

Fully-calibrated Sn LPP EUV Source Spectrum from 5.5 – 265 nm

James Byers, Muharrem Bayraktar (University of Twente)

Zoi Bouza, Joris Scheers, Ruben Schupp, Yahia Mostafa, Lars Behnke, Zeudi Mazzotta, John Sheil, Wim Ubachs, Ronnie Hoekstra, Oscar Versolato (ARCNL)

Contents

1. What is the problem we are trying to solve?

 How to determine continuous, fully calibrated spectrum of Sn microdroplet laserproduced plasma from EUV to DUV range

2. What is our solution?

 Use a 1000 line/mm transmission grating spectrometer (TGS) with a suite of filters with different passbands to remove shorter wavelength emission, removing their higher order contributions which contaminates and dominates longer wavelengths

3. Conclusion

- Fully calibrated spectrum in the 5.5 265.5nm range from a microdroplet-tin 1µm Nd:YAG laser-produced plasma
- This calibration technique can be used to better understand EUV light sources of all types, highly useful for EUV lithography

Raw Emission Spectrum

Figure 1 – Unfiltered, raw emission spectrum for 1 μm Nd:YAG driven Sn LPP

Raw Emission Spectrum

Figure 1 – Unfiltered, raw emission spectrum for 1 μ m Nd:YAG driven Sn LPP , including position of higher diffraction orders

Transmission Grating Spectrometer (TGS)

Figure 2 – Top: Spectrometer optical components; Bottom: Experimental setup showing side and front-view shadowgraph of the Sn target captured by differently oriented cameras

Figure 3 –Filter transmission spectra, showing how full, uninterrupted range can be covered using full suite

Low-Wavelength Spectrum Cleanup: 5.5 - 41 nm

Figure 4 – Top: Spectra taken using various filters.

Bottom: Filter-corrected spectra

Figure 5 – Zr, Si and Al filters showing transmission as a function of filter position at specific wavelength (insets)

SiC 4-Bounce Mirror Filter

(tous, which is the state of th

Figure 6 – SiC mirror system filter. Top: CAD drawings. Bottom: Images of actual device

Figure 7 – Sn LPP spectrum using SiC mirror system filter, showing clear pass-band edge at 50 nm

Mid-Wavelength Spectrum Cleanup: 41 - 115 nm

Figure 8 – Top: Unfiltered spectra and SiC mirror system filtered spectra.

Bottom: Theoretical and PTB calibrated SiC reflectivity spectra

Figure 9 – Unfiltered spectra showing significant higher order contributions, and filtered spectra clear of higher order contributions

High-Wavelength Spectrum Cleanup: 115 - 265.5 nm

Wavelength (nm)

Figure 10 – Top: Emission spectra taken using various filters. Bottom:

Theoretical and calibrated transmission spectra. Those filters calibrated using a vacuum-ultraviolet spectrograph equipped with a deuterium lamp.

Figure 11 – Unfiltered spectra showing significant higher order contributions, and filtered spectra clear of higher order contributions

Full Corrected Spectra: 5.5 - 265 nm

Figure 12 – Unfiltered spectra showing significant higher order contributions above ~20 nm, especially above 30 nm, and the complete filter corrected spectra with higher order contributions removed

Conclusion

- Technique for calibrating full soft-X-ray to DUV spectra of EUV sources, using filters to remove spectrum contaminating higher contributions
- SiC mirror system filter can be used to see the otherwise inaccessible 40 - 115 nm region
- This technique enables optimization of EUV light sources for lithography

Figure 12 – Unfiltered spectra showing significant higher order contributions, and the complete filter corrected spectra with higher order contributions removed

Acknowledgements

Industrial Focus Group XUV EUV Plasma Processes, ARCNL

- Group Leaders PhD Students and Post Docs
- Oscar Versolato Javier Hernandez-Rueda (PD)
- Ronnie Hoekstra
- Wim Ubachs
- John Sheil
- Stefan Witte
- Kjeld Eikema
- **Technicians**
- Laurens van Buuren
- Mart Salverda

- Adam Lassise (PD)
- Randy Meijer (PD)
- Zeudi Mazzatto (PD)
- Dmitry Kurilovich (PhD 04-2019)
- Francesco Torretti (PhD 12-2019)
- Joris Scheers (PhD 10-2020)
- Ruben Schupp (PhD 03-2021)
- Bo Liu (PhD)
- Zoi Bouza (PhD)
- Lars Behnke (PhD)
- Lucas Poirier (PhD)
- Diko Hemminga (PhD)
- Yahia Mostafa (PhD)
- Karl Schubert (PhD)
- Suban Rai (PhD)
- Klaas Bijlsma (PhD)
- Jan Mathijssen (PhD)
- Dion Engels(MsC)

Group Leaders

- Prof. M. Ackermann
- Prof. F. Bijkerk
- Dr M. Bayraktar
- Dr. W. T. E van den Beld
- Prof. J. P. H Benschop
- Dr. R. W. E van de Kruijs
- Dr. I. A. Makhotkin
- Dr. J. M. Sturm
- Dr. A. Yakshin

Technicians

- T. A. H van Oijen
- T. Y Repkes
- N. Schukkink
- B. Spanjer
- H. van der Velde

PhD Students and Post Docs

- Dr. H. Hijihoseini
- Dr. I. Hilmi

Optics, University of Twente

- Dr. P. Lucke
- Dr. I. Milov Dr. M. Moolayil
- Dr. P. Phadke
 - Dr. R. Pushkarev
- Dr. A. Tiwari
- F. Akhmetov
- Z. Bouza
- A. Chandrasekaran
 - C. C. Darmawan
- M. D. Homsma
- K. A. Matveevskii
 - V. J. S. Oldenkotte
 - A. Shafikov
- D. IJpes
- A. Rehman
- A. Valpreda
 - W. Wu

- - **External Collaborators**
 - Caspar Bruineman (SCIENTEC Engineering)
 - Boris Vratzov (NT&D)
 - James Colgan (LANL)
 - A. Ryabtsev (ISAN)
 - M. Basko (KIAM, ISAN)
 - J.R. Crespo López-Urrutia (MPIK)
 - H. Gelderblom (TU/e)
 - A. Borschevsky (U. of Groningen)
 - J. Berengut (UNSW Australia)
 - Ahmed Diallo et al. (PPPL Princeton)
 - Mendez, Rabalan (UAM-Madrid)

