Resolución de problemas con Permutaciones y combinaciones Resolución de problemas con permutaciones y combinaciones

El paso crucial en la resolución de problemas de recuento es decidir si utilizar

- Permutaciones
- Combinaciones
- O, el Principio Fundamental de Conteo.

En algunos casos, la solución de un problema puede requerir el uso de más de uno de estos principios.

Pautas para resolver problemas de recuento

He aquí algunas directrices generales que nos ayudarán a decidir cómo aplicar estos principios.

- 1. Principio fundamental de recuento
- 2. ¿Importa el orden?

Pautas para contar problemas-Paso 1

Principio fundamental de recuento

 Cuando se hacen elecciones consecutivas utiliza el Principio Fundamental de Conteo.

Pautas para contar problemas - Paso 2

¿Importa el orden?

- Queremos encontrar el número de maneras de elegir r objetos de n objetos.
- Entonces, debemos preguntarnos,
 "¿Importa el orden en que elegimos los objetos?"
- Si el orden importa, usamos permutaciones.
- Si el orden no importa, utilizamos combinaciones.

Por ejemplo, 11-Usar combinaciones

En un grupo de 25 campistas hay 15 mujeres y 10 hombres.

 ¿De cuántas maneras puede elegirse un grupo de 5 exploradores si debe estar formado por 3 mujeres y 2 hombres?

Por ejemplo, 11-Usar combinaciones

Vemos que

- Se pueden elegir tres mujeres de entre las 15 mujeres en el grupo de *C*(15, 3) maneras.
- Se pueden elegir dos hombres de entre los 10 hombres del grupo de C(10, 2) maneras.
- Así, por el Principio Fundamental de Conteo, el número de formas de elegir el grupo de exploración es

$$C(15, 3) \times C(10, 2) = 455 \times 45 = 20.475$$

P. ej. 12-Utilizar permutaciones y combinaciones

Se elegirá un comité de siete de una clase de 20 alumnos.

 La comisión está compuesta por un presidente un vicepresidente, un secretario y otros cuatro miembros.

¿De cuántas formas puede elegirse este comité?

P. ej. 12-Utilizar permutaciones y combinaciones

A la hora de elegir a los tres oficiales, el orden es importante.

• Por tanto, el número de formas de elegirlos es P(20, 3) = 6,840

A continuación, tenemos que elegir otros cuatro estudiantes de los 17 restantes.

 Como el orden no importa, el número de formas de hacerlo es

$$C(17, 4) = 2,380$$

P. ej. 12-Utilizar permutaciones y combinaciones

Así, por el Principio Fundamental de conteo, el número de formas de elegir esta comisión es

$$P(20, 3) \times C(17, 4) = 6.840 \times 2.380$$

= 16,279,200

P. ej. 13-Utilizar permutaciones y combinaciones

En un picnic de empresa, doce empleados deben colocarse en fila para una foto de grupo.

¿De cuántas maneras se puede hacer esto si

a) ¿Jane y John insisten en estar uno al lado del otro?

a) ¿Jane y John se niegan a estar uno al lado del otro?

P. ej. 13-Utilizar permutaciones y combinaciones Ejemplo a)

Como el orden en que se sitúan las personas es importante, utilizamos permutaciones.

- Pero, no podemos usar la fórmula de permutaciones directamente.
- Ya que Jane y John insisten en estar juntos, vamos a pensar en ellos como un solo objeto.

P. ej. 13-Utilizar permutaciones y combinaciones Ejemplo a)

Por lo tanto, tenemos 11 objetos para organizar en una fila.

- Hay *P*(11, 11) formas de hacerlo.
- Para cada uno de estos arreglos, hay dos maneras de hacer que Jane y John juntos:
 - Jane-John o John-Jane

P. ej. 13-Utilizar permutaciones y combinaciones Ejemplo a)

Así, por el Principio Fundamental de Conteo, el número total de arreglos es

$$2 \times P(11, 11) = 2 \times 11! = 79,833,600$$

P. ej. 13-Utilizar permutaciones y combinaciones Ejemplo (b)

Hay *P*(12, 12) formas de disponer a las 12 personas.

- De ellas, 2 × P(11, 11) tienen a Jane y John juntos (por la parte (a)).
- Todos los demás tienen a Jane y John separados.
- Por lo tanto, el número de arreglos con Jane y John separados es

$$P(12, 12) - 2 \times P(11, 11) = 12! - 2 \times 11!$$

= 399,168,000

Ejercicio

En una circunferencia hay cinco puntos. ¿Cuántas cuerdas se pueden trazar a través de ellos?

Un equipo juega 15 partidos por temporada. ¿De cuántas maneras puede tener 8 victorias y 7 derrotas?

Ejercicio

Un equipo juega 15 partidos por temporada. ¿De cuántas maneras puede tener 7 victorias, 5 derrotas y 3 empates?