

Aufgabe 1 (25 Punkte)

(a) (17 Punkte) Gegeben ist das LTI-System H mit der Impulsantwort

$$h(t) = \begin{cases} 1, & T \le t \le 3T \\ 0, & \text{sonst} \end{cases}, \quad \text{mit} \quad T > 0.$$

- \bigstar i. (2 Punkte) Ist das System H kausal? Begründen Sie Ihre Antwort.
- \bigstar ii. (4 Punkte) Am Ausgang des Systems H wird das Signal $y_1(t)$ gemessen, wobei $y_1(t)=0$ für t<-T/2 und $t>11\cdot T/2$.

Bestimmen Sie das zu $y_1(t)$ gehörige Eingangssignal $x_1(t)$ in Abhängigkeit von T.

 \bigstar iii. (5 Punkte) Am Eingang des Systems H liegt das Signal $x_2(t)$ gemäss

$$x_2(t) = Ae^{\pi i(t-t_0)/T} + c, \quad t \in \mathbb{R}, \quad \text{ mit } \quad t_0, c \in \mathbb{R} \text{ und } A \in \mathbb{R} \backslash \{0\}.$$

Das zu $x_2(t)$ gehörige Ausgangssignal wird mit $y_2(t)$ bezeichnet. Bestimmen Sie die Wertebereiche von A, t_0 , und c, sodass $y_2(t)=0$, für alle $t\in\mathbb{R}$, gilt.

 \bigstar iv. (6 Punkte) Am Eingang des Systems H liegt das Signal

$$x_3(t) = \frac{1}{2T}r_T(t) - \delta(t+T) - \delta(t-T)$$

an, wobei

$$r_T(t) = \begin{cases} 1, & |t| \le T \\ 0, & |t| > T \end{cases}.$$

Bestimmen und skizzieren Sie das zugehörige Ausgangssignal $y_3(t)$ in Abhängigkeit von T. Bitte beschriften Sie die Achsen in Ihrer Skizze.

(b) (8 Punkte) Gegeben ist das periodische Signal x(t):

- \bigstar i. (4 Punkte) Bestimmen Sie die Koeffizienten c_k der Fourierreihe $x(t)=\sum_{k=-\infty}^{\infty}c_ke^{2\pi ikt/T}$ in Abhängigkeit von A.
 - ii. (4 Punkte) Vereinfachen Sie den Ausdruck für c_k in Punkt i. dieser Teilaufgabe für ungerades k ($k=2m+1, m\in\mathbb{Z}$) und für gerades k ($k=2m, m\in\mathbb{Z}$) so weit wie möglich.

Aufgabe 2 (25 Punkte)

Gegeben sei folgendes System, wobei $T, \alpha, \beta \in [0, \infty)$ und $\gamma \in \mathbb{R}$ reelle Zahlen sind.

 $x_2(t)$ ist ein zeitkontinuierliches Signal gegeben durch

$$x_2(t) = \sum_{k=-\infty}^{\infty} x_1(kT)\delta(t - kT)$$

und das Tiefpassfilter H ist ein LTI-System mit Frequenzgang

$$\widehat{h}(f) = egin{cases} eta, & ext{für} & |f| \leq lpha \ 0, & ext{für} & |f| > lpha \end{cases}, \qquad ext{für } f \in \mathbb{R}.$$

Wir betrachten in der gesamten Aufgabe nur Eingangssignale x(t) die auf (-1,1) bandbegrenzt sind, d.h.

