Deep Learning
Bài 1: Làm quen
với Al và
Tensorflow & Keras

Van-Khoa LE, Ph.D CyberLab, 10/2022

(Ånh: Internet)

Giảng viên và Trợ giảng

- +33 7 78 34 08 79
- vankhoa21991@gmail.com
- https://www.linkedin.com/in/vankhoa-le-60425591/

Giảng viên: TS. Lê Văn Khoa

email: vankhoa21991@gmail.com

Quang-Khai Tran

- Postdoctoral Scholar at KISTI 한국과학기술정보연구원
- Studied Big Data Analytics at Korea University of Science and Technology

Facebook: https://www.facebook.com/tqkhai2705/

Email: tqkhai0527@gmail.com

Đề cương khoá học (phần cơ bản)

	Lí thuyết	Thực Hành	
Tuần 1	Làm quen với Al và TensorFlow & Keras • Giới thiệu về deep learning, Al • Linear Regression • Gradient descent • Tensorflow cơ bản	 Các hàm cơ bản TensorFlow và Keras Dự đoán giá nhà với linear regression trên TF-KR 	
Tuần 2	Artificial Neural Network (ANN) và Deep Neural Network (DNN) Neuron, weight, activation function, softmax, argmax Thuật toán back propagation Hàm mất mát loss function Evaluation Metrics Các thuật toán optimization Logistic Regression Các vấn đề khi huấn luyện mô hình deep learning	Dataloader, optimizer, loss, metrics - Xây dựng ANN và DNN - Nhận dạng sản phẩm thời trang Fashion MNIST	

Đề cương khoá học (phần cơ bản)

	Lí thuyết	Thực Hành	
Tuần 3	Mạng neuron tích chập (Convolutional Neural Network - CNN) Convolution Padding và stride Pooling LeNet Một số kỹ thuật cải tiến CNN: BatchNorm/LayerNorm Dropout Augmentation Các kiến trúc CNN hiện đại: Alex-Net GoogleNet VGG Dense-Net Res-Net	Thực hiện lại các bài tập trước với CNN: - DEMO: Nhận dạng chữ số MNIST - Nhận dạng Fashion MNIST - Nhận dạng vật thể trong CIFAR100	
Tuần 4	 Mạng neuron hồi quy (Recurrent Neural Network) Mô hình RNN Thuật toán back probagation through time Mô hình LSTM, GRU GRU 	 Thực hành trên time series data Thực hành với dữ liệu chuỗi thời gian, dự đoán dữ liệu chứng khoán 	
Tuần 5	Cơ chế Attention • Mô hình seq2seq kết hợp attention • Transformer https://cybersoft.edu	Thực hành với NLP: - Machine translation - Sentiment classification	

Đề cương khoá học (phần nâng cao)

	Li thuyet	Thực Hành
Tuan 6	Dự án giữa kỳ: bài toán nhận dạng chữ viết tay - OCR (Optical Character Recognition) Dùng CNN cho OCR Kết hợp CNN và LSTM cho OCR	Thực hành OCR với chữ viết tay mẫu tự Latin
Tuần 7	 Bài toán phân khúc ảnh (segmentation) U-Net Các metric liên quan Huấn luyện mô hình với Pytorch 	 Bài toán segmentation cho ảnh thời trang (fashion images) hoặc ảnh y tế Pedestrian segmentation
Tuần 8	 Bài toán Object Detection Các khái niệm căn bản (anchors, NMS) Mô hình YOLO v1,2,3 Mô hình SSD Mô hình RetinaNet Mô hình Faster-RCNN 	YOLOv3, YOLOv4, YOLOv5 - Ứng dụng mạng Darknet cho YOLO - Nhận dạng các loài vật trong ảnh

Đề cương khoá học (phần nâng cao)

