

Coincidence Analysis with UD of GP13

Xishui Tian (田喜水)

tianxs@stu.pku.edu.cn

2024.06.03

Data

• File:

- GP13_20240428_150018_RUN127_UD_RAW_ChanXYZ_20dB_13dus_BeaconTest_100M_001.root
- GP13 20240428 150756 RUN127 UD RAW ChanXYZ 20dB 13dus BeaconTest 100M 001.root
- GP13 20240428 150857 RUN127 UD RAW ChanXYZ 20dB 13dus BeaconTest 100M 002.root
- GP13_20240428_150957_RUN127_UD_RAW_ChanXYZ_20dB_13dus_BeaconTest_100M_003.root
- GP13_20240428_151054_RUN127_UD_RAW_ChanXYZ_20dB_13dus_BeaconTest_100M_004.root
- GP13 20240428 151128 RUN127 UD RAW ChanXYZ 20dB 13dus BeaconTest 100M 005.root
- GP13_20240428_151203_RUN127_UD_RAW_ChanXYZ_20dB_13dus_BeaconTest_100M_006.root
- GP13_20240428_151234_RUN127_UD_RAW_ChanXYZ_20dB_13dus_BeaconTest_100M_007.root
- Number of DUs: 13
- Number of UD events: 6051

Beacon Signal

- Pulse at time domain
- 100MHz at FFT spectrum

Number of Pulses

• Three groups

2024/6/4

- 1010, 1072: ~1k pulses
- Seven DUs: ~400 pulses
- 1017, 1014, 1029, 1020: <10 pulses

GPS Timing by DUs

• Three groups divided by pulse number:

• High: [1010, 1072]

• Mid: [1031, 1075, 1085, 1071, 1019, 1032, 1013]

• Low: [1017, 1041, 1029, 1020]

Only these DUs are correct /suitable for coincidence analysis

Zoom-in of Hit Time

• Discontinuity of the GPS timing, change of burst rate?

Xishui Tian (田喜水)

Burst Rate

- Peak at 1Hz -> The beacon rate?
- Gaussian/Poisson process as noise
- 1032 peaks around 0.5Hz.

shui Tian (田喜水)

Coincidence

- Coincidence window: 10ms
- Minimum DUs for a CD: 3
- Timestamp to be searched: from 1714316877.41 to 1714317051.41 with stepsize=1s
- Expected 174 events
- Observed 173 events (one event where 1031 occurs twice.)
- Timing of 1032 is off from others.

Non-beacon Pulse for DU1031

• Another pulse likely induced by another source triggered 1031 at a similar time. So, DU1031 appeared twice. But this event is discarded

for reconstruction.

Direction Reconstruction

• Plane wave fitting

• Spherical wave fitting mostly failed.

χ^2 Distribution

- The distribution peaks around 2E5.
- Considering the GPS timing (PPS signal error):
 - Fixed mode: $\sigma \approx 15$ ns, $\chi_{\nu}^2 \approx 888$
 - Survey mode: $\sigma \approx 50$ ns, $\chi_{\nu}^2 \approx 80$
- GPS timing is probably wrong.

Calibrate GPS Timing with Beacon

- Beacon is set at the central station. (★) as DU1076.
- The relative arrival time at each DU is calculated by the distance.
- By comparing the observed trigger time and the expected arrival time, a relative calibration among the seven DUs can be achieved.
- The timing reference is set to DU1071.

Observed vs. Expected Arrival Time

• 256/512 ns variation for one DU?

• Likely induced by mis-coding of some bit

• Time shift with respect to

DU1013:

DU	Δt[ns]
1031	-33
1075	-34
1085	-22
1019	-45
1032	-31
1071	-43

Peak Amplitude at ChY

Conclusion

- To run in trigger mode, GPS should be stable and accurate.
 - GPS time differs by 256/512ns from central value.
 - GPS offset between DUs is $\sim O(10ns)$
- Needs more investigation on the data.

• Check GPS times in the lab, e.g., measuring the PPS signal