Estruturas de Dados

Aula 13 Estruturas de Dados

Árvores Binárias

Programação II, 2018-2019

v1.13 2019-06-02

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

DETI, Universidade de Aveiro

Sumário

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

1 Árvore

- 2 Árvore Binária
- 3 Árvore Binária de Procura

Sumário

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

procura

Procura

Dicionário implementado com árvore binária de

1 Árvore

2 Árvore Binária

3 Árvore Binária de Procura

Árvore

Árvore Binária

Árvore Binária de Procura

- LinkedList
 - addFirst(), addLast(), removeFirst(), first(), ...
- SortedList
 - insert(), remove(), first(),..
- Stack
 - push(), pop(), top(), ...
- Queue
 - in(), out(), peek(),..
- KeyValueList e HashTable (dicionários
 - set(), get(), remove(), ...

Árvore

Árvore Binária

Árvore Binária de Procura

- · LinkedList
 - addFirst(), addLast(), removeFirst(), first(), ...
- SortedList
 - insert(), remove(), first(), ...
- Stack
 - push(),pop(),top(),...
- Queue
 - in(), out(), peek(), ...
- KeyValueList e HashTable (dicionários)
 - set(), get(), remove(), ...

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore

Árvore

Árvore Binária

Árvore Binária de Procura

· O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nos não tem par e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvore

Árvore Binária

Árvore Binária de Procura

· O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nos não tem par e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvore

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nos não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada no pode ser considerado como a raiz de uma subárvore.

Árvore

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvor

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvor

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvor

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvor

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvore

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvor

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvore

Árvore Binária

Árvore Binária de Procura

O que são estruturas de dados em Árvore?

- A árvore consiste de nós ligados por ramos orientados (é um caso particular de grafo).
- Cada nó (pai) pode ter ramos para outros nós (filhos).
- Um dos nós não tem pai e é chamado raiz.
- Todos os outros nós têm um pai (e apenas um).
- Nós sem filhos são chamados folhas.
- A raiz representa-se no topo e as folhas na base.
- · Uma árvore não pode incluir ciclos.
- Cada nó pode ser considerado como a raiz de uma subárvore.

Árvor

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó
- O número de ramos de um caminho é chamado de comprimento do caminho.
- O nível de um nó é o comprimento do caminho + 1.
- A altura de uma árvore é o nível do nó mais profundo.

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4
 - Uma árvore vazia tem altura 0

Árvore

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - · O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4
 - Uma árvore vazia tem altura 0

Arvore

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - · O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4
 - O nó raiz (A) tem nível 1
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4
 - Uma árvore vazia tem altura 0

Arvor

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4
 - O nó raiz (A) tem nível 1
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4
 - Uma árvore vazia tem altura 0

Árvore

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4.
 - Uma árvore vazia tem altura 0

Árvor

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4.
 - Uma árvore vazia tem altura 0

Árvor

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1.
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4
 - Uma árvore vazia tem altura 0

Arvore

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1.
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4
 - Uma árvore vazia tem altura 0

Arvore

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - · O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1.
- A altura de uma árvore é o nível do nó mais profundo.
 - A altura desta árvore é: 4.
 - Uma árvore vazia tem altura 0.

Arvore

Árvore Binária

Árvore Binária de Procura

- Cada nó é atingível a partir da raiz através de uma sequência única de ramos, chamada de caminho do nó.
 - O caminho do nó J é: A-F-G-J.
- O número de ramos de um caminho é chamado de comprimento do caminho.
 - · O comprimento do caminho A-F-G-J é: 3.
- O nível de um nó é o comprimento do caminho + 1.
 - O nível do nó J é: 4.
 - O nó raiz (A) tem nível 1.
- A altura de uma árvore é o nível do nó mais profundo.
 - · A altura desta árvore é: 4.
 - Uma árvore vazia tem altura 0.

Arvor

Árvore Binária

Árvore Binária de Procura

Árvore

Árvore Binária

Árvore Binária de Procura

- · Atenção: há outras definições de árvore!
- A definição acima é a mais usual em Informática
- Na Matemática (teoria de grafos), uma árvore é definida de forma mais geral, como um grafo (não-orientado) conexo e acíclico.

