FINITE ELEMENT: MATRIX FORMULATION

Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

Contents 1/67

Contents

Discrete versus continuous

Element

Interpolation Element list

Global problem

Formulation Matrix formulation Algorithm

How much rain?

Geometry discretization

Unknown field discretization

Use elements

Finite Element Discretization

Replace continuum formulation by a discrete representation for unknowns and geometry

• Unknown field:

$$\underline{\mathbf{u}}^{e}(M) = \sum_{i} N_{i}^{e}(M)\underline{\mathbf{q}}_{i}^{e}$$

Geometry:

$$\underline{\mathbf{x}}(M) = \sum_{i} N_{i}^{*e}(M)\underline{\mathbf{x}}(P_{i})$$

Interpolation functions N_i^e and shape functions N_i^{*e} such as:

$$\forall M, \quad \sum_{i} N_{i}^{e}(M) = 1 \text{ and } N_{i}^{e}(P_{j}) = \delta_{ij}$$

Isoparametric elements iff $N_i^e \equiv N_i^{*e}$

Contents

Discrete versus continuous

Element

Interpolation

Element list

Global problem
Formulation
Matrix formulation
Algorithm

2D-mapping

Rigid body displacement not represented for superparametric element that has nonlinear edges!

The location of the node at the middle of the edge is critical for quadratic edges.

◆□ → ◆□ → ◆ □ → ◆ □ → ○○○

Shape function matrix, [N] - Deformation matrix, [B]

- Field **u**, T, C
- Gradient ε , grad(T),...
- Constitutive equations $\underline{\sigma} = \underline{\Lambda} : \underline{\varepsilon}, \quad \underline{q} = -k\underline{grad}(T)$
- Conservation $\underline{div}(\sigma) + \underline{\mathbf{f}} = 0, \dots$

First step: express the continuous field and its gradient wrt the discretized vector

Element 10/67

Deformation matrix [B] (1)

• Knowing:

$$\underline{\mathbf{u}}^{e}(M) = \sum_{i} N_{i}^{e}(M)\underline{\mathbf{q}}_{i}^{e}$$

 Deformation can be obtained from the nodal displacements, for instance in 2D, small strain:

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = \frac{\partial N_1(M)}{\partial x} q_{1x}^e + \frac{\partial N_2(M)}{\partial x} q_{2x}^e + \dots$$

$$\varepsilon_{yy} = \frac{\partial u_y}{\partial y} = \frac{\partial N_1(M)}{\partial y} q_{1y}^e + \frac{\partial N_2(M)}{\partial y} q_{2y}^e + \dots$$

$$2\varepsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} = \frac{\partial N_1(M)}{\partial y} q_{1x}^e + \frac{\partial N_2(M)}{\partial x} q_{1y}^e + \dots$$

< ロ > < 個 > < 重 > < 重 > の < @

Element 11/67

Deformation matrix [B] (2)

Matrix form, 4-node quadrilateral

$$\{u\}^{e} = [N]^{T} \{q\}^{e} = \begin{pmatrix} N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} & 0 \\ 0 & N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} \end{pmatrix} \begin{pmatrix} q_{1x}^{e} \\ q_{1y}^{e} \\ \dots \\ q_{4y}^{e} \end{pmatrix}$$

$$\{\varepsilon\}^{e} = [B]^{T} \{q\}^{e}$$

$$= \begin{pmatrix} N_{1,x} & 0 & N_{2,x} & 0 & N_{3,x} & 0 & N_{4,x} & 0 \\ 0 & N_{1,y} & 0 & N_{2,y} & 0 & N_{3,y} & 0 & N_{4,y} \\ N_{1,y} & N_{1,x} & N_{2,y} & N_{2,x} & N_{3,y} & N_{3,x} & N_{4,y} & N_{4,x} \end{pmatrix} \begin{pmatrix} q_{1x}^{e} \\ q_{1y}^{e} \\ \dots \\ q_{4y}^{e} \end{pmatrix}$$

Shear term taken as $\gamma = 2\varepsilon_{12}$

4□ > 4□ > 4 = > 4 = > = 99

Reference element

Actual geometry Physical space (x, y)

Reference element Parent space (ξ, η)

$$\int_{\Omega} f(x,y) dx dy = \int_{-1}^{+1} \int_{-1}^{+1} f_*(\xi,\eta) J d\xi d\eta$$

