Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Лекция 13. Восстановление линейного расслоения по классу дивизора

На прошлой лекции мы сопоставили каждому линейному расслоению над данной гладкой компактной алгебраической кривой C класс линейной эквивалентности дивизоров его сечений. Кроме того, мы доказали, что если для двух линейных расслоений эти классы совпадают, то сами расслоения изоморфны. Наша ближайшая цель — доказать следующее утверждение.

Лекция 13. Восстановление линейного расслоения по классу дивизора

На прошлой лекции мы сопоставили каждому линейному расслоению над данной гладкой компактной алгебраической кривой C класс линейной эквивалентности дивизоров его сечений. Кроме того, мы доказали, что если для двух линейных расслоений эти классы совпадают, то сами расслоения изоморфны. Наша ближайшая цель — доказать следующее утверждение.

Theorem

Каждый класс линейной эквивалентности дивизоров на данной гладкой компактной алгебраической кривой С является классом дивизоров некоторого линейного расслоения над С.

Линейное расслоение, сопоставляемое дивизору D, обозначается $\mathcal{O}(D)$.

Лекция 13. Восстановление линейного расслоения по классу дивизора

На прошлой лекции мы сопоставили каждому линейному расслоению над данной гладкой компактной алгебраической кривой C класс линейной эквивалентности дивизоров его сечений. Кроме того, мы доказали, что если для двух линейных расслоений эти классы совпадают, то сами расслоения изоморфны. Наша ближайшая цель — доказать следующее утверждение.

Theorem

Каждый класс линейной эквивалентности дивизоров на данной гладкой компактной алгебраической кривой С является классом дивизоров некоторого линейного расслоения над С.

Линейное расслоение, сопоставляемое дивизору D, обозначается $\mathcal{O}(D)$.

Доказательство. Построим искомое расслоение. Пусть $\sum_{i=1}^k a_i x_i$, $a_i \neq 0$, $x_i \in C$ — дивизор. Выберем на C маленькие диски U_i с центрами в точках x_i , z_i — произвольная локальная координата в U_i , и пусть $W = C \setminus \{x_1, \dots, x_k\}$. Склеим расслоение над C из тривиального расслоения над W и тривиальных расслоений над U_i , взяв в качестве функций склейки над $U_i \cap W$ отображения $(z_i, t) \mapsto (z_i, z_i^{-a_i}t)$, где t — координата в слое. Тривиализующее сечение расслоения над W превращается в мероморфное сечение построенного линейного расслоения над C, имеющее заданный дивизор.

Пусть C — гладкая алгебраическая кривая, $L \to C$ — линейное расслоение над C. Голоморфные сечения $\sigma: C \to L$ расслоения L образуют векторное пространство $H^0(L)$ над $\mathbb C$; это векторное пространство конечномерно. Точка $x \in C$, в которой все сечения расслоения L обращаются в нуль, называется базисной для этого расслоения. Если у расслоения L есть ненулевые голоморфные сечения, то множество его базисных точек конечно.

Пусть C — гладкая алгебраическая кривая, $L \to C$ — линейное расслоение над C. Голоморфные сечения $\sigma: C \to L$ расслоения L образуют векторное пространство $H^0(L)$ над \mathbb{C} ; это векторное пространство конечномерно. Точка $x \in C$, в которой все сечения расслоения L обращаются в нуль, называется базисной для этого расслоения. Если у расслоения L есть ненулевые голоморфные сечения, то множество его базисных точек конечно.

Каждая небазисная точка $x\in C$ задает линейный функционал ℓ_x на векторном пространстве $H^0(L)$, определенный с точностью до умножения на ненулевую константу: $\ell_x(\sigma_1)/\ell_x(\sigma_2)=\sigma_1(x)/\sigma_2(x)$ — корректно определенное число. Поэтому линейное расслоение $L\to C$ определяет отображение $x\mapsto \ell_x$ дополнения к базисным точкам в C в проективизацию двойственного к пространству голоморфных сечений расслоения L. Это отображение продолжается до непрерывного отображения $\varphi_L:C\to P(H^0(L))^\vee$.

