2/2

2/2

2/2

2/2

-1/2

2/2

**Q.7** Pour  $e = (ab)^*, f = a^*b^*$ :



+100/1/20+

| QCM THLR 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| Nom et prénom, lisibles :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Identifiant (de haut en bas) :                                                                                                      |     |
| DUPONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |     |
| GAETAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |     |
| Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ^ » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i> ). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.  I j'ai lu les instructions et mon sujet est complet: les 1 entêtes sont +100/1/xx+···+100/1/xx+. |                                                                                                                                     |     |
| Q.2 Pour toutes expressions rationnelles $e, f$ , on a $e \cdot f \equiv f \cdot e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ L(e) \not\supseteq L(f) \qquad \qquad L(e) \supseteq L(f) $ $ L(e) = L(f) \qquad \qquad L(e) \subseteq L(f) $                     | 2/2 |
| <b>Q.3</b> Pour toute expression rationnelle $e$ , on a $\phi e = e\phi = e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Q.8</b> Soit $\Sigma$ un alphabet. Pour tout $a \in \Sigma$ , $L \subseteq \Sigma^*$ , on a $\{a\}.L = \{a\}.M \implies L = M$ . |     |
| 🗌 vrai 🖼 faux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🗌 faux 💽 vrai                                                                                                                       | 2/2 |
| Q.4 À quoi est équivalent $\varepsilon^*$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q.9 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas:                                                         |     |
| $\square  \Sigma^* \qquad \square  \emptyset \qquad \boxtimes  \varepsilon$ <b>Q.5</b> Pour toutes expressions rationnelles $e, f$ , on a $(e+f)^* \equiv (e^*f)^*e^*$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre></pre>                                                                                                                         | 2/2 |
| 🛚 vrai 🌘 faux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Q.10</b> $\triangle$ Soit $A, L, M$ trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour           |     |
| <b>Q.6</b> Pour $e = (a+b)^*, f = a^*b^*$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | garantir $L = M$ ?                                                                                                                  |     |
| $\Box  L(e) \not\subseteq L(f) \qquad \qquad \blacksquare  L(e) \supseteq L(f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     | 2/2 |
| $\Box L(e) = L(f) \qquad \Box L(e) \subseteq L(f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     | 212 |

Fin de l'épreuve.