DATA STRUCTURE AND ALGORITHM

CLASS 9

Seongjin Lee

Updated: 2017-03-06 DSA_2017_09

insight@gnu.ac.kr http://resourceful.github.io Systems Research Lab. GNU

Table of contents

- 1. Graph Operations
- 1.1 Path Finding
- 1.2 Connected Graph
- 1.3 Spanning Tree
- 1.4 Greedy Strategy
- 1.5 Kruskal's Algorithm

Some of the Graph Problems are

- Path Finding
- Connectedness
- Spanning tree

GRAPH OPERATIONS : PATH FINDING

Path Finding

O Path length between 1 and 8

Path Finding

 \bigcirc Edges (1, 2), (2, 5), (5, 9), and (9, 8) length = 19

Path Finding

 \bigcirc Edges (1, 4), (4, 6), (6, 7), (5, 9) and (9, 8) length = 28

Example of No Path

O No path between 4 to 11

GRAPH OPERATIONS: CONNECTED

GRAPH

Connected Graph

- Undirected graph
- There is a path between every pair of vertices
- O A directed graph G = (V, E) is **strongly connected** if, for every pair of vertices u, v in V, there is a directed path from u to v and also from v to u

SJL

Not connected graph

Data Structure and Algorithm

2017-03-06

11 / 34

10

11

Connected Components

Connected Component

- A connected component is a *maximal subgraph* in which all vertices are reachable from every other vertices.
 - *maximal* means that it is the largest possible subgraph
 - Cannot add vertices and edges from original graph and retain connectedness.
 - A connected graph has exactly 1 component.

Connectedness

There are two types of connected components in digraphs

- Strong Components
 - maximal subgraph in which there is a path from every vertex to every vertex following all the edges in the direction they are pointing
- Weak Compnents
 - maximal subgraph which would be connected if we ignore the direction of the edges

Cycles and Connectedness

Removal of an edge that is on a cycle does not affect connectedness

Cycles and Connectedness

Connected subgraph with all vertices and minimum number of edges hs no cycles

Tree

A tree can be thought of as connected graph that has no cycles

 \bigcirc *n* vertex connected graph with n-1 edges

GRAPH OPERATIONS: SPANNING

TREE

Spanning Tree

- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
 - If original graph has n vertices, the spanning tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

Tree cost is sum of edge weights/costs

A Spanning Tree

Spanning Tree cost is 51

A Spanning Tree

○ Spanning Tree cost is 41

Minimum-Cost Spanning Tree

- weighted connected undirected graph
- spanning tree
- cost of spanning tree is sum of edge costs
- $\, \bigcirc \,$ find spanning tree that has minimum cost

Example

- Network has 10 edges
- Spanning tree has only n 1 = 7 edges
- Need to either select 7 edges or discard 3

GRAPH OPERATIONS : GREEDY

STRATEGY

Edge Selection Greedy Strategies

- O Start with an $n vertex\ 0 edge$ forest. Consider edges in ascending order of cost. Select edge if it does not form a cycle together with already selected edges.
 - Kruskal's algorithm
- O Start with a 1 vertex tree and grow it into an n vertex tree by repeatedly adding a vertex and an edge. When there is a choice, add a least cost edge.
 - Prim's algorithm
- \bigcirc Start with an n-vertex forest. Each component/tree selects a least cost edge to connect to another component/tree. Eliminate duplicate selections and possible cycles. Repeat until only 1 component/tree is left.
 - Sollin's algorithm

Edge Rejection Greedy Strategies

- Start with the connected graph. Repeatedly find a cycle and eliminate the highest cost edge on this cycle. Stop when no cycles remain.
- Consider edges in descending order of cost. Eliminate an edge provided this leaves behind a connected graph.

GRAPH OPERATIONS: KRUSKAL'S

ALGORITHM

- Start with a forest that has no edges
- Consider edges in ascending order of cost.

- Start with a forest that has no edges
- O Consider edges in ascending order of cost.
- \bigcirc Edge (1, 2) is considered first and added to the forest.

- Start with a forest that has no edges
- O Consider edges in ascending order of cost.
- \bigcirc Edge (1, 2) is considered first and added to the forest.
- O Edge (7,8)

- Start with a forest that has no edges
- O Consider edges in ascending order of cost.
- \bigcirc Edge (1,2) is considered first and added to the forest.
- Edge (7,8) Edge (3,4)

- Start with a forest that has no edges
- O Consider edges in ascending order of cost.
- \bigcirc Edge (1,2) is considered first and added to the forest.
- Edge (7,8) Edge (3,4)

O Edge (5, 6)

$$\frac{6}{6}$$
 $\frac{3}{8}$

- Start with a forest that has no edges
- Consider edges in ascending order of cost.
- Edge (1,2) is considered first and added to the forest.

