Aprendizagem Automática II Proposta para o Trabalho Prático

Mestrado em Engenharia Informática Universidade do Minho

Grupo	
PG41080	João Ribeiro Imperadeiro
PG41081	José Alberto Martins Boticas
PG41091	Nelson José Dias Teixeira
PG41851	Rui Miguel da Costa Meira

23 de Abril de 2020

1 Introdução

Tal como foi requerido pelo docente da unidade curricular Aprendizagem Automática II, este documento serve para fazer um levantamento preliminar do que será desenvolvido para o trabalho prático da respetiva UC. Exibe-se, de seguida, o repositório GitHub público associado a este projeto, onde será colocado todo o código desenvolvido pelo grupo bem como toda a documentação e recursos intrínsecos à implementação:

https://github.com/Nelson198/AA2

2 Tema

O tema escolhido pelo nosso grupo é o desenvolvimento de uma framework de AutoML. A framework visa obter o melhor modelo para problemas de supervised learning e unsupervised learning, de forma automática e com a menor intervenção possível por parte do programador. O objetivo final é colocar a framework disponivel para os utilizadores da linguagem Python.

3 Planificação

Devido à complexidade do desenvolvimento deste projeto e atendendo ao curto espaço de tempo disponível, não serão incluídas opções de pré-processamento de dados. Com isto, o utilizador/programador deverá indicar qual o tipo de modelo (regressão, classificação ou *clustering*) que deseja obter, sendo depois da responsabilidade da *framework* a procura do melhor modelo desse tipo, visitando todos os algoritmos disponíveis. Se o utilizador preferir um algoritmo em

especial poderá indicá-lo, sendo da responsabilidade da framework a procura dos melhores hiperparâmetros.

A framework vai distinguir entre um problema de supervised e unsupervised learning consoante receba, ou não, as labels/targets. Todos os problemas de supervised learning vão ser distinguidos entre regressão e classificação, dependendo se o target é uma variável contínua ou discreta.

Para problemas de regressão, os algoritmos disponiveis serão:

- Regressão Linear;
- Regressão Polinomial;
- Support Vector Regression;
- Decision Tree Regression;
- Random Forest Regression;
- Redes Neuronais.

Para problemas de classificação, os algoritmos disponiveis serão:

- Regressão Logística;
- k-Nearest Neighbors (KNN);
- Support Vector Machine (SVM);
- Kernel SVM;
- Naive Bayes;
- Decision Tree Classification;
- Random Forest;
- Redes Neuronais.

Para problemas de clustering, os algoritmos disponiveis serão:

- k-Means Clustering
- Hierarchical Clustering

A procura de melhores hiperparâmetros para Redes Neuronais vai ser realizada com o uso da biblioteca kerastuner. Para outros algoritmos, vai-se fazer uso do GridSearchCV e RandomizedSearchCV para esta escolha.

Na eventualidade da plataforma estar terminada e ainda existir tempo para tal, será estudada a possibilidade de se incluir o pré-processamento de dados, aumentando não só a complexidade como também a flexibilidade da *framework*. Isto poderá permitir que sejam testados modelos de tipos distintos.

4 Objetivos

- 1. Permitir o teste de diferentes modelos, com diferentes algoritmos, para um certo conjunto de dados;
- 2. Comparar diferentes modelos, apresentando as suas métricas;
- 3. Encontrar o melhor modelo, com base nas métricas apresentadas;
- 4. Disponibilizar a plataforma online, para uso da comunidade;
- 5. Preparar o projeto para a inclusão de pré-processamento de dados.