

BLUETOOTH LOW ENERGY (SMART)

Source: Bluetooth SIG

Qu'est-ce que Bluetooth?

Bluetooth est un standard de communication sans fil permettant l'échange bidirectionnel de données à courte distance

Versions

Version	Date	Améliorations				
1	1999	Première publication du standard				
2	2004	Introduction du mode EDR (mode 2Mb/s et 3Mb/s)				
2.1	2007	Ajout de plusieurs petites fonctionnalités				
3	2009	Introduction du mode HS (24Mb/s)				
4	2010	Ajout de la pile Bluetooth Low Energy				
4.1	2013	Nouvelles fonctionnalités pour BLE				
4.2	2014	Protocole IP sécurisé pour les objets connectés				
5.0	2016	Porté: 4x; Débit: 2x; Données: 8x				
5.0	2017	Bluetooth Mesh pour BLE				
5.1	2019	Ajout de nouvelles fonctionnalités pour le positionnement (indoor)				
5.2	2020	Bluetooth audio: LE Audio				
5.3	2021	Amélioration de la publication et ajout de fonctions de sous-connexion				

Bluetooth 4.2/5.x: 2 types

- Basic Rate (BR)
 - Enhanced Data Rate (EDR)
 - Alternate MAC & PHY (AMP)
- Low Energy (LE)

	BLUETOOTH LOW ENERGY (LE)	BLUETOOTH CLASSIC
Frequency Band	2.4GHz ISM Band (2.402 – 2.480 GHz Utilized)	2.4GHz ISM Band (2.402 – 2.480 GHz Utilized)
Channels	40 channels with 2MHz spacing (3 advertising channels/37 data channels)	79 channels with 1MHz spacing
Channel Usage	Frequency-Hopping Spread Spectrum (FHSS)	Frequency-Hopping Spread Spectrum (FHSS)
Modulation	GFSK	GFSK, pi/4 DQPSK, 8DPSK
Data Rate	LE 2M PHY: 2 Mb/s LE 1M PHY: 1 Mb/s LE Coded PHY (S=2): 500 Kb/s LE Coded PHY (S=8): 125 Kb/s	EDR PHY (8DPSK): 3 Mb/s EDR PHY (π/4 DQPSK): 2 Mb/s BR PHY (GFSK): 1 Mb/s
Tx Power*	≤ 100 mW (+20 dBm)	≤ 100 mW (+20 dBm)
Rx Sensitivity	LE 2M PHY: ≤-70 dBm LE 1M PHY: ≤-70 dBm LE Coded PHY (S=2): ≤-75 dBm LE Coded PHY (S=8): ≤-82 dBm	≤-70 dBm
Data Transports	Asynchronous Connection-oriented Isochronous Connection-oriented Asynchronous Connectionless Synchronous Connectionless Isochronous Connectionless	Asynchronous Connection-oriented Synchronous Connection-oriented
Communication Topologies	Point-to-Point (including piconet) Broadcast Mesh	Point-to-Point (including piconet)
Positioning Features	Presence: Advertising Direction: RSSI, HADM(Coming) Distance: Direction Finding (AoA/AoD)	None

Bluetooth® Classic

Solution Areas

AUDIO STREAMING

DATA TRANSFER

Device Communication

POINT-TO-POINT

Basic Rate/Enhanced Data Rate Radio

2.402-2.480 GHz ISM

SPECTRUM: 2.4 GHz ISM band

CHANNELS: 79 one MHz channel with Adaptive Frequency Hopping

BIT RATES: 1Mb/s, 2 Mb/s, 3 Mb/s

Bluetooth® Low Energy

Solution Areas

AUDIO STREAMING (COMING)

DATA TRANSFER

LOCATION SERVICES

DEVICE NETWORKS

Device Communication

POINT-TO-POINT

BROADCAST

MESH

Device Positioning

PRESENCE

DISTANCE

DIRECTION

Low Energy Radio

SPECTRUM: 2.4 GHz ISM band

CHANNELS: 40 two MHz channel with Adaptive Frequency Hopping

BIT RATES: 125 Kb/s, 500 Kb/s, 1 Mb/s, 2 Mb/s

BLE4.2/BLE5.x: PHY layer

	LE 1M	LE Coded S=2	LE Coded S=8	LE 2M
Symbol Rate	1 <u>Ms</u> /s	1 <u>Ms</u> /s	1 <u>Ms</u> /s	2 <u>Ms</u> /s
Data Rate	1 Mbit/s	500 Kbit/s	125 Kbit/s	2 Mbit/s
Error Detection	CRC	CRC	CRC	CRC
Error Correction	NONE	FEC	FEC	NONE
Range Multiplier (approx.)	1	2	4	0.8
Bluetooth 5 Requirement	Mandatory	Optional	Optional	Optional

"LE Coded PHY" utilise la correction d'erreur "Forward Error Correction" (FEC)

Bluetooth topology

Point-to-point (1:1)

La communication un à un est idéal pour le *streaming* audio (casque sans fil, main libre, etc.).

