PRACTICA DEL CAPITULO 4. SISTEMAS DE ECUACIONES NO LINEALES

POR LUIS MARIO URREA MURILLO

UNIVERSIDAD COOPERATIVA DE COLOMBIA - POPAYAN FACULTAD DE INGENIERIA DE SISTEMAS POPAYÁN – CAUCA 2010

PRACTICA DEL CAPITULO 4. SISTEMAS DE ECUACIONES NO LINEALES

POR

LUIS MARIO URREA MURILLO

Presentado al profesor Ing. Esp. Andrés Escallon, en el programa de Análisis Numérico

UNIVERSIDAD COOPERATIVA DE COLOMBIA - POPAYAN

FACULTAD DE INGENIERIA DE SISTEMAS

POPAYÁN – CAUCA

2010

CONTENIDO

1.	SISTEMAS DE ECUACIONES NO LINEALES: demostraciones aplicadas	У
algoritn	nos en matlab	.4
1.1.	Método de punto fijo multivariado	.4
1.2.	Método de Newton Rapson	.7
1.3.	Método de Broyden	11

LISTA DE TABLAS Y CUADROS

1.	Tabla de iteraciones y resultados finales de x, y y z	7
2.	Tabla de iteraciones y resultados finales de x1 y x2	.10
3.	Tabla de iteraciones y resultados finales de x1, x2 y x3	.14

NOTA: Este trabajo fue desarrollado en MATLAB 7.6 por lo tanto, para que funcionen los algoritmos en versiones anteriores de MATLAB tenga en cuenta que:

• Posiblemente las **sentencias** no serán compatibles y deberá cambiar la sintaxis de algunas de ellas.

1. SISTEMAS DE ECUACIONES NO LINEALES: DEMOSTRACIONES APLICADAS Y ALGORITMOS EN MATLAB

1.1. MÉTODO DE PUNTO FIJO MULTIVARIADO

Utilice el método de punto fijo multivariado para resolver el siguiente sistema de ecuaciones no lineales y compruebe su respuesta.

$$x^{2} - y^{z} - 0.2 * Ln(z) = 0$$
$$y^{2} - xz + 0.3z = 0$$
$$xy - Ln(y) - z = 0$$

Solución

Despejando x, y y z se tiene que:

$$x = \sqrt{y^z + 0.2 \cdot \ln(z)}$$

$$y = \sqrt{(x - 0.3)z}$$

$$z = xy - \ln(y)$$

Para i

$$x_{i+1} = \sqrt{y_i^{z_i} + 0.2 \cdot \ln(z_i)}$$

$$y_{i+1} = \sqrt{(x_i - 0.3)z_i}$$

$$z_{i+1} = x_i y_i - \ln (y_i)$$

Iteración 1:

Para i=0

$$x_1 = \sqrt{y_0^{z_0} + 0.2 \cdot \ln(z_0)} = \sqrt{0.5^{0.5} + 0.2 \cdot \ln(0.5)} = 0.75397$$

$$y_1 = \sqrt{(x_0 - 0.3)z_0} = \sqrt{(0.5 - 0.3)0.5} = 0.316228$$

 $z_1 = x_0 y_0 - \ln(y_0) = 0.5 \cdot 0.5 - \ln(0.5) = 0.943147$

Errores

$$e_x = \frac{|0.75397 - 0.5|}{0.75397} \cdot 100 = 33.684748$$

$$e_y = \frac{|0.316228 - 0.5|}{0.316228} \cdot 100 = 58.113883$$

$$e_z = \frac{|0.943147 - 0.5|}{0.943147} \cdot 100 = 46.986005$$

Iteración 2:

Para i=1

$$x_2 = \sqrt{y_1^{z_1} + 0.2 \cdot \ln(z_1)} = \sqrt{0.316228^{0.943147} + 0.2 \cdot \ln(0.943147)} = 0.570887$$

