Kernel methods

Eder Arley León Gómez

Universidad Nacional de Colombia

October 4, 2023

Schedule

- 1 Review
- 2 Reproduction Kernel Hilbert Spaces
- 3 Reproduction Kernel Kreĭm Spaces
- 4 Random Fourier Features

Kernel methods

Review

Review •0000

Motivation

$$\{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$$
, where $\mathbf{x}_n \in \mathbf{X}$ and $\mathbf{y}_n \in \mathbf{y}$

A linear model finds a hyperplane ${\bf W}$ such that the output is:

$$f(\mathbf{X}) = \mathbf{W}^{\top} \mathbf{X} \tag{1}$$

Basic definitions

Norm

Let \mathcal{H} be a vector space over \mathbb{R} . A function $||.||_{\mathcal{H}}: \mathcal{H} \to [0, \infty)$ is sad to be a norm on \mathbb{R} if:

- $||\mathbf{x}||_{\mathcal{H}} = 0$ if and only if $\mathbf{x} = 0$
- $||\lambda \mathbf{x}||_{\mathcal{H}} = |\alpha| ||\mathbf{x}||_{\mathcal{H}}, \ \forall \ \lambda \in R, \ \forall \ \mathbf{x} \in \mathbb{R}$
- $\parallel ||\mathbf{x}+\mathbf{y}||_{\mathcal{H}} \leq ||\mathbf{x}||_{\mathcal{H}} + ||\mathbf{y}||_{\mathcal{H}}, \; \forall \; \mathbf{x}, \mathbf{y} \in \mathcal{H}$

Cauchy sequence

A sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ of real number is said to be Cauchy sequence if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if $m, n \geq N ||\mathbf{x}_m - \mathbf{x}_n||_{\mathcal{H}} < \epsilon$

Banach space

Let \mathcal{H} be a vector space equipped with a norm ||.||. We say that \mathcal{H} is Bananch space with respect to ||.|| if every Cauchy sequence in \mathcal{H} converged to a vector $\mathbf{x} \in \mathcal{H}$

Eder Arley León Gómez

Inner product space

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle .,. \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is said to be an inner product on \mathcal{H} if:

Bilinearity

$$\langle \lambda_1 \mathbf{x} + \lambda_2 \mathbf{y}, \mathbf{z} \rangle_{\mathcal{H}} = \lambda_1 \langle \mathbf{x}, \mathbf{z} \rangle_{\mathcal{H}} + \lambda_2 \langle \mathbf{y}, \mathbf{z} \rangle_{\mathcal{H}}$$

Symmetry

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{H}} = \langle \mathbf{y}, \mathbf{x} \rangle_{\mathcal{H}}$$

Positive semi-definiteness

$$\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}} \geq 0$$
 and $\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}} = 0$ if and only if $\mathbf{x} = 0$

Hilbert spaces

Hilbert space

Hilbert space is a complete inner product space, i.e., it is a Banach space with an inner product.

Reproduction Kernel Hilbert Spaces

Hilbert space of all functions $f: \mathcal{X} \to \mathbb{R}$

The term "reproducing" denotes the characteristic of the RKHS, enabling it to accurately represent specific functions by means of its inner products

Eder Arley León Gómez

Reproduction Kernel Hilbert Spaces

Definition of RKHS I

Let \mathcal{X} be a set and \mathcal{H} a Hilbert space of all functions $f: \mathcal{X} \to \mathbb{R}$. For each element $\mathbf{x} \in \mathcal{X}$, the evaluation functional is a linear functional that evaluates each $f \in H$ at the point \mathbf{x} , written:

$$\mathcal{L}_x: \mathcal{H} \to \mathbb{R}$$
, where $\mathcal{L}_x(f) = f(\mathbf{x})$ for all $f \in \mathcal{H}$

We say that \mathcal{H} is a RKHS if, for all $\mathbf{x} \in \mathcal{X}$, \mathcal{L}_x is continuous at every $f \in \mathcal{H}$.

Corollario: Reproducing property

$$\mathcal{L}_x(f) = f(\mathbf{x}) = \langle f, \kappa_x \rangle_{\mathcal{U}}$$

Definition of RKHS II

$$\mathcal{L}_{x}(f) = f(\mathbf{x}) = \langle f, \kappa_{x} \rangle_{\mathcal{H}}$$

$$\mathcal{L}_{z}(g) = g(\mathbf{z}) = \langle g, \kappa_{z} \rangle_{\mathcal{H}}$$

$$\mathcal{L}_{x}(f) = f(\mathbf{x}) = \langle f, \kappa_{x} \rangle_{\mathcal{H}}$$

$$\mathcal{L}_{x}(g) = g(\mathbf{z}) = \langle g, \kappa_{z} \rangle_{\mathcal{H}}$$

