Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Today

• NP-completeness

Proving hardness

- The problem of proving that a problem is hard seems hard
- How about proving that a problem H is hard, assuming that $\mathcal{P} \neq \mathcal{NP}$?
- Contrapositively: if H can be solved efficiently, then any problem in \mathcal{NP} can be solved efficiently
- Such a thing can be formulated and shown by reductions

Which reduction?

- Cook reductions are perfectly fine for the job
- Although, historical reasons and simplicity gave definitions based on Karp reductions (and Levin reductions, for search problems)

NP-complete problems

- A decision problem Π is \mathcal{NP} -complete iff
 - $\Pi \in \mathcal{NP}$, and $(\pi \in \mathcal{NP})$
 - Any problem $\Pi' \in \mathcal{NP}$ is Karp-reducible to Π (π is MP-hand)
- If Π is \mathcal{NP} -complete, then it is the hardest problem in \mathcal{NP} , in a sense

NP-complete search problems

- A search problem Π is \mathcal{PC} -complete iff
 - $\Pi \in \mathcal{PC}$, and
 - Any problem $\Pi' \in \mathcal{PC}$ is Levin-reducible to Π
- If R is \mathcal{PC} -complete, then S_R is \mathcal{NP} -complete

NP-hardness

- A decision problem Π is \mathcal{NP} -hard, if any problem $\Pi'\in\mathcal{NP}$ is Karp-reducible to Π
- A search problem Π is \mathcal{PC} -hard, if any problem $\Pi' \in \mathcal{PC}$ is Levin-reducible to Π

Abusing terminologies

- Sometimes, a search problem is referred as NP-complete, when it is in fact \mathcal{PC} -complete
 - And as NP-hard, when it is in fact \mathcal{PC} -hard

Existence

- Defining a unicorn doesn't produce a unicorn immediately!
- Having a definition of NP-completeness doesn't necessarily mean that an actual NP-complete problem exists
- In fact, there exist NP-complete problems
 - In fact, many examples of natural and interesting NP-complete problems exist
- Let's start with somewhat unnatural ones

Existence of NP-complete problems

- Theorem) There exist NP-complete relations and sets
 - Problem instances: $ar{x} = \left\langle M, x, 1^t
 ight
 angle$
 - $R_{ ext{u}} := \{\left(\left\langle M, x, 1^t \right
 angle, y
 ight) : M ext{ accepts } (x, y) ext{ in } t ext{ steps } \& |y| \leq t \}$
 - $ullet S_{\mathtt{u}} := \{ar{x} \,:\, \exists y ext{ s.t. } (ar{x},y) \in R_{\mathtt{u}}\}$

Existence of NP-complete problems

• $R_{
m u}$ is in ${\cal PC}$ (Hence, $S_{
m u}\in {\cal NP}$)

Given
$$5i = (M, \chi, 1^t)$$
 and y
do we have 17 1415t, and
2) M accepts (31,4) within t steps

Algorithms and Complexity, Spring 2018

Existence of NP-complete problems

• $R_{\mathbf{u}}$ is \mathcal{PC} -hard (Hence, $S_{\mathbf{u}}$ is \mathcal{NP} -hard)

Proving NP-completeness

- If you want to prove that a problem Π is NP-complete, then
 - First, prove that Π is in \mathcal{NP} (or, in \mathcal{PC} if it is a search problem), and
 - Second, pick your favorite NP-complete problem Π' , and reduce Π' to Π