Combinatorics

Hernán Ibarra Mejia

October 13, 2023

Chapter 1

Introduction and Basic Results

This is a set of lecture notes taken by me from the Part III course "Combinatorics", lectured by Professor Béla Bollobás in Michaelmas, 2023. I take full responsibility for any mistakes in these notes.

1 Chains, Antichains and Scattered Sets of Vectors

The following are two results we will be able to prove later in the course.

Theorem 1.1 (Littlewood and Clifford, 1943). Let $z_1, \ldots, z_n \in \mathbb{C}$ where $|z_k| \ge 1$ for all k. Pick some r > 0. Then there exists some c depending only on r such that, if $\epsilon_k = \pm 1$ then, of the 2^n possible sums of the form $\sum_{k=1}^n \epsilon_k z_k$, at most $\frac{c2^n \log n}{\sqrt{n}}$ of these fall into a circle of radius r.

Paul Erdős improved this result in the special case where the points are real numbers.

Theorem 1.2 (Erdős, 1945). Let $x_1, \ldots, x_n \in \mathbb{R}$ where $x_k \geq 1$ for all k. If $\epsilon_k = \pm 1$, then, out of the 2^n sums of the form $\sum_{k=1}^n \epsilon_k x_k$ at most $\binom{n}{\lfloor n/2 \rfloor}$ fall in the interior of an interval of length 2.

We can see that this bound is the best possible. Take n to be even (the odd case is similar) and $x_k = 1$ for all k. Then the sum is 0 exactly $\binom{n}{n/2}$ of the time (same number of positive and negative ϵ s) and otherwise the absolute value of the sum is greater than or equal to 2.

1.1 Hall's Marriage Theorem and Consequences

By G = (U, W; E) we usually mean that G is a bipartite graph with bipartition $U \sqcup W$, and with edge-set E. In this case, we say that G is a *complete matching*

from U into W if there is a subgraph H of G that contains all vertices of G and, for all $u \in U$ and $w \in U$,

$$d_H(u) = 1$$
 and $d_H(w) \leq 1$.

(Of course, $d_H(\cdot)$ refers to the degree of a vertex in H.)

This is a bit too formal. What we really mean by a complete matching from U to W is that there is a way to pair every element of U with an element of W it is adjacent to so that no element of U has to "share". Usually one takes U to be a set of women, V to be a set of men, and edges whenever a woman likes a man. Finding a complete matching is then the problem of marrying each women to a man (this is old-fashioned, I know) she likes. Hall's Marriage Theorem gives a necessary and sufficient condition under which this problem is solvable.

If $A \subseteq G$ we denote by $\Gamma(A)$ the set of neighbours of A in G (i.e. the set of vertices in G adjacent to at least one vertex of A). First suppose that G has a complete matching. Clearly, if $A \subseteq U$ then $|A| \leq |\Gamma(A)|$ since otherwise we wouldn't have enough men to marry all the women of A. What is surprising is that this trivial condition is not only necessary but actually sufficient for G to have a complete matching.

Theorem 1.3 (Hall's Marriage Theorem). Let G = (U, W; E) be a bipartite graph. Then G has a complete matching if and only if for all $A \subseteq U$ we have $|A| \leq |\Gamma(A)|$.

Hall's Theorem is very useful, especially in situations where it seems like you don't need it. Let \mathcal{F} be a *set system*, i.e. a sequence $(\mathcal{F}_1, \ldots, \mathcal{F}_m)$ of sets where each \mathcal{F}_i is a finite set. A *set of distinct representatives* of \mathcal{F} is a sequence $(a_i)_{i=1}^m$ with $a_i \in \mathcal{F}_i$ and $a_i \neq a_j$ for all i, j with $i \neq j$.

When does \mathcal{F} has a set of distinct representatives? If \mathcal{F} has one then clearly for all $I \subset [m]$ we would have

$$\left| \bigcup_{i \in I} \mathcal{F}_i \right| \ge |I|.$$

This leads us to an equivalent formulation of Hall's Theorem.

