

数据库原理及应用

主讲: 陈安龙

chenanlong@uestc.edu.cn

电子科技大学

本章要求:

- 1、掌握关系、关系模式、关系数据库等基本概念
- 2、掌握关系的三类完整性的含义
- 3、掌握关系代数运算
- 4、PostgreSQL项目实践
- 5、挑战性问题需要同学自己课外查阅资料自学, 回答相关问题。

挑战性问题——数据库的数据模型

一、数据模型问题探讨

- 1、数据库系统与文件系统有哪些区别?
- 2、在数据模型中,如何表示数据之间的关系?
- 3、关系模型如何用数学方法定义与运算?
- 4、如何理解关系的完整性?它解决哪些问题?
- 5、关系模型优点与局限有哪些?

1、关系模型的基本概念

层次、网状数据库结构复杂,需要使用者有较强专业知识,使用很不方便。程序员必须经过良好的培训,对所使用的系统有深入的了解才能用好系统。

关系数据库是应用集合的方法来处理数据的。它具有结构简单、理论基础坚实、数据独立性高以及提供非过程性语言等优点。

关系数据模型-现有主流DBMS支持的逻辑模型

■ 关系的概念:用于描述数据本身、数据之间联系,俗称"表"。

•	学号	姓名	性别	专业号	年龄	班长	
							字段名或属性名
_	801	张三	_女	01	19	802	<u> </u>
Ĺ	802	李四	男	01	20		行,元组或记录
	803	王五	男	01	20	802	- '
	804	赵六	女	02	20	805	<pre><</pre>
	805	钱七	男	02	19		
					!		

- 域(Domain):是一组具有相同数据类型的值的集合,具有数据类型 及长度、域名、取值范围。
- 关系模式: 由关系名、各个属性、属性的域以及属性的依赖关系构成。
- 关系实例:由真实记录或元组构成的集合,称为关系实例,简称关系;每个元组的字段必须对应关系模式中的字段。

一、关系的数学定义

笛卡尔积(Cartesian Product):设D1、D2、...、Dn是n个域,则它们的笛卡尔积为

D1×**D2**×...×**D**n={(**d1**, **d2**, ..., **dn**) | **di** ∈ **Di**, **i**=1,2,...,n} 其中每一个元素称为一个n元组(n-tuple), 简称元组; 元组中的每个值**di**称为一个分量(component).

笛卡尔积可以写成一个二维表

例如:

设 D1={张三,李四},

D2={数学,语文},

D3={优,良}

则D1×D2×D3可用二维表表示为:

张三 数学 良 张三 优 语文 张三 语文 良 优 李四 数学 李四 良 数学 李四 优 语文 李四 语文 良

数学

优

张三

关系(Relation)

笛卡尔积D1×D2×…×Dn的子集合,

记作 R (D1, D2, ..., Dn) 关系名

n为关系的目或度

数学意义上的关系

(1) 笛卡尔积不满足交换律:

即: $(d1, d2, ..., dn) \neq (d2, d1, ..., dn)$

(2) 数学意义的关系可以是无限个元组的集合。

数学意义的关系不适合数据库的实际应用,必须做如下限制:

- (1) 数据库关系模型中的关系必须是有限的元组集合
- (2) 数据库关系模型中的属性列表的顺序是可交换的,允许任意顺序,具有数据库中关系满足交换律。

4、说明

- ① 关系是一个二维表。
- ② 每行对应一个元组。
- ③ 每列可起一个名字,称为属性。属性的取值范围为一个域,元组中的一个属性值是一个分量。

5、关系的性质

- ① 列是同质的,即每列中的数据必须来自同一个域
- ② 每一列必须是不可再分的数据项(不允许表中套表, 即满足第一范式)
- ③ 不能有相同的行
- ④ 行、列次序无关

二、关系模型

三部分:关系数据结构、关系操作集合、关系的完整性(一)数据结构

1、单一的数据结构:关系(二维表)

