DATA LOADING

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from google.colab import drive
drive.mount('/content/drive')
Exprise already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remoun
file_path = '/content/drive/My Drive/QVI_purchase_behaviour.csv'
purchase_df = pd.read_csv(file_path)
file_path2 = '/content/drive/My Drive/QVI_transaction_data.xlsx'
transaction_df = pd.read_excel(file_path2)
purchase_df.head(3)
₹
        LYLTY_CARD_NBR
                                     LIFESTAGE PREMIUM_CUSTOMER
                        YOUNG SINGLES/COUPLES
     0
                  1000
                                                          Premium
     1
                  1002 YOUNG SINGLES/COUPLES
                                                        Mainstream
     2
                                YOUNG FAMILIES
                  1003
                                                           Budget
          ( Generate code with purchase_df )

    View recommended plots

                                                                     New interactive sheet
transaction_df.head(3)
₹
        DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR
                                                                                PROD_NAME PROD_QTY TOT_SALES
                                                                                                                 ☶
```

DATA PREPROCESSING

1

· Check for Null Values

0 43390

1 43599

2 43605

- No null values were found in both DataFrames.
- · Check for Duplicate Values
 - o Found one duplicate row in the transaction DataFrame.

1000

1307

1343

348

383

- · Correcting Data Types
 - o The Date column has been set to the date format.
- · Creating New Columns
 - o Created two new columns: Packet_Size and Brands for the transaction DataFrame.
- · Removing Unwanted Rows
 - · Removed rows that are not related to chips or do not belong to the chips brand (specifically, rows with 'Salsa').

5

66

Natural Chip Compny SeaSalt175g

61 Smiths Crinkle Cut Chips Chicken 170g

CCs Nacho Cheese 175g

6.0

6.3

2.9

3

2

ıl.

- Correcting Misspelled Brand Names
 - o Corrected brand names that were misspelled.
- · Removing Outliers
 - Removed outliers found in the TOTAL_SALES and PDT_QTY columns.

Checking for missing values in both the dataframes

```
print(purchase_df.isnull().sum())
```

LYLTY_CARD_NBR 0
LIFESTAGE 0

```
PREMIUM_CUSTOMER 0 dtype: int64
```

purchase_df.duplicated().sum()

→ 0

print(transaction_df.isnull().sum())

transaction_df.duplicated().sum()

transaction_df[transaction_df.duplicated(keep = False)]

→ *		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	
	124843	43374	107	107024	108462	45	Smiths Thinly Cut Roast Chicken 175g	2	6.0	ılı
	124845	43374	107	107024	108462	45	Smiths Thinly Cut Roast Chicken 175g	2	6.0	

Remove duplicates while keeping the first occurrence (drop the last)
transaction_df.drop_duplicates(keep='last', inplace=True)

transaction_df.duplicated().sum()

Checking for data types

purchase_df.dtypes

dtype: object

transaction_df.dtypes

#date datatype has to be changed to better understand the data

transaction_df['DATE'] = pd.to_datetime(transaction_df['DATE'], unit ='D',origin = '1899-12-30')
#this line of code effectively transforms a column of integer values representing days since a specific date into a more use
#enabling easier manipulation and analysis of date-related data within the DataFrame.

unique_date = transaction_df['DATE'].unique()
len(unique_date)

#find out which date is missing data
Create sequence of date
all_dates = list(pd.to_datetime(range(365), unit='D', origin='2018-07-01'))
missing_date = [dt for dt in all_dates if dt not in transaction_df['DATE'].unique()][0]

missing_date

#christmas day data is missing as its a public holiday

→ Timestamp('2018-12-25 00:00:00')

Explanation of Parameters: unit='D': Indicates that the integer values in the DATE column represent the number of days. origin='1899-12-30': Sets the starting point (epoch) for the date calculation. This is commonly used for converting Excel serial dates, which count days from December 30, 1899

#lets check the data types again
transaction_df.dtypes

dtype: object

#lets create a new column Packet_size and convert it into numeric format
transaction_df['PACKET_SIZE'] = transaction_df['PROD_NAME'].str.extract(r'(\d+)', expand=False)
transaction_df['PACKET_SIZE'] = pd.to_numeric(transaction_df['PACKET_SIZE'], errors='coerce')

Print the DataFrame to see the extracted numbers or the packet size transaction_df.head()

→		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACKET_SIZE	
	0	2018-10- 17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0	175	ılı
	1	2019-05- 14	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3	175	
	2	2019-05- 20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9	170	
	^	2018-08-	^	0070	~~.	22	Smiths Chip Thinly	-	15.0	17F	

#check the packet_size datatype
transaction_df.dtypes

dtype: object

#len(UniquePdtsName)

This operation removes any rows where the PROD_NAME column contains the substring "Salsa," ignoring case differences transaction_df = transaction_df[$\ensuremath{^{\prime}}$ PROD_NAME'].str.contains('Salsa', case=False, na=False)]

transaction_df['BRAND'] = transaction_df['PROD_NAME'].str.split(' ').str[0]
#The code creates a new column Brand in the DataFrame transaction_df by extracting the first word from each product name in

transaction_df['BRAND'].value_counts()

count


