

Aprendizaje Automático Profundo (Deep Learning)

Introducción a la Optimización de Funciones

Entrenamiento = Aprendizaje = Optimización

- Aprendizaje Supervisado
 - Función de error E
 - Ejemplos con:
 - Valores de entrada **x**:
 - Valores de salida y
 - Buscar parámetros óptimos en base a ejemplos y E

Ejemplos

Entrada	Salida
2	1
5	3.2
7	4.5
9	6

Modelo

Parámetros óptimos

Optimización de funciones

- ¿Qué significa **optimizar** una función **f**?
 - Buscar algún mínimo
 - Variando sus parámetros

- ¿Por qué minimizar?
 - Maximizar f es equivalente a minimizar -f
 - Puedo buscar máximos de f en los mínimos de -f

Clasificación de funciones por convexidad

- Función convexa
 - Único mínimo (global)
 - E para regresión lineal siempre es convexa :)

- Función no-convexa
 - Varios mínimos
 - Global (medio)
 - Local (otros dos)
 - E para redes es no-convexa :(

Dificultades principales

- Más de 2 parámetros (99.9% de los problemas)
 - No se puede visualizar!
 - Algoritmos de Optimización

Tipos de Algoritmos de Optimización

- Generales
 - Pocas asunciones sobre f
 - Mayor tiempo de ejecución
 - Pocas garantías
 - Ejemplos
 - Fuerza bruta
 - Búsqueda aleatoria
- Especializados
 - Básicamente, todo lo contrario
 - Pero no siempre existen/son aplicables
 - Ejemplo
 - Camino mínimo en un grafo

f

Parámetros

Algoritmos generales básicos de optimización

- Fuerza bruta
 - Probar "todos" los valores
 - Quedarse con el mejor
 - ¿Parámetros continuos?
 - ¿Muchos parámetros?

- Búsqueda aleatoria
 - Evaluar valores aleatorios
 - Quedarse con el mejor
 - ¿Cómo generar valores aleatorios?

Dificultades principales

- Coste computacional de evaluar la función de error
- Criterio de convergencia
 - Convergencia = terminar
 - Explotación vs exploración
 - 4 evaluaciones
 - ¿continuar o parar?
 - Varios mínimos

Parámetros

Algoritmos de Optimización Especializados

- Ejemplo: buscar el camino más corto en un grafo
 - Datos: son el grafo G
 - Parámetros: el camino **C** a tomar
 - Función de error: Longitud camino **L**(**C**)
 - Encontrar camino C ∈ G
 - Con el menor valor de L(C)
 - Solución única
 - Varios algoritmos especializados
 - Dijkstra
 - Bellman-Ford
 - etc...

Descenso de Gradiente (DG)

- Algoritmo general
 - Asunción: f es derivable
 - Puede tener puntos de discontinuidad
 - Utilizar el gradiente o derivada para guiar la optimización
 - Gradiente en un punto
 - **Dirección** de crecimiento de la función
 - Problemas
 - Mínimos locales
 - Escalable a n > millones

Descenso de gradiente (DG) : idea básica

- Empezar en un valor aleatorio del parámetro
 - Iterar hasta que derivada=0
 - Calcular gradiente o derivada
 - Indica dirección de maximización
 - Moverse en dirección opuesta
- Valor final: mínimo local (posiblemente global)

Resumen

- ¿Qué significa optimizar una función
 f?
 - Buscar algún mínimo
 - Variando sus parámetros
- Algoritmos de Optimización
 - Analíticos vs Iterativos
 - Generales vs Especializados
 - Criterios de convergencia
 - Coste computacional
- Descenso de gradiente
 - Más utilizado para Redes Neuronales

