Image Alignment

- Find the transformation between two images
 - Translation, Rotation, zoom
 - Affine, Homography
 - Assumption: Static Scene, No 3D effects, e.g. motion parallax
- Good for:
 - Video Stabilization, Video Mosaicing, Noise Cleaning...

Parametric (Global) Transformations

Warps by changing camera parameters (except affine):

Translation (2 params $-t_x$, t_y)

Preserves distances, angles

1 point correspon

Scaling/zoom (4 params – t_x , t_y , s_x , s_y) Preserves <u>angles</u>

Rotation (3 params $-t_x$, t_y , θ) Preserves <u>distances</u>

Most **Affine** cannot be generated by changing camera parameters

Affine (6 parameters) Keeps <u>parallel</u> lines

3 points

Projective / Homography (8 parameters) Keeps <u>straight</u> lines

Parametric (Global) Transformations

Warps by changing camera parameters (except affine):

1 point correspondence

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation (2 params $-t_x, t_y$) Preserves distances, angles

2 points

$$egin{bmatrix} s_x & 0 & t_x \ 0 & s_y & t_y \ 0 & 0 & 1 \end{bmatrix}$$

Scaling/zoom (4 params – t_x, t_y, s_x, s_y) Preserves <u>angles</u>

2 points

$$\begin{bmatrix} s_{\chi} & 0 & t_{\chi} \\ 0 & s_{y} & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_{\chi} \\ \sin(\theta) & \cos(\theta) & t_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation (3 params – t_x , t_y , θ) Preserves distances

3 points

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$$

Affine (6 parameters) Keeps parallel lines

4 points

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix}$$

Projective / Homography (8 parameters) Keeps straight lines

Videos to Watch (by Steve Seitz)

https://www.youtube.com/playlist?list=PLWfDJ5nla8UpwShx-lzLJqcp575fKpsSO

1) Affine Transformations

We Ignore the Rolling Shutter Effect

- Film camera: The entire frame is recorded at the same time.
- First digital cameras (**CCD**): Entire frame recorded at same time
- Newer digital cameras (CMOS, <u>all</u> <u>phones</u>): Each line is recorded at a different time (Rolling Shutter)
- 24 fps, 1000 lines, gives 24,000 lines per second for 1K×1K image!

Rolling Shutter

Rolling Shutter Simulation

- 24 fps, 1000 lines, gives
 24,000 lines per second!
- In order to get the effect at left, exposure time must be very small.
- Long exposure time, e.g. 1/24 sec, will give blur without the desired effect.

Moving Camera & Objects

Driving Car (What direction? Can we compute distance of buildings)

Rotating propeller

Distances from a single image of a moving camera

Closer objects move faster in the image, appear more slanted

High-Speed Photography

24,000 lines per second... Short Exposure Needed

Computing Global Translation, Point Correspondences

 Assume we can find corresponding point pairs between two images. Compute translation from these point correspondences

Computing Global Translation, <u>Direct Methods</u> Assumption: Constant Brightness, No Rolling Shutter

• Given images I_1 and I_2 , we can find the translation (u,v) that will minimize the squared error

$$E(u,v) = \sum_{x} \sum_{y} (I_1(x,y) - I_2(x+u,y+v))^2$$

 Implementation: Use average <u>per-pixel</u> error only over <u>area of overlap</u>

• Can also search for rotations: (u, v, α)

Problem with Point Correspondences

- Wrong Correspondences
- No correspondences

Cross Correlation as Match Measure

Starting from the SSD (Sum of Squared Differences)

$$E(u,v) = \sum_{x} \sum_{y} (I_1(x,y) - I_2(x+u,y+v))^2$$

Since

$$(a-b)^2 = a^2 - 2ab + b^2$$

We can write

$$E(u,v) \neq \sum_{x} \sum_{y} I_{1}^{2} - 2 \sum_{x} \sum_{y} I_{1}(x,y) \cdot I_{2}(x+u,y+v) + \sum_{x} \sum_{y} I_{2}^{2}$$

• Since Σ I_1^2 and Σ I_2^2 are almost constant, minimizing the SSD maximizes the cross-correlation Σ I_1I_2

$$CC(u, v) = \sum_{x} \sum_{y} I_1(x, y) \cdot I_2(x + u, y + v)$$

Familiar?

