

PyTorch 卷积网络配置与训练(一)

人工智能与Python程序设计 教研组

人工智能与 Python程序设计

提纲

- 1. 卷积网络的训练流程
- 2. CIFAR-10数据介绍与加载
- 3. 网络搭建与模型优化
- 4. 图像识别大作业

人工智能与 Python程序设计

提纲

- 1. 卷积网络的训练流程
- 2. CIFAR-10数据介绍与加载
- 3. 网络搭建与模型优化
- 4. 图像识别大作业

网络前馈预测

网络前馈预测

误差反向传播

数据准备

- myknopodymykos

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness...

网络定义

损失函数

优化方法

人工智能与 Python程序设计

提纲

- 1. 卷积网络的训练流程
- 2. CIFAR-10数据介绍与加载
- 3. 网络搭建与模型优化
- 4. 图像识别大作业

NERS/TY OR CHINA 1937 A B) / K K

- · CIFAR-10数据介绍
 - 10个类别,每个类别6000张图像,共计60000张。
 - 图像分辨率为32x32,均为RGB三通道图像。

- torchvision库
 - 集成计算机视觉相关的数据集,模型架构,以及常用的图像处理操作等
 - torchvision.datasets
 - CelebA
 - o CIFAR
 - Cityscapes
 - COCO
 - DatasetFolder
 - EMNIST
 - FakeData
 - Fashion-MNIST
 - o Flickr
 - o HMDB51
 - ImageFolder
 - ImageNet
 - Kinetics-400
 - KMNIST

- torchvision.io
 - Video
 - Fine-grained video API
 - Image

- torchvision.models
 - Classification
 - Semantic Segmentation
 - o Object Detection, Instance Segmentation and Person Keypoint Detection
 - Video classification

- torchvision.transforms
 - Scriptable transforms
 - Compositions of transforms
 - o Transforms on PIL Image and torch.*Tensor
 - Transforms on PIL Image only
 - o Transforms on torch.*Tensor only
 - Conversion Transforms
 - Generic Transforms
 - Functional Transforms

• 基于torchvision库对CIFAR-10数据加载

```
import torch
import torchvision
```

数据集类实例化

构建CIFAR-10数据类

根据index获取对 应数据样本,并 返回到数据队列

```
class CIFAR10(VisionDataset):
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is index of the target class.
        img, target = self.data[index], self.targets[index]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img)
        if self transform is not None:
            img = self.transform(img)
        if self.target transform is not None:
            target = self.target_transform(target)
        return img, target
```

def __len__(self) -> int:
 return len(self.data)

数据个数声明

• 基于torchvision库对CIFAR-10数据加载

```
import torch
import torchvision
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                       download=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                                                       DataLoader
                                         shuffle=True, num_workers=2)
                                                                       实例化
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                      download=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                       shuffle=False, num_workers=2)
```


人工智能与 Python程序设计

提纲

- 1. 卷积网络的训练流程
- 2. CIFAR-10数据介绍与加载
- 3. 网络搭建与模型优化
- 4. 图像识别大作业

卷积

• 卷积

```
CLASS torch.nn.Conv2d(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] = 0, dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros')
```

- in_channels (int) Number of channels in the input image
- out_channels (int) Number of channels produced by the convolution
- **kernel_size** (*int or tuple*) Size of the convolving kernel
- stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'
- dilation (int or tuple, optional) Spacing between kernel elements. Default: 1
- groups (int, optional) Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional) If True, adds a learnable bias to the output. Default: True

卷积

No padding, stride 1

padding: 1 stride: 1

· 池化(Pooling)

• 池化(Pooling)

最大池化

CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

- **kernel_size** the size of the window to take a max over
- **stride** the stride of the window. Default value is kernel_size
- padding implicit zero padding to be added on both sides
- dilation a parameter that controls the stride of elements in the window
- return_indices if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool2d later
- ceil_mode when True, will use ceil instead of floor to compute the output shape

平均池化

CLASS torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)

Applies a 2D average pooling over an input signal composed of several input planes.

