Solutions to David A.Cox "Galois Theory"

Richard Ganaye

September 28, 2022

2 Chapter 2

2.1 POLYNOMIALS OF SEVERAL VARIABLES

Ex. 2.1.1 Show that $\langle x,y\rangle = \{xg + yh \mid g,h \in F[x,y]\} \subset F[x,y]$ is not a principal ideal in F[x,y].

Proof. We show first that $\langle x,y\rangle \neq F[x,y]$. If not, $1\in \langle x,y\rangle$, so

$$1 = xu + yv, \ u, v \in F[x, y].$$

If we evaluate this identity at x = 0, y = 0, we obtain 1 = 0, which is a contradiction, thus

$$\langle x, y \rangle \neq F[x, y].$$

If $\langle x, y \rangle$ was a principal ideal, generated by $p \in F[x, y]$, then $\langle x, y \rangle = \langle p \rangle$, and

$$x = pq, y = pr, q, r \in F[x, y].$$

deg(p) + deg(q) = deg(x) = 1, so $deg(p) \le 1$, and $p \ne 0$.

If deg(p) = 0, then $p = \lambda \in F^*$, and $\langle x, y \rangle = \langle \lambda \rangle = F[x, y]$, but we have proved that this is impossible.

Thus $\deg(p)=1$, so $p=\alpha x+\beta y+\gamma$, $\alpha,\beta,\gamma\in F$, and $\deg(q)=\deg(r)=0$, so $q=\lambda\in F^*, r=\mu\in F^*$:

$$x = \lambda(\alpha x + \beta y + \gamma),$$

$$y = \mu(\alpha x + \beta y + \gamma).$$

This implies $\lambda \beta = 0$ and $\mu \alpha = 0$.

As $\lambda \neq 0, \mu \neq 0, \alpha = \beta = 0$, whitch is in contradiction with $\deg(p) = 1$.

We have proved that $\langle x, y \rangle$ is not a principal ideal, and thus F[x, y] is not a principal ideal domain.

Ex. 2.1.2 Express each the following polynomials as a polynomial in y with coefficients that are polynomials in the remaining variables.

(a)
$$x^2y + 3y^2 - xy^2 + 3x + xy^2 + 7x^2y^2$$
.

(b)
$$(y - (x_1 + x_2))(y - (x_1 + x_3))(y - (x_2 + x_1))$$
.

Proof. (a)

$$p = x^{2}y + 3y^{2} - xy^{2} + 3x + xy^{2} + 7x^{3}y^{3}$$
$$= (7x^{3})y^{3} + 3y^{2} + x^{2}y + 3x.$$

(b) let

$$q = (y - (x_1 + x_2))(y - (x_1 + x_3))(y - (x_2 + x_3)).$$

Consider $p = (x + x_1)(x + x_2)(x + x_3) = x^3 + \sigma_1 x^2 + \sigma_2 x + \sigma_3$. Then

$$q = (y - \sigma_1 + x_3)(y - \sigma_1 + x_2)(y - \sigma_1 + x_1)$$

$$= p(y - \sigma_1)$$

$$= (y - \sigma_1)^3 + \sigma_1(y - \sigma_1)^2 + \sigma_2(y - \sigma_1) + \sigma_3$$

$$= (y^3 - 3\sigma_1y^2 + 3\sigma_1^2y - \sigma_1^3) + (\sigma_1y^2 - 2\sigma_1^2y + \sigma_1^3) + (\sigma_2y - \sigma_1\sigma_2) + \sigma_3$$

$$= y^3 - 2\sigma_1y^2 + (\sigma_1^2 + \sigma_2)y + (\sigma_3 - \sigma_1\sigma_2).$$

Ex. 2.1.3 Given positive integers n and r with $1 \le r \le n$, let $\binom{n}{r}$ be the number of ways of choosing r elements from a set with n elements. Recall that $\binom{n}{r} = \frac{n!}{r!(n-r)!}$.

- (a) Show that the polynomial σ_r is a sum of $\binom{n}{r}$ terms.
- (b) Show that $\sigma_r(-\alpha, \ldots, -\alpha) = (-1)^r \binom{n}{r} \alpha^r$.
- (c) Let $f = (x + \alpha)^n$. Use part (b) and Corollary 2.1.5 to prove that

$$(x+\alpha)^n = \sum_{r=0}^n \binom{n}{r} \alpha^r x^{n-r},$$

where $\binom{n}{0} = 1$. This shows that the binomial theorem follows from Corollary 2.1.5.

Proof. (a) The number of terms in

$$\sigma_r = \sum_{1 \le i_1 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r} \tag{1}$$

is the number of strictly increasing sequences (i_1, i_2, \dots, i_r) in the integer interval $[\![1, n]\!]$. It is equal to the number of subsets with r elements in the set $[\![1, n]\!]$ with n elements. Thus it is equal to $\binom{n}{r}$.

(b) Evaluating (1) with $x_1 = x_2 = x_n = -\alpha$, we obtain

$$\sigma_r(-\alpha, \dots, -\alpha) = \sum_{1 \le i_1 < \dots < i_r \le n} (-\alpha)^r$$
$$= (-1)^r \binom{n}{r} \alpha^r.$$

(c) By Corollary 2.1.5, with the substitution $x_1 = -\alpha, x_2 = -\alpha, \dots, x_n = -\alpha,$

$$f = (x + \alpha)^n = x^n + a_1 x^{n-1} + \dots + a_n,$$

where

$$a_r = (-1)^r \sigma_r(-\alpha, \cdots, -\alpha)$$
$$= \binom{n}{r} \alpha^r.$$

Consequently,

$$(x+\alpha)^n = \sum_{i=1}^n \binom{n}{r} \alpha^r x^{n-r}.$$

With the substitution $x = \beta$, $\beta \in F$, we obtain the binomial formula

$$(\alpha + \beta)^n = \sum_{i=1}^n \binom{n}{r} \alpha^r \beta^{n-r}.$$

2.2 SYMMETRIC POLYNOMIALS

Ex. 2.2.1 Show that the leading term of σ_r is $x_1x_2\cdots x_r$.

Proof. We show that the leading term of σ_r for the graded lexicographic order is $x_1x_2\cdots x_n$. Let $x_{i_1}x_{i_2}\cdots x_{i_r}(i_1 < i_2 < \cdots < i_r)$ any term of σ_r , distinct of $x_1x_2\cdots x_r$. We must show that $x_1x_2\cdots x_r > x_{i_1}x_{i_2}\cdots x_{i_r}$.

If $i_1 > 1$, then x_1 as no occurrence in $x_{i_1} x_{i_2} \cdots x_{i_r}$. Its exponent is 0 in the right monomial, and 1 in the left monomial, so

$$x_1x_2\cdots x_r > x_{i_1}x_{i_2}\cdots x_{i_r},$$

and the proof is done in this case.

If $i_1 = 1$, let j (1 < j < n) the first subscript such that $i_j \neq j$. Then

$$i_1 = 1, i_2 = 2, \dots, i_{j-1} = j-1, i_j \neq j.$$

Such a subscript exists, otherwise $x_1x_2\cdots x_r=x_{i_1}x_{i_2}\cdots x_{i_r}$. As $i_j>i_{j-1}=j-1$, $i_j\geq j$, and as $i_j\neq j, i_j>j$, so the exponent of x_j is 0 in the right monomial.

Therefore

$$x_1 x_2 \cdots x_{j-1} x_j \cdots x_r > x_1 x_2 \cdots x_{j-1} x_{i_j} \cdots x_{i_r} = x_{i_1} x_{i_2} \cdots x_{i_r}.$$

3

So the leading term of σ_r is $x_1x_2\cdots x_r$.

Ex. 2.2.2 This exercise will study the order relation defined in (2.5). Given an exponent vector $\alpha = (a_1, \ldots, a_n)$, where each $a_i \geq 0$ is an integer, let x^{α} denote the monomial

$$x^{\alpha} = x_1^{a_1} \cdots x_n^{a_n}.$$

If α and β are exponent vectors, note that $x^{\alpha}x^{\beta} = x^{\alpha+\beta}$. Also, the leading term of a nonzero polynomial $f \in F[x_1, \ldots, x_n]$ will be denoted LT(f).

- (a) Suppose that $x^{\alpha} > x^{\beta}$, and let x^{γ} be any monomial. Prove that $x^{\alpha+\gamma} > x^{\beta+\gamma}$.
- (b) Suppose that $x^{\alpha} > x^{\beta}$ and $x^{\gamma} > x^{\delta}$. Prove that $x^{\alpha+\gamma} > x^{\beta+\delta}$.
- (c) Let $f, g \in F(x_1, ..., x_n]$ be nonzero. Prove that LT(fg) = LT(f)LT(g).

Proof. (a) Let $\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n), \gamma = (c_1, c_2, \dots, c_n)$ and suppose that $x^{\alpha} > x^{\beta}$.

Then $a_1 + a_2 + \cdots + a_n \ge b_1 + b_2 + \cdots + b_n$, otherwise $x^{\alpha} < x^{\beta}$.

If $a_1 + a_2 + \cdots + a_n > b_1 + b_2 + \cdots + b_n$, then $(a_1 + c_1) + \cdots + (a_n + c_n) > (b_1 + c_1) + \cdots + (a_n + c_n)$, thus $x^{\alpha + \gamma} > x^{\beta + \gamma}$.

We suppose now that $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$.

By definition of the graded lexicographical order, $a_1 \geq b_1$, otherwise $x^{\alpha} < x^{\beta}$.

If $a_1 > b_1$, then $a_1 + c_1 > b_1 + c_1$, which implies $x^{\alpha+\gamma} > x^{\beta+\gamma}$.

It remains the case where $a_1 = b_1$.

Let j (j < n) the first subscript such that $a_i \neq b_j$:

$$a_1 = b_1, a_2 = b_2, \dots, a_{j-1} = b_{j-1}, a_j \neq b_j.$$

As $x^{\alpha} > x^{\beta}$, such a subscript exists, otherwise $x^{\alpha} = x^{\beta}$.

If $a_i < b_i$, we would have $x^{\alpha} < x^{\beta}$, which is false by hypothesis, so $a_i > b_i$.

Then $a_1 + c_1 = b_1 + c_1, \dots, a_{j-1} + c_{j-1} = b_{j-1} + c_{j-1}$ and $a_j + c_j > b_j + c_j$, so

$$x^{\alpha+\gamma} > x^{\beta+\gamma}$$
.

Conclusion:

$$x^{\alpha} > x^{\beta} \Rightarrow x^{\alpha+\gamma} > x^{\beta+\gamma}$$
.

(b) If $x^{\alpha} > x^{\beta}$ and $x^{\gamma} > x^{\delta}$, then by (a),

$$x^{\alpha+\gamma} > x^{\beta+\gamma}$$
.

$$x^{\beta+\gamma} > x^{\beta+\delta}$$
.

So, by transitivity

$$x^{\alpha+\gamma} > x^{\beta+\delta}$$

(c) Let $cx^{\alpha} = LT(f), dx^{\beta} = LT(g)$. By definition of the leading term, for every term ux^{γ} in f, distinct of LT(f),

$$x^{\alpha} > x^{\gamma}$$
,

and for every term vx^{δ} in g, distinct of LT(g),

$$x^{\beta} > x^{\delta}$$
.

Every monomial in fg distinct of $cdx^{\alpha+\beta}$ is a sum of terms of the form $gx^{\gamma+\delta}$, where β, γ verify $\alpha \geq \gamma, \beta > \delta$, or $\alpha > \gamma, \beta \geq \delta$. In both cases, by (a) and (b),

$$x^{\alpha+\beta} > x^{\gamma+\delta}$$

Therefore $cdx^{\alpha+\beta}$ is the leading term of fg, so

$$\operatorname{lt}(fg) = \operatorname{lt}(f) \operatorname{lt}(g).$$

Ex. 2.2.3 Prove (2.13)-(2.16). For (2.13), a computer will be helpful; the others can be proved by hand using the identity

$$(y_1 + \dots + y_m)^2 = y_1^2 + \dots + y_m^2 + 2 \sum_{i < j} y_i y_j.$$

Proof. Let

$$f = \Sigma_4 x_1^3 x_2^2 x_3.$$

We must write f as a polynomial in $\sigma_1, \sigma_2, \sigma_3, \sigma_4$.

The leading term of f for the graded lexicographical order being $x_1^3x_2^2x_3^1x_4^0$, the algorithm of section 2.2 asks to subtract to f the monomial $\sigma_1^{3-2}\sigma_2^{2-1}\sigma_3^{1-0}\sigma_4^0 = \sigma_1\sigma_2\sigma_3$.

