Optimization for Deep Learning

Lecture 4-2: Proximal Gradient Descent

Kun Yuan

Peking University

Main contents in this lecture

- Proximal gradient descent
- Convergence properties

Optimization with simple regularizers

• Consider the following minimization problem with a regularizer

$$\min_{x \in \mathbb{R}^d} \quad f(x) + R(x) \tag{1}$$

- We assume f(x) is L-smooth
- We assume regularizer R(x) is closed, proper, and convex
- R(x) can be non-differentiable, e.g., $R(x) = \|x\|_1$

Application: Robust principal component analysis

- Given an input matrix $M \in \mathbb{R}^{n \times d}$, we will find valuable information from M
- Consider the following problem¹

$$\min_{L,S} \quad \frac{1}{2} \|M - (L+S)\|_F^2 + \lambda_1 \|L\|_* + \lambda_2 \|S\|_1$$

- \circ variable L represents **low-rank** background information; the nuclear-norm regularizer will promote its low-rank structure
- o variable S represents **sparse** valuable information; the ℓ_1 -norm regularizer will promote its sparse structure
- $\circ \lambda_1$ and λ_2 are regularizer coefficients

 $^{^{1}}$ If we solve the problem with alternating minimization, then each subproblem is in the shape of problem (1).

Application: Robust principal component analysis

Figure: Split the input to low-rank and sparse components

Subgradient and subdifferential

Definition 1

Let $\psi: \mathbb{R}^d \to \mathbb{R}$ be a non-differentible function. It holds that $g \in \mathbb{R}^d$ is a subgradient of ψ at x if and only if

$$\psi(y) \ge \psi(x) + \langle g, y - x \rangle \quad \forall y \in \mathbb{R}^d$$

The set of subgradients of ψ at x is called the **subdifferential** of x and is denoted by $\partial \psi(x)$.

Examples:

- ℓ_1 -norm: $\forall x \in \mathbb{R}^d$, $\psi(x) = ||x||_1$, $\partial \psi(0) = \{g \in \mathbb{R}^d \mid |g_i| \le 1, i = 1, \dots, d\}$
- ℓ_2 -norm: $\forall x \in \mathbb{R}^d$, $\psi(x) = ||x||_2$, $\partial \psi(0) = \{g \in \mathbb{R}^d \mid ||g||_2 \le 1\}$.

Subgradient and subdifferential

Figure: Illustration of the subgradient².

Subgradient reduces to gradient if ψ is differentiable at x

²Image is from wikipedia

Optimality conditions

Theorem 1

We suppose $\psi(x)$ is a convex and proper function. It holds that x^\star is a global minimum of $\psi(x)$ if and only if

$$0 \in \partial \psi(x^*).$$

Proximal gradient descent

- The main challenge is to handle the non-differentible regularizer
- We approximate f(x) with a quadratic function:

$$f(x) \approx f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\gamma} ||x - x_k||^2$$

ullet Using the above approximation to replace f(x), we have

$$\min_{x \in \mathbb{R}^d} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\gamma} ||x - x_k||^2 + R(x)$$

which is equivalent to

$$\min_{x \in \mathbb{R}^d} \quad R(x) + \frac{1}{2\gamma} \|x - \left(x_k - \gamma \nabla f(x_k)\right)\|^2$$

Proximal gradient descent

Continue the procedure, we achieve proximal gradient descent

$$y_{k+1} = x_k - \gamma \nabla f(x_k)$$
$$x_{k+1} = \operatorname{prox}_{\gamma R}(y_{k+1})$$

where the **proximity operator** $prox_h(\cdot)$ is defined as

$$\operatorname{prox}_h(x) := \underset{u \in \mathbb{R}^d}{\operatorname{arg min}} \{ h(x) + \frac{1}{2} ||x - u||^2 \}$$

ullet Throughout the lecture, we assume R(x) is an easy regularizer, i.e., the proximity operator has a **closed-form** solution.

Can proximal GD converge to the solution? Yes!

Lemma 1

Suppose R(x) is proper closed and convex. If proximal gradient descent converges to a fixed point, i.e.,

$$x^{\star} = \operatorname{prox}_{\gamma R}(x^{\star} - \gamma \nabla f(x^{\star})),$$

then it holds that

$$0 \in \nabla f(x^*) + \partial R(x^*)$$

$$\mathsf{Proof:}\ x^\star = \mathrm{prox}_{\gamma R}(x^\star - \gamma \nabla f(x^\star)) \Longleftrightarrow 0 \in \gamma \partial R(x^\star) + x^\star - (x^\star - \gamma \nabla f(x^\star))$$

If f(x) is convex, the fixed point is the global minimum.

