Probability

CSE 4711: Artificial Intelligence

Md. Bakhtiar Hasan

Assistant Professor
Department of Computer Science and Engineering
Islamic University of Technology

Inference in Ghostbusters

■ A ghost is in the grid somewhere

Video: ghosts - manual

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Two actions
 - Bust action to catch the ghost
 - Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - I or 2 away: orange
 - 3 or 4 away: yellow
 - > 5+ away: green

Video: ghosts - manual

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Two actions
 - Bust action to catch the ghost
 - Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - I or 2 away: orange
 - 3 or 4 away: yellow
 - > 5+ away: green
- Sensors are noisy, but we know P(Color|Distance)

	`	1 /	
$P(\operatorname{red} 3)$	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.50	0.30

Video: ghosts - manual

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

<0.01 0.05 0.05

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R =Is it raining?
 - T =Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R =Is it raining?
 - T =Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Domains:
 - $R \in \{true, false\}$ (often written as $\{+r, -r\}$)
 - $T \in \{hot, cold\}$
 - $D \in [0, \infty)$
 - $L \in \{(0,0),(0,1),\dots\}$

Associate a probability with each value

Associate a probability with each value

Temperature

Associate a probability with each value

Temperature

Weather

P(W)		
\overline{W}	P	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

■ Unobserved random variables have distributions

		Γ (VV)	
P(T)		W	P	
T	P		sun	0.6
hot	0.5		rain	0.1
$\begin{array}{c c} hot & 0.5 \\ cold & 0.5 \end{array}$		fog	0.3	
			meteor	0.0

D(W)

■ A distribution is a TABLE of probabilities of values

Unobserved random variables have distributions

		Γ (VV)	
P(T)		W	P	
T	P		sun	0.6
hot	0.5		rain	0.1
hot cold	0.5		fog	0.3
			meteor	0.0

D(W)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number e.g.: P(W=rain)=0.1

Unobserved random variables have distributions

		$\Gamma (VV)$)	
P(T)			W	P
T	P		sun	0.6
hot cold	0.5		rain	0.1
cold	0.5		fog	0.3
	·		meteor	0.0

D(W)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number e.g.: P(W=rain)=0.1
- Must have: $\forall x \ P(X=x) \ge 0$ and $\sum_{x} P(X=x) = 1$

Unobserved random variables have distributions

		F (VV)	
P(T)		W	P
<i>P</i>		sun	0.6
0.5		rain	0.1
0.5		fog	0.3
		meteor	0.0
	P 0.5	$\begin{array}{ c c } \hline P \\ \hline 0.5 \end{array}$	$egin{array}{c} T) & \hline P & \hline & W & \\ \hline 0.5 & & rain & \\ \hline \end{array}$

D(W)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number e.g.: P(W = rain) = 0.1
- Must have: $\forall x \ P(X=x) \ge 0$ and $\sum P(X=x) = 1$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$

. . .

OK if all domain entries are unique

■ A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

P	P(T, W)			
T	W	$\mid P \mid$		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

■ A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

P(T, W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

■ A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

= $P(x_1, x_2, ..., x_n)$

P(T, W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

■ A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

= $P(x_1, x_2, ..., x_n)$

■ Must obey:

$$P(x_1, x_2, \dots, x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

P(T, W)			
T	W	$\mid P \mid$	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

■ A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

= $P(x_1, x_2, \dots, x_n)$

Must obey:

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

 $P(x_1, x_2, \dots, x_n) > 0$

 \blacksquare Size of distribution if n variables with domain sizes d?

P	P(T, W)				
T	W	P			
hot	sun	0.4			
hot	rain	0.1			
cold	sun	0.2			
cold	rain	0.3			

■ A joint distribution over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

= $P(x_1, x_2, \dots, x_n)$

Must obey:

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

 $P(x_1, x_2, \dots, x_n) > 0$

- Size of distribution if n variables with domain sizes d? $\rightarrow d^n$
 - Impractical to write out for large distributions

P(T, W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Probabilistic Models

- A joint distribution over a set of random variables
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

P(T, W)			
T	W	$\mid P \mid$	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Events

 \blacksquare A set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

P(T, W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Events

 \blacksquare A set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?

P(T, W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Events

 \blacksquare A set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T, W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

P(+x,+y)?

P(X,Y)			
X	Y	P	
-+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

- $P(+x,+y)? \rightarrow 0.2$
- P(+x)?

