MFMC toy problem write up

1 Toy problem

In this model we consider the diffusion problem (1) with non-overlapping domain D_1 and D_2 with lipschitz boundary Γ_1 and Γ_2 , both D_1 and D_2 share boundary Γ_2 , denote $D = D_1 \cup D_2$.

$$-\nabla \cdot (a_1(x, y, \xi_1)\nabla u) = f_1(x, y), \quad \text{in } D_1,$$

$$u = g(x, y), \quad \text{on } \Gamma_1,$$

$$-\nabla \cdot (a_2(x, y, \xi_2)\nabla v) = f_2(x, y), \quad \text{in } D_2,$$

$$a_1\partial_{\nu}u + a_2\partial_{\nu}v = 0, \quad \text{on } \Gamma_2,$$

$$u = v. \quad \text{on } \Gamma_2.$$

$$(1)$$

The Model problem (1) is equivalent to the following problem

$$-\nabla \cdot (d(x, y, \xi)\nabla u) = f(x, y), \quad \text{in } D,$$

$$u = g(x, y), \quad \text{on } \Gamma_1,$$
(2)

where
$$d(x,y,\xi) = \begin{cases} a_1(x,y,\xi_1) & x \in D_1 \\ a_2(x,y,\xi_2) & x \in D_2 \end{cases}$$
 and $f(x,y) = \begin{cases} f_1(x,y) & x \in D_1 \\ f_2(x,y) & x \in D_2 \end{cases}$.

The diffusion coefficients and source terms for the toy problem are

$$a_1 = 1 + \xi_1$$
, $a_2 = 10(1 + \xi_2)$, $f_1 = -2 - 3x^2$, $f_2 = 1 - 6x$.

Domain $D = [0, 2], D_1 = [0, 1].$

2 Code implementation

This code employs a high-fidelity model with 5,121 grid points and eight low-fidelity models generated from a sparse grid, aligning with the same setup as the plasma problem.

- 1. script_BuildSurrogforToy.m: Builds surrogate models, which are later used for dynamic sampling.
- 2. script_test_covar.m: Handles dynamic sampling.
 - modify line 22 tol to adjust the stopping criterion threshold.
 - The model selection process (lines 195–238) computes parameters for the most recent and second most recent updates.
 - The stopping criterion is located around line 240—this is where adjustments may be needed.
 - All results are stored in Result_test_covar.
- 3. FEM_solver.m: Implements the finite element method to solve a 1D Poisson equation, with two parameters in the diffusion coefficient. (parameter dimension d = 2).
- 4. Surrog_Eval.m: Evaluates the surrogate models, serving as low-fidelity models.

- 5. load_hfm_mesh_n_com_mesh_toy.m: Loads the high-fidelity model mesh and a common mesh for interpolating solutions from low-fidelity models.
- 6. load_lfm_toy.m: Loads surrogates for low-fidelity models.
- 7. MFMC_model_selection_exhausted.m: Handles model selection using the exhausted method.
- 8. MFMC_model_selection_backtrack.m: Handles model selection using the backtrack method.
- 9. L2_inprod_toy.m: Computes the L2 inner product of two functions.
- 10. interp2grid_toy.m: Interpolates a function from a coarse mesh to a fine mesh.
- 11. plot_n_print.m: Generates and plots tables from the dynamic sampling results.