Տավանականությունների փեսություն և վիճակագրություն Դաս 4

Ապրիլ 16, 2024

Առնակ Դալալյան ENSAE Paris / CREST

- ullet Եթե X-ը պափահական մեծություն է և f-ը ինչ-որ ֆունկցիա է, ապա Y=f(X)-ը ևս պափահական մեծություն է:
- ullet Y-ի հնարավոր արժեքների բազմությունը՝ $Y(\Omega)=\{f(x_1),\ldots,f(x_n)\}$ ։
- Եթե X-ի բաշխման օրենքն է

- lack Եթե X-ը պատահական մեծություն է և f-ը ինչ-որ ֆունկցիա է, ապա Y=f(X)-ը ևս պատահական մեծություն է:
- ullet Y-ի հնարավոր արժեքների բազմությունը՝ $Y(\Omega)=\{f(x_1),\ldots,f(x_n)\}$ ։
- Եթե X-ի բաշխման օրենքն է

y	$f(x_1)$	$f(x_2)$	 $f(x_n)$
P(Y=y)	p_1	p_2	 p_n

- lack Եթե X-ը պատահական մեծություն է և f-ը ինչ-որ ֆունկցիա է, ապա Y=f(X)-ը ևս պատահական մեծություն է:
- ullet Y-ի հնարավոր արժեքների բազմությունը՝ $Y(\Omega)=\{f(x_1),\ldots,f(x_n)\}$:
- Եթե X-ի բաշխման օրենքն է

- **S**tuplupup, $E(Y) = p_1 f(x_1) + \ldots + p_n f(x_n)$.
- ullet Մասնավորապես, եթե f-ը գծային ֆունկցիա է, f(x)=ax+b, կստանանք՝

- lack Եթե X-ը պատահական մեծություն է և f-ը ինչ-որ ֆունկցիա է, ապա Y=f(X)-ը ևս պատահական մեծություն է:
- ullet Y-ի հնարավոր արժեքների բազմությունը՝ $Y(\Omega)=\{f(x_1),\ldots,f(x_n)\}$:
- Եթե X-ի բաշխման օրենքն է

- lacktriangle Մասնավորապես, եթե f-ը գծային ֆունկցիա է, f(x)=ax+b, կսփանանք՝

$$E(Y) = p_1(ax_1 + b) + \dots + p_n(ax_n + b)$$

= $p_1ax_1 + \dots + p_nax_n + (p_1 + \dots + p_n)b$
= $a(p_1x_1 + \dots + p_nx_n) + b = aE(X) + b$

$$E(aX + b) = aE(X) + b$$

X–ի գծային ֆունկցիայի դիսպերսիա

- Եթե X-ը պատահական մեծություն է
- **•** Դիսպերսիա՝ $Var(X) = E(X^2) (E(X))^2$:
- Ենթադրենք Y=f(X)=aX+b, որտեղ a-ն և b-ն իրական թվեր են։ Ինչի՞ է հավասար Y-ի դիսպերսիան։

X-h գծային ֆունկցիայի դիսպերսիա

- Եթե X-ը պատահական մեծություն է
- Ωhuwեnuhw` $Var(X) = E(X^2) (E(X))^2$:
- **•** Υωմարժեք սահմանում $Var(X) = E(X E(X))^2$:
- ullet Ենթադրենք Y=f(X)=aX+b, որտեղ a-ն և b-ն իրական թվեր են։ Ինչի' է հավասար Y-ի դիսպերսիան։
- Ճիշտ են հետևյալ հավասարությունները`

$$Var(Y) = E(Y - E(Y))^{2}$$

$$= E(aX + b - E(aX + b))^{2}$$

$$= E(aX + b - aE(X) - b)^{2}$$

$$= a^{2}E(X - E(X))^{2} = a^{2}Var(X).$$

$$Var(aX + b) = a^2 Var(X)$$

Վարժ. 1 X պատրահական մեծության համար E(X) = 4, ${\rm Var}(X) = 3$ ։ Գտնել.

