Příklad (6.1)

Uvažujme množinu V všech reálných čtvercových matic řádu 3, které zároveň splňují podmínky

- součet prvního a posledního sloupce je vektor $(0,0,0)^T$;
- součet prvků na hlavní diagonále je 0.

Dokažte, že V (s operacemi sčítání matic a násobení matice reálným číslem) je podprostorem prostoru $R^{3\times3}$ a najděte nějakou pětiprvkovou množinu generátorů tohoto podprostoru.

Řešení

Označme prvky libovolné matice z V jako

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

Podmínky nám potom říkají, že a + e + i = 0 (druhá) a $(a,d,g)^T + (c,f,i)^T = \mathbf{o} \Leftrightarrow (c,f,i)^T = -(a,d,g)^T = (-a,-d,-g)$ (první). Pokud se dva aritmetické vektory rovnají, pak se rovnají i jejich složky, tedy c = -a, f = -d, i = -g. Druhou podmínku pak můžeme přepsat jako a + e - g = 0, tj. g = a + e a i = -g = -(a + e). Tedy dostáváme matici

$$\begin{pmatrix} a & b & -a \\ d & e & -d \\ a+e & h & -(a+e) \end{pmatrix} =$$

$$= a \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} + h \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Ale jelikož další podmínky nejsou a taková matice oběma vyhovuje pro všechna $a,\,b,\,c,\,d,\,e,$ není V nic jiného než

$$LO\left\{ \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right\}.$$

A triviálně (třeba podle bodu (4) klíčových znalostí z páté kapitoly, skripta_la6 strana 218) je lineární obal podprostorem prostoru $R^{3\times3}$ (prostor, ze kterého bereme operace a prvky, o kterých jsme se tu bavili).

Příklad (6.2)

Najděte matici A nad tělesem Z_3 s co nejmenším počtem řádků tak, aby Ker $A = \Im B$, kde B je následující matice nad Z_3 .

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 2 \end{pmatrix}.$$

Řešení

Ker A je množina těch vektorů, jejichž obrazem v zobrazení f_A je \mathbf{o} a $\Im B$ je množina všech obrazů zobrazení f_B . Tedy Ker $A = \Im B$ odpovídá $f_A(f_B(*)) = \mathbf{o}, * \in \mathbb{Z}_3^4$. Tudíž $A \cdot B$ musí být nulová matice.

Zároveň obraz matice B je 3dimenzionální vektorový prostor, jelikož sloupce B jsou nezávislé. Nezávislost dokážeme tím, že ukážeme, že rovnice

$$k_1 \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + k_2 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} + k_3 \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \\ 2 \end{pmatrix} = \mathbf{o},$$

$$k_1 + k_2 + k_3 = 0 + k_2 + 2k_3 = 2k_1 + k_2 + 0 = 0 + 2k_2 + 2k_3 = 0$$

má jediné řešení $k_1=k_2=k_3=0$ a Tedy hledáme matici hodnosti 4-3=1, tudíž nám stačí jen jeden řádek.

$$A \cdot B = \begin{pmatrix} a & b & c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}.$$

$$a + 0 - c + 0 = a + b + c - d = a - b + 0 - d = 0$$

Sečtením dostáváme -2d=0, tedy d=0. První rovnice nám pak říká a=c, třetí a=b, tedy matice A může být např. $A=\begin{pmatrix} 1 & 1 & 1 & 0 \end{pmatrix}$. Jádro této matice je jistě nadmnožinou $\Im B$, jelikož $A\cdot B=0$, a jelikož tato matice A má hodnost 1, tak její jádro je 3 dimenzionální, tedy nemůže být "ostře" nadmnožinou, tedy $\Im B=\operatorname{Ker} A$.

Naopak A nemůže mít nula řádků (protože pak by to nebyla matice), protože matice $T^{n\times 4}$ má jádro 4-hodnost-dimenzionální, tedy pro hodnost 0 by mělo jádro 4 dimenze a bylo by "ostře" nadmnožinou $\Im B$, tedy $\Im B \neq \operatorname{Ker} A$.

 $^{{}^}a{\rm Sečteme}$ první a poslední: $k_1=0,$ ze třetí pak $k_2=0$ a ze čtvrté $k_3=0.$

Příklad (6.bonus)

Najděte nějakou dvouprvkovou množinu generátorů prostoru reálných posloupností $(a_n)_{n=1}^{\infty}$ splňujících $2a_{n+2} = -3a_{n+1} - 1a_n$. Řešte stejnou úlohu pro posloupnosti $(b_n)_{n=1}^{\infty}$ splňující $2b_{n+2} = -3b_{n+1} - 2b_n$.

Řešení

Posloupnosti si zapíšeme maticovým tvarem (samozřejmě pro n=1 by chtělo dokázat, že dané matice mají inverzi):

$$a_n = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}, \quad b_n = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & -1 \\ 1 & 0 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} b_2 \\ b_1 \end{pmatrix}.$$

Nyní můžu vektory distributivitou násobení matic rozdělit na $(a_i = a_{i1} + a_{i2}, b_i = b_{i1} + b_{i2})$:

$$a_n = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} a_{21} \\ a_{11} \end{pmatrix} + \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} a_{22} \\ a_{12} \end{pmatrix},$$

$$b_n = \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & -1 \\ 1 & 0 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} b_{21} \\ b_{11} \end{pmatrix} + \begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\frac{3}{2} & -1 \\ 1 & 0 \end{pmatrix}^{n-2} \cdot \begin{pmatrix} b_{22} \\ b_{12} \end{pmatrix}.$$

Teď už je docela jasně vidět, že si mohu zvolit libovolné 2 nezávislé vektory $(a_{11}, a_{21})^T$ a $(a_{12}, a_{22})^T$ (resp. b), např. $(1,0)^T$ a $(0,1)^T$, které odpovídají 2 posloupnostem, které generují posloupnost a_n (resp. b_n).