

乙醇

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

为什么工业酒精不可饮用

工业酒精由于制备工艺等原因,里面常含有甲醇、杂醇油、铅等多种有害物质,甲醇经体内醇脱氢酶及甲醛脱氢酶等作用被氧化成甲醛,继而生成甲酸,甲酸能抑制人体视网膜氧化和磷酸化过程,使三磷酸腺苷合成发生困难。结果会造成视网膜细胞性变,甚至会演变成视神经萎缩。由于甲醇在体内的氧化速度缓慢,并有蓄积的作用,所以哪怕是很小的剂量,也会引起失明和瘫痪,剂量大时会导致死亡。

纯酒精消毒效果好吗

酒精能渗入细菌体内,使组成细菌的蛋白质凝固,所以酒精在医疗卫生上常用作消毒杀菌剂。为什么用70%~75%的酒精而不用纯酒精消毒呢?这是因为酒精浓度越高,使蛋白质凝固的作用越强。当高浓度的酒精与细菌接触时,就能使菌体表面迅速凝固,形成一层包膜,阻止了酒精继续向菌体内部渗透,细菌内部的细胞没能被彻底杀死。待到适当时机,包膜内的细菌可能将包膜冲破,重新复活。

因此,使用纯酒精达不到消毒杀菌的目的。如果使用 70%~75%的酒精,既不能使组成细菌的蛋白质凝固, 又不能形成包膜,能使酒精继续向内部渗透,而达到彻底消毒杀菌的目的。经实验证实,若酒精的浓度低于 70%,也不能彻底杀死细菌。

酒与人体健康

酒既可以安神,又是兴奋剂,它直接刺激食道和胃壁,反射地刺激大脑,从而使血液循环加快,适量饮酒可以扩张血管,酒可使人发汗,可以治寒痰咳嗽,酒还能溶解许多物质,人们常用酒来浸泡中草药。

过量饮酒会使人患许多疾病,如酒精中毒,损伤中枢神经系统,刺激胃黏膜,患慢性胃炎。当血液中酒精浓度达 0.05%~0.2%时,大脑的抑制功能减弱,记忆力减退,辨别力、注意力、理解力下降,此时饮酒者往往喋喋不休,甚至闹事。当人体血液中酒精浓度达 0.4%时,饮酒者陷入昏睡、昏迷、甚至丧失生命。

人饮酒后,酒精在人体的代谢主要是在肝脏内进行的,在醇脱氢酶作用下,乙醇氧化为乙醛,然后又在醛脱氢酶的作用下,进一步氧化为醋酸,并进入循环系统,最后分解成二氧化碳和水排出体外,如果大量饮酒,体内的醇脱氢酶和醛脱氢酶不多,乙醇不能及时转化,就会导致醉酒。

喝酒前吃牛奶或淀粉类食物,可增强抵抗酒精的能力,醒酒的物质有酸辣汤、酸黄瓜、浓茶等。

	フ 頑
-	/ . <u>U</u> Z

- 、Z	上				
1.	乙醇的组成与结构		社村	由乙十七	宁
					,官能团是 分子 (极性/非极性)。
	球棍模型:		比例模型) ,	
				效氢、-CH ₂ -中的 2 个等 sOH、CH ₃ CH ₂ OH、极性	效氢、-OH 上的一个氢。
【答案	C_2H_6O , H H	, 11 11	, -OH, C ₂ H ₂	sOH、CH3CH2OH、极性	
,′	·				
(强调: 羟基与氢氧机	艮的区别	1
	①电子式不同:				
		-он: . о	: H (有单电子)		
		он[.	. н]_		
	②电性不同: -O]	H 呈电中性,	OH ⁻ 呈负电性。		
!	③存在方式不同: 溶液中的 OH ⁻ 和			基"结合在一起,OH ⁻ 能	够独立存在,如
	④稳定性不同: -	OH 不稳定,i	能与 Na 等发生反应,	相比而言,OH ^T 较稳定	,即使与 Fe ³⁺ 等
	``				
2.	物理性质:				
	乙醇俗称	,	色透明	挥发有特殊香味的液体,	沸点 78°C,与水以
比	混溶,是良好的有	机溶剂,密度	比水, 医学上	用体积分数为~_	作消毒剂。
【答案	】酒精、无、易、作	任意、小、70 ^c	%、75%		

