

Time Series Analysis Model Specification

Model Specification

Contents

Contents

- Properties of the Sample Autocorrelation Function
- The Partial and Extended Autocorrelation Functions
- Specification of Some Simulated Time Series
- Nonstationarity
- Other Specification Methods
- Specification of Some Actual Time Series

Contents

Goal: Statistical inference for ARIMA models.

Strategy: Box and Jenkins (1976). Iterate the following steps.

- Choose appropriate values for p, d, and q for a given series (Chapter 6).
- **2** Estimate parameters $(\phi, \theta, \sigma_e^2, \mu)$ of a specific ARIMA(p, d, q) model for a given time series (Chapter 7).
- 3 Check appropriateness of the fitted model (Chapter 8).

Model Specification

Properties of the Sample Autocorrelation Function

Recall: For k = 1, 2, ..., the *sample autocorrelation function* is

$$r_k = \frac{\sum_{t=k+1}^{n} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2}.$$

Goal: Recognize patterns in r_k that are characteristic of known patterns in ρ_k for ARMA models.

Example: $\varrho_k = 0$ for k > q in MA(q) models.

Needed: Sampling properties of r_k .

Note: r_k is ratio of two quadratic forms. Thus, even the mean is not trivial to obtain.

Suppose:

$$Y_t = \mu + \sum_{j=0}^{\infty} \psi_j e_{t-j}$$

with e_t i.i.d. and

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

$$\sum_{j=0}^{\infty} j\psi_j^2 < \infty$$

which is satisfied for all stationary ARMA models.

Then: For any fixed *m*

$$\sqrt{n} \left(\begin{array}{c} r_1 - \varrho_1 \\ \vdots \\ r_m - \varrho_m \end{array} \right) \stackrel{d}{\to} \mathcal{N}(0, C)$$

where $C = (c_{ij})_{i,j=1,...,m}$ with

$$c_{ij} = \sum_{k=-\infty}^{\infty} (\varrho_{k+i}\varrho_{k+j} + \varrho_{k-i}\varrho_{k+j} - 2\varrho_{i}\varrho_{k}\varrho_{k+j} - 2\varrho_{j}\varrho_{k}\varrho_{k+i} + 2\varrho_{i}\varrho_{j}\varrho_{k}^{2}).$$

Thus: For large n, r_k is approximately normally distributed with mean ϱ_k and variance c_{kk}/n . Furthermore, $\operatorname{Cor}(r_k,r_j)\approx c_{kj}/\sqrt{c_{kk}c_{jj}}$.

Special cases: White noise.

$$\operatorname{Var}(r_k) \approx \frac{1}{n},$$

 $\operatorname{Cor}(r_k, r_j) \approx 0.$

AR(1):
$$\varrho_k = \phi^k$$
.

$$egin{array}{lll} ext{Var}(r_k) &pprox &rac{1}{n}\left[rac{(1+\phi^2)(1-\phi^{2k})}{1-\phi^2} & -2k\phi^{2k}
ight], \ ext{Var}(r_1) &pprox &rac{1-\phi^2}{n}, \ ext{Var}(r_k) &pprox &rac{1}{n}\left[rac{1+\phi^2}{1-\phi^2}
ight] & ext{for large } k, \ ext{Cor}(r_k,r_j) &pprox & 2\phi\sqrt{rac{1-\phi^2}{1+2\phi^2-3\phi^4}}. \end{array}$$

$$\begin{array}{lll} \textbf{MA(1):} \ \varrho_1 = -\theta/(1+\theta^2). \\ \\ c_{11} & = \ 1 \ - \ 3\varrho_1^2 \ + \ 4\varrho_1^4, \\ \\ c_{kk} & = \ 1 \ + \ 2\varrho_1^2 \quad \text{for } k>1, \\ \\ c_{12} & = \ 2\varrho_1(1-\varrho_1^2). \end{array}$$

MA(q): For k > q.

$$Var(r_k) \approx \frac{1}{n} \left[1 + 2 \sum_{j=1}^q \varrho_j^2 \right].$$

Example: AR(1).

