Evaluation

Alipio Jorge (DCC-FCUP)

November 2021

Model Evaluation

The credit office of the bank now has to decide whether to give the loan or not to a specific client. Management feels that the current credit decision procedure is not efficient and that the bank can make more money and secure more good clients with a better process The bank has an historical record of loans. Some were conceded and went well. Other were not conceded or had a bad outcome.

- What is the machine learning goal?
 - To obtain a **classification model** for predicting whether the loan is going to be payed or not.
- Which are the success criteria?
 - Machine Learning: Is the model predicting correct classes?
 - Business: Is the model increasing profit?

Model Evaluation: estimating real performance

- We want to estimate how well the model performs with unknown cases
 - makes good predictions (we do not know the future)
 - makes good diagnoses (we do not know them yet)
 - assigns correctly an email to a folder (not previously assigned)

Model Evaluation: model selection

- We have a classification problem
 - Is Naive Bayes better than KNN or Decision Trees?
- Model Selection
 - Obtain a model with each one (on the same data)
 - Identify the model that performs better (on the same data)

Model Evaluation: hyperparameter tuning

- What should the number of neighbours be for kNN?
- Compare 1NN, 3NN, 5NN and 15NN
 - this is also model selection

- Holdout evaluation method
 - separate data set in train and test
 - use train to learn the model, and test to assess it
 - why separate?

Figure 1: fig from han et al.

Metrics for Evaluating Classifier Performance

- How to assess a classifier?
 - many metrics
- Popular ones
 - Accuracy
 - Recall
 - Precision
 - F1
 - Sensitivity
 - Specificity

Accuracy

Accuracy

- the test asks Total questions
- each question is equally important
- the model gets Right questions right
- the proportion of right answers

$$Accuracy = \frac{Right}{Total}$$

Error

• Error = 1 - Accuracy

The confusion matrix

- My credit decision model has an accuracy of 64% (or 0.64, we can say either way)
- How good is it on each class?
 - No idea, accuracy amalgamates all the classes
- The Confusion Matrix
 - where are the errors?
 - we can see that 24 loans are wrongly given
 - and 12 are wrongly denied

classified as $ ightarrow$	loan	no Ioan
loan	43	12
no loan	24	21

Binary classification

- When we are learning a **concept** of interest
 - e.g. a good credit client, the presence of a disease
- We have
 - positive examples
 - negative examples
- Depending on how a model classifies a test case

classified as	loan	no Ioan	
loan	True Positives	False Negatives	Positives
no loan	False Positives	True Negatives	Negatives

Redefining Accuracy

$$Accuracy = \frac{TP + TN}{P + N}$$

- In other words
 - The main diagonal divided by the sum of all the matrix

Other interesting measures: Recall

- Are we missing good clients?
 - ullet If $\mathit{Recall} = 1$ we get them all

$$Recall = \frac{TP}{P}$$

- A.k.a.
 - True Positive Rate
 - Sensitivity
 - How sensitive is the model to the positive class?

Other interesting measures: Precision

- Are all our decisions good?
 - ullet If Precision = 1 we only say right things

$$Precision = \frac{TP}{TP + FP}$$

- Note the following
 - Management wants to get more clients and asks for a model with higher recall.
 - Data scientists say: "we risk getting more bad clients too"
 - When Recall increases Precision tends to go down
 - and vice-versa

Other interesting measures: F_1

- How to combine recall and precision?
 - calculate the harmonic mean

$$F_1 = rac{2 imes Recall imes Precision}{Recall + Precision}$$

- F_1 is
 - also known as F-score
 - low if either recall or precision are low
 - equal to Recall and Precision if Recall = Precision
 - generalised by F_{β}

Other interesting measures: Specificity

- Are we excluding all the bad clients?
 - ullet If Specificity=1 we identify all bad clients (and hopefully some good ones)

$$Specificity = \frac{TN}{N}$$

- A.k.a.
 - True Negative Rate
 - Used in medical applications
 - negatives are patients without the disease

An example

The bank wants a model to identify good clients...

classified as $ ightarrow$	loan	no loan
loan	43	12
no loan	32	21

- Accuracy is (43+21)/(32+12+43+21)=0.59
- **Recall** ('loan' as positive) is 43/(43 + 12) = 0.78
 - the bank identifies 78% of the good clients, but 22% are missed
- **Precision** is 43/(43+32) = 0.57
 - 57% of the loans given would fail
- **Specificity** is 21/(21+32) = 0.40
 - the bank only detects 40% of the 'bad' clients
- **F1** is $2 \times 0.78 \times 0.57/(0.78 + 0.57) = 0.66$
 - there is a relatively good balance of recall and precision

