

CCNAv7: Intoduction to Network (ITN)

Companion Guide

cisco Academy

FREE SAMPLE CHAPTER

Introduction to Networks Companion Guide (CCNAv7)

Cisco Networking Academy

Cisco Press

Introduction to Networks Companion Guide (CCNAv7)

Cisco Networking Academy

Copyright © 2020 Cisco Systems, Inc.

Published by: Cisco Press

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2020935402

ISBN-13: 978-0-13-663366-2 ISBN-10: 0-13-663366-8

Warning and Disclaimer

This book is designed to provide information about the Cisco Networking Academy Introduction to Networks (CCNAv7) course. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the

This book is part of the Cisco Networking Academy® series from Cisco Press. The products in this series support and complement the Cisco Networking Academy curriculum. If you are using this book outside the Networking Academy, then you are not preparing with a Cisco trained and authorized Networking Academy provider.

. 1 | 1 . 1 | 1 . CISCO

For more information on the Cisco Networking Academy or to locate a Networking Academy, Please visit www.netacad.com.

Editor-in-Chief Mark Taub

Alliances Manager, **Cisco Press** Arezou Gol

Director. ITP Product Management **Brett Bartow**

Senior Editor James Manly

Managing Editor Sandra Schroeder

Development Editor Christopher Cleveland

Senior Project Editor Tonya Simpson

Copy Editor Kitty Wilson

Technical Editor Bob Vachon

Editorial Assistant Cindy Teeters

Cover Designer Chuti Prasertsith

Composition codeMantra

Indexer Erika Millen

Proofreader Abigail Manheim services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screenshots may be viewed in full within the software version specified.

 $Microsoft^{\textcircled{R}}$ and $Windows^{\textcircled{R}}$ are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

About the Contributing Authors

Rick Graziani teaches computer science and computer networking courses at Cabrillo College and University of California, Santa Cruz in Santa Cruz, California. Prior to teaching, Rick worked in the information technology field for Santa Cruz Operation, Tandem Computers, and Lockheed Missiles and Space Corporation, and he served in the U.S. Coast Guard. He holds an M.A. in computer science and systems theory from California State University, Monterey Bay. Rick also works as a curriculum developer for the Cisco Networking Academy Curriculum Engineering team. When Rick is not working, he is most likely surfing at one of his favorite Santa Cruz surf breaks.

Allan Johnson entered the academic world in 1999, after 10 years as a business owner/operator, to dedicate his efforts to his passion for teaching. He holds both an M.B.A. and an M.Ed. in training and development. He taught CCNA courses at the high school level for seven years and has taught both CCNA and CCNP courses at Del Mar College in Corpus Christi, Texas. In 2003, Allan began to commit much of his time and energy to the CCNA Instructional Support Team, providing services to Networking Academy instructors worldwide and creating training materials. He now works full time for Cisco Networking Academy as Curriculum Lead.

Contents at a Glance

	Introduction xxx
Chapter 1	Networking Today 1
Chapter 2	Basic Switch and End Device Configuration 45
Chapter 3	Protocols and Models 85
Chapter 4	Physical Layer 137
Chapter 5	Number Systems 175
Chapter 6	Data Link Layer 203
Chapter 7	Ethernet Switching 233
Chapter 8	Network Layer 267
Chapter 9	Address Resolution 297
Chapter 10	Basic Router Configuration 319
Chapter 11	IPv4 Addressing 341
Chapter 12	IPv6 Addressing 397
Chapter 13	ICMP 443
Chapter 14	Transport Layer 461
Chapter 15	Application Layer 507
Chapter 16	Network Security Fundamentals 541
Chapter 17	Build a Small Network 571
Appendix A	Answers to "Check Your Understanding" Questions 631
	Key Terms Glossary 645
	Index 660

Contents

```
Introduction xxx
Chapter 1
               Networking Today 1
               Objectives 1
               Key Terms 1
               Introduction (1.0) 3
               Networks Affect Our Lives (1.1) 3
                  Networks Connect Us (1.1.1) 3
                  No Boundaries (1.1.3) 3
               Network Components (1.2) 4
                  Host Roles (1.2.1) 4
                  Peer-to-Peer (1.2.2) 5
                  End Devices (1.2.3) 6
                  Intermediary Devices (1.2.4) 6
                  Network Media (1.2.5) 7
               Network Representations and Topologies (1.3) 8
                  Network Representations (1.3.1) 8
                  Topology Diagrams (1.3.2) 10
                     Physical Topology Diagrams 10
                     Logical Topology Diagrams 10
               Common Types of Networks (1.4) 11
                  Networks of Many Sizes (1.4.1) 11
                  LANs and WANs (1.4.2) 12
                     LANs 13
                     WANs 14
                  The Internet (1.4.3) 15
                  Intranets and Extranets (1.4.4) 16
               Internet Connections (1.5) 17
                  Internet Access Technologies (1.5.1) 17
                  Home and Small Office Internet Connections (1.5.2) 18
                  Businesses Internet Connections (1.5.3) 19
                  The Converging Network (1.5.4) 20
```

Reliable Networks (1.6) 23

Network Architecture (1.6.1) 23

Fault Tolerance (1.6.2) 24

Scalability (1.6.3) 24

Quality of Service (1.6.4) 25

Network Security (1.6.5) 26

Network Trends (1.7) 27

Recent Trends (1.7.1) 28

Bring Your Own Device (BYOD) (1.7.2) 28

Online Collaboration (1.7.3) 28

Video Communications (1.7.4) 29

Cloud Computing (1.7.6) 29

Technology Trends in the Home (1.7.7) 31

Powerline Networking (1.7.8) 31

Wireless Broadband (1.7.9) 32

Wireless Internet Service Providers 32 Wireless Broadband Service 32

Network Security (1.8) 33

Security Threats (1.8.1) 33

Security Solutions (1.8.2) 34

The IT Professional (1.9) 35

CCNA (1.9.1) 35

Networking Jobs (1.9.2) 36

Summary (1.10) 37

Networks Affect Our Lives 37

Network Components 37

Network Representations and Topologies 37

Common Types of Networks 37

Internet Connections 38

Reliable Networks 38

Network Trends 38

Network Security 39

The IT Professional 40

Practice 40

Check Your Understanding Questions 40

Chapter 2 Basic Switch and End Device Configuration 45 **Objectives 45** Key Terms 45 Introduction (2.0) 46 Cisco IOS Access (2.1) 46 Operating Systems (2.1.1) 46 GUI (2.1.2) 47 Purpose of an OS (2.1.3) 48 Access Methods (2.1.4) 49 Terminal Emulation Programs (2.1.5) 50 IOS Navigation (2.2) 52 Primary Command Modes (2.2.1) 52 Configuration Mode and Subconfiguration Modes (2.2.2) 53 Navigate Between IOS Modes (2.2.4) 54 A Note About Syntax Checker Activities (2.2.6) The Command Structure (2.3) 56 Basic IOS Command Structure (2.3.1) 56 IOS Command Syntax Check (2.3.2) IOS Help Features (2.3.3) 58 Hot Keys and Shortcuts (2.3.5) 58 **Basic Device Configuration (2.4) 61** Device Names (2.4.1) 61 Password Guidelines (2.4.2) 62 Configure Passwords (2.4.3) 63 Encrypt Passwords (2.4.4) 64 Banner Messages (2.4.5) 65 Save Configurations (2.5) 66 Configuration Files (2.5.1) 67 Alter the Running Configuration (2.5.2) 68 Capture Configuration to a Text File (2.5.4) 68 Ports and Addresses (2.6) 71 IP Addresses (2.6.1) 71 Interfaces and Ports (2.6.2) 73

Configure IP Addressing (2.7) 74

Manual IP Address Configuration for End Devices (2.7.1) 75 Automatic IP Address Configuration for End Devices (2.7.2) 76 Switch Virtual Interface Configuration (2.7.4) 77

Verify Connectivity (2.8) 78

Summary (2.9) 79

Cisco IOS Access 79

IOS Navigation 79

The Command Structure 79

Basic Device Configuration 79

Save Configurations 80

Ports and Addresses 80

Configure IP Addressing 80

Verify Connectivity 80

Practice 81

Check Your Understanding Questions 81

Chapter 3 Protocols and Models 85

Objectives 85

Key Terms 85

Introduction (3.0) 86

The Rules (3.1) 86

Communications Fundamentals (3.1.2) 86

Communication Protocols (3.1.3) 87

Rule Establishment (3.1.4) 88

Network Protocol Requirements (3.1.5) 88

Message Encoding (3.1.6) 89

Message Formatting and Encapsulation (3.1.7) 90

Message Size (3.1.8) 91

Message Timing (3.1.9) 92

Message Delivery Options (3.1.10) 92

A Note About the Node Icon (3.1.11) 94

Protocols 94

Network Protocol Overview (3.2.1)

Network Protocol Functions (3.2.2) 95

Protocol Interaction (3.2.3) 96

Protocol Suites (3.3) 97 Network Protocol Suites (3.3.1) 97 Evolution of Protocol Suites (3.3.2) 98 TCP/IP Protocol Example (3.3.3) 99 TCP/IP Protocol Suite (3.3.4) 99 Application Layer 101 Transport Layer 102 Internet Layer 102 Network Access Laver 103 TCP/IP Communication Process (3.3.5) 103 Standards Organizations (3.4) 108 Open Standards (3.4.1) 108 Internet Standards (3.4.2) 108 Electronic and Communications Standards (3.4.3) 111 Reference Models (3.5) 111 The Benefits of Using a Layered Model (3.5.1) 112 The OSI Reference Model (3.5.2) 112 The TCP/IP Protocol Model (3.5.3) 114 OSI and TCP/IP Model Comparison (3.5.4) Data Encapsulation (3.6) 116 Segmenting Messages (3.6.1) Sequencing (3.6.2) 118 Protocol Data Units (3.6.3) 118 Encapsulation Example (3.6.4) 120 De-encapsulation Example (3.6.5) 120 Data Access (3.7) 121 Addresses (3.7.1) 121 Layer 3 Logical Address (3.7.2) 122 Devices on the Same Network (3.7.3) 123 Role of the Data Link Layer Addresses: Same IP Network (3.7.4) 124 Devices on a Remote Network (3.7.5) 125 Role of the Network Layer Addresses (3.7.6) 125 Role of the Data Link Layer Addresses: Different IP Networks (3.7.7) 126 Data Link Addresses (3.7.8) 127

```
Summary (3.8) 130
                  The Rules 130
                  Protocols 130
                  Protocol Suites 130
                  Standards Organizations 131
                  Reference Models 131
                  Data Encapsulation 132
                  Data Access 132
               Practice 133
               Check Your Understanding Questions 133
Chapter 4
               Physical Layer 137
               Objectives 137
               Key Terms 137
               Introduction (4.0) 138
               Purpose of the Physical Layer (4.1) 138
                  The Physical Connection (4.1.1)
                  The Physical Layer (4.1.2) 139
               Physical Layer Characteristics (4.2) 141
                  Physical Layer Standards (4.2.1) 141
                  Physical Components (4.2.2) 142
                  Encoding (4.2.3) 142
                  Signaling (4.2.4) 143
                  Bandwidth (4.2.5) 145
                  Bandwidth Terminology (4.2.6) 145
                     Latency 146
                     Throughput 146
                    Goodput 146
               Copper Cabling (4.3) 146
                  Characteristics of Copper Cabling (4.3.1) 147
                  Types of Copper Cabling (4.3.2) 148
                  Unshielded Twisted-Pair (UTP) (4.3.3) 148
                  Shielded Twisted-Pair (STP) (4.3.4) 150
                  Coaxial Cable (4.3.5) 151
```

UTP Cabling (4.4) 152 Properties of UTP Cabling (4.4.1) 152 UTP Cabling Standards and Connectors (4.4.2) 153 Straight-Through and Crossover UTP Cables (4.4.3) 157 Fiber-Optic Cabling (4.5) 158 Properties of Fiber-Optic Cabling (4.5.1) 158 Types of Fiber Media (4.5.2) 159 Single-Mode Fiber 159 Multimode Fiber 160 Fiber-Optic Cabling Usage (4.5.3) 160 Fiber-Optic Connectors (4.5.4) 161 Fiber Patch Cords (4.5.5) 162 Fiber Versus Copper (4.5.6) 163 Wireless Media (4.6) 164 Properties of Wireless Media (4.6.1) 164 Types of Wireless Media (4.6.2) 165 Wireless LAN (4.6.3) 166 Summary (4.7) 168 Purpose of the Physical Layer Physical Layer Characteristics Copper Cabling 168 UTP Cabling 169 Fiber-Optic Cabling 169 Wireless Media 169 Practice 170 **Check Your Understanding Questions 170** Number Systems 175 **Objectives 175** Key Terms 175 Introduction (5.0) 176 Binary Number System (5.1) 176 Binary and IPv4 Addresses (5.1.1) 176 Binary Positional Notation (5.1.3) 178

Chapter 5

Convert Binary to Decimal (5.1.5) 180 Decimal to Binary Conversion (5.1.7) 182 Decimal to Binary Conversion Example (5.1.8) 186 IPv4 Addresses (5.1.11) 193 Hexadecimal Number System (5.2) 194 Hexadecimal and IPv6 Addresses (5.2.1) 194 Decimal to Hexadecimal Conversions (5.2.3) 196 Hexadecimal to Decimal Conversion (5.2.4) 196 Summary (5.3) 198 Binary Number System 198 Hexadecimal Number System 198 Practice 198 Check Your Understanding Questions 198 Chapter 6 Data Link Layer 203 Objectives 203 Key Terms 203 Introduction (6.0) 204 Purpose of the Data Link Layer (6.1) 204 The Data Link Layer (6.1.1) 204 IEEE 802 LAN/MAN Data Link Sublayers (6.1.2) 206 Providing Access to Media (6.1.3) 207 Data Link Layer Standards (6.1.4) 209 Topologies (6.2) 209 Physical and Logical Topologies (6.2.1) 209 WAN Topologies (6.2.2) 211 Point-to-Point 211 Hub and Spoke 211 Mesh 212 Point-to-Point WAN Topology (6.2.3) 213 LAN Topologies (6.2.4) 213 Legacy LAN Topologies 214 Half-Duplex and Full-Duplex Communication (6.2.5) 215 Half-Duplex Communication 215 Full-Duplex Communication 215

```
Access Control Methods (6.2.6) 216
     Contention-Based Access 216
     Controlled Access 217
   Contention-Based Access—CSMA/CD (6.2.7) 217
   Contention-Based Access—CSMA/CA (6.2.8) 219
Data Link Frame (6.3) 221
   The Frame (6.3.1) 221
   Frame Fields (6.3.2) 222
   Layer 2 Addresses (6.3.3) 223
   LAN and WAN Frames (6.3.4) 225
Summary (6.4) 228
   Purpose of the Data Link Layer 228
   Topologies 228
   Data Link Frame 229
Practice 229
Check Your Understanding Questions 229
Ethernet Switching 233
Objectives 233
Key Terms 233
Introduction (7.0) 234
Ethernet Frames (7.1) 234
   Ethernet Encapsulation (7.1.1) 234
   Data Link Sublayers (7.1.2) 235
   MAC Sublayer (7.1.3) 236
     Data Encapsulation 236
     Accessing the Media 237
   Ethernet Frame Fields (7.1.4) 237
Ethernet MAC Address (7.2) 239
   MAC Address and Hexadecimal (7.2.1) 240
   Ethernet MAC Address (7.2.2) 241
   Frame Processing (7.2.3) 243
   Unicast MAC Address (7.2.4) 244
   Broadcast MAC Address (7.2.5) 246
   Multicast MAC Address (7.2.6) 247
```

Chapter 7

Chapter 8

The MAC Address Table (7.3) 248 Switch Fundamentals (7.3.1) 248 Switch Learning and Forwarding (7.3.2) 250 Examine the Source MAC Address 250 Find the Destination MAC Address 250 Filtering Frames (7.3.3) 252 Switch Speeds and Forwarding Methods (7.4) 254 Frame Forwarding Methods on Cisco Switches (7.4.1) 254 Cut-Through Switching (7.4.2) 255 Memory Buffering on Switches (7.4.3) 257 Duplex and Speed Settings (7.4.4) 257 Auto-MDIX (7.4.5) 259 Summary (7.5) 261 Ethernet Frame 261 Ethernet MAC Address 261 The MAC Address Table 261 Switch Speeds and Forwarding Methods 262 Practice 262 Check Your Understanding Questions 262 **Network Layer 267 Objectives 267** Key Terms 267 Introduction (8.0) 268 Network Layer Characteristics (8.1) 268 The Network Layer (8.1.1) 268 IP Encapsulation (8.1.2) 270 Characteristics of IP (8.1.3) 271 Connectionless (8.1.4) 271 Best Effort (8.1.5) 272 Media Independent (8.1.6) 273 IPv4 Packet (8.2) 274 IPv4 Packet Header (8.2.1) 274 IPv4 Packet Header Fields (8.2.2) 274 IPv6 Packet (8.3) 276 Limitations of IPv4 (8.3.1) 277

IPv6 Overview (8.3.2) 277

```
IPv6 Packet Header (8.3.4) 280
               How a Host Routes (8.4) 281
                  Host Forwarding Decision (8.4.1)
                  Default Gateway (8.4.2) 282
                  A Host Routes to the Default Gateway (8.4.3) 283
                  Host Routing Tables (8.4.4) 283
               Introduction to Routing (8.5) 285
                  Router Packet Forwarding Decision (8.5.1) 285
                  IP Router Routing Table (8.5.2) 286
                  Static Routing (8.5.3) 287
                  Dynamic Routing (8.5.4) 288
                  Introduction to an IPv4 Routing Table (8.5.6) 290
               Summary (8.6) 292
                  Network Layer Characteristics 292
                  IPv4 Packet 292
                  IPv6 Packet 292
                  How a Host Routes 293
                  Introduction to Routing 293
               Practice 294
               Check Your Understanding Questions 294
Chapter 9
               Address Resolution 297
               Objectives 297
               Key Terms 297
               Introduction (9.0) 298
               MAC and IP (9.1) 298
                  Destination on Same Network (9.1.1) 298
                  Destination on Remote Network (9.1.2) 299
               ARP (9.2) 301
                  ARP Overview (9.2.1) 301
                  ARP Functions (9.2.2) 302
                  Removing Entries from an ARP Table (9.2.6) 306
                  ARP Tables on Networking Devices (9.2.7) 306
                  ARP Issues—ARP Broadcasts and ARP Spoofing (9.2.8) 307
```

IPv4 Packet Header Fields in the IPv6 Packet Header (8.3.3) 278

```
IPv6 Neighbor Discovery (9.3) 309
                  IPv6 Neighbor Discovery Messages (9.3.2) 309
                  IPv6 Neighbor Discovery—Address Resolution (9.3.3) 311
               Summary (9.4) 313
                  MAC and IP 313
                  ARP 313
                  Neighbor Discovery 314
               Practice 314
               Check Your Understanding Questions 314
Chapter 10
               Basic Router Configuration 319
               Objectives 319
               Introduction (10.0) 320
               Configure Initial Router Settings (10.1) 320
                  Basic Router Configuration Steps (10.1.1) 320
                  Basic Router Configuration Example (10.1.2) 321
               Configure Interfaces (10.2) 323
                  Configure Router Interfaces (10.2.1) 323
                  Configure Router Interfaces Example (10.2.2) 324
                  Verify Interface Configuration (10.2.3) 325
                  Configuration Verification Commands (10.2.4) 326
               Configure the Default Gateway (10.3) 330
                  Default Gateway on a Host (10.3.1) 331
                  Default Gateway on a Switch (10.3.2) 332
               Summary (10.4) 335
                  Configure Initial Router Settings 335
                  Configure Interfaces 335
                  Configure the Default Gateway 335
               Practice 336
               Check Your Understanding Questions 337
Chapter 11
               IPv4 Addressing 341
               Objectives 341
               Key Terms 341
               Introduction (11.0) 342
```

