THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1510 Calculus for Engineers (2020-2021) Solution to Supplementary Exercise 6

Extrema, Inflection Points and Graphing

1. (a) Factor theorem states that if P(x) is a polynomial and P(a) = 0, then x - a is a factor of P(x).

By using factor theorem, factorize the following polynomials.

(i)
$$x^3 + 2x^2 - 5x - 6$$

Ans:
$$(x+1)(x-2)(x+3)$$

(ii)
$$2x^3 - 3x^2 + 1$$

Ans:
$$(x-1)^2(2x+1)$$

(iii)
$$3x^3 - x^2 - x - 1$$

Ans:
$$(x-1)(3x^2+2x+1)$$

(b) State the domain of the function $f(x) = \frac{1}{x^3 + 2x^2 - 5x - 6}$.

Ans: The function f(x) is undefined when the denominator equals to 0, i.e. $x^3 + 2x^2 - 5x - 6 = 0$. By (a)(i), if (x+1)(x-2)(x+3) = 0, then x = -3, -1 or 2. Therefore, the domain of f(x) is $\mathbb{R}\setminus\{-3, -1, 2\}$.

- 2. Let $f(x) = x^4 8x^3 + 22x^2 24x + 3$.
 - (a) Find f'(x). By using the factor theorem or otherwise, show that f'(x) = 4(x-1)(x-2)(x-3).

Ans:
$$f'(x) = 4x^3 - 24x^2 + 44x - 24$$
.

Note that f'(1) = f'(2) = f'(3) = 0, so by the factor theorem, x - 1, x - 2 and x - 3 are factors of f'(x) and f(x) = A(x - 1)(x - 2)(x - 3) for some real number A.

Furthermore, the coefficient of x^3 of f'(x) is 4, so A = 4 and f'(x) = 4(x - 1)(x - 2)(x - 3).

(b) In the following table, fill in the signs of the factors in the corresponding intervals.

Ans:

	x < 1	x = 1	1 < x < 2	x=2	2 < x < 3	x = 3	x > 3
x-1	_	0	+	+	+	+	+
x-2	_	_	_	0	+	+	+
x-3	_	_	_	_	_	0	+
f'(x)	_	0	+	0	_	0	+

(c) Solve f'(x) > 0 and f'(x) < 0.

Hence, find the extreme points of the graph y = f(x).

Ans: f'(x) > 0 when 1 < x < 2 or x > 3; f'(x) < 0 when x < 1 or 2 < x < 3. Therefore, (1, f(1)) = (1, -6) and (3, f(3)) = (3, -6) are minimum points and (2, f(2)) = (2, -5) is a maximum point.

3. Let $f(x) = x^2 \ln x$ for x > 0.

Find f'(x) and f''(x). Hence, determine the extreme point(s) of the function.

Ans: $f'(x) = 2x \ln x + x$ and $f''(x) = 2 \ln x + 3$.

$$f'(x) = 0$$
 when $x = \frac{1}{\sqrt{e}}$.

Then
$$f''(\frac{1}{\sqrt{e}}) = 2 > 0$$
.

Therefore, $(\frac{1}{\sqrt{e}}, f(\frac{1}{\sqrt{e}})) = (\frac{1}{\sqrt{e}}, -\frac{1}{2e})$ is a minimum point.

- 4. Find the greatest and least values of the following functions on the given closed interval:
 - (a) $f(x) = x 2\sqrt{x}$ on [0, 9];

Ans:
$$f'(x) = 1 - \frac{1}{\sqrt{x}}$$
 and so $f'(x) = 0$ when $x = 1$.

Note that f'(x) < 0 when 0 < x < 1 and f'(x) > 0 when 1 < x < 9. Therefore, f(x) attains absolute minimum at x = 1 and f(1) = -1

For the boundary points of the interval, we have f(0) = 0 and f(9) = 3.

Therefore, the greatest and least values of f(x) are 3 and -1 respectively.

(b) $f(x) = x^4 - 8x^2 + 2$ on [-1, 3];

Ans: the greatest value = 11; the least value = -14;

(c) $f(x) = e^x \ln x$ on [1, 2].

