TERMODINÁMICA

Universidad Nacional Mayor de San Marcos Facultad de Ciencias Físicas

EDITADO POR: JOSÉ AVALOS

ÚLTIMA ACTUALIZACIÓN: 16 DE ENERO DE 2023

Índice general

1.	Ecuaciones de Estado	3
	1.1. Ecuación de estado térmica	3
	1.2. Ecuación de estado calórica	3
	1.3. Proceso Isotérmico (T=cte)	4
	1.4. Proceso Isobárico (p=cte)	4
	1.5. Proceso Isocórico	5
2.	Energía interna	6
	2.1. Trabajo calorífico elemental	6
3.	Primera ley de la termodinámica	8
	3.1. Funciones termodinámicas	8
	3.2. Aplicación de la primera ley de la Termodinámica	8
	3.3. Primera ley para un sistema abierto	11
4.	Segunda ley de la termodinámica	12
	4.1. Entropía	12
5 .	Ecuación Fundamental de la termodinámica	13
	5.1. Expresión analítica para entropía con gas ideal	13
	TO D / : /	
	5.2. Energía interna para un sistema cerrado	14
	5.2. Energia interna para un sistema cerrado	14 15
	5.3. Energía libre de Helmholtz para un sistema cerrado	15 15
	5.3. Energía libre de Helmholtz para un sistema cerrado	15
6.	 5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18
6.	 5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18 18
6.	5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18
6.	 5.3. Energía libre de Helmholtz para un sistema cerrado 5.4. Entalpía para un sistema cerrado 5.5. Energía de Gibbs para un sistema cerrado Segunda Ley de la termodinámica para un sistema abierto monocomponente 6.1. Energía interna para un sistema abierto monocomponente 6.2. Energía libre de Helmholtz para un sistema abierto monocomponente 6.3. Entalpia para un sistema abierto monocomponente 	15 15 16 18 18 19 20
6.	5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18 18 19 20
	5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18 18 19 20 20
	5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18 18 19 20 20 22
	5.3. Energía libre de Helmholtz para un sistema cerrado	15 15 16 18 19 20 20 22 22 23

ÍNDICE GENERAL	2

	7.4. Energía de Gibbs	24
8.	Tercera ley de la termodinámica	26
	8.1. Capacidad calorifica a presión constante	26
	8.2. Postulación de Nernst	
	8.3. Consecuencias de la tercera ley	27
9.	Condiciones de Equilibrio de dos fases de un sistema termodinámico monocomponente	29
	9.1. Condiciones del sistema	
	9.2. Condiciones de equilibrio	

Ecuaciones de Estado

Las ecuaciones de estado modelan el comportamiento de una sustancia y se pueden representar de la siguiente manera:

$$f(p, V, T) = 0 (1.1)$$

donde:

- \blacksquare p es la presión.
- lacksquare V es el volumen.
- \blacksquare T es la temperatura.

1.1. Ecuación de estado térmica

Partiendo de la ley de gas ideal:

$$p = \frac{nRT}{V} \tag{1.2}$$

la cual podemos expresar de la siguiente forma:

$$pV = nRT (1.3)$$

la cual es conocida como ecuación de Clapeyron-Mendeleiev. Donde:

$$n = \frac{m}{M} = \frac{\text{masa de la sustancia}}{\text{masa molar}}$$
 (1.4)

1.2. Ecuación de estado calórica

La ecuación de estado calórica se expresa de la siguiente forma:

$$U = U_0 + C_v(T - T_0) (1.5)$$

esta ecuación se demostrará mas adelante.

- \blacksquare U es la energía interna.
- C_v es la capacidad calorífica a V = cte.

Procesos Termodinámicos

- Isotérmico (T = cte).
- Isobárico (p = cte).
- Isocórico (V = cte).
- Politrópico (C = cte).
- $\blacksquare \ \, \text{Adiabático} \, \left(C = \frac{\delta Q}{dT} = 0 \right).$

1.3. Proceso Isotérmico (T=cte)

Partiendo de la ecuación de Clapeyron-Mendeleiev, como T=cte entonces $nRT=c_1$

$$pV = nRT = c_1$$

De modo que:

$$pV = c_1 \to p = \frac{c_1}{V} = p(V)$$
 (1.6)

donde $c_1 = nRT$.

1.4. Proceso Isobárico (p=cte)

Partiendo de la ecuación de Clapeyron-Mendeleiev, como p=cte entonces:

$$pV = nRT \to V = \frac{nRT}{p}$$

donde $\frac{nR}{p} = cte = c_2$, entonces:

$$V = \frac{nRT}{p} = c_2 T = V = f(T)$$

1.5. Proceso Isocórico

Partiendo de la ecuación de Clapeyron-Mendeleiev, como V=cte entonces:

$$pV = nRT \rightarrow p = \frac{nRT}{V}$$

donde $\frac{nR}{V} = cte = c_3$, entonces:

$$p = \frac{nRT}{V} = c_3 T = f(T)$$

Energía interna

Vamos a definir la función de estado llamada energía interna la cual va a depender de la temperatura y el volumen(para un sistema cerrado):

$$U = U(T, V) \tag{2.1}$$

Para un sistema abierto la energía interna dependerá también de N la cual significa el número de componentes del sistema:

$$U = U(T, V, N) \tag{2.2}$$

Calculamos la evolución energetica del sistema hallando la diferencial de U:

