Rule-Based Classifier

MSc. Bui Quoc Khanh

khanhbq@hanu.edu.vn

Classification Rules

- A rule-based classifier is a set of propositional rules of the form
 - IF outlook=sunny and Humidity=normal
 - THEN PlayTennis=yes
 - IF Humidity=normal and wind=strong
 - THEN PlayTennis=yes

Classification Rules

- Alternative notation
 - outlook=sunny and Humidity=normal → yes
 - Humidity=normal and wind=strong → yes
- Equivalent to DNF
- (Outlook=sunny and Humidity=normal) OR (Humidity=normal and wind=strong)

Classification Rules

- Rules can be generated
 - straight from training data (direct)
 - indirectly from a decision tree (indirect)
- RIPPER is the most well-known direct rule learner

- Greedy approach which reduces the problem of learning a set of rules to a sequence of simpler problems, each requiring that a single rule is learned
- Once a rule r is learned, all covered examples (both positive and negative) are removed from the training set, so that the next generated rule is different from r
- It learns rules until it can no longer learn a rule whose performance is above the given Threshold

(i) Original Data

(ii) Step 1

- **Seq-Cov**(Attributes, Examples, Threshold)
 - **for** each class c in {c₁, ..., c_k}
 - Classifier_c = {};
 - PosExam_c is the set of Examples with label = c;
 - NegExam_c is the set of Examples with label <> c
 - Exam_c = PosExam_c U NegExam_c;
 - Rule = Learn-One-Rule(Attributes, Examples)
 - while performance(Rule, Examples) > Threshold do
 - Classifier = Classifier U { Rule}
 - Exam_c = Exam_c {examples covered by Rule}
 - Rule = Learn-One-Rule(Attributes, Examples)
 - endWhile
 - endFor
 - Sort classifiers according to their performance on Examples
 - Add default rule {} -> default class (with minimum priority)
- return

- **Seq-Cov**(Attributes, Examples, Threshold)
 - **for** each class c in {c₁, ..., c_k}
 - Classifier_c = {};
 - PosExam_c is the set of Examples with label = c;
 - NegExam_c is the set of Examples with label <> c
 - Exam_c = PosExam_c U NegExam_c;
 - Rule = Learn-One-Rule(Attributes, Examples)
 - while performance(Rule, Examples) > Threshold do
 - Classifier = Classifier U { Rule}
 - Exam_c = Exam_c {examples covered by Rule}
 - Rule = Learn-One-Rule(Attributes, Examples)
 - endWhile
 - endFor
 - Sort classifiers according to their performance on Examples
 - Add default rule {} -> default class (with minimum priority)
- return

Learn-One-Rule

- **Objective**: learning a rule that covers many positive examples and few negative ones (possibly none)
- **Method**: Grows the rules in a greedy fashion based on a general-to-specific approach
 - It starts with the most general rule, i.e., one with the empty antecedent (it covers all the examples of the training set poor performance)
 - Then greedily adds the attribute that most improves rule performance (e.g., accuracy) over the training set
 - The process is repeated by adding a second attribute, and so on and so forth
 - The process is repeated until the rule reaches an acceptable level of performance

Selecting an attribute

- Select the attribute that most increases rule performance (accuracy, or other measures, e.g., Laplace rank, FOIL's Information Gain) of the current rule
- Example
 - r0: a → c
 - r1: a, b → c
 - Select attribute b if
 - performance (r_1) > performance (r_0) and
 - performance (r₁) > performance (r_i)
 - for each rule r_j obtainable by adding in the antecedent of r_0 any attribute other than b

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

Learn-One-Rule

- rule r: $A_1 = a_1, ..., A_n = a_n \rightarrow c$
- r covers an example x if $x = \langle a_1, ..., a_n \rangle$, i.e., the attributes of x satisfy the condition of the rule (antecedent)

	Name	_Give_Birth-	- Lay-Eggs	Can-Fly	Live in Water	_ Have Legs	Class	1
<===	human	yes	no	no	no	yes	mammals	[]>
	python	no	yes	no	no	no	reptiles	
	salmon	no	-yes	no	yes	no	fishes	
<===	whale	yes	no	no	yes	no	mammals],
	frog	no	yes	no	sometimes	yes	amphibians	
	komodo	<u>no</u>	yes	no	no	<u>yes</u>	reptiles	
<===	bat	yes	no	yes	no	yes	mammals	2223
	pigeon	no	yes	yes	no	yes	birds	
<===	cat	<u>yes</u>	no	no	no	yes	mammals	>
<===	leopard shark	yes	no	nō	yes	no	fishes	[];
	turtle	no	yes	no	sometimes	yes	reptiles	
_	penguin	no	yes	no	sometimes-	yes	birds	
<	porcupine	yes	no	no	no	yes	mammals	>
	eel	no	yes	nō	yes	no	fishes	
	salamander	no	yes	no	sometimes	yes	amphibians	
	gila monster	no	yes	no	no	yes	reptiles	
	platypus	no	yes	no	no	yes	mammals	
	owl	no	-yes	yes	no	-yes	birds	
<===	dolphin	yes	no	no	yes	no	mammals_	,
	eagle	no	yes	yes	no	yes	birds	

