CHORDAL GRAPHS ARE EASILY TESTABLE

Rémi de Joannis de Verclos

Presented by - Amit Roy

Spring School 2025

May 14, 2025

Graph Property Testing

Graph Property Testing

Graph Property

A **graph property** is a set of graphs that is closed under graph isomorphism. That is, Π is a graph property if, for every graph G=(V,E) and every bijection $\pi:V\to V'$, it holds that $G\in\Pi$ if and only if $\pi(G)\in\Pi$, where $\pi(G)$ is the graph obtained from G by relabelling the vertices according to π ; that is,

$$\pi(G) = (V', \pi(u), \pi(v) \mid \{u, v\} \in E)$$

ϵ -far from property ${\mathcal P}$

A graph G on n vertices is ϵ -far from satisfying a property $\mathcal P$ if one has to add or delete at least ϵn^2 edges to G to obtain a graph satisfying $\mathcal P$.

ϵ -tester

An algorithm ${\mathcal A}$ is an ϵ -tester for property ${\mathcal P}$ if it

- **①** accepts all $x \in \mathcal{P}$ with probability at least 2/3 and
- ② rejects all x that are ϵ -far from \mathcal{P} with probability at least 2/3 where the probability is taken over the internal coin tosses of \mathcal{A} .

ϵ -tester

An algorithm ${\mathcal A}$ is an ϵ -tester for property ${\mathcal P}$ if it

- **①** accepts all $x \in \mathcal{P}$ with probability at least 2/3 and
- ② rejects all x that are ϵ -far from \mathcal{P} with probability at least 2/3 where the probability is taken over the internal coin tosses of \mathcal{A} .
 - ▶ The tester has one-sided error if it always accepts functions satisfying \mathcal{P} .

ϵ -tester

An algorithm ${\mathcal A}$ is an ϵ -tester for property ${\mathcal P}$ if it

- accepts all $x \in \mathcal{P}$ with probability at least 2/3 and
- ② rejects all x that are ϵ -far from \mathcal{P} with probability at least 2/3 where the probability is taken over the internal coin tosses of \mathcal{A} .
 - ▶ The tester has one-sided error if it always accepts functions satisfying \mathcal{P} .
 - ▶ If the queries made by the algorithm do not depend on the answers to the previous queries, A is called a *nonadaptive* tester. Otherwise, it is an *adaptive* tester.

A hereditary class \mathcal{P} of graphs is testable if for every fixed $\epsilon > 0$ there is a size m_{ϵ} such that the following holds.

A hereditary class \mathcal{P} of graphs is testable if for every fixed $\epsilon > 0$ there is a size m_{ϵ} such that the following holds.

▶ If G is ϵ -far from \mathcal{P} then a set $X \subseteq V(G)$ sampled uniformly at random among all subsets of V(G) of size m_{ϵ} induces a graph G[X] that is not in \mathcal{P} with probability at least 2/3.

A hereditary class \mathcal{P} of graphs is testable if for every fixed $\epsilon > 0$ there is a size m_{ϵ} such that the following holds.

- ▶ If G is ϵ -far from \mathcal{P} then a set $X \subseteq V(G)$ sampled uniformly at random among all subsets of V(G) of size m_{ϵ} induces a graph G[X] that is not in \mathcal{P} with probability at least 2/3.
- ▶ The property \mathcal{P} is easily testable if moreover m_{ϵ} is a polynomial function of $\frac{1}{\epsilon}$. Otherwise, \mathcal{P} is hard to test.

▶ Need to efficiently analyze large graphs using algorithms that provide approximate answers with minimal computational resources

- ► Need to efficiently analyze large graphs using algorithms that provide approximate answers with minimal computational resources
- Property testing allows decisions based on a sublinear number of queries (e.g., inspecting only a random subset of edges or vertices)

- ► Need to efficiently analyze large graphs using algorithms that provide approximate answers with minimal computational resources
- Property testing allows decisions based on a sublinear number of queries (e.g., inspecting only a random subset of edges or vertices)
- ► For example, testing whether a graph is bipartite can be done without examining all edges.

- ► Need to efficiently analyze large graphs using algorithms that provide approximate answers with minimal computational resources
- Property testing allows decisions based on a sublinear number of queries (e.g., inspecting only a random subset of edges or vertices)
- ► For example, testing whether a graph is bipartite can be done without examining all edges.
- ► Testers can act as a fast preliminary check to avoid running slower exact algorithms on graphs far from the desired property

Every hereditary property has a one-sided tester [Alon and Shapira 2008].

- Every hereditary property has a one-sided tester [Alon and Shapira 2008].

