分类号	论文选题类型
U D C	编号

革中師範大學

本科毕业论文(设计)

<u>浅谈我们的我们的大学的大大</u> 大学我们的大学的大大大大

学	院	数学与统计学学院			
专	业	数学与应用数学(师范)			
年	级	2017级			
学生	姓名	作者			
学	号	2015123456			
指导	教师	张三丰教授 三丰教授			

华中师范大学

学位论文原创性声明

本人郑重声明: 所呈交的学位论文是本人在导师指导下独立进行研究工作所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。

学位论文作者签名:

日期:

年 月 日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

本学位论文属于

- 1、保密 □,在 年解密后适用本授权书。
- 2、不保密 □。

(请在以上相应方框内打"√")

学位论文作者签名:

日期:

年 月 日

导师签名:

日期:

年 月 日

目 录

内	容摘	要	1
关	键词		1
Ti	tle		1
A	bstrac	t	1
K	eywor	ds	1
1	引言		2
2	选项	与表格	2
	2.1	选项	2
	2.2	表格	2
3	多行	公式的排版	5
	3.1	多行公式的几个例子	5
	3.2	我是下一个小节	7
4	单行	公式和行内公式	8
5	我是	第三节	9
	5.1	正确缩进	9
	5.2	例子, 引理, 定理, 推论的书写	9
	5.3	图文并排	10
6	一个	修正排版范例	11
	6.1	初始排版	11
	6.2	修正排版	12
		下面例子需要大家动手修改	
参	考文	献	16
致	(谢		17
附	录		18

内容摘要: 摘要的字数控制在400个汉字左右. 尽量不要出现公式参考文献. 介绍本文的主要工作以及创新点.

关键词: 关键词1 关键词2 关键词3

Title: Discuss

Abstract: For.

Keywords: keywords1 keywords2 keywords3

1 引言

为了大家排版方便, 我们提供若干例子供大家参考. 以某毕业论文为参考对象, 进行讲解.

2 选项与表格

2.1 选项

大家在使用调查问卷时,会涉及到问题以及选项的排版. 这里提供两个命令: 四个选项\chf和三个选项\choice的排版,命令如下.

(1) 以下数据正确的是 ()

A.是否速度快放假喔喔我快放假收到速

B.水淀粉分dflkje C.我立刻打飞机是都发了几

D.我觉得副科级东风路科技风

您认为的是 ()

 A.是
 B.不是
 C.还是
 D.就是

下面的三项排版不是合适的排版

A.是我二姐夫打分法三分法f B.否

C.非

建议将一个选项后置

A.否 **B**.非

C.是我二姐夫打分法三分法f

下面排版是合适的.

A.是 **B**.否

2.2 表格

\multirow 多行, \multicolumn 多列.

科目	测试1	测试2
语文	78	81
数学	86	3

表 1: 的罚款金额非

贷款产品	金额	声誉	还款期限及利率	借贷手续及	到账时间	违约后果
助学贷款	最高 8000	很好	10-14年,利率按 基准利率 (4.35%) 执行,在校期间的 利息由国家全额补 贴	普通高等学校学生普通高等学校学校生活的。 全日制本专科生(含高职生)、第二学位学生和研究生且的,第一个工程,不是经济的。 一种工程,不是是一种工程,不是一种工程,也可能可能可能可能可能可能可能可能可能可能可能可能可能可能可能可能可能可能可能	每年11月 左右	将对其违约还款 金额计收罚息 (为当期利率 的130%)

构造类型	题号	构造意图	分值
构造函数	11	构造函数求未知数	5
构造图形	16	构造图形判断正误	5
构造坐标系	12	构造坐标系求最大值	5
构起至你尔	19	构造坐标系求二面角的余弦值	6
构造不等式	23	构造不等式求取值范围	5

表 2: 2017年全国三卷

			总计		
		一般	比较认真	非常认真	10.11
	不重要	0 0.0%	1 100.0%	0 0.0%	1 100.0%
重要性	一般	4 44.4%	4 44.4%	1 11.1%	9 100.0%
	比较重要	2 16.0%	130 79.8%	7 4.3%	163 100.0%
	非常重要	17 9.2%	90 48.9%	77 41.8%	184 100.0%
总	计	47 13.2%	225 63.0%	85 23.8%	357 100.0%

