Alexander Mead

curriculum vitae

 \mathfrak{p} +1 (236) 335–5319 \bowtie alexander.j.mead@googlemail.com $\stackrel{\frown}{\mathbb{D}}$ https://alexander-mead.github.io.

Academic appointments

- 2022 **Research Associate**, *machine learning, neural surrogates, probabilistic programming*, University of British Columbia, Frank Wood.
- 2020 2021 **GLOBE Senior Postdoctoral Researcher**, cosmological structure formation, University of Edinburgh, Catherine Heymans.
- 2017 2020 Marie Skłodowska Curie Fellowship, weak gravitational lensing, University of Barcelona and University of British Columbia, Licia Verde.
- 2015 2017 **Canadian Institute of Theoretical Astrophysics National Fellowship**, *weak gravitational lensing*, University of British Columbia, Ludovic Van Waerbeke.
- 2014 2015 **Postdoctoral Fellow**, baryonic feedback, matter clustering, weak gravitational lensing, University of Edinburgh, Catherine Heymans.

Education

- 2010 2014 **PhD**, Demographics of dark-matter haloes in standard and non-standard cosmologies, University of Edinburgh, John Peacock.
- 2005 2010 MPhys, astrophysics and theoretical physics, University of Oxford, First Class.

Awards

- 2016 Marie Skłodowska Curie fellowship, UBC and Barcelona.
- 2015 CITA National fellowship, UBC and CITA.
- 2012 Vitae Postgraduates Who Tutor Award (nom.), Edinburgh.
- 2012 **Teach First Innovative Teaching Award (nom.)**, *Edinburgh*.
- 2010 STFC funded PhD position, Edinburgh.
- 2010 **Peter Fisher prize**, top results in college, Oxford.
- 2009 Trinity College scholarship, first-class results in exams, Oxford.

PhD thesis

- Title Demographics of dark-matter haloes in standard and non-standard cosmologies
- Supervisors John Peacock, Alan Heavens, Sylvain de la Torre, Lucas Lombriser
- Description (1) Tuning the halo model of structure formation to accurately predict the full non-linear matter power spectrum as a function of cosmological parameters. (2) Rescaling cosmological simulations, in terms of both matter distributions and halo catalogues, between cosmological models. (3) Rescaling simulations from standard to modified gravity models.

Research interests

Machine I am interested in how to best apply modern machine-learning techniques to inference learning problems in the physical sciences. This includes using amortised inference techniques to learn proposal distributions for later importance sampling. I am also interested in how deep-generative modelling can be used to model statistical fields.

Cosmology

I have a strong background in fundamental cosmology with particular knowledge of the theory of structure formation including both the perturbative and deeply non-linear regime via the halo model. I am interested in how the halo model can be extended to better model the statistical properties of the density field when considering dark energy (DE) and modified gravity (MG) models.

Simulations

I am experienced in using GADGET-2 to perform cutting-edge, multi-core simulations. I have modified GADGET-2 to include a dark energy component and I am interested in simulations of both DE and MG models. Over the course of my career I have developed a large library of software to analyse the output of simulations and to generate and analyse halo catalogues produced by simulations.

Publications - lead author

- 1. M. Asgari, A. J. Mead, and C. Heymans. "The halo model for cosmology: a pedagogical review". In: arXiv e-prints, arXiv:2303.08752 (Mar. 2023). DOI: 10.48550/arXiv.2303.08752. arXiv: 2303.08752 [astro-ph.CO]
- 2. A. J. Mead and L. Verde. "Including beyond-linear halo bias in halo models". In: MNRAS 503.2 (May 2021). DOI: 10.1093/mnras/stab748. arXiv: 2011.08858 [astro-ph.CO]
- 3. A. J. Mead et al. "HMCODE-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback". In: MNRAS 502.1 (Mar. 2021). DOI: 10.1093/mnras/stab082. arXiv: 2009.01858 [astro-ph.CO]
- 4. A. J. Mead et al. "A hydrodynamical halo model for weak-lensing cross correlations". In: A&A 641, A130 (Sept. 2020). DOI: 10.1051/0004-6361/202038308. arXiv: 2005.00009 [astro-ph.CO]
- 5. A. J. Mead. "Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum". In: MNRAS 464 (Jan. 2017). DOI: 10.1093/mnras/stw2312. arXiv: 1606.05345
- 6. A. J. Mead et al. "Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces". In: MNRAS 459 (June 2016). DOI: 10.1093/mnras/stw681. arXiv: 1602.02154
- 7. A. J. Mead et al. "An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models". In: MNRAS 454 (Dec. 2015). DOI: 10.1093/mnras/stv2036. arXiv: 1505.07833
- 8. A. J. Mead et al. "Rapid simulation rescaling from standard to modified gravity models". In: MNRAS 452 (Oct. 2015). DOI: 10.1093/mnras/stv1484. arXiv: 1412.5195
- 9. A. J. Mead and J. A. Peacock. "Remapping simulated halo catalogues in redshift space". In: MNRAS 445 (Dec. 2014). DOI: 10.1093/mnras/stu1964. arXiv: 1408.1047
- 10. A. J. Mead and J. A. Peacock. "Remapping dark matter halo catalogues between cosmological simulations". In: MNRAS 440 (May 2014). DOI: 10.1093/mnras/stu345. arXiv: 1308.5183

