CMSC5741 Big Data Tech. & Apps.

Lecture 11: Online Learning https://powcoder.com

Add WeChat powcoder

Prof. Michael R. Lyu

Computer Science & Engineering Dept.

The Chinese University of Hong Kong

A Motivating Example - Spam Filtering

Traditional Method: Training

Traditional Method: Test

Online Protocol

- Introduction

 - Learning paradigms
 Assignment Project Exam Help
 Online learning and its applications
- Online learning https://ppwgoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

- Introduction
 - Learning paradigms
 - Online learning and its applications
- Online learning https://ppwgoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

- Introduction
 - Learning paradigms
 - Assignment Project Exam Help

 Online learning and its applications
- Online learning https://ppwgoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

Learning Paradigms Overview

Learning

Paradigm

Training

Test

Learning paradigms

https://powcoder.com

Add WeChat powcoder

Learning Paradigms Overview

Learning

Paradigm

Learning paradigms

- Supervised learning Assignment Project Exam

- Semisupervised Jearning https://powcoder.

- Transductive learning Add WeChat powcoder

- Unsupervised learning
- Universum learning
- Transfer learning

Training

Test

Supervised Learning

Train on labeled data

Test on test data

Semisupervised Learning

Train on labeled and unlabeled data

Test on test data

Transductive Learning

Train on labeled and test data

Test on test data

?

Unsupervised Learning

Train on unlabeled data

Test on test data (Test reconstruction error)

Universum Learning

Train on labeled and universum data

Transfer Learning

Train on labeled from source and target domains

?

7

- Introduction

 - Learning paradigms
 Assignment Project Exam Help
 Online learning and its applications
- Online learning https://ppwgoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

What is Online Learning?

- Batch/Offline learning
 - Observe a batch of training data
- Online learning
 - Observe a sequence of data

 $\{(\mathbf{x}_i, \mathbf{A})\}_{i=1}^{N}$ signment Project ExamyHelp $(\mathbf{x}_i, \mathbf{y}_i)$

- Learn a model incrementally as
- Learn a model from them
 Predict new samples accurately
 - Make the sequence of online

Add WeChat powpredictions accurately

Update a model

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of the correct answers to previous questions and possibly additional available information. [Shal11]

Online Prediction Algorithm

- An initial prediction rule $f_0(\cdot)$
- For $t = 1, 2, \dots$ Assignment Project Exam Help

 We observe \mathbf{x}_t and make a prediction $f_{t=1}(\mathbf{x}_t)$

 - We observe the true pour coder cand then compute a loss $l(f_{t-1}(\mathbf{x}_t), y_t)$ Add WeChat powcoder
 - The online algorithm updates the prediction rule using the new example and construct $f_t(\mathbf{x})$

Online Prediction Algorithm

The total error of the method is

https://powcoder.com
 Goal: this error to be as small as possible

• Predict unknown future one step a time: similar to generalization error

Regret Analysis

- $f_*(\cdot)$: optimal prediction function from a class H,

Regret for the online learning algorithm

regret =
$$\frac{1}{T} \sum_{t=1}^{T} [l(f_{t-1}(\mathbf{x}_t), y_t) - l(f_*(\mathbf{x}_t), y_t)]$$

We want regret as small as possible

Why Low Regret?

Regret for the online learning algorithm

https://powcoder.com

- Advantages
 - We do not lose much from not knowing future events
 - We can perform almost as well as someone who observes the entire sequence and picks the best prediction strategy in hindsight
 - We can also compete with changing environment

Advantages of Online Learning

- Meet many applications for data arriving sequentially while predictions are required on-the-fly
 - Avoid re-training when a dinject Exam Help
- Applicable in advarparial and compositive environment
- Strong adaptability to changing environment Add Wechat powcoder
- High efficiency and excellent scalability
- Simple to understand and easy to implement
- Easy to be parallelized
- Theoretical guarantees

Where to Apply Online Learning?

Online Learning for Social Media

Recommendation, sentiment/emotion analysis

Recommended for you

Where to Apply Online Learning?

Online Learning for Robot Motion Planning

Tasks

Exploring an unknown terrain
Finding a destination

- Exploring an unknown terrain
- Finding a destination

Rock-Paper-Scissors: You vs. the Computer

Robot Dog

Where to Apply Online Learning?