φ	$\sqrt{n\cdot Var(r_1)}$	$\sqrt{n\cdot Var(r_2)}$	$\sqrt{n\cdot Var(r_{10})}$	$Cor(r_1, r_2)$
± 0.9	0.44	0.81	2.44	± 0.97
± 0.7	0.71	1.12	1.70	± 0.89
± 0.4	0.92	1.11	1.18	± 0.66
± 0.2	0.98	1.04	1.04	± 0.38

Example: MA(1).

θ	$\sqrt{n\cdot Var(r_1)}$	$\sqrt{n\cdot Var(r_k)}$, $k>1$	$Cor(r_1, r_2)$
±0.9	0.71	1.22	∓0.86
± 0.7	0.73	1.20	∓0.84
± 0.5	0.79	1.15	∓0.74
± 0.3	0.89	1.07	∓0.53

Model Specification

The Partial and Extended Autocorrelation Functions

So far:

- ACF for MA(q) processes cuts off after lag q.
- Hence, ACF useful for order selection of MA processes.
- ACF for AR(p) tails off slowly but does not cut off.
- Hence, ACF does not help for order selection of AR processes.

Question: Can we find a function with similar properties for AR(p) processes?

Answer: Yes, consider partial autocorrelation of Y_t and Y_{t-k} after removing the effect of the intervening variables $Y_{t-1}, \ldots, Y_{t-k+1}$.

Partial autocorrelation in normal series $\{Y_t\}$ can be written as

$$\phi_{kk} = \text{Cor}(Y_t, Y_{t-k} \mid Y_{t-1}, \dots, Y_{t-k+1})$$

More generally, for stationary series, define partial autocorrelation function (PACF) at lag k as

$$\phi_{kk} = \text{Cor}(Y_t - \beta_1 Y_{t-1} - \dots - \beta_{k-1} Y_{t-k+1}, Y_{t-k} - \beta_1 Y_{t-k+1} - \dots - \beta_{k-1} Y_{t-1})$$

where β is chosen to minimize the mean prediction error.

Remarks:

- Due to stationarity, "prediction" goes forward and backward in time.
- $\phi_{11} = \rho_1$.
- Double subscript will become clear later.

Example: Computation of ϕ_{22} .

Clear: In stationary series (i.e., with constant variance) with zero mean, the best linear predictor for Y_t based on only Y_{t-1} is $\varrho_1 Y_{t-1}$.

Thus:

$$\begin{array}{rcl} \mathsf{Cov}(\mathsf{Y}_{t} - \varrho_{1}\mathsf{Y}_{t-1}, \mathsf{Y}_{t-2} - \varrho_{1}\mathsf{Y}_{t-1}) & = & \gamma_{0}(\varrho_{2} - \varrho_{1}^{2} - \varrho_{1}^{2} + \varrho_{1}^{2}) \\ & = & \gamma_{0}(\varrho_{2} - \varrho_{1}^{2}) \\ \mathsf{Var}(\mathsf{Y}_{t} - \varrho_{1}\mathsf{Y}_{t-1}) & = & \mathsf{Var}(\mathsf{Y}_{t-2} - \varrho_{1}\mathsf{Y}_{t-1}) \\ & = & \gamma_{0}(1 + \varrho_{1}^{2} - 2\varrho_{1}^{2}) \\ & = & \gamma_{0}(1 - \varrho_{1}^{2}) \\ \mathsf{Cor}(\mathsf{Y}_{t} - \varrho_{1}\mathsf{Y}_{t-1}, \mathsf{Y}_{t-2} - \varrho_{1}\mathsf{Y}_{t-1}) & = & \frac{\varrho_{2} - \varrho_{1}^{2}}{1 - \varrho_{1}^{2}} \end{array}$$

Example: In AR(1) processes, $\varrho_k = \phi^k$.

$$\phi_{22} = \frac{\phi^2 - \phi^2}{1 - \phi^2} = 0.$$

Thus, PACF is non-zero at lag 1 but zero at lag 2.

