Перелік питань *до екзамену* з дисципліни «Чисельні методи»

- 1. Стаціонарні і нестаціонарні методи розв'язування алгебраїчних і трансцендентних рівнянь.
- 2. Поняття стискаючого відображення в метричному просторі. Принцип стискаючих відображень.
- 3. Ознака збіжності ітераційного процесу. Ознака існування кореня рівняння $x = \phi(x)$. Геометрична інтерпретація методу ітерації.
- 4. Поняття ітераційного процесу порядку $m \ge 1$.
- 5. Формула методу хорд. Якій умові повинно задовольняти нульове наближення в даному методі. Геометрична інтерпретація методу.
- 6. Формула методу дотичних. Як доцільно брати нульове наближення в даному методі. Геометрична інтерпретація методу.
- 7. Яким умовам повинні задовольняти перша і друга похідна від функції f (x) в околі кореня рівняння f (x)=0 в методах хорд і дотичних.
- 8. Ознака збіжності методу простої ітерації розв'язування систем нелінійних рівнянь. Ознака існування розв'язку СНР.
- 9. Формула методу Ньютона розв'язування систем нелінійних рівнянь. Ознака збіжності методу Ньютона.
- 10. Формула модифікованого методу Ньютона розв'язування систем нелінійних рівнянь.
- 11.Постановка задачі інтерполювання. Поняття узагальненого інтерполяційного многочлена. Поняття системи функцій Чебишева. Критерій єдиності розв'язку задачі інтерполювання. Ознака, за якою система функцій є системою Чебишева. Приклади систем функцій Чебишева. Формула інтерполяційного многочлена Лагранжа.
- 12. Розділені різниці та їх властивості. Формула інтерполяційного многочлена Ньютона для нерівновіддалених вузлів інтерполювання (вперед і назад).
- 13.Скінчені різниці, їх властивості. Формула інтерполяційного многочлена Ньютона для рівновіддалених вузлів інтерполювання (вперед і назад).
- 14. Многочлени Чебишева, їх властивості. Найкращий вибір вузлів інтерполювання.

- 15. Великі квадратурні формули прямокутників, трапецій та Сімпсона. Загальна квадратурна формула Ньютона-Котеса.
- 16. Алгебраїчна міра точності квадратурної формули. Яка квадратурна формула називається квадратурною формулою найвищої алгебраїчної міри точності. Ознака за якою квадратурна формула інтерполяційного типу має найвищу алгебраїчну міру точності 2n + 1.
- 17. Задача Коші для звичайних диференціальних рівнянь першого порядку. Умова при якій задача має єдиний розв'язок. Формули методу Ейлера. Ознака збіжності методу Ейлера.
- 18. Формули методу Рунге-Кутта другого порядку.
- 19. Яка різниця в підходах до побудови інтерполяційного та екстраполяційного методів Адомса.
- 20. Переваги та недоліки методів Ейлера, Рунге-Кутта та Адамса.
- 21.Задача Коші для системи звичайних диференціальних рівнянь першого порядку. Умова єдиності розв'язку задачі.

Типові практичні завдання:

- 1. Рівняння $x^2 6x + 8 = 0$ на проміжку [1,3] має корінь. Вибравши за x_0 один з кінців проміжку, обчислити перше наближення кореня x_1 за методом дотичних.
- 2. Рівняння $x^2 4x + 3 = 0$ на проміжку [0,2] має корінь. Вибравши за x_0 і x_1 точки кінців проміжка, обчислити x_2 за методом хорд.
- 3. Методом простої ітерації обчислити перше наближення кореня x_1 рівняння $\frac{x^2}{4} 1 = 0 \; , \qquad \qquad$ якщо $x_0 = 1,6 \; .$
- 4. Задана система нелінійних рівнянь $\begin{cases} 2x^2-3y^2-20=0,\\ xy-y^2-4=0. \end{cases}$ Обчислити визначник матриці Якобі в точці (1,2).
- 5. Методом Ньютона обчислити перше наближення x_1 і y_1 розв'язку системи нелінійних рівнянь $\begin{cases} 2x^2-3y^2-20=0, \\ xy-y^2-4=0, \end{cases}$ якщо нульове наближення $x_0=3,\ y_0=1$. У відповідь записати суму x_1+y_1 .
- 6. Обчислити значення інтерполяційного многочлена Лагранжа в точці x=-2, побудованого для функції f(x) за вузлами $x_0=-1$, $x_1=0$, $x_2=1$, $x_3=2$, якщо $f(x_0)=2$, $f(x_1)=2$, $f(x_2)=-2$, $f(x_3)=-4$.

