#### UNIVERSITAT POLITÈCNICA DE VALÈNCIA INSTITUTO TECNOLÓGICO DE INFORMÁTICA

# PATTERN RECOGNITION AND HUMAN LANGUAGE TECHNOLOGY GROUP

IARFID Master Thesis

# Interactive Layout Analysis

Author: Lorenzo Quirós Díaz

Advisor: Carlos D. Martínez Hinarejos Co-advisor: Alejandro Héctor Toselli Co-advisor: Enrique Vidal Ruiz

August 10, 2016

Hi, nothing there yet:) ...

Acknowledgements

# **CONTENTS**

| 1  | Introduct  | tion                                 | 1  |
|----|------------|--------------------------------------|----|
|    | 1.1 Intro  | oduction                             | 2  |
|    | 1.2 Mot    | tivation                             | 2  |
|    | 1.3 Rela   | ated Work                            | 2  |
|    | 1.4 Ove    | erview of the Proposal Approach      | 2  |
|    | 1.5 Con    | text of Applications and Assumptions | 2  |
|    |            | ected Outcomes/Results               | 2  |
|    | 1          |                                      |    |
| 2  | Fundame    | ents                                 | 3  |
|    |            |                                      | 4  |
|    | 2.2 Ima    | ge Segmentation                      | 4  |
|    | 2.3 Con    | ditional Random Fields               | 4  |
|    | 2.3.       | 1 Definition                         | 4  |
|    | 2.3.       | 2 CRFsuit Toolkit                    | 4  |
|    | 2.4 Inte   | ractive Pattern Recognition          | 4  |
|    |            |                                      | 4  |
|    |            |                                      | 4  |
|    |            | , ,                                  |    |
| 3  | Interactiv | ve Layout Analysis                   | 5  |
|    | 3.1 Inte   | ractive Layout Analysis              | 6  |
|    | 3.2 Syst   | tem Architecture                     | 6  |
|    | 3.3 Prep   | processing                           | 7  |
|    |            |                                      | 7  |
|    | 3.5 CRI    | F's Learning                         | 7  |
|    |            |                                      | 7  |
|    |            |                                      | 7  |
|    |            |                                      | 7  |
|    |            |                                      | 7  |
|    |            |                                      | 7  |
|    |            |                                      |    |
| 4  |            |                                      | 9  |
|    | 4.1 Exp    | eriments and Results                 | 0  |
|    | 4.2 Ove    | rview                                | 0  |
|    | 4.3 Cor    | pus Description                      | 0  |
|    | 4.4 Imp    | lementation                          | 1  |
|    |            | eriments                             | 1  |
|    | 4.5.       |                                      | 1  |
|    | 4.5.       |                                      | 1  |
|    | 4.5.       |                                      | 2  |
|    | 4.5.       |                                      |    |
|    |            | ults Discussion                      |    |
|    | Bibliogra  |                                      |    |
|    | 210110614  | <del>p.</del> y                      | J  |
| No | menclatui  | re 1                                 | .5 |
|    |            |                                      |    |
| SI | hiect Inde | v 1                                  | 7  |

# LIST OF FIGURES

| 3.1 | System Architecture Diagram                                                                        | 6  |
|-----|----------------------------------------------------------------------------------------------------|----|
| 4.1 | Plantas-1 Layout Zones; green for marginalia, red for paragraph and blue for catch-word            | 10 |
| 4.2 | Site grouping approach results examples.                                                           | 12 |
| 4.3 | Proposed method results example, blue line for ground trough, red line for site grouping approach, |    |
|     | green line for proposed approach.                                                                  | 13 |

Lorenzo Quirós Díaz Interactive Layout Analysis

# LIST OF TABLES

| 4.1 CRF's Site level Results |
|------------------------------|
|------------------------------|

Lorenzo Quirós Díaz Interactive Layout Analysis

# **INTRODUCTION**

## **Chapter Outline**

| 1.1 | Introduction                            |  |
|-----|-----------------------------------------|--|
| 1.2 | Motivation                              |  |
| 1.3 | Related Work                            |  |
| 1.4 | Overview of the Proposal Approach       |  |
| 1.5 | Context of Applications and Assumptions |  |
| 1.6 | Expected Outcomes/Results               |  |
|     |                                         |  |

Lorenzo Quirós Díaz

#### 1.1 Introduction

- Whats HTR and Layout Analysis
- Whats Interactive Pattern Recognition
- What are we going to do here:)
- Work structure (ie paper estructure)

#### 1.2 Motivation

- Why to focus on Layout Analysis and Interactive Pattern Recognition
- •

#### 1.3 Related Work

- Image Segmentation
- Heuristics
- HMMs, NN, grammars ....

### 1.4 Overview of the Proposal Approach

- 1.5 Context of Applications and Assumptions
- 1.6 Expected Outcomes/Results

## **FUNDAMENTS**

| 2.1  | Fundaments                      | 4 |
|------|---------------------------------|---|
| 2.2  | Image Segmentation              | 4 |
| 2.3  | Conditional Random Fields       | 4 |
| 2.4  | Interactive Pattern Recognition | 4 |
| 2.5  | Gradient Descent                | 4 |
| Bibl | iography                        | 4 |

- 2.1 Fundaments
- 2.2 Image Segmentation
- 2.3 Conditional Random Fields
- 2.3.1 Definition
- 2.3.2 CRFsuit Toolkit

This is the reference [1]

## 2.4 Interactive Pattern Recognition

#### 2.5 Gradient Descent

## **Bibliography**

[1] Okazaki, N. (2007). CRFsuite: a fast implementation of Conditional Random Fields (CRFs).

