PROBLEMAS

- •2-1. Si $\theta = 30^{\circ}$ y T = 6 kN, determine la magnitud de la fuerza resultante que actúa sobre la armella roscada y su dirección medida en el sentido de las manecillas del reloj desde el eje x positivo.
- **2-2.** Si $\theta = 60^{\circ}$ y T = 5 kN, determine la magnitud de la fuerza resultante que actúa sobre la armella roscada y su dirección medida en el sentido de las manecillas del reloj desde el eje positivo x.
- **2-3.** Si la magnitud de la fuerza resultante debe ser de 9 kN dirigida a lo largo del eje x positivo, determine la magnitud de la fuerza \mathbf{T} que actúa sobre la armella roscada y su ángulo θ .

Probs. 2-1/2/3

- *2-4. Determine la magnitud de la fuerza resultante que actúa sobre la ménsula y su dirección, medida en sentido contrario al de las manecillas del reloj desde el eje u positivo.
- **•2-5.** Resuelva la fuerza \mathbf{F}_1 en componentes a lo largo de los ejes u y v; además, determine las magnitudes de estas componentes.
- **2-6.** Resuelva la fuerza \mathbf{F}_2 en componentes a lo largo de los ejes u y v; además, determine las magnitudes de estas componentes.

Probs. 2-4/5/6

- **2-7.** Si $F_B=2$ kN y la fuerza resultante actúa a lo largo del eje u positivo, determine la magnitud de la fuerza resultante y el ángulo θ .
- *2-8. Si se requiere que la fuerza resultante actúe a lo largo del eje u positivo y que tenga una magnitud de 5 kN, determine la magnitud requerida de \mathbf{F}_B y su dirección θ .

Probs. 2-7/8

- **•2-9.** La placa está sometida a las dos fuerzas A y B, como se muestra en la figura. Si $\theta = 60^{\circ}$, determine la magnitud de la resultante de esas dos fuerzas y su dirección medida en el sentido de las manecillas del reloj desde la horizontal.
- **2-10.** Determine el ángulo de θ para conectar el elemento A a la placa, de manera que la fuerza resultante de \mathbf{F}_A y \mathbf{F}_B esté dirigida horizontalmente hacia la derecha. Incluso, ¿cuál es la magnitud de la fuerza resultante?

Probs. 2-9/10

*2-12. rúrgic largo o a lo la

•2-13. rúrgica largo o a lo la lo largo a fuerza

túe a lo de 5 kN, ción θ .

A y B,

e la mag-

lirección

desde la

elemen-

 $e de F_A y$

Incluso,

400 N y 30°

AB sobre el bloque de escalera.

2-11. Si la tensión en el cable es de 400 N, determine la mag-

nitud y la dirección de la fuerza resultante que actúa sobre la

polea. Este ángulo es el mismo ángulo θ que forma la línea

Prob. 2-11

- *2-12. El dispositivo se usa para sustituir en forma quirúrgica la rótula de la rodilla. Si la fuerza que actúa a lo largo de la pierna es de 360 N, determine sus componentes a lo largo de los ejes x y y'.
- •2-13. El dispositivo se usa para sustituir en forma quirúrgica la rótula de la rodilla. Si la fuerza que actúa a lo largo de la pierna es de 360 N, determine sus componentes a lo largo de los ejes x' y y.

Probs. 2-12/13

- **2-14.** Determine el ángulo de diseño θ (0° $\leq \theta \leq$ 90°) para la barra AB de manera que la fuerza horizontal de 400 lb tenga una componente de 500 lb dirigida de A hacia C. ¿Cuál es la componente de fuerza que actúa a lo largo del elemento AB? Considere $\phi = 40$ °.
- **2-15.** Determine el ángulo de diseño ϕ (0° $\leq \phi \leq 90$ °) entre las barras AB y AC, de manera que la fuerza horizontal de 400 lb tenga una componente de 600 lb que actúa hacia arriba y a la izquierda, en la misma dirección que de B hacia A. Considere que $\theta = 30$ °.

Probs. 2-14/15

- *2-16. Descomponga \mathbf{F}_1 en sus componentes a lo largo de los ejes u y v, y determine las magnitudes de estas componentes.
- **•2-17.** Descomponga F_2 en sus componentes a lo largo de los ejes u y v, y determine las magnitudes de estas componentes.

Probs. 2-16/17

- **2-18.** El camión se va a remolcar con dos cuerdas. Determine las magnitudes de las fuerzas \mathbf{F}_A y \mathbf{F}_B que actúan en cada cuerda para desarrollar una fuerza resultante de 950 N dirigida a lo largo del eje x positivo. Considere que $\theta = 50^\circ$.
- **2-19.** El camión se va a remolcar con dos cuerdas. Si la fuerza resultante debe ser de 950 N, dirigida a lo largo del eje x positivo, determine las magnitudes de las fuerzas \mathbf{F}_A y \mathbf{F}_B que actúan en cada cuerda y el ángulo θ de \mathbf{F}_B de manera que la magnitud de \mathbf{F}_B sea un *mínimo*. \mathbf{F}_A actúa a 20° medidos desde el eje x, como se muestra en la figura.