表 3: 重要性和认真程度的关系

$P_n(g_2) > 0, R(g_2) > 0$	$P_n(g_2) > 0, R(g_2) < 0$	$P_n(g_2) < 0, R(g_2) > 0$	$P_n(g_2) < 0, R(g_2) < 0$
图(1) 0为不稳定结	图(5) 0为椭圆域型	图(8) 0为 不 稳 定 结	图(10) 0为椭圆域型
点;沿 L_{Og_1} 有1个鞍点	奇 点; 沿 L_{Og_1} 有1个	点; 沿 L_{Og_1} 有1个 鞍	奇点; 沿 L_{Og_1} 有1个鞍
(∞) ; 沿 L_{Og_2} 有1个稳	不稳定结点(∞);沿	点 (∞) ; 沿 L_{Og_2} 有1个	点(∞);沿 L_{Og_2} 有1个
定结点(∞)	L _{Og2} 有1个稳定结点	鞍点(∞)和1个稳定结	鞍点(∞)
	(∞)和1个鞍点	点	
图(2) 0为 鞍 点;沿	图(6) 0为稳定结	图(9) 0为鞍点;沿L _{Og1}	图(8) 0为 不 稳 定 结
L_{Og_1} 有1个 鞍 点(∞)	点; 沿 L_{Og_1} 有1个鞍点	有1个 鞍 点(∞)和1个	点;沿 L_{Og_1} 有1个点
和1个不稳定结点;	(∞)和1个不稳定结	不稳定结点;沿	鞍 (∞); 沿 <i>L_{Og2}</i> 有1 个
沿 L_{Og_2} 有1个稳定结	点; 沿 L_{Og_2} 有1个稳定	L_{Og_2} 有1个 鞍 点 (∞)	鞍点(∞)和1个稳定结
点(∞)	结点(∞)和1个鞍点	和1个稳定结点	点
图(3) 0为不稳定结	图(7) 椭圆域型奇点;	图(6) 0为稳定结	图(5); O为椭圆域
点; 沿 L_{Og_1} 有1个不稳	沿L _{Og1} 有1个不稳定	点;沿 L_{Og_1} 有1个 鞍	型 奇 点;沿 L_{Og_1} 有1
定 结 点(∞)和1个 鞍	结 点(∞)和1个 鞍 点;	点(∞)和1个不稳定结	个 不 稳 定 结 点(∞);
点;沿 L_{Og_2} 有1个 稳	沿L _{Og2} 有1个稳定结	点; 沿 L_{Og_2} 有1个稳定	沿 L_{Og_2} 有1 个稳定结
定结点(∞)	点(∞)和1个鞍点	结点(∞)和1个鞍点	点(∞)和1个鞍点
图(4) 0为 鞍点;沿	图(3) 0为不稳定结	图(2); 0为鞍点;沿	图(1) 0为不稳定结
L_{Og_1} 有1 个不稳定结	点; 沿 L_{Og_1} 有1个不稳	L_{Og_1} 有1个鞍点 (∞)	点; 沿 L_{Og_1} 有1个鞍点
点(∞); 沿 L_{Og_2} 有 1个	定 结 点(∞)和1个 鞍	和1 个不稳定结点;	(∞); 沿 <i>L_{Og2}</i> 有 1 个稳
稳定结点(∞)	点; 沿 L_{Og_2} 有1个稳定	沿 L_{Og_2} 有1个稳定结	定结点(∞)
	结点(∞)	点 (∞)	
	图(1) O 为不稳定结点 点; 沿 L_{Og_1} 有1个鞍点 (∞); 沿 L_{Og_2} 有1个稳定结点(∞) 图(2) O 为 鞍点(∞) 和1个 稳定结定结点 点(∞) 图(3) O 为不稳定结点 点; 沿 L_{Og_1} 有1个个稳定结点(∞) 图(3) O 为不稳定结点 定结点(∞) 图(4) O 为 鞍点; 沿 L_{Og_2} 有1个稳定结点(∞)	图(1) O 为 不稳 定结 图(5) O 为椭圆域型点; 沿 L_{Og_1} 有1个鞍点 令点; 沿 L_{Og_2} 有1个稳定结点(∞); 沿 L_{Og_2} 有1个稳定结点(∞)和1个鞍点 图(2) O 为 鞍点;沿 L_{Og_1} 有1个 鞍点点; 沿 L_{Og_1} 有1个 鞍点点; 沿 L_{Og_1} 有1个 卷定结点; 沿 L_{Og_2} 有1个稳定结点点(∞)和1个不稳定结点点(∞)和1个不稳定结点点(∞)和1个不稳定结点点; 沿 L_{Og_2} 有1个稳定结点点; 沿 L_{Og_1} 有1个不稳定结点点; 沿 L_{Og_1} 有1个不稳定结点; 沿 L_{Og_1} 有1个不稳定结点; 沿 L_{Og_2} 有1个稳定结点(∞)和1个鞍点 图(3) O 为不稳定结点(∞)和1个鞍点 结点(∞)和1个鞍点 结点(∞)和1个鞍点 结点(∞)和1个鞍点 结点(∞)和1个鞍点 点; 沿 L_{Og_2} 有1个稳定结点(∞)和1个鞍点 点; 沿 L_{Og_2} 有1个稳定结点(∞)和1个鞍点 点; 沿 L_{Og_1} 有1个不稳定结点点(∞)和1个下稳定结点点(∞)和1个下稳定结点点点(∞)和1个下稳定结点点,沿 L_{Og_2} 有1个积稳定结点点,沿 L_{Og_2} 有1个不稳定结点点,沿 L_{Og_2} 有1个积稳定结点点(∞),沿 L_{Og_2} 有1个稳定结点点(∞),和1个鞍点	图(1) O 为不稳定结 图(5) O 为椭圆域型 图(8) O 为不稳定结点(∞); 沿 L_{Og_1} 有1个鞍点 奇点; 沿 L_{Og_1} 有1个 鞍点定结点(∞); 沿 L_{Og_2} 有1个稳定结点(∞)和1个鞍点 图(2) O 为 鞍点;沿 L_{Og_1} 有1个鞍点 图(6) O 为 稳定结点(∞)和1个 鞍点点 A 是结点; 沿 A 是结点(∞)和1个 下稳定结点点。 图(2) A 以 和1个 下稳定结点点。 图(3) A 以 和1个 不稳定结点点。 A 是 结点(∞)和1个 下稳定结点点。 A 是 结点(∞)和1个 下稳定结点点。 A 是 结点(∞)和1个 下稳定结点点。 A 是 结点(∞)和1个 下稳定结点。 A 是 结点(∞)和1个 下稳定结点。 A 是 A

