Exact Evaluation of Marginal Likelihood Integrals

Shaowei Lin (Joint work with B. Sturmfels, Z. Xu)

1 May 2008

shaowei@math.berkeley.edu

University of California, Berkeley

Menu

Appetizer

The Occasionally Dishonest Coin-Tosser

Main Course

Marginal Likelihood Integrals
Mixtures of Independence Model
Exact Formula for the Integral
Approximations of the Integral

Dessert

Two Different Examples

The Deal: Four coin tosses. If all equal, you lose.

- The Deal: Four coin tosses. If all equal, you lose.
- The Real Deal: Two coins are involved, one fair and one biased. Most of the time, he uses the fair coin, but occasionally, he uses the biased coin.

The Deal: Four coin tosses. If all equal, you lose.

The Real Deal: Two coins are involved, one fair and one biased. Most of the time, he uses the fair coin, but occasionally, he uses the biased coin.

The Data, U:

#Heads	0	1	2	3	4
#Occurrences	51	18	73	25	75

Model 1:

```
Coin: 0 \le \theta_h, \theta_t \le 1, \theta_h + \theta_t = 1. Probability of i heads, p_i = \binom{4}{i} \theta_h^i \theta_h^{4-i}. Likelihood of data, L_U(\theta) = Z p_0^{51} p_1^{18} p_2^{73} p_3^{25} p_4^{75} = Z 4^{43} 6^{73} \theta_h^{539} \theta_t^{429}, where Z = 242!/(51! \cdot 18! \cdot 73! \cdot 25! \cdot 75!).
```

Model 1:

Coin: $0 \le \theta_h, \theta_t \le 1, \quad \theta_h + \theta_t = 1.$

Probability of i heads, $p_i = \binom{4}{i} \theta_h^i \theta_h^{4-i}$.

Likelihood of data, $L_U(\theta) = Zp_0^{51}p_1^{18}p_2^{73}p_3^{25}p_4^{75} = Z4^{43}6^{73}\theta_h^{539}\theta_t^{429}$,

where $Z = 242!/(51! \cdot 18! \cdot 73! \cdot 25! \cdot 75!)$.

Model 2:

Coin 0: $0 \le \theta_h, \theta_t, \le 1$, $\theta_h + \theta_t = 1$.

Coin 1: $0 \le \rho_h, \rho_t \le 1, \quad \rho_h + \rho_t = 1.$

Choice of coin: $0 \le \sigma_0, \sigma_1 \le 1, \quad \sigma_0 + \sigma_1 = 1.$

Probability of i heads, $p_i = \binom{4}{i} (\sigma_0 \theta_h^i \theta_h^{4-i} + \sigma_1 \rho_h^i \rho_t^{4-i})$.

Likelihood of data, $L_U(\theta) = Zp_0^{51}p_1^{18}p_2^{73}p_3^{25}p_4^{75}$.

Question: How do we do model selection?

- Question: How do we do model selection?
- Method 1: Maximum Likelihood Compare the maximum values of the likelihood functions.

- Question: How do we do model selection?
- Method 1: Maximum Likelihood Compare the maximum values of the likelihood functions.
- Method 2: Marginal Likelihood Integrate the likelihood functions over the parameter space.

$$\int_{\Theta} L_U(\theta) d\theta$$

- Can be viewed as "average" probability of model.
- Probability measures on the parameter space represent prior beliefs.
- Max. likelihood is integrating with unit measure on the set of optimal parameters.

Marginal Likelihood Integrals

Current State of Affairs

- Very difficult to compute exactly.
- Tackled using MCMC, importance sampling methods.
- Approximation formulas limited to special cases.
- Accuracy of above methods and formulas questionable.

Our Goal

Show that they can be computed exactly in many cases previously thought impractical.

Coin Toss Example

Random Variables

 $X_1, X_2, \ldots, X_4 \in \{0, 1\}$ identically distributed.

Model Parameters

$$\theta_0, \theta_1, \quad \theta \in \Delta_1.$$

Independence Model

 $p_v = \theta^{a_v}$, where a_v are the columns of a 2×16 matrix

Two-Mixture

Three-Mixture

$$p_v = \sigma_0 \theta^{a_v} + \sigma_1 \rho^{a_v}, \quad \sigma \in \Delta_1.$$

$$p_v = \sigma_0 \theta^{a_v} + \sigma_1 \rho^{a_v} + \sigma_2 \tau^{a_v}, \quad \sigma \in \Delta_2.$$

Random Variables

$$X_1^{(1)}, X_2^{(1)}, \dots, X_{s_1}^{(1)} \in \{0, \dots, t_1\}$$
 identically distributed,

 $X_1^{(k)}, X_2^{(k)}, \dots, X_{s_k}^{(k)} \in \{0, \dots, t_k\}$ identically distributed.

