ขั้นตอนวิธีการทำ

Library Package ที่จะใช้ได้แก่

- 1. Tidyverse สำหรับการจัดการข้อมูล
- 2. Tidyqunat สำหรับการจัดการข้อมูลและวิเคราะห์ทางการเงิน

ขั้นตอนที่ 1 : การกำหนดวันและการเลือกหุ้น

กำหนดวันที่ให้ดึงข้อมูลรายวันตั้งแต่ 2016-01-01 จนถึง 2022-11-31 รวมระยะเวลา 5 ปี

ใน Portfolio ที่ 1 จะเลือกหุ้นทั้งหมด 10 ตัว ได้แก่หุ้น Blue chip 7 ตัว และหุ้น Defensive stock 3 ตัว มี รายละเอียดของหุ้นแต่ละตัวดังนี้ (ข้อมูลเดือน 7 ปี 2022)

- Blue chip 7 ตัว
- 1. PTTEP คาดว่ากำไรสุทธิจะเติบโตขึ้นทั้งจากงวดเดียวกันกับปีก่อน และคาดว่าจะมีโครงการผลิตก๊าซ จะช่วย หนุนยอดขายให้เพิ่มขึ้นได้ 10% ส่วนราคาน้ำมันที่สูงขึ้นอาจจะเข้ามาช่วยกระตุ้นยอดขายเฉลี่ยขึ้น
- 2. BH เป็นหุ้นที่มีการเติบโตขึ้นอย่างต่อเนื่องและ มีโอกาสที่ราคาปรับตัวขึ้นได้อีก
- 3. BANPU จากแนวโน้มราคาถ่านหินที่ยังคงแกว่งตัวในระดับสูง จากความต้องการจากจีน (ผู้ใช้ถ่านหิน อันดับ 1) สูงขึ้นหลังช่วง Post-lockdown และคาดประเทศในยุโรปจะเร่งการใช้ถ่านหินมากขึ้นจากภาวะการขาดแคลนก๊าซ
- 4. KTB หุ้นมีราคาปรับตัวขึ้นอย่างแข็งแกร่ง และคาดว่าจะไปต่อ
- 5. MINT ราคาหุ้นมีการปรับตัวขึ้นโดยได้ประโยชน์โดยตรงจากภาคการท่องเที่ยวเริ่มปรับเข้าสู่สภาวะปกติ
- 6. BDMS หลังผู้ป่วยปกติ (ไม่รวมโควิด-19) ทั้งไทย ต่างชาติฟื้นเด่น
- 7. AOT เป็นหุ้นที่กำลังฟื้นตัวหลังจากที่มีผู้โดยสารต่างประเทศเริ่มฟื้นแรง และขาดทุนลดลงอย่างมีนัยสำคัญ
- Defensive stock 3 ตัว ได้แก่ AP, BCT และ QH หุ้นเหล่านี้เลือกมาจาก ขนาดบริษัทที่ใหญ่ ฐานะทางการเงิน มั่นคง มีความผันผวนต่ำเมื่อเทียบกับตลาด ภาระหนี้สินน้อย มีกำไรที่สม่ำเสมอในภาวะเศรษฐกิจแบบใดก็ได้ จ่าย ปันผลที่สม่ำเสมอ และมีราคา P/E ratio ไม่แพง

การที่ถือหุ้น Defensive stock ก็เพื่อใช้หลักการกระจายความเสี่ยง (Asset allocation)

ใน Portfolio ที่ 2 จะเลือกหุ้นทั้งหมด 10 ตัว ได้แก่หุ้น Growth stock 7 ตัว และหุ้น Defensive stock 3 ตัวที่ แตกต่างจาก Portfolio ที่ 1 มีรายละเอียดของหุ้นแต่ละตัวดังนี้ (ข้อมูลเดือน 11 ปี 2022)

