Wyników głosowań w kongresie USA w 1986 r.

Tematem naszego projektu jest przewidywanie przynależności partyjnej członka Izby Reprezentantów amerykańskiego kongresu w 1986 roku na podstawie dokonanych przez niego wyborów podczas głosowań. Naszym zbiorem danych jest ramka zawierająca dane o przynależności partyjnej poszczególnych reprezentantów i ich głosach podczas 16 kluczowych w tym roku głosowań.

```
In [1]:
```

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import sklearn.metrics
import random
from sklearn import manifold
random.seed(42)
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
df=pd.read_csv("congressional_voting_dataset.csv")
```

In [3]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435 entries, 0 to 434
Data columns (total 17 columns):
# Column
```

#	Column	Non-Null Count	Dtype			
0	handicapped_infants	435 non-null	object			
1	water_project_cost_sharing	435 non-null	object			
2	adoption_of_the_budget_resolution	435 non-null	object			
3	physician_fee_freeze	435 non-null	object			
4	el_salvador_aid	435 non-null	object			
5	religious_groups_in_schools	435 non-null	object			
6	anti_satellite_test_ban	435 non-null	object			
7	aid to nicaraguan contras	435 non-null	object			
8	mx missile	435 non-null	object			
9	immigration	435 non-null	object			
10	synfuels corporation cutback	435 non-null	object			
11	education spending	435 non-null	object			
12	superfund right to sue	435 non-null	object			
13	crime	435 non-null	object			
14	duty free exports	435 non-null	object			
15	export_administration_act_south_africa	435 non-null	object			
16	political party	435 non-null	object			
dtyp	dtypes: object(17)					

In [4]:

```
df.head()
```

memory usage: 57.9+ KB

Out[4]:

handiaannad infanta	water project cost charing	adoption of the hudget recolution	physician fee freeze el salvador aid i
Handicapped Illiants	water broiect cost sharing	auopuon oi ine puudei resolution	Diivsiciali lee ileeze ei salvauoi alu l

0	n	у	n	у	у
1	n	у	n	у	у
2	?	у	у	?	у

3	handicapped_infants	water_project_cost_sharing	adoption_of_the_budget_resolutiony	physician_fee_freeze	el_salvador_ai@ r
4	у	у	у	n	у
4					<u> </u>

Objaśnienie zmiennych

Kolumny 0-15 zawierają wyniki głosowań na tematy skrótowo opisane w nazwach kolumn. Każdy rząd odpowiada jednemu reprezentantowi. Możliwe wartości:

- y głos na tak
- n głos na nie
- ? brak głosu niewzięcie udziału w głosowaniu lub wstrzymanie się od głosu

Ostatnia kolumna zawiera informacje o przynależności partyjnej reprezentanta - republican albo democrat. W naszej ramce danych nie występuje bezpośrednio problem braku danych, ale zapewne będzie trzeba jakoś rozwiązać kwestię wartości ?.

```
In [5]:
```

```
df.describe()
```

Out[5]:

handicapped_infants water_project_cost_sharing adoption_of_the_budget_resolution physician_fee_freeze el_salvador_

count	435	435	435	435	4
unique	3	3	3	3	
top	n	у	у	n	
freq	236	195	253	247	1
4					<u> </u>

In [6]:

```
labels=["y", "n", "?"]
fig, axs = plt.subplots(ncols=2, nrows=8, figsize=(16, 32))
for i in range(len(df.columns)-1):
    col=df.columns[i]
    tmp=df[[col, "political_party"]].groupby(["political_party", col]).size().tolist()
    r, c= i//2, i%2
    axs[r,c].bar(labels, list(reversed(tmp[0:3])), label='democrat', color="blue")
    axs[r,c].bar(labels, list(reversed(tmp[3:6])), bottom=list(reversed(tmp[0:3])),
        label='republican', color="red")
    axs[r,c].legend()
    axs[r,c].set_title(col)
```


Obie partie głosowały podobnie na water_project_cost_sharing oraz imigration (lecz u demokratów przeważa no , a u republikan yes) Widoczna róznica głosów dla:

a adamtian of the bushest manalistics (s no d wool

- adoption of the budget resolution (I-IIO, u-yes)
- physician fee freeze (r-yes, d-no)
- el salvador aid (r-yes, d-no)
- education spending (r-yes, d-no)

