Calcul de la surface corporelle (BSA)

Formule Dubois et Dubois² (1916).

- Surface corporelle (m²) = $0.007184 \text{ x Taille(cm)}^{0.725} \text{ x Poids(kg)}^{0.425}$
- Conditions de l'utilisation de cette formule :
 - o poids entre 6 et 93 kg
 - o taille entre 73 et 184 cm.

Formule Dubois et Dubois²

• Surface corporelle (m²) = $0.20247 \text{ x Taille(m)}^{0.725} \text{ x Poids(kg)}^{0.425}$

Formule de Gehan et George (1970)

- Surface corporelle (m²) = $0.0235 \text{ x Taille(cm)}^{0.42246} \text{ x Poids(kg)}^{0.51456}$
- Conditions de l'utilisation de cette formule :
 - o poids entre 4 et 132 kg;

taille entre 50 et 220 cm.

Formule de Haycock (1978)

- Surface corporelle (m²) = $0.024265 \text{ x Taille(cm)}^{0.3964} \text{ x Poids(kg)}^{0.5378}$
- Conditions de l'utilisation de cette formule :
 - o poids entre 1 et 120 kg;

taille entre 30 et 200 cm.

Formule de Mosteller (1987)

- Surface corporelle (m²) = $[Taille(cm) \times Poids(kg)/3600]^{0.5}$
- Surface corporelle (m²) = $[Taille(inch) \times Poids(pound)/3131]^{0.5}$

Formule de Boyd

- Surface corporelle (m²) = $0.0003207 \text{ x (Poids)}^{0.7285-0.0188 \text{ x log(Poids)}} \text{ x (Taille)}^{0.3}$
- Le poids est en gramme ; la taille est en cm ; le Log est décimal.
- Limite: Poids de 15 à 200 Kg; taille de 99 à 250 cm.
- C'est la formule la plus précise pour calculer la surface corporelle (SC)

Formule pour enfants

• Surface corporelle $(m^2) = [4 \times Poids(kg) + 7] / [Poids(kg) + 90]$

Poids idéal (IBW)

Formule de Lorentz (1929)

- Femme = Taille(cm) 100 [Taille(cm) 150] / 2
 - Homme = Taille(cm) 100 [Taille(cm) 150] / 4
 - o poids idéal exprimé en kg
 - Conditions de l'utilisation de cette formule :
 - o âge de supérieur à 18 ans ;
 - o taille entre 140 et 220 cm

0

Formule de Lorentz modifiée et tenant compte de l'âge :

- Poids $id\acute{e}al = 50 + [Taille(cm) 150]/4 + [Age(an) 20]/4$
- •

Formule de Devine (1974)

- Poids idéal (homme) = 50 + 2.3 [Taille(in) 60]
- Poids idéal (femme) = 45.5 + 2.3 [Taille(in) 60]
 - \circ in = inch = 2,54 cm
- Conditions de l'utilisation de cette formule :
 - o âge de supérieur à 18 ans ;
 - taille entre 140 et 220 cm

.

Formule de Peck's

- Si âge >18 ans:
 - o Poids idéal (homme) = -130.736 + [4.064 x Taille(inch)]
 - o Poids idéal (femme) = $-111.621 + [3.636 \times Taille(inch)]$
- Si \hat{a} ge $\leq \hat{a}$ 18 ane :
 - o Poids idéal (sexe masculin) =

$$-59.6035 + [5.2878 \text{ x Taille(inch)}] - [0.123939 \text{ x Taille(inch)}^2] + [0.00128936 \text{ x Taille(inch)}^3]$$

o Poids idéal (sexe féminin) =

 $-77.55796 + [6.93728 \text{ x Taille(inch)}] - [0.171703 \text{ x Taille(inch)}^2] + [0.001726 \text{ xTaille(inch)}^3]$

- Unités de mesure :
 - o estimation du poids idéal en pound à transformer kg (multiplier les resultats par 0.454)
- La taille en inch (= 2.54 cm)
 - o Cette formule n'a pas de limite d'âge, la taille entre 45 et 220 cm

Calcul du poids maigre (LBM)

Formule de James' (1981)

- Poids maigre (homme) en kg = $1.10 \text{ x Poids(kg)} 128 \left[\text{Poids(kg)}^2 / \text{Taille(cm)}^2 \right]$
- Poids maigre (femme) en kg = $1.07 \times \text{Poids(kg)} 148 \left[\text{Poids(kg)}^2 / \text{Taille(cm)}^2 \right]$
- Conditions de l'utilisation de cette formule :
 - o âge entre 18 et 80 ans;
 - o poids entre 35 et 130 kg;
 - o taille entre 140 et 185 cm.

