

Estructuras Algebraicas para la Computación

9 de junio de 2014

Apellidos y Nombre:		
DNI:	Grado:	Grupo:

- 1. (1.5 pt.) Sea Σ un alfabeto finito. Demuestre que:
 - a) El conjunto Σ^* es numerable.
 - b) El conjunto $\mathcal{P}(\Sigma^*)$ es no numerable.
- 2. (1.5 pt.) Se consideran los retículos $(D_{24},|)$, $(\mathcal{P}(X),\subseteq)$ donde $X=\{a,b,c,d\}$ y $(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\preceq)$. Se pide:
 - a) Estudiar si son álgebras de Boole. En caso afirmativo, definir, si es posible, un isomorfismo entre dos de ellas.
 - b) Hallar, si es posible, las formas normales de los siguientes elementos: $4\in D_{24}$, $\{b,c\}\in \mathcal{P}(X)$ y f(x,y)=x
 - c) Dar los elementos notables de $A=\{4,6,12\}\subseteq D_{24}$
- 3. (2 pt.) En el espacio vectorial \mathbb{R}^5 con las operaciones habituales se consideran los siguientes subespacios U y V dados por:

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \ | \ x_1 - x_3 + x_5 = 0 \ , \ x_2 - 2x_4 = 0 \}$$

$$V = \left\{ egin{array}{ll} x_1 &= a \ x_2 &= a-2b & a,b \in \mathbb{R} \ x_3 &= a+b \ x_4 &= a-b \ x_5 &= b \end{array}
ight.$$

- a) Halle una base y la dimensión de los subespacios U+V y $U\cap V$.
- b) Compruebe el teorema de la dimensión.
- c) Determine una base del complemento ortogonal del subespacio $oldsymbol{U}$.
- 4. (1 pt.) Estudie qué propiedades verifican la suma y el producto usual de matrices definidas en el conjunto

$$\mathcal{M} = \left\{ \left(egin{array}{cc} a & -b \ b & a \end{array}
ight), \; a,b \in \mathbb{R}
ight\}$$

y determine su estructura.

- 5. (2 pt.) Sea la aplicación lineal $f\colon \mathbb{R}_3(x) \to \mathbb{R}_3(x)$ definida de la siguiente forma f(p(x)) = p''(x). Se pide:
 - a) Demostrar que $\mathcal{B}=\{1,1+x,1+x+x^2,1+x+x^2+x^3\}$ es una base de $\mathbb{R}_3(x)$.
 - b) Hallar la matriz asociada a f respecto de la base \mathcal{B} .
 - c) Obtener Ker(f) e Im(f).
 - d) Deducir si f es inyectiva y/o sobreyectiva.
- 6. (2 pt.) Sea la matriz $A=\left(egin{array}{ccc} 2 & lpha & 1 \ 0 & -1 & 3 \ 0 & 2 & 0 \end{array}
 ight)$
 - Determinar los valores del parámetro α tales que:
 - a) $\lambda = -3$ sea un valor propio.
 - b) $ec{v}=\left(egin{array}{c} 0 \ 1 \ 1 \end{array}
 ight)$ sea un vector propio.
 - c) A sea diagonalizable.
 - Asignar un valor adecuado al parámetro α y hallar una base de vectores propios y la matriz de paso.

NORMAS DEL EXAMEN:

Numerar todos los folios y escribir tus datos en todos ellos, incluido éste. Escribir en azul o negro.

Razonar todas las respuestas.

No se puede usar calculadora.