Universidade Federal Fluminense

Instituto de Computação Coordenação de Pós-Graduação em Computação

Disciplina: Analise e Síntese de Algoritmos

Professor: Dr. Luís Antônio Brasil Kowada

Aluno: Flávio Miranda de Farias

RELATÓRIO

Comparativo dos métodos de multiplicação utilizando a técnica Karatsuba e Padrão.

A multiplicação de Karatsuba (Karatsuba, 1995) é uma técnica recursiva para multiplicar vetores de números inteiros, muito diferente da técnica tradicional da escola primária. A multiplicação de Karatsuba é frequentemente ensinada nas aulas de ciência da computação e analisada teoricamente. Para números muito grandes, pelo menos teoricamente, entrega o melhor resultado no geral.

No entanto, para ter como método avaliativo, é preciso fazer algumas comparações empíricas. Para isto, foi escrito uma implementação usando código em C++ e comparando a uma técnica apelidada de "Multiplicação Padrão", no qual se assemelha em parte a técnica de Karatsuba, porem, dividindo as tarefas em mais partes.

Posteriormente será detalhado em mais detalhes o teste comparativo.

MOTIVAÇÃO

Esta pesquisa foi estimulada em sala de aula na disciplina de Analise e Síntese de Algoritmos da Pós-graduação em Computação da UFF em 2019-2 pelo professor Dr. Luís Antônio Brasil Kowada. Que instigou aos alunos praticarem uma análise de métodos de multiplicação de Strings numéricas, tendo como base comparativa o algoritmo de Karatsuba, como concorrente, foi sugerido outro algoritmo recursivo. A seguir a atividade proposta na integra.

"Tarefa 1

Multiplicação de dois números em uma base b qualquer com uma quantidade arbitrária de dígitos.

- Multiplicação padrão
- Multiplicação Karatsuba

A implementação deve ser recursiva (para ambas multiplicações).

O programa, contendo ambas funções, pode ser feito em Python, C, C++, Java, Pascal ou Fortran.

Acompanhando o programa (fonte e executável), deve haver um relatório, descrevendo o programa e fazendo uma simulação para diversos tamanhos de entrada diferente numa escala linear (p. ex. com crescimento de 10 em 10 dígitos) e numa escala exponencial (p. ex. com quantidade de dígitos variando de 1, 2, 4, 8, 16, 32, ...). A comparação deve ser feita quanto à quantidade de operações multiplicações elementares e quanto ao tempo de execução (em segundos).

A entrega deve ser feita através de um arquivo compactado (.zip) incluindo o programa e o relatório."

IMPLEMENTAÇÃO

Para implementação foi decidido usar a linguagem C++, em ambos os métodos (Karatsuba e Padrão), é solicitado na assinatura da função duas entradas de Strings (s) com valores inteiros de tamanho n, sendo n>=0 e s1 e s2 podem ser de tamanhos diferentes como pode ser visto na imagem a seguir, mais um inteiro representando a base de tamanho t>0. Como saída, retorna uma String s3 também de inteiros representando o produto da multiplicação s3=s1*s2.

```
"D:\Dropbox\Pos Graduab§es\Doutorado em ComputabÒo - UFF\Disiplinas\ASA - Luis Kowada\GitHub'
Deseja visualizar as strings? (s/n): s
Digite a Base: 2
Tamanho da string 1: 16
Tamanho da string 2: 8
String 1(char[]): 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0
String 2(char[]): 0 0 0 0 0 0 0 1
Cronometragem do algoritmo Karatsuba...
Produto= 10100111111100100
Tempo gasto pelo Karatsuba = 0.001 segundos.
Segundo a funcao 3(T)+19n+3, foram realizados 1 acessos recursivos.
Cronometragem do algoritmo de Multiplicacao Padrao...
Produto= 10100111111100100
Tempo gasto pela Multiplicacao Padrao = 0.001 segundos.
Segundo a funcao 4(T)+19n+3, foram realizados 1 acessos recursivos.
Repetir? (s/n):
```

No método main do programa, foi implementada algumas decisões do usuário para tornar o programa mais prático, sendo elas:

- Escolha de base:
- Escolha do tamanho da primeira e segunda String;
- Escolha se deseja ver impresso as Strings de entrada e saída na tela, para ambos os métodos;
- Opção de repetir os testes.

