"好搭"电子百拼典型电路及说明

目录

案例一: 点亮一盏灯	2	案例二十二:声控闪烁灯	28
案例二: 点亮 LED 灯	3	案例二十三:互补多谐振荡电路	
案例三:转动电动机	4	案例二十四:频闪灯	
案例四:按键控制电路	5	案例二十五:光控变调门铃	31
案例五:磁控开关	6	案例二十六: 555 音频声	32
案例六: 手摇发电	7	案例二十七: 555 音频振荡	33
案例七:太阳能电池	8	案例二十八: 555 定时灯	34
案例八: 串联电路	9	案例二十九: 555 电位器 控灯	35
案例九:并联电路	10	案例三十:双闪灯	36
案例十: 串并联电路	13	案例三十一: 555 光控灯	37
案例十一:调光电路	14	案例三十二:控延时楼道灯	38
案例十二: NPN 单管调光		案例三十三:音乐模块	39
案例十三: PNP 单管调光		案例三十四:光控音乐	
案例十四:调光电路 调速3(复合管)	17	案例三十五:报警模块	41
案例十五:光控电路 NPN(见光亮)	19	案例三十六:光控报警	42
案例十六:光控电路 PNP(见光亮)	20	案例三十七:断线报警器	43
案例十七: 光控电路 复合管(环境光变暗, 灯亮)	21	案例三十八:收音模块	44
案例十八: 电容充放电演示	23	案例三十九:收音机	
案例十九:延时电路灯	24	案例四十:录音模块	46
案例二十:复合管延时电路	25	案例四十一:录音机	47
案例二十一:延时启动	27		

案例一: 点亮一盏灯

合上开关, 电灯亮, 断开开关, 电灯灭。

案例二: 点亮 LED 灯

合上开关, LED 灯亮, 断开开关, LED 灯灭。

将LED 灯反接,看看LED 灯是否会亮?这说明LED 具有单向导电性。

案例三: 转动电动机

合上开关, 电动机转动, 断开开关, 电动机停转。在电动机上 装上小风叶, 就成了一台小电扇。

案例四: 按键控制电路

按键按下灯就亮, 松开按键灯就灭, 按一下亮一下。

尝试用按键控制前面搭建的其他电路。

案例五: 磁控开关

用磁铁靠近干簧管, 灯就亮; 磁铁移开干簧管, 灯就灭。

尝试用干簧管作为开关,控制前面搭建的其他电路。

案例六: 手摇发电

用手摇小发电机, 小灯泡就会发光。

用 LED 换成小灯泡, 顺时针转, LED 灯亮, 逆时针会怎么样?如果换成小电扇又会怎样?

案例七: 太阳能电池

将太阳能电池板放在强光下, LED 就会亮。

用小风扇代替 LED, 风扇会动吗?还可以带动哪些电路?

案例八: 串联电路

案例九: 并联电路

案例十: 串并联电路

案例十一:调光电路

滑动电位器,改变电位器的电阻大小,可以改变通过灯泡(LED)的电流大小,从而控制灯泡(LED)的亮度。

案例十二: NPN 单管调光

调节电位器, 可以使灯泡亮度随之变化。

案例十三: PNP 单管调光

调节电位器, 可以使灯泡亮度随之变化。

案例十四:调光电路 调速3(复合管)

调节电位器, 可以使灯泡亮度随之变化。

以上三种电路功能和操作基本相同,但第三种电路能均匀地调节亮度变化。

将灯泡换成小电机并装上风叶。

案例十五:光控电路 NPN (见光亮)

先测试一下光敏电阻,有光线时光敏电阻的电阻变小, LED 灯就亮起来了。

没有光时,光敏器件电阻很大,三极管 B-E 间没有电流通过,三极管 Q1 处于截止状态没有导调通,灯不亮。有光线照到导光敏器件时,光敏器件电阻变小,三极管导通,灯亮。

案例十六:光控电路 PNP (见光亮)

案例十七: 光控电路 复合管(环境光变暗, 灯亮)

有光线时,光敏器件电阻很小,三极管 Q2 的 B 极电位较高, B-E 间没有电流通过,三极管 Q2 处于截止状态没有导调通, 灯不亮。无光时,光敏器件电阻变大,Q2 的 B 极电位降低, 三极管导通,灯亮。由于该电路经复合管放大,灵敏度较高。

案例十八: 电容充放电演示

第一步先把开关 SA1 接通,这时 LED 灯亮了一会后熄灭,然后把开关关断;

第二步按住按键 SB1,这时 LED 灯 D1 也能亮一会儿。

说明第一步电流通过 D2 对电容器充电了, 第二步电容器里的电又放出来了。

案例十九:延时电路灯

合上开关电灯不亮, 按下按键灯亮, 放开按键后灯还会亮一段时间。这是由于放开按键后电容器 C4 里的电通过 R2 继续对Q1 的 B-E 放电, 将 D1 导通使灯发光。时间取决与电容器 C4 的大小, 容量越大时间越长, 试着换换看。

