Ordinary differential equations

Marcin Kuta

Existence and Uniqueness

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^{1/2}, \ y \ge 0$$
$$y(0) = 0$$

$$y(t) = \begin{cases} \frac{1}{4}(t-C)^2, & \text{for } C \le t \le \infty \\ 0, & \text{for } 0 \le t \le C \end{cases}$$

Existence and Uniqueness

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y^{\beta}, \ 0 < \beta < 1, \ y \ge 0$$
$$y(0) = 0$$

$$y(t) = \begin{cases} (1-\beta)^{\frac{1}{1-\beta}} (t-C)^{\frac{1}{1-\beta}}, & \text{for } C \le t \le \infty \\ 0, & \text{for } 0 \le t \le C \end{cases}$$

Blow-up

$$\frac{dy}{dt} = y^2, \ y(0) = 1$$
$$y(t) = \frac{1}{1-t}$$

Existence and Uniqueness

Function $f(t,y)\colon \mathbb{R}^{n+1}\to\mathbb{R}^n$ is *Lipschitz continuous* if there is constant L such, that for any $t\in [a,b]$ and any $y,\hat{y}\in\Omega$

$$||f(t,\hat{y}) - f(t,y)|| \le L||\hat{y} - y||$$

If f is differentiable:

$$L = \max_{(t,y)\in D} ||J_f(t,y)||$$

Properities of numerical solutions

Consistency concerns local error
Convergence concerns global error
Stability concerns initial conditions

Stability of a problem

$$y' = f(y, t)$$
$$y(t_0) = y_0$$
$$\hat{y}(t_0) = \hat{y}_0$$

Solution to y'=f(y,t) is stable if for every ε there exists δ such that if

$$||\hat{y}(t_0)-y(t_0)||<\delta$$

then

$$||\hat{y}(t) - y(t)|| < \varepsilon \text{ for } t \ge t_0.$$

Stable solution to y' = f(y, t) is asymptotically stable if

$$||\hat{y}(t) - y(t)|| \to 0 \text{ for } t \to \infty.$$

Explicit Euler method

$$y' = \lambda y$$

$$y_{k+1} = y_k + h_k f(t_k, y_k)$$
 (1)

Numerical stability:

$$|1+h\lambda|<1\tag{2}$$

Implicit Euler method

$$y' = \lambda y$$

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1})$$
 (3)

Numerical stability:

$$\left| \frac{1}{1 - h\lambda} \right| < 1 \tag{4}$$

Amplification factor

$$\varepsilon_{n+1} = Q(\lambda h)\varepsilon_n \tag{5}$$

Method	Amplification factor		
Explicit Euler	$1 + \lambda h$		
Implicit Euler	$\frac{1}{1-\lambda h}$		
Trapezoidal	$\frac{1+\frac{1}{2}\lambda h}{1-\frac{1}{2}\lambda h}$		
Modified Euler	$1 + \lambda h + \frac{1}{2}(\lambda h)^2$		
RK4	$1 + \lambda h + \frac{1}{2}(\lambda h)^2 + \frac{1}{6}(\lambda h)^3 + \frac{1}{24}(\lambda h)^4$		

Stability regions

Stability regions

Local and global error

Local error [2]

$$\ell_k = \frac{y_k - u_{k-1}(t_k)}{h_k} \tag{6}$$

Global error

$$e_k = y_k - y(t_k) \tag{7}$$

Local and global error

Local and global error

Local error

Method	Local error	
Explicit Euler	O(h)	
Implicit Euler	O(h)	
Trapezoidal	$O(h^2)$	
Modified Euler	$O(h^2)$	
RK4	$O(h^4)$	

Methods

Fixed step	Adaptive step
Euler method	Runge-Kutta 1(2), Adaptive Heun
Midpoint method	Runge-Kutta 2(3), Bogacki-Shampine
Runge-Kutta 4, 3/8 rule	Runge-Kutta 4(5), Dormand-Prince
Explicit Adams-Bashforth	Runge-Kutta 7(8), Dormand-Prince-Shampine
Implicit Adams-Bashforth-Moulton	

Conservation laws

Method	Symplectic	Energy	Angular momentum
Explicit Euler	X	7	X
Implicit Euler	×	\searrow	X
Semi explicit Euler	\checkmark	X	\checkmark
RK4	X		

References

- [1] Michael T. Heath, http://heath.cs.illinois.edu/scicomp/notes/cs450_ chapt09.pdf
- [2] C. Vuik, F.J. Vermolen, M.B. van Gijzen, M.J. Vuik, Numerical Methods for Ordinary Differential Equations