Projet Capteur Low-Tech

Pereur Luc & Cuculière Rémi

Principe du capteur

Evolution de la résistance en fonction de la distance entre les particules

Circuit & Simulations

Filtre	Fréquence de coupure
1	16 Hz
2	2,1 Hz
3	1,6 kHz

$$R_{capteur} = \left(1 + \frac{R_3}{R_2} \frac{V_{CC}}{V_{ADC}}\right) - R_1 - R_5$$

Circuit & Simulations

Variation de la réponse du capteur en fonction de R2 (de 100 ohm à 2 kohm)

- Variation non linéaire de la réponse
- Gammes d'amplifications réduites

Design du PCB

Banc de tests

Résultats

Application Android

Valeurs de Vadc et de Rcapteur

Évolution de Rcapteur/R0 au cours du temps

Estimation brute de l'angle du capteur

Application Android

Amélioration & Limites

Circuit analogique et utilisation du potentiomètre digital	Redimensionnement du circuit,
Banc de tests	Découpe laser sur bois pour remplacer le carton
Application	Récupération des valeurs exactes, ajouter un protocole de calibration