WHAT IS CLAIMED IS:

1

2

3

1	1. A method for operating an engine control module having a
2	volatile memory and a first non-volatile memory, the engine control module
3	operable for copying data between the memories, such as calibration data used to
4	control operation of the engine, the method comprising:
5	partitioning the volatile memory and the first non-volatile memory
6	into user-changeable and non-user-changeable portions, the portions including
7	calibration data for use by the engine control module to control an engine; and
8	copying only the user-changeable portion of the volatile memory to
9	the first non-volatile memory for storage in response to changing of the calibration
10	data stored at the volatile memory.
1	2. The method of claim 1 further comprising backing up the
2	user-changeable portion of the first non-volatile memory prior to receiving the
3	changed calibration data, the backing up comprising copying only the user-
4	changeable portion of the first non-volatile memory to a second non-volatile memory
5	for storage.
1	3. The method of claim 2 wherein the backing up comprises
2	compressing the user-changeable portion of the first non-volatile memory prior to
3	copying to the second non-volatile memory, the second-volatile memory
4	correspondingly storing a compressed version of the user-changeable portion of the
5	first non-volatile memory.
1	4. The method of claim 2 further comprising verifying the
2	calibration instruction copied to the first non-volatile memory prior to backing up
3	the calibration data to the second non-volatile memory.
1	5. The method of claim 4 further comprising copying to the

volatile memory in response to rebooting of the engine control module one of (i) the

user-changeable and non-user-changeable portions of the first non-volatile memory

4	or (ii) the entire second non-volatile memory and the non-user-changeable portion
5	of the first non-volatile memory.
1	6. The method of claim 5 wherein the user-changeable and
2	non-user-changeable portions of the first non-volatile memory is copied to the
3	volatile memory if the first non-volatile memory is without defects.
1	7. The method of claim 5 wherein the entire second non-volatile
2	memory and the non-user-changeable portion of the first non-volatile memory are
3	copied to the volatile memory if the first non-volatile memory is defective.
1	8. The method of claim 5 further comprising uncompressing the
2	entire second non-volatile memory if copied to the volatile memory.
1	9. The method of claim 1 wherein partitioning the memory
2	comprises predefining which portions of the memory includes data which may be
3	changed based on the engine operation controlled by the data.
1	10. A method for limiting memory failure of a engine control
2	module, the method comprising:
3	partitioning a volatile memory and a first non-volatile memory of the
4	engine control module into user-changeable and non-user-changeable portions, the
5	portions including calibration data for use by the engine control module to control
6	an engine; and
.7	copying only the user-changeable portion of the volatile memory to
8	the user-changeable portion of the first non-volatile memory in response to changing
9	of the calibration data stored at the volatile memory to limit memory failure due to
10	repeatedly copying the calibration data to the first non-volatile memory.
1	11. The method of claim 10 further comprising backing up the
2	user-changeable portion of the first non-volatile memory prior to receiving the
3	changed calibration data, the backing up comprising copying only the user-

4 changeable portion of the first non-volatile memory to a second non-volatile memory 5 for storage. 12. 1 The method of claim 11 wherein the backing up comprises 2 compressing the user-changeable portion of the first non-volatile memory prior to 3 copied to the second non-volatile memory, the second-volatile memory 4 correspondingly storing a compressed version of the user-changeable portion of the 5 first non-volatile memory. 1 13. The method of claim 11 further comprising verifying the 2 calibration instruction copied to the first non-volatile memory prior to backing up 3 the calibration data to the second non-volatile memory. 1 14. The method of claim 13 further comprising copying to the 2 volatile memory in response to rebooting of the engine control module one of (i) the 3 user-changeable and non-user-changeable portions of the first non-volatile memory 4 or (ii) the entire second non-volatile memory and the non-user-changeable portion 5 of the first non-volatile memory. 1 15. The method of claim 14 wherein the user-changeable and 2 non-user-changeable portions of the first non-volatile memory is copied to the 3 volatile memory if the first non-volatile memory is without defects. 1 16. The method of claim 14 wherein the entire second non-volatile 2 memory and the non-user-changeable portion of the first non-volatile memory are 3 copied to the volatile memory if the first non-volatile memory is defective. 1 17. The method of claim 14 further comprising uncompressing the 2 entire second non-volatile memory if copied to the volatile memory. 1 18. The method of claim 10 wherein partitioning the memory 2 comprises predefining which portions of the memory include data which may be 3 changed based on the engine operation controlled by the data.

1 19. An engine control module for controlling an internal 2 combustion engine, the engine control module comprising: 3 a processor for executing instruction to control the engine; 4 a first non-volatile memory having first and second partitions, the 5 first partition storing engine calibration data classified as user-changeable, the 6 second partition storing engine calibration data classified a non-user-changeable; 7 a volatile memory that is loaded with the contents of both the first and 8 second non-volatile memory partitions at reset of the engine control module such 9 that the engine control module operates using the volatile memory wherein the 10 processor executes data to control the engine in accordance with the user-changeable 11 and non-user-changeable parameters; 12 wherein, in response to the changing of the user-changeable engine 13 calibration data in the volatile memory, the engine controller is configured to copy 14 only the user-changeable engine calibration data from the volatile memory to the 15 first partition of the first non-volatile memory. 20. 1 The engine control module of claim 19 further comprising a 2 second non-volatile memory, the engine control module configured to verify the 3 changes to the changed first-partition and to copy the changed first partition of the 4 non-volatile memory to the second non-volatile memory if the changes are verified.