Xiangyu Li

Tel +1 224 417 5336 | https://xiangyuli2027.github.io | xiangyuli2027@u.northwestern.edu

EDUCATION

Northwestern University

Ph.D. student in Transportation Systems Analysis & Planning

Master of Science in Computer Engineering

Sep.2023 - Present Mar.2024 - Jun.2025 (Expected)

• GPA: 3.8/4.0

• Core Courses: Deep Reinforcement Learning (4.0/4.0), Deep Learning: Foundations, Applications, and Algorithms (4.0/4.0), Transportation Systems Analysis (4.0/4.0, rank 1/20), Transportation Systems Operations (4.0/4.0), Transportation Systems Planning and Management (4.0/4.0), Travel Demand Analysis and Forecasting (4.0/4.0), Infrastructure System Analysis (4.0/4.0), Introduction to Applied Econometrics (4.0/4.0)

University of California, Berkeley

Berkeley, CA, USA

Evanston, IL, USA

Aug.2022 - Jul.2023

Master of Transportation Engineering

• GPA: **3.81/4.0**

• Core Courses: Operation of Transportation Facilities (4.0/4.0, rank 1/50), Behavioral Modeling for Planning and Policy (4.0/4.0), System Analysis in Transportation (96/100)

Beijing Jiaotong University

Beijing, China

Aug.2018 - Jul.2022

Bachelor of Transportation Engineering
• GPA: 3.86/4.0 (Top 2%)

• Core Courses: Operational Research in Management (95/100), Traffic Safety Engineering (97/100), Urban Public Transportation (95/100), Traffic Management and Control (92/100), System Engineering (4.0/4.0)

Publications & Manuscripts

- [1] Li, X.Y., Liu, P.Y., Mahmassani, H.S., & Chen, Y. An Adaptive Longitudinal Driving Assistance System (ALDAS) with Reinforcement Learning. *IEEE Transactions on Intelligent Transportation Systems* (Under review).[PDF][Code]
- [2] Li, X.Y., Cheng, X., & Chen, Y. Large Language Model-Enhanced Multi-Level Feature Fusion Network for Autonomous Driving Behavior Classification. *IEEE Transactions on Intelligent Transportation Systems* (Under review). [PDF] [Code]
- [3] Li, X.Y., Yin, Z.W., Luo, S.D., & Hansen, M. Impact of Intracity Traffic Congestion on People's Choices of Housing, Workplace and Commute: Social Optimal Parsimonious Continuum Approach. Transportation Research Part E: Logistics and Transportation Review (Under review). [PDF]
- [4] Li, X.Y., Jiao, R.C., & Shi, X.Y. Self-play Makes Large Language Model a Generalizable Safe and Strategic Driver. Working Paper. [Report] [Code]
- [5] **Li, X.Y.**, Gomes, G., & Wu, Y.Z. Collaborative Traffic Signal Control and Path Recommendations Considering PM2.5 Exposure Using Reinforcement Learning. *Working Paper*. [Report] [Code]
- [6] Luo, S.D., Li, X.Y., Wu, X.Y., Yin, Z.W., Xu, S., & Kang, L.J. (2022). Modeling Resident Choices of Residence, Work Locations and Commutes in a Two-city System for Optimal Urban Design. *Journal of Tsinghua University (Science and Technology)*, 62(7), 1186-1194. [PDF]
- [7] Li, X.Y. Finite Element Optimization Analysis of CFRP Reinforced Box Girder Bridge Under Traffic Load. In 2021 4th International Symposium on Traffic Transportation and Civil Architecture (pp. 89-94). IEEE. [PDF]
- [8] **Li, X.Y.**, & Xie, M. Short-term passenger volume forecast and model analysis of Beijing public transport. In *Fifth International Conference on Traffic Engineering and Transportation System (ICTETS 2021)* (Vol. 12058, pp. 1423-1429). SPIE. [PDF]

AWARDS

2023	McCormick Fellowships (Full-tuition scholarship and stipend)	Northwestern University
$\boldsymbol{2022}$	Departmental Scholarship (15000 dollars)	University of California, Berkeley
2021	Excellent Scholarship for Undergraduate Discipline Competition	Beijing Jiaotong University
2021	Second Prize, 16th National Competition of Transport Science and	China Communications and Trans-
	Technology	portation of Association
$\boldsymbol{2021}$	University-Level Merit Scholarship	Beijing Jiaotong University
2020	University-Level Merit Scholarship	Beijing Jiaotong University
2019	University-Level Merit Scholarship	Beijing Jiaotong University

Northwestern University, Dept. of Electrical and Computer Engineering Research Assistant to Professor Qi Zhu

Evanston, IL, USA Sep. 2024 - Present

Project: Self-play Makes Large Language Model a Generalizable Safe and Strategic Driver.

