神经网络

陈飞宇

fchen@cqu.edu.cn

办公室:软件学院529

How our brain works?

神经元模型

• x_i : 第i个神经元的输入

• w_i : 第i个神经元的权重

• θ : 阈值(threshold)或称为偏置(bias)

● y:神经元状态(兴奋或抑制)

激活函数(Activation function)

由于单位阶跃函数不是一个连续函数,我们通常选择一些性质好的函数作为替代函数。

Unit-step function and logistic function

Logistic function:

$$y = \frac{1}{1 + e^{-z}}$$

激活函数(Activation function)

 $f(\cdot)$ 函数称为激活函数(activation function)或挤压函数 (Squashing function).

二分类问题

多层感知机(Multilayer Perceptron)

感知机(Perceptron)由两层神经元组成,是最简单的神经网络。

感知机原理

误分类点

考虑输出变量 $y_i \in \{0,1\}$, 定义

$$\gamma_i = (\widehat{y}_i - y_i) \frac{w^{\mathrm{T}} x_i - \theta}{\|w\|} \ge 0$$

其中 $\hat{y}_i = f(w^T x_i - \theta)$ 。

若
$$\hat{y_i} = y_i$$
,则 $\gamma_i = 0$;若 $\hat{y_i} \neq y_i$,则 $\gamma_i = \frac{|w^T x_i - \theta|}{\|w\|}$

因此 $(\hat{y}_i - y_i)(w^Tx_i - \theta)$ 衡量着误分类点 x_i 到分类超平面的距离。

感知机模型

令 $w_0 = \theta$, $x_0 = -1$, 即将阈值 θ 看作是"哑结点" x_0 所对应的权重,则感知机最小化误分类点到分类平面的距离和:

$$\min_{\widehat{w}} \sum_{i=0}^{n} (\widehat{y}_i - y_i) \widehat{w}^{\mathsf{T}} \widehat{x}_i$$

$$\widehat{w} = [w_0; w_1; \cdots; w_n], \quad \widehat{x} = [x_0; x_1; \cdots; x_n].$$

注意,上述求和仅当 $\hat{y}_i \neq y_i$ 时起作用!

感知机模型

感知机模型:

$$\min_{\widehat{w}} \sum_{i=0}^{n} (\widehat{y}_i - y_i) \widehat{w}^{\mathsf{T}} \widehat{x}_i$$

梯度下降法:

$$\widehat{\boldsymbol{w}} \leftarrow \widehat{\boldsymbol{w}} - \boldsymbol{\eta} \Delta \widehat{\boldsymbol{w}}$$

其中

$$\Delta \widehat{w} = \frac{\partial (\sum_{i=0}^{n} (\widehat{y}_i - y_i) \widehat{w}^T \widehat{x}_i)}{\partial \widehat{w}} = \sum_{i=0}^{n} (\widehat{y}_i - y_i) \widehat{x}_i$$

感知机原理

逻辑运算I

"与"运算 $(x_1 \land x_2 \land \cdots \land x_n)$,其中 $x_i \in \{0, 1\}$ 。

令权重 $w_1 = w_2 = \cdots = w_n = 1$, 阈值 $\theta = n$.

则输出 $y = f(\sum_{i=1}^{n} w_i x_i - \theta) = f(\sum_{i=1}^{n} x_i - n)$

当且仅当 $x_1 = x_2 = \cdots = x_n = 1$ 时, y = 1。

逻辑运算II

"或"运算 $(x_1 \lor x_2 \lor \cdots \lor x_n)$,其中 $x_i \in \{0, 1\}$ 。

令权重 $w_1 = w_2 = \cdots = w_n = 1$, 阈值 $\theta = 1/2$.

输出 $y = f(\sum_{i=1}^{n} w_i x_i - \theta) = f(\sum_{i=1}^{n} x_i - 1/2)$

当且仅当至少有一个 $x_i = 1$ 时,y = 1。

逻辑运算III

"非"运算($\sim x_i$),其中 $x_i \in \{0, 1\}$ 。

输出
$$y = f(\sum_{i=1}^{n} w_i x_i - \theta) = f(-2x_i + 1)$$

当
$$x_i = 1$$
时, $y = f(-1) = 0$;

当
$$x_i = 0$$
时, $y = f(1) = 1$ 。

逻辑运算IV

"异或"运算 $(x_i \oplus x_j)$,其中 $x_i \in \{0, 1\}$ 。

若感知机可以解决异或运算,则

当
$$x_i = x_j$$
 时, $y = f(\sum_{i=1}^n w_i x_i - \theta) = 0$

$$w_i + w_j - \theta < 0, -\theta < 0$$
当 $x_i \neq x_j$ 时, $y = f(\sum_{i=1}^n w_i x_i - \theta) = 1$

$$w_i - \theta \ge 0, w_i - \theta \ge 0$$

不存在这样的 w_i 和 w_i !!!

