

Artificial Neural Network

Dinesh K. Vishwakarma, Ph.D.

PROFESSOR, DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY, DELHI.

Webpage: http://www.dtu.ac.in/Web/Departments/InformationTechnology/faculty/dkvishwakarma.php

Introduction

- Artificial neural networks (ANNs) provide a practical method for learning
 - ✓ real-valued functions
 - ✓ discrete-valued functions
 - √ vector-valued functions
- Robust to errors in training data
- Successfully applied to such problems as
 - ✓ interpreting visual scenes
 - ✓ speech recognition
 - ✓ learning robot control strategies

Introduction...

- ANN learning well-suit to problems which the training data corresponds to noisy, complex data (inputs from cameras or microphones)
- Can also be used for problems with symbolic representations
- Most appropriate for problems where
 - ✓ Instances have many attribute-value pairs
 - ✓ Target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes
 - ✓ Training examples may contain errors
 - ✓ Long training times are acceptable
 - ✓ Fast evaluation of the learned target function may be required
 - The ability for humans to understand the learned target function is not important.

Human Brain Processing

Neuron

Neuron...

- Artificial neurons are based on biological neurons.
- Each neuron in the network receives one or more inputs.
- An activation function is applied to the inputs, which determines the output of the neuron - the activation level. Activation

Activation works

Activation Function
$$X = \sum_{i=1}^{n} w_i x_i$$

$$Y = \begin{cases} +1 & for \ X > t \\ 0 & for \ X \le t \end{cases}$$

(a) Step funtion

(b) Sigmoid funtion

functions

Neural Network

Weights
$$h = \sigma(W_1x + b_1)$$

$$y = \sigma(W_2h + b_2)$$

Activation functions

How do we train?

4 + 2 = 6 neurons (not counting inputs)

$$[3 \times 4] + [4 \times 2] = 20$$
 weights
 $4 + 2 = 6$ biases

26 learnable parameters

Training Perceptron

- Learning involves choosing values for the weights
- The perceptron is trained as follows:
 - ✓ First, inputs are given random weights (usually between 0.5 and 0.5).
 - ✓ An item of training data is presented. If the perceptron misclassifies it, the weights are modified according to the following:
 - where t is the target output for the training example, o is the output generated by the perceptron and a is the learning rate, between 0 and 1 (usually small such as 0.1)
- Cycle through training examples until successfully classify all examples
 - ✓ Each cycle known as an epoch

Backpropagation

- Multilayer neural networks learn in the same way as perceptrons.
- However, there are many more weights, and it is important to assign credit (or blame) correctly when changing weights.
- *E* sums the errors over all of the network output units

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2$$

Backpropagation Algorithm

- Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers.
- Until termination condition is met, Do
 - ✓ For each $\langle x,t \rangle$ in training examples, Do.
 - ✓ Propagate the input forward through the network:
 - 1. Input the instance x to the network and compute the output o_u of every unit u in the network.
 - 2. Propagate the errors backward through the network:
 - 3. For each network output unit k, calculate its error term δ_k $\delta_k \leftarrow o_k (1-o_k)(t_k-o_k)$
 - 4. For each hidden unit h, calculate its error term δ_h $\delta_h \leftarrow o_h(1-o_h) \sum w_{kh} \delta_k$
 - 5. Update each network weight w_{ji} where $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$ $\Delta w_{ji} = \alpha \delta_j x_{ji}$

Hidden Layer representation

Target Function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Yes

Input	Hidden Values	Output
10000000	→ .89 .04 .08	$\rightarrow 10000000$
01000000	→ .15 .99 .99	$\rightarrow 01000000$
00100000	\rightarrow .01 .97 .27	$\rightarrow 00100000$
00010000	→ .99 .97 .71	$\rightarrow 00010000$
00001000	\rightarrow .03 .05 .02	$\rightarrow 00001000$
00000100	→ .01 .11 .88	$\rightarrow 00000100$
00000010	→ .80 .01 .98	$\rightarrow 00000010$
0000001	→ .60 .94 .01	→ 00000001

A dataset

Fields	class			
1.4 2.7	1.9	0		
3.8 3.4	3.2	O		
6.4 2.8	1.7	1		
4.1 0.1	0.2	0		
etc				

Training the neural network

Fields		class			
1.4 2.7	1.9	0			
3.8 3.4	3.2	0			
6.4 2.8	1.7	1			
4.1 0.1	0.2	0			
etc					

Training data

	\sim		
Fie	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Initialise with random weights

Training data

_	Fie	<u>lds </u>		<u>class</u>
	1.4	2.7	1.9	0
	3.8	3.4	3.2	0
	6.4	2.8	1.7	1
	4.1	0.1	0.2	0
	etc	• • •		

