温馨提示:

1.考试开始后,进入倒计时,请勿关闭考试页面

倒计时: 04:59:53

单选题 1. 晶体管饱和导通的条件是_____ (5分) A 发射极,集电极均反偏 B 发射极,集电极均正偏 C 发射极正偏,集电极反偏 D 发射极反偏,集电极正偏

2. 下面哪个符号是NPN型三极管的符号

(5分)

D 以上都不是

5. 电路如图所示,R=XL=XC=1 Ω ,则电表的读数为()

A 2V

B 1V

C 0V

D 3V

1.

图示电路中,已知XL=XC=R=2

,电流表A1的读数为1A,则A2的读数为_____A,A3的读数为_____A,并联等效阻抗为_____

- 1. 请输入您的解答
- 2. 请输入您的解答
- 3. 请输入您的解答

2. 3 (5分	· · · · · · · · · · · · · ·	
1.	请输入您的解答	
是_	才称三相负载做三角形联结,则线电流与相电流的数量关系 ,相位关系是,线电压与 是压的数量关系是。()()()	
(•)	
	请输入您的解答	
1.		

4.		
当电路发生换路时,电容的_ 能发生跃变() ()	 _和电感的_	 _都不
(5分)		
1. 请输入您的解答		
2. 请输入您的解答		
5.		
实验测得某有源二端线性网络的开路电压 $6V$, 短路电流 $2A$,当外接电阻为 3Ω 时, 其端电压 U 值为 V 。		
()		
(5分)		
1. 请输入您的解答		

简 答 题

1. 画出此放大电路的微变等效电路,并求其放大倍数Au,输入电阻ri 和输出电阻ro

(5分)

请输入您的解答

2. 电路如图所示,设二极管均为硅管,其正向压降为0.7V,试求电流I

请输入您的解答

上传附件

3. 电路如图所示,已知ui1=-3v,ui2=2V,R1=R2=10 kΩ,R3=RF=20kΩ, 试计算输出电压u0

(5分)

请输入您的解答

4. 下图所示电路中,输入电压Ui=25V,稳压管D的Uz=10V, Izm=23mA,试求通过稳压管的电流Iz是否超过Izm,如超过,怎样 才能使其不超过。

请输入您的解答

5. 日光灯管与镇流器串联后接至交流电压上,已知灯管电阻R=260

,镇流器电阻和电感分别为r=30

,L=1.9H,工频电源电压为220V,求电路电流、镇流器两端电压、 灯管电压和电路的功率因数。 (5分)

请输入您的解答

6. 如图电路中,开关S在t=0瞬间闭合,若uc(0-)=0V,则i(0+)、 i(分别为多少?并写出i(t)的表达式。 (5分) 请输入您的解答 上传附件

7. 下图中已知E

1

=15V, E

2

=13V, E

3

=4V, R

1

= R

2

= R

3

= R

4

=1

, R

5

=10

,运用戴维南定理,求I

5

$$\begin{array}{c|c}
\underline{I_5} & R_5 \\
+ & + & U_5 \\
E_1 & E_2
\end{array}$$

= R

= R

4

=1

, R

5

=10

,运用戴维南定理,求I

5

(5分)

请输入您的解答

8. 对称三相负载作Δ形联接,接在对称三相电源上。若电源线电压UL=380V,

各相负载的电阻R=12 Ω ,感抗XL=16 Ω ,输电线阻抗可略,

试求: (1)负载的相电压Up与相电流Ip; (2)线电流IL及三相总功率 P。

(5分)

请输入您的解答

9. 电路如图所示,已知R=500

, C=2μF, L=0.25H,

$$u = 500\sqrt{2}\sin 2000t$$
.

。求

 \dot{I} , \dot{I}_1 , \dot{I}_2

和整个电路有功功率P。

请输入您的解答

单 选 题

1. 晶体管饱和导通的条件是____

(5分) (得分:5分)

- A 发射极,集电极均反偏
- B 发射极,集电极均正偏
- C 发射极正偏,集电极反偏
- D 发射极反偏,集电极正偏

我的答案: B

2. 下面哪个符号是NPN型三极管的符号

(5分) (得分:5分)

D 以上都不是

我的答案: A

3.1、二极管具有下列哪个特性() (5分)(得分:5分) A 电流放大作用 B 电压放大作用 C 单向导电性 D 正向截止特性 我的答案: C

4. 如图所示, 试求电路中的电流I=?

