Discrete Time Martingales

Week 4 January 27, 2023

Lecturer: Siva Athreya Scribe: Abhiti Mishra, Devesh Bajaj

Origin is from horse-racing (betting system). The dictionary meaning of the word 'martingale' is the harness of a horse.

Let $\{Z_n\}_{n\geq 1}$ is a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 4.0.1. A sequence of random variables $\{Z_n\}_{n\geq 1}$ is said to be a Martingale if

$$\mathbb{E}(Z_n|Z_{n-1}=z_{n-1},\dots,Z_1=z_1)=z_{n-1} \ \forall \ n\geq 2$$
(4.1)

Things to understand- conditional expectation for discrete and conditional random variable [?]. Things we will explore-

- 1. Examples of $\{Z_n\}_{n\geq 1}$ that are martingales.
- 2. How different are martingales from iid sequences and markov chains?
- 3. How to interpret 4.1?

Example. $\{S_n\}_{n\geq 1}$ and $S_0\equiv 0$.

$$X_i = \begin{cases} 1, & w.p & 1/2 \\ -1, & w.p & 1/2 \end{cases}$$

$$S_n = \sum_{i=1}^n X_i$$

Let
$$s_{n-1}, s_{n-2}, \ldots, s_1 \in \mathbb{Z}$$
 such that $\mathbb{P}(S_{n-1} = s_{n-1}, \ldots, S_1 = s_1) > 0$

$$\begin{split} \mathbb{E}(S_n|S_{n-1} = s_{n-1}, \dots, S_1 = s_1) &= \sum_{k \in \mathbb{Z}} k \mathbb{P}(S_n = k|S_{n-1} = s_{n-1}, \dots, S_1 = s_1) \\ &= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(S_n = k, S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)} \\ &= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(S_{n-1} + X_n = k, S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)} \\ &= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(X_n = k - s_{n-1}, S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)} \\ &= \sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}(X_n = k - s_{n-1}) \mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)}{\mathbb{P}(S_{n-1} = s_{n-1}, \dots, S_1 = s_1)} \\ &= (s_{n-1} + 1) \mathbb{P}(X_n = -1) + (s_{n-1} - 1) \mathbb{P}(X_n = 1) \\ &= (s_{n-1} + 1) \frac{1}{2} + (s_{n-1} - 1) \frac{1}{2} = s_{n-1} \end{split}$$

Note that the summations here are "finite" sums.

As $s_{n-1}, \ldots, s_1 \in \mathbb{Z}$ were arbitrary, $\{S_n\}_{n\geq 1}$ is a martingale.

Example. $\{X_i\}_{i\geq 1}$ be an iid sequence on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $Z_n = \prod_{i=1}^n X_i$ and Range $(Z_n) \subset \mathbb{R} \ \forall \ n \geq 1$.

Let $z_{n-1}, \ldots, z_1 \in \mathbb{R}$ such that $\mathbb{P}(Z_{n-1} = z_{n-1}, \ldots, Z_1 = z_1) > 0$. Then

$$\begin{split} \mathbb{E}(Z_{n}|Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1}) &= \sum_{k \in Range(Z_{n})} k \mathbb{P}(Z_{n} = k|Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1}) \\ &= \sum_{k \in Range(Z_{n})} k \frac{\mathbb{P}(Z_{n} = k, Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})}{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})} \\ &= \sum_{k \in Range(Z_{n})} k \frac{\mathbb{P}(Z_{n-1}X_{n} = k, Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})}{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})} \\ &= \sum_{k \in Range(Z_{n})} k \mathbb{P}(Z_{n-1}X_{n} = k, Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1}) \\ &= \sum_{k \in Range(Z_{n})} k \mathbb{P}(Z_{n-1}X_{n} = k) \frac{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})}{\mathbb{P}(Z_{n-1} = z_{n-1}, \dots, Z_{1} = z_{1})} \\ &= \sum_{u \in S^{1}, Range(X_{n}) = S^{1}} u z_{n-1} \mathbb{P}(X_{n} = u) \\ &= z_{n-1} \mathbb{E}[X_{n}] = z_{n-1} \end{split}$$

Note that the sums here might be infinite. In the last step we assume $\mathbb{E}[X_i] = 1$. Now since $\{z_i\}_{i=1}^{n-1}$ were arbitrary, $\{Z_n\}_{n\geq 1}$ is a martingale.

Example.

$$X_i = \begin{cases} 2, & w.p \ 1/2 \\ 0, & w.p \ 1/2 \end{cases}$$

Then $\mathbb{E}(X_i) = 1$. Therefore, $Z_n = \prod_{i=1}^n X_i$ is a martingale. Range $(Z_n) = \{2^n, 0\}$. Note that the mean stays constant and

$$\mathbb{P}(Z_n=0)=1-\frac{1}{2^n}$$

$$\mathbb{P}(Z_n = 2^n) = \frac{1}{2^n}$$

Intuition- The first equation shows that the martingale takes a very low value with very high probability and the second one shows that it takes a very large value with very low probability Idea behind Markov Chains -

$$X_n | X_{n-1}, \dots, X_1 \stackrel{d}{=} X_n | X_{n-1}$$

Idea behind Martingales - Expected value of Z_n conditioned on the past depends only on Z_{n-1} . $\{Z_n\}_{n\geq 1}$ in law could depend on the entire past!

