## Структура баз данных

**База данных** представляет собой *компьютеризированную интегрированную* систему хранения *связанных между собой* данных.

Компоненты баз данных:

- данные,
- аппаратное обеспечение,
- программное обеспечение (СУБД),
- пользователи.

Интегрированные данные подразумевают возможность представления информации, хранящейся в нескольких отдельных файлах данных.

Аппаратное обеспечение: накопители, многопроцессорные (в общем случае) системы, распределенные вычислительные системы.

Управление базами данных обеспечивается набором программных средств – *СУБД*.

Однопользовательские и многопользовательские СУБД.

#### Необходимые требования, предъявляемые к СУБД:

• Обеспечение физической целостности RAID

Журналы транзакций Резервное копирование

- Обеспечение логической целостности Механизм транзакций Система связей между объектами
- Обеспечение безопасности
   Система аутентификации
   Система авторизации
- Обеспечение высокой производительности Параллелизм (блокировка, взаимоблокировка (deadlock))

#### Опциональные требования:

- Простота сопровождения
- Реализация на популярных платформах

Двухуровневая архитектура (клиент-сервер): хранимые процедуры, «толстый клиент» (Локальная и корпоративная сеть).

Трехуровневая архитектура (уровень данных – прикладной уровень – уровень пользователя): «тонкий клиент», сервер приложений (Сеть Интернет).

#### Модели баз данных:

- Реляционные базы данных
- Иерархические базы данных
- Объектно-ориентированные базы данных

## Основные понятия реляционной модели баз данных.

| Реляционная<br>алгебра | Практическая реализация       | Синоним            |
|------------------------|-------------------------------|--------------------|
| Отношение              | Таблица/Table                 |                    |
| Кортеж                 | Запись/Record                 | Строка/Row         |
| Атрибуты               | Поле/Field                    | Столбец/Colu<br>mn |
| Первичный<br>ключ      | Первичный ключ/Primary<br>key |                    |
| Внешний ключ           | Внешний ключ/Foreign key      |                    |
|                        | Кластерный индекс             |                    |
|                        | Одиночный индекс              |                    |

Первичный ключ является уникальным идентификатором для записи в таблице.

Первичный ключ бывает простым и составным.

Внешний ключ обеспечивает ссылочную целостность.

Индексы обеспечивают возможность бинарного поиска.

При создании кластерного индекса по соответствующему ключу сортируется сама таблица.

При создании одиночного индекса создается новая «таблица», содержащая ключ и указатель на строку в таблице.

Таблица Заявка

| Фамилия   | Имя     | Вид       | Страна       |
|-----------|---------|-----------|--------------|
| Смит      | Джон    | пловец    | США          |
| Иванов    | Иван    | гимнаст   | Россия       |
| Бельмондо | Франсуа | пятиборец | Франция      |
| Смит      | Джин    | NULL      | Великобритан |
|           |         |           | RИ           |

(Фамилия, Имя) – *внешний ключ; связь «один-к-одному»* **Таблица Список участников.** 

| Фамилия | Имя     | Год рождения | Почтовый<br>индекс |
|---------|---------|--------------|--------------------|
| Смит    | Джон    | 1992         | 6655151            |
| СМИТ    | Джин    | 1332         | 0033131            |
| Иванов  | Иван    | 1991         | 2654091            |
| Леклерк | Франсуа | 1986         | 1897654            |
| Смит    | Джин    | 1981         | 5432187            |

(Фамилия, Имя) – первичный ключ

### Фрагмент схемы базы данных Northwind:



# Первая нормальная форма (1НФ)

| ФИО                   | Адрес                        |
|-----------------------|------------------------------|
| Иванов Иван Сергеевич | Красный проспект, 43, кв. 23 |
| Петров Василий        | Мочище                       |

| Фамилия | Имя     | Отчество  | Адрес                           |
|---------|---------|-----------|---------------------------------|
| Иванов  | Иван    | Сергеевич | Красный проспект, 43, кв.<br>23 |
| Петров  | Василий | NULL      | Мочище                          |

| Фамилия | Имя     | Отчество  | Улица            | дом  | квартира |
|---------|---------|-----------|------------------|------|----------|
| Иванов  | Иван    | Сергеевич | Красный проспект | 43   | 23       |
| Петров  | Василий | NULL      | Мочище           | NULL | NULL     |

### Вторая нормальная форма (2НФ)

| Фамилия | Имя     | Вид       | Страна         | Код страны |
|---------|---------|-----------|----------------|------------|
| Смит    | Джон    | пловец    | США            | US         |
| Петров  | Василий | гимнаст   | Россия         | RF         |
| Леклерк | Франсуа | пятиборец | Франция        | FR         |
| Смит    | Джон    | NULL      | Великобритания | UK         |

(Фамилия, Имя, Страна) – первичный ключ

Неключевое поле «Код страны» однозначно определяется отдельным полем составного ключа.

# Приведение к 2НФ:

| Фамилия | Имя     | Вид       | Страна         |
|---------|---------|-----------|----------------|
| Смит    | Джон    | пловец    | США            |
| Иванов  | Иван    | гимнаст   | Россия         |
| Леклерк | Франсуа | пятиборец | Франция        |
| Смит    | Джон    | NULL      | Великобритания |

| Страна         | Код страны |
|----------------|------------|
| США            | US         |
| Россия         | RF         |
| Франция        | FR         |
| Великобритания | UK         |

## Третья нормальная форма (ЗНФ)

| Фамилия  | Должность | Зарплата | Ученая степень |
|----------|-----------|----------|----------------|
| Иванов   | ВНС       | 30000    | д.фм.н.        |
| Петров   | MHC       | 10000    | магистр        |
| Сидоров  | MHC       | 14000    | к.фм.н.        |
| Лукьянов | CHC       | 25000    | д.фм.н.        |

Поле «Зарплата» однозначно определяется полями «Должность» и «Ученая степень»

# Приведение к 3НФ:

| Фамилия  | Должность | Ученая степень |
|----------|-----------|----------------|
| Иванов   | BHC       | д.фм.н.        |
| Петров   | MHC       | д.фм.н.        |
| Сидоров  | MHC       | к.фм.н.        |
| Лукьянов | CHC       | магистр        |

| Должность | Ученая степень | Зарплата |
|-----------|----------------|----------|
| BHC       | д.фм.н.        | 30000    |
| CHC       | д.фм.н.        | 25000    |
| MHC       | к.фм.н.        | 14000    |
| MHC       | магистр        | 10000    |

#### Операторы SQL (Structured Query Language):

```
select * from Collaborators
```

```
select * from Collaborators where "Ученая степень"="д.ф.-м.н."
```

```
select "Фамилия", "Зарплата" from Collaborators where "Ученая степень"="д.ф.-м.н."
```

```
select "Фамилия", "Код страны" from List, Countries // уст. where List."Страна"=Countries."Страна"
```

select "Фамилия", "Код страны"
from List inner join Countries
on List."Страна"=Countries."Страна"

```
insert into Countries("Страна", "Код") values
('Казахстан', 'KZ')
insert into "Участники"("Фамилия", "Имя")
values ('Кузнецофф', 'Бритни')
update "Участники"
set "Фамилия"='Кузнецова'
where "Имя"= 'Бритни'
update "Участники"
set "Страна"='США'
where "Страна"='Украина'
delete "Участники"
where "Страна"='США' and "Имя"='Иван'
delete "Участники"
where "Страна"='США' and "Имя"='Иван'
```

delete "Участники" // truncate table "Участники"