2021 University/College IC Design Contest

研究所類標準元件數位電路設計

Geofence

1.問題描述

請完成一地理圍籬(geofence)系統,本系統使用 6 顆接收器在平面上建構出虛擬圍籬,每顆接收器可測量出自己和待測物體之間的距離,地理圍籬系統依此資訊計算出待測物體是在圍籬內或圍籬外。

本次 IC 設計競賽比賽時間為上午 08:30 到下午 20:30。當 IC 設計競賽結束後,會根據第 三節中的評分標準進行評分。為了評分作業的方便,各參賽隊伍應參考附錄五中所列的要求, 附上評分所需要的檔案。

2.設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

Signal Name	I/O	Width	Simple Description
clk	I	1	本系統為同步於時脈正緣之同步設計。
reset	I	1	高位準非同步(active high asynchronous)之系統重置信
			號。
X	I	10	接收器之x座標
Y	I	10	接收器之 y 座標
R	I	11	接收器和待測物體之距離
is_inside	О	1	當待測物體在圍籬內,回應 is_inside 為 high,反之為 low
valid	О	1	有效的輸出訊號。當 valid 為 High,表示目前輸出的
			is_valid 為有效的輸出。

表 1-輸入/輸出訊號

2.3 系統描述

2.3.1 資料輸入與結果輸出

- 此圍籬系統共使用 6 顆接收器,每顆接收器儲存自己的座標(X,Y),以及自己和待測物體之間的距離 R,因此每一待測物體會有 6 組相關資料。
- 系統 reset 後 6 個 cycle 依續從 X、Y、R 三個 port 輸入 6 顆接收器資料至圍籬系統。
- Host 輸入完 6 組資料後即開始等待圍籬系統回應,當圍籬系統計算完成,須將 valid 訊號 拉為 High,並在同一 cycle 從 is inside 輸出計算結果,接著在下一 cycle 將 valid 拉回 low。
- valid 變成 low 後, Host 會從下一 cycle 開始輸入下一待測物體的內容,依續輸入下 6 筆接收器資料,然後再度進入等待回應狀態。
- 前後兩筆待測物體資料互不相關,不論是接收器座標(X,Y)或是距離R,應以全新場景看待。
- 為避免 Host 誤判輸出資料,系統 reset 時,圍籬系統應將 valid 設為 low,並且在每次輸出 結果後,將 valid 再復歸為 low。

圖三、資料輸入與結果輸出

2.3.2 建立圍籬

此圍籬系統有 6 顆接收器,但接收器資料輸入的順序並沒有照著圍離順序,為了達到系統功能,必須找到正確圍離邊界,也就是說要找到圍籬上正確的接收器順序。

圖四、接收器輸入順序未依圍籬順序

要排序接收器順序,可將其中一接收器作為原點,和其它5接收器形成5向量(圖五); 利用計算向量外積判斷兩向量方向關係,進行排序讓前後向量固定維持順時針或逆時針關係, 然後可得圍籬順序。

向量外積計算(請見圖六):

若有兩向量,向量 A=(Ax ,Ay)=(x1-x0 ,y1-y0),向量 B=(Bx ,By)=(x2-x0 ,y2-y0), A 和 B 外積 =Ax*By-Bx*Ay,

若外積結果<0,表示B在A順時針方向(A到B順時針夾角<180°),反之為逆時針方向。

2.3.3 判斷待測物體是否在圍籬內

要判斷待測物體是否在圍籬內,可用計算面積方法判斷。計算待測物體和任一圍籬邊界 所形在的三角形面積,把6個三角形的面積加總起來;若總和大於圍籬6邊形面積,表示待 測物體在圍籬外,反之則是在圍籬內。

相關公式:

已知三角形三邊邊長為 $a \cdot b \cdot c$, 取 $s = \frac{1}{2}(a + b + c)$

則三角形面積=
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{s(s-a)} * \sqrt{(s-b)(s-c)}$

分拆兩平方根計算的原因是直接做 40 bits 平方根電路面積太大,分兩個 20bits 平方 根電路可減少面積,但會犧牲精確度。

若三頂點接近共線,因為運算上截斷誤差(truncation error)的關係,有可能會出現平方 根內的值是負數的狀況,此時需增加判斷處理。

2. 已知一多邊形,其頂點依逆時針排列座標為 (x_0, y_0) 、 (x_1, y_1) ... (x_{n-1}, y_{n-1}) ,

則此多邊形面積=
$$\frac{1}{2} \begin{pmatrix} \begin{vmatrix} x_0 & x_1 \\ y_0 & y_1 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \dots + \begin{vmatrix} x_{n-1} & x_0 \\ y_{n-1} & y_0 \end{vmatrix} \end{pmatrix}$$

$$= \frac{1}{2} \left((x_0 y_1 - x_1 y_0) + (x_1 y_2 - x_2 y_1) + \dots + (x_{n-1} y_0 - x_0 y_{n-1}) \right)$$

以 n=6 為例,6 邊形面積=

$$\frac{1}{2}((x_0y_1-x_1y_0)+(x_1y_2-x_2y_1)+(x_2y_3-x_3y_2)+(x_3y_4-x_4y_3)+(x_4y_5-x_5y_4)+(x_5y_0-x_0y_5))$$
若頂點順序為順時針,則上式為負值。