	Li thuyet	Thực Hành
Tuần 9	Các mạng tạo sinh (Generative networks) AutoEncode (AE) Variational AE (VAE) Các mạng GANs Diffusion Network	- Thực hành AE/VAE trên MNIST - Thực hành AE/VAE trên dữ liệu số - Thực hành GANs cho ảnh CIFAR
Tuần 10	Xử lý ngôn ngữ tự nhiên (Natural Language Processing) Các khái niệm trong NLP Word embeddings Bert ChatGPT	Thực hành Sentiment analysis: phân tích phản hồi khách hàng
Tuần 11	Cách tổ chức và trình bày dự án.MLOpsProject cuối khóa	

Thông tin khoá học

 Một tuần 2 buổi gồm một buổi lí thuyết online và một buổi bài tập offline

- Coding plaform: google colab
- Slack: deeplearningc-n931024
- Email: vankhoa21991@gmail.com

Yêu cầu trước khi tham gia khoá học

- Lập trình python
- Kiến thức căn bản về Machine Learning
- Đại số tuyến tính
- Xác suất thống kê

Yêu cầu khi tham gia khoá học

- Bật camera, chỉ tắt trong thời gian ngắn khi có việc gấp
- Đặt câu hỏi ngay khi có thắc mắc
- Tương tác

Kết quả sau khoá học

- Nắm được các kiến thức nền tảng của deep learning
- Các chuyên đề nâng cao ứng dụng deep learning
- Hiểu bản chất của các ứng dụng AI phổ biến hiện tại
- Lập trình huấn luyện mô hình bằng pytorch và tensorflow keras
- Cách trình bày dự án, vòng đời của một sản phẩm

Nội dung

- 1. Giới thiệu
- 2. Mô hình tuyến tính
- 3. Làm quen với tensorflow & keras
- 4. Bài tập & Thảo Luận

Phần 1: Giới thiệu

Deep learning là gì?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

- Một nhánh trong học máy (machine learning)
- Mô hình xây dựng dựa trên dữ liệu, để thực hiện một nhiệm vụ cụ thể
- Đạt kết quả cao hơn các thuật toán học máy truyền thống
- Thường được sử dụng trong xử lý ảnh (CV), ngôn ngữ tự nhiên (NLP)

Ứng dụng của deep learning

Nhận diện giọng nói

Nhận diện khuôn mặt

Dịch ngôn ngữ

Xe tự lái

Y tế

Vai trò của deep learning trong thực tế

Skill set của các vị trí trong data team

Khác biệt giữa DataScience và Software Engineering

Black box

People with no idea about AI saying it will take over the world:

My Neural Network:

Lịch sử phát triển

Lịch sử phát triển

Thập niên	Dữ liệu	Dung lượng	FLOPS	Thuật toán
1940				Multilayer perceptrons
1970	100 (Iris)	1 KB	100 KF (Intel 8080)	
1980	1 K (House prices in Boston)	100 KB	1 MF (Intel 80186)	
1990	10 K (optical character recognition)	10 MB	10 MF (Intel 80486)	CNN LSTM
2000	10 M (web pages)	100 MB	1 GF (Intel Core)	
2010	10 G (advertising)	1 GB	1 TF (Nvidia C2050)	Dropout Attention GAN Transformer
2020	1 T (social network)	100 GB	1 PF (Nvidia DGX-2)	

So sánh học máy và học sâu (machine learning vs deep learning)

Deep Learning

Các loại vấn đề giải quyết bởi ML/DL

Supervised learning (học có giám sát)

Phân loại và dự đoán

Unsupervised learning (học không giám sát)

Xây dựng mô hình dựa vào thông tin sẵn có trong dữ liệu

Reinforcement learning (học tăng cường)

Xây dựng mô hình dựa trên việc thử sai của một agent thực hiện hành động vào môi trường xung quanh và nhận lại phản hồi từ môi trường

Khi nào sử dụng deep learning

- Khi có nhiều dữ liệu
- Dữ liệu không cấu trúc (unstructured) như văn bản, hình ảnh, âm thanh, ...
- Có phần cứng thích hợp (GPU, TPU)

