

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/624,253	07/22/2003	Lowell L. Winger	03-0781 1496.00317	7358
22501	7590	05/30/2008	EXAMINER	
CHRISTOPHER P MAIORANA, PC				RAO, ANAND SHASHIKANT
LSI Corporation				ART UNIT
24840 HARPER				PAPER NUMBER
SUITE 100				2621
ST CLAIR SHORES, MI 48080				
				MAIL DATE
				DELIVERY MODE
				05/30/2008 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/624,253	WINGER ET AL.	
	Examiner	Art Unit	
	Andy S. Rao	2621	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 11 January 2008.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-26 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-26 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ . | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION***Response to Amendment***

1. Applicant's arguments filed on 1/11/08 with respect to claims 1-26 have been fully considered but they are not persuasive.
2. The Applicant presents three substantive arguments contending the Examiner's pending rejection of claims 1-2, 4-5, 9-11, 13-15, 18, and 20 are rejected under 35 U.S.C. 102(e) as being anticipated by Au, and the rejection of claims 3, 6-8, 12, 16-17, 19, and 21-24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Au in view of Marpe et al., (hereinafter referred to as "Marpe"), as was set forth in the Office Action of 10/16/07. However, after a careful consideration of the arguments presented and further scrutiny of the references and Applicant's Affidavit and Declaration, the Examiner must respectfully disagree and maintain the applicability of the references for the reasons that follow below.

After pointing out support from the specification for the amended claims (Amendment of 1/11/08: page 9, lines 4-10), establishing the legal basis for the arguments against the primary Au reference (Amendment of 1/11/08: page 9, lines 11-18; page 10, lines 1-11), summarizing the salient features of the representative claims (claims 1, 9, 13-14) under discussion (Amendment of 1/11/08: page 10, lines 12-18; page 12, lines 27-32; page 13, lines 1-3), and providing Applicant's interpretation of the cited portions of primary Au reference (Amendment of 1/11/08: page 10, lines 19-22; page 11, lines 1-8, 11-24; page 12, lines 11-26), the Applicant argues that Au as applied fails to disclose "...a first and second signal..." limitation (Amendment of 1/11/08: page 10, lines 9-10; column as in the claim. The Examiner respectfully disagrees. The Examiner

notes that Au discloses using either a (CAVLC) or (CABAC) decoding method for the transform coefficients in the common slice of a video signal (Au: column 11, lines 10-13), while a universal variable length code for the associated syntax elements of the common slice. The transform coefficients are the first signal and the syntax elements are the second signal. It is noted that the once the transform coefficients symbols are separated from the syntax elements, the respective (CAVLC) or (CABAC) method is used thereupon, but the transform coefficients are not subjected to the entropy decoding from the UVLC method (Au: column 11, lines 20-25). The third signal is the reproduced video signals which combines the entropy decoded syntax elements and the (CAVLC/CABAC) decoded transform coefficients which do not undergo entropy decoding, and thus, clearly reads upon the features of claims, 1, 9, and 13 (Au: column 10, lines 55-67). As such, the Examiner maintains that the first and second signal are ***completely met*** by the disclosure of Au relied upon as the basis of the grounds of rejection.

In response to applicant's arguments against the references individually (Amendment of 1/11/08: page 3, lines 11), one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.,* 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). It is noted that newly added "...non I_PCM mode and I_PCM mode..." features as in the rest of the claims, and now incorporated in current claim 2, would be met by the incorporation of Au with Marpe, which for the reasons discussed below, still remains a valid reference. Therefore, Au on its own, doesn't also have to address this feature.

After establishing the legal basis for the introduction and usage of an Affidavit to overcome an intervening reference (Amendment of 1/11/08: page 13, lines 8-24; page 14, lines 1-5), highlighting the relevant effective dates of Marpe reference (Amendment of 1/11/08: page 14, lines 6-22), and exhaustively going over the relevant entries of the accompanying Declaration (Amendment of 1/1/08: page 14, lines 23-25; page 15, lines 1-24; page 16, lines 1-2), the Applicant argues that Marpe as a reference is not available as prior art (Amendment 1/11/08: page 16, lines 3-14). The Examiner respectfully disagrees. As was previously pointed out when the Applicant submitted to overcome the previously applied Prakasam'329 reference, the Affidavit remains ineffective, as was pointed out in the accompanying Advisory Action of 7/19/07. Even though an RCE was filed, thus allowing for entry of the Affidavit of 6/29/07, the deficiencies of said submission have not been rectified even though it appears that the Applicant has had both ample time and opportunity render the Affidavit and Declaration effective. In particular, the Examiner notes that in the Declaration accompanying the Affidavit, the inventors of the instant invention only discussed the claimed features of three embodiments (Declaration of 6/29/07: pages 1-2, paragraphs 2-4), which correspond to subject matter as in currently pending claims 1, 9, and 13. However, the Examiner notes that the Declaration accompanying the Affidavit fails to list the subject matter of the embodiment of independent claim 14, and subject matter of dependent claims 2-8, 10-12, 15-26, and as such, entry of this Affidavit would only overcome the rejection of 1, 9, and 13, if said rejection was based on the intervening Marpe reference. However, the claims 1, 4-5, 9-11, 13-14, 18, and 20 are rejected by Au which has an effective filing date of 11/22/02, which the submission doesn't appear to overcome. The fact the Affidavit fails to address