(a)

$$\sigma_{1}\sigma_{2}\sigma_{3} = (x_{1} + x_{2} + x_{3} + x_{4}) \times (x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4} + x_{3}x_{4})$$

$$\times (x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4} + x_{2}x_{3}x_{4})$$

$$= 3x_{1}x_{2}^{3}x_{3}x_{4} + 8x_{1}^{2}x_{2}^{2}x_{3}x_{4} + 8x_{2}^{2}x_{4}^{2}x_{1}x_{3} + 8x_{2}^{2}x_{3}^{2}x_{1}x_{4} + 8x_{1}^{2}x_{2}x_{4}^{2}x_{3}$$

$$+ 8x_{1}^{2}x_{2}x_{3}^{2}x_{4} + 8x_{2}x_{3}^{2}x_{4}^{2}x_{1} + 3x_{1}^{3}x_{2}x_{3}x_{4} + 3x_{2}x_{4}^{3}x_{1}x_{3} + 3x_{2}x_{3}^{3}x_{1}x_{4}$$

$$+ x_{1}^{3}x_{4}^{2}x_{3} + 3x_{2}^{2}x_{3}^{2}x_{4}^{2} + x_{1}^{2}x_{2}^{3}x_{3} + x_{3}^{2}x_{4}^{3}x_{2} + x_{2}^{2}x_{3}^{3}x_{1} + 3x_{1}^{2}x_{2}^{2}x_{3}^{2}$$

$$+ x_{1}^{2}x_{3}^{3}x_{4} + x_{3}^{3}x_{4}^{2}x_{2} + x_{2}^{3}x_{3}^{2}x_{4} + x_{2}^{2}x_{3}^{3}x_{4} + x_{3}^{2}x_{4}^{3}x_{1} + x_{2}^{3}x_{3}^{2}x_{1}$$

$$+ x_{2}^{3}x_{4}^{2}x_{1} + x_{2}^{2}x_{4}^{3}x_{1} + x_{2}^{3}x_{4}^{2}x_{3} + x_{3}^{3}x_{4}^{2}x_{1} + x_{1}^{3}x_{2}^{2}x_{3} + x_{1}^{3}x_{3}^{2}x_{2}$$

$$+ x_{1}^{2}x_{4}^{3}x_{2} + 3x_{1}^{2}x_{2}^{2}x_{4}^{2} + x_{1}^{3}x_{3}^{2}x_{4} + x_{1}^{3}x_{2}^{2}x_{4} + 3x_{1}^{2}x_{3}^{2}x_{4}^{2} + x_{2}^{2}x_{4}^{3}x_{3}$$

$$+ x_{1}^{3}x_{4}^{2}x_{2} + x_{1}^{2}x_{2}^{3}x_{4} + x_{1}^{2}x_{4}^{3}x_{3} + x_{1}^{2}x_{3}^{3}x_{2}$$

$$= 8\Sigma_{4}x_{1}^{2}x_{2}^{2}x_{3}x_{4} + 3\Sigma_{4}x_{1}^{3}x_{2}x_{3}x_{4} + 3\Sigma_{4}x_{1}^{2}x_{2}^{2}x_{3}^{2} + \Sigma_{4}x_{1}^{3}x_{2}^{2}x_{3}.$$

We find the 96 terms of the product $\sigma_1 \sigma_2 \sigma_3$ (see Ex. 2.2.12):

 $\Sigma_4 x_1^2 x_2^2 x_3 x_4$ has $\frac{4!}{2!2!} = 6$ terms, with the coefficient 8 : 48 terms.

 $\Sigma_4 x_1^3 x_2 x_3 x_4$ has $\frac{4!}{1!3!} = 4$ terms, with the coefficient 3: 12 terms.

 $\Sigma_4 x_1^2 x_2^2 x_3^2$ has $\frac{4!}{3!1!} = 4$ terms, with the coefficient 3 : 12 terms.

 $\Sigma_4 x_1^3 x_2^2 x_3$ has $\frac{4!}{1!1!1!1!} = 24$ terms, with the coefficient 1 : 24 terms...

We obtain this product with the following Maple instructions:

$$> P = (x + x_1).(x + x_2).(x + x_3)(x + x_4);$$

$$> p := \operatorname{expand}(P);$$

$$> q := \operatorname{coellect}(p, x);$$

$$> \sigma_1 := \operatorname{coeff}(q, x, 3); \sigma_2 := \operatorname{coeff}(q, x, 2); \sigma_3 := \operatorname{coeff}(q, x, 1); \sigma_4 := \operatorname{coeff}(q, x, 1);$$

$$> \operatorname{expand}(\sigma_1.\sigma_2.\sigma_3);$$

With sage:

(b) So

$$f_1 = f - \sigma_1 \sigma_2 \sigma_3$$

= $-8\Sigma_4 x_1^2 x_2^2 x_3 x_4 - 3\Sigma_4 x_1^3 x_2 x_3 x_4 - 3\Sigma_4 x_1^2 x_2^2 x_3^2$.

The leading of f_1 is $-3x_1^3x_2x_3x_4$, so we must subtract $-3\sigma_1^2\sigma_4$ to f_1 .

$$\sigma_1^2 \sigma_4 = (\Sigma_4 x_1)^2 (x_1 x_2 x_3 x_4)$$

$$= (\Sigma_4 x_1^2 + 2\Sigma_4 x_1 x_2) x_1 x_2 x_3 x_4$$

$$= \Sigma_4 x_1^3 x_2 x_3 x_4 + 2\Sigma_4 x_1^2 x_2^2 x_3 x_4,$$

therefore

$$f_2 = f - \sigma_1 \sigma_2 \sigma_3 + 3\sigma_1^2 \sigma_4 = -3\Sigma_4 x_1^2 x_2^2 x_3^2 - 2\Sigma_4 x_1^2 x_2^2 x_3 x_4.$$

(c) The leading term of f_2 is $-3x_1^2x_2^2x_3^2$, so must subtract $-3\sigma_3^2$ to f_2 .

$$\sigma_3^2 = (\Sigma_4 x_1 x_2 x_3)^2$$

= $\Sigma_4 x_1^2 x_2^2 x_3^2 + 2\Sigma_4 x_1^2 x_2^2 x_3 x_4$,

$$f_3 = f - \sigma_1 \sigma_2 \sigma_3 + 3\sigma_1^2 \sigma_4 + 3\sigma_3^2 = 4\Sigma_4 x_1^2 x_2^2 x_3 x_4.$$

(d) The leading term of f_3 is $4x_1^2x_2^2x_3x_4$, so we must subtract $4\sigma_2\sigma_4$ to f_3 .

$$\sigma_2 \sigma_4 = (\Sigma_4 x_1 x_2)(x_1 x_2 x_3 x_4)$$
$$= \Sigma_4 x_1^2 x_2^2 x_3 x_4,$$

so
$$f_4 = f - \sigma_1 \sigma_2 \sigma_3 + 3\sigma_1^2 \sigma_4 + 3\sigma_3^2 - 4\sigma_2 \sigma_4 = 0.$$

$$f = \Sigma_4 x_1^3 x_2^2 x_3 = \sigma_1 \sigma_2 \sigma_3 - 3\sigma_1^2 \sigma_4 - 3\sigma_3^2 + 4\sigma_2 \sigma_4.$$

Ex. 2.2.4 Let $f = x^3 + bx^2 + cx + d \in F[x]$ have roots $\alpha_1, \alpha_2, \alpha_3$ in the field L containing F, and let g be the polynomial defined in (2.17). Show carefully that

$$g(x) = x^3 + 2bx^2 + (b^2 + c)x + bc - d.$$

Proof. Let

$$f = x^3 + bx^2 + cx + d$$

= $(x - \alpha)(x - \beta)(x - \gamma)$
= $x^3 - \sigma_1(\alpha, \beta, \gamma)x^2 + \sigma_2(\alpha, \beta, \gamma)x - \sigma_3(\alpha, \beta, \gamma),$

which gives

$$\sigma_1(\alpha, \beta, \gamma) = -b,$$

$$\sigma_2(\alpha, \beta, \gamma) = +c,$$

$$\sigma_3(\alpha, \beta, \gamma) = -d.$$

Let

$$G(x) = (x - (x_1 + x_2))(x - (x_1 + x_3))(x - (x_2 + x_3)).$$

Then

$$g(x) = (x - (\alpha_1 + \alpha_2))(x - (\alpha_1 + \alpha_3))(x - (\alpha_2 + \alpha_3))$$

is obtained from G by the evaluation morphism which sends x_1, x_2, x_3 on $\alpha_1, \alpha_2, \alpha_3$.

Let
$$p = (x + x_1)(x + x_2)(x + x_3) = x + \sigma_1 x^2 + \sigma_2 x + \sigma_3$$
.

Then

$$G = (x - \sigma_1 + x_3)(x - \sigma_1 + x_2)(x - \sigma_1 + x_1)$$

$$= p(x - \sigma_1)$$

$$= (x - \sigma_1)^3 + \sigma_1(x - \sigma_1)^2 + \sigma_2(x - \sigma_1) + \sigma_3$$

$$= (x^3 - 3\sigma_1x^2 + 3\sigma_1^2x - \sigma_1^3) + (\sigma_1x^2 - 2\sigma_1^2x + \sigma_1^3) + (\sigma_2x - \sigma_1\sigma_2) + \sigma_3$$

$$= x^3 - 2\sigma_1x^2 + (\sigma_1^2 + \sigma_2)x + (\sigma_3 - \sigma_1\sigma_2).$$

The previous evaluation morphism sends σ_1 on $\sigma_1(\alpha_1, \alpha_2, \alpha_3) = -b$, σ_2 on $\sigma_2(\alpha_1, \alpha_2, \alpha_3) = c$, σ_3 on $\sigma_3(\alpha_1, \alpha_2, \alpha_3) = -d$.

$$g(x) = x^3 + 2bx^2 + (b^2 + c)x + bc - d.$$

In the example 2.2.6,

$$f(x) = x^3 + 2x^2 + x + 7,$$

where

$$b = 2, c = 1, d = 7,$$

 $\alpha_1, \alpha_2, \alpha_3$ being the roots of g in \mathbb{C} , we obtain

$$g(x) = (x - (\alpha_1 + \alpha_2))(x - (\alpha_1 + \alpha_3))(x - (\alpha_2 + x\alpha_3))$$

= $x^3 + 2bx^2 + (b^2 + c)x + bc - d$
= $x^3 + 4x^2 + 5x - 5$.

Ex. 2.2.5 This exercise will complete the proof of Theorem 2.2.7. Let $h \in F[u_1, \ldots, u_n]$ be a nonzero polynomial. The goal is to prove that $h(\sigma_1, \ldots, \sigma_n)$ is not the zero polynomial in x_1, \ldots, x_n .

- (a) If $cu_1^{b_1} \cdots u_n^{b_n}$ is a term of h, then use Exercise 2 to show that the leading term of $c\sigma_1^{b_1} \cdots \sigma_n^{b_n}$ is $cx_1^{b_1+\cdots+b_n}x_2^{b_2+\cdots+b_n} \cdots x_n^{b_n}$.
- (b) Show that $(b_1, \ldots, b_n) \mapsto (b_1 + \cdots + b_n, b_2 + \cdots + b_n, \ldots, b_n)$ is one-to-one.
- (c) To see why $h(\sigma_1, \ldots, \sigma_n)$ is nonzero, consider the term of $h(u_1, \ldots, u_n)$ for which the leading term of $c\sigma_1^{b_1} \cdots \sigma_n^{b_n}$ is maximal. Prove that this leading term is in fact the leading term of $h(\sigma_1, \ldots, \sigma_n)$, and explain how this proves what we want.

Proof. (a) Let $h \in F[u_1, u_2, \dots, u_n], h \neq 0$, and $cu_1^{b_1}u_2^{b_2}\cdots u_n^{b_n}$ a term of h.

The leading term of a product is the product of the leading term of the factors (Ex 2.2.2), and the leading term of σ_r is $x_1x_2\cdots x_r$ (Ex 2.2.1), so the leading term of $c\sigma_1^{b_1}\sigma_2^{b_2}\cdots\sigma_n^{b_n}$ is

$$LT(c\sigma_1^{b_1}\sigma_2^{b_2}\cdots\sigma_n^{b_n}) = c(x_1)^{b_1}(x_1x_2)^{b_2}\cdots(x_1x_2\cdots x_n)^{b_n}$$
$$= cx_1^{b_1+b_2+\cdots+b_n}x_2^{b_2+\cdots+b_n}\cdots x_n^{b_n}.$$

(b) If $a_i, b_i \in \mathbb{Z}$, the system of equations

$$b_1 + b_2 + \dots + b_n = a_1,$$

$$b_2 + \dots + b_n = a_2,$$

$$\dots$$

$$b_n = a_n,$$

is equivalent to

$$b_1 = a_1 - a_2,$$

 $b_2 = a_2 - a_3,$
...
 $b_{n-1} = a_n - a_{n-1},$
 $b_n = a_n.$

So the application $f: \mathbb{Z}^n \to \mathbb{Z}^n$ defined by

$$(b_1, b_2, \dots, b_n) \mapsto (b_1 + b_2 + \dots + b_n, b_2 + \dots + b_n, \dots, b_n)$$

is bijective (one-to-one and onto).

