Extraction, séparation et identification d'espèces chimiques

I-Extraction d'espèces chimiques :

1) – Historique :

Depuis l'antiquité, l'homme utilise les végétaux pour extraire des colorants, des parfums, des médicaments, tout en utilisant des méthodes traditionnelles comme :

*L'expression (ou pressage) : cette opération Consiste à « faire sortir » un produit en exerçant une pression.

Exemple: pressage d'olive pour obtenir de l'huile.

*La décantation (solide / liquide) et (liquide / liquide) : On sépare des espèces chimiques non miscibles, de densités différentes. Exemple: eau boueuse et cas des liquides non miscibles (Figure 1).

fig 1

*La filtration : on sépare les constituants d'un mélange solideliquide (figure 2).

*Décoction : on place les plantes dans de l'eau froide ; le tout est porté en ébullition est les constituants se dissolvent dans l'eau. Cette méthode est très ancienne.

Toutes ces techniques connues depuis longtemps ont été perfectionnées et sont toujours utilisées.

2)-L'extraction par solvant

2–1–Principe:

L'extraction par un solvant (ou extraction liquide -liquide) permet d'extraire une espèce chimique dissoute dans un solvant, à l'aide d'un autre solvant, appelé solvant extracteur.

2-2-Choix du solvant extracteur :

L'extraction par un solvant consiste à dissoudre l'espèce chimique recherchée dans un solvant non miscible avec l'eau et à séparer les deux phases obtenues.

En plus l'espèce chimique à extraire doit être plus soluble dans le solvant à extracteur que dans l'eau. Ce qui permet de les séparer en utilisant une ampoule à décanter.

2-3-Extraction du diiode présent dans une solution :

- -On introduit le mélange d'une solution aqueuse d'iodure de potassium et de diiode dans l'ampoule à décanter (figure 3).
- -On ajoute le solvant (heptane), on agite et on laisse décanter et dégazer le mélange.
- -On observe deux phase (figure 4):
 - La phase inférieure qui est pratiquement décolorée.
 - La phase supérieure qui contient le diiode dans le solvant de coloration violette.
- -On récupère le diiode et le solvant. Après évaporation du solvant, on recueille le diiode (solide).

Avant agitation

Ampoule à décanter

Heptane

Solution

aqueuse de diiode

Fig 4

3)-Extraction par hydrodistillation :

-L'extraction de l'huile essentielle de lavande

Dans un ballon, on introduit 10g de fleurs de lavande et on ajoute 100mL d'eau distillée. On chauffe à ébullition pendant environ 30min jusqu'à obtenir 70mL de distillat (figure 5).

Fig 5

- 1-chauffe ballon
- 2-eau bouillante
- 3-thermomètre
- 4-réfrigérant à l'eau
- 5-entée et sortie de l'eau
- 6-éprouvette graduée
- 7- plante
- 8-distillat

Le distillat obtenu ne permet pas la récupération de l'huile essentielle par simple décantation. Nous allons extraire cette huile essentielle à l'aide d'un solvant organique : le cyclohexane.

الاستخراج بالتقطير المائي

Dans une ampoule à décanter on place le distillat on y ajoute 3g de chlorure de sodium et 10mL de cyclohexane.

On agite l'ampoule à décanter on laisse reposer.

On recueille dans un bécher la phase organique.

Le tableau ci-dessous présente la solubilité de l'acétate de Linalyle dans le cyclohexane :

	Eau	eau salée	cyclohexane	Acétate de Linalyle
Densité	1	1,1	0,78	0,89
Solubilité dans l'eau			nulle	faible
Solubilité dans l'eau salée			nulle	très faible
Solubilité dans le cyclohexane	nulle	nulle		très faible

II- La chromatographie:

1-chromatigraphie sur une couche mince (C.C.M) :

Cette technique permet de **séparer** et **identifier** des espèces chimiques présentes dans un mélange.

Pour effectuer une C.C.M, on utilise :

- -Une phase fixe est constituée d'une mince couche de gel de silice déposée sur une plaque d'aluminium ou de plastique.
- -Une phase mobile ou éluant : c'est le solvant dans lequel les constituants du mélange sont plus ou moins solubles.

- -L'éluant migre le long de la phase fixe en entrainant les constituants du mélange qui se déplacent à des vitesses différentes. On peut ainsi les séparer.
- -Une espèce chimique très soluble dans l'éluant migre beaucoup plus vite qu'une substance peu soluble.
- -des espèces chimiques identiques migrent à des hauteurs identiques sur une même plaque de chromatographie.

2) Révélation du chromatogramme

Dans le cas des composés colorés, le chromatogramme est directement exploitable.

Dans le cas de composés incolores, il est nécessaire de faire apparaître les taches : c'est l'étapes de révélation. On peut pour cela utiliser une lampe à ultraviolet ou les cristaux d'iode.

3) Exploitation de chromatogramme :

Rapport frontal R_f :

Le rapport frontal R_f d'une espèce chimique, dans un éluant donné, est défini par : $R_f = \frac{h}{H}$

Avec : h : distance parcourue par la tâche depuis la ligne de dépôt

H : La distance parcourue par l'éluant (entre la ligne de dépôt et le front de l'éluant).

- -Si le corps étudié ne présente qu'une seule tâche après révélation on dit qu'il est pur.
- -On comparent les rapports frontaux des taches laissées par l'échantillon étudié aux rapports frontaux des taches laissées par des corps de références, il est possible de déterminer la composition de l'échantillon.

4) Caractéristiques physiques d'une espèce chimique :

Une chimique possède des caractéristiques physiques qui lui sont propres :

4-1-Températures de changement d'état :

La température d'ébullition est la température à laquelle s'effectue le passage de l'état liquide à l'état gazeux d'une espèce.

La température de fusion est la température à laquelle s'effectue le passage de l'état slide à l'état liquide d'une espèce.

4-2-Densité:

La densité d'un corps solide ou liquide par rapport à l'eau est le rapport de la masse d'un certain volume du corps par la masse du même volume d'eau. $d=\frac{m_{sub}}{m_{acc}}$ ou $d=\frac{\rho}{\rho_{acc}}$

ho : masse volumique du corps ; ho_{eau} : masse volumique de l'eau.

C'est une grandeur sans unité.

4-3- La solubilité:

Elle exprime la masse d'une substance que l'on peut dissoudre dans un litre d'un solvant donné. Elle s'exprime en général en g/L.