Chapitre 12

Les entiers naturels

12.1 Les entiers naturels

12.1.1 Propriétés fondamentales

Muni de la relation d'ordre:

$$\forall (n,m) \in \mathbb{N}^2, n \le m \iff \exists k \in \mathbb{N}, m = n + k$$

l'ensemble des entiers naturels possède les trois propriétés suivantes :

DÉFINITION 12.1: **Propriétés de** \mathbb{N}

1. plus petit élément : toute partie $A\subset \mathbb{N}$ non-vide possède un plus petit élément :

$$\exists a \in A \text{ tq } \forall x \in A, a \leq x$$

2. plus grand élément : toute partie $A\subset \mathbb{N}$ non-vide et majorée possède un plus grand élément :

$$\exists b \in A \text{ tq } \forall x \in A, x \leq b$$

- 3. axiome de récurrence : soit une partie $A \subset \mathbb{N}$ telle que :
 - $-0 \in A$
 - $\forall n \in \mathbb{N}, (n \in A) \Rightarrow ((n+1) \in A)$

Alors $A = \mathbb{N}$.

Théorème 12.1 : Division euclidienne

Soient deux entiers $(a,b) \in \mathbb{N}^2$ avec $b \neq 0$. Alors $\exists ! (q,r) \in \mathbb{N}^2$ tels que:

- 1. a = bq + r
- 2. $0 \le r < b$

Théorème 12.2 : Le principe de récurrence

Soit une proposition $\mathcal{P}(n)$ dépendant d'un entier n. On suppose que :

- $\exists n_0 \in \mathbb{N} \text{ tel que } \mathcal{P}(n_0) \text{ est VRAI};$
- (H2) $\forall n \geq n_0, \mathcal{P}(n) \Rightarrow \mathcal{P}(n+1).$

Alors $\forall n \geq n_0$, la proposition $\mathcal{P}(n)$ est vraie.

COROLLAIRE 12.3: Récurrence forte

On considère une proposition $\mathcal{P}(n)$ dépendant d'un entier n. On suppose que :

- $\exists n_0 \in \mathbb{N} \text{ tel que } \mathcal{P}(n_0) \text{ est VRAI};$
- (H_2) $\forall n \geq n_0, (\mathcal{P}(n_0) \text{ et } \mathcal{P}(n+1) \text{ et } \dots \text{ et } \mathcal{P}(n)) \Rightarrow \mathcal{P}(n+1).$

Alors $\forall n \geq n_0$, la proposition $\mathcal{P}(n)$ est vraie.

Remarque 113. La récurrence forte est plus facile à utiliser: l'hypothèse $\mathcal{P}(1)$ et ... et $\mathcal{P}(n)$ est plus forte que l'hypothèse $\mathcal{P}(n)$.

Montrer par récurrence que $\forall n \in \mathbb{N}$,

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$1^3 + 2^3 + \dots + n^3 = \sum_{k=1}^{n} k^3 = \frac{[n(n+1)]^2}{4}$$

12.1.2 Ensembles finis

On définit pour $(p,q) \in \mathbb{N}^2$, $(p \leq q)$, l'intervalle d'entiers:

$$[\![p,q]\!] = \{k \in \mathbb{N} \text{ tq } p \le k \le q\}$$

Lemme 12.4: Injections, surjections d'intervalles entiers

Soient deux entiers $(p,q) \in \mathbb{N}^2$ non-nuls. On a:

$$(p \le q) \iff (\exists f : [1,p]] \mapsto [1,q]$$
 injective)

$$(p \ge q) \Longleftrightarrow (\exists f : [\![1,p]\!] \mapsto [\![1,q]\!] \text{ surjective})$$

DÉFINITION 12.2: Ensembles finis

Soit E un ensemble. On dit que l'ensemble E est fini lorsqu'il existe un entier non nul $n \in \mathbb{N}^*$ et une bijection $\phi : E \mapsto [\![1,n]\!]$. Par convention, on dira que l'ensemble vide \emptyset est également un ensemble fini.

Théorème 12.5 : Unicité du cardinal

Si E est un ensemble fini, alors l'entier n de la définition précédente est unique.

DÉFINITION 12.3 : Cardinal

Soit un ensemble fini E non-vide. L'unique entier n tel qu'il existe une bijection entre E et $[\![1,n]\!]$ est appelé le cardinal de l'ensemble E, que l'on note |E| (ou Card(E) ou encore $\sharp E$). Par convention, le cardinal de l'ensemble vide vaut 0.

THÉORÈME 12.6 : Comment montrer qu'un ensemble est fini

Soit un ensemble fini F et un ensemble E. S'il existe une injection $\phi: E \mapsto F$, alors l'ensemble E est fini et $|E| \leq |F|$.

Définition 12.4 : Ensembles équipotents

Soient deux ensembles E et F. On dit qu'ils sont équipotents et l'on note $E \approx F$ lorsqu'il existe une bijection ϕ entre ces deux ensembles.

COROLLAIRE 12.7: Pour montrer que deux ensembles ont même cardinal

Soient deux ensembles finis E et F. Les deux ensembles E et F sont équipotents si et seulement si ils ont même cardinal

Théorème 12.8 : Applications entre ensembles finis

Soient deux ensembles finis E et F de même cardinal n, et une application $f: E \mapsto F$. On a:

$$(f \text{ injective}) \iff (f \text{ surjective}) \iff (f \text{ bijective})$$

COROLLAIRE 12.9 : Comment montrer que deux ensembles de même cardinal sont égaux

Soient E et F deux ensembles finis de même cardinal. Alors

$$E \subset F \Rightarrow E = F$$

Dénombrements fondamentaux 12.1.3

Lemme 12.10: Lemme des Bergers

Si A et B sont deux ensembles finis, on a:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Plus généralement, si $\mathcal{P}=(A_1,\ldots,A_p)$ est un partage d'un ensemble fini E en classes disjointes, on a:

$$|E| = |A_1| + \dots + |A_p|$$

Fig. 12.1 – Lemme des bergers

Théorème 12.11 : **Dénombrements fondamentaux**

Soient deux ensembles finis E et F, avec |E| = n, |F| = p. Alors:

1. $E \times F$ est fini et $|E \times F| = np$

2. $\mathcal{F}(E,F)$ est fini et $|\mathcal{F}(E,F)| = p^n$

3. $\mathcal{P}(E)$ est fini et $|\mathcal{P}(E)| = 2^n$

DÉFINITION 12.5: Arrangements, coefficients binômiaux

Soient $(n,p) \in \mathbb{N}^2$. On définit :

