НТЦ СИТ

микросхема электронного кодового ключа

І. ОБЩЕЕ ОПИСАНИЕ ИС.

ОСОБЕННОСТИ

- Используется только 2 вывода
- 65536 комбинаций кола
- Простой контроль за достоверностью считывания
- Различные типы миниатюрных корпусов для обычного и поверхностного монтажа: КТ-26, КТ-47
- Возможна поставка запрограммированных и незапрограммированных кристаллов в пластинах
- Дешевая альтернатива ключу-чипу DS1990A фирмы "Dallas Semiconductor"

ОПИСАНИЕ ВЫВОДОВ

Номер вывода	Обозначение	Назначение вывода					
1	IN	Вход					
2	NC	Корпус (не используется)					
3	GND	Общий					

ФУНКЦИОНАЛЬНАЯ СХЕМА

ОПИСАНИЕ РАБОТЫ

Микросхема предназначена для использования в системах контроля и управления доступом (СКУД) контактного типа. На основе данной микросхемы возможно изготовление пластиковых карт, брелков, браслетов, электронных ключей с индивидуальным номером. Не требуется встроенных элементов питания.

К1233КТ1 содержит (рис.1) осциллятор, шифратор-мультиплексор и формирователь временной диаграммы для выдачи кода в последовательном виде. С выхода мультиплексора информация поступает на выходной транзистор, подключенный к выводу 1 микросхемы. От этого же вывода происходит питание микросхемы. Цепи питания и передачи информации объединены, что позволяет обойтись двумя выводами.

При подаче на микросхему напряжения питания включается внутренний осциллятор и, в соответствие с запрограммированным кодом, по заданной временной диаграмме микросхема дискретно с двумя уровнями меняет свое сопротивление, что приводит к изменению тока потребления микросхемы.

Код микросхемой выдается без запроса и циклически в виде непрерывного меан-

дра (рис. 2) со скоростью один бит за период внутреннего генератора и включает в себя четырёхразрядное стартовое слово и восемь четырехразрядных информационных слов позиционного кода.

Передача каждого бита стартового и информационных слов представляет собой последовательное удержание потребляемого тока сначала на низком уровне в течение времени $\tau_{\rm u}$, а затем на высоком уровне в течение времени $T_{\rm n}$ - $\tau_{\rm u}$. При этом, при передаче логического «0» — $\tau_{\rm u0}$ приблизительно равна $1/3T_{\rm n}$, при передаче логической «1» — $\tau_{\rm u1}$ приблизительно равна $2/3T_{\rm n}$. То есть, логические «0» и «1» отличаются длительностью импульса $\tau_{\rm u}$.

Каждое информационное слово соответствует двум разрядам шестнадцатиразрядного индивидуального кода ИС согласно табл.1. Условно принимается, что код микросхемой выдаётся с младшего бита.

Избыточность позиционного кода позволяет достоверно опознавать стартовое слово и организовать проверку надежности считывания кода по наличию трех единиц в каждом (кроме стартового) слове кода.

Табл.1

Значение слова	Код
1110	00
1101	01
1011	10
0111	11
0001	Стартовое слово

Примечание - Остальные комбинации запрещены, что может быть использовано для контроля достоверности считывания кода.

II. ПАРАМЕТРЫ ИС.

МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ РЕЖИМОВ

Символ	Параметр	Значение
Ucc max	Напряжение входное постоянное	3 B
-Ucc max	Напряжение входное отрицательное	-0.8 B
Icc max	Ток входной	15 мА
$T_{\mathbf{A}}$	Рабочий диапазон температур	-40°C +85°C

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

При Ucc = 1,4 \pm 1% В и -40°С \leq Тj \leq +85°С, если не указано другое.

Символ	Параметр	Условия	Знач	Единицы		
	• •		не менее не более		измер.	
$\overline{I_0}$	Входной ток в состоянии		0,6	2,2	мА	
	«выключено»	$Tj = +25 \pm 10\%$ °C	0,8	2,0		
I ₁ - I ₀	Разность входных токов в		0.5	3.3	мА	
	состоянии «включено» и в					
	состоянии «выключено»	$Tj = +25 \pm 10\%$ °C	0,8	3.0		
T_{Π}	Период кодовых импульсов		50	230	мксек	
		$Tj = +25 \pm 10\%$ °C	80	200		
$ au_{ m H0}$	Длительность импульса для "лог.0"	-		0,4 ΤΠ		
$ au_{\mathrm{H}1}$	Длительность импульса для "лог.1"		0,6 Τ _Π			

ТИПОВЫЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ

Рис.3 . Зависимость входного тока от постоянного входного напряжения $I_I = f(U_I)$

Рис.4 . Зависимость входного тока от отрицательного постоянного входного напряжения $Ii = f(U_I)$

Рис.5 . Зависимость входного тока от постоянного входного напряжения I_0 = $f(U_{CC})$ в состоянии "выключено"

Рис. 6. Зависимость разности входных токов от постоянного напряжения I_1 - I_0 = $f(U_{CC})$

Рис. 7. Зависимость периода кодовых импульсов от постоянного напряжения $T_{\pi} = f(U_{CC})$

III. РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ.

В типовых схемах применения средний (2) вывод не задействован. Если есть необходимость его распайки, этот вывод может быть соединен с землей. Замыкание со входом (вывод 1) при поданных электрических режимах может привести к выходу микросхемы из строя.

Так как код выдается микросхемой путем изменения уровня тока потребления, питание микросхемы осуществляется от источника стабилизированного напряжения.

Для преобразования токового выходного сигнала в потенциальную форму можно использовать простейшую схему, приведенную на рис.8. Кодовая посылка снимается с резистора Rcч и через компаратор подается на микроконтроллер.

Для считывания кода микросхемы K1233KT1 использовался микроконтроллер PIC-16F876. Для уменьшения количества элементов считывателя возможно использование микроконтроллера со встроенным компаратором.

Для микроконтроллера PIC-16F876 использовать подпрограмму онжом prog.asm, которая позволяет считывать коды микросхемы К1233КТ1. Код с микросхемы, преобразованный в ТТЛ уровни, подается на RC5 (16 вывод PICa), причем в такой фазе, что на экране осциллографа, щуп которого подключен к этому выводу, преобладают узкие "единицы"; и широкие "нули". На RC2 (вывод 13 PICa) через резистор 1кОм подается высокий уровень для вывода на индикатор старшего байта прочитанного кода, или низкий - для младшего. К порту В (выводы 21-28 РІСа) подключен индикатор - восемь светодиодов с резисторами по 200 Ом. Время выполнения команды 200 нс (частота 20 МНz).

Нескольких кодовых замков возможно объединить в сеть, подключенную к СОМ порту персонального компьютера и производить централизованный контроль. Программа РС будет фиксировать время прохождения. Также появляется возможность контроля нахождения субъекта на территории предприятия.

Для микроконтроллера PIC-16F876 можно использовать подпрограмму proga.asm, которая позволяет считывать коды микросхемы K1233KT1 и KT1233KT2. Код с микросхемы, преобразованный в ТТЛ уровни, подается на RC5 (16 вывод PICa), причем в такой фазе (для K1233KT1), что на экране осциллографа, щуп которого подключен к этому выводу, преобладают узкие

"единицы" и широкие "нули". К СОМ порту РС может быть подключено несколько замков, каждый из которых посылает сообщение Y003fffffffIЯ, где:

1 символ: Y или N - код есть в списке и MC откроет замок (Y)

2-3 символы: Нех-цифры - Код ошибки (здесь всегда 00)

4 символ: 3 или 4 - К1233КТ1 или К1233КТ2

5-12 символы: Нех-цифры - Код ИС (для K1233KT1- 0000ffff)

13-14 символы: I+Char - Имя замка

15 символ "," - Запятая - сообщение завершено.

Время выполнения команды 200 нс (частота 20 MHz).

Для каждого замка устанавливается свой список кодов допуска. РС может разрешить открыть замок посетителям, даже если их коды не значатся в (основном) списке. То есть некоторые гости могут беспрепятственно войти, но только в присутствии хозяев. А без диалога с РС микроконтроллер откроет замок в любое время всем, чьи коды записаны в основной список - их наличие определяет подпрограмма dopusk.asm.

Программы считывания кодов написаны в среде MPLAB 5.50 для PIСконтроллера 16F876 и опробованы на макете. Листинги программ находятся на нашем сайте.

ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА КТ-47

ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА КТ-26

	DIM	A	В	С	D	F	G	Н	J	К	L	N	R	s
MILLI-	l	4.32	4.45	3.18	0.37	0.41	1.15	_	2.42	12.70	-	2.04	3.43	0.39
METERS	MAX	5.33	5.20	4.19	0.55	0.55	1.39	2.54	2.66	ı	1	2.66	-	0.50