Notas Curso Topología I Axiomas de Numerabilidad

Cristo Daniel Alvarado

20 de mayo de 2024

Índice general

5 .	Axio	omas de Numerabilidad	2
	5.1.	Conceptos Fundamentales	2
	5.2.	Espacios Primero Numerables	2
	5.3.	Espacios Segundo Numerables	5

Capítulo 5

Axiomas de Numerabilidad

5.1. Conceptos Fundamentales

Observación 5.1.1

De ahora en adelante numerable será equivalente a lo sumo numerable.

Definición 5.1.1

Sea (X, τ) un espacio topológico.

- 1. Sean $x \in X$ y \mathcal{U} una colección de vecindades de x. Diremos que \mathcal{U} es un sistema fundamental de vecindades de x si dada $V \in \mathcal{V}(x)$ existe $U \in \mathcal{U}$ tal que $U \subseteq V$. Si \mathcal{U} es numerable, \mathcal{U} se dice un sistema fundamental numerable de vecindades de x.
- 2. Si dado $x \in X$ existe un sistema fundamental numerable de vecindades de x, el espacio (X, τ) se dice **primero numerable**.
- 3. El espacio (X, τ) se dice un **espacio segundo numerable** si su topología tiene una base numerable.
- 4. El espacio (X, τ) se dice un **espacio separable** si existe $A \subseteq X$ tal que A es numerable y además $\overline{A} = X$ (es decir que es denso en X).
- 5. El espacio (X, τ) se dice un **espacio de Lindelöf** si cada cubierta abierta del espacio tiene una subcubierta numerable.

5.2. Espacios Primero Numerables

Proposición 5.2.1

Sea (X, τ) un espacio primero numerable. Si $Y \subseteq X$ entonces (Y, τ_Y) es primero numerable.

Demostración:

Sea $Y \subseteq X$. Sea $y \in Y$, en particular $y \in X$. Como (X, τ) es primero numeable, existe un sistema fundamental de vecindades de x en (X, τ) , digamos \mathcal{U}' , es decir que para este \mathcal{U}' se cumple:

$$\forall V \in \mathcal{V}(x) \exists U \in \mathcal{U}' \text{ tal que } U \subseteq V$$

Sea

$$\mathcal{U} = \left\{ Y \cap U \middle| U \in \mathcal{U}' \right\}$$

Tenemos que $U \in \mathcal{U}'$, $Y \cap U$ es una vecindad de y en (Y, τ_Y) y, como \mathcal{U}' es numerable, también \mathcal{U} lo es.

Sea $W \subseteq Y$ una vecindad de y en (Y, τ_Y) , luego existe $V \in \tau$ tal que

$$y \in Y \cap V \subseteq W$$

Como en particular V es una vecindad de y en (X,τ) , entonces existe $U \in \mathcal{U}'$ tal que

$$U \subseteq V$$

luego,

$$Y \cap U \subseteq Y \cap V \subseteq W$$

donde $Y \cap U \in \mathcal{U}$. Así, \mathcal{U} es un sistema fundamental de vecindades de y en (Y, τ_Y) . Como $y \in Y$ fue arbitrario, se sigue que (Y, τ_Y) es primero numerable.

Proposición 5.2.2

La propiedad de ser primero numerable es topológica.

Demostración:

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos homeomorfos tales que (X_1, τ_1) es primero numerable. Sea $f: (X_1, \tau_1) \to (X_2, \tau_2)$ el homeomorfismo entre tales espacios. Veamos que (X_2, τ_2) es primero numeable.

