Ciência Reprodutível para Experimentos em Computação de Alto Desempenho

Pedro Bruel, Lucas Schnorr, Alfredo Goldman

phrb@ime.usp.br

5 de maio de 2021

Introdução

Agradecimentos e Crédito

A Arnaud Legrand e seu curso:

https://github.com/alegrand/SMPE

Dependências e outros Recursos

Site com instruções e mais recursos:

https://phrb.github.io/reprodutibilidade-eradsp-2021

• Temos uma imagem Docker com Jupyter Notebook, R, pacotes, e dados:

git clone https://github.com/phrb/reprodutibilidade-eradsp-2021.git cd reprodutibilidade-eradsp-2021/exercicio_pratico && ./build.sh -b

Roteiro

O que é Ciência Reprodutível?

Desafios e Abordagens para se fazer Ciência Reprodutível

Mão na Massa: Ferramentas para Reprodutibilidade

O que é Ciência Reprodutível?

Provocação: O que Sobrevive do Trabalho Científico?

O que é Ciência Reprodutível?

Trabalhar de forma transparente para diminuir a distância entre quem produz e quem lê

Trabalhar de forma transparente?

- · Caderno de laboratório e metodologia
- Ambientes de software, controle de versão
- Plataformas de compartilhamento, colaboração, e arquivamento

Definições

Vocabulário Internacional de Metrologia (VIM)

Distingue entre resultados e conclusões que podem ser reproduzidos:

- Pela mesma equipe, nas mesmas condições experimentais: Repetibilidade
- Por uma equipe diferente, nas mesmas condições experimentais: Replicabilidade
- Por uma equipe diferente, em condições experimentais diferentes: Reprodutibilidade

Há uma Crise de Reprodutibilidade?

Resultados de um questionário com 1.500 cientistas:

(1,500 Scientists Lift the Lid on Reproducibility, Nature, Maio de 2016)

O que Dificulta a Reprodutibilidade?

Resultados de um questionário com 1.500 cientistas:

Dificultam a Reprodutibilidade

- Reportagem seletiva
- Pressão por publicações
- Dificuldades com estatística
- Falta de acesso aos dados

(1,500 Scientists Lift the Lid on Reproducibility, Nature, Maio de 2016)

O que pode Promover a Reprodutibilidade?

Resultados de um questionário com 1.500 cientistas:

Promovem a Reprodutibilidade

- Estudar estatística
- Colaboração e comunidade
- · Melhores incentivos

Trabalhar de forma transparente para diminuir a distância entre quem produz e quem lê

(1,500 Scientists Lift the Lid on Reproducibility, Nature, Maio de 2016)

Desafios e Abordagens para se

fazer Ciência Reprodutível

Ferramentas Existentes e Padrões Emergentes

Cadernos de Laboratório

Ambientes de Software

Plataformas de Compartilhamento

Cadernos de Laboratório

1 Documento Computacional

Meu computador me diz que π vale aproximadamente 3.141592653589793

Mas se usarmos o método da Agulha de Buffon, obteremos a aproximação:

```
(8): import numpy as np

w = 1000000
x = np.random.uniform(size = N, low = 0, high = 1)
theta = np.random.uniform(size = N, low = 0, high = pi / 2)
approx_pi = 2 / (sum(x + np.sin(theta) > 1) / N)
print(approx_pi)
```

3.142712129140327

Podemos também incluir fórmulas matemáticas como $\frac{1}{\sigma\sqrt{2/p^2}}\exp\left(-\frac{(x-\mu)^2}{2/\sigma^2}\right)$ e desenhos que não têm nada a ver com π (ele ao menos aparece como constante de normalização \mathfrak{D})

Cadernos de Laboratório

Cadernos de Laboratório

Ambientes de Software: O que se Esconde nas Dependências?

\$ pacman -Qi python-matplotlib

: python-matplotlib

Name

Version : 3.4.1-2 : freetype2 python-cycler python-dateutil python-kiwisolver Depends On python-numpy python-pillow python-pyparsing ghull Optional Deps : tk: Tk{Aqq.Cairo} backends [installed] pyside2: alternative for Ot5{Agg,Cairo} backends pvthon-pvqt5: Ot5{Agg.Cairo} backends [installed] pvthon-gobject: for GTK3{Agg,Cairo} backend [installed] python-wxpython: WX{.Agg.Cairo} backend pvthon-cairo: {GTK3,0t5,Tk,WX}Cairo backends [installed] python-cairocffi: alternative for Cairo backends python-tornado: WebAgg backend [installed] ffmpeg: for saving movies [installed] imagemagick: for saving animated gifs [installed] ghostscript: usetex dependencies [installed]

texlive-bin: usetex dependencies [installed]

python-certifi: https support [installed]

texlive-latexextra: usetex usage with pdflatex [installed]

Ambientes de Software: O que se Esconde nas Dependências?