特別注意:

- 1. 本題 test pattern 的接收器座標只會形成凸六邊形的圍籬,不須考慮凹六邊形或是三接收器共線的狀況。
- 2. 考慮到運算誤差, test pattern 的待測物體距離圍籬邊界距離都超過5單位距離以上, 減少因運算誤差造成的問題。
- 題目內所提供建立圍籬和判斷待測物體在圍籬內外的方法,非唯一方法,只要能完成功能,不限定一定要使用題目的方法。
- 4. 待測物體和接收器的距離 R, 因取整數原因, R本身有小於 1 單位距離的誤差, 如果您要使用其它作法, 請考量到這個狀況。
- 5. 設計必須確實完成題目功能, <mark>嚴禁針對題目 test pattern 特定內容做設計</mark>, 比如設計中判斷 pattern 為某固定數值,或是判斷第 n 個 pattern 直接設定輸出結果等。如經發現一律不予錄取。
- 6. 若您使用到合成軟體提供的 DesignWare,請將 DesignWare 的 simulation model 一併繳交,方便評審人員模擬驗證。
- 7. 本題目主要以面積做評分,請盡可能減少暫存器數量,以及共用運算單元,來達到 最小面積的目標。

3.評分標準

評分方式會依設計完成程度,分成 A、B、C、D 四種等級,排名順序為 A>B>C>D。本題設定 clock 週期時間為 50ns,參賽者不可調整 clock 週期時間。

◆ 等級 A: 等級 A 條件:

- a、 在 clock 週期為 50ns 環境下, Gate-Level 與 RTL 模擬完全正確。
- b、 完成 Synthesis, 且合成 cell area 小於 110000um²。

等級 A 之評分方法:

依繳交時間由早到晚排序。

- a、 在 clock 週期為 50ns 環境下, Gate-Level 與 RTL 模擬完全正確。
- b、 完成 Synthesis, 但合成 cell area 大於 110000um²

等級 B 之評分方法:

依合成面積由小到大排序。

Design compile report area 範例:

dc_shell> report_area

 Combinational area:
 41975.005127

 Buf/Inv area:
 2082.709759

 Noncombinational area:
 8700.872564

 Macro/Black Box area:
 0.000000

 Net Interconnect area:
 384301.939301

Total cell area: 50675.877691
Total area: 434977.816992

◇ 等級 C: 等級 C 條件:

a、 在 clock 週期為 50ns 的條件下,無法正確模擬, 但調整 clock 週期超過 50ns 時, Gate-Level 與 RTL 模擬正確。

等級 C 之評分方法:

依合成面積由小到大排序。

◆ 等級 D: 等級 D 條件:

b、 RTL 模擬有部分錯誤。

等級 D 之評分方法:

依正確的物件數量排序。

-- Simulation finish, Pass = 34 , Fail = 16 --

附錄

附錄一為設計檔案說明;附錄二為測試樣本圖形;附錄三為評分用檔案,亦即參賽者必 須繳交的檔案資料;附錄四則為設計檔案壓縮整理步驟說明;

附錄一 設計檔案說明

1. 下表為主辦單位所提供各參賽者的設計檔

表 2、設計檔案說明

檔名	說明
geofence.v	参賽者所使用的設計檔,已包含系統輸出入埠宣告。
tb.sv	Test Bench 檔案。
grad.data	Test Pattern 資料
.synopsys_dc.setup	使用 Design Compiler 做合成之初始化設定檔。參賽
synopsys_dc.setup	者請依 Library 實際擺放位置,自行修改 Search Path
	的設定。注意:合成時請使用 worst case library。
geofence.sdc	Design Compiler 作合成之 Constraint 檔案。
report.000	report 檔格式,見附錄三。
dc_syn.tcl	dc 合成參考指令
ncvlog.f	ncverilog 模擬參考參數檔案。
vcs.cmd	vcs 模擬參考指令
pic*.png	模擬樣本的圖形

2. 請使用 geofence.v 行設計。其模組名稱、輸出/入埠宣告如下所示:

module geofence (clk, reset, X, Y, R, valid, is_inside);

input clk;
input reset;
input [9:0] X;
input [9:0] Y;
input [10:0] R;
output valid;
output is_inside;

endmodule

3. 本題所提供的 Test Bench 檔案,有多增加幾行特別用途的敘述如下:

`define End_CYCLE 1000000

`define SDFFILE "./geofence_syn.sdf"

`ifdef SDF

initial \$sdf_annotate(`SDFFILE, u_geofence);

`endif

註:

- 1. Testbench(tb.sv)以 system verilog 格式撰寫,使用 ncverilog 模擬時請加入-sv 參數;使用 vcs 模擬時請加入-sverilog 參數。
- 2. End_CYCLE 預設 100 萬個 Cycles,其目的可以防止參賽者因電路有錯,模擬陷入無窮回圈之境,參賽者可視需要請自行加大此 Cycle 數。
- 3. SDF檔案,請自行修改 SDF實際檔名及路徑後再模擬。
- 4. 在 Test Bench 中,主辦單位提供 `ifdef SDF 的描述,其目的是讓本 Test Bench 可以作為 RTL 模擬與合成後模擬皆可使用。注意:當參賽者在合成後模擬,請務必多加一個參數"+define+SDF",方可順利模擬。

