Note: The figures and the code can be found on my github page. Link:

https://github.com/RobinYaoWenbin/Python-CommonCode/tree/master/FreewayTrafficModelingSurveillanceandContral

3. 3-dimensional time-space plots for the mean speed and density

3-dimensional time-space plots for the density

3-dimensional time-space plots for the speed

4. Besides the above 3-dimensional plots, provide also the following 2-densional plots: the density and flow profiles (over time) for each segment, and make some comprehensive analyses of the evolution of traffic flow dynamics across segments based on these plots.

Analysis

起初,上游来流较大,达到了 Segment 的通行能力,这时从上游的 Segment 开始,密度逐渐增大,流量也逐渐增大。上游起源处产生一个交通波向下游传输,

各个 segment 的密度及流量都逐渐增大。

由于 segment2 处有一个 off ramp, 因此 Segment2, 3,4 并没有达到通行能力, 流量最大值也仅仅是 3500veh/hour 左右。

由于在 Segment5 处,有一个 On ramp,此时该 segment 的流量已经开始大于通行能力,拥堵开始产生。从图像看大约在 50 Unit Time 时,该 segment 密度达到最大,约为 115veh/km 左右。并且自拥堵产生开始,会在拥堵处产生一个拥堵波,该拥堵波向上游传输,从密度随时间变化图中,我们可以看到最终拥堵波传输到了 Segment2 的位置。在 100 Unit Time 时,Segment2 的密度达到最大。拥堵激波的传输非常明显,如下所示:

当上游来流减小后,各个 segment 的流量都开始减小,并且该波从上游传输到下游,原来产生了拥堵的 segment 也逐渐变得畅通起来,大约在 140 Unit Time 开始,所有的 Segment 都已经畅通了,即密度均小于临界密度,之后密度进一步减小,到 160 Unit Time 左右,所有 Segment 都进入一个稳态。之后状态不再发生改变。