NLP - Description for Students

November 11, 2024

1 Natural Language Processing

This project will give you practical experience using Natural Language Processing techniques. This project is in three parts: - in part 1) you will use a traditional dataset in a CSV file - in part 2) you will use the Wikipedia API to directly access content on Wikipedia. - in part 3) you will make your notebook interactive

1.0.1 Part 1)

- The CSV file is available at https://ddc-datascience.s3.amazonaws.com/Projects/Project.5-NLP/Data/NLP.csv
- The file contains a list of famous people and a brief overview.
- The goal of part 1) is provide the capability to
 - Take one person from the list as input and output the 10 other people who's overview are "closest" to the person in a Natural Language Processing sense
 - Also output the sentiment of the overview of the person

1.0.2 Part 2)

- For the same person from step 1), use the Wikipedia API to access the whole content of that person's Wikipedia page.
- The goal of part 2) is to produce the capability to:
 - 1. For that Wikipedia page determine the sentiment of the entire page
 - 2. Print out the Wikipedia article
 - 3. Collect the Wikipedia pages from the 10 nearest neighbors in Step 1)
 - 4. Determine the nearness ranking of these 10 to your main subject based on their entire Wikipedia page
 - 5. Compare the nearest ranking from Step 1) with the Wikipedia page nearness ranking

1.0.3 Part 3)

Make an interactive notebook.

In addition to presenting the project slides, at the end of the presentation each student will demonstrate their code using a famous person suggested by the other students that exists in the DBpedia set.

1.1 Imports

```
[15]: import nltk
      import textblob
      # Download required NLTK data
      nltk.download('punkt')
      nltk.download('averaged_perceptron_tagger')
      nltk.download('wordnet')
      # Your existing imports
      import pandas as pd
      import numpy as np
      from sklearn.feature_extraction.text import TfidfVectorizer
      from sklearn.neighbors import NearestNeighbors
      from textblob import TextBlob
     [nltk_data] Downloading package punkt to /root/nltk_data...
                   Package punkt is already up-to-date!
     [nltk_data]
     [nltk_data] Downloading package averaged_perceptron_tagger to
     [nltk_data]
                     /root/nltk_data...
     [nltk_data]
                   Package averaged_perceptron_tagger is already up-to-
     [nltk data]
     [nltk_data] Downloading package wordnet to /root/nltk_data...
     [nltk data]
                   Package wordnet is already up-to-date!
[16]: | curl -s https://ddc-datascience.s3.amazonaws.com/Projects/Project.5-NLP/Data/
       ⇔NLP.csv | wc -l
```

42786

1.2 First DF pt1

URI name \
0 http://dbpedia.org/resource/Digby_Morrell Digby Morrell

```
<http://dbpedia.org/resource/Alfred_J._Lewy>
                                                                 Alfred J. Lewy
     1
              <http://dbpedia.org/resource/Harpdog_Brown>
                                                                  Harpdog Brown
     3 <http://dbpedia.org/resource/Franz Rottensteiner> Franz Rottensteiner
                     <http://dbpedia.org/resource/G-Enka>
                                                                         G-Enka
     O digby morrell born 10 october 1979 is a former...
     1 alfred j lewy aka sandy lewy graduated from un...
     2 harpdog brown is a singer and harmonica player...
     3 franz rottensteiner born in waidmannsfeld lowe...
     4 henry krvits born 30 december 1974 in tallinn ...
     Index(['URI', 'name', 'text'], dtype='object')
     (42786, 3)
[21]: # Clean and preprocess the data
      df['name'] = df['name'].str.lower()
      df['name'] = df['name'].str.replace(r'[^\w\s]', '', regex=True)
[23]: # Create a TF-IDF vectorizer and transform the data
      vectorizer = TfidfVectorizer(stop_words='english')
      X = vectorizer.fit_transform(df['text'])
[24]: # Implement the K-Nearest Neighbors algorithm
      nn = NearestNeighbors(n_neighbors=11, metric='cosine')
      nn.fit(X)
[24]: NearestNeighbors(metric='cosine', n_neighbors=11)
[25]: # Create a function to find nearest neighbors and sentiment
      def find_nearest_neighbors_and_sentiment(person_name):
          # Find the index of the person
          person_index = df[df['name'] == person_name].index[0]
          # Get the nearest neighbors
          distances, indices = nn.kneighbors(X[person_index].reshape(1, -1))
          # Get the names of the nearest neighbors (excluding the person itself)
          nearest_neighbors = df.iloc[indices[0][1:]]['name'].tolist()
          # Calculate sentiment for the person
          person text = df.loc[person index, 'text']
          sentiment = TextBlob(person_text).sentiment
          return nearest_neighbors, sentiment
[28]: # Test the function
      person_name = df['name'].iloc[0] # Use the first person's name as an example
      nearest_neighbors, sentiment = find_nearest_neighbors_and_sentiment(person_name)
```

```
print(f"Nearest neighbors to {person_name}:")
      for neighbor in nearest_neighbors:
          print(f"- {neighbor}")
     Nearest neighbors to digby morrell:
     - steven browne
     - peter freeman footballer
     - lindsay smith australian footballer
     - earl spalding
     - relton roberts
     - mark austin footballer
     - todd curley
     - daniel harris footballer
     - richard ambrose
     - darren pfeiffer
[29]: print(f"\nSentiment of {person_name}'s text:")
      print(f"Polarity: {sentiment.polarity}")
      print(f"Subjectivity: {sentiment.subjectivity}")
```

Sentiment of digby morrell's text: Polarity: -0.04166666666666664 Subjectivity: 0.17896825396825394