Present a training pattern

Training data

_	Fiel	lds		<u>class</u>
	1.4	2.7	1.9	0
	3.8	3.4	3.2	0
	6.4	2.8	1.7	1
	4.1	0.1	0.2	0
	etc	• • •		

Feed it through to get output

Training data

Fields			class
1.4 2	2.7	1.9	0
3.8 3	3.4	3.2	0
6.4 2	2.8	1.7	1
4.1 ().1	0.2	0
etc	•		

Compare with target output

Training data

_	Fie	<u>lds</u>		<u>class</u>
	1.4	2.7	1.9	0
	3.8	3.4	3.2	0
	6.4	2.8	1.7	1
	4.1	0.1	0.2	0
	etc	• • •		

Adjust weights based on error

Tra	Training data				
Fie	lds		class		
1.4	2.7	1.9	0		
3.8	3.4	3.2	0		
6.4	2.8	1.7	1		
4.1	0.1	0.2	0		
etc					

Present a training pattern

Tro	iin	ino	data	γ
110	uii	uug	aaic	ı

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Feed it through to get output

Training data

1100	Trettitity eletter				
Fie	class				
1.4	2.7	1.9	0		
3.8	3.4	3.2	0		
6.4	2.8	1.7	1		
4.1	0.1	0.2	0		
etc					

Compare with target output

Training data

Fie	class		
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc			

Adjust weights based on error

7	Tra	ining	data	
1	Fie	class		
1	.4	2.7	1.9	0
	3.8	3.4	3.2	0
(5.4	2.8	1.7	1
	1.1	0.1	0.2	0
ϵ	etc			

And so on

Repeat this thousands, maybe millions of times – each time taking a random training instance, and making slight weight adjustments

Algorithms for weight adjustment are designed to make changes that will reduce the error

Example of Digit Recognition

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Softmax

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Softmax layer as the output layer **Probability**:

$$\sum_i y_i = 1$$

Network Parameters

10 Å 10 - 23

 $Ink \rightarrow 1$

No ink $\rightarrow 0$

Set the network parameters such that

Input: y_1 has the maximum value

Input: y_2 has the maximum value

Visual Information Processing

Visual information processed by our brain is multi-layered.

Enabling Factor of DL

- Training of deep networks was made computationally feasible by:
 - Faster CPU's
 - The move to parallel CPU architectures
 - Advent of GPU computing
- Neural networks are often represented as a matrix of weight vectors.
- GPU's are optimized for very fast matrix multiplication
- 2008 Nvidia's CUDA library for GPU computing is released.

Hierarchical Learning

Inspired from visual information processing, a representation of Hierarchical Learning is developed, also know as "**Deep Learning**"

Deep Neural Network

Why Deep Network?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep Network?

Universal TheoremAny continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given enough hidden neurons)

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	→ 1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Training multi-layer NNs (DNN)

Train this layer first

Train this layer first

then this layer

When to use Deep Learning?

- Data size is large
- High end infrastructure
- Lack of domain understanding
- Complex problem such as image classification, speech recognition etc.

Fuel of deep learning is the big data by Andrew Ng

Limitations of Deep Learning

- Very slow to train
- Models are very complex, with lot of parameters to optimize:
 - ✓ Initialization of weights
 - ✓ Layer-wise training algorithm
 - ✓ Neural architecture
 - Number of layers
 - Size of layers
 - Type regular, pooling, max pooling, soft max
 - ✓ Fine-tuning of weights using back propagation

Mank you. dinesh Odtu.ac.in

Problems on Neural Networks

Problem 1

■ Consider a artificial Neurons, which has three inputs nodes x = (x1, x2, x3) that receive only binary signals (either 0 or 1). How many different input patterns this node can receive? What if the node had four inputs? Five? Can you give a formula that computes the number of binary input patterns for a given number of inputs?

■ There are three inputs, the number of combinations of 0 and 1 is 8.

• If there are four inputs nodes then number of combinations is 16.

• If there are n-input nodes then the number combinations will be 2^n .

Problem 2

• Consider a artificial neurons have three inputs, the weights corresponding to the these inputs have (2, -4, 1), the activation function is unit step. Determine the output for following input values.

