Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Δυναμικός Προγραμματισμός: Μέγιστες Κοινές Υποακολουθίες

Effects of radiation on DNA's double helix, 2003. U.S. government image. NASA-MSFC.

Εφαρμογή: Αντιστοίχιση ακολουθιών DNA

- Οι ακολουθίες DNA μπορούν να θεωρηθούν ως συμβολοσειρές αποτελούμενες από τους χαρακτήρες **A**, **C**, **G**, **T**, οι οποίες αναπαριστούν νουκλεοτίδια.
- Η εύρεση ομοιοτήτων ανάμεσα σε δύο ακολουθίες DNA αποτελεί μια σημαντική πράξη στη βιοπληροφορική.
 - Για παράδειγμα, όταν συγκρίνουμε το DNA διαφορετικών οργανισμών, τέτοιες αντιστοιχίσεις μπορούν να επισημάνουν τα σημεία, στα οποία αυτοί οι οργανισμοί έχουν παρόμοια μοτίβα DNA.

Εφαρμογή: Αντιστοίχιση ακολουθιών DNA

 Η εύρεση της καλύτερης αντιστοίχισης συμβολοσειρών DNA αφορά την ελαχιστοποίηση του αριθμού των αλλαγών για να μετατρέψουμε τη μία συμβολοσειρά στην άλλη.

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

Μία αναζήτηση ωμής δύναμης (brute force) θα απαιτούσε εκθετικό χρόνο αλλά μπορούμε να επιτύχουμε πολύ καλύτερα αποτελέσματα χρησιμοποιώντας δυναμικό προγραμματισμό.

Η γενική τεχνική δυναμικού προγραμματισμού

- Εφαρμόζεται σε προβλήματα που αρχικά φαίνεται να απαιτούν πολύ χρόνο (πιθανότατα εκθετικό), αρκεί να έχουμε:
 - Απλά υπό-προβλήματα: τα υπό-προβλήματα μπορούν να οριστούν χρησιμοποιώντας λίγες μόνο μεταβλητές, όπως j, k, l, m, κ.ο.κ.
 - Βελτιστότητα υπό-προβλημάτων: η καθολικά βέλτιστη λύση μπορεί να οριστεί με όρους βέλτιστων λύσεων σε υπόπροβλήματα.
 - Επικάλυψη υπό-προβλημάτων: τα υπό-προβλήματα δεν είναι ανεξάρτητα, αλλά επικαλύπτονται (οπότε πρέπει να κατασκευαστούν από κάτω προς τα πάνω).

Υποακολουθίες

- Μια υποακολουθία (subsequence) μιας συμβολοσειράς x₀x₁x₂...x_{n-1} είναι μια συμβολοσειρά της μορφής x_{i1}x_{i2}...x_{ik}, όπου ij < ij+1.
- Δεν είναι το ίδιο με τις υποσυμβολοσειρές!
- Παράδειγμα συμβολοσειράς: ABCDEFGHIJK
 - Υποακολουθία: ACEGIJK διότι ABCDEFGHIJK
 - Υποακολουθία: DFGHK διότι ABCDEFGHIJK
 - Δεν είναι υποακολουθία: DAGH

Το πρόβλημα της μέγιστης κοινής υποακολουθίας

- Δεδομένων δύο συμβολοσειρών X και Y, το πρόβλημα της μέγιστης κοινής υποακολουθίας (LCS= longest common subsequence) είναι η εύρεση της μακρύτερης υποακολουθίας που είναι κοινή στη X και στη Y.
- Εφαρμόζεται στον έλεγχο ομοιότητας DNA (το αλφάβητο είναι το {A,C,G,T})
- Παράδειγμα: το ABCDEFG και το XZACKDFWGH έχουν το ACDFG ως μέγιστη κοινή υποακολουθία:
 - ABCDEFG
 - XZACKDFWGH

Mια «κακή» προσέγγιση στο πρόβλημα LCS

- ♦Λύση Ωμής-Δύναμης:
 - Απαρίθμηση όλων των υποακολουθιών του Χ
 - Έλεγχος για το ποιες είναι επίσης υποακολουθίες του Υ
 - Λήψη της μακρύτερης υποακολουθίας.
- ♦Ανάλυση:
 - Αν το Χ είναι μήκους η, τότε έχει 2ⁿ υποακολουθίες
 - Πρόκειται για αλγόριθμο εκθετικού χρόνου!

