

# **SPM@TESTES**

## Teste de Matemática

2022

10.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos. (seis páginas)

# **VERSÃO 1**

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.



PROIBIDA A REPRODUÇÃO OU DIVULGAÇÃO TOTAL OU PARCIAL POR QUALQUER MEIO. O PRESENTE ENUNCIADO É PROPRIEDADE DA SOCIEDADE PORTUGUESA DE MATEMÁTICA E A SUA DIVULGAÇÃO É SUSCEPTÍVEL DE CAUSAR GRAVES PREJUÍZOS À SPM E ÀS SUAS ESCOLAS ASSOCIADAS. OS RESPONSÁVEIS SERÃO PROCESSADOS CIVIL E CRIMINALMENTE PELOS PREJÍZOS CAUSADOS.

1. Na Figura 1 estão representadas, num referencial o. n. Oxy, a circunferência de equação  $x^2 + y^2 = 10$  e a reta CD de equação y = 2x - 5.

Os pontos C e D pertencem à circunferência.



Figura 1

- **1.1.** Represente por meio de uma condição a região sombreada, em que a fronteira está incluída.
- **1.2.** O ponto P de coordenadas (x, y), desloca-se sobre o segmento de reta [CD].

Entre que valores varia a ordenada do ponto *P*?

(A) 
$$y \in [-1,3]$$
 (B)  $y \in [-2,3]$  (C)  $y \in [-5,3]$  (D)  $y \in [-3,1]$ 

**(B)** 
$$y \in [-2,3]$$

(C) 
$$y \in [-5, 3]$$

**(D)** 
$$y \in [-3, 1]$$

2. Num referencial o. n. Oxy, considere a reta definida pela equação vetorial

$$(x, y) = (4, p) + k(2, 6), k \in \mathbb{R}$$

Se a ordenada na origem for -2 então p será igual a:

(A) 
$$-2$$

**(D)** 
$$-10$$

**3.** Na *Figura 2* está representado o gráfico da função f, definida no intervalo [-2,8], sendo constituído pelos segmentos de reta [AB], [BC] e [CD].



Figura 2

Sabe-se que

- os zeros de f são números inteiros.
- A (-2,-1), B (1, 2), C (5,-2) e D (8, 1) são pontos do gráfico de f.
- **3.1.** Apresente uma tabela de variação da função que descreva a monotonia e os extremos da função f . Indique os intervalos de monotonia da função bem como os seus extremos relativos e absolutos.
- **3.2.** Considere as funções a, b, c e d definidas por:

$$a(x) = 3f(x)$$
,  $b(x) = f(x-3)$ ,  $c(x) = f(-2x)$  e  $d(x) = f(x) - 3$ 

- **3.2.1.** Averigue se as funções  $b \in d$  têm zeros, identificando-os, em caso afirmativo, e justificando, caso não existam.
- **3.2.2.** Qual das funções a, b, c ou d tem o menor mínimo absoluto?
- (A) a
- (B) **b**
- (C) c
- (D) d

**4**. De uma função f, estritamente decrescente em  $\mathbb{R}$ , sabe-se que f(2)=3.

Qual dos seguintes valores é negativo?

- (A) 3 f(2,01) (B) 3 f(1,99) (C) 3 f(3) (D) 3 f(4)

- **5.** Considere os polinómios  $A(x) = x^3 9x$ , B(x) = 3x + 16 e C(x) = A(x) B(x).
- **5.1.** Determine, em  $\mathbb{R}$ , o conjunto solução da condição A(x) > 0.
- **5.2.** Mostre que A(-2) = B(-2) e A(4) = B(4) e daí justifique que C(x) = 0 é uma equação possível.
- **5.3.** Fatorize C(x) e indique a multiplicidade de cada uma das suas raízes.
- 6. O gráfico representado na Figura 3 é uma parábola.

Qual das seguintes expressões a pode definir?

**(A)** 
$$y = (x - 3) \times \left(x - \frac{1}{10}\right)$$

**(B)** 
$$y = x^2 - 3x + 6$$

(C) 
$$y = x^2 + 6x + 10$$





Figura 3

**7**. Seja f a função definida, em  $\mathbb{R}$ , por  $f(x) = x^2 - 4x + d$ , sendo d < 4, e [ABC] um triângulo.

Sabe-se que:

- $A \in B$  são os pontos de interseção de f com o eixo Ox;
- *C* tem coordenadas (2, 2).

Determine d sabendo que o triângulo [ABC] tem área 2, assumindo que os pontos A e Bsão equidistantes da reta x=2, eixo de simetria do gráfico de f .

**8.** Considere a função g definida, em  $\mathbb{R}$ , por g(x) = 3|x-2|-1, cujo gráfico está representado na Figura 4.

Determine a equação reduzida de cada uma das retas que contêm as semirretas do gráfico de g.