(c) As $h \neq 0$, there exists a term $cu_1^{b_1}u_2^{b_2}\cdots u_n^{b_n}$ of h such that the leading term $cx_1^{a_1}\cdots x_n^{a_n}$ of $c\sigma_1^{b_1}\sigma_2^{b_2}\cdots \sigma_n^{b_n}$ is maximal. Then every other term $c'u_1^{d_1}u_2^{d_2}\cdots u_n^{d_n}$ of h verifies $(b'_1,b'_2,\cdots,b'_n)\neq (b_1,b_2,\cdots,b_n)$ and the leading term $c'x_1^{a'_1}\cdots x_n^{a'_n}$ of $c'\sigma_1^{d_1}\sigma_2^{b_2}\cdots \sigma_n^{d_n}$ is less than $cx_1^{a_1}\cdots x_n^{a_n}$: it can not be greater because this term is maximal, and $(a_1,a_2,\cdots,a_n)\neq (a'_1,a'_2,\cdots,a'_n)$, since the application f in (b) is bijective. The graded lexicographic order defined on the monomials $x_1^{a_1}\cdots x_n^{a_n}$ being a total order, $x_1^{a_1}\cdots x_n^{a_n}>x_1^{a'_1}\cdots x_n^{a'_n}$.

So $cx_1^{a_1}\cdots x_n^{a_n}$ is greater than the leading terms of every other term $c'\sigma_1^{d_1}\sigma_2^{d_2}\cdots\sigma_n^{d_n}$ of $h(\sigma_1, \dots, \sigma_n) \neq 0$, so is a fortiori greater than every other term of $h(\sigma_1, \dots, \sigma_n)$. It can't be cancelled in the sum of these terms, and consequently $h(\sigma_1, \dots, \sigma_n) \neq 0$.

Ex. 2.2.6 Here is an example of polynomials which are not algebraically independent. Consider $x_1^2, x_1x_2, x_2^2 \in F[x_1, x_2]$, and let $\phi : F[u_1, u_2, u_3] \to F[x_1, x_2]$ be defined by

$$\phi(u_1) = x_1^2, \phi(u_2) = x_1 x_2, \phi(u_3) = x_2^2.$$

Show that ϕ is not one-to-one by finding a nonzero polynomial $h \in F[u_1, u_2, u_3]$ such that $\phi(h) = 0.$

Proof. Let $h = u_1 u_3 - u_2^2$.

Then the unique algebra morphism ϕ such that

$$\phi(u_1) = x_1^2, \phi(u_2) = x_1 x_2, \phi(u_3) = x_2^2$$

verifies

$$\phi(h) = \phi(u_1)\phi(u_3) - (\phi(u_2))^2 = x_1^2 x_2^2 - (x_1 x_2)^2 = 0.$$

So $h \neq 0$ is in the kernel of ϕ , and ϕ is not one-to-one. Thus x_1^2, x_1x_2, x_2^2 are not algebraically independent.

Ex. 2.2.7 Given a polynomial $f \in F[x_1, ..., x_n]$ and a permutation $\sigma \in S_n$, let $\sigma \cdot f$ denote the polynomial obtained from f by permuting the variables according to σ . Show that $\prod_{\sigma \in S_n} \sigma \cdot f$ and $\sum_{\sigma \in S_n} \sigma \cdot f$ are symmetric polynomials.

Proof. We use the relations (2.31) p. 48, (or (6.7) p. 138) proved in Exercises 6.4.3 and 6.4.4: for all $\sigma, \tau \in S_n$, and all $f, g \in F[x_1, x_2, \cdots, x_n]$:

$$\sigma \cdot (f+g) = \sigma \cdot f + \sigma \cdot g,\tag{2}$$

$$\sigma \cdot (fg) = (\sigma \cdot f)(\sigma \cdot g),\tag{3}$$

$$\tau \cdot (\sigma \cdot f) = (\tau \circ \sigma) \cdot f. \tag{4}$$

(We will use the notation $\tau \circ \sigma = \tau \sigma$.)

Let $g = \prod_{\sigma \in S_n} \sigma \cdot f$. Then, if $\tau \in S_n$, using (3) and (4)

$$\tau \cdot g = \tau \cdot \prod_{\sigma \in S_n} \sigma \cdot f$$
$$= \prod_{\sigma \in S_n} \tau \cdot (\sigma \cdot f)$$
$$= \prod_{\sigma \in S_n} (\tau \sigma) \cdot f.$$

As the application $S_n \to S_n, \sigma \mapsto \tau \sigma$ is bijective, the index change $\sigma' = \tau \sigma$ gives

$$\prod_{\sigma \in S_n} (\tau \sigma) \cdot f = \prod_{\sigma' \in S_n} \sigma' \cdot f = \prod_{\sigma \in S_n} \sigma \cdot f = g$$

So, for all $\tau \in S_n$, $\tau \cdot g = g$: thus g is a symmetric polynomial. Same proof for τ . $\sum_{\sigma \in S_n} \sigma \cdot f = \sum_{\sigma \in S_n} \sigma \cdot f$: use (2) in place of (3). Conclusion: $\prod_{\sigma \in S_n} \sigma \cdot f$ and $\sum_{\sigma \in S_n} \sigma \cdot f$ are symmetric polynomials. **Ex. 2.2.8** In this exercise, you will prove that if $\varphi \in F(x_1, \ldots, x_n)$ is symmetric, then φ is a rational function in $\sigma_1, \ldots, \sigma_n$ with coefficients in F. To begin the proof, we know that $\varphi = A/B$, where A and B are in $F[x_1, \ldots, x_n]$. Note that A and B need not be symmetric, only their quotient $\varphi = A/B$ is. Let

$$C = \prod_{\sigma \in S_n \setminus \{e\}} \sigma \cdot B,$$

where we are using the notation of Exercise 7.

- (a) Use Exercise 7 to show that BC is a symmetric polynomial.
- (b) Then use the symmetry of $\varphi = A/B$ to show that AC is a symmetric polynomial.
- (c) Use $\varphi = (AC)/(BC)$ and theorem 2.2.2 to conclude that φ is a rational function in the elementary symmetric polynomials with coefficients in F.

Proof. Let $\varphi = A/B \in F(x_1, \dots, x_n)$ a symmetric rational function:

$$\forall \sigma \in S_n, \ \sigma \cdot \varphi = \sigma \cdot A/\sigma \cdot B = \varphi = A/B.$$

(a) Let

$$C = \prod_{\sigma \in S_n \setminus \{e\}} \sigma \cdot B.$$

Then

$$BC = \prod_{\sigma \in S_n} \sigma \cdot B.$$

By Exercise 2.2.7, BC is then a symmetric polynomial.

(b) Note that the rules (2.31) for polynomials extend to rational functions. In particular, if $\varphi = A/B$, $\psi = A_1/B_1 \in F(x_1, \dots, x_n)$, and $\sigma \in S_n$,

$$\sigma \cdot (\varphi \psi) = (\sigma \cdot \varphi) \ (\sigma \cdot \psi).$$

Indeed,

$$(\sigma \cdot \varphi) \ (\sigma \cdot \psi) = \frac{\sigma \cdot A}{\sigma \cdot B} \frac{\sigma \cdot A_1}{\sigma \cdot B_1} = \frac{\sigma \cdot (AA_1)}{\sigma \cdot (BB_1)} = \sigma \cdot (\varphi \psi).$$

Using this property, for all $\sigma \in S_n$, from $AC = \varphi BC$, we obtain

$$\sigma \cdot (AC) = (\sigma \cdot \varphi)(\sigma \cdot (BC)) = \varphi BC = AC.$$

So AC is a symmetric polynomial.

(c) So $\varphi = \frac{AC}{BC}$ is the quotient of two symmetric polynomials, thus there exists $h, k \in F[x_1, \dots, x_n]$ such that

$$\varphi = \frac{AC}{BC} = \frac{h(\sigma_1, \dots, \sigma_n)}{k(\sigma_1, \dots, \sigma_n)} = \left(\frac{h}{k}\right)(\sigma_1, \dots, \sigma_n).$$

 $\varphi \in F(\sigma_1, \dots, \sigma_n)$ is a rational function in the elementary symmetric polynomials with coefficients in F.

Ex. 2.2.9 In the Historical Notes, we gave Gauss's definition of lexicographic order.

- (a) Give a definition (in English) of lexicographic order.
- (b) In the proof of Theorem 2.2.2, we showed that grade lexicographic order has the property that there are only finitely many monomials less than a given monomial. In contrast this property fails for lexicographic order. Give an explicit example to illustrate this.
- (c) In spite of part (b), lexicographic order does have an interesting finiteness property. Namely, prove that there is no infinite sequence of polynomials f_1, f_2, f_3, \ldots that have strictly decreasing terms according to lexicographic order.
- (d) Explain how part (c) allows one to prove Theorem 2.2.2 using lexicographic order.

Proof. (a) For the lexicographic order, $x_1^{a_1} \cdots x_n^{a_n} < x_1^{b_1} \cdots x_n^{b_n}$ is equivalent by definition to

$$\exists j \in [1, n], (\forall i \in \mathbb{N}, 1 \le i < j \Rightarrow a_i = b_i) \text{ and } a_j < b_j.$$

(The property $(\forall i \in \mathbb{N}, \ 1 \leq i < j \Rightarrow a_i = b_i)$ is automatically verified for j = 1, since $1 \leq i < j$ is false, so the implication is true.)

In informal terms:

 $a_1 < b_1$ or $(a_1 = b_1 \text{ and } a_2 < b_2)$ or $(a_1 = b_1, a_2 = b_2 \text{ and } a_3 < b_3)$ or ...

In other words, $x_1^{a_1} \cdots x_n^{a_n} < x_1^{b_1} \cdots x_n^{b_n}$ iff the first subscript i such that $a_i \neq b_i$ exists and verifies $a_i < b_i$.

This relation \leq is a total order.

- (b) The monomials less than $x_1 = x_1^1 x_2^0 \cdots x_n^0$ for the lexicographic order contain the monomials $x_1^0 x_2^{a_2} \dots x_n^{a_n}$, where a_2, \dots, a_n are arbitrary integers in $\mathbb{N} = \mathbb{Z}_{\geq 0}$. There are infinitely many such monomials.
- (c) We show this property by induction on the numbers of variables x_i .

If there is a unique variable, say x_1 , then a strictly decreasing sequence of monomial $x_1^{n_0} > x_1^{n_2} > \cdots$, with $n_i \in \mathbb{N}$, is such that $n_0 > n_1 > \cdots$: such a sequence is necessary finite. This is a property of the natural order in \mathbb{N} : Every non empty subset of \mathbb{N} has a smallest element, so a strictly decreasing infinite sequence in \mathbb{N} doesn't exist.

Suppose that this property is true for n-1 variables, say x_2, \dots, x_n . Consider the sequence

$$x_1^{i_{1,1}} \cdots x_n^{i_{1,n}} > x_1^{i_{2,1}} \cdots x_n^{i_{2,n}} > \cdots > x_1^{i_{k,1}} \cdots x_n^{i_{k,n}} > \cdots.$$

By the induction hypothesis, for each fixed exponent $i_{k,1}$ of x_1 , there exists only finitely monomial in this sequence with this exponent for x_1 . As these exponents are at most $i_{1,1}$, the sequence is finite and the induction is done.

(d) The beginning of the demonstration of Theorem 2.2.2 remains unchanged with the lexicographic order. Then we builds a sequence

$$f, f_1 = f - cq, f_2 = f - cq - c_1q_1, \dots$$

of polynomials whose leading terms constitute a strictly decreasing sequence for this order, until $f_i = 0$. By (c), this sequence is finite, so one polynomial f_i is zero, which completes the algorithm.

Ex. 2.2.10 Apply the proof of theorem 2.2.2 to express $\sum_3 x_1^2 x_2$ in terms of $\sigma_1, \sigma_2, \sigma_3$. *Proof.* Explicitly,

$$f = \Sigma_3 x_1^2 x_2 = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2.$$

Note that $x_1^2x_2 = x_1^2x_2^1x_3^0$ is the leading term for the graded lexicographic order, so the following term in the sequence is $g = f - \sigma_1^{2-1}\sigma_2^{1-0}\sigma_3^0 = f - \sigma_1\sigma_2$.

$$\sigma_1 \sigma_2 = (x_1 + x_2 + x_3)(x_1 x_2 + x_1 x_3 + x_2 x_3)$$

$$= x_1^2 x_2 + x_1^2 x_3 + x_1 x_2 x_3 + x_1 x_2^2 + x_2^2 x_3 + x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2 + x_1 x_2 x_3$$

$$= f + 3x_1 x_2 x_3,$$

thus

$$f = \Sigma_3 x_1^2 x_2 = \sigma_1 \sigma_2 - 3\sigma_3.$$

Ex. 2.2.11 Let the roots of $y^3 + 2y^2 - 3y + 5$ be $\alpha, \beta, \gamma \in \mathbb{C}$. Find polynomials with integers coefficients that have the following roots:

- (a) $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$.
- (b) $\alpha + 1, \beta + 1, \text{ and } \gamma + 1.$
- (c) α^2, β^2 , and γ^2 .

(a)
$$f = y^3 + 2y^2 - 3y + 5 = (y - \alpha)(y - \beta)(y - \gamma) = y^3 - \sigma_1 y^2 + \sigma_2 y - \sigma_3,$$

so $\sigma_1 = -2, \sigma_2 = -3, \sigma_3 = -5.$
 $g = (y - \alpha \beta)(y - \alpha \gamma)(y - \beta \gamma)$
 $= y^3 - (\alpha \beta + \alpha \gamma + \beta \gamma)y^2 + (\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2)y + \alpha^2 \beta^2 \gamma^2$
 $= y^3 - \sigma_2 y^2 + \sigma_3 \sigma_1 y + \sigma_3^2$
 $= y^3 + 3y^2 + 10y + 25.$

 $y^3 + 3y^2 + 10y + 25$ is the polynomial whose roots are $\alpha\beta, \alpha\gamma, \beta\gamma$.