J is the determinant of the partial derivatives $\partial x/\partial \xi \dots$ matrix

Element 13/67

Remarks on geometrical mapping

- The values on an edge depends only on the nodal values on the same edge (linear interpolation equal to zero on each side for 2-node lines, parabolic interpolation equal to zero for 3 points for 3-node lines)
- Continuity...
- The mid node is used to allow non linear geometries
- Limits in the admissible mapping for avoiding singularities

Element 14/67

Mapping of a 3-node line

Physical segment:
$$x_1=-1$$
 $x_3=1$ $-1\leqslant x_2\leqslant 1$ Parent segment: $\xi_1=-1$ $\xi_3=1$ $\xi_2=0$
$$x=\xi+\left(1-\xi^2\right)x_2$$

Element 15/67

Jacobian and inverse jacobian matrix

$$\begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{pmatrix} \begin{pmatrix} d\xi \\ d\eta \end{pmatrix} = [J] \begin{pmatrix} d\xi \\ d\eta \end{pmatrix}$$

$$\begin{pmatrix} d\xi \\ d\eta \end{pmatrix} = \begin{pmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = [J]^{-1} \begin{pmatrix} dx \\ dy \end{pmatrix}$$

Since (x, y) are known from $N_i(\xi, \eta)$ and x_i , $[J]^{-1}$ is computed from the known quantities in [J], using also:

$$J = Det([J]) = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial x}{\partial \eta}$$

< ロ > < 個 > < 重 > < 重 > の < @

Element 16/67

Expression of the inverse jacobian matrix

$$[J]^{-1} = \frac{1}{J} \begin{pmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{pmatrix}$$

- For a rectangle $[\pm a, \pm b]$ in the "real world", the mapping function is the same for any point inside the rectangle. The jacobian is a diagonal matrix, with $\partial x/\partial \xi = a, \ \partial y/\partial \eta = b$, and the determinant value is ab
- For any other shape, the "mapping" changes according to the location in the element
- For computing [B], one has to consider $\partial N_i/\partial x$ and $\partial N_i/\partial y$:

$$\begin{split} \frac{\partial N_i}{\partial x} &= \frac{\partial N_i}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial N_i}{\partial \eta} \frac{\partial \eta}{\partial x} \\ \frac{\partial N_i}{\partial y} &= \frac{\partial N_i}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial N_i}{\partial \eta} \frac{\partial \eta}{\partial y} \end{split} \quad \text{then} \quad \begin{pmatrix} \partial N_i/\partial x \\ \partial N_i/\partial y \end{pmatrix} = \begin{bmatrix} J \end{bmatrix}^{-1} \begin{pmatrix} \partial N_i/\partial \xi \\ \partial N_i/\partial \eta \end{pmatrix}$$

Element 17/67

Contents

Discrete versus continuous

Element

Interpolation

Element list

Global problem
Formulation
Matrix formulation
Algorithm

2D solid elements

Type	shape	interpol	# of	polynom
		of disp	nodes	terms
C2D3	tri	lin	3	$1, \xi, \eta$
C2D4	quad	lin	4	$1, \xi, \eta, \xi \eta$
C2D6	tri	quad	6	$1, \xi, \eta, \xi^2, \xi \eta, \eta^2$
C2D8	quad	quad	8	$1, \xi, \eta, \xi^2, \xi\eta, \eta^2, \xi^2\eta, \xi\eta^2$
C2D9	quad	quad	9	$1, \xi, \eta, \xi^2, \xi \eta, \eta^2, \xi^2 \eta, \xi \eta^2, \xi^2 \eta^2$