Normalized Cross Correlation (NCC)

• Given two images I_1 and I_2 , search for the translation (x, y) maximizing the cross-correlation

$$CC(u, v) = \sum_{x} \sum_{y} I_1(x, y) \cdot I_2(x + u, y + v)$$

• NCC invariant to global addition and multiplication of intensity $(I_2 = a \cdot I_1 + b)$

$$NCC(u,v) = \frac{\sum (I_1(x,y) - \hat{I}_1) \cdot (I_2(x+u,y+v) - \hat{I}_2)}{\sqrt{\sum (I_1(x,y) - \hat{I}_1)^2} \sqrt{\sum (I_2(x,y) - \hat{I}_2)^2}}$$
Subtract Average Grey Level Divide by Variance

Multiresolution search (Pyramids) increases search efficiency.

Coarse-to-fine motion estimation

Coarse-to-fine Image Alignment

Pattern Matching / Tracking: Normalized Cross Correlation on Windows

$$NCC(u,v) = \frac{\sum (I_1(x,y) - \hat{I}_1) \cdot (I_2(x+u,y+v) - \hat{I}_2)}{\sqrt{\sum (I_1(x,y) - \hat{I}_1)^2} \sqrt{\sum (I_2(x,y) - \hat{I}_2)^2}}$$

- Normalized Cross Correlation is an excellent method to find objects in pictures, and to <u>track</u> objects in video.
- Multiresolution search (Pyramids) is used in object search. Not needed when tracking from one frame to another.

Limitations of Correlation Search

- Discrete accuracy: checking every possible translation in integer pixel values. No Sub-Pixel accuracy.
- Complexity increases exponentially with numbers of parameters
 - -Translation: (u,v) Complexity is N^2 -Multiresolution can help
 - -Rotations: (u,v,α) Complexity is N^3 -Rotation does not scale...
 - -Zoom: (u, v, α, s) Complexity is N^4
 - -Affine: N^6

Continuous Approximation (Lucas – Kanade, "LK")

Local Taylor approximation in 1D:

$$f(x + u) \approx f(x) + f'(x) \cdot u + \dots$$

$$f(x) + f'(x) \cdot u$$

$$f(x) + f'(x) \cdot u$$

$$x \to x + u$$

Local Taylor approximation in 2D for images:

$$f(x + u, y + v) \approx f(x, y) + \frac{\partial f}{\partial x} \cdot u + \frac{\partial f}{\partial y} \cdot v$$

Alignment by Error Minimization

- Accurate only for very small (u,v), approximately 1 pixel
- When I_2 is shifted relative to I_1 , we want to find the translation (u,v) by minimizing SSD: $E(u,v) = \sum_{x} \sum_{y} [I_2(x+u,y+v) I_1(x,y)]^2$
- To simplify, we look at a single pixel (No $\sum \sum$) and use *Taylor approximation*

$$E(u, v) = [I_2(x + u, y + v) - I_1(x, y)]^2 \approx$$

$$[I_2(x,y) + \frac{\partial I_2}{\partial x} \cdot u + \frac{\partial I_2}{\partial y} \cdot v - I_1(x,y)]^2 = (I_x \cdot u + I_y \cdot v + I_t)^2$$

where
$$I_x = \frac{\partial I_2}{\partial x}$$
; $I_y = \frac{\partial I_2}{\partial y}$; $I_t = I_2 - I_1$;

Error Minimization

Writing it in simple form

$$E(u,v) = \underbrace{[I_2(x,y) + \frac{\partial I_2}{\partial x} \cdot u + \frac{\partial I_2}{\partial y} \cdot v - I_1(x,y)]^2}_{I_x \cdot u + I_y \cdot v + I_t)^2}$$

- $-I_x$: The x derivative of image I_2
- $-I_y$: The y derivative of image I_2
- $-I_t$: The image difference I_2 I_1
- Find (u,v) that minimize the error function

$$E(u,v) = \sum_{x,y} (I_x(x,y)) u + (I_y(x,y)) v + (I_t(x,y))^2$$

$$u(x,y) v(x,y)$$

Summary – Direct Methods for Global Translation Lucas-Kanade

• When I_2 is shifted relative to I_1 , we want to find the translation (u,v) by minimizing the SSD (Sum of Squared Differences):

$$E(u,v) = \sum_{x} \sum_{y} [I_2(x+u,y+v) - I_1(x,y)]^2$$

• Same (u,v) will approximately minimize (Taylor approximation)

$$E(u,v) = \sum_{x,y} (I_x \cdot u + I_y \cdot v + I_t)^2$$

• Approximation accurate only for very small (u,v), ~1 pixel, as Taylor approximation is only first order

