Basis elektriciteit : Grootheden & Eenheden.

	Grootheid		Eenheid
Symbool	Naam Naam	Symbool	Naam
F	Kracht	N	Newton ($1 \text{ N} = 1 \text{ kgm/s}^2$)
W	Energie, Arbeid, hoeveelheid warmte	J	Joule (1 J = 1 Nm)
P	Vermogen	W	Watt (1 W = 1 Js)
U	Elektrisch potentiaal – spanning	V	Volt (1 V = 1 J/C = 1 W/A)
R	Elektrische weerstand	Ω	Ohm (1 Ω = 1 V/A)
Q	Elektrische lading	С	Coulomb (1 C = 1 As)
ρ	Soortelijke weerstand	Ω .mm ² / m	Soortelijke weerstand van koper : 0.0175 bij 15°

FORMULES			
	Vermogen en wet van ohm	Serieschakelling	Parallelschakeling
Elektrische stroom vloeit buiten de bron van de positieve klem naar de negatieve klem	$P = R \times I^2 = \frac{U^2}{R}$	$R_{tot} = R_1 + R_2 + R_3 + \dots$	$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$
Wet van Faraday	Arbeid en wet van ohm	<u>Serieschakelling</u>	<u>Parallelschakeling</u>
$Q = I \times t$	$W = P \times t = R \times I^2 \times t$	$U_{tot} = U_1 + U_2 + U_3 + \dots$	$U_{tot} = U_1 = U_2 = U_3 = \dots$
Elektrische spanning	Wet van Joule	<u>Serieschakelling</u>	<u>Parallelschakeling</u>
$U = \frac{W}{Q}$	$Q = P \times t = R \times I^2 \times t$	$I_{tot} = I_1 = I_2 = I_3 = \dots$	$I_{tot} = I_1 + I_2 + I_3 + \dots$
Wet van Ohm	<u>Rendement</u>	<u>Serieschakelling</u>	<u>Parallelschakeling</u>
$U = R \times I$	$\eta = \frac{P_n}{P_t} = \frac{W_n}{W_t}$	$P_{tot} = P_1 + P_2 + P_3 + \dots$	$P_{tot} = P_1 + P_2 + P_3 + \dots$
<u>Elektrische arbeid</u>	Wet van Pouillet		<u>Parallelschakeling</u>
$W = U \times I \times t = U \times Q$	$R = \frac{\rho \times l}{A}$		$R_{tot} = \frac{R_1 \times R_2}{R_1 + R_2}$
Elektrisch vermogen			
$P = U \times I = \frac{W}{t}$			

Magnetisme: Grootheden & Eenheden.

Grootheid			Eenheid
Symbool	Naam	Symbool	Naam
I	Stroom	A	Ampère
N	Aantal windingen	*****	* * * * *
В	Magnetische inductie (Mag. Fluxdichtheid)	Wb/m² of T	Weber per vierkante meter of Tesla
Ø	Magnetische flux	Wb	Weber
A	Doorsnede	m ²	Vierkante meter
R	Reluctantie (mag. tegenstand)	A/Wb	Ampère per Weber
Н	Magnetische veldsterkte	A/m	Ampère per meter
Fm	Magnetomotorische kracht	A	Ampère
μο	Inductieconstante ($\mu_0 = 1.257 \times 10^{-6}$)	H/m	Henry per meter
μ	Absolute permeabiliteit	H/m	Henry per meter
$\mu_{ m r}$	Relatieve permeabiliteit	* * * * *	* * * * *
1	Lengte	m	meter
F	Lorentzkracht	N	Newton
E	Gegenereerde emk	V	Volt
EL	Zelfinductiespanning	V	Volt
V	Snelheid van beweging	m/s	Meter per seconde
Т	Tijd	S	seconde
L	Coëfficiënt van zelfinductie	Н	Henry

