

contents

01

프로젝트 & 데이터 소개

02

Target, 가설 설정, EDA

03

모델 학습 & 모델 평가

04

최종 모델 평가 및 모델 해석

05

결론

06

개선사항, 한계점

프로젝트 & 데이터 소개

♀ 신규 LCC 합류로 소비자들의 선택 폭은 넓어질 수 있지만 <mark>공급과잉과 과당경쟁에 따른 수익성 악화로</mark> 이어질 수 있다는 시각이 우세하다.

 ② 그렇다면 소비자들이 우리 항공사를 선택할 수 있도록 고객 만족도 예측을 통해 파악해보려 한다.

고려해야할 부분

어떤 서비스를 주력으로 제공해야할까?

만족도와 직결되는 요소가 무엇일까?

프로젝트 & 데이터 소개

Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service
Male	Loyal Customer	13	Personal Travel	Eco Plus	460	3
Male	disloyal Customer	25	Business travel	Business	235	3
Female	Loyal Customer	26	Business travel	Business	1142	2
Female	Loyal Customer	25	Business travel	Business	562	2
Male	Loyal Customer	61	Business travel	Business	214	3

129487 rows × 23 columns

#	Column	Non-Null Count	Dtype
0	Gender	129487 non-null	object
1	Customer Type	129487 non-null	object
2	Age	129487 non-null	-
3	Type of Travel	129487 non-null	
4	Class	129487 non-null	- 1
5	Flight Distance		int64
6	Inflight wifi service	129487 non-null	I
7	Departure/Arrival time convenient	129487 non-null	int64
8	Ease of Online booking	129487 non-null	int64
9	Gate location	129487 non-null	int64
10	Food and drink	129487 non-null	int64
11	Online boarding	129487 non-null	int64
12	Seat comfort	129487 non-null	int64
13	Inflight entertainment	129487 non-null	int64
14	On-board service	129487 non-null	int64
15	Leg room service	129487 non-null	int64
16	Baggage handling	129487 non-null	int64
17	Checkin service	129487 non-null	int64
18	Inflight service	129487 non-null	int64
19	Cleanliness	129487 non-null	int64
20	Departure Delay in Minutes	129487 non-null	int64
21	Arrival Delay in Minutes	129487 non-null	float64
22	satisfaction	129487 non-null	int64

Target, 가설 설정, EDA

가설

- 1. 이코노미 좌석일수록 만족도가 낮다.
- 2. 연령대가 높을수록 만족도가 낮다.
- 3. 비행거리가 짧을 수록 만족도가 낮다.
- 4. 충성 고객은 오히려 만족도가 더 낮다.

Target, 가설 설정, EDA

데이터 전처리

- 1. 결측치 : 항공기 지연 시간에 대한 결측치 총 80개 삭제(샘플 데이터의 수가 충분하다고 판단)
- 2. 타켓(satisfaction) : 불만족(0), 만족(1) 인 int 값으로 대체.
- 3. 불필요한 컬럼 삭제:id
- 4. 특성이 범주형인 경우 카디널리티가 높지 않아 그대로 유지.

모델 학습 & 모델 평가

Hold out 기법을 통해 train / val / test 총 3가지로 분리

X_train: (72515, 22),y_train: (72515,) X_val: (31079, 22),y_val: (31079,) X_test: (25893, 22),y_test: (25893,)

타켓 비율이 완전 불균형하지 않기때문에 정확도와 f1 score 확인.

- 1. LogisticRegression (기준모델)
- 회귀를 이용한 분류 모델

2. DecisionTree

- 훈련데이터에 대한 제약사항이 없어서 유연한 모델이다. 즉 과적합 위험 가능성이 높다.

3. RandomForest

- DecisionTree 의 과적합 문제를 해소해주는 모델.
- 배깅을 대표하는 모델로 각각의 기본 모델이 랜덤으로 예측하는 성능보다 좋을 경우 합치는 과정에서 에러가 상쇄되어 더 정확한 예측 가능

4. XGBoost

- -틀린 데이터에 집중하기 위해 가중 샘플링을 하는 대신 잔차를 학습한다.
- 잔차가 큰 관측치를 더 학습하도록 하는 효과가 있고, 이전 모델이 틀린 만큼을 직접 학습하며 이전 모델을 순차적으로 보완한다.