Element 19/67

3D solid elements

Type	shape	interpol	# of	polynom
		of disp	nodes	terms
C3D4	tetra	lin	4	$1, \xi, \eta, \zeta$
C3D6	tri prism	lin	6	$1, \xi, \eta, \zeta, \xi \eta, \eta \zeta$
C3D8	hexa	lin	8	$1, \xi, \eta, \zeta, \xi\eta, \eta\zeta, \zeta\xi, \xi\eta\zeta$
C3D10	tetra	quad	10	$1, \xi, \eta, \zeta, \xi^2, \xi\eta, \eta^2, \eta\zeta, \zeta^2, \zeta\xi$
C3D15	tri prism	quad	15	$1, \xi, \eta, \zeta, \xi\eta, \eta\zeta, \xi^2\zeta, \xi\eta\zeta, \eta^2\zeta, \zeta^2,$
				$\xi\zeta^2, \eta\zeta^2, \xi^2\zeta^2, \xi\eta\zeta^2, \eta^2\zeta^2$
C3D20	hexa	quad	20	$1, \xi, \eta, \zeta, \xi^2, \xi\eta, \eta^2, \eta\zeta, \zeta^2, \zeta\xi,$
				$\xi^2 \eta, \xi \eta^2, \eta^2 \zeta, \eta \zeta^2, \xi \zeta^2, \xi^2 \zeta, \xi \eta \zeta,$
				$\xi^2 \eta \zeta, \xi \eta^2 \zeta, \xi \eta \zeta^2$
C3D27	hexa	quad	27	$\xi^i \eta^j \zeta^k, (i,j,k) \in 0,1,2$

Element 20/67

Isoparametric representation

Example: 2D plane stress elements with n nodes

Element geometry

$$1 = \sum_{i=1}^{n} N_{i} \qquad x = \sum_{i=1}^{n} N_{i} x_{i} \qquad y = \sum_{i=1}^{n} N_{i} y_{i}$$

Displacement interpolation

$$u_{x} = \sum_{i=1}^{n} N_{i} u_{xi} \qquad u_{y} = \sum_{i=1}^{n} N_{i} u_{y} i$$

Matrix form

$$\begin{pmatrix} 1 \\ x \\ y \\ u_x \\ u_y \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_1 & x_2 & x_3 & \dots & x_n \\ y_1 & y_2 & y_3 & \dots & y_n \\ u_{x1} & u_{x2} & u_{x3} & \dots & u_{xn} \\ u_{y1} & u_{y2} & u_{y3} & \dots & u_{yn} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \\ \vdots \\ N_n \end{pmatrix}$$

The linear triangle

$$\begin{bmatrix} 1 \\ x \\ y \\ u_x \\ u_y \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ u_{x1} & u_{x2} & u_{x3} \\ u_{y1} & u_{y2} & u_{y3} \end{bmatrix} \begin{bmatrix} N_1^{(e)} \\ N_2^{(e)} \\ N_3^{(e)} \end{bmatrix}$$

$$N_1^{(e)} = 5 \qquad N_2^{(e)} = 5 \qquad N_3^{(e)} = 5$$

 $N_2^{(e)} = \zeta_2, \qquad N_3^{(e)} = \zeta_3$

IFEM–Felippa

Terms in 1, ξ , η

Element

The bilinear quad

$$\begin{bmatrix} 1 \\ x \\ y \\ u_x \\ u_y \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ u_{x1} & u_{x2} & u_{x3} & u_{x4} \\ u_{y1} & u_{y2} & u_{y3} & u_{y4} \end{bmatrix} \begin{bmatrix} N_1^{(e)} \\ N_2^{(e)} \\ N_3^{(e)} \\ N_4^{(e)} \end{bmatrix} \qquad \begin{matrix} N_1^{(e)} = \frac{1}{4}(1-\xi)(1-\eta) \text{ and } \\ N_2^{(e)} = \frac{1}{4}(1+\xi)(1-\eta) \text{ and } \\ N_3^{(e)} = \frac{1}{4}(1+\xi)(1+\eta) \text{ and } \\ N_4^{(e)} = \frac{1}{4}(1-\xi)(1+\eta) \text{ and } \\ N_4^{(e)} = \frac{1}{4}(1-\xi)(1-\eta) \text{ and } \\ N_4^{(e)} = \frac{1}{4}($$

