MICROCOPY RESOLUTION TEST CHART

ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc 1653 Last Man Street forheater, feet Tork 14609 1754 1716) 482 - 0300 Phone

17167 288 - 5989 - Fax

DEPARTMENT OF THE INTERIOR CANADA

HON. W. J. ROCHE, Minister.

W. W. CORY, C.M.G., Deputy Minister.

PUBLICATIONS

DE MONTREAL

OF THE

Dominion Observatory

OTTAWA

W. F. King, C.M.G., LL.D., Director.

Vol. II, No. 2

The Spectroscopic Binary θ Tauri

BT

J. S. PLASKETT, D. Sc.

0

OTTAWA
GOVERNMENT PRINTING BUREAU
1915

CA1 MT 403 P02-02

DEPARTMENT OF THE INTERIOR

CANADA

HON. W. J. ROCHE, Minister.

W. W. CORT, C.M.G., Deputy Minister,

1240/

PUBLICATIONS

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. II, No. 2

The Spectroscopic Binary θ Tauri

BY

J. S. PLASKETT, D. Sc.

OTTAWA
GOVERNMENT PRINTING BUREAU
1915

76334 - 1

CHI MT 403 F02-02

THE SPECTROSCOPIC BINARY 6° TAURI.

BY J. S. PLASKETT, D.Sc.

The star θ° Tauri (α 4^h 22^m·9, δ +15° 39′, magnitude 3·6, spectral type A5) was announced as a spectroscopic binary by Moore in the Lick Observatory Bulletin, No. 62, and by Frost in the Astrophysical Journal XXIX, page 238. Their published velocities with the date, Julian day, phase and residual (the two latter being obtained from the elements finally accepted) are given at the beginning of the table of measures below.

The star was placed under observation here on December 11, 1909, and between that date and March, 1912, 66 plates were obtained. Of these plates, 52 were selected and measured. The measures of the plates were discussed and a preliminary orbit obtained and published in the Journal of the Royal Astronomical Society of Canada VI, page 231, July-August, 1912. A summary of this work will be given later but, as it was felt desirable to have further observations, 16 more plates were obtained and measured making a total of 68 plates on which the present determination is based.

The spectrum is of type A5 containing numerous metallic lines, but unfortunately all these lines are wide and diffuse making the measurements more or less uncertain. This is shown by the poor agreement often present between different lines on the same plate and by the comparatively high probable error ± 3.6 km. per second of a single plate derived from the plate residuals from the final orbit. Four different dispersions were tried in the hope of getting more satisfactory measures with this type of spectrum, but no one showed very marked advantages over the others. This will be discussed more fully later.

The principal lines measured—all those used in the measures—with their chosen wave-lengths and source are given in the accompanying list. The titanium lines seem in general to be the best defined and most reliable in this spectrum.

LINES MEASURED IN @ TAURL

Elemen	Wave-length.	Element.	Wave-length
Blend	4155-110	Fe	4581-018
Fe	4415 298	Ti	1572-156
Fe	4404-927	Ti	1563 -939
Ti-Cr	4309 - 035	Ti-Fe	1549-766
Ti	4395 - 201	T_i	4534-139
Blend	4374-520	Ti-	4515 - 50s
Cr	1351-930	Ti	1508 - 455
H	4340-634	Ti	4501-448
Fe	4325-939	Fe	4494-738
Fe	4315-138	M_B	4481-400
Ti	4290 - 377	TV	4468-693

The summary of the measures of the early plates at the Lick and Yerkes observatories, of the 52 plates used in the first determination, and of the 16 plates obtained subsequently, with other data are given in the accompanying table and this is followed by tables containing the measured values of the individual lines, with the corrections required to reduce the velocities to the sun.

SUMMARY OF MEASURES.

Plate No.		Date	15	Julian Date	Spectro- graph	Phase	Velocity	Residual O-C.	Remarks
Lick Plates	Dec.	1.	1903	2.416,450:70		139 - 10	+38	- 2.8	
Control & Control	Jan.		1905	6,849-60		115:90	+50	+13.9	
	Oct.		1906	7,488-65		51:45	+74	- 7.8	
	Sept.	8.	1908	8,193-90		53 - 26	+80	+ 0-6	
	ther.	21,	1908	8,236-85		96 - 15	+17	-14.8	
	Oct.	25,	1908	8,210-85		100-17	+23	- 9.7	
Yerkes Plate -	Aug	31.	1906	7,454-88	1.	17:68	+42	- 5.9	
	Nov.	4.	1907	881-77		25-17	+29	-22-4	
	Aug.	25,	1908	8,179-94		39-24	+64	+ 2-6	
	Sept	8,	1908	193 - 95	1	53 (2)	+88	+ 9.08	econdary +40
	Sept.	18,	HHIS.	203 - 85		63 - 12	+10	-18:7	
	()et.	12.	1908	227 -85		87.11	+39	+ 9.98	erondary +8
	Nov.	8.	1908	254-78		114-08	+36	+ 0.3	
	Dec.	7.	1908	283 - 63		2.2	+38	- 6.0	
	Dec.	11.	1908	287-63		6 - 23	+31	-13.0	

SUMMARY OF MEASURES-Continued.

