Resumen EDD

Visualizador de algoritmos

• Selection Sort: Buscamos el mínimo de una lista L y lo situamos al comienzo de esta.

Mejor caso: $\mathcal{O}(n^2)$ Caso promedio: $\mathcal{O}(n^2)$ Peor caso: $\mathcal{O}(n^2)$ Memoria adicional: $\mathcal{O}(1)$

• **Insertion Sort**: Vamos de izquierda a derecha comprobando que los elementos estén ordenados. Si no lo están, cambiamos posiciones hacia la izquierda hasta que lo estén.

Mejor caso: $\mathcal{O}(n)$ Caso promedio: $\mathcal{O}(n^2)$ Peor caso: $\mathcal{O}(n^2)$ Memoria adicional: $\mathcal{O}(1)$

• Merge Sort: Separamos la lista hasta que queden elementos solos. A partir de estas listas más pequeñas, elegimos el menor de cada una de estas listas para ir formando una nueva lista más grande ordenada. Formar una nueva lista toma $\mathcal{O}(n)$ y esto se repite $\log_2(n)$ veces (altura del árbol).

Mejor caso: $\mathcal{O}(n \cdot \log(n))$ Caso promedio: $\mathcal{O}(n \cdot \log(n))$ Peor caso: $\mathcal{O}(n \cdot \log(n))$

Memoria adicional: O(n)

• **Median**: Elegimos un elemento x aleatorio en L. Situamos los elementos mayores a la derecha y menores a la izquierda. Es como la búsqueda binaria.

• QuickSort: Elegimos un pivote $x \in L$ "aleatorio". Muchas veces se usa el último elemento de la lista. Los elementos menores a x los situamos a su izquierda, mientras que los elementos mayores a x los situamos a su derecha. Luego de este paso, el elemento x estará en el índice correcto (esta ordenado) de la lista. Repetimos el paso con ambas listas de la derecha e izquierda.

Mejor caso: $\mathcal{O}(n \cdot \log(n))$

Caso promedio: $\mathcal{O}(n \cdot \log(n))$

Peor caso: $\mathcal{O}(n^2)$ Memoria adicional: $\mathcal{O}(1)$ • **Árbol de búsqueda binario (ABB)**: Busca representar un diccionario. Cada nodo x tiene un x. key, x. value, x. left, x. right y x. p (padre). Esta es una estructura recursiva (el subárbol de un nodo hijo es también un ABB).

- Para insertar un elemento, se va comparando si son menores/mayores a los hijos, hasta llegar a un nodo que no tenga hijo o tenga solo.
- Si queremos eliminar un nodo raíz, entonces podemos reemplazarlo por su antecesor/sucesor.
- Árboles AVL: Es como un ABB, pero más "balanceado":
 - Asegura que un árbol con n nodos tenga una altura de $O(\log n)$.
 - Es fácil de mantener.
 - o Existen rotaciones para balancear árbol →

- \circ Para un nodo x del árbol, agregamos un atributo de balance (x.balance) con el cual decidiremos las rotaciones.
- \circ Tomará valor -1, 0 o 1 según sus hijos.
 - Si el subárbol izquierdo es 1 nivel más alto: x.balance = -1.
 - Si los hijos tienen la misma altura: x. balance = 0.
 - Si el subárbol derecho es 1 nivel más alto: x.balance = 1.

Hay 4 casos posibles de desbalance, según la ruta de inserción:

1. Izquierda + izquierda (LL) o Derecha derecha (RR): Rotación simple.

2. Izquierda + derecha (LR) o Derecha izquierda (RL): Rotación doble.

Ejemplo:

- Inserción $\rightarrow \mathcal{O}(h) = \mathcal{O}(\log n)$.
- o Detectar nodos que participan en rotación (si aplica) $\rightarrow \mathcal{O}(h) = \mathcal{O}(\log n)$.
- o Rotación $\rightarrow \mathcal{O}(1)$.

Total
$$\cap$$
 $\mathcal{O}(h) = \mathcal{O}(\log n)$.

- $\circ \max_{A}(nodos) = \sum_{k=0}^{h-1} 2^k = 2^h 1.$
- o $\min_{A}(nodos) = m(h) = m(h-1) + m(h-2) + 1.$

Uno de los hijos debe tener altura h-1 y otro h-2.

• Árboles 2-3:

Los nodos pueden no tener hijos, o tener exactamente:

- 2 hijos árboles 2-3 si es 2-nodo
- **3** hijos árboles 2-3 si es un **3-nodo**

Ejemplo de inserción:

• Árboles rojo-negro:

Es un ABB que cumple que:

- 1. Cada nodo es rojo o negro.
- 2. La raíz del árbol es negra.
- 3. Si un nodo es rojo, sus hijos deben ser negros.
- 4. La cantidad de nodos negros camino a cada hoja desde un nodo cualquiera debe ser la misma.

