

Compound Angle Formulae

A-level Maths Topic Summaries - Trigonometry

Subject & topics: Maths | Geometry | Trigonometry Stage & difficulty: A Level P3

Fill in the blanks to complete the summary notes on compound angle formulae.

$$\sin{(A+B)} \equiv \sin{A}\cos{B}$$

$$\sin{(A-B)} \equiv \sin{A}\cos{B}$$

$$\cos(A+B) \equiv \cos A \cos B$$

$$\cos(A - B) \equiv \cos A \cos B$$

$$an\left(A+B
ight)\equivrac{ an A}{1}igg[$$

$$an\left(A-B
ight)\equivrac{ an A\left(igcirc}{1\left(igcirc}
ight)$$

Items:

$$+\cos A\sin B$$
 $-\cos A\sin B$ $+\sin A\sin B$ $-\sin A\sin B$ $+\tan B$ $+\tan B$

 $-\tan A an B$

Created for isaacphysics.org by Jonathan Waugh

Double Angle Formulae

A-level Maths Topic Summaries - Trigonometry

Subject & topics: Maths | Geometry | Trigonometry Stage & difficulty: A Level P3

Fill in the blanks to complete the summary notes on double angle formulae.

There is one identity for $\sin{(2A)}$ and one for $\tan{(2A)}$. There are three identities for $\cos{(2A)}$ which are related by the identity $\sin^2{A} + \cos^2{A} \equiv 1$.

$$\sin{(2A)}\equiv$$

$$\cos{(2A)} \equiv \cos^2{A}$$

$$\cos{(2A)}\equiv 1$$

$$\cos{(2A)} \equiv \boxed{ } -1$$

$$an\left(2A
ight)\equivrac{ extstyle \left(1
ight)}{1\left(1
ight)}$$

Items:

Created for isaacphysics.org by Jonathan Waugh

Question deck:

STEM SMART Single Maths 31 - Compound & Double-Angle

Formulae

Combining Sin and Cos Terms - R Form

A-level Maths Topic Summaries - Trigonometry

Subject & topics: Maths | Geometry | Trigonometry Stage & difficulty: A Level P3

Fill in the blanks to complete the summary notes on R form.

The compound angle formulae can be used to rewrite the sum of two sine or cosine terms as a single sine or cosine function. We will illustrate this by writing $3\sin x + 4\cos x$ in the form $R\sin(x + \alpha)$.

$$R\sin(x+\alpha) \equiv 3\sin x + 4\cos x$$

Expanding $R\sin{(x+lpha)}$ using the compound angle formula for $\sin{(A+B)}$,

$$R\sin(x+\alpha) \equiv R\sin x \cos \alpha + R\cos x \sin \alpha$$

Equating coefficients of $\sin x$ and $\cos x$ in the two expressions for $R\sin{(x+\alpha)}$ gives

$$3 = \boxed{ } \tag{1}$$

$$4 = \boxed{\hspace{1cm}} (2)$$

We now solve (1) and (2) simultaneously to find R and α .

- To find R we square (1) and (2), add them together, and make use of the identity $\sin^2 \theta + \cos^2 \theta \equiv 1$. We end up with \bigcap , and hence $R = \bigcap$.
- ullet To find lpha we divide (2) by (1) to get $lacksymbol{}$. We then use \arctan to find $lpha=lacksymbol{}$ (to 3 sf).

Therefore $3\sin x + 4\cos x$ can be written as $\sin (x + \cos x)$.

Items:

Created for isaacphysics.org by Jonathan Waugh

Question deck:

Trigonometry: Double Angles 1ii

Subject & topics: Maths Stage & difficulty: A Level C1

Part A

The form $a\sin^2\theta+b\sin\theta+c=0$

Express the equation $(\csc\theta)(3\cos2\theta+7)+11=0$ in the form $a\sin^2\theta+b\sin\theta+c=0$, where $a,\,b,$ and c are constants and a>0.

Enter the values of a, b and c:

$$a = \bigcap$$

$$b = \bigcirc$$

$$c =$$
 (

Part B Solve

Hence solve, for $-180^\circ < \theta < 180^\circ$, the equation $(\csc\theta)(3\cos2\theta + 7) + 11 = 0$.

Give your answers in degrees, to three significant figures.

Enter your answers in order from lowest value of θ to highest.

(lowest value)

(highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Trigonometry: Double Angles 2ii

Subject & topics: Maths Stage & difficulty: A Level C1

Part A sin **Double Angle**

Write down the identity expressing $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$.