Terms in 1, ξ , η , $\xi\eta$

<□ > <□ > <□ > < = > < = > < 0 < 0

Element 23/67

The quadratic triangle

$$\begin{bmatrix} 1 \\ x \\ y \\ u_x \\ u_y \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ y_1 & y_2 & y_3 & y_4 & y_5 & y_6 \\ u_{x1} & u_{x2} & u_{x3} & u_{x4} & u_{x5} & u_{x6} \\ u_{y_1} & u_{y_2} & u_{y_3} & u_{y_4} & u_{y_5} & u_{y_6} \end{bmatrix} \begin{bmatrix} N_1^{(e)} \\ N_2^{(e)} \\ N_3^{(e)} \\ N_4^{(e)} \\ N_6^{(e)} \end{bmatrix}$$

$$N_1^{(e)} = \zeta_1(2\zeta_1 - 1) \qquad N_4^{(e)} = 4\zeta_1\zeta_2$$

$$N_2^{(e)} = \zeta_2(2\zeta_2 - 1) \qquad N_5^{(e)} = 4\zeta_2\zeta_3$$

$$N_3^{(e)} = \zeta_3(2\zeta_3 - 1) \qquad N_6^{(e)} = 4\zeta_3\zeta_1$$

Terms in 1, ξ , η , ξ^2 , $\xi\eta$, $\eta^2_{\text{constant}} \in \mathbb{R}$

Element 24/67

The biquadratic quad

$$N_1^{(e)} = \frac{1}{4}(1-\xi)(1-\eta)\xi\eta$$

$$N_2^{(e)} = -\frac{1}{4}(1+\xi)(1-\eta)\xi\eta$$

$$N_5^{(e)} = -\frac{1}{2}(1 - \xi^2)(1 - \eta)\eta$$

$$N_6^{(e)} = \frac{1}{2}(1 + \xi)(1 - \eta^2)\xi$$

$$N_9^{(e)} = (1 - \xi^2)(1 - \eta^2) \stackrel{>}{\sqsubseteq}$$

Terms in 1, ξ , η , ξ^2 , $\xi\eta$, η^2 , $\xi^2\eta$, $\xi\eta^2$, $\xi^2\eta^2$

Element 25/67

The 8-node quad

- Corner nodes: $N_i = \frac{1}{4} \left(1 + \xi \xi_i\right) (1 + \eta \eta_i) (\xi \xi_i + \eta \eta_i 1)$
- Mid nodes, $\xi_i = 0$: $N_i = \frac{1}{2}(1 \xi^2)(1 + \eta \eta_i)$
- Mid nodes, $\eta_i = 0$: $n_I = \frac{1}{2}(1 \eta^2)(1 + \xi \xi_i)$

Terms in 1, ξ , η , ξ^2 , $\xi\eta$, η^2 , $\xi^2\eta$, $\xi\eta^2$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · かへで

Element 26/67

Approximated field

Examples:

C2D4
$$(1 + \xi_i \xi)(1 + \eta_i \eta)$$

C2D8, corner $0.25(-1 + \xi_i \xi + \eta_i \eta)(1 + \xi_i \xi)(1 + \eta_i \eta)$
C2D8 middle $0.25(1. - \xi^2)(1. + \eta_i \eta)$

<ロ > ← □ > ← □ > ← □ > ・ □ ● ・ つ へ ○

Element 27/67

The 2-node infinite element

Displacement is assumed to be q_1 at node 1 and $q_2 = 0$ at node 2

Interpolation

$$N_1 = \frac{1-\xi}{2}$$
 $N_2 = \frac{1+\xi}{2}$

Geometry

$$N_1^*$$
 such as $x = x_1 + \alpha \frac{1+\xi}{1-\xi}$ $N_2^* = 0$ $\xi = ?$

• Resulting displacement interpolation

$$u(x) = ??$$

Element 28/67

The 2-node infinite element

Displacement is assumed to be q_1 at node 1 and $q_2 = 0$ at node 2

Interpolation

$$N_1 = \frac{1-\xi}{2}$$
 $N_2 = \frac{1+\xi}{2}$

Geometry

$$N_1^*$$
 such as $x=x_1+lpharac{1+\xi}{1-\xi}$ $N_2^*=0$
$$\xi=rac{x-x_1-lpha}{x-x_1+lpha}$$

• Resulting displacement interpolation

$$u(x) = ?$$

Element

The 2-node infinite element

Displacement is assumed to be q_1 at node 1 and $q_2 = 0$ at node 2

Interpolation

$$\mathit{N}_1 = \frac{1-\xi}{2} \qquad \quad \mathit{N}_2 = \frac{1+\xi}{2}$$

Geometry

$$N_1^*$$
 such as $x=x_1+lpharac{1+\xi}{1-\xi}$ $N_2^*=0$
$$\xi=rac{x-x_1-lpha}{x-x_1+lpha}$$

