SEC204

Computer Architecture and Low Level Programming

Assignment Project Exam Help Dr. Vasilios Kelefouras

https://tutorcs.com

Email: v.kelefouras@plymouth.ac.uk WeChat: cstutores

Website:

https://www.plymouth.ac.uk/staff/vasilioskelefouras

Date 23/09/2019

School of Computing
(University of Plymouth)

First Things First...

Please ensure that your ID has been scanned!

Assignment Project Exam Help

Computer Architecture and Low Level Programming

Lectures

- Week 1. Introduction to digital electronics, Computer arithmetic
- Week 2. Linux (Martin Rend)ent Project Exam Help
- Week 3. C Programming (Martin Read)
- □ Week 4. Safe S/W https://www.qmaread)
- Week 5. Safe S/W Format String attacks (Martin Read)
 WeChat: cstutorcs
- Week 6. Computer Architecture
- Week 7. Computer Architecture
- Week 8: Memory hierarchy and memory systems
- Week 9. Different Computer architectures
- Week 10 Bomb Lab
- □ Week 11. Security (Kimberly Tam) + revision
- □ Week 12. No Lecture

Computer Architecture and Low Level Programming

Labs

- Week 1. Introduction to digital electronics, Computer arithmetic (paper based)
- Week 2. Linux (Martini Region Project Exam Help
- Week 3. Linux (Martin Read)
- □ Week 4. Safe S/W Buttopowethle (Marin Read)
- □ Week 5. Safe S/W Format Strings (Martin Read)
 We Chat CSTULOTCS
- Week 6. Computer Architecture basics (paper based)
- Week 7. Computer Architecture (Assembly)
- Week 8: Memory hierarchy and memory systems (Assembly)
- Week 9. Computer Systems
- Week 10 Bomb Lab (Assembly) (Martin Read)
- Week 11. Revision and coursework support

Learning Outcomes

- 1. Recognise the operation of microprocessor core components and machine level data representation
- Assignment Project Exam Help
 2. Interpret and manipulate assembly code via hardware debugging techniques

 https://tutorcs.com
- 3. Apply reverse en weekingt: testutores to identify main software flaws
- 4. Identify relevant countermeasures for main software flaws

Assessment

- Coursework (50%)
- In-class Test (50%)

Assignment Project Exam Help

- How to do well?
- https://tutorcs.comPay attention in the Lectures and Labs
- Self-study and protein equipostutores
- Follow instructions in the assignments
- Start early: as soon as the assessment brief is advertised
- Submit your own work (i.e. do not plagiarise) and demonstrate your understanding of the concepts

About Myself

- Dr Vasilios Kelefouras
 - Email: <u>v.kelefouras@plymouth.ac.uk</u>

Assignment Project Exam Help

- Portland Square B331
 https://tutorcs.com
 Office hours: Any time but please email first.

WeChat: cstutorcs

- My Research Area:
 - Optimizing Software in terms of low execution time and low energy consumption
 - High Performance Computing
 - ✓ Optimizing Compilers
 - Task mapping on Heterogeneous hardware architectures

This week - Introduction

Outline of the first half session

- How computers Are made? Project Exam Help
- Logic gates
- Boolean algebra basisstps://tutorcs.com
- Basic circuit diagrams

WeChat: cstutorcs

- What is computer architecture
- Why do we need different computer architectures
- How to compare them different points of view
- Comparison by generation & date

How are computers made? (1)

- □ It all begins with common sand, which consists mostly of silicon dioxide (quartz)
- Using chemical methods, the sand is converted to pure silicon
- Dure silicon shines like a metal but it break able like a regmic
- Silicon is a semiconductor
 - It means that we cantitate: it that the conducting
 - We can switch an electrical current in silicon on or off, at will, and very, very fast (nano seconds)
 WeChat: cstutorcs
 - From silicon, we make fast switches!
 - A whole bunch of those switches together make a chip, which is put inside a plastic cover
- The heart of anything electronic is those silicon switches

How are computers made? (2)

- How do those silicon switches actually make all this happen?
 - This is called switch logic, or Boolean logic, after George Boole (English mathematician, 181.5-1864), who was the first to think of it -- long before electronics existed 1818 and Project Exam Help
 - A switch is either on or off just two possible states https://tutorcs.com
 - A digital signal has only two possible voltage values, usually known as logic
 O and logic 1
 WeChat: cstutorcs
 Typical logic levels
 - For CMOS logic gates, logic 1 is any voltage greater than 70% of the supply voltage, and logic 0 anything less than 30% of supply voltage. The in between values are not acceptable
 - Switches are called transistors

So you have switches. Now what?