Minimization: Setting Derivatives to Zero

$$E(u,v) = \sum_{x,y} (I_x \cdot u + I_y \cdot v + I_t)^2$$

• Finding (u,v) that minimizes E by setting derivatives to zero:

$$\begin{cases} \frac{\partial E}{\partial u} = \sum_{x,y} I_x \cdot (I_x \cdot u + I_y \cdot v + I_t) &= 0\\ \frac{\partial E}{\partial v} = \sum_{x,y} I_y \cdot (I_x \cdot u + I_y \cdot v + I_t) &= 0\\ \left[\sum_{x,y} I_x \cdot I_x \sum_{x,y} I_x \cdot I_y \right] \begin{bmatrix} u \\ v \end{bmatrix} = - \left[\sum_{x,y} I_x \cdot I_t \right] \\ \sum_{x,y} I_y \cdot I_x \sum_{x,y} I_y \cdot I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{x,y} I_x \cdot I_t \\ \sum_{x,y} I_y \cdot I_t \end{bmatrix}$$

Computing Motion by Solving Equations

$$\begin{bmatrix} \sum_{x,y} I_x \cdot I_x & \sum_{x,y} I_x \cdot I_y \\ \sum_{x,y} I_y \cdot I_x & \sum_{x,y} I_y \cdot I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{x,y} I_x \cdot I_t \\ \sum_{x,y} I_y \cdot I_t \end{bmatrix}$$

- These are 2 equations with two unknowns (u and v).
- System has a unique solution when the 2 eignevalues of the 2×2 matrix are high [When do we have eigenvalues of zero?]
- Same matrix is used for Harris Corner, but at a small window
- When the Σ is over all pixels, both eigenvalues are almost always high

Iterative Approach (For Larger (u,v))

• Compute image derivatives
$$I_x$$
, I_y . Set u, v to 0.
• Compute once
$$A = \begin{bmatrix} \sum I_x \cdot I_x & \sum I_x \cdot I_y \\ \sum I_y \cdot I_x & \sum I_y \cdot I_y \end{bmatrix}$$

- Iterate until convergence $(I_{t} \approx 0)$:

- compute
$$b = \begin{bmatrix} \sum_{I_x \cdot I_t} I_x \cdot I_t \\ \sum_{I_y \cdot I_t} I_y \cdot I_t \end{bmatrix}, I_t(x, y) = I_2(x, y) - I_1(x + u, y + v)$$

Solve equations to compute residual motion

$$A \cdot \begin{bmatrix} du \\ dv \end{bmatrix} = -b$$

- Update motion u,v with residual motion: u+du, v+dv
- Warp I_2 towards I_1 with total motion (u,v).

(using d for displacement here instead of u)

Power of Iterations

- Compute the image derivatives I_x , I_y only once on I_1
- Has two stages in each iteration:
 - Motion Estimation (Solving equations)
 - Warping I_2 (Usually backward warping)
- Works even with poor motion estimation, as long as it reduces the residual error
- Warping of one image towards the other is done from original image using total motion, and not from previous image using residual motion. (Repetitive warping blurs!)

Multiresolution

Lucas-Kanade assumes that corresponding pixels in the two images have same derivative. It works OK even if derivatives are similar. But this fails for very large motions.

Small motions: f_1 and f_2 have similar derivatives for most points

Larger motions: different derivatives for most points (opposite signs)

Reducing resolution blurs images. Similar derivatives even for large motions

Coarse-to-fine motion estimation

Needs very small (u,v)

Coarse-to-fine Image Alignment

Feature Points vs. Lucas Kanade (LK)

- Computation: In both cases we go over the image to compute partial derivatives. Similar complexity.
- When unique identifiable feature points can be found, they are better as they can be used to compute homographies.
- In blurry images feature points may be difficult to find. LK may be preferred.
- LK is more accurate in translation.

