Car-CO2-Emission-Prediction

February 11, 2019

Car CO2 Emission Prediction (Regression)

Variable Descriptions
 Variable Descriptions
 Understand Data
 Variable Descriptions

About this notebook

In this notebook, I will use data about cars and regression models to predict CO2 emission. This data provides model-specific fuel consumption ratings and estimated carbon dioxide emissions for new light-duty vehicles for retail sale in Canada.

Note: This is a part of IBM Data Scientist course projects.

Table of contents

```
3. Linear Regression
4. Non-linear Regression
4.1 Polynomial Regression
4.2 Ridge Regression

In [15]: #import packages
    import matplotlib.pyplot as plt
    import pandas as pd
    import pylab as pl
    import numpy as np
    %matplotlib inline
    import seaborn as sns
In [9]: #get data
```

df=pd.read_csv(r'https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/Cog

This dataset has 1,067 observations and 13 columns.

Variable Descriptions

We have downloaded a fuel consumption dataset, FuelConsumption.csv, which contains model-specific fuel consumption ratings and estimated carbon dioxide emissions for new light-duty vehicles for retail sale in Canada. Dataset source

- MODELYEAR e.g. 2014
- MAKE e.g. Acura
- MODEL e.g. ILX
- VEHICLE CLASS e.g. SUV

- ENGINE SIZE e.g. 4.7
- CYLINDERS e.g 6
- TRANSMISSION e.g. A6
- FUEL CONSUMPTION in CITY(L/100 km) e.g. 9.9
- FUEL CONSUMPTION in HWY (L/100 km) e.g. 8.9
- FUEL CONSUMPTION COMB (L/100 km) e.g. 9.2
- CO2 EMISSIONS (g/km) e.g. 182

Understand Data

In [12]: #shape of the data

 ${\tt df.shape}$

Out[12]: (1067, 13)

In [10]: #the head of data

df.head()

Out[10]:		MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	١
	0	2014	ACURA	ILX	COMPACT	2.0	4	
	1	2014	ACURA	ILX	COMPACT	2.4	4	
	2	2014	ACURA	ILX HYBRID	COMPACT	1.5	4	
	3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6	
	4	2014	ACURA	RDX AWD	SUV - SMALL	3.5	6	

	TRANSMISSION	FUELTYPE	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HWY	\
0	AS5	Z	9.9	6.7	
1	M6	Z	11.2	7.7	
2	AV7	Z	6.0	5.8	
3	AS6	Z	12.7	9.1	
4	AS6	Z	12.1	8.7	

	FUELCONSUMPTION_COMB	FUELCONSUMPTION_COMB_MPG	CO2EMISSIONS
0	8.5	33	196
1	9.6	29	221
2	5.9	48	136
3	11.1	25	255
4	10.6	27	244

In [103]: df.dtypes

Out[103]: MODELYEAR int64MAKE object MODEL object VEHICLECLASS object ENGINESIZE float64 CYLINDERS int64 TRANSMISSION object FUELTYPE object

FUELCONSUMPTION_CITY	float64
FUELCONSUMPTION_HWY	float64
FUELCONSUMPTION_COMB	float64
FUELCONSUMPTION_COMB_MPG	int64
CO2EMISSIONS	int64
dtype: object	

Out[13]:		MODELYEAR	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CITY	\
	count	1067.0	1067.000000	1067.000000	1067.000000	
	mean	2014.0	3.346298	5.794752	13.296532	
	std	0.0	1.415895	1.797447	4.101253	
	min	2014.0	1.000000	3.000000	4.600000	
	25%	2014.0	2.000000	4.000000	10.250000	
	50%	2014.0	3.400000	6.000000	12.600000	
	75%	2014.0	4.300000	8.000000	15.550000	
	max	2014.0	8.400000	12.000000	30.200000	

	FUELCONSUMPTION_HWY	FUELCONSUMPTION_COMB	FUELCONSUMPTION_COMB_MPG	'
count	1067.000000	1067.000000	1067.000000	
mean	9.474602	11.580881	26.441425	
std	2.794510	3.485595	7.468702	
min	4.900000	4.700000	11.000000	
25%	7.500000	9.000000	21.000000	
50%	8.800000	10.900000	26.000000	
75%	10.850000	13.350000	31.000000	
max	20.500000	25.800000	60.000000	

```
CO2EMISSIONS
        1067.000000
count
mean
         256.228679
          63.372304
std
         108.000000
min
25%
         207.000000
50%
         251.000000
75%
         294.000000
         488.000000
max
```


CYLINDERS are categorical. There are 5 distinct values in the dataset. We want to see if there are any difference in the mean of each type of cylinder numbers realting to CO2EMISSIONS.

