Алгоритм восстановления невыпуклой триангулированной поверхности по облаку точек

Лютенков Артем Вадимович, 3 курс

Научный руководитель: Преображенская М.М.

В данной курсовой работе рассматривается задача построения поверхности по заданному множеству точек S в \mathbb{R}^2 или \mathbb{R}^3 . Используются такие понятия, как триангуляция Делоне, клетка Вороного, симплициальный помплекс, α -комплекс, α -shapes; алгоритм Эдельсбруннера построения поверхности по облаку точек [1]. Кратко опишем алгоритм Эдельсбруннера:

- 1. Вычислить триангуляцию Делоне DT(S), зная, что граница α -shape содержится в ней.
- 2. Определяется α -комплекс $C_{\alpha}(S)$. Пусть σ_{T} радиус описанной окружности (сферы) Δ_{T} и μ_{T} центр описанной окружности (сферы) Δ_{T} , α параметр. Для определения $C_{\alpha}(S)$ проверим все симплексы Δ_{T} в DT(S): если σ_{T} -шар вокруг μ_{T} пуст и $\sigma_{T} < \alpha$, то Δ_{T} считается членом $C_{\alpha}(S)$ вместе со всеми его гранями.
- 3. Результат: все d-симплексы $C_{\alpha}(S)$ составляют внутренность S_{α} . Все симплексы на границе ∂C_{α} составляют границу α -shape ∂S_{α} .

Также в работе рассмотрен вопрос об интеграции функционала, предоставляемого пакетами (alphashapes, alphahull, geometry) языка программирования R, в программу для построения 3D-моделей и стереометрических чертежей 3D-SchoolEdit. Для интеграции в 3D-SchoolEdit будет использоваться RCaller — библиотека для вызова R кода из Java. RCaller преобразует структуры данных в R код, отправляет их внешнему R процессу, возвращает сгенерированные результаты XML формате. Структура XML анализируется и возвращает значения доступные непосредственно в Java. Таким образом все необходимы вычисления производятя с помощью пакетов языка R и в дальнейшем доступны для работы с ними в 3D-SchoolEdit.

Список литературы

1. H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43–72, January 1994.