

Figure 26.7: The projective frames for projective spaces of dimension 1, 2, and 3.

Definition 26.4. Given a nontrivial vector space E of dimension n+1, for any projective frame $(a_i)_{1 \leq i \leq n+2}$ of $\mathbf{P}(E)$ and for any point $a \in \mathbf{P}(E)$, the set of homogeneous coordinates of a with respect to $(a_i)_{1 \leq i \leq n+2}$ is the set of (n+1)-tuples

$$\{(\lambda x_1, \dots, \lambda x_{n+1}) \in K^{n+1} \mid x_i \neq 0 \text{ for some } i, \lambda \neq 0, a = p(x_1 u_1 + \dots + x_{n+1} u_{n+1})\},$$

where (u_1, \ldots, u_{n+1}) is any basis of E associated with $(a_i)_{1 \le i \le n+2}$.

Given a projective frame $(a_i)_{1 \le i \le n+2}$ for $\mathbf{P}(E)$, if (x_1, \dots, x_{n+1}) are homogeneous coordinates of a point $a \in \mathbf{P}(E)$, we write $a = (x_1, \dots, x_{n+1})$, and with a slight abuse of language, we may even talk about a point (x_1, \dots, x_{n+1}) in $\mathbf{P}(E)$ and write $(x_1, \dots, x_{n+1}) \in \mathbf{P}(E)$.

The special case of the projective line \mathbb{P}^1_K is worth examining. The projective line \mathbb{P}^1_K consists of all equivalence classes [x,y] of pairs $(x,y) \in K^2$ such that $(x,y) \neq (0,0)$, under the equivalence relation \sim defined such that

$$(x_1, y_1) \sim (x_2, y_2)$$
 iff $x_2 = \lambda x_1$ and $y_2 = \lambda y_1$,

for some $\lambda \in K - \{0\}$. When $y \neq 0$, the equivalence class of (x, y) contains the representative $(xy^{-1}, 1)$, and when y = 0, the equivalence class of (x, 0) contains the representative (1, 0).