(b)

$$g = (y - \alpha - 1)(y - \beta - 1)(y - \gamma - 1)$$

$$= f(y - 1)$$

$$= (y - 1)^3 + 2(y - 1)^2 - 3(y - 1) + 5$$

$$= y^3 - 3y^2 + 3y - 1 + 2y^2 - 4y + 2 - 3y + 3 + 5$$

$$= y^3 - y^2 - 4y + 9.$$

(c) Let
$$h(y) = (y - \alpha^2)(y - \beta^2)(y - \gamma^2)$$
. Then
$$h(y^2) = (y^2 - \alpha^2)(y^2 - \beta^2)(y^2 - \gamma^2)$$

$$= (y - \alpha)(y - \beta)(y - \gamma)(y + \alpha)(y + \beta)(y + \gamma)$$

$$= (y^3 + 2y^2 - 3y + 5)(y^3 - 2y^2 - 3y - 5)$$

$$= (y^3 - 3y)^2 - (2y^2 + 5)^2$$

$$= y^6 - 6y^4 + 9y^2 - 4y^4 - 20y^2 - 25$$

$$= y^6 - 10y^4 - 11y^2 - 25.$$

Thus

$$h(y) = (y - \alpha^2)(y - \beta^2)(y - \gamma^2) = y^3 - 10y^2 - 11y - 25.$$

(In particular, $\sigma_2(\alpha^2, \beta^2, \gamma^2) = -11$, which we can verify directly: $\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 = \sigma_2^2 - 2\sigma_1\sigma_3 = 9 - 20 = -11$.)

Ex. 2.2.12 Consider the symmetric polynomial $f = \sum_n x_1^{a_1} \cdots x_n^{a_n}$.

- (a) Prove that f has n! terms when a_1, \ldots, a_n are distinct.
- (b) (More challenging) Suppose that the exponents a_1, \ldots, a_n break up into r disjoint groups so that exponent within the same group are equal, but exponents from different groups are unequal. Let l_i denote the number of elements in the ith group, so that $l_1 + l_2 + \cdots + l_r = n$. Prove that the number of terms in f is

$$\frac{n!}{l_1!\cdots l_r!}.$$

Proof. (a) Here we suppose that the exponents a_i are distinct

If
$$\sigma, \tau \in S_n$$
 and $\sigma \neq \tau$, then $x_{\sigma(1)}^{a_1} \cdots x_{\sigma(n)}^{a_n} \neq x_{\tau(1)}^{a_1} \cdots x_{\tau(n)}^{a_n}$.
Then $\Sigma_n x_1^{a_1} \cdots x_n^{a_n} = \sum_{\sigma \in S_n} x_{\sigma(1)}^{a_1} \cdots x_{\sigma(n)}^{a_n}$ has $n! = |S_n|$ terms.

(b) Now we suppose that the exponents have same value on $I_1 = [\![1, l_1]\!]$ and on each interval $I_k = [\![l_1 + \cdots + l_{k-1} + 1, l_1 + \cdots + l_k]\!]$, $(k = 2, \cdots, r)$, with distinct constants on each interval.

The terms of $\Sigma_n x_1^{a_1} \cdots x_n^{a_n}$ are the terms of the image of the application

$$\varphi: \begin{array}{ccc} S_n & \to & F[x_1, \cdots, x_n] \\ \sigma & \mapsto & x_{\sigma(1)}^{a_1} \cdots x_{\sigma(n)}^{a_n} = \sigma \cdot (x_1^{a_1} \cdots x_n^{a_n}). \end{array}$$

This image is the orbit \mathcal{O}_t of $t = x_1^{a_1} \cdots x_n^{a_n}$ for the group operation defined by $(\sigma, f) \mapsto \sigma \cdot f$.

As $|\mathcal{O}_t| = |S_n|/|\mathrm{Stab}_{S_n}(t)|$, it is sufficient to compute the cardinality of this stabilizer $S = \mathrm{Stab}_{S_n}(t)$, stabilizer in S_n of $x_1^{a_1} \cdots x_n^{a_n}$:

$$S = \{ \sigma \in S_n \mid x_{\sigma(1)}^{a_1} \cdots x_{\sigma(n)}^{a_n} = x_1^{a_1} \cdots x_n^{a_n} \}.$$

Note that $\sigma \in S$ iff σ applies I_k on itself:

$$\sigma(I_k) = I_k, k = 1, \dots, r.$$

Let ψ the application

$$\psi: \begin{array}{ccc} S & \to & S(I_1) \times S(I_2) \times \cdots S(I_r) \\ \sigma & \mapsto & (\sigma_1, \sigma_2, \cdots, \sigma_r) \end{array}$$

where $\sigma_k = \sigma|_{I_k}$ is the restriction of σ to I_k .

 ψ is bijective, so

$$|S| = l_1! l_2! \cdots l_r!.$$

So the number of terms in $\sum_{n} x_1^{a_1} \cdots x_n^{a_n}$, equal to the cardinality of the orbit of the monomial t, is equal to

$$|\mathcal{O}_t| = |S_n|/|\operatorname{Stab}_{S_n}(x_1^{a_1} \cdots x_n^{a_n})| = \frac{n!}{l_1! l_2! \cdots l_r!}$$

Ex. 2.2.13 Let $g_1, g_2 \in F[x_1, ..., x_n]$ be homogeneous of total degree d_1, d_2 .

- (a) Show that g_1g_2 is homogeneous of total degree $d_1 + d_2$.
- (b) When is $g_1 + g_2$ homogeneous?

Proof. (a) Every term m of g_1g_2 is a product of a term m_1 of g_1 with a term m_2 of g_2 . $\deg(m) = \deg(m_1m_2) = \deg(m_1) + \deg(m_2) = d_1 + d_2$. So g_1g_2 is homogeneous of degree $d_1 + d_2$.

(b) $g_1 + g_2$ is homogeneous iff $d_1 = d_2$.

Ex. 2.2.14 We define the weight of $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$ to be $a_1 + 2a_2 + \cdots + na_n$.

- (a) Prove that $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$ is homogeneous and that its weight is the same as its total degree when considered as a polynomial in x_1, \ldots, x_n .
- (b) Let $f = F(x_1, ..., x_n]$ be symmetric and homogeneous of total degree d. Show that f is a linear combination of products $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$ of weight d.
- *Proof.* (a) By Ex. 2.2.13, each σ_k being homogeneous of degree k, the product $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$ is homogeneous. As $\deg(\sigma_k) = k$, $\deg(\sigma_1^{a_1} \cdots \sigma_n^{a_n}) = a_1 + 2a_2 + \cdots + na_n$ is equal to the weight of $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$.
 - (b) Since f is symmetric, f is a linear combination of products $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$. These products being homogeneous of degree $a_1 + 2a_2 + \cdots + na_n$, and f being homogeneous, by Ex 2.2.13(b), each term of this sum has degree d.

Conclusion : f is a linear combination of products $\sigma_1^{a_1} \cdots \sigma_n^{a_n}$ of weight d.

Ex. 2.2.15 Given a polynomial $f \in F[x_1, ..., x_n]$, let $\deg_i(f)$ be the maximal exponent of x_i which appears in f. Thus $f = x_1^3x_2 + x_1x_2^4$ has degree $\deg_1(f) = 3$ and $\deg_2(f) = 4$.

- (a) If f is symmetric, explain why the $\deg_i(f)$ are the same for i = 1, ..., n.
- (b) Show that $\deg_i(\sigma_1^{a_1} \cdots \sigma_n^{a_n}) = a_1 + a_2 + \cdots + a_n \text{ for } i = 1, \dots, n.$
- *Proof.* (a) If x_1 appears in a term $cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ of f, then the transposition $\tau=(1,2)$ applied to f show that $cx_2^{a_1}x_1^{a_2}\cdots x_n^{a_n}$ is a term of f, so x_2 appears in a term of f with the same exponent. Thus the maximal exponent is the same for the two variables:

$$\deg_1(f) = \deg_2(f),$$

and the same is true for any pair of variables.

(b) As $\sigma_k = \sum_{1 \leq i_1 < \dots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$, $\deg_i(\sigma_k) = 1$. For polynomial of one variable x, $\deg(pq) = \deg(p) + \deg(q)$, and $\deg_1(f)$ is the degree in x_1 of f as an element of $k[x_2, \dots, x_n][x_1]$, so

$$\deg_i(fg) = \deg_i(f) + \deg_i(g).$$

Therefore $\deg_i(\sigma_1^{a_1}\cdots\sigma_n^{a_n})=a_1\deg_i(\sigma_1)+\cdots+a_n\deg_i(\sigma_n)=a_1+\cdots+a_n.$

Ex. 2.2.16 This exercise is based on [7, pp. 110-112] and will express the discriminant $\Delta = (x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2$ in terms of the elementary symmetric functions without using a computer. We will use the terminology of Exercises 14 and 15. Note that Δ is homogeneous of total degree 6 and $\deg_i(\Delta) = 4$ for i = 1, 2, 3.

- (a) Find all products $\sigma_1^{a_1}\sigma_2^{a_2}\sigma_3^{a_3}$ of weight 6 and $\deg_i(\sigma_1^{a_1}\sigma_2^{a_2}\sigma_3^{a_3}) \leq 4$.
- (b) Explain how part (a) implies that there are constants l_1, \ldots, l_5 such that

$$\Delta = l_1 \sigma_3^2 + l_2 \sigma_1 \sigma_2 \sigma_3 + l_3 \sigma_1^3 \sigma_3 + l_4 \sigma_2^3 + l_5 \sigma_1^2 \sigma_2^2.$$

- (c) We will compute the l_i by using the universal property of the elementary symmetric polynomial. For example, to determine l_1 , use the cube roots of unity $1, \omega, \omega^2$ to show that $x^3 1$ has coefficient -27. By applying the ring homomorphism defined by $x_1 \mapsto 1, x_2 \mapsto \omega, x_3 \mapsto \omega^2$ to part (b), conclude that $l_1 = -27$.
- (d) Show that $x^3 x$ has roots $0, \pm 1$ and discriminant 4. By adapting the argument of part (c), conclude that $l_4 = -4$.
- (e) Similarly, use $x^3 2x^2 + x$ to show that $l_5 = 1$.
- (f) Next, note that $x^3 2x^2 x + 2$ has roots $\pm 1, 2$ and use this (together with the known values of l_1, l_4, l_5)) to conclude that $l_2 4l_3 = 34$.
- (g) Finally use $x^3 3x^2 + 3x 1$ to show $l_2 + 3l_3 = 6$. Using part (f), this implies $l_2 = 18, l_3 = -4$ and gives the usual formula for Δ .

Proof. (a) By Ex. 14,15, to find all products $\sigma_1^{a_1}\sigma_2^{a_2}\sigma_3^{a_3}$ of weight 6 verifying $\deg_i(\sigma_1^{a_1}\sigma_2^{a_2}\sigma_3^{a_3}) \le 4$, it suffices to solve the system of equations

$$\begin{cases} a_1 + 2a_2 + 3a_3 = 6 \\ a_1 + a_2 + a_3 \le 4 \end{cases}$$

The solutions of the first equation are

$$(0,0,2), (1,1,1), (3,0,1), (0,3,0), (2,2,0), (4,1,0)(6,0,0).$$

Only the two last solutions don't verify the second condition. So the solutions of the system are

$$(0,0,2), (1,1,1), (3,0,1), (0,3,0), (2,2,0),$$

which correspond to the symmetric polynomials

$$\sigma_3^2, \sigma_1\sigma_2\sigma_3, \sigma_1^3\sigma_3, \sigma_2^3, \sigma_1^2\sigma_2^2.$$

(b) As Δ is homogeneous of total degree $\deg(\Delta) = 6$ and as $\deg_i(\Delta) = 4$, i = 1, 2, 3, by Ex. 14,15, Δ is a linear combination of products $\sigma_1^{a_1} \sigma_2^{a_2} \sigma_3^{a_3}$ of weight 6.

Moreover, the relative degree to the i-th variable of each of these products is at most 4: if f has the form

$$f = f_1 + c\sigma_1^4 \sigma_2 + d\sigma_1^6$$

= $f_1 + c(x_1 + x_2 + x_3)^4 (x_1 x_2 + x_1 x_3 + x_2 x_3) + d(x_1 + x_2 + x_3)^6$,

where $\deg_i(f_1) \leq 4$, then the comparison of degree of x_1^6 gives d = 0, and the term in x_1^5 gives c = 0.

