HEAPS, HEAPSORT & PRIORITY QUEUES

Pontus Ekberg

Uppsala University

(Based on previous material by Mohamed Faouzi Atig and Parosh Aziz Abdulla)

- Introduction
- 2 Tree Definition
- 4 Heap Definition
- MAX-HEAPIFY
- BUILD-MAX-HEAP
- **6** HEAP-SORT
- Priority Queues

Sorting Algorithms

• Problem: Sort an array A of n elements in non-decreasing order

Algorithm	Worst-Case	"Average-Case"	Best-Case	In place?
InsertionSort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	Yes
MergeSort	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	No
QuickSort	$\Theta(n^2)$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	Yes

Sorting Algorithms

• Problem: Sort an array A of n elements in non-decreasing order

Algorithm	Worst-Case	"Average-Case"	Best-Case	In place?
InsertionSort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	Yes
MergeSort	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	No
QuickSort	$\Theta(n^2)$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	Yes
HeapSort	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))^1$	Yes

¹Assuming all distinct elements; with n identical elements HeapSort is $\Theta(n)$.

HeapSort: Introduction

- HeapSort was invented by J. W. J. Williams in 1964.
- Based on a useful of data structure called heap
- Sorting in place algorithm

Tree: Definition

- A tree T is a directed graph (V, E) where:
 - *V* is a set of vertices (or nodes).
 - $E \subseteq V \times V$ is a finite set of edges (or arcs).

such that the following properties hold:

- T is an acyclic connected graph.
- For each $(n_1, n_2) \in E$, the node n_1 is the parent of n_2
 - Each node of *T* has at most one parent.
 - There is exactly one node that does not have a parent called the root node.

- If a node n_1 is a parent of a node n_2 then n_2 is a child of n_1
- If two nodes have the same parent then they are siblings.
- A node with at least one child is an internal node.
- A node with no children is a leaf.

- The node 1 is a parent of the node 2
- The node 4 is a child of the node 2
- The nodes 4 and 5 are siblings

- A path is a sequence of nodes n₁, n₂,
 ..., n_m such that for all i : 1 ≤ i < m,
 (n_i, n_{i+1}) is an edge.
- The height of a node n is the number of edges of the longest path to a leaf from this node.
- The height of a tree is the height of its root node.
- The depth of a node *n* is the number of edges in the path from the root to *n*.

- The sequence 1, 2, 4, 8 is path
- The height of node 2 is 2
- The height of the tree is 3
- The depth (or level) of the node 7 is 2

Binary Trees

- A binary tree is a tree such that:
 - Each node has at most two child nodes, distinguished by left and right.
 - The left child always precedes the right child
- A full binary tree is a binary tree in which each internal node has exactly two children.
- A perfect binary tree is a full binary tree in which all the leaves have the same depth.

Full Binary Trees: Properties

- The number of leaves is equal to the number of internal nodes plus 1.
- The number of nodes at depth (or level) i is $\leq 2^{i}$

Complete Binary Tree

- A complete binary tree is a binary tree, which is completely filled at all the levels except possibly the highest, which is filled from left. Formally, we have
 - If *h* is the height of the tree, then:
 - For all $i : 0 \le i < h$, there is exactly 2^i nodes at depth i
 - A leaf node has a depth h or h-1
 - The leaves of depth *h* are filled from left to right.

Example (1/2)

Example (1/2)

Example (1/2)

It is not completely filled at level 2

Example (2/2)

Example (2/2)

Example (2/2)

The leaves are not filled from left to right.

Complete binary tree: Properties

- Let T be a complete tree with n is the number of nodes and h is its height:
 - n is greater or equal to the number of nodes in the perfect tree of height h-1 plus one (i.e., $n \ge 2^h$)
 - n is less or equal than the number of nodes in the perfect tree of height h (i.e., $n \le 2^{h+1} 1$)

$$2^{h} \le n \le 2^{h+1} - 1 \quad \Rightarrow \quad 2^{h} \le n < 2^{h+1}$$

$$\Rightarrow \quad h \le \log_2(n) < h + 1$$

$$\Rightarrow \quad h \le \log_2(n) < h + 1$$

$$\Rightarrow \quad h = \lfloor \log_2(n) \rfloor$$

Well-Indexed Tree

A well-indexed tree is a complete binary tree such that:

- The index of the root is 1
- The index of the left child of a node i is LEFT(i) = 2i
- The index of the right child of a node i is RIGHT(i) = 2i + 1
- The index of the parent of a node i is PARENT $(i) = \lfloor \frac{i}{2} \rfloor$

Max-Heap: Definition

- A max-heap is a well-indexed tree such that :
 - Each node is associated with a value.
 - The value of a node is at most the value of its parent.