<u>FORMULES</u>			
<u>Permeabiliteit</u>	Veldsterkte in rechte geleider	Lorentz-kracht in spoel	
$\mu = \mu_r \times \mu_0 \text{ (in H/m)}$	$H_a = \frac{I}{2 \pi r}$	F = NBII	
Absolute permeabiliteit	<u>Veldsterkte in spoel</u>	Inductiespanning bij spoel	
$\mu_0 = 4\Pi \times 10^{-7} \text{H/m}$	$H_a = \frac{N I}{\sqrt{d^2 + l^2}}$	$E = -N \frac{\Delta \phi}{\Delta t}$	
Kracht tussen magneten	Veldsterkte in elektromagneet	Gegenereerde emk in geleider	
$F = (ml \cdot m2) / (4 T \mu_0 \mu_r r^2)$ (in N)	$H = \frac{NI}{l}$	$E = -B l v \sin \alpha$	
<u>De veldsterkte</u>	Flux in elektromagneet	Zelfinductie spanning	
H = F / m2	$\emptyset = \frac{F_{\rm m}}{R_{\rm m}} = \frac{N I}{R_{\rm m}}$	$E_L = -L \frac{\Delta I}{\Delta t}$	
Η = Β / μ	$R_{\rm m}$ $R_{\rm m}$	$\Delta L = \Delta t$	
<u>De flux</u>	<u>Reluctantie</u>	Zelfinductiecoëfficient	
Ø = μ x H x A	$R_{m} = \frac{1}{\mu A}$	$L = \frac{N^2}{R_m} \qquad \qquad L = \frac{N \phi}{I}$	
<u>Permeabiliteit</u>	Lorentz-kracht in geleider	<u>Tijdsconstante spoel</u>	
μ = B / H	F = B1I	$1\tau = \frac{L}{Rs}$	

Magnetische indutie	Elektrodynamische kracht	Wikkelingsverhouding transfo	
	tussen twee geleiders		
$B = \emptyset / A \text{ (in Wb/m}^2 \text{ of T)}$		$E_1 N_1$	
	$\mu I_1 I_2 I$	$\Rightarrow \frac{1}{E} = \frac{1}{N} = K$	
Β = μ Η	$r = \frac{1}{2 \pi r}$	$\boldsymbol{E}_2 = N_2$	

Elektrostatica en Condensatoren : Grootheden & Eenheden.

Grootheid			Eenheid
Symbool	Naam	Symbool	Naam
I	Stroom	A	Ampère
F	Kracht	N	Newton
Q	Elektrische lading	С	Coulomb
3	Diëlektrische constante	F/m	Farad/meter
С	Capaciteit	F	Farad
Е	Elektrische veld	N/C of V/m	Newton/coulomb of Volt/meter

<u>FORMULES</u>			
Kracht tss elektrische ladingen	<u>Capaciteit</u>	Condensatoren serie	Condensatoren parallel
$F = \frac{Q_1 Q_2}{4 \pi \varepsilon r^2}$	$C = \frac{Q}{U}$	$\frac{1}{C_{vs}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$	$C_{vp} = C_1 + C_2 + C_3 + \dots$
Diëlektrische constante	<u>tijdsconstante</u>	Ladingen in serie	Ladingen in parallel
$\varepsilon_0 = \frac{1}{36 \pi 10^9}$	$\tau = RC$	$Q_{vs} = Q_1 = Q_2 = Q_3 = \dots$	$Q_{vp} = Q_1 + Q_2 + Q_3 + \dots$
<u>Diëlektrische constante</u>		Spanning in serie	Spanning in parallel
$\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$		$U = U_1 + U_2 + U_3 + \dots$	$U = U_1 = U_2 = U_3 = \dots$
Elektrisch veld			
$E = \frac{F}{Q}$			
Potentiaal (elektrostatica)			
$U = \frac{W}{Q}$			
Potentiaal =Spanning			
U = E.r			

Wisselspanning: Grootheden & Eenheden.

