CSE4020	MACHINE LEARNING	L	TF	J	C
		2	0 2	4	4
Pre-requisite	MAT2001	Syllabus version			
				•	v1.1

Course Objectives:

- 1. Ability to comprehend the concept of supervised and unsupervised learning techniques
- 2. Differentiate regression, classification and clustering techniques and to implement their algorithms.
- 3. To analyze the performance of various machine learning techniques and to select appropriate features for training machine learning algorithms.

Expected Course Outcome:

- 1. Recognize the characteristics of machine learning that makes it useful to solve real-world problems.
- 2. Provide solution for classification and regression approaches in real-world applications.
- 3. Gain knowledge to combine machine learning models to achieve better results.
- 4. Choose an appropriate clustering technique to solve real world problems.
- 5. Realize methods to reduce the dimension of the dataset used in machine learning algorithms.
- 6. Choose a suitable machine learning model, implement and examine the performance of the chosen model for a given real world problems.
- 7. Understand cutting edge technologies related to machine learning applications.

Student Learning Outcomes (SLO): 5,7,9

Module:1 Introduction to Machine Learning

3 hours

What is Machine Learning, Examples of Various Learning Paradigms, Perspectives and Issues, Version Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning

Module:2 | Supervised Learning - I

4 hours

Learning a Class from Examples, Linear, Non-linear, Multi-class and Multi-label classification, Generalization error bounds: VC Dimension, Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression.

Module:3 | Supervised Learning - II

5 hours

Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K-Nearest Neighbors

Module:4 | Ensemble Learning

3 hours

Ensemble Learning Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking

Module:5 Unsupervised Learning - I

7 hours

Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Self-Organizing Map, Expectation Maximization, Gaussian Mixture Models

Module:6 Unsupervised Learning - II

3 hours

Principal components analysis (PCA), Locally Linear Embedding (LLE), Factor Analysis

Mod	lule:7	Machine Learning in Practice		3 hours					
		arning in Practice Design, Analysis and Evaluation	of Machine L						
		etion Mechanisms, Other Issues: Imbalanced data, M							
		,		,					
Module:8		Recent Trends		2 hours					
Indu	stry Exp								
	•								
		Total Lecture hours:	30 hours						
	t Book(s	,							
	1. Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Prentice Hall of India, Third Edition 2014								
	erence B								
1.	_	Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, Academic Press, 4th							
2.		, 2008, ISBN:9781597492720. ar Mohri, Afshin Rostamizadeh, Ameet Talwalkar '	'Foundations of	of Machine Learning					
۷.		ress, 2012	roundations c	or wrachine Learning,					
3.		litchell, Machine Learning, McGraw Hill, 3rd Edition	on,1997.						
4		C. Aggarwal, Data Classification Algorithms and A		CRC Press, 2014					
5		C. Aggarwal, DATA CLUSTERING Algorithms an							
6		P. Murphy "Machine Learning: A Probabilistic Pers		MIT Press, 2012					
		luation: CAT / Assignment / Quiz / FAT / Project /	Seminar						
		lenging Experiments (Indicative)							
1.	Imple	ment Decision Tree learning.		2 hours					
2.	Imple	Implement Logistic Regression.							
3.	Imple	2 hours							
4.	Imple	Implement classification using SVM							
5.	Imple	ment Adaboost		2 hours					
6.	Imple	mplement Bagging using Random Forests							
7.	Imple	ment K-means Clustering to Find Natural Patterns in	n Data.	2 hours					
8.	Imple	ment Hierarchical clustering.		2 hours					
9.	Imple	ment K-mode clustering		2 hours					
10	Imple	Implement Principle Component Analysis for Dimensionality Reduction.		n. 2 hours					
11		Implement Multiple Correspondence Analysis for Dimensionality Reduction.							
12	Implement Gaussian Mixture Model Using the Expectation Maximization.			on. 2 hours					
13	Evalu	2 hours							
14	Comparison of Machine Learning algorithms.			2 hours					
15.	Imple	ment k-nearest neighbors algorithm		2 hours					
			Laboratory Ho						
Mod	le of asse	essment: Project/Activity							

Recommended by Board of Studies			
Approved by Academic Council	No. 47	Date	05.10.2017