6ª. Lista de Cálculo I – Computação

Livro Cálculo 1 – James Stewart – 7ª. Edição

Página 261 e 262 – exercícios: 1, 3, 5, 9, 11, 15, 17, 19, 25, 34 e 35.

Página 269 e 270 – exercícios: 1, 5, 9, 11, 13, 15, 16, 19, 20, 25, 33, 39, 46, 49 e 51.

Página 278 – exercícios: 9, 11, 13, 17, 21, 23, 25, 31, 33, 35, 41, 43, 45, 49, 51, 53, 55, 59 e 61.

Página 286 – exercícios: 3, 5, 9, 13, 15, 19, 23, 31, 39 e 45.

261

SOLUÇÃO Embora não seja necessário o cálculo para demonstrar essa identidade, a demonstração usando cálculo é bem simples. Se $f(x) = tg^{-1}x + cotg^{-1}x$, então

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

para todos os valores de x. Portanto f(x) = C, uma constante. Para determinar o valor de C, fazemos x = 1 (porque podemos calcular f(1) exatamente). Então

$$C = f(1) = tg^{-1}1 + cotg^{-1}1 = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

Assim, $tg^{-1}x + cotg^{-1}x = \pi/2$.

Exercícios

1-4 Verifique que a função satisfaz as três hipóteses do Teorema de Rolle no intervalo dado. Então, encontre todos os números c que satisfazem à conclusão do Teorema de Rolle.

2.
$$f(x) = x^3 - x^2 - 6x + 2$$
, [0, 3]

3.
$$f(x) = \sqrt{x} - \frac{1}{3}x$$
, [0, 9]

4.
$$f(x) = \cos 2x$$
, $[\pi/8, 7\pi/8]$

- **(5)** Seja $f(x) = 1 x^{2/3}$. Mostre que f(-1) = f(1), mas não existe um número c em (-1, 1) tal que f'(c) = 0. Por que isso não contradiz o Teorema de Rolle?
 - **6.** Seja $f(x) = \operatorname{tg} x$. Mostre que $f(0) = f(\pi)$, mas não existe um número $c \text{ em } (0, \pi)$ tal que f'(c) = 0. Por que isso não contradiz o Teorema de Rolle?
 - 7. Use o gráfico de f para estimar os valores de c que satisfaçam à conclusão do Teorema do Valor Médio para o intervalo [0, 8].

- **8.** Use o gráfico de f dado no Exercício 7 para estimar os valores de c que satisfaçam à conclusão do Teorema do Valor Médio para o intervalo [1, 7].
- 9-12 Verifique se a função satisfaz as hipóteses do Teorema do Valor Médio no intervalo dado. Então, encontre todos os números c que satisfaçam a conclusão do Teorema do Valor Médio.

10.
$$f(x) = x^3 + x - 1$$
, [0, 2]

(1)
$$f(x) = e^{-2x}$$
, [0, 3]

12.
$$f(x) = \frac{x}{x+2}$$
, [1, 4]

13–14 Encontre o número c que satisfaça à conclusão do Teorema do Valor Médio para o intervalo dado. Desenhe o gráfico da função, a reta secante passando pelas extremidades, e a reta tangente em (c, f(c)). A reta secante e a reta tangente são paralelas?

13.
$$f(x) = \sqrt{x}$$
, [0, 4]

14.
$$f(x) = e^{-x}$$
, [0, 2]

- **15** Seja $f(x) = (x-3)^{-2}$. Mostre que não existe um valor c em (1, 4) tal que f(4) - f(1) = f'(c)(4 - 1). Por que isso não contradiz o Teorema do Valor Médio?
- **16.** Seja f(x) = 2 |2x 1|. Mostre que não existe um valor c tal que f(3) - f(0) = f'(c)(3 - 0). Por que isso não contradiz o Teorema do Valor Médio?
- 17-18 Mostre que a equação tem exatamente uma raiz real.

