Algoritmos y Estructuras de Datos

Reglas básicas de Deducción para lógica proposicional

2023

Verdades universales

- Fórmulas cuyo valor de verdad no depende de cómo se interpretan
 - ► En PROP son las tautologías
- Contamos con una caracterización semántica de las tautologías
 - Aquellas cuyas tablas de verdad tienen **T** en todas las filas
- Nos interesa tener una caracterización sintáctica
 - Conjunto de fórmulas que se puedan probar en un sistema deductivo
- Beneficio adicional de sistema deductivo:
 - analizar formas argumentativas
 - pruebas como objeto de estudio
- No es el tema de la materia, solamente lo vemos a título informativo

Sistema deductivo y reglas de prueba

Reglas de prueba

 Permitan deducir una fórmula (conclusión) a partir de ciertas otras (premisas)

$$\frac{\phi_1 \quad \phi_2 \quad \dots \quad \phi_n}{\psi}$$
 Nombre

- $ightharpoonup \phi_1 \quad \phi_2 \quad \dots \quad \phi_n$: premisas
- $\blacktriangleright \psi$: conclusión

Prueba

► Se construye aplicando sucesivamente reglas de prueba a premisas y conclusiones obtenidas previamente

Pruebas

Un primer ejemplo

$$\frac{- Hyp}{p} \qquad \frac{- Hyp}{q} \\
\frac{p \wedge q}{(p \wedge q) \wedge r} \wedge i \qquad \frac{- Hyp}{r} \\
\wedge i$$

- ▶ Prueba de $(p \land q) \land r$ a partir de p, q y r
- Hyp y ∧i son los nombres de las reglas que se usan en la prueba
- No vamos a escribir los nombres de las reglas, ni las rayas (ni casi nada)

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

- denota que a partir del conjunto de fórmulas $\{\phi_1, \phi_2, \dots, \phi_n\}$ podemos obtener una prueba de ψ
- un secuente es válido si podemos construir una prueba

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

- denota que a partir del conjunto de fórmulas $\{\phi_1, \phi_2, \dots, \phi_n\}$ podemos obtener una prueba de ψ
- un secuente es válido si podemos construir una prueba

Ejemplo

$$p,q,r \vdash (p \land q) \land r$$
 (prueba ya vista)

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

- denota que a partir del conjunto de fórmulas $\{\phi_1, \phi_2, \dots, \phi_n\}$ podemos obtener una prueba de ψ
- un secuente es válido si podemos construir una prueba

Ejemplo

$$p,q,r \vdash (p \land q) \land r$$
 (prueba ya vista)
 $p \land q \rightarrow r, \ p, \ \neg r \vdash \neg q$ (¿qué opinan?)

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

- denota que a partir del conjunto de fórmulas $\{\phi_1, \phi_2, \dots, \phi_n\}$ podemos obtener una prueba de ψ
- un secuente es válido si podemos construir una prueba

Ejemplo

$$p,q,r \vdash (p \land q) \land r$$
 (prueba ya vista)
 $p \land q \rightarrow r, \ p, \ \neg r \vdash \neg q$ (¿qué opinan?)
 $p, \ q \vdash p \ \land \neg q$ (¿?)

Importancia de la elección de las reglas

- Deben permitir construir sólo pruebas que constituyan una argumentación válida
 - Deberían impedir probar secuentes tales como

$$p, q \vdash p \land \neg q$$

 Deberían permitir inferir todas las fórmulas que se desprenden de las premisas

Regla de la hipótesis

Hipótesis

$$_{\phi}^{-}$$
 Hyp

- ightharpoonup Si ϕ es premisa, puede probar ϕ
- ▶ Permite probar el secuente $p \vdash p$
- ► Se usa en combinación con las demás reglas
- A veces se omite la raya y la referencia al nombre de la regla

Reglas para la conjunción

Introducción de la conjunción

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

Reglas para la conjunción

Introducción de la conjunción

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

Eliminación de la conjunción

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

$$rac{\phi \wedge \psi}{\psi} \wedge e_2$$

Ejemplo de prueba

Secuente a probar: $p, q, r \vdash (p \land q) \land r$ $\frac{p \quad q}{p \land q} \land i \qquad \qquad 1 \quad p \qquad \text{premisa}$ $2 \quad q \qquad \text{premisa}$ $3 \quad r \qquad \text{premisa}$ $4 \quad p \land q \qquad \land i \quad 1, 2$ $5 \quad (p \land q) \land r \qquad \land i \quad 4, 3$

