Finite Element Methods for Elliptic Problems

Variational Formulation: The Poisson Problem

March 19 & 31, 2003

Motivation

- The Poisson problem has a strong formulation;
 a minimization formulation; and a weak formulation.
- The minimization/weak formulations are more general than the strong formulation in terms of regularity and admissible data.

Motivation

- The minimization/weak formulations are defined by: a space X; a bilinear form a; a linear form ℓ .
- The minimization/weak formulations identify

ESSENTIAL boundary conditions, Dirichlet — reflected in X;

NATURAL boundary conditions, Neumann — reflected in a, ℓ .

Motivation

 The points of departure for the finite element method are:

the weak formulation (more generally); or the minimization statement (if *a* is SPD).

Strong Formulation

Find **u** such that

$$-
abla^2 oldsymbol{u} = oldsymbol{f} \quad ext{in } oldsymbol{\Omega} \ oldsymbol{u} = oldsymbol{0} \quad ext{on } oldsymbol{\Gamma}$$

where

$$abla^2 \equiv rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2}$$

and Ω is a domain in \mathbb{R}^2 with boundary Γ .

Minimization Principle

Statement...

Find

$$u = rg \min_{w \in X} J(w)$$

where

N1

$$X = \{v \text{ sufficiently smooth } |v|_{\Gamma} = 0\},$$

and

$$J(w)=rac{1}{2}\int_{\Omega} \underbrace{
abla w \cdot
abla w}_{w_x^2+w_y^2} \; dA - \int_{\Omega} \; f \; w \; dA \; .$$
 N2

Minimization Principle

...Statement

In words:

Over all functions w in X,

u that satisfies

$$-
abla^2 u = f \quad ext{in } \Omega$$
 $u = 0 \quad ext{on } \Gamma$

makes J(w) as small as possible.

N3

Minimization Principle

Proof...

Let
$$w = u + v$$
.

Then

$$J(\underbrace{\underbrace{u}_{\in X}^{w\in X}}_{\in X}) = rac{1}{2}\int_{\Omega}\,
abla(u+v)\cdot
abla(u+v)\,dA$$

$$-\int_{\Omega}f(u+v)\,dA$$
.

Minimization Principle

...Proof...

$$+\int_{oldsymbol{\Omega}}
abla oldsymbol{u} \cdot
abla oldsymbol{v} \, dA - \int_{oldsymbol{\Omega}} oldsymbol{f} \, oldsymbol{v} \, dA \qquad \delta oldsymbol{J}_v(oldsymbol{u}) \ ext{ first variation}$$

$$+\frac{1}{2}\int_{\Omega} \nabla v \cdot \nabla v \, dA$$
 > 0 for $v \neq 0$

Minimization Principle

...Proof...

$$egin{aligned} \delta J_v(u) &= \int_\Omega
abla u \cdot
abla v \, dA - \int_\Omega f \, v \, dA \ &= \int_\Omega
abla \cdot (v
abla u) \, dA - \int_\Omega v
abla^2 u \, dA - \int_\Omega f \, v \, dA \ &= \int_\Gamma
abla^0 \,
abla u \cdot \hat{n} \, dS + \int_\Omega v \{ \underbrace{-
abla^2 u - f}_0 \} \, dA \end{aligned}$$

=0, $\forall v \in X$

N4

Minimization Principle

...Proof

$$J(\underbrace{u+v}_w) = J(u) + rac{1}{2} \int_{\Omega}
abla v \cdot
abla v \, dA \, , \; orall \, v \in X \ > 0 \; ext{unless} \; v = 0$$

$$\Rightarrow$$

$$oldsymbol{J(w) > J(u)}, \qquad orall \ w \in X \,, \ w
eq u$$

 \boldsymbol{u} is the minimizer of $\boldsymbol{J}(\boldsymbol{w})$

Weak Formulation

Statement

Find $u \in X$ such that

$$oldsymbol{\delta J_v(u) = 0}\,,\quad orall\,v \in X$$

$$\left|\int_{\Omega}\,
ablaoldsymbol{u}\cdot
ablaoldsymbol{v}\,dA=\int_{\Omega}\,oldsymbol{f}\,oldsymbol{v}\,dA\,,\qquadorall\,oldsymbol{v}\inoldsymbol{X}
ight|\;;$$

see Slide 9 for proof.

