PAÜ MÜHENDİSLİK FAKÜLTESİ FIZ 111 GENEL FİZİK-I DERSİ 2019-2020 GÜZ DÖNEMİ ARASINAVI SORULARI (Z.1)

	S1	S2	S3	S4	<u>T</u>
Adı-Soyadı:					

Öğrenci No: Bölümü: Şube No: NÖ İÖ

Dersi veren öğretim elemanının adı ve soyadı:

NOT: Cep telefonu kullanılması yasaktır. Cevap sonucunu kare içine alınız. Hesap makinesi kullanabilirsiniz. SÜRE: 90 dakika 04.11.2019 (10:30)

Soru 1 (25 P): Bir parçacık $x = 3t^2 - 2t + 3$ denklemine göre x ekseni boyunca hareket etmektedir.

A) t = 2 s ve t = 3 s arasında cismin ortalama hızını hesaplayınız. (7 P)

$$\vec{U}_{01} = \frac{\Delta \vec{x}}{\Delta t} = \frac{\vec{x}_s - \vec{x}_t}{\Delta t} = \frac{24 - 11}{3 - 2} = 13 - 15$$

B) t=2 s ve t=3 s an larında cismin ani hızını hesaplayınız. (6 P)

$$\vec{U} = \frac{d\vec{x}}{dt} = \frac{d}{dt} (3t^2 - 2t + 3) = 6t - 2 \quad (3)$$

$$t = 2.5 \text{ Le } (3t^2 - 2t + 3) = 6t - 2 \quad (3)$$

$$t = 3.5 \text{ Le } (3t^2 - 2t + 3) = 6t - 2 \quad (3)$$

C) t=2 s ve t=3 s arasında cismin ortalama ivmesini hesaplayınız. (6 P)

$$\overline{caon} = \frac{D\overline{U}}{DF} = \frac{U_1 - U_0}{DC} = \frac{16-10}{1} = \frac{16-10}{6}$$

D) t=2 s ve t=3 s anlarında cismin ani ivmesini hesaplayınız. (6 P)

Soru 2 (25 P):

(a) A ve B vektörlerinin büyüklükleri eşit olup 5 birimdir. A ve B nin toplamı olan vektör 6j ise, A vektörü ile B vektörü arasındaki açıyı bulunuz. (15p)

$$\overrightarrow{A}+\overrightarrow{B}=6\overrightarrow{\int}$$
 $\overrightarrow{A}=A\times\widehat{a}+\overrightarrow{B}y\widehat{\int}$ ve $\overrightarrow{B}=B\times\widehat{a}+By\widehat{\int}$
olsun.
Bunagore $(A_X+B_X)\widehat{i}+(A_Y+B_Y)\widehat{j}=6\widehat{j}$ Yani
 $A_X+B_X=0$ \Rightarrow $A_X=-B_X$ ve $A_Y+B_Y=6$
 $\overrightarrow{A}=1\overrightarrow{B}=5$ olduğundan $A_X^2+A_Y^2=B_X^2+B_Y^2=25$
 $A_X^2-B_X^2$ olduğundan $A_Y^2=B_Y^2$ \Rightarrow $A_Y=B_Y$ olun.
 $A_Y+B_Y=6$ \Rightarrow $A_Y=B_Y=3$ ve $A_X=Y$, $B_X=-Y$
 $A_Y+B_Y=6$ \Rightarrow $A_Y=B_Y=3$ ve $A_X=Y$, $B_X=-Y$
olmalıdır.

The Barasudali act 20

By =
$$\frac{3}{4}$$

Cos0 = $\frac{Ay}{A} = \frac{By}{B} = \frac{3}{5}$
 $\theta = 53,1^{\circ}=53^{\circ}$ ise

 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{1}{4}$
 $\frac{$

Aile Barasundalis age 20 = 106° dir.

(b) A = 2i - 4j + 3k ve B = 2j + 4k ise AxB = ? (10p)

$$\vec{\lambda} \times \vec{B} = 4 (\hat{i} \times \hat{j}) + 8 (\hat{i} \times \hat{k}) - 16 (\hat{j} \times \hat{k}) + 6 (\hat{k} \times \hat{j})$$

$$= 4 \hat{k} - 8 \hat{j} - 16 \hat{i} - 6 \hat{i} = -22 \hat{i} - 8 \hat{j} + 4 \hat{k}$$

yada
$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{h} \\ 2 - 4 & 3 \end{vmatrix} = \hat{\lambda} (-16 - 6) - \hat{j}(8) + \hat{k}(4)$$

= -22 $\hat{\lambda} - 8\hat{j} + 4\hat{k}$

Soru 3 (25 P): Şekilde görüldüğü gibi, bir uçurumun kenarında bulunan 0 noktasından bir eisim ilk hızının bileşenleri $v_{0z} = 20,0$ m/s ve $v_{0z} = 35,0$ m/s olacak şekilde fırlatılır. Cisim önce yükselir ve sonra alçalarak denizde bulunan P noktasına düşer. Cismin uçuş süresi 14,0 s dir. Not: Yerçekimi ivmesini $g \approx 10,0$ m/s² olarak alınız.

A) Uçurumun deniz seviyesinden h yüksekliğini bulunuz.
 (6 P)

$$V_{0y} = 35 \text{ m/s}$$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 143$
 $V_{0y} = 143$
 $V_{0y} = 143$
 $V_{0y} = 143$
 $V_{0y} = 143$
 $V_{0y} = 143$
 $V_{0y} = 143$
 $V_{0y} = 35.14 - \frac{1}{2}.10(14)^2$
 $V_{0y} = 35.14 - \frac{1}{2}.10(14)^2$
 $V_{0y} = 35.14 - \frac{1}{2}.10(14)^2$
 $V_{0y} = 35.14 - \frac{1}{2}.10(14)^2$
 $V_{0y} = 490 \text{ m}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{ m/s}$
 $V_{0y} = 35 \text{$

Cisim uçurumdan yatay eksende ne kadar D uzaklığında denize düşecektir? (6 P)

Cismin çıkabileceği maksimum yükseklik nedir? (7 P)

topode
$$Vy = 0$$

 $Vy = V_0 y - y + 1 = 0$
 $35 - 10 + 1 = 0 \Rightarrow + 1 = 3,5 \le$
 $0y = V_0 y + 1 - \frac{1}{2} y + 1^2$
 $y = 0 = 35.3.5 - 5(3.5)^2$
 $y = 61,2 m$

'ismin denize düştüğü andaki hız vektörünü birim vektörler cinsinden bulunuz (6 P).

$$V_x = V_{0x} = 20 m/s$$

 $V_y = V_{0y} - g + u_{0u}$
 $= 35 - 10.14$
 $= 35 - 140 = -105 m/s$