$$\widehat{x}(f) = 0, \text{ für } |f| \ge 1. \tag{1}$$

- **★** (a) (2 Punkte) Geben Sie das kleinste f_0 an, sodass $\widehat{x}_1(f) = 0$, für $|f| \ge f_0$ gilt, für alle Eingangssignale x(t) die (1) erfüllen.
- \bigstar (b) (4 Punkte) Berechnen Sie die Fouriertransformierte $\widehat{x}_2(f)$ von $x_2(t)$ und stellen Sie diese als Funktion von $\widehat{x}(f)$ dar.
- \bigstar (c) (3 Punkte) Wir definieren die Funktion $v(t) \coloneqq \frac{\sin^2(\pi t)}{\pi^2 t^2}$. Berechnen Sie die Fouriertransformierte $\widehat{v}(f)$ von v(t).
 - (d) Sei nun $T = \frac{1}{8}$.
 - i. (4 Punkte) Skizzieren Sie $\widehat{x}_2(f)$ im Bereich $f \in [-7, 7]$ für das spezielle Eingangssignal x(t) = v(t). Bitte beschriften Sie die Achsen in der Skizze.
 - ii. (4 Punkte) Gibt es Werte $\alpha, \beta \in [0, \infty)$ und $\gamma \in \mathbb{R}$, sodass y(t) = x(t) gilt für alle Eingangssignale x(t) die (1) erfüllen? Falls ja, geben Sie alle diese Werte an. Begründen Sie Ihre Antwort.
 - (e) Sei nun $T = \frac{1}{2}$.
 - i. (4 Punkte) Skizzieren Sie $\widehat{x}_2(f)$ im Bereich $f \in [-7, 7]$ für das spezielle Eingangssignal x(t) = v(t). Bitte beschriften Sie die Achsen in der Skizze.

ii. (4 Punkte) Gibt es Werte $\alpha,\beta\in[0,\infty)$ und $\gamma\in\mathbb{R}$, sodass y(t)=x(t) gilt für alle Eingangssignale x(t) die (1) erfüllen? Falls ja, geben Sie alle diese Werte an. Begründen Sie Ihre Antwort.

Aufgabe 3 (25 Punkte)

★ (a) (2 Punkte) Berechnen Sie die inverse \mathcal{Z} -Transformierte von $\exp(az^{-1})$, mit ROC gegeben durch $\mathbb{C} \setminus \{0\}$.

Hinweis: Die Taylorreihenentwicklung von e^z ($z \in \mathbb{C}$) lautet $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.

★ (b) (23 Punkte) Sei
$$a > 0$$
 und $H(z) = \frac{z - a}{z^4 - a^4} = \frac{1}{(z - ia)(z + a)(z + ia)}$.

- \bigstar i. (3 Punkte) Zeichnen Sie das Pol-Nullstellendiagramm von H(z).
- \bigstar ii. (2 Punkte) Für welche Werte von a>0 ist H(z) ein IIR-Filter? Begründen Sie Ihre Antwort.
- \bigstar iii. (3 Punkte) Für welche Werte von a>0 ist H(z) zugleich kausal und stabil? Geben Sie die entsprechende ROC an und begründen Sie Ihre Antwort.
- \bigstar iv. (4 Punkte) Geben Sie die zum System mit Übertragungsfunktion H(z) gehörige Differenzengleichung an.
 - v. (3 Punkte) Zeichnen Sie das zu H(z) entsprechende Schaltbild unter Verwendung von Addierern, Multiplizierern und Verzögerungselementen.
- \bigstar vi. (8 Punkte) Berechnen Sie das antikausale Ausgangssignal y[n] (d.h. y[n]=0, für n>0) des Systems mit Transferfunktion H(z) für das Eingangssignal $x[n]=ia\delta[n]+\delta[n+1]$.

Hinweis: Berechnen Sie zuerst Y(z) und transformieren Sie dann in den Zeitbereich um y[n] zu erhalten.

