CHARFORMER: FAST CHARACTER TRANSFORMERS VIA GRADIENT-BASED SUBWORD TOKENIZATION

Николаев Максим, Кондратьев Захар и Волгин Даниил

Предобработка текстов

Проблемы токенайзеров

- Разделение на токены исключительно по частоте, без учёта лексики и семантики.
- Некоторые языки не имеют разделения на слова.
- Проблема многоязычных моделей, когда один язык имеет больше токенов.
- Распределение слов на предобучении не совпадает с распределением слов на файнтюнинге.

Итог: предобработка текста превращается в сложную инженерную задачу для получения хорошего качества.

CHARFORMER

- Работает с байтами.
- Разделяет слова с помощью отбора по блокам подслов-кандидатов.
- Выучивает интерпретируемые латентные подслова и позволяет легко проверить лексические представления.
- Вычислительно эффективен.

Updated during training Transformer Stack Soft "Subword" Sequence **Gradient-based** Subword **Tokenizer** (GBST) **Byte Sequence**

https://arxiv.org/pdf/2106.12672.pdf

Subword Model

Charformer

GRADIENT-BASED SUBWORD TOKENIZATION (GBST)

Пайплайн получения входных данных для GBST:

Получаем матрицу размера L – количество байтов на d – размерность эмбединга

Основная идея GBST

Хотим научить модель выполнять скрытую сегментацию входных данных по подсловам, выбирая наиболее подходящий блок подслов для всех символов.

Определим **блок подслова** длины b как

$$X_{i:i+b} \in \mathbb{R}^{b \times d}, \ 1 \leqslant i \leqslant L - b$$

Также определим функцию проекцию F На практике F это Average Pooling

$$F: \mathbb{R}^{b \times d} \to \mathbb{R}^d$$

И наконец объединим все блоки подслов:

$$X_b = [F(X_{i:i+b}); F(X_{(i+s):(i+s)+b}); ...]$$

$$X_b \in \mathbb{R}^{\frac{L}{b} \times d}$$

Основная идея GBST

В таком пайплайне получения блоков подслов мы не рассматриваем все возможные подслова, пример:

Можно уменьшить s и рассмотреть больше подслов, но это увеличит объём вычислений. Компромисс: перед разбиением на блоки, применить на X 1D свертку. Это эффективно сглаживает блоки подслов.

Бонус: функции проекции F не нужно учитывать порядок.

$$F(Conv1D(ABC)) \neq F(Conv1D(BCA))$$

Оценка блоков GBST

Обозначим за $X_{b,i}$ блок длины b, в который попадает і символ.

Тогда введем модель, которая будет оценивать этот блок.	$F_R:\mathbb{R}^d o \mathbb{R}$
С помощью неё можем оценивать все наши блоки.	$p_{b,i} = F_R(X_{b,i})$
Отсюда можем получить матрицу вероятностей	$P_i = \operatorname{softmax}(p_{1,i}, p_{2,i},, p_{M,i}),$ $P \in \mathbb{R}^{L \times M}$
Также добавим self-attention блок, чтобы учесть вероятности соседних подслов	$\hat{P} = \operatorname{softmax}(PP^T)P$
Наконец получаем новое представление входных данных	$\hat{X} = \sum_{b}^{M} \hat{P}_{b,i} X_{b,i}$

Усечение GBST

Наконец нужно получить векторное представление подслов, для этого как и в прошлый раз используем Average Pooling:

$$F_D: \mathbb{R}^{L \times d} \to \mathbb{R}^{\frac{L}{d_s} \times d}$$

Наша финальная последовательность, которую будем подавать на вход в трансформер:

$$F_D(\hat{X}), \ \hat{X} = [\hat{X}_1, ..., \hat{X}_L]$$

Пример

Пример

Пример

Пример интерпретации

Немного о трансформере CHARFORMER

• Стандартная Transformer encoder-decoder архитектура.

 В современных многоязычных моделях до 71% параметров занимают эмбединги словаря, в то время как словарь CHARFORMER символьный и потому сильно меньше. Авторы компенсируют это более глубоким и узким энкодером.

