

無機化学

目次			6.5 6.6	二酸化窒素	_
			7	リン	14
第Ⅰ部	非金属元素	3	7.1	リン	14
1	水素	3	7.2	十酸化四リン	14
1.1	性質	3	7.3	リン酸	14
1.1	同位体	3		⊭ ≠	4 5
1.3	製法	3	8	炭素 炭素	15
1.4	反応	3	8.1	一酸化炭素	
1.4	χ/ι	3	8.2	二酸化炭素	
2	貴ガス	3	8.3	一敗化灰茶	10
2.1	性質	3	9	ケイ素	17
2.2	生成	3	9.1	ケイ素	17
2.3	ヘリウム	3	9.2	二酸化ケイ素	17
2.4	ネオン	3			
2.5	アルゴン	3	単Ⅱ邨	3 典型金属	19
3	ハロゲン	4	No 11 Hb	· 八工业阀	10
3.1	単体・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4	10	アルカリ金属	19
3.1	単体		10.1	単体	19
3.3	ハロゲン化銀	5 c	10.2	水酸化ナトリウム(苛性ソーダ)	20
	次亜塩素酸塩・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
3.4	久田塩系酸塩・・・・・・・・・・・・・・ 塩素酸カリウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6		0.44—±	
3.5	塩糸政力リケム	6	11	2族元素	22
4	酸素	7	11.1	単体	
4.1	酸素原子	7	11.2	酸化カルシウム(生石灰)	
4.2	酸素	7	11.3	水酸化カルシウム(消石灰)	
4.3	オゾン	7	11.4	(11, 11, 1)	
4.4	酸化物	8	11.5		
4.5	水	8		硫酸カルシウム	
_	74:44	•	11.7	伽酸ハリソム	23
5	硫黄	9	12	12 族元素	24
5.1	硫黄	9	12.1	単体	24
5.2	硫化水素		12.2	酸化亜鉛 (亜鉛華)・水酸化亜鉛	25
5.3	二酸化硫黄(亜硫酸ガス)		12.3	塩化水銀 (I)・塩化水銀 (II)	25
5.4	硫酸	11			
5.5	チオ硫酸ナトリウム(ハイポ)	11	13	アルミニウム	26
5.6	重金属の硫化物	12	13.1	アルミニウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6	窒素	12	13.2	酸化アルミニウム・水酸化アルミニウム	
6.1	窒素	12	13.3	ミョウバン・焼きミョウバン	26
6.2	アンモニア	12	14	スズ・鉛	27
6.3	一酸化二窒素(笑気ガス)..........	13	14.1	単体	
6.4	一酸化窒素	13	14.2	塩化スズ(Ⅱ)	
			I		

	酸化鉛 (IV)	
第Ⅲ部	图 遷移金属	29
15	鉄・コバルト・ニッケル	29
15.1	鉄	
15.2	硫酸鉄(II)7水和物	
15.3	塩化鉄(Ⅲ)6水和物	31
15.4	鉄イオンの反応	31
15.5	塩化コバルト (II)	31
15.6	硫酸ニッケル(Ⅱ)	31
16	銅	32
16.1	銅	32
16.2	硫酸銅 (II) 5 水和物	33
16.3	銅 (II) イオンの反応	33
16.4	銅の合金	33
17	銀	34
17.1	銀	
17.2	銀 (I) イオンの反応	
17.3	難溶性化合物の溶解性	
18	クロム・マンガン	36
18.1	単体	
18.2	クロム酸カリウム・二クロム酸カリウム	36
18.3	過マンガン酸カリウム	36
18.4	マンガンの安定な酸化数	37
第Ⅳ音	B APPENDIX	38
Α	気体の乾燥剤	38
В	水の硬度	38
С	金属イオンの難容性化合物	39
D	錯イオンの命名法	40
E	金属イオンの系統分離	41

第一部

非金属元素

1 水素

1.1 性質

- ① 色② 臭の③
- 最も④
- 水に溶け⑤

1.2 同位体

 $^{1} \rm{H}$ 99%以上 $^{2} \rm{H}$ (©)0.015% $^{3} \rm{H}$ (⑦) 微量

1.3 製法

• ナフサの電気分解 工業的製法

・ 8 に⑨ を吹き付ける 工業的製法・ 10 (11) の電気分解

• 10 (11)

• 12 ½13

金属と希薄強酸

flet Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

• 水素化ナトリウムと水

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
- 加熱した酸化銅(Ⅱ)と水素

2 青ガス

14 , 15 , 16 , 17 , Xe, Rn

2.1 性質

- 18 色19 臭
- 第 18 族元素であり、電子配置がオクテットを満たすため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が20
- 電気陰性度が21

2.2 生成

⁴⁰K の電子捕獲

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式: $Ar N_2$, O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl ₂ Br ₂		I_2				
分子量	小 —			大				
分子間力	弱 —	弱 ————————————————————————————————————						
反応性	強二	強						
沸点・融点	低 —							
常温での状態	22	23	24	25)				
色	26 色	27 色	28 色	29 色				
特徴	30 臭	31 臭	揮発性	32 性				
H ₂ との反応	33 でも	34 でも35 で	36 して	高温で平衡状態				
112 6 77 12 110	爆発的に反応	爆発的に反応	37 により反応	38 して39 により一部反応				
水との反応	水を酸化して酸素と	41)	42	43				
水との次心	40 反応	41)	(4 <u>2</u>)	44)				
用途	保存が困難	45 による	$C=C \not \sim$	(47) 反応で				
11/67	Kr や Xe と反応	46 作用	C≡C の検出	48 色				

