Exercise sheet 4

Curves and Surfaces, MTH201

- 1. Prove that $\ddot{\gamma}(t).\hat{\mathbf{n}}(\gamma(t)) = -\dot{\gamma}(t).\frac{\mathrm{d}}{\mathrm{d}t}\hat{\mathbf{n}}(\gamma(t))$. Here $\hat{\kappa}$ denotes the normal to a surface. (*Hint*: You have done similar things many times before. Which rule helps you?)
- 2. Use the chain rule to show that $\frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0} \hat{\mathbf{n}}(\gamma(t)) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0} \hat{\mathbf{n}}(\delta(t))$ if $\gamma(t_0) = \delta(t_0)$ and $\dot{\gamma}(t_0) = \dot{\delta}(t_0)$. In other words, the derivative is the same for curves which pass through the same point $\gamma(t_0)$ and have the same velocity vectors. (*Hint*: Look at everything from the point of view of the coordinate patch and apply chain rule).
- 3. Can you see how the previous two exercises show that for a unit speed parametrization γ , the quantity $\ddot{\gamma}(t).\hat{\mathbf{n}}(\gamma(t))$ depends only on the point and direction.