17.5: Divergence and Curl

The idea behind Green's Theorem can be extended from \mathbb{R}^2 to \mathbb{R}^3 . The following tools are needed to accomplish this:

- three-dimensional divergence and curl (17.5)
- surface integrals (17.6)
- Stokes' Theorem (17.7): relates line integrals over a simple closed oriented curve in \mathbb{R}^3 to a double integral over a surface whose boundary is that curve
- Divergence Theorem (17.8): relates integrals over a closed oriented surface in \mathbb{R}^3 to triple integrals over the corresponding region

Divergence:

Recall the del operator ∇ :

$$\nabla = \mathbf{i} \frac{1}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

When f is a scalar valued function, we obtain the gradient:

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k} = \langle f_x, f_y, f_z \rangle$$

The dot product of ∇ and a vector field **F**, produces the three dimensional divergence:

$$\nabla \cdot \mathbf{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle f, g, h \right\rangle = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}$$

Definition. (Divergence of a Vector Field)

The **divergence** of a vector field $\mathbf{F} = \langle f, g, h \rangle$ that is differentiable on a region of \mathbb{R}^3 is

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}.$$

If $\nabla \cdot \mathbf{F} = 0$, the vector field is **source free**.

Example. Compute the divergence of the following vector fields

$$\mathbf{F} = \langle x, -2y, 3z \rangle$$

$$div \vec{F} = \nabla \cdot \vec{F} = \frac{\partial}{\partial x} (x) + \frac{\partial}{\partial y} (-2y) + \frac{\partial}{\partial z} (3z)$$

$$= 1 - z + 3 = \boxed{2}$$

$$\angle C \# I$$

$$\mathbf{F} = \langle 4yz\cos(x), 3xz\tan(y), -5xy\csc(z) \rangle$$

$$\nabla \cdot \vec{F} = -4y z \sin(x) + 3x z \sec^2(y) + 5xy \csc(z) \cot(z)$$

Example. Compute the divergence of the radial vector field

$$\mathbf{F} = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\langle x, y, z \rangle}{\sqrt{x^2 + y^2 + z^2}} = \frac{(\chi^2 + y^2 + z^2)^{1/2}}{(\chi^2 + y^2 + z^2)^{1/2}} = \frac{(\chi^2 + y^2 + z^2)^{1/2}}{\chi^2 + y^2 + z^2} = \frac{(\hat{r}| - \chi^2 + y^2 + z^2)^{1/2}}{|\hat{r}|^2} \left(\frac{|\hat{r}|}{|\hat{r}|}\right)$$

$$= \frac{|\hat{r}|^2 - \chi^2}{|\hat{r}|^3}$$

$$\Rightarrow P.\vec{F} = \frac{|\vec{r}|^2 - \chi^2}{|\vec{r}|^3} + \frac{|\vec{r}|^2 - \gamma^2}{|\vec{r}|^3} + \frac{|\vec{r}|^2 - z^2}{|\vec{r}|^3}$$

$$= \frac{3|\vec{r}|^2 - (\chi^2 + \gamma^2 + z^2)}{|\vec{r}|^3}$$

$$= \frac{3|\vec{r}|^2 - |\vec{r}|^2}{|\vec{r}|^3} = \frac{2}{|\vec{r}|}$$

$$= \frac{3|\vec{r}|^2 - |\vec{r}|^2}{|\vec{r}|^3} = \frac{2}{|\vec{r}|}$$

Theorem 17.10: Divergence of Radial Vector Fields

For a real number p, the divergence of the radial vector field

$$\mathbf{F} = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{p/2}} \quad \text{is} \quad \nabla \cdot \mathbf{F} = \frac{3 - p}{|\mathbf{r}|^p}.$$

Example. Consider the two-dimensional vector field $\mathbf{F} = \langle \underline{x^2, y} \rangle$ and a circle C of radius 2 centered at the origin.

Compute the two-dimensional divergence at Q.

$$div F = \nabla \cdot \vec{F} = 2x + 1$$

$$\nabla \cdot \vec{F} \Big|_{(1,1)} = 3$$

Where is the divergence positive? Negative?

