

Inverse Kinematics

Inverse kinematic is to determine the joint variables of the manipulators given the position and orientation of the end effector. Simply, finding joints angles given x and y.

Solution is difficult to find and solution is not unique.

Usually there are 2 approach: Geometric and Algebraic.

Inverse Kinematics

Following the figure, we wish to find joint angle θ_1 and θ_2 given x and y coordinates.

First let focus on **Geometric** approach.

Cosine Law

With cosine law

$$c^2 = a^2 + b^2 - 2ab\cos\theta_c$$

Inverse Kinematics: Examples 2 links planar by Geometric approach

Following the figure, we wish to find joint angle θ_1 and θ_2 given x and y coordinates.

$$c^2 = \alpha_1^2 + \alpha_2^2 - 2\alpha_1\alpha_2\cos\theta_c$$

$$\theta + \theta_2 = \pi$$

**First obtain θ_2

Inverse Kinematics: Examples 2 links planar by Geometric approach

$$c^{2} = \alpha_{1}^{2} + \alpha_{2}^{2} - 2\alpha_{1}\alpha_{2}\cos(\pi - \theta_{2})$$

$$\cos(\pi - \theta_{2}) = -\cos(\theta_{2})$$

$$\therefore c^{2} = \alpha_{1}^{2} + \alpha_{2}^{2} + 2\alpha_{1}\alpha_{2}\cos(\theta_{2})$$

$$\cos(\theta_{2}) = \frac{c^{2} - \alpha_{1}^{2} - \alpha_{2}^{2}}{2\alpha_{1}\alpha_{2}} = \frac{x^{2} + y^{2} - \alpha_{1}^{2} - \alpha_{2}^{2}}{2\alpha_{1}\alpha_{2}}$$

$$\cos(\theta_{2}) = \frac{x^{2} + y^{2} - \alpha_{1}^{2} - \alpha_{2}^{2}}{2\alpha_{1}\alpha_{2}} = D$$

$$\cos^{2}(\theta_{2}) + \sin^{2}(\theta_{2}) = 1$$

$$\sin(\theta_{2}) = \pm \sqrt{1 - D^{2}}$$

$$\tan(\theta_2) = \frac{\sin(\theta_2)}{\cos(\theta_2)} = \frac{\pm \sqrt{1 - D^2}}{D}$$

$$\theta_2 = \tan^{-1} \frac{\pm \sqrt{1 - D^2}}{D}$$

 $c^2 = \alpha_1^2 + \alpha_2^2 - 2\alpha_1\alpha_2\cos\theta_c$

Inverse Kinematics : Examples 2 links planar by Geometric approach

Inverse Kinematics: Examples 2 links planar by Geometric approach

Inverse Kinematics: Examples 2 links planar by Geometric approach

Ex: Let $\alpha_1 = 3$ and $\alpha_2 = 5$, obtain the possible values of θ_1 and θ_2 for point(7.5,2).

$$D = \frac{7.5^2 + 2^2 - 3^2 - 5^2}{2(3*5)} = \frac{26.25}{30} = 0.875$$

$$\theta_2 = \tan^{-1} \frac{\pm \sqrt{1 - 0.875^2}}{0.875} = \pm 28.96$$

Inverse Kinematics: Examples 2 links planar by

$$\theta_1 = \tan^{-1} \left(\frac{2}{7.5} \right) - \tan^{-1} \left(\frac{5 \sin(28.96)}{3 + 5 \cos(28.96)} \right)$$

$$= \tan^{-1} \left(0.27 \right) - \tan^{-1} \left(0.328 \right)$$

$$= 15 \cdot 11^\circ - 18 \cdot 16^\circ$$

$$=15.11^{\circ}-18.16^{\circ}$$

= -3.05°

If
$$\theta_2 = -28.96^\circ$$
 is chosen

$$\theta_{1} = \tan^{-1} \left(\frac{2}{7.5} \right) - \tan^{-1} \left(\frac{5 \sin(-28.96)}{3 + 5 \cos(-28.96)} \right)$$

$$= \tan^{-1} \left(0.27 \right) - \tan^{-1} \left(-0.328 \right)$$

$$= 15.11^{\circ} + 18.16^{\circ}$$

$$\tan(\theta) = \frac{-1}{1}$$

$$\theta = A \tan \frac{-1}{1} = -45^{\circ}$$

$$(1-1)$$
 $\tan(\theta) = \frac{1}{-1}$

$$\theta = A \tan \frac{1}{-1} = -45^{\circ}$$

an angle in the range of -90° and +90°.

