BINF 8211/6211 Design and Implementation of Bioinformatics Databases Lecture #24

Dr. D. Andrew Carr Dept. Bioinformatics and Genomics UNCC Spring 2016

Presentation Dates

April 19th

- 8, Danny Freese
- April 21th
 - 12, Kebba Mbye
 - 1, Carrie Barlow
 - 6, Matthew Deitz
 - 5, Molly Crowder
- April 26th
 - 14, Seyed Nader Nazami
 - 3, Shelvasha Burkes
 - 4, John Cashere
 - 9, Samantha Kaiser
 - 13, Sasan Najar

- April 28th
 - 16, Aarthi Sriram
 - 18, Lei Xu
 - 10, Amoolya Maddali
 - 17, Aneeta Uppal
- May 3rd
 - 11, Shelby Matlock
 - 15, Tyler Robbins
 - 7, Heena Desai
 - 2, Brandon Burciaga

LIMS Introduction

- Laboratory information management system
 - Tracking database
 - Data
 - Workflow
 - Similar to business keeps inventory
 - Need flexible architecture.
 - Data exchange with multiple environments.
- Also include
 - Electronic Laboratory Notebook
 - Data mining
 - Data analysis
- Challenge?
 - Why are LIMS so hard to create?

What is a LIMS?

- Laboratory Information Management System
 - Computerized information tracking
 - Manages lab data from sample log-in to reporting
 - Interfaces with analytical instruments
 - Sorts and organizes data into various report formats
 - Stores data for future reference and use
 - LIS
 - Laboratory Information System
 - Biomedical

Rationale for LIMS

hardware, software, people, procedures and data

www.GlobalHealthLaboratories.org

Roles of LIMS Systems

- To manage
 - Data
 - Sample → aliqout
 - Chain of Custody
 - Work flow
 - Changing business needs/processes
 - Inventory
 - Existing systems and improving where required
 - Resources
 - QA/QC

Why have a LIMS?

- Improve data management in lab to increase lab potential
- Enable centralization of information
- Support and enhance business processes of the lab
- Take advantage of new lab information technology
- Provide easy access to data
- Chain of custody
- Standardization of method

www.GlobalHealthLaboratories.org

Functions of LIMS

- Track specimens from receipt, processing, testing, reporting to storage
 - Sample processing
 - Scheduling
 - Error monitoring
 - Report generation
- Personnel Tracking
- Equipment Tracking
- QC and Chain of Custody
- Business operations
 - Quotes and Billing

LIMS acquisition decisions

- Type of lab
 - Reference/research/public health
 - Clinical
 - Quality Control
 - Hybrid
- Volume of samples
- Types and number of tests
- Size of staff/users
- Existing system
 - Determine which areas will be affected
- Requirements and expectations
 - Avoid 'culture shock'

Advantages of LIMS Use

- Fewer transcription errors & faster processing with direct instrument uploads
- Real time control of data quality with built in QC criteria
- Direct report generation meeting specific client requirements
- Direct electronic reporting to clients or direct client access to data

Disadvantages/Concerns/Challenges

- Customization of LIMS/interfaces required for specific lab/client needs
- Flexibility Adaptation of system to future needs
 - Protocols and methods change
- Adequate validation to ensure data quality
- Data integrity and confidentiality, especially when clients have direct access to data
- Limited interface between lab & field computer systems

LIMS Benefits

- It improves the efficiency hence productivity.
- Improve data quality (all instrument are integrated).
- Saves time because the information centralized
 - Improve level of data access
 - Automation
 - reports (TAT, Work Load)
 - Warning
 - Ordering
 - Quoting

LIMS Types

- Frameworks
 - Schema and API
 - No standard tools
- Consolidated Single product
 - Thick and Thin Client
 - Web based

Regulatory Requirements

- ISO 9000
 - Management must define, implement, communicate and maintain quality objectives and assign personnel at all levels of the organization to be responsible for verifying the company's quality system
 - Primarily effect manufacturing laboratories
- ISO 25
 - Establishes labs technical competence
- GALP (Good Automated Laboratory Practices)
 - Union of federal regulations, policies, and guidance documents establishing a uniform set of procedures to ensure the reliability and credibility of laboratory data (EPA)
- 21 CFR 11 (1997)
 - Electronic signatures, Electronic records