Multiplication rule, Total probability law

Friday, January 15, 2021 8:46 AM

$$P(AnBnc) = P(A) \cdot P(B|A) \cdot P(c|AnB)$$

$$\Rightarrow = P(A) \cdot P(B|A) \cdot P(c|AnB)$$

$$\Rightarrow = P(A) \cdot P(B|A) \cdot P(c|AnB)$$

Ex Three cands are drawn from a deck of 52 cands without replacement. What is the prob that none of these three cards is a heart.?

Sol. $A_{i} = \text{event that } i-h \text{ cand is not a heart. } 1 \le i \le 3$

$$P(A_{1} \cap A_{2} \cap A_{3}) = \underbrace{P(A_{1})}_{52} \cdot \underbrace{P(A_{2}|A_{1})}_{50} \cdot \underbrace{P(A_{3}|A_{2} \cap A_{1})}_{50}$$

$$= \frac{39}{52} \cdot \frac{38}{51} \cdot \frac{37}{50}$$

Given
$$P(A_1)$$
 $P(A_2)$ $P(A_3)$
 $P(B|A_1)$ $P(B|A_2)$ $P(B|A_3)$
 $P(B) = ??$
 $P(A_1 \cap B) \cup (A_2 \cap B) \cup (A_3 \cap B)$
 $P(A_2 \cap B) + P(A_3 \cap B) + P(A_3 \cap B)$
 $P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$
 $P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$
 $P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$
 $P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$

Total Prob law

Let A, A_2 ... A_n be digit events that forms a position of Ω and assume that $P(A_i) > 0$ for i=1,2,...n. Then for any event B we have

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$$

Players A

and Player B. What is the prob that A wins?

E = A wins all N coins $P_i = \text{posts of } E \text{ when } A \text{ stands with}$ i coinsH = first toss is head

$$P_i = P(E) = P(H) \cdot \frac{P(E|H)}{P(E|H)} + P(H^c) \cdot P(E|H^c)$$

Given,
$$P_0 = 0$$
 $P_{N} = 1$ $P_{i+1} = P_{i}$ P_{i-1} P_{i-1}

= 1 Pi + 1 Pi = 1 Pi+1 + 2 Pi-1

$$P_{i+1} - P_{i} = P_{i} - P_{i-1}$$

$$P_{i} = i \cdot P_{i}$$

$$P_{i} = \frac{i}{N} P_{i} = N \cdot P_{i} \Rightarrow P_{i} = \frac{1}{N}$$

Q = N-i q=Prob of B winning if B stants with (N-i)

Game will not go on fenever!!

Gambler's Ruin Prob