Introducción Aprendizaje de Máquinas

Visión por Computador II

Contenido

- 1. Stochastic Gradient Descent
- 2. Generalización
- 3. Regresión logística
- 4. Ejercicio

Stochastic Gradient Descent

 Casi todo el aprendizaje profundo se basa en un algoritmo muy importante: el descenso de Gradiente Estocástico (SGD).

- Para una buena generalización se necesitan grandes conjuntos de entrenamiento, pero también son más costosos desde el punto de vista informático.
- Tomar una muestra aleatoria de observaciones en cada iteración (Mini-batch o Batch)

Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

En la práctica

- A. Se reorganiza de forma aleatoria el dataset cada Epoch
- B. Dividimos el dataset en baches
- C. Se pasan actualizan los parámetros del modelo con cada batch
- D. Repetimos

Generalización

- El principal reto de ML es que nuestro algoritmo funcione bien con entradas nuevas y desconocidas, no sólo con las que se ha entrenado nuestro modelo.
- Esta capacidad se llama generalización
- Calculamos la medida de error en el conjunto de entrenamiento
- Denominada error de entrenamiento
- Reducimos este error de entrenamiento

Generalización

- La diferencia entre ML y optimización es que también queremos que el error de generalización (error de prueba) sea bajo.
- El error de generalización es el valor esperado del error en una nueva entrada
- El error de generalización es medido con el dataset de pruebas (test dataset)

$$e_{test} = \frac{1}{m^{(test)}} \sum_{i}^{m} ||X^{(test)}\theta - y^{(test)}||_{2}^{2}$$

Entrenamiento de los modelos

- Se asume que los dos conjuntos (train, test) son independientes y son muestras de una misma distribución.
- Los factores que determinan qué tan bien un modelo se desempeñará son:
 - Disminuir el error de entrenamiento
 - Disminuir la diferencia entre los errores de entrenamiento y pruebas

Gráfica del error del modelo durante entrenamiento

overfitting.

Dos retos centrales: underfitting y

Capacidad del modelo

- La diferencia entre el error de prueba y de entrenamiento está relacionada con la capacidad del modelo
- La capacidad representa el número de funciones que un modelo puede seleccionar como posible solución

En el caso lineal se refiere a todas las posibles rectas que puede elegir el modelo Como representación lineal el conjunto de datos

Capacidad del modelo

Por ejemplo, la regresión lineal tiene como espacio de hipótesis el conjunto de todas las funciones lineales de su entrada

$$\hat{y} = b + xw$$

Si x^2 como otra característica, podemos aprender un modelo que sea cuadrático

$$\hat{y} = b + w_1 x + w_2 x^2$$

Podemos seguir añadiendo más potencias de x como características adicionales

$$\hat{y} = \sum_{i=1}^{n} b + w_i x^i + \dots + w_n x^n$$

Podemos controlar si un modelo tiene más probabilidades de overfitting o underfitting alterando su capacidad

Capacidad del modelo

Underfit: Capacidad insuficiente son incapaces de resolver tareas complejas.

Overfit: Capacidad superior a la requerida por el problema

- Hay varias formas de cambiar la capacidad de un modelo
 - Capacidad de representación: qué familia de funciones puede elegir el algoritmo de aprendizaje
 - Capacidad effectiva: capacidad real del modelo influenciada por el proceso de optimización.

Overfitting y Underfitting

Underfitting

Ocurre cuando el modelo no es capaz de disminuir el error de entrenamiento

Overfitting

Ocurre cuando la diferencia entre el error en el dataset de pruebas y de entrenamiento es muy algo

Addressing Overfitting

1. Reducir el número de características

"Manualmente" seleccionar cuales características mantener

2. Regularización:

Mantener todas las características pero reducir la magnitud de los valores de θ_i

3. Otros:

Mas adelante los vemos

Regularización L2

Generalidades

- Penalizar valores altos de los pesos θ_i
- Mantener los pesos con valores pequeños
- Tiende menos a Overfitting