Árvore

Árvore Binária

Árvore Binária de Procura

- · Atenção: há outras definições de árvore!
- A definição acima é a mais usual em Informática.
- Na Matemática (teoria de grafos), uma árvore é definida de forma mais geral, como um grafo (não-orientado) conexo e acíclico.

Arvore

Árvore Binária

Árvore Binária de Procura

- · Atenção: há outras definições de árvore!
- A definição acima é a mais usual em Informática.
- Na Matemática (teoria de grafos), uma árvore é definida de forma mais geral, como um grafo (não-orientado) conexo e acíclico.

Árvoi

Árvore Binária

Árvore Binária de Procura

- · Atenção: há outras definições de árvore!
- A definição acima é a mais usual em Informática.
- Na Matemática (teoria de grafos), uma árvore é definida de forma mais geral, como um grafo (não-orientado) conexo e acíclico.

- ligar, no máximo, a dois nós filhos.
- Cada nó pode ser encarado ele próprio como uma árvore binária.


```
class Node<T>
{
    T elem;
    Node<T> leftChild;
    Node<T> rightChild;
}
```

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

```
    Estrutura de dados recursiva em que cada nó se pode
ligar, no máximo, a dois nós filhos.
```

 Cada nó pode ser encarado ele próprio como uma árvore binária.


```
class Node<T>
{
    T elem;
    Node<T> leftChild;
    Node<T> rightChild;
}
```

Dicionário implementado com árvore binária de procura

```
    Estrutura de dados recursiva em que cada nó se pode
ligar, no máximo, a dois nós filhos.
```

 Cada nó pode ser encarado ele próprio como uma árvore binária.


```
class Node<T>
{
    T elem;
    Node<T> leftChild;
    Node<T> rightChild;
}
```

Dicionário implementado com árvore binária de procura

```
    Estrutura de dados recursiva em que cada nó se pode
ligar, no máximo, a dois nós filhos.
```

 Cada nó pode ser encarado ele próprio como uma árvore binária.


```
class Node<T>
{
    T elem;
    Node<T> leftChild;
    Node<T> rightChild;
}
```

Dicionário implementado com árvore binária de procura

```
    Estrutura de dados recursiva em que cada nó se pode
ligar, no máximo, a dois nós filhos.
```

 Cada nó pode ser encarado ele próprio como uma árvore binária.


```
class Node<T>
{
    T elem;
    Node<T> leftChild;
    Node<T> rightChild;
}
```

- Árvore Estrutura de dados recursiva em que cada nó se pode
- ligar, no máximo, a dois nós filhos.
- Cada nó pode ser encarado ele próprio como uma árvore binária.


```
class Node<T>
   T elem;
   Node<T> leftChild;
   Node<T> rightChild;
```

Árvore Binária de Procura

Árvore

Árvore Binária

Estruturas de Dados

Árvore Binária de Procura

- Travessia ou percurso de uma árvore
- Há muitas travessias possíveis e podem classificar-se en

- As diferentes travessias têm normalmente o mesmo custo
- A diferença está no efeito produzido.

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

Travessia ou percurso de uma árvore:

- É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Iravessias em largura: percorrem nos irmaos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- · A diferença está no efeito produzido
 - Para cada aplicação, pode haver uma travessia mais adequada.

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Iravessias em largura: percorrem nos irmaos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem n\u00f3s filhos antes dos n\u00f3s irm\u00e4os.
- As diferentes travessias têm normalmente o mesmo custo.
- A diferença está no efeito produzido.
 - Para cada aplicação, pode haver uma travessia mais adequada.

Árvore

Árvore Binária

Árvore Binária de Procura

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Travessias em largura: percorrem nós irmãos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- A diferença está no efeito produzido.
 - Para cada aplicação, pode haver uma travessia mais adequada.

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Travessias em largura: percorrem nós irmãos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- · A diferença está no efeito produzido
 - Para cada aplicação, pode haver uma travessia mais adequada.

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Travessias em largura: percorrem nós irmãos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- A diferença está no efeito produzido
 - Para cada aplicação, pode haver uma travessia mais adequada.