- A single switch can only represent "yes-no", "true-false", "1-0" (because that is the least writing...).
- But a bunch of switches can represent anything you want...
 Assignment Project Exam Help

Numbers

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

73	15	88	6	99	254	104	253
73	151	143	175	171	152	98	180
28	215	36	119	63	1	163	196
28	17	69	43	188	71	240	90
203	99	43	8	171	118	192	105
19	62	14	127	60	171	83	186
16	195	204	248	249	217	115	87
2	90	21	210	197	187	182	156
			•				

Digital computing

- The digital computers use digital logic: switches that can turn electricity through a semiconductor ON or OFF (binary states)
- These switches and the logics that they can adopt, are the building blocks of the computers that we use https://tutorcs.com
- An electronic component chat can sapture a particular logic is called a logic gate
- All logic gates are made from multiple transistors
 - It is easier to design hardware circuits in a gate level rather than transistor level..
- The basic logic gates follow...

Switch logic – NOT gate

 The NOT gate is a logic gate (gates are made from transistors) which implements logical negation

Assignment Project Exam Help

Assignment Project Exam Help

A Z=A'

https://tutorcs.com 0 1

1 0

WeChat: cstutorcs

- Whatever logical state is applied to the input, the opposite state will appear at the output
- □ The NOT function is denoted by a horizontal bar over the value to be inverted, as shown in the figure above. In some cases a single quote mark (') may also be used for this purpose: 0' = 1 and 1' = 0

$$A=1 A'=0,$$

$$B = 0$$
 $B' = 1$

Switch logic – AND gate

- The AND gate is a basic digital logic gate that implements logical conjunction
- With the AND function, both inputs (A and B) must be a second put (Z) to be 1—this is why it is called AND gate
- https://tutorcs.com

 With either input at 0, the output will be held to 0

WeChat: cstutorcs Truth table of AND gate:

AND function, «.»

$$0.0 = 0$$

$$0.1 = 0$$

$$1.0 = 0$$

$$1.1 = 1$$

A	В	Z=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Switch logic - OR gate

- The OR gate is a basic digital logic gate that implements logical disjunction
- The OR function allows the output to be true (logic 1) if any one or more of its inputs are true of the inputs are true.

https://tutorcs.com

OR function, «+»

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

WeChat: cstutorcs

Truth table of OR gate:

X	Y	Z=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Switch logic – XOR gate

- The XOR (Exclusive-OR) gate is a digital logic gate that gives a true output only if its two inputs are different
- The XOR function is represented by eject Exam Help

Truth table of XOR gate:

https://tutorcs.c	com _A	В	Y=A (+) B
We hat: cstuto	orcs 0	0	0
B—————————————————————————————————————	0	1	1
	1	0	1
	1	1	0

Switch logic – NAND gate

- The NAND gate can be generated by an AND gate followed by a NOT gate
- The logic symbol for the gate is shown below.

□ The logic circuit of the NANDPSite tulious Solom

Truth table of NAND gate:

A— B—)—out
Out=	(A . B)'

Α	В	^A . B	Out = (A.B)'
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Switch logic –NOR gate

- The NOR gate can be generated by an OR gate followed by a NOT gate
- The logic symbol for the gate is shown below

Truth table of NOR gate:

$A \longrightarrow$	
В —	

Out=
$$(A + B)$$

Α	В	A+B	Q = (A+B)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Summary of 2-input Logic Gates

 The following Truth Table compares the logical functions of the 2-input logic gates above

Assignment Project Exam Help Inputs Truth Table Outputs							
Α	^B h	tt p sp://t	astonu	.com	NOR	XOR	
0	0	0	1	0	1	0	
0	1	veCna	t: qstu	tores	0	1	
1	0	0	1	1	0	1	
1	1	1	0	1	0	0	

Exercise 1

 Write the Boolean expression of the following circuit diagram. Set up the truth table

 \Box F = A . B'

