Teoría de números

Clase 24

IIC 1253

Prof. Cristian Riveros

Outline

División

Congruencia modular

Outline

División

Congruencia modular

División

Sea $\ensuremath{\mathbb{Z}}$ el conjunto de todos los enteros.

Definición

Para $a, b \in \mathbb{Z}$ con $a \neq 0$,

diremos que a divide b si existe $q \in \mathbb{Z}$ tal que $a \cdot q = b$.

$$a \mid b$$
 si, y solo si, $\exists q \in \mathbb{Z}. \ a \cdot q = b$

Ejemplos

- **5** | 45 ?
- **1**2 | 34 ?

(en este caso, anotamos 12 / 34)

25 | 0 ?

Si $a \mid b$, diremos que a es un **divisor** de b o que b es un **multiplo** de a.

División

Proposición

Para $a, b, c \in \mathbb{Z}$ con $a \neq 0$:

1. Si $a \mid b$ y $a \mid c$, entonces $a \mid (b+c)$.

Demostración

Supongamos que $a \mid b$ y $a \mid c$.

- $a \mid b$ entonces $a \cdot q = b$ para algún $q \in \mathbb{Z}$.
- $a \mid c$ entonces $a \cdot q' = c$ para algún $q' \in \mathbb{Z}$.

Si sumamos ambas igualdades tenemos que:

$$a \cdot q + a \cdot q' = b + c$$

 $a \cdot (q + q') = b + c$

Por lo tanto, $a \mid (b+c)$.

División

Proposición

Para $a, b, c \in \mathbb{Z}$ con $a \neq 0$:

- 1. Si $a \mid b$ y $a \mid c$, entonces $a \mid (b+c)$.
- 2. Si $a \mid b$, entonces $a \mid (b \cdot c)$ para todo $c \in \mathbb{Z}$.
- 3. Si $a \mid b \mid b \mid c$, entonces $a \mid c$.

Demuestre 2. y 3.

Corolario

Si $a \mid b$ y $a \mid c$, entonces $a \mid (n \cdot b + m \cdot c)$ para todo $n, m \in \mathbb{Z}$.

División con resto

Por el "algoritmo de división con resto" sabemos que siempre existe $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que: $a \cdot q + r = b$.

Teorema

Sea $a, b \in \mathbb{Z}$ con a > 0.

Entonces existen un único par $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que:

$$a \cdot q + r = b$$

Demostración

Suponga (por contradicción) que existe $(q', r') \neq (q, r)$ con $0 \le r' < a$:

$$b = a \cdot q + r = a \cdot q' + r'$$
, entonces $a \cdot (q - q') = r' - r$

- 1. Si r = r', entonces q = q'. ¡contradicción!
- 2. Si r < r' < a, entonces $a > r' r = a \cdot (q q') > 0$. ¡contradicción! (?)
- 3. Si r' < r < a, entonces $a > r r' = a \cdot (q' q) > 0$. ¡contradicción! (?)

División con resto

Por el "algoritmo de división con resto" sabemos que siempre existe $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que: $a \cdot q + r = b$.

Teorema

Sea $a, b \in \mathbb{Z}$ con a > 0.

Entonces existen un único par $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que:

$$a \cdot q + r = b$$

Definición

Desde ahora, si $a \cdot q + r = b$ entonces anotaremos:

$$b \operatorname{div} a = q$$

 $b \operatorname{mod} a = r$

Ejemplo

División con resto

Por el "algoritmo de división con resto" sabemos que siempre existe $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que: $a \cdot q + r = b$.

Teorema

Sea $a, b \in \mathbb{Z}$ con a > 0.

Entonces existen un único par $q, r \in \mathbb{Z}$ con $0 \le r < a$ tal que:

$$a \cdot q + r = b$$

Definición

Desde ahora, si $a \cdot q + r = b$ entonces anotaremos:

$$b \operatorname{div} a = q$$

 $b \operatorname{mod} a = r$

Demuestre que $a \mid b$ si, y solo si, $b \mod a = 0$.

Outline

División

Congruencia modular

Definición

Sea $m \in \mathbb{Z}$ con m > 0.

Para todo $a, b \in \mathbb{Z}$ diremos que a es congruente con b módulo m si:

$$a \equiv b \pmod{m}$$
 si, y solo si, $m \mid (a - b)$

Ejemplo

- \blacksquare 15 \equiv 45 (mod 6) ?
- $-7 \equiv -11 \pmod{4}$?

Definición

Sea $m \in \mathbb{Z}$ con m > 0.

Para todo $a, b \in \mathbb{Z}$ diremos que a es congruente con b módulo m si:

$$a \equiv b \pmod{m}$$
 si, y solo si, $m \mid (a - b)$

Para $m \in \mathbb{Z}$, la relación $a \equiv b \pmod{m}$ es una **relación de equivalencia**.

Proposición

Para todo $a, b, m \in \mathbb{Z}$ con m > 0, las siguientes condiciones son equivalentes:

- 1. $a \equiv b \pmod{m}$
- 2. $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.
- $3. (a \bmod m) = (b \bmod m)$

Proposición

- 1. $a \equiv b \pmod{m}$
- 2. $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.
- $3. (a \bmod m) = (b \bmod m)$

Demostración

 $(1. \Rightarrow 2.)$ Suponga que $a \equiv b \pmod{m}$.

$$\Rightarrow m \mid (a-b)$$

$$\Rightarrow$$
 $s \cdot m = (a - b)$ para algún $s \in \mathbb{Z}$

$$\Rightarrow$$
 $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$

(2.
$$\Rightarrow$$
 3.) Suponga que $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.