Definit
$$(n,p) \in \mathbb{N}^2$$
. On definit:
$$-n! = \begin{cases} 1 & \text{si } n = 0 \\ n \times (n-1) \times \dots 2 \times 1 & \text{si } n \ge 1 \end{cases}$$

$$-\text{Si } 0 \le p \le n, \quad A_n^p = \frac{n!}{(n-p)!} = n \times (n-1) \times \dots \times (n-p+1)$$

$$-\text{Si } 0 \le p \le n, \quad C_n^p = \binom{n}{p} = \frac{n!}{(n-p)!p!} = \frac{A_n^p}{p!} = \frac{n \times (n-1) \times \dots \times (n-p+1)}{p \times (p-1) \times \dots \times 1}$$

Remarque 114. En particulier, on a les relations:

$$\binom{n}{0} = 1 = \binom{n}{n}, \quad \binom{n}{1} = \binom{n}{n-1} = n, \quad \binom{n}{2} = \frac{n(n-1)}{2}$$

Théorème 12.12 : Nombre d'injections, de bijections

- 1. Si |E| = p, |F| = n, avec $p \le n$ (attention aux notations!), le nombre d'applications injectives de E vers F vaut A_n^p ;
- 2. Si |E| = |F| = n, le nombre d'applications bijectives de E vers F vaut n!

Théorème 12.13: Nombres de parties à p éléments

Soit un ensemble fini E, de cardinal n, et un entier $0 \le p \le n$. Le nombre de parties de E de cardinal p vaut $\binom{n}{p}$ (c'est le nombre de façons différentes de choisir p éléments parmi n).

Remarque 115. Soit un ensemble fini E de cardinal n. Une p-liste de E est une application de [1,p] vers E, notée en informatique $l = [a_1, \ldots, a_n]$.

- n^p est le nombre de p-listes;
- $-A_n^p$ est le nombre de p-listes sans répétition. (l'ordre des éléments compte);
- $-\binom{n}{p}$ représente le nombre de sous-ensembles de E à p éléments (l'ordre n'est pas important et il n'y a pas de répétitions).

Exercice 12-2

Quel est le nombre de façons de placer k boules identiques dans n urnes pouvant contenir au plus 1 boule? Quel est le nombre de façons de placer k boules numérotées dans n urnes pouvant contenir au plus 1 boule?

Exercice 12-3

Trouver le nombre de diviseurs de 1800.

Exercice 12-4

Soit E un ensemble fini de cardinal n. Quel est le nombre de couples de parties $(X,Y) \in \mathcal{P}(E)^2$ vérifiant $X \subset Y$?

Exercice 12-5

Trouver le nombre d'applications strictement croissantes de l'intervalle entier [1,p] vers l'intervalle entier [1,n].

Exercice 12-6

Soient $0 \le p \le n$ deux entiers. On veut trouver le nombre de p-uplets $(\alpha_1, \dots, \alpha_n)$ d'entiers vérifiant:

$$\alpha_1 + \dots + \alpha_p = n$$

Pour cela, étant donné un tel p-uplet, considérer α_1 cases blanches, 1 case noire, α_2 cases blanches . . . :

Fig. 12.2 – Transformation du problème

Déterminer ensuite le nombre de p-uplets vérifiant :

$$\alpha_1 + \dots + \alpha_p \le n$$

Exercice 12-7

Combien y a-t-il d'applications croissantes de [1,k] vers [1,p]?

12.1.4 Propriétés des coefficients binômiaux

Théorème 12.14 : Propriété des coefficients binômiaux

Soient $0 \le p \le n$ deux entiers. Les coefficients binômiaux vérifient les propriétés suivantes :

-
$$Sym\acute{e}trie: \binom{n}{p} = \binom{n}{n-p}$$

- Factorisation:
$$\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$$
 (si $p \ge 1$)

-
$$Additivit\acute{e}: \binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$$

De l'additivité, on obtient le *triangle de Pascal* qui permet de calculer de proche en proche tous les coefficients binômiaux.

Fig. 12.3 - Triangle de Pascal

Théorème 12.15 : Formule du binôme de Newton

Soient deux réels $a,b \in \mathbb{R}$ et un entier $n \in \mathbb{N}$. Alors

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Exercice 12-8

Calculer les sommes

$$\sum_{k=1}^{n} \binom{n}{k} \quad \sum_{k=0}^{n-1} \frac{1}{3^k} \binom{n}{k}$$

■ Exercice 12-9

Calculer les sommes

$$S_1 = \sum_{\substack{0 \le k \le n \\ k \text{ pair}}} \binom{n}{k} \quad S_2 = \sum_{\substack{0 \le k \le n \\ k \text{ impair}}} \binom{n}{k}$$

■ Exercice 12-10

Calculer les sommes

$$S_1 = \sum_{k=0}^{n} k \binom{n}{k}$$
 $S_2 = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$ $S_3 = \sum_{k=0}^{n} k^2 \binom{n}{k}$

■ Exercice 12-11 ■

Quelques propriétés des coefficients binômiaux.

a. Montrer que $\forall 1 \leq k \leq n$, on a

$$\binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$$

b. En déduire les inégalités suivantes selon la parité de n:

$$n = 2p : \binom{n}{0} < \binom{n}{1} < \dots < \binom{n}{p-1} < \binom{n}{p} > \binom{n}{p+1} > \dots > \binom{n}{n}$$
$$n = 2p+1 : \binom{n}{0} < \dots < \binom{n}{p-1} = \binom{n}{p+1} > \dots > \binom{n}{n}$$

c. En déduire que $\forall n \geq 1$,

$$\binom{2n}{n} \ge \frac{4^n}{2n+1}$$

12.1.5 Numérotation en base b

```
Théorème 12.16 : Numérotation en base p
```

Soit un entier $n \in \mathbb{N}$. Il s'écrit de façon unique:

$$n = a_k 10^p + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 \quad 0 \le a_i < 10$$

Plus généralement, si $p \in \mathbb{N}^*$ est un entier non nul, l'entier n s'écrit de façon unique :

$$n = b_k p^k + b_{k-1} p^{k-1} + \dots + b_1 p + b_0 \quad 0 \le b_i < p$$

On dit que $(a_p, \ldots, a_0)_{10}$ sont les *chiffres* de l'entier n en base 10 et que $(b_k, \ldots, b_0)_p$ sont les chiffres de l'entier n en base p.

Exercice 12-12

En base 16, les chiffres sont notés $\{0,1,\ldots,9,A,B,C,D,E,F\}$. Déterminer les chiffres de l'entier 95 en base 16.