Пример. Кокасательное расслоение $T^{\vee}C \to C$ определяет отображение кривой C рода g>1 в проективизацию g-мерного пространства, двойственного пространству $H^0(T^{\vee}C)$ голоморфных 1-форм на C. Это отображение называется *каноническим*.

Пример. Кокасательное расслоение $T^{\vee}C \to C$ определяет отображение кривой C рода g>1 в проективизацию g-мерного пространства, двойственного пространству $H^0(T^{\vee}C)$ голоморфных 1-форм на C. Это отображение называется K каноническим. Отображения \mathcal{G}_L удобно строить явно, выбрав базис в пространстве голоморфных сечений данного линейного расслоения L. Например, базис K0, ..., K0 в пространстве голоморфных 1-форм на данной кривой K0 рода K2 порождает отображение K3 кривой K4 в K4 в K5 года K6 года K6 года K6 года K7 года K8 года K9 года K9

Лекция 13. Эффективные дивизоры

Дивизор $D=\sum a_ix_i$ называется эффективным, если $a_i\geq 0$ для всех i; в этом случае пишем $D\geq 0$.

Эффективные дивизоры образуют *конус*, т.е. сумма двух эффективных дивизоров эффективна, и результат умножения эффективного дивизора на положительное целое число является эффективным.

Лекция 13. Эффективные дивизоры

Дивизор $D=\sum a_ix_i$ называется э $\phi\phi$ ективным, если $a_i\geq 0$ для всех i; в этом случае пишем $D\geq 0$.

Эффективные дивизоры образуют конус, т.е. сумма двух эффективных дивизоров эффективна, и результат умножения эффективного дивизора на положительное целое число является эффективным.

Для данного дивизора D обозначим множество линейно эквивалентных ему эффективных дивизоров через |D|. Это множество естественно отождествляется с проективизацией пространства голоморфных сечений расслоения $\mathcal{O}(D)$: дивизор произвольного мероморфного сечения расслоения $\mathcal{O}(D)$ имеет вид (f)+D для некоторой мероморфной функции f на C, и дивизор (f)+D эффективен тогда и только тогда, когда соответствующее ему сечение голоморфно.

Лекция 13. Эффективные дивизоры

Дивизор $D=\sum a_ix_i$ называется э $\phi\phi$ ективным, если $a_i\geq 0$ для всех i; в этом случае пишем $D\geq 0$.

Эффективные дивизоры образуют конус, т.е. сумма двух эффективных дивизоров эффективна, и результат умножения эффективного дивизора на положительное целое число является эффективным.

Для данного дивизора D обозначим множество линейно эквивалентных ему эффективных дивизоров через |D|. Это множество естественно отождествляется с проективизацией пространства голоморфных сечений расслоения $\mathcal{O}(D)$: дивизор произвольного мероморфного сечения расслоения $\mathcal{O}(D)$ имеет вид (f)+D для некоторой мероморфной функции f на C, и дивизор (f)+D эффективен тогда и только тогда, когда соответствующее ему сечение голоморфно.

Definition

Проективное пространство |D| называется *полной линейной системой*, отвечающей дивизору D. Проективные подпространства в |D| называются *линейными системами*.

Лекция 13. Пространства L(D)

Пусть D — дивизор на кривой C. Через L(D) обозначается векторное пространство мероморфных функций, дивизор которых больше -D, $L(D) = \{f | (f) + D \geq 0\}$, через I(D) — его размерность, $I(D) = \dim L(D)$. Через i(D) обозначается размерность пространства мероморфных 1-форм на C, дивизор которых больше D.

Лекция 13. Теорема Римана-Роха

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Проверим, что это равенство выполняется в уже известных нам случаях.

