# Random Matrix Theory for Modern Machine Learning: New Intuitions, Improved Methods, and Beyond: Part 1

CIMI Thematic School "Models & Methods for High-dimensional Inference and Learning"

#### Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

October 17 and 18, 2024



#### Schedule of the mini-course

- Part 1: Motivation and Mathematical Background (concentration, resolvent-based approach to eigenspectral analysis, high-dimensional linearization, etc.)
- Part 2: Four Ways to Characterize Sample Covariance Matrices and Some More Random Matrix Models (Wigner semicircle law, generalized sample covariance model, and separable covariance model)

### Outline

- Introduction and Motivation
  - Sample covariance matrix
  - RMT for ML: high-dimensional linear regression under gradient flow
  - RMT for ML: understanding and scaling large and deep neural networks
- Mathematical Background
  - Concentration: from random scalars to random vectors, LLN, and CLT
  - A unified spectral analysis approach via the resolvent
  - Linearization of high-dimensional (random) nonlinear function

# Motivation: understanding large-dimensional machine learning



- **Big Data era**: exploit large n, p, N
- counterintuitive phenomena different from classical asymptotics statistics
- complete change of understanding of many methods in statistics and machine learning (ML)
- Random Matrix Theory (RMT) provides the tools!

- ▶ **Problem**: estimate covariance  $\mathbf{C} \in \mathbb{R}^{p \times p}$  from n data samples  $\mathbf{x}_1, \dots, \mathbf{x}_n$  with  $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ ,
- ▶ Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

almost surely as  $n \to \infty$ : optimal for  $n \gg p$  (or, for p "small").

In the regime  $n \sim p$ , conventional wisdom breaks down: for  $\mathbf{C} = \mathbf{I}_p$  with n < p,  $\hat{\mathbf{C}}$  has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\to 0$$
,  $n, p \to \infty$   $\Rightarrow$  eigenvalue mismatch and not consistent!

due to **loss of matrix norm "equivalence"**:  $\|\mathbf{A}\|_{\max} \le \|\mathbf{A}\| \le p\|\mathbf{A}\|_{\max}$  for  $\mathbf{A} \in \mathbb{R}^{p \times p}$  and  $\|\mathbf{A}\|_{\max} \equiv \max_{ij} |\mathbf{A}_{ij}|$ .

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024 7 / 82

# When is one in the random matrix regime? Almost always!

What about n = 100p? For  $\mathbf{C} = \mathbf{I}_p$ , as  $n, p \to \infty$  with  $p/n \to c \in (0, \infty)$ : MP law

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - \mathbf{E}_{-})^{+} (\mathbf{E}_{+} - x)^{+}} dx$$

where  $E_{-} = (1 - \sqrt{c})^2$ ,  $E_{+} = (1 + \sqrt{c})^2$  and  $(x)^{+} \equiv \max(x, 0)$ . Close match!



Figure: Eigenvalue distribution of  $\hat{\mathbf{C}}$  versus Marčenko-Pastur law, p=500,  $n=50\,000$ .

- eigenvalues span on  $[E_{-} = (1 \sqrt{c})^2, E_{+} = (1 + \sqrt{c})^2]$ .
- for n = 100p, on a range of  $\pm 2\sqrt{c} = \pm 0.2$  around the population eigenvalue 1.

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 8 / 82

## Noisy linear model

Consider a given set of data  $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$  of size n, composed of the (random) input data  $\mathbf{x}_i \in \mathbb{R}^p$  and its corresponding output target  $y_i \in \mathbb{R}$ , drawn from the following noisy linear model.

### Definition (Noisy linear model)

We say a data-target pair  $(x, y) \in \mathbb{R}^p \times \mathbb{R}$  follows a noisy linear model if it satisfies

$$y = \boldsymbol{\beta}_*^\mathsf{T} \mathbf{x} + \boldsymbol{\epsilon} \tag{1}$$

for some deterministic (ground-truth) vector  $\boldsymbol{\beta}_* \in \mathbb{R}^p$ , and random variable  $\epsilon \in \mathbb{R}$  independent of  $\mathbf{x} \in \mathbb{R}^p$ , with  $\mathbb{E}[\epsilon] = 0$  and  $\text{Var}[\epsilon] = \sigma^2$ .

▶ aim to find a regressor  $\beta \in \mathbb{R}^p$  that best describes the linear relation  $y_i \approx \beta^\mathsf{T} \mathbf{x}_i$ , by minimizing the ridge-regularized mean squared error (MSE)

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2 + \gamma \|\beta\|^2 = \frac{1}{n} \|\mathbf{X}^{\mathsf{T}} \beta - \mathbf{y}\|^2 + \gamma \|\beta\|^2$$
 (2)

for  $\mathbf{y} = [y_1, \dots, y_n]^\mathsf{T} \in \mathbb{R}^n$ ,  $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ , and some regularization penalty  $\gamma \ge 0$ 

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 10 / 82

# Out-of-sample prediction risk

unique solution given by

$$\boldsymbol{\beta}_{\gamma} = \left(\mathbf{X}\mathbf{X}^{\mathsf{T}} + n\gamma\mathbf{I}_{p}\right)^{-1}\mathbf{X}\mathbf{y} = \mathbf{X}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + n\gamma\mathbf{I}_{n}\right)^{-1}\mathbf{y}, \quad \gamma > 0$$
(3)

ightharpoonup in the  $\gamma = 0$  setting, the minimum  $\ell_2$  norm least squares solution

$$\boldsymbol{\beta}_0 = \left(\mathbf{X}\mathbf{X}^\mathsf{T}\right)^+ \mathbf{X}\mathbf{y} = \mathbf{X}\left(\mathbf{X}^\mathsf{T}\mathbf{X}\right)^+ \mathbf{y},\tag{4}$$

11 / 82

where  $(A)^+$  denotes the Moore–Penrose pseudoinverse, also "ridgeless" least squares solution.

- **statistical** quality of  $\beta$ , as a function of dimensions n, p, noise level  $\sigma^2$ , and the regularization  $\gamma$
- evaluating the out-of-sample prediction risk (or simply, risk)

$$R_{\mathbf{X}}(\boldsymbol{\beta}) = \mathbb{E}[(\boldsymbol{\beta}^{\mathsf{T}}\hat{\mathbf{x}} - \boldsymbol{\beta}_{*}^{\mathsf{T}}\hat{\mathbf{x}})^{2} \mid \mathbf{X}] = \underbrace{(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}] - \boldsymbol{\beta}_{*})^{\mathsf{T}}\mathbf{C}(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}] - \boldsymbol{\beta}_{*})}_{\equiv B_{\mathbf{X}}(\boldsymbol{\beta})} + \underbrace{\operatorname{tr}\left(\operatorname{Cov}[\boldsymbol{\beta} \mid \mathbf{X}]\mathbf{C}\right)}_{\equiv V_{\mathbf{X}}(\boldsymbol{\beta})}$$
(5)

for an independent test data point. We denote  $\mathbb{E}[\mathbf{x}_i\mathbf{x}_i^\mathsf{T}] = \mathbf{C}$ , and  $B_{\mathbf{X}}(\boldsymbol{\beta})$ ,  $V_{\mathbf{X}}(\boldsymbol{\beta})$  the **bias** as well as **variance** of the solution  $\boldsymbol{\beta}$ .

# Objects of interest

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = (\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}] - \boldsymbol{\beta}_{*})^{\mathsf{T}} \mathbf{C}(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}] - \boldsymbol{\beta}_{*})$$
$$V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \operatorname{tr}\left(\operatorname{Cov}[\boldsymbol{\beta} \mid \mathbf{X}]\mathbf{C}\right). \tag{6}$$

12 / 82

▶ Denote  $\mathbf{Q}(-\gamma) \equiv (\hat{\mathbf{C}} + \gamma \mathbf{I}_p)^{-1}$  the resolvent of the SCM  $\hat{\mathbf{C}} = \frac{1}{n} \mathbf{X} \mathbf{X}^\mathsf{T}$ . Write

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \boldsymbol{\beta}_{*}^{\mathsf{T}} \left( \mathbf{I}_{p} - \mathbf{Q}(-\gamma) \hat{\mathbf{C}} \right) \mathbf{C} \left( \mathbf{I}_{p} - \mathbf{Q}(-\gamma) \hat{\mathbf{C}} \right) \boldsymbol{\beta}_{*}, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \frac{\sigma^{2}}{n} \operatorname{tr} \left( \mathbf{Q}(-\gamma) \hat{\mathbf{C}} \mathbf{Q}(-\gamma) \mathbf{C} \right). \tag{7}$$

For  $\gamma > 0$ , one has  $\mathbf{I}_p - \mathbf{Q}(-\gamma)\hat{\mathbf{C}} = \mathbf{I}_p - \mathbf{Q}(-\gamma)(\hat{\mathbf{C}} + \gamma\mathbf{I}_p - \gamma\mathbf{I}_p) = \gamma\mathbf{Q}(-\gamma)$ , so that

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \gamma^{2} \boldsymbol{\beta}_{*}^{\mathsf{T}} \mathbf{Q}^{2}(-\gamma) \boldsymbol{\beta}_{*} = \left| -\gamma^{2} \frac{\partial \boldsymbol{\beta}_{*}^{\mathsf{T}} \mathbf{Q}(-\gamma) \boldsymbol{\beta}_{*}}{\partial \gamma} \right|$$
(8)

$$V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \sigma^{2} \left( \frac{1}{n} \operatorname{tr} \mathbf{Q}(-\gamma) - \frac{\gamma}{n} \operatorname{tr} \mathbf{Q}^{2}(-\gamma) \right) = \left| \sigma^{2} \left( \frac{1}{n} \operatorname{tr} \mathbf{Q}(-\gamma) + \frac{\gamma}{n} \frac{\partial \operatorname{tr} \mathbf{Q}(-\gamma)}{\partial \gamma} \right) \right|$$
(9)

where we used the fact that  $C = I_v$  and  $\partial Q(-\gamma)/\partial \gamma = -Q^2(-\gamma)$ .

