Dimensionality Reduction

- · In unsupervised learning, we have seen clustering.
- · In this lecture, we will look at dimensionality reduction
- In many practical applications, the input data <u>x</u> E IR^P is a very high-dimensional, however, the intrinsic dimensionality may be quite small

In all three cases, the intrinsic dimensionality of data is 1

Intrinsic Dimensionality

A data set $\{x_i\}_{i=1}^N$, with $x \in \mathbb{R}^p$, is said to have intrinsic dimensionality $M \le p$, if the dataset can be described effectively in terms of 'M' free random variables

$$\frac{\mathbf{x}}{\mathbb{R}^{P}} = g\left(\underline{\mathbf{u}}\right)$$

Example

The data lies along the circumference of a circle of rodius r and a single free parameter O suffices to describe the data

Intrinsic dimension = 1

Intrinsic Dimensionality

- · An important concern in ML is learning from high-dimensional data z
- · Success of ML, in particular deep learning, is due to its capability of learning a useful representation of high-dimensional data
- · One of the goals of unsupervised learning:

Learning a lower-dimensional subspace for encoding high-dimensional data set

- · Idea of dimensionality reduction: Map data to a lower dimensional space
 - Save computational time in modelling high-dimensional data
 - Visualization in 2-dimensions can offer insights
 - Reduce overfitting and achieve better generalization

Linear Dimensionality Reduction

- · We will introduce linear dimensionality reduction using Principal Component Analysis (PCA)
- · PCA is also known as Karhunen-Loève (KL) transform
 - It falls under linear dimensionality reduction techniques

Idea of projection

· Consider projection onto 1-D subspace of 2D

- loco dimensional
- · Subspace S is the line along the unit vector u
 - U is the basis of S: Any point in S can be written as zu for same scalar z

- Projection of vector \underline{x} on S is denoted by $\widetilde{\underline{x}} = \text{Proj}_{S}(\underline{x})$
- Recall that: $\underline{x}^{\mathsf{T}}\underline{u} = \|\underline{x}\| \|\underline{u}\|^{\mathsf{T}} \cos(0) = \|\underline{x}\| \cos 0 = \|\underline{x}\|$
- $\tilde{z} = \text{Proj}_{s}(z) = \underline{z}^{T}\underline{u}$ $\underline{u} = \|\tilde{z}\|$ \underline{u} length of direction of projection

Idea of projection

- from a D>M

 space
- · How to project onto an M-dimensional subspace?
 - Idea: Choose an orthonormal bases { U1, U2, ..., UM} for S
 - Project anto each unit vector individually (as in previous slide) and sum together the projections
- · Mathematically, the projection is given as:

$$\underline{\tilde{z}} = \text{Proj}_{S}(\underline{x}) = \sum_{i=1}^{M} z_{i} \underline{u}_{i}$$
 where $z_{i} = \underline{x}^{T} \underline{u}_{i}$

- · each u; is the basis vector
- · Zi is the magnitude along that projection

· In vector form:

$$\widetilde{\mathbf{z}} = \operatorname{Proj}_{\mathbf{S}}(\mathbf{z}) = \underline{\mathbf{U}}_{\mathbf{z}} = \begin{bmatrix} | & | & | & | \\ \underline{\mathbf{u}}_{1} & \underline{\mathbf{u}}_{2} & \cdots & \underline{\mathbf{u}}_{M} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{z}}_{1} \\ \overline{\mathbf{z}}_{2} \\ \vdots \\ \overline{\mathbf{z}}_{M} \end{bmatrix}, \text{ where } \underline{\mathbf{z}} = \underline{\mathbf{U}}_{\mathbf{z}}$$

· Recall that every point in subspace S can be represented as {U1, U2}

$$\frac{2}{2}$$
 = $\frac{2}{1}$ $\frac{1}{1}$ + $\frac{2}{2}$ $\frac{1}{2}$

Projection onto an affine subspace

- · So far, we have assumed a subspace that passes through zero
- · However, the subspaces that we want to project onto can also be affine subspaces, which need not pass through zero

The affine subspaces can have an arbitrary origin $\hat{\mu}$

Projection onto an affine subspace

$$\frac{2}{2} = \operatorname{Proj}_{S}(2)$$

$$= \underline{U}(2) + \underline{\hat{\mu}}$$

$$= \underline{U}(2) + \underline{\hat{\mu}}$$

$$= \underline{z}_{1} \underline{u}_{1} + \underline{z}_{2} \underline{u}_{2} + \underline{\hat{\mu}}$$

$$= \underline{z}_{1} \underline{u}_{1} + \underline{z}_{2} \underline{u}_{2} + \underline{\hat{\mu}}$$

The affine subspace has an origin $\hat{\mu}$

- \tilde{z} is called the reconstruction of z
- Z is its feature / code
- If all the data points x lie close to the subspace, we could approximate
 with its reconstructions \(\widetilde{\chi} \)

$$z \approx \underline{U} z + \hat{\underline{\mathcal{U}}}$$

How to choose a good subspace?

