

FIG. 1

FIG. 2

FIG. 3

Compression rule explanatory view (1)

d0 d1 d2 d3

Number of successive pixels	Pixel data
-----------------------------	------------

FIG. 4A

Compression rule explanatory view (2)

d0 d1 d2 d3 d4 d5 d6 d7

0	0	Number of successive pixels	Pixel data
---	---	-----------------------------	------------

FIG. 4B

Compression rule explanatory view (3)

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

0	0	0	0	Number of successive pixels	Pixel data
---	---	---	---	-----------------------------	------------

FIG. 4C

Compression rule explanatory view (4)

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

0	0	0	0	0	0	Number of successive pixels	Pixel data
---	---	---	---	---	---	-----------------------------	------------

FIG. 4D

Compression rule (5)

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pixel data
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	------------

FIG. 4E

F | G. 5

F | G. 6

FIG. 7

Area	Contents
Embossed data zone	Sector number
Defect management area	Sector number
Disc identification zone	Sector number
Used block of data area	LSN + 031000h
Unused block of data area	State 1 : first 3 bits = 0, incremented number follows State 2 : from 00 0000h to 00 00Hh State 3 : unrecorded

FIG. 8

Area		Contents
Embossed data zone		Reserved
Rewritable data zone	Lead-in area	Reserved
	Lead-out area	
	Data area	0b : general data 1b : real-time data

FIG. 9

Initial preset number	Initial preset value	Initial preset number	Initial preset value
0h	0001h	8h	0010h
1h	5500h	9h	5000h
2h	0002h	0Ah	0020h
3h	2A00h	0Bh	2001h
4h	0004h	0Ch	0040h
5h	5400h	0Dh	4002h
6h	0008h	0Eh	0080h
7h	2800h	0Fh	0005h

Initial value of shift register

FIG. 10A

FIG. 10B

(ECC block structure (D,E))

FIG. 1

Even Recorded data field :

FIG. 14A

Odd Recorded data field :

FIG. 14B

FIG. 13

<u>State0</u>	(MSB)	Primary SYNC codes	(LSB)	(MSB)	Secondary SYNC codes	(LSB)
SY0 =	000010	101000	000000	001001	/	000010
SY1 =	100001	001000	000000	001001	/	100010
SY2 =	100100	001000	000000	001001	/	101000
SY3 =	101000	001000	000000	001001	/	101010
<u>State1</u>	(MSB)	Primary SYNC codes	(LSB)	(MSB)	Secondary SYNC codes	(LSB)
SY0 =	000100	101000	000000	001001	/	000100
SY1 =	001001	001000	000000	001001	/	001010
SY2 =	010000	101000	000000	001001	/	010000
SY3 =	010100	001000	000000	001001	/	010101

FIG. 15

Comparison of combination patterns (column direction) of successive sync codes (1)
 — upon moving between sectors —

The diagram shows two tables side-by-side, each enclosed in a brace at the bottom, indicating they represent the same data for two different sync frame numbers (13 and 12).

	Latest sync frame number	00	01	02	03	04	05	06	07	08	09	10	11	12
Sync code number two codes before	2	1	0	1	1	2	1	2	2	3	1	3	3	3
Sync code number one code before	1	0	1	1	2	1	2	2	3	1	3	3	1	1
Latest sync code number	0	1	1	2	1	2	2	3	1	3	3	1	2	2
Number of code changes between neighboring patterns	3	2	2	2	3	2	2	2	3	2	2	2	2	3
Number of code changes shifted by one frame	2	2	2	1	1	2	3	2	2	2	3	3	3	2

	Latest sync frame number	13	14	15	16	17	18	19	20	21	22	23	24	25
Sync code number two codes before	1	2	3	2	2	1	3	1	1	3	2	3	3	3
Sync code number one code before	2	3	2	2	1	3	1	1	3	2	3	3	2	2
Latest sync code number	3	2	2	1	3	1	1	3	2	3	3	2	1	1
Number of code changes between neighboring patterns	3	2	2	3	2	2	2	3	2	2	2	2	2	3
Number of code changes shifted by one frame	2	2	3	2	2	3	2	2	2	2	3	3	3	2

FIG. 16

Comparison of combination patterns (column direction) of successive sync codes (2)
 — upon extending across guard area —

	00	01	02	03	04	05	06	07	08	09	10	11	12
Latest sync frame number	1	1	0	1	1	2	1	2	2	3	1	3	3
Sync code number two codes before	1	0	1	1	2	1	2	2	3	1	3	3	1
Sync code number one code before	1	0	1	1	2	1	2	2	3	1	3	3	1
Latest sync code number	0	1	1	2	1	2	2	3	1	3	3	1	2
Number of code changes between neighboring patterns	2	2	2	3	2	2	2	3	2	2	2	2	3
Number of code changes shifted by one frame	2	2	1	1	2	3	2	2	2	3	3	3	2