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x20c70bbf630>

So, the number of cylinders has some influence in CO2EMISSIONS.

There are four columns about fuel consumptions: FUELCONSUMPTION_CITY, FUELCON-SUMPTION_HWY, FUELCONSUMPTION_COMB, and FUELCONSUMPTION_COMB_MPG. If they are highly correlated, we can eliminate some of them to make the model lighter. We will run a correlation.

In [29]:	df.corr()					
Out[29]:		MODELYEAR	ENGINESIZE	CYLINDERS	\	
	MODELYEAR	NaN	NaN	NaN		
	ENGINESIZE	NaN	1.000000	0.934011		
	CYLINDERS	NaN	0.934011	1.000000		
	FUELCONSUMPTION_CITY	NaN	0.832225	0.796473		
	FUELCONSUMPTION_HWY	NaN	0.778746	0.724594		
	FUELCONSUMPTION_COMB	NaN	0.819482	0.776788		
	FUELCONSUMPTION_COMB_MPG	NaN	-0.808554	-0.770430		
	CO2EMISSIONS	NaN	0.874154	0.849685		
		FUELCONSUM	PTION_CITY	FUELCONSUMPTION_HWY \		
	MODELYEAR		NaN		NaN	
	ENGINESIZE		0.832225		0.778746	
	CYLINDERS		0.796473		0.724594	
	FUELCONSUMPTION_CITY		1.000000		0.965718	
	FUELCONSUMPTION_HWY		0.965718		1.000000	
	FUELCONSUMPTION_COMB		0.995542		0.985804	
	FUELCONSUMPTION_COMB_MPG		-0.935613	-	-0.893809	
	CO2EMISSIONS		0.898039		0.861748	
		FUELCONSUM	PTION_COMB	FUELCONSUME	PTION_COMB_MP	G\
	MODELYEAR		NaN		Na	
	ENGINESIZE		0.819482		-0.80855	
	CYLINDERS		0.776788		-0.77043	
	FUELCONSUMPTION_CITY		0.995542		-0.93561	
	FUELCONSUMPTION_HWY		0.985804		-0.89380	
	FUELCONSUMPTION_COMB		1.000000		-0.92796	
	FUELCONSUMPTION_COMB_MPG		-0.927965		1.00000	
	CO2EMISSIONS		0.892129		-0.90639	4
		CO2EMISSIO	NS			
	MODELYEAR		aN			
	ENGINESIZE	0.8741				
	CYLINDERS	0.8496				
	FUELCONSUMPTION_CITY	0.8980				
	FUELCONSUMPTION_HWY	0.8617				
	FUELCONSUMPTION_COMB	0.8921				
	FUELCONSUMPTION_COMB_MPG	-0.9063	94			

So, we can use one of the columns about fuel consumption without lossing too much information. Now we know ENGINESIZE, CYLINERS, and FUELCOMSUMPTION_COMB are useful for

1.000000

CO2EMISSIONS

```
building the regression model.
```

Linear Regression

In [35]: #spilt train and test data
 msk = np.random.rand(len(df)) < 0.8
 train = lrdf[msk]
 test = lrdf[~msk]</pre>