- Growth stock 7 ตัว
- 1. M คาดกำไรเติบโต 939% เทียบช่วงเดียวกันของปีก่อน (กำไรเติบโตสูงจากฐานที่ต่ำในปี 2564 เนื่องจากมีการ lockdown เกือบ 2 เดือน) และมีupside 18%
- 2. CPF คาดกำไรเติบโต 279%เทียบช่วงเดียวกันกับของปีก่อน และมี upside 13%
- 3. CPALL คาดกำไรเติบโต 106% เทียบช่วงเดียวกันกับของปีก่อน และมี upside 11%
- 4. SPRC ถ้าธุรกรรมขยายธุรกิจสู้ช่วงปลายน้ำ จะทำให้ต่อยอดธุรกิจค้าปลีกที่ไม่เกี่ยวกับน้ำมันได้
- 5. STEC คาดกำไรเติบโต 80% เทียบช่วงเดียวกันอของปีก่อนและมี upside 28%
- 6. CK คาดกำไรเติบโต 63% เทียบช่วงเดียวกันของปีก่อน และมี upside 13%
- 7. AMATA คาดกำไรเติบโต 42% เทียบช่วงเดียวกันของปีก่อน และมี upside 27%
- Defensive stock 3 ตัว ได้แก่ RATCH, SCCและ SPALI หุ้นเหล่านี้เลือกมาจาก ขนาดบริษัทที่ใหญ่ ฐานะทาง การเงินมั่นคง มีความผันผวนต่ำเมื่อเทียบกับตลาด ภาระหนี้สินน้อย มีกำไรที่สม่ำเสมอในภาวะเศรษฐกิจแบบใดก็ ได้ จ่ายปันผลที่สม่ำเสมอ และมีราคา P/E ratio ไม่แพง

ขั้นตอนที่ 2 : ดึงราคา Adjusted ของหุ้นในทั้งสอง Portfolio และ SET index (ตัวแทนของตลาดหุ้น) และนำมา หาอัตราผลตอบแทนดังสูตร

$$Total\ Stock\ Return = \frac{(P_1 - P_0) + D}{P_0}$$

 $P_0 = Initial \ Stock \ Price$

 $P_1 = Ending\ Stock\ Price(Period\ 1)$

D=Dividends

หุ้นใน Portfolio 1

หุ้นใน Portfolio 2

SET index

*	symbol ‡	date ‡	stock_return ‡	*	symbol ‡	date ‡	stock_return ‡	^	date ‡	set_return ‡
1	AOT.BK	2016-01-04	0.000000000	1	AMATA.BK	2016-01-04	0.000000000	1	2016-01-04	0.0000000000
2	AOT.BK	2016-01-05	-0.008746217	2	AMATA.BK	2016-01-05	0.016666712	2	2016-01-05	-0.0079705462
3	AOT.BK	2016-01-06	0.000000000	3	AMATA.BK	2016-01-06	0.024590279	3	2016-01-06	0.0053457746
4	AOT.BK	2016-01-07	-0.008823608	4	AMATA.BK	2016-01-07	-0.032000082	4	2016-01-07	-0.0279436224
5	AOT.BK	2016-01-08	0.002967195	5	AMATA.BK	2016-01-08	0.008264435	5	2016-01-08	0.0157981913
6	AOT.BK	2016-01-11	-0.014792782	6	AMATA.BK	2016-01-11	-0.008196694	6	2016-01-11	-0.0077802678
7	AOT.BK	2016-01-12	0.033033204	7	AMATA.BK	2016-01-12	-0.016529069	7	2016-01-12	0.0168489664
8	AOT.BK	2016-01-13	0.002906816	8	AMATA.BK	2016-01-13	0.008403435	8	2016-01-13	0.0185692146
9	AOT.BK	2016-01-14	-0.002898391	9	AMATA.BK	2016-01-14	0.024999917	9	2016-01-14	-0.0119817194
10	AOT.BK	2016-01-15	0.005813725	10	AMATA.BK	2016-01-15	-0.032520318	10	2016-01-15	-0.0138052723

