What is a Model in ML?

- A model is an object that we need to train using data and after training this model can be used to make predictions about similar type problems.
- exp:
 - if we have trained a model on even/odd data then this model can only be used to make prediction about even/odd of an unseen number(that was not present in training).

```
In [17]: import pandas as pd
    from sklearn.neighbors import KNeighborsClassifier
In [18]: df=pd.read_csv("f:/dataset/classification/fruits.csv")
    df
```

Out[18]:		diameter	weight	FruitName
	0	3.0	30	Banana
	1	6.0	100	Apple

0	3.0	30	Banana
1	6.0	100	Apple
2	6.1	95	Apple
3	3.2	35	Banana
4	5.5	80	Apple
5	7.1	120	Banana
6	2.5	60	Banana
7	2.3	100	Banana
8	4.8	70	Apple
9	4.8	79	Apple
10	5.8	120	Apple
11	2.6	85	Banana
12	6.0	110	Apple
13	6.3	95	Apple
14	3.0	40	Banana
15	3.5	25	Banana
16	5.5	100	Apple
17	7.5	120	Apple
18	2.5	50	Banana
19	2.7	40	Banana
20	4.8	90	Apple
21	5.8	90	Apple

In [19]: model=KNeighborsClassifier()

```
In [20]: | #model.fit(2d array_like,1d array_like) #generally we use numpy arrays
         #model.fit(feature matrix, target vector)
In [21]: X=df.iloc[:,:-1].values #feature matrix
         y=df.iloc[:,-1].values
                                   #target vector
In [22]: model.fit(X,y)
Out[22]:
         ▼ KNeighborsClassifier
         KNeighborsClassifier()
In [23]: #pred as_1d array=model.predict(2d array like)
         #pred as 1d array=model.predict(feature matrix of samples)
In [24]: | model.predict([[4.7,80],[2.1,40]])
         array(['Apple', 'Banana'], dtype=object)
Out[24]:
In [25]: model.predict([[3.0,30],[2.6,85],[4.8,70]])
         array(['Banana', 'Apple', 'Apple'], dtype=object)
Out[25]:
         model.predict(X)
In [26]:
         array(['Banana', 'Apple', 'Apple', 'Banana', 'Apple', 'Apple', 'Banana',
Out[26]:
                'Apple', 'Apple', 'Apple', 'Apple', 'Apple', 'Apple', 'Apple',
                'Banana', 'Banana', 'Apple', 'Banana', 'Banana', 'Apple',
                'Apple'], dtype=object)
In [27]:
         array(['Banana', 'Apple', 'Apple', 'Banana', 'Apple', 'Banana', 'Banana',
Out[27]:
                'Banana', 'Apple', 'Apple', 'Banana', 'Apple', 'Apple', 'Banana', 'Banana', 'Apple', 'Apple', 'Banana', 'Banana', 'Apple',
                'Apple'], dtype=object)
         19/22
In [28]:
         0.8636363636363636
Out[28]:
         from sklearn.metrics import accuracy score
In [29]:
         accuracy score([1,2,3,2,1],[2,1,3,1,2])
In [30]:
         0.2
Out[30]:
         accuracy score(['apple','mango','apple'],['apple','apple','apple'])
In [31]:
         Out[31]:
         #accuracy score(true output,pred output)
In [32]:
         pred=model.predict(X)
         accuracy_score(y,pred)
         0.8636363636363636
Out[32]:
In [33]:
         import matplotlib.pyplot as plt
         import seaborn as sb
```

```
In [35]: sb.scatterplot(x=df.diameter, y=df.weight, hue=df.FruitName)
   plt.show()
```



```
In [41]: #Without removing outlier
    df=pd.read_csv("f:/dataset/classification/fruits.csv")
    X=df.iloc[:,:-1].values #feature matrix
    y=df.iloc[:,-1].values #target vector
    model.fit(X,y)
    pred=model.predict(X)
    accuracy_score(y,pred)
```

Out[41]: 0.8636363636363636

```
In [42]: #After removing outlier
    df=pd.read_csv("f:/dataset/classification/fruits.csv")
    df.drop(5,inplace=True)
    X=df.iloc[:,:-1].values #feature matrix
    y=df.iloc[:,-1].values #target vector
    model.fit(X,y)
    pred=model.predict(X)
    accuracy_score(y,pred)
```

Out[42]: 0.9047619047619048

```
In [ ]:
```