REPORT

과목명 | 금융포트폴리오 담당교수 | 최영훈 교수님 학과 | 응용통계학과 학년 | 3학년 학번 | 201452024 이름 | 박상희 제출일 | 기말고사 족보풀이

2017년 금융포트폴리오 기말고사

[문제2] 위험이 가장 적은 포트폴리오를 구성하려면 아래 두 주식의 가중치를 어떻게 구성해야 하는가?

[Hint : $w_1 = (\sigma^2 - \sigma_{12})/(\sigma_1^2 + \sigma_2^2 - 2\sigma_{12})$]

주식 i	$\overline{R_i}$	σ_i	
1	14 %	10 %	$\rho_{12} = -0.2$
2	10 %	5 %	

 $\sigma_P^2 = w_1^2 \sigma_1^2 + (1-w_1)^2 \sigma_2^2 \, + 2 \rho_{12} w_1 (1-w_1) \sigma_1 \sigma_2$

 $\sigma_P^2 = 100w_1^2 + 25(1 - 2w_1 + w_1^2) \, + 2(-0.2)w_1(1 - w_1)(10)(5)$

 $\sigma_P^2 = 100w_1^2 + 25w_1^2 - 50w_1 + 25 + 20w_1^2 - 20w_1$

 $\sigma_P^2 = 145w_1^2 - 70w_1 + 25$

포트폴리오의 분산이 최소가 되려면,

 $290w_1 - 70 = 0$

 $w_1 = \frac{70}{290} = 0.24, \quad \ w_2 = \frac{220}{290} = 0.76$

[문제3]

① SML(증권시장선)에서 두 포트폴리오 A, B의 균형기대수익률이 15% 및 25% 이다. 한편 $eta_A=1$, $eta_B=2$ 이다. 무위험자산수익률 R_F 및 시장기대수익율 R_m 은?

② 내년도 경기상황에 따른 시장(m) 및 주식 A,B의 균형(요구)수익율 예상이 아래표와 같다. SML을 이용하여 비교할 때, β_B 는 β_A 의 몇배인가?

경기/확률	R_{m}	R_{A}	$R_{\!B}$	
호황(50%)	12.5%	20%	27.5%	$R_F = 5\%$
불황(50%)	7.5%	10%	12.5%	

- ③ (1) 아래 세 자산가격의 저평가/고평가 여부에 대하여 논하라.
 - (2) 투자자에게 가장 추천하고 싶은 하나의 자산을 결정하여라.

자산 i	β_i	실제 \overline{R}_m	
Α	0.5	9%	
В	1.0	16%	$R_F = 3\%$
С	1.5	17%	$\overline{R}_m = 13\%$

- ④ (1) 아래 개별주식 1,2의 체계적 위험 β_i 를 구하여라.
 - (2) CML 및 SML을 구하여라.
 - (3) SML을 이용하여 두 주식의 균형 \overline{R}_i 를 구하여라.
 - (4) 주식1과 2에 각각 40%와 60%를 투자하여 구성되는 포트폴리오 P의 eta_P 및 균형 \overline{R}_P 를 구하여라. (Hint : $eta_P=\sum_{w_ieta_i}$ 및 \overline{R}_P 는 SML을 이용)
 - (5) 공분산 σ_{12} 를 구하여라.

자산 i	σ_i	$ ho_{im}$	
1	30%	0.4	$R_{\!F}=5\%$
2	30%	0.8	$\overline{R}_m = 15\%$
			$\sigma_m = 12\%$

- ⑤ A의 1년 후 주가 $P_1=13000$ 원, 배당금 $D_1=800$ 원이 예상되며, $\beta_A=1.2$, $R_F=9\%$, $\overline{R}_m=14\%$ 일 경우에
 - (1) 균형(요구) 기대수익율 \overline{R}_A 은?
 - (2) 현재 적정 주가 P_0 는?
 - (3) $R_{\!\scriptscriptstyle F} = 4\%$ 및 ρ_{im} 만이 지금의 절반으로 줄어든다면 현재 적정주가 P_0 는?

[문제4] 다음 문항에 T, F 로 답하여라.

