This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

FΙ

(19)日本国特許庁 (JP)

(51) Int.Cl.⁶

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-316008

(43)公開日 平成10年(1998)12月2日

B62D	11/10		B62D	11/10		•	
	55/00			55/00			
F16H	61/02		F16H	61/02		•	
# F16H	59: 44						
	63: 06						
		4-test	-t-24-P -38	THE OWN O	O T	(人 7 五)	· E

審査請求 未請求 請求項の数3 OL (全 7 頁) 最終頁に続く

(21)出願番号 特願平9-124539 (22)出願日 平成 9年(1997) 5月14日

識別記号

(71)出顧人 000006851

ヤンマー農機株式会社

大阪府大阪市北区茶屋町1番32号

(71)出願人 000005164

セイレイ工業株式会社

岡山県岡山市江並428番地

(72)発明者 大家 輝光

大阪府大阪市北区茶屋町1番32号 ヤンマ

一農機株式会社内

(72)発明者 嶋田 孝信

岡山県岡山市江並428番地 セイレイ工業

株式会社内

(74)代理人 弁理士 松尾 憲一郎

(54)【発明の名称】 クローラ式作業車の走行駆動装置

(57)【要約】

【課題】 クローラ式作業車の機体旋回を、安全かつ機 敏に行えるようにする。

【解決手段】 エンジンから、走行用無段変速機を介し、左右走行部のクローラを駆動する走行部入力軸に至る動力伝達経路中に、ステアリングホイルの回動操作と連動して変速作動する操向用無段変速機を、左右遊星歯車機構を介して連動連結し、同操向用無段変速機の出力に応じて機体を旋回させるべく構成し、上記左右遊星歯車機構と操向用無段変速機との間に、副数段階の変速を可能とした左右操向用変速部を介設し、同左右操向用変速部の変速作動を、運転部に設けたステアリングホイルの回動操作と連動させる。

1

【特許請求の範囲】

【請求項1】 エンジン(E) から、走行用無段変速機(2 1)を介し、左右走行部(1L)(1R)のクローラ(12L)(12) を 駆動する走行部入力軸(38L)(38R)に至る動力伝達経路中に、ステアリングホイル(7) の回動操作と連動して変速 作動する操向用無段変速機(20)を、左右遊星歯車機構(4 0L)(40R)を介して連動連結し、同操向用無段変速機(20)の出力に応じて機体を旋回可能とした走行駆動装置(DR)であって、

上記左右遊星歯車機構(40L)(40R)と操向用無段変速機(2 10 0)との間に、副数段階の変速を可能とした左右操向用変速部(48L)(48R)を介設して、同左右操向用変速部(48L)(48R)の変速作動を、運転部(4)に設けたステアリングホイル(7)の回動操作と連動させたことを特徴とするクローラ式作業車の走行駆動装置。

【請求項2】 エンジン(E) から、走行用無段変速機(2 1)を介し、左右走行部(1L)(1R)のクローラ(12L)(12R)を 駆動する走行部入力軸(38L)(38R)に至る動力伝達経路中 に、複数段階の変速を可能とした走行用副変速部(28)を 介設したことを請求項1記載のクローラ式作業車の走行 駆動装置。

【請求項3】 前記左右操向用変速部(48L)(48R)の変速作動は、走行用副変速部(28)が高速側に変速操作されているときは、上記ステアリングホイル(7)の直進状態からの回動操作に連動して、少なくとも、旋回内側の操向用変速部を低速側に変速して、旋回内側の走行部の走行速度を機体の直進速度よりも減速し、走行用副変速部(28)が低速側に変速操作されているときは、上記ステアリングホイル(7)の直進状態からの回動操作に連動して、少なくとも、旋回外側の操向用変速部を高速側に変速して、旋回外側の走行部の走行速度を機体の直進速度よりも増速することを特徴とする請求項1又は2記載のクローラ式作業車の走行駆動装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はクローラ式作業車の走行 駆動装置に関する。

[0002]

【従来の技術】従来、クローラ式作業車において、左右 走行部をそれぞれ無段変速機で駆動して、左右走行部の 走行速度を異ならせることにより、機体を旋回するよう にしたものがある。

