

IT9500 (AX) series IT9507/IT9503

Transmitter for AirHD® & ccHDtv®

Preliminary V1.1

ITE Tech. Inc. Easy HD Expressway

This specification is subject to Change without notice. It is provided "AS IS" and for reference only. For purchasing information, please contact the nearest ITE TECH sales representatives.

Copyright © 2011 ,2012 ,2013 ITE Tech. Inc.

This is a Preliminary document release. All specifications are subject to change without notice.

The material contained in this document supersedes all previous material issued for the products herein referenced. Please contact ITE Tech. Inc. for the latest document(s).

All sales are subject to ITE's Standard Terms and Conditions, a copy of which is included in the back of this document.

ITE. IT9500/IT9507/IT9503/AirHD//ccHDtv/DTV CAM are trademarks of ITE Tech. Inc.

All other trademarks are claimed by their respective owners.

All specifications are subject to change without notice.

Additional copies of this manual or other ITE literature may be obtained from:

ITE Tech. Inc. Tel: 886-2-29126889

Marketing Department Fax: 886-2-2910-2551, 886-2-2910-2552

7F, No.233-1, Baociao Rd., Sindian City, Taipei County 23145, Taiwan, ROC

You may also find the local sales representative nearest you on the ITE web site.

To find out more about ITE, visit our World Wide Web at: http://www.ite.com.tw

Or e-mail itesupport@ite.com.tw for more product information/services

Revision History

Section	Revision	Page No.
	First release for IT9500 AX Series (IT9507FN/AX)	
5	Two wire bus descriptions updated	10

CONTENTS

1.	Featur	es		1
2.	Gener	al Desc	ription	3
3.	Block	Diagran	n	5
4.	Pin Co	onfigura	tion	6
5.	Pin De	escriptio	n	9
		•	ns	
			scprition	
•	7.1		ion Modes	
	7.1	7.1.1	TS/I2C Mode	
		7.1.2	TS/USB Mode	
		7.1.3	USB Mode	
	7.2	Analog	Interface	
		7.2.1		
		7.2.2		
	7.3		ation	
			C and Filter	
	7.5		COFDM Digital Signal Processing	
		7.5.1	Coding and Interleaving	
		7.5.2	Frequency-Domain Signal Processing	
	7.0	7.5.3	Time-Domain Signal Processing	
	7.6		Interfacesterfaces	
	7.7	7.7.1	Transport Stream Interface	
	7.8		terface	
	7.0	7.8.1	USB Descriptors	
		7.8.2	USB Control Protocol	
	7.9	-	face	
		7.9.1	The Function Keys and Alternative Keys	
		7.9.2	The External EEPROM	
		7.9.3	Boot Scheme	.22
	7.10	GPIO I	nterfacenterface	.22
3.	Power	Modes		.23
	8.1	Power	Modes	.23
			t Consumption	
9.			priptions	
	•		istics	
			te Maximum Ratings*	
			ing Conditions	
			ctrical Characteristics	
11			istics	
			ut	
			Bus Output Timing	
			Bus Input Timing	
1 2			·	
		-	mation	
		•	mation	
14.	тор М	ıarkına I	nformation	.35

FIGURES

Figure 7-1. An example of TS parallel interface timing diagram	19
Figure 7-2. Timing diagram of the IT9500 TS serial input interface	
Figure 11-1. IT9500 TS input timing diagram	
Figure 11-2. IT9500 2-wire bus output timing diagram	
Figure 11-3. IT9500 2-wire bus input timing diagram	
TABLES	
Table 4-1. IT9507/9503 pin listed in numeric order	7
Table 7-1. Operation modes of IT9500	
Table 7-2. Data path and contol paths at each output mode	15
Table 7-3. IT9500 2-wire bus address mapping table	17
Table 7-4. IT9500 TS interface pins	18
Table 7-5. The IT9500 TS interface mode selection	
Table 7-6. Configurable parameters of the IT9500 TS interface	20
Table 8-1. Power mode table	23
Table 8-2. IT9500 power state transition time	23
Table 10-1. IT9500 absolute maximum ratings	27
Table 10-2. IT9500 operating conditions	27
Table 10-3. IT9500 DC electrical characteristics	
Table 11-1. IT9500 TS input timing	29
Table 11-2. IT9500 2-wire bus output timing	29
Table 11-3. IT9500 2-wire bus input timing	

This page is intentionally left blank.

1. Features

■ Modulator

- ETSI, DVB-T/H (EN 300 744 V1.5.1)
 Compliant baseband transmitter for Digital Terrestrial Television
- Configurable code rate: 1/2,2/3,3/4,5/6,7/8
- Programmable QPSK, 16-QAM and 64-QAM Symbol Mapping
- Configurable support for 2k and 8k FFT
- Programmable Guard Interval (1/4, 1/8, 1/16, 1/32)
- Supports variable channel band width from 2 MHz to 8 MHz
- Zero I/F complex base band I/Q output with integrated DAC and anti-aliasing filter
- MER > 40dB
- Carrier Suppression > 50dB
- Spectrum Shoulders: 55 dB for perfect adjacent-channel operations
- On-chip voltage regulator:
 - Enables single supply 2.7V-3.6V operation.
 - May use 1.7V-2.0V supply for lower power.
- Integrated local oscillator for external RF mixer; frequency tuning range 50MHz~950MHz.
- 12MHz clock output to enable single-crystal system design.
- Serial and parallel MPEG2-TS input interface.
- Integrated transport stream de-multiplexer (PID filtering) with bypass mode.
- Programmable SI/PSI table insertion
- Control interfaces
 - Embedded **USB 1.1** and **2.0** compatible interface support with suspend mode.
 - UART
 - 1x IIC master and 1x IIC slave
- Infrared (IR) interface provided for remote control.
- Up to 8 independent GPIO pins
- MQFN-64 package, both commercial and industrial grades are available.