N5

Weak Formulation

Definitions...

Linear space, Y:

A set Y is a linear (or vector) space

if

$$\forall v_1, v_2 \in Y, \quad v_1 + v_2 \in Y$$

$$\forall \ \pmb{\alpha} \in \mathbb{R}, \quad \forall \ \pmb{v} \in \pmb{Y}, \qquad \pmb{\alpha} \pmb{v} \in \pmb{Y}$$

Weak Formulation

...Definitions...

Linear forms, L(v):

$$L: Y \to \mathbb{R}$$
 (form or functional)

$$egin{aligned} L(lpha v_1 + v_2) &= lpha L(v_1) + L(v_2) & ext{(linear)} \ &orall \, lpha \in {
m I\!R} \,, &orall \, v_1, v_2 \in oldsymbol{Y} \,. \end{aligned}$$

Weak Formulation

...Definitions...

Bilinear forms, B(w, v):

```
B: Y \times Z \to \mathbb{R} (form);
```

 $B(w, \overline{v})$ linear form in w for fixed \overline{v} ,

 $B(\overline{w}, v)$ linear form in v for fixed \overline{w} (bilinear).

Weak Formulation

...Definitions

SPD bilinear forms, B(w, v):

B:
$$Y \times Y \to \mathbb{R}$$
 is bilinear;

$$B(w,v) = B(v,w)$$
 SPD;

$$B(w, w) > 0$$
, $\forall w \in Y$, $w \neq 0$ SPD.

Weak Formulation

Restatement...

Let

$$oldsymbol{a}(oldsymbol{w},oldsymbol{v}) = \int_{oldsymbol{\Omega}} \,
abla oldsymbol{w} \cdot
abla oldsymbol{v} \, oldsymbol{d} oldsymbol{A} \, , \quad orall \, oldsymbol{w}, oldsymbol{v} \in oldsymbol{X} \, .$$

an SPD bilinear form

E2

and

$$oldsymbol{\ell}(oldsymbol{v}) = \int_{\Omega} oldsymbol{f} \, oldsymbol{v} \, doldsymbol{A}, \quad orall \, oldsymbol{v} \in oldsymbol{X}$$

a linear form .

Weak Formulation

...Restatement

Minimization Principle:

$$u = rg \min_{w \in X} rac{1}{2} a(w,w) - \ell(w)$$
 .

Weak Statement: $\mathbf{u} \in \mathbf{X}$,

$$\underbrace{a(u,v)}_{\Leftrightarrow \delta J_v(u)=0}, \qquad orall \, v \in X \; .$$

E3

Weak Formulation

Proper Spaces: $u \in X$

Since *a* involves only first derivatives,

$$oldsymbol{X} = \{oldsymbol{v} \in oldsymbol{H}^1(\Omega) \mid oldsymbol{v}|_{\Gamma} = oldsymbol{0}\} \equiv oldsymbol{H}^1_0(\Omega)$$
 :

$$m{H^1(\Omega)} \equiv \{m{v} \mid \int_{\Omega} m{v^2} \, dA \,, \, \int_{\Omega} m{v_x^2} \, dA \,, \, \int_{\Omega} m{v_y^2} \, dA ext{ finite} \} \;;$$

$$\underbrace{(w,v)_{H^1(\Omega)}}_{ ext{inner product}} = \int_{\Omega}
abla w \cdot
abla v + wv \ dA \; ;$$

$$||w||_{H^1(\Omega)} = \left(\int_\Omega |
abla w|^2 + w^2\,dA
ight)^{1/2}$$
 N6 E4

Weak Formulation

Proper Spaces: $\ell \in X'$

The "data"
$$\ell$$
: $H_0^1(\Omega) \to \mathbb{R}$ must satisfy

$$|\boldsymbol{\ell}(\boldsymbol{v})| \leq C \, ||\boldsymbol{v}||_{\boldsymbol{H}^1(\Omega)}, \; \forall \, \boldsymbol{v} \in \boldsymbol{H}^1_0(\Omega) \; (bounded).$$

$$\ell\in \mathit{dual\ space\ } X'=(H^1_0(\Omega))'\equiv H^{-1}(\Omega)$$
:

all linear functionals bounded for $\mathbf{v} \in H_0^1(\Omega)$.