Max-Heap

Max-Heap

Min-Heap: Definition

- A min-heap is a well-indexed tree such that :
 - Each node is associated with a value.
 - The value of a node is at least the value of its parent.

Min-Heap

Min-Heap

Implementation of a Heap

A heap can be represented as an array A such that the value of a node of index i is A[i].

Implementation of a Heap

An array A representing a heap has two attributes:

- A.length: The length of the array
- A.heap-size: length of the left subarray containing elements from the heap= number of nodes inside the heap.

A property of the array A representing a max-heap:

• For all $i: 2 \le i \le A$. heap-size, we have $A[PARENT(i)] \ge A[i]$

A property of the array A representing a min-heap:

• For all $i: 2 \le i \le A$. heap-size, we have $A[PARENT(i)] \le A[i]$

Problem: Sort an array A of n elements in non-decreasing order

Problem: Sort an array A of n elements in non-decreasing order

HeapSort

 Construct a max-heap from A (call Build-Max-Heap(A))

Problem: Sort an array A of n elements in non-decreasing order

HeapSort

 Construct a max-heap from A (call Build-Max-Heap(A))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call BUILD-MAX-HEAP(A))
- Repeat until the heap is of size one:

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call Max-Heapify(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call MAX-HEAPIFY(A,1))

Problem: Sort an array A of n elements in non-decreasing order

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap-size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call MAX-HEAPIFY(A,1))

- Input: An array A and an index $i: 1 \le i \le A.heap size$
- Assumption: The two sub-trees rooted at LEFT(i) and RIGHT(i) are max-heaps
- Output: The sub-tree rooted at index *i* is a max-heap.

MAX-HEAPIFY: PRINCIPLE

MAX-HEAPIFY

 Compare A[i], A[LEFT(i)], and A[RIGHT(i)]

MAX-HEAPIFY: PRINCIPLE

- Compare A[i], A[LEFT(i)], and A[RIGHT(i)]
- If A[i] < A[LEFT(i)] or A[i] < A[RIGHT(i)], swap A[i] with the larger of the two children

MAX-HEAPIFY: PRINCIPLE

- Compare A[i], A[Left(i)], and A[Right(i)]
- If A[i] < A[LEFT(i)] or
 A[i] < A[RIGHT(i)], swap A[i] with the
 larger of the two children

Max-Heapify: Principle

- Compare A[i], A[LEFT(i)], and A[RIGHT(i)]
- If A[i] < A[LEFT(i)] or
 A[i] < A[RIGHT(i)], swap A[i] with the
 larger of the two children
- Continue this process of comparing and swapping down the heap, until subtree rooted at i is a max-heap

Max-Heapify: Principle

- Compare A[i], A[Left(i)], and A[Right(i)]
- If A[i] < A[LEFT(i)] or
 A[i] < A[RIGHT(i)], swap A[i] with the
 larger of the two children
- Continue this process of comparing and swapping down the heap, until subtree rooted at i is a max-heap

Max-Heapify: Principle

- Compare A[i], A[Left(i)], and A[Right(i)]
- If A[i] < A[LEFT(i)] or
 A[i] < A[RIGHT(i)], swap A[i] with the
 larger of the two children
- Continue this process of comparing and swapping down the heap, until subtree rooted at i is a max-heap