Formule de Hume's (1966)

Poids maigre (homme) en kg = [0.32810 x Poids(kg)] + [0.33929 x Taille(cm)] - 29.5996Poids maigre (homme) en kg = [0.29569 x Poids(kg)] + [0.41813 x Taille(cm)] - 43.2933

- Conditions de l'utilisation de cette formule :
 - o Homme:
 - âge entre 16 et 80 ans;
 - poids entre 45 et 140 kg;
 - taille entre 150 et 185 cm.
 - o Femme:
 - âge entre 30 et 80 ans ;
 - poids entre 35 et 130 kg;
 - taille entre 145 et 180 cm.
 - o taille entre 140 et 220 cm

Formule de Forbes et Bruining :

• Masse maigre(kg) = 29,08 x créatininurie de 24 heures(g/j) + 7,38

Formule de Wang:

- Masse musculaire(kg) = 21,8 x créatininurie de 24 heures(g/j)
- Masse musculaire(kg) = 18.9 x créatininurie de 24 heures(g/j) + 4.1

Index de corpulence = Indice de Masse Corporelle (IMC) = Body Mass Index (BMI)

- BMI (Body Mass Index) = Poids(kg) / $Taille(m)^2$
- BMI (Body Mass Index) = [704.5 x Poids(pound)]/[(Taille(inch)]²
 - \circ Pound = 453,592 grammes
 - \circ Inche = 2,54 cm

Situation pondérale	Femme	Homme
Maigreur (insuffisance pondérale)	<19.1	< 20.7
Poids idéal	19.1 - 25.8	20.7 - 26.4
à la limite du surpoids	25.8 - 27.3	26.4 - 27.8
• Surpoids	27.3-32.3	27.8 - 31.1
• Obésité	> 32.3	> 31.1

Voir aussi : <u>la classification de l'Obésité et du surpoids chez l'adulte selon International</u>

<u>Obesity Task Force (1998)</u>

Calcul de la clairance de la créatinine

• Clairance à (X) =

[(X) urinaire/(X) plasmatique] * (Volume urinaire/durée de la récolte) * (Surface corporelle / 1.73 m²)

Formule de Cockcrott et Gault (1976).

- Clairance de la créatinine = K x Poids(kg) x [140-âge(ans)] / Créatinine(µmol/l)
 - \circ K = 1.05 chez la femme
 - \circ K = 1.25 chez l'homme
- Clairance créatinine (homme) = Poids(kg) x [140-âge(ans)] / Créatinine(mg/l) x 7,2
- Clairance Créatinine (femme) = 0,85 x Poids(kg) x [140-âge(ans)] / Créatinine(mg/l) x 7,2
 - Conditions de l'utilisation de cette formule :
 - âge : entre 18 et 110 ans
 - poids entre 35 et 120 kg
 - serum creatinine : 6 et 70 mg/l

Formule de Schwartz (enfants) (1976).

- Clairance de la créatinine = K x Taille(cm) / créatininémie(μmol/l)
 - K = 29 (nouveau-né); 40 (nourrisson); 49 (enfant jusqu'à 12 ans); 53 (fille de 12 à 21 ans); 62 (garçon de 12 à 21 ans)
- Clairance de la créatinine = K x Taille(cm) / serum creatinine (mg/dl)

Creatinine clearance = $k \times k$ height / serum creatinine (mg/dl)

where K =

 \hat{a} ge <2 ans : K = 0.452 ans < \hat{a} ge < 13 : K = 0.55

13 < âge < 20: K = 0.7 pour le sexe masculin et K = 0.55 pour le sexe féminin

- Unités:
 - o Clairance de la créatinine = (ml/min/1.73m²)
 - o taille (cm)
 - o serum creatinine (mg/dl)
- Conditions de l'utilisation de cette formule :
 - o âge : de 6 mois à 20 ans
 - o taille: 40 à 200 cm

serum creatinine : de 25 à 800 μ mol/l = (2.8 à 90 mg/l) = (0.28 à 9 mg/dl) pour la créatininémie : μ mol/l x 0,113 = mg/l

Formule de Jelliffe (1973).

