Mobile Telephones

Introduction 2nd generation Future

- Introduction
 - Cells, Handoff
 - AMPs
- 2nd Generation
 - D-AMPS
 - GSM
 - CDMA
- Future
 - UMTS, CDMA2000
 - -2.5G

Physical Layer, Topic 6, Mobile Telephones

Cellular Structure

- Divide into cells
 - Frequencies: Reuse <u>frequencies</u>
 - Size <u>cells vary in size. In 1st</u>
 <u>generation 10-20km diameter</u>,
 <u>digital systems are smaller in diameter</u>
 - Capacity: To increase <u>capacity</u>
 we increase the number of cells
 - Microcells within cells
- MTSO / MSC <u>Mobile Telephone Switching</u>
 <u>Office/Mobile Switching Center</u>
 - Base stations at the center of each cell
 - Normally connected to a MTSO/MSC

Handoff

Introduction 2nd generation

Future

- The movement of users <u>requires the system to support calls</u> from cell to cell,
 - Handoff process takes <u>300msec</u>
 - Transfer call to the base station which gets the max power from the mobile phone
 - The phone may have to change channel
- Two types of handoff:
 - Soft handoff: new base station acquired before old one is dropped,
 - This provides call continuity
 - Requirements: we need to be able to tune to 2 frequencies
 - Hard handoff: <u>Old base station drops the line</u>, <u>before the</u> new one acquires it
 - Possibility of disconnection if the new BS can't acquire the call

Physical Layer, Topic 6, Mobile Telephones

AMPS (1st generation)

- FDM 832 <u>Frequency Division Multiplexing with 832 full duplex channels</u>
 - 824-849MHz & 869-894MHz
 - 4 kinds of channel:
 - Control: (base to mobile) 21 channels to manage the system,
 - Paging: (base to mobile) alert mobile users for calls,
 - Access: (bidirectional) call setup and channel assignment,
 - Data: (bidirectional) voice, fax, data
- Phone ID: <u>identified by a 32bit serial number and a 10 digit phone number</u>

AMPS (1st generation)

Introduction 2nd generation Future

- Joining a cell:
 - Control channel scan to find the one with the strongest signal
 - Broadcast its IDs
- Outgoing calls:
 - Access channel phone transmits the number to be called and its own ID on the access channel
 - Control channel <u>transmits the channel number and the phone</u> <u>switches to the relevant channel</u>
 - Collision back off and try again
- Incoming calls:
 - Paging channel <u>Phones listen to the paging channel for</u> arriving calls and switch to the channel the call is transmitted
- Problems:
 - Eavesdropping analog means anyone can tune in
 - Cloning phone id could be copied as it was transmitted on the control channel

Introduction Physical Layer, Topic 6, Mobile Telephones D-AMPS (2nd generation) 2nd generation Future Extension on AMPS. Uses the same frequencies plus 1850-1910MHz, 1930-1990MHz Compressed digitised voice using predictive modeling and a complex modulation scheme to reduce normal 56kbps PCM to 8 kbps - 3 users / 6 users with better compression using TDM TDM frame Control similar to AMPS 40 msec ■ Handoff when <u>line quality</u> Upstream 2 3 1 2 3 deteriorates Downstream MAHO Mobile Assisted HandOff 324 bit slot: 64 bits of control 101 bits of error correction 159 bits of speech data

CDMA (2nd generation)

Introduction **2nd generation** Future

- Use entire frequency range <u>for each</u> transmission
 - Need to be able to <u>tune into just one transmission</u>
- Encoding
 - Divide each bit time <u>into m short intervals</u>, <u>called chips</u>
 - Typically there are 64 or 128 chips
 - Each station has a unique chip sequence
 - Transmission
 - 1 \rightarrow Transmit its chip sequence
 - $0 \rightarrow$ Transmit the complement of the sequence

Introduction Physical Layer, Topic 6, Mobile Telephones CDMA example 2nd generation Future A: 0 0 0 1 1 0 1 1 A: (-1 -1 -1 +1 +1 -1 +1 +1) B: 0 0 1 0 1 1 1 0 B: (-1 -1 +1 -1 +1 +1 +1 -1) C: (-1 +1 -1 +1 +1 +1 -1 -1) D: (-1 +1 -1 -1 -1 -1 +1 -1) C: 0 1 0 1 1 1 0 0 D: 0 1 0 0 0 0 1 0 (b) Six examples: --1- C $S_1 = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$ $S_2 = (-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2)$ -11- B+C $S_3 = (0 \ 0 \ -2 + 2 \ 0 - 2 \ 0 + 2)$ 10-- **A** + **B** 101 - A + B + C $S_4 = (-1+1-3+3+1-1-1+1)$ 1111 A+B+C+D $S_5 = (-4 \quad 0 \quad -2 \quad 0 \quad +2 \quad 0 \quad +2 \quad -2)$ $S_6 = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0)$ 1101 $A + B + \overline{C} + D$ $S_1 \bullet C = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)/8 = 1$ $S_2 \bullet C = (2 + 0 + 0 + 0 + 2 + 2 + 0 + 2)/8 = 1$ $S_3 \bullet C = (0 + 0 + 2 + 2 + 0 - 2 + 0 - 2)/8 = 0$ $S_4 \bullet C = (1 + 1 + 3 + 3 + 1 - 1 + 1 - 1)/8 = 1$ $S_5 \bullet C = (4 +0 +2 +0 +2 +0 -2 +2)/8 = 1$ $S_6 \cdot C = (2-2+0-2+0-2-4+0)/8 = -1$ (d)

CDMA Orthogonality

Introduction

2nd generation

Future

- Chip sequences need to be special...
 - Pairwise Orthogonal: $S \cdot T = \sum S_i T_i = 0$
- Limitations
 - Sychronisation: <u>senders sends a known sequence which is</u> <u>long enough for the receiver to lock onto it,</u>
 - Power Levels: <u>Stations have to adjust their power level</u> <u>according to instructions from the base station</u>
 - Knowledge of Sender: <u>Assumption of known receiver, so</u> that the relevant chip sequence is know
- Available bandwidth typically <u>outstrips GSM.</u>

Physical Layer, Topic 6, Mobile Telephones

3rd generation

- IMT-2000: International Mobile Telecommunications
 - Voice <u>High-quality voice transmission</u>
 - Messaging replace email, fax, SMS, chat, etc
 - Multimedia music, videos, films, TV, etc
 - Internet Web Surfing, w/multimedia
- Proposals both based on 5MHz CDMA
 - UMTS: W-CDMA <u>Universal Mobile</u>
 Telecommunications System
 - Compatible with GSM so that it could handle handoffs to/from GSM cells,
 - CDMA2000 was proposed by Qualcomm

2.5G technology

- 3G Cost vs. Benefit? <u>The license and infrastructure costs are very serious, which us (the users) will have to pay</u>
- Alternatives
 - EDGE: GSM with more bits per baud
 - GPRS: General Packet Radio Service
 - Operates on top of <u>D-AMPS or GSM</u>
 - Transmits <u>IP packets in a cell running a voice system</u>
 - Higher data rates: twice GSM