Bank Note Authentication Using Random Forest

This project aims to build a machine learning model that can classify whether a bank note is

- **genuine**(denoted by 0) or
- **forged**(denoted by 1), based on statistical features extracted from its image.

Key Components

- **Model evaluation** using scikit-learn metrics
- A Random Forest classification implementation

▲ What is Random Forest?

Random Forest is an ensemble learning algorithm that builds multiple decision trees and merges their results to improve prediction accuracy and control overfitting.

Why Random Forest prefered over others?

- **Robustness**: Combines multiple trees to reduce variance
- V Handles Non-linearity: Captures complex relationships between features
- **V** Feature Importance: Helps understand which variables matter most
- V High Accuracy: Performs well on classification tasks with minimal tuning

✓ Why Random Forest for Bank Note Authentication?

For the **Bank Note Authentication** task, **Random Forest** is ideal because:

- It handles numerical input features well
- It is resistant to overfitting
- It provides **strong generalization** to unseen data
- Works well with a small and clean dataset

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pickle
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import plotly.io as pio
pio.renderers.default = 'notebook_connected'
```

Data Loading & Cleaning

Initial step involving:

- <u>b</u> Importing the dataset
- Nandling missing values
- * Preparing data for analysis

```
In [2]: data = pd.read_csv('BankNote_Authentication.csv')
missing = data.isnull().sum()
```

```
dtypes = data.dtypes
summary = pd.DataFrame({
    'Missing': missing,
    'Data Type': dtypes
})
print(summary)
```

```
Missing Data Type
variance 0 float64
skewness 0 float64
curtosis 0 float64
entropy 0 float64
class 0 int64
```

Exploratory Data Analysis (EDA)

Feature Distributions

```
import matplotlib.pyplot as plt
import seaborn as sns

features = ['variance', 'skewness', 'curtosis', 'entropy']
plt.figure(figsize=(12, 8))
for i, col in enumerate(features, 1):
    plt.subplot(2, 2, i)
    sns.histplot(data[col], kde=True, color='steelblue')
    plt.title(f'Distribution of {col}')
plt.tight_layout()
plt.show()
```


Conclusion:

• Variance:

Shows a bimodal distribution, suggesting two distinct groups (genuine vs forged notes), which could be a strong discriminating feature.

Skewness:

Approximately normal distribution with slight right skew, centered around 0, indicating balanced positive and negative skewness in the data.

• Curtosis:

Right-skewed distribution with a long tail, showing most notes have lower curtosis values but some extreme cases exist.

• Entropy:

Appears somewhat bimodal but less pronounced than variance, potentially useful for classification but might need feature scaling.

These distributions suggest that **variance** might be our strongest predictor for authentication.

Correlation Matrix

```
In [4]: plt.figure(figsize=(6, 4))
    sns.heatmap(data.drop(columns="class").corr(), annot=True, cmap='coolwarm', fmt=".2f")
    plt.title("Correlation Heatmap")
    plt.show()
```


- A heatmap reveals the strength and direction of linear relationships between features.
- Key observations:
 - Variance and skewness show a moderate positive correlation.
 - Curtosis has weak correlations with other features, indicating it contributes independently.
 - **Entropy** has slight negative correlation with most other variables.

These relationships help avoid multicollinearity and suggest that all features offer unique contributions.

Pairplot (Feature Interactions by Class)

```
In [5]: sns.pairplot(data, hue='class', palette='husl', diag_kind='kde')
plt.suptitle("Feature Interactions by Class", y=1.02)
```

plt.show()

★ Most forged and genuine notes form distinguishable clusters — especially in combinations involving **variance** and **curtosis**.

6 Box Plots (Feature vs. Class)

```
In [6]: features = ['variance', 'skewness', 'curtosis', 'entropy']

plt.figure(figsize=(8, 6))
for i, feature in enumerate(features):
    plt.subplot(2, 2, i + 1)
    sns.boxplot(x='class', y=feature, data=data, hue='class', palette='husl')
    plt.title(f'{feature.capitalize()} by Class')
plt.tight_layout()
plt.show()
```


★ Variance and **skewness** show strong class-wise separation — good indicators for classification.

▲ Random Forest Classifier

RandomForestClassifier(random_state=42)

```
In [7]: # variable defining and spliting data into train and test sets
    x = data.drop('class', axis=1); y = data['class']
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
    # model training
    model = RandomForestClassifier(n_estimators=100, random_state=42)
    model.fit(x_train, y_train)
Out[7]: RandomForestClassifier
```

Important features