An extreme example

The bank has a model for detecting fraud in the use of their credit card. The confusion matrix of the model is the following

classified as	fraud	clean	
fraud	16	8	Positives
clean	300	1200	Negatives

- accuracy = 0.80
 - this looks good. Is it?
- what is the accuracy of the majority class rule?
 - 0.98 (higher than the model)
- recall = 0.67
 - not so bad to get 67% of the fraud cases
- precision = 0.05
 - many 'innocents' will have their card blocked
- Conclusion: it depends on the cost of missing a fraud and annoying a clean client (check later for cost matrices)

Estimating evaluation metrics

Figure 2: fig from han et al.

- Option 1: Estimate accuracy on the training examples
 - Estimate tends to be **optimistic**
 - Very bad choice
- Option 2: Isolate a subset for testing (holdout)
 - Estimate is more reliable
 - Estimate tends to be pessimistic
 - Depends on sampling
 - Depends on the sizes of the train and test set

- Option2.1: Small training set, large test set
 - Model will be less robust than if more data had been used
 - Testing is more representative

Training set

Test set

- Option2.2: Large training set, small test set
 - Model is **more robust** (closer to training with the whole data)
 - Testing may be less representative (we have to make sure it is)

Training set

Test set

- Given a dataset D
 - \bullet Randomly split D int $\mbox{\bf Train}$ and $\mbox{\bf Test}$
 - e.g.: 80% 20%
 - Learn the model from Train
 - Assess the model with Test
- The train and test sets are independent
- Different samples may produce different results (variance)
- If D is small, then Holdout produces unreliable estimates

Example with a data set

- Using the iris data set with 3NN
- 10-90 split, different runs
 - 0.925, 0.918, 0.829, 0.985, 0.948, 0.896, 0.896, 0.962
- 90-10 split, different runs
 - 1.000, 1.000, 0.933, 1.000, 0.867, 0.933, 0.867, 0.933

Dealing with assessment variance

(note: I will mostly assume we are estimating accuracy but the concepts are applicable to other metrics)

- A problem with holdout is variance of the evaluation estimates
 - Accuracy is also a random variable
 - We do not know its true value or distribution
- Solutions:
 - Testing with more data
 - reduces variance
 - if there is more data
 - Repeating the train-test cycle
 - reduces variance
 - enables studying the distribution of the measure (e.g. accuracy)
 - but we need a different sample for each iteration

Repeating train-test: Random subsampling

Random Subsampling

- k train-test subsamples from the **same** data
- obtain an accuracy estimate for each subsample
- calculate average and variance of the *k* estimates

Repeating train-test: Bootstrapping

- Bootstrapping samples the data set with replacement
 - k bootstrap subsamples from the **same** data
 - same size as data, can have repeated examples
 - ullet test sets with the examples left out in each bootstrap
 - on average 63.2% of the data set
 - obtain an accuracy estimate for each subsample
 - calculate average and variance of the *k* estimates

Subsampling methods: analysis

- Bootstrapping and Random subsampling
 - Samples lack independence
 - Exploit small data
 - Accuracy estimators are still not very robust
 - Better than simple holdout
- Which one is preferable?
 - not very clear
 - bootstrapping promotes variance in the model
 - under represented example categories may be amplified
 - e.g. 5 vintage mansions in the house market

Repeating train-test: k-fold Cross-validation

- Two random test sets may share examples
 - not ideal for test independence
- Cross-validation
 - Split the data in k folds of the same size
 - Use each fold as a separate test set
 - no shared examples

Repeating train-test: k-fold Cross-validation

- In each iteration $i \in 1, \ldots, k$
 - use fold *i* for testing
 - use the other k-1 folds for training
 - obtain Acci
- Study the distribution of the Acci

Repeating train-test: k-fold Cross-validation

- Each sample is used exactly once
- Test sets are independent
 - Training sets are not
- What if we have a small class?
 - stratified cross validation to avoid under representation
- If we have very few examples?
 - leave one out cross validation
 - also leave p out for other (small) values of p
- How many folds should we use?
 - typical: 10 fold cross validation (10 fold CV)
 - (Demsar 2006) 2 times 5 fold CV
- Shufling before splitting may be a good idea