Out[37]: <seaborn.axisgrid.PairGrid at 0x20c70c95f60>


```
Coefficients: [[ 9.92107897 7.75011521 10.0252928 ]]
Intercept: [61.92097822]
  Now the model equation is: Y = 61.92097822 + 9.92107897ENGINESIZE +
7.75011521CYLINDERS + 10.0252928*FUELCONSUMPTION_COMB + Error
In [48]: #model evaluation
        from sklearn.metrics import r2_score
        test_x = test[['ENGINESIZE', 'CYLINDERS', 'FUELCONSUMPTION_COMB']]
        test_y = test[['CO2EMISSIONS']]
        test_y_hat = lm.predict(test_x)
        print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_hat - test_y)))
        print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_hat - test_y) ** 2))
        print("R2-score: %.2f" % r2_score(test_y_hat , test_y) )
Mean absolute error: 16.67
Residual sum of squares (MSE): 527.73
R2-score: 0.85
In [51]: #Distribution Plot
        width = 12
        height = 10
        plt.figure(figsize=(width, height))
        ax1 = sns.distplot(lrdf['CO2EMISSIONS'], hist=False, color="r", label="Actual Value")
        sns.distplot(test_y_hat, hist=False, color="b", label="Fitted Values" , ax=ax1)
        plt.title('Actual vs Fitted Values for CO2 Emission')
        plt.xlabel('CO2 Emissions')
        plt.ylabel('')
        plt.show()
        plt.close()
```


Non Linear Regression

Although the above linear model fits well (R² is 0.85), as seen from the distribution plot, it fails to explain some data points. This time we try non-linear regression models.

Polynomial Model

```
[1., 3., 9.],
                [ 1.
                     , 3.2 , 10.24],
                [1., 3.2, 10.24]])
In [59]: train_y_ = lm.fit(train_x_poly, train_y)
         # The coefficients
        print ('Coefficients: ', lm.coef_)
        print ('Intercept: ',lm.intercept_)
Coefficients: [[ 0.
                            51.17136746 -1.63000129]]
Intercept: [105.69276866]
In [60]: plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')
        XX = np.arange(0.0, 10.0, 0.1)
        yy = lm.intercept_[0] + lm.coef_[0][1]*XX+ lm.coef_[0][2]*np.power(XX, 2)
        plt.plot(XX, yy, '-r' )
        plt.xlabel("Engine size")
        plt.ylabel("Emission")
Out[60]: Text(0, 0.5, 'Emission')
          500
          450
          400
          350
       Emission
          300
```


0

2

250

200

150

100

4

Engine size

6

8

10

```
test_y = test[['CO2EMISSIONS']]
         test_x_poly = poly.fit_transform(test_x)
         test_y_ = lm.predict(test_x_poly)
         print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
        print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
         print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
Mean absolute error: 20.65
Residual sum of squares (MSE): 737.28
R2-score: 0.74
In [73]: #Optimize the polynomial degrees
         Rsqu_test = []
         order = [1, 2, 3, 4, 5, 6, 7]
         for n in order:
             poly = PolynomialFeatures(degree=n)
             train_x=train[['ENGINESIZE']]
             train_y=train[['CO2EMISSIONS']]
             train_x_poly = poly.fit_transform(train_x)
             test_x = test[['ENGINESIZE']]
             test_y = test[['CO2EMISSIONS']]
             test_x_poly = poly.fit_transform(test_x)
          #lr=LinearRegression()
             lm.fit(train_x_poly, train_y)
             Rsqu_test.append(lm.score(test_x_poly, test_y))
         plt.plot(order, Rsqu_test)
         plt.xlabel('order')
         plt.ylabel('R^2')
         plt.title('R^2 Using Test Data')
         plt.text(3, 0.75, 'Maximum R^2 ')
Out[73]: Text(3, 0.75, 'Maximum R^2 ')
```


When the polynomial degree for ENGINESIZE is 4, we have a good R². Although it the R² increases when the degree increases, we use degree=4 because it's not necessary to let the degree equal to 7 or even higer. The model may fit the noise too well. Let's have a look of the distribution plot.

```
In [81]: #degree equals to 4
         poly = PolynomialFeatures(degree=4)
         train_x=train[['ENGINESIZE']]
         train_y=train[['CO2EMISSIONS']]
         train_x_poly = poly.fit_transform(train_x)
         test_x = test[['ENGINESIZE']]
         test_y = test[['CO2EMISSIONS']]
         test_x_poly = poly.fit_transform(test_x)
         lm.fit(train_x_poly, train_y)
         test_y_hat=lm.predict(test_x_poly)
         width = 12
         height = 10
         plt.figure(figsize=(width, height))
         ax1 = sns.distplot(lrdf['CO2EMISSIONS'], hist=False, color="r", label="Actual Value")
         sns.distplot(test_y_hat, hist=False, color="b", label="Fitted Values" , ax=ax1)
         plt.title('Actual vs Fitted Values for CO2 Emission')
         plt.xlabel('CO2 Emissions')
         plt.ylabel('')
         plt.show()
         plt.close()
```