HIND OF CHINA

全连接(Linear, Fully Connected Layer)

• 全连接(Linear, Fully Connected Layer)

CLASS torch.nn.Linear(in_features: int, out_features: int, bias: bool = True)

[SOURCE]

Applies a linear transformation to the incoming data: $y=xA^T+b$

- **in_features** size of each input sample
- out_features size of each output sample
- bias If set to False, the layer will not learn an additive bias. Default: True


```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```


在构造函数中, 实例化不同的 layer组件,并赋 给类成员变量

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
   def init (self):
        super(Net, self).__init__()
       self.conv1 = nn.Conv2d(3, 6, 5)
       self.pool = nn.MaxPool2d(2, 2)
       self.conv2 = nn.Conv2d(6, 16, 5)
       self.fc1 = nn.Linear(16 * 5 * 5, 120)
       self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
       x = self.pool(F.relu(self.conv1(x)))
       x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```

在前馈函数中,利用实例化的 组件对网络进行搭建,并对输 入Tensor进行操作,并返回 Tensor类型的输出结果


```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```


- 常用损失函数:
 - **分类**模型:
 - 虽然可以强行通过回归方式解决, 但是效果较差
 - 目前主流方法都是基于概率相关方法进行建模
 - 使得样本的分类概率达到最大

下雨	不下雨	下雨	不下雨	下雨	不下雨
0.1	0.9	0.3	0.7	0.4	0.6

使用概率的方法更符合真实情况

概率基础

- 多分类概率分布
 - 样本空间:一个事件所有发生的可能情况
 - S = {第0类, 第1类, ..., 第C 1类}
 - 样本点概率: P(s), 满足 $P(s) \ge 0$ 且 $P(s) \le 1$
 - 定义在一个样本空间S的概率分布,满足
 - $P(s) \ge 0$, $\forall s \in S$
 - $P(\$0\$) + P(\$1\$) + \cdots + P(\$C 1\$) = 1$
 - 可以用 K个概率数表示对于一个事件发生的概率的估计
 - {0.1, 0.3, 0.2, 0.4}
 - {1, 0, 0, 0} 必定为第0类的概率
 - {0, 1, 0, 0} 必定为第1类的概率

二分类交叉熵: y ∈ {0,1}

$$- H(p,q) = -\sum_{y} p(y) \cdot \log q(y)$$
$$= - \left(y_i \log \widehat{y}_i + (1 - y_i) \log(1 - \widehat{y}_i) \right)$$

逻辑回归: $\widehat{y}_i = \frac{1}{1+e^{-(xw+b)}}$

- 在所有数据上取平均: $-\frac{1}{N}\sum_{i=1}^{N}[y_i \log \hat{y}_i + (1-y_i) \log (1-\hat{y}_i)]$

• 多分类交叉熵:

- $H(p,q) = -\sum_{y} p(y) \cdot \log q(y)$
- 衡量真实分布p(y)和预测分布q(y)之间的差异
 - 如果p(y) = q(y), 那么交叉熵H(p,q)最小, 且刚好等于p(y)的熵

- 1、枚举两个概率分布的值,对应点p(y)和 $\log q(y)$ 相乘
- 2、看起来很复杂,但是对于分类任务来说,只会有一项"被激活"(非0)

• 多分类: 假设总共有C类, y ∈ {0,1,2, ..., C - 1}

$$- H(p,q) = -\sum_{y} p(y) \cdot \log q(y) = -\sum_{y=0}^{C-1} p(y) \cdot \log q(y)$$

$$H(p,q) = -\log 0.8 = 0.2231$$

$$H(p,q) = -\log 0.2 = 1.6094$$

PyTorch中的损失函数

• 多分类: 假设总共有C类, y ∈ {0,1,2,..., C - 1}

$$- H(p,q) = -\sum_{y} p(y) \cdot \log q(y) = -\sum_{y=0}^{C-1} p(y) \cdot \log q(y)$$

$$H(p,q) = -\log 0.1 = 2.3026$$

$$H(p,q) = -\log 0.6 = 0.5108$$

PyTorch中的损失函数

- 多分类: 假设总共有C类, y ∈ {0,1,2, ..., C 1}
 - $H(p,q) = -\sum_{y} p(y) \cdot \log q(y) = -\sum_{y=0}^{C-1} p(y) \cdot \log q(y)$
- 问题: 如何得到q(y)?
 - 模型输出一个C维向量 $z = [z[0], z[1], ..., z[C-1]] ∈ R^C$
 - 利用softmax函数计算:

$$q(y=i) = \frac{e^{z[i]}}{\sum_{j} e^{z[j]}}$$

у	Z	exp(z)	q(y)
0	1.000	2.718	0.366
1	1.000	2.718	0.366
2	0.000	1.000	0.134
3	0.000	1.000	0.134

		exp(z)	q(y)	
0	1.000	2.718	0.110	1.0
1	3.000	20.086	0.810	0.5
2	0.000	1.000	0.040	0.0
3	0.000	1.000	0.040	0.0

