Санк тПетербургски тациональный сследовательскум тиверситет информационных смологийм еханиким оптики

УЧЕБНЫЙЕНТЮБЩЕЙФИЗИКИФТФ

Группа <u>Р3111</u>	К работе допущен					
Студент Ляо Ихун	Работа выполна <u>08.12.2020</u>					
Преподаватель Сорокина Елена Константиновна Отчет принят Рабочий протокол и отчет по						
лабораторной работе № 4						

- 1. Цель работы.
- 1) Изучение динамики плоского движения твердого тела на примере маятника Максвелла
- 2)Проверка выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение
- 3) Определение центрального осевого момента инерции маятника Максвелл
- 2. Объект исследования. Скорость колеса в разных положениях.
- 3. Метод экспериментального исследования. Фиксировать начльное положение колеса, изменять точки и методы измерения.

4. Измерительные приборы.

№	Наименование	Тип	Используемый	Погрешность
π/π		прибора	диапазон	прибора
1	Цифровой счетчик	-	1	-

5. Схема установки

Рис. 2. Схема лабораторного стенда

6. Результаты прямых измерений и их обработки Таблица 1: Результаты прямых измерений (I) и их обработка

таолида т. г обультаты примых исмерении (т) и их обрасотка									
h_0	h_i								
= 10cm	·								
	20 см	30 см	40 см	50 см	60 см	70 см	80 см		
t_1 , мс	2613,2	3717,6	4557,6	5270,2	5898,0	6453,2	6978,5		
t_2 , MC	2615,8	3713,0	4562,5	5271,5	5891,1	6454,9	6975,4		
t_3 , MC	2613,3	3717,2	4556,0	5265,3	5894,8	6463,2	6971,0		
t_4 , MC	2614,7	3716,4	4559,5	5269,3	5888,0	6461,9	6980,9		
t_5 , MC	2612,9	3715,8	4558,6	5272,8	5891,1	6453,3	6976,9		
Δh_i , м	0,1	0,2	0,3	0,4	0,5	0,6	0,7		
< t >, MC	2614,0	3716	4558,8	5269,8	5892,6	6457,3	6976,5		
$\frac{1}{2}g < t >_i^2, M$	33,5	67,8	102,0	136,4	170,5	204,7	239,0		

Таблица 2: Результаты прямых измерений (II) и их обработка

h_0	h_i						
=10cm							
	20 см	30 см	40 см	50 см	60 см	70 см	80 см
t_1 , MC	52,6	37,4	30,4	26,3	23,5	21,4	20,0
<i>t</i> ₂ , мс	81,2	44,3	33,7	28,3	25,0	22,6	20,9
<i>t</i> ₃ , мс	81,5	44,4	33,9	28,7	25,0	22,7	20,9
v_1 , M/c	0,10	0,13	0,16	0,19	0,20	0,23	0,25
v_2 , M/c	0,06	0,11	0,15	0,18	0,20	0,22	0,24
v_3 , M/c	0,06	0,11	0,15	0,17	0,20	0,22	0,24

7. Расчет результатов косвенных измерения: Для (4) расчета коэффициента:

$$a = \frac{\sum \Delta h_i(\frac{1}{2}gt_i^2)}{\sum \Delta h_i^2} = 341,0$$

Для (10):
$$I_{\rm reop} = 0.47*0.045^2 = 2.0*10^{-3} \ \ {\rm K}{\rm \Gamma}^{\star}{\rm M}^2$$

	H_i						
	0,9 м	0,8 м	0,7 м	0,6 м	0,5 м	0,4 м	0,3 м
Екин,1,	0,7	1,4	2,2	2,9	3,6	4,4	5,0
Екин,2, Ј	0,3	1,0	1,8	2,5	3,2	3,9	4,6
Екин,3, Ј	0,3	1,0	1,7	2,4	3,2	3,9	4,6
E_{not} , J	4,2	3,7	3,2	2,8	2,3	1,8	1,4

$E_{\text{пол1}}$, J	4,9	5,1	5,4	5,7	6,0	6,2	6,4
$E_{\text{пол2}}$, J	4,6	4,7	5,0	5,3	5,5	5,8	6,0
$E_{\Pi O,\Pi 3}$, J	4,6	4,7	5,0	5,2	5,5	5,7	6,0

Для (13):

Когда
$$t=t_1$$

Для
$$E_{\text{полн}}$$
, положим $E_{\text{полн}} = bH + a$:

Среднее значение $\overline{E}_{полн}$ =5,7 J

Среднее значение $\overline{H} = 0.6$ м

Коэффициент b=
$$\frac{\sum (E_{\Pi O \Pi H,i} - \bar{E}_{\Pi O \Pi H})(H_i - \bar{H})}{\sum (H_i - \bar{H})^2}$$
=1,8

Коэффициент
$$a=\overline{E}_{\text{полн}}-b\overline{H}=4,6$$

$$E_{\text{полн}} = -1.8H + 6.7$$

Для
$$E_{\text{кин}}$$
 также: $E_{\text{кин}} = -7.2 \text{H} + 7.7$

Когда $t=t_3, t_2$ также.

Для t_2 :

$$E_{\text{полн}} = -1.8H + 6.3$$

$$E_{KHH} = -7.2H + 7.2$$

Для t_3 :

$$E_{\text{полн}} = -1.7H + 6.2$$

$$E_{KHH} = -7.2H + 7.2$$

8. Расчет погрешностей измерений

Для (4) расчета погрешность коэффициента:

$$d_i = \frac{1}{2}gt_i^2 - a\Delta h_i$$

$$\sum d_i^2 = 0.6$$

$$S_a^2 = (\frac{1}{\sum (\Delta h_i)^2} \frac{\sum d_i^2}{n-1}) = 0.07$$

абсолютная погрешность: $\sigma_{\rm a} = 2S_a = 0{,}55$

относительная погрешность: $\partial_{\rm a}=\frac{\sigma_{\rm a}}{\partial_{\rm a}}*100\%=0.2\%$

Для (9):

$$I_c = 1.0 * 10^{-3} \text{ K} \text{ K}^* \text{M}^2$$

 $lnI_c = \ln(a-1) + lnm + 2lnr$

относительная погрешность:

$$\partial_{I_c} = \sqrt{(\frac{1}{a-1}\Delta a)^2 + (\frac{1}{m}\Delta m)^2 + (2\frac{1}{r}\Delta r)^2 * 100\%} = 8,3\%$$

абсолютная погрешносьть: $\sigma_{I_C} = 7.6*10^{-5}~{\rm kr^*m^2}$

9. Графики.

Для (4): 110

10.

Окончательные результаты. Теоретический: $I_{\rm Teop}=2.0*10^{-3}={
m Mr}*m^2$ Пратичекий: $I_c=1.0*10^{-3}$

11. Вывод и анализ результатов:

Для (10):

Очевидно, что $I_{\rm reop}$ намного бльше чем I_c . Значит что практически мы не можем просто считать что вся масса находится маятника сосредоточена внешней поверхности его маховика.

Для (13):

Движение колебаний только теряет энергию одинораз, когда он в ударе на самой низкой точке. Кроме того, оно почти совпадает с сохранией энергии.

12. Я много раз рисовал и рассчитал графики разных $E_{\text{кин}}$. Мне кажется чуть-чуть не совпадают, это потому что делаю огруеление.