Introduction

- normal Neural Networks
 - take long to train
 - predict fast
- Possible Problem:
 - Your network requires regular retraining, because of data change
 - could be impossible due to long training time

Pros and Cons

ELM theory

- ELM...single hidden layer feedforward neural network
- learns faster
- similar to classical NN, but <u>without</u> learning process (no backpropagation)

developed by Huang, et.al.

1. assign random params to hidden nodes

2. calculate hidden layer output H

3. calculate output weights

Underlying Research

Neurocomputing

Volume 70, Issues 1–3, December 2006, Pages 489-501

Extreme learning machine: Theory and applications

Guang-Bin Huang ♀ ☒ ⊕, Qin-Yu Zhu, Chee-Kheong Siew

Show more ✓

+ Add to Mendeley ≪ Share 55 Cite

https://doi.org/10.1016/j.neucom.2005.12.126

Get rights and content

Source: Huang, et.al. "Extreme learning machine: Theory and applications https://web.njit.edu/~usman/courses/cs675_fall20/ELM-NC-2006.pdf

Model Results

Dataset	Algorithms	Acc Test	
CIFAR-10	ELM 1000 (1x)	10.64	
	ELM 3000 (20x)	71.40	
	ELM 3500 (30x)	87.55	
	ReNet (2015)	87.65	
	EfficientNet (2019)	98.90	
MNIST	ELM 512	92.15	
	DELM 15000	99.43	
	RNN	99.55	
	BP 6-layer 5700	99.65	

Problems	Algorithms	Training s	Testing s	Acc Train	Acc Test	Node
Satellite image	ELM	14.92	0.34	93.52	89.04	500
	BP	12561	0.08	95.26	82.34	100
Image segment	ELM	1.40	0.07	97.35	95.01	200
	BP	4745.7	0.04	96.92	86.27	100
Shuttle	ELM	5.740	0.23	99.65	99.40	50
	BP	6132.2	0.22	99.77	99.27	50
Banana	ELM	2.19	20.06	92.36	91.57	100
	BP	6132.2	21.10	90.26	88.09	100

Source: https://towardsdatascience.com/introduction-to-extreme-learning-machines-c020020ff82b

Resources

Build an Extreme Learning Machine in Python

A guide to building a neural network without parameter tuning.

Source: https://towardsdatascience.com/build-an-extreme-learning-machine-in-python-91d1e8958599

UNDERSTANDING ML

Introduction to Extreme Learning Machines

Not so quick introduction about what is ELM. Is it really an innovation or just an iteration?

Source: https://towardsdatascience.com/introduction-to-extreme-learning-machines-c020020ff82b