

Class Overview

- What is Machine Learning (ML)
- Main types of Machine Learning
- Steps in a full ML project
- Machine Learning Framework
- Setup a Python Environment for Machine Learning

What is Machine Learning (ML)

1. What is Machine Learning (ML)

Spam Classification

- Email (text) as the input
 - Go into classification model
 - Output answer whether this is spam or not.

Recommended system

 Recommender systems aim to predict users' interests and recommend product items that quite likely are interesting for them.

Main types of Machine Learning

2. Main types of Machine Learning

Terminology about ML

- Regression Problem
 - Predicting a continuous output (e.g. price, sales).
- Classification
 - Predicting a categorical output.
- Feature
 - With respect to a dataset, a feature represents an attribute and value combination.
- Label
 - In supervised learning, the "answer" or "result" portion of an example.

Supervised Learning

the training set you feed to the algorithm includes the desired solutions, called labels

Classification

categorical

Regression

numerical

Supervised Learning Algorithms

- k-Nearest Neighbors
- Linear Regression
- Logistic Regression
- Support Vector Machines (SVMs)
- Decision Trees and Random Forests

Unsupervised Learning

Training a model to find patterns in a dataset, typically an unlabeled dataset.

Unsupervised Learning Algorithms

- Clustering
 - K-Means
- Dimensionality Reduction
 - Principal Component Analysis (PCA)
- Anomaly detection
 - One-class SVM

Reinforcement Learning

The learning system, called an agent in this context, can observe the environment, select and perform actions, and get rewards in return

Reinforcement Learning Algorithms

- Monte Carlo
- Q-learning

Steps in a full ML project

3. Steps in a full ML project

3.1 Problem definition

Supervised Learning

Classification

- Binary classification
 - Email spam detection (spam or not).
 - Churn prediction (churn or not).
- Multi-class classification
 - classify a set of images of fruits which may be oranges, apples, or pears.

Supervised Learning

Regression

- Predicting whether stock price of a company will increase tomorrow?
- How much will this house sell for?
- How many people will buy this app?

Unsupervised Learning: Clustering

sample Cluster/group

Reinforcement Learning

- Observe
- 2 Select action using policy

- 3 Action!
- 4 Get reward or penalty

- 5 Update policy (learning step)
- 6 Iterate until an optimal policy is found

3.2 Data

What kind of data do we have?

Different types of data

Rows

Columns

ID	weight	Sex	Blood Pressure	Chest	Heave 7.
4326	1101/9	M	120/80	4	Yes
5681	64Kg	F	130	١	No
7911	81Kg	m	130	0	NO

Table 1.0: Patient records

Structured

From: daniel@mrdbourke.com Hey Daniel,

First of all, thank you for being so amazing. This machine learning course is incredible. Thank you for keeping it simple!

Unstructured

3.3 Evaluation

What defines success for us?

Different types of metrics

Classification	Regression	Recommendation
Accuracy	Mean absolute error (MAE)	Precision at K
Precision	Mean squared error (MSE)	
Recall	Root mean squared error (RMSE)	

3.4 Features

What do we already know about the data?

Different features of data

Country	GDP per capita (USD)	Life satisfaction
Hungary	12,240	4.9
Korea	27,195	5.8
France	37,675	6.5
Australia	50,962	7.3
United States	55,805	7.2

Categorical features

Numerical features

Different features of data

3.5 Modelling

Based on our problem and data, what model should we use?

3 parts to modelling

1. Choosing and training a model

2. Tuning a model

3. Model comparison

The most important concept in ML

The most important concept in ML

The most important concept in ML

Choosing a model

Tuning a model

Random Forest 3 trees

5 trees

Neural Networks

Testing a model

Overfitting and underfitting

Fixes for overfitting and underfitting

- Try a more advanced model
- Increase model hyperparameters
- Reduce amount of features
- Train longer

- Collect more data
- Try a less advanced model

3.6 Experiments

Machine Learning Framework

4. Machine Learning Framework

4. Machine Learning Framework

MINI CONDA

Reference

- Machine Learning Glossary
- zero-to-mastery-ml
- machinelearning-datascience
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- handson-ml2
- scikit-learn: Save and Restore Models
- Introduction to Machine Learning Algorithms: Linear Regression