(5分) (得分:0分)

A 0A

3 1A

C 2A

以上都不对

我的答案: B

题目解析:

D

依据广义基尔霍夫电流定律,包围部分电路的任一假设的闭合面可以看做一个广义的节点,因此这个电路左右两侧两个闭合面都可以看成节点,比如把右侧闭合面看成广义节点,则这个节点只连了流过电流I的一条支路,而依据KCL,连接到一个节点的所有支路电流代数和等于0,而只连了一条支路,所以这条支路上的电流等于0.

也可以依据电流只能在闭合回路中流动来判断,电流I所在支路没和任何元件构成回路,所以没有电流流过。

(5分) (得分:5分)

2V

В 1V

C 0V

D 3V

我的答案:

题目解析:

我的答案:	В
题目解析:	两个5
	电阻串联,流过相同的电流,所以消耗的功率 一样,因此整个电路的有功功率为10W。 有功功率p=Ulcos
	φ
	=50/
	2×lcos
	φ

填 空 题

1.

图示电路中,已知XL=XC=R=2

,电流表A1的读数为1A,则A2的读数为_____A,A3的读数为

_____A,并联等效阻抗为______

我的答案: [0, 0, 2]

我的答案: [0, 0, 2]

题目解析:

1)因为感抗和容抗大小相同,即XL=XC,而二者为并联关系,所加电压相同,所以产生的电流的大小也相同,但电容电流超前电压90°,而电感电流滞后于电压90°,两个电流大小一样方向相反的电流相加结果为0A,所以A2读数为0A;

2) 电感对应的阻抗为j2

,电容对应的阻抗为-j2

,带入并联电路总电阻计算公式,可得总电阻 为无穷,即二者并联后总电阻为无穷,相当于 断开,因此整个电路并联等效阻抗即为电阻阻 值2 ,带入并联电路总电阻计算公式,可得总电阻 为无穷,即二者并联后总电阻为无穷,相当于 断开,因此整个电路并联等效阻抗即为电阻阻 值2

;

3)R和Xc相等,电压在R上产生电流的大小, 自然等于同一个电压在Xc上产生电流的大小, 所以A3读数为1A。

单 选 题

1. 晶体管饱和导通的条件是____

(5分) (得分:5分)

- A 发射极,集电极均反偏
- B 发射极,集电极均正偏
- C 发射极正偏,集电极反偏
- D 发射极反偏,集电极正偏

我的答案: B

2. 下面哪个符号是NPN型三极管的符号

(5分) (得分:5分)

D 以上都不是

我的答案: A

3.1、二极管具有下列哪个特性() (5分)(得分:5分) A 电流放大作用 B 电压放大作用 C 单向导电性 D 正向截止特性 我的答案: C

4. 如图所示, 试求电路中的电流I=?

(5分) (得分:0分)

A 0A

3 1A

C 2A

以上都不对

我的答案: B

题目解析:

D

依据广义基尔霍夫电流定律,包围部分电路的任一假设的闭合面可以看做一个广义的节点,因此这个电路左右两侧两个闭合面都可以看成节点,比如把右侧闭合面看成广义节点,则这个节点只连了流过电流I的一条支路,而依据KCL,连接到一个节点的所有支路电流代数和等于0,而只连了一条支路,所以这条支路上的电流等于0.

也可以依据电流只能在闭合回路中流动来判断,电流I所在支路没和任何元件构成回路,所以没有电流流过。

(5分) (得分:5分)

2V

В 1V

C 0V

D 3V

我的答案:

题目解析:

5分 难

6. 电路如图所示 , u_s =50sin ω t , 5 Ω 的电阻R1消耗的功率为10W , 则总电路的功率因数为 () (保留一位小数)

- A. 0.3
- B. 0.4
- C. 0.8
 D. 0.6
- 解析:

两个 5Ω 电阻串联,流过相同的电流,所以消耗的功率一样,因此整个电路的有功功率为10W。有功功率p=UIcos φ = $50/\sqrt{2\times Icos}\varphi$;而 $I^2R=I^2\times 5=5W$,所以I=1A;将I=1A代入p=UIcos $\varphi=50/\sqrt{2\times Icos}\varphi=10W$,得到功率因数 $\cos\varphi\approx0.3$

