathcal{M} \to \mathbb{R}_+$ and define

$$\hat{m} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} (R_n(\hat{f}_m) + \operatorname{pen}(m)).$$

3 oracle inequalities for the penalized estimator $\hat{f}_{\hat{m}}$.

 ${\mathcal M}$: a countable collection of models.

- 2 construct $\mathrm{pen}:\mathcal{M}\to\mathbb{R}_+$ and define

$$\hat{m} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} (R_n(\hat{f}_m) + \operatorname{pen}(m)).$$

Applications to S_1 and ℓ_1 regularization

ullet oracle inequalities for the penalized estimator $\hat{f}_{\hat{m}}$. construction of pen depends on the type of oracle inequality that we want to prove :

 \mathcal{M} : a countable collection of models.

- 2 construct pen : $\mathcal{M} \to \mathbb{R}_+$ and define

$$\hat{m} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} (R_n(\hat{f}_m) + \operatorname{pen}(m)).$$

Applications to S_1 and ℓ_1 regularization

3 oracle inequalities for the penalized estimator $\hat{f}_{\hat{m}}$. construction of pen depends on the type of oracle inequality that we want to prove : for any $m \in \mathcal{M}$

$$\ell_m = \{\ell_f : f \in m\}, \quad \mathcal{L}_m = \{\ell_f - \ell_{f_m^*} : f \in m\} \text{ and } \mathcal{E}_m = \{\ell_f - \ell_{f^*} : f \in m\}$$

where we assume that there exists $f_m^* \in \operatorname{argmin}_{f \in m} R(f)$ for any $m \in \mathcal{M}$ (and $f^* \in \operatorname{argmin}_f R(f)$).

Three fixed points

 $\bullet \ \, \text{For non-exact oracle inequalities} : \forall m \in \mathcal{M}, \, \text{for some} \, \, 0 < \eta < 1/2,$

$$\mathbb{E}\|P_n-P\|_{V(\ell_m)_{\lambda_\eta^*(m)}}\leq (\eta/4)\lambda_\eta^*(m).$$

Three fixed points

• For non-exact oracle inequalities : $\forall m \in \mathcal{M}$, for some $0 < \eta < 1/2$,

$$\mathbb{E}\|P_n-P\|_{V(\ell_m)_{\lambda_n^*(m)}}\leq (\eta/4)\lambda_\eta^*(m).$$

② For non-exact oracle inequalities for the estimation problem : $\forall m \in \mathcal{M}$

$$\mathbb{E}\|P_n-P\|_{V(\mathcal{E}_m)_{\nu_n^*(m)}}\leq (\eta/4)\nu_\eta^*(m).$$

Three fixed points

① For non-exact oracle inequalities : $\forall m \in \mathcal{M}$, for some $0 < \eta < 1/2$,

$$\mathbb{E}\|P_n-P\|_{V(\ell_m)_{\lambda_n^*(m)}}\leq (\eta/4)\lambda_\eta^*(m).$$

② For non-exact oracle inequalities for the estimation problem : $\forall m \in \mathcal{M}$

$$\mathbb{E}\|P_n-P\|_{V(\mathcal{E}_m)_{\nu_{\eta}^*(m)}}\leq (\eta/4)\nu_{\eta}^*(m).$$

3 for exact oracle inequalities : $\forall m \in \mathcal{M}$

$$\mathbb{E}\|P_n - P\|_{V(\mathcal{L}_m)_{\mu_{1/2}^*(m)}} \le (1/8)\mu_{1/2}^*(m)$$

where $\mathcal{L}_m = \{\ell_f - \ell_{f_m^*} : f \in m\}$ and $f_m^* \in \operatorname{argmin}_{f \in m} R(f)$.

Assume that there are some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\ell_f(Z_i))\|_{\psi_1}\leq \phi_n(m) \text{ and } P\ell_f^2\leq B_n(m)P\ell_f+B_n^2(m)/n.$$

Non-exact oracle inequalities for the penalized estimator

Assume that there are some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$.

$$\|\max_{1 \le i \le n} \sup_{f \in m} \ell_f(Z_i))\|_{\psi_1} \le \phi_n(m) \text{ and } P\ell_f^2 \le B_n(m)P\ell_f + B_n^2(m)/n.$$