Theorem 1.4. A set system \mathcal{F} has a set of distinct representatives if and only if for all $I \subset [m]$ we have

$$\left| \bigcup_{i \in I} \mathcal{F}_i \right| \ge |I|.$$

Proof. One implication is obvious. For the other one, define a bipartite graph $([m], \bigcup_{i=0}^{m} \mathcal{F}_i)$ where the set of neighbours of $i \in [m]$ is just all elements of \mathcal{F}_{\rangle} . Then the hypothesis is exactly Hall's condition and so, by Hall's theorem, there is a complete matching from [m] to $\bigcup_{i=0}^{m} \mathcal{F}_i$, that of course gives us a set of distinct representatives of \mathcal{F} .

Next, we explore some simple applications of Hall's theorem.

Corollary 1.5. Let G = (U, W) be a bipartite graph with at least one edge such that $d(u) \ge d(w)$ for all $u \in U$ and $w \in W$. Then there is a complete matching from U to W.

Proof. We use Hall's theorem. Let $A \subseteq U$ and let d be an integer such that

$$d(w) \le d \le d(u)$$

for all $u \in U$ and $w \in W$ —such an integer exists because of the hypothesis (take, e.g., $d = \min_{u \in U} d(u)$). Consider the number of edges between A and $\Gamma(A)$, call it e. Each vertex in A contributes at least d edges, so $d|A| \le e$. Similarly, each vertex in $\Gamma(A)$ contributes at most d edges, so $e \le d|\Gamma(A)|$. Putting this together we see that $d|A| \le d|\Gamma(A)|$. Note that $d \ne 0$ since G has at least one edge. Thus, we can conclude that $|A| \le |\Gamma(A)|$. As A was arbitrary Hall's theorem applies and we are done.

Definition 1.6 (Weight). Let (U, W) be a bipartite graph and let $A \subseteq U$ and $B \subseteq W$. Define the *weight* of A and the weight of B, denoted by w(A) and w(B) respectively, as

$$w(A) = \frac{|A|}{|U|}$$

$$w(B) = \frac{|B|}{|W|}.$$

Definition 1.7 (Biregularity). A bipartite graph (U, W) is biregular with biregularity (k, l) if d(u) = k and d(w) = l for all $u \in U$ and $w \in W$.

It turns out biregular graphs have complete matchings. Before showing this we will prove a lemma.

Lemma 1.8. For all biregular graphs (U, W) and all $A \subseteq U$ we have

$$w(A) \le w(\Gamma(A)).$$

Proof. Note that we have that the number of edges of G is both k|U| and l|W|. Also, if $A \subseteq U$, we have that the number of edges from A to $\Gamma(A)$ is k|A| and this number is at most the edges coming out of $\Gamma(A)$, i.e. $l|\Gamma(A)|$. Therefore

$$w(A) = \frac{k|A|}{k|U|} \le \frac{l|\Gamma(A)|}{k|U|} = \frac{|\Gamma(A)|}{|W|} = w(\Gamma(A)).$$

Corollary 1.9. Let (U, W) be a biregular graph. If $|U| \le |W|$ then there is a complete matching from |U| to |W| and vice versa.

Proof. Without loss of generality suppose $|U| \le |W|$. Hall's condition is immediately satisfied since by Lemma 1.8 we have, for all $A \subseteq U$:

$$|A| = |U|w(A) \le |W|w(\Gamma(A)) = |\Gamma(A)|.$$

2 Sperner's Theorem

Now we would like to study the graph with vertex set $\mathcal{P}([n])$ with an edge between two subsets of [n] if one of them contains the other. Define an *antichain* in this graph to be a set \mathcal{A} of subsets of [n] so that for all distinct $A, B \in \mathcal{A}$ we have $A \not\subseteq B$ and $B \not\subseteq A$. How big can an antichain be? First, a lemma.

Corollary 2.1. Let $s, r, n \in \mathbb{N}$ be with $0 \le r < s \le n$. Define X = [n]. If $|s - \frac{n}{2}| \le |r - \frac{n}{2}|$, then there exists some injective function $f: X^{(r)} \to X^{(s)}$ such that for all $A \in X^{(r)}$ we have $A \subseteq f(A)$. Similarly, if $|s - \frac{n}{2}| \ge |r - \frac{n}{2}|$, then there exists some injection $g: X^{(s)} \to X^{(r)}$ such that for all $B \in X^{(s)}$ we have $B \supseteq g(B)$.