Árvore

Árvore Binária

Árvore Binária de Procura

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Travessias em largura: percorrem nós irmãos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- A diferença está no efeito produzido.
 - Para cada aplicação, pode haver uma travessia mais adequada.

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Travessias em largura: percorrem nós irmãos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- A diferença está no efeito produzido.
 - Para cada aplicação, pode haver uma travessia mais adequada.

- Travessia ou percurso de uma árvore:
 - É um algoritmo que permite percorrer todos os nós da árvore de forma sistemática, sem repetições.
- Há muitas travessias possíveis e podem classificar-se em
 - Travessias em largura: percorrem nós irmãos antes de avançar para os filhos, por exemplo da esquerda para a direita, de cima para baixo.
 - Travessias em profundidade: percorrem nós filhos antes dos nós irmãos.
- As diferentes travessias têm normalmente o mesmo custo.
- · A diferença está no efeito produzido.
 - Para cada aplicação, pode haver uma travessia mais adequada.

 As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.

· Em pré-ordem (RED: Raiz, Esquerda, Direita

• *Em-ordem* (ERD: Esquerda, Raiz, Direita

Em pós-ordem (EDR: Esquerda, Direita, Raiz)

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

 As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.

- Em pré-ordem (RED: Raiz, Esquerda, Direita
 - R: Processar o nó raiz
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- *Em-ordem* (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

 As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.

- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó <u>raiz</u>.
 - D: Percorrer em-ordem a sub-árvore direita
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

 As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.

- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó <u>raiz</u>.

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó <u>raiz</u>

 As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.

- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz.

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó <u>raiz</u>.
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz

- As travessias em profundidade podem subclassificar-se em função da ordem em que a raiz é visitada em relação a seus descendentes.
- Em pré-ordem (RED: Raiz, Esquerda, Direita)
 - R: Processar o nó raiz.
 - E: Percorrer em pré-ordem a sub-árvore esquerda.
 - D: Percorrer em pré-ordem a sub-árvore direita.
- Em-ordem (ERD: Esquerda, Raiz, Direita)
 - E: Percorrer em-ordem a sub-árvore esquerda.
 - R: Processar o nó raiz.
 - D: Percorrer em-ordem a sub-árvore direita.
- Em pós-ordem (EDR: Esquerda, Direita, Raiz)
 - E: Percorrer em pós-ordem a sub-árvore esquerda.
 - D: Percorrer em pós-ordem a sub-árvore direita.
 - R: Processar o nó raiz.

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Pré-ordem

F, B, A, D, C, E, G, I, H

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura


```
Prefixo (RED): A, B, C, E, D, F, G, I, J, H
Infixo (ERD): E, C, B, D, A, I, G, J, F, H
Posfixo (EDR): E, C, D, B, I, J, G, H, F, A
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura


