FROM-Rob

Attorney Dkt. No. ONDAT-017US

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Amended) A hot plate that uses a ceramic substrate provided with a resistive heating element as a conductive layer, wherein the conductive layer is provided on a lower surface of the ceramic substrate, the hot plate characterized in that the conductive layer includes ruthenium oxide, glass frit, and noble metal grains.

- 2. (Previously Amended) The hot plate according to claim 1, characterized in that the conductive layer includes ruthenium oxide, bismuth or its oxide, glass frit, and noble metal grains.
- (Previously Amended) The hot plate according to claim 1, characterized in 3. that the ceramic substrate is a ceramic nitride substrate or a ceramic carbide base plate.
- (Previously Amended) The hot plate according to claim 1, wherein the glass 4. frit includes zinc boron silicate.
- 5. (Previously Amended) The hot plate according to claim 1, wherein the noble metal grains is at least one selected from gold grains, silver grains, platinum grains, and palladium grains.
- б. (Amended) A wiring resistor conductive paste used for a ceramic het plate characterized in that printed on a ceramic nitride substrate or a ceramic carbide base plate to form a resistive heating element by baking, wherein the wiring resistor conductive paste includes ruthenium oxide, glass frit, and noble metal grains.

Appl. No. 10/049,539 Amdt. Dated March 18, 2004 Reply to Office Action of December 18, 2003 Attorney Dkt. No. ONDAT-017US

- 7. (Amended) A wiring resistor conductive paste used-in a ceramic hot plate characterized in that printed on a ceramic nitride substrate or a ceramic carbide base plate to form a resistive heating element by baking, wherein the wiring resistor conductive paste includes ruthenium oxide, bismuth or its oxide, glass frit, and noble metal grains.
- 8. (Amended) A hot plate that uses a ceramic substrate provided with a resistive heating element as a conductive layer, wherein the conductive layer is provided on a lower surface of the ceramic substrate, wherein the hot plate characterized in that the conductive layer includes ruthenium oxide, bismuth or its oxide, glass frit, and noble metal grains, wherein the ceramic substrate is a ceramic nitride substrate or a ceramic carbide base plate.
- (Original) The hot plate according to claim 8, wherein the glass frit includes zinc boron silicate.
- 10. (Original) The hot plate according to claim 8, wherein the noble metal grains is at least one selected from gold grains, silver grains, platinum grains, and palladium grains.
- 11. (Original) The hot plate according to claim 10, wherein the glass frit includes zinc boron silicate.
- 12. (New) The hot plate according to claim 1, wherein the ceramic substrate has a thickness of 1mm to 100mm.
- 13. (New) The hot plate according to claim 1, wherein the hot plate is used at temperature of at least 200°C.

Appl. No. 10/049,539 Amdt. Dated March 18, 2004 Reply to Office Action of December 18, 2003 Automay Dkt. No. ONDAT-017US

14. (New) The hot plate according to claim 1, wherein the glass frit comprises aluminum oxide, yttrium oxide, lead oxide, cadmium oxide, chromium oxide, or copper oxide.