Figura 4

9. 
$$\frac{1}{\sqrt{2}-\sqrt{3}}$$
 é igual a:

(A) 
$$\sqrt{3} - \sqrt{2}$$

**(B)** 
$$-\sqrt{2} - \sqrt{3}$$

(A) 
$$\sqrt{3} - \sqrt{2}$$
 (B)  $-\sqrt{2} - \sqrt{3}$  (C)  $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}$ 

(D) 
$$\frac{\sqrt{2}}{\sqrt{3}}$$

**10**. Na *Figura 5*, está representado num referencial *o.n. Oxyz*, um paralelepípedo retângulo [*ABCDEFGH*].

## Sabe-se que:

- O vértice A pertence ao eixo Ox e o vértice B pertence ao eixo Oy;
- As coordenadas dos vértices E e G são (7, 2, 15) e (6, 10, 13),
  respetivamente;
- A reta EF é definida pela equação vetorial  $(x,y,z)=(1,-2,19)+k(-3,-2,2), k\in\mathbb{R}\,.$



**10.1.** Considere a superfície esférica de centro em G e que passa em E.

Mostre que os pontos  $P(6,10,13+\sqrt{69})\ e\ Q(6,10,13-\sqrt{69})$  pertencem a essa superfície esférica e são os extremos de um seu diâmetro.

- **10.2.** Justifique que  $\overrightarrow{AB} = \overrightarrow{FG}$  e conclua que  $\overrightarrow{FG} = (-a, b, 0)$ , para certos valores numéricos de a e b, diferentes de zero.
- **10.3.** Determine as coordenadas do ponto F.

#### Sugestão:

- Comece por justificar que as coordenadas de F podem ser obtidas através da expressão (1, -2, 19) + k(-3, -2, 2), para certo valor de k∈ R;
- Utilize  $\overrightarrow{FG} = G F = (-a, b, 0)$ , pela alínea **10.2.**

### FIM

| Q | uestão | 1.1 | 1.2 | 2. | 3.1 | 3.2.1 | 3.2.2 | 4 | 5.1. | 5.2. | 5.3. | 6. | 7. | 8. | 9. | 10.1 | 10.2 | 10.3 | TOTAL |
|---|--------|-----|-----|----|-----|-------|-------|---|------|------|------|----|----|----|----|------|------|------|-------|
| C | otação | 14  | 8   | 8  | 14  | 13    | 8     | 8 | 14   | 14   | 14   | 8  | 13 | 14 | 8  | 14   | 14   | 14   | 200   |



# **SPM@TESTES**

## Teste de Matemática

2022

10.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos.

(seis páginas)

## VFRSÃO 2

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.



PROIBIDA A REPRODUÇÃO OU DIVULGAÇÃO TOTAL OU PARCIAL POR QUALQUER MEIO. O PRESENTE ENUNCIADO É PROPRIEDADE DA SOCIEDADE PORTUGUESA DE MATEMÁTICA E A SUA DIVULGAÇÃO É SUSCEPTÍVEL DE CAUSAR GRAVES PREJUÍZOS À SPM E ÀS SUAS ESCOLAS ASSOCIADAS. OS RESPONSÁVEIS SERÃO PROCESSADOS CIVIL E CRIMINALMENTE PELOS PREJÍZOS CAUSADOS.

**1.** Na Figura 1 estão representadas, num referencial o.n. Oxy, a circunferência de equação  $x^2 + y^2 = 10$  e a reta CD de equação y = 2x - 5.

Figura 1

Os pontos C e D pertencem à circunferência.

- 1.1. Represente por meio de uma condição a região sombreada, em que a fronteira está incluída.
- **1.2.** O ponto P de coordenadas (x, y), desloca-se sobre o segmento de reta [CD].

Entre que valores varia a ordenada do ponto P?

(A) 
$$y \in [-1,3]$$
 (B)  $y \in [-2,3]$  (C)  $y \in [-3,1]$  (D)  $y \in [-5,3]$ 

**(B)** 
$$y \in [-2, 3]$$

(C) 
$$y \in [-3, 1]$$

**(D)** 
$$y \in [-5, 3]$$

2. Num referencial o. n. Oxy, considere a reta definida pela equação vetorial

$$(x,y) = (4,p) + k(2,6), k \in \mathbb{R}$$

Se a ordenada na origem for -2 então p será igual a:

**(A)** 
$$-10$$

**(B)** 
$$-2$$

**3.** Na *Figura 2* está representado o gráfico da função f, definida no intervalo [-2,8], sendo constituído pelos segmentos de reta [AB], [BC] e [CD].