3. 化学性质

(1) 乙醇的取代反应:

①乙醇与活泼金属的反应(本反应是取代反应,也是置换反应)

实验操作	验纯后 验纯后 迅速倒转 澄清 石灰水
实验现象	
化学方程式	

【答案】

实验现象	试管中有气泡产生,放出的气体在空气中安静地燃烧,火焰呈淡蓝色;烧 杯壁上有水滴生成,迅速倒转烧杯后向其中加入澄清石灰水,石灰水不变 浑浊。
化学方程式	2CH ₃ CH ₂ OH+2Na→2CH ₃ CH ₂ ONa+H ₂ ↑

【补充】

- (1) 其他活泼金属也能与 CH₃CH₂OH 反应,如: 2CH₃CH₂OH+Mg→Mg(CH₃CH₂O)₂+H₂↑
- (2) Na 与乙醇的反应比与水的反应缓和的多: $2HO-H+2Na \rightarrow 2NaOH+H_2^{\uparrow}$,说明乙醇中羟基上的 H 原子活泼。
- (3) 乙醇不电离, CH_3CH_2ONa (aq)水解显碱性: $CH_3CH_2ONa+H-OH$ $\longrightarrow CH_3CH_2OH+NaOH$
- (4) 检验乙醇中是否含水,可用无水硫酸铜。
- 【思考】分子式为 C_2H_6O 的物质有几种同分异构体?结构简式分别是什么?如何通过实验判断乙醇的结构?
- 【答案】2种同分异构体,CH3CH2OH和CH3OCH3,用Na与无水乙醇反应生成H2证明其中含有羟基。

②乙醇与 HBr 的反应

该反应与卤代烃的水解反应方向相反,但反应条件不同,不是可逆反应 $CH_3CH_2OH + HBr \underbrace{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }_{NaOH}CH_3CH_2Br + H_2O \ \ 反应中浓 \ H_2SO_4 是催化剂和脱水剂。反应物 \ HBr$

是由浓 H₂SO₄ 和 NaBr 提供的: ______

【答案】 $NaBr + H_2SO_4 \xrightarrow{\text{微热}} NaHSO_4 + HBr$

反应过程中,同时发生系列副反应,如:

【答案】 $2Br^{-} + H_{2}SO_{4}(浓) \rightarrow Br_{2} + SO_{2} \uparrow + 2H_{2}O + SO_{4}^{2-}$

③分子间脱水

$$C_2H_5 - OH + H - OC_2H_5 \xrightarrow{\text{浓硫酸}} C_2H_5OC_2H_5 + H_2O$$

该反应是实验室制乙烯过程中的主要副反应,实验室制乙烯要求"迅速升温 170℃"就是为减少该反应的发生。

该反应属取代反应,而不是消去反应,因为脱水在分子间而非分子内进行。

④酯化反应:

与羧酸反应: $C_2H_5OH + CH_3COOH \xrightarrow{\text{k 硫酸}, \Delta} CH_3COOC_2H_5 + H_2O$

(酸脱羟基醇脱氢)

(2) 乙醇的氧化反应

①燃烧氧化

方程式:

【答案】
$$C_2H_6O + 3O_2 \xrightarrow{\text{点燃}} 2CO_2 + 3H_2O$$

现象: CH₃CH₂OH 燃烧,火焰淡蓝色

烃的含氧衍生物燃烧通式为:

【答案】
$$C_x H_y O_z + (x + \frac{y}{4} - \frac{z}{2}) O_2 \xrightarrow{\text{点燃}} xCO_2 + \frac{y}{2} H_2 O$$

②催化氧化(乙醇夫氢被氧化):

实验操作	→ 灼热的铜丝 → 玻璃管 → 乙醇	
实验现象	试管中生成具有刺激性气味的物质,铜丝表面由黑变红	
化学方程式	$2CH_3CH_2OH+O_2$	

思考: 乙醇催化氧化的产物是乙醛, 通过乙醇的结构式以及去氢被氧化的反应过程写出乙醛的结构式

(3) 乙醇的消去反应:

