

WHAT IS CLAIMED IS:

- 1 1. A memory cell comprising:
 - 2 a p-well area having at least one NMOS transistor formed therein, the NMOS
 - 3 transistor having an NMOS active area; and
 - 4 an n-well area having at least one PMOS transistor formed therein; and
 - 5 wherein the memory cell has a long side and a short side, the long side being at
 - 6 least twice as long as the short side, a longitudinal axis of the p-well being parallel to the
 - 7 short side.
- 1 2. The memory cell of claim 1, wherein the memory cell is a 6T-SRAM cell.
- 1 3. The memory cell of claim 2, wherein maximum resistance between cells p-well to
- 2 p-well strap contact is less than 4000 ohm.
- 1 4. The memory cell of claim 2, wherein maximum distance between cells p-well to
- 2 p-well low resistance strap is less than 3.6 μ m.
- 1 5. The memory cell of claim 2, wherein the p-well area is less than about 65% of the
- 2 memory cell.

- 1 6. The memory cell of claim 2, wherein the distance from the n-well area to the
 - 2 NMOS active area is less than about 75 nm.
- 1 7. The memory cell of claim 2, wherein the NMOS active region is less than about
 - 2 25% of the memory cell.
- 1 8. The memory cell of claim 2, wherein the short side is less than about 0.485 μm .
- 1 9. The memory cell of claim 1, wherein the memory cell is an 8T-SRAM cell.
- 1 10. The memory cell of claim 9, wherein maximum resistance between cells p-well to
 - 2 p-well strap contact is less than 4000 ohm.
- 1 11. The memory cell of claim 9, wherein maximum distance between cells p-well to
 - 2 p-well low resistance strap is less than 3.6 μm .
- 1 12. The memory cell of claim 9, wherein the p-well area is less than about 75% of the
 - 2 memory cell.
- 1 13. The memory cell of claim 9, wherein the distance from the n-well area to the
 - 2 NMOS active area is less than about 100 nm.

1 14. The memory cell of claim 9, wherein the NMOS active region is less than about
2 33% of the memory cell.

1 15. The memory cell of claim 9, wherein the short side is less than about 0.745 μm .

1 16. The memory cell of claim 1, wherein the n-well is a deep n-well.

1 17. The memory cell of claim 1, wherein the p-well substantially encircles the n-well.

1 18. The memory cell of claim 1, wherein the memory cell includes a plurality of V_{ss}
2 lines, the plurality of V_{ss} lines being located on one or more metal layers.

1 19. The memory cell of claim 1, wherein the memory cell has an area of less than
2 about $0.4 \mu\text{m}^2$, at least one of the PMOS transistors or the NMOS transistors have a gate
3 thickness less than about 1000 \AA .

1 20. The memory cell of claim 1, wherein the NMOS transistor has a gate layer and a
2 gate dielectric layer and the gate dielectric layer having one or more layers and at least
3 one layer comprising SiO_2 , nitrided oxide, nitrogen content oxide, SiON , metal oxide,
4 high K dielectric, or a combination thereof.

1 21. The memory cell of claim 1, wherein the memory cell includes at least one
2 pull-down transistor having a gate width of less than about 40 nm and a gate dielectric
3 thickness of less than 13 Å.

1 22. The memory cell of claim 1, wherein the memory cell has a maximum storage
2 capacitance of less than about 0.5 femto-farad.

1 23. The memory cell of claim 1, wherein the memory cell includes at least one bit
2 line, each bit line being parallel to the longitudinal axis of the p-well.

1 24. The memory cell of claim 1, wherein the memory cell is formed on a substrate
2 comprising bulk-Si, SiGe, strain-Si, SOI, non-bulk Si, or a combination thereof.

1 25. The memory cell of claim 1, wherein the memory cell includes at least one bit
2 line, each bit line having at least one of a V_{cc} line or a V_{ss} line thereof adjacent the bit
3 line.

1 26. The memory cell of claim 1, wherein the memory cell includes a plurality of
2 metal layers, and the memory cell includes a bit line and a complementary bit line, the bit
3 line and the complementary bit line being on different metal layers.

