Direct Products and Quotient Groups

Hengfeng Wei

hfwei@nju.edu.cn

April 01, 2019

What do you mean by "是一回事"?

Theorem

If
$$G = H \times K$$
,
then $\exists H' \cong H, K' \cong K$.

such that G is the internal direct product of H and K.

Theorem

If G is the internal direct product of H and K,

then $G \cong H \times K$.

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = G \cong \mathbb{Z}_6$$

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = G \cong \mathbb{Z}_6$$

 \mathbb{Z}_2

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = G \cong \mathbb{Z}_6$$

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = G \cong \mathbb{Z}_6$$

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = G \cong \mathbb{Z}_6$$

 \mathbb{Z}_2

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\}$$

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \le G, \quad K' \le G$$

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \leq G, \quad K' \leq G$$

$$G = H'K'$$

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \le G, \quad K' \le G$$

$$G = H'K'$$

$$H' \cap K' = \{(e_H, e_K)\} = \{e\}$$

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \le G, \quad K' \le G$$

$$G = H'K'$$

$$H' \cap K' = \{(e_H, e_K)\} = \{e\}$$

H' and K' commute.

Theorem

If
$$G = H \times K$$
,
then $\exists H' \cong H, K' \cong K$.

such that G is the internal direct product of H' and K'.

Theorem

If
$$G = H \times K$$
,

then $\exists H' \cong H, K' \cong K$.

such that G is the internal direct product of H' and K'.

Definition (Internal Direct Product)

Let G be a group with subgroups H and K satisfying

$$G = HK$$

$$H \cap K = \{e\}$$

H and K commute.

Then, G is the internal direct product of H and K.

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \le G, \quad K' \le G$$

$$G = H'K'$$
$$H' \cap K' = \{e\}$$

H' and K' commute.

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \triangleleft G$$
, $K' \triangleleft G$

$$G = H'K'$$
$$H' \cap K' = \{e\}$$

H' and K' commute.

$$G = H \times K$$

$$H' = H \times \{e_K\} = \{(h', e_K) : h' \in H\} \cong H$$

 $K' = \{e_H\} \times K = \{(e_H, k') : k' \in K\} \cong K$

$$H' \triangleleft G$$
, $K' \triangleleft G$

$$G = H'K'$$

$$H' \cap K' = \{e\}$$

$$H' \text{ and } K' \text{ commute.}$$

Definition (Internal Direct Product)

Let G be a group with subgroups H and K satisfying

$$G = HK$$

$$H\cap K=\{e\}$$

H and K commute

Then, G is the internal direct product of H and K.

Definition (Internal Direct Product)

Let G be a group with subgroups H and K satisfying

$$G = HK$$

$$H\cap K=\{e\}$$

H and K commute

Then, G is the internal direct product of H and K.

Definition (Internal Direct Product (Equivalent))

Let G be a group with normal subgroups H and K satisfying

$$G = HK$$

$$H \cap K = \{e\}$$

Then, G is the internal direct product of H and K.

$$D_6 \cong D_3 \times \mathbb{Z}_2$$

$$D_6 \cong D_3 \times \mathbb{Z}_2$$

$$D_6 = D_3' \mathbb{Z}_2' \quad (D_3' \triangleleft D_6, \ \mathbb{Z}_2' \triangleleft D_6)$$

◆ロト ◆部 ト ◆恵 ト ◆恵 ・ 恵 ・ 夕久 ②

$$\begin{aligned} D_6 &\cong D_3 \times \mathbb{Z}_2 \\ D_6 &= D_3' \mathbb{Z}_2' \quad (D_3' \triangleleft D_6, \ \mathbb{Z}_2' \triangleleft D_6) \end{aligned}$$

