Feuille d'exercice n° 20 : Développements limités - fiche d'entraînement

Exercice 1 Donner un équivalent simple des suites de termes généraux suivants :

1)
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$$
 2) $v_n = \frac{\ln(n^2 + 1)}{n + 1}$ 3) $w_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{n^2 - n + 1}}$

$$2) v_n = \frac{\ln(n^2 + 1)}{n + 1}$$

3)
$$w_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{n^2 - n + 1}}$$

4)
$$x_n = \cos(1/n) - e^{1/n}$$

5)
$$y_n = \frac{\sinh(1/n^2)}{\tan(1/n)}$$

4)
$$x_n = \cos(1/n) - e^{1/n}$$
 5) $y_n = \frac{\sin(1/n^2)}{\tan(1/n)}$ 6) $z_n = \frac{\ln(1 + \sin(1/n))}{1 - \sqrt{1 + 1/n}}$.

Exercice 2

Déterminer les développements limités suivants :

1) DL(0,3) de
$$\frac{\ln(1+x)}{e^x-1}$$
;

4) DL(0,3) de
$$\frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1}$$
;

2) DL(0,3) de
$$\frac{x - \sin x}{1 - \cos x}$$
;

5) DL(0,5) de
$$\frac{\sin x}{e^x - 1}$$
;

3) DL(1,2) de
$$\frac{x-1}{\ln x}$$
;

6) DL(0,1000) de
$$\ln \left(\sum_{k=0}^{999} \frac{x^k}{k!} \right)$$
.

Exercice 3 Calculer les développements limités suivants :

1)
$$e^{\cos x}$$
 en 0 à l'ordre 4

1)
$$e^{\cos x}$$
 en 0 à l'ordre 4 6) $\ln\left(\frac{1}{\cos x}\right)$ en 0 à l'ordre 7

2)
$$\frac{1}{\cos x}$$
 en 0 à l'ordre 5 7) $\ln (1 + \cosh x)$ en 0 à l'ordre 4

7)
$$\ln(1+ \cosh x)$$
 en 0 à l'ordre 4

3)
$$\frac{1}{\sin x} - \frac{1}{\sin x}$$
 en 0 à l'ordre 3 8) $\ln(\tan x)$ en $\pi/4$ à l'ordre 3 4) $e^{\arcsin x}$ en 0 à l'ordre 4 9) $\arctan(e^x)$ en 0 à l'ordre 3

8)
$$\ln(\tan x)$$
 en $\pi/4$ à l'ordre 3

$$4$$
) $e^{\arcsin x}$ en 0 à l'ordre 4

9)
$$\arctan(e^x)$$
 en 0 à l'ordre 3

5)
$$\arccos\left(\frac{1+x}{2+x}\right)$$
 en 0 à l'ordre 2 10) $\arctan\left(2\sin x\right)$ en $\pi/3$ à l'ordre 3

10)
$$\arctan(2\sin x)$$
 en $\pi/3$ à l'ordre 3