机器学习

homework1:线性回归

线性回归

》假设你是一个餐饮连锁店的CEO,你打算在不同的城市开设不同的分店。你已经在一些城市开了分店而且你有这些城市人口与利润的数据(见data1a.txt),你希望通过这些数据来决定在哪些城市新开分店(也就是通过新城市的人口预测新城市的利润)。

>数据格式如下表所示(每个城市包含人口数和利润两个数据)

人口数	利润
(单位: 10^4人)	(单位: 10^4美元)
6.1101	17.592

〉使用梯度下降法获得线性回归参数,并使用训练好的模型来预测以下两个城市的利润情况:

城市A: 人口数35000人 城市B: 人口数70000人 假设: $h_{\theta}(x) = \theta_0 + \theta_1 x$

参数: θ_0, θ_1

代价函数(Cost function):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

目标
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

批量梯度下降算法

需要注意:在更新 θ_0, θ_1 时,两者必须同步更新。

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$ }

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Incorrect:

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := \text{temp0}$$
temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\theta_1 := \text{temp1}$$

代价函数的导数

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$rac{\partial}{\partial heta_j} J(heta_0, heta_1) = rac{\partial}{\partial heta_j} rac{1}{2m} {\sum_{i=1}^m} \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

$$j=0$$
 时: $rac{\partial}{\partial heta_0}J(heta_0, heta_1)=rac{1}{m}{\sum\limits_{i=1}^m}\left(h_ heta(x^{(i)})-y^{(i)}
ight)$

$$j=1$$
 时: $rac{\partial}{\partial heta_1}J(heta_0, heta_1)=rac{1}{m}\sum_{i=1}^mig(ig(h_ heta(x^{(i)})-y^{(i)}ig)\cdot x^{(i)}ig)$

初始化

 θ 需要初始化,可以初始化为全0,或者随机初始化。

假设 θ 初始化为全0,计算 $J(\theta)$ 的值。 θ 初始化为全0 时, $J(\theta)$ 应该等于32.07 ,你可以通过这个值验证你的程序是否有错误。

循环终止条件

循环终止条件可通过如下方式设定:

- 1. 设定一个比较大的迭代步数。
- 2. 画出J(θ) 随迭代步数变化的图。
- 3. 当两次迭代获的J(θ) 差异较小时终止迭代。

python编程

```
建议使用python编程
使用python编程需要用到numpy和matplotlib库。
如果你已经安装了Python,可以用pip安装上述包:
$pip install numpy matplotlib
Numpy: 科学计算基础包,用于数组运算。
import numpy as np
Matplotlib:科学绘图库,用于绘图
import matplotlib.pyplot as plt
#绘制二维散点图
def plot_data(X,Y,title,xlabel,ylabel):
      plt.plot(X,Y,'ro',markersize=6)
      plt.title(title,fontsize=20)
      plt.xlabel(xlabel,fontsize=10)
      plt.ylabel(ylabel,fontsize=10)
```

plt.ioff()

实验报告内容

- 1、实验内容 实验要解决的问题、采用的模型或算法等
- 2、实验设置和实验结果
 - 迭代终止条件的设置
 - 梯度下降法获得线性回归参数
 - 回归模型在所有训练数据(train_data.txt)上最终的 $J(\theta)$ 值。
 - · 城市A和城市B的预测利润。
 - · 循环过程中J(θ) 随迭代步数变化的图
- 3、其它(其它你觉得需要写在实验报告中的内容)
- 4、实验过程中遇到的问题
- 5、实验心得体会。

注意事项:

- 1、实验报告请使用老师提供的实验模板,源代码作为单独的文件。
- 2、实验报告命名: 完整学号_姓名_ML_project1.doc
- 3、建立个人文件夹放实验报告和源代码(源代码需加注释说明),文件夹名 "完整学号_姓名_ML_project1"

报告提交时间:第4周周三(9月30日)下午3点前。