概念:在适当条件下,有机化合物分子内脱去小分子而生成不饱和(双键或叁键)化合物的反应,叫做消去反应。

 CH_3CH_2OH — 浓硫酸,170° \to $CH_2 = CH_2 \uparrow + H_2O$ (实验室制乙烯)

【练一练】

根据乙醇的结构式填空:

(1) 断	键与活泼金属钠等发生反应,	化学方程式
-------	---------------	-------

(2) 一部分乙醇断①键另一部分乙醇断②键发生 反应,

化学方程式;

- (4) 断①③键发生 反应, 化学方程式 ;
- (5) 化学键全断, 燃烧反应的化学方程式

【答案】

(1) 1 $2CH_3CH_2OH+2Na\rightarrow 2CH_3CH_2ONa+H_2\uparrow$

(2) 取代
$$C_2H_5 - OH + H - OC_2H_5 \xrightarrow{$$
 浓硫酸 $C_2H_5OC_2H_5 + H_2O$

(3) 消失
$$CH_3CH_2OH \xrightarrow{\text{浓硫酸}.170°C} CH_2 = CH_2 \uparrow + H_2O$$

(4) 氧化
$$2CH_3CH_2OH+O_2$$
 $\xrightarrow{\text{催化剂}}$ $2CH_3CHO+2H_2O$

(5)
$$C_2H_6O+3O_2$$
 — $\xrightarrow{\text{s.m.}}$ 2 CO_2+3H_2O

二、乙醇的工业制法

1. 发酵法

含淀粉的农产品或含纤维素的木屑、植物茎秆等经一定的预处理后,经水解、发酵即可制得乙醇。

(1) 淀粉在有催化剂存在和加热条件下发生水解反应,生成葡萄糖。

$$(C_6H_{10}O_5)_{\mathrm{n}}$$
 +n H_2O — 催化剂 \longrightarrow n $C_6H_{12}O_6$ 葡萄糖

(2) 葡萄糖在催化剂的作用下生成乙醇。

$$C_6H_{12}O_6$$
 — 催化剂 $\rightarrow 2C_2H_5OH + 2CO_2$ 个

2. 乙烯水化法

- (1) 定义: 乙烯在加热、加压和催化剂存在的条件下, 跟水反应生成乙醇。(乙烯水化法)
- (2) 化学方程式为: $CH_2=CH_2+H_2O$ $\xrightarrow{\text{催化剂}}$ CH_3CH_2OH ,属于加成反应。

枝繁叶茂

考点 1: 乙醇的结构和同分异构现象

例 1: 乙醇(CH₃CH₂OH)和二甲醚(CH₃—O—CH₃)互为() 异构

- A. 位置异构
- B. 官能团异构 C. 顺反异构 D. 碳链异构

【难度】★【答案】B

例 2: 下列说法中正确的是 (

- A. 乙醇分子可以看作是乙烷分子中的一个氢原子被-OH 取代而形成的
- B. 乙醇分子中的氢原子都可以被钠置换
- C. -OH 和 OH⁻两种微粒中质子数、电子数都相等
- D. 水和乙醇分子中的羟基化学性质完全相同

【难度】★【答案】A

例 3: 乙醇分子可能存在 CH₃CH₂OH 和 CH₃OCH₃两种结构。能够证明乙醇(分子式 C₂H₆O)的结构是 CH₃CH₂OH (的最充分的理由是)

- A. 23 g 乙醇与足量的金属钠反应,可以放出 0.25 mol 氢气
- B. 1 mol 乙醇充分燃烧生成 2 molCO₂ 和 3 molH₂O,消耗 3 molO₂
- C. 乙醇的沸点高于乙烷
- D. 1 mol 乙醇氧化后生成 1 mol 乙醛

【难度】★【答案】A

变式 1: 鉴别乙醇和汽油,最简单的化学方法是 (

- A. 加金属钠,有气体产生的是乙醇
- B. 加水, 互溶的是乙醇
- C. 点燃,容易燃烧的是乙醇
- D. 和浓硫酸混合共热至 170°C, 有乙烯产生的是乙醇

