## Chapter 1: Rings and Ideals

Author: Meng-Gen Tsai Email: plover@gmail.com

**Exercise 1.1** Let x be a nilpotent element of A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Proof.

(1) Suppose  $x^m = 0$  for some odd integer  $m \ge 0$ . Then

$$1 = 1 + x^m = (1+x)(1-x+x^2-\dots+(-1)^{m-1}x^{m-1}),$$

or 1 + x is a unit.

(2) If u is any unit and x is any nilpotent,  $u + x = u \cdot (1 + u^{-1}x)$  is a product of two units (using that  $u^{-1}x$  is nilpotent and applying (1)) and hence a unit again.

Proof (Proposition 1.9).

- (1) The nilradical is a subset of the Jacobson radical.
  - (a) The nilradical  $\mathfrak N$  of A is the intersection of all the prime ideals of A by Proposition 1.8.
  - (b) The Jacobson radical  $\Re$  of A is the intersection of all the maximal ideals of A by definition.
- (2) By Proposition 1.9,  $x \in \mathfrak{R}$  if and only if 1 xy is a unit in A for all  $y \in A$ . So  $1 + x = 1 (-x) \cdot 1$  is a unit in A since x is a nilpotent and  $\mathfrak{R}$  is an ideal.

**Exercise 1.2** Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let  $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$ . Prove that

(i) f is a unit in A[x] if and only if  $a_0$  is a unit in A and  $a_1,...,a_n$  are nilpotent. (Hint: If  $b_0 + b_1x + \cdots + b_mx^m$  is the inverse of f, prove by induction on r that  $a_n^{r+1}b_{m-r} = 0$ . Hence show that  $a_n$  is nilpotent, and then use Exercise 1.1.)

- (ii) f is nilpotent if and only if  $a_0, a_1, ..., a_n$  are nilpotent.
- (iii) f is a zero-divisor if and only if there exists  $a \neq 0$  such that af = 0. (Hint: Choose a polynomial  $g = b_0 + b_1 x + \cdots + b_m x^m$  of least degree m such that fg = 0. Then  $a_n b_m = 0$ , hence  $a_n g = 0$  (because  $a_n g$  annihilates f and has degree < m). Now show by induction that  $a_{n-r}g = 0$   $(0 \leq r \leq n)$ .)
- (iv) f is said to be primitive if  $(a_0, a_1, ..., a_n) = (1)$ . Prove that if  $f, g \in A[x]$ , then fg is primitive if and only if f and g are primitive.

Proof of (i).

- (1)  $(\Leftarrow)$  holds by Exercise 1.1.
- (2) ( $\Longrightarrow$ ) There exists the inverse g of f, say  $g = b_0 + b_1 x + \cdots + b_m x^m$  satisfying 1 = fg. Clearly,  $1 = a_0 b_0$ , or  $a_0$  is a unit in A. Also,

$$0 = a_n b_m,$$
  

$$0 = a_n b_{m-1} + a_{n-1} b_m,$$
  

$$0 = a_n b_{m-2} + a_{n-1} b_{m-1} + a_{n-2} b_m,$$

A direct computing shows that

$$0 = a_n^1 b_m,$$

$$0 = a_n (a_n b_{m-1} + a_{n-1} b_m)$$

$$= a_n^2 b_{m-1} + a_{n-1} a_n b_m$$

$$= a_n^2 b_{m-1},$$

$$0 = a_n^2 (a_n b_{m-2} + a_{n-1} b_{m-1} + a_{n-2} b_m)$$

$$= a_n^3 b_{m-2} + a_{n-1} a_n^2 b_{m-1} + a_{n-2} a_n^2 b_m$$

$$= a_n^3 b_{m-2},$$

So we might have  $a_n^{r+1}b_{m-r} = 0$  for r = 0, 1, 2, ..., m.

- (3) Show that  $a_n^{r+1}b_{m-r} = 0$  for r = 0, 1, 2, ..., m by induction on r.
  - (a) As r = 0,  $a_n b_m = 0$  by comparing the coefficient of fg = 1 at  $x^{n+m}$ .
  - (b) For any r > 0, comparing the coefficient of fg = 1 at  $x^{n+m-r}$ ,

$$0 = a_n b_{m-r} + a_{n-1} b_{m-r+1} + \dots + a_{n-r} b_m.$$

Multiplying by  $a_n^r$  on the both sides,

$$0 = a_n^{r+1} b_{m-r} + a_{n-1} a_n^r b_{m-r+1} + \dots + a_{n-r} a_n^r b_m$$
  
=  $a_n^{r+1} b_{m-r}$ .

by the induction hypothesis.