Proof. Now we construct a biregular graph that we will often come back to. Let G be a bipartite graph with bipartition $(X^{(r)}, X^{(s)})$ with an edge joining $A \in X^{(r)}$ and $B \in [n]^{(s)}$ iff $A \subseteq B$. We claim G is biregular with biregularity

$$\left(\binom{n-r}{s-r}, \binom{s}{r}\right)$$
.

Indeed, if $A \in X^{(r)}$ then, to construct some $B \in X^{(s)}$ with $A \subseteq B$ we add s - r elements from the set $X \setminus A$ which has size n - r. Similarly, if $B \in X^{(s)}$ and we want to construct some $A \in X^{(r)}$ with $A \subseteq B$ then we just choose r elements from B (which has size s) and make it into our A.

If $|s-\frac{n}{2}| \leq |r-\frac{n}{2}|$ then $\binom{n}{r} \leq \binom{n}{s}$ and so, by Corollary 1.9 there is a complete matching from $X^{(r)}$ to $X^{(s)}$: this tells us how to define our f. Similarly, if $|s-\frac{n}{2}| \geq |r-\frac{n}{2}|$ then $\binom{n}{r} \geq \binom{n}{s}$ and we do the same thing to define g. \square

Theorem 2.2 (Sperner, 1928). Let $A \subseteq \mathcal{P}([n])$ be an antichain for some n > 1. Then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Proof. The idea is to prove that $\mathcal{P}([n])$ can be covered by $\binom{n}{\lfloor n/2 \rfloor}$ chains, i.e. subsets $\mathcal{B} \subset \mathcal{P}([n])$ such that for all $A, B \in \mathcal{B}$ we have $A \subseteq B$ or $B \subseteq A$. Note that any antichain can intersect a chain at most once, thus the claim follows.

For s with $n/2 < s \le n$ let $g_s: X^{(s)} \to X^{(s-1)}$ be an injection with $B \supseteq g(B)$, which we know exists by Corollary 2.1. Similarly, for r with $0 \le r < n/2$ let $f: X^{(r)} \to X^{(r+1)}$ be an injection with the property that $A \subseteq f(A)$ for all $A \in X^{(r)}$.

Let $m = \lfloor n/2 \rfloor$. For $A \in X^{(r)}$ with $0 \le r < n/2$ we construct the chain generated by A, denoted as \mathcal{C}_A , with the following algorithm.

- 1. $A \in \mathcal{C}_A$
- 2. Let $M \in X^{(t)}$ be the unique greatest element of \mathcal{C}_A .
 - (a) If $0 \le t < n/2$ declare $f_t(M) \in \mathcal{C}_A$
 - (b) If $m \leq t < n$ and there is some $C \in X^{(t+1)}$ so that $g_{t+1}(C) = M$ we declare $C \in \mathcal{C}_A$.

- (c) Else, terminate.
- 3. Repeat (b).

Similarly, if $B \in X^{(s)}$ with $n/2 < s \le n$ we construct the chain generated by B:

- 1. $B \in \mathcal{C}_B$
- 2. Let $M \in X^{(t)}$ be the unique least element of \mathcal{C}_B .
 - (a) If $n/2 < t \le n$ declare $g_t(M) \in \mathcal{C}_B$
 - (b) If $0 < t \le m$ and there is some $C \in X^{(t-1)}$ so that $f_{t-1}(C) = M$ we declare $C \in \mathcal{C}_{\mathcal{B}}$.
 - (c) Else, terminate.
- 3. Repeat (b).

Finally, define a set \mathcal{C} of chains of $\mathcal{P}(X)$ in stages as follows.

- 1. Repeat (a) for k = 0, 1, ..., n in that order.
 - (a) If there is an element $A \in X^{(k)}$ so that A does not appear in any chain of \mathcal{C} declare $\mathcal{C}_A \in \mathcal{C}$.