D:\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple seqreturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Ridge Regression

We will use Ridge Regression to improve the model. Ridge Regression controls the degree of polynomial regression by the parameter Alpha. Ridge Regression has the following benefits: -reduce the multicollinearity of endogenous variables in models -reduce model complexity and prevent over-fitting which may result from simple linear regression.

Let's create a Ridge regression object, setting the regularization parameter to 0.1

from sklearn.linear_model import Ridge

```
In [118]: RigeModel=Ridge(alpha=0.1)
```

```
In [124]: train_x_poly= poly.fit_transform(train_x)
          test_x_poly = poly.fit_transform(test_x)
In [125]: RigeModel.fit(train_x_poly, train_y)
          yhat = RigeModel.predict(test_x_poly)
In [127]: print('predicted:', yhat[0:4])
          print('test set :', test y[0:4].values)
predicted: [[346.34060871]
 [211.77465377]
 [224.66033349]
 [221.681592 ]]
test set : [[356]
 [209]
 [230]
 [212]]
In [128]: Rsqu_test = []
          Rsqu_train = []
          dummy1 = []
          ALFA = 10 * np.array(range(0,1000))
          for alfa in ALFA:
              RigeModel = Ridge(alpha=alfa)
              RigeModel.fit(train_x_poly, train_y)
              Rsqu_test.append(RigeModel.score(test_x_poly, test_y))
              Rsqu_train.append(RigeModel.score(train_x_poly, train_y))
In [129]: #plot for different alfa
          width = 12
          height = 10
          plt.figure(figsize=(width, height))
          plt.plot(ALFA,Rsqu_test, label='validation data ')
          plt.plot(ALFA,Rsqu_train, 'r', label='training Data ')
          plt.xlabel('alpha')
          plt.ylabel('R^2')
          plt.legend()
Out[129]: <matplotlib.legend.Legend at 0x20c72115c18>
```


The blue line represents the R^2 of the test data, and the red line represents the R^2 of the training data. The x-axis represents the different values of Alpha. The red line in represents the R^2 of the test data, as Alpha increases the R^2 decreases; therefore as Alpha increases the model performs worse on the test data. The blue line represents the R^2 on the validation data, as the value for Alpha increases the R^2 decreases.

Lower alpha value (lower polynomial degree) will yield better R^2. Let's find the exact alpha value and then determine the model.

ridge.set_params(alpha = a)

```
ridge.fit(train_x, train_y)
              coefs.append(ridge.coef_)
          np.shape(coefs)
Out[190]: (100, 1, 3)
In [181]: from sklearn.preprocessing import scale
          from sklearn.model_selection import train_test_split
          from sklearn.linear_model import Ridge, RidgeCV, Lasso, LassoCV
          from sklearn.metrics import mean_squared_error
In [191]: #obtian the best alpha by cross-vaildation
          ridgecv = RidgeCV(alphas = alphas, scoring = 'neg_mean_squared_error', normalize = T
          ridgecv.fit(train_x, train_y)
          ridgecv.alpha_
Out[191]: 0.01155064850041579
   Therefore, we see that the value of alpha that results in the smallest cross-validation error is
0.012.
In [192]: #obtain the RMSE
          ridge = Ridge(alpha = ridgecv.alpha_, normalize = True)
```

Is it necessary to use Ridge Regression than Linear Regression? We compare the MSE. The MSE obtained from the linear regression model is 737.28, however MSE from Ridge Regression is much better: 593.79. So in this case, we use the Ridge Regression model.