Chapter4: Counter and DAC & ADC Part-I

Asst.Prof.Dr.Supakit Nootyaskool

Objective

 Recognize type of flipflops and realize difference between rising edge/falling edge trigger.

 Clarify mechanism inside a counter circuit and express technique of counting up/down.

 Explain and illustrate concept of convert analog signal to digital signal.

Topic

- Combinational logic vs Sequential logic circuit
- Rising/Falling edge trigger
- JK-flipflop
- D-flipflop
- T-flipflop
- Frequency division circuit
- First-in first-out circuit
- Counter circuit
- Analog signal to Digital signal concept

COMBINATIONAL LOGIC CIRCUIT VS SEQUENTIAL LOGIC CIRCUIT

World of digital logic circuit

Combinational logic circuit

Sequential logic circuit

Key characteristics

Combinational logic circuit

Sequential logic circuit

- Memoryless
- Output instant in time
- No clock signal

- Memory
- Output depends on previous states
- Related clock signal

RISING AND FALLING EDGE TRIGGER

Rising/Falling edge trigger

Flip-flop symbols in rising/falling edge trigger

Some textbook for rising/falling edge trigger called positive/negative edge trigger

Circuit detects positive edge trigger

Activity 4.1 Delay time measurement in the positive-edge trigger circuit

SR FLIP-FLOP

Set-Reset Flip-flop (SR-flipflop)

SR flipflop is two types by the structure of logic gate.

NOR gate SR-flipflop

NAND gate SR-flipflop

Set-Reset Flip-flop (SR-flipflop)

Truth table

S	R	Q			
0	0	No change			
0	1	1 = Set			
1	0	0 = Reset			
1	1	Restrict Combination			

NOR gate SR-flipflop

Example application uses SR-flipflop

Debounced switch

JK FLIP-FLOP

JK Flip-flop

- Invented by Jack Kilby
- The JK flip-flop modified from SR flip-flop by adding a clock input to prevent the invalid output condition that occurs when both S and R are equal to logic "1".

Switching Example: J-K Flip-Flop

The positive going transition (PGT) of the clock enables the switching of the output Q. The "enable" condition does not persist through the entire positive phase of the clock. The J & K inputs alone cannot cause a transition, but their values at the time of the PGT determine the output according to the truth table. This is an application of the versatile J-K flip-flop.

JK Flip-flop Truth table

Clk	J	K	Q	Description	
No clock	j	j	,	No change	
	0	0	?	No change	
	0	1	?->0	Reset	
	1	0	?->1	Set	
	1	1	0->1 1->0	Toggle	

JK flip-flop in timing states

Application used JK flip-flop

D FLIP-FLOP AND T FLIP-FLOP

Making D flip-flop from JK

Clk	J	K	Q	Description
No clock	j	j	,	No change
	0	1	?->0	Store "0"
	1	0	?->1	Store "1"

T Flip-flop from D and JK

Clk (T)	Q	Description
No clock	?	No change
	?->0 ?->1	Toggle

4-BIT LATCH CIRCUIT

4-bit Latch circuit

FREQUENCY DIVISION CIRCUIT

Frequency division circuit

4-BIT FIFO CIRCUIT

4-bit First-in First-out (FIFO)

COUNTER

Counter circuit

 The digital circuit has divided type of counter circuit by focusing at a characteristic of input clock to the gate in the circuit.

Asynchronous circuit

Synchronous circuit

Asynchronous counter

2-bit Asynchronous count up/down circuit

Delay-time problem in asynchronous counter circuit

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

SN5404...J PACKAGE
SN54LS04, SN54S04...J OR W PACKAGE
SN7404, SN74S04...D, N, OR NS PACKAGE
SN74LS04...D, DB, N, OR NS PACKAGE
(TOP VIEW)

PROPAGATION DELAY TIMES

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		SN54S04 SN74S04			UNIT
	(INFOT)	(INFOT) (COTFOT)			MIN	TYP	MAX	
tPLH	Δ.	V	$R_L = 280 \Omega$, $C_L = 15 pF$		3	4.5	ns	
tPHL	A f	T			3	5		

Asynchronous counter issue

(го	P VIEW	1)
CLK	ī	U ₁₆	☐ 1K
PRE	2	15] 1Q
CLR	3	14	□ 1 \overline{\overlin
1 J 🗆	4	13	GND
vcc[5	12]2K
CLKE	6	11	20
	1_		7.5

'76
FUNCTION TABLE

	IN	OUT	PUTS			
PRE	CLR	CLK	J	K	Q	ā
L	н	×	×	×	н	L
н	L	×	×	×	L	н
L	L	×	×	×	нt	HT
н	н	7	L	L	α ₀	\overline{a}_0
н	н	7	н	L	н	L
н	н	7	L	н	L	Н
н	н	T	н	н	TOGGLE	

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			ТҮР	MAX	UNIT
fmax					30	45		MHz
tPLH		0 -	$R_L = 2 k\Omega$,	$C_L = 15 pF$		15	20	ns
tPHL	PRE, CLR or CLK	Q or Q				15	20	ns

Asynchronous vs Synchronous counter

- Clock or control signal getting from previous states
- Easy design the counter circuit.
- Not suitable for a critical time system.

- A clock signal controls all states
- Complexity for design counter circuit.
- Proper for the critical time system

Example 3-bit synchronous counter-up

ลำดับ ck	Q2	Q1	Q0	อธิบาย
1	0	0	0	นับ 0
2	0	0	1	นับ 1
3	0	1	0	นับ 2
4	0	1	1	นับ 3 เอา q0 and q1 = 1
5	1	0	0	นับ 4 เกิด toggle ที่ q2
6	1	0	1	นับ 5
7	1	1	0	นับ 6
8	1	1	1	นับ 7 เอา q0 and q1 =1
9	0	0	0	นับ 0 เกิด toggle ที่ q2

ANALOG SIGNAL AND DIGITAL SIGNAL

Analog signal vs Digital signal

Analog signal vs Digital signal

Analog signals are continuous-time signals changing the wave from continuously.

Digital signals are discrete-time signals limited by number of **bits** and the **sampling rate**.

Signal Property

Which one is the low frequency?

Which one is the low frequency?

Activity 4.2 Frequency calculation

Amplitude, Voltage, Level

Modulation

Activity 4.3 AM Simulation with Excel

Step1: Analog signal

Step2: Define the number of levels (bits)

Step3: Define the number of sampling

Step4: Map the level and sampling to the signal

Step5: Reading digital signal

Activity 4.4 Drawing 8 levels and 10 sampling :

Reference

- https://www.quora.com/What-is-anapplication-of-an-RS-flip-flop
- https://electronics.stackexchange.com/questi ons/jk-flip-flop-toggle