MA5701 Optimización no Lineal

Profesor: Alejandro Jofré **Auxiliar:** Benjamín Vera Vera

Auxiliar 5

Búsqueda de Línea 25 de abril de 2025

P1. (Desigualdad de Kantorovich) Sea $Q \in \mathcal{S}_{++}^n$ y asuma que sus valores propios son $0 < \lambda_1 \le \cdots \le \lambda_n$. Pruebe que para $x \in \mathbb{R}^n$, se tiene que:

$$\frac{(x^\top Qx)(x^\top Q^{-1}x)}{(x^\top x)^2} \leq \frac{(\lambda_1 + \lambda_n)^2}{4\lambda_1\lambda_n}$$

Indicación: Utilice la desigualdad aritmética - geométrica: $\sqrt{xy} \leq \frac{1}{2}(x+y)$.

P2. (Búsqueda de línea exacta sobre funciones cuadráticas) Sea $Q \in \mathcal{S}^n_{++}, b \in \mathbb{R}^n$. Consideramos el problema de minimizar la función cuadrática

$$f(x) = \frac{1}{2}x^{\top}Qx - b^{\top}x$$

En que x^* solución de $Qx^* = b$ es el único mínimo global de f. Consideremos el método del máximo descenso

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

en que α_k se escoge para minimizar la función escalar $\alpha \mapsto f(x_k - \alpha \nabla f(x_k))$.

- a) Obtenga una fórmula explícita para α_k y en consecuencia para la iteración del máximo descenso.
- b) Sea $E(x) = \frac{1}{2}(x-x^*)^\top Q(x-x^*) = \frac{1}{2}\|x-x^*\|_Q^2$. Pruebe que $E(x) = f(x) + \frac{1}{2}x^{*\top}Qx^*$, de modo que basta establecer propiedades de convergencia sobre el método de descenso de gradiente sobre E.
- c) Pruebe que se satisface

$$E(x_{k+1}) = \left[1 - \frac{\left(\nabla f(x_k)^\top \nabla f(x_k)\right)^2}{\left(\nabla f(x_k)^\top Q \nabla f(x_k)\right)\left(\nabla f(x_k)^\top Q^{-1} \nabla f(x_k)\right)}\right] E(x_k)$$

d) Aplique la desigualdad de Kantorovich para describir cualitativamente la convergencia del método del máximo descenso con paso exacto.