Si dividimos a por m y b por m, sabemos que existe $q, r, q', r' \in \mathbb{Z}$:

$$\left(\begin{array}{ccc} q \cdot m + r = a & \wedge & 0 \leq r < m \end{array} \right) \quad \wedge \quad \left(\begin{array}{ccc} q' \cdot m + r' = b & \wedge & 0 \leq r' < m \end{array} \right)$$

Proposición

- 1. $a \equiv b \pmod{m}$
- 2. $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.
- 3. $(a \mod m) = (b \mod m)$

Demostración

 $(2. \Rightarrow 3.)$ Suponga que $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.

Si dividimos a por m y b por m, sabemos que existe $q, r, q', r' \in \mathbb{Z}$:

$$(q \cdot m + r = a \land 0 \le r < m) \land (q' \cdot m + r' = b \land 0 \le r' < m)$$

PD: r = r'

Reemplazando en $a = b + m \cdot s$ tenemos:

$$q \cdot m + r = q' \cdot m + r' + m \cdot s$$

 $r - r' = (q' + s - q) \cdot m$

Como
$$-m < r - r' < m$$
, entonces $(q' + s - q) = 0$ (?) $y r = r'$.

Proposición

- 1. $a \equiv b \pmod{m}$
- 2. $a = b + m \cdot s$ para algún $s \in \mathbb{Z}$.
- $3. (a \bmod m) = (b \bmod m)$

Demostración

 $(3. \Rightarrow 1.)$ Suponga que $(a \mod m) = (b \mod m)$.

Si dividimos a por m y b por m, sabemos que existe $q, r, q', r' \in \mathbb{Z}$:

$$(q \cdot m + r = a \land 0 \le r < m) \land (q' \cdot m + r' = b \land 0 \le r' < m)$$

y r = r' (?). Restando ambas igualdades:

$$q \cdot m - q' \cdot m = a - b$$

 $(q - q') \cdot m = a - b$

Por lo tanto, $m \mid (a - b)$ y $a \equiv b \pmod{m}$.

Suma y multiplicación de congruencia modular

Si $7 \equiv 13 \pmod{6}$ y $2 \equiv 8 \pmod{6}$, ¿es verdad que:

```
7+2 \equiv 13+8 \pmod{6} ? 7 \cdot 2 \equiv 13 \cdot 8 \pmod{6} ?
```

Suma y multiplicación de congruencia modular

Proposición

Para todo m > 0, si $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$ entonces:

$$a+c \equiv b+d \pmod{m}$$

 $a \cdot c \equiv b \cdot d \pmod{m}$

Demostración

Supongamos que $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$.

Por la proposición anterior, tenemos que existe $r, s \in \mathbb{Z}$ tal que:

$$a = b + m \cdot r$$
 y $c = d + m \cdot s$

Sumando y multiplicando ambas igualdades, tenemos que:

$$a+c = b+d+m\cdot(r+s) \Rightarrow a+c \equiv b+d \pmod{m}$$

$$a\cdot c = (b+m\cdot r)(d+m\cdot s)$$

$$= b\cdot d+m\cdot(bs+rd+rms) \Rightarrow a\cdot c \equiv b\cdot d \pmod{m}$$

Suma y multiplicación de congruencia modular

Proposición

Para todo m > 0, si $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$ entonces:

$$a+c \equiv b+d \pmod{m}$$

 $a \cdot c \equiv b \cdot d \pmod{m}$

Corolario

Para todo $a, b, m \in \mathbb{Z}$ con m > 0, se tiene que:

$$(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$

 $(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$

Demostración: ejercicio.

Aritmética módulo m

Definición

Para
$$m > 0$$
, sea $\mathbb{Z}_m = \{0, ..., m-1\}$.

Para todo $a, b \in \mathbb{Z}_m$, definimos las operaciones $+_m$ y \cdot_m como:

$$a +_m b = (a + b) \mod m$$

 $a \cdot_m b = (a \cdot b) \mod m$

¿cuáles son los valores de?

- $7 +_{11} 9 = 5$
- $\mathbf{7} \cdot_{11} 9 = 8$

¿han usado estas operaciones antes?

¿qué propiedades cumple la aritmética modular?

Propiedades

Para todo $a, b, c \in \mathbb{Z}_m$, se cumple que:

Clausura: $a +_m b \in \mathbb{Z}_m \quad \text{y} \quad a \cdot_m b \in \mathbb{Z}_m$.

Conmutatividad: $a +_m b = b +_m a$

 $a \cdot_m b = b \cdot_m a$

Asociatividad: $a +_m (b +_m c) = (a +_m b) +_m c$

 $a \cdot_m (b \cdot_m c) = (a \cdot_m b) \cdot_m c$

Identidad: $a +_m 0 = a$

 $a \cdot_m 1 = 1$

Inverso (aditivo): Si $a \neq 0$, entonces existe $a' \in \mathbb{Z}_m$ tal que $a +_m a' = 0$

Distributividad: $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$

¿qué propiedad falta?