En efecto, sea $x_2 \in X_2$, entonces existe un único $x_1 \in X_1$ tal que $f(x_1) = x_2$. Como (X_1, τ_1) es primero numerable, entonces existe \mathcal{U}_1 sistema fundamental numerable de vecindades de x_1 . Sea

$$\mathcal{U}_2 = \left\{ f(U_1) \middle| U_1 \in \mathcal{U}_1 \right\}$$

Como \mathcal{U}_1 es numerable, \mathcal{U}_2 también lo es. Y, como $U_1 \in \mathcal{U}_1$ es una vecindad de x_1 , entonces $f(U_1)$ es una vecindad de x_2 (por ser f homeomorfismo). Por tanto, \mathcal{U}_2 es una colección de vecindades de x_2 . Ahora, sea $V \in \mathcal{V}(x_2)$ una vecindad de x_2 . Como f es homeomorfismo entonces

$$f^{-1}(V) \in \mathcal{V}(x_1)$$

Luego, existe $U \in \mathcal{U}_1$ tal que

$$U \subseteq f^{-1}(V) \Rightarrow f(U) \subseteq V$$

por ser f biyección, donde $f(U) \in \mathcal{U}_2$.

Así, \mathcal{U}_2 es un sistema fundamental numerable de vecindades de x_2 . Como el elemento x_2 fue arbitrario, se sigue que (X_2, τ_2) es primero numerable. Luego, la propiedad de ser primero numerable es topológica.

Proposición 5.2.3

Sean $\{(X_k, \tau_k)\}_{k \in \mathbb{N}}$ una familia numerable de espacios topológicos y

$$X = \prod_{k \in \mathbb{N}} X_k$$

Entonces, (X, τ_p) es primero numerable si y sólo si (X_k, τ_k) es primero numerable, para todo $k \in \mathbb{N}$.

Demostración:

- \Rightarrow): Es inmediato del hecho de que la propiedad de ser primero numerable es hereditaria y topológica.
- \Leftarrow): Suponga que (X_k, τ_k) es primero numerable para todo $k \in \mathbb{N}$. Sea $x = (x_n)_{n \in \mathbb{N}} \in X$. Si $k \in \mathbb{N}$, se tiene que (X_k, τ_k) es primero numerable. Para $x_k \in X_k$ existe

$$\mathcal{U}_k = \left\{ U_m^k \right\}_{m \in \mathbb{N}}$$

sistema fundamental numerable de vecindades de x_k en (X_k, τ_k) . Definimos

$$\mathcal{U} = \left\{ \prod_{l \in \mathbb{N}} A_l \middle| \text{ existe } I = \{i_1, ..., i_t\} \subseteq \mathbb{N} \text{ finito con } i_r < i_s \text{ si } r < s \text{ tal que} \right.$$

$$l \in \mathbb{N} - I \Rightarrow A_l = X_l \text{ y } l \in I \Rightarrow A_k \in \mathcal{U}_l \}$$

veamos que $\mathcal{U} \subseteq \mathcal{V}(x)$ y además \mathcal{U} es un sistema fundamental de vecindades de x. Sea $U = \prod_{t \in \mathbb{N}} U_t$ un básico de la topología producto tal que $x \in U$. Tenemos que existe $I \subseteq \mathbb{N}$ finito tal que

$$l \in \mathbb{N} - I \Rightarrow U_l = X_l \ y \ l \in I \Rightarrow x_l \in U_l \in \tau_l$$

Para $l \in I$ existe $U_{m_l}^l \in \mathcal{U}_l$ tal que $x_l \in U_{m_l}^l \subseteq U_l$. Sea

$$A = \prod_{l \in \mathbb{N}} A_l$$

donde,

$$l \in \mathbb{N} - I \Rightarrow A_l = X_l \ y \ l \in I \Rightarrow A_l = U_{m_l}^l$$

por tanto, $A \in \mathcal{U}$ y es tal que $x \in A \subseteq U$.

Veamos ahora que \mathcal{U} es numerable. Sea $A = \prod_{l \in \mathbb{N}} A_l \in \mathcal{U}$, entonces existe $I \subseteq \mathbb{N}$ finito, digamos $I = \{i_1, ..., i_t\}$ (ordenados de forma estrictamente creciente y siendo todos distintos) tales que $l \in \mathbb{N} - I$ entonces $A_l = X_l$. Y, si $l \in I$ entonces $A_l = U_{m_l}^l \in \mathcal{U}_l$. Sea $(i_1, ..., i_t, m_{i_1}, ..., m_{i_t}) \in \mathbb{N}^{2t}$.