Pattern	P_1	P_2	P_3	P_4
x_1	1	0	1	1
x_2	0	1	0	1
x_3	0	1	1	1

- To find the output for each patterns
 - ✓ First calculate the weighted sum $\sum_i w_i x_i = w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3$
 - Apply the activation function i.e. unit step $\varphi(v) = \begin{cases} 1 \text{ for } v \geq 0 \\ 0 \text{ otherwise} \end{cases}$
 - ✓ The calculations for each input pattern are:

$$P_1: \quad v = 2 \cdot 1 - 4 \cdot 0 + 1 \cdot 0 = 2 , \quad (2 > 0) , \quad y = \varphi(2) = 1$$

 $P_2: \quad v = 2 \cdot 0 - 4 \cdot 1 + 1 \cdot 1 = -3 , \quad (-3 < 0) , \quad y = \varphi(-3) = 0$
 $P_3: \quad v = 2 \cdot 1 - 4 \cdot 0 + 1 \cdot 1 = 3 , \quad (3 > 0) , \quad y = \varphi(3) = 1$
 $P_4: \quad v = 2 \cdot 1 - 4 \cdot 1 + 1 \cdot 1 = -1 , \quad (-1 < 0) , \quad y = \varphi(-1) = 0$

Problem 3

■ Consider a feed forward neural network with one hidden layer. A weight on connection between nodes i and j is denoted by w_{ij} , such as w_{13} is the weight on the connection between nodes 1 and 3. The following table lists all the weights in the network.

• Node 3, 4, 5 and 6 uses unit step activation function. Compute the output of the n/w for following inputs.

Pattern:	P_1	P_2	P_3	P_4
Node 1:	0	1	0	1
Node 2:	0	0	1	1

■ In order to find the output of the network it is necessary to calculate weighted sums of hidden nodes 3 and 4:

$$v_3 = w_{13}x_1 + w_{23}x_2$$
, $v_4 = w_{14}x_1 + w_{24}x_2$

- Then find the outputs from hidden nodes using activation function. $y_3 = \varphi(v_3)$, $y_4 = \varphi(v_4)$
- Use the outputs of the hidden nodes y3 and y4 as the input values to the output layer (nodes 5 and 6), and find weighted sums of output nodes 5 and 6:

$$v_5 = w_{35}y_3 + w_{45}y_4$$
, $v_6 = w_{36}y_3 + w_{46}y_4$

Finally, compute the outputs from nodes 5 and 6 using

$$y_5 = \varphi(v_5) , \quad y_6 = \varphi(v_6)$$

 P_1 : Input pattern (0,0)

$$v_3 = -2 \cdot 0 + 3 \cdot 0 = 0,$$
 $y_3 = \varphi(0) = 1$
 $v_4 = 4 \cdot 0 - 1 \cdot 0 = 0,$ $y_4 = \varphi(0) = 1$
 $v_5 = 1 \cdot 1 - 1 \cdot 1 = 0,$ $y_5 = \varphi(0) = 1$
 $v_6 = -1 \cdot 1 + 1 \cdot 1 = 0,$ $y_6 = \varphi(0) = 1$

The output of the network is (1,1).

 P_2 : Input pattern (1,0)

$$v_3 = -2 \cdot 1 + 3 \cdot 0 = -2,$$
 $y_3 = \varphi(-2) = 0$
 $v_4 = 4 \cdot 1 - 1 \cdot 0 = 4,$ $y_4 = \varphi(4) = 1$
 $v_5 = 1 \cdot 0 - 1 \cdot 1 = -1,$ $y_5 = \varphi(-1) = 0$
 $v_6 = -1 \cdot 0 + 1 \cdot 1 = 1,$ $y_6 = \varphi(1) = 1$

The output of the network is (0,1).

 P_3 : Input pattern (0,1)

$$v_3 = -2 \cdot 0 + 3 \cdot 1 = 3,$$
 $y_3 = \varphi(3) = 1$
 $v_4 = 4 \cdot 0 - 1 \cdot 1 = -1,$ $y_4 = \varphi(-1) = 0$
 $v_5 = 1 \cdot 1 - 1 \cdot 0 = 1,$ $y_5 = \varphi(1) = 1$
 $v_6 = -1 \cdot 1 + 1 \cdot 0 = -1,$ $y_6 = \varphi(-1) = 0$

The output of the network is (1,0).

 P_4 : Input pattern (1,1)

$$v_3 = -2 \cdot 1 + 3 \cdot 1 = 1,$$
 $y_3 = \varphi(1) = 1$
 $v_4 = 4 \cdot 1 - 1 \cdot 1 = 3,$ $y_4 = \varphi(3) = 1$
 $v_5 = 1 \cdot 1 - 1 \cdot 1 = 0,$ $y_5 = \varphi(0) = 1$
 $v_6 = -1 \cdot 1 + 1 \cdot 1 = 0,$ $y_6 = \varphi(0) = 1$

The output of the network is (1,1).