Online Learning for Internet Security

Electronic business sectors

Sample Number

- Spam email filtering
 Assignment Project Exam Help
 Fraud credit card transaction detection
- Network intruston detection system, etc.

Where to Apply Online Learning?

Online Learning for Financial Decision

- Financial decision
 - Online portfolio selection
 Assignment Project Exam Help
 Sequential investment, etc.

- Introduction

 - Learning paradigms
 Assignment Project Exam Help
 Online learning and its applications
- Online learning https://paysoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

- Introduction
 - Learning paradigms
 - Assignment Project Exam Help

 Online learning and its applications
- Online learning https://itenwsoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

Perceptron Algorithm (F. Rosenblatt, 1958)

- One of the oldest machine learning algorithm
- Online algorithm for learning a linear threshold Assignment Project Exam Help function with small error

Perceptron Algorithm (F. Rosenblatt, 1958)

Goal: find a linear classifier with small error

```
1: Initialize \mathbf{w}_0 = \mathbf{0}
2: \mathbf{for} \ t = 1, 2, \dots \mathbf{do}
3: Observe \mathbf{x}_t part poweder \mathbf{x}_t \mathbf{x}_t \mathbf{x}_t
4: Update

• If \mathbf{w}_{t-1}^{\mathbf{A}dd} \mathbf{w}_t \mathbf{w}_t \mathbf{w}_t \mathbf{w}_t \mathbf{w}_t \mathbf{w}_t \mathbf{w}_t \mathbf{x}_t \mathbf{y}_t \mathbf{w}_t \mathbf{w}_
```

If no error, keeping the same; otherwise, update.

Intuition Explanation

Want positive margin:

$$\hat{y}_t \neq y_t$$
 iff $P_{toject} = X_t + Q_t$ Assignment Project Exam Help

https://powcoder.com

• Effect of Perceptron update on margin: Add WeChat powcoder

$$y_t \mathbf{w}_t^T \mathbf{x}_t = y_t (\mathbf{w}_{t-1} + y_t \mathbf{x}_t)^T \mathbf{x}_t = y_t \mathbf{w}_{t-1}^T \mathbf{x}_t + ||\mathbf{x}_t||^2$$

So margin increases

In-class Practice

Go to <u>practice</u>

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Perceptron Mistake Bound

• Consider w_* separate the data: $\mathbf{w}_*^T \mathbf{x}_i y_i > 0$

• The number of mistakes perceptron makes is at most γ^{-2}

Proof of Perceptron Mistake Bound [Novikoff, 1963]

Proof: Let \mathbf{v}_k be the hypothesis before the k-th mistake. Assume that the k-th mistake occurs on the input example (\mathbf{x}_i, y_i) .

First,

 $k < \gamma^{-2}$

$$\|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k + y_i \mathbf{x}_i\|^2 \mathbf{WeChatVpowcoder} + y_i \mathbf{x}_i$$

$$= \|\mathbf{v}_k\|^2 + 2y_i(\mathbf{v}_k^T \mathbf{x}_i) \quad \mathbf{v}_{k+1}^T \mathbf{u} = \mathbf{v}_k^T \mathbf{u} + y_i \mathbf{x}_i^T \mathbf{u}$$

$$+ \|\mathbf{x}_i\|^2 \qquad \geq \mathbf{v}_k^T \mathbf{u} + \gamma R$$

$$\leq \|\mathbf{v}_k\|^2 + R^2 \qquad \mathbf{v}_{k+1}^T \mathbf{u} \geq k\gamma R.$$

$$\leq kR^2(R := \sup_i \|\mathbf{x}\|_2)$$

$$\mathbf{Hence}, \quad \sqrt{k}R \geq \|\mathbf{v}_{k+1}\| \geq \mathbf{v}_{k+1}^T \mathbf{u} \geq k\gamma R$$

44

Outline

- Introduction

 - Learning paradigms
 Assignment Project Exam Help
 Online learning and its applications
- Online learning https://paysoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

Overview

Online/Stochastic Gradient Descent

Online gradient descent

Stochastic gradient descent

Outline

- Introduction
 - Learning paradigms
 - Assignment Project Exam Help

 Online learning and its applications
- Online learning https://itenwsoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