_

2. General Description

IT9500 is a series of highly integrated transmitter for AirHD, DTVCam, and other personal, community, or professional digital TV head-end applications. The core of IT9500 is a DVB-T COFDM modulator. The high level of integration of IT9500 significantly decreases the power consumption, board size and cost of modulators in digital TV transmitter. With IT9500, a low cost, low power, compact, reliable, high bandwidth and wireless (or wired) full HD delivery solution is easily achieved.

IT9500 offers very low total bill of materials (BOM) solutions. It includes processing units for forward error correction coding and digital modulation, D/A IQ converter, low-pass filters, and local oscillator for the external mixer. IT9500 series also supports flexible input interfaces, including embedded USB 2.0 interface, and serial/parallel TS interface input/output with built-in de-multiplexer.

IT9500 series is compliant to the non-hierarchical transmission specified in DVB-T (ETSI EN 300 744). A (204,188) Reed-Solomon encoder capable of correcting 8 error bytes is used to generate parity bytes for each input TS packet. The code rates of the punctured convolution encoder include 1/2, 2/3, 3/4, 5/6, and 7/8. Only native interleaving is used in IT9500. The output signal bandwidth is configurable from 2 MHz to 8 MHz. The supported signal constellations include QPSK, 16-QAM, and 64-QAM. FFT modes of 2k and 8k and guard intervals of 1/4, 1/8, 1/16, and 1/32 specified in EN 300 744 are supported. The transmission parameters are register-programmable, and are embedded in the Transmission Parameter Signaling (TPS) information as required by EN 300 744.

A complete set of application programming interface (API) is available, facilitating fast and easy integration into products on Windows Mobile, Windows CE, Windows 7, Windows XP, Vista, Linux, and many other operating systems. Furthermore, a complete set of USB drivers for Windows 7/XP/Vista, Windows Mobile/CE, and Linux are provided for IT9500.

3. Block Diagram

4. Pin Configuration (9503 only different in print)

Table 4-1. IT9507/9503 pin listed in numeric order

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	COMP	17	GPIOH1	33	HOST_B5	49	IOTUNSDA
2	RSET	18	GPIOH2	34	VCC3V	50	VCC3V
3	VSSAH_DAC	19	GPIOH3	35	HOST_B6	51	VCC
4	OTIN	20	GPIOH4	36	HOST_B7	52	RESETN
5	OTIP	21	VCC3V	37	HOST_B8	53	TESTMODE
6	OTQP	22	VCC	38	HOST_B9	54	TESTCOMP
7	OTQN	23	GPIOH5	39	HOST_B10	55	XIN
8	VDDAH_DAC	24	GPIOH6	40	HOST_B11	56	CKO
9	OT2IN	25	GPIOH7	41	AVDDHP	57	AVDD
10	OT2IP	26	GPIOH8	42	DP	58	REXT
11	OT2QP	27	VCC3V	43	DM	59	VDDH_REG1
12	OT2QN	28	HOST_B0	44	VCC	60	VOUT_REG1
13	VSS_DAC	29	HOST_B1	45	IOSDA	61	VDD_LO
14	VDD_DAC	30	HOST_B2	46	IOSCL	62	VSS_LO
15	VDDH_REG2	31	HOST_B3	47	VCC3V	63	LOP
16	VOUT_REG2	32	HOST_B4	48	IOTUNSCL	64	LON

5. Pin Description

Table 5-1. IT9507/9503 Pin Description of Supplies Signals

Pin(s) No.	Symbol	Attribut e	Power	Description
14	VDD_DAC	PWR	-	+1.4V Analog Power Supply
8	VDDAH_DAC	PWR	-	+3.3V Analog Power Supply
15	VDDH_REG2	PWR	-	+3.3V Analog Power Supply
57	AVDD	PWR	-	+1.4V Analog Power Supply
59	VDDH_REG1	PWR	-	+3.3V Analog Power Supply
61	VDD_LO	PWR	-	+1.4V Analog Power Supply
22,44,51	VCC	PWR	-	+1.2V Power Supply
21,27,34,47 ,50	VCC3V	PWR	-	+3.3V Power Supply
41	AVDDHP	PWR	-	+3.3V Power Supply for USB

Table 5-2. IT9507/9503 Pin Description of Analog I/O Signals

Pin(s) No.	Symbol	Attribute	Power	Description
1	COMP	AIO	-	DAC External Cap
2	RSET	AIO	-	External Resistor for DAC
4	OTIN	AIO	-	DAC Output
5	OTIP	AIO	-	DAC Output
6	OTQP	AIO	-	DAC Output
7	OTQN	AIO		DAC Output
9	OT2IN	AIO	-	LPF Output
10	OT2IP	AIO	-	LPF Output
11	OT2QP	AIO	-	LPF Output
12	OT2QN	AIO		LPF Output
16	VOUT_REG	AO	VCC	Internal LDO output (+1.2V)
10	2			
42	DP	AIO	-	Differential Positive signal for USB
43	DM	AIO	-	Differential Negative signal for USB
55	XIN	Al		Xtal in
56	CKO	AO	-	Clock output for another device
58	REXT	AIO	-	External Resistor for DAC
60	VOUT_REG 1	AO	VDD_L O	Internal LDO output (+1.4V)
63	LOP	AIO		LO output
64	LON	AIO		LO output