3.1.2 製法

• 54

•	フッ化水素ナトリウム KHF ₂ のフッ化水素 HF 溶液の
	電気分解 工業的製法

	$KHF_2 \longrightarrow KF +$	HF'	
•	49	の電気	分解 塩素 工業的製法
•	50	に51	を加えて加熱 塩素
•	<u>52</u> <u>2</u> (53 塩素	

塩素

• 臭化マグネシウムと塩素 臭素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$

<u>ك 55</u>

ヨウ化カリウムと塩素 ヨウ素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

•	フッ素と水素	
•	塩素と水素	
•	臭素と水素	
•	ヨウ素と水素	
•	フッ素と水	l
	塩素と水	
•	<u></u> □糸 ⊂ 小	
	臭素と水	

3 ハロゲン 3.2 ハロゲン化水素

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow \\ + 2\,\mathrm{H_2O}$

 Cl_2,HCl,H_2O

↓ 56 に通す (HCl の除去)

 Cl_2,H_2O

↓ (57) に通す (H₂O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 ...58

+ VII	59	60	
+ V	61)	62	
+ III	63	64	
+ I	65	66	

3.2 ハロゲン化水素

3.2.1 性質

化学式	-	HF		HCl		HBr	HI
色・臭い			臭				
沸点	2	−85°C			−67°C	−35°C	
水との反応				69	0)		
水溶液	70			71		72	73
(強弱)		74	«	75	< 76	< 77	
用途	78	と反応	79		の検出	半導体加工	インジウムスズ
川瓜	⇒ポリ	エチレン瓶	各種工業		十等件加工	酸化物の加工	

3.2.2 製法

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応
- フッ化水素酸(水溶液)がガラスを侵食する反応
- 89 による90 の検出

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF		AgCl		AgBr		AgI	
固体の色	91	色	92	色	93	色	94	色
水との反応	95			96			•	
光との反応	97)			感	光性 (-	→98)	

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮
- ・ ハロゲン化水素イオンを含む水溶液と99

3.4 次亜塩素酸塩

3.4.1 性質

100 剤として反応(101・102 作用)

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素
- 北輪化みょうわまた行主
- 水酸化カルシウムと塩素

3.5 塩素酸カリウム

化学式: 103

3.5.1 性質

(104) の生成((105) を触媒に加熱)

4 酸素

4.1 酸素原子

同106 体:酸素 (O_2) ,107 (O_3)

地球の地殻に108 存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 121 色122 臭の123
- 沸点 −183°C

4.2.2 製法

124
 125 (126
 128 (129
 130 の熱分解

4.2.3 反応

(131) 剤としての反応

4.3 オゾン

化学式: 132

4.3.1 性質

- (133) 臭((134) 臭)を持つ(135) 色の(136)(常温)
- ・水に137
- <u>138</u> <u>139</u> 作用

4.3.2 製法

酸素中で(146) /強い(147) を当てる

4.3.3 反応

- 148 剤としての反応湿らせた149 を150 色に変
 - 色 [

4.4 酸化物 4 酸素

酸化物

		塩基性	上酸化物		Ĩ	両性酸化	匕物	酢	始性酸化	物	
元素	151			元素	152		元素	(153) 5	元素	
水との反応		154			(155)			156	(157))	
中和		158	と反応		(159)		と反応	(160) <i>と</i> [
両性酸化物 …	. 161		(10	32)	,163	(164)) ,165	(166)	,167)	(168))*1

両性酸化物 ... 161

 $\bigcirc O_2 + H_2O \longrightarrow H_2CO_3$

$$\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$$

4.4.1 反応

• 酸化銅(II)と塩化水素

•	酸化アルミニウムと硫酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

4.5 水

4.5.1 性質

• 169 分子

周りの4つ	つの分子と170	結合
-------------------------	----------	----

• 異常に171 沸点

• 172 結晶構造(密度:固体173 液体)

• 特異な174

4.5.2 反応

• 酸化カルシウムと水

,	一酸化窒素と水	

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175	硫黄	176	硫黄	177	硫黄
化学式	(178	3)	(179	9	(18	0
色	181	色	182	色	(183	色
構造	184	結晶	(185)	結晶	(186)	固体
融点	113	в°С	119	9°С	不	定
構造	SSS				S	
CS ₂ との反応	187		188		189	

CS₂··· 無色・芳香性・揮発性 ⇒ 190

触媒

5.1.2 反応

• 高温で多くの金属 (Au, Pt を除く) と反応

例Fe

空気中で191 色の炎を上げて燃焼

5.2 硫化水素

化学式: 192

5.2.1 性質

• 193 色194 身

$$K_1 = 9.5 \times 10^{-8} \text{ mol/L}$$

 $K_2 = 1.3 \times 10^{-14} \text{ mol/L}$

198 剤としての反応

重金属イオン M²⁺ と 199

を生成

5.2.2 製法

硫化鉄(Ⅱ)と希塩酸

・ 硫化鉄(Ⅱ)と希硫酸

5.2.3 反応

• 硫化水素とヨウ素

酢酸鉛(Ⅱ)水溶液と硫化水素(200) の検出)