- 损失函数
 - PyTorch中的交叉熵函数

```
CLASS torch.nn.CrossEntropyLoss(weight: Optional[torch.Tensor] = None, size_average=None, ignore_index: int = -100, reduce=None, reduction: str = 'mean')
```

The loss can be described as:

$$ext{loss}(ext{x}, ext{class}) = -\log \left(rac{ ext{exp}(ext{x}[ext{class}])}{\sum_{ ext{j}} ext{exp}(ext{x}[ext{j}])}
ight) = - ext{x}[ext{class}] + \log \left(\sum_{ ext{j}} ext{exp}(ext{x}[ext{j}])
ight)$$

softmax function

PyTorch中的损失函数

- PyTorch提供的交叉熵损失函数:
 - nn.CrossEntropyLoss
 - 输入:
 - NxC维矩阵 \mathbf{Z} , 其中每一行为 $\mathbf{Z} = [z[0], z[1], ..., z[C-1]] \in \mathbb{R}^C$
 - 每个数据点在C个类别上的"确信度"
 - N维向量y, 其中每个元素为 $y \in \{0, 1, 2, ..., C-1\}$
 - 标准答案

$$loss(\mathbf{Z}, \mathbf{y}) = -\sum_{i=0}^{N-1} \log(\frac{e^{\mathbf{Z}[i, \mathbf{y}[i]]}}{\sum_{j} e^{\mathbf{Z}[i, j]}})$$

- 注意: 该损失函数同时计算了softmax函数和交叉熵函数:

- 损失函数
 - PyTorch中的交叉熵函数
 - 交叉熵损失函数的实例化

```
import nn
criterion = nn.CrossEntropyLoss()
```

• 优化方法的声明与实例化

```
import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```


• 模型训练

网络定义

损失函数

优化方法

单批量数据下的一次模型训练

完整数据下的迭代模型训练


```
for epoch in range(2): # loop over the dataset multiple times
    running loss = 0.0
    for i, data in enumerate(trainloader, ∅):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999: # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running loss = 0.0
print('Finished Training')
```


• 模型训练

全部数据 迭代次数

```
for epoch in range(2):
                      # loop over the dataset multiple times
    running loss = 0.0
    for i, data in enumerate(trainloader, 0):
       # get the inputs; data is a list of [inputs, labels
                                                                  获取当前批次数据
       inputs, labels = data
       # zero the parameter gradients
                                                                 清空模型参数的梯度
       optimizer.zero_grad()
       # forward + backward + optimize
       outputs = net(inputs)
       loss = criterion(outputs, labels)
                                                                  模型预测与参数优化
       loss.backward()
       optimizer.step()
       # print statistics
       running_loss += loss.item()
       if i % 2000 == 1999: # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
                (epoch + 1, i + 1, running_loss / 2000))
           running loss = 0.0
print('Finished Training')
```

- 简单卷积网络训练流程回顾
 - 参见simpleConvNet.py

人工智能与 Python程序设计

提纲

- 1. 卷积网络的训练流程
- 2. 简单卷积网络的搭建
- 3. 损失定义与模型优化
- 4. 图像识别大作业

商品图像 (Fashion-Mnist) 分类

FashionMNIST 是一个图像数据集。 它是由 Zalando (一家德国的时尚科技公司) 旗下的研究部门提供,涵盖了来自 10 种 类别的共 7 万个不同商品的正面图片。

商品图像 (Fashion-Mnist) 分类

- · 实现一个基于CNN的图像分类模型
- 具体要求:
 - 模型构建: 继承nn.Module, 实现 FashionMnistModel类
 - 模型训练:基于Fashion-Mnist数据集,完成 FashionMnistModel的训练
 - 模型测试: 实现test函数, 完成图像分类测试

机器学习的基本流程

数据准备

- 数据标注
- 训练集/验证集/测试集分割
- 特征提取

模型训练

- 分类损失函数
- 损失函数优化和参数调优

模型测试

- 性能评价指标
- 交叉验证

• 构建数据集类:

构造函数:

实例化数据加载的相关类属性