Επίλυση με Δυναμικό Προγραμματισμό του LCS

- Ορίζουμε ως L[i,j] το μήκος της μέγιστης κοινής υποακολουθίας του X[0..i] και του Y[0..j].
- Ως σύμβαση χρησιμοποιείται το -1 ως δείκτης, ώστε το L[-1,k] = 0 και το L[k,-1]=0, να υποδηλώνουν ότι το null τμήμα του X ή του Υ δεν ταιριάζουν το ένα με το άλλο.
- ▼ Τότε μπορούμε να ορίσουμε το L[i,j] ως εξής:
 - 1. Av $x_i = y_j$, τότε L[i,j] = L[i-1,j-1] + 1 (προσθήκη του ταιριάσματος)
 - Av x_i≠y_j, τότε L[i,j] = max{L[i-1,j], L[i,j-1]} (δεν έχουμε ταίριασμα)

Περίπτωση 1:

$$Y = CGATAATTGAGA$$

$$L[8,10]=5$$

$$X = GTTCCTAATA$$

Περίπτωση 2:

Ο αλγόριθμος LCS

```
Algorithm LCS(X,Y ):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
   that is a subsequence of both the string X[0..i] = x_0x_1x_2...x_i and the
   string Y [0.. j] = y_0 y_1 y_2 ... y_i
for i = 1 to n-1 do
   L[i,-1] = 0
for j = 0 to m-1 do
   L[-1,j] = 0
for i = 0 to n-1 do
   for j = 0 to m-1 do
         if x_i = y_i then
                   L[i, j] = L[i-1, j-1] + 1
         else
                   L[i, j] = max\{L[i-1, j], L[i, j-1]\}
return array L
```

Οπτικοποίηση του LCS

			C	G	Α	T	A	Α	T	T	G	A	G	Α
	\boldsymbol{L}	-1	0	1	2	3	4	5	6	7	8	9	10	11
	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	1	1	1	1	1	1	1	1	1	1	1
Т	1	0	0	1	1	2	2	2	2	2	2	2	2	2
Т	2	0	0	1	1	2	2	2	3	3	3	3	3	3
С	3	0	1	1	1	2	2	2	3	3	3	3	3	3
С	4	0	1	1	1	2	2	2	3	3	3	3	3	3
T	5	0	1	1	1	2	2	2	3	4	4	4	4	4
Α	6	0	1	1	2	2	3	3	3	4	4	5	5	5
Α	7	0	1	1	2	2	3	4	4	4	4	5	5	6
T	8	0	1	1	2	3	3	4	5	5	5	5	5	6
Α	9	0	1	1	2	3	4	4	5	5	5	6	6	6

V=CGATAATTGAGA

X=GTTCCTAATA 0 1 2 3 4 5 6 7 8 9

Ανάλυση του LCS

- ⋆ Έχουμε δύο εμφωλευμένους βρόχους
 - Ο εξωτερικός διασχίζεται η φορές
 - Ο εσωτερικός διασχίζεται *m* φορές
 - Μια σταθερή ποσότητα εργασίας πραγματοποιείται σε κάθε επανάληψη του εσωτερικού βρόχου
 - Συνεπώς, ο συνολικός χρόνος εκτέλεσης είναι Ο(nm)
- ♦ Η απάντηση βρίσκεται στο L[n,m] (και η υποακολουθία μπορεί να ανακτηθεί από τον πίνακα L).