¡Tienen un árbol 2-4 equivalente!

Para realizar una inserción, simplemente podemos hacer una inserción en el árbol
 2-4 equivalente, y a partir de ese construir el nuevo árbol rojo-negro.

- Para eliminar un nodo, se realizan 2 etapas:
 - Se elimina el nodo tal como se hace en un ABB (buscando antecesor/sucesor).
 - Se recuperan las propiedades rojo-negro (coloración).

POR REVISAR LOS 5 CASOS DE ELIMINACIÓN EN ARBOL ROJO NEGRO (DE SER NECESARIO)

• Diccionario

o Inserción con encadenamiento: Cada puntero lleva a una lista de elementos.

- o **Inserción con sondeo lineal**: Se busca la siguiente celda vacía.
- O Sondeo doble hashing: Se busca primero en $h_1(k)$, después en $h_1(k) + h_2(k)$, luego en $h_1(k) + 2 \cdot h_2(k)$, etc.
- **Método de la multiplicación**: Tomar 0 < A < 1:

$$h(k) = \lfloor m \cdot (A \cdot k \bmod 1) \rfloor$$

- Se extra la parte decimal de $A \cdot k$.
- El valor de m no es crítico (m es el tamaño de la tabla).
- Tomar m como potencia de 2 simplifica los cálculos, pero es conveniente que sea primo.

1 3 3 5 5 7 7 10 1 3 3 4 5 7 7 10

Ordenación lineal:

Counting Sort:

1 3 3 4 5 7 7 9 7 7 r = 5 1 3 3 4 5 5 7 9 **input**: Arreglo A[0...n-1], natural k3 5 5 7 7 r = 4 1 3 3 4 5 5 7 8 **output:** Arreglo B[0...n-1]3 3 5 5 7 7 r = 3 0 3 3 4 5 5 7 8 CountingSort (A, k): 0 1 3 3 5 5 7 7 r = 2 0 3 3 3 5 5 7 8 0 1 1 3 3 5 5 7 7 r = 1 0 2 3 3 5 5 7 8 $B[0...n-1] \leftarrow \text{arreglo vac\'io de } n \text{ celdas}$ 1 0 1 1 3 3 5 5 7 7 7 r = 0 0 1 3 3 5 5 7 8 $C[0...k] \leftarrow \text{arreglo vac\'io de } k+1 \text{ celdas}$ **for** i = 0 ... k: 3 $C[i] \leftarrow 0$ Inicializamos lista de frecuencias (parten en 0) **for** j = 0 ... n - 1: Creamos la lista de frecuencias C. El elemento C[i] $C[A[j]] \leftarrow C[A[j]] + 1$ 6 indica cuántas veces existe el elemento i en A. **for** p = 1 ... k : 7 Pasamos la lista de frecuencias a frecuencia $C[p] \leftarrow C[p] + C[p-1]$ 8 acumuladas

for $r = n - 1 \dots 0$: Iteramos la lista A en sentido contrario, y asignamos $B[C[A[r]]-1] \leftarrow A[r]$ 10 a la tabla B lo que nos dice la tabla de frecuencia $C[A[r]] \leftarrow C[A[r]] - 1$ 11 acumulada. return B 12

Complejidad $\mathcal{O}(n+k)$. Donde n es el largo de la lista y k el valor máximo que pueden tomar. Si $k \in \mathcal{O}(n)$ entonces Counting Sort es $\mathcal{O}(n)$.

- **CSP**: Un problema de satisfacción de restricciones es una tripleta (X, D, C) tal que:
 - o $X = \{x_1, ..., x_n\}$ es un conjunto de **variables**.
 - o $D = \{D_1, ..., D_n\}$ es un conjunto de **dominios** respectivos.
 - o $C = \{C_1, ..., C_m\}$ es un conjunto de **restricciones**.

Problema de las 8 reinas:

- o $X = \{x_1, ..., x_8\}$. Donde x_i es la reina en la fila i.
- $O D = \{B, ..., B\} con B = \{1, ..., 8\}.$
- \circ C = No se deben "matar".

