January 2005

6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $M(A)$ $W \times 4a = T \times 8a \sin \theta$ Using a value of $\sin \theta$ and solving $T = \frac{5}{6}W * \cos \theta$ $= \frac{2}{3}W$	M1 A1 M1 A1 4 M1 A1 A1 3 7
2.	(a) circle rectangle plate Mass ratios 9π 200; $200-9\pi$ Centres of mass 6 10 \overline{x} $9\pi \times 6 + (200-9\pi)\overline{x} = 200 \times 10$ $\overline{x} \approx 10.7 \text{ (cm)}$ cao	B1; B1ft B1 M1 A1 <u>5</u>
	(b) $\tan \theta = \frac{5}{10.7}$ ft their \bar{x} $\theta \approx 25^{\circ}$ cao	M1 A1ft A1 3 8

Question Number	Scheme	Marks
3.	(a) KE lost is $\frac{1}{2} \times 0.6 \times (10^2 - 9^2)$ (= 5.7 J) PE lost is $0.6 \times 9.8 \times 12 \sin 30^\circ$ (= 35.28 J) Total loss in energy is 41.0 (J) accept 41 (b) $R = 0.6 \times 9.8 \times \cos 30^\circ$ (≈ 5.09) WE $40.98 = \mu \times 0.6 \times 9.8 \times \cos 30^\circ \times 12$ ft their (a) $\mu \approx 0.67$ or 0.671 Alternative for (b) $a = \frac{9^2 - 10^2}{2 \times 12} \left(= (-)\frac{19}{24} \right)$ awrt 0.79	B1 B1 M1 A1 4 B1 M1 A1ft M1 A1 5 9
	N2L $mg \sin 30^{\circ} - \mu mg \cos 30^{\circ} = m\left(-\frac{19}{24}\right)$ ft their $a = \mu \approx 0.67$ or 0.671	M1 A1ft M1 A1 <u>5</u>
4.	$t = 4$, $\mathbf{r} = 61\mathbf{i} + 49\frac{1}{3}\mathbf{j}$	B1 M1 M1 A1 4 M1 A1 A1 A1 M1 5 9

Question Number	Scheme	Marks
5.	(a) $50000 = F \times 25 (F = 2000) \qquad \text{or equivalent}$ $\rightarrow \qquad F = R + 750$ $R = 1250 \bigstar \qquad \text{cso}$	M1 M1 A1 <u>3</u>
	(b) N2L $1500 + 2000 = 2500a$ ignore sign of a $a = 1.4 \text{ (m s}^{-2}\text{)}$ cao	M1 A1 A1 <u>3</u>
	(c) Trailer: $T + R = 1500 \times 1.4$ or Car: $T - 1500 - 750 = 1000 \times -1.4$ T = 850 (N)	M1 A1 <u>2</u>
	(d) $25^2 = 2 \times 1.4 \times s (s = 223.2)$ $W = 1500 \times s \text{ft their } s$ $= 335 \text{ (kJ)}$ accept 330 (e) Resistances <u>vary</u> with <u>speeds</u>	M1 M1 A1ft A1 4 B1 1 13
6.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 B1 M1 A1 <u>5</u>
	x y (b) Solving to $x = \frac{2}{5}u(2-3e)$ oe $x < 0 \implies e > \frac{2}{3}$ $\frac{2}{3} < e \mid 1$ ft their e for glb	M1 A1 M1 A1 A1ft <u>5</u>
	(c) $2m\left[\frac{1}{5}u(9e+4)+u\right] = \frac{32}{5}mu$ Solving to $e = \frac{7}{9}$ awrt 0.78	M1 A1 M1 A1 <u>4</u> 14

Question Number	Scheme	Marks
7.	(a) $ \uparrow u_y = 32 \times \frac{3}{5} (=19.2) $ $ -20 = 19.2t - 4.9t^2 -1 \text{ each error} $ $ t \approx 4.8 \text{ or } 4.77 \text{ (s)} $	B1 M1 A2(1, 0) A1 <u>5</u>
	(b) $u_x = 32 \times \frac{4}{5} (= 25.6)$ $d = 25.6 \times 4.77$ $\approx 120 \text{ or } 122 \text{ (m)}$	B1 M1 A1 <u>3</u>
	(c) $v_y^2 = 19.2^2 + 2 \times 9.8 \times 4 \left[v_y^2 = 447.04, v_y \approx 21.14 \right]$ $V^2 = 447.04 + 25.6^2$ $V = 33 \text{ or } 33.2 \text{ (m s}^{-1})$	M1 M1 A1 A1 <u>4</u>
	(d) $\tan \theta = \frac{21.14}{25.6}$ (or $\cos \theta = \frac{25.6}{33.2}$,) If their components or resultant	M1 A1ft
	$\theta \approx 40^{\circ} \text{ or } 39.6^{\circ}$	A1 <u>3</u> 15
	Alternative for (c) $ \frac{1}{2}m(V^2 - 32^2) = mg \times 4 $ $ V^2 = 1102.4 $ $ V = 33 \text{ or } 33.2 \text{ (m s}^{-1}) $	M1 A1 M1 A1 <u>4</u>
	There is a maximum penalty of one mark per question for not rounding to appropriate accuracy.	