Random Variables

$$X_1^{(1)}, X_2^{(1)}, \dots, X_{s_1}^{(1)} \in \{0, \dots, t_1\}$$
 identically distributed,

 $X_1^{(k)}, X_2^{(k)}, \dots, X_{s_k}^{(k)} \in \{0, \dots, t_k\}$ identically distributed.

$$\theta_0^{(1)}, \theta_1^{(1)}, \dots, \theta_{t_1}^{(1)}, \quad \theta^{(1)} \in \Delta_{t_1}.$$

Model Parameters

$$\theta_0^{(k)}, \theta_1^{(k)}, \dots, \theta_{t_k}^{(k)}, \quad \theta^{(k)} \in \Delta_{t_k}.$$

Random Variables

$$X_1^{(1)}, X_2^{(1)}, \dots, X_{s_1}^{(1)} \in \{0, \dots, t_1\}$$
 identically distributed,

 $X_1^{(k)}, X_2^{(k)}, \dots, X_{s_k}^{(k)} \in \{0, \dots, t_k\}$ identically distributed.

$$\theta_0^{(1)}, \theta_1^{(1)}, \dots, \theta_{t_1}^{(1)}, \quad \theta^{(1)} \in \Delta_{t_1}.$$

Model Parameters

$$\theta_0^{(k)}, \theta_1^{(k)}, \dots, \theta_{t_k}^{(k)}, \quad \theta^{(k)} \in \Delta_{t_k}.$$

Can be represented by a $d \times n$ matrix A, where

Independence Model

$$d$$
 = #parameters = $(t_1+1)+(t_2+1)+\cdots+(t_k+1)$, n = #outcomes = $(t_1+1)^{s_1}(t_2+1)^{s_2}\cdots(t_k+1)^{s_k}$. The column a_v corresponds to the probability $p_v=\theta^{a_v}$.

Random Variables

$$X_1^{(1)}, X_2^{(1)}, \dots, X_{s_1}^{(1)} \in \{0, \dots, t_1\}$$
 identically distributed,

 $X_1^{(k)}, X_2^{(k)}, \dots, X_{s_k}^{(k)} \in \{0, \dots, t_k\}$ identically distributed.

$$\theta_0^{(1)}, \theta_1^{(1)}, \dots, \theta_{t_1}^{(1)}, \quad \theta^{(1)} \in \Delta_{t_1}.$$

Model Parameters

$$\theta_0^{(k)}, \theta_1^{(k)}, \dots, \theta_{t_k}^{(k)}, \quad \theta^{(k)} \in \Delta_{t_k}.$$

Independence Model

Can be represented by a $d \times n$ matrix A, where

$$d$$
 = #parameters = $(t_1 + 1) + (t_2 + 1) + \cdots + (t_k + 1)$,
 n = #outcomes = $(t_1 + 1)^{s_1}(t_2 + 1)^{s_2} \cdots (t_k + 1)^{s_k}$.

The column a_v corresponds to the probability $p_v = \theta^{a_v}$.

$$lacksquare$$
 Mixtures $p_v = \sigma_0 heta^{a_v} + \ldots + \sigma_l
ho^{a_v}, \quad \sigma \in \Delta_l.$

Random Variables

$$X_1^{(1)}, X_2^{(1)}, \dots, X_{s_1}^{(1)} \in \{0, \dots, t_1\}$$
 identically distributed,

 $X_1^{(k)}, X_2^{(k)}, \dots, X_{s_k}^{(k)} \in \{0, \dots, t_k\}$ identically distributed.

$$\theta_0^{(1)}, \theta_1^{(1)}, \dots, \theta_{t_1}^{(1)}, \quad \theta^{(1)} \in \Delta_{t_1}.$$

Model Parameters

$$\theta_0^{(k)}, \theta_1^{(k)}, \dots, \theta_{t_k}^{(k)}, \quad \theta^{(k)} \in \Delta_{t_k}.$$

Independence Model

Can be represented by a $d \times n$ matrix A, where

$$d$$
 = #parameters = $(t_1 + 1) + (t_2 + 1) + \cdots + (t_k + 1)$,
 n = #outcomes = $(t_1 + 1)^{s_1}(t_2 + 1)^{s_2} \cdots (t_k + 1)^{s_k}$.