MAX-HEAPIFY: Runtime

- Let n be the number of nodes at sub-tree of the heap rooted at i
- Each of lines 1-9 takes constant time
- The number of calls at line 10 is bounded by the height \[log_2(n) \] of the sub-tree of the heap rooted at i

```
\Rightarrow Hence, T(n) = O(log_2(n)) since MAX-HEAPIFY(A, i) should process O(log_2(n)) levels, with constant work at each level
```

```
MAX-HEAPIFY(A, i)

1  I \leftarrow LEFT(i)
2  r \leftarrow RIGHT(i)
3  if I \le A. heap-size and A[I] > A[i]
4  then largest \leftarrow I
5  else largest \leftarrow i
6  if r \le A. heap-size and A[r] > A[largest]
7  then largest \leftarrow r
8  if largest \ne i
9  then swap A[i] \leftrightarrow A[largest]
10  MAX-HEAPIFY(A, largest)
```

 \Rightarrow T(n) is linear in the height of the sub-tree of the heap rooted at i

• Input: An array A

• Output: A max-heap from A

- Input: An array A
- Output: A max-heap from A
- Idea: Use MAX-HEAPIFY in a bottom-up manner

BUILD-MAX-HEAP: Runtime

- Let n = A. length
- $h = \lfloor log_2(n) \rfloor$ be the height of the heap
- Simple bound:
 - O(n) calls to MAX-HEAPIFY, each of which takes $O(log_2(n))$ time $\Rightarrow T(n) = O(n \cdot log_2(n))$

```
1 A. heap-size \leftarrow A. length
2 for i \leftarrow \left\lfloor \frac{A. \text{ length}}{2} \right\rfloor downto 1
3 do MAX-HEAPIFY(A,i)
```

- Tight bound:
 - We have at most 2^i nodes at depth i (height h-i)
 - ullet We call Max-Heapify for each node of depth $i\Rightarrow O(h-i)$
 - The runtime of Build Max Heap is:

$$T(n) = \sum_{i=0}^{h-1} 2^{i} O(h-i) = O(\sum_{i=0}^{h-1} 2^{i} (h-i))$$

$$= O(\sum_{j=1}^{h} \sum_{i=0}^{h-j} 2^{i})$$

$$= O(2^{h+1} - h - 2)$$

$$= O(n)$$

HeapSort: Principle

Problem: Sort an array A of n elements in non-decreasing order

HeapSort

- Construct a max-heap from A (call Build-Max-Heap(A))
- Repeat until the heap is of size one:
 - Swap the values of the root and the right-most leaf of the heap (i.e., Swap A[1] and A[A.heap - size])
 - Discard the right-most leaf from the heap by decreasing the heap size
 - Restore the max-heap property (call MAX-HEAPIFY(A,1))

HEAP-SORT: Runtime

- Let n = A. length
- Cost of Build-Max-Heap: O(n)

HEAP-SORT(A)

```
1 BUILD-MAX-HEAP(A)

2 for i \leftarrow A. length downto 2

3 do exchange A[1] \leftarrow A[i]

4 heap-size[A] \leftarrow heap-size[A] - 1

5 MAX-HEAPIFY(A,1)
```

- (n-1) calls to MAX-HEAPIFY, each of which costs $O(log_2(n))$
- $T(n) = (n-1)O(log_2(n)) + O(n)$ = $O(n \cdot log_2(n))$

Priority Queues

- A priority queue is an abstract data type which represents a set S of elements.
- Each element has a key (an integer)
- A priority queue should support the following operations:
 - INSERT(S, x): inserts the element x into the set S (i.e., $S \leftarrow S \cup \{x\}$)
 - MAXIMUM(S): returns the element of S with largest key.
 - EXTRACT-MAX(S): returns and removes the element of S with largest key.
 - INCREASE-KEY(S, x, k): increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Priority Queues

- A priority queue is an abstract data type which represents a set S of elements.
- Each element has a key (an integer)
- A priority queue should support the following operations:
 - INSERT(S, x): inserts the element x into the set S (i.e., $S \leftarrow S \cup \{x\}$)
 - MAXIMUM(S): returns the element of S with largest key.
 - EXTRACT-MAX(S): returns and removes the element of S with largest key.
 - INCREASE-KEY(S, x, k): increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Max-Heaps efficiently implement priority queues.

Priority Queues

- A priority queue is an abstract data type which represents a set S of elements.
- Each element has a key (an integer)
- A priority queue should support the following operations:
 - INSERT(S, x): inserts the element x into the set S (i.e., $S \leftarrow S \cup \{x\}$)
 - MAXIMUM(S): returns the element of S with largest key.
 - EXTRACT-MAX(S): returns and removes the element of S with largest key.
 - INCREASE-KEY(S, x, k): increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Max-Heaps efficiently implement priority queues.

