IX1303 Flervalsfrågor till tenta 2020 08 10

(Rätt svar i grönt)

Bestäm arean av triangeln med hörn i punkterna (1,1,0), (1,0,1) och (0,1,1). Beteckningen "a.e." står för areaenheter.

- a) 2 a.e. b) $\frac{2}{3}$ a.e. c) $\frac{\sqrt{3}}{2}$ a.e. d) $\sqrt{3}$ a.e. e) $\frac{\sqrt{2}}{3}$ a.e.

Vektorerna $\boldsymbol{u}=\boldsymbol{i}-2\boldsymbol{j}+3\boldsymbol{k}$ och $\boldsymbol{v}=3\boldsymbol{i}+\boldsymbol{j}-4\boldsymbol{k}$. Beräkna kryssprodukten $u \times v$.

a)
$$5i + 13j + 7k$$

b)
$$3i - 2j + k$$

c)
$$-6i + 2j + 13k$$

a)
$$5i + 13j + 7k$$
 b) $3i - 2j + k$ c) $-6i + 2j + 13k$ d) $2i - 12j - 7k$ e) $2i - j + 5k$

e)
$$2i - j + 5k$$

"Point-normal"-ekvationen för ett plan ges av vektorformeln $\boldsymbol{n}\cdot(\boldsymbol{r}-\boldsymbol{r_0})=0$. Bestäm ekvationen för planet som innehåller punkten (1, 2, -3) och är vinkelrätt mot vektorn u = i - 4j + 2k.

a)
$$4x - y - 2z = 4$$

b) $x + y - 2z = 2$
c) $2x - y - 2z = 4$
d) $12x + 6y - 2z = 3$
e) $x - 4y + 2z = -13$

b)
$$x + y - 2z = 2$$

c)
$$2x - y - 2z = 4$$

d)
$$12x + 6y - 2z = 3$$

e)
$$x - 4y + 2z = -13$$

4

$$C = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 2 & 2 \end{pmatrix} \text{ och } D = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 3 \end{pmatrix}. \text{ Vad blir produkten } CD?$$

a)
$$\begin{pmatrix} 6 & 3 \\ 12 & 8 \end{pmatrix}$$

a)
$$\begin{pmatrix} 6 & 3 \\ 12 & 8 \end{pmatrix}$$
 b) $\begin{pmatrix} -6 & 12 \\ 4 & 8 \end{pmatrix}$ c) $\begin{pmatrix} 6 & 12 \\ 3 & 8 \end{pmatrix}$ d) 28 e) $\begin{pmatrix} 12 & 6 \\ 24 & 16 \end{pmatrix}$

c)
$$\begin{pmatrix} 6 & 12 \\ 3 & 8 \end{pmatrix}$$

e)
$$\binom{12}{24} \quad \binom{6}{16}$$

$$B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ och } D = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} \text{ . Beräkna } B^T D.$$

- a) 21 b) (10 11) c) (1 2
- 3) d) Existerar ej

e) $\binom{8}{11}$

Vad är determinanten detE då $E = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$?

- c) 3 d) Existerar ej
- e) 1

7

Beräkna C^{-1} då $C = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 2 & 2 \end{pmatrix}$.

- a) 0 b) $\begin{pmatrix} 2 & 3 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 1/2 & 0 & 1 \\ 1/2 & 2 & 1/2 \end{pmatrix}$

e) Existerar ej

Vektorerna $\mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$ utgör en ortogonal bas i \mathbb{R}^2 . Vad blir $\mathbf{w} = \mathbf{v}$ $\binom{-6}{3}$ uttryckt som en linjär kombination av dessa basvektorer: $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$?

a)
$$\mathbf{w} = -\mathbf{u} + 3\mathbf{v}$$

b)
$$w = -\frac{3}{2}u + \frac{3}{4}v$$

c)
$$w = \frac{1}{2}u - \frac{2}{3}v$$

d)
$$w = 2u + \frac{1}{3}v$$

a)
$$w = -u + 3v$$
 b) $w = -\frac{3}{2}u + \frac{3}{4}v$ c) $w = \frac{1}{2}u - \frac{2}{3}v$ d) $w = 2u + \frac{1}{3}v$ e) $w = \frac{4}{3}u - \frac{3}{2}v$

Vilken av uppsättningarna basvektorer a-e) utgör ett ON- (ortonormerat) system?