The column a_v corresponds to the probability $p_v = \theta^{a_v}$.

$$p_v = \sigma_0 \theta^{a_v} + \ldots + \sigma_l \rho^{a_v}, \quad \sigma \in \Delta_l.$$

$$U = (U_v), \quad N = \sum_v U_v.$$

Mixtures

Data

Main Formula:

$$\int_{\Delta_m} \theta_0^{b_0} \theta_1^{b_1} \cdots \theta_m^{b_m} d\theta = \frac{m! \cdot b_0! \cdot b_1! \cdots b_m!}{(b_0 + b_1 + \cdots + b_m + m)!}$$

Main Formula:

$$\int_{\Delta_m} \theta_0^{b_0} \theta_1^{b_1} \cdots \theta_m^{b_m} d\theta = \frac{m! \cdot b_0! \cdot b_1! \cdots b_m!}{(b_0 + b_1 + \cdots + b_m + m)!}$$

Independence Model:

$$L_{U}(\theta) = Z \cdot \theta^{b}$$

$$\int_{\Theta} L_{U}(\theta) d\theta = Z \cdot \prod_{i=1}^{k} \frac{t_{i}! b_{0}^{(i)}! b_{1}^{(i)}! \cdots b_{t_{i}}^{(i)}!}{(s_{i}N + t_{i})!}$$

where $Z = N! / \prod_v U_v!$ and b = AU.

Recall that the maximum likelihood of an independence model is easy to compute. Here, we see that its marginal likelihood is also easy to compute.

Main Formula:

$$\int_{\Delta_m} \theta_0^{b_0} \theta_1^{b_1} \cdots \theta_m^{b_m} d\theta = \frac{m! \cdot b_0! \cdot b_1! \cdots b_m!}{(b_0 + b_1 + \cdots + b_m + m)!}$$

Mixture of Independence Model:

$$L_{U}(\sigma, \theta, \rho) = Z \cdot \prod_{v} (\sigma_{0} \theta^{a_{v}} + \sigma_{1} \rho^{a_{v}})^{U_{v}}$$

$$= Z \cdot \sum_{b} \phi(b) \cdot \sigma^{\alpha(b)} \cdot \theta^{b} \cdot \rho^{\beta(b)}$$

$$\int_{\Delta_{1} \times \Theta \times \Theta} L_{U}(\sigma, \theta, \rho) \, d\sigma d\theta d\rho = Z \cdot \sum_{b} \phi(b) \int_{\Delta_{1}} \sigma^{\alpha(b)} d\sigma \int_{\Theta} \theta^{b} d\theta \int_{\Theta} \rho^{\beta(b)} d\rho$$

where $\phi(b)$ is the coefficient of θ^b in the expansion of $\prod_v (\theta^{a_v}+1)^{U_v}$, $\beta(b)=AU-b$, and $\alpha(b)=\frac{1}{\text{column sum of A}}(b,\beta(b))$.

Formula:

$$\int_{\Delta_1 \times \Theta \times \Theta} L_U(\sigma, \theta, \rho) \ d\sigma d\theta d\rho = Z \cdot \sum_b \phi(b) \int_{\Delta_1} \sigma^{\alpha(b)} d\sigma \int_{\Theta} \theta^b d\theta \int_{\Theta} \rho^{\beta(b)} d\rho$$

Computational Considerations:

- **9** Bottleneck is in computing $\phi(\cdot)$.
 - Use the sum-product algorithm (dynamic programming).
 - Exploit low rank of matrix A to store, compute $\phi(\cdot)$ efficiently.
- Only need to sum half the terms because of symmetry.
- Precompute and look-up values of factorials.
- Computation is highly parallelizable.
- Maple library:

http://math.berkeley.edu/~shaowei/integrals.html

Question:

Suppose U = NY where Y is a fixed vector with $\sum_{v} Y_v = 1$. As $N \to \infty$, how does the log marginal likelihood behave?

$$\log \int_{\Theta} L_U(\theta) d\theta$$

Question:

Suppose U=NY where Y is a fixed vector with $\sum_v Y_v=1$. As $N\to\infty$, how does the log marginal likelihood behave?

Answer 1:

$$\log \int_{\Theta} L_U(\theta) d\theta \to -\infty$$

-

Question:

Suppose U=NY where Y is a fixed vector with $\sum_v Y_v=1$. As $N\to\infty$, how does the log marginal likelihood behave?