It is clear that the chains in \mathcal{C} cover $\mathcal{P}(X)$. Furthermore, the injectivity of f and g guarantee that the chains are disjoint. Finally, each chain contains an element of $X^{(m)}$ by definition of \mathcal{C}_A . Therefore $|\mathcal{C}| = \binom{n}{m}$ as desired.

Using Sperner's Theorem, Erdős proved Theorem 1.2 as follows.

Proof of Theorem 1.2. Let I be an interval of length 2. For $\epsilon = (\epsilon_i)_{i=1}^n$ set $x_{\epsilon} := \sum_{i=1}^n \epsilon_i x_i$ and

$$F_{\epsilon} := \{i \mid \epsilon_i = 1\}.$$

Let $\mathcal{F} = \{F_{\epsilon} \mid x_{\epsilon} \text{ is in the interior of } I\}$. Then \mathcal{F} is an antichain, for if $F_{\epsilon} \subsetneq F_{\delta}$ we would have that x_{δ} contains one more "plus sign" than x_{ϵ} and thus $x_{\delta} - x_{\epsilon} \geq 2$, contradicting that x_{δ} and x_{ϵ} are in the interior of I. Thus, by Sperner's Theorem, we have that $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

3 More general posets

There are more general settings in which the previous results hold. We assume the definition of a poset: the definitions of chains and antichains generalize to the obvious ones.

There is one more definition that we will need. Let (S, \leq) be a poset and suppose $x, y \in S$. Then y covers x if x < y and there is no $z \in S$ with x < z < y.

3.1 Regular graded posets

Now we begin by generalizing properties of $\mathcal{P}([n])$. Say a poset (S, \leq) is graded if S has a partition $S = \bigsqcup_{i=0}^m S_i$ such that each S_i is an antichain and if x < y there are elements $x_i, x_{i+1}, \ldots, x_j \in S$ such that $x_k \in S_k$ for all k and

$$x = x_i < x_{i+1} < \dots < x_j = y.$$

(Furthermore we assume that for all k with 0 < k < m and $x \in S_k$ there is some $x' \in S_{k-1}$ and $x'' \in S_{k+1}$ such that x' < x < x'' to rule out e.g., trivial posets. All of our posets are connected). Clearly the definition implies that if y covers x then $x \in S_k$ and $y \in S_{k+1}$ for some k.

Furthermore, the graded poset (S, \leq) is said to be regular if for all k with $0 \leq k \leq m$ there exists some integers r_k and s_k so that for all $x \in S_k$ we have that x covers exactly r_k elements of S_{k-1} (if k > 0) and is covered by exactly s_k elements of S_{k+1} (if k < m).

Just in case we haven't emphasised this enough: for us, the perennial example of a regular graded poset is $\mathcal{P}([m])$. However, soon we will meet other regular graded posets which could use with results analogous to Sperner's Theorem, for example.

For a graded poset (S, \leq) and $A \subseteq S$ we define the *weight* of A as follows.

- (a) If $A \subseteq S_i$ for some i we define $w(A) := \frac{|A|}{|S_i|}$.
- (b) For any $A \subseteq S$ we define

$$w(A) := \sum_{i=0}^{m} w(A \cap S_i).$$

Theorem 3.1. Let A be an antichain in a regular graded poset (S, \leq) . Then $w(A) \leq 1$.

First proof. First we fix some notation. From now on, we abbreviate $A \cap S_i$ by A_i . If $B \subseteq S_i$ for some i denote by $\Gamma(B)$ the set of elements of S_{i+1} that cover an element of B.

We claim that for all $0 \le k \le m$ we have

$$\sum_{i=0}^{k} w(A_i) \le w \left(\bigcup_{i=0}^{k} \Gamma^{k-i}(A_i) \right)$$

Note that the argument of w in the right-hand side is a subset of S_k so this is well-defined. Use induction on k. For k = 0 this reduces to $w(A_0) = w(A_0)$.

