EMC TEST REPORT

Report No.: Q190508S006-FCC-E

Supersede Report No: N/A

Applicant	VIITA Watches GmbH			
Product Name	smart watch			
Model No.	TC01			
Serial No.	N/A	N/A		
Test Standard	FCC Part 1	FCC Part 15 Subpart B Class B, ANSI C63.4: 2014		
Test Date	May 14 to May 26, 2019			
Issue Date	May 28, 2019			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
mas. He		David Huang		
Evans He		David Huang		
Test Engineer		Checked By	国际发展的	
T				

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	Q190508S006-FCC-E
Page	2 of 23

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

	<u> </u>
Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	Q190508S006-FCC-E
Page	3 of 23

This page has been left blank intentionally.

Test Report	Q190508S006-FCC-E
Page	4 of 23

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	7
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1	AC POWER LINE CONDUCTED EMISSIONS	8
6.2	RADIATED EMISSIONS	.12
ANI	NEX A. TEST INSTRUMENT	.17
ANI	NEX B. TEST SETUP AND SUPPORTING EQUIPMENT	.18
ANI	NEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	.22
ΔNI	NEX D. DECLARATION OF SIMILARITY	23

Test Report	Q190508S006-FCC-E
Page	5 of 23

1. Report Revision History

Report No.	Report Version	Description	Issue Date
Q190508S006-FCC-E	NONE	Original	May 28, 2019

2. Customer information

Applicant Name	VIITA Watches GmbH	
Applicant Add	Johann-Roithner-Strasse 131	
	4050 Traun	
	Austria	
Manufacturer	VIITA Watches GmbH	
Manufacturer Add	Johann-Roithner-Strasse 131	
	4050 Traun	
	Austria	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software of	E7 FMO(:::::1:::::02.44)	
Radiated Emission	EZ-EMC(ver.lcp-03A1)	
Test Software of	E7 FMC(::an lan 02A4)	
Conducted Emission	EZ-EMC(ver.lcp-03A1)	

Test Report	Q190508S006-FCC-E
Page	6 of 23

4. Equipment under Test (EUT) Information

Description of EUT:	smart watch
Main Model:	TC01
Serial Model:	N/A
Antenna Gain:	0dBi
Antenna Type:	PCB Antenna
Equipment Category :	JAB
Type of Modulation:	GFSK
RF Operating Frequency (ies):	2402-2480 MHz
Number of Channels:	40CH
Input Power:	Battery: Model:433736 Spec: DC 3.8V,530mAh,2.014Wh
Port:	Please refer to the user's manual
Trade Name :	VịiTA
FCC ID:	2ALOFTC01
Date EUT received:	May 13, 2019
Test Date(s):	May 14 to May 26, 2019

Test Report	Q190508S006-FCC-E
Page	7 of 23

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Parameter	Uncertainty	
AC Power Line Conducted Emissions	±2.70dB	
(150kHz~30MHz)		
Radiated Emission(30MHz~1GHz)	±3.74dB	
Radiated Emission(1GHz~6GHz)	±4.66dB	

Test Report	Q190508S006-FCC-E
Page	8 of 23

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	24 °C
Relative Humidity	57%
Atmospheric Pressure	1016mbar
Test date :	May 23, 2019
Tested By :	Evans He

Requirement(s):

Spec	Item	Requirement Applicable						
47CFR§15.	a)	For Low-power radio-freconnected to the public voltage that is conducted frequency or frequencied not exceed the limits in [mu] H/50 ohms line implies at the second context of the limit applies at the limit applies at the context of the limit applies at the lim	c utility (AC) power line ed back onto the AC po es, within the band 150 the following table, as spedance stabilization r	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 network (LISN). The	>			
107		Frequency ranges	Limit (dBμV)				
		(MHz)	QP	Average				
		0.15 ~ 0.5	66 – 56	56 – 46				
		0.5 ~ 5	56	46				
		5 ~ 30	60	50				
Test Setup	Vertical Ground Reference Plane EUT 80cm Horizontal Ground							
	Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.							
 The EUT and supporting equipment were set up in accordance with the requirement the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω /50mH EUT LISN, connect filtered mains. 								

