# Supervised Machine Learning: Regression Nonlinear Regression

#### **Nonlinear Regression**

- Nonlinear approach to model the relationship between a scalar response, (y) (or dependent variable) and one or more predictor variables,  $(x \ or \ x)$  (or independent variables)
- The response is going to be the nonlinear function of input (one or more independent variables)
- Simple nonlinear regression (Polynomial curve fitting, Neural Network):
  - Single independent variable (x)
  - Single dependent variable (y)
  - Fitting a curve
- Multiple nonlinear regression (Polynomial regression, Neural Network):
  - Two or more independent variable (x)
  - Single dependent variable (y)
  - Fitting a surface



# Supervised Machine Learning: Regression Polynomial Curve Fitting

#### **Polynomial Curve Fitting**



Given:-Training data:

$$D = \{x_n, y_n\}_{n=1}^N, x_n \in \mathbb{R}^1 \text{ and } y_n \in \mathbb{R}^1$$

 Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p = \sum_{j=0}^p w_j x_n^j$$

• Here,  $1, x_n, x_n^2, x_n^3, \dots, x_n^p$  are the monomials of polynomial up to degree p



- The coefficients  $\mathbf{w} = [w_0, w_1, ..., w_p]$  are parameters of polynomial curve (regression coefficients) *Unknown*
- Polynomial function  $f(x_n, \mathbf{w})$  is a nonlinear function of  $x_n$  and
- Function  $f(x_n, \mathbf{w})$  is a linear function of coefficients  $\mathbf{w}$ 
  - Linear model for regression

- Given:- Training data:  $D = \{x_n, y_n\}_{n=1}^N, x_n \in \mathbb{R}^1 \text{ and } y_n \in \mathbb{R}^1$
- Method of least squares: Minimizes the sum of the squared error between
  - all the actual data  $(y_n)$  i.e. actual dependent variable and
  - the estimate of line (predicted dependent variable  $(\hat{y}_n)$ ) i.e. the function  $f(x_n, w, w_0)$ , in the training set for any given value of  $\underline{\mathbf{w}}$

$$\hat{y}_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p$$

$$\text{minimize } E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

 Minimize the error such that the coefficients w represent the parameter of polynomial curve that best fit the training data

- Given:- Training data:  $D = \{x_n, y_n\}_{n=1}^N, x_n \in \mathbb{R}^1 \text{ and } y_n \in \mathbb{R}^1$
- Method of least squares: Minimizes the sum of the squared error between
  - all the actual data  $(y_n)$  i.e. actual dependent variable and
  - the estimate of line (predicted dependent variable  $(\hat{y}_n)$ ) i.e. the function  $f(x_n, w, w_0)$ , in the training set for any given value of w

$$\hat{y}_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p$$

$$\text{minimize } E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

- The error function is a
  - quadratic function of the coefficients w and
  - The derivatives of error function with respect to the coefficients will be linear in the elements of w
- Hence the minimization of the error function has unique solution and found in closed form

$$\hat{y}_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p = \sum_{j=0}^p w_j x_n^j$$

• Let's consider:  $x_n$   $x_n^2$   $x_n^3$   $x_n^p$  p is degree of polynomial  $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\cdots$   $\downarrow$ 

$$Z_{n1}$$
  $Z_{n2}$   $Z_{n3}$   $Z_{np}$ 

$$\hat{y}_n = f(\mathbf{z}_n, \mathbf{w}) = w_0 + w_1 z_{n1} + w_2 z_{n2} + \dots + w_p z_{np}$$

$$\hat{y}_n = f(\mathbf{z}_n, \mathbf{w}) = \sum_{j=0}^p w_j z_{nj} = \mathbf{w}^\mathsf{T} \mathbf{z}_n$$

where 
$$\mathbf{w} = [w_0, w_1, ..., w_p]^T$$
 and  $\mathbf{z}_n = [1, z_{n1}, ..., z_{np}]^T$ 

Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{z}_n, \mathbf{w}) - y_n)^2$$

- Conditions for optimality:  $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \overline{\mathbf{0}}$
- Application of optimality conditions gives optimal  $\hat{\mathbf{w}}$  :

