CONTROL 2 TEMA B

1- Un capacitor con dos placas cuadradas de 20 cm de lado y separadas <u>por aire</u> una distancia d = 1,0 cm. Se lo carga conectándolo a una fuente de 54 V. Luego se desconecta de la fuente y se introducen en su interior dos dieléctricos, cubriendo la mitad del área cada uno como indica la figura, siendo K_1 = 2,6 y K_2 = 2,4. Luego de haber introducido los dieléctricos, calcular el valor: a) de carga que adquiere el capacitor. b) del potencial que alcanza el capacitor.

2- Un resistor de carbono se puede utilizar como termómetro. El elemento tiene una resistencia R_0 = 218,0 Ω en un día de invierno en que la temperatura está a T_0 . Un día cálido de verano, cuando la temperatura es nueve veces la anterior, que llamaremos T_1 , la resistencia tiene un valor R_1 = 214,5 Ω (α = $-5.10^{-4} \frac{1}{50}$) ¿Cuáles son los valores de temperatura T_0 y T_1 ?

3- El amperímetro de la figura es no ideal. Se sabe que la potencia que disipa la resistencia R_1 es P_1 = 2,56 W y que la fuente ε_2 almacena energía. Calcular: a) el valor y el sentido de la corriente I_3 por la resistencia R_3 , b) el valor de la fem ε_2 , c) la resistencia interna del amperímetro R_A .

- 4– a) En el laboratorio 3 y con sólo aire entre placas; no realizamos actividades para las relaciones C=f(Q) [V=cte] ni para C=f(V) [Q=cte] porque:
 - i) Debemos tener una regla con mayor precisión.
 - ii) Necesitamos un medidor de carga eléctrica.
 - iii) Necesitamos un electrómetro de mayor precisión.
 - iv) Ninguna anterior es correcta.
 - b) En la experiencia de laboratorio 5.2: óhmetro analógico. Para el calibrado de este instrumento se procede de la manera siguiente:
 - i) sin realizar cortocircuito, se lleva la aguja a fondo de escala (0) variando R_(shunt).
 - ii) se realiza cortocircuito y se lleva la aguja al fondo de la escala (0).
 - iii) se realiza cortocircuito y se lleva la aguja al inicio de la escala (∞).
 - iv) ninguna anterior es correcta.