More generally: For AR(p) processes PACF $\phi_{kk}=0$ for all k>p.

Best linear predictor for Y_t based on $Y_{t-1}, \ldots, Y_{t-k+1}$ with k > p is $\phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p}$. Thus

$$Cov(Y_{t} - \phi_{1}Y_{t-1} - \dots - \phi_{p}Y_{t-p}, Y_{t-k} - \phi_{1}Y_{t-k+1} - \dots - \phi_{p}Y_{t-k+p})$$
= $Cov(e_{t}, Y_{t-k} - \phi_{1}Y_{t-k+1} - \dots - \phi_{p}Y_{t-k+p})$
= 0

Example: MA(1).

$$\begin{array}{lcl} \phi_{22} & = & -\frac{\theta^2}{1+\theta^2+\theta^4} \\ \\ \phi_{kk} & = & -\frac{\theta^k(1-\theta^2)}{1-\theta^{2(k+1)}} & \text{for } k \geq 1 \end{array}$$

i.e., PACF decays exponentially fast (similar to the ACF of an AR(1) process).

More generally: PACF of MA(q) process can be shown to behave similarly to ACF of AR(q) process.

Goal: Compute PACF ϕ_{kk} from known ACF ϱ_k .

It can be shown that Yule-Walker type equations also hold for partial autocorrelation coefficients ϕ_{kj} with $j=1,\ldots,k$:

$$\varrho_{j} = \phi_{k1}\varrho_{j-1} + \phi_{k2}\varrho_{j-2} + \ldots + \phi_{kk}\varrho_{j-k}$$

This yields k linear equations

$$\varrho_{1} = \phi_{k1} + \phi_{k2}\varrho_{1} + \phi_{k3}\varrho_{2} + \dots + \phi_{kk}\varrho_{k-1}
\varrho_{2} = \phi_{k1}\varrho_{1} + \phi_{k2} + \phi_{k3}\varrho_{1} + \dots + \phi_{kk}\varrho_{k-2}
\vdots$$

$$\varrho_{k} = \phi_{k1}\varrho_{k-1} + \phi_{k2}\varrho_{k-2} + \phi_{k3}\varrho_{k-3} + \ldots + \phi_{kk}$$

that can be solved for $\phi_{k1}, \dots, \phi_{kk}$ recursively for $k \geq 2$.

For AR(p), these yield the usual Yule-Walker equations for k=p and thus $\phi_{pp}=\phi_p$.

Furthermore: Recursion can be computed efficiently using Durbin-Levinson algorithm.

$$\phi_{k,k} = \frac{\varrho_k - \sum_{j=1}^{k-1} \phi_{k-1,j} \, \varrho_{k-j}}{1 - \sum_{j=1}^{k-1} \phi_{k-1,j} \, \varrho_j}$$

$$\phi_{k,j} = \phi_{k-1,j} - \phi_{k,k} \, \phi_{k-1,k-j} \quad \text{for } j = 1, \dots, k-1$$

Thus: Initialize with $\phi_{11} = \varrho_1$.

$$\phi_{22} = \frac{\varrho_2 - \phi_{11}\varrho_1}{1 - \phi_{11}\varrho_1} = \frac{\varrho_2 - \varrho_1^2}{1 - \varrho_1^2}$$

$$\phi_{21} = \phi_{11} - \phi_{22}\phi_{11}$$

$$\phi_{33} = \frac{\varrho_3 - \phi_{21}\varrho_2 - \phi_{22}\varrho_1}{1 - \phi_{21}\varrho_1 - \phi_{22}\varrho_2}$$

$$\phi_{31} = \dots$$

Definition: The sample partial autocorrelation function $\hat{\phi}_{kk}$ is the plug-in estimate of the PACF which replaced the ACF ϱ_k by the sample ACF $\hat{\varrho}_k = r_k$.

Remarks:

- Under white noise hypothesis, $\hat{\phi}_{kk}$ is approximately normal with zero mean and standard deviation $1/\sqrt{n}$.
- Also under AR(p) hypothesis, the same holds for k > p.

In R: pacf().