不论是实体还是实体间的联系都用关系表示。

实体值 → 关系的元组,在关系数据库中通常称为记录 属性值 → 元组的分量,在关系数据库中通常称为字段 关键字(码):唯一标识一个元组的属性组

关键字可以有多个,统称候选关键字。在使用时,通常选定一个作为主关键字。主关键字的诸属性称为主属性,其它为非主属性。

2、关系模式:关系的描述。

包括关系名、诸属性名、属性域约束、属性间的依赖。

一个元组为关系的一个值,也称为记录

关系数据库模式:对关系数据库的描述,包括域的定义及在域上定义的所**有关系模式**。

型

关系数据库: 所有实体及实体间联系的关系的集合。是某时刻所有关系模式对应的关系的集合。

值

简单地讲: 关系数据模型是表现为二维表的形式

如: 学生的基本信息

学号	姓名	住址	性别	兴趣爱好
20060101	张江	04-201	男	排球
20060102	魏明	04-203	男	足球
20060103	王昆	05-102	女	羽毛球
20060104	程香	05-102	女	羽毛球
20060105	刘鹏	04-405	男	游泳
20060106	王德 启	04-203	男	排球
20060107	武飞	04-205	男	篮球
20060108	刘用	04-102	男	篮球
20060109	程文	05-304	女	乒乓球

3、关系的三种类型

基本关系: 客观存在的基本表

查询表: 由基本表按一定条件检索得到的结果

视图 (View): 从一个或多个基本关系上导出的关系。它不对应实际的存储数据,是一个虚关系,然而可永久存在。相当于关系模型的外模式。

由于二维表的存储策略非常简单,关于数据库的物理 存储完全由DBMS自动完成。因此,在关系模型中不需要 与内模式相应的概念。

→ 关系简单吗?

查询操作

(二) 关系操作

1、种类:选择、投影、连接、除、并、交、差

增加、删除、更新 ←——

维护操作

- 2、特点:
- ① 集合操作,一次操作
- ② 可存取多个元组

- 一次一集合(关系型)
- 一次一记录(非关系型)
- ③ 非过程化语言:用户只需告诉做什么(What) 不需告诉怎么做(How)

④ 数据定义、数据操纵、数据控制语言集成在一起

DCL: 权限控制、完整性控制等

(三) 关系模型的三类完整性

1、实体完整性(Entity Integrity)

基本关系的所有主属性不能取空值

2、参照完整性(Referential Integrity),也叫引用完整性

若基本关系R含有与另一个基本关系S的主关键字相对应的属性组F(F称为R的外键或外部码),则R中每个元组在F上的值或为空值,或等于S中某个元组的主关键字值。

例: 职工关系 EMP (ENO, ENAME, DNO) 部门关系 DEPT (DNO, DNAME)

EMP的外键, 只能取空值或 DEPT中某关键 字的值

DEPT的主键

又如: 学生关系(SNO, SNAME, AGE, SEX)

课程关系(CNO, CNAME)

选课关系(SNO, CNO, G)

3、用户定义的完整性

用户自定义完整性是针对某一具体关系数据库的约束条件,它反映某一具体应用所涉及的数据必须满足的语义要求。主要包括非空约束、唯一约束、检查约束、缺省值约束、外键约束

注意:定义完整性约束后,当数据库数据发生变化时,DBMS会自动检查,从而不必在应用程序中作检查

2 RDBS的数据操纵语言:关系代数

关系代数的运算对象是关系,运算结果也为关系。 其运算按运算符的不同可分为两类。

一、传统的集合运算

- 1、 $\text{$
- 2、交 (Intersection): $R \cap S = \{t \mid t \in R \land t \in S\}$
- 3、差 (Difference): $R-S = \{t \mid t \in R \land t \notin S\}$
- 4、笛卡尔积(广义): $\mathbf{R} \times \mathbf{S} = \{\widehat{\mathbf{t}_r \mathbf{t}_s} \mid \mathbf{t}_r \in \mathbf{R} \wedge \mathbf{t}_s \in \mathbf{S}\}$