• Gives Birth = yes → Mammals

- rule r: $A_1 = a_1, ..., A_n = a_n \rightarrow c$
- An example x satisfies r if r covers x and the class of x is c

	Name	_Give_Birth-	- Lay-Eggs	Can-Fly	Live in Water	_ Have Legs	Class	1
<===	human	yes	no	no	no	yes	mammals	[]>
	python	no	yes	no	no	no	reptiles	
	salmon	no	-yes	no	yes	no	fishes	
<===	whale	yes	no	no	yes	no	mammals],
	frog	no	yes	no	sometimes	yes	amphibians	
	komodo	<u>no</u>	yes	no	no	<u>yes</u>	reptiles	
<===	bat	yes	no	yes	no	yes	mammals	2223
	pigeon	no	yes	yes	no	yes	birds	
<===	cat	<u>yes</u>	no	no	no	yes	mammals	>
<===	leopard shark	yes	no	nō	yes	no	fishes	[];
	turtle	no	yes	no	sometimes	yes	reptiles	
_	penguin	no	yes	no	sometimes-	yes	birds	
<	porcupine	yes	no	no	no	yes	mammals	>
	eel	no	yes	nō	yes	no	fishes	
	salamander	no	yes	no	sometimes	yes	amphibians	
	gila monster	no	yes	no	no	yes	reptiles	
	platypus	no	yes	no	no	yes	mammals	
	owl	no	-yes	yes	no	-yes	birds	
<===	dolphin	yes	no	no	yes	no	mammals_	,
	eagle	no	yes	yes	no	yes	birds	

• Gives Birth = yes → Mammals

- Coverage(r) = cov(r)/D, where
 - D is the number of training examples
 - cov(r) is the number of examples covered by r
- Accuracy(r) = sat(r)/cov(r), where
 - Sat(r) is the number of examples satisfying r

	Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
4-1-1	human	yes	no	no	no	yes	mammals
	python	no	yes	no	no	no	reptiles
	salmon	no	yes	no	yes	no	fishes
<:!	whale	yes	no	no	yes	no	mammals
	frog	no	yes	no	sometimes	yes	amphibians
	komodo	no	yes	no	no	yes	reptiles
<	bat	yes	no	yes	no	yes	mammals
	pigeon	no	yes	yes	no	yes	birds
<	cat	yes	no	no	no	yes	mammals -
<	leopard shark	yes	no	no	yes	no	fishes
	turtle	no	yes	no	sometimes	yes	reptiles
	penguin	no	yes	no	sometimes	yes	birds
<	porcupine	yes	no	no	no	yes	mammals
	eel	nō	yes	no	yes	no	fishes
	salamander	no	yes	no	sometimes	yes	amphibians
	gila monster	no	yes	no	no	yes	reptiles
	platypus	no	yes	no	no	yes	mammals
	owl	no	yes	yes	no	yes	birds
<	dolphin	yes	no	no	yes	no	mammals
	eagle	no	yes	yes	no	yes	birds

- Gives Birth = yes \rightarrow Mammals
- Coverage = 7/20
- Accuracy = 6/7

- Rule accuracy may not be a meaningful criterion
- r_1 : covers 50 positive examples and 5 negative examples

$$Acc(r_1) = 50/55 = 90.9\%$$

• r₂: covers 2 positive examples and no negative examples

$$Acc(r_2) = 2/2 = 100\%$$

- However, r_1 is intuitively "more reliable" than r_2
- Other performance measures, e.g., Laplace rank, FOIL's Information Gain, etc.