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV \tag{2.3}$$

$$dU = \alpha(T)dT + \beta(V)dV \tag{2.4}$$

Observación:

$$\int dU = \int_{T_0}^T \alpha(T)dT + \int_{V_0}^V \beta(V)dV$$
(2.5)

2.1. Trabajo calorífico elemental

Tenemos que el trabajo calorifico puede ser expresado como:

$$\delta W = \sum_{i=1}^{\ell} A_i da_i \tag{2.6}$$

$$\delta W = A_1 da_1 + \dots + A_\ell da_\ell \tag{2.7}$$

donde:

 \bullet a_i es la i-ésima coordenada generalizada.

- \bullet A_u es la i-ésima fuerza generalizada.
- \blacksquare ℓ son los grados de libertad

Otra forma de expresarlo es:

$$\delta W = \mathbf{F} \cdot d\mathbf{r} = pdV \tag{2.8}$$

Expresado en su forma integral:

$$W = \int \delta W = \int_{V_0}^{V} p dV \tag{2.9}$$

Primera ley de la termodinámica

Conservación de la energía calorífica:

$$Q = U_2 - U_1 + W (3.1)$$

$$\delta Q = dU + \delta W \tag{3.2}$$

Si $\delta W = pdV$, entonces:

$$\delta Q = dU + pdV \tag{3.3}$$

la cual es la forma diferencial de la Primera ley de la termodinámica.

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_V dT + \left[\left(\frac{\partial U}{\partial V}\right)_T + p\right] dV \tag{3.4}$$

donde por la Ley de Joule se cumple para el gas ideal que:

$$\left(\frac{\partial U}{\partial V}\right)_T = 0\tag{3.5}$$

3.1. Funciones termodinámicas

Función de proceso: Dependen solo del camino recorrido. (Trabajo, calor,etc)

$$V_{1\to 2} = \int_{1\to 2} dV \tag{3.6}$$

Función de estado: Dependen del estado inicial y final. (Entropia, Entalpia, etc)

$$\int_{(1-2)} d\mu = \int_{1}^{2} d\mu = \mu_{2} - \mu_{1} = \mu_{(2)} - \mu_{(1)}$$
(3.7)

3.2. Aplicación de la primera ley de la Termodinámica

Primera definición de las capacidades caloríficas:

$$C = \frac{\delta Q}{dT} \tag{3.8}$$

Si V = cte:

$$C_v = [C]_v \tag{3.9}$$

Si p = cte:

$$C_p = [C]_p \tag{3.10}$$

1. Para $C = C_v$, donde el volumen es constante y dV = 0: Si U = U(T, V):

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV + pdV \tag{3.11}$$

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_V dT + \left[\left(\frac{\partial U}{\partial V}\right)_T + p\right] dV \tag{3.12}$$

Si $C = C_v$, donde el volumen es constante. Sabemos que la capacidad calorífica esta definida de forma general como:

$$C = \frac{dQ}{dT} \tag{3.13}$$

Y para el volumen constante reemplazamos (3.12) en (3.13):

$$C_{v} = \left[\frac{\left(\frac{\partial U}{\partial T} \right)_{V} dT + \left[\left(\frac{\partial U}{\partial V} \right)_{T} + p \right] dV}{dT} \right]_{V}$$
(3.14)

$$C_v = \left(\frac{\partial U}{\partial T}\right)_V \frac{dT}{dT} + \left[\left(\frac{\partial U}{\partial V}\right)_T + p\right] \underbrace{\frac{dV}{dT}}_{0}$$
(3.15)

$$C_v = \left(\frac{\partial U}{\partial T}\right)_V \frac{dT}{dT} = \left(\frac{\partial U}{\partial T}\right)_V \tag{3.16}$$

2. Calcular U si se tiene C_v donde dV = 0: Si obtenemos la derivada total de la energía interna donde U = U(T, V), obtenemos:

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV \tag{3.17}$$

Como el volumen es constante, entonces dV = 0, quedándonos así:

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT \tag{3.18}$$

Pero sabemos que la capacidad calorífica a volumen constante esta definida como:

$$C_v = \left(\frac{\partial U}{\partial T}\right)_V dT \tag{3.19}$$

Reemplazamos e integramos:

$$dU = C_v dT$$

$$\int_{U_0}^{U} dU = \int_{T_0}^{T} C_v dT$$

$$U - U_0 = \int_{T_0}^{T} C_v dT$$

$$U = U_0 + \int_{T_0}^{T} C_v dT$$

3. Calcular $C=C_p$ donde la presión es constante y dp=0: Si U=U(T,V):

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV + pdV \tag{3.20}$$

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_V dT + \left[\left(\frac{\partial U}{\partial V}\right)_T + p\right] dV \tag{3.21}$$

Si C_p esta definido como:

$$C_p = \left[\frac{\delta Q}{dT}\right]_p \tag{3.22}$$

Reemplazamos (3.21) en (3.22):

$$C_{p} = \left[\frac{\left(\frac{\partial U}{\partial T} \right)_{V} dT + \left[\left(\frac{\partial U}{\partial V} \right)_{T} + p \right] dV}{dT} \right]$$
(3.23)

$$C_{p} = \left[\left(\frac{\partial U}{\partial T} \right)_{V} + \left[\left(\frac{\partial U}{\partial V} \right)_{T} + p \right] \frac{dV}{dT} \right]_{p}$$
(3.24)