表 4: 向量场对应的线性项特征根全为零

		探究	背景	运算	推理	知识含量
2015年	第5题	2	1	2	2	2
20154	第14题	2	1	2	2	2

表 5: 综合难度因素的水平划分

$$252 = 1 \times 198 + 54$$

$$198 = 3 \times 54 + 36$$

$$54 = 1 \times 36 + 18$$

$$36 = 2 \times 18$$

$$18 = -198 + 4(252 - 198)$$

$$= 4 \times 252 - 5 \times 198$$

$$\uparrow \quad 18 = 54 - (198 - 3 \times 54)$$

$$= -198 + 4 \times 54$$

$$18 = 54 - 36$$

表 6: 我是一个表格.

3 多行公式的排版

3.1 多行公式的几个例子

注意多行公式首行的书写,以下内容为真实的毕业论文内容,

定理 3.1 无穷积分 $\int_a^{+\infty} h(x) dx$ 收敛等价于存在分解式h(x) = f(x)g(x) 使得函数 $F(u) = \int_a^u f(x) dx$ 在 $[a, +\infty)$ 上有界, g(x)在 $[a, +\infty)$ 上单调且 $\lim_{x \to +\infty} g(x) = 0$

证明: 充分性见华东师范大学编数学分析上册. 下证必要性. 由无穷积分 $\int_a^{+\infty} h(x) \, dx$ 收敛知对任意 $\varepsilon > 0$, 存在 $N = N(\varepsilon) > a$, 当 $u \ge N$ 时, 有

$$\left| \int_{u}^{+\infty} h(x \, \mathrm{d}x) \right| < \varepsilon.$$

取 $\varepsilon=k^{-3}$, 令 $N_k=N(\varepsilon)$. 那么当 $u\geq N_k$ 时, 有

$$|\int_u^{+\infty} h(x) \, \mathrm{d}x| < \frac{1}{k^3}.$$

令

$$g(x) = \begin{cases} 1, & x \in [a, N_1]; \\ \frac{1}{k}, & x \in (N_k, N_{k+1}], k = 1, 2, 3, \dots \end{cases}$$

故有g(x)在 $[a, +\infty)$ 上单调且 $\lim_{x \to +\infty} g(x) = 0$. 令 $f(x) = \frac{h(x)}{g(x)}$, 则

(a) 当
$$u \in [a, N_1]$$
, 由 $g(x) = 1$ 知 $f(x) = h(x)$, 所以有

$$\left| \int_{a}^{u} f(x) \, dx \right| = \left| \int_{a}^{u} h(x) \, dx \right| \le \int_{a}^{u} |h(x)| \, dx \le \int_{a}^{N_{1}} |h(x)| \, dx.$$

记 $\int_{a}^{N_{1}} |h(x)| dx$ 为 M_{1} ,则有 $\int_{a}^{u} f(x) dx| \leq M_{1}$.

(b) $\exists u > N_1$, 则一定存在 N_k 使得 $u \in (N_k, N_{k+1}]$, 则有

$$\left| \int_{a}^{u} f(x) \, dx \right| = \left| \int_{a}^{u} \frac{h(x)}{g(x)} \, dx \right|$$

$$= \left| \int_{a}^{N_{1}} h(x) \, dx + \int_{N_{1}}^{N_{2}} h(x) \, dx + \dots + k \int_{N_{k}}^{u} h(x) \, dx \right|$$

$$\leq \left| \int_{a}^{N_{1}} h(x) \, dx \right| + \left| \int_{N_{1}}^{N_{2}} h(x) \, dx \right| + \dots + k \left| \int_{N_{k}}^{u} h(x) \, dx \right|$$

$$= \left| \int_{a}^{N_{1}} h(x) \, dx \right| + \left| \int_{N_{1}}^{+\infty} h(x) \, dx - \int_{N_{2}}^{+\infty} h(x) \, dx \right| + \dots$$

$$+ k \left| \int_{N_{k}}^{+\infty} h(x) \, dx - \int_{u}^{+\infty} h(x) \, dx \right|$$

$$\leq \left| \int_{a}^{N_{1}} h(x) \, dx \right| + \left(\left| \int_{N_{1}}^{+\infty} h(x) \, dx \right| + \left| \int_{N_{2}}^{+\infty} h(x) \, dx \right| \right) + \dots$$

