4. Model Coxa (cd.)

Zmienne objaśniające zależne od czasu Model regresji Poissona

Zmienne objaśniające zależne od czasu w modelu Coxa (1)

$$\lambda(t) = \lambda_0(t) \cdot e^{\mathbf{X}'\mathbf{\alpha} + Z(t)\beta}$$

- Zmienne objaśniające zależne od czasu, których wartości zmieniają się w czasie
 - Zmienne wewnętrzne: mierzalne tylko gdy jednostka pozostaje pod obserwacją; np. wielokrotne pomiary parametru krwi chorego
 - Zmienne zewnętrzne: nie związane z obserwowaną jednostką, o wartościach znanych z góry (np. wiek, planowane dawki leku, itd.)
- e^{β} jest ilorazem hazardu związanym ze wzrostem Z(t) o 1 dla dowolnego t (nie tylko dla t=0), przy ustalonej wartości X

Zmienne objaśniające zależne od czasu w programach statystycznych

◆ Tzw. "counting process input": PatID Start Stop Event Z₁ Z₂
1 0 3 0 1 4.5
1 3 5 0 1 6
1 5 13 0 1 3
1 1 13 22 1 1 1 6

- Start i stop mogą być datą lub wartością czasu
 - Metoda pozwala na uwzględnienie "opóźnionego rozpoczęcia obserwacji" lub wyłączeń ze zbioru ryzyka

PatID	Start	Stop	Event	Z_1	Z_2
1	0	3	0	1	4.5
1	4	5	0	1	6
2	5	8	0	1	3
2	8	11	1	1	7

"Wewnętrzne" zmienne objaśniające zależne od czasu

Ich użycie wymaga ostrożności

- Przykład (hipotetyczny): leczenie białaczki
 - Przeżycie chorego może zależeć od poziomu płytek krwi
 - Załóżmy, że lek podwyższa poziom płytek
 - Po uwzględnieniu poziomu płytek jako zmiennej objaśniającej zależnej od czasu w modelu, efekt leczenia może nie być istotny

Szacowanie modelu Coxa ze zmiennymi objaśniającymi zależnymi od czasu

$$L(\beta) = \prod_{k=1}^{K} \frac{e^{\beta' Z_{(k)}(t_{(k)})}}{\sum_{l=1}^{n} Y_{l}(t_{(k)})} e^{\beta' Z_{l}(t_{(k)})}$$

- Konieczna znajomość wartości zmiennych dla wszystkich zaobserwowanych czasów zdarzeń
 - potencjalna trudność
 - interpolacja dla zmiennych ciągłych
 - problem dla zmiennych dyskretnych

Figure 8.2 Computation of the value of a time-dependent variable at intermediate times.

Ocena dobroci dopasowania modelu (1)

Reszty martyngałowe: $M(t) = N(t) - \int_{0}^{t} Y(u) \lambda_{0}(u) e^{\beta^{T} Z(u)} du$

- Przy "counting style input", kilka reszt dla obserwowanej jednostki: M(stop)-M(start)
 - Suma daje resztę całkowitą
- Wykres reszt martyngałowych (lub opartych na dewiancji) vs.
 Z'(t)β daje możliwość ogólnej oceny dopasowania modelu
 - np. obserwacji odstających

Ocena dobroci dopasowania modelu (2)

Funkcja przeżycia dla jednostki i na podstawie modelu:

$$S_i(t) = \exp\left\{-\int_0^t \exp\left(\beta^T Z(u)\right) \lambda_0(u) du\right\}$$
• Może zależeć od przyszłych (nieznanych) wartości $Z(t)$

