

PLANNING OPTIMIZATION

Approximation algorithms

ONE LOVE. ONE FUTURE.

CONTENT

- Overview
- Knapsack problem
- TSP problem

Overview

- Algorithms with polynomial time complexity
- Find approximate solutions to optimization problems: the distances of the solutions found to optimal solutions can be probably guaranteed.
- Notation
 - Optimal objective value is f*
 - Objective value of the solution found by the approximation algorithm is f
- Maximization problems
 - We can prove that: $f \ge \alpha f^*$ in which α is a positive constant less than 1
- Minimization problems
 - We can prove that: $f \leq \alpha f^*$ in which α is a positive constant greater than 1

- There are n items $A = \{1, 2, ..., n\}$ in which item i has weight W_i and value C_i (i = 1, 2, ..., n). Find a subset of A such that the sum of weights of items is less than or equal to B and the sum of values is maximal.
- Let S be a solution to the problem (S is a subset of A). Let $f(S) = \sum_{i \in S} C_i$ be the value of the solution S
- Let S^* be an optimal solution and $f^* = f(S^*)$ be the optimal objective value
- Consider 2 algorithms running on 2 sorted list of items:
 - Sort in non-increasing order of values
 - Sort in non-increasing order of the fractions of values over the weights


```
GREEDY-1 () {
  (\{C_1, W_1\}, \{C_2, W_2\}, \dots, \{C_n, W_n\}) is the sorted list in which: C_1 \ge C_2 \ge \dots \ge C_n;
   S = \{\};
  for i = 1 to n do {
     if W_i > B then break;
     S = S \cup \{i\}; B = B - W_i;
  return S;
```

```
GREEDY-2 () {
   (\{C_1, W_1\}, \{C_2, W_2\}, \dots, \{C_n, W_n\}) is the sorted list in which: \frac{C_1}{W_1} \ge \frac{C_2}{W_2} \ge \dots \ge \frac{C_n}{W_n};
   S = \{\};
   for i = 1 to n do {
      if W_i > B then break;
      S = S \cup \{i\}; B = B - W_i;
   return S;
```


- There are n items $A = \{1, 2, ..., n\}$ in which item i has weight W_i and value C_i (i = 1, 2, ..., n). Find a subset of A such that the sum of weights of items is less than or equal to B and the sum of values is maximal.
- Approximation algorithms
 - Let S_1 and S_2 be the solutions returned by GREEDY-1 and GREEDY-2
 - Notation: $f = \max\{f(S_1), f(S_2)\}$
 - We have $f \ge \frac{1}{2}f^*$

- Proof
- Consider the linear program below:

$$f(X) = C_1 X_1 + C_2 X_2 + \dots + C_n X_n \rightarrow \max$$

s.t. $W_1 X_1 + W_2 X_2 + \dots + W_n X_n \leq B$
 $0 \leq X_1, X_2, \dots, X_n \leq 1$

Simplex table

X ₁	X ₂	•	X _n	X _{n+1}	X _{n+2}	•••	X _{2n+1}	Z	RHS
W_1	W ₂	• • •	W_n	1	0		0	0	В
1	0		0	0	1		0	0	1
0	1		0	0	0		0	0	1
•••									•••
0	0		1	0	0		1	0	1
-C ₁	-C ₂		-C _n	0	0	0	0	1	0

	X ₁	X ₂	• • •	X _n	<i>X</i> _{n+1}	X _{n+2}	• • •	X _{2n+1}	Z	RHS	E
R_1	W_1	W_2	• • •	W_n	1	0	• • •	0	0	В	B/W ₁
R_2	1	0		0	0	1		0	0	1	1
R_3	0	1	• • •	0	0	0		0	0	1	8
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
R_{n+1}	0	0		1	0	0		1	0	1	∞
R_{n+2}	-C ₁	-C ₂		-C _n	0	0	0	0	1	0	

Select column 1, suppose $B \ge W_1 \rightarrow$ select row R₂: R₁ = R₁ - W₁R₂; $R_{n+2} = R_{n+2} + C_1R_2$

	X ₁	X_2	• • •	X_n	X_{n+1}	X_{n+2}	• • •	X _{2n+1}	Z	RHS	E
	0	W_2	• • •	W_n	1	-W ₁	• • •	0	0	B-W ₁	
	1	0		0	0	1		0	0	1	
	0	1	• • •	0	0	0	• • •	0	0	1	
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
1	0	0		1	0	0		1	0	1	
2	0	-C ₂	• • •	-C _n	0	C_1	0	0	1	C ₁	

 R_{n+1} R_{n+2}

 R_1

 R_3

ĐẠI HỌC BÁCH KHOA HÀ NỘI

	X ₁	X ₂	• • •	X _n	X _{n+1}	X _{n+2}	• • •	X _{2n+1}	Z	RHS	E
R_1	0	W_2	• • •	W_n	1	-W ₁	• • •	0	0	B-W ₁	$(B-W_1)/W_2$
R_2	1	0		0	0	1		0	0	1	8
R_3	0	1	• • •	0	0	0		0	0	1	1
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
R_{n+1}	0	0		1	0	0		1	0	1	8
R_{n+2}	0	-C ₂	• • •	-C _n	0	0	0	0	1	C ₁	

Select column 2, Suppose $(B-W_1) \ge W_2 \rightarrow$ select row R_3 : $R_1 = R_1 - W_2R_3$; $R_{n+2} = R_{n+2} + C_2R_3$

