НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені Ігоря СІКОРСЬКОГО»

Навчально-науковий фізико-технічний інститут Кафедра математичних методів захисту інформації

Звіт до комп'ютерного практикуму №1

Оформлення звіту:

Дигас Богдан, ФІ-52мн Юрчук Олексій, ФІ-52мн

Комп'ютерний практикум № 1

1.1 Вступні відомості

Мета роботи: Ознайомлення з принципами баєсівського підходу в криптоаналізі, побудова детерміністичної та стохастичної вирішуючих функцій для моделей схем шифрування та криптоаналіз моделей шифрів за допомогою програмної реалізації, зокрема здійснення порвіняльного аналізу вирішуючих функцій.

Постановка задачі:

- 1. Створіть репозиторій у системі контролю версій Git/GitHub;
- 2. Реалізуйте алгоритми програмно та представите результати побудови детермінованих та стохастичних вирішальних функцій у вигляді таблиць. Для цього необхідно:
 - (a) обчислити розподіли P(C) та P(M,C);
 - (б) на основі цих розподілів обчислити P(M|C);
 - (в) побудова оптимальних детермінованих та стохастичних вирішальних функцій зводиться до максимізації P(M|C).
- 3. Розрахуйте середні втрати, проведіть порівняльний аналіз функцій прийняття рішень.
- 4. Підготувати звіт для комп'ютерного практикуму.

1.2 Результати виконання роботи. Варіант 15

```
Розражовані ймовірності Р(С) для кожного шифротексту:

C_0 0.040

C_1 0.043

C_2 0.054

C_3 0.040

C_4 0.043

C_5 0.057

C_6 0.052

C_7 0.051

C_8 0.049

C_9 0.054

C_10 0.040

C_11 0.057

C_12 0.040

C_11 0.057

C_12 0.051

C_13 0.057

C_14 0.051

C_15 0.057

C_14 0.051

C_15 0.057

C_16 0.049

C_17 0.068

C_18 0.046

C_19 0.052
```

Таблиця спільних ймовірностей P(M, C):								
	C_0	C_1 C	_2 C_3	3 C_4	C_5	C_6	C_7 \	
M_0	0.0044	0.00473	0.00594	0.0044	0.00473	0.00627	0.00572	0.00561
M_1	0.0044	0.00473	0.00594	0.0044	0.00473	0.00627	0.00572	0.00561
M_2	0.0044	0.00473	0.00594	0.0044	0.00473	0.00627	0.00572	0.00561
M_3	0.0044	0.00473	0.00594	0.0044	0.00473	0.00627	0.00572	0.00561
M_4	0.0044	0.00473	0.00594	0.0044	0.00473	0.00627	0.00572	0.00561
M_5	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_6	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_7	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_8	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_9	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_10	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_11	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_12	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_13	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_14	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_15	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_16	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_17	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_18	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153
M_19	0.0012	0.00129	0.00162	0.0012	0.00129	0.00171	0.00156	0.00153

	C_8	C_9 C_	10 C_	11 C_1	2 C_1	3 C_14	C_15	
M_0	0.00539	0.00594	0.0044	0.00627	0.0044	0.00627	0.00561	0.00627
M_1	0.00539	0.00594	0.0044	0.00627	0.0044	0.00627	0.00561	0.00627
M_2	0.00539	0.00594	0.0044	0.00627	0.0044	0.00627	0.00561	0.00627
M_3	0.00539	0.00594	0.0044	0.00627	0.0044	0.00627	0.00561	0.00627
M_4	0.00539	0.00594	0.0044	0.00627	0.0044	0.00627	0.00561	0.00627
M_5	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_6	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_7	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_8	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_9	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_10	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_11	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_12	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_13	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_14	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_15	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_16	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_17	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_18	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171
M_19	0.00147	0.00162	0.0012	0.00171	0.0012	0.00171	0.00153	0.00171

	C_16	C_17 C	_18 C_	_19
M_0	0.00539	0.00748	0.00506	0.00572
M_1	0.00539	0.00748	0.00506	0.00572
M_2	0.00539	0.00748	0.00506	0.00572
M_3	0.00539	0.00748	0.00506	0.00572
M_4	0.00539	0.00748	0.00506	0.00572
M_5	0.00147	0.00204	0.00138	0.00156
M 6	0.00147	0.00204	0.00138	0.00156
M_7	0.00147	0.00204	0.00138	0.00156
M_8	0.00147	0.00204	0.00138	0.00156
м 9	0.00147	0.00204	0.00138	0.00156
M_10	0.00147	0.00204	0.00138	0.00156
M 11	0.00147	0.00204	0.00138	0.00156
M 12	0.00147	0.00204	0.00138	0.00156
M 13	0.00147	0.00204	0.00138	0.00156
M 14	0.00147	0.00204	0.00138	0.00156
M 15	0.00147	0.00204	0.00138	0.00156
M_16	0.00147	0.00204	0.00138	0.00156
M 17	0.00147	0.00204	0.00138	0.00156
M 18	0.00147	0.00204	0.00138	0.00156
M_19	0.00147	0.00204	0.00138	0.00156
_				

1.3 Побудова вирішуючих функцій

Означення 1.

