Secondary structure of protein

Some practical aspects

Protein structures

- Get structures from databases
- Visualise
- Compare with each other
- Predict
- Classify

Secondary structure in Uniprot

biopython

from Bio import SeqIO, PDB

PDB

https://biopython-cn.readthedocs.io/zh_CN/latest/en/chr11.html

11.1 Reading and writing crystal structure files

11.1.1 Reading a PDB file

First we create a PDBParser object:

```
>>> from Bio.PDB.PDBParser import PDBParser
>>> p = PDBParser(PERMISSIVE=1)
```

The PERMISSIVE flag indicates that a number of common problems (see 11.7.1) associated with PDB files will be ignored (but note that some atoms and/or residues will be missing). If the flag is not present a PDBConstructionException will be generated if any problems are detected during the parse operation.

The Structure object is then produced by letting the PDBParser object parse a PDB file (the PDB file in this case is called 'pdb1fat.ent', '1fat' is a user defined name for the structure):

```
>>> structure_id = "1fat"
>>> filename = "pdb1fat.ent"
>>> s = p.get_structure(structure_id, filename)
```

biopython

from Bio import SwissProt

https://biopython-tutorial.readthedocs.io/en/latest/notebooks/10%20-%20Swiss-Prot%20and%20ExPASy.html

Uniprot text file

Parsing the Swiss-Prot keyword and category list

Swiss-Prot also distributes a file keywlist.txt, which lists the keywords and categories used in Swiss-Prot. The file contains entries in the following form:

```
2Fe-2S.
    Protein which contains at least one 2Fe-2S iron-sulfur cluster: 2 iron
DE atoms complexed to 2 inorganic sulfides and 4 sulfur atoms of
DE cysteines from the protein.
SY Fe2S2; [2Fe-2S] cluster; [Fe2S2] cluster; Fe2/S2 (inorganic) cluster;
SY Di-mu-sulfido-diiron; 2 iron, 2 sulfur cluster binding.
GO GO:0051537; 2 iron, 2 sulfur cluster binding
HI Ligand: Iron; Iron-sulfur; 2Fe-2S.
HI Ligand: Metal-binding; 2Fe-2S.
   Ligand.
   3D-structure.
    KW-0002
    Protein, or part of a protein, whose three-dimensional structure has
    been resolved experimentally (for example by X-ray crystallography or
    NMR spectroscopy) and whose coordinates are available in the PDB
    database. Can also be used for theoretical models.
HI Technical term: 3D-structure.
CA Technical term.
ID
    3Fe-4S.
```

The entries in this file can be parsed by the parse function in the Bio. SwissProt. KeyWList module. Each entry is then stored as a Bio. SwissProt. KeyWList. Record, which is a Python dictionary.

```
In [20]: from Bio.SwissProt import KeyWList
handle = open("data/keywlist.txt")
records = KeyWList.parse(handle)
for record in records:
    print(record('ID'))
    print(record('DE'))
```