Si
$$C_v = \left(\frac{\partial U}{\partial T}\right)_V$$
:

$$C_p = C_v \left[\left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] \frac{dV}{dT} \right]_p \tag{3.25}$$

Si consideramos al volumen como una función que depende de T y p:

$$V = V(T, p) (3.26)$$

hallamos su diferencial total:

$$dV = \left(\frac{\partial V}{\partial T}\right)_p + \left(\frac{\partial V}{\partial p}\right)_T dp \tag{3.27}$$

en el caso cuando la presión es constante queda:

$$dV = \left(\frac{\partial V}{\partial T}\right)_p \tag{3.28}$$

Reemplazamos (3.25) en (3.28):

$$C_p = C_v + \left[\left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] \frac{\partial V}{\partial T} \right]_p \tag{3.29}$$

3.3. Primera ley para un sistema abierto

Para un sistema abierto monocomponente la primera ley se expresa como:

$$\delta Q = dU + pdV - d\varepsilon \tag{3.30}$$

donde $d\varepsilon = \mu dN$ (sistema monocomponente)¹, $d\varepsilon \approx dN$. De forma general tenemos:

$$\delta Q = dU + pdV - \sum_{i=1}^{n} \mu_i dN_i \tag{3.31}$$

 $^{^{1}\}mu$ es conocido como el potencial quimico.

Segunda ley de la termodinámica

4.1. Entropía

Conocemos una nueva función de estado llamada entropía denotada por S la cual es la encargada de caracterizar el nivel de organización de las componentes del sistema (orden o desorden).

$$\underbrace{dS}_{efecto} \sim \underbrace{\delta Q}_{causa} \tag{4.1}$$

$$\delta Q = \lambda dS \tag{4.2}$$

donde $\lambda = \lambda(\underbrace{a_1, a_2, \cdots, a_n}_{par\'ametros}, T)$ y λ es conocido también como multiplicador de Lagrange.

$$\lambda = \lambda(a_1, a_2, \cdots, a_n, T) = \lambda(T) \tag{4.3}$$

de modo que tenemos de forma diferencial:

$$\delta Q = TdS \tag{4.4}$$

O también:

$$dS = \frac{\delta Q}{T} \tag{4.5}$$

Si integramos:

$$\int_{(1)}^{(1)} dS = \oint \frac{\delta Q}{T}$$

$$0 = \oint \frac{\delta Q}{T}$$

$$(4.6)$$

$$0 = \oint \frac{\delta Q}{T} \tag{4.7}$$

Esta integral se conoce como Integral de Clausius.

Ecuación Fundamental de la termodinámica

Teniendo la primera ley de la termodinamica:

$$\delta Q = dU + pdV \tag{5.1}$$

y la segunda ley de la termodinamica:

$$\delta Q = TdS \tag{5.2}$$

Podemos unificar ambas en una sola ecuación:

$$TdS = dU + pdV (5.3)$$

la cual llamaremos como Ecuación fundamental de la Termodinámica(EFT).

5.1. Expresión analítica para entropía con gas ideal

Recordando la ecuación de Clapeyron Mendeleiev:

$$PV = nRT (5.4)$$

Si:

$$dS = \frac{\delta Q}{T} = \frac{dU + pdV}{T} \tag{5.5}$$

Si despejamos p de la ecuación de Clapeyron Mendeleiev:

$$p = \frac{nRT}{V} \tag{5.6}$$

Hallamos el diferencial de la energia interna definida como U = U(T, V):

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \underbrace{\left(\frac{\partial U}{\partial V}\right)_{T}}_{lev \ de \ joule} dV \tag{5.7}$$

$$dU = C_v dT + (0)dV (5.8)$$

$$dU = C_v dT (5.9)$$

Reemplazando en (5.5):

$$dS = \frac{dU + pdV}{T} \tag{5.10}$$

$$dS = \frac{CvdT + pdV}{T} \tag{5.11}$$

$$dS = C_v \frac{dT}{T} + \frac{p}{T} dV (5.12)$$

Reemplazando la ecuación (5.6) e integrando nos queda:

$$dS = C_v \frac{dT}{T} + nR \frac{dV}{V} \tag{5.13}$$

$$\int_{S_0}^{S} dS = \int_{T_0}^{T} C_v \frac{dT}{T} + \int_{V_0}^{V} nR \frac{dV}{V}$$
 (5.14)

$$S - S_0 = C_v \ln\left(\frac{T}{T_0}\right) + nR \ln\left(\frac{V}{V_0}\right) \tag{5.15}$$

$$S = S_0 + C_v \ln\left(\frac{T}{T_0}\right) + nR \ln\left(\frac{V}{V_0}\right)$$
(5.16)

5.2. Energía interna para un sistema cerrado

De la ecuación fundamental de la termodinámica:

$$TdS = dU + pdV (5.17)$$

Despejamos U:

$$dU = TdS - pdV (5.18)$$

Si U = U(S, V), hallamos su diferencial total:

$$dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial V}\right)_S dV \tag{5.19}$$

