Открытая студенческая олимпиада по математике Казахстанского филиала МГУ 19 декабря 2015

- 1. (Абдикалыков А.К.) Пусть $z_n = a_n b_n x_n y_n$. Видно, что z_n можно представить в виде $z_n = \alpha n^2 + \beta n + \gamma$ для некоторых постоянных α , β , γ . Но так как z_n обращается в ноль при трёх различных n, то $\alpha = \beta = \gamma = 0$, и z_n тождественно равно нулю.
- 2. Ответ: 12090. Положим n простым: f(n) = f(1) f(n). То есть

$$f(p) = \frac{1}{2}f(1)$$

для любого простого p.

Положим $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_s^{\alpha_s}$ и обозначим

$$k(n) = \alpha_1 + \alpha_2 + \dots + \alpha_s.$$

Несложно показать, что:

$$f(n) = \left(1 - \frac{k(n)}{2}\right)f(1).$$

Имеем $2015 = 5^1 \cdot 13^1 \cdot 31^1$ и $2016 = 2^5 \cdot 3^2 \cdot 7^1$. Соответственно k(2015) = 3, k(2016) = 8.

3. Ответ: $f(x) \equiv 0$. Пусть $n \in \mathbb{Z}$. Тогда f'(n) = f'(n+1) = 0, откуда f(n) = f(n+1) = 0. Докажем от противного, что f(x) = 0 для всех $x \in [n, n+1]$. Пусть $x_0 \in (n, n+1)$ и $f(x_0) \neq 0$, например, $f(x_0) > 0$. Т.к. f дифференцируема, то f — непрерывна на [n, n+1]. По теореме Вейерштрасса у нее существует максимум на [n, n+1]:

$$f(x_1) = \max_{[n,n+1]} f(x) > 0$$
 и $x_1 \in (n,n+1)$.

По теореме Ферма имеем: $f'(x_1) = 0$, откуда $f(x_1) = 0$ — противоречие.

4. Так как парабола является коническим сечением, то можно осуществить проективное преобразование с точкой в вершине соответствующего конуса, переводящее параболу в окружность. Дан вписанный четырехугольник $B_1B_2B_3B_4$. Касательные в B_1 и B_2 пересекаются в точке K, касательные в B_3 и B_4 в точке L. Осталось доказать, что KL, B_1B_3 и B_2B_4 пересекаются в одной точке.

Пусть C — точка пересечения B_1B_4 и B_2B_3 . E и K — точки пересечения CK с B_1B_2 и B_4B_2 . Обозначим $\angle DB_2E = \angle CB_1K = \alpha$, $\angle EB_2K = \angle EB_1K = \beta$, $\angle KB_2C = \delta$ и $\angle DB_1B_2 = \gamma$. Выпишем двойные отношения (по теоремам синусов) от вершин B_1 и B_2 соответственно:

$$\frac{\sin \alpha}{\sin \beta} : \frac{\sin(\alpha + \beta + \gamma)}{\sin \gamma} = \frac{CK}{KE} : \frac{CD}{DE}$$

$$\frac{\sin \delta}{\sin \beta} : \frac{\sin(\alpha + \beta + \delta)}{\sin \alpha} = \frac{CK}{KE} : \frac{CD}{DE}$$

Откуда получаем $\delta = \gamma$, то есть D — точка пересечения диагоналей. Аналогично доказывается, что D лежит на CL. Итог: KL проходит через точку пересечения диагоналей.

- 5. (Абдикалыков А.К.) Ответ: -3π .
 - Очевидно, что $x=-3\pi$ является одним из решений. Введём функцию $f(x)=2x+\sin x$. Тогда данное уравнение можно переписать в виде $f(f(x))=-12\pi$. Поскольку функция f(x) (а значит, и функция f(f(x))) вместе с ней) является возрастающей, то это уравнение не может иметь больше одного корня.
- 6. Каждому числу a_j сопоставим ребро, соединяющее вершины графа с номерами j и a_j . Полученный мультиграф имеет n вершин и n рёбер, и, следовательно, обязан содержать цикл. Номера вершин, входящих в любой из циклов, формируют требуемое подмножество P.
- 7. (Абдикалыков А.К.) Ответ: (1) матрица порядка 1. Если порядок матрицы n>1, то из $\operatorname{rg} A=1$ следует вырожденность матрицы A, что, в свою очередь влечёт присутствие собственного значения 0. Так как след равен сумме всех собственных значений, то $\operatorname{tr} A=0$ противоречие. Удовлетворять всем условиям задачи может только матрица первого порядка, единственный элемент которой равен 1.