```
class FashionDataset(Dataset):
    定义Dataset:
   - 用于加载训练和测试数据,请勿改动
   - 返回一张图片(3维Tensor)以及对应的标签(0-9)
   def __init__(self,datadir,transform,is_train = True):
        super(). init ()
        self.datadir = datadir
        self.img,self.label = self.load data(self.datadir,is train = is train)
        self.len data = len(self.img)
        self.transform = transform
   def getitem (self,index):
       return self.transform(self.img[index]), self.label[index]
   def len (self):
       return self.len data
   def load_data(self,datadir,is_train):
       dirname = os.path.join(datadir)
       files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
            't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']
       paths = []
       for fname in files:
           paths.append(os.path.join(dirname, fname))
       if is train:
           with gzip.open(paths[0], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[1], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                  offset=16).reshape(len(label), 28, 28)
       else:
           with gzip.open(paths[2], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[3], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                     offset=16).reshape(len(label), 28, 28)
       return img, label
```

• 构建数据集类:

构造函数:

实例化数据加载的相关类属性

```
class FashionDataset(Dataset):
    定义Dataset:
   - 用于加载训练和测试数据,请勿改动
   - 返回一张图片(3维Tensor)以及对应的标签(0-9)
   def __init__(self,datadir,transform,is_train = True):
        super(). init ()
        self.datadir = datadir
        self.img,self.label = self.load data(self.datadir,is train = is train)
        self.len data = len(self.img)
        self.transform = transform
   def getitem (self,index):
        return self.transform(self.img[index]), self.label[index]
    def len (self):
       return self.len data
   def load_data(self,datadir,is_train):
       dirname = os.path.join(datadir)
        files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
            't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']
       paths = []
       for fname in files:
           paths.append(os.path.join(dirname,fname))
       if is train:
           with gzip.open(paths[0], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[1], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                  offset=16).reshape(len(label), 28, 28)
       else:
           with gzip.open(paths[2], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[3], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                     offset=16).reshape(len(label), 28, 28)
       return img, label
```

根据index获取对应数据 样本,并返回到数据队列

• 构建数据集类:

构造函数: 实例化数据加载的相关类属性

获取所有数据个数

```
class FashionDataset(Dataset):
    定义Dataset:
   - 用于加载训练和测试数据,请勿改动
   - 返回一张图片(3维Tensor)以及对应的标签(0-9)
   def __init__(self,datadir,transform,is_train = True):
        super(). init ()
        self.datadir = datadir
        self.img,self.label = self.load data(self.datadir,is train = is train)
        self.len data = len(self.img)
        self.transform = transform
   def getitem (self,index):
        return self.transform(self.img[index]), self.label[index]
   def len (self):
        return self.len data
   def load data(self,datadir,is train):
       dirname = os.path.join(datadir)
        files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
            't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']
       paths = []
       for fname in files:
           paths.append(os.path.join(dirname,fname))
       if is train:
           with gzip.open(paths[0], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[1], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                  offset=16).reshape(len(label), 28, 28)
       else:
            with gzip.open(paths[2], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[3], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                     offset=16).reshape(len(label), 28, 28)
       return img, label
```

根据index获取对应数据 样本,并返回到数据队列

• 构建数据集类:

构造函数: 实例化数据加载的相关类属性

获取所有数据个数

读取所有数据

```
class FashionDataset(Dataset):
    定义Dataset:
   - 用于加载训练和测试数据,请勿改动
   - 返回一张图片(3维Tensor)以及对应的标签(0-9)
   def __init__(self,datadir,transform,is_train = True):
        super(). init ()
        self.datadir = datadir
        self.img,self.label = self.load data(self.datadir,is train = is train)
        self.len data = len(self.img)
        self.transform = transform
   def getitem (self,index):
        return self.transform(self.img[index]), self.label[index]
   def len (self):
        return self.len data
   def load data(self,datadir,is train):
       dirname = os.path.join(datadir)
        files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
            't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']
       paths = []
       for fname in files:
           paths.append(os.path.join(dirname,fname))
       if is train:
           with gzip.open(paths[0], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[1], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                  offset=16).reshape(len(label), 28, 28)
       else:
           with gzip.open(paths[2], 'rb') as lbpath:
               label = np.frombuffer(lbpath.read(), np.uint8, offset=8)
           with gzip.open(paths[3], 'rb') as imgpath:
               img = np.frombuffer(imgpath.read(), np.uint8,
                                     offset=16).reshape(len(label), 28, 28)
       return img, label
```

根据index获取对应数据 样本,并返回到数据队列

- 实例化DataLoader:
 - Train_loader
 - Test_loader

