The failure of Selman's Theorem for hyperenumeration reducibility

Josiah Jacobsen-Grocott

University of Wisconsin—Madison Partially supported by NSF Grant No. DMS-2053848

Computability in Europe, July, 2022

Enumeration degrees

Definition

For two sets $A, B \subseteq \omega$ we say that $A \leq_e B$ if there is a c.e. set W such that:

$$x \in A \iff \exists \langle x, u \rangle \in W[D_u \subseteq B]$$

where $(D_u)_{u \in \omega}$ is listing of all finite sets by strong indices.

- From an effective listing of c.e. sets $(W_e)_{e\in\omega}$ we obtain an effective listing of enumeration operators $(\Psi_e)_{e\in\omega}$. Defined by $A=\Psi_e(B)$ if $A\leq_e B$ via W_e .
- \leq_e is a preorder on sets of natural numbers and, like with Turing reducibility and the Turing degrees, the equivalence classes give us the enumeration degrees \mathcal{D}_e .

Total and cototal sets

Definition

We say that a set A is *total* if $\overline{A} \leq_e A$. We say that A is cototal if $A \leq_e \overline{A}$. A degree is *total* (*cototal*) if it contains a total (cototal) set.

- If A is total then $B \leq_e A$ if and only if B is c.e. in A.
- For any set A we have that $A \oplus \overline{A}$ is both total and cototal.
- The Turing degrees embed into the enumeration degrees as the total degrees via the map induced by $A \mapsto A \oplus \overline{A}$.
- The cototal degrees are a proper subclass of the enumeration degrees and the total degrees are a proper subclass of the cototal degrees.

Selman's Theorem

As we have seen, we can define Turing reducibility in terms of enumeration reducibility. Selman's theorem gives us a way of defining enumeration reducibility in terms of Turing reducibility.

Theorem (Selman's Theorem)

 $A \leq_{e} B$ if and only if for all X if $B \leq_{e} X \oplus \overline{X}$ then $A \leq_{e} X \oplus \overline{X}$.

There is another way to define enumeration reducibility in terms of enumerations. We have that $A \leq_e B$ if every enumeration of B uniformly computes an enumeration of A. Here an enumeration of A is a total, onto function $f:\omega\to A$. In this context, Selman's theorem shows that we can drop the uniformity in the definition.

Hyperenumeration reducibility

 Now we define hyperenumeration reducibility as introduced by Sanchis in 1978.

Definition

We say that $A \leq_{he} B$ if there is a c.e. set W such that

$$n \in A \iff \forall f \in \omega^{\omega} \exists u \in \omega, x \prec f[\langle n, x, u \rangle \in W \land D_u \subseteq B]$$

- Like with enumeration reducibility this is a preorder and the equivalence classes give us the hyperenumeration degrees \mathcal{D}_{he} .
- From an effective listing of c.e. sets $(W_e)_{e\in\omega}$ we obtain an effective listing of hyperenumeration operators $(\Gamma_e)_{e\in\omega}$.

Hypertotal degrees.

Definition

We say that a set A is *hypertotal* if $\overline{A} \leq_{he} A$. We say that A is *hypercototal* if $A \leq_{he} \overline{A}$. A degree (in either \mathcal{D}_e or \mathcal{D}_{he}) is *hypertotal* (*hypercototal*) if it contains a hypertotal (hypercototal) set.

Hyperenumeration reducibility and the hypertotal sets have some analogies with enumeration reducibility and total sets.

- We have that if $A \leq_{he} B \oplus \overline{B}$ if and only if A is Π^1_1 in B.
- $A \leq_h B$ if and only if $A \oplus \overline{A} \leq_{he} B \oplus \overline{B}$.
- The hyperarithmetic degrees embed in \mathcal{D}_{he} as the hypertotal degrees via the map induced by $A \mapsto A \oplus \overline{A}$.

Theorem (Sanchis)

There is a hyperenumeration degree that is not hypertotal.

Relating \leq_e and \leq_{he}

Sanchis proved an interesting result about the relationship between enumeration reducibility and hyperenumeration reducibility.

Theorem (Sanchis)

If $A \leq_e B$ then $A \leq_{he} B$ and $\overline{A} \leq_{he} \overline{B}$.

