Álgebra II. Hoja de ejercicios 4: Ideales primos y maximales. Localización Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ideales primos y maximales

Ejercicio 1. Sea R un anillo conmutativo y sea $\mathfrak{p} \subset R$ un ideal primo. Demuestre que si $x^n \in \mathfrak{p}$ para algún $x \in R$ y n = 1, 2, 3, ..., entonces $x \in \mathfrak{p}$.

Ejercicio 2. Sea $f: R \to S$ un homomorfismo de anillos conmutativos. Para un ideal primo $\mathfrak{p} \subset S$ verifique directamente que $f^{-1}(\mathfrak{p})$ es un ideal primo en R.

Ejercicio 3. *Sea R un anillo conmutativo y sea* $\mathfrak{p} \subset R$ *un ideal primo.*

- 1) Demuestre que para dos ideales $I, J \subseteq R$, si $IJ \subseteq \mathfrak{p}$, entonces $I \subseteq \mathfrak{p}$ o $J \subseteq \mathfrak{p}$.
- 2) Demuestre que si para un ideal $I \subseteq R$ se tiene $I^n \subseteq \mathfrak{p}$ para algún $n = 1, 2, 3, \ldots$, entonces $I \subseteq \mathfrak{p}$.

Ejercicio 4. Sea R un anillo conmutativo. Para un subconjunto $S \subseteq R$ sea V(S) el conjunto de los ideales primos que contienen a S:

$$V(S) := \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \supseteq S \}.$$

- 1) Demuestre que para $S_1 \subseteq S_2 \subseteq R$ se tiene $V(S_2) \subseteq V(S_1)$.
- 2) Demuestre que V(S) = V(I) donde I = (S) es el ideal generado por S.
- 3) Demuestre que $V(0) = \operatorname{Spec} R \ y \ V(1) = \emptyset$.
- 4) Demuestre que $V(I) \cup V(J) = V(IJ)$ para ideales $I, J \subseteq R$.
- 5) Demuestre que $\bigcap_k V(I_k) = V(\sum_k I_k)$ para ideales $I_k \subseteq R$.

Ejercicio 5. Sean R y S anillos conmutativos. Consideremos el producto $R \times S$ con las proyecciones canónicas

$$R \xleftarrow{\pi_1} R \times S \xrightarrow{\pi_2} S$$

$$r \longleftrightarrow (r,s) \longmapsto s$$

1) $Si \mathfrak{p} \subset R y \mathfrak{q} \subset S$ son ideales primos, demuestre que

$$\mathfrak{p} \times S := \pi_1^{-1}(\mathfrak{p}) = \{(x,s) \mid x \in \mathfrak{p}, \ s \in S\}, \quad R \times \mathfrak{q} = \pi_2^{-1}(\mathfrak{q}) := \{(r,y) \mid r \in R, \ y \in \mathfrak{q}\}$$

son ideales primos en el producto $R \times S$.

2) Demuestre que si $\mathfrak{P} \subset R \times S$ es un ideal primo, entonces \mathfrak{P} es de la forma $\mathfrak{p} \times S$ o $R \times \mathfrak{q}$ como en 1). Indicación: para $e_1 := (1_R, 0_S)$ y $e_2 := (0_R, 1_S)$ note que $e_1 e_2 \in \mathfrak{P}$, así que $e_1 \in \mathfrak{P}$ o $e_2 \in \mathfrak{P}$.

Ensto nos da una biyección natural $\operatorname{Spec}(R \times S) \cong \operatorname{Spec} R \sqcup \operatorname{Spec} S$.

Ejercicio 6. Sea R un anillo commutativo. Sea $U \subset R$ un subconjunto no vacío tal que $0 \notin U$ y si $x,y \in U$, entonces $xy \in U$.

- 1) Deduzca del lema de Zorn que existe un ideal $\mathfrak{p} \subset R$ que satisface las siguientes propiedades:
 - $U \cap \mathfrak{p} = \emptyset$,
 - $Si \mathfrak{p} \subseteq I$ para otro ideal I que satisface $U \cap I = \emptyset$, entonces $I = \mathfrak{p}$.
- 2) Demuestre que p es un ideal primo.

Indicación: basta revisar y entender nuestra prueba de que $N(R) = \bigcap_{\mathfrak{p} \subset R} \operatorname{primo} \mathfrak{p}$.

Localización

Ejercicio 7. En el cuerpo de las series de Laurent $\mathbb{Q}((X))$, encuentre el elemento inverso de $X-X^2$.

Ejercicio 8. Describa los cuerpos de fracciones K(R) para los anillos $R = \mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{5}], \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.

Ejercicio 9. Sea $R \times S$ un producto de anillos conmutativos no nulos. Consideremos e := (1,0). Demuestre que $(R \times S)[e^{-1}] \cong R$.

Ejercicio 10. Consideremos el anillo finito $R = \mathbb{Z}/n\mathbb{Z}$ donde $n = p_1^{k_1} \cdots p_s^{k_s}$.

- 1) Demuestre que los ideales maximales en R son $\mathfrak{m}_i = p_i \mathbb{Z}/n\mathbb{Z}$ para $i = 1, \dots, s$.
- 2) Demuestre que $R \cong R_{\mathfrak{m}_1} \times \cdots \times R_{\mathfrak{m}_s}$.

Ejercicio 11 (*). Supongamos que ψ : $R \to S$ es un homomorfismo de anillos que satisface la misma propiedad universal que el homomorfismo de localización ϕ : $R \to R[U^{-1}]$:

- 1) para todo $u \in U$ el elemento $\psi(u)$ es invertible en S;
- 2) si S' es otro anillo junto con un homomorfismo $f: R \to S'$ tal que f(u) es invertible en S' para todo $u \in U$, entonces f se factoriza de modo único por ψ :

$$R \xrightarrow{f} S'$$

$$\psi \downarrow \qquad \exists ! \tilde{f}$$

Demuestre que existe un isomorfismo único $R[U^{-1}] o S$ que hace conmutar el diagrama

$$R \xrightarrow{\psi} S$$

$$\downarrow \phi \qquad \cong \exists !$$

$$R[U^{-1}]$$

(Aplique la propiedad universal de ϕ a ψ y luego la propiedad universal de ψ a ϕ .)