Homework 2

A car dealership wants to understand their customers and their buying habbits. The data (cardealership.csv) represents a randsome sample of their sales.

VARIABLE	DESCRIPTION
Gender	gender for customer
marital status	is the customer 'Married' or 'Single'?
age	age of the customer
country	country make of the car
size	the size of the car they bought ('Small', 'Medium', 'Large')
type	the type of the car they bought ('Family', 'Sporty', 'work')

```
In [49]: # gives 5 random lines in it
    carDealer.sample(5)
```

Out[49]:

		Gender	marital status	age	country	size	type
	293	Female	Married	35	Japanese	Medium	Family
	29	Male	Married	35	American	Small	Sporty
	288	Female	Single	34	Japanese	Small	Family
	225	Female	Married	35	Japanese	Small	Family
	105	Male	Married	33	European	Small	Family

```
In [50]: carDealer.shape[1]
```

Out[50]: 6

1. (1 point) Select all the married customers in the given dataset, and save it in a variable (married_customers). What is the percentage of married customers in the sample?

```
In [3]: import pandas as pd

carDealer = pd.read_csv("cardealership.csv")

married_customers = carDealer["marital status"]
married_customers_count = married_customers.value_counts("Married")[0]
print(married_customers_count)
```

2. (1 point) Use a list comprehension to create a list with two age categories. The category is Below or equal to 30 if age <= 30, otherwise the category is Above 30. Use the result from this question to compute the number of customers in each category.

```
In [54]: ages = ["Below or equal to 30" if age <30 else "Above 30" for age in carDeal
pd.Series(ages).value_counts()</pre>
```

Out[54]: Above 30 159
Below or equal to 30 144
Name: count, dtype: int64

- 3. (2 points) The current version of Pandas has 142 methods including (DataFrame(), Series(), value_counts(), etc.). In this question, you are expected to learn about the cut() method which allows you to categorize a numerical vector into user-defined categories. Click here to learn more about the cut method.
 - Use the cut() method to categorize the age variable into three buckets: (0,30], (30, 34], and (34,60]. (For this exercise, you don't have to add the new column to the original dataframe. You can save it in a seperate variable instead)
 - Rename the labels of the buckets to the ones shown in the table below.
 - How many element are there in each category?

bucket	label			
(0,30]	Below 30			
(30, 34]	Between 30 and 34			
(34,60]	Above 34			

```
In [10]: buckets = pd.cut(carDealer["age"], bins=[0,30,34,60], labels=["Below 30", "E
    elements = buckets.value_counts()
    print(elements)
```

age
Below 30 159
Above 34 76
Between 30 and 34 68
Name: count, dtype: int64

4. (1 point) Pandas has another method called qcut, which allows you to categorize a numerical variable into equal-sized buckets based on quantiles. Use the qcut() method to categorize age into quartiles (4 buckets). Click here to learn more about the cut method

```
In [43]: buckets = pd.qcut(carDealer["age"], q=4)
         quartiles = buckets.value_counts()
         print(quartiles)
        age
        (17.999, 26.0]
                           85
        (34.5, 60.0]
                           76
        (26.0, 30.0]
                           74
        (30.0, 34.5]
                           68
        Name: count, dtype: int64
           5. (1 point) Using pandas, summarize the customer characteristics: Gender,
              marital status (using relative frequency tables) and age (using the
              describe() method).
In [41]: maritalStatus = carDealer["marital status"].value_counts(normalize=True)*100
         print(maritalStatus)
        marital status
        Married
                   64.686469
                   35.313531
        Single
        Name: proportion, dtype: float64
In [40]: gender = carDealer["Gender"].value counts(normalize=True)*100
         print(gender)
        Gender
        Male
                  54.455446
        Female
                  45.544554
        Name: proportion, dtype: float64
In [29]: age = carDealer["age"].describe()
         print(age)
                 303.000000
        count
                  30.719472
        mean
        std
                   5.984294
                  18.000000
        min
        25%
                  26.000000
        50%
                  30.000000
        75%
                  34.500000
                  60.000000
        max
        Name: age, dtype: float64
           6. (1 point) Using pandas, summarize the data on the cars sold: country, size,
             and type (using relative frequency tables).
In [30]: country = carDealer["country"].value_counts(normalize=True)*100
         print(country)
```

```
country
        Japanese
                     48.844884
        American 37.953795
        European 13.201320
        Name: proportion, dtype: float64
In [31]: size = carDealer["size"].value_counts(normalize=True)*100
         print(size)
        size
                   45.214521
        Small
        Medium
                   40.924092
        Large
                   13.861386
        Name: proportion, dtype: float64
In [32]: type = carDealer["type"].value counts(normalize=True)*100
         print(type)
        type
        Family
                   51.155116
        Sporty
                   33.003300
        Work
                   15.841584
        Name: proportion, dtype: float64
           7. (1 point) Write a summary paragraph describing the customers and cars sold data.
             Round all numbers in this paragraph to nearest integers.
 In [ ]: # Customers
         There are 303 total customers in this data.
         About 65% of those customers are married, and about 34% of them are single.
          Around 54% of customers are Male, and about 46% are female.
         The average age of a customer is around 31 years old, and the youngest car b
         # Cars Sold
          Japanese cars are sold the most, around 49%. American cars are second, with
         Most (45%) of customers buy small cars, 41% buy medium cars, and a small por
         The majority of the cars, 51%, purchased are family cars. Sporty and work ca
           8. (2 points) Create a bargraph that shows the distribution of car type. Your
             bargraph should be similar to the attached bargraph picture on blackboard
             ('CarsTypeDistribution.png'). In particular, make sure to:

    Use default matplotlib plot style

           • Use % for the labels of the y-axis ticks
           • Use lightgrey for the bars color

    Overlay a horizontal line (y=25). The line's style is "dashed", and the color is "blue"

In [45]: import matplotlib.pyplot as plt
          carType = carDealer["type"].value_counts(normalize=True)*100
          plt.bar(carType.index, carType, color="lightgrey")
```

plt.title("Distribution of Cars by Type")

```
yLabel = ["0%", "5%", "10%", "15%", "20%", "25%", "30%", "35%", "40%", "45%"
plt.yticks(range(0,51,5), yLabel)
plt.axhline(y=25, color="blue", linestyle="dashed")
plt.show()
```

Distribution of Cars by Type