Broadcast (1:m)

Ce type de communication (uniquement pour BLE) est idéal pour diffusé des informations localisées (balise, localisation d'objet, etc.).

• Mesh (m:m)

Ce type de communication (uniquement pour BLE) permet de créer un réseau maillé de capteurs (domotique, automatisation de bâtiment, etc.).

BLE vs Bluetooth classic Topology (1:1)

	Bluetooth Low Energy (LE)	Bluetooth Basic Rate Enhanced Data Rate (BR/EDR)
	Point-to-Point (1:1 device commun	nication)
Optimized for	Short burst data transmission	Continuous data streaming
Setup time	<6 ms	100 ms
Max connections/ device (piconet)	Unlimited (implementation specific)	7
Data rate	125 Kb/s to 2 Mb/s	1 Mb/s to 3 Mb/s
Max payload size	251 byte	1'021 byte
Security	128-bit AES, user defined application layer	64b/128b, user defined application layer
Service definition	GATT Profiles	Traditional Profiles

BLE vs Bluetooth classic Topology (1:m)

	Bluetooth Low Energy (LE)	Bluetooth Basic Rate Enhanced Data Rate (BR/EDR)
	Broadcast (1:m device communic	cation)
Max payload size	Primary Channel: 31 byte Secondary Channel: 255 byte Chaining of packets for larger messages	
Security	User defined application layer	Not Applicable
Service definition	Beacon Formats (not specified by Bluetooth SIG)	

BLE vs Bluetooth classic Topology (m:m)

	Bluetooth Low Energy (LE)	Bluetooth Basic Rate Enhanced Data Rate (BR/EDR)
	Mesh (m:m device communica	ation)
Max nodes	32'767	
Max subnets	4'096	
Message addressing	Unicast, Multicast, Broadcast Up to 16,384 group addresses Supports publish/subscribe addressing	
Message forwarding	Managed flood	Not Applicable
Max payload size	29 byte payload	
Security	128-bit AES Device, network and application levels	
Service definition	Mesh Models, Mesh Properties	

Bluetooth 4.2/5.x: compatibilité

Bluetooth: BR/EDR vs LE

BLUETOOTH BR/EDR

> Serial Port Profile

RFCOMM protocole

L2CAP

LINK MANAGER

BR/EDR RF

Bluetooth Low Energy Architecture

BLE: type d'adresse MAC

BLE: SoC vs NCP system model

Module BLE Nordic

			Protocol	Support	RF Performance			
Module Name	Nordic SoC	Core	Bluetooth Support	Multi-protocol Support	(Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power)	ОТА	Flash/ RAM
BL5340 from Laird Connectivity	nRF5340	ARM Dual Cortex-M33	5.2, mesh, LE Audio	802.15.4 (Thread and Zigbee) NFC	-98 dBm /+5 dBm	Rx: 2.7 mA Tx: 5.3 mA	Yes	Application core Flash: 1 MB RAM: 512 Network core Flash: 256 KB RAM: 64 KB
BT840/F/E/X/ XE from Fanstel Corp.	nRF52840	ARM Cortex-M4	5	Thread, Zigbee, NFC	-96 dBm /+8 dBm	N/A	Yes	Flash: 1MB RAM: 256 KB
Nina-B40 from u-blox	nRF52833	ARM Cortex-M4	5.1, mesh	Thread, Zigbee, NFC	-95 dBm / +8 dBm	Rx: 6.0 mA Tx: 15.5 mA	Yes	Flash: 512 KB RAM: 128 KB

