

Nagyerdő yra kvadrato formos miškas Debreceno mieste, kurį galima pavaizduoti $N\times N$ langelių lentele. Lentelės eilutės sunumeruotos nuo 0 iki N-1 iš šiaurės į pietus, o stulpeliai sunumeruotos nuo 0 iki N-1 iš vakarų į rytus. Langelį, esantį r-oje eilutėje ir c-ame stulpelyje, žymėsime (r,c).

Miške kiekvienas langelis yra arba **tuščias**, arba jame yra **medis**. Bent vienas langelis miške yra tuščias.

DVSC, garsus miesto sporto klubas, planuoja miške statyti naują futbolo stadioną. s dydžio stadionas (kur $s \ge 1$) yra sudarytas iš s skirtingų tuščių langelių $(r_0, c_0), \ldots, (r_{s-1}, c_{s-1})$. Tai yra:

- kiekvienam i nuo 0 iki s-1 imtinai langelis (r_i,c_i) yra tuščias,
- visiems i, j, kuriems galioja $0 \le i < j < s$, taip pat galioja bent vienas iš $r_i \ne r_j$ ir $c_i \ne c_j$.

Futbolas žaidžiamas su kamuoliu, kuris juda stadiono langeliais. **Tiesus spyris** yra apibrėžtas kaip vienas iš šių veiksmų:

- Kamuolys iš langelio (r,a) nuspiriamas į langelį (r,b) ($0 \le r,a,b < N, a \ne b$), o stadionui priklauso *visi* langeliai eilutėje r, kurie yra tarp langelių (r,a) ir (r,b). Tai yra:
 - \circ jei a < b, tai stadionui turi priklausyti langelis (r, k) kiekvienam k, kuriam $a \le k \le b$,
 - o jei a > b, tai stadionui turi priklausyti langelis (r, k) kiekvienam k, kuriam $b \le k \le a$.
- Kamuolys iš langelio (a,c) nuspiriamas į langelį (b,c) ($0 \le c,a,b < N, a \ne b$), o stadionui priklauso *visi* langeliai esantys stulpelyje c tarp langelių (a,c) ir (b,c). Tai yra,
 - \circ jei a < b, tai stadionui turi priklausyti langelis (k,c) kiekvienam k, kuriam $a \le k \le b$,
 - o jei a>b, tai stadionui turi priklausyti langelis (k,c) kiekvienam k, kuriam $b\leq k\leq a$.

Stadionas yra **taisyklingas**, jei įmanoma iš bet kurio stadionui priklausančio langelio nuspirti kamuolį į bet kurį kitą stadionui priklausantį langelį ne daugiau nei 2-iem tiesiais spyriais. Atkreipkite dėmesį, kad bet koks stadionas, kurio dydis yra 1, yra taisyklingas.

Pavyzdžiui, panagrinėkime mišką, kurio dydis N=5. Langeliuose (1,0) ir (4,2) yra medžiai, o visi kiti langeliai yra tušti. Paveiksliukai žemiau nurodo tris įmanomus stadionus. Langeliai su medžiais yra patamsinti, o stadiono langeliai yra dryžuoti.

Kairėje esantis stadionas yra taisyklingas. Viduryje esantis stadionas nėra taisyklingas, nes reikia bent 3 tiesių spyrių, kad kamuolys iš langelio (4,1) atsidurtų langelyje (4,3). Dešinėje esantis stadionas irgi nėra taisyklingas, nes neįmanoma nuspirti kamuolio iš langelio (3,0) į langelį (1,3) atliekant tik tiesius spyrius.

Sporto klubas nori pastatyti kuo didesnį taisyklingą stadioną. Raskite didžiausią galimą s, kad miške būtų galima pastatyti s dydžio stadioną.

Realizacija

Parašykite šią funkciją:

```
int biggest_stadium(int N, int[][] F)
```

- *N*: miško dydis.
- F: N dydžio masyvas, kurį sudaro N dydžio masyvai, nusakantys miško langelius. Kiekvienam r ir c, kuriems galioja $0 \le r < N$ ir $0 \le c < N$, F[r][c] = 0 reiškia, kad (r,c) yra tuščias, o F[r][c] = 1 reiškia, kad langelyje yra medis.
- Ši funkcija turėtų grąžinti dydžiausią taisyklingo stadiono, kurį galima pastatyti miške, dydį.
- Ši funkcija iškviečiama lygiai vieną kartą kiekvienam testui.

Pavyzdys

Panagrinėkime šį iškvietimą:

Žemiau matote šio pavyzdžio mišką pavaizduotą kairiame paveiksliuke, bei $20\,$ langelių dydžio taisyklingą stadioną dešiniame paveiksliuke:

Kadangi nėra taisyklingo stadiono, kurio dydis 21 arba didesnis, funkcija turėtų grąžinti 20.

Ribojimai

- $1 \le N \le 2000$
- $0 \le F[i][j] \le 1$ (visiems i ir j, kur $0 \le i < N$ ir $0 \le j < N$)
- Miške yra bent vienas tuščias langelis. Kitaip tariant, F[i][j]=0 bent vienai porai $0 \leq i < N$ ir $0 \leq j < N$.

Dalinės užduotys

- 1. (6 taškai) Daugiausiai viename langelyje yra medis.
- 2. (8 taškai) $N \leq 3$
- 3. (22 taškai) N < 7
- 4. (18 tašky) $N \leq 30$
- 5. (16 taškų) N < 500
- 6. (30 taškų) Papildomų ribojimų nėra.

Kiekvienoje dalinėje užduotyje galite gauti 25% dalinės užduoties taškų, jeigu jūsų programa teisingai nustato, ar *visų* tuščių langelių aibė sudaro taisyklingą stadioną.

Tai yra, kiekvienam testui, kuriame visų langelių aibė sudaro taisyklingą stadioną, jūsų sprendimas:

- surenka visus taškus, jeigu grąžina teisingą atsakymą (kuris yra visų tuščių langelių aibės dydis).
- gauna 0 taškų kitu atveju.

Kiekvienam testui, kuriame visų tuščių langelių aibė *ne*sudaro taisyklingo stadiono, jūsų sprendimas:

- gauna visus taškus, jeigu grąžina teisingą atsakymą.
- gauna 0 taškų, jeigu grąžina visų tuščių langelių aibės dydį.
- gauna 25% taškų, jei grąžina bet kokį kitą atsakymą.

Taškų, skiriamų už dalinę užduotį, skaičius lygus mažiausiam taškų skaičiui, gautam už šios dalinės užduoties testus.

Pavyzdinė vertinimo programa

Pavyzdinė vertinimo programa skaito duomenis šiuo formatu:

- 1-a eilutė: N
- ullet (2+i)-a eilutė ($0 \leq i < N$): $F[i][0] \; F[i][1] \; \dots \; F[i][N-1]$

Pavyzdinė vertinimo programa išveda jūsų atsakymą šiuo formatu:

• 1-a eilutė: biggest_stadium funkcijos grąžinta vertė.