(1) UNION(并): R∪S

概念:包含R和S中的所有元组,要求R和S兼容(字段

个数、类型[名字]),结果模式与R一致。

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cup S$		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
a_1	b_3	c_2

(2) INTERSECT (交): R∩S

概念:包含R、S中相同的元组,R、S须兼容。

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
S A	В	С
	B b_2	C c_2
A		

$R \cap S$		
A	В	С
a_1	b_2	c_2
a_2	b_2	c_1

(3) SET-DIFFERENCE(差): R-S

概念:包含在R中而不在S中的元组,R、S兼容。

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2

R-S		
A	В	C
a_1	b_1	c_1

(4) CROSS-PRODUCT(积): R×S

概念:结果包含R和S中所有字段。如果有相同的字段名,

则在结果字段来源的表。也叫"笛卡尔乘积"。

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
S	В	С
	B b ₂	C
A	+	

R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

说明:

- ①以上定义中, R、S本身也可以是关系代数表达式;
- ②由于R∩S=R-(R-S),故R∩S实际上是多余的。

专门的关系运算

学生-课程数据库: 学生Student、课程Course和选修SC

(4	1		4
	T1	10	lei	nt
V	U	JU		uu

200215122

200215122

3

Student					Cour	:se		
学号	姓名	性别	年龄	所在系	课程号	课程名	先行课	学分
Sno	Snam	e Sex	Age	Dept	Cno	Cname	Cpno	Ccredit
200215121	李勇	男	20	CS	1	数据库	5	4
200215122	 刘晨	一 女	19	IS	2	数学		2
200215123	 王敏	女	18	MA	3	信息系统	1	4
200215125	张立		19	IS	4	操作系统	6	3
SC	***		!	ļ	5	数据结构	7	4
<u>3</u> し 学号			t	 戏绩	6	数据处理		2
Sno		Cno		水钡 Frade	7	PASCAL	6	4
20021512)1	1		92			1	
		_		-				
200215121		2		85				
200215121		3		88				

90

80

选择与投影操作

1、选择(Selection),又称限制(Restriction)

从行的角度的运算

 $\sigma_{\Gamma}(R)$: 在关系R中选出满足条件 Γ 的元组形成新的关系。

条件表达式

2、投影 (Projection)

从列的角度的运算

 $\pi_A(R)$: 在R中选出若干属性列组成一个新关系。

属性组

投影后若有重复行,则自动保留一个

共同点: 为一元关系操作符。

选择:从关系实例中选择出满足条件的行。操作符: σ

投影: 从关系实例中抽出所需的一列或多列。操作符: π

条件表达式中的比较操作符: >, >=, <, <=, =, ≠。

对应SQL语句的Where子句

对应SQL语句的select子句

例1: 查询信息系(IS系)全体学生

 $\sigma_{Sdept = 'IS'}$ (Student) $\not \equiv \sigma_{5 = 'IS'}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215125	张立	男	19	IS

例2: 查询年龄小于20岁的学生

 $\sigma_{\text{Sage} < 20}(\text{Student})$ $\vec{\boxtimes} \sigma_{4 < 20}(\text{Student})$

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

例3: 查询学生的姓名和所在系 即求Student关系上学生姓名和所在系两个属性上的投影

 $π_{\text{Sname, Sdept}}(\text{Student})$ \cancel{x} $π_{2, 5}(\text{Student})$

结果:

Sname	Sdept
李勇	CS
刘晨	IS
王敏	MA
张立	IS

例4: 查询学生关系Student中都有哪些系 π_{Sdept}(Student)

结果: Sdept
CS
IS
MA

3、连接(Join)

 $\mathbf{A}\mathbf{\theta} \mathbf{B}$

R ➤ S: 从两个关系的笛卡尔积中选取属性间

满足条件AθB的元组。

R中属性

S中属性

比较运算符

说明:

 $\begin{array}{ccc}
\bullet & \mathbf{R} \bowtie \mathbf{S} = \sigma & (\mathbf{R} \times \mathbf{S}) \\
\mathbf{A} \bullet & \mathbf{B} & \mathbf{A} \bullet & \mathbf{B}
\end{array}$

- 当θ为等号且A、B两属性相同时,称为自然连接
 - ,记作 $R \bowtie S$
- ◆ 自然连接将去掉重复属性

若仅有θ为等号的条件, 称为等值连接 种类:条件连接、等值连接、自然连接、外连接。

(1) Condition Joins(条件连接)

概念: $R\bowtie_{c} S = \sigma_{c}(R \times S)$

说明:条件c会用到R和S的属性,如R.name, R.i(位置)。

例5: 关系R和关系S 如下所示

R

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

 $R \bowtie S$ $C \leq E$

A	R.B	С	S.B	Ε
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b_3	10
a_2	b_3	8	b_3	10

(2)等值连接 (Equijoin)

概念: 是条件连接的特例,即连接条件由等式组成,如R.name1=S.name2。

从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:

示例: R_{R.B=S.B}S

R

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	Е
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

A	R.B	С	S.B	Е
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

(3) Natural Join(自然连接)

概念: 是等连接的特例,即: 等式中所涉及的字段名相同,这时可忽略连接条件,即为: $\mathbb{R} \bowtie S$ 。

1	•)	١	
l	1	ſ		

	D	C
A	В	C
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

示例: R⋈S

A	B	C	E			
a_1	b_1	5	3			
a_1	b_2	6	7			
a_2	b_3	8	10			
a_2	b_3	8	2			

4、除(Division)

- ◆ 用途:在表达某些查询时有用,例如"查询已选修了所有课程的学生学号"。商并不经常使用,所以,数据库系统并没有将其作为实际操作符来实现。
- ◆ 概念:如存在R(X,Y)和S(Y,Z)两个关系,X,Y,Z分别为属性组(如: X={x₁,x₂,...,x_n},即X是由n列构成,Y,Z类似),则R÷S结果得到一个新的关系P(X),P是 R中满足下列条件的元组在 X属性列上的投影:元组在X上分量值x的像集Yx包含S在Y上投影的集合。

$$R \div S = \{t_r[X] | t_r \in \prod_X (R) \land \prod_Y (S) \subseteq Y_X\}$$

其中Yx为X在R中的象集, $x = t_r[X]$,即x在R中存在与 $\prod_y(S)$ 中的每个元素对应的记录,除操作是同时从行和列角度进行运算。

示例: 设关系定购和零件数据,如表1和表2,求定购÷零件。

$$\mathbf{R} \div \mathbf{S} = \{t_r[X] | t_r \in \prod_X (\mathbf{R}) \land \prod_Y (\mathbf{S}) \subseteq Y_X\}$$

示例2:

R _	sid	cid		<u>cid</u>	sid
	3	101	S1	102	R÷ S1 3
	3	102			5
	3	103	S2	102	8
	3	104		104	10
	5	101			
	5	102	S3	101	R÷ S2 3
	8	102		102	10
	10	102		104	
	10	104			R÷ S3 3

用操作符表达:
$$\mathbf{R} \div \mathbf{S} = \prod_{\mathbf{x}} (\mathbf{R}) - \prod_{\mathbf{x}} ((\prod_{\mathbf{x}} (\mathbf{R}) \times \prod_{\mathbf{Y}} (\mathbf{S})) - \mathbf{R})$$

R÷S的具体计算过程如下:

$$\mathbf{R} \div \mathbf{S} = \prod_{\mathbf{x}} (\mathbf{R}) - \prod_{\mathbf{x}} ((\prod_{\mathbf{x}} (\mathbf{R}) \times \prod_{\mathbf{y}} (\mathbf{S})) - \mathbf{R})$$