```
BRAND
        Kettle
                  41288
       Smiths
                  27389
       Pringles
                  25102
       Doritos
                  22041
        Thins
                  14075
         RRD
                  11894
       Infuzions
                  11057
         ww
                  10320
        Cobs
                   9693
       Tostitos
                   9471
       Twisties
                   9454
       Tyrrells
                   6442
        Grain
                   6272
       Natural
                   6050
       Cheezels
                   4603
         CCs
                   4551
         Red
                   4427
        Dorito
                   3185
        Infzns
                   3144
        Smith
                   2963
       Cheetos
                   2927
        Snbts
                   1576
        Burger
                   1564
      Woolworths
                   1516
       GrnWves
                   1468
       Sunbites
                   1432
        NCC
                   1419
       French
                   1418
     dtype: int64
#the code corrects the brand names
transaction_df['BRAND'] = transaction_df['BRAND'].replace({
    r'\bSmith\b': 'Smiths',
    r'\bDorito\b': 'Doritos',
    r'\bGrnWves|Grain\b': 'Grain Waves',
    r'\bNatural|NCC\b': 'Natural Chip Co',
    r'\bInfzns\b': 'Infuzions',
    r'\bRed\b': 'RRD',
    r'\bSnbts\b': 'Sunbites',
    r'\bWW\b': 'Woolworths',
    r'\Burger\b': 'Burger Rings'
}, regex=True)
```

Removing Outliers from customer transaction data

```
# analysing the outliers in total sales , product quantity and packet_size columns
sns.set_theme()
fig, ax = plt.subplots(ncols=3, figsize=(8,3))
sns.boxplot(
    data = transaction_df,
    y = 'PROD_QTY',
    ax=ax[0]
)
sns.boxplot(
```

```
2/25/25, 2:41 PM
```

```
data = transaction_df,
    y = 'TOT_SALES',
    ax=ax[1]
)
sns.boxplot(
    data = transaction_df,
    y = 'PACKET_SIZE',
    ax=ax[2]
)
fig.tight_layout()
```


Product Quantity value 200 is an outlier .
transaction_df[transaction_df['PROD_QTY'] == 200]

₹		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACKET_SIZE	BRAND	
	69762	2018- 08-19	226	226000	226201	4	Dorito Corn Chp Supreme 380g	200	650.0	380	Doritos	11.
	60762	2019-	226	226000	226210	4	Dorito Corn Chp	200	650.0	390	Doritos	

transaction_df[transaction_df['TOT_SALES']>= 600]

₹		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACKET_SIZE	BRAND	
	69762	2018- 08-19	226	226000	226201	4	Dorito Corn Chp Supreme 380g	200	650.0	380	Doritos	11.
	00700	2019-	000	000000	000040	4	Dorito Corn Chp	000	050.0	000	Davita	

lets remove the outlier customer with id = 226000
transaction_df = transaction_df[~(transaction_df['LYLTY_CARD_NBR'] == 226000)]

#lets create 2 more columns 'MONTH' name and 'DAY' name for the transaction DataFrame

transaction_df['MONTH'] = transaction_df['DATE'].dt.month_name()
transaction_df['DAY'] = transaction_df['DATE'].dt.day_name()

<ipython-input-101-14f826e88e73>:3: SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-transaction_df['MONTH'] = transaction_df['DATE'].dt.month_name() https://example.com/input-101-14f826e88e73:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: $\frac{https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html\#returning-a-transaction_df['DAY'] = transaction_df['DATE'].dt.day_name()$

transaction_df.head()

₹		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACKET_SIZE	BRAND	MONTH	
	0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0	175	Natural Chip Co	October	Wednes
	1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3	175	CCs	May	Tues
	2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9	170	Smiths	May	Mor
	3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175q	5	15.0	175	Smiths	August	Fr

EXPLORATORY DATA ANALYSIS