- Rozważmy p-stwo przeżycia "krótkiego" przedziału:

$$P(T_i^* \ge t + h \mid T_i^* \ge t) = S_i(t + h) / S_i(t) =$$

$$= \frac{\exp\left\{-\int_0^{t+h} \exp(\beta^T Z(u)) \lambda_0(u) du\right\}}{\exp\left\{-\int_0^t \exp(\beta^T Z(u)) \lambda_0(u) du\right\}} \approx \frac{\exp\left\{-\exp(\beta^T Z(t)) \int_0^{t+h} \lambda_0(u) du\right\}}{\exp\left\{-\exp(\beta^T Z(t)) \int_0^t \lambda_0(u) du\right\}} =$$

$$= \exp\left\{(\Lambda_0(t + h) - \Lambda_0(t)) \exp(\beta^T Z(t))\right\}$$

Ocena dobroci dopasowania modelu (3)

- 1- P(T^{*}≥t+h|T^{*}≥t) to prawdopodobieństwo zdarzenia w (t,t+h)
- Możemy oszacować wartości P(T²≥t+h|T²≥t) na podstawie oszacowania β i Λ₀...
- ... i użyć ich do obliczenia oczekiwanej liczby zdarzeń.
- Porównanie z obserwowaną liczbą zdarzeń w kolejnych przedziałach daje możliowść oceny dopasowania modelu do danych.

Ocena formy funkcjonalnej zmiennej objaśniającej zależnej od czasu (1)

- "Wygładzony" wykres reszt martyngałowych dla "pustego" modelu nie działa
 - kilka reszt dla jednostki wiele reszt w okolicach 0
 - użycie reszty całkowitej ale dla jakiej wartości zmiennej?
 - możliwość obciążenia estymacji na podstawie wykresu

FIGURE 5.17: Sequential PBC data, null model martingale residuals

Ocena formy funkcjonalnej zmiennej objaśniającej zależnej od czasu (2)

 Możliwe użycie modelu Poissona z gładką funkcją zmiennej lub zastosowanie spline'ów

Pode Hazard Control of the Control o

FIGURE 5.18: Sequential PBC data, smoothing spline fit

FIGURE 5.19: Sequential PBC data, protocol visits only

"Wewnętrzne" zmienne objaśniające zależne od czasu: przykład (1)

- Przykład (hipotetyczny): leczenie marskości wątroby
 - logarytm bilirubiny na początku próby klinicznej

Table 8.3 Survival times of 12 patients in a study on cirrhosis of the liver.

Patient	Time	Status	Treat	Age	Lbr
1	281	1	0	46	3.2
2	604	0	0	57	3.1
3	457	1	0	56	2.2
4	384	1	0	65	3.9
5	341	0	0	73	2.8
6	842	1	0	64	2.4
7	1514	1	1	69	2.4
8	182	0	1	62	2.4
9	1121	1	1	71	2.5
10	1411	0	1	69	2.3
11	814	1	1	77	3.8
12	1071	1	1	58	3.1

Table 8.5 Values of $-2 \log \hat{L}$ for models without a time-dependent variable.

Terms in model	$-2\log\hat{L}$
null model	25.121
Age	22.135
Lbr	21.662
Age, Lbr	18.475
90, 20,	10.110

$$LRT = 5.182 (p=0.023)$$

$$\beta_{Treat} = -3.052$$

"Wewnętrzne" zmienne objaśniające zależne od czasu: przykład (2)

Logarytm bilirubiny zależny od czasu

Patient	Time	Status	Treat	Age	Lbr
1	281	1	0	46	3.2
2	604	0	0	57	3.1
3	457	1	0	56	2.2

Patient	Follow-up time	Log(bilirubin)
1	47	3.8
	184	4.9
	251	5.0
2	94	2.9
	187	3.1
	321	3.2
3	61	2.8
	97	2.9
	142	3.2
	359	3.4
	440	3.8
		191 <u>2-1</u> 15

Table 8.6 Values of $-2 \log \hat{L}$ for models with a time-dependent variable.

$-2\log\hat{L}$
25.121
22.135
12.053
11.145

◆ Lbr + Treat.

$$LRT = 12.053-10.676=1.377 (p=0.241)$$

$$\beta_{Lbr}$$
 =3.605, β_{Treat} =-1.479

 Jeśi leczenie zmienia poziom bilirubiny, włączenie Lbr do modelu uwzględnia efekt leczenia

"Wewnętrzne" zmienne objaśniające zależne od czasu: przykład (3)

Logarytm bilirubiny zależny od czasu

Table 8.7 Estimated baseline cumulative hazard function, $\tilde{H}_0(t)$, for the cirrhosis study.

