

Personal Website: hahminlew.github.io

□ (+82) 10-6876-3175 | Mahmin.lew@gmail.com | Ohahminlew | Inhahminlew | Phahminlew |

"Bridging AI research and scalable solutions for measurable real-world impact."

Professional Summary

AI Researcher with 2+ years at Klleon, specializing in Generative AI for digital humans. M.S. in Electrical Engineering and Computer Science, with expertise in Machine/Deep Learning, Signal/Image Processing, and Multimodal Data Analysis.

Currently leading research in facial 3D avatar generation, enabling lifelike avatar movements and lip-sync. Exploring efficient 3DMM generation and leveraging Gaussian Splatting for photorealistic rendering.

Current Projects: 3D Avatar Generation • Photorealistic Human Head Rendering • Virtual Human Dialogue System

Skills_

Programming Python, Bash, MATLAB, C, Java

Frameworks PyTorch, TensorFlow, Keras, Scikit-learn, Pytorch3D

CV & Audio Tools OpenCV, FFmpeg, librosa

DevOps Docker, Containerd, Git Back-end Basics Node.js

Front-end Basics HTML, CSS, JavaScript

Languages Korean, English

Education

DGIST (Daegu Gyeongbuk Institute of Science and Technology)

M.S. IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

· Advisor: Prof. Jae Youn Hwang

DGIST (Daegu Gyeongbuk Institute of Science and Technology)

B.E. IN SCHOOL OF UNDERGRADUATE STUDIES

· Best Project Award

Daegu, South Korea

Mar. 2019 - Aug. 2022

Daegu, South Korea

Mar. 2014 - Feb. 2019

Aug. 2022 - Present

Experience

Klleon AI Research Seoul, South Korea

Al Researcher

· Developing audio-driven 3DMM generation for virtual avatars with natural human-like expressions and movements. (LVE \downarrow 27.5%, FDD \downarrow 28.9%, MEE \downarrow 27.1%, CE \downarrow 24.1%, Diversity \uparrow 17.7%)

- · Developed photorealistic head rendering model using Gaussian Splatting, outperforming 5 state-of-the-art models. (MSE ↓59.96%, PSNR ↑4.41dB, SSIM ↑3.85%, LPIPS ↓38.16%)
- Developed a Head Swap AI model with 212.7x speedup, reducing annual GPU costs by 99.53% (from \$2.2M to \$10.5K).
- Built large-scale multimodal data pipelines (9.41M+ frames from in-the-wild videos).
- Integrated external APIs (NVIDIA Audio2Face, OpenAl ChatGPT, TTS) into a streaming avatar system, achieving 25-28 FPS performance.

Multimodal Biomedical Imaging and System Lab, DGIST

Daegu, South Korea

Mar. 2019 - Aug. 2022

CO-FOUNDER

- · Achievements: 6 SCIE publications, 7 international conferences, 9 projects, 4 patents, and 2 awards.
- · Designed machine learning-based anomaly detection systems and generative models for biomedical imaging, focusing on multimodal, classimbalance, and multi-task learning.
- Developed hardware-software integrated systems for application-specific use cases.
- Collaborative research with medical doctors from hospitals, including SNUH, SNUDH, and Yonsei Severance.

LANTERN Daegu, South Korea

Nov. 2016 - Jul. 2017

• Founded a data-driven personalized tutor matching service company in collaboration with Class101.

Designed a matching database system and established tutor evaluation metrics for personalized recommendations.

Audio-driven 3D Facial Animation for Realistic Facial Expressions and Motion

Seoul, South Korea

PROJECT LEAD Dec. 2024 - Present

- · Developing a 3D facial animation framework for lifelike facial expressions and motion driven by audio inputs.
- Constructed a large-scale paired dataset of audio and 3DMM parameters (6.81M+ frames).
- Achieved superior performances compared to the SOTA method (LVE ↓27.5%, FDD ↓28.9%, MEE ↓27.1%, CE ↓24.1%, Diversity ↑17.7%).
- Used skills: Python, PyTorch, Git.

Real-time Expressive 3D Chat Avatar System

Seoul, South Korea

 PROJECT LEAD
 Apr. 2024 - Dec. 2024

- Integrated NVIDIA Audio2Face, OpenAI ChatGPT, and TTS APIs into a streaming avatar dialogue system with 25-28 FPS performance.
- · Designed an emotion message queue protocol to enable natural emotional transitions and realistic facial expressions in avatars.
- Optimized Numpy-to-Tensor conversion and computations for live streaming, achieving a 13.5% speed improvement.
- Used skills: Python, PyTorch, Docker, Containerd, Git.