【难度】★【答案】A

例 4: 为了确定乙醇分子的结构简式是 CH₃-O-CH₃还是 CH₃CH₂OH, 实验室利用右图所示的实验装置, 测定 乙醇与钠反应(反应放热)生成氢气的体积,并据此计算乙醇分子中能与金属钠反应的氢原子数目。试回答下 列问题:

(1)指出实验装置的错误。	
(2) 若实验中用含有少量水的乙醇代替相同质量的无水乙醇,在相同条件下,	则得氢气的体积将(填
"偏大"、"偏小"或"不变"),原因是	o
(3)请指出能使实验安全、顺利进行的关键实验步骤(至少指出两个关键步骤	₹):
、、 【难度】★★★【答案】	o
(1) 广口瓶中进气管不应插入水中,排水导管应插到广口瓶底部	
(2) 偏大 相同质量的水和钠反应放出的 H ₂ 比乙醇的多	
(3)检查分液漏斗和烧瓶是否干燥;检查实验装置的气密性;加入稍过量的金	国钠; 乙醇(或钠)的加入量要
保证钠(或乙醇)全部反应;读取量筒内水的体积时气体的温度应是室温,量筒与	广口瓶水面等高(写出其中两项
即可)	
考点 2: 乙醇的物理化学性质	
例 1: 下列乙醇的化学性质不是由羟基所决定的是 ()	
A. 跟金属钠反应	
B. 在足量氧气中完全燃烧生成 CO ₂ 和 H ₂ O	
C. 在浓 H ₂ SO ₄ 存在时发生消去反应,生成乙烯	
D. 当银或铜存在时跟 O ₂ 发生反应,生成乙醛和水	
【难度】★【答案】B	
例 2: 乙醇在浓硫酸的作用下,不可能发生的反应是 ()	
A. 加成反应 B. 消去反应 C. 取代反应 D. 脱水反应	
【难度】★【答案】A	
例 3: 把一端弯成螺旋状的铜丝放在酒精灯外焰部分加热,可以看到铜丝表面图	变色,这是因为
,趁热将它放入乙醇中,取出时发现铜丝_	,反复几次,
可以闻到气味的物质生成,反应的化学方程式为	,该反应属于
反应类型,该反应中铜丝的作用是。	
【 难 度 】 ★ 【 答 案 】 黑; 铜 被 空 气 中 的 氧 气 氧 化 生 成 黑 色 的 Cu 2CH ₃ CH ₂ OH+O ₂ $\xrightarrow{\text{fl}}$ 2CH ₃ CHO+2H ₂ O; 氧化; 催化剂.	O; 又变红色; 刺激性;
变式 1: 按下图装置,持续通入气体 X,可看到 a 处有红色物质生成,b 处变蓝	E, c 处得到液体,则气体 X 可
能是 () CuSO ₄ (足量)	
A. H ₂	
B. CO 和 H ₂	Ħ
C. NH ₃	冰水
D. CH ₃ CH ₂ OH(蒸气)	⇒4 2€
【难度】★★【答案】D	

例 4:	车用乙醇汽油就是把燃料乙醇和汽油按-	一定比例混合形成的车用燃料。	结合有关知识,	回答以下问题。
------	--------------------	----------------	---------	---------

- (1) 乙醇的结构简式为____。汽油是由石油分馏所得的低沸点烷烃,其分子中的碳原子数一般在 5~12 范围内,如戊烷,其分子式为___。
- (2) 乙醇可由含淀粉的农产品如玉米、小麦、薯类等经发酵、蒸馏而得。请写出由淀粉制乙醇的化学方程式:
 - (3) 若 1 mol 乙醇充分燃烧生成二氧化碳气体和液态水放热 1367kJ, 乙醇燃烧的热化学方程式是:
 - (4) 车用乙醇汽油被称为环保燃料,其原因是。

