Ingénierie de la preuve - CM4

19 février 2018

1 Polymorphisme et ordre supéreieur

1.1 polymorphisme

Quand une fonction sur un type peut être rendue générique et utilisable sur un autre type.

```
Definition : id_nat : (n : nat) := n.
Definition : id_bool : (b : bool) := b.
Definition id_gauss (g : gauss) := g.
```

1.2 Fonction polymorphe

```
Definition id (A : Set) (x : A) := x.
```

Évidement :

$$\forall n, id_nat \ n = id_nat \ n.$$

 $\forall b, id_bool \ b = id_bool \ b.$
 $\forall g, id_gauss \ g = id_gauss \ g.$

On pourrait redéfinir les fonctions :

$$Definition \ id_nat := id \ nat.$$

$$Checkid_nat.$$

$$id_nat : nat \rightarrow nat$$

$$Definition \ id \ bool := id \ bool.$$

1.3 Ordre supérieur

Quand les fonctions prennent/peuvent prendre des fonctions en arguments

$$\begin{aligned} Definition \ id \ (A:Set)(x:A) &:= x. \\ Definition \ id_fun &:= id(nat \to nat). \\ Check \ id_fun. \\ & (nat \to nat) \to (nat \to nat) \end{aligned}$$

Une fonction polymorphe et d'ordre supérieur : exemple la fonction iter.

$$f^{n} = fof^{n-1}$$

$$f^{n} = f^{n-1}of$$

$$f^{n}(x) = f(f^{n-1}(x))$$

On aimerait avoir une fonction iter du type suivant :

$$\forall A: Set, (A \rightarrow A) \rightarrow nat \rightarrow A \rightarrow A$$

$$Fixpoint\ iter(A:Set)(f:A\to A)$$

$$(n:nat)struct\ n:A\to A:$$

$$matchnwith:$$

$$0=>(fun(n:A)=>n)$$

$$|Sp=>(fun(m:A)=>$$

$$iter\ Afp(fm)$$

$$end$$