【0003】しかし、上記クローラ式作業車では、左右無段変速機の個体差や、左右無段変速機を操作する左右操作機構の不揃いやガタが原因で直進性が悪く、また、左右無段変速機が相互関連なく制御されているので、旋回が急激に行われて圃場面を傷めるという問題があった。

【0004】そこで、走行用無段変速機からの動力を左右遊星歯車機構を介して左右走行部に伝達するように構 50

成すると共に、ステアリングホイルと連動して変速比を変更する操向用無段変速機を設けて、走行用無段変速機を左右遊星歯車機構の内歯歯車を連動連結し、操向用無段変速機の出力軸を上記左右遊星歯車機構の太陽歯車に連動連結して、左右の太陽歯車が互いに逆方向に回転するようにし、左右遊星歯車機構の遊星歯車の公転で左右走行部を駆動すべく構成し、ステアリングホイルの回動

操作により、左右走行部の走行速度を異ならせて機体を

[0005]

旋回させることが考えられる。

【発明が解決しようとする課題】ところが、上述した走行駆動装置では、機体の走行速度に関係なく左右走行部の走行速度に差が生ずるため、高速走行時に機体の走行速度が低下せず、高速のままで機体が旋回するので危険であり、低速走行時には機体が低速のままで旋回するので、機敏な旋回を行うことができなかった。

[0006]

20

【課題を解決するための手段】そこで、本発明は、エンジンから、走行用無段変速機を介し、左右走行部のクローラを駆動する走行部入力軸に至る動力伝達経路中に、ステアリングホイルの回動操作と連動して変速作動する操向用無段変速機を、左右遊星歯車機構を介して連動連結し、同操向用無段変速機の出力に応じて機体を旋回可能とした走行駆動装置であって、上記左右遊星歯車機構と操向用無段変速機との間に、副数段階の変速を可能とした左右操向用変速部を介設し、同左右操向用変速部の変速作動を、運転部に設けたステアリングホイルの回動操作と連動させたことを特徴とするクローラ式作業車の走行駆動装置を提供せんとするものである。

【0007】また、次のような特徴を有するものである。

【0008】エンジンから、走行用無段変速機を介し、 左右走行部のクローラを駆動する走行部入力軸に至る動 力伝達経路中に、複数段階の変速を可能とした走行用副 変速部を介設したこと。

【0009】前記左右操向用変速部の変速作動は、走行用副変速部が高速側に変速操作されているときは、上記ステアリングホイルの回動操作に連動して、少なくとも、旋回内側の操向用変速部を低速側に変速し、走行用副変速部が低速側に変速操作されているときは、上記ステアリングホイルの回動操作に連動して、少なくとも、旋回外側の操向用変速部を高速側に変速すること。

[0010]

40

【発明の実施の形態】本発明に係る走行駆動装置は、走行用無段変速機からの動力を左右遊星歯車機構の左右内歯歯車に伝達し、同左右遊星歯車機構の遊星歯車を介して左右走行部に伝達するように構成すると共に、ステアリングホイルと連動して変速比を変更する操向用無段変速機を設けて、同操向用無段変速機の出力を上記左右遊星歯車機構の太陽歯車に互いに逆方向に回転するように

伝達して、ステアリングホイルの回動操作により、左右 走行部の走行速度を異ならせて機体を旋回させるように しており、更に、上記操向用無段変速機の出力軸と上記 左右太陽歯車との間に、それぞれ左右操向用変速部を介 設して、走行用副変速部の変速レバーが高速側に操作さ れているときは、ステアリングホイルの回動操作に連動 し、旋回内側の操向用変速部を低速側に変速して、この 側の走行部の走行速度を低下させ、その結果、機体の走 行速度を低下させて安全な旋回を行うことができるよう にしている。また、走行用副変速部の変速レバーが低速 側に操作されているときは、ステアリングホイルの回動 操作に連動し、旋回外側の操向用変速部を高速側に変速 して、この側の走行部の走行速度を高めることにより機 体の走行速度を高めると共に、前記操向用無段変速機の 変速作用と相俟って、機敏なな旋回を行うことができる ようにしている。

[0011]

