Лекция 1. Алгебры Клиффорда и спинорные группы.

re-spinor-group

1.1. Определения. Пусть V — конечномерное векторное пространство со скалярным произведением $\langle \cdot, \cdot \rangle$. Основными примерами нам будут служить евклидово пространство \mathbb{R}^n и пространство Минковского M^4 . Скалярное произведение определяет квадратичную форму $Q(x) = \langle x, x \rangle$. Наоборот, если известна квадратичная форма Q(x), то можно восстановить скалярное произведение по формуле

$$\langle x, y \rangle = \frac{1}{2} (Q(x+y) - Q(x) - Q(y)).$$

Выберем в пространстве V базис из векторов e_1, e_2, \ldots, e_n , где $\dim V = p + q = n$, удовлетворяющих соотношениям

$$\langle e_1, e_1 \rangle = \ldots = \langle e_p, e_p \rangle = 1,$$

 $\langle e_{p+1}, e_{p+1} \rangle = \ldots = \langle e_{p+q}, e_{p+q} \rangle = -1,$
и $\langle e_i, e_j \rangle = 0$ при $i \neq j$.

cliff-def

Определение 1.1. Алгеброй Клиффорда $Cl_{p,q}$ называется ассоциативная алгебра с 1, порожденная элементами e_1, \ldots, e_{p+q} и соотношениями

$$e_i e_j + e_j e_i = -2\langle e_i, e_j \rangle,$$

которые также можно записать в виде

$$e_i^2 = \begin{cases} -1, & 1 \le i \le p, \\ +1, & p < i \le n = p + q, \end{cases}$$

 $e_i e_j = -e_j e_i, & i \ne j.$

Алгебра Клиффорда $Cl_{p,q}$ является линейным пространством. Из вида определяющих соотношений в этой алгебре следует, что любой ее элемент x можно записать в виде

$$x = a \cdot 1 + \sum_{i} a_i e_i + \sum_{i < j} a_{ij} e_i e_j + \sum_{i < j < k} a_{ijk} e_i e_j e_k + \dots + a_{1\dots n} e_1 \dots e_n,$$

где $a, a_i, a_{ij}, a_{ijk}, \ldots, a_{12\ldots n} \in \mathbb{R}$. Отсюда, в частности, получаем, что размерность алгебры Клиффорда $Cl_{p,q}$ как вещественного линейного пространства не превосходит 2^{p+q} . Чуть ниже мы докажем, что в действительности размерность алгебры Клиффорда в точности равна 2^{p+q} . Для упрощения обозначений будем использовать запись вида

$$x = \sum_{I} a_{I} e_{I},$$

где I — мультииндекс, представляющий из себя набор неповторяющихся индексов, расположенных по возрастанию, причем если $I=\emptyset$, то $e_I=1$. Через |I| будем обозначать количество элементов I.

Напомним, что гомоморфизмом алгебр $f:A\to B$ называется отображение, согласованное со сложением и умножением, сохраняющее 0 и 1. Пусть алгебра A задана наборами образующих $\{a_j:j\in J\}$ и соотношений $\{r_k(a_1,\ldots)=0:k\in R\}$, где J и R— некоторые множества индексов, а r_k — это конечные

линейные комбинации слов, составленных из букв $a_j, j \in J$. Тогда значение гомоморфизма f на произвольном элементе алгебры A однозначно определяется, если известны значения f на всех образующих $\{a_j: j \in J\}$. Наоборот, если задано некоторое отображение $f_{\text{обр}}$ множества образующих $\{a_j: j \in J\}$ в алгебру B, то оно продолжается до гомоморфизма алгебр $f: A \to B$ в том и только в том случае, когда значения $f_{\text{обр}}$ на образующих алгебры A удовлетворяют тем же определяющим соотношениям, что и сами образующие, иными словами, в точности тогда, когда выполнены равенства $r_k(f_{\text{обр}}(a_1),\ldots)=0$ для всех $k \in R$.

Пример 1: $Cl_{1,0} \cong \mathbb{C}$. В самом деле, изоморфизм $Cl_{1,0} \to \mathbb{C}$ задается своим значением на единственной образующей алгебры $Cl_{1,0}$. Положим $f(e_1) = i$. Соотношение $f(e_1)f(e_1) = -1$ тогда выполнено очевидным образом и f продолжается до гомоморфизма алгебр $Cl_{1,0} \to \mathbb{C}$. Легко видеть, что f эпиморфизм. Принимая во внимание, что $\dim_{\mathbb{R}} \mathbb{C} = 2$, а $\dim_{\mathbb{R}} Cl_{1,0} \leq 2$, получаем, что f — изоморфизм, а $\dim_{\mathbb{R}} Cl_{1,0} = 2$. Такого сорта рассуждение, основанное на оценках размерностей и эпиморфности гомоморфизма, нам неоднократно встретится в дальнейшем.