High-performance Real-time Head Swapping System

Seoul, South Korea

DDO IECT LEAD

Aug. 2022 - Apr. 2024

- Led the development of a state-of-the-art head swapping framework, including data preprocessing pipelines, multi-GPU training, and efficient inference mechanisms.
- Built a high-quality dataset from 15,354 videos of 3,592 identities, processing 2.6M frames.
- Achieved a 212.7x inference speedup (from 10s/frame to 47ms/frame), reducing GPU resource requirements by 99.53%.
 - Reduced annual GPU costs from \$2.2M+ (assuming 213 AWS EC2 g4dn.4xlarge instances) to approximately \$10.5K (using a single instance).
- Achieved significant performance improvements over the SOTA method:
 - Metrics: PSNR ↑55.5%, LPIPS ↓91.8%, L1 ↓88.8%, SSIM ↑21.8%
 - Inference speed: 60.57 FPS (↑53.6%)
 - Computational efficiency: Parameters 8.92M (↓63.4%), MACs ↓33.0%
- Used skills: Python, PyTorch, Docker, Git, JavaScript, HTML, CSS.

Custom Dataset Creation and Text-to-Image Model Finetuning

Seoul, South Korea

PROJECT LEAD Oct. 2023 - Nov. 2023

- · Built an end-to-end pipeline for fashion product dataset creation, integrating ML-based image captioning and text-to-image model finetuning.
- Open-sourced the pipeline on GitHub and the trained models and dataset on Hugging Face.
 - Dataset: Total 27,484 downloads.
 - Models: Total 2,248 downloads.
- Used skills: Python, PyTorch, Git.
- · Repositories: [GitHub], [Dataset], [Model].

Optimized Biomedical Monitoring System with a Time-efficient Algorithm

Daegu, South Korea Mar. 2019 - Mar. 2021

• Achieved an average error rate of $\pm 1.77\%$, outperforming commercial products with errors of $\pm 1.5\%$.

- Developed a cost-efficient time-series processing algorithm with a time complexity of $O(N \log N)$.
- Integrated hardware and software for real-time biomedical monitoring.
- Used skills: MATLAB, LabView, VHDL.

Al-powered Smartphone Imaging for Early Dental Caries Detection

Daegu, South Korea Apr. 2020 - Feb. 2022

PROJECT LEAD

• Developed an ML-based smartphone image analysis system achieving 0.952 recall and 0.953 precision in early dental caries detection.

- Utilized convolutional neural networks (CNNs) to optimize classification performance for multimodal imaging data.
- Used skills: Python, TensorFlow.

ML-based Smartphone Imaging for Otitis Media Diagnosis

Daegu, South Korea

PROJECT MEMBER

Feb. 2020 - Jan. 2022

- Constructed multimodal human clinical datasets (4.98B+ pixels) and optimized image classification models for clinical validation.
- Enhanced diagnostic accuracy with a multi-layer perceptron (MLP) model achieving 80% accuracy, outperforming expert clinicians at 73%.
- Used skills: Python, TensorFlow, Scikit-learn.

Additional Projects

Image-to-Image Translation for High-resolution Gastrointestinal Imaging PROJECT LEAD	Feb. 2021 - Sep. 2023
Multitask Learning-based Network for Rotator Cuff Tear Segmentation PROJECT MEMBER	Dec. 2021 - Dec. 2022
Low-voltage CMUT-based Ultrasound Imaging for Medibots PROJECT MEMBER	Sep. 2020 - Dec. 2022
2021 Laboratory-specialized Start-up Leader University Project Project Member	Aug. 2021 - Jan. 2022
Smart Monitoring System for Hip Implants PROJECT MEMBER	Feb. 2019 - May. 2021
Technical Commercialization Activity Support for Bio Society Leadership Project Member	May. 2020 - Dec. 2020
Multimodal Data Registration and Analysis for Tumor Detection Project Member	Mar. 2019 - Oct. 2020
Ultrasonic Capsule Endoscopy Project Member	Jun. 2019 - Jun. 2020