Edge (5, 6)

Edge (2, 3)

- Start with a forest that has no edges
- Consider edges in ascending order of cost.
- \bigcirc Edge (1, 2) is considered first and added to the forest.
- Edge (7,8) Edge (3,4) Edge (5,6)
- \bigcirc Edge (2,3) \bigcirc Edge (1,3) creates cycle (rejected)

- Start with a forest that has no edges
- O Consider edges in ascending order of cost.
- \bigcirc Edge (1, 2) is considered first and added to the forest.
- \bigcirc Edge (7,8) \bigcirc Edge (3,4)

- Edge (5, 6)
- Edge (2,3) Edge (1,3) creates cycle (rejected)
- O Edge (2,4) creates cycle

- Start with a forest that has no edges
- Consider edges in ascending order of cost.
- Edge (1,2) is considered first and added to the forest.
- Edge (7,8) \bigcirc Edge (3,4)

- Edge (5, 6)
- Edge (2,3) \bigcirc Edge (1,3) creates cycle (rejected)
- Edge (2, 4) creates cycle

Edge (3, 5)

- Start with a forest that has no edges
- Consider edges in ascending order of cost.
- \bigcirc Edge (1, 2) is considered first and added to the forest.
- Edge (7,8) Edge (3,4)

- Edge (5, 6)
- \bigcirc Edge (2,3) \bigcirc Edge (1,3) creates cycle (rejected)
 - Edge (2,4) creates cycle

 \bigcirc Edge (3,5) \bigcirc Edge (3,6) creates cycle

- Start with a forest that has no edges
- Consider edges in ascending order of cost.
- \bigcirc Edge (1, 2) is considered first and added to the forest.
- Edge (7,8) Edge (3,4)
- \bigcirc Edge (3,5) \bigcirc Edge (3,6) creates cycle

- Edge (5, 6)
- Edge (2, 4) creates cycle
 - Edge (5,7)

10

- \circ *n* 1 edges have been selected and no cycle formed, so we must have a spanning tree
 - The cost is 46
- The minimum cost spanning tree is unique when all edge costs are different

- Start with any single vertex tree
- Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- O Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- O Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- O Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- O Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

- Start with any single vertex tree
- O Get a 2-vertex tree by adding a cheapest edge
- Get a 3-vertex tree by adding a cheapest edge
- Of Grow the tree one edge at a time until the tree has n-1 edges (and hence has all n vertices)

Sollin's Algorithm

- Start with a forest that has no edges.
- Each component selects a least cost edge with which to connect to another component.
- Duplicate selections are eliminated.
- Cycles are possible when the graph has some edges that have the same cost.
- Each component that remains selects a least cost edge with which to connect to another component.
- Beware of duplicate selections and cycles.

Data Structure and Algorithm

SJL

2017-03-06

32 / 34

Sollin's Algorithm

- Start with a forest that has no edges.
- Each component selects a least cost edge with which to connect to another component.
- Duplicate selections are eliminated.
- Cycles are possible when the graph has some edges that have the same cost.
- Each component that remains selects a least cost edge with which to connect to another component.
- Beware of duplicate selections and cycles.

Data Structure and Algorithm

SJL

2017-03-06

32 / 34

Sollin's Algorithm

- Start with a forest that has no edges.
- Each component selects a least cost edge with which to connect to another component.
- Duplicate selections are eliminated.
- Cycles are possible when the graph has some edges that have the same cost.
- Each component that remains selects a least cost edge with which to connect to another component.
- Beware of duplicate selections and cycles.

Data Structure and Algorithm

SJL

2017-03-06

32 / 34

Greedy Minimum-Cost Spanning Tree Algorithms

- Can prove that all result in a minimum-cost spanning tree.
- O Prim's Algorithm is the fastest
 - $O(n^2)$ using an implementation similar to that of Dijkstra's shortest-path algorithm
 - $O(e + n \log n)$ using a Fibonacci heap
- O Kruskal's algorithm uses **union-find trees** to run in $O(n + e \log e)$ time
 - \circ union(x,y) joins two subsets containing x and y into a single subset
 - o find(x) determines the subset with the element x

Exmple: Union-find

Assume the following set $S = \{1, 2, 3, 4, 5, 6\}$ and create a six independent sets: $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}.$

After performing union(1, 4) and union(2, 5), then we have $\{1,4\},\{5,2\},\{3\},\{4\}$

After running union(2, 1) and union(3, 6), then we have $\{1,2,4,5\},\{3,6\}$

