(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年6月7日(07.06.2001)

PCT

(10) 国際公開番号 WO 01/40192 A1

(51) 国際特許分類7: C07D 217/26. 401/12, 405/12, 413/12, 413/14, A61K 31/472, 31/4725, A61P 3/04, 3/06, 3/10, 9/10, 29/00

(21) 国際出願番号:

PCT/JP00/08464

(22) 国際出願日:

2000年11月29日(29.11.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11-345543 1999年12月3日(03.12.1999) 特願平2000-295108

2000年9月27日(27.09.2000)

(71) 出願人 (米国を除く全ての指定国について): 京都薬 品工業株式会社 (KYOTO PHARMACEUTICAL IN-DUSTRIES, LTD.) [JP/JP]; 〒604-8444 京都府京都市 中京区西ノ京月輪町38番地 Kyoto (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 松井 博 (MAT-SUI, Hiroshi) [JP/JP]; 〒631-0074 奈良県奈良市三松3 丁目14番4号 Nara (JP). 小林英夫 (KOBAYASHL Hideo) [JP/JP]; 〒616-8075 京都府京都市右京区太秦安井柳 通町4-1 ウイズ101号室 Kyoto (JP). 小豆澤智 (AZUK-IZAWA, Satoru) [JP/JP]; 〒601-8213 京都府京都市南 区久世中久世町2丁目 128番地1 ベルメゾンYS303号 室 Kyoto (JP). 笠井正恭 (KASAI, Masayasu) [JP/JP]; 〒

639-1134 奈良県大和郡山市柳町556番地 ヴィルヌー プ大和郡山201号 Nara (JP). 吉見彰久 (YOSHIMI, Akihisa) [JP/JP]; 〒569-0056 大阪府高槻市城南町1丁目23 番1号 Osaka (JP). 白波瀬弘明 (SHIRAHASE, Hiroaki) [JP/JP]; 〒617-0814 京都府長岡京市今里川原38番地 の35 Kyoto (JP).

(74) 代理人: 高島 一(TAKASHIMA, Hajime); 〒541-0046 大阪府大阪市中央区平野町三丁目3番9号 湯木ビル Osaka (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

[I]

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL HETEROCYCLIC COMPOUNDS AND SALTS THEREOF AND MEDICINAL USE OF THE SAME

(54) 発明の名称: 新規ヘテロ環化合物とその塩、およびそれらの医薬用途

(57) Abstract: Heterocyclic compounds represented by the following general formula [I] and pharmaceutically acceptable salts thereof: wherein R1 represents hydrogen or lower alkyl; R2 represents hydrogen, optionally substituted alkyl, etc.; R3

R³

R

optionally substituted aixyi, etc.; R
represents hydrogen, lower alkyl, etc.; A
represents a single bond or >N-R³ (wherein
R³ represents hydrogen or lower alkyl); B represents lower alkylene; and Y represents optionally substituted aryl, etc. Because of
having the effects of lowering blood glucose level, lowering blood lipid level, ameliorating insulin resistance and activating PPAR,
the property of the property o these compounds are useful as hypoglycemics, hypolipidemics, insulin resistance-ameliorating agents, remedies for diabetes, remedies for complication of diabetes, agents of ameliorating impaired glucose tolerance, antiarteriosclerosis agents, antiobestic agents, anti-inflammatory agents, preventives and remedies for PPAR-mediated diseases and preventives and remedies for X syndrome.

(57) 要約:

一般式[I]

(式中、R¹は水素原子または低級アルキル、R²は水素原子、置換基を有していてもよいアルキルなど、R³は水素原子、低級アルキルなど、Aは単結合または>N-R⁵(式中、R⁵は水素原子または低級アルキルを示す)、Bは低級アルキレン、Yは置換基を有していてもよいアリールなどを示す)で表されるヘテロ環化合物およびその医薬上許容される塩は、血糖低下作用、血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を有し、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤として有用である。

明細書

新規へテロ環化合物とその塩、およびそれらの医薬用途

技術分野

本発明は、血糖低下作用、血中脂質低下作用、インスリン抵抗性改善作用およびPPAR (ベルオキシソーム増殖剤応答性受容体)活性化作用を有する、新規へテロ環化合物およびその医薬上許容される塩に関する。また、本発明は、上記新規へテロ環化合物またはその医薬上許容される塩を含有してなる医薬組成物に関する。さらに、本発明は、上記新規へテロ環化合物またはその医薬上許容される塩を含有してなる、木発明は、上記新規へテロ環化合物またはその医薬上許容される塩を含有してなる、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、抗糖尿病合併症剤(即ち、糖尿病合併症治療薬)、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤に関する。

背景技術

糖尿病の治療剤としては、腸管からの糖吸収および肝からの糖放出の抑制作用を主作用とするビグアナイド系化合物、インスリン分泌促進作用を主作用とするスルホニルウレア系化合物およびインスリン等が用いられてきた。しかしながら、ビグアナイド系化合物は、乳酸アシドーシスを引き起こし、スルホニルウレア系化合物は、強力な血糖低下作用のため、しばしば重篤な低血糖を引き起こす等、使用にあたっては十分な注意が必要である。近年、これらの欠点のない糖尿病治療剤の研究や開発が盛んに行われ、インスリン抵抗性改善作用を有する種々の化合物が見出されてきている。

インスリン抵抗性は、インスリン分泌低下と共に、インスリン非依存型抵抗性糖尿病 (NIDDM) の成因の1つとして重要であり、インスリン抵抗性を改善する薬剤の開発が望まれている。このインスリン抵抗性を改善する薬剤としては、種々のチアゾリジン系化合物が知られている。これらの化合物としては、例えば、5-[4-[(6-ヒドロキシ-2,5,7,8-テトラメチルクロマン-2-(1)] メトキシ ベンジル [-2,4-チアゾリジンジオン(-1)]

般名:トログリタゾン)が特公平2-31079号公報に、5-[[4-[2-(5-x+v-y)]] が特公平2-4v) エトキシ] フェニル] メチル] -2 、 4-4v (一般名:ピオグリタゾン)が特公平5-66956 号公報に、5-[[4-[2-[N-x+v-N-(y)]]] アミノ] エトキシ] フェニル] メチル] -2 、4-4v (一般名:ロジグリタゾン)が特開平1-131169 号公報に記載されている。

本発明の目的は、これまでとは全く異なった構造を有する血糖低下作用、血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を有する化合物を提供することにより、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤に多様性を持たせ、選択範囲を広げることである。

発明の開示

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、新規な構造を有する、一般式[I]

(式中、R¹は水素原子または低級アルキルを示し、

R²は水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよいアルキルまたは一COR⁴(式中、R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアリールアルキルまたは置換基を有していてもよい複素環残基を示す)を示し、

R³は水素原子、低級アルキルまたは低級アルコキシを示し、

Aは単結合または $>N-R^5$ (式中、 R^5 は水素原子または低級アルキルを示す)を示し、

Bは低級アルキレンを示し、

Yは置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基を示す)

で表されるヘテロ環化合物およびその医薬上許容される塩が、血糖低下作用、 血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を有 することを見出し、本発明を完成するに至った。

即ち、本発明は、

[1]一般式[I]

(式中、R¹は水素原子または低級アルキルを示し、

R²は水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい複素環アルキルまたは一COR⁴ (式中、R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアリールアルキルまたは置換基を有していてもよい複素環残基を示す)を示し、

R³は水素原子、低級アルキルまたは低級アルコキシを示し、

Aは単結合または>N-R 5 (式中、 5 は水素原子または低級アルキルを示す)を示し、

Bは低級アルキレンを示し、

Yは置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基を示す)

で表されるヘテロ環化合物 (以下、ヘテロ環化合物[I]ともいう) またはその医薬上許容される塩、

[2]一般式[1]中、

R¹が水素原子または低級アルキルであり、

R²が水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアリールアルキルまたは-COR⁴(式中、R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールアルキルである)であり、

R³が水素原子、低級アルキルまたは低級アルコキシであり、

Aが単結合または $>N-R^5$ (式中、 R^5 は水素原子または低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基である、

上記[1]のヘテロ環化合物またはその医薬上許容される塩、

. [3]一般式[I]中、

R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキル、アルケニル、アルキニル、複素環アルキルまたは-CO R^4 (式中、 R^4 はアルキル、アルケニルまたはアリールである)であり、

R³が水素原子または低級アルコキシであり、

Aが単結合または $> N - R^5$ (式中、 R^5 は低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yがアリールまたは置換基を有していてもよい芳香族複素残基である、

上記[1]のヘテロ環化合物またはその医薬上許容される塩、

[4]一般式[1]中、

R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキルまたは $-COR^4$ (式中、 R^4 はアルキルまたはアリールである) であり、

R³が水素原子であり、

Aが単結合または>N-R 5 (式中、R 5 は低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよい芳香族複素残基である、

上記[1]のヘテロ環化合物またはその医薬上許容される塩、

[5]一般式[1]において、Y-A-が

$$R^{A} \longrightarrow R^{B} \longrightarrow R^{B}$$

$$\mathbb{R}^{\mathbb{C}}$$
 \mathbb{N} $\mathbb{C}^{\mathbb{N}_3}$ $\mathbb{C}^{\mathbb{N}_3}$ $\mathbb{C}^{\mathbb{N}_3}$

(式中、 R^{Λ} はイソプロピルまたはtertープチルを示し、 R^{B} はイソプロピルまたはtertープチルを示し、

 R^c はイソプロピル、tert-プチル、フェニル、チオフェン-2-イル、2-メチルプロペニル、<math>3-プテニル、シクロプロピル、<math>1-プテニルまたは2, 2-ジメチルプロピルを示す)

である上記[1]のヘテロ環化合物またはその医薬上許容される塩、

[6]一般式[1]において、 Y-A-が

(式中、RAはイソプロビルまたはtertープチルを示し、

R^Bはイソプロピルまたはtertーブチルを示し、

 R^{c} はイソプロピル、tert-ブチル、フェニル、チオフェン-2-イル、2-メチルプロペニルまたは<math>3-ブテニルを示す)

である上記[1]のヘテロ環化合物またはその医薬上許容される塩、

[7]一般式[I]において、Y-A-が

である上記[1]のヘテロ環化合物またはその医薬上許容される塩、

[8]一般式[1]において、Y-A-が

である上記[1]のヘテロ環化合物またはその医薬上許容される塩、

[9] 一般式[I] のヘテロ環化合物が、下記化合物(1) \sim (67)のいずれかである上記[1]のヘテロ環化合物またはその医薬上許容される塩;

- (1) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
 - (2) 2-ベンジル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (3) 2-アセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-1ル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルポン酸、

ルボン酸、

S)ーカルボン酸、

(5) $2-\Lambda$ キサノイルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S)-カルボン酸、

- (6) $2-\Lambda$ キシルー7-[2-(5-メチルー2-フェニルオキサゾールー4- イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー (3S) -カルボン酸、
- (7) 2 4 ソプチル-7 [2 (5 メチル-2 フェニルオキサゾール-4 4 ル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリンー (3S) カルポン酸、
- (8) 2-シクロヘキシルメチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリンー (3S)-カルボン酸、
- (9) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(3-フェニルプロピル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (10) 2 (10)
- (11) 2-ベンジル-7-[2-(N-メチル-N-(ビリジン-2-イル) アミノ) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (12) 2 -ペンジル-7 [2 (5 -エチル-ピリジン-2 -4 -4) エトキシ] -1, 2, 3, 4 -テトラヒドロイソキノリン- (3 S)-カルポン酸、
- (13) 2-ペンジル-7-[2-(インドリン-1-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、

4-4ル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン- (3S) -カルボン酸エチルエステル、

- (15) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル、
- (16) 2 (4-メトキシベンジル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>- 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- - (18) 2-(4-メチルペンジル) -7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (19) 2 (4-メチルベンジル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン- <math>(3S)-カルボン酸エチルエステル、
 - (20) 2-ペンジル-7-[2-(6-カルボキシインドリン-1-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、 <math>(21) 2-(4-フルオロベンジル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, <math>2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (22) 2-(2,2-ジメチルプロピオニル)-7-[2-(5-メチル-2-7ェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルポン酸、

イソキノリンー(35)-カルボン酸、

- (24) 2-ベンジル-7-[2-(5-メチル-2-tert-ブチルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- (25) 2-ペンジル-7-[2-(5-メチル-2-(チオフェン-2-イル) オキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイゾキ ノリン-(3S) -カルポン酸、
- (26) 2-ペンジル-7-[2-(5-メチル-2-イソプロピルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- (27) 2ープチルー7ー[2ー(5ーメチルー2ーフェニルオキサゾールー4ーイル) エトキシ] -1, 2, 3, 4ーテトラヒドロイソキノリンー(3S)ーカルボン酸、
 - (28) $2-ベンジル-7-\{2-[5-メチル-2-(2-メチルプロベニル)$ オキサゾールー4-イル] エトキシ $\}-1$, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (29) $2-ペンジル-7-\{2-[2-(3-プテニル)-5-メチルオキサゾール-4-イル] エトキシ<math>\}-1$, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (30) 2-アリルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S)-カルボン酸、
- (31) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(2-プロピニル) -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (32) 2 (2 777211) 7 [2 (5 174111) 7 2 741111](32) 2 - (2 - 777211) - 7 - [2 - (5 - 174111) - 2 - 741111]

- (38) -カルポン酸、
- (33) 2-ペンジル-7-[(インドリン-3-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (34) 2 (3-プテニル) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン <math>- (3S) カルボン酸、
- (35) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-2-ペンタノイル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) カルボン酸、
- (36) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-(4-ペンテノイル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (37) 2-(3-メチル-2-プテノイル) -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (38) 2 (3, 3-ジメチルブチリル) <math>- 7 [2 (5-メチル-2-フェニルオキサゾール- 4 -
- (39) 2-ペンジルー7-メトキシー6-[2-(5-メチルー2-フェニル オキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキ ノリンー <math>(3RS) -カルボン酸、
- (40) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-(ピリジン-2-イルメチル) -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (41) 2 ベンジル-7 (3-メチル-3-フェニルプトキシ) 1, 2, 3, 4-テトラヒドロイソキノリン- <math>(3S) カルポン酸、
- (42) 2 (3, 3 3) + (4 7) + (3, 3 3) + (4 7) +

- 2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (43)2-ベンジル-7-(2-イソプロピルベンゾオキサゾール-6-イル) メトキシー1, 2, 3, 4ーテトラヒドロイソキノリンー (3S) ーカルボン酸、
- (44)2-ベンジル-7-(2-tert-ブチルベンゾオキサゾール-6-イル)メトキシ-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (45)2 -ベンジル-7 (2-tert-ブチルベンゾオキサゾール<math>-5 イル) メトキシ-1, 2, 3, 4-テトラヒドロイソキノリン- (3S) -カルボン酸、
- (46) 7-(2-tert-ブチルベンゾオキサゾール-6-イル) メトキシー2-(2,2-ジメチルプロピル) -1,2,3,4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (47)2-ベンジルー7-(2-イソプロビルベンゾオキサゾールー5-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (48) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] <math>-2 (ピリジン 4 イルメチル) 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
- (49) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-[(ビリジン-2-イル) カルボニル] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (51) 2 ベンジル-7 [2 (2 シクロプロピル-5 メチルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー

- (3S) -カルポン酸、
- (52) 2 (3-メチル-2-プテニル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4 -テトラヒドロイソキノリン (3S) -カルボン酸、
- (53) 2 (2, 2-ジメチルプロピル) 7 [2 (5 メチル 2 tert ブチルオキサゾール 4 イル) エトキシ] <math>-1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルポン酸、
- (54) 2-ペンジル-7-[2-(1-プテニル)-5-メチルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (55) 2-ペンジル-7-[2-(2,2-ジメチルプロピル)-5-メチルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (56) 2-(2,2-ジメチルプロピル) -7-[2-(5-メチル-2-フ)] エニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル、
- (57) 7-(ペンゾフラン-2-イルメトキシ) <math>-2-ペンジル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸、
- (59) 7 [2 (ベンゾフラン 2 イル) エトキシ] 2 ベンジル 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、

- (38) -カルボン酸、
- (62) 2 [3-(メトキシカルボニル)プロピオニル]-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4ーテトラヒドロイソキノリン-(3S)-カルボン酸、
- (64) 2 -ベンジル-6 [2 (5 メチル- 2 フェニルオキサゾール- 4 イル) エトキシ] 1 , 2 , 3 , 4 テトラヒドロイソキノリン- (3 R S) カルボン酸、
- (65) 2-(3-アセチルベンジル) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1, 2, 3, 4-テトラヒドロイソキノリン-(3S) カルボン酸、
- (66) 2-(2-アセチルベンジル) -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、および
- (67) 2 ベンジル-7-[(5-メチル-2-フェニルオキサゾール-4-イル) メトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、_____
- [10] 一般式[I]のヘテロ環化合物が、上記化合物(1)~(47)のいずれかである上記[9]のヘテロ環化合物またはその医薬上許容される塩、
- [11] 一般式[I]のヘテロ環化合物が、上記化合物(1) \sim (21)のいずれかである上記[9]のヘテロ環化合物またはその医薬上許容される塩、
- [12]上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上許容される 塩を含有してなる医薬組成物、
- [13]抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症

剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤からなる 群より選ばれる、上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上 許容される塩を含有してなる医薬。

[14]上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上許容される塩を含有してなる抗高血糖剤、

[15]上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上許容される 塩を含有してなる抗高脂血症剤、

[16]上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上許容される 塩を含有してなるインスリン抵抗性改善剤、

[17]上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上許容される 塩を含有してなる糖尿病合併症治療薬、および

[18]上記[1]~[11]のいずれかのヘテロ環化合物またはその医薬上許容される 塩を含有してなる糖尿病治療薬に関する。

一般式[1]

(式中、R1は水素原子または低級アルキルを示し、

R²は水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよいアルキルまたは一COR⁴(式中、R⁴は、水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアリールアルキルまたは置換基を有していてもよい複素環残基を示す)を示し、

R³は水素原子、低級アルキルまたは低級アルコキシを示し、

Aは単結合または $> N - R^5$ (式中、 R^5 は水素原子または低級アルキルを示す)を示し、

Bは低級アルキレンを示し、

Yは置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基を示す)

で表される新規へテロ環化合物およびその医薬上許容される塩は、血糖低下作用、血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を有する。

本発明におけるアルコキシカルボニルとしては、好ましくは炭素数が2~5 のアルコキシカルボニルが挙げられ、例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、オソプトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニルなどが挙げられる。

R¹、R³およびR⁵における低級アルキルとしては、好ましくは炭素数1~6 の直鎖状または分岐鎖状のアルキルが挙げられ、例えばメチル、エチル、プロビル、イソプロビル、ブチル、イソブチル、secーブチル、tertーブチル、ベンチル、イソペンチル、ネオペンチル、ヘキシルなどが挙げられ、好ましくはメチル、エチル、プロビル、イソプロビルが挙げられる。

R³における低級アルコキシとしては、好ましくは炭素数1~6の直鎖状または分岐鎖状のアルコキシが挙げられ、例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、プトキシ、イソプトキシ、secーブトキシ、tertーブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシなどが挙げられ、好ましくはメトキシ、エトキシ、プロポキシ、イソプロポキシが挙げられる。

 R^2 および R^4 における置換基を有していてもよいアルケニルにおける「アルケニル」としては、好ましくは炭素数 $2\sim6$ の直鎖状または分岐鎖状のアルケ

ニルが挙げられ、例えばビニル、1-プロペニル、2-プロペニル、1-ププロペニル、1-プテニル、1-プテニル、2-プテニル、3-プテニル、3-プテニル、1-プテニル、1-プテニル、2-ペンテニル、3-プテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、1-ペンテニル、1-ペンテニル、1-ペンテニル、1-ペンテニル、1-ペンテニル、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニル0、1-ペンテニ1、1-ペンテニ1、1-ペンテニ2 における低級アルコキシ(1-ペンテニ2 における低級アルコキシと同義である)、ヒドロキシ、カルボキシ、アルコキシカルボニル、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子またはフッ素原子)、ニトロ、アミノなどが挙げられる。1-ペ1 が置換基を有するアルケニルである場合の置換数は、それぞれ1または2が好ましい。

R²における置換基を有していてもよいアルキニルにおける「アルキニル」としては、好ましくは炭素数 2~4である直鎖状または分岐鎖状のアルキニルが挙げられ、例えばエチニル、1ープロピニル、2ープロピニル、1ーメチルー2ープロピニルなどが挙げられ、好ましくはエチニル、2ープロピニルが挙げられる。該置換基としては、低級アルコキシ(R³における低級アルコキシと同義である)、ヒドロキシ、カルボキシ、アルコキシカルボニル、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子またはフッ素原子)、ニトロ、アミノなどが挙げられる。R²が置換基を有するアルキニルである場合の置換数は、1または2が好ましい。

 R^2 および R^4 における置換基を有していてもよいアルキルにおける「アルキル」としては、好ましくは炭素数 $1 \sim 8$ の直鎖状または分岐鎖状のアルキルが挙げられ、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 R^2 まして、 R^2 が挙げられ、好ましくはメチル、エチル、ヘキシル、ヘプチル、オクチルなどが挙げられ、好ましくはメチル、エチル、イソブチル、プロピル、ヘキシル、ペンチル、イソプロピルが挙げられる。該置換基としては、低級アルコキシ(R^3 における低級アルコキシと同義

である)、ヒドロキシ、カルボキシ、アルコキシカルボニル、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子またはフッ素原子)、ニトロ、アミノなどが挙げられる。 R^2 が置換基を有するアルキルである場合の置換数は、1または2が好ましい。

R²におけるシクロアルキルとしては、好ましくは炭素数3~8のシクロアルキルが挙げられ、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどが挙げられ、好ましくはシクロプロピル、シクロペンチル、シクロヘキシルが挙げられる。

R²におけるシクロアルキルアルキルとしては、シクロアルキル部が好ましくは炭素数3~8のシクロアルキルであり、アルキル部が好ましくは炭素数1~3の直鎖状または分岐鎖状のアルキルであるシクロアルキルアルキルが挙げられ、例えばシクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロペキシルメチル、シクロペナチルメチル、シクロペキシルメチル、2ーシクロプロピルエチル、2ーシクロプチルエチル、2ーシクロプロピルエチル、2ーシクロペンチルエチル、2ーシクロペーチンルエチル、2ーシクロプロピルプロピル、3ーシクロプチルプロピル、3ーシクロペンチルプロピル、3ーシクロペンチルプロピル、3ーシクロペンチルプロピル、1ーシクロペキシルエチル、1ーシクロペキシルプロピル、2ーシクロペキシルプロピルなどが挙げられ、好ましくはシクロペキシルメチル、2ーシクロペキシルエチル、シクロペンチルメチル、2ーシクロペンチルエチルが挙げられる。

 R^2 、 R^4 および Y における置換基を有していてもよいアリールにおいて、アーリールとしては、例えばフェニル、ナフチルなどが挙げられる。該置換基としては、低級アルキル(R^1 、 R^3 および R^5 における低級アルキルと同義である)、低級アルコキシ(R^3 における低級アルコキシと同義である)、ヒドロキシ、カルボキシ、アルコキシカルボニル、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子およびフッ素原子)、ニトロ、アミノ、アシル(例えば、ホルミル、ア

セチル、プロパノイルなど)などが挙げられる。Yが置換基を有するアリールである場合の置換数は、1または2が好ましい。

R² およびR⁴ における置換基を有していてもよいアリールアルキルとしては、 例えば、アリール部が好ましくはフェニル、ナフチルなどであり、アルキル部 が好ましくは炭素数1~3の直鎖状または分岐鎖状のアルキルであるアリール アルキルが挙げられる。アリールアルキルとしては、例えばベンジル、1-ナ フチルメチル、2-ナフチルメチル、2-フェニルエチル、2-(1-ナフチ **ル)エチル、2-(2-ナフチル)エチル、3-フェニルプロピル、3-(1** ーナフチル)プロビル、3ー(2ーナフチル)プロビル、1ーフェニルエチル、 エチル、1-(1-ナフチル)プロピル、1-(2-ナフチル)プロピル、2 - (1-ナフチル)プロピル、2-(2-ナフチル)プロピルなどが挙げられ、 好ましくはベンジル、3-フェニルプロピル、1-ナフチルメチル、2-ナフ チルメチルが挙げられる。該置換基としては、低級アルキル(R¹、R³ および \mathbb{R}^5 における低級アルキルと同義である)、低級アルコキシ(\mathbb{R}^3 における低級 アルコキシと同義である)、ヒドロキシ、カルポキシ、アルコキシカルボニル、 ハロゲン原子(塩素原子、臭素原子、ヨウ素原子およびフッ素原子)、ニトロ、 アミノ、アシル(例えば、ホルミル、アセチル、プロパノイルなど)などが挙 げられ、好ましくは低級アルキル、低級アルコキシ、ハロゲン原子、アシルが · 挙げられる。Yが置換基を有するアリールアルキルである場合の置換数は、1 または2が好ましい。

Yにおける置換基を有していてもよい芳香族複素環残基において、該芳香族 複素環としては、好ましくは酸素原子、窒素原子および硫黄原子からなる群か ら選択されるヘテロ原子を少なくとも1つ含有する、単環式複素環および縮合 複素環が挙げられる。本発明における縮合複素環は2環系であり、両環にヘテ ロ原子を有する場合も包含する。好ましい単環式複素環としては、5または6 員環が挙げられる。縮合複素環を構成する複素環としては、5または6員環が

好ましく、また縮合複素環を構成するヘテロ原子を有さない環としては5また は6員環が好ましい。芳香族複素環残基としては、例えばフリル、チエニル、 **ピリジル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チ** アゾリル、トリアゾリル、チアジアゾリル、オキサジアゾリル、ピリダジニル、 **ピリミジニルまたはピラジニルなどの単環式複素環残基;インドリル、イソイ** ンドリル、インドリニル、イソインドリニル、インダゾリル、ペンゾフラニル、 ペンゾチオフェニル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチア ゾリル、キノリル、イソキノリル、ベンゾオキサジニル、ベンゾチアジニル、 **フロ[2,3-b]ピリジル、チエノ[2,3-b]ピリジル、ナフチリジニ** ル、イミダゾピリジル、オキサゾロピリジル、チアゾロピリジルなどの縮合複 素環残基が挙げられ、好ましくはビリジル、オキサゾリル、インドリニル、ベー ンゾオキサゾリル、チアゾリル、ベンゾチアゾリル、インドリル、キノリル、 ペンゾフラニルが挙げられる。該置換基としては、低級アルキル(R¹、R³ お よびR⁵における低級アルキルと同義である)、低級アルコキシ(R³における (低級アルコキシと同義である)、ヒドロキシ、カルボキシ、アルコキシカルボ ニル、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子およびフッ素原子)、 ニトロ、アミノ、アリール (例えば、フェニル、ナフチルなど)、複素環残基 (例えばチエニル、ピリジル、フリルなど)、アルケニル(R²およびR⁴におけ るアルケニルと同義である)、シクロアルキル(例えば、シクロプロビルなど) などが挙げられ、好ましくはアリール、低級アルキル、カルポキシ、複素環残 基、アルケニル、シクロアルキルが挙げられる。Yが置換基を有する芳香族複 素環残基である場合の置換数は、好ましくは1または2である。

Bにおける低級アルキレンとしては、好ましくは炭素数 $1 \sim 6$ の直鎖状または分岐鎖状のアルキレンが挙げられ、例えばメチレン、エチレン、トリメチレン、テトラメチレン、ベンタメチレン、ヘキサメチレン、メチルメチレン、2,2 - ジメチルトリメチレン、2- エチルトリメチレン、1- メチルテトラメチレン、2- メチルテトラメチレン、3- ×