Online Non-Sparse Learning

Decision function can be linear and non-linear as

Assignment Project Exam Help

- First order learning methods https://powcoder.com
 - Online gradient descent (Zinkevich, 2003)
 - Passive aggressive Learning (Calmatepetral, (2006))
 - Others (including but not limited)
 - ALMA: A New Approximate Maximal Margin Classification Algorithm (Gentile, 2001)
 - ROMMA: Relaxed Online Maximum Margin Algorithm (Li and Long, 2002)
 - MIRA: Margin Infused Relaxed Algorithm (Crammer and Singer, 2003)
 - DUOL: A Double Updating Approach for Online Learning (Zhao et al., 2009)

Online Gradient Descent (OGD)

(Zinkevich, 2003)

- Online convex optimization
 - Consider a convex objective function Assignment Project Exam Help

where $S \subset \mathbb{R}^n$ is a bounded convex set

- Update by Online (Grand Control of Stochastic

Gradient Descent (CD)
$$\mathbf{w}_{t+1} \leftarrow (\mathbf{w}_t)$$
 $(\mathbf{w}_t - \eta \nabla f(\mathbf{w}_t))$ projection gradient descent

where is a learning rate

Provide a framework to prove regret bound for online convex optimization

Online Gradient Descent (OGD) (Zinkevich, 2003)

- For t = 1, 2, ...

 - An unlabeled sample x, arrives
 Assignment Project Exam Help
 Make a prediction based on existing weights

- Observe the tractive character 1,+1
- Update the weights by

$$\mathbf{w}_{t+1} \leftarrow \prod_{S} (\mathbf{w}_t - \eta \nabla f(\mathbf{w}_t))$$

where η is a learning rate

regret bound is established.

Passive-Aggressive Online Learning (Crammer et al., 2006)

- Each example defines a set of consistent
 - hypotheses: $C_{\varepsilon}(\mathbf{z}_t) = \{\mathbf{w} \mid \delta(\mathbf{w}; \mathbf{z}_t) \leq \varepsilon\}$ Assignment Project Exam Help
- The new vector \mathbf{w}_{t+1} is set to be the projection of \mathbf{w}_t ont $C_{\varepsilon}(\mathbf{z}_t)$ https://powcoder.com

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}}{\operatorname{arg}} \underset{\mathbf{w}}{\operatorname{Add}} \text{ We Chatypower } \mathbf{w} \in C_{\varepsilon}(\mathbf{z}_t)$$

Passive-Aggressive

Passive Aggressive Online Learning

(Crammer et al., 2006)

- PA (Binary classification)
 Closed-form solution

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2$$

$$\text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) = 0.$$
Assignment Project Exam Help $\mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

• PA-I (C-SVM) https://powcoder. $\bar{c}o\bar{m}^{\frac{\ell_t}{\|\mathbf{x}_t\|^2}}$ (PA)

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{X}^t \|_{\mathbf{w}}^2 + \mathbf{W}^{\xi} \text{Chat poweder} \begin{cases} C, & \frac{\ell_t}{\|\mathbf{x}_t\|^2} \end{cases} \quad \text{(PA-I)}$$
s.t. $\ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \leq \xi \text{ and } \xi \geq 0.$
$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}} \quad \text{(PA-II)}$$

PA-II (Relaxed C-SVM)

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 + C\xi^2$$

s.t. $\ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \leq \xi$.

Passive Aggressive Online Learning

(Crammer et al., 2006)

Algorithm

INPUT: aggressiveness parameter C > 0

INITIALIZE: $\mathbf{w}_1 = (0, ... \mathbf{A})$ signment Project Exam Help For t = 1, 2, ...

- receive instance: $\mathbf{x}_t \in \mathbb{R}^n$ predict: $\hat{y}_t = \text{sign}(\mathbf{w}_t \cdot \mathbf{x}_t)$ https://powcoder.comclosed-form
- receive correct label: $y_t \in \{-1, +1\}$ suffer loss: $\ell_t = \max\{0, Adg(W \cdot eC)\}$ hat powcoder solutions
- update:
 - 1. set:

$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2} \tag{PA}$$

$$\tau_t = \min \left\{ C, \frac{\ell_t}{\|\mathbf{x}_t\|^2} \right\} \quad \text{(PA-I)} \qquad \tau_t = \min \left\{ C, \frac{\ell_t}{\|\mathbf{x}_t\|^2} \right\}$$

$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}}$$
 (PA-II)

2. update: $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

Objective

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2$$

s.t.
$$\ell(\mathbf{w}; (\mathbf{x}_t, y_t)) = 0$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{\tau}_t y_t \mathbf{x}_t$$