$$+ k \left(\left| \int_{N_{k}}^{+\infty} h(x) \, dx \right| + \left| \int_{u}^{+\infty} h(x) \, dx \right| \right)$$

$$< M_{1} + \left(1 + \frac{1}{2^{3}} \right) + \dots + k \left(\frac{1}{k^{3}} + \frac{1}{k^{3}} \right)$$

$$< M_{1} + (1 + 1) + 2 \left(\frac{1}{2^{3}} + \frac{1}{2^{3}} \right) + \dots + k \left(\frac{1}{k^{3}} + \frac{1}{k^{3}} \right)$$

$$= M_{1} + 2 \left(1 + \frac{1}{2^{2}} + \dots + \frac{1}{k^{2}} \right) < M_{1} + \frac{\pi}{3}$$

记 $M_1 + \frac{\pi}{3}$ 为M,则对所有 $u \in [a, +\infty)$,有 $\int_a^u f(x) \, dx < M$,即说明 $F(u) = \int_a^u f(x) \, dx$ 在 $[a, +\infty)$ 上有界.

另外一个例子. 需要证明的式子为

$$\frac{(\cos x + i\sin x)(\cos nx - 1 + i\sin nx)}{\cos x - 1 + \sin x} = \csc \frac{x}{2}\sin \frac{nx}{2} \left(\cos \frac{(n+1)x}{2} + i\sin \frac{(n+1)x}{2}\right). (3.1)$$

注意到对任意 $x \in \mathbb{R}$,有

$$\cos x - 1 + i \sin x = -2 \sin^2 \frac{x}{2} + 2i \sin \frac{x}{2} \cos \frac{nx}{2}$$

$$= -2 \sin \frac{x}{2} \left(\sin \frac{x}{2} - i \cos \frac{x}{2} \right)$$

$$= -2 \sin \frac{x}{2} \left(\cos \left(\frac{\pi}{2} - \frac{x}{2} \right) - i \sin \left(\frac{\pi}{2} - \frac{x}{2} \right) \right)$$

$$= -2 \sin \frac{x}{2} \left(\cos \left(\frac{x}{2} - \frac{\pi}{2} \right) + i \sin \left(\frac{x}{2} - \frac{\pi}{2} \right) \right).$$

因此(3.1)式左边分母与右边的乘积为

$$(\cos x - 1 + i\sin x)\csc\frac{x}{2}\sin\frac{nx}{2}\Big(\cos\frac{(n+1)x}{2} + i\sin\frac{(n+1)x}{2}\Big)$$

$$= -2\sin\frac{nx}{2}\Big(\cos\left(\frac{x}{2} - \frac{\pi}{2}\right) + i\sin\left(\frac{x}{2} - \frac{\pi}{2}\right)\Big)\Big(\cos\frac{(n+1)x}{2} + i\sin\frac{(n+1)x}{2}\Big)$$

$$= -2\sin\frac{nx}{2}\Big(\cos\big(\frac{(n+2)x}{2} - \frac{\pi}{2}\big) + i\sin\big(\frac{(n+2)x}{2} - \frac{\pi}{2}\big)\Big).$$

而(3.1)式的分子为

$$(\cos x + i\sin x)(\cos nx - 1 + i\sin nx)$$

$$= (\cos x + i\sin x)\left(-2\sin\frac{nx}{2}\right)\left(\cos\left(\frac{nx}{2} - \frac{\pi}{2}\right) + i\sin\left(\frac{nx}{2} - \frac{\pi}{2}\right)\right)$$

$$= -2\sin\frac{nx}{2}\left(\cos\left(\frac{(n+2)x}{2} - \frac{\pi}{2}\right) + i\sin\left(\frac{(n+2)x}{2} - \frac{\pi}{2}\right)\right).$$

这就说明

$$(3.1)$$
左边分子 = (3.1) 左边分母 × (3.1) 右边,

即证(3.1)成立.

下一个例子. 减少多行公式的行间距. 原始排版

$$\begin{cases} a = b; \\ c = d; \\ \frac{1}{2}x = y. \end{cases}$$

修正排版

$$\begin{cases} a = b; \\ c = d; \\ \frac{1}{2}x = y. \end{cases}$$

3.2 我是下一个小节

多行公式的三个排版. 建议使用第三种, 也就是上节所用的方法.

$$(x^{2} + 3x - 3)(x^{2} + 3x + 5) + 14$$

$$= (t - 1)(t + 5) + 16$$

$$= t^{2} + 2t + 1$$

$$= (t + 1)^{2}$$

$$= (x^{2} + 3x + 1)^{2}$$

$$(x^{2} + 3x - 3)(x^{2} + 3x + 5) + 14$$

$$= (t - 1)(t + 5) + 16$$

$$= t^{2} + 2t + 1$$

$$= (t+1)^{2}$$

$$= (x^{2} + 3x + 1)^{2}$$

$$(x^{2} + 3x - 3)(x^{2} + 3x + 5) + 14$$

$$= (t-1)(t+5) + 16$$

$$= t^{2} + 2t + 1$$

$$= (t+1)^{2}$$

$$= (x^{2} + 3x + 1)^{2}$$

分段函数. 自己选用一个合适的方法进行排版.