$$(17)$$
 $2x + \cos x = 0$

18.
$$x^3 + e^x = 0$$

- Mostre que a equação $x^3 15x + c = 0$ tem no máximo uma raiz no intervalo [-2, 2].
- **20.** Mostre que a equação $x^4 + 4x + c = 0$ tem no máximo duas raízes reais.
- 21. (a) Mostre que um polinômio de grau 3 tem, no máximo, três raízes reais.
 - (b) Mostre que um polinômio de grau n tem, no máximo, n raízes reais.
- **22.** (a) Suponha que f seja derivável em \mathbb{R} e tenha duas raízes. Mostre que f' tem pelo menos uma raiz.
 - (b) Suponha que f seja duas vezes derivável em $\mathbb R$ e tenha três raízes. Mostre que f'' tem pelo menos uma raiz real.
 - (c) Você pode generalizar os itens (a) e (b)?
- **23.** Se f(1) = 10 e $f'(x) \ge 2$ para $1 \le x \le 4$, quão pequeno f(4)pode ser?
- **24.** Suponha que $3 \le f'(x) \le 5$ para todos os valores de x. Mostre que $18 \le f(8) - f(2) \le 30$.

- Existe uma função f tal que f(0) = -1, f(2) = 4 e $f'(x) \le 2$ para todo x?
- **26.** Suponha que f e g sejam contínuas em [a, b] e deriváveis em (a, b). Suponha também que f(a) = g(a) e f'(x) < g'(x) para a < x < b. Prove que f(b) < g(b). [Dica: Aplique o Teorema do Valor Médio para a função h = f g.]
- **27.** Mostre que $\sqrt{1+x} < 1 + \frac{1}{2}x$ se x > 0.
- **28.** Suponha que f seja uma função ímpar e é derivável em toda parte. Demonstre que para todo o número positivo b, existe um número c em (-b,b) tal que f'(c) = f(b)/b.
- **29.** Use o Teorema do Valor Médio para demonstrar a desigualdade $|\sec a \sec b| \le |a b|$ para todo $a \in b$.
- **30.** Se f'(x) = c (c é uma constante) para todo x, use o Corolário 7 para mostrar que f(x) = cx + d para alguma constante d.
- **31.** Sejam f(x) = 1/x e

$$g(x) = \begin{cases} \frac{1}{x} & \text{se } x > 0\\ 1 + \frac{1}{x} & \text{se } x < 0 \end{cases}$$

- Mostre que f'(x) = g'(x) para todo x em seus domínios. Podemos concluir a partir do Corolário 7 que f g é constante?
- 32. Use o método do Exemplo 6 para demonstrar a identidade

$$2 \operatorname{sen}^{-1} x = \cos^{-1} (1 - 2x^2), \quad x \ge 0.$$

33. Demonstre a identidade.

$$\arcsin \frac{x-1}{x+1} = 2 \arctan \sqrt{x} - \frac{\pi}{2}$$

- (34) Ás 14 h da tarde o velocímetro do carro mostra 50 km/h. Às 14 h 10, ele mostra 65 km/h. Prove que em algum momento entre 14 h e 14 h 10 a aceleração era exatamente de 90 km/h².
- Dois corredores iniciam uma corrida no mesmo instante e terminam empatados. Prove que em algum momento durante a corrida, eles tinham a mesma velocidade. [Dica: Considere f(t) = g(t) h(t), onde $g \in h$ são as duas posições dos corredores.]
- **36.** Um número a é chamado **ponto fixo** de uma função f se f(a) = a. Demonstre que se $f'(x) \neq 1$ para todos os números reais x, então f tem no máximo um ponto fixo.

Como as Derivadas Afetam a Forma de um Gráfico

FIGURA 1

Vamos abreviar o nome deste teste para Teste C/D.

Muitas das aplicações do cálculo dependem de nossa habilidade para deduzir fatos sobre uma função f a partir de informações relativas a suas derivadas. Como f'(x) representa a inclinação da curva y = f(x) no ponto (x, f(x)), ela nos informa para qual direção a curva segue em cada ponto. Assim, é razoável esperar que informações sobre f'(x) nos forneçam informações sobre f(x).