So there exists coefficients $l_i \in \mathbb{Z}$ such that

$$\Delta = l_1 \sigma_3^2 + l_2 \sigma_1 \sigma_2 \sigma_3 + l_3 \sigma_1^3 \sigma_3 + l_4 \sigma_2^3 + l_5 \sigma_1^2 \sigma_2^2.$$

(c) The discriminant of $x^3 - 1$ is equal to

$$\Delta(1, \omega, \omega^2) = (1 - \omega)^2 (1 - \omega^2)^2 (\omega - \omega^2)^2$$

$$\sqrt{\Delta} = (1 - \omega)(1 - \omega^2)(\omega - \omega^2)$$

$$= -\begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix}$$

$$= -(3\omega^2 - 3\omega) = 3(\omega - \omega^2)$$

$$= 3i\sqrt{3}.$$

Therefore

$$\Delta(1,\omega,\omega^2) = -27.$$

The ring homomorphism defined by $x_1 \mapsto 1, x_2 \mapsto \omega, x_3 \mapsto \omega^2$ sends Δ on $\Delta(1, \omega, \omega^2)$ and σ_k on $\sigma_k(1, \omega, \omega^2)$. As

$$\sigma_1(1, \omega, \omega^2) = \sigma_2(1, \omega, \omega^2) = 0, \sigma_3(1, \omega, \omega^2) = 1,$$

 $l_1 = \Delta(1, \omega, \omega^2) = -27.$

- (d) $x^3 x = x(x-1)(x+1)$ has roots 0, 1, -1. $\Delta(0, 1, -1) = (0-1)^2(0+1)^2(1+1)^2 = 4 \text{ and } \sigma_1 = 0, \sigma_2 = -1, \sigma_3 = 0, \text{ so } l_4\sigma_2^3 = -l_4 = 4.$ $l_4 = -4.$
- (e) $x^3 2x^2 + x = x(x-1)^2$ has a discriminant equal to 0, and $\sigma_1 = 2, \sigma_2 = 1, \sigma_3 = 0$, so $l_4 + 4l_5 = 0$, with $l_4 = -4$.
- (f) $x^3 2x^2 x + 2 = x^2(x 2) (x 2) = (x^2 1)(x 2)$ has roots 1, -1, 2. Its discriminant is $\Delta = 2^2 1^2 3^2 = 36$, with $\sigma_1 = 2$, $\sigma_2 = -1$, $\sigma_3 = -2$.

 $36 = l_1 \sigma_3^2 + l_2 \sigma_1 \sigma_2 \sigma_3 + l_3 \sigma_1^3 \sigma_3 + l_4 \sigma_2^3 + l_5 \sigma_1^2 \sigma_2^2$ = $4l_1 + 4l_2 - 16l_3 - l_4 + 4l_5$ = $-4 \times 27 + 4l_2 - 16l_3 + 4 + 4$.

With a division by 4, $l_2 - 4l_3 = \frac{36 + 4 \times 27 - 8}{4} = 9 + 27 - 2 = 34$.

$$l_2 - 4l_3 = 34.$$

(g) $x^3-3x^2+3x-1=(x-1)^3$ has a discriminant equal to 0, with $\sigma_1=3,\sigma_2=3,\sigma_3=1$.

$$0 = l_1 + 9l_2 + 27l_3 + 27l_4 + 81l_5$$

= -27 + 9l_2 + 27l_3 - 27 \times 4 + 81.

With a division by 9, $l_2 + 3l_3 = 3 + 12 - 9 = 6$. So l_2, l_3 are solutions of the system of equations

$$\begin{cases} l_2 - 4l_3 &= 34, \\ l_2 + 3l_3 &= 6. \end{cases}$$

Thus $l_2 = 18, l_3 = -4$, and

Thus

$$\Delta = -27\sigma_3^2 + 18\sigma_1\sigma_2\sigma_3 - 4\sigma_1^3\sigma_3 - 4\sigma_2^3 + \sigma_1^2\sigma_2^2$$

Ex. 2.2.17 Use the Newton identities (2.22) to express the power sum s_2, s_3, s_4 in terms of the elementary symmetric polynomials $\sigma_1, \sigma_2, \sigma_3, \sigma_4$.

Proof. $s_r = x_1^r + x_2^r + \dots + x_n^r$.

We suppose here that the number n of variables is at least 4. Then

$$s_r = \sigma_1 s_{r-1} - \sigma_2 s_{r-2} + \dots + (-1)^r \sigma_{r-1} s_1 + (-1)^{r-1} r \sigma_r.$$

$$s_{2} = \sigma_{1}s_{1} - 2\sigma_{2}$$

$$= \sigma_{1}^{2} - 2\sigma_{2},$$

$$s_{3} = \sigma_{1}s_{2} - \sigma_{2}s_{1} + 3\sigma_{3}$$

$$= \sigma_{1}(\sigma_{1}^{2} - 2\sigma_{2}) - \sigma_{2}\sigma_{1} + 3\sigma_{3}$$

$$= \sigma_{1}^{3} - 3\sigma_{1}\sigma_{2} + 3\sigma_{3},$$

$$s_{4} = \sigma_{1}s_{3} - \sigma_{2}s_{2} + \sigma_{3}s_{1} - 4\sigma_{4}$$

$$= \sigma_{1}(\sigma_{1}^{3} - 3\sigma_{1}\sigma_{2} + 3\sigma_{3}) - \sigma_{2}(\sigma_{1}^{2} - 2\sigma_{2}) + \sigma_{3}\sigma_{1} - 4\sigma_{4}$$

$$= \sigma_{1}^{4} - 4\sigma_{1}^{2}\sigma_{2} + 4\sigma_{1}\sigma_{3} + 2\sigma_{2}^{2} - 4\sigma_{4}.$$

Verification with Sage:

 $s_1 = \sigma_1$

```
e = SymmetricFunctions(QQ).e()
e1, e2, e3, e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4)
R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = 'lex')
J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
G = J.groebner_basis()
s2 = x0^2 + x1^2 + x2^2 + x3^2
s3 = x0^3 + x1^3 + x2^3 + x3^3
s4 = x0^4 + x1^4 + x2^4 + x3^4
g2, g3, g4 = s2.reduce(G),s3.reduce(G),s4.reduce(G)
var('sigma_1,sigma_2,sigma_3,sigma_4')
h2 = g2.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h3 = g3.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h4 = g4.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h2, h3, h4
(\sigma_1^2 - 2\sigma_2, \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3, \sigma_1^4 - 4\sigma_1^2\sigma_2 + 2\sigma_2^2 + 4\sigma_1\sigma_3 - 4\sigma_4).
```

Ex. 2.2.18 Suppose that complex numbers α, β, γ satisfy the equations

$$\alpha + \beta + \gamma = 3,$$

$$\alpha^2 + \beta^2 + \gamma^2 = 5,$$

$$\alpha^3 + \beta^3 + \gamma^3 = 12.$$

Show that $\alpha^n + \beta^n + \gamma^n \in \mathbb{Z}$ for all $n \geq 4$. Also compute $\alpha^4 + \beta^4 + \gamma^4$.

Proof. α, β, γ are the root of

$$p = (x - \alpha)(x - \beta)(x - \gamma) = x^3 - \sigma_1 x^2 + \sigma_2 x - \sigma_3.$$

(We write σ_i in place of $\sigma_i(\alpha, \beta, \gamma)$.)

By Exercise 17, with n=3:

$$\begin{cases} 3 = s_1 = \sigma_1 \\ 5 = s_2 = \sigma_1^2 - 2\sigma_2 \\ 12 = s_3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3. \end{cases}$$

Thus $\sigma_1 = 3$, $\sigma_2 = \frac{1}{2}(\sigma_1^2 - 5) = \frac{1}{2}(9 - 5) = 2$.

$$\sigma_3 = \frac{1}{3}(12 - \sigma_1^3 + 3\sigma_1\sigma_2) = 4 + \sigma_1\sigma_2 - \frac{\sigma_1^3}{3} = 4 + 6 - 9 = 1.$$

 $\sigma_3 = \frac{1}{3}(12 - \sigma_1^3 + 3\sigma_1\sigma_2) = 4 + \sigma_1\sigma_2 - \frac{\sigma_1^3}{3} = 4 + 6 - 9 = 1.$ α, β, γ are the roots of $p = x^3 - 3x^2 + 2x - 1$. If $n \ge 4$, $\alpha^n = 3\alpha^{n-1} - 2\alpha^{n-2} + \alpha^{n-3}$, and similar equations for β, γ . Summing these equations, we obtain

$$s_n = 3s_{n-1} - 2s_{n-2} + s_{n-3}. (5)$$

(This is a particular case of Newton identities (2.22).)

 $s_0 = 3, s_1, s_2, s_3$ are in \mathbb{Z} . If we suppose that $s_k \in \mathbb{Z}$ for all $k, 1 \leq k < n$, then (5) show that $s_n \in \mathbb{Z}$, and the induction is done.

$$\forall k \in \mathbb{N}, \ s_n \in \mathbb{Z}.$$

In particular,
$$s_4 = 3s_3 - 2s_2 + 3s_1 = 3 \times 12 - 2 \times 5 + 3 \times 3 = 35$$
.

Suppose that F is a field of characteristic 0. Ex. 2.2.19

- (a) Use the Newton identities (2.22) and Theorem 2.2.2 to prove that every symmetric polynomial in $F[x_1, \ldots, x_n]$ can be expressed as a polynomial in s_1, \ldots, s_n .
- (b) Show how to express $\sigma_4 \in F[x_1, x_2, x_3, x_4]$ as a polynomial in s_1, s_2, s_3, s_4 .

Proof. For all $r, 1 \le r \le n$,

$$s_r = \sigma_1 s_{r-1} - \sigma_2 s_{r-2} + \dots + (-1)^r \sigma_{r-1} s_1 + (-1)^{r-1} r \sigma_r$$

and $\sigma_1 = s_1$.

If we suppose that $\sigma_1, \sigma_2, \cdots, \sigma_{r-1}$ are polynomials in s_1, s_2, \cdots, s_n , the characteristic of the field F being 0 (this allows the division by r), then

 $\sigma_r = \frac{(-1)^{r-1}}{r} (s_r - \sigma_1 s_{r-1} + \sigma_2 s_{r-2} + \dots + (-1)^{r-1} \sigma_{r-1} s_1) \text{ is a polynomial in } s_1, \dots, s_n.$ Conclusion: for all $r, 1 \leq r \leq n$, σ_r can be expressed as a polynomial in s_1, \dots, s_n .

By Ex. 2.2.17, we obtain

$$\begin{split} \sigma_1 &= s_1, \\ \sigma_2 &= -\frac{1}{2}(s_2 - \sigma_1 s_1) \\ &= \frac{1}{2}(s_1^2 - s_2), \\ \sigma_3 &= \frac{1}{3}(s_3 - \sigma_1 s_2 + \sigma_2 s_1) \\ &= \frac{1}{3}\left[s_3 - s_1 s_2 + \frac{1}{2}s_1(s_1^2 - s_2)\right] \\ &= \frac{1}{6}(2s_3 + s_1^3 - 3s_1 s_2), \\ \sigma_4 &= -\frac{1}{4}(s_4 - \sigma_1 s_3 + \sigma_2 s_2 - \sigma_3 s_1) \\ &= -\frac{1}{4}\left[s_4 - s_1 s_3 + \frac{1}{2}s_2(s_1^2 - s_2) - \frac{s_1}{6}(2s_3 - 3s_1 s_2 + s_1^3)\right] \\ &= -\frac{1}{24}\left[6s_4 - 6s_1 s_3 + 3s_2(s_1^2 - s_2) - s_1(2s_3 - 3s_1 s_2 + s_1^3)\right] \end{split}$$

Ex. 2.2.20 Let \mathbb{F}_2 be the field with two elements. Show that in $\mathbb{F}_2[x_1,\ldots,x_n]$, it is impossible to express σ_2 as a polynomial in s_1,\ldots,s_n when $n\geq 2$.

Proof. Suppose that $\sigma_2 = f(s_1, s_2, \dots, s_n)$, where f is a polynomial with coefficients in \mathbb{F}_2 . If we use the evaluation defined by $x_1 = x_2 = \dots = x_n = 0$, we obtain $0 = f(0, \dots, 0)$.

With the evaluation defined by $x_1 = x_2 = 1$ and $x_i = 0, i > 2$, as $\sigma_2 = \sum_{i < j} x_i x_j$, then $\sigma_2(1, 1, 0, \dots, 0) = 1 \times 1 = 1$ and $s_k(1, 1, 0, \dots, 0) = 1^k + 1^k = 1 + 1 = 0$, so $1 = f(0, \dots, 0)$. As $1 \neq 0$ in \mathbb{F}_2 , this is a contradiction. So it is impossible to express σ_2 as a polynomial in s_1, \dots, s_n when $n \geq 2$.

2.3 COMPUTING WITH SYMMETRIC POLYNOMIALS

 $= \frac{1}{24}(-6s_4 + 8s_1s_3 - 6s_1^2s_2 + 3s_2^2 + s_1^4).$

Ex. 2.3.1 Examples 2.3.1 and 2.3.2 showed that the roots of $y^3 + 41y^2 + 138y + 125$ are the cubes of the roots of $y^3 + 2y^2 - 3y + 5$. Verify this numerically.

