JOHANN BREHMER

Machine learner and physicist

johannbrehmer.de Google Scholar github.com/johannbrehmer twitter.com/johannbrehmer mail@johannbrehmer.de

RESEARCH INTERESTS

• Geometric deep learning: Equivariant architectures, scalable inductive biases, generative models

• Causality & interactive learning: Non-iid situations, offline reinforcement learning, skill learning

• Simulation-based inference, neural surrogates, inverse problems

EXPERIENCE

Qualcomm AI Research Amsterdam, Netherlands

Research scientist (Senior Staff Engineer)

11/2023 - now

Research scientist (Staff Engineer) 01/2021 – 11/2023

• Topics: Geometric deep learning, diffusion models, causality, offline RL, skill learning

• Roles: Researcher, supervisor, team lead, manager (5 reports)

• Key collaborators: Taco Cohen, Pim de Haan

New York University, USA

Moore-Sloan postdoctoral researcher

09/2017 - 12/2020

• Topics: Simulation-based inference, normalizing flows, machine learning for physics

• Roles: Researcher, supervisor

• Key collaborators: Kyle Cranmer, Gilles Louppe

Heidelberg University, Germany

PhD candidate 07/2014 – 08/2017

Topics: Statistics for particle physics, effective field theories, Higgs boson measurements

• Roles: Researcher, co-supervisor, (head) teaching assistant

• PhD advisor: Tilman Plehn

CERN, Geneva

Summer student 06/2012 – 09/2012

• Topic: Machine learning for particle physics

• Supervisor: Johannes Albrecht

EDUCATION

PhD in Physics	Heidelberg University	summa cum laude*	07/2014 – 08/2017
MSc in Physics	Heidelberg University	1.0*	02/2012 – 06/2014
BSc in Physics	Heidelberg University	1.0*	09/2008 – 02/2012
Visiting student	Imperial College, London, UK	1.0*	09/2010 – 07/2011
Abitur	Heidelberg University	1.0*	06/2007

^{*}German grading scale: from 1.0 (best) to 6.0 (worst); PhD grades: from summa cum laude (best) to rite (worst)

PUBLICATION OVERVIEW

• 44 publications with 4320 citations, h-index of 21

(Google Scholar as of February 18, 2024)

• 17 first-author papers accepted in top venues including PRL, PNAS, NeurIPS

SELECTED PUBLICATIONS

GEOMETRIC DEEP LEARNING

Euclidean, projective, conformal:	de Haan, Cohen, Brehmer	AISTATS 24
Geometric algebra transformer	Brehmer, de Haan, Behrends, Cohen	NeurIPS 23
Equivariant diffusion for planning w/ embodied agents	Brehmer, Bose, de Haan, Cohen	NeurIPS 23
Flows for simult. manifold learning & density estimation	Brehmer, Cranmer	NeurIPS 20
Neural message passing for jet physics	Henrion, Brehmer , Bruna, Cho,	Workshop 17

CAUSALITY & INTERACTIVE LEARNING

Weakly supervised causal representation learning	Brehmer , de Haan, Lippe, Cohen	NeurlPS 22
Deconfounded imitation learning	Vuorio, de Haan, Brehmer ,, Cohen	Workshop 22
Hierarchical clustering in particle physics through RL	Brehmer, Macaluso,, Cranmer	Workshop 20

SIMULATORS + ML

Simulation-based inference for particle physics	Brehmer, Cranmer	Book chapter 22
Stronger symbolic summary statistics for the LHC	Soybelman, Butter, Plehn, Brehmer	Workshop 22
The frontier of simulation-based inference	Cranmer, Brehmer , Louppe	PNAS 20
MadMiner: ML-based inference for particle physics	Brehmer, Kling, Espejo, Cranmer	CSBS 20
Mining implicit models for likelihood-free inference	Brehmer, Louppe, Pavez, Cranmer	PNAS 20
Inferring subhalo population properties with ML	Brehmer, Mishra-Sharma,, Cranme	r AstrJ 19
Constraining effective field theories with ML	Brehmer, Cranmer, Louppe, Pavez	PRL 18
Guide to constraining EFTs with ML	Brehmer, Cranmer, Louppe, Pavez	PRD 18
Better Higgs-CP tests w/ information geometry	Brehmer, Kling, Plehn, Tait	PRD 18
Better Higgs measurements w/ information geometry	Brehmer, Cranmer, Kling, Plehn	PRD 17

OTHER

Instance-adaptive video compression	van Rozendaal, Brehmer ,, Cohen	TMLR 23
Pushing Higgs Effective Theory to its limits	Brehmer, Freitas, Lopez-Val, Plehn	PRD 16

ACCOMPLISHMENTS

Speaker: 27 invited talks (43 total) at international conferences / seminars

Keynote speaker at ACAT 2019

Open source: Lead developer of the MadMiner library

Organizer: Seminars, workshops, conferences with up to 150 participants, including CLeaR 2023

Member: ELLIS

Awards: PRL Editor's Suggestion

1 oral + 1 spotlight at workshops Top Reviewer at NeurIPS 2023

Otto Haxel prize for best MSc thesis (out of 150)

Prestigious German Studienstiftung scholarship (top 0.5% of all German students)

Press coverage: TWIML podcast, Physics, phys.org, Frankfurter Allgemeine Zeitung

SKILLS

Technical: Python, PyTorch, git, Docker, SLURM

Leadership: Team leadership, people management, project management, conference organization,

hiring pipeline design, hiring, grassroots diversity initiative

Communication: Technical writing, LaTeX, data visualization, presentations to experts and non-experts,

teaching

Languages: German (native), English (fluent), Dutch (advanced)