The extended autocorrelation function

Problem: Order selection for ARMA(p, q) with p, q > 0 more difficult.

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag p	Tails off	Tails off

Solutions: Graphical tools.

- Extended autocorrelation function (EACF).
- Smallest canonical correlations.
- . . .

Remark: Rarely used in practice. More commonly, information criteria are used. Details later.

The extended autocorrelation function

Idea:

- "Filter out" AR component of ARMA process.
- Yields MA process with the same cutoff property in ACF.

Example: ARMA(1, 1).

$$Y_t = \phi Y_{t-1} + e_t - \theta e_{t-1}.$$

- Linear regression of Y_t on Y_{t-1} is inconsistent as $\varrho_1 = (\phi \theta)(1 \phi\theta)/(1 2\phi\theta + \theta^2) \neq \phi$.
- But residuals from this regression contain information about {e_t}.
- Linear regression of Y_t on Y_{t-1} and residuals from first regression yields coefficient φ of Y_{t-1} consistent for φ.
- $W_t = Y_t \tilde{\phi} Y_{t-1}$ is approximately MA(1).

The extended autocorrelation function

More generally:

- For ARMA(1, 2), regress Y_t on its lag 1, lag 1 of residuals from second regression, and lag 2 of residuals from the first regression.
- For ARMA(p, q), estimate regressions iteratively and investigate ACF of residuals at last stage.
- With orders p and q unknown, investigate up to certain maximal orders.

In R: eacf() in package *TSA*. (*Warning:* Redefines also acf() which contains some inconsistencies/bugs.)

Model Specification

Specification of Some Simulated Time Series

In practice:

- Visualize sample ACF and PACF for observed series.
- Add pointwise confidence bounds for white noise, i.e., $\pm 1.96/\sqrt{n}$ at 95% level.
- Alternatively, employ confidence bounds for MA(k-1) process for ACF at lag k.
- Recall that confidence bounds for AR(k-1) process for PACF at lag k coincide with white noise bounds.
- In R, acf() and pacf() yield plots as by-products. For acf(), ci.type = "ma" can be added.

Illustration: Reconsider simulated series from Chapter 4.

Illustration: MA(1) with $\theta = -0.9$.

Illustration: MA(1) with $\theta = 0.9$.

Illustration: MA(2) with $\theta_1 = 1$ and $\theta_2 = -0.6$.

Illustration: AR(1) with $\phi = 0.9$.

Illustration: AR(1) with $\phi = -0.8$.

Illustration: AR(2) with $\phi_1 = 1$ and $\phi_2 = -0.6$.

Illustration: ARMA(1, 1) with $\phi = 0.6$ and $\theta = 0.3$.

Model Specification

Nonstationarity

Nonstationarity

Recall: Many nonstationary series can be captured by integrated ARMA models.

Question: What are the properties of the sample (P)ACF for integrated series?

Remark: Note that the (P)ACF is not even well-defined for nonstationary series. (P)ACF always relies on (co)variances being constant over time.

However: Sample ACF typically fails to die out rapidly, i.e., decays only slowly. PACF at lag 1 often close to 1.

Illustration: (P)ACF for log oil prices and associated differences.

Nonstationarity

Nonstationarity

Overdifferencing

Clear: Differences of stationary series are also stationary.

However: Overdifferencing introduces unnecessary correlations.

Example: $\{Y_t\}$ random walk.

$$Y_t = Y_{t-1} + e_t$$

 $\Delta Y_t = Y_t - Y_{t-1} = e_t$
 $\Delta^2 Y_t = e_t - e_{t-1}$

Remarks:

- $\Delta^2 Y_t$ is MA(1) but with $\theta = 1$.
- Overdifferencing leads to non-invertible model.
- ARIMA(0, 2, 1) model for Y_t is unnecessarily complex.
- ARIMA(0, 1, 0) model for Y_t is more appropriate.

Overdifferencing

Illustration: Oil prices.

Overdifferencing

Illustration: Oil prices.

Question: How can we test the null hypothesis that a process is integrated vs. alternative that it is (trend) stationary?