 $\triangleright$  suffice to evaluate quadratic and trace forms of the random resolvent matrix  $\mathbf{Q}(-\gamma)$ .

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024



Figure: Out-of-sample risk  $R_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) + V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma})$  of the ridge regression solution  $\boldsymbol{\beta}_{\gamma}$  as a function of the dimension ratio n/p, for fixed p=512,  $\|\boldsymbol{\beta}_*\|=1$ , and different regularization penalty  $\gamma=10^{-2}$  and  $\gamma=10^{-5}$ , Gaussian  $\mathbf{x}\sim\mathcal{N}(\mathbf{0},\mathbf{I}_p)$  and  $\varepsilon\sim\mathcal{N}(\mathbf{0},\sigma^2=0.1)$ .

# Linear model trained with gradient descent

 $\triangleright$  Consider again minimizing the following loss function to obtain the linear model parameter  $\beta$ :

$$L(\boldsymbol{\beta}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i)^2 + \frac{\gamma}{2} \|\boldsymbol{\beta}\|^2 = \frac{1}{2n} \|\mathbf{X}^\mathsf{T} \boldsymbol{\beta} - \mathbf{y}\|^2 + \frac{\gamma}{2} \|\boldsymbol{\beta}\|^2$$
(10)

but this time using gradient descent with infinitely small step size (i.e., gradient flow)

$$\frac{d\boldsymbol{\beta}(t)}{dt} = -\frac{\partial L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Rightarrow \boldsymbol{\beta}(t) = e^{-(\hat{\mathbf{C}} + \gamma \mathbf{I}_p)t} \boldsymbol{\beta}(0) + \left(\mathbf{I}_p - e^{-(\hat{\mathbf{C}} + \gamma \mathbf{I}_p)t}\right) \boldsymbol{\beta}_{RR},\tag{11}$$

14 / 82

where we recall  $\hat{\mathbf{C}} = \frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T}$  the SCM and denote  $\boldsymbol{\beta}_{RR} = (\hat{\mathbf{C}} + \gamma \mathbf{I}_p)^{-1} \frac{1}{n}\mathbf{X}\mathbf{y}$  is the ridge regression solution (that corresponds to  $\boldsymbol{\beta}(t)$  as  $t \to \infty$ )

- understand the interplay between training dynamics and generalization performance
- ▶ slightly more involved eigenspectral functional of Ĉ
- lacksquare as well shall see below, writes as (complex counter) integration of the resolvent  $oxed{Q}(z)=(\hat{f C}-z{f I}_p)^{-1}$

Z. Liao (EIC, HUST) October 17 and 18, 2024



Figure: Training and test misclassification rates of a linear network as a function of the gradient descent training time t, for p=256, n=512,  $\gamma=0$ ,  $\alpha=10^{-2}$ ,  $\sigma^2=0.1$  and  $\mu=[-1_{p/2}, 1_{p/2}]/\sqrt{p}$ . Empirical results averaged over 50 runs.

Z. Liao (EIC, HUST) October 17 and 18, 2024

## Scaling of sum of independent random variables: LLN and CLT

▶ **Strong law of large numbers (LLN)**: for a sequence of i.i.d. random variables  $x_1, ..., x_n$  with the same expectation  $\mathbb{E}[x_i] = \mu < \infty$ , we have

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\rightarrow\mu,\tag{12}$$

almost surely as  $n \to \infty$ .

► **Central limit theorem (CLT)**: for a sequence of i.i.d. random variables  $x_1, ..., x_n$  with the same expectation  $\mathbb{E}[x_i] = \mu$  and variance  $\text{Var}[x_i] = \sigma^2 < \infty$ , we have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)\right)\to\mathcal{N}(0,\sigma^2),$$
(13)

in distribution as  $n \to \infty$ .

### Consequences of LLN and CLT

For i.i.d. random variables  $x_1, ..., x_n$  of zero mean and unit variance, e.g.,  $x_i \sim \mathcal{N}(0,1)$ , we have, for n large, the following scaling laws for the sum  $\frac{1}{n} \sum_{i=1}^{n} x_i$ :

- $ightharpoonup rac{1}{n} \sum_{i=1}^n x_i \simeq 0$  by LLN; and
- $ightharpoonup \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i = O(1)$  with high probability by CLT.

#### We have known this a bit in the context of DNN

- DNNs involve linear (i.e., weights) and nonlinear (i.e., activation) transformation
- ▶ **Xavier initialization** [GB10]: for sigmoid-type activation, randomly initialize a weight matrix  $\mathbf{W} \in \mathbb{R}^{N \times N}$  having N neurons as

$$[\mathbf{W}]_{ij} \sim \mathcal{N}(0, \mathbf{N}^{-1}). \tag{14}$$

#### torch.nn.init.xavier\_normal\_

▶ **He initialization** [He+15]: for ReLU-type activation, randomly initialize a weight matrix  $\mathbf{W} \in \mathbb{R}^{N \times N}$  having N neurons as

$$[\mathbf{W}]_{ij} \sim \mathcal{N}(0, 2N^{-1}). \tag{15}$$

#### torch.nn.init.kaiming\_normal\_

- derivation based on forward propagation
- similar considerations for CNN, RNN, ResNet, etc.



Figure 2. The convergence of a **22-layer** large model (B in Table 3). The x-axis is the number of training epochs. The y-axis is the top-l error of 3,000 random val samples, evaluated on the center crop. We use ReLU as the activation for both cases. Both our initialization (red) and "Xavier" (blue) [7] lead to convergence, but ours starts reducing error earlier.



Figure 3. The convergence of a 30-layer small model (see the main text). We use ReLU as the activation for both cases. Our initialization (red) is able to make it converge. But "Navier" (blue) [7] completely stalls - we also verify that its gradients are all diminishing. It does not converge even given more enochs.

18 / 82

Figure: Numerical results in [He+15] for moderately deep NN.

# Let us say more on the appropriate scaling of large and deep NNs

#### **Setup and Notations:**

- ▶ supervised training of an *L*-layer multi-layer perceptrons (MLP) with full batch gradient flow
- ▶ input data  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ , denote pre-activation vectors  $\mathbf{h}_i^{(\ell)} \in \mathbb{R}^N$  at layer  $\ell \in \{1, \dots, L\}$  as

$$\mathbf{h}_{i}^{(1)} = \frac{1}{N^{a_{1}}\sqrt{p}}\mathbf{W}^{(1)}\mathbf{x}_{i}, \quad \mathbf{h}_{i}^{(\ell)} = \frac{1}{N^{a_{\ell}}}\mathbf{W}^{(\ell)}\sigma_{\ell}\left(\mathbf{h}_{i}^{(\ell-1)}\right) \qquad i \in \{1,\ldots,n\}$$

$$(16)$$

- $lackbr{igspace}$  scalar output  $\left| f_{m{ heta}}(\mathbf{x}_i) = rac{1}{\gamma N^{a_L}} \left( \mathbf{w}^{(L)} 
  ight)^{\mathsf{T}} \sigma_{\ell} \left( \mathbf{h}_i^{(\ell-1)} 
  ight) \right|$  for trainable parameters  $m{ heta} = \{ \mathbf{W}^{(1)}, \dots, \mathbf{w}^{(L)} \}.$
- for a training set  $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , train the above DNN on the loss function  $L(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n L(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i)$ , with full-batch gradient flow

$$\frac{d\theta}{dt} = -\eta \frac{\partial L(\theta)}{\partial \theta} = \eta \frac{1}{n} \sum_{i=1}^{n} \Delta_i \frac{\partial f_{\theta}(\mathbf{x}_i)}{\partial \theta}, \quad \Delta_i \equiv -\frac{\partial L(f_{\theta}(\mathbf{x}_i), y_i)}{\partial f_{\theta}(\mathbf{x}_i)}, \quad (17)$$

19 / 82

learning rate 
$$\eta = \eta_0 \gamma^2 N^{-c}$$
 and feature learning parameter  $\gamma = \gamma_0 N^d$  for  $\eta_0 = \Theta(1)$  and  $\gamma_0 = \Theta(1)$ 

▶ initialization scaling scheme:  $w_i^{(L)} \sim \mathcal{N}(0, N^{-b_L}), W_{ij}^{(\ell)} \sim \mathcal{N}(0, N^{-b_\ell})$  and  $W_{ij}^{(1)} \sim \mathcal{N}(0, N^{-b_1})$ 

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024

<sup>&</sup>lt;sup>1</sup>This part is majorly borrowed from the Lecture Notes on Infinite-Width Limits of Neural Networks, by Cengiz Pehlevan and Blake Bordelon, *Princeton Machine Learning Theory Summer School*, 2023.

