LOG - LOSS ->

Log bas is also a kind of a model evaluation netries. For a model to perform belier, we want the value of log-loss to be as low as possible Lower the value of log loss, better the model performance will be. The formula for log loss is given by

log loss = $\frac{1}{N}\sum_{i=1}^{n}-\left(\int_{i}^{\infty}\log\left(\rho_{i}\right)-\left(1-y_{i}\right)\log\left(1-\rho_{i}\right)\right)$ Here y_{i} = alteral value p_{i} = poolsoblity of predicted value to be 1. $(1-\rho_{i})$ = probablity of predicted value to be 0. Or, we can also calculate the log loss in terms of corrected poolsoblities. $\log\log z=\frac{1}{N}\sum_{i=1}^{n}-\left(\log\left(\operatorname{corrected}\right)\operatorname{poolsoblities}\right)$

Now, we also ned to understand that what are the corrected probabilities. Let us Assume that y is the predicted values and Pi are predictions probabilities for y to be 1. So lib fast of all lib have a look at the table for the same.

J	Predicted Pools(Pi)	Corricted Probab.
1	0.94	0.94
J	0.90	0.90
1	0.78	0.78
0	0.21	0.49
O	0.47	0.53
)	0 · 83	0.83
1	D·89	0.81
D	0.10	0.90

As you can see from the table that the predicted probablities are the probablity of y=1. Wherever the Pi are high, the predicted values are 1 when the value of hi is below the artoff, then the y=0. But, the corrected probablity is the actual probablity of the predicted values So, it is same for y=1, but when y=0, the corrected probablity is equal to (1-Pi) as we can see from the table.

So when we have calculated the corrected probablities, then the log loss is given by a log loss = 1, = (log(corrected probablity)

So, now if we get similar predictions from different models, then we can compare their performance using log loss lower the value of log loss; both the model performance.