Clairance de la créatinine (homme) = $\{98 - [0.8 \text{ x (âge(an) - 20)}]\}$ / serum creatinine

Clairance de la créatinine (femme) = $0.9 \times \{98 - [0.8 \times (\hat{a}ge(an) - 20)]\}$ / serum creatinine

- Clairance de la créatinine en (ml/min/1,73m²)
- serum creatinine (mg/dl)
- Conditions de l'utilisation de cette formule :
 - o âge: entre 18 et 110 ans
 - o serum creatinine: 0,7 et 9 mg/dl

Calcul de l'eau totale (volume de distribution de l'urée)

Pourcentage du poids

- Femme = Poids x 55%
- Homme = Poids $\times 60\%$

Formule de Watson

- Femme = $-2,097 + 0,2466 \times Poids(kg) + 0,1069 \times Taille(cm)$
- Homme = $+2,447 + 0,3362 \times Poids(kg) + 0,1074 \times Taille(cm) 0,09156 \times age(ans)$

Formule de Hume

- Femme = $-35,270121 + 0,183809 \times Poids(kg) + 0,34454 \times Taille(cm)$
- Homme = $-14,012934 + 0,296785 \times Poids(kg) + 0,194786 \times Taille(cm)$

Calcul de la dépense énergétique au repos et à jeun (DER) (Métabolisme de base MB) et Besoin énergétique de 24 heures

Dépense énergétique de base de 24 heures :

- Formule de Harris et Benedict (1919):
 - o Homme = 13,7516 x Poids(kg) + 500,33 x Taille(m) 6,7550 x Age(an) + 66, 473
 - Femme = 9,5634 x Poids(kg) + 184,96 x Taille(m) 4,6756 x Age(an) + 655,
 0955
- Formule de Harris et Benedict recalculée par Roza et Shizgal (1994) :
 - o Homme = 13,707 x Poids(kg) + 492,3 x Taille(m) 6,673 x Age(an) + 77, 607
 - o Femme = $9,740 \times Poids(kg) + 172,9 \times Taille(m) 4,737 \times Age(an) + 667,051$
- Formule de Black et al (1996):
 - o Femme: $Kcal = [0,963 \text{ x Poids}(kg)^{0,48} \text{ x Taille}(m)^{0,50} \text{ x Age}(an)^{-0,13}] \text{ x}$ (1000/4,1855)
 - O Homme: Kcal = $[1,083 \text{ x Poids(kg)}^{0,48} \text{ x Taille(m)}^{0,50} \text{ x Age(an)}^{-0,13}] \text{ x}$ (1000/4,1855)
 - La formule de Black et al est actuellement la formule de référence, en particulier dans le cas des sujets en surpoids et des personnes âgées (de plus de 60 ans).

Besoin énergétique de 24 heures :

- Homme et femme sedentaires = Métabolisme de base (dépense énergétique au repos = DER) x 1,375
- Homme et femme actifs = Métabolisme de base (dépense énergétique au repos = DER) x 1,55

Calcul de l'azote corporel total et pertes azotées totales de 24 heures

- Azote corporel total:
 - = 28.8 x Masse maigre(kg) + 2.28
- Pertes azotées totales de 24 heures (PAT) :
 - PAT = [Urée urinaire (mmol/24 heures) x 0.06]/2.14 + 2
- Formule de Lee :
 - PAT = Urée urinaire de 24 heures(g) x 0,58
 - o En cas d'hyperazotémie:
 - PAT = Urée urinaire de 24 heures(g) x 0,58 + [Augmentation de l'urée plasmatique(g/l) x Poids(kg) x 0,28]