

#### PCT ·

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: G01N 33/53, C07D 305/00, 407/00, 493/00 (11) International Publication Number:

WO 97/30352

A

(43) International Publication Date:

21 August 1997 (21.08.97)

(21) International Application Number:

PCT/US97/02069

(22) International Filing Date:

13 February 1997 (13.02.97)

(30) Priority Data:

08/601,367

14 February 1996 (14.02.96)

US

(72) Inventors: DURZAN, Don, J.; 1013 Burr Street, Davis, CA 95616 (US). VENTIMIGLIA, Frank, F.; 2413 Sparrow Court, Davis, CA 95616 (US).

(74) Agent: BERLINER, Robert; Robbins, Berliner & Carson, 5th floor, 201 N. Figueroa Street, Los Angeles, CA 90012-2628

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurosian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### **Published**

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: RECOVERY OF TAXANES FROM CONIFERS

(57) Abstract

The present invention provides new sources of taxanes and other metabolites from members of the order Coniferales that are not in the genus Taxus.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| MA   | Armenia                  | · CB | United Kingdom               | MW         | Malawi                   |
|------|--------------------------|------|------------------------------|------------|--------------------------|
| AT   | Amaria                   | GE - | Georgia                      | MX         | Mexico                   |
| AU   | Ameralia                 | GN   | Guinea                       | ' NE       | Niger                    |
| 80   | Berbedos                 | GR   | Greece                       | NL         | Netherlands              |
| BE   | Belgium                  | HU   | Hungary                      | NO         | Norway                   |
| BF   | Burkina Faso             | 13   | Ireland                      | NZ         | New Zealand              |
| BG   | Bulgaria                 | IT   | Italy                        | PL         | Poland .                 |
| N    | Berin                    | IP   | Japan '                      | PT         | Portugal                 |
| DR.  | Bazil                    | KE   | Kenya                        | . RO       | Romenia                  |
| BY   | Belanu                   | KG   | Кутруман                     | RU         | Russian Federation       |
| CA   | Canada                   | KP   | Democratic People's Republic | SD         | Sudan                    |
| Ğ.   | Central African Republic |      | of Kotts                     | 82         | Sweden                   |
| œ    |                          | KR   | Republic of Kores            | SG         | Singapore                |
| CH   | Congo<br>Switzerhood     | KZ   | Kazıkhazın                   | 81         | Slovenia                 |
|      | •                        | ũ    | Liecheanein                  | SK         | Slovakia                 |
| a    | Cots d'Ivoire            | шĸ   | Sri Lanka                    | 8N         | Senegal                  |
| CH   | Cameroon                 | i.R  | Liberia                      | <b>5</b> Z | Swetileed                |
| ON . | China                    |      | Lithunia                     | TD         | Ched                     |
| CS . | Czachoslovskia           | LT   |                              | TG         | Togo                     |
| æ    | Crech Republic           | LU   | Luxenbourg                   | T.         | Tajikiotan               |
| DE   | Curnety                  | LV   | Lervie                       | 17         | Trinided and Tobago      |
| DK   | Downark                  | MC   | Monaco                       | UA         | Ukraine                  |
|      | Estonia                  | MD   | Republic of Moldova          | UG         | Ugenda                   |
| 23   | Spain                    | MG   | Madagascar                   | US         | United States of America |
| m    | Finland                  | . ML | Mali                         | UZ         | Uzbekistan               |
| PR   | Prance                   | MN   | Mongolia                     |            | Vist Nam                 |
| GA   | Gabon                    | MR   | Mauritania                   | VN         |                          |

WO 97/30352 PCT/US97/02069

# RECOVERY OF TAXANES FROM CONIFERS BACKGROUND OF THE INVENTION

The present invention relates to the production and recovery of taxane compounds. In particular, it relates to methods of recovering taxanes from conifer plants other than members of the genus Taxus.

Taxane compounds, in particular paclitaxel (Taxol\*), have significant antitumor activity and have been the focus of investigations to develop these compounds as drugs for the treatment of cancer. These compounds have also been shown to inhibit congenital polycystic kidney disease (Woo et al. Nature 368 759 (1994)). Paclitaxel, originally isolated from the bark of the Pacific yew, Taxus brevifolia, was recently approved by the Food and Drug Administration for use against ovarian cancer and has also shown activity against breast, lung and other cancers.

Continued testing of paclitaxel and other taxanes require quantities which cannot be obtained from the scarce natural source. T. brevifolia is a rare tree, grows slowly, and is not cultivated. In addition, thousands of pounds of bark are required to produce one pound of paclitaxel. Moreover, extraction of the bark is complicated, and product variability occurs.

Because of the scarcity of naturally occurring paclitaxel, numerous investigators have attempted to increase the supply of paclitaxel and other taxanes. For instance, cell suspension cultures of sporophytic tissues have been shown to produce paclitaxel (US Patent 5,019,504). In addition, recent reports describe the total synthesis of paclitaxel (see, Holton et al. JACS 116:1597 (1994) and Nicolaou et al. Nature 367:630 (1994). These syntheses, however, involve too many steps to be commercially feasible (Flann, Science 263:911 (1994)).