\bigcirc 0 que f' diz sobre f?

Para ver como a derivada de f pode nos dizer onde uma função é crescente ou decrescente, observe a Figura 1. (As funções crescentes e decrescentes foram definidas na Seção 1.1.) Entre A e B e entre C e D, as retas tangentes têm inclinação positiva e, portanto, f'(x) > 0. Entre B e C, as retas tangentes têm inclinação negativa e, portanto, f'(x) < 0. Assim, parece que f cresce quando f'(x) é positiva e decresce quando f'(x) é negativa. Para demonstrar que isso é sempre válido, vamos usar o Teorema do Valor Médio.

Teste Crescente/Decrescente

- (a) Se f'(x) > 0 em um intervalo, então f é crescente nele.
- (b) Se f'(x) < 0 em um intervalo, então f é decrescente nele.

DEMONSTRAÇÃO

(a) Sejam x_1 e x_2 dois números quaisquer no intervalo com $x_1 < x_2$. De acordo com a definição de uma função crescente, temos de mostrar que $f(x_1) < f(x_2)$.

Como nos foi dado que f'(x) > 0, sabemos que f é derivável em $[x_1, x_2]$. Portanto, pelo Teorema do Valor Médio, existe um número c entre x_1 e x_2 tal que

 $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$

Agora f'(c) > 0, por hipótese, e $x_2 - x_1 > 0$, pois $x_1 < x_2$. Assim, o lado direito da Equação 1 é positivo e, portanto,

$$f(x_2) - f(x_1) > 0$$
 ou $f(x_1) < f(x_2)$

FIGURA 13

Exercícios 4.3

- 1-2 Usar o gráfico dado de f para encontrar o seguinte:
 - (a) Os intervalos abertos nos quais f é crescente.
 - (b) Os intervalos abertos nos quais f é decrescente.
 - (c) Os intervalos abertos nos quais f é côncava para cima.
 - (d) Os intervalos abertos nos quais f é côncava para baixo.
 - (e) As coordenadas dos pontos de inflexão.

- **3.** Suponha que lhe foi dada uma fórmula para uma função f.
 - (a) Como você determina onde f é crescente ou decrescente?
 - (b) Como você determina onde o gráfico de f é côncavo para cima ou para baixo?
 - (c) Como você localiza os pontos de inflexão?
- 4. (a) Enuncie o Teste da Primeira Derivada.
 - (b) Enuncie o Teste da Segunda Derivada. Em que circunstância ele é inconclusivo? O que você faz se ele falha?
- **5-6** O gráfico da *derivada f'* de uma função *f* está mostrado.
 - (a) Em quais intervalos f é crescente ou decrescente?
 - (b) Em que valores de x a função f tem um mínimo ou máximo local?

- 7. Em cada item, indique as coordenadas x dos pontos de inflexão de f. Dê razões para suas escolhas.
 - (a) Esta curva é o gráfico de f.
 - (b) Esta curva é o gráfico de f'.
 - (c) Esta curva é o gráfico de f".

- **8.** O gráfico da primeira derivada f' de uma função f está mostrado.
 - (a) Em que intervalos f está crescendo? Explique.
 - (b) Em que valores de x a função f tem um mínimo ou máximo local? Explique.
 - (c) Em que intervalos f é côncava para cima ou para baixo? Ex-
 - (d) Quais são as coordenadas dos pontos de inflexão de f? Por quê?

9-18

- (a) Encontre os intervalos nos quais f é crescente ou decrescente.
- (b) Encontre os valores máximo e mínimo locais de f.
- (c) Encontre os intervalos de concavidade e os pontos de inflexão.
- $(9) f(x) = 2x^3 + 3x^2 36x$
- **10.** $f(x) = 4x^3 + 3x^2 6x + 1$
- (1) $f(x) = x^4 2x^2 + 3$ 12. $f(x) = \frac{x^2}{x^2 + 3}$
- $(3) f(x) = \operatorname{sen} x + \cos x, \ 0 \le x \le 2\pi$
- **14.** $f(x) = \cos^2 x 2 \sin x$, $0 \le x \le 2\pi$
- (15) $f(x) = e^{2x} + e^{-x}$ (16) $f(x) = x^2 \ln x$
- 17. $f(x) = x^2 x \ln x$
- **18.** $f(x) = \sqrt{x} e^{-x}$

19-21 Encontre os valores máximo e mínimo locais de fusando os Testes da Primeira e da Segunda Derivadas. Qual método você prefere?