2.填空题(共5题)

 交流电路中,有功功率由	5分一版
"电阻"	
- Unit	
解析:	
3. 对称三相负载做三角形联结,则线电流与相电流的数量关系是 ,相位关系是,线电压与相电压 的数量关系是。()()	5分一般
第1题	
$I_{I} = \sqrt{3}I_{p}$	
第2题	
"线电流落后对应的相电流30°"	
第3题	
"相等"	
	5分 简单
4. 当电路发生换路时,电容的和电感的都不能发生跃变()()	5分 简单
4. 当电路发生换路时,电容的和电感的都不能发生跃变 ()() 第1题 "电压"	5分 简单
()() 第1题	5分 简单
4. 当电路发生换路时,电容的和电感的都不能发生跃变 ()() 第1题 "电压"	5分 简单
4. 当电路发生换路时,电容的和电感的都不能发生跃变 ()() 第1题 "电压" 第2题 "电流"	5分 简单
4. 当电路发生换路时,电容的和电感的都不能发生跃变()() 第1题 "电压" 第2题 "电流" 解析: 实验测得某有源二端线性网络的开路电压 6V,	
4. 当电路发生换路时,电容的和电感的都不能发生跃变()() 第1题 "电压" 第2题 "电流" 解析: 实验测得某有源二端线性网络的开路电压 6V, 短路电流 2A,当外接电阻为 3 Ω 时,	
4. 当电路发生换路时,电容的和电感的都不能发生跃变 ()() 第1题 "电压" 第2题 "电流" 解析: 实验测得某有源二端线性网络的开路电压 6V, 短路电流 2A,当外接电阻为 3 \(\Omega\) 时, 其端电压 U 值为V。	
4. 当电路发生换路时,电容的和电感的都 不能发生跃变 ()() 第1题 "电压" 第2题 "电流" 解析: 实验测得某有源二端线性网络的开路电压 6V, 短路电流 2A,当外接电阻为 3 Ω 时, 其端电压 U 值为 V。 ()	
4. 当电路发生换路时,电容的和电感的都不能发生跃变 ()() 第1题 "电压" 第2题 "电流" 解析: 实验测得某有源二端线性网络的开路电压 6V, 短路电流 2A,当外接电阻为 3 \(\Omega\) 时, 其端电压 U 值为V。	5分 简单 5分 一般

1. 画出此放大电路的微变等效电路,并求其放大倍数Au,输入电阻r;和输出电阻r。

答:

$$A_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$$
 $\dot{U}_{i} = \dot{I}_{b}r_{be}$
 $\dot{U}_{o} = -\dot{I}_{c}R'_{L}$
 $= -\beta \dot{I}_{b}R'_{L}$
 $A_{u} = -\beta \frac{R'_{L}}{\dot{I}_{i}} = \frac{\dot{U}_{i}}{\dot{I}_{R_{B}} + \dot{I}_{b}}$
 $= R_{B} / r_{be}$
 $\Rightarrow R_{B} >> r_{be}$
 $r_{o} \approx r_{be}$

2. 电路如图所示,设二极管均为硅管,其正向压降为0.7V,试求电流I

答: 将除二极管所在支路外的其余部分看成一端口,进行戴维宁电路等效,得到如下电路

等效后的电路明显看出二极管加的是正向电压,导通。由此可得:

$$I = \frac{6.6 - 0.7}{1.2 + 1.1} = 2.6 \text{mA}.$$

解析:

3. 电路如图所示,已知 u_{i1} =-3v, u_{i2} =2V, R_1 = R_2 =10 $k\Omega$, $R_3=R_F=20k\Omega$, 试计算输出电压 u_0

答:

$$U_{+} = \frac{20}{10 + 20} \times 2 = \frac{4}{3}V$$

$$\frac{-3 - \frac{4}{3}}{10} = \frac{\frac{4}{3} - U_0}{20} \qquad U_0 = 10V.$$

$$U_0 = 10V.$$

解析:

4. 下图所示电路中,输入电压U;=25V,稳压管D的Uz=10V, Izm=23mA,试求通过稳压管的电流Iz是否超过Izm,如超过,怎 样才能使其不超过。

5分一般

答:由于Uz=10V,因此R上的电压为UR=25-10=15V,IR=15/500=30mA IL=10/500=20mA, Iz=30-20=10mA。因此没有超过,如果超过可以增大R或减少RL 5. 日光灯管与镇流器串联后接至交流电压上,已知灯管电阻R= 260Ω ,镇流器电阻和电感分别为 $r=30\Omega$,L=1.9H,工频电源电压为 220V,求电路电流、镇流器两端电压、灯管电压和电路的功率因 数。

答:
$$Z = R + r + j\omega L = 260 + 30 + j(314 \times 1.9)$$

= $290 + 596.6j = 663.3 \angle 64.1^{\circ}$
 $I = \frac{U}{|Z|} = \frac{220}{663.3} = 0.33A$

$$U_{rL} = I\sqrt{r^2 + (\omega L)^2} = 197.1A$$

$$U_R = IR = 85.8V$$

$$\cos \varphi = \cos(64.1^{\circ}) = 0.44$$

6. 如图电路中,开关S在t=0瞬间闭合,若uc(0-)=0V,则i(0+)、 $i(\infty)$ 、 τ 分别为多少?并写出i(t)的表达式。

答: 解:

$$u_C(0_+) = u_C(0_-) = 0$$

$$i(0_+) = \frac{u_C(0_+)}{R} = 0$$

$$i(\infty) = \frac{1}{2} = 0.5A,$$

$$\tau = (50//50) \times 10 \times 10^{-6} = 2.5 \times 10^{-4} = 0.25 ms$$

$$i(t) = i(\infty) + (i(0^+) - i(\infty))e^{-\frac{t}{\tau}} = 0.5(1 - e^{-4000t})$$

解:根据戴维南定理,需获得下面二端网络的开路电压:

$$U_{ab} = E_2 + R_2 \frac{E_1 - E_2}{R_1 + R_2} - R_4 \frac{E_3}{R_3 + R_4} = 12V$$

等效电阻为:
$$R_{OC} = R_1 // R_2 + R_3 // R_4 = 1\Omega$$

等效电阻为:
$$R_{OC}=R_1//R_2+R_3//R_4=1\Omega$$
 则: $I_5=\frac{U_{ab}}{R_{OC}+R_5}=1.09A$

解析:

8. 对称三相负载作 Δ 形联接,接在对称三相电源上。若电源线电压 U_L

5分一般

各相负载的电阻R = 12Ω , 感抗 X_L = 16Ω , 输电线阻抗可略 , 试求:(1)负载的相电压Up与相电流Ip;(2)线电流IL及三相总功率P

解: 由题知,每相负载的阻抗为:

$$Z = R + jX_L = 12 + j16 = |Z| \angle \varphi = 20 \angle 53^\circ$$

由于对称负载为 Δ 形联接,所以: $U_P = U_L = 380 \text{ V}$

毎相电流为:
$$I_{p} = \frac{U_{p}}{|Z|} = \frac{380}{20} = 19 \text{ A}$$

根据线电流与相电流的关系,有 $I_i = \sqrt{3}I_p = 19\sqrt{3} = 33 \text{ A}$

三相电路的总功率为: $P = \sqrt{3}U_{i} \cos \varphi = \sqrt{3} \times 380 \times 33 \times 0.6 = 13.068 \text{ kW}$

解析:

答:
$$X_c = \frac{1}{\omega C} = 250\Omega$$
, $X_L = \omega L = 500\Omega$

$$\dot{I}_1 = \frac{\dot{U}}{-jX_c} = \frac{500 \angle 0^\circ}{-j250} = j2 \quad A$$

$$\dot{I}_2 = \frac{\dot{U}}{jX_L} = \frac{500 \angle 0^\circ}{j500} = -j1 \quad A$$

$$\dot{I} = \dot{I}_1 + \dot{I}_2 + \dot{I}_R = 1 + j1 = \sqrt{2} \angle 45^\circ \quad A$$

$$P = UI\cos\varphi = 500 * \sqrt{2} * \frac{\sqrt{2}}{2} = 500 \quad W$$

解析: