

AD-A184 289 EFFECTS OF DIVIDED ATTENTION ON IDENTITY AND SEMANTIC 1/1
PRIMING(U) WASHINGTON UNIV ST LOUIS MO DEPT OF
NEUROLOGY J SANDSON ET AL 1987 TR-87-6-ONR

UNCLASSIFIED

N80014-86-K-0289

F/G 5/8

NL

1.0	1.1	1.25	1.4	1.6
2.8	2.2	2.0	1.8	
3.5	3.0	2.5	2.0	
4.0	3.5	3.0	2.5	
4.5	4.0	3.5	3.0	

AD-A184 289

(12)

DTIC FILE COPY

EFFECTS OF DIVIDED ATTENTION ON IDENTITY AND SEMANTIC PRIMING

Jennifer Sandson and Michael I. Posner

McDonnell Center for Studies of Higher Brain Function
Washington University, St. Louis

ONR 87-6

DTIC
ELECTED
SEP 03 1987
S D
D

Research sponsored by:

Personnel and Training Research Program,
Psychological Sciences Division,
Office of Naval Research

Under Contract Number:

N0014-86-K-0289

Contract Authority Number:

NR-442a554

Reproduction in whole or part is permitted for any
purpose of the United States Government.

87 8 26 087

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT Approved for public release; Distribution unlimited	
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) Technical Report #87-6		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Washington University	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION Personnel & Training Research Programs Office of Naval Research (Code 1142PT)	
6c. ADDRESS (City, State, and ZIP Code) Department of Neurology 660 S. Euclid, Box 8111 St. Louis, MO 63110		7b. ADDRESS (City, State, and ZIP Code) 800 North Quincy Street Arlington, VA 22217	
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-96-K0289	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO. 61153N	PROJECT NO. RR04206
		TASK NO. RR04206-0A	WORK UNIT ACCESSION NO. NR442a554

11. TITLE (Include Security Classification)

Effects of Divided Attention on Identity and Semantic Priming

12. PERSONAL AUTHOR(S)

Sandson, Jennifer and Posner, Michael I.13a. TYPE OF REPORT
Technical13b. TIME COVERED
FROM 01MAY87 TO 01MAY88

14. DATE OF REPORT (Year, Month, Day)

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD	GROUP	SUB-GROUP
05	10	

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

 UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Michael I. Posner

22b. TELEPHONE (Include Area Code)

(314) 362-3317

22c. OFFICE SYMBOL

ONR 1142PT

EFFECTS OF DIVIDED ATTENTION ON IDENTITY AND SEMANTIC PRIMING¹

Jennifer Sandson and Michael I. Posner
McDonnell Center for Higher Brain Activity and
Departments of Neurology and Neurological Surgery
Washington University School of Medicine
St. Louis, MO

According to some models of lexical access visual information can directly activate semantic memory. Priming can be obtained from stimuli that are either physically identical or semantically related to the target. Our studies show that identity priming is not reduced by performance of a simultaneous auditory shadowing task. The strength of identity priming does not vary between conditions in which the relatedness of the prime provides information about the correct response (lexical decision) and conditions in which it does not (semantic classification). On the other hand, semantic priming is reduced during shadowing with lexical decision and in semantic classification. These data suggest that identity primes operate upon a visual code of the input that is not influenced by simultaneous auditory processing while semantic priming involves a system to which both auditory and visual information has access.

Effects of Divided Attention on Identity and Semantic Priming

INTRODUCTION

Lexical access has long been a central topic in studies of reading and of cognition in general. One idea common to many models of lexical access is that the visual word is integrated into a word form while still within the visual system (e.g. Carr & Pollatsek, 1985; McClelland & Rumelhart, 1981). The word form then has access to other systems for obtaining a phonetic code of the word name and for obtaining semantic information about word meaning.

According to dual route views, the visual word form can contact phonological and semantic information in parallel. Evidence for this is obtained from reading and lexical decision studies involving regular words as well as nonwords, pseudo-homophones, and exception words (e.g. Carr and Pollatsek, 1985) and from dissociable reading deficits in neurological patients with focal lesions (e.g. Patterson, 1981). There is also evidence of contact between the semantic and phonological routes (e.g. Humphreys & Evett, 1985). The evidence for distinct pathways, however, indicates that visual information about words can exist in a code isolated from auditory word processing.

Powerful visual affects due to the existence of visual word forms have long been a focus of study in cognitive psychology (e.g. McClelland & Rumelhart, 1981). For example, individual letters within a word are perceived better than when presented alone or in a nonword letter string (Reicher, 1969). It has recently been shown that damage to the posterior parietal lobe, known to disrupt covert visual spatial orienting contraleesionally (Posner, Walker, Friedrich & Rafal, 1984), impairs reporting of letters on the contraleisonal side of nonword but not word strings (Sieroff, Pollatsek & Posner, 1987). Cueing healthy subjects to the left or right side of letter strings similarly disrupts the report of letters remote from the cue for nonwords but has no such affect for words (Sieroff & Posner, 1987). These findings suggest that the word form may develop quite early in processing and that spatial attention, necessary for organizing nonword strings, may not be needed.

How might one determine if visual word forms actually exist in a module isolated from higher level codes? A method for studying putative cognitive modules involves the use of multiple tasks. Shallice, McLeod & Lewis (1985), for example, used a secondary task to determine which aspects of two linguistic operations could be time shared. The logic of the paradigm is that tasks tapping independent modules ought to show little decrement when performed together. Dual performance of tasks sharing the same module, on the other hand, should result in considerable slowing. On this basis auditory input logogens used in detecting word names were concluded to be isolated from the articulatory codes needed to pronounce visually presented words.

Rollins & Hendricks (1980), using the same logic, had subjects search lists of words for a target word while simultaneously processing auditory information. The targets for the primary task belonged to one of four conditions: a) a specified word in an auditory list; b) a specified word in a visual word list; c) a category instance in a visual list; or d) a rhyme in a visual list. The secondary tasks consisted of: 1) digit repetition; 2) antonym production; or 3) category generation. Target detection was impaired for specified words presented auditorily and for rhyme targets but not for target words presented visually or for semantically specified targets. A more sensitive RT measure, however, might have detected a semantic decrement.

Another use of the dual task technique has involved combining orienting to visual cues with phoneme monitoring (Posner, Inhoff, Friedrich & Cohen, 1987). Performing the language task delayed the usual advantage of cued over uncued spatial locations. Simultaneous performance of visual spatial orienting and phoneme monitoring thus not only increases overall reaction times on the spatial orienting task but results in a reduced advantage for cued locations (validity effect). It is thus possible to conclude that dual task performance reduced the effectiveness of the spatial cue over single task performance and to further infer that cue orienting must require some of the same processing apparatus as attending to auditory phonemes. This result suggests that the dual task method can be applied to the mechanisms used in processing cues or primes as well as to those involved in processing targets.

It is known that priming a target word with a word that is either identical or semantically related to the word will increase the efficiency of its processing. It is possible that the identity prime can facilitate processing through purely visual pathways while the semantic prime works by activating pathways in semantic memory that are shared by the target. If this idea is correct, identity priming should not be reduced by dual tasks that require processing of auditory words while semantic priming should be reduced. To test this hypothesis we study a variety of prime types within the framework of a lexical decision task. Subjects either perform the lexical decision task by itself or at the same time repeat (shadow) an auditory tape recording of a story.