	13	14	15	16	17	18	19	20	21	22	23	24	25	PA
Latest sync frame number	1	2	3	2	2	1	3	1	1	3	2	3	3	2
Sync code number two codes before	2	3	2	2	1	3	1	1	3	2	3	3	2	1
Sync code number one code before	3	2	2	1	3	1	1	3	2	3	3	2	1	1
Latest sync code number	3	2	2	3	2	2	3	2	2	3	2	2	2	2
Number of code changes between neighboring patterns	3	2	2	2	3	2	2	3	2	2	2	2	2	2
Number of code changes shifted by one frame	2	2	3	2	2	3	2	2	3	2	3	3	3	2

{ }

FIG. 17

Relationship with abnormal phenomenon upon detection of unexpected combination pattern of sync codes

Abnormal phenomenon contents→	Frame shift				Detection error	Tracking error
	Case 1	Case 2	Case 3	Case 4	Case 5	
Detected pattern contents ↓	X	○	○	×	—	—
Different by only one position from expected pattern	○	○	×	×	—	—
Match with pattern shifted from expected pattern by ± 1 sync frame	○	○	×	×	×	(△)
(1, 1, 2), (1, 2, 2) or (2, 1, 2)	—	○	—	—	—	—
Continuity in data ID	(○)	(○)	○	○	○	×
Continuity of wobble addresses	(○)	(○)	○	○	○	×

FIG. 18

FIG. 19

Information storage medium 221

FIG. 20A

FIG. 20B

FIG. 21

FIG. 22

F | G. 23

Wobble modulation (180° phase modulation & NRZ method)

- ☆ 1-address bit area 511 (expressed by 8 or 12 wobbles)
- ☆ Frequency, amplitude, and phase of wobbles in 1-address bit area 511 = constant throughout area
- ☆ Boundary of 1-address bit area 511 (180° or 0° phase shift)

FIG. 25

Wobble modulation in L/G recording (principle of generation of unstable bit)

FIG. 26

Gray code example

Decimal value	Conventional binary notation	Gray code notation
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

FIG. 27

Special track code (present invention)

Decimal value	Conventional binary notation	Special track code	Decimal value	Conventional binary notation	Special track code
0	00000	00 ... 00000	1	00001	10 ... 00000
2	00010	00 ... 00001	3	00011	10 ... 00001
4	00100	00 ... 00011	5	00101	10 ... 00011
6	00110	00 ... 00010	7	00111	10 ... 00010
8	01000	00 ... 00110	9	01001	10 ... 00110
10	01010	00 ... 00111	11	01011	10 ... 00111
12	01100	00 ... 00101	13	01101	10 ... 00101
14	01110	00 ... 00100	15	01111	10 ... 00100
16	10000	00 ... 01100	17	10001	10 ... 01100
18	10010	00 ... 01101	19	10011	10 ... 01101
20	10100	00 ... 01111	21	10101	10 ... 01111
22	10110	00 ... 01110	23	10111	10 ... 01110
24	11000	00 ... 01010	25	11001	10 ... 01010
26	11010	00 ... 01011	27	11011	10 ... 01011
28	11100	00 ... 01001	29	11101	10 ... 01001
30	11110	00 ... 01000	31	11111	10 ... 01000

Note] only most significant bits are different, and remaining lower bits match in “2ⁿ” (n : integer value) and “2n+1”

F I G. 29

FIG. 30

610

F | G. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

Combination effect number	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 3 \rangle$	$\langle 4 \rangle$	$\langle 5 \rangle$	$\langle 6 \rangle$	$\langle 7 \rangle$	$\langle 8 \rangle$	$\langle 9 \rangle$	$\langle 10 \rangle$	$\langle 11 \rangle$	$\langle 12 \rangle$	$\langle 13 \rangle$	$\langle 14 \rangle$	$\langle 15 \rangle$
A) File or folder separation between SD and HD	<input type="radio"/>														
B) 4-bit expression of sub-picture information and compression rule	<input type="radio"/>														
C) Allow to set a plurality of types of recording formats for read-only medium	<input type="radio"/>														
D) ECC block structure using product code	<input type="radio"/>														
E) Distribute and allocate data in sectors to a plurality of small ECC blocks	<input type="radio"/>														
F) Insert different PO group data for respective sectors	<input type="radio"/>														
G) Segment division structure in ECC block	<input type="radio"/>														
H) Guard area allocation structure between ECC blocks	<input type="radio"/>														
I) Guard areas are recorded to locally overlap each other	<input type="radio"/>														
J) Number of code changes upon shifting combination of sync codes ≥ 2	<input type="radio"/>														
K) Set specific condition to address number assignment method	<input type="radio"/>														
L) L/G recording + wobble modulation	<input type="radio"/>														
M) Distribute and allocate unstable bits also on groove area	<input type="radio"/>														
N) Distribute and allocate unstable bits on land and groove	<input type="radio"/>														
O) $\pm 90^\circ$ wobble phase modulation	<input type="radio"/>														
P) Adopt gray codes or special track codes	<input type="radio"/>														

F | G. 38