P(X,Y)			
Y	P		
+y	0.2		
-y	0.3		
+y	0.4		
-y	0.1		
	Y $+y$ $-y$ $+y$		

- P(+x,+y)? $\rightarrow 0.2$
- P(+x)? P(+x, +y) + P(+x, -y) $\rightarrow 0.5$
- $P(-y \mathsf{OR} + x)?$

P(X,Y)		
X	Y	P
-+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

- P(+x,+y)? $\rightarrow 0.2$
- P(+x)?

$$P(+x,+y) + P(+x,-y)$$

$$\rightarrow 0.5$$

 $P(-y \ \mathsf{OR} \ + x)$?

$$P(+x, -y) + P(-x, -y) + P(+x, +y)$$

 $\rightarrow 0.6$

P(X,Y)

 $X \qquad Y \qquad P$

+x +y 0.2

-x +y 0.4

-x $-y \mid 0.1$

Marginal	distributions	are	sub-tables	which	eliminate
variables					

 Marginalization (summing out): Combine collapsed rows by adding

I(I,VV)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

D(T|W)

P(T,W)			
T	W	P	
hot hot cold cold	sun rain sun rain	0.4 0.1 0.2 0.3	

D/C III

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(T) = ?$$

$$P(t) = \sum_{s} P(t, s)$$

$$P(T)$$

$$T \mid P$$

$$hot \mid 0.5$$

$$cold \mid 0.5$$

P(T,W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

D/C III

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(T) = ?$$

$$P(t) = \sum_{s} P(t, s)$$

$$P(T)$$

$$T \mid P$$

$$| 0.5$$

$$| cold \mid 0.5$$

$$P(W) = ?$$

$$P(s) = \sum_{t} P(t, s)$$

$$P(W)$$

$$W \mid P$$

$$sun \mid 0.6$$

$$rain \mid 0.4$$

P(T,W)			
T	W	P	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(T) = ?$$

$$P(W) = ?$$

$$P(s) = \sum_{s} P(t, s)$$

$$P(T)$$

$$T \mid P$$

$$hot \mid 0.5$$

$$cold \mid 0.5$$

$$P(W) = ?$$

$$P$$

P(X,Y)			
X	Y	P	
+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

$$P(x) = \sum_{y} P(x, y)$$

$$\begin{array}{c|c}
P(X) \\
X & P \\
+x & \\
-x & \\
\end{array}$$

P(X,Y)			
X	Y	P	
+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

$$P(x) = \sum_{y} P(x, y)$$

$$\begin{array}{c|c}
P(X) \\
\hline
X \mid P \\
+x \mid 0.5 \\
-x \mid 0.5
\end{array}$$

$$P(y) = \sum_{x} P(x, y)$$

$$\begin{array}{c|c} P(Y) \\ \hline Y \mid P \\ \hline +y \mid \\ -y \mid \end{array}$$

$$\begin{array}{c|cccc}
P(X,Y) \\
\hline
X & Y & P \\
+x & +y & 0.2 \\
+x & -y & 0.3 \\
-x & +y & 0.4 \\
-x & -y & 0.1
\end{array}$$

$$P(x) = \sum_{y} P(x, y)$$

$$\begin{array}{c|c}
P(X) \\
\hline
X \mid P \\
+x \mid 0.5 \\
-x \mid 0.5
\end{array}$$

 $P(y) = \sum_{x} P(x, y)$

$$\begin{array}{c|c}
P(Y) \\
\hline
Y & P \\
\hline
+y & 0.6 \\
-y & 0.4
\end{array}$$

$$\begin{array}{c|cccc}
P(X,Y) \\
\hline
X & Y & P \\
\hline
+x & +y & 0.2 \\
+x & -y & 0.3 \\
-x & +y & 0.4 \\
-x & -y & 0.1
\end{array}$$

Conditional Probabilities

■ A simple relation between joint and conditional probabilities

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

D(T|W)

P(I,W)		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Probabilities

■ A simple relation between joint and conditional probabilities

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

D(T|W)

I(I,VV)		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W=s|T=c) =$$

Conditional Probabilities

■ A simple relation between joint and conditional probabilities

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

D(T|W)

	I(I,VV)		
T	W	P	
hot hot	sun rain	0.4	
cold	sun	$0.1 \\ 0.2$	
cold	rain	0.3	

$$P(W = s|T = c) = \frac{P(W=s,T=c)}{P(T=c)} = \frac{0.2}{0.5} = 0.4$$

P(+x|+y)

P(X,Y)			
X	Y	P	
+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

■
$$P(+x|+y)$$

 $\rightarrow \frac{P(+x,+y)}{P(+y)}$
 $\rightarrow \frac{1}{3}$

P(-x|+y)