Experiment 1a

Stimuli: Word list stimuli consisted of semantic, identity, unrelated and nonword pairs. Semantic pairs included: 20 good-instance category pairs (e.g. insect - fly); 20 poor-instance category pairs (e.g. ship - ferry); 20 highly associated pairs (e.g. salt - pepper) and 20 less highly associated pairs (e.g. wish - hope). The good and poor instance category pairs were selected on the basis of Battig and Montague (1969) norms for instance dominance. Good instance targets had a mean category dominance rating of 365.8, as compared to 12.6 for the poor instance targets ($p <$

.001). High and lower association pairs were obtained from established association norms (Palermo & Jenkins, 1964). High association pairs had a mean rating of 505.4 while the mean rating for the low association pairs was 98.6 ($p < .001$). Although frequency of occurrence (Kucera & Francis, 1967) was not significantly different across association pairs, high dominance targets had a significantly higher mean frequency than low dominance pairs. There were 40 identity pairs (e.g. train - train), 80 unrelated pairs (e.g. function - lace) and 200 nonword pairs (e.g. route - vorpre). In order to ensure that the effects of prime type would not be attributable to differences in frequency, unrelated pairs were constructed so as to contain the same target words as the categorical and associate pairs. Primes for the unrelated pairs did not differ in frequency from those for the semantically related pairs. Nonword and identity primes were also selected so as not to differ in frequency from those in the unrelated pairs.

In order to meet requirements for disk space, the 400 pair stimulus list was divided into two parts. One half of the items in each pair type were randomly assigned to each list.

The auditory tape used in the shadowing conditions was a reading by Gore Vidal of his novel Abraham Lincoln.

Procedure: Subjects received both word lists first in a no-shadowing and then in a shadowing condition. Each list was presented in a different random order for every subject. List order was counterbalanced such that one half the subjects received each list first.

Target stimuli were presented either a short or a long interval after the onset of the prime (SOA). SOA was randomly assigned to each item at every presentation. Prime stimuli were always initiated 500 msec after the onset of a fixation cross and remained on the screen for 300 msec. Target stimuli were initiated 400 msec after the onset of the prime in the short SOA condition and 900 msec after the onset of the prime in the long SOA condition. The fixation cross remained present throughout the duration of each trial. Primes appeared above and targets below the cross.

Subjects were instructed to fixate on the central cross and to attend to the second stimulus in each trial. Their task was to determine whether that letter string was or was not a real English word. If the target was a real word, the correct response was to press the left key on the response panel with the index of the right hand (or the middle finger of the left hand). Nonword responses were registered by pressing the right key with the middle (index) finger of the same (dominant) hand. Subsequent trials were automatically triggered through the response key.

The shadowing task involved repetition of the auditory tape, allowing for minimal lag between the tape and the subject. Subjects practiced shadowing until they felt comfortable with the task. They were then

instructed to again perform the lexical decision task while maintaining the speed and accuracy of their shadowing. No formal measure of shadowing performance was obtained.

Response accuracy and reaction times for the lexical decision task were stored by computer for later analysis.

Results: Each subject's mean reaction time for correct responses was computed for each SOA (short, long) by Prime Type (semantic, identity, unrelated) by task (no shadow, shadow) condition and these data were included in a fixed effects repeated measures ANOVA. Reaction times faster than 200 msec or slower than 2000 msec were considered errors and excluded from the analysis.

The ANOVA revealed significant main effects of SOA ($F = 10.573$, $df = 1,11$, $p = .007$) and Prime Type ($F = 3.805$, $df = 2,22$, $p = .037$). The main effect of Task closely approached, but did not reach significance ($F = 4.461$, $df = 1.11$, $p = .056$). The interaction of Task X Prime Type, however, was highly significant ($F = 6.02$, $df = 2,22$, $p = .008$).

The means and standard deviations for semantic, identity, and unrelated prime types are presented for both short and long SOAs under no-shadow and shadow task conditions in Table 1. Means and standard deviations from nonword targets, although not included in the analysis, are also listed in Table 1.

INSERT TABLE 1 ABOUT HERE

Further analysis of the above data revealed significantly longer reaction times during shadowing for the semantic pairs considered alone ($F = 6.589$, $df = 1,11$, $p = .025$), but not for identity ($F = 2.041$), or unrelated ($F = 2.926$). Nonword targets showed no increase in the shadowing over the no-shadowing condition at either SOA. Individual comparisons of the Prime Types revealed that semantic and identity reaction times were both significantly faster than those for unrelated targets ($F = 5.482$, $p = .037$ and $F = 6.251$, $p = .028$ respectively) but did not differ from each other ($F = 1.49$). Task X Prime Type interactions were significant for comparisons involving semantic and unrelated ($F = 8.665$, $df = 1,11$, $p = .013$) and semantic and identity ($F = 8.841$, $df = 1.11$, $p = .012$) pairs as the Prime Types but not for the analysis involving identity and unrelated pairs ($F = 1.088$). SOA did not interact with either Task or Prime Type.

More detailed analysis of the four types of semantic relations uncovered main effects of Task ($F = 6.438$, $df = 1,11$, $p = .026$) and Prime Type ($F = 8.309$, $df = 3.33$, $p < .001$) but no interaction ($F = .059$). The means and standard deviations of reaction times for the four semantic prime types are displayed in Table 2.

INSERT TABLE 2 ABOUT HERE

The effects of SOA, Task, and Prime Type were further examined by computing for every subject the difference between the mean unrelated score and the mean score for semantic and identity pairs. The mean difference score for each SOA and task condition are presented in Table 3.

INSERT TABLE 3 ABOUT HERE

A fixed-effects repeated measures ANOVA with these data failed to uncover an overall difference between the two prime types ($F = 1.49$). Shadowing, however, reduces priming scores significantly more for the semantic than for the identity pairs as reflected in a significant Task X Prime Type interaction ($F = 8.841$, $df = 1,11$, $p = .012$).

There was no effect of either Task or Prime Type on the error scores (percentages) presented in Table 4.

INSERT TABLE 4 ABOUT HERE

The results of this experiment support the hypothesis that capacities or processes required for auditory shadowing underlie semantic but not identity priming.

Both semantic and identity priming yielded facilitation as indicated by overall decreased reaction times as compared to the unrelated condition. The shadowing condition resulted in significantly longer reaction times than the no-shadowing condition for the semantic and unrelated pairs. Reaction times for the identity pairs also tended to be longer in the shadowing condition. The interaction between Task and Prime Type for both reaction times and difference scores supports the prediction that shadowing would have less effect on identity than on semantic targets. The results of this study thus suggest that semantic priming at the SOAs we used involves some of the same processes as auditory shadowing. Identity priming seems to be largely independent of these processes.

Before pursuing differences between semantic and identity priming, it was necessary to rule out any possible effect of task order in Experiment 1. It is possible that presenting the two shadowing lists after the two no-shadowing lists in some way confounded the effects of practice with the effects of task. Experiment 1B was thus conducted to replicate the results of Experiment 1 while controlling task order.

Twelve subjects were recruited for Experiment 1B in the same manner as for Experiment 1. The subjects ranged in age from 18 to 49 (Mean = 27.7)

and in education from 12 to 18 (mean = 15.1) years of formal schooling. Stimuli and procedure were identical to those of Experiment 1. In this experiment, however, half the subjects received the tasks in an ABBA design (no shadow first) and half received the tasks in a BAAB design (shadow first). List order was counterbalanced as well.

Reaction times were entered into a mixed between/within analysis of variance with order (ABBA, BAAB), task (first no shadow, second no shadow, first shadow, second shadow), and prime type (high dominance, low dominance, high associate, low associate, semantic, unrelated, identity, and nonword) as factors. The analysis revealed significant main effects of Task ($F = 3.761$, $df = 3,30$, $p = .020$) and Prime Type ($F = 24.462$, $df = 7,70$, $p < .001$) but not Order ($F = 2.343$, $df = 1,10$, $p = .154$). Task interacted significantly with Prime Type ($F = 1.865$, $df = 21.210$, $p = .014$) while Order failed to interact with either task ($F = 2.580$, $df = 3,30$, $p = .071$) or Prime Type ($F = 1.728$, $df = 7,70$, $p = .116$). In a subsequent analysis with high associate, high dominant, identity, and unrelated targets as Prime Types, the Task X Prime Type interaction remained significant ($F = 2.406$, $df = 9,90$, $p = 2.406$) while order again interacted with neither Task ($F = 2.194$, $p = .108$) nor Prime Type ($F = .488$).

A comparison of the difference scores for subjects receiving a no shadow block followed by a shadow block and subjects receiving a shadow block first suggests that shadowing is, if anything, more likely to reduce semantic priming when it occurs in the first rather than the second trial block.