Publications	
GeoAvatar: Adaptive Geometrical Gaussian Splatting for 3D Head Avatar	First Author
S. Moon*, Hah Min Lew*, S. Lee, J. Kang, and G. Park.	Under Review
SMAGA: Secondary Motion-Aware Animatable 3D Gaussian Avatars for Modeling Dynamic Clothed Humans from a Single Video	Co-Author
S. Lee, S. Moon, Hah Min Lew, J. Kang, and G. Park.	Under Review
A Probe-in-the-Loop Continual Test-Time Adaptation Framework for High-Resolution Deep Tissue Imaging with a Dual-Frequency Endoscopic Ultrasound Probe	Co-Author
M. H. Lee, J. S. Kim, Hah Min Lew , H. Lee, H. M. Kim, and J. Y. Hwang.	Under Review
Towards High-fidelity Head Blending with Chroma Keying for Industrial Applications Hah Min Lew*, S. Yoo*, H. Kang*, and G. Park. WACV 2025	First Author Feb. 2025
Deep Learning-based Synthetic High-Resolution In-Depth Imaging Using an Attachable Dual-element Endoscopic Ultrasound Probe	First Author
Hah Min Lew*, J. S. Kim*, M. H. Lee, J. Park, S. Youn, H. M. Kim, J. Kim, and J. Y. Hwang. Arxiv Preprint	Sep. 2023
CSS-Net: Classification and Substitution for Segmentation of Rotator Cuff Tear	Co-Author
K. Lee, Hah Min Lew, M. H. Lee, M. Kang, J. Kim, and J. Y. Hwang. ACCV 2022	Dec. 2022
Deep Learning-based Framework for Fast and Accurate Acoustic Hologram Generation	Co-Author
M. H. Lee, Hah Min Lew , S. Youn, T. Kim, and J. Y. Hwang. IEEE TUFFC (IF: 3.267)	Nov. 2022
Multi-task and Few-shot Learning-based Fully Automatic Deep Learning Platform for Mobile Diagnosis of Skin Diseases	Co-Author
K. Lee, T. C. Cavalcanti, S. Kim, Hah Min Lew , D. H. Lee, and J. Y. Hwang. IEEE JBHI (IF: 7.021)	Jul. 2022
Speckle Reduction via Deep Content-Aware Image Prior for Precise Breast Tumor Segmentation in an Ultrasound Image	Co-Author
H. Lee, M. H. Lee, S. Youn, K. Lee, Hah Min Lew , and J. Y. Hwang. IEEE TUFFC (IF: 3.267)	Jul. 2022
Intelligent Smartphone-based Multimode Imaging Otoscope for the Mobile Diagnosis of Otitis Media	Co-Author
T. C. Cavalcanti, Hah Min Lew , K. Lee, S. Lee, M. K. Park, and J. Y. Hwang. Biomedical Optics Express (IF: 3.562)	Nov. 2021
Ultrasonic Blood Flowmeter with a Novel Xero Algorithm for a Mechanical Circulatory Support System	First Author
HAH MIN LEW, H. SHIN, M. H. LEE, S. YOUN, H. C. KIM, AND J. Y. HWANG. ULTRASONICS (IF: 4.062)	Aug. 2021
Forward-Looking Multimodal Endoscopic System Based on Optical Multispectral and High-Frequency Ultrasound Imaging Techniques for Tumor Detection	Co-Author
J. Kim, Hah Min Lew, J. Kim, S. Youn, H. A. Faruque, A. N. Seo, S. Y. Park, J. H. Chang, E. Kim, and J. Y. Hwang. IEEE TMI (IF: 11.037)	Oct. 2020

Patents

J. Y. HWANG, M. H. LEE, HAH MIN LEW (US17-516850, KR10-0145463) ULTRASONIC BLOOD FLOW MEASURING APPARATUS AND METHOD THEREOF J. Y. HWANG, HAH MIN LEW, H. C. KIM (KR10-2021-0062321) MOBILE OTOSCOPE SYSTEM J. Y. HWANG, T. C. CAVALCANTI, HAH MIN LEW (KR10-2021-0049885) Apr.	Patents	
ULTRASONIC BLOOD FLOW MEASURING APPARATUS AND METHOD THEREOF J. Y. HWANG, HAH MIN LEW, H. C. KIM (KR10-2021-0062321) MOBILE OTOSCOPE SYSTEM J. Y. HWANG, T. C. CAVALCANTI, HAH MIN LEW (KR10-2021-0049885) Apr.	BLADDER MONITORING APPARATUS AND METHOD FOR CONTROLLING BLADDER MONITORING APPARATUS	Application
J. Y. HWANG, HAH MIN LEW, H. C. KIM (KR10-2021-0062321) MOBILE OTOSCOPE SYSTEM J. Y. HWANG, T. C. CAVALCANTI, HAH MIN LEW (KR10-2021-0049885) Apr.	J. Y. Hwang, M. H. Lee, Hah Min Lew (US17-516850, KR10-0145463)	Nov. 2021
MOBILE OTOSCOPE SYSTEM J. Y. Hwang, T. C. Cavalcanti, Hah Min Lew (KR10-2021-0049885) Apr.	ULTRASONIC BLOOD FLOW MEASURING APPARATUS AND METHOD THEREOF	Application
J. Y. Hwang, T. C. Cavalcanti, Hah Min Lew (KR10-2021-0049885) Apr.	J. Y. Hwang, Hah Min Lew , H. C. Кім (KR10-2021-0062321)	May 2021
	MOBILE OTOSCOPE SYSTEM	Application
THREE-DIMENSIONAL DIAGNOSTIC SYSTEM Applica	J. Y. Hwang, T. C. Cavalcanti, Hah Min Lew (KR10-2021-0049885)	Apr. 2021
	THREE-DIMENSIONAL DIAGNOSTIC SYSTEM	Application

Awards & Scholarships ______

J. Y. HWANG, J. KIM, **HAH MIN LEW**, K. LEE (PCT-KR2020-015460, KR10-2019-0141198)

AWARDS

2021	Outstanding Poster Award, 2021 Student Conference at DGIST	Daegu, South Korea
2021	Best Paper Award, 2021 Spring Conference at KOSOMBE	Remote, South Korea
2017	Best Project Award, 2016 Undergraduate Group Research Project (UGRP) Program at DGIST	Daegu, South Korea

Nov. 2020

SCHOLARSHIPS

2014-2022 **Full Government Scholarships**, Full tuition exemptions and school expenses support Daegu, South Korea