 Модели на основе символов имеют более длинные последовательности и обрабатываются на 25% дольше, чем модели на основе подслов. Авторы учитывают это при выравнивании количества параметров с другими моделями.

Model	$ \theta $	SST-2	MNLI	QNLI	MRPC	QQP	STSB	COLA	AVG
$\begin{array}{c} \textbf{BERT}_{Base,Subword} \\ \textbf{T5}_{Base,Subword} \end{array}$	110M 220M	92.7 92.7	84.4/- 84.2/84.6	88.4 90.5	86.7/- 88.9/92.1	91.6/88.7	88.0	53.8	84.3
Byte-level T5 $_{Base}$	200M	91.6	82.5/ <u>82.7</u>	88.7	87.3/91.0	90.9/87.7	84.3	45.1	81.5
Byte-level T5+Conv $_{Base}$	205M	89.8	81.1/82.5	89.2	83.6/89.2	90.7/87.7	85.0	47.1	81.2
Byte-level T5+LASC $_{Base}$	205M	90.0	80.0/80.8	87.1	82.8/88.1	89.0/85.4	83.7	25.3	77.0
CHARFORMER $_{Base}$	203M	91.6	<u>82.6/82.7</u>	89.0	87.3/91.1	91.2/88.1	85.3	42.6	81.4
Byte-level T5 $_{SBase}$ Charformer $_{SBase}$	133M	91.2	83.9/83.7	90.9	85.5/89.2	91.1/88.1	85.7	49.3	82.6
	134M	91.5	83.7/ <u>84.4</u>	91.0	87.5/91.4	91.4/ <u>88.5</u>	87.3	51.8	83.6

Сравнение CHARFORMER с другими моделями на стандартных английских наборах данных

Model	Civil Comments	Wiki Comments
$T5_{Base,Subword}$	81.2 / -	91.5 / -
Byte-level T5 _{Base}	82.8 / 78.7	93.2 / 75.4
Byte-level T5+LASC _{Base}	82.9 / 78.2	93.0 / 75.0
$CHARFORMER_{Base}$	<u>83.0</u> / <u>78.8</u>	92.7 / <u>79.7</u>
$CHARFORMER_{SBase}$	83.0 / 78.9	93.5 / 75.5

Сравнение на задаче классификации комментариев на WiKi

Model	IMDb	News
$T5_{Base,Subword}$	94.2	93.5
Byte-level T5 $_{Base}$ Byte-level T5+LASC $_{Base}$ CHARFORMER $_{Base}$	91.5 91.1 91.5	93.6 93.5 <u>94.0</u>
$CHARFORMER_{SBase}$	94.4	94.1

Классификация на больших документах

		In-Language		Translate-T	rain-All		Zer	o-Shot
Model	$ \theta $	TyDiQA-GoldP	XQuAD	MLQA	XNLI	PAWS-X	XNLI	PAWS-X
mBERT _{Base} (Subword) mT5 _{Base} (Subword)	179M 582M	77.6/68.0 80.8/70.0	-/- 75.3/59.7	-/- 67.6/48.5	75.9	89.3	65.4 75.4	81.9 86.4
Byte-level T5 $_{Base}$ Byte-level T5+LASC $_{Base}$ CHARFORMER $_{Base}$	200M 205M 203M	75.6/65.4 70.6/59.7 75.9/65.6	68.6/54.3 66.8/52.1 70.2/55.9	61.8/44.4 58.8/41.1 62.6/44.9	69.4 67.9 71.1	87.1 84.8 <u>87.2</u>	57.4 55.2 <u>57.6</u>	80.9 79.0 <u>81.6</u>
$\begin{array}{c} CHARFORMER_{SBase} \\ CHARFORMER_{SBase,LongPT} \end{array}$	134M 134M	79.1/68.8 81.2/71.3	73.6/59.0 74.2/ <u>59.8</u>	66.3/48.5 67.2/49.4	72.2 72.8	88.2 88.6	66.6 <u>67.8</u>	85.2 83.7

