Algorithms on Bitwise Operator

By Prince Agarwal
[" Hello World "]

Count the number of ones in binary representation of The given number

2	23			
2	11	1		
2	5	1		
2	2	1		
	1	0		

0	1	2	3	4
1	0	1	1	1

Let,
$$n = 23$$

$$Step = 1: \qquad n = n \& (n-1) \qquad n = 23 = \{10111\}_2$$

$$(n-1) = 22 = \{10110\}_2$$

$$10110 \longrightarrow 22 \quad Count = 1$$

$$(It is Non- zero value)$$

$$Step = 2: \qquad n = n \& (n-1) \qquad n = 22 = \{10110\}_2$$

$$(n-1) = 21 = \{10101\}_2$$

$$10100 \longrightarrow 20 \quad Count = 2$$

$$(It is Non- zero value)$$

$$Step = 3: \qquad n = n \& (n-1) \qquad n = 20 = \{10100\}_2$$

$$(n-1) = 19 = \{10011\}_2$$

$$10000 \longrightarrow 16 \quad Count = 3$$

$$(It is Non- zero value)$$

$$Step = 4: \qquad n = n \& (n-1) \qquad n = 16 = \{10000\}_2$$

$$(n-1) = 15 = \{01111\}_2$$

$$00000 \longrightarrow 0 \quad Count = 4$$

(It is NULL value)

When the value of n = 0, then we At that time, the value of count denotes the number of one's

Complexity,

O (k), Where k is the number of one's in the Binary format

It is more easier than, old methods...

Let number n = ?

Binary representation: 1010111010101010101010000011111

Number of one's = 17

Subscribe, Like & Share

Hello World

" If you feel any problem then comments in my video I will reply as soon as possible "

- Prince Agarwal