```
Prefixo (RED): A, B, C, E, D, F, G, I, J, H
Infixo (ERD): E, C, B, D, A, I, G, J, F, H
Posfixo (EDR): E, C, D, B, I, J, G, H, F, A
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura


```
Prefixo (RED): A, B, C, E, D, F, G, I, J, H
Infixo (ERD): E, C, B, D, A, I, G, J, F, H
Posfixo (EDR): E, C, D, B, I, J, G, H, F, A
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvores Binárias de Procura: Motivação

- São outra forma de implementar **dicionário**s
- Como já tinhamos analisado nas tabelas de dispersão

Se quisermos nesquisar um elemento

 Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

São outra forma de implementar dicionários

- · Como já tinhamos analisado nas tabelas de dispersão
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados a pesquisa sequenciatados (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - · Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho tempora similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - · Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

- São outra forma de implementar dicionários
- Como já tinhamos analisado nas tabelas de dispersão:
 - A complexidade de uma estrutura de dados tem duas componentes: Espaço e Tempo.
 - As listas ligadas têm bom desempenho no Espaço pois permitem uma alocação dinâmica;
 - Os vectores (arrays) ordenados têm bom desempenho no Tempo.
- Se quisermos pesquisar um elemento:
 - Num vector ordenado podemos utilizar pesquisa binária;
 - Numa lista ligada estamos limitados à pesquisa sequencial (percorrer todos os elementos até encontrar o pretendido).
- Árvore Binária de Procura: uma implementação com alocação dinâmica de espaço e desempenho temporal similar ao de um vector ordenado.

Árvore Binária de Procura: Definição

 Uma árvore binária de procura é uma árvore binária em que a chave armazenada em cada nó: Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvore Binária

Árvore Binária de Procura

- Uma árvore binária de procura é uma árvore binária em que a chave armazenada em cada nó:
 - é maior que todas as chaves na sua subárvore esquerda
 - é menor que todas as chaves na sua subárvore direita
 - (Se houver chaves iguais, podem ser colocadas à direita por exemplo.)

- Uma árvore binária de procura é uma árvore binária em que a chave armazenada em cada nó:
 - é maior que todas as chaves na sua subárvore esquerda;
 - é menor que todas as chaves na sua subárvore direita
 - (Se houver chaves iguais, podem ser colocadas à direita por exemplo.)

- Uma árvore binária de procura é uma árvore binária em que a chave armazenada em cada nó:
 - é maior que todas as chaves na sua subárvore esquerda;
 - é menor que todas as chaves na sua subárvore direita.
 - (Se houver chaves iguais, podem ser colocadas à direita por exemplo.)

Árvore Binária

Árvore Binária de

- Uma árvore binária de procura é uma árvore binária em que a chave armazenada em cada nó:
 - é maior que todas as chaves na sua subárvore esquerda;
 - é menor que todas as chaves na sua subárvore direita.
 - (Se houver chaves iguais, podem ser colocadas à direita, por exemplo.)

- Dicionário implementado com árvore binária de procura
- Sendo as arvores binarias um exemplo de uma estrutura de dados recursiva, os algoritmos mais simples para as manipular tendem também a ser recursivos.
- Algoritmos recursivos em estruturas de dados recursivas replicam a recursividade existente na estrutura de dados para os próprios algoritmos.
- Neste caso, temos uma árvore constituída por um nó raiz e duas subárvores, pelo que o algoritmo recursivo repetirá, na ordem desejada, esta estrutura: processamento do nó raiz, invocação recursiva para cada subárvore.

- Sendo as árvores binárias um exemplo de uma estrutura de dados recursiva, os algoritmos mais simples para as manipular tendem também a ser recursivos.
- Algoritmos recursivos em estruturas de dados recursivas replicam a recursividade existente na estrutura de dados para os próprios algoritmos.
- Neste caso, temos uma árvore constituída por um nó raiz e duas subárvores, pelo que o algoritmo recursivo repetirá, na ordem desejada, esta estrutura: processamento do nó raiz, invocação recursiva para cada subárvore.

- Sendo as árvores binárias um exemplo de uma estrutura de dados recursiva, os algoritmos mais simples para as manipular tendem também a ser recursivos.
- Algoritmos recursivos em estruturas de dados recursivas replicam a recursividade existente na estrutura de dados para os próprios algoritmos.
- Neste caso, temos uma árvore constituída por um nó raiz e duas subárvores, pelo que o algoritmo recursivo repetirá, na ordem desejada, esta estrutura: processamento do nó raiz, invocação recursiva para cada subárvore.

- Sendo as árvores binárias um exemplo de uma estrutura de dados recursiva, os algoritmos mais simples para as manipular tendem também a ser recursivos.
- Algoritmos recursivos em estruturas de dados recursivas replicam a recursividade existente na estrutura de dados para os próprios algoritmos.
- Neste caso, temos uma árvore constituída por um nó raiz e duas subárvores, pelo que o algoritmo recursivo repetirá, na ordem desejada, esta estrutura: processamento do nó raiz, invocação recursiva para cada subárvore.

· Nome do módulo

Serviços

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Nome do módulo:

- BinarySearchTree
- Serviços
 - BinarySearchTree(): construto
 - set (key, elem): criar/actualizar uma associação
 - get (key): devolve elemento associado a uma chave
 - remove (key): apaga uma chave com o elemento associado;
 - contains (key): existe uma chave
 - isEmpty(): árvore vazia;
 - size (): número de entradas:
 - clear(): esvazia a estrutura;