Definimos la función

$$f: \mathcal{U} \to \bigcup_{t \in \mathbb{N}} \mathbb{N}^{2t}$$

(donde \mathbb{N}^{2t} expresa el producto cartesiano de \mathbb{N} consigo mismo 2t-veces) tal que $A \mapsto (i_1, ..., i_t, m_{i_1}, ..., m_{i_t})$ (siendo el A de la forma en que se expresó anteriormente). Se tiene por la elección de los elementos de \mathcal{U} , que la función f está bien definida y es inyectiva. Por tanto, \mathcal{U} es numerable.

Luego, (X, τ_p) es primero numerable.

Proposición 5.2.4

Sea (X, τ) un espacio primero numerable.

- 1. Sea $A \subseteq X$ y $x \in X$. Entonces $x \in \overline{A}$ si y sólo si existe una sucesión de puntos $\{x_n\}_{n=1}^{\infty}$ de A que converge a x.
- 2. Sean (X', τ') espacio topológico y $f: (X, \tau) \to (X', \tau')$ una función. Entonces, para $x \in X$, f es continua en X si y sólo si para cada sucesión $\{x_n\}_{n=1}^{\infty}$ de puntos en X que converge a x, se tiene que la sucesión $\{f(x_n)\}_{n=1}^{\infty}$ converge a f(x).

Demostración:

De (1): Se probará la doble implicación.

 \Rightarrow): Sea $x \in \overline{A}$ y $\{B_n\}_{n \in \mathbb{N}}$ un sistema fundamental numerable de vecindades de x. Entonces

$$B_1 \cap A \neq \emptyset$$

pues $x \in \overline{A}$ y B_1 es vecindad de x. Tomemos $x_1 \in B_1 \cap A$. Para cada $n \in \mathbb{N}$, como

$$B_1 \cap \cdots \cap B_n$$

es vecindad de x, entonces su intersección con A es no vacía. Tome así $x_n \in B_1 \cap \cdots \cap B_n \cap A$ y constrúyase así la sucesión $\{x_n\}_{n\in\mathbb{N}}$. Veamos que esta sucesión converge a x. En efecto, sea $U \in \tau$ tal que $x \in \tau$. Como este es un sistema fundamental de vecindades, existe $l \in \mathbb{N}$ tal que $B_l \subseteq U$, luego

$$x_{l+m} \in B_l \subset U$$

para todo $m \ge 0$. Por tanto, la sucesión converge a x.

 \Leftarrow): Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de puntos de A tal que $x_n \to \infty$. Tomemos $M \in \tau$ tal que $x \in M$, luego existe $k \in \mathbb{N}$ tal que $x_{k+m} \in M$, para todo $m \ge 0$, así $M \cap A \ne \emptyset$. Por tanto, $x \in \overline{A}$.

De (2): Se probará la doble implicación.

 \Rightarrow): Suponga que f es continua en x. Sea $\{x_n\}$ una sucesión de puntos que converge a x. Sea $V \in \tau'$ tal que $f(x) \in V$, entonces $x \in f^{-1}(V)$, donde $f^{-1}(V) \in \tau$ por ser f continua en x. Luego, existe $k \in \mathbb{N}$ tal que

$$x_{k+m} \in f^{-1}(V), \quad \forall m \ge 0$$

es decir que

$$f(x_{k+m}) \in f(f^{-1}(V)) \subset V, \quad \forall m > 0$$

Por tanto, $\{f(x_n)\}_{n=1}^{\infty}$ converge a f(x).

 \Leftarrow): Veamos que dado $A \subseteq X$ se cumple que $f(\overline{A}) \subseteq \overline{f(A)}$. En efecto, sea $x \in \overline{A}$. Por 1) al ser (X,τ) primero numerable existe una sucesión $\{x_n\}_{n=1}^{\infty}$ de puntos de A que converge a x. Entonces $\{f(x_n)\}_{n=1}^{\infty}$ es una sucesión de puntos de f(A) que converge a f(x). Por tanto, $f(x) \in \overline{f(A)}$ (en la prueba de la suficiencia no es necesario que (X,τ) sea primero numerable, así que en este caso no se ocupa que (X',τ') sea primero numerable). Por tanto, $f(\overline{A}) \subseteq \overline{f(A)}$

5.3. Espacios Segundo Numerables

Proposición 5.3.1

La propiedad de ser segundo numerable es hereditaria.