Applications to S_1 and ℓ_1 regularization

Let $0 < \eta < 1/2$ and assume that for every $(m, x) \in \mathcal{M} \times \mathbb{R}_+^*$,

$$ho_n^\ell(m,x) \geq \max\Big(\lambda_\eta^*(m), c_0 rac{(\phi_n(m) + B_n(m)/\eta)(x+1)}{n\eta}\Big).$$

Non-exact oracle inequalities for the penalized estimator

Assume that there are some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$.

$$\|\max_{1 \le i \le n} \sup_{f \in m} \ell_f(Z_i))\|_{\psi_1} \le \phi_n(m) \text{ and } P\ell_f^2 \le B_n(m)P\ell_f + B_n^2(m)/n.$$

Applications to S_1 and ℓ_1 regularization

Let $0 < \eta < 1/2$ and assume that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$,

$$\rho_n^{\ell}(m,x) \geq \max\Big(\lambda_{\eta}^*(m), c_0 \frac{(\phi_n(m) + B_n(m)/\eta)(x+1)}{n\eta}\Big).$$

Let $(x_m)_{m \in \mathcal{M}}$ be a family of positive numbers such that $\sum_{m \in \mathcal{M}} \exp(-x_m) \le c_1$. Let x > 0 and consider the penalty function $\mathrm{pen}^\ell(m) =
ho_n^\ell(m, x + x_m)$ and the penalized estimator $\hat{f}_{\hat{m}}$ associated with this penalty function.

Non-exact oracle inequalities for the penalized estimator

Assume that there are some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$.

$$\|\max_{1 \le i \le n} \sup_{f \in m} \ell_f(Z_i))\|_{\psi_1} \le \phi_n(m) \text{ and } P\ell_f^2 \le B_n(m)P\ell_f + B_n^2(m)/n.$$

Applications to S_1 and ℓ_1 regularization

Let $0 < \eta < 1/2$ and assume that for every $(m, x) \in \mathcal{M} \times \mathbb{R}_+^*$,

$$\rho_n^{\ell}(m,x) \geq \max\Big(\lambda_{\eta}^*(m), c_0 \frac{(\phi_n(m) + B_n(m)/\eta)(x+1)}{n\eta}\Big).$$

Let $(x_m)_{m \in \mathcal{M}}$ be a family of positive numbers such that $\sum_{m \in \mathcal{M}} \exp(-x_m) \le c_1$. Let x > 0 and consider the penalty function $\mathrm{pen}^{\ell}(m) = \rho_n^{\ell}(m, x + x_m)$ and the penalized estimator $\hat{f}_{\hat{m}}$ associated with this penalty function. Then, with probability greater than $1 - c_2 e^{-x}$,

$$R(\hat{f}_{\hat{m}}) \leq \frac{1+\eta}{1-\eta} \inf_{m \in \mathcal{M}} \left(\inf_{f \in m} P\ell_f + \operatorname{pen}^{\ell}(m) \right).$$

Oracle inequalities for RERM Non-exact oracle inequalities for the penalized estimator

$$\mathrm{pen}^{\ell}(m) = \max\left(\lambda_{\eta}^{*}(m), c_{0}\frac{(\phi_{n}(m) + B_{n}(m)/\eta)(x + x_{m} + 1)}{n\eta}\right) \sim \lambda_{\eta}^{*}(m)$$

where

$$\mathbb{E}\|P_n-P\|_{V(\ell_m)_{\lambda_\eta^*(m)}}\leq (\eta/4)\lambda_\eta^*(m).$$

Oracle inequalities for PERM

Assume that there exists $0<\beta\leq 1$ and some functions ϕ_n and B_n such that for every $m\in\mathcal{M}$ and every $f\in m$,

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{E}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{E}_f^2\leq B_n(m)\big(P\mathcal{E}_f\big)^\beta+B_n^2(m)/n.$$

Assume that there exists $0 < \beta \le 1$ and some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{E}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{E}_f^2\leq B_n(m)\big(P\mathcal{E}_f\big)^\beta+B_n^2(m)/n.$$

Let $0 < \eta < 1/2$ and assume that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$,

$$\rho_n^{\mathcal{E}}(m,x) \geq \max\left(\nu_{\eta}^*(m), c_2(B_n(m) + \phi_n(m))\left(\frac{x+1}{n\eta}\right)^{\frac{1}{2-\beta}}\right).$$

Oracle inequalities for ERM

Assume that there exists $0 < \beta \le 1$ and some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$.

