CS 480

Introduction to Artificial Intelligence

November 8, 2022

Announcements / Reminders

- Follow Week 11 TO DO List
- Written Assignment #03 due on Sunday (11/06/22) Thursday (11/10) at 11:00 PM CST
- Programming Assignment #02 due on Sunday (11/20/22) at 11:00PM CST
- Quiz #03 posted due on Sunday (11/13/22) at 11:00 PM CST
- Grading TA assignment:

https://docs.google.com/spreadsheets/d/1ExS0bKnGt_fdf4LHa3YS1qRA7-Iq4xqXVjfSAPMaGVk/edit?usp=sharing

- UPDATED Final Exam date:
 - December 1st, 2022 (last week of classes!)
 - Ignore the date provided by the Registrar

Plan for Today

- Bayesian/Belief Networks
- Inference in Bayesian Networks
- Decision Networks

Bayesian (Belief) Network

A Bayesian belief network describes the joint probability distribution for a set of variables.

A Bayesian network is an acyclic, directed graph (DAG), where the nodes are random variables (propositions). There is an edge (arc) from each elements of $parents(X_i)$ into X_i . Associated with the Bayesian network is a set of conditional probability distributions - the conditional probability of each variable given its parents (which includes the prior probabilities of those variables with no parents).

Consists of:

- a graph (DAG) with nodes corresponding to random variables
- a domain for each random variable
- a set of conditional probability distributions $P(X_i | parents(X_i))$

Add Conditional Probability Tables

Inference by Enumeration: Example

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

General Inference Procedure

Given:

- a query involving a single variable X (in our example: Cavity),
- \blacksquare a <u>list</u> of evidence variables E (in our example: just Toothache),
- a list of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{y} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant. P(X, e, y) is a subset of probabilities from the joint distribution

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X
- a <u>list</u> of evidence variables K,
- a <u>list</u> of observed values k for K,
- a list of remaining unobserved variables Y

the probability $P(X \mid \boldsymbol{K})$ can be evaluated as:

$$P(X \mid \mathbf{k}) = \alpha * P(X, \mathbf{k})$$
$$= \alpha * \sum_{\mathbf{y}} P(X, \mathbf{k}, \mathbf{y})$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X:
 Burglary
- a <u>list</u> of evidence variables K: JohnCalls, MaryCalls
- a <u>list</u> of observed values k for
 K: johnCalls, maryCalls
- a list of remaining unobserved variables Y: Earthquake, Alarm

the probability $P(X \mid K)$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{y} P(X, k, y)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable X:
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability $P(X \mid \boldsymbol{K})$ can be evaluated as:

$$P(X \mid k) = \alpha * \sum_{y} P(X, k, y)$$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query:

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a list of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the probability $P(B \mid J, M)$ can be evaluated as:

$$P(B \mid j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(B, j, m, e, a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true | JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j, m) = \alpha * \sum_{e} \sum_{a} P(b, j, m, e, a)$$

By Chain rule:

$$P(b, j, m, e, a)$$

= $P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j, m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

Given:

- a query involving a single variable B
- a <u>list</u> of evidence variables K: *J*, *M*
- a <u>list</u> of observed values k for K: j, m
- a list of remaining unobserved variables Y: E, A

the query can be evaluated as:

$$P(b \mid j, m)$$

$$= \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

Query rewritten:

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

P(M|A)

0.70

0.01

A	P(J A)	A
t	0.90	t
f	0.05	f

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

P(B)	$P(\neg B)$	P(E)	$P(\neg E)$
0.001	0.999	0.002	0.998

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	
t	0.90	
f	0.05	

Α	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m) = \alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b,e) * P(j|a) * P(m|a)$$

$$= \alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b,e) * P(j|a) * P(m|a)$$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	
t	0.90	
f	0.05	