【难度】★★【答案】

(1) CH_3 — CH_2 —OH C_5H_{12}

$$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{\text{ 催化剂}} nC_6H_{12}O_6 \xrightarrow{\text{ 催化剂}} 2C_2H_5OH + 2CO_2 \uparrow$$

- (3) $C_2H_5OH(1)+3O_2(g)\rightarrow 2CO_2(g)+3H_2O(1)+1367kJ$
- (4) 能有效降低汽车尾气带来的污染

考点 3: 乙醇相关性质实验

例 1: 思考并回答下列问题

- (1)中学课本中介绍了如下实验:把一端弯成螺旋状的铜丝放在酒精灯外焰中加热,待铜丝表面变黑后立即把它插入盛有约 2mL 乙醇的试管里,反复操作几次。请你评价若用上述方法制取乙醛存在哪些不足(写出两点)。
- (2) 某课外活动小组利用如图装置进行乙醇的催化氧化实验并制取乙醛,图中铁架台等装置已略去,粗黑线表示乳胶管。填写下列空白

①甲装置常常浸在 70~80℃的水浴中,目的是

②实验时,先加热玻璃管乙中的镀银铜丝,约1分钟后鼓入空气,此时铜丝即呈红热状态。若把酒精灯撤走,控制一定的鼓气速度,铜丝能长时间保持红热直到实验结束。乙醇的催化氧化反应是_______反应(填"放热"或"吸热"),该反应的化学方程式为_____。

③若试管丁中用水吸收产物,则要在导管乙、丙之间接上戊装置,其连接方法是(填戊装置中导管代号): 乙接_____、_____接丙。

【难度】★★【答案】

- (1) 操作麻烦、乙醇转化率低(其它合理答案均可)
- (2) ①使生成乙醇蒸气的速率加快; ②放热; $2CH_3CH_2OH+O_2 \xrightarrow{Cu/\Delta} 2CH_3CHO+2H_2O$; ③b; a

变式1: 下图是乙醇脱氢反应的实验装置:

从装置 A 滴加纯乙醇,通过红热的铜催化剂(在装置 B 中),生成的气体通过装置 C(内盛少量水),一部分气体凝结并溶解于水,剩余气体收集在装置 D 中(水被排到装置 E)。

通过实验证明:

- (1) 装置 D 中的气体是纯氢气;
- (2) 装置 C 中溶有沸点为 21℃的无色溶液 X;
- (3) X 不能与溴水发生加成反应;
- (4) X 能生成三氯取代物,不能生成四氯取代物,实验测得 1.0~g 乙醇经反应后所得氢气的体积为 475 mL(标准状况下)。
- (2)根据有机物的分子结构理论,把乙醇分子在上述反应中3种可能的脱氢方式和脱氢生成物的结构式填入下表的空格中。

编号	可能的脱氢方式	脱氢产物结构式
a		
b		
С		

(3) 上表 3 个结构式中, 是 X 的结构式 (填编号), 判断的理由是:

【难度】★★★【答案】

(1) C₂H₄O

$$C_2 H_6 O \xrightarrow{Cu} C_2 H_{(6-x)} O + \frac{x}{2} H_2 \uparrow$$

46 g

22.
$$4 \times \frac{x}{2}$$
 L

1.0 g

$$\frac{46 \text{ g}}{1.0 \text{ g}} = \frac{22.4 \times \frac{x}{2} \text{ L}}{0.475 \text{ L}}$$
,解得 $x=2$

b 式中有碳碳双键,能与溴水发生加成反应; c 式中有 4 个相同的氢原子,能生成四氯取代产物。 (3) a 只有 a 式符合实验结果

知识点 4: 乙醇的相关计算

例 1: 一定量的乙醇与苯的混合物与足量的金属钠反应,可生成 11.2L 氢气(在标准状况下),将此混合物燃 烧能生成 108g 水. 求混合物中苯的质量.