Module BLE Nordic

	nRF52805	nRF52810	nRF52811	nRF52820	nRF52832	nRF52833	nRF52840	nRF5340
Bluetooth 5.3	X	X	Χ	X	Χ	Χ	Χ	X
Bluetooth 2 Mpbs	Χ	Χ	Χ	Χ	Χ	X	X	Χ
Bluetooth Long Range			Χ	Χ		Χ	X	X
Bluetooth Direction Finding			X	X		X		X
Bluetooth LE Audio								Χ
Bluetooth mesh				Χ	Χ	Χ	Χ	Χ
Thread			X	X		X	Χ	X
Zigbee				X		X	Χ	Χ
Matter							Χ	Χ

Module BLE Silicon Lab

				RF Performance)			
Module Name	SoC	Core	Bluetooth Support	RF Performance (Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power)	ОТА	Operating Temperature	Flash/ RAM
BGM210P	EFR32BG21	ARM Cortex-M33	5.3, mesh	-97 dBm / 19.2 dBm	Rx: 9.3 mA Tx: 173 mA	Yes	-40 to +125 °C	Flash: 1 MB RAM: 96 KB
BGM220P	EFR32BG22	ARM Cortex-M33	5.2, mesh	-98.9 dBm /+8 dBm	Rx: 4.3 mA Tx: 10.6 mA	Yes	-40 to +105 °C	Flash: 512 KB RAM: 32 KB
BGM210L	EFR32BG21	ARM Cortex-M33	5.1, mesh	-97 dBm /+12.5 dBm	Rx: 9.3 mA Tx: 70 mA	Yes	-40 to (105 or 125)°C	Flash:1 MB RAM: 96 KB
BGM111	EFR32BG1	ARM Cortex-M4	4.2	-92 dBm/ +8 dBm	Rx: 8.7 mA Tx: 23.3 mA	Yes	-40 °C to +85 °C	Flash: 256 KB RAM: 32 KB
Lyra S	EFR32BG22	ARM Cortex-M33	5.3, mesh	-98.6 dBm / +6 dBm	Rx: 4.2 mA Tx: 8.8 mA	Yes	-40 °C to (85 0r 105 °C)	Flash: 512 KB RAM: 32 KB

Module BLE NXP

		Protoco	ol Support	RF Performance				
Module Name	NXP SoC	Bluetooth Support	Multi-protocol Support	(Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power) /	ОТА	Operating Temperature	
AW-XM458 from AzureWave	88W9098	5.3 BR/EDR/LE	Wi-Fi 802.11a/b/g/n/ ac/ax	-86 dBm /+4 dBm	Rx: 15.1 mA Tx: 15.3 mA	Yes	-40°C to +85°C	
Type 1ZM from Murata	88W8987	5.1 BR/EDR/LE	Wi-Fi 802.11a/b/g/n/ ac	-97 dBm /+6 dBm	Rx: 60 mA Tx: 90 mA	Yes	-30°C to +85°C	
MAYA-W1 From U-blox	IW416	5.2 BR/EDR/LE	Wi-Fi 802.11a/b/g/n/	-95 dBm / +7 dBm	Rx: 30 mA Tx: 29 mA	Yes	-40 °C to 85 °C	
Summit SOM 8M Plus From LAIRD CONNECTIVI TY	88W8997	5.3 BR/EDR/LE	Wi-Fi 802.11a/b/g/n/ ac	-98 dBm / +6.5 dBm	Rx: 30 mA Tx: 4.4 mA	Yes	-30 °C to 85 °C	

Module BLE STMicroelectronics

			Proto	col support	RF Performance				
Module name		Core	Bluetooth Support	Multi-protocol support	(Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power)		Operating Temperature	Flash/ RAM
BlueNRG-M2	BlueNRG-2	ARM Cortex-M0	5.2	N/A	-85 dBm / +8 dBm	Rx: 7.55 mA Tx: 14.78 mA	Yes	-40°C to +85°C	Flash: 256 KB RAM: 24 KB
STM32WB5 MMG	STM32WB	ARM Cortex-M0 & ARM Cortex-M4	5.3,	ZigBee 3.0, OpenThread,	-96 dBm / +6 dBm	Rx: 4.5 mA Tx: 7.8 mA	Yes	-40°C to +85°C	Flash: 1 MB RAM: 256 RAM