Secondary structure prediction/extraction from 3D structure

http://bioinf.cs.ucl.ac.uk/psipred/

DSSP algorithm

https://swift.cmbi.umcn.nl/gv/dssp/

Web server

https://www3.cmbi.umcn.nl/xssp/

PSIPRED

■ UCL Department of Computer Science: Bioinformatics Group The PSIPRED Workbench provides a range of protein structure prediction methods. The site can be used interactively via a web browser or programmatically via our REST API. For high-throughput analyses, downloads of all the algorithms are available. Amino acid sequences enable: secondary structure prediction, including regions of disorder and transmembrane helix packing; contact analysis; fold recognition; structure modelling; and prediction of domains and function. In addition PDB Structure files allow prediction of protein-metal ion contacts, proteinprotein hotspot residues, and membrane protein orientation Data Input Select input data type Sequence Data PDB Structure Data Choose prediction methods (hover for short description) Popular Analyses PSIPRED 4.0 (Predict Secondary Structure) ☐ DISOPRED3 (Disopred Prediction) ☐ MEMSAT-SVM (Membrane Helix Prediction) pGenTHREADER (Profile Based Fold Recognition) Contact Analysis ☐ DeepMetaPSICOV 1.0 (Structural Contact Prediction) ☐ MEMPACK (TM Topology and Helix Packing) Fold Recognition ☐ GenTHREADER (Rapid Fold Recognition) pDomTHREADER (Protein Domain Fold Recognition) Structure Modelling ☐ Bioserf 2.0 (Automated Homology Modelling) ☐ Domserf 2.1 (Automated Domain Homology Modelling) ☐ DMPfold 1.0 Fast Mode (Protein Structure Prediction) **Domain Prediction** DomPred (Protein Domain Prediction) **Function Prediction** FFPred 3 (Eurkaryotic Function Prediction) Help..

Submission details

Protein Sequence

>sp|P29459|IL12A_HUMAN Interleukin-12 subunit alpha OS=Homo sapiens OX=9606 GN=IL12A PE=1 SV=2 MCPARSLLLVATLVLLDHLSLARNLPVATPDPGMFPCLHHSONLLRAVSNMLOKAROTLE

FYPCTSEEIDHEDITKDKTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKTSFMM

Help...

If you wish to test these services follow this link to retrieve a test fasta sequence.

Job name

sp|P29459|IL12A_HUMAN

Email (optional)

Email (optional)