Calcul des chiffres d'un entier en base p

Une fonction récursive qui renvoie la liste $[b_k, \ldots, b_0]$ des chiffres d'un entier n en base p:

```
chiffres := proc(n)
  if n
```

La même fonction programmée avec une boucle:

- 1. **Arguments:** n (entier);
- 2. Variables: a (entier), l (liste), r (entier)
- 3. Initialisation: $a \leftarrow n, l \leftarrow []$
- 4. Corps: Tant que a <> 0, faire:
 - $-r \leftarrow a \bmod p,$
 - $-l \leftarrow [r,op(l)],$
 - $-a \leftarrow \frac{a-r}{p},$

Fin tant que

5. **Fin:** renvoyer l.

en Maple:

```
conversion := proc(n, b)
  local a, l, r;
  while (a <> 0) do
    r := irem(a, p);
    l := [r, op(l)];
    a := (a - r) / p;
  od;
  l;
end;
```

Exercice 12-13

Combien y a-t-il d'entiers qui s'écrivent avec moins de k chiffres en base p? Avec exactement k chiffres?

Algorithme d'exponentiation rapide

On veut calcuer a^n . Pour cela, on peut effectuer n-1 multiplications en utilisant la formule:

$$a^n = a \times \cdots \times a$$

ce qui conduit à l'algorithme:

1. **Arguments:** a (entier), n (entier ≥ 1)

- 2. Variables: P entier
- 3. Initialisation: $P \leftarrow a$
- 4. Corps: Pour i de 1 à n-1 faire:

$$-P \leftarrow P \times a$$

5. **Fin:** renvoyer P

```
expo := proc(a, n)
local P;
P := a;
for i from 1 to n - 1 do
    P := P * a
od;
P;
end;
```

Mais on remarque que pour calculer a^8 , on peut se contenter de 3 multiplications:

- $-b = a \times a \ (b = a^2)$
- $-c = b \times b \ (c = a^4)$
- $-d = c \times c \ (d = a^8)$

L'idée de l'algorithme d'exponentiation rapide est la formule récursive:

$$a^{n} = \begin{cases} x \times x & \text{si } n \text{ pair} \\ a \times x \times x & \text{si } n \text{ impair} \end{cases} \quad \text{où } x = a^{n/2}$$

Exercice 12-14

Déterminer le nombre de multiplications nécessaires pour calculer a^n avec cet algorithme en fonction des chiffres de n en base 2, et montrer que ce nombre T(n) vérifie:

$$\lfloor \log_2(n) \rfloor \le T(n) \le 2 \lfloor \log_2(n) \rfloor$$

12.2 Les entiers relatifs

12.2.1 Congruences

Théorème 12.17: Division euclidienne dans \mathbb{Z}

Soient deux entiers $(a,b) \in \mathbb{Z} \times \mathbb{N}$ avec $b \neq 0$. Alors $\exists ! (q,r) \in \mathbb{Z}^2$ tels que:

- $1. \ a = bq + r$
- $2. \ 0 < r < b$

On dit que l'entier q est le quotient et l'entier r le reste de la division euclidienne de a par b.

Fig. 12.4 – Division euclidienne dans \mathbb{Z}

DÉFINITION 12.6 : Divisibilité

Soient deux entiers relatifs $(a,b) \in \mathbb{Z}^2$. On dit que l'entier a divise l'entier b si et seulement si $\exists k \in \mathbb{Z}$ tq b = ka.

Remarque 116. $\forall n \in \mathbb{N}, n/0;$

- $\forall n \in \mathbb{N}, 0/n \Rightarrow n = 0;$
- $\ \forall (a,b,c,d) \in \mathbb{Z}^4, \ \begin{cases} a/b \\ c/d \end{cases} \Rightarrow ac/bd.$

Proposition 12.18 : Propriétés de la divisibilité

– Soit $(a,b) \in \mathbb{Z}^2$. On a l'équivalence

$$(a/b) \iff (b \in a\mathbb{Z}) \iff (b\mathbb{Z} \subset a\mathbb{Z})$$

- Si $(a,b) \in \mathbb{Z}^2$,

$$(a/b \text{ et } b/a) \iff (a = b \text{ ou } a = -b)$$

- Si $(a,b) \in \mathbb{N}^{*2}$, $a\mathbb{Z} = b\mathbb{Z} \Rightarrow a = b$.

DÉFINITION 12.7: Congruence

Considérons un entier strictement positif $n \in \mathbb{N}^*$ et deux entiers $(a,b) \in \mathbb{Z}^2$. On dit que l'entier a est congru à l'entier b modulo n, et l'on note $a \equiv b$ [n] lorsque l'entier n divise l'entier (b-a):

$$a \equiv b \ [n] \iff n/(b-a)$$

Proposition 12.19: Caractérisation par les restes

Soit un entier $n \in \mathbb{N}^*$ et deux entiers $(a,b) \in \mathbb{Z}^2$. On note r_a le reste de la division euclidienne de a par n et r_b le reste de la division euclidienne de b par n. Alors:

$$a \equiv b \ [n] \iff r_a = r_b$$

PROPOSITION 12.20 : La relation de congruence est une relation d'équivalence Soit un entier $n \in \mathbb{N}^*$. La relation \equiv définie sur \mathbb{Z} par :

$$\forall (a,b) \in \mathbb{Z}^2, \ a \equiv b \iff a \equiv b \ [n]$$

est une relation d'équivalence.

Proposition 12.21 : Compatibilité des lois avec les congruences

Soient quatre entiers $(a,b,c,d) \in \mathbb{Z}^4$ et un entier $n \in \mathbb{N}^*$. On suppose que

- 1. $a \equiv b [n]$;
- 2. $c \equiv d [n]$.

Alors

- 1. $a + c \equiv b + d [n]$;
- 2. $a \times c \equiv b \times d [n]$;
- 3. $\forall k \in \mathbb{N}, a^k \equiv b^k [n].$

Exercice 12-15

- 1. Trouver le reste de l'entier 126745 dans la division par 9.
- 2. Trouver le reste de la division de l'entier 121^{1256} par 7.
- 3. Trouver le reste de la division euclidienne de $(1001)^{77}$ par 3.

12.3 Structure de groupe

DÉFINITION 12.8 : Groupe

On appelle groupe un ensemble G muni d'une lci \star vérifiant :

- 1. la loi \star est associative;
- 2. G possède un élément neutre;
- 3. Tout élément x de G admet un symétrique.

Si de plus la loi \star est commutative, on dit que le groupe est abélien (ou commutatif).

Théorème 12.22 : Groupe produit

On considère deux groupes (G,.) et (H,\star) et sur l'ensemble $G \times H$, on définit la loi T par :

$$\forall ((x,y),(x',y')) \in (G \times H)^2, (x,y)T(x',y') = (x.x',y \star y')$$

Alors $(G \times H, T)$ est un groupe appelé groupe produit.

