COMPUTATIONAL MICROBIOME ANALYSIS: METHODS AND APPLICATIONS

(Spine title: Computational microbiome analysis: methods and applications)
(Thesis format: Integrated Article)

by

Ruth Wong

Graduate Program in Biochemistry

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Ruth Grace Wong 2016

THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:	Examiners:
Dr. Gregory B. Gloor	Dr. ExaminerA
Supervisory Committee:	
	Dr. ExaminerB
Dr. Lindi M. Wahl	
	Dr. ExaminerC
Dr. David R. Edgell	
	The thesis by
R	uth Grace Wong
	entitled:
Computational microbio	me analysis: methods and applications
is accepted	in partial fulfillment of the
require	ments for the degree of
M	asters of Science
Date	Chair of the Thesis Examination Board

Abstract

With the advent of next generation sequencing, scientists can obtain a more comprehensive snapshot of the bacterial composition of the microbiome, what genes they have, and what proteins they produce. We are in a phase of developing the experiments and accompanying statistical techniques to elucidate the exact mechanisms by which the human microbiome affects health and disease. In this thesis we explore alternatives to the standard weighted and unweighted UniFrac metric for measuring the difference between microbiome samples, to elucidate different trends and outliers. We also apply next generation sequencing and computational analysis techniques to gut microbiome data to examine relationship of the microbiota to athersclerosis and non alcoholic fatty liver disease.

Keywords: Human microbiome, next generation sequencing, bioinformatics, atherosclerosis, non alcoholic fatty liver disease

Contents

C	ertificate of Examination	ii
Al	bstract	iii
Li	st of Figures	v
Li	st of Tables	vi
Li	st of Appendices	vii
1	Time series: Long memory	1
2	Theorems 2.1 Basic Theorems	3 3
Bi	bliography	4
A	Proofs of Theorems	5
Cı	urriculum Vitae	6

List of Figures

1 1	A lang mamany time a samias	
1.1	A long memory time series	 J

List of Tables

1.1 A random table

List of Appendices

Appendix A Proofs of Theorems																			5
-------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Chapter 1

Time series: Long memory

Here is a picture of a long memory time series.

Figure 1.1: A long memory time series

Here's a table.

n	α	$n\alpha$	β
1	0.2	0.2	5
2	0.3	0.6	4
3	0.7	2.1	3

Table 1.1: A random table

$$y = mx + b (1.1)$$

$$= ax + c ag{1.2}$$

This is an un-numbered equation, along with a numbered one.

$$u = px$$

$$p = P(X = x)$$
(1.3)

Look at Table 1.1 and Figure 1.1 and equations 1.1, 1.2, and 1.3. Let's do some matrix algebra now.

$$det \left(\begin{vmatrix} 2 & 3 & 5 \\ 4 & 4 & 6 \\ 9 & 8 & 1 \end{vmatrix} \right) = 42 \tag{1.4}$$

In the equation and equarray environments, you don't need to have the dollar sign to enter math mode.

$$\alpha = \beta_1 \Gamma^{-1} \tag{1.5}$$

This is citing a reference [2]. This is citing another [3]. Nobody said something [1].

Chapter 2

Theorems

2.1 Basic Theorems

Theorem 2.1.1 $e^{i\pi} = -1$

Bibliography

- [1] Nobody Jr. My article, 2006.
- [2] ME. Oh, my! 1990.
- [3] Mr. X. Mr. X Knows BibTeX. AWOL, 2005.

Appendix A

Proofs of Theorems

Proof of Theorem 2.1.1

$$e^{i\pi} = \cos(\pi) + i\sin(\pi) \tag{A.1}$$

$$= -1 \tag{A.2}$$

Curriculum Vitae

Name: Ruth Wong

Post-Secondary The University of Western Ontario

Education and London, ON

Degrees: 2010-2014 B.M.Sc.

University of Western Ontario

London, ON 2014-2016 M.Sc.

Honours and Western Gold Medal

Awards: 2014

Leland Ritcey Prize

2011

Related Work Summer Intern, Persistent Disk Team

Experience: Google Inc., New York office

Summer 2015

Google Summer of Code Participant Bader Lab, University of Toronto

Summer 2014

Publications:

Wong, Ruth G., Jia R. Wu, Gregory B. Gloor. "Expanding the UniFrac toolbox." Full length paper accepted for oral presentation at the Great Lakes Bioinformatics and the Canadian Computational Biology Conference 2016.