



#### **DPP - 4**

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

#### Video Solution on YouTube:-

https://youtu.be/e0X1J1LZBU0

- Q 1. If a bullet of mass 5 gm moving with velocity 100 m/sec, penetrates the wooden block upto 6 cm. Then the average force imposed by the bullet on the block is
  - (a) 8300 N

(b) 417 N

(b) (c) 830 N

- (d) zero
- Q 2. A vehicle of 100 kg is moving with a velocity of 5 m/sec. To stop it in  $\frac{1}{10}$  sec, the required force in opposite direction is:
  - (a) 5000 N

(b) 500 N

(c) 50 N

- (d) 1000 N
- Q 3. A block of mass 5kg is moving horizontally at a speed of 1.5 m/s. A perpendicular force of 5N acts on it for 4 sec. What will be the distance of the block from the point where the force started acting:
  - (a) 10 m

(b) 8 m

(c) 6 m

- (d) 2 m
- Q 4. Three equal weights of mass 2 kg each are hanging on a string passing over a fixed pulley as shown in the fig. What is the tension in the string connecting the weights B and C?  $(g = 9.8 \text{ m/s}^2)$ 
  - (a) zero

(b) 13 N

(c)  $303 \, \text{N}$ 

(d) 19.6 N





## hysicsaholics



Q 5. A system of three blocks are connected by strings as shown in figure. Calculate acceleration of each block and tension in the strings:  $(g = 10 \text{ m/s}^2)$ 



(a) 
$$a = 5 m/s^2$$
,  $T_1 = 30N$ ,  $T_2 = 15N$   
(b)  $a = 5 m/s^2$ ,  $T_1 = 15N$ ,  $T_2 = 30N$ 

(b) 
$$a = 5 m/s^2$$
,  $T_1 = 15N$ ,  $T_2 = 30N$ 

(c) 
$$a = 3 m/s^2$$
,  $T_1 = 13N$ ,  $T_2 = 30N$ 

(c) 
$$a = 2.5 \text{ m/s}^2$$
,  $T_1 = 40N$ ,  $T_2 = 20N$   
(d)  $a = 2.5 \text{ m/s}^2$ ,  $T_1 = 20N$ ,  $T_2 = 40N$ 

Two unequal masses of 1kg and 2kg are connected by an inextensible light string Q 6. passing over a smooth pulley as shown in the figure. A force F=20N is applied on 1kg block. Find the acceleration (in  $m/s^2$ ) of either block: ( $g = 10 \ m/s^2$ )



- (a)  $\frac{10}{3}$
- (c) 10

- (b)  $\frac{20}{3}$
- (d) 20

Q 7. A smooth ring P of mass m can slide on a fixed horizontal rod. A string tied to the ring passes over a fixed pulley and carries a block Q of mass (m/2) as shown in the figure.



### hysicsaholics



At an instant, the string between the ring and the pulley makes an angle  $60^{\circ}$  with the rod. The initial acceleration of the ring is:



- Consider the situation shown in figure. Both the pulleys and the string are light and all Q8. the surfaces are smooth. Find the tension in the string:  $(g = 10 \text{ m/s}^2)$



- Two masses  $m_1 = 5 kg$  and  $m_2 = 10 kg$  are connected at the ends of an inextensible Q 9. string passing over a frictionless pulley as shown. When the masses are released, then the acceleration of the masses will be:



- (a)  $\frac{g}{(b)}$  (b)  $\frac{g}{\frac{g}{2}}$  (c)  $\frac{g}{3}$



# hysicsaholics



(d)  $\frac{g}{4}$ 

Q 10. System is shown in figure. All the surfaces are smooth. Rod is moved by external agent with acceleration  $9 m/s^2$  vertically downwards. Force exerted on the rod by the wedge will be:



- (a) 120 N

- (a)  $\frac{120 \text{ N}}{1200 \text{ N}}$ (b)  $\frac{200 \text{ N}}{1200 \text{ N}}$ (c)  $\frac{135}{2} \text{ N}$ (d)  $\frac{225}{2} \text{ N}$
- Q 11. A person of mass 50 kg stands on a weighing scale on a lift. If the lift is descending with a downward acceleration of  $9m/s^2$ , what would be the reading of the weighing scale?  $(g = 10 \text{ m/s}^2)$ 
  - (a) 50 kg

(b) 25 kg

(c)  $250 \, kg$ 

(d) 5 kg

#### **Answer Key**

| Q.1 b  | Q.2 a | Q.3 a | Q.4 b | Q.5 a  |
|--------|-------|-------|-------|--------|
| Q.6 a  | Q.7 a | Q.8 d | Q.9 c | Q.10 b |
| Q.11 d |       |       |       |        |