- Dos formas de escribir
- Usaremos alguna (o ninguna)
- Observar que esta prueba hace uso de la regla de la hipótesis (pero no se escribe)

Otro ejemplo de prueba

Ejemplo:
$$p \wedge q$$
, $r \vdash q \wedge r$

$$\frac{p \wedge q}{q} \wedge e_2$$

$$\frac{r}{q \wedge r} \wedge i$$

$$\frac{1}{q} \wedge r \wedge i$$

Reglas para la doble negación

Introducción de la doble negación

$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

Eliminación de la doble negación

$$\frac{\neg \neg \phi}{\phi} \neg \neg \epsilon$$

Reglas para la doble negación

Ejemplo

```
p \equiv Ilovió
```

 $p \rightarrow q \equiv \text{Si Ilovió, está mojado}$

De estas dos premisas queremos concluir está mojado (q)

Ejemplo

p ≡ Ilovió

 $p
ightarrow q \equiv \mathsf{Si}$ Ilovió, está mojado

De estas dos premisas queremos concluir está mojado (q)

Eliminación de la implicación

$$\frac{\phi \quad \phi \rightarrow \psi}{\psi} \rightarrow e$$

Notar que dada una implicación, para inferir la conclusión debemos saber que vale su premisa

Ejemplo:
$$p, p \rightarrow (q \rightarrow r), p \rightarrow q \vdash r$$

Ejemplo:
$$p, p \to (q \to r), p \to q \vdash r$$

$$\frac{p}{q} \xrightarrow{p \to q} \to e \qquad \frac{p}{q \to r} \xrightarrow{p \to (q \to r)} \to e$$

$$r \to e$$

Introducción de la implicación

Introducción de la implicación

- \blacktriangleright ϕ es una suposición temporaria que nos permite probar ψ .
- lacktriangledown ϕ es la primera fórmula en el recuadro y ψ es la última.
- \blacktriangleright Se suele darle una etiqueta a ϕ (en este caso, un número n).
- los recuadros pueden anidarse.

Ejemplos

Ejemplos

Ejemplo:
$$\vdash p \land q \rightarrow p$$

$$\frac{\overline{(p \land q)^1} \overset{Hyp}{\land e_1}}{p \land q \rightarrow p} \rightarrow_i, 1$$
Ejemplo: $\vdash p \land q \rightarrow q \land p$

$$\frac{\overline{(p \land q)^1} \overset{Hyp}{\land e_2} \qquad \overline{(p \land q)^1} \overset{Hyp}{\land e_1}}{q \land p} \land i}{q \land p} \rightarrow_i, 1$$

$$p \land q \rightarrow q \land p$$

Otro ejemplo

Ejemplo: $\vdash p \rightarrow p$ $\begin{array}{ccc} 1 & p & \text{premisa} \\ 2 & p \rightarrow p & \rightarrow i & 1 - 1 \end{array}$

Otro ejemplo

Ejemplo: $\vdash p \rightarrow p$ $\begin{array}{ccc} 1 & p & \text{premisa} \\ 2 & p \rightarrow p & \rightarrow i \ 1 - 1 \end{array}$

► El hecho de que el conjunto de premisas es vacío indica que la prueba de $p \rightarrow p$ no depende de ninguna premisa.

Otro ejemplo

Ejemplo: $\vdash p \rightarrow p$

$$\begin{array}{cccc}
1 & p & \text{premisa} \\
2 & p \to p & \to i \ 1 - 1
\end{array}$$

▶ El hecho de que el conjunto de premisas es vacío indica que la prueba de $p \rightarrow p$ no depende de ninguna premisa.

Siempre se puede transformar una prueba para $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ en una prueba para $\vdash \phi_1 \rightarrow (\phi_2 \rightarrow (\ldots \rightarrow (\phi_n \rightarrow \psi))))$ aplicando n veces $\rightarrow i$ en el siguiente orden $\phi_n, \phi_{n-1}, \ldots, \phi_1$.

- Permite eliminar la implicación en el caso en que sabemos que la conclusión es falsa
 - ▶ Si vale $p \rightarrow q$ y $\neg q$, podemos decir algo respecto de p?