	Grootheid		Eenheid
Symbool	Naam	Symbool	Naam
I	Effectieve Stroom	A	Ampère
U	Effectieve spanning	V	Volt
Î	Amplitude van de stroom	A	Ampère
Û	Amplitude van de wisselspanning	V	Volt
i	Momentele waarde van de stroom	A	Ampère
u	Momentele waarde van de spanning	V	Volt
f	Frequentie	Hz	Hertz
T	Periodeduur	S	seconde
ω	Cirkelfrequentie - hoeksnelheid	Rad/s	Radialen per seconde
α	Fasehoek	Rad of °	Radialen of graden
φ	Faseverschuiving	Rad of °	Radialen of graden

<u>FORMULES</u>		
<u>Periodeduur</u>	Verband graden en radialen	
$T = \frac{1}{f}$	$1T = 360^{\circ} = 2\pi \text{ rad}$	
<u>Cirkelfrequentie</u>	<u>Vormfactor</u>	
$\omega = 2 \pi f$	$f_v = \frac{I}{I_g} = \frac{\hat{I}/\sqrt{2}}{0.636 \times \hat{I}} = 1.11$	
<u>Fasehoek</u>	<u>Topfactor</u>	
$\alpha = \omega t = 2 \pi f t$	$f_t = \frac{\hat{I}}{I} = \frac{\hat{I}}{\hat{I} / \sqrt{2}} = 1.41$	
<u>Piek tot piek waarde</u>	<u>Effectieve waarde</u>	
$U_{pp} = 2 \times \hat{U}$	$I = 0.707 \times \hat{I} = \frac{\hat{I}}{\sqrt{2}}$	
<u>Amplitude</u>		
$\hat{I} = \sqrt{2} \times I \text{ of } \hat{U} = \sqrt{2} \times U$	$U = 0.707 \times \hat{U} = \frac{\hat{U}}{\sqrt{2}}$	
Ogenblikkelijke waarde		
$u = \hat{U} \times \sin \alpha = \hat{U} \times \sin \omega t$		
$i = \hat{I} \times \sin \alpha = \hat{I} \times \sin \omega t$		

Wisselkringen: Grootheden & Eenheden.

	Grootheid		Eenheid
Symbool	Naam	Symbool	Naam
R	Ohmse weerstand	Ω	Ohm $(1 \Omega = 1 V/A)$
ρ	Soortelijke weerstand	Ω .mm ² / m	Soortelijke weerstand van koper : 0.0175 bij 15°
L	Zelfinductiecoëfficient	Н	Henry
μ	Absolute permeabiliteit	H/m	Henry per meter
С	Capaciteit	F	Farad
3	Diëlektrische constante	F/m	Farad per meter
XL	Inductantie – inductieve reactantie	Ω	Ohm
XC	Capacitantie – capacitieve reactantie	Ω	Ohm
Z	Impedantie	Ω	Ohm

<u>FORMULES</u>			
Wet van Ohm	PC naar CV → reel gedeelte	<u>In kwadratuur</u>	<u>Resonantiefrequentie</u>
$U = Z \times I$	$Re = A \times \cos \varphi$	Gebruik maken van de stelling van pythagoras	$f_o = \frac{1}{2 \pi \sqrt{LC}}$
<u>Inductantie</u>	PC naar CV → imag gedeelte	<u>In Fase</u>	<u>Kwaliteitsfactor</u>
$X_L = 2\pi f L = \omega L$	$Im = A \times \sin \varphi$	Gewoon wiskundig optellen of aftrekken	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
<u>Capacitantie</u>	CV naar PC → Argument	<u>In tegenfase</u>	<u>Kwaliteitsfactor</u>
$Xc = \frac{1}{2\pi fC} = \frac{1}{\omega C}$	$A = \sqrt{\text{Re}^2 + \text{Im}^2}$	Gewoon wiskundig aftrekken of optellen	$Q = \frac{U_L}{U} = \frac{U_c}{U} = \frac{X_L}{R} = \frac{X_c}{R}$
<u>vectoren</u>	CV naar PC → modulus	Bewerking optellen-aftrekken	<u>Bandbreedte</u>
$\overline{V} = \overline{\text{Re}} + \overline{\text{Im}}$	$tg^{-1}\left[\frac{(\mathrm{Im})}{(\mathrm{Re})}\right] = \varphi$	Uitvoeren in cartesische vorm (reële delen en imaginaire delen samen nemen)	$BB = \frac{f_0}{Q}$
<u>Cartesische vorm</u>	<u>Poolcoordinaten</u>	Bewerking vermenigvuldigen	
V = Re + j Im	V = A igl arphi	In poolcoördinaten Argumenten vermenigvuldigen Modulussen optellen	