DÉFINITION 12.9: Sous-groupe

Soit (G,\star) un groupe. On dit qu'une partie $H\subset G$ est un sous-groupe de G ssi:

- 1. $e \in H$:
- 2. la partie H est stable par la loi: $\forall (x,y) \in H^2, x \star y \in H$.
- 3. $\forall x \in H, x^{-1} \in H$.

Théorème 12.23: Une caractérisation équivalente

Les trois conditions précédentes sont équivalentes aux deux conditions:

- 1. $e \in H$:
- 2. $\forall (x,y) \in H^2, x \star y^{-1} \in H$.

Pour montrer que $H \subset G$ est un sous-groupe du groupe (G,\star) :

- 1. $e \in H$;
- 2. Soit $(x,y) \in H^2$;
- 3. Calculons $x \star y^{-1}, \dots$;
- 4. On a bien $x \star y^{-1} \in H$;
- 5. Donc H est un sous-groupe de G.

Théorème 12.24 : Un sous-groupe a une structure de groupe

Si la partie H est un sous-groupe de (G,\star) , alors puisque cette partie est stable pour la lci, on peut définir la restriction de la loi \star à H qui est une lci sur H. Muni de cette loi restreinte, (H,\star) est un groupe.

Pour montrer qu'un ensemble a une structure de groupe, on essaie de montrer que c'est un sous-groupe d'un groupe connu

Exemple 20. On considère l'ensemble $U = \{z \in \mathbb{C} \text{ tq } |z| = 1\}$. Montrer que (U, \times) est un groupe.

Exercice 12-16

Soit un ensemble E non-vide et un élément $a \in E$. On note

$$G = \{ f \in \mathcal{B}(E,E), \text{ tq } f(a) = a \}$$

(c'est l'ensemble des bijections de G laissant invariant l'élément a). Montrer que (G, \circ) est un groupe.

Exercice 12-17

Soit (G,.) un groupe. On note

$$C = \{x \in G \mid \forall q \in G, \ q.x = x.q\}$$

C'est l'ensemble des éléments de G qui commutent avec tous les éléments de G. Montrer que (C,.) est un sous-groupe de G (appelé centre du groupe G).

Théorème 12.25 : L'intersection de sous-groupes est un sous-groupe

Si H_1 et H_2 sont deux sous-groupes d'un groupe G, alors $H_1 \cap H_2$ est un sous-groupe de G

Remarque 117. $H_1 \cup H_2$ n'est pas un sous-groupe de G en général.

Exercice 12-18

Soient H_1 et H_2 deux sous-groupes d'un groupe (G, .). Montrer que

 $(H_1 \cup H_2 \text{ est un sous-groupe de } G) \iff (H_1 \subset H_2 \text{ ou } H_2 \subset H_1)$

Théorème 12.26: Sous-groupes de \mathbb{Z}

Les sous groupes du groupe $(\mathbb{Z},+)$ sont les ensembles de la forme :

$$a\mathbb{Z} = \{ka; \ k \in \mathbb{Z}\}\$$

où $a \in \mathbb{N}$

DÉFINITION 12.10 : Morphismes de groupes

Soient deux groupes (G_1,\star) et (G_2,\bullet) . Une application $f:G_1\mapsto G_2$ est un morphisme de groupes si et seulement si:

$$\forall (x,y) \in G_1^2, \quad f(x \star y) = f(x) \bullet f(y)$$

Pour montrer que $f: G_1 \mapsto G_2$ est un morphisme:

- 1. Soit $(x,y) \in G_1^2$;
- 2. On a bien $f(x \star y) = f(x) \bullet f(y)$.

Proposition 12.27 : Propriétés d'un morphisme de groupes

Si e_1 est l'élément neutre de G_1 et e_2 l'élément neutre de G_2 , alors

- 1. $f(e_1) = e_2$;
- 2. $\forall x \in G_1, [f(x)]^{-1} = f(x^{-1}).$

Théorème 12.28 : Image directe et réciproque de sous-groupes par un morphisme Soit $f: G_1 \mapsto G_2$ un morphisme de groupes.

- 1. Si H_1 est un sous-groupe de G_1 , alors $f(H_1)$ est un sous-groupe de G_2 ;
- 2. Si H_2 est un sous-groupe de G_2 , alors $f^{-1}(H_2)$ est un sous-groupe de G_1 .

DÉFINITION 12.11 : Noyau, image d'un morphisme

On considère un morphisme de groupes $f:G_1\mapsto G_2$. On note e_1 l'élément neutre du groupe G_1 et e_2 l'élément neutre du groupe G_2 . On définit

- le noyau du morphisme f:

$$Ker(f) = \{x \in G_1 \mid f(x) = e_2\} = f^{-1}(\{e_2\})$$

- l'image du morphisme f:

$$\operatorname{Im} f = f(G_1) = \{ y \in G_2 \mid \exists x \in G_1 \ f(x) = y \}$$

Ker f est un sous-groupe de G_1 et Im f est un sous-groupe de G_2 .

Théorème 12.29 : Caractérisation des morphismes injectifs, surjectifs

Soit un morphisme de groupes $f: G_1 \mapsto G_2$. On note e_1 l'élément neutre du groupe G_1 et e_2 l'élément neutre du groupe G_2 . On a les propriétés suivantes:

- $(f \text{ injective }) \iff (\operatorname{Ker} f = \{e_1\});$
- $(f \text{ surjective}) \iff (\operatorname{Im} f = G_2).$

Pour montrer qu'un morphisme $f: (G_1, \star) \mapsto (G_2, \bullet)$ est injectif:

- 1. Soit $x \in G_1$ tel que $f(x) = e_2$
- 2. Alors $x = e_1$;
- 3. Donc $\operatorname{Ker} f = \{e_1\}$, et puisque f est un morphisme, f est injectif.

DÉFINITION 12.12 : Isomorphisme

On dit qu'une application $f:G_1\mapsto G_2$ est un isomorphisme de groupes si et seulement si

- 1. l'application f est un morphisme de groupes;
- 2. l'application f est bijective.

Remarque 118. Un isomorphisme d'un groupe G vers lui-même est appelé un automorphisme.

Théorème 12.30 : La bijection réciproque d'un isomorphisme est un isomorphisme Si f est un isomorphisme de groupes, sa bijection réciproque f^{-1} : $G_2 \mapsto G_1$ est aussi un isomorphisme de groupes. Exemple 21. Soit

$$f : \left\{ \begin{array}{ccc} (\mathbb{R},+) & \longrightarrow & (\mathbb{R}^{+*},\times) \\ x & \mapsto & e^x \end{array} \right.$$

Vérifier que l'application f est un isomorphisme de groupes. Quel est son isomorphisme réciproque?

