Cables and Connectors

Course Code: CSC 3116

Course Title: Computer Networks

Dept. of Computer Science Faculty of Science and Technology

Lecturer No:	Lab 4	Week No:	4	Semester:	Spring 22-23	
Lecturer:	Dr. Mehedi Hasan; <u>mmhasan@aiub.edu</u>					

Lecture Outline

- 1. Different types of devices
- 2. Ethernet Cabling
- 3. Terminal Emulation Software
- 4. Remote Access

Cisco Switch

Fig. A 2960 series cisco switch

CLI access options

Fig. CLI access options

Console Connection to Switch

Fig. Console Connection to a Switch

2960-XR series supports both the older RJ-45 console port and a USB console port

USB console port is Not rectangular ,rather it is Mini-B port

DB9 Connector

Almost obsolete Replaced by USB

Fig. DB9 Connector (For serial port of PC)

USB and RJ-45 Consle

USB Console (Mini-B)

Terminal Emulation Software

To interact with Switch/Routers Examples

- SecureCRT: Supports serial, Telnet and SSH → Not free
- PuTTY: Supports serial, Telnet and SSH → free
- TeraTerm Pro: Supports serial, Telnet and SSH → free
- Windows Telnet (integrated to Windows OS) → Supports Telnet only
- Windows HyperTerminal → Supports Telnet and Serial, NOT SSH

Remote Access

- Telnet and SSH allows remote access to Switch/Router
- Must need password to access the device
- Telnet is not secure
 - No encryption
- SSH is secure
 - Encryption is used

Ethernet cabling

- Unshielded Twisted Pair (UTP)
 - > Electromagnetic interference
 - > Less data rate
 - > cheap
- Shielded Twisted Pair (STP)
 - > Less interference
 - > Higher data rate
 - > costly

Table I Different categories of cable

Category	Speed (Mbps)	Common use
Cat 1	< 1	Analog voice
Cat 2	4	ARCNET
Cat 3	10	10baseT Ethernet
Cat 4	16	Token Ring
Cat 5	100	100baseT Ethernet
Cat 5e	1000	1000baseT Ethernet
Cat 6	1000	1000baseT Ethernet

- Straight-Through cable
 - PC to Switch or Hub
 - Router to Switch or Hub
- Crossover cable
 - > PC to PC
 - Switch to Switch
 - > Hub to Hub
 - Switch to Hub
 - > Router to Router
 - > Router to PC
- Rollover
 - PC to Console

Crossover cable: If the endpoints transmit on the same pin pair

Straight-through cable: If the endpoints transmit on different pin pairs

Transmits on Pins 1,2	Transmits on Pins 3,6
PC NICs	Hubs
Routers	Switches
Wireless access point (Ethernet interface)	_

Identify cables

Straight-Through Cable

Straight-through cables have the same termination at each end - T568A or T568B.

Crossover Cable

Crossover cables have a T568A termination at one end and a T568B termination at the other end.

Transmit pins at each end connect to the receive pins at the other end.

10/100 Mbps

- ➤ Suppose that we have three networks BBA, CSE, and EEE IP requirements of 100, 350 and 80.
- If You are given an IP block 10.10.0.0, allocate IPs performing subnetting.
- ➤ Suppose that we have five networks A, B, C, D, and E with IP requirements of 10, 30, 90, 200, and 80.
- If You are given an IP block 172.16.0.0, allocate IPs performing subnetting.
- Consider your ID: AB-CDEFG-H, Suppose that we have four networks A, B, C, and D with IP requirements of 100*C, 10*D, 50*A, and 20*G.
- If You are given an IP block 192.168.0.0, allocate IPs performing subnetting.

➤ Suppose that we have two networks CSE and EEE with IP requirements of 10 and 8. If You are given an IP block 192.168.0.0, allocate IPs performing subnetting.

➤ Suppose that we have two networks CSE and EEE with IP requirements of 10 and 8. If You are given an IP block 192.168.0.0, allocate IPs performing subnetting.

192.168.0.0/16

 $CSE \rightarrow 10 \text{ host } \rightarrow 4 \text{bit } \rightarrow 192.168.0.0-15/28 \rightarrow 255.255.255.240$

Net address: 192.168.0.0/28 BC address: 192.168.0.15/28 Gateway: 192.168.0.14/28

EEE \rightarrow 8 host \rightarrow 3bit \rightarrow 192.168.0.16-23/29 \rightarrow 255.255.255.248

Net address: 192.168.0.16/29

BC address: 192.168.0.23/29

Gateway: 192.168.0.22/29

References

- 1. Official Cert Guide CCNA 200-301, vol. 1, W. Odom, Cisco Press, First Edition, 2019, USA.
- **2. CCNA Routing and Switching**, *T. Lammle*, John Wily & Sons, Second Edition, 2016, USA.
- **3**. Cisco IOS Configuration Fundamentals Command Reference. http://www.cisco.com

Books

- 1. Official Cert Guide CCNA 200-301, vol. 1, W. Odom, Cisco Press, First Edition, 2019, USA.
- **2. CCNA Routing and Switching**, *T. Lammle*, John Wily & Sons, Second Edition, 2016, USA.