Tema 14. Coalescència

J. Ignacio Lucas Lledó 21/4/2022

Població de Fisher-Wright

- La mida de la població, N, és finita i constant.
- A cada generació tots els individus (haploides) tenen la mateixa probabilitat de deixar descendència.
- Si la població és diploide, cada cercle representa una còpia del mateix gen.

Coalescència

- Seleccionem una mostra d'individus de la població actual.
- Tracem la seua genealogia remuntant-nos en el passat, generació per generació.
- Retrocedint en el temps, els llinatges conflueixen: coalescència.
- El MRCA és l'ancestre comú més recent de la mostra.

Coalescència

El procés *estocàstic* de la coalescència genera arbres amb una froma peculiar: amb una disminució de la *taxa de coalescència* cap al passat.

Coalescència de dues seqüències

El nombre de generacions que hem de retrocedir en el passat per trobar l'ancestre comú de dues còpies d'un gen en una població de Fisher-Wright, T_2 , és una variable aleatòria amb una distribució geomètrica:

$$P(T_2 = j) = (1 - p)^{j-1}p$$

 $P(T_2=j)$ és la probabilitat de què la coalescència es produïsca exactament j generacions en el passat. On p és la probabilitat de què la coalescència es produïsca en cada generació. Si la població és **haploide**:

$$p = \frac{1}{N}$$

és la probabilitat de què dues còpies d'un gen tinguen el mateix ancestre en la generació anterior. Per tant:

$$P(T_2 = j) = \left(1 - \frac{1}{N}\right)^{j-1} \frac{1}{N}$$

Coalescència de dues seqüències

Ploidia	Paràmetre	$P(T_2=j)$	$E(T_2)$	$Var(T_2)$
haploide	1/N	$\left(1-rac{1}{N} ight)^{j-1}rac{1}{N}$	N	N(N-1)
diploide	1/2N	$\left(1-rac{1}{2N} ight)^{j-1}rac{1}{2N}$	2N	2N(2N-1)

En temps continu

La distribució geomètrica és *discreta*: només definida per valors enters de T_2 . Es pot aproximar amb la **distribució exponencial** (que és contínua), quan N és gran. En haploides:

$$egin{aligned} P(T_2>j) &= \left(1-rac{1}{N}
ight)^j \simeq e^{-rac{j}{N}} \ &P(T_2\leq j) \simeq 1-e^{-rac{j}{N}} \end{aligned}$$

En diploides:

$$P(T_2>j)\simeq e^{-rac{j}{2N}}$$

$$P(T_2 \leq j) \simeq 1 - e^{-rac{j}{2N}}$$

En temps continu

- Definim el **temps** continu: $t=\frac{\jmath}{N}$ en haploides, i $t=\frac{\jmath}{2N}$ en diploides.
- · Una unitat de temps de coalescència és el nombre de generacions esperat fins la coalescència de dues seqüències: N generacions en haploides, i 2N generacions en diploides.

Mida poblacional efectiva

- · Les poblacions reals es diferencien de les de Fisher-Wright.
- En lloc d'utilitzar la mida poblacional real, N, utilitzem la **mida poblacional efectiva**, N_e : mida d'una població de Fisher-Wright que experimentaria la mateixa quantitat de deriva que la població real.
- $\,\cdot\,\,$ En avant, supose que la població és diploide amb mida efectiva N_e .

Coalescència entre *n* seqüències

Aproximació: màxim d'una coalescència entre dos llinatges per generació.

El temps (en generacions) que hem de retrocedir per trobar **la primera coalescència** entre *n* còpies d'un gen és una variable estocàstica amb distribució geomètrica.

La probabilitat de produir-se una coalescència entre dues còpies qualsevols d'entre una mostra d'n còpies d'un gen en la generació immediatament anterior, en una població diploide de mida efectiva N_e és:

$$p=\binom{n}{2}rac{1}{2N_e}=rac{n(n-1)}{2}\cdotrac{1}{2N_e}$$

Per tant:

$$P(T_n=j)=\left(1-rac{n(n-1)}{4N_e}
ight)^{j-1}\cdotrac{n(n-1)}{4N_e}$$

Coalescència entre n sequències

En **temps continu**, amb $t=rac{j}{2N_e}$:

$$P(T_n \le t) = 1 - e^{-\binom{n}{2}t} = 1 - e^{-rac{n(n-1)t}{2}}$$

És a dir, el temps que ens hem de remuntar en el passat per tal que la genealogia de n llinatges es condense en n-1 llinatges és aproximadament exponencial amb paràmetre $\binom{n}{2}$.

$$f(t)=inom{n}{2}e^{-inom{n}{2}t}$$
 , per $t\geq 0$.

$$F(t)=P(T_n\leq t)=1-e^{-inom{n}{2}t}$$
 , per $t\geq 0$.

$$\mathrm{E}(t)=rac{1}{inom{n}{2}}=rac{2}{n(n-1)}$$
 ; $\mathrm{var}(t)=rac{1}{inom{n}{2}^2}=\left(rac{2}{n(n-1)}
ight)^2$

Coalescència entre n seqüències

Coalescència entre *n* seqüències

La mitjana de l'alçada total de l'arbre de coalescència entre n sequències homòlogues és:

$$\mathrm{E}(H_n) = \sum_{k=2}^n \mathrm{E}(T_k) = \sum_{k=2}^n rac{2}{k(k-1)} = 2\left(1 - rac{1}{n}\right) pprox 2$$

(Veure l'apèndix). En unitats de $2N_e$ generacions en poblacions diploides, $\mathrm{E}(H_n) pprox 4N_e$. Mentre que en poblacions haploides, 2 unitats de temps són $2N_e$ generacions.

$$ext{var}(H_n) = \sum_{k=2}^n ext{var}(T_n) = 4 \sum_{k=2}^n rac{1}{k^2(k-1)^2}$$

Apèndix

Per què
$$\sum_{k=2}^n rac{2}{k(k-1)} = 2\left(1-rac{1}{n}
ight)$$
?

$$\sum_{k=2}^{n} \frac{2}{k(k-1)} = 2 \cdot \sum_{k=2}^{n} \frac{1}{k(k-1)}$$

$$= 2 \cdot \sum_{k=2}^{n} \frac{k - (k-1)}{k(k-1)}$$

$$= 2 \cdot \sum_{k=2}^{n} \left(\frac{k}{k(k-1)} - \frac{k-1}{k(k-1)} \right)$$

$$= 2 \cdot \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

$$= 2 \cdot \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} \right)$$

$$= 2 \cdot \left(1 - \frac{1}{n} \right)$$