Exercice 12-19

Trouver tous les morphismes du groupe $(\mathbb{Z},+)$ vers lui-même. Lesquels sont-ils des isomorphismes?

12.4 Structure d'anneau

DÉFINITION 12.13 : anneau

Soit A un ensemble muni de deux lci notées + et \times . On dit que $(A, +, \times)$ est un anneau ssi:

- 1. (A,+) est un groupe commutatif;
- 2. la loi \times est associative;
- 3. la loi \times est distributive par rapport à la loi +:

$$\forall (x,y,z) \in A^3, \quad x \times (y+z) = x \times y + x \times z$$

 $(x+y) \times z = x \times z + y \times z$

4. Il existe un élément neutre pour ×, noté 1.

Si en plus la loi \times est commutative, on dit que $(A, +, \times)$ est un anneau commutatif.

Remarque 119. Dans un anneau $(A, +, \times)$, on note -x le symétrique de l'élément x pour la loi + et 0 l'élément neutre de la loi +. Attention, un élément $x \in A$ n'a pas forcément de symétrique pour la loi \times , la notation x^{-1} n'a pas de sens en général.

Exemple 22. $(\mathbb{Z}, +, \times)$ et $(\mathcal{F}(\mathbb{R}, \mathbb{R}), +, \times)$ sont des anneaux commutatifs.

Définition 12.14 : $\mathbb{Z}/n\mathbb{Z}$

Soit un entier strictement positif $n \in \mathbb{N}^*$. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalences de la relation de congruence modulo n. Il y a n classes distinctes, notées

$$\mathbb{Z}/n\mathbb{Z} = \{\widehat{0}, \dots, \widehat{n-1}\}$$

Ces classes correspondent aux restes possibles dans la division euclidienne par l'entier n. On définit sur $\mathbb{Z}/n\mathbb{Z}$ les « lois quotient » notées $\widehat{+}$ et $\widehat{\times}$. Muni de ces deux lois, $(\mathbb{Z}/n\mathbb{Z},\widehat{+},\widehat{\times})$ est un anneau commutatif d'éléments neutres $\widehat{0}$ et $\widehat{1}$.

Théorème 12.31 : Règles de calcul dans un anneau

On considère un anneau $(A, +, \times)$. On a les règles de calcul suivantes :

- $\forall a \in A, a \times 0 = 0 \times a = 0;$
- $\forall a \in A, (-1) \times a = -a;$
- $\forall (a,b) \in A^2, (-a) \times b = -(a \times b).$

Remarque 120. Si $(A, +, \times)$ est un anneau, (A, \times) n'est pas un groupe en général (par exemple lorsque $A = \mathbb{Z}$). Remarque 121. En général, (par exemple dans l'anneau $\mathcal{F}(\mathbb{R},\mathbb{R})$),

$$a \times b = 0 \Rightarrow a = 0 \text{ ou } b = 0$$

On dit que de tels éléments a et b sont des diviseurs de zéro.

DÉFINITION 12.15 : Anneau intègre

Soit un anneau $(A, +, \times)$. On dit que cet anneau est *intègre* si et seulement si:

- 1. $A \neq \{0\}$;
- 2. la loi \times est commutative;
- 3. $\forall (x,y) \in A^2$, $x \times y = 0 \Rightarrow x = 0$ ou y = 0.

Remarque 122. Dans un anneau *intègre*, on peut « simplifier » à gauche et à droite: Si $(a,y,z) \in A^3$, avec ax = ay, et si $a \neq 0$, alors x = y. Cette propriété est fausse dans un anneau général.

Définition 12.16 : Notations

On considère un anneau $(A, +, \times)$. Soit un élément $a \in A$ et un entier $n \in \mathbb{N}$. On note

$$-na = \begin{cases} \underbrace{a + \dots + a}_{n \text{ fois}} & \text{si } n \neq 0 \\ 0 & \text{si } n = 0 \end{cases}$$

$$-(-n)a = n(-a) = \underbrace{(-a) + \dots + (-a)}_{n \text{ fois}}$$

$$-a^n = \begin{cases} \underbrace{a \times \dots \times a}_{n \text{ fois}} & \text{si } n \neq 0 \\ 1 & \text{si } n = 0 \end{cases}$$

 $-a^{-n}$ n'a pas de sens si a n'est pas inversible pour \times .

DÉFINITION 12.17 : Élément nilpotent

Soit un anneau $(A, +, \times)$. On dit qu'un élément $a \in A \ (a \neq 0)$ est nilpotent s'il existe un entier $n \in \mathbb{N}^*$ tel que $a^n = 0$.

Le plus petit entier n vérifiant $a^n = 0$ s'appelle l'indice de nilpotence de l'élément a.

Remarque 123. Si l'anneau A est intègre, il n'y a pas d'élément nilpotent dans cet anneau.

Exercice 12-20

Soit un anneau $(A, +, \times)$ vérifiant:

$$\forall x \in A, \quad x^2 = x$$

Montrer que l'anneau A est commutatif.

Théorème 12.32 : Binôme de Newton et formule de factorisation dans un anneau Dans un anneau $(A, +, \times)$, si $(a,b) \in A^2$ vérifient

$$a \times b = b \times a$$

Alors $\forall n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

et $\forall n \geq 1$,

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}) = (a - b)\sum_{k=0}^{n-1} a^{n-1-k}b^{k}$$

Théorème 12.33 : Calcul d'une progression géométrique

Soit un anneau $(A, +, \times)$ et un élément $a \in A$. On considère un entier $n \in \mathbb{N}$, $n \ge 1$. De la formule de factorisation, on tire:

$$1 - a^{n} = (1 - a)(1 + a + a^{2} + \dots + a^{n-1})$$

En particulier, si l'élément a est nilpotent d'indice n: $a^n = 0$, alors l'élément (1 - a) est inversible pour la loi \times et on sait calculer son inverse:

$$(1-a)^{-1} = 1 + a + a^2 + \dots + a^{n-1}$$

Définition 12.18 : Sous-anneau

On considère un anneau $(A, +, \times)$ et une partie $A' \subset A$ de cet anneau. On dit que la partie A' est un sous-anneau de A si et seulement si :

- 1. (A',+) est un sous-groupe du groupe (A,+);
- 2. la partie A' est stable pour la loi \times : $\forall (a,b) \in A'^2$, $a \times b \in A'$;
- 3. l'élément neutre de l'anneau A est dans A': $1 \in A'$.

DÉFINITION 12.19 : Morphisme d'anneaux

Soient deux anneaux $(A, +, \times)$ et $(A', +, \times)$. On dit qu'une application $f : A \mapsto A'$ est morphisme d'anneaux si et seulement si :

- 1. $\forall (x,y) \in A^2$, f(x+y) = f(x)+f(y);
- 2. $f(x \times y) = f(x) \times f(y)$;
- 3. $f(1_A) = 1_{A'}$.

