Question 7.1

Let $f: X \to \mathbb{R}$ be a continuous function. Prove that the zero set of f, that is the set

$${x \mid f(x) = 0}$$

is closed.

- Note that the Corollary of Theorem 4.8 on Rudin states A mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.
- Suppose $g(f) = f^{-1}(\{0\})$. By the Corollary above, g(f) is closed if f is continuous.
- Let x be a limit point of g(f). Then \exists a sequence $\{x_n\}$ in g(f) such that $d(x_n, x) \to 0$.
- f is continuous at x. So $\exists \delta > 0 \ \forall \epsilon > 0$ such that $d(x_n, x) < \delta \Leftrightarrow |f(x_n) f(x)| < \epsilon$.
- As $\{x_n\}$ converges to x, $\exists N$ such that $n \geq N$; hence $|f(x_n) f(x)| < \epsilon$.
- Since $f(x_0) = 0$, $|f(x_n) f(x)| = d(f(x)) < \epsilon \ \forall \ \epsilon > 0$.
- This leads to f(x) = 0, or $x \in g(f)$, and g(f) is, therefore, closed since it contains all its limit points.

Question 7.2

We say that a function $f: X \to Y$ is Lipschitz if there exists a real number L > 0 such that

$$d(f(x_1), f(x_2)) \le Ld(x_1, x_2)$$

for all $x_1, x_2 \in X$. Show that every Lipshitz function is continuous.

- Fix $c \in X$, and let $x_1 \in X$ converges to c and $\epsilon > 0$ be given.
- Suppose $\exists N \text{ such that } n > N \text{ and } d(x_1 c) \leq \epsilon/L.$
- Now we hold,

$$d(f(x_1) - f(c)) \le Ld(x_1, c) \le \epsilon$$

- i.e. $f(x_1)$ converges to f(c).
- The continuity of f on X is proved.

Question 7.3

Let $p \in X$ be a fixed point. Prove that the function f(x) = d(x, p) is Lipschitz, and hence continuous.

- Suppose $x, y \in X$. So $f(x) = d(x, p) \le d(x, y) + d(y, p) = d(x, y) + f(y)$
- $\bullet \Leftrightarrow f(x) f(y) \le d(x, y) \Leftrightarrow f(y) f(x) \le d(y, x) = d(x, y) \Leftrightarrow |f(x), f(y)| \le d(x, y)$
- As there exists Lipshitz constant which is 1,

$$|f(x) - f(y)| \le 1 \cdot d(x, y),$$

f(x) is Lipschitz and, hence continuous.

Question 7.4

Let $E \subset X$ and define a function $f: X \to R$ by

$$f(x) = \inf\{d(x, p) \mid p \in E\}.$$

Show that f is Lipschitz, and hence continuous.

- Suppose $x, y \in X$.
- Let $p \in E$. So $f(x) = \inf\{d(x, p) \mid p \in E\} \le d(x, p) \le d(x, y) + d(y, p)$.
- $f(x) d(x, y) \le \inf\{d(y, p) \mid p \in E\} = f(y) \Leftrightarrow f(x) f(y) \le d(x, y)$
- Since $f(y) f(x) \le d(y, x) = d(x, y)$ also, we obtain $|f(x) f(y)| \le 1 \cdot d(x, y)$.
- \bullet Thus f is Lipschitz.

Question 7.5

Let $K \subset X$ be compact and suppose that $x \in X \setminus K$. Prove that there exists a nearest point of K to x, that is, that there exists $p \in K$ such that $d(x, p) \leq d(x, q)$ for all $q \in K$.

- The set $\{d(x,q) \mid q \in K\}$ is a non-empty subset of $(0,\infty)$.
- So there exists the infumum and a sequence $q_n \in K$ such that

$$d(x, q_n) \to D = \inf\{d(x, q) \mid q \in K\}$$

- $\{q_n\}$ has a convergent subsequence $\{q_{n_k}\}$ since it is in a compact set. (Note that a topological space is sequentially compact if every infinite sequence has a convergent subsequent.)
- Since $d(x, q_{n_k})$ also converges to D, we may just assume that $x_n \to q$ in X.
- Since compact sets are closed, $p \in K$ and we just need to check that d(x,p) = D.

• Put $\epsilon > 0$. By the definition of infimum and the convergence of the distrace, $\exists n$ such that

$$|d(q,q_n) - D| < \frac{\epsilon}{2} \& d(q_n,p) < \frac{\epsilon}{2}$$

Hence

$$|d(x,p) - D| < |d(x,p) - d(x,q_n)| + |d(x,q_n) - D| < \epsilon$$
 for any $\epsilon > 0$

• Thus d(x, p) = D as desired and the infimum of the distance is at an ed.

Question 7.6

Define the function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \sqrt{|x|}$. Is f Lipschitz?

- Suppose that $x, y \in \mathbb{R}$. To prove whether f is Lipschitz, we need to find a Lipschitz constant C such that $|\sqrt{x} \sqrt{y}| \le Cd(x, y)$ which holds on any interval.
- Let y = 2x. Then we obtain

$$\frac{\sqrt{x} - \sqrt{2x}}{|x - 2x|} = \frac{1}{\sqrt{x}} - \frac{\sqrt{2}}{\sqrt{x}}$$

• However, in case where x < 0, C may go to negative. Thus f is not Lipschitz.

Question 7.7

Let $f, g: X \to Y$ be continuous functions and suppose that $E \subset X$ is dense.

- (i) Prove that f(E) is dense in f(X).
 - Let $y \in f(X)$. Hence $\exists x \in X$ such that f(x) = y.
 - Since $y \in f(X)$, x is unable to be an element of E. i.e. x is strictly in X.
 - Since E is dense in X, \exists a sequence $\{x_n\} \in E$ such that $x_n \to x$.
 - Further, due to continuity of f, $f(x_n) \to f(x)$.
 - However, this does not imply that $y = f(x) = f(x_n)$ because $y \notin f(E)$.
 - Hence we can conclude that y = f(x) is a limit point of f(E).
- (ii) Suppose now that f(p) = g(p) for all $p \in E$. Prove that f(x) = g(x) for all $x \in X$.
 - Remind that $X = E \cup E^c$. What we need to show is that f(p) = g(p) for every $p \in E^c$.
 - Since E is dense in X, \exists a sequence $\{p_n\} \in E$ such that $p_n \to p \in E^c$ as $n \to \infty$.
 - Since $f(p_n) = g(p_n)$, where $p_n \in E$, f and g are continuous.
 - Thus f(p) = g(p) holds.