LG311E Formal Languages and Automa

Pushdown Automata

BLG311E Formal Languages and Automata

Pushdown Automata(PDA) and Recognizing Context-free Languages A.Emre Harmancı Osman Kaan Erol Tolga Ovatman

2012

It is not possible to design finite automata for every context-free language. For instance the recognizer for the language $\omega \omega^R ||omega \in \Sigma^*$ should contain a memory. We can design a pushdown automaton for every context-free language.

Pushdown Automata

A pushdown automaton is similar in some respects to a finite automaton but has an auxiliary memory that operates according to the rules of a stack. The default mode in a pushdown automaton (PDA) is to allow nondeter- minism, and unlike the case of finite automata, the nondeterminism cannot always be eliminated.

BLCS/1 F Formal Languages and Automata A b a a b b a b b a b Finite control Stack a

PDAs are not deterministic. Input strip is only used to read input while the stack can be written and read from.

Pushdown Automata

Formal Definition of a PDA

A pushdown automaton (PDA) is a 6-tuple $M=(S,\Sigma,\Gamma,\Delta,s_0,F)$, where:

- S: A finite, non-empty set of states where s ∈ S.
- \blacksquare Σ : Input alphabet (a finite, non-empty set of symbols)
- Γ: Stack alphabet
- s₀ inS: An initial state, an element of S.
- δ : The state-transition relation $\delta \subseteq (S \times \Sigma^* \times \Gamma^*) \times (S \times \Gamma^*)$
- F: The set of final states where $F \subseteq S$.

BLG311E Formal Languages and Automata

An example

```
\begin{split} M &= (S, \Sigma, \Gamma, \Delta, s_0, F) \\ S &= \{s_0, f\}, \ \Sigma = \{a, b, c\}, \ \Gamma = \{a, b\}, \ F = \{f\} \\ \Delta &= \{[s, a, \Lambda), (s, a], [(s, b, \Lambda), (s, b)], [(s, c, \Lambda), (f, \Lambda)], \\ [(f, a, a), (f, \Lambda)], [(f, b, b), (f, \Lambda)] \} \end{split}
                                                                                                                            [(s,a,\Lambda),(s,a)]
                                                                                                                                                 [(s,b,\Lambda),(s,b)]
                                                                                                                                                                    (s,b,\Lambda),(s,b)
                                                                                                                                                                                          [(s,c,\Lambda),(f,\Lambda)]
                                                                                                                                                                                                             [(f,b,b),(f,\Lambda)]
                                                                                                                                                                                                                                                      [\ (f,a,a),(f,\Lambda)\ ]
                                                                                                                                                                                                                                 [(f,b,b),(f,\Lambda)]
                                                                                                           trans. rule
                                                                                                         stack
                                                                                                                                                                                       bba
bba
ba
                                                                                                                                                                  ba
                                                                                                                               ч
(\omega \subset \omega^R | \omega \in \{a,b\}^*)
                                                                                                                           abb c bba
                                                                                                                                                 bb c bba
                                                                                                                                                                     b c bba
                                                                                                                                                                                        c bba
                                                                                                           tape
                                                                                                                                                                                                             bba
                                                                                                                                                                                                                                 ba
                                                                                                           state
                                                                                                                               S
                                                                                                                                                  S
                                                                                                                                                                     S
                                                                                                                                                                                        S
```

-Pushdown Automata

An example

trans. rule	$[(s,a,\Lambda),(s,a)]$	$[(s,b,\Lambda),(s,b)]$	$[(s,b,\Lambda),(s,b)]$	$[(s,c,\Lambda),(f,\Lambda)]$	[(f,b,b),(f,A)]	$[(f,b,b),(f,\Lambda)]$	$[(f,a,a),(f,\Lambda)]$		> b c	
stack	<	В	ba	bba	bba	ba	В	<	b < S	
tape	abb c bba	bb c bba	b c bba	c bba	ppa	ba	ದ	~	$G = (N, \Sigma, n_0, \rightarrow)$ $N = \{S\}$ $\Sigma = \{a, b, c\}$ $n_0 = S$ $< S > ::= a < S > b c$	
state	S	S	s	S	-	—	-		G = (N, N) $N = \{S\}$ $\Sigma = \{a, b\}$ $N = \{S\}$ $N = \{S\}$ $N = \{S\}$	

Definitions

Push: To add a symbol to the stack $[(p,u,\Lambda),(q,a)]$

Pop: To remove a symbol from the stack [(p,u,a),(q,a)]

Configuration: An element of $S \times \Sigma^* \times \Gamma^*$. For instance (q, xyz, abc)where a is the top of the stack, c is the bottom of the stack

Instantaneous description (to yield in one step):

Let $[(p,u,eta),(q,\gamma)]\in \Delta$ and $orall x\in \Sigma^*\wedge orall lpha\in \Gamma^*$

 $(p,ux,etalpha)\vdash_M(q,x,\gammalpha)$ Here u is read from the stack while γ is written to the stack.

Definitions

 $(p,ux,\beta\alpha)\vdash_M (q,x,\gamma\alpha)$

Let \vdash_M^* be the reflexive transitive closure of \vdash_M and let $\omega \in \Sigma^*$ and s_0 be the initial state. For M automaton to accept ω string:

 $(s,\omega,\Lambda)dash_M^*(p,\Lambda,\Lambda)$ and $p\in F$

 $C_0=(s,oldsymbol{\omega},\Lambda)$ and $C_n=(p,k,\Lambda)$ where

 $C_0 \vdash_M C_1 \vdash_M \ldots \vdash_M C_{n-1} \vdash_M C_n$

This operation is called computation of automaton M, this computationinvloves n steps.