Thành phần chính của deep learning

- Bốn thành phần chính của deep learning:
 - Dữ liệu
 - Mô hình
 - Hàm mất mát
 - Thuật toán tối ưu

Các framework

Phần 2: Mô hình tuyến tính

Mô hình tuyến tính (linear regression)

- Mô hình cơ bản dùng để so sánh quan hệ giữa 2 biến
 - Đầu vào: điểm dữ liệu đa chiều
 - Đầu ra: giá trị cần tính toán
- Mô hình (liên kết giữa đầu vào và đầu ra):

$$\hat{y} = w_1 x_1 + w_2 x_2 + \dots + w_2 x_2 + w_0 * 1$$

Viết dạng vector:

$$\hat{Y} = W^T X$$

Với
$$W = [w_0, w_1, w_2, w_3]^T$$
 và $X = [1, x_1, x_2, x_3]^T$

Xây dựng hàm mất mát

• Tiêu chí của đường thẳng thích hợp nhất là gì? Khoảng cách giữa các điểm đến đường thẳng là nhỏ nhất

Xây dựng hàm mất mát:

$$L = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - wx_i)^2$$

Với y là giá trị đầu ra thật còn \hat{y} là giá trị đầu ra tính toán bởi mô hình

Đường thẳng thích hợp nhất tương đương với L đạt giá trị min:

$$w^* = arg \min_{w} L(w)$$

Tính toán hệ số w

 Tìm cực tiểu hàm mất mát bằng cách giải phương trình đạo hàm hàm mất mát bằng 0

$$L = \frac{1}{2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \frac{1}{2} \|Y - XW\|_2^2$$

Đạo hàm hàm mất mát bằng 0:

$$\frac{\partial L(w)}{\partial w} = X^T(XW - Y) = 0$$

Nghiệm W của phương trình:

$$W = (X^T X)^{-1} X Y$$

Mô hình tuyến tính một chiều

Dữ liệu

Đầu vào	Đầu ra
Diện tích (x)	Gía trị (y)
5	3
10	8
15	20
20	100

Đa số trường hợp là không tìm được do:

- Phương trình đạo hàm phức tạp
- Điểm dữ liệu nhiều chiều
- Nhiều điểm dữ liệu

```
X = np.array([[5, 10, 15, 20]]).T
   # giá (tỷ VND)
   y = np.array([[ 3, 8 , 20, 100]]).T
   # Xây dưng Xbar
   one = np.ones((X.shape[0], 1))
   Xbar = np.concatenate((one, X), axis = 1) # thêm w0 vào X
   # tính toán w dựa trên công thức
   A = np.dot(Xbar.T, Xbar)
   b = np.dot(Xbar.T, y)
   w = np.dot(np.linalg.pinv(A), b)
   print('A = ', A)
   print('b = ', b)
   print('w = ', w)
   # tính toán đường thẳng dựa trên w
   w \theta = w[\theta][\theta]
   w 1 = w[1][0]
   x\theta = np.linspace(0, 30, 2)
   y\theta = w \theta + w 1*x\theta
   # Vẽ dữ liệu và đường thắng tìm được
   plt.plot(X.T, y.T, 'ro')
   plt.plot(x0, y0)
                                    # the fitting line
   plt.xlabel('Height (cm)')
   plt.ylabel('Weight (kg)')
   plt.show()
A = [[ 4. 50.]]
 [ 50. 750.]]
b = [[ 131.]
[2395.]]
W = [[-43.]]
[ 6.06]]
```

Gradient descent

- Tìm cực tiểu bằng cách khởi động tại một điểm và di chuyển về hướng cực tiểu
- Gía sử ta có 1 hàm số

$$y = f(x) = \frac{1}{2}(x-1)^2 - 2$$

có điểm cực tiểu global minimum tại f'(x) = 0, tương ứng với $x^* = 1$

- Với ví dụ trên thì :
 - f'(x) < 0 nếu $x < x^*(x ở bên trái cực tiểu)$
 - f'(x) > 0 nếu $x > x^*(x ở bên phải cực tiểu)$
- Trong hàm mất mát, biến là w