Resulting displacement interpolation

$$u(x) = N_1(x) q_1 = N_1(\xi(x)) q_1 = \frac{\alpha q_1}{x - x_1 + \alpha}$$

Element 30/67

Connecting element

Quadratic interpolation with node number 8 in the middle of 1–7:

$$u(M) = N_1 q_1 + N_8 q_8 + N_7 q_7$$

• On edge 1–7, in the linear element, the displacement should verify:

$$q_8 = ?$$

Overloaded shape function in nodes 1 and 7 after suppressing node
 8:

$$u(M) = ??$$

Element 31/67

Connecting element

Quadratic interpolation with node number 8 in the middle of 1–7:

$$u(M) = N_1q_1 + N_8q_8 + N_7q_7$$

• On edge 1–7, in the linear element, the displacement should verify:

$$q_8 = (q_1 + q_7)/2$$

Overloaded shape function in nodes 1 and 7 after suppressing node
 8:

$$u(M) = ??$$

4□ > 4回 > 4 = > 4 = > = 9 < 0</p>

Element 32/67

Connecting element

• Quadratic interpolation with node number 8 in the middle of 1–7: $u(M) = N_1 q_1 + N_8 q_8 + N_7 q_7$

• On edge 1–7, in the linear element, the displacement should verify:

$$q_8 = (q_1 + q_7)/2$$

Overloaded shape function in nodes 1 and 7 after suppressing node
 8:

$$u(M) = \left(N_1 + \frac{N_8}{2}\right)q_1 + \left(N_7 + \frac{N_8}{2}\right)q_7$$

Element 33/67

Contents

Discrete versus continuous

Element

Interpolation

Element list

Global problem

Formulation

Matrix formulation

Algorithm

Thermal conduction

Strong form:

"GIVEN $r: \Omega \to \mathbb{R}$, a volumetric flux,

 ϕ^d : $\Gamma_f \to \mathbb{R}$, a surface flux,

 $T^d: \Gamma_u \to \mathbb{R}$, a prescribed temperature,

FIND $T: \Omega \to \mathbb{R}$, the temperature, such as:"

 $\begin{array}{lll} \text{in } \Omega & \phi_{i,i} &= r \\ \text{on } \Gamma_u & T &= T^d \\ \text{on } \Gamma_F & -\phi_i n_i &= \Phi^d \end{array}$

Constitutive equation (Fourier, flux (W/m^2) proportional to the temperature gradient)

 $\phi_i = -\kappa_{ij} T_{,j}$ conductivity matrix: $[\kappa]$ (W/m.K)

Global problem 35/67

Thermal conduction (2)

Weak form:

S, trial solution space, such as $T = T^d$ on Γ_u

 ${\cal V}$, variation space, such as $\delta {\it T}=0$ on Γ_u

"GIVEN $r: \Omega \to \mathbb{R}$, a volumetric flux,

 $\Phi^d: \Gamma_f \to \mathbb{R}$, a surface flux,

 $T^d: \Gamma_u o \mathbb{R}$, a prescribed temperature,

FIND $T \in \mathcal{S}$ such as $\forall \delta T \in \mathcal{V}$

$$-\int_{\Omega}\phi_{i}\delta\mathcal{T}_{,i}\,d\Omega=\int_{\Omega}\delta\mathit{Tr}d\Omega+\int_{\Gamma_{F}}\delta\mathcal{T}\Phi^{d}d\Gamma$$

"For any temperature variation compatible with prescribed temperature field around a state which respects equilibrium, the internal power variation is equal to the external power variation: $\delta T_{,i} \, \phi_i$ is in W/m_-^3 "

T is present in $\phi_i = -\kappa_{ij} T_{,j}$

Global problem 36/67

Elastostatic

Strong form:

```
volume \Omega with prescribed volume forces \underline{\mathbf{f}}_{j}^{d} : \sigma_{ij,j} + f_{i} = 0
```

surface
$$\Gamma_F$$
 with prescribed forces $\underline{\mathbf{F}}^d$: $F_i^d = \sigma_{ij} n_j$ surface Γ_u with prescribed displacements $\underline{\mathbf{u}}^d$: $u_i = u_i^d$

surface I
$$u$$
 with prescribed displacements $\underline{\mathbf{u}}^u$: $u_i = u$ Constitutive equation: $\sigma_{ii} = \Lambda_{ijkl} \varepsilon_{kl} = \Lambda_{ijkl} u_{k,l}$