Publications - significant contribution

- 1. Shiming Gu et al. "A non-standard Halo Mass Function as a solution to the structure-growth tension, application to KiDS-1000 and DES-y3". In: arXiv e-prints, arXiv:2302.00780 (Feb. 2023). arXiv: 2302.00780 [astro-ph.CO]
- 2. Andrej Dvornik et al. "KiDS-1000: Combined halo-model cosmology constraints from galaxy

- abundance, galaxy clustering and galaxy-galaxy lensing". In: arXiv e-prints, arXiv:2210.03110 (Oct. 2022). arXiv: 2210.03110 [astro-ph.CO]
- 3. Constance Mahony et al. "The halo model with beyond-linear halo bias: unbiasing cosmological constraints from galaxy-galaxy lensing and clustering". In: MNRAS 515.2 (Sept. 2022). DOI: 10.1093/mnras/stac1858. arXiv: 2202.01790 [astro-ph.CO]
- 4. Tilman Tröster et al. "Joint constraints on cosmology and the impact of baryon feedback: Combining KiDS-1000 lensing with the thermal Sunyaev-Zeldovich effect from Planck and ACT". in: A&A 660, A27 (Apr. 2022). DOI: 10.1051/0004-6361/202142197. arXiv: 2109.04458 [astro-ph.C0]
- 5. Ziang Yan et al. "Probing galaxy bias and intergalactic gas pressure with KiDS Galaxies-tSZ-CMB lensing cross-correlations". In: A&A 651, A76 (July 2021). DOI: 10.1051/0004-6361/202140568. arXiv: 2102.07701 [astro-ph.C0]
- 6. Z. Yan et al. "Galaxy cluster mass estimation with deep learning and hydrodynamical simulations". In: MNRAS 499.3 (Dec. 2020). DOI: 10.1093/mnras/staa3030. arXiv: 2005.11819 [astro-ph.CO]
- V. Gomez-Navarro et al. "Impact of cosmological signatures in two-point statistics beyond the linear regime". In: MNRAS (Nov. 2020). DOI: 10.1093/mnras/staa3393. arXiv: 2009.12717 [astro-ph.CO]
- 8. M. Cataneo et al. "On the road to percent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity". In: MNRAS 488.2 (2019). DOI: 10.1093/mnras/stz1836. arXiv: 1812.05594 [astro-ph.CO]
- 9. Nora Elisa Chisari et al. "Modelling baryonic feedback for survey cosmology". In: *The Open Journal of Astrophysics* 2.1, 4 (June 2019). DOI: 10.21105/astro.1905.06082. arXiv: 1905.06082 [astro-ph.CO]
- 10. N. E. Chisari et al. "Core Cosmology Library: Precision Cosmological Predictions for LSST". in: arXiv e-prints (Dec. 2018). arXiv: 1812.05995
- 11. Kyle Lawson et al. "Gravitationally trapped axions on the Earth". In: *PRD* 100.4, 043531 (Aug. 2019). DOI: 10.1103/PhysRevD.100.043531. arXiv: 1905.00022 [astro-ph.CO]
- 12. A. Hall and A. Mead. "Perturbative Gaussianizing transforms for cosmological fields". In: *MNRAS* 473 (Jan. 2018). DOI: 10.1093/mnras/stx2575. arXiv: 1709.03924
- 13. S. Joudaki et al. "KiDS-450: testing extensions to the standard cosmological model". In: MNRAS 471 (Oct. 2017). DOI: 10.1093/mnras/stx998. arXiv: 1610.04606
- 14. S. Joudaki et al. "CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics". In: MNRAS 465 (Feb. 2017). DOI: 10.1093/mnras/stw2665. arXiv: 1601.05786
- 15. L. Lombriser, F. Simpson, and A. Mead. "Unscreening Modified Gravity in the Matter Power Spectrum". In: *Physical Review Letters* 114.25, 251101 (June 2015). DOI: 10.1103/PhysRevLett. 114.251101. arXiv: 1501.04961
- 16. D. H. Forgan et al. "Surface flux patterns on planets in circumbinary systems and potential for photosynthesis". In: *International Journal of Astrobiology* 14 (July 2015). DOI: 10.1017/S147355041400041X. arXiv: 1408.5277 [astro-ph.EP]
- 17. S. P. Brown et al. "Photosynthetic potential of planets in 3:2 spin-orbit resonances". In: *International Journal of Astrobiology* 13 (Oct. 2014). DOI: 10.1017/S1473550414000068. arXiv: 1402.5044 [astro-ph.EP]