→ Phải di chuyển ngược dấu với đạo hàm để tìm w cho hàm L đạt cực tiểu

Gradient descent

- Gradient tại một điểm là đạo hàm của hàm số tại điểm đó
- Cách tìm cực tiểu theo gradient descent:
 - Khởi tạo w_0 tại điểm bất kỳ
 - Tính gradient $f'(w_0)=J(w_0)$
 - Dịch chuyển w_0 một lượng ngược dấu với gradient:

$$w_1 = w_0 - \eta f'(w_0)$$

Với η là tốc độ học (learning rate)

Lập lại quá trình cho đến khi w hội tụ

Cách huấn luyện mô hình với gradient descent

Bước 1: Xác định hàm mất mát (ràng buộc giữa đầu ra tính toán và đầu ra thật (groundtruth))

Bước 2: Khởi động mô hình bằng cách chọn ngẫu nhiên w_0 , b_0

Bước 3: Tính toán đầu ra bằng w, b hiện tại

Bước 4: Tính toán hàm mất mát giữa đầu ra hiện tại và đầu ra thật

Bước 5: Sử dụng hàm mất mát để cập nhật w,b theo công thức

$$(w,b) \leftarrow (w,b) - \frac{\eta}{n} \sum_{i \in \mathbb{N}} \partial_{(w,b)} l^i(w,b)$$

Quay lại bước 3

Các hàm mất mát phổ biến cho bài toán dự đoán

- Hàm bậc hai: (Mean square error MSE, L2 loss)
 - Tai điểm dữ liêu i:

$$l^{(i)}(w,b) = (\hat{y}^{(i)} - y^{(i)})^2$$

Trung bình giá trị mất mát:

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

- Hàm bậc một Mean Absolute Error, L1 loss:
 - Tai điểm dữ liêu i:

$$l^{(i)}(w,b) = |\hat{y}^{(i)} - y^{(i)}|$$

Trung bình giá tri mất mát:

$$MSE = \frac{\sum_{i=1}^{n} \left| y_i - \hat{y}_i \right|}{n}$$

Ví dụ mô hình tuyến tính nhiều chiều

Mô hình tính giá bất động sản:

Đầu vào		Đầu ra
Diện tích (area)	Số năm xây dựng (yr)	Gía trị (y)
5	7	3
10	9	8
15	8	20
20	3	100

Mô hình tuyến tính:

$$\hat{y} = w_{area} x_{area} + w_{yr} x_{yr} + w_0$$

Gradient descent hàm nhiều biến

Từ mô hình tuyến tính đến mạng neuron

Mô hình tuyến tính là một mạng neuron đơn giản 1 lớp (perceptron)

Hạn chế của linear regression

Nhạy cảm với nhiễu

 Không biểu diễn được mô hình phi tuyến tính

Phần 3: Làm quen với tensorflow và keras

Tensorflow và keras

- Tensorflow: TensorFlow
 - Thư viện mã nguồn mở phục vụ cho Machine Learning
 - Phát triển bởi google từ năm 2011, nhưng phiên bản chính thức được phát triển từ năm 2017
 - Cho phép xây dựng mô hình trên nhiều phần cứng (CPU, GPU, TPU)
 - Một trong hai thư viện deep learning được sử dụng nhiều nhất

Keras

- Thư viện mã nguồn mở, một phần của tensorflow
- Xây dựng mô hình deep neural network nhanh chóng

Tensorflow

Tensor là gì

- Cấu trúc dữ liệu trong tensorflow, khi sử dụng tensorflow thì dữ liệu phải được chuyển về dạng tensor
- Tensor có thể chứa float, int và những dạng khác như số phức, chuỗi

Code tạo tensor

Thuộc tính của tensor

Rank:

- Scalar: Khi Tensor có rank bằng 0
- Vector: Vector là một Tensor rank 1. .
- Matrix: Đây là một Tensor rank 2 hay mảng hai chiều theo khái niệm của Python
- N-Tensor: Khi rank của Tensor tăng lên lớn hơn 2, chúng được gọi chung là N-Tensor.

