

ESC201: Introduction to Electronics Module 6: Digital Circuits

Dr. Shubham Sahay,
Associate Professor,
Department of Electrical Engineering,
IIT Kanpur

Sequential Circuits

- Output will change as per <u>current state</u> and the input given!
- Can decide what will be the <u>next state</u> based on current state and inputs
 - → Beginning of decision making and intelligence!

Static SR Flip-Flop* with NOR Gates

 $S \equiv \text{`set' latch output value } Q$; and $R \equiv \text{`reset' latch output value } Q$

For NOR gate, Any input being "1" will make output "0".

Input S = R = 1 is prohibited because when it comes out of that state to S = R = 0, we do not know whether Q becomes 0 or 1, leading to unpredictability of future states.

If S = R = 1 state occurs, make the next state compulsorily S = 1, R = 0 or S = 0, R = 1 state.

^{* &#}x27;Flip-Flop' as defined in Rabaey et al.'s book is any bi-stable component "formed by cross-coupling of gates"

Static SR Flip-Flop with NAND Gates

NAND gate implementation is in the dual space as with NOR gate implementation

For NAND gate, Any input being "0" will make output "1".

Input S = R = 1 is prohibited because when it comes out of that state to S = R = 0, we do not know whether Q becomes 0 or 1, leading to unpredictability of future states.

If S = R = 1 state occurs, make the next state compulsorily S = 1, R = 0 or S = 0, R = 1 state.

- SR Latch (set-reset latch)
- JK Latch
- D Latch (delay latch)
- T Latch (toggle latch)

Let us look at the

- Characteristics table for each latch
- Excitation table for each latch

^{*} Note that registers can built combining latches.

Defining* Latch and Register

Latch

Q "transparent" to *Input* for clock level

Registers

Q "transparent" to *Input* for clock edge

Positive Latch

Positive Register

Negative Latch

Negative Register

* Defined according to *Rabaey, Chandrakasan & Nikolic* Definitions may vary in other text books

Inputs		l Outputs		
S	R	Q_{n+1}	\overline{Q}_{n+1}	Remark
0	0	Q_n	\overline{Q}_n	Hold
0	1	0	1	Re-set
_1	0	1	0	Set
1	1	0	0	Prohibited

Excitation Table

Q_n	Q_{n+1}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

Subscript *n* is current clock cycle Subscript *n*+1 is next clock cycle

Here x represents a don't care state

Inputs		Outp	uts		
	J	K	Q_{n+1}	$\overline{Q_{n+1}}$	Remark
	0	0	Q_n	$\overline{Q_n}$	Hold
	0	1	0	1	Re-set
	1	0	1	0	Set
	1	1	$\overline{Q_n}$	Q_n	Toggle

Subscript *n* is current clock cycle Subscript *n*+1 is next clock cycle

Excitation Table

Desired transition | Required Inputs

Q_n	Q_{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Here x represents a don't care state

Inputs	Outputs			
D	Q_{n+1}	\overline{Q}_{n+1}	Remark	
0	0	1	Reset	
1	1	0	Set	

Subscript *n* is current clock cycle Subscript *n*+1 is next clock cycle

Excitation Table

Desired transition			Required Ir	puts
	Q_n	Q_{n+1}	D	
	0	0	0	

0

0

0

Positive and Negative Latches with MUX

with 2 to 1 Multiplexer (MUX)

Positive Latch

Write (Feedback is broken)

When CLK = 1, Q = D

Read (+ve Feedback is restored) When *CLK* = 0, *Q* value does not change

Negative Latch

Write (Feedback is broken)

When CLK = 0, Q = D

Read (+ve Feedback is restored)

When CLK = 1, Q value does not change

Inputs		Outputs		
	T	Q_{n+1}	\overline{Q}_{n+1}	Remark
	0	Q_n	$\overline{Q_n}$	Hold
	1	\overline{Q}_n	Q_n	Toggle

Subscript *n* is current clock cycle Subscript *n*+1 is next clock cycle

Excitation Table

Desired transition			Required Ir	nputs
Q_n		Q_{n+1}	T	
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	0	

Exercise

• Can you build a D latch from a JK latch?

• Given a latch, with logic gates one may build any other latch.

Give it a try!