Сравнение на многоязычной задаче переводов текстов

Производительность

Model	Batch Size	L	d_s	$ \theta $	Speed (steps/s)	FLOPS
$mT5_{Base}$ (Subword)	1024	1024		582M	1.54	1.3×10^{15}
$CHARFORMER_{SBase}$	1024	2048	2	134M	1.98	4.3×10^{14}
$CHARFORMER_{SBase,LongPT}$	2048	2048	2	134M	1.01	4.3×10^{14}

Сравнение CHARFORMER с модель на основе подслов

Производительность

Model	L	d_s	$ \theta $	Speed (steps/s)	FLOPS	Peak Mem.
T5 _{Base} (Subword)	512	-	220M	9.3	1.1×10^{13}	-
Byte-level T5 _{Base}	1024	1	200M	8.2	2.9×10^{13}	3.09GB
Byte-level T5+LASC _{Base}	1024	4	205M	15	9.9×10^{12}	1.62GB
$CHARFORMER_{Base}$	1024	2	206M	11	1.6×10^{13}	1.95GB
$CHARFORMER_{Base}$	1024	3	203M	15	1.1×10^{13}	1.63GB
$CHARFORMER_{SBase}$	1024	2	134M	14	1.3×10^{13}	1.73GB
$CHARFORMER_{SBase}$	1024	3	134M	20	8.7×10^{12}	1.34GB

Сравнение CHARFORMER с моделями на основе байтов

Большие модели

Model	TyDiQA-GoldP F1 / EM
$mT5_{Large}$	85.3 / 75.3
$ByT5_{Large}$	87.7 / 79.2
CHARFORMER*	86.3 / 77.3

Сравнение моделей с 1.23В параметров

Авторы статьи

- Google Research and DeepMind
- 8 авторов
- Занимаются в основном NLP
- У части авторов есть статьи про задачи, в которых charformer может быть полезен (например при работе с несколькими языками)

Влияющие статьи

1) Rethinking embedding coupling in pre-trained language models, 2020 совпадают 2 автора

Model	Languages	V	N	$N_{ m emb}$	%Emb.
mBERT (Devlin et al., 2019)	104	120k	178M	92M	52%
XLM-R _{Base} (Conneau et al., 2020a)	100	250k	270M	192M	71%
XLM-R _{Large} (Conneau et al., 2020a)	100	250k	550M	256M	47%
BERT _{Base} (Devlin et al., 2019)	1	30k	110M	23M	21%
BERT _{Large} (Devlin et al., 2019)	1	30k	335M	31M	9%

Влияющие статьи

2) ByT5: Towards a token-free future with pre-trained byte-to-byte models, 2021

Подают байты на вход; меняют баланс параметров encoder/decoder частей; предобучают на предсказании нескольких последовательных байт (вырезают в среднем штук 20)

Никак не группируют байты или соответствующие им векторы, то есть вход пропорционален числу байт в тексте.

Влияющие статьи

3) CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation, 2021

Не нужна предобработка; в начале группируют векторы и снижают их число в несколько раз

Подают символы на вход (нужно хеширование + словарь на 16k); группируют с помощью local attention + strided cond; в конце можно аналогично разгруппировать

Достоинства/недостатки

- + Лучше результаты на некоторых задачах
- + Не нужна предобработка входного текста
- + Снижение размера словаря во много раз

- Сэкономленные на словаре параметры придётся отдать на увеличение кодировщика
- Затраты времени на получение эмбедингов

Дальнейшая работа

В статье указывается, что свёртки и другие локальные механизмы могут быть не лучшим решением в многоязычных моделях (например неконкатенативная морфология)

كتب	k-t-b	"write" (root form)
كَتَبَ	k a t a b a	"he wrote"
كَتَّبَ	kattaba	"he made (someone) write"
ٳػ۠ؾؘؘؾؘ	i k ta t a b a	"he signed up"

Table 1: Non-concatenative morphology in Arabic.⁴

Список источников

- https://arxiv.org/pdf/2106.12672.pdf
- https://huggingface.co/course/chapter6/4
- https://arxiv.org/pdf/2010.12821.pdf
- https://arxiv.org/pdf/2105.13626.pdf
- https://arxiv.org/pdf/2103.06874.pdf