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{p} w_{j} z_{nj} - y_{n} \right)^{2}}{\partial \mathbf{W}} = \mathbf{0}$$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{z}_n, \mathbf{w}) - y_n)^2$$

- Conditions for optimality:  $\partial E(\mathbf{w}) = 0$
- Application of optimality conditions gives optimal  $\hat{\mathbf{w}}$ :

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} - y_{n} \right)^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = \left(\mathbf{Z}^\mathsf{T}\mathbf{Z}\right)^{-1}\mathbf{Z}^\mathsf{T}\mathbf{y}$$

**Z** is Vandermonde matrix

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = (\mathbf{Z}^{\mathsf{T}} \mathbf{Z})^{-1} \mathbf{Z}^{\mathsf{T}} \mathbf{y}$$
- Assumption:  $p < N$ 

$$\mathbf{Z} \text{ is Vandermonde matrix}$$

$$\mathbf{Z} \text{ is Vandermonde matrix}$$

$$\mathbf{Z} = \begin{bmatrix} 1 & z_{11} & z_{12} \dots & z_{1p} \\ 1 & z_{21} & z_{22} \dots & z_{2p} \\ ------- \\ 1 & z_{n1} & z_{n2} \dots & z_{np} \\ ------ \\ 1 & z_{N1} & z_{N2} \dots & z_{Np} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ - \\ y_{n} \\ - \\ y_{N} \end{bmatrix}$$

### **Polynomial Curve Fitting: Testing**

Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$
  
 $\hat{\mathbf{w}} = \mathbf{Z}^{+}\mathbf{y}$ 

where  $\mathbf{Z}^+ = (\mathbf{Z}^\mathsf{T}\mathbf{Z})^{-1}\mathbf{Z}^\mathsf{T}$  is the pseudo inverse of matrix  $\mathbf{Z}$ 

• For any test example x, the predicted value is given by:

$$\hat{y} = f(x, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^\mathsf{T} \mathbf{z} = \sum_{i=0}^p \hat{w}_i x^j$$

- The prediction accuracy is measured in terms of squared error:  $E = (\hat{y} y)^2$
- Let  $N_t$  be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} (\hat{y}_n - y_n)^2}$$

#### Determining p, Degree of Polynomial

- This is determined experimentally
- Starting with p=1, test set is used to estimate the accuracy, in terms of error, of the regression model
  - Note: The polynomial degree p=1 is equivalent to simple linear regression (straight-line regression)
- This process is repeated each time by incrementing p
- The regression model with p that gives the minimum error on test set may be selected

Illustration of Polynomial Curve Fitting:

Humidity Prediction - Training

| <b>Temp</b> ( <i>x</i> ) | Humidity (y) |
|--------------------------|--------------|
| 25.47                    | 82.19        |
| 26.19                    | 83.15        |
| 25.17                    | 85.34        |
| 24.30                    | 87.69        |
| 24.07                    | 87.65        |
| 21.21                    | 95.95        |
| 23.49                    | 96.17        |
| 21.79                    | 98.59        |
| 25.09                    | 88.33        |
| 25.39                    | 90.43        |
| 23.89                    | 94.54        |
| 22.51                    | 99.00        |
| 22.90                    | 98.00        |
| 21.72                    | 99.00        |
|                          |              |

98.97

23.18

Degree of polynomial p : 1

$$\hat{\mathbf{w}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$
 Z is 15 x 2 matrix



## Illustration of Polynomial Curve Fitting: Humidity Prediction - Test

Degree of polynomial p: 1

| Temp (x) | Humidity<br>(y) |
|----------|-----------------|
| 22.98    |                 |



Predicted humidity: 95.05

Actual humidity: 98.76

Squared error: 13.77

Illustration of Polynomial Curve Fitting: Humidity Prediction - Training

| <b>Temp</b> ( <i>x</i> ) | Humidity<br>(y) |
|--------------------------|-----------------|
| 25.47                    | 82.19           |
| 26.19                    | 83.15           |
| 25.17                    | 85.34           |
| 24.30                    | 87.69           |
| 24.07                    | 87.65           |
| 21.21                    | 95.95           |
| 23.49                    | 96.17           |
| 21.79                    | 98.59           |
| 25.09                    | 88.33           |
| 25.39                    | 90.43           |
| 23.89                    | 94.54           |
| 22.51                    | 99.00           |
| 22.90                    | 98.00           |
| 21.72                    | 99.00           |