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

$$P(b | j, m)$$
= $\alpha * \sum_{e} \sum_{a} P(b) * P(e) * P(a|b, e) * P(j|a) * P(m|a)$
= $\alpha * P(b) * \sum_{e} P(e) * \sum_{a} P(a|b, e) * P(j|a) * P(m|a)$

В	Е	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)
t	0.90
f	0.05

A	P(M A)
t	0.70
f	0.01

Query (let's change it a bit for simplicity):

 $P(Burglary = true \mid JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(b \mid j, m) = \alpha * 0.00059224$$

And through similar process (not shown):

$$P(\neg b \mid j, m) = \alpha * 0.0014919$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (now we can get joint distribution):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(B \mid j, m) = \alpha * < 0.00059224, 0.0014919 >$$

And after normalization:

$$P(B \mid j, m) \approx < 0.284, 0.716 >$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Query (now we can get joint distribution):

 $P(Burglary | JohnCalls = true \land MaryCalls = true)$

We can now calculate:

$$P(B \mid j, m) = \alpha * < 0.00059224, 0.0014919 >$$

And after normalization:

$$P(B \mid j, m) \approx < 0.284, 0.716 >$$

В	E	P(A B,E)
t	t	0.95
t	f	0.94
f	t	0.29
f	f	0.001

A	P(J A)	A	P(M A)
t	0.90	t	0.70
f	0.05	f	0.01

Playing Minesweeper with Bayes' Rule

Prior probability / belief:

$$P(X = mine) = 0.5$$

Posterior probability / belief:

$$P(X = mine | evidence) = 1.0$$

Naive Bayes Spam Filter

$$P(Email = spam | Word1) = 0.09$$

 $P(Email = spam | Word2) = 0.01$

•••

$$P(Email = spam | WordN) = 0.03$$

Conditional Independence

Common Cause:

JohnCalls (J) MaryCalls (M)

JohnCalls and MaryCalls are NOT independent

JohnCalls and MaryCalls are CONDITIONALLY independent given Alarm

Common Effect:

Burglary and Earthquake are independent

Burglary and Earthquake are **NOT CONDITIONALLY** independent given Alarm

Conditional Independence

Node \boldsymbol{X} is conditionally independent of its non-descendants given its parents.

Node \boldsymbol{X} is conditionally independent of ALL other nodes in the network its given its

Markov blanket.

Why do we care?

An unconstrained joint probability distribution with N binary variables involves 2^N probabilities. Bayesian network with at most k parents per each node (N) involves $N * 2^k$ probabilities (k < N).

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions f_1, f_2, \ldots, f_n :

$$\begin{split} &P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \\ &P(f_1) * \\ &P(f_2 \mid f_1) * \\ &P(f_3 \mid f_1 \wedge f_2) * \\ &\ldots \\ &P(f_n \mid f_1 \wedge \ldots \wedge f_{n-1}) = \\ &= \prod_{i=1}^n P(f_i \mid Parents(f_i)) \leftarrow \text{Enabled by conditional independence} \end{split}$$

Conditional Independence

Causal Chain:

$$P(M \mid A, B) = \frac{P(A, B, M)}{P(A, B)} = \frac{P(B) * P(A \mid B) * P(M \mid A)}{P(B) * P(A \mid B)} = P(M \mid A)$$

Burglary and MaryCalls are CONDITIONALLY independent given Alarm.

If Alarm is given, what "happened before" does not directly influence MaryCalls.

Agents and Belief State

Assume: $D_c = \{0,1,2,3\}$

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

Decision Theory

- Decisions: every plan (actions) leads to an outcome (state)
- Agents have preferences (preferred outcomes)
- Preferences → outcome utilities
- Agents have degrees of belief (probabilities) for actions

Decision theory = probability theory + utility theory

BELIEFS DESIRES

Maximum Expected (Average) Utility

MEU(M) = P(S10) * U(S10) + P(S15) * U(S15) + P(S55) * U(S55)

$$MEU(N) = P(S20) * U(S20) + P(S15) * U(S15) + P(S12) * U(S12)$$

Agents Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

State Utility Function

Agent's preferences (desires) are captured by the Utility function $U(\mathbf{s})$.