$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2} \tag{PA}$$

$$\tau_t = \min \left\{ C, \frac{\ell_t}{\|\mathbf{x}_t\|^2} \right\} \quad (PA-I)$$

$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}} \tag{PA-II}$$

Online Non-Sparse Learning

- First order methods
 - Learn a **linear** weight vector (first order) of model Assignment Project Exam Help
- Pros and Cons
 - Simple and easy to implement
 - Efficient and Acata We For this power in the sional data
 - Relatively slow convergence rate

Online Non-Sparse Learning

- Second order online learning methods
 - Update the weight vector w by maintaining and exploring both first-order and second-order information
- Some representative Anethods, the net Prite ect Exam Help
 - SOP: Second Order Perceptron (Cesa-Bianchi et al., 2005)
 - CW: Confidence Weighted learning (Dredze et al. 2008).
 - AROW: Adaptive Regularization of Weights (Crammer et al., 2009)
 - IELLIP: Online Learning by Ellipsoid Method (Yang et al., 2009)
 - NHERD: Gaussian Herding (Crammer & Lee 2010) POWCOUCH
 - NAROW: New variant of AROW algorithm (Orabona & Crammer 2010)
 - SCW: Soft Confidence Weighted (SCW) (Hoi et al., 2012)
- Pros and Cons
- Faster convergence rate
 - Expensive for high-dimensional data

Relatively sensitive to noise

Outline

- Introduction
 - Learning paradigms
 - Assignment Project Exam Help

 Online learning and its applications
- Online learning https://itenwsoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

Sparse Learning

Online Sparse Learning

Motivation

- Space constraint: RAM overflow
- Test-time constraint

 Assignment Project Exam Help
- How to induce Sparsity/inthe weights of online learning algorithms?

Online Sparse Learning

Objective function

$$\hat{w} = \underset{w}{\operatorname{arg \, min}} \sum_{w}^{n} L(w, z_i) + g||w||_1$$
Assignment Project Exam Help

Problem in online learning

– Standard stochastic gradient descent $f(w_i) = w_i - \eta V_1 L(w_i, z_i)$

Add WeChat powcoder

- It does not yield sparse solution
- Some representative work
 - Truncated gradient (Langford et al., 2009)
 - FOBOS: Forward Looking Subgradients (Duchi and Singer, 2009)
 - Dual averaging (Xiao, 2009)
 - etc.

Subgradient

Objective function

$$\hat{w} = \underset{\text{Assignment Project Exam Help}}{\operatorname{arg min}} \sum_{i=1}^{n} L(w, z_i) + g||w||_1$$

• Stochastic gradient descent https://powcoder.com
$$f(w_i) = w_i - \eta \nabla_1 L(w_i, z_i)$$

• Simple coefficient rounding

$$f(w_i) = T_0(w_i - \eta \nabla_1 L(w_i, z_i), \theta)$$

 \mathbf{W}_{0}

Subgradient

when the coefficient is small

Truncated gradient: impose sparsity by modifying the stochastic gradient descent

Simple Coefficient Rounding vs. Less aggressive truncation

$$T_0(v_j, \theta) = \begin{cases} 0 & \text{if } |v_j| \leq \theta \\ V_j & \text{Assignment/Project) ExaminHelp} + \alpha) & \text{if } v_j \in [0, \theta] \\ \text{otherwise} & \text{otherwise} \end{cases}$$

$$\text{https://powcoder.com}$$

$$f(w_i) = T_1(w_i - \eta \nabla_1 L(w_i, z_i), \eta g_i, \theta)$$

- The amount of shrinkage is measured by a solution and the solution of the
- identical to the standard SGD
- The truncation can be the remarkable between the power of the property of t every K online steps
- Loss functions: $L(w,z) = \phi(w^T x, y)$
 - Logistic $\phi(p, y) = \ln(1 + \exp(-py))$
 - $\phi(p, y) = \max(0, 1 py)$ - SVM (hinge)
 - $\phi(p,y) = (p-y)^2$ Least square

Algorithm 1 Truncated Gradient for Least Squares

Inputs:

- threshold $\theta > 0$
- learning rate $\eta \in (0,1)$

Color Com
$$j \leftarrow 0 \ (j = 1, ..., d)$$
 for trial $i = 1, 2, ... [K]$...