23.18

98.97

Degree of polynomial p : 2

$$\hat{\mathbf{w}} = (\mathbf{Z}^\mathsf{T} \mathbf{Z})^{-1} \mathbf{Z}^\mathsf{T} \mathbf{y}$$
 Z is 15 x 3 matrix



## Illustration of Polynomial Curve Fitting: Humidity Prediction - Test

• Degree of polynomial p:2



- Predicted humidity: 96.21
- Actual humidity: 98.76
- Squared error: 06.49

**Illustration of Polynomial Curve Fitting: Humidity Prediction - Training** 

| Temp (x) | Humidity (y) |
|----------|--------------|
| 25.47    | 82.19        |
| 26.19    | 83.15        |
| 25.17    | 85.34        |
| 24.30    | 87.69        |
| 24.07    | 87.65        |
| 21.21    | 95.95        |
| 23.49    | 96.17        |
| 21.79    | 98.59        |
| 25.09    | 88.33        |
| 25.39    | 90.43        |
| 23.89    | 94.54        |
| 22.51    | 99.00        |
| 22.90    | 98.00        |
| 21.72    | 99.00        |
| 23.18    | 98.97        |

Degree of polynomial p : 3

$$\hat{\mathbf{w}} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{y}$$
 Z is 15 x 4 matrix



## Illustration of Polynomial Curve Fitting: Humidity Prediction - Test

• Degree of polynomial p:3



Predicted humidity: 97.71

• Actual humidity: 98.76

 **Illustration: Polynomial Curve Fitting** 







C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.



#### **Illustration: Polynomial Curve Fitting**



C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

 $\overline{x}$ 

# Supervised Machine Learning: Regression Polynomial Regression

- Polynomial regression:
  - Two or more independent variable (x)  $\xrightarrow{X}$  f(.)
  - Single dependent variable (y)
- Given:- Training data:  $D = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\varphi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$

- $-\ m$  is the number of monomials of polynomial up to degree p
- $-\varphi_{i}(\mathbf{x}_{n})$  is the *j*th monomial of degree *p* for  $\mathbf{x}_{n}$
- For 2-dimensional input,  $\mathbf{x}_n = [x_{n1}, x_{n2}]^T$  and degree, p = 2

$$\mathbf{\phi}(\mathbf{x}_n) = \begin{bmatrix} \varphi_0(\mathbf{x}_n), & \varphi_1(\mathbf{x}_n), & \varphi_2(\mathbf{x}_n), & \varphi_3(\mathbf{x}_n), & \varphi_4(\mathbf{x}_n), & \varphi_5(\mathbf{x}_n) \end{bmatrix}^\mathsf{T}$$

$$\mathbf{\phi}(\mathbf{x}_n) = \begin{bmatrix} 1, & -x_{n1}, & -x_{n2}, & x_{n1}^2, & x_{n2}^2, & x_{n1}^2, & x_{n2}^2 \end{bmatrix}^\mathsf{T}$$

$$m$$

- Polynomial regression:
  - Two or more independent variable (x)  $\xrightarrow{X}$  f(.)
  - Single dependent variable (y)
- Given:- Training data: D =  $\{\mathbf{x}_n, y_n\}_{n=1}^N$ ,  $\mathbf{x}_n \in \mathbb{R}^d$  and  $y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\varphi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$

- m is the number of monomials of polynomial up to degree p
- $-\varphi_{i}(\mathbf{x}_{n})$  is the *j*th monomial of degree p for  $\mathbf{x}_{n}$
- For 2-dimensional input,  $\mathbf{x}_n = [x_{n1}, x_{n2}]^T$  and degree, p = 2

$$y_{n} = f(\mathbf{\phi}(\mathbf{x}_{n}), \mathbf{w}) = w_{0} + w_{1} + w_{1} + w_{2} + w_{3} + w_{1} + w_{2} + w_{2} + w_{3} + w_{1} + w_{2} + w_{2} + w_{3} + w_$$

