Lecture 1: History of operating systems

History of Operating Systems Development

■ 1940s: First Generation

- Computers based on vacuum tube technology
- No standard operating system software
- Typical program included every instruction needed by the computer to perform the tasks requested
- Poor machine utilization
 - CPU processed data and performed calculations for fraction of available time
- Early programs
 - Designed to use the resources conservatively
 - Understandability is not a priority

It all started with computer hardware in about 1940s.

ENIAC 1943

Computers were using vacuum tube technology.

ENIAC's vacuum tubes

ENIAC's backside

Programs were loaded into memory manually using switches, punched cards, or paper tapes.

ENIAC: coding by cable connections

- ENIAC (Electronic Numerical Integrator and Computer), at the U.S. Army's Aberdeen Proving Ground in Maryland.
 - built in the 1940s,
 - weighed 30 tons,
 - was eight feet high, three feet deep, and 100 feet long
 - contained over 18,000 vacuum tubes that were cooled by 80 air blowers.

- 1950s: Second Generation
 - Focused on cost effectiveness
 - Computers were expensive
 - ▶ IBM 7094: \$200,000
 - Two widely adopted improvements
 - Computer operators: humans hired to facilitate machine operation
 - Concept of job scheduling: group together programs with similar requirements
 - Expensive time lags between CPU and

- 1950s: Second Generation (continued)
 - I/O device speed gradually became faster
 - ▶ Tape drives, disks, and drums
 - Records blocked before retrieval or storage
 - Access methods developed
 - Added to object code by linkage editor
 - Buffer between I/O and CPU introduced
 - Reduced speed discrepancy
 - Timer interrupts developed
 - Allowed job-sharing

- 1960s: Third Generation
 - Faster CPUs
 - Speed caused problems with slower I/O devices
 - Multiprogramming
 - Allowed loading many programs at one time
 - Program scheduling
 - Initiated with second-generation systems
 - Continues today
 - Few advances in data management
 - Total operating system customization
 - Suit user's needs

■ 1970s

- Faster CPUs
- Speed caused problems with slower I/O devices
- Main memory physical capacity limitations
 - Multiprogramming schemes used to increase CPU
 - Virtual memory developed to solve physical limitation
- Database management software
 - Became a popular tool
- A number of query systems introduced
- Programs started using English-like words, modular structures, and standard operations

The Cray I supercomputer,
introduced in 1976,
boasted 8 MB main
memory and a worldrecord speed of 160
million floating-point
operations per second. Its
circular design meant that
no wire was more than
4 feet (1.2 meters) long.

punch card

ERFE PUNCH CARDS!

FREE PUNCH CARDS!
1 11 1
000000 0000000 000000000000000000000000
111111111111111111111111111111111111111
2222222222222 2222 22222222222222222222
3333333 33 33 3333333333333333333333333
444444 4444444 444444444444444444444444
55 \$\$ \$\$ \$55555555555555555555555555555
■6666666666666666666666666666666666666
$111111 \blacksquare 11111111111111111111111111111$
88888888
9▮99999999₽▮99999999999999999999999999

Paper tape

Punched Paper Tape 25.4 mm wide. Ascii 7-bit character code. Even Parity.

Y X W V U T S R Q P O N M L K J I H G F E D C B A

Babbage's analytical engine (designed in 1840's by Charles Babbage, but cold not be constructed by him. An earlier and simpler version is constructed in 2002, in London)

http://www.computerhistory.org/babb

schatz, Galvin and Gagne ©2018 Operating System Concepts - 10th Edition

Ada Lovalence (at time of Charles Babbage) wrote code for analytical engine to compute Bernulli Numbers

Commodore PET, 1977

- With the development of interactive computation in 1970s, **time-sharing systems** emerged.
- In these systems, multiple users have *terminals* (not computers) connected to a *main computer* and execute her task in the main computer.

■ 1980s

- Cost/performance ratio improvement of computer components
- More flexible hardware (firmware)
- Multiprocessing
 - Allowed parallel program execution
- Evolution of personal computers
- Evolution of high-speed communications
- Distributed processing and networked systems introduced

■ 1990s

- Demand for Internet capability
 - Sparked proliferation of networking capability
 - Increased networking
 - Increased tighter security demands to protect hardware and software
- Multimedia applications
 - Demanding additional power, flexibility, and device compatibility for most operating systems

■ 2000s

- Primary design features support:
 - Multimedia applications
 - Internet and Web access
 - Client/server computing
- Computer systems requirements
 - Increased CPU speed
 - High-speed network attachments
 - Increased number and variety of storage devices
- Virtualization
 - Single server supports different operating systems

- As time went on, card readers, printers, and magnetic tape units were developed as additional hardware elements.
- Assemblers, loaders and simple utility libraries were developed as software tools.
- Later, off-line spooling and channel program methods were developed sequentially.

- Finally, the idea of multiprogramming came.
- Multiprogramming means sharing of resources between more than one processes.
- By multiprogramming the CPU time is not wasted, because, while one process moves on some I/O work, the OS picks another process to execute till the current one passes to I/O operation.

- Another computer system is the multiprocessor system having multiple processors sharing memory and peripheral devices.
- With this configuration, they have greater computing power and higher reliability.

- Multiprocessor systems are classified into two as tightly-coupled and loosely-coupled (distributed).
- In the tightly-coupled one, each processor is assigned a specific duty but processors work in close association, possibly sharing the same memory.
- In the loosely coupled one, each processor has its own memory and copy of the OS.

- Use of the networks required OSs appropriate for them.
- In network systems, each process runs in its own machine but the OS have access to other machines.
- By this way, file sharing, messaging, etc. became possible.
- In networks, users are aware of the fact that s/he is working in a network and when information is exchanged. The user explicitly handles the transfer of information.

History of Machine Hardware

Platform	Operating System
Microcomputers	Linux, UNIX, Windows
Minicomputers	Linux, IBM OS/400, OpenVMS, UNIX
Mainframe computers	IBM OS/390, Linux, UNIX
Supercomputers	IRIX, UNICOS
Workstations, Servers	Linux, UNIX, Windows
Networks	Linux, NetWare, UNIX, Windows
Personal Digital Assistants	Palm OS, Windows Mobile

Types of Operating Systems

- Five categories
 - Batch
 - Interactive
 - Real-time
 - Hybrid
 - Embedded
- Two distinguishing features
 - Response time
 - How data enters into the system