Домашнее задание по дискретному анализу. Неделя 2. Множества и логика

Талашкевич Даниил Александрович 19 сентября 2020 г.

Problems:

1. Верно ли, что для любых множеств A и B выполняется равенство: $(A \setminus B) \cap ((A \cup B) \setminus (A \cap B)) = A \setminus B$?

Решение:

Рассмотрим левую часть:

$$\begin{array}{l} (A \setminus B) \cap ((A \cup B) \setminus (A \cap B)) = (A \cap \overline{B}) \cap ((A \cup B) \cap (\overline{A} \cup \overline{B})) = \\ = (A \cap \overline{B}) \cap (((A \cap \overline{A}) \cup (\overline{A} \cap B)) \cup ((A \cap \overline{B}) \cup (B \cap \overline{B}))) = (A \cap \overline{B}) \cap \\ \cap ((A \cap \overline{B}) \cup (\overline{A} \cap B)) = A \cap \overline{B} = A \setminus B. \end{array}$$

Что и требовалось доказать.

Ответ: верно

2. Верно ли, что для любых множеств A, B и C выполняется равенство: $((A \setminus B) \cup (A \setminus C)) \cap (A \setminus (B \cup C)) = A \setminus (B \cup C)$?

Решение:

Используя законы де Моргана и законы ассоциативности, коммутативности, импликации, получим:

$$((A \cap \overline{B}) \cup (A \cap \overline{C})) \cap (A \cap (\overline{B} \cap \overline{C})) = (A \cap (\overline{B} \cup \overline{C})) \cap ((A \cap (\overline{B} \cup \overline{C})) = A \cap (\overline{B} \cup \overline{C}) = A \cap (\overline{B} \cup \overline{C}) = A \cap (\overline{B} \cap \overline{C}) = A \setminus (B \cap C) \neq A \setminus (B \cup C).$$

Ответ: Не верно для любых множеств А, В и С (верно только при равенстве множеств В и С).

3. Верно ли, что для любых множеств A, B и C выполняется равенство: $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$?

Решение:

Используя законы де Моргана и законы ассоциативности, коммутативности, импликации, получим:

$$(A \cap B) \cap \overline{C} = (A \cap \overline{C}) \cap (B \cap \overline{C}) = (A \setminus C) \cap (B \setminus C).$$

Ответ: верно.

4. Верно ли, что для любых множеств A и B выполняется включение $(A \cup B) \setminus (A \setminus B) \subseteq B$?

Решение:

Используя законы де Моргана и законы ассоциативности, коммутативности, импликации, получим:

$$(A \cup B) \cap (\overline{A \cap \overline{B}}) = (A \cup B) \cap (\overline{A} \cup B) = B \cup (A \cap \overline{A}) = B.$$
 $B \subseteq B$ - истина.

Ответ: верно.

5. Пусть P = [10, 40]; Q = [20, 30]; известно, что отрезок A удовлетворяет соотношению

$$((x \in A) \to (x \in P)) \land ((x \in Q) \to (x \in A)).$$

Решение:

Так как искомое выражение истино, то истины оба операнда:

$$(x \in A) \to (x \in P).$$

$$(x \in Q) \to (x \in A).$$

Тогда первое принимает 0 только если 1 \to 0 Значит случай $\overline{A}=1$ и P=0 не реализуется $\Rightarrow A\subseteq P.$

Второе утверждение: $(x \in Q) \to (x \in A)$. Аналогичные рассуждения приводят к тому, что $Q \subseteq A$.

Значит А начинается на промежутке [10;20], а заканчивается на промежутке [30;40] \Rightarrow Lenght $A_{min} = 10$, a Lenght $A_{max} = 30$.

Ответ: минимальная -10, максимальная -30.

6. Про множества A, B, X, Y известно, что $A \cap X = B \cap X, A \cup Y = B \cup Y$. Верно ли, что тогда выполняется равенство $A \cup (Y \setminus X) = B \cup (Y \setminus X)$?

