EXERCICE 1 (Cours)

Donner et prouver la caractérisation de l'injectivité par les images des familles libres.

Exercice 2 (Cours)

Donner et prouver la caractérisation de l'injectivité et de la surjectivité par le rang.

Exercice 3 (Cours)

Donner et prouver le resultat concernant les supplémentaires de $\operatorname{Ker} f$.

Exercice 4

On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

- 1. Déterminer une base de $\operatorname{Im} f$.
- 2. Déterminer une base de $\operatorname{Ker} f$.
- 3. L'application f est-elle injective? Surjective?

Exercice 5

Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de E et $u \in \mathcal{L}(E)$ l'endomorphisme de E défini par la donnée des images des vecteurs de la base :

$$u(e_1) = -2e_1 + 2e_3, \ u(e_2) = 3e_2, \ u(e_3) = -4e_1 + 4e_3.$$

- 1. Déterminer une base de $\operatorname{Ker} u$. L'endomorphisme u est-il injectif ? Peut-il être surjectif ? Pourquoi ?
- 2. Déterminer une base de $\operatorname{Im} u$. Quel est le rang de u?
- 3. Montrer que $E = \operatorname{Ker} u \oplus \operatorname{Im} u$.

Exercice 6

On considère dans \mathbb{R}^2 les trois vecteurs

$$u = (1, 1), v = (2, -1), w = (1, 4).$$

1. Démontrer que (u, v) est une base de \mathbb{R}^2 .

2. Soit $f : \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire telle que f(u) = (2,1) et f(v) = (1,-1). Justifier que f existe et est unique, puis calculer f(w).

Exercice 7

Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$u = (1, 0, 0), v = (1, 1, 1).$$

Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

EXERCICE 8

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, il existe un entier $n_x \in \mathbb{N}$ tel que

$$f^{n_x}(x) = 0.$$

Montrer qu'il existe un entier $n \in \mathbb{N}$ tel que $f^n = 0$.

Exercice 9

Déterminer la forme linéaire définie sur \mathbb{R}^3 telle que

$$f(1,1,1) = 0, f(2,0,1) = 1, f(1,2,3) = 4.$$

Donner une base du noyau de f.

Exercice 10

Soient f_1 et f_2 les deux éléments de $\mathcal{L}(\mathbb{R}^2,\mathbb{R})$ définis par

$$f_1(x,y) = x + y, f_2(x,y) = x - y.$$

- 1. Montrer que (f_1, f_2) est une base de $(\mathbb{R}^2)^*$,
- 2. Exprimer les formes linéaires suivantes dans la base (f_1, f_2) :

$$q(x,y) = x, h(x,y) = 2x - 6y.$$

Exercice 11

Soit E un espace vectoriel et $x, y \in E$. Démontrer que x = y si et seulement si, pour tout $\phi \in E^*$, $\phi(x) = \phi(y)$.

Exercice 12

Soit E un espace vectoriel de dimension n, F un sous-espace vectoriel de E de dimension p et G un sous-espace vectoriel de E de dimension q. Donner une condition nécessaire et suffisante pour qu'il existe un endomorphisme f de E avec $\operatorname{Ker} f = F$ et $\operatorname{Im} f = G$.