- · We want to choose a subspace S which is low-dimensional compared to the dimension of the input space
- · How to choose such a subspace S?
 - We need to find appropriate $\hat{\mu}$ and the orthogonal bases $\underline{\underline{U}}$
 - origin $\hat{\mu}$ can be set equal to the mean of the dataset
- · To find U, one of the two equivalent criteria could be followed:
 - Minimize the reconstruction error:

equivalent (show)

Organin
$$\frac{1}{N} \sum_{i=1}^{N} \| \underline{x}_i - \widetilde{\underline{x}}_i \|_2^2$$

- Maximize the variance of reconstructions: Find a subspace where the data has the most varia iability

$$\underset{\underline{U}}{\text{arg max}} \quad \frac{1}{N} \quad \sum_{i=1}^{N} \quad \left\| \widetilde{\mathbf{z}}_{i} - \widehat{\mathbf{L}}_{i} \right\|_{2}^{2}$$

(You can show that \times and $\widetilde{\times}$ have same mean)

Principal Component Analysis

- · Choosing a subspace to maximize the projected variance, or minimize the reconstruction error, is called PCA
- · Consider the sample covariance matrix:

$$\hat{\sum} = \frac{1}{N} \sum_{i=1}^{N} (\underline{x}_i - \hat{\mu}) (\underline{x}_i - \hat{\mu})^T$$

- \sum is symmetric and Positive semi-definite (PSD)
- . The optimal PCA subspace is spanned by the top M'eigenvectors of =
- These eigenvectors are called principal components or principal directions, much like

 the principal axes of an ellipse

Derivation of PCA

- · Let us consider the simplest case of finding a 1-D subspace
 - The goal then is to find a single direction represented by unit vector \underline{u}_1
- · Lets maximize the projected variance

 $= \underline{u}_{i}^{\mathsf{T}} \hat{\Sigma} \underline{u}_{i}$

$$J(\underline{u}_{1}) = \frac{1}{N} \sum_{i=1}^{N} \left(\underline{u}_{1}^{T} \left(\underline{x}_{i} - \underline{\hat{\mu}}\right)\right)^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \underline{u}_{1}^{T} \left(\underline{x}_{i} - \underline{\hat{\mu}}\right) \left(\underline{x}_{i} - \underline{\hat{\mu}}\right)^{T} \underline{u}_{1}$$

So the optimization tack is:

$$\underline{u}_{1} = \underset{\underline{u}}{\operatorname{argmax}} \quad \underline{u}^{\mathsf{T}} \stackrel{\widehat{\leq}}{=} \underline{u}$$

$$\underline{s \cdot t} \quad \underline{u}^{\mathsf{T}} \underline{u} = 1$$

 $\angle \text{agrangian}$: $L(\underline{u}, \lambda) = \underline{u}^{\mathsf{T}} \hat{\underline{\Sigma}} \underline{u} - \lambda (\underline{u}^{\mathsf{T}} \underline{u} - 1)$

Take gradient and set to zero: $\hat{\Sigma} \underline{u} = \lambda \underline{u} \leftarrow eigenvector$

.. Principal direction \underline{u}_1 is an eigenvector

- Since \sum is symmetric and PSD, all eigenvalues are real and non-negative: $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_P \geqslant 0$
- . The 2nd principal component \underline{u}_2 is selected such that:
 - (a) uz is orthogonal to u1
 - (b) \underline{U}_2 maximizes the variance after projecting the data onto the direction of \underline{U}_2
 - (c) The 2nd principal component (or direction) is the eigenvector corresponding to the 2nd largest eigenvalue of $\hat{\Xi}$, λ_2
- Similar arguments can be used to show that the 'm'th principal component is the 'm'th eigenvector of \hat{Z}
- · The process continues until M principal components (corresponding to the M largest eigenvalues)

PCA decorrelates features

· The features (or code) are decorrelated by PCA

$$Cov (\Xi) = Cov (\underline{U}^{T} (\underline{x} - \underline{\hat{\mu}}))$$

$$= \underline{U}^{T} Cov (\underline{x}) \underline{U}$$

$$= \underline{U}^{T} \widehat{\underline{\Sigma}} \underline{U}$$

$$= \underline{U}^{T} \underline{\underline{Q}} \underline{\underline{U}}^{T} \underline{U}$$

$$= [\underline{I} \underline{\underline{Q}}] \underline{\underline{L}} [\underline{\underline{I}}]$$

$$= top left M \times M block$$
of $\underline{\underline{L}}$

Spectral decomposition

$$\hat{\Sigma} = Q \Delta Q^{T}$$
eigenvalues

eigenvector wahrix

matrix

(orthonormal)

$$Q = \begin{bmatrix} U & U \\ P \times P & U \end{bmatrix}$$
PXM PX(P-M)

• Covariance of feature \underline{z} is diagonal \rightarrow uncorrelated

Summary of PCA

- · Dimensionality reduction aims to find a low-dimensional representation of the data
- · PCA projects the data onto an affine subspace that maximizes projected variance or minimizes the reconstruction error
- · The optimal subspace is given by the top M eigenvectors of the sample covariance matrix, corresponding to the M largest eigenvalues
- · PCA gives a set of decorrelated features

reconstructions PCA