- Polynomial regression:
  - Two or more independent variable (x)  $\xrightarrow{X}$  f(.)
  - Single dependent variable (y)



- Given:- Training data: D =  $\{\mathbf{x}_n, y_n\}_{n=1}^N$ ,  $\mathbf{x}_n \in \mathbb{R}^d$  and  $y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$

- $-\ m$  is the number of monomials of polynomial up to degree p
- $-\varphi_{j}(\mathbf{x}_{n})$  is the *j*th monomial of degree p for  $\mathbf{x}_{n}$
- For 2-dimensional input,  $\mathbf{x} = [x_1, x_2]^T$  and degree, p = 3

- Polynomial regression:
  - Two or more independent variable (x)  $\xrightarrow{X}$  f(.)
  - Single dependent variable (y)



- Given:- Training data: D =  $\{\mathbf{x}_n, y_n\}_{n=1}^N$ ,  $\mathbf{x}_n \in \mathbb{R}^d$  and  $y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$

- $-\ m$  is the number of monomials of polynomial up to degree p
- $-\varphi_{j}(\mathbf{x}_{n})$  is the *j*th monomial of degree p for  $\mathbf{x}_{n}$
- For 3-dimensional input,  $\mathbf{x}=[x_1, x_2, x_3]^T$  and degree, p=2

- Polynomial regression:
  - One or more independent variable (x) f(.)
  - Single dependent variable (y)



- Given:- Training data: D =  $\{\mathbf{x}_n, y_n\}_{n=1}^N$ ,  $\mathbf{x}_n \in \mathbb{R}^d$  and  $y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$

- $-\ m$  is the number of monomials of polynomial up to degree p
- $-\varphi_j(\mathbf{x}_n)$  is the jth monomial of degree p for  $\mathbf{x}_n$

The number of monomials m for the polynomial of degree p and the dimension of d  $m = \frac{(d+p)!}{d! \, p!}$  is given by

- Polynomial regression:
  - Two or more independent variable (x)  $\xrightarrow{X}$  f(.)
  - Single dependent variable (v)



- Given:- Training data: D =  $\{\mathbf{x}_n, y_n\}_{n=1}^N$ ,  $\mathbf{x}_n \in \mathbb{R}^d$  and  $y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$

- -m is the number of monomials of polynomial up to degree p
- $-\varphi_{j}(\mathbf{x}_{n})$  is the jth monomial of degree p for  $\mathbf{x}_{n}$

$$m = \frac{(d+p)!}{d!\,p!}$$
 Example: Let the dimension of input variable is  $d=6$  and the polynomial of degree  $p=3$ 

The number of monomials m = 84

- Given:- Training data:  $D = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$



$$y = f(\mathbf{x}_{n}, \mathbf{w})$$
$$\mathbf{x} = [x_{1}, x_{2}]^{\mathsf{T}}$$

Fitting a surface



- Polynomial function  $f(\mathbf{x}_n, \mathbf{w})$  is a nonlinear function of  $\mathbf{x}_n$  and
- Function  $f(\mathbf{x}_n, \mathbf{w})$  is a linear function of coefficients  $\mathbf{w}$ 
  - Linear model for regression

- The values for the coefficients will be determined by fitting the linear function to the training data
- Given:- Training data:  $D = \{\mathbf{x}_n, y_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Method of least squares: Minimizes the sum of the squared error between
  - all the actual data  $(y_n)$  i.e. actual dependent variable and
  - the estimate of line (predicted dependent variable  $(\hat{y}_n)$ ) i.e. the function  $f(x_n, \mathbf{w})$ , in the training set for any given value of  $\mathbf{w}$

$$\hat{y}_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$
minimize  $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$ 

 Minimize the error such that the coefficients w represent the parameter of polynomial curve that best fit the training data

