Model Optimization and Tuning Phase Report

Date : 22-06-2025

Team ID : SWTID1749705847

Project Title: "Rising Waters: A Machine

Learning Approach to Flood Prediction"

Maximum Marks: 10 Marks

Hyper-parameter Tuning Documentation:

```
Tuned Hyperparameters
    MODEL
                      # Decision Tree with GridSearchCV
                      from sklearn.tree import DecisionTreeClassifier
                      dt classifier = DecisionTreeClassifier()
Decision Tree
                       param_grid_dt = {
                           'criterion': ['gini', 'entropy'],
                           'splitter': ['best', 'random'],
                           'max_depth': [None, 10, 20, 30, 40, 50],
                           'min_samples_split': [2, 5, 10],
                           'min_samples_leaf': [1, 2, 4]
                       # Random Forest with GridSearchCV
                       from sklearn.ensemble import RandomForestClassifier
                       rf_classifier = RandomForestClassifier()
                       param_grid_rf = {
Random Forest
                           'n_estimators': [50, 100, 200],
                           'criterion': ['gini', 'entropy'],
                           'max_depth': [None, 10, 20, 30],
                           'min_samples_split': [2, 5, 10],
                           'min samples leaf': [1, 2, 4]
```

```
# KNN with GridSearchCV
                   from sklearn.neighbors import KNeighborsClassifier
                   knn_classifier = KNeighborsClassifier()
  KNN
                   param grid knn = {
                       'n_neighbors': [3, 5, 7, 9],
                       'weights': ['uniform', 'distance'],
                       'p': [1, 2]
                  # Gradient Boosting with GridSearchCV
                   from sklearn.ensemble import GradientBoostingClassifier
                   gb classifier = GradientBoostingClassifier()
                   param_grid_gb = {
Gradient
                       'n_estimators': [50, 100, 200],
Boosting
                       'learning_rate': [0.01, 0.1, 0.2],
                       'max_depth': [3, 4, 5],
                       'min samples split': [2, 5, 10],
                       'min_samples_leaf': [1, 2, 4],
                       'subsample': [0.8, 1.0]
```

Optimal Values

```
grid_dt = GridSearchCV(estimator=dt_classifier, param_grid=param_grid_dt, cv=5)
grid_dt.fit(x_train, y_train)
y_pred_dt = grid_dt.predict(x_test)
print("Optimal Hyperparameters:", grid_dt.best_params_)
print("Accuracy:", accuracy_score(y_test, y_pred_dt))

Optimal Hyperparameters: {'criterion': 'entropy', 'max_depth': 30, 'min_samples_leaf': 2, 'min_samples_split': 2, 'splitter': 'random'}
Accuracy: 1.0

grid_rf = GridSearchCV(estimator=rf_classifier, param_grid=param_grid_rf, cv=5)
grid_rf.fit(x_train, np.ravel(y_train))
y_pred_rf = grid_rf.predict(x_test)
print("Optimal Hyperparameters:", grid_rf.best_params_)
print("Optimal Hyperparameters:", grid_rf.best_params_)
print("Accuracy:", accuracy_score(y_test, y_pred_rf))

Optimal Hyperparameters: {'criterion': 'gini', 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50}
Accuracy: 0.9615384615384616
```

```
grid_rf = GridSearchCV(estimator=rf_classifier, param_grid=param_grid_rf, cv=5)
grid_rf.fit(x_train, np.ravel(y_train))
y_pred_rf = grid_rf.predict(x_test)
print("Optimal Hyperparameters:", grid_rf.best_params_)
print("Accuracy:", accuracy_score(y_test, y_pred_rf))

Optimal Hyperparameters: {'n_neighbors': 5, 'p': 1, 'weights': 'uniform'}
Accuracy: 0.9615384615384616

grid_knn = GridSearchCV(estimator=knn_classifier, param_grid=param_grid_knn, cv=5)
grid_knn.fit(x_train, np.ravel(y_train))
y_pred_knn = grid_knn.predict(x_test)
print("Optimal Hyperparameters:", grid_knn.best_params_)
print("Optimal Hyperparameters:", grid_knn.best_params_)
print("Accuracy:", accuracy_score(y_test, y_pred_knn))
Optimal Hyperparameters: {'learning_rate': 0.2, 'max_depth': 3, 'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators': 50, 'subsample'
Accuracy: 1.0
```

Performance Metrics Comparision Report:

Model	Optimized Metric					
Decision Tree	<pre>print(classification_report(y_test, y_pred_dt)) print(confusion_matrix(y_test, y_pred_dt))</pre>					
	pi	recision	recall	f1-score	support	_
	0	1.00	1.00	1.00	24	
	1	1.00	1.00	1.00	2	
	accuracy			1.00	26	
	macro avg	1.00	1.00	1.00	26	
	weighted avg	1.00	1.00	1.00	26	
	[0 2]]					

Random print(classification_report(y_test, y_pred_rf)) **Forest** print(confusion_matrix(y_test, y_pred_rf)) precision recall f1-score 0.96 1.00 0.98 0 24 1.00 0.50 0.67 0.96 26 accuracy 0.98 0.75 0.82 26 macro avg 0.96 0.96 0.96 26 weighted avg [[24 0] [1 1]] KNN print(classification_report(y_test, y_pred_knn)) print(confusion_matrix(y_test, y_pred_knn)) precision recall f1-score support 1.00 0.96 0.98 24 0.67 1.00 0.80 0.96 26 accuracy 0.83 macro avg 0.98 0.89 26 0.97 0.96 0.96 weighted avg 26 [[23 1] [0 2]] Gradient print(classification_report(y_test, y_pred_gb)) **Boosting** print(confusion_matrix(y_test, y_pred_gb))

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	24	
1	1.00	1.00	1.00	2	
accuracy			1.00	26	
macro avg	1.00	1.00	1.00	26	
weighted avg	1.00	1.00	1.00	26	
[[24 0] [0 2]]					

Final Model Selection Justification:

Our Dataset is imbalanced.

Model	Accuracy	Recall (1)	F1 (1)
Decision Tree	1.00	1.00	1.00
Random Forest	0.96	0.50	0.67
KNN	0.96	1.00	0.80
Gradient Boosting	1.00	1.00	1.00

After tuning and evaluating all models, **Gradient Boosting Classifier** was selected as the final model.

- It achieved 100% accuracy and perfect scores (1.00) in all metrics (precision, recall, F1) for both flood and non-flood classes.
- It handled class imbalance well and ensured zero false negatives, which is crucial in flood detection.
- Compared to Random Forest and KNN, it performed better on the rare flood cases.
- Unlike Decision Tree, it is **less prone to overfitting** and combines multiple learners for stronger performance.
- Gradient Boosting provides better control over learning rate and depth, making it ideal for future improvements.

In real-world flood prediction, missing a flood is riskier than a false alarm, and this model gives the most reliable and safe predictions.