และดูภาพรวมของข้อมูลหุ้นแต่ละตัวและตลาดได้ดังนี้

^	sym	ıbol ‡	Arithmetic	:Mean ‡	Geo	metricMean ‡	Kurtosis ‡	LCLMean(0.95)	‡	Maxim	um ‡	Median	‡	Minimum ‡
1	AOT	ī.BK		0.0006		5e-04	19.9069	-26	-04		0.1834			-0.1281
2	AP.I	3K		0.0007		6e-04	4.3562	-2€	-04		0.1176		0	-0.1357
3	BAN	IPU.BK		0.0006		2e-04	8.9175	-76	-04		0.1473			-0.2098
4	ВСТ	.BK		0.0009		7e-04	11.1810	16	-04		0.1377		0	-0.1304
5	BDN	AS.BK		0.0004		3e-04	8.2203	-46	-04		0.1243			-0.1100
6	BH.	ВК		0.0003		1e-04	8.6844	-6€	-04		0.1607		0	-0.0905
7	КТВ	.BK	0.0004		3e-04		12.4403	-46	-04		0.1111			-0.1333
8		IT.BK	T.BK 0.0002			0e+00	17.1714	-9e-04			0.2623		0	-0.1589
9		EP.BK		0.0012		9e-04	24.6924	1e-04			0.1500		0	-0.2981
10	QH.	BK		0.0004		3e-04	4.2362	-3€	-04		0.0851		0	-0.0857
NAs		Observ	ations 🕏	Quartile1		Quartile3 ‡	SEMean ‡	Skewness ‡	Std	ev ‡	UCLMe	an(0.95)		Variance ‡
			1679	-0.0	0075	0.0077	4e-04	1.1694		0.0171		0.0	015	3e-04
	0		1679	-0.0	0091	0.0106	5e-04	-0.0414		0.0186		0.0	016	3e-04
			1679	-0.0	107	0.0115	6e-04	-0.2234		0.0263		0.0	018	7e-04
	0		1679	-0.0	0058	0.0060	4e-04	0.9302		0.0160		0.0	016	3e-04
	0		1679	-0.0	0085	0.0087	4e-04	-0.0054		0.0153		0.0	011	2e-04
			1679	-0.0	0087	0.0084	4e-04	0.8759		0.0178		0.0	011	3e-04
			1679	-0.0	0067	0.0063	4e-04	-0.0593		0.0155		0.0	011	2e-04
			1679	-0.0	0096	0.0088	5e-04	0.8864		0.0225		0.0	013	5e-04
			1679	-0.0	0087	0.0108	6e-04	-1.1458 0		0.0226		0.0	023	5e-04
	0		1679	-0.0	0082	0.0083	4e-04	0.1404		0.0150		0.0	011	2e-04

symbol	ArithmeticMea	n [‡] Geomet	ricMean ‡	Kurtosis ‡	LCI	LMean(0.95)	Maximur	n 🗘	Median	÷ M	inimum ‡
AMATA.BK		7e-04	4e-04	5.8131		-0.0005	0	.1212	()	-0.1923
СК.ВК	:	2e-04	0e+00	11.9681		-0.0007	0	.1250	()	-0.2000
CPALL.BK		5e-04	4e-04	3.5881		-0.0002	! 0	.0822	()	-0.0794
CPF.BK	:	5e-04	3e-04	4.2723		-0.0004	0	.0776	()	-0.1200
M.BK	:	2e-04	1e-04	11.0356		-0.0005	0	.1480	()	-0.1228
RATCH.BK	:	2e-04	1e-04	20.5921		-0.0005	0	.1300	()	-0.1528
SCC.BK		1e-04	0e+00	14.5178		-0.0006	0	.1449	()	-0.1058
SPALI.BK	:	5e-04	3e-04	5.0522		-0.0003	0	.0842	()	-0.1358
SPRC.BK		7e-04	4e-04	5.2174		-0.0005	0	.1709	()	-0.1480
STEC.BK	2	1e-04	-4e-04	9.1584		-0.0012	! 0	.1238	(ס	-0.1955
NAs ‡	Observations ‡	Quartile1 ‡	Quartile3	♦ SEMean	÷	Skewness ‡	Stdev ‡	UCLI	Mean(0.95)	‡	Variance ‡
	1679	-0.0112	0.01	17 6e	-04	-0.0111	0.0230		0.00)18	5e-04
	1679	-0.0093	0.00	93 5e	-04	-0.4814	0.0187		0.00	011	3e-04
	1679	-0.0072	0.00	74 3e	-04	0.4253	0.0133		0.00	011	2e-04
	1679	-0.0093	0.00	93 4e	-04	0.0199	0.0178		0.00)13	3e-04
	1679	-0.0080	0.00	78 4e	-04	0.4941	0.0153		0.00	010	2e-04
	1679	-0.0050	0.00	51 3e	-04	-0.3529	0.0136		0.00	800	2e-04
	1679	-0.0078	0.00	76 3e	-04	0.4904	0.0132		0.00	007	2e-04
	1679	-0.0092	0.00	91 4e	-04	-0.2119	0.0167		0.00)13	3e-04
	1679	-0.0117	0.01	12 6e	-04	0.2768	0.0254		0.00)19	6e-04
0	1679	-0.0097	0.00	99 5e	-04	-0.6917	0.0218		0.00	009	5e-04