Test Report	Q190508S006-FCC-E
Page	9 of 23

	3.	The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss				
		coaxial cable.				
	4.	All other supporting equipment were powered separately from another main supply.				
	5.	The EUT was switched on and allowed to warm up to its normal operating condition.				
	6.	A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)				
		over the required frequency range using an EMI test receiver.				
	7.	High peaks, relative to the limit line, The EMI test receiver was then tuned to the				
		selected frequencies and the necessary measurements made with a receiver bandwidth				
		setting of 10 kHz.				
	8.	Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).				
Domark						
Remark						
Result	<	Pass Fail N/A				
	1					
Test Data	Ye	s N/A				
Test Plot	Yes	s (See below)				

Test Report	Q190508S006-FCC-E
Page	10 of 23

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1539	27.24	QP	10.03	37.27	65.79	-28.52
2	L1	0.1539	16.62	AVG	10.03	26.65	55.79	-29.14
3	L1	0.4386	34.04	QP	10.03	44.07	57.09	-13.02
4	L1	0.4386	27.84	AVG	10.03	37.87	47.09	-9.22
5	L1	0.6063	24.88	QP	10.03	34.91	56.00	-21.09
6	L1	0.6063	18.34	AVG	10.03	28.37	46.00	-17.63
7	L1	1.0782	24.00	QP	10.03	34.03	56.00	-21.97
8	L1	1.0782	17.73	AVG	10.03	27.76	46.00	-18.24
9	L1	3.2847	22.33	QP	10.06	32.39	56.00	-23.61
10	L1	3.2847	15.37	AVG	10.06	25.43	46.00	-20.57
11	L1	22.8588	13.60	QP	10.35	23.95	60.00	-36.05
12	L1	22.8588	9.80	AVG	10.35	20.15	50.00	-29.85

Test Report	Q190508S006-FCC-E
Page	11 of 23

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1500	26.13	QP	10.02	36.15	66.00	-29.85
2	N	0.1500	15.92	AVG	10.02	25.94	56.00	-30.06
3	N	0.4347	36.02	QP	10.02	46.04	57.16	-11.12
4	N	0.4347	27.05	AVG	10.02	37.07	47.16	-10.09
5	N	0.7038	27.38	QP	10.02	37.40	56.00	-18.60
6	N	0.7038	18.90	AVG	10.02	28.92	46.00	-17.08
7	N	1.0743	26.74	QP	10.03	36.77	56.00	-19.23
8	N	1.0743	18.73	AVG	10.03	28.76	46.00	-17.24
9	N	2.8800	25.39	QP	10.05	35.44	56.00	-20.56
10	N	2.8800	17.16	AVG	10.05	27.21	46.00	-18.79
11	N	23.1201	13.99	QP	10.31	24.30	60.00	-35.70
12	N	23.1201	6.85	AVG	10.31	17.16	50.00	-32.84

Test Report	Q190508S006-FCC-E
Page	12 of 23

6.2 Radiated Emissions

Temperature	24 °C
Relative Humidity	57%
Atmospheric Pressure	1016mbar
Test date :	May 23, 2019
Tested By :	Evans He

Requirement(s):

Spec	Item	Requirement Applicable							
47CFR§15.	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spe the level of any unwanted emission the fundamental emission. The tight edges	V						
109(d)	,	Frequency range (MHz)	Field Strength (μV/m)						
		30 - 88	100						
		88 – 216	150						
		216 - 960	200						
		Above 960	500						
Test Setup		Ant. Tower Support Units Turn Table Ground Plane Test Receiver							
Procedure	2.	, and a second of the second o							

Test Report	Q190508S006-FCC-E
Page	13 of 23

		over a full rotation of the EUT) was chosen.					
	b.	The EUT was then rotated to the direction that gave the maximum					
		emission.					
	C.	Finally, the antenna height was adjusted to the height that gave the maximum					
		emission.					
	3. The res	solution bandwidth and video bandwidth of test receiver/spectrum analyzer is					
	120 kH	z for Quasiy Peak detection at frequency below 1GHz.					
	4. The rese	olution bandwidth of test receiver/spectrum analyzer is 1MHz and video					
	bandwi	dth is 3MHz with Peak detection for Peak measurement at frequency above					
	1GHz.						
	The re	solution bandwidth of test receiver/spectrum analyzer is 1MHz and the video					
	bandw	vidth with Peak detection for Average Measurement as below at frequency					
	above	1GHz.					
	■ 1 kF	dz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)					
	5. Steps 2	2 and 3 were repeated for the next frequency point, until all selected frequency					
	points v	were measured.					
Remark							
Result	Pass	☐ Fail					
Test Data	Yes	N/A					
Test Plot	Yes (See belo	w) N/A					

