Mame: J. sai chandu & Guide name: D8.v. Balasubrama J'COUTSI-code: SPICHADI Reg. No: 192211216 155 Dept: CSE (X) (ode: SSE - 26-11-216-21 4. Advanced Accusacy psediction in inflation mate using Extreme Gradient boosting Algorithm in compension with ENN K-newrest weighbour Algorithm. abitallar stag Introduction: Definition: The prediction of accuracy in inflation nate using Extreme avadient Boosting algorithm in composison, with K-Nearest neighbour algorithm CP. sonkiya, V BajPai, A Bansal, 2021). Importance: Grovernments use inflation nate determine tax policies, spending and subsidies. straction but leaves (s cim, 185 kim, 2020). >Governament Budgeting and Piscal Policies (c. carnold, 2022). > Machine learning and AI in economics are raymat, 2002) > International Trade and Exchange Pates 1 2 heng, 2023)

1. Total no-of articles published in 648s to Para 2: over past 5 years. Grougle Scholan - 1200 JEEF EXPLOSE - 25 2. Mast Cited.

* The price-inflation neurous (s ping, 2023). * Perent advances in inflation (P Andre, 2021) * The impact of inflation on the financial section development (K Batsayneth, 2021). * Effect of inflation hate and investment on economic growth (FJ IDOLOT, 2022). 3. Most and websites. "Effect of inflation that and investment on economie grouth" (EJ I Dolar, 2022).

Pana 3: Nord to milomorphy upmod is and 1. Handling of numeric data and sensitivity

to in-relavant features

2. Existing Experience in this research. → I learnt about Extreme gradient boosting

algorithm from coursera and the great learning

-> After that I had discussion with my

guide and come to a conclusion Por

Providing better accuracy in inflation rate

> Improving the accuracy.

Matorials and Methodology: Pana 1: study setting: SIMATS, SSE

NO. DP GOODS: 32

i) Group 1: Extreme gradient boosting algorithm

ii) Group 2: F-Nearest Neighbours Total Sample Size: 240

paraset: Inflation and Economic Indicators

website: kaggle. com.

```
Para 2: Sample preparation of Group 1
Extreme gradient boosting algorithm
   -> pre-processing datasets. 1. ...
-> applying x6Boost algorithm
-> calculate accuracy.
Para 3: Sample preparation of Group 2:
   K-Nearest Neighbown Algorithm
   -> pre-processing dataset
    -> applying k-nearest neighbour Algorithm
    > calculate accuracy.
Para 4: -> Testing setup: -> 600gle (ollab
         -) is intel 12th gen Processor
         -) 8 9b RAM
-) windows 08.
-> resting procedure:
     -> pre-processing the dataset
      > pre-prolessig
> Train all algorithm with 801. of
                   min with resting
       dataset
     > use 20% of data with
Para 5: para conection
  pataset: Economic_Indicators & InPlation ( taggle.
```

Para 6: statistical software: SPSS

Independent variables: unemployment nate, GDP.

Dependent Variables: Accuracies, Inflation rate

Analysis Done: Yes-

Pesulto and Discussion:

Para 1: In this study we observed

-oost has better prediction capacity than t-ne

-oret neigh bour algorithm

Para 2: The gooph repoesents the comparison

of inflation nate using X6Boost algorithm in

companison with k-nearest neighbours algorithm

-> x 6 Boost haves high accuracy.

Pora 3: Data collection:

sete: www. Kaggle. com.

Pana H: Statistical software: SPSS

Independent, variable: unemployment rations.

dependent variable: Allaray, Inflation rate.

Analysis done: Yes.

-> comparison of x61800st and Pandom Porest

algorithm

Limitations: The only limitation is small streethouse Scope: Accuracy improved using × 6 Boss algorithm. all the property and the land of conclusion:

The overall model prediction of inflation

Pomation of data mate based on post information of data -) The accuracy of extreme gradient boosting is higher than K-neavest neighbour. > The proposed algorithm Extreme gradient boosting has a 0.28% of a curacy over K- nearest neighbour nas 90.28% of has 69.87%

corresponde touristics in our

alus marporkuno : daprav stabanthar

or well of the way of the said and matery has thought to delagrone. 238 EARLY GORLEN

Person 3: Par confedient

certification

Group Statistics

	Groups	N	Mean	Std Deviation	Std. Error Mean
Accuracy	XGBoost Algorithm	10	90.2880	1.71360	54189
	K-Nearest Neighbours Algorithm	10	69 8790	1,97990	.62610

Independent Samples Test

		Levene's Test fo	14est for Equality of Means							
		F	Sig	1	a	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
									Lower	Upper
Accuracy	Equal variances assumed	.133	.719	24.647	18	.000	20.40900	.82804	18.66936	22.14864
	Equal variances not assumed			24.647	17.637	.000	20.40900	.82804	18.66679	22.15121

