Prova sem consulta. Duração: 2h.

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos três grupos utilizando folhas de capa distintas.

GRUPO I

1. [3,8] Considere o ponto T = (1/3,1,0) e a curva parametrizada por:

$$\vec{r}(t) = \left(\frac{t^3}{3}, t^2, 1 - t^2\right), \ t \ge 0.$$

- a) Determine o versor da tangente, $\vec{T}(t)$, num ponto genérico da curva e o seu valor no ponto T.
- **b**) Calcule o comprimento de arco entre os pontos $T \in Q = (9,9,-8)$.
- **2.** [4,0] Considere a função escalar:

$$f(x, y, z) = (x - y)^3 - z(1 + y)$$
.

- a) Calcule a derivada direcional de f no ponto P = (1, 2, -3) na direção definida pelo vetor normal à superfície $x^2 + \frac{z^2}{3} xy 3y = -4$ nesse ponto.
- **b**) Em que direção *f* tem a mínima razão de variação no ponto *P*? Qual é o valor dessa razão mínima? Justifique.
- c) Considere a superfície de nível, S, f(x, y, z) = 8. Escreva a equação cartesiana da do plano tangente a S em P.

GRUPO II

3. [3,8] Sabendo que a equação $zx + ye^{z+3} = 1$ define, de modo implícito, z = z(x, y) como função de x e de y na vizinhança do ponto S = (0,1,-3), calcule as derivadas $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ e $\frac{\partial^2 z}{\partial y \partial x}$ em S.

Prova sem consulta. Duração: 2h.

1ª Prova de Avaliação

4. [2,2] Determine e classifique os pontos estacionários da função:

$$f(x, y) = x^4 + y^4 - xy + 3$$
.

GRUPO III

- 5. [4,2] Considere o integral duplo $\int_0^4 \int_{-\sqrt{x}}^{4x-x^2} x \, dy dx$.
 - a) Calcule o valor do integral.
 - **b**) Esboce o domínio de integração.
 - c) Reescreva-o trocando a ordem de integração; defina analiticamente o respetivo domínio de integração.
- **6.** [2,0] Seja uma curva descrita pela função vetorial $\vec{r}(s)$, parametrizada em relação ao comprimento de arco, s, e tal que $\|\vec{r}(s)\| = k$, $\forall s \in [0,a]$ e k > 0. Mostre que $\forall s \in [0,a]$, $\vec{r}(s) \cdot \vec{r}'(s) = 0$ e $\vec{r}(s) \cdot \vec{r}''(s) = -1$.