【実施例】以下、本発明の実施例について図面を参照し て詳細に説明する。

【0012】図1は、本発明に係る走行駆動装置DRを具備するクローラ式作業車Aの側面図であり、同クローラ式作業車Aは、機体フレーム2の左右両側方にクローラ式の左右走行部IL,IR を取付け、機体フレーム2の上面前部に原動機部3を載設するとともに、機体フレーム2の上面前部に運転部4を載設して、同運転部4の後方にダンプ式の荷台5を載設している。

【0013】運転部4は前部にステアリングコラム6を立設し、同ステアリングコラム6にステアリングホイル7を操向回動自在に配設すると共に、同ステアリングコラム6の左側面に前後進変速レバー8を前後傾動自在に取付けている。また、ステアリングコラム6の後方に所定間隔を保持して座席9を配設している。図中、10は走行フレーム、11はクローラ、12L,12R は左右駆動輪、13は遊動輪、14は下部転輪、15は上部転輪である。

【0014】図2は、走行駆動装置DRの構成を示しており、図示するように、機体の前方から、エンジンE、フロントミッションF、リアミッションRの順に配設し、フロントミッションFの後面に、可変容量型油圧ポンプと定容量型油圧モータとで構成した静油圧式の操向用無段変速機20を取付け、一方、リアミッションRの前面に、上記と同様に可変容量型油圧ポンプと定容量型油圧モータとで構成した静油圧式の走行用無段変速機21を取付けている。

【0015】また、上記ステアリングホイル7と前後進変速レバー8との操作は、制御部Cを介し、それぞれ操向用無段変速機20と走行用無段変速機21とに伝達されて、当該無段変速機20,21 の変速比を変更するようにしている。

【0016】次に、走行駆動装置DRの具体的な構成について動力伝達の順に従い説明する。即ち、エンジンEと

フロントミッション入力軸23とをダブルフックジョイント22を介して連動連結し、同フロントミッション入力軸23と操向用無段変速機入力軸20aの前端とをギヤトレイン24を介して連動連結し、同操向用無段変速機入力軸20aの後端を、両端にユニバーサルジョイント25を設けた第1連動軸26を介して走行用無段変速機入力軸21aの前端に連動連結し、走行用無段変速機出力軸21bを、リアミッションR中に設けた走行クラッチ27と、走行用副変速部28の走行用副変速部入力軸28aと、第1,2,3速噛合歯車28b,28c,28dとを介して走行用副変速部出力軸29に連動連結している。

【0017】また、前記走行用無段変速機入力軸21aの後端に、直結クラッチ30としての湿式多板クラッチを介して原動ギヤ31を連動連結し、同原動ギヤ31を前記走行用副変速部出力軸29の後端に嵌着した受動ギヤ32に噛合させている。

【0018】そして、走行用副変速部出力軸29の前端は、ユニバーサルジョイント25と第2連動軸33とを介し、フロントミッションFの後面に軸支した前入力軸34の後端に連動連結しており、前入力軸34の前端に形成した走行用噛合傘歯車35を介し、左右走行部入力軸38L,38 R の間に軸支した中間軸39に連動連結している。

【0019】中間軸39は、左右走行部1L,1R の左右走行部入力軸38L,38R に左右遊星歯車機構40L,40R を介して連動連結しており、同左右遊星歯車機構40L,40R は、それぞれ左右走行部駆動機構36L,36R を介して左右駆動輪12L,12R を嵌着した左右走行部入力軸38L,38R に連動連結している。

【0020】左右遊星歯車機構40L,40R は、それぞれ、中間軸39の左右両端に嵌着した左右内歯歯車43L,43R と、後述する左右差動軸46L,46R の外側端に嵌着した左右太陽歯車49L,49R と、左右走行部入力軸38L,38R に嵌着した左右ケージ42L,42R の回転軸44に軸支された左右遊星歯車41L,41R とで構成されており、左右内歯歯車43 L,43R と左右太陽歯車49L,49R とは、左右遊星歯車41L,41R を介して噛合状態で連動連結している。

【0021】一方、操向用無段変速機出力軸20b の後端に操向用原動傘歯車45を取付け、同操向用原動傘歯車45 に、左右差動軸46L,46R の内側端に嵌着した左右操向受動傘歯車47L,47R を噛合させ、左右差動軸46L,46R をこれらの外側端に設けた左右操向用変速部48L,48R を介して、前記左右太陽歯車49L,49R に連動連結している。

