1	30. (New) A method for producing a discharge lamp with electrodes formed by the
2	steps of:
3	a winding step for winding, with the same pitch, refractory metal wires around a core
4	member and forming n layers of coils one by one, n being larger than one;
5	a shape stabilizing step for stabilizing a shape of the n number of layers of coils;
6	a cutting step for cutting the formed n layers of coils and the core member to provide a flat
7	tip surface;
8	a removing step for removing the core member after the cutting step;
9	a rod inserting step for inserting an electrode rod into a space from which the core member
10	has been removed, the electrode rod being made of refractory metal;
11	a welding step for fixing the formed n layers of coils to the inserted electrode rod; and
12	a fixing step for mounting a pair of identical electrodes within a light emitting tube so that
13	tips of the electrodes are spaced a length less than 2.5 mm from each other.
1	31. (New) The method of claim 30, wherein the length is approximately 0.6 mm.
1	32. (New) The method of claim 32

wherein the n layers include a (p-1)th layer, a pth layer, and (p+1)th layer, which are

wherein the three refractory metal wires are wound to form spaces that are each surrounded

formed by refractory metal wires with diameters of P-1, P, and P+1 respectively, p satisfying an

by (a) the (p-1)th layer (b) adjacent turns in a coil of the pth layer, and (c) the (p+1) layer.

-2-

inequality 1 , inequalities <math>p < p-1 and p < p+1 being satisfied, and

2

3

4

5

6

295746