Лабораторна робота 6

ТЕОРІЯ ІГОР. ОПТИМАЛЬНЕ РІШЕННЯ ГРИ ДВОХ ОСІБ З НУЛЬОВОЮ СУМОЮ

Мета: ознайомлення з теорією ігор, стратегія гри двох осіб з нульовою сумою.

Основні теоретичні відомості

У теорії ігор розглядаються ситуації, пов'язані з прийняттям рішень, в яких два розумних противника мають конфліктуючі цілі. До числа типових прикладів відноситься рекламування конкуруючих товарів і планування військових стратегій протиборчих армій. Ці ситуації прийняття рішень відрізняються від розглянутих раніше, де природа не розглядається в ролі недоброзичливця.

В ігровому конфлікті беруть участь два противника, іменовані *гравцями*, кожен з яких має певну множину (кінцеве або нескінченне) можливих виборів, які називаються *стратегіями*. З кожною парою стратегій пов'язаний *платіж*, який один з гравців виплачує іншому. Такі ігри відомі як *гри двох осіб з нульовою сумою*, так як виграш одного гравця дорівнює програшу іншого.

У такій грі достатньо задати результати у вигляді платежів для одного з гравців.

При позначенні гравців через A та B з числом стратегій m і n відповідно гру зазвичай представляють у вигляді матриці платежів гравцеві A:

	B ₁	B_2	***	B_n
A ₁	a ₁₁	a ₁₂		a _{1n}
A_2	a ₂₁	a ₂₂	1000	a_{2n}
		***	***	***
A_m	a _{m1}	a_{m2}	***	a _{mn}

Таке уявлення матричної гри означає, що якщо гравець А використовує стратегію i, а гравець В - стратегію j, то платіж гравцеві А становить a_{ij} і, отже, гравцеві В - $-a_{ij}$

Оптимальне рішення гри двох осіб з нульовою сумою

Оскільки гри беруть свій початок в конфлікті інтересів, оптимальним рішенням гри ε одна або кілька таких стратегій для кожного з гравців, при цьому будь-яке відхилення від даних стратегій не покращує плату того чи іншого гравця. Ці рішення можуть бути у вигляді єдиної *чистої* стратегії або декількох стратегій, які ε змішаними відповідно до заданих можливостей. Розглянуті нижче приклади демонструють перераховані ситуації.

Приклад: Дві компанії A і B продають два види ліків проти грипу. Компанія A рекламує продукцію на радіо (A_1) , телебаченні (A_2) і в газетах (A_3) . Компанія B, на додаток до використання радіо (B_1) , телебачення (B_2) і газет (B_3) , розсилає також поштою брошури (B_4) . Залежно від уміння і інтенсивності проведення рекламної кампанії, кожна з компаній може залучити на свою сторону частину клієнтів конкуруючої компанії. Наведена нижче матриця характеризує відсоток клієнтів, залучених або втрачених компанією A.

		B ₁	B_2	B ₃	B_4	Минимумы строк
	A_1	8	-2	9	-3	-3
	A_2	6	5	6	8	5 максимин
	A_3	-2	4	-9	5	-9
Максимумы столбцов		8	5	9	8	
		минима	кс			

Рішення гри засновано на забезпеченні *найкращого результатму з найгірших* для кожного гравця. Якщо компанія A вибирає стратегію A_1 , то незалежно від того, що робить компанія B, найгіршим результатом є втрата компанією A 3% ринку на користь компанії B. Це визначається мінімумом елементів першого рядка матриці платежів. Аналогічно при виборі стратегії A_2 найгіршим результатом для компанії A є збільшення ринку на 5% за рахунок компанії B. Нарешті, найгіршим результатом при виборі стратегії A_3 є втрата компанією A 9% ринку на користь компанії B. Ці результати містяться в стовпці "Мінімуми рядків ". Щоб досягти найкращого результату з найгірших, компанія A вибирає стратегію A_2 , так як вона відповідає найбільшому елементу стовпчика "Мінімуми рядків ".

Розглянемо тепер стратегії компанії В. Так як елементи матриці є платежами компанії А, критерій *найкращого результату з найгірших* для компанії В відповідає вибору мінімаксного значення. В результаті приходимо до висновку, що вибором компанії В є стратегія B_2 .

Оптимальним рішенням у грі є вибір стратегій A_2 і B_2 , тобто обом компаніям слід проводити рекламу на телебаченні. При цьому виграш буде на користь компанії A, так як її ринок збільшиться на 5%. У цьому випадку говорять, що *ціна гри* дорівнює 5% і що компанії A і B використовують стратегії, відповідні *седлової точки*.

Рішення, що відповідає седловій точці, гарантує, що жодної компанії немає сенсу намагатися вибрати іншу стратегію. Дійсно, якщо компанія В переходить до іншої стратегії (B_1 , B_3 або B_4), то компанія А може зберегти свій вибір стратегії A_2 , що призведе до більшої втрати ринку компанією В (6 або 8%).

3 тих же причин компанії A немає резону використовувати іншу стратегію, бо якщо вона застосує, наприклад, стратегію A_3 , то компанія B може використовувати свою стратегію B_3 і збільшити свій ринок на 9%. Аналогічні висновки мають місце, якщо компанія A буде використовувати стратегію A_1 .

