ELABORATO 2 - PRODOTTO MATRICE VETTORE PER COLONNE

LO BRUTTO FABIO / MAIONE PAOLO

DEFINIZIONE DEL PROBLEMA

Si vuole progettare un algoritmo in MPI per risolvere il prodotto vettoriale tra una matrice, di dimensioni M*N, e un vettore di reali, di dimensione N, su p processori.

In particolare si utilizza l'infrastruttura S.C.o.P.E. per permettere l'esecuzione del software in un ambiente parallelo.

DESCRIZIONE DELL'ALGORITMO

In particolare le fasi dell'algoritmo, implementato nel file elaborato_2.c, sono:

- 1) Distribuzione per colonne della matrice in p processori e distribuzione del vettore: ognuno dei p processori eseguirà il prodotto vettoriale tra la porzione di matrice ricevuta dal processo *root* (cioè quello con rank 0), e la porzione del vettore;
- 2) Elaborazione del prodotto vettoriale in parallelo;
- 3) Aggregazione del vettore calcolato nel processo root che determinerà il risultato finale.

A tal proposito sono state utilizzate le primitive fornite da MPI (rispettivamente per la prima fase MPI Scatterv() e per la terza MPI Reduce()).

Inoltre l'algoritmo progettato comprende anche il caso in cui la dimensione N (cioè il numero di colonne della matrice) non sia multipla del numero di processori p a disposizione.

Si è scelto di misurare i tempi di esecuzione nel processo di rank 0 usando la primitiva MPI_Wtime() tra la fase 2 e la fase 3 scegliendo il minimo tra 3 misurazioni ripetute.

Infine, si osservi che i controlli di robustezza del software sono stati interamente delegati al processo root.

INPUT, OUTPUT E CONDIZIONI DI ERRORE

- Input: la matrice e il vettore di cui effettuare il prodotto vettoriale, le loro dimensioni M, N e dim vett.
- Output: il vettore risultato del prodotto vettoriale tra la matrice e il vettore.

• Condizioni di errore: la dimensione delle righe della matrice deve essere uguale al numero di colonne del vettore e devono essere interi positivi. Il numero di colonne della matrice non deve essere minore del numero di processori.

ESEMPIO DI FUNZIONAMENTO

Nell'immagine seguente vi è un esempio di funzionamento, con 4 processori, matrice di dimensione 7x8 e dimensione del vettore pari a 7 .

%esempio di funzionamento
funzionamento

Esempio di funzionamento con 4 processori e dimensione della matrice 7x8

ESEMPI DI ERRORE

Nelle successivi immagini, invece, sono mostrati i messaggi di errore al verificarsi delle condizioni sopra citate.

%un esempio per ciascuna condizione di errore errori

Errore: le dimensioni devono essere valori interi

Errore: le dimensioni dei dati di input non sono valori positivi

Errore: la dimensione di riga della matrice è inferiore al numero di processori

Errore: le dimensioni non sono coerenti

ANALISI DELLE PRESTAZIONI (T(p), S(p), E(p))

Tempo di esecuzione - T(p)

Si è scelto di misurare i tempi di esecuzione nel processo *root* usando la primitiva MPI_Wtime(). In particolare l'intervallo di tempo misurato è quello che comprende le fasi 2 e 3 dell'algoritmo prima citate.

Si è scelto inoltre di considerare tre casi diversi che rappresentano le tre possibilità per le dimensioni della matrice: il caso in cui il numero di righe è maggiore numero di colonne, il caso in cui il numero di righe è minore del numero di colonne ed, infine, il caso in cui la matrice è quadrata.

Per ciascuno di questi tre casi è stato considerato il minimo tra 3 esecuzioni ripetute, eseguite in momenti diversi ed in particolare:

- quando il numero di righe M è maggiore del numero di colonne N si fa variare M da 5000 a 50000 con N fissato a 1000
- quando il numero di righe M è minore del numero di colonne N si fa variare N da 5000 a 50000 con M fissato a 1000
- quando la matrice è quadrata si fa variare M=N da 100 a 10000

Si noti che nel caso di matrici quadrate si è scelta una diversa configurazione rispetto al caso di matrici sbilanciate data l'impossibilità di eseguire sul cluster il programma con dimensioni 50000 x 50000. Pertanto è parso ragionevole, solo nel caso di matrici quadrate, ridurre la dimensione massima.

I grafici e le tabelle riassumono i risultati ottenuti per tutti i possibili valori di M,N e p.