Kernel reproduction

Let \mathcal{H} be a Hilbert space of \mathcal{R} -valued functions defined on a non-empty \mathcal{X} . A funtions $\kappa: \mathcal{H} \times \mathcal{H} \to \mathcal{R}$ is called Reproduction Kernel of \mathcal{H} if it satisfies:

- $\forall \mathbf{x} \in \mathcal{X}, \ \kappa(., \mathbf{x}) \in \mathcal{H}$
- $\forall \mathbf{x} \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, \kappa(., \mathbf{x}) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property)

Eder Arley León Gómez

Kernel trick

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_{\mathcal{H}}$$

$$\mathbf{z}$$

$$\phi(\mathbf{x}, \mathbf{z})$$

$$\mathcal{X} \qquad \phi$$

$$\mathbf{z}$$

$$\phi(\mathbf{x}) \in \phi(\mathbf{z})$$

$$\mathcal{X} \times \mathcal{X} \qquad \phi$$

$$\psi(\mathbf{x}) \in \phi(\mathbf{z})$$

$$\mathcal{X} \times \mathcal{X} \qquad \psi$$

$$\psi(\mathbf{x}) \in \phi(\mathbf{z})$$

$$\mathcal{X} \times \mathcal{X} \qquad \psi$$

$$\psi(\mathbf{x}) \in \phi(\mathbf{z})$$

$$\mathcal{X} \times \mathcal{X} \qquad \psi$$

How to make comparisons?

Idea

$$\kappa(\mathbf{x}, \mathbf{c}) = (1 + \mathbf{x}^{\top} \mathbf{c}) ; \mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] , \mathbf{x} = [\mathbf{c}_1, \mathbf{c}_2]$$

$$\kappa(\mathbf{x}, \mathbf{c}) = \begin{pmatrix} 1 + (\mathbf{x}_1 & \mathbf{x}_2) \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix} \end{pmatrix}^2 = (1 + \mathbf{c}_1 \mathbf{x}_1 + \mathbf{c}_2 \mathbf{x}_2)^2$$

$$\kappa(\mathbf{x}, \mathbf{c}) = \mathbf{c}_1^2 \mathbf{x}_1^2 + \mathbf{c}_2^2 \mathbf{x}_2^2 + 2\mathbf{c}_1 \mathbf{x}_1 + 2\mathbf{c}_2 \mathbf{x}_2 + 2\mathbf{c}_1 \mathbf{c}_2 \mathbf{x}_1 \mathbf{x}_2 + 1$$

So.

$$\phi(\mathbf{x}) = [1, \mathbf{x}_1^2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2}\mathbf{x}_1, \sqrt{2}\mathbf{x}_2]^{\top}$$
$$\phi(\mathbf{c}) = [1, \mathbf{c}_1^2, \sqrt{2}\mathbf{c}_1\mathbf{c}_2, \mathbf{c}_2^2, \sqrt{2}\mathbf{c}_1, \sqrt{2}\mathbf{c}_2]^{\top}$$

Eder Arley León Gómez

UNAL

Kernel methods problem

Kernel trick

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle \tag{2}$$

Main idea

- Define a comparison function: $\mathbf{K}: \mathcal{X} \times \mathcal{X}$
- Represent a set of n data points $S = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ by the $n \times n$ matrix:

$$[\mathbf{K}]_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j) \tag{3}$$

Remarks

- K is always an $n \times n$ matrix, whatever the nature of data.
- Poor scalability with respect to the dataset size (n2 to compute and store K)

Positive-Definite Kernel Functions

■ Lineal Kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{y}$$

Polinomial Kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = (\gamma \cdot \mathbf{x}^{\top} \mathbf{y} + r)^d$$

Radial Basic Function Kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{||\mathbf{x} - \mathbf{y}||}{2\sigma^2}\right)$$

■ Sigmoid Kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = tanh(\alpha . \mathbf{x} \mathbf{y} + \beta)$$

■ Exponential Kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{||\mathbf{x} - \mathbf{y}||^2}{2\sigma^2}\right)$$

UNAL

Kernel methods

Reproduction Kernel Kreĭm Spaces

Motivation

The essence of kernel methods resides in their utilization of a **positive definite** linear function, which can be associated with the **inner product** of two vectors in the **RKHS**.

Problem

The inherent and extrinsic attributes of real-world data pose challenges for positive-definite kernel functions.

Kreĭn spaces I

Kreın space is a generalization of the notion of Hilbert spaces, where the key difference is the fact that the inner products are indefinite.

