Linear Regression with Multiple Variables

Introduction

- Multiple variables = multiple features
- In the previous session we had
 - X = house size, use this to predict
 - y = house price
- If we consider more variables (such as number of bedrooms, number floors, age of the house) then x_1 , x_2 , x_3 , x_4 are the four features
 - x₁ size (feet squared)
 - x₂ Number of bedrooms
 - x₃ Number of floors
 - x₄ Age of house (years)
 - y is the output variable (price)

More notations

- \mathbf{n} number of features (n = 4)
- m number of examples (i.e. number of rows in a table)
- \mathbf{x}^i vector of the input for an example (so a vector of the four parameters for the i^{th} input example)
 - i is an index into the training set
 - So
 - x is an n-dimensional feature vector
 - x³ is, for example, the 3rd house, and contains the four features associated with that house
- $\mathbf{x_j}^i$ The value of feature j in the ith training example
 - So
 - x_2^3 is, for example, the number of bedrooms in the third house

With Multiple Features

- What is the form of our hypothesis?
- Previously our hypothesis took the form;
 - $h_{\theta}(x) = \theta_0 + \theta_1 x$
 - Here we have two parameters (theta 1 and theta 2) determined by our cost function
 - One variable x
- Now we have multiple features

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

For example

$$h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 - 2x_4$$

- An example of a hypothesis which is trying to predict the price of a house
- Parameters are still determined through a cost function

- For convenience of notation, $x_0 = 1$ For every example i you have an additional oth feature for each example
- So now your **feature vector** is n + 1 dimensional feature vector indexed from o
 - This is a column vector called x
 - Each example has a column vector associated with it
 - So let's say we have a new example called "X"
- **Parameters** are also in a o indexed n+1 dimensional vector
 - This is also a column vector called θ
 - This vector is the same for each example

- Considering this, hypothesis can be written
 - $h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$
- If we do
 - $h_{\theta}(x) = \theta^T X$
 - θ^T is an $[1 \times n+1]$ matrix
 - In other words, because θ is a column vector, the transposition operation transforms it into a row vector
 - So before
 - θ was a matrix $[n + 1 \times 1]$
 - Now
 - θ^T is a matrix $[1 \times n+1]$

- Which means the inner dimensions of θ^T and X match, so they can be multiplied together as
 - [1 x n+1] * [n+1 x 1]
 - $\bullet = h_{\theta}(x)$
 - So, in other words, the transpose of our parameter vector * an input example X gives you a predicted hypothesis which is [1 x 1] dimensions (i.e. a single value)
- This is an example of multivariate linear regression

Gradient Descent for Multiple Variables

- Fitting parameters for the hypothesis with gradient descent
 - Parameters are θ_0 to θ_n
 - Instead of thinking about this as n separate values, think about the parameters as a single vector (θ)
 - Where θ is n+1 dimensional
- The cost function is

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

- Similarly, instead of thinking of J as a function of the n+1 numbers, J() is just a function of the parameter vector
 - $J(\theta)$ Repeat $\{$
- Gradient descent $\longrightarrow \theta_j := \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ { (simultaneously update for every $j=0,\dots,n$)

- Once again, this is
 - $\theta_j = \theta_j$ learning rate (α) times the partial derivative of $J(\theta)$ with respect to $\theta_{J(...)}$
 - We do this through a **simultaneous update** of every θ_i value
- Implementing this algorithm
 - When n = 1

Repeat
$$\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right\}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

- Above, we have slightly different update rules for θ_0 and θ_1
 - Actually they're the same, except the end has a previously undefined $x_0^{(i)}$ as 1, so wasn't shown
- We now have an almost identical rule for multivariate gradient descent

New algorithm $(n \ge 1)$: Repeat $\Big\{ \qquad \qquad \int \frac{\partial}{\partial \phi_j} \mathcal{I}(\phi) \Big\}$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update θ_j for $j = 0, \dots, n$)

The interpretation

- We're doing this for each j (o until n) as a simultaneous update (like when n = 1)
- So, we re-set θ_i to
 - θ_j minus the learning rate (α) times the partial derivative of the θ vector with respect to θ_j
 - In non-calculus words, this means that we do
 - Learning rate
 - Times 1/m (makes the maths easier)
 - Times the sum of
 - The hypothesis taking in the variable vector, minus the actual value, times the j-th value in that variable vector for EACH example

• It's important to remember that

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} = \frac{2}{20} \mathcal{I}(0)$$

• These algorithm are highly similar

Next

- Feature scaling (normalization)
- How to choose a learning rate
- How to check if GD is working?
- Features and polynomial regression