

DBSSE

Evolutionary Dynamics

Exercises 2

Prof. Dr. Niko Beerenwinkel Johannes Gawron Norio Zimmermann Michael Schneider

3. October 2024

Exercises marked with a "\sum " are programming exercises. These can be solved in a programming language of your choice. Please make sure to hand in your code along with your answers to these exercises.

Problem 1: Equilibrium points of linear and homogeneous equations (Covered in the tutorial) Consider the following systems of linear and homogeneous equations:

(a) Solve the system:

$$\begin{bmatrix} 1 & -4 \\ -2 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

How many equilibrium points exist? Determine the equilibrium points.

(b) Solve the system:

$$\begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

How many equilibrium points exist? Determine the equilibrium points.

Problem 2: Sequence space and Hamming distance

Consider a binary alphabet $A = \{0,1\}$ and a DNA alphabet with $A = \{A,T,C,G\}$. We are studying sequences $S \in A^L$ of length L.

- (a) Assume sequences are random with a uniform distribution. What is the average Hamming distance between two random binary sequences? What is the expected Hamming distance for two random DNA sequences?(1 point)
- (b) Instead of a uniform distribution over the alphabet, we assume 0 has a 2 times higher probability of appearing at a position in the sequence than 1. Furthermore, the probabilities p(A) = p(T) are twice the probabilities p(C) = p(G). What is now the average Hamming distance between two random binary sequences? And the expected average Hamming distance for two random DNA sequences? (2 points)
- (c) Given a binary sequence of length L, how many sequences exist at a Hamming distance 2 from it? How many at distance K with $K \le L$? Repeat the calculation for DNA sequences. (1 point)

Problem 3: Quasispecies

Consider the quasispecies equation with two genotypes 0, 1 (i.e., binary sequences of length 1). Let the fitness of genotype 0 be $f_0 > 1$, and the fitness of genotype 1 be $f_1 = 1$. Moreover, genotypes are replicated error-free with probability q. The quasispecies equation is defined as

$$\dot{x}_{i} = \sum_{j=1}^{n} \underbrace{x_{j}}_{\substack{\text{frequency} \\ \text{of } j}} \underbrace{f_{j}}_{\substack{\text{mutation} \\ \text{from } i \text{ to } j}} - \underbrace{\phi}_{\substack{\text{average} \\ \text{fitness}}} x_{i}, \qquad i = 0, ..., n$$

In vector notation, this can be written as

$$\dot{x} = xW - \phi x$$

where $W = (w_{ij}) = (f_j q_{ji})$ is the mutation-selection matrix and $x = (x_0, ..., x_n)$.

- (a) Write down the mutation-selection matrix W and find its eigenvalues. (1 point)
- (b) What are the equilibrium points of the population? To which eigenvalue corresponds the non-trivial equilibrium point? (1 point)Hint: Perron-Frobenius theorem.
- (c) Examine the dynamics of the quasispecies equation and confirm the results obtained in (b). Assume that q = 0.7 and $f_0 = 1.5$, with the initial condition (0.9, 0.1). Modify your simulation to track the average fitness of the population over time. How does the average fitness evolve as the population approaches equilibrium? \square
- (d) What is the equilibrium point for $f_0 = f_1 = 1$? (1 point)
- (e) In the lecture you heard about a concept called the error threshold. Assume for this subtask a wildtype genotype with fitness $f_{wt} > 1$ and all other genotypes have fitness $f_m = 1$. For a large sequence length, you can assume, that once a sequence is mutated, back-mutations are negligibly unlikely. Can you derive a condition based on q and f_{wt} for this error threshold? What happens when the threshold is crossed? (2 points)