Proof. We repeat Examples 2.3.1 and 2.3.2 with Sage:

• We build the Groebner basis of the ideal $\langle e_1 - y_1, e_2 - y_2, e_3 - y_3 \rangle$, where e_1, e_2, e_3 are the elementary symmetric polynomials in x_0, x_1, x_2 :

e = SymmetricFunctions(QQ).e()
e1, e2, e3 = e([1]).expand(3),e([2]).expand(3),e([3]).expand(3)
R.<x0,x1,x2,y1,y2,y3> = PolynomialRing(QQ, order = 'degrevlex')

```
J = R.ideal(e1-y1, e2-y2, e3-y3)
G = J.groebner_basis()
```

• We compute the coefficients of $f = (x - x_0^3)(x - x_1^3)(x - x_2^3)$ as polynomials in x_1, x_2, x_3 :

 $f = (x-x0^3) * (x-x1^3) * (x-x2^3)$ coeffs = f.coefficients(x, sparse = False) coeffs = map(lambda c : R(c), coeffs)coeffs

$$\left[-x_0^3x_1^3x_2^3,\ x_0^3x_1^3+x_0^3x_2^3+x_1^3x_2^3,\ -x_0^3-x_1^3-x_2^3,1\right]$$

• The same coefficients as polynomials in $\sigma_1, \sigma_2, \sigma_3$:

var('sigma_1,sigma_2,sigma_3')
ncoeffs = [c.reduce(G) for c in coeffs]
nncoeffs = [c.subs(y1 = sigma_1,y2 = sigma_2,y3 = sigma_3) for c in ncoeffs]
nncoeffs

$$\left[-\sigma_3^3, \ \sigma_2^3 - 3\,\sigma_1\sigma_2\sigma_3 + 3\,\sigma_3^2, \ -\sigma_1^3 + 3\,\sigma_1\sigma_2 - 3\,\sigma_3, \ 1 \right]$$

• We apply the substitution $\sigma_1 \mapsto -2$, $\sigma_2 \mapsto -3$, $\sigma_3 \mapsto -5$ and compute the polynomial p whose roots are α_1^3 , α_2^3 , α_3^3 , where α_1 , α_2 , α_3 are the roots of $y^3 + 2y^2 - 3y + 5$.

nncoeffs = [c.subs(sigma_1 = -2, sigma_2 = -3, sigma_3 = -5) for c in nncoeffs] $p = sum(nncoeffs[i]*y^i for i in range(1+f.degree(x)))$ p

$$y^3 + 41y^2 + 138y + 125$$

• Numerical verification:

q = y^3+2*y^2-3*y+5
1 = [c[0]^3 for c in q.roots()]
1

 $[-37.399476110, -1.8002619448 - 0.31835473525 \ i, -1.8002619448 + 0.31835473525 \ i]$

Ex. 2.3.2 Use the method of Example 2.3.1 or 2.3.2 to find the cubic polynomial whose roots are the fourth powers of the roots of the polynomial $y^3 + 2y^2 - 3y + 5$.

Proof. Same method in Sage as in Ex.2.3.1

e = SymmetricFunctions(QQ).e()
e1, e2, e3 = e([1]).expand(3),e([2]).expand(3),e([3]).expand(3)
R.<x0,x1,x2,y1,y2,y3> = PolynomialRing(QQ, order = 'degrevlex')
J = R.ideal(e1-y1, e2-y2, e3-y3)
G = J.groebner_basis()
f = (x-x0^4) * (x-x1^4) * (x-x2^4)
coeffs = f.coefficients(x, sparse = False)
coeffs = map(lambda c : R(c), coeffs)
coeffs

$$\left[-x_0^4x_1^4x_2^4, x_0^4x_1^4 + x_0^4x_2^4 + x_1^4x_2^4, -x_0^4 - x_1^4 - x_2^4, 1\right]$$

var('sigma_1,sigma_2,sigma_3,y')

ncoeffs = [c.reduce(G) for c in coeffs]

nncoeffs = $[c.subs(y1 = sigma_1,y2 = sigma_2,y3 = sigma_3)$ for c in ncoeffs] nncoeffs

$$\left[-x_0^4x_1^4x_2^4, x_0^4x_1^4 + x_0^4x_2^4 + x_1^4x_2^4, -x_0^4 - x_1^4 - x_2^4, 1\right]$$

nnncoeffs = [c.subs(sigma_1 = -2, sigma_2 = -3, sigma_3 = -5) for c in nncoeffs]
p = sum(nnncoeffs[i]*y^i for i in range(1+f.degree(x)))
p

$$y^3 - 122y^2 - 379y - 625$$

So the cubic polynomial whose roots are the fourth powers of the roots of the polynomial $y^3 + 2y^2 - 3y + 5$ is

$$y^3 - 122\,y^2 - 379\,y - 625.$$

Ex. 2.3.3 Express $\Sigma_3 x_1^3 x_2^2$ in terms of elementary symmetric polynomials.

Proof. Explicitly,

$$f = \Sigma_3 x_1^3 x_2^2 = x_1^2 x_2^3 + x_1^2 x_3^3 + x_1^3 x_2^2 + x_1^3 x_3^2 + x_2^2 x_3^3 + x_2^3 x_3^2.$$

Note that $x_1^3x_2^2=x_1^3x_2^2x_3^0$ is the leading term for the graded lexicographic order, so the following term in the sequence is $g=f-\sigma_1^{3-2}\sigma_2^{2-0}\sigma_3^0=f-\sigma_1\sigma_2^2$.

$$\begin{split} \sigma_1\sigma_2^2 &= (x_1+x_2+x_3)(x_1x_2+x_1x_3+x_2x_3)^2 \\ &= (x_1+x_2+x_3)(x_1^2x_2^2+x_1^2x_3^2+x_2^2x_3^2+2x_1x_2x_3(x_1+x_2+x_3)) \\ &= x_1^2x_2^3+x_1^2x_3^3+x_1^3x_2^2+x_1^3x_3^2+x_2^2x_3^3+x_2^3x_3^2+x_1x_2x_3(x_1x_2+x_1x_3+x_2x_3)+2\sigma_3\sigma_1^2 \\ &= f+\sigma_3\sigma_2+2\sigma_3\sigma_1^2, \end{split}$$

thus

$$f = \sigma_1 \sigma_2^2 - \sigma_3 \sigma_2 - 2\sigma_3 \sigma_1^2$$

Verification with Sage:

R.<x1,x2,x3,y1,y2,y3> = PolynomialRing(QQ, order = 'degrevlex') elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(3).subs(x0=x1, x1=x2, x2=x3) for i in range(5)] J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3) G = J.groebner_basis() D = x1^3*x2^2; u=D+D.subs(x1=x2,x2=x1)+D.subs(x1=x3,x2=x2)+D.subs(x1=x2,x2=x3)+D.subs(x1=x3,x2=x2) var('sigma_1,sigma_2,sigma_3') u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3) $\sigma_1\sigma_2^2 - 2\sigma_1^2\sigma_3 - \sigma_2\sigma_3$

Ex. 2.3.4 Given a cubic $x^3 + bx^2 + cx + d$, what condition must b, c, d satisfy in order that one root be the average of the other two?

Proof. • Suppose that the polynomial $f = x^3 + bx^2 + cx + d = (x - x_1)(x - x_2)(x - x_3)$ has one root which is the average of the other two. We choose a numbering of the roots such that

$$x_3 = \frac{x_1 + x_2}{2}.$$

Then

$$-b = \sigma_1 = x_1 + x_2 + \left(\frac{x_1 + x_2}{2}\right)$$

$$= \frac{3}{2}(x_1 + x_2),$$

$$c = \sigma_2 = x_1x_2 + x_2x_3 + x_1x_3$$

$$= x_1x_2 + \left(\frac{x_1 + x_2}{2}\right)(x_1 + x_2)$$

$$= x_1x_2 + \frac{1}{2}(x_1 + x_2)^2,$$

$$-d = \sigma_3 = x_1x_2 \left(\frac{x_1 + x_2}{2}\right)$$

$$= \frac{1}{2}(x_1 + x_2)x_1x_2.$$

Let $s = x_1 + x_2, p = x_1x_2$. The preceding equations give

$$b = -\frac{3}{2}s,\tag{6}$$

$$c = p + \frac{1}{2}s^2, (7)$$

$$d = -\frac{1}{2}sp. (8)$$

We eliminate s, p from these equations:

$$s = -\frac{2}{3}b,$$

$$p = c - \frac{1}{2}\left(-\frac{2}{3}b\right)^{2}$$

$$= c - \frac{2}{9}b^{2},$$

$$d = -\frac{1}{2}\left(-\frac{2}{3}b + \frac{4}{27}b^{3}\right)$$

$$= \frac{1}{3}bc - \frac{2}{27}b^{3}.$$

So the coefficients b, c, d verify

$$2b^3 - 9bc + 27d = 0.$$

 \bullet Conversely, suppose that b, c, d verify

$$2b^3 - 9bc + 27d = 0. (9)$$

Let $s = -\frac{2}{3}b$, $p = c - \frac{2}{9}b^2$. Then $b = -\frac{3}{2}s$, $c = p + \frac{2}{9}b^2 = p + \frac{1}{2}(\frac{2}{3}b)^2 = p + \frac{1}{2}s^2$: (6) and (7) are valid.

By the equation (9),

$$\begin{split} d &= \frac{1}{3}bc - \frac{2}{27}b^3 \\ &= -\frac{1}{2}\left(-\frac{2}{3}b\right)\left(c - \frac{2}{9}b^2\right) \\ &= -\frac{1}{2}sp. \end{split}$$

So s, p verify the system (6), (7), (8):

$$b = -\frac{3}{2}s,$$

$$c = p + \frac{1}{2}s^{2},$$

$$d = -\frac{1}{2}sp.$$

Let x_1, x_2 the complex roots of $x^2 - sx + p$. Then $x_1 + x_2 = s, x_1x_2 = p$. Let

$$x_3 = \frac{x_1 + x_2}{2} = \frac{1}{2}s$$
. Then

$$\sigma_{1} = x_{1} + x_{2} + x_{3}$$

$$= \frac{3}{2}s$$

$$= -b$$

$$\sigma_{2} = x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3}$$

$$= x_{1}x_{2} + \left(\frac{x_{1} + x_{2}}{2}\right)(x_{1} + x_{2})$$

$$= x_{1}x_{2} + \frac{1}{2}(x_{1} + x_{2})^{2}$$

$$= p + \frac{1}{2}s^{2}$$

$$= c$$

$$\sigma_{3} = x_{1}x_{2}x_{3}$$

$$= \frac{1}{2}sp$$

$$= -d$$

Thus x_1, x_2, x_3 are the roots of $(x - x_1)(x - x_2)(x - x_3) = x^3 - \sigma_1 x^2 + \sigma_2 x - \sigma_3 = x^3 + bx^2 + cx + d$, and $x_3 = \frac{x_1 + x_2}{2}$.

Conclusion: one of the roots of $x^3 + bx^2 + cx + d$ the average of the other two iff $2b^3 - 9bc + 27d = 0$.

Ex. 2.3.5 Given a quartic $x^4 + bx^3 + cx^2 + dx + e$, what condition must b, c, d, e satisfy in order that one root be the negative of another?

Proof. The polynomial

$$f = x^4 + bx^3 + cx^2 + dx + e = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4)$$

has two opposite roots iff

$$(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3)(\alpha_2 + \alpha_4)(\alpha_3 + \alpha_4) = 0$$

Let

$$u = (x_1 + x_2)(x_1 + x_3)(x_1 + x_4)(x_2 + x_3)(x_2 + x_4)(x_3 + x_4).$$

u is symmetric, so is a polynomial in $\sigma_1, \sigma_2, \sigma_3, \sigma_4$.

We obtain this polynomial with the following Sage instructions

```
e = SymmetricFunctions(QQ).e()
e1,e2,e3,e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4)
R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = 'lex')
J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
G = J.groebner_basis()
u = (x0+x1)*(x0+x2)*(x0+x3)*(x1+x2)*(x1+x3)*(x2+x3)
var('sigma_1,sigma_2,sigma_3,sigma_4')
u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4)
```

$$\sigma_1\sigma_2\sigma_3-\sigma_1^2\sigma_4-\sigma_3^2$$
.

So

$$u = \sigma_1 \sigma_2 \sigma_3 - \sigma_1^2 \sigma_4 - \sigma_3^2.$$

The evaluation ring homomorphism defined by $x_i \mapsto \alpha_i, i = 1, 2, 3, 4$ verifies

$$\sigma_1 \mapsto -b, \sigma_2 \mapsto c, \sigma_3 \mapsto -d, \sigma_4 \mapsto e.$$

So
$$(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3)(\alpha_2 + \alpha_4)(\alpha_3 + \alpha_4) = bcd - b^2e - d^2$$
.

Conclusion: $f = x^4 + bx^3 + cx^2 + dx + e$ is such that one root is the negative of another iff $bcd - b^2e - d^2 = 0$.

Ex. 2.3.6 Find the quartic polynomial whose roots are obtained by adding 1 to each of the roots of $x^4 + 3x^2 + 4x + 7$.

Proof. Let
$$f = x^4 + 3x^2 + 4x + 7 = (x - x_1)(x - x_2)(x - x_3)(x - x_4)$$
.

