

Introduction

- Coastal flooding posts increasing risk to the coastal community (about 40% of the U.S. population)
- Goal: Produce a coupled modeling strategy that will provide total water level prediction for the National Water Model (NWM)

Need a module that connects 2-D ocean model to 1-D hydraulic model (SCHISM – Semi-Implicit Cross-scale Hydroscience

Coupling Framework

ESTOFS – Extratropical Surge and Tide Operational Forecast System P-SURGE – Probabilistic Tropical Storm Surge model

Hurricane Maria (2017)

Simulation Start Date/Time: 09/17/17 19z

Using high water marks, peak stage reports, and NOAA tide gauges for validation

Model vs. NOAA water level Obs.

Hurricane Florence (2018) model 2.45 hwm range 2.40 0.5 (m) 2.0 2.5 Level (m) 2.35 2018-09-14 00:00:00 08.2 Water 2.25 model 1.0 hwm range Latitude (°) 2.20 09-15 09-16 09-17 09-19 09-14 09-15 09-16 09-18 09-19 Time Time Simulation Start Date/Time 6.00 09/13/18 at 00z Cape Fear 5.75 76.5°W 77.5°W 75.5°W

Cape Fear: peak stage reports just under 2 m

Longitude (°)

1.00

Water Level (m)

1.25

1.50

1.75

Using USGS river gauges, high water marks, peak stage reports, and NOAA tide gauges for validation in this domain

0.25

0.50

0.75

Conclusions

- Prototyped the total water forecast capability for NWM V3.0 using SCHISM to address a critical forecasting gap
- SCHISM, which resolves processes across multiple spatial and temporal scales, will operate along the East, Gulf, and Pacific coasts, over Puerto Rico with the U.S. Virgin Islands, and Hawaii
- The initial results show that our model performs well in coastal compound flooding forecast

Next Steps

- Two-way coupling with NWM
- Evaluation of module with RFCs
- Finalize first implementation of module for operations