CLAIMS

- 1. A method for conducting electroplating in the presence of CO_2 and a metal salt-containing aqueous solution, the CO_2 being liquid, subcritical or supercritical, the method further comprising a step of adding a nonionic compound having a CO_2 -affinitive moiety to a system wherein the aqueous solution and CO_2 coexist, the CO_2 -affinitive moiety being at least one member selected from the group consisting of:
- (1) homopolymers, bicopolymers and tricopolymers of polyoxypropylene, polyoxybutylene and/or polyoxyethylene;
 - (2) fluorine-containing alkyl groups in which some or all of the hydrogen atoms are substituted by fluorine;
 - (3) fluorine-containing polyether groups in which some or all of the hydrogen atoms are substituted by fluorine; and
 - (4) dialkylsiloxy groups.

10

15

- 2. The method according to Claim 1, wherein the nonionic compound is an ether-based or ester-based compound.
- 3. The method according to Claim 1, wherein the nonionic compound is an alcohol-based compound.
 - 4. The method according to Claim 1, wherein the nonionic compound is a fluorinated hydrocarbon.
 - 5. The method according to Claim 1, wherein the nonionic compound is a polyalkylsiloxane.
- 6. The method according to Claim 1, wherein the 30 nonionic compound is a fluorine-containing polymer.
 - 7. A plating bath comprising a metal salt-containing aqueous solution, CO_2 , and a nonionic compound having a CO_2 -affinitive moiety, the CO_2 being liquid, subcritical or

supercritical, the CO_2 -affinitive moiety being at least one member selected from the group consisting of:

- (1) homopolymers, bicopolymers and tricopolymers of polyoxypropylene, polyoxybutylene and/or polyoxyethylene;
- (2) fluorine-containing alkyl groups in which some or all of the hydrogen atoms are substituted by fluorine;
 - (3) fluorine-containing polyether groups in which some or all of the hydrogen atoms are substituted by fluorine; and
 - (4) dialkylsiloxy groups.

10

20

5

- 8. An additive for use in electroplating conducted in the presence of liquid, subcritical or supercritical CO_2 , the additive comprising a nonionic compound having a CO_2 -affinitive moiety,
- the CO_2 -affinitive moiety being at least one member selected from the group consisting of:
 - (1) homopolymers, bicopolymers and tricopolymers of polyoxypropylene, polyoxybutylene and/or polyoxyethylene;
 - (2) fluorine-containing alkyl groups in which some or all of the hydrogen atoms are substituted by fluorine;
 - (3) fluorine-containing polyether groups in which some or all of the hydrogen atoms are substituted by fluorine; and
 - (4) dialkylsiloxy groups.
- 9. A method for preprocessing conducted before plating comprising the step of degreasing and washing a plating substrate prior to plating using a nonionic compound having a CO₂-affinitive moiety,

the CO_2 -affinitive moiety being at least one member 30 selected from the group consisting of:

- (1) homopolymers, bicopolymers and tricopolymers of polyoxypropylene, polyoxybutylene and/or polyoxyethylene;
- (2) fluorine-containing alkyl groups in which some or all of the hydrogen atoms are substituted by fluorine;
- 35 (3) fluorine-containing polyether groups in which some

or all of the hydrogen atoms are substituted by fluorine; and (4) dialkylsiloxy groups.

- 10. A method for postprocessing conducted after plating comprising the step of washing a plated film after plating using a nonionic compound having a CO_2 -affinitive moiety, the CO_2 -affinitive moiety being at least one member selected from the group consisting of:
- homopolymers, bicopolymers and tricopolymers of
 polyoxypropylene, polyoxybutylene and/or polyoxyethylene;
 - (2) fluorine-containing alkyl groups in which some or all of the hydrogen atoms are substituted by fluorine;
 - (3) fluorine-containing polyether groups in which some or all of the hydrogen atoms are substituted by fluorine; and
- 15 (4) dialkylsiloxy groups.

5

- 11. A plated film having
- (1) per cm^2 , not more than one pinhole having a diameter of at least 1 μm ;
 - (2) a film thickness of not more than 1 μm; and
- (3) a plated film surface roughness of not greater than $10\ \mathrm{nm}$.
- 12. The method according to Claim 1, wherein the 25 nonionic compound used is $(CO_2$ -affinitive moiety)-X- or X- $(CO_2$ -affinitive moiety)-X- of 1) or 2) below respectively:
 - 1) $F-(CF_2)_q-(OCF_3F_6)_m-(OC_2F_4)_n-(OCF_2)_o-(CH_2)_p-X-$, or
 - 2) $-X-(CH_2)_p-(CF_2O)_o-(C_2F_4O)_n-(C_3F_6O)_m-(CF_2)_q-(OC_3F_6)_m-(OC_2F_4)_n-(OCF_2)_o-(CH_2)_p-X-$
- wherein m, n, o, p, and q are integers not smaller than 0, m and n are integers from 0 to 15 but not both 0, n + m \leq 20, o = 0 to 20, p = 0 to 2, and q = 1 to 10; the sequence of the repeating units not being fixed; $-(OC_3F_6)_m$ represents $-(OCF_2CF_2CF_2)_m$ or $-(OCF(CF_3)CF_2)_m$ —, and $-(OC_2F_4)_n$ represents -35 $(OCF_2CF_2)_n$ or $-(OCF(CF_3))_n$ —, and

