Krzysztof Pszeniczny nr albumu: 347208 str. 1/1 Seria: 1

Zadanie 3

Określmy automat \mathcal{A} nad alfebetem $A' := A \sqcup \{^{\wedge}\}$, jako sumę rozłączną automatów $\mathcal{A}_1, \mathcal{A}_2$ z doklejonym stanem q_0 , z którego jedynymi krawędziami są krawędzie do stanów początkowych automatu \mathcal{A}_1 z wagą 1 i do stanów początkowych automatu \mathcal{A}_2 z wagą -1 – wszystkie te nowe krawędzie wczytują literę $^{\wedge}$. Jedynym stanem początkowym automatu \mathcal{A} , zaś stanami akceptującymi – stany akceptujące automatów \mathcal{A}_1 i \mathcal{A}_2 .

Oczywiście waga słowa $^{\wedge}a_1a_2a_3...a_n$ w automacie \mathcal{A} jest równa różnicy wag słowa $a_1a_2...,a_n$ w automatach \mathcal{A}_1 , \mathcal{A}_2 . Zatem problem z zadania jest równoważny pytaniu: czy każde słowo zaczynające się od $^{\wedge}$ ma w automacie \mathcal{A} wagę zero.

Niech stany automatu \mathcal{A} to będą q_0, q_1, \ldots, q_n , gdzie q_0 jest początkowy. Przypiszmy każdej literze $a \in A'$ macierz M_a wymiaru $(n+1) \times (n+1)$, taką, że $(M_a)_{i,j} = g(q_i, a, q_j)$. Dla $w = a_1 a_2 \ldots a_m$ określmy $M_w = M_{a_1} M_{a_2} \ldots M_{a_m}$. Łatwo widać przez indukcję po długości słowa, że $(M_w)_{i,j}$ jest sumą wag biegów automatu \mathcal{A} po słowie w zaczynających się w stanie q_i i kończących w stanie q_j .

Istotnie, dla m=1 jest to prawda z definicji, zaś $(M_{wa})_{i,j}=\sum_k(M_w)_{i,k}(M_a)_{k,j}$ jest dokładnie taką samą równością jaka zachodzi dla sumy wag biegów – po przeczytaniu w automat znajduje się w jakimś stanie q_k i doszedł tam w jakiś sposób ze stanu q_i , po czym przejdzie jedną literą do stanu q_j . Możliwy bieg z q_i do q_j bierze się z konkatenacji biegów z q_i do q_k i q_k do q_j , a rozdzielność mnożenia względem dodawania daje nam, że suma wag biegów zachowa się w sposób wyrażony powyższym równaniem.

Niech $P = (1 \ 0 \ 0... \ 0)$, zaś Q będzie wektorem pionowym o n+1 wyrazach, z których i-ty (licząc od zera) to jeden, gdy q_i jest stanem akceptującym, zaś zero w przeciwnym przypadku.

Wtedy łatwo widać, że PM_wQ jest macierzą 1×1 , a jej jedyny wyraz to dokładnie $f_A(w)$ – mnożenie macierzy znów zachowuje się tak samo jak własności automatów, tj. mnożenie przez P z lewej strony wymusza zaczynanie w stanie q_0 , zaś mnożenie przez Q z prawej oznacza wysumowanie wag po wszystkich biegach kończących się w stanach akceptujących.

Niech teraz $V_k = \lim_{\mathbb{Q}} \{PM \wedge M_w : |w| \leqslant k\}$. Oczywiście V_k jest przestrzenią liniową nad ciałem \mathbb{Q} i jest to podprzestrzeń przestrzeni (n+1)-wymiarowej. Ponadto oczywiście $V_0 \subseteq V_1 \subseteq V_2 \subseteq V_3 \subseteq \ldots \subseteq V_n \subseteq V_{n+1} \subseteq V_{n+2} \hookrightarrow \mathbb{Q}^{n+1}$. Zatem: $0 \leqslant \dim V_0 \leqslant \dim V_1 \leqslant \dim V_2 \leqslant \ldots \leqslant \dim V_n \leqslant \dim V_{n+1} \leqslant \dim V_{n+2} \leqslant n+1$.

To oznacza, że $\dim V_k = \dim V_{k+1}$ dla pewnego $k \le n+2$. To zaś oznacza, że $V_{k+1} = V_k$. Oczywiście mamy $V_{i+1} = \lim_{\mathbb{Q}} \{M, MM_{\alpha} : M \in V_i, \alpha \in A'\}$, zatem łatwo widzimy, że jeśli dorzucenie do V_k przemnożenia V_k przez macierze odpowiadające literom nie dodało nic, tj. $\lim_{\mathbb{Q}} \{MM_{\alpha} : M \in V_i, \alpha \in A'\} \subseteq V_i$, to już nigdy nic nie zostanie dodane, tj. $\forall_{i \geqslant k} V_i = V_k$.

Przypuśćmy teraz, że dla każdego i $\leq n+2$ mamy $\forall_{M\in V_i}MQ=0$. Wtedy oczywiście mamy na mocy powyższego, że $\forall_i\forall_{M\in V_i}MQ=0$. To zaś w szczególności daje, że dla każdego słowa w mamy $PM_{^{\wedge}w}Q=0$, czyli $f_{\mathcal{A}}(^{\wedge}w)=0$.

Jeśli jednak dla jakiegoś i $\leq n+2$ istnieje takie $M \in V_i$, że $MQ \neq 0$, to oczywiście musi to być spełnione także przez któryś z generatorów przestrzeni liniowej (gdyż funkcja $(\cdot Q): \mathbb{Q}_1^{n+1} \to \mathbb{Q}$ jest przekształceniem liniowym, więc jej jądro jest przestrzenią liniową, a zatem jeśli generatory przestrzeni liniowej należą do jądra, to i cała przestrzeń), a zatem istnieje takie słowo w, że $PM \wedge M_w Q \neq 0$, czyli $f_{\mathcal{A}}(^{\wedge}w) \neq 0$.

Z powyższych rozważań wynika, że wystarczy sprawdzić zachowanie automatu na słowach długości conajwyżej n+2 – jeśli na jakimś słowie waga jest niezerowa, to istnieje też krótkie słowo, na którym waga jest niezerowa. Sprawdzenia tego możemy albo dokonać brutalnie – jest skonczenie wiele krótkich słów i dla każdego z nich jest skończenie wiele biegów, albo też możemy policzyć przestrzenie V_k – zawsze jednak wykonamy skończenie wiele operacji, zatem maszyna Turinga jest w stanie rozstrzygnąć ten problem.