

HYPOTHESIS TESTING

INFERENTIAL STATISTICS

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Hypothesis Test

Rejection Region

Critical Value and Z-score

p-Value

HYPOTHESIS TEST

HYPOTHESIS

A <u>hypothesis</u> is an initial <u>assumption</u> formed before collecting data, and it serves as a statement about a <u>population</u> parameter rather than about the sample data.

HYPOTHESIS TEST

A <u>hypothesis test</u> is simply comparing reality to an assumption and asking, "<u>Did things change?</u>"

Null Hypothesis (H_o)

Represents **no change**, no effect, or the status quo.

Alternative Hypothesis (H_a)

Represents the possibility that things did change or that there is a **significant difference**.

IS YOUR DATA GUILTY?

Hypothesis testing is like a legal system where the defendant is assumed **innocent** until proven guilty.

The Truth

Innocent Guilty

Accept

Reject

X

TYPES OF ERROR

1. Type I Error

The probability of rejecting the null hypothesis when it is true (α).

2. Type II Error

The probability of failing to reject the null hypothesis when it is false (β).

 H_o : Innocent

POWER

The **power of a test** is the probability of correctly rejecting H_o when it is false.

<u>Formula</u>

power =
$$(1 - \beta)$$

 H_o : Innocent

POWER

The **power of a test** is the probability of correctly rejecting H_o when it is false.

Formula

power =
$$(1 - \beta)$$

```
<u>syntax</u>
from statsmodels.stats.power
import TTestPower
standardized mean difference
Cohen's d = (\overline{x} - \mu)/\sigma
power = TTestPower().power(
    effect size = cohen's d,
    nobs = sample size,
    alpha = significance level
```

A company claims that the average lifespan of their batteries is 500 hours. A consumer group suspects that the average lifespan is <u>different</u> from 500 hours.

Null Hypothesis

$$H_o$$
: $\mu_1 = 500$

The average battery lifespan is 500 hours

Alternative Hypothesis

$$H_a$$
: $\mu_1 \neq 500$

The average battery lifespan differs from 500 hours

A company claims that the average lifespan of their batteries is 500 hours. A consumer group suspects that the batteries last <u>fewer than 500 hours</u>.

Null Hypothesis

 H_o : $\mu_1 \ge 500$

The average battery lifespan is at least 500 hours

Alternative Hypothesis

 H_a : $\mu_1 < 500$

The average battery lifespan is fewer than 500 hours

A company claims that the average lifespan of their batteries is 500 hours. An independent lab believes that the batteries last <u>longer than 500 hours</u>.

Null Hypothesis

$$H_o$$
: $\mu_1 \leq 500$

The average battery lifespan is 500 hours at most

Alternative Hypothesis

$$H_a$$
: $\mu_1 > 500$

The average battery lifespan is longer than 500 hours

REJECTION REGION

SIGNIFICANCE LEVEL

The <u>significance level</u> (α) determines the threshold for deciding whether to <u>reject</u> the null hypothesis (H_o).

Typical values for α

0.01

0.05

0.1

Standard Normal Distribution

REJECTION REGION

Two-Tailed Test

Left-Tailed Test

$$H_o$$
: $\mu_1 = \mu_o$

$$H_a$$
: $\mu_1 \neq \mu_o$

$$H_o$$
: $\mu_1 \geq \mu_o$

$$H_a$$
: $\mu_1 < \mu_o$

REJECTION REGION

Two-Tailed Test

rejection region $\alpha/2$ μ_1 μ_o rejection region

$$H_a$$
: $\mu_1 \neq \mu_o$

Right-Tailed Test

$$H_o$$
: $\mu_1 \leq \mu_o$

$$H_a$$
: $\mu_1 > \mu_o$

CRITICAL VALUE AND Z-SCORE

CRITICAL VALUE AND Z-SCORE

lowercase **z**

z refers to the <u>critical value</u> obtained from the standard normal distribution table (z-table).

uppercase **Z**

Z is a standardized variable associated with the test called the **z-score**.

<u>Formula</u>

$$Z = \frac{\overline{x} - \mu_o}{\sigma / \sqrt{n}}$$

Right-Tailed Test

Inferential Statistics

Two-Tailed Test

$$\alpha = 0.05$$

$$z_{0.025} = 1.96$$

Null Hypothesis

$$H_o$$
: $\mu_1 = 500$

The average battery lifespan is 500 hours

<u>Alternative Hypothesis</u>

$$H_a$$
: $\mu_1 \neq 500$

The average battery lifespan differs from 500 hours

<u>Left-Tailed Test</u>

$$\alpha = 0.05$$

$$z_{0.05} = 1.645$$

Null Hypothesis

$$H_o$$
: $\mu_1 \ge 500$

The average battery lifespan is at least 500 hours

Alternative Hypothesis

$$H_a$$
: $\mu_1 < 500$

The average battery lifespan is fewer than 500 hours

Right-Tailed Test

$$\alpha = 0.05$$

$$z_{0.05} = 1.645$$

Null Hypothesis

$$H_o$$
: $\mu_1 \leq 500$

The average battery lifespan is 500 hours at most

Alternative Hypothesis

$$H_a$$
: $\mu_1 > 500$

The average battery lifespan is longer than 500 hours

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average <u>defect rate differs</u> significantly from 10.32.

dataset

defects-30-sample.csv

solution

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average defect rate increases significantly from 10.32.

dataset

defects-30-sample.csv

solution

P-VALUE

P-VALUE

The **p-value** (probability value) is the **smallest level of significance** at which we can still reject the null
hypothesis, given the observed sample statistic.

One-Tailed Test

p-value = 1 - value from the table

Two-Tailed Test

$$p$$
-value = 2(1 - value from the table)

Hypothesis Testing

Reject H_o if **p-value** < α

Fail to reject H_o if p-value $\geq \alpha$

P-VALUE

The **p-value** (probability value) is the **smallest level of significance** at which we can still reject the null
hypothesis, given the observed sample statistic.

One-Tailed Test

p-value = 1 - value from the table

Two-Tailed Test

```
p-value = 2(

1 - value from the table)
```

<u>syntax</u>

from scipy import stats

One-Tailed Test

p value = 1-stats.norm.cdf(z score)

Two-Tailed Test

p_value = 2*(1-stats.norm.cdf(z_score))

A manufacturing process is claimed to have an average defect rate of 10.32 units, with a known standard deviation of 3.17 units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a random sample of 30 production units to test whether the true average <u>defect rate differs</u> significantly from <u>10.32</u>.

dataset

defects-30-sample.csv

solution

LABORATORY

