Indian Institute of Technology Patna
Department of Electrical Engineering
EE101 - Electrical Sciences
Autumn - 2015
Quiz - I
16 September 2015

There are 5 problems. They carry equal marks.

$$(5 \times 6 = 30)$$

1. Consider the network shown in Figure 1.

Figure 1

Write a set of sufficient node equations to solve for the unknown voltages in the following form.

$$GV = I$$

where G is a conductance matrix, V is a vector of node voltages and I is a vector of injected currents.

2. Consider the network A that has i-v characteristics at its terminal as shown.

- (a) Find the Thevenin and Norton equivalent of Network A.
- (b) Find v and i in the network shown in Figure 2.

Figure 2

3. Consider the circuit shown in Figure 3.

Figure 3

The switch S has been in position 1 for long. At t = 0, it is moved to position 2. Find the voltage across the capacitor C_1 for t > 0 and plot it for

- (a) $R_1 > R_2$
- (b) $R_1 = R_2$
- (c) $R_1 < R_2$
- 4. Consider the circuit shown in Figure 4.

Figure 4

The switch has been closed for long. At t = 0, the switch is opened. Find $v_C(t)$ and $i_L(t)$ for t > 0 and plot them.

Consider the circuit shown in Figure 5.

Figure 5

- (a) Assume the circuit is in sinusoidal steady state. Let i(t) be $I_m \sin(\omega t + \phi)$. Find I_m and ϕ .
- (b) For a given L and ω , find C that minimizes I_m . Find also the value of ϕ at this condition.