- 2. **forall** weights w^{j} (j = 1, ..., d)
 - (a) **if** $w^j > 0$ and $w^j < \theta$ **then** $w^j \leftarrow \max\{w^j g_i\eta, 0\}$
 - (b) **elseif** $w^j < 0$ and $w^j \ge -\theta$ **then** $w^j \leftarrow \min\{w^j + g_i\eta, 0\}$
- 3. Compute prediction: $\hat{y} = \sum_{i} w^{j} x^{j}$
- 4. Acquire the label y from oracle O
- 5. Update weights for all features $j: w^j \leftarrow w^j + 2\pi (y \hat{y})x^j$

Theoretical result (T: No. of samples)

$$\frac{1-0.5A\eta}{\text{Assign}} \sum_{i=1}^{T} \left[\frac{g_i}{\text{Projects Extain Help}} \leq \theta) \|_1 \right]$$

$$\leq \frac{\eta}{2} B + \frac{\|\vec{w}\|^2}{2\eta} \sum_{i=1}^{T} \left[\frac{g_i}{\text{Projects Extain Help}} \leq \theta) \|_1 \right],$$

• Let , the regret is Add WeChat powcoder

$$\sum_{i=1}^{T} (L(w_{i}, z_{i}) + g||w_{i}||_{1}) - \sum_{i=1}^{T} (L(\overline{w}, z_{i}) + g||\overline{w}||_{1})$$

$$\leq \frac{\sqrt{T}}{2} (B + ||\overline{w}||^{2}) \left(1 + \frac{A}{2\sqrt{T}}\right) + \frac{A}{2\sqrt{T}} \left(\sum_{i=1}^{T} L(\overline{w}, z_{i}) + g\sum_{i=1}^{T} (||\overline{w}||_{1} - ||w_{i+1}||_{1})\right) + o(\sqrt{T})$$

regret bound is established.

Dual Averaging (Xiao, 2010)

Objective function

minimize
$$\begin{cases} \phi(w) \triangleq \mathbf{E}_z f(w, z) + \Psi(w) \\ \text{Assignment Project Exam Help} \end{cases} \quad \begin{cases} \psi(w) = \lambda ||w||_1 \text{ with } \lambda > 0 \end{cases}$$

- Problem: truncated gradient doesn't produce truly https://powcoder.com sparse weight due to small learning rate
- Fix: dual averaging which keeps two state representations:
 - parameter w_t
 - average gradient vector $\overline{g}_t = \frac{1}{t} \sum_{i=1}^{t} f_i(w_i)$

Dual Averaging (Xiao, 2010)

Algorithm

Algorithm 1 Regularized dual averaging (RDA) method

input:

• an auxiliary function h(w) the significant descripted in the second in the second

 $\operatorname{argmin} h(w) \in \operatorname{Argmin} \Psi(w)$.

• a nonnegative and nondecreasing sequence $\{\beta_t\}_{t\geq 1}$. Powcoder.com

• a nonnegative and nondecreasing sequence $\sup_{v \in V_{1} = 1} P_{1} = \sup_{v \in V_{1} = 1} P_{2} = \sup_{v \in V_{1} = 1} P_{3} = \sup_{v \in V_{2} = 1} P_{4} = \sup_{v \in V_{3} = 1} P_{4} =$

- 2. Update the average subgradient:

 $\bar{g_t} = \frac{t-1}{t} \bar{g_{t-1}} + \frac{1}{t} g_t.$

3. Compute the next weight vector:

$$w_{t+1} = \underset{w}{\operatorname{arg\,min}} \left\{ \langle \overline{g_t}, w \rangle + \Psi(w) + \frac{\beta_t}{t} h(w) \right\}.$$

$$w_{t+1} = \underset{w}{\operatorname{arg\,min}} \left\{ \langle \overline{g_t}, w \rangle + \Psi(w) + \frac{\beta_t}{t} h(w) \right\}.$$

has entry-wise closed-form solution

on the weight

Disadvantage: keep a

subgradient

$$w_{t+1} = \underset{w}{\operatorname{argmin}} \left\{ \langle \overline{g_t}, w \rangle + \Psi(w) + \frac{\beta_t}{t} h(w) \right\}. \quad w_{t+1}^{(i)} = \begin{cases} 0 & \text{if } \left| \overline{g_t^{(i)}} \right| \leq \lambda, \\ -\frac{\sqrt{t}}{\gamma} \left(\overline{g_t^{(i)}} - \lambda \operatorname{sgn}(\overline{g_t^{(i)}}) \right) & \text{otherwise,} \end{cases}$$