## INTERACTIVE LAYOUT ANALYSIS

### **Chapter Outline**

| 3.1        | Interactive Layout Analysis | 6 |
|------------|-----------------------------|---|
|            | System Architecture         |   |
| 3.3        | Preprocessing               | 7 |
| 3.4        | Feature Extraction          | 7 |
| 3.5        | CRF's Learning              | 7 |
| 3.6        | GMM Learning                | 7 |
| <b>3.7</b> | Decoding                    | 7 |
| 3.8        | User Interaction            | 7 |
| 3.9        | Evaluation Measures         | 7 |
| Bibl       | liography                   | 7 |

## 3.1 Interactive Layout Analysis

## 3.2 System Architecture



Figure 3.1: System Architecture Diagram

- 3.3 Preprocessing
- 3.4 Feature Extraction
- 3.5 CRF's Learning
- 3.6 GMM Learning
- 3.7 Decoding
- 3.8 User Interaction
- 3.9 Evaluation Measures

Bibliography

## **EXPERIMENTS AND RESULTS**

## **Chapter Outline**

| 4.1  | Experiments and Results |  |
|------|-------------------------|--|
| 4.2  | Overview                |  |
| 4.3  | Corpus Description      |  |
| 4.4  | Implementation          |  |
| 4.5  | <b>Experiments</b>      |  |
| 4.6  | Results Discussion      |  |
| Bibl | iography                |  |

Lorenzo Quirós Díaz

#### 4.1 Experiments and Results

#### 4.2 Overview

### 4.3 Corpus Description

First tome of a seven volume manuscript entitled "Historia de las Plantas" –PLANTAS for short– was selected due it's well structured layout and becouse ground trouht layout is already available. PLANTAS is a XVII century handwritten botanical specimen book compiled by Bernardo Cienfuegos, one of the most outstanding Spanish botanists in the XVII century. The first volume of PLANTAS consists of a prologue and 152 chapters which make over 1 000 pages with layout ground trouth already labeled using the following categories: catch-word, heading, marginalia, page-number, paragraph, signature-mark, float (drawings); see Figure ?? for reference.



Figure 4.1: Plantas-1 Layout Zones; green for marginalia, red for paragraph and blue for catch-word

### 4.4 Implementation

## 4.5 Experiments

#### 4.5.1 Conditional Random Fields

Table 4.1: CRF's Site level Results

| Page   | Precision | Recall   | F1       |
|--------|-----------|----------|----------|
| 0944   | 0.908446  | 0.914158 | 0.907493 |
| 0945   | 0.952957  | 0.952866 | 0.952905 |
| 0946   | 0.957523  | 0.955519 | 0.955996 |
| 0947   | 0.950765  | 0.951733 | 0.951163 |
| 0948   | 0.948534  | 0.950719 | 0.949605 |
| 0956   | 0.893606  | 0.896160 | 0.890686 |
| 0957   | 0.946151  | 0.945495 | 0.945381 |
| 0958   | 0.930706  | 0.927327 | 0.927419 |
| 0959   | 0.952251  | 0.951662 | 0.951921 |
| 0960   | 0.954842  | 0.953900 | 0.953925 |
| 0961   | 0.950211  | 0.950488 | 0.950346 |
| 0962   | 0.909336  | 0.920790 | 0.910282 |
| 0963   | 0.919310  | 0.914148 | 0.915994 |
| 0964   | 0.909319  | 0.910156 | 0.907617 |
| 0965   | 0.942231  | 0.941867 | 0.942029 |
| 0966   | 0.947065  | 0.946779 | 0.946860 |
| 0967   | 0.944621  | 0.946028 | 0.945210 |
| Global | 0.936154  | 0.936629 | 0.935977 |

#### 4.5.2 Site Grouping Approach

In order to have a point of comparison, a simple site grouping rectangle generator have been implemented, this is all adjacent sites classified as "paragraph" are grouped, then we search for the minimum rectangle where all sites of the same group fits and finally we select only the biggest rectangle, see Figure 4.2 for some examples.

Change images to model z0.3\_w33\_g3



Figure 4.2: Site grouping approach results examples.

### 4.5.3 Prior-Probability Approach

Prior-Probability is used to estimate the best "paragraph" coordinates, this is we maximize Eq. (Add reference!!!) over all  $(u_k, b_k)$  in the image range using Brute Force approach (Time expended on this stage:  $\approx 25$  seconds using a non-vectorized function). See Figure 4.3

Add numerical results based on [1] method

Remove axis from images



Figure 4.3: Proposed method results example, blue line for ground trough, red line for site grouping approach, green line for proposed approach.

#### 4.5.4 Interactive Approach

#### 4.6 Results Discussion

### **Bibliography**

[1] Stamatopoulos, N., Louloudis, G., and Gatos, B. (2015). Goal-Oriented Performance Evaluation Methodology for Page Segmentation Techniques. In *13th International Confrence on Document Analysis and Recognition - ICDAR'15*, pages 281–285.

# **NOMENCLATURE**

CRF Conditional Random Field

GMM Gaussian Mixture Model

Lorenzo Quirós Díaz Interactive Layout Analysis