Yale

Causal Inference for IR and IPE with Substantive Applications

Carlos Felipe Balcazar

MacMillan Center April, 2024

- ► Autocratic countries don't always report (accurate) information.
 - ▶ GDP, human rights abuses, corruption, health, etc.

- ► Autocratic countries don't always report (accurate) information.
 - ▶ GDP, human rights abuses, corruption, health, etc.

- ► Autocratic countries don't always report (accurate) information.
 - ▶ GDP, human rights abuses, corruption, health, etc.

- ► Autocratic countries don't always report (accurate) information.
 - ► GDP, human rights abuses, corruption, health, etc.

- ► Autocratic countries don't always report (accurate) information.
 - ▶ GDP, human rights abuses, corruption, health, etc.
- ▶ Much of the data we use depends on govts and IOs.

- ► Autocratic countries don't always report (accurate) information.
 - ► GDP, human rights abuses, corruption, health, etc.
- Much of the data we use depends on govts and IOs.

- ► Autocratic countries don't always report (accurate) information.
 - ► GDP, human rights abuses, corruption, health, etc.
- Much of the data we use depends on govts and IOs.

THE AUTOGRACY GRADIENT IN THE NTL ELASTICITY OF GDP SUBCOMPONENTS

	Consumption (1)	Investment (2)	Government (3)	Exports (4)	Imports (5)
$ln(NTL)_{i,t}$.184***	.353***	.210***	.354***	.253***
	[.041]	[.083]	[.060]	[.077]	[.054]
$\mathrm{FiW}_{i,t}$	003	.023	002	007	006
	[.035]	[.062]	[.041]	[.058]	[.042]
$\mathrm{FiW}_{i,t}^{2}$	002	010	001	004	005
	[.006]	[.012]	[.007]	[.011]	[.008]
$\ln(\mathrm{NTL})_{i,t} \times \mathrm{FiW}_{i,t}$.004	.040***	.030***	.011	.013*
	[.006]	[.010]	[.007]	[.012]	[.008]

- ▶ Autocratic countries don't always report (accurate) information.
 - ▶ GDP, human rights abuses, corruption, health, etc.
- ▶ Much of the data we use depends on govts and IOs.

- ► Autocratic countries don't always report (accurate) information.
 - ▶ GDP, human rights abuses, corruption, health, etc.
- Much of the data we use depends on govts and IOs.

- ► Autocratic countries don't always report (accurate) information.
 - ► GDP, human rights abuses, corruption, health, etc.
- Much of the data we use depends on govts and IOs.

- ► Autocratic countries don't always report (accurate) information.
 - ► GDP, human rights abuses, corruption, health, etc.
- Much of the data we use depends on govts and IOs.
- ► Same issue when states and IOs have low capacity.

ightharpoonup Treatment \Rightarrow self-selection! (selection into the DV).

- ► Treatment ⇒ self-selection! (selection into the DV).
- ▶ Different from pre-treatment self-selection. Why?

- ► Treatment ⇒ self-selection! (selection into the DV).
- ▶ Different from pre-treatment self-selection. Why?
- ▶ Induces post-treatment self-selection. When? Where?

- ► Treatment ⇒ self-selection! (selection into the DV).
- Different from pre-treatment self-selection. Why?
- Induces post-treatment self-selection. When? Where?
- ► Limits generizability and transportability (scope). Why? When?

- ► Institutional change ⇒ quality of information.
 - Recall, also induces post-treatment measurement error! Consequences?

- ▶ Institutional change ⇒ quality of information.
 - Recall, also induces post-treatment measurement error! Consequences?
- ► Findings are a function of data quality (limits scope).

- ▶ Institutional change ⇒ quality of information.
 - Recall, also induces post-treatment measurement error! Consequences?
- Findings are a function of data quality (limits scope).
- ▶ State, NGO and IO independence can help! But sufficient?
 - Cost of deviation to make it incentive compatible.
 - Signal domestic audience transparency; also for deterrence!
 - It is also a reflection of geopolitics!
 - ▶ Differences in resources for collecting quality data.
 - ▶ Data manipulation for geopolitical agenda.