Table 5-3. IT9507/9503 Pin Description of Digital I/O Signals

Pin(s) No.	Symbol	Attribute	Power	Description		
52	RESETN	DI	VCC3V	Power-on Reset (Low Active)		
53	TESTMODE	DI	VCC3	Test mode selection; tied to ground for normal		
55	TESTWODE	וט	V	operation.		
54	TESTCOMP	DI	VCC3	Test mode selection; tied to ground for normal		
34	TESTCOME	וט	V	operation./UART-RxD		
17	GPIOH1	DIO	VCC3V	General purpose I/O		
18	GPIOH2	DIO	VCC3V	General purpose I/O		
19	GPIOH3	DIO	VCC3V	General purpose I/O		
20	GPIOH4	DIO	VCC3V	General purpose I/O		

Pin(s) No.	Symbol	Attribute	Power	Description
23	GPIOH5	DO	VCC3V	General purpose I/O
24	GPIOH6	DIO	VCC3V	General purpose I/O
25	GPIOH7	DIO	VCC3V	General purpose I/O
26	GPIOH8	DIO	VCC3V	General purpose I/O
			VCC3V	Two-wire bus serial data line
45	IOSDA	DIO		(It's slave mode for I2C/TS mode, but master mode
				for EEPROM access in USB mode)
			VCC3V	Two-wire bus serial clock line
46	IOSCL	DO		(It's slave mode for I2C/TS mode, but master mode
				for EEPROM access in USB mode)
48	IOTUNSCL	DIO	VCC3V	Two-wire bus serial clock line (master)
49	IOTUNSDA	DO	VCC3V	Two-wire bus serial data line (master)
28	HOST_B0	DI	VCC3V	Host interface
29	HOST_B1	DI	VCC3V	Host interface
30	HOST_B2	DI	VCC3V	Host interface
31	HOST_B3	DI	VCC3V	Host interface
32	HOST_B4	DI	VCC3V	Host interface
33	HOST_B5	DI	VCC3V	Host interface
35	HOST_B6	DI	VCC3V	Host interface
36	HOST_B7	DI	VCC3V	Host interface
37	HOST_B8	DI	VCC3V	Host interface
38	HOST_B9	DI	VCC3V	Host interface
39	HOST_B10	DI	VCC3V	Host interface
40	HOST_B11	DI	VCC3V	Host interface

Table 5-4. Pin description of GPIO and strapping

Name	Strapping	IO Functions	State after RESET
GPIOH1	Clock Select Bit 0	GPIO/ PWM/ Lock Indicator 1	High-Z
GPIOH2	Clock Select Bit 1	GPIO/ PWM/ Lock Indicator 2	High-Z
GPIOH3	Clock Select Bit 2	GPIO/ PWM/ Lock Indicator 3	High-Z
GPIOH4	n/a	GPIO/ PWM/ Lock Indicator 4/ UART-TxD	High-Z
GPIOH5	Mode Select Bit 0/ Two-wire bus address bit 0	GPIO/ Suspend Resume	High-Z
GPIOH6	Mode Select Bit 1/ 1: Two-wire bus for AFE test 0: Two-wire bus normal mode	GPIO	High-Z
GPIOH7	Mode Select Bit 2/USB and TS	ICEDICA: IR RECEIVANCE	High-Z

Name	Strapping	IO Functions	State after RESET
	mode switch		
GPIOH8	Mode Select Bit 3	GPIO	High-Z

Table 5-5. Strapping sampled at the rising edge of the RESET signal

Pin Name	Selection		
{ GPIOH3,GPIOH2,GPIOH1}	Crystal frequency:		
	000 crystal = 12 MHz		
	Mode strapping and 2-wire bus address selection:		
{GPIOH8,GPIOH7,GPIOH6,GPIOH5}	(0,0,0,x) TS/I2C mode, { GPIOH5} = 2-wire address bit 1		
	(0,1,0,x) TS/USB mode		
	(0,1,1,x) USB mode		

Table 5-6. Pin list of Host Interface

Mode Pin	TS Input Mode
HOST_B0	MPEG Data[7]
HOST_B1	MPEG Data[6]
HOST_B2	MPEG Data[5]
HOST_B3	MPEG Data[4]
HOST_B4	MPEG Data[3]
HOST_ B5	MPEG Data[2]
HOST_B6	MPEG Data[1]
HOST_B7	MPEG Data[0]
HOST_B8	MPEG Clock
HOST_B9	MPEG Valid
HOST_B10	MPEG Sync
HOST_B11	MPEG Fail

Notes: 1) These pins have no integrated pull up/down.

- 2) The state of these pins immediately after reset is high-Z.
- 3) The pads of these pins are of the CMOS type.
- 4) These pins are on I/O power domain

6. Power Domains

IT9500 has four power domains: RF, Core, IO, and USB respectively.

The RF Domain is supplied by 3.3V±10% to provide power for analog functions. The external 3.3V should be connected to pin VDDAH_DAC and VDDH_REG2. The other analog power supply pins (1.4V) shall be connected to the pin VOUT_REG1 to be powered by the built-in voltage regulator.

The Core Domain is supplied by 1.2V±10% to provide power for the core circuits of IT9500. It can be provided by external 1.2V or using the internal voltage regulator from the pin VOUT_REG2.

The IO Domain provides power for the host interface, including the TS interface, 2-wire bus, UART and GPIOH1~GPIOH8. The supply voltage for IO Domain is 3.3V±10%.

The USB Power Domain is supplied by 3.3v±10% to power the USB interface under USB mode. Otherwise, the pin AVDDHP should be connected to ground.

7.1 Operation Modes

IT9500 supports three different operation modes, TS/I2C, TS/USB, and USB depending on the data path and control path. The mode is determined by appropriately setting the strapping pins as specified in Table 5- and register programming after strapping.