案例二十:复合管延时电路

合上开关电灯不亮,按下按键灯亮,放开按键后灯还会亮一段时间。这是由于放开按键后电容器 C4 里的电通过 R2 继续对Q1 的 B-E 放电,将Q1 导通并使Q2 也导通使灯发光。时间取决与电容器C4的大小,容量越大时间越长,试着换换看。

案例二十一: 延时启动

刚打开开关时灯不亮,要过一会才会亮。

这是因为要将电容器的电快充满三极管才会导通, 电容越大, 或电阻 R5 越大所需时间越长。

案例二十二: 声控闪烁灯

打开开关, LED 发光管只能发出微弱的光, 然后对着话筒吹气或将话筒靠近电视机等音响设备的喇叭, 发光管就会随着声音的大小闪烁发光。

案例二十三: 互补多谐振荡电路

此电路可以有多种变化,其中的电容直接影响到振荡频率,电容量在 0.1UF 以下时,频率是音频,可通过喇叭或蜂鸣器发出声音,换上 10UF 以上时是低频,可通过灯光观察闪动的快慢。因为蜂鸣器也是容性元件,可以代替 0.01 左右的电容使用。

案例二十四:频闪灯

案例二十五: 光控变调门铃

挡住光敏元件上的光线, 声调会发生变化。

案例二十六: 555 音频声

改变电阻和电容可改变频率。

案例二十七: 555 音频振荡

改变电容能改变频率。

案例二十八: 555 定时灯

按一下按键, 电灯会亮一会才熄灭, 时长取决于电容器 C 和电阻 R5。

案例二十九: 555 电位器 控灯

调整电位器可以控制灯的亮和灭,555集成电路2脚的电压在三分之一电源电压的时候改变状态。

案例三十: 双闪灯

两个灯交替闪亮, 改变电容和电阻可改变速度。

案例三十一: 555 光控灯

黑暗时灯亮。

案例三十二: 控延时楼道灯

把电位器调整到中间位置, 拍手灯就会亮起来, 过一会熄灭, 时长取决于电容 C5 和电阻 R5。

案例三十三: 音乐模块

音乐模块的 VCC 接电池正极, GND 接负极, OUT 是输出可接喇叭, 发光管, 蜂鸣器等, GT1, GT2 是触发端, GT2 每接通正极一次, 音乐响一遍, GT1 按一下循环放音, 按一下停, 可尝试用干簧管, 触摸片, 光敏元件等让模块发出声音。

案例三十四: 光控音乐

环境光线亮的时候,音乐就响起来。再档一下光线又会停止。

案例三十五:报警模块

报警模块的 VCC 接电池正极, GND 接负极, OUT 是输出可接喇叭, 发光管, 蜂鸣器等, F1 F2 是触发端, 可尝试用干簧管, 触摸片, 光敏元件等让模块发出声音。

F1 接地, 救护车声; F1、F2 空, 警车声; F1 接正极, 火警声; F2 接正极, 机枪声。

案例三十六: 光控报警

无光时,由于光敏器件电阻很大,Q1 截止,报警模块不工作,有光时,Q1 导通,模块发出报警声。

案例三十七: 断线报警器

电路的 A, B 之间用细导线连接,这时由于导线将 Q1 的 B 极接地了,Q1 截止,如果导线断了,Q1 导通,模块得电,马上发出报警声。

案例三十八: 收音模块

选台操作:任选其中的一个选台键,短按为自动选台,连续按住1.5 秒后, 转为手动选台。自动选台时,搜寻到电台信号时会自动停下来;手动选台时,每间隔1.5 秒会调整一步接收频率,步长为50KHz。例如:选用 CH+键,短按为自动向上选台的操作,每短按一次按键,会向上搜寻一个电台,然后自动停下来接收;而连续按住 CH+键1.5 秒后,会在原来接收频率的基础上,每间隔1.5 秒调整一步接收频率,步长为50KHz直到松开按键为止。同样的,如果选用 CH-键,道理也是一样的。

存台开关字旁的连接导线 1,平时是接通的,当你要停止收听时,可以把该连接导线拿掉,则模块进入低功耗休眠状态,恢复收听时只需重新接通即可,还是原来的台。利用这个功能可以开发出各种自动播放的收音机。

注意:必须插上天线;收音模块工作电压 2.5-3.6V,不要超过;由于没有带功率放大,所播放的声音相对较轻。

案例三十九: 收音机

由于增加了功率放大模块,播放的声音比较大。滑动电位器可以调节音量。

案例四十: 录音模块

录音时,按住录音键 REC,同时模块上的发光管亮,对住板上的话筒讲话就能录音,时间大概10秒;放音时只需按一下PLAY 键就能放音。将模块上的开关滑向右边,就能不停地循环放音。

由于没有带功率放大,所播放的声音相对较轻。

案例四十一: 录音机

由于增加了功率放大模块,播放的声音比较大。滑动电位器可以调节音量。