INSERT TABLE 5 ABOUT HERE

The results of Experiment 1B serve to strengthen the conclusions of Experiment 1 by reducing the possibility of a confounding order effect.

Experiment 2

Experiment 1 demonstrates that semantic but not identity priming is reduced by a simultaneous shadowing task. There are two possible explanations for semantic priming in lexical decision. One explanation stresses the influence of the prime in activating pathways shared with the target. The second explanation suggests that some or all of the priming effect occurs after target presentation and results from "backward" facilitation as candidate target words are constrained by the prime.

The typical lexical decision task often confounds relatedness with the task demands (e.g. Chumbley & Balota, 1984; Lorch, Balota & Stamm, 1986) since if a prime is related to the target the response must be "word". Nonwords, by definition, do not have related primes. It is known, however, that priming can be obtained even without this confound as in pronunciation or semantic classification tasks (Schvaneveldt & Durso, 1981, Seidenberg,

Waters, Sanders & Largo, 1984). In our second experiment we use a semantic target classification task in order to prevent the strategic use of relatedness in decision making. This allows us to examine identity and semantic priming in a situation without this possible artifact.

Subjects: 12 subjects were recruited in the same manner as for Experiment 1. One subject was subsequently excluded for failure to follow instructions. The remaining 11 subjects ranged in age from 21 to 33 (mean = 26.4) and had from 15 to 20 (mean = 16.5) years of education. One subject was left-handed.

Stimuli: Word list stimuli consisted of 142 word pairs, 70 with a predator target and 72 with a non-predator target. The predator pairs included 10 targets primed by a category label (e.g. cat - leopard), 12 primed by an associated (e.g. clever - fox), and 12 primed by the identical string (vulture - vulture). The non-predatory stimuli included 12 category pairs (e.g. fowl - chicken), 12 associated pairs (e.g. hump - camel), and 12 identity pairs. 72 unrelated pairs were constructed by pairing each target from the semantically related pairs with a prime dissimilar in meaning (e.g. bay - eel). Category and associate relations as well as predator/non-predator determinations were based on the examiner's judgment without benefit of norms. The difficulty of finding a sufficient number of categorical relations precluded controlling for frequency of occurrence.

The auditory tape used for shadowing was again Gore Vidal's reading of his novel Abraham Lincoln.

Procedure: With the exception of the required decision, the procedure for this experiment was very similar to that for Experiment 1. In this experiment, subjects received two repetitions of the word list without shadowing followed by two repetitions with shadowing. Item order was again randomized for each list presentation.

Subjects were instructed that their task was to determine if the second (target) word was or was not a predatory animal. Predators were described as any animal that is carnivorous or otherwise potentially harmful. If the target was a predator, the correct response was to press the left key on the response panel. Non-predatory responses were registered by pressing the right key. Subjects again used the second and third fingers of their dominant hand to respond.

Results: Each subject's mean reaction time for responses was computed for each SOA by Task by Prime Type and these data were again included in a fixed-effects repeated measures ANOVA. Reaction times faster than 200 msec or slower than 2000 msec were considered errors and excluded. The categorical and associated pairs, both predators and non-predators, were combined to create a semantic prime type. The means and standard deviations for semantic, identity, and unrelated pair types for each

condition are presented in Table 6. Error scores for Experiment 2, considerably higher than for Experiment 1, are displayed in Table 7.

INSERT TABLES 6 & 7 ABOUT HERE

The ANOVA revealed significant main effects of Task ($F = 10.958$, $df = 1,10$, $p = .007$) and Prime Type ($F = 22.851$, $df = 2,20$, $p < .001$), but not of SOA ($F = .966$). More detailed analysis demonstrated that the main effect of Task is attributable to longer reaction times in the shadowing conditions for all three prime types ($F = 12.309$, $p = .005$ - identity; $F = 8.335$, $p = .015$ - semantic; $F = 9.442$, $p = .011$ - unrelated). Individual comparisons of the Prime Types revealed that identity pairs were significantly faster than either semantic ($F = 28.256$, $p < .001$) or unrelated ($F = 24.711$, $p < .001$) but that the difference between semantic and unrelated pairs only approached significance ($F = 3.687$, $p = .087$). The major difference between this experiment and Experiment 2 was the absence of an overall Task X Prime Type interaction ($F = .200$, $df = 2,23$).

Difference scores, as presented in Table 8, were entered into a Task X SOA X Prime Type (semantic, identity) ANOVA which revealed significantly greater priming for the identity pairs ($F = 28.256$, $df = 1,10$, $p < .001$). The Task X Prime Type interaction utilizing difference scores was insignificant ($F = .050$).

INSERT TABLE 8 ABOUT HERE

Although the error rates are high, a Task X Prime Type ANOVA using percentage errors uncovered no effects of either variable.

In summary, reducing the strategic post-access component of the decision task reduced priming for semantic but not for physically identical pairs. Semantic priming, in fact, was only of marginal significance in the predator/non-predator task. Shadowing did not reduce physical priming but tended to reduce semantic priming by approximately one-half.

These results suggest that the dissociation between physical and semantic priming was not unique to the structure of the lexical decision task and confirm that physical priming is isolated from the influence of auditory shadowing while semantic priming is not.

Experiment 3

The purpose of Experiment 3 was twofold. The primary purpose was a replication of Experiment 1 with a larger subject population. A secondary purpose was to ensure that the results of Experiment 2 were not item rather than task specific. We thus embedded the stimuli from Experiment 2 into a larger replication of Experiment 1.

Subjects: 24 subjects were recruited in the same manner for Experiments 1 and 2. Information about age and education was lost for five subjects. The remaining 19 subjects ranged in age from 19 to 49 (mean = 29.5) and had from 12 to 20 (mean = 14.4) years of formal education. None of the 19 subjects was left-handed.

Stimuli: The stimuli for this experiment included 40 categorical, 40 associate, 40 identity, and 120 unrelated prime/word target pairs and 240 prime/non-word target pairs. The categorical stimuli included 20 pairs with animal targets, 10 predators and 10 non-predators, selected from Experiment 2. The remaining 20 category pairs consisted of category label primes and high dominance exemplars. The associated stimuli also included 20 pairs from Experiment 2 (10 predators and 10 non-predators). The remaining associate pairs consisted of 10 antonym sets and 10 common associations. Half of the identity pairs, 10 predators and 10 non-predators, were obtained from Experiment 2. Unrelated pairs were constructed by pairing each semantically related target with an unrelated word. Nonword targets were repeated twice, each time with a different prime.

As in Experiment 2, it was necessary to divide the word list into two parts. Each part contained half the items in each pair type. List order was counter-balanced across subjects.

Procedure: The procedure for Experiment 3 was identical to that for Experiment 1.

Results: Each subject's mean reaction time for correct "yes" responses was initially entered into a three way (SOA by Task by Prime Type) analysis of variance. The Prime Types for this analysis were semantic (all categorical and associate pairs), identity (both animate and inanimate) and unrelated. This analysis yielded significant main effects of Task ($F = 12.789$, $df = 1,23$, $p = .001$) and Prime Type ($F = 38.383$, $df = 1,23$, $p < .001$) but not SOA ($F = .077$, $df = 1,23$). The means and standard deviations for each cell are presented in Table 9. Further analyses of the main effects reveal significant effects of Task for both semantic ($F = 17.083$, $df = 1,23$) and unrelated ($F = 16.835$, $df = 1,23$) pairs considered alone. Reaction times for nonwords, also included in Table 9, increased significantly with shadowing in this experiment ($F = 6.662$, $df = 1,23$, $p = .016$). The effect of task on identity pairs considered alone approached, but failed to reach significance ($F = 3.301$, $df = 1,23$, $p = .079$). The main effect of Prime Type was significant at the .001 level for all three possible two-prime type comparisons. The Task X Prime Type interaction was significant overall ($F = 6.456$, $df = 2,46$, $p = .003$) and when identity pairs were considered with either semantic ($F = 12.611$, $p = .002$) or unrelated ($F = 4.8$, $p = .036$) pairs alone. The Task X Prime Type interaction for semantic and unrelated pairs considered without identity pairs, unlike Experiment 1, was insignificant ($F = 1.729$).