$$f(x) = \begin{cases} 0, & x = 0; \\ 1, & x \neq 0. \end{cases}$$

$$f(x) = \begin{cases} 0, & x = 0; \\ 1, & x \neq 0. \end{cases}$$

$$f(x) = \begin{cases} 0, & x = 0; \\ 1, & x \neq 0. \end{cases}$$

单行公式和行内公式

这两者排版是有区别的. 行内公式 $\frac{x^2}{y^2} = \frac{\partial x}{\partial y}$. 单行公式.

$$\frac{x^2}{y^2} = \frac{\partial x}{\partial y}.$$

又一个例子. 行内数学公式 $a^2 + b^2 = 3$, $\lim_{x\to 0} f(x) = 4$. 行间公式

$$a^2 + b^2 = 3,$$

$$\lim_{x \to 0} f(x) = 4.$$

行内行间公式,有些符号是有差异的.

\lim, \sum, \prod, \int, \bigcup, \bigcap.
右边书写是等价的:
$$\frac{x^2}{y^2} = \frac{\partial x}{\partial y}$$
. $\frac{x^2}{y^2} = \frac{\partial x}{\partial y}$. $\lim_{x \to 0} x^2 = 0$. $\lim_{x \to 0} x^2 = 0$.

但是排版比较难考. 建议使用如下排版. $\frac{x^2}{y^2} = \frac{\partial x}{\partial y}$. $\lim_{x\to 0} x^2 = 0$.

下面给出一个集合表示技巧.

$$\left\{s \in \mathbb{Z} \middle| \begin{array}{l} 存在F 的一组基\left\{y_1, y_2, \dots, y_n\right\}, 使得G中有 \\ \mathbb{H} y_1 + k_2 y_2 + \dots + k_n y_n (k_i \in \mathbb{Z}) 的元素 \end{array} \right\}$$

5 我是第三节

5.1 正确缩进

注意错误排版多了一个空行,正确排版.

我们已经证明了

$$a^2 + b^2 = c^2,$$

那么就可以证明 $c^2 = a^2 + b^2$.

错误排版

我们已经证明了

$$a^2 + b^2 = c^2,$$

那么就可以证明 $c^2 = a^2 + b^2$.

5.2 例子,引理,定理,推论的书写

例 5.1 我们得到这个结论是因为它

$$x^2 + y^2 = z^2.$$

定义 5.1 如果随机过程 $\{N(t): t \in (a,b)\}$ 的增量 N(t+h) - N(t) 的分布函数只与 h 有关而与 t 无关, 即当 $t_1 + h, t_1, t_2 + h, t_2 \in (a,b)$ 时, 如果

$$N(t_1+h)-N(t_1) = N(t_2+h)-N(t_2)$$

分布相同,则称 $\{N(t): t \in (a,b)\}$ 具有平稳增量性.

定理 5.2 我只是一个定理.

推论 5.3 我是推论.

引理 5.4 我乃引理.

性质 5.5 我性质一个.

命题 5.6 我是命题一枚.

问题 5.7 我不是问题.

5.3 图文并排

即

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}.$$

物理当中力的合成是这个法则的 实际模型.

物理当中力的合成是这个法则的实际模型. 物理当中力的合成是这个法则的实际模型. 物理当中力的合成是这个法则的实际模型. 物理当中力的合成是这个法则的实际模型.

如图, 三角形ABC是边长分别为a, b, c的通电闭合线圈, 电流为I, 为逆时针方向. 若将其放置于垂直三角形所在的平面向内的匀强磁场中, 磁感应强度为B, 那么三条边所受到的安培力大小分别为

$$\begin{cases} F_a = BIa; \\ F_b = BIb; \\ F_c = BIc. \end{cases}$$

闭合线圈处于平衡状态,于是三个安培力是共点力,作用线交于点*O*合力为0.

$$(x^{2} + 3x - 3)(x^{2} + 3x + 5) + 14$$

$$= (t - 1)(t + 5) + 16$$

$$= t^{2} + 2t + 1$$

$$= (t + 1)^{2}$$

$$= (x^{2} + 3x + 1)^{2}$$

视频提供了功能强大的方法帮助您证明您的观点。当您单击联机视频时,可以在想要添加的视频的嵌入代码中进行粘贴。您也可以键入一个关键字以联机搜索最适合您的文档的视频。

图 1: 两个矩形.

6 一个修正排版范例

6.1 初始排版

定理 6.1 常数项级数 $\sum_{n=1}^{\infty} w_n$ 收敛等价于存在分解式 $w_n = u_n v_n$ 使得数列 $\{u_n\}$ 单调且 $\lim_{n\to\infty} u_n = 0$,级数 $\sum_{n=1}^{\infty} v_n$ 的部分和数列有界即对 $\forall k \in \mathbb{N}^*$,存在正整数M,恒有 $|\sum_{n=1}^{k} v_n| < M$.