1F vermogen bij wisselkringen : Grootheden & Eenheden.

Grootheid			Eenheid
Symbool	Naam	Symbool	Naam
R	Ohmse weerstand	Ω	Ohm (1 Ω = 1 V/A)
ρ	Soortelijke weerstand	Ω .mm ² / m	Soortelijke weerstand van koper : 0.0175 bij 15°
L	Zelfinductiecoëfficient	Н	Henry
μ	Absolute permeabiliteit	H/m	Henry per meter
С	Capaciteit	F	Farad
3	Diëlektrische constante	F/m	Farad per meter
XL	Inductantie – inductieve reactantie	Ω	Ohm
XC	Capacitantie – capacitieve reactantie	Ω	Ohm
Z	Impedantie	Ω	Ohm
S	Schijnbaar vermogen	VA	Volt-Ampère
P	Actief vermogen	W	Watt
Q	Reactief vermogen	VAR	Volt-Ampère Reactief

<i>FORMULES</i>					
Schijnbaar vermogen	Schijnbaar vermogen				
S = U I	$S = \sqrt{P^2 + Q^2}$	 	P = U.Ia = U.I.cosφ		
Actief vermogen	Actief vermogen		*		
$P = U I \cos \varphi$	$P = \sqrt{S^2 - Q^2}$		S = U.Ι	U.Ir = U.I.sinφ	
Reactief vermogen	Reactief vermogen				
$Q = U I \sin \varphi$	$Q = \sqrt{S^2 - P^2}$				
<u>Arbeidsfactor</u>					
$Cos\varphi = \frac{P}{S}$					
	$C = \frac{P(tg \ \varphi s - tg \ \varphi)}{U^2 \ \omega}$				
Reactief vermogen condensator					
$Q_c = P \left[\tan \varphi_s - \tan \varphi \right]$					

3F Wisselspanningen : Grootheden & Eenheden.

	Grootheid		Eenheid	
Symbool	Naam	Symbool	Naam	
R	Ohmse weerstand	Ω	Ohm $(1 \Omega = 1 V/A)$	
ρ	Soortelijke weerstand	Ω .mm ² / m	Soortelijke weerstand van koper : 0.0175 bij 15°	
L	Zelfinductiecoëfficient	Н	Henry	
μ	Absolute permeabiliteit	H/m	Henry per meter	
С	Capaciteit	F	Farad	
3	Diëlektrische constante	F/m	Farad per meter	
XL	Inductantie – inductieve reactantie	Ω	Ohm	
XC	Capacitantie – capacitieve reactantie	Ω	Ohm	
Z	Impedantie	Ω	Ohm	
S	Schijnbaar vermogen	VA	Volt-Ampère	
P	Actief vermogen	W	Watt	
Q	Reactief vermogen	VAR	Volt-Ampère Reactief	