```
# 定义data loader
train dataset = FashionDataset('data',
                         transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                         ])
train loader = DataLoader(train dataset,batch size=320, shuffle=True, num workers= 4)
test dataset = FashionDataset('data',
                         transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                         1),
                        is_train = False
test_loader = DataLoader(test_dataset,batch_size=32, shuffle=False, num workers= 1)
```


模型训练与测试类:

```
class Model():
   def __init__(self):
       创建模型和优化器,设置模型超参数
       * 参数
           * learning rate
           * epoches
           * model save path
           * device: cuda or cpu
       * 模型
           * 创建FashionMnistModel的实例,命名为model
           * 定义optimizer
           * 定义loss function
       self.lr = 0.01
       self.epoches = 20
       self.model save path = './model'
       # 指定训练的device, 优先使用GPU, GPU不可用时加载CPU
       self.device = torch.device("cuda" if torch.cuda.is available() else "cpu")
       self.model = FashionMnistModel().to(self.device)
       self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
       self.loss function = nn.CrossEntropyLoss()
```


模型训练与测试类:

```
class Model():
   def __init__(self):
       创建模型和优化器,设置模型超参数
       * 参数
           * learning rate
           * epoches
           * model save path
           * device: cuda or cpu
       * 模型
           * 创建FashionMnistModel的实例,命名为model
           * 定义optimizer
           * 定义loss function
       self.lr = 0.01
       self.epoches = 20
                                                   需同学自主完成
       self.model save path = './model'
                                                   FashionMnistModel()模型搭建
       # 指定训练的device, 优先使用GPU, GPU不可用时加载CPU
       self.device = torch.device("cuda" if torch.cuda.is available() else "cpu")
       self.model = FashionMnistModel().to(self.device
       self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
       self.loss function = nn.CrossEntropyLoss()
```


模型搭建:

```
class FashionMnistModel(nn.Module):
   def __init__(self):
       *********请在此写入你的代码********
       定义模型
       1.1.1
   def forward(self, x):
       *******请在此处输入你的代码*******
       输入: input, 它的size是(batch_size, img_h, img_w, img_c)
       输出(返回值): output(预测值), hidden(隐藏层的值)
          * output的size是(batch size, num label)
       定义模型函数:
          * 将输入经过卷积层和激活函数
          * 使用pooling降低通道数
          * 对卷积层的输出做适当的维度变换
          * 用线性层将output映射到num_label的维度上
          * 返回output
       1.1.1
```


模型训练:

```
def train(self,train loader,test loader):
   训练函数
   self.model.train()
   for epoch in range(self.epoches):
       loss list = []
       for batch idx, (data, target) in enumerate(train loader):
           data, target = data.to(self.device), target.long().to(self.device)
           self.optimizer.zero grad()
           output = self.model(data)
           loss = self.loss function(output, target)
           loss.backward()
           self.optimizer.step()
           loss list.append(loss.item())
           if batch idx % 50 == 0:
               print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                   epoch, batch idx * len(data), len(train loader.dataset),
                           100. * batch idx / len(train loader), loss.item()))
       self.test(test loader)
       # 保存模型参数
       if epoch+1 % 5 == 0:
           self. save model(epoch+1)
```

img,label = test dataset. getitem (20)

plt.imshow(np.squeeze(img), cmap='gray')

pred = inference(model2,img)
fig = plt.figure(figsize=(1,1))

plt.title(label classes[pred])

模型测试:

```
def test(self,test loader):
                                                   Text(0.5, 1.0, 'Pullover')
    检验模型测试集上的效果
                                                       Pullover
    self.model.eval()
   test loss = 0
   correct = 0
   with torch.no grad():
        for data, target in test loader:
            data, target = data.to(self.device), target.long().to(self.device)
            output = self.model(data)
           test loss += self.loss function(output, target).item() # sum up batch loss
           pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
            correct += pred.eq(target.view as(pred)).sum().item()
   test loss /= len(test loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test loss, correct, len(test loader.dataset),
        100. * correct / len(test loader.dataset)))
```


人工智能与 Python程序设计

回顾

- 1. 卷积网络的训练流程
- 2. 简单卷积网络的搭建
- 3. 损失定义与模型优化
- 4. 图像识别大作业

谢谢!