The supported operation modes of IT9500 are summarized in Table 7-1 and the control and data paths in each operation mode are summarized in Table 7-2.

 Mode
 TS/I2C
 TS/USB
 USB

 Part #
 IT9507
 Yes
 Yes
 Yes

 IT9503
 Yes
 Yes
 Yes

Table 7-1. Operation modes of IT9500

Table 7-2. Data path and contol paths at each output mode

Path Mode	Data Path	Control Path
TS/I2C	TS	2-wire bus
TS/USB	TS	USB
USB	USB	USB

7.1.1 TS/I2C Mode

In the TS/I2C mode, the transport stream to be transmitted comes through either the parallel or serial TS input interface. IT9500 is controlled by an external host controller (CPU) via the 2-wire (I2C) bus as an I2C slave device. More details of the TS interface are given in Section 7.7.1.

7.1.2 TS/USB Mode

In the TS/USB mode, the transport stream to be transmitted comes through either the parallel or serial TS input interface. IT9500 is controlled by an external host controller (CPU) via the USB bus as a USB device. More details of the TS interface are given in Section 7.7.1.

7.1.3 **USB Mode**

www.ite.com.tw 15 IT9500 V1.1

In the USB mode, IT9500 communicates with the host through the embedded USB 2.0 interface. The transport stream to be transmitted by IT9500 and control/status signals are all encapsulated in the USB frames. Besides, the host can access (read) the TS input thru USB EP5. More details of the USB interface are given in Section 7.8

7.2 Analog Interface

7.2.1 Clocking

IT9500 has on-chip crystal amplifiers for clock generation. Only single 12MHz crystal is required to generate all internal clocks.

IT9500 also provides a buffered clock output (CKO) which, for example, can be used to drive a second IT series receiver IC in TS/USB applications.

The IT9500 clocking circuit requires a stable reference clock. It can be provided by either of the following two methods:

- 1. Connect a crystal across the oscillator pin XTAL and ground, or
- 2. Connect an external clock source to the pin XTAL.

With programmable PLL, the supported reference clock frequency is 12MHz. This clock source can come from the crystal, other external clock source, or the buffered clock output (CKO) of another ITE receiver IC (in AirHD applications).

7.2.2 Clock Table

The programmable PLL default clock ratio is decided by pin strapping which is described in Table 5-. After the initial operation, it can also be re-programmed through register access. More details on programming the PLL ratio for different clock frequency selection can be found in *IT9500 Programming Guide*.

7.3 Initialization

Several important system parameters need to be programmed correctly in order to insure proper operations of IT9500. These include, among other things, the carrier frequency of the RF signal and DAC sampling frequency. More details on initializing IT9500 can be found in *IT9500 Programming Guide*.

7.4 LO, DAC and Filter

The analog front end consists of a local oscillator for VHF and UHF bands, a 16-bit high-speed IQ DAC, and a low pass filter.

The local oscillator provides wide-range differential clock outputs for external RF up-converter.

The 16-bit IQ DAC converts the digital modulator output into analog baseband signal using an embedded clock source.

The lowpass filter is an anti-aliasing filter for removing unwanted signal image and clock harmonics.

7.5 DVB-T COFDM Digital Signal Processing

7.5.1 Coding and Interleaving

The input TS stream is first scrambled using a pseudo random sequence, and then encoded using a (204,188) shortened Reed-Solomon code with 8-byte error correcting ability. The output of the Reed-Solomon encoder then passes through a Forney-style convolutional interleaver, and the output is further encoded using a punctured convolutional encoder whose code rate can be 1/2, 2/3, 3/4, 5/6, or 7/8. Finally the output of the

punctured convolutional encoder is interleaved using a bit-wise interleaving and symbol interleaving. The scrambler, encoders, and interleavers are specified in EN 300 744.

7.5.2 Frequency-Domain Signal Processing

The output of the symbol interleaver is mapped onto QPSK, 16-QAM, or 64-QAM constellations in accordance to EN 300 744. The resulting constellation points are then grouped into OFDM frames according to the DVB-T frame structure. Each OFDM symbol is processed by the Fast Fourier Transformer (FFT) of IT9500, the core of which uses a 50-bit internal architecture to ensure excellent accuracy.

7.5.3 Time-Domain Signal Processing

The FFT output is re-sampled using a high quality rate converter. At the core of the rate converter are adaptively controlled low-order polynomial interpolators, so that multiple signal bandwidths can be supported at a low cost. The output of the rate converter is then directly applied to the DAC without further processing.

7.6 2-Wire Interfaces

IT9500 provides a 2-wire interface for communicating with the host. It is also used to communicate with the second IT9500 series receiver IC for TS/USB reception. The IT9500 2-wire Interface uses, respectively, pins IOSDA for the serial data and IOSCL for the serial clock. The bus address of the IT9500 2-wire Interface is determined by the strapping pins GPIOH6 and GPIOH5. When IT9500 is first powered on, the RESETN pin should be held low. Given the IT9500 is desired for USB mode or the slave device under TS TS/USB mode, as the RESETN pin transitions from low to high, the logic level of the strapping pins GPIOH6 and GPIOH5 are latched to determine the 2-wire bus address, as shown in Table 7-3. Note that the logic level of the strapping pins, GPIOH6 and GPIOH5, also determines its operation mode, as described in Table 5-.