P(X,Y)			
X	Y	P	
+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

$$P(+x|+y)$$

$$\to \frac{P(+x,+y)}{P(+y)}$$

$$\to \frac{1}{3}$$

■
$$P(-x|+y)$$

 $\rightarrow \frac{P(-x,+y)}{P(-x,+y)+P(+x,+y)}$
 $\rightarrow \frac{2}{3}$

P(X,Y)			
X	Y	P	
+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

■
$$P(+x|+y)$$

 $\rightarrow \frac{P(+x,+y)}{P(+y)}$
 $\rightarrow \frac{1}{3}$

■
$$P(-x|+y)$$

 $\rightarrow \frac{P(-x,+y)}{P(-x,+y)+P(+x,+y)}$
 $\rightarrow \frac{2}{3}$

$$P(-y|+x)$$

P(X,Y)		
X	Y	P
-+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

■
$$P(+x|+y)$$

 $\rightarrow \frac{P(+x,+y)}{P(+y)}$
 $\rightarrow \frac{1}{3}$

■
$$P(-x|+y)$$

 $\rightarrow \frac{P(-x,+y)}{P(-x,+y)+P(+x,+y)}$
 $\rightarrow \frac{2}{3}$

$$P(-y|+x)$$

$$\rightarrow \frac{P(+x,-y)}{P(+x,-y)+P(+x,+y)}$$

$$\rightarrow \frac{3}{5}$$

P(X,Y)			
X	Y	P	
+x	+y	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	

Conditional Distributions

■ Probability distributions over some variables given fixed values of others

Joint Distribution $P(T, W)$		
T	W	$\mid P \mid$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

■ Probability distributions over some variables given fixed values of others

Joint Distribution $P(T,W)$		
T	W	$\mid P \mid$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$\begin{tabular}{lll} Conditional Distributions \\ \hline $P(W|T=hot)$ \\ \hline \hline $W \mid P$ \\ \hline sun \mid 0.8$ \\ rain \mid 0.2 \\ \hline \end{tabular}$

Conditional Distributions

■ Probability distributions over some variables given fixed values of others

Joint Distribution $P(T,W)$		
T	W	$\mid P \mid$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions P(W|T = hot)W0.8sun 0.2rain = coldW0.4sun 0.6 rain

P(T,W)		
T	W	$\mid P \mid$
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(W	T T = cold
W	P
sun	
rain	

$$P(W = s | T = c)$$

P(T,W)			
T	W	$\mid P \mid$	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

D/DTIII

P(W	V T = cold
W	P
sun	
rain	

$$\begin{aligned} P(W=s|T=c) \\ = & \frac{P(W=s,T=c)}{P(T=c)} \\ P(T,W) \end{aligned}$$

P(T,W)			
T	W	$\mid P \mid$	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

P(W T	r = cold
W	P
sun	
rain	

$$=\frac{P(W=s,T=c)}{P(T,W)}$$

$$=\frac{P(W=s,T=c)}{P(W=s,T=c)}$$

P(W = s | T = c)

$$= \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$= \frac{W \mid P}{Sun \mid 0.4}$$

$$= \frac{0.4}{cold \quad sun \mid 0.2}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$= \frac{0.4}{rain} = \frac{0.4}{rain}$$

P(W = s | T = c)

P(T,W)			
T	W	$\mid P \mid$	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

- Why does this work?
 - Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

Find
$$P(X|Y = -y)$$

Quiz: Normalization Trick

Find
$$P(X|Y = -y)$$

Quiz: Normalization Trick

Find
$$P(X|Y = -y)$$

■ (Dictionary) To bring or restore to a normal condition

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE
- Procedure:
 - Step I: Compute Z = sum over all entries
 - ullet Step 2: Divide every entry by Z

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE
- Procedure:
 - Step I: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example I

W	P
sun rain	0.2

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE
- Procedure:
 - Step I: Compute Z = sum over all entries
 - ullet Step 2: Divide every entry by Z
- Example I

W	P	Normalize	W	P
sun rain	$0.2 \\ 0.3$	Z = 0.5	sun rain	$\begin{array}{ c c }\hline 0.4\\ 0.6\end{array}$

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE
- Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example I

Example 2

$W \mid P$	Normalize	$W \mid P$	T	W	P
sun 0.2 rain 0.3	Z = 0.5	sun 0.4 rain 0.6	hot hot cold cold	sun rain sun rain	20 5 10 15

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE
- Procedure:
 - Step I: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example I

Example 2

Probabilistic Inference

- Compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time|no accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time|no accidents, 5 a.m.) = 0.95
 - P(on time|no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case (X_1, X_2, \dots, X_n)
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$
 - Query* variable: Q

- General case (X_1, X_2, \dots, X_n)
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$
 - Query* variable: Q
- We want: $P(Q|e_1 \dots e_k)$ (works fine with multiple query variables, too)

- General case (X_1, X_2, \dots, X_n)
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$
 - Query* variable: Q
 - Hidden variables: $H_1 \dots H_r$
- We want: $P(Q|e_1 \dots e_k)$

(works fine with multiple query variables, too)

 Step 1: Select the entries consistent with the evidence

 Step 1: Select the entries consistent with the evidence Step 2: Sum out H to get joint of Query and evidence

