Compute the TF-IDF values for the terms in these three reviews/documents.

- 1. `['food', 'delici', 'servic', 'excel']`
- 2. `['oh', 'wow', 'place', 'amaz', '...', 'love', 'wait', 'hour', 'food']`
- 3. `['absolut', 'love', 'phone', 'batteri', 'last', 'day']`

Step 1: Compute Term Frequency (TF)

First, we calculate the Term Frequency (TF) for each term in each document.

- **♣** Document 1
 - Total terms: 4
 - TF: food: 1/4, delici: 1/4, servic: 1/4, excel: 1/4
- ♣ Document 2
 - Total terms: 9
 - TF: oh: $\frac{1}{9}$, wow: $\frac{1}{9}$, place: $\frac{1}{9}$, amaz: $\frac{1}{9}$, ...: $\frac{1}{9}$, love: $\frac{1}{9}$, wait: $\frac{1}{9}$, hour: $\frac{1}{9}$, food:
- **♣** Document 3
 - Total terms: 6
 - TF: absolut: 1/6,love: 1/6,phone: 1/6,batteri: 1/6,last: 1/6,day: 1/6

Step 2: Compute Inverse Document Frequency (IDF)

Next, we calculate the Inverse Document Frequency (IDF) for each term.

$$IDF(t) = \log\left(\frac{N}{1+df(t)}\right)$$

Where:

- t is the term ("food" in this case)
- N is the total number of documents
- df(t) is the number of documents containing the term t

For the term "food":

- N = 3 (since there are 3 documents)
- df(food) = 2 (the term "food" appears in 2 documents

N = 3 (total number of documents)

Term	df(t)	IDF(t)
food	2	$\log\left(\frac{3}{1+2}\right) = 0.18$
delici	1	$\log\left(\frac{3}{1+1}\right) = 0.48$
servic	1	0.48
excel	1	0.48
oh	1	0.48
wow	1	0.48
place	1	0.48
amaz	1	0.48
	1	0.48
love	2	0.18
wait	1	0.48
hour	1	0.48
absolut	1	0.48
phone	1	0.48
batteri	1	0.48
last	1	0.48
day	1	0.48

Step 3: Compute TF-IDF

Multiply the TF and IDF values for each term to get the TF-IDF scores.

Document 1

• food: 1/4×0.18=0.045

• delici: 1/4×0.48=0.12

• servic: $1/4 \times 0.48 = 0.12$

• excel: $1/4 \times 0.48 = 0.12$

Document 2

• oh: 1/9×0.48=0.053

• wow: 1/9×0.48=0.053

• place: 1/9×0.48=0.053

• amaz: 1/9×0.48=0.053

• ...: 1/9×0.48=0.053

• love: 1/9×0.18=0.02

• wait: 1/9×0.48=0.053

• hour: $1/9 \times 0.48 = 0.053$

• food: 1/9×0.18=0.02

Document 3

• absolut: 1/6×0.48=0.08

• love: $1/6 \times 0.18 = 0.03$

• phone: $1/6 \times 0.48 = 0.08$

• batteri: 1/6×0.48=0.08

• last: $1/6 \times 0.48 = 0.08$

• day: $1/6 \times 0.48 = 0.08$

These TF-IDF scores indicate the importance of each term within its document, taking into account **how common or rare the term is across all documents**.

- df(t): Document Frequency (df) is the number of documents containing the term t.
- IDF(t): Inverse Document Frequency (IDF) quantifies the importance of the term. If a term appears in many documents, it is *less* significant. Conversely, if it appears in fewer documents, it is *more* informative and significant
 - Document 1: "The food is good."
 - Document 2: "The food is bad."
 - Document 3: "The food is delicious."