Máquina de Turing como Processador de Funções

Teoria da Computação

INF05501

Processando Funções

- Vimos que Máquinas de Turing podem ser utilizadas como reconhecedores de linguagens
- Outra abordagem é o seu uso para processar funções
- Estudo é restrito às funções que mapeiam palavras de um alfabeto Σ em uma palavra do mesmo alfabeto
- Entretanto, maioria das funções pode ser transformada em uma função deste tipo

Função Turing-Computável

Uma função **parcial** $f: (\Sigma^*)^n \to \Sigma^*$ é dita função Turing-computável (ou função computável) se existe uma Máquina de Turing $M = (\Sigma, Q, \Pi, q_0, F, V, \beta, \triangleright)$ que computa f.

Ou seja:

• Para $(w_1,w_2,...,w_n) \in (\Sigma^*)^n$, tem-se que a palavra de entrada é $\triangleright w_1w_2...w_n$

Função Turing-Computável (cont.)

- Se f é definida para a entrada $\triangleright w_1w_2...w_n$, então, ao processá-la:
 - *M para*, aceitando ou rejeitando a entrada
 - Conteúdo da fita é (ignorando-se os β) $\triangleright w$, sendo que $w \in \Sigma^*$
- Se f é indefinida para a entrada, então M fica em loop infinito

Função Turing-Computável (cont.)

- Note a diferença entre as definições de função computável e função computada
- ullet É considerado, como **resultado** do processamento de M somente o **conteúdo gravado na fita**
- Logo, é perfeitamente válido um processamento que pare em um estado não-final

Função Turing-Computável Total

Uma função total

$$f: (\Sigma^*)^n \to \Sigma^*$$

é dita função Turing-computável total (ou função computável total) se existe uma Máquina de Turing

$$M = (\Sigma, Q, \Pi, q_0, F, V, \beta, \triangleright)$$

que computa f e sempre para para qualquer entrada

Exemplo 1

A função (total)

$$concatena: (\{a,b\}^*)^n \rightarrow \{a,b\}^*$$

é tal que associa ao par (w_1, w_2) a palavra w_1w_2 . A Máquina de Turing

$$Conc = (\{a, b, \#\}, \{q0, q1, q2, q3, q4\}, \Pi, q_0, \{q_4\}, \emptyset, \beta, \triangleright)$$

processa esta função

Qual seria o algoritmo implementado pela máquina Conc?

Qual é a matriz de transição equivalente?

Exemplo 2

A função (total)

$$soma_bin: \{0,1\}^2 \to \{0,1\}^*$$

é tal que associa um par de valores binários de um dígito ao valor da sua soma binária. A Máquina de Turing

$$SomaBin = (\{0, 1, +\}, \{q0, q1, q2, ..., q10\}, \Pi, q_0, \{q_{10}\}, \{A, B\}, \beta, \triangleright)$$

processa esta função

Qual seria o algoritmo implementado pela máquina SomaBin?

Tarefa para 10/05/2010

- 1. Usando **ambas** as ferramentas vistas em aula, desenvolva Máquinas de Turing que reconheçam as seguintes linguagens:
 - (a) $Eq = \{w | w \text{ tem o mesmo número de símbolos } a \in b\}$
 - (b) $B = \{w \# w | w \in \{0, 1\}^*\}$
 - (c) Complemento da linguagem Eq
- 2. Construa uma Máquina de Turing que processe a função $soma_bin2: (\{0,1\}^*)^2 \to \{0,1\}^*$, que produz a soma binária de dois valores binários de 2 dígitos