end for

Convergence and Regret

Average regret

$$\bar{R}_T(w) \triangleq \frac{1}{\text{Assign}} \sum_{t=1}^{T} (f_t(w_t) + \Psi(w_t)) = \bar{R}_T(w)$$

$$S_T(w) \triangleq \frac{1}{T} \sum_{t=0}^{T} powcoder.com \\ S_T(w) + \Psi(w)$$
• Theoretical bound: similar to gradient descent

$$\bar{R}_T \sim \mathcal{O}(1/\sqrt{T})$$

 $\bar{R}_T \sim \mathcal{O}(\log(T)/T)$, if $h(\cdot)$ is strongly convex

average regret bound is established.

Variants of Online Sparse Learning Models

- Online feature selection (OFS)
 - A variant of sparse online learning
 - The key difference is that Offsifocuses on Selecting a fixed subset of features in online learning process https://powcoder.com
 - Could be used as an alternative tool for batch feature selection when dealing withdig Watchat powcoder
- Other existing work
 - Online learning for Group Lasso (Yang et al., 2010) and online learning for multi-task feature selection (Yang et al. 2013) to select features in group manner or features among similar tasks

Online Sparse Learning

- Objective
 - Induce sparsity in the weights of online learning Assignment Project Exam Help algorithms
- Pros and Conshttps://powcoder.com
 - Simple and easydtovierphament/coder
 - 😁 Efficient and scalable for high-dimensional data
 - Relatively slow convergence rate
 - No perfect way to attain sparsity solution yet

Outline

- Introduction
 - Learning paradigms
 - Assignment Project Exam Help

 Online learning and its applications
- Online learning https://itenwsoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

Online Unsupervised Learning

- Assumption: data generated from some underlying parametric probabilistic density function
- Goal: estimate the parameters of the defisity to give a suitable compact representation.com

Online Unsupervised Learning

- Some representative work
 - -Online singular value decomposition (SVD) (Brand, 2003)
 - -Online principal component gliadysis (PCA) (Warmuth and Kuzmin, 2006) https://powcoder.com
 - -Online dictionary learning for sparse coding (Mairal et al. 2009)
 - -Online learning for fatent Sirich Le Wiscourism (LDA) (Hoffman et al., 2010)
 - -Online variational inference for the hierarchical Dirichlet process (HDP) (Wang et al. 2011)
 - -Online Learning for Collaborative Filtering (Ling et al. 2012)

—...

SVD: Definition

Online SVD (Brand, 2003)

- Challenges: storage and computation
- Idea: an incremental algorithm computes the principal eigenvectors of a matrix without storing the entire matrix in memory.

Add WeChat powcoder

Online SVD (Brand, 2003)

1: Existing rank-r PCA

$$A = U\Sigma V^T$$

A new sample c arrives, project it onto eigenspace

Assignment Project Exam Hely

3: Compute the orthogonal component

$$p = c$$
 https://powcoder.com

- 4: **if** ||p|| < thr **then**
- Incorporate the new sampled ring hat powcoder

$$U = UR_u, \quad V = \overline{VR_v}$$

6: else

7: increase a rank
$$U' = [U; m] R_u, \quad V' = V R_v$$

||p|| <thr?

- 8: end if
- 9: Rotation by re-diagonalizing the matrix

$$\begin{pmatrix} \operatorname{diag}(S) & m \\ 0 & \|p\| \end{pmatrix} \longrightarrow [R_u, R_v]$$

Online SVD (Brand, 2003)

- Complexity
 - $O(r^2)$

• The online SVD has more error, but it is comparable to Assignment Project Examp Help

- Store
 - ___

Online SVD

- Unsupervised learning: minimizing the reconstruction errors
- Each update will increase the rank by at most one, until a user-specified/eemingder reached
- Pros and Cons Add WeChat powcoder
 - Simple to implement
 - Fast computation
 - Comparable performance
 - Lack of theoretical guarantee

Outline

- Introduction
 - Learning paradigms
 - Assignment Project Exam Help

 Online learning and its applications
- Online learning https://itenwsoder.com
 - Perceptron Add WeChat powcoder
 - Online non-sparse learning
 - Online sparse learning
 - Online unsupervised learning
- Conclusion