Now suppose k > 0. As A is an antichain, A_k does not contain elements

from $\Gamma(A_{k-1})$ nor of $\Gamma^2(A_{k-2})$, and so on. Therefore,

$$\begin{split} w\left(\bigcup_{i=0}^k \Gamma^{k-i}(A_i)\right) &= w(A_k) + w\left(\bigcup_{i=0}^{k-1} \Gamma^{k-i}(A_i)\right) \\ &= w(A_k) + w\left(\Gamma\left(\bigcup_{i=0}^{k-1} \Gamma^{k-i-1}(A_i)\right)\right) \\ &\geq w(A_k) + w\left(\bigcup_{i=0}^{k-1} \Gamma^{k-i-1}(A_i)\right), \end{split}$$

where the last inequality is a consequence of Lemma 1.8 by noting that S_t and S_{t+1} form a biregular graph for all t with the covering relation (that is what it means for the graded poset to be regular) and that the weight and Γ defined for bipartite graphs and for graded posets coincide in this case. Therefore, by the inductive hypothesis, we have

$$w\left(\bigcup_{i=0}^{k} \Gamma^{k-i}(A_i)\right) \ge w(A_k) + \sum_{i=0}^{k-1} w(A_i).$$

as desired. This closes the induction. Now specialize to the case where k=m to get

$$w(A) = \sum_{i=0}^{m} w(A_i) \le w\left(\bigcup_{i=0}^{m} \Gamma^{m-i}(A_i)\right) \le 1,$$

where the last inequality follows from the fact that $w(S_m) = 1$ and subsets of S_m cannot exceed this weight.

Second proof. Suppose $A \neq \emptyset$ for otherwise the theorem is trivial. We define the span of A to be the maximum integer k so that there exists some i with both A_i and A_{i+k} being nonempty.

We use induction on the span k of A. If k is zero then $A \subseteq S_i$ for some i and clearly $w(A) = w(A_i) \le 1$. Assume $k \ge 1$. Let h be such that $A_h \ne \emptyset$ and $A_j = \emptyset$ for all j > h. Let A'_{h-1} be the set of elements in S_{h-1} that are covered by some element of A_h ; clearly A and A'_{h-1} are disjoint. By Lemma 1.8 we have $w(A'_{h-1}) \ge w(A_h)$. Then, if we replace A_h by A'_{h-1} in A we cannot decrease the weight. That is, if we define

$$A' := (A \setminus A_h) \cup A'_{h-1},$$

then $w(A') \ge w(A)$. But notice that the span of A' is less than k. The inductive hypothesis implies $w(A') \le 1$ and we are done.

We will also give a third proof but we need some preliminaries. Note that a regular graded poset (S, \leq) has various parameters, say $(r_i, s_i)_{i=0}^m$ where if $x \in S_k$ it covers r_k elements in S_{k-1} and is covered by s_k elements in S_{k+1} . We

assume $r_0 = 0$ and $s_m = 0$ but otherwise $r_k, s_k \ge 1$ —this is in order to rule out disconnected posets.

As we are disregarding disconnected posets, it is clear that every maximal chain in S has length m+1. For $x \in S$ denote by $\mu(x)$ the number of maximal chains containing x. Let us calculate $\mu(x)$.

If $x \in S_k$ for some k we can construct a maximal chain by choosing one element from each of $S_0, S_1, \ldots, S_{k-1}$ these elements are comparable to x, and similarly for S_{k+1}, \ldots, S_m . We know how many choices there are for S_{k-1} and S_{k+1} : these are r_k and s_k respectively. And once we've made those choices we know how many choices there are for S_{k-2} and S_{k+2} : these are r_{k-1} and s_{k+1} . Continuing on we conclude that if $x \in S_k$

$$\mu(x) = \left(\prod_{i=1}^k r_i\right) \left(\prod_{i=k}^{m-1} s_i\right).$$

Note that this number doesn't depend on the specific element x, only on its level k. Let M denote the number of maximal chains in S. As every maximal chain must pass through all levels, we conclude that for all $1 \le k \le m$ and for all $x \in S_k$ we have

$$M = |S_k|\mu(x).$$

Third proof. Note that maximal chains passing through different elements of A must be distinct since two distinct elements of the antichain A cannot form part of a chain. It follows that

$$\begin{split} M &\geq \sum_{x \in A} \mu(x) \\ &= \sum_{k=0}^m |A_h| \frac{M}{S_h} \\ &= M \sum_{k=0}^m \frac{|A_h|}{|S_h|} = M w(A). \end{split}$$

As our posets are connected there is at least one maximal chain, i.e., M > 0. Divide by M and we are done.