{GPIOH6, GPIOH5} at	2-Wire Bus Address	
strapping		
{0,0}	0x38	
{0,1}	0x3A	

Table 7-3. IT9500 2-wire bus address mapping table

The IT9500 2-wire Interface supports both read and write operations. The circuit works as a slave transmitter in the read operation mode and slave receiver in the write operation mode to communicate with the Host. To communicate with the second ITE series IC, the independent master circuit works as a master transmitter in the write operation mode and master receiver in the read operation mode.

Details on using the 2-wire Interface can be found in IT9500 Programming Guide.

7.7 Host Interfaces

IT9507/9503 provides flexible interface, the so-called Host Interface, for connecting to the host in stand-alone applications, and for connecting to the master device, slave device, or the host in the TS/USB receiving mode. Depending on the application, this Host Interface can be configured into input interfaces. Host Interface comprises pins HOST_B0~HOST_B11.

IT9507/9503 Host Interface (HOST_B0~HOST_B11) is used for connecting to the host in stand-alone modes, or for connecting to the master/slave device or the host in the TS/USB mode. When connecting to the host,

www.ite.com.tw 17 IT9500 V1.1

Host Interface (HOST_B0~HOST_B11) is configured into the TS mode with appropriate address selection by appropriate setting the strapping pins listed in Table 5-. When connecting to the slave device, Host Interface should be configured as the TS input interface for TS/USB receiving.

Details on how to configure the IT9500 host interfaces can be found in IT9500 Programming Guide.

7.7.1 Transport Stream Interface

The pin descriptions of Host Interface of IT9500 under TS mode are listed in Table 7-4.

Table 7-4. IT9500 TS interface pins

Pin Name	TS Input Interface (IT9507/9503)		
Till Name	Function	Description	
HOST_B0	MPEG Data[7]		
HOST_B1	MPEG Data[6]		
HOST_B2	MPEG Data[5]	# MPEG transport stream data.	
HOST_B3	MPEG Data[4]	# 8-bit in the parallel	
HOST_B4	MPEG Data[3]	mode and 1-bit in the serial mode.	
HOST_B5	MPEG Data[2]	# Data[0] or Data[7] can be the data pin in	
HOST_B6	MPEG Data[1]	the serial mode	
HOST_B7	MPEG Data[0]		
HOST_B8	MPEG Clock	MPEG clock	
HOST_B9	MPEG Valid	MPEG data valid	
HOST_B10	MPEG Sync	MPEG packet sync pulse	
HOST_B11	MPEG Fail	MPEG uncorrectable packet indicator	

The TS interface of IT9500 offers both parallel/serial input. For IT9500 (IT9507/9503) operating in the TS mode to communicate from the Host, the TS interface can operate in the parallel input mode, serial input mode, or be disabled. A timing diagram of the parallel input mode is shown in the example of Figure 7-1. For the serial input mode, the TS data can be configured to be input on Data[7] or Data[0]. On the other hand, for an IT9500 (IT9507/9503) operating in the standard USB2.0 mode, the transport stream interface is disable by strapping and should no input driving during operation. A table of IT9500 TS interface modes is given in Table 7-5.

The IT9500 transport stream interface is fully configurable. The list of configurable parameters is shown in

Table 7-6. Details on configuring the IT9500 TS interface are available in IT9500 Programming Guide.

Figure 7-1. An example of TS parallel interface timing diagram

Table 7-5. The IT9500 TS interface mode selection

Part Number	Operation Mode	TS interface operation modes	
IT9507/9503 Standard USB2.0	Serial Input. Data is on Data[7] or Data[0].		
	mode	Parallel Input	

Table 7-6. Configurable parameters of the IT9500 TS interface

Parameter	Selections	
	Parallel Input	
Input Mode	Serial Input	
Input data pin of serial mode.	Data[7] or Data[0]	
	For Parallel Mode:	
Dit Onder	Data[7] can be MSB or LSB	
Bit-Order	For Serial Mode:	
	Can be MSB first or LSB first.	
Style of the MPEG-2 sync byte	MPEG-2 style or DVB-T style.	
Signal polarity	Clock, Sync, Valid, and Fail can be independently configured to be active high or low.	
The style of MPEG Valid	Continuous or gapped.	
The gap between consecutive 188-byte payloads in units of byte times.	0 ~ 255	
MPEG Sync assertion for the serial output mode, select whether MPEG Sync is asserted only for the first bit or for all bits of the first byte.	Asserted for all bits of the first byte or for the first bit only.	
MPEG Clock frequency	Configurable	
MPEG Sync pin for the serial input mode	Can be used or wired to ground.	

7.7.1.1 Serial and Parallel Input Interface

The TS interface of IT9500 can become an input interface for accepting a TS stream and transmitted to receiver. Both parallel and serial data are supported for transmitted TS stream. An example timing diagram for the IT9500 TS serial input interface is shown in Figure 7-2.

Figure 7-2. Timing diagram of the IT9500 TS serial input interface

MPEG Sync of IT9500 can be wired to the ground if MPEG Sync is not available from the TS stream provider.

7.8 USB Interface

IT9500 supports USB 2.0 standard with many configurable parameters in the Endpoint 0 descriptors.

7.8.1 USB Descriptors

Most strings and parameters in the descriptors are configurable in the external EEPROM, including: Device descriptors: vender ID, product ID, device release number, manufacturer string index, product string index, serial number string index, configuration characteristics (self-powered, remote wake-up, ...etc.), max power consumption, and interrupt endpoint (Endpoint 3) polling interval; and

Strings: the string description of the manufacturer and the product and the serial number. These strings are defined in USB 2.0 standard.

Please refer IT9500 Programming Guide for details on the external EEPROM.

7.8.2 USB Control Protocol

Basic USB transfer and control scenario detail as follow:

7.8.2.1 Default Endpoint (Endpoint 0)

Endpoint 0 is the same as defined in USB 2.0 standard.

