Université de Nice – Sophia Antipolis UE Automates & Langages

TD_{no}1

Langages rationnels et automates finis

Exercice 1) On se place sur l'alphabet $\Sigma = \{a, b\}$. Parmi les expressions régulières suivantes, indiquez celles qui décrivent le langage Σ^* :

- 1. $(a^*b)^* + (b^*a)^*$
- 2. $(a+b+\varepsilon)^+$
- 3. $a^* + a^*(ba^*)^+$
- 4. $(a^*b^+ + b^*a^+)^*$
- 5. $a(a+b)^* + b(a+b)^*$
- 6. $(a^*b^*)^+$
- 7. $(\varepsilon + b)^*$. $(ab^*)^*$
- 8. $a^*(b^+a^+)^*b^*$
- 9. $(a + b + \emptyset)^*$

Exercice 2) Donnez une expression régulière permettant de décrire les langages suivants :

- 1. les identificateurs en langage PASCAL : suite alphanumérique commençant par une lettre (il n'y a pas de limitation sur le nombre de caractères). Comment faire pour retirer de cet ensemble le mot-clef if par exemple?
- 2. les réels en C : on suppose que chaque réel a un point (pas une virgule!) et contient au moins un chiffre avant et après le point. Exemples : +1.0, 12.34e-5, -0.7e07, 12.001E+9...
- 3. les mots sur {0,1} dont la dernière lettre est le *bit de parité*, c'est-à-dire qu'il mémorise la parité du reste du mot (0 si le nombre de 1 est pair, 1 sinon).

Exercice 3) Montrez que, sur un alphabet A donné, l'ensemble des expressions régulières est dénombrable (infini dénombrable même). L'idée est d'ordonner les expressions régulières de telle sorte à les mettre facilement en bijection avec $\mathbb N$. Que peut-on en déduire concernant les langages rationnels inclus dans A^* ?

Exercice 4) Décrivez des automates finis déterministes qui reconnaissent les langages suivants sur l'alphabet $\Sigma = \{a, b, c\}$:

- 1. Le langage des mots n'ayant pas de a.
- 2. Le langage des mots ayant un nombre impair de c.
- 3. Le langage des mots ayant baba pour suffixe.

Exercice 5) Considérons l'automate fini $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ sur l'alphabet $\Sigma=\{0,1\}$, avec $Q=\{q_0,q_1,q_2,q_3\}$ et $F=\{q_3\}$. La fonction δ se déduit aisément du schéma suivant :

FIG. 1 – L'automate fini A

- 1. Donnez une expression régulière décrivant le langage L reconnu par l'automate A.
- 2. Comment décririez-vous le langage L en français? Et le langage L^* ?
- 3. Construisez puis dessinez l'automate \mathcal{D} , obtenu en déterminisant l'automate \mathcal{A} précédent.
- 4. Tentez de trouver directement à partir de \mathcal{A} un autre automate déterministe \mathcal{D}' , plus simple que l'automate \mathcal{D} .
- 5. En déduire un automate déterministe C pour reconnaître le langage \overline{L} , le complémentaire de L à A^* .

Exercice 6) On se propose de représenter le comportement d'une machine à café à l'aide d'un automate déterministe. La machine accepte les pièces de 10 cents, 20 cents, 50 cents, 1 € et rejette les autres. On suppose que le café vaut 40 cents.

- 1. Représenter, à l'aide d'un automate fini déterministe, le comportement d'une machine qui délivrerait un café dès que la somme versée est supérieure au prix du café.
- 2. Modifier l'automate pour que la machine rende la monnaie.
- 3. Ajouter une touche Annulation à la machine. Dans ce cas la machine rend tout l'argent déjà inséré.

Exercice 7) Σ étant un alphabet donné, retrouvez à quel ordre correspond la définition inductive suivante :

Base : $\varepsilon \leq \varepsilon$

 $\text{Induction}: \quad \forall u,v \in \Sigma^*, \forall \alpha \in \Sigma, \quad \text{si } u \leq v \text{ alors}: \quad u \leq \alpha v$

 $u\alpha \leq v\alpha$

Université de Nice – Sophia Antipolis UE Automates & Langages

Licence 3 Informatique 2010–2011

TD nº 2

Théorème de Kleene

Exercice 1) Il existe un algorithme pour passer <u>directement</u> d'une expression régulière à un automate fini déterministe.

- 1. Trouver l'expression régulière de l'ensemble des représentations binaires des entiers pairs.
- 2. Appliquez cet algorithme à l'expression régulière précédente.
- 3. Dessinez l'automate déterministe \mathcal{D} obtenu.

Exercice 2)

- 1. Un langage peut être défini par un ensemble de mots interdits. Trouvez un automate fini \mathcal{A} reconnaissant par exemple le langage des mots binaires ne contenant pas le facteur 11.
- 2. Cette fois, trouvez un automate fini \mathcal{B} pour reconnaître l'ensemble des représentations binaires des entiers multiples de 3.
- 3. Assemblez les deux automates finis \mathcal{A} et \mathcal{B} en un seul automate \mathcal{R} de façon à reconnaître la réunion des langages $L(\mathcal{A}) \cup L(\mathcal{B})$.
- 4. Déterminisez l'automate \mathcal{R} précédemment obtenu.