Plate No.		Date	e	Julian Date	Spectro- graph	Phase	Velocity	Residual O-C.	Remarks
Ottawa Plates—									
3030	Dec.	11,	1909	2,418,652-73	III 8	89-93	+28.2		
3031	Dec.		1909-	057-71	111 %	94-94	30-9		
3041	Dev.		1909	659 - 66	IIIS	\$65-56	+31-7	+ 2.7	
2050	Dec.		1909	669-78	III S	106-98	+31.9		
3088	Der.		10041	671-51	III 8	108-71	+22.8		
3076	Dec.		1900	671-65	1	108-85	+22-1	-12-1	
3085	Jun		1910	670-52	III S	116-72	+31-1	1	
3108	Jan		1910	686-66	III 8	123-86	+20.2		
3116	dan,		1910.	687-53	HIS	121-73	+38-9		
3133	Jan.		1910	091-56 706-70	1118	128-76 3-20	+ 46-0		
3169	Feb.		1910	706-70 721-55	1	21-05	+ 42-6		
3201	Feb.		1910	720-55	1	23 - 05	+57-0		
3208	Feb.		1910	727 - 56	ms	21-00			
3222	Feb.		1910	733-63	1	30-13	-60-6		
3255	Mar.		PARTY AND	731-59	HIR	31-09			
3208	Mar.		1910	741-61	111 13	38-11	+38-0		
3334	Mar		1910	748-55	III II	45.05			Pr. +107 Sec. + 43
3623	Sept.		1910	922-89	1	78-09	+31-9		
3651	Sept.		1910	929 - 86	1	85-66	+37-3		
3658	Sept.		1910	930-87	1	86-67	+42.5	+12-8	
3668	Sept.		1910	931-79	I	87 - 59	+27.3	- 2.7	
3687	Sept.		1910	936-88	1	92-68	+36-0	+ 5.0	
3730	Oct		1910	955-90	1	111-70	+25.8	- 9.3	
3741	Oct.		1910	957 - 88	1	113-68	+37.6	+ 2-0	
3784	Oct.	31.	1910	976 - 73	1	132 - 53	+38-7		
3793	Nov.	2,	1910	978-82	1	134-62	+37.8		
3802	Nov.	8.	1910	984-81	1	140-61			
3818	Dec.	5.	1910	9,011-67	1	26-77	+56-7		Pr. +112 Sec. + 11
3843	Dec.	9.	1910	015-67	1	30.77	+56-3		Pr. +66 Sec. -37
3859	Dec.	12,	1910	018-60	1	33-70			
3871	Dec.		1910	021 05	1	36-75			
3888	Dec.		1910	027-66	1	42.76			
3016	Jan.		1911	042-57	1	57 - 67	+12-7		
3922	Jan.		1911	046-61	1	61.71	+27-4		
3930	Jan.		1911	049-61	1	61-71			
3938	Jan.		1911	053-67	I	68-77	+25.0		
3958	Jan.		1911	055-59	1	70-69			
3973	Jan.		1911	067 - 59	III L	82 - 69 54 - 49			
1627	Oct.		1911	320 - 79		50-56			
-1636	Oct.		1911	322·86 338·75		72.45			
4672	Oct.		1911	377-77	I	111-17		1	
4716	Dec.		1911	390-82	III L	121-52			
1735	Dec.		1911	396-75		130 - 45			
4739	Dec.		1912	403 - 71	III L	137 - 11			Pr. +54 Sec. +2
4746	Jan.		1912	412-63		5-60			
4760 4780	Jan.		1912.	414-67	1	7-67			
4788	Jan.		1912	415.50		8 - 50			
4792	Jan.		1912			11-60			

 ${\bf SUMMARY\ OF\ MEASURES,-} Concluded.$

Plate No.	Date		Date		Date Julian Date Date			Spectro- graph		Velocity	Residual O-C.	Remarks
10000		10	1010		2,119,413-66	1	36-66	+60-9	+ 2.0			
1832	Feb.		1912		115-65	1	38-65					
4835	Feh.		1912		473 - 52	1	66-52					
4880	Mar.		1912		680-78	î	133-08					
5218	(let		1912		082-79	1	136-09					
5236	Oct		1912		692-80	i i	4-40					
5243	Oct.		1912		692-85	T	1.45					
5211 5250	cod.		1912		693-82	i	5:42					
5251	Oct.		1912		693 - 85	T	5-15					
5253	Chet.		1912		696-61	ī	8-21					
5254	Oct		1912		696-69	î	8.90					
5259	Oct.		1012		701-71	i	13-31					
5260	Get		1012		701-75	1	13.57					
5892	Jan_		1914		20,154-56	1	11-06					
5902	Jan.		1911		158-55	III L	18-0					
5903	Jan		1911		163-62	III I.	53-15					
5901	Feb.		1911		166 53	III L	56.00					
5905	Feb.		1914		168-50	III L	58.0					
5914	Feb.		1914		169-60	I	59-10					

MEASURES OF # TAURI.

	3030		3041		3044		3056		3068		3076		3085	
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Vel. Wt.	Vel.	Wt
4584·018 4572·156 4563·939 4549·766 4534·139 4481·400 4468·663 4395·201 4374·520 4351·930 4325·939 4315·138	+ 32.94	1 2	+ 31·73 + 32·72 + 48·78 + 35·02 + 53·88 + 50·21 + 53·11 + 47·19 + 24·80	1 13 13 1 13 1 13 1	+ 36·31 + 40·33 + 43·58 + 42·15 + 54·8 + 48·36 + 38·45	1 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 1 1 1 2 1	+ 49.71	1	+ 44·85 + 37·45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 40·56 + 54·00 + 26·70 + 30·80 + 29·11	2 1 1 1 1 1	+ 51·11 + 42·46 + 47·01 + 59·33 + 48·26	1 2
Weighted mean V _a V ₄ Curv.	+ 35 - 6 - 0 - 0	·87 ·09	- 0	·35 ·50 ·13 ·28	+ 45 - 10 - 0 - 0	·48 ·02	+ 50 - 15 - 0 - 0	·06 ·26	+ 39 - 15 - 0 - 0	·97	+ 38 - 16 - 0 - 0	·03 ·05	+ 51 - 19 + 0 - 0	·38 ·08
Radial Velocity	+ 28	3.2	+ 28	3-4	+ 34	1.7	+ 34	.9	+ 25	2.8	+ 22	2 · 1	+ 31	1-4