Increased availability of taxanes will facilitate investigations to synthesize analogs of paclitaxel or identify other taxanes with similar anti-tumor activity but having improved properties. For instance, paclitaxel is relatively insoluble in aqueous solutions. As a result, paclitaxel is usually dissolved in an oily base of castor oil and alcohol and administered in this form. The identification of related compounds with increased aqueous solubility could provide compounds with better cellular penetration and efficacy than is found with paclitaxel.

Despite advances in the art, availability of paclitaxel and other taxane compounds remains a critical limitation in further investigation and therapeutic use of these compounds. The present invention addresses these and other needs.

#### SUMMARY OF THE INVENTION

The present invention provides methods of producing taxanes from members of the order Coniferales other than the genus Taxus. The methods comprise contacting the tissue with a composition which extracts taxanes. Any standard method for extracting taxanes may be used. Typically, an organic solvent, such as methanol is used. Any part of the plant may be used as the tissue. Exemplary tissue included bark, cambium, stem, seed, cone, needle, or root tissue. Alternatively, a cell culture derived from the plant may be used. Exemplary genera which may used in the methods include Picea, Fitzroya, Cupressus, and Araucaria.

In some embodiments, the methods include releasing bound taxanes, which are thought to be covalently bound to cell wall and other components and released by, for instance, hydrolysis of the cell wall components. Any method of releasing bound taxanes can be used for this purpose. Typically, the bound taxanes are

released by treating the tissue with a glycosidase, such as xylanase.

The invention also provides methods of screening plant tissue from conifer species for the presence of taxanes. The screening method comprise contacting plant tissue or an extract of the plant tissue with an antibody that is specifically reactive with a taxane and detecting the formation of an antigen-antibody complex. Useful antibodies for this purpose include those in TA11, an anti-taxane, rabbit polyclonal serum. Alternatively, monoclonal antibodies such as 3C6, 8A10 and 3H5 can be used. If an extract of the tissue is used, a competitive inhibition enzyme linked immunoassay may be used to detect and quantitate taxane content.

15

Definitions

The terms "taxanes" refer to compounds comprising the tricyclic ring nucleus shown by

20



25

The chemical structure of taxanes and related compounds (e.g., Taxine A) is described in Gueritte-Voegelin J. Nat. Prod. 50:9-18 (1987).

Taxanes of the invention can also be identified through the use of monoclonal antibodies raised against paclitaxel and related compounds. A number of such antibodies are known and are commercially available. Suitable antibodies include 3C6, which is specifically reactive with paclitaxel and its C-7 derivatives, and 8A10 which cross reacts with paclitaxel, cephalomannine, baccatin III, and 10-deacetylbaccatin III (Kingston et al.J. Nat. Prod. 53:1-12 (1990)) and 3H5 which binds with

equal affinity to baccatin III and its 7-epi isomer baccatin V. Cross-reactivity studies performed on these various antibodies by Hawaii Biotechnology indicate that recognizes rabbit polyclonal serum epitopes 5 restricted to the taxane C-13 side chain. Studies with the 3H5 monoclonal antibody indicate that epitope specificity for this antibody encompasses the C-10 through C-13 region of the molecule. The reactivity pattern for the 8A10 monoclonal antibody suggests a specificity for the C-6 through C-2 region. Further, monoclonal antibody 3C6 binds only those baccatin derivatives with a C-13 side-chain. Compounds used for these cross-reactivity studies include the following: 10-Deacetyltaxol, 7-epi-10-Deacetyltaxol, Taxol, 15 7-Xylosyl-10-deacetyltaxol, 7-epi-Taxol, Cephalomannine, Baccatin III, Baccatin V, 10-Deacetylbaccatin 7-epi-10-Deacetylbaccatin III, Taxotere (docetaxel), 2-debenzoyl-2-(p-trifluoromethylbenzoyl)taxol 20-Acetoxy-4-deacetyl-5-epi-20,0-secotaxol. These 20 antibodies are all commercially available from the Hawaii Biotechnology Group Inc., Aiea, HI. Taxanes can be further identified by their chromatographic behavior in a "taxane" column and their characteristic UV spectra in the 190 to 600 nm range. Taxane-like activity can be assayed using an in vitro microtubule polymerization 25

The term "bound taxanes" refers to taxane compounds produced by a plant cell that are not significantly extracted by standard solvent extraction methods, but are recovered after hydrolysis of plant materials. Without wishing to be constrained by any particular theory, such taxanes are thought to be covalently bound to cell wall and other components and released by, for instance, hydrolysis of the cell wall components. Hydrolysis is typically carried out by enzymatic cleavage. Other methods of releasing bound cell wall components can also be used.

assay as described in U.S. Patent No. 5,019,504.