each X may be the same or different, and represents a single bond, or O, S, NH, NR (R^a : alkyl group), C=O, C(O)O, OC(O), C(O)S, SC(O), C(O)NH, C(O)NR^a (R^a : alkyl group), NH(O)C, NR(O)C, CH₂, CHR^a, CR^a₂ (R^a : alkyl group), SO₂NH, or NHSO₂.

5

- 13. The method according to Claim 1, wherein the nonionic compound is one of 1) to 3):
 - 1) $F-(CF_2)_{q}-(OC_3F_6)_{m}-(OC_2F_4)_{n}-(OCF_2)_{o}-(CH_2)_{p}X-R_{h_1}$
 - 2) $F-(CF_2)_q-(OC_3F_6)_m-(OC_2F_4)_n-(OCF_2)_o-(CH_2)_pX-R_h-X-(CH_2)_p-$
- 10 $(CF_2O)_0 (C_2F_4O)_n (C_3F_6O)_m (CF_2)_q F_r$ and
 - 3) $R_h-X (CH_2)_p-(CF_2O)_o-(C_2F_4O)_n-(C_3F_6O)_m-(CF_2)_q-(OC_3F_6)_m-(OC_2F_4)_n-(OCF_2)_o-(CH_2)_pX-R_h$,

wherein m, n, o, p, and q are integers not smaller than 0, m and n are integers from 0 to 15 but not both 0, n + m \leq 20, 0 = 0 to 20, p = 0 to 2, and q = 1 to 10; the sequence of the repeating units not being fixed; $-(OC_3F_6)_m$ — represents $-(OCF_2CF_2CF_2)_m$ — or $-(OCF(CF_3)CF_2)_m$ —, and $-(OC_2F_4)_n$ — represents $-(OCF_2CF_2)_n$ — or $-(OCF(CF_3))_n$ —, and

each X may be the same or different, and represents a single bond, or O, S, NH, NR (R^a : alkyl group), C=O, C(O)O, OC(O), C(O)S, SC(O), C(O)NH, C(O)NR^a (R^a : alkyl group), NH(O)C, NR(O)C, CH₂, CHR^a, CR^a₂ (R^a : alkyl group), SO₂NH, or NHSO₂, and each R_h is a hydrophilic moiety and a straight or branched chain hydrocarbon group that may contain hetero atoms.

- 14. The method according to Claim 13, wherein R_{h} is a polyoxyalkylene group.
- 15. The method according to Claim 13, wherein the nonionic compound comprises a CO_2 -affinitive moiety whose number of carbon atoms is the same as or greater than that of the R_h group.
- 16. The method according to Claim 1, wherein the 35 nonionic compound comprises $(CO_2$ -affinitive moiety)-X- or X- $(CO_2$ -

affinitive moiety)-X- of 1) or 2) below respectively:

- 1) $Y-(CF_2)_{m1}-(CH_2)_{n1}-X$, or
- 2) $X-(CH_2)_{n1}-(CF_2)_{m1}-(CH_2)_{n1}-X$

wherein Y is F or H, each X may be the same or different and represents one member selected from the group consisting of COO, O, S, CONH, NHCO, SO₂NH, and NHSO₂, ml is an integer from 3 to 20, and each nl may be the same or different and represents an integer from 0 to 2.

- 10 17. The method according to Claim 16, wherein the nonionic compound is one of 1) to 3) below respectively:
 - 1) $Y-(CF_2)_{m1}-(CH_2)_{m1}-X-R_h$
 - 2) $Y-(CF_2)_{m1}-(CH_2)_{n1}-X-R_h-X-(CH_2)_{n1}-(CF_2)_{m1}-Y$, or
 - 3) $R_h-X-(CH_2)_{n1}-(CF_2)_{m1}-(CH_2)_{n1}-X-R_h$
- wherein Y is F or H, each X may be the same or different and represents one member selected from the group consisting of COO, O, S, CONH, NHCO, SO_2NH , and $NHSO_2$, each m1 may be the same or different and represents an integer from 3 to 20, each n1 may be the same or different and represents an integer from 0 to 2, and each R_h is a hydrophilic moiety and straight or branched chain hydrocarbon group that may contain hetero atoms.
 - $18.\ \mbox{The method according to Claim 17, wherein R_h is a polyoxyalkylene group.$
 - 19. The method according to Claim 17, wherein the nonionic compound comprises a CO_2 -affinitive moiety whose number of carbon atoms is the same as or greater than that of each R_h group.

30