```
# lets look at the Premium customers lifestage stats
lifestage_counts = purchase_df['LIFESTAGE'].value_counts()
lifestage_percentage = purchase_df['LIFESTAGE'].value_counts(normalize=True) * 100
lifestage_summary = pd.DataFrame({'Count': lifestage_counts,
    'Percentage': lifestage_percentage.round(2)})
lifestage_summary.sort_values(by='Count', ascending=False)
→
                                                   \blacksquare
                              Count Percentage
                   LIFESTAGE
             RETIREES
                               14805
                                           20.38
     OLDER SINGLES/COUPLES
                               14609
                                           20 11
     YOUNG SINGLES/COUPLES
                                            19.88
                               14441
```

```
YOUNG FAMILIES 9178 12.64
MIDAGE SINGLES/COUPLES 7275 10.02
NEW FAMILIES 2549 3.51

# Premium Customer Category Stats
```

premium_customer_count = purchase_df['PREMIUM_CUSTOMER'].value_counts()

9780

OLDER FAMILIES

premium_customer_percentage = purchase_df['PREMIUM_CUSTOMER'].value_counts(normalize=True)*100

13.46

premium_customer_summary = pd.DataFrame({'PremiumCustomer_Count':premium_customer_count,'PremiumCustomer_Percentage':premium

 $\verb|premium_customer_summary.sort_values(by='PremiumCustomer_Count', ascending=False)|$

Premium Mainstream Customer tend be the most with 40.46% of overall Premium Cutsomer category

```
# Frequency bar chart for lifestage
fig, ax = plt.subplots(1, 2, figsize=(15,5))
sns.histplot(
    data = purchase_df,
    x= 'LIFESTAGE',
    ax=ax[0],
    color=sns.color_palette()[4]
)
ax[0].tick_params(axis='x', rotation=90)
ax[0].set_title("Distribution of life stages")
sns.histplot(
    data = purchase_df,
```

```
x= 'PREMIUM_CUSTOMER',
     ax=ax[1],
     color=sns.color_palette()[2]
ax[1].set_title("Distribution of customer price points")
fig.tight_layout()
₹
                                                              Distribution of life stages
                                                                                                                                                                                         Г
                                                                                                                                                30000
            15000
                                                                                                                                                20000
            10000
        Count
                                                                                                                                            Count
              5000
                                                                                                                                                10000
                   0
                                                                                                                                                       0
                                                                                                                                                                            Premium
                                                                              MIDAGE SINGLES/COUPLES
                                                                                             NEW FAMILIES
                                  YOUNG SINGLES/COUPLES
                                                 YOUNG FAMILIES
                                                               OLDER SINGLES/COUPLES
                                                                                                           OLDER FAMILIES
                                                                                                                           RETIREES
```

df_premium_customer = purchase_df.groupby(['LIFESTAGE', 'PREMIUM_CUSTOMER'])['PREMIUM_CUSTOMER'].count().reset_index(name='C

LIFESTAGE