- ① 找出关系R和关系S中相同的属性,即Y属性。在关系S中对Y做投影(即 $\prod_{\mathbf{v}}(\mathbf{S})$);
- ② 设被除关系R与S的不相同的列为X,对关系R在X上做消除 重复值的投影(即: $\prod_{x}(R)$);
- ③ 对①②步求出的关系做笛卡尔积: $\prod_{\mathbf{x}}(\mathbf{R}) \times \prod_{\mathbf{y}}(\mathbf{S})$
- ④ 对③步的结果与R做差: $(\prod_{\mathbf{x}}(\mathbf{R}) \times \prod_{\mathbf{y}}(\mathbf{S}))$ -R
- ⑤ 对④步的结果做投影 $\prod_{\mathbf{x}}((\prod_{\mathbf{x}}(\mathbf{R}) \times \prod_{\mathbf{Y}}(\mathbf{S}))-\mathbf{R})$
- ⑥ R÷S就是②-⑤.

示例: 计算定购÷零件的过程

5、外连接(Outer Joins)

概念: 涉及有空值的自然连接,是自然连接的特例。

说明:自然连接是寻找相同字段值相等的行。但如果一个关系中的该字段在另一关系中没有相等值的行,自然连接不会显示该行,而外连接则将以NULL值形式显示该行。

外连接的种类:

- ① 左外连接(LEFT OUTER JOIN)
- ② 右外连接 (RIGHT OUTER JOIN)
- ③ 全外连接(FULL OUTER JOIN)

说明:

- ①与外连接对应,前面三种连接为内连接(Inner Join);
- ② 关系代数中没有外连接的描述,但SQL标准中有相应的三种外连接查询语句:

左外连接:对于R∞S,如果在S中没有匹配R的行,则以NULL值表示,最后的结果是以左边的关系R为准,即左边关系中的所有行均应出现在结果中,如果在S中没有对应的行,则以NULL表示之。

R	sid	sname	age	grade	S	sid	cid	score	结果: s <u>id</u> _	cid
	8	何大明	19	2		8	101	91	8	101
	11	李 峰	20	3		35	106	84	11	null
	35	陈 胜	21	4		左	外连接	示意图	35	106

右外连接:对于R∞S,如果在R中没有匹配S的行,则以 NULL值表示,最后的结果以右边的关系S为准。

R	sid	sname	age	grade	S	sid	cid	score	结果: s <u>id ci</u>	d sname
	8	何大明	19	2		8	101	91	8 1	01 何大明
	11	李 峰	20	3		35	106	84	35 1	06 陈 胜
	35	陈胜	21	4		66	119	88	66 1	19 null

右外连接示意图

全外连接:对于 $R \bowtie S$,没有匹配的 $R \cap R \cap S$ 的行,也都出现于结果中。

R	sid	sname	age	grade	S	si <u>d</u>	cid	score	结	果: s <u>id</u>	cid	sname
	8	何大明	19	2		8	101	91		8	101	何大明
	11	李 峰	20	3		35	106	84		11	null	李 峰
	35	陈胜	21	4		66	119	88		35	106	陈胜
										66	119	null

全外连接示意图

请大家课后探讨下列关系模型的关系运算

选课系统的数据库表格如下:课程信息表(Course)、教师信息表(Teacher)、开课计划表(Plan)、学生信息表(Student)、选课注册表(Register)、学院信息表(College)组成。(其具体定义见教材)。针对下列问题,如何应用关系模型运算方法进行数据处理:

- 1、如何查找计算机专业的学生?
- 2、如何查找计算机专业并且年龄大于20岁的学生?
- 3、如何查找教师的姓名、职称、所在学院信息?
- 4、如何查找教师的姓名和开的课的名称?
- 5、如何查找学院计划开出的课程清单(学院名称,课程名称)?
- 6、如何检索学习课程号为C2的学生学号和成绩?
- 7、如何检索学习课程号为C2的学生学号和姓名?
- 8、如何检索选修课程名为MATHS的学生学号和姓名?
- 9、如何检索选修课程号为C2或C4的学生学号?
- 10、如何检索至少选修课程号为C2或C4的学生学号?
- 11、如何检索不学C2课的学生姓名、年龄?
- 12、如何检索学习全部课程的学生姓名?

