

Review: Uf gate n = 2 example

n = 2 Balanced Example

$$f(00) = f(11) = 0$$

 $f(01) = f(10) = 1$ (XOR function)

What is the corresponding matrix for this gate?

...since it is neither

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow x2 \longrightarrow y \longrightarrow$$

no

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \longrightarrow \begin{array}{c} x_1 \\ x_2 \\ y \\ - \vdots \\ x_{2} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{7} \\ x_{7} \\ x_{8} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5} \\ x_{6} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5} \\ x_{6} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{1} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{1} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{1} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x$$

$$\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \alpha_{011}|011\rangle + \alpha_{100}|100\rangle + \alpha_{101}|101\rangle + \alpha_{110}|110\rangle + \alpha_{111}|111\rangle$$

$$(\text{swap back})$$

 $\alpha_{000}|00,0 \oplus f(00)\rangle + \alpha_{001}|00,1 \oplus f(00)\rangle + \alpha_{010}|01,0 \oplus f(01)\rangle + \alpha_{011}|01,1 \oplus f(01)\rangle + \alpha_{100}|10,0 \oplus f(10)\rangle + \alpha_{101}|10,1 \oplus f(10)\rangle + \alpha_{110}|11,0 \oplus f(11)\rangle + \alpha_{111}|11,1 \oplus f(11)\rangle$

$$=\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{011}|010\rangle + \alpha_{010}|011\rangle + \alpha_{101}|100\rangle + \alpha_{100}|101\rangle + \alpha_{110}|110\rangle + \alpha_{111}|111\rangle$$

Review: Uf gate n = 2 example

n = 2 Balanced Example

$$f(00) = f(11) = 0$$

f(01) = f(10) = 1

(XOR function)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow x2 - 0$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \longrightarrow \begin{array}{c} x_1 \\ x_2 \\ y \\ & & \end{array}$$

This Lecture: systematic way of calculating matrices for 2+ qubit gates.

$$f(01) = f(10) = 1$$
 (XOR function) for this gate? This calculation
$$\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \alpha_{011}|011\rangle + \alpha_{100}|100\rangle + \alpha_{101}|101\rangle + \alpha_{110}|110\rangle + \alpha_{111}|111\rangle$$

What is the corresponding matrix

 $\alpha_{000}|00,0\oplus f(00)\rangle + \alpha_{001}|00,1\oplus f(00)\rangle + \alpha_{010}|01,0\oplus f(01)\rangle + \alpha_{011}|01,1\oplus f(01)\rangle + \alpha_{100}|10,0\oplus f(10)\rangle + \alpha_{101}|10,1\oplus f(10)\rangle + \alpha_{110}|11,0\oplus f(11)\rangle + \alpha_{111}|11,1\oplus f(11)\rangle$

$$=\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{011}|010\rangle + \alpha_{010}|011\rangle + \alpha_{101}|100\rangle + \alpha_{100}|101\rangle + \alpha_{110}|110\rangle + \alpha_{111}|111\rangle$$

	$ 000\rangle$	$ 001\rangle$	$ 010\rangle$	$ 011\rangle$	$ 100\rangle$	$ 101\rangle$	$ 110\rangle$	$ 111\rangle$
$ 000\rangle$	[1	0	0	0	0	0	0	0
$ 001\rangle$	0	1	0	0	0	0	0	0
$ 010\rangle$	0	0	1	0	0	0	0	0
$ 011\rangle$	0	0	0	1	0	0	0	0
$ 100\rangle$	0	0	0	0	0	0	1	0
$ 101\rangle$	0	0	0	0	0	0	0	1
$ 110\rangle$	0	0	0	0	1	0	0	0
$ 111\rangle$	0	0	0	0	0	1	0	0

Standard Enumeration

 $|000\rangle$

 $|000\rangle$

Idea: applying CX(q0, q1) on swapped enumeration would be the same as CX(q0, q2)

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \\ \begin{bmatrix} 1 & 0 \\ 0 &$$

\									
•	•	$ 000\rangle$	$ 001\rangle$	$ 010\rangle$	$ 011\rangle$	$ 100\rangle$	$ 101\rangle$	$ 110\rangle$	$ 111\rangle$
	$ 000\rangle$	[1	0	0	0	0	0	0	0
	$ 001\rangle$	0	1	0	0	0	0	0	0
	$ 010\rangle$	0	0	1	0	0	0	0	0
	$ 011\rangle$	0	0	0	1	0	0	0	0
	$ 100\rangle$	0	0	0	0	0	0	1	0
	$ 101\rangle$	0	0	0	0	0	0	0	1
	$ 110\rangle$	0	0	0	0	1	0	0	0
	$ 111\rangle$	0	0	0	0	0	1	0	0

 $|100\rangle$ $|110\rangle$ $|101\rangle$

More specifically...

Equivalent Ways to Think of Permutations

matrix multiplication performs label swap

Equivalent Ways to Think of Permutations

Practice Exercises

- 1. What's the matrix to performs the "swap back" operation?
- 2. Prove that any permutation matrix is unitary.
- 3. Use this method to derive matrix for the gate:

matrix multiplication performs label swap

4-qubit Example