Demostración:

Sea (X, τ) un espacio topológico segundo numerable y $Y \subseteq X$ subconjunto. Veamos que (Y, τ_Y) es segundo numerable. En efecto, como (X, τ) es primero numerable, existe $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ una base para la topología τ que es a lo sumo numerable. Se tiene que

$$\mathcal{B}' = \left\{ Y \cap B \middle| B \in \mathcal{B} \right\}$$

es una base para τ_Y (por una proposición anterior). Como \mathcal{B} es numerable, se sigue que \mathcal{B}' es numerable. Por tanto, (Y, τ_Y) es segundo numerable.

Proposición 5.3.2

La propiedad de ser segundo numerable es topológica.

Demostración:

Sean (X, τ) y (Y, σ) espacios topológicos homeomorfos con $f: (X, \tau) \to (Y, \sigma)$ el homeomorfismo y, suponga que (X, τ) es segundo numerable y sea $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ una base de τ . Entonces, la por una proposición, la colección:

 $\mathcal{B}' = \left\{ f(B) \middle| B \in \mathcal{B} \right\}$

es una base para la topología σ (por ser f homeomorfismo) la cual es a lo sumo numerable. Por tanto, (Y, σ) es segundo numerable.

Así, la propiedad de ser segundo numerable es topológica.

Ejercicio 5.3.1

Sea $\{(X_n, \tau_n)\}_{n=1}^{\infty}$ una familia de espacios topológicos segundo numerables y, tomemos

$$X = \prod_{n=1}^{\infty} X_n$$

Entonces, (X, τ_p) es segundo numerable.

Demostración:

Teorema 5.3.1

Sea (X, τ) un espacio topológico.

- 1. Si (X,τ) es segundo numerable, entonces es primero numerable.
- 2. Si (X,τ) se segundo numerable, entonces el espacio es de Lindelöf.
- 3. Si (X,τ) es segundo numerable, entonces es separable.

Demostración:

De (1): Sea $\{B_n\}_{n\in\mathbb{N}}$ una base para la topología τ . Tomemos $x\in X$ y defina

$$\mathcal{B}_x = \left\{ B \in \mathcal{B} \middle| x \in B \right\}$$

Se tiene que \mathcal{B}_x es a lo sumo numerable. Sea $U \in \tau$ tal que $x \in U$, luego como \mathcal{B} es base existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$, luego $B \in \mathcal{B}_x$. Por tanto, \mathcal{B}_x es un sistema fundamental de vecindades de x el cual es a lo sumo numerable. Al ser $x \in X$ arbitrario, se sigue que (X, τ) es primero numerable.

De (2): Sea $\{B_n\}_{n\in\mathbb{N}}$ una base para la topología τ y sea \mathcal{A} una cubierta abierta de X. Dado $x\in X$, como A es una cubierta existe $A_x\in\mathcal{A}$ tal que

$$x \in A_x \in \tau$$

luego, existe $B_x \in \mathcal{B}$ tal que $x \in B_x \subseteq A_x$. Sea

$$\mathcal{K} = \left\{ m \in \mathbb{N} \middle| \exists A \in \mathcal{A} \text{ tal que } B_m \subseteq A \right\}$$

por la observación anterior, $\mathcal{K} \neq \emptyset$. Dado $k \in \mathcal{K}$ escogemos un único $A_k \in \mathcal{A}$ tal que $B_k \subseteq A_k$. Sea

$$\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$$

 $\mathcal{A}'\subseteq\mathcal{A}$ es una subcolección a lo sumo numerable.