IPv4 Address Structure (11.1) 342 Network and Host Portions (11.1.1) 342 The Subnet Mask (11.1.2) 343 The Prefix Length (11.1.3) 344 Determining the Network: Logical AND (11.1.4) 345 Network, Host, and Broadcast Addresses (11.1.6) 347 Network Address 347 Host Addresses 348 Broadcast Address 349 IPv4 Unicast, Broadcast, and Multicast (11.2) 349 Unicast (11.2.1) 349 Broadcast (11.2.2) 350 IP Directed Broadcasts 351 Multicast (11.2.3) 352 Types of IPv4 Addresses (11.3) 353 Public and Private IPv4 Addresses (11.3.1) 353 Routing to the Internet (11.3.2) 354 Special Use IPv4 Addresses (11.3.4) 356 Loopback Addresses 356 Link-Local Addresses 357 Legacy Classful Addressing (11.3.5) 357 Assignment of IP Addresses (11.3.6) 358 Network Segmentation (11.4) 359 Broadcast Domains and Segmentation (11.4.1) 359 Problems with Large Broadcast Domains (11.4.2) 360 Reasons for Segmenting Networks (11.4.3) 362 Subnet an IPv4 Network (11.5) 364 Subnet on an Octet Boundary (11.5.1) 364 Subnet Within an Octet Boundary (11.5.2) 366 Subnet a Slash 16 and a Slash 8 Prefix (11.6) 367 Create Subnets with a Slash 16 Prefix (11.6.1) 367 Create 100 Subnets with a Slash 16 Prefix (11.6.2) 369 Create 1000 Subnets with a Slash 8 Prefix (11.6.3) 372 Subnet to Meet Requirements (11.7) 374 Subnet Private Versus Public IPv4 Address Space (11.7.1) 374 What About the DMZ? 377

```
Minimize Unused Host IPv4 Addresses and Maximize
                   Subnets (11.7.2) 377
                  Example: Efficient IPv4 Subnetting (11.7.3) 378
              VLSM (11.8) 381
                  IPv4 Address Conservation (11.8.3) 381
                  VLSM (11.8.4) 383
                  VLSM Topology Address Assignment (11.8.5) 386
              Structured Design (11.9) 387
                  IPv4 Network Address Planning (11.9.1) 388
                  Device Address Assignment (11.9.2) 389
              Summary (11.10) 390
                 IPv4 Addressing Structure 390
                 IPv4 Unicast, Broadcast, and Multicast 390
                 Types of IPv4 Addresses 390
                  Network Segmentation 391
                 Subnet an IPv4 Network 391
                 Subnet a /16 and a /8 Prefix 391
                  Subnet to Meet Requirements 391
                  Variable-Length Subnet Masking 392
                 Structured Design 392
              Practice 393
              Check Your Understanding Questions 393
Chapter 12
              IPv6 Addressing 397
              Objectives 397
              Key Terms 397
              Introduction (12.0) 398
              IPv4 Issues (12.1) 398
                  Need for IPv6 (12.1.1)
                                      398
                    Internet of Things 399
                 IPv4 and IPv6 Coexistence (12.1.2) 399
                    Dual Stack 399
                    Tunneling 400
                    Translation 401
```

IPv6 Address Representation (12.2) 401 IPv6 Addressing Formats (12.2.1) 401 Preferred Format 402 Rule 1—Omit Leading Zeros (12.2.2) 403 Rule 2—Double Colon (12.2.3) 404 IPv6 Address Types (12.3) 406 Unicast, Multicast, Anycast (12.3.1) 406 IPv6 Prefix Length (12.3.2) 406 Types of IPv6 Unicast Addresses (12.3.3) 407 A Note About the Unique Local Address (12.3.4) 408 IPv6 GUA (12.3.5) 408 IPv6 GUA Structure (12.3.6) 409 Global Routing Prefix 410 Subnet ID 410 Interface ID 410 IPv6 LLA (12.3.7) 411 GUA and LLA Static Configuration (12.4) 413 Static GUA Configuration on a Router (12.4.1) 413 Static GUA Configuration on a Windows Host (12.4.2) 414 Static Configuration of a Link-Local Unicast Address (12.4.3) 415 Dynamic Addressing for IPv6 GUAs (12.5) 417 RS and RA Messages (12.5.1) 417 Method 1: SLAAC (12.5.2) 418 Method 2: SLAAC and Stateless DHCPv6 (12.5.3) 419 Method 3: Stateful DHCPv6 (12.5.4) 420 EUI-64 Process vs. Randomly Generated (12.5.5) 421 EUI-64 Process (12.5.6) 422 Randomly Generated Interface IDs (12.5.7) 424 Dynamic Addressing for IPv6 LLAs (12.6) 425 Dynamic LLAs (12.6.1) 425 Dynamic LLAs on Windows (12.6.2) 425 Dynamic LLAs on Cisco Routers (12.6.3) 426 Verify IPv6 Address Configuration (12.6.4) 427

IPv6 Multicast Addresses (12.7) 430 Assigned IPv6 Multicast Addresses (12.7.1) 430 Well-Known IPv6 Multicast Addresses (12.7.2) 430 Solicited-Node IPv6 Multicast Addresses (12.7.3) 432 Subnet an IPv6 Network (12.8) 432 Subnet Using the Subnet ID (12.8.1) 432 IPv6 Subnetting Example (12.8.2) 433 IPv6 Subnet Allocation (12.8.3) 434 Router Configured with IPv6 Subnets (12.8.4) 435 Summary (12.9) 436 IPv4 Issues 436 IPv6 Address Representation 436 IPv6 Address Types 436 GUA and LLA Static Configuration 437 Dynamic Addressing for IPv6 GUAs 437 Dynamic Addressing for IPv6 LLAs 437 IPv6 Multicast Addresses 438 Subnet an IPv6 Network 438 Practice 439 Check Your Understanding Questions 439 Chapter 13 **ICMP 443 Objectives 443** Introduction (13.0) 444 ICMP Messages (13.1) 444 ICMPv4 and ICMPv6 Messages (13.1.1) 444 Host Reachability (13.1.2) 444 Destination or Service Unreachable (13.1.3) 445 Time Exceeded (13.1.4) 446 ICMPv6 Messages (13.1.5) 446 Ping and Traceroute Tests (13.2) 449 Ping—Test Connectivity (13.2.1) 449 Ping the Loopback (13.2.2) 450 Ping the Default Gateway (13.2.3) 450 Ping a Remote Host (13.2.4) 451

```
Round-Trip Time (RTT) 453
                    IPv4 TTL and IPv6 Hop Limit 453
               Summary (13.3) 454
                  ICMP Messages 454
                  Ping and Traceroute Testing 454
               Practice 455
               Check Your Understanding Questions 456
Chapter 14
               Transport Layer 461
               Objectives 461
               Key Terms 461
               Introduction (14.0) 462
               Transportation of Data (14.1) 462
                  Role of the Transport Layer (14.1.1) 462
                  Transport Layer Responsibilities (14.1.2) 463
                  Transport Layer Protocols (14.1.3) 467
                  Transmission Control Protocol (TCP) (14.1.4) 467
                  User Datagram Protocol (UDP) (14.1.5) 468
                  The Right Transport Layer Protocol for the Right
                    Application (14.1.6) 469
               TCP Overview (14.2) 470
                  TCP Features (14.2.1) 470
                  TCP Header (14.2.2) 471
                  TCP Header Fields (14.2.3) 471
                  Applications That Use TCP (14.2.4) 472
               UDP Overview (14.3) 473
                  UDP Features (14.3.1) 473
                  UDP Header (14.3.2) 474
                  UDP Header Fields (14.3.3) 474
                  Applications that use UDP (14.3.4) 475
               Port Numbers (14.4) 476
                  Multiple Separate Communications (14.4.1) 476
                  Socket Pairs (14.4.2) 477
                  Port Number Groups (14.4.3) 478
                  The netstat Command (14.4.4) 479
```

Traceroute—Test the Path (13.2.5)

452

Chapter 15

TCP Communication Process (14.5) 480 TCP Server Processes (14.5.1) 480 TCP Connection Establishment (14.5.2) 483 Session Termination (14.5.3) 484 TCP Three-Way Handshake Analysis (14.5.4) 485 Reliability and Flow Control (14.6) 486 TCP Reliability—Guaranteed and Ordered Delivery (14.6.1) 486 TCP Reliability—Data Loss and Retransmission (14.6.3) 488 TCP Flow Control—Window Size and Acknowledgments (14.6.5) 490 TCP Flow Control—Maximum Segment Size (MSS) (14.6.6) TCP Flow Control—Congestion Avoidance (14.6.7) 493 UDP Communication (14.7) 494 UDP Low Overhead Versus Reliability (14.7.1) 494 UDP Datagram Reassembly (14.7.2) 494 UDP Server Processes and Requests (14.7.3) 495 UDP Client Processes (14.7.4) 495 Summary (14.8) 499 499 Transportation of Data TCP Overview 499 UDP Overview 499 Port Numbers 499 TCP Communications Process 500 Reliability and Flow Control 500 UDP Communication 501 Practice 501 Check Your Understanding Questions 502 **Application Layer** 507 Objectives 507 Key Terms 507 Introduction (15.0) 508 Application, Presentation, and Session (15.1) 508 Application Layer (15.1.1) 508 Presentation and Session Layer (15.1.2) 508

TCP/IP Application Layer Protocols (15.1.3) 510

```
Client-Server Model (15.2.1) 511
   Peer-to-Peer Networks (15.2.2) 512
   Peer-to-Peer Applications (15.2.3) 513
   Common P2P Applications (15.2.4) 514
Web and Email Protocols (15.3) 515
   Hypertext Transfer Protocol and Hypertext Markup
    Language (15.3.1) 515
   HTTP and HTTPS (15.3.2) 516
   Email Protocols (15.3.3) 518
   SMTP, POP, and IMAP (15.3.4) 519
     SMTP 519
     POP 520
     IMAP 521
IP Addressing Services (15.4) 521
   Domain Name Service (15.4.1) 522
   DNS Message Format (15.4.2) 524
   DNS Hierarchy (15.4.3) 525
   The nslookup Command (15.4.4) 526
   Dynamic Host Configuration Protocol (15.4.6) 527
   DHCP Operation (15.4.7) 528
File Sharing Services (15.5) 530
   File Transfer Protocol (15.5.1) 530
   Server Message Block (15.5.2) 531
Summary 534
   Application, Presentation, and Session 534
   Peer-to-Peer 534
   Web and Email Protocols 534
   IP Addressing Services 535
   File Sharing Services 535
Practice 536
Check Your Understanding Questions 536
```

Peer-to-Peer (15.2) 511

```
Chapter 16
               Network Security Fundamentals 541
               Objectives 541
               Key Terms 541
               Introduction (16.0) 542
               Security Threats and Vulnerabilities (16.1) 542
                  Types of Threats (16.1.1) 542
                  Types of Vulnerabilities (16.1.2) 543
                  Physical Security (16.1.3) 545
               Network Attacks (16.2) 546
                  Types of Malware (16.2.1) 546
                     Viruses 546
                     Worms 547
                     Trojan Horses 547
                  Reconnaissance Attacks (16.2.2) 547
                  Access Attacks (16.2.3) 548
                     Password Attacks 548
                     Trust Exploitation 548
                    Port Redirection 549
                     Man-in-the-Middle 549
                  Denial of Service Attacks (16.2.4) 551
                     DoS Attack 551
                    DDoS Attack 551
               Network Attack Mitigations (16.3) 552
                  The Defense-in-Depth Approach (16.3.1) 553
                  Keep Backups (16.3.2) 553
                  Upgrade, Update, and Patch (16.3.3) 554
                  Authentication, Authorization, and Accounting (16.3.4) 555
                  Firewalls (16.3.5) 555
                  Types of Firewalls (16.3.6) 557
                  Endpoint Security (16.3.7) 558
               Device Security (16.4) 558
                  Cisco AutoSecure (16.4.1) 558
                  Passwords (16.4.2) 559
                  Additional Password Security (16.4.3) 560
                  Enable SSH (16.4.4) 561
                  Disable Unused Services (16.4.5) 563
```

```
Summary 565
   Security Threats and Vulnerabilities 565
   Network Attacks 565
   Network Attack Mitigation 565
   Device Security 566
Practice 567
Check Your Understanding Questions 567
Build a Small Network 571
Objectives 571
Key Terms 571
Introduction (17.0) 572
Devices in a Small Network (17.1) 572
   Small Network Topologies (17.1.1) 572
   Device Selection for a Small Network (17.1.2) 573
      Cost 573
      Speed and Types of Ports/Interfaces 573
     Expandability 573
      Operating System Features and Services 574
   IP Addressing for a Small Network (17.1.3) 574
   Redundancy in a Small Network (17.1.4) 576
   Traffic Management (17.1.5) 577
Small Network Applications and Protocols (17.2) 578
   Common Applications (17.2.1) 578
     Network Applications 578
     Application Layer Services 579
   Common Protocols (17.2.2) 579
   Voice and Video Applications (17.2.3) 582
Scale to Larger Networks (17.3) 583
   Small Network Growth (17.3.1) 583
   Protocol Analysis (17.3.2) 583
   Employee Network Utilization (17.3.3) 584
Verify Connectivity (17.4) 586
   Verify Connectivity with Ping (17.4.1) 586
   Extended Ping (17.4.2) 588
   Verify Connectivity with Traceroute (17.4.3) 590
```

Chapter 17

Extended Traceroute (17.4.4) 592
Network Baseline (17.4.5) 593
Host and IOS Commands (17.5) 596
IP Configuration on a Windows Host (17.5.1) 596
IP Configuration on a Linux Host (17.5.2) 599
IP Configuration on a macOS Host (17.5.3) 600
The arp Command (17.5.4) 601
Common show Commands Revisited (17.5.5) 602
The show cdp neighbors Command (17.5.6) 609
The show ip interface brief Command (17.5.7) 610 Verify Switch Interfaces 611
Troubleshooting Methodologies (17.6) 611
Basic Troubleshooting Approaches (17.6.1) 612
Resolve or Escalate? (17.6.2) 613
The debug Command (17.6.3) 613
The terminal monitor Command (17.6.4) 615
Troubleshooting Scenarios (17.7) 616
Duplex Operation and Mismatch Issues (17.7.1) 617
IP Addressing Issues on IOS Devices (17.7.2) 618
IP Addressing Issues on End Devices (17.7.3) 619
Default Gateway Issues (17.7.4) 619
Troubleshooting DNS Issues (17.7.5) 621
Summary (17.8) 624
Devices in a Small Network 624
Small Network Applications and Protocols 624
Scale to Larger Networks 624
Verify Connectivity 625
Host and IOS Commands 625
Troubleshooting Methodologies 626
Troubleshooting Scenarios 626
Practice 627

Appendix A Answers to "Check Your Understanding" Questions 631 Key Terms Glossary 645

Check Your Understanding Questions 628

Index 669

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Boldface indicates commands and keywords that are entered literally as shown.
 In actual configuration examples and output (not general command syntax),
 boldface indicates commands that are manually input by the user (such as a show command).
- *Italic* indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Introduction

Introduction to Networks Companion Guide (CCNAv7) is the official supplemental textbook for the Cisco Network Academy CCNA Introduction to Networks Version 7 course. Cisco Networking Academy is a comprehensive program that delivers information technology skills to students around the world. The curriculum emphasizes realworld practical application and provides opportunities to gain the skills and hands-on experience needed to design, install, operate, and maintain networks in small business, medium-sized business as well as enterprise and service provider environments.

This book provides a ready reference that explains the same networking concepts, technologies, protocols, and devices as the online curriculum. This book emphasizes key topics, terms, and activities and provides some alternative explanations and examples to supplement the course. You can use the online curriculum as directed by your instructor and then use this *Companion Guide*'s study tools to help solidify your understanding of all the topics.

Topic Coverage

The following list gives you a thorough overview of the features provided in each chapter so that you can make constructive use of your study time:

 Objectives: Listed at the beginning of each chapter, the objectives reference the core concepts covered in the chapter. The objectives match the objectives stated in the corresponding chapters of the online curriculum; however, the question format in the *Companion Guide* encourages you to think about finding the answers as you read the chapter.

- **Notes:** These are short sidebars that point out interesting facts, timesaving methods, and important safety issues.
- Summary: At the end of each chapter is a summary of the chapter's key concepts. It provides a synopsis of the chapter and serves as a study aid.
- Practice: At the end of chapter is a full list of all the labs, class activities, and Packet Tracer activities to refer to at study time.

Readability

The following features are provided to help you understand networking vocabulary:

- Key terms: Each chapter begins with a list of key terms, along with a pagenumber reference to find the term used inside the chapter. The terms are listed in the order in which they are explained in the chapter. This handy reference allows you to find a term, flip to the page where the term appears, and see the term used in context. The Key Terms Glossary defines all the key terms.
- **Key Terms Glossary:** This book contains an all-new Key Terms Glossary that defines more than 1000 terms.

Practice

Practice makes perfect. This *Companion Guide* offers you ample opportunities to put what you learn into practice. You will find the following features valuable and effective in reinforcing the instruction that you receive:

- Check Your Understanding questions and answer key: Review questions are presented at the end of each chapter as a self-assessment tool. These questions match the style of questions in the online course. Appendix A, "Answers to 'Check Your Understanding' Questions," provides an answer key to all the questions and includes an explanation of each answer.
- Labs and activities: Throughout each chapter, you are directed back to the online course to take advantage of the activities provided to reinforce concepts. In addition, at the end of each chapter is a "Practice" section that lists all the labs and activities to provide practice with the topics introduced in this chapter.
- Page references to online course: After most headings is a number in parentheses for example, (1.1.2). This number refers to the page number in the online course so that you can easily jump to that spot online to view a video, practice an activity, perform a lab, or review a topic.

Interactive Graphic

Video

How This Book Is Organized

This book corresponds closely to the Cisco Networking Academy CCNA IT Essential v7 course and is divided into 17 chapters, one appendix, and a glossary of key terms:

- Chapter 1, "Networking Today": This chapter introduces the concept of a network and provides an overview of the different types of networks encountered. It examines how networks impact the way we work, learn, and play. This chapter also examines recent trends in networks, such as video, cloud computing, and BYOD and how to help ensure robust, reliable, secure networks to support these trends.
- Chapter 2, "Basic Switch and End Device Configuration": This chapter introduces the operating system used with most Cisco devices: Cisco IOS. The basic purpose and functions of IOS are described, as are methods to access IOS. The chapter also describes how to maneuver through the IOS command-line interface as well as basic IOS device configuration.
- Chapter 3, "Protocols and Models": This chapter examines the importance of rules or protocols for network communication. It explores the OSI reference model and the TCP/IP communication suite and examines how these models provide the necessary protocols to allow communication to occur on a modern converged network.
- Chapter 4, "Physical Layer": This chapter introduces the lowest layer of the OSI model: the physical layer. This chapter explains the transmission of bits over the physical medium.
- Chapter 5, "Number Systems": This chapter explains how to convert between decimal, binary, and hexadecimal number systems. Understanding these number systems is essential to understanding IPv4, IPv6, and Ethernet MAC addressing.

- Chapter 6, "Data Link Layer": This chapter discusses how the data link layer prepares network layer packets for transmission, controls access to the physical media, and transports data across various media. This chapter includes a description of the encapsulation protocols and processes that occur as data travels across the LAN and the WAN.
- Chapter 7, "Ethernet Switching": This chapter examines the functionality of the Ethernet LAN protocols. It explores how Ethernet functions, including how devices use Ethernet MAC addresses to communicate in a multiaccess network. The chapter discusses how Ethernet switches build MAC address tables and forward Ethernet frames.
- Chapter 8, "Network Layer": This chapter introduces the function of the network layer—routing—and the basic device that performs this function—the router. It presents important routing concepts related to addressing, path determination, and data packets for both IPv4 and IPv6. The chapter also introduces how routers perform packet forwarding, static and dynamic routing, and the IP routing table.
- Chapter 9, "Address Resolution": This chapter discusses how host computers and other end devices determine the Ethernet MAC address for a known IPv4 or IPv6 address. This chapter examines the ARP protocol for IPv4 address resolution and the Neighbor Discovery Protocol for IPv6.
- Chapter 10, "Basic Router Configuration": This chapter explains how to configure a Cisco router, including IPv4 and IPv6 addressing on an interface.
- Chapter 11, "IPv4 Addressing": This chapter focuses on IPv4 network addressing, including the types of addresses and address assignment. It describes how to use subnet masks to determine the number of subnetworks and hosts in a network. It examines how to improve network performance by optimally dividing the IPv4 address space based on network requirements. It explores the calculation of valid host addresses and the determination of both subnet and broadcast addresses.
- Chapter 12, "IPv6 Addressing": This chapter focuses on IPv6 network addressing, including IPv6 address representation, types of addresses, and the structure of different types of IPv6 address. The chapter introduces the different methods that an end device can receive an IPv6 address automatically.
- Chapter 13, "ICMP": This chapter introduces Internet Control Message Protocol (ICMP) tools, such as ping and trace.

- Chapter 14, "Transport Layer": This chapter introduces Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) and examines how each of these protocols transports information across the network. It explores how TCP uses segmentation, the three-way handshake, and expectational acknowledg ments to ensure reliable delivery of data. It also examines the best-effort delivery mechanism provided by UDP and describes when its use would be preferred over the use of TCP.
- Chapter 15, "Application Layer": This chapter introduces some protocols of the TCP/IP application layer, which also relates to the top three layers of the OSI model. The chapter focuses on the role of the application layer and how the applications, services, and protocols in the application layer make robust communication across data networks possible. This will be demonstrated by examining some key protocols and services, including HTTP, HTTPS, DNS, DHCP, SMTP/POP, and FTP.
- Chapter 16, "Network Security Fundamentals": This chapter introduces network security threats and vulnerabilities. Various network attacks and mitigation techniques are discussed, along with how to secure network devices.
- Chapter 17, "Build a Small Network": This chapter reexamines the various components in a small network and describes how they work together to allow network growth. It examines network configuration and troubleshooting issues, along with different troubleshooting methodologies.
- Appendix A, "Answers to 'Check Your Understanding' Questions": This appendix lists the answers to the "Check Your Understanding" review questions that are included at the end of each chapter.
- Key Terms Glossary: The Key Terms Glossary provides definitions for all the key terms identified in each chapter.