So that:
$$\Lambda_{ijkl} u_{k,li} + f_i = 0$$

Global problem 37/67

Principle of virtual power

Weak form:

```
volume V with prescribed volume forces : \underline{\mathbf{f}}^d surface \Gamma_F with prescribed forces : \underline{\mathbf{f}}^d
```

surface Γ_{ii} with prescribed displacements : \mathbf{u}^d

Virtual displacement rate $\underline{\dot{\mathbf{u}}}$ kinematically admissible ($\dot{\mathbf{u}} = \dot{\mathbf{u}}^d$ on Γ_n)

The variation $\dot{\mathbf{u}}$ is such as: $\dot{\mathbf{u}} = 0$ on Γ_u . Galerkin form writes, $\forall \dot{\mathbf{u}}$:

$$\int_{\Omega} \underline{\sigma} : \dot{\underline{\varepsilon}} d\Omega = \int_{\Omega} \underline{\mathbf{f}}^{d} \ \underline{\dot{\mathbf{u}}} d\Omega + \int_{\Gamma_{F}} \underline{\mathbf{F}}^{d} \ \underline{\dot{\mathbf{u}}} dS$$

Global problem 38/67

Discrete form of virtual power

Application of Galerkin approach for continuum mechanics:

virtual displacement rate $\underline{\dot{\mathbf{u}}} \equiv w^h$; $\sigma \equiv u^h,_{\mathsf{x}}$

 $\{\dot{u}^e\}$, nodal displacements allow us to compute $\dot{\underline{\mathbf{u}}}$ and $\dot{\underline{\varepsilon}}$:

$$\underline{\dot{\mathbf{u}}} = [N]\{\dot{u}^e\} \quad ; \quad \dot{\varepsilon} = [B]\{\dot{u}^e\}$$

Galerkin form writes, $\forall \{\dot{u}^e\}$:

$$\sum_{elt} \left(\int_{\Omega} \{ \sigma(\{u^e\}) \cdot [B] \cdot \{ \dot{u}^e \} \ d\Omega \right) = \sum_{elt} \left(\int_{\Omega} \underline{\mathbf{f}}^d \cdot [N] \cdot \{ \dot{u}^e \} \ d\Omega \right) + \int_{\Gamma_-} \underline{\mathbf{f}}^d \cdot [N] \cdot \{ \dot{u}^e \} \ dS \right)$$

Global problem 39/67

Internal and external forces

In each element e:

• Internal forces:

$$\{F_{int}^e\} = \int_{\Omega} \{\sigma(\{u^e\}).[B] d\Omega = \int_{\Omega} [B]^T \{\sigma(\{u^e\}) d\Omega$$

• External forces:

$$\{F_{\text{ext}}^e\} = \int_{\Omega} \underline{\mathbf{f}}^d . [N] d\Omega + \int_{\Gamma_F} \underline{\mathbf{F}}^d . [N] dS$$

The solution of the problem: $\{F_{int}^e(\{u^e\})\} = \{F_{ext}^e\}$ with Newton iterative algorithm will use the jacobian matrix :

$$\begin{aligned} \left[\mathcal{K}^{e}\right] &= \frac{\partial \left\{F_{int}^{e}\right\}}{\partial \left\{u^{e}\right\}} \\ &= \int_{\Omega} \left[B\right]^{T} \cdot \frac{\partial \left\{\sigma\right\}}{\partial \left\{\varepsilon\right\}} \cdot \frac{\partial \left\{\varepsilon\right\}}{\partial \left\{u^{e}\right\}} d\Omega \\ &= \int_{\Omega} \left[B\right]^{T} \cdot \frac{\partial \left\{\sigma\right\}}{\partial \left\{\varepsilon\right\}} \cdot \left[B\right] d\Omega \end{aligned}$$

Linear and non linear behavior

- Applying the principle of virtual power ≡ Stationnary point of Potential Energy
- For elastic behavior

$$[K^{e}] = \int_{\Omega} [B]^{T} . [\overset{\wedge}{\underset{\sim}{\mathbb{N}}}] . [B] d\Omega$$

is symmetric, positive definite (true since $\underline{\sigma}$ and $\underline{\varepsilon}$ are conjugated)

- For non linear behavior, one has to examine $[L_c] = \left[\frac{\partial \{\sigma\}}{\partial \{\varepsilon\}}\right]$. Note that $[L_c]$ can be approached (quasi-Newton).
- $\{F_{\text{ext}}^e\}$ may depend on $\{u^e\}$ (large displacements).