- ① 분산투자로 인해 포트폴리오의 기대수익율은 줄어든다. [F]
- ② 양의 상관관계를 가지는 주식들 사이에는 분산투자 효과가 없다. [T]
- ③ 포트폴리오의 비체계적위험이란 기업특유의 고유위험이다. [T]
- ④ 위험자산의 기대수익율은 R_{r} 의 수익률보다 항상 높다. [F]
- ⑤ β 계수가 0이면 무위험자산이다. [T]
- ⑥ $\beta(\text{체계적 위험})$ 이 큰 주식의 기대수익율은. β 가 작은 주식의 기대수익율보다 높다. [T]
- 인플레이션을 상승하면, $R_{\scriptscriptstyle F}$ 상승으로 인해 SML 절편이 상승한다. [T]
- ⑧ CML 선상의 포트폴리오와 균형시장포트폴리오의 상관계수는 +1이다. [T]
- ⑨ 비체계적인 위험을 가진 포트폴리오는 CML 상단에 위치한다. [F]
- ⑩ CML에는 효율적인 자산만이 존재하나, SML에는 비효율적인 자산도 존재한다. [T]

교과서 예제

[문제] 주식 S와 J에 관한 다음의 자료를 이용하여 요구사항에 답하여라.

주식	시장수익률과의 상관계수	표준편차
S	1.0	0.1
J	0.5	0.2

두 주식간의 상관계수는 0.5, 시장수익률의 표준편차는 0.1이다. 투자자는 S주식에 60%, J주식에 40%의 비중으로 포트폴리오를 구성하려고 한다.

- (1) 두 주식 S와 J의 베타를 구하시오.
- (2) 두 주식 S와 J의 공분산을 마코위츠 모형과 시장모형으로 나누어 구하시오.
- (3) 마코위츠 모형을 가정할 때, 이 포트폴리오의 분산을 구하여라.
- (4) 시장모형을 가정할 때, 이 포트폴리오의 분산을 구하여라.

[문제] 시장모형이 성립한다고 가정할 때, 두 주식 A, B 및 시장수익률에 대한 다음의 자료를 이용하여 아래 물음에 답하시오.

주식	Α	В	시장수익률
표준편차	0.15	0.5	0.1
베타	8.0	1.5	

- (1) 주식 A와 주식 B의 시장수익률과의 상관계수를 각각 구하시오.
- (2) 두 주식간의 상관계수를 구하시오.
- (3) 두 주식의 총 위험을 체계적 위험과 비체계적 위험으로 구분하시오.

A 15 B 0.3		M 10	B_1 = 6- Cm		
$0.8 = \frac{15}{10} \times P_{Am} = 0.53 = P_{Am}$ $1.5 = \frac{50}{10} \times P_{Bm} = 0.3 = P_{Bm}$					
2 BAB = -	$2B_{AB} = \frac{G_{AB}}{G_{AGB}} = \frac{P_{A}P_{BGm}^{2}}{G_{AGB}} = \frac{(1.5)(0.8)(10)^{2}}{(15)(50)} = 0.16$				
3 4	क्रीश	ই/মাস্প্রক	비체계정위함		
A	225	225	2275		

[문제] 다음 물음에 답하시오

[문제] 무위험위자율은 6%이고, 시장포트폴리오의 기대수익률은 14%이다. CML상에 존재하는 포트폴리오 A의 기대수익률과 수익률의 표준편차가 모두 10%인 것으로 확인되었다. 포트폴리오 B 역시 CML상에 존재하고 수익률의 표준편차가 30%라면, 이 포트폴리오의 균형 하에서의 기대수익률은 얼마인가?

[문제] 영자씨는 비체계적 위험이 전혀 없는 완전분산된 포트폴리오를 보유하고 있으며, 이 포트폴리오의 분산은 0.008242로 나타났다. 시장포트폴리오의 분산이 0.004482라면 영자씨가 보유한 포트폴리오 전체의 베타계수는?

$$\frac{3-\frac{6\pi}{6m^2} - \frac{6\pi}{6m^2} - \frac{9.08}{6.63} - \frac{1.377}{6.63}}{6.63}$$