Backtracking:

```
input : Conjunto de variables sin asignar X, dominios D,<br/>restricciones RisSolvable(X, D, R):<br/>if X = \emptyset : return trueYa asigné todas las variables, por lo tanto terminé.if X = \emptyset : return trueIteramos sobre todos las posibles opciones para mi siguiente variableif x = v no rompe R :Si al tomar la opción no se rompen las restricciones.if isSolvable(X - \{x\}, D, R) :Seguimos probando la siguiente variablereturn trueSe genera el backtrack en caso de que la llamada retorne false.
```

- O Tiene una complejidad de $\mathcal{O}(K^n)$ en donde $K = |D_i|$ y n es la cantidad de variables.
- Grafos: Los podemos codificar y almacenar en:
 - 1. **Listas de adyacencias** en que la celda i de la lista tiene una lista con los vecinos j tales que (i, j) es arista del grafo.
 - 2. **Matriz de adyacencias** en que la celda [i][j] indica si la arista (i,j) existe en el grafo.
 - Detección de ciclos: Si el nodo *Y* que vamos a visitar ya fue visitado:
 - 1. Si estamos en un nodo posterior a *Y* , hay ciclo.
 - 2. Si no, entonces esta arista no forma ciclo.

```
input: Grafo G, nodo X \in V(G)

cycleAfter(G, X):

if X.color = gris : return true

if X.color = negro : return false

X.color \leftarrow gris

for Y \ tal \ que \ X \rightarrow Y :

if cycleAfter(G, Y) : return true

X.color \leftarrow return false
```

```
Este algoritmo decide si hay un ciclo en el grafo

input : Grafo G

isCyclic(G):

1 for X \in V(G):

2 if X.color \neq blanco:

3 continue

4 if CycleAfter(G, X):

5 return true

6 return false
```

- Este algoritmo sigue una estrategia de búsqueda por profundidad (DFS).
- Componentes fuertemente conectados:

Definición

Sea G un grafo dirigido. Una componente fuertemente conectada (CFC) es un conjunto maximal de nodos $C \subseteq V(G)$ tal que dados $u, v \in C$, existe un camino dirigido desde u hasta v.

Un grafo transpuesto se obtiene simplemente al invertir todas las aristas.

REPASAR EN PROFUNDIDAD CLASE DE DFS (DE SER NECESARIO)

Algoritmos codiciosos

REPASAR EN PROFUNDIDAD ALGORITMOS GREEDY (DE SER NECESARIO)

• Programación dinámica:

```
Formalicemos las ideas anteriores

Sea \Omega_j la solución al problema con charlas \{1,\ldots,j\} y sea opt(j) su ganancia total. Objetivo final: obtener \Omega_n con valor opt(n)

Para cada 1 \le j \le n, hay dos casos

Si j \in \Omega_j, entonces opt(j) = v_j + opt(b(j))

Si j \notin \Omega_j, entonces opt(j) = opt(j-1)

Para saber si j \in \Omega_j, comparamos las dos opciones

opt(j) = \max\{v_j + opt(b(j)), \ opt(j-1)\}

input: natural 0 \le j \le n
output: ganancia óptima
Opt(j):

1 if j = 0:
2 return 0
```

return $\max\{v_j + \text{Opt}(b(j)), \text{Opt}(j-1)\}$

 $v_j = \mathsf{Ganancia} \; \mathsf{de} \; \mathsf{escoger} \; \mathsf{la} \; \mathsf{conferencia} \; j.$

```
Dadas las charlas \{1,2,\dots,6\} ordenadas por f_i, añadimos b(i) := \begin{cases} j, & j \text{ es la charla que termina más tarde antes de } s_i \\ 0, & \text{no hay tal charla} \end{cases}
= i = 1, \ [0,5), \ v_1 = 2, \ b(1) = 0 
= i = 4, \ [2,11), \ v_4 = 7, \ b(4) = 0
= i = 2, \ [1,7), \ v_2 = 4, \ b(2) = 0 
= i = 5, \ [9,12), \ v_5 = 2, \ b(5) = 3
= i = 3, \ [6,9), \ v_3 = 4, \ b(3) = 1 
= i = 6, \ [10,13), \ v_6 = 1, \ b(6) = 3
= i = 3, \ i = 4, \ i = 5, \ i = 6, \ i = 6, \ [10,13], \ v_6 = 1, \ b(6) = 3
```

Ejemplo:

j	1	2	3	4	5	6	7	8
v_j	3	2	4	1	2	5	2	1
b(j)	0	0	0	1	2	1	3	5
OPT(j)	3	3	4	4	5	8	8	8

- **Heaps**: Un heap binario *H* es un árbol binario tal que:
 - o *H.left* y *H.right* son heaps binarios
 - \circ H.value > H.left.value.
 - \circ *H.value* > *H.right.value*.

Mantener los heaps balanceados permite:

- o Minimizar la altura del árbol representado.
- Implementar el heap de forma compacta en un arreglo.