Module BLE Texas Instruments

		Protocol	support	RF Perfe	ormance			
Module Name	Core	Bluetooth support	Multi-protocol support	(Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power)	ОТА	Operating Temperature	Flash/ RAM
CC2652RSIP	ARM Cortex-M4	5.2, mesh	Thread, ZigBee, 6LoWPAN	-96 dBm / +5 dBm	Rx: 7.3 mA Tx: 10.9 mA	Yes	-40°C to +105°C	Flash: 352 KB RAM: 88 KB
CC2652PSIP	ARM Cortex-M4	5.2, mesh	Thread, ZigBee, 6LoWPAN	-96 dBm / +10 dBm	Rx: 7.3 mA Tx: 33 mA	Yes	-40°C to +105°C	Flash: 352 KB RAM: 88 KB
CC2651R3SIPA	ARM Cortex-M4	5.2,	ZigBee	-96 dBm/ +5 dBm	Rx: 6.8 mA Tx: 9.6 mA	Yes	-40°C to +105°C	Flash: 352 KB RAM: 88 KB

Module BLE Espressif

Module Name	Expressif SoC	Core	Protocol Support		RF Performance					
			Bluetooth Support	Multi-protoco I Support	(Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power)	ОТА	Flash/ RAM	Operating Temperature	
NINA-W15 Series	ESP32	Xtensa LX6	v4.2 (Bluetooth BR/EDR and Bluetooth Low Energy)	Wi-Fi 802.11b/g/n	-88 dBm /+5 dBm	Rx: 60 mA Tx: 80 mA	Yes	Flash: 2MB RAM: 520 KB	-40°C to +85°C	
ESP32-WROOM- 32E ESP32-WROOM- 32UE	ESP32	Xtensa LX6	v4.2 (Bluetooth BR/EDR and Bluetooth Low Energy)	Wi-Fi 802.11b/g/n	-93 dBm /+9 dBm	N/A	Yes	Flash: 4/8/16 MB RAM: 2 MB	-40 °C to (85 or 105 °C)	
ESP32-C3-MINI-1 ESP32-C3-MINI-1 U	ESP32-C	RISC-V	5, mesh	Wi-Fi 802.11b/g/n	-96 dBm / +18 dBm	N/A	Yes	Flash: 4 MB RAM: N/A	-40 °C to (85 or 105 °C)	

Module BLE Qualcomm

			Protocol Support		RF Performance					
Module Name	Qualcomm SoC	Core	Bluetooth Support	Multi-protocol Support	(Sensitivity @ 1 Mbps / Output Power)	Rx Current/ Tx Current (@ peak output power)	ОТА	Flash/ RAM	Operating Temperature	
BLE24V1 from Trusted Link	CSR1024	16-bit RISC	5.0, mesh,	N/A	-90.5 dBm /+4 dBm	Rx: 5 mA Tx: 5 mA	Yes	Flash: 256KB RAM: 80 KB	-40 °C to (85 or 105 °C)	
LM930 from LM Technologies	CSR1012	16-bit RISC	4.1	N/A	-92 dBm /+9 dBm	Rx: 22 mA Tx: 25 mA	Yes	EEPROM: 512 KB RAM: 64 KB	-30°C to +85°C	

Bluetooth LE

GAP: responsable de l'établissement du lien et de la

supervision de connexion entre deux appareils

GATT : orchestre la gestion des données supportées par

un appareil

SMP & ATT : sécurité et protocole d'accès aux données

L2CAP: multiplexage des protocoles et segmentation - réassemblage

Link layer: contrôle et gestion des paquets

Physical layer: transmission/réception des données

Physical layer

Fréquence: 2.4 GHz

Nombre de canaux: 40

Espace entre canaux: 2 MHz

Type de modulation: Gaussian Frequency Shift Keying

Fonctions Advertising: broadcast, découverte et connexion

3 Advertising Channels and 37 Data Channels

2402 MHZ
2408 MHZ
2408 MHZ
2408 MHZ
2418 MHZ
2420 MHZ
2430 MHZ
2440 MHZ

Canaux Wifi 1, 6 et 11

source: A Summary of Bluetooth Low Energy, John Harris, Logan Small, Matt Hopkins, Nathaniel de Lautour- Defence Technology Agency (DTA), New Zealand Defence Force (NZDF), April 2020.