Оптимальне рішення гри, що відповідає седловій точці, не обов'язково має характеризуватися чистими стратегіями. Замість цього оптимальне рішення може вимагати змішування випадковим чином двох або більше стратегій, як це зроблено в наступному прикладі.

Приклад: Два гравця A і B грають в гру, засновану на під-киданні монети. Гравці одночасно і незалежно один від одного вибирають герб (Γ) або решку (P). Якщо результати двох підкидань монети збігаються (тобто $\Gamma\Gamma$ або PP), то гравець A отримує один долар від гравця B. Інакше гравець A платить один долар гравцеві B.

Наступна матриця платежів гравцеві A показує величини мінімальних елементів рядків і максимальних елементів стовпців, відповідних стратегій обох гравців.

	Вг	B_P	Минимумы строк
A_{Γ}	1	-1	-1
A_P	-1	1	-1
Максимумы столбцов	1	1	

Максиміна і мінімаксна величини (ціни) для цієї гри дорівнюють -1 дол. та 1дол. відповідно. Так як ці величини не рівні між собою, гра не має рішення в чистих стратегіях. Зокрема, якщо гравець А використовує стратегію АГ, гравець В вибере стратегію ВР, щоб отримати від гравця А один долар. Якщо це трапиться, гравець А може перейти до стратегії АР, щоб змінити результат гри і отримати один долар від гравця В. Постійне спокуса кожного гравця перейти до іншої стратегії вказує на те, що рішення у вигляді чистої стратегії неприйнятно. Замість цього обидва гравці повинні використовувати належну випадкову комбінацію своїх стратегій. У розглянутому прикладі оптимальне значення ціни гри знаходиться десь між максиміною та мінімаксною цінами для цієї гри:

Максиміна (нижня) ціна ≤ ціна гри ≤ мінімаксна (верхня) ціна.

Отже, в даному випадку ціна гри повинна лежати в інтервалі [-1, 1], що вимірюється в доларах.

Задачі до лабораторної роботи

Свій варіант задачі слід отримати у викладача. До отриманої задачі написати програму її рішення, в звіті навести код програми, вивести результат (оптимальна альтернатива).

1. Визначте рішення, яке визначається сідловою точкою, відпо-відно чисті стратегії та ціну гри для наступних ігор, в яких платежі задані для гравця А.

	B ₁	B_2	B_3	B_4
A ₁	8	6	2	8
A2	8	9	4	5
A3	7	5	3	5
	В1	B ₂	B ₃	B ₄
A ₁	11.150.41	B ₂ -4	<i>B</i> ₃ -5	
A ₁ A ₂	4	B ₂ -4 -4		6
A ₁ A ₂ A ₃	11.150.41	B ₂ -4 -4 7	B₃ -5 -9 -8	

2. У наступних іграх задані платежі гравцеві А. Вкажіть область значень для параметрів p і q, при яких пара (2, 2) буде сідловою точкою в кожній грі.

a)				
		B ₁	B ₂	B ₃
	A ₁	1	q	6
	A ₂	p	5	10
	A ₃	6	2	3
b)				
		B ₁	B_2	B ₃
	A ₁	2	4	5
	A ₂	10	7	q
	A ₃	4	p	6

3. Вкажіть область, якій належить ціна гри в кожному з наступних випадків, припускаючи, що платежі задані для гравця A.

	143	B ₁	B ₂	B ₃	B ₄
	A ₁	1	9	6	0
	A ₂	2	3	8	4
	A ₃	-5	-2	10	-3
	A4	7	4	-2	-5
)					
Di-	978	B ₁	B ₂	B ₃	B ₄
	A ₁	-1	9	6	8
	A ₂	-2	10	4	6
	A ₃	5	3	0	7
	A4	7	-2	8	4
		B ₁		B ₂	B ₃
	A1	3		6	1
	A ₂	5		2	3
	A ₃	4		2	-5
)	2 2 2 2				
		B ₁	B ₂	B ₃	B ₄
	A ₁	3	7	1	3
	A ₂	4	8	0	-6
	A ₃	6	-9	-2	4

4. Дві фірми виробляють два конкуруючих товари. Кожен товар в даний час контролює 50% ринку. Поліпшивши якість товарів, обидві фірми збираються розгорнути рекламні кампанії. Якщо вони не будуть цього робити, то існуючий стан ринку не зміниться. Однак якщо будь-яка фірма буде більш активно рекламувати свої товари, то інша фірма втратить відповідний відсоток своїх споживачів. Дослідження ринку показує, що 50% потенційних споживачів отримують інформацію за допомогою телебачення, 30% - через газети і 20% - по радіо.

- а) Сформулюйте задачу у вигляді гри двох осіб з нульовою сумою і виберіть відповідні кошти реклами для кожної фірми.
- b) Вкажіть інтервал значень, якому належить ціна гри. Чи може кожна фірма діяти з єдиною чистою стратегією?

Контрольні питання:

- 1. Дати визначення поняттю прийняття рішень.
- 2. Критерій найкращого результату з найгірших.
- 3. Дати визначення седлової точки.
- 4. Поясніть теорію ігор.
- 5. Що таке стратегія?
- 6. Ціна гри.