Weather IOT Device Project

By: Dawson Burgess, Alphonse Crittenden, and Lucien Lee

Project Description

Project Overview

- The IOT weather device will utilize various sensors and web API's to get the relevant data for the device and display it to the user
 - This device will be built with FreeRTOS.
 - Utilize OpenWeatherMap API
 - Utilize GeoAPIIfy
 - Utilize pool.ntp.org
 - Gives time in UTC time by default

- The IOT device will use the following sensors in harmony with the various APIs:
 - o ESP32 Feather
 - GPS Module
 - Light Sensor
 - Pixels
 - Temperature and Humidity Sensor
 - OLED Display Screen
 - Buttons for controlling the Device

Open Weather Map API

This API provides the device with the weather location based off of the current latitude and longitude.

"co	pord": {
	"lon": -117,
	"lat": 46.73
},	
"we	eather": [
	{
	"id": 804,
	"main": "Clouds",
	"description": "overcast clouds",
	"icon": "04d"
	}
],	
	se": "stations",
"ma	nin": {
	"temp": 283.65,
	"feels_like": 282.51,
	"temp_min": 283.65,
	"temp_max": 283.65,
	"pressure": 1013,
	"humidity": 67,
	"sea_level": 1013,
	"grnd_level": 919
},	Except Except Control
	sibility": 10000,
	nd": {
	"speed": 3.75,
	"deg": 273,
	"gust": 3.98
},	· ·
	ouds": {
	"all": 100
},	
	": 1714249103,
"sy	's": {
	"country": "US",
	"sunrise": 1714221505,
	"sunset": 1714272744
},	
	mezone": -25200,
	": 5601538,
	me": "Moscow",
	od": 200
1000	是一个人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人的人,但是一个人的人的人的人,但是一个人的人的人的人,但是一个人的人的人的人,但是一个人

- Free open source API
- Allows for up to 60 calls an hour for free (One a minute maximum)
- Has 16 different weather type returns
- Able to operate without sensors if needed
- In order to query:
 - o Requires Longitude
 - Requires Latitude
 - Requires API key
- Returns JSON string

GeoAPIIfy - Time API

- This API returns the correct day and time to the device based on the current gps location.
- This will return the proper numbers to set the offsets so the time and day from the pool.ntp.org is able to be set correctly

```
{"type": "FeatureCollection",
"features":[{"type":"Feature",
                "properties":{"datasource":
                        {"sourcename": "openstreetmap",
                        "attribution": "@ OpenStreetMap contributors",
                        "license": "Open Database License",
                        "url": "https://www.openstreetmap.org/copyright"},
                        "country": "United States",
                        "country_code": "us",
                        "state": "Idaho",
                        "county": "Latah County",
                        "city": "Moscow",
                         "postcode": "83843",
                        "street": "South Washington Street",
                        "housenumber": "604".
                        "lon":-116.9997655505071,
                        "lat":46.7299978,
                        "state code": "ID".
                        "distance":11.029992083869553,
                        result_type":"building",
                        "formatted": "604 South Washington Street, Moscow, ID 83843, United States of America",
                        "address_line1": "604 South Washington Street",
                        "address line2": "Moscow, ID 83843, United States of America",
                         "category": "building",
                        "timezone": {"name": "America/Los Angeles",
                                         "offset_STD": "-08:00",
                                         "offset_STD_seconds":-28800,
                                         "offset DST": "-07:00",
                                         "offset DST seconds":-25200.
                                         "abbreviation_STD": "PST",
                                         "abbreviation DST": "PDT" },
                        "plus_code": "85R5P2H2+X3",
                        "plus_code_short": "H2+X3, 83843 Moscow, United States",
                        "rank":{"importance":0.00000999999999995449,
                                 "popularity":1.0931301584485722},
                        "place_id": "511cc6a528fc3f5dc05973936291705d4740f00102f901894b212a00000000c00203"},
                "geometry":{"type":"Point",
                        "coordinates": [-116.9997655505071.46.72999781].
                        "bbox":[-116.9998558,46.7298701,-116.9996758,46.7300472]}],
        "query":{"lat":46.73.
                "lon":-117.
                "plus_code": "85R5P2H2+X2"}}
```

Device Implementation

Setting up the Vandalino Board

- The proper configuration for this device to function with the Vandalino board is seen in the picture.
- The GPS sensor will be connected to a GPIO grove connector and the rest of the sensors will be connected to the onboard I2C grove connectors

Starting the Device

- On device startup, the leds will turn on to let the user know the board is connected to WiFi and the GPS signal has been found
- Additionally, the local IP address for the hosted website will be displayed on the OLED screen

Accessing the Website

 If the user is able to access the website, then the board is fully up and functional!

Using the Buttons

The on-board buttons allow the user control over several device functions

- The on-board buttons accomplish the following things:
 - Button 1 (left most button)
 - This button acts as a toggle for the LEDs.
 - If the LEDs are on, and the user wants them off then the first button can be pressed
 - Button 2 (right most button)
 - This button acts as a reset button for the program.
 - If the user would like to reset the device, then they should hit this button and it will restart
 - o Button 3 (bottom button)
 - This button will allow the user to cycle through what is displayed on the screen
 - These are all on a loop, and can be accessed over and over again

Possible OLED Displays

Thank you! Any Questions?