- (4)  $a_n$  is a nilpotent. Putting r=m in  $a_n^{r+1}b_{m-r}=0$  and get  $a_n^{m+1}b_0=0$ . Notice that  $b_0$  is a unit,  $a_n^{m+1}=0$ , or  $a_n$  is a nilpotent.
- (5) Consider  $f a_n x^n = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ , a polynomial  $\in A[x]$  of degree n-1. Note that f is a unit and  $a_n x^n$  is a nilpotent. By Exercise 1.1,  $f a_n x^n$  is a unit too. Applying the (2)(3)(4) again,  $a_{n-1}$  is a nilpotent as n-1>0, that is, applying descending induction on n then yields the desired property.

Proof of (ii).

- (1) (\( ) holds since the nilradical of any ring is an ideal.
- (2)  $(\Longrightarrow)$   $f^N=0$  for some N>0. So  $0=f^N=a_n^Nx^{nN}+\cdots+a_0^N$ . Comparing the coefficient in the leading term  $x^{nN}$  leads to  $a_n^N=0$ , or  $a_n$  is a nilpotent.
- (3) Consider  $f a_n x^n = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ , a polynomial  $\in A[x]$  of degree n-1. Note that f and  $a_n x^n$  are nilpotents.  $f a_n x^n$  is a nilpotent too. Similar to step (5) in the proof of (i), applying descending induction on n then yields the desired property.

Proof of (iii).

- (1)  $(\Leftarrow)$  holds trivially.
- (2) ( $\Longrightarrow$ ) Pick a polynomial  $g = b_0 + b_1 x + \cdots + b_m x^m$  of least degree m such that fg = 0. Especially,  $a_n b_m = 0$ .
- (3) Consider

$$a_n g = a_n b_0 + \dots + a_n b_{m-1} x^{m-1} + a_n b_m x^m$$
  
=  $a_n b_0 + \dots + a_n b_{m-1} x^{m-1}$ 

(since  $a_n b_m = 0$ ).  $a_n g$  is a polynomial over A of having degree strictly less than m. Notice that  $f \cdot (a_n g) = a_n \cdot (fg) = 0$ . By minimality of m,  $a_n g = 0$ .

- (4) Induction on the degree n of f.
  - (a) As n = 0,  $f = a_0$ . There exists  $b_m \neq 0$  such that  $b_m f = b_m a_0 = 0$  by (2).
  - (b) For any zero-divisor f of degree n, there is a polynomial  $g = b_0 + b_1 x + \cdots + b_m x^m$  of least degree m such that fg = 0. By (2)(3),

$$(f - a_n x^n) \cdot g = fg - a_n x^n g$$
$$= 0 - 0$$
$$= 0.$$

That is,  $f - a_n x^n$  is a zero-divisor of degree n-1. By the induction hypothesis, there exists  $b_m \neq 0$  such that  $b_m (f - a_n x^n) = 0$ . So  $b_m f = b_m (f - a_n x^n) + b_m a_n x^n = 0 + 0 = 0$ .

(c) By (a)(b),  $(\Longrightarrow)$  holds by mathematical induction.

## Proof of (iv). Note that

- (1)  $f \notin \mathfrak{m}[x]$  for any maximal ideal  $\mathfrak{m}$  of A if and only if f is primitive.
- (2) For any maximal ideal  $\mathfrak{m}$  of A,  $A/\mathfrak{m}$  is a field (or an integral domain).
- (3) A[x] is an integral domain if A is an integral domain.
- (4)  $A[x]/\mathfrak{m}[x] \cong (A/\mathfrak{m})[x]$  as a ring isomorphism.

Hence,

f,g: primitive  $\iff f,g\notin \mathfrak{m}[x]$  for any maximal ideal  $\mathfrak{m}$   $\iff f,g\neq 0$  in  $(A/\mathfrak{m})[x]$  for any maximal ideal  $\mathfrak{m}$   $\iff fg\neq 0$  in  $(A/\mathfrak{m})[x]$  for any maximal ideal  $\mathfrak{m}$   $\iff fg\notin \mathfrak{m}[x]$  for any maximal ideal  $\mathfrak{m}$   $\iff fg:$  primitive.