BLE: RSSI Viewer

BLE: RSSI Viewer (advertisement channels)

Link layer

Machine d'états comportant les 5 états suivants:

Link layer

Scanning mode:

Link layer

Broadcast mode:

Link layer

Connection mode:

Source: Microchip

Link layer (BLE5.x)

BLE packet structure « advertising »:

Preamble	Access Addr.	PDU (2 - 39)				
1 byte		LL header	Payload (0 - 37 bytes)			
(LE 1M PHY) 2 bytes (LE 2M PHY)	4 bytes	2 bytes		3 Bytes		

BLE packet structure « data »:

Preamble	Access Addr.	PDU (2 - 257)							
1 byte (LE 1M PHY) 2 bytes (LE 2M PHY)	4 bytes	LL header		Pay	MIC (Optional)	3 Bytes			
		4 bytes 2 bytes	L2CAP header	ATT Data (0 - 247 bytes)					
			4 bytes	ATT header		ATT Payload	4 bytes		
				Op Code	Attribute Handle	to 244 by too			
				1 byte	2 bytes	up to 244 bytes			

PDU: Protocol Data Unit; MIC: Message Integrity Check

BLE packet structure « advertising »

source: A Summary of Bluetooth Low Energy, John Harris, Logan Small, Matt Hopkins, Nathaniel de Lautour- Defence Technology Agency (DTA), New Zealand Defence Force (NZDF), April 2020.

L2CAP

Logical Link Control and Adaptation Protocol

- Multiplexage des liens logiques
- Gestion de la segmentation et réassemblage des paquets de données

SMP & ATT

Tous les aspects liés à la sécurisation du lien sont gérés par la couche Security Manager (SM).

Le support de toutes les données en lien avec un appareil est géré par la couche Attribute Protocol (ATT)

GAP

Generic Acces Profile (GAP) est responsable de l'établissement du lien et de la supervision de connexion entre deux appareils.

GAP définit quatre rôles:

- broadcaster
- scanner(ou observer)
- peripheral
- central

GAP

Generic Acces Profile (GAP) définit quatre rôles:

- broadcaster: destiné à des applications qui ne font qu'émettre. Les appareils supportant ce rôle envoient des événements d'avertising pour diffuser des données. Ce rôle ne supporte pas le mode connecté.
- scanner (ou observer): dédié à des applications qui ne font que recevoir. Un appareil basé sur ce rôle reçoit des données diffusées lors d'événements d'advertising. Ce rôle ne supporte pas le mode connecté
- peripheral: destiné à des appareils qui supportent une (ou plusieurs)
 connexion et sont moins complexes et plus contraints qu'un appareil avec le rôle central. Ce type appareil a besoin d'un controller esclave.
- central: supporte plusieurs connexions avec différents appareils
 peripheral; un tel appareil est l'initiateur des connexions et a besoin d'un
 controller maître. Il est doté de fonctionnalités plus complexes et plus
 coûteuses que le peripheral.

GATT: service, characteristic & descriptor

Generic Attribute Profile

En mode connecté les informations sont structurées en:

- service
 - contient un «Universal Unique Identifier» (UUID)
 - · un ou plusieurs characteristic
- characteristic
 - contient un UUID
 - une valeur (avec ses propriétés)
 - un ou plusieurs descriptor (optionnel)
- descriptor
 - contient un UUID
 - une description de la valeur

GATT: *Profile*

Un *profile* contient un ou plusieurs *services* dont chacun contient un ou plusieurs *characterics* contenant zéro ou plusieurs *descriptors*

GATT: UUID et propriétés

UUID

- 16-bits: SIG services (prédéfinis)
- https://btprodspecificationrefs.blob.core.windows.net/assignednumbers/Assigned%20Number%20Types/Assigned Numbers.pdf
- 128-bits: service libre

Propriétés

- Read
- Write
- WriteWithoutResponse
- Notify

Résumé

Deux modes:

- Advertising mode (non connecté)
 Un appareil (broadcaster) envoi périodiquement un petit paquet d'informations à tout le monde (scanner/observer)
- Connected mode (connecté)
 Deux appareils (*peripheral/central*) établissent une connexion
 «client/server» pour échanger de l'information.

Résumé (connected mode)

Connected mode (connecté)

Le client (central/master) initie une connexion avec le server (peripheral/slave).

Quand la connexion est établie, un dialogue bidirectionnel se met en place.

Mode connecté: pairing vs bonding

- Il existe différents modes pour établir une connexion sécurisée.
- C'est toujours le central (par ex. un smartphone) qui initie une demande de connexion sécurisée au périphérique (objet IoT).
- Lorsque le central veut accéder à une caractéristique d'un périphérique protégé, une requête d'appairage est envoyée.
- Le pairage (pairing) consiste à authentifier l'identité des deux dispositifs, à chiffrer la liaison à l'aide d'une clé à court terme (STK), puis à distribuer des clés à long terme (LTK) utilisées pour le chiffrement.
- La LTK peut être sauvegardée pour une reconnexion plus rapide à l'avenir, c'est ce qu'on appelle le "Bonding".