The Two-Argument Arctangent Function: Atan2

The usual inverse tangent function returns an angle in the range of -90° and +90°.

The two-argument arctangent function, Atan2(x,y), is useful to define the full range of angles (range of -180° and $+180^{\circ}$).

This function uses the signs of x and y to select the <u>appropriate quadrant</u> for the angle θ .

$$\theta_2 = A \tan 2(x, y) = A \tan 2(D, \pm \sqrt{1 - D^2})$$

$$A \tan 2(1,-1) = -45^{\circ}$$

$$A \tan 2(-1,1) = 135^{\circ}$$

Inverse Kinematics: using Atan2

From previous

$$\theta_2 = \tan^{-1} \frac{\pm \sqrt{1 - D^2}}{D}$$
 and $\theta_1 = \tan^{-1} \left(\frac{y_1}{x_1} \right) - \tan^{-1} \left(\frac{\alpha_2 \sin(\theta_2)}{\alpha_1 + \alpha_2 \cos(\theta_2)} \right)$

With two-argument arctangent function:

$$\theta_2 = A \tan 2(D, \pm \sqrt{1 - D^2})$$

$$\theta_1 = A \tan 2(x_1, y_1) - A \tan 2(\alpha_1 + \alpha_2 \cos(\theta_2), \alpha_2 \sin(\theta_2))$$

Inverse Kinematics: Examples 2 links planar with Atan2 by Geometric approach

Ex: Let $\alpha_1 = 3$ and $\alpha_2 = 5$, obtain the possible values of θ_1 and θ_2 for point(7.5,2).

$$D = \frac{7.5^2 + 2^2 - 3^2 - 5^2}{2(3*5)} = \frac{26.25}{30} = 0.875$$

$$\theta_2 = A \tan 2(D, \pm \sqrt{1 - D^2})$$

$$\theta_2 = A \tan 2(0.875, \pm 0.484)$$

= $+28.95^{\circ}$ and -28.95°

Inverse Kinematics: Examples 2 links planar with Atan2 by Geometric approach

There are 2 cases: $\theta_2 = \pm 28.96^{\circ}$

If $\theta_2 = +28.96^{\circ}$ is chosen

$$\begin{split} \theta_1 &= A \tan 2 \left(x_1, y_1 \right) - A \tan 2 \left(\alpha_1 + \alpha_2 \cos(\theta_2), \alpha_2 \sin(\theta_2) \right) \\ \theta_1 &= A \tan 2 \left(7.5, 2 \right) - A \tan 2 \left(3 + 5 \cos(28.96), 5 \sin(28.96) \right) \\ &= 15.11^\circ - 18.16^\circ \\ &= -3.05^\circ \end{split}$$

$$\begin{split} \theta_1 &= A \tan 2 \left(x_1, y_1 \right) - A \tan 2 \left(\alpha_1 + \alpha_2 \cos(\theta_2), \alpha_2 \sin(\theta_2) \right) \\ \theta_1 &= A \tan 2 \left(7.5, 2 \right) - A \tan 2 \left(3 + 5 \cos(-28.96), 5 \sin(-28.96) \right) \\ &= 15.11^\circ + 18.16^\circ \\ &= 33.27^\circ \end{split}$$

Class Exercise

Ex: Let $\alpha_1 = 3$ and $\alpha_2 = 5$, obtain the possible values of θ_1 and θ_2 for point(7.75,1.95). Compute with using Atan2 function.

$$D=0.996$$
, $\sqrt{1-D^2}=0.090$

$$\theta_2 = \pm 5.13^{\circ}$$

Inverse Kinematics: Examples 2 links planar

There are 2 cases: $\theta_2 = \pm 5.13^{\circ}$

If $\theta_2 = +5.13^{\circ}$ is chosen

 $\theta_1 = 14.123^{\circ} - 3.41^{\circ} = 10.712^{\circ}$

If $\theta_2 = -5.13^{\circ}$ is chosen

 $\theta_1 = 14.123^{\circ} + 3.41^{\circ} = 17.57^{\circ}$

Class Exercise

Ex: Let $\alpha_1 = 3$ and $\alpha_2 = 5$, obtain the possible values of θ_1 and θ_2 for point(-7.75,1.95). Compute with using Atan2 function.