```
# Set the figure size and style
plt.figure(figsize=(15, 8))
sns.set_theme(style="whitegrid")
# Create a grouped bar chart
sns.barplot(
   data=df_premium_customer,
   x='LIFESTAGE',
   y='Count',
   hue='PREMIUM_CUSTOMER'
# Rotate the x-axis labels for better readability
plt.xticks(rotation=45, ha='right')
# Add titles and labels
plt.title("Distribution of Premium Customers by Life Stage", fontsize=16)
plt.xlabel("Life Stage", fontsize=12)
plt.ylabel("Count", fontsize=12)
# Add legend
plt.legend(title="Premium Customer", loc="upper right")
# Display the plot
plt.tight_layout()
plt.show()
```


Merging two dataframes

retail_data = transaction_df.merge(purchase_df, on='LYLTY_CARD_NBR', how='inner')
retail_data.head()

₹		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACKET_SIZE	BRAND	MONTH	
	0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0	175	Natural Chip Co	October	Wednes
	1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3	175	CCs	May	Tues
	2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9	170	Smiths	May	Mor
	3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	15.0	175	Smiths	August	Fr
	4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	13.8	150	Kettle	August	Satu

Exploratoty Data Analysis on Retail Data

retail_data.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 246739 entries, 0 to 246738
Data columns (total 14 columns):

Data	columns (total 14	columns):	
#	Column	Non-Null Count	Dtype
0	DATE	246739 non-null	datetime64[ns]
1	STORE_NBR	246739 non-null	int64
2	LYLTY_CARD_NBR	246739 non-null	int64
3	TXN_ID	246739 non-null	int64
4	PROD_NBR	246739 non-null	int64

```
PROD NAME
                            246739 non-null
                                            object
     6
         PROD OTY
                            246739 non-null
                                             int64
         TOT_SALES
                           246739 non-null
                                             float64
     7
     8
         PACKET_SIZE
                            246739 non-null
                                             int64
     9
         BRAND
                            246739 non-null
                                             object
     10
         MONTH
                            246739 non-null
                                             object
     11
         DAY
                            246739 non-null
                                             object
     12 LIFESTAGE
                            246739 non-null
                                            object
     13 PREMIUM_CUSTOMER
                           246739 non-null object
    dtypes: datetime64[ns](1), float64(1), int64(6), object(6)
    memory usage: 26.4+ MB
Double-click (or enter) to edit
retail_data.duplicated().sum()
→ 0
numeric =retail_data[['PROD_QTY','TOT_SALES','PACKET_SIZE']]
numeric.describe()
```

₹		PROD_QTY	TOT_SALES	PACKET_SIZE
	count	246739.000000	246739.000000	246739.000000
	mean	1.906456	7.316118	175.583523
	std	0.342500	2.474901	59.432239
	min	1.000000	1.700000	70.000000
	25%	2.000000	5.800000	150.000000
	50%	2.000000	7.400000	170.000000
	75%	2.000000	8.800000	175.000000
	max	5.000000	29.500000	380.000000

Output Summary

This output provides a comprehensive overview of the distribution and central tendency of the PROD_QTY, TOT_SALES, and Packet_Size variables in the dataset.

The average product quantity sold per transaction is around 1.91, with most transactions involving 1 to 2 products. Total sales values vary but tend to average around 7.32. The packet sizes range from 70 to 380 grams, with an average of 182.20 grams.

Kettle is the most favorite brand

Double-click (or enter) to edit

```
brand_counts = retail_data['BRAND'].value_counts()

top_brands = brand_counts.head(20)

# Plot the data
plt.figure(figsize=(12, 6))
sns.barplot(x=top_brands.values, y=top_brands.index, palette='viridis')
plt.title('Top 20 Brands', fontsize=16)
plt.xlabel('Number of Products Sold', fontsize=12)
plt.ylabel('Brand', fontsize=12)
plt.tight_layout()
plt.show()
```

<ipython-input-114-ac2983a78a90>:7: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` sns.barplot(x=top_brands.values, y=top_brands.index, palette='viridis')

Monthly Sales

- · Lowest Sales: February has the lowest total sales, around 140,480.
- Highest Sales: December shows the highest total sales, approximately 156,461.6.
- · Consistency: The total sales are relatively consistent across months, with no dramatic spikes or drops.
- Interpretation: This suggests that sales are steady throughout the year, but there might be a slight increase in sales during December (possibly due to holiday shopping). February might have fewer shopping days or lower consumer activity.