The polynomial whose roots are $1 + x_1, 1 + x_2, 1 + x_3, 1 + x_4$ is

$$g = (x - 1 - x_1)(x - 1 - x_2)(x - 1 - x_3)(x - 1 - x_4)$$

$$= f(x - 1)$$

$$= (x - 1)^4 + 3(x - 1)^2 + 4(x - 1) + 7$$

$$= x^4 - 4x^3 + 6x^2 - 4x + 1 + 3x^2 - 6x + 3 + 4x - 4 + 7$$

$$= x^4 - 4x^3 + 9x^2 - 6x + 7.$$

If x_1, x_2, x_3, x_4 are the roots of f, then $x_1 + 1, x_2 + 1, x_3 + 1, x_4 + 1$ are the roots of

$$g = x^4 - 4x^3 + 9x^2 - 6x + 7.$$

2.4 THE DISCRIMINANT

Ex. 2.4.1 Let M be the $n \times n$ matrix appearing on the right-hand side of the Vandermonde formula given in Proposition 2.4.5. Prove that (2.32) follows from the fact that M and its transpose both have determinant $\sqrt{\Delta}$.

Proof. Let a_1, a_2, \dots, a_n be elements of a field F, and

$$A_n = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix}$$

We show by induction on $n, n \geq 2$ that

$$\det(A_n) = \prod_{1 \le i < j \le n} (a_j - a_i).$$

$$\det(A_2) = \begin{vmatrix} 1 & 1 \\ a_1 & a_2 \end{vmatrix} = a_2 - a_1 = \prod_{1 \le i < j \le 2} (a_j - a_i).$$

Suppose that this formula is true for the integer $n-1, n \geq 3$. We will show that it is true for the integer n.

If there exists a pair $(i, j), i \neq j$ such that $a_i = a_j$, then two columns in A_n are identical, so $\det(A_n) = 0 = \prod_{1 \leq i < j \leq n} (a_j - a_i)$.

We can so suppose that the $a_i, 1 \le i \le n$ are distinct.

Let the polynomial $P \in F[X]$ given by

$$P = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & \cdots & a_{n-1} & X \\ a_1^2 & a_2^2 & \cdots & a_{n-1}^2 & X^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_{n-1}^{n-1} & X^{n-1} \end{pmatrix}$$

Then $\det(A_n) = P(a_n)$, and $P(a_1) = P(a_2) = \cdots = P(a_{n-1}) = 0$. As $a_1, a_2, \cdots, a_{n-1}$ are distinct roots of P, with $\deg(P) = n - 1$, P is factored as

$$P = k(X - a_1) \cdots (X - a_{n-1}), k \in F,$$

where k is the coefficient of X^{n-1} in P, so k is the cofactor of X^{n-1} in $\det(P)$: so

$$k = \det(A_{n-1}) = \prod_{1 \le i \le j \le n-1} (a_j - a_i)$$

by the induction hypothesis.

Therefore

$$\det(A_n) = P(a_n) = \prod_{1 \le i < j \le n-1} (a_j - a_i) \prod_{i=1}^n (a_n - a_i) = \prod_{1 \le i < j \le n} (a_j - a_i),$$

which completes the induction.

The matrix

$$B_n = \begin{pmatrix} a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

is obtained from A_n by $\frac{n(n-1)}{2}$ transpositions of rows: n-1 to put the last row in first position, then n-2 to put which is now the last row in second position, and so on.

Thus $\det(B_n) = (-1)^{(n(n-1))/2} \det(A_n)$.

As the number of factors in $\prod_{1 \le i < j \le n} (a_j - a_i)$ is $\frac{n(n-1)}{2}$,

$$\prod_{1 \le i < j \le n} (a_j - a_i) = (-1)^{(n(n-1))/2} \prod_{1 \le i < j \le n} (a_i - a_j).$$

Consequently,

$$\det(B_n) = \prod_{1 \le i < j \le n} (a_i - a_j).$$

Applying this result in the field $F(x_1, \dots, x_n)$, we obtain that

$$\sqrt{\Delta} = \prod_{1 \le i < j \le n} (x_i - x_j) = \begin{vmatrix} x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n \\ 1 & 1 & \cdots & 1 \end{vmatrix}$$

If
$$A = \begin{pmatrix} x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
, then $A^t = \begin{pmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1}^{n-1} & x_{n-1}^{n-2} & \cdots & x_{n-1} & 1 \\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n & 1 \end{pmatrix}$

thus

$$\Delta = \det(A)^{2} = \det(A^{t}A) = \begin{vmatrix} s_{2n-2} & s_{2n-3} & \cdots & s_{n} & s_{n-1} \\ s_{2n-3} & s_{2n-4} & \cdots & s_{n-1} & s_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \\ s_{n} & s_{n-1} & \cdots & s_{2} & s_{1} \\ s_{n-1} & s_{n-2} & \cdots & s_{1} & s_{0} \end{vmatrix}$$

Ex. 2.4.2 Let F have characteristic $\neq 2$, and let $f \in F[x_1, \ldots, x_n]$ satisfy $\tau \cdot f = -f$ for all transpositions $\tau \in S_n$. Prove that $f = B\sqrt{\Delta}$ for some $B \in F[\sigma_1, \ldots, \sigma_n]$.

Proof. Here, the field F have characteristic $\neq 2$.

Let $f \in F[x_1, \dots, x_n]$ such that $\tau \cdot f = -f$ for all transpositions $\tau \in S_n$.

If $\sigma \in A_n$ is an even permutation, then σ is product of an even number of permutations :

$$\sigma = \tau_1 \tau_2 \cdots \tau_{2k}$$
.

As the group S_n acts on $F[x_1, \dots, x_n]$, $\sigma \cdot f = \tau_1 \cdot (\tau_2 \cdot (\dots (\tau_{2k} \cdot f) \dots)) = (-1)^{2k} f = f$. Therefore f is invariant under A_n and so the theorem 2.4.4 applies:

There exist $A, B \in F[\sigma_1, \dots, \sigma_n]$ such that

$$f = A + B\sqrt{\Delta}$$
.

Therefore $-f = \tau \cdot f = \tau \cdot A + (\tau \cdot B)(\tau \cdot \sqrt{\Delta}) = A - B\sqrt{\Delta}$ (by 2.31).

So $f = A + B\sqrt{\Delta}$ and $f = -A + B\sqrt{\Delta}$, thus 2A = 0. Since the characteristic is not 2, A = 0, therefore

$$f = B\sqrt{\Delta}, B \in F[\sigma_1, \cdots, \sigma_n].$$

Ex. 2.4.3 Let $f = x^2 + bx + c \in F[x]$. Use the definition of discriminant given in the text to show that $\Delta(f) = b^2 - 4c$.

Proof. Let $f = x^2 + bx + c$, $b, c \in F$.

$$\Delta = (x_1 - x_2)^2 = x_1^2 + x_2^2 - 2x_1x_2 = (x_1 + x_2)^2 - 4x_1x_2 = \sigma_1^2 - 4\sigma_2.$$

The ring homomorphism which sends σ_1 on -b and σ_2 on c send Δ on

$$\Delta(-b, c) = b^2 - 4c,$$

which is by definition the discriminant of $x^2 + bx + c$.

Ex. 2.4.4 Let $f \in F[x]$ be monic, and suppose that $f = (x - \alpha_1) \cdots (x - \alpha_n)$ in some field L containing F. Prove that $\Delta(f) \neq 0$ if and only if $\alpha_1, \ldots, \alpha_n$ are distinct. This shows that f has distinct roots if and only if its discriminant is nonvanishing.

Proof. Let $f \in F[x]$ such that $f = (x - \alpha_1) \cdots (x - \alpha_n)$ in an extension L of F. By Proposition 2.4.3,

$$\Delta(f) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$
 (10)

- If $\Delta(f) \neq 0$, by (10), for all pairs $(i, j), 1 \leq i < j \leq n, \alpha_i \alpha_j \neq 0$. The roots α_i are so distinct.
- If the roots α_i , $1 \le i \le n$, are distinct roots, then $\alpha_i \alpha_j \ne 0$ for all (i, j) such that $1 \le i < j \le n$, thus $\Delta(f) \ne 0$.

Ex. 2.4.5 Show that $\sqrt{\Delta} \in F[x_1, \dots, x_n]$ is symmetric if and only if F is a field of characteristic 2.

Proof. By Proposition 2.4.1, if τ is a transposition in S_n ,

$$\tau \cdot \sqrt{\Delta} = -\sqrt{\Delta}$$
.

• If the field F is of characteristic 2, $-\sqrt{\Delta} = +\sqrt{\Delta}$, so for all transpositions τ ,

$$\tau \cdot \sqrt{\Delta} = \sqrt{\Delta}.$$

Therefore $\sqrt{\Delta}$ is a symmetric polynomial.

• If the field F is not of characteristic 2, as $\sqrt{\Delta} \neq 0$,

$$\tau \cdot \sqrt{\Delta} = -\sqrt{\Delta} \neq \sqrt{\Delta},$$

so $\sqrt{\Delta}$ is not symmetric.

Ex. 2.4.6 This exercise will describe how to solve quadratic equations over a field F of characteristic 2.

- (a) Given $b \in F$, we will assume there is a larger field $F \subset L$ such that $b = \beta^2$ for some $\beta \in L$. Show that β is unique and that β is the unique root of $x^2 + b$. Because of this, we denote β by \sqrt{b} .
- (b) Now suppose that $f = x^2 + ax + b$ is a quadratic polynomial in F[x] with $a \neq 0$. Suppose also that f is irreducible over F, so that it has no roots in F. We will see in Chapter 3 that f has a root α in a field L containing F. Prove that α cannot be written in the form $\alpha = u + v\sqrt{w}$, where $u, v, w \in F$.
- (c) Part (b) shows that solving a quadratic equation with nonzero x-coefficient requires more than square roots. We do this as follows. If $b \in F$, let R(b) denote a root of $x^2 + x + b$ (possibly lying in some larger field). We call R(b) and R(b) + 1 the 2-roots of b. Prove that the roots of $x^2 + x + b$ are R(b) and R(b) + 1, and explain why adding 1 to the second 2-root gives the first.
- (d) Show that the roots of $f = x^2 + ax + b$, $a \neq 0$, are $aR(b/a^2)$ and $a(R(b/a^2) + 1)$.

Proof. (a) Let L an extension of F and $\beta \in L$ such that $\beta^2 = b$.

As $x^2 - b = x^2 - \beta^2 = (x - \beta)^2$, β is the unique root of $x^2 - b = x^2 + b$. We write $\beta = \sqrt{b} \in L$.

(b) Suppose that $f = x^2 + ax + b$, $a \neq 0$ is irreducible on F. As $\deg(f) = 2$, this is equivalent to the fact that f has no root in F. f has a root α in an extension $L \supset F$.

If $\alpha = u + v\sqrt{w}$, $u, v, w \in F$, then $v \neq 0$, otherwise $\alpha \in F$, in contradiction with the irreducibility of f.

Then

$$0 = \alpha^2 + a\alpha + b$$

$$= u^2 + wv^2 + a(u + v\sqrt{w}) + b$$

$$= u^2 + wv^2 + au + b + av\sqrt{w}$$

$$= s + t\sqrt{w},$$

where $s = u^2 + wv^2 + au + b \in F, t = av \in F, t \neq 0$.

Thus $\sqrt{w} = -s/t \in F$, so $\alpha \in F$, in contradiction with the irreducibility of f.

Conclusion : $\alpha = u + v\sqrt{w}, \ u, v, w \in F$ is impossible.

(c) Write R(b) a root of $x^2 + x + b$ in an extension of F.

As $R(b)^2 + R(b) + b = 0$, $(R(b) + 1)^2 + (R(b) + 1) + b = R(b)^2 + 1 + R(b) + 1 + b = R(b)^2 + R(b) + b = 0$.

As R(b) + 1 + 1 = R(b), the two (distinct) roots of $x^2 + x + b$ are R(b), R(b+1), and $\sigma: x \mapsto x + 1$ exchanges the two roots.

(d) For all $y \in L$,

$$f(y) = 0 \iff y^2 + ay + b = 0$$

$$\iff \left(\frac{y}{a}\right)^2 + \left(\frac{y}{a}\right) + \frac{b}{a^2} = 0$$

$$\iff \frac{y}{a} \in \left\{R\left(\frac{b}{a^2}\right), R\left(\frac{b}{a^2}\right) + 1\right\}$$

$$\iff y \in \left\{aR\left(\frac{b}{a^2}\right), a\left[R\left(\frac{b}{a^2}\right) + 1\right]\right\}.$$

The roots of $x^2 + ax + b, a \neq 0$ are so $aR\left(\frac{b}{a^2}\right), a\left[R\left(\frac{b}{a^2}\right) + 1\right]$.

Ex. 2.4.7 Explain how the third property of (2.31) was used (implicitly) in (2.28) in the proof of Proposition 2.4.1.

