

M.Alif Al Hakim

University of Indonesia ui.ac.id

GNNs Also Deserve Editing, and They Need It More Than Once

by Shaochen Zhong, Duy Le, Zirui Liu, et al.

Adapts the EGNN (Editable Graph Neural Network for Node Classifications; Ziriu Liu et al.) framework to edit a target e_i, constructing an editing batch with the current target, previous edited targets, its training-set neighbors, and random training samples

Courtesy: GNNs Also Deserve Editing, and They Need It More Than Once

Reproduced Results

Original Experiment

	ogbn-arxiv	169,343	Nodes 1,	166,243 Edges	40 Classes	128 Features	
GCN (70.26%)	FT	60.5 (1.0)	42.3 (0.5)	67.5 (0.12)	66.5 (0.12)	69.1	58.5
	ENN	48.2 (0.0)	48.2 (0.0)	48.2 (0.0)	48.2 (0.02)	48.2	48.2
	EGNN	3.0 (1.0)	9.2 (0.9)	17.9 (0.2)	4.2 (0.14)	58.4	13.0
	Adapter	48.7 (1.0)	70.0 (0.1)	64.3 (0.24)	68.4 (0.02)	70.0	60.2
	LoRA	3.9 (0.0)	3.9(0.1)	3.9 (0.04)	3.9 (0.1)	3.9	3.9
	SEED-GNN	-3.7 (1.0)	4.7 (1.0)	5.3 (1.0)	6.2 (1.0)	9.8	6.1
Graph- SAGE (68.45%)	FT	54.4 (1.0)	64.9 (0.1)	65.2 (0.12)	64.7 (0.1)	67.7	59.3
	ENN	66.2 (0.0)	68.0 (0.0)	68.0 (0.04)	68.0 (0.06)	68.0	68.0
	EGNN	0.6 (1.0)	10.0 (0.5)	17.6 (0.32)	15.0 (0.36)	39.8	17.8
	Adapter	67.2 (1.0)	58.9 (0.2)	46.9 (0.32)	64.6 (0.14)	68.3	58.9
	LoRA	2.7 (0.0)	2.7 (0.0)	2.9(0.2)	2.1 (0.1)	3.7	2.3
	SEED-GNN	0.1(1.0)	5.8 (1.0)	5.5 (1.0)	4.8 (1.0)	11.0	4.9
GIN (66.17%)	FT	61.9 (1.0)	46.0 (0.2)	63.6 (0.16)	63.7 (0.02)	65.9	59.9
	ENN	64.9 (0.0)	41.8 (0.1)	44.9 (0.16)	44.4 (0.14)	66.1	51.6
	EGNN	0.2 (1.0)	34.6 (0.6)	22.4 (0.32)	30.0 (0.22)	53.0	17.0
	Adapter	65.3 (1.0)	57.9 (0.2)	63.6 (0.12)	60.1 (0.12)	65.3	54.6
	SEED-GNN	0.7 (1.0)	1.1 (0.8)	4.9 (0.96)	6.7 (0.98)	8.6	5.2

Max DD Avg DD

On Large-Scale Graphs: Average

Drawdown Exceeds 5%

Full Experiment Results: https://github.com/malifalhakim/gnn_editing/tree/main/exp_result/tables

Notes: GAT encountered an Out Of Memory (OOM) error during prediction on the ArXiv dataset due to computational memory limitations.

What If?

Since the paper says "The Enemy is, Once Again, Overfitting", Why don't we try to improve method's generalization capability. In this experiment, I added:

- L2 regularization within the MLP model.
- Class-Boosted Stratified Sampling for training data, replacing the previous sampling method
 Rand(D_train), will increase the representation of historically mispredicted classes while attempting to maintain the original distribution.

What If?