# Appropriate scaling of large and deep NNs

#### Settings:

- **scaling of NN model**:  $\mathbf{h}_{i}^{(1)} = \frac{1}{N^{a_1}\sqrt{p}}\mathbf{W}^{(1)}\mathbf{x}_{i}, \mathbf{h}_{i}^{(\ell)} = \frac{1}{N^{a_{\ell}}}\mathbf{W}^{(\ell)}\sigma_{\ell}\left(\mathbf{h}_{i}^{(\ell-1)}\right), f_{\theta}(\mathbf{x}_{i}) = \frac{1}{\gamma N^{a_{\ell}}}\left(\mathbf{w}^{(L)}\right)^{\mathsf{T}}\sigma_{\ell}\left(\mathbf{h}_{i}^{(\ell-1)}\right)$
- ▶ initialization scaling:  $w_i^{(L)} \sim \mathcal{N}(0, N^{-b_L})$ ,  $W_{ij}^{(\ell)} \sim \mathcal{N}(0, N^{-b_\ell})$ , and  $W_{ij}^{(1)} \sim \mathcal{N}(0, N^{-b_1})$
- ▶ trained under full-batch gradient flow:  $\frac{d\theta}{dt} = -\eta \frac{\partial L(\theta)}{\partial \theta} = \eta \frac{1}{n} \sum_{i=1}^{n} \Delta_i \frac{\partial f_{\theta}(\mathbf{x}_i)}{\partial \theta}$  of learning rate  $\eta = \eta_0 \gamma^2 N^{-c}$  and feature learning parameter  $\gamma = \gamma_0 N^d$  for  $\eta_0 = \Theta(1)$  and  $\gamma_0 = \Theta(1)$

### **Objective**: for large p, N, achieve **appropriate scaling** on (a, b, c, d) so that

- **1 pre-activations**  $\mathbf{h}^{(\ell)}$  have  $\Theta(1)$  entries:
  - computing the 1st and 2nd moments of  $\mathbf{h}^{(1)}$ :  $\mathbb{E}[\mathbf{h}_i^{(1)}] = \mathbf{0}$ ,  $\mathbb{E}[\mathbf{h}_i^{(1)}(\mathbf{h}_j^{(1)})^\mathsf{T}]_{kq} = \delta_{kq}N^{-(2a_1+b_1)} \cdot \frac{1}{p}\mathbf{x}_i^\mathsf{T}\mathbf{x}_j$ ; then of  $\mathbf{h}^{(\ell)}$
  - we get  $2a_1+b_1=1$  and similarly  $2a_\ell+b_\ell=1, \ell\in\{1,\ldots,L\}$
- **2** network prediction evolve in  $\Theta(1)$  time:
  - define **feature/conjugate kernel** as the Gram matrix at layer  $\ell$  as  $\mathbf{\Phi}^{(\ell)} \in \mathbb{R}^{n \times n}$ ,  $\Phi_{ij}^{(\ell)} = \frac{1}{N} \sigma(\mathbf{h}_i^{(\ell)})^\mathsf{T} \sigma(\mathbf{h}_j^{(\ell)})$
  - − under the condition of  $\Theta(1)$  pre-activation, it can be shown that in the  $N \to \infty$  limit that the pre-activations are **Gaussian process** of zero mean, and covariance given by the (expected) conjugate kernel
  - for  $\partial_t f_{\theta}(\cdot) = \Theta(1)$ , we get  $2a_1 + c = 0$  and  $2a_\ell + c = 1, \ell \in \{2, \dots, L\}$

# Appropriate scaling of large and deep NNs

#### Settings:

- **>** scaling of NN model:  $\mathbf{h}_i^{(1)} = \frac{1}{N^{a_1}\sqrt{p}}\mathbf{W}^{(1)}\mathbf{x}_i$ ,  $\mathbf{h}_i^{(\ell)} = \frac{1}{N^{a_\ell}}\mathbf{W}^{(\ell)}\sigma_\ell\left(\mathbf{h}_i^{(\ell-1)}\right)$ ,  $f_{\boldsymbol{\theta}}(\mathbf{x}_i) = \frac{1}{\gamma N^{a_L}}\left(\mathbf{w}^{(L)}\right)^{\mathsf{T}}\sigma_\ell\left(\mathbf{h}_i^{(\ell-1)}\right)$
- ▶ initialization scaling:  $w_i^{(L)} \sim \mathcal{N}(0, N^{-b_L})$ ,  $W_{ij}^{(\ell)} \sim \mathcal{N}(0, N^{-b_\ell})$ , and  $W_{ij}^{(1)} \sim \mathcal{N}(0, N^{-b_1})$
- ▶ trained under full-batch gradient flow:  $\frac{d\theta}{dt} = -\eta \frac{\partial L(\theta)}{\partial \theta} = \eta \frac{1}{n} \sum_{i=1}^{n} \Delta_i \frac{\partial f_{\theta}(x_i)}{\partial \theta}$  of learning rate  $\eta = \eta_0 \gamma^2 N^{-c}$  and feature learning parameter  $\gamma = \gamma_0 N^d$  for  $\eta_0 = \Theta(1)$  and  $\gamma_0 = \Theta(1)$

#### **Objective**: for large p, N, achieve **appropriate scaling** on (a, b, c, d) so that

- - by  $\partial_t \mathbf{h}_i^{(\ell)} = \Theta(1)$  we have  $2a_1 + c d + 1/2 = 0$ , recall that  $2a_1 + c = 0$ , this is d = 1/2, similarly  $2a_\ell + c d 1/2 = 0$  so that d = 1/2
  - − in fact, any d < 1/2 leads to kernel behavior, and d = 0 the **NTK parameterization**
- if further demand raw learning rate  $\eta = \Theta(1)$ , then parameterization is unique:

$$d = 1/2, c = 1, a_{\ell} = 0, b_{\ell} = 1, a_{1} = -1/2, b_{1} = 1$$
(18)

21 / 82

this is equivalent to the muP parameterization in [YH21]

Z. Liao (EIC, HUST) October 17 and 18, 2024

# What is good about this appropriate scaling

- well, things (e.g., DNN pre-activation, evolution of prediction and feature/pre-activation with respect to time) do not scale with the network width N
- infinitely deep  $L \to \infty$  limit [Bor+23]
- ▶ idea of maximal update parameterization (muP) for hyperparameter transfer in large models (G. Yang)
- ▶ in muP, "narrow" and wide neural networks **share the same set of optimal hyperparameters**, e.g., optimal learning rate (and decay), cross-entropy temperature, initialization scale, regularization, etc.

▶ BTW, in the case of **ResNet**, a scaling scheme of a similar type can be obtained by considering the

one can tune the large model by just tuning a tiny version of it and copying over the hyperparameters

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 22 / 82

<sup>&</sup>lt;sup>2</sup>Blake Bordelon et al. "Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit". In: *The Twelfth International Conference on Learning Representations*. Oct. 2023

Some experiments on muP and µTransfer

Show some simulations!



Figure: Comparison μTransfer, which transfers tuned hyperparameters from a small proxy model, with directly tuning the large target model, on IWSLT14 De-En, a machine translation dataset.

# Take-away of this section

- ▶ sample covariance matrix  $\hat{\mathbf{C}}$  have different behavior in the large n, p regime
- loss of matrix norm "equivalence" for large matrices  $\|\mathbf{A}\|_{\max} \le \|\mathbf{A}\| \le p\|\mathbf{A}\|_{\max}$  for  $\mathbf{A} \in \mathbb{R}^{p \times p}$  and  $\|\mathbf{A}\|_{\max} \equiv \max_{ij} |\mathbf{A}_{ij}|$
- evaluation of linear regression model trained with gradient descent involves eigenspectral functionals of SCM, RMT provides an analytic answer
- ▶ further allows better **understanding and scaling** of large and deep neural networks

#### Definition (High-dimensional Equivalent)

For a random matrix  $\mathbf{X} \in \mathbb{R}^{p \times n}$  and a (possibly) nonlinear model of interest  $f(\mathbf{X})$  of  $\mathbf{X}$  for some  $f \colon \mathbb{R}^{p \times n} \to \mathbb{R}^{p \times n}$ , we are interested in the behavior of the scalar observation  $g(f(\mathbf{X}))$  of the random model  $f(\mathbf{X})$ , via the observation map  $g \colon \mathbb{R}^{p \times n} \to \mathbb{R}$ .

We say that  $\bar{\mathbf{X}}_f$  (which may be deterministic or random) is an High-dimensional Equivalent for the random model  $f(\mathbf{X})$  with respect to the observation map g if we have, with probability at least  $1 - \delta(p, n)$  that

$$\left| \frac{g(f(\mathbf{X})) - g(\mathbf{X}_f)}{g(f(\mathbf{X}))} \right| \le \varepsilon(n, p), \tag{19}$$

for some non-negative functions  $\varepsilon(n,p)$  and  $\delta(n,p)$  that decrease to zero as  $n,p\to\infty$ .



### Definition (Moments and moment generating function, MGF)

For a scalar random variable x defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , we denote

- ightharpoonup  $\mathbb{E}[x]$  the *expectation* of x;
- ►  $Var[x] = \mathbb{E}[(x \mathbb{E}[x])^2]$  the variance of x;
- for p > 0,  $\mathbb{E}[x^p]$  the  $p^{th}$  moment of x, and  $\mathbb{E}[|x|^p]$  the  $p^{th}$  absolute moment;
- for  $\lambda \in \mathbb{R}$ ,  $M_x(\lambda) = \mathbb{E}[e^{\lambda x}] = \sum_{p=0}^{\infty} \frac{\lambda^p}{p!} \mathbb{E}[x^p]$  the moment generating function (MGF) of x.

### Lemma (Moments versus tails)

For a scalar random variable x and fixed p > 0, we have

- $\bullet \mathbb{E}[|x|^p] = \int_0^\infty pt^{p-1} \mathbb{P}(|x| \ge t) dt$

# Sub-gaussian distribution

### Definition (Sub-gaussian and sub-exponential distributions)

For a standard Gaussian random variable  $x \sim \mathcal{N}(0,1)$ , its law given by  $\mu(dt) = \frac{1}{\sqrt{2\pi}} \exp(-t^2/2)$ , so that  $\mathbb{P}(x \geq X) = \mu([X,\infty)) = \frac{1}{\sqrt{2\pi}} \int_X^\infty \exp(-t^2/2) \, dt \leq \exp(-X^2/2)$ .