チルトリメチレン、3,3-ジメチルテトラメチレンなどが挙げられ、好ましくはエチレン、トリメチレン、テトラメチレンが挙げられる。

R²における置換基を有していてもよい複素環アルキルにおいて、複素環部は Yにおける「置換基を有していてもよい芳香族複素環残基」の「芳香族複素環 残基」と同義であり、アルキル部としては、例えば炭素数1~3の直鎖状また は分岐鎖状のアルキルが挙げられる。複素環アルキルの具体例としては、例え ば1-ビリジルメチル、2-ビリジルメチル、3-ビリジルメチル、4-ビリ ジルメチル;1-(1-ピリジル)エチル、1-(2-ピリジル)エチル、1 **-(3-ピリジル)エチル、1-(4-ピリジル)エチル、2-(1-ピリジ** ル)エチル、2-(2-ヒリジル)エチル、2-(3-ヒリジル)エチル、2 **- (4-ピリジル) エチル;1- (1-ピリジル) プロピル、1- (2-ピリ ジル) プロピル、1-(3-ピリジル) プロピル、1-(4-ピリジル) プロ** ピル、2-(1-ピリジル)プロピル、2-(2-ピリジル)プロピル、2-**(3-ヒリジル)プロビル、2-(4-ヒリジル)プロビル)、3-(1-ヒリ** ジル) プロピル、3-(2-ピリジル) プロピル、3-(3-ピリジル) プロ ビル、3-(4-ビリジル)プロビル;2-チェニルメチル、3-チェニルメ **ーチエニル) エチル、2-(3-チエニル) エチル;1-(2-チエニル) プ** ロビル、1-(3-チエニル)プロビル、2-(2-チエニル)プロビル、2 **- (3-チエニル)プロピル、3- (2-チエニル)プロピル、3- (3-チ** エニル)プロビル;などが挙げられる。該複素環アルキルは、複素環部が置換 されていてもよく、該置換基としては、低級アルキル(R¹、R³およびR⁵にお ける低級アルキルと同義である)、低級アルコキシ(R³における低級アルコキ シと同義である)、ヒドロキシ、カルボキシ、アルコキシカルボニル、ハロゲ ン原子(塩素原子、臭素原子、ヨウ素原子およびフッ素原子)、ニトロ、アミ ノなどが挙げられる。複索環部がこれらの置換基で置換されている場合の置換 数は、1または2が好ましい。

R⁴における置換基を有していてもよい複素環残基において、複素環部はYにおける「置換基を有していてもよい芳香族複素環残基」の「芳香族複素環残基」と同義であり、好ましくはピリジルが挙げられる。該複素環残基は置換されていてもよく、該置換基としては、低級アルキル(R¹、R³およびR⁵における低級アルキルと同義である)、低級アルコキシ(R³における低級アルコキシと同義である)、ヒドロキシ、カルボキシ、アルコキシカルボニル、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子およびフッ素原子)、ニトロ、アミノなどが挙げられる。複素環部がこれらの置換基で置換されている場合の置換数は、1または2が好ましい。

ヘテロ環化合物[I]およびその医薬上許容される塩としては、 上記一般式[I]中、

①R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアリールアルキルまたは $-COR^4$ (式中、 R^4 は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールアルキルである)であり、

R³が水素原子、低級アルキルまたは低級アルコキシであり、

Aが単結合または>N-R 5 (式中、 R^5 は水素原子または低級アルキルである) であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基である

ヘテロ環化合物およびその医薬上許容される塩、

②R¹が水素原子または低級アルキルであり、

R²が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキル、アルケニル、アルキニル、複素環アルキルまたは-CO

 R^4 (式中、 R^4 はアルキル、アルケニルまたはアリールである) であり、 R^3 が水素原子または低級アルコキシであり、

Aが単結合または> $N-R^5$ (式中、 R^5 は低級アルキルである) であり、

Bが低級アルキレンであり、かつ

Yがアリールまたは置換基を有していてもよい芳香族複素残基である ヘテロ環化合物およびその医薬上許容される塩や

③R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキルまたは $-COR^4$ (式中、 R^4 はアルキルまたはアリールである) であり、

R³が水素原子であり、

Aが単結合または $> N - R^5$ (式中、 R^5 は低級アルキルである) であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよい芳香族複素残基である

ヘテロ環化合物およびその医薬上許容される塩が好ましい。

. 一般式[I]において、Y-A-は

ゃ

(式中、 R^A はイソプロピルまたはtert-ブチルを示し、 R^B はイソプロピルまたはtert-ブチルを示し、 R^C はイソプロピル、tert-ブチル、フェニル、チオフェン-2-イル、2-メチルプロベニルまたは3-ブテニルを示す)や

(式中、R¹はイソプロビルまたはtertープチルを示し、

R⁸はイソプロビルまたはtertーブチルを示し、

 R^{c} はイソプロピル、tert-ブチル、フェニル、チオフェン-2-イル、2-メチルプロペニル、<math>3-ブテニル、シクロプロピル、<math>1-ブテニルまたは2, 2-ジメチルプロピルを示す)

であるのが好ましく、特に好ましくは

である。

-イル) エトキシ] -1, 2, 3, 4 -テトラヒドロイソキノリンー (3S) -カルボン酸、

- (3) 2-アセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (4) 2-メチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) カルボン酸、
- (5) $2-\Lambda$ キサノイルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1 , 2 , 3 , 4-テトラヒドロイソキノリンー (3 S) <math>-カルポン酸、
- (6) $2-\Lambda$ キシルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリンー(3S)-カルボン酸、
- (7) 2 1 -
- (8) 2 シクロヘキシルメチル-7 [2 (5 メチル-2 フェニルオキ サゾール-4 - イル) エトキシ] - 1 , -2 , -3 , 4 - テトラヒドロイソキノリ -ン- (3 S) - カルボン酸、
- (9) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 2 (3 フェニルプロビル) 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
- (10) 2-ペンゾイル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- $(11) 2 \langle x \rangle = (11) 2 \langle x \rangle = (11)$

アミノ) エトキシ] -1, 2, 3, 4 - テトラヒドロイソキノリン- (3 S) - カルボン酸、

- (12) 2-ベンジル-7-[2-(5-エチルービリジン-2-イル) エトキシー1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (13) 2 (13)
- 2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (14) 2 -ベンジル-7 [2 (5 メチル<math>-2 -フェニルオキサゾール-4 -イル) エトキシ] -1, 2, 3, 4 -テトラヒドロイソキノリン-(3S) -カルボン酸エチルエステル、
- (15) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン- (3S) カルボン酸メチルエステル、
- (16) 2 (4-メトキシベンジル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (17) 2 (4-メトキシベンジル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) x トキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S) カルボン酸エチルエステル、
- (18) 2-(4-メチルベンジル) -7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキ ノリン-(3S) -カルボン酸、
 - (19) 2 (4-メチルベンジル) 7 [2 (5-メチル-2-フェニル オキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキ ノリン- <math>(3S) カルボン酸エチルエステル、
 - (20) 2 -ペンジル-7 [2 (6 カ μ ポキシインドリン-1 1 1 + 1 + 2 + 1 + 2 + 1 +

(21) 2 - (4-7)ルオロベンジル) - 7-[2-(5-)メチル-2-7ェニルオキサゾール-4-7ル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン- (3S) -カルボン酸、並びにこれらの医薬上許容される塩が挙げられ、これら以外にさらに、

- (22) 2-(2,2-ジメチルプロピオニル)-7-[2-(5-メチル-2-7ェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルポン酸、
- (23) 2-(2,2-ジメチルプロピル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (24) 2-ペンジル-7-[2-(5-メチル-2-tert-ブチルオキサ ゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン (3S) -カルポン酸、
- (25)2-ベンジル-7-[2-(5-メチル-2-(チオフェン-2-イル)オキサゾール-4-イル)エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (26) 2-ペンジルー7-[2-(5-メチルー2-イソプロピルオキサゾールー4-イル) エトキシ<math>]-1,2,3,4-テトラヒドロイソキノリンー(3-5)-カルボン酸、_______
- (27) 2-プチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (27) 2-プチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (3 S) -カルボン酸、
- $(28) 2 ベンジルー7 \{2 [5 メチルー2 (2 メチルプロベニル)]$ オキサゾール 4 7ル] エトキシ $\} 1$, 2 , 3 , 4 テトラヒドロイソキノリン <math>- (38) カルボン酸、

- (38) -カルボン酸、
- (30) 2-アリル-7-[2-(5-メチル-2-フェニルオキサゾール-4-1/2) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- (31) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(2-プロピニル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (32) 2-(2-プテニル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸、
- (33) 2-ベンジル-7-[(インドリン-3-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (34) 2-(3-プテニル) -7-[2-(5-メチル-2-フェニルオキサ ゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン (3S) -カルポン酸、
- (35) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-ペンタノイル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) <math>-カルポン酸、
- (36) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-(4-ペンテノイル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (37) 2 (3-メチル-2-プテノイル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸、
- (38) 2 (3, 3-ジメチルプチリル) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、

(39) 2-ペンジル-7-メトキシ-6-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3RS) -カルボン酸、

- (40) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(ピリジン-2-イルメチル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (41) 2 ペンジル-7 (3-メチル-3 フェニルプトキシ) 1, 2, 3, 4 テトラヒドロイソキノリン- (3S) カルボン酸、
- (42) 2 ベンジル-7 (3, 3- 3) メチル-4 フェニルプトキシ) 1, 2, 3, 4 テトラヒドロイソキノリン- (3S) カルポン酸、
- (43)2-ペンジル-7-(2-イソプロピルペンゾオキサゾール-6-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリンー (3S)-カルボン酸、
- (44)2-ベンジル-7-(2-tert-ブチルベンゾオキサゾール-6-イル)メトキシ-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (46) 7-(2-tert-ブチルベンゾオキサゾール-<math>6-イル) メトキシ -2-(2,2-ジメチルプロビル)-1,2,3,4-テトラヒドロイソキノリン-(3S) -カルボン酸、および
- (47)2-ペンジル-7-(2-イソプロピルペンゾオキサゾール-5-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリンー (3S)-カルボン酸、並びにこれらの医薬上許容される塩が挙げられ、さらにこれら以外に、
- $(48) 7 [2 (5 \cancel{3} + \cancel{3} + \cancel{4} \cancel{$

イソキノリンー(35)-カルボン酸、

S)_-カルポン酸、

- (49) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 2 [(ビリジン 2 イル) カルボニル] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
- (50) 2 -ベンジル-7 [2 (5 -メチル- 2 -フェニルオキサゾール-4 -イル) エトキシ] -1 , 2 , 3 , 4 -テトラヒドロイソキノリン-。(3 S) -カルボン酸メチルエステル、
- (52) 2 (3-メチル-2-プテニル) 7 [2 (5-メチル-2-フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
 - (53) 2-(2, 2-ジメチルプロピル)-7-[2-(5-メチル-2-t)]ert-ブチルオキサゾール-4-(4-7) エトキシ[-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (54) 2 (3) (1 7) (3) (3 4) (3) (3 4) (

 - (56) 2 (2, 2-ジメチルプロピル) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸エチルエステル、
 - (57) 7-(ペンソフラン-2-イルメトキシ) <math>-2-ペンジル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸、

(58) 2-4ソプチリルー7-[2-(5-3)] (58) 2-4ソプチリルー7-[2-(5-3)] (58) 2-4 (79) 2-3 (79) 2-4 (79

- (59) 7-[2-(ベンゾフラン-2-イル) エトキシ] <math>-2-ベンジル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (60) 7-[2-(5-x+y)] (60) 7-[2-(5-x+y)] (60) 7-[2-(5-x+y)] (61)
- (62) 2-[3-(メトキシカルボニル) プロピオニル] -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (63) 2-[3-(x++) カルボニル) プロピル] -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (65) 2 (3-アセチルペンジル) 7 [2- (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1,2,3,4-テトラヒドロイソキノリン- (3S) -カルボン酸、
- (66) 2 (2-アセチルベンジル) 7 [2-(5-メチル-2-フェニルオキサゾール <math>- 4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン <math>- (3S) カルボン酸、および
- $(67) 2 \langle x \rangle = 7 [(5 \langle x \rangle + \langle x \rangle 2 \langle x \rangle + \langle x \rangle + \langle x \rangle (35) \langle x \rangle = 1, 2, 3, 4 \langle x \rangle + \langle x \rangle + \langle x \rangle = 1, 2, 3, 4 \langle x \rangle + \langle x \rangle + \langle x \rangle + \langle x \rangle = 1, 2, 3, 4 \langle x \rangle + \langle x \rangle +$

カルボン酸、並びにこれらの医薬上許容される塩が挙げられる。

尚、ヘテロ環化合物[I]は、1,2,3,4-テトラヒドロイソキノリン環の 3位の炭素が不斉炭素であるため、種々の立体異性体を有する。最も好ましい 立体配置は、

(式中、R¹、R²、R³、Y、AおよびBは前記と同義である) である。

ヘテロ環化合物[I]は、必要に応じて医薬上許容される塩にすることができる。 ヘテロ環化合物[I]は、塩基性の基を有する場合は酸付加塩を形成することができ、かかる酸付加塩を形成するための酸としては、塩基性部分と塩を形成し得、かつ医薬上許容される酸であれば特に制限はない。かかる酸としては、塩酸、硫酸、リン酸、硝酸などの無機酸、シュウ酸、フマル酸、マレイン酸、クエン酸、酒石酸、メタンスルホン酸、pートルエンスルホン酸などの有機酸などが挙げられる。

また、ヘテロ環化合物[I]がカルボキシル基などの酸性の基を有する場合は、例えばアルカリ金属塩(例えば、ナトリウム塩、カリウム塩など)、アルカリ土類金属塩(例えば、カルシウム塩、マグネシウム塩など)、有機塩基塩(例えば、トリエチルアミン塩、ジシクロヘキシルアミン塩、ビリジン塩など)などを形成することができる。

ヘテロ環化合物[1]およびその医薬上許容される塩は、以下のいずれかの製法 により製造することができる。

製法1

HO
$$R^3$$
 [III]

 R^6 [III]

 R^6 [III]

 R^6 [III]

(式中、R¹、R³、A、BおよびYは前記と同義であり、R⁵は水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアリールアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい複素環アルキル、一COR⁴(R⁴は前記と同義である)またはアミノ保護基を示し、Xはヒドロキシ、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、またはアルカンスルホニルオキシ(例えば、メタンスルホニルオキシ、エタンスルホニルオキシ、プロパンスルホニルオキシ、トリフルオロメタンスルホニルオキシなど)、アリールスルホニルオキシ、トリフルオロメタンスルホニルオキシ、トリルスルホニルオキシなど)、アリールスルホニルオキシ(例えば、フェニルスルホニルオキシ、トリルスルホニルオキシなど)などの脱離基を示す)。

製法1は、一般式[II]の化合物(化合物[II]ともいう)と一般式[III]の化合物(化合物[III]ともいう)とを反応させることによって、一般式[Ia]の化合物(化合物[Ia]ともいう)を製造する方法である。

R⁶における「置換基を有していてもよいアルキル」、「シクロアルキル」、「シクロアルキルアルキル」、「置換基を有していてもよいアリール」、「置換基を有していてもよいアリールアルキル」、「置換基を有していてもよいアル

ケニル」、「置換基を有していてもよいアルキニル」および「置換基を有していてもよい複素環アルキル」の定義は、 R^2 におけるこれらの定義と同じである。

製法1-aにおいて使用される溶媒としては、反応を阻害しない溶媒であれば特に限定はなく、例えば、ジオキサン、アセトニトリル、テトラヒドロフラン、クロロホルム、塩化メチレン、塩化エチレン、ベンゼン、トルエン、キシレン、酢酸エチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなど;およびこれらの混合物などが挙げられる。製法1-aにおける化合物[II]の使用量は、特に限定はなく、化合物[III]

1モルに対して、通常1~5モル、好ましくは1~3モルであり、アゾ化合物

類およびホスフィン類の使用量は、それぞれ、化合物[III]1モルに対して、通常 $1 \sim 3$ モル、好ましくは $1 \sim 1$. 5 モルである。

製法1-aにおける反応温度や反応時間などの反応条件は、用いられる反応 試薬や反応溶媒などによって異なり、通常、-30~50 \mathbb{C} で、30~7~10 数時間である。

製法1-b: Xがハロゲン原子、またはアルカンスルホニルオキシ (例えば、メタンスルホニルオキシ、エタンスルホニルオキシ、プロパンスルホニルオキシ、トリフルオロメタンスルホニルオキシなど)、アリールスルホニルオキシ (例えば、フェニルスルホニルオキシ、トリルスルホニルオキシなど)などの脱離基である場合、製法1-bは、製法1-aと同様な溶媒中、塩基の存在下で行われる。

製法1-bにおいて使用される塩基としては、特に限定はなく、アルカリ金属炭酸塩(例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなど)、水酸化アルカリ金属塩(例えば、水酸化ナトリウム、水酸化カリウムなど)、水素化金属化合物(例えば、水素化ナトリウム、水素化カリウム、水素化カルシウムなど)などの無機塩基;アルカリ金属アルコキシド(例えば、ナトリウムメトキシド、ナトリウムエトキシド、カリウムーtertーブトキシドなど)、アミン類(例えば、トリエチルアミン、ジイソプロビルエチルアミンなど)などの有機塩基が挙げられる。

製法1-bにおける化合物[II]の使用量は、特に限定はなく、化合物[III] 1モルに対して、通常 $1\sim5$ モル、好ましくは $1\sim3$ モルであり、塩基の使用量は、化合物[III] 1 モルに対して、通常 $1\sim5$ モル、好ましくは $1\sim3$ モルである。

製法1-bにおける反応温度や反応時間などの反応条件は、用いられる反応 試薬や反応溶媒などによって異なり、通常、 $-30\sim150$ \odot で、 $30分\sim1$ 0 数時間である。

製法1においては、化合物[III]のR¹が低級アルキルである場合が好ましい。

この場合、 R^1 が低級アルキルである化合物[Ia]が得られ、これは自体公知の方法により加水分解し、 R^1 が水素原子である化合物[Ia]に導くことができる。

また、製法 1 において、化合物[III]の R^6 がアミノ保護基である場合、 R^6 がアミノ保護基である化合物[Ia]が得られ、自体公知の方法により脱保護し、 R^6 が水素原子である化合物[Ia]に導くことができる。

製法2

(式中、R¹、R³、A、BおよびYは前記と同義であり、R²はアミノ保護基を示し、R³は置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアリールアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニルまたは置換基を有していてもよい複素環アルキルを示し、Uはハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、またはアルカンスルホニルオキシ(例えば、メタンスルホニルオキシ、エタンスルホ

ニルオキシ、プロパンスルホニルオキシ、トリフルオロメタンスルホニルオキシなど)、アリールスルホニルオキシ(例えば、フェニルスルホニルオキシ、トリルスルホニルオキシなど)などの脱離基を示す)。

製法 2 は、一般式 [Ib] の化合物 (化合物 [Ib] ともいう) のアミノ保護基 R^7 を自体公知の方法にて脱離し、一般式 [Ic] の化合物 (化合物 [Ic] ともいう) を得、これを一般式 [V] の化合物 (化合物 [V] ともいう) と反応させることによって、一般式 [Id] の化合物 (化合物 [Id] ともいう) を製造する方法である。

R®における「置換基を有していてもよいアルキル」、「シクロアルキル」、「シクロアルキルアルキル」、「置換基を有していてもよいアリール」、「置換基を有していてもよいアリールアルキル」、「置換基を有していてもよいアルケニル」、「置換基を有していてもよいアルキニル」および「置換基を有していてもよい複素環アルキル」の定義は、R®における定義と同じである。

R⁷におけるアミノ保護基は、R⁶におけるアミノ保護基と同義である。

製法 2 において、化合物 [Ic]を化合物 [V]と反応させて化合物 [Id]を得る反応は、反応を阻害しない溶媒(例えば、ジオキサン、アセトニトリル、テトラヒドロフラン、クロロホルム、塩化メチレン、塩化エチレン、ベンゼン、トルエン、キシレン、酢酸エチル、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、ジメチルスルホキシドなど;およびこれらの混合物など)中、塩基の存在下にて行われる。

製法 2 において、化合物[Ic]と化合物[V]との反応で使用する塩基としては、特に限定はなく、アルカリ金属炭酸塩 (例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなど)、水酸化アルカリ金属塩 (例えば、水酸化ナトリウム、水酸化カリウムなど)、水素化金属化合物 (例えば、水素化ナトリウム、水素化カリウム、水素化カルシウムなど)などの無機塩基;アルカリ金属アルコキシド (例えば、ナトリウムメトキシド、ナトリウムエトキシド、カリウムーtertーブトキシドなど)、アミン類 (例えば、トリエチルアミン、ジイソプロビルエチルアミンなど)などの有機塩基が挙げられる。

製法 2 における化合物[V]の使用量は、化合物[Ic] 1 モルに対して、通常 $1\sim 5$ モル、好ましくは $1\sim 3$ モルであり、塩基の使用量は、化合物[Ic] 1 モルに対して、通常 $1\sim 5$ モル、好ましくは $1\sim 3$ モルである。

製法 2 における化合物 [Ic] と化合物 [V] との反応での反応温度や反応時間などの反応条件は、用いられる反応試薬や反応溶媒などによって異なり、通常、 $-30\sim150$ ℃で、 $30分\sim20$ 数時間である。

製法 2 においては、化合物 [Ib] の R^1 が低級アルキルである場合が好ましく、この場合、 R^1 が低級アルキルである化合物 [Id] が得られ、自体公知の方法により加水分解して、 R^1 が水素原子である化合物 [Id] に導くことができる。

製法3

(式中、R¹、R³、R⁴、A、BおよびYは、前記と同義である)

製法3は、化合物[Ic]に一般式[VI]の化合物(化合物[VI]ともいう)を反応

させることによって、一般式[Ie]の化合物(化合物[Ie]ともいう)を製造する方法である。

製法3において、化合物[VI]は、遊離酸の形態だけでなく、塩(例えば、ナトリウム塩、カリウム塩、カルシウム塩、トリエチルアミン塩、ビリジン塩など)や反応性誘導体(例えば、酸クロライド、酸ブロマイドなどの酸ハライド;酸無水物;ジアルキルリン酸などの置換リン酸、モノエチル炭酸などのアルキル炭酸などとの混合酸無水物;イミダゾールなどとのアミドである活性アミド;シアノメチルエステル、4ーニトロフェニルエステルなどのエステル)などとして用いることができる。

また、製法3において、化合物[VI]を遊離酸または塩の状態で使用する場合には、縮合剤の存在下で反応を行うことが好ましく、縮合剤としては、例えば、N,N'ージシクロヘキシルカルボジイミド、1ーエチルー3ー(3'ージメチルアミノプロピル)カルボジイミド、NーシクロヘキシルーN'ーモルホリノエチルカルボジイミド、NーシクロヘキシルーN'ー(4ージエチルアミノシクロヘキシル)カルボジイミドなどのカルボジイミド化合物;N,N'ーカルボニルジイミダゾール、N,N'ーチオニルジイミダゾールなどのアゾライド化合物などの脱水剤などを用いることができる。縮合剤の使用量は、化合物[Ic]1モルに対して、通常1~5モル、好ましくは1~3モルである。これらの縮合剤を用いた場合、化合物[VI]が反応性誘導体になり、反応が進行すると考えられる。

製法 3 は、通常、本反応に対して不活性な溶媒中で行われる。該溶媒としては、具体的には、アセトン、ジオキサン、アセトニトリル、クロロホルム、ベンゼン、塩化メチレン、塩化エチレン、テトラヒドロフラン、酢酸エチル、N,Nージメチルホルムアミド、ピリジン、水およびこれらの混合溶媒が挙げられる。また、製法 3 においては、トリエチルアミン、ピリジン、4 ージメチルアミノピリジン、炭酸カリウムなどの塩基を使用することができる。該塩基を使用する場合、化合物[Ic]1モルに対して、通常1~5モル、好ましくは1~3

モルの量用いればよい。

製法3において、化合物[VI]の使用量は、化合物[Ic]1モルに対して、通常 $1\sim5$ モル、好ましくは $1\sim3$ モルである。

製法3の化合物[VI]と化合物[Ic]との反応における反応温度や反応時間などの反応条件は、用いられる反応試薬や反応溶媒などによって異なり、通常、 $-30\sim150$ で、 $10分\sim10$ 数時間である。

製法3においては、化合物[VI]と化合物[Ic]との反応後、得られた化合物[Ie] を単離し、これをさらに還元することにより化合物[Ie']を得ることができる。 当該還元反応は、反応を阻害しない溶媒中(例えば、水、メタノール、エタノール、ジオキサン、アセトニトリル、テトラヒドロフラン、クロロホルム、塩化メチレン、塩化エチレン、ベンゼン、トルエン、キシレン、酢酸エチル、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、ジメチルスルホキシドまたはこれらの混合物など)、還元剤の存在下で行われる。

当該還元に使用する還元剤としては、カルボニル基をメチレン基に還元するのに通常使用するものであれば特に限定はなく、例えば金属水素錯化物(例えば、水素化アルミニウムリチウム、水素化シアノホウ素ナトリウム(NaBH。CN)、水素化ホウ素ナトリウムなど)、ボランなどが挙げられる。該還元剤の使用量は、化合物[Ie]1モルに対して、通常1~5モル、好ましくは1~3モルである。

当該還元反応における反応温度や反応時間などの反応条件は、用いられる反応試薬や反応溶媒などによって異なり、通常、-30~150℃で、30分~10数時間である。

製法4

(式中、R¹、R²、R³、R⁵、B、X、YおよびUは前記と同義であり、R¹ºはアミノ保護基を示す。)

R¹⁰におけるアミノ保護基は、R⁶におけるアミノ保護基と同義である。

製法 4 は、ヘテロ環化合物[I]における A が > $N-R^5$ である場合の製造方法である。一般式[VIII]の化合物(化合物[VIII]ともいう)と一般式[VIII]の化合物(化合物[VIII]ともいう)とを製法 1 と同様な方法にて反応させ、一般式[IX]の化合物(化合物[IX]ともいう)を得、このもののアミノ保護基 R^{10} を自体公知の方法にて脱離し、得られた一般式[X]の化合物(化合物[X]ともいう)を一般式[XI]の化合物(化合物[XI]ともいう)と反応させることによって、一般式[If]の化合物(化合物[If]ともいう)を製造する方法である。

製法4における化合物[X]と化合物[XI]との反応は、反応を阻害しない溶媒中、塩基の存在下にて行うことができる。該溶媒としては、例えば、ジオキサン、アセトニトリル、テトラヒドロフラン、クロロホルム、塩化メチレン、塩化エチレン、ベンゼン、トルエン、キシレン、酢酸エチル、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ジメチルスルホキシドなど;およびこれらの混合物が挙げられ、化合物[XI]を溶媒として使用できる場合は、化合物[XI]を溶媒として使用してもよい。

製法4における化合物[X]と化合物[XI]との反応で使用する塩基としては、特に限定はなく、アルカリ金属炭酸塩(例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなど)、水酸化アルカリ金属塩(例えば、水酸化ナトリウム、水酸化カリウムなど)、水素化金属化合物(例えば、水素化ナトリウム、水素化カリウム、水素化カルシウムなど)などの無機塩基;アルカリ金属アルコキシド(例えば、ナトリウムメトキシド、ナトリウムエトキシド、カリウムーtertーブトキシドなど)、アミン類(例えば、トリエチルアミン、ジイソプロビルエチルアミンなど)などの有機塩基が挙げられる。該塩基の使用量は、化合物[X]1モルに対して、通常1~5モル、好ましくは1~3モルである。

製法 4 における化合物 [XI] の使用量は、化合物 [X] 1 モルに対して、通常 $1 \sim 5$ モル、好ましくは $1 \sim 3$ モルである。

製法 4 における化合物[X]と化合物[XI]との反応での反応温度や反応時間な

どの反応条件は、用いられる反応試薬や反応溶媒などによって異なり、通常、 $-30\sim150$ で、 $30分\sim10$ 数時間である。

製法 5

(式中、 R^1 、 R^3 、A、BおよびYは前記と同義であり、 R^9 は式: $-CH_2-R^9$ で表される基が、置換基を有していてもよいアルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニルまたは置換基を有していてもよい複素環アルキルとなる基を示す。)