$$y_2 = \sqrt{(x_1 - 0.3)z_1} = \sqrt{(0.75397 - 0.3)0.943147} = 0.654343$$

$$z_2 = x_1 y_1 - \ln(y_1) = 0.75397 \cdot 0.316228 - \ln(0.316228) = 1.389720$$

Errores

$$e_x = \frac{|0.570887 - 0.75397|}{0.570887} \cdot 100 = 32.070667$$

$$e_y = \frac{|0.654343 - 0.316228|}{0.654343} \cdot 100 = 51.672470$$

$$e_z = \frac{|1.389720 - 0.943147|}{1.389720} \cdot 100 = 32.134023$$

En MATLAB

Algoritmo:

```
function [iter,x,ea] = puntofijomultivariado3x3
syms x1 x2 x3 %sistema para tres ecuaciones
x0=input('Digite f(x0)=');% valores iniciales de x1, x2, x3 en un vector fila
tol=input('Digite la Tolerancia del Sistema=');
f(1) = input('digite f(1) = ');
                             %ecuación 1
f(2) = input('digite f(2)=');
                             %ecuación 2
f(3) = input('digite f(3)=');
                             %ecuación 3
ecu=[f(1);f(2);f(3)];
iter=0;
ea=[100 100 100];
x1=x0(1); x2=x0(2); x3=x0(3);
disp(x0);
disp(tol);
                       x2 x3
fprintf('iter x1
                                             ea(1)
                                                         ea(2) ea(3)
\n');
fprintf('%d %f\t %f\t %f\t %f\t %f\t
f^n', iter, x1, x2, x3, ea(1), ea(2), ea(3));
while ((ea(1)>tol)||(ea(2)>tol)||(ea(3)>tol))
    iter=iter+1;
   x(1)=eval(ecu(1));
   x(2)=eval(ecu(2));
   x(3)=eval(ecu(3));
   x1ante=x1;
   x1=x(1);
   x2ante=x2;
   x2=x(2);
   x3ante=x3;
   x3=x(3);
   ea(1) = abs((x1-x1ante)*100/x1);
    ea(2) = abs((x2-x2ante)*100/x2);
    ea(3) = abs((x3-x3ante)*100/x3);
    fprintf('%d %f\t %f\t %f\t %f\t
f^n, iter, x1, x2, x3, ea(1), ea(2), ea(3));
end
```

Datos de entrada:

```
>> puntofijomultivariado3x3
Digite f(x0) = [0.5; 0.5; 0.5;]
Digite la Tolerancia del Sistema = 0.0005
Digite f(1) = sqrt(x2^x3+0.2*log(x3))
Digite f(2) = sqrt(x3*(x1-0.3))
Digite f(3) = x1*x2-log(x2)
```

Resultados:

Iteración	x 1	x2	x3	ea(1)	ea(2)	ea(3)
0	0.5	0.5	0.5	100	100	100
1	0.753974	0.316228	0.943147	33.684748	58.113883	46.986005
2	0.570887	0.654343	1.389720	32.070667	51.672470	32.134023
3	0.787701	0.613561	0.797680	27.524914	6.646739	74.220338
4	0.795039	0.623722	0.971778	0.922904	1.629092	17.915462
5	0.791430	0.693590	0.967933	0.455956	10.073428	0.397208
6	0.833821	0.689689	0.914802	5.083939	0.565613	5.807985
7	0.833102	0.698814	0.946591	0.086271	1.305659	3.358306
8	0.837461	0.710373	0.940554	0.520426	1.627246	0.641850
9	0.844218	0.710993	0.936874	0.800461	0.087174	0.392794
10	0.844646	0.714048	0.941326	0.050625	0.427814	0.472905
11	0.846289	0.716023	0.939923	0.194207	0.275903	0.149275
12	0.847435	0.716568	0.940006	0.135200	0.076045	0.008788
13	0.847742	0.717351	0.940527	0.036184	0.109090	0.055439
14	0.848175	0.717751	0.940319	0.051070	0.055721	0.022150
15	0.848405	0.717955	0.940411	0.027089	0.028447	0.009845
16	0.848519	0.718141	0.940465	0.013412	0.025878	0.005712
17	0.848623	0.718236	0.940446	0.012265	0.013230	0.002065
18	0.848677	0.718296	0.940469	0.006368	0.008454	0.002454
19	0.848711	0.718341	0.940474	0.003996	0.006152	0.000617
20	0.848736	0.718365	0.940475	0.002930	0.003399	0.000037
21	0.848749	0.718381	0.940479	0.001625	0.002284	0.000489
22	0.848759	0.718392	0.940480	0.001083	0.001501	0.000105
23	0.848765	0.718399	0.940481	0.000716	0.000890	0.000079
24	0.848768	0.718403	0.940482	0.000424	0.000593	0.000095
25	0.848771	0.718406	0.940482	0.000282	0.000375	0.000029