• We say *y* is a *sub-gaussian random variable* if it has a tail that decays *as fast as* standard Gaussian random variables, that is

$$\mathbb{P}\left(|y| \ge t\right) \le \exp(-t^2/\sigma_{\mathcal{N}}^2),\tag{20}$$

for some  $\sigma_N > 0$  (known as the *sub-gaussian norm* of *y*) for all t > 0.

- ▶ We can define a *sub-exponential random variable z* similarly via  $\mathbb{P}(|z| \ge t) \le \exp(-t/\sigma_{\mathcal{N}})$ .
- for a sub-gaussian random variable x of mean  $\mu = \mathbb{E}[x]$  and sub-gaussian norm  $\sigma_{\mathcal{N}}$  that

$$\mathbb{P}(|x-\mu| \ge t\sigma_{\mathcal{N}}) \le \exp(-t^2),\tag{21}$$

for all t > 0, in which the sub-gaussian norm  $\sigma_N$  of x acts as a scale parameter (that is similar, in spirit, to the variance parameter of Gaussian distribution).

#### A collection of scalar random variables: from LLN to CLT

For a collection of independent and identically distributed (i.i.d.) random variables  $x_1, \ldots, x_n$  of mean  $\mu$  and variance  $\sigma^2$ , we have, by independence, that

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}\right] = \mu, \quad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[x_{i}] = \frac{\sigma^{2}}{n}.$$
(22)

• for  $\mu$ ,  $\sigma^2$  do *not* scale with n, the (random) sample mean strongly concentrates around its expectation  $\mu$ .

### Theorem (Weak and strong law of large numbers, LLN)

For a sequence of i.i.d. random variables  $x_1, \ldots, x_n$  with finite expectation  $\mathbb{E}[x_i] = \mu < \infty$ , we have that the sample mean

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\rightarrow\mu,\tag{23}$$

in probability/almost surely as  $n \to \infty$ , known as the weak law/strong of large numbers (LLN).

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 32 / 82

## A collection of scalar random variables: from LLN to CLT

#### Theorem (Central limit theorem, CLT)

For a sequence of i.i.d. random variables  $x_1, \ldots, x_n$  with  $\mathbb{E}[x_i] = \mu$  and  $\text{Var}[x_i] = \sigma^2$ , we have, for every  $t \in \mathbb{R}$  that

$$\mathbb{P}\left(\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^{n}(x_i-\mu)\geq t\right)\to \frac{1}{\sqrt{2\pi}}\int_{t}^{\infty}e^{-x^2/2}\,dx\tag{24}$$

as  $n \to \infty$ . That is, as  $n \to \infty$ , the random variable  $\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{n} (x_i - \mu) \to \mathcal{N}(0,1)$  in distribution.

#### Remark (Unified form of LLN and CLT)

The results of LLN and CLT can be compactly written as  $\frac{1}{n}\sum_{i=1}^n x_i \simeq \underbrace{\mu}_{O(1)} + \underbrace{\mathcal{N}(0,1) \cdot \sigma/\sqrt{n}}_{O(n^{-1/2})}$ , as  $n \to \infty$ , for  $\mu, \sigma$ 

both of order O(1).

- (i) In the first order (of magnitude O(1)), it has an asymptotically deterministic behavior around the expectation  $\mu$ ; and
- (ii) in the second order (of magnitude  $O(n^{-1/2})$ ), it strongly concentrates around this deterministic quantity with a universal Gaussian fluctuation, regardless of the distribution of the component of  $x_i$ .

# Concentration of random vectors in high dimensions?

• "concentration" for a random vector  $\mathbf{x} \in \mathbb{R}^n$ ?

### Observation (Random vectors do not "concentrate" around their means)

For two *independent* random vectors  $\mathbf{x}$ ,  $\mathbf{y} \in \mathbb{R}^n$ , having i.i.d. entries with zero mean and unit variance (that is,  $\mu = 0$  and  $\sigma = 1$ ), we have that

$$\mathbb{E}[\|\mathbf{x} - \mathbf{0}\|_2^2] = \mathbb{E}[\mathbf{x}^\mathsf{T} \mathbf{x}] = \operatorname{tr}(\mathbb{E}[\mathbf{x} \mathbf{x}^\mathsf{T}]) = n, \tag{25}$$

and further by independence that

$$\mathbb{E}[\|\mathbf{x} - \mathbf{y}\|_2^2] = \mathbb{E}[\mathbf{x}^\mathsf{T} \mathbf{x} + \mathbf{y}^\mathsf{T} \mathbf{y}] = 2n.$$
 (26)

- ▶ the origin  $\mathbf{0}$  (and *mean* of  $\mathbf{x}$ ) is always, in expectation, at the midpoint of two independent draws of random vectors in  $\mathbb{R}^n$
- ▶ any random vector  $\mathbf{x} \in \mathbb{R}^n$  with n large is **not** close to its mean
- x does not itself "concentrate" around any *n*-dimensional deterministic vector in any traditional sense.

### Numerical illustration



Figure: Visualization of "non-concentration" behavior of large-dimensional random vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ .

### Concentration of random vectors and their linear scalar observations

- ▶ In spite of this, from the LLN and CLT one expects that some types of "observations" of  $\mathbf{x} \in \mathbb{R}^n$  (e.g., averages over all the entries of  $\mathbf{x}$ , to retrieve the sample mean), must concentrate in some sense for n large
- we "interpret" the sample mean as a linear scalar observation of a vector  $\mathbf{x} \in \mathbb{R}^n$ .

### Remark (Sample mean as a linear scalar observation)

Let  $\mathbf{x} \in \mathbb{R}^n$  be a random vector having i.i.d. entries, then the sample mean of the entries of  $\mathbf{x}$  can be rewritten as the following linear scalar observation  $f \colon \mathbb{R}^n \to \mathbb{R}$  of  $\mathbf{x}$  defined as

$$f(\mathbf{x}) = \mathbf{1}_n^\mathsf{T} \mathbf{x}/n = \frac{1}{n} \sum_{i=1}^n x_i, \text{ or } f(\cdot) = \mathbf{1}_n^\mathsf{T}(\cdot)/n.$$
 (27)

- ▶ LLN and CLT are nothing but asymptotic characterization of the concentration behavior of the linear scalar observation  $f(\mathbf{x})$  of the random vector  $\mathbf{x} \in \mathbb{R}^n$
- $\triangleright$  we can say things non-asymptotically as well, under two different assumptions on the tail of x.
  - (i) are only assumed to have finite variance  $\sigma^2$  (but nothing on its tail behavior or higher-order moments); and
  - (ii) have sub-gaussian tails with sub-gaussian norm  $\sigma_N$ .

### Asymptotic and non-asymptotic concentration of random vectors

Table: Different types of characterizations of the linear scalar observation  $f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{1}_n / n$  for  $\mathbf{x} \in \mathbb{R}^n$ , having i.i.d. entries with mean  $\mathbb{E}[x_i] = \mu$  and variance  $\sigma^2$  or sub-gaussian norm  $\sigma_N$ .

|                                      | First-order behavior                            | Second-order behavior                                                                             |
|--------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Asymptotic                           | $f(\mathbf{x}) 	o \mu$ via Law of Large Numbers | $rac{\sqrt{n}}{\sigma}(f(\mathbf{x})-\mu) 	o \mathcal{N}(0,1)$ in law                            |
|                                      |                                                 | Central Limit Theorem                                                                             |
| Non-asymptotic                       | $\mathbb{E}[f(\mathbf{x})] = \mu$               | $\mathbb{P}\left( f(\mathbf{x}) - \mu  \ge t\sigma/\sqrt{n}\right) \le t^{-2}$                    |
| under finite variance                |                                                 | via Chebyshev's inequality                                                                        |
| Non-asymptotic under sub-gaussianity | $\mathbb{E}[f(\mathbf{x})] = \mu$               | $\mathbb{P}\left( f(\mathbf{x}) - \mu  \ge t\sigma_{\mathcal{N}}/\sqrt{n}\right) \le \exp(-Ct^2)$ |
|                                      |                                                 | via sub-gaussian tail bound                                                                       |

Z. Liao (EIC, HUST) Cotober 17 and 18, 2024

## Concentration of scalar observation of large random vectors

### Remark (Concentration of scalar observation of large random vectors)

A random vector  $\mathbf{x} \in \mathbb{R}^n$ , when "observed" via the linear scalar observation  $f(\mathbf{x}) = \mathbf{1}_n^\mathsf{T} \mathbf{x}/n$ :

$$f(\mathbf{x}) \simeq \underbrace{\mu}_{O(1)} + \underbrace{X/\sqrt{n}}_{O(n^{-1/2})},\tag{28}$$

38 / 82

for *n* large, with some random *X* of order O(1) that:

- (i-i) has a tail that decays (at least) as  $t^{-2}$ , for finite n and x having entries of bounded variance;
- (i-ii) has a sub-gaussian tail (at least) as  $\exp(-t^2)$ , for finite n and x having sub-gaussian entries;
  - (ii) has a precise Gaussian tail *independent* of the law of (the entries of) x, but in the limit of  $n \to \infty$  via CLT.

RMT4MI. October 17 and 18, 2024

# Lipschitz, quadratic concentration, and beyond

The concentration properties extend beyond the specific *linear* observation,  $f(\mathbf{x}) = \mathbf{1}_n^\mathsf{T} \mathbf{x}/n$ , to many types of (possibly) nonlinear observations.

### Definition (Scalar observation maps)

For random vector  $\mathbf{x} \in \mathbb{R}^n$ , we say  $f(\mathbf{x}) \in \mathbb{R}$  is a scalar observation of  $\mathbf{x}$  with observation map  $f : \mathbb{R}^n \to \mathbb{R}$ .

