

Big Data Processing -The Spark Programming Model

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Learning objectives

- Be familiar with big data processing models using multiple nodes/clusters
- Understand the Spark programming model for big data processing
- Able to perform practical programming features with Apache Spark
- Able to design and apply Spark data processing for data in lake storage

Big data at large-scale: the big picture in this course

Elastic Cloud Infrastructures

(VMs, dockers, Kubernetes, OpenStack elastic resource management tools, storage)

Today lecture: analytics with cluster systems

Our first focus: big data analytics for data at rest

Recall: Data at rest

At rest

- distributed file systems/object storages
 - in big data we have a lot of files with different data formats
- data in a set of databases
- Multiple types of big data analytics with high concurrent/parallel data writes/reads
- Dealing with different data access/analytics frequencies:
 - o e.g., data organized into hot, warm and cold data

SQL-style/data parallel processing for data in lake storage Figure source: https://docs.dask.org/en/stable/graphs.html Embarrassingly Parallel MapReduce Full Task Scheduling Hadoop/Spark/Dask/Airflow/Prefect Hadoop/Spark/Dask Dask/Airflow/Prefect needs for internal processing Data parallel SQL-style enables the programming implementation data data data SQL-on-Data Lake Storage offers SQL features for analytics

ETL and Analytics with Lake Storage

- Data Ingestion:
 - Spark Streaming
 - Kafka Connect
 - Apache Nifi

- HDFS, AWS S3, Google Storage, Azure Data Lake Storage, etc., as storage
- Computing/Data Processing Framework
 - Apache Spark
 - Hadoop MapReduce

DataFrame/Table view of data

Example taxi records: named columns

1	1.34		NI	2381	236	21	10.01	0.01	0.5	0.01	0.01	0.31
- 1	1.34		N N	238	236	2	10.0	0.0	0.5	0.0	0.01	0.3
1	0.32	1	N	238	238	2	4.0	0.0	0.5	0.0	0.01	0.3
1	0.32	1	N	238	238	2	4.0	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	236	238	2	10.0	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	236	238	2	10.0	0.0	0.5	0.0	0.0	0.3
1	1.65	1	N	68	237	2	12.5	0.0	0.5	0.0	0.0	0.3
1	1.65	1	N	68	237	2	12.5	0.0	0.5	0.0	0.0	0.3
1	1.07	1	N	170	68	2	9.0	0.0	0.5	0.0	0.0	0.3
1	1.07	1	N	170	68	2	9.0	0.0	0.5	0.0	0.0	0.3
1	1.3	1	N	107	170	2	7.5	0.0	0.5	0.0	0.0	0.3
1	1.3	1	N	107	170	2	7.5	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	113	137	2	10.0	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	113	137	2	10.0	0.0	0.5	0.0	0.0	0.3
1	0.62	1	N	231	231	2	4.5	0.0	0.5	0.0	0.0	0.3
1	0.62	1	N	231	231	2	4.5	0.0	0.5	0.0	0.0	0.3
1	0.0	1	N	264	264	2	0.0	0.0	0.0	0.0	0.0	0.0
1	0.29	1	N	162	162	2	4.0	0.0	0.5	0.0	0.0	0.3
1	0.29 1.34	1	N	162 239	162 151	2	4.0	0.0	0.5	0.0 0.0	0.0	0.3

- Very common we analyze big data files based on this view
- Streaming data can be also represented as unbounded tables


```
inputFile =args.input_file
## hadoop inputFile="hdfs://"

df =spark.read.csv(inputFile, header=True, inferSchema=True)
#df.show()
print("Number of trips", df.count())
#number of passenger count per vendor and total amount of money
passenser_exprs = {"passenger_count":"sum","total_amount":"sum"}
df2 = df.groupBy('VendorID').agg(passenser_exprs)
# Where do you want to write the output
df2.repartition(1).write.csv(args_output_dir_header=True)
```

What we need when we develop analysis programs for big data

Result

Big data processing techniques in our focus for data at rest

Programming models

- MapReduce/Spark
- Workflows
- (Distributed) SQL-style processing

Studied frameworks

- Apache Hadoop/Spark, Dask
- Apache Airflow

Not in our focus:

- Bulk synchronous parallel (BSP)
- HPC MPI (Message Passing Interface)

