CS 307 – Introduction to Computer Graphics Semester II, 2019/20

Topic 4: Filling

Filling Polygons

- √ how to draw lines and circles
- How to draw polygons?
 - use an incremental algorithm
 - known as the scan-line algorithm

Filling Polygons

Three types of polygons

Area filling on raster systems

- Two basic approaches
 - Determine the overlap intervals for scan lines that cross the area
 - Used in general graphical packages to fill polygons, circles, ellipses etc
 - Start from a given interior position and paint outward until a specified boundary is reached
 - Used for more complex boundaries and interactive paining

- For each scan line crossing the polygon
 - Locate the intersection positions of the scan line with the polygon edges
 - These intersection points are then sorted from left to right, and the corresponding frame buffer positions between each intersection pair are set to specified color

- Scan line y two intersecting edges sharing a vertex are on opposite sides of the scan line
- Scan line y' two intersecting edges are both above the scan line

- Vertices that have connecting edges on opposite sides of scan line require additional processing
 - trace around the polygon boundary either in clock-wise or anti-clockwise order
 - observe the relative changes in vertex y coordinates as we move from one edge to the next
 - If the endpoint y values of two consecutive edges monotonically increase or decrease count the middle vertex as a single intersection point for any scan line passing through that vertex

- If not the shared vertex represents a local extremum on the polygon boundary
 - the two edge intersections with the scan line passing through that vertex can be added to the intersection list
- Counting an intersection as one vertex or two
 - One way to resolve this is also to shorten some polygon edges
 - split those vertices that should be counted as one intersection

- End point y coordinates of the two edges are increasing
 - y value of the upper endpoint for the current edge is decreased by 1
- Endpoint y values are monotonically decreasing
 - y coordinate of the upper endpoint of the edge following the current edge is decreased

 Relationships between parts of the scene (coherence properties) can be used to reduce processing

- Slope of the edge is constant from one scan line to the other
 - Can set up incremental calculations along any edge

 Slope of the polygon boundary in terms of scan-line intersection coordinates:

$$m = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$

• Change of y coordinates between two scan lines:

$$y_{k+1} - y_k = 1$$

• x- intersection value x_{k+1} can be determined by x- intersection value x_k

$$x_{k+1} = x_k + \frac{1}{m}$$

 Each successive x intercept can be calculated by adding intercept and rounding to the nearest integer

Efficient polygon filling

- Store the polygon boundary in a sorted edge table
 - Proceed around the edges in clockwise/ anti-clockwise order
 - Only non horizontal edges are entered in the table
 - Use a bucket /bin sort to store edges, sorted on the smallest y value of each edge
 - Each entry in the table for a particular scan line contains:
 - Maximum y value for that edge
 - X-intercept value (at lower vertex) for the edge
 - Inverse slope of the edge

Efficient polygon filling cont.

- Produce the active edge list
 - Process the scan lines from the bottom of the polygon to the top
 - Produce the list for each scan line crossing the polygon boundaries
 - Contains all edges crossed the scan line
 - Edge intersections obtained by iterative coherence calculations

Efficient polygon filling cont.

- Each entry in the table for a particular scan line contains
 - the maximum y value for that edge,
 - the x-intercept value (at the lower vertex) for the edge, and
 - the inverse slope of the edge.

The Scan-Line Polygon Fill Algorithm

The Scan-Line Polygon Fill Algorithm

Polygon = {A, B, C, D, E, F, G}

Polygon = $\{(2, 7), (4, 12), (8,15), (16, 9), (11, 5), (8, 7), (5, 5)\}$

#	E	dge	1/m	Y min	х	Y max
0	A (2, 7)	B (4, 12)	2/5	7	2	12
1	B (4, 12)	C (8,15)	4/3	12	4	15
2	C (8,15)	D (16, 9)	- 8/6	9	16	15
3	D (16, 9)	E (11, 5)	5/4	5	11	9
4	E (11, 5)	F (8, 7)	- 3/2	5	11	7
5	F (8, 7)	G (5, 5)	3/2	5	5	7
6	G (5,5)	A (2, 7)	- 3/2	5	5	7