【难度】★★【答案】78g

例 2: 一定量的乙醇在氧气不足的情况下燃烧,得到 CO、CO₂ 和水的总质量为 27.6 g,若其中水的质量为 10.8 g,则CO的质量是 (

- A. 1.4g B. 2.2g C. 4.4g D. 在 2.2g 和 4.4g 之间

【难度】★【答案】A

瓜熟蒂落

1. 以下是一些常用的危险品标志,装运乙醇的包装箱应贴的标志类型是 (

【难度】★【答案】D

- 2. 检验乙醇中混有的水应用下列哪种试剂 ()
 - A. 金属钠
- B. 浓硫酸
- C. 无水硫酸铜
- D. 生石灰

【难度】★【答案】C

3. 下列关于乙醇的性质及用途的叙述中,正确的	是 ()
A. 能与水任意比例互溶	B. 可溶解多种有机物
C. 不可使酸性高锰酸钾溶液褪色	D. 医疗上使用 50%的酒精用作消毒剂
【难度】★【答案】AB	
4. 下列物质中加入金属钠,不能产生氢气的是	()
A. 蒸馏水 B. 苯	C. 无水酒精 D. 乙酸
【难度】★【答案】B	
5. 下列物质都能与 Na 反应放出 H_2 , 其产生 H_2 的	的速率排列顺序正确的是 ()
$\bigcirc C_2H_5OH$ $\bigcirc CH_3COOH(aq)$ $\bigcirc SN$	
A. ①>②>③ B. ②>①>③	C. 3>1>2 D. 2>3>1
【难度】★【答案】D	
6. 将质量为 m g 的铜片在酒精灯火焰上加热变黑	后,趁热分别插入下列溶液中,放置片刻铜片质量增加的是
()	
A. 硝酸 B. 无水乙醇	C. 石灰水 D. 盐酸
【难度】★【答案】C	
	驾驶员进行呼气酒精检测的原理是: 橙色的 K ₂ Cr ₂ O ₇ 酸性水
溶液遇乙醇迅速生成蓝绿色 Cr³+。下列对乙醇的抗	
	乙醇有还原性 ④乙醇是烃的含氧化合物
A. ②④ B. ②③	C. ①③ D. ①④
【难度】★【答案】C	
	然燃料乙醇的使用缓解了汽车能源的紧张状况,但仍存在一
些问题。由此可知,燃料乙醇 ()	生产生物燃料 2 使用生物燃料的汽车
A. 是最理想的绿色能源	
B. 提供的能量来自于太阳能	
C. 生产和消费过程对空气没有任何影响	玉米等粮食 汽车尾气中的 CO ₂
D. 生产过程中将消耗大量粮食,以避免粮食	过剩 维农作物吸收
【难度】★【答案】B	

9. 下列说法中,正确的是 ()

A. 除去乙醇中的微量水可加入少量金属钠, 使水完全反应

-	B. 检测乙醇中是否含有水分可加入无水硫酸	铜,	如变蓝则含水	
	C. 获得无水乙醇的方法通常采用先用浓硫酸	吸え	火 ,然后再加热蒸馏	
-	D. 获得无水乙醇的方法通常采用先用生石灰	吸れ	k,然后再加热蒸馏	}
【难	度】★【答案】BD			
10		,		
	下列反应中,属于消去反应的是 ()	工事验上体后产	
	A. 乙醇和浓硫酸加热到 170℃ C. 甲醇在空气中燃烧		正丙醇与钠反应	下受热反应生成乙醛
		υ.	乙辟住惟化剂付仕	1 下文然及应生成乙醛
【XE,	度】★【答案】A			
11.	乙醇汽油已经完成了从研究到推广应用的过程	呈,	许多城市的部分汽车	F都用上了乙醇汽油(笑称为 " 汽车喝
酒")	。下列选项中能说明乙醇作为燃料的优点的是	Ē()	
(①燃烧时发生氧化反应;			
(②充分燃烧的产物不污染环境;			
(③乙醇是一种再生能源;			
(④燃烧时放出大量热。			
-	A. 123 B. 124	C.	134	D. 234
【难	度】★【答案】D			
12.	可用于鉴别乙酸和乙醇的是 ()			
-	A. NaCl 溶液 B. KNO₃溶液	C.	Na ₂ CO ₃ 溶液	D. 紫色石蕊试液
【难	度】★【答案】CD			
13	由乙烯和乙醇蒸气组成的混和气体中,若碳元	- 麦	的质量百分含量为 6	50%. 则氧元素的质量百分含量为
()		300年日77日至77	(70) 八中(70) 小中(70) 上日(70) 日至(70)
	A. 15.6% B. 26.7%	C.	30%	D. 无法确定
	度】★★【答案】B			
14.	二甘醇可用作溶剂、纺织助剂等,一旦进入	.人作	本会导致急性肾衰竭	曷, 危及生命。二甘醇的结构简式是
НО—	-CH ₂ CH ₂ —O—CH ₂ CH ₂ —OH。下列有关二甘i	醇的]叙述正确的是()
	A. 不能发生消去反应	В.	能发生取代反应	
	C. 能溶于水,不溶于乙醇	D.	符合通式 C _n H _{2n} O ₃	
【难	度】★★★【答案】B 			
		12	页 共 14 页	

