DESIGN OF UAV

GIOUD 5

- AE21B002 : Abhigyan Roy
- AE23M004 : Vinu Mathew
- AE23M008 : Anish Konar
- AE23M014 : Gautham Anil
- AE23M006 : Aditya Sai Deepak Rachagiri

Design Overview

Parameters	Value
MTOW	8.80 Kg
Max Payload Weight	2.00 Kg
Design Payload Weight	1.50 Kg
Powerplant Weight	2.30 Kg
CG location (from nose)	0.50 m
Wing Area	$0.96 \ m^2$
Wing Span	2.80 m
Wing Taper Ratio	1
Wing Root Chord	0.34 m
Wing Tip Chord	0.34 m
Wing Aspect Ratio	8.34
Wing Twist Angle	0 Deg
Wing Sweep Angle	0 Deg
Wing Dihedral Angle	2 Deg
Wing Setting Angle	1 Deg
Wing Aerofoil	GOE 553
Alieron Area	$0.05 \ m^2$
Alieron Chord	0.09 m
Alieron Span	0.56 m
Fuselage Length	1.20 m
Fuselage Diameter	0.25 m
Fuselage Width	0.20m

Horizontal Tail Area	$0.42 \ m^2$
Horizontal Tail Span	1.5 m
Horizontal Tail Taper Ratio	1
Horizontal Tail Root Chord	0.28 m
Horizontal Tail Tip Chord	0.28 m
Horizontal Tail Aspect Ratio	5.0
Horizontal Tail Twist Angle	0 Deg
Horizontal Tail Sweep Angle	0 Deg
Horizontal Tail Dihedral Angle	0 Deg
Horizontal Tail Setting Angle	2 Deg
Horizontal Tail Aerofoil	NACA 0014
Elevator Area	$0.105 m^2$
Elevator Chord	0.07 m
Elevator Span	1.5 m
Vertical Tail Area	$0.14 \ m^2$
Vertical Tail Area Vertical Tail Span	$0.14 \ m^2$ $0.4 \ m$
Vertical Tail Span	
Vertical Tail Span Vertical Tail Taper Ratio	0.4 m 1
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord	0.4 m 1 0.35 m
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord	0.4 m 1 0.35 m 0.35 m
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord Vertical Tail Aspect Ratio	0.4 m 1 0.35 m 0.35 m 1.14
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord Vertical Tail Aspect Ratio Vertical Tail Twist Angle	0.4 m 1 0.35 m 0.35 m 1.14 0 Deg
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord Vertical Tail Aspect Ratio Vertical Tail Twist Angle Vertical Tail Sweep Angle	0.4 m 1 0.35 m 0.35 m 1.14 0 Deg 0 Deg
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord Vertical Tail Aspect Ratio Vertical Tail Twist Angle Vertical Tail Sweep Angle Vertical Tail Dihedral Angle	0.4 m 1 0.35 m 0.35 m 1.14 0 Deg 0 Deg 0 Deg 0 Deg NACA 0014
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord Vertical Tail Aspect Ratio Vertical Tail Twist Angle Vertical Tail Sweep Angle Vertical Tail Dihedral Angle Vertical Tail Setting Angle	0.4 m 1 0.35 m 0.35 m 1.14 0 Deg 0 Deg 0 Deg 0 Deg 0 Deg
Vertical Tail Span Vertical Tail Taper Ratio Vertical Tail Root Chord Vertical Tail Tip Chord Vertical Tail Aspect Ratio Vertical Tail Twist Angle Vertical Tail Sweep Angle Vertical Tail Dihedral Angle Vertical Tail Setting Angle Vertical Tail Setting Angle Aerofoil	0.4 m 1 0.35 m 0.35 m 1.14 0 Deg 0 Deg 0 Deg 0 Deg NACA 0014

Spar Design

- Stress Concentration Factor (k = 3)
- Fatigue Factor (f = 1.5)
- Factor of Safety (m = 1.15)
- Maximum Load Factor (n = 3)
- σ_yield = 290 MPa

$$\sigma_{\text{allowable}} = \frac{\sigma_Y}{n \times f \times k \times m}$$

The centroid of the skin panel was calculated, and the moment of inertia calculation was performed with the centroid as the origin.

$$I_{skin} = \int_{A} y^2 dA = 56300 mm^4$$

$$I_{spar} = \frac{th^3}{12} + w \times t \times \left(\frac{h}{2}\right) \times 2 = \frac{M_{\text{max}} \cdot y}{\sigma_{\text{allowable}}} - I_{skin}$$

Maximum bending moment = 27 Nm

Wing Shear Design

$$F_{cr} = K_{ss} \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2 \left[R_a + \left(\frac{R_a - R_b}{2}\right) \left(\frac{b}{a}\right)^3\right]$$

Critical Load per unit Area

Idealised Boom Structure of Airfoil

$$q_{total} = rac{-S_y}{I_{xx}} \sum_{r=1}^n B_r y_r + q_{s,0}$$

$$\sum_{R=1}^{N} M_{q,R} = \sum_{R=1}^{N} \oint_{R} q_{b} p_{0} ds + \sum_{R=1}^{N} 2A_{R} q_{s,0,R} \qquad \frac{d\theta}{dz} = \frac{1}{2A_{R}} \oint_{R} q \frac{ds}{Gt}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}z} = \frac{1}{2A_R} \oint_R q \frac{\mathrm{d}s}{Gt}$$

Stringer Design

q = 1200-1600 N/mFcr $\approx 2400 - 3600 \text{ N/m}$ FOS ≈ 2

q = 1200-1600 N/mFcr $\approx 12000 - 20000 \text{ N/m}$ FOS ≈ 10

Fuselage Design

Fuselage Length = 1.2 m Fuselage Diameter = 0.230 m

> PLA σ_yield = 50 MPa E = 3.5 GPa G = 4 GPa

Component	Weight (N)	Position from the Nose (m)
Motor	13.72	0.053
Battery	15.39	0.186
Wiris	17.25	0.276
Environmental Sensor	2.45	0.476
Avionics	1.96	0.481
Landing Gear@Nose	2.01	0.106
Landing Gear@Rear	4.02	0.486

Fuselage Shear Force Diagram

Fuselage Bending Moment Diagram

Shear Flow in Fuselage CS

Al 6061 of 0.3 mm thickness used

Radius = 0.115 m Max Shear Flow = 120 N/m

Longeron Design

8 Frames along Fuselage Al 6061 of 0.3 mm thickness used

 $F_cr = 1200 \text{ N/m}$ Fos = 10

Ixx Required = 85670 mm⁴ Ixx of Skin = 142780 mm⁴ Ixx of each Longeron (wo skin) = 14280 mm⁴

Bulkhead Sizing

$$M = M_A - F_A \cdot r \cdot (1 - \cos(\theta)) + M_q + M_0$$

$$H = \frac{F_A - F_{qx} - V \cdot \sin(\theta)}{\cos(\theta)} \quad V = \frac{F_{qy} - H \cdot \sin(\theta) - L}{\cos(\theta)}$$

$$V = \frac{F_{qy} - H \cdot \sin(\theta) - L}{\cos(\theta)}$$

$$U_{\text{total}} = \frac{1}{2} \int \frac{M^2}{E \cdot I} d\theta + \frac{1}{2} \int \frac{H^2}{E \cdot A} d\theta + \frac{1}{2} \int \frac{V^2}{G \cdot A} d\theta$$

Maximum bending moment = 27 Nm

Bulkhead Design

Fuselage Wing Attachmentt

Thank You