3.2 Back to $\mathcal{P}(n)$

We can apply the previous theorem to the specific case of $\mathcal{P}([n])$ (we abbreviate this as $\mathcal{P}(n)$ now).

Theorem 3.2. If $A \subseteq \mathcal{P}(n)$ is an antichain then $\sum_{A \in \mathcal{A}} \binom{n}{|A|}^{-1} \leq 1$. Equivalently, if we define $f_k := |A \cap X^{(k)}|$ then $\sum_{k=0}^n f_k \binom{n}{k}^{-1} \leq 1$.

First proof. Clearly the second statement, in the language of graded posets, is just saying that the weight of A is less than or equal to 1, which is just Theorem 3.1. The first statement is also referring to the weight, but the sum runs over individual elements of A rather than the intersections over different levels. \square

Second proof. This proof is due to Lubell. We say that $A \in \mathcal{P}(n)$ is contained in a permutation $\pi = x_1 x_2 \cdots x_n$ of [n] if $A = \{x_1, \dots, x_k\}$ where k = |A|.

Every permutation π contains at most one element of \mathcal{A} . This is because, if it contained two, one of them would be a subset of the other and \mathcal{A} is an antichain. Also, given a set $A \in \mathcal{P}(n)$ with |A| = k we see that A is contained in exactly k! (n-k)! permutations. Trivially, the number of permutations containing an element of \mathcal{A} is at most the number of permutations of $\mathcal{P}(n)$. In other words,

$$\sum_{A \in \mathcal{A}} |A|! (n - |A|)! \le n!$$

4 Symmetric Chains

Definition 4.1. A chain in $\mathcal{P}(n)$ is called symmetric if it is of the form $C_i \subseteq C_{i+1} \subseteq \cdots \subseteq C_{n-i}$ and $|C_j| = j$ for all j.

Examples 4.2. In $\mathcal{P}(6)$ the following is a symmetric chain.

$$\{1\} \subseteq \{1,4\} \subseteq \{1,3,4\} \subseteq \{1,3,4,6\} \subseteq \{1,3,4,5,6\}.$$

The one-element chain $\{2,4,5\}$ is also symmetric in $\mathcal{P}(6)$ (but not in any other $\mathcal{P}(n)$). Similarly, the chain

$$\{2,5,6\} \subseteq \{2,4,5,6\}$$

is symmetric in $\mathcal{P}(7)$ but not symmetric anywhere else.

Theorem 4.3. Every powerset has a partition into symmetric chains. Furthermore, such a partition of $\mathcal{P}(n)$ has size exactly $\binom{n}{\lfloor n/2 \rfloor}$.

Proof. First, suppose that such a partition P existed. Symmetric chains always contain an element of $[n]^{(\lfloor n/2 \rfloor)}$ but they can contain at most one since any two are not comparable. Therefore there is a function $f \colon P \to [n]^{(\lfloor n/2 \rfloor)}$ sending each chain of the partition to the unique element of $[n]^{(\lfloor n/2 \rfloor)}$ it contains. Clearly f is injective (since elements of P are disjoint) and surjective (since P covers all of $\mathcal{P}(n)$). Hence f is a bijection and thus $|P| = \binom{n}{\lfloor n/2 \rfloor}$.

It remains to show that such partitions exist. We use induction on n. For n=0 the single one-element chain $\{\emptyset\}$ works. Let $n\geq 2$ and assume that the result holds for n-1. Then, let P be a partition of $\mathcal{P}(n-1)$ into symmetric chains let $\mathcal{C}=\{C_i,C_{i+1},\ldots,C_j\}$ be a chain in P.

If i < j define two more chains

$$C' := \{C_i, \dots, C_j, C_j \cup \{n\}\}\$$

 $C'' := \{C_i \cup \{n\}, \dots, C_{j-1} \cup \{n\}\}.$

If i = j then just C' as above and omit C''. Clearly both of these are symmetric chains in $\mathcal{P}(n)$. If we let P' be the collection of all such C' and C'' then P' partitions $\mathcal{P}(n)$ into symmetric chains.