- **Seq-Cov**(Attributes, Examples, Threshold)
 - **for** each class c in {c₁, ..., c_k}
 - Classifier_c = {};
 - PosExam_c is the set of Examples with label = c;
 - NegExam_c is the set of Examples with label <> c
 - Exam_c = PosExam_c U NegExam_c;
 - Rule = Learn-One-Rule(Attributes, Examples)
 - while performance(Rule, Examples) > Threshold do
 - Classifier = Classifier U { Rule}
 - Exam_c = Exam_c {examples covered by Rule}
 - Rule = Learn-One-Rule(Attributes, Examples)
 - endWhile
 - endFor
 - Sort classifiers according to their performance on Examples
 - Add default rule {} -> default class (with minimum priority)
- return

- Seq-Cov(Attributes, Examples, Threshold)
 - **for** each class c in {c₁, ..., c_k}
 - Classifier_c = {};
 - PosExam_c is the set of Examples with label = c;
 - NegExam_c is the set of Examples with label <> c
 - Exam_c = PosExam_c U NegExam_c;
 - Rule = Learn-One-Rule(Attributes, Examples)
 - while performance(Rule, Examples) > Threshold do
 - Classifier = Classifier U { Rule}
 - Exam_c = Exam_c {examples covered by Rule}
 - Rule = Learn-One-Rule(Attributes, Examples)
 - endWhile
 - endFor
 - Sort classifiers according to their performance on Examples
 - Add default rule {} -> default class (with minimum priority)
- return

Why do we need to eliminate instances?

Otherwise, the next rule is identical to previous rule

- c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
- c_{fish} : (Gives Birth = no) Λ (Lives in Water = yes) \rightarrow Fish
- c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
- $c_{amphibian}$: (Lives in Water = sometimes) \rightarrow Amphibian
- $c_{reptile}$: (Gives Birth = no) Λ (Can Fly = no) \rightarrow Reptile

Name	Gives birth	Can fly	Live in water	Blood type	class
hawk	no	yes	no	warm	?
Grizzly bear	yes	no	no	warm	?
turtle	no	no	sometimes	cold	?

- c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
- c_{fish} : (Gives Birth = no) Λ (Lives in Water = yes) \rightarrow Fish
- c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
- $c_{amphibian}$: (Lives in Water = sometimes) \rightarrow Amphibian
- $c_{reptile}$: (Gives Birth = no) Λ (Can Fly = no) \rightarrow Reptile

Name	Gives birth	Can fly	Live in water	Blood type	class
hawk	no	yes	no	warm	bird
Grizzly bear	yes	no	no	warm	?
turtle	no	no	sometimes	cold	?

- c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
- c_{fish} : (Gives Birth = no) Λ (Lives in Water = yes) \rightarrow Fish
- c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
- $c_{amphibian}$: (Lives in Water = sometimes) \rightarrow Amphibian
- $c_{reptile}$: (Gives Birth = no) Λ (Can Fly = no) \rightarrow Reptile

Name	Gives birth	Can fly	Live in water	Blood type	class
hawk	no	yes	no	warm	bird
Grizzly bear	yes	no	no	warm	mammal
turtle	no	no	sometimes	cold	?

- c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
- c_{fish} : (Gives Birth = no) Λ (Lives in Water = yes) \rightarrow Fish
- c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
- c_{amphibian}: (Lives in Water = sometimes) → Amphibian
- c_{reptile}: (Gives Birth = no) ∧ (Can Fly = no) → Reptile

Ambiguity!!

Name	Gives birth	Can fly	Lives in water	Blood type	class
hawk	no	yes	no	warm	bird
Grizzly bear	yes	no	no	warm	mammal
turtle	no	no	sometimes	cold	?????

Rules are not mutually exclusive Ordered Rule Sets

- To solve the ambiguity, we order classifiers according to their reliability
- The less mistakes over the training data a classifier makes,
 the more reliable it is

Rules are not mutually exclusive Ordered Rule Sets

• Assume $c_{bird}>c_{fish}>c_{mammal}>c_{amphibian}>c_{rept}$

Classifiers are ordered in decreasing order of reliability

• When a new instance is presented, it is classified by the highest-ranked classifier triggered by the instance

Rules are not mutually exclusive Ordered Rule Sets

- Classifiers are ordered
 - c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
 - c_{fish} : (Gives Birth = no) \wedge (Lives in Water = yes) \rightarrow Fish
 - c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
 - $c_{amphibian}$: (Lives in Water = sometimes) \rightarrow Amphibian
 - $c_{reptile}$: (Gives Birth = no) Λ (Can Fly = no) \rightarrow Reptile

Name	Gives birth	Can fly	Live in water	Blood type	class
hawk	no	yes	no	warm	bird
Grizzly bear	yes	no	no	warm	mammal
turtle	no	no	sometimes	cold	Amphib

Turtle is NOT a reptile according to the above model, as $c_{\text{amphibian}}$ is more reliable than c_{reptile}