É necessário o uso de uma calculadora gráfica ou computador

1. As Homework Hints estão disponíveis em www.stewartcalculus.com

SCA É necessário usar um sistema de computação algébrica

$$\mathbf{19} \ f(x) = x^5 - 5x + 3$$

20
$$f(x) = \frac{x^2}{x-1}$$

21.
$$f(x) = \sqrt{x} - \sqrt[4]{x}$$

- **22.** (a) Encontre os números críticos de $f(x) = x^4(x-1)^3$.
 - (b) O que o Teste da Segunda Derivada mostra para você sobre o comportamento de f nesses números críticos?
 - (c) O que mostra o Teste da Primeira Derivada?
- **23.** Suponha que f'' seja contínua em $(-\infty, \infty)$.
 - (a) Se f'(2) = 0 e f''(2) = -5, o que podemos dizer sobre f?
 - (b) Se f'(6) = 0 e f'''(6) = 0, o que podemos dizer sobre f?
- 24-29 Esboce o gráfico de uma função que satisfaça a todas as condições dadas.

24. Assíntota vertical
$$x = 0$$
, $f'(x) > 0$ se $x < -2$, $f'(x) < 0$ se $x > -2$ ($x \ne 0$), $f''(x) < 0$ se $x < 0$, $f''(x) > 0$ se $x < 0$

$$(25) f'(0) = f'(2) = f'(4) = 0,$$

$$f'(x) > 0$$
 se $x < 0$ ou $2 < x < 4$,

$$f'(x) < 0$$
 se $0 < x < 2$ ou $x > 4$,

$$f''(x) > 0$$
 se $1 < x < 3$, $f''(x) < 0$ se $x < 1$ ou $x > 3$

26.
$$f'(1) = f'(-1) = 0$$
, $f'(x) < 0$ se $|x| < 1$,

$$f'(x) > 0$$
 se $1 < |x| < 2$, $f'(x) = -1$ se $|x| > 2$,

$$f''(x) < 0$$
 se $-2 < x < 0$, ponto de inflexão $(0, 1)$

27.
$$f'(x) > 0$$
 se $|x| < 2$, $f'(x) < 0$ se $|x| > 2$,

$$f'(-2) = 0$$
, $\lim_{x \to 0} |f'(x)| = \infty$, $f''(x) > 0$ se $x \ne 2$

28.
$$f'(x) > 0$$
 se $|x| < 2$, $f'(x) < 0$ se $|x| > 2$,

$$f'(2) = 0$$
, $\lim f(x) = 1$, $f(-x) = -f(x)$,

$$f''(x) < 0 \text{ se } 0 < x < 3, \quad f''(x) > 0 \text{ se } x > 3$$

29.
$$f'(x) < 0$$
 e $f''(x) < 0$ para todo x

- **30.** Suponha que f(3) = 2, $f'(3) = \frac{1}{2} e f'(x) > 0 e f''(x) < 0$ para todo x.
 - (a) Esboce um gráfico possível de f.
 - (b) Quantas soluções a equação f(x) = 0 tem? Por quê?
 - (c) É possível que $f'(2) = \frac{1}{3}$? Por quê?
- 31–32 O gráfico da derivada f' de uma função contínua f está mostrado.
 - (a) Em que intervalos f está crescendo? E decrescendo?
 - (b) Em que valores de x a função f tem um máximo local? E no mínimo local?
 - (c) Em que intervalos f é côncava para cima? E côncava para baixo?
 - (d) Diga as coordenadas x dos pontos de inflexão.
 - (e) Supondo que f(0) = 0, esboce o gráfico de f.

