

MANUAL | MALUS' LAW APPARATUS.

M/s TEXLA SCIENTIFIC INSTRUMENTS #3-3-593, CHAPPAL BAZAR, HYDERABAD – 500 027

MOBILE: 9848071461, TELEFAX: 040-24652326

email ID- mail2texla@yahoo.com(OR) gmail.com; texla56@yahoo.in

CAT No:1307

MALUS' LAW APPARATUS

Aim: - To verify the Malus' Law of Intensity of Light.

Apparatus: - Polariser, Analyser, Light Source, Solar Cell, Digital Multimeter or Voltmeter.

Description: - According to malus, when completely plane polarized light is incident on the analyzer, the intensity I of the light transmitted by the analyzer is directly proportional to the square of the cosine of angle between the transmission axes of the analyzer and the polarizer.

i.e.
$$I \propto \cos^2 \theta$$

CAT No: 1307

Suppose the angle between the transmission axes of the analyzer and the polarizer is θ . The completely plane polarized light form the polarizer is incident on the analyzer. If E_0 is the amplitude of the electric vector transmitted by the polarizer, then intensity I_0 of the light incident on the analyzer is,

$$I \propto E_0^2$$

The electric field vector E_0 can be resolved into two rectangular components i.e. $E_0 \cos\theta$ and $E_0 \sin\theta$. The analyzer will transmit only the component (i.e $E_0 \cos\theta$) which is parallel to its transmission axis. However, the component $E_0 \sin\theta$ will be absorbed by the analyser. Therefore, the intensity I of light transmitted by the analyzer is,

Therefore, $I \propto \cos^2 \theta$. This proves law of malus

When $\theta = 0^{\circ}$ (or 180°), $I = I_0 \cos^2 0^{\circ} = I_0$ That is the intensity of light transmitted by the analyzer is maximum when the transmission axes of the analyzer and the polarizer are parallel.

When $\theta = 90^{\circ}$, $I = I_0 \cos^2 90^{\circ} = 0$ That is the intensity of light transmitted by the analyzer is minimum when the transmission axes of the analyzer and polarizer are perpendicular to each other

CAT No: 1307

S.No:	θ Angle between optic axis of Polarizer & of analyzer	cos²θ	V Voltage on the Cell
	0°		
	30°		
	45°		
	60°		
	90°		
	120°		
	135°		
	150°		
	180°		
	210°		
	225°		
	240°		
	270°		
	330°		
	345°		
	360°		

RESULT:- The intensity of the light falling on the cell would be proportional to $\cos^2\theta$