(In the following we depict only the keys, but is implied that each key is part of some element.)

HEAP-MAXIMUM

 $\mathsf{HEAP}\text{-}\mathsf{MAXIMUM}(A)$: returns the element of A with the largest key.

HEAP-MAXIMUM

 $\mathsf{HEAP}\text{-}\mathsf{MAXIMUM}(A)$: returns the element of A with the largest key.

HEAP-MAXIMUM

HEAP-MAXIMUM(A): returns the element of A with the largest key.

Problem: returns and removes the element of A with the largest key.

Problem: returns and removes the element of A with the largest key.

HEAP-EXTRACT-MAX

 Make sure that the max-heap is not empty.

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.
- Discard the last node of the heap.

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.
- Discard the last node of the heap.

HEAP-EXTRACT-MAX: Principle

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.
- Discard the last node of the heap.
- Restore the max-heap property.

HEAP-EXTRACT-MAX: Principle

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.
- Discard the last node of the heap.
- Restore the max-heap property.

HEAP-EXTRACT-MAX: Principle

Problem: returns and removes the element of A with the largest key.

- Make sure that the max-heap is not empty.
- Make a copy of the maximum element (the root).
- Make the last node of the heap the new root.
- Discard the last node of the heap.
- Restore the max-heap property.
- Return the copy of the maximum element.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

HEAP-INCREASE-KEY

• Make sure that k is larger than the original key of element x.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

- Make sure that k is larger than the original key of element x.
- Increase the value of x's key to k.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

- Make sure that k is larger than the original key of element x.
- Increase the value of x's key to k.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

- Make sure that k is larger than the original key of element x.
- Increase the value of x's key to k.
- Traverse the tree upward comparing x to its parent and swapping if necessary, until the max-heap property is restored.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

- Make sure that k is larger than the original key of element x.
- Increase the value of x's key to k.
- Traverse the tree upward comparing x to its parent and swapping if necessary, until the max-heap property is restored.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

- Make sure that k is larger than the original key of element x.
- Increase the value of x's key to k.
- Traverse the tree upward comparing x to its parent and swapping if necessary, until the max-heap property is restored.

Problem: Increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

- Make sure that k is larger than the original key of element x.
- Increase the value of x's key to k.
- Traverse the tree upward comparing x to its parent and swapping if necessary, until the max-heap property is restored.

Problem: insert the element x (with key k) into the heap

Problem: insert the element x (with key k) into the heap

MAX-HEAP-INSERT

 Insert a new node in the very last position in the tree with key $-\infty$

Problem: insert the element x (with key k) into the heap

MAX-HEAP-INSERT

• Insert a new node in the very last position in the tree with key $-\infty$

Problem: insert the element x (with key k) into the heap

- Insert a new node in the very last position in the tree with key −∞
- Increase the −∞ value to k using the HEAP-INCREASE-KEY procedure

Problem: insert the element x (with key k) into the heap

- Insert a new node in the very last position in the tree with key −∞
- Increase the −∞ value to k using the HEAP-INCREASE-KEY procedure

Problem: insert the element x (with key k) into the heap

- Insert a new node in the very last position in the tree with key −∞
- Increase the −∞ value to k using the HEAP-INCREASE-KEY procedure

Problem: insert the element x (with key k) into the heap

- Insert a new node in the very last position in the tree with key −∞
- Increase the $-\infty$ value to k using the HEAP-INCREASE-KEY procedure

Problem: insert the element x (with key k) into the heap

- Insert a new node in the very last position in the tree with key −∞
- Increase the −∞ value to k using the HEAP-INCREASE-KEY procedure

Using Heaps to implement Priority Queues

- The operations have the following worst-case running times:
 - HEAP-INSERT(S, x): $\Theta(\log n)$
 - Heap-Maximum(S): $\Theta(1)$
 - HEAP-EXTRACT-MAX(S): $\Theta(\log n)$
 - Heap-Increase-Key(S, x, k): $\Theta(\log n)$