Publications - less significant contribution

- 1. Andreas Munk, Alexander Mead, and Frank Wood. "Uncertain Evidence in Probabilistic Models and Stochastic Simulators". In: arXiv e-prints, arXiv:2210.12236 (Oct. 2022). DOI: 10.48550/arXiv.2210.12236. arXiv: 2210.12236 [stat.ML]
- 2. Tilman Tröster et al. "KiDS-1000 Cosmology: Constraints beyond flat Λ CDM". in: A&A 649, A88 (May 2021). DOI: 10.1051/0004-6361/202039805. arXiv: 2010.16416 [astro-ph.C0]
- 3. Z. Yan et al. "An analysis of galaxy cluster mis-centring using cosmological hydrodynamic simulations". In: MNRAS (2020). DOI: 10.1093/mnras/staa295. arXiv: 1912.06663 [astro-ph.CO]
- 4. Xunyu Liang et al. "Axion quark nugget dark matter: Time modulations and amplifications". In: PRD 101.4, 043512 (Feb. 2020). DOI: 10.1103/PhysRevD.101.043512. arXiv: 1908.04675 [astro-ph.CO]
- 5. H. Hildebrandt et al. "KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data". In: *A&A* 633, A69 (Jan. 2020). DOI: 10.1051/0004-6361/201834878. arXiv: 1812.06076 [astro-ph.CO]
- 6. Hideki Tanimura et al. "Probing hot gas around luminous red galaxies through the Sunyaev-Zel'dovich effect". In: MNRAS 491.2 (Jan. 2020). DOI: 10.1093/mnras/stz3130. arXiv: 1903.06654 [astro-ph.CO]
- 7. H. Tanimura et al. "A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies". In: MNRAS 483 (Feb. 2019). DOI: 10.1093/mnras/sty3118. arXiv: 1709.05024
- 8. S. Joudaki et al. "KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering". In: *MNRAS* 474 (Mar. 2018). DOI: 10.1093/mnras/stx2820. arXiv: 1707.06627
- 9. H. Hildebrandt et al. "KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing". In: MNRAS 465 (Feb. 2017). DOI: 10.1093/mnras/stw2805. arXiv: 1606.05338
- 10. A. Lawrence et al. "Slow blue nuclear hypervariables in PanSTARRS-1". In: *ArXiv e-prints* (May 2016). arXiv: 1605.07842 [astro-ph.HE]
- 11. M. Nicholl et al. "Superluminous supernovae from PESSTO". in: MNRAS 444 (Nov. 2014). DOI: 10.1093/mnras/stu1579. arXiv: 1405.1325 [astro-ph.HE]

Software

I currently maintain, or contribute heavily to, the following publicly available software:

- 1. A. Mead. *HMcode: Halo-model matter power spectrum computation*. Astrophysics Source Code Library. Aug. 2015. ascl: 1508.001
- 2. A. Lewis and A. Challinor. *CAMB: Code for Anisotropies in the Microwave Background*. Astrophysics Source Code Library. Feb. 2011. ascl: 1102.026
- 3. Nora Elisa Chisari et al. *CCL: Core Cosmology Library*. Astrophysics Source Code Library. Jan. 2019. ascl: 1901.003

