Re: factor

Johnny Hooyberghs

Microsoft Q# and Azure Quantum

involved

Re: factor

Johnny Hooyberghs

Microsoft Q# and Azure Quantum

Johnny Hooyberghs

@djohnnieke
github.com/Djohnnie
johnny.hooyberghs@involved-it.be

Superposition and Entanglement

- Quantum mechanics describes superposition and entanglement of quantum particles
- Quantum computing can use these phenomena to its advantage

- Security
 - Public/private key encryption?
 - Could make current RSA encryption obsolete
 - QKD (Quantum Key Distribution)

 $3.167 \times 6.301 = 19.955.267$

- Drug development
 - It takes a quantum system to simulate a quantum system
 - Interactions between molecules
 - Gene sequencing
 - Protein folding

- Machine Learning
 - Analyze large quantities of data
 - Fast feedback
 - Emulate human mind

100110

100110)

$$\alpha | 0 \rangle + \beta | 1 \rangle$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha = a + bi$$

$$\beta = c + di$$

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

- Classical bit 0, Quantum bit |0>
- Classical bit 1, Quantum bit |1>
- Quantum bit in superposition
- $m{lpha}|0
 angle + m{eta}|1
 angle$ where $|m{lpha}|^2 + |m{eta}|^2 = 1$
- α and β are complex numbers (ai + b)
- Value known after measurement
- Collapses to $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$

• 2 Qubit system (4 probabilities):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

• 2 Qubit system (4 probabilities):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

• 3 Qubit system (8 probabilities):

$$\alpha|000\rangle + \beta|001\rangle + \gamma|010\rangle + \delta|011\rangle + \varepsilon|100\rangle + \epsilon|110\rangle + \zeta|101\rangle + \eta|111\rangle$$

4 Qubit system (16 probabilities):

 $\alpha|0000\rangle + \beta|0001\rangle + \gamma|0010\rangle + \delta|0011\rangle + \varepsilon|0100\rangle + \epsilon|0110\rangle + \zeta|0101\rangle + \eta|0111\rangle + \theta|1000\rangle + \theta|1001\rangle + \iota|1010\rangle + \kappa|1011\rangle + \lambda|1100\rangle + \mu|1110\rangle + \nu|1101\rangle + \xi|1111\rangle$

X-gate

Y-gate

Z-gate

 $\binom{1}{0}$

H-gate

CNOT-gate

Entanglement

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} H \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} cnot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = ?$$

Entanglement

If the product state of two qubits cannot be factored, they are entangled

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} \rightarrow \begin{cases} ad = 0 \\ bc = 0 \\ bd = \frac{1}{\sqrt{2}} \end{cases}$$

$$bd = \frac{1}{\sqrt{2}}$$

This set of two qubits has a 50% chance of collapsing to $|00\rangle$ and a 50% chance of collapsing to $|11\rangle$

Teleportation

Microsoft Q#

https://www.microsoft.com/en-us/quantum/development-kit

Azure Quantum

- Quantum in the cloud
 - Optimization
 - Machine Learning
 - Quantum Simulation
- Access to quantum hardware
 - Microsoft (Topological)
 - IonQ & Honeywell (Ion Traps)
 - QCI (Superconducting)
- Q# & QDK
 - Quantum Intermediate Representation (QIR)

johnny.hooyberghs@involved-it.be @djohnnieke

https://github.com/Djohnnie/QSharp-and-AzureQuantum-ReFactor-2021

#refactorconf www.involved-it.be