1 Функции

1.1 Понятие "функция"

Как было показано в предыдущих лекциях, в теории множеств понятие "функция" не является фундаментальным, а скорее происходит из фундаментального понятия "множество". Лямбда-исчисление предоставляет другой подход к определению "функции при котором она является первичным, фундаментальным понятием. Также стоит отметить две важные вещи:

- λ -исчисление это пример формального исчисления, т.е. один из способов работы с функциями механически (например, на компьютере)
- λ -исчисление можно считать обобщённой моделью вычислений, т.е. формальной моделью того, чем в действительности являются вычисления.

1.2 Функции высшего порядка, каррирование

Некоторые функции могут принимать другие функции в качестве аргументов и возвращать функции в качестве результата. Эти функции называются функциями высшего порядка. В бестиповом λ -исчислении можно сказать, что (почти) все функции являются функциями высшего порядка, потому что можно применять любую функцию к любому аргументу и, в частности, к функциям. Единственное возможное исключение - функции от нуля аргументов (константы), которые могут представлять скалярные значения..

Каррирование

Использование функций высшего порядка позволяет упростить общую теорию, рассматривая только одноместные (функции от одного аргумента) или функции без аргументов. А именно любая двухместная функция f(x,y) может быть представлена как одноместная функция высшего порядка f', принимающая аргумент x и возвращающая функцию которая, в свою очередь, принимает аргумент y:

$$f'(x)(y) = f(x, y)$$

Эта техника называется каррирование и может применяться к функциям с произвольным количеством аргументов.

1.3 Аппликация

Рассмотрим "функции"с неформальной точки зрения, на примерах классических функций, таких как sin(x) или x^2 . Далее будем рассматривать только *одноместные* функции (т.е. функции от одного аргумента). Способ представления функций с большим количеством аргументов будет рассмотрен позже..

Аппликация

Дана функция (что бы это ни значило), её главное свойство заключается в том, что, будучи применённой к аргументу, она возвращает определённое значение. Следовательно, оператор аппликации принимает функцию f, её аргумент a и выполняет npumenenue f к a. В стандартной математической нотации это записывается как f(a).

В λ -исчислении применение функции f к Аргументу a обозначается следующим образом:

Отметим, что мы не используем скобки, чтобы отделять символ функции от символа аргумента, потому что мы интерпретируем первый символ как функцию, а все остальные как аргументы.

1.4 Композиция аппликаций

Из классической математики известно, что если есть две одноместные функции: x^2 и x+1, то из них можно составить две сложные функции: x^2+1 и $(x+1)^2$. Как правило, это делается при помощи оператора композиции функций.

Композиция

Даны две функции f и g, а также аргумент, можно составить последовательную аппликацию f к результату аппликации g к a:

Отметим, что можно было выполнять аппликации в другом порядке:

и это даст другой результат: $(f \ g)$ возвращает $\phi y n \kappa u u w$, которая затем применяется к a.

1.5 Функции высшего порядка

Функции высшего порядка

Рассмотрим сложную аппликацию $((f\ g)\ a)$: здесь результат $(f\ g)$ применяется к a, так что это должна быть функция. Пример композиции вроде $((f\ g)\ a)$ делает обязательным рассмотрение так называемых функций высшего порядка, т.е. функций, результатом выполнения которых является функция или какой-либо аргумент является функцией.

Соглашение

Далее будет использоваться **левоассоциативность** для итеративного оператора аппликации:

$$(f_1 \ f_2 \ \dots \ f_n) \rightleftharpoons (\dots ((f_1 \ f_2) \ f_3) \dots \ f_n)$$

Отметим, что здесь все функции f_1, f_2, \dots, f_{n-1} являются функциями высшего порядка.

1.6 Абстракция

При помощи оператора аппликации мы можем перейти от функции и ее аргумента к возвращаемому значению. Возможно ли создать противоположный оператор: который принимает выражение, определяющее значение, полученное из аргумента, и преобразует это выражение в соответствующую функцию? Ответ "да и такой оператор называется абстракцией.

Абстракция

Для любой переменной x и выражения e, определяющего, как его значение рассчитывается из x, следующая запись

называется абстракцией образованной из x и e.

пример

Рассмотрим запись $x^2 + 1$. Строго говоря, под этой записью мы понимаем значение соответствующей функции для данного x, но не самой функции. Но если написать $\lambda x.(x^2 + 1)$, оно станет функцией, а точнее λ абстракцией для функции "квадрат аргумента плюс 1".

1.7 Последовательная абстракция

Как и оператор аппликации, абстракция может быть последовательно выполнена любое количество раз.

Итеративная абстракция

Даны переменные x_1, \ldots, x_n и выражение e, можно составить **итератив- ную абстракцию** следующим образом

$$\lambda x_1 \cdots x_n \cdot e \rightleftharpoons \lambda x_1 \cdot (\lambda x_2 \cdot (\dots (\lambda x_n \cdot e) \dots))$$

Заметим, что в отличие от итеративной аппликации, здесь абстракция правоассоциативна.