```
In [8]: importances = np.round(model.feature_importances_, 3)
    features = x.columns
    importance_df = pd.DataFrame({'Feature': features, 'Importance': importances}).sort_values(by)
    plt.figure(figsize=(6, 2.5))
    sns.barplot(x='Importance', y='Feature', data=importance_df, hue='Importance', palette='virid
    plt.title('Feature Importance (Random Forest)')
    plt.xlabel('Importance Score')
    plt.ylabel('Features')
    plt.show()
```

Feature Importance (Random Forest) variance skewness Features Importance 0.062 curtosis 0.158 0.229 entropy 0.551 0.1 0.2 0.3 0.4 0.5 0.0

Importance Score

Roc curve

```
In [9]:
        y_pred = model.predict(x_test)
        data['p_hat'] = model.predict_proba(x)[:, 1]
        cutoffs = np.sort(data['p_hat'].unique())
        tpr_values = []; fpr_values = []; optimum_values = []
        for t in cutoffs:
            predicted = (data['p_hat'] > t).astype(int)
            actual = y.values
            TP = np.sum((predicted == 1) & (actual == 1))
            FN = np.sum((predicted == 0) & (actual == 1))
            FP = np.sum((predicted == 1) & (actual == 0))
            TN = np.sum((predicted == 0) & (actual == 0))
            TPR = TP / (TP + FN) if (TP + FN) > 0 else 0 # Sensitivity
            FPR = FP / (FP + TN) if (FP + TN) > 0 else 0 # 1 - Specificity
            optimum = TPR * (1 - FPR)
            tpr_values.append(TPR)
            fpr_values.append(FPR)
            optimum_values.append(optimum)
        # Create a DataFrame
        roc_data = pd.DataFrame({'Threshold': cutoffs, 'TPR': tpr_values, 'FPR': fpr_values, 'optimum'
        # Plot ROC curve
        plt.figure(figsize=(6, 4))
        plt.plot(fpr_values, tpr_values, color='blue', lw=2)
        plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
        plt.xlabel('False Positive Rate (FPR)')
        plt.ylabel('True Positive Rate (TPR)')
        plt.title('ROC Curve for Bank Note Authentication')
        plt.show()
```

ROC Curve for Bank Note Authentication

ROC Curve Interpretation – Bank Note Authentication

The ROC curve above illustrates the **exceptional classification power** of the Random Forest model:

- Steep ascent towards the top-left corner indicates high sensitivity (True Positive Rate) even at low False Positive Rates.
- In the model confidently distinguishes between **genuine** and **forged** bank notes.
- **AUC** ≈ **1.0**, suggesting **near-perfect** performance.
- X Very low risk of misclassifying forged notes as genuine, ensuring high security.
 - ✓ A curve this sharp and close to the top-left corner is characteristic of a **highly** accurate and reliable model—ideal for deployment in real-world financial systems.

```
In [10]:
         best_threshold = roc_data.loc[roc_data['optimum'].idxmax(), 'Threshold'];best_threshold
         y_pred = (model.predict_proba(x_test)[:, 1] > best_threshold).astype(int)
         # Confusion Matrix
         print("\n ii Confusion Matrix:")
         cm = confusion_matrix(y_test, y_pred)
         print("
                                  Predicted Genuine
                                                       Predicted Forged")
         print(f"Actual Genuine
                                            {cm[0][0]:<5}
                                                                         {cm[0][1]:<5}")
         print(f"Actual Forged
                                            {cm[1][0]:<5}
                                                                         {cm[1][1]:<5}")
         # Accuracy of the model
         accuracy = accuracy_score(y_test, y_pred)
         print(f"\n ✓ Model Accuracy: {accuracy:.4f}")
         # Misclassification Error
         misclassification_error = 1 - accuracy
         print(f" X Misclassification Error: {misclassification_error:.4f}")
```

📊 Confusion Matrix:

Predicted Genuine Predicted Forged
Actual Genuine | 229 0
Actual Forged | 0 183

✓ Model Accuracy: 1.0000

X Misclassification Error: 0.0000

✓ Model Evaluation Summary

The model achieves a **perfect accuracy of 100%**, meaning:

- All genuine and forged bank notes were correctly classified using the optimal threshold derived from ROC analysis.
- **Z** True Positive and True Negative rates are both 1, indicating zero misclassification.
- This reflects excellent **model generalization** on the test data and **high reliability** for real-world application.
- Mean However, such perfect results should be carefully evaluated to ensure there's no data leakage or overfitting, especially with small or clean datasets.
 - © Overall, the Random Forest model demonstrates **outstanding classification performance** on this task.