Es un lenguaje de consulta no procedimental que describe la información deseada sin dar un procedimiento específico para obtenerla. Una consulta en el CRT se expresa como $\{t / P(t)\}$, es decir, el conjunto de todas las tuplas t, tal que el predicado P, es verdadero para t.

Dadas las relaciones r y s, la unión se expresa $\{ t / r(t) \lor s(t) \}$, la diferencia: r - s = $\{ t / r(t) \land \neg s(t) \}$

La proyección π i1,...ik (r) se expresa {t (k) / \exists u (r(u) \land t[1]=u[i1] \land ... \land t[k]=u[ik])} donde t (k) significa tuplas de grado k.

 $\exists t \in r(Q(t))$ significa «existe una tupla t en la relación r tal que el predicado Q(t) es verdadero»

Ejemplo: Encontrar los clientes que tienen una cuenta en todas las sucursales situadas en Brooklyn.

- En AR se resuelve con la operación división.
- En CRT se introducen: para todos (\forall) e implicación (=>).
- $-P \Rightarrow Q$ significa «si P es verdadera, entonces Q debe ser verdadera».
- ∀ t ∈ r(Q (t)) significa « Q es verdadera para todas las tuplas t en la relación r ».

 $\{t \mid \forall u \in \text{sucursal} \mid u \text{ [ciudad-sucursal]} = \text{"Brooklyn"} => \exists s \in \text{dep\'osito (t [nombre-cliente]} = s \text{ [nombre-cliente]} \land u \text{ [nombre-sucursal]} = s \text{[nombre-sucursal]})\}$

Definición formal de CRT

Una expresión del cálculo relacional de tuplas es de la forma $\{t / P(t)\}$, donde :

- t es una variable de tupla.
- P es una fórmula construida a partir de átomos y operadores.
- En una fórmula pueden aparecer varias variables de tuplas.
- Una variable de tupla es una variable libre si no está cuantificada por un \exists o por un \forall .
- Una variable de tupla cuantificada por un \exists o por un \forall , es una variable límite ó acotada.

Una fórmula en el CRT se compone de átomos.

Un átomo tiene una de las siguientes formas:

```
-s \in r
```

 $-s[x] \alpha u [y]$

 $-s[x] \alpha c$

Un átomo tiene una de las siguientes formas:

- s ∈ r donde s es una variable de tupla y r es una relación
- $s[x] \alpha u [y]$ donde :
 - s y u son variables de tuplas,
 - x es un atributo sobre el que s está definida,
 - y es un atributo sobre el que u está definida, y
 - α es un operador de comparación. (<, <=, =, >, >=).
 - x e y deben tener dominios cuyos miembros puedan compararse.
- $s[x] \alpha c donde$:
 - s es una variable de tupla,

- x es un atributo sobre el que s está definida,
- α es un operador de comparación, y
- c es una constante en el dominio del atributo x.

Las fórmulas se construyen a partir de átomos usando las siguientes reglas:

- Un átomo es una fórmula.
- Si P1 es una fórmula, entonces también lo son ¬ P1 y (P1)
- Si P1 y P2 son fórmulas, entonces también lo son

P1 \vee P2, P1 \wedge P2, \vee P1 => P2

• Si P1(s) es una fórmula que contiene una variable de tupla libre s, entonces también son

 $\exists s \in r (P1(s)) y \forall s \in r (P1(s))$

El CRT restringido a expresiones seguras es equivalente en poder expresivo al AR.

CRT

Lenguaje de consulta no procedimental que describe la información sin dar un procedimiento específico para obtenerla. Una consulta en CRT se expresa como $\{t \mid P(t)\}$, es decir, todas las tuplas t que cumplan el predicado P.

Dadas las relaciones r y s, la unión se expresa como $\{t / r(t) \ V \ s(t)\}\ y$ la diferencia como $\{t / r(t) \ \Lambda \neg s(t)\}$

La proyección π i1,...ik (r) se expresa {t (k) / \exists u (r(u) \land t[i1]=u[i1] \land ... \land t[ik]=u[ik])} donde t (k) significa tuplas de grado k.

 $\exists t \in r(Q(t))$ significa existe una tupla t en r tal que el predicado Q(t) es verdadero.

Ejemplo: encontrar los clientes que tienen una cuenta en todas las sucursales de Brooklyn.

- En AR se resuelve con el operador división.
- En CRT se introduce el para todos (\forall) y la implicación (=>).
- − P => Q significa «si P es verdadera, entonces Q debe ser verdadera».
- \forall t ∈ r(Q (t)) significa « Q es verdadera para todas las tuplas t en la relación r ».

Solución a la consulta:

 $\{t \mid \forall u \in \text{sucursal} \mid (u \text{ [ciudad-sucursal]} = \text{"Brooklyn"} => \exists s \in \text{dep\'osito (t [nombre-cliente]} = s \text{ [nombre-cliente]} \land u \text{ [nombre-sucursal]} = s \text{[nombre-sucursal]})\}$

Definición fomal del CRT

Una expresión del CRT es de la forma $\{t / P(t)\}$, donde :

- * t es una variable de tupla.
- * P es una fórmula construida a partir de átomos y operadores.
- * En una fórmula pueden aparecer varias variables de tupla.
- * Una variable de tupla está libre si no está cuantificada por un ∃ o por un ∀.
- * Si lo está, se llama variable límite o acotada.

Por ejemplo:

- $t \in \text{pr\'estamo } \Lambda \exists s \in \text{cliente } (t[\text{nombre-cliente}] = s[\text{nombre-cliente}])$
- t es una variable libre.
- s es una variable límite ó acotada.

Una fórmula se compone de átomos.

Un átomo tiene una de las siguientes formas :

- * s ∈ r donde s es una variable de tupla y r es una relación
- * $s[x] \alpha u [y]$ donde :
 - * s y u son variables de tupla
 - * x es un atributo sobre el que s está definido
 - * y es un atributo sobre el que u está definido
 - * α es un operador de comparación. (<, <=, =, >, >=).
 - * x e y deben tener dominios que puedan compararse.
- * $s[x] \alpha c donde$:
 - * s es una variable de tupla
 - * x es un atributo sobre el que s está definido
 - * α es un operador de comparación. (<, <=, =, >, >=).
- * c es una constante en el dominio del atributo x
- * Un átomo es una fórmula.
- * Si P1 es una fórmula, también lo son ¬P1 y (P1)
- * Si P1 y P2 son fórmulas, también lo son P1 V P2, P1 \wedge P2, y P1 => P2
- * Si P1(s) es una fórmula que contiene una variable de tupla libre s, también lo son:
- $\exists s \in r (P1(s)) y \forall s \in r (P1(s))$
- El CRT restringuido a expresiones seguras tiene un poder expresivo equivalente al AR.