Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* **UC Berkeley**

Trevor Darrell

Slides are additions from the author's slides.

Contents

- CNN reviews
- Contributions
- Technical details

CNN reviews

A machine learning algorithm usually corresponds to a combinations of the following 3 elements:

(either explicitly specified or implicit)

- The choice of a specific function family: F (often a parameterized family).
- A way to evaluate the quality of a function f∈F (typically using a cost (or loss) function L measuring how wrongly f predicts).
- A way to search for the «best» function f∈F (typically an optimization of function parameters to minimize the overall loss over the training set).

Function family F: Multilayer Neural Networks

Loss function L

For classification problem, usually cross-entropy loss function

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{k=1}^{K} 1\left\{y^{(i)} = k\right\} \log P(y^{(i)} = k|x^{(i)}; \theta)\right]$$

Modern CNNs

<u>AlexNet</u> (Krizhevsky et. al.)

Architecture terminology

- Convolution layer: C(k,n,s), pooling layer: P(k,s), normalization layer: N, rectified linear unit: RL
- AlexNet: C(11x11x3, 96, 4) RL N P(3, 2) C(5x5x48, 256, 1) RL N P
 (3, 2) C(3x3x256, 384, 1) RL C(3x3x384, 384, 1) RL C(3x3x384, 256, 1) RL P(3, 2) FC(4096) D(0.5) FC(4096) D(0.5) FC(1000)

Number of parameters in CNN

```
conv1: 96x3x11x11 =
                            34 848
 conv2: 256x48x5x5 =
                          307 200
 conv3: 384x256x3x3 =
                          884 736
 conv4: 384x192x3x3 =
                          663 552
 conv5: 256x192x3x3 =
                          442 368
                       37 748 736
 fc6: 4096 x 9216 =
                                      54 525 952 (95.2%)
fc7: 4096 x 4096\=
                       16 777 216
 fc8: 101 x 4096 =
                          413 696
 Total =
                       57 272 352
              9216=256x6x6
```

Contributions

Convolutionize a usual CNN for dense pixel predictions.

FCN

pixels in, pixels out

monocular depth estimation (Liu et al. 2015)

boundary prediction (Xie & Tu 2015)

convnets perform classification

R-CNN does detection

R-CNN

figure: Girshick et al.

a classification network

becoming fully convolutional

becoming fully convolutional

convolution

upsampling output

convolution

Deconvolution layer

input stride f output stride f W convolution

deconvolution

end-to-end, pixels-to-pixels network

convolution

end-to-end, pixels-to-pixels network

convolution $H \times W$ $H/4 \times W/4$ $H/8 \times W/8$ $H/16 \times W/16$ $H/32 \times W/32$ $H \times W$ upsampling pixelwise conv, pool, nonlinearity output + loss

spectrum of deep features

combine where (local, shallow) with what (global, deep)

(cf. Hariharan et al. CVPR15 "hypercolumn")

skip layers

DAG

skip layer refinement

training + testing

- train full image at a time without patch sampling
- reshape network to take input of any size
- forward time is ~150ms for 500 x 500 x 21 output

Relative to prior state-of-theart SDS:

- 20% relative improvement for mean IoU
- 286× faster

^{*}Simultaneous Detection and Segmentation Hariharan et al. ECCV14

past and future history of fully convolutional networks

history

Shape Displacement Network Matan & LeCun 1992

Convolutional Locator Network Wolf & Platt 1994

pyramids

Scale Pyramid, Burt & Adelson '83

The scale pyramid is a classic multi-resolution representation.

Fusing multi-resolution network layers is a learned, nonlinear counterpart.

jets

The local jet collects the partial derivatives at a point for a rich local description.

The deep jet collects layer compositions for a rich, learned description.

extensions

- more tasks
- random fields
- weak supervision

image to image learning

monocular depth estimation (Liu et al. 2015)

boundary prediction (Xie & Tu 2015)

fully conv. nets + random fields

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Chen* & Papandreou* et al. ICLR 2015.

fully conv. nets + random fields

Method	Without COCO	With COCO
Plain FCN-8s	61.3	68.3
FCN-8s and CRF disconnected	63.7	69.5
End-to-end training of CRF-RNN	69.6	72.9

Conditional Random Fields as Recurrent Neural Networks. *Zheng* & Jayasumana* et al.* arxiv 2015.

[comparison credit: CRF as RNN, Zheng* & Jayasumana* et al. ICCV 2015]

DeepLab: Chen* & Papandreou* et al. ICLR 2015.

CRF-RNN: Zheng* & Jayasumana* et al. ICCV 2015

fully conv. nets + weak supervision

FCNs expose a spatial loss map to guide learning: segment from tags by MIL or pixelwise constraints.

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Pathak et al. arXiv 2015.

fully conv. nets + weak supervision

FCNs expose a spatial loss map to guide learning: mine boxes + feedback to refine masks.

BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. Dai et al. 2015.