 Step 1: Select the entries consistent with the evidence Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots, X_n})$$

 Step 1: Select the entries consistent with the evidence ■ Step 2: Sum out *H* to ■ Step 3: Normalize get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots, X_n})$$

0.25 0.2

 Step 1: Select the entries consistent with the evidence Step 2: Sum out H to get joint of Query and evidence

Step 3: Normalize

$$Z = \sum_{q} P(Q, e_1 \dots e_k)$$

$$P(Q|e_1 \dots e_k) = \frac{1}{Z}P(Q, e_1 \dots e_k)$$

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

 $\blacksquare P(W)$

P(W|winter)

 $\blacksquare P(W|winter,hot)$

S	T	W	$\mid P \mid$
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- P(W) P(W = sun) = 0.65P(W = rain) = 0.35
- $\blacksquare P(W|winter)$

 $\blacksquare P(W|winter,hot)$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- P(W) P(W = sun) = 0.65P(W = rain) = 0.35
- P(W|winter) P(W = sun|winter) = 0.50P(W = rain|winter) = 0.50
- $\blacksquare P(W|winter,hot)$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- P(W) P(W = sun) = 0.65P(W = rain) = 0.35
- P(W|winter) P(W = sun|winter) = 0.50
- P(W = rain|winter) = 0.50
- P(W|winter, hot) P(W = sun|winter, hot) = 0.666...P(W = rain|winter, hot) = 0.333...

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Problems with Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity: $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution

Problems with Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity: $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution
- Availability of the joint distributions and evidence

The Product Rule

■ Sometimes we have condition distributions, but want the joint distribution

$$P(x|y) = \frac{P(x,y)}{P(y)}$$
$$P(x,y) = P(y)P(x|y)$$

The Product Rule

$$P(x,y) = P(y)P(x|y)$$

 $D/D|III\rangle$

D/D III)

Example:

		P(D W)				P(D, W)
P(W)	,	D	W	P		D	W	P
$R \mid P$	×	wet	sun	0.1	_	wet	sun	
$\begin{array}{c c} sun & 0.8 \\ rain & 0.2 \end{array}$		dry	sun	0.9		dry	sun	
rain 0.2		wet	rain	0.7		wet	rain	
		dry	rain	0.3		dry	rain	

The Product Rule

$$P(x,y) = P(y)P(x|y)$$

Example:

			P(D W)			P(D, W)		7)	
P(V)			D	W	P		D	W	P
R		×	wet	sun	0.1	=	wet	sun	0.08
sun rain	0.8			sun					0.72
rain	0.2			rain				rain	
			dry	rain	0.3		dry	rain	0.06

The Chain Rule

 More generally, we can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots, x_n) = \prod_{i} P(x_i|x_1 \dots x_{i-1})$$

• Why is this always true? The following can be extended for any x_n :

$$P(x_2, x_1) = P(x_1) \times P(x_2 | x_1)$$
$$= P(x_1) \times \frac{P(x_2, x_1)}{P(x_1)}$$

■ Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

■ Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

■ Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems (e.g. ASR, MT)

■ Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

■ Diagnostic probability from causal probability:

$$P(\mathsf{cause}|\mathsf{effect}) = \frac{P(\mathsf{effect}|\mathsf{cause})P(\mathsf{cause})}{P(\mathsf{effect})}$$

- Example:
 - *M*: meningitis, *S*: stiff neck

$$P(+m) = 0.0001$$

 $P(+s|+m) = 0.8$
 $P(+s|-m) = 0.01$

$$P(+m|+s)=\frac{P(+s|+m)P(+m)}{P(+s)}=\frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m)+P(|s|-m)P(-m)}=0.00794$$
 • Note: posterior probability of meningitis still very small

- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

Given:

P(W)				
R	P			
sun	0.8			
rain	0.2			

P(D W)					
D	W	P			
wet	sun	0.1			
dry	sun	0.9			
wet	rain	0.7			
dry	rain	0.3			

lacksquare What is P(W|dry)?

Ghostbusters (Revisited)

- Let's say we have two distributions:
 - **Prior distribution** over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R|G)
 - ► Given: we know what our sensors do
 - ightharpoonup R =reading color measured at (1,1)
 - e.g. P(R = yellow|G = (1,1)) = 0.1

Video: ghosts - with probability

Ghostbusters (Revisited)

- Let's say we have two distributions:
 - **Prior distribution** over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R|G)
 - ► Given: we know what our sensors do
 - ightharpoonup R =reading color measured at (1,1)
 - e.g. P(R = yellow|G = (1,1)) = 0.1
- We can calculate the **posterior distribution** P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r)\inf P(r|g)P(g)$$

Video: ghosts - with probability

Suggested Reading

Russell & Norvig: Chapter 13.1-13.5