 - keys (): devolve um vector com todas as chave existentes.

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

· Nome do módulo:

- BinarySearchTree
- Serviços
 - BinarySearchTree(): construto;
 - set (key, elem): criar/actualizar uma associação
 - get (key): devolve elemento associado a uma chave
 - remove (key): apaga uma chave com o elemento associado;
 - contains (key): existe uma chave;
 - isEmpty(): árvore vazia;
 - size (): número de entradas:
 - clear(): esvazia a estrutura:
 - keys (): devolve um vector com todas as chaves existentes.

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

· Nome do módulo:

• BinarySearchTree

Serviços:

- BinarySearchTree(): construtor;
- set (key, elem): criar/actualizar uma associação
- get (key): devolve elemento associado a uma chave
- remove (key): apaga uma chave com o elemento associado;
- contains (key): existe uma chave;
- isEmpty(): **árvore vazia**;
- size(): número de entradas;
- clear(): esvazia a estrutura;
- keys(): devolve um vector com todas as chaves existentes.

Estruturas de Dados

- · Nome do módulo:
 - BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - contains (key): existe uma chave;
 - * ISEMPTY (). arvore vazia,
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

- BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave
 - remove (key): apaga uma chave com o elemento associado;
 - contains (key): existe uma chave;
 - 's sempty (). arvore vazia,
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

Árvore Binária

Árvore Binária de Procura

Árvore Binária de Procura

- · Nome do módulo:
 - BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - contains (key): existe uma chave;
 - isEmpty(): árvore vazia;
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

Árvore Binária de Procura

- · Nome do módulo:
 - BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - contains (key): existe uma chave;
 - isempty(). arvore vazia,
 - size(): número de entradas
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

- BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - · contains (key): existe uma chave;
 - isEmpty(): árvore vazia;
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys (): devolve um vector com todas as chaves existentes.

Árvore Binária

Árvore Binária de Procura

- Nome do módulo:
 - BinarySearchTree
- · Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - · contains (key): existe uma chave;
 - isEmpty(): árvore vazia;
 - size(): número de entradas
 - clear(): esvazia a estrutura
 - keys(): devolve um vector com todas as chaves existentes.

Árvore Binária

Árvore Binária de Procura

Árvore Binária de Procura

- · Nome do módulo:
 - BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - · contains (key): existe uma chave;
 - isEmpty(): **árvore vazia**;
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

- · Nome do módulo:
 - BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - · contains (key): existe uma chave;
 - isEmpty(): árvore vazia;
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

- · Nome do módulo:
 - BinarySearchTree
- Serviços:
 - BinarySearchTree(): construtor;
 - set (key, elem): criar/actualizar uma associação;
 - get (key): devolve elemento associado a uma chave;
 - remove (key): apaga uma chave com o elemento associado;
 - · contains (key): existe uma chave;
 - isEmpty(): **árvore vazia**;
 - size(): número de entradas;
 - clear(): esvazia a estrutura;
 - keys(): devolve um vector com todas as chaves existentes.

Árvore Binária de Procura

 Os elementos (key, elem) estão armazenados na árvore binária da sequinte forma:

Todos do nás no autisányore ecquenda de cada ná X tém uma x ey menor do que a key do ná X.

Todos de nás no autisányore direito de cada nó X tém um um um no autisányo de cada nó X tém um um um no autisányo de cada nó X tém um um um no autisányo de cada nó X tém um um um no autisányo a

k1 < k2 < k3

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

- Os elementos (key, elem) estão armazenados na árvore binária da seguinte forma:
 - Todos os nós na sub-árvore esquerda de cada nó X têm uma key menor do que a key do nó X.
 - Todos os nós na sub-árvore direita de cada nó X têm uma key maior do que a key do nó X.

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com

- Os elementos (key, elem) estão armazenados na árvore binária da seguinte forma:
 - Todos os nós na sub-árvore esquerda de cada nó X têm uma key menor do que a key do nó X.
 - Todos os nós na sub-árvore direita de cada nó X têm uma key maior do que a key do nó X.

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário mplementado com irvore binária de

- Os elementos (key, elem) estão armazenados na árvore binária da seguinte forma:
 - Todos os nós na sub-árvore esquerda de cada nó X têm uma key menor do que a key do nó X.
 - Todos os nós na sub-árvore direita de cada nó X têm uma key maior do que a key do nó X.

Árvore

Árvore Binária

Árvore Binária de Procura

- Os elementos (key, elem) estão armazenados na árvore binária da seguinte forma:
 - Todos os nós na sub-árvore esquerda de cada nó X têm uma key menor do que a key do nó X.
 - Todos os nós na sub-árvore direita de cada nó X têm uma key maior do que a key do nó X.

Árvore

Árvore Binária

Árvore Binária de Procura

- Os elementos (key, elem) estão armazenados na árvore binária da seguinte forma:
 - Todos os nós na sub-árvore esquerda de cada nó X têm uma key menor do que a key do nó X.
 - Todos os nós na sub-árvore direita de cada nó X têm uma key maior do que a key do nó X.

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário mplementado com arvore binária de

Árvores Binárias de Procura: pesquisa

Algoritmo (tirando proveito da ABP):

