Chemistry 310	Name	
Practice Exam IB		
	Access ID (PSU Email)	

There are 9 questions on this exam. Check that you have done all parts of all of the problems. The maximum score on this exam is 100 points.

Exam policy:

- Calculators with text-programmable memory are not allowed.
- No outside materials, resources or papers are allowed, including scratch paper.
- A data sheet is attached to this exam, along with scratch paper and a periodic table.
- The answer key will be posted on Canvas after the exam is graded.
- You have 75 minutes to complete this exam.
- Put your name and access ID on all pages in case they become separated.
- You must turn in all exam materials including scratch paper and data sheets.

Advice:

- As you read the question, underline or circle key words to highlight them for yourself. Avoid errors from "mis-reading" the question.
- Pay attention to units and magnitudes (decimal places) of numbers obtained from calculations.
- There is no penalty for guessing.

PERIODIC TABLE of the ELEMENTS

MAIN GF	ROUPS													MAIN G	ROUPS		
1A																7A	8A
1																17	18
1																1	2
Н	2A											3A	4A	5A	6A	Н	He
1.008	2											13	14	15	16	1.008	4.003
3	4											5	6	7	8	9	10
Li	Be				Т	RANSITIO	N METAL	S				В	С	N	0	F	Ne
6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	Al	Si	Р	S	CI	Ar
22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.992	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.468	87.62	88.906	91.224	92.906	95.94	[98]	101.07	102.90	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[265]	[268]	[271]	[280]	[285]	[286]	[289]	[289]	[293]	[294]	[294]

* LANTHANOIDS

** ACTINOIDS

3	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]

- -----
- 1. The structure of boron trifluoride, BF₃, is shown 6 times below (they are all the same).
- a. Please **name and draw** the <u>6 different symmetry operations</u> that can be performed on this molecule. If there is more than one axis or plane of the same name, draw ALL on the SAME drawing. (12 points)

b. Using the identified symmetry operations from Question 1 and the chart found on your data sheet, please identify the **point group of BF**₃. (3 points)

2. Cobalt hydroxide is a pink insoluble powder. To synthesize such an interesting compound
cobalt needs to be in a +2 oxidation state. (10 points)

b. Calculate the **effective nuclear charge** for a **3d** and a **4s** electron. (6 points)

a. Please write the electron configuration for Co²⁺. (1 point)

3d	4s

c. Explain why the 4s electrons are removed before 3d electrons for the Co²⁺ cation. (2 points)

d. Which electron is more shielded? Which is more penetrating? (1 point)

3. Using your knowledge of Lewis structures and VESPR theory, explain the differences in structure for the following pair: (5 points each)
a. IF₂⁻ is linear, however H₂O is not.
b. CCI₄ has a different bond angle than PH₃. Identify which molecule has a larger bond angle and why.
4. For ICI₂ ⁻ :
a. Please draw the resonance structures for ICI₂¯ and resultant composite octet structure (5 points)
b. Please calculate the bond order of the I-Cl bond and the corresponding formal charges for the composite octet structure. (5 points)

5. Which symmetry operation(s) when performed sequentially result in the identity (E) operation? Circle all that apply. (6 points)

$\sigma_{ m v}^{2}$	$\sigma_{\mathrm{v}}\cdot\sigma_{\mathrm{h}}$	\mathbf{C}_1
C_4^2	S_2	S_4^4

6. Please provide the formulas for five stable molecules and/or ions that are isoelectronic with **carbon monoxide**. (5 points)

- 7. Using the N-V method:
- a. Please draw the composite octet structure and all relevant resonance forms for BF₃ (4 points)

b. Does BF₃ experience no-bond resonance? Circle one. (1 point) YES NO

8. Given the following character table, identify the symmetry species that transforms the same as the p_z orbital in BrF₅ (pictured to the right). Assign the z-axis to be collinear with the principal axis of rotation. Please circle your answer. (5 points)

C _{4v}	Е	2C ₄ (z)	C_2	$2\sigma_{ m v}$	$2\sigma_{\rm d}$
A_1	+1	+1	+1	+1	+1
A_2	+1	+1	+1	-1	-1
B_1	+1	-1	+1	+1	-1
B_2	+1	-1	+1	-1	+1
E	+2	0	-2	0	0

