Practical Session 3

In silico evolution!

What are we going to do?

 We will evolve a sequence given a transition matrix between the nucleotides. For that, we will use a class called Evolution

How evolution works?

How evolution works?

Evolution

Python code

 Use the class Sequence (load it). Comment each line of code. Why are we using list(str)? Place your answer when defining the constructor. What is this mutations=None doing???

Python code

Check the class Evolution (load it)

Python code

• Comment line by line the methods in Evolution

Implement this model in the Evolution class

Create a class called ToolsToWorkWithSequences

- Create a method called nucleotide_statistics that uses as parameter an object of type sequence and returns a dictionary with the percentage of A, C, T, G found in the sequence. Apply the method to each of the evolved sequences
- Create a method called observed_pairwise_nucleotide_distance that takes as parameters two sequences. Returns the number of nucleotides that for the same position are different in the two sequences