Analogelektronik

Michael Korn

January 3, 2025

Ohmsches Gesetzt

Leistung

Regeln

RC-Tiefpass

$$U = R \cdot I$$

$$R = \frac{U}{I}$$

$$I = \frac{U}{R}$$

$$R = \frac{1}{G}$$

$$P = U \cdot I$$

$$P = R \cdot I^{2}$$

$$P = \frac{U^{2}}{R}$$

$$Knoten$$

$$\sum I_{in} = \sum I_{out}$$
 $Maschen$

$$\sum U = 0$$

$$H = \frac{1}{\sqrt{1 + (\frac{f}{f_c})^2}}$$
$$f_c = \frac{1}{2\pi RC}$$
$$H[db] = 20 \cdot log(H)$$
$$-3db = \frac{1}{\sqrt{2}} \cdot H$$

Halbleiter

Materialspezifisch

$$R = \rho \cdot \frac{l}{A}$$
$$G = \sigma \cdot \frac{A}{l}$$

Elekonen & Loecher

$$n_0 = p_0 = n_i$$

$$n_i = n_{i0} \left(\frac{T}{T_0}\right)^{\frac{3}{2}} e^{\frac{W_g}{2kT_0}} e^{\frac{W_g}{2kT}}$$

$$n + N_A = p + N_D$$

Donatoren & Akzeptoren

$$n \cdot p = n_i^2$$

$$n_p \cdot p_n = n_i^2$$

$$n_n \cdot p_n = n_i^2$$

Diffusion

Dabei

wobei:

$$j_{Feld} = e \cdot n?p? \cdot \nu = e \cdot n \cdot \mu \cdot E = \sigma \cdot E$$

$$j_{Diff} = e \cdot D \cdot \frac{dn?dp?}{dx}$$

$$\begin{split} I = A \cdot e \cdot E \cdot (n \cdot \mu_n + p \cdot \mu_p) \\ D = \mu \cdot \frac{k_B T}{e} \\ j_{Ges} = j_{Feld} + j_{Diff} = e \cdot D \cdot \frac{dn?dp?}{dx} + e \cdot n?p? \cdot \mu \cdot E \end{split}$$

bezeichnen:

- μ: Ladungsträgerbeweglichkeit
- σ : spezifische Leifähigkeit
- ν: Driftgeschwindigkeit
- n?p?: Ladungsträgerdichte
- D: Diffusionskonstante für Locher oder Elektronen

Dioden

$$I_D = I_S \cdot \left(e^{\frac{U}{n \cdot U_T}} - 1\right)$$

$$U_G = \frac{W_G}{e} = 1.12V$$

• $x \approx 3$

wobei:

- U_G : Bandlückens
- I_D : Diodenstrom

 $I_S = I_S(T_0) \cdot e^{\left(\frac{T}{T_0} - 1\right) \cdot \frac{U_g}{n \cdot U_T}} \cdot \left(\frac{T}{T_0}\right)^{\frac{x}{n}}$

$$g_d = \frac{I}{n \cdot U_T} = \frac{1}{r_D}$$

- I_S : Sättigungsstrom
- \bullet n: Emissionskoeffizient
- $U_T = \frac{k \cdot T}{q}$: Temperaturspannung
- $\bullet \approx I_S \cdot (e^{\frac{U}{n \cdot U_T}})$ für $U > 4 \cdot U_T$
- g_d : Kleinsignalleitwert

Temperaturspannung

$$U_T = \frac{k_B \cdot T}{e} \approx 26 \, \mathrm{mV}$$
bei $T = 300 \, \mathrm{K}$

- k: Boltzmann TR:25 in J k_B : $8.617 \cdot 10^{-5} \frac{eV}{K}$
- \bullet T: Absolute Temperatur in Kelvin
- $1J = 6.2415 \cdot 10^{18} eV$

weitere Dioden

- Zener
- Schoty
- Fotodiode
- LED

Bipolare Transistoren (BJT)