Agregar un término al costo de las funciones

En Regresión linea:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y} - y)^2 + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_j^2$$

Regularización L2

La derivada del término de regularización:

$$\frac{\partial}{\partial \theta} = \lambda \theta$$

En el Gradient Descent:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \hat{y}_i - y_i$$

El bias no contribuyen a la curvatura del modelo, por lo que no suele tener mucho sentido regularizarlos

$$\theta_j := \theta_j - \frac{\alpha}{m} \left[\sum_{i=1}^m (\hat{y}_i - y_i) x_j + \lambda \theta_j \right]$$

Regresión logistica

- Anteriormente aprendimos a predecir cantidades de valor continuo como una función lineal de valores de entrada
- Predecir valores discretos como:
 - Predecir si un correo es spam (1) o (0)
 - Predecir si un tumor es benigno (1) o no (0)
- Problema de clasificación binaria
- Aplica en general para clasificación múltiple

Clasificación: se pide al programa que especifique a cuál de *k* categorías pertenece una entrada.

Notación

Por razones históricas la función de predicción es llamada hypothesis $h_{\theta}(x)$ con los parámetros θ de la observación x

$$\hat{y} = h_{\theta}(x) = \theta^T x$$

Reported happiness as a function of income

Función de activación

- Podríamos usar la regresión lineal para predecir los valores
 - Tiene bajo desempeño
 - No tiene sentido que $h_{\theta}(x)$ tome valores menores que 0 o mayores que 1, ya que $y \in \{0,1\}$.
- Pasaremos el resultado de la función lineal por otra función g(x) que la comprima el resultado de $\theta^T x$ en un rango [0,1]
- Interpretamos $h_{\theta}(x)$ como una probabilidad

Sigmoid function

Cambiemos nuestra función de predicción por:

$$h_{\theta}(x) = g(\theta^T x)$$

En donde

$$g(z) = \frac{1}{1 + e^{-z}}$$

g(z) Es llamada función sigmoid o logística

Sigmoid function

Función sigmoid g(z)

- Tiende a 1 a medida que $z \to \infty$
- Tiende a 0 a medida que $z \rightarrow -\infty$
- Siempre acotada entre 0 y 1.
- Se pueden utilizar otras funciones que aumentan suavemente de [0,1]

¿Cómo sería la predicción en regresión logística?

Función de costo

Costo de la regresión logística:

$$\mathcal{E}(\theta) = \begin{cases} -\log(\hat{p}) & \text{si } y = 1\\ -\log(1 - \hat{p}) & \text{si } y = 0 \end{cases}$$

Casos:

$$y = 1 \begin{cases} \hat{y} = 1 \to \ell(\theta) = 0 \\ \hat{y} = 0 \to \ell(\theta) = \infty \end{cases}$$

$$y = 0 \begin{cases} \hat{y} = 0 \to \ell(\theta) = 0 \\ \hat{y} = 1 \to \ell(\theta) = \infty \end{cases}$$

Función de costo

Costo en términos de minimizar

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

Optimización de función de costo

Gradientes de la función de costo

$$\nabla J(\theta) = y \log(\sigma(z))' + (1 - y) \log(1 - \sigma(z))'$$

Derivadas parciales:

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^m h_{\theta}(x^{(i)}) - y^{(i)}$$

$$\frac{\partial J}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} (h_\theta(x^{(i)}) - y^{(i)})$$

Donde

$$h_{\theta}(x) = \sigma(\theta^T x)$$

Gradient descent

Costo en términos de minimizar:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 + y^{(i)}) \log(1 - h(x^{(i)}))$$

Actualizar θ_i con cada paso de entrenamiento (α : Learning Rate):

$$\theta_j := \theta_j - \alpha \frac{\partial J}{\partial \theta_j}$$

En donde:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m h_{\theta}(x^{(i)} - y^{(i)}) x_j^{(i)}$$

Ejercicio

Implementar las funciones necesarias para realizar un modelo de clasificación de dígitos (0 y 1)

