1. Solution

The sample size, *n*, is 20. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 20 ceil$	5	54.53
Q2	$\lceil 0.5 \times 20 \rceil$	10	54.92
Q3	$\lceil 0.75 \times 20 \rceil$	15	55.45

We determine the IQR.

$$IQR = Q3 - Q1$$

= 55.45 - 54.53
= 0.92

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.53 - 1.5 \times 0.92$
= 53.15
upper boundary = Q3 + $1.5 \times IQR$
= $55.45 + 1.5 \times 0.92$
= 56.83

We determine the outliers.

outliers =
$$\{56.91\}$$

We identify the ends of the whiskers: 53.58 and 56.28. We plot the boxplot.

2. Solution

The sample size, *n*, is 27. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 27 ceil$	7	10.21
Q2	$\lceil 0.5 \times 27 \rceil$	14	10.56
Q3	$\lceil 0.75 \times 27 \rceil$	21	10.89

We determine the IQR.

$$IQR = Q3 - Q1$$

= 10.89 - 10.21
= 0.68

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $10.21 - 1.5 \times 0.68$
= 9.19
upper boundary = Q3 + $1.5 \times IQR$
= $10.89 + 1.5 \times 0.68$
= 11.91

We determine the outliers.

outliers =
$$\{12.16\}$$

We identify the ends of the whiskers: 10.02 and 11.72. We plot the boxplot.