1. Tabla de iteraciones y resultados finales de x, y y z

1.2. MÉTODO DE NEWTON RAPSON

Dado el siguiente sistema de ecuaciones no lineales, encuentre los valores de x e y utilizando el método de newton Rapson. Compruebe su respuesta.

$$x^2 - y^2 = 4$$

$$e^{-x} + xy = 1$$

Utilice los valores iniciales que usted crea conveniente y una tolerancia de 0.005%

Solución

$$x_0 = 2$$

$$y_0 = 2$$

Igualando las ecuaciones a CERO se tiene que:

$$x^2 - y^2 - 4 = 0$$

$$e^{-x} + xy - 1 = 0$$

 $X_{i+1} = X_i - J^{-1}(X_i)F(X_i)$ Formula de predicción

$$J(X_i, Y_i) = \begin{bmatrix} \frac{df_1}{dx} & \frac{df_1}{dx} \\ \frac{df_2}{dx} & \frac{df_2}{dx} \end{bmatrix} = \begin{bmatrix} 2x & -2y \\ e^{-x} + y & x \end{bmatrix}$$

Iteración 1:

Para i=0

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - J^{-1}(x_0, y_0) \begin{bmatrix} f_1(x_0, y_0) \\ f_2(x_0, y_0) \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} \frac{1}{2}(2) & (2) \\ \hline (2)^2 - (2)e^{-(2)} + (2)^2 & \overline{(2)^2 - (2)e^{-(2)} + (2)^2} \\ -\frac{1}{2}(\frac{-e^{-(2)} + (2)}{(2)^2 - (2)e^{-(2)} + (2)^2}) & \overline{(2)^2 - (2)e^{-(2)} + (2)^2} \end{bmatrix} \begin{bmatrix} (2)^2 - (2)^2 - 4 \\ e^{-(2)} + (2)(2) - 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 0,1294 & 0,2588 \\ -0,1206 & 0,2588 \end{bmatrix} \begin{bmatrix} -4 \\ 3,1353 \end{bmatrix} = \begin{bmatrix} 1,7062 \\ 0,7062 \end{bmatrix}$$

Errores

$$e_x = \frac{|1,7062 - 2|}{1,7062} \cdot 100 = 17,2177$$

$$e_y = \frac{|0,7062 - 2|}{0,7062} \cdot 100 = 183,1952$$

Iteración 2:

Para i=1

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} - J^{-1}(x_1, y_1) \begin{bmatrix} f_1(x_1, y_1) \\ f_2(x_1, y_1) \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1,7062 \\ 0,7062 \end{bmatrix} - \begin{bmatrix} \frac{1}{2}(1,7062) & (0,7062) \\ \hline (1,7062)^2 - (0,7062)e^{-(1,7062)} + (0,7062)^2 & (1,7062)^2 \\ -\frac{1}{2}(\frac{-e^{-(1,7062)} + (0,7062)e^{-(1,7062)} + (0,7062)^2}{(1,7062)^2 - (0,7062)e^{-(1,7062)} + (0,7062)^2} \end{bmatrix} \\ * \begin{bmatrix} (1,7062)^2 - (0,7062)e^{-(1,7062)} + (0,7062)^2 \\ e^{-(1,7062)} + (1,7062)(0,7062) - 1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1,7062 \\ 0,7062 \end{bmatrix} - \begin{bmatrix} 0,2600 & 0,2152 \\ -0,0799 & 0,5199 \end{bmatrix} \begin{bmatrix} -1,5876 \\ 0,3865 \end{bmatrix} = \begin{bmatrix} 2,0357 \\ 0,3784 \end{bmatrix}$$

Errores

$$e_x = \frac{|2,0357 - 1,7062|}{2,0357} \cdot 100 = 16,1864$$

$$e_y = \frac{|0.3784 - 0.7062|}{0.3784} \cdot 100 = 86.6562$$

En MATLAB

Algoritmo:

```
for i = 1:length(f)
    iS = num2str(i);
    vars = [vars 'x' iS ' '];
    eval(['x' iS ' = sym(''x' iS ''');']);
end
vars = [vars ']' ];
eval(['vars= ' vars ';']);
J = jacobian(ecu, vars);
x = x0;
while ((ea(1)>tol)||(ea(2)>tol))
    iter=iter+1;
    JJ = double(subs(J, vars, x.'));
    FF = double(subs(ecu, vars, x.'));
   k=inv(JJ);
    disp(k)
   x = x - k * FF;
   xlante=xx1;
   xx1=x(1);
    x2ante=xx2;
    xx2=x(2);
    ea(1) = abs((xx1-x1ante)*100/xx1);
    ea(2) = abs((xx2-x2ante)*100/xx2);
    fprintf('%d
                  %3.4f\t %3.4f\t %3.4f\t
%3.4f\n',iter,xx1,xx2,ea(1),ea(2));
end
```