Shape (kích thước của tensor), ví dụ:

- Tensor = [[[1,1,1],[178,62,74]]] se có Shape = (1,2,3)
- Tensor = [[1,1,1],[178,62,74]] se có Shape = (2,3)

Type (kiểu dữ liệu của tensor):

Ví dụ int, float

Size: số phần tử của tensor

 $rank_4_tensor = tf.zeros([3, 2, 4, 5])$

Khởi tạo tensor


```
rank_0_tensor = tf.constant(4)
       print(rank_0_tensor)
                                                                                              Python
... tf.Tensor(4, shape=(), dtype=int32)
       # Tao môt tensor có rank = 1
       rank_1_tensor = tf.constant([2.0, 3.0, 4.0])
       print(rank_1_tensor)
  tf.Tensor([2. 3. 4.], shape=(3,), dtype=float32)
       # Tạo một tensor có rank = 2
       rank 2 tensor = tf.constant([[1, 2],
                                    [5, 6]], dtype=tf.float16)
       print(rank 2 tensor)
··· tf.Tensor(
   [[1. 2.]
    [3. 4.]
     [5. 6.]], shape=(3, 2), dtype=float16)
```

```
rank_4_tensor = tf.zeros([3, 2, 4, 5])

print("Type of every element:", rank_4_tensor.dtype)
print("Number of axes:", rank_4_tensor.ndim)
print("Shape of tensor:", rank_4_tensor.shape)
print("Elements along axis 0 of tensor:", rank_4_tensor.shape[0])
print("Elements along the last axis of tensor:", rank_4_tensor.shape[-1])
print("Total number of elements (3*2*4*5): ", tf.size(rank_4_tensor).numpy())

Type of every element: <dtype: 'float32'>
Number of axes: 4
Shape of tensor: (3, 2, 4, 5)
Elements along axis 0 of tensor: 3
Elements along the last axis of tensor: 5
Total number of elements (3*2*4*5): 120
```

Index tensor


```
## Index and slicing
       rank_1_tensor = tf.constant([0, 1, 1, 2, 3, 5, 8, 13, 21, 34])
       print(rank_1_tensor.numpy())
                                                                                            Python
... [0 1 1 2 3 5 8 13 21 34]
       print("First:", rank 1 tensor[0].numpy())
       print("Second:", rank_1_tensor[1].numpy())
       print("Last:", rank 1 tensor[-1].numpy())
                                                                                            Python
... First: 0
    Second: 1
    Last: 34
       print("Everything:", rank 1 tensor[:].numpy())
       print("Before 4:", rank 1 tensor[:4].numpy())
       print("From 4 to the end:", rank_1_tensor[4:].numpy())
       print("From 2, before 7:", rank 1 tensor[2:7].numpy())
       print("Every other item:", rank 1 tensor[::2].numpy())
       print("Reversed:", rank_1_tensor[::-1].numpy())
··· Everything: [ 0 1 1 2 3 5 8 13 21 34]
   Before 4: [0 1 1 2]
   From 4 to the end: [ 3 5 8 13 21 34]
    From 2, before 7: [1 2 3 5 8]
    Every other item: [ 0 1 3 8 21]
    Reversed: [34 21 13 8 5 3 2 1 1 0]
       # Pull out a single value from a 2-rank tensor
       print(rank_2_tensor[1, 1].numpy())
... 4.0
```

```
# Get row and column tensors
        print("Second row:", rank 2 tensor[1, :].numpy())
        print("Second column:", rank 2 tensor[:, 1].numpy())
        print("Last row:", rank 2 tensor[-1, :].numpy())
        print("First item in last column:", rank 2 tensor[0, -1].numpy())
        print("Skip the first row:")
        print(rank_2_tensor[1:, :].numpy(), "\n")
                                                                                             Python
    Second row: [3. 4.]
    Second column: [2. 4. 6.]
    Last row: [5. 6.]
    First item in last column: 2.0
    Skip the first row:
     [5. 6.]]
        rank 3 tensor = tf.constant([
          [[0, 1, 2, 3, 4],
          [5, 6, 7, 8, 9]],
          [[10, 11, 12, 13, 14],
          [15, 16, 17, 18, 19]],
          [[20, 21, 22, 23, 24],
          [25, 26, 27, 28, 29]],])
        print(rank 3 tensor)
··· tf.Tensor(
    [[[0 1 2 3 4]
      [5 6 7 8 9]]
     [[10 11 12 13 14]
      [15 16 17 18 19]]
     [[20 21 22 23 24]
      [25 26 27 28 29]]], shape=(3, 2, 5), dtype=int32)
```

