

Curso 3: Administração de Dados Complexos em Larga Escala

-- Apache Hive, mais detalhes --

Prof. Jose Fernando Rodrigues Junior

Objetivo: apresentar mais detalhes sobre a tecnologia Apache Hive

Quando usar MapReduce?

- MapReduce é adequado a problemas definidos como embarrassingly parallel (ou perfectly parallel);
- Problemas simples, mas grandes, que podem ser resolvidos mais rapidamente;
- O problema do caixeiro viajante (grafo), por exemplo, não pode ser tratado com MapReduce;
- Agregação e junção de dados podem muito bem serem tratados com MapReduce.

Quando usar MapReduce?

Exercício Hands on – primeiro programa mapreduce (não distribuído) em python:

Write your first MapReduce program in 20 minutes http://michaelnielsen.org/blog/write-your-first-mapreduce-program-in-20-minutes/

HDFS + MapReduce = Hadoop

MapReduce

HDFS

MapReduce - Distributed Computation

Um arcabouço distribuído para processamento e de grandes bases de dados sobre armazenamento (conglomerados) de clusters computadores convencionais (commodity).

HDFS + MapReduce = Hadoop

- -O Hadoop é uma instância do modelo MapReduce;
- -Como ele se **baseia no HDFS**, trata-se de uma instância **distribuída**;
- -Como visto, o Hadoop acrescenta uma nova etapa, intrínseca ao processamento distribuído, o **shuffle**, responsável pelo agrupamento do processamento distribuído no cluster;
- -O HDFS permite a **distribuição** do processamento dentro do *cluster* de **maneira abstrata** (ou transparente);
- -O Hadoop favorece o *data locality*, isto é, o processamento deve ocorrer, sempre que possível, nos próprios nós de armazenamento de dados.

HDFS + MapReduce = Hadoop

```
-O H
-Con
disti
-Co
               saber mais: Apache Spark, Kubernetes,
proce
      serverless applications, etc
proce
-O
clust
```

-O Hadoop favorece o **data locality**, isto é, o processamento deve ocorrer, sempre que possível, nos próprios nós de armazenamento de dados.

- Originalmente funcionava com uma API Java para executar processamento map-reduce;
- Posteriormente, ganhou uma camada que o tornou orientado a tabelas e a SQL (HiveQL, na verdade);
- WORM: write-once, read many times; em contraste a SGBDs, os quais são read and write many times ⇒ Hive não é uma base operacional;
- **Várias distribuições**: Apache, Cloudera Hortonworks, MapR, MS Azure HDInsight(cloud), entre outras os vendors tornam o uso mais simples via interface, distribuição, documentação, suporte, etc; ⇒ <u>Comparativo</u>
- Permite o armazenamento, a consulta, e a análise de grandes bases de dados armazenadas em HDFS; bases na escala de Peta bytes são suportadas.

7

Visão geral da arquitetura Apache Hive

http://www.bodhtree.com/blog/2012/09/08/what-is-hive-it%E2%80%99s-interaction-with-hadoop-and-big-data/

Onde seus problemas se encaixam?

	Size	Classification	Tools
	Lines Sample Data	Analysis and Visualization	Whiteboard, bash,
	KBs - low MBs Prototype Data	Analysis and Visualization	Matlab, Octave, R, Processing, bash,
	MBs - low GBs Online Data	Storage	MySQL (DBs),
		Analysis	NumPy, SciPy, Weka, BLAS/ LAPACK,
		Visualization	Flare, AmCharts, Raphael, Protovis,
	GBs - TBs - PBs Big Data	Storage	HDFS, HBase, Cassandra,
		Analysis	Hive, Mahout, Hama, Giraph,

https://www.slideshare.net/Cataldo/apache-mahout-tutorial-recommendation-20132014?next_slideshow=1

Hive: processamento DW sobre Apache Hadoop

Hive: processamento DW sobre Apache Hadoop

- Em resumo, o Hive é usado da mesma maneira que um terminal SQL;
- Diferente de um SGBD, o Hive executa as consultas
 SQL de modo distribuído sobre o Apache Hadoop;
- O Hive também funciona sobre a tecnologia Spark, uma evolução do Hadoop com melhor desempenho
 - ⇒ documentação Spark sobre o Hive.

- DW e OLAP se baseiam em consultas a dados estruturados, e operações de agregação;
- Desta maneira, como o MapReduce suporta processamento SQL, então é possível processar DW e OLAP sobre MapReduce;
- Isso é possível via **Hive** e, de maneira mais eficiente, sobre arcabouços como **Apache Kylin**, Druid, Kyvos, e Apache Lens, denominadas **Distributed Analytics Engines (DAEs).**

HIVE

-Em suma: é possível fazer DW/OLAP sobre as tecnologias HIVE + HADOOP;

-Em suma: é possível fazer DW/OLAP sobre as tecnologias HIVE + HADOOP;

Exercício *Hands on* - criação de um Data Warehouse em Hive passo a passo:

Cloudera - Getting Started with Hortonworks Data Platform Sandbox https://www.cloudera.com/tutorials/getting-started-with-hdp-sandbox/3.html