RDBMS AND SQL RELATIONAL CALCULUS

Venkatesh Vinayakarao

venkateshv@cmi.ac.in http://vvtesh.co.in

Chennai Mathematical Institute

Slide contents are borrowed from the course text. For the authors' original version of slides, visit: https://www.db-book.com/db6/slide-dir/index.html.

Story So Far...

Relational Algebra SQL

Story So Far...

Functional Dependency and Normal Forms

Review

Customer ID	First Name	Surname	Telephone Number
123	Pooja	Singh	555-861-2025, 192-122-1111
456	San	Zhang	(555) 403-1659 Ext. 53; 182-929-2929
789	John	Doe	555-808-9633

Not in 1NF

Manufacturer	Model	Model full name	Manufacturer country
Forte	X-Prime	Forte X-Prime	Italy
Forte	Ultraclean	Forte Ultraclean	Italy
Dent-o-Fresh	EZbrush	Dent-o-Fresh EZbrush	USA

Not in 2NF

<u>Tournament</u>	<u>Year</u>	Winner	Winner's date of birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975

Not in 3NF

Court	Start time	End time	Rate type
1	09:30	10:30	SAVER
1	11:00	12:00	SAVER
1	14:00	15:30	STANDARD

RestaurantPizza VarietyDelivery AreaA1 PizzaThick CrustSpringfieldA1 PizzaThick CrustShelbyvilleA1 PizzaThick CrustCapital City

Not in BCNF

Not in 4NF

History

Edgar Frank "Ted" Codd (19 August 1923 – 18 April 2003) IBM's San Jose Research Lab Turing Award, 1981.

Major Contributions

Boyce-Codd Normal Form

Online analytical processing
(OLAP)

Tuple Relational Calculus
Codd's Theorem

Story So Far...

Relational Algebra SQL

Query Languages

Query Languages

same expressive power

Calculus

- From Calculi, a Latin word for "stone".
- History: We used stones for calculation.
- Today, it refers to methods of computation.

Source: Calculus Volume I: The Mathematics of Change and Variation.

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form

$$\{t \mid P(t)\}$$

- It is the set of all tuples t such that predicate P is true for t
- P is a formula similar to that of the predicate calculus

Example Query

• Find *all tuples from* instructor relation whose salary is greater than \$80,000

```
\{t \mid t \in instructor \land t [salary] > 80000\}
```

As in the previous query, but output only the ID attribute value

```
\{t \mid \exists s \in \text{instructor} (t [ID] = s [ID] \land s [salary] > 80000)\}
```

Returns only ID attribute

A Tuple Relational Calculus Formula

TRC is Built with Atoms

- Atom has one of the following forms:
 - *s* ∈ *r*
 - *s*[*x*] *op u*[*y*] *where op could be <,>,=,<=, >=, <>*
 - s[x] op c, where c is a constant
- Formulae are built using the following rules:
 - Atom is a formula
 - If P is a formula, then so are ¬P and (P)
 - If P(s) is a formula, $\exists s \in r(P(s))$ and $\forall s \in r(P(s))$ are also formulae.

Safety of Expressions

- Not all tuple-relational-calculus expressions are safe.
 - {t | ¬(t ∈ instructor)} has infinite results!
- We introduce domain operator, dom() to handle this situation.
 - dom(¬(t ∈ instructor)) is set of all values appearing in instructor. Hence, safe!

Domain Relational Calculus

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ \langle X_1, X_2, ..., X_n \rangle \mid P(X_1, X_2, ..., X_n) \}$$

- $x_1, x_2, ..., x_n$ represent domain variables
- *P* represents a formula similar to that of the predicate calculus

Example Queries

- Find the *ID*, *name*, *dept_name*, *salary* for instructors whose salary is greater than \$80,000
 - $\{ \langle i, n, d, s \rangle \mid \langle i, n, d, s \rangle \in instructor \land s > 80000 \}$
- As in the previous query, but output only the ID attribute value
 - $\{ < i > | < i, n, d, s > \in instructor \land s > 80000 \}$
- Note that $\{\langle i \rangle \mid \neg (\langle i \rangle \in instructor)\}$ is unsafe

Relationally Complete

- Any query language as powerful as relational algebra is called relationally complete.
- Relational calculus (restricted to safe expressions) is relationally complete.

SQL is not relationally complete

SQL allows duplicate rows... so, not relational at all!

No zero-attribute relations possible.

Complex queries need loops/iterators.