1 27. A memory cell comprising: /

2 a p-well area having a first portion and a second portion, the first portion having a

3 first pass-gate transistor and a first pull-down transistor, the second portion having a

4 second pass-gate transistor and a second pull-down transistor; and

5 an n-well area positioned between the first portion and the second portion, the

6 n-well area having a first pull-up transistor and a second pull-up transistor;

7 wherein

8 the memory cell has a long side and a short side, the long side being at

9 least twice as long as the short side, the short side being less than 0.485 μm,

10 and a longitudinal axis of the p-well being parallel to the short side

11 the gate of the first pass-gate transistor is electrically coupled to a

12 word line;

13 the source of the first pass-gate transistor is electrically coupled to a

14 bit line;

15 the drain of the first pass-gate transistor is electrically coupled to the

16 drain of the first pull-down transistor;

17 the source of the first pull-down transistor is electrically coupled to a
18 V_{ss} line;
19 the drain of the first pass-gate transistor, the drain of the first pull-up
20 transistor, the drain of the first pull-down transistor, the gate of the second
21 pull-down transistor, and second pull-up transistor are electrically coupled;
22 the drain of the second pass-gate transistor, the drain of the second
23 pull-up transistor, the drain of the second pull-down transistor, the gate of the
24 first pull-down transistor, and first pull-up transistor are electrically coupled;
25 the source of the first pull-up transistor is electrically coupled to a V_{cc}
26 line;
27 the source of the second pull-up transistor is electrically coupled to the
28 V_{cc} line;
29 the gate of the second pass-gate transistor is electrically coupled to the
30 word line;
31 the source of the second pass-gate transistor is electrically coupled to a
32 bit line bar;

1 28. The memory cell of claim 27, wherein resistance between a p-well to a p-well
2 strap contact is less than about 4000 ohm.

1 29. The memory cell of claim 27, wherein the distance from a p-well to a p-well strap
2 contact is less than about 3.6 um.

1 30. The memory cell of claim 27, wherein the p-well area is less than about 65% of
2 the memory cell.

1 31. The memory cell of claim 27, wherein the distance of the n-well area to the
2 NMOS active area is less than about 75 nm.

1 32. The memory cell of claim 27, wherein the NMOS active region is less than about
2 25% of the memory cell.

1 33. The memory cell of claim 27, wherein the n-well is a deep n-well.

1 34. The memory cell of claim 27, wherein the p-well substantially encircles the
2 n-well.

1 35. The memory cell of claim 27, wherein the memory cell includes a plurality of V_{ss}
2 lines, the plurality of V_{ss} lines being located on one or more metal layers.

1 36. The memory cell of claim 27, wherein the memory cell has an area of less than
2 about $0.4 \mu\text{m}^2$, at least one of the PMOS transistors or the NMOS transistors have a gate
3 thickness less than about 1000 \AA , and the memory cell includes at least one pull-down
4 transistor having a gate width of less than about 40 nm.

1 37. The memory cell of claim 27, wherein at least one of the first pull-up transistors
2 and the second pull-up transistor has a gate layer and a gate oxide layer and the gate
3 oxide layer having one or more layers and at least one layer comprising SiO_2 , nitrided
4 oxide, nitrogen content oxide, SiON , metal oxide, high K dielectric, or a combination
5 thereof.

1 38. The memory cell of claim 27, wherein at least one of the first pull-down transistor
2 and the second pull-down transistor have a gate width of less than about 40 nm and a gate
3 oxide thickness of less than 13 \AA .

1 39. The memory cell of claim 27, wherein the memory cell has a maximum storage
2 capacitance of less than about 0.5 femto-farad.

1 40. The memory cell of claim 27, wherein each bit line is parallel to the longitudinal
2 axis of the p-well.

1 41. The memory cell of claim 27, wherein the memory cell is formed on a substrate
2 comprising bulk-Si, SiGe, strain-Si, SOI, non-bulk Si, or a combination thereof.

1 42. The memory cell of claim 27, wherein the memory cell includes at least one bit
2 line, each bit line having a V_{cc} line and a V_{ss} line adjacent the bit line.

