In [99]:

Employee Attrition using Machine Learning

In [78]:

```
# Importing Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn import linear_model
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import RandomForestClassifier
```

In [101]:

```
df=pd.read_csv("C:/Users/ISHITA GUPTA/Downloads//employee.csv")
```

In [100]:

df.head()

Out[100]:

	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	Gender	HourlyRate	Job
0	1102	1	2	2	0	94	
1	279	8	1	3	1	61	
2	1373	2	2	4	1	92	
3	1392	3	4	4	0	56	
4	591	2	1	1	1	40	

5 rows × 48 columns

•

In [102]:

df.tail()

Out[102]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education
1465	36	No	Travel_Frequently	884	Research & Development	23	2
1466	39	No	Travel_Rarely	613	Research & Development	6	1
1467	27	No	Travel_Rarely	155	Research & Development	4	3
1468	49	No	Travel_Frequently	1023	Sales	2	3
1469	34	No	Travel_Rarely	628	Research & Development	8	3
5 rows × 35 columns							
4							•

In [103]:

```
df.info()
```

1470 non-null int64 1470 non-null object Department DistanceFromHome 1470 non-null int64 1470 non-null int64 Education EducationField 1470 non-null object **EmployeeCount** 1470 non-null int64 1470 non-null int64 **EmployeeNumber EnvironmentSatisfaction** 1470 non-null int64 Gender 1470 non-null object HourlyRate 1470 non-null int64 1470 non-null int64 JobInvolvement 1470 non-null int64 JobLevel JobRole 1470 non-null object JobSatisfaction 1470 non-null int64 1470 non-null object MaritalStatus MonthlyIncome 1470 non-null int64

1470 non-null int64

1470 non-null int64

1470 non-null int64

1470 non-null object

OverTime 1470 non-null object PercentSalaryHike 1470 non-null int64 1470 non-null int64 PerformanceRating RelationshipSatisfaction 1470 non-null int64 StandardHours 1470 non-null int64 StockOptionLevel 1470 non-null int64 1470 non-null int64 TotalWorkingYears TrainingTimesLastYear 1470 non-null int64 WorkLifeBalance 1470 non-null int64 1470 non-null int64 YearsAtCompany YearsInCurrentRole 1470 non-null int64

YearsWithCurrManager 1470 non-null int64 dtypes: int64(26), object(9) memory usage: 402.0+ KB

YearsSinceLastPromotion

In [3]:

MonthlyRate

0ver18

NumCompaniesWorked

df.shape

Out[3]:

(1470, 35)

In [4]:

```
df.describe()
```

Out[4]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeN
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.C
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.8
std	9.135373	403.509100	8.106864	1.024165	0.0	602.0
min	18.000000	102.000000	1.000000	1.000000	1.0	1.0
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.2
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.5
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.7
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.0

8 rows × 26 columns

In [5]:

```
## To check number of null values
df.isnull().sum()
JODLEVET
JobRole
                             0
JobSatisfaction
                             0
MaritalStatus
                             0
MonthlyIncome
MonthlyRate
                             0
NumCompaniesWorked
                             0
0ver18
                             0
OverTime
                             0
PercentSalaryHike
                             0
PerformanceRating
                             0
RelationshipSatisfaction
StandardHours
                             0
StockOptionLevel
                             0
TotalWorkingYears
                             0
TrainingTimesLastYear
WorkLifeBalance
                             0
YearsAtCompany
YearsInCurrentRole
                             0
YearsSinceLastPromotion
```

In [8]:

```
df['Department'].unique()
```

Out[8]:

array(['Sales', 'Research & Development', 'Human Resources'], dtype=object)

In [6]:

```
attrition_count = pd.DataFrame(df['Attrition'].value_counts())
attrition_count
```

Out[6]:

	Attrition
No	1233
Yes	237

In [7]:

```
## Dropping irrelevant data
df.drop(['EmployeeCount' , 'EmployeeNumber'] , axis = 1)
```

Out[7]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField
	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences
•	I 49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences
;	2 37	Yes	Travel_Rarely	1373	Research & Development	2	2	Othe
;	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences
•	1 27	No	Travel_Rarely	591	Research & Development	2	1	Medica
į	3 2	No	Travel_Frequently	1005	Research & Development	2	2	Life Sciences
4					Research &	_	-	

In [12]:

```
df.groupby('Department').sum()
```

Out[12]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumb
Department						
Human Resources	2382	47347	548	187	63	759
Research & Development	35598	775384	8788	2786	961	9672
Sales	16298	356923	4177	1309	446	4633
3 rows × 26 co	olumns					
4						>

In [15]:

df.corr()