- 1. E(3X-2)
- 2. Var(4X 5)
- 3. Var(-0.1X + 1)
- 4. $E(X^2)$

Վարժ. 1 X պատահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտևել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

- 2. Var(4X 5)
- 3. Var(-0.1X + 1)
- 4. $E(X^2)$

Վարժ. 1 X պատահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտնել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

2.
$$Var(4X - 5)$$
 $Var(4X - 5) = 16Var(X) = 48$:

3.
$$Var(-0.1X + 1)$$

4.
$$E(X^2)$$

Վարժ. 1 X պատրահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտևել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

2.
$$Var(4X - 5)$$
 $Var(4X - 5) = 16Var(X) = 48$:

3.
$$Var(-0.1X + 1)$$
 $Var(-0.1X + 1) = 0.1^2 Var(X) = 0.03$:

4. $E(X^2)$

Վարժ. 1 X պատրահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտևել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

2.
$$Var(4X - 5)$$
 $Var(4X - 5) = 16Var(X) = 48$:

3.
$$Var(-0.1X + 1)$$
 $Var(-0.1X + 1) = 0.1^2 Var(X) = 0.03$:

4.
$$E(X^2) = Var(X) + (E(X))^2 = 19$$
:

Վարժ. 1 X պատահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտնել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

2.
$$Var(4X - 5)$$
 $Var(4X - 5) = 16Var(X) = 48$:

3.
$$Var(-0.1X + 1)$$
 $Var(-0.1X + 1) = 0.1^2 Var(X) = 0.03$:

4.
$$E(X^2) = Var(X) + (E(X))^2 = 19$$
:

Վարժ. 2 Y պատահական մեծության մաթ.-սպասումը 3 է, իսկ դիսպերսիան` 8։ Գտնել.

- 1. E(12-3Y)
- 2. Var(12 3Y)

Առնակ Դալալյան

Ապրիլ 16, 2024

Վարժ. 1 X պատահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտնել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

2.
$$Var(4X - 5)$$
 $Var(4X - 5) = 16Var(X) = 48$:

3.
$$Var(-0.1X + 1)$$
 $Var(-0.1X + 1) = 0.1^2 Var(X) = 0.03$:

4.
$$E(X^2) = Var(X) + (E(X))^2 = 19$$
:

Վարժ. 2 Y պատահական մեծության մաթ.-սպասումը 3 է, իսկ դիսպերսիան` 8։ Գտնել.

1.
$$E(12-3Y)$$
 $E(12-3Y) = E((-3)Y+12) = (-3) \times 3 + 12 = 3$:

2.
$$Var(12 - 3Y)$$

Վարժ. 1 X պատահական մեծության համար $E(X)=4,\, \mathrm{Var}(X)=3$ ։ Գտևել.

1.
$$E(3X - 2)$$
 $E(3X - 2) = 3E(X) - 2 = 10$:

2.
$$Var(4X - 5)$$
 $Var(4X - 5) = 16Var(X) = 48$:

3.
$$Var(-0.1X + 1)$$
 $Var(-0.1X + 1) = 0.1^2 Var(X) = 0.03$:

4.
$$E(X^2) = Var(X) + (E(X))^2 = 19$$
:

Վարժ. 2 Y պատրահական մեծության մաթ.-սպասումը 3 է, իսկ դիսպերսիան` 8։ Գտնել.

1.
$$E(12-3Y)$$
 $E(12-3Y) = E((-3)Y+12) = (-3) \times 3 + 12 = 3$:

2.
$$Var(12 - 3Y)$$
 $Var(12 - 3Y) = Var((-3)Y) = 9 \times 8 = 72$:

Առնակ Դալալյան Ապրիլ 16, 2024

Չկեղծված պտուտակը պատրաստված է դիագրամում պատկերված սկավառակից, իսկ X պատահական մեծությունը ցույց է տալիս պտույտից հետո պտուտակի ցույց տված թիվը։

1. Գանել X-ի բաշխման օրենքը։

2. Տաշվել E(2X + 1)-ը:

3. Տաշվել Var(3X - 1)-ը։

Չկեղծված պգուպակը պատրաստված է դիագրամում պատկերված սկավառակից, իսկ X պատահական մեծությունը ցույց է տալիս պգույտից հետո պգուպակի ցույց տված թիվը։