Assignment Project Exan Help

https://tutorcs.com

Truth telephat: cstutorcs

A	В	В'	F = A.B'
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	0

Exercise 2

Write the Boolean expression of the following circuit diagram. Set up

$$\Box$$
 G = A'.B + A.B

A	В	A'	B'	E=A'.B'	K=A.B'	F=E+K	L=A'.B	M=A.B	G=L+M
0	0	1	1	1	0	ī	0	0	0
0	Ĩ	1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0	0	0
1	1	0	0	0	0	0	0	1	1

BOOLEAN AXIOMS AND THEOREMS

Identity Property

Idempotent Property

Complement Property

$$x + 0 = x$$

 $x \cdot 1 = x$
 $x + 1 = 1$
 $x \cdot 0 = 0$

Assignment Project Exam Help
$$^{x'=1}$$

https://tutorcs.com Involution Property

WeChat: cstutorcs

Commutative Property

Associative Property

$$x + y = y + x$$

 $x \cdot y = y \cdot x$

$$x + (y + z) = (x + y) + z$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Simplification of Boolean Expressions

- □ Linear algebra: 2x + y + 3x 2y = 5x y
- □ Boolean algebra: (x+y)(x'+y) = y

Assignment Project Exam Help

Proof https:	Identity Name //tutores.com Distributive Law		
$(x+y)(\overline{x}+y) = x\overline{x}+xy+yx+yy$	Distributive Law		
$= 0+xy+y\overline{x}+yy$	Inverse Law nat: Cstutores		
$= 0+xy+y\overline{x}+y$	Idempotent Law		
$= xy + y\overline{x} + y$	Identity Law		
$= y(x+\overline{x})+y$	Distributive Law (and Commutative Law)		
= y(1)+y	Inverse Law		
= <i>y</i> + <i>y</i>	Identity Law		
= <i>y</i>	Idempotent Law		

Half Adder (2 digit Adder)

- Consider the problem of adding two decimal digits
 - We need two digits for the output, one for the sum and one for the carry, e.g., if A=5, B=6, then Sum=1 and Carry=1

 Assignment Project Exam Help
 The same holds when adding two binary digits too
- Consider the problem of helping / wolfings digitatogether

0+1=1

1+0=1

The Truth Table for a 2 digit adder (Half-Adder)

A B	XOR S
	AND C

The Logic Diagram for a 2 digit adder (Half-Adder)

Inp	uts	Ou	itputs
Α	В	S (Sum)	C (Carry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder (three inputs) (1)

- The half-adder is a very simple circuit and not really very useful because it can only add two bits together
- There is no pravision for a "Garry-in" from the Help previous circuit when adding together multiple data bits https://tutorcs.com
- > We need a circuit that allows three inputs (x, y, and Carry In), and two ১৮৮৮ (Sim Sthill Classy Out)
- However, we can extend this adder to a circuit that allows the addition of larger binary numbers

```
0 0 1 1 +

0 1 0 1

1 0 0 0 Sum

(0 1 1 1 carry)
```

235

+789

1024

Sum

Carry

Full Adder (three inputs) (2)

□ In many ways, the full adder can be thought of **as two half adders connected together**, with the first half adder passing its carry to the second half adder as

shown

Symbol Assignment Pro	Truth Table				
Assignment F10	C-in	B	ım . A	Sum	C-out
https://tutor			0	0	0
WeChat: cs	tuto	rcs	1	1	0
A B =1 S S Court	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

A 4-bit Ripple Carry Adder

If A=0111 and B=1001 what would be the S and Cout?

For more information you can visit https://www.electronics-tutorials.ws/combination/comb 7.html

Any questions?

What is computer architecture?

- The science and art of selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals
- Assignment Project Exam Help

 A set of disciplines that describes a computer system by specifying its parts and their relations://tutorcs.com
- Simple words: how parts are put together to achieve some overall goal

 WeChat: cstutorcs
 - Parts are transistors, logic gates, SRAM memory etc
 - A goal can be high performance, low cost, energy efficiency etc

Why do we need different computer architectures?

