Clusters of New York City

Coursera Capstone Project Report By Xuemei Xu

Introduction

Background

As one of the cosmopolitan cities in the world, New York City has the largest population, is the most diverse city, and the highest GDP in the USA. With these characteristics, New York City becomes a dream city to start a new business. In New York City, if people take enough efforts to work hard for their goals, there will always be a path to success.

Problem

However, before starting any business, vendors need to understand the environment of the neighborhood where they are going to open their businesses, it does not matter if vendors want to open a restaurant, a gym or any other small businesses. For example, which neighborhoods are good to open a gym?

This project will analyze neighbourhoods of 5 boroughs in New York City and help people who want to open a small business find out go-to neighbourhoods whenever they are looking for a specific type of business.

Stakeholders

Since the project will explore and analyze neighbourhoods in New York City, the target stakeholders can be current residents of New York City, tourists who are planning to come to or currently in New York City, any individual wants to start a new business and organizations that are aiming to conduct any market research about different clusters of neighborhoods.

From this project, stakeholders can have an idea of which neighbourhoods are known for what kind of characteristics in order to save their time of researching, and have an overall view of the distribution of different clusters in New York City.

Data

Data Description

Two datasets will be used in this project.

One is the dataset of New York City boroughs and neighborhoods. This dataset will help to provide information of all neighborhoods and each neighborhood belongs to which borough. From this information, we can know the places we are going to analyze. It's the basic information the project needs. For example, below is a part of the New York City neighborhoods chart. (Information will be called from newyork_data json file). In the json file, we can also get location data (latitude and longitude) of each neighborhood. Latitude and longitude information can help to explore neighborhoods based on the other dataset mentioned next.

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585

The other one is the dataset of New York City neighborhoods. This dataset is the main part of this project. Based on the above location data, we can explore restaurants in neighborhoods by using FourSquare API, a location provider. For example, we can explore the neighborhood in Allenton based on its location data. The results will have the venue names, latitudes and longitudes, and categories. After getting the results, we can analyze what kinds of categories have the top frequency in this neighborhood.

	Borough	Neighbourhood	Latitude	Longitude	VenueName	VenueLatitude	VenueLongitude	VenueCategory
0	Bronx	Allerton	40.865788	-73.859319	Domenick's Pizzeria	40.865576	-73.858124	Pizza Place
1	Bronx	Allerton	40.865788	-73.859319	Bronx Martial Arts Academy	40.865721	-73.857529	Martial Arts Dojo
2	Bronx	Allerton	40.865788	-73.859319	White Castle	40.866065	-73.862307	Fast Food Restaurant
3	Bronx	Allerton	40.865788	-73.859319	Dunkin'	40.865204	-73.859007	Donut Shop
4	Bronx	Allerton	40.865788	-73.859319	Sal & Doms Bakery	40.865377	-73.855236	Dessert Shop

Data Sources

New York City neighborhoods dataset will be retrieved from a json file: 'newyork_data.json' https://cocl.us/new_york_dataset.

Location and restaurants data will be called from FourSquare API: https://foursquare.com/developers/apps

Methodology

Exploratory Data Analysis

To achieve the project goal, firstly, we need to download the New York City neighborhoods information. From the previous courses, there is a New York City json dataset, named "new york_data.json" retrieved from https://cocl.us/new_york_dataset. Once getting the dataset, we can analyze how the dataset looks, which is below:

```
{ 'type': 'Feature',
  id': 'nyu 2451 34572.1',
 geometry': { 'type': 'Point',
  'coordinates': [-73.84720052054902, 40.89470517661]},
 'geometry name': 'geom',
 'properties': {'name': 'Wakefield',
  'stacked': 1,
  'annolinel': 'Wakefield',
  'annoline2': None,
  'annoline3': None,
  'annoangle': 0.0,
  'borough': 'Bronx',
  'bbox': [-73.84720052054902,
  40.89470517661,
  -73.84720052054902,
  40.89470517661]}}
```

Since we cannot analyze the data in above format, we need to transform the dataset into pandas dataframe. But not all the information is needed. The main necessary features are borough, neighborhood, latitude and longitude. The transformed and cleaned final data frame looks like below:

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585

The next step is to explore each neighborhood and analyze how kinds of places and stores are in the neighborhoods. The results (venues) are called by accessing FourSquare API. To access FourSquare API, client ID and secret are needed to generate URLs. After creating a FourSquare API account, each account has its unique ID and secret. Below is how the venues are called.

```
radius = 500
LIMIT = 100

venues = []

for lat, long, borough, neighbourhood in zip(nyc_df['Latitude'], nyc_df['Longitude'], nyc_df
['Borough'], nyc_df['Neighborhood']):
    url = "https://api.foursquare.com/v2/venues/explore?client_id={}&client_secret={}&v={}&ll=
{},{}&radius={}&limit={}".format(
    CLIENT_ID,
    CLIENT_SECRET,
    VERSION,
    lat,
    long,
    radius,
    LIMIT)

results = requests.get(url).json()["response"]['groups'][0]['items']
```

Total called venues are 9,874 in 306 neighborhoods, 5 boroughs. The results are also in json format and need to be transformed into pandas data frame to analyze. The major features we need here are venues' names, latitude, longitude and categories. After the transforming and cleaning processes, examples look like below:

	<pre>print(venues_df.shape) venues_df.head()</pre>														
:	(9	9874, 8)													
		Borough	Neighbourhood	Latitude	Longitude	VenueName	VenueLatitude	VenueLongitude	VenueCategory						
	0	Bronx	Allerton	40.865788	-73.859319	Domenick's Pizzeria	40.865576	-73.858124	Pizza Place						
	1	Bronx	Allerton	40.865788	-73.859319	Bronx Martial Arts Academy	40.865721	-73.857529	Martial Arts Dojo						
	2	Bronx	Allerton	40.865788	-73.859319	White Castle	40.866065	-73.862307	Fast Food Restaurant						
	3	Bronx	Allerton	40.865788	-73.859319	Dunkin'	40.865204	-73.859007	Donut Shop						
	4	Bronx	Allerton	40.865788	-73.859319	Sal & Doms Bakery	40.865377	-73.855236	Dessert Shop						

Finally, to analyze venues' categories in the next step, one hot function is used to transform strings to numeric variables. By using numeric variables, it's easier for us to count the frequency of each category in each neighborhood. As below, each category is converted to integer.

	Borough	Neighbourhood	Accessories Store	Adult Boutique	Afghan Restaurant	African Restaurant	Airport Terminal	American Restaurant		Antique Shop	 Warehouse Store	Waste Facility	Waterfront	Weight Loss Center	WI
0	Bronx	Allerton	0	0	0	0	0	0	0	0	 0	0	0	0	
1	Bronx	Allerton	0	0	0	0	0	0	0	0	 0	0	0	0	
2	Bronx	Allerton	0	0	0	0	0	0	0	0	 0	0	0	0	
3	Bronx	Allerton	0	0	0	0	0	0	0	0	 0	0	0	0	
4	Bronx	Allerton	0	0	0	0	0	0	0	0	 0	0	0	0	

5 rows × 432 columns

Then, we can count the categories that have the top frequency. Due to high volume of result, we decided to retrieve the top five categories in each neighborhood as below:

	Borough	Neighbourhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
229	Queens	Rosedale	Accessories Store	Liquor Store	Bus Station	Supermarket	Caribbean Restaurant
124	Manhattan	Central Harlem	African Restaurant	Cosmetics Shop	Art Gallery	French Restaurant	American Restaurant
125	Manhattan	Chelsea	Art Gallery	Coffee Shop	Café	Ice Cream Shop	American Restaurant
109	Brooklyn	Red Hook	Art Gallery	Seafood Restaurant	Park	Bar	American Restaurant
192	Queens	Glendale	Arts & Crafts Store	Brewery	Bus Station	Food & Drink Shop	Pizza Place

Machine Learning Model

With the above chart, we are ready to prepare all the data we need to analyze neighborhoods in New York City. In order to segment neighborhoods into different clusters, we used K-means clustering, which is an unsupervised machine learning algorithm. Based on labs we did in previous courses, the number of clusters sets is 4. Below is how we generated clusters.

```
from sklearn.cluster import KMeans
kclusters = 4

nyc_cluster = nyc_grouped.drop(['Borough', 'Neighbourhood'], 1)
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(nyc_cluster)
nyc_merged = nyc_df
neighborhoods_venues_sorted.insert(0, 'Cluster Label', kmeans.labels_)

nyc_merged = nyc_merged.join(neighborhoods_venues_sorted.drop(
    ['Borough', 'Neighbourhood'], 1))
nyc_merged.sort_values(['Cluster Label'] + freqColumns, inplace=True)
```