- Connect LLM with a simulation environment to allow LLM to control vehicles based on prompt and responses
- Generate prompt to describe driving situation and let LLM to make decisions
- Using LLM's decision and reward to fine tune LLM for reward-maximization using reinforcement learning
- Evaluate LLM's driving decision in various driving situations described by texts for generalizability

Northwestern University, Transportation Center

Evanston, IL, USA

Research Assistant to Professor Ying Chen

May. 2024 - Oct. 2024

Project: LLM-Enhanced Multi-Level Feature Fusion Network for Autonomous Driving Behavior Classification

- Defined 30+ features from time-series autonomous driving data to characterize the driving behavior.
- Utilized GPT-4 with dedicated prompt based on extracted features to obtain summary texts of driving behavior.
- Encoded summary texts with the RoBERT model to obtain its embedding.
- Obtained time-series driving behavior image embeddings using a multi-scale dilated convolutional network.
- Fused text and image embeddings into a multimodal feature vector using a weighted attention mechanism.
- Outperformed benchmark models (e.g., GAF-ViT) by 2% in accuracy and 5% in F1-score

Northwestern University, Transportation Center

Evanston, IL, USA

Research Assistant to Professor Hani S Mahmassani

Nov. 2023 - Jul. 2024

Project: An Adaptive Longitudinal Driving Assistance System based on Reinforcement Learning

- Built a cyber-physical system to train an autonomous driving strategy that aligns with human preferences.
- Used the Deep Deterministic Policy Gradient (DDPG) algorithm to train car-following strategies.
- Collected the desired car-following patterns of 13 drivers to guide DDPG's reward function.
- The trained DDPG model outperformed LSTM, RNN, and CACC in efficiency, comfort, and fuel consumption.
- The DDPG model significantly decreases human takeover time during the testing driving experiment.

University of California, Berkeley, Dept. of Mechanical Engineering

Berkeley, CA, USA

Research Assistant to Professor Gabriel Gomes

Aug. 2022 - May. 2023

Project: Collaborative Traffic Lights Control and Path Recommendations Using Reinforcement Learning

- Built a city-scale simulation platform based on simulation of urban mobility (SUMO).
- Proposed a traffic light control algorithm using deep Q-learning network (DQN) and Actor-to-critic (A2C).
- Proposed a real-time path recommendation algorithm for commuters using A2C.
- Collaboratively trained two agents to minimize generalized system cost incorporating PM2.5 exposure.

University of California, Berkeley, Institute of Transportation Studies Research Assistant to Professor Mark Hansen

Berkeley, CA, USA

Jan. 2021 - Feb. 2023

Project: Game Theoretical Analysis for a Two-city Economic System

- Designed a system composed of two ring-radial cities connected by a high-speed rail with changing congestion.
- Derived the Nash Equilibrium (NE) state of people's work and commute pattern distributions.
- Proved that no big city residents will choose to work in the small city under the NE.
- Derived optimal government interventions on population size control to maximize social welfare.
- Two first-authored papers with one submitted to Transportation Research Part E and another published in Journal of Tsinghua University.

Beijing Jiaotong University, Dept. of Transportation Engineering Research Assistant to Professor Yizheng Wu

Beijing, China

Sep. 2021 - May. 2022

Project: Individual Particulate Matter Exposure for Urban Commuters

- Collected inhaled PM2.5 per second with a portable monitor under different travel modes (over 100 hours).
- Quantified the relationship between inhaled PM2.5 and external factors (e.g., gender, age, respiration rate).
- Quantified impacts of PM2.5 on population mortality rate and disability adjusted life year for different regions.
- Built an inhaled PM2.5 prediction model based on travel characteristics and simulated the PM2.5 exposure.
- Wrote a thesis and obtained Outstanding Undergraduate Graduation Thesis Award (top 5%).

Computer Skills

Proficient: Python, PyTorch, TensorFlow, Pandas, Numpy, SUMO, MATLAB, Carla, Vissim, ArcGIS, Synchro

Familiar: C/C++, Stata, R