- Permite eliminar la implicación en el caso en que sabemos que la conclusión es falsa
 - ▶ Si vale $p \rightarrow q$ y $\neg q$, podemos decir algo respecto de p?
 - Notar que si p fuese verdadero, entonces por $\rightarrow e$, q debería ser verdadero, lo que contradice el hecho de que vale $\neg q$.
 - ▶ En este caso podemos concluir que vale $\neg p$.

- Permite eliminar la implicación en el caso en que sabemos que la conclusión es falsa
 - ▶ Si vale $p \rightarrow q$ y $\neg q$, podemos decir algo respecto de p?
 - Notar que si p fuese verdadero, entonces por $\rightarrow e$, q debería ser verdadero, lo que contradice el hecho de que vale $\neg q$.
 - ▶ En este caso podemos concluir que vale $\neg p$.
- No es una regla primitiva (vamos a ver que se puede obtener como combinación de otras)

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} MT$$

Ejemplo:
$$p, \neg r, p \rightarrow (q \rightarrow r) \vdash \neg q$$

$$\frac{p \qquad p \rightarrow (q \rightarrow r)}{q \rightarrow r} \rightarrow e$$

$$\frac{q \rightarrow r}{\neg q} MT$$

Teoremas

Teorema

Llamamos teorema a toda fórmula lógica ϕ tal que el secuente $\vdash \phi$ es válido.

Ejercicio

Mostrar que $(q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$ es un teorema

Reglas para la disyunción

Introducción de la o

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee i_2$$

Reglas para la disyunción

Introducción de la o

$$\frac{\phi}{\phi \lor \psi} \lor i_1 \qquad \qquad \frac{\psi}{\phi \lor \psi} \lor i_2$$

Eliminación de la o

no se pueden utilizar fórmulas probadas dentro de un recuadro en el otro!!!

Reglas para la disyunción

Ejemplo: $p \lor q \vdash q \lor p$ 1 $p \lor q$ premisa 2 p premisa 3 $q \lor p \lor i_2 2$ 4 q premisa 5 $q \lor p \lor i_1 4$ 6 $q \lor p \lor e 1, 2 - 3, 4 - 5$

Contradicción

Contradicción

Una contradicción es una expresión de la forma $\phi \land \neg \phi$ o $\neg \phi \land \phi$

- ▶ Vamos a denotar una contradicción con ⊥
- Cualquier fórmula puede ser derivada a partir de una contradicción

Contradicción

Contradicción

Una contradicción es una expresión de la forma $\phi \land \neg \phi$ o $\neg \phi \land \phi$

- ▶ Vamos a denotar una contradicción con ⊥
- Cualquier fórmula puede ser derivada a partir de una contradicción

Eliminación de contradicción

$$\frac{\perp}{\phi} \perp \epsilon$$

Pensar que $\phi \land \neg \phi \vdash \psi$ se corresponde con $\vdash \phi \land \neg \phi \rightarrow \psi$

Reglas para la negación

Eliminación de la negación

$$\frac{\phi \qquad \neg \phi}{\bot} \neg e$$

Introducción de la negación

Reglas para la negación

Ejemplo:
$$p o
eg p \vdash
eg p$$

Reglas para la negación

Ejemplo:
$$p \rightarrow \neg p \vdash \neg p$$

$$\begin{array}{cccc}
1 & p \rightarrow \neg p & \text{premisa} \\
2 & p & \text{premisa} \\
3 & \neg p & \rightarrow e \ 1, 2 \\
4 & \bot & \neg e \ 2, 3 \\
5 & \neg p & \neg i \ 2 - 4
\end{array}$$

Reglas básicas (1/2)

Reglas básicas (2/2)

	Introducción	Eliminación
7	$ \begin{array}{c} \phi^{n} \\ \vdots \\ \bot \\ -\phi \end{array} \neg i, n $	$rac{\phi \qquad eg \phi}{\perp} eg e$
\perp	Ψ	$rac{\perp}{\phi} \perp e$
		$\frac{\neg \neg \phi}{\phi} \neg \neg e$

Reglas derivadas

$$\frac{\phi}{\neg \neg \phi} \neg \neg i \qquad \frac{\phi \rightarrow \psi \quad \neg \psi}{\neg \phi} MT$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$PBC, n \qquad \frac{\phi \rightarrow \psi \quad \neg \psi}{\neg \phi} LEM$$