Sea $x \in X$, tomemos $A \in \mathcal{A}$ tal que $x \in A$. Por ser \mathcal{B} base existe $B_i \in \mathcal{B}$ tal que

$$x \in B_i \subseteq A$$

Luego, $i \in \mathcal{K}$ por ende $x \in A_i$ siendo $A_i \in \mathcal{A}'$. Por tanto:

$$X = \bigcup_{i=1}^{\infty} A_i$$

luego, (X, τ) es Lindelöf.

De (3): Sea $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ base para τ . Dado $n \in \mathbb{N}$ si $B_n \neq \emptyset$, escogemos $x_n \in B_n$ y con estos puntos formamos al conjunto numerable $A = \{x_n | n \in \mathbb{N}\}$.

Veamos que $\overline{A} = X$. En efecto, sea $U \in \tau$ tal que $U \neq \emptyset$, veamos que $U \cap A \neq \emptyset$. En efecto, sea $x \in U$, luego existe $m \in \mathbb{N}$ tal que $x \in B_m \subseteq U$. Como $B_m \cap A \neq \emptyset$ entonces $U \cap A \neq \emptyset$. Se sigue que $\overline{A} = X$.

Proposición 5.3.3

Sean (X, τ) un espacio segundo numerable y \mathcal{B} una base para su topología τ . Entonces, \mathcal{B} contiene una base numerable para τ .

Demostración:

Sea $\mathcal{B} = \{B_{\alpha}\}_{{\alpha} \in I}$ una base para τ y, como (X, τ) es segundo numerable, existe $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$ base a lo sumo numerable de τ .

a. Sea $\mathcal{U} \in \tau$. Definimos:

$$\mathcal{U}^* = \left\{ A \in \mathcal{A} \middle| \exists U \in \mathcal{U} \text{ tal que } A \subseteq U \right\}$$

dado $A \in \mathcal{U}^*$ escogemos un único $U_A \in \mathcal{U}$ tal que $A \subseteq U_A$. Defina

$$\mathcal{U}' = \left\{ U_A \in \mathcal{U} \middle| A \in \mathcal{U}^* \right\}$$

se tiene que \mathcal{U}' es numerable por ser \mathcal{A} numerable. Como $\mathcal{U}' \subseteq \mathcal{U}$, entonces

$$\bigcup \mathcal{U}' \subseteq \bigcup \mathcal{U}$$

Veamos que se cumple la otra contención. Sea $x \in \bigcup \mathcal{U}$, luego existe $U \in \mathcal{U}$ tal que $x \in \mathcal{U}$. Como \mathcal{A} es una base y $U \in \tau$, existe $A \in \mathcal{A}$ tal que

$$x \in A \subseteq U$$

así, $A \in \mathcal{U}^*$, luego $x \in A \subseteq U_A$ por lo cual $x \in \bigcup \mathcal{U}'$. Así,

$$\bigcup \mathcal{U}' = \bigcup \mathcal{U}$$

b. Sea $A \in \mathcal{A}$, $A \in \tau$ luego existe $\mathcal{B}_A \subseteq \mathcal{B}$ tal que

$$A = \bigcup \mathcal{B}_A$$

Por (a) existe $\mathcal{B}'_A \subseteq \mathcal{B}_A$ tal que \mathcal{B}'_A es numerable y

$$A = \bigcup \mathcal{B}'_A$$

Luego, $\bigcup \left\{ \mathcal{B}'_A \middle| A \in \mathcal{A} \right\}$ es un conjunto a lo sumo numerable contenida en \mathcal{B} tal que es una base para τ .

Por los dos incisos anteriores, se tiene el resultado.

Ejemplo 5.3.1

Sea $X = \{0, 1\}$ y tomemos $\tau_D = \{X, \emptyset, \{0\}, \{1\}\}$. El espacio (X, τ_D) es segundo numerable, en particular primero numerable, Lindelöf y separable (además, metrizable pues τ_D es la topología discreta).