製法5は、化合物[Ic]を一般式[XII]の化合物(化合物[XII]ともいう)と反応させることによって、一般式[Ig]の化合物(化合物[Ig]ともいう)を製造する方法である。

式: $-CH_2-R^9$ で表される基における「置換基を有していてもよいアルキル」、「シクロアルキルアルキル」、「置換基を有していてもよいアリールアルキル」、「置換基を有していてもよいアルケニル」、「置換基を有していてもよいアルキニル」および「置換基を有していてもよい複素環アルキル」の定義は、 R^2 における定義と同じである。

製法5は、化合物[Ic]と化合物[XII]との反応を阻害しない溶媒中(例えば、水、メタノール、エタノール、ジオキサン、アセトニトリル、テトラヒドロフ

ラン、クロロホルム、塩化メチレン、塩化エチレン、ベンゼン、トルエン、キシレン、酢酸エチル、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ジメチルスルホキシドまたはこれらの混合物など)、還元剤の存在下で縮合させて行われる。

製法 5 において使用される還元剤としては、特に限定はなく、金属水素錯化物 (例えば、水素化アルミニウムリチウム、水素化シアノホウ素ナトリウム (NaBH,CN)、水素化ホウ素ナトリウムなど)、ボランなどが挙げられる。

製法 5 における化合物[XII]の使用量は、化合物[Ic] 1 モルに対して、通常 1 ~ 5 モル、好ましくは 1 ~ 3 モルであり、還元剤の使用量は、化合物[Ic] 1 モルに対して、通常 1 ~ 5 モル、好ましくは 1 ~ 3 モルである。

製法 5 における反応温度や反応時間などの反応条件は、用いられる反応試薬や反応溶媒などによって異なり、通常、-30~150 ℃で、30分~10 数時間である。

上記製法 1~5 で得られたヘテロ環化合物[I]は、常法により単離することができ、必要に応じて常法、例えば再結晶法、分取用薄層クロマトグラフィー、カラムクロマトグラフィーなどによって精製することができる。また、必要に応じてその塩として精製することができる。

ヘテロ環化合物[I]は、自体既知の方法によって、その医薬上許容される塩に することができる。

本発明のヘテロ環化合物[I]またはその医薬上許容される塩を含有してなる 医薬組成物には、添加剤などを配合することができる。添加剤としては、例え ば賦形剤(例えば、デンプン、乳糖、砂糖、炭酸カルシウム、リン酸カルシウ ムなど)、結合剤(例えば、デンプン、アラビアゴム、カルボキシメチルセル ロース、ヒドロキシプロビルセルロース、結晶セルロースなど)、滑沢剤(例 えば、ステアリン酸マグネシウム、タルクなど)、崩壊剤(例えば、カルボキ シメチルセルロースカルシウム、タルクなど)などが挙げられる。

上記諸成分を混合した後、混合物を自体公知の手段に従い、例えばカプセル

剤、錠剤、細粒剤、顆粒剤、ドライシロップなどの経口投与用、または注射剤、 座剤などの非経口投与用の製剤とすることができる。

ヘテロ環化合物[I]またはその医薬上許容される塩の投与量は、投与対象、症状、その他の要因によって異なるが、例えば糖尿病、糖尿病合併症または高脂血症の患者に対して、成人に経口投与する場合、1回量1~500mg/kg体重程度を、1日1~3回程度与える。

本発明のヘテロ環化合物[I]およびその医薬上許容される塩は、哺乳動物(ヒト、ウシ、ウマ、イヌ、ネコ、ラット、マウス、ハムスターなど)に対して、優れた血糖低下作用、血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を示し、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤として有用である。即ち、本発明のヘテロ環化合物[I]およびその医薬上許容される塩は、糖尿病、糖尿病の合併症、高脂血症、動脈硬化症、高血糖症、インスリン抵抗性耐糖能不全に起因する疾病、インスリン抵抗性に起因する疾病、パンスリン抵抗性に起因する疾病、肥満症、炎症、PPAR媒介疾患およびX症候群の、治療および予防に有用である。

実施例

__次に、実施例をあげて本発明をさらに詳しく説明するが、本発明はこれらに_ 限定されるものではない。

実施例1

7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸ナトリ ウム

(1) 2-tert-プトキシカルボニル-7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.50gおよび2-(5-メチル-2-フェニルオキサゾール-4-イル)エタノ

2-tert-プトキシカルボニル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

IR ν (neat) cm⁻¹; 2978, 2930, 1738, 1699, 1614, 1587.

'H-NMR (CDCl₃) δ (ppm);

1.29 (3H, t, J=7.0Hz), 1.46, 1.50 (9H, s, s), 2.36 (3H, s),

2.95 (2H, t, J=6.8Hz), 2.90-3.30 (2H, m), 4.00-4.40 (4H, m),

4.51, 4.61 (2H, s, s), 4.70-4.90, 5.00-5.20 (1H, m, m),

6.60-6.90 (2H, m), 7.12 (1H, d, J=8.4Hz),

7.30-7.55 (3H, m), 7.90-8.15 (2H, m).

(2)上記(1)で得られた化合物5.2gをギ酸20m1に溶解し、これに氷冷下で塩化水素の8.78N-2-プロパノール溶液6.0m1を加え、室温で10分間撹拌した。反応液に酢酸エチル100m1を加え、飽和重曹水で中和後、二層を分離した。得られた酢酸エチル層を飽和食塩水50m1で洗浄後、乾燥(Na₂SO₄)した。酢酸エチルを減圧下で留去し、7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル3.6gを得た。

-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 3476, 1742, 1639, 1611, 1553.

¹H-NMR (CDCl₃) δ (ppm);

1.29 (3H, t, J=7.0Hz), 2.02 (1H, s), 2.36 (3H, s), 2.80-3.10 (4H, m),

3.50-3.80 (1H, m), 4.00-4.40 (6H, m), 6.50-6.80 (2H, m),

7.00 (1H, d, J=8.4Hz), 7.30-7.50 (3H, m), 7.90-8.10 (2H, m).

(3)上記(2)で得られた化合物1.11gをメタノール20mlに溶解し、これに1N水酸化ナトリウム水溶液3.0mlを加え、室温で2時間撹拌した。溶媒を減圧下で留去後、得られた結晶性残渣に水5mlを加え、結晶をろ取して表題化合物0.92gを得た。

IR ν (nujol) cm⁻¹; 3427, 1589, 1504.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

2.35 (3H, s), 2.60-3.10 (6H, m), 3.86 (2H, br-s), 4.14 (2H, t, J=6.6Hz), 6.50-6.80 (2H, m), 6.94 (1H, d, J=8.1Hz), 7.40-7.60 (3H, m), 7.75-8.05 (2H, m).

実施例2

2-ベンジルー7- [2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー (3-S) -カルボン酸

(1) 実施例1の(2) で得られた化合物1.40gをN, N-ジメチルホルムアミド20mlに溶解し、氷冷下で水素化ナトリウム(60%オイルサスペンジョン)160mgを加えた。これを室温で20分間撹拌後、ベンジルブロミド0.40mlを滴下し、同温度でさらに1時間撹拌した。反応液に酢酸エチル50mlを加え、水50ml、飽和食塩水30mlで洗浄して乾燥(Na₂SO₄)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-ペンジル-7-[2-(5-メチル-4)]

IR ν (nujol) cm⁻¹; 1728, 1639, 1614, 1551.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

1.21 (3H, t, J=7.0Hz), 2.34 (3H, s), 2.92 (2H, t, J=7.0Hz),

3.05-3.20 (2H, m), 3.60-4.00 (5H, m), 4.12 (2H, q, J=7.0Hz),

4.16 (2H, t, J=7.0Hz), 6.51 (1H, d, J=2.0Hz),

6.68 (1H, dd, J=2.0, 8.4Hz), 6.99 (1H, d, J=8.4Hz),

7.30-7.50 (8H, m), 7.80-8.10 (2H, m).

(2) 上記(1) で得られた化合物8.20gをテトラヒドロフランーメタノール(3:1) の混液80mlに溶解し、これに2N水酸化リチウム水溶液42mlを加え、50℃で2時間撹拌した。減圧下で溶媒を留去してクエン酸で酸性とした後、析出した結晶を3取した。得られた粗結晶9.0gをメタノールで再結晶し、表題化合物6.33gを得た。

: 7.

IR ν (nujol) cm⁻¹; 1638, 1501.

 $^{1}H-NMR (DMSO-d_6) \delta (ppm)$;

2.33 (3H, s), 2.65-3.30 (4H, m), 3.50-4.00 (5H, m), 4.00-6.20 (1H, br),

4.13 (2H, t, J=7.0Hz), 6.59 (1H, br-s), 6.68 (1H, br-d, J=8.4Hz),

7.01 (1H, d, J=8.4Hz), 7.32 (5H, s), 7.35-7.70 (3H, m),

7.85-8.10 (2H, m).

実施例3

2-rセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

(1) 実施例1の(2) で得られた化合物800mgを塩化メチレン8.0 mlに溶解し、氷冷下で無水酢酸0.23mlを加え、室温で10分間撹拌した。反応液に酢酸エチル30mlを加えて飽和重曹水で中和後、二層を分離した。得られた有機層を飽和食塩水10mlで洗浄して乾燥 (Na₂SO₄)後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-アセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリンー(3S)-カルボン酸エチルエステル873mgを得た。

2-アセチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1732, 1651, 1555.

'H-NMR (CDCl₃) δ (ppm);

1.12 (3H, t, J=7.0Hz), 2.13, 2.21 (3H, s, s), 2.36 (3H, s),

2.95 (2H, t, J=6.6Hz), 3.05-3.30 (2H, m), 4.04 (2H, q, J=7.0Hz),

4.22 (2H, t, J=6.6Hz), 4.62 (2H, s), 5.45 (1H, dd, J=4.0, 5.7Hz),

6.55-6.85 (2H, m), 7.04 (1H, d, J=8.2Hz), 7.30-7.50 (3H, m),

7.85-8.10 (2H, m).

- (2)上記(1)で得られた化合物8-0.0 mgをテトラヒドロフランーメターノール(3:1)の混液5.0 mlに溶解し、これに1N水酸化リチウム水溶液3.0 mlを加えて室温で30分間撹拌した。減圧下で溶媒を留去してクエン酸で酸性とした。析出した結晶をろ取し、表題化合物668 mgを得た。

IR ν (nujol) cm⁻¹; 3400, 1732, 1641, 1612, 1555.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.10, 2.17 (3H, s, s), 2.32 (3H, s), 2.70-3.30 (4H, m),

3.90-4.20 (2H, m), 4.30-4.90 (2H, m), 5.35-5.60 (1H, m),

6.50-6.80 (2H, m), 7.03 (1H, d, J=8.1Hz), 7.30-7.60 (3H, m),

7.80-8.10 (2H, m).

実施例4

2-メチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルボン酸

(1) 実施例1の(2) で得られた化合物1.0gをメタノール10m1に溶解し、ホルマリン0.4m1および水素化シアノほう素ナトリウム310mgを加え、室温で1時間撹拌した。減圧下でメタノールを留去後、酢酸エチル20m1を加え、水20m1、飽和食塩水10m1で洗浄して乾燥(Na₂SO4)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-メチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.08gを得た。2-メチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボ

エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸エチルエステル:

IR ν (neat) cm⁻¹; 2926, 2874, 1732, 1641, 1614.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.25 (3H, t, J=7.0Hz), 2.35 (3H, s), 2.50 (3H, s),
- 2.94 (2H, t, J=6.8Hz), 3.02 (2H, d, J=6.0Hz), 3.45 (1H, t, J=6.0Hz),
- 3.64 (1H, d, J=15.6Hz), 3.98 (1H, d, J=15.6Hz), 4.17 (2H, q, J=7.0Hz),
- 4.20 (2H, t, J=6.6Hz), 6.56 (1H, d, J=2.0Hz),
- 6.70 (1H, dd, J=2.0, 8.4Hz), 6.98 (1H, d, J=8.4Hz),
- 7.30-7.50 (3H, m), 7.85-8.10 (2H, m).
- (2)上記(1)で得られた化合物1.08gをテトラヒドロフランーメタ ノール(3:1)の混液10mlに溶解し、これに1N水酸化リチウム水溶液 7.5mlを加え、室温で1時間撹拌した。減圧下で溶媒を留去し、クエン酸

で酸性とした。析出した結晶をろ取し、表題化合物0.74gを得た。

IR ν (nujol) cm⁻¹; 1616, 1555, 1541, 1506.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.36 (3H, s), 2.55 (3H, s), 2.70-3.10 (4H, m), 3.40-3.60 (1H, m),

3.70-4.30 (4H, m), 6.60-6.80 (2H, m), 7.05 (1H, d, J=8.6Hz),

7.35-7.65 (3H, m), 7.75-8.10 (2H, m).

実施例5

(1) 実施例1の(2) で得られた化合物1.0gを塩化メチレン10m1 に溶解し、氷冷下でヘキサノイルクロリド0.41m1およびトリエチルアミン0.51m1を加え、同温度で10分間撹拌した。反応液に酢酸エチル70m1を加え、これを10%クエン酸水50m1、飽和重曹水50m1、次いで飽和食塩水50m1で洗浄して乾燥(Na₂SO₄)後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2ーヘキサノイルー7ー[2ー(5ーメチルー2ーフェニルオキサゾールー4ーイル)エトキシ]-1,2,3,4ーテトラヒドロイソキノリンー(3S)ーカルボン酸エチルエステル1.02gを得た。

IR ν (nujol) cm⁻¹; 1736, 1653, 1587.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

0.70-1.90 (12H, m), 2.20-2.60 (2H, m), 2.36 (3H, s),

2.95 (2H, t, J=6.8Hz), 3.10-3.20 (2H, m), 4.04 (2H, q, J=7.0Hz),

4.22 (2H, t, J=7.0Hz), 4.63 (2H, s), 5.45 (1H, dd, J=4.0, 5.4Hz),

6.60-6.90 (2H, m), 7.04 (1H, d, J=8.1Hz), 7.30-7.50 (3H, m), 7.80-8.10 (2H, m).

(2) 上記(1) で得られた化合物1.02gをテトラヒドロフランーメタ ノール(3:1)の混液10mlに溶解して1N水酸化リチウム水溶液6.0 mlを加え、室温で4時間撹拌した。減圧下で溶媒を留去し、クエン酸で酸性 とした。析出した結晶をろ取し、表題化合物0.56gを得た。

IR ν (nujol) cm⁻¹; 1742, 1641, 1612, 1572.

¹H-NMR (CDCl₃) δ (ppm);

0.88 (3H, br-t, J=6.0Hz), 1.10-1.90 (6H, m), 2.32 (3H, s),

2.30-2.50 (2H, m), 2.70-3.30 (4H, m), 4.07 (2H, t, J=7.0Hz),

4.60 (2H, s), 5.40-5.60 (1H, m), 6.60-6.80 (2H, m),

7.05 (1H, d, J=8.6Hz), 7.35-7.65 (3H, m), 7.75-8.10 (2H, m).

実施例6

 $2- \wedge + \hat{\nu} - 7 - [2 - (5 - \cancel{\lambda} + \cancel{\nu} - 2 - 7 + \cancel{\nu} + 2 - 7 + \cancel{\nu} + 2 - 7 + 2$

(1) 実施例1の(2) で得られた化合物1.20gをN, N-ジメチルホルムアミド12m1に溶解し、ヨウ化ヘキシル0.65m1および炭酸カリウム0.82gを加え、50で15時間撹拌した。反応液に水100m1を加え、酢酸エチル50m1で2回抽出した。酢酸エチル層を飽和食塩水100m1で洗浄して乾燥 (Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、 $2-\Lambda$ キシルー7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.05gを得た。

ルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1724, 1643, 1611.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 0.88 (3H, br-t, J=5.0Hz), 1.10-1.75 (11H, m), 2.35 (3H, s),
- 2.50-2.80 (2H, m), 2.94 (2H, t, J=7.0Hz), 3.02 (2H, d, J=5.5Hz),
- 3.68 (1H, t, J=5.5Hz), 3.83 (1H, s), 3.94 (1H, s),
- 4.12 (2H, q, J=7.0Hz), 4.20 (2H, t, J=7.0Hz), 6.50-6.80 (2H, m),
- 6.97 (1H, d, J=8.4Hz), 7.30-7.60 (3H, m), 7.80-8.10 (2H, m).
 - (2)上記(1)で得られた化合物1.0gをテトラヒドロフランーメタノ
- ール (3:1) の混液 10 m 1 に溶解し、これに 2 N 水酸化リチウム水溶液 5.
- 1mlを加え、室温で11時間撹拌した。減圧下で溶媒を留去してクエン酸で酸性とした。析出した結晶を3取し、表題化合物0.80gを得た。

IR ν (nujol) cm⁻¹; 1620, 1555, 1506.

¹H-NMR (CDCl₃) δ (ppm);

- 0.89 (3H, br-t, J=6.0Hz), 1.00-1.45 (6H, m), 1.50-1.90 (2H, m),
- 2.36 (3H, s), 2.70-3.30 (2H, m), 2.93 (2H, t, J=6.2Hz),
- 3.15 (2H, d, J=6.4Hz), 3.75 (1H, t, J=6.4Hz), 4.00-4.40 (4H, m),
- 6.23 (1H, br-s), 6.60-6.85 (2H, m), 7.06 (1H, d, J=8.4Hz),
- 7.30-7.60-(3H, m), -7.80-8.10-(2H, m).

·実施例7

2-4ソプチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-4ル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

(1) 実施例1の(2) で得られた化合物1.40gをN, N-ジメチルホルムアミド14m1に溶解し、ヨウ化イソプチル1.20m1および炭酸カリウム0.95gを加え、50℃で3日間撹拌した。反応液に水100m1を加え、酢酸エチル50m1で2回抽出した。酢酸エチル層を飽和食塩水100m

1で洗浄して乾燥 (Na_2SO_4) 後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-4ソプチルー7-[2-(5-3)] (5-3)

2-4ソブチルー7-[2-(5-x)チルー2-7ェニルオキサゾールー4-4 イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S) - カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1719, 1645, 1614, 1506.

¹H-NMR (CDCl₃) δ (ppm);

- 0.89 (6H, d, J=6.6Hz), 1.19 (3H, t, J=7.0Hz), 1.70-1.90 (1H, m),
- 2.35 (3H, s), 2.10-2.50 (2H, m), 2.94 (2H, t, J=7.0Hz).
- 3.02 (2H, d, J=5.2Hz), 3.66 (1H, t, J=5.2Hz), 3.83 (1H, s),
- 3.92 (1H, s), 4.16 (2H, q, J=7.0Hz), 4.20 (2H, t, J=7.0Hz),
- 6.45-6.75 (2H, m), 6.97 (1H, d, J=8.2Hz), 7.25-7.50 (3H, m),
- 7.85-8.10 (2H, m).
- (2)上記(1)で得られた化合物1.05gをテトラヒドロフランーメタ ノール(3:1)の混液10m1に溶解し、2N水酸化リチウム水溶液5.7 m1を加え、室温で24時間撹拌した。減圧下で溶媒を留去してクエン酸で酸 性とした。析出した結晶をろ取し、表題化合物0.83gを得た。

IR ν (nujol) cm⁻¹; 3339, 1620, 1553, 1508.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 0.95 (3H, d, J=6.7Hz), 1.01 (3H, d, J=7.0Hz), 1.95-2.15 (1H, m),
- 2.36 (3H, s), 2.60-2.80 (2H, m), 2.94 (2H, t, J=6.7Hz),
- 3.16 (2H, d, J=6.6Hz), 3.70 (1H, t, J=6.6Hz), 4.11 (2H, s),
- 4.18 (2H, t, J=6.6Hz), 4.84 (1H, br-s), 6.60-6.90 (2H, m),
- 7.49 (1H, d, J=8.1Hz), 7.25-7.50 (3H, m), 7.85-8.10 (2H, m).

実施例8

2-シクロヘキシルメチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー (3S) -カルボン酸

(1) 実施例1の(2) で得られた化合物1.40gをN,Nージメチルホルムアミド14mlに溶解してシクロヘキシルメチルプロミド1.44mlおよび炭酸カリウム0.95gを加え、50℃で2日間撹拌した。反応液に水100mlを加え、酢酸エチル50mlで2回抽出した。酢酸エチル層を飽和食塩水100mlで洗浄して乾燥(Na₂SO₄)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-シクロヘキシルメチルー7-[2-(5-メチル-2-フェニルオキサゾールー4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.0gを得た。

2-シクロヘキシルメチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1728, 1638, 1614, 1504.

¹H-NMR (CDCl₃) δ (ppm);

0.80-2.00-(11H,-m), 1.19 (3H, -t,-J=7.0Hz), 2.36-(3H,-s), ----

2.40-2.55 (2H, m), 2.94 (2H, t, J=7.1Hz), 3.00 (2H, d, J=5.3Hz),

3.65 (1H, t, J=5.3Hz), 3.82 (1H, s), 3.92 (1H, s),

4.05 (2H, t, J=7.0Hz), 4.16 (2H, q, J=7.0Hz), 6.50-6.80 (2H, m),

6.97 (1H, d, J=8.1Hz), 7.30-7.50 (3H, m), 7.80-8.10 (2H, m).

(2) 上記(1) で得られた化合物 0.95 gをテトラヒドロフランーメタ ノール(3:1) の混液 28 m 1 に溶解して 2 N 水酸化リチウム水溶液 7.1 3 m 1 を加え、室温で 3 日間撹拌した。減圧下で溶媒を留去し、クエン酸で酸 性とした。析出した結晶を 3 取し、表題化合物 0.76 gを得た。

IR ν (nujol) cm⁻¹; 3319, 1624, 1506.

'H-NMR (CDCl₃) δ (ppm);

- 0.70-2.10 (11H, m), 2.36 (3H, s), 2.40-2.55 (2H, m),
- 2.93 (2H, t, J=6.4Hz), 3.16 (2H, d, J=7.2Hz), 3.70 (1H, t, J=7.2Hz),
- 4.00-4.30 (4H, m), 5.30 (1H, br-s), 6.60-6.90 (2H, m),
- 7.08 (1H, d, J=8.4Hz), 7.30-7.50 (3H, m), 7.80-8.10 (2H, m).

実施例9

7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-2-(3-フェニルプロピル) -1, 2, 3, 4-テトラヒドロイソキノリ ン-(3S) -カルボン酸

- (1) 実施例1の(2) で得られた化合物1.40gをN, Nージメチルホルムアミド14m1に溶解して3ーフェニルプロピルプロミド0.78m1および炭酸カリウム0.95gを加え、50℃で22時間撹拌した。反応液に水100m1を加え、酢酸エチル50m1で2回抽出した。酢酸エチル層を飽和食塩水100m1で洗浄して乾燥(Na₂SO₄)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、7ー[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-2-(3-フェニルプロピル)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルポン酸エチルエステル1.05gを得た。
 - 7-[2-(5-メチル-2-フェニルオキサゾールー4-イル) エトキシ] -2-(3-フェニルプロピル)-1, 2, 3, 4-テトラヒドロイソキノリ 2-(3S)-カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1720, 1647, 1612, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.17 (3H, t, J=7.0Hz), 1.60-2.05 (2H, m), 2.35 (3H, s),
- 2.50-2.80 (4H, m), 2.94 (2H, t, J=7.1Hz), 3.04 (2H, d, J=5.7Hz),
- 3.67 (1H, t, J=5.7Hz), 3.84 (1H, s), 3.94 (1H, s),

4.04 (2H, t, J=7.1Hz), 4.16 (2H, q, J=7.0Hz), 6.50-6.80 (2H, m), 7.07 (1H, d, J=9.0Hz), 7.20 (5H, s), 7.10-7.50 (3H, m), 7.80-8.10 (2H, m).

(2) 上記(1) で得られた化合物1.0gをテトラヒドロフランーメタノール(3:1) の混液10mlに溶解して2N水酸化リチウム水溶液4.77mlを加え、室温で10時間撹拌した。減圧下で溶媒を留去し、クエン酸で酸性とした。析出した結晶をろ取し、表題化合物0.66gを得た。

IR ν (nujol) cm⁻¹; 3346, 1616, 1556, 1506.

'H-NMR (CDCl₃) δ (ppm);

- 1.70-2.20 (3H, m), 2.35 (3H, s), 2.40-2.70 (4H, m), 2.70-3.30 (2H, m),
- 2.92 (2H, t, J=6.3Hz), 3.10 (2H, d, J=7.0Hz), 3.65 (1H, t, J=7.0Hz),
- 3.90-4.30 (4H, m), 5.12 (1H, br-s), 6.55-6.80 (2H, m),
- 6.90-7.25 (6H, m), 7.25-7.55 (3H, m), 7.80-8.10 (2H, m).

実施例10

2-ベンゾイル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸

(1) 実施例1の(2) で得られた化合物1.4gを塩化メチレン14mlに溶解して氷冷下ベンゾイルクロリド 0.4-8-mlおよびトリエチルアミン0.72mlを加え、同温度で15分間撹拌した。反応液に酢酸エチル100mlを加え、10%クエン酸水50ml、飽和重曹水50ml、次いで飽和食塩水50mlで順次洗浄して乾燥(Na_2SO_4)後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-ベンゾイルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル)エトキシ]ー1,2,3,4-テトラヒドロイソキノリンー(3S) ーカルボン酸エチルエステル1.16gを得た。

2-ペンゾイル-7-[2-(5-メチル-2-フェニルオキサゾール-4-

イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1734, 1638, 1612, 1591.

'H-NMR (CDCl₃) δ (ppm);

0.75-1.15 (3H, m), 2.35 (3H, s), 2.93 (2H, t, J=6.6Hz),

3.05-3.25 (2H, m), 3.85-4.40 (4H, m), 4.20-4.80 (2H, m),

5.00-5.60 (1H, m), 6.47 (1H, br-s), 6.72 (1H, br-d, J=8.4Hz),

7.05 (1H, br-d, J=8.4Hz), 7.30-7.60 (8H, m),

7.80-8.10 (2H, m).

(2) 上記(1) で得られた化合物1.0gをテトラヒドロフランーメタノール(3:1) の混液10m1に溶解し、1N水酸化リチウム水溶液6.0m1を加え、室温で1.5時間撹拌した。減圧下溶媒を留去し、水20m1を加え、酢酸エチル10m1で洗浄した。得られた水層を6N塩酸で酸性とし、ジエチルエーテル20m1で2回抽出した。ジエチルエーテル層を飽和食塩水30m1で洗浄して乾燥(Na₂SO₄)後、減圧下でジエチルエーテルを留去した。得られた残渣をメタノールで再結晶し、表題化合物0.75gを得た。IR ν (nujol) cm⁻¹; 1730, 1636, 1551.

'H-NMR (CDCl₃) δ (ppm);

2.32 (3H, s), 2.87 (2H, t, J=6.4Hz), 3.00-3.35 (2H, m),

4.02 (2H, t, J=6.4Hz), 4.40-4.90 (2H, m), 4.90-5.30 (1H, br),

5.00-5.65 (1H, m), 6.40 (1H, br-s), 6.50-6.80 (1H, m),

7.03 (1H, d, J=8.4Hz), 7.20-7.60 (8H, m), 7.75-8.05 (2H, m).