One-slide Takeaway

- Basic concepts
 - What is online learning?
 - What is regressignment Project Exam Help
- Online learning algorithmswcoder.com
 - Perceptron
 - Online gradient descent

 Add WeChat powcoder
 - Passive aggressive
 - Truncated gradient
 - Dual averaging
 - Online SVD

Resources

Book and Video:

- Prediction Learning and Games. N. Cesa-Bianchi and G. Lugosi. Cambridge universitymest, Project Exam Help
- [Shal11] Online Learning and Online Convex Optimization. Shai Shalev-Shwartz. Follhation Ward Perios Phylogenesis Phylog
- http://videolectures.net/site/search/?q=online+learning

• Software:

- Pegasos: http://www.cs.huji.ac.il/~shais/code/index.html
- VW: hunch.net/~vw/
- SGD by Leon Bottou: http://leon.bottou.org/projects/sgd

References

- •Cesa-Bianchi, Nicol`o, Conconi, Alex, and Gentile, Claudio. A second-order perceptron algorithm. SIAM J. Comput., 34(3):640–668, 2005.
- •M. Brand. Fast online svd revisions for lightweight recommender systems. In SDM, 2003.
- •N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron algorithm. SIAM J. Comput., 34(3):640–668, 2005.
- •K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. Journal of Machine Learning Research 7855/17850000 der.com
- •K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weight vectors. In NIPS, pages 414–422, 2009.
- •K. Crammer and D. D. Lee. Learning via gaussian herding. In NIPS, pages 451–459, 2010.
- •K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research, 3:951–991, 2003.
- •M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In ICML, pages 264–271, 2008.
- •C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2:213–242, 2001.
- •M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for latent dirichlet allocation. In NIPS, pages 856–864, 2010.
- •S. C. H. Hoi, J. Wang, and P. Zhao. Exact soft confidence-weighted learning. In ICML, 2012.

References

- J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. Journal of Machine Learning Research, 10:777–801, 2009.
- Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine Learning, 46(1-3):361-387, 2002. Assignment Project Exam Help
- Guang Ling, Haiqin Yang, Irwin King and M.R. Lyu. Online Learning for Collaborative Filtering, IJCNN, Brisbane, Australia, 2012.
- IJCNN, Brisbane, Australia, 2012. https://powcoder.com
 P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16(6):964-979, 1979.
- Numer. Anal., 16(6):964–979, 1979.
 J. Mairal, F. Bach, J. Ponce, and Sapire. Chief deforming for sparse coding. In ICML, page 87, 2009.
- Y. Nesterov. Gradient methods for minimizing composite objective function. CORE Discussion Paper 2007/76, Catholic University of Louvain, Center for Operations Research and Econometrics, 2007.
- F. Orabona and K. Crammer. New adaptive algorithms for online classification. In NIPS, pages 1840–1848, 2010.
- F. Rosenblatt. The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386–408, 1958.

References

- C. Wang, J. W. Paisley, and D. M. Blei. Online variational inference for the hierarchical dirichlet process. Journal of Machine Learning Research Proceedings Track, 15:752–760, 2011.
- M. K. Warmuth and D. Kuzmin. Randomized pca algorithms with regret bounds that are logarithmic in the dimension in NIPS paper 3481-1488 2006. Help
- S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
 Journal of Machine Learning Research, 11:2543–2596, 2010.
- H. Yang, M. R. Lyu, and I. King. Efficient Chirle 4 and Transactions on Knowledge Discovery from Data, 2013.
- H. Yang, Z. Xu, I. King, and M. R. Lyu. Online learning for group lasso. In ICML, pages 1191–1198, Haifa, Israel, 2010.
- L. Yang, R. Jin, and J. Ye. Online learning by ellipsoid method. In ICML, page 145, 2009.
- P. Zhao, S. C. H. Hoi, and R. Jin. Duol: A double updating approach for online learning. In NIPS, pages 2259–2267, 2009.
- M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, pages 928–936, 2003.

In-class Practice

- We have two data and , how to get a classifier by Perceptron learning rule? Assignment Project Exam Help
- Assume
 - is in class (the first data) https://powcoder.com
 - is in class
 Add WeChat powcoder
- Data points are linearly separable and can be applied repeatedly (for validation).