Arithmétique

Divisibilité dans Z.

Soient a et b deux entiers relatifs, b étant non nul. On dit que b divise a si et seulement si il existe un entier relatif k tel que a=kb. La phrase « a divise b » se note a|b.

Propriétés.

- Pour tout entier relatif non nul a. ala.
- Pour tous entiers relatifs non nuls a, b et c, si a | b et b | c alors a | c.
- Soient a, b et c trois entiers relatifs, a étant non nul. Si a | b et a | c, a lors pour tous entiers relatifs λ et μ, a | (λb+μc).

Division euclidienne dans \mathbb{Z} . Soient a et b deux entiers naturels, b étant non nul. Il existe un couple (q, r) d'entiers naturels et un seul tel que a = bq + r et $r < b \le q$ est le quotient et r le reste de la division euclidienne de a par b.

Congruences dans \mathbb{Z} . Soit n un entier naturel supérieur ou égal à 2. Soient a et b deux entiers relatifs. On dit que a est congru à b modulo n si et seulement si b – a est divisible par n. On écrit dans ce cas a = b (n) ou a = b (modulo n).

Propriétés. Soit n un entier relatif supérieur ou égal à 2.

- Pour tout entier relatif a, $a \equiv a$ (n).
- Pour tous entiers relatifs a et b, si $a \equiv b$ (n) alors $b \equiv a$ (n).
- Pour tous entiers relatifs a, b et c, si a \equiv b (n) et b \equiv c (n) alors a \equiv c (n).
- (Compatibilité avec l'addition) Pour tous entiers relatifs a, b et c, si $a \equiv b$ (n) alors $a + c \equiv b + c$ (n).
- (Compatibilité avec la multiplication) Pour tous entiers relatifs a, b et c, si a = b (n) alors $a \times c = b \times c$ (n).

Nombres premiers. Décomposition en facteurs premiers.

Soit n un entier supérieur ou égal à 2, n est premier si et seulement si n admet exactement deux diviseurs à savoir 1 et n. Il existe une infinité de nombres premiers.

Théorème fondamental de l'arithmétique. Tout entier naturel supérieur ou égal à 2 se décompose en produit de nombres premiers. Cette décomposition est unique à l'ordre près des facteurs.

PPCM, PGCD. Soient a et b deux entiers naturels supérieurs ou égaux à 2.

On suppose que $a = p_1^{\alpha 1} \times p_2^{\alpha 2} \times \cdots \times p_n^{\alpha n}$, $b = p_1^{\beta 1} \times p_2^{\beta 2} \times \cdots \times p_n^{\beta n}$ avec $p_1 < p_2 < \cdots < p_n$ où p_1, \ldots, p_k sont k nombres premiers deux à deux distincts et $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k$ sont des entiers naturels.

On note m_1 le plus petit des deux nombres α_1 et β_1 et M_1 le plus grand. On note m_2 le plus petit des deux nombres α_2 et β_2 et M_2 le plus grand. . . Le PGCD (plus grand commun diviseur) de a et b est $p_1^{m_1}$ 1. . . . $p_k^{m_k}$ K et le PPCM (plus petit commun multiple) de a et b est $p_1^{M_1}$. . . $p_k^{M_k}$.

Exemple. $48 = 2^4 \times 3$ et $36 = 2^2 \times 3^2$. Donc PGCD(36, 48) = $2^2 \times 3 = 12$ et PPCM(36, 48) = $2^4 \times 3^2 = 144$.

 $\forall (a, b) \in \mathbb{Z}^* \times \mathbb{Z}^*, PPCM(a, b) = PPCM(|a|, |b|)$

 $\forall (a, b) \in IN^* \times IN^*, PPCM(a, b) = a \iff a \in b \mathbb{Z}$

 $\forall (a, b) \in IN^* \times IN^*, max(a, b) \leqslant PPCM(a, b) \leqslant a \times b$

Soit (a, b) \in IN* × IN*, et μ = PPCM(a , b) On a ; a $\mathbb{Z} \cap$ b \mathbb{Z} = μ \mathbb{Z}

 $\forall (a, b, k) \in (IN^*)^3$, PPCM(k × a , k × b) = k × PPCM(a , b)

Pour tout couple $(a, b) \in \mathbb{Z}^* \times \mathbb{Z}^*$, on a : PGCD(a, b) × PPCM(a, b) = $|a| \times |b|$,

Si a et b sont premiers entre eux, alors PPCM(a,b) = PPCM(|a|,|b|)

Algorithme d'Euclide. On a le résultat préliminaire suivant : si a et b sont deux entiers naturels non nuls tels que b < a et si a = bq + r où q et r sont deux entiers naturels tels que $0 \le r < b$, alors PGCD(a, b)=PGCD(b,r).

On veut maintenant le PGCD de a et de b.

On pose la division euclidienne de a par b. Si r = 0, le PGCD de a et de b est r0 = r.

Sinon, on pose la division euclidienne de b par $r_0 = r$: $b = qr + r_1$ avec $0 \le r_1 < r_0$. Si $r_1 = 0$ le PGCD de b et de r_0 est r_0 et donc le PGCD de a et de b est r_0 .

Sinon, on pose la division euclidienne de r_0 par r_1 . . .

Cet algorithme s'arrête quand on trouve un reste nul, ce qui se produit toujours. Le PGCD de a et b est le dernier reste non nul

Théorème de Bézout. Soient a et b deux entiers relatifs non nuls.

a et b sont premiers entre eux si et seulement s'il existe deux entiers relatifs u et v tels que au +bv=1.

Théorème de Gauss. Soient a, b et c trois entiers relatifs, a et b étant non nuls.

Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

Anneau (ℤ /n ℤ,+,×)

On dit qu'un anneau commutatif A est intègre si et seulement si $\forall x \in A, \forall y \in A; x \times y = 0 \Rightarrow x = 0$ ou y = 0.

Soit $(n, p) \in IN$, Si $n \ge 2$ et $1 , p est inversible dans <math>\mathbb{Z} / n$ $\mathbb{Z} \iff PGCD(n, p) = 1$

Soit a, b, c $\in \mathbb{Z}$. S'il existe u $\in \mathbb{Z}$ tel que ua $\equiv 1 [n]$ alors ab \equiv ac $[n] \Rightarrow$ b \equiv c [n]

Soit $a \in \mathbb{Z}$. Il existe $u \in \mathbb{Z}$ tel que $au \equiv 1$ [n] si et seulement si PGCD(a, n) = 1, c'est-à-dire a et n sont premiers entre eux.