2 λ -термы

2.1 Понятие λ -терма

Зафиксируем три множества: множество X переменных, C - множество констант (константных функций) и явно определенный алфавит λ исчисления $\mathcal{A}_{\lambda} = \{(,),\lambda,.\}$

Определение

 λ -терм, составленный из переменных X и констант C - это слово в алфавите $\mathcal{A}_{\lambda} \cup X \cup C$, определяемое по индукции:

• любая переменная $x \in X$ и любая константа $c \in C$ являются λ -термом.

• для любых λ -термов p и q запись

является λ -термом и называется аппликацией p к q.

• для любой переменной $x \in X$ и λ -терма f, запись

$$(\lambda x.f)$$

является λ -термом и называется абстракцией f от x.

Соглашение

- Обычно будем предполагать, что множество переменных X фиксировано.
- Множество всех λ термов над множеством констант C обозначается как $\Lambda(C)$.
- Если $C=\emptyset$, будем писать просто Λ для обозначения всех λ -термов без констант.
- Также обычно будем опускать крайние скобки в λ -термах и использовать итеративную абстракцию и аппликацию, чтобы сделать термы короче и понятнее:

$$\lambda xy.(f \ x \ y) = (\lambda x.(\lambda y((f \ x) \ y)))$$

2.2 Связанные и свободные переменные в λ -термах Определение

Для любого λ -терма t можно составить два множества:

- V(t) множество всех переменных:
- FV(t) множество свободных переменных:

Эти множества определяются следующим образом:

ullet если $t=x\in X$ - переменная, то $FV(t)=V(t)=\{x\}$

- ullet если $t=c\in C$ константа, то $FV(t)=V(t)=\emptyset$
- ullet если $t=(p\ q)$ аппликация, то

$$FV(t) = FV(p) \cup FV(q), V(t) = V(p) \cup V(q)$$

• если $t = \lambda x.p$ - абстракция, то

$$FV(t) = FV(p) \setminus \{x\}, V(t) = V(p)$$

Переменные из $V(t) \setminus FV(t)$ называются **связанными**.

2.3 Замкнутые λ -термы и комбинаторы

Определение

 λ -терм t называется **замкнутым**, тогда и только тогда, когда $FV(t) = \emptyset$. Замкнутый λ -терм называется **комбинатором**, тогда и только тогда, когда он не содержит свободных переменных и констант (только связанные переменные).

Примеры комбинаторов

- $I = \lambda x.x$
- $K = \lambda x \ y.x$
- $S = \lambda x y z . x z (y z)$
- $\lambda f x y.f y x$

Примеры незамкнутых термов

- $\lambda x y.f y x$
- $q\lambda x y.y x$

2.4 Подстановки (неформально)

Идея того, что некоторая переменная в выражении может быть заменена другим выражением, является интуитивной. Действительно, возьмем выражение

$$e = x^2 + y^2$$

оно содержит две переменные: x и y. Следовательно, их можно заменить другими выражениями, скажем $\sin(u)$ вместо x и $\cos(w)$ вместо y. Тогда мы получим новое выражение:

$$e' = \sin^2(u) + \cos^2(w)$$

Если, в свою очередь, заменить обе переменные u и w на z, мы получим:

$$e'' = \sin^2(z) + \cos^2(z)$$

ПРИМЕЧАНИЕ: несмотря на то, что в общепринятом смысле $\sin^2(z) + \cos^2(z) = 1$, мы не можем заменить e'' на 1, потому что подстановка является **чисто синтаксической** операцией, и с её помощью невозможно семантически сокращать выражения.

2.5 Подстановки (формально)

Определение

Подстановка - это отображение из некоторого множества переменных $\{x_1, \ldots, x_n\}$ в множество всех λ -термов $\Lambda(C)$. Обычно это обозначается следующим образом:

$$[x_1=t_1,\ldots,x_n=t_n]$$

или в виде отображения $\theta = \{(x_i, t_i) | i \leq n\}.$

Примеры

Из предыдущего примера можно рассмотреть две подстановки:

- $\theta_1 = [x = \sin(u), y = \cos(w)]$
- $\bullet \ \theta_2 = [u = z, v = z]$

2.6 Применение подстановок

Определение

Для любой подстановки θ и λ -терма t можно определить **применение** $t\theta$ подстановки θ к терму t индуктивно построением t:

- ullet если $t=c\in C$ константа, то t heta=t
- если $t=x\in V$ переменная и $x\in dom(\theta)$ то $t\theta=\theta(x)$
- ullet если $t=x\in V$ переменная и x
 otin dom(heta) то t heta=x
- ullet если $t=(f\ g)$ аппликация, то $t heta=(f heta\ g heta)$
- \bullet если $t=\lambda x.f$ абстракция и $x\notin dom(\theta)$ то $t\theta=\lambda x.(f\theta)$
- ullet если $t=\lambda x.f$ абстракция и $x\in dom(\theta)$ то $t\theta=t$