Dual norm:
$$\|\ell\|_{(H_0^1(\Omega))'} = \sup_{v \in H_0^1(\Omega)} rac{\ell(v)}{\|v\|_{H^1(\Omega)}}$$
 . N7 N8

Weak Formulation

Proper Spaces: Well-Posedness

Given
$$\ell \in H^{-1}(\Omega)$$
, find $u \in H^1_0(\Omega)$ such that

$$a(u,v)=\ell(v), \qquad orall \, v \in H^1_0(\Omega) \; .$$

Well-posedness:

w exists and is unique; E5 N9

$$\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq \boldsymbol{C} \|\boldsymbol{\ell}\|_{\boldsymbol{H}^{-1}(\Omega)}$$
 — stability.

N10 E6 E7

Strong Formulation

Find **u** such that

$$-
abla^2 u = f \quad ext{in } \Omega$$
 $u = 0 \quad ext{on } \Gamma^D$ $rac{\partial u}{\partial n} = g \quad ext{on } \Gamma^N$

where
$$\overline{\Gamma}=\overline{\Gamma}^D\cup\overline{\Gamma}^N$$
 , Γ^D non-empty.

N11

Minimization Principle

Statement

Find

$$u = rg \min_{w \in X} J(w)$$

where

$$oldsymbol{X} = \{oldsymbol{v} \in oldsymbol{H}^1(\Omega) \mid oldsymbol{v}|_{\Gamma^D} = 0\}$$

$$J(w) = rac{1}{2} \int_{\Omega}
abla w \cdot
abla w \, dA - \int_{\Omega} f \, w \, dA - \int_{\Gamma^N} g \, w \, dS \; .$$

Minimization Principle

Proof...

Let
$$w = u + v$$
.

Then

$$J(\underbrace{\underbrace{u}_{\in X} + \underbrace{v}_{\in X}) = rac{1}{2} \int_{\Omega} \,
abla(u+v) \cdot
abla(u+v) \, dA$$

$$-\int_{\Omega}f(u+v)\ dA-\int_{\Gamma^N}g(u+v)\ dS$$
 .

Minimization Principle

...Proof...

$$J(u+v) =$$

$$rac{1}{2} \int_{\Omega} \,
abla oldsymbol{u} \cdot
abla oldsymbol{u} \, doldsymbol{A} - \int_{\Omega} \, oldsymbol{f} \, oldsymbol{u} \, doldsymbol{A} - \int_{\Gamma^{oldsymbol{N}}} \, oldsymbol{g} \, oldsymbol{u} \, doldsymbol{u} \, doldsymbol$$

$$+\int_{\Omega} \
abla oldsymbol{u} \cdot
abla oldsymbol{v} \ oldsymbol{dA} - \int_{\Omega} \ oldsymbol{f} \ oldsymbol{v} \ oldsymbol{dA} - \int_{\Gamma^{oldsymbol{N}}} oldsymbol{g} \ oldsymbol{v} \ oldsymbol{u} \ oldsymbol{v} \ oldsymbol{v} \ oldsymbol{dA} - \int_{\Gamma^{oldsymbol{N}}} oldsymbol{g} \ oldsymbol{u} \ oldsymbol{dA} - \int_{\Gamma^{oldsymbol{N}}}$$

$$+rac{1}{2}\int_{\Omega} \,
abla oldsymbol{v} \cdot
abla oldsymbol{v} \, dA$$

Minimization Principle

...Proof...

$$egin{aligned} \delta J_v(u) &= \int_\Omega
abla u \cdot
abla u \, dA - \int_\Omega f \, v \, dA - \int_{\Gamma^N} g \, v \, dS \ &= \int_\Omega
abla \cdot (v
abla u) \, dA - \int_\Omega v
abla^2 u \, dA - \int_\Omega f \, v \, dA - \int_{\Gamma^N} g \, v \, dS \ &= \int_{\Gamma^D} ec{x}^0 \,
abla u \cdot \hat{n} \, dS + \int_\Omega v \{ \underbrace{-
abla^2 u - f}_0 \} \, dA \ &+ \int_{\Gamma^N} v \{ \underbrace{
abla^2 u \cdot \hat{n} - g}_0 \} \, dS \quad = \quad 0 \,, \qquad orall \, v \in X \end{aligned}$$

Minimization Principle

...Proof

$$J(u+v) = J(u) + rac{1}{2} \int_{\Omega}
abla v \cdot
abla v \, dA \, , \, \, orall \, v \in X$$

 \Rightarrow

$$oldsymbol{J(w)} \geq oldsymbol{J(u)}\,, \qquad orall \, oldsymbol{w} \in oldsymbol{X}\,;$$

 \boldsymbol{u} is the minimizer of $\boldsymbol{J}(\boldsymbol{w})$.

