Tutorial Sheet 2

Arithmetic Error Analysis

- 1. Let X be a sufficiently large number which result in an overflow of memory on a computing device. Let x be a sufficiently small number which result in underflow of memory on the same computing device. Then give the output of the following operations:
 - (i) $x \times X$
- (ii) $3 \times X$
- (iii) $3 \times x$
- (iv) x/X
- (v) X/x.
- 2. In this question, computations are done on a computer which uses 3-digit chopping arithmetic.
 - i) Compute the mid-point of the interval [0.982, 0.987]. Show all the steps of the computation.
 - ii) Give a different way of computing the mid-point of [0.982, 0.987], so that the mid-point lies in the given interval [0.982, 0.987]. Show all the steps of the computation. Explain the differences between both these computations.
- 3. In the following problems, show all the steps involved in the computation.
 - i) Using 5-digit rounding, compute 37654 + 25.874 37679.
 - ii) Let a = 0.00456, b = 0.123, c = -0.128. Using 3-digit rounding, compute (a + b) + c, and a + (b + c). What is your conclusion?
 - iii) Let a=2, b=-0.6, c=0.602. Using 3-digit rounding, compute $a\times(b+c)$, and $(a\times b)+(a\times c)$. What is your conclusion?
- 4. Consider a computing device having exponents e in the range $m \leq e \leq M$, $m, M \in \mathbb{Z}$. Let n be an integer such that $n \leq |m| + 1$.
 - i) If the device uses *n*-digit rounding binary floating-point arithmetic, then show that $\delta = 2^{-n}$ is the machine epsilon.
 - ii) What is the machine epsilon of the device if it uses *n*-digit rounding decimal floating-point arithmetic? Justify your answer.
- 5. Consider a computing device that uses n-digit chopping (decimal) arithmetic. Let fl(x) denote the floating-point approximation of a positive real number x in this device. Prove

 $\left| \frac{x - \text{fl}(x)}{x} \right| \le 10^{-n+1}.$

6. The ideal gas law is given by PV = nRT where R is the gas constant. We are interested in knowing the value of T for which P = V = n = 1. If R is known only approximately as $R_A = 8.3143$ with an absolute error at most 0.12×10^{-2} . Obtain an upper bound for the absolute relative error in the computation of T that results in using R_A instead of R?

- 7. Let $x_A = 3.14$ and $y_A = 2.651$ be obtained from x_T and y_T using 4-digit rounding. Find the smallest interval that contains
 - (i) x_T
- (ii) y_T
- (iii) $x_T + y_T$

- (iv) $x_T y_T$ (v) $x_T \times y_T$ (vi) x_T/y_T .
- 8. Obtain the number of significant digits of $x_A = 0.025678$ present in x = 0.025611.
- 9. Instead of using the true values $x_T = 0.62457371$ and $y_T = 0.62457238$ in calculating $z_T = x_T - y_T$, if we use the approximate values $x_A = 0.62451251$ and $y_A = 0.62458125$, and calculate $z_A = x_A - y_A$, then find the loss of significant digits in the process of calculating z_A when compared to the significant digits in x_A .
- 10. Let $x_A = 0.04078$ has exactly 3 significant digits with respect to the real number x_T . Find the smallest interval in which x_T lies.
- 11. Given x = 0.75371 and y = -0.49572. Let the product x * y be computed using 3-digit rounding floating-point arithmetic. What is the absolute value of the total error? [Give the final answer with at least 6-digits after decimal places]
- 12. For small values of x, the approximation $\sin x \approx x$ is often used. Obtain a range of values of x for which the approximation gives an absolute error of at most $\frac{1}{2} \times 10^{-6}$.
- 13. Is the process of computing the value of the function $f(x) = (e^x 1)/x$ stable or unstable for $x \approx 0$? Justify your answer.