Week-5 Questions

Prof . Prathosh AP and Chandan J

May 2025

1. Let a latent variable $z \sim \text{Bernoulli}(\pi)$, and the conditional distribution of x given z be:

$$p(x \mid z) = \begin{cases} \mathcal{N}(x \mid \mu_1, \sigma^2), & z = 1\\ \mathcal{N}(x \mid \mu_0, \sigma^2), & z = 0 \end{cases}$$

What is the expected value $\mathbb{E}[x]$?

- A. $\mu_0 + \pi(\mu_1 \mu_0)$
- B. $\pi \mu_1 + (1 \pi)\mu_0$
- C. $\frac{\mu_1 + \mu_0}{2}$
- D. $\pi(\mu_1 \mu_0)^2$

Correct Answer: B

2. Consider a 2-component GMM:

$$p(x) = \pi \cdot \mathcal{N}(x \mid \mu_1, \sigma^2) + (1 - \pi) \cdot \mathcal{N}(x \mid \mu_2, \sigma^2)$$

What is the expression for $\log p(x)$?

A.
$$\log \left[\pi \cdot \exp \left(-\frac{(x-\mu_1)^2}{2\sigma^2} \right) + (1-\pi) \cdot \exp \left(-\frac{(x-\mu_2)^2}{2\sigma^2} \right) \right]$$

B.
$$-\frac{(x-\mu_1)^2}{2\sigma^2} + \log \pi + \log(1-\pi)$$

C.
$$\pi \log \mathcal{N}(x \mid \mu_1, \sigma^2) + (1 - \pi) \log \mathcal{N}(x \mid \mu_2, \sigma^2)$$

D.
$$\log \left[\pi \cdot (x - \mu_1)^2 + (1 - \pi) \cdot (x - \mu_2)^2 \right]$$

Correct Answer: A

3. In the E-step of EM for a 2-component GMM, the posterior probability that a point x comes from component 1 is:

$$\gamma_1(x) = \frac{\pi_1 \cdot \mathcal{N}(x \mid \mu_1, \sigma^2)}{\pi_1 \cdot \mathcal{N}(x \mid \mu_1, \sigma^2) + \pi_2 \cdot \mathcal{N}(x \mid \mu_2, \sigma^2)}$$

Let $\pi_1 = 0.6$, $\pi_2 = 0.4$, $\mu_1 = 0$, $\mu_2 = 3$, $\sigma^2 = 1$, and x = 1. What is $\gamma_1(x)$ approximately?

- A. ≈ 0.80
- B. ≈ 0.63
- C. ≈ 0.50
- D. ≈ 0.35

Correct Answer: B

- 4. Let P = (0.5, 0.5) and Q = (0.9, 0.1). Compute $D_{KL}(P||Q)$.
 - A. ≈ 0.510
 - B. ≈ 0.222
 - C. ≈ 0.737
 - D. ≈ 0.161

Correct Answer: C

- 5. Let $f(x) = \log(x)$, which is a concave function. Let X be a random variable such that $\mathbb{E}[X] = 2$. Which of the following is **necessarily true**?
 - A. $\log(\mathbb{E}[X]) > \mathbb{E}[\log(X)]$
 - B. $\log(\mathbb{E}[X]) = \mathbb{E}[\log(X)]$
 - C. $\log(\mathbb{E}[X]) < \mathbb{E}[\log(X)]$
 - D. Nothing can be said without knowing the distribution of X
- 6. Let $f(x) = x^2$, and consider a discrete random variable X with values 1 and 3 each with probability $\frac{1}{2}$. Compute and compare:

$$f(\mathbb{E}[X])$$
 and $\mathbb{E}[f(X)]$

- A. $f(\mathbb{E}[X]) = \mathbb{E}[f(X)]$
- B. $f(\mathbb{E}[X]) > \mathbb{E}[f(X)]$
- C. $f(\mathbb{E}[X]) < \mathbb{E}[f(X)]$
- D. None of the above

Solution:

$$\mathbb{E}[X] = \frac{1+3}{2} = 2 \quad \Rightarrow \quad f(\mathbb{E}[X]) = 2^2 = 4$$

$$\mathbb{E}[f(X)] = \frac{1^2 + 3^2}{2} = \frac{1+9}{2} = 5$$

Correct Answer: C

7. Consider a 1D Gaussian Mixture Model with 2 components:

$$p(x) = \pi_1 \mathcal{N}(x \mid \mu_1, \sigma^2) + \pi_2 \mathcal{N}(x \mid \mu_2, \sigma^2)$$

Given: $\pi_1 = 0.6, \pi_2 = 0.4, \mu_1 = 0, \mu_2 = 2, \sigma^2 = 1$. Let x = 1. What is the responsibility $\gamma(z_1) = p(z = 1 \mid x)$?

- A. ≈ 0.5
- B. ≈ 0.62
- C. ≈ 0.71
- D. ≈ 0.38

Correct Answer: C

8. Let the log-likelihood at iteration t be $\mathcal{L}^{(t)}$, and at iteration t+1 be $\mathcal{L}^{(t+1)}$. Which of the following is always true for the EM algorithm?

- A. $\mathcal{L}^{(t+1)} > \mathcal{L}^{(t)}$
- B. $\mathcal{L}^{(t+1)} \geq \mathcal{L}^{(t)}$
- C. $\mathcal{L}^{(t+1)} < \mathcal{L}^{(t)}$
- D. $\mathcal{L}^{(t+1)} \leq \mathcal{L}^{(t)}$

Correct Answer: B

9. Given a generative model $p_{\theta}(x, z) = p_{\theta}(x \mid z)p(z)$, and an approximate posterior $q_{\phi}(z \mid x)$, which of the following correctly expresses the ELBO $\mathcal{L}(\theta, \phi; x)$?

- A. $\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x,z) \log q_{\phi}(z \mid x)]$
- B. $\log p_{\theta}(x) D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p_{\theta}(z \mid x))$
- C. $-D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p(z)) + \mathbb{E}_{q_{\phi}(z\mid x)}[\log p_{\theta}(x \mid z)]$
- D. All of the above

Correct Answer: D

10. What is the main idea behind the Variational Autoencoder (VAE) framework in generative modeling?

A. To maximize the exact log-likelihood of data using a deterministic encoder-decoder structure.

B. To learn a deterministic mapping from data to a low-dimensional manifold for clustering tasks.

C. To approximate the intractable posterior over latent variables using a tractable distribution, and optimize a lower bound on the data likelihood.

D. To model the joint distribution p(x,z) using purely discriminative objectives.

Correct Answer: C