The following symbols may be useful: theta

Part B $\sin 2\alpha$

Given that $\sin lpha = rac{1}{4}$ and lpha is acute, find the exact value of $\sin 2lpha$.

The following symbols may be useful: alpha

Part C Solve

Solve in degrees, for $0^{\circ} < \beta < 90^{\circ}$, the equation $5\sin 2\beta \sec \beta = 3$, giving your answer in degrees to three significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 31 - Compound & Double-Angle

Trigonometry: Combined Angles 5i

Subject & topics: Maths Stage & difficulty: A Level P2

The value of $\tan 10^\circ$ is denoted by p. Find, in terms of p, the value of:

The following symbols may be useful: p, theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 31 - Compound & Double-Angle

Functions: Reciprocal Trig 2i

Subject & topics: Maths Stage & difficulty: A Level P2

It is given that \boldsymbol{A} and \boldsymbol{B} are angles such that

$$\sec^2 A - \tan A = 13$$
 and $\sin B \sec^2 B = 27 \cos B \csc^2 B$.

Part A

Largest value of tan(A-B)

Find the largest possible exact value of tan(A - B).

The following symbols may be useful: A, B

Part B

Smallest value of tan(A-B)

Give the smallest possible value of tan(A-B).

The following symbols may be useful: A, B

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 31 - Compound & Double-Angle

Trigonometry and R-Form 1

Part A $5\cos x + 12\sin x$
Express $5\cos x + 12\sin x$ in the form $R\cos(x-lpha)$, where $R>0$ and $0^\circ < lpha < 90^\circ$.
State the value of R :
R =
Give the value of $lpha$ in degrees, to three significant figures:
$\alpha =$

Part B

Transformations

Give details of a pair of transformations which transform the curve $y=\cos x$ to the curve $y=5\cos x+12\sin x$.

Available items

Translation in the positive x direction by α .

Stretch parallel to the y-axis by a factor of R.

Stretch parallel to the y-axis by a factor of $\frac{1}{R}$.

Stretch parallel to the x-axis by a factor of R.

Translation in the positive y direction by α .

Stretch parallel to the x-axis by a factor of $\frac{1}{R}$.

Translation in the negative y direction by α .

Translation in the negative x direction by α .

Part C

Solve

Solve, for $0^\circ < x < 360^\circ$, the equation $5\cos x + 12\sin x = 2$, giving your answers in degrees correct to the nearest 0.1° .

Enter your answers in order from lowest value of θ to highest.

(lowest value)

(highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Trigonometry: Combined Angles 3i

Subject & topics: Maths Stage & difficulty: A Level P2

In Figure 1, ABCD represents a rectangular table with sides $3.5\,\mathrm{m}$ and $1.5\,\mathrm{m}$. It has been turned so it wedges in a passage of width $2.5\,\mathrm{m}$.

Figure 1: The rectangular table ABCD.

Part A ${\sf Value~of}~7\sin\theta^\circ + 3\cos\theta^\circ$

Given that θ is the acute angle between the longer side and the passage, as shown in the diagram, find the exact value of $7\sin\theta + 3\cos\theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part B $\mathsf{The}\,\mathsf{form}\,R\sin\big(\theta^\circ+\alpha^\circ\big)$

Express $7\sin\theta+3\cos\theta$ in the form $R\sin\left(\theta+\alpha\right)$, where R>0 and $0^\circ<\alpha<90^\circ.$

Give the exact value of R.

The following symbols may be useful: R

Give the value of α to 3 significant figures.

Part C Find θ

Find θ , to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 31 - Compound & Double-Angle

Wave Interference

Pre-Uni Maths for Sciences H4.10

Subject & topics: Maths | Geometry | Trigonometry Stage & difficulty: A Level C3

Two waves

$$\psi_1 = A\cos\left(2\pi f t - \left(rac{2\pi}{\lambda}
ight)x + \phi
ight)$$

and

$$\psi_2 = A\cos\left(2\pi f t - \left(rac{2\pi}{\lambda}
ight)x - \phi
ight)$$

interfere, such that the resultant wave is given by $\psi=\psi_1+\psi_2$. Express ψ as the product of two trigonometric functions.

Express ψ as the product of two trigonometric functions.

The following symbols may be useful: A, f, lambda, phi, pi, t, x

Created for isaacphysics.org by Julia Riley.