Пример 2: $Cl_{0,1} \cong \mathbb{R} \oplus \mathbb{R}$. Напомним, что в алгебре $\mathbb{R} \oplus \mathbb{R}$ сложение и умножение определяются покомпонентно, поэтому ее единицей является элемент (1,1), а нулем — (0,0). Искомый изоморфизм задается значением на образующей e_1 . Так же как в предыдущем примере проверяется, что $f: e_1 \mapsto (1,-1)$ продолжается до изоморфизма алгебр.

Пример 3. Имеет место изоморфизм алгебры Клиффорда $Cl_{2,0}$ и алгебры кватернионов \mathbb{H} . Рассмотрим следующее отображение f образующих алгебры $Cl_{2,0}$ в \mathbb{H} : $f:e_1\mapsto i,\ f:e_2\mapsto j.$ Легко проверить, что значения f на образующих удовлетворяют нужным соотношениям: $f(e_1)f(e_1)=-1, f(e_2)f(e_2)=-1, f(e_1)f(e_2)=-f(e_2)f(e_1).$ Таким образом, f продолжается до гомоморфизма $f:Cl_{2,0}\to \mathbb{H}$. Поскольку $f(e_1e_2)=ij=k$, гомоморфизм f эпиморфен. По соображениям размерности это продолжение f является изоморфизмом, а $\dim_{\mathbb{R}} Cl_{2,0}=4.$

Через $M_{\mathbb{R}}(n)$ будем обозначать алгебру матриц размера $n \times n$ над полем \mathbb{R} , через E будем обозначать единичную матрицу.

Примеры. Имеет место изоморфизм $Cl_{1,1} \cong \mathrm{M}_{\mathbb{R}}(2)$. На образующих алгебры Клиффорда определим значения f следующим образом: $f(e_1) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,

 $f(e_2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Тогда легко проверить, что выполнены соотношения $f(e_1)f(e_1) = -E$, $f(e_2)f(e_2) = E$, $f(e_1)f(e_2) = -f(e_2)f(e_1)$. Следовательно, f продолжается до гомоморфизма алгебр $f: Cl_{1,1} \to \mathrm{M}_{\mathbb{R}}(2)$. Этот гомоморфизм является эпиморфизмом, так как элементы $f(e_1)$ и $f(e_2)$, выписанные выше, вместе с

$$f(1) = E$$
 и $f(e_1e_2) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

образуют базис $M_{\mathbb{R}}(2)$ как векторного пространства. Принимая во внимание оценки размерностей, получаем, что f — изоморфизм, а $\dim_{\mathbb{R}} Cl_{1,1} = 4$.

Предлагаем читателю самостоятельно проверить, что имеет место изоморфизм $Cl_{0,2} \cong \mathrm{M}_{\mathbb{R}}(2)$, который устанавливается соответствием $e_1 \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

$$e_2 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Теорема 1.1. Имеют место изоморфизмы

$$f: Cl_{p+2,0} \cong Cl_{0,p} \otimes Cl_{2,0},$$

 $g: Cl_{0,q+2} \cong Cl_{q,0} \otimes Cl_{0,2},$
 $h: Cl_{p+1,q+1} \cong Cl_{p,q} \otimes Cl_{1,1}.$

Кроме того, $\dim_{\mathbb{R}} Cl_{p,q} = 2^{p+q}$.

ДОКАЗАТЕЛЬСТВО. В первую очередь зададим отображения f, g и h в явном виде. Начнем с f. Пусть в пространстве \mathbb{R}^{p+2} выбран ортонормированный базис e_1, \ldots, e_{p+2} . В пространстве \mathbb{R}^n выберем ортонормированный базис e'_1, \ldots, e'_p , а в пространстве \mathbb{R}^2 — базис e''_1, e''_2 . На образующих алгебры $Cl_{p+2,0}$ положим

$$f(e_k) = e_k' \otimes e_1'' e_2''$$
, где $k = 1, \dots, p$; $f(e_{p+1}) = 1 \otimes e_1''$; $f(e_{p+2}) = 1 \otimes e_2''$.

Нетрудно проверить, что соотношения $f(e_j)f(e_j) = -1$ и $f(e_j)f(e_k) = -f(e_k)f(e_j)$, где $j \neq k$, выполнены. Например,

$$f(e_1)f(e_1) = (e'_1 \otimes e''_1 e''_2) \cdot (e'_1 \otimes e''_1 e''_2) =$$

$$= e'_1 e'_1 \otimes e''_1 e''_2 e''_1 e''_2 = -1 \otimes e''_1 e''_1 e''_2 e''_2 = -1 \otimes 1.$$

$$f(e_1)f(e_{p+2}) = (e'_1 \otimes e''_1 e''_2) \cdot (1 \otimes e''_2) = e'_1 \otimes e''_1 e''_2 e''_2 =$$

$$= -e'_1 \otimes e''_2 e''_1 e''_2 = -(1 \otimes e''_2) \cdot (e'_1 \otimes e''_1 e''_2) = -f(e_{p+2})f(e_1).$$

Таким образом, определен гомоморфизм $f: Cl_{p+2,0} \to Cl_{0,p} \otimes Cl_{2,0}$.