【0022】かかる構成によって、エンジンE→走行用無段変速機入力軸21a →走行用無段変速機出力軸21b →走行用副変速部28→第2連動軸33→前入力軸34→走行用噛合傘歯車35→中間軸39→左右内歯歯車43L,43R →左右遊星歯車41L,41R →左右ケージ42L,42R →左右走行部入力軸38L,38R →左右スプロケット12L,12R という走行用無段変速機21の静油圧式変速作動を介して動力を伝達する静油圧的走行用動力伝達経路Hと、エンジンE→走行

6

用無段変速機入力軸21a →直結クラッチ30→原動ギヤ31 →受動ギヤ32→走行用副変速部28→第2連動軸33→前入 力軸34→走行用噛合傘歯車35→中間軸39→左右内歯歯車 43L,43R →左右遊星歯車41L,41R →左右ケージ42L,42R →左右走行部入力軸38L,38R →左右スプロケット12L,12 R という走行用無段変速機21を素通りして動力を伝達する機械的走行用動力伝達経路Mとを形成することになり、上記静油圧的走行用動力伝達経路Hでは、無段変速により動力伝達を継続したままで滑らかな変速操作が行えるので不整地の走行に適し、機械的走行用動力伝達経 路Mでは、走行用無段変速機21を素通りするので高回転域での動力伝達効率が良く、高速での路上走行に適する。

【0023】一方、操向用無段変速機20に伝達された動力は、操向用無段変速機出力軸20b→操向用原動傘歯車45→左右操向用受動傘歯車47L,47R →左右差動軸46L,46R →左右操向用変速部48L,48R →左右太陽歯車49L,49R →左右遊星歯車41L,41R →左右ケージ42L,42R →左右走行部入力軸38L,38R へと伝達される。

【0024】また、左右差動軸46L,46R の間に、ステアリングホイル7の操向操作に応じて作動するクラッチ体50としての湿式多板クラッチを介設して、ステアリングホイル7が直進位置にあるときは、同クラッチ体50で左右差動軸46L,46R を連結して、左右差動軸46L,46R の停止状態を保持し、ステアリングホイル7をいずれかの方向に操作したときは、上記連結を解除して操向用無段変速機20の出力により、左右差動軸46L,46R を相互に逆方向に回転できるようにしている。

【0025】従って、操向用無段変速機20に伝達された動力は、左右走行部入力軸38L,38Rをそれぞれ逆回転させる方向に伝達されるため、一方の走行部入力軸は増速され、他方の走行部入力軸は減速されので、左右走行部1L,1R に走行速度差が生じ、機体を左右に旋回させることができる。

【0026】更に、上記操向用無段変速機20と左右操向 用変速部48L,48Rと操向用無段変速機20とは、ステアリングホイル7の回動操作と連動して変速作動し、旋回外 側の作動軸を前進方向に、旋回内側の作動軸を後進方向 に回動させるようにしており、左右操向用変速部48L,48 R は、ステアリングホイル7を左右いずれかの方向に一 40 杯に回動操作した際に、機体の走行速度が高速のとき は、旋回内側の走行変速機を低速側に変速し、機体の走 行速度が低速のときは、旋回外側の走行変速機を高速側 に変速するようにしている。

【0027】従って、ステアリングホイル7が直進位置にあるときは、操向用無段変速機20が出力せず、しかも、クラッチ体50の連結によって左右差動軸46L,46Rの停止状態を強制的に保持されるので、左右走行部1L,1Rの負荷が相違した場合でも、左右走行部1L,1Rに走行速度差が全く生じることはなく、機体の直進性を良好に維50

持することができる。

【0028】また、ステアリングホイル7を左右いずれかの方向に回動操作した際に、操作角度が設定角度以内である時は、クラッチ体50の連結が解除され、操向用無段変速機20によって左右差動軸46L,46R が互いに逆方向に回転し、その結果、一方の走行部の走行速度を高速にし、他方の走行部の走行速度を低速にして、ステアリングホイル7の操作角度に応じた旋回半径で機体を低速側に旋回させる。