Решение:

Чтобы доказать равенство множеств нужно доказать равенство дополнений:

$$\overline{A \cup (Y \setminus X)} = \overline{A} \cap (\overline{Y \setminus X}) = \overline{A} \cap (\overline{Y \cap \overline{X}}) = \overline{A} \cap (\overline{Y} \cup X) = (\overline{A} \cap \overline{Y}) \cup (\overline{A} \cap X) = (\overline{A} \cup \overline{Y}) \cup (X \setminus (X \cap A)).$$

Аналогично для правой части равенства $A \cup (Y \setminus X) = B \cup (Y \setminus X)$:

$$B \cup (Y \setminus X) = (\overline{B \cup Y}) \cup (X \setminus (X \cap B)).$$

Исходя из условия: $A\cap X=B\cap X, A\cup Y=B\cup Y$. Получаем:

$$(\overline{A \cup Y}) \cup (X \setminus (X \cap A)) = (\overline{B \cup Y}) \cup (X \setminus (X \cap B)).$$

Ответ: верно.

7. Пусть $A_1\supseteq A_2\supseteq A_3\supseteq\ldots\supseteq A_n\supseteq\ldots$ невозрастающая последовательность множеств. Известно, что $A_1 \setminus A_4 = A_6 \setminus A_9$. Докажите, что $A_2 \setminus A_7 = A_3 \setminus A_8.$

Решение:

Доказательство. Введем новые множества X такие, что:

$$A_1 \setminus A_2 = A_1 \cap \overline{A_2} = Y_1; \tag{1}$$

$$A_2 \setminus A_3 = A_2 \cap \overline{A_3} = Y_2; \tag{2}$$

$$\dots$$
 (3)

$$A_n \setminus A_{n+1} = A_n \cap \overline{A_{n+1}} = Y_n. \tag{4}$$

Тогда преобразуем условие до вида:

$$A_1 \setminus A_4 = Y_1 \cup Y_2 \cup Y_3; \tag{5}$$

$$A_6 \setminus A_9 = Y_6 \cup Y_7 \cup Y_8. \tag{6}$$

По условию $A_1 \setminus A_4 = A_6 \setminus A_9$. Тогда получается, что:

$$Y_1, Y_2, Y_3, Y_6, Y_7, Y_8 \subseteq \emptyset.$$
 (7)

Найдем, чему будут равны $A_2 \setminus A_7$ и $A_3 \setminus A_8$:

$$A_2 \setminus A_7 = Y_2 \cup Y_3 \cup Y_4 \cup Y_5 \cup Y_6 = Y_4 \cup Y_5 \text{ , т. к. } (Y_1, Y_2, Y_3, Y_6, Y_7, Y_8 \subseteq \emptyset.)$$

$$A_2 \setminus A_7 = Y_2 \cup Y_3 \cup Y_4 \cup Y_5 \cup Y_6 = Y_4 \cup Y_5 , \text{ т. к. } (Y_1, Y_2, Y_3, Y_6, Y_7, Y_8 \subseteq \emptyset.)$$
$$A_3 \setminus A_8 = Y_3 \cup Y_4 \cup Y_5 \cup Y_6 \cup Y_7 = Y_4 \cup Y_5 , \text{ т. к. } (Y_1, Y_2, Y_3, Y_6, Y_7, Y_8 \subseteq \emptyset.)$$

Следовательно $A_2 \setminus A_7$ и $A_3 \setminus A_8$, что и требовалось доказать.

Ответ: доказано.

8. Пусть A, B, C, D — такие отрезки прямой, что $A \triangle B = C \triangle D$ (симметрические разности равны). Верно ли, что выполняется включение $A \cap B \subseteq C$?

Решение:

Без ограничений общности положим, что $A \subseteq B$ и $C \subseteq D$, тогда:

$$A \triangle B = (A \cup B) \setminus (A \cap B) = B \setminus A.$$

$$C \triangle D = (C \cup D) \setminus (C \cap D) = D \setminus C.$$

Так как множества A, B, C представляют собой отрезки, то мы можем представить их в виде: $A[\alpha_0, \alpha_1]; B[\alpha_0, \beta_1]; D[\gamma_o, \alpha_1]; C[\gamma_0, \beta_1].$

Такие значения $\alpha_i, \beta_i, \gamma_i$ были выбраны для того, чтобы выполнялось условие : $A \triangle B = C \triangle D$.