1. Գանել X-ի բաշխման օրենքը։

$$P(X = 1) = 1/4,$$

 $P(X = 2) = (1 - 1/4)/2 = 3/8,$
 $P(X = 3) = (1 - 1/4)/2 = 3/8$

2. Տաշվել E(2X + 1)-ը:

3. Տաշվել Var(3X - 1)-ը։

Չկեղծված պտուտակը պատրաստված է դիագրամում պատկերված սկավառակից, իսկ X պատահական մեծությունը ցույց է տալիս պտույտից հետո պտուտակի ցույց տված թիվը։

1. Գանել X-ի բաշխման օրենքը։

$$P(X = 1) = 1/4,$$

 $P(X = 2) = (1 - 1/4)/2 = 3/8,$
 $P(X = 3) = (1 - 1/4)/2 = 3/8$

2. Տաշվել E(2X + 1)-ը։

$$E(X) = (1/4) + (6/8) + (9/8) = 17/8$$
:
 $E(2X + 1) = 2E(X) + 1 = (17/4) + 1 = 21/4 = 5.25$

3. Տաշվել Var(3X - 1)-ը։

Uunhi 16, 2024

Չկեղծված պտուտակը պատրաստված է դիագրամում պատկերված սկավառակից, իսկ X պատահական մեծությունը ցույց է տալիս պտույտից հետո պտուտակի ցույց տված թիվը։

1. Գանել X-ի բաշխման օրենքը։

$$P(X = 1) = 1/4,$$

 $P(X = 2) = (1 - 1/4)/2 = 3/8,$
 $P(X = 3) = (1 - 1/4)/2 = 3/8$

2. Տաշվել E(2X + 1)-ը:

$$E(X) = (1/4) + (6/8) + (9/8) = 17/8$$
:
 $E(2X + 1) = 2E(X) + 1 = (17/4) + 1 = 21/4 = 5.25$

3. Տաշվել Var(3X - 1)-ը։

$$Var(X) = (1/4) + (12/8) + (27/8) - (17/8)^2 = 39/64 \approx 0.61$$

 $Var(3X - 1) = 9Var(X) \approx 5.5$:

Աոնակ Դալալյան Ապրիլ 16, 2024

Դիսկրեփ հավասարաչափ բաշխում _{Մահմանում}

- Երբ նեփում ենք չկեղծված զառ, որի նիսփերին գրված են 1-ից 6 թվերը, սփանում ենք պափահական մեծություն, որը իր բոլոր արժեքներն ընդունում է նույն` 1/6-րդ հավանականությամբ:
- Ընդհանուր դեպքում, կասենք որ X պատահական մեծությունն ունի դիսկրետ հավասարաչափ բաշխում, եթե այն իր հնարավոր յուրաքանչյուր x_i արժեք ընդունում է նույն հավանականությամբ։
- Տետևաբար, եթե $X(\Omega)$ -ն ունի n տարր և X-ը ունի դիսկրետ հավասարաչափ բաշխում, ապա P(X=x)=1/n բոլոր x-երի համար $X(\Omega)$ -ից:
- Տաճախ X-ը որոշված է $\{1,2,3,\ldots,n\}$ բազմության վրա։ Այս դեպքերում մաթ.-սպասումն ու դիսպերսիան փրվում են հետևյալ բանաձևերով.

$$E(X) = \frac{n+1}{2}, \quad Var(X) = \frac{n^2 - 1}{12}:$$

 Այս բանաձևերն անգիր սովորել հարկավոր չէ։ Սակայն օգտակար է իմանալ, որ նրանք գոյություն ունեն և հարկ եղած դեպքում կարելի է գտնել ու օգտագործել։

Առնակ Դալալյան Ապրիլ 16, 2024

Դիսկրեփ հավասարաչափ բաշխում Վարժություն

 $\{0,1\dots,9\}$ թվերի աղյուսակից պատահականորեն և հավասար հնարավորություններով ընտրում ենք մի թվանշան և նշանակում X-ով։