E8

Weak Formulation

Statement...

Find $u \in X$ such that

$$\delta J_v(u) = 0\,, \quad orall\,v \in X$$

$$\left|\int_{\Omega}\,
abla u\cdot
abla v\,dA=\int_{\Omega}\,f\,v\,dA+\int_{\Gamma^{N}}\,g\,v\,dS\,,\quadorall\,v\in X\,;
ight.$$

see Slide 25 for proof.

Weak Formulation

...Statement...

Let:

$$oldsymbol{a}(oldsymbol{w},oldsymbol{v}) = \int_{\Omega} \,
abla oldsymbol{w} \cdot
abla oldsymbol{v} \, oldsymbol{d} oldsymbol{A} \, , \qquad orall \, oldsymbol{w}, oldsymbol{v} \in oldsymbol{X} \, .$$

bilinear, SPD form;

and

$$\ell(v) = \int_{\Omega} f \, v \, dA + \int_{\Gamma^N} g \, v \, dS$$

linear, bounded form (in $H^{-1}(\Omega)$).

Weak Formulation

...Statement

Minimization Principle:

$$u = rg \min_{w \in X} rac{1}{2} a(w,w) - \ell(w)$$
 .

Weak Statement: $\mathbf{u} \in X$,

$$\underbrace{a(u,v)}_{\Leftrightarrow \delta J_v(u)=0} = \ell(v) \,, \qquad orall \, v \in X \,.$$

Weak Formulation

Essential vs. Natural

Essential boundary conditions: Imposed by X.

Natural boundary conditions: Imposed by J (or a, ℓ).

Here:

Essential \Leftrightarrow Dirichlet $(v|_{\Gamma D} = 0)$,

Natural \Leftrightarrow Neumann $(v|_{\Gamma^N}$ unrestricted).

Important theoretical and numerical ramifications.

E9 E10 E11

Inhomogeneous Dirichlet Conditions

Strong Formulation

Find **u** such that

$$-
abla^2 oldsymbol{u} = oldsymbol{f} \qquad ext{in } oldsymbol{\Omega} \ oldsymbol{u} = oldsymbol{u}^D \qquad ext{on } oldsymbol{\Gamma}^D = oldsymbol{\Gamma} \ ;$$

simple extension to mixed Neumann or Robin.

Minimization Statement

Inhomogeneous Dirichlet Conditions

Find

$$oxed{u = rg \min_{w \in X^D} J(w)}$$

where
$$X^D=\{v\in H^1(\Omega)\ |\ v|_{\Gamma^D}=u^D\}\ ,$$
 $X=\{v\in H^1(\Omega)\ |\ v|_{\Gamma^D}=0\}\ ,$

$$J(w) = rac{1}{2} \underbrace{\int_{\Omega} \,
abla w \cdot
abla w \, dA}_{a(w,w)} - \underbrace{\int_{\Omega} \, f \, w \, dA}_{\ell(w)} \, .$$

Inhomogeneous Dirichlet Conditions

Weak Formulation

Find $u \in X^D$ such that

E12

$$\delta J_v(u) = 0\,, \qquad orall\, v \in X \equiv H^1_0(\Omega)$$

$$\int_{\Omega} egin{array}{c}
a(u,v) &
a(u,v) &
a(v) &
a$$

Summary

- The Poisson problem has a strong formulation;
 a minimization formulation; and a weak formulation.
- The minimization/weak formulations are more general than the strong formulation in terms of regularity and admissible data.

Summary

- The minimization/weak formulations are defined by: a space X; a bilinear form a; a linear form ℓ .
- The minimization and weak formulations identify

ESSENTIAL boundary conditions, Dirichlet — reflected in X;

NATURAL boundary conditions, Neumann — reflected in a, ℓ .

Summary

 The points of departure for the finite element method are:

the weak formulation (more generally); or the minimization statement (if *a* is SPD).