Чтобы определить гомоморфизм g, выберем в пространстве \mathbb{R}^{q+2} ортонормированный базис e_1,\dots,e_{q+2} , в \mathbb{R}^q — ортонормированный базис e_1',\dots,e_q' , а в \mathbb{R}^2 — базис e_1'',e_2'' . Зададим g на образующих формулами

$$g(e_k) = e_k' \otimes e_1'' e_2''$$
, где $k = 1, \dots, q$; $g(e_{q+1}) = 1 \otimes e_1''$; $g(e_{q+2}) = 1 \otimes e_2''$.

Нетрудно проверить, что такое отображение образующих алгебры $Cl_{0,q}$ сохраняет соотношения между ними, поэтому корректно определен гомоморфизм $g: Cl_{0,q+2} \cong Cl_{q,0} \otimes Cl_{0,2}$.

Теперь определим гомоморфизм h. Для этого в пространстве \mathbb{R}^{p+q+2} выберем ортонормированный базис $e_1,\ldots,e_{p+1},f_1\ldots,f_{q+1}$, так что $Q(e_j)=1,$ $Q(f_k)=-1$ для всех j и k. Аналогично в пространстве \mathbb{R}^{p+q} выберем базис $e_1',\ldots,e_p',f_1',\ldots,f_q'$, а в пространстве \mathbb{R}^2-e_1'',f_1'' . Отображение h зададим на образующих алгебры $Cl_{p+1,q+1}$ формулами

$$h(e_j) = e_j' \otimes e_1'' f_1''$$
, где $j = 1, \ldots, p$; $h(e_{p+1}) = 1 \otimes e_1''$; $h(f_k) = f_k' \otimes e_1'' f_1''$, где $k = 1, \ldots, q$; $h(f_{q+1}) = 1 \otimes f_1''$.

Нетрудно проверить, что h продолжается до гомоморфизма алгебр $Cl_{p+1,q+1} \to Cl_{p,q} \otimes Cl_{1,1}$.

Тот факт, что f, g и h являются изоморфизмами мы докажем по индукции одновременно с равенством $\dim_{\mathbb{R}} Cl_{p,q} = 2^{p+q}$. Обратим внимание, что в случае с гомоморфизмами f и g одно из чисел p или q, очевидно, равно 0. В качестве базы индукции будем пользоваться рассмотренными выше примерами, в которых показано, что равенство $\dim_{\mathbb{R}} Cl_{p,q} = 2^{p+q}$ выполнено при $p+q \leq 2$.

Прежде всего заметим, что f, g и h являются эпиморфизмами. Проверим это, например, для f. Мультипликативными образующими алгебры $Cl_{0,p}\otimes Cl_{2,0}$ являются элементы вида $e'_1\otimes 1,\ldots,e'_p\otimes 1,\,1\otimes e''_1$ и $1\otimes e''_2$. Достаточно проверить, что все они лежат в образе f. В самом деле, для элементов $1\otimes e''_1$ и $1\otimes e''_2$ это верно по построению f. Кроме того,

$$f(e_j e_{p+2} e_{p+1}) = (e'_i \otimes e''_1 e''_2)(1 \otimes e''_1)(1 \otimes e''_1) = e'_i \otimes e''_1 e''_2 e''_2 e''_1 = e'_i \otimes 1.$$

Таким образом f — эпиморфизм; аналогично проверяется, что g и h эпиморфизмы.

По предположению индукции, если $p \leq n$, то $\dim_{\mathbb{R}} Cl_{0,p} = 2^p$. Тогда $\dim_{\mathbb{R}} Cl_{0,p} \otimes Cl_{2,0} = 2^p \dim_{\mathbb{R}} Cl_{2,0} = 2^{p+2}$. Поскольку f эпиморфизм, а размерность $Cl_{p+2,0}$, как мы видели выше, не может превышать 2^{p+2} , то f — изоморфизм, а $\dim_{\mathbb{R}} Cl_{p+2,0} = 2^{p+2}$. Аналогичным образом доказывается, что g и h изоморфизмы и что $\dim_{\mathbb{R}} Cl_{0,q+2} = 2^{q+2}$, $\dim_{\mathbb{R}} Cl_{p+1,q+1} = 2^{p+q+2}$.

Следствие 1.2. В алгебре Клиффорда элементы e_1, \ldots, e_n линейно независимы; линейное пространство, которое они порождают, естественно отождествляется с исходным пространством V.

Упражнение 1. Докажите изоморфизм

$$Cl_{1,3} \cong M_{\mathbb{R}}(4).$$

Замечание. Можно показать, что любая алгебра Клиффорда над $\mathbb R$ изоморфна алгебре матриц либо прямой сумме двух одинаковых алгебр матриц с вещественным, комплексными, либо кватернионными элементами. С этой структурной теоремой, а также с категорным определением алгебр Клиффорда, можно познакомиться по ССЫЛКА

clifford-sootn

Предложение 1.3. Для любых $v_1, v_2 \in V$ в алгебре Клиффорда $Cl_{p,q}$ имеет место соотношение

ССЫЛКА

Lawson-

Karoubi

theory.