Previous Vertex	Current Vertex	Next Vertex	ур? ус? ум	Current Vertex Type	Action
G (5, 5)	A (2, 7)	B (4, 12)	y P < AC < AN	Not local extremum	Split A
A (2, 7)	B (4, 12)	C (8,15)	y p < y c < yn	Not local extremum	Split B
B (4, 12)	C (8,15)	D (16, 9)	y _P < y _C > y _N	Local Maximum	None
C (8, 15)	D (16, 9)	E (11, 5)	ур > у с > УN	Not local extremum	Split D
D (16, 9)	E (11, 5)	F (8, 7)	y p > y c < y _N	Local Minimum	None
E (11, 5)	F (8, 7)	G (5, 5)	y _P < y _C > y _N	Local Maximum	None
F (8, 7)	G (5, 5)	A (2, 7)	y _P > y _C < y _N	Local Minimum	None

Vertex A should be split into two vertices A' (x_{A'}, 6) and A(2, 7)

$$m = (5 - 7)/(5 - 2) = -2/3$$

 $x'_A = 5 + (-3/2)(7 - 1 - 5) = 7/2 = 3.5 \cong 4$

The vertex \mathbf{A} is split to $\mathbf{A'}$ (4, 6) and $\mathbf{A(2, 7)}$

Previous Vertex	Current Vertex	Next Vertex	ур? ус? ум	Current Vertex Type	Action
G (5, 5)	A (2, 7)	B (4, 12)	y P < AC < AN	Not local extremum	Split A
A (2, 7)	B (4, 12)	C (8, 15)	y p < y c < y _N	Not local extremum	Split B
B (4, 12)	C (8,15)	D (16, 9)	y _P < y _C > y _N	Local Maximum	None
C (8, 15)	D (16, 9)	E (11, 5)	ур > у с > УN	Not local extremum	Split D
D (16, 9)	E (11, 5)	F (8, 7)	y p > y c < y _N	Local Minimum	None
E (11, 5)	F (8, 7)	G (5, 5)	y _P < y _C > y _N	Local Maximum	None
F (8, 7)	G (5, 5)	A (2, 7)	y _P > y _C < y _N	Local Minimum	None

Vertex B should be split into two vertices B' (x_{B'}, 11) and B(4, 12)

$$m = (7 - 12)/(2 - 4) = 5/2$$

 $x'_A = 2 + (2/5)(12 - 1 - 7) = 18/5 = 3.6 \cong 4$

The vertex **B** is split to **B'** (4, 11) and **B**(4, 12)

Previous Vertex	Current Vertex	Next Vertex	ур ? ус ? ун	Current Vertex Type	Action
G (5, 5)	A (2, 7)	B (4, 12)	y P < AC < AN	Not local extremum	Split A
A (2, 7)	B (4, 12)	C (8, 15)	y p < y c < y _N	Not local extremum	Split B
B (4, 12)	C (8,15)	D (16, 9)	y _P < y _C > y _N	Local Maximum	None
C (8, 15)	D (16, 9)	E (11, 5)	ур > у с > УN	Not local extremum	Split D
D (16, 9)	E (11, 5)	F (8, 7)	y _P > y _C < y _N	Local Minimum	None
E (11, 5)	F (8, 7)	G (5, 5)	y _P < y _C > y _N	Local Maximum	None
F (8, 7)	G (5, 5)	A (2, 7)	y _P > y _C < y _N	Local Minimum	None

Vertex D should be split into two vertices D(16, 9) and D' (x_{D'}, 8)

$$m = (5-9)/(11-16) = 4/5$$

 $x'_D = 11 + (5/4)(9-1-5) = 59/4 = 14.75 \cong 15$
The vertex **D** is split to **D**(16, 9) and **D'** (15, 8)

		Modifie	d Edge Tab	le		
#	Ed	lge	1/m	Ymin	X	Уmax
0	A (2, 7)	B' (4, 11)	2/5	7	2	11
1	B (4, 12)	C (8,15)	4/3	12	4	15
2	C (8,15)	D (16, 9)	– 8/6	9	16	15
3	D' (15, 8)	E (11, 5)	5/4	5	11	8
4	E (11, 5)	F (8, 7)	- 3/2	5	11	7
5	F (8, 7)	G (5, 5)	3/2	5	5	7
6	G (5,5)	A' (4, 6)	- 3/2	5	5	6

	Activ	atio	n T	Γab	le						
У	5	6	7	8	9	10	11	12	13	14	15
Activated Edge #s	3, 4, 5, 6		0		2			1			