MEASURES OF & TAURI-Continued

		711.77	of High Or		.,,,,,,,		
	3108	3118	3133	3169	3201	3208	3222
λ	Vel Wt	Vel. Wt	Vel Wt	Vel Wt	Vel Wt	Vel Wt	Vel Wt
4584 · 018 4572 · 156 4563 · 939 4549 · 766 4534 · 139 4508 · 455 4494 · 738 4491 · 400 4468 · 663 4395 · 201 4340 · 634 4325 · 939 4290 · 377	+ 59·32 + 51·04 1 + 60·73 11 + 49·53	$\begin{array}{c} + 49.55 & 1\frac{1}{2} \\ + 61.98 & 1 \\ + 66.26 & 1 \\ + 55.07 & \frac{1}{2} \\ + 63.19 & 1\frac{1}{2} \\ + 77.62 & \frac{1}{2} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + 86 \cdot 48 \\ + 73 \cdot 18 \\ + 75 \cdot 29 \\ + 75 \cdot 29 \\ 1\frac{1}{2} \\ + 72 \cdot 31 \end{array}$ $\begin{array}{c} + 73 \cdot 01 \\ 1\frac{1}{2} \\ \end{array}$	$\begin{array}{c} +\ 90\cdot 89 & \frac{1}{2} \\ +\ 60\cdot 65 & 1 \\ +\ 78\cdot 42 & 1 \\ +\ 70\cdot 53 & 1 \\ +\ 72\cdot 23 & 1 \\ +\ 57\cdot 16 & 1\frac{1}{2} \\ +\ 86\cdot 33 & 1 \\ +\ 76\cdot 51 & \frac{1}{2} \\ +\ 71\cdot 16 & 1\frac{1}{2} \\ +\ 65\cdot 38 & 1 \end{array}$	$\begin{array}{c ccccc} + & 78 \cdot 34 & \frac{1}{4} \\ + & 67 \cdot 37 & \frac{1}{2} \\ + & 97 \cdot 17 & \frac{1}{2} \\ + & 92 \cdot 25 & 2 \\ + & 82 \cdot 41 & 1 \\ + & 80 \cdot 41 & \frac{1}{4} \end{array}$	+ 61·49
Weighted mean V_a V_d Curv.	+ 51·72 - 22·09 - 0·14 - 0·28	+ 60·58 - 22·40 - 0·03 - 0·28	+ 61·44 - 23·74 + 0·61 - 0·28	+ 74·40 - 27·70 - 0·27 - 0·28	+ 72·24 - 29·89 - 0·14 - 0·28	+ 87·60 - 29·87 - 0·14 - 0·28	+ 77·36 - 29·88 - 0·14 - 0·28
Radial Velocity	+ 29.2	+ 38-9	+ 37 4	+ 46-2	+ 42.9	+ 57 3	+ 47.0

MEASURES OF # TAURI Continued

	3255	3268	3308	3334	3623	3651	3658
λ	Vel. Wt	vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt:	Vel. Wt
4584-018 4572-156 4563-939 4549-766 4534-139 4515-508 4481-400 4468-663 4395-201 4351-930 4340-634 4325-939 1290-377	+114·28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 92·34 1 + 96·19 11	+ 18.88 1 + 10.35 1	- 1.33	+ 25·35 1 + 9·70 1 + 20·47 1 + 20·25 1 + 4·79
Weighted niean Va Vd Curv.	+ 91·22 - 29·78 - 0·28 - 0·28	+ 84·50 - 29·73 - 0·21 - 0·28	+ 88·56 - 29·13 - 0·28 - 0·28	+100·70 - 28·12 - 0·21 - 0·28	+ 3·06 + 29·03 + 0·08 - 0·28	+ 9·14 + 28·33 + 0·08 0·28	+ 14·55 + 28·19 + 0·06 - 0·28
Radial Velocity	+ 60.9	+ 55.3	+ 58.8	+ 72.1	+ 31.9	+ 37.3	+ 42.5

MEASURES OF θ^{μ} TAUR1—Continued.