a)
$$\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ -1 \end{pmatrix} \right\}$$

b)
$$\left\{ \begin{pmatrix} -1\\0 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix} \right\}$$

a)
$$\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ -1 \end{pmatrix} \right\}$$
 b) $\left\{ \begin{pmatrix} -1\\ 0 \end{pmatrix}, \begin{pmatrix} 3\\ 1 \end{pmatrix} \right\}$ c) $\left\{ \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} \right\}$

d)
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \frac{3}{\sqrt{2}} \begin{pmatrix} 0\\1/3\\1/3 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
 e) $\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$

e)
$$\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

10

Bestäm vektorn för den ortogonala projektionen av $\mathbf{u} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ på linjen som går genom origo och punkten (-1,3).

a)
$$\binom{-2}{3}$$

b)
$$\begin{pmatrix} -3 \\ 5/2 \end{pmatrix}$$

a)
$$\begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 b) $\begin{pmatrix} -3 \\ 5/2 \end{pmatrix}$ c) $\begin{pmatrix} -1/5 \\ 2/5 \end{pmatrix}$ d) $\begin{pmatrix} 2/5 \\ -6/5 \end{pmatrix}$ e) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$

$$d) \begin{pmatrix} 2/5 \\ -6/5 \end{pmatrix}$$

e)
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Två baser är givna, $B = \{b_1, b_2\}$ och $C = \{c_1, c_2\}$, där $b_1 = 4c_1 + c_2$ och $b_2 =$ $-6c_1 + c_2$. Hur ser vektorn x ut i C-koordinater då $x = 3b_1 + b_2$?

a)
$$\begin{pmatrix} 1 & -3 \\ -2 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} -1 & 4 \\ -6 & -2 \end{pmatrix}$ c) $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$ d) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ e) $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$

b)
$$\begin{pmatrix} -1 & 4 \\ -6 & -2 \end{pmatrix}$$

c)
$$\binom{6}{4}$$

d)
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$e)\begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

12

Låt A vara en 6×4 -matris. Vilket av följande påståenden är falskt?

- A kan ha högst 4 pivot-kolumner. a)
- Om A har ett 2-dimensionellt nollrum, så är rangen 4 (Rank A = 4). **b**)
- Dimensionen av nollrummet till A utgörs av antalet kolumner som inte är c) pivot-kolumner.
- En bas till A kan bestå av två kolumnvektorer. d)
- Dimensionen av radrummet till A kan bli samma som dimensionen av e) kolumnrummet.

Vilken av följande mängder utgör ett underrum till \mathbb{R}^3 ?

a)
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

b) Linjen
$$y = 1 - 2x$$

b) Linjen
$$y = 1 - 2x$$
 c) $\{\binom{1}{3}, \binom{-1}{1}, \binom{0}{2}\}$

d) Planet
$$x + y + z = 1$$
 e) \mathbb{R}^2

e)
$$\mathbb{R}^2$$

14

Vad gör den linjära transformen i \mathbb{R}^2 som representeras av matrisen $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$, när p < 1?

- Skjuvning av en figur nedåt längs negativa y-axeln. a)
- Trycker ihop en figur åt vänster längs x-axeln. b)
- c) Vrider en bild i planet $2\pi p$ (radianer) motsols.
- Projicerar en figur på x-axeln, nerskalad med faktorn p. d)
- Projicerar en figur på y-axeln, nerskalad med faktorn p. e)

15

I Leontief's input-output-modell infördes en vektor för efterfrågan d, produktionsvektorn x och konsumtionsmatrisen C för att beskriva balansen mellan produktion och konsumtion i en ekonomi. Vilken ekvation anger sambandet mellan dessa tre faktorer (*I* är identitetsmatrisen).

a)
$$Cx = d$$

b)
$$(I-C)x=d$$

c)
$$Cd = x$$

d)
$$d = Cd + x$$

e)
$$(I-C)d = x$$

Minsta kvadratanpassing är ett mycket vanligt sätt att approximera ett matematiskt uttryck till en uppsättning data. För ett inkonsistent system $A\mathbf{x} = \mathbf{b}$, där A är en $m \times n$ -matris, kan man med denna metod hitta ett \mathbf{x} som minimerar felet $\|\mathbf{b} - A\mathbf{x}\|$. Vilket av följande påståenden om minsta kvadratmetoden är falskt?

- a) Metoden minimerar avståndet i y-led mellan datapunkter (*x,y*) och det approximerade uttrycket.
- b) Varje minsta kvadratlösning till $A\mathbf{x} = \mathbf{b}$ satisfierar ekvationen $A^T A \mathbf{x} = A^T \mathbf{b}$.
- c) Metoden bygger på ortogonal projektion av vektorer.
- d) Metoden fungerar bäst för linjära approximationer.
- e) Ekvationen $A\mathbf{x} = \mathbf{b}$ har en unik minsta kvadratlösning för varje b i \mathbb{R}^m om kolumnerna i A är linjärt oberoende.