

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE		
		Durée de l'épreuve 3 heures		
CHIMIE	B/C	Date de l'épreuve 02.06.2017		
		Numéro du candidat		

QC = question de cours [19] ANN = application non numérique [21] AN = application numérique [20]

I. L'arôme des fromages (14pts)

1. L'arôme du Parmesan est notamment dû au composé suivant :

a. Donner le nom de ce composé.

(ANN1)

- b. Ce composé peut être obtenu par réaction entre un acide carboxylique A et un alcool B en présence d'acide sulfurique. Donner l'équation de la réaction en utilisant les formules semidéveloppées. Donner les noms de l'acide et de l'alcool. (ANN3)
- c. Pour former l'ester avec un meilleur rendement, on peut d'abord convertir l'acide **A** en chlorure d'acyle correspondant.
 - Dresser l'équation de la formation du chlorure d'acyle.

(QC1)

- Dresser l'équation de la réaction de synthèse de l'ester à partir de ce chlorure d'acyle et de l'alcool **B**. (ANN2)
- 2. Un des principaux composants de l'arôme du Camembert est l'oct-1-én-3-ol.
 - a. Dresser la formule en bâtonnets de ce composé.

(ANN1)

- b. Cette molécule est chirale. Expliquer pourquoi et dresser les formules spatiales des énantiomères en indiquant leur configuration selon la nomenclature CIP. (ANN2)
- 3. L'arôme du Gouda ou du Cheddar est dû en partie à un aldéhyde non chiral, dont la chaine carbonée est aliphatique, saturée et contient une ramification.

Trouver la formule semi-développée ainsi que le nom de cet aldéhyde, sachant que sa teneur massique en oxygène est de 18,6 %. (ANN2/AN2)

II. Alcools et dérivés (18pts)

- Comparer la volatilité des alcools à celle des alcanes, ainsi qu'à celle des aldéhydes et cétones de masse molaire comparable. Expliquer les différences. (QC5)
- 2. Considérons le butan-2-ol. Cet alcool est oxydé en milieu acide par le permanganate de potassium.
 - a. Dresser le système rédox traduisant la réaction et nommer le produit obtenu C. (ANN3)
 - b. Calculer la masse de butan-2-ol que l'on peut oxyder avec 50 mL de solution de permangante de potassium de concentration c = 0,4 M. (AN3)

3. Le composé **C** réagit avec le cyanure d'hydrogène.

a. Dresser l'équation correspondante.

b. Quel est l'intérêt de cette réaction en synthèse organique ? (QC1)

c. Expliquer pourquoi les additions nucléophiles sont faciles à réaliser sur le groupement fonctionnel de **C**. (QC4)

III. Phénol (14 pts)

- 1. Le phénol (hydroxybenzène) est utilisé dans la synthèse du paracétamol. La première étape de cette synthèse consiste à faire la nitration du phénol, par l'acide nitrique en présence d'acide sulfurique concentré. Elle conduit à la formation des deux isomères *para*-nitrophénol et *ortho*-nitrophénol.
 - a. Dresser l'équation globale pour la formation du para-nitrophénol. (QC1
 - b. Expliquer, sur base de l'étude des formes contributives à la mésomérie du phénol, l'orientation en ortho et para du deuxième substituant sur le phénol. (ANN3)
 - c. Dresser le mécanisme réactionnel de la nitration du phénol (produisant du para-nitrophénol).

(QC5)

(QC2)

- 2. L' « eau phéniquée » est une solution aqueuse de phénol, qui possède des propriétés antiseptiques connues depuis la fin du 18^{ième} siècle.
 - a. Dresser l'équation de la dissociation acide du phénol dans l'eau. (ANN1)
 - b. Calculer le pH d'une solution de 10 mL contenant 200 mg de phénol. (AN2)
 - Le phénol possède un groupement hydroxyle, comme l'éthanol. Néanmoins le caractère acide du phénol est nettement plus prononcé. Expliquer l'acidité du phénol sur base des formes contributives à la mésomérie (dressées au point 1.b.)

IV. Acide éthanoïque et éthanoate de sodium (14 pts)

- 1. On dispose d'une solution à 0,25 M d'acide éthanoïque.
 - a. Calculer le degré de dissociation de l'acide dans cette solution. (AN1)
 - b. On a préparé 500 mL de cette solution à partir de 24,1 mL d'une solution commerciale concentrée d'acide éthanoïque (densité de la solution commerciale = 1,0383). Calculer le pourcentage en masse d'acide éthanoïque de la solution commerciale. (AN3)
- 2. On dispose d'une solution à 0,15 M d'éthanoate de sodium.
 - a. Calculer le pH de cette solution. (AN3)
 - b. Le carmin d'indigo, un indicateur coloré avec pKa = 12,2 est bleu dans sa forme HInd et jaune dans sa forme Ind-. Quelle couleur aura cet indicateur dans la solution ? (ANN1)
- 3. On mélange 250 mL de la solution d'acide éthanoïque à 0,25 M avec 500 mL de la solution d'éthanoate de sodium à 0,15 M. Calculer le pH de la solution obtenue. (AN2)
- 4. Calculer la masse d'hydroxyde de sodium qu'il faut ajouter aux 250 mL d'acide éthanoïque 0,25 M pour obtenir une solution de pH égal à 5,5. (une variation de volume est négligeable) (AN4)

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H ₃ O ⁺) HI, HBr, HCl, HClO ₄ , HNO ₃ , H ₂ SO ₄ base	s de force négligeable
--	------------------------

cat. hydronium	H ₃ O ⁺	H₂O	eau	-1,74
ac. chlorique	HCIO ₃	ClO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl ₃ COO-	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ -	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	ClO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄ ⁻	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO-	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH ₂ CICOO⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH ₂ BrCOOH	CH ₂ BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂ -	an. nitrite	3,14
ac. iodoéthanoïque	CH ₂ ICOOH	CH ₂ ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F-	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO-	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ -	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO-	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO-	an. propanoate	4,87
cat. hexaqua aluminium	Al(H ₂ O) ₆ ³⁺	AI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH+	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ -	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ +	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃ ⁻	an. borate	9,23
ac. hypobromeux	HBrO	BrO-	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN-	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ 3-	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable bases fortes (plus fortes que OH ⁻) O ²⁻ , NH ₂ ⁻ , anion alcoolate RO ⁻)

TABLEAU PERIODIQUE DES ELEMENTS

	groupe	s princip	aux											gro	upes pri	ncipaux		
		Ti	7										111	IV	V	VI	VII	VIII
	1,0	T	-														14040	4,0
1	Н														٠,			He
	1																	2
	6,9	9,0	1										10,8	12,0	14,0	16,0	19,0	20,2
2	Li	Be											В	C	N	0	F	Ne
	3	4											5	6	7	8	9	10
	23,0	24,3	1				groupe	s second	laires				27,0	28,1	31,0	32,1	35,5	39,9
3	Na	Mg											Al	Si	P	S	CI	Ar
	11	12	III	IV	V	VI	VII	T	VIII		1	11	13	14	15	16	17	18
	39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	(223)	226,0	227,0	(261)	(262)	(266)	(264)	(269)	(268)	(281)								
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds								
	87	88	89	104	105	106	107	108	109	110								

lanthanides

actinides

140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232,0	231,0	238,0	237,0	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(256)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103