Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 11

по дисциплине «Алгоритмы и структуры данных» Stepik – введение (разделы 1-3)

Подготовил:

студент группы Р3217 Бураков Илья Алексеевич

Преподаватели:

Романов Алексей Андреевич Волчек Дмитрий Геннадьевич

Пример задачи на программирование

В данной задаче требуется вычислить сумму двух входных целых чисел, лежащих в отрезке от нуля до десяти. Никаких подвохов, это очевидная задача, предназначенная для того, чтобы познакомить вас с проверяющей системой. На следующем степе приведены решения данной задачи на нескольких языках программирования (вы можете прямо сейчас перейти туда и скопировать решение оттуда). В этой задаче, как и во всех задачах на программирование, не нужно проверять, что входные данные удовлетворяют требованиям, заявленным в условии. Другими словами, во всех тестах, на которых будет проверяться ваша программа, на вход будут подаваться два целых числа от 0 до 10.

Sample Input:

0 2

Sample Output:

2

Решение

```
def main():
    a, b = map(int, input().split())
    res = a + b
    print(res)

if __name__ == "__main__":
    main()
```

Задача на программирование: небольшое число Фибоначчи

Дано целое число $1 \le n \le 40$, необходимо вычислить n-е число Фибоначчи (напомним, что F0=0, F1=1 и Fn=Fn-1+Fn-2 при $n \ge 2$).

Sample Input:

3

Sample Output:

2

Решение

```
def fib(n):
    if not n:
        return 0
    elif n == 1:
        return 1
    else:
        a = 0
        b = 1
        for i in range(n - 1):
            a, b = b, a + b
    return b
```

```
def main():
    n = int(input())
    print(fib(n))

if __name__ == "__main__":
    main()
```

Задача на программирование: последняя цифра большого числа Фибоначчи

Дано число $1 \leq n \leq 10^7$, необходимо найти последнюю цифру n-го числа Фибоначчи.

Как мы помним, числа Фибоначчи растут очень быстро, поэтому при их вычислении нужно быть аккуратным с переполнением. В данной задаче, впрочем, этой проблемы можно избежать, поскольку нас интересует только последняя цифра числа Фибоначчи: если $0 \le a, b \le 9$ — последние цифры чисел F_i и F_{i+1} соответственно, то $(a+b) \bmod 10$ — последняя цифра числа F_{i+2} .

Sample Input:

317457

Sample Output:

2.

Решение

```
def fib_digit(n):
    if not n:
        return 0
    elif n == 1:
        return 1
    else:
        a = 0
        b = 1
        for i in range(n - 1):
            a, b = b, (a + b) \% 10
        return b
def main():
    n = int(input())
    print(fib_digit(n))
if __name__ == "__main__":
    main()
```

Задача на программирование повышенной сложности: огромное число Фибоначчи по модулю

Даны целые числа $1 \leq n \leq 10^{18}$ и $2 \leq m \leq 10^{5}$, необходимо найти остаток от деления n-го числа Фибоначчи на m.

Sample Input:

10 2

Sample Output:

1

Решение

```
def fib_mod(n, m):
    if not n:
        return 0
   elif n <= 2:
       return 1
        saved = [0, 1]
        for i in range(n - 1):
            saved.append((saved[-1] + saved[-2]) % m)
            if saved[-1] == 1 and saved[-2] == 0:
               m = len(saved) - 2
                break
        return saved[n % m]
def main():
   n, m = map(int, input().split())
   print(fib_mod(n, m))
if __name__ == "__main__":
```

Задача на программирование: наибольший общий делитель

По данным двум числам 1≤а,b≤2·10⁹ найдите их наибольший общий делитель.

Sample Input 1:

18 35

Sample Output 1:

1

Sample Input 2:

14159572 63967072

Sample Output 2:

4

Решение

```
def gcd(a, b):
    if not a or not b:
        return a or b

    if b > a:
        a, b = b, a

    return gcd(a % b, b)

def main():
    a, b = map(int, input().split())
    print(gcd(a, b))

if __name__ == "__main__":
    main()
```