•	Ar	ithmeticMean	‡	GeometricMe	ean ‡	Kurto	sis ‡	LCLN	Mean(0.95)	‡	Maximum	‡	Median	‡	Minimum	‡
1	2e	-04		1e-04		24.37	78	-3e-0)4		0.0795		5e-04		-0.108	
NAs	‡	Observations	‡	Quartile1 ‡	Quartil	e3 [‡]	SEMea	n ‡	Skewness	‡	Stdev ‡	UCLI	Mean(0.95)	‡	Variance	‡
0		1676		-0.0039	0.0047		2e-04		-1.5373		0.0096	7e-0-	4		1e-04	

2016-01-12

2016-01-13

2016-01-14

10 2016-01-15

0.0073885235

0.0042714307

-0.0058705228

-0.0152604835

1.684897e-02

1.856921e-02

-1.198172e-02

-1.380527e-02

ขั้นตอนที่ 3 : คำนวณอัตราผลตอบแทน (Return) ของ Portfolio 1, 2 และไป Merge กับ SET index return

Portfolio 1 Portfolio 2 port_return set_return date port_return date set_return 2016-01-04 0.0000000000 0.0000000000 1 2016-01-04 0.0000000000 0.000000e+00 -0.0079705462 2016-01-05 -0.0026838499 2 2016-01-05 0.0144171591 -7.970546e-03 0.0035670529 0.0053457746 2016-01-06 -0.0005161192 5.345775e-03 -0.0279436224 2016-01-07 -0.0344716119 2016-01-07 -0.0223195294 -2.794362e-02 2016-01-08 0.0087555284 0.0157981913 2016-01-08 1.579819e-02 0.0144574066 2016-01-11 -0.0143680791 -0.0077802678 2016-01-11 0.0041024876 -7.780268e-03

0.0168489664

0.0185692146

-0.0119817194

-0.0138052723

2016-01-12

2016-01-13

2016-01-14

10 2016-01-15

0.0189104362

0.0174865164

-0.0179942352

-0.0141067502

ขั้นตอนที่ 4 : คำนวณ Beta, Information Ratio, Tracking Error, Treynor Ratio, Correlation, Annualized Return, Annualized Sharpe Ratio (Rf=0%), Annualized Standard Deviation, CAPM Jensen Alpha ได้ผลลัพธ์ดังตาราง

ขั้นตอนที่ 5 : คำนวณ Portfolio Cumulative Growth ของ Portfolio 1 2 และ SET index

^	date ‡	port.growth ‡	^	date ‡	port.growth ‡	date ‡	benchmark.growth ‡
1	2016-01-04	1.0000000	1	2016-01-04	1.0000000	2016-01-04	1.0000000
2	2016-01-05	0.9973162	2	2016-01-05	1.0144172	2016-01-05	0.9920295
3	2016-01-06	1.0008736	3	2016-01-06	1.0138936	2016-01-06	0.9973326
4	2016-01-07	0.9663719	4	2016-01-07	0.9912640	2016-01-07	0.9694635
5	2016-01-08	0.9748330	5	2016-01-08	1.0055951	2016-01-08	0.9847793
6	2016-01-11	0.9608265	6	2016-01-11	1.0097205	2016-01-11	0.9771175
7	2016-01-12	0.9789962	7	2016-01-12	1.0171808	2016-01-12	0.9935809

ขั้นตอนที่ 6 : Plot line graph ที่แสดงถึงความสัมพันธ์ระหว่างอัตราผลตอบแทนสะสม (Portfolio Cumulative Growth) เทียบกับอัตราผลตอบแทนสะสมของตลาดที่มีตัวแทนเป็น SET Index (Benchmark Cumulative Growth) และเวลาตั้งแต่ปี 2016 จนถึงปี 2022