7.8.2.2 Control Message

Proprietary control messages are sent through a request-and-reply model. Any request packet corresponds to a reply packet, unless the communication is malfunctioning. A sequence number field is employed in each control packet to resolve the late reply and duplicate request/reply problems.

The available control messages include those for getting the current configuration, downloading the firmware, computing firmware checksum, booting IT9500, copying the firmware to a slave device, reading and writing the IT9500 memory, as well as 2-wire bus control messages, software reset control messages, and Control Unit command control messages

7.8.2.3 Data Message

Data messages convey the transport streams received by IT9500.

7.9 IR Interface

IT9500 supports IR protocols such as NEC, RC5, and RC6. The IR function can be enabled or disabled and the IR protocol can be selected by appropriately setting the corresponding fields in the external EEPROM. For IT9500 operating in the standard USB 2.0 mode, it considered as a USB composite device with HID when the IR function is enabled. Otherwise it is a USB single device. More details on EEPROM settings are available in IT9500 Programming Guide. The IT9500 IR decoder decodes raw signals received from the IR photo-receiver. Then the demodulated signals are converted to HID (Human Interface Devices) format according to a translation table that is downloaded from the driver via the memory write protocol (See 7.8.2 for more details on USB control protocols). At last the USB host receives IR messages via USB Endpoint 3.

More details of the IT9500 IR interface are available in IT9500 Programming Guide.

7.9.1 The Function Keys and Alternative Keys

The function key (FN) is used to create alternative key sequences for a remote control. When FN of a remote

control is pressed, an alternative key sequence is initiated, and any keys pressed are considered "alternative" if they are pressed within a predefined expiration time after the previous key press. This design enables a remote control with fewer keys (buttons) to almost double its "effective" number of keys. IT9500 will not send any key when only the function key is pressed

Alternative keys are supported in IT9500 as mentioned in IT9500 Programming Guide.

7.9.2 The External EEPROM

An external EEPROM can be used for storing USB related information and possibly other hardware related information in systems using IT9500. The content and format of the external EEPROM is given in detail in IT9500 Programming Guide.

7.9.3 Boot Scheme

Detailed boot scheme of IT9500 is described in IT9500 Programming Guide.

7.10 GPIO Interface

Please refer to IT9500 GPIO User Manual for application detail.

8. Power Modes

8.1 Power Modes

IT9500 supports the following power modes, as shown in Table 8-1:

 Suspend – all functions are turned off except for one internal slow clock and the suspend control block. It could be initiated by USB suspend operation or by applying a high voltage on the GPIOH5 pin with appropriate parameters setting.

Table 8-1. Power mode table

States	Slow clock	IT9500	Host interface
Suspend	ON	OFF (Only USB PHY and control block active)	OFF

The transition time between each power state is listed in Table 8-2.

Table 8-2. IT9500 power state transition time

To From	Suspend mode
Suspend mode	N/A

8.2 Current Consumption

For the current consumption detail, please refer to IT9500 Power Consumption Report.

9. Register Descriptions

For register descriptions, please refer to IT9500 Programming Guide.

10.DC Characteristics

10.1 Absolute Maximum Ratings*

Table 10-1. IT9500 absolute maximum ratings

Parameter	Symbol	Min		Max		Unit
Core Power Voltage	VDD1	-0.3		1.32		V
I/O Power Voltage	VCC3V	-0.3		3.6		V
USB Power Supply	AVDDHP	-0.3		3.6		V
Internal Regulator Power Voltage	VDDAH_REG VCC3V	-0.3		3.6		V
Voltage on input pins	VI	-0.3		VCC3V	′+0.3	V
Voltage on output pins	VO	-0.3		VCC3V	′+0.3	V
Storage Temperature	Tstg	-40		150		°C
Junction Temperature	Tj			125		°C
MQFN64 Junction-Ambient Thermal Resistance	Air Flow	0	1	2	3	m/s
(2-layer PCB)	Rth(j-a)	63.1	50.5	45.5	43	°C/W
MQFN64 Junction-Ambient Thermal Resistance	Air Flow	0	1	2	3	m/s
(4-layer PCB)	Rth(j-a)	24.4	21.4	20.2	19.7	°C/W

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

10.2 Operating Conditions

Table 10-2. IT9500 operating conditions

Parameter	Symbol	Min	Тур	Max	Unit
VHF band III frequency range	IN_VHF	50		300	MHz
UHF band frequency range	IN_UHF	300		950	MHz
Core Power	VCC	1.08	1.2	1.32	V

I/O Power Voltage			VCC3V	2.97	3.3	3.6	V
Power for US	·		AVDDHP	2.97	3.3	3.6	V
Internal Regu	lator Power S	upply	VDDAH_REG 1 VCC3V	3.0	3.3	3.6	V
Ambient (Commercial	Operating)	Temperature	Та	0		70	°C
Ambient (Industrial)	Operating	Temperature	Та	-40		85	°C

10.3 DC Electrical Characteristics

Table 10-3. IT9500 DC electrical characteristics

Note: RF_VDD=3.3V, VDD1=1.2V, VCC3V=3.3V, AVDDHP=3.3V, and Ta=25 °C unless otherwise specified.