実施例11

2-ベンジル-7-[2-(N-メチル-N-(Lリジン-2-4ル) アミノ) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン- (3S) -カルボン酸ナトリウム

(1) $2 - \forall \lambda \forall \lambda = 7 - \forall \lambda = 1, 2, 3, 4 - \forall \lambda = 1, 2, 3$

キノリンー(3S) -カルボン酸エチルエステル1. 38gをN, N-ジメチルホルムアミド10mlに溶解し、氷冷下で水素化ナトリウム(60%オイルサスペンジョン)210mgを加えた。室温で30分間撹拌後、これに2-(N-tert-ブトキシカルボニル-N-メチルアミノ)エタノール・メタンスルホン酸エステル1. <math>30gを加え、同温度でさらに1時間撹拌した。反応液に酢酸エチル50mlを加え、水50ml、飽和食塩水30mlで洗浄して乾燥(Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-ペンジル-7-[2-(N-tert-ブトキシカルボニル-N-メチルアミノ)エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) <math>-カルボン酸エチルエステル1. 4 4 gを得た。

2-ベンジルー7-[2-(N-tert-プトキシカルボニルーN-メチルアミノ)エトキシ]-1,2,3,4-テトラヒドロイソキノリンー(3S)-カルボン酸エチルエステル:

IR ν (neat) cm⁻¹; 2978, 2932, 1732, 1695, 1614. ¹H-NMR (CDCl₃) δ (ppm);

- 1.23 (3H, t, J=7.0Hz), 1.44 (9H, s), 2.95 (3H, s),
- 3.08 (2H, d, J=4.9Hz), 3.54 (2H, t, J=5.5Hz), 3.60-4.30 (7H, m),
- 7.01 (1H, d, J=8.1Hz), 7.20-7.50 (5H, m).
- (2)上記(1)で得られた化合物1.44gをギ酸7.0mlに溶解して塩化水素の8.78N-2-プロパノール溶液2.0mlを加え、室温で15分間撹拌した。反応液に酢酸エチル100mlを加えて飽和重曹水で中和後、二層を分離した。得られた酢酸エチル層を飽和食塩水50mlで洗浄後、乾燥(Na₂SO₄)した。減圧下で酢酸エチルを留去し、2-ペンジル-7-(2-メチルアミノエトキシ)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.08gを得た。

2-ベンジル-7-(2-メチルアミノエトキシ)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

IR ν (neat) cm⁻¹; 3332, 1732, 1612, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.22 (3H, t, J=7.0Hz), 2.41 (1H, br-s), 2.49 (3H, s),
- 2.95 (2H, t, J=5.5Hz), 3.08 (2H, d, J=4.9Hz), 3.60-4.25 (7H, m),
- 6.52 (1H, d, J=2.0Hz), 6.70 (1H, dd, J=2.0, 8.4Hz),
- 7.00 (1H, d, J=8.4Hz), 7.20-7.50 (5H, m).
- (3)上記(2)で得られた化合物1.05gを2-クロロビリジン2.0 m1に溶解し、140℃で16時間撹拌した。反応液をシリカゲルカラムクロマトグラフィーにて精製し、2-ベンジル-7-[2-(N-メチル-N-(ビリジン-2-イル)アミノ)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル0.5gを得た。
- 2-ベンジルー7-[2-(N-メチルーN-(Lリジンー2-イル) アミノ) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルボン酸エチルエステル:

IR ν (neat) cm⁻¹; 2932, 2905, 1732, 1597, 1560, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.22 (3H, t, J=7.0Hz), 3.06 (2H, d, J=6.2Hz), 3.11 (3H, s),
- 3.60-4.30 (11H, m), 6.40-6.80 (4H, m), 6.97 (1H, d, J=8.4Hz),
- 7.20-7.50 (6H, m), 8.00-8.20 (1H, m).
- (4)上記(3)で得られた化合物 488mgをテトラヒドロフランーメタノール(3:1)の混液 5.0ml に溶解して1N 水酸化ナトリウム水溶液 2.2ml を加え、室温で 6 時間撹拌した。減圧下で溶媒を留去し、水 10ml を加え、食塩で過飽和状態とした後、酢酸エチル 30ml で 30m

表題化合物356mgを得た。

IR ν (nujol) cm⁻¹; 1597, 1497.

 $^{1}H-NMR$ (MeOH-d₄) δ (ppm);

2.95-3.20 (2H, m), 3.07 (3H, s), 3.40-4.20 (9H, m),

6.40-6.70 (4H, m), 6.92 (1H, d, J=8.4Hz), 7.20-7.50 (3H, m),

7.90-8.15 (1H, m).

実施例12

2-ベンジル-7- [2-(5-エチル-ビリジン-2-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸ナトリウム

(1) 2ーベンジルー7ーヒドロキシー1,2,3,4ーテトラヒドロイソ キノリン-(3S)-カルボン酸エチルエステル1.0gをN,N-ジメチル ホルムアミド10m1に溶解し、氷冷下で水素化ナトリウム(60%オイルサ スペンジョン)200mgを加え、室温で30分間撹拌して、溶液(A)を得 た。一方、5-エチル-2-ピリジンエタノール1.5gおよびトリエチルア ミン1.68m1を塩化メチレン40m1に溶解した。これに氷冷下で無水ト リフルオロメタンスルホン酸2.0mlを加え、室温で30分間撹拌した。反 応液を水30mlで洗浄して乾燥 (Na₂SO₄) し、減圧下で塩化メチレンを留 去した。得られた-5.-エチルー 2.-ビリジンエタ-ノール---トリフルオロメタン スルホン酸エステル2.81gを前記溶液(A)に加え、室温で30分間撹拌 した。反応液に酢酸エチル100m1を加え、水50m1、飽和食塩水50m 1で洗浄して乾燥 (Na_2SO_4) 後、減圧下で酢酸エチルを留去した。得られた 残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-ベンジルー7-[2-(5-エチルーピリジン-2-イル) エトキシ] -1、2、3、4ーテト ラヒドロイソキノリンー(3S)-カルボン酸エチルエステル0.58gを得 た。

2-ペンジルー7-[2-(5-エチルーピリジンー2-イル) エトキシ] -

1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1732, 1612, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.22 (6H, t, J=7.2Hz), 2.61 (2H, q, J=7.2Hz), 3.07 (2H, d, J=5.5Hz),
- 3.18 (2H, t, J=6.6Hz), 3.72 (1H, t, J=5.5Hz), 3.81 (1H, s),
- 3.90 (4H, s), 4.13 (2H, q, J=7.2Hz), 4.27 (2H, t, J=6.6Hz),
- 6.51 (1H, d, J=2.0Hz), 6.69 (1H, dd, J=2.0, 8.4Hz),
- 6.98 (1H, d, J=8.4Hz), 7.10-7.50 (7H, m), 8.00-8.20 (1H, m).
- (2) 上記(1) で得られた化合物 0.94gをテトラヒドロフランーメタノール(3:1) の混液 40m1 に溶解して 2N 水酸化ナトリウム水溶液 6.0m1 を加え、40 でで 2 時間撹拌した。減圧下で溶媒を留去し、これに水 10m1 を加え、食塩で過飽和状態とした後、酢酸エチル 30m1 で 30

IR ν (nujol) cm⁻¹; 1576, 1504.

 $^{1}H-NMR$ (MeOH-d₄) δ (ppm);

- 1.22 (6H, t, J=7.5Hz), 2.63 (2H, q, J=7.5Hz), 2.90-3.20 (4H, m),
- 3.72 (1H, s), 3.85 (1H, s), 3.95-4.35 (5H, m), 4.27 (2H, t, J=6.6Hz),
 - 6.40-6.75 (2H, m), 6.91 (1H, d, J=8.4Hz), 7.20-7.65 (7H, m),
 - 8.20-8.35 (1H, m).

実施例13

2-ベンジル-7-[2-(インドリン-1-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

(1) 2-ペンジル-7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.0gをN, <math>N-ジメチル

ホルムアミド10mlに溶解し、氷冷下で水素化ナトリウム(60%オイルサスペンジョン)154mgを加えた。同温度で30分間撹拌後、1-(2-ブロモエチル)インドリン1.09gを加えて室温でさらに2時間撹拌した。反応液に酢酸エチル100mlを加え、水100ml、飽和食塩水50mlで洗浄して乾燥(Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-ベンジル-7-[2-(インドリン-1-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.18gを得た。

2-ベンジルー7-[2-(インドリン-1-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルボン酸エチルエステル:

IR ν (neat) cm⁻¹; 2926, 2843, 1732, 1609, 1493.

¹H-NMR (CDCl₃) δ (ppm);

- 1.22 (3H, t, J=7.2Hz), 2.95 (2H, t, J=8.3Hz), 3.08 (2H, d, J=5.3Hz),
- 3.20-3.60 (3H, m), 3.60-4.30 (10H, m), 6.40-6.80 (4H, m),
- .6.80-7.20 (3H, m), 7.20-7.50 (5H, m).
- (2) 上記(1) で得られた化合物1.17gをテトラヒドロフランーメタ ノール(3:1) の混液24mlに溶解して1N水酸化リチウム水溶液7.6 9mlを加え、50℃で1時間撹拌した。減圧下で溶媒を留去し、クエン酸で 酸性とした。析出した結晶をろ取し、表題化合物0.93gを得た。

IR ν (nujol) cm⁻¹; 1634, 1609, 1491.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 2.95 (2H, br-t, J=8.2Hz), 3.16 (2H, br-d, J=6.1Hz), 3.25-3.60 (3H, m),
- 3.60-4.40 (8H, m), 4.07 (2H, s), 4.10 (2H, t, J=5.5Hz),
- 4.13 (2H, q, J=7.2Hz), 5.60-6.30 (1H, br), 6.30-6.85 (4H, m),
- 6.85-7.20 (3H, m), 7.32 (5H, s).

実施例14

2 - (3 - (5 - 2) + (5 -

n エトキシ] -1 , 2 , 3 , 4 - テトラヒドロイソキノリン- (3 S) - カルボン酸エチルエステル

2-ベンジルー7-ヒドロキシー1, 2, 3, 4-テトラヒドロイソキノリンー(3S) ーカルボン酸エチルエステル10. 0gおよび2-(5-メチルー2-フェニルーオキサゾールー4-イル) エタノール メタンスルホン酸エステル18. 01gをN, N-ジメチルホルムアミド200m1に溶解し、この溶液に炭酸カリウム13. 3gを加えて80 $^{\circ}$ で10時間撹拌した。反応液に水1Lを加え、酢酸エチル200m1で2回抽出した。酢酸エチル層を飽和食塩水500m1で洗浄して乾燥 (Na $_2$ SO $_4$)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、表題化合物7. 06gを得た。

IRおよびNMRスペクトラムは実施例2の(1)と一致した。

実施例15

7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸メチル エステル

(1) 2-tert-ブトキシカルボニル-7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル15. 16 gおよび2-(5-メチル-2-フェニルオキサゾール-4-イル) エタノールメタンスルホン酸エステル20.0gをN, <math>N-ジメチルホルムアミド300m1に溶解し、炭酸カリウム19.7gを加えて 80° Cで3.5時間撹拌した。反応液に水1Lを加え、酢酸エチル300m1で2回抽出した。酢酸エチル層を飽和食塩水500m1で洗浄して乾燥 (Na_2SO_4)後、滅圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-tert-ブトキシカルボニル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル14.0gを得た。

2-tert-プトキシカルポニル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル:

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

1.46, 1.50 (9H, s, s), 2.36 (3H, s), 2.95 (2H, t, J=6.8Hz),

2.90-3.30 (2H, m), 3.60 (3H, s), 4.21 (2H, t, J=6.8Hz),

4.50, 4.60 (2H, s, s), 4.70-4.90, 5.00-5.20 (1H, m, m),

6.60-6.90 (2H, m), 7.12 (1H, d, J=8.4Hz), 7.30-7.55 (3H, m),

7.90-8.15 (2H, m).

(2) 上記(1) で得られた化合物 14.0gをギ酸 42m1に溶解し、氷冷下、塩化水素の8.78N-2-プロパノール溶液 10.7m1を加え、室温で 20分間撹拌した。反応液に酢酸エチル 300m1 および水 500m1を加え、重曹で中和後、二層を分離した。得られた酢酸エチル層を飽和食塩水 500m1 で洗浄して乾燥 (Na_2SO_4) 後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、表題化合物 9.4g を得た。

IR ν (nujol) cm⁻¹; 3560, 1744, 1643, 1612, 1578, 1553, 1504. ¹H-NMR (CDCl₃) δ (ppm);

- 1.92-(1H,-s), 2.36-(3H,-s), 2.80-3.20-(4H,-m), 3.60-3.85-(1H,-m), -
- 3.76 (3H, s), 4.04 (2H, s), 4.21 (2H, t, J=6.6Hz),
- 6.57 (1H, d, J=2.0Hz), 6.71 (1H, dd, J=2.0, 8.6Hz),

7.00 (1H, d, J=8.6Hz), 7.30-7.60 (3H, m), 7.85-8.15 (2H, m).

実施例16

2-(4-メトキシベンジル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

(1)実施例15の化合物800mgをN,N-ジメチルホルムアミド8m

1に溶解し、氷冷下水素化ナトリウム(60%オイルサスペンジョン)96m gを加え、室温で30分間撹拌後、4-メトキシペンジルクロリド0.41m 1を滴下し、50 $\mathbb C$ でさらに 3時間撹拌した。反応液に酢酸エチル50 $\mathbb M$ 1 を 加え、水50 $\mathbb M$ 1 飽和食塩水30 $\mathbb M$ 1 で洗浄、乾燥($\mathbf M$ \mathbf

2-(4-)+キシベンジル)-7-[2-(5-)チル-2-)ェニルオキサゾール-4-1ル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル:

IR ν (nujol) cm⁻¹; 1736, 1638, 1614, 1553, 1514 ¹H-NMR (CDCl₃) δ (ppm);

2.35 (3H, s), 2.93 (2H, t, J=6.6Hz), 3.05 (2H, d, J=5.5Hz),

3.66 (3H, s), 3.70-4.00 (8H, m), 4.17 (2H, t, J=6.6Hz),

6,50 (1H, d, J=2.0Hz), 6.68 (1H, dd, J=2.0, 8.6Hz),

6.85 (2H, d, J=8.6Hz), 6.98 (1H, d, J=8.6Hz), 7.28 (2H, d, J=8.6Hz), 7.30-7.50 (3H, m), 7.80-8.10 (2H, m).

(2) 上記 (1) で得られた化合物 4 5.0 mgをテトラヒドロフランーメタ ノール (3:1) の混液 1 0 m l に溶解して 2 N 水酸化リチウム水溶液 2.5 m l を加え、室温で 3 時間撹拌した。減圧下で溶媒を留去し、クエン酸で酸性とした。析出した結晶を 3 取し、表題化合物 3 5 0 mg を得た。

IR ν (nujol) cm⁻¹; 3288, 1612, 1555, 1514.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.35 (3H, s), 2.93 (2H, t, J=6.4Hz), 3.18 (2H, d, J=6.8Hz),

3.70-4.10 (5H, m), 3.77 (3H, s), 4.17 (2H, t, J=6.4Hz), 4.50 (1H, br-s),

6.60 (1H, d, J=2.0Hz), 6.65-6.95 (3H, m), 7.08 (2H, d, J=8.4Hz),

7.20-7.60 (5H, m), 7.80-8.10 (2H, m).

実施例17

2-(4-メトキシベンジル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル

実施例16の(1)と同様にして表題化合物を得た。

¹H-NMR (CDCl₃) δ (ppm);

- 1.21 (3H, t, J=7.0Hz), 2.34 (3H, s), 2.91 (2H, t, J=7.0Hz),
- 3.04 (2H, d, J=5.5Hz), 3.60-3.95 (8H, m), 4.12 (2H, q, J=7.0Hz),
- 4.15 (2H, t, J=7.0Hz), 6.51 (1H, d, J=2.0Hz),
- 6.67 (1H, dd, J=2.0, 8.8Hz), 6.75-7.00 (3H, m), 7.15-7.50 (5H, m),
- 7.85-8.10 (2H, m).

実施例18

(1) 実施例 15 の化合物 800 m g ϵ N, N - ジメチルホルムアミド 8. 0 m 1 に溶解し、氷冷下で水素化ナトリウム(60%オイルサスペンジョン) 96 m g ϵ 加えた。室温で 30% 間撹拌後、 α - クロロー p - キシレン 0.4 - 0 m 1 を滴下し、50% で 3 時間、さらに室温で 15 時間撹拌した。反応液に酢酸エチル 50 m 1 を加え、水 50 m 1、飽和食塩水 30 m 1 で洗浄して乾燥 (N a_2 SO₄)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-(4- メチルペンジル)-7-[2-(5- メチルー2- フェニルオキサゾールー4- イル)エトキシ] -1, 2, 3, 4- テトラヒドロイソキノリン -(3S) - カルポン酸メチルエステル 0. 90 g ϵ 得た。

IR ν (nujol) cm⁻¹; 1736, 1639, 1614, 1595, 1551.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 2.34 (6H, s), 2.93 (2H, t, J=6.7Hz), 3.06 (2H, d, J=5.0Hz),
- 3.50-4.00 (5H, m), 3.65 (3H, s), 4.17 (2H, t, J=6.7Hz),
- 6.51 (1H, d, J=2.0Hz), 6.68 (1H, dd, J=2.0, 8.6Hz),
- 6.98 (2H, d, J=8.6Hz), 7.11 (2H, d, J=8.4Hz), 7.26 (2H, d, J=8.4Hz),
- 7.30-7.55 (3H, m), 7.80-8.15 (2H, m).
- (2) 上記 (1) で得られた化合物 608mgをテトラヒドロフランーメタノール (3:1) の混液 17ml に溶解して 1N 水酸化リチウム水溶液 6.1 ml を加え、室温で 3 時間撹拌した。減圧下で溶媒を留去し、クエン酸で酸性とした。析出した結晶を 3 取し、表題化合物 400mg を得た。

IR ν (nujol) cm⁻¹; 1620, 1555, 1506.

'H-NMR (CDCl₃) δ (ppm);

- 2.32 (3H, s), 2.35 (3H, s), 2.93 (2H, t, J=7.0Hz),
- 3.17 (2H, d, J=6.6Hz), 3.65-4.05 (5H, m), 4.17 (2H, t, J=7.0Hz),
- 4.73 (1H, br-s), 6.60 (1H, d, J=2.0Hz), 6.77 (1H, dd, J=2.0, 8.8Hz),
- 6.95-7.60 (8H, m), 7.85-8.10 (2H, m).

実施例19

2-(4-メチルベンジル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル

実施例18の(1)と同様にして表題化合物を得た。

'H-NMR (CDCl₃) δ (ppm);

- 1.21 (3H, t, J=7.0Hz), 2.34 (3H, s), 2.92 (2H, t, J=7.0Hz),
- 3.05 (2H, d, J=5.4Hz), 3.71 (1H, t, J=5.4Hz), 3.80 (1H, s),

3.92 (1H, s), 4.12 (2H, q, J=7.0Hz), 4.16 (2H, t, J=7.0Hz),

- 6.51 (1H, d, J=2.0Hz), 6.68 (1H, dd, J=2.0, 8.4Hz),
- 6.98 (1H, d, J=8.4Hz), 7.00-7.60 (7H, m), 7.80-8.10 (2H, m). 実施例 2 0

2-ベンジル-7-[2-(6-カルボキシインドリン-1-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

2-ベンジル-7-[2-(6-メトキシカルボニルインドリン-1-イル) エトキシ] --1, 2, 3, 4-テトラヒドロイソキノリン--(3-S) --カルボーン酸エチルエステル:

IR ν (neat) cm⁻¹; 2949, 2841, 1717, 1611, 1587, 1497.

¹H-NMR (CDCl₃) δ (ppm);

- 1.23 (3H, t, J=7.2Hz), 2.99 (2H, t, J=8.8Hz), 3.00-3.25 (2H, m),
- 3.35-4.35 (13H, m), 3.87 (3H, s), 6.52 (1H, d, J=2.4Hz),
- 6.70 (1H, dd, J=2.4, 8.3Hz), 6.90-7.20 (3H, m), 7.20-7.55 (6H, m).
- (2)上記(1)で得られた化合物1.31gをテトラヒドロフランーメタノール(3:1)の混液33m1に溶解して1N水酸化リチウム水溶液15.

3 m 1 を加え、50℃で2時間撹拌した。減圧下で溶媒を留去し、クエン酸で酸性とした。析出した結晶を3取し、表題化合物1.0gを得た。

IR ν (nujol) cm⁻¹; 3400, 1693, 1612, 1497.

 $^{1}H-NMR (MeOH-d_{4}) \delta (ppm) ;$

2.96 (2H, br-t, J=8.0Hz), 3.15-3.75 (3H, m), 3.80-4.50 (10H, m), 6.65-7.70 (11H, m).

実施例21

2-(4-7)ルオロベンジル) -7-[2-(5-x+3)-2-7] サゾール-4-7 エトキシ] -1 、2 、3 、4-7 トラヒドロイソキノリン- (3S) -カルボン酸

- (1)実施例15で得られた化合物1.00gをN,Nージメチルホルムアミド20mlに溶解し、これに4ーフルオロベンジルクロリド0.46ml、炭酸カリウム0.53gおよびヨウ化カリウム0.21gを加え、50℃で1.5時間撹拌した。反応液に酢酸エチル50mlを加え、水100ml、飽和食塩水100mlで洗浄して乾燥(Na2SO4)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、2-(4ーフルオロベンジル)-7-[2-(5-メチル-2-フェニルオキサゾールー4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル0.92gを得た。
 - 2-(4-7)ルオロベンジル) -7-[2-(5-)3+)ルー 2-7 エニルオキサゾールー 4-7 ルー・ 1 エトキシ] -1 、 1 、

IR ν (nujol) cm⁻¹; 1738, 1639, 1616, 1551, 1510

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 2.35 (3H, s), 2.93 (2H, t, J=6.8Hz), 3.07 (2H, d, J=5.0Hz),
- 3.55-4.00 (5H, m), 3.65 (3H, s), 4.18 (2H, t, J=6.8Hz),
- 6.51 (1H, d, J=2.0Hz), 6.70 (1H, dd, J=2.0, 8.6Hz), 6.80-7.15 (3H, m),

7.15-7.50 (5H, m), 7.80-8.15 (2H, m).

(2)上記(1)の化合物 900 m g をテトラヒドロフランーメタノール(3:1)の混液 18m1 に溶解して 1N 水酸化リチウム水溶液 8.9m1 を加え、室温で 3 時間撹拌した。減圧下で溶媒を留去し、クエン酸で酸性とした。析出した結晶を 3 取し、表題化合物 3 6 8 8 g を 得た。

IR ν (nujol) cm⁻¹; 3398, 1614, 1555, 1510.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.36 (3H, s), 2.94 (2H, t, J=6.4Hz), 3.15 (2H, d, J=6.4Hz),

3.45-4.00 (5H, m), 4.19 (2H, t, J=6.4Hz), 6.60 (1H, d, J=2.0Hz),

6.75 (1H, dd, J=2.0, 8.6Hz), 6.90-7.55 (8H, m), 7.90-8.10 (2H, m).

実施例22

2-(2,2-ジメチルプロビオニル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 1734, 1630, 1612, 1553.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.24 (9H, s), 2.36 (3H, s), 2.80-4.00 (1H, br), 2.92 (2H, t, J=6.4Hz),

2.95-3.15 (2H, m), 4.18 (2H, t, J=6.4Hz),

4.41, 4.91 (2H, ABq, J=18.1Hz), 4.90-5.15 (1H, m),

6.77 (1H, dd, J=2.0, 8.1Hz), 6.89 (1H, d, J=2.0Hz),

7.09 (1H, d, J=8.1Hz), 7.30-7.65 (3H, m), 7.80-8.10 (2H, m).

実施例23

実施例22の表題化合物1.66gをピリジン16.6mlに溶解し、水素化ホウ素ナトリウム1.36gを加え、100 で 4時間撹拌した。10% エン酸水を加えて酸性とし、酢酸エチル100 mlで抽出した。酢酸エチル層を10% クエン酸水100 mlおよび飽和食塩水50 mlで順次洗浄して乾燥(Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、表題化合物0.84gを得た。

IR ν (nujol) cm⁻¹; 3391, 3279, 1668, 1645, 1616, 1597, 1497.

¹H-NMR (CDCl₃) δ (ppm);

0.96 (9H, s), 2.35 (3H, s), 2.46, 2.73 (2H, ABq, J=13.9Hz),

2.93 (2H, t, J=6.7Hz), 3.03-3.23 (2H, m), 3.57-3.78 (1H, m),

3.91, 4.18 (1H, ABq, J=15.4Hz), 4.17 (2H, t, J=6.7Hz),

5.60-6.05 (1H, br), 6.60 (1H, d, J=2.0Hz), 6.73 (1H, dd, J=2.0, 8.4Hz),

7.04 (1H, d, J=8.4Hz), 7.30-7.55 (3H, m), 7.80-8.10 (2H, m).

実施例24

2-(2,2-ジメチルプロピル)-7-[2-(5-メチルー2-フェニルオキサゾール-4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

2-(2,2-i)メチルプロピル)-7-iヒドロキシ-1,2,3,4-iトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル1.5gおよび2-(5-i)メチル-2-iフェニルオキサゾール-4-iイル)エタノール メタンスルホン酸エステル2.59gをトルエン45m1に溶解し、炭酸カリウム2.24gおよびテトラエチルアンモニウムフルオリド0.60gを加え、80 $^{\circ}$ $^{\circ}$

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 0.88 (9H, s), 2.35, 2.58 (2H, ABq, J=14.5Hz), 2.36 (3H, s),
- 2.46 (2H, t, J=6.8Hz), 2.95-3.20 (2H, m), 3.60 (3H, s),
- 3.60-3.80 (1H, m), 3.85-4.20 (2H, m), 4.19 (2H, t, J=6.8Hz),
- 6.54-(-1H,--d, -J=2.0Hz),--6.68-(-1H,--dd,--J=2.0,--8.4Hz),-----
- 6.98 (1H, d, J=8.4Hz), 7.30-7.50 (3H, m), 7.85-8.05 (2H, m).
 - (2)上記 (1) の化合物 5.0 gをテトラヒドロフランーメタノール (3:
- 1)の混液 130m1 に溶解し、1N 水酸化リチウム水溶液 54m1 を加え、50 ℃で3.5時間撹拌した。6N 塩酸で酸性とし、減圧下で溶媒を留去後、酢酸エチル 200m1 で抽出した。酢酸エチル層を飽和食塩水 100m1 で洗浄して乾燥 (Na_2SO_4) 後、減圧下で酢酸エチルを留去した。得られた残渣をエタノール 25m1 に溶解して水 150m1 を加え、室温で撹拌下に晶析させた。析出晶をろ取し、表題化合物 4.52g を得た。

I R および ¹H - N M R スペクトラムは実施例 2 3 と一致した。 実施例 2 5

2-ベンジル-7- [2-(5-メチル-2-フェニルオキサゾール-4-7-1) xトキシ] -1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸塩酸塩

実施例2の表題化合物675mgを75%エタノール10.1mlに加熱溶解し、6N塩酸2.23mlを加え、室温で2時間静置晶析させた。析出晶を ろ取し、表題化合物625mgを得た。

IR ν (nujol) cm⁻¹; 3398, 1734, 1680, 1641, 1620, 1587, 1574, 1551. ¹H-NMR (DMSO-d₆) δ (ppm);

2.36 (3H, s), 2.92 (2H, t, J=6.0Hz), 3.00-3.70 (2H, m),

4.19 (2H, t, J=6.0Hz), 4.25-4.75 (5H, m),

4.80-6.70 (2H, br), 6.70-7.05 (2H, m),

7.20 (1H, d, J=8.6Hz), 7.30-7.77 (8H, m), 7.80-8.10 (2H, m).

実施例26

2-ベンジル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸ナトリウム

実施例2の表題化合物1.0gをメタノール10mlに懸濁し、2.09N 水酸化ナトリウムのメタノール溶液1.02mlを加え、溶解後、減圧下でメ タノールを留去した。得られた残渣にジエチルエーテルを加え、析出晶をろ取 し、表題化合物1.03gを得た。

 \sim IR ν (nujol) cm⁻¹; 1638, 1589, 1503.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

2.33 (3H, s), 2.55-3.60 (6H, m), 3.60-4.30 (5H, m), 6.47 (1H, s),

6.60 (1H, d, J=8.6Hz), 6.92 (1H, d, J=8.6Hz), 7.00-7.67 (8H, m), 7.67-8.05 (2H, m).