- Every hereditary property has a one-sided tester [Alon and Shapira 2008].
- \blacktriangleright $\mathit{Query\ complexity}$ tower of towers of exponentials of size polynomial in ϵ^{-1}
- ▶ Alon and Shapira also showed that class *H* FREE of graphs without induced copy of *H* is hard to test when *H* is different from P_2, P_3, P_4, C_4 and different from complement of one of these graphs.

- Every hereditary property has a one-sided tester [Alon and Shapira 2008].
- \blacktriangleright $\mathit{Query\ complexity}$ tower of towers of exponentials of size polynomial in ϵ^{-1}
- ▶ Alon and Shapira also showed that class H- FREE of graphs without induced copy of H is hard to test when H is different from P₂, P₃, P₄, C₄ and different from complement of one of these graphs.
- ▶ This class is known to be easily testable when $H \in \{P_2, P_3, P_4\}$.

- Every hereditary property has a one-sided tester [Alon and Shapira 2008].
- \blacktriangleright $\mathit{Query\ complexity}$ tower of towers of exponentials of size polynomial in ϵ^{-1}
- ▶ Alon and Shapira also showed that class H- FREE of graphs without induced copy of H is hard to test when H is different from P_2, P_3, P_4, C_4 and different from complement of one of these graphs.
- lacktriangle This class is known to be easily testable when $H \in \{P_2, P_3, P_4\}$.
- ▶ H for which the class H-free is easily testable are known except when H is C_4 or its complement $C_4 = 2K_2$.

Is C_4 -FREE easily testable?

Is C_4 -FREE easily testable?

Gishboliner and Shapira 2018

Every graph that is ϵ -far from being C_4 -FREE contains at least $\frac{n^4}{2^{(1/\epsilon)^c}}$ induced copies of C_4 for some constant c, implying C_4 -FREE can be tested with query complexity $2^{(1/\epsilon)^c}$.

Chordal Graphs

A graph G is chordal if it does not contain any induced cycle of length at least four; i.e., any (\geq 4)-cycle in G has a chord (an edge between non-consecutive vertices of the cycle).

Chordal Graphs

A graph G is chordal if it does not contain any induced cycle of length at least four; i.e., any (\geq 4)-cycle in G has a chord (an edge between non-consecutive vertices of the cycle).

▶ Chordal graphs is an important and natural subclass of C_4 -FREE.

Chordal Graphs

A graph G is chordal if it does not contain any induced cycle of length at least four; i.e., any (\geq 4)-cycle in G has a chord (an edge between non-consecutive vertices of the cycle).

- ▶ Chordal graphs is an important and natural subclass of C_4 -FREE.
- From Gishboliner and Shapira's work, this class is testable with query complexity $2^{(1/\epsilon)^c}$.

Chordal Graphs

A graph G is chordal if it does not contain any induced cycle of length at least four; i.e., any (≥ 4)-cycle in G has a chord (an edge between non-consecutive vertices of the cycle).

- ▶ Chordal graphs is an important and natural subclass of C_4 -FREE.
- From Gishboliner and Shapira's work, this class is testable with query complexity $2^{(1/\epsilon)^c}$.
- ▶ They also conjectured that this bound can be further improved to a polynomial in $\frac{1}{\epsilon}$.

► The class of chordal graph is easily testable.

Theorem

The class of chordal graph is testable with query complexity $\mathcal{O}(\epsilon^{-37})$.

Input: A graph G = (V, E) of degree at most d, represented by adjacency lists.

Input: A graph G = (V, E) of degree at most d, represented by adjacency lists.

Goal : An ϵ -tester for connectedness (that accepts all connected graphs with probability $\geq 2/3$, and rejects with probability $\geq 2/3$ all graphs that are ϵ -far from connected.

Input: A graph G = (V, E) of degree at most d, represented by adjacency lists.

Goal : An ϵ -tester for connectedness (that accepts all connected graphs with probability $\geq 2/3$, and rejects with probability $\geq 2/3$ all graphs that are ϵ -far from connected.

Idea: Graphs that are far from connected have many connected components, and therefore they also have many "small" connected components.

Algorithm

Algorithm 1: Tester for connectedness $(n, d, \epsilon, \text{query access to } G)$.

- 1 Pick $s = \frac{8}{\epsilon d}$ nodes from V independently and uniformly at random.
- 2 For every selected node v, determine whether v is in a small connected component: do a BFS until either the connected component is exhausted or $\frac{4}{\epsilon d}$ new nodes are visited.
- 3 Reject if at least one small connected component was found, otherwise accept.

Algorithm

Algorithm 1: Tester for connectedness $(n, d, \epsilon, \text{query access to } G)$.

- 1 Pick $s = \frac{8}{\epsilon d}$ nodes from V independently and uniformly at random.
- 2 For every selected node v, determine whether v is in a small connected component: do a BFS until either the connected component is exhausted or $\frac{4}{\epsilon d}$ new nodes are visited.
- 3 Reject if at least one small connected component was found, otherwise accept.