Regularizations

$$\mathcal{L}_{ ext{reg}} = \underbrace{\lambda_{ ext{act}} \sum_{l=1}^{L-1} \|\mathbf{H}^{(l)}\|_F^2}_{ ext{Activity Regularization}} + \underbrace{\lambda_w \sum_{k=1}^K \|\mathbf{W}^{(k)}\|_F^2}_{ ext{Weight Decay}}$$

Class Boosted Stratified Sampling

$$p_c^{ ext{boosted}} = rac{p_c}{eta \cdot p_{c^*} + \sum_{c
eq c^*} p_c} \hspace{1cm} p_c^{ ext{boosted}} = rac{eta \cdot p_{c^*}}{eta \cdot p_{c^*} + \sum_{c
eq c^*} p_c}$$

$$p_{c^*}^{ ext{boosted}} = rac{eta \cdot p_{c^*}}{eta \cdot p_{c^*} + \sum_{c
eq c^*} p_c}$$

 $p_c = rac{ ext{count}(c)}{|D_{ ext{train}}|}$: Original proportion of class c in the training c^* : Edit target class (the class of e_i)

```
class MLP(BaseModel):
   def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
            **kwargs: Additional keyword arguments
       Returns:
           Output tensor with shape [batch_size, out_channels]
       self.activity_reg_loss = 0.0
       for idx in range(self.num layers - 1):
           lin = self.lins[idx]
           h = lin(x, *args, **kwargs)
           if self.batch_norm:
               h = self.bns[idx](h)
           if self.layer_norm:
               h = self.lns[idx](h)
           if self.residual and h.size(-1) == x.size(-1):
               min_size = min(h.size(0), x.size(0))
               h[:min size] += x[:min size]
           if self.activity regularization > 0:
                self.activity_reg_loss += self.activity_regularization * torch.sum(h**2)
           x = self.activation(h)
```

```
def _select_mixup_training_nodes(
   train y = whole data.y[whole data.train mask]
   class_counts = [(train_y == c).sum().item() for c in range(num_classes)]
    total train nodes = len(train y)
    class_proportions = [count / total_train_nodes for count in class_counts]
    # Calculate nodes per class based on original distribution with a boost factor for the target class
   boost factor = 1.2
    target_boost = min(boost_factor, 1.0 / class_proportions[target_class]) # Prevent over-allocation
   # Normalize proportions after boosting target class
   adjusted proportions = class proportions.copy()
   adjusted_proportions[target_class] *= target_boost
   total_adjusted = sum(adjusted_proportions)
    adjusted_proportions = [p / total_adjusted for p in adjusted_proportions]
   nodes_per_class = {
       c: max(1, int(num_general_nodes * adjusted_proportions[c]))
       for c in range(num_classes)
   # Ensure we don't exceed the target number of nodes
    total allocated = sum(nodes per class.values())
   if total_allocated > num_general_nodes:
       scale_factor = num_general_nodes / total_allocated
       nodes_per_class = {c: max(1, int(n * scale_factor)) for c, n in nodes_per_class.items()}
```

Empirical Results

SEED-GNN with Class-Boosted
Sampling and Regularization

Achieves **Up to 3.9** × **Lower**

Average DD While Maintaining

>98% Edit Success Rate

Notes: Result on ArXiv Dataset using default parameter

Empirical Results

Achieves up to 2.4x lower

Maximum Drawdown (Max DD)

while also reducing the difference

between Maximum and Average

Drawdown to 3.5% or less

Notes: Result on ArXiv Dataset using default parameter

Tradeoff

Slower Editing Time

Regularizations Introduce Computational Trade-offs: SEED-GNN with Regularizations Doubles Edit Time (106% Increase) to Enforce Model Constraints, While Class-Boosted Sampling Adds Minimal Overhead (14%).

Notes: Result on ArXiv Dataset using GCN model

While this trade-off has potential benefits, the experiment indicates a **possible decrease in the success rate**, with an observed decrement of **roughly 1 percent on average**.

Conclusion

- SEED-GNN provides a method for handling sequential editing of GNN models, improving upon the previous EGGN method, which struggled to maintain performance in sequential settings
- SEED-GNN primarily prevents overfitting in the active MLP model by modifying the Edit Batch
- Adding more constraints to the MLP model could improve its generalization, but this will involve trade-offs.