Parameter	Symbol	Test Condition	Min.	Тур	Max.	Unit	
High Level Input Voltage for 3.3v IO	VIH		2.0			V	
Low Level Input Voltage for 3.3v IO	VIL				0.8	V	
Input Capacitance	Cin			3		рF	
Dower Consumption (Operating with		USB mode		380		mW	
Power Consumption (Operating, with internal voltage regulator)		MPEG-TS mode		350		mW	
Power Consumption (Suspend, with	D	Suspend (USB)				mW	
internal voltage regulator)	Suspend (by GPIOH5)					TIIIVV	
High Level Output Voltage for 3.3v IO			3.0			V	
Low Level Output Voltage for 3.3v IO	VOL				0.4	V	
High/Low Level Output Current	IOH/IOL	Digital Output Pins	0		4	mΑ	
High/Low Level Output Current	IOH/IOL	5V tolerant Open-Drain	0		2	mΑ	
Operation Current for 3.3V (include		USB mode		115		mA	
internal voltage regulator)		MPEG-TS mode		105		mA	
Operation Current for 1.4V				60		mA	
Operation Current for 1.2V				30		mA	

Note: *Test signal: Mode 3, 64QAM, Code Rate 7/8, GI 1/32 for DVB-T.

11. AC Characteristics

11.1 TS Input

Figure 11-1. IT9500 TS input timing diagram

Table 11-1. IT9500 TS input timing

Parameter	Requirement	Unit
Input Set-up Time	8.29	ns
Input Hold Time	0.5	ns

11.2 2-Wire Bus Output Timing

Figure 11-2. IT9500 2-wire bus output timing diagram.

Table 11-2. IT9500 2-wire bus output timing.

Parameter	Description	Min.	Max.	Unit
T_{Dmin}	Minimum valid delay of 2-wire bus output	T/2 + 2	NA	ns
T_{Dmax}	Maximum valid delay of 2-wire bus output	NA	T/2+6	ns

11.3 2-Wire Bus Input Timing

Figure 11-3. IT9500 2-wire bus input timing diagram.

Table 11-3. IT9500 2-wire bus input timing.

Parameter	Description	Min.	Max.	Unit
T _{Dsetup}	2-wire bus input setup time	2	T/2 -2	ns
T_{Dhold}	2-wire bus input hold time	2	T/2 -2	ns

12. Package Information

IT9507/9503FN - MQFN64

13. Ordering Information

Part Number	Description	Package	Body Size
IT9507FN/AX	Commercial grade baseband transmitter for digital TV with USB and TS interfaces	64-pin MQFN	8mm × 8mm
IT9507FN-I/AX	Industrial specification of 9507	64-pin MQFN	$8\text{mm} \times 8\text{mm}$
IT9503FN/AX	Commercial grade baseband transmitter for digital TV with USB and TS interfaces, Support QPSK/16QAM mode and guard Interval 1/4 & 1/8 only	64-pin MQFN	8mm × 8mm
IT9503FN-I/AX	Industrial specification of 9503	64-pin MQFN	8mm × 8mm

14.Top Marking Information

Terms and Conditions of Sale

ITE TECH. INC. TERMS AND CONDITIONS OF SALE (Rev: 2005)

ITE Tech. Inc. ("Seller") is a company headquartered in Taiwan, Republic of China, and incorporated under laws of Republic of China, Buyer is a company or an entity, purchasing product from ITE Tech. Inc..

ACCEPTANCE OF TERMS
BUYER ACCEPTS THESE TERMS (i) BY WRITTEN ACCEPTANCE (BY PURCHASE ORDER OR OTHERWISE), OR (ii) BY FAILURE TO RETURN GOODS DESCRIBED ON THE FACE OF THE PACKING LIST WITHIN FIVE DAYS OF

DELIVERY

- Delivery will be made Free Carrier (Incoterms), Seller's warehouse, Science-
- Based Industrial Park, Hsinchu, Taiwan.

 (b) Title to the goods and the entire risk will pass to Buyer upon delivery to carrier. Shipments are subject to availability. Seller shall make every reasonable effort to meet the date(s) quoted or acknowledged; and if Seller makes such effort, Seller will not be liable for any delays.

TERMS OF PAYMENT

- Terms are as stated on Seller's quotation, or if none are stated, net thirty (30) days. Accounts past due will incur a monthly charge at the rate of one percent (1%) per month (or, if less, the maximum allowed by applicable law) to cover servicing
- Seller reserves the right to change credit terms at any time in its sole discretion.

LIMITED WARRANTY

- (a) Seller warrants that the goods sold will be free from defects in material and workmanship and comply with Seller's applicable published specifications for a period of ninety (90) days from the date of Seller's delivery. Within the warranty period and by obtaining a return number from Seller, Buyer may request replacement or repair
- Goods or parts which have been subject to abuse (including without limitation repeated or extended exposure to conditions at or near the limits of applicable absolute ratings) misuse, accident, alteration, neglect, or unauthorized repair or improper application are not covered by any warranty. No warranty is made with respect to custom products or goods produced to Buyer's specifications (unless specifically stated in a writing signed by Seller).

 (c) No warranty is made with respect to goods used in devices intended for use in
- applications where failure to perform when properly used can reasonably be expected to result in significant injury (including, without limitation, navigation, aviation or nuclear equipment, or for surgical implant or to support or sustain life) and Buyer agrees to indemnify, defend, and hold harmless Seller from all claims, damages and liabilities arising out of any such uses.
- (d) This Paragraph 4 is the only warranty by Seller with respect to goods and may not be modified or amended except in writing signed by an authorized officer of Seller.
- Buyer acknowledges and agrees that it is not relying on any applications, diagrams or circuits contained in any literature, and Buyer will test all parts and applications under extended field and laboratory conditions. Notwithstanding any cross-reference or any statements of compatibility, functionality, interchangeability, and the like, the goods may differ from similar goods from other vendors in performance, function or operation, and in areas not contained in the written specifications, or as to ranges and conditions outside such specifications; and Buyer agrees that there are no warranties and that Seller is not responsible for such things.