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted	sheep	sofa	train	tv/ monitor	submission date
			abla	abla	∇	abla	egraphical	∇	∇	∇	egraphical	∇	abla	∇	egraphical	$\overline{}$	$\overline{}$	$\overline{}$	egraphism	∇	egraphism	abla	\triangleright
D	MSRA_BoxSup [?]	FCN 75.2	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	18-May-2015
D		FCN 74.7	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	22-Apr-2015
\triangleright	DeepLab-MSc-CRF-LargeFOV-COCO-CrossJo	FCN 73.9	89.2	46.7	88.5	63.5	68.4	87.0	81.2	86.3	32.6	80.7	62.4	81.0	81.3	84.3	82.1	56.2	84.6	58.3	76.2	67.2	26-Apr-2015
		FCN 72.9	89.7	37.6	77.4	62.1	72.9	88.1	84.8	81.9	34.4	80.0	55.9	79.3	82.3	84.0	82.9	59.7	82.8	54.1	77.5	70.3	25-May-2015
\triangleright	DeepLab-CRF-COCO-LargeFOV [?]	FCN 72.7	89.1	38.3	88.1	63.3	69.7	87.1	83.1	85.0	29.3	76.5	56.5	79.8	77.9	85.8	82.4	57.4	84.3	54.9	80.5	64.1	18-Mar-2015
\triangleright	POSTECH_EDeconvNet_CRF_VOC [?]	FCN 72.5	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	22-Apr-2015
\triangleright	Oxford_TVG_CRF_RNN_VOC [?]	FCN 72.0	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	22-Apr-2015
D		FCN 71.6	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	02-Apr-2015
\triangleright	MSRA_BoxSup [?]	FCN 71.0	86.4	35.5	79.7		65.2		78.5	83.7	30.5			79.3	76.1	82.1	81.3	57.0		55.0			10-Feb-2015
D	DeepLab-CRF-COCO-Strong [?]	FCN 70.4	85.3	36.2	84.8	61.2	67.5	84.6	81.4	81.0	30.8	73.8	53.8	77.5	76.5	82.3	81.6	56.3	78.9	52.3	76.6	f e3.3	11-Feb-2015
D	DeepLab-CRF-LargeFOV [?]	FCN 70.3	83.5	36.6	82.5	23	6t 5	854	78.5	13 /	304	729	3 .4	78.	75/5	82.	\ /*I`	8.2	8.0	48.8		63.	28-Mar-2015
	TTI_zoomout_v2 [?]	69.6	85.6	37.3	83.2	62.5	66.0	65 1	80.7	84.9	27.2	73.2	57.5	78.1	79.2	81.1	77.1	53.6	74.0	49.2	71.7	65.3	30-Mar-2015
\triangleright	DeepLab-CRF-MSc [?]	FCN 67.1	80.4	36.8	77.4	55.2	66.4	81.5	77.5	78.9	27.1	68.2	52.7	74.3	69.6	79.4	79.0	56.9	78.8	45.2	72.7	59.3	30-Dec-2014
D	DeepLab-CRF [?]	FCN 66.4	78.4	33.1	78.2	55.6	65.3	81.3	75.5	78.6	25.3	69.2	52.7	75.2	69.0	79.1	77.6	54.7	78.3	45.1	73.3	56.2	23-Dec-2014
\triangleright	CRF_RNN [?]	FCN 65.2	80.9	34.0	72.9	52.6	62.5	79.8	76.3	79.9	23.6	67.7	51.8	74.8	69.9	76.9	76.9	49.0	74.7	42.7	72.1	59.6	10-Feb-2015
\triangleright	TTI_zoomout_16 [?]	64.4	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3	70.2	40.2	68.9	55.3	24-Nov-2014
\triangleright	Hypercolumn [?]	62.6	68.7	33.5	69.8	51.3	70.2	81.1	71.9	74.9	23.9	60.6	46.9	72.1	68.3	74.5	72.9	52.6	64.4	45.4	64.9	57.4	09-Apr-2015
•	FCN-8s [?]	FCN 62.2	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	12-Nov-2014
\triangleright	MSRA_CFM [?]	61.8	75.7	26.7	69.5	48.8	65.6	81.0	69.2	73.3	30.0	68.7	51.5	69.1	68.1	71.7	67.5	50.4	66.5	44.4	58.9	53.5	17-Dec-2014
	TTI_zoomout ^[?]	58.4	70.3	31.9	68.3	46.4	52.1	75.3	68.4	75.3	19.2	58.4	49.9	69.6	63.0	70.1	67.6	41.5	64.0	34.9	64.2	47.3	17-Nov-2014
\triangleright	SDS [?]	51.6	63.3	25.7	63.0	39.8	59.2	70.9	61.4	54.9	16.8	45.0	48.2	50.5	51.0	57.7	63.3	31.8	58.7	31.2	55.7	48.5	21-Jul-2014
\triangleright	NUS_UDS [?]	50.0																					29-Oct-2014
\triangleright	TTIC-divmbest-rerank [?]	48.1																					
\triangleright	BONN_O2PCPMC_FGT_SEGM [?]	47.8																			48.4		
\triangleright	BONN_O2PCPMC_FGT_SEGM [?]	47.5																					
\triangleright	BONNGC_O2P_CPMC_CSI [?]	46.8								55.1							53.4						23-Sep-2012
\triangleright	BONN_CMBR_O2P_CPMC_LIN [?]	46.7																					23-Sej 42 12

caffeinated contemporaries

Hypercolumn SDS Hariharan, Arbeláez, Girshick, Malik

Zoom-Out Mostajabi, Yadollahpour, Shaknarovich

Convolutional Feature Masking Dai, He, Sun

conclusion

fully convolutional networks are fast, endto-end models for pixelwise problems

- code in Caffe branch (merged soon)
- models for PASCAL VOC, NYUDv2, SIFT Flow, PASCAL-Context

caffe.berkeleyvision.org

github.com/BVLC/caffe

fcn.berkeleyvision.org

model example inference example solving example