PCA Part II

CLPS 2908 Lecture 11 March 7, 2019

Communalities

- communality of each variable = h^2
 - = variance in given <u>variable</u> accounted for by selected components (non-uniqueness)

Communalities

	Initial	Extraction
X1	1.000	.625
x2	1.000	.718
х3	1.000	.769
x4	1.000	.792
x5	1.000	.532

(2 components extracted)

• If r = p, what's the sum of all the h_i^2 values?

Variance Rearrangement

Loading Matrix

Component Matrix (= Factor Loading Matrix)

Loading matrix A contains correlations between variables and components

	Factor	1	Factor	2
X1	.76362		20469	
X2	.84590		.04739	
х3	12137		.86847	
X4	.04530		.88857	
X5	.72907		.02616	

Loading Matrix

Component Matrix (= Factor Loading Matrix)

Squared correlations = variance components. Each X's summed variance components = its communality (what *it* contributes to PC)

	Factor	1	Factor 2		^ -	
X1	.76362		20469	\rightarrow	$h_1^2 =$.625
X2	.84590		.04739	•	-	
х3	12137		.86847		^ -	
X4	.04530		.88857	\rightarrow	$h_4^2 =$.792
X5	.72907		.02616	,	•	

Loading Matrix

Component Matrix

PC 1's summed variance components (squared loadings) = its total variance, λ_1

	Factor 1		Factor	2		^ ^
X1	.76362		20469		\rightarrow	\hat{h}_1^2
X2	.84590		.04739			1
х3	12137		.86847			^
X4	.04530		.88857		\rightarrow	$\hat{h}_{\scriptscriptstyle A}^2$
X5	.72907		.02616			4
	J		J			
	•		•			
	$\lambda_1 = 1.8$	347	$\lambda_2 = 1$.5	89	

Loadings = Coordinates

PCA So Far

- Spectral decomposition (original variables \rightarrow linear combinations) $\mathbf{R} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}'$
 - $\Lambda \to eigenvalues \ \lambda_j$ (goal = maximal variance for linear combination)
 - **V** \rightarrow eigenvectors v_i (weighting vector that produces linear combination)
- Extracting r components, whereby normally r < p
- Communalities h_i^2 (variable's variance contributing to / shared with / accounted for by components)
- Component ("Factor") **Loadings** a_{ij} $\sum_{j=1}^{r} a_{ij}^2 = h_i^2$ correlation with each component; if squared \rightarrow shared variance)
- Rotation
- Component/Factor Scores

Rotation

		CI	C2
 Changes the reference axes to 	X 1	1	0
interpret the meaning of components	X2	1	0
 Leaves the relative relationships of 	X3	1	0
variables untouched	X4	0	1
 Goal = rearrangement that yields 	X5	0	1
simple structure	X6	0	1

- Ideally, each variable loads strongly on only one component.
- Few components with large variance, each of which is defined by a few variables with large loadings (other variables have near-zero loading)

Unrotated Loading Matrix

Unrotated

Factor 1 Factor 2 .77674 .14728 Х1 .74137 .41008 X2 -.48653 .72957 X4 -.34513 .82006 64535 .34022 Х5

Search for better fit of axes and variables

Unrotated

Unrotated

Unrotated

And Now Rotated...

Amount of Rotation

Factor Transformation Matrix

Factor 1 Factor 2

Factor 1 .90076 -.43433 Factor 2 .43433 .90076

Amount of Rotation

Factor Transformation Matrix

Factor 1 Factor 2

Factor 1 .90076 -.43433 Factor 2 .43433 .90076

Amount of Rotation

Factor Transformation Matrix

Factor 1 Factor 2

Factor 1 .90076 -.43433 Factor 2 .43433 -90076

Formal Operation

- Features of Rotation
 - Variables in multidimensional space stay put
 - Only reference axes change
 - Planets-in-space illustration
 - Formal proof of invariance:

Component scores

Component scores = "Factor scores":

- properties of individuals
- reflecting their standing on the r principal components C_i
- Resulting from a transformation of their standing on the original *p* variables *X*_i

 $C = X \cdot W$ Each person's linear combinations of their own variable scores

 $C = Z \cdot V$ Each person's linear combinations of their **standardized** scores

Output Example