Solve
$$\nabla \cdot \vec{F} = 2x+1 > 0$$
 $\chi > -\frac{1}{2}$ $\nabla \cdot \vec{F} < 0$ $\chi < -\frac{1}{2}$

Where on C is the flux outward? Inward?

outward
$$X > -1$$
 } approx inward $X < -1$

 $\mathbf{F} = \langle x^2, y \rangle \qquad \mathbf{F} = \langle x^2, y \rangle \qquad \mathbf{F}$

Is the net flux across C positive or negative?

flux =
$$\int_{C} f dy - g dx = \iint_{R} \left(f_{x} + g_{y} \right) dA = \int_{0}^{2\pi} \int_{0}^{2} \left(2r \cos \theta + I \right) r dr d\theta$$

$$= \int_{C} \int_{0}^{\pi} ds \qquad R \quad div \vec{F} = \nabla \cdot \vec{F} \qquad = \boxed{4\pi}$$

Curl:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f & g & h \end{vmatrix} = \left\langle \frac{\partial h}{\partial y} - \frac{\partial g}{\partial z}, \frac{\partial f}{\partial z} - \frac{\partial h}{\partial x}, \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right\rangle$$

Definition. (Curl of a Vector Field)

The **curl** of a vector field $\mathbf{F} = \langle f, g, h \rangle$ that is differentiable on a region of \mathbb{R}^3 is

$$\nabla \times \mathbf{F} = \operatorname{curl} \mathbf{F}$$

$$= \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z} \right) \mathbf{i} + \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x} \right) \mathbf{j} + \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \mathbf{k}$$

If $\nabla \times \mathbf{F} = \mathbf{0}$, the vector field is **irrotational**.

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{x} & \hat{j} & \hat{F} \\ 0 & 6 & 6 \\ F_1 & F_2 & 0 \end{vmatrix}$$

Curl of a General Rotation Vector Field

Let
$$\mathbf{F} = \mathbf{a} \times \mathbf{r}$$
, where $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$. Then

$$abla \cdot \mathbf{F} = 0$$
 $abla \times \mathbf{F} = 2\mathbf{a}$
divergence
 $abla \cdot \mathbf{F} = 2\mathbf{a}$

$$\nabla x \vec{F} = 2\vec{a}$$
 $|\nabla x \vec{F}| = 2|\vec{a}|$

General Rotation Vector Field

The **general rotation vector field** is $\mathbf{F} = \mathbf{a} \times \mathbf{r}$, when the nonzero constant vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is the axis of rotation and $\mathbf{r} = \langle x, y, z \rangle$. For all nonzero choices of a, $|\nabla \times \mathbf{F}| = 2|\mathbf{a}|$ and $\nabla \cdot \mathbf{F} = 0$. If \mathbf{F} is a vector field, then the constant angular speed of the field is

$$\omega = |\mathbf{a}| = \frac{1}{2} |\nabla \times \mathbf{F}|.$$

Example. Compute the curl of the rotational field $\mathbf{F} = \mathbf{a} \times \mathbf{r}$, where $\mathbf{a} = \langle -3, 2, 1 \rangle$ and $\mathbf{r} = \langle x, y, z \rangle$. What are the direction and magnitude of the curl?

$$\vec{F} = \vec{\alpha} \times \vec{r} = \left\langle a_z Z - a_3 Y, a_3 X - a_i Z, a_i Y - a_z X \right\rangle$$

$$\begin{vmatrix} \vec{\lambda} & \hat{j} & \hat{k} \\ a_i & a_2 & a_3 \\ X & Y & \xi \end{vmatrix}$$

$$\nabla x \vec{F} = \left\langle \frac{\partial h}{\partial y} - \frac{\partial g}{\partial z}, \frac{\partial f}{\partial z} - \frac{\partial f}{\partial x}, \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right\rangle$$

$$= \left\langle a_1 + a_1, a_2 + a_2, a_3 + a_3 \right\rangle$$

$$= \left\langle 2a_1, 2a_2, 2a_3 \right\rangle$$

$$= 2\vec{a}$$

$$= \left\langle -6, 4, z \right\rangle \leftarrow Direction$$

$$|\nabla x \vec{F}| = |2\vec{z}| = 2\sqrt{g + 4 + 1} = 2\sqrt{14} \leftarrow magnifude$$

Properties of Divergence and Curl:

Divergence Properties

Curl Properties

$$\nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G} \qquad \nabla \times (\mathbf{F} + \mathbf{G}) = (\nabla \times \mathbf{F}) + (\nabla \times \mathbf{G})$$
$$\nabla \cdot (c\mathbf{F}) = c(\nabla \cdot \mathbf{F}) \qquad \nabla \times (c\mathbf{F}) = c(\nabla \times \mathbf{F})$$

Theorem 17.11: Curl of a Conservative Vector Field

Suppose **F** is a conservative vector field on an open region D of \mathbb{R}^3 . Let $\mathbf{F} = \nabla \varphi$, where φ is a potential function with continuous second partial derivatives on D. Then $\nabla \times \mathbf{F} = \nabla \times \nabla_{\varphi} = \mathbf{0}$: The curl of the gradient is the zero vector and **F** is irrotational.

