Electrónica II

Apuntes de clase

Javier Rodrigo López ¹
31 de enero de 2021

 $^{^{1}\}hbox{E-mail: javiolonchelo@gmail.com}$

Introducción

Esta pequeña recopilación de fórmulas, teoremas y demás apuntes de teoría ha sido elaborada durante el primer semestre del curso 2019-2020, en la escuela **ETSIST** de la **UPM** por Javier Rodrigo López, alumno de 2° curso de Ingeniería de Sonido e Imagen.

Muchas gracias al profesor **José Antonio Herrera Camacho** por hacer una labor excelente como docente y despertar en mí el interés por la Electrónica. Una gran parte de estos apuntes existiría si no hubiera asistido a sus clases.

Índice general

Capítulo 1

Bloque Temático 1

1.1 Codificación de la información

Para convertir una señal analógica en digital, tenemos que aplicarle una transformación denominada **codificación**.

La codificación

1.2 Codificación de números

1.2.1. Código BN (Binario Natural)

La fórmula es

$$n \ge \log_2 m$$

Siendo n el número de bits y m el número de objetos. Aunque la mayoría de las veces El rango de números naturales que se pueden codificar con n bits es:

$$(0,2^n-1)$$

Existen distintas opciones de asignación de códigos.

- A cada elemento del conjunto debe corresponderle un único código de 0s y 1s.
- Se debe utilizar el menor número de bits posible.
- La asignación debe favorecer las operaciones de codificar y descodificar.

1.2.2. Código BCD (Binary Coded Decimal)

Representa cada una de las cifras decimales de un número expresado en decimal con 4 bits. Un número decimal de n cifras necesita 4n bits para expresarlo en BCD.

El BCD se utiliza mucho para interfaces con personas, ya que cada nibble representa

1.3 Aritmética Binaria

1.3.1. Suma de números

De toda la vida. Aquí van algunos ejemplos...

Puede sobrepasar el número de bits con el que se trabaja y se produce un acarreo o carry.

1.3.2. Resta de números

De toda la vida. Aquí van algunos ejemplos...

Puede producirse un error por no utilizar suficientes bits y que el resultado no sea fiel a la operación. A esto se le denomina **overflow**.

1.4 Ejercicios sobre codificación y Aritmética Binaria

1.5 Álgebra de Boole

1.5.1. Teoremas básicos

■ Teorema de idempotencia:

$$\boxed{a+a=a}$$

■ Teorema de absorción:

$$\boxed{a + ab = a}$$

■ Teorema de adyacencia:

$$ab + a\overline{b} = a$$

$$(a+b)(a+\overline{b}) = a$$

■ Teorema de simplificación:

$$\boxed{a + \overline{a}b = a + b}$$

■ Teorema de De Morgan:

$$\overline{a_0 \cdot a_1 \cdot \ldots \cdot a_n} = \overline{a_0} + \overline{a_1} + \ldots + \overline{a_n}$$

$$\overline{a_0 + a_1 + \ldots + a_n} = \overline{a_0} \cdot \overline{a_1} \cdot \ldots \cdot \overline{a_n}$$

1.6 Cronogramas

Un cronograma es un diagrama donde se representan las entradas, nodos intermedios y salidas en función del tiempo.

Para esta parte del temario, y a falta de laboratorio en esta asignatura, intentaremos utilizar la aplicación Quartus. Esta herramienta CAD nos permitirá trabajar con puertas lógicas.

1.7 Sistemas combinacionales complejos

La complejidad de un circuito combinacional depende sobre todo del **número de entradas**, ya que con N entradas la tabla de verdad tendrá 2^N filas.

Hemos encontrado casos en los que los circuitos tenían muy poquitos unos o muy poquitos ceros en su tabla de verdad, o que se podían escribir de forma resumida.

1.7.1. Divide y vencerás

La estrategia principal consiste en dividir el circuito en otros más pequeños que, al agruparlos, sean fácilmente descriptibles.

Por ejemplo, un sumador de N bits. Podemos hacer un sumador de 1 bit y con

Capítulo 2

Bloque Temático 2

2.1 Arquitecturas digitales I

2.1.1. Sistemas basados en microprocesador

2.1.2. Sistemas cableados

Pros:

• Velocidad y eficiencia.

Contras:

- Complejidad del hardware.
- Versatilidad.

2.2 Conceptos básicos

2.2.1. Nivel logico

La representación de ceros y unos se define por intervalos de tensiones.

Es decir, si el nivel alto se corresponde con una tensión V_{CC}

2.2.2. Células lógicas

Son circuitos electrónicos que realizan operaciones lógicas.

Nodos lógicos

Un nodo lógico es una interconexión entre células lógicas.

2.2.3. Modelo lógico de las células

Células estándar: Función lógica prefijada en el diseño de la célula. Por ejemplo, una NOR de dos entradas, construida con transistores CMOS.

2.3 Tecnologías

2.3.1. Circuitos cableados

SSI. Ciruitos de baja escala de integración

Tecnología de los años 60. Métodos manuales de diseño. Aplicación marginal. Lógica auxiliar (Glue logic)

Ciruitos de media escala de integración

ASIC. Ciruitos de media escala de integración

Tecnología VLSI (Very Large Scale Integration).

Lógica configurable

Tecnología VLSI. Funcionamiento lógico configurable mediante la descarga de un fichero.

2.4 Arquitecturas digitales II

2.4.1. Estructura de un sistema digital

PCB (Printed Circuit Board). Es básicamente la placa donde se colocan los componentes Alimentación Interfaces Disipadores

2.5 Tecnología II

2.5.1. Introducción al modelado de CIs

Necesitamos modelos simplificados para abordar el diseño de sistemas muy complejos. Hay tres modelos:

- 1. Lógico. Función lógica e interfaz.
- 2. Eléctrico. Características eléctricas de la interfaz.
- 3. Dinámico.

Modelo lógico

Decribe el funcionamiento y la interfaz del chip.

Modelo eléctrico

Es muy importante para conectarlo

Capítulo 3

Bloque Temático 3

- 3.1 Introducción a los circuitos secuenciales
- 3.2 Cronogramas funcionales de circuitos de flip-flops
- 3.3 Registros

3.4 Diseño de autómatas

Un **autómata de Moore** es un autómata en el que la salida depende únicamente del estado actual de la memoria.

Diagrama de estados para autómatas de Moore:

Un **autómata de Mealy** es un autómata en el que la salida depende del estado actual de la memoria y de las entradas.

Diagrama de estados para autómatas de Mealy:

3.5 Contadores

3.6 Metodología completa de diseño de sistemas