Idea: Consider linear regression

$$Y_t = \alpha Y_{t-1} + e_t$$

and test

$$H_0: \alpha = 1$$
 vs. $H_1: |\alpha| < 1$

Problem:

- Asymptotic distribution of OLS estimator $\hat{\alpha}$ is non-standard under the null hypothesis.
- Only for $|\alpha| < 1$, the standard result holds: $\sqrt{n} (\hat{\alpha} \alpha)$ is asymptotically $\mathcal{N}(0, 1 \alpha^2)$.
- For $\alpha = 1$, $\hat{\alpha}$ is "super-consistent": $n(\hat{\alpha} \alpha)$ has non-degenerate non-normal asymptotic distribution.

Rewrite:

$$Y_t = \alpha Y_{t-1} + e_t$$

 $Y_t - Y_{t-1} = (\alpha - 1)Y_{t-1} + e_t$
 $\Delta Y_t = aY_{t-1} + e_t$

with $a = \alpha - 1$. Hence, test

$$H_0: a = 0$$
 vs. $H_1: a < 0$

Remarks:

- Standard t statistic for a can be obtained from OLS regression.
- However, asymptotic distribution is also not normal.
- Model is too restrictive: Under alternative $E(Y_t) = 0$ and e_t is assumed to be white noise.

More generally: Allow deterministic trend μ_t and more general "error" series X_t .

$$Y_t = \mu_t + \alpha Y_{t-1} + X_t$$

$$\Delta Y_t = \mu_t + a Y_{t-1} + X_t$$

Assuming X_t is (approximately) an AR(p) process

$$\Delta Y_t = \mu_t + aY_{t-1} + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + e_t.$$

Under null hypothesis $\alpha=1$ and additionally $\mu_t=0$, we would have $X_t=Y_t-Y_{t-1}=\Delta Y_t$. Hence consider auxiliary regression

$$\Delta Y_t = \mu_t + aY_{t-1} + \phi_1 \Delta Y_{t-1} + \dots + \phi_p \Delta Y_{t-p} + e_t.$$

Test: Employ t statistic of \hat{a} from auxiliary regression as test statistic. This is called *augmented Dickey-Fuller (ADF) test*.

Remarks:

- Null distribution is not normal and depends on specification of μ_t.
- Typically, $\mu_t = \beta_1 + \beta_2 t$ is used or $\mu_t = \beta_1$.
- Tables of critical values from the different distributions are available.
- Finite-order AR(p) process may be insufficient approximation of X_t . Hence, increase p along with n, e.g., via information criteria or via heuristics such as $p = \lfloor (n-1)^{1/3} \rfloor$.
- Both the specification of μ_t and the number of lags p should be reported in practice.

In R:

- Various implementations. None is fully convenient superset of all others.
- adf.test() in tseries. Employs linear trend and heuristic for selection of p.
- CADFtest() in *CADFtest*. Supports various μ_t , trend by default. p is by default 1 (fixed), but can be selected via information criteria. Additional regressors (and their lags) can be added to auxiliary regression.
- ur.df() in *urca*. Supports various μ_t , uses $\mu_t = 0$ by default. p is by default 1 (fixed), but can be selected via information criteria.
- ADF.test() in uroot (employed in Cryer & Chan). Not in active CRAN repository anymore.

Alternatives:

- Phillips-Perron (PP) test:
 Same idea as ADF, but nonparametric (HAC) correction for autocorrelation.
- In R: pp.test() from tseries.
- Elliott-Rothenberg-Stock (ERS):
 Same idea as ADF, but GLS detrending.
 In R: ur.ers() from urca.

Problem: All tests have typically rather poor power for $\alpha = 1 - \varepsilon$.

Stationarity tests

Question: How can we test the null hypothesis of (trend) stationarity against the alternative that a process is integrated?

Idea:

$$Y_t = \mu_t + X_t + e_t$$

- μ_t : deterministic component.
- X_t : random walk.
- e_t : stationary or, more precisely, I(0).

Test: Null hypothesis $H_0: X_t \equiv 0$.