INSERT TABLE 9 ABOUT HERE

Difference scores (Table 10) were entered into a three way (SOA by Task by Prime Type) ANOVA, revealing both a significant main effect of Prime Type ($F = 19.83$, $df = 1,23$, $p < .001$) and a significant Task by Prime Type interaction ($F = 12.611$, $df = 1,23$, $p = .002$).

INSERT TABLE 10 ABOUT HERE

The overall error rates for the semantic, identity, unrelated, and nonword categories are listed in Table 11. There were no significant effects of Task or Prime Type on percentage error.

INSERT TABLE 11 ABOUT HERE

The effect of experiment (lexical decision versus semantic classification) was further explored by re-defining the semantic category in Experiment 3 to include only those stimuli that were presented in Experiment 2 (PSEM). The reaction times for this condition (Table 12) differ minimally from those for the semantic category in Table 9. The full set of analyses reported above was repeated replacing the semantic category with the PSEM category. The results are extremely similar. The three way ANOVA with reaction time data and three Prime Types yielded significant main effects of Task ($F = 12.202$, $df = 1,23$, $p = .002$) and Prime Type ($F = 30.034$, $p < .001$) but not SOA. The Task X Prime Type interaction remained significant overall ($F = 4.136$, $df = 2,46$) but was not significant when PSEM and unrelated pairs were considered without identity pairs ($F = .636$).

INSERT TABLE 12 ABOUT HERE

The PSEM reaction times from Experiments 2 and 3 were directly compared by entering them in a three way between/within (Experiment by Task by SOA) ANOVA. This ANOVA revealed longer reaction times for Experiment 2 than for Experiment 3 ($F = 6.342$, $df = 1,33$, $p = .016$). Although there was a significant main effect of Task on the reaction times ($F = 19.6$, $df = 1,33$, $p < .001$), the Task X Experiment interaction was not significant ($F = .114$). The difference scores for the PSEM category for each experiment are presented in Table 13. An Experiment by Task by SOA analysis revealed none of the predicted effects.

INSERT TABLE 13 ABOUT HERE

The results from all three experiments, averaged across SOA, are presented together in Table 14.

INSERT TABLE 14 ABOUT HERE

In summary, the results of Experiment 3 largely replicate the results of Experiment 1. Shadowing again increased reaction times overall. When the prime types are considered individually, shadowing reaction times are again significantly longer for semantic and unrelated targets while the difference for identity targets does not quite reach significance.

Experiment 3 also yielded a significant main effect of prime type. In addition, all possible two prime type comparisons were significant. There can be no doubt that both semantic and identity priming were obtained.

As in Experiment 1, the Task by Prime Type interaction was significant. However, omitting the identity pairs (considering only semantic and unrelated pairs) eliminated the effect. More importantly, the difference scores in Table 8 reveal a decrease in priming with shadowing for semantic but not for identity targets. Inspection of the table reveals that, unlike Experiment 1, the effect is occurring only at the long SOA. It is possible that the long SOA would allow for greater reliance on attentional processes which would then be minimized during shadowing.

Lastly, in order to ensure that the priming pattern obtained for Experiment 2 was not item specific, the analyses considered above were repeated using only the semantic stimuli that were presented in Experiment 2. Separating these stimuli from the larger set of semantic targets did not alter the pattern of results. It is reasonable to conclude that differences in priming patterns between the experiments are due to processing demands and not specific item demands. Unfortunately, the direct comparison of semantic priming across the two experiments did not yield the predicted Experiment by Task interaction.

Conclusions

Our results show no evidence of a reduction in identity priming during shadowing but a clear effect on semantic priming. However, in our experiment we used only two intervals between prime and target. In some of the experiments there is some evidence that effect of divided attention increases with interval for the semantic task, but decreases for the identity task. In no experiment was this interaction between SOA and attention significant. Even when we combined the data over all experiments the F test was still insignificant. However, it remains possible that at still shorter SOAs than 400 millisec that there would be some influence of the shadow task even on physical priming. It is quite clear, however, that physical priming is uninfluenced by the dual task at intervals where

semantic priming is greatly attenuated. There are at least two possible explanations for the relative lack of a shadowing effect on physical priming. One account is that physical priming is more automatic than semantic priming. Thus, when attention is reduced by shadowing the effect is greater on less automatic semantic processes. While plausible, this account is not a sufficient explanation. It is well known that even physical priming can be influenced by attentional manipulations (e.g. Posner & Snyder, 1975). In addition, there is evidence that semantic priming can be automatic (e.g. Neely, 1977). Further, if greater automaticity of physical priming is the full explanation, priming by highly related primes should be less affected by shadowing than priming by less highly related primes. Although highly related primes yielded greater priming, shadowing produced approximately equivalent effects on all semantic prime types. Thus, while probably contributory, the automaticity argument does not seem adequate to support the clear dissociation between semantic and identity primes found in Experiments 1 and 3.

Another account suggests that identity priming depends primarily upon pathways that are visual in character. Activation of these pathways would lead to facilitation of the visual word in reaching areas that contain semantic information. Kinsbourne & Hicks (1978) suggest a general principle of functional cerebral distance in which activity in functionally distant anatomical areas produces less interference than in functionally related areas. If identity priming involves activation of purely visual areas little interference from shadowing would take place. However, the same theory would expect considerable interference when purely semantic priming is involved since semantics would be contacted both by the visual input and by the story that was being shadowed. According to this logic the dual task method can be extended to produce information on the anatomy as well as on the functional autonomy of lexical systems.

Recent work on auditory and visual processing of lexical items using Positron Emission Tomography (Petersen, et al, 1986, 1987) has produced a picture of the anatomy of these systems. Visual words are processed in several areas of the occipital lobe. It is thought that these areas produce an integrated visual word form in the way postulated by the lexical network views of interactive visual word processing (McClelland & Rumelhart, 1982). The integrated word form is then sent to several areas of the frontal lobe. Among these areas are parts of the dorsolateral prefrontal cortex (area 45) that seem closely related to tasks demanding semantic analysis. It is notable that this general area is also activated in auditory word processing (Petersen, et al, 1987). While the visual and auditory activations are not identical, they are in relatively close proximity within area 45. This anatomical picture fits rather well with the shadowing data presented here. Since our shadowing task had a strong semantic character (subjects did understand the story) it would be expected to involve the semantic areas that would also be needed for priming associates and category exemplars. The PET data imply that purely phonological priming (e.g. individual word naming) would not activate the

semantic areas. This suggests that shadowing of isolated words and/or nonsense material, although more difficult, would not produce the effect of semantic priming found in the current study even though it would be more difficult. Such studies may provide closer methods of integrating purely cognitive studies and those involving anatomical localization.

TABLE 1
REACTION TIMES FOR LEXICAL DECISION - EXPERIMENT 1

	Semantic	Identity	Unrelated	Nonword
Short				
No Shadow	663 (108)	652 (111)	716 (109)	819 (141)
Short Shadow	748 (154)	690 (143)	737 (114)	812 (117)
Long				
No Shadow	627 (90)	629 (136)	670 (124)	769 (147)
Long Shadow	712 (112)	644 (130)	739 (113)	768 (115)

Numbers in Parentheses are Standard Deviations

TABLE 2

**REACTION TIMES TO LEXICAL DECISION FOLLOWING FOUR TYPES
OF SEMANTIC PRIME - Experiment 1**

	High Dominance	Low Dominance	High Associate	Low Associate	Unrelated
Short No Shadow	663	700	629	659	716
Short Shadow	757	779	704	753	737
Long No Shadow	643	681	588	596	670
Long Shadow	733	766	676	671	739

TABLE 3

DIFFERENCE SCORES FOR SEMANTIC AND IDENTITY PAIRS

EXPERIMENT 1

	Semantic	Identity
Short No Shadow	53.7 (29.5)	64.8 (98.5)
Short Shadow	-10.6 (99.8)	47.1 (93.6)
Long No Shadow	43.1 (58)	40.4 (129.1)
Long Shadow	27.4 (72)	95.5 (91.5)

Numbers in Parentheses are Standard Deviations

TABLE 4

PERCENTAGE ERRORS - EXPERIMENT 1

	Semantic	Identity	Unrelated
No Shadow	5.7 (4.5)	3.8 (4.4)	6.0 (4.7)
Shadow	9.3 (6.6)	7.9 (7.4)	10.0 (7.4)

Numbers in Parentheses are Standard Deviations.