- The values for the coefficients will be determined by fitting the linear function to the training data
- Given:- Training data:  $D = \{\mathbf{x}_n, y_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Method of least squares: Minimizes the sum of the squared error between
  - all the actual data  $(y_n)$  i.e. actual dependent variable and
  - the estimate of line (predicted dependent variable  $(\hat{y}_n)$ ) i.e. the function  $f(x_n, \mathbf{w})$ , in the training set for any given value of  $\mathbf{w}$

$$\hat{y}_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n)$$
minimize  $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$ 

- The error function is a
  - quadratic function of the coefficients w and
  - The derivatives of error function with respect to the coefficients will be linear in the elements of w
- Hence the minimization of the error function has unique solution and found in closed form

$$\begin{split} \hat{y}_n &= f(\mathbf{x}_n, \mathbf{w}) \\ \hat{y}_n &= f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) \\ \hat{y}_n &= \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n) \\ \hat{y}_n &= \mathbf{w}^\mathsf{T} \mathbf{\phi}(\mathbf{x}_n) \\ \\ \mathbf{w} &= [w_0, w_1, ..., w_{m-1}]^\mathsf{T} \text{ and } \\ \mathbf{\phi}(\mathbf{x}_n) &= [\varphi_0(\mathbf{x}_n), \varphi_1(\mathbf{x}_n), \varphi_2(\mathbf{x}_n), ..., \varphi_{m-1}(\mathbf{x}_n)]^\mathsf{T} \end{split}$$

Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) - y_n)^2$$

- Conditions for optimality:  $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$
- Application of optimality conditions gives optimal  $\hat{\mathbf{w}}$  :

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x}_n) - y_n \right)^2}{\partial \mathbf{w}} = \mathbf{0}$$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_{n}) - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) - y_n)^2$$

- Conditions for optimality:  $\frac{\partial E(\mathbf{w})}{\partial \hat{x}} = 0$
- Application of optimality conditions gives optimal  $\hat{\mathbf{w}}$ :

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_{n}) - y_{n} \right)^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{\!-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y}$$

#### **Polynomial Regression: Testing**

Optimal coefficient vector w is given by

$$\begin{aligned} \hat{\mathbf{w}} &= \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}\right)^{\!\!-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{y} \\ \hat{\mathbf{w}} &= \mathbf{\Phi}^{\!\!+} \mathbf{y} \end{aligned}$$

where  $\mathbf{\Phi}^+ = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T}$  is the pseudo inverse of matrix  $\mathbf{\Phi}$ 

• For any test example x, the predicted value is given by:

$$\hat{y} = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}) = \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x})$$

- The prediction accuracy is measured in terms of squared error:  $E = (\hat{y} y)^2$
- Let  $N_{t}$  be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} (\hat{y}_n - y_n)^2}$$

#### Determining p, Degree of Polynomial

- This is determined experimentally
- Starting with p=1, test set is used to estimate the accuracy, in terms of error, of the regression model
  - Note: The polynomial degree p=1 is equivalent to multiple linear regression
- This process is repeated each time by incrementing p
- The regression model with p that gives the minimum error on test set may be selected

# Illustration of Polynomial Regression: Temperature Prediction

| Humidity $(x_1)$ | Pressure $(x_2)$ | Temp<br>(y) |
|------------------|------------------|-------------|
| 82.19            | 1036.35          | 25.47       |
| 83.15            | 1037.60          | 26.19       |
| 85.34            | 1037.89          | 25.17       |
| 87.69            | 1036.86          | 24.30       |
| 87.65            | 1027.83          | 24.07       |
| 95.95            | 1006.92          | 21.21       |
| 96.17            | 1006.57          | 23.49       |
| 98.59            | 1009.42          | 21.79       |
| 88.33            | 991.65           | 25.09       |
| 90.43            | 1009.66          | 25.39       |
| 94.54            | 1009.27          | 23.89       |
| 99.00            | 1009.80          | 22.51       |
| 98.00            | 1009.90          | 22.90       |
| 99.00            | 996.29           | 21.72       |
| 98.97            | 800.00           | 23.18       |