- To improve
 - ✓ Performance, e.g., Scientific applications, computer games
 - Power/energy consumption, battery life, e.g., Embedded Systems, Mobile Phones
 - ✓ Cost
 - https://tutorcs.com
 Computer size and weight, e.g., tablet, laptop
 - ✓ Chip area, e.g. ₩ grin implantatores
 - ✓ Abilities, e.g., Security, 3D-graphics, Debugging Support

Hardware and Software

- Hardware refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible.
 - Assignment Project Exam Help

 This includes the monitor, hard drive, memory and the CPU.
- Software is a set of itos octobe of the structing a computer to do specific tasks
- Any task done by software can also be done using hardware, and any operation performed directly by hardware can be done using software
 - Hardware executes a function faster and by consuming less energy

Computer Architectures – need for classification

Too many puzzling words:

• x86, RISC, CISC, EPIC, VLIW,

Harvard

• SIMD, SISD, MISD, MIND, MIND

Microcontrollers, ASIC, ASIP, FPGA,

GPU, DSP

• Pipeline, vector processing,

Physical size? Chronologically? Parallelism? ISA (Instruction Set Architecture)? Assignment Project Feature Healpres? Purpose? Memory access mode? Functionality? https://tutorcs.c Performance? Power consumption? WeChat; restlib progrea?

Cost?

There is no sing restlib progrea?

Flynn classif. We can make a classification for each bullet Flynn classification? Feng classification? Handler classification?

Different computer architectures – classified chronologically & technologically

- □ 1st generation computers vacuum Tubes (1945-1955)
- □ 2nd generation computers Transistors (1955-1965)
- □ 3rd generation Assignment n region et d Exams (1945-1980)
- 4th generation computers: Yery Large Scale Integration (VLSI) (1980-today)
- □ 5th generation computers hat we place that invisible computers (present and beyond)

1st generation computers – vacuum Tubes (1945-1955)

 Vacuum tubes for circuitry and magnetic drums for memory (very little storage available)

- Programmed in machine language oject

Often programmed by physical connection (hardwiring)

Big, Slow, Unreliable Expensive cstuto

Fig.2.
A vacuum-tube circuit storing 1 byte

Fig.1. The ENIAC —the first programmable electronic computer — 1946.
17468 vacuum tubes,
1800 square feet, 30 tons

2nd generation computers – Transistors (1955-1965)

- Transistors replaced vacuum tubes
- Magnetic core memories are introduced

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

- ✓ Smaller
- ✓ Faster
- Cheaper
- ✓ more energy-efficient
- ✓ more reliable
 - Various programming languages introduced (assembly, high-level)

Fig.4. A 32x32 core memory plane storing 1024 bits of data.

Fig.3. The transistor

3rd generation computers – Integrated circuits (1965-1980)

 Transistors were miniaturized and placed on silicon chips, called semiconductors

✓ Faster

✓ Increased memory capacity Project Exam He

✓ Lower cost — massive production tutorcs.com

Introduction of

□ Keyboards

□ Monitors

□ operating system

4th generation computers – Very Large Scale Integration (VLSI) (1980-today)

- Thousands of integrated circuits were built onto a single silicon chip
- What in the first generation filled an entire room could now ship the paragraph of the hand
- Development of the first being the processor
 WeChat: cstutores
- ✓ They are even smaller
- ✓ They are even faster
- Development of GUIs
- Introduction of Mouse pad

Fig.6. 4th generation computer

5th generation computers – Low-power and invisible computers (present and beyond)

- Still in development
- Artificial intelligence

Computers shrank
 Assignment Project Exam Help
 Invisible computers are embedded into

- Invisible computers are embedded into devices, e.g., watches https://tutorcs.com
- Tablets, smart phones
- ULSI (Ultra Large Scale Materialion) Stutores technology
- Microprocessor chips have ten million electronic components
- Smaller, faster, lower power consumption

Fig.7. 5th generation computers - CPUs are embedded into devices

Any questions?

Reading List

Main Textbook
Linda Null, Julia Lobur. The Essentials of Computer Organization and Architecture, 3rd Edition, Jones & Bartlett Publishers 2010
ASSIGNMENT Project Exam Help

Computer Organization & Architecture. Designing for Performance. William Stallings, Seventh Edition, 2005://tutorcs.com

Structured Computer Organization Sixth Edition Andrew S. Tanenbaum, Todd Austin, PEARSON, 2012

Assignment Project Exam Help Thank you

https://tutorcs.com

WeChat: cstutorcs

Date 23/09/2019

School of Computing (University of Plymouth)