```
#total sales by month
monthly_sales = retail_data.groupby('MONTH')['TOT_SALES'].sum()
#plot monthly sales and sort it ascending
monthly_sales = monthly_sales.sort_values()
plt.figure(figsize=(15, 6))
sns.barplot(x=monthly_sales.index, y=monthly_sales.values)
plt
#show the values on each bar
for i, v in enumerate(monthly_sales.values):
    plt.text(i, v, str(v), ha='center', va='bottom')
```


Monthly Sales Volume

- Lowest Volume: February again has the lowest volume of products sold, with 36,541 units.
- · Highest Volume: December has the highest product volume, with 40,778 units sold.
- · Consistency: Similar to the sales trend, the product volumes remain steady, with only slight variations across months.
- Interpretation: The product quantity trend aligns with the sales trend, showing that both sales and volume increase slightly in December. February's lower performance in both metrics could be linked to shorter days or reduced consumer activity.

```
#total volume by month
monthly_volume = retail_data.groupby('MONTH')['PROD_QTY'].sum()
#sort the montly volume and plot
monthly_volume = monthly_volume.sort_values()
plt.figure(figsize=(10, 6))
sns.barplot(x=monthly_volume.index, y=monthly_volume.values)
plt
#show the volume at each bar
for i, v in enumerate(monthly_volume.values):
    plt.text(i, v, str(v), ha='center', va='bottom')
```


Sales by Day

Key Takeaways:

- Lowest Sales: Tuesday has the lowest total sales, amounting to 252,832.2. Highest Sales: Sunday has the highest total sales, reaching 263,927.8. Variation Across Days: The sales figures across all days are relatively close, with only minor differences.
- · Interpretation:
 - Weekday vs. Weekend Trend: Sunday and Friday show slightly higher sales, indicating potential increased consumer activity on weekends.
 - o Mid-week days (Tuesday and Thursday) appear to have marginally lower sales compared to the weekend.
 - o Consistency: Sales remain fairly steady throughout the week, with no drastic dips or spikes, suggesting a stable customer base
- Business Implication: While sales are steady, focusing on weekend promotions (Friday to Sunday) might enhance revenue further since
 these days already perform slightly better. Investigating the dip on Tuesday may reveal opportunities to boost engagement or
 implement targeted campaigns

```
# Find the day with the maximum sales
day_sales = retail_data.groupby('DAY')['TOT_SALES'].sum()
day_sales = day_sales.sort_values()
plt.figure(figsize=(10, 6))
sns.barplot(x=day_sales .index, y=day_sales .values)
plt
##show the total sales at each bar
for i, v in enumerate(day_sales .values):
    plt.text(i, v, str(v), ha='center', va='bottom')
```



```
# Find the day with the maximum sales by volume
day_volume = retail_data.groupby('DAY')['PROD_QTY'].sum()
day_volume = day_volume.sort_values()
plt.figure(figsize=(10, 6))
sns.barplot(x=day_volume .index, y=day_volume .values)
#show the total sales at each bar
for i, v in enumerate(day_volume .values):
    plt.text(i, v, str(v), ha='center', va='bottom')
```


Snack chips sales are highest in December due to festive celebrations, increased gatherings, and promotional campaigns, while February sees the lowest sales due to post-holiday spending cuts, health resolutions, and fewer social events. Seasonal and behavioral factors, like winter preferences and reduced advertising, also contribute.

SALES AND CUSTOMER BEHAVIOUR ANALYSIS BY LIFESTAGE GROUP

- **High Sales Groups:** "Older Singles/Couples" and "Retirees" drive the majority of sales (over 39% combined), indicating these are key demographics to target.
- **Bulk Buyers:** "Older Families" and "Young Families" purchase more packets per customer on average, making them potential targets for bulk or volume-based promotions.
- **Price Sensitivity:** The average price per unit remains fairly stable across groups, suggesting similar pricing strategies for most customer segments.
- Opportunities: Groups like "New Families" and "Young Singles/Couples," which contribute smaller portions of sales, could be targeted with marketing campaigns to increase engagement.