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{E}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{E}_f^2\leq B_n(m)\big(P\mathcal{E}_f\big)^\beta+B_n^2(m)/n.$$

Let $0 < \eta < 1/2$ and assume that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$,

$$\rho_n^{\mathcal{E}}(m,x) \geq \max\left(\nu_{\eta}^*(m), c_2(B_n(m) + \phi_n(m))\left(\frac{x+1}{n\eta}\right)^{\frac{1}{2-\beta}}\right).$$

Let $(x_m)_{m \in \mathcal{M}}$ be a family of positive numbers such that $\sum_{m \in \mathcal{M}} \exp(-x_m) \le c_1$. Let x > 0 and consider the penalty function $\operatorname{pen}^{\mathcal{E}}(m) = \rho_n^{\mathcal{E}}(m, x + x_m)$ and the penalized estimator \hat{f}_m associated with this penalty function.

Oracle inequalities for ERM

Assume that there exists $0 < \beta \le 1$ and some functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{E}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{E}_f^2\leq B_n(m)\big(P\mathcal{E}_f\big)^\beta+B_n^2(m)/n.$$

Let $0 < \eta < 1/2$ and assume that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$,

$$\rho_n^{\mathcal{E}}(m,x) \geq \max\left(\nu_{\eta}^*(m), c_2(B_n(m) + \phi_n(m))\left(\frac{x+1}{n\eta}\right)^{\frac{1}{2-\beta}}\right).$$

Let $(x_m)_{m \in \mathcal{M}}$ be a family of positive numbers such that $\sum_{m \in \mathcal{M}} \exp(-x_m) \le c_1$. Let x > 0 and consider the penalty function $\operatorname{pen}^{\mathcal{E}}(m) = \rho_n^{\mathcal{E}}(m, x + x_m)$ and the penalized estimator \hat{f}_m associated with this penalty function. Then, with probability greater than $1 - c_3 e^{-x}$,

$$R(\hat{f}_{\widehat{m}}) - R(f^*) \leq \frac{1+\eta}{1-\eta} \inf_{m \in \mathcal{M}} \left(\inf_{f \in m} \left(R(f) - R(f^*) \right) + \operatorname{pen}^{\mathcal{E}}(m) \right).$$

In the context of the estimation problem, a possible way of penalizing the empirical risk is by the function

Applications to S_1 and ℓ_1 regularization

$$\operatorname{pen}^{\mathcal{E}}(m) = \max \left(\nu_{\eta}^{*}(m), c_{2}(B_{n}(m) + \phi_{n}(m)) \left(\frac{x + x_{m}}{n\eta} \right)^{\frac{1}{2-\beta}} \right)$$

where

$$\mathbb{E}\|P_n - P\|_{V(\mathcal{E}_m)_{\nu_n^*(m)}} \leq (\eta/4)\nu_\eta^*(m).$$

Applications to S_1 and ℓ_1 regularization

Exact oracle inequality for the penalized estimator

Take
$$\mathcal{M}=\left(m_n\right)_{n\in\mathbb{N}}$$
 s.t. $m_0\subset m_1\subset m_2\subset\cdots$.

Take $\mathcal{M}=\left(m_{n}\right)_{n\in\mathbb{N}}$ s.t. $m_{0}\subset m_{1}\subset m_{2}\subset\cdots$. Assume that there exists $0 < \beta \le 1$ and two non-decreasing functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{L}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{L}_{m,f}^2\leq B_n(m)\big(P\mathcal{L}_{m,f}\big)^\beta+B_n^2(m)/n$$

where $\mathcal{L}_{m,f} = \ell_f - \ell_{f^*}$.

Oracle inequalities for ERM

Take $\mathcal{M}=\left(m_{n}\right)_{n\in\mathbb{N}}$ s.t. $m_{0}\subset m_{1}\subset m_{2}\subset\cdots$. Assume that there exists $0 < \beta \le 1$ and two non-decreasing functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{L}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{L}^2_{m,f}\leq B_n(m)\big(P\mathcal{L}_{m,f}\big)^\beta+B_n^2(m)/n$$

where $\mathcal{L}_{m,f} = \ell_f - \ell_{f_m^*}$. Let $\rho_n^{\mathcal{L}}$ be an increasing function such that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$.

$$\rho_n^{\mathcal{L}}(m,x) \geq \max\left(\mu_{1/2}^*(m), (B_n(m) + \phi_n(m))\left(\frac{x+1}{n}\right)^{\frac{1}{2-\beta}}\right).$$