١	3668	3687	3730	3741	3784	3793	3802
λ	Vel We	Vel Wt	Vel Wt	Vel. Wt	Vel. Wt.	Vel Wt	Vel. Wt.
4584·018 4572·156 4563·939 4549·766 4534·139 4515·508 4508·455 4501·448 4481·400 4468·663 4404·927 4399·935 4399·935 4374·520 4374·520 4310·634 4325·939	$\begin{array}{c} -0.68 & \frac{1}{4} \\ -4.87 & \frac{1}{2} \\ +5.33 & \frac{1}{4} \\ -22.97 & \frac{1}{2} \\ +13.47 & 1 \\ +8.83 & 1 \\ -18.48 & 1 \\ -5.37 & 1 \\ +14.11 & 1\frac{1}{2} \\ -12.48 & 1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -7.90 & 1 \\ +11.91 & 1 \\ +1.433 & 2 \\ +8.45 & 1 \\ +1.03 & 2 \\ +4.68 & 1 \\ +4.68 & 1 \\ +24.87 & \frac{1}{2} \end{array}$	+ 16-00 1	+ 32 98 1 + 22 32 1 + 29 48 4 + 16 01 1½ + 49 64 ½ + 10 01 1 + 28 17 1 + 36 31 1 + 14 88 ½	+ 42 93 ½ + 20-67 1½ + 30-90 ½ + 24-76 2	
Weighted mean V _a V _d Curv.	- 0.72 + 28.06 + 0.20 - 0.28	+ 9·04 + 27·21 + 0·04 - 0·28	+ 3-99 + 22-24 - 0-13 - 0-28	+ 16·40 + 21·56 + 0·08 - 0·28	+ 25·10 + 13·97 - 0·13 - 0·28	+ 25·11 + 13·02 - 0·08 - 0·28	+ 34·52 + 10·17 - 0·10 - 0·28
Radial Velocity	+ 27.3	+ 36⋅0	+ 25.8	+ 37.6	+ 38.7	+ 37.8	+ 44.3

MEASURES OF θ^{\pm} TAURI—Continued.

	3818	3843	3559	3871	3888	3916	3922	
λ	λ Vel. Wt	Vel. Wt.	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	
4584·018 4572·156 4563·939 4549·766 4534·139 4501·448 4481·400 4468·663 4404·927 4399·935 4395·201 4351·930 4340·634	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +\ 48\cdot66 \\ +\ 46\cdot27 \\ +\ 79\cdot95 \\ +\ 67\cdot37 \\ 1\frac{1}{2} \\ +\ 67\cdot37 \\ 1\frac{1}{2} \\ +\ 61\cdot82 \\ 1 \\ +\ 57\cdot38 \\ 1 \\ +\ 67\cdot22 \\ 1 \\ +\ 68\cdot84 \\ 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 51·66 1 + 64·67 1½ + 71·34 ½ + 57·50 ½ + 74·50 ½ + 55·08 1 + 58·44 1½ + 80·58 1 + 50·01 1 + 62·28 1 + 73·05 1	+ 34·35	
Weighted mean V _a V _d Curv.	+ 60·55 - 3·62 + 0·04 - 0·28	+ 62·13 - 5·69 0·00 - 0·28	+ 68·54 - 7·20 + 0·14 - 0·28	+ 64·08 - 8·74 0·00 - 0·28	+ 79·03 - 11·72 - 0·04 - 0·28	+ 61·43 - 18·48 + 0·06 - 0·28	+ 47·41 - 20·11 - 0·04 - 0·28	
Radial Velocity	+ 56.7	+ 56.2	+ 61.2	+ 55.1	+ 67.0	+ 42.7	+ 27.0	

MLASURES OF # TAURI Continued

	3930	393%	3958	3973	1627	4636	1672
λ	Vel. Wt.	 Vel. Wt.	Vel Wt.	Vel Wt	Vol. Wt	Vel. Wt.	Vel Wt.
4584-018 4572-156 4563-939 4549-766 4534-139 4501-448 4481-400 4468-663 4404-927 4399-935 4395-201 4351-930 4340-634	+ 53 04 ½ + 49·89 1 + 49·41 1 + 66·33 ½ + 46·96 ½ + 79·32 ½ + 46·07 ½ + 51·23 ½ + 55·53 ½	$\begin{array}{c} + 50 \ 02 & \frac{1}{1} \\ + 42 \ 21 & \frac{1}{1} \\ + 38 \ 23 & \frac{1}{2} \\ + 55 \ 36 & 1 \\ + 42 \ 80 & \frac{1}{2} \\ + 48 \ 87, \ 1\frac{1}{2} \\ + 57 \ 28 & \frac{1}{2} \\ + 33 \ 80 & \frac{1}{2} \\ + 63 \ 48 & \frac{1}{2} \\ + 52 \ 97 & 1 \\ \end{array}$	+ 65·21 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ 58-88 1 + 48-18 1 + 73-25 1	+ 24.68 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 7·73
Weighted niean V. V. Curv.	÷ 53·92 = 21·25 = 0·06 = 0·28	+ 48.97 - 22.70 - 0.17 - 0.28	+ 52-35 - 23-99 - 0-06 - 0-28	+ 62 28 - 26.75 - 0.11 - 0.28	+ 48·48 + 22·36 + 0·10 - 0·28	+ 40·79 + 21 67 - 0 03 - 0·28	+ 11·73 + 15·42 + 0 07 - 0·28
Radial Velocity	+ 32 3	± 25·8	+ 28.0	+ 35.1	+ 70.7	+ 62-1	+ 26.9

MEASURES OF O TAURI.—Continued.