Validation, Test and deployment

- We can use cross-validation for tuning
 - hyperparamater tuning, pre-processing decisions, ...
- In after tuning (and other decisions) use a new test set
- The internal test set is the validation set (or sets)

Figure 3: fig from mc.ai

Validation, Test and deployment

- Why do we need validation and test?
 - using the test set to improve results leads to overly optimistic results
 - it is like using the future to make predictions
 - or knowing the exam questions when you study
 - but we do it in the lab as long as comparisons are fair
 - the test set should be for testing only
- Which model we use in deployment?
 - We use the approach and hyperparameters that had best test results
 - We can then use the whole data to train the model
 - if data is scarce. We can use less data too

Measuring statistical significance

- We compare two algorithms A and B
 - A has 0.8832 accuracy
 - B has 0.8845 accuracy
- Is this difference important?
 - Statistical significance
 - the difference occurs most of the time
 - how likely is it to observe this difference or larger?
 - Usefulness
 - st. significant does not imply useful
 - does it save more lifes with fewer secondary effects?

Measuring statistical significance

- Use Hypothesis testing
- 10 fold CV example with t-test
 - obtain two samples of the accuracies: Acc_A and Acc_B
 - each sample has size 10
 - calculate the means mean_A and mean_B
 - ullet we assume that the accuracy values follow a **t-distribution** with k-1 degrees of freedom
 - we can use a paired t-test
 - H_0 or Null hypothesis is that the difference of means is zero
 - the paired t-test checks if we can reject H_0
 - the test assumes independence of the samples (not true)

Measuring statistical significance: Example

- Question: is 1NN better than 5NN for iris classification?
- Apply 10 fold cross validation
 - Split the data set in 10 folds
 - Acc_1NN = [1, 0.93, 1, 0.93, 0.87, 1, 0.87, 1, 1, 1]
 - Acc_5NN = [1, 0.93, 1, 1, 0.87, 0.93, 0.93, 1, 1, 1]
 - $mean_1NN = 0.96$
 - $mean_5NN = 0.966667$
- Use the paired t-test
 - p-value = 0.59
 - this is the probability of observing this difference of accuracy (or higher) assuming that H_0 is true
 - we cannot reject H_0 for a level of significance of 5% (0.59>0.05)

Measuring statistical significance: Example

- Question: is 5NN better than 100NN for iris classification?
- Apply 10 fold cross validation
 - Split the data set in 10 folds
 - mean_5NN = 0.966667
 - $mean_100NN = 0.67$
- Use the paired t-test
 - **p-value** = 8.5e-9
 - the probability of observing this difference of accuracy (or higher) assuming that H_0 is true is very low (below 0.05)
 - we **reject** H_0 for a **level of significance** of 5%

More on statistical significance tests

- t-test with cross validation should be avoided
 - the independence of the values does not exist
 - it gives some information though
- if we have enough data to promote independence
 - t-test is acceptable
- To compare two algorithms on multiple datasets (e.g. 30)
 - cross-validate on each dataset
 - choose a **level of significance** (typically 1% to 5%)
 - if assumptions hold use a parametric test (t-test)
 - if not, use non-parametric wilcoxon signed rank test
- To compare many algorithms on multiple datasets
 - use Friedman test and post-hoc Nemenyi with critical distances
- Be careful with multiple comparisons
 - sometimes we have to adjust the p-values

Misclassification Costs

- giving a loan to a bad client has a higher cost than not giving a loan to a good client
- Accuracy is insensitive to cost
 - We can use a misclassification cost matrix combined with the confusion matrix

Conf	loan	not
loan	43	12
not	24	21

Cost1	loan	not
loan	0	1
not	10	0

Cost2	loan	not
loan	0	1
not	2	0

- With Cost1 we have $Cost = 24 \times 10 + 12 = 252$
- With Cost1 we have $Cost = 2 \times 10 + 12 = 32$

ROC curves

- We can compare the performance of classifiers on the whole spectrum of misclassification costs
- Receiver operating characteristic curves
 - plot relation between TPR and FPR
 - the AUC, area under the curve, is an assessment measure

References

- Books
 - Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
 - Jake VanderPlas, Data Science Handbook, O'Reilly
- Papers
 - Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, JMLR, 2006.
- Blog articles -https://towardsdatascience.com/introduction-to-na%C3%AFve-bayes-classifier-fa59e3e24aaf