

Classification

Dr Ossama Alshabrawy

ossama.alshabrawy@northumbria.ac.uk

Zoumana KEITA

What is Classification?

- Classification is a supervised machine learning method where the model tries to predict the correct label of a given input data.
- In classification, the model is fully trained using the training data, and then it is evaluated on vlidation data before being used to perform prediction on new unseen data.
- Type: Binary and Multi-Class Classification

Model Construction, Validation and Testing

- Model construction
 - Each sample is assumed to belong to a predefined class (shown by the class label)
 - The set of samples used for model construction is training set
 - Model: Represented as decision trees, rules, mathematical formulas, or other forms
- Model Validation and Testing:
 - **Validation**: validation set is used to select, refine models or fine-tune hyperparameters of the model, it is called **validation** (or development)
 - Test: Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy: % of test set samples that are correctly classified by the model
 - Test set is independent of training set and validation set.
- Model Deployment: If the accuracy is acceptable, use the model to classify new data
 - The ability to generalise

Binary Classification

- To classify the input data into two mutually exclusive categories.
 - The training data in such a situation is labelled in a binary format: true and false; positive and negative; 0 and 1; spam and not spam, etc. depending on the problem being tackled.

Multi-class Classification

The multi-class classification, on the other hand, has at least two mutually exclusive class labels, where the goal is to predict to which class a given input example belongs to.

Multi-Class Classification

- has at least two mutually exclusive class labels, where the goal is to predict to which class a given input example belongs to.
- Algorithms:
 - Logistic Regression.
 - Decision Trees
 - Random Forest
 - K-Nearest Neighbours
 - SVM
 - Naive Bayes
 - Gradient Boosting

Logistic regression

- Linear regression assumption:

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

- Logistic regression assumption: $sigmoid(f_{\Theta}(x))$

- Output [0,1]

Decision Trees

Decision Trees

Decision Trees

- Another example: If you want to play tennis and the possibilities of play
- Play decision:
 - Outlook=sunny && humidity=normal
 - Outlook=overcast
 - Outlook=rainy && wind=weak
 - Otherwise, no play

Attribute	Value		
Outlook	Sunny, Overcast, Rain		
Humidity	High, Normal		
Wind	Strong, Weak		
Temperature	Hot, Mild, Cool		

Example—Decision Tree

From Decision Tree to Random Forests (RF)

- Ensemble method
- Contains multiple classifier (decision trees)
- For each decision trees: Random sampling in features
- Random sampling in data (subset -> minibatch)

From Decision Tree to Random Forests (RF)

k Nearest Neighbor

- Belongs to square class
- Belongs to triangle class
- Belongs to square class

• Choosing the value of k:

- If *k* is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes
- Choose an odd value for k, to eliminate ties

Decision boundary for linearly separable data

Which line is better?

Decision boundary for linearly separable data

The line with the largest margin

Support Vector Machines

Known as the large margin classifier.

Model Evaluation

- Evaluation metrics
 - How can we measure accuracy?
 - Other metrics to consider?
- Use validation or test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
 - Train-test method
 - Cross-validation

Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

- In a confusion matrix w. m classes, $CM_{i,j}$ indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Accuracy, Error Rate, Sensitivity and Specificity

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

■ Error rate: 1 – accuracy, or

A\P	C (positive)	¬C (negative)	
C (positive)	TP	FN	Р
¬C (negative)	FP	TN	N
	P'	N'	All

Precision and Recall, and F-measures

- Precision: Exactness: what % of tuples that the classifier labeled as positive are actually positive?
 - P = Precision = TP/(TP+FP)
- Recall: Completeness: what % of positive tuples did the classifier label as positive?
 - R = Recall = TP/(TP+FN)
- F measure (or F1-score): harmonic mean of precision and recall
 - F1 = 2P*R/(P+R)

Example

Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (accuracy)

- Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
- Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%
- Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
- $F1 = 2 P \times R / (P + R) = 2 \times 39.13\% \times 30.00\% / (39.13\% + 30\%) = 33.96\%$

Holdout & Cross-Validation

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Repeated random sub-sampling validation: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class distribution, in each fold is approximately the same as that in the initial data