Prova P4 EAI-21-2020 -COMP

Nome: RODRIGO ALVES DE ALVER Duração: 3:00h Dia: 340740 Horário - Inicio O: 45 Término 3:40

1Q (2.0): Seja uma macro-célula de um dispositivo programável composta de um FF JK e lógica adicional (ver Figura 1). Através das entradas M e N esta macro-célula é reconfigurável por programação. Projete esta macro-célula com o menor número de portas NAND e Inversoras, onde ela realiza as seguintes operações: se M=N=0 a macro-célula é um simples FF JK; se M=N=1 a macro-célula é um FF JK invertido, isto é à saída da macro-célula é invertida; se M=0 e N=1, a macro-célula é um simples FF D; se M=1 e N=0, a macro-célula é um simples FF T.

Obs: as equações características dos FFs são: $Q_{N+1}=JQ_N'+K'Q_N$, $Q_{N+1}=D$ e $Q_{N+1}=T\oplus Q_N$.

M	7	w	Z.	a		M
0	О	J	к	Q	_ w M	7
0	1	D		a	Bloco Lógico	
1	1	J	к	ō	z	
1	0	т		Q		

Figura 1. Macro-célula de um dispositivo programável.

· MN=00

$$J=W$$
 $K=Z$
· MN = 11
 $Q_{N+1}=W\overline{Q_N}+\overline{Z}Q_N=(\overline{W}+Q_N)(Z+\overline{Q_N})=\overline{W}\overline{Q_N}+\overline{Z}Q_N+\overline{W}Z$
 $MN=01$
 $Q_{N+1}=W=W\overline{Q_N}+W\overline{Q_N}$
 L_{Q_N} pand d_0 $J=W$ $K=\overline{W}$

2Q: (2.5)Usando funções MSI (menos contador e registrador), FFs de sua preferência e portas projetar um contador síncrono crescente programável de 4 bits, que realiza a tabela de operações descrita na figura 10. A variável síncrona inicio, inicializa a mudança de operação (inicio=1 inicializa a operação).

Clk S Q₀ Q₁ Q₂ Q₃

0 modulo variável com inicio zero

1 módulo 8 com início variável

Figura 10 - Tabela de operações.

Obs: Ilustrando o módulo 8 com início variável: Por exemplo, com o inicio=10, então temos: 10→11→12→13→14→15→0→1→10.....

Ilustrando o módulo variável com inicio zero: Por exemplo, com módulo=7, então temos: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 0...$

S=1 modulo 8 com miao voriarel

· a soma do violen de inicio com 8 ignorardo o cost indica o violen um que a contagem dere ser nosetada

Contador inversoro 4 bits:

S=0 - uson componedon e se for igual médulo voriavel accessor CLEPR

S=1 - 6 comparar antagem martina e se for ignal, war CLFAR PRESET

3Q (3.0): Usando a técnica de redes iterativa sequencial, flip-flops T e portas, sintetize uma célula básica de um contador síncrono binário reversível de N bits, com início variável. Pede-se célula básica otimizada e o esquema células do contador de N bits

end - indica firm da contagem

me -> indica se celula desc incu mentar no

clock

Pi - lit de inicio austornizand

Incits = rav. Inci. Qi + rev Inci Qi = Inci (Qi & rev)

Inco = 1

end i. = $Incn^{n}$ contagum chega ao fim no "incuminto" de mais sugnificativo quando endi=I $T=P_i \oplus Q_i$

T = endi Inci + endi (Pi D Qi)

4Q (2.5) Usando funções MSI, FF's e portas, projete uma fechadura digital (ver figura 1 – esquema) que se a sequência 50, 100 e 200 for feita à tranca se abre (saída $Z_3=1$) caso contrário à tranca não se abre (saída $Z_3=0$). Duas saídas Z_1 e Z_2 mostram se a sequência está correta. Quando $Z_1=1$ e $Z_2=0$ a sequência está errada; quando $Z_1=0$ e $Z_2=1$ a sequência está correta; quando $Z_1=Z_2=0$ inicio da sequência deve ser introduzida; quando $Z_1=Z_2=1$ é fim da sequência e está correta. A entrada X de 8 bits é usada para gerar a sequência (entrada BCD). A variável inicio=0, a fechadura está trancada; para inicio=1, começa a leitura do código (X). A variável inicio é síncrona.