понадобится

ПРОВЕРИ

Κ-

отР

Spin Geometry

Michelson

на

$$v_1v_2 + v_2v_1 = -2\langle v_1, v_2 \rangle.$$

Доказательство несложно и предоставляется читателю. В амечание. В определении I.I алгебры Клиффорда использовался орто-

Замечание. В определении $\overline{1.1}$ алгебры Клиффорда использовался ортонормированный базис пространства V; но, как показывает следующее предложение, алгебра Клиффорда от произвола в выборе базиса не зависит. Этот факт нам не понадобится, поэтому доказательство мы опускаем.

Предложение 1.4. Пусть в пространстве V выбраны два ортонормированных базиса e'_j и e''_j , где $j=1,\ldots,n$. Пусть также $e'_k=a^j_ke''_j$. Обозначим через $Cl'_{p,q}$ алгебру Клиффорда, построенную по первому базису, а через $Cl''_{p,q}-$ построенную по второму. Тогда отображение $e'_j\mapsto a^j_ke''_j$ продолжается до изоморфизма алгебр Клиффорда $Cl'_{p,q}\to Cl'_{p,q}$, тожедественного на V.

Упражнение 2. Доказать это предложение.

Имеется другое, инвариантное определение алгебр Клиффорда, не использующее выбор базиса в пространстве V. С ним можно познакомиться по

Кроме того, инвариантное определение позволяет рассматривать алгебры Клиффорда для вырожденных квадратичных форм. В частности, если квадратичная форма нулевая, то соответствующая алгебра Клиффорда совпадает с внешней алгеброй пространства V.

1.2. Четные и нечетные элементы алгебры Клиффорда, транспонирование. Рассмотрим в алгебре Клиффорда два линейных подпространства

$$Cl_{p,q}^0 = \{ \sum_{|I| \text{ четное}} a_I e_I \}$$
 $Cl_{p,q}^1 = \{ \sum_{|I| \text{ нечетное}} a_I e_I \}$

Элементы пространства $Cl_{p,q}^0$ называются vemhumu, а элементы $Cl_{p,q}^0 - nevemhumu$. Имеет место разложение в прямую сумму $Cl_{p,q} = Cl_{p,q}^0 \bigoplus Cl_{p,q}^1$. Иными словами, представление произвольного элемента алгебры Клиффорда x в виде суммы $x^0 + x^1$ четного x^0 и нечетного x^1 элементов всегда возможно, причем единственным образом. В явном виде, если $x = \sum_{|I|} a_I e_I$, то $x^0 = \sum_{|I|} a_I e_I$,

а
$$x^1 = \sum_{|I| \text{ нечетное}} a_I e_I.$$

Нетрудно проверить, что если $x \in Cl_{p,q}^j$ и $y \in Cl_{p,q}^k$, где j,k равны 0 или 1, то произведение xy лежит в $Cl_{p,q}^{j+k \mod 2}$. В этой ситуации говорят, что на $Cl_{p,q}$ задана $\mathbb{Z}/2$ -zpadyuposka.

Пространства $Cl_{p,q}^0$ и $Cl_{p,q}^1$ можно описать следующим образом. Зададим гомоморфизм $\alpha:Cl_{p,q}\to Cl_{p,q}$ на образующих формулой $e_j\mapsto -e_j,\,j=1,\dots p+q.$ Проверку корректности, т. е. того, факта, что такое определение согласовано с соотношениями, оставим читателю. Нетрудно видеть, что

$$\alpha: e_{i_1} \dots e_{i_k} \mapsto \left\{ \begin{array}{ll} +e_{i_1} \dots e_{i_k}, & k \text{ четное}, \\ -e_{i_1} \dots e_{i_k}, & k \text{ нечетное}. \end{array} \right.$$

Также легко проверить, что $\alpha^2=1$. В частности, α — изоморфизм. Из равенства $\alpha^2=1$ также следует, что собственными значениями α как линейного отображения являются ± 1 . Четные элементы образуют собственное подпространство $Cl_{p,q}^0$ для собственного значения 1, а нечетные — собственное подпространство $Cl_{p,q}^1$ для -1.

Замечание. Разложение $Cl_{p,q} = Cl_{p,q}^0 \bigoplus Cl_{p,q}^1$ можно описать еще одним способом. С помощью гомоморфизма α можно определить два линейных отображения $P_{\pm}: Cl_{p,q} \to Cl_{p,q}$ по формуле $P_{\pm} = (1 \pm \alpha)/2$. Нетрудно проверить, что они оба являются проекторами, т. е. $P_{\pm}^2 = P_{\pm}$, кроме того, $P_{+} + P_{-} = 1$. Отсюда следует, что $Cl_{p,q}$ разлагается в прямую сумму образов проекторов P_{+} и P_{-} , причем для любого $x \in Cl_{p,q}$ имеем $x^0 = P_{+}x$ и $x^1 = P_{-}x$.