Тогда имеем, что $A \triangle B = C \triangle D = (\alpha_1, \beta_1]$ (условие выполняется), но $A \cap B = A = [\alpha_0, \alpha_1]$, а $C = [\gamma_0, \beta_1]$. По определению чисел, входящих в множество $D = [\gamma_o, \alpha_1] \Rightarrow \gamma_o \leq \alpha_1$. Тогда у нас возможен случай, когда $\alpha_0 < \gamma_o < \alpha_1$ и $A \cap B \nsubseteq C$. Приведен контрпример - значит не выполняется.

Ответ: нет, не верно.

 9^* . Характеристической функцией множества A называется функция:

$$X_A: U \to \{0, 1\}.$$

такая, что

$$X_A(x) = \begin{cases} 1, x \in A, \\ 0, x \notin A. \end{cases}$$

Докажите, что

- $a)\chi_{A\cap B}(x) = \chi_A(x) \cdot \chi_B(x);$
- $6)\chi_{A\backslash B}(x) = \chi_A(x) \chi_A(x) \cdot \chi_B(x);$
- $(B)\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) \chi_A(x) \cdot \chi_B(x);$
- $\Gamma(\chi_{\overline{A}}(x)) = 1 \chi_A(x).$

Решение:

Основываясь на том, что функции алгебры логик аналогичны с теоретикомножественными операторами, получим:

а) $A \cap B = A \wedge B$. Пользуясь условием получим, что

A	B	$A \wedge B$	$A \cdot B$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Видно, что выполняется при всех (A,B) $\Rightarrow \chi_{A\cap B}(x) = \chi_A(x) \cdot \chi_B(x)$. Доказано.

б)
$$A \setminus B = A \cap \overline{B} = A \wedge \overline{B}$$

A	\dot{B}	$A \wedge \overline{B}$	$\chi_A(x) - \chi_A(x) \cdot \chi_B(x)$
0	0	0	0
0	1	0	0
1	0	1	1
1	1	0	0

Видно, что выполняется при всех (A,B) $\Rightarrow \chi_{A\backslash B}(x) = \chi_A(x) - \chi_A(x) \cdot \chi_B(x)$. Доказано.

 $B \cap A \cup B = A \vee B$

A	B	$A \vee B$	$\chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Видно, что выполняется при всех (A,B) $\Rightarrow \chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$. Доказано.

 Γ) \overline{A}

A	\overline{A}	$1-\chi_A(x)$
0	1	1
0	1	1
1	0	0
1	0	0

Видно, что выполняется при всех (A,B) $\Rightarrow \chi_{\overline{A}}(x) = 1 - \chi_A(x)$. Доказано.

Ответ: доказано.

 10^* . Используя формализм счетного объединения, докажите, что в любом бесконечном множестве есть счетное подмножество.

Решение:

Пусть множество ${\bf B}$ бесконечно. Тогда оно содержит хотя бы один элемент a_1 . В силу бесконечности ${\bf B}$ в нём найдется элемент a_2 , отличный от a_1 . Так как злементы a_2 и a_1 не исчерпывают всего множества ${\bf B}$, то в нём найдется элемент a_3 , отличный и от a_2 и от a_1 . Если уже выделено n элементов $a_1, a_2, \cdots a_n$, то в силу бесконечности ${\bf B}$ в нём найдётся еще один элемент, который обозначим a_{n+1} , отличный от всех ранее выбранных элементов. Таким образом, для каждого натурального числа n можно выделить элемент a_n из ${\bf B}$, причём все выделенные элементы

попарно различны. Выделенные элементы образуют последовательность $a_1, a_2, \dots a_n \dots$ Множество её членов по определению счётно, и это множество есть часть ${\bf B}.$

Ответ: доказано.