The A matrix is:

$$A = \begin{bmatrix} 17.4 & \{-32.1, -31.5, -30.3\} & \text{Unif}(23.4, 25.0) \\ -6.1 & \text{Unif}(27.0, 31.5) & \{50.2, 51.3\} \\ \text{Gauss}(5.3,1) & \{-18.2, -16.0\} & \text{Unif}(26.9, 30.2) \end{bmatrix}$$

The b vector is:

$$b = \begin{bmatrix} \text{Gauss}(-13.3, 1.2) \\ \{16.5, 17.3\} \\ 3.4 \end{bmatrix}$$

This is represented as the input file called input3Vars in the repo.

On solving Ax = b, the result Signaloid Cloud Platform gives is

Gauss Triangulization

Value	Mean	Variance
0.7918	0.8028	0.0017
-0.6235	-0.6258	0.0027
-1.6275	-1.6358	0.0112

Gauss Jordan

Value	Mean	Variance
0.7918	0.8042	0.0464
-0.6235	-0.6291	0.0017
-1.6275	-1.6395	0.0112

Simulations in R show the means and variances of the solutions as

Mean	Variance	
0.8048	0.014	
-0.6315	0.005	
-1.649	0.03	

As expected the variance estimates are quite off, but the means are close enough to the true (based on 10000 simulations) results.

Histograms are given on next page.

$\frac{Gauss\ triangulation,\ Gauss\ Jordan\ and\ R\ simulation\ give\ the\ following\ distributions}{of\ the\ solution}$