- ▶ Institutional change ⇒ quality of information.
 - Recall, also induces post-treatment measurement error! Consequences?
- Findings are a function of data quality (limits scope).
- ▶ State, NGO and IO independence can help! But sufficient?
 - Cost of deviation to make it incentive compatible.
 - ► Signal domestic audience transparency; also for deterrence!
 - It is also a reflection of geopolitics!
 - ▶ Differences in resources for collecting quality data.
 - ▶ Data manipulation for geopolitical agenda.

- ▶ Institutional change ⇒ quality of information.
 - Recall, also induces post-treatment measurement error! Consequences?
- Findings are a function of data quality (limits scope).
- ▶ State, NGO and IO independence can help! But sufficient?
 - Cost of deviation to make it incentive compatible.
 - Signal domestic audience transparency; also for deterrence!
 - ▶ It is also a reflection of geopolitics!
 - ▶ Differences in resources for collecting quality data.
 - ▶ Data manipulation for geopolitical agenda.

Table 1. Bias in listwise deletion and multiple imputation.

Missingness	Listwise Deletion	Multiple Imputation	
MCAR	Unbiased	Unbiased	
MAR (Missing in X)	Unbiased	Unbiased	
MAR (Missing in Y, X)	Biased	Unbiased	
MNAR/NI (Missing in X)	Unbiased	?	
MNAR/NI (Missing in Y, X)	Biased	Biased	

► Imputation?

Figure 1. Simulation results.

► Imputation?

▶ Imputation? Dangerous for addressing selection into DV!

 Y_i is our outcome, then

$$R_i = \begin{cases} 1 & \text{Selected,} \\ 0 & \text{otherwise.} \end{cases}$$
 $D_i = \begin{cases} 1 & \text{Treated,} \\ 0 & \text{otherwise.} \end{cases}$ $Y_i = \begin{cases} 1 & \text{Yes,} \\ 0 & \text{No.} \end{cases}$

- ▶ Imputation? Dangerous for addressing selection into DV!
- ▶ Manski bounds are a safer alternative; can be uninformative.

Unobserved:
$$E[Y_{i1}|R_i=0,D_i=1]$$
 and $E[Y_{i0}|R_i=0,D_i=0]$
Assume worst:

$$E[Y_{i1}|R_i=0, Di=1]=0$$
 and $E[Y_{i0}|R_i=0, Di=0]=1$
 $E[Y_{i1}|R_i=0, Di=1]=1$ and $E[Y_{i0}|R_i=0, Di=0]=0$

- ▶ Imputation? Dangerous for addressing selection into DV!
- ▶ Manski bounds are a safer alternative; can be uninformative.

Compute bounds:

$$BL = Pr(R_i = 1|Di = 1)E(Y_i|Di = 1, R_i = 1)$$
$$-[Pr(R_i = 1|Di = 0)E(Y_i|Di = 0, R_i = 1) + Pr(R_i = 0|Di = 0)]$$

$$BU = [Pr(R_i = 1|D_i = 1)E(Y_i|D_i = 1, R_i = 1) + Pr(R_i = 0|D_i = 1)] - Pr(R_i = 1|D_i = 0)E(Y_i|D_i = 0, R_i = 1)$$

- Imputation?
- ▶ Manski bounds are a safer alternative; can be uninformative.

Trim bounds (never attriters):

width =
$$P(R_i = 0|Di = 1) + P(R_i = 0|Di = 0)$$

to
width = $\frac{Pr(R_i = 1|Di = 1) - Pr(R_i = 1|Di = 0)}{P(R_i = 1|Di = 0)}$

- ► Imputation?
- Manski bounds are a safer alternative; can be uninformative.
- Trimming bounds helps but needs (strong) assumptions.
 - Assumption: treatment has an effect on response.
 - ▶ If diff. in response rates are small, bounds are informative.

Next class...

Leaders and bureaucrats!