the ***complete scope*** of the claims 2-3, 6-8, 12, 15-17, 19, and 21-26 as currently listed, but only applies the claims as listed on the accompanying Declaration, means that the submission of 6/29/07 is ineffective to overcome the rejection. The Examiner requires a more substantive Declaration where all the claimed subject matter of the current application 2-3, 6-8, 12, 16-17, and 21-26 is sworn behind in order to render the Affidavit of 6/29/07 sufficiently effective.

The Examiner would further note that if the Affidavit and accompanying Declaration were cured of their deficiencies and obviated Marpe as applicable art, the Examiner would be further compelled to consider the Wu et al. reference (US Patent: 5,327,968: hereinafter referred to as “Wu”).

A detailed rejection follows below.

Claim Rejections - 35 USC § 102

3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of 1999 (AIPA) and the Intellectual Property and High Technology Technical

Amendments Act of 2002 do not apply when the reference is a U.S. patent resulting directly or indirectly from an international application filed before November 29, 2000.

Therefore, the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the amendment by the AIPA (pre-AIPA 35 U.S.C. 102(e)).

4. Claims 1, 4-5, 9-11, 13-14, 18, and 20 are rejected under 35 U.S.C. 102(e) as being anticipated by Au.

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C) generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 1.

Regarding claim 4, Au discloses terminating said entropy decoding by setting any one of a plurality of predetermined values as a last value for said entropy decoding (Au: column 5, lines 10-15), as in the claim.

Regarding claim 5, Au discloses comparing an offset value to a range value (Au: column 14, lines 25-61), as in the claim.

Au discloses an apparatus (Au: figure 3), comprising: a parser configured to generate a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); a decoder configured to generate a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and a circuit configured to generate a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 9.

Regarding claims 10-11, Au further discloses wherein said entropy decoding discloses wherein said arithmetic decoding comprises a context-based adaptive binary arithmetic coding (Au: column 11, lines 10-25), as in the claims.

Au discloses an apparatus (Au: figure 3), comprising: means for generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); means for generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and means for generating a video signal by combining said second signal and said third signal (Au: column 9, lines 40-50), as in claim 13.

Au discloses a method for encoding a bitstream (Au: column 11, lines 10-32), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 8, lines 65-67; column 9, lines 1-10) a common slice in said bitstream (Au: column 8, lines 35-40); generating a third signal by entropy encoding said first signal (Au: column 10, lines 5-20); and generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 14.

Regarding claim 18, Au discloses terminating said entropy encoding by setting any one of a plurality of predetermined values as a last value for said entropy encoding (Au: column 5, lines 10-15), as in the claim.

Regarding claim 20, Au discloses the steps of: generating a fourth signal and a fifth signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); generating a sixth signal by entropy decoding said fourth signal (Au: column 11, lines 10-25); and generating a copy of said video signal by combining said fifth signal and said sixth signal (Au: column 10, lines 60-67), as in claim 20.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

7. Claims 2-3, 6-8, 12, 15-17, 19, and 21-26 are rejected under 35 U.S.C. 103(a) as being unpatentable over Au in view of Marpe et al., (hereinafter referred to as “Marpe”).

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C) generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), accepting said common slice containing a plurality of macroblocks (Au: column 8, lines 35-45) encoded in a plurality of modes (Au: column 8, lines 55-65), as in claim 2. However, Au fails to disclose the feature of switching from non-I_PCM mode macroblocks to I_PCM mode macroblocks in a macroblock scan order, as in the claim. Marpe discloses the use of pulse code modulation and corollary

demodulation including switching from non-I_PCM mode macroblocks to I_PCM mode macroblocks (Marpe: column 9, lines 65-67; column 10, lines 1-10) in a macroblock scan order (Marpe: column 9, lines 50-60) in order to accurately represent anomalous picture content without significant data expansion (Marpe: column 10, lines 18-23). Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of switching from non-I_PCM mode macroblocks to I_PCM mode macroblocks in a macroblock scan order into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of switching from non-I_PCM mode macroblocks to I_PCM mode macroblocks in a macroblock scan order, has all of features of claim 2.