TABLE 5

DIFFERENCE SCORES FOR TWO ORDERS - EXPERIMENT 1B

	High Associate	Low Associate	High Dominant	Low Dominant	Semantic	Identity
No Shadow						
first	49	26	42	-56	15	25
Shadow						
second	37	34	26	13	28	74
No shadow						
second	38	29	33	-42	14	44
Shadow						
first	- 5	30	13	- 5	8	66

TABLE 6

REACTION TIMES FOR SEMANTIC CLASSIFICATION FOLLOWING
THREE TYPES OF PRIME - EXPERIMENT 2

	Semantic	Identity	Unrelated
Short No Shadow	656 (74)	597 (103)	700 (80)
Short Shadow	770 (150)	712 (116)	771 (141)
Long No Shadow	674 (64)	597 (72)	669 (56)
Long Shadow	749 (138)	679 (96)	775 (134)

Numbers in Parentheses are Standard Deviations.

TABLE 7

PERCENTAGE ERRORS - EXPERIMENT 2

	Semantic	Identity	Unrelated
No Shadow	17.5 (4.8)	16.9 (5.9)	17.0 (5.1)
Shadow	21.6 (5.4)	17.2 (6.1)	19.2 (5.2)

Number in Parentheses are Standard Deviations.

TABLE 8

DIFFERENCE SCORES - EXPERIMENT 2

	Semantic	Identity
Short No Shadow	43.4 (53)	102.7 (61)
Short Shadow	0.4 (49)	58.4 (62)
Long No Shadow	-5.8 (42)	71.5 (57.6)
Long Shadow	26.0 (54)	94.8 (86)

Numbers in parentheses are Standard Deviations

TABLE 9

REACTION TIMES TO LEXICAL DECISION - EXPERIMENT 3

	Semantic	Identity	Unrelated	Nonword
Short No Shadow	584 (79)	561 (103)	619 (86)	698 (121)
Short Shadow	649 (111)	600 (128)	688 (120)	743 (138)
Long No Shadow	574 (85)	566 (99)	616 (84)	669 (122)
Long Shadow	676 (85)	601 (136)	681 (111)	720 (126)

Numbers in Parentheses are Standard Deviations

TABLE 10

SEMANTIC AND IDENTITY PAIRS - EXPERIMENT 3

	Semantic	Identity
Short No Shadow	36 (38)	58 (49)
Short Shadow	40 (59)	88 (72)
Long No Shadow	42 (43)	50 (49)
Long Shadow	5 (77)	80 (87)

Numbers in Parentheses are Standard Deviation

TABLE 11

PERCENTAGE ERRORS - EXPERIMENT 3

	Semantic	Identity	Unrelated	Nonword
No Shadow	4.5 (3.5)	5.8 (3.4)	5.4 (4.0)	5.4 (4.0)
Shadow	3.8 (4.0)	4.4 (4.6)	4.8 (3.5)	5.5 (4.4)

Numbers in Parentheses are Standard Deviations

TABLE 12

REACTION TIMES TO LEXICAL DECISION FOR THE SEMANTIC PAIRS
IN EXPERIMENTS 2 AND 3 (PSEM)

PSEM

Short No Shadow 587 (79)

Short Shadow 657 (94)

Long No Shadow 585 (94)

Long Shadow 677 (164)

Numbers in Parentheses are Standard Deviations

TABLE 13

DIFFERENCE SCORES FOR SEMANTIC PAIRS SHARED BY
EXPERIMENTS 2 AND 3.

	No Shadow	Shadow
Exp. 2 - Short SOA	43.4 (53)	0.4 (49)
Exp. 3 - Long SOA	-5.8 (42)	26 (54)
Exp. 3 - Short SOA	32.1 (35)	31 (82)
Exp. 3 - Long SOA	30.6 (50)	4.5 (108)

Numbers in Parentheses are Standard Deviations

TABLE 14

**REACTION TIMES AND DIFFERENCE SCORES ACROSS SOA
FOR EXPERIMENTS 1, 2 AND 3**

	Semantic		Identity		Unrelated
	RT	Difference	RT	Difference	RT
Exp. 1a					
No Shadow	645	48.4	640	52.6	693
Shadow	730	8.4	667	71.3	738
Exp. 3					
No Shadow	579	39	564	54	618
Shadow	662	22.5	600	84	684
Exp. 2					
No Shadow	665	18.8	597	87.1	684
Shadow	760	13.2	696	76.6	773

1 This research was supported in part by Contract N-0014-86-0289 from
the program in Biological Intelligence of the Office of Naval Research.
The authors are grateful for the assistance of Ken Moncrieff and Meena
Dhawan in this research.

REFERENCES

- Battig, W.F. & Montague, W.E. (1969) Category norms for verbal items in 56 categories. Journal of Experimental Psychology Monographs, 80, 1-46.
- Carr, T.H. & Pollatsek, A. (1985). Recognizing printed words: A look at current models. In D. Besner, T.G. Waller, and G.E. MacKinnon (Eds.), Reading Research: Advances in Theory and Practice V. Orlando, FL.:Academic Press.
- Chumbley, J. & Balota, D. (1984). A word's meaning affects the decision in lexical decision. Memory and Cognition, 12, 590-606.
- Humphreys, G.W. & Evett, L.S. (1985). Are there independent lexical and nonlexical routes in word processing? An evaluation of the dual-route theory of reading. Behavioral and Brain Sciences, 8, 689-740.
- Kinsbourne, M. & Hicks, R.E. (1978). Functional cerebral space: A model for overflow, transfer and interference effects in human performance. In J. Requin (Ed.), Attention and Performance VII. Hillsdale, N.J.:Lawrence Erlbaum.
- Kucera, H. & Francis, W. (1967). Computational analysis of present-day American English. Providence, R.I.:Brown University Press.
- Lorch, R., Balota, D. & Stamm, E. (1986). Locus of inhibition effects in the priming of lexical decisions: pre- or post-lexical access? Memory and Cognition, 14, 95-103.
- McClelland, J.L. & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375-407.
- Neely, J.H. (1977). Semantic priming and retrieval from lexical memory: The roles of inhibitionless spreading activation and limited capacity attention. Journal of Experimental Psychology: General, 106, 226-254.
- Palermo, D.S. & Jenkins, J.J. (1964). Word association norms - grade school through college. Minneapolis, MN.:University of Minnesota Press.
- Patterson, K. (1981). The relation between reading and phonological coding: Further neuropsychological investigations. In A.W. Ellis (Ed.), Normality and Pathology in Cognitive Functioning. London:Academic Press.
- Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M.A. & Raichle, M.E. (1986). Focal brain activity during visual language trials as measured with averaged PET images of evoked CBF change. Soc. Neurosci. Abstr., 12, 1161.
- Petersen, S.E., Fox, P.T., Posner, M.I. & Raichle, M.E. (1987). A comparison of auditory and visual processing of single words using averaged images of cerebral blood flow change.
- Posner, M.I., Inhoff, A.W., Friedrich, F.I. & Cohen, A. (1987). Isolating attentional systems: A cognitive-anatomical analysis. Psychobiology, in press.
- Posner, M.I. & Snyder, C.R. (1975). Attention and cognitive control. In R.L. Solso (Ed.), Information Processing and Cognition: The Loyola Symposium. Hillsdale, N.J.:Erlbaum.