Out[15]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount
Age	1.000000	0.010661	-0.001686	0.208034	NaN
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN
Education	0.208034	-0.016806	0.021042	1.000000	NaN
EmployeeCount	NaN	NaN	NaN	NaN	NaN
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN
Jobinvolvement	0.029820	0.046135	0.008783	0.042438	NaN
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	NaN
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	NaN
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	NaN
StandardHours	NaN	NaN	NaN	NaN	NaN
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN
26 rows × 26 columns					
4					•

In []:

Plotting Data

In [16]:

plt.bar(x=df['Attrition'],height=df['JobSatisfaction'])

Out[16]:

<BarContainer object of 1470 artists>

In [17]:

sns.barplot(x='Attrition',y='JobSatisfaction',data=df)

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x26f8c78c8d0>

In [22]:

sns.barplot(x='YearsSinceLastPromotion',y='JobSatisfaction',data=df,hue='Attrition')

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x26fca838eb8>

In [30]:

```
sns.pairplot(df,hue='Attrition')
```

C:\Users\ISHITA GUPTA\Anaconda3\lib\site-packages\statsmodels\nonparametric
\kde.py:487: RuntimeWarning: invalid value encountered in true_divide
 binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)
C:\Users\ISHITA GUPTA\Anaconda3\lib\site-packages\statsmodels\nonparametric
\kdetools.py:34: RuntimeWarning: invalid value encountered in double_scalars
 FAC1 = 2*(np.pi*bw/RANGE)**2

Out[30]:

<seaborn.axisgrid.PairGrid at 0x26fcc61e9b0>


```
In [63]:
```

```
# Taking out the target variable
Y = df['Attrition']
```

In [64]:

```
df = df.drop(columns = ['Attrition', 'EmployeeNumber', 'EmployeeCount', 'StandardHours'])
```

In [66]:

```
# Feature Encoding
le = LabelEncoder()
Y = le.fit_transform(Y)
```

In [68]:

```
# Testing and Training data Split
Train_x, Test_x, Train_y, Test_y = train_test_split(df, Y, test_size=0.35, random_state= 40
```

In [69]:

```
# Model training
reg = linear_model.LogisticRegression()
reg.fit(Train_x,Train_y)
```

C:\Users\ISHITA GUPTA\Anaconda3\lib\site-packages\sklearn\linear_model\logis
tic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.2
2. Specify a solver to silence this warning.
FutureWarning)

Out[69]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```

In [70]:

```
# Making Predictions
predict = reg.predict(Test_x)
```

```
In [71]:
```

```
# Checking Accuracy
accuracy_score(Test_y, predict)
Out[71]:
0.8757281553398059
In [77]:
# Checking Confusion Matrix
confu_mat = confusion_matrix(Test_y, predict)
print(confu_mat)
[[430
        2]
[ 62 21]]
In [73]:
# Checking the Random Forest Classifier
lm2 = RandomForestClassifier(n_estimators= 300,random_state= 20).fit(Train_x,Train_y)
forest_pred = lm2.predict(Test_x)
In [74]:
## Accuracy of Random Forest
accuracy_score(Test_y, forest_pred)
Out[74]:
0.8504854368932039
In [75]:
## Confusion Matrix
confu_mat = confusion_matrix(Test_y, forest_pred)
print(confu mat)
[[432
        0]
[ 77
        6]]
In [86]:
# Separating continuous and catagorical data
con=[]
cat=[]
for i in df.columns:
    if df[i].dtypes=='int64':
        con.append(i)
    elif df[i].dtypes=='object':
        cat.append(i)
```

```
In [88]:
```

con

```
Out[88]:
```

```
['DailyRate',
 'DistanceFromHome',
 'Education',
 'EnvironmentSatisfaction',
 'Gender',
 'HourlyRate',
 'JobInvolvement',
 'JobSatisfaction',
 'MonthlyIncome',
 'MonthlyRate',
 'NumCompaniesWorked',
 'Over18',
 'OverTime',
 'PercentSalaryHike',
 'PerformanceRating',
 'RelationshipSatisfaction',
 'StockOptionLevel',
 'TotalWorkingYears',
 'TrainingTimesLastYear',
 'WorkLifeBalance',
 'YearsAtCompany',
 'YearsInCurrentRole',
 'YearsSinceLastPromotion',
 'YearsWithCurrManager']
```

In [89]:

cat

Out[89]:

[]

In [90]:

```
# Checking the distribution of Values in continous features
plt.figure(figsize = (16,20))
for i in range(0,14):
    plt.subplot(6,5,i+1)
    sns.distplot(df[con[i]])
```

C:\Users\ISHITA GUPTA\Anaconda3\lib\site-packages\statsmodels\nonparametric
\kde.py:487: RuntimeWarning: invalid value encountered in true_divide
 binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)
C:\Users\ISHITA GUPTA\Anaconda3\lib\site-packages\statsmodels\nonparametric
\kdetools.py:34: RuntimeWarning: invalid value encountered in double_scalars
 FAC1 = 2*(np.pi*bw/RANGE)**2