Let L(M) be the set of string accepted by M.

 $L(M) = \{ \boldsymbol{\omega} | (s, \boldsymbol{\omega}, \Lambda) \vdash_{M}^{*} (p, \Lambda, \Lambda) \land p \in F \}$

Example 1

$$\begin{split} & \emptyset \in \{\{a,b\}^* | \#(a) = \#(b)\} \\ & M = (S, \Sigma, \Gamma, \Delta, so, F) \\ & \Delta = \{[(s, \Lambda, \Lambda), (q, c)], [(q, a, c), (q, ac)], [(q, a, q, (q, a)], [(q, a, b), (q, A)], [(q, b, c), (q, bc)], [(q, b, b), (q, b)], [(q, b, c), (q, b)], [(q, b, b), (q, b, b)], [(q, b, a, c), (q, A)], [(q, b, a, c), (q, A)], [(q, b, c), (q, A)], [(q, b, c), (q, A)], [(q, b, a, c), (q, A)], [(q, b, a$$

stack tape state

trans. rule < abbbabaa

[(q,a,c),(q,ac)] [(q,b,a),(q,A)] [(q,b,c),(q,bc)] [(q,b,b),(q,bb)] [(q,a,b),(q,A)] [(q,a,b),(q,A)] [(q,a,b),(q,A)] $[(s,\Lambda,\Lambda),(q,c)]$ c ac bbc bbc bbc bc bc o < abbbabaa bbbabaa bbabaa babaa abaa baa aa Ø < <

Example 1

$$\omega \in \{\{a,b\}^* | \#(a) = \#(b)\}\$$

 $M = (S, \Sigma, \Gamma, \Delta, s_0, F)$

$$\begin{split} & \omega \in \{\{a,b\}^* \, | \#(a) = \#(b)\} \\ & M = (\mathcal{S}, \Gamma, \Lambda, \mathcal{S}, \mathcal{K}, F) \\ & \Delta = \{[(s,\Lambda,\Lambda), (q,c)], [(q,a,c), (q,ac)], [(q,a,a), (q,aa)], \\ & [(q,a,b), (q,\Lambda)], [(q,b,c), (q,bc)], [(q,b,b), (q,bb)], \\ & [(q,b,a), (q,\Lambda)], [(q,\Lambda,c), (f,\Lambda)] \} \end{split}$$

 $G = (N, \Sigma, n_0, \mapsto)$ $N = \{s\}$ $\Sigma = \{a, b\}$ $n_0 = s$

< s > ::= a < s > b | b < S > a | < s > c > | A

Example 2

$$\begin{split} & \omega \in \{xx^R|x \in \{a,b\}^*\} \\ & M = (S,\Sigma,\Gamma,\Delta,s_0,F) \\ & \Delta \\ & \{[(s,a,\Lambda),(s,a)],[(s,b,\Lambda),(s,b)],[(s,\Lambda,\Lambda),(f,\Lambda)],[(f,a,a),(f,\Lambda)],[(f,b,b),(f,\Lambda)]\} \end{split}$$
trans. rule stack tape state

 $[(s, \Lambda, \Lambda), (f, \Lambda)]$ $[(s,\Lambda,\Lambda),(f,\Lambda)]$ $[(s,a,\Lambda),(s,a)]$ $[(s,b,\Lambda),(s,b)]$ $[(s,b,\Lambda),(s,b)]$ bba bba bba a ba < abbbba bbbba bbba bba bba S S S +

 $[(\mathsf{f},\mathsf{b},\mathsf{b}),(\mathsf{f},\Lambda)]$ $[(\mathsf{f},\mathsf{b},\mathsf{b}),(\mathsf{f},\Lambda)]$ $[(f,a,a),(f,\Lambda)]$

bba

ba

ba

Example 2

$$\begin{aligned} & \omega \in \{xx^R | x \in \{a,b\}^*\} \\ & M = (\mathcal{S}, \Sigma, \Gamma, \Delta, s_0, F) \\ & \Delta = \end{aligned}$$

 $\{[(s,a,\Lambda),(s,a)],[(s,b,\Lambda),(s,b)],[(s,\Lambda,\Lambda),(f,\Lambda)],[(f,a,a),(f,\Lambda)],[(f,b,b),(f,\Lambda)]\}$

$$G=(N,\Sigma,n_0,\mapsto)$$

 $N=\{s\}$

$$G = (N, \Sigma, n_0, \mapsto)$$

 $N = \{s\}$
 $\Sigma = \{a, b\}$

$$< s > ::= a < s > a \mid b < S > b \mid aa \mid bb$$

Deterministic PDA

Deterministic PDA

- 1) $\forall s \in S \land \forall \gamma \in \Gamma$ if $\delta(s, \Lambda, \gamma) \neq \varnothing \Rightarrow \delta(s, \sigma, \gamma) = \varnothing; \forall \sigma \in \Sigma$
 - 2) If $a \in \Sigma \cup \{\Lambda\}$ then $\forall s, \forall \gamma$ and $\forall a \operatorname{Card}(\delta(s, a, \gamma)) \leq 1$
- (1) If there exists a lambda transition(yielding in one step) in a configuration no other transitions should be present for any other input. (2) There should be a unique transition for any (state,symbol,stack symbol) tuple
 - For nondeterministic PDA, the equivalence problem to
- deterministic PDA is proven to be undecidable $^{\rm I}.$ \blacksquare For instance $\omega\omega^R$ can be accepted by a non-deterministic PDA but there doesn't exist any deterministic PDA that accepts this

language.

¹An undecidable problem is a decision problem for which it is impossible to construct a single algorithm that always leads to a correct yes-or-no answer