In [7]:

```
df=df.replace("n", 0)
df=df.replace("y", 1)
df=df.replace("?", 0.5) #rozwiązanie tymczasowe
df=df.replace("republican", 0)
df=df.replace("democrat", 1)
plt.figure(figsize=(10,10))
sns.heatmap(df.corr(), annot=True, annot_kws={'size': 8}, fmt='.2f')
plt.show()
```


Jak widzimy, poziom korelacjii pomiędzy głosem a partią bardzo się różni w zależności od tematu głosowania - dla głosowania water_project_cost_sharing związek praktycznie nie istnieje, a dla physician_fee_freeze jest bardzo duży.

Spróbujemy teraz zobaczyć, na ile głosy poszczególnych reprezentantów przypominają głosy innych członków tej samej partii - w tym celu przekształcimy zapisy głosowań poszczególnych członków na wektory i policzymy

odległości pomiędzy każdą parą.

```
In [8]:
```

```
adist=sklearn.metrics.pairwise distances(df.drop(["political party"], axis=1))
adist
Out[8]:
                 , 1.22474487, 2.17944947, ..., 1.22474487, 1.5
array([[0.
       1.22474487],
      [1.22474487, 0.
                             , 1.93649167, ..., 1.22474487, 1.5
       1.22474487],
      [2.17944947, 1.93649167, 0. , ..., 1.93649167, 2.54950976,
       2.17944947],
      [1.22474487, 1.22474487, 1.93649167, ..., 0.
                                                         , 1.5
       1.87082869],
                            , 2.54950976, ..., 1.5
      [1.5
                                                         , 0.
       1.80277564],
       [1.22474487, 1.22474487, 2.17944947, ..., 1.87082869, 1.80277564,
       0.
                 ]])
```

Użyjemy teraz funkcji z pakietu manifold żeby przekształcić ramkę zawierającą wzajemne odległości na zbiór współrzędnych na dwuwymiarowej płaszczyźnie. Jest to rzut, który próbuje przekształcić wielowymiarowe zależności na płaszczyznę 2D.

In [9]:

```
df["political_party"] = df["political_party"] .replace(0, "republican")
df["political_party"] = df["political_party"] .replace(1, "democrat")
adist=np.array(adist)
mds = manifold.MDS(n_components=2, dissimilarity="precomputed", random_state=6)
results = mds.fit(adist)
coords = results.embedding_
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(
    coords[:, 0], coords[:, 1], marker = 'o', hue=df["political_party"], palette=["red",
"blue"]
    )
ax.set_title("Voting pattern similarity")
```

Out[9]:

Text(0.5, 1.0, 'Voting pattern similarity')

Dodatkowo sprawdźmy czy któraś z parti ma skołonność do głosowania na tak lub nie.

In [14]:

```
df=pd.read_csv("congressional_voting_dataset.csv")
democrat_df = df[df['political_party'] == 'democrat']
republican_df = df[df['political_party'] == 'republican']
```

In [17]:

```
tak = 0
nie = 0
brak = 0
for i in range(0,15):
    tak += (democrat_df[democrat_df.columns[i]] == "y").sum()
    nie += (democrat_df[democrat_df.columns[i]] == "n").sum()
    brak += (democrat_df[democrat_df.columns[i]] == "?").sum()

labels = ['Yes', 'No', '?']
sizes = [tak, nie,brak]
plt.title("Democrat")
plt.bar(labels, sizes)
plt.show()
```


In [16]:

```
tak = 0
nie = 0
brak = 0
for i in range(0,15):
    tak += (republican_df[republican_df.columns[i]] == "y").sum()
    nie += (republican_df[republican_df.columns[i]] == "n").sum()
    brak += (republican_df[republican_df.columns[i]] == "?").sum()

labels = ['Yes', 'No', '?']
sizes = [tak, nie,brak]
plt.title("Republican")
plt.bar(labels, sizes)
plt.show()
```


W obu przypadkach licza głosów jest dość wyrównana.

In []: