Random Variable

- A random variable (RV) is a map from sample space to a real line such that there is a unique real number corresponding to every outcome of sample space
 - eg. Coin toss sample space [H T] mapped to [0 1]. If the sample space outcomes are real
 valued no need for this mapping (eg. throw of a dice)
 - Allows numerical computations such as finding expected value of a RV
 - Discrete RV (throw of a dice or coin)
 - Continuous RV (sensor readings, time interval between failures)
 - Associated with the RV is also a probability measure

Data Analytics 13

Probability Mass/Density Functions

- For a discrete RV the probability mass function assigns a probability to every outcome in sample space
 - Sample space of RV (x) for a coin toss experiment: [0 1].
 - P(x = 0) = 0.5; P(x = 1) = 0.5
- For a continuous RV the probability density function f(x) can be used to assign a probability to every interval on a real line
 - Continuous RV (x) can take any value $[-\infty, \infty]$
 - (Area under the curve) 0
 - Cumulative densityx fungtion of [X)dx

Binomial Mass Function

- Probability of obtaining k heads in n coin tosses with p the probability of obtaining a head in any toss
- RV x represents number of heads obtained
 - Sample space : [0, 1, ...n]

$$f(x=k) = \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

- One outcome: $\underbrace{HH...HTT...T}_{k \text{ times}}$
- PMF characterized by one parameter
- For large n it tends to a Gaussian distribution

Binomial mass function for n = 20, p = 0.5

Data Analytics 15

Gaussian or Normal Density Function

 Distribution used to characterize random errors in data

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- PDF characterized by two parameters μ and σ
- Density function is symmetric
- Standard normal distribution $\mu = 0$ and $\sigma = 1$

Shaded region: $Pr(1 \le X \le 2)$

Gaussian density function for

$$\mu = 0, \sigma = 1$$

Chi-square density function

•
$$f(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{n/2-1} e^{-x/2}$$

- Density is characterized by parameter n (degrees of freedom)
- Distribution of sum of squares of *n* independent standard normal RVs
- Distribution of sample variance

Shaded region: $Pr(6 \le X \le 8)$

Moments of a pdf

- Similar to describing a function using derivatives, a pdf can be described by its moments
 - For continuous distributions

•
$$E[x^k] = \int_{-\infty}^{\infty} x^k f(x) dx$$

- For discrete distributions
 - $E[x^k] = \sum_{i=1}^N x_i^k p(x_i)$
- Mean : $\mu = E[x]$
- Variance : $\sigma^2 = E[(x \mu)^2] = E[x^2] \mu^2$
- Standard deviation = Square root of variance = σ

Properties of Gaussian RVs

- For a Gaussian RV x
 - Mean : $E[x] = \mu$
 - Variance : $E[(x \mu)^2] = \sigma^2$
 - Symbolically $x \sim \mathcal{N}(\mu, \sigma^2)$
- Standard Gaussian RV $z \sim \mathcal{N}(0,1)$
- If $x \sim \mathcal{N}(\mu, \sigma^2)$ and y = ax + b then
 - $y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$
- Standardization
 - If $x \sim \mathcal{N}(\mu, \sigma^2)$, then $z = \frac{(x-\mu)}{\sigma} \sim \mathcal{N}(0,1)$

Computation of Probability using R

- Function to compute probability given a value X
- Lower tail probability = $P(-\infty < x < X) = \int_{-\infty}^{X} f(x) dx$
- Functions pnorm(X, mean, std, 'lower.tail' = TRUE/FALSE)
 - norm refers to the distribution and can be replaced by other distributions (chisq, exp, unif)
 - X is the value (limit)
 - Parameters of the distribution (eg. mean and std for normal distribution)
 - lower.tail = TRUE (default) to obtain lower tail probability and FALSE to obtain upper tail probability

Other functions in R

- Function to compute X given probability p
 - Function q*norm*(p, mean, std, 'lower.tail' = TRUE/FÅLSE)
 - Lower tail probability = $P(-\infty < x < X) = \int_{-\infty}^{X} f(x) dx = p$
- Function d*norm* to compute density function value
- Function r*norm* to generate random numbers from the distribution

Joint pdf of two RVs

- Joint pdf of two RVS x and y: f(x,y)
 - $P(x \le a, y \le b) = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) dx dy$
 - Covariance between x and y: $\sigma_{xy} = E[(x \mu_x)(y \mu_y)]$
 - Correlation between x and y: $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
- Two RVs x and y are uncorrelated if $\sigma_{xy} = 0$
- Two RVs x and y are independent if f(x,y) = f(x)f(y)

Multivariate Normal Distribution

- A vector of RVs $\mathbf{x} = [x_1 \quad x_2 \quad \cdots \quad x_n]^T$
- Multivariate Gaussian Distribution : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - $E[x] = \mu$: Mean vector
 - $E[(\mathbf{x} \boldsymbol{\mu})(\mathbf{x} \boldsymbol{\mu})^T] = \boldsymbol{\Sigma}$: Variance-covariance matrix
 - $f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{X} \boldsymbol{\mu})^T \sum_{i=1}^{n-1} (\mathbf{X} \boldsymbol{\mu})}$: pdf
- Structure of Σ

$$\Sigma = \begin{bmatrix} \sigma_{\chi_1}^2 & \sigma_{\chi_1 \chi_2} & \cdots & \sigma_{\chi_1 \chi_n} \\ \sigma_{\chi_2 \chi_1} & \sigma_{\chi_2}^2 & \cdots & \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{\chi_n \chi_1} & \cdots & \cdots & \sigma_{\chi_n}^2 \end{bmatrix}$$