- 7. Задані точки $x_0 = 0$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$ і значення функції f(x) в цих точках $f(x_0) = -3$, $f(x_1) = -3$, $f(x_2) = 3$, $f(x_3) = 13$. Обчислити $f(x_0; x_1; x_2; x_3)$.
- 8. Обчислити значення інтерполяційного многочлена Ньютона для інтерполювання вперед, використовуючи розділені різниці, в точці x=-1, побудованого для функції f(x) за вузлами $x_0=-2$, $x_1=0$, $x_2=1$, $x_3=2$, якщо $f(x_0)=-19$, $f(x_1)=-1$, $f(x_2)=-1$, $f(x_3)=1$.
- 9. Задані точки $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$ і значення функції f(x) в цих точках $f(x_0) = -3$, $f(x_1) = -4$, $f(x_2) = -3$, $f(x_3) = 6$. Обчислити $\Delta^3 f(x_0)$.
- 10. Розділена різниця $f(x_0; x_1; x_2; x_3) = 1$. Обчислити скінченну різницю $\Delta^3 f(x_0)$.
- 11. Обчислити значення інтерполяційного многочлена Ньютона для інтерполювання вперед, використовуючи скінченні різниці, в точці t=-0.5, побудованого для функції f(x) за вузлами $x_0=-1$, $x_1=0$, $x_2=1$, $x_3=2$, якщо $f(x_0)=2$, $f(x_1)=2$, $f(x_2)=-2$, $f(x_3)=-4$.
- 12. Обчислити значення многочлена Чебишева $T_2(x)$ в точці $x = \frac{1}{2}$.
- 13. Побудувати для функції $f(x) = x^3 3x^2 + 1$ інтерполяційний многочлен Лагранжа $L_2(x)$ за точками $x_0 = -1$, $x_1 = 0$, $x_2 = 1$. Обчислити $L_2(0,5) f(0,5)$.
- 14. Обчислити $\int_{-1}^{3} (-x^2 + 2x + 3) dx$ за допомогою методу прямокутників, розбивши проміжок інтегрування на n = 4 однакових частин.
- 15. Обчислити $\int_{-1}^{3} (-x^2 + 2x + 3) dx$ за допомогою методу трапецій, розбивши проміжок інтегрування на n = 4 однакових частин.
- 16. Обчислити $3\int_{1}^{5}(x-1)^{2}dx$ за допомогою методу Сімпсона, розбивши проміжок інтегрування на n=4 однакових частин.
- 17. На проміжку [0,3] задана задача Коші $y' = \frac{1}{2}(x-y)$, y(0) = 1. Вибравши h = 0,25, за допомогою методу Ейлера обчислити наближене значення y_1 розв'язку в точці $x_1 = 0,25$.

- 18. На проміжку [0,3] задана задача Коші $y' = \frac{1}{2}(x-y)$, y(0) = 1. Вибравши h = 1, за допомогою методу Рунге-Кутта другого порядку обчислити наближене значення y_1 розв'язку в точці $x_1 = 1$.
- 19. На проміжку [0,3] задана задача Коші $y'=\frac{1}{2}(x-y), \quad y(0)=1$. Вибравши $h=\frac{1}{2}$, за допомогою інтерполяційного методу Адамса при m=1 обчислити наближене значення y_1 розв'язку в точці $x_1=\frac{1}{2}$. У відповідь записати $3y_1$.
- 20. На проміжку [0,3] задана задача Коші для системи диференціальних рівнянь $\begin{cases} y'=2y+z, & y(0)=2,\\ z'=3y+4z, & z(0)=1. \end{cases}$. Вибравши h=0,25, за допомогою методу Ейлера обчислити наближені значення y_1 і z_1 в точці $x_1=0,25$. У відповідь записати y_1+z_1 .

Екзаменаційний білет №

1. 2. 3. 4. 5. 6 7. 8. 9. 10. Відповіді на теоретичні питання та розв'язок практичних завдань з

Екзамен триватиме 1 год.30 хв.; листки –відповіді переслати впродовж 20 хвилин після екзамену.

відповідями надіслати на електронну адресу:

hryhoriy.tsehelyk@gmail.com.