Datos de entrada:

Digite un vector fila con los valores iniciales de x0 = [2; 2]Tolerancia del sistema = 0.005 Digite la ecuación 1 = x1*x1-x2*x2-4Digite la ecuación 2 = exp(-x1)+x1*x2-1

Resultados:

Iteración	x1	x 2	ea(1)	ea(2)
0	2.0000	2.0000	100.0000	100.0000
1	1.7062	0.7062	17.2177	183.1952
2	2.0357	0.3784	16.1864	86.6562
3	2.0443	0.4260	0.4204	11.1901
4	2.0448	0.4258	0.0235	0.0640
5	2.0448	0.4258	0.0000	0.0000

2. Tabla de iteraciones y resultados finales de x1 y x2

1.3. MÉTODO DE BROYDEN

Resuelva el siguiente sistema de ecuaciones no lineales utilizando el método de Broyden para un valor de tolerancia de 0.005%. Utilice los valores inciales que usted crea convenientes.

$$2^{x} + yz - 0.3z = 0$$
$$x^{2} - y^{2} - 0.5z^{2} = 0$$
$$x^{3} + 2^{y} - z^{3} = 0$$

Solución

$$x_0 = 3 y_0 = 2 z_0 = 1$$

 $X_{i+1} = X_i - A_i^{-1} F(X_i)$ Formula de predicción

Iteración 1:

Para i=0

$$A_o = \begin{bmatrix} 2^{x}\log(2) & z & y - \frac{3}{10} \\ 2x & -2y & -z \\ 3x^2 & 2^{y}\log(2) & -3z^2 \end{bmatrix} = \begin{bmatrix} 5.5452 & 1 & 1.7 \\ 6 & -4 & -1 \\ 27 & 2.7726 & -3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + (-A_o^{-1}(x_0, y_0, z_0)) \begin{bmatrix} f_1(x_0, y_0, z_0) \\ f_2(x_0, y_0, z_0) \\ f_3(x_0, y_0, z_0) \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -0.0519 & -0.0271 & -0.0204 \\ 0.0316 & 0.2196 & -0.0553 \\ -0.4376 & -0.0408 & 0.0990 \end{bmatrix} \begin{bmatrix} 9.7 \\ 4.5 \\ 30 \end{bmatrix} = \begin{bmatrix} 1.7640 \\ 1.6361 \\ -0.4602 \end{bmatrix}$$

Errores

$$e_x = \frac{|1.7640 - 3|}{1.7640} \cdot 100 = 70.07$$

$$e_y = \frac{|1.6361 - 2|}{1.6361} \cdot 100 = 22.24$$

$$e_z = \frac{|-0.4602 - 1|}{-0.4602} \cdot 100 = 317.2968$$

Iteración 2:

$$A_1^{-1} = A_0^{-1} + \frac{(S_1 - A_0^{-1} Y_1) S_1^T A_0^{-1}}{S_1^T A_0^{-1} Y_1}$$

$$Y_i = F(X_i) - F(X_{i-1})$$

 $S_i = X_i - X_{i-1}$

 $\boldsymbol{S}_{i}^{\scriptscriptstyle T}$ es la transpuesta del vector \boldsymbol{S}_{i} .

Para i=1

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1.7640 \\ 1.6361 \\ -0.4602 \end{bmatrix} + \begin{bmatrix} -0.1356 & -0.0287 & -0.0083 \\ -0.0497 & 0.2180 & -0.0436 \\ -0.5316 & -0.0426 & 0.1124 \end{bmatrix} \begin{bmatrix} 2.7816 \\ 0.3291 \\ 8.6948 \end{bmatrix} = \begin{bmatrix} 1.3047 \\ 1.1903 \\ -0.9753 \end{bmatrix}$$