Ainda no método main, com a decisão do tamanho das Strings, são gerados valores inteiros positivos de forma randômica para preencher as entradas.

Na saída, é cronometrado e exibido o tempo de duração de cada método de multiplicação, além do numero de acessos recursivos a cada método.

O método karatsuba, baseada no algoritmo de mesmo nome, nesta implementação possui o custo de 3(T)+19n+3, por possuir 3 chamadas recursivas internamente e 19 operações de custo assintótico n, mais a constante. Enquanto o método Padrão possui o custo de 4(T)+19n+3, muito semelhante ao método anterior, se diferencia basicamente por possuir 4 chamadas recursivas.

Como metodologia comparativa, foi inserido um contador que informa ao final o número de recursões realizadas, além de comentários dentro do código explicando o custo assintótico de cada operação.

RESULTADOS

Os testes foram realizados no sistema operacional Windows 10 com processador i5-7200 com 2,71GHz e 8 Gb RAM e SSD.

Para os testes foi decidido trabalhar nas bases numéricas populares, 2,8,10,16, mesmo sendo possível trabalhar em qualquer valor de tamanho t. Em relação as entradas de String s de tamanho n, foi decidido trabalhar com s1=s2 para todos os testes, sendo s nos tamanhos exponenciais de base 2, sendo n=2^0 até 2^14.

Todos os testes foram realizados 3 vezes consecutivas para cada base t e cada tamanho de par de String n, realizando 180 execuções de cada método ou 360 no total. Foi optado por repetir 3 vezes com objetivo de usarmos o menor tempo, pois o tempo poderia sofrer alterações devido à concorrência com sistemas concorrentes na pilha do sistema operacional, o número de acessos recursivos não alterava pois o numero era o mesmo para os 3 testes, como pode ser visto na imagem capturada a seguir.

```
X
D:\Dropbox\Pos Graduações\Doutorado em Computação - UFF\Disiplinas\ASA - Luis Kowada\...
                                                                              Digite a Base: 2
Tamanho da string 1: 16384
Tamanho da string 2: 16384
Cronometragem do algoritmo Karatsuba...
Tempo gasto pelo Karatsuba = 5.698 segundos.
Segundo a funcao 3(T)+19n+3, foram realizados 6360397 acessos recursivos.
Cronometragem do algoritmo de Multiplicacao Padrao...
Tempo gasto pela Multiplicacao Padrao = 162.921 segundos.
Segundo a funcao 4(T)+19n+3, foram realizados 272774013 acessos recursivos.
Cronometragem do algoritmo Karatsuba...
Tempo gasto pelo Karatsuba = 5.601 segundos.
Segundo a funcao 3(T)+19n+3, foram realizados 6360397 acessos recursivos.
Cronometragem do algoritmo de Multiplicacao Padrao...
Tempo gasto pela Multiplicacao Padrao = 163.534 segundos.
Segundo a funcao 4(T)+19n+3, foram realizados 272774013 acessos recursivos.
Cronometragem do algoritmo Karatsuba...
Tempo gasto pelo Karatsuba = 5.743 segundos.
Segundo a funcao 3(T)+19n+3, foram realizados 6360397 acessos recursivos.
Cronometragem do algoritmo de Multiplicacao Padrao...
Tempo gasto pela Multiplicacao Padrao = 163.058 segundos.
Segundo a funcao 4(T)+19n+3, foram realizados 272774013 acessos recursivos.
Repetir? (s/n):
```

Todo este projeto como código fonte, tabulação de dados, entre outras, então disponíveis na pasta do GitHub (Farias, 2019). A seguir estão os dados dos testes:

Base 2					
Acessos			Tempo		
Tamanho	Karatsuba	Padrão	Tamanho	Karatsuba	Padrão
1	1	1	1	0	0
2	1	1	2	0	0
4	10	13	4	0	0
8	34	65	8	0	0
16	112	285	16	0	0
32	226	753	32	0	0
64	1075	5093	64	0	0,001
128	2740	16101	128	0,001	0,001
256	8479	65597	256	0,001	0,021
512	26101	261153	512	0,013	0,164
1024	78877	1074453	1024	0,052	0,574
2048	236581	4304597	2048	0,2	2,689
4096	703807	17091517	4096	0,648	10,528
8192	2124637	68265201	8192	1,866	40,682
16384	6360397	272774013	16384	5,601	162,921

Base 8					
Acessos			Tempo		
Tamanho	Karatsuba	Padrão	Tamanho	Karatsuba	Padrão
1	1	1	1	0	0
2	4	5	2	0	0
4	22	33	4	0	0
8	58	125	8	0	0
16	154	389	16	0	0
32	526	2053	32	0	0,001
64	1591	7761	64	0,001	0,001
128	4792	31629	128	0,002	0,014
256	14659	122325	256	0,003	0,061
512	43816	497197	512	0,024	0,31
1024	132685	2002765	1024	0,104	1,307
2048	396490	7901989	2048	0,323	4,99
4096	1189975	31809285	4096	1,055	20,407
8192	3578794	127218509	8192	3,151	79,652
16384	10727824	509246373	16384	7,231	257,69

Base 10					
Acessos			Tempo		
Tamanho	Karatsuba	Padrão	Tamanho	Karatsuba	Padrão
1	1	1	1	0	0
2	4	5	2	0	0
4	22	33	4	0	0
8	70	70	8	0	0
16	178	457	16	0	0
32	541	1985	32	0	0,001
64	1690	8077	64	0,001	0,001
128	5026	32633	128	0,001	0,005
256	15286	131797	256	0,001	0,066
512	45559	513269	512	0,03	0,318
1024	136924	2068069	1024	0,097	1,278
2048	410113	8211149	2048	0,365	5,269
4096	1230313	3296613	4096	1,02	20,411
8192	3691360	131846025	8192	3,292	86,712
16384	11076770	527138981	16384	7,72	275,497

Base 16					
Acessos			Тетро		
Tamanho	Karatsuba	Padrão	Tamanho	Karatsuba	Padrão
1	1	1	1	0	0
2	1	1	2	0	0
4	16	25	4	0	0
8	70	121	8	0	0
16	202	593	16	0	0
32	553	1933	32	0	0,001
64	1816	8645	64	0,001	0,001
128	5203	33233	128	0,001	0,011
256	15619	135241	256	0,006	0,078
512	47323	540857	512	0,025	0,338
1024	141787	2166329	1024	0,125	1,441
2048	430222	8711053	2048	0,377	5,69
4096	1282849	34794741	4096	1,149	23,196
8192	3849670	138964061	8192	3,255	88,486
16384	11526418	555077101	16384	8,199	285,749

Todas as Strings de entrada foram geradas de forma aleatória, portanto, podem variar um pouco o tempo de processamento, pois dependendo da base escolhida e número gerado, é necessário menos acessos recursivos, como exemplo, números com mais zeros, são processados recursivamente mais rápido que números com nenhum zero.

CONCLUÕES

Como é possível observar nos dados, para Strings numéricas de tamanhos baixo, aproximadamente n<1024, é insignificante a diferença entre os métodos, sendo que fatores esternos podem influenciar e muito nos resultados. Mas a partir de n>=1024, há uma separação evidente nos gráficos que mostra um crescimento exponencial acelerado para o método Padrão.

Isto é facilmente explicado pelo livro do Cormen (Cormen, 2012), no qual aborda os conceitos teóricos sobre o custo dos algoritmos de recorrência. E no caso do Karatsuba que possui 3 chamadas recursivas, é mais eficiente que o Padrão que possui 4 chamadas recursivas, neste caso, com um ponto inicial provável em 1024, tendendo ao infinito.

Como trabalhos futuros recomendo comparar Karatsuba a ouros métodos interativos que possivelmente podem apresentar melhor custo em números baixos.

REFERENCIAS

- Cormen, T. H. (2012). *Algoritmos: teoria e prática*. Campus. Retrieved from https://books.google.com.br/books?id=6iA4LgEACAAJ&dq=cormen+algoritmos+te oria+pratica&hl=pt-BR&sa=X&ved=0ahUKEwjHspTOutPkAhW3H7kGHfacDIMQ6AEIKTAA
- Farias, F. Mi. de. (2019). Karatsuba String C++. Retrieved September 15, 2019, from https://github.com/fmflavio/Karatsuba
- Karatsuba, A. A. (1995). The complexity of computations. *Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation*, *211*, 169–183.