Register and Counters

Outline

- 12.1 Register and Register Transfers
- 12.2 Shift Register
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

4bit D Flip-Flop Registers

(a) Using gated clock

(c) Symbol

(b) With clock enable

pp. 3

Data Transfer Between Registers

Use of Registers(1/2)

Logic Diagram for 8-bit Register with Tri-State Output.

Use of Registers(2/2)

- ❖ If EF = 00, A is stored in G (or H).
- ❖ If EF = 01, B is stored in G (or H).
- ❖ If EF = 10, C is stored in G (or H).
- ❖ If EF = 11, D is stored in G (or H).

N-Bit Parallel Adder with Accumulator

Adder Cell with Mux

- A design example for 'modular' design
- Suitable for Verilog "sub-circuit" design module

Outline

- 12.1 Register and Register Transfers
- ❖ 12.2 Shift Register
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

Shift Registers

Register States:

SI = 1,1,0,1

Application

(b) Logic diagram

For the purpose

- Delay of 7 clock Cycles
- Buffer of data

Parallel-in ,Parallel-out (PIPO) Right Shift Register

Action	Next State	Inputs				
	$Q_3^+ Q_2^+ Q_1^+ Q_0^+$	Sh (Shift) L (Load)	_			
No change	Q_3 Q_2 Q_1 Q_0	0 0				
Load	D_3 D_2 D_1 D_0	0 1				
Right shift	SI Q_3 Q_2 Q_1	1 X				

(b) Implementation using flip-flops and MUXes

Timing Diagram

 $D_3D_2D_1D_0 = 1011$

Shift Register with Inverted Feedback

<u>Outline</u>

- 12.1 Register and Register Transfers
- 12.2 Shift Register
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

Use T F/F (1/2)

State Table

Pres	ent (State	e	Nex	Flip-Flop Inputs					
С	В	A		C+	B+	Α÷	T _C	T_B	TA	
0	0	0		0	0	1	0	0	1	
0	0	1		0	1	0	0	1	1	
0	1	0		0	1	1	0	0	1	
0	1	1		1	0	0	1	1	1	
1	0	0		1	0	1	0	0	1	
1	0	1		1	1	0	0	1	1	
1	1	0		1	1	1	0	0	1	
1	1	1		0	0	0	1	1	1	

As Function of (A,B,C)!

Using T F/F (2/2)

❖ K-map

$$T_C = AB$$

 $T_B = A$

Implement

Use D F/F (1/2)

State Table

Prese	е	Next State				Flip-Flop Inputs					
С	В	A		C+	B+	A₹		D _c	D_B	D	
0	0	0		0	0	1		0	0	1	
0	0	1		0	1	0		0	1	0	
0	1	0		0	1	1		0	1	1	
0	1	1		1	0	0		1	0	0	
1	0	0		1	0	1		1	0	1	
1	0	1		1	1	0		1	1	0	
1	1	0		1	1	1		1	1	1	
1	1	1		0	0	0		0	0	0	

As Function of (A,B,C)!

Using D F/F (2/2)

Circuit Implement

 $= C \oplus AB$

Outline

- 12.1 Register and Register Transfers
- 12.2 Shift Register
- 12.3 Design of Binary Counters
- *12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

State Diagram of a Counter

СВА	C+B+A+
0 0 0	1 0 0
0 0 1	
0 1 0	0 1 1
0 1 1	0 0 0
1 0 0	1 1 1
1 0 1	
1 1 0	
1 1 1	0 1 0

T _C	T _B	T_A
1	0	0
-	-	_
0	0	1
0	1	1
0	1	1
-	-	-
-	-	-
1	0	1

K-map Derivation

Q Q+	Т
0 0	0
0 1	1
1 0	1
1 1	0

 $T_A = C + B$

(b) Derivation of T inputs

Logic Network

Timing Diagram of Counter

❖ Negative-edge triggered counter (3-bits).

<u>IF....</u>

❖ IF F/F's are initially set to A=0, B=0, C=1. Tracking signals through the network shows that T_A=T_B=1, so the state changes to 111.

- When the power-on, the states of all F/F's are unpredictable
- ❖ → Don't care states should be checked to make sure that they eventually lead into the main counting sequence → or use "power-on" reset.

c.f. Shift Register with Inverted Feedback

Outline

- 12.1 Register and Register Transfers
- 12.2 Shift Register
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

State Diagram of a Counter

С	В	Α	C+B+A+
0	0	0	1 0 0
0	0	1	
0	1	0	0 1 1
0	1	1	0 0 0
1	0	0	1 1 1
1	0	1	
1	1	0	
1	1	1	0 1 0

D _C [) _B	D _A
1	0	0
-	_	_
0	1	1
0	0	0
1	1	1
-	-	-
-	-	-
0	1	0

Counter Design Using D Flip-Flops

❖
$$D_C = C^+ = B'$$
 ❖ $D_B = B^+ = C + BA'$
 ❖ $D_A = A^+ = CA' + BA' = A'(C + B)$

Outline

- 12.1 Register and Register Transfers
- 12.2 Shift Register
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- ❖ 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

Using S-R F/F for Counter

S-R flip-flop inputs

			((a)				(b)	44.5			(c)	
	5	R	Q	Q ⁺		<u>Q</u>	Q ⁺	S	R	<u>Q</u>	Q ⁺	5	R
1)	0	0	0 .			^		0	0	0	0	Χ
()	0	1	111		Historia programma	0	lo	1	0,	1	1	0
()	1	0	0		0		1	0	1	0	0	1
()	1	1	0		41	0	0	1	1	1	X	0
		0	0	1		1	1	So	0				
. · · · · ·		0	1	1				11	0				
		1	0	- in	puts not								
		1	1	l − ∫all	owed								