9. The structure of fac-triamminetriiodoiridium is shown to the right.

a. What principal rotation axis does it have? Circle one. (5 points)

		C_1	C_2	C ₃	C ₄	C ₆
--	--	-------	-------	-----------------------	----------------	----------------

b. Which mirror plane can the molecule reflect over and be the same, if any? Circle one. (5 points)

$\sigma_{ m d}$ $\sigma_{ m h}$ $\sigma_{ m v}$ None
--

c. Does the molecule have an inversion center? Circle one. (2 points) YES NO

d. Does the molecule have an improper rotation axis? (2 points) YES NO

10. Indicate which orbital (such as 1s, 2p, 4d, etc.) that each picture, description, or plot below corresponds to. If the picture, description, or plot could correspond to more than one orbital, list all possibilities. Do NOT distinguish between orbital subscripts of x, y, z, etc. Your answers do not need subscripts on the orbital, or descriptions of the spatial orientation. (20 points)

CHEM 310 Practice Exam 1B CHEM 310 Data Sheet

Conversions and Constants

$$1 g = 6.02 \times 10^{23} amu$$

 $1 \text{ Å} = 1 \times 10^{-10} m$
 $1 \text{ eV} = 96 \text{ kJ mol}^{-1}$
 $for 1 \text{ eV } \lambda = 1240 \text{ nm}$
 $1 \text{ kcal} = 4.184 \text{ kJ}$
 $1 \text{ J} = C \cdot V = \text{kg m}^2 \text{s}^{-2}$
 $1 \text{ A} = C \text{s}^{-1}$

$$c = 2.99792458 \times 10^{8} \text{ m s}^{-1}$$

$$h = 6.63 \times 10^{-34} \text{ J s}$$

$$F = 96485 \text{ C mol}^{-1}$$

$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$R = 8.314 \text{ Jmol}^{-1} K^{-1}$$

$$K_W = 1.0 \times 10^{-14} \text{ at } 298 \text{ K}$$

same group; 0.35

(n-1 group); 0.85 (lower *n* groups); 1.00

S for nd/nf same group; 0.35 (groups to left); 1.00

 $O_pE(OH)_q pK_a \sim 8 - 5p$ add 5 units for q > 1

Equations

$$Z_{eff} = Z - S$$

$$D(n) = D(m) - 0.6 \log(n/m)$$

slope = 0.0592 V/pH

$$-\Delta H = E_A E_B + C_A C_B + W$$

$$\mu_{s} = [n(n+2)]^{\frac{1}{2}} \mu_{B}$$

$\Delta G^{\circ} = -nfE^{\circ} = -RTlnK$

$$E^{\circ} = \frac{0.0592}{n} \log K \, (@298K)$$

$$E = E^{\circ} - \frac{0.0592}{n} log \ Q(@298K)$$
$$E = h\nu = \frac{hc}{\lambda}$$

$$E_g(eV) = \frac{1240}{\lambda(nm)}$$

Point Group Flow Chart

$$\begin{array}{l} \textbf{I} < \textbf{Br} < \textbf{S}^2 < \underline{\textbf{S}} \textbf{CN} < \textbf{CI} < \textbf{NO}_2 < \textbf{N}^3 < \textbf{NO}_3 < \textbf{F} < \textbf{OH} < \textbf{C}_2 \textbf{O}_4^{\ 2^-} < \textbf{O}^2 < \textbf{H}_2 \textbf{O} < \underline{\textbf{N}} \textbf{CS} < \textbf{CH}_3 \textbf{CN} < \textbf{pyridine} < \textbf{NH}_3 < \textbf{en} < \textbf{bipy} < \textbf{phen} < \textbf{NO}_2 < \textbf{PPh}_3 < \textbf{CN} < \textbf{CO} \\ \end{array}$$

Trans-directing ligands

$$F^{-}$$
, $H_{2}O$, OH^{-} < NH_{3} < py < CI^{-} < Br^{-} < I^{-} , SCN^{-} , NO_{2}^{-} , $SC(NH_{2})_{2}$, Ph^{-} < SO_{3}^{-2} < PR_{3} , AsR_{3} , SR_{2} , CH_{3}^{-} < H^{-} , NO , CO , CN^{-} , $C_{2}H_{4}$