Replicating research on marriage, happiness, and income inequality

Lauren Heintz Tara Wilson Ben Mathieu Will Wright

WHAT

ΛΗΥ

Marriage and happiness: Providing evidence against a relationship between inequality and happiness

- Previous study by Oishi, Kesebir, and Diener (2011) shows that Americans' average happiness is negatively correlated with income inequality
 - This paper (chosen) questions the validity of this data and this papers conclusions, and seeks to disprove the relationship with a linear regression that accounts for several other factors including marriage, race, and gender.
 - Ultimately, this study finds no significant relationship to income inequality but instead to marriage
- Interest in the social sciences, something tangible and applicable that we can all relate to
- Data available
- Primary language used was R

Scientific claims of interest

Paper by Grunberg, Kim, & Kim (2014) creates a multi-level linear regression model, accounting for interactions between other variables to sort out the ultimate relationship to the happiness of Americans from years 1972-2012

number indicates greater income inequality

Statistical measure between 0 and 1 for the distribution of wealth in a nation. Higher

Dependent Variable:

Happiness

Independent Variables:

- Gini coefficient ——
- Income
- Age
- Sex
- Race (binary white vs non-white)
- Married

Replication results for figure 3

Replication results for table 1

	Estimate	p value
Logged Income	0.19	0.00
Age	0.03	0.00
Sex	0.01	0.23
White	0.12	0.00
Married	0.23	0.00

Table 1: Correlations between happiness and control variables

	Estimate	p value
Logged Income	0.19	0.00
Age	0.03	0.00
Sex	0.00	0.23
White	0.12	0.00
Married	0.23	0.00

Table 1: Correlations between happiness and control variables

Replication results for table 2

*p<0.1; **p<0.05; ***p<0.01

	Dependent variable: Happiness						
	(1)	(2)	(3)	(4)	(5)	(6)	
Gini	-0.385^{**} (0.194)	-0.461^{**} (0.189)	-0.413^{**} (0.195)	-0.386^{**} (0.194)	-0.177 (0.175)	0.332 (0.210)	
REALINClog		0.125*** (0.003)					
Age			0.001*** (0.0002)				
factor(SEX)2				0.007 (0.006)			
White					0.188*** (0.008)		
Married						0.298*** (0.006)	
Constant	2.351*** (0.077)	1.140*** (0.081)	2.306*** (0.078)	2.348*** (0.077)	2.112*** (0.070)	1.899*** (0.084)	
Observations	48,318	43,564	48,318	48,318	48,318	48,318	
Log Likelihood	$-46,\!611.120$	-41,048.910	$-46,\!590.320$	$-46,\!614.720$	$-46,\!308.240$	-45,295.860	
Akaike Inf. Crit.	93,230.250	82,107.830	93,190.630	93,239.430	92,626.470	90,601.730	
Bayesian Inf. Crit.	93,265.390	82,151.240	93,234.560	93,283.360	92,670.400	90,645.650	

			Dependen	t variable:			
	Happiness						
	(1)	(2)	(3)	(4)	(5)	(6)	
Gini	-0.385^{**} (0.194)	-0.461^{**} (0.189)	-0.424^{**} (0.196)	-0.386** (0.194)	-0.177 (0.175)	0.331 (0.210)	
REALINClog		0.125*** (0.003)					
Age			0.001*** (0.0002)				
factor(sex)2				$0.007 \\ (0.006)$			
White					0.188*** (0.008)		
Married						0.298** (0.006)	
Constant	2.351*** (0.077)	1.140*** (0.081)	2.309*** (0.078)	2.348*** (0.077)	2.112*** (0.070)	1.900** (0.084)	
Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	48,318 -46,611.120 93,230.250 93,265.390	43,564 -41,048.920 82,107.830 82,151.240	48,158 -46,419.990 92,849.970 92,893.890	48,318 -46,614.720 93,239.430 93,283.360	48,318 -46,308.240 92,626.470 92,670.400	48,306 -45,282.9 90,575.8 90,619.8	

Highlights of replication

Primary Divergence:

- Finding new data set (GSS, Global Social Survey)
- Merging to the other given data sets, as well as some encoding updates needed to match variable use in original paper
- Narrowing date range to match that of the original paper

Secondary Divergences:

"Figure 3": Utilized ggplot2 package instead of standard R visualization libraries

"Table 1": Additionally used kableExtra to produce output table instead of xtable alone

"Table 2": Utilized new data which led to slight variability of some cells, utilized kable package in addition to stargazer

Challenges & reflections

- 1. R code did not run because data files were missing columns
- 2. Missing columns were critical data
- 3. Finding the data online was difficult, but once we found the data modifying it and merging it with the original dataset went relatively smoothly.

Thanks!

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/25655