	4716	4733	4739	1 760	4780	4788	4792
λ	Vel. Wt.	Vel. Wt.	Vel. Wt	Vel Wt	Vel Wt.	Vel. Wt.	Vel. Wt.
4584 · 018 4572 · 156 4563 · 939 4549 · 766 4534 · 139 4481 · 400 4455 · 116 4415 · 293 4395 · 201 4351 · 930 4340 · 634 4325 · 939	+ 8·45 1 + 21·92 1 + 35·88 1 + 53·34 1 + 53·34 1 + 32·12 1 + 54·73 1 + 37·83 1 + 29·52 1	+ 32·92 1 + 40·28 1 + 53·10 1 + 46·51 1 + 35·84 1 + 26·48 1	+ 30·26 1 + 45·09 1 + 41·48 1 + 48·49 1 + 51·36 1 + 59·98 1 + 59·59 1	+ 48.61 \\ + 57.20 \\ + 50.88 \\ + 69.40 \\ \\ \\ \\ + 77.91 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$\begin{array}{c} +\ 44 \cdot 98 \\ +\ 78 \cdot 07 \\ \end{array} \begin{array}{c} 1 \\ +\ 58 \cdot 69 \\ +\ 71 \cdot 86 \\ +\ 65 \cdot 46 \\ +\ 73 \cdot 86 \\ \end{array} \begin{array}{c} 1 \\ +\ 69 \cdot 42 \\ 1 \\ +\ 56 \cdot 45 \\ \end{array} \begin{array}{c} 1 \\ +\ 56 \cdot 45 \\ \end{array}$	+ 50·48 \\ + 56·31 \\ + 73·09 \\ + 74·59 \\ + 58·60 \\ \\ \\ + 43·21 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	+ 66·38
Weighted mean V _a V _d Curv.	+ 38·59 - 4·03 + 0·07 - 0·28	+ 37.99 - 10.70 - 0.27 - 0.28	+ 49·35 13·54 0·17 0·28	+ 62·15 - 20·41 - 0·07 - 0·28	+ 66.88 - 21.18 - 0.14 - 0.28	+ 60·71 21·49 + 0·11 0·28	+ 63·67 - 22·60 - 0·05 - 0·28
Radial Velocity	+ 34.2	+ 26.7	+ 35.4	+ 41.4	+ 45.3	+ 39·1	+ 40.7

MEASURES OF & TAURI.-Continued

	4832	4835	4850	5214	5236	5243	5244	
λ		Vel. Wt	Vel Wt	Vel Wt	Vel. Wt	Vel. Wt	Vel. Wt	
4584 · 018 4572 · 156 4549 · 766 4534 · 139 4481 · 400 4488 · 663 4415 · 293 4395 · 291 4351 · 930 4340 · 634	+ 80·04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 44·92	+ 5-87 1 1 17 01 1 1 + 35-49 1 1 + 23-23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 18·00 \\ + 25·44 \\ + 12·67 \\ + 26·01 \\ + 38·68 \\ + 39·59 \\ 1 \\ + 10·15 \\ + 23·85 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	+ 37·50 ½ + 33·45 ½ + 35·50 ½	+ 18·84 1 + 30·38 1 + 29·11 2 + 18·90 1 + 24·20 1 + 23·14 1	
Weighted mean Vo Vd Curv.	+ 90·16 - 28·79 - 0·23 - 0·28	+ 88·50 - 29·05 - 0·24 - 0·28	+ 55·20 - 28·96 - 0·18 - 0·28	+ 17·72 + 24·06 + 0·12 - 0·28	+ 25·75 + 23·16 + 0·10 - 0·28	+ 30·90 + 20·07 + 0·12 - 0·28	+ 24·63 + 20·06 + 0·04 - 0·28	
Radial Velocity	+ 60.9	+ 58.9	+ 25.8	+ 41.6	+ 48.7	+ 50.8	+ 44-4	

MEASURES OF # TAURI.-Continued

	5280	5251	8253	5254	5259	5200	5892
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4549-766 4534-939 4501-448 4481-400 4404-927 4395-201 4351-930 4340-634 4325-939	+ 8 70 } + 30 39 1	+ 24·93	+ 32·01 1 1 1 34 34 1 1 1 20 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 20·60 1 + 19·91 1 + 44·49 1 + 33·43 2 + 32·76 1	+ 31·22 1 + 39·70 1 + 11·76 1 + 15·69 1 + 39·38 1 + 46·70 1 + 36·53 1 + 38·79 1	+ 19·34 1 + 30·39 1 + 32·93 1 + 24·59 4 + 26·85 5 + 20·90 4 + 35·30 4	+ 92·10 1 +111·00 1 + 88 81 + 91 78 1 + 85 38 2 + 79·75 1
Weighted mean V _o V _d Curv.	+ 22·13 + 19·68 - 0·10 - 0·28	+ 28.76 + 19.67 - 0.15 - 0.28	+ 27·72 + 17·75 + 0·28 - 0·28	+ 29·20 + 17·74 + 0·21 - 0·28	+ 40·31 + 16·51 + 0·14 - 0·28	+ 27·55 + 16·50 + 0·07 - 0·28	+ 88·20 - 24·40 - 0·08 - 0·28
Radial Velocity	+ 41.4	+ 48.0	+ 45.5	+ 46.9	+ 56.7	+ 43.9	+ 63 · 4

MEASURES OF 0 TAURI -tombelet

λ	Vel. + Wt.	Vel. Wt.	Vel. Wt	Vel. Wt.	Vel. Wt.,	Vel. Wt.	Vel. Wi
1584 - 018 1572 - 156 1569 - 786 1534 - 786 1534 - 139 1481 - 400 1468 - 663 14340 - 634 1325 - 939	+104.55 1 +105.90 1	+ 88.72 1 + 99.00 1 +115.05 1 +107.80 1	+ 94-38	53 11	+ 49·38 1 + 67·00 1 + 73·42 1 + 51·45 1 + 64·00 1 + 83·75 1 + 41·22 1		
Veighted mean Va Va Curv.	+100·14 - 25·53 - 0·14 - 0·28	+103·67 - 27·04 - 0·21 - 0·28	+ 91·10 - 27·47 - 0·14 - 0·28	+ 05.77 - 27.85 - 0.04 - 0.28	+ 61:98 - 28:05 - 0:18 - 0:28		

A summary of the previous work on the orbit, which has considerable bearing on this later determination will now be given. It was found necessary to carry through three least-squares solutions of the orbit. In the first one of these, a correction for the period was introduced but when this correction was carried forward to the Lick and Yerkes observations it was found to be quite inapplicable. Consequently the period was determined as closely as possible from a comparison of the early with the Ottawa values and the coefficient for this correction omitted from the later solutions.