Примеры

- $(x^2 + y^2)[x = \sin(u), y = \cos(w)] = \sin^2(u) + \cos^2(w)$
- $(\sin^2(u) + \cos^2(w))[u = z, w = z] = \sin^2(z) + \cos^2(z)$

3 Редукции

3.1 Правила переписывания

Выше мы определили, что именно является основными объектами λ исчисления, а точнее λ -термов, теперь можно определить основные операции над этими объектами. Обычно эти операции называют **редукци- ей** и преобразованием (переписыванием) λ -термов в другие λ -термы по
строго определённым **правилам переписывания**. Эти правила переписывания (редукции) не изменяют значение λ -терма, но преобразуют
его синтаксическое представление в некоторую другую форму.

Процесс последовательного переписывания исходного λ -терма имеет важное значение в λ -исчислении и может рассматриваться как общая модель вычислений. Идея в том, что редукции должны приводить терм к некоторому представлению, дальнейшее преобразование которого невозможно, и этот последний терм (называемый нормальной формой)

представляет результат вычисления. Удивительно, но эта простая модель может представлять вычисления произвольной сложности.

3.2 α -редукция

Определение

 α -редукция правило переписывания:

$$\lambda x.t \Rightarrow_{\alpha} \lambda y.(t[x=y])$$

может применяться, когда $y \notin FV(t)$ и подстановка t[x=y] не нарушает смысла t, т.е. некоторое свободное вхождение x не должно становиться связанным после подстановки y вместо x. Далее формализуем это условие и скажем, что y свободно относительно x в t.

В действительности α-редукция - это не что иное, как переименование связанных переменных. Действительно, когда мы связываем переменную, она исчезает из внешней области видимости, и поэтому ее можно безопасно переименовать в любую другую переменную, которая не конфликтует с какой-либо переменной в текущей области видимости.

3.3 α -эквивалентность

Предложение

Если для двух λ -термов p и q верно, что $p \Rightarrow_{\alpha} q$ то $q \Rightarrow_{\alpha} p$

Доказательство

Для доказательства предложения достаточно заметить, что если при $p \Rightarrow_{\alpha} q$ переименовать некоторую переменную x в y, то обратная редукция может быть осуществлена переименованием y в x.

Следствие

Отношение \Rightarrow_{α} является эквивалентностью на $\Lambda(C)$.

Определение

Два λ -терма p и q называются α -эквивалентными, тогда и только тогда, когда

$$p \Rightarrow_{\alpha} q$$

3.4 β -редукция

Определение

 β -редукция правило переписывания:

$$(\lambda x.t)s \Rightarrow_{\beta} t[x=s]$$

может применяться когда подстановка t[x=s] не создаёт конфликта имен переменных в t, т.е. когда s свободно относительно x в t.

В действительности β -редукция - это элементарный шаг вычисления, при котором все вхождения переменной x просто заменяются на s внутри t, как только выражение $(\lambda x.t)s$ встречается в переписываемом терме. Терм вида $(\lambda x.t)s$ называется β -редексом, а результат редукции t[x=s] называется β -сокращением.

3.5 η -редукция

Определение

 η -редукция правило переписывания:

$$\lambda x.(f \ x) \Rightarrow_n f$$

может применяться, когда $x \notin FV(f)$.

В действительности η -редукция - это еще один элементарный шаг вычисления, при котором абстракция сокращается, когда в ней нет необходимости. Действительно, функция $\lambda x.\sin(x)$ имеет то же значение, что и функция sin. Терм вида $\lambda x.(f\ x)$ называется η -редексом, а результат редукции f называется η -сокращением.

3.6 Отношение переписывания

Определение

Прежде всего, введем отношение переписывания \Rightarrow_{all} как объединение:

$$(\Rightarrow_{\alpha}) \cup (\Rightarrow_{\beta}) \cup (\Rightarrow_{\eta})$$

Отношение \Rightarrow_{all} означает "переписать по какой-либо редукции".

Определим отношение \Rightarrow_1 на множестве всех λ -термов $\Lambda(C)$. Вопервых, $\Rightarrow_{all} \subseteq \Rightarrow_1$, т.е. так как $t_1 \Rightarrow_{all} t_2$, то $t_1 \Rightarrow_1 t_2$. Чтобы распространить определение на другие термы, используем индукцию по λ -терму:

- если $f_1 \Rightarrow_1 f_2$ и $g_1 \Rightarrow_1 g_2$, то $(f_1 g_1) \Rightarrow_1 (f_2 g_2)$
- если $f \Rightarrow_1 g$ то $\lambda x.f \Rightarrow_1 \lambda x.g$

Отношение \Rightarrow_1 означает "переписать некоторый подтерм по какой-либо редукции"

Наконец, определим отношение \Rightarrow как транзитивное замыкание \Rightarrow_1 . Значение \Rightarrow : "Существует последовательность редукций подтермов по какой-либо редукции".