CAQM: Convexity Analysis of Quadratic Maps

Anatoly Dymarsky, Elena Gryazina, Sergei Volodin, Boris Polyak

1 Additional functions in library/

Name	Input	Call	Description	Return value	Exception
Random map	Dimensions n, m	<pre>get_random_f(n, m, is_complex)</pre>	Generates random map f	[A, b]	None
Value at x	The point $x \in X$	quadratic_map(A, b, x)	Calculates $f(x)$	y = f(x)	None
	Normal vector c	get_Ac(A, c)	Calculates $c \cdot A$	$A_c = c \cdot A$	None
$\mathbf{Get}\ H_c$	$c, y \in \mathbb{R}^m$	get_H_c(A, b, c, y)	Calculates $H_c = \begin{pmatrix} A_c & b_c \\ b'_c & -(c, y) \end{pmatrix}$	H_c	None
Minimize $z(c)$	$c, c_+, \operatorname{step} \beta$	<pre>minimize_z_c(A, b, c, c_plus, beta_initial, max_step)</pre>	Calculates $\inf_{c \in C_{-}} z(c)$	[z, c_array, z_array]	If failed
\mathbb{R}^n projection		<pre>project(A, b, c, x_0, delta_c, normal, search_area_size)</pre>	Projects $c + \Delta c$ to C_{-}	[c_new, lambda]	If failed
\mathbb{C}^n projection		<pre>project_descent(A, b, c, normal_1, normal_2)</pre>	Projects c to C	[c_new, distance]	If failed
Gradient $\frac{\partial z}{\partial c}$	Normal c	get_dz_dc(A, b, c)	Calculates Q , $\nabla z(c)$, normal vectors n_1 , n_2	[Q, Q_inv, k, v, lambda_min, z, dz_dc, normal_re, normal_im, drho_dc]	None
Change of basis	c_{+}	change_basis(A, b, c_plus)	Finds $\begin{cases} x = S(x' + x_0) \\ y = y' + y_0 \end{cases}$ s.t. $\begin{cases} c_+ \cdot A_0 = I \\ c_+ \cdot b_0 = 0 \end{cases}$	[A_new, b_new, x0, y0]	None
Boundary point ∂F_c	Normal c	boundary_point(A, b, c)	Calculates pre-image $x \colon f(x) \in \partial F_c$	[x]	If $c \cdot A < 0$

${\bf 2} \quad {\bf Numerical \ parameters \ in \ library/get_config.m}$

Parameter name	Target function	Purpose	Description	Default value
Q_inv_eps	get_dz_dc	Pseudoinverse	Tolerance for $pinv$ function for Q matrix	10^{-5}
c_plus_min_lambda	is_c_plus	$\lambda > 0$ check	Minimal eigenvalue which is still considered > 0	10^{-4}
c_minus_lambda_min	is_nonconvex	$\lambda > 0$ check	Maximal eigenvalue which is still considered to be 0	10^{-7}
c_minus_h_rank	is_nonconvex	Rank check	Tolerance for rank function in homogeneous case	10^{-7}
c_minus_ortho	is_nonconvex	Orthogonality criteria	Maximal value of scalar product of $ x_0^T(c \cdot b) $ s.t. they are still considered orthogonal	10^{-7}
c_minus_f1f2rank	is_nonconvex	Rank check	Tolerance for rank function for $f_1 \not\parallel f_2$ check	10^{-7}
descent_min_norm	minimize_z_c	Stopping criteria	Minimal norm of a vector (gradient, norm)	10^{-3}
descent_max_z	minimize_z_c	Stopping criteria	Maximal value of z	109
descent_rank_Q	minimize_z_c	Stopping criteria	Tolerance for rank(Q) check	10^{-5}
descent_min_beta	minimize_z_c	Stopping criteria	Minimal step in direction of the gradient	10^{-15}
descent_theta	minimize_z_c	Step reduction	Multiplicative factor to reduce beta if projection failed	0.5
descent_max_cos	minimize_z_c	Stopping criteria	Maximal cos between grad and n s.t. they are still considered to be not parallel	$1 - 10^{-4}$
project_descent_max_dist	project_descent	Stopping criteria	Maximal tolerable distance to C_{-} as value of constraint	10^{-10}
project_descent_min_alpha	project_descent	Stopping criteria	Minimal step in the direction of the gradient	10^{-20}
project_descent_theta	project_descent	Step reduction	Multiplicative factor to reduce alpha	0.4
project_bisection_min_rl	project	Stopping criteria	Minimal value of $ r-l $	10^{-8}
project_bisection_min_value	project	Stopping criteria	Minimal value of distance to C_{-} s.t. considered inside this set	10-9
project_bisection_max_value	project	Precondition	Maximal value of the initial distance to C_{-} s.t. projection is not attempted	10^{-3}