Inner product positive

$$\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}} > 0$$

Inner product negative

$$\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{H}} \leq 0$$

Definition ¹

Eder Arley León Gómez

An inner product space \mathcal{K} is a Kreı̆n space is there exit two Hilbert spaces \mathcal{H}_+ , \mathcal{H}_- such that

- All $\mathbf{x} \in \mathcal{K}$ can be decomposed into $\mathbf{x} = \mathbf{x}_+ + \mathbf{x}_-$, where $\mathbf{x}_+ \in \mathcal{H}_+$ and $\mathbf{x}_- \in \mathcal{H}_-$
- $\quad \blacksquare \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{K}, \ \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{K}} = \langle \mathbf{x}_+, \mathbf{y}_+ \rangle_{\mathcal{H}_+} \langle \mathbf{x}_-, \mathbf{y}_- \rangle_{\mathcal{H}_-}$

UNAL

Kernel methods

 $^{^1}$ Kreĭn space can be defined on $\mathbb R$ or $\mathbb C$

Kreĭn space II

Associated Hilbert Space

Let K be a Kreı̃n space with decomposition into Hilbert space \mathcal{H}_+ and \mathcal{H}_- . Then we denote by \overline{K} the associated Hilbert space defined by:

$$\overline{\mathcal{K}} = \mathcal{H}_+ + \mathcal{H}_-, \text{hence} \langle \mathbf{x}, \mathbf{y} \rangle_{\overline{\mathcal{K}}} = \langle \mathbf{x}_+, \mathbf{y}_+ \rangle_{\mathcal{H}_+} + \langle \mathbf{x}_-, \mathbf{y}_- \rangle_{\mathcal{H}_-}$$
 (4)

Likewise we can introduce the symbol \ominus to indicate that:

$$\mathcal{K} = \mathcal{H}_{+} \ominus \mathcal{H}_{-} \tag{5}$$

The decomposition $\mathcal{K} = \mathcal{H}_+ \ominus \mathcal{H}_-$ is called the fundamental decomposition of the Krein space \mathcal{K}

Definition of RKKS

A Kreın space K is a Reproducing Kreın Kernel Spaces (RKKS) if $K \subset \mathbb{R}^{\mathcal{X}}$ and the evaluation functional is continuous on K endowed with its strong topology

$$\mathcal{T}_x: \mathcal{K} \to \mathbb{R}$$
, where $\mathcal{T}_x(f) = f(\mathbf{x})$ for all $f \in \mathcal{K}$

Reproducing property

$$\mathcal{T}_x = f(\mathbf{x}) = \langle f, \kappa_x \rangle_{\mathcal{K}}$$

From Kreĭn spaces to Kernels

Propositions

Let K be an RKKS with $K = \mathcal{H}_+ \ominus \mathcal{H}_-$. Then:

- \mathcal{H}_+ and \mathcal{H}_- are RKHS (with kernels κ_+ and κ_-)
- There is a unique symmetric $\kappa(\mathbf{x}, \mathbf{y})$ with $\kappa(\mathbf{x}, .) \in \mathcal{K}$ such that for all $f \in \mathcal{K}$, $\langle f, \kappa(\mathbf{x}, .) \rangle_{\mathcal{K}} = f(\mathbf{x})$
- An indefinite kernel κ associated with a RKKS admits a positive decomposition $\kappa = \kappa_+ \kappa_-$, with two positive kernels κ_+ and κ_-

Associated RKHS of RKKS

Let $\mathcal K$ be a RKKS with thie direct orthogonal sum decomposition into two RKHSs $\mathcal H_+$ and $\mathcal H_-$. Then the associated RKHS $\mathcal K$ endowed by $\mathcal K$ is defined with the positive inner product

$$\langle f, g \rangle_{\mathcal{K}} = \langle f_+, g_+ \rangle_{\mathcal{H}_+} + \langle f_-, g_- \rangle_{\mathcal{H}_-}, \forall f, g \in \mathcal{K}$$
 (6)

Indefinite kernels

■ Epanechnikov kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = \left(1 - \frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma}\right)^p, \text{for} \frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma} \leqslant 1$$

Gaussian Combination

$$\kappa(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma_1}\right) + exp\left(-\frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma_2}\right) + exp\left(-\frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma_3}\right)$$

Multiquadric kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = \sqrt{\frac{||\mathbf{x} - \mathbf{y}||^2}{\sigma} + c^2}$$

■ Thin plate spline

$$\kappa(\mathbf{x},\mathbf{y}) = \frac{||\mathbf{x} - \mathbf{y}||^{2p}}{\sigma} In\left(\frac{||\mathbf{x} - \mathbf{y}||2}{\sigma}\right)$$