Test Report	Q190508S006-FCC-E
Page	14 of 23

Test Mode: Normal Working Mode

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Н	30.0000	24.84	20.10	22.28	0.13	22.79	40.00	-17.21	100	83
2	Н	99.8777	28.12	8.69	22.32	0.82	15.31	43.50	-28.19	100	64
3	Н	159.7844	27.92	11.02	22.27	1.32	17.99	43.50	-25.51	100	291
4	Н	325.5958	25.01	14.21	22.22	1.79	18.79	46.00	-27.21	100	83
5	Н	590.9737	25.74	20.23	21.60	2.30	26.67	46.00	-19.33	100	269
6	Н	952.0937	25.02	23.70	20.78	2.70	30.64	46.00	-15.36	100	215

Test Report	Q190508S006-FCC-E
Page	15 of 23

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	V	30.5306	27.17	19.76	22.28	0.13	24.78	40.00	-15.22	100	343
2	٧	99.5281	28.03	8.65	22.32	0.82	15.18	43.50	-28.32	100	211
3	V	128.1130	24.82	11.60	22.38	1.06	15.10	43.50	-28.40	100	75
4	٧	477.1694	30.73	18.43	21.86	2.08	29.38	46.00	-16.62	100	238
5	٧	790.6188	25.53	22.11	21.17	2.54	29.01	46.00	-16.99	100	132
6	V	955.4381	24.69	23.70	20.77	2.71	30.33	46.00	-15.67	100	27

Test Report	Q190508S006-FCC-E
Page	16 of 23

Above 1GHz

Frequency	Read_level	A	Height	Polarity	Factors	Level	Limit	Margin	Detector
(MHz)	(dBµV/m)	Azimuth	(cm)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(PK/AV)
1124.3	68.21	62	100	٧	-19.38	48.83	74	-25.17	PK
1225.46	62.28	218	100	٧	-15.96	46.32	74	-27.68	PK
1655.43	62.04	195	100	V	-14.18	47.86	74	-26.14	PK
1692.4	63.36	235	100	Н	-18.52	44.84	74	-29.16	PK
1997.3	61.91	168	100	Н	-13.68	48.23	74	-25.77	PK
2113.4	63.21	305	100	Н	-16.75	46.46	74	-27.54	PK

Note1: The highest frequency of the EUT is 2480 MHz, so the testing has been conformed to 5*2480MHz=12,400MHz.

Note2: The frequency that above 3GHz is mainly from the environment noise.

 $Note 3:\ The\ AV\ measurement\ performed,\ more\ than\ 20 dB\ below\ limit\ so\ AV\ test\ data\ was\ not\ presented.$

Test Report	Q190508S006-FCC-E
Page	17 of 23

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due
AC Line Conducted Emissions				
EMI test receiver	ESCS30	8471241027	01/04/2019	01/03/2020
Artificial Mains Network	8127	8127713	01/04/2019	01/03/2020
ISN	ISN T800	34373	01/04/2019	01/03/2020
Radiated Emissions				
ENAL to at your six on	EOL C	1300.5001K06-	04/04/0040	04/02/2020
EMI test receiver	ESL6	100262-eQ	01/04/2019	01/03/2020
Active Antenna	AL-130	121031	02/07/2019	02/06/2020
3m Semi-anechoic Chamber	9m*6m*6m	N/A	10/18/2018	10/17/2019
Signal Amplifier	8447E	443008	01/24/2019	01/23/2020
MXA signal analyzer	N9020A	MY49100060	01/04/2019	01/03/2020
Horn Antenna	HAH-118	71259	01/25/2019	01/24/2020
Horn Antenna	HAH-118	71283	02/01/2019	01/31/2020
AMPLIFIER	EM01G26G	60613	01/24/2019	01/23/2020
AMPLIFIER	Emc012645	980077	01/04/2019	01/03/2020
Bilog Antenna (30MHz~6GHz)	JB6	A110712	02/07/2019	02/06/2020

Test Report	Q190508S006-FCC-E
Page	18 of 23

Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report	Q190508S006-FCC-E
Page	19 of 23

Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report	Q190508S006-FCC-E
Page	20 of 23

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report	Q190508S006-FCC-E
Page	21 of 23

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
-	-	-	-

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
-	-	-	-	-

Test Report	Q190508S006-FCC-E
Page	22 of 23

Annex C. User Manual / Block Diagram / Schematics / Partlist

N/A

Test Report	Q190508S006-FCC-E
Page	23 of 23

Annex D. DECLARATION OF SIMILARITY

N/A