```
search n in Tree.root
if Tree.root == null then
    result = null // NOT FOUND!
else if n.key < Tree.root.key then
    search n in LeftChildTree.root
else if n.key > Tree.root.key then
    search n in RightChildTree.root
else // n.key == Tree.root.key
    result = Tree.root // FOUND!
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvore Binária

Árvore Binária de Procura

```
    Algoritmo (tirando proveito da ABP):
```

```
search n in Tree.root
if Tree.root == null then
  result = null // NOT FOUND!
else if n.key < Tree.root.key then
  search n in LeftChildTree.root
else if n.key > Tree.root.key then
  search n in RightChildTree.root
else // n.key == Tree.root.key
  result = Tree.root // FOUND!
```

Árvore Binária

Árvore Binária de Procura

```
    Algoritmo (tirando proveito da ABP):
```

```
search n in Tree.root
if Tree.root == null then
    result = null // NOT FOUND!
else if n.key < Tree.root.key then
    search n in LeftChildTree.root
else if n.key > Tree.root.key then
    search n in RightChildTree.root
else // n.key == Tree.root.key
    result = Tree.root // FOUND!
```

Árvore Binária

Árvore Binária de Procura

```
    Algoritmo (tirando proveito da ABP):
```

```
search n in Tree.root
if Tree.root == null then
  result = null // NOT FOUND!
else if n.key < Tree.root.key then
  search n in LeftChildTree.root
else if n.key > Tree.root.key then
  search n in RightChildTree.root
else // n.key == Tree.root.key
  result = Tree.root // FOUND!
```

Árvores binárias de procura: inserir um elemento

· Algoritmo (inserir como "folha"

```
insert n in Tree.root
if Tree.root == null then
    Tree.root = n
else if n.key < Tree.root.key then
    insert n in LeftChildTree.root
else // n.key >= Tree.root.key
    insert n in RightChildTree.root
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvores binárias de procura: inserir um elemento

· Algoritmo (inserir como "folha")

```
insert n in Tree.root
if Tree.root == null then
   Tree.root = n
else if n.key < Tree.root.key then
   insert n in LeftChildTree.root
else // n.key >= Tree.root.key
   insert n in RightChildTree.root
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvores binárias de procura: inserir um elemento

· Algoritmo (inserir como "folha")

```
insert n in Tree.root
if Tree.root == null then
   Tree.root = n
else if n.key < Tree.root.key then
   insert n in LeftChildTree.root
else // n.key >= Tree.root.key
   insert n in RightChildTree.root
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

· Algoritmo (inserir como "folha")