- Posner, M.I. & Snyder, C.R. (1975). Facilitation and inhibition in the processing of signals. In P.M.A. Rabbitt (Ed.), Attention and Performance V. London: Academic Press.
- Posner, M.I., Walker, J.A., Friedrich, F.J. & Rafal, R.D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4, 1863-1874.
- Reicher, G.M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81, 274-280.
- Rollins, H.A. & Hendricks, R. (1980). Processing of words presented simultaneously to eye and ear. Journal of Experimental Neuropsychology: Human Perception and Performance. 6, 99-109.
- Rumelhart, D.E. & McClelland, J.L. (1982). An interactive activation model of context effects in letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89, 60-94.
- Schvaneveldt, R., Durso, F. & Mukherji, B. (1982). Semantic distance effects in categorization tasks. Journal of Experiment Psychology: Learning, Memory and Cognition, 8, 1-15.
- Seidenberg, M.S., Waters, G.S., Sanders, M. & Langer, P. (1984). Pre- and post-lexical loci of contextual effects on word recognition. Memory and Cognition, 12, 315-328.
- Shallice, T., McLeod, P. & Lewis, K. (1985). Isolating cognitive modules with the dual task paradigm: Are speech perception and production separate processes? Quarterly Journal of Experimental Psychology, 37A, 507-532.
- Sieroff, E., Pollatsek, A. & Posner, M.I. (1987). Recognition of visual letter strings following injury to the posterior visual spatial attention system. Cognitive Neuropsychology, submitted.
- Sieroff, E. & Posner, M.I. (1987). Cueing spatial attention during processing of words and letter strings in normals. Cognitive Neuropsychology, in press.

Distribution List

Distribution List

Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Dr. Beth Adelson
Department of Computer Science
Tufts University
Medford, MA 02155

Technical Director,
Army Human Engineering Lab
Aberdeen Proving Ground
MD 21005

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. Ed Aitken
Navy Personnel R&D Center
San Diego, CA 92152-0800

Dr. John Allen
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. James Anderson
Brown University
Center for Neural Science
Providence, RI 02912

Dr. Nancy S. Anderson
Department of Psychology
University of Maryland
College Park, MD 20742

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Gary Aston-Jones
Department of Biology
New York University
1009 Main Building
Washington Square
New York, NY 10003

Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

Dr. James Ballas
Georgetown University
Department of Psychology
Washington, DC 20057

Dr. Harold Bansford
National Science Foundation
1800 G Street, N.W.
Washington, DC 20550

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

Dr. Alvin Blitner
Naval Biodynamics Laboratory
New Orleans, LA 70189

Dr. John Bleha
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Sue Bonner
Army Research Institute
ATTN: PERI-SF
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Dr. Gordon M. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Mr. Donald C. Burey
General Physics Corp.
10650 Hickory Ridge Rd.
Columbia, MD 21046

Dr. Gail Carpenter
Northeastern University
Department of Mathematics, SONLA
360 Huntington Avenue
Boston, MA 02115

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Tyrone Cashman
American Society of
Cybernetics
3828 Fremont Ave. South
Minneapolis MN 55408

Dr. Alphonse Chapanis
4615 Bellona Lane
Suite 210
Baltimore, MD 21204

Dr. Paul R. Choteller
OSD/RE
Pentagon
Washington, DC 20330-2000

Mr. Raymond E. Christel
AFHRL/MOE
Brooks AFB, TX 78235

Dr. David E. Clement
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Charles Clifton
Tobin Hall
Department of Psychology
University of
Massachusetts
Amherst, MA 01003

Dr. Sue Coates
Army Research Institute
ATTN: PERI-SF
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Dr. Gordon M. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Mr. R. K. Disuska
Associate Director for Life Sciences
AFOSR
Boeing AFB
Washington, DC 20332

Dr. Michael Cole
University of Illinois
Department of Psychology
Champaign, IL 61820

Dr. Alan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Leon Cooper
Brown University
Center for Neural Science
Providence, RI 02912

Dr. Lynn A. Cooper
Learning R&D Center
University of Pittsburgh
3939 O'Hare Street
Pittsburgh, PA 15213

Phil Dunniff
Commanding Officer, Code 7522
Naval Undersea Warfare Engineering
Keyport, WA 98335

Lt John Deton
OHR Code 125
3400 7th/7th St
Lowry AFB, CO 80230-5000

Dr. Stanley Deutsch
Committee on Human Factors
National Academy of Sciences
2101 Constitution Ave.
Washington, DC 20418

Dr. R. K. Disuska
Associate Director for Life Sciences
AFOSR
Boeing AFB
Washington, DC 20332

(Washington University/Posner) 1987/11/10)

Distribution List

Distribution List

- Dr. Daniel Gopher
Industrial Engineering
A Management
TECHNIQUE
Halla 32000
ISRAEL
- Dr. Sherrie Gott
AFHIL/MODJ
Brooks AFB, TX 78235
- Dr. Richard H. Granger
Department of Computer Science
University of California, Irvine
Irvine, CA 92717
- Dr. Steven Grant
Department of Biology
New York University
1009 Main Bldg
Washington Square
New York, NY 10003
- Dr. Wayne Gray
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
- Dr. Berit Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218
- Dr. James C. Greeno
University of California
Berkeley, CA 94720
- Dr. William Greenough
University of Illinois
Department of Psychology
Champaign, IL 61801
- Dr. Stephen Grossberg
Center for Adaptive Systems
Room 244
111 Cummingston Street
Boston University
Boston, MA 02215
- Dr. Mohamed K. Habib
University of North Carolina
Department of Biostatistics
Chapel Hill, NC 27516
- Dr. Edward Haertel
School of Education
Stanford University
Stanford, CA 94305
- Dr. Henry M. Haffr
Haffr Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207
- Dr. Nancy F. Haffr
Haffr Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207
- Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003
- Dr. Cheryl Hameel
NTSC
Orlando, FL 32813
- Mr. William Hartung
PEAK Product Manager
Army Research Institute
- Dr. Harold Hawkins
Office of Naval Research
Code 1142PT
5001 Elsenhower Avenue
Arlington, VA 22217-5000
- Prof. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213
- Dr. Jerome A. Feldman
University of Rochester
Computer Science Department
Rochester, NY 14627
- Dr. Paul Feltoovich
Southern Illinois University
School of Medicine
Medical Education Department
P.O. Box 3926
Springfield, IL 62706
- Dr. Joan I. Heller
505 Haddon Road
Oakland, CA 94606

- Dr. Stephanie Doen
Code 6021
Naval Air Development Center
Warminster, PA 18974-5000
- Dr. Emanuel Donchin
University of Illinois
Department of Psychology
Champaign, IL 61801
- Mr. Ralph Dussek
ABD Corporation
5457 Twins Knolls Road
Suite 100
Columbia, MD 21045
- Dr. Ford Ender
Brown University
Anatomy Department
Medical School
Providence, RI 02912
- Dr. Jeffrey Elman
University of California,
San Diego
Department of Linguistics, C-008
La Jolla, CA 92093
- Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003
- Dr. Cheryl Hameel
NTSC
Orlando, FL 32813
- Mr. William Hartung
PEAK Product Manager
Army Research Institute
- Dr. Harold Hawkins
Office of Naval Research
Code 1142PT
5001 Elsenhower Avenue
Arlington, VA 22217-5000
- Prof. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213
- Dr. Jerome A. Feldman
University of Rochester
Computer Science Department
Rochester, NY 14627
- Dr. Paul Feltoovich
Southern Illinois University
School of Medicine
Medical Education Department
P.O. Box 3926
Springfield, IL 62706
- Dr. Craig L. Fields
ASPA
1400 Wilson Blvd.
Arlington, VA 22209
- Dr. Gail B. Fleischacker
Margulies Lab
Biological Sci. Center
2 Cummingston Street
Boston, MA 02215
- Dr. Jane M. Flynn
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030
- Dr. Michael Gallagher
University of North Carolina
Department of Psychology
Chapel Hill, NC 27516
- Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024
- Dr. Don Gauthier
Center for Human
Information Processing
University of California
La Jolla, CA 92093
- Dr. Lee Giles
AFOSR
Boiling AFB
Washington, DC 20332
- Dr. Eugene E. Glynn
Office of Naval Research
Detachment
1030 E. Green Street
Pasadena, CA 91106-2485
- Dr. Joseph Golwen
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