Определим еще одно отображение алгебры Клиффорда в себя, которое является аналогом транспонирования. На элементах вида $e_{i_1} \dots e_{i_p}$ положим по определению

$$(e_{i_1} \dots e_{i_p})^T = e_{i_p} \dots e_{i_1}.$$
 (1)

Michelson Spin Geometry и Кагоиbі Кtheory.

clifford-t

еще раз

ССЫЛ-

Lawson-

на

KA

На остальные элементы алгебры Клиффорда распространим его по линейности. Оставим читателю проверку того, что таким образом мы получим корректно определенное линейное отображение $Cl_{p,q}$ в себя. Его связь с умножением в алгебре Клиффорда выражается простым соотношением $(xy)^T = y^Tx^T$, для всех $x, y \in Cl_{p,q}$, которое нетрудно вывести из определения (II). Ясно, что $(x^T)^T = x$. В частности, отображение $x \mapsto x^T$ является антиизоморфизмом алгебры $Cl_{p,q}$.

1.3. Обратимые элементы алгебры Клиффорда, группы $Pin_{p,q}$ и $Spin_{p,q}$. Множество обратимых элементов алгебры Клиффорда

$$Cl_{p,q}^{\times} = \{ x \in Cl_{p,q} \mid \exists x^{-1} \in Cl_{p,q} : x^{-1}x = xx^{-1} = 1 \},$$

как нетрудно проверить, образует группу. Мы определим группы $Spin_{p,q}$ и $Pin_{p,q}$ как подгруппы $Cl_{p,q}^{\times}$.

Пусть $v \in V \subset Cl_{p,q}$ и $Q(v) = \pm 1$. Покажем, что элемент v обратим в алгебре $Cl_{p,q}$. В самом деле, $v \cdot \frac{-v}{Q(v)} = 1$, поэтому $v^{-1} = \frac{-v}{Q(v)}$. Следовательно, элемент вида $v_1 \dots v_k$, где $Q(v_i) = \pm 1$, тоже обратим:

$$(v_1 \dots v_k)^{-1} = v_k^{-1} \dots v_1^{-1}.$$

Определение 1.2. Положим

$$Pin_{p,q} = \{x \in Cl_{p,q} : x = v_1 \dots v_m, \text{ где } v_j \in V \text{ и } Q(v_j) = \pm 1\}, Spin_{p,q} = \{x \in Cl_{p,q} : x = v_1 \dots v_{2m}, \text{ где } v_j \in V \text{ и } Q(v_j) = \pm 1\}.$$

Группа $Spin_{p,q}$ называется cnuhophoй. Для группы $Pin_{p,q}$ общеупотребительного названия не существует.

Заметим, что группы $Pin_{p,q}$ и $Spin_{p,q}$ содержат элементы ± 1 , они представляются, например, в виде $(\pm e_1) \cdot e_1$.

Эти две группы имеют очень тесную связь с (псевдо)ортогональными группами $O_{p,q}$ и $SO_{p,q}$. К установлению этой связи мы сейчас приступим.

Для этого мы каждому элементу группы $x \in Pin_{p,q}$ поставить в соответствие элемент группы $A(x) \in O_{p,q}$, т. е. некоторое линейное преобразование векторного пространства V, сохраняющее квадратичную форму $x_1^2 + \ldots + x_p^2 - x_{p+1}^2 - \ldots - x_{p+q}^2$.

Гомоморфизм $A: Pin_{p,q} \to O_{p,q}$ определяется следующим образом. Пусть $x \in Pin_{p,q}$. Определим в пространстве V линейный оператор A(x) формулой

$$A(x): v \mapsto \alpha(x) \cdot v \cdot x^{-1},$$

для любого вектора $v \in V$. Отметим, из этой формулы совершенно неочевидно, что A(x)(v) лежит в пространстве V — пока нам известно лишь, что A(x)(v) лежит в большем пространстве, а именно в самой алгебре $Cl_{p,q}$. Перед тем как проверить, что A(x) отображает пространство V в себя, показать, что A является гомоморфизмом группы $Pin_{p,q}$ в ортогональную группу $O_{p,q}$, и установить некоторые свойства гомоморфизма A, напомним определение отражения в псевдоевклидовом пространстве. Пусть $w \in V$, причем $Q(w) = \langle w, w \rangle \neq 0$. Тогда отражение в плоскости, ортогональной вектору w, определяется формулой

$$\rho_w(v) = v - 2w \frac{\langle w, v \rangle}{\langle w, w \rangle}.$$

Напомним также, что отражение ρ_w является ортогональным преобразованием пространства V, т. е. сохраняет скалярное произведение $\langle \cdot, \cdot \rangle$.

Теорема 1.5. (a) Если $w \in V \subset Cl_{p,q}$ и $w \in Pin_{p,q}$, то A(w) отображает $V \subset Cl_{p,q}$ в себя и является отражением в плоскости, ортогональной вектору w, m. e. $A(w) = \rho_w$.