Exact oracle inequality for the penalized estimator

Take $\mathcal{M}=\left(m_{n}\right)_{n\in\mathbb{N}}$ s.t. $m_{0}\subset m_{1}\subset m_{2}\subset\cdots$. Assume that there exists $0 < \beta \le 1$ and two non-decreasing functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{L}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{L}^2_{m,f}\leq B_n(m)\big(P\mathcal{L}_{m,f}\big)^\beta+B_n^2(m)/n$$

where $\mathcal{L}_{m,f} = \ell_f - \ell_{f_m^*}$. Let $\rho_n^{\mathcal{L}}$ be an increasing function such that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$.

$$\rho_n^{\mathcal{L}}(m,x) \geq \max\left(\mu_{1/2}^*(m), (B_n(m) + \phi_n(m))\left(\frac{x+1}{n}\right)^{\frac{1}{2-\beta}}\right).$$

Let $(x_m)_{m \in \mathcal{M}}$ be a family of positive numbers such that $\sum_{m \in \mathcal{M}} \exp(-x_m) \le c_1$. Let x > 0 and consider the penalty function $\operatorname{pen}^{\mathcal{L}}(m) = (7/2)\rho_n^{\mathcal{L}}(m, x + x_m)$ and the penalized estimator $\hat{f}_{\hat{m}}$ associated with this penalty function.

Oracle inequalities for ERM

Take $\mathcal{M}=(m_n)_{n\in\mathbb{N}}$ s.t. $m_0\subset m_1\subset m_2\subset\cdots$. Assume that there exists $0 < \beta \le 1$ and two non-decreasing functions ϕ_n and B_n such that for every $m \in \mathcal{M}$ and every $f \in m$,

Applications to S_1 and ℓ_1 regularization

$$\|\max_{1\leq i\leq n}\sup_{f\in m}\mathcal{L}_f(Z_i)\|_{\psi_1}\leq \phi_n(m) \text{ and } P\mathcal{L}^2_{m,f}\leq B_n(m)\big(P\mathcal{L}_{m,f}\big)^\beta+B_n^2(m)/n$$

where $\mathcal{L}_{m,f} = \ell_f - \ell_{f_m^*}$. Let $\rho_n^{\mathcal{L}}$ be an increasing function such that for every $(m, x) \in \mathcal{M} \times \mathbb{R}^*_+$.

$$\rho_n^{\mathcal{L}}(m,x) \geq \max\left(\mu_{1/2}^*(m), (B_n(m) + \phi_n(m))\left(\frac{x+1}{n}\right)^{\frac{1}{2-\beta}}\right).$$

Let $(x_m)_{m \in \mathcal{M}}$ be a family of positive numbers such that $\sum_{m \in \mathcal{M}} \exp(-x_m) \le c_1$. Let x > 0 and consider the penalty function $\operatorname{pen}^{\mathcal{L}}(m) = (7/2)\rho_n^{\mathcal{L}}(m, x + x_m)$ and the penalized estimator $\hat{f}_{\hat{m}}$ associated with this penalty function. Then, with probability greater than $1 - c_1 e^{-x}$.

$$R(\hat{f}_{\hat{m}}) \leq \inf_{m \in \mathcal{M}} \left(\inf_{f \in m} R(f) + (18/7) \operatorname{pen}^{\mathcal{L}}(m) \right).$$

Therefore, for the exact prediction problem, a possible way of penalizing the empirical risk is by the function

$$\operatorname{pen}^{\mathcal{L}}(m) = c_2 \max \left(\mu_{1/2}^*(m), (B_n(m) + \phi_n(m)) \left(\frac{x + x_m}{n} \right)^{\frac{1}{2-\beta}} \right)$$

Therefore, for the exact prediction problem, a possible way of penalizing the empirical risk is by the function

Applications to S_1 and ℓ_1 regularization

$$\operatorname{pen}^{\mathcal{L}}(m) = c_2 \max \left(\mu_{1/2}^*(m), (B_n(m) + \phi_n(m)) \left(\frac{x + x_m}{n} \right)^{\frac{1}{2 - \beta}} \right)$$

where

Oracle inequalities for ERM

$$\mathbb{E}\|P_n - P\|_{V(\mathcal{L}_m)_{\mu_{1/2}^*(m)}} \leq (1/8)\mu_{1/2}^*(m)$$

and $\mathcal{L}_m = \{\ell_f - \ell_{f_m^*} : f \in m\}$ and $f_m^* \in \operatorname{argmin}_{f \in m} R(f)$.

Thanks!!