

Features

- Advanced Planar Technology
- Low On-Resistance
- Logic Level Gate Drive
- Dual N and P Channel MOSFET
- Surface Mount

Description

- Fully Avalanche Rated

Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.

		N-CH	P-CH
V _{DSS}		30V	-30V
R _{DS(on)}	typ.	0.023Ω	0.042Ω
	max.	0.029Ω	0.058Ω
I _D		6.5A	-4.9A

G	D	S
Gate	Drain	Source

Bass	nort number	Dookogo Tymo	Standard Pack		Oudevable Dout Number	
base	part number	Package Type	Form Quantity		Orderable Part Number	
AU	IRF7319Q	SO-8	Tape and Reel	4000	AUIRF7319QTR	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Cymphol	Dovemeter	M	ax.	Units	
Symbol	Parameter	N-Channel	P-Channel	Uiills	
V_{DS}	Drain-Source Voltage	30	-30	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.5	-4.9		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.2	-3.9	^	
I _{DM}	Pulsed Drain Current ①	30	-30	Α	
Is	Continuous Source Current (Diode Conduction)	2.5	-2.5		
P _D @T _A = 25°C	Maximum Power Dissipation ⑤	2.0		W	
P _D @T _A = 70°C	Maximum Power Dissipation S		1.3		
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 3	82	140	mJ	
I _{AR}	Avalanche Current	4.0	-2.8	Α	
E _{AR}	Repetitive Avalanche Energy		0.20		
V_{GS}	Gate-to-Source Voltage	±	- 20	V	
dv/dt	Peak Diode Recovery dv/dt ②	5.0	-5.0	V/ns	
T_J			FF to 1 150		
T _{STG}	Storage Temperature Range	-55 to + 150		°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount, steady state) ©		62.5	°C/W

HEXFET® is a registered trademark of Infineon.

2015-9-30

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Min.	Тур.	Max.	Units	Conditions
V	Drain-to-Source Breakdown Voltage	N-Ch	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$V_{(BR)DSS}$	Dialii-to-Source Breakdown Voltage	P-Ch	-30			V	$V_{GS} = 0V, I_{D} = -250\mu A$
41/ /AT	Breakdown Voltage Temp. Coefficient	N-Ch		0.022		V/°C	Reference to 25°C, I _D = 1mA
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown voltage remp. Coemcient	P-Ch		-0.022		V/ C	Reference to 25°C, I _D = -1mA
1		N-Ch		0.023	0.029		$V_{GS} = 10V, I_D = 5.8A$ @
D	Static Drain-to-Source On-Resistance	N-CII		0.032	0.046	Ω	$V_{GS} = 4.5V, I_D = 4.7A \oplus$
$R_{DS(on)}$	Static Drain-to-Source On-Resistance	P-Ch		0.042	0.058	22	$V_{GS} = -10V, I_D = -4.9A $ ⑤
		F-CII		0.076	0.098		$V_{GS} = -4.5V, I_{D} = -3.6A \oplus$
V	Gate Threshold Voltage	N-Ch	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
$V_{GS(th)}$	Gate Threshold Voltage	P-Ch	-1.0		-3.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
afo	Forward Trans conductance	N-Ch		14		S	$V_{DS} = 15V, I_D = 5.8A$
gfs	Polward Trans conductance	P-Ch		7.7		3	$V_{DS} = -15V, I_{D} = -4.9A$
		N-Ch			1.0		V_{DS} =24V, V_{GS} = 0V
	Drain to Source Lookage Current	P-Ch			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current	N-Ch			25	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
		P-Ch			-25		$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
	Gate-to-Source Forward Leakage	N-P			± 100	^	V _{GS} = ± 20V
I _{GSS}	Gate-to-Source Reverse Leakage				± 100	1 na	V _{GS} = ± 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q Total Gate Charge N-Ch — 22 33 N-Channel	
Q_g Total Gate Charge $P-Ch$ — 23 34 $I_D = 5.8A$, $V_{DS} = 1.0$	$15V,V_{GS} = 10V$
Q _{gs} Gate-to-Source Charge N-Ch — 2.6 3.9 nC R Observed	4
Q _{gs} Gate-to-Source Charge P-Ch — 3.8 5.7 nC P-Channel	
Q_{ad} Gate-to-Drain Charge $N-Ch$ — 6.4 9.6 Q_{ad}	$-15V,V_{GS} = -10V$
Q _{gd} Gate-to-Drain Charge P-Ch — 5.9 8.9	
t Turn On Delay Time N-Ch — 8.1 12 N-Channel	
$t_{d(on)}$ Turn-On Delay Time P-Ch — 13 19 $v_{DD} = 15V, l_D = 1$	$1.0A,R_G = 6.0\Omega,$
$R_D = 15\Omega$	
t _r Rise Time P-Ch — 13 20	4
N-Ch — 26 39 ns P-Channel	
$t_{d(off)}$ Turn-Off Delay Time $P-Ch$ — 34 51 $V_{DD} = -15V, I_D = -15V$	$-1.0A,R_G = 6.0\Omega,$
N-Ch — 17 26 $R_D = 15\Omega$	
t _f Fall Time P-Ch — 32 48	
N-Ch — 650 — N-Channel	
C_{iss} Input Capacitance $P-Ch$ $$ 710 $$ $V_{GS} = 0V, V_{DS} = 2V$	25V, f = 1.0MHz
N-Ch — 320 — p	-
Coss Output Capacitance P-Ch — 380 — PF P-Channel	
N-Ch — 130 — V _{GS} = 0V,V _{DS} = -	-25V, f = 1.0MHz
C _{rss} Reverse Transfer Capacitance P-Ch 180 —	-

