

Deep Learning Clinic (DLC)

Lecture 5 - DL Case Study

Jin Sun

10/26/2018

Solving Real World Problems Using ML/DL

- Identify A Real World Problem
- Formulate A Concrete ML/DL Problem
- Data Collection
- Learning Algorithm Design
- Evaluation

References

Tohme: Detecting Curb Ramps in Google Street View Using Crowdsourcing, Computer Vision, and Machine Learning

Kotaro Hara, Jin Sun, Robert Moore, David Jacobs, Jon Froehlich 27th ACM Symposium on User Interface Software and Technology (**UIST**), Hawaii, United States, 2014. [PDF]

Seeing What Is Not There: Learning Context to Determine Where Objects Are Missing

Jin Sun and David Jacobs

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, United States, 2017. [Arxiv]

Identify A Real World Problem

Navigation For Cars

Navigation For Pedestrians

Navigation For Pedestrian With Disabilities

A Desired Solution - Accessibility-aware App

A Desired Solution - City Scale Map

An Important Social Issue

30.6 million people in US (Census 2010) are with physical disabilities.

And Required by Law

Status Quo of Accessibility Assessment

Survey

Physical Audit

Survey

Physical Audit

Scalable

Low-cost

Formulate A Concrete ML/DL Problem

Many Aspects of Accessibility Assessment

A Concrete (Focused) Problem

Collect information on where a curb ramp is and where a curb ramp is missing.

A Concrete (Focused) Problem

Final System

Existing Curb Ramp Detection

Missing Curb Ramp Detection

Data Collection

Total Area: 11.3 km²

Intersections: 1,086

Curb Ramps: 2,877

Missing Curb Ramps: 647

Avg. GSV Data Age: 2.2 yr*

Google Street View (GSV) Panoramas

3D Point-cloud Data

Top-down Google Maps

Is GSV a Faithful Source?

Data Annotation

Ground-truth Labels:

2877 curb ramp labels

Existing Curb Ramps

Same labeling scheme is used for missing curb ramp regions: just a different label.

Learning Algorithm Design

Object Detection

At that time

Now

A Pipeline Combines Crowdsourcing and ML/CV

Finding Missing Object Region

What does it mean when we say 'an object is missing from a region'?

An **object** is not in its **typical environment (context)**.

Context-Object Relationship

Object Score	Context Score	Image Region Remark
High	High	Typical Objects
Low	High	Missing Objects
High	Low	Out of Context Objects

Context-Object Relationship

Object Score	Context Score	Image Region Remark
High	High	Typical Objects
Low	High	Missing Objects
High	Low	Out of Context Objects

Context-Object Relationship

Object Score	Context Score	Image Region Remark
High	High	Typical Objects
Low	High	Missing Objects
High	Low	Out of Context Objects

Find Missing Object Region

A Customized Learning Network

Evaluation

Curb Ramp Detection Results

Curb Ramp Detection Results

Classification Metric

From Lecture 3:

Precision = TP / (TP+FP)

Recall = TP / (TP+FN)

Curb Ramp Detection Performance

Finding Missing Curb Ramp Results

Green: Correct Missing Curb Ramp Regions. Blue: False Positives. Red: Wrong Predictions

Finding Missing Curb Ramp Performance

What Those Number Imply

2,820 intersections in Manhattan (1.6 million population)

- Assume 10K curb ramps
- Curb ramp detection algorithm can find ~9700 of them.
- Full audit on missing curb ramps takes a few hours
- Useful as a prior for physical audit

Summary

Solving A Real World Problem Using ML/DL

- Identify A Real World Problem
 - Accessibility Assessment
- Formulate A Concrete ML/DL Problem
 - o Existing Curb Ramp Detection -- Object Detection
 - o Missing Curb Ramp Detection -- A New Learning Problem
- Data Collection
 - Google Street View (GSV)
 - Annotation
- Learning Algorithm Design
 - o Detection Pipeline
- Evaluation
 - Curb Ramp Detection Accuracy
 - Missing Curb Ramp Region Retrieval Performance