# Integrated Cross-Layer Protocols for Adaptive Transmission and Routing of Multimedia Traffic in Tactical Spread-Spectrum Networks

Michael B. Pursley, Harlan B. Russell, and Jeffrey S. Wysocarski



| maintaining the data needed, and of including suggestions for reducing                                                                                                                                       | lection of information is estimated to<br>completing and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding ar<br>OMB control number. | ion of information. Send comments arters Services, Directorate for Infor | regarding this burden estimate of mation Operations and Reports | or any other aspect of th<br>, 1215 Jefferson Davis I | is collection of information,<br>Highway, Suite 1204, Arlington |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--|
| 1. REPORT DATE<br>01 DEC 2007                                                                                                                                                                                |                                                                                                                                                                                    | 2. REPORT TYPE N/A                                                       |                                                                 | 3. DATES COVERED                                      |                                                                 |  |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                        |                                                                                                                                                                                    |                                                                          |                                                                 | 5a. CONTRACT NUMBER                                   |                                                                 |  |
| Cross-Layer Issues In The Design Of Tactical Mobile Ad Hoc Wireless<br>Networks: Integrated Cross-Layer Protocols for Adaptive Transmission<br>and Routing of Multimedia Traffic in Tactical Spread-Spectrum |                                                                                                                                                                                    |                                                                          |                                                                 | 5b. GRANT NUMBER                                      |                                                                 |  |
| Networks                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                          |                                                                 | 5c. PROGRAM ELEMENT NUMBER                            |                                                                 |  |
| 6. AUTHOR(S)                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                          |                                                                 | 5d. PROJECT NUMBER                                    |                                                                 |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                          |                                                                 | 5e. TASK NUMBER                                       |                                                                 |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                          |                                                                 | 5f. WORK UNIT NUMBER                                  |                                                                 |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  Clemson University                                                                                                                                       |                                                                                                                                                                                    |                                                                          |                                                                 | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER           |                                                                 |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                                                                                                                                      |                                                                                                                                                                                    |                                                                          |                                                                 | 10. SPONSOR/MONITOR'S ACRONYM(S)                      |                                                                 |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                          |                                                                 | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)             |                                                                 |  |
| 12. DISTRIBUTION/AVAILABILITY STATEMENT  Approved for public release, distribution unlimited                                                                                                                 |                                                                                                                                                                                    |                                                                          |                                                                 |                                                       |                                                                 |  |
| 13. SUPPLEMENTARY NOTES  See also ADM002082., The original document contains color images.                                                                                                                   |                                                                                                                                                                                    |                                                                          |                                                                 |                                                       |                                                                 |  |
| 14. ABSTRACT                                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                          |                                                                 |                                                       |                                                                 |  |
| 15. SUBJECT TERMS                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                          |                                                                 |                                                       |                                                                 |  |
| 16. SECURITY CLASSIFIC                                                                                                                                                                                       | 17. LIMITATION OF<br>ABSTRACT                                                                                                                                                      | 18. NUMBER<br>OF PAGES                                                   | 19a. NAME OF                                                    |                                                       |                                                                 |  |
| a. REPORT<br>unclassified                                                                                                                                                                                    | b. ABSTRACT <b>unclassified</b>                                                                                                                                                    | c. THIS PAGE<br>unclassified                                             | UU                                                              | 35                                                    | RESPONSIBLE PERSON                                              |  |

**Report Documentation Page** 

Form Approved OMB No. 0704-0188

# Simplified OSI Network Model

Source

Relay

Destination

**APPLICATION** 

**TRANSPORT** 

**NETWORK** 

LINK

**PHYSICAL** 

**NETWORK** 

LINK

**PHYSICAL** 

**APPLICATION** 

**TRANSPORT** 

**NETWORK** 

LINK

**PHYSICAL** 

# Traditional View



# The Bit Pipe



# The Need for Cross-Layer Protocols: A Voice Message Example

- Require low delay, some frame erasures acceptable
- Application layer: Speech compression must match available routes and links and satisfy QoS needs (intelligible speech vs. speaker recognition, etc.)
- Network layer: Routing should emphasize delay, high-quality (low bit error rate) routes not needed
- Link layer: Reserve multiple time slots on each link via the channel access (MAC) protocol. Detected errors may not result in a retransmission.
- Physical layer: Low-rate codes on poor links (avoid retransmissions), high-rate codes on good links (reduce delay), energy conservation secondary

#### Cross-Layer Protocols: The Previous Millennium

#### Terminology (early 1980s to late 1990s):

- Interaction between network operation and the communication subsystem
- Interaction between layers in the network model
- Interplay between spread spectrum and network protocols
- Network layer issues merging with link layer issues
- Interactions between the network layer and the link and physical layers in a spread-spectrum radio network
- Integration of physical-layer information into routing protocols; use of receiver side information in routing
- Tightly coupled protocols; interactive protocols; integrated protocols
- No particular name or phrase; layers simply ignored

