GAME THEORY

PAGE NO.

Prisoner's Dilemma

Police has custody of 2 suspects of a robberry, & they interviogate have no évidence their any chance mes un a confession they interrogate them in spe separate Chambers Each suspect can either confess or deny

- . Both confess 5 years in fail to both.
- · Each suspect can either admit their paretner committed

 the ound; or stay silent (cooperate & defect respectively)
 - x & y cooperate: one year in jail each
- . X cooperates. Y defects: X:3yrs, Y:0yrs
- · X & Y defect 2 years injair each

7				1
ray	XX	YCOOP	y def	•
	1 7 7		2	
	X		3 0	
	coop			-
	×	0	2/5	_
	def	3	2	_
	V 1-		-	

Two person games: exactly 2 players

game Trees: Assumptions: 2 player game, zero sum game switwo players are MAX & MIN. A game is represented by

game thee is a layered me where at each afternating a game tree.

ievel, one player or the other makes choices

The layers wer called MAX layers + MIN layers.

ranimax xwe:
· If the nodes is a MAX node, back up the maximum
of the values of its children
value(node) = max {value(e) c is a child of node?
MIN " minimum
7'
value(node) = min {value(c) c is a child of node?
GAME PLAYING ALGORITHMS
· Explore the tree upto a finite ply depth
· · Compute the evaluation function of the nodes on the frontie
· Use the minimax backup rule to determine the value of
the partial game tree, & the best mave.
Nake your the chosen move, wait for opponents move, then
again search for your best move
·
1. MINIMAX ALGORITHM
Simplest algo for computing minimax value
Recursive, broker acking algo
Max (A)
Mun Br C
Marx (D) (E) (F) (g)
183-221-34

PAGE NO. DATE: 1 202
• MAI DOES a DE depth first + Harrisal of the tree applying the minimax backuprime • We choose a node N 3 cases aries 1. Nis a terminal node: Hetwin eval(N) 2. Nis a MAX node: value ← -∞ for each child C of N Value ← max(value, MINIMAX(C)) Value ← max(value, MINIMAX(C)) Value ← ∞ Value ← ∞
for each child c of N value - min (value, MINIMAX (C))
pruning the search tree: when a winning move has been found, other options need not be explored.
In thus case, MAX has found winning move

2. ALPHA-BETA ALGORITHM

· MAX nodes: Alpha nodes, which store alpha values.

Alpha Values is the value found 80 for the alpha node, I is a lower bound on the value of the node at can only be revesed upwards - rejects lower values

MINIONALO

·MIN nodes: Beta nodes, " beta "
Beta value " beta "

" upper bound.

" downwards - rejects higher values subseque

Fax pruning, x≥p.

3. SSS * ALGORITHM

- Main problem w/ 10 d-B is that is sensitive to the order in which moves are generated
- · 2t always searches the game tree from L to R, in an uninformed fashion.
- SSS* searches the game tree guided by hewritic fashion who
- · Maintains priority queue.

Storet by adding

- · Each node is either LIVE runknown minimax value SOLVED known "
- · Add the root node to the PS & continue till rocat

Initialization phase

FACENO.
DATE: 1 202

FORWARD Phase: add LIVE nodes LIU the horizon Evaluate:
on the horizon.
Backward phase: when SolvED, apply backup rule.

3