```
insert n in Tree.root
if Tree.root == null then
  Tree.root = n
else if n.key < Tree.root.key then
  insert n in LeftChildTree.root
else // n.key >= Tree.root.key
  insert n in RightChildTree.root
```

Árvores binárias de procura: remover um elemento

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

implementado com árvore binária de

Árvores binárias de procura: remover um elemento

Árvore

Árvore Binária

Árvore Binária de Procura

Estruturas de Dados

- · Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null
- Se é um nó só com uma subárvore (1 filho)
 - Suprimir o nó fazendo o ligação do seu pai ao nó da subárvore.
- Se é um nó com duas subárvores (2 filhos)
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Árvore Binária de Procura

- · Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null.
- Se é um nó só com uma subárvore (1 filho)
 - Suprimir o no fazendo o ligação do seu pai ao no da subárvore.
- Se é um nó com duas subárvores (2 filhos)
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Árvore Binária de Procura

- · Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null.
- Se é um nó só com uma subárvore (1 filho):
 - Suprimir o nó fazendo o ligação do seu pai ao nó da subárvore.
- Se é um nó com duas subárvores (2 filhos)
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Árvore Binária

Árvore Binária de Procura

- Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null.
- Se é um nó só com uma subárvore (1 filho):
 - Suprimir o nó fazendo o ligação do seu pai ao nó da subárvore.
- Se é um nó com duas subárvores (2 filhos)
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Árvore Binária

Árvore Binária de Procura

- Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null.
- Se é um nó só com uma subárvore (1 filho):
 - Suprimir o nó fazendo o ligação do seu pai ao nó da subárvore.
- Se é um nó com duas subárvores (2 filhos):
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Árvore Binária

Árvore Binária de Procura

- Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null.
- Se é um nó só com uma subárvore (1 filho):
 - Suprimir o nó fazendo o ligação do seu pai ao nó da subárvore.
- Se é um nó com duas subárvores (2 filhos):
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Árvore Binária

Árvore Binária de Procura

- Se é um nó folha (zero filhos):
 - Colocar, no nó pai, a referência para este nó a null.
- Se é um nó só com uma subárvore (1 filho):
 - Suprimir o nó fazendo o ligação do seu pai ao nó da subárvore.
- Se é um nó com duas subárvores (2 filhos):
 - Substituir o nó a eliminar pelo menor elemento na subárvore da direita (ou pelo maior da esquerda).
 - (Uma alternativa seria inserir um dos filhos como folha do outro e substituir o nó pela raiz resultante. Mas cria árvores menos eficientes.)

Algoritmo

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Algoritmo

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Algoritmo

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Algoritmo

```
delete n from Tree.root.
  if n == Tree root then
    if LeftChildTree.root == null then
      Tree.root = RightChildTree.root
    else if RightChildTree.root == null then
      Tree.root = LeftChildTree.root
    else
      min = searchMinimum from RightChildTree.root
      delete min from RightChildTree.root
      min.LeftChildTree = LeftChildTree
      min.RightChildTree = RightChildTree
     Tree.root = min
  else if n.kev < Tree.root.kev then
    delete n from LeftChildTree.root.
  else // n.key >= Tree.root.key
    delete n from RightChildTree.root
```

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

```
delete n from Tree.root
   if n == Tree.root then
    if LeftChildTree.root == null then
        Tree.root = RightChildTree.root
   else if RightChildTree.root == null then
        Tree.root = LeftChildTree.root
   else
        Tree.root = insert LeftChildTree.root in RightChildTree.root
   else if n.key < Tree.root.key then
        delete n from LeftChildTree.root
   else // n.key >= Tree.root.key
```

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

Algoritmo:

```
if n == Tree.root then
  if LeftChildTree.root == null then
    Tree.root = RightChildTree.root
  else if RightChildTree.root == null then
    Tree.root = LeftChildTree.root
  else
    Tree.root = insert LeftChildTree.root in RightChildTree.root
  else
    Tree.root = insert LeftChildTree.root in RightChildTree.root
  else if n.key < Tree.root.key then
    delete n from LeftChildTree.root
  else // n.key >= Tree.root.key
    delete n from RightChildTree.root
```

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

Algoritmo:

```
if n == Tree.root then
  if LeftChildTree.root == null then
    Tree.root = RightChildTree.root
  else if RightChildTree.root == null then
    Tree.root = LeftChildTree.root
  else
    Tree.root = insert LeftChildTree.root in RightChildTree.root
  else
    Tree.root = insert LeftChildTree.root in RightChildTree.root
  else if n.key < Tree.root.key then
    delete n from LeftChildTree.root
  else // n.key >= Tree.root.key
    delete n from RightChildTree.root
```

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