逻辑运算

逻辑运算

多层神经网络

结构	决策区域类型	区域形状	异或问题
无隐层			
	由一超平面分成两个		B A
单隐层			
	开凸区域或闭凸区域		A B
双隐层			
	任意形状(其复杂度由单元数目确定)。	csdn. net/an	B A

多层前馈神经网络

多层前馈神经网络:每层神经元与下一层神经元完 全相连,神经元之间不存在同层连接,也不存在跨 层连接。

输入层

误差逆传播算法

误差逆传播算法

BP算法优化准则:

$$\min_{\theta,\omega,\gamma,\nu} E_k = \frac{1}{2} \sum_{j=1}^{\infty} (\hat{y}_j^k - y_j^k)^2$$

其中预测值 \hat{y}_i^k 与权重 $\theta, \omega, \gamma, \nu$ 相关。

梯度下降法:

$$\frac{\partial E_k}{\partial \theta}$$
, $\frac{\partial E_k}{\partial \omega}$, $\frac{\partial E_k}{\partial \gamma}$, $\frac{\partial E_k}{\partial \nu}$

更新ω

$$E_{k} = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_{j}^{k} - y_{j}^{k})^{2};$$

$$\hat{y}_{j}^{k} = f(\beta_{j} - \theta_{j}); \quad \beta_{j} = \sum_{h=1}^{q} \omega_{hj} b_{h}$$
链式法则:
$$\frac{\partial E_{k}}{\partial \omega_{hj}} = \frac{\partial E_{k}}{\partial \hat{y}_{j}^{k}} \quad \frac{\partial \hat{y}_{j}^{k}}{\partial \beta_{j}} \quad \frac{\partial \beta_{j}}{\partial \omega_{hj}}$$

$$\frac{\partial E_{k}}{\partial \hat{y}_{j}^{k}} = \frac{\partial (\frac{1}{2} \sum_{j=1}^{l} (\hat{y}_{j}^{k} - y_{j}^{k})^{2})}{\partial \hat{y}_{j}^{k}} = \hat{y}_{j}^{k} - y_{j}^{k}$$

$$\Box \beta f'(x) = f(x)(1 - f(x))$$

$$\frac{\partial \hat{y}_{j}^{k}}{\partial \beta_{j}} = f(\beta_{j} - \theta_{j})(1 - f(\beta_{j} - \theta_{j})) = \hat{y}_{j}^{k}(1 - \hat{y}_{j}^{k})$$

更新ω

 $\frac{\partial \beta_j}{\partial \omega_{hj}} = \frac{\partial (\sum_{h=1}^q \omega_{hj} b_h)}{\partial \omega_{hj}} = b_h$

$$E_{k} = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_{j}^{k} - y_{j}^{k})^{2};$$

$$\hat{y}_{j}^{k} = f(\beta_{j} - \theta_{j}); \quad \beta_{j} = \sum_{h=1}^{q} \omega_{hj} b_{h}$$
链式法则:
$$\frac{\partial E_{k}}{\partial \omega_{hj}} = \frac{\partial E_{k}}{\partial \hat{y}_{j}^{k}} \frac{\partial \hat{y}_{j}^{k}}{\partial \beta_{j}} \frac{\partial \beta_{j}}{\partial \omega_{hj}}$$

$$\Leftrightarrow g_{j} = -\frac{\partial E_{k}}{\partial \hat{y}_{i}^{k}} \frac{\partial \hat{y}_{j}^{k}}{\partial \beta_{j}} = (y_{j}^{k} - \hat{y}_{j}^{k}) \hat{y}_{j}^{k} (1 - \hat{y}_{j}^{k})$$

更新ω

$$E_{k} = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_{j}^{k} - y_{j}^{k})^{2};$$

$$\hat{y}_{j}^{k} = f(\beta_{j} - \theta_{j}); \quad \beta_{j} = \sum_{h=1}^{q} \omega_{hj} b_{h}$$
链式法则:
$$\frac{\partial E_{k}}{\partial \omega_{hj}} = \frac{\partial E_{k}}{\partial \hat{y}_{j}^{k}} \quad \frac{\partial \hat{y}_{j}^{k}}{\partial \beta_{j}} \quad \frac{\partial \beta_{j}}{\partial \omega_{hj}} = -g_{j}b_{h}$$

$$\boldsymbol{\omega}_{hj} \leftarrow \boldsymbol{\omega}_{hj} + \boldsymbol{\eta} \boldsymbol{g}_j \boldsymbol{b}_h$$

更新 θ

$$E_{k} = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_{j}^{k} - y_{j}^{k})^{2}; \quad \hat{y}_{j}^{k} = f(\beta_{j} - \theta_{j});$$
链式法则:
$$\frac{\partial E_{k}}{\partial \theta_{j}} = \frac{\partial E_{k}}{\partial \hat{y}_{j}^{k}} \quad \frac{\partial \hat{y}_{j}^{k}}{\partial \theta_{j}} = -\frac{\partial E_{k}}{\partial \hat{y}_{j}^{k}} \quad \frac{\partial \hat{y}_{j}^{k}}{\partial \beta_{j}} = g_{j}$$

$$\theta_{j} \leftarrow \theta_{j} - \eta g_{j}$$

同理可得

$$\frac{\partial E_k}{\partial \gamma}$$
, $\frac{\partial E_k}{\partial \nu}$

BP算法小结

核心思想:利用前向传播,计算第 n 层输出值

优化目标:输出值和实际值的残差。

计算方法: 将残差按影响逐步传递回第 n-

 $1, n-2, \cdots, 2$ 层,以修正各层参数。(即所谓的

误差逆传播)

主要工具:链式法则(复合函数求偏导)。

BP算法局限性

• 容易过拟合!

早停、正则化

• 容易陷入局部最优!

选取多次初值、随机梯度下降法

难以设置隐层个数!

试错法