

MATLAB을 이용한 Graphical User Interface 제작

한국과학기술원 기계공학과 의광학 및 광측정 연구실 연구조교수

남형수

Graphical User Interface

 An interface through which a user interacts with applications through the use of icons, menus and other visual indicators

< Examples of graphical user interface written in C++ >

Graphical User Interface

Programming languages for developing GUIs:

C/C++, Java, Python, VB.Net/C#,. ..., MATLAB

< Examples of graphical user interface built by MATLAB >

MATLAB app designer

- MATLAB 자체 tutorials 참고 가능
- doc appdesigner 입력

MATLAB app designer

■ MATLAB command window에 appdesigner 입력

- 앱 디자이너 : '디자인 보기' 와 '코드 보기' 로 구성
 - '디자인 보기' 에서 원하는 대로 '구성 요소 (컴포넌트)' 배치 하기
- 각 구성 요소 (컴포넌트) 별로 개별적인 '프로퍼티'가 있음
 - '디자인 보기'에서 직관적으로 수정하는 방법
 - '코드 보기'에서 코드 단위에서 수정하는 방법
 - '디자인 보기'에서 프로퍼티를 셋팅하면 자동으로 코드에 반영되게 됨
- 각 프로퍼티는 구조체 형태로 구현되어 있음.
 - app 이라는 구조체 밑에 각 컴포넌트들이 구현
 - 각 컴포넌트 밑에 컴포넌트의 프로퍼티들이 구현
 - app.Component1.Property1 = desired_value 이런 식으로 원하는 값으로 셋팅 가능함

■ MATLAB doc 발췌

- app 객체
 - 이 객체는 UI 구성요소를 비롯해 속성을 사용하여 지정하는 데이터와 같은 앱의 모든 데이터를 저장합니다. 앱의 모든 함수에서는 이 객체를 첫 번째 인수로 사용해야 합니다. 이 패턴을 사용하면 이러한 함수 내에서 구성요소와 속성에 액세스할 수 있습니다.
- 개별 구성요소 객체 (구성요소 = 컴포넌트)
 - 디자인 보기에서 구성요소를 추가할 때마다 앱 디자이너가 app.ComponentName 형식의 이름이 지정된 객체로 구성요소를 저장합니다. 구성요소 브라우저를 사용하여 앱에서 구성요소의 이름을 확인하고 수정할 수 있습니다. 앱 코드 내에서 구성요소 속성에 액세스하고 업데이트하려면 app.ComponentName.Property 패턴을 사용하십시오.

- 코드는 어떻게 구성?
 - 1. 각 컴포넌트를 선언 하는 부분 (자동 생성)
 - 2. 앱과 각 컴포넌트를 초기화 하는 부분 (자동 생성)
 → '디자인 보기'에서 설정한 각 컴포넌트의 프로퍼티가 초기값으로 지정됨
 - 3. 앱과 각 컴포넌트가 생성/소멸할 때 호출되는 함수 정의 (자동 생성)
 - 4. 각 컴포넌트가 작동할 때 호출되는 콜백 함수 정의(사용자 생성)
 - 5. 기타 앱 구동에 필요한 함수 정의(사용자 생성)
 - 이 모든 함수는 app이라는 객체의 멤버 함수로서 생성됨 (클래스 개념)

- 코드는 어떻게 구성?
 - 4. 각 컴포넌트가 작동할 때 호출되는 콜백 함수 정의(사용자 생성)
 - GUI의 실질적 기능 구현에서 가장 중요한 부분
 - 각 컴포넌트 별로 고유의 콜백함수가 있음.
 - 버튼 같은 경우에는 Push에 대한 callback
 - 슬라이더 같은 경우에는 Value Changed, Changing에 대한 callback
 - 체크 박스 같은 경우에는 Value Changed에 대한 callback
 - 등등...
 - '디자인 보기'에서 각 컴포넌트를 우클릭해서 '콜백' 메뉴를 보면 어떤 콜백 함수를 생성할 수 있는지 확인 가능함.
 - 각 컴포넌트를 우클릭하여 콜백함수를 생성하면 자동으로 '코드 보기'에 해당 콜백함수를 생성해 줌.