```
# calculate the customer percentage per lifestage
sales_by_LG = retail_data.groupby(['LIFESTAGE'])['TOT_SALES'].sum().reset_index()
sales_by_LG['Percent'] = 100*sales_by_LG['TOT_SALES'] / sales_by_LG['TOT_SALES'].sum()
sales_by_LG['Percent'] = sales_by_LG['Percent'].round(2)
sales_by_LG.sort_values('Percent', ascending=False, inplace=True)
# Add number of customers
cust_count = retail_data.groupby(['LIFESTAGE'])['LYLTY_CARD_NBR'].nunique().reset_index()
sales_by_LG = sales_by_LG.merge(cust_count, how='inner', on=['LIFESTAGE',])
# Add average number of packets bought per customer
avg_qty = retail_data.groupby(['LIFESTAGE', 'LYLTY_CARD_NBR'])['PROD_QTY'].sum().groupby(['LIFESTAGE']).mean().reset_index()
sales_by_LG = sales_by_LG.merge(avg_qty, how='inner', on=['LIFESTAGE'])
# Average price per unit sold
retail_data['unit_price'] = retail_data['TOT_SALES'] / retail_data['PROD_QTY']
avg_price = retail_data.groupby(['LIFESTAGE'])['unit_price'].mean().round(2)
sales_by_LG = sales_by_LG.merge(avg_price, how='inner', on=['LIFESTAGE'])
sales_by_LG.rename(columns={'LYLTY_CARD_NBR':'cust_count', 'PROD_QTY':'avg_qty', 'unit_price':'avg_price'}, inplace=True)
sales_by_LG.sort_values('Percent', ascending=False, inplace=True)
sales_by_LG
```

₹		LIFESTAGE	TOT_SALES	Percent	cust_count	avg_qty	avg_price	\blacksquare
	0	OLDER SINGLES/COUPLES	376013.65	20.83	14389	6.75	3.86	ıl.
	1	RETIREES	342381.90	18.97	14555	6.04	3.89	+/
	2	OLDER FAMILIES	328519.90	18.20	9630	9.13	3.74	
	3_	YOUNG FAMILIES	294627.90	16.32	9036	8.70	3.75	
Next	4	YOUNGISING LEST COUPLES	5_b243\756.60	○ Vipyyggo	commended	ts Alexy	interactive திச	et

Sales Performance Analysis Across Lifestages and Customer Segments

- Older Families and Retirees are key customers:Older Families, particularly in the Budget category, make significant contributions to sales and purchase large quantities, showing strong demand and loyalty.
- · Retirees also exhibit consistent buying behavior, with a focus on Budget and Mainstream products.
- Young Singles/Couples are price-sensitive: Despite having a high number of customers, the average price paid per unit is higher for Mainstream customers but lower for Budget customers. This shows variation in product preferences.
- Premium Segments are niche but valuable: While Premium customers represent smaller segments, their purchases tend to skew toward higher unit prices.
- New Families are a low-engagement segment: They have the lowest total sales and customer counts, indicating potential for targeted marketing or product offerings to increase their engagement.

```
# Total sales by lifestage and premium_customeror
sales_by_segment = retail_data.groupby(['LIFESTAGE', 'PREMIUM_CUSTOMER'])['TOT_SALES'].sum().reset_index()
g=sns.barplot(
   data = sales_by_segment,
   x='LIFESTAGE',
    y='TOT_SALES'
   hue='PREMIUM_CUSTOMER'
sns.move_legend(g, "upper left", bbox_to_anchor=(1, 1))
plt.xticks(rotation=90)
   ([0, 1, 2, 3, 4, 5, 6],
[Text(0, 0, 'MIDAGE SINGLES/COUPLES'),
      Text(1, 0, 'NEW FAMILIES')
      Text(2, 0,
                  'OLDER FAMILIES')
                  'OLDER SINGLES/COUPLES'),
      Text(3, 0,
      Text(4, 0,
                  'RETIREES'),
                  'YOUNG FAMILIES'),
      Text(5, 0,
      Text(6, 0, 'YOUNG SINGLES/COUPLES')])
        160000
                                                                                 PREMIUM CUSTOMER
                                                                                         Budget
        140000
                                                                                         Mainstream
                                                                                         Premium
        120000
        100000
          80000
          60000
          40000
          20000
              0
```