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C) generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 3. However, Au fails to disclose renormalizing said entropy decoding as in the claim. Marpe discloses a entropy-decoding method (Marpe: column 17, lines 12-35) which includes the use an initialization step (Marpe: column 6, lines 52-68; column 7, lines 1-20) to initialize (i.e. renormalize) symbols of CABAC methods (Marpe: column 13, lines 35-60) in order to achieve a bit rate savings over straightforward equi-probable symbol distribution. Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to

incorporate the Marpe teaching of initialization into the Au method in order to achieve additional bit rate savings in the Au method. The Au method, now incorporating Marpe's initialization step, has all of the features of claim 3.

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C) generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), and comparing an offset value to a range value (Au: column 14, lines 25-61), as in the claim 6. However, Au fails to disclose renormalizing said entropy decoding as in the claim. Marpe discloses a entropy-decoding method (Marpe: column 17, lines 12-35) which includes the use an initialization step (Marpe: column 6, lines 52-68; column 7, lines 1-20) to initialize (i.e. renormalize) symbols of CABAC methods (Marpe: column 13, lines 35-60) in order to achieve a bit rate savings over straightforward equi-probable symbol distribution. Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of initialization into the Au method in order to achieve additional bit rate savings in the Au method. The Au method, now incorporating Marpe's initialization step, has all of the features of claim 6.

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C)

generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claims 7-8. However, Au fails to disclose the use of demodulating said second signal wherein the demodulating is pulse code demodulating, as in the claim. Marpe discloses the use of pulse code modulation and corollary demodulation in the decoder (Marpe: column 10, lines 1-17) in order to accurately represent anomalous picture content without significant data expansion (Marpe: column 10, lines 18-23). Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of pulse code modulation and demodulation into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of pulse code modification and demodulation, has all of features of claims 7-8.

Au discloses an apparatus (Au: figure 3), comprising: a parser configured to generate a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); a decoder configured to generate a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and a circuit configured to generate a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 12. However, Au fails to disclose the use of a demodulator for demodulating said second signal wherein the demodulator is configured for pulse code demodulating, as in the claim. Marpe discloses the use of pulse code modulation and corollary demodulation in the decoder (Marpe: column 10, lines 1-17) in order to accurately represent anomalous picture content without significant data expansion. Accordingly, given this teaching, it would have been obvious

for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of pulse code modulation and demodulation into the Au apparatus in order to accurately represent anomalous picture content without significant data expansion. The Au apparatus, now incorporating the Marpe teaching of pulse code modification and demodulation, has all of features of claim 12.

Au discloses a method for encoding a bitstream (Au: column 11, lines 10-32), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 8, lines 65-67; column 9, lines 1-10) a common slice in said bitstream (Au: column 8, lines 35-40); generating a third signal by entropy encoding said first signal (Au: column 10, lines 5-20); and generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), and discloses generating said common slice (Au: column 8, lines 35-45) in a plurality of modes including non-PCM coded data (Au: column 8, lines 55-65), as in claim 15. However, Au fails to disclose the use of demodulating said second signal wherein the demodulating is pulse code demodulating, as in the claim. Marpe discloses the use of pulse code modulation and corollary demodulation in the decoder (Marpe: column 10, lines 1-17) in order to accurately represent anomalous picture content without significant data expansion (Marpe: column 10, lines 18-23). Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of pulse code modulation and demodulation into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of pulse code modification and demodulation, has all of features of claim 15.

Au discloses a method for encoding a bitstream (Au: column 11, lines 10-32), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 8, lines 65-67; column 9, lines 1-10) a common slice in said bitstream (Au: column 8, lines 35-40); generating a third signal by entropy encoding said first signal (Au: column 10, lines 5-20); and generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 16. However, Au fails to disclose renormalizing said entropy decoding as in the claim. Marpe discloses a entropy-decoding method (Marpe: column 17, lines 12-35) which includes the use an initialization step (Marpe: column 6, lines 52-68; column 7, lines 1-20) to initialize (i.e. renormalize) symbols of CABAC methods (Marpe: column 13, lines 35-60) in order to achieve a bit rate savings over straightforward equi-probable symbol distribution. Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of initialization into the Au method in order to achieve additional bit rate savings in the Au method. The Au method, now incorporating Marpe's initialization step, has all of the features of claim 16.

Regarding claim 17, the Au method, now incorporating Marpe's initialization step, has using predetermined bit patterns comprising (Au: column 12, lines 50-55) a mode for non-encoded pulse code modulated data (Au: column 10, lines 1-22), as in the claim.