# A Look Inside the Bit Pipe for Wireless Communications





# Some Interactions with the Sender's Physical Layer



#### Some Interactions with the Receiver's Physical Layer





Some of the Protocol Interactions

Clemson University

#### Network and Traffic Characteristics

- Multiple-hop wireless spread-spectrum network
  - Store-and-forward relaying of packets required
  - Network must conserve energy (e.g., number of batteries)
- Frequency-hop or direct-sequence spread spectrum
- Dynamic environment
  - Variable propagation
  - Time-varying interference
- Multimedia traffic of three types
  - Delay-sensitive traffic, perhaps error-tolerant (e.g., voice)
  - Delay-tolerant, error-intolerant traffic (e.g., data)
  - Delay-tolerant, error-tolerant traffic (e.g., imagery)

# The Need for Adaptivity



# Efficient Handling of Multimedia Traffic

- Adaptive transmission protocol
  - reduce energy and on-air time for delay-tolerant messages (e.g., decrease power, increase code rate)
  - increase reliability for delay-sensitive messages
- Adaptive routing protocol
  - conserve energy for delay-tolerant messages
  - sacrifice energy conservation for delay-sensitive messages

Cross-layer protocols for adaptive transmission and energy-efficient routing of multimedia traffic

# Goals of Adaptive Transmission and Routing

- Make each communication link as energy and time efficient as possible
- Minimize detectability and interference for unintended recipients
- Supply routing protocol with energy-efficient paths
- Select routes that exploit differences in QoS requirements to conserve energy

# Adaptive Transmission in Tactical Networks

- Half-duplex radios: Feedback opportunities limited to ACK packets, reservation replies, control packets, etc.
- Channel adaptation: Primarily for such phenomena as changes in range, shadowing, and interference (not fast fading)
- QoS adaptation: Primarily for changes in QoS requirements from message to message when handling multimedia traffic
- Adapt to improve reliability when channel conditions deteriorate or when required for QoS
- Adapt to reduce power and on-air time when channel conditions improve and QoS requirements permit (e.g., to save energy, reduce interference, provide LPI)

# Protocol Suite for Frequency-Hop Spread Spectrum

- Channel Access Protocol: RTS/CTS/ACK
- Receiver-directed FH patterns
- Adaptive Transmission Protocol:
  - Use error count (t) and erasure count (e) to adapt code rate and transmit power
  - No power measurements needed
- Adaptive Routing Protocol:
  - Least-resistance routing (LRR) -- a distributed distancevector routing protocol based on link resistance measures
  - Link resistance derived from metrics that account for link quality, energy consumption, and backlog
  - For multimedia traffic, link resistance depends on message type

# Adaptive Transmission Protocol for FH

• Code selection (RS codes) based on erasure count, *e* 





• Power selection based on *e*, *t*, and *r* 

No power measurements needed!

# Physical-Layer Statistics for Adaptive Transmission in Direct-Sequence Spread Spectrum



# Performance Measures

- Correct packet: packet that is correct at intended receiver's decoder output
- Unit of energy: amount of energy required to transmit a packet at the lowest code rate and highest power (max energy/packet)
- Throughput Efficiency (link): Average number of correct packets at decoder output per unit of energy

# Channel State Information for FH

#### Channel State $(\rho, \lambda)$

 $\rho$  = fraction of the band with interference

 $\lambda$  = propagation loss

**Side Information** - information about the channel state that is derived within the communication receiver

Channel State Information (CSI) - information about the channel state that is supplied from external sources (e.g., special measurement system)

**Perfect CSI** - exact values of  $\rho$  and  $\lambda$  for the previous transmission provided to the communication system

# Channel with Intermittent Interference and Time-Varying Path Loss



3 power levels,  $\Delta = 1.5 \text{ dB}$ 



# Routing with Adaptive Transmission Example: A Dynamic Four-Node Network



Channel State:  $(\rho, \lambda)$ 

Path loss,  $\lambda$  (dB):



I

0 dB excess path loss10 dB excess path loss

Full power adequate for 10 dB excess loss Without adaptation, each link uses full power

Partial-band interference at terminal B:



 $\rho$  = fraction of band for interference at terminal B

# Route Selection, Two Transmission Protocols



With fixed or adaptive transmissions:

- min-hop routing has no preference for upper vs. lower route
- error probability, throughput, delay same for both routes
- QoS routing has no preference for upper vs. lower route

# Adaptive Transmission Creates an Opportunity



<u>Adaptive Transmission</u>: enables upper route to use only 1/10 the energy required by lower route; creates opportunity for routing protocol to save energy

Least-Resistance Routing with appropriate resistance metric takes advantage of opportunity created by adaptive transmission

Physical-layer information required for routing metrics and adaptive transmission