Thay đổi kích thước tensor


```
x = tf.constant([[1], [2], [3]])
       print(x.shape)
... (3, 1)
                                                                       № № № 日… 前
       print(rank 3 tensor)
       print(tf.reshape(rank 3 tensor, [-1]))
       print(tf.reshape(rank_3_tensor, [3*2, 5]), "\n")
       print(tf.reshape(rank_3_tensor, [3, -1]))
··· tf.Tensor(
    [[[0 1 2 3 4]
     [5 6 7 8 9]]
     [[10 11 12 13 14]
     [15 16 17 18 19]]
     [[20 21 22 23 24]
     [25 26 27 28 29]]], shape=(3, 2, 5), dtype=int32)
    tf.Tensor(
    [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
    24 25 26 27 28 29], shape=(30,), dtype=int32)
    tf.Tensor(
    [[0 1 2 3 4]
    [5 6 7 8 9]
    [10 11 12 13 14]
     [15 16 17 18 19]
     [20 21 22 23 24]
     [25 26 27 28 29]], shape=(6, 5), dtype=int32)
    tf.Tensor(
    [[0 1 2 3 4 5 6 7 8 9]
    [10 11 12 13 14 15 16 17 18 19]
     [20 21 22 23 24 25 26 27 28 29]], shape=(3, 10), dtype=int32)
```

Tính toán với tensor


```
# Công trừ nhân chia
   a = tf.constant(2, dtype=tf.float32)
   b = tf.constant(3, dtype=tf.float32)
   c = tf.constant(5, dtype=tf.float32)
   add = tf.add(a, b)
   sub = tf.subtract(a, b)
   mul = tf.multiply(a, b)
   div = tf.divide(a, b)
   print("add =", add)
   print("sub =", sub)
   print("mul =", mul)
   print("div =", div)
                                                                                           Python
add = tf.Tensor(5.0, shape=(), dtype=float32)
sub = tf.Tensor(-1.0, shape=(), dtype=float32)
mul = tf.Tensor(6.0, shape=(), dtype=float32)
div = tf.Tensor(0.6666667, shape=(), dtype=float32)
   # Tính tổng và trung bình
   mean = tf.reduce mean([a, b, c])
   sum = tf.reduce_sum([a, b, c])
   max = tf.reduce max([a, b, c])
   # Access tensors value.
   print("mean =", mean)
   print("sum =", sum)
   print("max =", max)
                                                                                           Python
mean = tf.Tensor(3.3333333, shape=(), dtype=float32)
sum = tf.Tensor(10.0, shape=(), dtype=float32)
max = tf.Tensor(5.0, shape=(), dtype=float32)
```

```
d = tf.constant([[4.0, 5.0], [10.0, 1.0]])
   print(tf.math.argmax(d))
   print(tf.nn.softmax(d))
tf.Tensor([1 0], shape=(2,), dtype=int64)
[[2.6894143e-01 7.3105860e-01]
 [9.9987662e-01 1.2339458e-04]], shape-(2, 2), dtype-float32)
   print(tf.convert_to_tensor([1,2,3]))
   print(tf.convert_to_tensor(np.array([[1,2,3],[4,5,6]])))
                                                                                          Python
tf.Tensor([1 2 3], shape-(3,), dtype-int32)
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
   matrix1 = tf.constant([[1., 2.], [3., 4.]])
   matrix2 = tf.constant([[5., 6.], [7., 8.]])
   product = tf.matmul(matrix1, matrix2)
   print("product =", product)
product = tf.Tensor(
[[19. 22.]
[43. 50.]], shape=(2, 2), dtype=float32)
   x = tf.Variable(3, name="x")
   y = tf.Variable(4, name="y")
   z = tf.constant(2)
   print(f)
<tf.Variable 'x:0' shape=() dtype=int32, numpy=3>
<tf.Variable 'y:0' shape=() dtype=int32, numpy=4>
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(42, shape=(), dtype=int32)
```

