

HTTPS://www.youtube.com/watch?v=25sSFIPr9Dw HTTPS://www.youtube.com/watch?v=phM7LIEQ

LA CONTAMINACIÓN DEL AIRE POR DIVERSOS CONTAMINANTES ATMOSFÉRICOS

LA METEOROLOGÍA EN EL COTEXTO DE LOS ESTUDIOS DE CONTAMINACIÓN ATSMOFÉRICA

REPASO

CARHUALLANQUI MEJIA, PEGGI SICHA HUAMAN RUDY

DISPERSIÓN DE CONTAMINANTES

ES UN MODELO MATEMÁTICO QUE PERMITE CALCULAR LA CONCENTRACIÓN DE UN CONTAMINANTE DADO, EN UN PUNTO ESPECÍFICO, A PARTIR DE UNA EMISIÓN PRODUCTO DE UNA O VARIAS FUENTES, PARA UNAS CONDICIONES METEOROLÓGICAS ESPECÍFICAS.

EMPÍRICOS

SEMI-EMPÍRICOS

Numéricos

Y FÍSIÉAS

Análisis estadístico

Modelos Gaussianos, Eulerianos y

I ACRANCIANOS

	Macroescala	escala Mesoescala		Microescala
	Global	Continental -Regional	Regional-Local	Local
Modelo				
Eulerianos	Х	Х		
Lagrangianos	Х	Х		
Gaussianos (AERMOD , CALLPUFF)			Х	Х
WRF-Chem		Х	Х	Х

Mantienen las Características químicas

AERMOD

Environmental Topics

Support

Processors

Workshops

Conferences and

Reports and Journal Articles

Meteorological Data and

About EPA

Support Center for Regulatory Atmospheric Modeling (SCRAM)

Laws & Regulations

CONTACT US

Search EPA.gov

SCRAM Home Air Quality Dispersion Modeling -Air Quality Models Preferred and Recommended Model Applications and Models Modeling Guidance and

These refined dispersion models are listed in Appendix W (PDF) (45 pp, 803 K, About PDF) and are required to be used for State Implementation Plan (SIP) revisions for existing sources and for New Source Review (NSR) and Prevention of Significant Deterioration (PSD) programs. The models in this section include the following:

AERMOD Modeling System - A steady-state plume model that incorporates air dispersion based on planetary houndary layer turbulence structure and scaling concepts, including treatment of both

https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-andrecommended-models

TUTORIAL (INGLES-ESPAÑOL)

https://www.youtube.com/watch?v=MbwDe7hQ yo&list=PLmi4nBhjnjsk0anh7x6eipm6D2xh7-EUp&index=1

CALPUFF

TUTORIAL (INGLES-ESPAÑOL)

https://www.youtube.com/watch?v=B1dpm54G_e4&list= PLmi4nBhjnjskBPiQ7Vgmz5xKvY2u6YOkA

E^xponent^{*}

» Atmospheric Sciences

- » CALPUFF Model
- » Download
- > FAQs
- » CALPUFF Training
- » Data Sets
- » Regulatory Dispersion Modeling Services
- » Regulatory Support
- » British Columbia WRF Dataset

CALPUFF Modeling System Downloads

Sections

- » CALPUFF Documentation
- » CALPUFF System: Official USEPA-Approved Version
- » CALPUFF System: Version 7
- » CALPUFF System: Version 6

CALPUFF Documentation

User Guides

- » CALMET (Version 5) User Guide (1.4 MB)
- » CALPUFF (Version 5) User Guide (3.2 MB)

MMS-Sponsored CALPUFF Model Updates (March 2006)

- » Project Overview (18.7 KB)
- » Volume 1: Technical Upgrades (1.90 MB)
- » Volume 1: Appendix (Sea Surface Temperature Datasets) (9.37 MB)
- » Volume 2: Updates to CALMET and Preprocessors Users Guide (4.14 MB)
- » Volume 3: Updates to CALPUFF and Postprocessors Users Guide (4.49 MB)
- Model Evaluation Paper: Scire, J.S., D.G. Strimaitis and F.R. Robe, 2005: Evaluation of Enhancements to the CALPUFF International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Sissi (M.

New Chemistry Updates (v6.4) - Nov 2010

WRF

TUTORIAL (INGLES-ESPAÑOL)

https://www.youtube.com/watch?v=HWE6UdJli_M

https://www2.mmm.ucar.edu/wrf/users/download/get_s ources.html

CAPACITACIÓ DEL IGP (ACCESO LIBRE)

https://www.facebook.com/igp.peru/videos/174617327310658/

¿COMO FUNCIONA WRF-ARW?

ALGUNOS RESULTADOS

WPS geogrid.exe ungrib.exe metgrid.exe WRF real.exe wrf.exe ndown.exe PostPS NCL

> ARWpost Rip

Distribución espacial de la precipitación (mm/24h) para el dominio de 6 km, promedio de todos los períodos estudiados; a – TRMM, b – PISCO, c – CTR, d – MP_LP, e – C_BMJ, f – BL_MYJ, g – C_GRELL3 y h – MP_MR

DISPERSIÓN GAUSSIANO

CARACTERÍSTICAS:

- Es el modelo más usado.
- Emplea cálculos relativamente simples.
- Determina la concentración de contaminantes en el nivel del suelo.
- Fuentes puntuales y terrenos planos.