After generating the clusters, we need to insert the cluster results to the chart of our venues_df data frame so that we can clearly visualize each neighborhood belonging to which cluster, as below:

	Borough	Neighborhood	Latitude	Longitude	Cluster Label	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
181	Queens	Douglaston	40.766846	-73.742498	0	Deli / Bodega	Bank	Bakery	Lounge	Diner
56	Brooklyn	Bergen Beach	40.615150	-73.898556	0	Harbor / Marina	Baseball Field	Park	Playground	Donut Shop
300	Staten Island	Tottenville	40.505334	-74.246569	0	Hotel	Bowling Alley	Spanish Restaurant	Gym	Deli / Bodega
82	Brooklyn	Fort Greene	40.688527	-73.972906	0	Italian Restaurant	Flower Shop	Wine Shop	Coffee Shop	Theater
224	Queens	Richmond Hill	40.697947	-73.831833	0	Latin American	Bank	Lounge	Pizza Place	Bus Station

Results

Based on above information, New York City Neighborhoods are segmented into 4 different clusters below.

Cluster 0 (Red)

From "1st common venue" to "5th common venue", except some restaurants, there are various kinds of places for entertainment, such as beach, bowling alley, lounge, theater, bar, night club, etc. These neighborhoods can be summarized as entertainment areas, which most likely weekend-to-go neighborhoods.

	Borough	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
303	Staten Island	Westerleigh	Convenience Store	Arcade	Dive Bar	Yoga Studio	Flea Market
6	Bronx	City Island	Harbor / Marina	Seafood Restaurant	Thrift / Vintage Store	Park	Pharmacy
209	Queens	Long Island City	Hotel	Coffee Shop	Pizza Place	Mexican Restaurant	Bar
65	Brooklyn	Carroll Gardens	Italian Restaurant	Coffee Shop	Pizza Place	Cocktail Bar	Bakery
213	Queens	Murray Hill	Korean Restaurant	Supermarket	Coffee Shop	Bar	Bank
163	Queens	Astoria	Middle Eastern Restaurant	Bar	Greek Restaurant	Hookah Bar	Bakery
18	Bronx	Fordham	Mobile Phone Shop	Fast Food Restaurant	Donut Shop	Spanish Restaurant	Shoe Store
115	Brooklyn	Starrett City	Moving Target	Supermarket	Donut Shop	Caribbean Restaurant	Convenience Store
256	Staten Island	Dongan Hills	Pizza Place	Italian Restaurant	Pharmacy	Tattoo Parlor	Bar
262	Staten Island	Graniteville	Sandwich Place	Food Truck	Boat or Ferry	Grocery Store	Yoga Studio

Cluster 1 (Purple)

Cluster 1 has the largest volume of the results. In order to analyze this cluster better, we calculated the top 10 frequently occurred categories as below:

Deli / Bodega	26
Italian Restaurant	24
Pizza Place	24
Coffee Shop	16
Park	14
Chinese Restaurant	13
Pharmacy	12
Bar	12
Bus Stop	9
Donut Shop	9
Caribbean Restaurant	8

Name: 1st Most Common Venue, dtype: int64

Except the most commonly occurred restaurants, there are mainly coffee shops, parks, deli, donut shops and pharmacies. All kinds of categories occur evenly in this cluster, which can be regarded as neighborhoods for living and business. These neighborhoods are active neighborhoods in each borough.

Cluster 2 (Light Blue)

In cluster 2, there are various kinds of food. For example, there are restaurants in different cuisines, such as ramen, steakhouse, spanish food, mexican food, breakfast stores, etc. For breakfast, there are bakeries, cafes, coffee shops, and donut shops. This cluster's categories are mainly food.

