

Compiler Design

<u>Scanner</u>

Hwansoo Han

Scanner

Scanner Generator

We want to avoid writing scanners by hand

- The scanner is the first stage in the front end
- Specifications can be expressed using regular expressions
- Build tables and code from a DFA

Regular Expressions

* Regular Expression (over alphabet Σ)

- ε is a RE denoting the set {ε}
- If \underline{a} is in Σ , then \underline{a} is a RE denoting $\{\underline{a}\}$
- If x and y are REs denoting L(x) and L(y) then
 - $x \mid y$ is an RE denoting $L(x) \cup L(y)$
 - xy is an RE denoting L(x)L(y)
 - x^{*} is an RE denoting L(x)*

Regular Expression – Example

RE for recognizing register names

Register
$$\rightarrow$$
 r $(0|1|2|...|9) (0|1|2|...|9)*$

- Allows registers of arbitrary number
- Requires at least one digit
- RE corresponds to a recognizer (or DFA)

Recognizer for Register

Transitions on other inputs go to an error state, se

Non-deterministic Finite Automata (NFA)

Each RE corresponds to a deterministic finite automaton (DFA)

- May be hard to directly construct the right DFA
- NFA for RE such as (<u>a</u> | <u>b</u>)* <u>abb</u>

NFA is a little different from DFA

- S_0 has a transition on ε
- S₁ has two transitions on <u>a</u>

Token Recognizer

Tokens are recognized by NFA

Automating Scanner Construction

- - Build an NFA for each term
 - Combine them with ε-moves
- ⋄ NFA → DFA (subset construction)
 - Build the simulation
- ◆ DFA → Minimal DFA
 - Hopcroft's algorithm

The Cycle of Constructions

- ♦ DFA →RE (Not part of the scanner construction)
 - All pairs, all paths problem
 - Take the union of all paths from s_0 to an accepting state

RE →NFA using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator
- Join them with ε moves in precedence order

NFA for a

NFA for a | b

NFA for ab

NFA for a*

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. <u>a</u>, <u>b</u>, & <u>c</u>

2. <u>b</u> | <u>c</u>

3. (<u>b</u> | <u>c</u>)*

Example of Thompson's Construction (con't)

4. <u>a (b | c)*</u>

Of course, a human would design something simpler

But, we can automate production of the more complex one ...

NFA →DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

- Move(s_i , \underline{a}) is set of states reachable from s_i by \underline{a}
- ε -closure(s_i) is set of states reachable from s_i by ε

The algorithm:

- Start state derived from s₀ of the NFA
- Take its ε -closure $S_0 = \varepsilon$ -closure(S_0)
- Take the image of S_0 , Move(S_0 , α) for each $\alpha \in \Sigma$, and take its ϵ -closure
- Iterate until no more states are added

Sounds more complex than it is...

Conversion NFA to DFA

First, the subset construction: NFA → DFA

		ε-closure(move(s,*))			
	NFA states	<u>a</u>	<u>b</u>	<u>c</u>	
S ₀	q_o	$q_1, q_2, q_3, q_4, q_6, q_9$	none	none	
S ₁	$q_1, q_2, q_3, q_4, q_6, q_9$	none	$q_{5}, q_{8}, q_{9}, \ q_{3}, q_{4}, q_{6}$	$q_{7}, q_{8}, q_{9}, q_{3}, q_{4}, q_{6}$	
s ₂	$q_5, q_8, q_9, q_3, q_4, q_6$	none	\boldsymbol{s}_{2}	$\mathcal{S}_{\mathcal{J}}$	
S ₃	$q_7, q_8, q_9,$ q_3, q_4, q_6	none	\boldsymbol{s}_2	S_3	

Final states

DFA Minimization

To produce the minimal DFA

Another Example

Remember $(\underline{a} | \underline{b})^* \underline{abb}$?

Applying the subset construction:

Iter.	State	Contains	ε-closure(move(s _i , <u>a</u>))	ε-closure(move(s _i , <u>b</u>))
0	s_o	q_0, q_1	q_1, q_2	q ₁
1	S ₁	q_1, q_2	q_1, q_2	q ₁ , q ₃
	s ₂	q_1	q_{1}, q_{2}	9 ₁
2	S ₃	q_1, q_3	q_1, q_2	q_1, q_4
3	S ₄	$q_1, q_4 \leftarrow$	q_1, q_2	q_1

Iteration 3 adds nothing to S, so the algorithm halts(final state)

contains q4

Another Example (cont'd)

The DFA for $(\underline{a} \mid \underline{b})^* \underline{abb}$

δ	<u>a</u>	<u>b</u>	
s_{o}	S ₁	s ₂	
S ₁	S ₁	S ₃	
s ₂	S ₁	s ₂	
S ₃	S ₁	S ₄	
S ₄	S ₁	S ₂	

- Not much bigger than the original
- All transitions are deterministic

Another Example (cont'd)

Applying the minimization algorithm to the DFA

	Current Partition	Worklist	5	Split on <u>a</u>	Split on <u>b</u>
Po	{s ₄ } {s ₀ ,s ₁ ,s ₂ ,s ₃ }	$\{s_4\}$ $\{s_0,s_1,s_2,s_3\}$	{s ₄ }	none	$\{s_0, s_1, s_2\}$ $\{s_3\}$
P_1	$\{s_4\} \{s_3\} \{s_0,s_1,s_2\}$	$\{s_0, s_1, s_2\}$ $\{s_3\}$	{s ₃ }	none	${s_0, s_2}{s_1}$
P2	$\{s_4\}\{s_3\}\{s_1\}\{s_0,s_2\}$	$\{s_0,s_2\}\{s_1\}$	{s ₁ }	none	none

Building Faster Scanners from the DFA

Table-driven recognizers waste effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in $\delta()$ & action()
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

```
char \leftarrow next \ character;
state \leftarrow s_{0};
call \ action(state, char);
while \ (char \neq \underline{eof})
state \leftarrow \delta(state, char);
call \ action(state, char);
char \leftarrow next \ character;

if T(state) = \underline{final} \ then
report \ acceptance;
else
report \ failure;
```

Building Faster Scanners from the DFA

A direct-coded recognizer for <u>r</u> Digit Digit*

```
goto s_{o};
s_{o}: word \leftarrow \emptyset;
char \leftarrow next \ character;
if \ (char = 'r')
then \ goto \ s_{e};
else \ goto \ s_{e};
s_{1}: word \leftarrow word + char;
char \leftarrow next \ character;
if \ ('0' \le char \le '9')
then \ goto \ s_{e};
else \ goto \ s_{e};
```

```
s2: word \leftarrow word + char;
char \leftarrow next \ character;
if ('O' \leq char \leq '9')
then \ goto \ s_2;
else \ if \ (char = eof)
then \ report \ success;
else \ goto \ s_e;
s_e: print \ error \ message;
return \ failure;
```

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases

Summary

Building scanner

- All this technology automates scanner construction
- Implementer writes down the regular expressions
- Scanner generator builds NFA, DFA, minimal DFA, and then writes out the (table-driven or direct-coded) code
- This reliably produces fast, robust scanners

For most modern language features, this works

- You should think twice before introducing a feature that defeats a DFA-based scanner
 - insignificant blanks (Fortran: anint = an int = an int)
 - non-reserved keywords (e.g. int if = 1;)