Лекция 13. Теорема Римана-Роха

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Проверим, что это равенство выполняется в уже известных нам случаях.

Пример. Пусть g=0. Если для дивизора D его степень $d=\deg(D)\geq 0$, то, как мы знаем, l(D)=d+1 и i(D)=0. Если d=-1, то l(D)=i(D)=0. Если же d<-1, то l(D)=0 и i(D)=-d-1.

Лекция 13. Теорема Римана-Роха

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Проверим, что это равенство выполняется в уже известных нам случаях.

Пример. Пусть g=0. Если для дивизора D его степень $d=\deg(D)\geq 0$, то, как мы знаем, l(D)=d+1 и i(D)=0. Если d=-1, то l(D)=i(D)=0. Если же d<-1, то l(D)=0 и i(D)=-d-1.

Пример. Пусть g=1. Для дивизора D=0 формула Римана—Роха приобретает вид I(0)=0-1+1+i(0)=i(0). Действительно, пространство голоморфных функций на эллиптической кривой одномерно, I(0)=1, как и пространство голоморфных 1-форм, нигде не обращающихся в 0.

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Рациональная кривая. Докажем, наконец, что $\mathbb{C}P^1$ — единственная кривая рода 0. Пусть C — кривая рода g=0, и пусть $D=1\cdot x\in \mathrm{Div}(C)$, $x\in C$, $\deg D=1$. Тогда $I(D)=I(1\cdot x)=1-0+1+i(1\cdot x)=2+i(1\cdot x)\geq 2$. Поэтому на C существует мероморфная функция с полюсом первого порядка в точке x, не имеющая других полюсов. Эта функция имеет степень 1 и осуществляет биголоморфизм кривой C на $\mathbb{C}P^1$.

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Функция Вейерштрасса. Мы строили функцию Вейерштрасса на эллиптической кривой, представляющей собой результат факторизации комплексной прямой $\mathbb C$ по решетке $L_{\tau}=\langle 1,\tau \rangle$, как сумму ряда по узлам решетки. Построенная мероморфная функция на кривой имеет единственный полюс, и порядок этого полюса равен 2. Формула Римана—Роха позволяет доказать существование функции с полюсом второго порядка, не строя ее явно:

$$I(2 \cdot x) = 2 - 1 + 1 + i(2 \cdot x) = 2 + i(2 \cdot x) \ge 2.$$

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Функция Вейерштрасса. Мы строили функцию Вейерштрасса на эллиптической кривой, представляющей собой результат факторизации комплексной прямой $\mathbb C$ по решетке $L_{\tau}=\langle 1,\tau \rangle$, как сумму ряда по узлам решетки. Построенная мероморфная функция на кривой имеет единственный полюс, и порядок этого полюса равен 2. Формула Римана—Роха позволяет доказать существование функции с полюсом второго порядка, не строя ее явно:

$$I(2 \cdot x) = 2 - 1 + 1 + i(2 \cdot x) = 2 + i(2 \cdot x) \ge 2.$$

Упражнение. Докажите, что функция Вейерштрасса (как и любая функция с единственным полюсом второго порядка) четная, $\wp(-z) = \wp(z)$ для координаты z на торе с центром в полюсе функции.

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

У кокасательного расслоения нет базисных точек.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D) = d - g + 1 + i(D).$$

Lemma

У кокасательного расслоения нет базисных точек.

Доказательство. Пусть $x \in C$ — базисная точка кокасательного расслоения $T^{\vee}C$, т.е. такая точка, в которой каждая голоморфная 1-форма на C обращается в 0. Тогда

$$I(1 \cdot x) = 1 - g + 1 + i(1 \cdot x) = 2 - g + g = 2,$$

поскольку $i(1 \cdot x) = i(0) = g$. Это означает, что на C есть мероморфная функция с единственным полюсом $x \in C$ порядка 1, а значит, g = 0.

