Problem 1. Let S be a nonempty subset of V. Consider conv(S) which is the set of all elements such that $\lambda_1 x_1 + \cdots + \lambda_k x_k \in conv(S)$ where $x_i \in S, k \in \mathbb{N}$ and $\lambda_i \geq 0$ and $\lambda_1 + \cdots + \lambda_k = 1$. Consider then the case where k = 2. We then have that $\lambda_1 x + \lambda_2 y \in conv(S)$. Then by our assumptions, $\lambda_1 + \lambda_2 = 1$ so $\lambda \equiv \lambda_1 = 1 - \lambda_2$. Then for any $x, y \in S$ we have $\lambda x + (1 - \lambda)y \in conv(S)$ so conv(S) is convex.

Problem 2.

- (i) Let $P = \{x \in V | \langle a, x \rangle = b\} \in V$ be a hyperplane where $a \in V, a \neq 0, b \in \mathbb{R}$. Let $x, y \in P$ and consider the point $\lambda x + (1 - \lambda)y$. Then $\langle a, \lambda x + (1 - \lambda)y \rangle = \lambda \langle a, x \rangle + (1 - \lambda)\langle a, y \rangle = \lambda b + (1 - \lambda)b = b$ so $\lambda x + (1 - \lambda)y \in P$ and P is convex.
- (ii) Let $H = \{x \in V | \langle a, x \rangle \leq b\} \in V$ be a half-space where $a \in V, a \neq 0, b \in \mathbb{R}$. Let $x, y \in H$ and consider the point $\lambda x + (1 - \lambda)y$. Then $\langle a, \lambda x + (1 - \lambda)y \rangle = \lambda \langle a, x \rangle + (1 - \lambda)\langle a, y \rangle \leq \lambda b + (1 - \lambda)b = b$ so $\lambda x + (1 - \lambda)y \in H$ and H is convex.

Problem 4.

- (i) $||x y||^2 = \langle x y, x y \rangle = \langle (x p) + (p y), (x p) + (p y) \rangle = ||x p||^2 + ||p y||^2 + 2\langle x p, p y \rangle$
- (ii) Let $\langle x-p, p-y \rangle \geq 0$. Then if $y \neq p$ we have by part 1 that $||x-y||^2 = ||x-p||^2 + ||p-y||^2 + 2\langle x-p, p-y \rangle$ where both the second and third terms on the right hand side are greater than 0 so the left hand side is greater than the right hand side and $||x-y||^2 > ||x-p||^2$.
- (iii) Let $z = \lambda y + (1 \lambda)p$ where $0 \ge \lambda \le 1$. Then $||x z||^2 = ||x \lambda y (1 \lambda)p||^2 = \langle x \lambda y (1 \lambda)p, x \lambda y (1 \lambda)p \rangle = \langle (x p) \lambda (y p), (x p) \lambda (y p) \rangle = ||x p||^2 + 2\lambda \langle x p, y p \rangle + \lambda^2 ||y p||^2$
- (iv) Let p be the projection of point x onto C. Then by definition of the projection $||x p||^2 \le ||x y||^2$, $\forall y \in C$. We have from part (iii) that $||x z||^2 ||x p||^2 = 2\lambda \langle x p, y p \rangle + \lambda^2 ||y p||^2$. Then by the definition of the projection $||x z||^2 ||x p||^2 \ge 0$ so $0 \le 2\langle x p, y p \rangle + \lambda ||y p||^2$.

Problem 6. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and consider the set $C = \{x \in \mathbb{R}^n | f(x) \le c\} \subset \mathbb{R}^n$. Then for $x, y \in C$ and $0 \le \lambda \le 1$, since f is convex, we have that $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda c + (1 - \lambda)c = c$. Therefore, $\lambda x + (1 - \lambda)y \in C$ so C is convex.

Problem 7. Let C be a convex set and let f_1, \dots, f_k be convex functions where $f_i : C \to \mathbb{R}$ and $\lambda_1, \dots, \lambda_k \in \mathbb{R}^+$. Then define the function f as $f(x) = \sum_{i=1}^k \lambda_i f_i(x)$. Consider the points

 $x, y \in C$ and $0 \le \lambda \le 1$ so $\lambda x + (1 - \lambda)y \in C$ since C is convex. Then

$$f(\lambda x + (1 - \lambda)y) = \sum_{i=1}^{k} \lambda_i f_i(\lambda x + (1 - \lambda)y)$$

$$\leq \sum_{i=1}^{k} \lambda_i (\lambda f_i(x) + (1 - \lambda)f_i(y))$$

$$= \sum_{i=1}^{k} \lambda_i \lambda_i f_i(x) + \sum_{i=1}^{k} \lambda_i (1 - \lambda)f_i(y)$$

$$= \lambda \sum_{i=1}^{k} \lambda_i f_i(x) + (1 - \lambda) \sum_{i=1}^{k} \lambda_i f_i(y)$$

$$= \lambda f(x) + (1 - \lambda)f(y)$$

Problem 13. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and bounded above. Assume by contradiction that f is not constant. Then WLOG $\exists x, y, z \in \mathbb{R}^n$ such that x < y and f(x) < f(y). Additionally, let $z \in (x,y)$. We have by convexity that $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y)$. If we let $\lambda = \frac{z-y}{y-x}$ then $\lambda x + (1-\lambda)y = z$. Rewriting the above expression we have that $f(z) \ge \lambda f(x) + (1-\lambda)f(y)$. If we let $y \to \infty$ then the right hand side of the inequality violates the condition of being bounded above, and f must therefore be a constant function.

Problem 20. Let $f: \mathbb{R}^n \to R$ be convex and let -f also be convex. We have then that

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
$$-f(\lambda x + (1 - \lambda)y) \ge -(\lambda f(x) + (1 - \lambda)f(y))$$

These two conditions together imply that

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$$

so f is linear and therefore affine.

Problem 21. Let x^* be the local minimizer for the problem

min
$$\phi \circ f(x)$$

s.t $G(x) \leq 0$
 $H(x) = 0$

Then if $x \in B_{\epsilon}(x^*)$, a ball of size ϵ around x^* , $\phi \circ f(x) > \phi \circ f(x^*)$. Since ϕ is a strictly increasing function it must be that $f(x) > f(x^*)$. Then x^* is a minimizer of the problem

min
$$f(x)$$

s.t $G(x) \le 0$
 $H(x) = 0$

Now let x^* be a minimizer of the problem

min
$$f(x)$$

s.t $G(x) \le 0$
 $H(x) = 0$

Then if $x \in B_{\epsilon}(x^*)$ we have $f(x) > f(x^*)$. Since ϕ is a strictly increasing function it must be that $\phi \circ f(x) > \phi \circ f(x^*)$. Then x^* is a minimizer of the problem

min
$$\phi \circ f(x)$$

s.t $G(x) \leq 0$
 $H(x) = 0$