

(e) Are X and Y independent ry's? Explain.

• X and Y are not independent because $\rho(x,y) \neq \rho_X(x) \cdot \rho_Y(y)$. $\rho(0,0) \neq P_X(0) \cdot P_Y(0) \Rightarrow 0.10 \neq 0.17 \cdot 0.22 = 0.0379$

 \bigcirc X and Y are independent because $P(x,y) \neq \rho_X(x) \cdot \rho_Y(y)$. \bigcirc X and Y are not independent because $P(x,y) = \rho_X(x) \cdot \rho_Y(y)$.

 \bigcirc X and Y are independent because $P(x,y) = p_X(x) \cdot p_Y(y)$.

5.1 Jointly Distributed Random Variables

Two Discrete Random Variables Two Continuous Random Variables

Independent Random Variables

More than Two Random Variables

Exercises Section 5.1 (1-21)

5.2 Expected Values, Covariance, and Correlation

Covariance

The Bivariate Normal Distribution

Module 2 Page 1

If (5.1) is not satisfied for all (x, y), then X and Y are said to be **dependent**.

When two random variables X and Y are not independent, it is frequently of interest to assess how strongly they are related to one another.

The following shortcut formula for $\mathrm{Cov}(X,Y)$ simplifies the computations.

 $Cov(X, Y) = E(XY) - \mu_X \cdot \mu_Y$

According to this formula, no intermediate subtractions are necessary; only at the end of the computation is $\mu_X \cdot \mu_Y$ subtracted from E(XY). The proof involves expanding $(X - \mu_X)(Y - \mu_Y)$ and the computation of the computation of intermediate the result to cook individual terms.

Correlation

Definition

The correlation coefficient of X and Y, denoted by Corr(X, Y), $\rho_{X,Y}$, or just ρ , is defined by

$$\rho_{X, Y} = \frac{\text{Cov}(X, Y)}{\sigma_{X, Y}}$$

The exact covariance

WolframAlpha computational intelligence.

