(Def) A feasible allocation (x.y) is

(x,'y') S.t d, x'z x Vi

it there is no other feasible allocation

(+ # X: > X for some i

parets optimal

- Commodities : l=1,...,L
- Consumers : i=1..., I
 - * consumption set X= EIRL
 - * preference Z.
 - * endowment: Wi= (Wii. .. Wi) EXi

$$\overline{W} = (\overline{W}_1, \dots, \overline{W}_L)$$

- * shares of firms : Oij
- firms: j=1,...,Jphoduction set $T_j \subseteq \mathbb{R}^L$
- allocation: (M, y) = (X1,..., XI, y1, ... 25) EIRLX(I+J)
- (Def) An allocation (X, y) is teedback given \overline{w} if, for each l=1,...,L, \overline{z} $Xe_i = \overline{w}e + \overline{z} ye_i$
- Det) A competitive equilibrium is an allocation (x^*, y^*) and a price vector p^* s.t.
 - D For each j. P. y; for all \$; ∈ Y;
 - @ For each i
 - (20) $(x^{*}) \in B^{*} = \{ x \in X_{i} \mid P^{*} x_{i} \leq P^{*}, \omega_{i} + \sum_{j=1}^{r} \theta_{ij} (p^{*} y^{*}) \}$
 - (46) (X) Z X for all x & B.*
 - (3) $\sum_{k=1}^{T} q_{k}^{*} = \sum_{k=1}^{T} w_{k} + \sum_{j=1}^{T} y_{j}^{*}$

Aggregate Endowment. Aggregate

supply by firms

(Partial Equilibrium (W/ Strong assumptions)

- Marshal
- first cut may to put firms & consumers together.

Focus: market with only one "real" commodity

- O Ignoring the effects of substitutes & complements
 - extreme : perfect substitute

focus on commodity & only: If Pell, demand for other goods should to

- ① Ignore wealth effects: Suppose I has large wealth effects

 If Pell, then it would significantly impart budget for all other commodities,
 but ignored.
- > When we think of partial equilibrium, we really think of the commodity last being a small component of consumption at all (relevant) price levels.

 6 Vives (1973)
- Two commodities

建21 25 包括 包括 1914年 2011年 Xe; 至至1

- · l: X; for i's consumption of good l (答见是 in 台灣記書 至1)
- · numeraire: Mi for its consumption of the numeraire.
- Xx = IR x IR + 3 (mx, xx)
- preferences have a quasi-linear utility representation. $U_i(m_i, \chi_i) = m_i + p_i(\chi_i)$

- Firm j

· production of good l: g; (Zonte y; = werezent, and se g; = ==1)

· cost: (; (z;) units of the numeroire to produce z; units of good l c;: IR+ → IR, twice differentiable with c(1.) >0 and c(2.) ≥0.

marginal ast

 $-Y_{j}:=\{(Z_{j},g_{j}):g_{j}\geq 0 \text{ and } Z_{j}\geq C_{j}(g_{j})\}$ $|R^{2}|$ $|R^{2}|$ $|R^{2}|$

Entonistiz humovaire(MWGa chop 5)

- Albeation: (x, m, q, z) = ((x, m);=1, (2, 3))=1,)
- Endowments: Wi = (Wmi, 0)

 A A

 it to good l.
- price: price vector (1, p) (1: the price of the numeraire p: " good l

り22気32 61532 Competitive eq. 基 生物が.

Competitive Equilibrium (x*, m*, g*, Z*) and (1, p*) s.t.

of firm; supply curver condition (1j)

d) Firm j solves

max $[p^*g_j - C_j(g_j)] \Rightarrow p^* \leq C(g_j^*)$ w equality if $g_j^* > 0$ $\hat{g}_j \geq 0$ (interior solution)

Also, $\max \left[-1z_{j}\right] \rightarrow z_{j}^{*} = C_{j}(\xi_{j}^{*})$ (2)

(+) Consumer i solves

$$\max \left[m_i + \phi_i(x_i) \right]$$
 s.t. $m_i + p^* x_i \leq \omega_{m_i} + \sum_{j=1}^{J} \theta_{ij} \left(p^* g_j^* - C_j(q_j^*) \right)$

budget anstrukt binds

$$\Rightarrow \phi'(x^*) \leq p^* \quad \omega / \quad \text{equality when } y x^* > 0.$$

$$m_{i}^{*} + p^{*} \chi_{i}^{*} = W_{m_{i}} + \sum_{j=1}^{J} \theta_{ij} \left(p^{*} \xi_{j}^{*} - C_{j} \left(\xi_{j}^{*} \right) \right)$$
 (4.)

$$\overline{\Xi}_{m,*} = \overline{W}_m - \overline{\Sigma}_{n} = \overline{\Sigma}_{n}^*$$
(5b)

=) solve (xt, ..., xxx, mx, ..., mx, xx, xx, ..., xxx) & p* to satisfy (2j), (2j), (3i), (4,), (5).

(Remark) Distribution of Wm = (Wm1, ..., WmI) and the firm shares don't impact the consumption or the production of good l

Fix a feasible allocation (x, m, g, Z)

- each firm j uses Cj (%) units to pholice &;
- gets of Zj units of numeraine: Zj ≥ Cj(gj)

$$\Rightarrow \sum_{i=1}^{T} M_i = \overline{W}_m - \sum_{j=1}^{T} \mathcal{E}_j \leq \overline{W}_m - \sum_{j=1}^{T} C_j(g_j) \quad \text{(Enclowment 32)}.$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \left[\sum_{i=1}^{n} p_{i}(n_{i}) - \sum_{i=1}^{n} G(q_{i})\right]$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} m_{i} + \sum_{i=1}^{n} p_{i}(n_{i}) \leq \overline{w}_{m} + \sum_{i=1}^{n} G(q_{i})$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) = \sum_{i=1}^{n} G(q_{i})$$

$$\Rightarrow \sum_{i=1}^{n} u_{i}(m_{i}, n_{i}) =$$

오늘 통해 연구 " 오늘 생산하는데 Utility 등까는 요 St.

Define $U(X, Q) = \{ V \in \mathbb{R}^{\pm} : \stackrel{\top}{=} V_i \leq \overline{W}_m + S(X, g_i) \}$ (X.9) and total wealth in the economy

(Def) Say (x, m, q, z) induces $V \in \mathbb{R}^{Z}$ if, for each i=1, ..., I, $V_{i} = m_{i} + p_{i}(x_{i})$

1875/18 180/10

Lemma) is If (α, m, q, z) is feasible, then it produces some $\forall \alpha u(\alpha, q)$ is $\forall \beta u(\alpha, q) \in \mathbb{Z}$ and $\mathbb{Z}[\alpha] = \mathbb{Z}[q]$.

then there exists (m,z) s.t. (x,m,q,z) is feasible & includes v.

(2)生?

$$Z_j = C_j(g_j)$$
 $M_{\lambda} = \frac{1}{I} (\overline{W}_m - \sum_{j=1}^{J} Z_j)$

=> Feasiblity: Supply = demand: $\Sigma x_i = \Sigma g_j$ (by assumption) Endowment: $\Sigma m_i = \overline{W}_m - \Sigma G_j g_j$ (by construction)