35

As used herein the term "order Coniferales" is used in the standard taxonomic sense to refer to the taxonomic group of gymnosperms generally having welldefined cones. Members of this order are divided among 5 seven plant families: Pinaceae (including e.g., Pinus, Pseudotsuga, Abies, Picea, and Cedrus), Taxodiaceae (including e.g., Taxodium, Metasequoia, and Sequoia), Cupressaceae (including e.g., Cupressus, Juniperus, Calocedrus, and Libocedrus), Araucariaceae Thuja, Podocarpaceae Araucaria and Agathis), (including Dacrydium, and e.g., Podocarpus, (including (Cephalotaxus), and Cephalotaxaceae Phyllocladus), Taxaceae (including Taxus and Torreya). See, e.g., (Macmillan Taxonomy of Vascular Plants, Lawrence, Company, 1951). 15

A "composition capable of extracting taxanes" is any composition, typically an organic solvent such as methanol, which can be used to extract taxanes and related compounds from plant tissues containing such 20 compounds. A number of suitable compositions are known in the art. For instance, U.S. Patent No. 5,445,809 describes the isolation of taxanes using a "reactor compound" containing paclitaxel precursors. U.S. Patent No. 5,440,055 describes the use of "CoNC fluids" as As defined in that patent CoNC fluids are 25 solvents. comprised of materials which exist as gases at ambient conditions, such as the gases carbon dioxide and nitrous When such gases are compressed and brought to conditions near or above their critical pressures and 30 temperatures, such gases exhibit enhanced solvating power.

The phrase "specifically reactive with", when referring to the interaction between an antibody and an antigen, such as a taxane ring, refers to a binding reaction between the antigen and the antibody which is determinative of the presence of the antigen in the presence of a heterogeneous population of other

WO 97/30352 PCT/US97/02069

Thus, under designated compounds. immunoassay conditions, the specified antibodies bind to a particular antigen against which they were developed and do not bind in a significant amount to other compounds present in the 5 sample.

#### DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides new sources of taxanes from plants other than members of the genus Taxus. It has been found that a number of genera in the 10 order Coniferales produce significant amounts of taxanes and are therefore good sources of taxanes.

Standard methods for the isolation of taxanes and related compounds from Taxus tissues can be used. 15 The particular method used to extract taxanes and related compounds is not critical to the invention. Typically, taxanes are extracted with organic solvents from the particular plant tissue and chromatographically purified. Adsorbent beads may be used to remove the taxanes In addition, particulate matter released by 20 produced. the cells may be used to adsorb the taxanes. particular adsorbent material is not a critical aspect of the invention, so long as the material provides a sink for removing the end-product from the reaction sequence.

The extraction process typically begins by contacting the tissue to be extracted with an alcohol (e.g., methanol) at elevated temperature, 50° to 55°C. The extract is then concentrated in methanol. Next, the concentrated methanol extract is partitioned between 30 methylene chloride and water. The methylene chloride fraction, containing paclitaxel, is concentrated. methylene chloride concentrate is dissolved in 50/50 acetone: hexane, and the mixture is filtered to remove insolubles.

25

35 The taxanes are then purified from acetone: hexane mixture using a variety of chromatographic methods. For instance, the purification of paclitaxel is

typically carried out using chromatography on Florisil columns in a 70/30 hexane:acetone mixture to separate the paclitaxel containing fractions. The paclitaxel fractions are then concentrated to dryness. Paclitaxel concentrates are crystallized from a methanol:water mixture and then recrystallized from an acetone:hexane mixture yielding 85 to 95% pure paclitaxel. The paclitaxel is then chromatographed on silica gel with either 2.5% isopropanol or 2.5% n-butanol in methylene chloride to yield approximately 98% pure paclitaxel.

The present invention also provides methods of screening plant tissues for the presence of taxanes and related compounds. Such methods typically involve a competitive inhibition enzyme immunoassay (CIEIA) using an anti-taxane antibody as described above. 8A10 is particularly useful for this purpose because it is specific for a common epitope of the tetracyclic taxane nucleus and is known to be capable of detecting the compounds listed in Table 1.

#### Table 1

|        |      | •                                    |                  |            |
|--------|------|--------------------------------------|------------------|------------|
|        |      | Taxane                               | IC <sub>50</sub> | nanomolar  |
| 5      | •    | ·                                    |                  | •          |
|        | 1.   | paclitaxel                           |                  | <b>7</b> . |
|        | 2.   | 10-deacetyltaxol                     |                  | 10         |
|        | · 3. | 7-epi-10-deacetyltaxol               | -                | 15         |
|        | 4.   | 7-xylosyl-10-deacetyltaxol           |                  | 17         |
| 10     | 5.   | cephalomannine                       |                  | 8          |
|        | 6.   | baccatin III                         |                  | 12         |
| =)(= • | 7.   | baccatin V                           |                  | 10         |
|        | 8.   | 10-deacetylbaccatin III              |                  | 21         |
|        | 9.   | 7-epi-10-deacetylbaccatin III        |                  | 27.        |
| 15     |      |                                      |                  |            |
| • •    | Note | : IC <sub>50</sub> = The concentrati | on               | of         |
|        |      | analyte required for                 | . 5              | 0%         |
|        |      | inhibition of binding of             | of t             | he         |
|        | •    | antibody to the solid                | pha              | se .       |
| 20     |      | antigen in CIEIA.                    |                  |            |