Figure Credits

Figure 2-2, screen shot of Windows 10 GUI © Microsoft 2020

Figure 2-4, screen shot of PuTTY © 1997-2020 Simon Tatham

Figure 2-5, screen shot of Tera Term © 2004-2019 TeraTerm Project

Figure 2-6, screen shot of SecureCRT © 1995-2020 VanDyke Software, Inc.

Figure 2-9, screen shot of PuTTY startup screen © 1997-2020 Simon Tatham

Figure 2-10, screen shot of setting PuTTY to log a session to a text file © 1997-2020 Simon Tatham

Figure 2-11, screen shot of turn off session logging © 1997-2020 Simon Tatham

Figure 2-12, screen shot of configuring or verifying IPv4 addressing on a Windows host © Microsoft 2020

Figure 2-13, screen shot of configuring or verifying IPv6 addressing on a Windows host © Microsoft 2020

Figure 2-15, screen shot of accessing IPv4 properties on a Windows host © Microsoft 2020

Figure 2-16, screen shot of manually configuring IPv4 addressing on a Windows host © Microsoft 2020

Figure 2-17, screen shot of setting a Windows host to obtain IPv4 addressing automatically © Microsoft 2020

Figure 3-21A, © 2020 IEEE

Figure 3-21B, © Internet Engineering Task Force

Figure 3-21C, © Internet Assigned Numbers Authority

Figure 3-21D, © 2020 Internet Corporation for Assigned Names and Numbers

Figure 3-21E, © ITU 2020

Figure 3-21F, © Telecommunications Industry Association

Figure 3-22A, © 2020 Internet Society

Figure 3-22B, © Internet Engineering Task Force

Figure 3-22C, © Internet Engineering Task Force

Figure 3-22D, © Internet Research Task Force

Figure 11-2, screen shot of IPv4 addressing on a Windows PC © Microsoft 2020

Figure 11-13A, © 1997–2020, American Registry for Internet Numbers

Figure 11-13B, © 1992-2020 the Réseaux IP Européens Network Coordination Centre RIPE NCC

Figure 11-13C, © Latin America and Caribbean Network Information Centre

Figure 11-13D, © 2020 African Network Information Centre (AFRINIC)

Figure 11-13E, © 2020 APNIC

Figure 12-1A, © 1997–2020, American Registry for Internet Numbers

Figure 12-1B, © 1992-2020 the Réseaux IP Européens Network Coordination Centre RIPE NCC

Figure 12-1C, © Latin America and Caribbean Network Information Centre

Figure 12-1D, © 2020. All Rights Reserved - African Network Information Centre (AFRINIC)

Figure 12-1E, © 2020 APNIC

Figure 12-13, screen shot of Manually Configuring IPv6 Addressing on a Windows Host © Microsoft 2020

Figure 16-8, screen shot of Windows 10 Update © Microsoft 2020

Figure 17-6, screen shot of Windows Task Manager © Microsoft 2020

Figure 17-8, screen shot of Wireshark capture showing packet statistics © Microsoft 2020

Figure 17-9, screen shot of Windows 10 usage details for a Wi-Fi network connection © Microsoft 2020

Figure 17-17, screen shot of Windows 10 network connection details © Microsoft 2020

Figure 17-18, screen shot of Linux Ubuntu connection information © Canonical Ltd

Figure 17-19, screen shot of configuration information on a macOS host © Microsoft 2020

Ethernet Switching

Objectives

Upon completion of this chapter, you will be able to answer the following questions:

- How are the Ethernet sublayers related to the frame fields?
- What is an Ethernet MAC address?
- How does a switch build its MAC address table and forward frames?
- What are the available switch forwarding methods and port settings on Layer 2 switch ports?

Key Terms

This chapter uses the following key terms. You can find the definitions in the glossary at the end of the book.

contention-based access method page 237
collision fragment page 238
runt frame page 238
jumbo frame page 238
baby giant frame page 238
cyclic redundancy check (CRC) page 239
organizationally unique identifier
(OUI) page 242
burned-in address (BIA) page 243
Address Resolution Protocol (ARP) page 245

Neighbor Discovery (ND) page 245

MAC address table page 249

unknown unicast page 250

store-and-forward switching page 254

cut-through switching page 255

fast-forward switching page 256

fragment-free switching page 256

automatic medium-dependent interface

crossover (auto-MDIX) page 259

Introduction (7.0)

If you are planning to become a network administrator or a network architect, you definitely need to know about Ethernet and Ethernet switching. The two most prominent LAN technologies in use today are Ethernet and WLANs. Ethernet supports bandwidths of up to 100 Gbps, which explains its popularity. This chapter contains a lab in which you will use Wireshark to look at Ethernet frames and another lab where you will view network device MAC addresses. There are also some instructional videos to help you better understand Ethernet. By the time you have finished this chapter, you will be able to create a switched network that uses Ethernet!

Ethernet Frames (7.1)

Ethernet operates in the data link layer and the physical layer. It is a family of networking technologies that are defined in the IEEE 802.2 and 802.3 standards.

Ethernet Encapsulation (7.1.1)

This chapter starts with a discussion of Ethernet technology, including an explanation of MAC sublayer and the Ethernet frame fields.

Two LAN technologies are used today: Ethernet and wireless LANs (WLANs). Ethernet uses wired communications, including twisted-pair, fiber-optic links, and coaxial cables.

Ethernet operates in the data link layer and the physical layer. It is a family of networking technologies defined in the IEEE 802.2 and 802.3 standards. Ethernet supports the following data bandwidths:

- 10 Mbps
- 100 Mbps
- 1000 Mbps (1 Gbps)
- 10,000 Mbps (10 Gbps)
- 40,000 Mbps (40 Gbps)
- 100,000 Mbps (100 Gbps)

As shown in Figure 7-1, Ethernet standards define both Layer 2 protocols and Layer 1 technologies.

Ethernet is defined by data link layer and physical layer protocols.

Figure 7-1 Ethernet in the OSI Model

Data Link Sublayers (7.1.2)

IEEE 802 LAN/MAN protocols, including Ethernet, use the two sublayers of the data link layer to operate: the Logical Link Control (LLC) and the Media Access Control (MAC) layers (see Figure 7-2).

Recall that the LLC and MAC sublayers have the following roles in the data link layer:

- LLC sublayer: This IEEE 802.2 sublayer communicates between the networking software at the upper layers and the device hardware at the lower layers. It places information in the frame to identify which network layer protocol is being used for the frame. This information allows multiple Layer 3 protocols, such as IPv4 and IPv6, to use the same network interface and media.
- MAC sublayer: This sublayer (specified in IEEE 802.3, 802.11, and 802.15), which is implemented in hardware, is responsible for data encapsulation and media access control. It provides data link layer addressing and is integrated with various physical layer technologies.

Figure 7-2 IEEE Ethernet Standards in the OSI Model

MAC Sublayer (7.1.3)

The MAC sublayer is responsible for data encapsulation and accessing the media.

Data Encapsulation

IEEE 802.3 data encapsulation includes the following:

- **Ethernet frame:** This is the internal structure of the Ethernet frame.
- **Ethernet addressing:** An Ethernet frame includes both source and destination MAC addresses to deliver the Ethernet frame from Ethernet NIC to Ethernet NIC on the same LAN.
- Ethernet error detection: The Ethernet frame includes a frame check sequence (FCS) trailer used for error detection.

Accessing the Media

As shown in Figure 7-3, the IEEE 802.3 MAC sublayer includes the specifications for different Ethernet communications standards over various types of media, including copper and fiber.

Figure 7-3 Details of the MAC Sublayer

Recall that legacy Ethernet using a bus topology or hubs is a shared, half-duplex medium. Ethernet over a half-duplex medium uses a *contention-based access* method, Carrier Sense Multiple Access/Collision Detect (CSMA/CD) to ensure that only one device is transmitting at a time. CSMA/CD allows multiple devices to share the same half-duplex medium and detects a collision when more than one device attempts to transmit simultaneously. It also provides a back-off algorithm for retransmission.

Ethernet LANs today use switches that operate in full-duplex, Full-duplex communications with Ethernet switches do not require access control through CSMA/CD.

Ethernet Frame Fields (7.1.4)

The minimum Ethernet frame size is 64 bytes, and the expected maximum is 1518 bytes. The frame size might be larger than that if additional requirements are included, such as VLAN tagging. (VLAN tagging is beyond the scope of this book.) The frame includes all bytes from the destination MAC address field through the FCS field. The Preamble field is not included when describing the size of a frame.

Any frame less than 64 bytes in length is considered a *collision fragment* or *runt frame* and is automatically discarded by receiving stations. Frames with more than 1500 bytes of data are considered jumbo frames or baby giant frames.

If the size of a transmitted frame is less than the minimum or greater than the maximum, the receiving device drops the frame. Dropped frames are likely to result from collisions or other unwanted signals. They are considered invalid. Jumbo frames are supported by most Fast Ethernet and Gigabit Ethernet switches and NICs.

Figure 7-4 shows the fields in the Ethernet frame.

Figure 7-4 Ethernet Frame Structure and Field Size

Table 7-1 provides more information about the function of each field.

Table 7-1 Ethernet Frame Fields Detail

Field	Description
Preamble and Start Frame Delimiter fields	The preamble (7 bytes) and start frame delimiter (SFD), also called the start of frame (1 byte), fields are used for synchronization between the sending and receiving devices. These first 8 bytes of the frame are used to get the attention of the receiving nodes. Essentially, the first few bytes tell the receivers to get ready to receive a new frame.
Destination MAC Address field	This 6-byte field is the identifier for the intended recipient. Recall that Layer 2 uses this address to assist devices in determining if a frame is addressed to them. The address in a frame is compared to the MAC address in a device. If there is a match, the device accepts the frame. It can be a unicast, multicast, or broadcast address.
Source MAC Address field	This 6-byte field identifies the originating NIC or interface of the frame.

Field	Description
Type/Length field	This 2-byte field identifies the upper-layer protocol encapsulated in the Ethernet frame. Common values are, in hexadecimal, 0x800 for IPv4, 0x86DD for IPv6, and 0x806 for ARP.
	Note: You may also see this field referred to as EtherType, Type, or Length.
Data field	This field (which can range from 46 to 1500 bytes) contains the encapsulated data from a higher layer, which is a generic Layer 3 PDU or, more commonly, an IPv4 packet. All frames must be at least 64 bytes long. If a small packet is encapsulated, additional bits called a pad are used to increase the size of the frame to this minimum size.
Frame Check Sequence field	The frame check sequence (FCS) field (4 bytes) is used to detect errors in a frame. It uses a <i>cyclic redundancy check (CRC)</i> . The sending device includes the results of a CRC in the FCS field of the frame. The receiving device receives the frame and generates a CRC to look for errors. If the calculations match, no error occurred. Calculations that do not match indicate that the data has changed; in such a case, the frame is dropped. A change in the data could be the result of a disruption of the electrical signals that represent the bits.

Check Your Understanding—Ethernet Switching (7.1.5)

Refer to the online course to complete this activity.

Lab—Use Wireshark to Examine Ethernet Frames (7.1.6)

In this lab, you will complete the following objectives:

- Part 1: Examine the Header Fields in an Ethernet II Frame
- Part 2: Use Wireshark to Capture and Analyze Ethernet Frames

Ethernet MAC Address (7.2)

Ethernet technology relies on MAC addresses to function. MAC addresses are used to identify the frame source and destination.

MAC Address and Hexadecimal (7.2.1)

As discussed in detail in Chapter 5, "Number Systems," in networking, IPv4 addresses are represented using the decimal (base 10) number system and the binary (base 2) number system. IPv6 addresses and Ethernet addresses are represented using the hexadecimal (base 16) number system. To understand hexadecimal, you must first be very familiar with binary and decimal.

The hexadecimal numbering system uses the numbers 0 to 9 and the letters A to F.

An Ethernet MAC address consists of a 48-bit binary value. Hexadecimal is used to identify an Ethernet address because a single hexadecimal digit represents 4 binary bits. Therefore, a 48-bit Ethernet MAC address can be expressed using only 12 hexadecimal values.

Figure 7-5 compares the equivalent decimal and hexadecimal values for binary 0000 to 1111.

Figure 7-5 Decimal to Binary to Hexadecimal Conversion

Given that 8 bits (1 byte) is a common binary grouping, binary 00000000 to 11111111 can be represented in hexadecimal as the range 00 to FF, as shown in the Figure 7-6.

Decimal	Binary	Hexadecimal
0	0000 0000	00
1	0000 0001	01
2	0000 0010	02
3	0000 0011	03
4	0000 0100	04
5	0000 0101	05
6	0000 0110	06
7	0000 0111	07
8	0000 1000	08
10	0000 1010	0A
15	0000 1111	0F
16	0001 0000	10
32	0010 0000	20
64	0100 0000	40
128	1000 0000	80
192	1100 0000	CO
202	1100 1010	CA
240	1111 0000	F0
255	1111 1111	FF

Figure 7-6 Selected Examples of Decimal to Binary to Hexadecimal Conversions

When using hexadecimal, leading zeros are always displayed to complete the 8-bit representation. For example, in Figure 7-6, the binary value 0000 1010 is shown to be 0A in hexadecimal.

Hexadecimal numbers are often represented by a value preceded by 0x (for example, 0x73) to distinguish between decimal and hexadecimal values in documentation.

Hexadecimal may also be represented using a subscript 16 or by using the hex number followed by an H (for example, 73H).

You might have to convert between decimal and hexadecimal values. If such conversions are required, convert the decimal or hexadecimal value to binary and then to convert the binary value to either decimal or hexadecimal as appropriate. See Chapter 5 for more information.

Ethernet MAC Address (7.2.2)

In an Ethernet LAN, every network device is connected to the same shared medium. The MAC address is used to identify the physical source and destination devices (NICs) on the local network segment. MAC addressing provides a method for device identification at the data link layer of the OSI model.

An Ethernet MAC address is a 48-bit address expressed using 12 hexadecimal digits, as shown in Figure 7-7. Because 1 byte equals 8 bits, we can also say that a MAC address is 6 bytes in length.

Figure 7-7 Ethernet MAC Address in Bits, Hextets, and Bytes

All MAC addresses must be unique to the Ethernet device or Ethernet interface. To ensure uniqueness, every vendor that sells Ethernet devices must register with the IEEE to obtain a unique 6-digit hexadecimal (that is, 24-bit or 3-byte) code called an organizationally unique identifier (OUI).

When a vendor assigns a MAC address to a device or to an Ethernet interface, the vendor must do as follows:

- Use its assigned OUI as the first 6 hexadecimal digits.
- Assign a unique value in the last 6 hexadecimal digits.

Therefore, an Ethernet MAC address consists of a 6-digit hexadecimal vendor OUI code followed by a 6-digit hexadecimal vendor-assigned value, as shown in Figure 7-8.

Figure 7-8 The Ethernet MAC Address Structure

For example, say that Cisco needs to assign a unique MAC address to a new device, and the IEEE has assigned Cisco the OUI 00-60-2F. Cisco would configure the device with a unique vendor code such as 3A-07-BC. Therefore, the Ethernet MAC address of that device would be 00-60-2F-3A-07-BC.

It is the responsibility of a vendor to ensure that no two of its devices are assigned the same MAC address. However, it is possible for duplicate MAC addresses to exist because of mistakes made during manufacturing, mistakes made in some virtual machine implementation methods, or modifications made using one of several

software tools. In such a case, it is necessary to modify the MAC address with a new NIC or make modifications by using software.

Frame Processing (7.2.3)

Sometimes a MAC address is referred to as a burned-in address (BIA) because the address is hard coded into read-only memory (ROM) on the NIC. This means that the address is permanently encoded into the ROM chip.

Note

With modern PC operating systems and NICs, it is possible to change the MAC address in software. This is useful when attempting to gain access to a network that filters based on BIA. Consequently, filtering or controlling traffic based on the MAC address is no longer as secure as it once was.

When the computer boots up, the NIC copies its MAC address from ROM into RAM. When a device is forwarding a message to an Ethernet network, as shown in Figure 7-9, the Ethernet header includes the following:

- Source MAC address: This is the MAC address of the source device NIC.
- **Destination MAC address:** This is the MAC address of the destination device NIC.

Figure 7-9 The Source Prepares a Frame to Send to the Destination

When a NIC receives an Ethernet frame, it examines the destination MAC address to see if it matches the physical MAC address that is stored in RAM. If there is no match, the device discards the frame. In Figure 7-10, H2 and H4 discard the frame. The MAC address matches for H4, so H4 passes the frame up the OSI layers, where the de-encapsulation process takes place.

Figure 7-10 All Devices Receive the Frame, but Only the Destination Processes It

Note

Ethernet NICs also accept frames if the destination MAC address is a broadcast or a multicast group of which the host is a member.

Any device that is the source or destination of an Ethernet frame will have an Ethernet NIC and, therefore, a MAC address. This includes workstations, servers, printers, mobile devices, and routers.

Unicast MAC Address (7.2.4)

In Ethernet, different MAC addresses are used for Layer 2 unicast, broadcast, and multicast communications.

A unicast MAC address is a unique address that is used when a frame is sent from a single transmitting device to a single destination device.

In Figure 7-11, the destination MAC address and the destination IP address are both unicast.

Figure 7-11 Unicast Frame Transmission

A host with IPv4 address 192.168.1.5 (source) requests a web page from the server at IPv4 unicast address 192.168.1,200. For a unicast packet to be sent and received, a destination IP address must be in the IP packet header. A corresponding destination MAC address must also be present in the Ethernet frame header. The IP address and MAC address combine to deliver data to one specific destination host.

The process that a source host uses to determine the destination MAC address associated with an IPv4 address is known as Address Resolution Protocol (ARP). The process that a source host uses to determine the destination MAC address associated with an IPv6 address is known as *Neighbor Discovery (ND)*.

Note

The source MAC address must always be a unicast address.

Broadcast MAC Address (7.2.5)

An Ethernet broadcast frame is received and processed by every device on an Ethernet LAN. The features of an Ethernet broadcast are as follows:

- It has the destination MAC address FF-FF-FF-FF-FF in hexadecimal (or 48 1s in binary).
- It is flooded out all Ethernet switch ports except the incoming port.
- It is not forwarded by a router.

If the encapsulated data is an IPv4 broadcast packet, this means the packet contains a destination IPv4 address that has all 1s in the host portion. This numbering in the address means that all hosts on that local network (broadcast domain) receive and process the packet.

In Figure 7-12, the destination MAC address and destination IP address are both broadcast addresses.

Figure 7-12 Broadcast Frame Transmission

The source host sends an IPv4 broadcast packet to all devices on its network. The IPv4 destination address is a broadcast address, 192,168,1,255. When the IPv4 broadcast packet is encapsulated in the Ethernet frame, the destination MAC address is the broadcast MAC address FF-FF-FF-FF-FF in hexadecimal (or 48 1s in binary).

DHCP for IPv4 is an example of a protocol that uses Ethernet and IPv4 broadcast addresses. However, not all Ethernet broadcasts carry IPv4 broadcast packets. For example, ARP requests do not use IPv4, but the ARP message is sent as an Ethernet broadcast.

Multicast MAC Address (7.2.6)

An Ethernet multicast frame is received and processed by a group of devices on the Ethernet LAN that belong to the same multicast group. The features of an Ethernet multicast frame are as follows:

- It has destination MAC address 01-00-5E when the encapsulated data is an IPv4 multicast packet and destination MAC address 33-33 when the encapsulated data is an IPv6 multicast packet.
- There are other reserved multicast destination MAC addresses for when the encapsulated data is not IP, such as Spanning Tree Protocol (STP) and Link Laver Discovery Protocol (LLDP).
- It is flooded out all Ethernet switch ports except the incoming port, unless the switch is configured for multicast snooping.
- It is not forwarded by a router unless the router is configured to route multicast packets.

If the encapsulated data is an IP multicast packet, the devices that belong to a multicast group are assigned a multicast group IP address. The range of IPv4 multicast addresses is 224,0.0.0 to 239,257,257,257. The range of IPv6 multicast addresses begins with ff00::/8. Because a multicast address represents a group of addresses (sometimes called a host group), it can only be used as the destination of a packet. The source is always a unicast address.

As with the unicast and broadcast addresses, a multicast IP address requires a corresponding multicast MAC address to deliver frames on a local network. The multicast MAC address is associated with, and uses addressing information from, the IPv4 or IPv6 multicast address.

In Figure 7-13, the destination MAC address and destination IP address are both multicast addresses.

Routing protocols and other network protocols use multicast addressing. Applications such as video and imaging software may also use multicast addressing, although multicast applications are not as common.

Figure 7-13 Multicast Frame Transmission

Lab—View Network Device MAC Addresses (7.2.7)

In this lab, you will complete the following objectives:

- Part 1: Set Up the Topology and Initialize Devices
- Part 2: Configure Devices and Verify Connectivity
- Part 3: Display, Describe, and Analyze Ethernet MAC Addresses

The MAC Address Table (7.3)

Compared to legacy Ethernet hubs, Ethernet switches improve efficiency and overall network performance. Although traditionally most LAN switches have operated at Layer 2 of the OSI model, an increasing number of Layer 3 switches are now being implemented. This section focuses on Layer 2 switches. Layer 3 switches are beyond the scope of this book.

Switch Fundamentals (7.3.1)

Now that you know all about Ethernet MAC addresses, it is time to talk about how a switch uses these addresses to forward (or discard) frames to other devices on a network. If a switch just forwarded every frame it received out all ports, your network would be so congested that it would probably come to a complete halt.

A Layer 2 Ethernet switch uses Layer 2 MAC addresses to make forwarding decisions. It is completely unaware of the data (protocol) being carried in the data portion of the frame, such as an IPv4 packet, an ARP message, or an IPv6 ND packet. The switch makes its forwarding decisions based solely on the Layer 2 Ethernet MAC addresses.

An Ethernet switch examines its MAC address table to make a forwarding decision for each frame. In contrast, a legacy Ethernet hub repeats bits out all ports except the incoming port. In Figure 7-14, the four-port switch was just powered on. The table shows the MAC address table, which has not yet learned the MAC addresses for the four attached PCs.

Note

MAC addresses are shortened throughout this section for demonstration purposes.

The switch MAC address table is empty.

Figure 7-14 Switch Powers Up with an Empty MAC Address Table

Note

The MAC address table is sometimes referred to as a content-addressable memory (CAM) table. While the term CAM table is fairly common, for the purposes of this course, we refer to it as a MAC address table.

Switch Learning and Forwarding (7.3.2)

A switch dynamically builds its MAC address table by examining the source MAC addresses of the frames received on a port. The switch forwards frames by searching for a match between the destination MAC address in a frame and an entry in the MAC address table.

Examine the Source MAC Address

Every frame that enters a switch is checked for new information to learn. It does this by examining the source MAC address of the frame and the port number where the frame entered the switch. If the source MAC address does not exist, it is added to the table, along with the incoming port number. If the source MAC address does exist, the switch updates the refresh timer for that entry. By default, most Ethernet switches keep an entry in the table for 5 minutes.

In Figure 7-15, for example, PC-A is sending an Ethernet frame to PC-D. The table shows that the switch adds the MAC address for PC-A to the MAC address table.

Note

If the source MAC address exists in the table but on a different port, the switch treats this as a new entry. The entry is replaced using the same MAC address but with the more current port number.

Find the Destination MAC Address

If the destination MAC address is a unicast address, the switch looks for a match between the destination MAC address of the frame and an entry in its MAC address table. If the destination MAC address is in the table, the switch forwards the frame out the specified port. If the destination MAC address is not in the table, the switch forwards the frame out all ports except the incoming port. This is called an *unknown unicast*.

As shown in Figure 7-16, the switch does not have the destination MAC address in its table for PC-D, so it sends the frame out all ports except port 1.

Note

If the destination MAC address is a broadcast or a multicast address, the frame is flooded out all ports except the incoming port.

- 1. PC-A sends an Ethernet frame.
- 2. The switch adds the port number and MAC address for PC-A to the MAC Address Table.

Figure 7-15 Switch Learns the MAC Address for PC-A

- 1. The destination MAC address is not in the table.
- 2. The switch forwards the frame out all other ports.

Figure 7-16 Switch Forwards the Frame Out All Other Ports

Filtering Frames (7.3.3)

As a switch receives frames from different devices, it is able to populate its MAC address table by examining the source MAC address of every frame. When the MAC address table of the switch contains the destination MAC address, the switch is able to filter the frame and forward out a single port.

In Figure 7-17, PC-D is replying to PC-A. The switch sees the MAC address of PC-D in the incoming frame on port 4. The switch then puts the MAC address of PC-D into the MAC address table associated with port 4.

The switch adds the port number and MAC address for PC-D to its MAC address table.

Figure 7-17 Switch Learns the MAC Address for PC-D

Next, because the switch has the destination MAC address for PC-A in the MAC address table, it sends the frame only out port 1, as shown in Figure 7-18.

Next, PC-A sends another frame to PC-D, as shown in Figure 7-19. The MAC address table already contains the MAC address for PC-A; therefore, the 5-minute refresh timer for that entry is reset. Next, because the switch table contains the destination MAC address for PC-D, it sends the frame out only port 4.

Video

Video—MAC Address Tables on Connected Switches (7.3.4)

A switch can have multiple MAC addresses associated with a single port. This is common when the switch is connected to another switch. The switch will have a separate MAC address table entry for each frame received with a different source MAC address.

Refer to the online course to view this video.

^{1.} The switch has a MAC address entry for the destination.

Figure 7-18 Switch Forwards the Frame Out the Port Belonging to PC-A

^{1.} The switch receives another frame from PC-A and refreshes the timer for the MAC address entry for port 1.

Figure 7-19 Switch Forwards the Frame Out the Port Belonging to PC-D

^{2.} The switch filters the frame, sending it only out port 1.

^{2.} The switch has a recent entry for the destination MAC address and filters the frame, forwarding it only out port 4.

Video—Sending the Frame to the Default Gateway (7.3.5)

When a device has an IP address that is on a remote network, the Ethernet frame cannot be sent directly to the destination device. Instead, the Ethernet frame is sent to the MAC address of the default gateway, the router.

Refer to the online course to view this video.

Interactive Graphic

Activity—Switch It! (7.3.6)

Use this activity to check your understanding of how a switch learns and forwards frames.

Refer to the online course to complete this activity.

Lab—View the Switch MAC Address Table (7.3.7)

In this lab, you will complete the following objectives:

- Part 1: Build and Configure the Network
- Part 2: Examine the Switch MAC Address Table

Switch Speeds and Forwarding Methods (7.4)

Switches may have the capability to implement various forwarding methods to increase performance in a network.

Frame Forwarding Methods on Cisco Switches (7.4.1)

As you learned in the previous section, a switch uses its MAC address table to determine which port to use to forward frames. With Cisco switches, there are actually two frame forwarding methods, and there are good reasons to use one instead of the other, depending on the situation.

Switches use one of the following forwarding methods for switching data between network ports:

• Store-and-forward switching: With this frame forwarding method, the switch receives the entire frame and computes the CRC. The switch uses a mathematical formula, based on the number of bits (1s) in the frame, to determine whether the received frame has an error. If the CRC is valid, the switch looks up the destination address, which determines the outgoing interface. Then the frame is forwarded out the correct port.

• *Cut-through switching*: With this frame forwarding method, the switch forwards the frame before it is entirely received. At a minimum, the destination address of the frame must be read before the frame can be forwarded.

A big advantage of store-and-forward switching is that the switch determines whether a frame has errors before propagating the frame. When an error is detected in a frame, the switch discards the frame. Discarding frames with errors reduces the amount of bandwidth consumed by corrupt data. Store-and-forward switching is required for quality of service (QoS) analysis on converged networks where frame classification for traffic prioritization is necessary. For example, voice over IP (VoIP) data streams need to have priority over web-browsing traffic.

Figure 7-20 shows the store-and-forward process.

A store-and-forward switch receives the entire frame, and computes the CRC. If the CRC is valid, the switch looks up the destination address, which determines the outgoing interface. The frame is then forwarded out the correct port.

Figure 7-20 Store-and-Forward Switching

Cut-Through Switching (7.4.2)

In cut-through switching, the switch acts on the data as soon as it is received, even if the transmission is not complete. The switch buffers just enough of the frame to read the destination MAC address so that it can determine which port to use to forward the data. The destination MAC address is located in the first 6 bytes of the frame, following the preamble. The switch looks up the destination MAC address in its switching table, determines the outgoing interface port, and forwards the frame on to its destination through the designated switch port. The switch does not perform any error checking on the frame.

Figure 7-21 shows the cut-through switching process.

A cut-through switch forwards the frame before it is entirely received. At a minimum, the destination address of the frame must be read before the frame can be forwarded

Figure 7-21 Cut-Through Switching

There are two variants of cut-through switching:

- Fast-forward switching: Fast-forward switching offers the lowest level of latency. With fast-forward switching, the switch immediately forwards a packet after reading the destination address. Because with fast-forward switching the switch starts forwarding before the entire packet has been received, there may be times when packets are relayed with errors. This occurs infrequently, and the destination NIC discards the faulty packet upon receipt. In fast-forward mode, latency is measured from the first bit received to the first bit transmitted. Fast-forward switching is the typical cut-through method of switching.
- Fragment-free switching: In fragment-free switching, the switch stores the first 64 bytes of the frame before forwarding. Fragment-free switching can be viewed as a compromise between store-and-forward switching and fast-forward switching. The reason the switch stores only the first 64 bytes of the frame is that most network errors and collisions occur during the first 64 bytes. Fragmentfree switching tries to enhance fast-forward switching by performing a small error check on the first 64 bytes of the frame to ensure that a collision has not occurred before forwarding the frame. Fragment-free switching is a compromise between the high latency and high integrity of store-and-forward switching and the low latency and reduced integrity of fast-forward switching.

Some switches are configured to perform cut-through switching on a per-port basis until a user-defined error threshold is reached, and then they automatically change to store-and-forward. When the error rate falls below the threshold, the port automatically changes back to cut-through switching.

Memory Buffering on Switches (7.4.3)

An Ethernet switch may use a buffering technique to store frames before forwarding them. Buffering may also be used when the destination port is busy due to congestion. The switch stores the frame until it can be transmitted.

As shown in Table 7-2, there are two methods of memory buffering.

Table 7-2 Memory Buffering Methods

Method	Description
Port-based memory buffering	Frames are stored in queues that are linked to specific incoming and outgoing ports.
	A frame is transmitted to the outgoing port only when all the frames ahead in the queue have been successfully transmitted.
	It is possible for a single frame to delay the transmission of all the frames in memory because a destination port is busy. This delay occurs even if the other frames could be transmitted to open destination ports.
Shared memory buffering	All frames are deposited into a common memory buffer shared by all switch ports, and the amount of buffer memory required by a port is dynamically allocated.
	The frames in the buffer are dynamically linked to the destination port, enabling a packet to be received on one port and then transmitted on another port, without moving it to a different queue.

Shared memory buffering results in the ability to store larger frames with potentially fewer dropped frames. This is important with asymmetric switching, which allows for different data rates on different ports, such as when connecting a server to a 10 Gbps switch port and PCs to 1 Gbps ports.

Duplex and Speed Settings (7.4.4)

Two of the most basic settings on a switch are the bandwidth (sometimes referred to as *speed*) and duplex settings for each individual switch port. It is critical that the duplex and bandwidth settings match between the switch port and the connected devices, such as computers or other switches.

Two types of duplex settings are used for communications on an Ethernet network:

- Full-duplex: Both ends of the connection can send and receive simultaneously.
- Half-duplex: Only one end of the connection can send at a time.

Autonegotiation is an optional function on most Ethernet switches and NICs. It enables two devices to automatically negotiate the best speed and duplex capabilities. Full-duplex is chosen if both devices have the capability, along with their highest common bandwidth.

In Figure 7-22, the Ethernet NIC for PC-A can operate in full-duplex or half-duplex and at 10 Mbps or 100 Mbps. PC-A is connected to switch S1 on port 1, which can operate in full-duplex or half-duplex and at 10 Mbps, 100 Mbps, or 1000 Mbps (1 Gbps). If both devices are using autonegotiation, the operating mode is fullduplex, at 100 Mbps.

Figure 7-22 Duplex and Speed Settings

Note

Most Cisco switches and Ethernet NICs default to autonegotiation for speed and duplexing. Gigabit Ethernet ports operate only in full-duplex.

Duplex mismatch is one of the most common causes of performance issues on 10/100 Mbps Ethernet links. It occurs when one port on the link operates at halfduplex while the other port operates at full-duplex, as shown in Figure 7-23. In this scenario, S2 will continually experience collisions because S1 keeps sending frames any time it has something to send.

Figure 7-23 Duplex Mismatch

Duplex mismatch occurs when one or both ports on a link are reset, and the autonegotiation process does not result in the two link partners having the same configuration. It also can occur when users reconfigure one side of a link and forget to reconfigure the other. Both sides of a link should have autonegotiation on, or both sides should have it off. Best practice is to configure both Ethernet switch ports as full-duplex.

Auto-MDIX (7.4.5)

At one time, connections between devices required the use of either a crossover cable or a straight-through cable. The type of cable required depended on the type of interconnecting devices. For example, Figure 7-24 identifies the correct cable types required to interconnect a switch to a switch, a switch to a router, a switch to a host, or a router to a host. A crossover cable is used for connecting like devices, and a straight-through cable is used for connecting unlike devices.

Note

A direct connection between a router and a host requires a crossover connection.

Most switch devices now support the *automatic medium-dependent interface crossover (auto-MDIX)* feature. When this feature is enabled, the switch automatically detects the type of cable attached to the port and configures the interfaces accordingly. Therefore, you can use either a crossover cable or a straight-through cable for connections to a copper 10/100/1000 port on a switch, regardless of the type of device on the other end of the connection.

The auto-MDIX feature is enabled by default on switches running Cisco IOS Release 12.2(18)SE or later. However, the feature can be disabled. For this reason, you should always use the correct cable type and should not rely on the auto-MDIX feature. Auto-MDIX can be re-enabled using the **mdix auto** interface configuration command.

Figure 7-24 Cable Types

Interactive Graphic

Check Your Understanding—Switch Speeds and Forwarding Methods (7.4.6) Refer to the online course to complete this activity.

Summary (7.5)

The following is a summary of the topics in the chapter and their corresponding online modules.

Ethernet Frame

Ethernet operates at the data link layer and the physical layer. Ethernet standards define both the Layer 2 protocols and the Layer 1 technologies. Ethernet operates at the LLC and MAC sublayers of the data link layer. Data encapsulation includes the following: Ethernet frame, Ethernet addressing, and Ethernet error detection. Ethernet LANs use switches that operate in full-duplex. The Ethernet frame fields are Preamble and Start Frame Delimiter, Destination MAC Address, Source MAC Address, EtherType, Data, and FCS.

Ethernet MAC Address

The binary number system uses the digits 0 and 1. Decimal uses 0 through 9. Hexadecimal uses 0 through 9 and the letters A through F. The MAC address is used to identify the physical source and destination devices (NICs) on the local network segment. MAC addressing provides a method for device identification at the data link layer of the OSI model. An Ethernet MAC address is a 48-bit address expressed using 12 hexadecimal digits, or 6 bytes. An Ethernet MAC address consists of a 6-digit hexadecimal vendor OUI code followed by a 6-digit hexadecimal vendorassigned value. When a device is forwarding a message to an Ethernet network, the Ethernet header includes the source and destination MAC addresses. In Ethernet, different MAC addresses are used for Layer 2 unicast, broadcast, and multicast communications.

The MAC Address Table

A Layer 2 Ethernet switch makes forwarding decisions based solely on Layer 2 Ethernet MAC addresses. The switch dynamically builds its MAC address table by examining the source MAC addresses of the frames received on a port. The switch forwards frames by searching for a match between the destination MAC address in the frame and an entry in the MAC address table. As a switch receives frames from different devices, it is able to populate its MAC address table by examining the source MAC address of each frame. When the MAC address table of the switch contains the destination MAC address, the switch is able to filter the frame and forward it out a single port.

Switch Speeds and Forwarding Methods

Switches use one of two forwarding methods for switching data between network ports: store-and-forward switching or cut-through switching. Two variants of cut-through switching are fast-forward and fragment-free switching. Two methods of memory buffering are port-based memory buffering and shared memory buffering. Two types of duplex settings are used for communications on an Ethernet network: full-duplex and half-duplex. Autonegotiation is an optional function on most Ethernet switches and NICs. It enables two devices to automatically negotiate the best speed and duplex capabilities. Full-duplex is chosen if both devices have the capability, and their highest common bandwidth is chosen. Most switch devices now support the automatic medium-dependent interface crossover (auto-MDIX) feature. When this feature is enabled, the switch automatically detects the type of cable attached to the port and configures the interfaces accordingly.

Practice

The following activities provide practice with the topics introduced in this chapter. The lab is available in the companion *Introduction to Networks Labs & Study* Guide (CCNAv7) (ISBN 9780136634454). The Packet Tracer activity instructions are also provided in the Labs & Study Guide. The PKA files are available in the online course.

Labs

Lab 7.1.6: Use Wireshark to Examine Ethernet Frames

Lab 7.2.7: View Network Device MAC Addresses

Lab 7.3.7: View the Switch MAC Address Table

Check Your Understanding Questions

Complete all the review questions listed here to test your understanding of the topics and concepts in this chapter. The appendix "Answers to 'Check Your Understanding' Questions" lists the answers.

- 1. Which network device makes forwarding decisions based only on the destination MAC address that is contained in a frame?
 - a. repeater
 - **b.** hub
 - Layer 2 switch
 - d. router
- 2. For which network device is the primary function to send data to a specific destination based on the information found in the MAC address table?
 - a. hub
 - **b.** router
 - **c.** Layer 2 switch
 - d. modem
- 3. What does the LLC sublayer do?
 - **a.** It performs data encapsulation.
 - **b.** It communicates with upper protocol layers.
 - It is responsible for media access control.
 - **d.** It adds a header and trailer to a packet to form an OSI Layer 2 PDU.
- **4.** Which statement is true about MAC addresses?
 - **a.** MAC addresses are implemented by software.
 - **b.** A NIC needs a MAC address only if it is connected to a WAN.
 - **c.** The first 3 bytes are used by the vendor-assigned OUI.
 - **d.** The ISO is responsible for MAC address regulations.
- **5.** What happens to a runt frame received by a Cisco Ethernet switch?
 - **a.** The frame is dropped.
 - **b.** The frame is returned to the originating network device.
 - The frame is broadcast to all other devices on the same network.
 - **d.** The frame is sent to the default gateway.
- **6.** What are the minimum and maximum sizes of an Ethernet frame? (Choose two.)
 - **a.** 56 bytes
 - **b.** 64 bytes
 - **c.** 128 bytes
 - **d.** 1024 bytes
 - 1518 bytes

- 7. What addressing information does a switch record in order to build its MAC address table?
 - **a.** the destination Layer 3 addresses of incoming packets
 - **b.** the destination Layer 2 addresses of outgoing frames
 - c. the source Layer 3 addresses of outgoing frames
 - **d.** the source Layer 2 addresses of incoming frames
- **8.** Which two characteristics describe Ethernet technology? (Choose two.)
 - **a.** It is supported by IEEE 802.3 standards.
 - **b.** It is supported by IEEE 802.5 standards.
 - **c.** It typically uses an average of 16 Mbps for data transfer.
 - **d.** It uses unique MAC addresses to ensure that data is sent to and processed by the appropriate destination.
 - e. It uses a ring topology.
- **9.** What statement describes MAC addresses?
 - **a.** They are globally unique.
 - **b.** They are routable only within the private network.
 - **c.** They are added as part of a Layer 3 PDU.
 - **d.** They have 32-bit binary values.
- **10.** What is the special value assigned to the first 24 bits of a multicast MAC address?
 - **a.** 01-5E-00
 - **b.** FF-00-5E
 - c. FF-FF-FF
 - **d.** 01-00-5E
- **11.** What will a host on an Ethernet network do if it receives a frame with a destination MAC address that does not match its own MAC address?
 - a. It will discard the frame.
 - **b.** It will forward the frame to the next host.
 - **c.** It will remove the frame from the media.
 - **d.** It will strip off the data link frame to check the destination IP address.

