Classwork: I put my thang down, flip it, and INVERT it

Question 1. Let $f: X \to Y$ and $g: Y \to X$ both be functions. Determine whether each of the following statements is true or false. If a statement is true, prove it. Otherwise, provide a counterexample.

- (a) If $g \circ f$ is injective, then f is injective.
- (b) If $g \circ f$ is injective, then g is injective.
- (c) If $g \circ f$ is surjective, then f is surjective.
- (d) If $g \circ f$ is surjective, then g is surjective.

Question 2. Define $f: \mathbb{Z} \to \mathbb{Z}$ via $f(x) = x^2$. List the elements in each set:

- (a) $f({0,1,2}).$
- (b) $f^{-1}(\{0,1,4\})$.
- (c) $f^{-1}(\{-2,2\})$.

Question 3. Define $g: \mathbb{R} \to \mathbb{R}$ by $g(z) = 3z^2 - 4$. Find each of the following sets.

- (a) $g(\{-1,1\})$.
- (b) g([-1,1]). (Remember [a,b] means the closed interval from a to b in \mathbb{R} .)
- (c) g([-2,4]).
- (d) g^{-1} ((-10,1)). (Remember (a,b) means the openar interval from a to b in \mathbb{R} .)
- (e) $g(\emptyset)$.
- (f) $g^{-1}(\varnothing)$.
- (g) $g(\mathbb{R})$.
- (h) $g^{-1}(\mathbb{R})$.

Question 4. Let $h: \mathbb{R} \to \mathbb{R}$ be defined by $h(x) = x^2$.

- (a) Find two nonempty subsets $A, B \subseteq \mathbb{R}$ such that $A \cap B = \emptyset$ but $h^{-1}(A) = h^{-1}(B)$.
- (b) Find two nonempty subsets $A, B \subseteq \mathbb{R}$ such that $A \cap B = \emptyset$ but h(A) = h(B).

Question 5. Suppose $f: X \to Y$ is an injection and A and B are disjoint subsets of X. Are f(A) and f(B) necessarily disjoint subsets of Y? If so, prove it. Otherwise, provide a counterexample.

Question 6. Let $f: X \to Y$ be a function, and let $A, B \subseteq X$ and $C, D \subseteq Y$. Determine if each statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

- (a) If $A \subseteq B$ then $f(A) \subseteq f(B)$.
- (b) If $C \subseteq D$ then $f^{-1}(C) \subseteq f^{-1}(D)$.
- (c) $f(A \cup B) \subseteq f(A) \cup f(B)$.
- (d) $f(A \cup B) \supseteq f(A) \cup f(B)$.
- (e) $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (f) $f(A \cap B) \supseteq f(A) \cap f(B)$.
- (g) $f^{-1}(C \cup D) \subseteq f^{-1}(C) \cup f^{-1}(D)$.
- (h) $f^{-1}(C \cup D) \supseteq f^{-1}(C) \cup f^{-1}(D)$.
- (i) $f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D)$.
- (j) $f^{-1}(C \cap D) \supseteq f^{-1}(C) \cap f^{-1}(D)$.
- (k) $A \subseteq f^{-1}(f(A))$.
- (1) $A \supseteq f^{-1}(f(A))$.
- (m) $C \subseteq f(f^{-1}(C))$.
- (n) $C \supseteq f(f^{-1}(C))$.

Question 7. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function, meaning that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

- (a) Prove that f(0) = 0.
- (b) Prove that f(-x) = -f(x).
- (c) Prove that f is injective if and only if $f^{-1}(\{0\}) = \{0\}$.