Utility function assigns a value to each state s to express how desirable this state is to the agent.

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

How Did We Get Here?

Let's start with relationships (and related notation) between agent's preferences:

agent prefers A over B:

$$A \square B$$

agent is indifferent between A and B:

$$A \sim B$$

agent prefers A over B or is indifferent between A and B (weak preference):

$$A \square B$$

The Concept of Lottery

Let's assume the following:

- an action a is a lottery <u>ticket</u>
- the set of outcomes (resulting states) is a lottery

A lottery L with possible outcomes S_1 , ..., S_n that occur with probabilities p_1 , ..., p_n is written as:

$$L = [p_1, S_1; p_2, S_2; ...; p_n, S_n]$$

Lottery outcome S_i : atomic state or another lottery.

Lottery Constraints: Orderability

Given two lotteries A and B, a rational agent must either prefer one or else rate them as equally preferable:

Exactly one of $(A \square B)$, $(B \square A)$, or $(A \sim B)$ holds

Lottery Constraints: Transitivity

Given three lotteries A, B, and C, if an agent prefers A to B AND prefers B to C, then the agent must prefer A to C:

$$(A \square B) \land (B \square C) \Rightarrow (A \square C)$$

Lottery Constraints: Continuity

If some lottery B is between A and C in preference, then there is some probability p for which the rational agent will be indifferent between getting B for sure or some other lottery that yields A with probability p and C with probability p and p:

$$(A \square B \square C) \Rightarrow \exists p [p, A; 1-p, C] \sim B$$

Lottery Constraints: Substitutability

If an agent is indifferent between two lotteries A and B, then the agent is indifferent between two more complex lotteries that are the same, except that B is subsituted for A in one of them:

$$(A \sim B) \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$$

Lottery Constraints: Monotonicity

Suppose two lotteries have the same two possible outcomes, A and B. If an agent prefers A to B, then the agent must prefer the lottery that has a higher probability for A:

$$(A \square B) \Rightarrow (p > q \Leftrightarrow [p, A; 1-p, B] \square [q, A; 1-q, B])$$

Lottery Constraints: Decomposability

Compound lotteries can be reduced to smaller ones using the laws of probability:

$$[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)*q, B; (1-p)*(1-q), C]$$

Preferences and Utility Function

An agent whose preferences between lotteries follow the set of axioms (of utility theory) below:

- Orderability
- Transitivity
- Continuity
- Subsitutability
- Monotonicity
- Decomposability

can be described as possesing a utility function and maximize it.

Preferences and Utility Function

If an agent's preferences obey the axioms of utility theory, then there exist a function U such that:

$$U(A) = U(B)$$
 if and only if $(A \sim B)$

and

$$U(A) > U(B)$$
 if and only if $(A \square B)$

Multiattribute Outcomes

Outcomes can be characterized by more than one attribute. Decisions in such cases are handled by Multiattribute Utility Theory.

Attributes: $X = X_1, ..., X_n$

Assigned values: $\mathbf{x} = \langle \mathbf{x}_1, ..., \mathbf{x}_n \rangle$

Strict Dominance: Deterministic

Strict Dominance: Deterministic

Strict Dominance: Uncertain

Strict Dominance: Uncertain

Decision Network (Influence Diagram)

Decision networks (also called influence diagrams) are structures / mechanisms for making rational decisions.

Decision networks are based on Bayesian networks, but include <u>additional nodes</u> that represent <u>actions</u> and <u>utilities</u>.

Decision Networks

The most basic decision network needs to include:

- information about current state s
- possible actions
- resulting state s' (after applying chosen action a)
- utility of the resulting state U(s')

Decision Network Nodes

Decision networks are built using the following nodes:

chance nodes:

decision nodes:

utility (or value) nodes

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - b. Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Decision Network: Simplified Form