- **12.** What is auto-MDIX?
 - a. a type of Cisco switch
 - **b.** an Ethernet connector type
 - **c.** a feature that automatically determines speed and duplex
 - d. a feature that detects Ethernet cable type
- 13. Which two functions or operations are performed by the MAC sublayer? (Choose two.)
 - **a.** It is responsible for media access control.
 - **b.** It performs the function for NIC driver software.
 - It adds a header and trailer to form an OSI Layer 2 PDU.
 - **d.** It handles communication between upper and lower layers.
 - e. It adds control information to the network protocol header.
- **14.** What type of address is 01-00-5E-0A-00-02?
 - a. an address that reaches every host inside a local subnet
 - an address that reaches one specific host
 - an address that reaches every host in the network
 - d. an address that reaches a specific group of hosts

address resolution, IPv6 ND (Neighbor

Symbols Discovery), 311 * (asterisk), 453 Address Resolution Protocol. See ARP (Address : (colon), 404-405 **Resolution Protocol**) /8 networks, subnetting, 372-373, 391 addresses 10BASE-T, 143 ARP (Address Resolution Protocol) /16 networks, subnetting, 367–370, 391 broadcasts, 307-309 100BASE-TX, 143 definition of, 301-302 examining with Packet Tracer, 309 maps, 303 overview of, 302-304 A records, 524 replies, 305 AAA (authentication, authorization, and accounting), requests, 304 role in remote communications, 305-306 AAA (authentication, authorization, and accounting) spoofing, 307-309 x, 645 summary of, 313 AAAA records, 524 tables, 306-307 access, IOS. See Cisco IOS data link, 124, 125, 126-129 access attacks, 548-549 devices on same network, 123 brute-force, 646 IP. See IP (Internet Protocol) addresses definition of, 645 Layer 2, 223-225 DoS (denial-of-service), 551-552 Layer 3 logical, 122-123 man-in-the-middle attack, 549 MAC (media access control), 239-248 password attacks, 548 address structure, 241-243 port redirection, 549 address table, 248-254 trust exploitation, 548-549 broadcast, 246-247 access control, 35, 216-217 destinations on remote network, 299-301 access control lists (ACLs), 35 destinations on same network, 298-299 access methods, definition of, 645 frame processing, 243-244 access points (APs), 138, 166, 645 hexadecimal number system, 240-241 access technologies, 17-20, 92 multicast, 247-248 businesses, 19-20 summary of, 313 small office and home offices, 17–19 unicast, 244-245 summary of, 38 types of, 121 ACK (Acknowledgement), 472, 484-486, 488 adjacency tables, 645 ACK (Acknowledgment), 645 ADVERTISE messages, 529 Acknowledgment (ACK), 645 adware, 33 ACLs (access control lists), 35 AfriNIC (African Network Information Centre), 358 address conservation, IPv4, 381-383 alternating current, 645

American National Standards Institute (ANSI), 141, 209	HTTPS (HTTP Secure), 516–518 summary of, 534
American Registry for Internet Numbers	applications
(ARIN), 358	peer-to-peer, 513–515
American Standard Code for Information	small business networks
Interchange (ASCII), 645	common applications, 578–579
analog telephones, 645	voice/video applications, 582
AND, logical, 345–346	summary of, 624
ANSI (American National Standards Institute),	APs (access points), 138, 166, 645
141, 209	architecture, network, 23
Anti-Spam Research Group (ASRG), 109	fault tolerance, 24
antispyware, 34	QoS (quality of service), 25–26
antivirus software, 34	scalability, 24–25
anycast, 406, 436–437	security design, 26–27
APIPA (Automatic Private IP Addressing), 357, 619	ARCNET, 217
APNIC (Asia Pacific Network Information	ARIN (American Registry for Internet
Centre), 358	Numbers), 358
AppleTalk, 99	ARP (Address Resolution Protocol), 103, 245, 360
application filtering, 557	broadcasts, 307–309
application layer. See also specific protocols	definition of, 103, 245, 301–302, 360, 645
client-server model, 511–512	examining with Packet Tracer, 309
definition of, 113, 114, 508	maps, 303
email protocols, 518–521	overview of, 302–304
IMAP (Internet Message Access Protocol), 521	replies, 305
POP (Post Office Protocol), 520	requests, 304
SMTP (Simple Mail Transfer Protocol), 519–520	role in remote communications, 305–306
summary of, 534	spoofing, 307–309
file sharing services, 530–533	summary of, 313
FTP (File Transfer Protocol), 530	tables
SMB (Server Message Block), 531–533	displaying, 306–307
summary of, 535–536	removing entries from, 306–307
functions of, 508	arp -a command, 307
IP addressing services, 521–530	arp command, 601–602
DHCP (Dynamic Host Configuration Protocol),	ASCII (American Standard Code for Information
527–529	Interchange), 645
DNS (Domain Name System), 522-525	Asia Pacific Network Information Centre
nslookup command, 526–527	(APNIC), 358
summary of, 535	ASRG (Anti-Spam Research Group), 109
overview of, 101–102, 508–511	assigned multicast, 646
peer-to-peer applications, 513–515	asterisk (*), 453
peer-to-peer networks, 512-513, 534	asymmetric switching, 646
services in, 579	ATM (Asynchronous Transfer Mode), 225
summary of, 534	attacks, 546-552
web protocols, 515–518	access, 548-549
HTML (Hypertext Markup Language), 515–517	brute-force, 646
HTTP (Hypertext Transfer Protocol), 516–518	DoS (denial-of-service), 551-552

man-in-the-middle attack, 549	BGP (Border Gateway Protocol), 103
password attacks, 548	BIA (burned-in address), 243, 647
port redirection, 549	binary number systems, 176–194
trust exploitation, 548–549	binary game, 193
malware, 546–547	binary positional notation, 178-180
<i>Trojan horses</i> , 33, 547, 665	binary to decimal conversion, 180–181
viruses, 546	decimal to binary conversion
worms, 547, 668	binary positional value tables, 182–186
mitigation of, 552-558	example of, 186–193
AAA (authentication, authorization, and	IPv4 addresses, 176-178, 193-194
accounting), 555	summary of, 198
backups, 553-554	binary positional notation, 178-180
defense-in-depth approach, 553	binary positional value tables, 182-186
endpoint security, 558	BitTorrent, 514
firewalls, 555–557	blocking IPv4 addresses, 356
summary of, 565	Bluetooth, 166, 169-170, 646
updates and patches, 554	BOOTP (Bootstrap Protocol), 510, 646
reconnaissance, 547–548, 660	Bootstrap Protocol (BOOTP), 646
summary of, 565	Border Gateway Protocol (BGP), 103
attenuation, signal, 147	bring your own device (BYOD), 28, 646
.au domain, 525	broadcast addresses, 349, 646
authentication, authorization, and accounting (AAA),	broadcast domains, segmentation and, 359-362
555, 645	broadcast MAC (media access control) addresses,
auto secure command, 558-559	246–247
automatic medium-dependent interface crossover	broadcast transmission, 93
(auto-MDIX), 259–260, 646	ARP (Address Resolution Protocol), 307–309
Automatic Private IP Addressing (APIPA), 357, 619	definition of, 646
auto-MDIX, 259-260, 646	IPv4, 350-352, 390
AutoSecure, 558–559	brute-force attacks, 548, 560, 646
availability, data, 27, 646	buffered memory, 257, 647
	burned-in address (BIA), 243, 647
В	bus topology, 214, 647
<u>D</u>	businesses. See small business network management
baby giant frames, 238, 646	BYOD (bring your own device), 28, 646
backups, 553-554	
bandwidth, 234	C
definition of, 646	<u> </u>
goodput, 146, 653	cable internet connections, 18, 647
latency, 146	cable testers, 647
throughput, 146, 665	cabling, copper, 7, 146–152, 168–169
units of, 145	characteristics of, 147–148
banner messages, 65–66	coaxial cable, 151–152
banner motd command, 65-66, 321, 322	fiber-optic cabling versus, 163–164
best-effort delivery, 272, 468, 646. See also UDP	rollover cables, 157

STP (shielded twisted pair), 150-151, 662

(User Datagram Protocol)

UTP (unshielded twisted pair), 152-158	Cisco IOS
connectors, 153–156	access, 46-52
crossover, 157	access methods, 49–50
definition of, 148–150	GUIs (graphical user interfaces), 47-48
properties of, 152–153	operating systems, 46–47
standards, 153-156	OSs (operating systems), 48–49
straight-through, 157	summary of, 79
T568A/T68B standards, 157-158	terminal emulation programs, 50–52
cabling, fiber-optic, 158-164	commands, 56–60
copper cabling versus, 163–164	basic structure of, 56
definition of, 652	hot keys and shortcuts for, 58-60
fiber patch cords, 162–163	summary of, 79
fiber-optic connectors, 161–162	syntax of, 57–58
industry applications of, 160	definition of, 648
multimode fiber, 160	device configuration, 61–66
properties of, 158–159	banner messages, 65–66
single-mode fiber, 159	capturing to text file, 68–71
summary of, 169	configuration files, 67–68
CAM (content addressable memory) table, 649	device names, 61–62, 321
Canadian Standards Association (CSA), 141	with Packet Tracer, 71
Carrier Sense Multiple Access/Collision	password configuration, 63-64
Avoidance (CSMA/CA), 165-166, 216,	password encryption, 64–65
219–220, 647	password guidelines, 62–63
Carrier Sense Multiple Access/Collision Detect	running configuration, altering, 68
(CSMA/CD), 216, 217–219, 647	small business network management,
categories, UTP cabling, 154	573–574, 624
CCNA (Cisco Certified Network Associate)	summary of, 79–80
certification, 35–36	with Syntax Checker, 66
CDP (Cisco Discovery Protocol), 609-610	help, 58
CEF (Cisco Express Forwarding), 647	interfaces, 73–74
cellular internet, 18-19, 647	IP (Internet Protocol) addresses, 618
CENELEC (European Committee for	automatic configuration for end devices, 76-77
Electrotechnical Standardization), 141	manual configuration for end devices, 75–76
certifications, CCNA (Cisco Certified Network	structure of, 71–73
Associate), 35–36	summary of, 80
CFRG (Crypto Forum Research Group), 109	switch virtual interface configuration, 77–78
channels, 87, 647	verification of, 77
Checksum field	navigation, 52–56
TCP headers, 472	configuration mode, 53–54
UDP headers, 474	moving between modes, 54–55
circuit switched systems, 647	Packet Tracer, 60
Cisco AutoSecure, 558–559	primary command modes, 52–53
Cisco Certified Network Associate (CCNA)	subconfiguration mode, 53–54
certification, 35–36	summary of, 79
Cisco Discovery Protocol (CDP), 609-610	Syntax Checker, 55–56
Cisco Express Forwarding (CEF), 647	Tera Term, 60

ports, 73–74	banner messages, 65-66
verifying connectivity of, 78, 80	capturing to text file, 68–71
Cisco Packet Tracer. See Packet Tracer	configuration files, 67–68
Cisco routers. See router configuration	device names, 61–62, 321
Cisco Webex Teams, 29	with Packet Tracer, 71, 336
Class A addresses, 357	password encryption, 64-65
Class B addresses, 357	password guidelines, 62–64
Class C addresses, 357	passwords, 62-65
Class D addresses, 357	running configuration, altering, 68
Class E addresses, 357	small business network management, 573–574,
classful addressing, legacy, 357-358, 648	624
clients	summary of, 79–80
definition of, 4, 648	with Syntax Checker, 66
multicast, 352	verifying connectivity of, 78, 80
UDP (User Datagram Protocol), 495–498	default gateways, 330–334
client-server model, 511–512	on host, 331–332
clock command, 60	router connections, 334
cloud computing	on switch, 332–334
definition of, 648	with Syntax Checker, 334
impact on daily life, 4	default route propagation, 335–336
types of, 29–30	GUAs (global unicast addresses)
CnC (command-and-control) programs, 551	dynamic addressing, 417–425
.co domain, 525	static, 413–416
coaxial cable, 151–152, 648	IP (Internet Protocol) addresses
collaboration, 28–29, 648	automatic configuration for end devices, 76–77
collision fragments, 238	IPv6, 427–430
colon (:), 404–405	manual configuration for end devices, 75–76
.com domain, 525	switch virtual interface configuration, 77–78
command modes, Cisco IOS	IPv4 subnets
configuration mode, 53–54	/8 networks, 372–373, 391
moving between modes, 54–55	/16 networks, 367–370, 391
primary command modes, 52–53	corporate example of, 378–380
subconfiguration mode, 53–54	DMZ (demilitarized zone), 377
Syntax Checker, 55–56	efficiency of, 377–380
command syntax check, 58	maximizing subnets, 377–378
command-and-control (CnC) programs, 551	on an octet boundary, 364–366
command-line interface (CLI). See specific	within an octet boundary, 366–367
commands	with Packet Tracer, 367, 381
communications, network. See network	private versus public address space, 374–377
communications	summary of, 391–392
communities, definition of, 648	unused host IPv4 addresses, minimizing,
community cloud, 30	377–378
confidentiality, 27, 648	VLSM (variable-length subnet masking), 381–387
configuration. See also verification	IPv6 subnets, 432–435
Cisco IOS devices, 61–66. <i>See also</i> IP (Internet	example of, 433–434
Protocol) addresses	example of, 100 101

router configuration, 435	console, 49, 649
subnet allocation, 433–434	content addressable memory (CAM) table, 649
subnet IDs, 432–433	contention-based access, 217-220
LLAs (link-local addresses)	CSMA/CA (Carrier Sense Multiple Access/Collision
dynamic addressing, 425–430	Avoidance), 216, 219-220
static, 413–416	CSMA/CD (Carrier Sense Multiple Access/Collision
password security, 559–561	Detect), 216, 217–219
passwords, 63–64	definition of, 649
router interfaces, 323–330	contention-based access method, 237
basic configuration, 323-324	context-sensitive help, 58
dual stack addressing, 324–325	Control Bits field (TCP headers), 472
summary of, 335	controlled access, 217
verification commands, 325–330	converged networks, 20-21, 649
routers, 336–337	copper cabling, 7, 146–152
ARP tables, displaying, 306–307	characteristics of, 147–148
basic configuration example, 321–323	coaxial cable, 151-152, 648
basic configuration steps, 320–321, 335	fiber-optic cabling versus, 163–164
default gateways, 330–334	rollover cables, 157
dynamic LLAs (link-local addresses) on, 426–427	STP (shielded twisted pair), 150–151, 662
host/router communications, 223–225	summary of, 168–169
interfaces, 323–330	UTP (unshielded twisted pair), 152–158
switch and router network build, 336–337	connectors, 153–156
SSH (Secure Shell), 561–562	crossover, 157
vulnerabilities, 544	definition of, 148–150
configuration mode, 53–54	properties of, 152–153
configure command, 58	standards, 153–156
configure terminal command, 54, 62, 321, 324	straight-through, 157
congestion, definition of, 649	summary of, 169
congestion avoidance, 493	T568A/T68B standards, 157–158
connected switches, MAC (media access control)	copy running-config startup-config command,
address tables on, 252	68, 322
connectionless, definition of, 649	core, optical fiber, 649
connectionless IP (Internet Protocol), 271–272	CRC (cyclic redundancy check), 222–223, 239, 649
connection-oriented protocols, 468, 649. See also	crossover UTP cables, 157
TCP (Transmission Control Protocol)	crosstalk, 147, 649
connectivity, verification of, 586–596	Crypto Forum Research Group (CFRG), 109
Cisco IOS devices, 78, 80	crypto key generate rsa general-keys modulus
network baselines, 593–596	command, 561, 562
ping command, 586–590	CSA (Canadian Standards Association), 141
summary of, 624	CSMA/CA (Carrier Sense Multiple Access/Collision
traceroute command, 590–594	Avoidance), 165–166, 216, 219–220, 647
tracert command, 590–593	CSMA/CD (Carrier Sense Multiple Access/Collision
connectors fiber optio 1(1,1(2))	Detect), 216, 217–219, 647
fiber-optic, 161–162	custom cloud, 649
UTP (unshielded twisted pair) cable, 153–156	cut-through switching, 255–256, 649
	cyclic redundancy check (CRC), 222-223, 239, 649

D	topologies, 209–220
DAD (duplicate address detection), 424, 448	access control methods, 216–217contention-based access, 216–220
daemons, 650	controlled access, 217
data access, 121–129	full-duplex communication, 215–216, 653
data link layer addresses, 124, 125, 126–129	half-duplex communication, 215, 653
devices on same network, 123	LAN (local area network), 213–214
Layer 3 logical addresses, 122–123	physical/logical, 209–211
overview of, 121	summary of, 228
summary of, 132	WAN (wide area network), 211–213
data availability, 27, 646	data link sublayers, 235
data centers, 650	data loss, 486–487, 542
data confidentiality, 27	data networks, definition of, 650
data encapsulation, 116–121	Data Usage tool, 585
de-encapsulation, 120–121, 132	datagrams, 118, 463, 468, 494, 650
example of, 120	debug command, 613–615, 616
IP (Internet Protocol), 270–271	debug ip icmp command, 615
MAC (media access control) sublayer, 236	debug ip packet command, 615
message segmenting, 116–117	decapsulation. See de-encapsulation
PDUs (protocol data units), 118–120, 132	decimal numbers
sequencing, 96, 118–119	binary to decimal conversion, 180–181
summary of, 132	decimal positional notation, 178–179
Data field (Ethernet frames), 239	decimal to binary conversion
data flow, 6	binary positional value tables, 182–186
data integrity, 27, 654	example of, 186–193
data interception and theft, 33	decimal to hexadecimal conversion, 196
data link frame, 221–226	hexadecimal to decimal conversion, 196–197
frame fields, 222–223	decoding messages, 89
LAN frames, 225–226	de-encapsulation, 120–121, 132, 650
Layer 2 addresses, 223–225	default gateways
overview of, 221	configuration, 330–334
WAN frames, 225–226	on host, 331–332
data link layer	router connections, 334
addresses, 124, 125, 126–129	summary of, 335–336
data link frame, 221–226	on switch, 332–334
frame fields, 222–223	with Syntax Checker, 334
LAN frames, 225–226	definition of, 282
<i>Layer 2 addresses, 223–225</i>	host routing to, 282–283
overview of, 221	pinging, 450–451
summary of, 229	sending frames to, 254
WAN frames, 225–226	troubleshooting, 334, 619–620
definition of, 114	default routes, 650
IEEE 802 LAN/MAN sublayers, 206–207	defense-in-depth approach, 553
media access in, 207–208	delimiting, frame, 207
purpose of, 204–206, 228	delivery of messages, 92–93
standards, 209	Deluge, 514
otalidaldo, 207	Deluge, Jit

demilitarized zone. See DMZ (demilitarized zone)	DHCPv6, 529, 663
denial-of-service (DoS) attacks, 33, 543, 650	dynamic addressing in, 527
description command, 57, 323-324	IP address configuration with, 75, 360
design, IPv4 structure, 387-389, 392	lease periods, 527–528
device address assignment, 389	operation of, 528–529
IPv4 network address planning, 388	overview of, 527–529
with Packet Tracer, 389, 392–393	pools, 527
Destination IPv4 Address field, 276	port numbers, 479
destination IPv4 addresses, 122, 123, 125, 299	servers, 581
Destination IPv6 Address field, 280	SLAAC (stateless address autoconfiguration)
Destination MAC Address field, 238	stateful DHCPv6, 420–421
destination MAC addresses, 124, 126, 243, 299,	and stateless DHCPv6, 419-420
301, 305	DHCPACK messages, 529
Destination Port field	DHCPDISCOVER messages, 528–529
TCP headers, 472	DHCPNAK messages, 529
UDP headers, 474	DHCPOFFER messages, 528–529
destination port numbers, 650	DHCPREQUEST messages, 529
Destination Unreachable messages, 445–446	diagrams, topology, 8–11
destinations, definition of, 87	definition of, 10
device address assignment, 389	logical, 10–11
device configuration, 61–66. See also IP (Internet	network symbols for, 8–10
Protocol) addresses	physical, 10
banner messages, 65–66	dialup internet access, 19
capturing to text file, 68–71	dial-up telephone, 650
configuration files, 67–68	DiffServ (DS) field (IPv4), 275
device names, 61–62, 321	digital cameras, 650
with Packet Tracer, 71, 336	digital subscriber line (DSL), 9, 18
passwords	Direct Connect, 514
configuration, 63–64	directed broadcast transmission, 351–352, 651
encryption, 64–65	directly connected networks, 651
guidelines for, 62–63	disable command, 54
running configuration, altering, 68	disabling services, 563–564
small business network management, 573–574, 624	disruption of service, 543
summary of, 79–80	DMZ (demilitarized zone)
with Syntax Checker, 66	definition of, 651
verifying connectivity of, 78, 80	example of, 354–355
device identifiers, 422	subnetting, 377
	DNS (Domain Name System)
device security Cisco AutoSecure, 558–559	definition of, 101, 651
passwords, 559–561	hierarchy, 525
SSH (Secure Shell), 561–562	message formats in, 524–525
summary of, 566	nslookup command, 526–527, 530
•	*
unused services, disabling, 563–564 DHCP (Dynamic Host Configuration Protocol)	overview of, 510, 522–525
,	port numbers, 479
definition of, 101, 651	servers, 76, 581
	troubleshooting, 621–623

