Assignment-3

Sarvajith-AI24BTECH11008

- 16: A natural number has prime factorization given by $n = 2^x 3^y 5^z$, where y and z are such that y + z = 5 and $y^{-1} + z^{-1} = 5/6$, y > z. Then the number of odd divisors of n, including 1, is:
 - a. 11

c. 12

b. 6x

- d. 6
- 17: Let $f(x) = \sin^{-1}(x)$ and $g(x) = \frac{x^2 x 2}{2x^2 x 6}$. If $g(2) = \lim_{x \to 2} g(x)$, then the domain of the function fog is:
 - a. $(-\infty, -2] \cup [-4/3, \infty]$ c. $(-\infty, -2] \cup [-1, \infty]$
 - b. $(-\infty, -1] \cup [2, \infty]$
- d. $(-\infty, -2] \cup [-3/2, \infty]$
- 18: If the mirror image of the point (1, 3, 5) with respect to the plane 4x - 5y + 2z = 8 is (α, β, γ) , then $5(\alpha + \beta + \gamma)$:
 - a. 47

c. 43

b. 39

- d. 41
- 19: Let $f(x) = \int_0^x e^t f(t) dt + e^x$ be a differentiable function for all $x \in \mathbf{R}$. Then f(x) equals:
 - a. $2e^{e^x-1} 1$ b. e^{e^x-1}
- c. $2e^{e^x} 1$ d. $e^{e^x} 1$

- 20: The triangle of the maximum area that can be inscribed in a given circle of radius 'r' is:
 - a. A right-angle triangle having two of its sides of length 2r and r.
 - b. An equilateral triangle of height 2r/3.
 - c. Isosceles triangle with base equal to 2r.
 - d. An equilateral triangle having each of length $\sqrt{3}r$

I. Section-B

- 1: The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is
- 2: Let α and β be two real numbers such that $\alpha + \beta = 1$ and $\alpha\beta = -1$. Let $P_n = \alpha^n + \beta^n$,

- $P_{n-1} = 11$ and $P_{n+1} = 29$ for some integer n = 1. Then the value of P_n^2 is
- 3: Let X_1, X_2, \dots, X_{18} be eighteen observation such that $\sum_{i=1}^{18} (X_i - \alpha) = 36$ and $\sum_{i=1}^{18} (X_i - \beta)^2 = 90$, where α and β are distinct real numbers. If the standard deviation of these observations is 1, then the value of $|\alpha - \beta|$ is
- 4: In $I_{m,n} = \int_0^1 x^{m-1} (1-x)^{n-1} dx$, for $m, n \ge 1$ and $\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \alpha I_{m,n}, \alpha \in R$, then α is
- 5: Let L be a common tangent line to the curves $4x^2 + 9y^2 = 36$ and $(2x)^2 + (2y)^2 = 31$. Then the square of the slope of the line L is
- 6: If the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}$ satisfies the equation $A^{20} + \alpha A^{19} + \beta A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ for some real

numbers α and β , then $\beta - \alpha$ is equal to?

- 7: If the arithmetic mean and the geometric mean of the p^{th} and q^{th} terms of the sequence -16,8,-4,2,... satisfy the equation $4x^2 - 9x + 5 = 0$, then p+q is equal to?
- 8: Let the normals at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and $(4, -2\sqrt{2})$, and given that $a - 2\sqrt{2}b = 3$, then $(a^2 + b^2 + ab)$ is equal to?
- 9: Let \mathbf{Z} be those complex number satisfies which |z + 5| \leq and $z(i+1) + \overline{z}(1-i) \ge -10, i = \sqrt{-1}$. If the maximum value of $|z+1|^2$ is $\alpha + \beta \sqrt{2}$, then the value of $\alpha + \beta$ is?

10: Let a be an integer such that all the real roots of the polynomial $2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x + 10$ lie in the interval (a, a + 1), then |a| is equal to?