Proof. Knowing that $\tau \cdot \sqrt{\Delta} = -\sqrt{\Delta}$ for a transposition $\tau \in S_n$, we show by induction on l that

$$(\tau_l \cdots \tau_1) \cdot \sqrt{\Delta} = (-1)^l \sqrt{\Delta}.$$

By the induction hypothesis $(\tau_l \cdots \tau_1) \cdot \sqrt{\Delta} = (-1)^l \sqrt{\Delta}$, we deduce, using 2.31

$$(\tau_{l+1}\tau_l\cdots\tau_1)\cdot\sqrt{\Delta} = \tau_{l+1}\cdot[(\tau_l\cdots\tau_1)\cdot\sqrt{\Delta}]$$
$$=\tau_{l+1}\cdot((-1)^l\sqrt{\Delta})$$
$$=(-1)^l\tau_{l+1}\cdot\sqrt{\Delta}$$
$$=(-1)^{l+1}\sqrt{\Delta}.$$

Ex. 2.4.8 In this exercise, you will prove that although Δ factors in $F[x_1, \ldots, x_n]$, it is irreducible in $F[\sigma_1, \ldots, \sigma_n]$ when F has characteristic different from 2. To begin the proof, assume that $\Delta = AB$, where $A, B \in F[\sigma_1, \ldots, \sigma_n]$ are nonconstant.

- (a) Using the definition of Δ and unique factorization in $F[x_1, \ldots, x_n]$, show that A is divisible in $F[x_1, \ldots, x_n]$ by $x_i x_j$ for some $1 \le i < j \le n$.
- (b) Given $1 \le i < j \le n$ and $1 \le l < m \le n$, show that there is a permutation $\sigma \in S_n$ such that $\sigma(i) = l$ and $\sigma(j) = m$.
- (c) Use part (a) and (b) to show that A is divisible by $x_l x_m$ for all $1 \le l < m \le n$.
- (d) Conclude that A is a multiple of $\sqrt{\Delta}$ and that the same is true for B.
- (e) Show that part (d) implies that A and B are constant multiples of $\sqrt{\Delta}$ and explain why this contradicts $A, B \in F[\sigma_1, \ldots, \sigma_n]$.
- (f) Finally, suppose that F has characteristic 2. Prove that Δ is not irreducible.

Proof. (a) Suppose that $\Delta = AB$, where $A, B \in F[\sigma_1, \dots, \sigma_n]$ are nonconstant.

As A is not a constant, it is divisible by an irreducible factor $h \in F[x_1, \dots, x_n]$. This irreducible factor h divides Δ , whose only irreducible factors are associate to $x_i - x_j, 1 \le i < j \le n$. $F[x_1, \dots, x_n]$ being a factorial domain, there exists a pair of subscripts (i, j) and $\lambda \in F^*$ such that $h = \lambda(x_i - x_j), 1 \le i < j \le n$.

Conclusion:

A is divisible in $k[x_1, \ldots, x_n]$ by a factor $x_i - x_j$, for some $(i, j), 1 \le i < j \le n$.

(b) The set $U = [\![1,n]\!] \setminus \{i,j\}$ and $V = [\![1,n]\!] \setminus \{l,m\}$ have same cardinality n-2, so there exists a bijection $f: U \to V$.

Let $\sigma : [1, n] \to [1, n]$ defined by $\sigma(k) = f(k)$ if $k \in U, \sigma(i) = l, \sigma(j) = m$. Then σ is bijective (the application τ defined by $\tau(m) = f^{-1}(m)$ if $m \in V, \tau(l) = i, \tau(m) = j$ satisfies $\tau \circ \sigma = \sigma \circ \tau = e$).

There exists $\sigma \in S_n$ such that $\sigma(i) = l, \sigma(j) = m$.

(c) By (a), $A = (x_i - x_j)C, C \in k[x_1, \dots x_n].$

As A is symmetric, using the permutation σ of (b),

$$A = \sigma \cdot A$$

$$= \sigma \cdot [(x_i - x_j)C]$$

$$= \sigma \cdot (x_i - x_j) \ \sigma \cdot C$$

$$= (x_l - x_m)(\sigma \cdot C).$$

So A is divisible by $x_l - x_m$, $1 \le l < m \le m$.

(d) As these factors are irreducible and not associate, their product divides A, thus

$$\sqrt{\Delta} = \prod_{1 \le l < m \le n} (x_l - x_m) \mid A.$$

The same reasoning applies to B, which is also divisible by $\sqrt{\Delta}$.

(e) $A = A_1 \sqrt{\Delta}, B = B_1 \sqrt{\Delta}, \text{ where } A_1, B_1 \in F[x_1, \dots, x_n].$

Thus $\Delta = AB = A_1B_1\Delta$, with $\Delta \neq 0$, therefore $A_1B_1 = 1$, which implies that $A_1 = a \in F^*, B_1 = b \in F^*$:

$$A = a\sqrt{\Delta}, B = b\sqrt{\Delta}, \ a, b \in F^*$$

But $A \in F[\sigma_1, \ldots, \sigma_n]$, thus for all transposition τ in S_n ,

$$A = \tau \cdot A = \tau \cdot (a\sqrt{\Delta}) = a\tau \cdot \sqrt{\Delta} = -a\sqrt{\Delta} = -A.$$

So 2A=0, and as the characteristic of F is not 2, A=0, so $\Delta=0$, which is a contradiction.

Conclusion : Δ is irreducible in $F[\sigma_1, \dots, \sigma_n]$.

(f) If the characteristic of F is 2, then $\sqrt{\Delta}$ is symmetric, since for all transposition τ , $\tau \cdot \sqrt{\Delta} = -\sqrt{\Delta} = \sqrt{\Delta}$.

Thus $\Delta = (\sqrt{\Delta})^2 = D^2$, where $D = \sqrt{\Delta} \in F[\sigma_1, \dots, \sigma_n]$: therefore Δ is not irreducible in $F[\sigma_1, \dots, \sigma_n]$ if the characteristic of F is 2.

Ex. 2.4.9 For n = 4, the variables x_1, x_2, x_3, x_4 have discriminant

$$\Delta = (x_1 - x_2)^2 (x_1 - x_3)^2 (x_1 - x_4)^2 (x_2 - x_3)^2 (x_2 - x_4)^2 (x_3 - x_4)^2.$$

Let $y_1 = x_1x_2 + x_3x_4$, $y_2 = x_1x_3 + x_2x_4$, $y_3 = x_1x_4 + x_2x_3$, and consider

$$\theta(y) = (y - y_1)(y - y_2)(y - y_3).$$

This is a cubic polynomial in y. As in the text, the discriminant of θ will be denoted $\Delta(\theta)$. Show that $\Delta(\theta) = \Delta$.

Proof.

$$y_1 - y_2 = x_1 x_2 + x_3 x_4 - x_1 x_3 - x_2 x_4 = x_1 (x_2 - x_3) - x_4 (x_2 - x_3) = (x_1 - x_4)(x_2 - x_3)$$

$$y_1 - y_3 = x_1 x_2 + x_3 x_4 - x_1 x_4 - x_2 x_3 = x_1 (x_2 - x_4) - x_3 (x_2 - x_4) = (x_1 - x_3)(x_2 - x_4)$$

$$y_2 - y_3 = x_1 x_3 + x_2 x_4 - x_1 x_4 - x_2 x_3 = x_1 (x_3 - x_4) - x_2 (x_3 - x_4) = (x_1 - x_2)(x_3 - x_4)$$

Therefore

$$\Delta(\theta) = (y_1 - y_2)^2 (y_1 - y_3)^2 (y_2 - y_3)^2$$

$$= [(x_1 - x_4)(x_2 - x_3)(x_1 - x_3)(x_2 - x_4)(x_1 - x_2)(x_3 - x_4)]^2$$

$$= \Delta.$$

- **Ex. 2.4.10** Let $C, D \in F[\sigma_1, \ldots, \sigma_n]$ be nonzero and relatively prime. This exercise will show that C and D remain relatively prime when regarded as elements of $F[x_1,\ldots,x_n]$.
 - (a) Show that C^m , D^m are relatively prime in $F[\sigma_1, \ldots, \sigma_n]$ for any positive integer m.
 - (b) Suppose that $p \in F[x_1, ..., x_n]$ is a nonconstant polynomial dividing C and D. Prove that $\sigma \cdot p$ divides C and D for all $\sigma \in S_n$.
 - (c) As in Exercise 7 of Section 2.2, let $P = \prod_{\sigma \in S_n} \sigma \cdot p$. Show that P divides $C^{n!}$ and $D^{n!}$, and then use part (a) and Exercise 7 of Section 2.2 to obtain a contradiction.
- *Proof.* (a) If p is an irreducible factor in $F[\sigma_1, \dots, \sigma_n]$ which divides C^m and D^m $(m \in \mathbb{N}^*)$, as $F[\sigma_1, \dots, \sigma_n] \simeq F[u_1, \dots, u_n]$ is a factorial domain, p divides C and p divides D, which is in contradiction with the fact that C, D are relatively prime in $F[\sigma_1, \dots, \sigma_n]$. Consequently C^m, D^m are relatively prime in $F[\sigma_1, \dots, \sigma_n]$.
 - (b) If p is an irreducible factor in $F[x_1, \dots, x_n]$ which divides C and D, then C = $pE, E \in F[x_1, \dots, x_n]$. As C is symmetric, we obtain, using 2.31:

$$C = \sigma \cdot C = (\sigma \cdot p)(\sigma \cdot E). \tag{11}$$

Therefore $\sigma \cdot p$ divides C for all $\sigma \in S_n$, and it is the same for D.

(c) The product, for all $\sigma \in S_n$ of the relations (11) gives :

$$C^{n!} = \prod_{\sigma \in S_n} \sigma \cdot p \prod_{\sigma \in S_n} \sigma \cdot E.$$

Therefore $P = \prod_{\sigma \in S_n} \sigma \cdot p$ divides $C^{n!}$ in $F[x_1, \dots, x_n]$, and similarly for D.

(d) By Exercise 2.2.7, P is symmetric, and $C^{n!} = PQ$, $D^{n!} = PS$, $Q, S \in F[x_1, \dots, x_n]$. As $C^{n!}, D^{n!}, P$ are symmetric, Q, S are also symmetric. Indeed, for all $\sigma \in S_n$, $PQ = C^{n!} = \sigma \cdot C^{n!} = (\sigma \cdot P)(\sigma \cdot Q) = P(\sigma \cdot Q)$, thus $Q = \sigma \cdot Q$.

Therefore $P = P_1(\sigma_1, \dots, \sigma_n)$, and $P_1 \in F[\sigma_1, \dots, \sigma_n]$ divides $C^{n!}, D^{n!}$ in $F[\sigma_1, \dots, \sigma_n]$. As the irreducible polynomial p divides P, P_1 is not a constant. Therefore the two polynomials $C^{n!}$, $D^{n!}$ are not relatively prime in $F[\sigma_1, \ldots, \sigma_n]$, and by (a), C, D are not relatively prime in $F[\sigma_1, \ldots, \sigma_n]$, in contradiction with the hypothesis.

Conclusion: two relatively prime polynomials in $F[\sigma_1, \dots, \sigma_n]$ are also relatively prime in $F[x_1, \cdots, x_n]$.

Ex. 2.4.11 Exercise 8 of section 2.2 showed that if $\varphi \in F(x_1, \ldots, x_n)$ is symmetric, then $\varphi \in F(\sigma_1, \ldots, \sigma_n)$. In this exercise, you will refine this result as follows. Suppose that $\varphi \in F(x_1, \ldots, x_n)$ is symmetric, and write $\varphi = A/B$, where $A, B \in F[x_1, \ldots, x_n]$ are relatively prime. The claim is that A,B are themselves symmetric and hence lie in $F[\sigma_1,\ldots,\sigma_n]$. We can assume that A and B are nonzero.

- (a) Use the previous exercise and Exercise 8 of section 2.2 to show that $\varphi = C/D$ where $C, D \in F[\sigma_1, \dots, \sigma_n]$ are relatively prime in $F[x_1, \dots, x_n]$.
- (b) Show that AD = BC and then use unique factorization in $F[x_1, \ldots, x_n]$ to show that A and B are constant multiples of C and D respectively.

- (c) Conclude that $A, B \in F[\sigma_1, ..., \sigma_n]$ as claimed.
- *Proof.* (a) As $\varphi \in F(\sigma_1, \dots, \sigma_n)$, by Exercise 2.2.8,

$$\varphi = C/D, \ C, D \in F[\sigma_1, \cdots, \sigma_n].$$

Reducing this fraction, we can suppose that C, D are relatively prime in $F[\sigma_1, \dots, \sigma_n]$, thus relatively prime in $F[x_1, \dots, x_n]$ by Exercise 2.4.10.

(b) $\varphi = A/B = C/D$, so AD = BC, where C, D are symmetric and relatively prime in $F[x_1, \dots, x_n]$, and also A, B relatively prime in $F[x_1, \dots, x_n]$.

As $F[x_1, \ldots, x_n]$ is a unique factorisation domain, as $A \mid BC$ and A, B are relatively prime, $A \mid C$. Similarly, $C \mid AD$, and C, D are relatively prime, so $C \mid A : A$ and C are associate, therefore

$$A = kC, B = kD, k \in F^*.$$

(c) Since C, D are symmetric, A, B are also symmetric.

Conclusion: if $\varphi = A/B$ is symmetric, where $A, B \in F[x_1, \dots, x_n]$ are relatively prime, then A, B are symmetric.