		
FORMULES		
<u>Ogenblikkelijke waarden :</u>	Totale actieve vermogen (asym belasting):	Condensatorwaarde:
$\left i_1 = \hat{I}_1 * \sin(\alpha - \phi_1) \right $	P = U _{F1} I _{F1} cos φ ₁ + U _{F2} I _{F2} cos φ ₂ + U _{F3} I _{F3} cos φ ₃	$P_F(tg\phi_s-tg\phi_g)$
$ i_2 = \hat{I}_2 * \sin(\alpha - 120^\circ - \phi_2) $		$C = \frac{P_F(tg\phi_s - tg\phi_g)}{U_L^2\omega}$
$i_3 = \hat{I}_3 * \sin(\alpha + 120^\circ - \phi_3)$	Totale schijnbaar vermogen (asym belasting)::	$P_{aa}(tg\phi_a - tg\phi_a)$
Stromen bij sterschakeling	$S = U_{F1} I_{F1} + U_{F2} I_{F2} + U_{F3} I_{F3}$	$C = \frac{P_{tot}(tg\phi_s - tg\phi_g)}{3 U_I^2 \omega}$
$I_L = I_F$	Totale reactieve vermogen (sym belasting)::	L
Spanningen bij sterschakeling	$Q = U_{F1} I_{F1} \sin \varphi_1 + U_{F2} I_{F2} \sin \varphi_2 + U_{F3} I_{F3} \sin \varphi_3$	
$U_L = \sqrt{3} \ U_F$	Totale actieve vermogen (sym belasting):	
Stromen bij driehoekschakeling	P = 3 (U _F I _F cos ϕ) = $\sqrt{3}$ U _I I _I cos ϕ	
$I_L = \sqrt{3} I_F$	Y F F // Y LL /	
Spanningen bij driehoekschakeling	Totale schijnbaar vermogen (sym belasting)::	
$U_{\scriptscriptstyle L} = U_{\scriptscriptstyle F}$	$S = 3 (U_F I_F) = \sqrt{3} U_L I_L$	
	Totale reactieve vermogen (sym belasting)::	
	$Q = 3 (U_F I_F \sin \phi) = \sqrt{3} U_L I_L \sin \phi$	

1F Transformatoren : Grootheden & Eenheden.

	Grootheid		Eenheid	
Symbool	Naam	Symbool	Naam	
I	Stroom	A	Ampère	
N	Aantal windingen	* * * * * *	* * * * *	
В	Magnetische inductie (Mag. Fluxdichtheid)	Wb/m² of T	Weber per vierkante meter of Tesla	
Ø	Magnetische flux	Wb	Weber	
Е	Gegenereerde emk	V	Volt	
k	Windingsverhouding	/	/	
Pij	Ijzerverliezen	W	Watt	
Pcu	Koperverliezen	W	Watt	
η	Rendement	/	/	

<u>FORMULES</u>			
Inductiespanning bij spoel	Belaste transfo : verband tss I	Equivalent schema	Equivalent schema
$E = -N \frac{\Delta \phi}{\Delta t}$	$\frac{I_1}{I_2} = \frac{N_2}{N_1} = \frac{1}{k}$	$\overline{I_0} = \overline{I_g} + \overline{I_m}$	$\overline{U_1} = \overline{E_1} + \overline{R_1 I_1} + \overline{\omega L_1 I_1}$
Zelfinductie spanning	Equivalent schema	Equivalent schema	Equivalent schema
$E_L = -L \frac{\Delta I}{\Delta t}$	$E_1 = k E_2$	$P_{ij} = U_1 I_0 \cos \varphi_0$	$R_e = R_1 + k^2 R_2$
Windingsverhouding	Equivalent schema	Equivalent schema	Equivalent schema
$\Rightarrow \frac{E_1}{E_2} = \frac{N_1}{N_2} = k$	$I_1 = \frac{I_2}{k}$	$I_g = I_0 \cos \varphi_0$	$X_e = X_1 + k^2 X_2$
Transformator bij nullast	Equivalent schema	Equivalent schema	Equivalent schema
$\frac{U_1}{U_2} = \frac{E_1}{E_2} = \frac{N_1}{N_2} = k$	$\omega L_1 = k^2 \omega L_2$	$I_m = I_0 \sin \varphi_0$	$P_{cu} = R_e I_1^2$
Belaste transfo : prim flux	Equivalent schema	Equivalent schema	Equivalent schema
$\phi_{\scriptscriptstyle 1} = \phi_{\scriptscriptstyle 0} + \phi_{\scriptscriptstyle 1}$	$R_1 = k^2 R_2$	$R_g = \frac{U_1}{I_g} en X_m = \frac{U_1}{I_m}$	$Z_{k} = \frac{U_{k}}{I_{k}} = \sqrt{R_{e}^{2} + X_{e}^{2}}$
Belaste tranfo : prim stroom	Equivalent schema		Equivalent schema
$\underline{\qquad} I_{1} = I_{0} + I_{1}$	$\overline{E_1} = \overline{U_2 \mathbf{k}} + (\overline{R_2 \mathbf{k^2} \frac{I}{k}})$	$\frac{1}{2} + ((\omega L_2) k^2 \frac{I_2}{k})$	$\eta = \frac{P_n}{P_t} = \frac{U_2 I_2 \cos \varphi}{U_2 I_2 \cos \varphi + P_{ij} + P_{cu}}$