- 코드는 어떻게 구성?
 - 4. 각 컴포넌트가 작동할 때 호출되는 콜백 함수 정의(사용자 생성)
 - 예) Value Changed 콜백 함수의 경우, 해당 value값에 바로 접근할 수 있도록 또한 바로 코드를 만들어 줌.
 - app 구조체 밑에 Slider 구조체에서 'value' property에 접근하여 얻는다. (app.Slider.Value)
 - 이 값을 가지고 원하는 코드를 구성하면 됨.
 - event 인자에서 받아올 수도 있음.
 - 콜백 함수의 두 인수 app, event
 - app:app 전체를 포괄하는 구조체로 다른 구성요소에 접근할 수 있게 해 줌.
 - event : 이 콜백 함수를 실행되게 한 event에 대한 정보가 있음 (한번 확인 해보기)
 - '디자인 보기'에서 콜백함수 정의되었는지 확인하기
 - 여기서 '특정 이벤트'와 실행될 '콜백 함수'를 서로 연결해 줄 수 있음.

MATLAB app designer

imfilter tutorials

MATLAB 'imfilter' function

imfilter

다차원 영상의 N차원 필터링

구문

```
B = imfilter(A,h)
B = imfilter(A,h,options,...)
```

설명

- B = imfilter(A,h)는 다차원 필터 h를 사용하여 다차원 배열 A를 필터링한 후 결과를 B로 반환합니다.
- B = imfilter(A,h,options,...)는 하나 이상의 지정된 옵션에 따라 다차원 필터링을 수행합니다.

options — 필터링 연산을 제어하는 옵션

문자형 벡터 | string형 스칼라 | 숫자형 스칼라

필터링 연산을 제어하는 옵션으로, 문자형 벡터, string형 스칼라 또는 숫자형 스칼라로 지정됩니다. 다음 표에는 지원되는 모든 옵션이나와 있습니다.

경계선 옵션

옵션	설명	
채우기 옵션		
숫자형 스칼라 X	배열의 경계 밖에 있는 입력 배열 값에 값 X가 할당됩니다. 채우기 옵션이 지정되지 않으면, 디폴트 값은 0입니다.	
'symmetric'	배열의 경계 밖에 있는 입력 배열 값은 배열 테두리를 기준으로 배열을 대칭 복사하여 계산됩니다.	
'replicate'	배열의 경계 밖에 있는 입력 배열 값은 가장 가까운 배열 테두리 값과 같은 것으로 간주됩니다.	
'circular'	배열의 경계 밖에 있는 입력 배열 값은 암시적으로 입력 배열을 주기적이라고 간주하여 계산됩니다.	
출력 크기		
'same'	출력 배열은 입력 배열과 크기가 같습니다. 이는 출력 크기 옵션이 지정되지 않은 경우의 디폴트 동작입니다.	
'full'	출력 배열은 완전히 필터링된 결과며, 따라서 입력 배열보다 크기가 더 큽니다.	

MATLAB 'fspecial' function

fspecial

미리 정의된 2차원 필터 생성

구문

```
h = fspecial(type)
h = fspecial('average',hsize)
h = fspecial('disk',radius)
h = fspecial('gaussian',hsize,sigma)
h = fspecial('laplacian',alpha)
h = fspecial('log',hsize,sigma)
h = fspecial('motion',len,theta)
h = fspecial('prewitt')
h = fspecial('sobel')
```

값	설명
'average'	평균 필터
'disk'	원형 평균 필터(필박스)
'gaussian'	가우스 저역통과 필터. 권장되지 않습니다. 신 사용하십시오.
'laplacian'	2차원 라플라시안 연산자를 근사합니다.
'log'	LoG(가우스-라플라시안) 필터
'motion'	카메라의 선형 움직임을 근사합니다.
'prewitt'	Prewitt 가로 방향 경계 강조 필터
'sobel'	Sobel 가로 방향 경계 강조 필터

- App 내부에서 사용할 변수 설정 → 클래스의 멤버 변수 개념
 - private 속성 설정
 - 불러온 영상, 필터링 파라미터 등 클래스 멤버 변수로 설정해주기
 - 초기값 설정 가능

```
properties (Access = private)
    orig_img % original image
   filt img % filtered image
   kernel % kernel
   % filtering parameters
   kernel_type = 'average';
    size = 3;
   radius = 1;
   sigma = 1;
    alpha = 1;
   len = 3;
   theta = 0;
   tp = 0;
    pad_opt = 'symmetric';
   output size = 'same';
end
```


- 그래픽스 활용하기
 - 각 함수에서 구성요소를 Parent로 지정하기
- 콜백 함수 구현 시 디버깅 기능 활용하기
- Grid Layout 활용하기
- Deployment
- MATLAB doc 예제 확인하기

감사합니다.

Code access (Github)