	X ₁	X_2	• • •	X_n	X_{n+1}	X_{n+2}	• • •	X _{2n+1}	Z	RHS	E
R_1	0	0	• • •	W_n	1	-W ₁	• • •	0	0	$B - W_1 - W_2$	
R_2	1	0		0	0	1		0	0	1	
R_3	0	1	• • •	0	0	0	• • •	0	0	1	
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
R_{n+1}	0	0		1	0	0		1	0	1	
R_{n+2}	0	0	• • •	-C _n	0	C ₁	C_2	0	1	$C_1 + C_2$	

	L
R_1	
R_2	
R_3	Ī
R_4	ĺ
R_{n+1}	l
R_{n+2}	l
	L

X ₁	X ₂	X ₃	• • •	X _n	X _{n+1}	X _{n+2}	• • •	X _{2n+1}	Z	RHS	E
0	0	W3	• • •	W_n	1	-W ₁	• • •	0	0	$B - W_1 - W_2$	$(B - W_1 - W_2) / W_3$
1	0	0	• • •	0	0	1		0	0	1	∞
0	1	0	• • •	0	0	0	• •	0	0	1	∞
0	0	1		0	0	0	•••	•••	•••	1	1
0	0	0		1	0	0		1	•••	•••	∞
0	0	-C ₃	• • •	-C _n	0	C ₁	C_2	0	1	$C_1 + C_2$	

Select column 3, suppose $(B-W_1-W_2) < W_3 \rightarrow$ select row R_1 : $R_1 = R_1/W_3$; $R_{n+2} = R_{n+2} + C_3R_1/W_3$

R_1	
R_2	
R_3	
R_4	
R_{n+1}	
R_{n+2}	

	X ₁	X ₂	X ₃	X4	•••	X _n	X _{n+1}	X _{n+2}	• • •	X _{2n+1}	Z	RHS
	0	0	1	W_4/W_3	•••	W_n/W_3	1	-W ₁		0	0	$(B-W_1-W_2)/W_3$
	1	0	0	0	•••	0	0	1		0	0	1
	0	1	0	0	•••	0	0	0		0	0	1
	0	0	0	$-W_4/W_3$	•••	$-W_n/W_3$	0	0	•••	•••	•••	
ı [••	••	••	•••	•••	1	0	0		1	0	1
2	0	0	0	$-C_4+W_4*C_3/W_3$	•••	$-C_n+W_n*C_3/W_3$	0	C ₁	C_2	0	1	$C_1 + C_2$

	X ₁	X_2	X_3	X4	•••	X_n	X _{n+1}	X_{n+2}	• • •	X _{2n+1}	Z	RHS
R_1	0	0	1	W_4/W_3	•••	W_n/W_3	1	-W ₁	•	0	0	$(B-W_1-W_2)/W_3$
R_2	1	0	0	0	•••	0	0	1		0	0	1
R_3	0	1	0	0	•••	0	0	0	• • •	0	0	1
R_4	0	0	0	$-W_4/W_3$	•••	$-W_n/W_3$	0	0	•••	•••	•••	•••
R_{n+1}	••	••		• • •	•••	1	0	0		1	0	1
R_{n+2}	0	0	0	$-C_4+W_4*C_3/W_3$	•••	$-C_n+W_n*C_3/W_3$	0	C ₁	C_2	0	1	$C_1 + C_2$

- Values of the last row are non-negative, the table corresponds to an optimal solution: $X_1 = 1$, $X_2 = 1$, $X_3 = (B-W_1-W_2)/W_3$, $X_4 = ... = X_n = 0$.
- Generality: select column from left to right (from columns 1, 2, 3, . . .). Suppose k is the first index (iteration) where $B-W_1-W_2-\ldots-W_{k-1} < W_k$. An optimal solution to the linear problem is: $X_1 = X_2 = \ldots = X_{k-1} = 1.$, $X_k = (B-W_1-W_2-\ldots-W_{k-1})/W_k$, $X_{k+1} = \ldots = X_n = 0$ optimal objective value is $C_1 + C_2 + \ldots + \alpha C_k$, với $\alpha = (B-W_1-W_2-\ldots-W_{k-1})/W_k$, $(\alpha < 1)$

BÀI TOÁN KNAPSACK

- The given linear program is a relaxation of the original Knapsack problem: optimal objective value of the Knapsack problem is $f^* \le C_1 + C_2 + \ldots + \alpha C_k$. Objective value of the solution returned by the approximation is $f(S_1) = C_1 + C_2 + \ldots + C_{k-1}$.
- We have $f^* \le C_1 + C_2 + \ldots + \alpha C_k < C_1 + C_2 + \ldots + C_{k-1} + C_k = f(S_1) + C_k$. Therefore, $f(S_1) > f^*/2$ or $f(S_2) \ge C_k > f^*/2$.
- Hence $f = \max\{f(S_1), f(S_2)\} > f^*/2$.

TRAVELLING SALESMAN PROBLEM - TSP

- Let G = (V, E) be a complete graph in which $V = \{1, 2, ..., n\}$ is the set of nodes. Edge (u,v) has weight c(u,v). Find the Hamilton cycle G such that the total weights is minimal.
- Approximation algorithm:
 - Let T(G) be a minimum spanning tree of G.
 - Duplicate the edges of $T \rightarrow$ we obtain an Euler graph with the Euler cycle E(T).
 - Let S^0 be the sequence (pairwise distinct) of nodes visited when travelling along E(T). The addition of the first node of S^0 to the end of S^0 yields a Hamilton cycle S which is the solution of the approximation algorithm.
 - Example
 - E(T) = 1, 2, 1, 5, 1, 3, 4, 3, 1
 - $S^0 = 1, 2, 5, 3, 4$
 - S = 1, 2, 5, 3, 4, 1

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!