Ans: the greatest value = $e^2 \ln 2$; the least value = 0;

- 5. Let $f(x) = \frac{x^2 + 3x}{x 1}$.
 - (a) Find f'(x).

Ans:
$$f'(x) = \frac{(x-3)(x+1)}{(x-1)^2}$$

- (b) Determine the values of x for each of the following cases:
 - (i) f'(x) = 0;
- (ii) f'(x) > 0; (iii) f'(x) < 0.

Ans:

- (i) f'(x) = 0 when x = -1 or 3
- (ii) f'(x) > 0 when x < -1 or x > 3
- (iii) f'(x) < 0 when -1 < x < 3 and $x \ne 1$
- (c) Find all relative extrema of f(x).

Ans: maximum point: (-1,1); minimum point: (3,9).

(d) Find all asymptotes of f(x).

Ans: Vertical asymptote: x = 1;

Oblique asymptote: y = x + 4.

By long division, we can rewrite f(x) as $f(x) = \frac{x^2 + 3x}{x - 1} = x + 4 + \frac{4}{x - 1}$.

(e) Sketch the graph of f(x).

Ans:

- 6. Let $f(x) = xe^{-x^2}$.
 - (a) Find f'(x) and f''(x).

Ans:
$$f'(x) = e^{-x^2}(1 - 2x^2)$$
 and $f''(x) = 2e^{-x^2}x(2x^2 - 3)$

(b) Determine the values of x for each of the following cases:

(i)
$$f'(x) = 0$$
:

(iii)
$$f'(x) < 0$$
:

(v)
$$f''(x) > 0$$
;

(ii)
$$f'(x) > 0$$

(iv)
$$f''(x) = 0$$
;

(i)
$$f'(x) = 0;$$
 (iii) $f'(x) < 0;$ (v) $f''(x) > 0;$ (ii) $f'(x) > 0;$ (vi) $f''(x) < 0.$

Ans:

(i)
$$f'(x) = 0$$
 when $x = -\frac{1}{\sqrt{2}}$ or $x = \frac{1}{\sqrt{2}}$

(ii)
$$f'(x) > 0$$
 when $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

(iii)
$$f'(x) < 0$$
 when $x < -\frac{1}{\sqrt{2}}$ or $x > \frac{1}{\sqrt{2}}$

(iv)
$$f''(x) = 0$$
 when $x = -\sqrt{\frac{3}{2}}$, 0 or $\sqrt{\frac{3}{2}}$

(v)
$$f''(x) > 0$$
 when $-\sqrt{\frac{3}{2}} < x < 0$ or $x > \sqrt{\frac{3}{2}}$

(vi)
$$f''(x) < 0$$
 when $x < -\sqrt{\frac{3}{2}}$ or $0 < x < \sqrt{\frac{3}{2}}$

(c) Find all relative extrema and points of inflexion of f(x).

Ans: maximum point: $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2e}})$; minimum point: $(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2e}})$; points of inflexion: $(-\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}e^{-3/2}), (0,0), (\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}e^{-3/2})$

(d) Sketch the graph of f(x).

Ans:

- 7. Let $f(x) = \frac{e^x}{x^e}$, for x > 0.
 - (a) Solving f'(x) > 0 and f'(x) < 0. Hence, find the least value of f(x).
 - (b) Show that $e^{\pi} > \pi^e$.

Ans:

- (a) $f'(x) = e^x x^{-e-1}(x-e)$. f'(x) > 0 when x > e; f'(x) < 0 when 0 < x < e. Therefore, the least value of f(x) is f(e) = 1.
- (b) By (a), f(x) > f(e) for all x > 0 and $x \neq e$. In particular, put $x = \pi$, we have

$$f(\pi) > f(e)$$

$$\frac{e^{\pi}}{\pi^{e}} > 1$$

$$e^{\pi} > \pi^{e}$$

Mean Value Theorem

8. By considering the function $f(x) = \sin x$ on [0,1] and applying the mean value theorem, show that $\sin 0.1 \le 0.1$.