证明: 充分性见复旦大学编数学分析下册.

下证必要性

由常数项级数 $\sum\limits_{n=1}^{\infty} w_n$ 收敛知 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\overset{}{\to} k \geq N$ 时, $f \mid \sum\limits_{n=1}^{\infty} w_n \mid < \varepsilon$ 取 $\varepsilon = 1$; $\exists N_1 \in \mathbb{N}^*$, $\overset{}{\to} k \geq N_1$ 时, $f \mid \sum\limits_{n=k}^{\infty} w_n \mid < 1$ $\varepsilon = \frac{1}{2^3}$; $\exists N_2 \in \mathbb{N}^* > N_1$, $\overset{}{\to} k \geq N_2$ 时, $f \mid \sum\limits_{n=k}^{\infty} w_n \mid < \frac{1}{2^3}$

:

$$\varepsilon = \frac{1}{i^3}; \exists N_i \in \mathbb{N}^* > N_{i-1}, \, \stackrel{\triangle}{=} k \ge N_i \, |j|, \, |j| + \sum_{n=k}^{\infty} w_n| < \frac{1}{i^3}$$

:

今

$$u_n = \begin{cases} 1, & n = 1, 2, \dots, N_1; \\ \frac{1}{i}, & N_i < n < N_{i+1}, k = 1, 2, 3, \dots \end{cases}$$

故有数列 $\{u_n\}$ 单调且 $\lim_{n\to\infty}u_n=0$

(a)当
$$k \leq N_1$$
, 由 $u_n = 1$ 知 $v_n = w_n$, 所以有

$$\left|\sum_{n=1}^{k} v_n\right| = \left|\sum_{n=1}^{k} w_n\right| \le \sum_{n=1}^{k} |w_n| \le \sum_{n=1}^{N_1} |w_n|$$

记
$$\sum_{n=1}^{N_1} |w_n|$$
为 M_1 ,则有 $|\sum_{n=1}^k v_n| \le M_1$

(b)当 $k > N_1$,则一定存在i使得 $N_i < k \le N_{i+1}$,则有

$$\left|\sum_{n=1}^{k} v_n\right|$$

$$= |\sum_{n=1}^{k} \frac{w_n}{u_n}|$$

$$= |\sum_{n=1}^{N_1} w_n + \sum_{N_1+1}^{N_2} w_n + \dots + i \sum_{N_i+1}^{k} w_n|$$

$$\leq |\sum_{n=1}^{N_1} w_n| + |\sum_{N_1+1}^{N_2} w_n| + \dots + i |\sum_{N_i+1}^{k} w_n|$$

$$= |\sum_{n=1}^{N_1} w_n| + |\left(\sum_{N_1+1}^{+\infty} w_n - \sum_{N_2+1}^{+\infty} w_n\right)| + \dots + i |\sum_{N_i+1}^{+\infty} w_n - \sum_{k+1}^{+\infty} w_n|$$

$$\leq |\sum_{n=1}^{N_1} w_n| + \left(|\sum_{N_1+1}^{+\infty} w_n| + |\sum_{N_2+1}^{+\infty} w_n|\right) + \dots + i \left(|\sum_{N_i+1}^{+\infty} w_n| + |\sum_{k+1}^{+\infty} w_n|\right)$$

$$< M_1 + \left(1 + \frac{1}{2^3}\right) + \dots + i \left(\frac{1}{i^3} + \frac{1}{i^3}\right)$$

$$< M_1 + (1+1) + 2\left(\frac{1}{2^3} + \frac{1}{2^3}\right) + \dots + i \left(\frac{1}{i^3} + \frac{1}{i^3}\right)$$

$$= M_1 + 2\left(1 + \frac{1}{2^2} + \dots + \frac{1}{i^2}\right)$$

$$< M_1 + 2 \sum_{i=1}^{\infty} \frac{1}{i^2}$$

$$= M_1 + 2 \times \frac{\pi}{6}$$

$$= M_1 + \frac{\pi}{3}$$

6.2 修正排版

定理 6.2 常数项级数 $\sum_{n=1}^{\infty} w_n$ 收敛等价于存在分解式 $w_n = u_n v_n$ 使得数列 $\{u_n\}$ 单调且 $\lim_{n\to\infty} u_n = 0$,级数 $\sum_{n=1}^{\infty} v_n$ 的部分和数列有界即对任意 $k \in \mathbb{N}^*$,存在正整数M,使得 $|\sum_{n=1}^{k} v_n| < M$.