 D_3

< ロ > ← □ > ← □ > ← □ > ← □ = − の へ ○

 D_6

$$D_6 \cong D_3 \times \mathbb{Z}_2$$

$$D_6 = D_3' \mathbb{Z}_2' \quad (D_3' \triangleleft D_6, \ \mathbb{Z}_2' \triangleleft D_6)$$

$$\mathbb{Z}_2 \cong \left\{1, r^3\right\} \triangleleft D_6$$

$$D_6$$

$$D_3 \cong \left\{1, r^2, r^4, s, r^2s, r^4s\right\} \triangleleft D_6$$

4 D > 4 D > 4 E > 4 E > 9 Q P

 $D_6 \cong D_3 \times \mathbb{Z}_2$

 $D_3 \times \mathbb{Z}_2$

 D_6

 $D_6 \cong D_3 \times \mathbb{Z}_2$

$$D_3 \times \mathbb{Z}_2$$

 D_6

$D_6 \cong D_3 \times \mathbb{Z}_2$

 $D_3 \times \mathbb{Z}_2$

 D_6

$$D_{2n} \cong D_n \times \mathbb{Z}_2 \quad (n \text{ is odd})$$

$$D_{2n} \cong D_n \times \mathbb{Z}_2 \quad (n \text{ is odd})$$

$$\mathbb{Z}_2 \cong (\mathbb{Z}_2' \triangleq \{1, r^n\}) \triangleleft D_{2n}$$

$$D_{2n} \cong D_n \times \mathbb{Z}_2 \quad (n \text{ is odd})$$

$$\mathbb{Z}_2 \cong (\mathbb{Z}_2' \triangleq \{1, r^n\}) \triangleleft D_{2n}$$

$$D_n \cong (D'_n \triangleq \langle r^2, s \rangle) \triangleleft D_{2n}$$

$$D_{2n} \cong D_n \times \mathbb{Z}_2 \quad (n \text{ is odd})$$

$$\mathbb{Z}_2 \cong (\mathbb{Z}_2' \triangleq \{1, r^n\}) \triangleleft D_{2n}$$

$$D_n \cong (D'_n \triangleq \langle r^2, s \rangle) \triangleleft D_{2n}$$

 D_n is the internal direct product of \mathbb{Z}'_2 and D'_n .

Let G be a group with normal subgroups H and K satisfying

$$G = HK$$

$$H\cap K=\{e\}$$

Then, G is the internal direct product of H and K.

Let G be a group with normal subgroups H and K satisfying

$$G = HK$$

$$H\cap K=\{e\}$$

Then, G is the internal direct product of H and K.

Let G be a group with normal subgroups H and K satisfying

$$G = HK$$

$$H\cap K=\{e\}$$

Then, G is the internal direct product of H and K.

Theorem (The Second Isomorphism Theorem)

$$H \leq G, N \triangleleft G \Longrightarrow H/(H \cap N) \cong HN/N.$$

Let G be a group with normal subgroups H and K satisfying

$$G = HK$$

$$H\cap K=\{e\}$$

Then, G is the internal direct product of H and K.

Theorem (The Second Isomorphism Theorem (Diamond Theorem))

$$H \leq G, N \triangleleft G \Longrightarrow H/(H \cap N) \cong HN/N.$$

If G is the internal direct product of its normal subgroups H and K, then $G/H \cong K$, $G/K \cong H$.

If G is the internal direct product of its normal subgroups H and K, then $G/H \cong K$, $G/K \cong H$.

$$D_6 = \langle r^2, s \rangle \left\{ 1, r^3 \right\}$$

If G is the internal direct product of its normal subgroups H and K, then $G/H \cong K$, $G/K \cong H$.

$$D_6 = \langle r^2, s \rangle \left\{ 1, r^3 \right\} \implies D_6 / \langle r^2, s \rangle \cong \left\{ 1, r^3 \right\} \cong \mathbb{Z}_2$$

If G is the internal direct product of its normal subgroups H and K, then $G/H \cong K$, $G/K \cong H$.

$$D_6 = \langle r^2, s \rangle \left\{ 1, r^3 \right\} \implies D_6 / \langle r^2, s \rangle \cong \left\{ 1, r^3 \right\} \cong \mathbb{Z}_2$$

Theorem

If
$$G \cong H \times K$$

then $G/H \times 1 \cong K$, $G/K \times 1 \cong H$.

Office 302

Mailbox: H016

hfwei@nju.edu.cn