#### Illustration of Polynomial Regression: Temperature Prediction

| Humidity $(x_1)$ | Pressure $(x_2)$ | <b>Temp</b> ( <i>y</i> ) |
|------------------|------------------|--------------------------|
| 82.19            | 1036.35          | 25.47                    |
| 83.15            | 1037.60          | 26.19                    |
| 85.34            | 1037.89          | 25.17                    |
| 87.69            | 1036.86          | 24.30                    |
| 87.65            | 1027.83          | 24.07                    |
| 95.95            | 1006.92          | 21.21                    |
| 96.17            | 1006.57          | 23.49                    |
| 98.59            | 1009.42          | 21.79                    |
| 88.33            | 991.65           | 25.09                    |
| 90.43            | 1009.66          | 25.39                    |
| 94.54            | 1009.27          | 23.89                    |
| 99.00            | 1009.80          | 22.51                    |
| 98.00            | 1009.90          | 22.90                    |
| 99.00            | 996.29           | 21.72                    |
| 98.97            | 800.00           | 23.18                    |

#### Training:

• Polynomial Degree p = 3

$$\hat{\mathbf{w}} = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{y}$$

 $\Phi$  is 15 x 10 matrix

Number of monomials, 
$$m = \frac{(d+p)!}{d! \, p!} = \frac{(2+3)!}{2! * 3!} = 10$$

## Illustration of Polynomial Regression: Temperature Prediction

| Humidity $(x_1)$ | Pressure $(x_2)$ | <b>Temp</b> ( <i>y</i> ) |
|------------------|------------------|--------------------------|
| 82.19            | 1036.35          | 25.47                    |
| 83.15            | 1037.60          | 26.19                    |
| 85.34            | 1037.89          | 25.17                    |
| 87.69            | 1036.86          | 24.30                    |
| 87.65            | 1027.83          | 24.07                    |
| 95.95            | 1006.92          | 21.21                    |
| 96.17            | 1006.57          | 23.49                    |
| 98.59            | 1009.42          | 21.79                    |
| 88.33            | 991.65           | 25.09                    |
| 90.43            | 1009.66          | 25.39                    |
| 94.54            | 1009.27          | 23.89                    |
| 99.00            | 1009.80          | 22.51                    |
| 98.00            | 1009.90          | 22.90                    |
| 99.00            | 996.29           | 21.72                    |
| 98.97            | 800.00           | 23.18                    |

#### Training:

• Polynomial Degree p = 3

$$\hat{\mathbf{w}} = \left(\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi}\right)^{\!-1}\mathbf{\Phi}^\mathsf{T}\mathbf{y}$$



## **Illustration of Polynomial Regression: Temperature Prediction - Test**

• Degree of polynomial p = 3

$$\hat{\mathbf{w}} = \left(\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi}\right)^{\!\!-1} \mathbf{\Phi}^\mathsf{T} \mathbf{y}$$

| Humidity $(x_1)$ | Pressure $(x_2)$ | Temp<br>(y) |
|------------------|------------------|-------------|
| 99.00            | 1009.21          | -           |

$$\hat{y} = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x})$$
$$= \sum_{j=0}^{m-1} w_j \varphi_j(\mathbf{x})$$



Predicted Temperature: 21.05

Actual Temperature: 21.24

Squared error: 0.035

#### Multiple Linear Regression vs Polynomial Regression Temperature Prediction

Multiple Linear Regression



- Predicted Temperature: 21.72
- Actual Temperature: 21.24
- Squared error: 0.2347

- Polynomial Regression
  - Degree of polynomial p=3



- Predicted Temperature: 21.05
- Actual Temperature: 21.24
- Squared error: 0.035

#### **Summary: Regression**

- Regression analysis is used to model the relationship between one or more independent (predictor) variable and a dependent (response) variable
- Response is some function of one or more input variables
- Linear regression: Response is linear function of one or more input variables
  - If the response is linear function of one input variable, then it is simple linear regression (straight-line fitting)
  - If the response is linear function of two or more input variable, then it is multiple linear regression (linear surface fitting or hyperplane fitting)
- Nonlinear regression: Response is nonlinear function of one or more input variables
  - Polynomial regression: Response is nonlinear function approximated using polynomial function up to degree p of one or more input variables
  - When the degree of polynomial (p) is 1, then it is linear regression

#### **Text Books**

J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.

2. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.