Probs. 2-18/19

- *2-20. Si $\phi = 45^{\circ}$, $F_1 = 5$ kN, y la fuerza resultante es 6 kN dirigida a lo largo del eje y positivo, determine la magnitud requerida de \mathbf{F}_2 y su dirección θ .
- •2-21. Si $\phi = 30^{\circ}$ y la fuerza resultante debe ser de 6 kN y estar dirigida a lo largo del eje y positivo, determine las magnitudes de \mathbf{F}_1 y \mathbf{F}_2 y el ángulo θ si se requiere que F_2 sea mínima.
- **2-22.** Si $\phi = 30^{\circ}$, $F_1 = 5$ kN y la fuerza resultante debe estar dirigida a lo largo del eje y positivo, determine la magnitud de la fuerza resultante si F_2 debe ser mínima. Incluso, ¿qué son F_2 y el ángulo θ ?

Probs. 2-20/21/22

- **2-23.** Si $\theta = 30^{\circ}$ y $F_2 = 6$ kN, determine la magnitud de la fuerza resultante que actúa sobre la placa y su dirección medida en el sentido de las manecillas del reloj desde el eje x positivo.
- *2-24. Si la fuerza resultante \mathbf{F}_R está dirigida a lo largo de una línea a 75° del eje x positivo, medidos en el sentido de las manecillas del reloj, y se sabe que la magnitud de \mathbf{F}_2 debe ser mínima, determine las magnitudes de \mathbf{F}_R y \mathbf{F}_2 y del ángulo $\theta \le 90^\circ$.

Probs. 2-23/24

•2-25. Dos fuerzas \mathbf{F}_1 y \mathbf{F}_2 actúan sobre la armella roscada. Si sus líneas de acción están separadas por un ángulo θ y la magnitud de cada fuerza es $F_1 = F_2 = F$, determine la magnitud de la fuerza resultante \mathbf{F}_R y el ángulo entre \mathbf{F}_R y \mathbf{F}_1 .

Prob. 2-25

- 2-26. El tores A y remolque tenga una del eje x.
 2-27. Si
- 2-27. Si sobre el trivo y ten del cable sea mínir cable par

- *2-28. Se Determin actúan sob resultante Considere
- •2-29. La fuerza resi eje y positi y **F**_B sobre la magnitu y, como se

mitud de dirección desde el

a lo laren el senmagnitud s de \mathbf{F}_R y

lla roscain ángulo letermine ulo entre **2-26.** El tronco de un árbol es remolcado por dos tractores A y B. Determine la magnitud de las dos fuerzas de remolque \mathbf{F}_A y \mathbf{F}_B si se requiere que la fuerza resultante tenga una magnitud $F_R=10$ kN y esté dirigida a lo largo del eje x. Considere que $\theta=15^\circ$.

2-27. Si la resultante \mathbf{F}_R de las dos fuerzas que actúan sobre el tronco debe estar dirigida a lo largo del eje x positivo y tener una magnitud de 10 kN, determine el ángulo θ del cable unido a B de modo que la fuerza \mathbf{F}_B en este cable sea mínima. ¿Cuál es la magnitud de la fuerza en cada cable para esta situación?

Probs. 2-26/27

*2-28. Se va a levantar una viga mediante dos cadenas. Determine las magnitudes de las fuerzas \mathbf{F}_A y \mathbf{F}_B que actúan sobre cada cadena para que desarrollen una fuerza resultante de 600 N dirigida a lo largo del eje y positivo. Considere que $\theta = 45^\circ$.

•2-29. La viga se va a levantar con dos cadenas. Si la fuerza resultante debe ser de 600 N dirigida a lo largo del eje y positivo, determine las magnitudes de las fuerzas \mathbf{F}_A y \mathbf{F}_B sobre cada cadena y el ángulo θ de \mathbf{F}_B de manera que la magnitud de \mathbf{F}_B sea *mínima*. \mathbf{F}_A actúa a 30° desde el eje y, como se muestra en la figura.

Probs. 2-28/29

2-30. Tres cadenas actúan sobre la ménsula de forma que generan una fuerza resultante con una magnitud de 500 lb. Si dos de las cadenas están sometidas a fuerzas conocidas, como se muestra en la figura, determine el ángulo θ de la tercera cadena, medido en el sentido de las manecillas del reloj desde el eje x positivo, de manera que la magnitud de la fuerza \mathbf{F} en esta cadena sea *mínima*. Todas las fuerzas se encuentran en el plano x-y. ¿Cuál es la magnitud de \mathbf{F} ? Sugerencia: encuentre primero la resultante de las dos fuerzas conocidas. La fuerza \mathbf{F} actúa en esta dirección.

2-31. Tres cables jalan un tubo de forma que generan una fuerza resultante con magnitud de 900 lb. Si dos de los cables están sometidos a fuerzas conocidas, como se muestra en la figura, determine el ángulo θ del tercer cable de modo que la magnitud de la fuerza \mathbf{F} en este cable sea *mínima*. Todas las fuerzas se encuentran en el plano x-y. ¿Cuál es la magnitud de \mathbf{F} ? Sugerencia: encuentre primero la resultante de las dos fuerzas conocidas.