Synchrone en Asynchrone motoren : Grootheden & Eenheden.

	Grootheid	Eenheid	
Symbool	Naam	Symbool	Naam
I	Stroom	A	Ampère
N	Aantal windingen	* * * * * *	* * * * *
В	Magnetische inductie (Mag. Fluxdichtheid)	Wb/m² of T	Weber per vierkante meter of Tesla
Ø	Magnetische flux	Wb	Weber
E	Gegenereerde emk	V	Volt
n	Rotatiefrequentie / toerental	Tr/min	Toeren/minuut
p	polenpaar	/	/
f	Frequentie	Hz	Hertz
Ео	Tegen Emk	V	Volt
P	Elektrisch vermogen	W	Watt
Pn	Nuttig vermogen = vermogen op de as	W	Watt
Pij	Ijzerverliezen	W	Watt
Pcu	Koperverliezen	W	Watt
η	Rendement	/	/

<i>FORMULES</i>			
Rotatiefrequentie stator	Rotor lekreactantie bij stilstand	Rendement	
$n_s = \frac{f}{p}$	$X_{r0} = s.\omega_{S}.L_{r}$	$\eta = \frac{P_n}{P_e}$	
Rotatiefrequenite rotor	<u>Rotorimpedantie</u>	Elektrisch vermogen	
nr = (1-s) ns	$Z_r = \sqrt{R_r^2 + (s.\omega_s.L_r)^2}$	$P = \sqrt{3}.U_L.I_L.\cos\varphi$	
<u>Slip</u>	<u>Rotorstroom</u>		_
$s = \frac{ns - nr}{ns}$	$I_r = \frac{E_r}{Z_r} = \frac{s.E_{r0}}{\sqrt{R_r^2 + (s.\omega_s.L_r)^2}}$		
Rotoremk bij stilstand	Rotorstroom	Toerental synchrone motor	
$E_{r0} = E_s \cdot \frac{N_r}{N_s}$	$I_r = \frac{E_r}{Z_r} = \frac{E_{r0}}{\sqrt{\left(\frac{R_r}{s}\right)^2 + (\omega_s . L_r)^2}}$	•	
<u>Rotoremk</u>	<u>Arbeidsfactor</u>	Tegen Emk synchrone motor	
$E_r = E_{r0} \cdot s$	$\cos \varphi_r = \frac{R_r}{Z_r} = \frac{R_r}{\sqrt{R_r^2 + (s X_{ro})^2}}$	$\frac{per fase}{\overline{E_o}} = \overline{U} - \overline{R} \underline{I_s} - \overline{X_L} \underline{I_s}$	
<u>Frequentie rotor</u>			
$f_r = f_s s$			

Synchrone en Asynchrone motoren : Grootheden & Eenheden.