Answer 2: BIC Score

$$\log \int_{\Theta} L_U(\theta) d\theta \quad \approx \quad \log L(\hat{\theta}) - \frac{d}{2} \log N$$

where d is the dimension of the model and $L(\hat{\theta})$ is the *maximum* likelihood. BIC stands for Bayesian Information Criterion.

Assumes that the model is in the exponential family. In particular, the model has one local maxima. As $N \to \infty$, the "main bulk" of the integral accumulates near the maximum likelihood.

Question:

Suppose U = NY where Y is a fixed vector with $\sum_{v} Y_v = 1$. As $N \to \infty$, how does the log marginal likelihood behave?

Answer 3: Laplace Approximation

$$\log \int_{\Theta} L_U(\theta) d\theta \approx \log L(\hat{\theta}) - \frac{1}{2} \log |\det H(\hat{\theta})| + \frac{d}{2} \log 2\pi$$

where H is the Hessian of the log-likelihood function $\log L$.

Only assumes that L is twice differentiable, convex and achieves maximum on internal point.

Maximum Likelihood

Independence: $0.1443566234 \times 10^{-54}$

Mixture: $0.1395471101 \times 10^{-18}$

Maximum Likelihood

Independence: $0.1443566234 \times 10^{-54}$

Mixture: $0.1395471101 \times 10^{-18}$

Marginal Likelihood

Independence: $0.5773010423 \times 10^{-56}$

Mixture: $0.7788716339 \times 10^{-22}$ (Actual)

 $0.3706788423 \times 10^{-22}$ (BIC)

 $0.4011780794 \times 10^{-22}$ (Laplace)

Maximum Likelihood

Independence: $0.1443566234 \times 10^{-54}$

Mixture: $0.1395471101 \times 10^{-18}$

Marginal Likelihood

Independence: $0.5773010423 \times 10^{-56}$

Mixture: $0.7788716339 \times 10^{-22}$ (Actual)

 $0.3706788423 \times 10^{-22}$ (BIC)

 $0.4011780794 \times 10^{-22}$ (Laplace)

In fact, the marginal likelihood for the mixture model is exactly...

280574803522231306713539801407536197597886462223522561605447598167473678
179944347671964920094262857814142954778919484575794494634597087353102304
248971276283376084577405257325023105529808465270322581978551567580758925
110257675297117544861385260550659152812547614120802176732047030181879109
493690844304745407842533226543567040606519783806275290934774387083402120
463897269764933451955441347142204399057543578963206568930497371729769606
041563240074105056347734223863639964738475530800977857245483838909692596
88769804869503436965543936

360232407133812587457756267196205462833914725679174649607729866457949943 683688904948668950705146387926432815384516200228517822445366346027908075 890415694594639097772451285931203609676574631396902054177534690776699818 039776960929933980426601020754860387098086112935817383960726045468340208 300550895924890290334034766367060574717661999313960788983299986760335032 007048283774068706760885200472649374242862358839016056687454944072436048 444216340490002439651668585137180542401382177574644469861470630010513996 263775153793334976819060141283354099489865061875.

BIC can be wrong!

 $X_{\perp}X_{r}X_{c}$

Consider the two models above and data below (N=36).

		$\Lambda_4\Lambda_5\Lambda_6$									
		000	001	010	011	100	101	110	111		
$X_1X_2X_3$	000	2	3		1	3	5	1	1		
	001										
	010						1				
	011										
	100	3	4	1	1	2	3	1	1		
	101		1								
	110	1	1								
	111										

BIC can be wrong!

Model Selection:

BIC Score: M1's score is better than M2's.

Actual Marginal Likelihood:

M1 -

 $\frac{2673620257358279100801924830063571461298286189}{595389791326672092336165244431090566358136576942917805560000000}$

$$\approx 0.449 \times 10^{-17}$$

M2

$$\approx 0.553 \times 10^{-17}$$

Thus, a true Bayesian should choose M2 over M1, even though the BIC score tells him otherwise!

References

- D.M. Chickering and D. Heckerman: Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables, *Machine Learning* 29 (1997) 181-212; Microsoft Research Report, MSR-TR-96-08.
- 2. D. Geiger and D. Rusakov: Asymptotic model selection for naive Bayesian networks, *Journal of Machine Learning Reseach* 6 (2005) 1–35.
- 3. S. Hoşten, A. Khetan and B. Sturmfels: Solving the likelihood equations, *Foundations of Computational Mathematics* **5** (2005) 389–407.
- 4. L. Pachter and B. Sturmfels: *Algebraic Statistics for Computational Biology*, Cambridge University Press, 2005.