This means that if f is an enumeration of A then $A \oplus \overline{A} \leq_{he} f$. So when working with hyperenumeration redicibility we want a new notion of a hyperenumeration.

Hyperenumerations

Recall the definition of $A = \Gamma_e(B)$.

$$n \in A \iff \forall f \in \omega^{\omega} \exists u \in \omega, x \prec f[\langle n, x, u \rangle \in W_e \land D_u \subseteq B]$$

Now consider the tree $S_e \subseteq \omega^{<\omega}$ defined by

$$n \hat{\ } x \notin S_e \iff \exists y \leq x, u \leq |x| [\langle n, y, u \rangle \in W_{e,|x|} \wedge D_u \subseteq B]$$

We have that $\overline{S_e} \leq_e B$. Define $S_{e,n} = \{x : n^{\hat{}} x \in S_e\}$. We have that

$$n \in A \iff S_{e,n}$$
 is well founded

So $A \leq_{he} \overline{S_e}$. We call a tree which hyperenumerates A in the way that S_e does a *hyperenumeration* of A.

E-pointed trees in Cantor space

Definition

A tree T is e-pointed if for every path $P \in [T]$ we have that T is c.e. in P. We say T is uniformly e-pointed if there is a single operator Ψ_e such that for all paths $P \in [T]$ we have $T = \Psi_e(P)$.

McCarthy studied e-pointed trees in Cantor space and was able to characterize their enumeration degrees.

Theorem (McCarthy)

If $T \subseteq 2^{<\omega}$ is uniformly e-pointed then T is cototal. Furthermore for a degree $a \in \mathcal{D}_e$ the following are equivalent:

- a is cototal.
- a contains an e-pointed tree $T \subseteq 2^{<\omega}$.
- a contains a uniformly e-pointed tree $T \subseteq 2^{<\omega}$ with no dead ends.

E-pointed trees with dead ends

In Baire space we have the following characterization in terms of hypertotal sets.

Theorem (Goh, J-G, Miller, Soskova)

If $T \subseteq \omega^{<\omega}$ is uniformly e-pointed then T is hypercototal. Furthermore for a degree $a \in \mathcal{D}_e$ (or \mathcal{D}_{he}) the following are equivalent:

- a is hypercototal.
- a contains an e-pointed tree $T \subseteq \omega^{<\omega}$.
- a contains a uniformly e-pointed tree $T \subseteq \omega^{<\omega}$.

E-pointed trees in Baire space without dead ends

When we consider only e-pointed trees that do not have dead ends then things become more complex

Theorem (Goh, J-G, Miller, Soskova)

There is an arithmetic set that is not enumeration equivalent to any e-pointed tree $T\subseteq\omega^{<\omega}$ without dead ends.

Theorem (Goh, J-G, Miller, Soskova)

There is a uniformly e-pointed tree $T \subseteq \omega^{<\omega}$ without dead ends that is not of cototal enumeration degree.

Question

Is there an e-pointed tree $T\subseteq\omega^{<\omega}$ without dead ends that is not enumeration equivalent to any uniformly e-pointed tree $T\subseteq\omega^{<\omega}$ without dead ends.

Connection to Selman's theorem

Theorem (J-G)

There is a uniformly e-pointed tree with no dead ends that is not hypertotal.

This leads us to a contradition of Selman's theorem.

Corollary

There are sets A, B such that $B \nleq_{he} A$ and for any X, if $A \leq_{he} X \oplus \overline{X}$ then $B \leq_{he} X \oplus \overline{X}$.

Connection to Selman's theorem

Corollary

There are sets A, B such that $B \nleq_{he} A$ and for any X, if $A \leq_{he} X \oplus \overline{X}$ then $B \leq_{he} X \oplus \overline{X}$.

Proof.

We will have A=T and $B=\overline{T}$ where T is a uniformly e-pointed tree with no dead ends that is not hypertotal. Suppose that T is Π^1_1 in X. Since T has no dead ends there must be a path $P\in [T]$ such that $P\leq_h X$. So $T\leq_e P$ and by previous lemma we have $\overline{T}\leq_{he} \overline{P}\leq_h X$ So we get that $\overline{T}\leq_{he} X\oplus \overline{X}$.

Thank you

Thank You