In some embodiments, tissue cultures derived from the plant tissue of interest are established. Methods for establishing and maintaining plant tissue 25 cultures are well known in the art (see, e.g., P.R. White, 1954, Cultivation of Animal and Plant Cells Ronald Typically, the plant material is Press, New York). surface-sterilized prior to introducing it to the culture medium. Any conventional sterilization technique, such as chlorinated bleach treatment can be used. addition, antimicrobial agents may be included in the growth medium. Under appropriate conditions plant tissue cells form callus tissue, which may be grown either as solid tissue on solidified medium or as a cell suspension 35 cells in a liquid medium. Metabolic products of the callus, such as taxol or other alkaloids, may be isolated

30

from the callus cells or from the culture medium using known techniques (see, e.g., U.S. Patent No. 5,019,504).

A number of suitable culture media for callus induction and subsequent growth on aqueous or solidified media are known. Exemplary media include standard growth media, many of which are commercially available (e.g., Sigma Chemical Co., St. Louis, MO). Examples include Schenk-Hildebrandt (SH) medium, Linsmaier-Skoog (LS) medium, Murashige and Skoog (MS) medium, Gamborg's B5 10 medium, Nitsch & Nitsch medium, White's medium, and other variations and supplements well known to those of skill in the art (see, e.g., Plant Cell Culture, Dixon, ed. IRL Press, Ltd. Oxford (1985) and George et al., Plant Culture Media, Vol 1, Formulations and Uses Exegetics 15 Ltd. Wilts, UK, (1987)). For the growth of conifer cells, particularly suitable media include 1/2 MS, 1/2 L.P., DCR, Woody Plant Medium (WPM), Gamborg's B5 and its modifications, DV (Durzan and Ventimiglia, In Vitro Cell Dev. Biol. 30:219-227 (1994)), SH, and White's medium.

Taxanes, referred to here as "bound taxanes" can also be located on the surfaces of various plant cells and tissues. Enzyme treatment of exhaustively extracted tissues yields taxanes that are detectable by HPLC. By contrast, the nonenzymatically treated controls 25 do not yield detectable taxanes. The present invention also provides extraction methods for the recovery of these bound materials. For a description of methods suitable for this purpose see, Durzan and Ventimiglia, In Vitro Cell Dev. Biol. 30:219-227 (1994).

The bound compounds left behind by standard extraction methods provide an extended pool that increases the diversity of known taxanes and their precursors. This diversity is a source for potentially new and novel antitumor compounds and/or their synthons. The enzymatically released compounds show an enhanced solubility in polar solvents. Enhanced solubility in polar solvents, in particular aqueous solutions, provides

better cellular penetration and pharmaceutical efficacy than is found in the relatively insoluble paclitaxel.

Additionally, enzymatic treatment of taxane productive sources provides digestion products that are useful as catalytic surfaces and eliciters of further taxane production. Protoplasts derived from cells and tissues with digested cell walls are a source of genetically alterable cells that enable the design of genetically superior lines and potentially taxane productive plant products.

The recovery methods of the invention typically use enzymatic cleavage to release bound taxanes. Exemplary enzymes for this use include glycosidases such as pectinase, xylanase, cellulase and the like. Such enzymes are commonly used to digest cell wall components for the production of protoplasts. Other degradative enzymes known to those of skill in the art, such as lignases, chitinases and the like, can also be used. Other compounds or conditions suitable for the cleavage of chemical bonds in the cell wall or other components of the cell can also be used for this purpose. Suitable methods include the use of strongly oxidizing conditions, acid or alkaline hydrolysis (using either mild or harsh conditions) and the like. Alternatively irradiation or beat can be used to release the compounds.

The methods used to release bound taxanes may in some cases result in artifactual alteration of the chemical structure of the purified taxanes (see, e.g., Miller J. Nat. Prod.43:425 (1980)). Such alterations can be useful as a source for taxanes with improved chemical and pharmaceutical properties, such as solubility, activity, metabolic half-life and the like. These compounds can also be used as synthons for the synthesis of new taxanes.

Enzymes (e.g. cellulase, pectinase and xylanase) as reagents in "live" cultural conditions, whether continuous or batch, can be used to remove bound

15

then be isolated by extraction. The enzymatic release of other potential substrates into the culture medium would affect synthesis with a positive or negative effect on total yield. Hence, enzymes can be used for process control (feedforward or feedback) of taxane and related alkaloid production. This can be used to manipulate the culture environment to optimize for rapid growth or maximum yield of desired compounds.

The following examples are intended only to further illustrate the invention and not intended to limit the scope of the invention which is defined in the attached claims.

#### EXAMPLE 1

This example provides evidence that taxanes can be isolated from a number of conifers that are not member of the genus Taxus.