Mode connecté: pairing vs bonding

Bluetooth paring process

Mode connecté: mode de pairage

Il existe quatre méthodes d'appairage différentes :

- Numeric Comparison: La méthode implique que les deux appareils affichent la même valeur à six chiffres sur leurs écrans ou écrans LCD respectifs.
- Just Works: Si l'appareil n'a pas de LCD (comme un casque ou un haut-parleur), la méthode Just Works est la même que la comparaison numérique, mais la valeur des six chiffres est fixée à zéro (pas de protection MITM).
- Passkey Entry: Avec la saisie par mot de passe, une valeur à six chiffres est affichée sur un appareil, et celle-ci est saisie dans l'autre appareil.
- Out Of Band (OOB): Le principe de cette méthode est d'utiliser un canal de communication autre que le Bluetooth pour transmettre les clés (par ex. NFC)

Mode connecté: sécurité

On mode connecté, GAP définit deux modes de sécurité avec chacun plusieurs niveaux:

Security Mode 1: Sécurité au moyen de l'authentication et du cryptage

- Level 1: Aucune sécurité (pas d'authentication, pas de cryptage)
- Level 2: Avec cryptage et pas d'authentication
- Level 3: Avec cryptage et authentication
- Level 4: Authentication (LE Secure) et cryptage

Security Mode 2: Sécurité au moyen de la signature des données

- Level 1: Authentication et pas de signature des données
- Level 2: Authentication et signature des données

Nouveautés de la version 5.2/5.3

Les principales fonctionnalités ajoutées à la version 5.2/5.3 sont:

- Isochronous Channels (ISOC) --> LE Audio
- LE Power Control (LEPC)
- Enhanced Attribute Protocol (EATT)

Isochronous Channels (ISOC)

La définition de «Isochronous» pour BLE5.2 est :

- Transmission de données sensible au temps
- Flux de données synchronisées pour plusieurs récepteurs

ISOC est la base de l'implémentation du streaming audio sur BLE : LE Audio

Source: https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/le-audio/

ISOC : Connecté/non connecté

Source: https://fr.rfstariot.com

ISOC: Connecté

ISOC: Non-connecté

LE Audio

- Introduction d'un nouveau codec orienté low-power « Low Complexity Communications Coded (LC3) », anciennement le SBC en Bluetooth Classic
- Prise en charge de plusieurs flux de données audio synchronisés
- Diffusion du flux audio sur plusieurs récepteurs
- Les capacités multiflux prennent également en charge la diffusion de flux audio en plusieurs langues

LE Power Control (LEPC)

- Surveillance de la puissance du signal reçu (RSSI)
- Adaptation des puissances des signaux pour maintenir le RSSI dans sa plage optimale
- Réduction du taux d'erreur à la réception
- Diminution de la consommation de l'émetteur/récepteur
- Meilleures coexistences des signaux radio à 2.4GHz (Wifi, Zigbee, etc.)

Enhanced Attribute Protocol (EATT)

- Enhanced Attribute Protocol (EATT) est une version améliorée du Attribute Protocol (ATT) original.
- ATT fonctionne de manière séquentielle
- EATT fournit un moyen d'effectuer des transactions simultanées/parallèles entre un client BLE et un serveur et de réduire potentiellement la latence des opérations dans certaines applications.
- Par ex., si un smartphone, avec plusieurs applications, s'interface avec un appareil BLE. En utilisant EATT, la transaction *Attribute* d'une application ne serait pas bloquée pendant que la transaction ATT d'une autre application est en cours (réduction des latences).

Positionnement: AoA

An asset wants to broadcast its location

- Continuous tone extension (CTE) is added to the end of a Bluetooth advertisement or connection packet
- Asset can support other Bluetooth functions while being tracked as CTE does not use the payload

A locator wants to find the asset

- A locator needs to have multiple antennas, as antenna is switched during the CTE reception
- A locator listens for CTE packets and measures IQ data from the CTE payload
- Can perform spherical azimuth and elevation calculation, or pass the IQ data forward to back-end processing

Source: https://www.silabs.com/

Positionnement: AoA

Source: https://www.silabs.com/

Calcul de débit max.

Calculer le débit max. pour du «LE 1Mb PHY» et «LE 2Mb PHY»:

- Inter Frame Space (IFS): 150us
- Prendre en considération uniquement les 2 premières couches (pas de MIC)