Ans: Since f(x) is continuous on [0,0.1] and differentiable on $(0,0.1)^{\ddagger}$, by the mean value theorem, there exists $c \in (0,1)$ such that

$$\frac{f(0.1) - f(0)}{0.1 - 0} = f'(c)$$

$$\frac{\sin 0.1 - \sin 0}{0.1 - 0} = \cos c \le 1$$

$$\sin 0.1 \le 0.1$$

(‡ You must check the conditions before applying the mean value theorem.)

9. By using the mean value theorem, prove that for all $x, y \in \mathbb{R}$,

$$|\cos x - \cos y| \le |x - y|.$$

Ans: If x = y, the inequality is trivially true.

Now, suppose that x > y. Note that cosine function is differentiable everywhere (which implies that it is continuous everywhere), in particular it is continuous on [y, x] and differentiable on (y, x). By the mean value theorem, there exists $c \in (y, x)$ such that

$$\frac{\cos x - \cos y}{x - y} = -\sin c$$

$$\left| \frac{\cos x - \cos y}{x - y} \right| = |\sin c|$$

$$\leq 1$$

The result follows. By switching the role of x and y, we can show that the inequality is also true for y > x.

10. By using the mean value theorem, prove that for all x > 0,

$$1 + x < e^x < 1 + xe^x$$
.

Ans: Let $f(x) = e^x$ which is differentiable everywhere. Let x > 0, by the mean value theorem, there exists $c \in (0, x)$ such that

$$\frac{f(x) - f(0)}{x - 0} = f'(c)$$

$$\frac{e^x - 1}{x} = e^c$$

Note that 0 < c < x implies that $1 = e^0 < e^c < e^x$. Therefore,

L'Hôpital Rule

11. By using L'Hôpital rule, find the following limits.

(a)
$$\lim_{x \to 0} \frac{\ln(\cos x)}{x^2}$$
Ans: $-\frac{1}{2}$

(b)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x}$$

Ans: $\frac{1}{2}$

(c)
$$\lim_{x \to \pi^+} \frac{\sin x}{\sqrt{x - \pi}}$$

Ans: 0

(d)
$$\lim_{x \to 0^+} \frac{\ln(\cos 3x)}{\ln(\cos 2x)}$$

Ans: $\frac{9}{4}$

12. By using L'Hôpital rule, find the following limits.

(a)
$$\lim_{x \to 0^+} \frac{\ln(\sin x)}{\ln(\tan x)}$$

Ans: 1

(b)
$$\lim_{x \to 0^+} \frac{\ln(\tan 2x)}{\ln(\tan 3x)}$$

Ans: 1

(c)
$$\lim_{x \to \frac{\pi}{2}^-} \frac{4 \tan x}{1 + \sec x}$$

Ans: 4

(d) $\lim_{x\to\infty} x^n e^{-ax}$, where n is a natural number and a is a positive real number.

Ans: 0

13. By using L'Hôpital rule, find the following limits.

(a)
$$\lim_{x \to 0^+} x^2 \ln x$$

Ans: 0

(b)
$$\lim_{x \to \frac{\pi}{2}} (2x - \pi) \sec x$$

Ans:
$$-2$$

(c)
$$\lim_{x \to 1^+} (x^2 - 1) \tan \frac{\pi x}{2}$$

Ans:
$$-\frac{4}{\pi}$$

(d)
$$\lim_{x \to \infty} x \left(\frac{\pi}{2} - \tan^{-1} x\right)$$

Ans: 1

14. By using L'Hôpital rule, find the following limits.

(a)
$$\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right)$$

Ans:
$$-\frac{1}{2}$$

(b)
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$

Ans: $\frac{1}{3}$

15. By using L'Hôpital rule, find the following limits.

- (a) $\lim_{x \to 0} x^x$
 - **Ans:** 1
- (b) $\lim_{x \to \infty} (e^{3x} 5x)^{1/x}$ Ans: e^3
- (c) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$
 - Ans: $\frac{1}{\sqrt{e}}$
- (d) $\lim_{x\to 0} \sin x \ln(\sin x)$ **Ans:** 0