broadcast, 359–362	E
top-level, 525	Echo Reply messages, 444–445
DoS (denial-of-service) attacks, 33, 543, 551–552,	Echo Request messages, 444–445
650	eDonkey, 514
dotted decimal notation	EHs (extension headers), 280
	EIA (Electronic Industries Alliance), 111
binary to decimal conversion, 180–181	
decimal positional notation, 178–179	EIGRP (Enhanced Interior Gateway Routing
decimal to binary conversion	Protocol), 103
binary positional value tables, 182–186	electrical threats, 545
example of, 186–193	electromagnetic interference (EMI), 147, 651
decimal to hexadecimal conversion, 196	Electronic Industries Alliance (EIA), 111
hexadecimal to decimal conversion, 196–197	electronic standards, 111
double colon (::), 404–405	email protocols, 518–521
downloads, 512	IMAP (Internet Message Access Protocol), 521
DS (DiffServe) field (IPv4), 275	POP (Post Office Protocol), 520
DSL (digital subscriber line), 9, 18, 650	SMTP (Simple Mail Transfer Protocol), 519–520
dual stack addressing, 324–325, 399–400, 651	summary of, 534
duplex multimode LC (Lucent Connector)	email servers, 5, 581
connectors, 162, 651	EMI (electromagnetic interference), 147, 651
duplex operation	employee network utilization, 584-586
definition of, 651	enable command, 54
settings for, 257–259	enable passwords, 651
troubleshooting, 617	enable secret, 64, 320, 322, 651
duplicate address detection (DAD), 424, 448	encapsulation, 116-121
dynamic addressing, 527	de-encapsulation, 120-121, 132
for GUAs (global unicast addresses),	definition of, 651
417–425, 437	Ethernet frames, 234–235
EUI-64 process, 422–424	example of, 120
randomly generated interface IDs, 424–425	IP (Internet Protocol), 270–271
RS and RA messages, 417-418	MAC (media access control) sublayer, 236
SLAAC and stateless DHCPv6, 419-420	message segmenting, 116–117
stateful DHCPv6, 420–421	messages, 90–91
for LLAs (link-local addresses), 425-430,	PDUs (protocol data units), 118-120, 132
437–438	sequencing, 96, 118–119
dynamic LLA creation, 425	summary of, 132
dynamic LLA on Cisco routers, 426–427	encoding, 88–89, 142–143, 651
dynamic LLA on Windows, 425–426	encryption, password, 64-65
IPv6 address configuration, verification of,	end command, 55
427–430	end devices. See hosts
with Packet Tracer, 430	endpoint security, 558
Dynamic Host Configuration Protocol. See DHCP	Enhanced Interior Gateway Routing Protocol
(Dynamic Host Configuration Protocol)	(EIGRP), 103
dynamic routing, 288–290	enterprise networks, 160
dynamic routing protocols, 651. See also specific	environmental threats, 545
protocols	erase startup-config command, 68
F	

error detection, 96, 207, 222-223	ETSI (European Telecommunications Standards
escalation, 613	Institute), 141
EtherChannel, 651	EUI-64 process, 422-424, 652
Ethernet, 254–255	EUIs (Extended Unique Identifiers), 422-424
bandwidths, 234	European Committee for Electrotechnical Standard
crossover, 157	ization, 141
definition of, 103, 652	European Telecommunications Standards Institute
encoding, 143	(ETSI), 141
frames, 234–239	EXEC mode, 53, 666
baby giant frames, 238, 646	exec-timeout command, 561
data link sublayers, 235	Exit and Logout command (Packet Tracer), 22
encapsulation, 234–235	exit command, 54-55
fields in, 237–239	expandability, small business networks, 573
filtering, 252–253	expectational acknowledgement, 488, 652
forwarding methods, 254–255, 262	Extended Unique Identifiers (EUIs), 422-424, 652
jumbo frames, 238, 655	extension headers (EHs), 280
MAC sublayer, 236–237	extranets, 16–17, 652
runt frames, 238, 661	, ,
sending to default gateway, 254	F
summary of, 261	<u> </u>
Gigabit, 323	fast-forward switching, 256, 652
hubs, 7	fault tolerance, 24, 652
MAC (media access control) addresses, 239–248	FCC (Federal Communications Commission), 141
address structure, 241–243	FCS (Frame Check Sequence) field, 222–223, 239
address table, 248–254, 261	FDDI (Fiber Distributed Data Interface), 214
broadcast, 246–247	Federal Communications Commission (FCC), 141
frame processing, 243–244	ff02::1 all-nodes multicast group, 431
hexadecimal number system, 240–241	ff02::2 all-routers multicast group, 431
multicast, 247–248	FIB (Forwarding Information Base), 652
summary of, 261	Fiber Distributed Data Interface (FDDI), 214
unicast, 244–245	fiber patch cords, 162–163
Metro Ethernet, 18, 20	fiber-optic cabling, 7, 158–164
straight-through, 157	copper cabling versus, 163–164
switches	definition of, 652
Auto-MDIX, 259–260	fiber patch cords, 162–163
cut-through switching, 255–256, 649	fiber-optic connectors, 161–162
duplex settings, 257–259	industry applications of, 160
fast-forward switching, 256, 652	multimode fiber, 160
fragment-free switching, 256, 652–653	properties of, 158–159
frame filtering, 252–253	single-mode fiber, 159
frame forwarding methods on, 254–255	summary of, 169
, ,	
learning and forwarding, 248–249	fiber to the home (ETTH) 160
memory buffering on, 257	fiber-to-the-home (FTTH), 160
overview of, 248–249	fields
speed settings, 257–259, 262	data link frame, 222–223
store-and-forward switching, 254–255, 664	Ethernet frame, 237–239

IPv4 packets, 274–276	encapsulation, 234–235
IPv6 packets, 280–281	fields in, 237–239
TCP headers, 472	forwarding methods, 254–255, 262
UDP headers, 474	jumbo frames, 238, 655
file servers, 5	MAC sublayer, 236–237
file sharing services, 530–533	runt frames, 238, 661
FTP (File Transfer Protocol), 530	sending to default gateway, 254
SMB (Server Message Block), 531–533	summary of, 261
summary of, 535–536	filtering, 252–253
File Transfer Protocol (FTP), 101, 511, 581. See also	MAC (media access control) addresses, 243–244
file sharing services	Freenet, 514
files, configuration, 67–68	FTP (File Transfer Protocol), 101, 479,
filtering	511, 530, 581
frame, 252–253	definition of, 652
URLs (uniform resource locators), 557	FTPS (FTP Secure), 581
FIN flag, 486	FTTH (fiber-to-the-home), 160
Finish (FIN) control flag, 484–485	full-duplex communication, 215–216, 617, 653
firewalls, 34, 555–557	fully qualified domain names (FQDNs), 522
definition of, 652	runy quantieu domain names (1 QD1(0), 022
firmware, 48	
flags, 486	G
flow control, 92, 471, 490–494, 652	gateways, default
Flow Label field (IPv6), 280	configuration, 330–334
formatting messages, 90–91	on host, 331–332
form-factor pluggable (SFP) devices, 161	router connections, 334
forwarding, 248–249, 254–255, 262, 281–282,	summary of, 335–336
285–286	on switch, 332–334
Forwarding Information Base (FIB), 652	with Syntax Checker, 334
fping command, 547	definition of, 282
FQDNs (fully qualified domain names), 522	host routing to, 282–283
fragment-free switching, 256, 652–653	pinging, 450–451
fragmenting packets, 274, 652	sending frames to, 254
Frame Check Sequence (FCS) field, 222–223, 239	troubleshooting, 334, 619-620
Frame Relay, 225	gateways, definition of, 653
frames	Gbps (gigabits per second), 145
data link, 221–226	GET requests, 516
frame fields, 222–223	GIF (Graphics Interchange Format), 509
LAN frames, 225–226	Gigabit Ethernet, 323
Layer 2 addresses, 223–225	gigabits per second (Gbps), 145
overview of, 221	global configuration mode, 53, 653
summary of, 229	global routing prefix, 410, 653
WAN frames, 225–226	global unicast addresses. See GUAs (global unicast
delimiting, 207	addresses)
Ethernet, 234–239	Gnutella, 514
baby giant frames, 238, 646	goodput, 146, 653
data link sublayers, 235	gping command, 547

host commands, for small business networks, 596-611. See also specific commands

IP configuration on Linux hosts, 599-600

summary of, 625-626

IP configuration on MacOS hosts, 596-601

IP configuration on Windows hosts, 596-598

graphical user interfaces (GUIs), 47–48, 653 Graphics Interchange Format (GIF), 509 groups, port number, 478	hostname command, 62, 320, 321 hosts Cisco IOS. See Cisco IOS
GUAs (global unicast addresses) definition of, 408	default gateway configuration on, 331–332 definition of, 6
dynamic addressing for, 417–425, 437	host addresses, 348, 653
EUI-64 process, 422–424	host commands, 596–611. See also specific
randomly generated interface IDs, 424–425	commands
RS and RA messages, 417–418	IP configuration on Linux hosts, 599-600
SLAAC and stateless DHCPv6, 419-420	IP configuration on MacOS hosts, 596-601
stateful DHCPv6, 420–421	IP configuration on Windows hosts, 596–598
static configuration of, 413–416	summary of, 625–626
structure of, 408–411	host communication, 281–284
summary of, 437	default gateways, host routing to, 282–283
GUIs (graphical user interfaces), 47-48, 653	host forwarding decisions, 281–282
	host/router communications, 223–225
H	routing tables, 283–284
п	IP addresses. See IP (Internet Protocol) addresses
half-duplex communication, 215, 617, 653	Linux, 599-600
hardware, 47	MacOS, 596-601
hardware threats, 545	pinging, 451–452
HDLC (High-Level Data Link Control), 225	reachability, 444-445
Header Checksum field (IPv4 packets), 275	remote, 282
Header Length field (TCP headers), 472	roles of, 4–5
headers	Windows, 596–598
IPv4 (Internet Protocol version 4), 274-276	hot keys, 58-60
IPv6 (Internet Protocol version 6), 278-281	HTTP (Hypertext Transfer Protocol), 102, 479, 511
TCP (Transmission Control Protocol), 471–472	516-518, 580
UDP (User Datagram Protocol), 474	definition of, 653
help, Cisco IOS, 58	HTTPS (HTTP Secure), 102, 479, 511, 515-518,
hexadecimal number systems, 194-197, 240-241	580
decimal to hexadecimal conversion, 196	definition of, 653
definition of, 653	hub-and-spoke topologies, 211-212
hexadecimal to decimal conversion, 196-197	hubs, 653
IPv6 addresses, 194–196	hubs, Ethernet, 7
summary of, 198	hybrid cloud, 30, 654
hextets, 653	Hypertext Transfer Protocol (HTTP), 102, 479, 511
High-Level Data Link Control (HDLC), 225	516-518, 580
Hop Limit field (IPv6 packets), 280	
hops, 269	1

IAB (Internet Architecture Board), 16, 109 IANA (Internet Assigned Numbers Authority), 109, 358, 654 ICANN (Internet Corporation for Assigned Names and Numbers), 16, 109

ICMP (Internet Control Message Protocol)	interface command, 323
definition of, 102, 654	interface configuration mode, 54
messages, 444-448	interface IDs, 410-411, 424, 654
Destination Unreachable, 445-446	interface vlan 1 command, 77
Echo Reply, 444–445	interfaces
Echo Request, 444–445	Cisco IOS, 73–74
Neighbor Advertisement (NA), 446–448	configuration, 323–330
Neighbor Solicitation (NS), 446-448	basic configuration, 323–324
Router Advertisement (RA), 446–448	dual stack addressing, 324–325
Router Solicitation (RS), 446-448	summary of, 335
summary of, 454	verification commands, 325–330
Time Exceeded, 446	definition of, 9, 654
ping tests, 449–452, 455	loopback, 356
default gateways, 450–451	randomly generated interface IDs, 424–425
loopback addresses, 450	selection of, 573
remote hosts, 451–452	switch virtual interfaces, 77–78
summary of, 454–455	intermediary devices, 6-7, 654
testing network connectivity with, 455	International Organization for Standardization (ISO)
traceroute tests, 452–455	98, 141, 209, 654
identity theft, 33, 543	International Telecommunication Union (ITU), 98,
IDs	141, 209, 654
device, 422	International Telecommunications Union-Telecommu-
interface, 410–411	nication Standardization Sector (ITU-T), 111
interface IDs, 424, 654	internet
interfaces, 654	definition of, 15–16, 654
randomly generated interface IDs, 424-425	impact on daily life, 3-4
subnet, 410, 432-433, 664	internet access technologies for, 17-20
IEEE (Institute of Electrical and Electronics	businesses, 19-20
Engineers), 111, 141, 209	small office and home offices, 17–19
definition of, 654	summary of, 38
IEEE 802 LAN/MAN sublayers, 206-207	standards, 109
wireless standards, 165-166, 169-170	Internet Architecture Board (IAB), 16, 109
IETF (Internet Engineering Task Force), 16, 98, 109,	Internet Assigned Numbers Authority (IANA), 109,
141, 209	358, 654
ifconfig command, 596-601	Internet Control Message Protocol. See ICMP
IMAP (Internet Message Access Protocol), 101, 479,	(Internet Control Message Protocol)
510, 521, 581, 654	Internet Corporation for Assigned Names and
INFORMATION REQUEST messages, 529	Numbers (ICANN), 16, 109
information theft, 542	Internet Engineering Task Force (IETF), 16, 98, 109,
initial sequence number (ISN), 487, 654	141, 209
installation, Packet Tracer, 21–22	internet layer, 102-103, 114
Institute of Electrical and Electronics Engineers.	Internet Message Access Protocol (IMAP), 101, 479.
See IEEE (Institute of Electrical and Electronics	510, 521, 581, 654
Engineers)	Internet of Things (IoT), 166, 399
Integrated Services Digital Network (ISDN), 654	internet queries, 655
integrity, data, 27, 654	Internet Research Task Force (IRTF), 109

nternet service providers (ISPs), 9, 655	small business networks, 574-576
Internet Society (ISOC), 109	structure of, 71–73
Internetwork Operating System. See Cisco IOS	summary of, 80, 313
ntranets, 16–17, 655	switch virtual interface configuration, 77–78
ntrusion detection system (IDS), 655	troubleshooting
ntrusion prevention systems (IPSs), 35, 655	on end devices, 619
IOS. See Cisco IOS	on IOS devices, 618
IoT (Internet of Things), 166, 399	verification of, 77
IP (Internet Protocol) addresses, 91, 102, 398–401	VoIP (voice over IP), 469, 582
ARP (Address Resolution Protocol)	ip address command, 77, 323, 413, 600
broadcasts, 307–309	ip default-gateway command, 77, 333
definition of, 301–302	ip default-gateway ip-address command, 335–336
examining with Packet Tracer, 309	ip domain name command, 561
maps, 303	IP telephony, 582
overview of, 302–304	ipconfig /all command, 622
replies, 305	ipconfig command, 77, 78, 423–426, 596–598, 620
requests, 304	ipconfig /displaydns command, 525
role in remote communications, 305–306	IPSs (intrusion prevention systems), 35, 655
spoofing, 307–309	IPv4 (Internet Protocol version 4) addressing, 72,
summary of, 313	102
tables, 306–307	address conservation, 381-383
automatic configuration for end devices, 76–77	address structure, 342–349
characteristics of, 271	broadcast addresses, 349
best-effort delivery, 272	host addresses, 348
connectionless, 271–272	host portion, 342
media independence, 273–274	logical AND, discovering addresses with,
configuration	345–346
on Linux hosts, 599–600	network addresses, 347-348, 657
on Windows hosts, 596–598	network portion, 342
definition of, 4	prefix length, 344–345
destinations on remote network, 299–301	subnet mask, 343–344
destinations on same network, 298–299	summary of, 390
encapsulation, 270–271	assignment of, 358–359
IP addressing services, 521–530	binary number systems, 176–178
DHCP (Dynamic Host Configuration Protocol),	broadcast, 350–352, 390
527–529	coexistence with IPv6, 399+0095
DNS (Domain Name System), 522-525	dual stack addressing, 399-400
nslookup command, 526–527	translation, 400–401
summary of, 535	tunneling, 400
IPv4. See IPv4 (Internet Protocol version 4)	definition of, 655
addressing	destination addresses, 299
IPv6. See IPv6 (Internet Protocol version 6)	directed broadcast, 351–352, 651
addressing	DMZ (demilitarized zone), 354–355
loopback, pinging, 450	limitations of, 398–401, 436
manual configuration for end devices, 75–76	multicast, 352–353, 390
overview of, 122–123	network segmentation, 359–362
,	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

broadcast domains and, 359-362	overview of, 381
reasons for, 362	subnetting schemes in, 383–385
summary of, 391	summary of, 392
number systems, 193–194	IPv6 (Internet Protocol version 6) addressing, 73
overview of, 342	102, 408
packets, 274–276	address formats, 401-406, 436
fragmenting, 274	double colon (::), 404–405
header fields, 274–276	leading zeros, 403–404
headers, 274	preferred format, 402
limitations of, 277	anycast, 406, 436–437
summary of, 292	coexistence with IPv4, 399-401
passing/blocking, 356	dual stack addressing, 399–400
routing tables, 290–291	translation, 400-401
routing to Internet, 354	tunneling, 400
for small business networks, 574–576	GUAs (global unicast addresses)
source addresses, 299	definition of, 408
structured design, 387-389, 392	dynamic addressing for, 417–425, 437
device address assignment, 389	static configuration of, 413–416
IPv4 network address planning, 388	structure of, 408–411
with Packet Tracer, 389, 392–393	summary of, 437
subnetting, 364-381. See also VLSM (variable-length	LLAs (link-local addresses)
subnet masking)	definition of, 408
/8 networks, 372–373, 391	dynamic addressing for, 425–430, 437–438
/16 networks, 367–370, 391	static configuration of, 413–416
corporate example of, 378–380	structure of, 411–412
DMZ (demilitarized zone), 377	summary of, 437
efficiency of, 377–380	multicast
maximizing, 377–378	characteristics of, 93, 406, 430-432, 436-437
on an octet boundary, 364–366	solicited-node, 432
within an octet boundary, 366–367	summary of, 438
with Packet Tracer, 367, 381	well-known, 430–431
private versus public address space, 374–377	ND (Neighbor Discovery), 309-312, 314
summary of, 391–392	address resolution, 311
unused host IPv4 addresses, minimizing,	examining with Packet Tracer, 312
377–378	messages, 309-310
types of	summary of, 314
legacy classful, 357–358, 648	need for, 398–401, 436
link-local, 357	number systems, 194–196
loopback, 356	packets, 277–281
private, 353-354	headers, 278–281
public, 353–354	overview of, 277–278
summary of, 390	prefix length, 406–407
unicast, 349–350, 390	subnetting, 432–435
VLSM (variable-length subnet masking), 381–387	example of, 433–434
address conservation, 381–383	with Packet Tracer, 438
network address assignments in, 386–387	router configuration, 435
· ·	

IEEE 802 LAN/MAN sublayers, 206-207

subnet allocation, 434-435 LAN frames, 225-226 subnet IDs, 432-433 topologies, 213-214 latency, 146, 655 summary of, 438 unicast, 406, 407-408, 436-437 Layer 2 addresses, 223–225 Layer 3 logical addresses, 122-123 verifying configuration of, 427-430 ipv6 address command, 323, 413-414 layered security, 553 layers, OSI model. See OSI (Open System Interconipv6 address link-local command, 415-416 nection) model ipv6 unicast-routing command, 418, 431 layers, TCP/IP model. See TCP/IP (Transmission IRFT (Internet Research Task Force), 109 Control Protocol/Internet Protocol) model ISD (intrusion detection system), 655 ISDN (Integrated Services Digital Network), 654 LC (Lucent Connector) connectors, 162 LDAP (Lightweight Directory Access Protocol), 655 ISN (initial sequence number), 487, 654 ISO (International Organization for Standardization), leading zeros double colon (::), 404-405 98, 141, 209, 654 ISOC (Internet Society), 109 in IPv6 addresses, 403-404 ISPs (internet service providers), 9, 655 learning, switch, 248-249 IT professionals, 35-36, 40 lease periods, 527–528 leased lines, 18, 19 CCNA certification for, 35-36 networking jobs for, 36 legacy classful addressing, 357-358, 648 legacy LAN topologies, 214 ITU (International Telecommunication Union), 98, 111, 141, 209, 654 Length field (UDP headers), 474 Lightweight Directory Access Protocol (LDAP), 655 limited broadcast, 655 line console 0 command, 63 line of sight wireless, 655 jackets, 655 Japanese Standards Association (JSA/JIS), 141 line vty 0 15 command, 64 Link Layer Discovery Protocol (LLDP), 247 JPG (Joint Photographic Experts Group), 509 JSA/JIS (Japanese Standards Association), 141 link-local addresses. See LLAs (link-local addresses) Linux hosts, IP (Internet Protocol) configuration on, jumbo frames, 238, 655 599-600 LLAs (link-local addresses), 357 K definition of, 408, 655 dynamic addressing for, 425-430, 437-438 kbps (kilobits per second), 145 kernel, 47, 655 dynamic LLA creation, 425 dynamic LLA on Cisco routers, 426-427 keyboard shortcuts, 58-60 kilobits per second (kbps), 145 dynamic LLA on Windows, 425-426 IPv6 address configuration, verification of, 427-430 with Packet Tracer, 430 static configuration of, 413-416 LACNIC (Regional Latin-American and Caribbean IP Address Registry), 359 structure of, 411–412 summary of, 437 LANs (local area network), 12-14. See also network communications; networks; router configuration LLC (Logical Link Control), 206, 235, 656 LLDP (Link Layer Discovery Protocol), 247 definition of, 655

local area networks. See LANs (local area network)