The second solution resulted in such a large increase of K and consequent rise of the positive maximum velocity above any observed values as again to be inadmissible. This was undoubtedly due to the absence of any Ottawa observations near the peak of the curve, which is of course very sharp when the eccentricity is 0.7. For the third solution,

therefore, one Lick observation of +80 km., and one Yerkes of +88 km., taken on the same day, Sept. 8, 1908, very near the maximum, were combined into an additional normal place and incorporated into the observation equations, and the resulting solution was satisfactory. These different solutions are given here:

Element	1st Preliminary.	tot Nolution.	2nd Preliminary.	2nd Solution.	3rd Prelimoury.	3rd Solution (without Lick and Yerkes Observations)	(with Lick and Yerkes
Period c K w T Y Max. Vel. Min. Vel.	141 0	141 · 487	140·50	140-50	140 · 50	140 50	140 50
	0 · 65	0 · 600	0·65	0-758	0 · 70	0 - 772	0 694
	25 · 0	26 · 59	27·0	33-76	32 · 0	37 - 99	29 128
	45 ° · 0	47° · 43	50°·0	39°-09	46 ° · 0	38 ° - 22	48° 57
	51 · 0	51 · 075	56·33	54-876	55 · 74	55 - 207	56 12
	+ 41 · 51	+ 42 · 17	+42·72	+43-60	+ 43 · 16	+ 43 - 713	+ 42 90
	+ 78 · 0	+ 81 · 34	+81·0	+97-22	+ 91 · 0	+ 104 - 7	+ 85 40
	+ 22 · 0	+ 28 · 16	+27·0	+29-70	+ 27 · 0	+ 28 - 7	+ 27 14

The curious behaviour of these elements in the successive solutions is due to the preliminary elements in each case being not sufficiently close approximations to allow the second order differentials to be neglected, and also to the fact, and this also influenced the choice of the preliminary values, that there were no observations near the peak of the curve while the others were so situated as to abnormally influence the least-squares solutions. However it was not felt desirable, as was done in the 3rd solution, to combine the Ottawa measures with those from other observatories, especially in view of the high residuals given by some of the latter; and it was decided to secure further observations here, around the peak and on the descending branch of the curve, to enable a more accurate period and more consistent and homogeneous elements to be determined. Further, the question of a second spectrum shown by two of the Yerkes and also possibly on some Ottawa plates should, if possible, be settled.

The first series of additional plates in October, 1912, was, through an oversight, unfortunately taken at the wrong time, and it was not until January, 1914, that plates at the proper epoch were obtained. When these measures were combined with the earlier ones, it was at once seen

that the previous period of $140\cdot50$ days obtained from comparison of the Ottawa and earlier observations was not exact, but that it would have to be increased about $0\cdot2$ day. Observations 7 periods apart, at approximately the same place on the very steep descending branch, enabled the period to be determined quite accurately as $140\cdot70$ days. With this period all the observations were combined into 18 normal places, each plate being arbitrarily weighted according to its general quality and the number of lines measured. The weighted velocities and phases of these normal places are given in the accompanying table, the initial epoch T_0 being taken as Julian Day 2,418,000.

The number and position of these normal places were so chosen and, at the same time, the extreme range of phase in any one of them was relatively so small, that they satisfactorily represent all the observations. Their weights are submultiples of the sums of the weight of the plates therein, so taken for convenience of the least-squares solutions, that the maximum weight is unity. The residuals are those determined from the final elements.

NORMAL PLACES

No.	Wt.	Phase	Velocity	Residual O-C.	No.	Wt.	Phase	Velocity	Residual O-C
1 2 3 4 5 6 7 8	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5·37 12·75 23·24 34·81 44·15 48·05 53·12 54·49 56·20	+ 44 · 84 47 · 10 50 · 15 58 · 20 68 · 20 74 · 20 76 · 10 70 · 70 02 · 70	+ 1·26 + 1·12 - 0·07 + 0·93 + 0·57 - 0·54 - 3·33 - 1·07 + 7·20	10 11 12 13 14 15 16 17 18		58-05 64-35 70-12 80-69 87-20 94-83 111-28 125-55 133-39	+ 37 · 87 28 · 76 26 · 90 33 · 50 35 · 04 33 · 87 29 · 98 33 · 63 40 · 08	- 4·00 + 0·8i + 0·0 + 4·9i + 5·1 + 2·3 - 5·0 - 4·5 - 0·0

When the normal places were plotted on cross-section paper, preliminary elements suiting the velocity curve fairly well were, with the experience gained in the previous determination, soon obtained by the aid of Dr. King's graphical method.*

^{*}Report of Chief Astronomer 1908, p. 329 and Astrophysical Journal XXVII p. 125.

The values adopted were:

$$\begin{array}{lll} \text{Period} & = 140 \cdot 70 & \text{days} \\ e & = 0 \cdot 7 \\ \omega & = 55^{\circ} \\ K & = 26 \cdot 25 & \text{km.} \\ T & = \text{J. D. } 2,418,054 \cdot 80 \\ \gamma & = +42 \cdot 21 & \text{km.} \end{array}$$

Observation equations for each of the 18 normal places were formed from these elements by Schlesinger's convenient method.^{*} In these observation equations the numbering begins from the time of periastron instead of from T_a as in the normal places, or No. 1 here is No. 9 in the normal places.