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

Если каноническое отображение $\varphi: C \to \mathbb{C} P^{g-1}$ кривой C рода g переводит какие-то две ее точки в одну, $\varphi(x) = \varphi(y)$, $x \neq y$, то кривая C гиперэллиптическая.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

Если каноническое отображение $\varphi: C \to \mathbb{C} P^{g-1}$ кривой C рода g переводит какие-то две ее точки в одну, $\varphi(x) = \varphi(y)$, $x \neq y$, то кривая C гиперэллиптическая.

Доказательство. Пространство голоморфных 1-форм с нулем в точке x совпадает с пространством голоморфных 1-форм с нулем в точке y, поэтому $i(1 \cdot x + 1 \cdot y) = i(1 \cdot x) = i(1 \cdot y) = g - 1$. Отсюда

$$I(1 \cdot x + 1 \cdot y) = 2 - g + 1 + (g - 1) = 2.$$

Поэтому на C есть функция с полюсами первого порядка в точках x и y, не имеющая других полюсов. Степень этой функции равна 2, и она осуществляет гиперэллиптическое накрытие проективной прямой.

Theorem

Пусть C — гладкая алгебраическая кривая рода g , $D \in \mathrm{Div}(C)$, $d = \deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

Всякая кривая рода g=2 является гиперэллиптической.

Theorem

Пусть C- гладкая алгебраическая кривая рода g , $D\in \mathrm{Div}(C)$, $d=\deg(D)$. Тогда

$$I(D)=d-g+1+i(D).$$

Lemma

Всякая кривая рода g = 2 является гиперэллиптической.

Доказательство. Каноническое отображение φ кривой рода g=2 отображает ее в $\mathbb{C}P^{g-1}\equiv \mathbb{C}P^1$. Оно не может быть взаимно-однозначным на образ, поэтому $\varphi(x)=\varphi(y)$ для некоторых несовпадающих точек $x,y\in C$. Поэтому кривая C гиперэллиптическая.

Семинар 13.

- ullet Пусть $D=\sum a_i\cdot x_i+a_\infty\cdot\infty$ дивизор на проективной прямой. Опишите пространство L(D).
- ullet Докажите, что i(D)=I(K-D), где K канонический дивизор.
- Пусть $C \subset \mathbb{C}P^n$ гладкая алгебраическая кривая степени d. Точки пересечения гиперплоскости в $\mathbb{C}P^n$ с кривой C образуют эффективный дивизор степени d. Докажите, что все такие дивизоры образуют линейную систему. Найдите размерность этой линейной системы. Является ли она полной?
- Пусть $C \subset \mathbb{C}P^n$ гладкая алгебраическая кривая степени d. Точки пересечения гиперповерхности степени k в $\mathbb{C}P^n$ с кривой C образуют эффективный дивизор степени kd. Докажите, что все такие дивизоры образуют линейную систему. Найдите размерность этой линейной системы. Является ли она полной?

Семинар 13.

- Верно ли, что каноническое отображение гиперэллиптической кривой является гиперэллиптическим накрытием ее образа?
- Докажите, что если для пары точек $x,y\in C$, $x\neq y$ существует функция с полюсами первого порядка в них и без других полюсов, то $\varphi(x)=\varphi(y)$.
- Пусть $f: C \to \mathbb{C}P^1$ гиперэллиптическое накрытие. Найдите размерность I(D) пространства L(D) для следующих случаев: a) $D=2\cdot x$, где $x=f^{-1}(f(x))$; б) $D=2\cdot x$, где $x\neq f^{-1}(f(x))$; в) $D=1\cdot x+1\cdot y$, где $x\neq y$, f(x)=f(y); г) $D=1\cdot x+1\cdot y$, где $x\neq y$, $f(x)\neq f(y)$.

Семинар 13.

• Докажите, что всякая кривая рода 2 допускает погружение в проективную плоскость с одной двойной точкой.