Problem: next-neighbor cannot "jump" to a random potential neighbor of v

Bucketing Divide each row of the adjacency matrix into contiguous buckets

 \Rightarrow random neighbor of $v \approx$ random neighbor in a random bucket of v

Problem: Do NOT know deg(v): Must return each neighbor with prob. 1/deg(v)

Rejection Sampling Normalize probability of returning any specific neighbor

Problem: next-neighbor cannot "jump" to a random potential neighbor of v

⇒ suffice to show that **any neighbor** is returned with the **equal** probability

#neighbors in each bucket

 $\sim \Theta(1)$ in expectation, $O(\log n)$ max w.h.p. \Rightarrow #buckets \sim #neighbors

<u>Algorithm</u> → <u>Step 1</u> pick a uniform random bucket "fill" this bucket, if needed

0|0|1|0|1 1 0|0

Step 2 pick a uniform random neighbor

► return or reject

Step 3 return u with probability $\frac{\text{#neighbors in bucket}}{a}$ $O(\log n)$ otherwise, try again

$$\Pr[u \text{ returned}] = \frac{1}{\text{\#buckets}} \times \frac{1}{\text{\#neighbors in bucket}} \times \frac{\text{\#neighbors in bucket}}{\textit{O}(\log n)} \sim \frac{\Omega(1/\log n)}{\text{\#neighbors}}$$

 $\Pr[\text{some neighbor returned}] \sim \Omega(1/\log n) \Rightarrow O(\log n) \text{ tries suffices}$

Data Structure Buckets contains set of known neighbors, and "filled" marker

- \Rightarrow "fill" with expected $\Theta(1)$ next-neighbor queries
- $O(\log n)$ time per query $\tilde{O}(m+n)$ space usage \Rightarrow random-neighbor succeeds in $O(\log n)$ tries