DUALIDADE EM PROGRAMAÇÃO LINEAR

DCE692 - Pesquisa Operacional

Atualizado em: 27 de setembro de 2023

PROBLEMAS DUAIS

Problemas de programação linear são descritos utilizando um conjunto de equações lineares

- Função objetivo
- Variáveis
- Restrições

Estes são chamados de problemas primais

Todo problema de programação linear possui um problema *dual* associado

- Problema de programação linear
- Cada variável do primal torna-se uma restrição no dual
- Cada restrição do primal torna-se uma variável no dual
- Sentido da função objetivo é invertida

PROBLEMAS DUAIS

Primal	Dual
$\min \ z = cx$	$\max z = yb$
$Ax \le b$	$yA \le c$
$x \ge 0$	$y \ge 0$

COMO TRANSFORMAR UM PROBLEMA PRIMAL EM UM DUAL

- 1. A função objetivo do primal e do dual são invertidas
 - Minimização e maximização
- 2. Os elementos do vetor *b* do primal são os coeficientes da função objetivo do dual
- 3. Os elementos do vetor *c* do primal formam o *rhs* do dual
- 4. O sentido das restrições são invertidas
 - Restrições de ≤ e ≥
- O número de variáveis do dual é igual ao número de restrições do primal
- 6. O número de restrições do dual é igual ao número de variáveis do dual
- 7. A matriz A no dual é a transposta de A no primal

O dual do dual é igual ao problema primal

Primal

min
$$z = 10x_1 + 7x_2 + 15x_3$$

$$5x_1 + 4x_2 + x_3 \le 80$$

$$2x_1 + 3x_2 + 5x_3 \le 30$$

$$x_i \ge 0, \forall i \in \{1, 2, 3\}$$

Se a k-ésima restriçãodo primal é uma igualdade, então a variável y_k do dual é irrestrita (pertence aos reais)

Primal

min
$$z = 10x_1 + 7x_2 + 15x_3$$

$$5x_1 + 4x_2 + x_3 = 80$$

$$2x_1 + 3x_2 + 5x_3 \le 30$$

$$x_i \ge 0, \forall i \in \{1, 2, 3\}$$

Dual

max
$$z = 80y_1 + 30y_2$$
 $5y_1 + 2y_2 \ge 10$
 $4y_1 + 3y_2 \ge 7$
 $y_1 + 5y_2 \ge 15$
 $y_1 \in R$
 $y_2 \ge 0$

Se a k-ésima restrição do primal é maior ou igual, então a variável y_k do dual é não positiva

Primal

min
$$z = 10x_1 + 7x_2 + 15x_3$$

$$5x_1 + 4x_2 + x_3 \le 80$$

$$2x_1 + 3x_2 + 5x_3 \ge 30$$

$$x_i \ge 0, \forall i \in \{1, 2, 3\}$$

Se a variável x_n do primal é sem restrição de sinal, então a n-ésima restrição do dual é uma igualdade

Se a variável x_n do primal é não-positiva, então a n-ésima restrição do dual é de menor ou igual

RESUMO DAS PROPRIEDADES

Primal (min)	\rightarrow	Dual (max)		
k -ésima restrição é \leq		y_k ≥ 0		
k-ésima restrição é =		$y_k \in \mathbf{R}$		
k -ésima restrição é \geq		$y_k \le 0$		
$x_n \ge 0$		n -ésima restrição é \geq		
$x_n \in \mathbb{R}$		n-ésima restrição é =		
$x_n \leq 0$		n -ésima restrição é ≤ 0		
Primal (max)	\leftarrow	Dual (min)		
·		·		

TEOREMA FRACO DA DUALIDADE

Se x for uma solução viável para o problema primal e y for uma solução viável para o problema dual, então $^{\scriptscriptstyle 1}$

$$cx \ge yb$$

Isto é, o valor da função objetivo do primal sempre é maior ou igual que o valor da função objetivo do dual

Em outras palavras, o valor do dual é um limitante inferior para o valor do primal

¹Considerando problemas na forma normal

TEOREMA FRACO DA DUALIDADE - PROVA

Temos que Ax = b, pois x é uma solução viável

Podemos multiplicar ambos os termos por um vetor y

$$yAx = yb$$

Além disso, sabemos que $yA \le c$, pois y é viável para o dual

Logo, assumindo que $x \ge 0$, temos que

$$yAx \le cx$$

Assim, temos que

$$cx \ge yAx = yb$$

Isto quer dizer que $cx \ge yb$ para todas as soluções viáveis x e y

TEOREMA FRACO DA DUALIDADE - COLORÁRIOS

- Qualquer solução primal viável é um limitante superior para o valor da função objetivo do dual
- 2. Qualquer solução dual viável é um limitante inferior para o valor da função objetivo do primal
- Se o primal é viável e sua solução ilimitada, então o dual é inviável
 - Solução ilimitada → Sistema Possível Indeterminado
- Se o dual é viável e sua solução ilimitada, então o primal é inviável

CONDIÇÃO SUFICIENTE DE OTIMALIDADE

Seja x^* uma solução primal e y^* uma solução dual

- $\bigcirc z(x^*)$ representa o valor da função objetivo do primal
- $\bigcirc z(y^*)$ representa o valor da função objetivo do dual

Se $z(x^*) = z(y^*)$, então ambos x^* e y^* são soluções ótimas

CONDIÇÃO SUFICIENTE DE OTIMALIDADE - PROVA

Pelo teorema fraco da dualidade, sabemos que $z(x) \geq z(y^*)$ para quaisquer solução viável x

Vamos supor que $z(x^*) = z(y^*)$

Então, temos que $z(x) \ge z(x^*)$ para quaisquer solução viável x

Isto implica que x^* é a solução ótima do primal

Pelo teorema fraco da dualidade, sabemos que $z(y) \leq z(x^*)$ para quaisquer solução viável y

Vamos supor que $z(x^*) = z(y^*)$

Então, temos que $z(y) \le z(y^*)$ para quaisquer solução viável y Isto implica que y^* é a solução ótima do dual

TEOREMA FORTE DA DUALIDADE

Em par primal-dual

- Se um dos problemas tem uma solução viável ótima
- O segundo problema também tem uma solução viável ótima

Além disso, os valores das funções objetivo são iguais

TEOREMA DA DUALIDADE FORTE - COLORÁRIOS

- Forma alternativa do teorema forte da dualidade: Se ambos os problemas em um par primal-dual têm soluções viáveis, então ambos têm solução ótima e os valores ótimos de ambos os problemas são iguais
- Valor objetivo ilimitado: Se o problema primal (dual) é viável e o problema dual (primal) é inviável, então o problema primal (dual) não pode ter uma solução viável ótima, ou seja, o valor objetivo primal (dual) é ilimitado
- 3. **Separação dos valores objetivo**: O valor da função objetivo $z(x^*)$ é exatamente igual ao valor da função objetivo $z(y^*)$

EXERCÍCIO

Deseja-se consumir quantidades de determinados alimentos de tal forma a satisfazer as necessidades mínimas de 2 nutrientes (proteínas e sais minerais) exigidas a um custo mínimo

	Alimentos			tos		Necessidades mínimas
	a ₁	a ₂	a ₃	a_4	a ₅	de nutrientes (g)
Proteínas (g)	3	4	5	3	6	42
Sais minerais (g)	2	3	4	3	3	24
Custos (R\$)	25	35	50	33	36	

- 1. Modele este problema utilizando programação linear
- 2. Construa o modelo dual
- 3. Encontre a solução ótima do primal (ou dual)
- 4. Como você pode provar que a solução é ótima?