Versions:

- Level stationarity (under H_0): $\mu_t = \beta_1$.
- Trend stationarity (under H_0): $\mu_t = \beta_1 + \beta_2 t$.

Stationarity tests

Idea: Residuals from auxiliary OLS regression under H_0 should not fluctuate "too much".

$$\hat{e}_t = Y_t - \hat{\mu}_t$$

Kwiatkowski, Phillips, Schmidt, Shin (KPSS) suggest

KPSS =
$$\frac{1}{n^2 \hat{\sigma}_e^2} \sum_{t=1}^n S_t^2$$

= $\frac{1}{n^2 \hat{\sigma}_e^2} \sum_{t=1}^n \left(\sum_{j=1}^t \hat{e}_j \right)^2$

where $\hat{\sigma}_e^2$ is the Newey-West HAC estimate of the variance (so-called long-run variance).

In R: kpss.test() in tseries. (Or ur.kpss() in urca.)

Model Specification

Other Specification Methods

Other specification methods

Information criteria:

- Do not choose p and q in ARIMA(p, d, q) in advance, but estimate all conceivable models in certain ranges for p and q.
- Select that model which optimizes some (penalized) objective function, typically the maximized likelihood.
- Details after model estimation.

Subset ARMA models:

- Idea: Only some of the p AR and q MA coefficients, respectively, are non-zero.
- p and q give order of maximal non-zero coefficient but only subset of remaining coefficients is needed.

Model Specification

Specification of Some Actual Time Series

Illustration: Oil prices series.

- Evidence that log prices are non-stationary or, more precisely, integrated.
- Corresponding returns appear to be stationary.
- ARIMA(0, 1, 1) model seems to be appropriate for log prices.
- Outliers may be problematic.

In R:

```
R> data("oil.price", package = "TSA")
R> oil <- log(oil.price)
R> oil.ret <- diff(oil)
R> plot(ts.union(exp(oil), oil, diff(oil)), main = "")
```


Augmented Dickey-Fuller test: R> library("tseries") R> adf.test(oil) Augmented Dickey-Fuller Test data: oil Dickey-Fuller = -1.1, Lag order = 6, p-value = 0.9 alternative hypothesis: stationary R> adf.test(oil.ret) Augmented Dickey-Fuller Test data: oil.ret Dickey-Fuller = -6.7, Lag order = 6, p-value = 0.01 alternative hypothesis: stationary Warning message: In adf.test(oil.ret) : p-value smaller than printed p-value

Equivalently, using *CADFtest* package:

KPSS stationarity test: R> kpss.test(oil) KPSS Test for Level Stationarity data: oil KPSS Level = 2.5, Truncation lag parameter = 4, p-value = 0.01Warning message: In kpss.test(oil) : p-value smaller than printed p-value R> kpss.test(oil.ret) KPSS Test for Level Stationarity data: oil.ret KPSS Level = 0.19, Truncation lag parameter = 4, p-value = 0.1Warning message: In kpss.test(oil.ret) : p-value greater than printed p-value

Illustration: DAX closing prices.

- Evidence that log prices are non-stationary or, more precisely, integrated.
- Corresponding returns appear to be (close to) white noise.
- ARIMA(0, 1, 0) model seems to be appropriate for log prices.

In R:

```
R> data("EuStockMarkets", package = "datasets")
R> dax <- log(EuStockMarkets[, "DAX"])
R> dax.ret <- diff(dax)
R> plot(ts.union(exp(dax), dax, diff(dax)), main = "")
```



```
R> kpss.test(dax)
        KPSS Test for Level Stationarity
data: dax
KPSS Level = 18, Truncation lag parameter = 8, p-value =
0.01
Warning message:
In kpss.test(dax) : p-value smaller than printed p-value
R> adf.test(dax.ret)
        Augmented Dickey-Fuller Test
data: dax ret
Dickey-Fuller = -11, Lag order = 12, p-value = 0.01
alternative hypothesis: stationary
Warning message:
In adf.test(dax.ret) : p-value smaller than printed p-value
```

