Analítica de **Datos** (Aprendizaje de máquina)

Box plots

Una gráfica para resumirlo todo.

También conocida como Box and Whisker Plot (gráfico de caja y bigotes)

Box plots

Ordenamos los valores de menor a mayor

persona; valor casa carolina;10 ariana;12 quillermo; 13 christian;9 agustina;14 sebastian;12 qabriel;11 lucia;10 gustavo; 9.5 damiano;8.3 elisa;10.6 carlos;12 german; 13 tomas; 7.5 braian;9 maria;10.2 micaela;11.7 marcelo; 12.5

$$\frac{k \cdot (n+1)}{4} \qquad k = 1, 2, 3$$

Box plots (incluyamos ahora un billonario en el análisis)

persona; valor casa carolina;10 ariana:12 8.3 quillermo; 13 christian;9 agustina;14 sebastian; 12 gabriel;11 10 lucia;10 10.2 qustavo; 9.5 10.6 damiano:8.3 elisa;10.6 12 carlos;12 12 german; 13 tomas; 7.5 12.5 braian;9 maria;10.2 13 micaela;11.7 14 marcelo:12.5 800 elon;800

media => $mean(\{x\})$ = 52,384 desviación => $std(\{x\})$ = 176,223 mediana => $median(\{x\})$ = 11 = Q2 80

Q3 =

12.5

Q2 =

Q1 =

9.5

11

Q1 => 9,5 Q3 => 12,5

Rango intercuartil=> $iqr({x}) = 12,5 - 9,5 = 3$

Bigote inferior => Q1 - (1.5 * iqr) = 5Bigote superior=> Q3 + (1.5 * iqr) = 16.5

Box plots Ejemplos en Orange Data Mining

Box plots Ejemplos en Orange Data Mining

¿Qué nos dicen los histogramas?

- Dan cuenta de la distribución de los datos.
- Los picos indican la moda(s).
- Permiten comprobar si las colas (en los extremos) tienen datos poco comunes.
- No siempre simétricos

¿Qué nos dicen los histogramas? Asimetría (skewness)

Distribución
Normal: **Simétrica**

Negative Skew

Positive Skew

¿Qué nos dicen los histogramas? Asimetría (skewness)

Skew: 0.33 => Aproximadamente simétrica

¿Qué nos dicen los histogramas? Asimetría (skewness)

Skew: -0.922

Skew: 7.075

¿Qué nos dicen los histogramas? Asimetría (skewness)

El sesgo se hace evidente en los histogramas y en los box-plots

Valores atípicos

Son valores de la muestra que se escapan de los valores esperados

- Muy grandes o muy pequeños
- Baja frecuencia
- Pueden resultar muy dañinos en los cálculos estadísticos

800

16,5

Valores atípicos - Detección

- Visualmente: cola en los histogramas, Boxplots (1.5*IQR)
- Límite fijo: Media ± 3σ
- Otros métodos de clasificación

Distribución completa

Inliers

Outliers

Normalización de los datos

Temperatura en invierno vs. Temperatura en verano

Los **histogramas** nos pueden aportar información útil de nuestras variables, sin embargo, pueden ser difíciles de comparar si estamos analizando variables en distintas unidades o tomadas bajos condiciones distintas.

Ejemplos de la necesidad de normalización de datos:

El histograma de longitudes vendrá en metros. El histograma de masa vendrá en kilogramos.

Normalización de los datos

Coordenadas estándar o valores estándar o valores normalizados (o simplemente z-scores)

Asumamos que tenemos un conjunto de datos $\{x\}$ compuesto por N elementos, x_1 , x_2 , ..., x_N .

Los valores normalizados de ese conjunto $\{x\}$ es igual a:

$$\hat{x}_i = \frac{(x_i - \text{mean}(\{x\}))}{\text{std}(\{x\})}$$

Con esto conseguiremos que

mean
$$(\{\hat{x}\}) = 0$$
.

$$std(\{\hat{x}\}) = 1.$$

Normalización de los datos

Temperaturas en invierno

Temperaturas en verano

Sin normalizar

Valores normalizados

Normalización de los datos

Departamento de Eléctrica, Electrónica y Computación Facultad de Ingeniería y Arquitectura Sede Manizales

Buscando relaciones

- Hasta ahora hemos analizado una única variable en nuestros datos.
- Sin embargo, uno de los fines del análisis y modelamiento de datos es encontrar relaciones entre las distintas variables que conforman los datasets bajo estudio y partir de estas relaciones poder inferir dependencias, causalidad e impactos.
- Veamos algunas de las técnicas de visualización y análisis descriptivo de dos variables que se emplean a la hora de describir y explorar los datos.

Buscando relaciones

Datos categóricos (conteos y cuadros)

Gráfica de barras

Gráfica de Torta

Buscando relaciones

Stacked bars (barras apiladas)

Buscando relaciones

Mapas de calor (Heatmaps)

Buscando relaciones

Series temporales

The share of daily COVID-19 tests that are positive

Shown is the rolling 7-day average. The number of confirmed cases divided by the number of tests, expressed as a percentage. Tests may refer to the number of tests performed or the number of people tested – depending on which is reported by the particular country.

Our World in Data

Buscando relaciones

Gráficos de dispersión (Scatter plots)

En los gráficos de dispersión se grafica la relación entre dos atributos numéricos.

De un scatter plot se puede inferir el tipo (lineal o no lineal) y la intensidad de relación entre variables.

Se puede agregar más información a un scatter plot en forma de una tercera dimensión o en forma de etiquetas de colores.

Buscando relaciones

Gráficos de dispersión (Scatter plots) - **Variables categóricas**

Tarea - Consulta

- ¿Qué es la correlación?
- Causalidad vs. Correlación
- Mapas de Correlación
- Correlación para visualización

Gracias!

dfcollazosh@unal.edu.co