例如:

當合成後,使用 NC-Verilog 模擬,在 UNIX terminal 下執行下面指令

> neverilog -sv tb.sv geofence_syn.v \

+ncmaxdelays +define+SDF +access+r -v tsmc13_neg.v

當合成後,使用 VCS 模擬,在 UNIX teriminal 下執行下面指令

> vcs -R -full64 -sverilog tb.sv geofence_syn.v \

+maxdelays +define+SDF +access+r +vcs+fsdbon -v tsmc13_neg.v

5. 請盡可能直接在 linux 環境將設計檔解開,避免在 window 環境解壓縮後才 ftp 傳至 linux 環境,以免因 ftp 在兩系統間置換換行符號不正確造成 testbench 無法模擬的問題。

附錄二 測試樣本

依模擬順序,待測物體編號由1編到50號, 物件381012161720343840444647,請參考測試樣本圖一

測試樣本圖一

物件 14 21 25 26 29 33 39 41 42 43 48 49 50, 請參考測試樣本圖二

測試樣本圖二

物件 9 11 13 18 19 24 28 31 32 35 37 45, 請參考測試樣本圖三

測試樣本圖三

物件 1 2 4 5 6 7 15 22 23 27 30 36,請參考測試樣本圖四

測試樣本圖四

附錄三 評分用檔案

評分所須檔案可以下幾個部份:

- (1) <u>RTL design</u>,即各参賽隊伍對該次競賽設計的 RTL code,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放進來,以免評審進行評分時,無法進行模擬;
- (2) Gate-Level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF 檔;
- (3) report file, 參賽隊伍必須依照自己的設計內容,撰寫 report.000 檔,以方便主辦單位進行評分,report.000 的格式如下圖所示。(report 檔以後三碼序號表示版本,若繳交檔案更新版本,則新版的 report 檔的檔名為 report.001,依此類推)
- (4) 若您使用到合成軟體提供的 DesignWare, 請將 DesignWare 的 simulation model 一併繳交,方便評審人員模擬驗證。

表3、繳交檔案

, 4-52-14-71						
RTL category						
Design Stage	File	Description				
N/A	N/A	Design Report Form				
RTL Simulation	*.v or *.vhd	Verilog (or VHDL) synthesizable RTL code				
Gate-Level category						
Design Stage	File	Description				
Pre-layout	*_syn.v	Verilog gate-level netlist				
Gate-level	* arm adf	Pre-layout gate-level sdf				
Simulation	*_syn.sdf					

report 檔

FTP account: B21xxx, FTP 帳號

Level: A/B/C/D 設計完成等級

Object pass number: 50, 模擬完後,計算正確的物件數量

Synthesis area: 120000, 合成 report 的 cell area

--- RTL category---

HDL simulator: ncverilog/vcs, 使用之 HDL 模擬器名稱

RTL filename: geofence.v, RTL 檔案名稱以及使用到的子模組檔案...

--- Pre-layout gate-level ---

gate_level filename: geofence_syn.v, gate-level 檔案名稱 gate-level sdf filename: geofence_syn.sdf, sdf 檔案名稱

附錄四 檔案壓縮整理步驟

當所有的文件準備齊全如表 4 所列,均需要提交至 TSRI。請按照以下的步驟指令,提交相關設計檔案,將所有檔案複製至同一個資料夾下壓縮,步驟如下:

- 1. 建立一個 result_xxx 資料夾。其中"xxx"表示繳交版本。例如 "000" 表示為第一次上傳; "001"表示為第二度上傳;002 表示為第三度上傳,以此類推...。
 - > mkdir result_000
- 2. 將附錄四要求的檔案複製到 result_xxx 這個目錄。例如:
 - > cp geofence.v result_000
 - > cp geofence_syn.v result_000
 - > cp report.000 result_000

.

- 3. 執行 tar 指令將 result_xxx 資料夾包裝起來, tar 的指令範例如下:
 - > tar cvf result_000.tar result_000

執行完後應該會得到 result_000.tar 的檔案

4. 使用 ftp 將 result_xxx.tar 上傳至 TSRI 提供的 ftp server, 評審將以最後上傳的設計檔編號 進行評分作業。

上傳之 FTP 需切換為二進制模式(binary mode),且傳輸埠均設為 21(port:21)。

ftp 的帳號和密碼在賽前已用 email 寄給各參賽者。若有任何問題,請聯絡 TSRI

FTP site1 (新竹半導體中心): iccftp.tsri.org.tw (140.126.24.18)

FTP site2 (南區半導體中心): iccftp2.tsri.org.tw(140.110.117.9)

EDA Cloud內請見開啟terminal時訊息

5. 若需要繳交更新版本,請重覆以上步驟,並記得修改 tar 檔的版本編號,因為您無法修改 或刪除或覆蓋之前上傳的資料。