Diode Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
	Continuous Course Current (Rady Diade)	N-Ch			2.5		
I _S	Continuous Source Current (Body Diode)	P-Ch			-2.5	^	
	Pulsed Source Current	N-Ch			30	Α	
I _{SM}	(Body Diode) ①	P-Ch			-30		
V_{SD}	Diode Forward Voltage	N-Ch		0.78	1.0	\/	$T_J = 25^{\circ}C, I_S = 1.7A, V_{GS} = 0V \oplus$
V SD	Diode Forward Voltage	P-Ch		-0.78	-1.0	>	$T_J = 25^{\circ}C, I_S = -1.7A, V_{GS} = 0V $ ④
	Deverse Deserver Time	N-Ch		45	68		N-Channel
t _{rr}	Reverse Recovery Time	P-Ch		44	66	ns	$T_J = 25^{\circ}\text{C}$, $I_F = 1.7\text{A}$, $di/dt = 100\text{A}/\mu\text{s}$
0	Daviere Dagevery Chare	N-Ch		58	87	~C	P-Channel
Q_{rr}	Reverse Recovery Charge	P-Ch		42	63	nC	$T_J = 25^{\circ}C, I_F = -1.7A, di/dt = 100A/\mu s$

Notes:

- $\, \oplus \,$ Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 22)
- $\label{eq:loss} \begin{array}{ll} \text{ \mathbb{Q}} & \text{ N-Channel $I_{SD} \leq 4.0A$, $di/dt \leq 74A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_J \leq 150^{\circ}C$.} \\ & \text{ P-Channel $I_{SD} \leq -2.8A$, $di/dt \leq 150A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_J \leq 150^{\circ}C$.} \end{array}$
- ③ N-Channel Starting T_J = 25°C, L = 10mH, R_G = 25 Ω , I_{AS} = 4.0A. (See Fig. 12) P-Channel Starting T_J = 25°C, L = 35mH, R_G = 25 Ω , I_{AS} = -2.8A.

2015-9-30

Fig. 1 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig. 2 Typical Output Characteristics

Fig. 4 Typical Source-Drain Diode Forward Voltage

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig. 7 Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

4

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig. 12 Typical Output Characteristics

Fig. 14 Typical Transfer Characteristics

Fig. 13 Typical Output Characteristics

Fig. 15 Typical Source-Drain Diode Forward Voltage

Fig 16. Normalized On-Resistance Vs. Temperature

Fig 17. Typical On-Resistance Vs. Drain Current

Fig. 18 Typical On-Resistance Vs. Gate Voltage

Fig 19. Maximum Avalanche Energy Vs. Drain Current

Fig 21. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 22. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline (Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIM	ETERS	
DIIVI	MIN MAX		MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099 .0196		0.25	0.50	
L	.016	.050	0.40	1.27	
у	0° 8°		0°	8°	

NOTES:

1. DIMENSIONING & TO LERANCING PER ASMEY14.5M-1994.

2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.

5. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].

6. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].

7. DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification Information

			Automotive			
		(per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity Level SO-8 MSL1			MSL1			
			Class M2 (+/- 200V) [†]			
	Machine Model	AEC-Q101-002				
FOD	Lluman Dady Madal	Class H1A (+/- 500V) [†]				
ESD	Human Body Model	AEC-Q101-001				
	Channel Davies Madel		Class C5 (+/- 2000V) [†]			
Charged Device Model		AEC-Q101-005				
RoHS Compliant		Yes				

[†] Highest passing voltage.

Revision History

Date	Comments				
• Added "Logic Level Gate Drive" bullet in the features section on page 1					
3/4/2014	Updated data sheet with new IR corporate template				
9/30/2015	Updated datasheet with corporate template				
9/30/2015	Corrected ordering table on page 1.				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.