空欄編

5.3 二酸化硫黄 (亜硫酸ガス)

化字式:[201]	電子式:	

5.3.1 性質

- 202 色、203 臭の204
- 水に205
- 206 性

207

$$K_1 = 1.4 \times 10^{-2} \text{ mol/L}$$

• 208 剤 (209 作用)

 • 210
 剤(211)
 などの強い還元剤に対して)

5.3.2 製法

硫黄や硫化物の②12 工業的製法
 ②13 と希硫酸
 ②14 と②15

5.3.3 反応

• 二酸化硫黄の水への溶解

二酸化硫黄と硫化水素

- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216 色217 臭の218
- ・水に219
- 溶解熱が220
- ②21) を加えて希釈
- 222 性で密度が223 く、

224 が大きい 濃硫酸

- 225 性・226 作用 **濃硫酸**
- 227 希硫酸

228

 $K_1 > 10^8 \text{mol/L}$

②29 濃硫酸 (②30 、②31) の濃度が 小さい)

232 剤として働く 熱濃硫酸

②33 (②34 ,②35)、②36 と難容性の塩を生成 希硫酸

5.4.2 製法

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

• スクロースと濃硫酸

• 水酸化ナトリウムと希硫酸

• 銅と熱濃硫酸

• 銀と熱濃硫酸

• 塩化バリウム水溶液と希硫酸

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: 241)

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- ②44 剤として反応例水道水の脱塩素剤(カルキ抜き)②45)

$$\begin{array}{c} : \ddot{\mathbf{0}} : & \vdots \ddot{\mathbf{0}} : \\ \vdots \ddot{\mathbf{0}} : & \vdots \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \ddot{\mathbf{0}} : \\ \ddot{\mathbf{0}} : \ddot{\mathbf$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)					中性	・塩基性	で沈澱(酸性	では溶解)	
Ag_2S	HgS C	uS Pl	oS Sr	nS Co	dS	NiS	FeS	ZnS	MnS
246 色	247 色 248	色 249	色 250	色 251	色	252 色	253	色 254 色	255 色

256 イオン化傾向

②58 塩の溶解度積 (K_{sp}) ②59

6 窒素

6.1 窒素

化学式: N_2

6.1.1 性質

- 260 色261 臭の262
- 空気の 78% を占める
- 水に溶け263 (264) 分子)
- 常温で265 (食品などの266))
- 高エネルギー状態 (267 · 268) では反応

6.1.2 製法

269 工業的製法270 の271

6.1.3 反応

• 窒素と酸素

• 窒素とマグネシウム

6.2 アンモニア

化学式: 272

6.2.1 性質

- 273 色274 臭の275
- 276 結合
- 水に277
- 279 性

280

$$K_1 = 1.7 \times 10^{-5} \text{ mol/L}$$

置換)

- 281 の検出
- 高温・高圧で二酸化炭素と反応して、282 を生成

(278)

6.2.2 製法

•	(283)			工業	的製法			
	284	温285	圧で、	286		(287))	触媒
•	288			と 289			を混	見ぜて
	加熱							

6.2.3 反応

- 硫酸とアンモニア
- 塩素の検出

• アンモニアと二酸化炭素

6.3 一酸化二窒素(笑気ガス)

化学式: 290

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 291 効果

6.3.2 製法

(292)

の熱分解

6.4 一酸化窒素

化学式: 293

6.4.1 性質

- 294 色295 臭の296
- 中性で水に溶けにくい
- 空気中では297 とすぐに反応
- 血管拡張作用·神経伝達物質

6.4.2 製法

298 と **299**

6.4.3 反応

酸素と反応

6.5 二酸化窒素

化学式: 300

6.5.1 性質

• 301 色302 臭の303

• 水と反応して304 性(305 の原因)

常温では306

(307) 色) と308)

• 140°C 以上で熱分解

140 0 以上(於方所

6.5.2 製法

309 と310

6.6 硝酸

化学式: 311

6.6.1 性質

- 312 色313 臭で314 性の315
- 水に316
- 317 性

318

 $K_1 = 6.3 \times 10^1 \text{mol/L}$

で検出

- ③19 に保存(③20)
- 321 剤としての反応 希硝酸

322 剤としての反応 濃硝酸

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- ・ 323 ,324 ,325 ,326 ,327 は328 が生じて不溶 濃硝酸⇒329
- 330 (331) :332 =3:1) は、Pt,Au も溶解
- $NO_3^ l\sharp 333$ $\Rightarrow 334$

6.6.2 製法

• 335

触媒で337		を33
	触媒で(337)	触媒で(337)

3. 340 と反応

 • 341
 に342
 を加えて加熱

6.6.3 反応

• アンモニアと硝酸

• 硝酸の光分解

• 亜鉛と希硝酸

• 銀と濃硝酸

7.2 十酸化四リン 7 リン

7 リン

7.1 リン

7.1.1 性質

三種類の同343 体がある

名称	344 リン	344) リン 345 リン	
化学式	346	347	P_4
融点	44°C	590°C*2	610°C
発火点	35°C 348 に保存	260°C 349	-
密度	$1.8\mathrm{g/cm^3}$	$2.16\mathrm{g/cm^3}$	$2.7\mathrm{g/cm^3}$
毒性	350	351)	352
構造	PPP	P = P $P = P$ $P = P$	略
CS ₂ への溶解	353	354	355

