SystemDK with AITL: Integrating Control Loops into EDA for Runtime-Aware DTCO

Shinichi Samizo

Independent Semiconductor Researcher Email: shin3t72@gmail.com

Abstract—This paper introduces SystemDK with AITL, a paradigm that extends traditional Design-Technology Co-Optimization (DTCO) by embedding control-theoretic loops directly into EDA flows. Beyond static compact models, we integrate PID feedback, FSM guards, and LLM supervision to dynamically mitigate RC delay, thermal coupling, stress-induced variability, and EMI/EMC disturbances. Proof-of-concept simulations demonstrate over $100\times$ reduction in delay deviation, thermal overshoot below $3\times10^{-5}\%$, and EMI-induced jitter suppressed by two orders of magnitude. This framework enables runtime-aware DTCO, reducing guardbands while improving reliability across sub-2 nm nodes.

I. INTRODUCTION

Conventional EDA tools focus on static sign-off closure. However, scaling to CFET and 3D sequential integration introduces *dynamic runtime effects*:

- RC delay variation due to interconnect scaling,
- Vertical thermal coupling across stacked tiers,
- Stress-driven mobility and V_{th} shifts,
- EMI/EMC noise degrading timing and signal integrity.

SystemDK provides DTCO interfaces, but lacks runtime adaptability. We propose AITL (AI × Intelligent Loop) integration to embed corrective feedback directly into SystemDK.

II. MODELING

The delay and thermal behavior of CFET interconnects are governed by resistive, capacitive, and thermal RC dynamics. Compact models are extended with stress-induced and EMI disturbance terms.

A. Delay and Thermal Models

FO1 delay is:

$$T_{FO1} = (R_{wire} + R_{via})(C_{load} + C_{inter}), \tag{1}$$

where R_{via} dominates at scaled nodes due to aspect ratio. Temperature dependence is modeled as:

$$R(T) = R_0 (1 + \alpha (T - 25^{\circ}C)),$$
 (2)

with α as TCR.

Thermal dynamics:

$$C_{th}\frac{dT}{dt} = P \cdot R_{th} - (T - T_{amb}),\tag{3}$$

where vertical coupling k_c propagates heating into lower tiers.

B. Stress and EMI Models

Stress perturbs device parameters:

$$\Delta V_{th}(t) = \beta_{\text{stress}} \cdot \sigma(t), \quad \Delta \mu = -\gamma \cdot \sigma(t).$$
 (4)

EMI injection:

$$v_{emi}(t) = A\sin(2\pi ft), \quad f = 10-200 \text{ MHz}.$$
 (5)

III. CONTROL ARCHITECTURE

A three-layered controller (PID, FSM, LLM) is proposed:

- **PID:** compensates delay deviations by adjusting DVFS knob u,
- **FSM:** enforces safety with u_{max} bounds,
- LLM: supervises, adapts (K_p, K_i), and redefines thresholds.

IV. EXPERIMENTAL VALIDATION

Two-tier CFET thermal–RC plant with DVFS actuation was prototyped. AITL controllers were integrated in SystemDK 2025.

A. Setup

- $R_{via} = 1\text{--}10 \ \Omega, \ C_{inter} = 1\text{--}5 \ \text{fF},$
- $P_{burst} = 0.1 1.0 \text{ W}, k_c = 0.3 0.9,$
- EMI: 10–200 MHz sinusoidal,
- Co-sim: MATLAB/Simulink → RTL testbench.

B. Results

- Delay deviation reduced $> 100 \times$ vs baseline,
- Thermal overshoot suppressed to $< 3 \times 10^{-5}\%$,
- Stress-induced delay drift compensated within $10^{-6}\%$,
- EMI jitter reduced $100 \times$ in NoC simulation.

V. RELATED WORK

Yakimets *et al.* [1] studied CFET integration but lacked runtime adaptation. IRDS [2] emphasized DTCO but with static flows. Control theory [3]–[5] provides analytical foundation. EMI compliance follows IEC [6].

VI. STABILITY ANALYSIS

PID loop must satisfy:

$$K_p < \frac{2\zeta\omega_n}{G}, \quad K_i < \frac{\omega_n^2}{G},$$
 (6)

FSM bounds control effort $u \leq u_{max}$. LLM adapts gains to maintain Lyapunov stability margins under parameter drift.

Fig. 1. Supervisory PID+FSM+LLM control architecture.

Fig. 2. Experimental results under AITL control.

VII. LIMITATIONS

- Compact models omit parasitic 3D effects,
- EMI modeled as simple sinusoid,
- Hardware constraints may limit real-time LLM supervision.

VIII. DISCUSSION AND OUTLOOK

SystemDK with AITL reframes EDA:

- Static sign-off \rightarrow dynamic runtime closure,
- Guardbands \rightarrow adaptive loops,
- Reliability \rightarrow cross-domain resilience (delay, thermal, stress, EMI).

Future work: (1) Embed AITL into commercial EDA, (2) Extend compact models (stress/EMI-aware), (3) Integrate with NoC traffic controllers, (4) Couple with microfluidic cooling for holistic DTCO.

ACKNOWLEDGMENT

The author thanks the Project Design Hub community for discussions.

REFERENCES

- N. Yakimets et al., "Challenges for cfet (complementary fet) integration," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 19.1.1–19.1.4.
- [2] "International roadmap for devices and systems (irds) 2023 edition," https://irds.ieee.org/roadmap-2023, 2023, accessed: 2025-09-09.

- [3] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Pearson, 2015.
- [4] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
- [5] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Dover Publications, 2007.
- [6] Electromagnetic Compatibility (EMC) Part 4: Testing and Measurement Techniques, International Electrotechnical Commission (IEC) Std. IEC 61 000, 2019, latest edition.

AUTHOR BIOGRAPHY

Shinichi Samizo received the M.S. degree in Electrical and Electronic Engineering from Shinshu University, Japan. He worked at Seiko Epson Corporation in semiconductor memory and mixed-signal device development, and contributed to inkjet MEMS actuators and PrecisionCore printhead technology. He is now an independent semiconductor researcher focusing on process/device education, memory architecture, and AI system integration.

Contact: shin3t72@gmail.com, Samizo-AITL