D=0.996, $\sqrt{1-D^2}=0.090$

 $\theta_2 = \pm 5.13^{\circ}$

Inverse Kinematics: Examples 2 links planar

There are 2 cases:

If
$$\theta_2 = +5.13^{\circ}$$
 is chosen
 $\theta_1 = -14.123^{\circ} - 3.41^{\circ} = -17.533^{\circ}$
 $= 162.467^{\circ}$

If $\theta_2 = -5.13^{\circ}$ is chosen

$$\theta_1 = -14.123^{\circ} + 3.41^{\circ} = -10.713^{\circ}$$

= 169.287°

RRR COGE 1

RRR Case 2

RRP Case 1

 $d_3 = \sqrt{x_c^2 + y_c^2 + (z_c - d_1)^2} - a_2$

Inverse Kinematics Examples : RRP Case2 : $d \neq 0$

Right arm configuration

$$\theta_1 = \alpha + \beta$$

$$\alpha = A \tan 2(x_c, y_c)$$

$$\beta = \gamma + \pi$$

where
$$\gamma = A \tan 2(\sqrt{r^2 - d^2}, d)$$

$$\therefore \beta = A \tan 2(-\sqrt{r^2 - d^2}, -d)$$

= $A \tan 2(-\sqrt{x_c^2 + y_c^2 - d^2}, -d)$

$$as\cos(\theta+\pi) = -\cos\theta$$
 and $\sin(\theta+\pi) = -\sin\theta$

$$\theta_1 = A \tan 2(x_c, y_c) + A \tan 2(-\sqrt{x_c^2 + y_c^2 - d^2}, -d)$$

Inverse Kinematics Examples : RRP Case2 : $d \neq 0$

Left arm configuration

$$\theta_1 = \phi - \alpha$$

$$\phi = A \tan 2(x_c, y_c)$$

$$\alpha = A \tan 2(\sqrt{r^2 - d^2}, d)$$

$$= A \tan 2(\sqrt{x_c^2 + y_c^2 - d^2}, d)$$

$$\theta_1 = A \tan 2(x_c, y_c) - A \tan 2(\sqrt{x_c^2 + y_c^2 - d^2}, d)$$

Assumption University (ABAC) Classwork 10 (26 Aug 2021)

Name 106500400 ID 6114215

RRR with no offset configuration.

- a. Let $\alpha_2 = 3$ and $\alpha_3 = 5$, $d_1 = 2$, obtain one set of the possible values of θ_1 , θ_2 and θ_3 for point (7.75, 1.95, 1.8). Compute with using Atan2 function. Show calculation steps.
- b. Draw the following configurations of RRR, specify arm up and arm down configuration.

$$(0) \frac{x_c^2 + y_c^2 + (z_c - d_1)^2 - a_2^2 - a_3^2}{2a_2a_3} := D$$

Find
$$\theta_2, \theta_3$$

When $\theta_1 + \pi$

$$D = (7.75)^{2} + (1.95)^{2} + (1.9-2)^{2} - 3^{2} - 5^{2} = 0.9969$$

$$2(3 \times 5)$$

$$\theta_3 = A \tan 2(D, \pm \sqrt{1 - D^2})$$

$$\theta_3 = \frac{1}{100} = \frac{1}{100}$$

$$\theta_2 = A \tan 2 \left(\sqrt{x_c^2 + y_c^2}, z_c - d_1 \right) - A \tan 2 \left(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3) \right)$$

$$\theta_2 = \tan^{7} 2d \left[(1.9 - 2)_{9} \sqrt{(7.75)^2 + (1.95)^2} \right] - \left[\tan^{7} 2d \left(55 \text{im} 4.56_{9} 3 + 5 \cos(4.56) \right) \right] = -4.209^{\circ}$$

$$\theta_1 = A \tan 2(x_c, y_c)$$

$$\theta_1 = \tan^{-1}2d \left[7.75, 1.95 \right] = 14.12^{\circ}$$

Links	θ	d	à	X
1	θ*1	d ₁	0	90°
2	θ*2	0	a_2	0
В	⊖ *₃	0	a _s	0