证明: 充分性见复旦大学编数学分析下册. 下证必要性. 由常数项级数 $\sum_{n=1}^{\infty} w_n$ 收敛知对任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得当 $k \geq N$ 时,有 $|\sum_{n=1}^{\infty} w_n| < \varepsilon$. 取 $\varepsilon = k^{-3}$,令 N_k 为相应的正整数N使得,n > N时有 $|\sum_{n>N}^{\infty} w_n| < \varepsilon$. 令

$$u_n = \begin{cases} 1, & 1 \le n \le N_1; \\ \frac{1}{i}, & N_i < n \le N_{i+1}, i \ge 1. \end{cases}$$

故数列 $\{u_n\}$ 单调且 $\lim_{n\to\infty}u_n=0$. 令 $v_n=\frac{w_n}{u_n}$, 则

(a) 当
$$k \le N_1$$
, 由 $u_n = 1$ 知 $v_n = w_n$, 所以有
$$|\sum_{n=1}^k v_n| = |\sum_{n=1}^k w_n| \le \sum_{n=1}^k |w_n| \le \sum_{n=1}^{N_1} |w_n|.$$

记 $\sum_{n=1}^{N_1} |w_n|$ 为 M_1 ,则有 $|\sum_{n=1}^k v_n| \leq M_1$.

(b) 当 $k > N_1$, 则一定存在i使得 $N_i < k \le N_{i+1}$, 则有

$$\begin{split} \left| \sum_{n=1}^{k} v_{n} \right| &= \left| \sum_{n=1}^{k} \frac{w_{n}}{u_{n}} \right| \\ &= \left| \sum_{n=1}^{N_{1}} w_{n} + \sum_{N_{1}+1}^{N_{2}} w_{n} + \dots + i \sum_{N_{i}+1}^{k} w_{n} \right| \\ &\leq \left| \sum_{n=1}^{N_{1}} w_{n} \right| + \left| \sum_{N_{1}+1}^{N_{2}} w_{n} \right| + \dots + i \left| \sum_{N_{i}+1}^{k} w_{n} \right| \\ &= \left| \sum_{n=1}^{N_{1}} w_{n} \right| + \left| \left(\sum_{N_{1}+1}^{+\infty} w_{n} - \sum_{N_{2}+1}^{+\infty} w_{n} \right) \right| + \dots + i \left| \sum_{N_{i}+1}^{+\infty} w_{n} - \sum_{k+1}^{+\infty} w_{n} \right| \\ &\leq \left| \sum_{n=1}^{N_{1}} w_{n} \right| + \left(\left| \sum_{N_{1}+1}^{+\infty} w_{n} \right| + \left| \sum_{N_{2}+1}^{+\infty} w_{n} \right| \right) + \dots + i \left(\left| \sum_{N_{i}+1}^{+\infty} w_{n} \right| + \left| \sum_{k+1}^{+\infty} w_{n} \right| \right) \\ &< M_{1} + \left(1 + \frac{1}{2^{3}} \right) + \dots + i \left(\frac{1}{i^{3}} + \frac{1}{i^{3}} \right) \\ &< M_{1} + \left(1 + 1 \right) + 2 \left(\frac{1}{2^{3}} + \frac{1}{2^{3}} \right) + \dots + i \left(\frac{1}{i^{3}} + \frac{1}{i^{3}} \right) \\ &= M_{1} + 2 \left(1 + \frac{1}{2^{2}} + \dots + \frac{1}{i^{2}} \right) \\ &< M_{1} + 2 \sum \frac{1}{i^{2}} = M_{1} + 2 \times \frac{\pi}{6} = M_{1} + \frac{\pi}{3}. \end{split}$$

证毕 □

6.3 下面例子需要大家动手修改

证明与定理2.3类似,但是有一个问题我们需要注意.数列收敛则一定有数列有界,但是函数列一致收敛不能推出函数列一致有界,因此我们需要对函数列 $\{u_n(x)\}$ 做一些修改.

定理 6.3 函数项级数 $\sum_{n=1}^{\infty} w_n(x)$ 在区间D = [a,b]上一致收敛等价于存在分解式 $w_n(x) = u_n(x)v_n(x)$ 使得函数列 $\{u_n(x)\}$ 对每一个固定的 $x \in D$ 关于n单调且在区间D上 $\{u_n(x)\} \Rightarrow 0$,函数项级数 $\sum_{n=1}^{\infty} v_n(x)$ 的部分和序列一致有界即对 $\forall k \in \mathbb{N}^*$,存在正整数M,对 $\forall x \in D$ 恒有 $|\sum_{n=1}^k v_n(x)| < M$.

证明: 充分性见复旦大学编数学分析下册

下证必要性

由函数项级数 $\sum\limits_{n=1}^\infty w_n(x)$ 在区间[a,b]上一致收敛知 $\forall \varepsilon>0$, $\exists N\in\mathbb{N}^*$,当 $k\geq N$ 时,有 $|\sum\limits_{n=1}^\infty w_n(x)|<\varepsilon$ 对 $\forall x\in D$ 均成立

:

$$\varepsilon = \frac{1}{i^3}; \exists N_i \in \mathbb{N}^* > N_{i-1}, \, \stackrel{\triangle}{=} k \ge N_i \, \text{th}, \, \stackrel{\triangle}{=} |\sum_{n=k}^{\infty} w_n(x)| < \frac{1}{i^3} \qquad \forall x \in D$$