- Al extraer, sacamos el elemento más prioritario (raíz) y reemplazamos por el menos prioritario (última hoja). Luego intercambiamos con el hijo más prioritario hasta que el heap este nuevamente balanceado.
- Heapsort: Tomamos un arreglo, lo pasamos a árbol binario, y lo ordenamos para que quede como un "max" heap. Luego, hacemos extracción del nodo raíz (elemento mayor) y lo ponemos en nuestra lista ordenada. Este paso se repite hasta que no queden nodos.
- MST: Dado un grafo no dirigido G, un subgrafo $T \subseteq G$ se dice un **árbol de cobertura mínimo** o MST de G si:
 - 1. T es un árbol.
 - 2. V(T) = V(G).
 - 3. No existe otro MST T' para G con menor costo total.

• Algoritmo de Prim:

- 1. Agrego un nodo arbitrario a mis set { Node }.
- 2. Dentro de todos los posibles nodos no visitados que pueden alcanzar los nodos del set, elijo el que tiene menor costo, y agrego el nodo a mi set.
- 3. Repito el paso 2 hasta visitar todos los nodos.

Algoritmo de Kruskal:

- 1. Elijo la arista con menor costo y la agrego a mi set $\{edge\}$.
- 2. Si no forma un ciclo, la agrego al set.
- 3. Repito el paso hasta conectar todos los nodos. Es decir, estén en el mismo árbol.

```
Prim(s):
         Q \leftarrow cola de prioridades vacía
         T ← lista vacía
         for u \in V - \{s\}:
              d[u] \leftarrow \infty; \pi[u] \leftarrow \emptyset; Insert(Q, u)
         d[s] \leftarrow 0; \quad \pi[s] \leftarrow \emptyset; \quad \text{Insert}(Q, s)
         while Q no está vacía:
              u \leftarrow \text{Extract}(Q)
               T \leftarrow T \cup \{(\pi[u], u)\}
              for v \in \alpha[u]:
                   if v \in Q:
                        if d[v] > cost(u, v):
11
                             d[v] \leftarrow cost(u, v)
12
                              \pi[v] \leftarrow u
         return T
```

```
 \begin{aligned} & \text{Kruskal}(G) \colon \\ & 1 & E \leftarrow E \text{ ordenada por costo, de menor a mayor} \\ & 2 & T \leftarrow \text{ lista vac} \text{ a} \\ & 3 & \text{ for } e \in E \colon \\ & 4 & \text{ if } Agregar \ e \ a \ T \ no \ forma \ ciclo :} \\ & 5 & T \leftarrow T \cup \{e\} \\ & 6 & \text{ return } T \end{aligned}
```

Algoritmo de Dijkstra:

- 1. Comienzo visitando un nodo arbitrario s con costo 0 (d[s] = 0). Los demás nodos comienzan con costo ∞ $d[u \in V \{s\}] = \infty$.
- 2. Calculo los costos que hay hacia los otros nodos desde el nodo que visite. Guardo estos con sus nodos correspondientes.
- 3. Visito el nodo con menor costo.
- Repito pasos 2 y 3 actualizando los costos correspondientes, hasta visitar todos los nodos.
- 5. Es un algoritmo *greedy*.

```
Dijkstra(s):

for u \in V - \{s\}:

u.color \leftarrow blanco; \ d[u] \leftarrow \infty; \ \pi[u] \leftarrow \varnothing

s.color \leftarrow gris; \ d[s] \leftarrow 0; \ \pi[s] \leftarrow \varnothing

Q \leftarrow cola de prioridades vacía

Insert(Q, s)

while Q no está vacía:

u \leftarrow \text{Extract}(Q)

for v \in \alpha[u]:

if v.color = blanco \lor v.color = gris:

if d[v] > d[u] + cost(u, v):

d[v] \leftarrow d[u] + cost(u, v); \ \pi[v] \leftarrow u

if v.color \leftarrow blanco:

v.color \leftarrow gris; \ \text{Insert}(Q, v)

u.color \leftarrow negro
```

• Algoritmo de Bellman-Ford:

- 1. Comienzo desde un nodo arbitrario s con costo 0 (d[s] = 0). Los demás nodos comienzan con costo ∞ $d[u \in V \{s\}] = \infty$.
- 2. El algoritmo posee |V| 1 iteraciones.
- 3. Por cada una de estas |V|-1 iteraciones, visito todas las aristas $(u,v) \in E$.
- 4. Si la suma de llegar al nodo v con el costo de (u, v) es menor al costo que tenía guardado anteriormente, actualizo el costo de llegar a ese nodo.
- 5. NO es un algoritmo greedy.

```
BellmanFord(s):

1 for u \in V:

2 d[u] \leftarrow \infty; \pi[u] \leftarrow \emptyset

3 d[s] \leftarrow 0

4 for k = 1 \dots |V| - 1:

5 for (u, v) \in E:

6 if d[v] > d[u] + cost(u, v):

7 d[v] \leftarrow d[u] + cost(u, v)

8 \pi[v] \leftarrow u
```