Ejemplo 5.3.2

Considere $X = \{0, 1\}$ y tomemos $\tau = \tau_D$. Para $r \in \mathbb{R}$ definimos $X_r = X$ y $\tau_r = \tau$. Veamos que $(X = \prod_{r \in \mathbb{R}} X_r, \tau_p)$ no es primero numerable.

Demostración:

En efecto, sea $x = (x_r)_{r \in \mathbb{R}} \in X$ tal que

$$x_r = 0, \quad \forall r \in \mathbb{R}$$

Sea $\mathcal{V} = \{V_n\}_{n \in \mathbb{N}}$ una familia numerable de vecindades de x. Dado $m \in \mathbb{N}$ existe un básico $B_m \in \tau_p$ tal que

$$x_m \in B_m \subseteq V_m$$

como B_m es un básico de τ_p , luego existe $J_m \subseteq \mathbb{R}$ finito tal que

$$B_m = \prod_{r \in \mathbb{R}} W_r$$

con $W_r \in \tau_r$, para cada $r \in J_m$ y $W_r = X_r$ para todo $r \in \mathbb{R} - J_m$. Por lo tanto, si

$$V_m = \prod_{r \in \mathbb{R}} K_r$$

entonces para todo $r \in \mathbb{R} - J_m$ se tiene que $K_r = X_r$. Tomemos

$$J = \bigcup_{m \in \mathbb{N}} J_m$$

este conjunto es a lo sumo numerable, siendo tal que $J \subseteq \mathbb{R}$, luego $\mathbb{R} - J$ es no vacío. Sea $t \in \mathbb{R} - J$, se tiene que para todo $m \in \mathbb{N}$, $t \notin J_m$. Sea

$$U = \prod_{r \in \mathbb{R}} U_r$$

donde

$$U_r = \left\{ \begin{array}{ll} \{0\} & \text{si} & r = t \\ X_r & \text{si} & r \neq t \end{array} \right.$$

 $U \in \tau_p$ además, $x \in U$. Se cumple además que $V_m \nsubseteq U$ para todo $m \in \mathbb{N}$. Suponga que $\exists m_0 \in \mathbb{N}$ tal que

$$V_{m_0} \subseteq U$$

Se tiene que

$$\{0,1\} = X_t = K_t = p_t(V_{m_0}) \subseteq p_t(U) = \{0\}$$

lo cual es una contradicción. Por tanto, $\mathcal V$ no puede ser un sistema fundamnetal de vecindades para x, así que no es primero numerable.

Observación 5.3.1

En el ejemplo anterior, $\left(\prod_{r\in\mathbb{R}}U_r,\tau_p\right)$ no es segundo numerable, pues no es primero numerable. Pero, (X_r,τ_r) es segundo numerable, para todo $r\in\mathbb{R}$.

Tampoco es metrizable, siendo (X_r, τ_r) para todo $r \in \mathbb{R}$, pues metrizable implica primero numerable.

Proposición 5.3.4

Sea (X, τ) un espacio metrizable. Entonces, (X, τ) es primero numerable.

Demostración:

Sea $d: X \times X \to \mathbb{R}$ una métrica tal que $X = X_d$. Sea $x \in X$. Para $m \in \mathbb{N}$ definimos

$$B_n = B_d\left(x, \frac{1}{m}\right)$$

Entonces, $\{B_n\}_{n\in\mathbb{N}}$ es un sistema fundamental de vecindades para x el cual es a lo sumo numerable.

Eiemplo 5.3.3

Sea $\mathcal{B}_l = \{[a,b) | a,b \in \mathbb{R}\}$. Ya se sabe que \mathcal{B}_l es una base para una topología sobre \mathbb{R} , la cual se denota por τ_l . A la pareja (\mathbb{R}, τ_l) se suele escribir como \mathbb{R}_l .