1 43. The memory cell of claim 27, wherein the memory cell includes a plurality of
2 metal layers, and the memory cell includes a bit line and a complementary bit line, the bit
3 line and the complementary bit line being on different metal layers.

1 44. A memory cell comprising:

2 a p-well area having a first portion and a second portion, the first portion having a

3 first pass-gate transistor, a second pass-gate transistor, and a first pull-down transistor,

4 the second portion having a third pass-gate transistor, a fourth pass-gate transistor and a

5 second pull-down transistor; and

6 an n-well area positioned between the first portion and the second portion, the

7 n-well area having a first pull-up transistor and a second pull-up transistor;

8 wherein

9 the memory cell has a long side and a short side, the long side being at

10 least twice as long as the short side, the short side being less than 0.745 μm ,

11 and a longitudinal axis of the p-well being parallel to the short side

12 the gates of the first pass-gate transistor and second pass-gate

13 transistor are electrically coupled to a first word line;

14 the gates of the third pass-gate transistor and fourth pass-gate

15 transistor are electrically coupled to a second word line;

16 the source of the first pass-gate transistor is electrically coupled to a

17 first bit line;

18 the source of the third pass-gate transistor is electrically coupled to a

19 second bit line;

20 the drain of the first pass-gate transistor is electrically coupled to the

21 drain of the first pull-down transistor;

22 the source of the first pull-down transistor is electrically coupled to a

23 V_{ss} line;

24 the source of the second pull-down transistor is electrically coupled to

25 a V_{ss} line;

26 the drain of the first pass-gate transistor, the drain of the first

27 pull-down transistor, the drain of the first pull-up transistor, the gate of the

28 second pull-down transistor, the gate of the second pull-up transistor, and the

29 drain of the third pass-gate transistor are electrically coupled;

30 the drain of the fourth pass-gate transistor, the drain of the second

31 pull-down transistor, the drain of the second pull-up transistor, the gate of the

32 first pull-down transistor, the gate of the first pull-up transistor, and the drain

33 of the second pass-gate transistor are electrically coupled;

34 the source of the first pull-up transistor is electrically coupled to a V_{cc}
35 line;
36 the source of the second pull-up transistor is electrically coupled to the
37 V_{cc} line;
38 the source of the second pass-gate transistor is electrically coupled to a
39 first complementary bit line;
40 the source of the fourth pass-gate transistor is electrically coupled to a
41 second complementary bit line;
42 a first axis along the source-to-drain direction of the first pass-gate
43 transistor is substantially parallel to the shorter side of the memory cell;
44 a second axis along the source-to-drain direction of the first pull-down
45 transistor is substantially parallel to the shorter side of the memory cell;
46 a third axis along the source-to-drain direction of the first pull-up
47 transistor is substantially parallel to the shorter side of the memory cell;
48 a fourth axis along the source-to-drain direction of the second
49 pass-gate transistor is substantially parallel to the shorter side of the memory
50 cell;

51 a fifth axis along the source-to-drain direction of the second pull-down
52 transistor is substantially parallel to the shorter side of the memory cell;
53 a sixth axis along the source-to-drain direction of the second pull-up
54 transistor is substantially parallel to the shorter side of the memory cell;
55 a seventh axis along the source-to-drain direction of the third pass-gate
56 transistor is substantially parallel to the shorter side of the memory cell; and
57 an eighth axis along the source-to-drain direction of the fourth pass-gate
58 transistor is substantially parallel to the shorter side of the memory cell.

1 45. The memory cell of claim 44, wherein resistance between a p-well to a p-well
2 strap contact is less than about 4000 ohm.

1 46. The memory cell of claim 44, wherein the distance from a p-well to a p-well strap
2 contact is less than about 3.6um.

1 47. The memory cell of claim 44, wherein the p-well area is less than about 75% of
2 the memory cell.

1 48. The memory cell of claim 44, wherein the distance of the n-well area to the
2 NMOS active area is less than about 100 nm.

