SAMSUNG

Voice recognition

Before and after Deep Learning

Mikhail Kudinov

Samsung R&D Center Russia

March 29, 2019

Table of Contents

Introduction
Intro subsection
Section 1

Introduction Intro subsection Section 1

This is the first slide

Ideas

See how this loooks

- ► Item 1
- ► Item 2

Universal Background Model

- Criterion:
 - $\Lambda(X) = \log p(X|\theta_s) \log p(X|\theta_{bck}) \ge C$
- Train separate model θ_{bck} called Universal Background Model
- All frames are assumed to be independent
- ▶ $p(X_t|\theta)$ is a GMM with diagonal covariance matrices Σ_i
- θ_{bck} is trained with EM algorithm on the whole collection of speech data
- ▶ Speaker model θ_s is an MAP update of θ_{bck}

Likelihood ratio based system layout

MAP update of UBM

SVM on GMM supervectors

- Supervector m: do MAP-updates of means of the UBM and concatenate them
- ► Use lower-bound on KL-divergence as a distance measure: $d(m^a, m^b) = \frac{1}{2} \sum_i \pi_i (m_i^a m_i^b) \Sigma_i^{-1} (m_i^a m_i^b)$
- Use SVM on supervectors with the kernel defined above
- Nuisance attribute projection

Supervector computation

Extensions of supervector model

- SVM with simple cosine kernel on preprocessed supervectors
- ▶ Within-class Covariance Normalization $k(m_1, m_2) = m_1 W^{-1} m_2$, where W is a covariance matrix: $W = \frac{1}{S} \sum_{s=1}^{S} \frac{1}{n_s} \sum_{i=1}^{n_s} (m_i^s \overline{m_s})(m_i^s \overline{m_s})^t$
- SVM on LDA-projected supervectors
- Nuisance Attribute Projection $\arg\min_P \sum_{i,j} W_{i,j} \|Pm_1 Pm_2\|_2^2$, where $W_{i,j} = 0$ iff w1 and w2 are from e.g. different microphones (nuisance channel direction)
- ▶ Joint Factor Analysis: $m = \mu + Vy + Ux + Dz$, where y is a speaker-dependent and x is a channel-dependent vector
- ► Probabilistic LDA (PLDA)

i-vectors

- ► Front-end Factor Analysis for a supervector M: $m = \mu + Tw$, where μ is the speaker- and channel-independent vector (UBM-vector)
- ▶ T is a rectangular matrix of low rank
- $w \sim \mathcal{N}(0, \mathbb{I})$ is called *i-vector*
- ▶ i-vector estimation for known matrix *T* for utterance *u*:
 - ▶ Use UBM Ω to get Viterbi or Baum-Welch estimations for GMM component c: $N_c = \sum_t P(c|y_t, \Omega); F_c = \sum_t P(c|y_t, \Omega)(y_t \mu_c)$
 - $w = (I + T^T \Sigma^{-1} NT)^{-1} T^T \Sigma^{-1} F$, where N and F are concatenations of N_c and F_c for all GMM components $\{c_i\}$
- ► *T* is estimated using ML algorithm

DNNs for better i-vector extraction

- ▶ Use DNN to obtain class-posterior for statistics collection N and F for i-vector calculation
- Classes are context-aware senones
- Requires ASR system trained separately
- Similarity score was computed on PLDA-projections


```
LTP test statistics:
NORMAL withperf.txt
```

utf-8 146 words 1% ≡ 1/52 1 1

This slide has code blocks

```
import numpy as np

def incmatrix(genl1,genl2):

m = len(genl1)

n = len(genl2)

M = None #to become the incidence matrix

VT = np.zeros((n*m,1), int) #dummy variable
```

Introduction
Intro subsection
Section 1

This is the second slide

A bit more information about this

Alert block

Alert text

Introduction
Intro subsection

Section 1

Generic slide

A bit more information about this

Introduction
Intro subsection
Section 1

Generic slide

A bit more information about this

Introduction
Intro subsection
Section 1

Generic slide

A bit more information about this

Introduction
Intro subsection
Section 1

Section 2
Conclusion

Acknowledgements

Generic slide

A bit more information about this

22