32.

33-44

- (a) Encontre os intervalos em que a função é crescente ou de-
- (b) Encontre os valores máximos ou mínimos locais.
- (c) Encontre os intervalos de concavidade e os pontos de inflexão.
- (d) Use as informações das partes (a)-(c) para esboçar o gráfico. Verifique seu trabalho com uma ferramenta gráfica, se você tiver uma.

$$\mathbf{33} \ f(x) = 2x^3 - 3x^2 - 12x$$

34.
$$f(x) = 2 + 3x - x^3$$

35.
$$f(x) = 2 + 2x^2 - x^4$$
 36. $g(x) = 200 + 8x^3 + x^4$

36.
$$q(x) = 200 + 8x^3 + x^4$$

37.
$$h(x) = (x+1)^5 - 5x - 2$$
 38. $h(x) = 5x^3 - 3x^5$

38.
$$h(x) = 5x^3 - 3x^3$$

$$F(x) = x\sqrt{6-x}$$

40.
$$G(x) = 5x^{2/3} - 2x^{5/3}$$

41.
$$C(x) = x^{1/3}(x+4)$$

42.
$$f(x) = \ln(x^4 + 27)$$

43.
$$f(\theta) = 2 \cos \theta + \cos^2 \theta$$
, $0 \le \theta \le 2\pi$

44.
$$S(x) = x - \sin x$$
, $0 \le x \le 4\pi$

45-52

- (a) Encontre as assíntotas verticais e horizontais.
- (b) Encontre os intervalos nos quais a função é crescente ou decrescente.
- (c) Encontre os valores máximos e mínimos locais.
- (d) Encontre os intervalos de concavidade e os pontos de inflexão.
- (e) Use a informação das partes (a)-(d) para esboçar o gráfico de f.

45.
$$f(x) = 1 + \frac{1}{x} - \frac{1}{x^2}$$
 46. $f(x) = \frac{x^2 - 4}{x^2 + 4}$

46
$$f(x) = \frac{x^2 - 4}{x^2 + 4}$$

47.
$$f(x) = \sqrt{x^2 + 1} - x$$

48.
$$f(x) = \frac{e^x}{1 - e^x}$$

49
$$f(x) = e^{-x^2}$$

50.
$$f(x) = x - \frac{1}{6}x^2 - \frac{2}{3}\ln x$$

$$\mathbf{(51)} f(x) = \ln(1 - \ln x)$$

52.
$$f(x) = e^{\arctan x}$$

- **53.** Suponha que a derivada da função f seja $f'(x) = (x + 1)^2(x - 3)^5(x - 6)^4$. Em qual intervalo f está
- 54. Use os métodos desta seção para esboçar a curva $y = x^3 - 3a^2x + 2a^3$, onde a é uma constante positiva. O que os membros desta família de curvas têm em comum? Como eles diferem entre si?

₹ 55–56

- (a) Use um gráfico de f para estimar os valores máximo e mínimo. Então, encontre os valores exatos.
- (b) Estime o valor de x em que f cresce mais rapidamente. Então, encontre o valor exato.

Exercícios

1-4 Dado que

$$\lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} g(x) = 0 \quad \lim_{x \to a} h(x) = 1$$
$$\lim_{x \to a} p(x) = \infty \quad \lim_{x \to a} q(x) = \infty$$

quais dos limites a seguir são formas indeterminadas? Para aqueles que não são formas indeterminadas, calcule o limite quando possível.