03 LogisticRegression (기준모델)

♀ LogisticRegression은 L2 패널티가 적용되기 때문에 스케일링 필수

	precision	-train recall	f1-score	
0	0.88 0.87	0.91 0.83	0.89 0.85	41 046 31 469
accuracy macro avg weighted avg	0.87 0.87	0.87 0.87	0.87 0.87 0.87	72515 72515 72515
	precision	Y 0.1	f1	
_				,,
1	0.88 0.86	0.90 0.83	0.89 0.85	17651 13428
accuracy macro avg weighted avg	0.87 0.87	0.87 0.87	0.87 0.87 0.87	31079 31079 31079

O3 DecisionTree

	precision	-train recall	f1-score	support
0	0.94 0.89	0.92 0.93	0.93 0.91	41 046 31 469
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	72515 72515 72515
	precision	-val recall	f1-score	 support
0	0.95 0.89	0.91 0.93	0.93 0.91	17651 13428
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	31079 31079 31079

OrdinalEncoder(),
DecisionTreeClassifier
(random_state=2, criterion="entropy",max_depth=6)

O3 RandomForest

		-train		
	precision	recall	f1-score	support
0	0.93 0.93	0.94 0.91	0.94 0.92	41 046 31 469
accuracy macro avg weighted avg	0.93 0.93	0.93 0.93	0.93 0.93 0.93	72515 72515 72515
	precision	-val recall	f1-score	support
0 1	0.93 0.92	0.94 0.91	0.94 0.92	17651 13428
accuracy macro avg weighted avg	0.93 0.93	0.93 0.93	0.93 0.93 0.93	31079 31079 31079

OrdinalEncoder(), RandomForestClassifier (random_state=2, oob_score=True, n_jobs=-1,max_depth=6)

03 XGBoost

	precision	-train recall	f1-score	 support
0 1	0.97 0.99	0.99 0.96	0.98 0.97	41046 31469
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	72515 72515 72515
	precision		f1-score	
0 1	0.96 0.97	0.98 0.94	0.97 0.96	17651 13428
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	31079 31079 31079

GridSearchCV를 사용하여 하이퍼 파라미터 튜닝.

max_depth 최적의 값:6

최종 모델 평가 및 모델 해석

최종 모델 : XGBoost

선택 이유 :

정확도와 f1 score 가 가장 높기도 했지만, 해당 문제는 만족하지 않았는데 만족했다고 예측된 ERROR가 더 중요하다. 즉, 불만족인데 만족이라고 예측한 수가 가장 적다.

테스트 셋 성능

	precision	recall	f1-score	support
O 1	0.96 0.97	0.98 0.94	0.97 0.96	14528 11365
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	25893 25893 25893

최종 모델 평가 및 모델 해석

특성 중요도 (MDI)

최종 모델 평가 및 모델 해석 _ PDP

Age의 경우 나이가 들수록 만족도가 증 가하다가 감소하는 경향이 미세하게 보였지만, 영향력이 커보이진 않았고, Flight Distance의 경우 비행거리가 아주 먼 경우에만 만족도가 조금 높은 것으로 판단.

최종 모델 평가 및 모델 해석 _ PDP

Class나 Customer Type의 경우 만족도를 예측하는데 의미가 없다고 판단.

결론 _ 만족도를 높이기 위해서는?

- 1. 만족도에는 Online boarding의 특성 영향력이 가장 크다. 보통 종이탑승권을 발권하기 위해서는 카운터나 KIOSK를 이용하기 위해 직접 방문해야한다. 하지만 모바일 탑승권을 발행하면 굳이 방문하지 않아도 바로 비행기 탑승이 가능하다.
- 2. 즉, 비행기 탑승까지의 과정이 축소된다면 고객의 만족도를 높일 수 있다고 생각한다.
- 3. 또한, 그 외에도 "Inflight wifi service", "Inflight entertainment"의 특성 영향력도 높았다. 기내 안에서 즐길 거리가 다양하다면 고객의 만족도를 높일 수 있다고 생각한다.

06

개선사항, 한계점

Data Set 자체로 봤을 때, 데이터 정제가 거의 필요 없는 상태라서 다양한 전처리, Feature Engineering을 해보지 못한 아쉬움.

추후에 Kaggle Data 아닌 웹 크롤링 등을 이용해 직접 수집하고 다양한 전처리와 Feature Engineering을 시도해 볼 것.

- ☑ 모든 특성에 대해 알아보지 못한 점.
- ▼ 추후에 특성 중요도에 따라서 불필요한 컬럼을 추가로 삭제 후 성능 확인.
- □ PDP 해석하는데 조금 어려움이 있어서 다양한 사례를 보면서 해석해 볼 것.

