Sistemas de ecuaciones lineales, compatibles, incompatibles. Forma matricial

Resolución por los métodos: Método de Adjunta, Gauss Jordan, y Cramer

Henry R Moncada

UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

September 7, 2024

Outline

1 Sistemas de Ecuaciones Lineales

2 Ejemplos de Aplicación Práctica

Definición de Sistemas de Ecuaciones Lineales

Un sistema de ecuaciones lineales es un conjunto de ecuaciones que comparten las mismas variables.

Forma general:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

reescribiendo nuestro sistema de ecuaciones lineales en forma matricial

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A_{m \times n}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{X_{n \times 1}} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{b_{m \times 1}}$$

$$\underbrace{\mathbf{A}^{-1}\mathbf{A}}_{I}\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} = \mathbf{A}^{-1} \quad \mathbf{b}$$

Ejemplo 1: Economía

Problema: Calcular el equilibrio de mercado donde la oferta y la demanda están dadas por las siguientes ecuaciones:

$$\begin{cases} 2x + 3y = 6\\ 3x - 2y = -3 \end{cases}$$

Solución:

Multiplicamos la primera ecuación por 3 y la segunda por 2:

$$\begin{cases} 6x + 9y = 18 \\ 6x - 4y = -6 \end{cases}$$

Restamos la segunda ecuación de la primera:

$$13y = 24 \implies y = \frac{24}{13}$$

Sustituimos y en la primera ecuación:

$$2x + 3\left(\frac{24}{13}\right) = 6 \implies x = \frac{6 - \frac{72}{13}}{2} = \frac{3}{13}$$

Por lo tanto, la solución es $x = \frac{3}{13}, y = \frac{24}{13}$

Reescribien el sistema lineal en forma matricial

$$\begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

Resoviendo el sistema lineal

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

Por lo tanto, la solución es

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-4-9} \begin{bmatrix} -2 & -3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{13} \begin{bmatrix} -12 + 9 \\ -18 - 6 \end{bmatrix} = \begin{bmatrix} \frac{3}{13} \\ \frac{24}{13} \end{bmatrix}$$

Ejemplo 2: Sistemas de Ecuaciones Lineales

Resolver el sistema de ecuaciones:

$$\begin{cases} 2x + 3y = 5\\ 4x - y = 1 \end{cases}$$

Uso de matrices para representar y resolver sistemas de ecuaciones lineales.

Solución:

Multiplicamos la segunda ecuación por 3

$$\begin{cases} 2x + 3y = 5\\ 12x - 3y = 3 \end{cases}$$

Sumando la primera y segunda ecuación :

$$14x = 8 \implies x = \frac{8}{14}$$

Sustituimos x en la primera ecuación:

$$2\left(\frac{8}{14}\right) + 3y = 5 \implies y = \frac{5 - \frac{8}{7}}{3} = -\frac{27}{21}$$

Por lo tanto, la solución es $x = \frac{4}{7}, y = -\frac{9}{7}$.

Reescribien el sistema lineal en forma matricial: $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Resoviendo el sistema lineal

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Por lo tanto, la solución es

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-2 - 12} \begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{14} \begin{bmatrix} -8 \\ 18 \end{bmatrix} = \begin{bmatrix} \frac{8}{14} \\ -\frac{18}{14} \end{bmatrix} = \begin{bmatrix} \frac{4}{7} \\ -\frac{9}{7} \end{bmatrix}$$

Problema: Considera el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x + 2y = 5 \\ 3x - y = 4 \end{cases}$$

Representa este sistema como una ecuación de matrices y resuelve para x e y. Solución:

Paso 1: Representar el sistema como una matriz:

$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Paso 2: Encontrar la inversa de la matriz de coeficientes:

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A^{-1} = \frac{1}{(1)(-1) - (2)(3)} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$$

Paso 3: Multiplicar por la matriz inversa para obtener $x \in y$:

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -15 \\ 11 \end{bmatrix} = \begin{bmatrix} \frac{15}{7} \\ \frac{11}{7} \end{bmatrix}$$

Ejemplo 3: Sistemas de Ecuaciones Lineales

Uso de matrices para resolver sistemas de ecuaciones lineales.

Ejemplo: Resolver Ax = b usando la matriz inversa A^{-1} .

Ejemplo

Sea
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $b = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$. Calculamos A^{-1} y luego $x = A^{-1}b$.