	Grootheid	Eenheid	
Symbool	Naam	Symbool	Naam
I	Stroom	A	Ampère
N	Aantal windingen	* * * * * *	* * * *
В	Magnetische inductie (Mag. Fluxdichtheid)	Wb/m² of T	Weber per vierkante meter of Tesla
Ø	Magnetische flux	Wb	Weber
E	Gegenereerde emk	V	Volt
n	Rotatiefrequentie / toerental	Tr/min	Toeren/minuut
p	polenpaar	/	/
f	Frequentie	Hz	Hertz
Ео	Tegen Emk	V	Volt
P	Elektrisch vermogen	W	Watt
Pn	Nuttig vermogen = vermogen op de as	W	Watt
Pij	Ijzerverliezen	W	Watt
Pcu	Koperverliezen	W	Watt
η	Rendement	/	/

<i>FORMULES</i>			
Rotatiefrequentie stator	Rotor lekreactantie bij stilstand	Rendement	
$n_s = \frac{f}{p}$	$X_{r0} = s.\omega_{S}.L_{r}$	$\eta = \frac{P_n}{P_e}$	
Rotatiefrequenite rotor	<u>Rotorimpedantie</u>	Elektrisch vermogen	
nr = (1-s) ns	$Z_r = \sqrt{R_r^2 + (s.\omega_s.L_r)^2}$	$P = \sqrt{3}.U_L.I_L.\cos\varphi$	
<u>Slip</u>	<u>Rotorstroom</u>		_
$s = \frac{ns - nr}{ns}$	$I_r = \frac{E_r}{Z_r} = \frac{s.E_{r0}}{\sqrt{R_r^2 + (s.\omega_s.L_r)^2}}$		
Rotoremk bij stilstand	Rotorstroom	Toerental synchrone motor	
$E_{r0} = E_s \cdot \frac{N_r}{N_s}$	$I_r = \frac{E_r}{Z_r} = \frac{E_{r0}}{\sqrt{\left(\frac{R_r}{s}\right)^2 + (\omega_s . L_r)^2}}$	•	
<u>Rotoremk</u>	<u>Arbeidsfactor</u>	Tegen Emk synchrone motor	
$E_r = E_{r0} \cdot s$	$\cos \varphi_r = \frac{R_r}{Z_r} = \frac{R_r}{\sqrt{R_r^2 + (s X_{ro})^2}}$	$\frac{per fase}{\overline{E_o}} = \overline{U} - \overline{R} \underline{I_s} - \overline{X_L} \underline{I_s}$	
<u>Frequentie rotor</u>			
$f_r = f_s s$			

DC Motoren: Grootheden & Eenheden.

	Grootheid	Eenheid	
Symbool	Naam	Symbool	Naam
I	Stroom	A	Ampère
Т	Koppel	N	Newton
В	Magnetische inductie (Mag. Fluxdichtheid)	Wb/m² of T	Weber per vierkante meter of Tesla
Ø	Magnetische flux	Wb	Weber
Е	Gegenereerde emk	V	Volt
n	Rotatiefrequentie / toerental	Tr/min	Toeren/minuut

<u>FORMULES</u>			
Inwendige spanning over	<u>koppel</u>	<u>tegenemk</u>	
<u>ankergeleiders</u>	T 1 1 1	$F = l_{r}$ is A	
$U_i = U - E$	$T = k \phi I_a$	$E = k n \phi$	
<u>ankerstroom</u>			
$I_a = \frac{U_i}{R_i + R_{aan}} = \frac{U - E}{R_i + R_{aan}}$			
$\mathbf{R}_i + \mathbf{R}_{aan}$ $\mathbf{R}_i + \mathbf{R}_{aan}$			
<u>aanzetstroom</u>			
$I_{a_{aan}} = b \times I_{a_{nom}}$			
7			
<u>aanzetweerstand</u>			
$R_{aan} = \frac{U}{I_{a_{aan}}} - R$			