Problem J. Jornada no Deserto

Time Limit 8000 ms

Mem Limit 1572864 kB

Code Length Limit 50000 B

OS Linux

Matt se encontra em um deserto com N ($2 \le N \le 10$) oásis, cada um podendo ter comida, água e/ou uma palmeira. Se o oásis i tem comida, então $F_i = 1$ - caso contrário, $F_i = 0$. De forma semelhante, $W_i = 1$ se e somente se o oásis i tem água, e $P_i = 1$ se e somente se ele tem uma palmeira. Esses 3 valores são completamente independentes entre si.

Alguns pares desses oásis estão conectados por trilhas no deserto, cada uma levando 1 hora para ser percorrida. Existem M ($0 \le M \le 45$) dessas trilhas, com a trilha i conectando os oásis distintos A_i e B_i em ambas as direções ($1 \le A_i, B_i \le N$). Nenhum par de oásis está diretamente conectado por mais de uma trilha, e não é garantido que todos os oásis estejam conectados por algum sistema de trilhas.

Matt começa em um oásis S e quer terminar em um oásis diferente E ($1 \le S, E \le N$).

Ambos esses oásis são bastante agradáveis - é garantido que $F_S=W_S=P_E=W_E=P_E=1$.

Como ele está com pressa para sair do deserto, quer viajar até lá em no máximo H (1 $\leq H \leq 10^9$) horas.

No entanto, ele só pode sobreviver por até MF horas seguidas sem comida, e até MW horas seguidas sem água ($1 \le MF, MW \le 4$). Por exemplo, se MF = 1 e MW = 2, então cada oásis que ele visitar pelo caminho deve ter comida (pois ele não suportaria passar mais de 1 hora sem ela), e ele não pode visitar 2 ou mais oásis sem água consecutivamente.

Como Matt é um cientista da computação, antes de realmente ir a algum lugar, ele está interessado no número de caminhos diferentes que ele pode tomar para ir do oásis S ao oásis E vivo em no máximo H horas.

Note que pode não haver caminhos assim.

Sendo um cientista da computação, ele obviamente só se importa com esse número módulo (10^9+7) .

Entrada

Linha 1: 7 inteiros, N, M, H, S, E, MF, e MW

Próximas N linhas: 3 inteiros, F_i , W_i , e P_i , para i=1..N

Próximas M linhas: 2 inteiros, A_i e B_i , para i=1..M

Saída

1 inteiro, o número de caminhos válidos diferentes, módulo (10^9+7)

Exemplo 1

Input	Output
3 3 3 1 2 1 4 1 1 1 1 1 1 0 1 0 1 2 2 3 1 3	2

Explicação:

Os dois caminhos possíveis, descritos em termos dos oásis visitados, são $1 \to 2$ e $1 \to 2 \to 1 \to 2$. Matt nunca pode ir ao oásis 3, pois ele não contém comida, e ele não consegue sobreviver sem ela por mais de 1 hora. O caminho $1 \to 2 \to 1 \to 2 \to 1 \to 2$ não é válido, pois levaria 5 horas em vez do máximo de 3.

Note que o oásis 3 é o único oásis sem palmeira.

Exemplo 2

Input	Output
5 5 3 3 2 3 2 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 2 1 3 1 4 3 4 4 2	2

Explicação:

Os dois caminhos possíveis são $3 \rightarrow 1 \rightarrow 2$ e $3 \rightarrow 4 \rightarrow 2$.

Desta vez, os oásis 1 e 5 estão sem palmeiras.