

Lei de Hooke

Carlos Henrique 11521ECV001

Uberlândia – MG 16 de Junho de 2016

Introdução

Quando aplicamos uma força em uma mola, percebemos que ocorre uma compressão ou uma tração , causando um deformação da mola em um determinado comprimento x . Cada mola tem sua característica que indica a elasticidade da mola. Assim temos que se aplicarmos a força sua intensidade será dada por F= k.x e é chamada lei de Hooke. A intensidade indica a grandeza escalar , mas se o deslocamento for vetorial a força também será um vetor e a intensidade será o modulo deste vetor. Também deve ser considerado o sentido dessa força , se o deslocamento for no mesmo sentido da força temos que F>0 e se o deslocamento for contrario a aplicação da força F<0 .

Objetivos

Encontrar o coeficiente de elasticidade (k) da mola.

Procedimento experimental

Utilizamos um suporte onde é colocado em sua extremidade a mola . Depois de colocada a mola são colocadas diferentes pesos para cada medição . Assim para cada peso medimos o quanto a mola de deforma . Foram feitas 6 medições .

Depois de medirmos a deformação da mola com relação as massas variantes , fizemos a medição dos tempos em que cada massa , presa a mola percorre 10 oscilações , foram feitas 10 vezes para cada massa.

A partir disso poderemos analisar os dados.

Resultados e discussões

Analisaremos os dados da seguinte forma , primeiro sera dada uma tabela com os valores que serão medidas, no experimento usaremos a massa em quilogramas , tempo em segundos e comprimento em metros. Primeiro sera colocada uma tabela com esses dados e depois um gráfico com os dados . Depois precisaremos fazer uma regressão linear para analisar a equação e encontrar os respectivos valores de ${\bf k}$.

Analisaremos primeiro a constante k a partir das medidas de massa e deformação e posteriormente o k a partir do tempo de oscilação

ANALISE 1

Temos que mg=k.x, se isolarmos x=(mg)/k podemos fazer a regressão linear para encontrarmos o valor de k. Assim pretendemos transformar a função como uma reta do tipo y=bx+a, logo

Y=x, b=g/k e X=m, logo a=0 (veremos na regressão), e temos a seguinte tabela com os dados e os resultados de a e b.

N:	X	Y	σу
1	0,01	0	0,0005
2	0,06	0,021	0,0005
3	0,11	0,06	0,0005
4	0,16	0,079	0,0005
5	0,21	0,109	0,0005
6	0,26	0,136	0,0005

Temos o seguinte grafico, em que y é o comprimento e x a massa

$$a = \frac{(\sum_{i=1}^{n} w_{i} y_{i})(\sum_{i=1}^{n} w_{i} x_{i}^{2}) - (\sum_{i=1}^{n} w_{i} x_{i} y_{i})(\sum_{i=1}^{n} w_{i} x_{i})}{\Delta}$$

$$b = \frac{(\sum_{i=1}^{n} w_{i})(\sum_{i=1}^{n} w_{i} x_{i} y_{i}) - (\sum_{i=1}^{n} w_{i} y_{i})(\sum_{i=1}^{n} w_{i} x_{i})}{\Delta} , \text{ sendo}$$

$$\Delta = (\sum_{i=1}^{n} w_{i})(\sum_{i=1}^{n} w_{i} x_{i}^{2}) - (\sum_{i=1}^{n} w_{i} x_{i})^{2}$$

Sendo a equação do inverso do quadrado da incerteza expresso pela fórmula:

$$w_i = \frac{1}{\sigma_i^2}$$

Assim temos os seguintes somatórios

$\sum w_i$	∑ WiXiYi	∑ WiXi	∑ wiYi	∑ WiXi²
24.000.000,0000	315.000,0000	3.240.000,0000	1.620.000,0000	612.400,0000
Wi	WiXiYi	WiXi	WiYi	WiXi ²
4.000.000,0000		40.000,0000		400,0000
4.000.000,0000	5.040,0000	240.000,0000	84.000,0000	14.400,0000
4.000.000,0000	26.400,0000	440.000,0000	240.000,0000	48.400,0000
4.000.000,0000	50.560,0000	640.000,0000	316.000,0000	102.400,0000
4.000.000,0000	91.560,0000	840.000,0000	436.000,0000	176.400,0000
4.000.000,0000	141.440,0000	1.040.000,0000	544.000,0000	270.400,0000

Apartir desses valores conseguimos determinar a e b como -0,00678857e 0,55028571 respectivamente .

Para calcular as incertezas dos coeficientes "a" e "b", se tem as respectivas fórmulas

$$\sigma_a^2 = \frac{\sum_{i=1}^n w_i x_i^2}{\Delta}$$

$$\sigma_b^2 = \frac{\sum_{i=1}^n w_i}{\Delta}$$

Portanto o erro associado à a e b é dado por 0,00038185 e 0,00239046 respectivamente .