Se supone:

- El penacho se desarrolla en la dimensión horizontal.
- Se requiere dos parámetros de dispersión (sy y sz)

C(x,y,z): Concentración del gas o partícula a nivel del suelo en dirección x (ug/m3)

Q: Intensidad de emisión de la fuente (g/s)

U: Velocidad de viento (m/s)

H: Altura efectiva del penacho (m)

h: Altura de la chimenea (m)

Δh: elevación del penacho (m)

σ_y ,**σ**_z: Desviación estándar de la distribución de la concentración en las direcciones Y y Z (m)

$$C(x,y,z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{y^2}{2{\sigma_y}^2} + \frac{(z-H)^2}{2{\sigma_z}^2}\right)$$

Coeficientes de Dispersión CAMPO ABIERTO SEGÚN BRIGGS

σ_v (metros)

A 0,22x(1+0,0001x)-1/2

B 0,16x(1+0,0001x)-1/2

C 0,11x(1+0,0001x)-1/2

D 0,08x(1+0,0001x)-1/2

 $E 0.06x(1+0.0001x)^{-1/2}$

F 0,04x(1+0,0001x)-1/2

σ₇ (metros)

A 0,20x

B 0,12x

C 0,08x(1+0,0002x)-1/2

D 0,06x(1+0,0015x)-1/2

 $E 0.03x(1+0.0003x)^{-1}$

F 0,016x(1+0,0003x)-1

dirección del viento

Perfil de concentración

Temperatura de salida

Mayor temperatura \rightarrow Mayor flotabilidad de gases (ascenderán a mayor altura)

Velocidad del viento

Mayor velocidad del viento → Menor altura de pluma (menor dispersión)

Altura de la chimenea

Mayor altura de chimenea → Mayor dispersión

right

Velocidad de emisión

Mayor velocidad de emisión \rightarrow Mayor altura de pluma

CÁLCULO DEL LEVANTAMIENTO DEL PENACHO

CONDICION NEUTRAL

$$\Delta h = 0.35 \, \frac{W_F d}{U} + 2.64 \, \frac{(Q_h)^{0.5}}{U}$$

CONDICION ESTABLE

$$\Delta h = -1.04 \, \frac{W_F d}{U} + 2.24 \, \frac{(Q_h)^{0.5}}{U}$$

Condiciones Inestables (Carson y Moses)

$$\Delta h = 3.47 \frac{W_F d}{U} + 5.15 \frac{(Q_h)^{0.5}}{U}$$
 (m)

$$Q_h = \frac{\pi d^2}{4} W_F \frac{P}{R_s T_F} (T_F - T) c_P \left(\frac{\text{kjouls}}{\text{s}} \right)$$

Donde:

W_F: Velocidad de salida del gas de la chimenea (m/s)

U: Velocidad del viento (m/s) a la altura de emisión

d: Diámetro de la chimenea (m)

P: Presión atmosférica (mb)

R_a: Constante específica del gas de emisión (mb.m³.mol-¹.K-¹)

T_E: Temperatura de salida del gas (K)

T: Temperatura del aire a la altura de emisión (K)

c_p: Calor específico a presión cte del gas de emisión (Joules/g.K).

Otras expresiones generales

Holland

Ecuación de Holland
$$\Delta h = \frac{W_F d}{U} (1.5 + 0.0096 \ \frac{Q_h}{W_F, d}) \qquad (m)$$

$$Q_h = \frac{\pi \ d^2}{4} W_F \frac{P}{R_s T_F} (T_F - T) c_F \ (\frac{\text{kjouls}}{\text{s}})$$

Ecuación de Concawe

$$\Delta h = 4.71 \frac{(Q_A)^{0.42}}{U^{0.691}}$$
 (m)
 $Q_h = \frac{\pi d^2}{4} W_F \frac{P}{R_e T_F} (T_F - T) c_F (\frac{\text{kjouls}}{\text{s}})$

Figura 1. Influencia del contenido de azufre.

Figura 3. Influencia de la velocidad de salida.

Figura 2. Influencia de la temperatura.

Figura 4. Influencia de la velocidad del viento

EJE Y: CONCENTRACIÓN EJE X: DISTANCIA

Concawe:
$$\Delta h = 4.71 \frac{(Q_h)^{0.444}}{(u_s)^{0.694}}$$

Holland:
$$\Delta h = \frac{V_s d}{u_s} \left(1.5 + 0.0096 \frac{Q_h}{V_s d} \right)$$

Carson & Moses:
$$\Delta h = -0.029 \frac{V_s d}{u} + 2.62 \frac{(Q_h)^{1/2}}{u}$$

EJE Y: CONCENTRACIÓN EJE X: DISTANCIA