Exercice 3) \mathcal{L} est le langage sur l'alphabet $\Sigma = \{0,1\}$ reconnu par l'automate déterministe \mathcal{A} suivant :

- 1. Avez-vous une idée du langage qu'il reconnaît?
- 2. Utilisez un système d'équations linéaire à droite afin de trouver une expression régulière pour \mathcal{L} .

Exercice 4) Considérons l'automate fini $\mathcal A$ défini par le quintuplet $(\Sigma=\{0,1\},Q=\{q_0,q_1,q_2\},\delta,q_0,F=\{q_2\})$ avec la relation de transition δ suivante :

q_0	1	q_1
q_1	0	q_1
q_1	1	q_2
q_2	0	q_1
q_2	1	q_2

- 1. L'automate fini \mathcal{A} est-il déterministe ? complet ?
- 2. Donnez a priori une description en français du langage L(A).
- 3. Posez puis résolvez le système d'équations linéaire à droite permettant d'obtenir une expression régulière décrivant ce langage L(A).
- 4. Simplifiez le plus possible l'expression régulière obtenue.

Université de Nice – Sophia Antipolis UE Automates & Langages Licence 3 Informatique 2010–2011

TD n°3

Minimisation

Exercice 1) On se place sur l'alphabet binaire et on s'intéresse au langage L décrit par l'expression régulière suivante :

$$E: 0^*1(10^*1+0)^*$$

- 1. Construisez l'automate minimal A reconnaissant le langage L par la méthode des résiduels à gauche.
- 2. Expliquez en "français" ce qui caractérise les mots de L.

Exercice 2) Construisez l'automate minimal de l'automate déterministe obtenu au TD2 exercice 2, à l'aide de l'algorithme vu en cours .

Exercice 3) Soit \mathcal{L} le langage sur l'alphabet $\{0,1\}$ décrit par l'expression régulière suivante :

$$(0+1)^*1(0+1)0(0+1)^*$$

- 1. Construisez l'automate déterministe \mathcal{D}
- 2. Construisez l'automate minimal \mathcal{M} en appliquant à \mathcal{D} l'algorithme de minimisation vu en cours.
- 3. A présent, vérifiez votre résultat en construisant cette fois l'automate minimal \mathcal{M} directement à partir de l'expression régulière en utilisant la méthode des résiduels à gauche.

Exercice 4) (Algorithme de Brzozowski)

Soit
$$\mathcal{A}=(Q,\Sigma,E,I,F)$$
 un automate. $Q=\{0,1,2,3,4\},\,I=\{0\}$, $F=\{2,3\}$ $E=\{(0,1,a),(0,3,b),(1,2,a),(1,1,b),(2,3,a),(2,1,b),(3,3,a),(3,4,b),(4,3,a),(4,1,b)\}$

On définit l'automate renversé de A par $A_r = (Q, \Sigma, Er, Ir, Fr)$

où $(p, a, q) \in Er$ si et seulement si $(q, a, p) \in E$, Ir = F, Fr = I.

Appliquez les transformations suivantes à l'automate A:

- 1. renversez le
- 2. déterminisez le résultat
- 3. renversez le résultat
- 4. déterminisez le résultat

A quelle opération correspond le résultat obtenu?

TD n°4

Clôture des langages rationnels

Exercice 1) Voici les expressions régulières décrivant respectivement les langages L et K:

$$E_L : (0 + \varepsilon)(10)^*(1 + \varepsilon)$$

 $E_K : 1^*(01^*01^*)^*$

- 1. Trouvez les deux automates finis minimaux A_L et A_K qui reconnaissent respectivement les langages L et K.
- 2. En utilisant le produit d'automates, construisez un automate fini \mathcal{I} pour reconnaître le langage $L \cap K$.
- 3. Adaptez la méthode précédente afin de construire un automate fini $\mathcal U$ qui reconnaisse l'union des deux langages L et K.
- 4. Comment procéder pour trouver un automate reconnaissant $L \setminus K$? (donnez juste l'idée!).
- 5. Décrivez en français chacun des langages calculés.

Exercice 2) Utilisez le théorème de l'étoile afin de montrez que les langages suivants ne sont pas rationnels :

- 1. $L_{\text{Carr\'e}} = \{ww, w \in \{0, 1\}^*\};$
- 2. $L = \{0^p, p \text{ nombre premier }\}.$

Exercice 3) En utilisant les propriétés de clôture de la classe des langages rationnels, montrez que les langages suivants ne sont pas rationnels (*on raisonnera sur des langages dont on connaît déjà la rationnalité ou la non-rationnalité*):

- 1. le langage de Dyck sur l'alphabet $\{(,)\}$;
- 2. le langage $L = \{w \in \{0,1\}^*, |w|_0 \neq |w|_1\}.$