MAS241 - Analysis I

Quiz 1 - March 21, 2019

St	udent ID:	Name:		
No	rrect answer - 5 points answer - 2 points ring answer - 0 points			
			Γ	F
1.	Suppose that S is an ordered set with the least- and B is not empty. Then, inf B exists in S .	upper-bound property, $B \subset S$,		
_	(False. Consider $B = \{-1, -2, \dots\} \subset \mathbb{R}$.)		_	
2.	The set of integers (\mathbb{Z}) is an ordered field.	L		
0	(False.)	.1	_	
3.	No order can be defined in the complex field field. (True.)	that turns it into an ordered		
4.	For $x, y \in \mathbb{R}^1$, if we let $d(x, y) = 1$ if $x \neq y$ an is a metric. (True.)	d $d(x,y) = 0$ if $x = y$, then it		
5.	The set of all integers as a subset of \mathbb{R}^1 is clos (True.)	ed.		
6.	Let $G_n = (0, \frac{1}{n})$ $(n = 1, 2, 3,)$. Then, $\bigcap_{n=1}^{\infty} G_n = \emptyset$, which is open.)	G_n is an open subset of \mathbb{R}^1 .		
7.	Every finite set is compact. (True.)			
8.	Let $B = \{x \in \mathbb{R}^2 : x \le 1\}$. Then, any closed so (True. It is a closed subset of a compact set.)	subset of B is compact in \mathbb{R}^2 .		
9.	Every infinite subset of \mathbb{R}^k has a limit point in (False.)	\mathbb{R}^k .		
10.	There exists a perfect set in \mathbb{R}^1 that contains a (True. The Cantor set is an example.)	no segment.		