LK for Global Translation + Scale

$$E(u, v) = \sum_{x,y} (I_x \cdot u(x, y) + I_y \cdot v(x, y) + I_t)^2$$

• Write u(x, y) and v(x, y) for global translation dx, dy and scale s

$$x_2 = s \cdot x_1 + dx \implies u(x, y) = x_2 - x_1 = (s - 1) \cdot x + dx$$

 $y_2 = s \cdot y_1 + dy \implies v(x, y) = y_2 - y_1 = (s - 1) \cdot y + dy$

Insert into the Error Equation

$$E(dx, dy, s) = \sum_{x, y} (I_x \cdot [(s-1) \cdot x + dx] + I_y \cdot [(s-1) \cdot y + dy] + I_t)^2$$

• Compute optimal dx, dy, and s by using derivatives

$$\frac{\partial E}{\partial dx} = 0; \quad \frac{\partial E}{\partial dy} = 0; \quad \frac{\partial E}{\partial s} = 0$$

LK for Global Translation + Scale

$$E(dx, dy, s) = \sum_{x, y} (I_x \cdot [(s-1) \cdot x + dx] + I_y \cdot [(s-1) \cdot y + dy] + I_t)^2$$

• Compute dx, dy, and s by using derivatives

$$\frac{\partial E}{\partial dx} = 0; \quad \frac{\partial E}{\partial dy} = 0; \quad \frac{\partial E}{\partial s} = 0$$

$$0 = \sum_{x,y} (I_x \cdot [(s-1) \cdot x + dx] + I_y \cdot [(s-1) \cdot y + dy] + I_t) \cdot I_x$$

$$0 = \sum_{x,y} (I_x \cdot [(s-1) \cdot x + dx] + I_y \cdot [(s-1) \cdot y + dy] + I_t) \cdot I_y$$

$$0 = \sum_{x,y} (I_x \cdot [(s-1) \cdot x + dx] + I_y \cdot [(s-1) \cdot y + dy] + I_t) \cdot (xI_x + yI_y)$$

Solve 3 linear equations with 3 unknowns

LK for Global Translation + Rotation (Small α)

• Needs approximation of small α to remain linear

$$x_{2} = \cos(\alpha) \cdot x_{1} - \sin(\alpha) \cdot y_{1} + dx \approx x_{1} - \alpha \cdot y_{1} + dx$$

$$y_{2} = \sin(\alpha) \cdot x_{1} + \cos(\alpha) \cdot y_{1} + dy \approx \alpha \cdot x_{1} + y_{1} + dy$$

$$\sin(\alpha) \rightarrow \alpha \quad \text{(Assuming small} \quad \alpha\text{)}$$

$$\cos(\alpha) \rightarrow 1 \quad \text{(Assuming small} \quad \alpha\text{)}$$

$$u(x, y) = x_{2} - x_{1} = -\alpha \cdot y_{1} + dx$$

$$v(x, y) = y_{2} - y_{1} = \alpha \cdot x_{1} + dy$$

$$E(dx, dy, \alpha) = \sum_{x, y} (I_{x} \cdot [-\alpha \cdot y + dx] + I_{y} \cdot [\alpha \cdot x + dy] + I_{t})^{2}$$

Small α Assumption

- The "small α assumption" is used only for motion estimation (solving the equations for angle <u>difference</u>)
- Warping is done with full accuracy of sin and cos
- Iterations converge to an accurate solution, with $\alpha=0$

LK for Global Translation + Rotation (unverified)

$$E(dx, dy, \alpha) = \sum_{x, y} (I_x \cdot [-\alpha \cdot y + dx] + I_y \cdot [\alpha \cdot x + dy] + I_t)^2$$

$$\frac{\partial E}{\partial dx} = 0 = \sum_{x, y} (I_x \cdot [-\alpha \cdot y + dx] + I_y \cdot [\alpha \cdot x + dy] + I_t) \cdot I_x$$

$$\frac{\partial E}{\partial dy} = 0 = \sum_{x, y} (I_x \cdot [-\alpha \cdot y + dx] + I_y \cdot [\alpha \cdot x + dy] + I_t) \cdot I_y$$

$$\frac{\partial E}{\partial \alpha} = 0 = \sum_{x, y} (I_x \cdot [-\alpha \cdot y + dx] + I_y \cdot [\alpha \cdot x + dy] + I_t) \cdot (I_y x - I_x y)$$

- Iterations: Solve with "small α assumption"
- Warp with full accuracy of sin and cos.
- Pyramids: u, v get smaller, but Angle α remains the same...

