

Beyond Pairwise Reasoning in Multi-Agent Path Finding (ICAPS 2023)

Bojie Shen, Zhe Chen, Jiaoyang Li, Muhammad Aamir Cheema, Daniel D.Harabor, Peter J. Stuckey

Monash University

Multi-Agent Path Finding:

- Automated warehouse:
 - Each robot is often assigned a task
 - picks up a shelter from one location and delivers to another.
 - But the robots must work together
 - there is no collision between robots during their execution.

Multi-Agent Path Finding:

- Automated warehouse:
 - Each robot is often assigned a task
 - picks up a shelter from one location and delivers to another.
 - But the robots must work together
 - there is no collision between robots during their execution.

– Optimization:

- Centralized system should aim to plan the paths as fast as possible.
- Each individual path needs to be as short as possible.

Multi-Agent Path Finding:

- Automated warehouse:
 - Each robot is often assigned a task
 - picks up a shelter from one location and delivers to another.
 - But the robots must work together
 - there is no collision between robots during their execution.

– Optimization:

- Centralized system should aim to plan the paths as fast as possible.
- Each individual path needs to be as short as possible.
- Research Interests:
 - Capture the broader attention of both the AI and database communities.

Multi-Agent Path Finding:

- Automated warehouse:
- Environment:
 - 4-connected grid map.
 - Discretized timesteps.

Multi-Agent Path Finding:

- Automated warehouse:
- Environment:
 - 4-connected grid map.
 - Discretized timesteps.
- Objectives:
 - Given a set of agents with source and destination.
 - Find a collision-free plan that minimizes the Sum of Individual Cost (SIC).

- Conflict-Based Search [1]:
 - Two-level search algorithm:
 - Finds the optimal solution by reasoning the conflicts.

Conflict-Based Search [1]:

- Two-level search algorithm:
 - Finds the optimal solution by reasoning the conflicts.
- Recent enhancements:
 - Pairwise heuristics [2 3].
 - Pairwise symmetry reasoning [4 6].
 - Pairwise conflict prioritization [7].

Conflict-Based Search [1]:

- Two-level search algorithm:
 - Finds the optimal solution by reasoning the conflicts.
- Recent enhancements:
 - Pairwise heuristics [2 3].
 - Pairwise symmetry reasoning [4 6].
 - Pairwise conflict prioritization [7].
- Cluster Heuristic and Bypass (CHBP)
 - Reason a cluster of agents:
 - Generate stronger heuristics.
 - Find more feasible bypasses.

Conflict-Based Search [1]:

- Two-level search algorithm:
 - Finds the optimal solution by reasoning the conflicts.
- Recent enhancements:
 - Pairwise heuristics [2 3].
 - Pairwise symmetry reasoning [4 6].
 - Pairwise conflict prioritization [7].
- Cluster Heuristic and Bypass (CHBP)
 - Reason a cluster of agents:
 - Generate stronger heuristics.
 - Find more feasible bypasses.
 - Improvement:
 - Solve 10 20% more instances within same runtime.
 - Up to 10x Speed up.

Research Resource

Benchmarks:

Website: https://movingai.com/benchmarks/mapf/index.html

– Paper: https://arxiv.org/abs/1906.08291

Preview	Download Image	Мар	Dimensions	# states	Scenarios	Max number of problem in a scenario
	png svg pdf	Berlin 1 256.map	256x256	47,540	Berlin 1 256-even.scen (25 even scenarios) Berlin 1 256-random.scen (25 random scenarios)	1010 (even) 1000 (random)
	png svg pdf	Boston 0 256.map	256x256	47,768	Boston 0 256-even.scen (25 even scenarios) Boston 0 256-random.scen (25 random scenarios)	980 (even) 1000 (random)
	png svg pdf	Paris 1 256.map	256x256	47,240	Paris 1 256-even scen (25 even scenarios) Paris 1 256-random scen (25 random scenarios)	1100 (even) 1000 (random)
	png svg pdf	brc202d.map	530x481	43,151	brc202d-even.scen (25 even scenarios) brc202d-random.scen (25 random scenarios)	2580 (even) 1000 (random)
	png svg pdf	den312d.map	65x81	2,445	den312d-even.scen (25 even scenarios) den312d-random.scen (25 random scenarios)	310 (even) 1000 (random)
Z.	png svg pdf	den520d.map	256x257	28,178	den520d-even.scen (25 even scenarios) den520d-random.scen (25 random scenarios)	890 (even) 1000 (random)
	png svg pdf	empty-16-16.map	16x16	256	empty-16-16-even.scen (25 even scenarios) empty-16-16-random.scen (25 random scenarios)	128 (even) 128 (random)
THE RESERVE THE PERSON NAMED IN					1	

11

Research Resource

Progress Tracker:

- Website: http://tracker.pathfinding.ai

– Paper: https://arxiv.org/abs/2305.08446

Research Resource

Competition (Funded by Amazon):

- Website: https://www.leagueofrobotrunners.org

Deadline: 30th November (ongoing)

Reference

- [1] Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219, 40-66.
- [2] Felner, A., Li, J., Boyarski, E., Ma, H., Cohen, L., Kumar, T. S., & Koenig, S. (2018). Adding heuristics to conflict-based search for multi-agent path finding. In *ICAPS* (Vol. 28, pp. 83-87).
- [3] Li, J., Felner, A., Boyarski, E., Ma, H., & Koenig, S. (2019). Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search. In *IJCAI* (Vol. 2019, pp. 442-449).
- [4] Li, J., Harabor, D., Stuckey, P. J., Ma, H., & Koenig, S. (2019). Symmetry-breaking constraints for grid-based multi-agent path finding. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 33, No. 01, pp. 6087-6095).
- [5] Li, J., Gange, G., Harabor, D., Stuckey, P. J., Ma, H., & Koenig, S. (2020). New techniques for pairwise symmetry breaking in multi-agent path finding. In *ICAPS* (Vol. 30, pp. 193-201).
- [6] Zhang, H., Li, J., Surynek, P., Kumar, T. S., & Koenig, S. (2022). Multi-agent path finding with mutex propagation. *Artificial Intelligence*, *311*, 103766.
- [7] Boyarski, E., Felner, A., Le Bodic, P., Harabor, D. D., Stuckey, P. J., & Koenig, S. (2021). f-Aware Conflict Prioritization & Improved Heuristics For Conflict-Based Search. In *AAAI* (Vol. 35, No. 14, pp. 12241-12248).

Thank you for listening