Aufgabe 4 (25 Punkte)

 \bigstar (a) (11 Punkte) Sei N eine gerade natürliche Zahl und $x=(x[0],\ldots,x[N-1])^{\mathsf{T}}\in\mathbb{C}^N$ ein N-periodisches Signal. Für ein beliebiges $\zeta\in\mathbb{C}$ betrachten wir das Signal $y=(y[0],\ldots,y[N-1])^{\mathsf{T}}\in\mathbb{C}^N$, wobei

$$y[n] := \begin{cases} \zeta x[n], & \text{falls } n \in \{0, N/2\}, \\ x[n], & \text{falls } n \notin \{0, N/2\}, \end{cases} \quad n \in \{0, \dots, N-1\}.$$
 (2)

 \bigstar i. (6 Punkte) Zeigen Sie, dass die N-Punkt DFT des Signals y folgende Beziehung erfüllt:

$$\hat{y}[k] = \hat{x}[k] + (\zeta - 1) \left(x[0] + (-1)^k x[N/2] \right), \quad k \in \{0, \dots, N - 1\},$$
 (3)

wobei $\hat{x} = (\hat{x}[0], \dots, \hat{x}[N-1])^T$ die N-Punkt DFT von x bezeichnet.

- \bigstar ii. (3 Punkte) Verwenden Sie (3), um $\|\hat{x} \hat{y}\|_2$ zu berechnen. Hier bezeichnet $\|\cdot\|_2$ die euklidische Norm.
- ★ iii. (2 Punkte) Berechnen Sie $||x y||_2$ anhand von (2).
- ★(b) (7 Punkte) Seien $N_1, N_2 \in \mathbb{N}$, $N := N_1 N_2$ und $x = (x[0], \dots, x[N-1])^\mathsf{T} \in \mathbb{C}^N$ ein N-periodisches Signal, dessen N-Punkt DFT mit $\hat{x} \in \mathbb{C}^N$ bezeichnet wird. Für ein festes $m \in \{0, \dots, N_1 1\}$ definieren wir das Signal $u_m = (u_m[0], \dots, u_m[N_2 1])^\mathsf{T} \in \mathbb{C}^{N_2}$ gemäss

$$u_m[n] := x[nN_1 + m], \quad n \in \{0, \dots, N_2 - 1\}.$$

Wir bezeichnen mit \hat{u}_m die N_2 -Punkt DFT von u_m . Des Weiteren definieren wir für ein festes $j \in \{0, \dots, N_2 - 1\}$ das Signal $v_j = (v_j[0], \dots, v_j[N_1 - 1])^\mathsf{T} \in \mathbb{C}^{N_1}$ wie folgt:

$$v_j[n] := \hat{u}_n[j]e^{-i2\pi nj/N}, \quad n \in \{0, \dots, N_1 - 1\},$$

dessen N_1 -Punkt DFT wir mit \hat{v}_i bezeichnen. Zeigen Sie, dass

$$\hat{x}[k_1 N_2 + k_2] = \hat{v}_{k_2}[k_1],\tag{4}$$

wobei $k_1 \in \{0, \dots, N_1 - 1\}$ und $k_2 \in \{0, \dots, N_2 - 1\}$.

 \bigstar (c) (7 Punkte) Gegeben sei die Funktion $f: x \mapsto T(x \mod 2\pi)$, $x \in \mathbb{R}$, wobei

$$T(x) \coloneqq \begin{cases} \frac{x}{\pi}, & \text{für } 0 \leq x < \pi, \\ 2 - \frac{x}{\pi}, & \text{für } \pi \leq x < 2\pi, \end{cases}, \quad x \in [0, 2\pi).$$

Hierbei bezeichnet $x \mod 2\pi$, für $x \in \mathbb{R}$, die eindeutige Zahl $r \in [0, 2\pi)$, sodass $x = r + 2\pi m$ für ein $m \in \mathbb{Z}$. Bestimmen Sie ein trigonometrisches Polynom der Form

$$p(x) := \sum_{n=0}^{3} (a_n \cos(nx) + b_n \sin(nx)), \quad x \in \mathbb{R},$$

wobei $a_n, b_n \in \mathbb{R}$, sodass $p(x_k) = f(x_k)$ für alle $x_k = \pi k/2$, $k \in \mathbb{Z}$.