กำหนดให้ สีส้ม ให้เป็นตัวแทนของอัตราผลตอบแทนสะสมของตลาด
สีน้ำเงิน ให้เป็นตัวแทนของอัตราผลตอบแทนสะสมของ Portfolio 1
สีเขียว ให้เป็นตัวแทนของอัตราผลตอบแทนสะสมของ Portfolio 2

Comparing Portfolio 1, Portfolio 2, SET Cumulative Growth

สรุปผลจากข้อมูลในแต่ละขั้นตอน

ตารางผลของ Ratio สำหรับเปรียบเทียบ Portfolio ต่างๆมีดังนี้

Ratio Ratio	<mark>Portfolio 1</mark>	<mark>Portfolio 2</mark>		
Beta	0.9398	0.9656		
Information Ratio	0.9236	0.1755		
Tracking Error	0.0852	0.0823		
Treynor Ratio	0.1247	0.0548		
Annualized Return	0.1172	0.0530		
Annualized Sharpe Ratio	0.7020	0.3132		
Annualized Std Dev	0.1669	0.1691		
CAPM Jensen Alpha	0.0809	0.0158		

จากตารางจะสามารถบอกได้ว่า

- 1. ความเสี่ยงที่เป็นระบบ Beta ของ Portfolio 2 มากกว่า Portfolio 1 ไม่มาก
- 2. Information ratio Portfolio 1 สามารถหาอัตราผลตอบแทนส่วนเพิ่มได้ดีกว่า Portfolio 2 เมื่อเปรียบเทียบ ต่อความเสี่ยงที่เบี่ยงเบนออกจากตลาด (SET index)
- 3. Tracking Error Portfolio 1 มีผลการดำเนินงานที่เบี่ยงเบนออกจากตลาดมากกว่า Portfolio 2
- 4. Treynor Ratio Portfolio 1 มีอัตราผลตอบแทนส่วนเพิ่มมากกว่า Portfolio ที่ 2 เมื่อเทียบด้วยความเสี่ยงที่ เป็นระบบต่อหนึ่งหน่วยความเสี่ยง
- 5. Portfolio 1 มีอัตราผลตอบแทนเฉลี่ยที่มากกว่า Portfolio 2
- 6. Sharpe Ratio Portfolio 1 มีอัตราผลตอบแทนส่วนเพิ่มมากกว่า Portfolio ที่ 2 เมื่อเที่ยบด้วยความเสี่ยงรวม ต่อหนึ่งหน่วยความเสี่ยง
- 7. Standard Deviation Portfolio 2 มากกว่า Portfolio ที่ 1 แสดงว่ามีความเสี่ยงรวมมากว่า
- 8. Jensen Alpha Portfolio 1 มากกว่า Portfolio 2 แสดงว่า Portfolio 1 มีอัตราผลตอบแทนที่เกิดขึ้นจริง (Require Rate of Return) มากกว่าอัตราผลตอบแทนที่ควรจะเป็น (Expected Return)

และเมื่อดูกราฟอัตราผลตอบแทนสะสม จะเห็นว่าทั้ง 2 Portfolio จะล้อกับตลาด แต่ว่าก็ยังทำได้ดีกว่าตลาด แต่เมื่อมาเทียบกันเองระหว่างทั้ง 2 Portfolio อัตราผลตอบแทนของเส้นสีน้ำเงินหรือ Portfolio 1 จะทำได้ดี มากกว่า Portfolio ที่ 2

สรุปผลการวิเคราะห์

จากข้อมูลที่สำคัญที่กล่าวมา Portfolio 1 จะทำได้ดีมากกว่า Portfolio ที่ 2 ทั้งในมุมมองของมาตรวัดต่างๆ และ มุมมองของ Portfolio cumulative growth ก็ตาม ดังนั้นหุ้นที่เป็น Blue chip แล้วกระจายการลงทุน ด้วยหุ้น Defensive stock จะสามารถทำได้ดีกว่าหุ้น Growth Stock ในระยะยาว (5 ปี)