- 1. (a) $\lim_{x \to a} \frac{f(x)}{g(x)}$ (b) $\lim_{x \to a} \frac{f(x)}{p(x)}$
- (c) $\lim_{x \to a} \frac{h(x)}{p(x)}$
- (d) $\lim_{x \to a} \frac{p(x)}{f(x)}$ (e) $\lim_{x \to a} \frac{p(x)}{g(x)}$
- **2.** (a) $\lim_{x \to a} [f(x)p(x)]$ (b) $\lim_{x \to a} [h(x)p(x)]$
 - (c) $\lim [p(x)q(x)]$
- **3.** (a) $\lim [f(x) p(x)]$
- (b) $\lim [p(x) q(x)]$
- (c) $\lim_{x \to a} [p(x) + q(x)]$
- **4.** (a) $\lim_{x \to a} [f(x)]^{g(x)}$ (b) $\lim_{x \to a} [f(x)]^{p(x)}$ (c) $\lim_{x \to a} [h(x)]^{p(x)}$

- (d) $\lim_{x \to a} [p(x)]^{f(x)}$ (e) $\lim_{x \to a} [p(x)]^{q(x)}$ (f) $\lim_{x \to a} \sqrt[q(x)]{p(x)}$
- 5-6 Use os gráficos de f e g e suas retas tangentes em (2,0) para en- $\operatorname{contrar} \lim_{x \to 2} \frac{f(x)}{g(x)}$

- 7-66 Encontre o limite. Use a Regra de l'Hôspital quando for apropriado. Se houver um método mais elementar, considere utilizá-lo. Se a Regra de l'Hôspital não se aplicar, explique o porquê.
- 7. $\lim_{x \to -1} \frac{x^2 1}{x + 1}$
- **8.** $\lim_{x \to 1} \frac{x^a 1}{x^b 1}$
- $\lim_{x \to 1} \frac{x^3 2x^2 + 1}{x^3 1}$
- **10.** $\lim_{x \to 1/2} \frac{6x^2 + 5x 4}{4x^2 + 16x 9}$
- $\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 \sin x}$
- **12.** $\lim_{x \to 0} \frac{\sin 4x}{\tan 5x}$
- $\lim_{t \to 0} \frac{e^{2t} 1}{\text{sen } t}$
- **14.** $\lim_{x\to 0} \frac{x^2}{1-\cos x}$
- **15.** $\lim_{\theta \to \pi/2} \frac{1 \sin \theta}{1 + \cos 2\theta}$
- **16.** $\lim_{\theta \to \pi/2} \frac{1 \sin \theta}{\operatorname{cossec} \theta}$

- $\lim_{x\to\infty}\frac{\ln x}{\sqrt{x}}$
- **19.** $\lim_{x \to 0^{+}} \frac{\ln x}{x}$
- $(21) \lim_{t \to 1} \frac{t^8 1}{t^5 1}$
- $\lim_{x \to 0} \frac{\sqrt{1 + 2x} \sqrt{1 4x}}{x}$
- $\lim_{x \to 0} \frac{e^x 1 x}{x^2}$
- 27. $\lim_{x\to 0} \frac{\tanh x}{\tan x}$
- **29.** $\lim_{x\to 0} \frac{\sin^{-1}x}{x}$
- $\lim_{x \to 0} \frac{x3^x}{3^x 1}$
- $\lim_{x \to 0} \frac{x + \sin x}{x + \cos x}$
- $\lim_{x \to 1} \frac{1 x + \ln x}{1 + \cos \pi x}$
- **37.** $\lim_{x \to 1} \frac{x^a ax + a 1}{(x 1)^2}$
- **39.** $\lim_{x\to 0} \frac{\cos x 1 + \frac{1}{2}x^2}{x^4}$
- 41 $\lim x \operatorname{sen}(\pi/x)$
- 43) $\lim \cot 2x \operatorname{sen} 6x$
- 45 $\lim x^3 e^{-x^2}$
- **47.** $\lim_{x \to 0} \ln x \, \text{tg}(\pi x/2)$
- $\lim_{x \to 1} \left(\frac{x}{x-1} \frac{1}{\ln x} \right)$
- **(51)** $\lim_{x \to 0^+} \left(\frac{1}{x} \frac{1}{e^x 1} \right)$ **52.** $\lim_{x \to 0} \left(\cot x \frac{1}{x} \right)$
- $\mathbf{53} \lim (x \ln x)$
- **54.** $\lim_{x \to 1^+} \left[\ln(x^7 1) \ln(x^5 1) \right]$
- **(55)** $\lim_{x \to \infty} x^{\sqrt{x}}$
- **56.** $\lim_{x \to 0^+} (\text{tg } 2x)^x$