Igualamos tanto la ecuación (5.18) y la ecuación (5.19):

$$TdS - pdV = \left(\frac{\partial U}{\partial S}\right)_{V} dS + \left(\frac{\partial U}{\partial V}\right)_{S} dV \tag{5.20}$$

Si comparamos términos notamos que:

$$\begin{cases}
T = \left(\frac{\partial U}{\partial S}\right)_{V} \\
p = -\left(\frac{\partial U}{\partial V}\right)_{S}
\end{cases} (5.21)$$

5.3. Energía libre de Helmholtz para un sistema cerrado

Si tenemos una función F denominada energía libre de Helmholtz la cual depende de la temperatura y el volumen:

$$F = F(T, V) \tag{5.22}$$

Hallamos la diferencial total para conocer la evolución energética del sistema:

$$dF = \left(\frac{\partial F}{\partial T}\right)_{V} dT + \left(\frac{\partial F}{\partial V}\right)_{T} dV \tag{5.23}$$

de la EFT:

$$TdS = dU + pdV (5.24)$$

Aplicando una herramienta matematica:

$$d[ST] = SdT + TdS \tag{5.25}$$

$$TdS = d[ST] - SdT (5.26)$$

Reemplazando en (5.24):

$$d[ST] - SdT = dU + pdV (5.27)$$

$$d[U - TS] = -SdT - pdV (5.28)$$

donde U - TS = F, de modo que:

$$dF = -SdT - pdV (5.29)$$

Igualamos las ecuaciones (5.23) y (5.29):

$$\left(\frac{\partial F}{\partial T}\right)_{V} dT + \left(\frac{\partial F}{\partial V}\right)_{T} dV = -SdT - pdV \tag{5.30}$$

Comparando términos obtenemos que:

$$\begin{cases}
S = -\left(\frac{\partial F}{\partial T}\right)_{V} \\
p = -\left(\frac{\partial F}{\partial V}\right)_{T}
\end{cases} (5.31)$$

5.4. Entalpía para un sistema cerrado

Definimos una función energética H denominada entalpía que depende de las variables S y p:

$$H = H(S, p) \tag{5.32}$$

Hallamos la evolución energética del sistema:

$$dH = \left(\frac{\partial H}{\partial S}\right)_{p} dS + \left(\frac{\partial H}{\partial p}\right)_{S} dP \tag{5.33}$$

Recordamos la EFT:

$$TdS = dU + pdV (5.34)$$

Se puede comprobar que:

$$pdV = d[pV] - Vdp (5.35)$$

Si reemplazamos (5.35) en (5.34):

$$TdS = dU + d[pV] - Vdp (5.36)$$

$$TdS + Vdp = d[U + pV] (5.37)$$

$$d[U + pV] = TdS + Vdp (5.38)$$

donde H = U + pV, de modo que:

$$dH = TdS + Vdp (5.39)$$

Comparamos las ecuaciones (5.39) y (5.33):

$$\left(\frac{\partial H}{\partial S}\right)_{p} dS + \left(\frac{\partial H}{\partial p}\right)_{S} dP = TdS + Vdp \tag{5.40}$$

De modo que:

$$\begin{cases}
T = \left(\frac{\partial H}{\partial S}\right)_p \\
V = \left(\frac{\partial H}{\partial p}\right)_S
\end{cases} (5.41)$$

5.5. Energía de Gibbs para un sistema cerrado

Definimos una función energética G denominada energía de Gibbs la cual depende de las variables $p \neq T$:

$$G = G(p, T) \tag{5.42}$$

Hallamos la evolución energética del sistema:

$$dG = \left(\frac{\partial G}{\partial p}\right)_T dp + \left(\frac{\partial G}{\partial T}\right)_p dT \tag{5.43}$$

La EFT:

$$TdS = dU + pdV (5.44)$$

Si:

$$TdS = d[TS] - SdT (5.45)$$

$$pdV = d[PV] - Vdp (5.46)$$

Reemplazando en (5.44):

$$d[TS] - SdT = dU + d[PV] - Vdp (5.47)$$

$$Vdp - SdT = d[U + pV - TS]$$

$$(5.48)$$

$$d[U + pV - TS] = Vdp - Sdt (5.49)$$

donde G = U + pV - TS, de modo que:

$$dG = Vdp - Sdt (5.50)$$

Comparamos (5.43) y (5.50):

$$\left(\frac{\partial G}{\partial p}\right)_T dp + \left(\frac{\partial G}{\partial T}\right)_p dT = V dp - S dt \tag{5.51}$$

De modo que:

$$\begin{cases} V = \left(\frac{\partial G}{\partial p}\right)_T \\ S = -\left(\frac{\partial G}{\partial T}\right)_p \end{cases}$$
 (5.52)

Segunda Ley de la termodinámica para un sistema abierto monocomponente

Recordando la primera ley:

$$\delta Q = dU + pdV - \mu dN \tag{6.1}$$

Recordando la segunda ley:

$$\delta Q = TdS \tag{6.2}$$

Si igualamos ambas leyes, obtenemos la ecuación fundamental de la Termodinamica(EFT):

$$TdS = dU + pdV - \mu dN \tag{6.3}$$

6.1. Energía interna para un sistema abierto monocomponente

Despejamos U de la EFT:

$$dU = TdS - pdV + \mu dN \tag{6.4}$$

donde U = U(S, V, N), lo diferenciamos:

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V,N} dS + \left(\frac{\partial U}{\partial V}\right)_{S,N} dV + \left(\frac{\partial U}{\partial N}\right)_{S,V} dN \tag{6.5}$$

Comparamos ambas ecuaciones y obtenemos:

$$TdS - pdV + \mu dN = \left(\frac{\partial U}{\partial S}\right)_{VN} dS + \left(\frac{\partial U}{\partial V}\right)_{SN} dV + \left(\frac{\partial U}{\partial N}\right)_{SN} dN \tag{6.6}$$

de modo que:

$$\begin{cases}
T = \left(\frac{\partial U}{\partial S}\right)_{V,N} \\
p = -\left(\frac{\partial U}{\partial V}\right)_{S,N} \\
\mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}
\end{cases} (6.7)$$

6.2. Energía libre de Helmholtz para un sistema abierto monocomponente

Si tenemos el potencial de Helmholtz definido por:

$$F = F(T, V, N) \tag{6.8}$$

Utilizando la EFT:

$$TdS = dU + pdV - \mu dN \tag{6.9}$$

Si:

$$TdS = d(TS) - SdT$$

Reemplazamos y obtenemos:

$$dU = d(TS) - SdT - pdV + \mu dN \tag{6.10}$$

$$d(U - TS) = -SdT - pdV + \mu dN \tag{6.11}$$

De modo que F=U-TS, si diferenciamos F, obtenemos:

$$dF = \left(\frac{\partial F}{\partial T}\right)_{V,N} dT + \left(\frac{\partial F}{\partial V}\right)_{T,N} dV + \left(\frac{\partial F}{\partial N}\right)_{T,V} dN \tag{6.12}$$

De modo que si comparamos ambas ecuaciones:

$$\left(\frac{\partial F}{\partial T}\right)_{V,N} dT + \left(\frac{\partial F}{\partial V}\right)_{T,N} dV + \left(\frac{\partial F}{\partial N}\right)_{T,V} dN = -SdT - pdV + \mu dN \tag{6.13}$$

$$\begin{cases}
S = -\left(\frac{\partial F}{\partial T}\right)_{V,N} \\
p = -\left(\frac{\partial F}{\partial V}\right)_{T,N} \\
\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V}
\end{cases} (6.14)$$

6.3. Entalpia para un sistema abierto monocomponente

Si tenemos la entalpia definida por:

$$H = H(S, p, N) \tag{6.15}$$

Utilizando la EFT:

$$TdS = dU + pdV - \mu dN \tag{6.16}$$

Si:

$$pdV = d(pV) - Vdp (6.17)$$

Reemplazamos y obtenemos:

$$dU = TdS - d(pV) + Vdp + \mu dN \tag{6.18}$$

$$d(U + pV) = TdS + Vdp + \mu dN \tag{6.19}$$

De modo que H = U + pV, si diferenciamos H, obtenemos:

$$dH = \left(\frac{\partial H}{\partial S}\right)_{p,N} dS + \left(\frac{\partial H}{\partial p}\right)_{S,N} dp + \left(\frac{\partial H}{\partial N}\right)_{S,p} dN \tag{6.20}$$

Comparamos ambas ecuaciones:

$$\left(\frac{\partial H}{\partial S}\right)_{p,N} dS + \left(\frac{\partial H}{\partial p}\right)_{S,N} dp + \left(\frac{\partial H}{\partial N}\right)_{S,p} dN = TdS + Vdp + \mu dN \tag{6.21}$$

$$\begin{cases}
T = \left(\frac{\partial H}{\partial S}\right)_{p,N} \\
V = \left(\frac{\partial H}{\partial p}\right)_{S,N} \\
\mu = \left(\frac{\partial H}{\partial N}\right)_{S,p}
\end{cases} (6.22)$$

6.4. Energia de Gibbs para un sistema abierto monocomponente

Si tenemos el potencial de Gibbs definido por:

$$G = G(T, p, N) \tag{6.23}$$

Utilizando la EFT:

$$TdS = dU + pdV - \mu dN \tag{6.24}$$

Si:

$$TdS = d(TS) - SdT (6.25)$$

$$pdV = d(PV) - Vdp (6.26)$$

CAPÍTULO 6. SEGUNDA LEY DE LA TERMODINÁMICA PARA UN SISTEMA ABIERTO MONOCOMPONENTE

Reemplazando y tenemos:

$$dU = d(TS) - SdT - d(PV) + Vdp + \mu dN$$
(6.27)

$$d(U - TS + PV) = -SdT + Vdp + \mu dN \tag{6.28}$$

de modo que G = U - TS + PV, si diferenciamos G, obtenemos:

$$dG = \left(\frac{\partial G}{\partial T}\right)_{p,N} dT + \left(\frac{\partial G}{\partial p}\right)_{T,N} dp + \left(\frac{\partial G}{\partial N}\right)_{T,p} dN \tag{6.29}$$