Week 5 February 3, 2023
LECTURER: SIVA ATHREYA SCRIBE: ATREYA CHOUDHURY, ANKAN KAR

We define $f:D\subseteq\mathbb{R}^{n-1}\to\mathbb{R}$ where

$$f(z_1, z_2, \dots, z_{n-1}) = \mathbf{E}[Z_n | Z_{n-1} = z_{n-1}, Z_{n-2} = z_{n-2}, \dots, Z_1 = z_1]$$

Define $Y_n: \Omega \to \mathbb{R}$ where

$$Y_n(\omega) := f(Z_1(\omega), Z_2(\omega), \dots, Z_{n-1}(\omega)) \tag{4.2}$$

You can check that $\{Y_n\}$ is a random variable.

Property 4.0.1. Some properties of $\{Y_n\}$

1.
$$A := \{Z_{n-1} = z_{n-1}, Z_{n-2} = z_{n-2}, \dots, Z_1 = z_1\}$$

$$\omega \in A \implies Y_n(\omega) = f(z_1, z_2, \dots, z_{n-1})$$

2.
$$L := \{Y_n \le c\} = \{f(Z_1, Z_2, \dots, Z_{n-1}) \le c\}$$

$$L \in \mathcal{A}_{n-1} \equiv observable \ events \ up to \ n-1$$

 $(4.2) \iff \{Y_n\}$ has the above two properties

If $\{Z_n\}$ is martingale, $Y_n = Z_{n-1}$

Lemma 4.0.1. Let $\{Y_n\}_{n\geq 1}$ be martingale. Then,

$$\forall 1 \le i \le n, \ \mathbf{E}[Z_n | Z_i, Z_{i-1}, \dots, Z_1] = Z_i$$

Proof. We fix i and prove by induction on n. We look at n = i+1. By martingale property,

$$\mathbf{E}[Z_{i+1}|Z_i,Z_{i-1},\ldots,Z_1]=Z_i$$

Let k > 0 and the statement hold for n = i + k. We look at n = i + k + 1

$$\mathbf{E}[Z_{i+k+1}|Z_i, Z_{i-1}, \dots, Z_1]$$
= $\mathbf{E}[\mathbf{E}[Z_{i+k+1}|Z_{i+k}, Z_{i+k-1}, \dots, Z_1]|Z_i, Z_{i-1}, \dots, Z_1]$
= $\mathbf{E}[Z_{i+k}|Z_i, Z_{i-1}, \dots, Z_1]$ [using (4.0.1)]
= Z_i

where the last equality is obtained from the induction hypothesis

The property used in the first equality is called the Tower property. We now formally state and prove the same.

Property 4.0.2 (Tower Property).

$$\mathbf{E}[\mathbf{E}[X|Y,Z]|Y] = E[X|Y]$$

Proof.

$$\mathbf{E}[\mathbf{E}[X|Y,Z]|Y] = E[h(Y,Z)|Y] = k(Y)$$

Let $y \in \mathbb{R}$ such that $\mathbf{P}(Y = y) > 0$

$$\begin{split} k(y) &= E[h(Y,Z)|Y] \\ &= \sum_{\substack{m \in \text{Range}(Y) \\ t \in \text{Range}(Z)}} h(m,t) \mathbf{P}(Y=m,Z=t|Y=y) \\ &= \sum_{\substack{t \in \text{Range}(Z) \\ t \in \text{Range}(Z)}} h(y,t) \mathbf{P}(Z=t|Y=y) \\ &= \sum_{\substack{t \in \text{Range}(Z) \\ t \in \text{Range}(Z)}} \sum_{\substack{k \in \text{Range}(X) \\ k \in \text{Range}(X)}} k \mathbf{P}(X=k|Y=y,Z=t) \mathbf{P}(Z=t|Y=y) \\ &= \sum_{\substack{t \in \text{Range}(Z) \\ k \in \text{Range}(X)}} \sum_{\substack{k \in \text{Range}(Z) \\ t \in \text{Range}(Z)}} k \frac{\mathbf{P}(X=k,Y=y,Z=t)}{\mathbf{P}(Y=y,Z=t)} \frac{\mathbf{P}(Z=t,Y=y)}{\mathbf{P}(Y=y)} \\ &= \sum_{\substack{k \in \text{Range}(X) \\ k \in \text{Range}(X)}} k \frac{\mathbf{P}(X=k,Y=y)}{\mathbf{P}(Y=y)} \\ &= \sum_{\substack{k \in \text{Range}(X) \\ k \in \text{Range}(X)}} k \frac{\mathbf{P}(X=k,Y=y)}{\mathbf{P}(Y=y)} \\ &= \mathbf{E}[X|Y=y] \end{split}$$