Examen de Logique 1 – HLIN402 – session 1

Michel Leclère - 19 mai 2017

Durée : 2h. Documents autorisés : 1 feuille A4 recto-verso. Pas de calculatrice, ni téléphone portable.

Question 1 (4 points) Soit la formule :

$$(\neg (P \lor ((Q \land T) \to P)) \to S)$$

a. Dessinez l'arborescence de cette formule.

0,75 point pour l'arborescence

b. Donnez le nombre de sommets (racine, noeuds intermédiaires et feuilles) de l'arborescence syntaxique de cette formule.

0,25 point pour 10

c. Dites si elle est valide, contingente ou insatisfiable en justifiant votre réponse.

```
0.5 point pour contingente
```

- **0,5 point** pour le contre-modèle I(P) = I(S) = 0, I(Q) = I(T) = 1
- **0,5 point** pour l'une des 15 autres interprétations qui sont modèles.
- d. Donnez une définition par induction du nombre de sommets de l'arborescence syntaxique d'une formule bien formée de la logique des propositions

```
1,5 point décomposé comme suit : 

0,5 point (base) si F \in S \cup \{\top, \bot\}, nbSom(F) = 1

0,5 point (cons) si F = \neg G, nbSom(F) = 1 + nbSom(G)

0,5 point si F = (G \ c \ H) où c est un connecteur binaire, nbSom(F) = nbSom(G) + 1 + nbSom(H)
```

Question 2 (3 points) On considère le raisonnement suivant : Si Jean-Luc est l'auteur de ce bruit, il est stupide ou dépourvu de principes. Jean-Luc n'est ni stupide ni dépourvu de principes. Donc Jean-Luc n'est pas l'auteur de ce bruit.

a. Modéliser ce raisonnement en logique des propositions.

$$\{ \ B \rightarrow S \lor P \ , \ \neg S \land \neg P \ \} \models \ \neg B$$

b. Dites s'il est correct ou non en justifiant votre réponse.

0.25 point si le raisonnement est déclaré correct + **0.75 point** si justification

Question 3 (3 points) Soit F une forme clausale et soit \tilde{F} la forme clausale obtenue à partir de F en remplaçant chaque littéral positif (par exemple p) par son opposé ($\neg p$ sur l'exemple), et chaque littéral négatif (par exemple $\neg p$) par son opposé (p sur l'exemple). Démontrez que F est insatisfiable si et seulement si \tilde{F} est insatisfiable.

2 point (1 pour chaque sens) pour un schéma de preuve à peu près correct **+ 1 point** pour la qualité de la rédaction

Question 4 (2,5 points) Dites, et démontrez le en utilisant excusivement la méthode de résolution, si la conséquence logique suivante est correcte :

$$\{A, (A \rightarrow B), (A \rightarrow (B \rightarrow C))\} \models (A \land B \land C)$$

0,5 point pour dire que le raisonnement est correct

1 point pour une forme clausale correcte mais seulement (0,5 point) si mise sous forme clausale correcte mais oubli de prendre la négation de la conséquence.

1 point pour la résolution

Question 5 (2 points) Démontrez en utilisant exclusivement la méthode des tableaux sémantiques que la formule suivante est **valide** (vous indiquerez quelles propriétés vous permettent de conclure à sa validité) :

$$(((A \to B) \land ((\neg B \to A) \lor (A \to B))) \to (\neg A \lor B))$$

Question 6 (1,5 point) Modéliser en logique des prédicats l'affirmation suivante : Un sot trouve toujours un plus sot qui l'admire.

Question 7 (4 points) Soit les formules suivantes, où P est un prédicat binaire et a une constante :

$$F = (\forall x \exists y \ P(x, y) \rightarrow \exists z \ P(a, z))$$
$$G = \forall x (\exists y \ P(x, y) \rightarrow \exists z \ P(a, z))$$

et les interprétations :

$$\begin{split} I_1 & \textit{ définie sur } D = \{e_1, e_2\} \textit{ par } : \\ &- I_1(a) = e_1, \\ &- I_1(P) = \{(e_1, e_1) \mapsto 0, (e_1, e_2) \mapsto 1, (e_2, e_1) \mapsto 1, (e_2, e_2) \mapsto 0\} \\ &I_2 & \textit{ définie sur } D = \{e_1, e_2, e_3\} \textit{ par } : \\ &- I_2(a) = e_1, \\ &- I_2(P) = \{(e_1, e_2) \mapsto 1, (e_3, e_3) \mapsto 1\} \textit{ et tous les autres couples mettent } P \text{ à } 0. \end{split}$$

- a. Dessinez l'arborescence syntaxique de F et G.
- b. Donnez la valeur de vérité de F et G dans chacune des deux interprétations I_1 et I_2 .
- c. Dites si F et G sont valides, contingentes ou insatisfiables **en justifiant/prouvant votre réponse**.