Translation + Rotation (unverified Matrix Representation)

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y & \sum (I_y I_x x - I_x I_x y) \\ \sum I_x I_y & \sum I_y I_y & \sum (I_y I_y x - I_x I_y y) \end{bmatrix} \begin{bmatrix} dx \\ dy \\ \alpha \end{bmatrix} = \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \\ \sum I_x (I_y x - I_x y) & \sum (I_y x - I_x y) \end{bmatrix}$$

Representation of Transformation by Homogenous Coordinates

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & d_x \\ \sin(\alpha) & \cos(\alpha) & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Transformations can be chained by matrix multiplication.
 Important for iterations.

Perspective Transformation (Homography) From Corresponding Points

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

$$x_2 = \frac{ax_1 + by_1 + c}{gx_1 + hy_1 + 1}$$
$$y_2 = \frac{dx_1 + ey_1 + f}{gx_1 + hy_1 + 1}$$

Alignment Error corresponding points

$$E^2 = (\hat{x}_2 - x_2)^2 + (\hat{y}_2 - y_2)^2$$

$$E^{2} = \left(\hat{x}_{2} - \frac{ax_{1} + by_{1} + c}{gx_{1} + hy_{1} + 1}\right)^{2} + \left(\hat{y}_{2} - \frac{dx_{1} + ey_{1} + f}{gx_{1} + hy_{1} + 1}\right)^{2}$$

Optical Flow: Different Motion for Each Pixel

- Optical Flow: Individual motion for each pixel
 - Independently moving objects
 - Motion parallax (Different depths)
- What will global LK translation give on the above?

Optical Flow

• Estimate pixel motion from image H to image I

Key assumptions

- Color Constancy: No change on color
 - Grayscale images: Brightness Constancy
- Small Motion: points do not move very far

Examples of Optical Flow

What motions generated these optical flow vectors?

Examples of Optical Flow

The Aperture Problem

- Examining a small windows around a pixel may not provide accurate motion
 - A straight edge with smooth areas

Barberpole Illusion

Correlation Based Optical Flow

 For each small region in one image, search for best correlation at the second image

- Large region: Accurate motion. Poor localization.
- Small region: Good localization. Poor motion.
- Use pyramids to reduce search area.

Special Case - Edge

Correlation in Local Search Area

Special Case – Smooth Region

Correlation in Local Search Area

Special Case - Texture

Correlation in Local Search Area

Correlation Based Pyramids for Optical Flow

- Create two Gaussian pyramids from the two input images
- Compute optical flow using "5×5" regions on smallest pyramid level
- Smooth the optical flow, and use it as initial guess for higher resolution
- Continue with next level. Search close to guess from higher resolution

Gradient Based Optical Flow

• Compute (u,v) using Lucas-Kanade between two corresponding regions

- Large region: Accurate motion. Poor localization.
- Small region: Good localization. Poor motion.
- Use pyramids to reduce search area.

Smoothness Constraint

- Assume that the optical flow is piecewise constant.
- Assume that the optical flow is smooth, and minimize the sum of its squared first derivatives.
- Given $\nabla I = (I_x, I_y)$, find $\mathbf{v} = (u, v)$ that Minimize:

$$E^{2} = \int \int (\nabla I \bullet \mathbf{v} + I_{t}) + \alpha^{2} \left(\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} + \left(\frac{\partial v}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} \right) dxdy$$

Optical Flow Constraint Equation

Smoothness Constraint

Pyramids & Iterative Refinement

- Create two Gaussian pyramids from the two input images
- Iterative Lukas-Kanade on smallest images
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations in its neighborhood
 - 2. Warp I_2 towards I_1 using the estimated flow field
 - 3. Repeat until convergence
- Continue to next pyramid level.

Smoothness Constraint

- The smoothness constraint is violated on the boundaries of moving objects, and on motion discontinuities.
- Replace square error by more robust error measures, absolute value, etc.