 $18. \lim_{x \to 1} \frac{\ln x}{\sin \pi x}$

20. $\lim_{x\to\infty}\frac{\ln\ln x}{x}$

22. $\lim_{t\to 0} \frac{8^t - 5^t}{t}$

24. $\lim_{u\to\infty} \frac{e^{u/10}}{u^3}$

26. $\lim_{x \to 0} \frac{\sinh x - x}{x^3}$

28. $\lim_{x\to 0} \frac{x - \sin x}{x - \tan x}$

30. $\lim_{x \to \infty} \frac{(\ln x)^2}{x}$

34. $\lim_{x\to 0} \frac{x}{tg^{-1}(4x)}$

36. $\lim_{x\to 0^+} \frac{x^x-1}{\ln x+x-1}$

38. $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$

40. $\lim_{x \to a^+} \frac{\cos x \ln(x-a)}{\ln(e^x - e^a)}$

42. $\lim \sqrt{x} e^{-x}$

44. $\lim_{x \to 0} \sin x \ln x$

46. $\lim x \operatorname{tg}(1/x)$

48. $\lim_{x \to (\pi/2)^{-}} \cos x \sec 5x$

50. $\lim_{x \to 0} (\operatorname{cossec} x - \operatorname{cotg} x)$

32. $\lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2}$

- **57.** $\lim_{x\to 0} (1-2x)^{1/x}$
- **58.** $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx}$
- $\lim_{x \to 1/(1-x)} x^{1/(1-x)}$
- **60.** $\lim x^{(\ln 2)/(1 + \ln x)}$
- **61** $\lim x^{1/x}$
- **62.** $\lim (e^x + x)^{1/x}$

 $y = \frac{x^3}{x^2 + 1} \quad \mathbf{G}. \qquad f''(x) = \frac{(4x^3 + 6x)(x^2 + 1)^2 - (x^4 + 3x^2) \cdot 2(x^2 + 1)2x}{(x^2 + 1)^4} = \frac{2x(3 - x^2)}{(x^2 + 1)^3}$

Visto que f''(x) = 0 quando x = 0 ou $x = \pm \sqrt{3}$, montamos a seguinte tabela:

Intervalo	x	$3 - x^2$	$(x^2+1)^3$	f''(x)	f
$x < -\sqrt{3}$	_	_	+	+	CC em $\left(-\infty, -\sqrt{3}\right)$
$-\sqrt{3} < x < 0$	_	+	+	_	CB em $\left(-\sqrt{3},0\right)$
$0 < x < \sqrt{3}$	+	+	+	+	CC em $(0, \sqrt{3})$
$x > \sqrt{3}$	+	_	+	_	CB em $(\sqrt{3}, \infty)$

FIGURA 13

Os pontos de inflexão são $\left(-\sqrt{3}, -\frac{3}{4}\sqrt{3}\right)$, (0, 0) e $\left(\sqrt{3}, \frac{3}{4}\sqrt{3}\right)$.

H. O gráfico de f está esboçado na Figura 13.

Exercícios

1-54 Use o roteiro desta seção para esboçar a curva.