実施例27

2-(2,2-ジメチルプロピル)-7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルポン酸塩酸塩

実施例23の表題化合物2.1gをメタノール10.5 m1に溶解し、8.78 N塩化水素のイソプロパノール溶液1.07 m1、次いで酢酸エチル50 m1を加え、室温で撹拌下に晶析させた。析出晶をろ取し、表題化合物1.03 gを得た。

IR ν (nujol) cm⁻¹; 3362, 3206, 1740, 1672, 1612, 1576, 1553.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.12 (9H, s), 2.37 (3H, s), 2.65-3.50 (6H, m), 4.21 (2H, t, J=6.5Hz),

4.40-4.80 (3H, m), 4.85-6.50 (2H, br), 6.90 (1H, d, J=8.1Hz),

6.94 (1H, s), 7.21 (1H, d, J=8.1Hz), 7.35-7.65 (3H, m),

7.80-8.05 (2H, m).

実施例28

2-(2,2-ジメチルプロピル)-7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸硫酸塩

実施例23の表題化合物0.5gをメタノール1.25mlに溶解し、硫酸0.3ml、次いで水16.8mlを加え、室温で撹拌下に晶析させた。析出晶を3取し、表題化合物0.25gを得た。

IR ν (nujol) cm⁻¹; 3400, 1715, 1650, 1615, 1550.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

0.93 (9H, s), 2.36 (3H, s), 2.40-3.30 (6H, m), 3.75-4.45 (5H, m),

4.60-6.50 (2H, br), 6.70 (1H, br-s), 6.74 (1H, d, J=8.1Hz),

7.06 (1H, d, J=8.1Hz), 7.25-7.65 (3H, m), 7.75-8.10 (2H, m).

実施例29

実施例23の表題化合物0.5gおよびpートルエンスルホン酸0.28gをエタノール10mlに加熱溶解した。室温で撹拌下に晶析後、析出晶をろ取し、表題化合物0.3gを得た。

IR ν (nujol) cm⁻¹; 3047, 1734, 1645, 1612, 1514.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.07 (9H, s), 2.28 (3H, s), 2.36 (3H, s), 2.70-3.50 (6H, m),

4.21 (2H, t, J=6.5Hz), 4.40-4.80 (3H, m), 6.80-7.35 (5H, m),

7.35-7.65 (5H, m), 7.75-8.05 (2H, m), 8.40-12.00 (2H, br).

実施例30

2-(2, 2-ジメチルプロピル) -7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキ ノリン-(3S) -カルボン酸フマル酸塩

実施例23の表題化合物1.0gおよびフマル酸0.23gをメタノール5mlに溶解し、水5mlを加え、室温で撹拌下に晶析させた。析出晶をろ取し、表題化合物0.94gを得た。

IR ν (nujol) cm⁻¹; 3500, 3395, 1680, 1650, 1625, 1575, 1550.

¹H-NMR (DMSO- d_6) δ (ppm);

0.85 (9H, s), 2.00-6.30 (2H, br), 2.35 (3H, s),

2.32, 2.59 (2H, ABq, J=14.9Hz), 2.75-3.10 (2H, m),

2.85 (2H, t, J=6.6Hz), 3.45-4.30 (3H, m), 4.15 (2H, t, J=6.6Hz),

6.61 (1H, d, J=2.2Hz), 6.64 (1H, s), 6.66 (1H, dd, J=2.2, 8.4Hz),

7.00 (1H, d, J=8.4Hz), 7.35-7.65 (3H, m), 7.75-8.10 (2H, m).

実施例31

2-(2, 2-3)+1

実施例23の表題化合物0.9gをエタノール9m1に溶解し、0.04N 水酸化カルシウム水溶液54m1を加え、室温で撹拌下に晶析させた。析出晶 を3取し、表題化合物0.79gを得た。

IR ν (nujol) cm⁻¹; 3396, 1638, 1611, 1556, 1504.

 $^{1}H-NMR$ (MeOH-d₄) δ (ppm);

0.87 (9H, s), 2.34 (3H, s), 2.36, 2.58 (2H, ABq, J=14.0Hz),

2.80-3.10 (2H, m), 2.90 (2H, t, J=6.5Hz), 3.30-3.80 (3H, m),

4.15 (2H, t, J=6.5Hz), 6.50 (1H, d, J=2.4Hz),

6.60 (1H, dd, J=2.4, 8.2Hz), 6.90 (1H, d, J=8.2Hz), 7.30-7.60 (3H, m), 7.80-8.05 (2H, m).

実施例1~24に準じて以下の化合物を合成した。

実施例32

2-ベンジル-7- [2-(5-メチル-2-tert-7チルオキサゾール -4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン- (3

<u>S)</u> - カルポン酸

IR ν (nujol) cm⁻¹; 3458, 1682, 1618, 1587, 1510.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.32 (9H, s), 2.23 (3H, s), 2.83 (2H, t, J=6.6Hz),

3.18 (2H, d, J=5.9Hz), 3.65-4.40 (7H, m), 5.60 (1H, br-s),

6.56 (1H, br-s), 6.73 (1H, br-d), 7.06 (1H, d, J=8.4Hz),

7.20-7.55 (5H, m).

実施例33

2-ベンジル-7-[2-(5-メチル-2-(+オフェン-2-4ル) オキ サゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリ ン- (3S) -カルボン酸

IR ν (nujol) cm⁻¹; 3423, 1616, 1578, 1510.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

2.31 (3H, s), 2.70-3.10 (4H, m), 3.40-4.00 (4H, m), 3.39 (2H, s),

4.11 (2H, d, J=6.2Hz), 6.59 (1H, br-s), 6.67 (1H, d, J=8.4Hz),

7.01 (1H, d, J=8.4Hz), 7.05-7.80 (3H, m), 7.32 (5H, s).

実施例34

<u>-カルポン酸</u>

IR ν (nujol) cm⁻¹; 3456, 1684, 1614, 1576, 1510.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.21 (6H, m), 2.19 (3H, s), 2.70-3.10 (5H, m), 3.50-4.20 (5H, m),

6.40-6.85 (2H, m), 7.01 (1H, d, J=8.1Hz), 7.34 (5H, br-s).

実施例35

2-ブチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 3382, 1722, 1614, 1554, 1506.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

0.88 (3H, t, J=6.6Hz), 1.10-1.95 (4H, m), 2.36 (3H, s),

2.75-3.40 (6H, m), 3.71 (2H, br-t), 3.95-4.25 (4H, m),

6.57-7.57 (6H, m), 7.80-8.10 (3H, m).

実施例36

 $2-ペンジル-7-{2-[5-メチル-2-(2-メチルプロペニル) オキ サゾール-4-イル] エトキシ} -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸$

IR ν (nujol) cm⁻¹; 3443, 3300, 1695, 1655, 1622, 1543, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.89 (3H, s), 2.11 (3H, s), 2.27 (3H, s), 2.79 (2H, t, J=6.1Hz),

2.90-3.20 (2H, m), 3.50-4.00 (4H, m), 3.93 (2H, s),

4.07 (2H, t, J=6.1Hz), 5.99 (1H, s), 6.58 (1H, s),

6.67 (1H, d, J=8.2Hz), 6.72 (1H, d, J=8.2Hz), 7.33 (5H, s).

実施例37

 $2 - ベンジル-7 - {2 - [2 - (3 - プテニル) - 5 - メチルオキサゾール$

-4-7[-4-7]

S) -カルポン酸

IR ν (nujol) cm⁻¹; 3442, 1688, 1614, 1578, 1508.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.23 (3H, s), 2.49 (2H, t, J=6.2Hz), 2.65-2.90 (4H, m),

3.05-3.30 (2H, m), 3.75-4.50 (8H, m), 4.90-5.20 (2H, m),

5.65-6.10 (1H, m), 6.58 (1H, d, J=1.7Hz), 6.75 (1H, dd, J=1.7, 8.2Hz),

7.07 (1H, d, J=8.2Hz), 7.35 (5H, s).

実施例38

<u>エトキシ] -1, 2, 3, 4 - テトラヒドロイソキノリンー (3S) - カルボ</u>

ン酸

IR ν (nujol) cm⁻¹; 3335, 1690, 1618, 1553, 1506.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.35 (3H, s), 2.70-3.15 (4H, m), 3.38 (2H, d, J=6.2Hz),

3.55-4.00 (3H, m), 4.16 (2H, t, J=6.6Hz), 4.40-5.50 (1H, br),

5.00-5.40 (2H, m), 5.60-6.10 (1H, m), 6.65 (1H, s),

6.69 (1H, d, J=8.1Hz), 7.01 (1H, d, J=8.1Hz), 7.35-7.65 (3H, m),

7.75-8.10 (2H, m).

実施例39

7 - [2 - (5 - メチル - 2 - フェニルオキサゾール - 4 - イル) エトキシ] - 2 - (2 - プロビニル) - 1, 2, 3, 4 - テトラヒドロイソキノリン - (3)

S) -カルポン酸

IR ν (nujol) cm⁻¹; 3383, 3306, 3221, 1692, 1622, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.00-6.40 (1H, br), 2.35 (3H, s), 2.70-3.10 (4H, m), 3.10-3.25 (1H, m),

3.50-4.00 (5H, m), 4.17 (2H, t, J=6.4Hz), 6.66 (1H, s),

6.70 (1H, d, J=8.6Hz), 7.01 (1H, d, J=8.6Hz), 7.30-7.70 (3H, m),

7.85-8.05 (2H, m).

実施例40

S) -カルポン酸

IR ν (nujol) cm⁻¹; 3447, 3342, 1684, 1620, 1556.

¹H-NMR (DMSO- d_6) δ (ppm);

1.67 (3H, d, J=4.9Hz), 2.35 (3H, s), 2.70-3.10 (4H, m),

3.20-3.50 (2H, m), 3.50-4.00 (3H, m), 4.16 (2H, t, J=6.4Hz),

4.35-5.20 (1H, br), 5.25-5.90 (2H, m), 6.55-6.90 (2H, m),

7.01 (2H, d, J=8.1Hz), 7.35-7.70 (3H, m), 7.75-8.10 (2H, m).

実施例41

 $2 - \langle x \rangle = (1 - 1) - (1$

<u>ーテトラヒドロイソキノリン-(3S)-カルボン酸</u>

IR ν (nujol) cm⁻¹; 1611, 1506.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.60-2.30 (2H, m), 2.80-4.20 (10H, m), 3.91 (2H, s), 4.20-6.00 (1H, br),

6.25-7.10 (7H, m), 7.33 (5H, s).

実施例42

 $\frac{2-(3-7)-2-1}{2-(3-7)-2-1}$ $\frac{2-(5-3)-2-1}{2-(3-7)-2-1}$ $\frac{2-(3-7)-2-1}{2-(3-7)-2-1}$ $\frac{2-(3-7)-2-1}{2-(3-7)-2-1}$ $\frac{2-(3-7)-2-1}{2-(3-7)-2-1}$

<u>S)-カルポン酸</u>

IR ν (nujol) cm⁻¹; 3425, 1682, 1612, 1555.

¹H-NMR (DMSO- d_6) δ (ppm);

2.10-2.40 (2H, m), 2.35 (3H, s), 2.60-3.15 (6H, m), 3.50-4.00 (3H, m),

4.17 (2H, t, J=6.3Hz), 4.40-5.40 (1H, br), 4.85-5.25 (2H, m),

5.55-6.10 (1H, m), 6.50-6.85 (2H, m), 7.01 (1H, d, J=8.1Hz),

7.35-7.70 (3H, m), 7.75-8.05 (2H, m).

実施例43

ーカルポン酸

IR ν (nujol) cm⁻¹; 1742, 1639, 1611, 1572, 1506.

'H-NMR (DMSO-d₆) δ (ppm);

0.88 (3H, br-t), 1.05-1.75 (4H, m), 2.15-2.70 (2H, m), 2.35 (3H, s),

2.70-3.30 (4H, m), 4.18 (2H, br-t), 4.30-4.90 (2H, m),

4.90-5.25 (1H, m), 6.60-6.95 (2H, m), 7.08 (1H, d, J=7.9Hz),

7.35-7.70 (3H, m), 7.75-8.10 (2H, m), 11.00-13.00 (1H, br).

実施例44

7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) ェトキシ]-2-(4-ベンテノイル) -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1742, 1641, 1611, 1570.

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm);$

2.15-2.70 (2H, m), 2.35 (3H, s), 2.70-3.30 (4H, m), 4.18 (2H, br-t),

4.37-5.50 (5H, m), 5.60-6.15 (1H, m), 6.60-6.95 (2H, m),

7.09 (1H, d, J=7.7Hz), 7.30-7.75 (3H, m), 7.75-8.15 (2H, m), 11.00-13.00 (1H, br).

実施例45

2-(3-メチル-2-プテノイル)-7-[2-(5-メチル-2-フェニ ルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソ キノリン-(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 1738, 1641, 1611, 1555.

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$;

1.87 (6H, s), 2.35 (3H, s), 2.70-3.30 (4H, m), 4.18 (2H, br-t),

4.49 (1H, d, J=18.0Hz), 4.76 (1H, d, J=18.0Hz), 4.95-5.22 (1H, m),

5.75-6.10 (1H, m), 6.50-6.90 (2H, m), 7.08 (1H, d, J=7.5Hz),

7.20-7.60 (3H, m), 7.60-8.05 (2H, m), 11.00-13.00 (1H, br).

実施例46

2-(3,3-ジメチルプチリル)-7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-<math>(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 1738, 1639, 1611, 1583, 1555.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.02 (9H, s), 2.36 (5H, s), 2.73-3.20 (4H, m), 4.17 (2H, t, J=7.0Hz),

4.50 (1H, d, J=9.0Hz), 4.83 (1H, d, J=9.0Hz), 5.12 (1H, t, J=6.0Hz),

6.60-6.95 (2H, m), 7.10 (1H, d, J=7.0Hz), 7.35-7.65 (3H, m),

7.80-8.05 (2H, m), 11.00-13.00 (1H, br).

実施例47

2-ベンジル-7-メトキシ-6-[2-(5-メチル-2-フェニルオキサ ゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン - (3RS) -カルポン酸

IR ν (nujol) cm⁻¹; 1722, 1628, 1553, 1520.

```
^{1}H-NMR (DMSO-d_{6}) \delta (ppm) ;
```

2.36 (3H, s), 3.00 (2H, t, J=6.8Hz), 3.10-3.35 (2H, m),

3.80-4.10 (3H, m), 3.75 (3H, s), 4.23 (2H, t, J=6.8Hz),

5.80-6.20 (1H, br), 6.50, 6.72 (2H, s, s), 7.20-7.60 (8H, m),

7.80-8.10 (2H, m).

実施例48

<u>ノリンー(3S)ーカルポン酸ナトリウム</u>

IR ν (nujol) cm⁻¹; 1609, 1575, 1554, 1502.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.32 (3H, s), 2.60-3.20 (4H, m), 3.20-3.90 (5H, m),

4.08 (2H, br-t, J=6.5Hz), 6.15-6.40 (1H, m), 6.40-6.70 (1H, m),

7.75-8.20 (3H, m), 7.20-7.65 (4H, m), 7.75-8.10 (2H, m),

8.25-8.60 (1H, m).

実施例49.

2-ベンジル-7-(3-メチル-3-フェニルブトキシ)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

1. 45. 3

_ IR_-ν (nujol) cm⁻¹; 1612, 1506.

 \cdot ¹H-NMR (DMSO-d₆) δ (ppm);

1.32 (6H, s), 2.02 (2H, t, J=7.5Hz), 2.80-3.10 (2H, m),

3.40-4.00 (5H, m), 3.88 (2H, s), 4.10-6.00 (1H, br),

6.36 (1H, d, J=2.0Hz), 6.53 (1H, dd, J=2.0, 8.6Hz),

6.96 (1H, d, J=8.6Hz), 7.10-7.55 (10H, m).

実施例50

2 - ベンジル - 7 - (3, 3 - ジメチル - 4 - フェニルブトキシ) - 1, 2,

3,4-テトラヒドロイソキノリン-(38)-カルボン酸

IR ν (nujol) cm⁻¹; 1611, 1506.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

0.87 (6H, s), 1.61 (2H, t, J=7.0Hz), 2.54 (2H, s), 2.85-3.15 (2H, m),

3.50-4.20 (5H, m), 3.91 (2H, s), 4.20-6.00 (1H, br), 6.60 (1H, br-s),

6.67 (1H, d, J=8.6Hz), 7.01 (1H, d, J=8.6Hz), 7.05-7.50 (10H, m).

実施例 5 1

2-ベンジル-7-(2-イソプロビルベンゾオキサゾール-6-イル)メト

キシ-1, 2, 3, 4-テトラヒドロイソキノリン- (3S) -カルポン酸

IR ν (Nujol) cm⁻¹; 1632, 1585, 1572, 1501.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.37 (6H, d, J=7.0Hz), 2.85-3.45 (4H, m), 3.50-4.20 (6H, m),

5.12 (2H, s), 6.69 (1H, s), 6.77 (1H, d, J=8.6Hz),

7.04 (1H, d, J=8.6Hz), 7.25-7.85 (8H, m).

実施例52

メトキシー1,2,3,4ーテトラヒドロイソキノリンー(35)ーカルボン

酸

IR ν (Nujol) cm⁻¹; 1611, 1583, 1562, 1506.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.42 (9H, s), 2.85-3.10 (2H, br), 3.50-4.20 (6H, m),

5.13 (2H, s), 6.70 (1H, s), 6.77 (1H, d, J=8.4Hz),

7.04 (1H, d, J=8.4Hz), 7.20-7.50 (6H, m), 7.55-7.65 (1H, m),

7.70 (1H, s).

実施例53

2 - ベンジル - 7 - (2 - t e r t - プチルベンゾオキサゾール - 5 - イル)

酸

IR ν (nujol) cm⁻¹; 1717, 1645, 1612, 1553.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.43 (9H, s), 2.85-3.15 (2H, m), 3.50-4.15 (3H, m), 3.90 (2H, s),

5.11 (2H, s), 6.69 (1H, br-s), 6.75 (1H, d, J=8.1Hz),

7.03 (1H, d, J=8.1Hz), 7.10-7.50 (6H, m), 7.65 (1H, d, J=9.0Hz),

7.71 (1H, br-s).

実施例54

(2, 2-3)

(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1740, 1612, 1560, 1508.

 $^{1}H-NMR (DMSO-d_{6}) \delta \cdot (ppm) ;$

1.10 (9H, s), 1.43 (9H, s), 2.79, 3.19 (2H, ABq, J=13.6Hz),

3.20-3.45 (3H, m), 4.25-4.55 (4H, br), 5.20 (2H, s),

6.96 (1H, d, J=8.1Hz), 7.00 (1H, s), 7.20 (1H, d, J=8.1Hz),

7.40 (1H, d, J=8.1Hz), 7.68 (1H, d, J=8.1Hz), 7.73 (1H, s).

実施例55

<u>2-ベンジル-7- (2-イソプロピルベンゾオキサゾール-5-イル) メト</u>

<u>キシー1,2,3,4ーテトラヒドロイソキノリンー(3.8) = カルボン酸</u>

IR ν (nujol) cm⁻¹; 1634, 1587, 1570, 1501.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.37 (6H, d, J=6.8Hz), 2.90-3.15 (2H, m), 3.25 (1H, quintet, J=6.8Hz),

3.50-4.30 (7H, m), 5.11 (2H, s), 6.69 (1H, s), 6.76 (1H, d, J=8.1Hz),

7.04 (1H, d, J=8.1Hz), 7.20-7.50 (6H, m), 7.55-7.65 (1H, m),

7.70 (1H, s).

実施例56

<u> 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル)エトキシ]</u>

-2-(ビリジン-4-イルメチル)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸ナトリウム

IR ν (nujol) cm⁻¹; 3420, 3177, 1639, 1558, 1504.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

- 2.34 (3H, s), 2.70-3.05 (4H, m), 3.10-3.60 (3H, m),
- 3.98 (2H, br-t, J=5.7Hz), 4.10-4.25 (2H, m), 6.51 (1H, br-s),
- 6.61 (1H, br-d, J=8.7Hz), 6.94 (1H, br-d, J=8.7Hz),
- 7.25-7.65 (5H, m), 7.75-8.00 (2H, m), 8.46 (2H, d, J=5.2Hz).

実施例57

7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-2-[(ビリジン-2-イル) カルボニル]-1,2,3,4-テトラヒド-1,2,3,4-テトラヒド-1,2,3,4-テトラヒド

IR ν (nujol) cm⁻¹; 3385, 1624, 1566, 1504.

 $^{1}H-NMR$ (MeOH-d₄) δ (ppm);

- 2.31, 2.36 (3H, s, s), 2.75-3.05 (2H, m), 3.05-3.30 (2H, m),
- 4.00-4.30 (2H, m), 4.50-5.30 (3H, m), 6.60-6.80 (2H, m)
- 7.03 (1H, dd, J=2.0, 8.5Hz), 7.30-7.75 (5H, m),
- 7.75-8.10 (3H, m), 8.50-8.70 (1H, m).

実施例58

2-ベンジルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー (3S) -カ

<u>ルボン酸メチルエステル</u>

IR ν (nujol) cm⁻¹; 1736, 1639, 1612, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 2.34 (3H, s), 2.92 (2H, t, J=7.0Hz), 3.07 (2H, d, J=5.0Hz),
- 3.64 (3H, s), 3.64-4.00 (5H, m), 4.17 (2H, t, J=7.0Hz),
- 6.51 (1H, d, J=2.0Hz), 6.68 (1H, dd, J=2.0, 8.4Hz),

6.98 (1H, d, J=8.4Hz), 7.20-7.60 (8H, m), 7.80-8.10 (2H, m).

実施例59

2-ベンジル-7-[2-(2-シクロプロビル-5-メチルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 3470, 1684, 1618, 1583, 1510.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

0.70-1.10 (4H, m), 1.80-2.20 (1H, m), 2.16 (3H, s),

2.60-2.85 (2H, m), 2.90-3.15 (2H, m), 3.50-4.20 (5H, m),

6.50-6.80 (2H, m), 7.03 (1H, d, J=8.1Hz), 7.34 (5H, s).

実施例60

2-(3-メチル-2-プテニル)-7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキ ノリン-(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 3447, 3335, 1670, 1668, 1622, 1556, 1506.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm).;

1.61 (3H, s), 1.72 (3H, s), 2.35 (3H, s), 2.70-3.20 (4H, m)

3.39 (2H, d, J=7.0Hz), 3.50-4.01 (3H, m), 4.16(2H, t, J=7.0Hz),

4.35-5.60_(1H, br), 5.25_(1H, br-t), 6.67_(1H, s),

6.71 (1H, d, J=8.4Hz), 7.02 (1H, d, J=8.4Hz), 7.30-7.70 (8H, m),

7.75-8.10 (2H, m).

実施例61

2-(2, 2-ジメチルプロビル) -7-[2-(5-メチル-2-tert-ブチルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1717, 1614, 1566, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

```
0.97 (9H, s), 1.33 (9H, s), 2.24 (3H, s),
```

- 2.44, 2.68 (2H, ABq, J=13.9Hz),
- 2.84 (2H, t, J=6.7Hz), 3.00-3.22 (2H, m), 3.65 (3H, t, J=6.1Hz),
- 3.83, 4.08 (2H, ABq, J=15.1Hz), 4.07 (2H, t, J=6.7Hz),
- 6.58 (1H, d, J=1.7Hz), 6.72 (1H, dd, J=1.7, 8.4Hz),
- 7.05 (1H, d, J=8.4Hz), 7.50-8.20 (1H, br)

実施例62

2-ベンジルー7- [2-(1-プテニル)-5-メチルオキサゾールー4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-

<u>カルボン酸</u>

IR ν (nujol) cm⁻¹; 3470, 1682, 1614, 1585, 1512.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.07 (3H, t, J=7.5Hz), 2.05-2.20 (1H, m), 2.26 (3H, s),
- 2.50-3.00 (3H, m), 3.65-4.45 (7H, m), 5.92 (1H, br-s),
- 6.17 (1H, d, J=16.3Hz), 6.45-6.85 (3H, m),
- 7.05 (1H, d, J=8.4Hz), 7.34 (5H, s).

実施例63

2-ベンジル-7- [2-(2, 2-ジメチルプロビル)-5-メチルオキサ ゾール-4-イル)エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン -(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 1722, 1614, 1568, 1506.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 0.95 (9H, s), 2.34 (3H, s), 2.55 (2H, s), 2.60-3.00 (2H, m),
- 3.00-3.30 (2H, m), 3.80-4.40 (7H, m), 6.64 (1H, br-s),
- 6.70 (1H, d, J=8.8Hz), 7.02 (1H, d, J=8.8Hz),
- 7.32 (5H, s), 7.80 (1H, br-s).

実施例64

2-(2,2-ジメチルプロピル)-7-[2-(5-メチルー2-フェニル オキサゾールー4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリンー(3S)-カルボン酸エチルエステル塩酸塩

IR ν (nujol) cm⁻¹; 3400, 1744, 1676, 1614, 1589, 1574, 1553, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.12 (9H, s), 1.23 (3H, t, J=7.0Hz), 2.36 (3H, s),

2.60-3.60 (6H, m), 4.00-4.40 (4H, m), 4.40-6.00 (4H, m),

6.88 (1H, d, J=8.0Hz), 6.92(1H, s), 7.18 (1H, d, J=8.0Hz),

7.35-7.70 (8H, m), 7.75-8.10 (2H, m).

実施例65

7 - (ベンゾフラン-2 - イルメトキシ) - 2 - ベンジル-1, 2, 3, 4 -

<u>テトラヒドロイソキノリンー(3S)-カルボン酸</u>

IR ν (nujol) cm⁻¹; 1632, 1587, 1501.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.00-6.50 (1H, br), 2.85-3.15 (2H, m), 3.50-4.10 (3H, m),

3.91 (2H, s), 5.16 (2H,s), 6.60-7.80 (8H, m), 7.33 (5H,s).

実施例66

-カルボン酸

IR ν (nujol) cm⁻¹; 1736, 1639, 1612, 1504.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.02 (6H, br-d), 2.35 (3H, s), 2.65-3.30 (5H, m),

4.00-5.30 (6H, m), 6.60-6.95 (2H, m), 7.09 (1H, d, J=8.0Hz),

7.25-7.70 (8H, m), 7.70-8.10 (2H, m).

実施例67

7 - [2 - (ベンゾフラン - 2 - イル) エトキシ] - 2 - ベンジル - 1, 2,

3,4-テトラヒドロイソキノリン-(35)-カルボン酸

IR ν (nujol) cm⁻¹; 1634, 1585, 1501.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

2.80-3.10 (2H, m), 3.19 (2H, br-t), 3.45-4.10 (3H, m),

3.90.(2H,s), 4.25.(2H, br-t), 6.50-7.80.(9H, m), 7.33.(5H, s).

実施例68

7-[2-(5-x+y)] - 2 - 4ル) エトキシ] - 2 - 4サノイル - 1, 2, 3, 4-テトラヒドロイソキノリン-(3S) - カルボン酸塩酸塩 1 H-NMR (CDCl₃) δ (ppm);

0.87 (3H, br-t), 1.05-1.85 (9H, m), 2.15-2.55 (4H, m),

2.55-3.75 (4H, m), 4.00-4.90 (4H, m), 5.25-5.50 (1H, m),

6.40-7.10 (4H, m), 7.75 (1H, br-d), 8.15 (1H, br-d), 8.52 (1H, br-s).

実施例69

2-カルボキシメチル-7-[2-(5-メチル-2-フェニルオキサゾール -4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3 S) -カルボン酸

IR ν (nujol) cm⁻¹; 1620, 1585, 1556, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.35 (3H, s), 2.70-3.15 (4H, m), 3.41, 3.65 (2H, ABq, J=17.5Hz),

3.70-4.00 (3H, m), 4.16 (2H, t, J=7.0Hz), 6.00-11.00 (1H, br),

6.64 (1H, s), 6.69 (1H, d, J=8.2Hz), 7.01 (1H, d, J=8.2Hz),

7.20-7.70 (8H, m), 7.70-8.05 (2H, m).