Ambientes de Software: O que se Esconde nas Dependências?

Plataformas de Compartilhamento e Arquivamento

- D. Spinellis. The Decay and Failures of URL References. CACM, 46(1), 2003 "A meia-vida de uma referência em URL é de aproximadamente 4 anos após sua publicacão"
- P. Habibzadeh. Decay of References to Web sites in Articles Published in General Medical Journals: Mainstream vs Small Journals. Applied Clinical Informatics. 4 (4), 2013 "a meia-vida durou entre 2,2 anos no EMHJ e 5,3 anos no BMJ"

ARCHIVE

Arquivamento de Software

Software Heritage

or **→** = excelentes para colaborações (≠ arquivamento)

É Possível Garantir a Reprodutibilidade?

Não. Mas podemos melhorar muito se nos comprometermos a sempre:

- 1. Ensinar sobre reprodutibilidade aos alunos
- 2. Manter todo código e texto sob controle de versão
- 3. Verificar e validar resultados
- 4. Compartilhar dados, scripts, e figuras sob CC-BY
- 5. Disponibilizar preprints no arXiv no momento da submissão
- 6. Disponibilizar código no momento da submissão
- 7. Adicionar uma seção sobre reprodutibilidade ao fim de cada artigo
- 8. Manter presença atualizada na internet

(Manifesto: WSSSPE, Lorena Barba, FAIR)

Mudando as Práticas de Publicação e Pesquisa

Avaliação de Artefatos e Insígnias da ACM

- Grandes Conferências que fazem esforcos
 - Supercomputing: Descrição de Artefatos (AD) obrigatória, Avaliação de Artefatos (AE) ainda é opcional, revisão duplo-cega vs. Reprodutibilidade
 - NeurIPS, ICLR: Revisões Abertas, desafios de reprodutibilidade
 - Joelle Pineau @ NeurIPS'18
 - ACM SIGMOD 2015-2019, Most Reproducible Paper Award...
- Cultura está em evolução, as pessoas começam a se importar e disponibilizar materiais, erros são encontrados e consertados

Pilares da Ciência Aberta

- 1. Acesso Aberto
- 2. Dados Abertos

- 3. Software Livre e Aberto
 - · Hardware Aberto

- · Ciência com Notebooks Abertos
- · Infrastrutura para Ciência Aberta
- 5. Revisão por pares Aberta

6. Recursos Educacionais Abertos

Mão na Massa: Ferramentas

para Reprodutibilidade

Estatística e Machine Learning

Tabela no prefácio de All of Statistics, Larry Wasserman

Conceito	Estatística	Aprendizado de Máquina
Usar dados para estimar quantidades desconhecidas	Estimação	Aprendizado
Predizer y discreto a partir de x	Classificação	Aprendizado Supervisionado
Dividir dados em grupos	Clusterização	Aprendizado Não-Supervisionado
$(\mathbf{x}_1,\mathbf{y}_1),\ldots,(\mathbf{x}_N,\mathbf{y}_N)$	Desenho Experimental	Conjunto de Treinamento
$(\mathbf{x}_1,\ldots,\mathbf{x}_N)$	Variáveis Preditoras	Características
Intervalo contendo uma estimativa	Intervalo de Confiança	-

Conceitos de estatística ajudam a compreender e contextualizar Machine Leaning

Análise Estatística

Desafios

- Como planejar experimentos?
- Como analisar resultados?
- O que mostrar nos gráficos?
- Quarteto de Anscombe
- Datasaurus Dozen: não confiar em sínteses

Abordagens

- · Gráficos, antes de qualquer análise
- Análises mais simples primeiro: mais fáceis de interpretar
- · Controle de versão
- Documentos computacionais
- Desenho de Experimentos

Exercício Prático no Site

Site com instruções e mais recursos:

https://phrb.github.io/reprodutibilidade-eradsp-2021

• Temos uma imagem Docker com Jupyter Notebook, R, pacotes, e dados:

git clone https://github.com/phrb/reprodutibilidade-eradsp-2021.git
cd reprodutibilidade-eradsp-2021/exercicio_pratico && ./build.sh -b

Conclusão

É possível fazer Ciência (mais) Reprodutível!

Cadernos de Laboratório

Ambientes de Software

Plataformas de Compartilhamento

É possível fazer Ciência (mais) Aberta e Reprodutível!

- 1. Acesso Aberto
- 2. Dados Abertos

- 3. Software Livre e Aberto
 - · Hardware Aberto

- · Ciência com Notebooks Abertos
- · Infrastrutura para Ciência Aberta
- 5. Revisão por pares Aberta

NO TRANSPARENCY NO CONSENSUS

6. Recursos Educacionais Abertos

Ciência Reprodutível para Experimentos em Computação de Alto Desempenho

Pedro Bruel, Lucas Schnorr, Alfredo Goldman

phrb@ime.usp.br

5 de maio de 2021