AND, logical, 645

logical addresses. See IP (Internet Protocol)	destinations on same network, 298–299
addresses	frame processing, 243–244
logical AND, 345–346, 645	hexadecimal number system, 240–241
Logical Link Control (LLC), 206, 235, 656	multicast, 247–248
logical NOT, 345	summary of, 261, 313
logical OR, 345	unicast, 244–245
logical topologies, 10-11, 209-211	MAC (media access control) sublayer, 236-237. Sec
logical topology diagrams, 656	also MAC (media access control) addresses
login block-for command, 560	data encapsulation, 236
login command, 63, 64	media access, 237
login local command, 562	MacOS hosts, IP configuration on, 596-601
long-haul networks, 160	maintenance threats, 545
loopback adapters, 656	malware, 546-547
loopback addresses, 356, 450, 656	Trojan horses, 33, 547, 665
loopback interfaces, 656	viruses, 546
loopback interfaces, pinging, 356	worms, 547, 668
LTE, 656	Manchester encoding, 142-143
Lucent Connector (LC) connectors, 162	man-in-the-middle attack, 549
	MANs (metropolitan-area networks), 656
N.A.	maps (ARP), 303
M	Matroska Video (MKV), 509
MAC (media access control) addresses, 124, 206-	maximizing subnets, 377–378
207, 239–248	maximum segment size (MSS), 491–492
address structure, 241–243	maximum transmission unit (MTU), 492, 656
address table, 248–254	Mbps (megabits per second), 145
on connected switches, 252	mdix auto command, 259
	media, network, 7–8
definition of, 656	
frame filtering, 252–253	media access
summary of, 261	data link layer functions, 207–208
switch fundamentals, 248–249	MAC (media access control) sublayer, 237
switch learning and forwarding, 250–251	media access control. See MAC (media access con-
viewing, 254	trol) addresses
ARP (Address Resolution Protocol)	media independence, 273–274, 656
broadcasts, 307–309	megabits per second (Mbps), 145
definition of, 301–302	memory buffering, 257, 647
examining with Packet Tracer, 309	mesh topologies, 212
overview of, 302–304	messages. See also data encapsulation
replies, 305	banner, 65–66
requests, 304	decoding, 89
role in remote communications, 305–306	delivery options for, 92–93
spoofing, 307–309	destinations, 87
summary of, 313	DHCP (Dynamic Host Configuration Protocol),
tables, 306–307	528-529
broadcast, 246–247	DNS (Domain Name System), 524-525
definition of, 656	encapsulating, 90–91
destinations on remote network, 299–301	encoding, 88–89, 142–143

formatting, 90–91	well-known, 430-431, 667
ICMP (Internet Control Message Protocol), 444–448	multicast MAC (media access control) addresses,
Destination Unreachable, 445-446	247–248
Echo Reply, 444–445	multicast transmission, 656-657
Echo Request, 444–445	multimeters, 657
Neighbor Advertisement (NA), 446–448	multimode fiber (MMF), 160, 657
Neighbor Solicitation (NS), 446–448	multiplexing, 117–118, 132, 657
Router Advertisement (RA), 446–448	MX records, 524
Router Solicitation (RS), 446–448	,
summary of, 454	N
Time Exceeded, 446	N
ND (Neighbor Discovery), 309–310	NA (Neighbor Advertisement) message, 309,
segmenting, 116–117	446–448, 657
size of, 91–92	names, Cisco IOS device, 61-62
sources, 87	NAS (network attached storage), 657
timing, 92–93	NAT (Network Address Translation), 354, 398, 657
Metro Ethernet, 18, 20	NAT64 (Network Address Translation 64), 400–40
metropolitan-area networks (MANs), 656	navigation, Cisco IOS, 52–56
mismatch issues, troubleshooting, 617	configuration mode, 53–54
mitigation techniques, 552–558	moving between modes, 54–55
AAA (authentication, authorization, and accounting),	Packet Tracer, 60
555	primary command modes, 52–53
backups, 553–554	subconfiguration mode, 53–54
defense-in-depth approach, 553	summary of, 79
endpoint security, 558	Syntax Checker, 55–56
firewalls, 555–557	Tera Term, 60
summary of, 565	ND (Neighbor Discovery), 245, 309–312, 446
updates and patches, 554	address resolution, 311
MKV (Matroska Video), 509	definition of, 657
MMF (multimode fiber), 160, 657	examining with Packet Tracer, 312
models. See OSI (Open System Interconnection)	messages, 309–310
model; TCP/IP (Transmission Control Protocol/	summary of, 314
Internet Protocol) model	Neighbor Advertisement (NA) messages, 309,
modems, 656	446–448, 657
Motion Picture Experts Group (MPG), 509	Neighbor Discovery. <i>See</i> ND (Neighbor Discovery)
MOV (QuickTime Video), 509	Neighbor Solicitation (NS) messages, 309, 446–448
MPG (Motion Picture Experts Group), 509	657
MSS (maximum segment size), 491–492	netsh interface ip delete arpcache command, 602
MTU (maximum transmission unit), 492, 656	netstat command, 479–480
multiaccess networks, 216	netstat -r command, 283–284, 293
multicast IPv4 addresses, 352–353, 390	NetWare, 99
multicast IPv6 addresses	network access layer, 103, 114
assigned multicast, 646	Network Address Translation 64 (NAT64), 400–401
characteristics of, 93, 406, 430–432, 436–437	Network Address Translation (NAT), 354, 398, 657
solicited-node, 432	network addresses, 347–348, 657
summary of, 438	network applications, 578

network architecture, definition of, 657	rule establishment for, 88, 130
network attached storage (NAS), 657	standards organizations, 108-111
network baselines, 593-596	communications standards, 111
network communications. See also OSI (Open	electronic standards, 111
System Interconnection) model; TCP/IP (Transmis-	internet standards, 109
sion Control Protocol/Internet Protocol) model	open standards, 108–109
communications standards, 111	summary of, 131
data access, 121–129	network infrastructure, definition of, 657
data link addresses, 124, 126–129	network interface cards (NICs), 9, 139,
devices on same network, 123	168, 657
Layer 3 logical addresses, 122–123	network layer. See also IP (Internet Protocol)
network layer addresses, 125	addresses
overview of, 121	basic operations of, 268-269
summary of, 132	characteristics of, 268-274, 292
data encapsulation, 116–121	hops, 269
de-encapsulation, 120–121, 132	host communication, 281–284
example of, 120	default gateways, 282–283
message segmenting, 116–117	host forwarding decisions, 281–282
PDUs (protocol data units), 118–120, 132	routing tables, 283–284
sequencing, 96, 118–119	routing, 285–291
summary of, 132	dynamic, 288–290
definition of, 648	IP router routing tables, 286–287
messages	IPv4 routing tables, 290–291
decoding, 89	router packet forwarding decisions, 285–286
delivery options for, 92–93	static, 287–288
destination, 87	networking jobs, 36
encapsulating, 90–91	networks. See also addresses; internet; network
encoding, 88–90, 142–143	communications; router configuration; small
formatting, 90–91	business network management
segmenting, 96, 118–119	architecture of, 23
size of, 91–92	BYOD (bring your own device), 28
sources, 87	clients, 4
timing, 92–93	cloud computing, 29-30
overview of, 86–87, 88	collaboration, 28-29, 648
protocol suites, 97-107. See also TCP/IP (Transmission	connectivity, testing
Control Protocol/Internet Protocol) model	with Packet Tracer, 455
evolution of, 98–99	with ping tests, 455
overview of, 97–98	with traceroute, 455
summary of, 130	converged, 20-21, 649
protocols. See also specific protocols	data flow through, 6
definition of, 87–88	end devices, 6
functions of, 95–96	extranets, 16–17, 652
interaction between, 96	host roles, 4–5
requirements of, 88–89	impact on daily life, 3-4, 37
summary of, 130	intermediary devices, 6–7
types of, 94–95	intranets, 16–17

LAN (local area network) design, 12–14. See also	video communications tools for, 29
router configuration	WANs (wide area networks), 14-15
IEEE 802 LAN/MAN sublayers, 206–207	wireless, 32
LAN frames, 225–226	networksetup -getinfo command, 601
topologies, 213–214	networksetup -listallnetworkservices command, 601
media, 7–8	Next Header field (IPv6 packets), 280
peer-to-peer, 5, 658	next hop, 657
powerline networking, 31–32	nibble boundary, 657
prefixes, 345	NICs (network interface cards), 9, 139, 168, 657
reliability of, 23–27	no hostname command, 62
fault tolerance, 24	no ip directed-broadcasts command, 352
QoS (quality of service), 25–26	no ip http server command, 563
scalability, 24–25	no shutdown command, 77, 323-324, 335
security design, 26–27	node icon, 94
summary of, 38	noise, 658
remote, 661	nonreturn to zero (NRZ), 658
representations of, 8-10, 37	Non-Volatile Memory Express (NVMe), 658
role of IT professionals in, 35–36, 40	nonvolatile random-access memory (NVRAM), 67,
security, 33–35, 542–543	658
attack mitigation, 552–558	notation, positional. See positional notation
attacks, 546–552	Novell NetWare, 99
design for, 26–27	NRZ (nonreturn to zero), 658
device, 558–564, 566	NS (Neighbor Solicitation) message, 309, 446-448,
mitigation techniques, 34–35	657
physical, 545–546	NS records, 524
summary of, 39	nslookup command, 526-527, 530, 547, 622-623,
threats, 33-34, 565	658
vulnerabilities, 543–544	number systems
segmentation of, 359–362	binary, 176–194
broadcast domains and, 359–362	binary positional notation, 178–180
definition of, 662	binary to decimal conversion, 180–181
reasons for, 362	decimal to binary conversion, 182–193
summary of, 391	IPv4 addresses, 176–178
servers	summary of, 198
common software for, 4–5	hexadecimal, 194–197
definition of, 4	decimal to hexadecimal conversion, 196
sizes of, 11–12	hexadecimal to decimal conversion, 196-197
smart homes, 31	IPv6 addresses, 194–196
SOHO (small office and home office) networks, 12	summary of, 198
topology diagrams for, 8–11	653, 653
definition of, 10	overview of, 176
logical, 10–11	numbers, port
network symbols for, 8–10	definition of, 465
physical, 10	destination, 650
trends in, 27–32, 38–39	groups of, 478
types of, 37	multiple separation communications with, 476
V A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

netstat command, 479–480 socket pairs, 477–478	standards, 209 topologies, 209–220, 228
well-known, 479	definition of, 98
NVMe (Non-Volatile Memory Express), 658	network layer. See also IP (Internet Protocol)
NVRAM (nonvolatile random-access memory), 67,	addresses
658	basic operations of, 268–269
	characteristics of, 268–274, 292
0	hops, 269
	host communication, 268–269
octet boundary, 658	routing, 285–291
subnetting on, 364–366	overview of, 112–114
subnetting within, 366–367	Packet Tracer simulation, 116
octets, 658	physical layer. See also copper cabling; fiber-optic
Open Samples command (Packet Tracer), 22	cabling
Open Shortest Path First (OSPF), 103	characteristics of, 141–146, 168
open standards, 108-109	fiber-optic cabling, 158–164
Open System Interconnection model. See OSI (Open	purpose of, 138–140
System Interconnection) model	summary of, 168
OpenDNS, 622	wireless media, 164–167, 169–170
operating systems (OSs), 46–47, 48–49	summary of, 131
optical fiber cabling. See fiber-optic cabling	TCP/IP model compared to, 115–116
OR, logical, 345	OSPF (Open Shortest Path First), 103
.org domain, 525	OSs (operating systems), 46–47, 48–49
organizationally unique identifiers (OUIs), 242, 422,	OUIs (organizationally unique identifiers), 242, 422.
658	658
OSI (Open System Interconnection) model, 508. See	out-of-band management, 49
also TCP/IP (Transmission Control Protocol/Inter-	overhead, 658
net Protocol) model	,,
application layer	P
client-server model, 511–512	<u> </u>
definition of, 508	P2P (peer-to-peer) applications, 513-515
email protocols, 518–521	P2P (peer-to-peer) networks, 5, 512–513, 534, 658
file sharing services, 530–533	P2PRG (Peer-to-Peer Research Group), 109
IP addressing services, 521–530	packet filtering, 557
peer-to-peer applications, 513–515	packet forwarding. See forwarding
peer-to-peer networks, 512–513	packet switched. See switches
protocols, 508–511	Packet Tracer
purpose of, 508	ARP table examination with, 309
summary of, 534	
· ·	Cisco IOS navigation with, 60
web protocols, 515–518	connecting routers with, 334
benefits of using, 112	device configuration with, 71, 336
data link layer	features of, 22–23
data link frame, 221–226, 229	installation of, 21–22
IEEE 802 LAN/MAN sublayers, 206–207	IPv6 addressing configuration with, 430
media access in, 207–208	IPv6 ND examination with, 312
purpose of, 204–206, 228	IPv6 subnetting with, 438

physical layer connections with, 167	signaling, 143–144
reference model simulations, 116	standards organizations, 141
router configuration with, 323	summary of, 168
subnetting with, 367, 381	copper cabling, 146–152
testing network connectivity with, 455	characteristics of, 147-148
VLSM design and implementation, 389, 392-393	coaxial cable, 151–152, 648
packets	fiber-optic cabling versus, 163–164
fragmenting, 274, 652	rollover cables, 157
IPv4, 274–276	STP (shielded twisted pair), 150-151
beader fields, 274–276	summary of, 168–169
beaders, 274	UTP (unshielded twisted pair), 148-150, 152-
limitations of, 277	158, 169
summary of, 292	definition of, 114
IPv6, 277–281	fiber-optic cabling, 158-164
beaders, 278–281	copper cabling versus, 163–164
IPv6 packets, 277–278	fiber patch cords, 162–163
router forwarding decisions, 285–286	fiber-optic connectors, 161–162
PANs (personal-area networks), 658	industry applications of, 160
parallel ports, 658	multimode fiber, 160
passing IPv4 addresses, 356	properties of, 158–159
passphrases, 560	single-mode fiber, 159
password attacks, 548	summary of, 169
password command, 63, 64, 320	purpose of, 138–140
passwords	summary of, 168
Cisco IOS devices	wireless media, 164–167
configuration, 63–64	properties of, 164–165
encryption, 64–65	summary of, 169–170
guidelines for, 62–63	types of, 165–166
configuration of, 559–561	wireless LANs (WLANs), 166–167
enable, 651	physical ports. See ports
SSH (Secure Shell), 561–562	physical security, 545–546
patches, 554	physical topologies, 10, 209-211, 659
Payload Length field (IPv6 packets), 280	physical topology diagrams, 659
PDUs (protocol data units), 118-120, 132, 660	ping command
peers, 512	default gateway testing with, 450–451
peer-to-peer applications, 513–515	definition of, 659
peer-to-peer networks, 5, 512-513, 534, 658	device connectivity verification with, 78
Peer-to-Peer Research Group (P2PRG), 109	IOS command syntax, 57
personal-area network (PAN), 658	IPv6 verification with, 429
physical addresses. See MAC (media access control)	lab exercises for, 455
addresses	loopback interface testing with, 356, 450
physical layer	network baseline assessment with, 593-596
characteristics of, 141–146	overview of, 449–452
bandwidth, 145–146	ping sweeps, 547, 659
components, 142	remote host testing with, 451–452
encoding, 142–143	-

small business network verification with,	presentation layer, 534
586-590	definition of, 113
summary of, 454–455	functions of, 508–510
PNG (Portable Network Graphics), 509	private cloud, 30, 659
PoE (Power over Ethernet), 659	private IPv4 addresses, 353–354, 374–377, 659
Point-to-Point Protocol (PPP), 225	privileged EXEC mode, 53, 64, 659
point-to-point topologies, 211, 213	protocol analyzers, 660
policy vulnerabilities, 544	protocol data units (PDUs), 118–120, 132, 660
pools, DHCP (Dynamic Host Configuration	Protocol field (IPv4 packets), 276
Protocol), 527	protocol suites, 97-107. See also TCP/IP (Transmis-
POP (Post Office Protocol), 479, 520, 659	sion Control Protocol/Internet Protocol) model
POP3 (Post Office Protocol), 101, 510, 659	definition of, 660
Portable Network Graphics (PNG), 509	evolution of, 98–99
ports, 9	overview of, 97–98
Cisco IOS, 73–74	protocols. See also specific protocols
definition of, 659	definition of, 87–88, 660
port numbers	functions of, 95–96
definition of, 465, 659	interaction between, 96
destination, 650	requirements of, 88–89
groups of, 478	types of, 94–95
multiple separation communications with, 476	proxy servers, 660
netstat command, 479–480	PSH flag, 486
socket pairs, 477–478	public cloud, 30, 660
table of, 510–511	public IPv4 addresses, 353–354, 374–377, 660
well-known, 479	PUT requests, 517
redirection, 549	PuTTY, 50, 68-70
registry, 479	
scans of, 548, 659	Q
selection of, 573	<u> </u>
positional notation	qBittorrent, 514
binary, 178–180, 182–186	QoS (quality of service), 25-26, 582, 660
decimal, 178-179	quality-of-service (QoS), 660
definition of, 178	queries, internet, 655
POST (power-on self-test), 659	queuing, 660
Post Office Protocol (POP3), 101, 479,	QuickTime Video (MOV), 509
510, 520, 659	
POST requests, 517	R
Power over Ethernet (PoE), 659	<u> </u>
powerline networking, 31–32, 659	RA (Router Advertisement) messages, 310,
power-on self-test (POST), 659	417–418, 446–448, 661
PPP (Point-to-Point Protocol), 225	radio frequency interference (RFI), 147, 660
Preamble field (Ethernet frames), 238	RADIUS (Remote Authentication Dial-in User
preferred format, IPv6, 402-406, 659	Service), 495
prefixes, 345, 659	RAM (random-access memory), 67, 660
IPv4, 344–345	random-access memory (RAM), 660
IPv6, 406–407	randomly generated interface IDs, 424-425

read-only memory (ROM), 243, 660 real-time traffic, 660 Real-Time Transport Control Protocol (RTCP), 582 Real-Time Transport Protocol (RTP), 582 reconnaissance attacks, 547–548, 660 Redirect message, 310 redundancy, 576–577, 660 reference models. See OSI (Open System	responses TCP (Transmission Control Protocol), 482–483 timeout, 92 UDP (User Datagram Protocol), 497–498 REST (Representational State Transfer), 102 RFCs (requests for comments), 209, 661 RFI (radio frequency interference), 147, 660 ring topology, 214, 661
Interconnection) model; TCP/IP (Transmission	RIPE NCC (Réseaux IP Européens Network
Control Protocol/Internet Protocol) model	Coordination Centre), 359
Regional Internet Registries (RIRs), 358–359 regional Internet registry (RIR), 661	RIR (regional Internet registry), 661 RIRs (Regional Internet Registries), 358–359
Regional Latin-American and Caribbean IP Address	RJ-11 connectors, 661
Registry (LACNIC), 359	RJ-45 connectors, 154, 661
reliability, 38	rollover cables, 157
IP (Internet Protocol), 273–274	ROM (read-only memory), 243, 660
network, 23–27	round-trip time (RTT), 661
of protocols, 96	route entries, 285, 293
TCP (Transmission Control Protocol), 486–490,	route print command, 283–284
500–501	Router Advertisement (RA) messages, 310,
UDP (User Datagram Protocol), 494	417–418, 446–448, 661
reload command, 68	router configuration, 336–337
Remote Authentication Dial-in User Service	ARP tables, displaying, 306–307
(RADIUS), 495	basic configuration example, 321–323
remote communications, ARP (Address Resolution	banner warnings, 322
Protocol) in, 305–306	device name, 321
remote hosts	initial router settings, 323
definition of, 282	running configuration, saving, 322
pinging, 451–452	secure access, 322
remote networks, 661	basic configuration steps, 320–321, 335
repeaters, 661	default gateways, 330–334
replies (ARP), 305	configuration, 330–334
REPLY messages, 529	summary of, 335–336
Representational State Transfer (REST), 102	troubleshooting, 334
representations, network, 8–10, 37	dynamic LLAs (link-local addresses) on, 426-427
requests	host/router communications, 223-225
ARP (Address Resolution Protocol), 304	interfaces, 323–330
TCP (Transmission Control Protocol), 481–482	basic configuration, 323-324
UDP (User Datagram Protocol), 495–497	dual stack addressing, 324–325
requests for comments (RFCs), 209, 661	summary of, 335
Réseaux IP Européens Network Coordination Centre	verification commands, 325–330
(RIPE NCC), 359	Router Solicitation (RS) messages, 310, 417–418
Reserved field (TCP headers), 472	446–448, 661
resolution, 613	routers, 661
response timeout, 661	routing, 285–291. <i>See also</i> router configuration definition of, 661