1 49. The memory cell of claim 44, wherein the NMOS active region is less than about
2 33% of the memory cell.

1 50. The memory cell of claim 44, wherein the n-well is a deep n-well.

1 51. The memory cell of claim 44, wherein the p-well substantially encircles the
2 n-well.

1 52. The memory cell of claim 44, wherein the memory cell includes a plurality of V_{ss}
2 lines, the plurality of V_{ss} lines being located on one or more metal layers.

1 53. The memory cell of claim 44, wherein the memory cell has an area of less than
2 about 1.2 μm², at least one of the PMOS transistors or the NMOS transistors have a gate
3 thickness less than about 1000 Å.

1 54. The memory cell of claim 44, wherein at least one of the first pull-up transistors
2 and the second pull-up transistor has a gate layer and a gate oxide layer and the gate
3 oxide layer having one or more layers and at least one layer comprising SiO₂, nitrided
4 oxide, nitrogen content oxide, SiON, metal oxide, high K dielectric, or a combination
5 thereof.

1 55. The memory cell of claim 44, wherein at least one of the first pull-down transistor
2 and the second pull-down transistor have a gate width of less than about 40 nm and a gate
3 oxide thickness of less than 13 Å.

1 56. The memory cell of claim 44, wherein the memory cell has a maximum storage
2 capacitance of less than about 1 femto-farad.

1 57. The memory cell of claim 44, wherein each bit line is parallel to the longitudinal
2 axis of the p-well.

1 58. The memory cell of claim 44, wherein the memory cell is formed on a substrate
2 comprising bulk-Si, SiGe, strain-Si, SOI, non-bulk Si, or a combination thereof.

1 59. The memory cell of claim 44, wherein the memory cell includes at least one bit
2 line, each bit line having at least one of a V_{cc} line or a V_{ss} line adjacent the bit line.

- 4
- 1 60. A method of forming a memory cell, the method comprising the steps of:
- 2 providing a p-type substrate having a p-well;
- 3 forming an n-well in the p-type substrate;
- 4 forming in the n-well a first pull-up transistor and a second pull-up transistor;
- 5 forming in the p-well a first pass-gate transistor, a second pass-gate transistor, a
- 6 first pull-down transistor, and a second pull-down transistor;
- 7 wherein the memory cell has a shorter side and a longer side, the longer side
- 8 being at least twice as long as the shorter side, and wherein the source-to-drain axis of
- 9 each transistor is parallel to the shorter side.
- 1 61. The method of 60, wherein the n-well is less than about 65% of the memory cell.
- 1 62. The method of 60, wherein maximum distance between any p-well location to a
- 2 p-well low resistance strap is less than about 3.6 μm .
- 1 63. The method of 60, wherein the distance between an NMOS active area and the
- 2 n-well is less than about 75 nm.
- 1 64. The method of 60, wherein the shorter side is less than about 0.485 μm .

1 65. The method of 60, wherein the n-well is a deep n-well.

- 6
- 1 66. A method of forming a memory cell, the method comprising the steps of:
- 2 providing a p-type substrate having a p-well;
- 3 forming an n-well in the p-type substrate;
- 4 forming in the n-well a first pull-up transistor and a second pull-up transistor;
- 5 forming in the p-well a first pass-gate transistor, a second pass-gate transistor, a
- 6 third pass-gate transistor, a fourth pass-gate transistor, a first pull-down transistor, and a
- 7 second pull-down transistor;
- 8 wherein the memory cell has a shorter side and a longer side, the longer side
- 9 being at least twice as long as the shorter side, and wherein the source-to-drain axis of
- 10 each transistor is parallel to the shorter side.
- 1 67. The method of 65, wherein the n-well is less than about 75% of the memory cell.
- 1 68. The method of 65, wherein maximum distance between any p-well location to a
- 2 p-well low resistance strap is less than about 3.6 μm .
- 1 69. The method of 65, wherein the distance between an NMOS active area and the
- 2 n-well is less than about 100 nm.
- 1 70. The method of 65, wherein the shorter side is less than about 0.745 μm .

1 71. The method of 65, wherein the n-well is a deep n-well.