Výroková logika – pokračovanie Úvod do výpočtovej logiky

Jozef Šiška

2013/2014

Sémantika

Ekvivalentné úpravy Konjunktívna a disjunktívna normálna forma

Hilbertovský kalkul Dôkaz

Značenie

$$(((A_1 \land A_2) \land \dots) \land A_n) \quad (A_1 \land A_2 \land \dots \land A_n) \quad \bigwedge A_i$$
$$(((A_1 \lor A_2) \lor \dots) \lor A_n) \quad (A_1 \lor A_2 \lor \dots \lor A_n) \quad \bigvee A_i$$
$$((A \to B) \land (B \to A)) \qquad (A \Leftrightarrow B)$$

Značenie

$$(((A_1 \land A_2) \land \dots) \land A_n) \quad (A_1 \land A_2 \land \dots \land A_n) \quad \bigwedge A_i$$
$$(((A_1 \lor A_2) \lor \dots) \lor A_n) \quad (A_1 \lor A_2 \lor \dots \lor A_n) \quad \bigvee A_i$$
$$((A \to B) \land (B \to A)) \qquad (A \Leftrightarrow B)$$

Pozorovania

- ▶ $T \cup \{A\} \models B \text{ vtt } T \models A \rightarrow B$
- $\{\} \models A \text{ vtt } \models A \text{ } (A \text{ je tautológia})$
- Nasledujúce tvrdenia sú ekvivalentné:
 - $\blacktriangleright \{A_1, A_2, \dots, A_n\} \models B$
 - $\{(A_1 \wedge A_2 \wedge \cdots \wedge A_n)\} \models B$
 - $\blacktriangleright \{\} \models ((A_1 \land A_2 \land \cdots \land A_n) \rightarrow B)$
 - $\blacktriangleright \models ((A_1 \land A_2 \land \cdots \land A_n) \rightarrow B)$

Definícia (Substitúcia)

Nech X, A, B sú formuly. Substitúciou B za A v X (X[A|B])) dostaneme formulu, ktorá vznikne nahradením každého výskytu A v X za formulu B.

Tvrdenie (Ekvivalentné úpravy)

Nech X je formula, A a B sú ekvivalentné formuly. Potom X a X[A|B] sú tiež ekvivalenté

Pozorovanie

Nech X je tautológia, a premenná a Y ľubovoľná formula. Potom X[a|Y] je tiež tautológia.

Tvrdenie

Nasledujúce dvojice formúl sú ekvivalentné

$$\begin{array}{lll} (A \wedge (B \wedge C)) & ((A \wedge B) \wedge C) & asociatívne \ pravidlá \\ (A \vee (B \vee C)) & ((A \vee B) \vee C) \\ \\ (A \wedge (B \vee C)) & ((A \wedge B) \vee (A \wedge C)) & distributívne \ pravidlá \\ (A \vee (B \wedge C)) & ((A \vee B) \wedge (A \vee C)) \\ \\ \neg (A \wedge B) & (\neg A \vee \neg B) & de \ Morganove \ pravidlá \\ \neg (A \vee B) & (\neg A \wedge \neg B) \\ \\ \neg \neg A & A & dvojitá \ negácia \\ \end{array}$$

kde A, B, C sú ľubovoľné formuly.

Konjunktívna a disjunktívna normálna forma

Definícia

- Premennú alebo negáciou premennej nazývame literál. Disjunkciu literálov nazývame klauza.
- Hovoríme, že formula X je v disjunktívnom normálnom tvare (DNF), ak X je disjunkciou formúl, z ktorých každá je konjunkciou literálov.
- Hovoríme, že formula X je v konjunktívnom normálnom tvare (CNF), ak X je konjunkciou klauz (formúl, z ktorých každá je disjunkciou literálov).

Tvrdenie

- 1. Ku každej formule X existuje ekvivalentná formula A v disjunktívnej normálnej forme.
- 2. Ku každej formule X existuje ekvivalentná formula B v konjunktívnej normálnej forme.

Dôkaz.

- 1. Predstavme si pravdivostnú tabuľku pre X. Zoberme všetky boolovské ohodnotenia v_i také, že $v_i(X) = t$. Pre každé v_i zostrojme formulu C_i ako konjunkciu obsahujúcu a ak $v_i(a) = t$ pre premennú a, alebo $\neg a$, ak $v_i(a) = f$. Očividne formula $A = \bigvee C_i$ je v DNF a je ekvivalentná s X (vymenuváva všetky možnosti, kedy je X pravdivá).
- K ¬X teda existuje ekvivalentná formula A' v DNF.
 Znegovaním A' (a aplikáciou de Morganových pravidiel) dostaneme formulu B v CNF, ktorá je ekvivalentná s X.