Examples of easy regularizers

- ℓ_1 -norm: $\forall x \in \mathbb{R}^d$, $R(x) = ||x||_1$, $[\operatorname{prox}_{\gamma R}(x)]_i = \operatorname{sign}(x_i) \max\{|x_i| \gamma, 0\}$.
- ℓ_2 -norm: $\forall x \in \mathbb{R}^d$, $R(x) = ||x||_2$,

$$\operatorname{prox}_{\gamma R}(x) = \begin{cases} \left(1 - \frac{\gamma}{\|x\|_2}\right) x, & \|x\|_2 \ge R, \\ 0, & \text{otherwise.} \end{cases}$$

ullet Projection: Let $\mathcal C$ be a closed convex set and $I_{\mathcal C}(x)$ is an indicator function

$$\begin{aligned} \operatorname{prox}_{I_{\mathcal{C}}}(x) &= \operatorname*{arg\,min}_{u} \left\{ I_{\mathcal{C}}(u) + \frac{1}{2} \|u - x\|^{2} \right\} \\ &= \operatorname*{arg\,min}_{u \in \mathcal{C}} \|u - x\|^{2} \\ &= \mathcal{P}_{\mathcal{C}}(x) \end{aligned}$$

Projected GD is a special example of proximal GD

• Recall the constraind minimization problem

$$\min_{x \in \mathbb{R}^d} \quad f(x) \quad \text{subject to} \quad x \in \mathcal{X}$$

where \mathcal{X} is a closed convex set.

• With indicator function, we can reformulate it as

$$\min_{x \in \mathbb{R}^d} \quad f(x) + I_{\mathcal{X}}(x)$$

• Projected GD is essentially proximal GD

$$egin{aligned} x_{k+1} &= \operatorname{prox}_{I_{\mathcal{X}}}[x_k - \gamma \nabla f(x_k)] & \text{(Proximal GD)} \ &= \mathcal{P}_{\mathcal{X}}[x_k - \gamma \nabla f(x_k)] & \text{(Projected GD)} \end{aligned}$$

Convergence: Smooth and strongly-convex scenario

Lemma 2

If R(x) is a closed convex proper function, then

$$\|\operatorname{prox}_{R}(x) - \operatorname{prox}_{R}(y)\| \le \|x - y\|.$$

It implies that $prox_R(x)$ is non-expansive.

We leave it as an exercise.

Convergence: Smooth and strongly-convex scenario

Lemma 3

If f(x) is convex and differentiable, and R(x) is a closed convex proper function, then the optimal solution $x^\star = \arg\min_{x \in \mathbb{R}^d} \{f(x) + R(x)\}$ satisfies

$$x^* = \operatorname{prox}_{\gamma R}(x^* - \gamma \nabla f(x^*))$$

Easy to show. We leave it as an exercise.

Convergence: Smooth and strongly-convex scenario

Theorem 2

We assume f(x) is μ -strongly convex and L-smooth on \mathbb{R}^d , R(x) is a closed convex proper function, and x^\star is the optimal solution. If we set $\gamma=1/L$, proximal gradient descent with an arbitrary x_0 satisfies

$$||x^K - x^*|| \le (1 - \frac{\mu}{L})^K ||x^0 - x^*||.$$

Easy to show. We leave it as an exercise.

Projected GD has a rate $O((1-\mu/L)^K)$ and a complexity $O(L/\mu\log(1/\epsilon))$

It has the same order in rate and complexity as gradient descent

Convergence: Smooth and convex scenario

We let
$$\psi(x) = f(x) + R(x)$$
 and $\psi^{\star} = \psi(x^{\star})$

Theorem 3

We assume f(x) is L-smooth on \mathbb{R}^d , R(x) is a closed convex proper function. If we set $\gamma = 1/L$, proximal gradient descent with an arbitrary x_0 satisfies

$$\psi(x^K) - \psi^* \le \frac{L}{2K} ||x_0 - x^*||^2.$$

Projected GD has a rate O(L/K), which amounts to complexity $O(L/\epsilon)$

It has the same order in rate and complexity as gradient descent

Comparison between GD and proximal GD

Method	Convexity	Rate	Complexity
GD	Non-convex	O(L/k)	$O(L/\epsilon)$
	Convex	O(L/k)	$O(L/\epsilon)$
	Strongly convex	$O((1-\frac{\mu}{L})^k)$	$O(\frac{L}{\mu}\log(1/\epsilon))$
Proximal GD	Non-convex	O(L/k)	$O(L/\epsilon)$
	Convex	O(L/k)	$O(L/\epsilon)$
	Strongly convex	$O((1-\frac{\mu}{L})^k)$	$O(\frac{L}{\mu}\log(1/\epsilon))$

Proximal GD converges as fast as GD even with the projection step. It makes sense since both GD and projected GD are special examples of proximal GD.

Summary

- Optimizaiton with simple regularizers are common in applications
- Proximal GD is very useful when $prox_R(\cdot)$ is cheap.
- Proximal GD has the same convergence rate and complexity as GD.