Table: Different types of scalar observations  $f(\mathbf{x})$  of random vector  $\mathbf{x} \in \mathbb{R}^n$ , having independent entries.

|                          | Scalar observation                                                                                                                                                                                                                            | Characterization                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Linear                   | sample mean $f(\mathbf{x}) = 1_n^T \mathbf{x} / n$ , and $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ for $\mathbf{a} \in \mathbb{R}^n$                                                                                                          | Table in last slide                                    |
| Lipschitz                | $f(\mathbf{x})$ for a Lipschitz map $f \colon \mathbb{R}^n 	o \mathbb{R}$                                                                                                                                                                     | Lipschitz concentration                                |
| Quadratic form           | $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ for some $\mathbf{A} \in \mathbb{R}^{n \times n}$                                                                                                                                        | Hanson-Wright inequality                               |
| Nonlinear quadratic form | $f(\mathbf{x}) = \sigma(\mathbf{x}^{T}\mathbf{Y})\mathbf{A}\sigma(\mathbf{Y}^{T}\mathbf{x})$ for entry-wise $\sigma \colon \mathbb{R} \to \mathbb{R}$ , $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{Y} \in \mathbb{R}^{p \times n}$ | Nonlinear quadratic concentration, of direct use in NN |

## Lipschitz concentration

## Theorem (Concentration of Lipschitz map of Gaussian random vectors, [Ver18, Theorem 5.2.2])

For a standard Gaussian random vector  $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$  and a Lipschitz function  $f : \mathbb{R}^n \to \mathbb{R}$  that satisfies  $|f(\mathbf{y}_1) - f(\mathbf{y}_2)| \le K_f ||\mathbf{y}_1 - \mathbf{y}_2||_2$  for any  $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^n$ , we have, for all t > 0 that

$$\mathbb{P}\left(|f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]| \ge t\right) \le \exp(-Ct^2/K_f^2),\tag{29}$$

for some universal constant C > 0, with  $K_f > 0$  known as the Lipschitz constant of f.

#### Remark (Concentration of Lipschitz observation of large random vectors)

The Lipschitz scalar observations  $f(\mathbf{x})$  of the random vector  $\mathbf{x} \in \mathbb{R}^n$  behave as

$$f(\mathbf{x}) \simeq \underbrace{\mathbb{E}[f(\mathbf{x})]}_{O(1)} + \underbrace{K_f}_{O(n^{-1/2})},\tag{30}$$

for n large, where  $K_f$  is the Lipschitz constant of f that is, in general, of order  $O(n^{-1/2})$  for  $\mathbb{E}[f(\mathbf{x})] = O(1)$ , for example for  $f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{1}_n / n$ .

<sup>&</sup>lt;sup>3</sup>Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and

# Concentration of quadratic forms

ightharpoonup intuitively expect that non-Lipschitz observation  $f(\mathbf{x})$  still concentrates in some way, but "less so"

### Theorem (Hanson-Wright inequality for quadratic forms, [Ver18, Theorem 6.2.1])

For a random vector  $\mathbf{x} \in \mathbb{R}^n$  having independent, zero-mean, unit-variance, sub-gaussian entries with sub-gaussian norm bounded by  $\sigma_N$ , and deterministic matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , we have, for every t > 0, that

$$\mathbb{P}\left(\left|\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \operatorname{tr}\mathbf{A}\right| \ge t\right) \le \exp\left(-\frac{C}{\sigma_{\mathcal{N}}^{2}}\min\left(\frac{t^{2}}{\sigma_{\mathcal{N}}^{2}\|\mathbf{A}\|_{F}^{2}}, \frac{t}{\|\mathbf{A}\|_{2}}\right)\right),\tag{31}$$

for some universal constant C > 0.

depending on the interplay between the "range" t and the deterministic matrix  $\mathbf{A}$ , the random quadratic form  $\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x}$  swings between a sub-gaussian ( $\exp(-t^2)$ ) and a sub-exponential ( $\exp(-t)$ ) tail

### Remark (Concentration of Euclidean norm of large random vectors)

It follows that the squared Euclidean norm  $\|\mathbf{x}\|_2^2$ , as a (non-Lipschitz) quadratic observation of  $\mathbf{x} \in \mathbb{R}^n$ , behaves as

$$\frac{1}{n} \|\mathbf{x}\|_{2}^{2} \simeq 1 + O(n^{-1/2}), \quad n \gg 1.$$
 (32)

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 41 / 82

# Concentration of nonlinear quadratic forms

▶ nonlinear quadratic forms  $\frac{1}{n}f(\mathbf{x}^\mathsf{T}\mathbf{Y})\mathbf{A}f(\mathbf{Y}^\mathsf{T}\mathbf{x})$  for Gaussian  $\mathbf{x} \in \mathbb{R}^p$  and deterministic  $\mathbf{A} \in \mathbb{R}^{n \times n}$ ,  $\mathbf{Y} \in \mathbb{R}^{p \times n}$ 

## Theorem (Concentration of nonlinear quadratic forms, [LLC18, Lemma 1])

For a standard Gaussian random vector  $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$  and deterministic  $\mathbf{A} \in \mathbb{R}^{n \times n}$ ,  $\mathbf{Y} \in \mathbb{R}^{p \times n}$  such that  $\|\mathbf{A}\|_2 \leq 1$ ,  $\|\mathbf{Y}\|_2 = 1$ , we have, for Lipschitz function  $f : \mathbb{R} \to \mathbb{R}$  with Lipschitz constant  $K_f$  and any t > 0 that

$$\mathbb{P}\left(\left|\frac{1}{n}f(\mathbf{x}^{\mathsf{T}}\mathbf{Y})\mathbf{A}f(\mathbf{Y}^{\mathsf{T}}\mathbf{x}) - \frac{1}{n}\operatorname{tr}\mathbf{A}\mathbf{K}_{f}(\mathbf{Y})\right| \ge \frac{t}{\sqrt{n}}\right) \le \exp\left(-\frac{C}{K_{f}^{2}}\min\left(\frac{t^{2}}{(|f(0)| + K_{f}\sqrt{p/n})^{2}}, \sqrt{n}t\right)\right), \quad (33)$$

with  $\mathbf{K}_f(\mathbf{Y}) = \mathbb{E}_{\mathbf{x}}[f(\mathbf{Y}^\mathsf{T}\mathbf{x})f(\mathbf{x}^\mathsf{T}\mathbf{Y})] \in \mathbb{R}^{n \times n}$ , for some universal constant C > 0.

**a** nonlinear extension of the Hanson–Wright inequality (consider, e.g.,  $Y = I_n$  with p = n)

**Remark** (Concentration of nonlinear quadratic form observation of large random vectors):

$$\frac{1}{n}f(\mathbf{x}^{\mathsf{T}}\mathbf{Y})\mathbf{A}f(\mathbf{Y}^{\mathsf{T}}\mathbf{x}) \simeq \frac{1}{n}\operatorname{tr}\mathbf{A}\mathbf{K}_{f}(\mathbf{Y}) + O(n^{-1/2}),\tag{34}$$

for *n* large, with  $\max\{f(0), K_f, p/n\} = O(1)$ , and similar first and second order behavior as above.

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 42 / 82

<sup>&</sup>lt;sup>4</sup>Cosme Louart, Zhenyu Liao, and Romain Couillet. "A random matrix approach to neural networks". In: *Annals of Applied Probability* 28.2 (2018), pp. 1190–1248

### Take-away of this section

- high-dimensional random vectors are not "concentrating", but orthogonal
- ightharpoonup scalar observation  $f(\mathbf{x})$  of large random vector  $\mathbf{x}$  does concentrate: linear, Lipschitz, quadratic form, and nonlinear quadratic forms, etc.
- ightharpoonup same holds for random matrices, leads to **Deterministic Equivalent** for random matrices with respect to observation  $g(\cdot)$

#### Definition (High-dimensional Deterministic Equivalent)

We say that  $\bar{\mathbf{Q}} \in \mathbb{R}^{p \times p}$  is an  $(\varepsilon_1, \varepsilon_2, \delta)$ -**Deterministic Equivalent** for the symmetric random matrix  $\mathbf{Q} \in \mathbb{R}^{p \times p}$  if, for a deterministic matrix  $\mathbf{A} \in \mathbb{R}^{p \times p}$  and vectors  $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$  of unit norms (spectral and Euclidean, respectively), we have, with probability at least  $1 - \delta(p)$  that

$$\left| \frac{1}{p} \operatorname{tr} \mathbf{A} (\mathbf{Q} - \bar{\mathbf{Q}}) \right| \le \varepsilon_1(p), \quad \left| \mathbf{a}^{\mathsf{T}} (\mathbf{Q} - \bar{\mathbf{Q}}) \mathbf{b} \right| \le \varepsilon_2(p), \tag{35}$$

for some non-negative functions  $\varepsilon_1(p)$ ,  $\varepsilon_2(p)$  and  $\delta(p)$  that decrease to zero as  $p \to \infty$ . To denote this relation, we use the notation

$$\mathbf{Q} \stackrel{\varepsilon_1, \varepsilon_2, \delta}{\longleftrightarrow} \bar{\mathbf{Q}}, \text{ or simply } \mathbf{Q} \leftrightarrow \bar{\mathbf{Q}}.$$
 (36)

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 43 / 82

#### Definition (Matrix inner product and Frobenius norm)

Given matrices  $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$ ,

- ▶  $\operatorname{tr}(\mathbf{X}^{\mathsf{T}}\mathbf{Y}) = \sum_{i=1}^{n} [\mathbf{X}^{\mathsf{T}}\mathbf{Y}]_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} X_{ji}Y_{ji}$  is the matrix inner product between  $\mathbf{X}$  and  $\mathbf{Y}$ , where  $\operatorname{tr}(\mathbf{A})$  is the trace of  $\mathbf{A}$ ; and
- ▶  $\|\mathbf{X}\|_F^2 = \operatorname{tr}(\mathbf{X}^\mathsf{T}\mathbf{X}) = \sum_{i=1}^n [\mathbf{X}^\mathsf{T}\mathbf{X}]_{ii} = \sum_{i=1}^n \sum_{j=1}^m X_{ji}^2$  denotes the (squared) Frobenius norm of  $\mathbf{X}$ , which is also the sum of the squared entries of  $\mathbf{X}$ .