1.
$$y = x^3 + x$$

2.
$$y = x^3 + 6x^2 + 9x$$

3
$$y = 2 - 15x + 9x^2 - x^3$$
 4. $y = 8x^2 - x^4$

4.
$$v = 8x^2 - x^4$$

6
$$y = x(x-4)^3$$

6.
$$y = x^5 - 5x$$

$$y = x(x - 4)^{3}$$
7. $y = \frac{1}{5}x^{5} - \frac{8}{3}x^{3} + 16x$

8.
$$y = (4 - x^2)^5$$

$$9 y = \frac{x}{x-1}$$

10.
$$y = \frac{x^2 - 4}{x^2 - 2x}$$

11.
$$y = \frac{x - x^2}{2 - 3x + x^2}$$

12.
$$y = \frac{x}{x^2 - 9}$$

13
$$y = \frac{1}{x^2 - 9}$$

14.
$$y = \frac{x^2}{x^2 + 9}$$

15
$$y = \frac{x}{x^2 + 9}$$

16.
$$y = 1 + \frac{1}{r} + \frac{1}{r^2}$$

17.
$$y = \frac{x-1}{x^2}$$

18.
$$y = \frac{x}{x^3 - 1}$$

$$19 \ y = \frac{x^2}{x^2 + 3}$$

20.
$$y = \frac{x^3}{x-2}$$

21.
$$y = (x - 3)\sqrt{x}$$

22.
$$y = 2\sqrt{x} - x$$

3
$$y = \sqrt{x^2 + x - 2}$$

24.
$$y = \sqrt{x^2 + x} - x$$

25.
$$y = \frac{x}{\sqrt{x^2 + 1}}$$

26.
$$y = x\sqrt{2 - x^2}$$

27.
$$y = \frac{\sqrt{1 - x^2}}{x}$$

28.
$$y = \frac{x}{\sqrt{x^2 - 1}}$$

29.
$$y = x - 3x^{1/3}$$

$$30. \ y = x^{5/3} - 5x^{2/3}$$

$$\sqrt{31} \ y = \sqrt[3]{x^2 - 1}$$

32.
$$y = \sqrt[3]{x^3 + 1}$$

33.
$$y = \sin^3 x$$

34.
$$y = x + \cos x$$

35.
$$y = x \operatorname{tg} x$$
, $-\pi/2 < x < \pi/2$

36.
$$y = 2x - \operatorname{tg} x$$
, $-\pi/2 < x < \pi/2$

37.
$$y = \frac{1}{2}x - \sin x$$
, $0 < x < 3\pi$

38
$$y = \sec x + \tan x$$
 $0 < x < \pi/$

38.
$$y = \sec x + \tan x$$
, $0 < x < \pi/2$
39. $y = \frac{\sin x}{1 + \cos x}$

40.
$$y = \frac{\sin x}{2 + \cos x}$$

41.
$$y = arctg(e^x)$$

42
$$v = (1 - x)e^x$$

41.
$$y = \operatorname{arctg}(e^x)$$

43. $y = 1/(1 + e^{-x})$

44.
$$y = e^{-x} \sin x$$
, $0 \le x \le 2\pi$

50. $y = \ln(x^2 - 3x + 2)$

$$\mathbf{45} \ y = x - \ln x$$

46.
$$y = e^{2x} - e^x$$

47.
$$y = (1 + e^x)^{-2}$$

48.
$$y = e^x/x^2$$

49.
$$y = \ln(\sin x)$$

51. $y = xe^{-1/x}$

52.
$$y = \frac{\ln x}{x^2}$$

54.
$$y = tg^{-1} \left(\frac{x-1}{x+1} \right)$$

55. Na teoria da relatividade, a massa de uma partícula é

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

onde m_0 é a massa de repouso da partícula, m é a massa quando a partícula se move com velocidade v em relação ao observador e c é a velocidade da luz. Esboce o gráfico de m como uma fun-

56. Na teoria da relatividade, a energia de uma partícula é

$$E = \sqrt{m_0^2 c^4 + h^2 c^2 / \lambda^2}$$

em que m_0 é a massa de repouso da partícula, λ é seu comprimento de onda e h é a constante de Planck. Esboce o gráfico de E como uma função de λ. O que o gráfico mostra sobre a força?

57. Um modelo para dispersão de um rumor é dado pela equação

$$p(t) = \frac{1}{1 + ae^{-kt}}$$

onde p(t) é a proporção da população que já ouviu o boato no tempo t e a e k são constantes positivas.

- (a) Quando a metade da população terá ouvido um rumor?
- (b) Quando ocorre a maior taxa de dispersão do boato?
- (c) Esboce o gráfico de p.