(Washington University/Posner) 1987/11/10

Distribution List

Distribution List

- Dr. Per Helmersen
University of Oslo
Department of Psychology
Box 109a
Oslo 3, NORWAY
- Dr. Earl Hunt
University of Washington
Department of Psychology
Seattle, WA 98105
- Dr. Steven A. Millard
Department of Neuroscience
University of California,
San Diego
La Jolla, CA 92093
- Dr. Geoffrey Minton
Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213
- Dr. Jim Hollan
Intelligent Systems Group
Institute for
Cognitive Science (C-015)
UCSD
La Jolla, CA 92093
- Dr. Melisse Holland
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Arlington, VA 22233
- Dr. Keith Holyoak
University of Michigan
Human Performance Center
330 Packard Road
Ann Arbor, MI 48109
- Dr. Douglas H. Jones
Thatcher Jones Associates
P.O. Box 6610
10 Trafalgar Court
Lawrenceville, NJ 08648
- Dr. James Howard
Dept. of Psychology
Human Performance Laboratory
Catholic University of
America
Washington, DC 20064
- Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820
- Dr. Marcel Just
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213
- Dr. Alice Isen
Department of Psychology
University of Maryland
College Park
Catonsville, MD 21228
- COL Dennis W. Jarvis
Commander
AFFRL
Brooks AFB, TX 78235-5601
- Dr. Joseph E. Johnson
Assistant Dean for
Graduate Studies
College of Science and Mathematics
University of South Carolina
Columbia, SC 29208
- Dr. John Holland
University of Michigan
2313 East Engineering
Ann Arbor, MI 48109
- Dr. Tom Jones
ONR Code 125
800 N. Quincy Street
Arlington, VA 22217-5000
- Mr. Daniel B. Jones
U.S. Nuclear Regulatory
Commission
Division of Human Factors Safety
Washington, DC 20585
- Dr. Wendy Kellogg
IBM T. J. Watson Research Ctr.
P.O. Box 218
Tucktown Heights, NY 10598
- Dr. Scott Kelso
Haskins Laboratories,
270 Crown Street
New Haven, CT 06510
- Dr. Dennis Kibler
University of California
Department of Information
and Computer Science
Irvine, CA 92117
- Dr. David Kieras
University of Michigan
Technical Communication
College of Engineering
1223 E. Engineering Building
Ann Arbor, MI 48109
- Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213
- Dr. Ruth Kanfer
University of Minnesota
Department of Psychology
Elliott Hall
75 E. River Road
Minneapolis, MN 55455
- Dr. Demetrios Karis
Grumman Aerospace Corporation
HS COB-1a
Bethpage, NY 11718
- Dr. Milton S. Katz
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
- Dr. Steven M. Keele
Department of Psychology
University of Oregon
Eugene, OR 97403
- Dr. Wendy Kellogg
IBM T. J. Watson Research Ctr.
P.O. Box 218
Tucktown Heights, NY 10598
- Dr. Kenneth Kotovsky
Department of Psychology
Harvard University
1236 William James Hall
33 Kirkland St., Cambridge, MA 02138
- Dr. Robert Krantz
2 Washington Square Village
Apt. # 15J
800 Allegheny Avenue
Pittsburgh, PA 15233
- Dr. David M. Lambert
Naval Ocean Systems Center
Code 6817
271 Catalina Boulevard
San Diego, CA 92152-6800
- Dr. Pat Langley
University of California
Department of Information
and Computer Science
Irvine, CA 92117
- Dr. Jane Jorgensen
University of Oslo
Institute of Psychology
Box 109a, Blinder
Oslo, NORWAY

(Washington University/Posner) 1987/11/10

Distribution List

Distribution List

- Dr. Harry Lansenau
Dept. of Geography
University of South Carolina
Columbia, SC 29208
Carrie Hall 013A
Chapel Hill, NC 27514
- Dr. Bob Lloyd
Dept. of Geography
University of South Carolina
Columbia, SC 29208
The L. L. Thurstone Lab.
Carrie Hall 013A
Chapel Hill, NC 27514
- Dr. Frederic H. Lord
Educational Testing Service
Princeton, NJ 08541
- Dr. Jill Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213
- Dr. Robert Lawler
Information Sciences, FRL
GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254
- Dr. Paul E. Lehner
PAR Technology Corp.
7926 Jones Branch Drive
Suite 170
McLean, VA 22102
- Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260
- Dr. Jim Levin
Department of
Educational Psychology
Educational Building
1310 South Sixth Street
Champaign, IL 61820-6990
- Dr. John Levine
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260
- Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801
- Sr. Clayton Lewis
University of Colorado
Department of Computer Science
Campus Box 430
Boulder, CO 80309
- Dr. James L. McGaugh
Center for the Neurobiology
of Learning and Memory
University of California, Irvine
Irvine, CA 92717
- Dr. Gail McLean
CAS/Psychology
Northwestern University
1859 Sheridan Road
Kresge #210
Evanston, IL 60201
- Dr. Joe McLaughlin
Navy Personnel R&D Center
San Diego, CA 92152-6800
- Dr. James McMichael
P. O. Box 44
Higley, AZ 85236
- Dr. William L. Haloy
Chief of Naval Education
and Training
Naval Air Station
Penacola, FL 32508
- Dr. Evans Mandes
Chief of Naval Education
and Training
Research Organization
1100 South Washington
Alexandria, VA 22314
- Dr. Sandra P. Marshall
Dept. of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030
- Dr. Richard E. Mayer
Department of Psychology
University of California
Santa Barbara, CA 93106
- Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Jovanovich Inc.
1250 West 6th Street
San Diego, CA 92101
- Dr. Jay McClelland
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213
- Dr. Randy Nissen
Program Manager
Training Research Division
Human Resources
1100 S. Washington
Arlington, VA 22231
- Dr. Allen Moore
Behavioral Technology
Laboratories - USC
1845 S. Elena Ave., 4th Floor
Redondo Beach, CA 90277
- Dr. Richard E. Miskett
University of Michigan
Institute for Social Research
Room 5261
Ann Arbor, MI 48109
- Dr. Mary Jo Missen
University of Minnesota
2118 Elliott Hall
Minneapolis, MN 55455
- Deputy Technical Director
NPDC Code 01A
San Diego, CA 92152-6800
- Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Princeton, NJ 08540
- Dr. George A. Miller
Department of Psychology
Green Hall
Princeton University
Princeton, NJ 08540
- Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541
- Dr. William Montague
NPDC (Code 07)
San Diego, CA 92152-6800
- Director, Manpower and Personnel
Laboratory
NPDC (Code 06)
San Diego, CA 92152-6800
- Director, Human Factors
6 Organizational Systems Lab.
NPDC (Code 07)
San Diego, CA 92152-6800
- Fleet Support Office,
NPDC (Code 301)
San Diego, CA 92152-6800
- Mr. Melvin D. Monteiro
NASA Headquarters
RTE-6
Washington, DC 20546
- Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390
- Dr. Tom Moran
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94301

(Washington University/Posner) 1987/11/10

Distribution List

Distribution List

Dr. Harold F. O'Neill, Jr.
School of Education - WPH 801
Department of Educational
Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031
Office of Naval Research,
Code 112PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 copies)

Dr. Michael Oberlin
Naval Training Systems Center
Code 711
Orlando, FL 32813-7100

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Director, Research Programs,
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Mathematics Group,
Office of Naval Research
Code 1111MA
800 North Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 1133
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 1141NE
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 1142
800 N. Quincy St.
Arlington, VA 22217-5000

Office of Naval Research,
Code 112EP
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 112PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 copies)

Director, Technology Programs,
Office of Naval Research
Code 12
800 North Quincy Street
Arlington, VA 22217-5000

Special Assistant for Marine
Corps Matters,
ONR Code 001C
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Dr. Glenn Osga
MOSC, Code 441
San Diego, CA 92152-6800
Prof. Seymour Papert
20C-109
Massachusetts Institute
of Technology
Cambridge, MA 02139