Comparamos ambas ecuaciones:

$$\left(\frac{\partial G}{\partial T}\right)_{p,N} dT + \left(\frac{\partial G}{\partial p}\right)_{T,N} dp + \left(\frac{\partial G}{\partial N}\right)_{T,p} dN = -SdT + Vdp + \mu dN \tag{6.30}$$

$$\begin{cases}
S = -\left(\frac{\partial G}{\partial T}\right)_{p,N} \\
V = \left(\frac{\partial G}{\partial p}\right)_{T,N} \\
p = \left(\frac{\partial G}{\partial N}\right)_{T,p}
\end{cases} (6.31)$$

Relaciones Termodinámicas de Maxwell

7.1. Energía interna

En relación a la energia interna:

$$U = U(V, S) \tag{7.1}$$

Sus propiedades energéticas:

$$T = \left(\frac{\partial U}{\partial S}\right)_V \tag{7.2}$$

$$p = -\left(\frac{\partial U}{\partial V}\right)_S \tag{7.3}$$

Si derivamos T con respecto al volumen a entropía constante:

$$\left[\frac{\partial T}{\partial V}\right]_{S} = \left\{\frac{\partial}{\partial V}\left[\left(\frac{\partial U}{\partial S}\right)_{V}\right]\right\}_{S} \tag{7.4}$$

$$\left(\frac{\partial T}{\partial V}\right)_S = \left(\frac{\partial^2 U}{\partial S \partial V}\right) \tag{7.5}$$

Derivamos p con respecto a la entropía a volumen constante:

$$\left[-\frac{\partial p}{\partial S} \right]_{V} = \left\{ \frac{\partial}{\partial S} \left[\left(\frac{\partial U}{\partial V} \right)_{S} \right] \right\}_{V} \tag{7.6}$$

$$\left(-\frac{\partial p}{\partial S}\right)_{V} = \left(\frac{\partial^{2} U}{\partial V \partial S}\right) \tag{7.7}$$

Comparamos las ecuaciones (7.5) y (7.7):

$$\left(\frac{\partial T}{\partial V}\right)_S = \left(-\frac{\partial p}{\partial S}\right)_V \tag{7.8}$$

La cual se conoce como primera relación de Maxwell.

7.2. Energía libre de Helmholtz

En relación a la energía libre de Helmholtz:

$$F = F(V, T) \tag{7.9}$$

Sus propiedades energéticas:

$$-S = \left(\frac{\partial F}{\partial T}\right)_V \tag{7.10}$$

$$-p = \left(\frac{\partial F}{\partial V}\right)_T \tag{7.11}$$

Derivamos S con respecto al volumen a temperatura constante:

$$\left[-\frac{\partial S}{\partial V} \right]_T = \left\{ \frac{\partial}{\partial V} \left[\left(\frac{\partial F}{\partial T} \right)_V \right] \right\}_T \tag{7.12}$$

$$\left(-\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial^2 F}{\partial T \partial V}\right) \tag{7.13}$$

Derivamos p con respecto a la temperatura a volumen constante:

$$\left[-\frac{\partial p}{\partial T} \right]_{V} = \left\{ \frac{\partial}{\partial T} \left[\left(\frac{\partial F}{\partial V} \right)_{T} \right] \right\}_{V} \tag{7.14}$$

$$\left(-\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial^{2} F}{\partial V \partial T}\right) \tag{7.15}$$

Comparamos las ecuaciones (7.13) y (7.15):

$$\left(-\frac{\partial S}{\partial V}\right)_T = \left(-\frac{\partial p}{\partial T}\right)_V \tag{7.16}$$

La cual se conoce como segunda relación de Maxwell.

7.3. Entalpía

En relación a la Entalpía:

$$H = H(S, p) \tag{7.17}$$

Sus propiedades energéticas:

$$T = \left(\frac{\partial H}{\partial S}\right)_p \tag{7.18}$$

$$V = \left(\frac{\partial H}{\partial p}\right)_S \tag{7.19}$$

Derivamos T con respecto a la presión cuando la entropía es constante:

$$\left[\frac{\partial T}{\partial p}\right]_{S} = \left\{\frac{\partial}{\partial p} \left[\left(\frac{\partial H}{\partial S}\right)_{p}\right]\right\}_{S} \tag{7.20}$$

$$\left(\frac{\partial T}{\partial p}\right)_S = \left(\frac{\partial^2 H}{\partial S \partial p}\right) \tag{7.21}$$

Derivamos V con respecto a la entropía a presión constante:

$$\left[\frac{\partial V}{\partial S}\right]_{p} = \left\{\frac{\partial}{\partial S}\left[\left(\frac{\partial H}{\partial p}\right)_{S}\right]\right\}_{p} \tag{7.22}$$

$$\left(\frac{\partial V}{\partial S}\right)_{p} = \left(\frac{\partial^{2} H}{\partial p \partial S}\right) \tag{7.23}$$

Comparamos las ecuaciones (7.21) y (7.23):

$$\left(\frac{\partial T}{\partial p}\right)_S = \left(\frac{\partial V}{\partial S}\right)_p \tag{7.24}$$

La cual se conoce como tercera relación de Maxwell.