- (b) $Ecnu\ x, y \in Pin_{p,q}, \ mo\ A(xy) = A(x)A(y).$
- (c) Для всех $x \in Pin_{p,q}$ отображение A(x) сохраняет V, более того, $A(x) \in O_{p,q}$.
 - (d) $A(x) \in SO_{p,q}$ das $ecex\ x \in Spin_{p,q}$.
- (e) Гомоморфизм $A: Pin_{p,q} \to O_{p,q}$ и его ограничение $A: Spin_{p,q} \to SO_{p,q}$ являются эпиморфизмами.
- (f) Ядра гомоморфизма $A: Pin_{p,q} \to O_{p,q}$ и его ограничения $A: Spin_{p,q} \to SO_{p,q}$ одинаковы и состоят из элементов $\pm 1 \in Spin_{p,q} \subset Pin_{p,q}$.

ДОКАЗАТЕЛЬСТВО. Напомним, что если $Q(w) \neq 0$, то определен обратный элемент $w^{-1} = \frac{-w}{Q(w)} = \frac{-w}{\langle w, w \rangle}$. Кроме того, согласно предложению П.3, имеет место равенство $vw + wv = -2\langle w, v \rangle$, в частности, $ww = -\langle w, w \rangle$, откуда

$$A(w) : v \mapsto \alpha(w) \cdot v \cdot w^{-1} = -wvw^{-1} = wv \frac{w}{\langle w, w \rangle} =$$

$$= w \frac{wv}{\langle w, w \rangle} - w \frac{2 \langle w, v \rangle}{\langle w, w \rangle} = v - 2w \frac{\langle w, v \rangle}{\langle w, w \rangle} = \rho_w(v).$$

Тем самым, пункт (a) доказан. Утверждение пункта (b) получается простой выкладкой

$$A(xy)(v) = \alpha(xy) \cdot v \cdot (xy)^{-1} = \alpha(x)\alpha(y) \cdot v \cdot y^{-1}x^{-1} = \alpha(x) \cdot A(y)(v) \cdot x^{-1} = A(x) (A(y)(v)).$$

Перейдем к пунктам (c) и (d). Пусть $x \in Pin_{p,q}$. Представим x в виде $x = w_1w_2 \dots w_k$, где $Q(w_j) = \pm 1$. Тогда A(x) является композицией отражений $\rho_{w_1}\rho_{w_2}\dots\rho_{w_k}$. Отсюда, во-первых, следует, что A(x) отображает V в себя, а во-вторых, $A(x) \in O_{p,q}$, поскольку отражения являются ортогональными преобразованиями. Далее, если $x \in Spin_{p,q}$, то количество сомножителей в представлении $x = w_1w_2 \dots w_k$ четно. Тогда A(x) является композицией четного числа отражений и, значит, принадлежит группе $SO_{p,q}$.

Утверждение пункта (e) очевидным образом следует из следующего утверждения.

Теорема 1.6 (Картана—Дьедонне). Пусть V- конечномерное пространство, снабженное невырожденной симметрической билинейной формой. Тогда любое линейное преобразование, сохраняющее эту форму, представляется в виде композиции не более чем $n=\dim V$ отражений.

Доказательство в случае знакоопределенной формы несложно, его можно найти в любом учебнике по линейной алгебре. Стоит уточнить, что для доказательства пункта (e) достаточно знать лишь, что ортогональное преобразование разлагается в произведение отражений; оценка количества этих отражений неважна. Нас больше всего интересует группа Лоренца, т. е. случай, когда p=1

¹ЕСТЬ ФОРМУЛИРОВКА В ЛЕКЦИИ ПРО ПРОСТРАНСТВО МИНКОВСКОГО

и q=3. Тот факт, что любое преобразование из группы Поренца представляется в виде композиции отражений был доказан в лекции ??, см. следствие ??

Доказательство теоремы Картана—Дьедонне не очень сложно, но довольно громоздко, мы предлагаем читателю ознакомиться с ним по книге

ссылка на

Наконец, остается найти ядро гомоморфизма A. Мы сделаем это в нижеследующем предложении $\Pi.8$.

Э.Артин "Гео-

Нам понадобится гомоморфизм

"Геометри-

 $N: Pin_{p,q} \to \mathbb{Z}/2.$

ческая алгебра"

Для $x \in Pin_{p,q}$ положим по определению $N(x) = x\alpha(x^T)$.