Dr. Robert F. Pasnak
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Daira Paulson
Code 52 - Training Systems
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Karl Pribram
Stanford University
Department of Psychology
Bldg. 4201 -- Jordan Hall
Stanford, CA 94305

Dr. James W. Pellegrino
University of California,
Santa Barbara
Department of Psychology
Santa Barbara, CA 93106

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.
Chicago, IL 60637

Dr. Ray Perez
ARI (PEH1-II)
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Steven Tinker
Department of Psychology
E10-018
H.I.T.
Cambridge, MA 02139

Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Steven E. Poltrack
MCC
9030 Research Blvd.
Echelon Bldg. 41
Austin, TX 78759-6509

Dr. Daniel Reisberg
Department of Psychology
New School for Social Research
65 Fifth Avenue
New York, NY 10003

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Michael I. Posner
Department of Neurology
Washington University
Medical School
St. Louis, MO 63110

Dr. Mary C. Potter
Department of Psychology
MIT (E-10-032)
Cambridge, MA 02139

Dr. Karl Pribram
Stanford University
Department of Psychology
Bldg. 4201 -- Jordan Hall
Stanford, CA 94305

Dr. Joseph Protte
ATTN: PERI-IC
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. James A. Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Street
Baltimore, MD 21201

Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

(Washington University/Posner) 1987/11/10

Distribution List

Distribution List

- Mr. Raymond C. Sidorksky
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
- Dr. Herbert A. Simon
Department of Psychology
Carnegie-Mellon University
Scenky Park
Pittsburgh, PA 15213
- Dr. Zita M Slatutis
Instructional Technology
Systems Area
ARI
5001 Eisenhower Avenue
Alexandria, VA 22333
- Dr. H. Wallace Sinaiko
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314
- Dr. Derek Sleeman
Stanford University
School of Education
Stanford, CA 94305
- Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138
- Dr. Linda B. Smith
Department of Psychology
Indiana University
Bloomington, IN 47405
- Dr. Robert F. Smith
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030
- Dr. Alfred F. Smode
Senior Scientist
Code 07A
Naval Training Systems Center
Orlando, FL 32813
- Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94305
- Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520
- Dr. Kathryn T. Spoehr
Brown University
Department of Psychology
Providence, RI 02912
- James J. Staatszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213
- Dr. Ted Steinke
Dept. of Geography
University of South Carolina
Columbia, SC 29208
- Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520
- Dr. Saul Sternberg
University of Pennsylvania
Department of Psychology
3815 Walnut Street
Philadelphia, PA 19104
- Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238
- Dr. Paul J. Sticha
Senior Staff Scientist
Training Research Division
Human Factors
1100 S. Washington
Knoxville, TN 37916
- Dr. Michael J. Saset
Perceptronics, Inc
6271 Varlet Avenue
Woodland Hills, CA 91364
- Dr. Arthur Saarai
Yale University
Department of Psychology
Box 11A, Yale Station
New Haven, CT 06520
- Dr. Roger Schank
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520
- Dr. Walter Schneider
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260
- Dr. Janet Schorfield
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260
- Dr. William B. Rouse
Search Technology, Inc.
25-b Technology Park/Atlanta
Norcross, GA 30092
- Dr. Donald Rubin
Statistics Department
Science Center, Room 608
1 Oxford Street
Harvard University
Cambridge, MA 02138
- Dr. David Rumelhart
Center for Human
Information Processing
Univ. of California
La Jolla, CA 92093
- Dr. Robert J. Seidel
US Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333
- Dr. Michael G. Shafto
OMA Code 112P
800 N. Quincy Street
Arlington, VA 22217-5000
- Dr. T. B. Sheridan
Dept. of Mechanical Engineering
MIT
Cambridge, MA 02139
- Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

(Washington University/Posner) 1987/11/10

Distribution List

Distribution List

Cdr Michael Suman, PD 303
Naval Training Systems Center
Code N51, Comptroller
Orlando, FL 32813

Dr. Steve Suomi
NTH Bldg. 31
Rmcm B2B-15
Bethesda, MD 20205

Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Sympson
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka
CERT
252 Engineering Research
Laboratory
Urbana, IL 61801

Dr. Richard F. Thompson
Stanford University
Department of Psychology
Bldg. #201 -- Jordan Hall
Stanford, CA 94305

Dr. Martin A. Tolcott
3001 Veazey Terr., M.W.
Apt. 1617
Washington, DC 20008

Dr. Douglas Tome
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

Dr. Robert Tsutakawa
University of Missouri
Department of Statistics
222 Hatch Sciences Bldg.
Columbia, MO 65211

Dr. Michael T. Turvey
Haskins Laboratories
270 Crown Street
New Haven, CT 06510

Dr. Amos Tversky
Stanford University
Dept. of Psychology
Stanford, CA 94305

Dr. James Tweeddale
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Zita E. Tyer
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Headquarters, U. S. Marine Corps
Code HPI-20
Washington, DC 20380

Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 310
St. Paul, MN 55114

Dr. Kurt Van Lehn
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Jerry Voss
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6800

Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08541

Dr. Beth Warren
Dolt Branck & Newman, Inc.
50 Hould Street
Cambridge, MA 02138

Dr. Michael T. Turvey
Haskins Laboratories
270 Crown Street
New Haven, CT 06510

Dr. Norman M. Weinberger
University of California
Center for the Neurobiology
of Learning and Memory
Irvine, CA 92717

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Shin-Sung Wen
Jackson State University
1325 J. R. Lynch Street
Jackson, MS 39217

Dr. Keith T. Wescourt
FMC Corporation
Central Engineering Labs
1185 Coleman Ave., Box 500
Santa Clara, CA 95052

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Barbara White
Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Richard F. Thompson
Stanford University
Department of Psychology
Bldg. #201 -- Jordan Hall
Stanford, CA 94305

Dr. Martin A. Tolcott
3001 Veazey Terr., M.W.
Apt. 1617
Washington, DC 20008

Dr. Barry Whitsel
University of North Carolina
Department of Physiology
Medical School
Chapel Hill, NC 27514

Dr. Jerry Voss
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6800

Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08541

Dr. Heather Wild
Naval Air Development
Center
Code 6021
Warminster, PA 18974-5000

Dr. Robert A. Wisher
U.S. Army Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152-6800

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Donald Woodward
Office of Naval Research
Code 1141NP
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Wallace Wulfek, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Joe Yasutake
AFHRL/AT
Lowry AFB, CO 80230

Mr. Carl York
System Development Foundation
181 Lytton Avenue
Suite 210
Palo Alto, CA 94301

Dr. Joseph L. Young
Memory & Cognitive
Processes
National Science Foundation
Washington, DC 20550

Distribution List (Washington University/Posner) 1987/11/10

AFOSR, Life Sciences Division
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Chief of Naval Education
and Training
Liaison Office
Air Force Human Resource Lab.
Operations Training Division
Williams AFB, AZ 85224

Captain P. Michael Curran
Office of Naval Research
800 N. Quincy Street
Code 125
Arlington, VA 22217-5000

Defense Technical Information Ctr.
Cameron Statiopn, Bldg. 5
Alexandria, VA 22314
Attn: TC

Dr. Marshall J. Farr
2520 North Vernon Street
Arlington, VA 22207

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Donald A. Norman
Institute for Cognitive Science
University of California
La Jolla, CA 92093

Dr. Steven Zornetzer
Office of Naval Research
Code 1140
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. John J. Collins
Director, Field Research Office,
Orland
NPRDC Liaison Officer
NTSC Orlando, FL 32813

Dr. Joel Davis
Office of Naval Research
800 North Quincy Street
Code 1141NP
22217-5000

ERIC Facility Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

J. D. Fletcher
9931 Corsica Street
Vienna, VA 22180

Dr. David Navon
Institute for Cognitive Science
University of California
La Jolla, CA 92093

Dr. Robert Sasmor
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Michael J. Zyda
Naval Postgraduate School
Code 52CK
Monterey, CA 93943-5100

EWD

10 - 87

D / I C