Remarque 124. On dit que l'application f est un isomorphisme lorsque c'est un morphisme bijectif.

Exercice 12-21

Déterminer tous les morphismes d'anneaux de l'anneau $(\mathbb{Z}, +, \times)$ vers lui-même.

THÉORÈME 12.34 : Groupe des unités d'un anneau

Soit un anneau $(A, +, \times)$. On note U l'ensemble des éléments inversibles pour la loi \times :

$$U = \{ a \in A \mid \exists a' \in A \text{ tq } a \times a' = a' \times a = 1_A \}$$

Alors muni de la seconde loi de l'anneau, l'ensemble (U,\times) a une structure de groupe: c'est le groupe des unités de l'anneau A.

Exemple 23. Dans l'anneau $(\mathbb{Z}, +, \times)$, le groupe des unités est $U = \{1, -1\}$. Dans l'anneau $(\mathcal{F}(I, \mathbb{R}), +, \times)$, le groupe des unités est constitué des fonctions qui ne s'annulent pas.

DÉFINITION 12.20 : Idéal d'un anneau

On considère un anneau $(A, +, \times)$ et une partie $I \subset A$ de cet anneau. On dit que la partie I est un $id\acute{e}al$ de l'anneau A lorsque:

- 1. la partie I est un sous-groupe du groupe (A,+);
- 2. la partie I est « absorbante » : $\forall x \in I, \forall a \in A, a \times x \in I$.

Remarque 125. La notion d'idéal d'un anneau est plus riche que celle de sous-anneau. Elle fournit un cadre général à l'arithmétique.

Exercice 12-22

Montrez qu'il n'existe pas de couple d'entiers $(x,y) \in \mathbb{Z}^2$ vérifiant

$$x^2 - 5y^2 = 3$$

Exercice 12-23

Trouvez les entiers $x \in \mathbb{Z}$ tels que $x^2 - 4x + 3$ soit divisible par 6.

12.4.1 Arithmétique dans \mathbb{Z}

DÉFINITION 12.21: PGCD, PPCM

Soient deux entiers non nuls $(a,b) \in \mathbb{Z}^{*2}$.

- 1. L'ensemble des diviseurs de \mathbb{N}^* communs à a et b admet un plus grand élément δ noté $\delta = a \wedge b$. C'est le plus grand commun diviseur des entiers a et b.
- 2. L'ensemble des entiers de \mathbb{N}^* multiples communs de a et b admet un plus petit élément μ noté: $\mu = a \vee b$. C'est le plus petit commun multiple des entiers a et b.

■ Exercice 12-24

Soient H_1 et H_2 deux sous-groupes du groupe ($\mathbb{Z},+$). On définit l'ensemble

$$H_1 + H_2 = \{h_1 + h_2 ; (h_1, h_2) \in H_1 \times H_2\}$$

- a. Montrer que $H_1 + H_2$ est le plus petit (au sens de l'inclusion) sous-groupe de $(\mathbb{Z},+)$ qui contient la partie $H_1 \cup H_2$;
- b. Déterminer le sous-groupe $4\mathbb{Z} + 6\mathbb{Z}$;
- c. Comment interpréter l'inclusion $a\mathbb{Z} \cup b\mathbb{Z} \subset c\mathbb{Z}$ en termes de divisibilité?

Théorème 12.35: Caractérisation du ppcm et du pgcd avec les sous-groupes de $\mathbb Z$ Soient deux entiers non nuls $(a,b) \in \mathbb{Z}^{*2}$, δ leur pgcd et μ leur ppcm. Alors:

$$\delta \mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} = \{au + bv \; ; \; (u,v) \in \mathbb{Z}^2\}$$

$$\mu \mathbb{Z} = a \mathbb{Z} \cap b \mathbb{Z}$$

Proposition 12.36 : Caractérisation des diviseurs (multiples) de a et b Soient deux entiers $(a,b) \in \mathbb{Z}^2$.

- 1. Soit un entier $d \in \mathbb{Z}$. $\begin{cases} d/a \\ d/b \end{cases} \iff d/(a \wedge b)$ 2. soit un entier $m \in \mathbb{Z}$. $\begin{cases} a/m \\ b/m \end{cases} \iff (a \vee b)/m.$

Proposition 12.37: Le pgcd et le ppcm sont associatifs

$$\forall (a,b,c) \in \mathbb{Z}^{*3}, (a \land b) \land c = a \land (b \land c) \text{ et } (a \lor b) \lor c = a \lor (b \lor c)$$

On définit par récurrence le pgcd et le ppcm de n entiers par :

$$\operatorname{pgcd}(x_1,\ldots,x_n)=x_1\wedge\cdots\wedge x_n$$

$$ppcm(x_1,\ldots,x_n)=x_1\vee\cdots\vee x_n$$

Proposition 12.38:

Soient deux entiers non nuls $(a,b) \in \mathbb{Z}^{*2}$. Pour un entier $k \in \mathbb{N}^{*}$, $\begin{cases} (ka) \wedge (kb) = k(a \wedge b) \\ (ka) \vee (kb) = k(a \vee b) \end{cases}$

Théorème 12.39 : Théorème d'Euclide

Soient deux entiers $(a,b) \in \mathbb{Z}^{*2}$. Effectuons la division euclidienne de l'entier a par l'entier b:

$$\exists ! (q,r) \in \mathbb{N}^2 \text{ tq } \begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

Alors:

$$pgcd(a,b) = pgcd(b,r)$$

Fig. 12.5 – Euclide: $si\ d/b\ et\ d/a$, alors d/r

Le théorème précédent justifie l'algorithme d'Euclide pour trouver le pgcd de deux entiers non nuls $(a,b) \in \mathbb{N}^{*2}$. On pose $r_0 = a$, $r_1 = b$ et on définit ensuite $\forall k \geq 1$, les couples (q_k, r_k) en utilisant une division euclidienne:

si
$$r_k \neq 0$$
, $\exists ! (q_k, r_{k+1}) \in \mathbb{Z}^2$ tq $r_{k-1} = q_k r_k + r_{k+1}$ et $0 \leq r_{k+1} < r_k$

Comme la suite d'entiers (r_k) est strictement décroissante, il existe un rang $n \ge 1$ tel que $r_n \ne 0$ et $r_{n+1} = 0$. D'après le théorème d'Euclide, on a $\forall k \in [0, n-1], a \land b = r_k \land r_{k+1}$. Comme r_n divise r_{n-1} , on a $r_n \land r_{n-1} = r_n$. Par conséquent, le dernier reste non-nul r_n est le pgcd des entiers (a,b).