Proof.

$$\nabla \times \mathbf{F} = \nabla \times \nabla \varphi = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \varphi_x & \varphi_y & \varphi_z \end{vmatrix} = \langle \underline{\varphi}_{zy} - \underline{\varphi}_{yz}, \ \varphi_{xz} - \varphi_{zx}, \ \varphi_{yx} - \varphi_{xy} \rangle = \mathbf{0}$$

Theorem 17.12: Divergence of the Curl

Suppose $\mathbf{F} = \langle f, g, h \rangle$, where f, g, and h have continuous second partial derivatives. Then $\nabla \cdot (\nabla \times \mathbf{F}) = 0$: The divergence of the curl is zero.

Proof.

$$\nabla \cdot (\nabla \times \mathbf{F}) = \frac{\partial}{\partial x} \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right)$$
$$= (h_{yx} - h_{xy}) + (g_{xz} - g_{zx}) + (f_{zy} - f_{yz}) = 0$$

The **Laplacian**, denoted $\nabla^2 u$ or Δu , arises from $\nabla \cdot \nabla u$:

$$\nabla \cdot \nabla u = \frac{\partial}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} \frac{\partial u}{\partial y} + \frac{\partial}{\partial z} \frac{\partial u}{\partial z} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

Theorem 17.13: Product Rule for the Divergence

Let u be a scalar-valued function that is differentiable on a region D and let \mathbf{F} be a vector field that is differentiable on D. Then

Stable on
$$D$$
. Then
$$\nabla \cdot (u\mathbf{F}) = \nabla u \cdot \mathbf{F} + u(\nabla \cdot \mathbf{F}).$$

Example. Let $\mathbf{r} = \langle x, y, z \rangle$ and let $\varphi = \frac{1}{|\mathbf{r}|}$ be a potential function.

Find the associated gradient field $\mathbf{F} = \nabla \left(\frac{1}{|\mathbf{r}|} \right) = \nabla \left(\left(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^3 \right)^{-1/2} \right)$

$$\frac{\partial x}{\partial x} = -\frac{1}{2} \left(x_1 + y_1 + z_2 \right)^{-3/2} \left(z x \right) = \frac{\left(x_1 + y_2 + z_3 \right)^{3/2}}{\left| z \right|^3} = \frac{-x}{\left| z \right|^3}$$

$$\vec{F} = -\frac{\langle x, y, z \rangle}{|\vec{r}|^3} = -\frac{\vec{r}}{|\vec{r}|^3}$$

Compute $\nabla \cdot \mathbf{F}$

$$\nabla \cdot \vec{F} = \nabla \cdot \left(\frac{\vec{r}}{|\vec{r}|^3} \right) = -\nabla \frac{1}{|\vec{r}|^3} \cdot \vec{r} - \frac{1}{|\vec{r}|^3} \left(\nabla \cdot \vec{r} \right)$$

$$\frac{\vec{r} \cdot \vec{r}}{|\vec{r}|^5} = \frac{|\vec{r}|^2}{|\vec{r}|^5} = \frac{1}{|\vec{r}|^3} = \frac{3\vec{r}}{|\vec{r}|^3} \cdot \vec{r} - \frac{3}{|\vec{r}|^3} = 0$$

Properties of a Conservative Vector Field

Let \mathbf{F} be a conservative vector field whose components have continuous second partial derivatives on an open connected region D in \mathbb{R}^3 . Then \mathbf{F} has the following equivalent properties.

- 1. There exists a potential function φ such that $\mathbf{F} = \nabla_{\varphi}$ (definition).
- 2. $\int_C \mathbf{F} \cdot d\mathbf{r} = \varphi(B) \varphi(A)$ for all points A and B in D and all piecewise smooth oriented curves C in D from A to B.
- 3. $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all simple piecewise-smooth closed oriented curves C in D.
- 4. $\nabla \times \mathbf{F} = \mathbf{0}$ at all points of D.