Stromverhältnisse

Kleinsignal

$$I_C = \beta \cdot I_B$$

$$I_E = I_C + I_B$$

$$I_E = (\beta + 1) \cdot I_B$$

$$g_m = \frac{I_C}{U_T}$$

$$r_\pi = \frac{\beta}{g_m}$$

$$r_o = \frac{U_A}{I_C}$$

wobei:

- g_m : Steilheit
- r_{π} : Basis-Emitter-Widerstand
- r_o : Ausgangswiderstand
- U_A : Early-Spannung

Verstärkung in verschiedenen Schaltungen

- Emitterschaltung: $V_u \approx -g_m \cdot R_C$ (bei großem r_o und $R_E = 0$)
- Kollektorschaltung (Emitterfolger): $V_u \approx 1$
- Basisschaltung: $V_u \approx g_m \cdot R_C$

wobei R_C der Kollektorwiderstand ist.

Early-Effekt

Steilheit im aktiven Bereich

$$\frac{I_c}{U_{EA}}$$

MOSFETs

Grundlagen

MOSFETs gibt es in zwei Haupttypen:

- n-Kanal MOSFET: Leitet bei positiver Gate-Source-Spannung.
- p-Kanal MOSFET: Leitet bei negativer Gate-Source-Spannung.

Strom-Spannungs-Beziehungen

- Abschnitt (Cut-off): $I_D = 0$ für $V_{GS} < V_{TH}$
- Linearer Bereich (Triodenbereich): $I_D = \mu_n C_{ox} \frac{W}{L} [(V_{GS} V_{TH})V_{DS} \frac{1}{2}V_{DS}^2]$ für $V_{GS} > V_{TH}$ und $V_{DS} < V_{GS} V_{TH}$
- Sättigungsbereich (Aktivbereich): $I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} V_{TH})^2$ für $V_{GS} > V_{TH}$ und $V_{DS} \ge V_{GS} V_{TH}$

wobei:

- μ_n : Beweglichkeit der Elektronen
- \bullet C_{ox} : Kapazität des Gate-Oxids pro Fläche
- W: Breite des Kanals
- \bullet L: Länge des Kanals
- V_{TH} : Schwellenspannung

Kleinsignalparameter

• Steilheit: $g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$ (im Sättigungsbereich)

Operationsverstärker (OPV)

Idealer OPV

- Unendlich hohe Eingangs-Impedanz
- ullet Null Ausgangs-Impedanz
- Unendlich hohe Verstärkung

Realer OPV

- Eingangsruhestrom (Bias Current): I_B
- ullet Eingangs-Offsetspannung: V_{OS}
- Verstärkung mit offenem Regelkreis (Open-Loop Gain): A_{OL} (endlich)
- Gleichtaktunterdrückung (CMRR)
- Common-Mode Rejection Ratio :Verhältnis der Diffverstärkung zur Gleichtaktverstärkung.
- Bandbreite: Frequenzbereich, in dem die Verstärkung des OPVs nicht wesentlich abfällt.
- Slew Rate: Maximale Änderungsgeschwindigkeit der Ausgangsspannung.

Invertierender Verstärker

$$V = -\frac{R_2}{R_1}$$

Nicht-invertierender Verstärker

$$V = 1 + \frac{R_2}{R_1}$$

Weitere wichtige OPV-Schaltungen

- Differenzverstärker: $V_{out} = \frac{R_2}{R_1}(V_2 V_1)$ (wenn $R_1 = R_3$ und $R_2 = R_4$)
- Integrierer: $V_{out}(t) = -\frac{1}{RC} \int V_{in}(t) dt$
- Differenzierer: $V_{out}(t) = -RC \frac{dV_{in}(t)}{dt}$

Wechselstromanalyse (AC)

Impedanz

$$Z_R = R$$

$$Z_C = \frac{1}{j\omega C}$$

$$Z_L = j\omega L$$

wobei:

- $\omega = 2\pi f$: Kreisfrequenz
- \bullet j: Imaginäre Einheit