Week 4: Basics of Control Theory and Laplace Transform and Its Applications

AE 315 - Systems and Control

Zeyad M. Manaa

Aerospace Engineering, King Fahd University of Petroleum and Minerals.

Dhahran, Saudi Arabia.

September 17, 2023

- Closed Loop and Open Loop
 - Open Loop Configuration
 - Closed Loop Configuration
- 2 Error Dynamics
 - Controller functionality and objective
 - Error Dynamics
 - Performance metrices
- Standard Lange Lange
 - Importance of Laplace Transform
 - Mathematical Formulation and Definition
 - Laplace Transform Important Property
 - Transfer Function
- Practical Session

- 1 Closed Loop and Open Loop
 - Open Loop Configuration
 - Closed Loop Configuration
- Error Dynamics
 - Controller functionality and objective
 - Error Dynamics
 - Performance metrices
- Laplace Transform
 - Importance of Laplace Transform
 - Mathematical Formulation and Definition
 - Laplace Transform Important Property
 - Transfer Function
- Practical Session

Open-loop control system

Closed Loop and Open Loop

Definition (Open loop control system)

An open-loop control system utilizes an actuating device to control the process directly without using feedback.

Figure: Open-loop control system

An open-loop system usually contains the following:

- process to be controlled that form a plant together with an actuator.
- control signal (manipulated variable) is varied by the controller.
- controlled variable quantity that is measured or controlled.
- reference input, which dictates the desired value of the plant output.
- controller that acts upon the reference input signal.

AE 315 - 231 - Sep 18, 2023 Zeyad M. Manaa

Open-loop control system cont.

Figure: Open-loop control system

- In any open-loop control system the output is not compared with the reference input. Thus, such system works in fixed operating conditions.
- Open-loop control systems can be used in practice, only if the relationship between the input and output is known and if there are neither internal nor external disturbances.
- The accuracy of the system depends on calibration. Recalibration is necessary from time to time.
- Open-loop control systems less expensive and easier to construct than a corresponding closed-loop systems. No stability issues.

Closed-loop control system

Definition (Closed loop control system)

Closed-loop (or feedback) control system maintains a prescribed relationship between the output and the reference input (command) by comparing them and using the difference as a means of control.

Figure: Closed-loop control system

Closed-loop control system Cont.

Figure: Closed-loop control system

- The feedback loop where the output signal is measured with a sensor. The measured signal is fed back to the summing junction.
- An error signal (actuating signal) is generated in the summing junction as a difference between the reference signal and the measured output.
- Disturbance and sensor noise adversely affect the value of the output of a system.

Properties of feedback control system

Figure: Closed-loop control system

- Stability. The system must be stable at all times (absolute requirement).
- Tracking The system output must track the command reference signal as closely as possible.
- Distrubance rejection. The system output must be as insensitive as possible to distrubance signals.
- Robustness. The control goals must be met even if the model used in control design is not completely accurate or if the dynamics of the system change over time.

AE 315 - 231 - Sep 18, 2023 Zeyad M. Manaa

- Closed Loop and Open Loop
 - Open Loop Configuration
 - Closed Loop Configuration
- Error Dynamics
 - Controller functionality and objective
 - Error Dynamics
 - Performance metrices
- Laplace Transform
 - Importance of Laplace Transform
 - Mathematical Formulation and Definition
 - Laplace Transform Important Property
 - Transfer Function
- Practical Session

 Controller Functionality: The controller compares desired behavior (reference input) with actual behavior to generate control signals.

Error Dynamics

- In the context of motion control of a robot arm: $\theta_d(t)$ represents the desired behavior (desired motion or reference input) $\theta(t)$ represents the actual motion. $\theta_e(t)$ represent the error.
- Control Objective: Minimize or eliminate the error, making the actual system response closely follow the desired response.

Definition (Error Dynamics)

Let us define

• The error signal: the difference between the desired response (reference signal) and the actual response of the system being controlled.

Error Dynamics

 Error dynamics: refers to the analysis and study of how the error signal e(t) behaves over time in a control system.

$$\theta_e(t) = \theta_d(t) - \theta(t) \tag{1}$$

 Error dynamics involves understanding system's properties, such as stability, convergence, overshoot, settling time, etc.

Performance metrices

Error Dynamics

Figure: An example error response showing steady-state error ess, the overshoot, and the 2% settling time.

Settling time

The time it takes for the system to converge to its steady state.

- ullet Steady state error $e_s(t)$ The difference between the steady-state output and the desired output.
- Overshoot percentage
 How much the peak level is higher than the steady state, normalized against the steady state.

- Closed Loop and Open Loop
 - Open Loop Configuration
 - Closed Loop Configuration
- 2 Error Dynamics
 - Controller functionality and objective
 - Error Dynamics
 - Performance metrices
- Supplied Transform
 3 Laplace Transform
 - Importance of Laplace Transform
 - Mathematical Formulation and Definition
 - Laplace Transform Important Property
 - Transfer Function
- Practical Session

Laplace Transform

Importance of Laplace Transform

- The Laplace transform in one of the most important mathematical tools available for modeling and analyzing linear systems.
- Operations such as differentiation and integration can be replaced by algebraic operations in the complex plane.
- Linear differential equations can be transformed into an algebraic equations. Both transient and steady-state component of the solution can be obtained simultaneously.
- The Laplace transform allows the use of various techniques for predicting the system performance and synthesis of controllers.