【0029】また、上記操作角度が設定角度以上であり、走行用無段変速機出力軸21bが高速側に変速されているときは、旋回内側の操向用変速部が低速側に変速されて、機体の走行速度が低下するので安全に旋回することができ、上記操作角度が設定角度以上であり、走行用無段変速機出力軸21bが低速側に変速されているときは、旋回外側の操向用変速部が高速側に変速されて、走行速度を落とすこと無く、かつ、ステアリングホイル7の操作に敏感に反応して、機敏な旋回を行うことができ、更には、上述した低速側の操向用変速部を中立状態にしてこの側の走行部を停止させることで、停止した走行部を中心として機体を旋回させるピボットターンを行うこともできる。

【0030】また、前後進変速レバー8を中立位置に操作して、走行用無段変速機21を停止させた状態で、ステアリングホイル7を一杯に回動操作すると、操向用無段変速機20の出力によって、左右走行部1L,1R が互いに逆方向に回転して、各走行部の中間位置を中心として最小半径で機体を旋回させるスピンターンを行うこともできる

0 【0031】また、前後進変速レバー8を前進又は後進方向に操作したときは、直結クラッチ30が切れ、走行用無段変速機21の変速作動を介して動力を伝達する静油圧的走行用動力伝達経路Hを介し動力が左右走行部1L,1Rに伝達されるので、走行用無段変速機21の無段変速により、不整地の走行に適した動力伝達を継続したままで滑らかな変速操作を行うことができる。

【0032】また、前後進変速レバー8を設定位置を越えて操作したときは、直結クラッチ30が接続して、走行用無段変速機21を素通りして動力を伝達する機械的走行用動力伝達経路Mを経由して動力が左右走行部1L,1Rに伝達されるので、路上での高速走行に適した低燃費走行を行うことができる。

【0033】図3及び図4は、他実施例走行用副変速部 60の構成を示している。

【0034】図3では、走行用副変速部60は、走行用無段変速機入力軸21aと走行用副変速部入力軸60aとの間に入力噛合歯車61を介設すると共に、走行用副変速部入力軸60aと走行用副変速部出力軸60bとの間に第1、第2速噛合歯車62,63を介設して、走行用副変速部入力軸60aと入力噛合歯車61とを直結クラッチ64で断接自在に

連動連結し、走行用無段変速機出力軸21b と走行用副変 速部入力軸60a とを入力クラッチ65で断接自在に連動連 結し、走行用副変速部入力軸60a と第1、第2速噛合歯 車62,63 とをそれぞれ第1、第2速クラッチ66,67 で断 接自在に連動連結している。

【0035】従って、走行用無段変速機21を介しての動 力伝達経路と、直結クラッチ64を介しての動力伝達経路 とでそれぞれ2段階、計4段階の副変速を行うことがで きるので、不整地又は路上での走行に最適の副変速比を 選択して、燃費を節減することができる。

【0036】図4では、走行用無段変速機入力軸21a と 走行用無段変速機出力軸21b とを直結噛合歯車70と直結 クラッチ64とで断接自在に連動連結すると共に、走行用 無段変速機出力軸21b と走行用副変速部出力軸60b との 間に第1、第2速噛合歯車62,63 を介設して、走行用無 段変速機出力軸21b と第1、第2速噛合歯車62,63 とを それぞれ第1、第2速クラッチ66,67 で断接自在に連動 連結しており、3段階の副変速を可能にしている。

【0037】また、図3及び図4において、各クラッチ 64,65,66,67 を湿式多板クラッチで構成して変速操作時 のショックを防止している。

【0038】図5及び図6は、動力伝達系統の配置例を 示しており、図5では、フロントミッションとリアミッ ションとを連結して一体の複合ミッション80を構成し、 同複合ミッション80を、機体の前部に配置したエンジン Eの後方に近接して配置し、左右走行部1L,1R の前部に 配置した左右駆動輪12L,12R に動力を伝達するようにし ている。

【0039】図6では、機体の前部にエンジンEを配置 し、上記複合ミッション80を機体の後部に配設し、エン 30 ジンEとフロントミッションとをプロペラシャフト81で 連動連結して、左右走行部1L,1R の後部に配置した左右 駆動輪12L,12R に動力を伝達するようにしている。