# Resistance Metrics for Generic Traffic

- Quality metric (reception quality)
  - I(A,B) = (2t + e)/20 [max redundancy is 20 for code set]
  - $\blacksquare$  # of errors (t) and erasures (e) in previous transmission
- Energy metric (energy consumption)
  - $U(A,B) = P(A,B) r_{min} / P_{max} r(A,B)$
  - $r_{\min} = \min \text{ code rate}$ ;  $P_{\max} = \max \text{ transmitter power}$
  - $r(A,B) = \text{code rate for next transmission } A \rightarrow B$
  - P(A,B) = power for next transmission  $A \rightarrow B$

$$LR(A,B) = \alpha_1 I(A,B) + \alpha_2 U(A,B) + c$$

# Four Resistance Measures

$$LR(A,B) = \alpha_1 I(A,B) + \alpha_2 U(A,B) + c$$

Resistance coefficients:

- quality:  $\alpha_1 = 4$ ,  $\alpha_2 = 0$ , c = 1LR(A,B) = 4 I(A,B) + 1
- energy:  $\alpha_1 = 0$ ,  $\alpha_2 = 10$ , c = 0LR(A,B) = 10 U(A,B)
- hybrid:  $\alpha_1 = 2$ ,  $\alpha_2 = 2.5$ , c = 1LR(A,B) = 2 I(A,B) + 2.5 U(A,B) + 1
- min-hop:  $\alpha_1 = 0$ ,  $\alpha_2 = 0$ , c = 1; LR(A,B) = 1

# Multimedia Considerations in LRR



#### Voice traffic (previous example) and data traffic from S to D:

- Backlog at A causes delay for route S-A-D, but S-A-D suitable for data traffic; energy conserved if data packets use S-A-D
- Interference causes frame erasures in voice traffic sent over S-B-D, but meets QoS requirements for voice; S-B-D requires more energy
- Approach: Conserve energy for data packets, sacrifice energy conservation for voice packets to meet delay constraint
- Requires interaction among Application/Transport, Network, Link, and Physical Layers

# Resistance Measures for Multimedia Traffic

- Each type of traffic routed independently
- Resistance measure tailored to service requirements
  - Emphasize energy consumption for delay-tolerant traffic
  - Emphasize backlog at nodes for delay-sensitive traffic
- MM resistance measures (link  $A \rightarrow B$ ):

$$LR_d(A,B) = 2 I(A,B) + 8 U(A,B) + c_d$$
  
 $LR_v(A,B) = 4 I(A,B) + W(B) + 2.5 U(A,B) + c_v$ 

• Backlog metric for terminal B:

$$W(B) = N_v + \omega N_d$$

 $N_i$  = # packets of type i (voice or data) in B's buffer

# Performance Measures

**Correct packet:** packet that is correct at destination receiver's decoder output

**Unit of energy:** amount of energy required to transmit a packet at the lowest code rate and highest power (max energy/packet)

• Throughput Efficiency (network): Average number of correct packets at decoder output of destination terminal per unit of energy transmitted by all terminals in network

# Generic vs. Multimedia Traffic

- Simply minimizing energy gives poor performance
- Routing based on link quality and min-hop routing give poor throughput efficiency
- Hybrid quality-energy routing is best compromise for generic traffic
- Emphasize conserving energy for delay-tolerant messages
- Can sacrifice energy conservation for delay-sensitive messages
- Multimedia energy-efficient (MMEE) routing

# 38-Node Network



- Node S<sub>i</sub> generates voice packets for destination D<sub>i</sub>
- Unlabeled nodes generate data packets with random destinations
- Interference occupies 20% of band, affects 15 nodes
- Network uses adaptive transmission (2 code rates, 8 power levels)

# Performance of MMEE Routing for 38-Node Network with Multimedia Traffic

#### **Throughput Efficiency (Data)**



#### **End-to-End Delay (Voice)**



Voice traffic generated at fixed rate of 0.01 packets/packet interval

# Performance of MMEE Routing for 38-Node Network with Multimedia Traffic

#### **Throughput Efficiency (Voice)**



#### **End-to-End Delay (Data)**



Voice traffic generated at fixed rate of 0.01 packets/packet interval

# Performance of MMEE Routing for 65-Node Network with Multimedia Traffic

#### **Throughput Efficiency (Data)**

#### 5 Throughput Efficiency for Data Packets **MMEE** (8) 3 **MMEE** (5) 2.5 hybrid quality min-hop 0.05 0.06 0.07 0.03 0.04 Data Packet Generation Rate, $\lambda_{\perp}$

#### **End-to-End Delay (Voice)**



- 45 nodes generate data traffic with uniformly random destinations; 10 voice connection pairs
- packet generation rates are in packets per packet interval; voice generation rate is twice  $\lambda_d$

# **General Conclusions**

- Hybrid quality-energy measure is the best compromise for generic traffic
- MM resistance measures lead to high throughput efficiency for delay-tolerant traffic and low delay for delay-sensitive traffic
- Best resistance measures for multimedia traffic are the MM resistance measures
- Interaction among layers is essential for energy-efficient routing of generic or multimedia traffic