Using S-R F/F

		b)	(c)			
<u>Q</u> +	Q Q+	S R	Q Q ⁺	S R		
		lo 0	0 0	0 X		
		10 1	0 1	1 0		
0	0 1	1 0	1 0	0 1		
0_	1 0	0 1	1 1	X 0		
1	1 1	0 0				
1		1 0				
 inputs not allowed						
	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q+ Q Q+ 0 0 0 1 0 1 0 1 0 1 1 1 - } inputs not	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

c	В	Α	£	B ⁺	A^+	Sc	R _C	S _B	R _B	SA	RA
0	0	0	1	0	0	1	0	0	Х	0	Х
0	0	1	-		****	X	X	X	Х	×	Х
0	1	0	0	1	1	0	X	X	0	1	0
0	1	1	0	0	0	0	X	0	1	0	1
1	0	0	1	1	1	X	0	1	0	1	0
1	0	1		<u>_</u>		X	×	X	X	X	X
1	1	0	- -1		-	X	×	X	X	X	X
1	1	1	0	1	0	0	1	X	0	0	1

Using S-R

Using J-K

J-K flip-flop inputs

Set J,k

Using J K

(b) J-K flip-flop input equations

Implementation of JK-based Counter

(c) Logic circuit (omitting the feedback lines)

Outline

- 12.1 Register and Register Transfers
- 12.2 Shift Register
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences
 Counter Design Using D Flip-Flops
- 12.5 Counter Design Using S-R and J-K
- 12.6 Derivation of Flip-Flop Input Equations

Derivation of Flip-Flop Input Equations

Determine the F/F input equations from the Next-State Equations

		Q:	= 0	Q:	= 1	i .	ning Input Map State Map*	
Type of Flip-Flop	Input	$Q^+ = 0$	Q ⁺ = 1	$Q^+ = 0$	Q ⁺ = 1	Q = 0 Half of Map	Q = 1 Half of Map	
Delay	D	0	1	0	1	no change	no change	
Trigger	Т	0	1	1	0	no change	complement	
Set-Reset	S	0	1	0	X	no change	replace 1's with X's**	
	R	×	0	1	0	replace 0's with X's**	complement	
J-K	J	0	1	×	×	no change	fill in with X's	
,	K	X	X	1	0	fill in with X's	complement	

Important Tables

Q Q+	D
0 0	0
0 1	1
1 0	0
11	1

Q Q+	Т
0 0	0
0 1	1
1 0	1
11	0

Q Q+	SR
0 0	0 X
0 1	10
1 0	0 1
11	X 0

Q Q+	JK
0 0	0 X
0 1	1 X
1 0	X 1
11	X 0

For Low-cost implement

Table 12-9

Input: A,B,Q

Derivation of Flip-Flop Input Equations

Q1 (T F/F)

Using 4-Variable Maps

OO 01 11 10
OO 0 X 0 X
OI 1 1 X 0
II 0 1 X 0
R2
(b)

Q3 (JK F/F)

Q_3C AB	00	01	11	10	
.00	0	0	1	X	
01	0	1	X	1	
11	X	X	x	х	
10	X	х	x	x	
$J_3 = A + BC$					
(c)					

Pre settable Counter

ClrN	Ld	Ct	C ⁺	B^+	A^+	
0	Χ	X	0	0	0	
1	1	X	D_{C}	D_{B}	D_A	(load)
1	0	0	C	В	Α	(no change)
1	0	1	Pres	ent sta	ate + 1	3 3 3 3 3 3
		(b)			

Pre-settable Counter

❖Ld = Load

The next-state equations for the counter of Figure 12-20 are

❖ Ct = Count

❖CIrN = Clear

$$A^{+} = D_{A} = (Ld' \cdot A + Ld \cdot D_{Ain}) \oplus Ld' \cdot Ct$$

$$B^{+} = D_{B} = (Ld' \cdot B + Ld \cdot D_{Bin}) \oplus Ld' \cdot Ct \cdot A$$

$$C^{+} = D_{C} = (Ld' \cdot C + Ld \cdot D_{Cin}) \oplus Ld' \cdot Ct \cdot B \cdot A$$

Up down Counter

U = 1, D = 0 Up Counter

U = 0, D = 1 Down Counter

СВА	C+B+A+		
	U	D	
000	001	111	
001	010	000	
010	011	001	
011	100	010	
100	101	011	
101	110	100	
110	111	101	
111	000	110	

Up down Counter

The up-down can be implemented using D flip-flops and gates, as shown in Figure 12-18. The corresponding logic equations are $D = A^{+} - A \oplus (U + D)$

$$D_A = A^+ = A \oplus (U + D)$$

$$D_B = B^+ = B \oplus (UA + DA)$$

$$D_C = C^+ = C \oplus (UBA + DB'A')$$

- ❖ When U=1 and D=0, these equations reduce to equations for a binary up counter (Equations(12-2)).
- ❖ When U=0 and D=1, these equations reduce to

$$D_A = A^+ = A \oplus 1 = A'$$
 (A changes state every clock cycle)
 $D_B = B^+ = B \oplus A'$ (B changes state when $A = 0$)
 $D_C = C^+ = C \oplus B'A'$ (C changes state when $B = A = 0$)

Up-down Counter

- \bullet D_B = B⁺ = B \oplus (UA + DA')
- \bullet D_C = C⁺ = C \oplus (UBA + DB'A')

Summary

- ❖ For a counter of N states, we need Log_2(N) flipflops (F/F) to record the state.
- Watch for Excitation equations for T F/F, SR F/F, and JK F/F in your derivation. Usually, JF F/F leads to low-cost implementations (but with more efforts).
- Watch for unknown states in the operations of the counter. Usually, we need to preset/reset the states for normal operations.