Let's take a sample $s \in Uniform(min = 0, entropy = H0_s)$ and a related sample $y = f(s) + Normal(mean = 0, entropy = H0_e)$ where f(s) is a function of s. Then we can estimate the entropies: $ebc_sample(s) \sim H_x$, $ebc_sample(y) \sim H_y$, $ebc_sample2d(x,y) \sim H_{xy}$ and $I = H_x + H_y - H_{xy}$. This could be done with the $explore_I$ function in $ebc.R^I$. This function estimates I, H_x , H_y , H_{xy} for each $(H0_s, H0_e)$, plots I vs. $(H0_s, H0_e)$ and returns a data.frame with the values $\{R^2, H0s, H0e, Hx, Hy, Hxy, I\}$

In the graph the points are colored according the absolute value of *adjusted* R^2 from the linear model $lm(y\sim s)$.

color	$ R^2 \in (a,b)$
Black	(0, 0.25)
red	(0.25, 0.5)
green	(0.5, 0.75)
blue	(0.75, 1)

Decoration: two planes at $I=\{-0.2,0.2\}$

Two random samples, one uniform and normal the other. f(x)=0.

¹ https://docs.google.com/file/d/0B6ZuqpeSKSqcamlrWDdKWlJQWTg/edit?usp=sharing

f(s)=s and f(s)=s+au. Where au is the golden number $\varphi = \frac{1+\sqrt{(5)}}{2}$ (this is computed inside explore_I)

f(s)=(s+au)(s+au).

explore_I(func=expression((s+au)*(s+au)),okplot=T,H_ref=c(-10,10),npts= 20,N=1e4)

f(x)=(x+au)(x-au).

f(x)=(x-au)(x-au).

$f(x) = (x^2 + x + au).$