Biến (variable)


```
my tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
       my_variable = tf.Variable(my tensor)
       bool variable = tf.Variable([False, False, False, True])
       complex_variable = tf.Variable([5 + 4j, 6 + 1j])
       print("Shape: ", my_variable.shape)
       print("DType: ", my_variable.dtype)
       print("As NumPy: ", my_variable.numpy())
                                                                                             Python
... Shape: (2, 2)
    DType: <dtype: 'float32'>
    As NumPy: [[1. 2.]
     [3. 4.]]
       with tf.device('CPU:0'):
         a = tf.Variable([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
         b = tf.Variable([[1.0, 2.0, 3.0]])
       with tf.device('GPU:0'):
         k = a * b
       print(k)
                                                                                             Python
··· tf.Tensor(
    [[ 1. 4. 9.]
     [ 4. 10. 18.]], shape=(2, 3), dtype=float32)
```

Gradient


```
x = tf.Variable(3.0)
   with tf.GradientTape() as tape:
     y = x^{**}2
                                                                                           Python
   dy_dx = tape.gradient(y, x)
   dy_dx.numpy()
                                                                                           Python
6.0
   w = tf.Variable(tf.ones([3,2]), name='w')
   b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b')
   x = [[1., 2., 3.]]
   print(x, w, b)
   with tf.GradientTape(persistent=True) as tape:
     y = x @ w + b
     loss = tf.reduce_mean(y**2)
     print(loss)
                                                                                           Python
[[1.0, 2.0, 3.0]] <tf.Variable 'w:0' shape=(3, 2) dtype=float32, numpy=
array([[1., 1.],
       [1., 1.],
       [1., 1.]], dtype=float32)> <tf.Variable 'b:0' shape=(2,) dtype=float32, numpy=array([0.,
tf.Tensor(36.0, shape=(), dtype=float32)
```

Gradient


```
fixed_kernel = tf.ones([3,2])
   layer = tf.keras.layers.Dense(2, use_bias=False,
                    kernel initializer=tf.keras.initializers.Constant(fixed kernel))
   x = tf.constant([[1., 2., 3.]])
   with tf.GradientTape() as tape:
     # Forward pass
     y = layer(x)
     loss = tf.reduce mean(y**2)
   print(loss)
   # Calculate gradients with respect to every trainable variable
   grad = tape.gradient(loss, layer.trainable_variables)
   print(grad)
   for var, g in zip(layer.trainable variables, grad):
     print(f'{var.name}, shape: {g.shape}')
                                                                                            Python
tf.Tensor(36.0, shape=(), dtype=float32)
[<tf.Tensor: shape=(3, 2), dtype=float32, numpy=</pre>
array([[ 6., 6.],
       [12., 12.],
       [18., 18.]], dtype=float32)>]
dense 7/kernel:0, shape: (3, 2)
```