実施例70

2-[3-(メトキシカルボニル) プロピオニル] -7-[2-(5-メチル -2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1732, 1652, 1554, 1505.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.33 (3H, s), 2.50-3.40 (7H, m), 3.65 (3H, s), 4.07 (2H, br-t),

4.45-5.50 (3H, m), 5.60-6.20 (1H, br), 6.59 (1H, br-s),

6.67 (1H, d, J=8.0Hz), 7.03 (1H, d, J=8.0Hz), 7.20-7.60 (3H, m),

7.80-8.10 (2H, m).

実施例71

2 - [3 - (x + + y) + x + y] - 7 - [2 - (5 - x + y) - 2]-フェニルオキサゾールー4 - 4 - 4 - 4 | 2 - 4 - 4 | 2 - 4 - 4 | 4 - 4 - 4

ドロイソキノリンー(35)ーカルボン酸

IR ν (nujol) cm⁻¹; 3375, 1733, 1620, 1555, 1505.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

1.18 (3H, t, J=7.0Hz); 1.76-2.15 (2H, m), 2.15-2.50 (2H, m),

2.35 (3H, s), 2.70-3.35 (6H, m), 3.60-4.40 (7H, m),

5.27 (1H, br-s), 6.61(1H, br-s), 6.73 (1H, d, J=8.4Hz),

7.03 (1H, d, J=8.4Hz), 7.25-7.55 (3H, m), 7.80-8.10 (2H, m).

実施例72

 $\frac{2-$ ベンジル-6- [2- (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン- (3RS)-

_カルボン酸____

IR ν (nujol) cm⁻¹; 1634, 1614, 1499.

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$;

2.35 (3H, s), 2.65-3.25 (4H, m), 3.40-4.00 (3H, m),

3.90 (2H, s), 4.17 (2H, br-t), 6.20-10.00 (1H, br),

6.50-7.00 (2H, m), 6.71 (1H, s), 7.30-7.70 (3H, m),

7.32 (5H, s), 7.75-8.15 (2H, m).

実施例73

2-(3-Pセチルベンジル)-7-[2-(5-メチル-2-フェニルオキ

サゾール-4-4ーイル) エトキシ] -1, 2, 3, 4-Fトラヒドロイソキノリン-(3S) -カルポン酸

IR ν (nujol) cm⁻¹; 1682, 1620, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.33 (3H, s), 2.56 (3H, s), 2.70-3.20 (4H, m),

3.50-4.30 (5H, m), 3.97 (2H, s), 6.50-6.90 (2H, m),

7.02 (1H, d, J=8.4Hz), 7.30-8.00 (9H, m).

実施例74

2-(2-rセチルベンジル)-7-[2-(5-メチル-2-フェニルオキ サゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリ

<u>ン-(3S)-カルボン酸</u>

IR ν (nujol) cm⁻¹; 1668, 1643, 1614, 1504.

¹H-NMR (DMSO- d_6) δ (ppm);

2.33 (3H, s), 2.36 (3H, s), 2.70-3.20 (4H, m),

3.30-4.30 (5H, m), 6.57 (1H, d, J=2.0Hz),

6.66 (1H, dd, J=2.0, 8.4Hz), 7.00 (1H, d, J=8.4Hz),

7.20-7.75 (7H, m), 7.75-8.10 (2H, m).

実施例75

2-ベンジル-7-[(5-メチル-2-フェニルオキサゾール-4-イル) メトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 3462, 1680, 1614, 1556, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.41 (3H, s), 2.83-3.20 (2H, m), 3.44-4.20 (5H, m),

4.91 (2H, s), 6.73 (1H, br-s), 6.77 (1H, d, J=8.1Hz),

7.34 (1H, d, J=8.1Hz), 7.34 (5H, s),

7.40-7.68 (3H, m), 7.75-8.10 (2H, m).

参考例1

2-tert-ブトキシカルボニルー7-ヒドロキシー1, 2, 3, 4-テトラヒドロイソキノリンー(3S)-カルボン酸エチルエステル

(1) 3, 5-ジョードーLーチロシン・2水和物25. 0 gを濃塩酸25 0 m1に懸濁し、1, 2-ジメトキシエタン18 m1および37%ホルマリン20 m1を順に加え、30分で75 $\mathbb C$ まで昇温した。反応液にさらに濃塩酸120 m1、1, 2-ジメトキシエタン9 m1 および37%ホルマリン10 m1を加え、75 $\mathbb C$ で18 時間撹拌した。析出晶をろ取して1, 2-ジメトキシエタン20 m1で洗浄し、7-ヒドロキシー6, 8-ジョードー1, 2, 3, 4--テトラヒドロイソキノリンー (3S) -カルボン酸 塩酸塩12. 8 gを得た。

7-ヒドロキシ-6, 8-ジョード-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸 塩酸塩:

IR'ν (nujol) cm⁻¹; 1751, 1599, 1578.

 $^{1}H-NMR (CDCl_{3}) \delta (ppm);$

3.00-3.30 (2H, m), 4.05 (2H, s), 4.30 (1H, dd, J=5.9, 9.5Hz), 7.71 (1H, s).

(2)上記(1)で得られた化合物12.8gをエタノール500m1に懸濁して濃塩酸10m1を加え、15時間還流した。減圧下でエタノールを留去した後、酢酸エチル300m1を加え、飽和重曹水100m1、飽和食塩水100m1で洗浄した。乾燥 (Na₂SO₄)後、減圧下で酢酸エチルを留去し、7ーヒドロキシー6、8ージョードー1、2、3、4ーテトラヒドロイソキノリンー(3S)ーカルボン酸エチルエステル11.11gを得た。

7-ヒドロキシー6, 8-ジョードー1, 2, 3, 4-テトラヒドロイソキノリンー(3S)-カルボン酸エチルエステル:

'H-NMR (CDCl₃) δ (ppm);

1.29 (3H, t, J=7.0Hz), 2.80-3.00 (2H, m), 3.30-4.10 (5H, m),

4.23 (2H, q, J=7.0Hz), 7.46 (1H, s).

(3) $10\%Pd-C350mgをメタノール60m1に懸濁させ、これにトリエチルアミン2.0mlおよび上記(2)で得られた化合物2.80gを加え、室温、29.4×<math>10^4$ Pa(3.0kgf/cm²)で3時間接触水素添加した。Pd-Cをろ去し、減圧下でメタノールを留去した。得られた残渣に酢酸エチル100m1を加え、飽和食塩水100m1で洗浄した。乾燥(Na₂SO₄)後、減圧下で酢酸エチルを留去し、7-ヒドロキシ-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル1.14gを得た。

7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1732, 1607, 1516.

¹H-NMR (CDCl₃) δ (ppm);

1.28 (3H, t, J=7.0Hz), 2.80-3.10 (3H, m), 3.60-3.80 (1H, m),

3.97 (2H, s), 4.05-4.20 (4H, m), 6.43 (1H, s), 6.50-6.80 (1H, m),

6.92 (1H, d, J=8.4Hz).

(4)上記(3)で得られた化合物1.13gをテトラヒドロフラン20mlに溶解してジーtertーブチルジカーポネート1.50gを加え、室温で1時間攪拌した。反応液に酢酸エチル30mlを加え、飽和食塩水20mlで洗浄して乾燥(Na_zSO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物1.51gを得た。

IR ν (nujol) cm⁻¹; 3260, 1756, 1671, 1615, 1506.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

1.29 (3H, t, J=7.0Hz), 1.47 (9H, s), 3.08 (2H, d, J=5.2Hz),

4.21 (2H, q, J=7.0Hz), 4.41 (1H, d, J=15.5Hz),

4.60-5.25 (1H, m), 4.65 (1H, d, J=15.5Hz), 5.00-6.00 (1H, br),

6.50-6.80 (2H, m), 6.98 (1H, d, J=8.1Hz).

参考例2

2-tert-プトキシカルボニル-7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル

参考例1と同様にして表題化合物を得た.

IR ν (nujol) cm⁻¹; 3261, 1755, 1672, 1614, 1506.

¹H-NMR (CDCl₃) δ (ppm);

1.47 (9H, s), 3.08 (2H, d, J=5.2Hz), 3.63 (3H, s),

4.40 (1H, d, J=16.5Hz), 4.60-5.25 (1H, m), 4.66 (1H, d, J=16.5Hz),

5.60-6.60 (1H, br), 6.50-6.80 (2H, m), 6.99 (1H, d, J=8.1Hz).

参考例3

<u>2-(5-メチル-2-フェニルーオキサゾール-4-イル)エタノールメ</u> タンスルホン酸エステル

塩化メチレン200m1に2-(5-メチル-2-フェニル-オキサゾール-4-イル) エタノール20gおよびトリエチルアミン19.2m1を加え、これに0 で でメタンスルホニルクロリド9.52m1を滴下後、同温で15分間撹拌した。10%クエン酸水200m1、飽和重曹水100m1および飽和食塩水100m1で洗浄して乾燥 (Na_2SO_4) 後、減圧下で塩化メチレンを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物 2

_1._4.5 gを得た。_ __ · · · · ·

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.53 (3H, s), 2.94 (3H, s), 2.94 (2H, t, J=7.0Hz),

4.52 (2H, t, J=7.0Hz), 7.30-7.50 (3H, m), 7.80-8.10 (2H, m).

参考例4

 $\frac{2-\alpha \times 3 \times 1-7-2 \times 1-7-2$

参考例1の(3)で得られた化合物8.1gをN,N-ジメチルホルムアミド80m1に溶解し、これにトリエチルアミン2.0m1およびベンジルブロ

ミド4.57mlを加え、室温にて3時間撹拌した。反応液に水500mlを加え、酢酸エチル200mlで2回抽出した。合わせた酢酸エチル層を飽和食塩水500mlで洗浄して乾燥 (Na $_2$ SO $_4$)後、減圧下で酢酸エチルを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物10.46gを得た。

IR ν (nujol) cm⁻¹; 3410, 1717, 1624, 1506.

'H-NMR (CDCl₃) δ (ppm);

- 1.22 (3H, t, J=7.0Hz), 3.06 (2H, d, J=5.0Hz), 3.66 (1H, t, J=5.0Hz),
- 3.78 (2H, s), 3.90 (2H, s), 4.13 (2H, q, J=7.0Hz),
- 6.37 (1H, d, J=2.0Hz), 6.56 (1H, dd, J=2.0, 8.4Hz),
- 6.92 (1H, d, J=8.4Hz), 7.20-7.50 (5H, m).

参考例5

- 2-(N-tert-ブトキシカルポニル-N-メチルアミノ)エタノール メ タンスルホン酸エステル
- (1) 2-(メチルアミノ) エタノール3.5 mlをテトラヒドロフラン1 50 mlに溶解し、ジーtertーブチルジカーボネート12.5 gを加え、室温で20分間攪拌した。減圧下でテトラヒドロフランを留去し、得られた残渣をカラムクロマトグラフィーにて精製し、2-(N-tert-ブトキシカルボニル-N-メチルアミノ) エタノール6.35 gを得た。

·'H-NMR (CDCl₃) δ (ppm) ;

- 1.43 (9H, s), 2.89 (3H, s), 3.34 (2H, t, J=5.8Hz),
- 3.67 (2H, t, J=5.8Hz), 4.00-6.00 (1H, br).
- (2)上記(1)で得られた化合物505mgを塩化メチレン20mlに溶解してトリエチルアミン0.5mlおよびメタンスルホニルクロリド0.25mlを加え、室温で1時間撹拌した。塩化メチレン30mlを加え、飽和食塩

水 $20 \, \text{m} \, 1$ で洗浄して乾燥 (N \mathbf{a}_2 S \mathbf{O}_4) した。減圧下で塩化メチレンを留去し、表題化合物 $7 \, 20 \, \text{m} \, \mathbf{g}$ を得た。

¹H-NMR (CDCl₃) δ (ppm);

1.46 (9H, s), 2.94 (3H, s), 3.01 (3H, s), 3.54 (2H, t, J=5.5Hz),

4.33 (2H, t, J=5.5Hz).

参考例6

1-(2-プロモエチル) インドリン

1, 2-9プロモエタン58.0 m 1 にインドリン5.0 g およびトリエチルアミン28.7 m 1 を加え、90 °C で 2 時間撹拌した。反応液に酢酸エチル 200 m 1 を加え、飽和食塩水 400 m 1 で洗浄して乾燥 (Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物 4.09 g を得た。

IR ν (neat) cm⁻¹; 2924, 2845, 1607, 1489.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

2.99 (1H, t, J=8.4Hz), 3.45 (1H, t, J=8.4Hz), 3.49 (4H, s),

6.40-6.75 (2H, m), 6.90-7.20 (2H, m).

参考例7

---1,-2-ジプロモエタン15.-7mlに6-メトキシカルボニルインドリン___

2. 41g およびトリエチルアミン7. 8m1 を加え、90 ℃で2時間撹拌した。反応液に酢酸エチル150m1 を加え、飽和食塩水300m1 で洗浄して乾燥 (Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物 1.71g を得た。

IR ν (neat) cm⁻¹; 1713, 1611, 1499.

¹H-NMR (CDCl₃) δ (ppm);

3.03 (1H, t, J=8.4Hz), 3.53 (1H, t, J=8.4Hz), 3.53 (4H, s),

3.88 (3H, s), 6.00-6.20 (2H, m), 7.39 (1H, dd, J=1.5, 7.8Hz).

試験例1 血糖低下作用 (方法A)

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、雄性 K K - A'マウスの尾静脈より非絶食下で採血し、市販測定キット(グルコース C I I - テストワコー、和光純薬製)を用い血漿中のグルコースを測定した。各群の血漿中のグルコースの平均値と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。翌日から各被験化合物を5%アラビアゴム溶液に懸濁もしくは溶解し、4日間にわたり投与群に連日経口投与した。対照群には5%アラビアゴム溶液を経口投与した。最終投与約24時間後に非絶食下で尾静脈より採血し、血漿中のグルコースを測定した。血糖低下率は以下の式より求めた。結果を表1に示す。

血糖低下率(%) = [(対照群の血漿グルコース平均値-被験化合物投与群の血漿グルコース平均値)/対照群の血漿グルコース平均値]×100

表1 血糖低下作用(方法A)

被験化合物	投与量	血糖低下率	被験化合物	投与量	血糖低下率
	(mg/kg)	(%)		(mg/kg)	(%)
実施例 2	10	38.3	実施例40	30	46.3
大地的 2	30	60.6	実施例41	30	11.1
実施例 3	30	11.8	実施例42	10	27.6
実施例 5	10	34.1	天心例42	30	49.6
天池793	30	43.4	実施例43	30	27.5
実施例 6	10	10.7	実施例44	30	48.0
2 118177 0	30	12.2	実施例45	30	12.6
実施例 7	10	11.4	実施例46	30	28.6
天加801 7	· 30	17.4	実施例48	30	16.1
実施例 9	30	20.3	実施例49	30	. 11.1
実施例12	10	12.0	実施例50.	30	11.4
実施例16	30 .	34.5	実施例51	30	20.0
実施例18	30	39.7	実施例52	· 30	26.3
実施例21	30	43.4	実施例53	- 30	13.6
実施例23	10	24.3	実施例54	30	10.8
大地的23	30	42.9	実施例55	30	13.9
実施例32	30	36.4	実施例58	30	19.1
実施例33	30	38.8	実施例67	30	10.6
実施例34	30	23.5	実施例69	30	12.5
実施例35	30	22.1	実施例70	30	15.2
実施例36	30	28.4	実施例71	30	10.5
実施例37	30	11.1	実施例72	30	15.9
実施例38	30	28.0	実施例73	. 30	14.8
実施例39	30	30.7			

試験例2 血糖低下作用 (方法B)

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、雄性KK-A'マウスの尾静脈より非絶食下で採血し、市販測定キット(グルコースCII-テストワコー、和光純薬製)を用いて血漿中のグルコースを測定した。各群の血漿中のグルコースの平均値

と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。翌日から粉末飼料(CE-2、クレア)に各被験化合物を0.1(w/w)%混合し、4日間にわたり混餌投与した。対照群には通常粉末飼料を与えた。5日目に非絶食下で尾静脈より採血し、血漿中のグルコースを測定した。血糖低下率は、以下の式より求めた。結果を表2に示す。

血糖低下率(%) = [(対照群の血漿グルコース平均値-被験化合物投与群の血漿グルコース平均値)/対照群の血漿グルコース平均値]×100

被験化合物	血糖低下率(%)
実施例 2	69.2
実施例10	42.4

表2 血糖低下作用(方法B)

試験例3 トリグリセリド低下作用

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、雄性 K K - A'マウスの尾静脈より非絶食下で採血し、市販測定キット(トリグリセリドG - テストワコー、和光純薬製)を用いて血漿中のトリグリセリドを測定した。各群の血漿中のトリグリセリドの平均値と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。翌日から各被験化合物を5%アラビアゴム溶液に懸濁もしくは溶解し、4日間にわたり投与群に連日経口投与した。対照群には5%アラビアゴム溶液を経口投与した。最終投与約24時間後に非絶食下で尾静脈より採血し、血漿中のトリグリセリドを測定した。トリグリセリドの低下率は以下の式より求めた。結果を表3に示す。

トリグリセリド低下率 (%) = [(対照群の血漿トリグリセリド平均値-被験化合物投与群の血漿トリグリセリド平均値)/対照群の血漿トリグリセリド平均値]×100

表3 トリグリセリド低下作用

被験化合物	投与量	トリク・リャル・	被験化合物	投与量	トリクリセリト
	(mg/kg)	低下率(%)		(mg/kg)	低下率(%)
実施例 2	10	39.5	実施例38	30	30.0
大心的 2	30	54.3	実施例39	30	15.6
実施例 4	10	14.3	実施例40	30	36.1
実施例 5	30	30.9	実施例42	30	31.6
実施例11	10	11.2	実施例43	30	20.9
実施例12	10	22.9	実施例44	30	19.1
実施例16	30	19.8	実施例49	30	17.0
実施例18	30	45.5	実施例50	30	35.7
実施例21	30	24.4	実施例51	30	10.7
実施例23	10	30.4	実施例52	. 30	26.6
×1000123	30	50.4	実施例56	30	14.0
実施例32	30	32.5	実施例58	30	24.7
実施例33	30	42.0	実施例59	- 30	13.7
実施例34	30	17.3	実施例69.	30	15.2
実施例35	30	12.4	実施例72	30	24.0
実施例36	30	13.7	実施例73	30	15.4

試験例4 インスリン抵抗性糖尿病マウスにおける血糖およびインスリン低下. 作用

一インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、KK-A'マウスを用いてインスリン抵抗性 改善作用を調べた。12週齢の雄性KK-A'マウスの尾静脈より非絶食下で採血し、市販測定キット(グルコースCII-テストワコー、和光純薬製)を用いて血漿中のグルコースを測定した。各群の血漿中のグルコースおよび体重の 平均値と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。投与群に、翌日から5%アラビアゴム水溶液に懸濁した被験化合物10mg/kgを1日1回、4日間経口投与した。対照群には5%アラビアゴム水溶液を経口投与した。最終投与24時間後に非絶食下で尾静脈より採

血し、血漿中のグルコースおよびインスリン濃度を測定した。結果を表4に示す。

即ち、各被験化合物は10mg/kgで血漿中のグルコースを低下させ、同時に血漿中のインスリン濃度を減少させた。これは被験化合物がインスリン分泌作用によるのではなく、インスリン感受性増強作用(インスリン抵抗性改善作用)により血糖を低下させ、ひいては高インスリン血症を改善することを示している。

被験化合物	被験化合物の 投与量 (mg/kg)	血糖 (mg/d1)	インスリン (ng/ml)
対照群	0	507	43
実施例 2	10	313	26
実施例23	10	382	28
実施例32	10	402	30
実施例42	10	308	27

表 4 血糖およびインスリン低下作用

試験例5 3 T 3 - L 1 細胞におけるトリグリセリド蓄積促進作用

80%confluent状態の3T3-L1細胞の培養培地を除き、0.25%トリプシン-EDTA溶液で細胞を剥離した。5%FBS-DMEM(除いた培地と等量)加え、得られた細胞浮遊液を25℃、100×gで1分遠心分離し、細胞を沈殿させて上清を除いた。細胞を適量の5%FBS-DMEM培地に再懸濁して細胞数をカウントした。1×10⁵cells/mlとなるように5%FBS-DMEM培地で調製して24穴プレートに1mlずつ分注した。37℃、5%CO₂通気条件で2日間培養し、post confluent状態であることを確認し、培養上清を0.5mM-IBMX含有培地に交換して2日間培養した後、10ng/mlインスリンおよび10⁻⁷Mの被験化合物含有培地に交換してさらに4日間培養した。培養上清を除去後、細胞を0.

1%SDS溶液で融解し、トリグリセリドの量を測定した。被験化合物のインスリン増強作用によるトリグリセリド蓄積率(%)を以下の式から求めた。得られた結果を表5に示す。

[(被験化合物添加時のトリグリセリド量-対照のトリグリセリド量)/対照のトリグリセリド量]×100

被験化合物	トリク・リセリト	被験化合物	トリク・リセリト
10.42 10 11/1	蓄積率(%)	100 400	蓄積率(%)
SD +4r /21 2		ch Hr Aniaa	
実施例 2	260.4	実施例33	222.5
実施例 5	233.0	実施例37	277.3
実施例 8	275.5	実施例39	258.0
実施例16	288.9	実施例40	231.0
実施例21	284.9	実施例42	193.6
実施例23	214.2	実施例62	327.8·
実施例32	181.2		

表 5 トリグリセリド蓄積促進作用

発明の効果

本発明のヘテロ環化合物[I]およびその医薬上許容される塩は、優れた血糖および血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を示し、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤として有用である。即ち、糖尿病、糖尿病の合併症、高脂血症、動脈硬化症、高血糖症、インスリン抵抗性耐糖能不全に起因する疾病、インスリン抵抗性に起因する疾病、肥満症、炎症、PPAR媒介疾患およびX症候群の、治療および予防に有用である。本発明のヘテロ環化合物[I]は、これまでのインスリン抵抗性改善剤の有効成分と用いられてきた化合物と全く異なった構造を有しており、これらを提供することにより、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改

善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤に多様性を持たせ、選択範囲を広げることになる。

本出願は日本で出願された平成11年特許願第345543号および特願2000-295108を基礎としており、その内容は本明細書にすべて包含するものである。

請求の範囲

1. 一般式[I]

(式中、R1は水素原子または低級アルキルを示し、

R²は水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよいアルキルまたは一COR⁴(式中、R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアリール、置換基を有していてもよいアルケニル、置換基を有していてもよいでもよい複素環残基を示す)を示し、

R³は水素原子、低級アルキルまたは低級アルコキシを示し、

Aは単結合または>N-R⁵ (式中、R⁵は水素原子または低級アルキルを示す) を示し、

Bは低級アルキレンを示し、

Yは置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基を示す)

で表されるヘテロ環化合物またはその医薬上許容される塩。

2. 一般式[I]中、

R1が水素原子または低級アルキルであり、

R²が水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアリールアルキルまたは-COR⁴(式中、R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアリールまたは置換基を

有していてもよいアリールアルキルである)であり、

R³が水素原子、低級アルキルまたは低級アルコキシであり、

Aが単結合または $>N-R^5$ (式中、 R^5 は水素原子または低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基である、

請求の範囲 1 記載のヘテロ環化合物またはその医薬上許容される塩。

3. 一般式[I]中、

R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキル、アルケニル、アルキニル、複素環アルキルまたは-CO R^4 (式中、 R^4 はアルキル、アルケニルまたはアリールである)であり、 R^3 が水素原子または低級アルコキシであり、

Aが単結合または $> N - R^5$ (式中、 R^5 は低級アルキルである) であり、

Bが低級アルキレンであり、かつ

Yがアリールまたは置換基を有していてもよい芳香族複素残基である、

請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

4. 一般式[I]中、

R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキルまたは $-COR^4$ (式中、 R^4 はアルキルまたはアリールである) であり、

R³が水素原子であり、

Aが単結合または $> N - R^5$ (式中、 R^5 は低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよい芳香族複素残基である、

請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

5. 一般式[I]において、Y-A-が

$$R^{A}$$
 R^{A}
 R^{B}
 R^{B}
 R^{B}
 R^{C}
 R^{C

(式中、R^Aはイソプロピルまたはtertーブチルを示し、

R^Bはイソプロピルまたはtertープチルを示し、

 R^c はイソプロピル、tert-プチル、フェニル、チオフェン-2-イル、2-メチルプロペニル、<math>3-プテニル、シクロプロピル、<math>1-プテニルまたは2

2-ジメチルプロピルを示す)

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

6. 一般式[I]において、Y-A-が

(式中、R^Aはイソプロビルまたはtertーブチルを示し、

R^Bはイソプロビルまたはtertーブチルを示し、

 R^{c} はイソプロピル、tert-プチル、フェニル、チオフェン-2-イル、2-メチルプロペニルまたは3-プテニルを示す)

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

7. 一般式[I]において、Y-A-が

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。 8. 一般式[I]において、Y-A-が

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

9. 一般式[I]のヘテロ環化合物が、下記化合物(1)~(67)のいずれかである請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩;

(1) 7-[2-(5-)3+)-2-7+ エルオキサゾールー4ーイル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー (3S) -カルボン酸、

(3) 2-アセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、

(4)2-メチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] = 1, 2, 3, 4-テトラヒドロイソキノリンー (3-S-)ーカ---ルポン酸、

(5) $2-\Delta + \frac{1}{2}$ (5) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (8) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (2) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (5) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (8) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (2) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (4) $2-\Delta + \frac{1}{2}$ (5) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (8) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (2) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (3) $2-\Delta + \frac{1}{2}$ (4) $2-\Delta + \frac{1}{2}$ (5) $2-\Delta + \frac{1}{2}$ (7) $2-\Delta + \frac{1}{2}$ (8) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (9) $2-\Delta + \frac{1}{2}$ (1) $2-\Delta + \frac{1}{2}$ (1)

(6) 2- n + 2 n - 7 - [2 - (5 - x + 2 n - 2 - 2 x - 2 n x + 4 x + 4 x - 4 n - 4 n x + 4 x - 2 n x + 4 x + 4 x - 4 x - 4 x +

(7) 2-4 ソプチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-4ル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) 110

- カルボン酸、

(8) 2-シクロヘキシルメチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリンー (3S)-カルボン酸、

- (9) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(3-フェニルプロピル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (10) 2 ベンゾイル-7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン- (3 S)-カルポン酸、
- (11) 2-ベンジル-7-[2-(N-メチル-N-(ビリジン-2-イル)アミノ) エトキシ] -1, 2, 3, 4-テトラヒドロイツキノリン-(3S) -カルボン酸、
- (12) 2 ペンジル-7 [2 (5 エチルービリジン-2 イル) エトキシ] -1, 2, 3, 4 テトラヒドロイソキノリン- (3S) カルボン酸、
- (13) 2-ペンジル-7-[2-(インドリン-1-イル) エトキシ]-1,2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (14) 2-ベンジル-7-[2-(5-メチル-2-フェニルオキサゾールー4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリンー(3.S) <math>-カルボン酸エチルエステル、
- (15) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル、
- (16) 2 (4-メトキシベンジル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン- <math>(3S)-カルボン酸、
- (17) 2-(4-メトキシベンジル)-7-[2-(5-メチル-2-フェニ

ルオキサゾールー4ーイル) エトキシ] -1, 2, 3, 4ーテトラヒドロイソキノリンー (3S)-カルポン酸エチルエステル、

- (18) 2 (4-メチルベンジル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (19) 2 (4-メチルベンジル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル、
- (20) 2-ペンジル-7-[2-(6-カルボキシインドリン-1-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、(21) <math>2-(4-フルオロペンジル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (22) 2-(2,2-ジメチルプロピオニル)-7-[2-(5-メチル-2-7ェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (24) 2 ベンジル-7 [2-(5-メチル-2-tert-ブチルオキサ ゾール-4-イル) エトキシ] 1, 2, 3, 4-テトラヒドロイソキノリン (3S) カルボン酸、
- (25)2-ベンジル-7-[2-(5-メチル-2-(チオフェン-2-イル)オキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (26) 2 (2 (5 x) + (2 4) +