#### Definition (Matrix norm)

For  $X \in \mathbb{R}^{p \times n}$ , the following "entry-wise" extension of the *p*-norms of vectors.

- matrix Frobenius norm  $\|\mathbf{X}\|_F = \sqrt{\sum_{i,j} X_{ij}^2} = \|\operatorname{vec}(\mathbf{X})\|_2$  that extends the vector  $\ell_2$  Euclidean norm; and
- ullet matrix maximum norm  $\|\mathbf{X}\|_{\max} = \max_{i,j} |X_{ij}| = \|\operatorname{vec}(\mathbf{X})\|_{\infty}$  that extends the vector  $\ell_{\infty}$  norm.
- and also matrix norm induced by vectors:  $\|\mathbf{X}\|_p \equiv \sup_{\|\mathbf{v}\|_p=1} \|\mathbf{X}\mathbf{v}\|_p$ .
  - ▶ taking p = 2 is the spectral norm:  $\|\mathbf{X}\|_2 = \sqrt{\lambda_{\max}(\mathbf{X}\mathbf{X}^{\mathsf{T}})} = \sigma_{\max}(\mathbf{X})$ , with  $\lambda_{\max}(\mathbf{X}\mathbf{X}^{\mathsf{T}})$  and  $\sigma_{\max}(\mathbf{X})$  the maximum eigenvalue and singular of  $\mathbf{X}\mathbf{X}^{\mathsf{T}}$  and  $\mathbf{X}$ , respectively.

### A quick recap on linear algebra: matrices

#### Remark (Matrix norm "equivalence")

For a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , one has the following

- **1**  $\|\mathbf{A}\|_2 \le \|\mathbf{A}\|_F \le \sqrt{\operatorname{rank}(\mathbf{A})} \cdot \|\mathbf{A}\|_2 \le \sqrt{\max(m,n)} \cdot \|\mathbf{A}\|_2$ , so that the control of the spectral norm via the Frobenius norm can be particularly loose for matrices of large rank; and
- **3**  $\|\mathbf{A}\|_{\max} \leq \|\mathbf{A}\|_2 \leq \sqrt{mn} \cdot \|\mathbf{A}\|_{\max}$ , with  $\|\mathbf{A}\|_{\max} \equiv \max_{i,j} |A_{ij}|$  the max norm of  $\mathbf{A}$ , so that the max and spectral norm can be significantly different for matrices of large size.
- matrix norm "equivalence" holds only up to **dimensional factors** (e.g., rank and size)

45 / 82

### A quick recap on linear algebra: eigenspectral decomposition

#### Definition (Eigen-decomposition of symmetric matrices)

A symmetric real matrix  $\mathbf{X} \in \mathbb{R}^{n \times n}$  admits the following eigen-decomposition

$$\mathbf{X} = \mathbf{U}_{\mathbf{X}} \mathbf{\Lambda}_{\mathbf{X}} \mathbf{U}_{\mathbf{X}}^{\mathsf{T}} = \sum_{i=1}^{n} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}, \tag{37}$$

for diagonal  $\Lambda_{\mathbf{X}} = \operatorname{diag}\{\lambda_i(\mathbf{X})\}_{i=1}^n$  containing  $\lambda_1(\mathbf{X}), \dots, \lambda_n(\mathbf{X})$  the real eigenvalues of  $\mathbf{X}$ , and orthonormal  $\mathbf{U}_{\mathbf{X}} = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{n \times n}$  containing the corresponding eigenvectors. In particular,

$$\mathbf{X}\mathbf{u}_i = \lambda_i(\mathbf{X})\mathbf{u}_i. \tag{38}$$

- ▶ interested in a single eigenvalue of a symmetric real matrix,  $\mathbf{X} \in \mathbb{R}^{n \times n}$ , one may either resort to the eigenvalue-eigenvector equation in (38) or the determinant equation  $\det(\mathbf{X} \lambda \mathbf{I}_n) = 0$
- classical RMT is interested in the *joint* behavior of all eigenvalues  $\lambda_1(\mathbf{X}), \dots, \lambda_n(\mathbf{X})$ , e.g., the (empirical) eigenvalue distribution of  $\mathbf{X}$

### Definition (Empirical Spectral Distribution, ESD)

For a real symmetric matrix  $\mathbf{X} \in \mathbb{R}^{n \times n}$ , the *empirical spectral distribution (ESD)* or *empirical spectral measure*  $\mu_{\mathbf{X}}$  of  $\mathbf{X}$  is defined as the normalized counting measure of the eigenvalues  $\lambda_1(\mathbf{X}), \ldots, \lambda_n(\mathbf{X})$  of  $\mathbf{X}$ ,

$$\mu_{\mathbf{X}} \equiv \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(\mathbf{X})},\tag{39}$$

where  $\delta_x$  represents the Dirac measure at x. Since  $\int \mu_{\mathbf{X}}(dx) = 1$ , the spectral measure  $\mu_{\mathbf{X}}$  of a matrix  $\mathbf{X} \in \mathbb{R}^{n \times n}$  (which may be random or not) is a probability measure.

- $ightharpoonup \int t\mu_{\mathbf{X}}(dt) = \frac{1}{n}\sum_{i=1}^{n}\lambda_{i}(\mathbf{X})$  is the first moment of  $\mu_{\mathbf{X}}$ , and gives the average of all eigenvalues of  $\mathbf{X}$ ; and
- ▶  $\int t^2 \mu_{\mathbf{X}}(dt) = \frac{1}{n} \sum_{i=1}^n \lambda_i^2(\mathbf{X})$  is the second moment of  $\mu_{\mathbf{X}}$ , so that  $\int t^2 \mu_{\mathbf{X}}(dt) \left(\int t \mu_{\mathbf{X}}(dt)\right)^2$  gives the variance of the eigenvalues of  $\mathbf{X}$ .

**Z. Liao** (EIC, HUST) October 17 and 18, 2024 47 / 82

# A unified spectral analysis approach via the resolvent

- ▶ Note: here everything hold deterministically, not necessarily random yet
- ▶ combined with **Deterministic Equivalent** and concentration, gives the whole picture

### Definition (Resolvent)

For a symmetric matrix  $\mathbf{X} \in \mathbb{R}^{p \times p}$ , the resolvent  $\mathbf{Q}_{\mathbf{X}}(z)$  of  $\mathbf{X}$  is defined, for  $z \in \mathbb{C}$  not an eigenvalue of  $\mathbf{X}$ , as

$$\mathbf{Q}_{\mathbf{X}}(z) \equiv \left(\mathbf{X} - z\mathbf{I}_{p}\right)^{-1}.\tag{40}$$

### Proposition (Properties of resolvent)

For  $\mathbf{Q}_{\mathbf{X}}(z)$  the resolvent of a symmetric matrix  $\mathbf{X} \in \mathbb{R}^{p \times p}$  with ESD  $\mu_{\mathbf{X}}$  with supported on supp $(\mu_{\mathbf{X}})$ , then

- (i)  $\mathbf{Q}_{\mathbf{X}}(z)$  is complex analytic on its domain of definition  $\mathbb{C} \setminus \text{supp}(\mu_{\mathbf{X}})$ ;
- (ii) it is bounded in the sense that  $\|\mathbf{Q}_{\mathbf{X}}(z)\|_2 \le 1/\operatorname{dist}(z, \operatorname{supp}(\mu_{\mathbf{X}}));$
- (iii)  $x \mapsto \mathbf{Q}_{\mathbf{X}}(x)$  for  $x \in \mathbb{R} \setminus \operatorname{supp}(\mu_{\mathbf{X}})$  is an increasing matrix-valued function with respect to symmetric matrix partial ordering (i.e.,  $\mathbf{A} \succeq \mathbf{B}$  whenever  $\mathbf{z}^{\mathsf{T}}(\mathbf{A} \mathbf{B})\mathbf{z} \geq 0$  for all  $\mathbf{z}$ ).

# A unified spectral analysis approach via the resolvent

- for real z, the resolvent  $\mathbf{Q}_{\mathbf{X}}(z)$  is nothing but a regularized inverse of  $\mathbf{X}$
- ▶ when interested in the eigenvalues and eigenvectors of  $\mathbf{X} \in \mathbb{R}^{p \times p}$ , consider the eigenvalue and eigenvector equation

$$\mathbf{X}\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow (\mathbf{X} - \lambda \mathbf{I}_p)\mathbf{v} = \mathbf{0}, \quad \lambda \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^p,$$
 (41)

for an eigenvalue-eigenvector pair  $(\lambda, \mathbf{v})$  of  $\mathbf{X}$  with  $\mathbf{v} \neq \mathbf{0}$ 

- ▶ again a linear system, but solving for a pair of eigenvalue and eigenvector  $(\lambda, \mathbf{v})$  for which the inverse/resolvent  $(\mathbf{X} \lambda \mathbf{I}_p)^{-1}$  does not exist
- while seemingly less convenient at first sight, turns out to be very efficient in providing a unified assess to general spectral functionals of X, by taking z to be complex and exploiting tools from complex analysis

#### Theorem (Cauchy's integral formula)

For  $\Gamma \subset \mathbb{C}$  a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f(z) analytic in a region containing  $\Gamma$  and its inside, then

- (i) if  $z_0 \in \mathbb{C}$  is enclosed by  $\Gamma$ ,  $f(z_0) = -\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z_0 z} dz$ ;
- (ii) if not,  $\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z_0 z} dz = 0$ .