Оптимальна (баєсівська) детерміністична функція [в межах лабораторної роботи] визначається наступним чином:

$$\delta_B = \left\{ \delta_B^{(n)} : \mathcal{M} \to \mathcal{C} \right\},\$$

$$\operatorname{de} P \Big(\delta_B^{(optim)} | C \Big) = \max_{m \in M} P(M_i | C).$$

Тобто фактично детерміністична функція дорівнює довільному шифротексту, який дорівнює максимальному значенню в i-тому рядку таблиці.

Означення 2.

Стохастична розв'язувальна функція δ_D є оптимальною тоді і тільки тоді, коли $\forall\,n$ з нерівності $\delta_c^{(n)}\left(C,M\right)>0$ випливає, що $P(M|C)=\max_{M'}P(M'|C)$. Тобто

$$\delta_{D}^{optim}\left(C,m\right) = \begin{cases} \frac{1}{|M|}, & \textit{if } P(M|C) = \max_{M'} P(M'|C) \\ 0, & \textit{otherwise} \end{cases}$$

```
Оптимальна детермінована функція рішення δ(С):
C_1
      M_0
C_2
      M_0
C_3
      M_0
C_4
      M 0
C_5
      M 0
C_6
      M_0
C_7
      M 0
C_8
C_9
      M_0
C_10 M_0
C_11 M_0
C 12
      M 0
     M_0
C_13
C 14
     M_0
C_15
     M_0
C_16
     M_0
C_17 M_0
C_18
     M_0
C 19 M 0
```

Як результат роботи - видало перший ліпший M_i (за критеріями підходить декілька)

```
Матриця стохастичної функції рішення δ_S:
C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 C_11
```

```
0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05 0.05 0.05
M 10 0.05 0.05 0.05 0.05 0.05 0.05 0.05
M 11 0.05 0.05 0.05 0.05 0.05 0.05 0.05
```

C_12 C_13 C_14 C_15 C_16 C_17 C_18 C_19

```
Покращена стохастична функція:
C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 C_11 C_12
```

```
C_13 C_14 C_15 C_16 C_17 C_18 C_19
M_0 0.2 0.2 0.2 0.2 0.2 0.2 0.2
M\_1 \quad 0.2 \quad 0.2 \quad 0.2 \quad 0.2 \quad 0.2 \quad 0.2 \quad 0.2
    0.2 0.2 0.2 0.2 0.2 0.2 0.2
M_3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
M_4 0.2 0.2 0.2 0.2 0.2 0.2 0.2
M_5
     0.0 0.0 0.0 0.0 0.0 0.0 0.0
     0.0 0.0 0.0 0.0
                      0.0
                          0.0
                               0.0
M 7
     0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_8
    0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_10 0.0
          0.0
              0.0 0.0 0.0 0.0 0.0
M 11 0.0
          0.0
              0.0 0.0 0.0 0.0 0.0
M_12 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_13 0.0
          0.0
              0.0
                  0.0
                      0.0
                          0.0
M 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_15 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_16  0.0  0.0  0.0  0.0  0.0  0.0  0.0
M 17 0.0
         0.0
              0.0 0.0
                      0.0
                          0.0 0.0
M_18 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M_19 0.0 0.0 0.0 0.0 0.0 0.0 0.0
```

Середні втрати для детермінованої функції: 0.890000000

Середні втрати для стохастичної функції: 0.890000000

1.4 Висновки:

Подивившись на отримані результати середніх втрат можна впасти в ступор, оскільки вони виявилися однаковими. На нашу думку це може бути бути пов'язано з недостатньою точністю обрахунків. Маємо припущення, що стохастична (a.k.a. випадкова) вирішуюча функція мала б відповідати більшій кількості потенційних ВТ до відповідно обраного ШТ, порівняно зі строго детерміністичною. Вона також могла показувати як зашкально добрий результат, так і навпаки (жартуємо, будь-яку випадковість можна передбачити). Варто зазначити, що при збільшенні кількості вхідних даних, стохастична вирішуюча функція (яка являє собою багаторозмірну матрицю) буде займати багатенько пам'яті, що може сповільнити процес виконання програми.