Eder Arley León Gómez

Fourier transform

Idea

Fourier Transform is a mathematical model which helps to transform the signals between two different domains

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kt + b_k \sin kt \right)$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt dt$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt$$

Remember

$$\langle f(x), g(x) \rangle = \int_a^b f(x)g(x)dx$$

$$||\cos kx||^2 = ||\sin kx||^2 = \pi$$

Wiener–Khinchin theorem

Power density

Power density refers to the amount of power in a signal per unit of bandwidth

$$S(f) = \lim_{T \to \infty} \frac{1}{T} \left| \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) exp\left(-j2\pi ft\right) dt \right|^{2}$$

Wiener-khintchine relationships

The spectral density (or power density) s(w) is definited as the Fourier transform of the correlation function, where:

$$S(w) = \int_{-\infty}^{\infty} R(\tau) \exp(-jw\tau) d\tau \qquad \qquad R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(w) \exp(jw\tau) dw$$

The sufficient condition for the validity of the above equation is:

$$\int_{-\infty}^{\infty} |R(\tau)d\tau| < \infty$$

The Wiener-Khinchin relationships are a part of the Wiener-Khinchin theorem, which states that $R(\tau)$ is a positive definite correlation function if $S(w) > 0 \forall w$

Main idea

Basic idea

Let's go back to a lower-dimensional representation, using random Fourier features

Approximate the inner product $\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_v$ with a random mapping $z: R^D \to R^R$ where D << R

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_v \approx z(\mathbf{x})^\top z(\mathbf{y})$$
 (7)

Where z(.) is a good projection of ϕ

Eder Arley León Gómez

Translation invariant kernel

A Kernel $\kappa: \mathcal{H} \times \mathcal{H} \to \mathcal{R}$ is called translation invariant, if it only depends on the difference between its argument:

$$\forall_{\mathbf{x},\mathbf{y}} \in Z, \, \kappa(\mathbf{x},\mathbf{y}) = \varphi(\mathbf{x} - \mathbf{y})$$

For some $\varphi : \mathcal{H} \to \mathcal{R}$. Such a function φ is called positive definite if the corresponding kernel φ is positive definite.

Random Fourier Features

"Each component of the feature map $z(\mathbf{x})$ projects \mathbf{x} onto a random direction w drawn from the Fourier transform"

Bochner theorem

A continuous function $\varphi:\mathcal{H}\to\mathcal{R}$ is positive definite if and only if it is the Fourier transform of a symmetric and positive finite measure $\mu\in M(R^d)$.

$$\varphi(\mathbf{x} - \mathbf{y}) = \int p(w) \exp(jw\Delta) \, dw = E\left[\xi_w(\mathbf{x})\xi_w(\mathbf{y})^*\right] \tag{8}$$

Eder Arley León Gómez

UNAL

Kernel methods

Math review

$$\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{x} - \mathbf{y}) = \int p(w)e^{jw(\mathbf{x} - \mathbf{y})}dw = E_w \left[\xi_w(\mathbf{x})\xi_w(\mathbf{y})^*\right]$$
(9)

where $\xi_w(\mathbf{x}) = e^{jw^{\top}\mathbf{x}}$

$$\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{x} - \mathbf{y}) = E_w \left[e^{jw^\top \mathbf{x}} e^{-jw^\top \mathbf{y}} \right] = \int p(w) \left[\cos(w^\top (\mathbf{x} - \mathbf{y})) + j \sin(w^\top (\mathbf{x} - \mathbf{y})) \right]$$

$$\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{x} - \mathbf{y}) = \int p(w) \cos(w^\top (\mathbf{x} - \mathbf{y})) + j \int p(w) \sin(w^\top (\mathbf{x} - \mathbf{y}))$$

$$\hat{\kappa}(\mathbf{x}, \mathbf{y}) = \hat{\kappa}(\mathbf{x} - \mathbf{y}) = E_w \left[z_w(\mathbf{x}) z_w(\mathbf{y}) \right]$$

$$z(\mathbf{x}) = \sqrt{\frac{2}{D}} \left[\cos(w_1^\top \mathbf{x} + b_1), \cos(w_2^\top \mathbf{x} + b_2), ..., \cos(w_D^\top \mathbf{x} + b_D) \right]$$

References

Dino Sejdinovic, Arthur Gretton

What is an RKHS?

Reproducing Kernel Hilbert Spaces Machine Learning https://ngilshie.github.io/jekyll/update/2018/02/01/RKHS.html.

Rahimi, Ali and Recht, Benjamin

Random Features for Large-Scale Kernel Machines Advances in neural information processing systems (2007).

Random Fourier Features

https:

//gregorygundersen.com/blog/2019/12/23/random-fourier-features/.

Thank you!