7.4. Energía de Gibbs

En relación a la energía de Gibbs:

$$G = G(p, T) \tag{7.25}$$

Sus propiedades energéticas:

$$-S = \left(\frac{\partial G}{\partial T}\right)_{p} \tag{7.26}$$

$$V = \left(\frac{\partial G}{\partial p}\right)_T \tag{7.27}$$

Derivamos S con respecto a la presión a temperatura constante:

$$\left[-\frac{\partial S}{\partial p} \right]_T = \left\{ \frac{\partial}{\partial p} \left[\left(\frac{\partial G}{\partial T} \right)_p \right] \right\}_T \tag{7.28}$$

$$\left(-\frac{\partial S}{\partial p}\right)_T = \left(\frac{\partial^2 G}{\partial T \partial p}\right) \tag{7.29}$$

Derivamos V con respecto a la temperatura a presión constante:

$$\left[\frac{\partial V}{\partial T}\right]_{p} = \left\{\frac{\partial}{\partial T} \left[\left(\frac{\partial G}{\partial p}\right)_{T}\right]\right\}_{p} \tag{7.30}$$

$$\left(\frac{\partial V}{\partial T}\right)_p = \left(\frac{\partial^2 G}{\partial p \partial T}\right) \tag{7.31}$$

Si comparamos las ecuaciones (7.29) y (7.31):

$$\left(-\frac{\partial S}{\partial p}\right)_T = \left(\frac{\partial V}{\partial T}\right)_p \tag{7.32}$$

Tercera ley de la termodinámica

En esta parte nos hacemos la siguiente pregunta:

¿Qué valor toma la entropía de un sistema y como se puede medir?

Una forma de medir la entropía de un sistema es midiendo su capacidad calorífica.

8.1. Capacidad calorifica a presión constante

Si la medición de C_p :

$$C_p = \left(\frac{\partial Q}{\partial T}\right)_p = T\left(\frac{\partial S}{\partial T}\right)_p \tag{8.1}$$

De modo que:

$$\left(\frac{\partial S}{\partial T}\right)_{p} = \frac{C_{p}}{T}\partial S = \frac{C_{p}}{T}\partial T \tag{8.2}$$

Integrando obtenemos:

$$\int_{T_0}^{T} dS = \int_{T_0}^{T} \frac{C_p}{T} dT \tag{8.3}$$

$$S(T) = S(T_0) + \int_{T_0}^{T} \frac{C_p}{T} dT$$
 (8.4)

De modo que obtenemos una forma de medir la entropía en función a la temperatura.

La ecuación (8.4) en mecánica estadística puede expresarse de la siguiente forma:

$$S - S_0 = K_B \ln \Omega \tag{8.5}$$

8.2. Postulación de Nernst

Si consideramos la entalpía y la energía de Gibbs:

El cambio de la entalpía ΔH y el cambio en la función de Gibbs ΔG se relacionan como:

$$G = H - TS \rightarrow \Delta G = \Delta H - T\Delta S$$
 (8.6)

Si
$$T \to 0$$
, entonces $\Delta G \to \Delta H$ (8.7)

Nernst postulo que:

$$\Delta S \to 0 \text{ cuando } T \to 0$$
 (8.8)

esto se puede escribir como:

 Nernst enunciado tercera ley: Cerca al cero absoluto, todas las reacciones en un sistema con equilibrio interno hace que la entropía no varié.

$$\left(\frac{\partial U}{\partial S}\right)_{V,N} = 0 \tag{8.9}$$

En 1911 Planck agrego:

■ Planck enunciado tercera ley: La entropía de todos los sistemas en equilibrio interno es la misma en el cero absoluto y puede tomar el valor de 0.

$$\lim_{T \to 0} S(T) = 0 \tag{8.10}$$

En 1937 Simon agrego:

■ Simon enunciado tercera ley: La contribución a la entropía de un sistema por cada aspecto del sistema que esta en equilibrio termodinámico interno tiende a cero cuando $T \to 0$.

8.3. Consecuencias de la tercera ley

■ La capacidad calorífica tiende a cero cuando $T \to 0$:

$$C = T\left(\frac{\partial S}{\partial T}\right) = \left(\frac{\partial S}{\partial \ln T}\right) \to 0 \tag{8.11}$$

como $T \to 0$ entonces $\ln T \to \infty$ y $S \to 0$.

 \blacksquare La expansión térmica se detiene, como $S \to 0$ y $T \to 0$, tenemos por ejemplo que:

$$\left(\frac{\partial S}{\partial p}\right)_T \to 0$$
 (8.12)

Utilizando la relación de Maxwell:

$$\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \to 0 \tag{8.13}$$

■ Imposibilidad de alcanzar el cero absoluto:

Es imposible enfriar a T=0 en un número infinito de pasos.

Si la tercera ley no se cumpliera seria posible proceder con el caso 1 y enfriar todo y llegar al cero absoluto. Sin embargo debido a al tercera ley la situación es como en el caso 2 y se deduce que es imposible llegar al cero absoluto debido a que se requiere un numero infinito de pasos.

■ La ley de Curie se desmorona.