Au discloses a method for encoding a bitstream (Au: column 11, lines 10-32), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 8, lines 65-67; column 9, lines 1-10) a common slice in said bitstream (Au: column 8, lines 35-40); generating a third signal by entropy encoding said first signal

(Au: column 10, lines 5-20); and generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), as in claim 19. However, Au fails to disclose the use of a demodulator for demodulating said second signal wherein the demodulator is configured for pulse code demodulating, as in the claim. Marpe discloses the use of pulse code modulation for encoding data and corollary demodulation in the decoder (Marpe: column 10, lines 1-17) in order to accurately represent anomalous picture content without significant data expansion (Marpe: column 10, lines 18-23). Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of pulse code modulation and demodulation into the Au apparatus in order to accurately represent anomalous picture content without significant data expansion. The Au apparatus, now incorporating the Marpe teaching of pulse code modification and demodulation, has all of features of claim 19.

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C) generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67); accepting said common slice containing a plurality of macroblocks (Au: column 8, lines 35-45) encoded in a plurality of modes (Au: column 8, lines 55-65), wherein said common slice comprises one or more macroblocks encoded using arithmetic entropy encoding comprising context based arithmetic adaptive binary arithmetic coding (Au: column 11, lines 10-25), as in the claims 21-22. However,

However, Au fails to disclose the use of pulse code modulation, as in the claim. Marpe discloses the use of pulse code modulation (Marpe: column 10, lines 1-17) in order to accurately represent anomalous picture content without significant data expansion. Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of pulse code modulation into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of pulse code modification, has all of features of claims 21-22.

Regarding claim 23, the Au apparatus, now incorporating the Marpe teaching of pulse code modification and demodulation, is further configured to pulse code demodulate said second signal in a first mode and pass said second signal in a second mode (Marpe: column 10, lines 13-17: “directly send”), as in the claim.

Au discloses a method for encoding a bitstream (Au: column 11, lines 10-32), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 8, lines 65-67; column 9, lines 1-10) a common slice in said bitstream (Au: column 8, lines 35-40); generating a third signal by entropy encoding said first signal (Au: column 10, lines 5-20); and generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), wherein said common slice comprises one or more macroblocks encoded using arithmetic entropy encoding comprising context based arithmetic adaptive binary arithmetic coding (Au: column 11, lines 10-25), as in the claim 24. However, However, Au fails to disclose the use of pulse code modulation, as in the claim. Marpe discloses the use of pulse code modulation (Marpe: column 10, lines 1-17) in order to accurately represent anomalous picture content without significant data

expansion. Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of pulse code modulation into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of pulse code modification, has all of features of claim 24.

Au discloses a method for decoding a bitstream (Au: figures 5-6), comprising the steps of: (A) generating a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); (B) generating a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and (C) generating a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), and parsing syntax elements following a context-based adaptive binary arithmetic coding termination (Au: column 10, lines 20-25), as in claim 25. However, fails to disclose the use of parsing syntax elements contained in the group consisting of the three PCM based elements, as in the claim. Marpe discloses the use of pulse code modulation (Marpe: column 10, lines 1-15) and corollary demodulation including using PCM based syntax elements including an alignment byte (Marpe: column 10, lines 40-50) in order to accurately represent anomalous picture content without significant data expansion (Marpe: column 10, lines 18-23). Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of using PCM based syntax elements into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of using PCM based syntax elements, has all of features of claim 25.

Au discloses an apparatus (Au: figure 3), comprising: a parser configured to generate a first signal and a second signal by parsing (Au: column 11, lines 5-10) a common slice in said bitstream (Au: column 8, lines 35-40); a decoder configured to generate a third signal by entropy decoding said first signal (Au: column 11, lines 10-25); and a circuit configured to generate a video signal by combining said second signal and said third signal (Au: column 10, lines 60-67), and parsing syntax elements following a context-based adaptive binary arithmetic coding termination (Au: column 10, lines 20-25), as in claim 26. However, fails to disclose the use of parsing syntax elements contained in the group consisting of the three PCM based elements, as in the claim.

Marpe discloses the use of pulse code modulation (Marpe: column 10, lines 1-15) and corollary demodulation including using PCM based syntax elements including an alignment byte (Marpe: column 10, lines 40-50) in order to accurately represent anomalous picture content without significant data expansion (Marpe: column 10, lines 18-23). Accordingly, given this teaching, it would have been obvious for one of ordinary skill in the art at the time of the invention to incorporate the Marpe teaching of using PCM based syntax elements into the Au method in order to accurately represent anomalous picture content without significant data expansion. The Au method, now incorporating the Marpe teaching of using PCM based syntax elements, has all of features of claim 26.

Conclusion

8. Applicant's amendment to claims 2, 15, and the addition of new claims 25-26 necessitated the new ground(s) of rejection presented in this Office action. Accordingly,

THIS ACTION IS MADE FINAL. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

9. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Andy S. Rao whose telephone number is (571)-272-7337. The examiner can normally be reached on Monday-Friday 8 hours.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mehrdad Dastouri can be reached on (571)-272-7418. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2621

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Andy S. Rao
Primary Examiner
Art Unit 2621

asr
/Andy S. Rao/
Primary Examiner, Art Unit 2621
March 28, 2008