Numerical Methods

Marios Garrill Petrakis

§3. Interpolation

$$P[2,3] = \frac{a_0 + a_1 \times + a_2 \times^2}{1 + b_1 \times + b_2 \times^2 + b_3 \times^3}, \text{ order } N = 2 + 3 = 5$$

· To find the coefficients we equate with the Mchaurin series of the same order & match the coefficients:

$$P[5,0] - P[2,3] = 0 \implies (1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!})(1+b_1x+b_2x^2+b_3x^3)$$

$$= a_0+a_1x+a_2x^2$$

0

0

1:
$$b_1+1=a_1$$

2: $b_2+b_1+\frac{1}{2}=a_2$
3: $b_3+b_2+\frac{b_1}{6}+\frac{1}{6}=0$
4: $b_3+\frac{b_2}{2}+\frac{b_1}{6}+\frac{1}{24}=0$
5: $b_3+\frac{b_2}{6}+\frac{b_1}{24}+\frac{1}{120}=0$

$$b_3+\frac{b_2}{6}+\frac{b_1}{24}+\frac{1}{120}=0$$

$$b_3+\frac{b_2}{6}+\frac{b_1}{24}+\frac{1}{120}=0$$

$$b_3+\frac{b_2}{6}+\frac{b_1}{24}+\frac{1}{120}=0$$

$$b_3+\frac{b_2}{6}+\frac{b_1}{24}+\frac{1}{120}=0$$

$$b_3+\frac{b_2}{6}+\frac{b_1}{24}+\frac{1}{120}=0$$

• From Mathemotica:
$$a_1 = \frac{2}{5}$$
 $b_1 = -\frac{3}{5}$ $b_3 = -\frac{1}{60}$

$$a_2 = \frac{1}{20} \quad b_2 = \frac{3}{20}$$

$$\exists P[2,3] = \frac{1 + \frac{2}{5}x + \frac{1}{20}x^{2}}{1 - \frac{2}{5}x + \frac{3}{20}x^{2} - \frac{1}{60}x^{3}} = \frac{60 + 24x + 3x^{2}}{60 - 36x + 9x^{2} - x^{3}}$$

$$P[4,1] = \frac{a_0 + a_1 \times + a_2 \times^2 + a_3 \times^3 + a_4 \times^4}{1 + b_1 \times}$$

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 = (1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!})(1 + b_3 x)$$

$$\begin{cases} 1 & |a_0 = 1| \end{cases}$$

$$n=1 \circ a_1 = b_1 + 1$$

$$n=2$$
 • $Q_2 = b_1 + \frac{1}{2}$

$$n=3$$
 • $a_3 = \frac{1}{2}b_1 + \frac{1}{6}$

$$\eta = 1 0 \ a4 = \frac{b_1}{6} + \frac{1}{24}$$

$$N=5 \circ N = \frac{b_1}{24} + \frac{1}{5 \cdot 24} = \boxed{b_1 = -\frac{1}{5}}$$

$$\Rightarrow \alpha_1 = 1 - \frac{1}{5} = \frac{415}{5} = \frac{1}{6} - \frac{1}{10} = \frac{1}{60} = \frac{1}{15}$$

$$\Rightarrow \alpha_2 = \frac{1}{2} - \frac{1}{5} = \frac{3}{10}$$

$$\Rightarrow \alpha_4 = \frac{1}{24} - \frac{1}{30} = \frac{1}{120}$$

$$\Rightarrow P[4,1] = \frac{1 + \frac{4}{5}x + \frac{3}{10}x^{2} + \frac{1}{15}x^{3} + \frac{1}{120}x^{4}}{1 - \frac{1}{5}x}$$

$$= \frac{5 + 4x + (3/2)x^{2} + (1/3)x^{3} + (1/24)x^{4}}{5 + \frac{1}{120}x^{4}}$$

	Values	l ex	P [5.0]	P[23]	P[4, 1]	
. 0	at x=0.5	1.64872	1.6487	1.64873	1.64873	all in agreement
	atx=1	2.71828	2.71667	2.71875	2.71875	still good agreement
	at x=2	7.38906	7.26667	7-5	7,444	small deviations begun
	a+x=5	148.413	91.4167	_12.75	±∞	all approx. fail
•	Taylor she larger deviations we get for away Ex Tx6	p(23) a singula before x a changes Invalid with log	sign	X=5 its singularity invalid close to 5 Mathematic	but away from the poles the Bidé approx show better (onvergence	
9	Prob. II	k :	Xn f(x	k) Af (XK) 12f(xtc)	$\Delta^3 f(x^{k})$
Const. step $h=2$ $\frac{0}{1}$			4 1 3	2 > 5	3	> 4
) 		2 8	8 8	12 (forw	eard) differen	nce matrix
(of 3rd Legree)						
s so the forward Newton polynomial is:						
3 (K) i= C X(K! 12C k! 13C						
$P_3(x_k) = \frac{3}{2} {k \choose i} \Delta^i f_0 = f_0 + k \Delta f_0 + \frac{k!}{2!(k-2)!} \Delta^2 f_0 + \frac{k!}{3!(k-3)!} \Delta^3 f_0$						

$$\Rightarrow P(x^{k}) = 1 + 9k + \frac{3k(k-1)}{2} + \frac{4k(k-1)(k-2)}{6}$$

$$= 1 + 2k + \frac{3}{2}k^{2} - \frac{3}{2}k + \frac{9}{3}k^{3} - 2k^{2} + \frac{4k}{3}$$

$$= 1 + \frac{11}{6}k - \frac{1}{9}k^{2} + \frac{9}{3}k^{3}$$
but
$$x_{k} = x_{0} + kh = 4 + 2k = k = \frac{x_{k} - 4}{2}$$

$$k(k-1) = \frac{x_{k} - 4}{2} + \frac{x_{k} - 6}{2} = \frac{x_{k}^{2} - 10x_{k} + 24}{4}$$

$$k(k-1)(k-2) = \frac{x_{k}^{2} - 10x_{k} + 24}{4} + \frac{x_{k} - 8}{2} = \frac{x_{k}^{2} - 18x_{k}^{2} + 104x_{k} - 192}{8}$$

$$= P(x_{k}) = 1 + x_{k} - 4 + \frac{3}{3} + \frac{x_{k}^{2} - 10x_{k} + 24}{8} + \frac{x_{k}^{2} - 19x_{k}^{2} + 104x_{k} - 192}{12}$$

$$= (-3 + 3^{2} - 19x_{k}^{2}) + (1 - \frac{15}{4} + \frac{26}{3})x_{k} + (\frac{3}{8} - \frac{3}{2})x_{k}^{2} + \frac{x_{k}^{2}}{12}$$

$$= \frac{1}{12}x_{k}^{3} - \frac{9}{8}x_{k}^{2} + \frac{71}{12}x_{k} - 10 =$$

$$= \frac{1}{24}(2x_{k}^{3} - 27x_{k}^{2} + 142x_{k} - 240)$$