Decision trees

Fraida Fund

Contents

In thi	lecture	2
		3
ı	odels for regression	3
	odels for classification	3
l	exible decisions with cheap prediction?	3
Decis	on tree	4
-	ree terminology	4
	ote on notation	4
	tratification of feature space (1)	4
	tratification of feature space (2)	4
	ree representation	4
-	ee characterization	4
	tratification of feature space - illustration	5
Traini	g a decision tree	6
	asic idea (1)	6
	asic idea (2)	6
	ecursive binary splitting	6
	ecursive binary splitting steps	6
	oss function for regression tree	6
	oss function for classification tree	6
	assification error rate	7
	INI index	7
	ntropy	7
	omparison - measures of node impurity	7
	onditional entropy	8
	formation gain	8
	kample: should I play tennis? (1)	8
	kample: should I play tennis? (2)	8
	kample: should I play tennis? (3)	8
	kample: should I play tennis? (4)	9
	kample: should I play tennis? (5)	9
	eature importance	9
	nd variance	9
Dias c	anaging tree depth	9
	topping criteria	10
ì	runing	10
		10
		10
,	eakest link pruning (1)	10
		10
Cumn	on - so for	11
Jullill -	. ,	11
	ie good allu liie bau (i)	- 1

The good and the bad (2) .	· • • • • •	 	 	11
In this lecture				
Decision treesTraining decision treesBias and variance of decision	trees			

Recap

Models for regression

Model	Function shape	Loss fn.	Training	Prediction	↓ complexity
Linear regression	Linear (or transformed)	$(\hat{y}-y)^2$	$\hat{w} = (A^T A)^{-1} A^T y$	$\hat{y} = [1, x^T]\hat{w}$	Regularization
KNN	Arbitrarily complicated	NA	Non-parametric, store training data	$\begin{array}{l} \hat{y} = \\ \frac{1}{K} \sum_{K_x} y_i \end{array}$	Increase K

Models for classification

Model	Function shape	Loss fn.	Training	P(y = m x) =	↓ complexity
Logistic regression KNN	Linear (or transformed) Arbitrarily complicated	$-\ln P(y X)$ NA	No closed form soln., use solver Non-parametric, store training data	$\begin{array}{l} \frac{e^{zm}}{\sum_{\ell=1}^{M}e^{z_{\ell}}} \\ \frac{1}{K}\sum_{K_{x}}I(y_{i}=m) \end{array}$	Regularization Increase K

Flexible decisions with cheap prediction?

KNN was very flexible, but prediction is **slow**.

Next: flexible decisions, non-parametric approach, fast prediction

Decision tree

Tree terminology

TODO: add illustration

Figure 1: A binary tree.

Note on notation

Following notation of ISLR, Chapter 8:

- X_j is feature j• x_i is sample i

Stratification of feature space (1)

- Given set of possible predictors, X_1,\dots,X_p
- ullet Training: Divide predictor space (set of possible values of X) into J non-overlapping regions: R_1, \dots, R_J , by splitting sequentially on one feature at a time.

Stratification of feature space (2)

- Prediction: For each observation that falls in region \boldsymbol{R}_j , predict
 - mean of labels of training points in R_{j} (regression)
 - mode of labels of training points in $\vec{R_j}$ (classification)

Tree representation

- At node that is not a leaf: test one feature X_i Branch from node depending on value of X_i
- Each leaf node: predict \hat{y}_{R_m}

Tree characterization

- size of tree $\left|T\right|$ (number of leaf nodes)
- depth (max length from root node to a leaf node)

Stratification of feature space - illustration

Figure 2: ISLR, Fig. 8.3.

The stratification on the top left cannot be produced by a decision tree using recursive binary splitting. The other three subfigures represent a single stratification.

Training a decision tree

Basic idea (1)

- Goal: find the high-dimensional rectangles that minimize error
- · Computationally expensive to consider every possible partition

Basic idea (2)

- Instead: recursive binary splitting (top-down, greedy approach)
- Greedy: at each step, make the best decision at that step, without looking ahead and making a decision that might yield better results at future steps

Recursive binary splitting

For any feature j and *cutpoint* s, define the regions

$$R_1(j,s) = \{X | X_j < s\}, \quad R_2(j,s) = \{X | X_j \ge s\}$$

where $\{X|X_i < s\}$ is the region of predictor space in which X_i takes on a value less than s.

Recursive binary splitting steps

Start at root of the tree, considering all training samples.

- 1. At the current node,
- 2. Find feature X_i and cutpoint s that minimizes some loss function (?)
- 3. Split training samples at that node into two leaf nodes
- 4. Stop when no training error (?)
- 5. Otherwise, repeat at leaf nodes

Loss function for regression tree

For regression: look for feature j and cutpoint s that leads to the greatest possible reduction in squared error:

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 \quad + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

(where \hat{y}_{R_i} is the prediction for the samples in R_{j})

Loss function for classification tree

For classification, find a split that minimizes some measure of node impurity:

- A node whose samples all belong to the same class most pure
- A node whose samples are evenly distributed among all classes highly impure

Classification error rate

For classification: one possible way is to split on 0-1 loss or misclassification rate:

$$\sum_{x_i \in R_m} 1(y_i \neq \hat{y}_{R_m})$$

Not used often.