%esecuzione script per tabelle e grafici tempi

Tempi

PROVA M>N	N=1000		
	5000	50000	500000
2	0,0214601287841797	0,2989480590820310	2,964836835861200
4	0,0115590820312500	0,1500309028625480	1,456056118011470
8	0,0059680938720703	0,0754148960113525	0,748605966567993
16	0,0097928047180176	0,0502231121063232	0,477081060409545
PROVA M=N			
	100	1000	10000
2	0,0000560283660889	0,0041019916534424	0,411716938018798
4	0,0000460147857666	0,0020821094512939	0,204568147659301
8	0,0000338554382324	0,0010998249053955	0,102904081344604
16	0,0002830028533936	0,0006630420684814	0,065809976577759
PROVA M <n< td=""><td>M=1000</td><td></td><td></td></n<>	M=1000		
	5000	50000	500000
2	0,0204608440399170	0,203956842422485	2,051769018173210
4	0,0103078914642334	0,102041006088256	1,019224882125850
8	0,0051660537719727	0,051406860351563	0,509707927703857
16	0,0026650428771973	0,025868146896362	0,255983829498291

Per considerazioni più di dettaglio su questi risultati si rimanda alla sezione Conclusioni.

Speed up ed Efficienza - S(p) ed E(p)

Si è calcolato, inoltre, il tempo di riferimento T(1) che corrisponde al tempo di esecuzione su un unico processore.

A partire dai tempi misurati nella sezione precedente e da T(1) è stato calcolato lo speed-up al variare di M, N e p.

%esecuzione script per tabelle e grafici speedup

Speed up

PROVA M>N	N=1000		
	5000	50000	500000
2	1,8829	1,9230	1,9348
4	3,4957	3,8316	3,9396
8	6,7705	7,6227	7,6627
16	4,1262	11,4462	12,0238
PROVA M=N			
	100	1000	10000
2	1,7660	1,9720	1,9809
4	2,1503	3,8850	3,9867
8	2,9225	7,3549	7,9254
16	0,3496	12,1999	12,3925
PROVA M <n< td=""><td>M=1000</td><td></td><td></td></n<>	M=1000		
	5000	50000	500000
2	1,9471	1,9506	1,9766
4	3,8650	3,8988	3,9789
8	7,7119	7,7389	7,9564
16	14,9491	15,3793	15,8425

Infine si è calcolata l'efficienza rapportando lo speed-up S(p) al numero di processori p.

%esecuzione script per tabelle e grafici efficienza

Efficienza

N=1000		
5000	50000	500000
0,9414	0,9615	0,9674
0,8739	0,9579	0,9849
0,8463	0,9528	0,9578
0,2579	0,7154	0,7515
100	1000	10000
0,8830	0,9860	0,9904
0,5376	0,9713	0,9967
0,3653	0,9194	0,9907
0,0219	0,7625	0,7745
M=1000		
5000	50000	500000
0,9736	0,9753	0,9883
0,9662	0,9747	0,9947
0,9640	0,9674	0,9945
0,9343	0,9612	0,9902
	5000 0,9414 0,8739 0,8463 0,2579 100 0,8830 0,5376 0,3653 0,0219 M=1000 5000 0,9736 0,9662 0,9640	5000 50000 0,9414 0,9615 0,8739 0,9579 0,8463 0,9528 0,2579 0,7154 100 1000 0,8830 0,9860 0,5376 0,9713 0,3653 0,9194 0,0219 0,7625 M=1000 5000 5000 50000 0,9736 0,9753 0,9662 0,9747 0,9640 0,9674

Conclusioni

Dai grafici e dalle tabelle appena presentate si possono trarre le seguenti conclusioni:

- se la matrice è sbilanciata, l'efficienza migliore si ha per 2 processori quando la maggiore tra le due dimensioni è 5000 oppure 50000. Invece il numero ottimo di processori risulta pari a 4 quando è 500000:
- l'efficienza risulta complessivamente maggiore nella configurazione in cui M<N;
- anche nel caso di matrici quadrate si ha che l'efficienza migliore si ha per due processori fino a M=N=1000 mentre è 4 per M=N=10000.

Si possono fare ulteriori considerazioni notando che, per una dimensione fissata, l'efficienza peggiora dopo un certo valore di p (ciò verifica sperimentalmente la legge di Amdahl), e che, in generale, all'aumentare sia della dimensione del problema che di p, l'efficienza migliora, verificando la legge di Gustafson.

Analoghe considerazioni per i tempi e lo speedup.

ANALISI DELL' ACCURATEZZA

Confrontando il risultato ottenuto sul cluster Scope e quello ottenuto su MATLAB si ottiene il seguente errore relativo (tramite il comando norm), fissando a 4 il numero di processori con dimensione della matrice pari a 7x8.

In particolare, nel test seguente, è stato usato un vettore e una matrice inizializzata nel modo seguente

$$matrice[i][j] = \pi * (i + 1)$$

%esecuzione script per i test di accuratezza accuratezza

```
risultato_scope = 7×1

10<sup>2</sup> x

0.251327412287183
0.502654824574366
0.753982236861550
1.005309649148730
1.256637061435910
1.507964473723100
1.759291886010280
risultato_matlab = 7×1

10<sup>2</sup> x

0.251327412287183
0.502654824574367
0.753982236861550
```

- 1.005309649148734
- 1.256637061435917
- 1.507964473723100
- 1.759291886010284

errore_relativo =

3.210969507161735e-15