Cells of Araucaria angustifolia tissue culture material (cultures were initiated with seeds from Santa Catarina, Brazil), 2) Fitzroya cupressoides (seeds and cloned saplings from Valdivia, Chile) and 3) Cupressus sempervirens (seeds from Florence, Italy) were treated with antibodies specific for the taxane ring as described in Durzan and Ventimiglia (1994), supra.

Briefly, the immunoassays were carried out as 25 The sample was rinsed in ph 7.0 Tris buffered saline (TBS) for several minutes and then reacted with the primary antibody (anti-taxane rabbit antiserum, lot 002, by Hawaii Biotechnology Group) in TBS or with TBS 30 only for 1 to 2 hours at 37°C. The selected anti-taxane antibody (primary antibody) preparation was diluted to an appropriate level as determined by testing. The sample was rinsed in TBS 3 times and treated with the secondary antibody (anti-rabbit IgG, whole molecule, Sigma Chemical Co., St. Louis, MO) in TBS or with TBS only for 45 The secondary antibody is minutes to 1.5 hours at 37°C. selected anti-primary antibody conjugated to

45

appropriate label such as fluorescein isothiocyante (FITC) or colloidal gold. The sample was rinsed in TBS twice and mounted in Vectashield mounting medium, H-1000 (Vector Laboratories, Burlingmame, CA) for fluorescence microscopy (Zeiss fluorescence filter set 48 77 09, ex: 450-490 nm, em: ≤520 nm).

Strong positive reactions were observed in all samples as compared to controls.

The occurrence of taxane and taxane-related compounds in conifers of a number of genera (Table 2) was confirmed by competitive inhibition of enzyme linked immunoassay (CIEIA) of methanolic extracts (Tables 3-4), as well as by high performance liquid chromatography (HPLC). Methanolic extracts were prepared as outlined in Durzan and Ventimiglia (1994), supra.

#### Table 2

Needles and twigs (Positive control) Taxus cuspidata Whole branch + needles Araucaria excelsa 20 Araucaria angustifolia Tissue culture material Branch + needles Fitzroya cupressoides 25 Tissue culture material grown on 1/2 LP Picea abies medium\* Tissue culture material grown on 1/2 LP Picea abies supplemented with 100 mg/liter medium 30 colchicine (col). Cupressus sempervirens Tissue culture material

\*Von Arnold J. Plant Physiol. 127:233-244 (1987).

Araucaria angustifolia. Bark from a dead tree

CIEIA was performed blind using the monoclonal antibodies 3C6, 8A10, and 3H5 by Hawaii Biotechnology Group. The assay is based on the concentration of analyte required for 50% inhibition of antibody binding to solid phase antigen  $(IC_{50})$ .

### Table 3

| 5  | Sample #           | Sample I.D.                 | Detected Taxane<br>Concentration:<br>µg/ml |
|----|--------------------|-----------------------------|--------------------------------------------|
|    | 1.                 | Araucaria excelsa           | a) 1.7                                     |
|    | <del>-</del> · · · | (branches)                  | b) 1.35                                    |
|    |                    |                             | c) 0.9                                     |
| 10 | <b>2.</b> ·        | Araucaria angustifolia      | a) 0.5                                     |
|    | 4                  | (embryo cell cultures)      | b) 0.75                                    |
|    | •                  |                             | c)                                         |
| 15 | 3.                 | Fitzroya                    | a) 4.4                                     |
| 13 | <b>3.</b>          | (previous year's shoot      | b) 3:3                                     |
|    |                    | growth)                     | c) 1.9                                     |
|    | 4.                 | Picea abies                 | a) 0.2                                     |
| 20 | **                 | (embryogenic cell cultures) | b) 0.3                                     |
|    | •                  |                             | c)                                         |
|    | 5.                 | Picea abies                 | a) 0.3                                     |
|    | J.                 | (embryogenic cell cultures  | b) 0.7                                     |
| 25 |                    | plus colchicine)            | c)                                         |
|    | 6.                 | Cupressus                   | a) 2.5                                     |
|    | <b>.</b>           | (embryo callus)             | b) 2.8                                     |
|    |                    |                             | c)                                         |
| 30 |                    |                             | •                                          |