GINI index

The GINI index is:

$$\sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$$

where \hat{p}_{mk} is the proportion of training samples in R_m belonging to class k. You can see that this is small when all values of \hat{p}_{mk} are around 0 or 1.

Entropy

Entropy of a random variable X (from information theory):

$$H(X) = -\sum_{i=1}^N P(X=i)\log_2 P(X=i)$$

Entropy as a measure of impurity on subset of samples:

$$-\sum_{k=1}^K \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

where \hat{p}_{mk} is the proportion of training samples in R_m belonging to class k.

Comparison - measures of node impurity

Figure 3: Measures of node "impurity".

Conditional entropy

- Splitting on feature X creates subsets ${\cal S}_1$ and ${\cal S}_2$ with different entropies Conditional entropy:

$$\mathrm{Entropy}(S|X) = \sum_v \frac{|S_v|}{|S|} \mathrm{Entropy}(S_v)$$

Information gain

· Choose feature to split so as to maximize information gain, the expected reduction in entropy due to splitting on X:

$$Gain(S, X) := Entropy(S) - Entropy(S|X)$$

Example: should I play tennis? (1)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Figure 4: Via Tom Mitchell.

Example: should I play tennis? (2)

For top node: $S = \{9+, 5-\}, |S| = 14$

$$\mathrm{Entropy}(S) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.94$$

Example: should I play tennis? (3)

If we split on Wind:

Considering the Weak branch:

•
$$S_{\text{weak}} = \{6+, 2-\}, |S_{\text{weak}}| = 8$$

$$\begin{array}{l} \bullet \; S_{\rm weak} = \{6+,2-\}, |S_{\rm weak}| = 8 \\ \bullet \; {\rm Entropy}(S_{\rm weak}) = -\frac{6}{8} \log_2(\frac{6}{8}) - \frac{2}{8} \log_2(\frac{2}{8}) = 0.81 \end{array}$$

Considering the Strong branch:

$$\begin{split} & \bullet \ S_{\rm strong} = \{3+,3-\}, |S_{\rm strong}| = 6 \\ & \bullet \ {\rm Entropy}(S_{\rm strong}) = 1 \end{split}$$

• Entropy
$$(S_{\sf strong}) = 1$$

Example: should I play tennis? (4)

$$\begin{split} & \operatorname{Entropy}(S) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94 \\ & \operatorname{Entropy}(S|\mathsf{Wind}) = \frac{8}{14}\mathsf{Entropy}(S_{\mathsf{weak}}) + \frac{6}{14}\mathsf{Entropy}(S_{\mathsf{strong}}) = 0.89 \\ & \operatorname{Gain}(S,\mathsf{Wind}) = 0.94 - 0.89 = 0.05 \end{split}$$

Example: should I play tennis? (5)

- Gain(S, Outlook) = 0.246
- Gain(S, Humidity) = 0.151
- Gain(S, Wind) = 0.048
- Gain(S, Temperature) = 0.029
- \rightarrow Split on Outlook!

Feature importance

- ullet For each feature $X_{\it j}$, find all nodes where the feature was used as the split variable
- Add up information gain due to split (or for GINI index, difference in loss weighted by number of samples.)
- · This sum reflects feature importance

Bias and variance

Managing tree depth

- If tree is too deep likely to overfit (high variance)
- · If tree is not deep enough likely to have high bias

Stopping criteria

If we build tree until there is zero error on training set, we have "memorized" training data.

Other stopping criteria:

- · Max depth
- Max size (number of leaf nodes)
- · Min number of samples to split
- · Min number of samples in leaf node
- · Min decrease in loss function due to split

(Can select depth, etc. by CV)

Pruning

- · Alternative to stopping criteria: build entire tree, then prune
- With greedy algorithm a very good split may descend from a less-good split

Pruning classification trees

We usually prune classification trees using classification error rate as loss function, even if tree was built using GINI or entropy.

Weakest link pruning (1)

Prune a large tree from leaves to root:

- Start with full tree $T_{
 m 0}$
- Merge two adjacent leaf nodes into their parent to obtain T_{1} by minimizing:

$$\frac{Err(T_1) - Err(T_0)}{|T_0| - |T_1|}$$

Weakest link pruning (2)

- Iterate to produce a sequence of trees T_0, T_1, \dots, T_m where T_m is a tree of minimum size.
- · Select optimal tree by CV

Cost complexity pruning

Equivalent to: Minimize

$$\sum_{m=1}^{|T|} \sum_{x_i}^{R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

Choose α by CV, 1-SE rule ($\uparrow \alpha, \downarrow |T|$).

Summary - so far

The good and the bad (1)

Good:

- Easy to interpret, close to human decision-making
- Can derive feature importance
- Easily handles mixed types, different ranges
 Can find interactions that linear classifiers can't

The good and the bad (2)

Bad:

- Need deep tree to overcome bias
- Deep trees have large variance
- Non-robust: Small change in data can cause large change in estimated tree