```
    Algoritmo:
```

```
delete n from Tree.root
  if n == Tree.root then
   if LeftChildTree.root == null then
        Tree.root = RightChildTree.root
   else if RightChildTree.root == null then
        Tree.root = LeftChildTree.root
   else
        Tree.root = insert LeftChildTree.root in RightChildTree.root
   else if n.key < Tree.root.key then
        delete n from LeftChildTree.root
   else // n.key >= Tree.root.key
        delete n from RightChildTree.root
```

Árvore Binária

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

```
    Algoritmo:
```

```
delete n from Tree.root
  if n == Tree.root then
   if LeftChildTree.root == null then
        Tree.root = RightChildTree.root
   else if RightChildTree.root == null then
        Tree.root = LeftChildTree.root
   else
        Tree.root = insert LeftChildTree.root in RightChildTree.root
   else if n.key < Tree.root.key then
   delete n from LeftChildTree.root
   else // n.key >= Tree.root.key
   delete n from RightChildTree.root
```

Árvores binárias: balanceamento

Uma árvore está equilibrada se

a diferença das alturas das suas sub-ánvores não é superado,

sub-ánvores não é sub-ánvores não é sub-ánvores não é superado,

sub-ánvores não é sub-ánvor

- Manter uma árvore equilibrada permite garantir complexidade O(log n) para as operações de pesquisa, inserção e remoção.
- É possível manter a árvore sempre equilibrada commimplementações mais complexas das operações de insert e remove. (Mas sai fora do âmbito desta disciplina.)

Estruturas de Dados

Árvore

Árvore Binária

Árvore Binária de Procura

Árvore Binária de Procura

Dicionário implementado com árvore binária de procura

Uma árvore está equilibrada se:

- a diferença das alturas das suas sub-árvores não é superio a 1;
- · todas as sub-árvores estão equilibradas
- Manter uma árvore equilibrada permite garantir complexidade O(log n) para as operações de pesquisa, inserção e remoção.
- E possível manter a árvore sempre equilibrada com implementações mais complexas das operações de insert e remove. (Mas sai fora do âmbito desta disciplina.)

Árvore Binária

Árvore Binária de Procura

- · Uma árvore está equilibrada se:
 - a diferença das alturas das suas sub-árvores não é superior a 1;
 - todas as sub-árvores estão equilibradas
- Manter uma árvore equilibrada permite garantir complexidade O(log n) para as operações de pesquisa, inserção e remoção.
- E possível manter a árvore sempre equilibrada com implementações mais complexas das operações de insert e remove. (Mas sai fora do âmbito desta disciplina.)

Árvore Binária

Árvore Binária de Procura

- · Uma árvore está equilibrada se:
 - a diferença das alturas das suas sub-árvores não é superior a 1;
 - todas as sub-árvores estão equilibradas.
- Manter uma árvore equilibrada permite garantir complexidade O(log n) para as operações de pesquisa, inserção e remoção.
- É possível manter a árvore sempre equilibrada com implementações mais complexas das operações de insert e remove. (Mas sai fora do âmbito desta disciplina.)

Árvore Binária

Árvore Binária de Procura

- · Uma árvore está equilibrada se:
 - a diferença das alturas das suas sub-árvores não é superior a 1;
 - todas as sub-árvores estão equilibradas.
- Manter uma árvore equilibrada permite garantir complexidade O(log n) para as operações de pesquisa, inserção e remoção.
- E possível manter a árvore sempre equilibrada com implementações mais complexas das operações de insert e remove. (Mas sai fora do âmbito desta disciplina.)

Árvore Binária

Árvore Binária de Procura

- Uma árvore está equilibrada se:
 - a diferença das alturas das suas sub-árvores não é superior a 1;
 - todas as sub-árvores estão equilibradas.
- Manter uma árvore equilibrada permite garantir complexidade O(log n) para as operações de pesquisa, inserção e remoção.
- É possível manter a árvore sempre equilibrada com implementações mais complexas das operações de insert e remove. (Mas sai fora do âmbito desta disciplina.)