### A resolvent approach to spectral analysis

$$(\mathbf{X} - \lambda \mathbf{I}_p)\mathbf{v} = \mathbf{0} \Rightarrow \mathbf{Q}_{\mathbf{X}}(z) = (\mathbf{X} - z\mathbf{I}_n)^{-1}$$
(42)

▶ let  $\mathbf{X} = \mathbf{U}\Lambda\mathbf{U}^\mathsf{T}$  be the spectral decomposition of  $\mathbf{X}$ , with  $\mathbf{\Lambda} = \{\lambda_i(\mathbf{X})\}_{i=1}^p$  eigenvalues and  $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p] \in \mathbb{R}^{p \times p}$  the associated eigenvectors, then

$$\mathbf{Q}(z) = \mathbf{U}(\mathbf{\Lambda} - z\mathbf{I}_p)^{-1}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{p} \frac{\mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}}{\lambda_i(\mathbf{X}) - z}.$$
 (43)

51 / 82

▶ thus, same eigenspace as **X**, but maps the eigenvalues  $\lambda_i(\mathbf{X})$  of **X** to  $1/(\lambda_i(\mathbf{X}) - z)$ .

Applying Cauchy's integral formula to the resolvent matrix  $\mathbf{Q}_{\mathbf{X}}(z)$  allows one to (somewhat magically!) assess the **eigenvalue** and **eigenvector** behavior of  $\mathbf{X}$ :

- ightharpoonup characterize the eigenvalues of X, one needs to determine a  $z \in \mathbb{R}$  such that  $Q_X(z)$  does *not* exist.
- ▶ can be done by directly calling the Cauchy's integral formula, which allows to determine the value of a (sufficiently nice) function f at a point of interest  $z_0 \in \mathbb{R}$ , by integrating its "inverse"  $g_f(z) = f(z)/(z_0 z)$  on the complex plane.
- this "inverse"  $g_f(z)$  is akin to the resolvent and does not, by design, exist at the point of interest  $z_0$ .
- ▶ in the following example, we compare the two approaches of
- (i) directly solving the determinantal equation; and
- (ii) use resolvent + Cauchy's integral formula.

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024

# A resolvent approach to spectral analysis: an example

Consider the following two-by-two real symmetric random matrix

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 \\ x_2 & x_3 \end{bmatrix} \in \mathbb{R}^{2 \times 2},\tag{44}$$

for (say independent) random variables  $x_1, x_2, x_3$ . For  $\lambda_1(\mathbf{X})$  and  $\lambda_2(\mathbf{X})$  the two (random) eigenvalues of  $\mathbf{X}$  with associated (random) eigenvectors  $\mathbf{u}_1(\mathbf{X})$ ,  $\mathbf{u}_2(\mathbf{X}) \in \mathbb{R}^2$ , we are interested in

$$f_{\mathbf{X}} = \mathbb{E}\left[f(\lambda_1(\mathbf{X})) + f(\lambda_2(\mathbf{X}))\right], \qquad g_{i,\mathbf{X}} = \mathbf{a}^{\mathsf{T}} \mathbb{E}[\mathbf{u}_i(\mathbf{X})\mathbf{u}_i(\mathbf{X})^{\mathsf{T}}]\mathbf{b}, \ i \in \{1, 2\},$$
(45)

for some function  $f: \mathbb{R} \to \mathbb{R}$  and deterministic  $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ .

(i) **Directly solve** for the eigenvalues from the determinantal equation as

$$0 = \det(\mathbf{X} - \lambda \mathbf{I}_2) \Leftrightarrow \lambda(\mathbf{X}) = \frac{1}{2} \left( x_1 + x_3 \pm \sqrt{(x_1 + x_3)^2 - 4(x_1 x_3 - x_2^2)} \right), \tag{46}$$

and the associated eigenvectors from  $\mathbf{X}\mathbf{u}_i(\mathbf{X}) = \lambda_i(\mathbf{X})\mathbf{u}_i(\mathbf{X}), i \in \{1, 2\}$ . Then compute  $f_{\mathbf{X}} = \mathbb{E}\left[f(\lambda_1(\mathbf{X})) + f(\lambda_2(\mathbf{X}))\right], g_{i,\mathbf{X}} = \mathbf{a}^\mathsf{T}\mathbb{E}[\mathbf{u}_i(\mathbf{X})\mathbf{u}_i(\mathbf{X})^\mathsf{T}]\mathbf{b}$ 

▶ needs to **re-compute** of the expectation for a different choice of function f and the eigen-pair  $(\lambda_1(\mathbf{X}), \mathbf{u}_1(\mathbf{X}))$  or  $(\lambda_2(\mathbf{X}), \mathbf{u}_2(\mathbf{X}))$  of interest.

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 52 / 82

(ii) The **resolvent** approach:

$$\begin{split} f_{\mathbf{X}} &= \mathbb{E}\left[f(\lambda_1(\mathbf{X})) + f(\lambda_2(\mathbf{X}))\right] \\ &= \mathbb{E}\left[-\frac{1}{2\pi \iota}\oint_{\Gamma}\left(\frac{f(z)}{\lambda_1(\mathbf{X}) - z} + \frac{f(z)}{\lambda_2(\mathbf{X}) - z}\right)dz\right] \\ &= -\frac{1}{2\pi \iota}\oint_{\Gamma}\mathbb{E}\left[f(z)\operatorname{tr}\mathbf{Q}_{\mathbf{X}}(z)dz\right] = -\frac{1}{2\pi \iota}\oint_{\Gamma}f(z)\operatorname{tr}\left(\mathbb{E}[\mathbf{Q}_{\mathbf{X}}(z)]\right)dz, \end{split}$$

for  $\Gamma$  a positively-oriented contour that circles around both (random) eigenvalues of X.

- $\triangleright$  a much more unified approach to the quantity  $f_X$  for different choices of f
- compute the expected resolvent once (which is much simpler in the case of large random matrices)
- ▶ then perform **contour integration** with the function *f* of interest.
- $\triangleright$  similarly, for  $g_{i,\mathbf{X}}$ , it follows that

$$g_{i,\mathbf{X}} = \mathbf{a}^{\mathsf{T}} \mathbb{E}[\mathbf{u}_i(\mathbf{X})\mathbf{u}_i(\mathbf{X})^{\mathsf{T}}] \mathbf{b} = -\frac{1}{2\pi \iota} \oint_{\Gamma_i} \mathbf{a}^{\mathsf{T}} \mathbb{E}[\mathbf{Q}_{\mathbf{X}}(z)] \mathbf{b} \, dz \tag{47}$$

for some contour  $\Gamma_i$  that circles around only  $\lambda_i(\mathbf{X}), i \in \{1, 2\}$ 

▶ given the expected resolvent  $\mathbb{E}[\mathbf{Q}(z)]$ , it suffices to choose the specific contour  $\Gamma_i$  to get the different expressions of  $g_{1,X}$  and  $g_{2,X}$ 

| Objects of interest                                                                                                                                                                                                     | Functionals of resolvent $\mathbf{Q}_{\mathbf{X}}(z)$                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ESD $\mu_{\mathbf{X}}$ of $\mathbf{X}$                                                                                                                                                                                  | Stieltjes transform $m_{\mu_{\mathbf{X}}}(z) = rac{1}{p}\operatorname{tr}\mathbf{Q}_{\mathbf{X}}(z)$                                                                        |  |
| Linear spectral statistics (LSS): $f(\mathbf{X}) \equiv \frac{1}{p} \sum_{i} f(\lambda_{i}(\mathbf{X}))$                                                                                                                | Integration of trace of $\mathbf{Q}_{\mathbf{X}}(z)$ : $-\frac{1}{2\pi i}\oint_{\Gamma}f(z)\frac{1}{p}\operatorname{tr}\mathbf{Q}_{\mathbf{X}}(z)dz$ (via Cauchy's integral) |  |
| Projections of eigenvectors $\mathbf{v}^T\mathbf{u}(\mathbf{X})$ and $\mathbf{v}^T\mathbf{U}(\mathbf{X})$ onto some given vector $\mathbf{v} \in \mathbb{R}^p$                                                          | Bilinear form $\mathbf{v}^T \mathbf{Q}_\mathbf{X}(z) \mathbf{v}$ of $\mathbf{Q}_\mathbf{X}$                                                                                  |  |
| General matrix functional $F(\mathbf{X}) = \sum_{i} f(\lambda_{i}(\mathbf{X})) \mathbf{v}_{1}^{T} \mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{T} \mathbf{v}_{2}$ involving both eigenvalues and eigenvectors | Integration of bilinear form of $\mathbf{Q}_{\mathbf{X}}(z)$ : $-\frac{1}{2\pi \iota} \oint_{\Gamma} f(z) \mathbf{v}_{1}^{T} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{v}_{2} dz$   |  |

# Using the resolvent to access eigenvalue distribution

#### Definition (Resolvent)

For a symmetric matrix  $X \in \mathbb{R}^{p \times p}$ , the resolvent  $Q_X(z)$  of X is defined, for  $z \in \mathbb{C}$  not an eigenvalue of X, as

$$\mathbf{Q}_{\mathbf{X}}(z) \equiv \left(\mathbf{X} - z\mathbf{I}_{p}\right)^{-1}.\tag{48}$$

▶ let  $\mathbf{X} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\mathsf{T}}$  be the spectral decomposition of  $\mathbf{X}$ , with  $\boldsymbol{\Lambda} = \{\lambda_i(\mathbf{X})\}_{i=1}^p$  eigenvalues and  $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p] \in \mathbb{R}^{p \times p}$  the associated eigenvectors, then

$$\mathbf{Q}(z) = \mathbf{U}(\mathbf{\Lambda} - z\mathbf{I}_p)^{-1}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{p} \frac{\mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}}{\lambda_i(\mathbf{X}) - z}.$$
 (49)