Գտնել X-ի մաթ.-սպասումն ու ստանդարտ շեղումը:

 Գրնել հավանականությունը, որ X-ը գրնվում է մաթ.-սպասումից մեկ սպանդարդ շեղում հեռավորությամբ միջակայքում:

Դիսկրեփ հավասարաչափ բաշխում Վարժություն

 $\{0,1\dots,9\}$ թվերի աղյուսակից պատահականորեն և հավասար հնարավորություններով ընտրում ենք մի թվանշան և նշանակում X-ով։

ullet Գւրնել X-ի մաթ.-սպասումն ու սփանդարփ շեղումը։ Նշանակենք Y=X+1, այն ունի հավասարաչափ բաշխում $\{1,\ldots,10\}$ -ի վրա։ Տետևաբար

$$E(X) = E(Y) - 1 = \frac{11}{2} - 1 = 4.5,$$

$$Var(X) = Var(Y) = \frac{99}{12} = 8.25,$$

$$\sigma = \sqrt{8.25} = 2.87:$$

 Գւրնել հավանականությունը, որ X-ը գւրնվում է մաթ.-սպասումից մեկ սւրանդարտ շեղում հեռավորությամբ միջակայքում։

Դիսկրեփ հավասարաչափ բաշխում Վարժություն

 $\{0,1\dots,9\}$ թվերի աղյուսակից պափահականորեն և հավասար հնարավորություններով ընփրում ենք մի թվանշան և նշանակում X-ով։

• Գփնել X-ի մաթ.-սպասումն ու սփանդարփ շեղումը։ Նշանակենք Y=X+1, այն ունի հավասարաչափ բաշխում $\{1,\ldots,10\}$ -ի վրա։ Տեփևաբար

$$E(X) = E(Y) - 1 = \frac{11}{2} - 1 = 4.5,$$

$$Var(X) = Var(Y) = \frac{99}{12} = 8.25,$$

$$\sigma = \sqrt{8.25} = 2.87:$$

 Գւրնել հավանականությունը, որ X-ը գւրնվում է մաթ.-սպասումից մեկ սպանդարպ շեղում հեռավորությամբ միջակայքում:

$$P(X \in [4.5 - 2.87, 4.5 + 2.87]) = P(X \in [1.63, 7.37])$$

= $P(X = 2) + P(X = 3) + \dots + P(X = 7)$
= $6 \times (1/10) = 0.6$:

ԱՐԵՐՎԱՏ ՊԱՏԱՀԱԿԱՐ ԱԲՋԱԻՐԳՅԱԻՐՐԲ

Վերջնարդյունքները

- հասկանա, թե ինչ է անընդհափ պափահական մեծությունը,
- իմանա հավանականության խփության ֆունկցիայի հատկություններն ու օգտագործի դրանք խնդիրներ լուծելիս,
- օգւրվի հավանականության խւրության ֆունկցիայից
 հավանականություններին առնչվող խնդիրները լուծելու համար,
- գտնի բաշխման մեդիանը (կենտրոնական արժեքը, կիսորդիչ) պարզ դեպքերում, հաշվի բաշխման միջինն ու դիսպերսիան

X պատահական մեծությունը կանվանենք անընդհատ, եթե կա «անընդհատ» միջակայք I այնպիսին որ X-ը կարող է ընդունել I-ից կամայական արժեք։

X անընդհափ պափահական մեծության f(x) հավանականության խփության սահմանվում է x-ի բոլոր իրական արժեքների համար: Այն ունի հետևյալ հատկությունները`

ա) $f(x) \ge 0$, բոլոր x-երի համար

$$\mathbf{p)} \int_{-\infty}^{\infty} f(x) \, dx = 1:$$

X պատահական մեծությունը կանվանենք անընդհատ, եթե կա «անընդհատ» միջակայք I այնպիսին որ X-ը կարող է ընդունել I-ից կամայական արժեք։

Տավանականությունը, որ X-ն ընկած է [a,b] միջակայքում, դրվում է կետերի միջև ֆունկցիայի գրաֆիկի դակ ընկած մակերեսով։ Այդ մակերեսը երբեմն կարելի է գտնել երկրաչափական հատկություններն օգտագործելով, կամ հաշվելով հետևյալ ինտեգրալը`

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} f(x) dx$$
:

X պատահական մեծությունը կանվանենք անընդհատ, եթե կա «անընդհատ» միջակայք I այնպիսին որ X-ը կարող է ընդունել I-ից կամայական արժեք։

Տավանականությունը, որ X-ն ընկած է [a,b] միջակայքում, տրվում է կետերի միջև ֆունկցիայի գրաֆիկի տակ ընկած մակերեսով։ Այդ մակերեսը երբեմն կարելի է գտնել երկրաչափական հատկություններն օգտագործելով, կամ հաշվելով հետևյալ ինտեգրալը`

$$P(a \leqslant X \leqslant b) = \int_a^b f(x) dx$$
:

$$P(X \in [6,7]) = (0.16 + 0.12)/2 = 0.14$$
:

Վարժություն 1

X անընդհափ պափահական մեծությունը, որն արժեքներ է ընդունում [1,2] միջակայքում, ունի հետևյալ հավանականային խփության ֆունկցիան`

$$f(x) = \frac{2}{3}x, \quad \forall x \in [1, 2]:$$

 Ցույց տալ, որ f-ն ունի հավանականության խտության ֆունկցիայի հատկությունները:

ullet \sugma \ulletu 2\ullet\text{tu}_2\ullet\text{th} $P(X \in [1.5, 2])$:

Վարժություն 1

X անընդհափ պափահական մեծությունը, որն արժեքներ է ընդունում [1,2] միջակայքում, ունի հետևյալ հավանականային խփության ֆունկցիան`

$$f(x) = \frac{2}{3}x, \quad \forall x \in [1, 2]:$$

- Ցույց տալ, որ f-ն ունի հավանականության խտության ֆունկցիայի հատկությունները։
- Նախ, f ֆունկցիան ընդունում է միայն ոչ բացասական արժեքներ։ Երկրորդ, $\int_1^2 f(x)\,dx=(2/3)\int_1^2 x\,dx=(1/3)(2^2-1^2)=1$
- ullet પાયુપીધા $P(X \in [1.5, 2])$:

Վարժություն 1

X անընդհափ պափահական մեծությունը, որն արժեքներ է ընդունում [1,2] միջակայքում, ունի հետևյալ հավանականային խփության ֆունկցիան`

$$f(x) = \frac{2}{3}x, \quad \forall x \in [1, 2]:$$

- Ցույց տալ, որ f-ն ունի հավանականության խտության ֆունկցիայի հատկությունները:
- \bullet Նախ, f ֆունկցիան ընդունում է միայն ոչ բացասական արժեքներ։ Երկրորդ, $\int_1^2 f(x)\,dx=(2/3)\int_1^2 x\,dx=(1/3)(2^2-1^2)=1$
- \bullet Տաշվել $P(X \in [1.5, 2])$:
- $P(X \in [1.5, 2]) = (2/3) \int_{1.5}^{2} x \, dx = (1/3)(2^2 1.5^2) = 0.58$:

Վարժություն 2

[-1,1]-ում արժեքներ ընդունող X անընդհափ պափ. մեծության հավանականային խփության ֆունկցիան ունի հետևյալ տեսքը`

$$f(x) = k(1+x^2), \quad \forall x \in [-1,1]:$$

● Գրնել *k*-ն:

- \bullet Տաշվել P(|X| < 0.2):

Վարժություն 2

[-1,1]-ում արժեքներ ընդունող X անընդհափ պափ. մեծության հավանականային խփության ֆունկցիան ունի հետևյալ փեսքը՝

$$f(x) = k(1+x^2), \quad \forall x \in [-1,1]:$$

- Գփնել k-ն։
- Տեշփ է փեսնել, որ

$$\int_{-1}^{1} (1+x^2) \, dx = 2 + \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{8}{3}.$$

Տետևաբար k = 3/8։

- $\mathsf{Su2}$ վել P(|X| < 0.2):