Apache Spark

https://spark.apache.org/

Apache Spark

- Cluster-based high-level computing framework
- "unified engine" for different types of big data processing
 - SQL/structured data processing
 - Machine learning
 - Graph processing
 - Streaming processing
- It is a powerful computing framework and system ⇒ an important service that a big data platform should support
 - o public cloud: Google DataProc, Azure HDInsight, Amazon EMR
 - o data lake systems: e.g., Hudi and Delta Lake

Apache Spark

Can be run a top

- Hadoop (using HDFS and YARN)
- Mesos cluster
 - http://mesos.apache.org/
- Kubernetes
- Standalone machines

Figure source: http://spark.apache.org/

Computing resources Execution model in a in a cluster node cluster system Worker Node **Driver** manages Executor Cache operations and tasks in nodes Task Task Driver Program SparkContext Cluster Manager Worker Node Executor Cache Common concepts: Driver, Task Task Nodes, Tasks Workload styles: OLAP/batch Figure source: jobs with a lot of data http://spark.apache.org/docs/latest/cluster-overview.html

Key features

- Input data is distributed in different nodes for processing
 - \circ Support partitions for data processing: a node keeps one or n partitions, a partition resides only in a node \Rightarrow for computing
- Key operations: transformations and actions on data
- Leverage parallel computing concepts to run multiple tasks
 - Operation -> task executed by executor
 - o Parallel tasks, task pipeline, DAG of processing stages
- Persistent data in memory/disk for operations

Transformation operations

- Transformation:
 - o Instructions about how to transform a data in a form to another form \Rightarrow it will not change the original data (immutability)
- Only tell what to do: to build a DAG (direct acyclic graph): a lineage of what to do
- lazy approach ⇒ real transformation will be done at action operators

Narrow transformation, no data shuffle

Wide transformation, cross data partitions, requires a shuffle

Action operations

- Compute the results for a set of transformations
 - Examples: count or average
- Actions: view, collect, write, calculation

Lazy approach: an action triggers execution of transformation operations ⇒ enable various types of optimization

Spark program: programming elements

SparkSession

- Act as a program driver to manage the execution of tasks
- SparkContext: manages connection to cluster, manage internal services

Data APIs

- Low-level Resilient Distributed Dataset (RDD)
- High-level DataFrames/DataSets
- Load and hold distributed data
- Transformation and action functions
- ML, graph and streaming functions and pipelines

Spark application management: high-level view

Submission/Request

- submit the Spark application for running
- resource is provided for running the Driver

Launch

- the Driver requests resources for executors (through SparkContext)
- establish executors across worker nodes

Execution

the Driver starts to execute code and move data

Finish/Completion:

finish, release executors

Spark program logic: typical steps

Load data and distribute data

- data is immutable after created
- o data partition in Spark: a partition is allocated in a node
- Perform transformations and actions operations
 - transformations: build plans for transforming data models
 - o actions: perform computation on data

Resilient distributed dataset (RDD)

Low-level data structure

- collection of data elements partitioned across nodes in the cluster
- with data sharing, parallel operations, fault-tolerant features

Create RDD

 created by loading data from files (text, sequence file) including local file systems, HDFS, Cassandra, HBase, Amazon S3, etc.

Persist RDD

in memory or to files

RDD transformations and actions

Transformations

- map
- filter
- sample
- intersection
- groupByKey

Actions

- reduce()
- collect()
- count()
- saveAs...File()

Example with RDD

```
VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodelD,store_and_fwd_fl ag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_sur charge,total_amount 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:25:53 PM,11/04/2084 12:29:00 PM,1,0.32,1,N,238,238,2,4,0,0.5,0,0,0.3,4.8
```

as a text file

```
conf = SparkConf().setAppName("cse4640-rddshow").setMaster(args.master)
sc = SparkContext(conf=conf)
##modify the input data
rdd=sc.textFile(args.input_file)
## if there is a header we can filter it otherwise comment two lines
csvheader = rdd.first()
rdd = rdd.filter(lambda csventry: csventry != csvheader)
## using map to parse csv text entry
rdd=rdd.map(lambda csventry: csventry.split(","))
rdd.repartition(1)
rdd.saveAsTextFile(args.output_dir)
```


Shared variables

A function is executed a remote and various tasks running in parallel

 how do tasks share variables? common patterns in parallel computing: broadcast and global variable/counter

Variables used in parallel operations

- variables are copied among parallel tasks
- shared among tasks or between tasks and the driver

Types of variables

- o broadcast variables: cache a value in all nodes
- accumulators: a global counter shared across processes