Technical skills

OS LINUX, MAC

Coding PYTHON, FORTRAN, C, STAN, PYRO

Simulation GADGET, N-GENIC, 2LPTIC, halo finding, simulation analysis tools

Academic talks

- 2020 Halo model cross correlations group meeting, San Sebastián
- 2019 How to not run cosmological simulations cosmology colloquium, Standford
- 2018 Multi-component halo model statistical-challenges in LSS, Oxford
- 2017 Intermediate dark energy cosmology discussion group, UBC
- 2017 Formation hysteresis in cosmology colloquium, CITA
- 2017 Formation hysteresis in cosmology cosmology discussion group, UBC
- 2016 Non-linear cosmological structure formation theory seminar, TRIUMF
- 2016 Non-linear cosmological structure formation colloquium, LIneA
- 2016 Non-linear cosmological structure formation colloquium, UBC
- 2016 Non-linear cosmological structure formation colloquium, CITA
- 2016 The halo model cosmology discussion group, UBC
- 2016 HMcode gravity meeting, Vancouver
- 2015 Rescaling simulations from standard to modified gravity DEX meeting, ROE
- 2014 Rescaling simulations from standard to modified gravity group meeting, Oxford
- 2014 Rescaling simulations from standard to modified gravity seminar, McGill
- 2014 Central configuration solutions to the n-body problem Stobie Talk, ROE
- 2014 Rescaling simulations from standard to modified gravity workshop, Benasque
- 2014 Rescaling in redshift space cross-correlations meeting, UCL
- 2014 Rescaling simulations from standard to modified gravity seminar, Edinburgh
- 2013 Rescaling dark matter halo catalogues seminar, ROE
- 2013 Life in 3:2 spin-orbit resonance Stobie Talk, ROE
- 2012 Halofit 2 DEX meeting, Durham
- 2012 Halofit 2 workshop, Benasque
- 2012 Halofit 2 cosmology school, Passo Tonale

PhD student supervision

- 2019 2020 Samuel Brieden: HMCODE accuracy for forthcoming surveys
- 2018 2019 Xunyu Liang: Axion-quark-nugget interactions with Earth
- 2016 2019 Zi'ang Yan: Machine learning halo properties from hydrodynamic simulations
- 2015 2018 Tilman Tröster: Cosmological cross correlations
- 2015 2017 Hideki Tanimura: Modelling cluster gas from SZ observations

Master student research supervision

2014 – 2015 Olivia Steele: The effect of dark energy on cosmological structure formation

Postgraduate research internship supervision

2018 – 2019 Md. Shahriar Rahim Siddiqui: Axion-quark-nugget interactions within the Solar System

Undergraduate student research supervision

- 2019 Hikari Rachmat: Axion-quark-nugget emission as seen by XMM Newton
- 2019 Marc-Antoine Dor: Exploring the halo mass function via weak-gravitational lensing
- 2015 Alexander Falk: The binary orbit menagerie
- 2015 Calum Hervieu: Planetary orbits in Lagrange points
- 2014 Felipe Knöner Thames: Planetary systems perturbed by passing stars

Teaching

- 2022 Probabilistic programming master
- 2021 Introductory Astronomy undergraduate
- 2021 Mathematics for Physics 2 undergraduate
- 2017 Galaxies undergraduate
- 2016 Cosmology undergraduate
- 2013 2015 The Distant Universe public lectures
- 2012 2013 General Relativity undergraduate
- 2010 2013 Cosmology undergraduate
- 2010 2011 Mathematics for Physics 3 undergraduate

Involvement in academic institutions

- 2016 2017 Organiser of the UBC cosmology reading group
- 2012 2015 Organiser of the Edinburgh large-scale structure reading group

Outreach

- 2013 2015 The distant Universe Course of ten public lectures, given each year for three years
 - 2014 Dark energy Talk given to the Edinburgh astronomical society
- 2012 2013 Progress in astronomy lectures Public talks given every month on new discoveries
 - 2013 Mass transfer in binary stars ROE public lecture
 - 2012 Large-scale structure formation ROE public lecture

Referees

- 1 Professor John Peacock jap@roe.ac.uk
- 2 Professor Catherine Heymans heymans@roe.ac.uk
- 3 Professor Licia Verde liciaverde@icc.ub.edu