- Query Complexity $\mathcal{O}(\frac{1}{\epsilon^2 d})$
- Running Time same

Presented by - Amit Roy (Spring School 202 CHORDAL GRAPHS ARE EASILY TESTABLE

Proof

Claim 1

If G is ϵ -far from connected, it has at least $\frac{\epsilon dn}{2}$ connected components.

Proof

Claim 1

If G is ϵ -far from connected, it has at least $\frac{\epsilon dn}{2}$ connected components.

Claim 2

If G is ϵ -far from connected, it has at least $\frac{\epsilon dn}{4}$ connected components of size at most $\frac{4}{\epsilon d}$.

Proof

Claim 1

If G is ϵ -far from connected, it has at least $\frac{\epsilon dn}{2}$ connected components.

Claim 2

If G is ϵ -far from connected, it has at least $\frac{\epsilon dn}{4}$ connected components of size at most $\frac{4}{\epsilon d}$.

Proof of Query Complexity:

- From Claim 2 we have, at least $\frac{\epsilon dn}{4}$ nodes are in small connected components (of size $\leq \frac{4}{\epsilon d}$).
- At least $\frac{\epsilon d}{4}$ fraction of the nodes of the graph "witness" that it is not connected.
- It suffices to look at $\frac{2}{\epsilon d/4} = \frac{8}{\epsilon d}$ random samples to get at least one witness with probability $\geq \frac{2}{3}$.

Algorithm:

- **1** Sample a set of $s = \mathcal{O}(\epsilon^{-37})$ vertices X u.a.r.
- ② If G[X] is chordal then Return "YES"
- Else Return "NO"

Algorithm:

- **1** Sample a set of $s = \mathcal{O}(\epsilon^{-37})$ vertices X u.a.r.
- ② If G[X] is chordal then Return "YES"
- Else Return "NO"

- ▶ Query Complexity $\mathcal{O}(\epsilon^{-37})$
- ▶ Time Complexity $poly(\epsilon^{-37})$

Properties

A vertex of a graph is *simplicial* if its neighbourhood is a clique.

Properties

- A vertex of a graph is *simplicial* if its neighbourhood is a clique.
- Chordal graphs are stable by addition of simplicial vertices.
- Chordal graphs are exactly the graphs that can be obtained from the empty graph by iteratively adding simplicial vertices.

Properties

- A vertex of a graph is *simplicial* if its neighbourhood is a clique.
- Chordal graphs are stable by addition of simplicial vertices.
- Chordal graphs are exactly the graphs that can be obtained from the empty graph by iteratively adding simplicial vertices.

For a vertex v of a graph G, let $p_G(v)$ be the number of non-edges in the neighborhood of v.

Properties

- A vertex of a graph is *simplicial* if its neighbourhood is a clique.
- Chordal graphs are stable by addition of simplicial vertices.
- Chordal graphs are exactly the graphs that can be obtained from the empty graph by iteratively adding simplicial vertices.

For a vertex v of a graph G, let $p_G(v)$ be the number of non-edges in the neighborhood of v.

ightharpoonup v is simplicial if and only if $p_G(v) = 0$.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Nearly Simplicial Vertices

Theorem

Let $\epsilon>0$ and $n\geq \epsilon^{-1}$. Let G be a graph with vertex partition $X\cup Y$ such that G[Y] is chordal and $p_G(v)\leq \epsilon n^2$ for every $v\in X$. Then G is $6\epsilon^{1/2}$ -close from a chordal graph.

Main Theorem - Proof Overview

Bird's View

- **①** Use the *Simplicial* Theorem, with a parameter δ such that $6\delta^{1/2} = \frac{\epsilon}{2}$.
- Partition the vertex set into two sets (vertices whose neighborhoods have few non-edges) and Y (the rest).
- ① Using testability of k-coloring and the representation of chordal graphs as intersection graphs of subtrees, show that if G[Y] is far from chordal, this can be detected with high probability from a random sample.
- **4** With a union bound argument we can prove that $\mathcal{O}(\epsilon^{-37})$ vertices are sufficient to test for chordalness.

THANKS

References

- Verclos, Rémi de Joannis de. "Chordal graphs are easily testable." arXiv: Combinatorics (2019): n. pag.
- Noga Alon and Asaf Shapira. 2006. A Characterization of Easily Testable Induced Subgraphs. Comb. Probab. Comput. 15, 6 (November 2006), 791–805. https://doi.org/10.1017/S0963548306007759
- Gishboliner, L., Shapira, A. Efficient Removal Without Efficient Regularity. Combinatorica 39, 639–658 (2019). https://doi.org/10.1007/s00493-018-3899-6