- 1. \mathbb{R}_l es de Hausdorff (esto se deduce de forma casi inmediata).
- 2. \mathbb{R}_l es primero numerable. En efecto, sea $r \in \mathbb{R}$, entonces el conjunto:—

$$\mathcal{V} = \left\{ \left[r, r + \frac{1}{n} \right) \middle| n \in \mathbb{N} \right\}$$

es un sistema fundamental de vecindades de r. En efecto, sea $U \in \tau_l$ tal que $r \in U$. Considere $[l,k) \in \mathcal{B}_l$ que cumple

$$r \in [l, k) \subseteq U$$

Entonces, $l \leq r < k$. Por la propiedad arquimediana existe $n \in \mathbb{N}$ tal que

$$r + \frac{1}{n} < k$$

luego,

$$[r, r + \frac{1}{n}) \subseteq [l, k) \subseteq U$$

luego \mathcal{V} es un sistema fundamental de vecindades de r.

3. \mathbb{R}_l no es segundo numerable. Sea \mathcal{B} una base para τ_l . Dado $x \in \mathbb{R}$, escogemos $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq [x, x+1)$$

Tenemos $x = \inf B_x$ luego dados $x, y \in \mathbb{R}$ con x < y existen $B_x, B_y \in \mathcal{B}$ tales que $B_x \neq B_y$. Por tanto, \mathcal{B} no puede ser numerable, así que \mathbb{R}_l no puede ser segundo numerable.

9

4. \mathbb{R}_l es separable. Considere $\mathbb{Q} \subseteq \mathbb{R}$. Este conjunto es numerable y denso en \mathbb{R}_l .

5. \mathbb{R}_l es de Lindelöf. Sea \mathcal{A} una cubierta de \mathbb{R}_l formada por básicos. Suponga que

$$\mathcal{A} = \left\{ [a_{\alpha}, b_{\alpha}) \middle| \alpha \in I \right\}$$

Sea

$$C = \bigcup_{\alpha \in I} (a_{\alpha}, b_{\alpha})$$

Considere C como subespacio de (\mathbb{R}, τ_u) . El espacio (\mathbb{R}, τ_u) es segundo numerable, luego (X, τ_{uC}) es segundo numerable. Por lo tanto, (X, τ_{uC}) es de Lindelöf. Tenemos que existe $J = \{\alpha_1, ..., \alpha_m, ...\} \subseteq I$ numerable tal que

$$C = \bigcup_{i=1}^{\infty} (a_{\alpha_i}, b_{\alpha_i})$$

Sea

$$\mathcal{A}' = \left\{ [a_{\alpha}, b_{\alpha}) \middle| \alpha \in J \right\}$$

Se tiene que

$$C \subseteq \bigcup_{\alpha \in J} [a_{\alpha}, b_{\alpha})$$

Tomemos

$$D = \mathbb{R} - C$$

Veamos que D es numerable. En efecto, sea $x \in D$, luego $x \in \mathbb{R} - C$. Así, para todo $\alpha \in I$,

$$x \notin (a_{\alpha}, b_{\alpha})$$

Luego, existe $\alpha_0 \in I$ tal que $x = a_{\alpha_0}$. Sea $q_x \in (a_{\alpha_0}, b_{\alpha_0}) \cap \mathbb{Q}$, entonces

$$(x,q_x)\subseteq C$$

Sea $f: D \to \mathbb{Q}$ la función definida por: dado $x \in D$, $x \mapsto q_x$. Veamos que f es inyectiva. Sean $x, y \in D$ con x < y.

- I) Suponga que $q_y \leq q_x$. Se tiene que $x < y < q_x \leq q_y$ (por la elección de los q). Por tanto, $y \in (x, q_x) \subseteq C \Rightarrow y \notin D\#_c$.
- II) Por (i), $q_x < q_y$. Así, f es inyectiva. Luego, D es a lo sumo numerable.

Dado $d \in D$ escogemos un único elemento $A_d \in \mathcal{A}$ tal que $d \in A$. Sea

$$\mathcal{A}'' = \left\{ A_d \middle| d \in D \right\}$$

Se tiene que \mathcal{A}' y \mathcal{A}'' son a lo sumo numerables, luego su unión también lo es y es tal que

$$\mathbb{R}\subseteq\bigcup\mathcal{A}'\cup\mathcal{A}''$$

por tanto, \mathbb{R}_l es Lindelöf.