Global problem 41/67

Elastostatic, strong and weak form, a summary

STRONG

- BCu: $u = u^d$ on Γ_u
- Kinematics: $\varepsilon = [B] u$ in Ω
- Constitutive equation: $\sigma = \Lambda \varepsilon$
- Equilibrium: $[B] \sigma + f = 0$
- BCs: $\sigma n = F$ on Γ_F

WEAK

- BCu: $u^h = u^d$ on Γ_u
- Kinematics: $\varepsilon = [B] u^h$ in Ω
- Constitutive equation: $\sigma = \Lambda \varepsilon$
- Equilibrium: $\delta\Pi = 0$
- BCs: $\delta\Pi = 0$

Contents

Discrete versus continuous

Element

Interpolation

Element list

Global problem

Formulation

Matrix formulation

Algorithm

Matrix—vectors formulation of the weak form of the problem

$$[K]\{q\} = \{F\}$$

• Thermal conduction:

$$[K] = \int_{\Omega} [B]^T [\kappa] [B] d\Omega$$
 $\{F\} = \int_{\Omega} [N] r d\Omega + \int_{\partial\Omega} [N] \Phi^d d\Gamma$

• Elasticity:

$$[K] = \int_{\Omega} [B]^{T} [\Lambda] [B] d\Omega \qquad \{F\} = \int_{\Omega} [N] \underline{\mathbf{f}}^{d} d\Omega + \int_{\partial\Omega} [N] \underline{\mathbf{F}}^{d} d\Gamma$$

In each element e:

• Internal forces:

$$\{F_{int}^e\} = \int_{\Omega} \{\sigma(\{u^e\}).[B] d\Omega = \int_{\Omega} [B]^T \{\sigma(\{u^e\}) d\Omega$$

• External forces:

$$\{F_{\mathsf{ext}}^e\} = \int_{\Omega} \underline{\mathbf{f}}^d .[N] d\Omega + \int_{\Gamma} \underline{\mathbf{F}}_{\square}^d .[N] dS$$

Global problem $J\Omega$ $J\Gamma_F$ 44/67

The stiffness matrix

Example of a 4-node quad and of a 20-node hexahedron ()

The element stiffness matrix is a square matrix, symmetric, with no zero inside.

Its size is equal to the number of dof of the element.

Global problem 45/67

Nodal forces (1)

$$\{F_{ext}^e\} = \int_{\Gamma_F} [N]^T \underline{F}^d dS$$

$$F_x ds = F_t dx - F_n dy$$

$$F_y ds = F_n dx + F_t dy$$

with
$$\begin{pmatrix} dx \\ dy \end{pmatrix} = [J] \begin{pmatrix} d\xi \\ d\eta \end{pmatrix}$$

Global problem 46/67

Nodal forces (2)

Integration on edge 5–7: $dx = \frac{\partial x}{\partial \xi} d\xi$ $dy = \frac{\partial y}{\partial \xi} d\xi$ Components 9, 10, for the nodes 5; 11, 12 for nodes 6; 13, 14 for nodes 7

$$F_{\text{ext}}^{e}(2i-1) = e \int_{-1}^{1} N_{i} \left(F_{t} \frac{\partial x}{\partial \xi} - F_{n} \frac{\partial y}{\partial \xi} \right) d\xi$$
$$F_{\text{ext}}^{e}(2i) = e \int_{-1}^{1} N_{i} \left(F_{n} \frac{\partial x}{\partial \xi} + F_{t} \frac{\partial y}{\partial \xi} \right) d\xi$$