- Note: Concentration of taxanes determined by reactivity to

  a) anti-paclitaxel monoclonal antibody 3C6

  b) anti-taxane monoclonal antibody 8A10

  c) anti-baccatin monoclonal antibody 3H5

  Quantities listed are for the final extract solution

  µg/ml 35

Table 4
Tissue Concentrations of Taxanes

|    |                               |                             | · ·      |              |      |                |
|----|-------------------------------|-----------------------------|----------|--------------|------|----------------|
| 5  | <b>7</b>                      |                             |          |              | *    | of             |
|    | Taxus<br>Sample #<br>Producti | Sample I.D.                 | Antibody | μg/KgFW      | ·    |                |
| 10 | 1.                            | Araucaria angustifolia      | a.       | 62           | 0.06 | 50             |
| 10 | <b>.</b> .                    | (branches)                  | ъ.       | 49           | 0.04 |                |
|    | •                             | (DI auches)                 |          | 33           |      |                |
|    |                               | ·                           | c.       | 33           | 0.03 | 3 3            |
| •  | 2.                            | Araucaria angustifolia      | a.       | 10           | 0.0  | 10             |
| 15 |                               | (embryo cell cultures)      | b.       | 15           | 0.0  |                |
|    |                               |                             | c.       |              |      |                |
|    |                               |                             |          | •            |      |                |
|    | 3.                            | Fitzroya                    | a.       | 88 .         | 0.08 | 38             |
|    | •                             | (previous year's shoot      | b.       | 66           | 0.06 |                |
| 20 |                               | growth)                     | c. ·     | 38           | 0.03 |                |
|    |                               |                             | 1        |              |      |                |
|    | 4.                            | Picea abies                 | a.       | 10           | 0.0  | 10             |
|    |                               | (embryogenic cell cultures) | b        | 15           |      |                |
|    | 0.015                         |                             |          |              |      |                |
| 25 |                               | ·                           | c.       | <b>-</b> • ` |      | <del>-</del> - |
| •  | . 5 .                         | Picea abies                 | a.       | 8 ·          | 0.00 | 18             |
| ٠. |                               | (embryogenic cell cultures  | ь.<br>Ъ. | 20           | 0.02 |                |
|    | •                             | plus colchicine)            | c.       |              | 0.02 |                |
| 30 | •                             | plus colement               | <b>.</b> |              |      | -              |
|    | 6.                            | Cupressus                   | a.       | 74           | 0.0  | 74             |
|    |                               | (embryo callus)             | b.       | 82           | 0.08 |                |
|    | ·                             | •                           | c.       | *            |      |                |
|    |                               |                             |          |              |      |                |

35 Note: μg/Kg-FW: micrograms per kilogram of tissue fresh weight or biomass.

Reference: Taxus produces approximately 100 mg/Kg-FW, about 1000x more than the highest producer in this list. Results show that other trees have the capacity to produce taxanes that are different from paclitaxel.

HPLC was carried out as described in Durzan and Ventimiglia, supra. Briefly, samples were first extracted three times in 100% methanol. A concentrated methanolic extract was mixed with 2 volumes of water and partitioned against methylene chloride twice. The methylene chloride extract was evaporated to dryness. The resulting residue was dissolved in a known volume of 100% methanol and subsequently diluted to 66% with water. This preparation was thoroughly mixed and passed through a 0.22 μm nylon filter before HPLC.

HPLC analysis was performed on 4.3 mm Taxil column (Meta-Chem Technologies, Redondo Beach, CA). A 66% methanol isocratic elution with a flow rate of 0.6

ml/min and column temperature of 25°C was used. Taxane detection (230 nm) and analysis were performed with a Hewlett Packard 1040A diode array spectrophotometer. The results of this analysis indicated the presence of taxanes in all the tissues identified in Table 2.

the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference.

WO 97/30352 PCT/US97/02069

#### WHAT IS CLAIMED IS:

10

25

35

| ! | 1. A method of producing taxanes, the method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | comprising contacting pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 | The state of the same of the s |
|   | taxanes, wherein the plant tissue is not from the same of the same |

- 2. The method of claim 1, wherein the composition which extracts taxanes is an organic solvent.
- 3. The method of claim 1, wherein the composition which extracts taxanes is methanol.
- 4. The method of claim 1, wherein the plant
  - 5. The method of claim
- 20 6. The method of claim 1, wherein the plant tissue is from Picea.
  - 7. The method of claim 1, wherein the plant tissue is from Fitzroya.
  - 8. The method of claim 1, wherein the plant tissue is from Cupressus.
- 9. The method of claim 1, wherein the step of 30 recovering the taxanes includes releasing bound taxanes.
  - 10. The method of claim 9, wherein the bound taxanes are released by treating the tissue with a glycosidase.
  - 11. The method of claim 10, wherein the glycosidase is xylanase.

- 12. A taxane composition made according to the method of claim 1.
- 5 13. A method of screening plant tissue for the presence of taxanes, the method comprising

contacting plant tissue or an extract of the plant tissue with an antibody that is specifically reactive with a taxane; and

detecting the formation of an antigen-antibody complex;

wherein the plant tissue is from a member of the order Coniferales other than Taxus spp.

- 14. The method of claim 13, wherein the antibody is a monoclonal antibody selected from the group consisting of 3C6, 8A10, and 3H5.
- 15. The method of claim 13, wherein the 20 antibody is a polyclonal antiserum.
  - 16. The method of claim 13, wherein the extract of the tissue is a methanolic extract.
- of detecting antigen-antibody complex includes determination by competitive inhibition of an enzyme linked immunoassay.

