Power Electronics

Chapter 2

Diode Rectifiers

a line-frequency diode rectifier:

a line-frequency AC voltage → an uncontrolled DC voltage

Uncontrolled utility interface (AC to DC)

DC voltages: a mean (DC) level + an alternating ripple

AC currents: non-sinusoidal

$$\gamma_f = f_{R(rms)} / f_{mean}$$
 — ripple factor (DC voltage)

$$\xi_f = f_{1(rms)} / f_{rms}$$
 — distortion factor (AC current)

Study focus:

analyzing waveforms of various rectifiers

DC output: voltage, current waveforms

AC input: voltage, current waveforms

Devices: voltage, current waveforms

Assumption: 1) volt-drop negligible when conducting;

2) turn-on and turn-off times instantaneous.

a key point: commutation

Single-phase bridge

 $v_g(t)$

Load: pure resistance

DC output: v_d , i_d

AC input: $v_{\rm s}$, $i_{\rm s}$

Devices: v_{diode} , i_{diode}

Commutation

$$V_{\rm d} = 2V_{\rm smax}/\pi$$
 $I_{\rm d} = V_{\rm d}/R$

Single-phase bridge

Load: idealized inductive

DC output: v_d , i_d

AC input: v_{s} , i_{s}

Devices: v_{diode} , i_{diode}

$$V_{\rm d} = 2V_{\rm smax}/\pi$$
 $I_{\rm d} = V_{\rm d}/R$

Inductive Load (R-L)

Single-phase bridge

Input current and its harmonic components

$$I_{\rm s1} = 0.9I_{\rm d}$$

 ξ (distortion factor) = $I_{s1}/I_s = 0.9$

PF (power factor) = $\xi \cos \phi_1 = 0.9$

Single-phase bridge

Circuit analysis with ac-side inductance

Understanding current commutation

$$v_{\rm s} = V_{\rm smax} \sin \omega t = L_{\rm s} di_{\rm s}/dt$$

$$[t = 0, i_s = -I_d]$$
 $i_s = V_{smax}/(\omega L_s) \cdot (1 - \cos \omega t) - I_d$

$$\omega t = u$$
 (overlap angle), $i_s = I_d$

$$I_d = V_{smax}/(\omega L_s) \bullet (1 - \cos u) - I_d$$

$$\cos u = 1 - 2\omega L_s I_d / V_{smax}$$

$$V_d = V_{smax} / \pi (1 + \cos u)$$

Single-phase bridge

Equivalent circuit on one-half cycle basis

Practical diode-bridge rectifier with a filter capacitor.

 $V_s = 120V$ at 60Hz, $L_s = 1mH$, $R_s = 1m\Omega$, $C_d = 100\mu F$, $R_{load} = 20\Omega$.

Single-phase bridge

Line-Voltage Distortion

Three-phase bridge

$$V_{d} = 2x3\sqrt{3/2\pi} V_{ph(max)}$$
$$= 3/\pi V_{line(max)}$$

Diode Rectifiers

Three-phase bridge

Input current and its harmonic components

$$I_{\rm s1} = 0.78I_{\rm d}$$

 ξ (distortion factor) = $I_{s1}/I_s = 0.955$

PF (power factor) = $\xi \cos \phi_1 = 0.955$

Three-phase bridge

Circuit analysis with ac-side inductance

Understanding current commutation

$$v_{\rm a} - v_{\rm c} = \sqrt{3} V_{\rm line(max)} \sin \omega t = 2 L_{\rm s} di_{\rm u}/dt$$

$$i_{\rm a} = i_{\rm u}, \quad i_{\rm c} = I_{\rm d} - i_{\rm u}$$

$$t = 0, \quad i_{\rm u} = 0$$

$$i_{\rm a} = i_{\rm u} = \mathbf{V}_{\rm line(max)}/(2\omega \mathbf{L}_{\rm s}) \bullet (1 - \cos \omega t)$$

$$\omega t = \mathbf{u}$$
, $i_a = I_d$ ($\omega L_s = X$)

$$\cos u = 1-2XI_d/V_{line(max)}$$

$$V_d = 3V_{line(max)} / 2\pi (1 + \cos u)$$

图 3·2·1·1 SS₁型电力机车总体布置

1一车体; 2一受电弓; 3一主斯路器; 4一转向架; 5一主风钢; 6一主变压器; 7一整流柜; 8一高压柜; 9一蓄电池箱; 10—电源柜(Ⅰ)/励碟柜(Ⅱ); 11—压缩机; 12—牵引通风机; 13—劈柜机; 14—控制柜(Ⅰ)/升弓压缩机(Ⅱ); 15—低压柜; 16—平波电抗器。

SS1, 1968

Thyristor-based AC/DC

Summary:

- Diode rectifier: uncontrolled AC-DC
- Function analysis according to key waveforms

Key waveforms

DC output: $v_{\rm d}$, $i_{\rm d}$

AC input: v_s , i_s

Devices: v_{diode} , i_{diode}

Commutation

Calculations according to waveforms

DC output: $V_{\rm d}$, $I_{\rm d}$

AC input: I_{s1} , ξ , PF

Considering impact of load and ac-side inductance

Required both for single-phase and three-phase diode rectifiers

The End

Supplement 2-1 Harmonics and Power Factor

Harmonic analysis

Any periodic waveform can be expressed mathematically as a Fourier series.

$$\mathbf{f} = \mathbf{f_{mean}} + \mathbf{\Sigma} \mathbf{a_n sinn\omega t} + \mathbf{\Sigma} \mathbf{b_n cosn\omega t}$$

$$f_{mean} = (1/2\pi) \int_0^{2\pi} f \, d \, (\omega t)$$

$$\mathbf{a_n} = (1/\pi) \int_0^{2\pi} f \, sinn\omega t \, d \, (\omega t), \qquad \mathbf{b_n} = (1/\pi) \int_0^{2\pi} f \, cosn\omega t \, d \, (\omega t)$$

$$f_{n(rms)} = 1/1.414 \bullet (\mathbf{a_n}^2 + \mathbf{b_n}^2)^{1/2}$$

$$f_{rms} = (\mathbf{f_{mean}}^2 + \mathbf{\Sigma} \mathbf{f_{n(rms)}}^2)^{1/2} \qquad f_{R(rms)} = (\mathbf{\Sigma} \mathbf{f_{n(rms)}}^2)^{1/2}$$

$$\mathbf{\gamma_f} = \mathbf{f_{R(rms)}} / \mathbf{f_{mean}} - \text{ripple factor (DC voltage)}$$

$$\mathbf{\xi_f} = \mathbf{f_{1(rms)}} / \mathbf{f_{rms}} - \text{distortion factor (AC current)}$$

Power factor

$$\lambda = P/S$$

$$P - active mean power: P = U_0 I_0 + \sum U_{n(rms)} I_{n(rms)} cos \phi_n$$

$$S - apparent power: S = U_{rms}I_{rms}$$

supply phase voltage — sinusoidal

$$P = U_{1(rms)}I_{1(rms)}\cos\phi_1$$
, $S = U_{1(rms)}I_{rms}$

$$\lambda = \xi_i \cos \phi_1$$

 ξ_i — input current distortion factor $\cos \phi_i$ — input displacement factor

