Submit to Canvas a pdf file containing verbal explanations and transition graphs for the Turing machines in problems 1 & 2 and the written answers to problems 3 & 4. Also submit JFLAP .jff files (named youronidnameP1a, youronidnameP1b, etc.) for problems 1 & 2.

1. (10 pts) Design single-tape Turing machines that accept the following languages using JFLAP

a) $L_2 = \{ w : n_a(w) = n_b(w) : w \in \{a, b\}^+ \}.$

Test case	se Result	
abbaba	accept	
aaabbb	accept	
aaaaaabbbbbb	accept	
ba	accept	
а	reject	
abb	reject	
bbaab	reject	

b) $L_3 = \{ww : w \in \{a, b\}^+\}.$

Test case	Result	
abaaba	accept	
bbbbbb	accept	
aabbaabb	accept	
а	reject	
aabb	reject	
bbb	reject	

2. $(10 \ pts)$ Design Turing Machines using JFLAP to compute the following functions for x and y positive integers represented in unary. The value f(x) represented in unary should be on the tape surrounded by blanks after the calculation.

a)
$$f(x) = \begin{cases} x - y, & x > y \\ 0, & \text{otherwise} \end{cases}$$

Input	Output	Result
11-1	1	Accept
1-1	0	Accept
111-1	11	Accept
1-1111	0	Accept
1111-11	11	Accept

b)
$$f(x) = x \mod 5$$

Input	Output	Result
1	1	Accept
1111	1111	Accept
11111	0	Accept
1111111	11	Accept
1111111111	0	Accept
11111111111	1	Accept

3. (5 pts) The nor of two languages is defined below:

$$nor(L_1, L_2) = \{ w: w \not\in L_1 \text{ and } w \not\in L_2 \}.$$

Prove that recursive languages are closed under the nor operation.

4. $(5 \ pts)$ Suppose we make the requirement that a Turing machine can only halt in a final state, that is, we require that $\delta(q,a)$ be defined for all pairs (q,a) with $q \notin F$ and $a \in \Gamma$. Does this restrict the power of the Turing machine? Prove your answer.