- S) -カルボン酸、
- (27) 2-プチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (27) 2-プチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (35) -カルポン酸、
- $(29) 2-ベンジル-7- \{2-[2-(3-プテニル)-5-メチルオキサゾール-4-イル] エトキシ <math>\{2-[2-(3-プテニル)-5- X + F)\}$ $\{2-[2-(3-7 + F)]$ $\{2-[2-(3-7 + F)]$ $\{2-[2-(3-7 + F)]\}$ $\{3-(3-7 + F)\}$ $\{3-(3-7 + F)\}$
- (30) 2-アリルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリンー(3S)-カルボン酸、
- (31) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 2-(2-プロピニル) 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S) カルボン酸、
- (32) 2-(2-プテニル)-7-[2-(5-メチル-2-フェニルオキサ ゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- - (34) 2 (3-プテニル) 7- [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4- テトラヒドロイソキノリン- (3S) カルボン酸、
 - (35) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-ペンタノイル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、

(36) 7 - [2 - (5 - メチル - 2 - フェニルオキサゾール - 4 - イル) エトキシ] - 2 - (4 - ベンテノイル) - 1, 2, 3, 4 - テトラヒドロイソキノリン - (3S) - カルボン酸、

- (37) 2 (3-メチル-2-プテノイル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- (38) 2 (3, 3-ジメチルプチリル) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
- (39) 2-ペンジル-7-メトキシ-6-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3RS) -カルボン酸、
- (40) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-(ピリジン-2-イルメチル) -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (41) 2 ベンジル-7 (3- メチル-3 フェニルプトキシ) 1, 2, 3, 4 テトラヒドロイソキノリン- (3S) カルボン酸、
- ---2,-3,-4-テトラヒドロイソキノリン- (-3-S) -カルボン酸、-----
 - (43)2-ペンジル-7-(2-イソプロピルペンゾオキサゾール-6-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリンー (3S)-カルボン酸、
 - (44)2-ベンジル-7-(2-tert-ブチルベンゾオキサゾール-6-イル)メトキシ-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - $(45) 2 (2 t e r t 7 + \mu / 2 + \mu / 2 + \mu / 3 + \mu / 4 +$

ルポン酸、

(46) 7-(2-tert-ブチルベンゾオキサゾール-6-イル) メトキシー2-(2,2-ジメチルプロピル)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、

(47)2-ペンジル-7-(2-イソプロビルペンゾオキサゾール-5-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、

(48) 7 - [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-(ピリジン-4-イルメチル) -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、

(49) 7 - [2 - (5 - メチル - 2 - フェニルオキサゾール - 4 - イル) エトキシ] <math>-2 - [(ビリジン - 2 - イル) カルボニル] - 1, 2, 3, 4 - テトラヒドロイソキノリン - (3S) - カルボン酸、

(50) 2 - ペンジル-7 - [2 - (5 - メチル-2 - フェニルオキサゾールー4 - イル) エトキシ] - 1, 2, 3, 4 - テトラヒドロイソキノリンー (3S) - カルポン酸メチルエステル、

(51)2-ベンジル-7-[2-(2-シクロプロピル-5-メチルオキサゾール-4-イル)エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリンー(<math>3S) -カルボン酸、

(52)2 - (3-メチル-2-プテニル) - 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] - 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S) -カルボン酸、

(54) 2 - (3) - (1 - (3) - (3

- S) -カルボン酸、
- (56) 2 (2, 2-ジメチルプロピル) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸エチルエステル、
- (57) 7 (ベンゾフラン 2 イルメトキシ) <math>-2 ベンジル 1, 2, 3, 4 F トラヒドロイソキノリン (3S) カルボン酸、
- (58) 2 1 -
 - (59) 7-[2-(ベンソフラン-2-イル) エトキシ] <math>-2-ベンジル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
 - (60) 7-[2-(5-x+)] (5-x+) (60) 7-[2-(5-x+)] (60) 7-[2-(5-x+)] (30)

 - (64) 2-ペンジル-6-[2-(5-メチル-2-フェニルオキサゾールー4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3R)

- S) -カルボン酸、
- (65) 2 (3-アセチルベンジル) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (66) 2 (2-アセチルベンジル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、および
- (67) 2 ーベンジルー7ー [(5-メチルー2-フェニルオキサゾールー4ーイル) メトキシ<math>]-1, 2, 3, 4ーテトラヒドロイソキノリンー(3S) ーカルボン酸。
- 10.一般式[I]のヘテロ環化合物が、上記化合物(1)~(47)のいずれかである請求の範囲9記載のヘテロ環化合物またはその医薬上許容される塩。
- 11. 一般式[I]のヘテロ環化合物が、上記化合物(1)~(21)のいずれかである請求の範囲9記載のヘテロ環化合物またはその医薬上許容される塩。
- 12.請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなる医薬組成物。
- 13. 抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤からなる群より選ばれる、請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬上許容される塩を含有してなる医薬。
- 14. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなる抗高血糖剤。
- 15.請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなる抗高脂血症剤。
- 16.請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなるインスリン抵抗性改善剤。

17. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬上許容される塩を含有してなる糖尿病合併症治療薬。

18. 請求の範囲 $1 \sim 11$ のいずれかに記載のヘテロ環化合物またはその医薬上許容される塩を含有してなる糖尿病治療薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08464

	CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D217/26, 401/12, 405/12, 413/12, 413/14, A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00 ording to International Patent Classification (IPC) or to both national classification and IPC					
			nomi ciassification and if C			
Min	3. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D217/26, 401/12, 405/12, 413/12, 413/14, A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00					
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1992 Toroku Jitsuyo Shinan Koho 1994-1996 Kokai Jitsuyo Shinan Koho 1971-1992 Jitsuyo Shinan Toroku Koho 1996-2000					
Elec		ata base consulted during the international search (nam TN), REGISTRY (STN)	e of data base and, where practicable, sea	rch terms used)		
C.	DOCUI	MENTS CONSIDERED TO BE RELEVANT	·			
Cat	egory*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
	x	WO, 98/00403, A1 (ELI LILLY AND 08 January, 1998 (08.01.98), Full text & JP, 2000-515501, A WO, 93/23378, A1 (WARNER-LAMBER 25 November, 1993 (25.11.93), Full text & JP, 7-508266, A		1-18		
	Furthe	r documents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 24 January, 2001 (24.01.01)			later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 06 February, 2001 (06.02.01)			
Nan		nailing address of the ISA/ nese Patent Office	Authorized officer			
Facsimile No.			Telephone No.			

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C07D217/26, 401/12, 405/12, 413/12, 413/14, A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C07D217/26, 401/12, 405/12, 413/12, 413/14, A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1992

日本国公開実用新案公報 1971-1992

日本国登録実用新案公報 1994-1996

日本国実用新案登録公報 1996-2000

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN)

関連すると認められる文献

し. 関連する	こと認められる人獣	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
x	WO, 98/00403, A1 (ELI LILLY AND COMPANY) 8. 1月. 1998 (08. 01. 98) 全文 & JP, 2000-515501, A	1-18
х	WO, 93/23378, A1 (WARNER-LAMBERT COMPANY) 25. 11月. 1993 (25. 11. 93) 全文 & JP, 7-508266, A	1-6, 12, 13

□ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「丁」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

24.01.01

国際調査報告の発送日

06.02.01

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

特許庁審査官(権限のある職員) 田村 聖子

4 C 9841

郵便番号100-8915 東京都千代田区館が関三丁目4番3号

電話番号 03-3581-1101 内線 6247

IR ν (nujol) cm⁻¹; 1717, 1645, 1612, 1553.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

1.43 (9H, s), 2.85-3.15 (2H, m), 3.50-4.15 (3H, m), 3.90 (2H, s),

5.11 (2H, s), 6.69 (1H, br-s), 6.75 (1H, d, J=8.1Hz),

7.03 (1H, d, J=8.1Hz), 7.10-7.50 (6H, m), 7.65 (1H, d, J=9.0Hz),

7.71 (1H, br-s).

実施例54

(2, 2-3)

(3S) -カルポン酸

IR ν (nujol) cm⁻¹; 1740, 1612, 1560, 1508.

 $^{1}H-NMR (DMSO-d_{6}) \delta \cdot (ppm) ;$

1.10 (9H, s), 1.43 (9H, s), 2.79, 3.19 (2H, ABq, J=13.6Hz),

3.20-3.45 (3H, m), 4.25-4.55 (4H, br), 5.20 (2H, s),

6.96 (1H, d, J=8.1Hz), 7.00 (1H, s), 7.20 (1H, d, J=8.1Hz),

7.40 (1H, d, J=8.1Hz), 7.68 (1H, d, J=8.1Hz), 7.73 (1H, s).

実施例55

2-ベンジルー7-(2-イソプロビルベンゾオキサゾールー5-イル)メト

キシー1, 2, 3, 4ーテトラヒドロイソキノリンー (3S) ーカルポン酸

IR ν (nujol) cm⁻¹; 1634, 1587, 1570, 1501.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.37 (6H, d, J=6.8Hz), 2.90-3.15 (2H, m), 3.25 (1H, quintet, J=6.8Hz),

3.50-4.30 (7H, m), 5.11 (2H, s), 6.69 (1H, s), 6.76 (1H, d, J=8.1Hz),

7.04 (1H, d, J=8.1Hz), 7.20-7.50 (6H, m), 7.55-7.65 (1H, m),

7.70 (1H, s).

実施例56

-2-(ビリジン-4-イルメチル)-1,2,3,4-テトラヒドロイソキ-2-(S)-カルボン酸ナトリウム

IR ν (nujol) cm⁻¹; 3420, 3177, 1639, 1558, 1504.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

2.34 (3H, s), 2.70-3.05 (4H, m), 3.10-3.60 (3H, m),

3.98 (2H, br-t, J=5.7Hz), 4.10-4.25 (2H, m), 6.51 (1H, br-s),

6.61 (1H, br-d, J=8.7Hz), 6.94 (1H, br-d, J=8.7Hz),

7.25-7.65 (5H, m), 7.75-8.00 (2H, m), 8.46 (2H, d, J=5.2Hz).

実施例57

7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-2-[(ビリジン-2-イル) カルボニル]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸ナトリウム

IR ν (nujol) cm⁻¹; 3385, 1624, 1566, 1504.

 $^{1}H-NMR$ (MeOH-d₄) δ (ppm);

2.31, 2.36 (3H, s, s), 2.75-3.05 (2H, m), 3.05-3.30 (2H, m),

4.00-4.30 (2H, m), 4.50-5.30 (3H, m), 6.60-6.80 (2H, m)

7.03 (1H, dd, J=2.0, 8.5Hz), 7.30-7.75 (5H, m),

7.75-8.10 (3H, m), 8.50-8.70 (1H, m).

-実施例-5-8-------

2-ベンジル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸メチルエステル

IR ν (nujol) cm⁻¹; 1736, 1639, 1612, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 2.34 (3H, s), 2.92 (2H, t, J=7.0Hz), 3.07 (2H, d, J=5.0Hz),
- 3.64 (3H, s), 3.64-4.00 (5H, m), 4.17 (2H, t, J=7.0Hz),
- 6.51 (1H, d, J=2.0Hz), 6.68 (1H, dd, J=2.0, 8.4Hz),

6.98 (1H, d, J=8.4Hz), 7.20-7.60 (8H, m), 7.80-8.10 (2H, m).

実施例 5 9

2-ペンジル-7-[2-(2-シクロプロピル-5-メチルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 3470, 1684, 1618, 1583, 1510.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

0.70-1.10 (4H, m), 1.80-2.20 (1H, m), 2.16 (3H, s),

2.60-2.85 (2H, m), 2.90-3.15 (2H, m), 3.50-4.20 (5H, m),

6.50-6.80 (2H, m), 7.03 (1H, d, J=8.1Hz), 7.34 (5H, s).

実施例60

2-(3-メチル-2-プテニル)-7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキ ノリン-(3S)-カルボン酸

IR ν (nujol) cm⁻¹; 3447, 3335, 1670, 1668, 1622, 1556, 1506.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.61 (3H, s), 1.72 (3H, s), 2.35 (3H, s), 2.70-3.20 (4H, m)

3.39 (2H, d, J=7.0Hz), 3.50-4.01 (3H, m), 4.16(2H, t, J=7.0Hz),

4.35-5.60 (1H, br), 5.25 (1H, br-t), 6.67 (1H, s),

6.71 (1H, d, J=8.4Hz), 7.02 (1H, d, J=8.4Hz), 7.30-7.70 (8H, m),

7.75-8.10 (2H, m).

実施例 6 1

2-(2, 2-ジメチルプロビル) -7-[2-(5-メチル-2-tert-ブチルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1717, 1614, 1566, 1504.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

```
0.97 (9H, s), 1.33 (9H, s), 2.24 (3H, s),
```

2.44, 2.68 (2H, ABq, J=13.9Hz),

2.84 (2H, t, J=6.7Hz), 3.00-3.22 (2H, m), 3.65 (3H, t, J=6.1Hz),

3.83, 4.08 (2H, ABq, J=15.1Hz), 4.07 (2H, t, J=6.7Hz),

6.58 (1H, d, J=1.7Hz), 6.72 (1H, dd, J=1.7, 8.4Hz),

7.05 (1H, d, J=8.4Hz), 7.50-8.20 (1H, br)

実施例62

<u>2-ベンジル-7-[2-(1-プテニル)-5-メチルオキサゾール-4-</u>

<u>イル) エトキシ] -1, 2, 3, 4 - テトラヒドロイソキノリン- (3S) -</u>

カルボン酸

IR ν (nujol) cm⁻¹; 3470, 1682, 1614, 1585, 1512.

¹H-NMR (CDCl₃) δ (ppm);

1.07 (3H, t, J=7.5Hz), 2.05-2.20 (1H, m), 2.26 (3H, s),

2.50-3.00 (3H, m), 3.65-4.45 (7H, m), 5.92 (1H, br-s),

6.17 (1H, d, J=16.3Hz), 6.45-6.85 (3H, m),

7.05 (1H, d, J=8.4Hz), 7.34 (5H, s).

実施例63

2 - ベンジル - 7 - [2 - (2, 2 - ジメチルプロピル) - 5 - メチルオキサ

<u>ゾールー4ーイル)エトキシ]- - 1 ,- 2 ,- 3 ,- 4 - テトラヒドロイソキノリシ</u>- -

- (3S) - カルボン酸

IR ν (nujol) cm⁻¹; 1722, 1614, 1568, 1506.

'H-NMR (CDCl₃) δ (ppm);

0.95 (9H, s), 2.34 (3H, s), 2.55 (2H, s), 2.60-3.00 (2H, m),

3.00-3.30 (2H, m), 3.80-4.40 (7H, m), 6.64 (1H, br-s),

6.70 (1H, d, J=8.8Hz), 7.02 (1H, d, J=8.8Hz),

7.32 (5H, s), 7.80 (1H, br-s).

実施例64

2-(2,2-ジメチルプロピル)-7-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル塩酸塩

IR ν (nujol) cm⁻¹; 3400, 1744, 1676, 1614, 1589, 1574, 1553, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.12 (9H, s), 1.23 (3H, t, J=7.0Hz), 2.36 (3H, s),

2.60-3.60 (6H, m), 4.00-4.40 (4H, m), 4.40-6.00 (4H, m),

6.88 (1H, d, J=8.0Hz), 6.92(1H, s), 7.18 (1H, d, J=8.0Hz),

7.35-7.70 (8H, m), 7.75-8.10 (2H, m).

実施例 6 5

7-(ペンゾフラン-2-イルメトキシ) -2-ペンジル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1632, 1587, 1501.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.00-6.50 (1H, br), 2.85-3.15 (2H, m), 3.50-4.10 (3H, m),

3.91 (2H, s), 5.16 (2H, s), 6.60-7.80 (8H, m), 7.33 (5H, s).

実施例66

 $2- \frac{1}{2} - \frac{1}{2} -$

IR ν (nujol) cm⁻¹; 1736, 1639, 1612, 1504.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

1.02 (6H, br-d), 2.35 (3H, s), 2.65-3.30 (5H, m),

4.00-5.30 (6H, m), 6.60-6.95 (2H, m), 7.09 (1H, d, J=8.0Hz),

7.25-7.70 (8H, m), 7.70-8.10 (2H, m).

実施例67

7 - [2 - (ベンゾフラン - 2 - イル) エトキシ] - 2 - ベンジル - 1, 2,

3,4-テトラヒドロイソキノリン-(35)-カルボン酸

IR ν (nujol) cm⁻¹; 1634, 1585, 1501.

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm) ;$

2.80-3.10 (2H, m), 3.19 (2H, br-t), 3.45-4.10 (3H, m),

3.90 (2H,s), 4.25 (2H, br-t), 6.50-7.80 (9H, m), 7.33 (5H, s).

実施例68

0.87 (3H, br-t), 1.05-1.85 (9H, m), 2.15-2.55 (4H, m),

2.55-3.75 (4H, m), 4.00-4.90 (4H, m), 5.25-5.50 (1H, m),

6.40-7.10 (4H, m), 7.75 (1H, br-d), 8.15 (1H, br-d), 8.52 (1H, br-s).

実施例69

2-カルボキシメチル-7-[2-(5-メチル-2-フェニルオキサゾール <math>-4-1 (3) -4-1 (3) -1 (3) -1 (3) -1 (3) -1 (3) -1 (4) -1 (5) -1 (7) -1 (7) -1 (8) -1 (9) -1 (9) -1 (10) -1

IR ν (nujol) cm⁻¹; 1620, 1585, 1556, 1508.

 $^{1}H-NMR$ (DMSO- d_{6}) δ (ppm);

2.35 (3H, -s), -2.70-3.15 (4H, -m), -3.41, -3.65 (2H, $-ABq_3$ -J=17.5Hz), ----

3.70-4.00 (3H, m), 4.16 (2H, t, J=7.0Hz), 6.00-11.00 (1H, br),

6.64 (1H, s), 6.69 (1H, d, J=8.2Hz), 7.01 (1H, d, J=8.2Hz),

7.20-7.70 (8H, m), 7.70-8.05 (2H, m).

実施例70

2-[3-(メトキシカルボニル) プロピオニル] -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1732, 1652, 1554, 1505.

¹H-NMR (CDCl₃) δ (ppm);

2.33 (3H, s), 2.50-3.40 (7H, m), 3.65 (3H, s), 4.07 (2H, br-t),

4.45-5.50 (3H, m), 5.60-6.20 (1H, br), 6.59 (1H, br-s),

6.67 (1H, d, J=8.0Hz), 7.03 (1H, d, J=8.0Hz), 7.20-7.60 (3H, m),

7.80-8.10 (2H, m).

実施例71

2-[3-(エトキシカルボニル) プロピル]-7-[2-(5-メチル-2-7) エトキシ]-1,2,3,4-テトラヒ

ドロイソキノリンー(35)-カルボン酸

IR ν (nujol) cm⁻¹; 3375, 1733, 1620, 1555, 1505.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

1.18 (3H, t, J=7.0Hz), 1.76-2.15 (2H, m), 2.15-2.50 (2H, m),

2.35 (3H, s), 2.70-3.35 (6H, m), 3.60-4.40 (7H, m),

5.27 (1H, br-s), 6.61(1H, br-s), 6.73 (1H, d, J=8.4Hz),

7.03 (1H, d, J=8.4Hz), 7.25-7.55 (3H, m), 7.80-8.10 (2H, m).

実施例72

2-ベンジルー6- [2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリンー (3RS)-カルボン酸

IR ν (nujol) cm⁻¹; 1634, 1614, 1499.

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$;

2.35 (3H, s), 2.65-3.25 (4H, m), 3.40-4.00 (3H, m),

3.90 (2H, s), 4.17 (2H, br-t), 6.20-10.00 (1H, br),

6.50-7.00 (2H, m), 6.71 (1H, s), 7.30-7.70 (3H, m),

7.32 (5H, s), 7.75-8.15 (2H, m).

実施例7.3

サゾールー4-4ーイル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸

IR ν (nujol) cm⁻¹; 1682, 1620, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.33 (3H, s), 2.56 (3H, s), 2.70-3.20 (4H, m),

3.50-4.30 (5H, m), 3.97 (2H, s), 6.50-6.90 (2H, m),

7.02 (1H, d, J=8.4Hz), 7.30-8.00 (9H, m).

実施例74

2-(2-アセチルベンジル) -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリ

<u>ンー(3S)-カルボン酸</u>

IR ν (nujol) cm⁻¹; 1668, 1643, 1614, 1504.

 1 H-NMR (DMSO- d_{6}) δ (ppm);

2.33 (3H, s), 2.36 (3H, s), 2.70-3.20 (4H, m),

3.30-4.30 (5H, m), 6.57 (1H, d, J=2.0Hz),

6.66 (1H, dd, J=2.0, 8.4Hz), 7.00 (1H, d, J=8.4Hz),

7.20-7.75 (7H, m), 7.75-8.10 (2H, m).

実施例75

<u>- 2 – ベンジルー7ー [(5 – メチルー 2 – フェニルオキサゾール – 4 – イル)</u>

<u>メトキシ] -1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸</u>

IR ν (nujol) cm⁻¹; 3462, 1680, 1614, 1556, 1508.

 $^{1}H-NMR$ (DMSO-d₆) δ (ppm);

2.41 (3H, s), 2.83-3.20 (2H, m), 3.44-4.20 (5H, m),

4.91 (2H, s), 6.73 (1H, br-s), 6.77 (1H, d, J=8.1Hz),

7.34 (1H, d, J=8.1Hz), 7.34 (5H, s),

7.40-7.68 (3H, m), 7.75-8.10 (2H, m).

参考例1

2-tert-ブトキシカルボニルー7-ヒドロキシー1, 2, 3, 4-テト ラヒドロイソキノリンー (3S) -カルボン酸エチルエステル

(1) 3, 5-93ョードーレーチロシン・2水和物25. 0 gを濃塩酸25 0 m 1 に懸濁し、1, 2-9メトキシエタン1 8 m 1 および3 7%ホルマリン2 0 m 1 を順に加え、3 0 分で7 5 \mathbb{C} まで昇温した。反応液にさらに濃塩酸1 2 0 m 1、1, 2 -9 メトキシエタン9 m 1 および3 7%ホルマリン1 0 m 1 を加え、7 5 \mathbb{C} で1 8 時間撹拌した。析出晶をろ取して1, 2 -9 メトキシエタン1 0 m 1 で洗浄し、1 7 1 にはいました。1 8 1 2 の 1 3 の 1 4 の 1 2 の 1 3 の 1 3 の 1 4 の 1 3 の 1 3 の 1 4 の 1 3 の 1 4 の 1 3 の 1 4 の 1 5 にはいました。 はいましていましょう。 1 6 の 1 7 の 1 8 の 1 9 の

7-ヒドロキシー6, 8-ジョード-1, 2, 3, 4-テトラヒドロイソキノリンー(3S) -カルボン酸 塩酸塩:

IR ν (nujol) cm⁻¹; 1751, 1599, 1578.

¹H-NMR (CDCl₃) δ (ppm);

3.00-3.30 (2H, m), 4.05 (2H, s), 4.30 (1H, dd, J=5.9, 9.5Hz), 7.71 (1H, s).

(2)上記(1)で得られた化合物12.8gをエタノール500m1に懸濁して濃塩酸10m1を加え、15時間還流した。減圧下でエタノールを留去した後、酢酸エチル300m1を加え、飽和重曹水100m1、飽和食塩水100m1で洗浄した。乾燥 (Na₂SO₄)後、減圧下で酢酸エチルを留去し、7ーヒドロキシー6、8ージョードー1、2、3、4ーテトラヒドロイソキノリンー(3S)ーカルボン酸エチルエステル11.11gを得た。

7-ヒドロキシ-6, 8-ジョード-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

'H-NMR (CDCl₃) δ (ppm);

1.29 (3H, t, J=7.0Hz), 2.80-3.00 (2H, m), 3.30-4.10 (5H, m),

4.23 (2H, q, J=7.0Hz), 7.46 (1H, s).

(3) $10\%Pd-C350mgをメタノール60m1に懸濁させ、これにトリエチルアミン2.0mlおよび上記(2)で得られた化合物2.80gを加え、室温、29.4×<math>10^4Pa$ (3.0kgf/cm²)で3時間接触水素添加した。Pd-Cをろ去し、減圧下でメタノールを留去した。得られた残渣に酢酸エチル100mlを加え、飽和食塩水100mlで洗浄した。乾燥(Na₂SO₄)後、減圧下で酢酸エチルを留去し、7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)ーカルボン酸エチルエステル1.14gを得た。

7-ヒドロキシ-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル:

IR ν (nujol) cm⁻¹; 1732, 1607, 1516.

¹H-NMR (CDCl₃) δ (ppm);

1.28 (3H, t, J=7.0Hz), 2.80-3.10 (3H, m), 3.60-3.80 (1H, m),

3.97 (2H, s), 4.05-4.20 (4H, m), 6.43 (1H, s), 6.50-6.80 (1H, m),

6.92 (1H, d, J=8.4Hz).

IR ν (nujol) cm⁻¹; 3260, 1756, 1671, 1615, 1506.

¹H-NMR (CDCl₃) δ (ppm);

1.29 (3H, t, J=7.0Hz), 1.47 (9H, s), 3.08 (2H, d, J=5.2Hz),

4.21 (2H, q, J=7.0Hz), 4.41 (1H, d, J=15.5Hz),

4.60-5.25 (1H, m), 4.65 (1H, d, J=15.5Hz), 5.00-6.00 (1H, br),

6.50-6.80 (2H, m), 6.98 (1H, d, J=8.1Hz).

参考例2

2-tert-ブトキシカルボニル-7-ヒドロキシ-1, 2, 3, 4-テト ラヒドロイソキノリン- (3S) -カルボン酸メチルエステル

参考例1と同様にして表題化合物を得た.

IR ν (nujol) cm⁻¹; 3261, 1755, 1672, 1614, 1506.

¹H-NMR (CDCl₃) δ (ppm);

1.47 (9H, s), 3.08 (2H, d, J=5.2Hz), 3.63 (3H, s),

4.40 (1H, d, J=16.5Hz), 4.60-5.25 (1H, m), 4.66 (1H, d, J=16.5Hz),

5.60-6.60 (1H, br), 6.50-6.80 (2H, m), 6.99 (1H, d, J=8.1Hz).

参考例3

<u>2-(5-メチル-2-フェニル-オキサゾール-4-イル) エタノール メ</u>タンスルホン酸エステル

塩化メチレン200mlに2-(5-メチル-2-フェニルーオキサゾール-4-イル) エタノール20gおよびトリエチルアミン19.2mlを加え、これに0 $^{\circ}$ でメタンスルホニルクロリド9.52mlを滴下後、同温で15分間撹拌した。10 $^{\circ}$ クエン酸水200ml、飽和重曹水100mlおよび飽和食塩水100mlで洗浄して乾燥 ($^{\circ}$ Na $_{2}$ SO $_{4}$)後、減圧下で塩化メチレンを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物2

¹H-NMR (CDCl₃) δ (ppm);

1.45gを得た。

2.53 (3H, s), 2.94 (3H, s), 2.94 (2H, t, J=7.0Hz),

4.52 (2H, t, J=7.0Hz), 7.30-7.50 (3H, m), 7.80-8.10 (2H, m).

参考例4

2-ペンジル-7-ヒドロキシー1, 2, 3, 4-テトラヒドロイソキノリン- (3S) - カルボン酸エチルエステル

参考例1の(3)で得られた化合物8.1gをN,N-ジメチルホルムアミド80m1に溶解し、これにトリエチルアミン2.0m1およびベンジルブロ

ミド4.57mlを加え、室温にて3時間撹拌した。反応液に水500mlを加え、酢酸エチル200mlで2回抽出した。合わせた酢酸エチル層を飽和食塩水500mlで洗浄して乾燥 (Na $_2$ SO $_4$)後、減圧下で酢酸エチルを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物10.46gを得た。

IR ν (nujol) cm⁻¹; 3410, 1717, 1624, 1506.