Предложение 1.7. Отображение N является гомоморфизмом

$$N: Pin_{p,q} \to \mathbb{Z}/2.$$

Доказательство. Покажем, что $N(x)=\pm 1$. Пусть $x=w_1w_2\dots w_{k-1}w_k$. Тогда

$$N(x) = w_1 w_2 \dots w_{k-1} w_k \alpha((w_1 w_2 \dots w_{k-1} w_k)^T) =$$

$$= (-1)^k w_1 w_2 \dots w_{k-1} w_k w_k w_{k-1} \dots w_2 w_1 =$$

$$= Q(w_k) Q(w_{k-1}) \dots Q(w_2) Q(w_1) = \pm 1.$$

Покажем теперь, что для произвольных $x,y \in Pin_{p,q}$ имеет место равенство N(xy) = N(x)N(y):

$$N(xy) = xy\alpha((xy)^T) = xy\alpha(y^Tx^T) = xy\alpha(y^T)\alpha(x^T) =$$
$$= xN(y)\alpha(x^T) \stackrel{(*)}{=} x\alpha(y^T)N(y) = N(x)N(y).$$

Здесь равенство, отмеченное знаком (*), выполняется в силу того, что N(y) — число.

spinor-kernel

Предложение 1.8. Пусть $x \in \ker A$, где $A : Pin_{p,q} \to O_{p,q}$. Тогда $x = \pm 1$.

ДОКАЗАТЕЛЬСТВО. Если $x \in \ker A$, то для любого $v \in V$ выполняется равенство $\alpha(x)vx^{-1}=v$, или, что то же самое, $\alpha(x)v=vx$. Представим x в виде суммы $x=x^0+x^1$ четного x^0 и нечетного x^1 элементов, т. е. $x^i \in Cl_{p,q}^i$. В силу однозначности разложения элемента алгебры Клиффорда в сумму четного и нечетного элементов, имеем, что для всех $v \in V$ должно выполняться соотношение

$$(x^0 - x^1)v = v(x^0 + x^1).$$

Разделив четную и нечетную компоненты, получаем систему их двух равенств, которая должна выполняться для любого $v \in V$:

$$\begin{cases} x^0v = vx^0 \\ -x^1v = vx^1 \end{cases}$$

Предположим, что элемент $x^0 \in Cl^0_{p,q}$ представляется в виде $y^0 + e_1 y^1$, где $y^i \in Cl^i_{p,q}$, причем в записях элеменов y^i вектор e_1 не встречается. Тогда из первого уравнения нашей системы при $v=e_1$ получаем соотношение

$$e_1(y^0 + e_1y^1) = (y_0 + e_1y^1)e_1,$$

$$e_1 y^0 + e_1^2 y^1 = e_1 y^0 - e_1^2 y^1.$$

Следовательно, $y^1 = 0$. Таким образом, запись x, т. е. разложение x по базису алгебры Клиффорда, не может содержать e_1 . Таким же образом показывается, что в записи x не может встречаться ни один из векторов e_j , где $j = 2, \ldots, n$. Тем самым, $x^0 = a \cdot 1$, где $a \in \mathbb{R}$.

Аналогичным образом рассмотрим теперь элемент x^1 . Предположим, что $x^1=y^1+e_1y^0$, где $y^i\in Cl_{p,q}^i$, причем e_1 в записях элементов y^i не встречается. Тогда второе уравнение нашей системы при $v=e_1$ принимает вид

$$-(y^1 + e_1 y^0)e_1 = e_1(y^1 + e_1 y^0),$$

следовательно,

$$-y^1e_1 - e_1^2y^0 = -y^1e_1 + e_1^2y_0,$$

откуда получаем, что $y_0 = 0$. Таким образом, в записи элемента x^1 нет может присутствовать вектор e_1 . Аналогичным образом, это верно для любого вектора e_j , где $j = 2, \ldots, n$. Тем самым, $x^1 = 0$.

Итак, мы показали, что $x=x^0+x^1=a\cdot 1$, где $a\in\mathbb{R}.$ Теперь воспользуемся гомоморфизмом N:

$$a^2 \cdot 1 = x^2 = N(x) = \pm 1.$$

Следовательно, $a^2 = \pm 1$, и поэтому $a = \pm 1$.

Итак, мы построили эпиморфизмы

$$A: Pin_{p,q} \to O_{p,q},$$

$$A: Spin_{p,q} \to SO_{p,q},$$

ядра которых одинаковы и состоят из элементов ± 1 .

1.4. Спинорное представление группы $Spin_{1,3}$.

Пример. Построенный выше гомоморфизм $A: Pin_{p,q} \to O_{p,q}$ задает представление группы $Pin_{p,q}$ (а следовательно и $Spin_{p,q}$) в пространстве V.

Пример. Рассмотрим $Cl_{p,q}$ как линейное пространство над \mathbb{R} . Представление R группы $Pin_{p,q}$ в этом пространстве определим как $x \mapsto R_x$, где оператор $R_x : Cl_{p,q} \to Cl_{p,q}$ действует по формуле $R_x(y) = x \cdot y$.

Нас особо интересует случай p=1,q=3. Для него мы разложим представление из последнего примера в сумму четырех эквивалентных неприводимых представлений. Соответствующее неприводимое представление группы $Pin_{1,3}$ в четырехмерном пространстве называется cnuhophum; с его помощью строится так называемое deyshauhoe cnuhophoe представление группы Лоренца L=O(1,3).

Перейдем к деталям.