Վարժություն 2

[-1,1]-ում արժեքներ ընդունող X անընդհափ պափ. մեծության հավանականային խփության ֆունկցիան ունի հետևյալ փեսքը՝

$$f(x) = k(1+x^2), \quad \forall x \in [-1,1]:$$

- Գփնել k-ն։
- 🔾 ՝ հեշտ է տեսնել, որ

$$\int_{-1}^{1} (1+x^2) \, dx = 2 + \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{8}{3}.$$

եպևաբար k = 3/8:

- $\text{Suzulty } P(X \in [0.3, 0.6])$:
- $P(X \in [0.3, 0.6]) = \frac{3}{8} \left(0.3 + \frac{0.6^3}{3} \frac{0.3^3}{3}\right) \approx 0.14$:
- lacktriangle \text{\tinit}}}}}}}}} \end{ensightineset}}}}}}}}}}}}}}}}}} \end{ensighting}}}}}} \end{ensighting}}}}}}}}}}}}}} \endty

Վարժություն 2

[-1,1]-ում արժեքներ ընդունող X անընդհափ պափ. մեծության հավանականային խփության ֆունկցիան ունի հեփևյալ փեսքը`

$$f(x) = k(1 + x^2), \quad \forall x \in [-1, 1]:$$

- Գփնել k-ն։
- 🔾 հեշտ է տեսնել, որ

$$\int_{-1}^{1} (1+x^2) \, dx = 2 + \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{8}{3}.$$

եպևաբար k = 3/8:

- $P(X \in [0.3, 0.6]) = \frac{3}{8} \left(0.3 + \frac{0.6^3}{3} \frac{0.3^3}{3}\right) \approx 0.14$:
- Քանի որ X-ը անընդհատ պատահական մեծություն է, կամայական a կետի համար ճիշտ է հետևյալը`

$$P(X=a)=P(X\in[a,a])=\int_a^a f(x)\,dx=0$$
: Thylumpup, $P(|X|\leqslant 0.2)=P(|X|<0.2)+P(X=-0.2)+P(X=0.2)=P(|X|<0.2)$:

Uyuulinid tur`
$$P(|X| < 0.2) = P(|X| \le 0.2) = P(X \in [-0.2; 0.2]) = P(X \in [-0.2; 0.2])$$

$$\int_{-0.2}^{0.2} k(1+x^2) dx = \frac{3}{8} \left(0.4 + \frac{0.2^3 - (-0.2)^3}{3} \right) = 0.152$$

Առնակ Դալալյան

Անընդհափ պատ. մեծության մաթ. սպասում, դիսպերսիա, մեդիան Սահմանումներ

🔾 Անընդհափ պափ. մեծության մաթ. սպասում

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx :$$

🍑 Անընդհափ պափ. մեծության դիսպերսիա

$$Var(X) = \int_{-\infty}^{\infty} x^2 f(x) dx - (E(X))^2 :$$

$$Var(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx:$$

ullet Անընդհափ պափ. մեծության մեդիան կամ կիսորդիչM այնպիսին որ

$$P(X \leqslant M) = \int_{-\infty}^{M} f(x) dx = \frac{1}{2} :$$

Առնակ Դալալյան Ապրիլ 16, 2024

Անրնդհատ պատ. մեծության մաթ. սպասում, դիսպերսիա, մեդիան Վարժություն

Լցակայանում շաբաթական X ծավալով բենզինի վաճառքի համար (100 000 լիտրերով) առաջարկվել է երկու մոդել՝

Առաջին մոդել՝
$$f(x)=2x,\, \forall x\in[0,1]$$
 Երկրորդ մոդել՝ $g(x)=12x^3(1-x^2),\, \forall x\in[0,1]$

- Գյունել առաջին մոդելի դեպքում X-ի մեդիանը:
- 🔾 Ցույց փալ, որ երկրորդ մոդելում սփանում ենք նույն մեդիանը։
- 🏓 Երկու մոդելներում գտնել թե միջինում ինչ ծավալով բենզին է վաճառվում։

Անընդհափ պատ. մեծության մաթ. սպասում, դիսպերսիա, մեդիան Վարժություն

Ացակայանում շաբաթական X ծավալով բենզինի վաճառքի համար (100 000 լիդրերով) առաջարկվել է երկու մոդել՝

Առաջին մոդել՝
$$f(x)=2x,$$
 $\forall x\in[0,1]$ Երկրորդ մոդել՝ $g(x)=12x^3(1-x^2),$ $\forall x\in[0,1]$

• Գւրնել առաջին մոդելի դեպքում X-ի մեդիանը: Քանի որ 2x ֆունկցիայի նախնականը հավասար է x^2 ,

$$\int_0^M f(x) \, dx = \int_0^M (2x) \, dx = M^2 - 0^2 = M^2 :$$

- 🔾 Ցույց փալ, որ երկրորդ մոդելում սփանում ենք նույն մեդիանը։
- Երկու մոդելներում գտնել թե միջինում ինչ ծավալով բենզին է վաճառվում։

Առնակ Դալալյան Ապրիլ 16, 2024

Անընդհափ պատ. մեծության մաթ. սպասում, դիսպերսիա, մեդիան Վարժություն

Ացակայանում շաբաթական X ծավալով բենզինի վաճառքի համար (100 000 լիփրերով) առաջարկվել է երկու մոդել՝

Առաջին մոդել՝
$$f(x)=2x,$$
 $\forall x\in[0,1]$ Երկրորդ մոդել՝ $g(x)=12x^3(1-x^2),$ $\forall x\in[0,1]$

- Գ
 անել առաջին մոդելի դեպքում X-ի մեդիանը։
- Ցույց տալ, որ երկրորդ մոդելում ստանում ենք նույն մեդիանը։ Դժվար չէ համոզվել, որ g-ի նախնականը տրվում է հետևյալ բանաձևով՝ $12(x^4/4)-12(x^6/6)=3x^4-2x^6$ ։ `\text{\text{\text{Thylumpup}}}

$$\int_0^M g(x) \, dx = 3M^4 - 2M^6 = \frac{3}{(\sqrt{2})^4} - \frac{2}{(\sqrt{2})^6} = \frac{3}{4} - \frac{2}{8} = \frac{1}{2} :$$

Սրանից հետևում է, որ $M=1/\sqrt{2}$ -ը կլինի X-ի կիսորդիչ նաև այն դեպքում, երբ X-ի խտության ֆունկցիան g-ն է։

• Երկու մոդելներում գտնել թե միջինում ինչ ծավալով բենզին է վաճառվում։

Առնակ Դալալյան Ապրիլ 16, 2024

Անընդհափ պափ. մեծության մաթ. սպասում, դիսպերսիա, մեդիան Վարժություն

Ացակայանում շաբաթական X ծավալով բենզինի վաճառքի համար (100 000 լիփրերով) առաջարկվել է երկու մոդել՝

Առաջին մոդել՝
$$f(x)=2x,\, \forall x\in [0,1]$$
 Երկրորդ մոդել՝ $g(x)=12x^3(1-x^2),\, \forall x\in [0,1]$

- Գտանել առաջին մոդելի դեպքում X-ի մեդիանը:
- 🗕 Ցույց փալ, որ երկրորդ մոդելում սփանում ենք նույն մեդիանը։
- Երկու մոդելներում գտնել թե միջինում ինչ ծավալով բենզին է վաճառվում։ Քանի որ $xf(x)=2x^2$ և $xg(x)=12x^4-12x^6$ ֆունկցիաների նախնականները $(2/3)x^3$ և $(12/5)x^5-(12/7)x^7$ ֆունկցիխներն են,

$$\int_0^1 x f(x) dx = 2/3$$
$$\int_0^1 x g(x) dx = \frac{12}{5} - \frac{12}{7} = \frac{24}{35} :$$

՝ հետևաբար, առաջին մոդելում E(X)=2/3, իսկ երկրորդում՝ E(X)=24/35։ Երկու մոդելներում կիսորդիչները համընկնում են, իս մաթ.-սպասումները փարբեր են։

Առնակ Դայալյան Ապրիլ 16, 2024