- **Seq-Cov**(Attributes, Examples, Threshold)
 - **for** each class c in {c₁, ..., c_k}
 - Classifier_c = {};
 - PosExam_c is the set of Examples with label = c;
 - NegExam_c is the set of Examples with label <> c
 - Exam_c = PosExam_c U NegExam_c;
 - Rule = Learn-One-Rule(Attributes, Examples)
 - while performance(Rule, Examples) > Threshold do
 - Classifier = Classifier U { Rule}
 - Exam_c = Exam_c {examples covered by Rule}
 - Rule = Learn-One-Rule(Attributes, Examples)
 - endWhile
 - endFor
 - Sort classifiers according to their performance on Examples
 - Add default rule {} -> default class (with minimum priority)
- return

Rules are not exhaustive Default rule

- Rules are not exhaustive: an instance may not trigger any rule
 - c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
 - c_{fish} : (Gives Birth = no) Λ (Lives in Water = yes) \rightarrow Fish
 - c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
 - $c_{amphibian}$: (Lives in Water = sometimes) \rightarrow Amphibian
 - $c_{reptile}$: (Gives Birth = no) Λ (Can Fly = no) \rightarrow Reptile

Name	Gives birth	Can fly	Lives in water	Blood type	class
dogfish shark	yes	no	yes	cold	?

Dogfish shark does not trigger any rule

Rules are not exhaustive Default rule

- The instance is assigned to a default class, i.e., the class assigned by the default rule
 - {} is default class
 - this is triggered when all other rules have failed
 - Default class: majority class of training examples not covered by any rule

Rules are not exhaustive Default rule

- c_{bird} : (Gives Birth = no) Λ (Can Fly = yes) \rightarrow Bird
- c_{fish} : (Gives Birth = no) Λ (Lives in Water = yes) \rightarrow Fish
- c_{mammal} : (Gives Birth = yes) Λ (Blood Type = warm) \rightarrow Mammal
- $c_{amphibian}$: (Lives in Water = sometimes) \rightarrow Amphibian
- $c_{reptile}$: (Gives Birth = no) Λ (Can Fly = no) \rightarrow Reptile
- Default rule: {} → Mammal

Name	Gives birth	Can fly	Lives in water	Blood type	class
dogfish shark	yes	no	yes	cold	mammal

Sequential covering - rule-based ordering

- **Seq-Cov**(Attributes, Examples, Threshold)
 - for each class c in {c₁, ..., c_k}
 - Classifier = {};
 - PosExam_c is the set of Examples with label = c;
 - NegExam_c is the set of Examples with label <> c
 - Exam_c = PosExam_c U NegExam_c;
 - Rule = Learn-One-Rule(Attributes, Examples)
 - **while** performance(Rule, Examples) > Threshold do
 - Classifier_c = Classifier_c U { Rule}
 - Exam_c = Exam_c {examples covered by Rule}
 - Rule = Learn-One-Rule(Attributes, Examples)
 - endWhile
 - endFor
 - Sort classifiers according to their performance on Examples
 - Add default rule {} -> default class (with minimum priority)
- return

How a rule-based classifier works Summary

- When a new instance is presented to the classifier
- It is assigned to the class label of the highest ranked rule it has triggered
- If none of the rules is fired, it is assigned to the default class

C4.5 rules versus RIPPER

C4.5 rules versus RIPPER

• C4.5:

- (Give Birth=Yes) → Mammals
- (Give Birth=No, Lives In Water = no, Can Fly=Yes) \rightarrow Birds
- (Give Birth=No, Live in Water=Yes) → Fishes
- (Give Birth=No, Live in Water=No, Can Fly=No) → Reptiles
- (Give Birth=No, Live in Water=sometimes) → Amphibian

RIPPER:

- (Live in Water=Yes) → Fishes
- (Can Fly=No) → Reptiles
- (Give Birth=No, Can Fly=No, Live In Water=No) → Reptiles
- (Can Fly=Yes, Give Birth=No) → Birds
- () \rightarrow Mammals

C4.5 rules versus RIPPER

C4.5rules:

			PREDICTE	D CLASS		
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	2	0	0	0	0
CLASS	Fishes	0	2	0	0	1
	Reptiles	1	0	3	0	0
	Birds	1	0	0	3	0
	Mammals	0	0	1	0	6

RIPPER:

			PREDICTED CLASS			
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	0	0	0	0	2
CLASS	Fishes	0	3	0	0	0
	Reptiles	0	0	3	0	1
	Birds	0	0	1	2	1
	Mammals	0	2	1	0	4

Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Can classify new instances rapidly
- Performance comparable to decision trees