第七章 有限字长、采样量化与量化噪声

1. (a)将下列十进制数分别用b=4的原码、补码、反码表示

$$x_1 = 0.4375$$
, $x_2 = 0.625$, $x_3 = 0.0625$, $x_4 = 0.9375$

$$x_5 = -0.4375$$
, $x_6 = -0.625$, $x_7 = -0.0625$, $x_8 = -0.9375$

(b) 若以下二进制码分别是原码、补码、反码时,请算出其所表达的十进制数 值 $x_1 = 0.1001$, $x_2 = 0.1101$, $x_3 = 1.1000$, $x_4 = 1.1011$, $x_5 = 1.1111$, $x_6 = 1.0000$

解: (a)

十进制数	原码	补码	反码
x1=0.4375	0.0111	0.0111	0.0111
x2=0.625	0.1010	0.1010	0.1010
x3=0.0625	0.0001	0.0001	0.0001
x4=0.9375	0.1111	0.1111	0.1111
x5=-0.4375	1.0111	1.1001	1.1000
x6=-0.625	1.1010	1.0110	1.0101
x7=-0.0625	1.0001	1.1111	1.1110
x8=-0.9375	1.1111	1.0001	1.0000

(b)

二进制数	原码值	补码值	反码值
x1=0.1001	0.5625	0.5625	0.5625
x2=0.1101	0.8125	0.8125	0.8125
x3=1.1000	-0.5	-0.5	-0.4375
x4=1.1011	-0.6875	-0.3125	-0.25
x5=1.1111	-0.9375	-0.0625	-0
x6=1.0000	-0	-1	-0.9375

2. 用补码作加减法运算最方便,不论正数负数都可直接相加,而且符号位与尾数一样参加相加运算,尾数和超过 1 时即进位入符号位并与符号位相加,若符号位发生进位,则将进位抛掉即可。试用b=4的补码表达以下四个数

$$x_1 = 0.1875$$
, $-x_1 = -0.1875$, $x_2 = 0.625$, $-x_2 = -0.625$

并用补码加法规律运算以下四个加法, 验证运算结果

$$x_1 + x_2$$
, $x_1 + (-x_2)$, $(-x_1) + x_2$, $(-x_1) + (-x_2)$

解:

/41 •		
	十进制数	补码
x1	0.1875	0.0011
-x1	-0.1875	1.1101
x2	0.625	0.1010
-x2	-0.625	1.0110

x1+x2	0.8125	0.1101
x1+(-x2)	-0.4375	1.1001
(-x1)+x2	0.4375	0.0111
(-x1)+(-x2)	-0.8125	1.0011

6. 正弦随机相位序列 $x(n) = A\cos(\omega_0 n + \theta)$, 其中 θ 是随机变量, 并且在 $0 \le \theta < 2\pi$ 范围内均匀等概分布, 即

$$P(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta < 2\pi \\ 0, & \theta < 0, \theta \ge 2\pi \end{cases}$$

试求其平均值 $m_x = \mathbb{E}[x(n)]$ 及方差 $\sigma_x^2 = \mathbb{E}[(x(n)-m_x)^2]$ 解:

$$m_{x} = E[x(n)] = \int_{-\infty}^{+\infty} A\cos(\omega_{0}n + \theta)P(\theta)d\theta$$
$$= \frac{A}{2\pi} \int_{0}^{2\pi} \cos(\omega_{0}n + \theta)d\theta$$
$$= 0$$

$$\sigma_x^2 = E\left[\left(x(n) - m_x\right)^2\right] = \int_{-\infty}^{+\infty} \left(A\cos\left(\omega_0 n + \theta\right)\right)^2 P(\theta) d\theta$$
$$= \frac{A^2}{2\pi} \int_0^{2\pi} \frac{1 + \cos\left(2\omega_0 n + 2\theta\right)}{2} d\theta$$
$$= \frac{A^2}{2}$$

7. A/D 变换器的字长为b,采用舍入处理,输入信号必须乘以比例因子A 以使其最大绝对值不超过 1,试求

(a) 当输入为正弦随机相位序列 $x_a(nT) = B\cos(\omega_0 n + \theta)$, θ 在 $[0,2\pi)$ 上均匀等 概分布时,A/D 变换器的输出信/噪比 σ_x^2/σ_e^2 ;

(b)当输入为一随机信号,且x(n)的峰值是 σ_x 的±3倍,求这时 A/D 变换器的输出信/噪比 σ_x^2/σ_e^2 ,并问若要求得到 80dB 的信/噪比,字长应该多少位。

解: (a) 为了保证信号的最大绝对值不超过 1,比例因子可以选为 $A=\frac{1}{B}$,此时根据第 6 题的结论可知信号功率 $\sigma_x^2=\frac{1}{2}$ 。另一方面,当采用b位字长采用舍入

处理进行量化时,量化宽度 $q=2^{-b}$,量化噪声功率 $\sigma_e^2 = \frac{q^2}{12} = \frac{2^{-2b}}{12}$,因此输出信

噪比为
$$\frac{\sigma_x^2}{\sigma_e^2} = 6 \times 2^{2b}$$
。

(b) 此时 $\sigma_x^2 = \frac{1}{9}$, 信噪比 $\frac{\sigma_x^2}{\sigma_e^2} = \frac{2^{2b+2}}{3}$ 。为了得到 80dB 的信噪比,必须要求

 $10 \times \log_{10} \left(\frac{2^{2b+2}}{3}\right) = 80 \text{ , } 于是有 b = \frac{1}{2} \times \log_2 \left(3 \times 10^8\right) - 1 \approx 13.08 \text{ , 因此字长应该至少}$ 取 14 位。