OBSERVATION EQUATIONS

No.	Veight r	6	T	•	7	8V
	1 000 1 000	+ ·110 - ·376 - ·948 -1·000 - ·944 - ·893 - ·830 - ·694 - ·570 - ·496 - ·261 - ·268 - ·103 + ·163 + ·558 + ·810 + ·925 + ·659	+ ·994 + ·927 + ·317 - ·010 - ·330 - ·451 - ·558 - ·720 - ·822 - ·868 - ·932 - ·963 - ·985 - ·830 - ·586 + ·379 + ·752	+ · 562 + · 837 + · 248 - · 006 - · 125 - · 133 - · 122 - · 066 + · 002 + · 045 + · 139 + · 195 + · 303 + · 471 + · 612 + · 526 - · 240 - · 099	+ · · · · · · · · · · · · · · · · · · ·	+ 7·08 + 1·0 + 0·44 + 5·6 + 5·8 + 3·0 - 4·1 + 0·4 + 1·6 + 1·6 + 1·6 + 0·1 + 0·1 + 0·1 + 0·1 + 0·1 + 0·1

In these observation equations according to Schlesinger's notation,

Observation equations decorated as
$$\Gamma = \delta \gamma + e \cdot \cos \omega \cdot \delta K + K \cdot \cos \omega \cdot \delta e - K \cdot e \cdot \sin \omega \cdot \delta \omega$$

$$\kappa = \delta K$$

$$\pi = -K \cdot \delta \omega = -26.25 \ \delta \omega$$

$$\epsilon = -K \cdot \frac{2.21}{1 - e} \delta e = -113.75 \ \delta e$$

$$\tau = K \cdot \mu \ \sqrt{\frac{1 + e}{1 - e}} \cdot \frac{1}{1 - e} \cdot \delta T = 9.302 \ \delta T$$

•Publications Allegheny Observatory I, p. 33

The resulting normal equations are:

$$7 \cdot 759 \, \mathbf{r} - 2 \cdot 356 \kappa - 4 \cdot 036 \pi + 1 \cdot 659 \, \epsilon + \cdot 316 \tau = + 2 \cdot 329 + 2 \cdot 682 \kappa + 1 \cdot 019 \pi + \cdot 094 \, \epsilon - \cdot 027 \tau = - \cdot 276 + 5 \cdot 078 \pi - \cdot 480 \, \epsilon + \cdot 856 \tau = - 1 \cdot 709 + 1 \cdot 013 \, \epsilon + \cdot 245 \tau = - \cdot 227 + \cdot 481 \tau = - \cdot 127$$

The solution of these equations gives the following values of the unknowns:

$$\kappa = + .8711$$
 whence $\delta K = + .87$
 $\pi = + .3865$ " $\delta \omega = - .844$
 $\epsilon = - 1.927$ " $\delta e = + .0169$
 $\tau = - .7156$ " $\delta T = - .0769$
 $\tau = + 1.207$ " $\delta \gamma = + .381$

These corrections result in the following values for the elements with the derived values of the probable errors. Σpvv is reduced from 75.04 to 72.87, showing that the preliminary values were very close to the final ones. This is also indicated by the smallness of the differences between the values obtained by substituting in the observation equations and those obtained from the ephemeris from the corrected elements.

FINAL ELEMENTS

Period, $P=140\cdot70$ days

Eccentricity, $e=0\cdot717\pm .022$ Longitude of Apse, $\omega=54^\circ\cdot16\pm 4^\circ\cdot35$ Semi-Amplitude, $K=27\cdot12$ km. $\pm 1\cdot44$ km.

Periastron Passage, T=J. D. 2,418,054 · 723 $\pm 0\cdot520$ day Velocity of System, $\gamma=\pm 42\cdot59$ km.

Maximum Velocity = $\pm 81\cdot10$ Minimum Velocity = $\pm 26\cdot86$ Projected length semi-axis major, $a\sin i=37,471,000$.

The comparatively high values of the probable error of the elements is due principally to the abnormal deviations between phases 70 and 134 from the velocity curve drawn from these elements and shown in full line

in the accompanying figure. These deviations, which will be more fully discussed later, make the probable error of a normal place of unit weight and consequently the probable errors of the elements nearly double what they would otherwise be.

From a carefully drawn curve on a large scale, the residuals from the observations were obtained and are given in the last column but one of the table of observations. From these residuals, the probable error of a single Ottawa plate comes out as ± 3.6 km. per second. It will be of interest to compare the probable errors for the different dispersions used and these are given herewith.

Spectrograph	$\stackrel{?}{\Lambda}$ per mm. at H_{γ}	No. of Plates	Probable Error Single Plate
III R	33 · 4 20 · 2 17 · 6 10 · 1	45 3 11	3·7 3·2 3·9

There is very little difference in the accuracy of measurement with the different dispersions, the advantage seeming to lie with the three-prism dispersion and short camera. The advantage of increased linear scale is offset evidently by increased diffuseness of the lines. Considering the character of the spectrum and the presence of some abnormal effect the accuracy may be considered satisfactory.

