Introduction to NoSQL Databases

Scaling, Traditional Relational DB

Vertical Scaling, scaling UP

Scaling, NoSQL Era

Scaling, NoSQL Era

Data Architecture

- No standard solution that fits all
- Business and data defines the architecture
- Multiple databases, different types depending on the characteristics of each data subset

CAP

CAP Theorem

- It is impossible for a distributed processing system to simultaneously provide all three of the following guarantees
 - **Consistency** A read is guaranteed to return the most recent write for a given client.
 - Availability A non-failing node will return a reasonable response within a reasonable amount of time (no error or timeout).
 - **Partition Tolerance** The system will continue to function when network partitions occur.

CAP Theorem

- CA Single site cluster, therefore all nodes are always in contact. When a partition occurs, the system blocks.
- CP Some data may not be accessible, but the rest is still consistent/accurate.
- AP System is still available under partitioning, but some of the data returned may be inaccurate.

AP – Lack of (Immediate) Consistency

AP – Eventual Consistency

ATMs

Why Consistency Matters

Why Consistency Matters

CA – Lack of Partition Tolerance

Consistency + Partitions?

Consistency + Partitions?

CP: Loss of Availability

CAP Theorem

CAP provides the basic requirements for a distributed system to follow 2 of the 3 requirements.

In theoretically it is **impossible** to fulfill all 3 requirements.

Therefore all the current NoSQL database follow the different combinations of the C, A, P from the CAP theorem.

NoSQL vs. SQL

- NoSQL
 - Availability first (Consistency second)
- SQL (Traditional RDBS databases)
 - Consistency first (Availability second)

What is HBase

- Distributed, non-relational database
 - Columnar, schema-free data model
 - NoSQL on top of Hadoop
- Large scale
 - Linear scalability
 - Billions of rows X millions of columns
 - Many deployments with 1000+ nodes, PBs of data
- Low latency
 - Real-time random read/writes
- Open Source
 - Modeled after Google's BigTable
 - Started in 2006

Row Store

Table

Row 1

Row 2

Row 3

Row 4

Country	Product Sales	
India	Chocolate	1000
India	Ice-cream	2000
Germany	Chocolate	4000
US	Noodle	500

Pros:

- Fast record query
- Relationships
- Less redundancy
- Single line insert

Cons:

- Thin tables
- Getting a single column value, retrieves the entire record
 - Terrible with wide tables
- Aggregations must sift through all columns for each row

Columnar

Table

Row 1

Row 2

Row 3

Row 4

Country	Product	Sales
India	Chocolate	1000
India	Ice-cream	2000
Germany	Chocolate	4000
US	Noodle	500

Pros

- High speed aggregations
- Compression
- Wide tables are now possible (billions of columns, instead of hundreds)
- High speed snap shot retrieval
- Easily Distributable

Cons

- Bad for record retrieval
- Terrible at relationships
- M line insert

Data Model

- Scale-out architecture
 - Automatic sharding of tables
 - Automatic failover
 - Strong consistency for reads and writes
- APIs
 - Get/Put
 - Scan
 - Coprocessors

Performance Features

- Column Families
- In-memory caching
- High throughput streaming writes

Row Key	Customer		Sales	
Customer Id	Name	City	Product	Amount
101	John White	Los Angeles, CA	Chairs	\$400.00
102	Jane Brown	Atlanta, GA	Lamps	\$200.00
103	Bill Green	Pittsburg, PA	Desk	\$500.00
104	Jack Black	St. Louis, MO	Bed	\$1600.00

Sharding

- Holding rows of database on different partitions
- Same table divided onto different servers, even different geographies
- Reduces index size

Sharding

- More reliance on interconnection between servers
- Increased latency in querying when more than one shard must be searched
 - Some searches are fast, others are slow
- Often no guarantees about cross shard consistency

Notable Capabilities

- Integration features
 - Integration with Hadoop MapReduce, Hive, Tez, Spark (hardware pending)
 - Bulk import of large amounts of data
- Client APIs
 - Java, REST, python, node.js, php, .NET

Use case #1: key value store

- Key value store
 - Message systems
 - Content management systems
- Examples
 - Facebook Messages
 - Twitter-like messages
 - Webtable web crawler/indexer

Use case #1: key value store

unleash the data scientist in you

Use case #2: sensor data

- Sensor data
 - Social analytics
 - Time series databases
 - Interactive dashboards with trends, counters, etc.
 - Audit log systems

Use case #2: sensor data

Questions?

