Manoj Kumar

GATE AIR - 13

M.Tech in Data Science From IIT Guwahati

Gate DSAI - Manoj Kumar

Linear Algebra Practice - VII

Perform the Singular Value Decomposition (SVD) of the matrix A given below. Find matrices U, Σ , and V such that $A=U\Sigma V^T$.

The rectangular matrix A is:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

If A is a 10 imes 3 matrix with an SVD $A = U \Sigma V^T$, where

$$\Sigma = egin{bmatrix} 100 & 0 & 0 \ 0 & 10 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

answer the following:

- (i) What is the size of U?
- (ii) What is the size of V?
- (iii) What is the rank of A?
- (iv) What are the eigenvalues of AA^T ?
- (v) What are the eigenvalues of A^TA ?

Q3 [MSQ]

Let M be a 3 imes 2 real matrix having a singular value decomposition as $M = USV^T$, where the matrix

$$S = egin{bmatrix} \sqrt{3} & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}^T,$$

U is a 3 imes 3 orthogonal matrix, and V is a 2 imes 2 orthogonal matrix. Then which of the following statements is/are true?

- (A) The rank of the matrix M is 1.
- (B) The trace of the matrix M^TM is 4.
- (C) The largest singular value of the matrix $(M^TM)^{-1}M^T$ is 1.
- (D) The nullity of the matrix M is 1.

Q 4 [MSQ]

Which of the following statements are true?

- (a) For a matrix A, in the Singular Value Decomposition (SVD) $A = U \Sigma V^T$, the factor U is an orthogonal matrix.
- (b) For a symmetric positive definite matrix A, all pivots are positive.
- (c) A 5 imes 5 matrix B has eigenvalue $\lambda=3$ with algebraic multiplicity 5 and geometric multiplicity 1 , and the matrix B is therefore diagonalizable.
- (d) All the eigenvalues of a real symmetric matrix are real.

Consider the following matrix and its singular value decomposition $A = U \Sigma V^T$:

$$A = \begin{pmatrix} 1/\sqrt{10} & 1/\sqrt{15} & 1/\sqrt{2} & -1/\sqrt{3} \\ -2/\sqrt{10} & 3/\sqrt{15} & 0 & 0 \\ 2/\sqrt{10} & 2/\sqrt{15} & 0 & 1/\sqrt{3} \\ -1/\sqrt{10} & -1/\sqrt{15} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{2} \\ -1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}^T.$$

- (a) A is a $__ imes __$ matrix of rank $r = __$.
- (b) Find orthonormal bases of the four fundamental subspaces of $oldsymbol{A}$.

Throughout this problem, the matrix A has the following Singular Value Decomposition:

$$A = \underbrace{\frac{1}{3} \begin{bmatrix} 2 & 2 & -1 \\ x & 2 & 2 \\ 2 & -1 & 2 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{V} \underbrace{\frac{1}{5} \begin{bmatrix} 4 & -3 \\ 3 & y \end{bmatrix}}_{V^{T}}$$

where the matrices U and V are orthogonal and x, y denote two mystery real numbers.

- 1. What are the values of x and y?
- 2. Fill in the blanks:
 - ullet The rank of the matrix A is ullet
 - ullet The eigenvalues of A^TA are ____, and the eigenvalues of AA^T are ____.
 - A non-zero eigenvector of AA^T is $[__, __, __]^T$.

Q 7 [MSQ]

Which of the following statements are true?

- (a) The singular values of a diagonalizable, invertible 2 imes 2 matrix are the absolute values of its eigenvalues.
- (b) If S is symmetric, then either S or -S is positive-semidefinite.
- (c) If

$$A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$$

and x
eq 0, then $\|A^n x\| o \infty$ as $n o \infty$.

- (d) If λ is an eigenvalue of AA^T , then λ is also an eigenvalue of A^TA .
- (e) Any invertible matrix is diagonalizable.

Q8 [MSQ]

Which of the following statements are true?