In the velocity curve drawn from these elements the normal places are represented by circles. It will be seen that, considering the diffuse character of the spectrum lines, the agreement is quite satisfactory excepting between phases 70 and 134 where there is a marked double hump. As the five normal places in this region have on the average four plates each it is evident that this deviation must be considered to have a probable objective existence. It is impossible to give a definite cause for this abnormal effect. As its period is approximately half the main period and

as there seems to be a continuance of this effect further along the velocity curve, one apparent explanation would be a secondary disturbance of half the period of the binary. Although such an effect does not admit of any probable physical explanation, it was thought worth while to determine the elements of the orbit on this supposition. Assuming suitable preliminary elements and carrying through a least-squares solution, adding terms for the amplitude and phase of a simple sine curve superposed on the velocity curve, the following elements were obtained.

Periods, $140\cdot70$ days and $70\cdot35$ days Eccentricity, $e=0\cdot711$ Longitude of Apse, $\omega=50^\circ\cdot80$ Semi-Amplitude Primary, $K=29\cdot03$ km. Periastron Passage, T=J. D. $2,418,054\cdot641$ Velocity of System, $\gamma=+42\cdot63$ km. Semi-Amplitude Secondary, $K=3\cdot57$ km. Phase Ascending Node Secondary=J. D. $2,418,067\cdot42$ Maximum Velocity Primary $84\cdot71$ Combined $81\cdot1$ Minimum Velocity Primary $26\cdot65$ Combined $27\cdot0$.

The compound curve is shown in dotted lines in the figure, and it is quite evident that it does not represent the observations much, if any, more satisfactorily than the simple curve for, while the agreement is better between phases 80 and 130, it is poorer at other parts. The average plate residual is only reduced about 5 per cent. by the introduction of the secondary. One possible explanation of the deviations is the presence of the spectrum of the companion to the principal star and the displacement of the measured velocities towards the γ line by the blend effect of the It is difficult to see how such a blend effect can cause two spectra. deviations of the peculiar character shown here, as the curve goes through a complete cycle below the γ line and exhibits no evidence of blending above this line. Yet Harper's orbit of θ Aquilae*, a binary whose elements are quite similar to those of θ^2 Tauri, shows similar deviations below the γ line though not so strongly marked as here. In the case of θ Aquilae *Journal R.A.S.C. III p. 87, Mar-Apr., 1909

it was later shown that this was probably due to the presence of a second spectrum with the resultant blend effect. The inference is that the second spectrum is present in θ^2 Tauri, but as yet no reasonable evidence to that effect has been secured. On two of the early plates obtained at Yerkes, the second spectrum was measured, and on four obtained here some apparent The results at Yerkes and the attempted measures doubling was observed. here, given in the last column of the table of measures, all bring the secondary spectrum in impossible positions. For example, the secondary velocity in one plate and the primary velocity in the other plate at Yerkes fall within two or three kilometres of the γ line, while the velocities of primary and secondary in every suspected case here are in equally impossible Furthermore, later trials on these suspected plates found relative positions. me unable to repeat my measures and I strongly doubt the reality of the As previously stated, plates have been especially secured here, with three different dispersions, near the maximum positive velocity when the doubling should be most pronounced but in no case can doubled lines be definitely seen and while there is possibly a second spectrum present the lines are so broad, diffuse, and lacking in contrast, that I doubt whether positive evidence either way can be obtained.

Other reasons may be cited for suspecting abnormal conditions in this star. The large residuals from the orbit of some of the plates obtained at the Lick and Yerkes observatories, the average residual being 8·4 as compared with 4·1 km. at Ottawa, are much greater than can be explained by the poor character of the spectrum or by the choice of different lines with different wave-lengths for measurements. Another reason is to be found in the difference between the velocity of the system obtained here $+42\cdot6$ km. per second and that obtained from its stream motion $+39\cdot2$. θ^2 Tauri is of special interest as being one of the moving stream in Taurus described by Prof. Boss.* His computed radial velocity for θ^2 Tauri is $40\cdot5$ km. per second, $2\cdot1$ km. less than the Ottawa value. His velocity is based on Kustner's determination of the radial motion of three other stars of the group. In a later discussion of the Taurus stream by Wilson†,

^{*} Astronomical Journal XXVI, p. 31.

[†] Popular Astronomy XX, p. 359.

in which the computed values are based on the radial velocities of 8 stars of the stream determined by Campbell and hence of much greater weight, the velocity of θ^2 Tauri comes out at 39·2 or 3·4 km. smaller than the Ottawa value.

It seems to me probable, therefore, that the Ottawa value is over 3 km. too high and though it is possible to explain this systematic difference by incorrect identifications or wave-lengths it is more likely due to some cause which may be also operative in producing the curious humps in the curve and causing the early observations to have such unreasonably large residuals.

It is of interest to interpolate here that if Boss's value of the proper motion and of the distance of the convergent be accepted, the value of the parallax of θ^2 Tauri is $\theta^{\prime\prime} \cdot 023$ equivalent to a light journey of about 140 years.

The similarity between the velocity curve of θ^2 Tauri and that of the Cephcid variable W Sagitarii* is quite marked, the deviations from simple elliptic motion occurring in exactly the same relative positions in the orbits and being of approximately equal relative magnitudes. Moreover, except in the longer period and higher eccentricity, the elements are quite similar and it may be that the abnormal effects are produced by the same causes. Although the variation must be small it is possible that accurate photometric observations might show θ^2 Tauri to be a variable star and it would be of interest to have this tested. Although it is possible that a better orbit would be obtained if a considerable number of additional spectra were secured, the character of the spectrum lines is such as to render this additional work of doubtful value.

Dominion Observatory, Ottawa, February, 1915.

^{*} Astrophysical Journal XX, p. 172.