Edge number 0

#	E	dge	1/m	Y min	X	Y max	
0	A (2, 7)	B' (4, 11)	2/5 = 0.4	7	2	11	

Scan line	x-intersection
y = 7	2
y = 8	2 + 0.4 = 2.4 ~ 2
y = 9	2.4 + 0.4 = 2.8 ~ 3
y = 10	2.8 + 0.4 = 3.2 ~ 3
y = 11	4

Edge number 1

#	Ed	ge	1/m	Y min	X	Y max
1	B (4, 12)	C (8,15)	4/3 = 1.3	12	4	15

Scan line	x-intersection
y = 12	4
y = 13	4 + 1.3 = 4.3 ~ 4
y = 14	4.3 + 1.3 = 5.6 ~ 6
y = 15	8

		x-intersections Edge#						v interceptions noin
Scan line								x-intersections pair
	0	1	2	3	4	5	6	Ascending order
5				11	11	5	5	(5, 5), (11, 11)
6				12	10	7	4	(4, 7), (10, 12)
7	2			14	8	8		(2, 8), (8,14)
8	2			15				(2,15)
9	3		16					(3, 16)
10	3		15	48				(3, 15)
11	4		13	¥				(4, 13)
12		4	12					(4,12)
13		4	11					(4, 11)
14		6	10					(6, 10)
15		8	8					(8, 8)

Boundary Fill Algorithm

- Another approach to area filling
 - start at a point inside a region and paint the interior outward toward the boundary.
 - If the boundary is specified in a single color, the fill algorithm processed outward pixel by pixel until the boundary color is encountered.
- Inputs
 - the coordinate of the interior point (x, y), a fill color, and a boundary color.

Boundary Fill Algorithm

- recursive boundary-fill algorithm:
 - Start from an interior point.
 - If the current pixel is **not already** filled and if it is not an edge point, then set the pixel with the fill color, and store its neighboring pixels (4 or 8connected) in the stack for processing.
 - Store only neighboring pixel that is **not already** filled and is not an edge point.
 - Select the next pixel from the stack, and continue with step 2.

Boundary Fill Algorithm

- The order of pixels that should be added to stack
- 4-connected above, below, left, and right.
- **8-connected -** above, below, left, right, above-left, above-right, below-left, and below-right.

Boundary Fill Algorithm

- requires considerable stacking of neighboring pixels
 - more efficient methods are generally used

Span Flood-Fill

- fill horizontal pixel spans across scan lines
 - need only stack a beginning position for each horizontal pixel spans, instead of stacking all unprocessed neighboring positions around the current position.

Span Flood-Fill Algorithm

- Algorithm
 - Starting from the initial interior pixel, fill in the contiguous span of pixels on this starting scan line.
 - Then locate and stack starting positions for spans on the adjacent scan lines,
 - where spans are defined as the contiguous horizontal string of positions bounded by pixels displayed in the area border color.
 - At each subsequent step, unstack the next start position and repeat the process.

Inside – outside tests

- Area filling needs to identify interior regions of objects
- Odd-even rule/ odd parity rule
- Nonzero winding number rule

Inside-Outside Tests

Odd-Even rule (Odd Parity Rule, Even-Odd Rule):

- 1. draw a line from any position P to a distant point outside the coordinate extents of the object and counting the number of edge crossings along the line.
- 2. If the number of polygon edges crossed by this line is **odd** then

P is an **interior** point.

Else

P is an **exterior** point

Odd-Even rule

Inside-Outside Tests

Nonzero Winding Number Rule:

- Counts the number of times the polygon edges wind around a particular point in the counterclockwise direction.
- the interior points of a two-dimensional object are defined to be those that have a nonzero value for the winding number.
- 1. Initializing the winding number to 0.
- 2. Imagine a line drawn from any position P to a distant point beyond the coordinate extents of the object.

Inside-Outside Tests

Nonzero Winding Number Rule cont:

- 3. Count the number of edges that cross the line in each direction add 1 to the winding number every time you intersect a polygon edge that crosses the line from right to left, and subtract 1 every time you intersect an edge that crosses from left to right.
- 3. If the winding number is **nonzero**, then *P* is defined to be an **interior** point **Else**

P is taken to be an exterior point.