

Figura 1.3.1 \mathbf{n}_1 y \mathbf{n}_2 son los dos posibles vectores ortogonales a \mathbf{a} y \mathbf{b} , que tienen norma $\parallel \mathbf{a} \parallel \parallel$ $\mathbf{b} \parallel | \operatorname{sen} \theta |$.

Figura 1.3.2 La regla de la mano derecha para determinar en cuál de las dos posibles direcciones apunta $\mathbf{a} \times \mathbf{b}$.

Combinando estos resultados, concluimos que $\mathbf{a} \times \mathbf{b}$ es un vector perpendicular al plano \mathcal{P} generado por \mathbf{a} y \mathbf{b} y de longitud $\|\mathbf{a}\| \|\mathbf{b}\| \operatorname{sen} \theta$. En la Figura 1.3.1 vemos que esta longitud es también el área del paralelogramo (con base $\|\mathbf{a}\|$ y altura $\|\mathbf{b} \operatorname{sen} \theta\|$) generado por \mathbf{a} y \mathbf{b} . Existen dos posibles vectores que satisfacen estas condiciones, ya que se pueden elegir dos direcciones perpendiculares (o normales) a \mathcal{P} . Esto se ve claramente en la Figura 1.3.1, que muestra las dos posibilidades \mathbf{n}_1 y $-\mathbf{n}_1$ perpendiculares a \mathcal{P} , con $\|\mathbf{n}_1\| = \|-\mathbf{n}_1\| = \|\mathbf{a}\| \|\mathbf{b}\| |\operatorname{sen} \theta|$.

¿Qué vector representa $\mathbf{a} \times \mathbf{b}$, \mathbf{n}_1 o $-\mathbf{n}_1$? La respuesta es \mathbf{n}_1 . Pruebe a calcular algunos casos como $\mathbf{k} = \mathbf{i} \times \mathbf{j}$ para comprobarlo. La siguiente "regla de la mano derecha" determina la dirección de $\mathbf{a} \times \mathbf{b}$ en general. La mano derecha se coloca de tal modo que los dedos se curven de \mathbf{a} hacia \mathbf{b} a través del ángulo agudo θ que forman ambos, como se muestra en la Figura 1.3.2. Entonces el dedo pulgar apunta en la dirección de $\mathbf{a} \times \mathbf{b}$.

Producto vectorial $\textit{Definición geométrica: } \mathbf{a} \times \mathbf{b}$ es el vector tal que:

- (1) $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \operatorname{sen} \theta$, el área del paralelogramo generado por \mathbf{a} y \mathbf{b} (θ es el ángulo que forman \mathbf{a} y \mathbf{b} ; $0 \le \theta \le \pi$); véase la Figura 1.3.3.
- (2) $\mathbf{a} \times \mathbf{b}$ es perpendicular a \mathbf{a} y \mathbf{b} , y la terna $(\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b})$ satisface la regla de la mano derecha.

Fórmula con componentes:

$$(a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \times (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
$$= (a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}$$

Reglas algebraicas:

- 1. $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ si y solo si \mathbf{a} y \mathbf{b} son paralelos o si \mathbf{a} o \mathbf{b} es cero.
- 2. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.
- 3. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.
- 4. $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$.
- 5. $(\alpha \mathbf{a}) \times \mathbf{b} = \alpha (\mathbf{a} \times \mathbf{b}).$

Tabla de multiplicación:

		Segundo factor		
	×	i	j	k
	i	0	k	$-\mathbf{j}$
Primer	j	$-\mathbf{k}$	0	i
factor	\mathbf{k}	j	$-\mathbf{i}$	0