Definition (Laplace Transform)

Let us define

- f(t): a function of time t such that f(t) = 0 for t < 0.
- $s = \sigma + j\omega$: a complex variable.
- \bullet F(s): Laplace transform of f(t).

Then the Laplace transform of f(t) is given by

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$$
 (2)

where $\mathcal{L}\{.\}$ – an operational symbol indicating that the quantity that if prefixes is to be transformed by the Laplace integral.

Example

Example (1)

Evaluate the Laplace transform of the constant function 1:

The constant function 1 is defined as f(t)=1 for all $t\geq 0$. By the definition of the Laplace transform,

$$\mathcal{L}\{1\} = \int_0^\infty e^{-st} dt = \left[\frac{-1}{s}e^{-st}\right]_0^\infty = \left[\frac{1}{s}\right]$$

Example (2)

Evaluate the Laplace transform of the function $f(t) = \sin(t)$:

The function $f(t) = \sin(t)$ for all $t \ge 0$. By the definition of the Laplace transform,

$$\mathcal{L}\{\sin(t)\} = \int_0^\infty e^{-st} \sin(t) dt = \left[\frac{-1}{s} e^{-st} \sin(t) + \frac{1}{s^2} e^{-st} \cos(t) \right]_0^\infty = \boxed{\frac{1}{s^2 + 1}}$$

6/24

Laplace Transform Tables

Closed Loop and Open Loop

Table of Elementary Laplace Transforms

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}$, $s > 0$
2.	e^{at}	$\frac{1}{s-a}, s>a$
3.	t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, s > 0$
4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, s>0$
5.	$\sin(at)$	$\frac{a}{s^2 + a^2}, s > 0$
6.	$\cos(at)$	$\frac{s}{s^2 + a^2}, s > 0$
7.	$\sinh(at)$	$\frac{a}{s^2-a^2}, s> a $
8.	$\cosh(at)$	$\frac{s}{s^2-a^2}, s> a $
9.	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}, s>a$
10.	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}, s>a$

Differentiation Property

Differentiation

$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = sF(s) - f(0) \tag{3}$$

where f(0) is the initial value of f(t) at t = 0.

This can expand to second order derivatives by

$$\mathcal{L}\left\{\frac{d^2f(t)}{dt^2}\right\} = s^2F(s) - sf(0) - f'(0) \tag{4}$$

Generalizing to higher order derivatives,

$$\mathcal{L}\left\{\frac{d^n f(t)}{dt^n}\right\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f^{(1)}(0) \cdots - f^{(n-1)}(0)$$
 (5)

This will be the workhorse on solving ODEs.

8/24

Solving ODEs

Figure: Laplace transform for solving ODE equations

- **1** Transform the **linear ODE** to the s-domain by the **Laplace transform**.
- Manipulate the transformed algebraic equation and solve for the transform of the unknown function.
- Perform partial-fraction expansion to the transform of the unknown function.
- **1** Obtain the **inverse Laplace transform** from the Laplace transform table.

Go to example 3

Laplace Transform

Figure: Block diagram of a single input single output (SISO) system

Consider the continuous, linear time-invariant(LTI) system defined by linear constant coefficient ordinary differential equation

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y$$

$$= b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_1 \frac{du}{dt} + b_0 u$$

Transfer Function

Definition (Transfer Function)

The transfer function **G(s)** of a linear, time-invariant differential equation system is defined as the ratio of the Laplace transform of the output **Y(s)** (response function) to the Laplace transform of the input **U(s)** (driving function) under the assumption that all initial conditions are zero.

Figure: Block diagram of a single input single output (SISO) system

The Laplace of the system is given by,

$$\begin{vmatrix} a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 \\ = b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0 \end{vmatrix}$$

Then,

$$\boxed{\frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = G(s)}$$

21/24

Transfer Function Cont.

Definition (Characteristic equation)

The characteristic equation of a system is defined as the equation obtained by setting the characteristic polynomial (The denominator) of a transfer function G(s) in Eq. to zero, i.e.:

$$N(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

Definition (Pole)

The roots of the characteristic equation N(s)=0 are called poles of a transfer function ${\sf G}({\sf s}).$

Definition (Zero)

The roots of the nominator of the transfer functions are called zeros of a transfer function G(s), i.e.:

$$M(s) = b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0$$

- Closed Loop and Open Loop
 - Open Loop Configuration
 - Closed Loop Configuration
- 2 Error Dynamics
 - Controller functionality and objective

Error Dynamics

- Error Dynamics
- Performance metrices
- 3 Laplace Transform
 - Importance of Laplace Transform
 - Mathematical Formulation and Definition
 - Laplace Transform Important Property
 - Transfer Function
- Practical Session

Solving ODEs Cont.

Example (3)

Consider the mechanical system depicted in the figure. The input signal is given by the external force F(t) = 3N for $t \ge 0$ acting on the mass m = 1 kg. The displacement x(t) of the mass is the output signal. The displacement is measured from the equilibrium position in the absence of the external force. Let k = 5 N/m be the spring constant, c = 2 Ns/m be the damping coefficient

Figure: Mechanical system

- Write the equations of motion for the system.
- Derive the transfer function
- Examine all of
 - Impulse
 - Step

responses.