Name: Lianhan Huang 3700459; Qu Wang 3700666

Task 1

1.1

X={color, shape, texture}

Y={banana, grapes, apple, orange}

D={banana:[yellow, curved, smooth]; apple:[red, round, smooth]; orange:[orange, round, rough]; banana:[brown, curved, smooth]; grapes:[green, oval, smooth]; apple:[green, round, smooth]}

1.2

Distance between IO, I1 is |0-1|=1

Distance between I0, I2 is |0-2|=2

Distance between 10, 13 is |0-3|=3

Distance between |1, |2 is |1-2|=1

Distance between |1, |3| = 2

Distance between $|2, |3| \le |2-3| = 1$

Problem: distance not evenly distributed. Mis-classify I1 to I3 should not be more wrong than classify 11 to 12.

1.3

True labels $y = \{0,2,3,0,1,2\}$

Predict labels by classifier $y=\{0,2,3,3,1,1\}$

Loss = 0+0+0+3+0+1=4

To be uniform means to have equal distance between each pair of labels. Since in two-dimension coordinate system, the max number of uniformed labels is 3, we need three dimension.

$$L0 = (1,1,1)$$

$$L1 = (1,-1,-1)$$

$$L2 = (-1,1,-1)$$

$$L3 = (-1, -1, 1)$$

Distance = 8**0.5

Normalization:

L0 =
$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

L1 = $(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2})$
L2 = $(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2})$
L3 = $(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$

$$L2 = (\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$$

L3 =
$$(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

1.5

Distance = 1

Loss = 0+0+0+1+0+1=2

To encode all the features, for each feature, the distance should be the same, so:

Color: [yellow, red, orange, brown, green]

Yellow=(1,1,1,1)

Orange=(-1,1,-1,-1)

Brown=(-1,-1,1,-1)

^{**} Q: what should the loss function be like?

Task2

2.1.1

F1-score is harmonic mean of recall and precious.

Precious: in true class i, how many samples are successfully counted.

Precious = <u>T positive / (T positive + T negative)</u>

Recall: in predicted class i, how many prediction is right.

Recall = <u>T_positive / (T_positive + F_positive)</u>

F1-score = 2 * precious * recall / (precious + recall)

So:

Minimal F1-score = 0

When a classifier predict all instance as negative, but there is actually instance positive.

Maximal F1-score = 1

When the classifier perfectly predict all instance.

2.1.2

Pre = Recall = 0 means the classifier predict all instance in True_class1 as class2, and all instance in True_class2 as class1.

2.1.3

In data set D with \underline{n} samples, the number of positive sample is \underline{m} , negative sample is $\underline{n-m}$. If classifier pick class randomly:

```
False_positive = \underline{m/2}, False_negative = \underline{(n-m)/2}

Precious = \underline{0.5m / 0.5n} = \underline{m/n}

Recall = \underline{0.5m / m} = \underline{0.5}

F1 = 2m/(2m+n)
```

True Positive = m/2, True Negative = (n-m)/2

If n-m = m:

Precious = 0.5 Recall = 0.5 F1 = 0.5

2.2.1

For C1: P1=250/250=1, P2=250/250=1; R1=250/250=1, R2=250/250=1 -> F=1 For C2: P1=125/250=0,5; P2=125/250=0,5; R1=125/250=0,5; R2=125/250=0,5 -> F=0,5 Choose C1

2.2.2

```
For C1: P1=0, P2=0; R1=0, R2=0 -> F=0
For C2: P1=125/250=0,5; P2=125/250=0,5; R1=125/250=0,5; R2=125/250=0,5 -> F=0,5
Choose C2
```

^{**} Q: do we need normalize all these values?

2.2.3

For C1: P1=200/225=0,89, P2=200/275=0,73; R1=200/275=0,73, R2=200/225=0,89 -> F=0,8 For C2: P1=200/275=0,73; P2=200/225=0,89; R1=200/225=0,89; R2=200/275=0,73 -> F=0,8 Choose C2, because higher true positive prediction matters more.

2.2.4

Choose C1, because lower false positive prediction matters.

Task3

3.1

Predict

	Apple	Grapes	Orange	Total
Apple	5	1	2	8
Grapes	1	7	1	9
Orange	1	1	6	8
Total	7	9	9	25

3.2

	Precious	Recall	F1
Apple	5/7=0,71	5/8=0,625	0,8875/1,335≈0.665
Grapes	7/9=0,78	7/9=0,78	1,2168/1,56≈0.78
Orange	6/9=0,67	6/8=0,75	1,005/1,42 ≈ 0.708

3.3

All Precious = 18/25 = 0,72 All Recall = 18/25 = 0.72 Micro F1-score = 0.72

3.4

Macro F1-score ≈ 0.718

3.5

Small number of samples.

Many samples in data set belong to a certain class, not evenly distributed.

Classifier has different performance with different class.