Figura 2

Sabe-se que:

- Os zeros de f são números inteiros;
- A(-2,-1), B(1,2), C(5,-2) e D(8,1) são pontos do gráfico de f.
- **3.1.** Apresente uma tabela de variação da função que descreva a monotonia e os extremos da função f . Indique os intervalos de monotonia da função bem como os seus extremos relativos e absolutos.
- **3.2.** Considere as funções a, b, c e d definidas por:

$$a(x) = 3f(x)$$
,  $b(x) = f(x-3)$ ,  $c(x) = f(-2x)$  e  $d(x) = f(x) - 3$ 

- **3.2.1.** Averigue se as funções  $b \in d$  têm zeros, identificando-os, em caso afirmativo, e justificando, caso não existam.
- **3.2.2.** Qual das funções a, b, c ou d tem o menor mínimo absoluto?
- (A) d
- (B) c
- (C) b
- (D) a

**4**. De uma função f, estritamente decrescente em  $\mathbb{R}$ , sabe-se que f(2)=3.

Qual dos seguintes valores é negativo?

- (A) 3 f(2,01) (B) 3 f(3) (C) 3 f(1,99) (D) 3 f(4)
- **5.** Considere os polinómios  $A(x) = x^3 9x$ , B(x) = 3x + 16 e C(x) = A(x) B(x).
- **5.1.** Determine, em  $\mathbb{R}$ , o conjunto solução da condição A(x) > 0.
- **5.2.** Mostre que A(-2) = B(-2) e A(4) = B(4) e daí justifique que C(x) = 0 é uma equação possível.
- **5.3.** Fatorize C(x) e indique a multiplicidade de cada uma das suas raízes.

6. O gráfico representado na Figura 3 é uma parábola.

Qual das seguintes expressões a pode definir?

(A) 
$$y = -x^2 + x + 6$$
 (B)  $y = x^2 + 6x + 10$ 

**(B)** 
$$y = x^2 + 6x + 10$$

(C) 
$$y = (x-3) \times \left(x - \frac{1}{10}\right)$$
 (D)  $y = x^2 - 3x + 6$ 

**(D)** 
$$y = x^2 - 3x + 6$$



Figura 3

**7**. Seja f a função definida, em  $\mathbb{R}$ , por  $f(x) = x^2 - 4x + d$ , sendo d < 4, e [ABC] um triângulo.

Sabe-se que:

- $A \in B$  são os pontos de interseção de f com o eixo Ox;
- C tem coordenadas (2,2).

Determine d sabendo que o triângulo [ABC] tem área 2, assumindo que os pontos A e Bsão equidistantes da reta x=2, eixo de simetria do gráfico de f .

**8.** Considere a função g definida, em  $\mathbb{R}$ , por g(x) = 3|x-2|-1, cujo gráfico está representado na Figura 4.

Determine a equação reduzida de cada uma das retas que contêm as semirretas do gráfico de g.



Figura 4

9. 
$$\frac{1}{\sqrt{2}-\sqrt{3}}$$
 é igual a:

(A) 
$$-\sqrt{2} - \sqrt{3}$$

**(B)** 
$$\sqrt{3} - \sqrt{2}$$

(A) 
$$-\sqrt{2} - \sqrt{3}$$
 (B)  $\sqrt{3} - \sqrt{2}$  (C)  $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}$ 

(D) 
$$\frac{\sqrt{2}}{\sqrt{3}}$$

**10**. Na *Figura 5*, está representado, num referencial o.n. Oxyz, um paralelepípedo retângulo [ABCDEFGH].

#### Sabe-se que:

- O vértice A pertence ao eixo Ox e o vértice B pertence ao eixo Oy;
- As coordenadas dos vértices E e G são (7, 2, 15) e (6, 10, 13),
  respetivamente;
- A reta *EF* é definida pela equação vetorial

$$(x,y,z)=(1,-2,19)+k(-3,-2,2),k\in\mathbb{R}$$



Figura 5

**10.1.** Considere a superfície esférica de centro em G e que passa em E.

Mostre que os pontos  $P(6, 10, 13 + \sqrt{69}) e \ Q(6, 10, 13 - \sqrt{69})$  pertencem a essa superfície esférica e são os extremos de um seu diâmetro.

- **10.2.** Justifique que  $\overrightarrow{AB} = \overrightarrow{FG}$  e conclua que  $\overrightarrow{FG} = (-a, b, 0)$ , para certos valores numéricos de a e b, diferentes de zero.
- **10.3.** Determine as coordenadas do ponto F.

#### Sugestão:

- Comece por justificar que as coordenadas de F podem ser obtidas através da expressão (1,-2,19)+k(-3,-2,2), para certo valor de  $k\in\mathbb{R}$ ;
- Utilize  $\overrightarrow{FG} = G F = (-a, b, 0)$ , pela alínea **10.2.**

#### **FIM**

| Questão | 1.1 | 1.2 | 2. | 3.1 | 3.2.1 | 3.2.2 | 4 | 5.1. | 5.2. | 5.3. | 6. | 7. | 8. | 9. | 10.1 | 10.2 | 10.3 | TOTAL |
|---------|-----|-----|----|-----|-------|-------|---|------|------|------|----|----|----|----|------|------|------|-------|
| Cotação | 14  | 8   | 8  | 14  | 13    | 8     | 8 | 14   | 14   | 14   | 8  | 13 | 14 | 8  | 14   | 14   | 14   | 200   |