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/02069

| A CLAS               | SIFICATION OF SUBJECT MATTER                                                                                                         |                                                                                        |                                  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------|
|                      | GOIN 33/53; CO7D 305/00,407/00, 493/00                                                                                               |                                                                                        |                                  |
| US CL :              | 549/510, 511; <b>435/</b> 7.1                                                                                                        | at the state of the                                                                    |                                  |
|                      | International Patent Classification (IPC) or to both                                                                                 | national classification and IPC                                                        |                                  |
|                      | DS SEARCHED                                                                                                                          |                                                                                        |                                  |
| Minimum do           | cumentation searched (classification system followed                                                                                 | by classification symbols)                                                             | •                                |
| U.S. : 5             | 49/510, 511; 435/7.1                                                                                                                 |                                                                                        |                                  |
| Documentati          | on searched other than minimum documentation to the                                                                                  | extent that such documents are included                                                | in the fields searched           |
| Locuments.           | on scarcing outer man minimum documentation to and                                                                                   |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        |                                  |
| Electronic d         | ata base consulted during the international search (na                                                                               | me of data base and, where practicable,                                                | search terms used)               |
| APS, DIA             | LOG, MEDLINE, EMBASE, BIOSIS                                                                                                         |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        |                                  |
| C. DOC               | UMENTS CONSIDERED TO BE RELEVANT                                                                                                     |                                                                                        |                                  |
| C. DOC               | UMENTS CONSIDERED TO BE RECEVALLED                                                                                                   |                                                                                        |                                  |
| Category*            | Citation of document, with indication, where ap                                                                                      | propriate, of the relevant passages                                                    | Relevant to claim No.            |
| ×                    | US 5,310,672 A (WANN et al.) 10                                                                                                      | May 1994, see column 1                                                                 | 12                               |
| _                    | 05 5,5 10,072 A (WAIN CE CO.) 10                                                                                                     | 11104 100 4, 000 00101111111                                                           | ••••                             |
| Y                    | 1                                                                                                                                    |                                                                                        | 13-17                            |
|                      |                                                                                                                                      |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        | ٠                                |
|                      |                                                                                                                                      |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        | •                                |
|                      |                                                                                                                                      |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        | ·                                |
|                      | .•                                                                                                                                   |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        |                                  |
| •                    | ,                                                                                                                                    | •                                                                                      |                                  |
|                      |                                                                                                                                      |                                                                                        |                                  |
|                      |                                                                                                                                      |                                                                                        | •                                |
|                      |                                                                                                                                      | <u> </u>                                                                               |                                  |
| Furth                | er documents are listed in the continuation of Box C                                                                                 | See patent family annex.                                                               |                                  |
| •                    | ecial casegories of cised documents:                                                                                                 | "I" betar document published after the int<br>date and not in conflict with the applic | mion but cited to understand the |
|                      | cument defining the general state of the art which is not considered<br>be of particular relevance                                   | principle or theory underlying the in-                                                 |                                  |
|                      | tier document published on or after the international filing date                                                                    | "X" document of particular relevance; if<br>considered novel or cannot be considered   |                                  |
| cin                  | customs which may throw double on priority claim(s) or which is<br>at to establish the publication date of another citation or other | "Y" document of particular relevance; d                                                | or chimed investion remain ha    |
| •                    | icial remon (de apacified)<br>cumons referring to an oral disclosure, use, exhibition or other                                       | considered to involve an investive                                                     | step when the document is        |
|                      | •                                                                                                                                    | being obvious to a person skilled in t                                                 | be est                           |
|                      | cument published prior to the international filing date but later than<br>priority date claimed                                      | "&" document member of the same pates                                                  |                                  |
| Date of the          | actual completion of the international search                                                                                        | Date of mailing of the international se                                                | erch report                      |
| 17 APRIL             | . 1997                                                                                                                               | 27 JUN 1                                                                               | 997                              |
| Commissio<br>Box PCT | nailing address of the ISA/US mer of Patents and Trademarks  n. D.C. 20231                                                           | Authorized efficer EMINA REGIL                                                         | len test                         |
| Facsimile N          | lo. (703) 305-3230 //                                                                                                                | Telephone No. (703) 308-0196                                                           | /                                |

