ASEN 5519-003 Decision Making under Uncertainty Homework 1: Probabilistic Models

January 14, 2021

1 Conceptual Questions

Question 1. (20 pts) Consider the following joint distribution of three binary-valued random variables, A, B, and C:

A	В	C	P(A, B, C)
0	0	0	0.08
0	0	1	0.15
0	1	0	0.05
0	1	1	0.10
1	0	0	0.14
1	0	1	0.18
1	1	0	0.19
1	1	1	0.11

- a) What is the marginal distribution of A?
- b) What is the conditional distribution of A given B = 1 and C = 1?

Question 2. (20 pts) 1% of women at age forty who participate in routine screening have breast cancer. 80% of those with breast cancer will get positive mammographies. 9.6% of those without breast cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?

Question 3. (10 pts) Suppose that a stochastic process $\{x_t\}$ is defined by the following equation: $x_{t+1} = x_t + x_{t-1} + v_t$ where v_t are i.i.d. noise random variables.

- (a) Is this process Markov if the state is defined as x_t ?
- (b) What would need to be included in the state at time t to make this a Markov process?

2 Exercises

Question 4. (30 pts) Consider two stochastic processes, $\{x_t\}$ and $\{y_t\}$, defined by $x_t = f_x(x_1, x_2, \dots, x_{t-1}, v_t)$ and $y_t = f_y(y_1, y_2, \dots, y_{t-1}, v_t)$ where v_t are independent, identically distributed random variables that introduce noise. The HW1 module in DMUStudent contains two Julia functions, fx and fy, which can sample from the stochastic processes, i.e. fx([x1, x2]) will return a sample of x_3 given that $x_1 = x_1$ and $x_2 = x_2$.

- a) Plot a sample trajectory of $\{x_t\}$ with $x_1 = 1$ and a sample trajectory of $\{y_t\}$ with $y_1 = 1$.
- b) Suppose you know that one of these processes is Markov and the other is not. By drawing samples with the Julia functions, determine which one is Markov.

3 Challenge Problem

Question 5. (20 pts) Write a function in Julia that takes in two arguments and uses the Pythagorean Theorem to compute the hypotenuse of a right triangle with side lengths specified by the arguments. Evaluate

