Программные средства САПР Задания на лабораторную работу по OpenGL (ЭКТ-33)

В файле задаётся матрица из чисел с плавающей точкой, размер матрицы задаётся в начале файла. Сначала идёт число строк, затем – число столбцов.

Задание на лабораторную работу: визуализировать с помощью OpenGL поверхности, заданные матрицами во входных файлах.

В процессе выполнения данной лабораторной работы у вас есть возможность получить три плюса за следующие достижения:

- 1. написать программу, которая считывает данные из файла и выводит в консоль информацию о найденных максимальном и минимальном значениях;
- 2. нарисовать при помощи библиотеки OpenGL поверхность, добавив код для вращения вокруг всех осей (реализацию вращения можно сделать как угодно можно вращать с клавиатуры, можно мышкой, по вашему усмотрению);
- 3. дополнить код индивидуальным заданием.

Что нужно сделать обязательно всем вариантам:

- 1. фигура должна рисоваться по центру экрана и вращаться относительно центра;
- 2. сделайте так, чтобы фигура во время запуска сразу вся была видна на экране;
- 3. приближение/удаление на клавиши «+»/«-»;
- 4. отрисовку сделать в режиме сетки (каркасная модель), чтобы было лучше видно, что рисуется;
- 5. клавиша Esc выход из программы.

Варианты

Барнанты	
Nº	Задания
1,	Кнопками WASD реализовать смещение фигуры в плоскости Z.
7,	Цвет фона медленно меняется от чёрного до тёмно-серого и обратно.
13,	Цвет отрисовки сетки – белый.
19	
2,	При нажатии на клавишу «А» включать/выключать оси, которые
8,	рисуются разными цветами: Х – синим, Ү – зелёным, Z – красным.
14,	Цвет фона медленно меняется от чёрного до зелёного и обратно.
20	Цвет отрисовки сетки – жёлтый.
3,	Фигура постоянно медленно вращается вокруг оси Z. При нажатии на
9,	клавишу «ввод» скорость вращения увеличивается вдвое. При
15,	нажатии на клавишу «пробел» скорость вращения восстанавливается
21	в исходное значение.
	Цвет фона медленно меняется от светло-красного до тёмно-красного и
	обратно.
	Цвет отрисовки сетки – жёлтый.
4,	Нажимая на клавиши PageUp и PageDown можно менять высоту
10,	графика по оси Z.
16,	Цвет фона медленно меняется от светло-серого до светло-синего и
22	обратно.
	Цвет отрисовки сетки – зелёный.

5,	При нажатии на клавишу «В» включать/выключать отрисовку
11,	ограничивающего параллелепипеда.
17,	Цвет фона медленно меняется от чёрного до белого и обратно.
23	Цвет отрисовки сетки – синий.
6,	При нажатии на клавишу «Р» нужно рисовать точки, имеющие
12,	экстремальные значения, размером 5 единиц.
18,	Цвет фона медленно меняется от тёмно-синего до светло-синего и
24	обратно.
	Цвет отрисовки сетки – красный.

Задание повышенной сложности.

Цвета рисовать по правилам отрисовки технологических САПР: синий – минимальное значение, красный – максимальное, цвета меняются так: синийзелёный-жёлтый-красный (см. рисунок справа);

Дополнительные сведения для выполнения лабораторной работы.

Q: Как поменять размер пикселя при отрисовке по точкам?

А: Для этого нужно воспользоваться функцией **glPointSize**, имеющей следующий формат:

```
void glPointSize(GLfloat size)
```

Q: Как реализовать вращение?

А: Вращение проще всего реализовать путём задания функции, которая будет вызываться каждый раз, когда ничего не происходит. Эта функция возвращает void и не принимает аргументов, связывается с библиотекой OpenGL путём передачи её имени в функцию glutIdleFunc в функции main.

```
Пример:
```

```
void idle() {
    // тут меняется угол
    glutPostRedisplay();
}

void main(int argc, char **argv) {
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
    glutInitWindowPosition(100,100);
    glutInitWindowSize(800,800);
    glutCreateWindow("3D");
    glenable(GL_DEPTH_TEST);
    glutKeyboardFunc(readKB);
    glutDisplayFunc(renderScene);

    glutIdleFunc(idle);

    glutMainLoop();
    return 0;
}
```

Q: Как считать нажатие специальных клавиш (стрелки, функциональные)?

А: Для этого используется механизм, аналогичный чтению обычных клавиш, разница лишь в том, что:

- 1. функция принимает 3 аргумента, но первый не unsigned char, a int это тот же код клавиши;
- 2. функция привязывается к библиотеке OpenGL не с помощью glutKeyboardFunc, a glutSpecialFunc.

Пример:

```
glEnable(GL_DEPTH_TEST);
glutDisplayFunc(renderScene);

glutSpecialFunc(readSK);

glutMainLoop();
return 0;
```

Q: Как ловить события мыши?

А: Раздельно ловятся факты нажатия и перемещения мыши. Нажатие ловится функцией, связываемой с OpenGL посредством glutMouseFunc.

Пример:

```
void mouse(int button, int state, int x, int y) {
  if (button == GLUT LEFT BUTTON)
   printf("left button!");
  if(state == GLUT UP)
   printf("button up!");
void main(int argc, char **argv) {
  glutInit(&argc, argv);
  glutInitDisplayMode(GLUT DEPTH | GLUT DOUBLE | GLUT RGBA);
  glutInitWindowPosition(100,100);
  glutInitWindowSize(800,800);
  glutCreateWindow("3D");
  glEnable(GL DEPTH TEST);
  glutDisplayFunc(renderScene);
  glutMouseFunc(mouse);
  glutMainLoop();
  return 0;
```

Перемещение ловится с помощью функции, которая связывается с OpenGL с помощью glutMotionFunc. Эта функция вызывается только тогда, когда перемещение происходит с нажатой клавишей, поэтому факт нажатия можно не проверять.

Пример:

```
void motion(int x, int y) {
   printf("Yahoo! I've been moved!\n");
}

void main(int argc, char **argv) {
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
   glutInitWindowPosition(100,100);
   glutInitWindowSize(800,800);
   glutCreateWindow("WaveViewer");
   glenable(GL_DEPTH_TEST);
   glutDisplayFunc(renderScene);

   glutMotionFunc(motion);

   glutMainLoop();
   return 0;
}
```