Examples

```
sc = SparkContext(conf=conf)
bVar = sc.broadcast([5,10])
print("The value of the broadcast",bVar.value,sep=" ")
counter = sc.accumulator(0)
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: counter.add(bVar.value[0]))
print("The value of the counter is ",counter.value,sep=" ")
```

Use cases:

- Broadcast variables: lookup tables
- Accumulators: monitoring/checkpoint counters

Spark SQL and DataFrames

High-level APIs

 design with common programming patterns in data analysis, multi-language support

SparkSQL: enable dealing with structured data

SQL query execution, Hive, JDBC/ODBC

DataFrame

- distributed data organized into named columns, similar to a table in relational database
- Pandas and Spark DataFrames have similar design concepts

DataFrame

```
inputFile =args.input_file
df =spark.read.csv(inputFile,header=True,inferSchema=True)
print("Number of partition",df.rdd.getNumPartitions())
df.show()
```

++	+-	+	+	+	+-			+	+	+
PROVINCECODE	DEVICEID	IFINDEX FF	RAME S	SLOT	PORT	ONUINDEX	ONUID	TIME S	SPEEDIN	SPEEDOUT
+	+-	+	+-	+	+-			+	+	+
YN 1	3023	528	1	2	7	39 10	07039 01/08/2019	00:04:07	148163	49018
YN 1	3023	528	1	2	7	38 10	07038 01/08/2019	00:04:07	1658	1362
YN 1	3023	528	1	2	7	9 10	07009 01/08/2019	00:04:07	6693	5185
YN 1	3023	528	1	2	7	8 10	07008 01/08/2019	00:04:07	640	544
YN 1	3023	528	1	2	7	11 10	07011 01/08/2019	00:04:07	118	114
YN 1	3023	528	1	2	7	10 10	07010 01/08/2019	00:04:07	28514	12495
YN 1	3023	528	1	2	7	13 10	07013 01/08/2019	00:04:07	868699	23400
YN 1	3023	528	1	2	7	15 10	07015 01/08/2019	00:04:07	1822	1120
YN 1	3023	528	1	2	7	17 10	07017 01/08/2019	00:04:07	998069	117345
YN 1	3023	528	1	2	7	16 10	07016 01/08/2019	00:04:07	22402	1804
YN 1	3023	528	1	2	7	19 10	07019 01/08/2019	00:04:07	640	791
YN 1	3023	760	1	1	10	49 10	10049 01/08/2019	00:04:07	662	494
YN 1	3023	760	1	1	10	48 10	10048 01/08/2019	00:04:07	2158	759
YN 1	3023	528	1	2	7	21 10	07021 01/08/2019	00:04:07	0	0
YN 1	3023	760	1	1	10	51 10	10051 01/08/2019	00:04:07 2	2600890	54153
YN 1	3023	528	1	2	7	20 10	07020 01/08/2019	00:04:07	330	184

Create DataFrame

DataFrames can be created from a Hive table, from Spark data sources, or another DataFrame

Load and save

- From Hive, JSON, CSV
- HDFS, cloud object storage (AWS S3, Google Cloud Storage, Azue Blob Storage), local files, etc.

and more

Formats and Sources supported by DataFrames

Figure source:

https://databricks.com/blog/2015/02/17/introducing-dataframe s-in-spark-for-large-scale-data-science.html

DataFrame Transformations & Actions

- Several transformations can be done
 - Think transformation for relational database or matrix
- Select
 - df.select
- Filter
 - df.filter
- Groupby
 - *df.groupBy*
- Handle missing data
 - Drop duplicate rows, drop rows with NA/null data
 - Fill NA/null data

Actions

 Return values calculated from DataFrame

Examples

- reduce, max, min, sum, variance and stdev
- ⇒ Distributed and parallel processing but it is done by the framework

Example of a Spark

```
#!/usr/bin/env python2
#encoding: UTF-8
# CS-E4640
import csv
import sys
from datetime import datetime
from pyspark.sql import SparkSession
import numpy as np
from pyspark.sql import functions as F
import argparse
                                                                   Session/Driver
parser = argparse.ArgumentParser()
parser.add argument('--input file', help='input data file')
parser.add argument('--output dir',help='output dir')
args = parser.parse args()
##define a context
spark = SparkSession.builder.appName("cse4640-onu").getOrCreate()
#NOTE: using hdfs:///.... for HDFS file or file:///
inputFile =args.input file
                                                                  Read data
df =spark.read.csv(inputFile,header=True,inferSchema=True)
#df.show()
print("Number of records", df.count())
exprs = {"SPEEDIN": "avg"}
                                                                      Apply operations
df2 = df.groupBy('ONUID').agg(exprs)
df2.repartition(1).write.csv(args.output file,header=True)
```