La ley establece que la susceptibilidad \mathcal{X} es proporcional a 1/T:

$$\mathcal{X} \propto \frac{1}{T} \tag{8.14}$$

por lo tanto $\mathcal{X} \to \infty$ cuando $T \to 0$. Sin embargo la tercera ley implica que:

$$\left(\frac{\partial S}{\partial B}\right)_T \to 0 \tag{8.15}$$

Por lo tanto:

$$\left(\frac{\partial S}{\partial B}\right)_T = \left(\frac{\partial m}{\partial T}\right)_B = \frac{VB}{\mu_0} \left(\frac{\partial \mathcal{X}}{\partial T}\right)_B \tag{8.16}$$

debe tender a cero $\left(\frac{\partial \mathcal{X}}{\partial T}\right) \to 0$. Lo cual esta en desacuerdo con la ley de Curie.

Condiciones de Equilibrio de dos fases de un sistema termodinámico monocomponente

Planteamiento:

Se tiene un sistema formado por dos subsistemas cerrados y aislados que se encuentran en fase liquida y la otra en forma de vapor.

¿Que ocurre en la interfase?

Hallamos la entropía del sistema:

$$S = S_{\ell} + S_v = cte \tag{9.1}$$

Si lo diferenciamos, obtenemos:

$$dS = d(S_{\ell} + S_{\nu}) = dS_{\ell} + dS_{\nu} = 0 \tag{9.2}$$

Se observa que los "dos subsistemas" tienen que cumplir la Ecuación fundamental de la termodinámica para un sistema abierto monocomponente:

$$TdS = dU + pdV - \mu dN \tag{9.3}$$

$$dS = \frac{dU + pdV - \mu dN}{T} \tag{9.4}$$

■ Para la fase liquida:

$$dS_{\ell} = \frac{dU_{\ell} + p_{\ell}dV_{\ell} - \mu_{\ell}dN_{\ell}}{T_{\ell}}$$

$$(9.5)$$

■ Para la fase de vapor:

$$dS_v = \frac{dU_v + p_v dV_v - \mu_v dN_v}{T_v} \tag{9.6}$$

Reemplazamos en:

$$dS_{\ell} + dS_v = 0 \tag{9.7}$$

$$\frac{dU_{\ell} + p_{\ell}dV_{\ell} - \mu_{\ell}dN_{\ell}}{T_{\ell}} + \frac{dU_{v} + p_{v}dV_{v} - \mu_{v}dN_{v}}{T_{v}} = 0$$
(9.8)

9.1. Condiciones del sistema

• Energía interna del sistema

Si notamos que la energía interna del sistema cumple la siguiente relación:

$$U = U_{\ell} + U_{\nu} = cte \tag{9.9}$$

Si diferenciamos esta relación, obtenemos:

$$dU_{\ell} + dU_{\nu} = 0 \tag{9.10}$$

$$dU_v = -dU_\ell \tag{9.11}$$

■ Volumen del sistema

El volumen del sistema cumple la siguiente relación:

$$V = V_{\ell} + V_{\nu} = cte \tag{9.12}$$

Si diferenciamos esta relación, obtenemos:

$$dV_{\ell} + dV_{v} = 0 \tag{9.13}$$

$$dV_v = -dV_\ell \tag{9.14}$$

Numero de componentes del sistema

El numero de componentes total del sistema cumple la siguiente relación:

$$N = N_{\ell} + N_v = cte \tag{9.15}$$

Si diferenciamos esta relación, obtenemos:

$$dN_{\ell} + dN_{\nu} = 0 \tag{9.16}$$

$$dN_v = -dN_\ell \tag{9.17}$$

Reemplazando obtenemos:

$$\left(\frac{dU_{\ell}}{T_{\ell}} + \frac{dU_{\ell}}{T_{v}}\right) + \left(\frac{p_{\ell}dV_{\ell}}{T_{\ell}} + \frac{p_{v}dV_{\ell}}{T_{v}}\right) - \left(\frac{\mu_{\ell}dN_{\ell}}{T_{\ell}} - \frac{\mu_{v}dN_{\ell}}{T_{v}}\right) = 0$$
(9.18)

$$\left[\frac{1}{T_{\ell}} - \frac{1}{T_{v}}\right] dU_{\ell} + \left[\frac{p_{\ell}}{T_{\ell}} - \frac{p_{v}}{T_{v}}\right] dV_{\ell} - \left[\frac{\mu_{\ell}}{T_{\ell}} - \frac{\mu_{v}}{T_{v}}\right] dN_{\ell} = 0 \tag{9.19}$$

Se observa que $dU_{\ell} \neq 0$, $dV_{\ell} \neq 0$ y $dN_{\ell} \neq 0$. De modo que los términos entre paréntesis se igualan a cero:

9.2. Condiciones de equilibrio

a) Condición de equilibrio térmico

$$\left[\frac{1}{T_{\ell}} - \frac{1}{T_{v}}\right] = 0$$

$$T_{\ell} = T_{v}$$
(9.20)

b) Condición de equilibrio mecánico

$$\left[\frac{p_{\ell}}{T_{\ell}} - \frac{p_{v}}{T_{v}}\right] = 0$$

$$p_{\ell} = p_{v}$$
(9.22)

c) Condición de equilibrio químico

$$\left[\frac{\mu_{\ell}}{T_{\ell}} - \frac{\mu_{v}}{T_{v}}\right] = 0 \tag{9.24}$$

$$\mu_{\ell} = \mu_{v} \tag{9.25}$$