[0040]

【発明の効果】本発明によれば次のような効果を得るこ とができる。

【0041】請求項1記載の発明では、エンジンから、 走行用無段変速機を介し、左右走行部のクローラを駆動 する走行部入力軸に至る動力伝達経路中に、ステアリン グホイルの回動操作と連動して変速作動する操向用無段 40 変速機を、左右遊星歯車機構を介して連動連結し、同操 向用無段変速機の出力に応じて機体を旋回可能とした走 行駆動装置であって、上記左右遊星歯車機構と操向用無 段変速機との間に、副数段階の変速を可能とした左右操 向用変速部を介設し、同左右操向用変速部の変速作動 を、運転部に設けたステアリングホイルの回動操作と連 動させたことことによって、左右操向用変速部により操 向用無段変速機の出力を左右別々に変速して左右遊星歯 車機構に伝達して、例えば、一方の走行部を停止させ、 他方の走行部のみを駆動して行うピボットターンや、左 50 右走行部を逆方向に駆動して行うスピンターンが可能に なり、機体の旋回性能を高めることができる。

【0042】また、上記旋回をステアリングホイルの回 動操作だけで行うことができるので操縦が容易になり、 更に、左右操向用変速部の変速操作用のレバー等を要し ないので、構造を簡単にすることができる。

【0043】請求項2記載の発明では、エンジンから、 走行用無段変速機を介し、左右走行部のクローラを駆動 する走行部入力軸に至る動力伝達経路中に、複数段階の 10 変速を可能とした走行用副変速部を介設したことによっ て、走行用無段変速機だけではカバーしきれない速度域 で機体を走行させることができるようになり、更に、路 上での高速走行時に走行用無段変速機の出力回転数を低 くして燃料消費を節減することができる。

【0044】請求項3記載の発明では、前記左右操向用 変速部の変速作動は、走行用副変速部が高速側に変速操 作されているときは、上記ステアリングホイルの直進状 態からの回動操作に連動して、少なくとも、旋回内側の 操向用変速部を低速側に変速して、旋回内側の走行部の 走行速度をの機体の直進速度よりも減速することによっ て、旋回中の機体の走行速度が低下すると共に、ステア リングホイル操作に対する機体旋回動作の反応が鈍感に なり、安全な旋回走行を行うことができる。

【0045】また、走行用副変速部が低速側に変速操作 されているときは、上記ステアリングホイルの直進状態 からの回動操作に連動して、少なくとも、旋回外側の操 向用変速部を高速側に変速して、旋回外側の走行部の走 行速度を機体の直進速度よりも増速することにより、機 体の走行速度を高めると共に、前記操向用無段変速機に よる旋回作用と相俟って、ステアリングホイルの操作に 対する機体旋回の反応が敏感になり、機敏な旋回走行を 行うことができる。

【図面の簡単な説明】

【図1】 本発明に係る走行駆動装置を具備するクローラ 式作業車の側面図。

【図2】走行駆動装置の構成を示す説明図。

【図3】他実施例リアミッションの構成を示す説明図。

【図4】他実施例リアミッションの構成を示す説明図。

【図5】走行駆動装置の他の配置例を示す説明図。

【図6】走行駆動装置の他の配置例を示す説明図。 【符号の説明】

E エンジン

1L,1R 左右走行部

4 運転部

ステアリングホイル

20 操向用無段変速機

21 走行用無段変速機

38L,38R 走行部入力軸

40L,40R 左右遊星歯車機構

41L,41R 左右遊星歯車

3000

9

43L,43R 左右内歯歯車 46L,46R 左右差動軸

0

48L,48R 左右操向用変速部 49L,49R 左右太陽歯車

【図1】

【図2】

[図3] 【図4】 2la 21a 60 64 26 -61 60a 216 60b 63 33 66 65 67 62 62 66 【図6】 【図5】 **1**R 12R -12R 81 -36R 36R 80 -80 -36L 80 36L 12L 12L

フロントページの続き

(51)Int.Cl.6 F 1 6 H 63:12

識別記号

FΙ