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{\frac{1}{(ad - bc)}}_{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A^{-1} = \frac{1}{1 \cdot 4 - 2 \cdot 3} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}.$$

Entonces,

$$x = A^{-1}b = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \begin{bmatrix} 5 \\ 11 \end{bmatrix} = \begin{bmatrix} -2(5) + 1(11) \\ 1.5(5) - 0.5(11) \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}.$$

Ejemplos en quimica y economía

Problema 1: Balancear una reacción química con las siguientes ecuaciones:

$$\begin{cases} x + 2y = 3\\ 3x + y = 5 \end{cases}$$

Resolvemos para x y y.

Solución:

La solución aproximada es: x = y = 0

Problema 2: En economía, los sistemas de ecuaciones lineales se utilizan para optimizar la producción en empresas. Por ejemplo, si una empresa produce dos productos x_1 y x_2 y tiene restricciones de recursos:

$$\begin{cases} 2x_1 + 3x_2 = 600 \\ 4x_1 + x_2 = 300 \end{cases}$$

Resolvemos para x_1 y x_2 .

Solución:

La solución aproximada es:

$$x_1 = 50, \quad x_2 = 100.$$

Esto significa que la producción óptima para los productos 1 y 2 es de 50 y 100 unidades, respectivamente.

Ejemplo en Análisis de Circuitos y Preparación de Soluciones

Problema 3: En ingeniería eléctrica, los sistemas de ecuaciones se utilizan para calcular corrientes y tensiones en circuitos. Considera un circuito con dos mallas:

$$\begin{cases} 5i_1 + 3i_2 = 10\\ 2i_1 + 4i_2 = 5 \end{cases}$$

Donde i_1 y i_2 son las corrientes en cada malla.

Solución:

Resolviendo el sistema para i_1 y i_2 , tenemos:

$$i_1 = 1 \,\mathrm{A}, \quad i_2 = 1 \,\mathrm{A}.$$

Las corrientes en ambas mallas son de 1 amperio.

Problema 4: En química, los sistemas de ecuaciones lineales se utilizan para preparar soluciones con concentraciones específicas. Supongamos que tenemos dos soluciones:

$$\begin{cases} 0.1x + 0.2y = 10\\ 0.3x + 0.4y = 20 \end{cases}$$

Resolviendo para \boldsymbol{x} y \boldsymbol{y} encontramos las cantidades necesarias de cada solución.

Solución:

Al resolver el sistema, obtenemos:

$$x = 40, \quad y = -10.$$

En este caso, el valor negativo indica que no es posible mezclar con las concentraciones dadas, lo que requiere un ajuste en los parámetros de mezcla.

Ejemplo en Intersección de Dos Líneas

Problema 5: En geometría analítica, para encontrar la intersección de dos líneas:

$$\begin{cases} y = 2x + 3 \\ y = -x + 1 \end{cases}$$

Sustituyendo y resolviendo el sistema para x y y.

Solución:

Las soluciones son:

$$x = -2/3, \quad y = 5/3.$$

Las líneas se intersectan en el punto (-2/3, 5/3).

Ejemplo en Ingeniería y Física

Problema 6: Resolver un circuito de resistencias con las siguientes ecuaciones:

$$\begin{cases} x + y + z = 10 \\ 2x - y + 3z = 20 \\ -x + 4y - z = 5 \end{cases}$$

Solución:

La solución aproximada es: x = 3, y = 2, z = 5.

Problema 7: Determinar las fuerzas en equilibrio en un sistema estático con las siguientes ecuaciones:

$$\begin{cases} 3x - y + 2z = 7 \\ -x + 2y + z = 4 \\ 5x - 2y + 3z = 10 \end{cases}$$

Solución:

La solución aproximada es: x = 1, y = 2, z = 1.

Ejemplo en Planificación de Proyectos

Problema 8: En gestión de proyectos, los sistemas de ecuaciones se utilizan para asignar recursos de manera eficiente. Supongamos que tenemos:

$$\begin{cases} x + 2y + 3z = 30 \\ 2x + y + z = 20 \\ x + y + z = 10 \end{cases}$$

Resolvemos para x, y, y z.

Solución:

Las soluciones son:

$$x = 5, \quad y = 2, \quad z = 3.$$

Esto indica que asignamos 5 unidades al recurso x, 2 a y y 3 a z.