Для того, чтобы согласовать обозначения с принятыми в физике, будем считать, что алгебра Клиффорда $Cl_{1,3}$ порождена элементами e_0, e_1, e_2, e_3 , где

$$e_0^2=-1, e_1^2=e_2^2=e_3^2=1, e_ie_j=-e_je_i,$$
 при $i \neq j.$

Рассмотрим в $Cl_{1,3}$ элементы e_3 и e_0e_1 . Легко проверить, что их квадраты равны 1, и что они коммутируют:

$$e_3^2 = (e_0 e_1)^2 = 1,$$
 $e_3(e_0 e_1) = (e_0 e_1)e_3.$

Рассмотрим в $Cl_{1,3}$ следующие 4 элемента:

$$f_1 = \frac{1}{4}(1+e_3)(1+e_0e_1),$$

$$f_2 = \frac{1}{4}(1-e_3)(1+e_0e_1),$$

$$f_3 = \frac{1}{4}(1+e_3)(1-e_0e_1),$$

$$f_4 = \frac{1}{4}(1-e_3)(1-e_0e_1).$$

Предложение 1.9. Имеют место соотношения

$$f_i^2 = f_i, f_i f_j = 0, \text{ npu } i \neq j, \sum_{i=1}^4 f_i = 1.$$

ДОКАЗАТЕЛЬСТВО предоставляется читателю в качестве несложного упражнения. $\hfill \Box$

Рассмотрим в $Cl_{1,3}$ левые идеалы вида $W_i = Cl_{1,3}f_i$, где i = 1, 2, 3, 4. **Теорема 1.10.** Имеет место разложение в прямую сумму векторных пространств

$$Cl_{1,3} = W_1 \oplus W_2 \oplus W_3 \oplus W_4.$$

ДОКАЗАТЕЛЬСТВО. Нужно показать, что произвольный элемент $x \in Cl_{1,3}$ единственным образом представляется в виде $x = x_1 + x_2 + x_3 + x_4$, где $x_i \in W_i$.

Для $x \in Cl_{1,3}$ положим $x_i = xf_i$. Тогда $x = \sum_{i=1}^4 x_i$ в силу соотношения $\sum_{i=1}^4 f_i = 1$. Кроме того, по определению, $x_i \in W_i$.

Докажем единственность такого разложения. Для этого достаточно показать, что если $0=x_1+x_2+x_3+x_4$, где $x_i\in W_i$, то $x_i=0$ для всех i. В самом деле, пусть $0=x_1+x_2+x_3+x_4$. Тогда $x_i=y_if_i$ для некоторых $y_i\in Cl_{1,3}$. Домножим наше равенство справа на f_i . Получим

$$0 = \sum_{i=1}^{4} x_i f_j = \sum_{i=1}^{4} y_i f_i f_j = y_j f_j f_j = y_j f_j = x_j.$$

Поскольку это равенство верно для всех j, то x=0. \square

Поскольку пространства W_i являются левыми идеалами алгебры $Cl_{1,3}$, то они инвариантны относительно любого из операторов вида R_x , где $x \in Pin_{1,3}$.

Таким образом, мы получили представления $Pin_{1,3}$ в четырех пространствах: W_1, W_2, W_3 и W_4 .

Нетрудно проверить, что в пространстве W_1 векторы

$$E_1 = f_1 = \frac{1}{4}(1 + e_3)(1 + e_0e_1),$$

 $E_2 = e_0E_1,$
 $E_3 = e_2E_1,$
 $E_4 = e_0e_2E_1.$

образуют базис.

Упражнение 3. Показать, что в этом базисе матрицы операторов $R_{e_j}, j = 0, \ldots, 3$ имеют вид

$$R_{e_0} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad R_{e_1} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix},$$

$$R_{e_2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \qquad R_{e_3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Более того, пусть

$$\begin{array}{rcl} E_{j1} & = & f_j, \\ E_{j2} & = & e_0 f_j, \\ E_{j3} & = & e_2 f_j, \\ E_{j4} & = & e_0 e_2 f_j. \end{array}$$

Тогда нетрудно проверить, что 4 вектора E_{j1}, E_{j2}, E_{j3} и E_{j4} образуют базис пространства W_j для каждого $j=1,\ldots,4$. Следовательно, векторы E_{ij} образуют базис $Cl_{1,3}$ как векторного пространства.

Упорядочим векторы E_{ij} так, чтобы сначала шли векторы, содержащиеся в W_1 , потом — в W_2 и т. д. Векторы, относящиеся к одному пространству упорядочим по возрастанию второго индекса. Тогда в этом базисе операторы представления R_x записываются блочно—диагональными матрицами с блоками 4×4 .

Упражнение 4. Показать, что для любого $x \in Pin_{p,q}$ четыре блока, из которых состоит матрица оператора R_x в базисе E_{ij} , совпадают.

Из этого упражнения следует, что представления группы $Pin_{p,q}$ в пространствах W_i эквивалентны.

Упражнение 5. Доказать, что в W_i нет инвариантного подпространства, отличного от нулевого и самого W_i .

Определение 1.3. Представление $Pin_{1,3}$ в пространстве $S=W_1$ будем называть cnuhophum.