Reset Submit

DSSP online server

															The DSSP code															
91 21.5																														
2 0.5																				RESIDUES		The	- 011	tout of	DSSP	is exn	lained	extensively under		
2 0.5																				RESIDUES)	1110	o ou	tput of	DOOI	о скр	idirica	extensively under		
2 0.5	5 TO	TAL I	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	-3),	SAMI	E N	UMBEF	PER	10	00 R	RESIDUES	5				Tr.					
1 0.2	2 TO	TAL	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	-2),	SAM	E N	UMBER	PER	10	00 R	RESIDUES	5		• H	$= \alpha - he$	elix					
1 0.2	2 TO	TAL I	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	-1),	SAMI	E N	UMBER	PER	10	00 R	RESIDUES	5	 B = residue in isolated β-bridge 								
0 0.0	0 TO	TAL	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	+0),	SAMI	E N	UMBER	PER	10	00 R	RESIDUES	5						A STATE OF THE STA	ipates in β ladder		
0 0.0	0 TO	TAL I	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	+1),	SAMI	E N	UMBER	PER	10	00 R	RESIDUES	5						· Andrews	ipates in p lauder		
34 8.2	2 TO	TAL I	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	+2),	SAMI	E N	UMBER	PER	10	00 R	RESIDUES	5		• 6	= 3-n	elix (3 ₁₀	nelix)			
31 7.5																				RESIDUES			• 1:	= 5 hel	lix (π-he	elix)				
85 20.5	5 TO	TAL I	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	+4),	SAM	E N	UMBER	PER	10	00 R	RESIDUES	5				rogen b		turn			
1 0.2	2 TO	TAL I	NUMBER	OF I	HYDRO	GEN	BOND	S OF	TYPE	0(I)	>H	-N(I	+5),	SAM	E N	UMBER	PER	10	00 R	RESIDUES						onacc	tuiii			
1 2 3	4 5	6	7 8	9 1	0 11	12	13 14	15	16 17	18 19	9 20	21	22 2	3 24	25	26 2	7 28	29	30) *>	** H		• 5	= ben	a					
0 0 0	1 0	0	0 0	0	0 0	0	0 0	1	1 0	0 (9 0	0	0	0 0	0	0	0 2	. 0	0	RES	SIDUE	ES F	PER AI	PHA HEL	IX					
3 0 0	0 0	0	1 0	0	0 0	0	0 0	0	0 0	0 (9 0	0	0	0 0	0	0	0 0	0	0) PAF	RALLE	EL E	BRIDGE	ES PER L	ADDER					
3 5 5	1 1	0	1 2	1	0 0	0	0 0	0	0 0	0 (0 0	0	0	0 0	0	0	0 0	0	0	O ANT	TIPAR	RALL	EL BI	RIDGES F	PER LADDE	R.				
3 1 1	1 0	0	0 1	0	0 0	0	0 0	0	0 0	0 (9 0	0	0	0 0	0	0	0 0	0	0) LAI	DERS	5 PE	R SH	EET						
# RESID	DUE AA	STR	UCTURE	BP1	BP2	AC(C	N-H	>0	0 -	->H-I	V	N-H	>0		0>	H-N		TC0) KAPP	ALF	PHA	PHI	PSI	X-CA	Y-CA	Z-CA			
1 1	1 A I			0	0	99	9	0,	0.0	2	, -0.	3	Θ,	0.0		10,-	0.2	0	0.00	90 360.0	360	0.6	360.0	115.7	15.3	27.3	15.4			
2 2	2 A W	E	- A	10	O.A	78	В	8,	-2.1	8	, -2.	5	0,	0.0		2,-	0.6	- 0	.94	45 360.0	0-108	3.0-	144.	1 164.7	18.4	25.8	17.0			
3 3	3 A E	E	+A	9	0.4	106	5	-2,	-0.3	6	, -0.	2	6,	-0.2		3,-	0.1	- 0	.80	99 28.3	3 172	2.4	-95.4	1 122.0	20.5	25.3	20.1			
4 4	4 A L		-	0	Θ	3	1	4,	-1.7	-1	, -0.	1	-2,	-0.6		3,-	0.1	0	.66	52 67.8	3 -17	7.0	-85.3	3-112.1	23.8	27.2	20.4			
5 5	5 A K	S >	S-	0	0	91	1	1,	-0.2	3	, -1.	5	2,	-0.1		2,-	0.3	0	0.04	43 105.0	-45	5.8	-84.2	2-165.8	25.1	26.6	23.9			
6 6	6 A K	T 3	S-	0	0	167	7	1,	-0.3	-1	, -0.	2	-3,	-0.1		3,-	0.1	- 0	.50	99 127.5	5 -4	1.0	-66.9	9 121.9	23.2	25.3	27.0			
7 7	7 A D	T 3	S+	0	0	51	1	-2,	-0.3	66	,-1.	7	1,	-0.2		2,-	0.4	0	.75	54 112.0	109	9.3	67.8	3 23.6	19.9	27.1	27.4			
8 8	8 A V	E <	- b	0	73A	17	7	-3,	-1.5	-4	, -1.	7	64,	-0.2		2,-	0.3	- 0	.99	97 44.3	3-173	3.6-	134.8	3 140.9	20.5	29.4	24.4			
9 9	9 A Y	Е	-Ab	3	74A	76	9	64,	-1.9	66	, -2.1	8	-2,	-0.4		2,-	0.4	- 0	.93	31 15.7	7-142	2.2-	133.4	156.6	18.9	29.5	21.0			
10 10	O A V	E	-Ab	2	75A	4 6	Э	-8,	-2.5	-8	, -2.	1	-2,	-0.3		2,-	0.5	- 0	93	34 7.7	7-160	9.6-	120.2	2 139.3	19.2	31.2	17.7			
11 11	1 A V	E	- b	0	76A	1 (9	64,	-2.0	66	, -3.0	9	-2,	-0.4		2,-	0.4	- 0	.97	74 12.6	5-147	7.1-	122.6	5 115.2	16.4	32.2	15.5			
12 12	2 A E	E	- b	0	77A	81	1	-2,	-0.5	2	, -0.	4	64,	-0.2		66,-	0.2	- 0	.68	33 23.6	5-178	3.5	-80.5	5 125.5	17.2	32.8	11.8			
13 13	3 A L	E	- b	0	78A	4 6	5	64,	-2.4	66	, -1.	3	-2,	-0.4		2,-	0.5	- 0	.97	79 36.	1-129	9.8-	135.9	9 131.8	15.2	35.5	10.2			