

Clustering Analysis and K-Means

Mahdi Roozbahani Georgia Tech

60+ hours on 16 GPU nvidia CUDA cluster.

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Clustering Images

Goal of clustering:

Divide object into groups, and objects within a group are more similar than those outside the group

Clustering Other Objects

Clustering Hand Digits

0 1 2 3 4 5 6 7 8

Clustering is Subjective

What is consider similar/dissimilar?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Are they similar or not?

So What is Clustering in General?

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on the chosen similarity/dissimilarity function
 - Points within a cluster is similar
 - Points across clusters are not so similar
- Issues for clustering
 - How to represent objects? (Vector space? Normalization?)
 - What is a similarity/dissimilarity function for your data?
 - What are the algorithm steps?

Outline

- Clustering
- Distance Function

- K-Means Algorithm
- Analysis of K-Means

Properties of Similarity Function

- Desired properties of dissimilarity function
 - Symmetry: d(x,y) = d(y,x)
 - Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
 - Positive separability: d(x,y) = 0, if and only if x = y
 - Otherwise there are objects that are different, but you cannot tell apart
 - Triangular inequality: $d(x, y) \le d(x, z) + d(z, y)$
 - Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl"

Distance Functions for Vectors

• Suppose two data points, both in Rd Sample

$$x = (x_1, x_2, ..., x_d)$$

 $y = (y_1, y_2, ..., y_d)$

- Euclidean distance: $d(x,y) = \sqrt{\sum_{i=1}^{d} (x_i y_i)^2}$
- Minkowski distance: $d(x, y) = \sqrt[p]{\sum_{i=1}^{d} (x_i y_i)^p}$
 - Euclidean distance: p=2
 - Manhattan distance: p = 1, $d(x, y) = \sum_{i=1}^{d} |x_i y_i|$
 - "inf"-distance: $p = \infty$, $d(x, y) = \max_{i=1}^{d} |x_i y_i|$

Example

- Euclidean distance: $\sqrt{4^2 + 3^2} = 5$
- Manhattan distance: 4 + 3 = 7
- "inf"-distance: $max\{4,3\} = 4$

Some problems with Euclidean distance

$$V_{\text{shell}} = Cr^{d} - Cr^{d}$$

$$\frac{V_{\text{shell}}}{V_{\text{total}}} = 1 - \left(\frac{r_r}{r}\right)$$

d(x,y) and d(x,z)?

Curse of dimensionality

Hamming Distance

- Manhattan distance is also called Hamming distance when all features are binary
 - Count the number of difference between two binary vectors
 - Example, $x, y \in \{0,1\}^{17}$

	1	2	3	4	5	6	7	8	9	10		11	12	13	14	15	16	17
\overline{x}	0	1	1	0	0	1	0	0	1	0	П	0	1	1	1	0	0	1
y	0	1	1	1	0	0	0	0	1	1		1	1	1	1	0	1	1

$$d(x,y)=5$$

Edit Distance

 Transform one of the objects into the other, and measure how much effort it takes

d: deletion (cost 5)

$$d(x, y) = 5 \times 1 + 3 \times 1 + 1 \times 2 = 10$$

s: substitution (cost 1)

i: insertion (cost 2)

d: deletion (cost 5)

s: substitution (cost 1)

i: insertion (cost 2)

Outline

- Clustering
- Distance Function
- K-Means Algorithm

Analysis of K-Means

Results of K-Means Clustering:

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

Image

Clusters on color

K-means using color alone, 11 segments (clusters)

* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Visualizing K-Means Clustering

K-Means Algorithm

• Initialize k cluster centers, $\{c_1, c_2, ..., c_k\}$, randomly

- Do
 - Decide the cluster memberships of each data point, x_i by assigning it to the nearest cluster center (cluster assignment)

$$\pi(i) = \operatorname{argmin}_{j=1,\dots,k} \quad \|x_i - c_j\|^2 \quad \text{for the times}$$

Adjust the cluster centers (center adjustment)

$$c_j = \frac{1}{|\{i: \pi(i) = j\}|} \sum_{i: \pi(i)} x_i \qquad \text{Maximi 2 at in } N$$

While any cluster center has been changed

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Questions

- Will different initialization lead to different results?
 - Yes
 - No
 - Sometimes

- Will the algorithm always stop after some iteration?
 - Yes
 - No (we have to set a maximum number of iterations)
 - Sometimes

Formal Statement of the Clustering Problem

- Given n data points, $\{x_1, x_2, ..., x_n\}$ $x \in \mathbb{R}^d$
- Find k cluster centers, $\{c_1, c_2, ..., c_k\}$ $c \in \mathbb{R}^d$
- And assign each datapoint i to one cluster, $\pi(i) \in \{1, ..., k\}$
- Such that the averaged square distances from each datapoint to its respective cluster center is small

$$\min_{c,\pi} \sum_{i=1}^{n} \|x_i - c_{\pi(i)}\|^2$$

Clustering is NP-Hard

• Find k cluster centers, $\{c_1, c_2, ..., c_k\}$ $c \in R^d$, and assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$, to minimize

$$\min_{c,\pi} \sum_{i=1}^{n} \|x_i - c_{\pi(i)}\|^2$$
NP-harc

- A search problem over the space of discrete assignments
 - For all $\, n$ data point together, there are $\, k^{\, n} \,$ possibility
 - The cluster assignment determines cluster centers, and vice versa

• For all N data point together, there are k n possibility

$$X = \{A,B,C\}$$

n=3 (data points)

k=2 clusters of two members

Convergence of K-Means

$$\min_{c,\pi} \sum_{i=1}^{n} ||x_i - c_{\pi(i)}||^2$$

- The minimum value of the objective is finite
- Each iteration of kmeans algorithm decrease the objective
 - Cluster assignment step decreases objective
 - $\pi(i) = argmin_{j=1,...,k} \|x_i c_{\pi(j)}\|^2$ for each data point i
 - Center adjustment step decreases objective

•
$$c_i = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x_i = argmin_c \sum_{i:\pi(i)=j} ||x_i - c_{\pi(j)}||^2$$

Time Complexity

 Assume computing distance between two instances is O(d) where d is the dimensionality of the vectors.

- Reassigning clusters for all datapoints:
 - ► O(kn) distance computations (when there is one feature)
 - O(knd) (when there is d features)
- Computing centroids: Each instance vector gets added once to some centroid (Finding centroid for each feature): O(nd).
- Assume these two steps are each done once for I iterations: O(Iknd).

How to Choose K?

Distortion score: computing the sum of squared distances from each point to its assigned center