Spark application runtime view

Tasks:

o a unit of work executed in an executor: e.g., performing transformations of a data partition

Stage: Shuffle Map Stage & Result Stage

- a set of tasks executed in many nodes for performing the same operation
- move to a new stage: through a shuffle to produce output partitions or an action to produce results

Job

 runtime view of an action operation (actual computation produces a result), includes many stages of tasks

Data Distribution

One task works on a partition at a time

⇒ Parallelism and performance are strongly dependent on number of partitions, tasks, CPU cores

Data Distribution: Load balance

Imbalance more data shuffle

 It is important to have well-balanced data distribution across nodes

Detection:

 look at runtime execution time to see problems or check your data

Examples of solution:

- o repartition
- change group keys

Pipelining, Shuffle and DAG

- Operations work in a pipeline without moving data across nodes
 - o e.g., map->filter, select->filter
- Shuffle persistent
 - shuffle needs move data across nodes
 - source tasks save shuffle files into local disks for data shuffle, then the target tasks will read data from source nodes
 - Save time, recovery, fault tolerance

Monitoring Spark: Executors and tasks

25

1/1

2019/10/27 20:07:46

csv at NativeMethodAccessorImpl.iava:0

csv at NativeMethodAccessorImpl.java:0

1/1

Executors and tasks

Other important support of Spark

- MLlib Machine learning
 - Distributed and parallel machine learning algorithms with big data and clusters
- Streaming: data processing in near real-time
 - Related to our topic: stream data processing
- Graph Processing: Spark GraphX
 - Parallel computation for graphs
- Many third-party frameworks, e.g.,
 - SparkOCR (<u>https://www.johnsnowlabs.com/spark-ocr/</u>), SparkNLP (<u>https://nlp.johnsnowlabs.com/</u>)
 - o PyDeequ (https://pydeequ.readthedocs.io/en/latest/README.html#) Data quality
 - check our example: https://github.com/rdsea/bigdataplatforms/tree/master/tutorials/dataquality

Spark as a key programming model/analytic engine for Data Lake

Modern lake data: cloud or on-premise

- multiple types of data from different sources (databases, files, sensors, etc)
- different forms in storage: raw data, enriched/processed/cleansing, application-/business curated data, sandbox data (for testing, collaboration)
- o common, standard, cost optimal storage: object storage (S3, Azure), (distributed) file storage (Hadoop FS), ...

Data Lake Core

- Data tables, metadata and catalogs
- Open standards: Parquet, ORC, Iceberg tables, Delta Lake formats
- Many processing and governance tasks

Spark as a key programming model/analytic engine for Data Lake

Many tasks required:

- Ingestion (insert/update)
- Transformation
- Query
- Quality controls

Spark as an important engine

- for batch processing and stream processing (next lecture)
- deal with different data formats
- work with different lake storage
- still in the same framework
- Core engine for Data lake platforms: Apache Hudi, Delta Lake

Spark programs for ingestion/analytics of lake data

Example: Hudi Data Lake

Figure source: https://hudi.apache.org/

different analytics

lake core

different storage

Problems: hard to govern, technology-centric, lack of considerations of data products, cost of effort, etc.

Example

Spark program with Spark Delta for processing data and store the processed data into a cloud data lake storage

```
## hadoop inputFile="hdfs://"
spark_df =spark.read.csv(inputFile,header=True,inferSchema=True)
print(spark_df.head(10))
#do many things, before producing data for datalake
spark_df.write.format("delta").mode("append").save(lake_table_path)
```

A program to read and write data from/to the same lake (delta-rs package, not Spark)

```
if args.read_only !="yes":
    # read data from csv file, no error checking
    df = pd.read_csv(args.input_file)
    write deltalake(args.lake_table_path, df)
# Read from the lake and print out the first 100 entries
# Load data from the delta table
lake_table_data= DeltaTable(args.lake_table_path)
df_result = lake_table_data.to_pandas()
print(df_result.head(100))
```


E.g., Data lake storage

based on Google

Cloud Storage

Summary

• Facts:

- Spark is an important framework
- A user/developer needs to learn to develop Spark applications
- A platform operator/provider offer services for managing resources, processing and monitoring

Thoughts:

- Think about the success of Apache Spark: rich ecosystems!
- Think if you combine data, different distributed programming supports for your big data platform

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io