 $^{1}H-NMR$ (CDCl₃) δ (ppm);

- 1.22 (3H, t, J=7.0Hz), 3.06 (2H, d, J=5.0Hz), 3.66 (1H, t, J=5.0Hz),
- 3.78 (2H, s), 3.90 (2H, s), 4.13 (2H, q, J=7.0Hz),
- 6.37 (1H, d, J=2.0Hz), 6.56 (1H, dd, J=2.0, 8.4Hz),
- 6.92 (1H, d, J=8.4Hz), 7.20-7.50 (5H, m).

参考例5

<u>2-(N-tert-ブトキシカルポニル-N-メチルアミノ)エタノール メ</u>タンスルホン酸エステル

- (1) 2-(メチルアミノ) エタノール3. 5m1をテトラヒドロフラン1 50m1に溶解し、ジーtertーブチルジカーポネート12. 5gを加え、室温で20分間攪拌した。減圧下でテトラヒドロフランを留去し、得られた残渣をカラムクロマトグラフィーにて精製し、2-(N-tert-ブトキシカルポニル-N-メチルアミノ) エタノール6. 3-5 gを得た。
- 2 (N-tert-ブトキシカルボニル-N-メチルアミノ) エタノール:IR ν (neat) cm⁻¹; 3423, 2976, 2934, 2882, 1674.

'H-NMR (CDCl₃) δ (ppm);

- 1.43 (9H, s), 2.89 (3H, s), 3.34 (2H, t, J=5.8Hz),
- 3.67 (2H, t, J=5.8Hz), 4.00-6.00 (1H, br).
- (2) 上記(1) で得られた化合物505mgを塩化メチレン20mlに溶解してトリエチルアミン0.5mlおよびメタンスルホニルクロリド0.25mlを加え、室温で1時間撹拌した。塩化メチレン30mlを加え、飽和食塩

水 $20 \, \text{m} \, 1$ で洗浄して乾燥 ($N \, \text{a}_2 \, S \, O_4$) した。減圧下で塩化メチレンを留去し、表題化合物 $7 \, 20 \, \text{m} \, \text{g}$ を得た。

'H-NMR (CDCl₃) δ (ppm);

1.46 (9H, s), 2.94 (3H, s), 3.01 (3H, s), 3.54 (2H, t, J=5.5Hz),

4.33 (2H, t, J=5.5Hz).

参考例6

1-(2-プロモエチル)インドリン

1, $2-\Im 7$ ロモエタン 5.8.0 m 1 にインドリン 5.0 g およびトリエチルアミン 2.8.7 m 1 を加え、9.0 \mathbb{C} で 2 時間撹拌した。反応液に酢酸エチル 2.00 m 1 を加え、飽和食塩水 4.00 m 1 で洗浄して乾燥 (Na_2SO_4)後、減圧下で酢酸エチルを留去した。得られた残渣をカラムクロマトグラフィーにて精製し、表題化合物 4.09 g を得た。

IR ν (neat) cm⁻¹; 2924, 2845, 1607, 1489.

¹H-NMR (CDCl₃) δ (ppm);

2.99 (1H, t, J=8.4Hz), 3.45 (1H, t, J=8.4Hz), 3.49 (4H, s),

6.40-6.75 (2H, m), 6.90-7.20 (2H, m).

参考例7

1, $2-\Im 7$ ロモエタン 15.7m1に $6-\sinh 7$ トキシカルボニルインドリン 2.41 gおよびトリエチルアミン 7.8m1 を加え、90 $\mathbb C$ $\mathbb C$ 2時間撹拌した。反応液に酢酸エチル 150 $\mathbb C$ $\mathbb C$

IR ν (neat) cm⁻¹; 1713, 1611, 1499.

 $^{1}H-NMR (CDCl_{3}) \delta (ppm);$

3.03 (1H, t, J=8.4Hz), 3.53 (1H, t, J=8.4Hz), 3.53 (4H, s),

3.88 (3H, s), 6.00-6.20 (2H, m), 7.39 (1H, dd, J=1.5, 7.8Hz).

試験例1 血糖低下作用(方法A)

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、雄性 K K - A'マウスの尾静脈より非絶食下で採血し、市販測定キット(グルコース C I I - テストワコー、和光純薬製)を用い血漿中のグルコースを測定した。各群の血漿中のグルコースの平均値と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。翌日から各被験化合物を5%アラビアゴム溶液に懸濁もしくは溶解し、4日間にわたり投与群に連日経口投与した。対照群には5%アラビアゴム溶液を経口投与した。最終投与約24時間後に非絶食下で尾静脈より採血し、血漿中のグルコースを測定した。血糖低下率は以下の式より求めた。結果を表1に示す。

血糖低下率(%) = [(対照群の血漿グルコース平均値ー被験化合物投与群の血漿グルコース平均値)/対照群の血漿グルコース平均値]×100

表1 血糖低下作用(方法A)

被験化合物	投与量	血糖低下率	被験化合物	投与量	血糖低下率
	(mg/kg)	(%)		(mg/kg)	(%)
SE 44 /RI 3	10	38.3	実施例40	30	46.3
実施例 2	30	60.6	実施例41	30	11.1
実施例 3	30	11.8	実施例42	10	27.6
実施例 5	10	34.1	大心 例 72	30	49.6
关	30	43.4	実施例43	30	27.5
実施例 6	10	10.7	実施例44	30	48.0
关心的 0	30	12.2	実施例45	30	12.6
実施例 7	10	11.4	実施例46	30	28.6
关滤物 /	30	17.4	実施例48	30	16.1
実施例 9	30	20.3	実施例49	30	11.1
実施例12	10	12.0	実施例50.	30	11.4
実施例16	30 .	34.5	実施例51	30	20.0
実施例18	30	39.7	実施例52	• 30	-26.3
実施例21	30	43.4	実施例53	. 30	13.6
実施例23	10	24.3	実施例54	30	10.8
大心が23	30	42.9	実施例55	30	13.9
実施例32	30	36.4	実施例58	30	19.1
実施例33	30	38.8	実施例67	30	10.6
実施例34	30	23.5	実施例69	30	12.5
実施例35	30	22.1	実施例70	30	15.2
実施例36	30	28.4	実施例71	30	10.5
実施例37	30	11.1	実施例72	·· 30	15.9
実施例38	30	28.0	実施例73	. 30	14.8
実施例39	30	30.7			

試験例2 血糖低下作用 (方法B)

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、雄性 K K - A'マウスの尾静脈より非絶食下で採血し、市販測定キット(グルコース C I I - テストワコー、和光純薬製)を用いて血漿中のグルコースを測定した。各群の血漿中のグルコースの平均値

と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。翌日から粉末飼料(CE-2、クレア)に各被験化合物を0.1(w/w)%混合し、4日間にわたり混餌投与した。対照群には通常粉末飼料を与えた。5日目に非絶食下で尾静脈より採血し、血漿中のグルコースを測定した。血糖低下率は、以下の式より求めた。結果を表2に示す。

血糖低下率(%) = [(対照群の血漿グルコース平均値-被験化合物投与群の血漿グルコース平均値)/対照群の血漿グルコース平均値]×100

被験化合物	血糖低下率(%)
実施例 2	69.2
実施例10	42.4

表2 血糖低下作用(方法B)

試験例3 トリグリセリド低下作用

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、雄性KK-A'マウスの尾静脈より非絶食下で採血し、市販測定キット(トリグリセリドG-テストワコー、和光純薬製)を用いて血漿中のトリグリセリドを測定した。各群の血漿中のトリグリセリドの平均値と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。翌日から各被験化合物を5%アラビアゴム溶液に懸濁もしくは溶解し、4日間にわたり投与群に連日経口投与した。対照群には5%アラビアゴム溶液を経口投与した。最終投与約24時間後に非絶食下で尾静脈より採血し、血漿中のトリグリセリドを測定した。トリグリセリドの低下率は以下の式より求めた。結果を表3に示す。

トリグリセリド低下率 (%) = [(対照群の血漿トリグリセリド平均値-被験化合物投与群の血漿トリグリセリド平均値)/対照群の血漿トリグリセリド平均値]×100

表3 トリグリセリド低下作用

被験化合物	投与量	トリク・リセリト	被験化合物	投与量	トリクリセリト
	(mg/kg)	低下率(%)		(mg/kg)	低下率(%)
実施例 2	10	39.5	実施例38	30	30.0
× 100 174 Z	30	54.3	実施例39	30	15.6
実施例 4	10	14.3	実施例40	30	36.1
実施例 5	30	30.9	実施例42	30	31.6
実施例11	10	11.2	実施例43	30	20.9
実施例12	10	22.9	実施例44	30	19.1
実施例16	30	19.8	実施例49	30	17.0
実施例18	30	45.5	実施例50	30	35.7
実施例21	30	24.4	実施例51	30	10.7
実施例23	10	30.4	実施例52	30	26.6
×1000123	30	50.4	実施例56	30 ·	14.0
実施例32	30	32.5	実施例58	30	24.7
実施例33	30	42.0	実施例59	30	13.7
実施例34	30	17.3	実施例69	. 30	15.2
実施例35	30	12.4	実施例72	30	24.0
実施例36	30	13.7	実施例73	- 30	15.4

試験例4 インスリン抵抗性糖尿病マウスにおける血糖およびインスリン低下. 作用

インスリン抵抗性により糖尿病を発症し、高血糖および高インスリン血症を示す自然発症糖尿病モデルである、KK-A'マウスを用いてインスリン抵抗性改善作用を調べた。12週齢の雄性KK-A'マウスの尾静脈より非絶食下で採血し、市販測定キット(グルコースCII-テストワコー、和光純薬製)を用いて血漿中のグルコースを測定した。各群の血漿中のグルコースおよび体重の平均値と標準偏差がほぼ等しくなるように、1群5匹として対照群と投与群とに割り付けた。投与群に、翌日から5%アラビアゴム水溶液に懸濁した被験化合物10mg/kgを1日1回、4日間経口投与した。対照群には5%アラビアゴム水溶液を経口投与した。最終投与24時間後に非絶食下で尾静脈より採

血し、血漿中のグルコースおよびインスリン濃度を測定した。結果を表4に示す。

即ち、各被験化合物は10mg/kgで血漿中のグルコースを低下させ、同時に血漿中のインスリン濃度を減少させた。これは被験化合物がインスリン分泌作用によるのではなく、インスリン感受性増強作用(インスリン抵抗性改善作用)により血糖を低下させ、ひいては高インスリン血症を改善することを示している。

被験化合物	被験化合物の 投与量 (mg/kg)	血糖 (mg/dl)	インスリン (ng/m1)
対照群	0	507	43
実施例 2	10	313	26
実施例23	10	382	28
実施例32	10	402	30
実施例42	10	308	27

表 4 血糖およびインスリン低下作用

試験例5 3 T 3 - L 1 細胞におけるトリグリセリド蓄積促進作用

80% confluent状態の3T3-L1細胞の培養培地を除き、0.25%トリプシン-EDTA溶液で細胞を剥離した。5%FBS-DMEM(除いた培地と等量)加え、得られた細胞浮遊液を25℃、100×gで1分遠心分離し、細胞を沈殿させて上清を除いた。細胞を適量の5%FBS-DMEM培地に再懸濁して細胞数をカウントした。1×10⁵ cells/mlとなるように5%FBS-DMEM培地で調製して24穴プレートに1mlずつ分注した。37℃、5%CO₂通気条件で2日間培養し、post confluent状態であることを確認し、培養上清を0.5mM-IBMX含有培地に交換して2日間培養した後、10ng/mlインスリンおよび10⁻⁷Mの被験化合物含有培地に交換してさらに4日間培養した。培養上清を除去後、細胞を0.

1%SDS溶液で融解し、トリグリセリドの量を測定した。被験化合物のインスリン増強作用によるトリグリセリド蓄積率(%)を以下の式から求めた。得られた結果を表5に示す。

[(被験化合物添加時のトリグリセリド量-対照のトリグリセリド量)/対照のトリグリセリド量]×100

被験化合物	トリク・リセリト・	被験化合物	トリク・リセリト・
	蓄積率(%)		蓄積率(%)
実施例 2	260.4	実施例33	222.5
実施例 5	233.0	実施例37	277.3
実施例 8	275.5	実施例39	258.0
実施例16	288.9	実施例40	231.0
実施例21	284.9	実施例42	193.6
実施例23	214.2	実施例62	327.8·
実施例32	181.2		

表 5 トリグリセリド蓄積促進作用

発明の効果

本発明のヘテロ環化合物[I]およびその医薬上許容される塩は、優れた血糖および血中脂質低下作用、インスリン抵抗性改善作用およびPPAR活性化作用を示し、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤として有用である。即ち、糖尿病、糖尿病の合併症、高脂血症、動脈硬化症、高血糖症、インスリン抵抗性耐糖能不全に起因する疾病、インスリン抵抗性に起因する疾病、肥満症、炎症、PPAR媒介疾患およびX症候群の、治療および予防に有用である。本発明のヘテロ環化合物[I]は、これまでのインスリン抵抗性改善剤の有効成分と用いられてきた化合物と全く異なった構造を有しており、これらを提供することにより、抗高血糖剤、抗高脂血症剤、インスリン抵抗性改

善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤に多様性を持たせ、選択範囲を広げることになる。

本出願は日本で出願された平成11年特許願第345543号および特願2000-295108を基礎としており、その内容は本明細書にすべて包含するものである。

請求の範囲

1. 一般式[I]

(式中、R¹は水素原子または低級アルキルを示し、

R²は水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキルアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい複素環アルキルまたは一COR⁴(式中、R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアルトニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいアルケニル、置換基を有していてもよいでもよい複素環残基を示す)を示し、

R³は水素原子、低級アルキルまたは低級アルコキシを示し、

Aは単結合または>N-R⁵ (式中、R⁵は水素原子または低級アルキルを示す)を示し、

Bは低級アルキレンを示し、

Yは置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基を示す)

で表されるヘテロ環化合物またはその医薬上許容される塩。

2. 一般式[I]中、

R¹が水素原子または低級アルキルであり、

R²が水素原子、置換基を有していてもよいアルキル、シクロアルキル、シクロアルキル、置換基を有していてもよいアリール、置換基を有していてもよいアリールでした。 R⁴は水素原子、置換基を有していてもよいアルキル、置換基を有していてもよいアリールまたは置換基を

有していてもよいアリールアルキルである)であり、

R³が水素原子、低級アルキルまたは低級アルコキシであり、

Aが単結合または $>N-R^5$ (式中、 R^5 は水素原子または低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよいアリールまたは置換基を有していてもよい芳香 族複素環残基である、

請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

3. 一般式[I]中、

R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキル、アルケニル、アルキニル、複素環アルキルまたは-CO R^4 (式中、 R^4 はアルキル、アルケニルまたはアリールである)であり、 R^3 が水素原子または低級アルコキシであり、

Aが単結合または $> N - R^5$ (式中、 R^5 は低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yがアリールまたは置換基を有していてもよい芳香族複素残基である、

請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

4. 一般式[I]中、-

R¹が水素原子または低級アルキルであり、

 R^2 が水素原子、アルキル、シクロアルキルアルキル、置換基を有していてもよいアリールアルキルまたは $-COR^4$ (式中、 R^4 はアルキルまたはアリールである) であり、

R³が水素原子であり、

Aが単結合または>N-R 5 (式中、R 5 は低級アルキルである)であり、

Bが低級アルキレンであり、かつ

Yが置換基を有していてもよい芳香族複素残基である、

請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

5. 一般式[I]において、Y-A-が

(式中、R⁴はイソプロピルまたはtertーブチルを示し、

R^Bはイソプロピルまたはtertープチルを示し、

 R^{c} はイソプロピル、tert-プチル、フェニル、チオフェン-2-イル、2-メチルプロペニル、<math>3-プテニル、シクロプロピル、<math>1-プテニルまたは2, 2-ジメチルプロピルを示す)

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

6. 一般式[I]において、Y-A-が

(式中、 R^{Λ} はイソプロビルまたはtertープチルを示し、

R^Bはイソプロピルまたはtertーブチルを示し、

 R^{c} はイソプロピル、tert-プチル、フェニル、チオフェン-2-イル、2 -メチルプロペニルまたは3-プテニルを示す)

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

8. 一般式[I]において、Y-A-が

である請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩。

9. 一般式[I]のヘテロ環化合物が、下記化合物(1)~(67)のいずれかである請求の範囲1記載のヘテロ環化合物またはその医薬上許容される塩;

(2) 2-ベンジル-7-[2-(5-メチル-2-フェニルオキサゾール-4- -イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、

(3) 2-アセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (3) 2-アセチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (3 S) -カルボン酸、

(4) 2 - メチルー7 - [2 - (5 - メチルー2 - フェニルオキサゾールー4 - イル) エトキシ] - 1, 2, 3, 4 - テトラヒドロイソキノリンー (3 S) - カルボン酸、

(6) $2- \wedge + シ ル - 7 - [2 - (5 - メチル - 2 - フェニルオキサゾール - 4 - イル) エトキシ] - 1, 2, 3, 4 - テトラヒドロイソキノリン - (3S) - カルボン酸、$

ーカルボン酸、

- (8) 2-シクロヘキシルメチルー7-[2-(5-メチルー2-フェニルオキサゾールー4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリンー (3S)-カルポン酸、
- (9) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(3-フェニルプロピル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸、
- (10) 2 ペンゾイル-7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン- (3 S)-カルポン酸、
- (12) 2-ペンジル-7-[2-(5-エチルービリジン-2-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (13) 2 ペンジル-7 $[2-(インドリン-1- 4 \mu)]$ エトキシ[-1, 2, 3, 4- F) $[2-(4 \mu)]$ $[2-(4 \mu)]$ $[3 \mu]$ $[3 \mu]$ -
- (14)2-ベンジル-7-[2-(5-メチル-2-フェニルオキサゾールー4-イル)エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸エチルエステル、
- (15) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸メチルエステル、
- (16) 2 (4-メトキシベンジル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン- (3S)-カルボン酸、
- (17) 2-(4-メトキシベンジル)-7-[2-(5-メチル-2-フェニ

- (18) 2 (4-メチルベンジル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>- 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (20) 2-ペンジル-7-[2-(6-カルボキシインドリン-1-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、(21) <math>2-(4-フルオロベンジル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (22) 2-(2,2-ジメチルプロピオニル)-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
 - (23) 2-(2,2-ジメチルプロピル) -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1,2,3,4-テトラヒドロイソキノリン-(3S) ーカルボン酸、
 - (24) 2 ベンジルー 7 [2 (5 メチル 2 tert ブチルオキサ ソール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン <math>(3S) カルボン酸、
 - (25)2-ベンジル-7-[2-(5-メチル-2-(チオフェン-2-イル)オキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
 - (26) 2-ペンジル-7-[2-(5-メチル-2-イソプロビルオキサゾール-4-イル) エトキシ]-1,2,3,4-テトラヒドロイソキノリン-(3

- S) -カルボン酸、
- (27) 2-プチル-7-[2-(5-メチル-2-フェニルオキサゾール-4- (27) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- $(28) 2-ペンジル-7-\{2-[5-メチル-2-(2-メチルプロペニル)$ オキサゾール-4-イル] エトキシ $\}$ -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、
- $(29) 2-ベンジル-7- \{2-[2-(3-プテニル)-5-メチルオキサゾール-4-イル] エトキシ <math>\{2-[2-(3-プテニル)-5- メチルオキサ-1,2,3,4- テトラヒドロイソキノリン-(3S)-カルボン酸、$
- (30) 2-アリル-7-[2-(5-メチル-2-フェニルオキサゾール-4-1/2) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (31) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(2-プロピニル) -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- . (33) 2 -ベンジル-7 [(4ンドリン-3-4ル) x1 +4シ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
 - (34) 2 (3-プテニル) 7-[2-(5-メチル-2-フェニルオキサ ゾール-4-イル) エトキシ] <math>- 1 , 2 , 3 , 4-テトラヒドロイソキノリン <math>- (3S) カルボン酸、
 - (35) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-2-ペンタノイル-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルポン酸、

(36) 7 - [2 - (5 - メチル - 2 - フェニルオキサゾール - 4 - イル) エトキシ] - 2 - (4 - ペンテノイル) - 1, 2, 3, 4 - テトラヒドロイソキノリン - (3S) - カルボン酸、

- (37) 2 (3-メチル-2-プテノイル) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] 1 , 2 , 3 , 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (38) 2 (3, 3-ジメチルブチリル) 7 [2 (5 メチル 2 フェニルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
- (39) 2-ペンジル-7-メトキシ-6-[2-(5-メチル-2-フェニル オキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4-テトラヒドロイソキ ノリン-(3RS) -カルボン酸、
- (40) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(ピリジン-2-イルメチル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (41) 2-ペンジル-7-(3-メチル-3-フェニルブトキシ)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (42) 2-ベンジル-7-(3,3-ジメチル-4-フェニルプトキシ)-1, 2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (43)2-ペンジル-7-(2-イソプロピルペンゾオキサゾール-6-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (44)2-ベンジル-7-(2-tert-ブチルベンゾオキサゾール-6-イル)メトキシ-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- $(45) 2 \langle x \rangle = (2 t e r t) \langle x \rangle = (45) 2 \langle x \rangle = (2 t e r t) \langle x \rangle = (45) 2 \langle x \rangle = (45)$

ルポン酸、

(46) 7-(2-tert-ブチルベンゾオキサゾール-6-イル) メトキシー2-(2,2-ジメチルプロビル)-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、

(47)2-ペンジル-7-(2-イソプロピルベンゾオキサゾール-5-イル) メトキシー1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、

- (48) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-(ピリジン-4-イルメチル)-1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルポン酸、
- (49) 7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -2-[(ビリジン-2-イル) カルボニル] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、

- (52) 2 (3-メチル-2-プテニル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン- (3S) -カルボン酸、
- (53) 2 (2, 2-ジメチルプロピル) 7 [2 (5 メチル 2 tert ブチルオキサゾール 4 イル) エトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン (3S) カルボン酸、
- $(54) 2 \langle x \rangle = (1 \sqrt{2} + \sqrt{2}) (1 \sqrt{$

- S) -カルボン酸、
- (55) 2 -ベンジル-7- [2-(2,2-ジメチルプロピル)-5-メチルオキサゾール-4-7-1,2,3,4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (56) 2 (2, 2-ジメチルプロピル) 7 [2 (5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] <math>-1, 2, 3, 4 テトラヒドロイソキノリン- (3S) カルボン酸エチルエステル、
- (57) 7 (ペンソフラン 2 イルメトキシ) <math>-2 ペンジル 1, 2, 3, 4 Fトラヒドロイソキノリン (3S) カルボン酸、
- (58) 2-4ソプチリルー7-[2-(5-メチルー2-フェニルオキサゾール-4-4ル) エトキシ]-1,2,3,4-テトラヒドロイソキノリンー(3S)-カルボン酸、
- (60) 7-[2-(5-エチルビリジン-2-イル) エトキシ] -2-ヘキサノイル-1, 2, 3, <math>4-テトラヒドロイソキノリン-(3S)-カルボン酸、(61) 2-カルボキシメチル-7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S)-カルボン酸、
- (63) 2-[3-(エトキシカルボニル) プロピル] -7-[2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ] -1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、
- (64) 2 (3 (5) + (6 -

- S) -カルボン酸、
- (66) 2 (2-アセチルベンジル) 7 [2-(5-メチル-2-フェニルオキサゾール-4-イル) エトキシ]-1, 2, 3, 4-テトラヒドロイソキノリン-(3S) -カルボン酸、および
- (67) 2 ベンジル-7 [(5-メチル-2-フェニルオキサゾール-4- イル) メトキシ] 1, 2, 3, 4 テトラヒドロイソキノリン- <math>(3S) カルボン酸。
- 10.一般式[I]のヘテロ環化合物が、上記化合物(1)~(47)のいずれかである請求の範囲9記載のヘテロ環化合物またはその医薬上許容される塩。
- 11. 一般式[I]のヘテロ環化合物が、上記化合物(1)~(21)のいずれかである請求の範囲9記載のヘテロ環化合物またはその医薬上許容される塩。
- 12. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなる医薬組成物。
- 13. 抗高血糖剤、抗高脂血症剤、インスリン抵抗性改善剤、糖尿病治療薬、糖尿病合併症治療薬、耐糖能不全改善剤、抗動脈硬化症剤、抗肥満症剤、抗炎症剤、PPAR媒介疾患の予防・治療剤およびX症候群の予防・治療剤からなる群より選ばれる、請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬上許容される塩を含有してなる医薬。
- 14. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬上許容される塩を含有してなる抗高血糖剤。
- 15. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなる抗高脂血症剤。
- 16. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなるインスリン抵抗性改善剤。

17. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬 上許容される塩を含有してなる糖尿病合併症治療薬。

18. 請求の範囲1~11のいずれかに記載のヘテロ環化合物またはその医薬上許容される塩を含有してなる糖尿病治療薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08464

the state of the s				
A.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D217/26, 401/12, 405/12, 413/12, 413/14, A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00			
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed b Int.Cl ⁷ C07D217/26, 401/12, 405/12, A61K31/472, 31/4725, A61P3/			, 413/12, 413/14, /04, 3/06, 3/10, 9/10, 2	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1992 Toroku Jitsuyo Shinan Koho 1994-1996 Kokai Jitsuyo Shinan Koho 1971-1992 Jitsuyo Shinan Toroku Koho 1996-2000				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN), REGISTRY (STN)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*		Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
х		WO, 98/00403, A1 (ELI LILLY AND COMPANY), 08 January, 1998 (08.01.98), Full text & JP, 2000-515501, A		1-18
	X	WO, 93/23378, A1 (WARNER-LAMBER 25 November, 1993 (25.11.93), Full text & JP, 7-508266, A	T COMPANY),	1-6,12,13
	Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
"A" "E" "L" "O" "P"	A" document defining the general state of the art which is not considered to be of particular relevance E" earlier document but published on or after the international filing date L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O" document referring to an oral disclosure, use, exhibition or other means P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search		"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report	
24 January, 2001 (24.01.01)			06 February, 2001 (06.02.01)
Name and mailing address of the ISA/ Japanese Patent Office			Authorized officer	
Facsimile No.			Telephone No.	•

国際調査報告 · 国際出願番号 PCT/JP00/08464 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' C07D217/26, 401/12, 405/12, 413/12, 413/14, A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' C07D217/26, 401/12, 405/12, 413/12, 413/14. A61K31/472, 31/4725, A61P3/04, 3/06, 3/10, 9/10, 29/00 最小限資料以外の資料で調査を行った分野に含まれるもの 1926-1992 日本国実用新案公報 日本国公開実用新案公報 1971-1992 日本国登録実用新案公報 1994-1996 日本国実用新案登録公報 1996-2000 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA (STN), REGISTRY (STN) C. 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 WO, 98/00403, A1 (ELI LILLY AND COMPANY) 1 - 18X 8. 1月. 1998 (08. 01. 98) 全文 & JP, 2000-515501, A WO, 93/23378, A1 (WARNER-LAMBERT COMPANY) 1-6, 12, 13 X 25. 11月. 1993 (25. 11. 93) 全文 & JP, 7-508266, A □ パテントファミリーに関する別紙を参照。 □ C欄の続きにも文献が列挙されている。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの の理解のために引用するもの 「E」国際出願日前の出願または特許であるが、国際出願日 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) 「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 06.02.01 24.01.01 特許庁審査官(権限のある職員) 9841 国際調査機関の名称及びあて先

田村 聖子

電話番号 03-3581-1101 内線 6247

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区額が関三丁目4番3号

 $(x,y) = (x,y) \cdot (x,y) = (x,y)$ in the second se