ENSAE ITS1 (2018/2019) CONTROLE $N^{\circ}1$ D'ALGÈBRE GÉNÉRALE DURÉE = 4H

Exercice 1 (3 pts = 1,5 + 1,5) Soient $G = \mathbb{R}^* \times \mathbb{R}$ et \star la loi dans G définie par

$$(x,y) \star (x',y') = (xx',xy' + \frac{y}{x'})$$

- (1) Montrer que (G, \star) est un groupe. Est il commutatif?
- (2) Montrer que $H = \{(x, x \frac{1}{x}), x \in \mathbb{R}^*\}$ est un sous-groupe de G. Est il commutatif? Exercice 2 (5 pts = 1,5 + 1,5 + 2)

On définit dans $A = \mathbb{Z} \times \mathbb{Z}$ les opérations suivantes : $\forall z = (a, b)$ et z' = (a', b') éléments de A, on pose : z + z' = (a + a', b + b') et $z \bullet z' = (aa' - bb', ab' + a'b)$

- (1) Montrer que $(A, +, \bullet)$ est un anneau unitaire. Est il intègre?
- (2) Pour tout $z=(a,b)\in A$, on note $\bar{z}=(a,-b)$. Montrer que l'application h de A dans lui-même, définie par $h(z)=\bar{z}$ est un automorphisme d'anneaux, c'est à dire : h est bijective et $\forall z,z'\in A$ on a h(z+z')=h(z)+h(z') ,et $h(z\bullet z')=h(z)\bullet h(z')$.
- (3) Soit $\mathcal N$ l'application de A dans $\mathbb Z$ définie par $\mathcal N(z)=a^2+b^2, \forall z=(a,b)\in A$
 - (a) Montrer que $\mathcal{N}(z \bullet z') = \mathcal{N}(z)\mathcal{N}(z'), \forall z, z' \in A$. L'application \mathcal{N} est elle un homomorphisme de groupes?
 - (b) Montrer que $z \in A$ est inversible dans A si et seulement si $\mathcal{N}(z)$ est inversible dans \mathbb{Z}
 - (c) Déterminer l'ensemble A^{\times} des éléments inversibles de A.

Exercice 3 (3 pts = 2 + 1) Soient les polynômes $A = X^5 - X^4 - X^3 + 2X + 2$ et $B = X^4 + 5X^3 + 10X^2 + 9X + 5$

- (1) Déterminer le PGCD(A, B). On pourra , si l'on veut, calculer A(j) et B(j) où $j = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$.
- (2) En déduire la décomposition en facteurs premiers de A et B dans $\mathbb{R}[X]$

Exercice 4 (3 pts)

On considère le polynôme $P=X^4+2X^2+4X+\alpha$ où $\alpha\in\mathbb{R}$ est une constante. Donner une condition nécessaire et suffisante sur α pour que P admette une racine double.

Exercice 5 (3 pts = 1.5 + 1.5) Soit la fraction rationnelle $F = \frac{X}{X^4 + X^2 + 1}$

- (1) Décomposer F en éléments simples sur \mathbb{R}
- (2) En déduire l'expression de $\sum_{k=1}^{k=n} \frac{k}{k^4 + k^2 + 1}$ en fonction de n puis sa limite quand ntend vers $+\infty$

Exercice 6 (3 pts = 2 + 1)

On considère la fraction rationnelle $F = \frac{P}{Q^n}$, où $n \in \mathbb{N}^*$, $P, Q \in \mathbb{R}[X]$ et Q polynôme irréductible.

- (1) Montrer, en utilisant les divisions successives par Q, qu'il existe des polynômes : $Q_n, R_n, R_{n-1}, ..., R_2, R_1$, avec $d^\circ R_k < d^\circ Q, \forall k=1,2,...,n$, tels que $P=Q^nQ_n+Q^{n-1}R_n+Q^{n-2}R_{n-1}+...+QR_2+R_1$. En déduire la décomposition de F en éléments simples sur \mathbb{R}
- (2) Application : décomposer en éléments simples sur R les fractions rationnelles sui-

(a)
$$F = \frac{X^8 - X^4 + 2}{(X^2 + X + 1)^3}$$

(b)
$$F = \frac{X^5 - X + 1}{(X^2 + 1)^n}, n \in \mathbb{N}, n \ge 2$$

BAREME

I = 3 pts

II = 5 pts

III = 3 pts

IV = 3 pts

V = 3 pts

VI = 3 pts