A = -0.00679 + -0.00038

B = 0.5503 + 0.0024

Assim , temos que b=g/k , então k=g/b , assim temos que o erro de k é

$$\sigma^2 = \left(\frac{-g}{B^2}\right)^2 \sigma_B^2$$

K=9,79/0,55028571 = 17,79 +- 0,7282

ANALISE 2

Fazendo a regressão Linear de $T = 2\pi \left(\sqrt{k/\sqrt{m}} \right)$, temos que

$$Y = bX + a$$

y=t , b=
$$2\pi$$
. \sqrt{k} , x = \sqrt{m}

Temos a tabela de tempos para cada massa , para m=0.05kg temos 10 tempos diferentes , e assim sucessivamente para m=0.1kg , m=0.15kg , m=0.2kg , m=0.25kg

	0,0500	0,1000	0,1500	0,2000	0,2500	
1	3,43	4,73	5,78	6,5	7,7	
2	3,57	4,55	5,78	6,61	7,73	
3	3,84	4,59	5,75	6,44	7,88	
4	3,53	5,06	5,69	6,68	7,74	
5	3,53	4,61	5,84	7,02	7,8	
6	3,5	4,68	5,82	7,05	7,51	
7	3,7	4,93	5,83	7,16	7,71	
8	3,53	4,83	5,95	6,96	7,77	
9	3,67	4,94	5,84	7,03	7,68	
10	3,45	4,81	5,82	7,07	7,78	

Assim temos as seguintes tabelas para tempos médios

Calculos Estatisticos						
	Média		Erro estat.	Erro instru.	Erro total	
1	3,5750	0,1197	0,0378	0,0050	0,0382	
2	4,7730	0,1612	0,0510	0,0050	0,0512	
3	5,8100	0,0647	0,0204	0,0050	0,0210	
4	6,8520	0,2520	0,0797	0,0050	0,0798	
5	7,7300	0,0915	0,0289	0,0050	0,0294	

Assim fazemos a regressão linear , porem temos que dividir o tempo por 10 , pois foram 10 oscilações , logo faremos t sendo y e raiz de m sendo x , tendo a seguinte tabela .

N:	X	Y	σу
1	0,22361	0,35750	0,03818
2	0,31623	0,47730	0,05122
3	0,38730	0,58100	0,02105
4	0,44721	0,68520	0,07984
5	0,50000	0,77300	0,02938

Em que o grafico de tempo(y) pela \sqrt{m}

$$a = \frac{(\sum_{i=1}^{n} w_{i} y_{i})(\sum_{i=1}^{n} w_{i} x_{i}^{2}) - (\sum_{i=1}^{n} w_{i} x_{i} y_{i})(\sum_{i=1}^{n} w_{i} x_{i})}{\Delta}$$

$$b = \frac{(\sum_{i=1}^{n} w_{i})(\sum_{i=1}^{n} w_{i} x_{i} y_{i}) - (\sum_{i=1}^{n} w_{i} y_{i})(\sum_{i=1}^{n} w_{i} x_{i})}{\Delta} , \text{ sendo}$$

$$\Delta = (\sum_{i=1}^{n} w_{i})(\sum_{i=1}^{n} w_{i} x_{i}^{2}) - (\sum_{i=1}^{n} w_{i} x_{i})^{2}$$

Sendo a equação do inverso do quadrado da incerteza expresso pela fórmula :

$$w_i = \frac{1}{{\sigma_i}^2}$$

Assim temos os seguintes somatórios

∑ Wi	∑ wixiyi	∑ wixi	∑ WiYi	∑ WiXi²	$\sum W_i Y_i^2$
4.640,2921	1.116,2613	1.797,7655	2.741,9574	732,0903	1.702,5644
Wi	WiXiYi	WiXi	WiYi	WiXi ²	WiXi ²
686,1063	54,8470	153,4180	245,2830	34,3053	87,6887
381,2283	57,5409	120,5550	181,9603	38,1228	86,8496
2.257,3363	507,9466	874,2626	1.311,5124	338,6005	761,9887
156,8726	48,0706	70,1556	107,4891	31,3745	73,6515
1.158,7486	447,8563	579,3743	895,7126	289,6871	692,3859

Apartir desses valores conseguimos determinar a e b como 0,00353786 e 1,51607138 respectivamente .

Para calcular as incertezas dos coeficientes "a" e "b", se tem as respectivas fórmulas

$$\sigma_a^2 = \frac{\sum_{i=1}^n w_i x_i^2}{\Delta}$$

$$\sigma_b^2 = \frac{\sum_{i=1}^n w_i}{\Lambda}$$

Portanto o erro associado à a e b é dado por 0,06657947 e 0,167622 respectivamente .

$$A = 0.0035 + 0.067$$

$$B = 1.52 + 0.17$$

Dessa maneira , temos que B = $\frac{2\pi}{\sqrt{k}}$, sendo g=9,79 , achamos k = 17,087

Para encontrar a incerteza de k fizemos a propagação

$$\sigma I^{2} = \left(\frac{\partial I}{\partial a_{1}}\right)^{2} \sigma_{a_{1}}^{2} + \left(\frac{\partial I}{\partial a_{2}}\right)^{2} \sigma_{a_{2}}^{2} + \left(\frac{\partial I}{\partial a_{3}}\right)^{2} \sigma_{a_{3}}^{2} + \dots + \left(\frac{\partial I}{\partial a_{n}}\right)^{2} \sigma_{a_{n}}^{2}$$

Assim temos k=17,087 + -0,06

Vemos que os valores dos k's são bem próximos.

Conclusão

O experimento realizado foi satisfatório pois conseguimos analisar a lei de hooke de duas diferentes maneiras e encontrar uma certa relação. Assim apartir da analise da deformação e da variação das oscilações concluímos que a lei de hooke é valida.