7.1.2 製法

• リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法

- 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2×10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: 356

7.2.1 性質

- 白色で昇華性のある固体
- 357 (水との親和性が358)
- 乾燥剤
- 水を加えて加熱すると反応(359)

7.2.2 製法

360

7.2.3 反応

水を加えて加熱

7.3 リン酸

化学式:361

7.3.1 性質

• 362 性

363 mol/L $K_1 = 7.5 \times 10^{-3}$

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和
- リン酸カルシウムとリン酸が反応して重過リン酸石灰が 生成
- リン酸カルシウムと硫酸が反応して過リン酸石灰が生成

8 炭素

8.1 炭素

8.1.1 性質

炭素の同364 体

- 365
- (366) ((367)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• 368

用途医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

カーボンナノチューブ

用途水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	369	370
特徴	(371) 色(372) で屈折率が大きい固体	373 色で374 がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	375 方向の376 結晶	(377) 構造 (378))
硬さ	379	(380)
沸点	(381)	382
電気伝導性	(383)	(384)
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式:385

8.2.1 性質

- 394 色395 臭で396 な気体
- 赤血球のヘモグロビンの397 に対して 強い (398)
- 399 性で水に溶け400 。(401) 置換)
- 402 性、高温で403 性(404) との親和性が非常 に高い)

8.2.2 製法

• 405 に406 を吹き付ける 工業的製法

• 炭素の407

408	に409	 を加えて加熱
	408	(408) (C(409)

• 410	12 <u>411</u>	 を加えて加熱

8.2.3 反応

燃焼 $CO + O_2 \longrightarrow 2CO_2$

鉄の精錬

8.3 二酸化炭素

8.3.1 性質

- 412 色413 臭で414 性(固体は415)
- 大気の 0.04% を占める
- 水に416
- 417 性 (418)

 $K_1 = 4.3 \times 10^{-7} \text{ mol/L}$

8.3.2 製法

8.3.3 反応

- 二酸化炭素と水酸化ナトリウム
- (423) に通じると424 しさらに通じると (425)

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 426 色で427 がある428 結晶
- (429)
- (430) に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が431) (金属は高温で電気伝導性が432))

9.1.2 製法

9.2 二酸化ケイ素

化学式: 437

9.2.1 性質

- 438 色(439) の(440) 結晶
- (441)
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 442 酸化物
- (443) (444) ・吸着剤)の生成に用いられる
 多孔質、適度な数の(445)

9.2.2 反応

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

シリカゲル生成過程での構造変化

1.	二酸化ケイ素	(シリカ)	SiO_2	

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

\mathcal{L}

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で455 金属
- 全体的に反応性が高く、456 中に保存
- 原子一個あたりの自由電子が457個(458 い459 結合)
- 還元剤として反応

化学式	Li	Na	K	Rb	Cs	
融点	181°C	98°C	64°C	39°C	28°C	
密度	0.53	0.97	0.86	1.53	1.87	
構造		460	格子 (461)			
イオン化エネルギー	大					
反応力	小 大					
炎色反応	462 色	463 色	464 色	465 色	466 色	
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)	

10.1.2 製法	厶
-----------	---

水酸化物や塩化物の④67				(468)	法) 工業的製法
469	添加	(470))		

10.1.3 反応

•	ナトリウムと酸素

•	ナ	ŀ	IJ	ウ	Δ	٤	塩素

•	ナトリウムと水	

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 471

10.2.1 性質

- 472 色の固体
- 473 性
- 水によくとける(水との親和性が474)
- 475 剤
- 強塩基性

(476)

 $K_1 = 1.0 \times 10^{-1} \text{mol/L}$

空気中の477

と反応して、純度が不明

酸の標準溶液(478)

)を用いた中和滴定で濃度決定

10.2.2 製法

(479)

Ø(480)

(イオン交換膜法) 工業的製法

10.2.3 反応

• 塩酸と水酸化ナトリウム

• 塩素と水酸化ナトリウム

• 二酸化硫黄と水酸化ナトリウム

• 酸化亜鉛と水酸化ナトリウム水溶液

• 二酸化炭素と水酸化ナトリウム

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム		
化学式	481)	(482)		
色	483 色	484 色		
融点	850°C	485		
液性	486 性	487 性		
用途	488 や石鹸の原料	胃腸薬・ふくらし粉		

10.3.2 製法

10.3.3 反応

- Na₂CO₃ 513
- NaHCO₃ $\left\{\begin{array}{c} \underline{514} \\ \underline{515} \end{array}\right.$

$$K_1 = 1.8 \times 10^{-4}$$

$$K_1 = 5.6 \times 10^{-11}$$

$$K_2 = 2.3 \times 10^{-8}$$

11 2 族元素

516 ,517 ,518

11.1 単体

11.1.1 性質

化学式	519	520	521	522	523
融点	1282°C	649°C	839°C	769°C	729°C
密度 (g/cm ³)	1.85	1.74	1.55	2.54	3.59
524 力	小 -				t
水との反応	525	526	527	528	529
M(OH) ₂ の水溶性	530 性 (5	31 性)	532 性	(533)	性)
難溶性の塩	534		535		
炎色反応	536	537	538	539	540
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

