Probeklausur zur Theoretischen Physik II (Elektrodynamik)

Na	me	Matrikelr	nummer	Übungsgruppenleiter
Anmerkungen: Erlaubte Hilfmittel: ein selbstbeschriebenes Blatt DIN A4 Bearbeitungszeit: 90 Minuten Beschriften Sie bitte jedes Blatt mit Namen, Matrikelnummer und dem Namen Ihres Übungsgruppenleiters.				
1 M	ultip	le-Choice Fragen (1	10P)	
Zu jeder Frage darf nur <i>eine</i> Antwort angekreuzt werden. Für jede richtige Antwort gibt es einen Punkt.				
a) Ein F	eld $ec{A}(ec{r})$	ist quellenfrei, wenn gilt		
		$) \nabla \cdot \vec{A} = 0$	$\bigcirc \Delta \vec{A} = 0$	$\bigcirc \nabla \times \vec{A} = 0$
b) Die Tangentialkomponente welcher Größe ist an einer Grenzfläche zwischen zwei Dielektrika mit verschiedener Dielektrizitätskonstante stetig?				
	○ die	e des elektrischen Felds, E_t	○ die o	der dielektrischen Verschiebung, D_t
e) Eine Ladung befindet sich im Mittelpunkt einer metallischen Hohlkugel. Wie viele Bildladungen sind nötig, um das elektrische Feld <i>im Inneren</i> der Kugel zu beschreiben?				
		○ null	O unendlich vie	le
d) Gegeben ist eine dreidimensionale Ladungsverteilung. Sind die folgenden Aussagen richtig oder falsch?				
richtig		D D. 1 . 1 . 1 . 1	1 1 D	
0	0	erhalten.	dimensionalen Ka	aums bleibt die Spur des Quadrupoltensors
\circ	\bigcirc	Die Diagonalkomponenter kugelsymmetrisch ist.	des Quadrupolte	ensors sind null, wenn die Ladungsverteilung
0	0	0 3	O	nalisiert werden, wenn die Ladungsverteilung
e) Zwei kreisförmige Leiterschleifen sind parallel übereinander angeordnet. In den Leiterschleifen fließt Strom in entgegengesetzten Richtungen. Die beiden Leiterschleifen				
	○ ziel	nen sich an Stosser	n sich ab) wirken keine Kraft aufeinander aus
Zwei homogen geladene, unendlich ausgedehnte, infinitesimal dünne Platten befinden sich parallel zur (x,y) -Ebene im Vakuum. Die eine Platte bei $z_1>0$ hat die Flächenladungsdichte σ , die andere Platte bei $z_2=-z_1$ hat die Flächenladungsdichte $-\sigma$. Sind die folgenden Aussagen richtig oder falsch?				
richtig	falsch	Für $ z >> z_1$ ist das elektr Das Potential verschwinde Für $ z < z_1$ ist das elektrise	t für $z \to \infty$ und z	

Probeklausur zur Theoretischen Physik II (Elektrodynamik)

Name Matrikelnummer Übungsgruppenleiter

Anmerkungen:

Erlaubte Hilfmittel: ein selbstbeschriebenes Blatt DIN A4 Bearbeitungszeit: 90 Minuten Beschriften Sie bitte jedes Blatt mit Namen, Matrikelnummer und dem Namen Ihres Übungsgruppenleiters.

2 Zwei Ladungen an leitender Oberfläche (10P)

Der Halbraum z<0 wird von einem idealen Leiter ausgefüllt. Zwei Ladungen +q und -q sind im Abstand d starr miteinander verbunden. Der Mittelpunkt befindet sich im Abstand $z_M>\frac{d}{2}$ zur Leiteroberfläche. Die Verbindungsachse steht im Winkel α zur Oberflächennormalen.

- a) Geben Sie alle Bedingungen an, die das elektrostatische Potenzial $\Phi(\vec{r})$ im Bereich z>0 erfüllen muss.
- b) Bestimmen Sie das Potenzial und das elektrische Feld für z > 0 mit Hilfe der Bildladungsmethode.
- c) Welche Oberflächenladungsdichte wird auf der Leiteroberfläche induziert?

3 Rotierende geladene Kugel – magnetischer Dipol (12P)

Eine homogene Vollkugel mit Radius R und Gesamtladung Q rotiert um eine feste Achse durch ihren Mittelpunkt mit konstanter Winkelgeschwindigkeit $\vec{\omega}$.

- a) Geben Sie die Stromdichte \vec{j} (\vec{r}) an.
- b) Berechnen Sie das Vektorpotential $\vec{A}\left(\vec{r}\right)$ außerhalb der Kugel. Zeigen Sie, dass ein reines Dipolfeld entsteht.

Hinweis: Drücken Sie \vec{r} mit Hilfe der Kugelflächenfunktionen $Y_{lm}(\theta, \phi)$ aus.

c) Wie groß ist das magnetische Dipolmoment $\vec{\mu}$ der Kugel? Berechnen Sie das Magnetfeld im Außenraum.

4 Kugelkondensator mit inhomogenem Dielektrikum (8P)

Ein Kugelkondensator besteht aus zwei konzentrischen, unendlich dünnen Kugelschalen mit den Radien R_1 und $R_2 > R_1$. Die Kugelschalen haben die Ladungen $q_1 = q$ und $q_2 = -q$. Der Zwischenraum zwischen den Beiden Schalen sei ganz mit einem inhomogenen Dielektrikum der Dielektrizitätskonstante $\varepsilon(r)$ gefüllt.

- a) Bestimmen Sie das elektrische Feld $\vec{E}(\vec{r})$.
- b) Betrachten Sie nun den Fall $\varepsilon(r)=\tilde{\varepsilon}r^2$. Berechnen Sie das elektrische Feld und die Kapazität des Kondensators, und geben Sie die elektrostatische Energie an.