Errores

$$e_x = \frac{|1.3047 - 1.7640|}{1.3047} \cdot 100 = 35.2035$$

$$e_y = \frac{|1.1903 - 1.6361|}{1.1903} \cdot 100 = 37.4527$$

$$e_z = \frac{|-0.9753 + 0.4602|}{-0.9753} \cdot 100 = 52.8145$$

En MATLAB

Algoritmo:

function y = Broyden3x3
syms x1 x2 x3

```
x0=input('Digite un vector fila con los valores iniciales de x0= ');
tol=input('Tolerancia del sistema= ');
f(1) = input('Digite la ecuación 1 = ');
                                            %ecuación 1
f(2)= input('Digite la ecuación 2 =');
                                           %ecuación 2
f(3)= input('Digite la ecuación 3 =');
                                          %ecuación 3
F=[f(1);f(2);f(3)];
iter=0;
ea=[100;100;100];
xx1=x0(1); xx2=x0(2); xx3=x0(3);
fprintf('iter x1
                                   x3
                                                ea(1)
                                                           ea(2) ea(3)
                         x2
\n');
fprintf('%d %3.4f\t %3.4f\t %3.4f\t %3.4f\t
3.4f\n', iter, xx1, xx2, xx3, ea(1), ea(2), ea(3));
vars = '[';
for i = 1:length(F)
    iS = num2str(i);
    vars = [vars 'x' iS ' '];
    eval(['x' iS ' = sym(''x' iS ''');']);
end
vars = [vars ']' ];
eval(['vars= ' vars ';']);
J=jacobian(F,vars);
Fold = double(subs(F, vars, x0.'));
Jold=double(subs(J,vars, x0.'));
A0 = inv(Jold);
dx = -A0 * Fold;
x0 = x0 + dx;
    iter=iter+1;
    xlante=xxl;
    xx1=x0(1);
    x2ante=xx2;
   xx2=x0(2);
    x3ante=xx3;
    xx3=x0(3);
    ea(1)=abs((xx1-x1ante)*100/xx1);
    ea(2) = abs((xx2-x2ante)*100/xx2);
    ea(3) = abs((xx3-x3ante)*100/xx3);
    fprintf('%d
                    %3.4f\t %3.4f\t %3.4f\t %3.4f\t
3.4f\n', iter, xx1, xx2, xx3, ea(1), ea(2), ea(3));
while ((ea(1)>tol)||(ea(2)>tol)||(ea(3)>tol))
    iter=iter+1;
    Fnew = double(subs(F, vars, x0.'));
        dy = Fnew - Fold;
        u = A0 * dy;
        v = dx' * A0;
        denom = dx' * u;
        A0 = A0 + (dx-u) * v / denom;
        dx = -A0 * Fnew;
        x0 = x0 + dx;
    x1ante=xx1;
    xx1=x0(1);
    x2ante=xx2i
    xx2=x0(2);
    x3ante=xx3;
```

```
xx3=x0(3);
ea(1)=abs((xx1-x1ante)*100/xx1);
ea(2)=abs((xx2-x2ante)*100/xx2);
ea(3)=abs((xx3-x3ante)*100/xx3);
fprintf('%d %3.4f\t %3.4f\t %3.4f\t %3.4f\t %3.4f\t %3.4f\t %3.4f\t end
%3.4f\n',iter,xx1,xx2,xx3,ea(1),ea(2),ea(3));
end
```

Datos de entrada:

```
Digite un vector fila con los valores iniciales de x0 = [3;2;1] Tolerancia del sistema = 0.005

Digite la ecuación 1 = 2^x1+x2*x3-0.3*x3

Digite la ecuación 2 = x1^2-x2^2-0.5*x3^2

Digite la ecuación 3 = x1^3+2^2x2-x3^3
```

Resultados:

Iteración	x1	x2	x3	ea(1)	ea(2)	ea(3)
0	3	2	1	100	100	100
1	1.7640	1.6361	-0.4602	70.0664	22.2440	317.3010
2	1.3047	1.1903	-0.9753	35.2088	37.4541	52.8170
3	1.2687	0.8336	-0.9309	2.8329	42.7859	4.7773
4	1.3498	0.7142	-1.0066	6.0087	16.7176	7.5216
5	1.4283	0.7907	-1.2806	5.4920	9.6783	21.3977
6	1.5513	0.7558	-1.2555	7.9325	4.6237	2.0008
7	1.5985	0.7112	-1.1715	2.9524	6.2716	7.1687
8	1.6736	0.7396	-1.2667	4.4844	3.8417	7.5183
9	1.6524	0.7551	-1.5420	1.2803	2.0581	17.8539
10	1.7330	0.7071	-1.3280	4.6480	6.7918	16.1162

3. Tabla de iteraciones y resultados finales de x1, x2 y x3