MATH 233H ATTENDANCE PROBLEMS

These are the quick problems given in class to (randomly) take attendance. Please let me know if you find any mistakes.

- (1) Let $\mathbf{v} = \langle 1, 1, 1 \rangle$, $\mathbf{w} = \langle 1, 3, -1 \rangle$. Find a unit vector perpendicular to \mathbf{v} and \mathbf{w} . Answer: Take the cross product to get $\mathbf{r} = \langle -4, 2, 2 \rangle$. Using the dot product we see that \mathbf{r} is perpendicular to both \mathbf{v} and \mathbf{w} . The length of \mathbf{r} is $\sqrt{16+4+4} = \sqrt{24} = 2\sqrt{6}$. So the unit vector is $\langle -2, 1, 1 \rangle / \sqrt{6}$.
- (2) Find the distance between the lines $\langle t, -t, 1 \rangle$ and the x-axis. **Answer:** The lines are skew. The direction vectors are **i** and $\langle 1, -1, 0 \rangle =$ **i j**, so a common perpendicular is **k**. A vector going in between is $\mathbf{w} = \langle 0, 0, 1 \rangle$ (take t = 0 and the origin) so the distance is $|\mathbf{w} \cdot \mathbf{k}| = 1$.
- (3) Let $\mathbf{r}(t) = \langle te^t, t^2 + t, \sin t^2 \rangle$. Compute \mathbf{r}' and \mathbf{r}'' . Answer: $\mathbf{r}' = \langle te^t + e^t, 2t + 1, 2t \cos t^2 \rangle$, $\mathbf{r}'' = \langle 2e^t + te^t, 2, -4t^2 \sin t^2 + 2 \cos t^2 \rangle$.
- (4) Let $f(x,y) = \cos(\sqrt{x^2 + y^2})$. (a) Draw some contour lines for f. (b) Describe/sketch the graph. **Answer:** Let $r = \sqrt{x^2 + y^2}$. Then r measures the distance to the origin in the xy-plane, and the function is really $z = \cos r$ (Figure 1). This means the contour lines are circles centered at the origin (why?). The graph of the surface is what you get when you rotate the graph of cosine about the vertical axis (see Figure 2, although it's somewhat distorted). If you want to plot it yourself, you can try plot $\cos \operatorname{sqrt}(x + y + y)$ at wolframalpha.com.
- (5) Let $f(x,y) = x^3 + y^2 + x^2y$. Compute the first and second partial derivatives. Show that the mixed partials are equal. **Answer:** $f_x = 3x^2 + 2xy$, $f_y = 2y + x^2$, $f_{xx} = 6x + 2y$, $f_{yy} = 2$, $f_{xy} = 2x$, $f_{yx} = 2x$, and the mixed partials are equal.
- (6) Let $f(x,y) = xy\sin(x^2 + y^2)$. Find the rate of change of f at the point (1,2) when moving towards the point (2,3). **Answer:** This is asking for the directional derivative when you move from the point (1,2) in the direction headed towards (2,3). That is in the direction of the vector $\langle 2,3\rangle \langle 1,2\rangle$ which is $\langle 1,1\rangle$. To get the direction vector we have to convert this to a unit vector, so we get $\langle 1/\sqrt{2},1/\sqrt{2}\rangle$. We take the dot product of this with the gradient at (1,2), which is $\langle 2x^2y\cos(x^2+y^2)+y\sin(x^2+y^2),2xy^2\cos(x^2+y^2)+x\sin(x^2+y^2)\rangle|_{(1,2)}=\langle 4\cos 5+2\sin 5,8\cos 5+\sin 5\rangle$. So the dot product is $(12\cos 5+3\sin 5)/\sqrt{2}$.

Date: October 22, 2025.

(7) Find the volume under graph of xe^{xy} and over the rectangle $0 \le x, y \le 1$. **Answer:** We compute

$$\int_0^1 \int_0^1 x e^{xy} \, dy \, dx.$$

We do this order to avoid integration by parts. Then we get $\int_0^1 e^x - 1 dx = e^x - x|_0^1 = e - 2$. (8) Write the integrals needed to compute the centroid of the unit disk

(8) Write the integrals needed to compute the centroid of the unit disk $x^2 + y^2 \le 1$. **Answer:** We need the two moment integrals and the area integral. (For centroid, we compute the center of mass assuming the density ρ is 1.) We use polar and write the region as $0 \le \theta \le 2\pi$, $0 \le r \le 1$ and use $dA = r dr d\theta$. The integrands we need are (1) area A: dA; (2) moment about the y-axis $M_y : x dA = r \cos \theta dA$; and (3) moment about the y-axis $M_x : y dA = r \sin \theta dA$.

FIGURE 1.

Figure 2. $z = \cos \sqrt{x^2 + y^2}$