CSCI 361:	Reading	Assignment #	ŧ 1
C5 C1 5 0 1.	110001119	110016111111111111111111111111111111111	_

Due: Tuesday, Sept 10, in class

Assignment reading for lecture:

- Sipser Chapter 0 (Background and Definitions)
- Optional: Boaz Barak Textbook, Chapter 1 (https://introtcs.org/public/index.html)
 - o Some definitions are stated more explicitly in this book!

Q1. If $A = \{1, 2, 3\}$ and $B = \{a\}$, what is the Cartesian product A X B?

Q2. How many elements are in the set $\{0, 1\}^4$?

Q3. Give an example of a function that is one-to-one but not onto.

CSCI 361: Reading Assignment # 2	Your Name:	
Due: Thursday, Sept 12, in class		

Assigned reading for this lecture:

• Sipser Chap 1.2 (Nondeterministic Finite Automaton)

Question. Study the state diagram of the NFA N_4 in Figure 1.36 of Sipser and state the formal description of the 5-tuple of N_4 (including the transition function table) similar to the description of the NFA N_1 in Example 1.38.

		Readin	0	nment#	3	Your Name:		
Assign •		ding for th Chap 1.3		xpressions)			
Questi	ions:							
1.	Have	you used :	regular exp	oressions (r	regex) in Unix	x commands or	programming b	efore?
				*	*			
2.	What	does the r	egular exp	ression 0 1	0 [*] describe?			

CSCI 361	: Reading Assignment # 4	Your Name:
Due: Tuesda	ry, Sept 17, in class	
- C	eading for this lecture: er Chap 1.4 (Non-regular Languages)	
Questions:		
1. How	v does the pumping lemma utilize the pigeonh	ole principle?
2. Doe	s the pumping lemma give a necessary and su	fficient condition for regularity?

CSCI 361: Reading Assignment # 5 Your Name:
Due: Tuesday, Oct 1, in class
Assigned reading for this lecture: • Sipser Third Edition Chap 2.1 (Context-free Grammar)
Questions:
Consider the context-free grammar G_3 in Example 2.3 of the textbook and answer the following:
(a) Show the derivation of the string of the aabaabbb using the rules of the grammar.
(b) Can we design a DFA for the language identified by this grammar? Explain in one-or-two sentences.

Due: Thursday, Oct 3, in class

Assigned reading for this lecture:

• Sipser Third Edition Chap 2.2 (Push-down Automata)

Questions:

1. Similar to finite automata, are deterministic and nondeterministic push-down automata equivalent in their power?

2. In Definition 2.13, the transition function of a push-down automata is defined as $\delta\colon Q\times \Sigma_\varepsilon\times \Gamma_\varepsilon{\longrightarrow} \mathcal{P}(Q\times \Gamma_\varepsilon)$

Describe this transition informally in English using the stack and "push" and pop" terminology.

3. Consider the PDA in Figure 2.15. What is the significance of the \$ tape symbol?

CSCI 361: Reading Assignment # 7	Your Name:
Due: Tuesday, Oct 8, in class	
Assigned reading for this lecture: • Sipser Third Edition Chap 2.3 (Non-Context)	t-Free Languages)
Questions:	
Read the pumping lemma for CFL and com- languages. What are the similarities and different similarities.	
2. Consider a regular CFG (in which the RHS rightmost position). What do the parse tree look like? Show what the pumping lemma	3

analog of Figure 2.35 ("Surgery on parse trees")

CSCI	361:	Readin	g Assig	nment #	8	Your Name:		
Due: T	Thursdaุ	_J , Oct 10, i	n class					
Assign •		ling for th Third Edi		3.1 (Turing	g Machines)			
Questi	ions:							
1.		be one sin NFA/pusl	-		nction betwee	n the states of a	a Turing and those of	
2.	Is the	following	True or Fa	ılse:				
	A Turi	ng machii	ne can mo	ve its head	both left and	right on its tape	e.	

CSCI	CI 361: Reading Assignment # 9 You	ur Name:
Due: T	Tuesday, Oct 29, in class	
Assign	gned reading for this lecture: Sipser Third Edition Chap 4.2 (Undecidability)	
Questi	stions:	
1.	. Why is the recognizer for $A_{\text{\tiny TM}}$ described on Page 202 n	ot a decider?
2.	. What is the correspondence between the set of all infin all languages that is used in the proof of Corollary 4.18	

CSCI	361: Reading Assignment # 10	Your Name:
Due: T	uesday, Oct 29, in class	
Assign	ned reading for this lecture: Sipser Third Edition Chap 5.1 (Reducibility)	
Questi	ions:	
1.	Consider the TM M_2 in the proof of Theorem 5.3. V	Vhat is the language of M₂?
2.	Is the machine M_2 created to be run on any inputs?	Explain your answer.