15. 燃烧某有机物 4.6g,完全燃烧后生成 $CO_28.8g$, $H_2O_5.4g$ 。该有机物的密度(标准状况下)为 2.054g/L,求该有机物的分子式。

【难度】★★【答案】M(有)=2.054×22.4≈46(g/mol)

由 CO₂和 H₂O 的质量分别计算 4.6 g 中含碳和氢的质量。

$$m(C) = 8.8/44 \times 12 = 2.4(g)$$
 $m(H) = 5.4/18 \times 2 = 0.6(g)$.

分析有机物中是否含有氧元素:

$$m(O)=4.6-m(C)-m(H)=4.6-2.4-0.6=1.6(g)$$

则该有机物含有氧元素。

$$n(C): n(H): n(O) = \frac{2.4}{12}: \frac{0.6}{1}: \frac{1.6}{16} = 2:6:1$$

最简式为 C₂H₆O。则有机物的分子式为 C₂H₆O。

16. 写出下列变化的化学方程式,并指出其反应类型。

$$C_2H_6$$
 CH_3CHO

$$C_2H_5C1 \xrightarrow{\textcircled{1}} CH_2 \xrightarrow{\textcircled{2}} CH_2 \xrightarrow{\textcircled{3}} C_2H_5OH \xrightarrow{\textcircled{6}} C_2H_5OC_2H_5$$

$$C_2H_5ONa$$

(1)			
	V. T		7.

【难度】★★【答案】

$$\bigoplus C_2 H_5 OH \xrightarrow{?E} H_2 SO_4 CH_2 - CH_2 \uparrow + H_2 O$$

⑤
$$2C_2H_5OH+O_2 \xrightarrow{Cu \text{ x Ag}} 2CH_3CHO+2H_2O$$

©2C₂H₅OH
$$\xrightarrow{\text{140 °C}}$$
 C₂H₅OC₂H₅ ↑ +H₂O

$$72C_2H_5OH+2Na\longrightarrow 2C_2H_5ONa+H_2$$

①加成反应;②加成反应;③加成反应;④消去反应/消除反应;⑤取代反应;⑥置换反应

17. A、B、C、D、E 五种有机物之间的转化关系如下:

已知 A 是石油化工的基本原料, C 是具有刺激性气体的液体。

试回答下列问题:

(1) 写出制取 B 的化学方程式:

A→B		反应类型。
D→E	0	
E→B	0	
(2) B 的一种用途是		
(3) B→C 的化学方程式:		,反应类型

【难度】★★【答案】

①催化剂 ④ Cu (1)
$$CH_2 = CH_2 + H_2O$$
 催化剂 \triangle C_2H_5OH 加成 $(C_6H_{10}()_5)_n + nH_2O$ 催化剂 $nC_6H_{12}O_6$ $C_6H_{12}O_6$ $ext{$d$} + 2C_2H_5OH + 2CO_2 $ (2) 消毒剂 O$ O (3) $2C_2H_5OH + O_2$ $ext{$d$} + 2CH_3 = C + H + 2H_2O$ 氧化

(2) 加热 冷却(3) 乙醛、乙醇、水 氮气(4) 乙酸 c 蒸馏

(1) 实验过程中铜网出现红色和黑色交替的现象,请写出相应的化学方程式: