2^{k-p} Fractional Factorial Designs

Dr. John Mellor-Crummey

Department of Computer Science Rice University

johnmc@cs.rice.edu

Goals for Today

Understand

- 2^{k-p} fractional factorial designs
 - —preparing a sign table
 - -properties
 - —analysis
 - —confounding
 - —design resolution

2^{k-p} Fractional Factorial Designs

- Motivation: full factorial design can be very expensive
 - —large number of factors ⇒ too many experiments
- Pragmatic approach: 2^{k-p} fractional factorial designs
 - -k factors
 - —2^{k-p} experiments
- Fractional factorial design implications
 - -2^{k-1} design \Rightarrow half of the experiments of a full factorial design
 - -2^{k-2} design \Rightarrow quarter of the experiments of a full factorial design

Example: Sign Table for a 2⁷⁻⁴ **Design**

Expt	Ι	Α	В	C	D	Ε	F	G
1	1	-1	-1	-1	1	1	1	-1
2	1	1	-1	-1	-1			1
3	1	-1	1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	-1	-1
5	1	-1	-1	1	1	-1	-1	1
6	1	1	-1	1	-1	1	-1	-1
7	1	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1	1

- Study the effects of 7 factors with 8 experiments
- Full factorial design would have required 2⁷=128 experiments

2^{k-p} Design Properties

Much like full factorial designs Orthogonality of sign vectors ⇒ easy analysis

(Note: column I, the identity vector is not considered for 1, 2)

1. Sum of each column in the sign table is 0

$$sum(S(:,j)) = 0$$
, for all $j > 1$

2. Sum of the product of any two columns is 0

$$sum(S(:,j) * S(:,k)) = 0$$
, for all j, k > 1, j $\neq k$

3. Sum of the square of elements in any column is 2^{k-p}

$$sum(S(:,j) * S(:,j)) = 2^{k-p}$$
, for all j

Model equation for 27-4 design

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_D x_D + q_E x_E + q_F x_F + q_G x_G$$

Computing the Effects for a 2³⁻¹ Design

Expt	Ι	Α	В	С	У
1	1	-1	-1	1	y1
2	1	1	-1	-1	y2
3	1	-1	1	-1	у3
4	1	1	1	1	y4

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C$$

Sign Table Equations

$y1 = q_0 - q_A - q_B + q_C$ $y2 = q_0 + q_A - q_B - q_C$ $y3 = q_0 - q_A + q_B - q_C$ $y4 = q_0 + q_A + q_B + q_C$

Solving for the Effects

$$q_0 = (y1 + y2 + y3 + y4)/4$$

$$q_1 = (-y1 + y2 - y3 + y4)/4$$

$$q_2 = (-y1 - y2 + y3 + y4)/4$$

$$q_3 = (y1 - y2 - y3 + y4)/4$$

In general: to solve for an effect, compute inner product of y column with factor sign table column and divide by 2^{k-p}

Example: a 2⁷⁻⁴ Design

Analyzing data with a 7-factor 2⁷⁻⁴ experimental design

Expt	I	Α	В	С	D	Е	F	G	У
1	1	-1	-1	-1	1	1	1	-1	11
2	1	1	-1	-1	-1	-1	1	1	35
3	1	-1	1	-1	-1	1	-1	1	8
4	1	1	1	-1	1	-1	-1	-1	42
5	1	-1	-1	1	1	-1	-1	1	31
6	1	1	-1	1	-1	1	-1	-1	51
7	1	-1	1	1	-1	-1	1	-1	52
8	1	1	1	1	1	1	1	1	91
	321	117	65	129	29	1	57	9	Total
	40.1	14.63	8.125	16.13	3.625	0.125	7.125	1.125	Total/8

- As before, effects of factors in last line of table
- Percent variation explained

Preparing a Sign Table for a 2^{k-p} Design

- Prepare a sign table for a full factorial design with k-p factors
 - —table of 2^{k-p} rows and columns
 - —first column with all 1's; mark it "I"
 - —next k-p columns: mark with chosen k-p factors
 - —of the 2^{k-p}-k+p-1 columns remaining, relabel p of them with remaining factors
- Example: prepare a 2⁷⁻⁴ table
 - —prepare a sign table for a 2³ design for first 3 factors
 - —relabel rightmost 4 columns with additional factors D, E, F, G

I	А	В	С	D	Е	F	G
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1		1		-1		-1	
1			-1				-1
1	-1	-1		1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1		1	-1	-1	1	-1
1	1	1		1	1	1	1

Example: Prepare Sign Table for 24-1 Design

- Prepare a sign table for a 2³ design for first 3 factors
- Arbitrarily pick one of the rightmost 4 columns: label it D

I	Α	В	С	AB	AC	ВС	D
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1		1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1		-1	_	1	-1
1	1	1			1	1	1

What effects can we compute with this design?

—main effects: q_A , q_B , q_C , q_D

—interactions: q_{AB} , q_{AC} , q_{BC}

How Much Can We Cheat?

- Given k factors, what is the smallest possible sign table that can be used?
- Phrased another way, how large can p be?

Confounding

With 2^{k-p} fractional factorial designs, not all effects can be separated

- Confounding: influence of 2 or more effects is inseparable
- Two or more effects are confounded if they use the same linear combination of responses

OULL	matio	•	50 p 0 i i i				
I	Α	В	С	AB	AC	ВС	D
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1

- "Effect" D: $\sum_{i} y_{i} x_{Di} = (-y_{1} + y_{2} + y_{3} y_{4} + y_{5} y_{6} y_{7} + y_{8})/8$ "Effect" ABC: $\sum_{i} y_{i} x_{Ai} x_{Bi} x_{Ci} = (-y_{1} + y_{2} + y_{3} y_{4} + y_{5} y_{6} y_{7} + y_{8})/8$
- In fact, $(-y_1+y_2+y_3-y_4+y_5-y_6-y_7+y_8)/8 = q_D+q_{ABC}$
- Impossible to separate D, ABC effects without 2⁴ design

Confounding Revealed

- Is confounding a problem? Not necessarily!
 - —interaction is small ⇒
 confounded effect is primarily the effect of factor
- Consider preceding example
 - —if q_{ABC} is small, then $q_{ABC} + q_D$ is approximately q_D
- Other effects are confounded as well
 - —every column in the design represents the sum of two effects
 - —four factors ⇒ 16 effects
 - —in a 2⁴⁻¹ design, only 8 effects can be computed
 - —each quantity therefore represents the sum of two effects

```
A=BCD, B=ACD, C=ABD, AB=CD
```

AC=BD, BC=AD, ABC=D, I=ABCD

When does Confounding Occur

- 2^{k-p} fractional factorial design: 2^p effects confounded together
- Consider 2⁷⁻⁴ design
- From factor column re-labelings

```
—D=AB, E=AC, F=BC, G=ABC
```

Implications

```
—I=ABD, I=ACE, I=BCF, I=ABCG
```

and from those we derive ...

```
—I=ABD=ACE=ACF=ABCG=BCDE=ACDF=CDG=ABEF=BEG=AFG=
DEF=CEFG=ABCDEFG
```

Some other confoundings

```
—A=BD=CE=CF=BCG=ABCDE=CDF=ACDG=BEF=ABEG=FG=
ADEF=ACEFG=BCDEFG
```

Fractional Factorial Designs are Not Unique

• One 2⁴⁻¹ design

I	А	В	С	AB	AC	ВС	D
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1		1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1		1	-1	-1	1	-1
1	1			1	1		

Which is better?

• Another 2⁴⁻¹ design

		_					
Ι	Α	В	С	D	AC	ВС	ABC
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1

Confoundings
with higherorder
interactions
is better.

Algebra of Confounding

- Designs identified by confounding with I
 - e.g. two designs on previous slide: I=ABCD, I=ABD
 - confounding with I is called a *generator polynomial* for a design
 - I=ABCD represents confounding ABCD with mean (represented by I)
- Given one confounding, can generate all others using 2 rules
 - 1. Mean I is treated as unity, e.g. IB = B
 - 2. Any term with power 2 is erased, e.g. $A^2BC = BC$
- Example: consider confounding I=ABCD
- Multiplying both sides by A
 - AI = $A^2BCD \Rightarrow A = BCD$
- Similarly
 - BI = $AB^2CD \Rightarrow B = ACD$
 - $CI = ABC^2D \Rightarrow C = ABD$
 - DI = ABCD 2 ⇒ D = ABC
 - ABI = A^2B^2CD ⇒ AB = CD

Design Resolution

- Measured by the order of effects that are confounded
- Order of an effect is the number of factors included

```
-e.g. order(AB) = 2, order(I) = 0
```

- Definition: order of a confounding
 - —ith order effect confounded with jth order effect ⇒ confounding is order i+j, e.g. order(AC=BCD) = 5
- Definition: design resolution = min. order of confounded effects
- Example
 - I=ABCD, A = BCD, B = ACD, C = ABD, D = ABC, AB = CD, AC=BD, BC=AD
 design resolution = 4
 design is said to be R_{IV}
- Notation: R_{IV} = Resolution-IV = 2_{IV}^{4-1}

Design Resolution Examples

Design Resolution Examples for 24-1 Designs

• One 2⁴⁻¹ design

I	Α	В	С	AB	AC	ВС	D
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1

 $\begin{aligned} & \textbf{I=ABCD} \\ & \textbf{R}_{\textbf{IV}} \ \textbf{design} \end{aligned}$

• Another 2⁴⁻¹ design

I	Α	В	С	D	AC	ВС	ABC
1	-1	-1	-1	1	1	1	-1
1	1			-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	-1
1	-1	-1	1	1			1
1	1		1	-1	1	-1	-1
1	-1	1	1		-1	1	-1
1	1	1	1	1	1	1	1

I=ABD

R_{III} design

Case Study: Latex vs. Troff

	Factor	-1 Level	+1 Level
Α	Program	Latex	troff -me
В	Bytes	2100	25000
С	Equations	0	10
D	Floats	0	10
E	Tables	0	10
F	Footnotes	0	10

• Design: 2⁶⁻¹ with I=BCDEF

	Factor	Effect	% var
Α	Program	9.4	24.4%
В	Bytes	12.0	39.4%
С	Equations	7.5	15.6%
AC	Program x equations	7.2	14.4%
E	Tables	03.5	3.4%
F	Footnotes	1.6	.70%

Latex vs. Troff Study Findings

- > 90% variation due to
 - —program, bytes, equations, and program x equations
- Effect of bytes of text was larger than effect of program
 - —file sizes were quite different
- High program x equations interaction
 - troff is very slow for equations
- Low program x bytes interaction
 - —changing file size affects both similarly
- Directions for the next phase of study
 - —reduce range of file sizes or
 - —increase number of levels of file sizes