PostgreSQL数据库关系操作实践

- 掌握创建PostgreSQL关系数据库方法
- 掌握在PostgreSQL数据库中创建关系表方法
- 掌握在PostgreSQL数据库中定义关系表的主键、代理键与外键方法
- 掌握在PostgreSQL数据库中定义关系表的实体完整 性、参照完整性、用户自定义完整性方法

一、项目案例——选课管理系统数据库关系表实践

本节将围绕"选课管理系统"项目案例,在 PostgreSQL数据库中创建关系表及其完整性约束,并 理解本章所学习的关系模型基本概念和关系操作原理。

- 课程表 (COURSE)
- 教师表 (TEACHER)
- 开课计划表 (PLAN)
- 学生表(STUDENT)
- 选课注册表(REGISTER)
- 学院信息表(COLLEGE)

(1) 使用pgAdmin4创建数据库

指定数据库名和拥有者

数据库创建成功

课程表 (COURSE)

字段名称	字段编码	数据类型	字段大小	必填字段	是否为键
课程编号	CourseID	文本	4	是	主键
课程名	CourseName	文本	20	是	否
课程类别	CourseType	文本	10	否	否
学分	CourseCredit	数字	短整型	否	否
学时	CoursePeriod	数字	短整型	否	否
考核方式	TestMethod	文本	10	否	否

教师表 (TEACHER)

字段名称	字段编码	数据类型	字段大小	必填字段	是否为键
教师编号	TeacherID	文本	4	是	主键
姓名	TeacherName	文本	10	是	否
性别	TeacherGender	文本	2	否	否
职称	TeacherTitle	文本	6	否	否
所属学院	CollegeID	文本	3	否	外键
联系电话	TeacherPhone	文本	11	否	否

开课计划表 (PLAN)

字段名称	字段编码	数据类型	字段大小	必填字段	是否为键
开课编号	CoursePlanID	自动编号	长整型	是	代理键
课程编号	CourseID	文本	4	是	外键
教师编号	TeacherID	文本	4	是	外键
地点	CourseRoom	文本	30	否	否
时间	CourseTime	文本	30	否	否
备注	Note	文本	50	否	否

学生表(STUDENT)

字段名称	字段编码	数据类型	字段大小	必填字段	是否为键
学号	StudentID	文本	13	是	主键
姓名	StudentName	文本	10	是	否
性别	StudentGender	文本	2	否	否
出生日期	BirthDay	日期	短日期	否	否
专业	Major	文本	30	否	否
手机号	StudentPhone	文本	11	否	否

选课注册表(REGISTER)

字段名称	字段编码	数据类型	字段大小	必填字段	是否为键
注册编号	CourseRegID	自动编号	长整型	是	代理键
开课编号	CoursePlanID	数字	长整型	是	外键
学号	StudentID	文本	13	是	外键
备注	Note	文本	30	否	否

学院信息表 (COLLEGE)

字段名称	字段编码	数据类型	字段大小	必填字段	是否为键
学院编号	CollegeID	文本	3	是	主键
学院名称	CollegeName	文本	40	是	否
学院介绍	CollegeIntro	文本	200	否	否
学院电话	CollegeTel	文本	30	否	否

使用pgAdmin 4创建PostgreSQL数据库表

使用pgAdmin 4创建学院信息表(COLLEGE)

使用pgAdmin 4创建学院信息表(COLLEGE)续

使用pgAdmin 4创建教师信息表(TEACHER)

使用pgAdmin 4创建教师信息表(TEACHER)续

使用pgAdmin 4给教师信息表(TEACHER)创建外键约束

使用pgAdmin 4给教师信息表(TEACHER)创建外键约束的处理

使用pgAdmin 4给教师信息表(TEACHER)创建check约束