CNF – trochu lepší prístup

- 1. Prepíšeme implikácie:
 - $(A \to B) \quad \Rightarrow \quad (\neg A \land B).$
- Presunieme dovnútra pomocou de Morganových pravidiel a dvojitej negácie.
- 3. Roznásobíme \land s \lor podľa distributívneho pravidla:
 - $((A \land B) \lor C) \Rightarrow ((A \lor B) \land (A \lor C))$
- 4. Prezátvorkujeme na požadovaný tvar pomocou asociatívnych pravidiel.

Všetky úpravy sú ekvivalentné, takže výsledná formula je ekvivalentná s pôvovdnou a je v CNF.

CNF – iný prístup

- 1. Vytvoríme vytvárajúci strom pre formulu X.
- 2. Pre každú formulu X_i vo vytvárajúcom strome pre X vytvoríme novú premennú x_i , ktorá bude "reprezentovať" formulu X_i (nech x_0 reprezentuje celkovú formulu X).
- 3. Vytvoríme formuly, ktoré popisujú vzťah medzi x_i a jej priamimi "podformulami":
 - ▶ ak X_i je tvaru $\neg X_j$ pre nejaké X_j , pridáme $x_i \Leftrightarrow \neg x_j$,
 - ▶ ak X_i je tvaru $(X_j \land X_k)$, pridáme $x_i \Leftrightarrow (x_j \land x_k)$,
 - ▶ ak X_i je tvaru $(X_j \vee X_k)$, pridáme $x_i \Leftrightarrow (x_j \vee x_k)$,
 - ▶ ak X_i je tvaru $(X_j \to X_k)$ pridáme $x_i \Leftrightarrow (x_j \to x_k)$,
 - ▶ ak X_i je premenná a, pridáme $x_i \Leftrightarrow a$.

Všetky uvedené formuly idú jednoducho prepísať do CNF.

4. Pridáme formulu x_0 (chceme aby celková formula X bola pravdivá).

Výsledná formula je v CNF, jej veľkosť je lineárna voči veľkosti X a je ekvisplniteľná s X.

Hilbertovský kalkul

Schémy axiom

A1
$$(A \rightarrow (B \rightarrow A))$$

A2 $((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$
A3 $((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A))$
A4 $((A \land B) \rightarrow A), ((A \land B) \rightarrow B)$
A5 $(A \rightarrow (B \rightarrow (A \land B)))$
A6 $((A \rightarrow (A \lor B)), (B \rightarrow (A \lor B))$
A7 $((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)))$

Odvodzovacie pravidlo

$$\mathsf{MP} \ \frac{A,A \to B}{B}$$

Hilbertovský kalkul – dôkaz

Definícia

Dôkaz Dôkaz formuly X z množiny predpokladov S je postupnosť formúl $Y_1, Y_2, \ldots Y_n$ taká, že každá formula Y_i je predpoklad z S, alebo je to inštancia niektorej z axiom, alebo vznikla aplikáciou odvodzovacieho pravidla na formuly ktoré sa vyskujú pred ňou.

Hovoríme, že formula X je dokázateľná z množiny predpokladov X (značíme $S \vdash X$) ak existuje dôkaz X z S.

Hilbertovský kalkul – dôkaz

Definícia

Dôkaz Dôkaz formuly X z množiny predpokladov S je postupnosť formúl $Y_1, Y_2, \ldots Y_n$ taká, že každá formula Y_i je predpoklad z S, alebo je to inštancia niektorej z axiom, alebo vznikla aplikáciou odvodzovacieho pravidla na formuly ktoré sa vyskujú pred ňou.

Hovoríme, že formula X je dokázateľná z množiny predpokladov X (značíme $S \vdash X$) ak existuje dôkaz X z S.

Vety o úplnosti

- Formula X je dokázateľná z prázdnej množiny predpokladov vtt X je tautológia (∅ ⊢ X vtt ⊨ X)
- Nech T je konečná množina formúl, potom formula X je dokázateľná z T vtt keď X vyplýva z T (T ⊢ X vtt T ⊨ X).