Xây dựng mô hình


```
class LinearRegression(tf.Module):
    def __init__(self, in_features, out_features, name=None):
        super().__init__(name=name)
        self.w = tf.Variable(
            tf.random.normal([in_features, out_features]), name='w')
        self.b = tf.Variable(tf.zeros([out_features]), name='b')
    def __call__(self, x):
        y = tf.matmul(x, self.w) + self.b
        return y
```

Huấn luyện mô hình với tensorflow

Ví dụ linear regression với tensorflow grad

Keras

Xử lý dữ liệu

Mở tệp dữ liệu nhà Đầu vào là 13 cột dữ liệu đầu tiên Đầu ra là cột cuối cùng

0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222.0 18.7 394.63 2.94 33.4 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222.0 18.7 396.90 5.33 36.2

4 0.06905

Xây dựng mô hình

- Khởi tạo mô hình với class Sequential của tensorflow
- Thêm lớp đầu tiên với 13 input ứng với 13 đặc trưng
- Thêm lớp đầu ra với 1 neuron
- Xây dựng mô hình, sử dụng hàm mất mát MSE, và thuật toán tối ưu adam

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(13, input_shape=(13,), kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
```

Huấn luyện mô hình

Sử dụng method fit của class model. Đầu ra là log của tập huấn luyện và tập validation (nếu có). Các trọng số của mô hình được cập nhật sau mỗi vòng (epoch) Hàm mất mát của tập huấn luyện giảm xuống sau mỗi epoch

```
(11) model.fit(X,Y, epochs=10)
      Epoch 1/10
      16/16 [============= ] - 0s 2ms/step - loss: 545.6085
      Epoch 2/10
      16/16 [=========== ] - 0s 2ms/step - loss: 376.4868
      16/16 [=============== ] - 0s 2ms/step - loss: 247.1058
      Epoch 4/10
      16/16 [=============== ] - 0s 2ms/step - loss: 181.5879
      Epoch 5/10
      16/16 [=============== ] - 0s 2ms/step - loss: 163.4968
      Epoch 6/10
      16/16 [================ ] - 0s 3ms/step - loss: 148.9221
      Epoch 7/10
      16/16 [=============== ] - 0s 2ms/step - loss: 134.7903
      Epoch 8/10
      16/16 [============ - - os 3ms/step - loss: 121.6886
      Epoch 9/10
      16/16 [=============== ] - 0s 2ms/step - loss: 109.9621
      Epoch 10/10
      16/16 [============ - - os 2ms/step - loss: 98.8927
      <keras.callbacks.History at 0x7fd25652aa10>
```

https://cybersoft.edu.vn/

Đánh giá mô hình

Sử dụng method evaluate của class model. Đầu ra là giá trị mất mát:

```
[31] test_results = model.evaluate(X,Y, verbose=0) test_results

30.73972511291504
```

Predict

 Sử dụng method predict, đầu ra là các dự đoán tương ứng của đầu vào:

```
[33] y = model.predict(X)
     print(y)
      [18.139883]
      [19.196932]
      [25.372005]
      [20.627333 ]
      [19.404673 ]
      [20.808952]
      [23.354195]
      [23.153221 ]
      [23.142855]
      [22.556904]
      [19.731813]
      [19.817871]
      [22.163544 ]
```

Linear regression với tensorflow keras

Code theory

Phần 4: Bài tập và thảo luận

Tóm tắt

- Deep learning là một phần trong Machine Learning
- Deep learning là thuật toán được huấn luyện dự trên dữ liệu
- Pytorch and tensorflow là hai thư viện phổ biến nhất cho deep learning
- Mô hình tuyến tính là dạng đơn giản nhất của mạng neuron
- Xây dựng hàm mất mát dựa trên đầu ra tính toán và đầu ra thật
- Huấn luyện mô hình bằng gradient descent

Bài tập

Dự đoán giá nhà bằng linear regression

THANK YOU!