	Borough	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
136	Manhattan	Hudson Yards	Hotel	Italian Restaurant	American Restaurant	Gym / Fitness Center	Café
74	Brooklyn	Dumbo	Park	Scenic Lookout	Coffee Shop	Yoga Studio	Ice Cream Shop
244	Staten Island	Arden Heights	Pharmacy	Coffee Shop	Pizza Place	Lawyer	Filipino Restaurant
52	Brooklyn	Bath Beach	Pharmacy	Dessert Shop	Pizza Place	Chinese Restaurant	Bubble Tea Shop
40	Bronx	Schuylerville	Pharmacy	Diner	Bar	Bank	Pizza Place
47	Bronx	Wakefield	Pharmacy	Food	Gas Station	Donut Shop	Pizza Place
19	Bronx	High Bridge	Pharmacy	Pizza Place	Bus Station	Food	Chinese Restaurant
70	Brooklyn	Crown Heights	Pizza Place	Café	Museum	Deli / Bodega	Bus Station
130	Manhattan	East Village	Pizza Place	Cocktail Bar	Coffee Shop	Ramen Restaurant	Vietnamese Restaurant
54	Brooklyn	Bedford Stuyvesant	Pizza Place	Coffee Shop	Bar	Café	Japanese Restaurant
26	Bronx	Morris Park	Pizza Place	Deli / Bodega	Bakery	Burger Joint	Donut Shop
46	Bronx	Van Nest	Pizza Place	Deli / Bodega	Coffee Shop	Bus Stop	Middle Eastern Restaurant

Cluster 3 (Yellow)

Cluster 3 has the fewest results in four clusters. The most categories belong to exercises. For example, except some food related categories, there are gym/fitness center, pool and pilates studio. These neighborhoods can be summarized as gym centers.

	Borough	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
93	Brooklyn	Madison	Bagel Shop	Spa	Restaurant	Pilates Studio	Dessert Shop
83	Brooklyn	Fort Hamilton	Gym / Fitness Center	Chinese Restaurant	Sandwich Place	Italian Restaurant	Pizza Place
8	Bronx	Clason Point	Park	Bus Stop	Boat or Ferry	Pool	Grocery Store
92	Brooklyn	Kensington	Thai Restaurant	Grocery Store	Ice Cream Shop	Sandwich Place	Pizza Place

Discussion

Observation

To visualize how each cluster is distributed, we used Folium library to map four clusters at top of New York City map as below:

Neighborhoods in cluster 1 (purple) are evenly spreaded in each borough. In these neighborhoods, categories are integrated. It can be considered as residential areas, and also can be seen as business centers. There are food places, parks, public transportations, grocery stores, shopping centers, etc.

Cluster 0 (red) is mainly located in the border of each borough, which is mostly next to the river or ocean and accords with American lifestyle. Most neighborhoods in cluster 3 (yellow) are in Brooklyn borough, which means residents in Brooklyn are more likely to work out.

Neighborhoods in cluster 2 (light blue) are located in four different boroughs. Queens borough has no cluster 2 neighborhoods. Queens borough has a large population and can be a potential opportunity for new food businesses.

Recommendation

Due to a large population, each borough in New York City has lots of active living and businesses areas. Most small businesses have strong advantages to succeed. Further research needs to be conducted to serve people who are active in each neighborhood.

In Manhattan, there is no specific neighborhood known for fitness and entertainment. In Queens, there are no neighborhoods specifically famous for food. Staten Island has no fitness neighborhoods. These can be an opportunity for new related businesses. Brooklyn is the most integrated borough. For some experienced vendors, Brooklym can be a great choice to compete with other existing businesses. For residents and tourists, Brooklyn is also a good borough to stay.

Conclusion

Neighborhoods of five boroughs in New York City are segmented into four clusters. Due to diversity and large population, most neighborhoods are segmented in the same cluster, cluster 1. The neighborhoods in this cluster are combined with food places, entertainment places, fitness centers, grocery stores, etc. Each category in each neighborhood is serving its specific customer segments. The main point to successfully start a new business in this cluster is to understand active people in each neighborhood. This needs further market research and consumer preferences.

However, in the other three clusters, there are three corresponding businesses that can be practiced and get results of a high possibility of success. Neighborhoods in cluster 0 are a good choice to open businesses for entertainment. Residents and tourists also can visit these neighborhoods for entertainment; cluster 2 is a good place for food, and cluster 3 is known for exercise and fitness businesses.