Follow-up time (t)	$ ilde{H}_0(t)$	
0	0.000	
281	0.009×10^{-6}	
384	0.012×10^{-6}	
457	0.541×10^{-6}	
814	0.908×10^{-6}	
842	1.577×10^{-6}	
1071	3.318×10^{-6}	
1121	6.007×10^{-6}	
1514	6.053×10^{-6}	

Table 8.8 Approximate conditional survival probabilities for patients 1 and 7.

Time interval	$\tilde{P}_1(t,t+h)$	$\tilde{P}_7(t,t+h)$
0-	0.999	1.000
360-	0.000	0.994
720-	0.000	0.969
1080-	0.000	0.457
1440-	0.045	0.364

Interval	Expected	Observed	
0-359	0.02	1	
360-719	2.46	2	Expected>observed
720-1079	5.64	3	Mała liczebność
1080-1439	6.53	1	próbki
1440-1514	3.16	1	

Model regresji Poissona (1)

- Dla współczynników intensywności zdarzeń
- Szacowanie wymaga obserwacji występowania zdarzeń w czasie
- Najbardziej podstawowy estymator (incidence density, ID):

$$ID = \frac{I}{PT} = \frac{\text{no.of new cases in the calendar period } (t_0, t_1)}{\text{accrued population time}}$$

- ID jest wyznaczany z danych zgrupowanych
 - zliczenia zdarzeń

Model regresji Poissona (2)

- Współczynnik intensywności λ dla grupy 1 i λ_0 dla grupy 0
- Rozważmy iloraz współczynników (incidence rate ratio)

IRR=
$$\lambda / \lambda_0$$

który można wyrazić jako

$$\lambda = \lambda_0 \cdot \theta$$

gdzie θ = IRR

Równoważnie:

$$\ln \lambda = \ln \lambda_0 + \ln \theta$$

lub, kładąc $\beta_0 = \ln \lambda_0$, $\beta = \ln \theta$, i Z=1 (0) dla grupy 1 (0)

In
$$\lambda = \beta_0 + \beta \cdot Z$$

Model regresji Poissona (2)

Model

In
$$\lambda = \beta_0 + \beta \cdot Z$$

jest modelem regresji dla współczynników intensywności

- Parametery są szacowane na podstawie zliczeń zdarzeń i osobo-czasu
 - ullet zakłada się, że zdarzenia mają rozkład Poissona ze średnią λ
 - przykład uogólnionego modelu liniowego

Model PH i model regresji Poissona (1)

Zauważmy, że

In
$$\lambda = \beta_0 + \beta \cdot Z$$

można zapisać jako

$$\lambda = e^{\beta_0 + \beta \cdot Z} = \lambda_0 e^{\beta \cdot Z}$$

 Załóżmy, że współczynniki intensywności zmieniają się w przedziałach czasu indeksowanych przy pomocy t

$$\lambda_t = e^{\beta_{0t} + \beta \cdot Z} = \lambda_{0t} e^{\beta \cdot Z}$$

$$\text{lub}$$

$$\lambda(t) = \lambda_0(t) e^{\beta \cdot Z}$$

Bardzo przypomina model...

Model PH i model regresji Poissona (2)

Oba modele mają podobną formę

In
$$rate = \beta_0 + \beta \cdot Z$$

- Regresja Poissona wymaga zgrupowanych danych w przedziałach czasu do oszacowania modelu
 - konieczne szacowanie bazowych współczynników intensywności λ_{0t}
 - mała liczebność próbki stanowi problem (mała precyzja oszacowań)
- Model PH używa danych indywidualnych (nieskończenie wąskie przedziały czasu)
 - bazowa funkcja hazardu nie jest szacowana
 - mniejsze wymagania dotyczące liczebności próbki