 (f) EXCEPT AS PROVIDED ABOVE, SELLER MAKES NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY; AND SELLER EXPRESSLY
- EXCLUDES AND DISCLAIMS ANY WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE OR APPLICATION.

- LIMITATION OF LIABILITY
 Seller will not be liable for any loss, damage or penalty resulting from causes beyond its reasonable control, including but not limited to delay by others, force majeure, acts of God, or labor conditions. In any such event, the date(s) for Seller's performance will be deemed extended for a period equal to any delay resulting.
 (b) THE LIABILITY OF SELLER ARISING OUT OF THE CONTRACT OR ANY
- GOODS SOLD WILL BE LIMITED TO REFUND OF THE PURCHASE PRICE OR REPLACEMENT OF PURCHASED GOODS (RETURNED TO SELLER FREIGHT PRE-PAID) OR, WITH SELLER'S PRIOR WRITTEN CONSENT, REPAIR OF PURCHASED GOODS.
- Buyer will not return any goods without first obtaining a customer return order
- AS A SEPARATE LIMITATION, IN NO EVENT WILL SELLER BE LIABLE (a) AS A SEPARATE LIMITATION, INNO EVENT WILL SELLER BE LIABLE FOR COSTS OF SUBSTITUTE GOODS; FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES; OR LOSS OF USE, OPPORTUNITY, MARKET POTENTIAL, AND/OR PROFIT ON ANY THEORY (CONTRACT, TORT, FROM THIRD PARTY CLAIMS OR OTHERWISE). THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY REMEDY.
- (e) No action against Seller, whether for breach, indemnification, contribution or otherwise, shall be commenced more than one year after the cause of action has accrued, or more than one year after either the Buyer, user or other person knew or with reasonable diligence should have known of the matter or of any claim of dissatisfaction or defect involved; and no such claim may be brought unless Seller has first been given commercially reasonable notice, a full written explanation of all nas inst open given commercially reasonable notice, a full written explain pertinent details, and a good faith opportunity to resolve the matter.

 (f) BUYER EXPRESSLY AGREES TO THE LIMITATIONS OF THIS PARAGRAPH 5 AND TO THEIR REASONABLENESS.

SUBSTITUTIONS AND MODIFICATIONS

Seller may at any time make substitutions for product ordered which do not materially and adversely affect overall performance with the then current specifications in the typical and intended use. Seller reserves the right to half deliveries and shipments and alter specifications and prices without notice. Buyer shall verify that the literature and information is current before purchasing.

CANCELLATIONThe purchase contract may not be canceled by Buyer except with written consent by Seller and Buyer's payment of reasonable cancellation charges (including but not be limited to expenses already incurred for labor and material, overhead, commitments made by Seller, and a reasonable profit).

INDEMNIFICATION

Seller will, at its own expense, assist Buyer with technical support and information in connection with any claim that any parts as shipped by Seller under the purchase order infringe any valid and enforceable copyright, or trademark, provided however, that Buyer (i) gives immediate written notice to Seller, (ii) permits Seller to participate and to defend if Seller requests to do so, and (iii) gives Seller all needed information, assistance and authority. However, Seller will not be responsible for infringements resulting from anything not entirely manufactured by Seller, or from any combination with products, equipment, or materials not furnished by Seller. Seller will have no liability with respect to intellectual property matters arising out of products

made to Buyer's specifications, code, or designs.

Except as expressly stated in this Paragraph 8 or in another writing signed by an authorized officer, Seller makes no representations and/or warranties with respect to intellectual and/or industrial property and/or with respect to claims of infringement. Except as to claims Seller agrees in writing to defend, BUYER WILL INDEMNIFY, DEFEND AND HOLD HARMLESS SELLER FROM ALL CLAIMS, COSTS, LOSSES, AND DAMAGES (INCLUDING ATTORNEYS FEES) AGAINST AND/OR ARISING OUT OF GOODS SOLD AND/OR SHIPPED HEREUNDER.

NO CONFIDENTIAL INFORMATION

Seller shall have no obligation to hold any information in confidence except as provided in a separate non-disclosure agreement signed by both parties.

- ENTIRE AGREEMENT
 These terms and conditions are the entire agreement and the only representations and understandings between Seller and Buyer, and no addition, deletion or modification shall be binding on Seller unless expressly agreed to in written and signed by an officer of Seller
- (b) Buyer is not relying upon any warranty or representation except for those specifically stated here.

The contract and all performance and disputes arising out of or relating to goods involved will be governed by the laws of R.O.C. (Taiwan, Republic of China), without reference to the U.N. Convention on Contracts for the International Sale of Goods or to conflict of laws principles. Buyer agrees at its sole expense to comply with all applicable laws in connection with the purchase, use or sale of the goods provided hereunder and to indemnify Seller from any failure by Buyer to so comply. Without limiting the foregoing, Buyer certifies that no technical data or direct products thereof will be made available or re-exported, directly or indirectly, to any country to which such export or access is prohibited or restricted under R.O.C. laws or U.S. laws or regulations, unless prior authorization is obtained from the appropriate officials and agencies of the government as required under R.O.C. or U.S. laws or regulations.

12. <u>JURISDICTION AND VENUE</u>
The courts located in Hsinchu, Taiwan, Republic of China, will have the sole and exclusive jurisdiction and venue over any dispute arising out of or relating to the contract or any sale of goods hereunder. Buyer hereby consents to the jurisdiction of such courts.

13. ATTORNEYS' FEES

Reasonable attorneys' fees and costs will be awarded to the prevailing party in the event of litigation involving and/or relating to the enforcement or interpretation of the contract and/or any goods sold under it.