ESALO

Otros Modelos de Machine Learning III João F. Serrajordia R. de Mello

Va a necesitar de...

Preparativos

- Abrir R
- Importar las bibliotecas
- Algo para hacer sus anotaciones

Revisión Histórico Luiz Rodriguez Ideas básicas Usos

Agenda

CRISP-DM

Fuente: https://www.the-modeling-agency.com/crisp-dm.pdf

Ensemble

Un ensemble es cualquier mezcla de modelos ya existentes. Los principales tipos son:

Bagging

Boosting

Stacking

Bootstrap – aggregation (bagging)

El bagging con árboles es el famoso Random Forest

Los métodos de *boosting* son modelos secuenciales que intentan mejorar el error del modelo anterior

Elimina de la muestra de entrenamiento Clasifica el elemento eliminado inicialmente Desarrolla el modelo con los demás

- Dividimos la base en k submuestras
- Para cada submuestra:
 - Eliminamos la submuestra como validación
 - Entrenamos el modelo con las observaciones restantes
 - Utilizamos este modelo para clasificar la submuestra eliminada
 - Evaluamos la métrica de desempeño del modelo
- Calculamos la media de las métricas de desempeño del modelo

Árboles de regresión

Son muy semejantes a los árboles de clasificación

Lo que cambia es el criterio de impureza

$$SQE = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

Árboles de regresión

Problemas de predictivos y de clasificación

¿Cuál es la eficacia de una vacuna?

¿El cliente pagará el préstamo?

¿Cuánto petróleo tiene el pozo?

¿El cliente va a comprar mi producto?

¿Qué está haciendo la persona?

¿Cuán ecológico es ese vehículo?

clasificación guez Fantini 005.374.619-81

Clasificación de los algoritmos

Supervisados

- Regresión
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Redes Neurales
- Decision Trees

No Supervisados

- K-Means
- Métodos jerárquicos
- Mezcla Gaussiana
- DBScan
- Mini-Batch-K-Means

¡Estamos aquí!

Clasificación de los algoritmos

Respuesta continua

- Regresión
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Redes Neurales
- Regression Trees

Respuesta discreta

- Regresión logística
- Clasification trees
- Redes Neurales
- GLM
- GLMM

¡Estamos aquí!

Clasificación de los algoritmos

Métodos Machinelárnicos

- Árboles de decisión
- Bagging
- Boosting
- K-NN
- Redes Neurales
- Support vector machines

Métodos Machinelárnicoestadísticos

- Regresión
- GLM
- GLMM
- ANOVA

¡Estamos aquí!

Metáfora

Neurona biológica

https://en.wikipedia.org/wiki/Myelin

Ejemplo biológico

Red Neural Humana

• *Homo sapiens*: 100.000.000 de neuronas

¿Dónde viven?

Redes Neurales Artificiales han tenido mucho éxito en problemas con datos poco estructurados como imágenes, audios, textos y videos.

Neurona de McCulloch-Pitts

Funciones de activación

Perceptrón

OCR – Optical Character Recognition

Vamos a pensar en una versión bien simple del problema. Dígitos de un radio reloj antiguo poseen una estructura bien simple.

OCR – Optical Character Recognition

Hay 7 regiones básicas, que pueden estar activas o inactivas, y definen un dígito.

Por ejemplo, si solamente las regiones 1, 3 y 6 están activadas, tenemos el número 7.

Perceptrón de Rosenblatt

- El Perceptrón de Rosenblatt (~1950-1960) tiene esa idea, sólo que con propósito más general
- fue construido para hacer OCR (optical character recognition)
- Para eso, mapea regiones de una imagen "activadas" y "no activadas"
- Cada unidad es una neurona de McCullogh-Pitt

Perceptron Linear

 Posee la misma estructura de una regresión lineal con la función de activación indicada.

Limitaciones del perceptrón lineal

• El perceptrón lineal sólo captura patrones lineales

Perceptrón multicapa

- Posee capas "ocultas" intermediarias
- Captura patrones no lineales
- Puede aprovecharse del procesamiento paralelo de GPUs
- No es "interpretable" como la regresión

Funciones de pérdida

Variables Continuas SQE

$$SQE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Variables binárias Cross-Entropy

$$L = y_i log(\widehat{y}_i) + (1 - y_i) log(1 - \widehat{y}_i)$$

Redes Neurales Artificiales

Deep learning with R - Abhijit Ghatak, ed. Springer, 2019

Fig. 2.3 A representation of a neural network with four input features, two hidden layers with three nodes each, and an output layer

MBAUSP ESALQ

Tratamiento inicial de los datos

Red Neural MNIST

¡Con apenas una capa ya tenemos 784 x 10 = 7.840 parámetros!

3blue1brown - https://www.youtube.com/watch?v=aircAruvnKk

Gradiente descendente

Es el algoritmo más popular para entrenar redes neurales artificiales por presentar algunas características:

- Puede cambiar las estimaciones con pequeños subconjuntos de puntos a cada iteración (en el límite 1 único punto)
- No depende de invertir matriz
- Funciona con una base de datos bien grande
- Puede ser procesado en paralelo con GPU
- Permite interrumpir el algoritmo a cierto punto y continuar más tarde o en otro problema similar (transfer learning)

Redes Gradiente Descendente

Deep learning with python – François Chollet

Gradiente descendente

1.8 Gradient Descent

Fig. 1.4 Gradient descent: Rolling down to the minima by updating the weights by the gradient of the loss function

Fig. 1.5 A contour plot showing the cost contours of a sigmoid activation neural network and the cost minimization steps using the gradient descent optimization function

Previsión de consumo de vehículo

- Tamaño del motor
- Combustible
- Número de cilindros
- Marca
- Potencia
- Tracción

Procesadores

- Distancia entre transístores: 14 nm
- Cabello humano: 80.000 nm
- Diámetro del átomo de oro: 0,3 nm

Procesamiento con GPU

Regularización L2

Variables Continuas SQE

$$SQE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \sum_{i=1}^{N} \beta_i^2$$

Variables binárias Cross-Entropy

$$L = \sum y_i log(\widehat{y}_i) + \lambda \sum \beta_i^2$$

Reconocimiento de actividad humana con smartphone

Conclusiones

- Redes Neurales son la introducción al Deep Learning (que es un ramo muy promisor)
- Son poderosas y flexibles
- Requieren poder computacional especial (GPU / TPU)
- Son famosas en datos menos estructurados (ej. imágenes, audio)

<u>linkedin.com/in/joao-serrajordia</u>