1	1	1	1.2	製法

塩化物の541

工業的製法

11.1.3 反応

• マグネシウムの燃焼

マグネシウムと二酸化炭素

- マグネシウムと二酸化炭素
- カルシウムと水

11.2 酸化カルシウム(生石灰)

化学式: 542

11.2.1 性質

• 543 色

• 544 との親和性が545

(546)

)

• 547 酸化物

• 水との反応熱が548

(549)

11.2.2 製法

550

Ø 551

11.2.3 反応

• コークスを混ぜて強熱すると、552

(553)

)が生成

554 と反応して555

が生成

11.3 水酸化カルシウム(消石灰)

固体

化学式: 556

11.3.1 性質

- 557 色
- 水に558
- 559

560

 $K_1 = 5.0 \times 10^{-2}$

• 水溶液は561

11.3.2 製法

11.3.3 反応

• 塩素と反応して、564

が生成

580°C以上で565

二酸化炭素との反応

二段旧次系との次心

• 塩化アンモニウムとの反応

The state of the s

11.4 炭酸カルシウム(石灰石)

化学式: 566

11.4.1 性質

- 567 色で、水に568
- 569 の形成

11.4.2 反応

- 800°C 以上で570
- 571 を多く含む水に572

11.5 塩化マグネシウム・塩化カルシウム

化学式: 573 · 574

11.5.1 性質

- <u>575</u> 性があり、水に<u>576</u> (水との親和性が

) 577

578 剤 塩化カルシウム、579 剤

11.5.2 製法

- 海水から得た580を濃縮 塩化マグネシウム
 - 工業的製法
- 581
- (582)
 - 塩化カルシウム

工業的製法

11.6 硫酸カルシウム

化学式:583

11.6.1 性質

584 を約 150°C で加熱すると、**585** が生

成

586 を加えると、587 ・588 ・589 して

に戻る

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: 591

11.7.1 性質

- 592 色で、水に593
- 固体
- 反応性が594 く、X線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	(595)	596	597)
融点	420°C	321°C	−39°C
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	598 色の599 ↓	600 色の601 ↓	602 色の603 ↓
(沈澱条件)	(604)	(605)	(606)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	607 を作りやすい
44,法	608 元素	⇒ イタイイタイ病	(609)
用途	(鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は611 や612 に利用
- HgS は 450°C で消火させると613 色に変化

12.1.2 製法

12.1.3	3 反応
• [高温の水蒸気と反応 亜鉛
• ‡	塩酸と反応 亜鉛
• 7	水酸化ナトリウム水溶液と反応 <mark>亜鉛</mark>

閃亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法

12.2 酸化亜鉛 (亜鉛華)・水酸化亜鉛

化学式: 614 · 615

12.2.1 性質

• 616 色で、水に617

固体

- 酸化亜鉛は618
- 619 酸化物/水酸化物

620 ·(強) 621 と反応 Zn²⁺ は、622 とも

623 とも錯イオンを形成

12.2.2 製法

• 亜鉛を燃焼 **酸化亜鉛** 工業的製法

• 亜鉛イオンを含む水溶液に、少量の624 を加える 水酸化亜鉛

12.2.3 反応

• 酸化亜鉛と塩酸

• 酸化亜鉛と水酸化ナトリウム水溶液

• 水酸化亜鉛と塩酸

• 水酸化亜鉛と水酸化ナトリウム水溶液

水酸化亜鉛の過剰な625

との反応

12.3 塩化水銀(Ⅱ)・塩化水銀(Ⅱ)

化学式: 626 ・627

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒 **塩化水銀(I)**
- 白色で、水に少し溶ける固体で、猛毒 **塩化水銀 (Ⅱ)**

12.3.2 製法

水酸化銀(II)と水銀の混合物を加熱

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

- 密度が628 、629

金属

展性・延性が630 、電気・熱伝導率が631

∼ 電気・熱伝導性が高い金属 ─ 632 > 633 > 634 > 635

• 636 元素

(637) には638

となり反応しない)

表面の緻密な639 が内部を保護

(640 ,641 ,642 ,643 ,644 *4)

電気分解(645) 極)で人工的に厚い酸化被膜をつける 製品加工を646 と呼ぶ

イオン化傾向が647 、648 力が649

650 反応(多量の651)・652 が発生)

13.1.2 製法

• (653)

から得た(654)

(<u>655</u>) の溶融塩電解 **工業的製法**

バイヤー法

1. 656

を濃い657

水溶

液に溶解

2. 溶解しない不純物をろ過して、ろ液を水で希釈して Al(OH)3 の種結晶を入れる

3. 成長した658

を強熱

ホールエール法

1. (659)

Na₃AlF₆を融解し、酸化アルミニウムを溶解

2. 660 電極で電気分解

陽極 陰極

13.1.3 反応

1. アルミニウムの燃焼

2. アルミニウムと高温の水蒸気

3. テルミット反応

	- /	4, _	

*⁴ てつこに

13.2 酸化アルミニウム・水酸化アルミニ ウム

化学式: 661 ・662 酸化アルミニウムの別称: 663

13.2.1 性質

- 664) 色で、水に665
- 666 酸化物/水酸化物

(667) ・(強) (668) と反応

Al³⁺ は669 と錯イオンを形成し、670 とは形 成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の671 加える水酸化アルミニウム