- (a) If A is a 3 imes 3 matrix that has eigenvalues 1 and -1, both of algebraic multiplicity one, then A is diagonalizable (over the real numbers).
- (b) Let V be a subspace of \mathbb{R}^n and let P_V be the matrix for projection onto V. Then P_V is diagonalizable.
- (c) Any eigenvector of A with a nonzero eigenvalue is contained in the column space of A.
- (d) A positive definite symmetric matrix has positive numbers on the main diagonal.

The matrix A has a nullspace N(A) spanned by

$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 ,

and a left nullspace $N(A^T)$ spanned by

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix},$$

- (a) What is the shape of the matrix $oldsymbol{A}$ and its rank?
- (b) If we consider the vector

$$b = egin{bmatrix} -1 \ lpha \ 0 \ eta \end{bmatrix},$$

for what value(s) of lpha and eta (if any) is Ax=b solvable? Will the solution (if any) be unique?

(c) Give the orthogonal projections of

$$y = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$

onto two of the four fundamental subspaces of A.

You are given a matrix

$$A = egin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 0 \ 1 & 1 & 1 \ 1 & 0 & 1 \ \end{bmatrix}.$$

- (a) Determine the number of non-zero singular values of A, A^T , and A^TA .
- (b) Give bases for the column space (C(A)), null space (N(A)), and the null space of the transpose ($N(A^T)$).

Let A be a real 3 imes3 matrix. The matrix $B=A+A^T$ has eigenvalues $\lambda_1
eq 2$, $\lambda_2=0$, and $\lambda_3=1$, with corresponding eigenvectors:

$$x_1 = egin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}, \quad x_2 = egin{bmatrix} -2 \ 1 \ 0 \end{bmatrix}, \quad x_3 = egin{bmatrix} 1 \ 2 \ -5 \end{bmatrix}.$$

- (a) Find the matrix e^B .
- (b) Let $C=(I-B)(I+B)^{-1}$. What are the eigenvalues of C?

The matrix A has the diagonalization $A = X\Lambda X^{-1}$ with

$$X = \begin{pmatrix} 1 & 1 & -1 & 0 \\ & 1 & 2 & 1 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix}, \ \Lambda = \begin{pmatrix} 1 & & & \\ & 2 & & \\ & & & -2 & \\ & & & & -1 \end{pmatrix}.$$

Give a basis for the nullspace N(M) of the matrix $M=A^4-2A^2-8I$.

Q 13,14

Let
$$A=egin{bmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}$$
 and I_3 be the $3 imes 3$ identity matrix. Determine the nullity of $5A(I_3+A+A^2)$.

Let A be the 2 imes 2 real matrix having eigenvalues 1 and -1, with corresponding eigenvectors

$$\begin{bmatrix} rac{\sqrt{3}}{2} \ rac{1}{2} \end{bmatrix}$$
 and $\begin{bmatrix} -rac{1}{2} \ rac{\sqrt{3}}{2} \end{bmatrix}$

respectively. If
$$A^{2021}=\begin{bmatrix} a & b \ c & d \end{bmatrix}$$
 , then $a+b+c+d$ equals _____.

Let M be the collection of all 3 imes 3 real symmetric positive definite matrices. Consider the set

$$S = \left\{ A \in M : A^{50} - rac{1}{4}A^{48} = 0
ight\},$$

where 0 denotes the 3 imes 3 zero matrix. Then the number of elements in S equals:

- (A) 0
- (B) 1
- (C) 8
- (D) ∞

Let M be a 3 imes3 non-zero idempotent matrix ($M^2=M$) and let I_3 denote the 3 imes3 identity matrix. Determine which of the following statements is **FALSE**:

- 1. The eigenvalues of M are 0 and 1.
- 2. Rank(M) = Trace(M).
- 3. $I_3 M$ is idempotent.
- 4. $(I_3+M)^{-1}=I_3-2M$.

Options:

- (A) 1
- (B) 2
- (C) 3
- (D) 4

For real numbers a, b, and c, let

$$M = egin{bmatrix} a & ac & 0 \ 1 & c & 0 \ b & bc & 1 \end{bmatrix}.$$

Which of the following statements is **TRUE**?

