

Low Power IoT Architectures

Principles and Practices

IoT : Direct & Remote Terminals

IP-Thing: Direct Terminal connected to INET via WiFi/4G/5G link

non-IP-Thing Remote Terminal connected to INET via LoRa link and loT gateway

loT Sockets: @IP:port:channel

IoT socket => IP address: Service port:Channel number-fields

Direct Terminals know: IP address:Service port:Channel number

Gateways know: IP address:Service port

Remote Terminals know only: Channel number (identifier)

Direct Terminals and IoT Sockets

Direct Terminals know: IP address:Service port:Channel number

plus: write and optionally read key

A channel contains fields (max.8) that may be interpreted as loT data streams to be "compressed".

Remote Terminals and IoT Sockets

Gateways know IP address: Service port
Remote Terminals know only Channel number (identifier)

From IoT SoC to IoT Platform

EEPROM USB, solar Converters, Bus I/O, ..

UART,I2C,SPI sensors/actuators, modems, solar panel, battery supercapacitors, ...

IDF, IDE, drivers, libraries, firmware C/C++, µPython, ...

From Platform to Application

Al assisted - Generation/Development process

IoT Soc ESP32C6: low power features

IoT SoC / Board / DevKiT / Platform

Low and Very Low Power consumption

Example of average current (power) consumption:
deepsleep mode for
low_power stage: 10µA and
100s

normal mode for

high_power stage: 40mA

and 0.5s

low_power charge + high_power charge= 10μA*100s + 40 000μA*0.5s = 1000μC+20000μC= 21mC

average_current = charge/time = $21mC/100.5s = 0.21mA = 210\mu A$ (LP)

Let us calculate the same for low_power stage duration of 600s.

average_current = charge/time = $26mC/600.5s = 0.043mA = 43\mu A$ (VLP)

Terminals: Operational modes

high average current

high_power H-cyclical

delta (δ) parameter defines required precision-difference

"sporadic cycle" – activated by an interruption (level change) signal high_power H-cyclical high_power optional

high_power HD-cyclical (delta-dependent) high_power

low_power SL-cyclical (sporadic) high_power optional init sens proc send recv

high_power

high_power

low_power HLD-cyclical (delta dependent) high_power°

HL-cyclical

low average current

high_power stage - phases

transmission phase

processing phase

Power Profiler Kit II: connection

Power Profiler with source mode

Power Profiler Kit II - windows

DevKit: HL cycle operation with sensors

two sensors to capture
the temperature,
the humidity, and
the luminosity or brightness
values:

BH1750 (L) - luminosity

SHT31 (T/H) - temperature/humidity

Attention:

All these components communicate over the same (shared) I2C bus!

HL cycle operation: sensors, WiFi, delta

delta: the max difference between the last sent and current sensor value

high_power stage time << low_power stage time delta as big as possible : example 0.01C° => 1.0C°

operational cycle frequency (16.6 mHz) >> transmission cycle frequency (278 μHz)

HL cycle operation: sensors, WiFi, delta

Ratio hp_sp/hp_spt:
the number of high_power
cycles without transmission
to
the number of high_power
cycles with transmission

operational cycle frequency

The use of delta parameter may be considered as "loT data temporal compression"

Long Range (LoRa) & Remote Terminals

Remote Terminals or Lora-WiFi Gateway

RT - Power consumption with LoRa link

low_power stage - 146.05µA

transmission time: SF=9, CR=4/8, BW=125KHz => 314 ms transmission charge (avc.145mA) =>45mC

Power consumption with LoRa link

Ratio hp_sp/hp_spt:
the number of high_power
cycles without transmission
to
the number of high_power
cycles with transmission

No VLP solution! (for this board!)

Problem: low_power stage - 146.05µA (to high to get VLP!)

RT - Power consumption with LoRa link

low_power stage = 24μA

RT - Power consumption with LoRa link

CubeCell

ARM-M0+SX1262

low_power stage = 32μA

Some conclusions

Direct
Terminals - WiFi

Very High transmission "cost" (variable: ~150-300mC)
Usage of delta parameter ("compression") very efficient

Remote
Terminals - LoRa

High transmission "cost" (fixed: ~60mC)
Usage of delta parameter ("compression") quite efficient

Implementation & test platforms

