JOSEPH

REDMON

ROSS

GIRSHICK

DIVVALA SANTOSH

FARHADI

Dog

CONTRACTOR IN THE LITERATURE

2016 REAL-TIME DETECTOR LEGISLATION 2016

DETECTION REAL-TIME "YOU ONLY LOOK ONCE"

		Pascal 2007 mAP	Speed	
DPM v5 33.7 .07 FPS 14 s/img	DPM v5	33.7	.07 FPS	14 s/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

1/3 Mile, 1760 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img

176 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

12 feet

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
УОГО	63.4	45 FPS	22 ms/img

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	63.4 69.0	45 FPS	22 ms/img

DPM: Deformable Part Models

R-CNN: Regions with CNN features

image

regions

Sliding window, DPM, R-CNN all train region-based classifiers to perform detection

DPM: Deformable Part Models

R-CNN: Regions with CNN features

perform detection With YOLO, you only look once at an image to

We split the image into a grid

Each cell predicts boxes and confidences: P(Object)

Each cell also predicts a class probability.

Each cell also predicts a class probability.

Conditioned on object: P(Car | Object)

Bicycle |

Car

Dog

Dining Table

Then we combine the box and class predictions.

Finally we do NMS and threshold detections

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:
- 4 coordinates (x, y, w, h)
- 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

 $7 \times 7 \times (2 \times 5 + 20) = 7 \times 7 \times 30$ tensor = **1470 outputs**

detection pipeline Thus we can train one neural network to be a whole

During training, match example to the right cell

During training, match example to the right cell

Adjust that cell's class prediction

Look at that cell's predicted boxes

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Decrease the confidence of other boxes

Decrease the confidence of other boxes

Some cells don't have any ground truth detections!

Some cells don't have any ground truth detections!

Decrease the confidence of these boxes

Decrease the confidence of these boxes

Don't adjust the class probabilities or coordinates

We train with standard tricks:

- Pretraining on Imagenet
- SGD with decreasing learning rate
- Extensive data augmentation
- For details, see the paper

YOLO works across a variety of natural images

It also generalizes well to new domains (like art)

when generalizing to person detection in artwork YOLO outperforms methods like DPM and R-CNN

Springer, 2014 S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting people in cubist art. In Computer Vision-ECCV 2014 Workshops, pages 101–116.

photographs H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision algorithms for recognising objects in artwork and in

Code available! <u>pjreddie.com/yolo</u>