13.2.3 反応

• 酸化アルミニウムと塩酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

• 水酸化アルミニウムと塩酸

• 水酸化アルミニウムと水酸化ナトリウム水溶液

13.3 ミョウバン・焼きミョウバン

化学式: 672

• (673)

13.3.1 性質

• 674 色で、水に675 固体

• 676

 $Al^{3+} + H_2O \Longrightarrow Al(OH)_2 + H^+$

 $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

 Al³⁺ は価数が677 陽イオン

粘土 (678) の(679) コロイド) で濁った水の浄水処理 (680)

水。の溶解

•	71	ヘンパ	门午		

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	(681)	682
特徴	灰白色で柔らかい金属	青白色で柔らかい金属
融点	232°C	328°C
密度	7.28	11.4
特性	683	元素
田公	(鉄にメッキ)	685 電池の686 極
用途 	687	の遮蔽

• 錫石 SnO_2 にコークスを混ぜて加熱 スズ 工業的製法

• 方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 鉛 工業的製法

【合金】

 $\mathrm{Cu} + \mathrm{Sn} \cdots \textbf{688}$

 $\operatorname{Sn} + \operatorname{Pb} \cdots 689$

14.1.2 製法

14.1.3 反応	
• 鉛と690 酸	٦
• 鉛と691 酸	
スズと692	
■ 鉛蓄電池における反応	
\int	正極
	負極

14.2 塩化スズ(Ⅱ)

14.2.1 性質

@3 剤として働く

14.2.2 製法

スズと694

14.2.3 反応

塩化鉄 (Ⅲ) 水溶液と塩化スズ (Ⅱ) 水溶液

[備考] 塩化スズ (IV) 水溶液と硫化水素

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

695 剤として働く

14.3.2 製法

酢酸鉛 (II) 水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV)に濃塩酸を加えて加熱

14.4 鉛の難溶性化合物

14.4.1 性質

- 加熱すると溶けやすい
- 696 紙を用いた697 の検出 (698 色)

第Ⅲ部

遷移金属

d 軌道・f 軌道 (内殻) の秋に電子が入っていき、最外殻電子の数は699

(700)

:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が702 く、融点が703 金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは704 色のものが多い
- 安定な705 を形成しやすい (706)
- 単体や化合物は707
 になるものが多い*5

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で710 性
- イオン化傾向が水素より[711] い
 - 712 と反応 (713 には714 となり反応しない)

- (715)
- と反応して[716] な[717] が生成(酸化被膜)
- 湿った空気中では718 い719 を生成

酸化鉄 (Ⅲ)	Fe_2O_3	720	色	721	性
四酸化三鉄	Fe ₃ O ₄	722	色	723	性
酸化鉄(II)	FeO	(724)	色	(725)	性

軟鋼	726	727	728	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	729	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} $\bigcirc \text{NsO}_5, \text{MnO}_2, \text{Fe}_3\text{O}_4, \text{Pt}$

15.1.2 製法

鉄の製錬 工業的製法

15.1.3 反応

• 塩酸との反応

• 高温の水蒸気との反応

•	微量に含まれる炭	素・鉄・水による752	(753)	などが溶けていたら反応速度上昇)
	正極(754))			
	負極(755))			
•	756	の生成		

(757) 色) が験まにより験れ

速やかに(758) が酸素により酸化

で59 の脱水
 Fe(OH)₃ → FeO(OH) + H₂O (酸化水酸化鉄(Ⅲ) 濃橙色)
 2 Fe(OH)₃ → Fe₂O₃ · n H₂O + (3-n)H₂O (760 色)
 (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 761

15.2.1 性質

- 762 色の固体
- Fe²⁺ 半反応式
- 空気中で表面が763

(764) 色)

15.2.2 製法

鉄に(765) を加えて、蒸発濃縮

15.3 塩化鉄 (Ⅲ) 6 水和物

化学式: 766

15.3.1 性質

- 767 色で768 性のある固体
- 769

(770

 $K_1 = 6.0 \times 10^{-3} \text{ mol/L}$

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

15.4 鉄イオンの反応

		NaC)H	$K_4[Fe($	$(CN)_6$	$K_3[Fe(0)]$	$(CN)_6$	H_2S (i	酸性)	KSC	CN
Fe ²	+	771		$Fe_2[Fe(C)]$	CN) ₆]↓	KFe[Fe(C	CN) ₆]↓	772		773	
774	色	775	色	776	色	777	色	778	色	(779)	色
Fe ³ ·	+	780		KFe[Fe(0	CN) ₆]↓	Fe[Fe(C	$N)_6]aq$	781		[Fe(NC	$[S]^{2+}$
782	色	783	色	784	色	785	色	786	色	787	色

- Fe²⁺, Fe³⁺ は、**788** とも**789** とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは790

15.5 塩化コバルト(Ⅱ)

化学式: 791

15.5.1 性質

- 792 色で793 性のある固体
- 6水和物は794 色
- 塩化コバルト紙を用いた795 の検出
- CO³⁺ は **796** と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式: 797

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は798 と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

- 799 色の金属光沢
- 他の金属とさまざまな色の800
- 展性・延性が801 く、電気・熱伝導性が802 い
- イオン化傾向が水素より803 く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(804) に溶解)が生成805 色の酸化銅(I) 乾・806 色の錆(807))

16.1.2 製法

銅の製錬 粗銅・808 純銅 工業的製法

$$2 \operatorname{Cu_2S} + 3 \operatorname{O_2} \longrightarrow 2 \operatorname{Cu_2O} + 2 \operatorname{SO_2}$$
$$\operatorname{Cu_2S} + 2 \operatorname{Cu_2O} \longrightarrow 6 \operatorname{Cu} + \operatorname{SO_2}$$

16.1.3 反応

- 銅と希硝酸
- 銅と濃硝酸
- 銅と熱濃硫酸
- 空気中で 1000°C 未満で加熱して、**819** 色の**820** 生成
- さらに 1000°C 以上で加熱して、821 色の822
 生成
- 銅イオンから水酸化銅(Ⅱ)の生成
- 水酸化銅(Ⅱ)とアンモニアの反応
- LEAUNE (W) a huzh
- 水酸化銅 (II) の加熱

16.2 硫酸銅(Ⅱ)5水和物 16 銅

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

823 色の固体(結晶中の824) の色)

• 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ 825 $\xrightarrow{113^{\circ}\text{C}}$ 826 $\xrightarrow{150^{\circ}\text{C}}$ 827 $\xrightarrow{650^{\circ}\text{C}}$ 828 829 色 \leftarrow + $_{12}\text{O}$ (検出)

- Cu²⁺ による831 作用(農薬)
- 還元性を持つ有機化合物の検出*6 **832** 色の酸化銅(I)が生成

16.2.2 製法

銅に833 をかけてから834。

16.3 銅(Ⅱ) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S (835)
Cu ²⁺	836	837	838	839
840 色	841 色	842 色	843 色	844 色

• 炎色反応: 845 色

• 加熱すると846

• Cu²⁺ は**847** と錯イオンを形成し、**848** とは形成しない

16.4 銅の合金

849	(真鍮)	850	(洋白)	851)	852	853	
(85	54)	855		856	857	858	(主成分)
適度な強度と加工性		柔軟で錚	靑びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽。	くて丈夫
楽器・水道用具		食器・装飾品		五十円玉・五百円玉	像	航空	機・車両

^{*6} フェーリング液・ベネディクト液

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が859 、電気・熱伝導性が860
- イオン化傾向が水素より861

862 力のある酸 (863 ・864) と反応

• 空気中で酸化しにくいが、865 とは容易に反応

17.1.2 製法

銅の電解精錬の866工業的製法

•	銀の化合物の熱分解・光分解
	酸化銀の熱分解
	ハロゲン化銀 AgX の感光

17.1.3 反応

•	銀と希硝酸	
•	銀と濃硝酸	
•	銀と熱濃硫酸	
•	銀と硫化水素	

17.2 銀(I)イオンの反応

867 水溶液に含まれる

		少量の塩基	過剰の NH ₃	HCl	H ₂ S(868 性)	$\mathrm{K_{2}CrO_{4}}$
Ag^{2+}		869	870	871)	872	873
	874 色	875 色	876 色	877 色	878 色	879 色

•	銀と少量の塩基
•	銀と過剰の NH ₃
•	銀と HCl
•	銀と H ₂ S
•	銀と K ₂ CrO ₄

17.3 難溶性化合物の溶解性 17 銀

17.3 難溶性化合物の溶解性

			HNO_3	NH_3	NaS_2O_3	KCN
${ m Ag_2S}\!\downarrow$	880	色	881)	882	883	884
$Ag_2O\downarrow$	885	色	886	887	888	889
AgCl↓	890	色	891)	892	893	894
AgBr↓	895	色	896	897	898	899
AgI↓	900	色	901	902	903	904
溶解している物質	905	色	906	907	908	909

18 クロム・マンガン

化学式: 910・911

18.1 単体

18.1.1 性質

- 912 と反応 (913 は914 には915 となり反応しない)
- 空気中で錆び $oldsymbol{916}$ ($oldsymbol{917}$) \Rightarrow $oldsymbol{918}$ (Fe, Cr, Ni) $oldsymbol{7}$ 口ム

空気中で錆び919 マンガン

920 合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

18.2 クロム酸カリウム・二クロム酸カリウム

化学式: 922 · 923

18.2.1 性質

• 二つは平衡状態にある

18.2.2 製法

クロム(Ⅲ) イオンに少量の水酸化ナトリウム水溶液を加える
 さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える)
 過酸化水素水を加えて加熱

18.2.3 反応

クロム酸イオンと銀イオン
 (932) 色)
 クロム酸イオンと銀イオン
 クロム酸イオンと銀イオン
 (933) 色)
 (934) 色)

18.3 過マンガン酸カリウム

化学式: 935

18.3.1 性質

- 936 色の固体
- 937 剤として反応

938 酸性

中・塩基性

18.3.2 製法

1. 酸化マンガン (IV) と水酸化ナトリウムを混ぜて空気中で加熱

$(MnO_2: 939)$	色 $/$ K ₂ MnO ₄ : 940	色)

2. (a) 酸性にする

)	酸性にする			
		$(MnO_4^{2-}:941)$	色/MnO ₄ -: 942	色
	The state of the s			

(b) 電気分解する

(943 極)

18.4 マンガンの安定な酸化数

残留酸素の定量 (ウィンクラー法)