- 1. $\operatorname{Rank}(M) = 3$ for every $a,b,c \in \mathbb{R}$.
- 2. If a+c=0, then M is diagonalizable for every $b\in\mathbb{R}$.
- 3. M has a pair of orthogonal eigenvectors for every $a,b,c\in\mathbb{R}$.
- 4. If b=0 and a+c=1, then M is **NOT** idempotent.

Let A be a 2×2 real matrix such that AB = BA for all 2×2 real matrices B. If the trace of A equals 5, determine the determinant of A.

Q 19

Let M be a 2×2 real matrix such that $(I+M)^{-1}=I - \alpha M$, where α is a non-zero real number and I is the 2×2 identity matrix. If the trace of the matrix M is 3, then the value of α is:

Which of the following statements are true?

a. If v is an eigenvector of A^TA , then Av is also an eigenvector of AA^T .

b. If v is an eigenvector of A^TA , then v is an eigenvector of AA^T

c. The trace of A^TA is equal to the sum of all a_{ij}^2 , where a_{ij} are the elements of matrix A.

d. For every rank-one matrix A, the square of the singular value is equal to the sum of all a_{ij}^2 , where a_{ij} are the elements of A.

Given the real matrix $oldsymbol{A}$ and two of its eigenvectors:

of its eigenvectors:
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 0 \\ i \\ 1 \end{bmatrix},$$

with corresponding eigenvalues $\lambda_1=1$ and $\lambda_2=2+i$, answer the following:

- (a) Determine the third eigenvalue λ_3 of A and construct the matrix A in terms of its eigenvalues and eigenvectors.
- (b) Compute the determinant and trace of A. $^{\prime}$
- (c) Derive the characteristic polynomial of A, $\det(A-\lambda I)$, in terms of λ . Simplify your answer to a polynomial expression.
- (d) For the matrix $A^2-2I\ e^{A^{-1}}$ determine its eigenvalues and eigenvectors.

If A is a 3 imes 3 matrix with $\det(A) = 3$, calculate $\det(A^TA^{-1}) + \det(2A)$.

Consider the matrix

$$A=egin{bmatrix} 3 & 1 \ 2 & 2 \end{bmatrix},$$

which has an eigenvalue $\lambda_1=1$ and a corresponding eigenvector $x_1=egin{bmatrix}1\\-2\end{bmatrix}$.

- (a) Determine the other eigenvalue λ_2 and find a corresponding eigenvector $x_2 = egin{bmatrix} 1 \\ ? \end{bmatrix}$.
- (b) Let B be a 2 imes 2 matrix such that $Bx_k=(1-\lambda_k^2)\lambda_k+\lambda_k^2)x_k$ for the two eigenvectors x_k (where k=1,2). Compute the matrix B.

Let A be a square matrix such that the null space of A-I is spanned by

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 ,

and the null space of A-5I is spanned by

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

- (a) Without performing detailed calculations, determine whether $oldsymbol{A}$ is Hermitian or not.
- (b) Construct the matrix A.
- (c) Compute e^{A+I} .

For each of the following statements about matrices, determine whether it must be true, may be true, or cannot be true.

- (a) If a matrix is diagonalizable, it must/may/cannot have orthogonal eigenvectors.
- (b) If a matrix A is not diagonalizable, then $\det(A-\lambda I)$ must/may/cannot have repeated roots.
- (c) If A^nx goes to zero as $n o \infty$ for some x, then A must/may/cannot have an eigenvalue λ with $|\lambda| > 1$.
- (d) If $e^{At}x$ goes to zero as $t o\infty$ for every x, then A must/may/cannot have an eigenvalue λ with $|\lambda|>1$.
- (e) If A has an eigenvector $egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, then it must/may/cannot have an eigenvector $egin{bmatrix} -3 \\ -6 \\ -9 \end{bmatrix}$.

GATE DA 2024 [2 M]

Let

$$u = egin{bmatrix} 1 \ 2 \ 3 \ 4 \ 5 \end{bmatrix}$$

and let $\sigma_1,\sigma_2,\sigma_3,\sigma_4,\sigma_5$ be the singular values of the matrix

$$M = uu^T$$

where u^T is the transpose of u.

The value of $\sum_{i=1}^5 \sigma_i$ is _____.