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/02069

|    | is inte | mations                                       | l report (                              | has not be               | on csublishe                    | ed in respo | ol centeir                                | chims un     | ler Article | 17(2)(a) for    | the follow  | ving reasons | <b>s:</b> `  |
|----|---------|-----------------------------------------------|-----------------------------------------|--------------------------|---------------------------------|-------------|-------------------------------------------|--------------|-------------|-----------------|-------------|--------------|--------------|
| •  |         |                                               | ns Nos.;<br>ise they                    |                          | ubject matte                    | er not req  | uired to be                               | searched l   | y this Au   | hority, nan     | nely:       |              |              |
|    |         |                                               |                                         |                          |                                 | •           |                                           |              |             |                 |             |              |              |
|    |         |                                               | •                                       |                          |                                 |             |                                           |              |             | •               |             |              |              |
|    |         | •                                             |                                         | •                        |                                 |             | ē                                         |              |             |                 |             |              | •            |
|    | _       | <b>.</b> .                                    |                                         |                          |                                 |             |                                           |              |             |                 | ٠,          |              |              |
|    |         | becau                                         |                                         | relate to pi             | arts of the ir<br>ingful interr |             | • •                                       |              |             | •               | escribed s  | equirement   | s to such    |
|    |         |                                               |                                         |                          |                                 |             |                                           |              |             |                 | •           |              |              |
|    |         |                                               |                                         |                          |                                 |             | •                                         |              |             |                 |             |              |              |
|    |         |                                               |                                         | •                        |                                 | ,           |                                           |              | •           | •               |             | ; .          |              |
|    |         |                                               | ıs Nos.:                                |                          | *                               |             |                                           |              |             |                 |             |              |              |
|    |         | becau                                         | se they i                               | ure depend               | lent clairns a                  | und aus not | drafted in                                | scoordance   | with the se | cond and th     | nird senter | ocs of Rule  | 6.4(a).      |
| _  | !!      | <b>O</b> bs                                   |                                         |                          |                                 |             | -line (Co.                                |              | -f:4 3      | of first sh     |             | ·· ··        | <del></del>  |
| )) | X 11    | Obser                                         | ations v                                | where nu                 | ity of inven                    | ition B U   | iking (Cor                                | munuation    | of stem 2   | OI ILTEL SE     | ecu)        |              |              |
| ì  | is Inu  | ernation                                      | al Searc                                | hing Auth                | ority found                     | i multiple  | inventions                                | in this into | mational a  | pplication,     | as follow   | <b>'8</b> :  |              |
|    | P       | icase S                                       | œ Extra                                 | Sheet.                   |                                 |             |                                           |              |             |                 | •           | • •          | •            |
|    |         |                                               | ~ = = = = = = = = = = = = = = = = = = = |                          | ·                               |             |                                           |              |             | •               |             |              |              |
|    | ·       |                                               |                                         | •                        |                                 |             |                                           |              | •           |                 |             | •            | •            |
|    | •       |                                               |                                         |                          |                                 |             |                                           | •            |             |                 |             | • • •        |              |
|    |         | •                                             |                                         | •                        |                                 |             |                                           | •            |             |                 |             | •            | •            |
|    |         | •                                             |                                         |                          | ·:                              | •           |                                           |              |             |                 |             | •            | •            |
|    |         |                                               |                                         |                          | ,                               |             |                                           |              |             |                 |             |              |              |
|    |         |                                               |                                         |                          |                                 |             |                                           |              |             |                 | . •         |              |              |
|    |         | ! <b>A</b> i                                  | l annuio                                |                          | al search fe                    |             | طافئے۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔ |              |             |                 |             |              | All assesses |
|    | X       | clain                                         | •                                       | 20 a Collion             | ai search le                    | er were th  | ueià bain o                               | y the appla  | ani, uiti u | ite i implement | starter re  | poit covers  | an scaletis  |
|    |         | 1                                             |                                         |                          |                                 |             |                                           |              |             |                 |             |              |              |
|    |         |                                               |                                         | able claim:<br>onal sec. | s could be s                    | iearched w  | ithout effo                               | n justifyin  | an additio  | onal fee, th    | is Authori  | ty did not i | nvite paym   |
| ,  |         | , , <u>, , , , , , , , , , , , , , , , , </u> | •                                       |                          |                                 |             |                                           |              |             | •               |             |              |              |
| 1  |         |                                               | •                                       |                          | quired additi<br>which fees v   |             |                                           | • •          |             | oplicant, thi   | s internati | ional scarci | report cov   |
|    |         |                                               |                                         | WITH IOI A               | AIRCH ICCO A                    | acte him.   | specificali                               | A CORDIDA    |             |                 |             |              |              |
|    |         |                                               | more ci                                 |                          |                                 |             |                                           |              |             |                 |             | •            |              |
| •  |         |                                               | GIOSE CI                                | •                        |                                 |             |                                           | •            |             |                 |             |              |              |
|    |         |                                               | uiose ci                                |                          |                                 | •           |                                           |              |             |                 |             |              |              |
|    |         |                                               | uiose ci                                |                          |                                 | •           |                                           |              |             |                 | ٠.          |              |              |
|    |         |                                               | unse ci                                 |                          |                                 |             | ,                                         |              | . • •       | <u>.</u> · .    |             |              |              |
|    |         | only                                          |                                         |                          |                                 |             |                                           |              |             |                 | al.         |              |              |
|    |         | only<br>No i                                  | equired                                 |                          | l search fee                    |             |                                           |              |             |                 | , this inte | mational se  | earch repoi  |
|    |         | only<br>No i                                  | equired                                 |                          | l search fee<br>ion first me    |             |                                           |              |             |                 | , this inte | mational se  | earch repoi  |
|    |         | only<br>No i                                  | equired                                 |                          |                                 |             |                                           |              |             |                 | , this inte | mational so  | earch repoi  |
|    |         | only<br>No i                                  | equired                                 |                          |                                 |             |                                           |              |             |                 | , this inte | mational so  | earch repoi  |

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/02069

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-12, drawn to a method of producing taxanes and a taxane composition. Group II, claim(s) 13-17, drawn to a method of screening taxanes.

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group II contains the special technical feature of an antibody that is specifically reactive with a taxane that is not found in Group II