1. マンガン(Ⅲ) イオンを含む水溶液に塩基を加える

2. 水酸化マンガン(Ⅱ)が水溶液中の溶存酸素と速やかに反応

3. 希硫酸を加える

(944)

剤)

第IV部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は① につめて、液体の乾燥剤は② に入れて使用。

性質	乾燥剤	化学式	対象	対象外(不適)
酸性	3	4	酸性・中性	塩基性の気体(⑤)
100 任	6	7	酸性・中性	+8 (9)
中性	10	11	ほとんど全て	(12)
中性	13	14	はこんと主し	特になし
塩基性	15	16	中性・塩基性	酸性の気体
塩基比	17)	18	中性・塩基性	(19) ,20) ,21) ,22) ,23) ,24)

B 水の硬度

C 金属イオンの難容性化合物

	Cl-	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$_{ m H_2S}$	OH-	OH^-	$\mathrm{NH_{3}}$
			酸性	中・塩基性	NH3	過剰	過剰
K ⁺	26	27)	28	29	30	(31)	32
	33 色	34 色	35 色	36 色	37 色	38 色	39 色
Ba ²⁺	(40)	41)	42	(43)	(44)	(45)	46)
	— 47 色	48 色	49 色	50 色	51 色	<u>5</u> 2 色	<u>—</u> 53 色
Sr^{2+}	54	55	56	57)	58	59	60
	61 色	62 色	63 色	64 色	65 色	66 色	67 色
Ca ²⁺	68	69	70	71	72	73	74
	75 色	76 色	77 色	78 色	79 色	80 色	81 色
Na ⁺	82	83	84	85	86	87)	88
	89 色	90 色	91 色	92 色	93 色	94 色	95 色
Mg^{2+}	96	97	98	99	100	101	102
	103 色	104 色	105 色	106 色	107 色	108 色	109 色
Al ³⁺	(110)	111)	112	113	(114)	(115)	116
	117 色	118 色	119 色	120 色	121 色	122 色	123 色
Mn ²⁺	124	125	126	127	128	129	130
	131 色	132 色	133 色	134 色	135 色	136 色	137 色
Zn ²⁺	138	(139)	(140)	141	142	143	144
	145 色	146 色	147 色	148 色	149 色	150 色	151 色
Cr^{3+}	152	153	154	155	(156)	(157)	158
	159 色	160 色	161 色	162 色	163 色	164 色	165 色
Fe ²⁺	166	167	168	169	170	(171)	172
2.1	173 色	174 色	175 色	176 色	177 色	178 色	〔179〕 色
Fe ³⁺	180	(181)	182	183	184	185	186
G 12±	187 色	188 色	189 色	190 色	(191) 色	192 色	193 色
Cd^{2+}	(194)	195	196	197	198	(199)	200
Co ²⁺	201 色	202 色	203 色	204 色	205 色	206 色	207 色
Co-	208 215 色	209 216 色	210 217 色	211 218 色	212 219 色	213 220 色	(214)(221) 色
Ni ²⁺	222	223	224	225	226	227)	228
111	229 色	230 色	231 色	232 色	233 色	(234) 色	235 色
Sn ²⁺	236	237)	238	239	240	(241)	242
	243 色	244 色	245 色	246 色	247 色	248 色	249 色
Pb ²⁺	250	<u>251</u>	252	253	254	255)	256
	257 色	258 色	259 色	260 色	261 色	262 色	263 色
Cu ²⁺	264	265	266	267	268	269	270
	271 色	272 色	273 色	274 色	275 色	276 色	277 色
Hg^{2+}	278	279	280	281)	282	283	284)
	285 色	286 色	287 色	288 色	289 色	290 色	291 色
Hg ₂ ²⁺	292	293	294)	295)	296	297)	298
	299 色	300 色	301 色	302 色	303 色	304 色	305 色
Ag^+	306	307	308	309	310	311)	312
	313 色	314 色	315 色	316 色	317 色	318 色	319 色

D 錯イオンの命名法

(主に遷移)金属イオンに対して、320

を持つ321 や322

が323 結合

「配位子の数(数詞)配位子 金属(価数)酸(陰イオンの場合)イオン」

金属イオン	Ag ⁺ Cu	Cu ²⁺	Zn^{2+}]	Fe ²⁺	Fe ³⁺ Co ³⁻	⁺ Ni ²⁺ (Cr^{3+} Al^{3+}
配位数 324			325		326			
	327 系	328 形	329	形		330	形	
数 1	2	2	4		5	6	7	8

数	1	2	3	4	5	6	7	8
数詞	331	332	333	334	335	336	337	338
		339	340					

配位子	NH_3	CN^-	$_{\mathrm{H_2O}}$	OH ⁻	Cl^-	$H_2N-CH_2CH_2-NH_2$
名称	341)	342	343	344	345	346

エチレンジアミン … 1 分子あたり 2 か所で347 結合する (2 座配位子) (348 錯体)

- [Zn(OH)₄]²⁻
- $[Zn(NH_3)_4]^{2+}$
- $[Ag(S_2O_3)_2]^{3-}$

352

 $\hline \textbf{351} \\ \bullet \ \left[\mathrm{Cu}(\mathrm{H_2NCH_2CH_2NH_2}) \right]^{2+}$

E 金属イオンの系統分離

