MSBD 5004 Mathematical Methods for Data Analysis Homework 2

Due date: October 14, Friday

- 1. Let $(V, \|\cdot\|)$ be a normed vector space.
 - (a) Prove that, for all $x, y \in V$,

$$|||x|| - ||y||| \le ||x - y||.$$

(b) Let $\{x_k\}_{k\in\mathbb{N}}$ be a convergent sequence in V with limit $x\in V$. Prove that

$$\lim_{k\to\infty}\|\boldsymbol{x}_k\|=\|\boldsymbol{x}\|.$$

(Hint: Use part (a).)

(c) Let $\{x^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in V and $x,y\in V$. Prove that, if

$$oldsymbol{x}^{(k)}
ightarrow oldsymbol{x}, \quad ext{and} \quad oldsymbol{x}^{(k)}
ightarrow oldsymbol{y},$$

then x = y. (In other words, the limit of the same sequence in a normed vector space is unique.)

- 2. Let V be a vector space, and $\langle \cdot, \cdot \rangle$ be an inner product on V. Use the definition of inner product to prove the following.
 - (a) Prove that $\langle \mathbf{0}, \boldsymbol{x} \rangle = \langle \boldsymbol{x}, \mathbf{0} \rangle = 0$ for any $\boldsymbol{x} \in V$. Here $\mathbf{0}$ is the zero vector in V.
 - (b) Prove that the second condition

$$\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle, \quad \forall x_1, x_2, y \in V, \alpha, \beta \in \mathbb{R}$$

is equivalent to

$$\langle \boldsymbol{x}_1 + \boldsymbol{x}_2, \boldsymbol{y} \rangle = \langle \boldsymbol{x}_1, \boldsymbol{y} \rangle + \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle$$
 and $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$, $\forall \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}, \boldsymbol{y} \in V, \alpha \in \mathbb{R}$.

- 3. $\mathbb{R}^{m \times n}$ is a vector space over \mathbb{R} . Show that $\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \operatorname{trace}(\boldsymbol{A}^T \boldsymbol{B})$ for $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n}$ is indeed an inner product on $\mathbb{R}^{m \times n}$. Here $\operatorname{trace}(\cdot)$ is the trace of a matrix, i.e., the sum of all diagonal entries.
- 4. Let V be a vector space with a norm $\|\cdot\|$ that satisfies the parallelogram identity

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2, \quad \forall x, y \in V.$$

Note that we don't have an inner product on V so far. For any $x, y \in V$, define

$$f(x, y) := \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

- (a) Prove $f(x, x) \ge 0$ for any $x \in V$, and f(x, x) = 0 if and only if x = 0.
- (b) Prove $f(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{y}, \boldsymbol{x})$ for all $\boldsymbol{x}, \boldsymbol{y} \in V$.

- (c) Prove $f(\boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z}) = f(\boldsymbol{x}, \boldsymbol{z}) + f(\boldsymbol{y}, \boldsymbol{z})$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in V$.
- (d) Prove $f(-\boldsymbol{x}, \boldsymbol{y}) = -f(\boldsymbol{x}, \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in V$.
- (e) Prove $(f(\boldsymbol{x}, \boldsymbol{y}))^2 \leq f(\boldsymbol{x}, \boldsymbol{x}) f(\boldsymbol{y}, \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in V$.
- (c)(d)(e) together with some other technique can show that $f(\alpha x + \beta y, z) = \alpha f(x, z) + \beta f(y, z)$. Therefore, we can finally prove f defines an inner product. This question showed that the parallelogram identity is also a sufficient condition for a norm to be induced by an inner product. Combined with the parallelogram law on inner product spaces, we see that the parallelogram identity is a necessary and sufficient condition for a norm to be an induced by an inner product.
- 5. Suppose that K_1 and K_2 are two kernel functions, and suppose that a > 0 is a constant. Prove that the following functions are also kernel functions:
 - (a) $K(x, y) = K_1(x, y) + K_2(x, y);$
 - (b) $K(x, y) = a \cdot K_1(x, y)$.
- 6. Consider the polynomial kernel function $K: (\mathbb{R}^2, \mathbb{R}^2) \to \mathbb{R}$ defined by $K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}^T \boldsymbol{y} + 1)^2$. The associated feature map ϕ and the feature space H are given explicitly as in the following

$$\phi: \mathbf{x} = (x_1, x_2) \to \phi(\mathbf{x}) = (\sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2, 1) \in \mathbb{R}^6 := H.$$

This feature map takes the data from a two-dimensional to a six-dimensional space in a way that linear relations in the feature space correspond to quadratic relations in the input space. Prove that indeed ϕ and H satisfies

$$K(\boldsymbol{x}, \boldsymbol{y}) = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle,$$

and prove K is symmetric positive semi-definite (SPSD).

7. If A is a $d \times d$ symmetric positive semi-definite (SPSD) matrix, then the function $K : (\mathbb{R}^d, \mathbb{R}^d) \to \mathbb{R}$ given by $K(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{y}^T A \boldsymbol{x}$ is a kernel function.