:

$$\diamondsuit E = x \mid |\sum_{n=1}^{N_1} w_n(x)| < 1, x \in D$$

$$s(x) = \begin{cases} 1, & x \in E; \\ |\sum_{n=1}^{N_1} w_n(x)|, & x \in D \cap E^c. \end{cases}$$

�

$$u_n(x) = \begin{cases} s(x), & n = 1, 2, \dots, N_1; \\ \frac{1}{i}, & N_i < n \le N_{i+1}, k = 1, 2, 3, \dots \end{cases}$$

故(1)当 $x \in E, \{u_n(x)\} = \{1, 1, \frac{1}{2}, \dots\}$

(2) 当
$$x \in D \cap E^c$$
时,则 $|\sum_{n=1}^{N_1} w_n(x)| \ge 1$,故 $\{u_n(x)\} = \{|\sum_{n=1}^{N_1} w_n(x)|, 1, \frac{1}{2}, \cdots\}$ 所以函数列 $\{u_n(x)\}$ 对每一个固定的 $x \in D$ 关于n单调且在区间 D 上 $\{u_n(x)\} \Rightarrow 0$ 令 $v_n(x) = \frac{w_n(x)}{u_n(x)}$,则

$$(a) \\ \stackrel{\text{def}}{=} k \leq N_1 \\ \stackrel{\text{def}}{=} |\sum_{n=1}^k v_n(x)| = |\sum_{n=1}^k \frac{w_n(x)}{u_n(x)}| = |\sum_{n=1}^k \frac{w_n(x)}{s(x)}| \leq \frac{\sum_{n=1}^k |w_n(x)|}{s(x)} \leq \frac{\sum_{n=1}^{N_1} |w_n(x)|}{s(x)} \leq \frac{\sum_{n=1}^k |w_n(x)|}{s($$

(b)当 $k > N_1$,则一定存在i使得 $N_i < k \le N_{i+1}$,则有

$$\begin{aligned} &|\sum_{n=1}^{k} v_n(x)| \\ &= |\sum_{n=1}^{k} \frac{w_n(x)}{u_n(x)}| \\ &= |\sum_{n=1}^{N_1} \frac{w_n(x)}{u_n(x)} + \sum_{N_1+1}^{N_2} w_n(x) + \dots + i \sum_{N_i+1}^{k} w_n(x)| \\ &\leq 1 + |\sum_{N_1+1}^{N_2} w_n(x)| + \dots + i |\sum_{N_i+1}^{k} w_n(x)| \end{aligned}$$

$$= 1 + \left| \left(\sum_{N_1+1}^{+\infty} w_n(x) - \sum_{N_2+1}^{+\infty} w_n(x) \right) \right| + \dots + i \left| \sum_{N_i+1}^{+\infty} w_n(x) - \sum_{k+1}^{+\infty} w_n(x) \right|$$

$$\leq 1 + \left(\left| \sum_{N_1+1}^{+\infty} w_n(x) \right| + \left| \sum_{N_2+1}^{+\infty} w_n(x) \right| \right) + \dots + i \left(\left| \sum_{N_i+1}^{+\infty} w_n(x) \right| + \left| \sum_{k+1}^{+\infty} w_n(x) \right| \right)$$

$$< 1 + \left(1 + \frac{1}{2^3} \right) + \dots + i \left(\frac{1}{i^3} + \frac{1}{i^3} \right)$$

$$< 1 + \left(1 + 1 \right) + 2 \left(\frac{1}{2^3} + \frac{1}{2^3} \right) + \dots + i \left(\frac{1}{i^3} + \frac{1}{i^3} \right)$$

$$= 1 + 2 \left(1 + \frac{1}{2^2} + \dots + \frac{1}{i^2} \right)$$

$$< 1 + 2 \sum_{i=1}^{\infty} \frac{1}{i^2}$$

$$= 1 + 2 \times \frac{\pi}{6}$$

$$= 1 + \frac{\pi}{3}$$

引理 **6.4** 若 $u=(v_1,v_2)$ 是 $F_T(v)$ 的一个奇点, 则 $y_0=\frac{u}{v_i}$ 或 $y_0=-\frac{u}{v_i}$ 是系统(**??**) 的奇点.

证明: 由于 $u=(v_1,v_2)$ 是 $F_T(v)$ 的一个奇点,则 $F_T(u)=0 \Rightarrow h(u)-uQ(u)=0$,即 $h_i(u)-v_iQ(u)=0, i=1,2$. 当 $y_0=\frac{u}{v_i}$ 时,

$$h(y_0) - y_0 h_i(y_0) = \frac{uQ(u)}{v_i} - \frac{uh_i(u)}{v_i^2} = 0;$$

$$h(y_0) + y_0 h_i(y_0) = -\frac{uQ(u)}{v_i} + \frac{uh_i(u)}{v_i^2} = 0.$$

得证.

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}t} = -a_2(y_1 - \delta_1)(y_1 - \delta_2); \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} = 0. \end{cases}$$

参考文献

[1] 张三. 钢铁侠[J]. 数学实践, 2020, **10**2: 1-10.

致 谢

感谢!

附录

此节可添加调查问卷、访谈记录等