dynamic, 288–290	malware, 546–547
host communication, 281–284	reconnaissance, 547–548
default gateways, 282–283	summary of, 565
host forwarding decisions, 281–282	design for, 26–27
routing tables, 283–284	device, 558–564
IPv4 routing tables, 290–291	Cisco AutoSecure, 558–559
router packet forwarding decisions, 285–286	passwords, 559–561
routing tables, 286–287, 290–291	SSH (Secure Shell), 561–562
static, 287–288	summary of, 566
RS (Router Solicitation) messages, 310, 417–418,	unused services, disabling, 563–564
446–448, 661	mitigation techniques, 34–35
RST flag, 486	physical, 545–546
RTCP (Real-Time Transport Control Protocol), 582	summary of, 39
RTP (Real-Time Transport Protocol), 582	threats, 33–34
RTT (round-trip time), 661	summary of, 565
running configuration, altering, 68	types of, 542–543
running-config file, 67	vulnerabilities, 543–544
runt frames, 238, 661	security passwords min-length command, 560
Tunt Traines, 236, 661	segmentation, network, 359–362
	broadcast domains and, 359–362
S	definition of, 662
SACK (selective Acknowledgement), 489	reasons for, 362
SACK (selective acknowledgment), 462	summary of, 391
satellite internet access, 19, 661	segments, 116–117, 463, 468
SC (subscriber connector) connectors, 161	ACK (Acknowledgement), 472, 484–485, 486, 488
scalability, small network, 24–25, 583–586, 624	definition of, 662
definition of, 661–662	MSS (maximum segment size), 491–492
employee network utilization, 584–586	selective Acknowledgement (SACK), 489
protocol analysis, 583–584	selective acknowledgment (SACK), 487
small network growth, 583	
SDSL (symmetric DSL), 20	SEQ (sequence) number, 488
Secure FTP (SFTP), 101, 581, 663	Sequence Number field (TCP headers), 472
Secure Shell (SSH), 50, 479, 561–562, 580, 662	sequence numbers, 662 sequencing, 96, 118–119
Secure CRT, 50	*
security, 33–35	Server Message Block (SMB), 531–533, 662, 663
attack mitigation, 552–558	
AAA (authentication, authorization, and	servers
	common software for, 4–5 definition of, 4
accounting), 555 backups, 553–554	
*	TCP (Transmission Control Protocol)
defense-in-depth approach, 553	connection establishment, 483–484
endpoint security, 558	server processes, 480–483
firewalls, 555–557	session termination, 484–485
updates and patches, 554	three-way handshake, 485–486
attacks, 546–552	types of, 580–581
access, 548–549	UDP (User Datagram Protocol), 495
attack mitigation, 565	service password-encryption command, 64, 560

services	signaling, 143–144
application layer, 579	Simple Mail Transfer Protocol (SMTP), 101, 479,
disabling, 563–564	510, 519–520, 581, 662, 663
file sharing, 530–533	simplex LC (Lucent Connector) connectors, 162
FTP (File Transfer Protocol), 530	single-mode fiber (SMF), 159, 662
SMB (Server Message Block), 531–533	size
summary of, 535–536	of messages, 91–92
IP addressing, 521–530	of networks, 11–12
DHCP (Dynamic Host Configuration Protocol),	of windows, 472, 490–491, 667
527–529	SLAAC (stateless address autoconfiguration), 101
DNS (Domain Name System), 522-525	definition of, 662, 663
nslookup command, 526–527	EUI-64 process, 422–424
summary of, 535	randomly generated interface IDs, 424–425
session layer, 534	stateful DHCPv6, 420–421
definition of, 113	stateless DHCPv6, 419–420
functions of, 508–510	slash notation, 662
sessions, 662	sliding window protocol, 491
SFP (small form-factor pluggable) devices, 161	small business network management
SFTP (Secure FTP), 101, 581, 663	applications
sharing services. See file sharing services	common applications, 578–579
shell, 47	summary of, 624
shells, 662	voice/video applications, 582
shielded twisted pair (STP) cable, 150–151, 662	device selection, 573–574, 624
show arp command, 603, 606	expandability, 573
show cdp neighbors command, 609–610	host and IOS commands for, 596–611
show control-plane host open-ports command, 563	arp, 601–602
show interfaces command, 328, 335, 603, 604–605	ifconfig, 596–601
show ip arp command, 306–307	IP configuration on Linux hosts, 599–600
show ip interface brief command, 325–326, 335,	IP configuration on MacOS hosts, 596–601
610-611, 618	IP configuration on Windows hosts, 596–598
show ip interface command, 329, 335, 603,	ipconfig, 596–598
605–606, 618	show arp, 603, 606
show ip ports all command, 563	show cdp neighbors, 609-610
show ip route command, 290–291, 293, 327, 335,	show interfaces, 603, 604–605
603, 606–607, 620	show ip interface, 603, 605-606
show ipv6 interface brief command, 325–327, 335,	show ip interface brief, 610–611
427–428	show ip route, 603, 606–607
show ipv6 interface command, 330, 335	show protocols, 603, 607
show ipv6 route command, 327–328, 335, 428–429	show running-config, 603–604
show protocols command, 603, 607	show version, 603, 608, 611
show running-config command, 65, 67–68, 70, 333,	summary of, 625–626
603-604	internet access technologies for, 19–20
show startup-config command, 70	IP addressing, 574–576
show version command, 603, 608, 611	protocols, 579–581
signal attenuation, 147	protocol analysis, 583–584
O ,	summary of 624

redundancy, 576–577, 660	Source IPv6 Address field, 280
scalability, 624	Source MAC Address field, 238
scaling, 583–586	source MAC addresses, 124, 126, 243, 299, 301,
definition of, 661–662	305
employee network utilization, 584–586	Source Port field
protocol analysis, 583–584	TCP headers, 472
small network growth, 583	UDP headers, 474
topologies, 572–573	sources, 87
traffic management, 577–578	Spanning Tree Protocol (STP), 247
troubleshooting methodologies, 611–616	speed settings, 257–259, 262
basic approach, 612–613	SPI (stateful packet inspection), 557, 663
debug command, 613–615, 616	spoofing, 663
resolution versus escalation in, 613	spoofing (ARP), 307–309
summary of, 626	spyware, 33
terminal monitor command, 615–616	SSH (Secure Shell), 50, 479, 561–562, 580, 662
troubleshooting scenarios, 616–623	ST (straight-tip) connectors, 161
default gateway issues, 619-620	standards, 108–111
duplex operation, 617	communications, 111
IP addressing on end devices, 619	data link layer, 209
IP addressing on IOS devices, 618	electronic, 111
mismatch issues, 617	internet, 109
summary of, 626–627	open, 108–109
verifying connectivity of, 586–596	physical layer, 141
network baselines, 593–596	UTP (unshielded twisted pair) cable, 153–156
ping command, 586–590	star topology, 213-214, 663
summary of, 625	Start Frame Delimiter field (Ethernet frames), 238
traceroute command, 590-594	startup-config file, 67
tracert command, 590–593	stateful DHCPv6, 420-421, 663
small office and home office (SOHO) networks, 12,	stateful packet inspection (SPI), 557, 663
17–19, 662	stateful protocols, 471. See also TCP (Transmission
smart homes, 31, 662	Control Protocol)
SMB (Server Message Block), 531–533, 662, 663	stateless address autoconfiguration. See SLAAC
SMF (single-mode fiber), 159, 662	(stateless address autoconfiguration)
SMTP (Simple Mail Transfer Protocol), 479, 510,	stateless DHCPv6, 418-420, 663
519–520, 581, 662	stateless protocols, 468
SNMP (Simple Network Management Protocol), 663	static addressing, 527
socket pairs, 477-478, 663	static configuration
sockets, 663	GUAs (global unicast addresses), 413-416
SOHO (small office and home office) networks, 12,	LLAs (link-local addresses), 413-416
17–19, 662	static route propagation, 663
SOLICIT messages, 529	static routing, 287–288
Solicitation messages. See RS (Router Solicitation)	store-and-forward switching, 254-255, 664
messages	STP (shielded twisted pair), 150-151, 662
solicited-node IPv6 multicast addresses, 432, 663	STP (Spanning Tree Protocol), 247
Source IPv4 Address field, 276	straight-through UTP cables, 157
source IPv4 addresses, 122, 123, 125, 299, 663	straight-tip (ST) connectors, 161

strong passwords, 560	switch virtual interfaces (SVIs), 74
structured design, IPv4, 387-389, 392	Switch(config)# prompt, 53–54
device address assignment, 389	switched virtual interface (SVI), 664
IPv4 network address planning, 388	switches
with Packet Tracer, 389, 392–393	asymmetric switching, 646
subconfiguration mode, 53-54	Cisco IOS. See Cisco IOS
sublayers, IEEE 802 LAN/MAN, 206-207	default gateway configuration on, 332-334
submarine cable networks, 160	definition of, 664
subnet IDs, 410, 432-433, 664	Ethernet
subnetting, 364–381	Auto-MDIX, 259–260
definition of, 664	cut-through switching, 255–256, 649
IPv4	duplex settings, 257–259
/8 networks, 372–373, 391	fast-forward switching, 256, 652
/16 networks, 367–370, 391	fragment-free switching, 256, 652–653
corporate example of, 378–380	memory buffering on, 257
DMZ (demilitarized zone), 377	speed settings, 257–259, 262
efficiency of, 377–380	store-and-forward switching, 254–255, 664
maximizing subnets, 377–378	frame filtering, 252–253
on an octet boundary, 364–366	frame forwarding methods on, 254–255, 262
within an octet boundary, 366–367	learning and forwarding, 248–249
with Packet Tracer, 367, 381	MAC addressing for. See MAC (media access
private versus public address space, 374–377	control) addresses
summary of, 391–392	overview of, 248–249
unused host IPv4 addresses, minimizing,	switch virtual interfaces, 77–78
377–378	symmetric DSL (SDSL), 20
VLSM (variable-length subnet masking), 381–387	SYN flag, 486
IPv6, 432–435	Syntax Checker
example of, 433–434	Cisco IOS device configuration with, 66
with Packet Tracer, 438	Cisco IOS navigation with, 55–56
router configuration, 435	default gateway configuration with, 334
subnet allocation, 433–434	nslookup command, 527
subnet IDs, 432–433	router configuration with, 323
summary of, 438	syslog, 664
subnet IDs, 410, 432–433	system speakers, 664
subnet masks, 72, 343–344	by stem speakers, so i
VLSM (variable-length subnet masking), 381–387	T
address conservation, 381–383	<u> </u>
network address assignments in, 386–387	T568A/T68B standards, 157-158
overview of, 381	tables
subnetting schemes in, 383–385	ARP (Address Resolution Protocol)
summary of, 392	displaying, 306–307
subscriber connector (SC) connectors, 161	removing entries from, 306–307
SVI (switch virtual interface), 664	binary positional value, 182–186
SVIs (switch virtual interfaces), 74	CAM (content addressable memory), 649
swarms, 514	MAC (media access control) address, 248–254
switch fabric, 664	on connected switches. 252

definition of, 656	network layer. See also IP (Internet Protocol)
frame filtering, 252–253	addresses
switch fundamentals, 248-249	basic operations of, 268–269
switch learning and forwarding, 248–249	characteristics of, 268–274, 292
viewing, 254	hops, 269
routing, 283–284, 286–287, 290–291	host communication, 281–284
TCP (Transmission Control Protocol), 102	routing, 285–291
applications using, 472–473	OSI model compared to, 115–116
congestion avoidance, 493	overview of, 114
connection establishment, 483–484	Packet Tracer simulation, 116
data loss and retransmission, 486-487	physical layer. See also copper cabling; fiber-optic
definition of, 665	cabling
features of, 470–471	characteristics of, 141–146, 168
flow control, 471, 490-494	fiber-optic cabling, 158–164
headers, 471–472	purpose of, 138–140
MSS (maximum segment size), 491–492	summary of, 168
packet delivery, 486–487	wireless media, 164–167, 169–170
reliability of, 467–468, 486–490, 500–501	presentation layer, 508–510
server processes, 480–483	session layer, 508–510
session termination, 484–485	summary of, 131
summary of, 499	transport layer, 102
three-way handshake, 485–486	technological vulnerabilities, 543
UDP (User Datagram Protocol) compared to,	Telecommunications Industry Association (TIA),
469–470	111, 664
window size, 490–491	Telecommunications Industry Association/Electronic
TCP/IP (Transmission Control Protocol/Internet	Industries Association (TIA/EIA), 141
Protocol) model	Telnet, 50, 479, 580, 664
application layer	Tera Term, 50, 60
client-server model, 511–512	terabits per second, 145
definition of, 508	terminal emulation programs, 50-52, 664
email protocols, 518–521	terminal monitor command, 615-616
file sharing services, 530–533	test-net addresses, 665
IP addressing services, 521–530	text files, capturing configuration to, 68-71
overview of, 101–102	TFTP (Trivial File Transfer Protocol), 101, 479, 511,
peer-to-peer applications, 513–515	665
peer-to-peer networks, 512–513	threat actors, 33, 542
protocols, 508–511	threats, 33-34, 542-543, 565
purpose of, 508	three-way handshake, 665
summary of, 534	three-way handshake (TCP), 485-486
web protocols, 515–518	throughput, 146, 665
benefits of using, 112	TIA (Telecommunications Industry Association),
communication process in, 103–107	111, 141, 664
definition of, 98, 664	Time Exceeded messages, 446
internet layer, 102–103	timeout, response, 92
network access layer, 103	Time-to-Live (TTL) field, 275, 446, 453, 665

timing messages, 92–93	netstat command, 479–480
Token Ring LAN technologies, 214, 217	socket pairs, 477–478
top-level domains, 525	well-known, 479
topologies	protocols, 467
data link layer, 209-220	responsibilities of, 463–466
access control methods, 216–217	role of, 462
contention-based access, 216-220	segments in, 463, 468
controlled access, 217	TCP (Transmission Control Protocol)
data link frame, 229	applications using, 472–473
full-duplex communication, 215–216, 653	congestion avoidance, 493
half-duplex communication, 215, 653	connection establishment, 483–484
LAN (local area network), 213–214	data loss and retransmission, 489
physical/logical, 209–211	features of, 470–471
summary of, 228	flow control, 471, 490–494
WAN (wide area network), 211–213	headers, 471–472
definition of, 665	MSS (maximum segment size), 491–492
small business networks, 572–573. See also small	packet delivery, 486–487
business network management	reliability of, 467–468, 486–490, 500–501
topology diagrams, 8–11	server processes, 480–483
definition of, 10	session termination, 484–485
logical, 10–11	summary of, 499
network symbols for, 8–10	three-way handshake, 485–486
physical, 10	UDP (User Datagram Protocol) compared to,
ToS (Type of Service) field, 275	469–471
traceroute command	window size, 490–491
definition of, 665	UDP (User Datagram Protocol)
IOS command syntax, 57	applications using, 475–476
small business network verification with, 590–594	client processes, 495–498
summary of, 454–455	datagram reassembly, 494
testing network connectivity with, 452–453, 455	features of, 473–474
tracert command, 590-593	headers, 474
Traffic Class field (IPv6 packets), 280	overview of, 473
traffic management, 577–578	reliability of, 468–470, 494
traffice prioritization, 665	server processes, 495
translation, 400-401	summary of, 499, 501
Transmission Control Protocol. See TCP (Transmis-	TCP (Transmission Control Protocol) compared
sion Control Protocol)	to, 469–470
transport input command, 320, 562	Trivial File Transfer Protocol (TFTP), 101, 479,
transport input ssh command, 563	511, 665
transport layer	Trojan horses, 33, 547, 665
definition of, 113, 114, 462	troubleshooting
overview of, 102	default gateways, 334
port numbers	definition of, 665
definition of, 465	small business networks, 611–623
groups of, 478	basic approach, 612–613
multiple separation communications with, 476	debug command, 613–615, 616

default gateway issues, 619-620 unspecified addresses, 666 DNS issues, 621-623 unused host IPv4 addresses, minimizing, 377–378 unused services, disabling, 563-564 duplex operation, 617 IP addressing on end devices, 619 updates, security, 554 uploads, 512 IP addressing on IOS devices, 618 mismatch issues, 617 URG flag, 486 Urgent field (TCP headers), 472 resolution versus escalation in, 613 URLs (uniform resource locators), 515, 557 summary of, 626-627 terminal monitor command, 615-616 User Datagram Protocol. See UDP (User Datagram trust exploitation, 548-549 Protocol) TTL (Time-to-Live) field, 275, 446, 453, 665 user executive mode, 53, 666 user passwords. See passwords tunneling, 400, 665 twisted-pair. See STP (shielded twisted pair); UTP username command, 562 (unshielded twisted pair) uTorrent, 514 Type of Service (ToS) field (IPv4 packets), 275 UTP (unshielded twisted pair), 152–158 Type/Length field (Ethernet frames), 239 connectors, 153-156 crossover, 157 definition of, 148-150, 666 U properties of, 152–153 standards, 153-156 **UDP** (User Datagram Protocol) applications using, 475-476 straight-through, 157 summary of, 169 client processes, 495–498 T568A/T68B standards, 157-158 datagram reassembly, 494 definition of, 102, 666 features of, 473-474 headers, 474 overview of, 473 variable-length subnet masking. See VLSM reliability of, 468-470, 494 (variable-length subnet masking) verification. See also configuration server processes, 495 summary of, 499, 501 of device connectivity, 78, 80 TCP (Transmission Control Protocol) compared to, of IP (Internet Protocol) configuration, 77 469-470 of IPv6 addressing, 427–430 of router interfaces, 325-330 undebug command, 614 unicast, 93 show interfaces command, 328 IPv4, 349–350, 390 show ip interface brief command, 326 IPv6, 406, 407-408, 436-437 show ip interface command, 329 show ip route command, 327 MAC addresses, 244–245 show ipv6 interface brief command, 326-327 unknown, 250 unicast transmission show ipv6 interface command, 330 show ipv6 route command, 327-328 definition of, 665 unknown, 666 of small business network connectivity, 586–596 network baselines, 593-596 uniform resource locators (URLs), 515, 557 ping command, 586-590 unique local addresses, 408, 665-666 summary of, 624 unknown unicast, 250, 666 unshielded twisted pair. See UTP (unshielded twisted traceroute command, 590-594

pair) cable

tracert command, 590-593

web pages, opening, 515–517

HTTPS (HTTP Secure), 515-518

HTTP (Hypertext Transfer Protocol), 516–518

web protocols, 515–518

summary of, 534

Version field web servers, 5, 580 IPv4 packets, 275 well-known IPv6 multicast addresses, 430-431, 667 IPv6 packets, 280 well-known port number, 479 video, file formats for, 509 whois command, 547 video applications, 29, 582 wide area networks. See WANs (wide area networks) virtual circuits, 666 Wi-Fi, 165-166, 169-170, 667 virtual classrooms, 666 Wi-Fi Alliance, 165–166, 169–170 virtual private networks (VPNs), 35 Wi-Fi analyzer, 667 virtual terminal (vty), 64 WiMAX, 166, 169-170, 667 virtualization, 666 window size, 472, 490-491, 667 viruses, 33, 546, 666 Window Size field (TCP headers), 472 VLANs (virtual local area networks), 666 Windows computers VLSM (variable-length subnet masking), 381-387 ARP tables, displaying, 307 address conservation, 381-383, 385 Data Usage tool, 585 definition of, 666 dynamic LLAs (link-local addresses) on, 425-426 network address assignments in, 386-387 IP (Internet Protocol) configuration on, 596–598 overview of, 381 wireless access points, 138, 166, 667 summary of, 392 wireless internet service providers (WISPs), voice applications, 582 32,668 voice over IP (VoIP), 666–667 wireless LANs (WLANs), 103, 166-167, 234, 668 VoIP (voice over IP), 469, 582, 666-667 wireless media, 164–167 volatile memory, 667 properties of, 164–165 VPNs (virtual private networks), 35 types of, 165-166 vty (virtual terminal), 64, 666 wireless LANs (WLANs), 166-167 vulnerabilities, 543-544 wireless mesh network, 668 wireless network interface card (NIC), 668 wireless networks, 32 W wireless routers, 668 WANs (wide area networks), 14-15 Wireshark, 129, 280, 583-584 WISPs (wireless internet service providers), 32, 668 definition of, 14-15, 667 topologies, 211–213 WLANs (wireless LANs), 103, 166-167, 234, 668 bub-and-spoke, 211-212 WMN (wireless mesh network), 668 mesh, 212 Worldwide Interoperability for Microware Access point-to-point, 211, 213 (WiMAX), 667 WAN frames, 225–226 Worldwide Interoperability for Microwave Access WAPs (wireless access points), 138, 166, 667 (WiMAX), 166 weak passwords, 559 worms, 33, 547, 668 web browsers, 515-517

X-Y-Z

X.25, 225 zero-day attacks, 33 Zigbee, 166, 169–170, 668