Exemple 24. Déterminez le pgcd des entiers 366 et 43 en utilisant l'algorithme d'Euclide, et en éliminant les restes « à la main ».

```
- Paramètres: a, b (entiers).
- Variables locales: A, B, r.
- Initialisation:
- A \leftarrow a,
- B \leftarrow b,
- Corps: Tant que b \neq 0 faire:
- r \leftarrow A \mod B,
- A \leftarrow B,
- B \leftarrow r,
Fin tant que
- Renvoyer A (A = \operatorname{pgcd}(a,b)).
```

```
pgcd := proc(a, b)
  local A, B, r;
  A := a;
  B := b;
  while (b > 0) do
        r := irem(A, B);
        A := B;
        B := r;
  od;
  A;
end;
```

ou sous une forme récursive:

Exercice 12-25

```
pgcd := proc(a, b)
  if b = 0 then a
  else
    pgcd(b, irem(a, b))
  fi;
end;
```

```
DÉFINITION 12.22: Nombres premiers entre eux Soient n entiers non nuls (x_1, \ldots, x_n) \in \mathbb{Z}^{*n}. On dit que:

- les entiers (x_1, \ldots, x_n) sont premiers entre eux si et seulement si et seulement si x_1 \wedge \cdots \wedge x_n = 1;

- les entiers (x_1, \ldots, x_n) sont premiers entre eux deux à deux si et seulement si \forall (i,j) \in [1,n]^2, i \neq j \Rightarrow x_i \wedge x_j = 1.
```

Remarque 126. Les entiers (3,6,7) sont premiers entre eux, mais pas premiers entre eux deux à deux. Si des entiers sont premiers deux à deux entre eux, ils sont premiers entre eux.

```
Théorème de Bezout ^a Soient deux entiers non nuls (a,b) \in \mathbb{Z}^{\star 2}. On a (a \wedge b = 1) \Longleftrightarrow (\exists (u,v) \in \mathbb{Z}^2 \text{ tq } 1 = au + bv)
\stackrel{a}{\text{Étienne Bezout, } (31/03/1730 - 27/09/1783), \text{ Français, auteur de livres d'enseignement, célèbre pour ce théorème mais a travaillé également sur les déterminants}
```

Soient deux entiers non nuls $(a,b) \in \mathbb{Z}^{*2}$ premiers entre eux. Montrez qu'il existe deux entiers $(u,v) \in \mathbb{Z}^2$ tels que

$$au + bv = 1$$
 et $|u| < |b|, |v| < |a|$

Trouver grâce à l'algorithme d'Euclide un couple de Bezout pour a=22 et b=17.

Remarque 127. Soient deux entiers $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ premiers entre eux. L'algorithme d'Euclide permet de trouver un couple de Bezout $(u,v) \in \mathbb{Z}^2$ tel que au + bv = 1. On définit les suites (r_k) et (q_k) des restes dans l'algorithme d'Euclide. Notons $r_n = a \wedge b = 1$ le dernier reste non-nul. On pose $r_0 = a$, $r_1 = b$ et par récurrence, on définit

$$\forall k \geq 1, r_{k-1} = q_k r_k + r_{k+1} \ 0 < r_{k+1} \leq r_k$$

On définit simultanément deux suites (u_k) et (v_k) telles que

$$\forall k \in [0,n], r_k = u_k a + v_k b$$

Pour que cette propriété soit vraie pour tout $k \in [0,n]$, on doit poser:

$$(u_0, v_0) = (1,0), (u_1, v_1) = (0,1) \text{ et } \forall k \in [2,n], \begin{cases} u_{k+1} = u_{k-1} - q_k u_k \\ v_{k+1} = v_{k-1} - q_k v_k \end{cases}$$

On a alors $1 = au_n + bv_n$.

$r_0 = a$	$r_1 = b$	r_2	 r_k	 1
X	q_1	q_2	 q_k	 q_n
1	0	u_2	 u_k	 $u_n = u$
0	1	v_2	 v_k	 $v_n = v$

Voici une procédure Maple qui prend comme paramètres a et b et qui retourne $a \wedge b$, ainsi qu'un couple de Bezout (U,V)

```
_ Maple -
bezout := proc(a, b)
 local R, RR, Q, U, UU, V, VV, temp;
 RR := b;
 U := 1;
 UU := 0;
 V := 0;
 \#Cond entrée : R = r0, RR = r1, U = u0, V = v0, UU = u1, VV = v1
 while (RR > 0) do
   Q := iquo(R, RR);
   temp := UU;
   UU := U - Q * UU;
   temp := VV;
   VV := V - Q * VV;
   V := temp;
   temp := RR;
   RR := irem(R, RR);
   R := temp;
   \#INV : R = rk, RR = r_{k+1}, U = uk, UU = u_{k+1}, V = vk, VV = v_{k+1}
        Q = qk, k : nombre de passages dans la boucle while
   \#Cond\ sortie : RR = u_{n+1}=0, R = r_n = pgcd(a, b), U = u_n, V = v_n
 R, U, V;
end;
```

Théorème 12.41 : Théorème de Gauss ^a

Soient trois entiers non nuls $(a,b,c) \in \mathbb{Z}^{*3}$.

$$\begin{cases} a/bc \\ a \wedge b = 1 \end{cases} \Rightarrow a/c$$

 $[^]a$ Carl Friedrich Gauss (30/04/1777 – 23/02/1855), Allemand. Considéré comme un des plus grand mathématicien de tous les temps avec Henri Poincaré. Il a permi des avancées énormes en théorie des nombres, géométrie non-euclidienne, . . .

■ Exercice 12-27

Considérons deux entiers $(a,b) \in \mathbb{Z}^{*2}$ premiers entre eux: $a \wedge b = 1$ et un couple de Bezout $(u,v) \in \mathbb{Z}^2$ tel que au + bv = 1. Déterminer l'ensemble de tous les couples de Bezout $(u',v') \in \mathbb{Z}^2$ vérifiant au' + bv' = 1.

Proposition 12.42 : Autres propriétés du PGCD

Soient trois entiers non nuls $(a,b,c) \in \mathbb{Z}^{*3}$.

