

Towards Annotation-Efficient Learning: Few-Shot, Self-Supervised, and Incremental Learning Approaches

CVPR 2020 Tutorial

目录

□ 自监督的定义

- □ 自监督的实现
- 借口任务的构造
- 应用时的改动

□ 应用和评价

目录

□ 自监督的定义

- □ 自监督的实现
- 借口任务的构造
- 应用时的改动

□ 应用和评价

自监督的动机

- □ 有监督的深度学习常常表现出很好的性能 当任务和数据集合适的时候
- □ 更希望通过表示学习获得通用的特征 不受训练目标的影响
- □ 自监督模块只需要数据本身提供监督信号 不需要额外人工标注的信号

自监督的定义

- □ 数据本身提供监督信号
- □ 定义一个pretext任务作为训练目标
- □ 通常辅助任务目标是数据的一部分
- □ 学习到的特征可以用在不同的下游任约

Example: Rotation prediction

Predict the orientation of the image

自监督流程

Stage 1: Train network on pretext task (without human labels)

Stage 2: Fine-tune network for new task with fewer labels

目录

□ 自监督的定义

- □ 自监督的实现
- 借口任务的构造
- 应用时的改动

□ 应用和评价

借口任务

□ 目的: 学习一个好的特征表示

要求:不依赖数据集标注

- □ 直观的辅助任务构造:
- 旋转
- 重建
- 结构推断
- 实例分类

旋转

Rotation prediction

重建

结构推断

Jigsaw puzzles

实例分类

This

is a distorted crop extracted from an image, which of these crops has the same source image?

目录

□ 自监督的定义

- □ 自监督的实现
- 辅助任务的构造
- 应用时的改动

□ 应用和评价

实际应用中的考虑

非参数化分类器

原softmax: 和数据无关

非参数化: 跟数据高度相关

Self-supervised learning as image instance-level discrimination

$$\mathcal{L}_{ ext{non-param-softmax}}(q) = -\log rac{\exp(q^ op k_q)}{\sum_{i \in N} \exp(q^ op k_i)} \qquad \mathcal{L}_{ ext{softmax}}(q, c(q)) = -\log rac{\exp(q^ op w_{c(q)})}{\sum_{c \in C} \exp(q^ op w_c)}$$

Noise-Contrastive Estimation (NCE)

□ NCE: 多分类变成二分类(只区分正样本和负样本)

$$egin{aligned} \mathcal{L}_{ ext{NCE}}(q) &= -\log rac{\exp(q^ op k_q)}{Z_q} \ & \mathcal{L}_{ ext{non-param-softmax}}(q) = -\log rac{\exp(q^ op k_q)}{\sum_{i \in N} \exp(q^ op k_i)} \ & \mathcal{L}_{ ext{non-param-softmax}}(q) &= -\log rac{\exp(q^ op k_q)}{\sum_{i \in N} \exp(q^ op k_i)} \end{aligned}$$

■ 接着变形成infoNCE

$$\mathcal{L}_{ ext{InfoNCE}}(q) = -\log rac{\exp(q^{ op} k_q)}{\sum_{i \in K} \exp(q^{ op} k_i)}$$

InfoNCE

□ infoNCE是近些年来在对比自监督学习任务中表现最好的loss函数 其性能和负样本的数量有关,总的趋势是负样本越多,性能越好

K. He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

Y. Tian et al., Contrastive Multiview Coding, ArXiv 2019

训练方案

同时计算N对loss

训练方案

存储网络参数

网络结构

- ┗ 输出投影(output projection)
- 增加投影层g
- g在下游任务中被移除
- 可以提升性能6-10%

Linear evaluation of representations with different projection heads $g_{\psi}(\cdot)$ and various output dimensions.

数据增广

Typical data augmentation operators used for visual representation learning

目录

□ 自监督的定义

- □ 自监督的实现
- 借口任务的构造
- 应用时的改动

□ 应用和评价

评价

□ 线性分类任务 后面接全连接或者线性SVM

Method	Parameters	Transfer Dataset							
		ImageNet	VOC07	Places205	iNat.				
ResNet-50 using evaluation setup of [19]									
Supervised	25.6M	75.9	87.5	51.5	45.4				
Colorization [19]	25.6M	39.6	55.6	37.5	_				
Rotation [18]	25.6M	48.9	63.9	41.4	23.0				
NPID++ [72]	25.6M	59.0	76.6	46.4	32.4				
MoCo [24]	25.6M	60.6	_	_	_				
Jigsaw [19]	25.6M	45.7	64.5	41.2	21.3				
PIRL (ours)	25.6M	63.6	81.1	49.8	34.1				

在性能上可以接近 全监督算法

☐ Few-shot learning 每一类样本只有少量数据

Classes	Novel				Base
Method	n=1	5	10	50	Linear
Supervised CC [20]	56.8	74.1	78.1	82.7	73.7
RotNet	40.8	56.9	61.8	68.1	52.3
RelLoc [15]	40.2	57.1	62.6	68.8	50.4
Deeper Clustering	47.8	66.6	72.1	78.4	60.3
BoWNet	48.7	67.9	74.0	79.9	65.0
BoWNet $\times 2$	49.1	67.6	73.6	79.9	65.6
BoWNet $\times 3$	48.6	68.9	75.3	82.5	66.0

在性能上甚至可以 和监督算法竞争

Average 5-way classification accuracies on the test set of MinilmageNet.

评价

□ 高效分类 特征提取的网络参数可以微调

ImageNet accuracy of models trained with few labels: CPCv2 vs. supervised

在带标注数据量极少 的情况下有优势

评价

□ 迁移学习 在其他任务中的表现,如目标检

Method	Network	AP ⁵⁰	AP^{75}	AP^{all}
Supervised*	R-50	80.8	58.5	53.2
Rotation [†]	R-50	72.5	49.3	46.3
$ m Jigsaw^{\dagger}$	R-50	75.1	52.9	48.9
NPID++ [†]	R-50	79.1	56.9	52.3
PIRL^\dagger	R-50	80.7	59.7	54.0
MoCo v1	R-50	<u>81.4</u>	<u>61.2</u>	55.2
MoCo v2	R-50	82.5	64.0	57.4
BoWNet	R-50	81.3	61.1	<u>55.8</u>

自监督算法的加入 被证明是有效的 优于直接的监督算法

Object detection with Faster R-CNN fine-tuned on VOC trainval07+12 and evaluated on test07.

Networks are pre-trained with self-supervision on ImageNet.

应用场景

□ 小样本学习

- □ 自监督学习作为辅助任务
- □ 目的是使得提取的特征更具有推广性

应用场景

- 领域泛化适应
- 数据集内部差异很大

◆ 构造自监督任务可以获得更可靠的特征

应用场景

- GAN网络的训练
- 自监督辅助任务的加入
- 网络倾向于学习稳定的特征
- 类似数据增广

Discriminator with rotation-based self-supervision.

自监督方法的特性

Key findings

- Large impact of CNN architecture [Kolesnikov et al. (2019)]
- Increasing the size of pre-training dataset benefits higher capacity networks [Goyal et al. (2019)]
- Varying benefits of increasing the pretext task difficulty [Goyal et al. (2019), Chen et al. (2020)]
- Currently greatest benefits are in low annotated data regimes [Henaff et al. (2019); Newell and Deng (2020)]
- In stage 2, linear classification achieves lower performance than finetuning [Zhai et al. (2019); Newell and Deng (2020)]
- □ 网络结构
- □ 数据规模
- □ 辅助任务难度
- □ 在小标注样本上表现较好
- □ Finetuning 性能更好