Example, for a pressure $F_n = p$, and no shear $(F_t = 0)$ on the 5–7 edge of a 8-node rectangle

$$-a\leqslant x\leqslant a$$
 $y=b$ represented by $-1\leqslant \xi\leqslant 1$ $\eta=1$
$$\frac{\partial x}{\partial \xi}=a \qquad \frac{\partial y}{\partial \xi}=0$$
 $N_5=\xi(1+\xi)/2 \quad N_6=1-\xi^2 \quad N_7=-\xi(1-\xi)/2$

Global problem 47/67

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Nodal forces (3)

The nodal forces at the middle node are 4 times the nodal forces at corner nodes for an uniform pressure (distribution 1–2–1–2–1... after adding the contribution of each element)

Global problem 48/67

Nodal forces (4)

Axisymmetric 8-node quad

• Face of a 20-node hexahedron

Global problem 49/67

Nodal forces (5)

• Face of a 27-node hexahedron

who knows?

• Face of a 15-node hexahedron

Global problem 50/67

Local versus global numbering

Global problem 51/67

$$\begin{pmatrix} F_{1} & = & F_{1}^{A} \\ F_{2} & = & F_{2}^{A} & + F_{1}^{B} \\ F_{3} & = & + F_{2}^{B} \\ F_{4} & = & F_{3}^{A} & + F_{4}^{B} & + F_{1}^{C} \\ F_{5} & = & + F_{3}^{B} & + F_{2}^{C} \\ F_{6} & = & + F_{4}^{C} \\ F_{7} & = & + F_{3}^{C} \end{pmatrix} \begin{pmatrix} q_{1} & = & q_{1}^{A} \\ q_{2} & = & q_{2}^{A} & = & q_{1}^{B} \\ q_{3} & = & = & q_{2}^{B} \\ q_{4} & = & q_{3}^{A} & = & q_{4}^{B} & = q_{1}^{C} \\ q_{5} & = & = & q_{3}^{B} & = & q_{2}^{C} \\ q_{6} & = & = & q_{4}^{C} \\ q_{7} & = & = & q_{3}^{C} \end{pmatrix}$$

Global problem 52/6

Global problem 53/67

Global problem 54/67

Global problem 55/67

Global problem 56/67

Global problem 57/67

Global problem 58/67

Global problem 59/67

Global problem 60/67

Global problem 61/67

Global problem 62/67

Global problem 63/67

Contents

Discrete versus continuous

Element

Interpolation

Element list

Global problem

Formulation

Matrix formulation

Algorithm

Global algorithm

For each loading increment, do while $\|\{R\}_{iter}\| > EPSI$: iter = 0; iter < ITERMAX; iter + +

- **1** Update displacements: $\Delta\{u\}_{iter+1} = \Delta\{u\}_{iter} + \delta\{u\}_{iter}$
- ② Compute $\Delta\{\varepsilon\} = [B].\Delta\{u\}_{iter+1}$ then $\Delta\varepsilon$ for each Gauss point
- **1** Integrate the constitutive equation: $\Delta \underline{\varepsilon} \to \Delta \underline{\sigma}, \ \Delta \alpha_I, \ \frac{\Delta \underline{\sigma}}{\Delta \underline{\varepsilon}}$
- **3** Compute int and ext forces: $\{F_{int}(\{u\}_t + \Delta\{u\}_{iter+1})\}, \{F_e\}$
- **o** Compute the residual force: $\{R\}_{iter+1} = \{F_{int}\} \{F_e\}$
- **1** New displacement increment: $\delta\{u\}_{iter+1} = -[K]^{-1}.\{R\}_{iter+1}$

◆ロ → ◆団 → ◆ き → ◆ き → り へ ○

Global problem 65/67

Convergence

• Value of the residual forces $< R_{\epsilon}$, e.g.

$$||\{R\}||_n = \left(\sum_i R_i^n\right)^{1/n} \; ; \; ||\{R\}||_\infty = \max_i |R_i|$$

Relative values:

$$\frac{||\{R\}_i - \{R\}_e||}{||\{R\}_e||} < \epsilon$$

Displacements

$$\left|\left|\{U\}_{k+1} - \{U\}_k\right|\right|_n < U_{\epsilon}$$

Energy

$$\left[\left\{ U \right\}_{k+1} - \left\{ U \right\}_k \right]^T \cdot \left\{ R \right\}_k < W_{\epsilon}$$