1. Soient trois entiers $(\delta, a', b') \in \mathbb{N}^* \times \mathbb{Z}^2$ tels que $a = \delta a', b = \delta b'$, alors

$$(\delta = a \wedge b) \iff (a' \wedge b' = 1)$$

2.
$$\begin{cases} a \wedge b = 1 \\ a \wedge c = 1 \end{cases} \Rightarrow a \wedge (bc) = 1;$$

2.
$$\begin{cases} a \wedge b = 1 \\ a \wedge c = 1 \end{cases} \Rightarrow a \wedge (bc) = 1;$$
3.
$$\begin{cases} a/c \\ b/c \\ a \wedge b = 1 \end{cases} \Rightarrow ab/c;$$

- 4. pour tous entiers $(k,p) \in \mathbb{N}^{*2}$, si $a \wedge b = 1$, alors $a^k \wedge b^p = 1$;
- 5. pour tout entier $k \in \mathbb{N}^*$, $a^k \wedge b^k = (a \wedge b)^k$

Exercice 12-28

On se donne trois entiers non nuls $(A,B,C) \in \mathbb{Z}^{*3}$, et on considère l'équation diophantienne:

$$(E)$$
: $Ax + By = C$ $(x,y) \in \mathbb{Z}^2$

Résoudre cette équation consiste à déterminer l'ensemble des solutions $S = \{(x,y) \in \mathbb{Z}^2 \mid Ax + By = C\}$.

- 1. Notons $\delta = A \wedge B$. Montrez que si δ ne divise pas C, alors $S = \emptyset$;
- 2. On suppose désormais que δ/C . Il existe trois entiers non nuls $(A',B',C')\in\mathbb{Z}^{\star 3}$ tels que $A=\delta A'$, $B=\delta B'$ avec $A' \wedge B' = 1$, et $C = \delta C'$. Montrez que l'équation (E) a même ensemble de solutions que l'équation

$$(E') : A'x + B'y = C'$$

- 3. Comment trouver une solution particulière de l'équation (E')?
- 4. En déduire l'ensemble S de toutes les solutions;
- 5. résoudre dans \mathbb{Z} l'équation

$$(E)$$
: $24x + 20y = 36$

THÉORÈME 12.43: Relation entre PGCD et PPCM

Soient deux entiers non nuls $(a,b) \in \mathbb{Z}^{*2}$.

- 1. Si $a \wedge b = 1$, alors $a \vee b = |ab|$;
- $2. (a \wedge b)(a \vee b) = |ab|.$

12.4.2Nombres premiers

DÉFINITION 12.23: Nombres premiers

Un entier $n \in \mathbb{N}$ est dit premier si $n \geq 2$ et si ses seuls diviseurs dans \mathbb{N} , sont 1 ou lui-même:

$$\forall k \in \mathbb{N}^{\star}, \ k/n \Rightarrow k \in \{1, n\}$$

On note \mathcal{P} l'ensemble des nombres premiers.

Proposition 12.44 : Propriétés des nombres premiers

- 1. Soit un entier $n \in \mathbb{N}$ premier, et un entier $a \in \mathbb{Z}$. Alors, n/a ou bien $n \wedge a = 1$.
- 2. Si n et m sont deux nombres premiers distincts, ils sont premiers entre eux: $n \neq m \Rightarrow$ $n \wedge m = 1$.
- 3. Si n est un nombre premier et si $(a_1, \ldots, a_k) \in \mathbb{Z}^k$,

$$n/a_1 \dots a_k \Rightarrow \exists i \in [1,n] \text{ tq } n/a_i$$

Proposition 12.45: Existence d'un diviseur premier

Tout entier $n \geq 2$ possède au moins un diviseur premier.

Théorème 12.46: Décomposition en facteurs premiers

Soit un entier $n \in \mathbb{N} \setminus \{0,1\}$. Cet entier n s'écrit de façon unique (à l'ordre des facteurs près) comme:

$$n = \prod_{p \in \mathcal{P}} p^{\nu_p(n)}$$

où $\nu_p(n) \in \mathbb{N}$ est appelé la *p-valuation* de l'entier n.

Remarque 128. Tout entier relatif $n \in \mathbb{Z}$ non nul s'écrit de façon unique sous la forme :

$$n = \pm \prod_{p \in \mathcal{P}} p^{\nu_p(|n|)}$$

Pour des entiers $a,b \in \mathbb{N}^*$, et $p \in \mathcal{P}$,

$$\nu_p(a \times b) = \nu_p(a) + \nu_p(b) \quad a/b \Rightarrow \nu_p(a) \le \nu_p(b)$$

Théorème 12.47 : Il existe une infinité de nombres premiers

L'ensemble \mathcal{P} des nombres premiers est infini.

THÉORÈME 12.48 : Expression du PGCD et du PPCM à l'aide des facteurs premiers Soient deux entiers non-nuls $(a,b) \in \mathbb{N}^{*2}$. Leur décomposition en facteurs premiers s'écrit :

$$a = \prod_{p \in \mathcal{P}} p^{\nu_p(a)} \quad b = \prod_{p \in \mathcal{P}} p^{\nu_p(b)}$$

Alors la décomposition de $a \wedge b$ et de $a \vee b$ en facteurs premiers s'écrit:

$$a \wedge b = \prod_{p \in \mathcal{P}} p^{\min\{\nu_p(a),\nu_p(b)\}} \quad a \vee b = \prod_{p \in \mathcal{P}} p^{\max\{\nu_p(a),\nu_p(b)\}}$$

COROLLAIRE 12.49:

Dans l'ensemble \mathbb{Z}^* , les lois \wedge et \vee sont distributives. Pour tous entiers non nuls $(a,b,c) \in \mathbb{Z}^{*3}$,

- $-a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c);$
- $a \lor (b \land c) = (a \lor b) \land (a \lor c).$

Exercice 12-29

On considère un entier n décomposé en produit de facteurs premiers:

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$$

où $\forall i \in [1,k], \alpha_i \in \mathbb{N}^*$. Calculez la somme de tous les diviseurs de l'entier n:

$$S = \sum_{d/n} d$$

12.4.3 Applications de l'arithmétique

Théorème 12.50: Éléments inversibles dans $\mathbb{Z}/n\mathbb{Z}$

Soit un entier $x \in [0, n-1]$. L'élément \hat{x} est inversible pour la multiplication dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, \widehat{+}, \widehat{\times})$ si et seulement si $x \wedge n = 1$.

COROLLAIRE 12.51:

Soit un entier $n \in \mathbb{N}^*$. L'anneau $(\mathbb{Z}/n\mathbb{Z}, \widehat{+}, \widehat{\times})$ est un corps si et seulement si l'entier n est un nombre premier.

Exercice 12-30

Déterminez tous les entiers $x \in \mathbb{Z}$ tels que $x^2 + 5x - 3$ soit divisible par 7.

Exercice 12-31

On considère un entier non nul $n \in \mathbb{N}^*$ et le groupe (U_n, \times) des racines nièmes de l'unité. On note $\omega = e^{2i\pi/n}$ la racine nième primitive de l'unité et $\alpha = \omega^p$. À quelle condition, a-t-on $U_n = \{\alpha^k; k \in \mathbb{N}\}$?