- thus, same eigenspace as **X**, but maps the eigenvalues  $\lambda_i(\mathbf{X})$  of **X** to  $1/(\lambda_i(\mathbf{X}) z)$ .
- ightharpoonup eigenvalue of  $\mathbf{Q}_{\mathbf{X}}(z)$ , and the resolvent matrix itself, must explode as z approaches any eigenvalue of  $\mathbf{X}$ .
- lacktriangle take the trace  ${
  m tr}\, {f Q}_{f X}(z)$  of  ${f Q}_{f X}(z)$  as the quantity to "locate" the eigenvalues of the matrix  ${f X}$  of interest
- for  $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$  the ESD of  $\mathbf{X}$ ,

$$\frac{1}{p}\operatorname{tr}\mathbf{Q}(z) = \frac{1}{p}\sum_{i=1}^{p}\frac{1}{\lambda_{i}(\mathbf{X}) - z} = \int \frac{\mu_{\mathbf{X}}(dt)}{t - z} \equiv m_{\mu_{\mathbf{X}}}(z).$$
 (50)

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 55 / 82

# The Stieltjes transform

#### Definition (Stieltjes transform)

For a real probability measure  $\mu$  with support supp( $\mu$ ), the *Stieltjes transform*  $m_{\mu}(z)$  is defined, for all  $z \in \mathbb{C} \setminus \text{supp}(\mu)$ , as

$$m_{\mu}(z) \equiv \int \frac{\mu(dt)}{t - z}.\tag{51}$$

### Proposition (Properties of Stieltjes transform, [HLN07])

For  $m_{\mu}$  the Stieltjes transform of a probability measure  $\mu$ , it holds that

- (i)  $m_{\mu}$  is complex analytic on its domain of definition  $\mathbb{C} \setminus \text{supp}(\mu)$ ;
- (ii) it is bounded  $|m_{\mu}(z)| \leq 1/\operatorname{dist}(z, \operatorname{supp}(\mu));$
- (iii) it is an increasing function on all connected components of its restriction to  $\mathbb{R} \setminus \text{supp}(\mu)$  (since  $m'_{\mu}(x) = \int (t-x)^{-2} \mu(dt) > 0$ ) with  $\lim_{x \to \pm \infty} m_{\mu}(x) = 0$  if  $\text{supp}(\mu)$  is bounded; and
- (iv)  $m_{\mu}(z) > 0$  for  $z < \inf \operatorname{supp}(\mu)$ ,  $m_{\mu}(z) < 0$  for  $z > \sup \operatorname{supp}(\mu)$  and  $\Im[z] \cdot \Im[m_{\mu}(z)] > 0$  if  $z \in \mathbb{C} \setminus \mathbb{R}$ ; and

BTW, for any  $\mathbf{u} \in \mathbb{R}^p$  and matrix  $\mathbf{A} \in \mathbb{R}^{p \times p}$  so that  $\operatorname{tr}(\mathbf{A}) = 1$ ,  $\mathbf{u}^\mathsf{T} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{u}$ ,  $\operatorname{tr}(\mathbf{A} \mathbf{Q}_{\mathbf{X}}(z))$  are STs.

Z. Liao (EIC. HUST) RMT4ML October 17 and 18, 2024 56 / 82

<sup>&</sup>lt;sup>5</sup>Walid Hachem, Philippe Loubaton, and Jamal Najim. "Deterministic equivalents for certain functionals of large random matrices". In: *The Annals of Applied Probability* 17.3 (2007), pp. 875–930

#### Definition (Inverse Stieltjes transform)

For a, b continuity points of the probability measure  $\mu$ , we have

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \int_a^b \Im\left[m_\mu(x+iy)\right] dx. \tag{52}$$

Besides, if  $\mu$  admits a density f at x (i.e.,  $\mu(x)$  is differentiable in a neighborhood of x and  $\lim_{\epsilon \to 0} (2\epsilon)^{-1} \mu([x - \epsilon, x + \epsilon]) = f(x))$ ,

$$f(x) = \frac{1}{\pi} \lim_{\nu \downarrow 0} \Im \left[ m_{\mu}(x + iy) \right]. \tag{53}$$

57 / 82

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024

# Use the resolvent for eigenvalue functionals

### Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix  $\mathbf{X} \in \mathbb{R}^{p \times p}$ , the *linear spectral statistics* (LSS)  $f_{\mathbf{X}}$  of  $\mathbf{X}$  is defined as the averaged statistics of the eigenvalues  $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$  of  $\mathbf{X}$  via some function  $f : \mathbb{R} \to \mathbb{R}$ , that is

$$f(\mathbf{X}) = \frac{1}{p} \sum_{i=1}^{p} f(\lambda_i(\mathbf{X})). \tag{54}$$

In particular, we have  $= \int f(t)\mu_{\mathbf{X}}(dt)$ , for  $\mu_{\mathbf{X}}$  the ESD of  $\mathbf{X}$ .

**LSS via contour integration**: For  $\lambda_1(\mathbf{X}), \dots, \lambda_p(\mathbf{X})$  eigenvalues of a symmetric matrix  $\mathbf{X} \in \mathbb{R}^{p \times p}$ , some function  $f \colon \mathbb{R} \to \mathbb{R}$  that is complex analytic in a compact neighborhood of the support supp( $\mu_{\mathbf{X}}$ ) (of the ESD  $\mu_{\mathbf{X}}$  of  $\mathbf{X}$ ), then

$$f(\mathbf{X}) = \int f(t)\mu_{\mathbf{X}}(dt) = -\int \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)dz}{t-z} \mu_{\mathbf{X}}(dt) = -\frac{1}{2\pi i} \oint_{\Gamma} f(z)m_{\mu_{\mathbf{X}}}(z)dz, \tag{55}$$

for any contour  $\Gamma$  that encloses supp( $\mu_{\mathbf{X}}$ ), i.e., all the eigenvalues  $\lambda_i(\mathbf{X})$ .

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 58 / 82

**Remark** (LSS to retrieve the inverse Stieltjes transform formula):

$$\begin{split} &\frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in [a,b]} \delta_{\lambda_{i}(\mathbf{X})} = -\frac{1}{2\pi \iota} \oint_{\Gamma} \mathbf{1}_{\Re[z] \in [a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz \\ &= -\frac{1}{2\pi \iota} \int_{a-\varepsilon_{x}-\iota\varepsilon_{y}}^{b+\varepsilon_{x}-\iota\varepsilon_{y}} \mathbf{1}_{\Re[z] \in [a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz - \frac{1}{2\pi \iota} \int_{b+\varepsilon_{x}+\iota\varepsilon_{y}}^{a-\varepsilon_{x}+\iota\varepsilon_{y}} \mathbf{1}_{\Re[z] \in [a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz \\ &- \frac{1}{2\pi \iota} \int_{a-\varepsilon_{x}+\iota\varepsilon_{y}}^{a-\varepsilon_{x}-\iota\varepsilon_{y}} \mathbf{1}_{\Re[z] \in [a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz - \frac{1}{2\pi \iota} \int_{b+\varepsilon_{x}-\iota\varepsilon_{y}}^{b+\varepsilon_{x}+\iota\varepsilon_{y}} \mathbf{1}_{\Re[z] \in [a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz. \end{split}$$

- Since  $\Re[m(x+\imath y)] = \Re[m(x-\imath y)], \Im[m(x+\imath y)] = -\Im[m(x-\imath y)];$
- we have  $\int_{a-\varepsilon_x}^{b+\varepsilon_x} m_{\mu_X}(x-\imath\varepsilon_y) dx + \int_{b+\varepsilon_x}^{a-\varepsilon_x} m_{\mu_X}(x+\imath\varepsilon_y) dx = -2\imath \int_{a-\varepsilon_x}^{b+\varepsilon_x} \Im[m_{\mu_X}(x+\imath\varepsilon_y)] dx;$
- ▶ and consequently  $\mu([a,b]) = \frac{1}{p} \sum_{\lambda_i(\mathbf{X}) \in [a,b]} \lambda_i(\mathbf{X}) = \frac{1}{\pi} \lim_{\varepsilon_y \downarrow 0} \int_a^b \Im[m_{\mu_{\mathbf{X}}}(x + \imath \varepsilon_y)] dx$ .

Z. Liao (EIC, HUST) Cotober 17 and 18, 2024

59 / 82



Figure: Illustration of a rectangular contour  $\Gamma$  and support of  $\mu_X$  on the complex plane.

### Spectral functionals via resolvent

#### Definition (Matrix spectral functionals)

For a symmetric matrix  $\mathbf{X} \in \mathbb{R}^{p \times p}$ , we say  $F \colon \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$  is a matrix spectral functional of  $\mathbf{X}$ ,

$$F(\mathbf{X}) = \sum_{i \in \mathcal{I} \subseteq \{1, \dots, p\}} f(\lambda_i(\mathbf{X})) \mathbf{u}_i \mathbf{u}_i^\mathsf{T}, \quad \mathbf{X} = \sum_{i=1}^p \lambda_i(\mathbf{X}) \mathbf{u}_i \mathbf{u}_i^\mathsf{T}.$$
 (56)

**Spectral functional via contour integration**: For  $\mathbf{X} \in \mathbb{R}^{p \times p}$ , resolvent  $\mathbf{Q}_{\mathbf{X}}(z) = (\mathbf{X} - z\mathbf{I}_p)^{-1}$ ,  $z \in \mathbb{C}$ , and  $f \colon \mathbb{R} \to \mathbb{R}$  analytic in a neighborhood of the contour  $\Gamma_{\mathcal{I}}$  that circles around the eigenvalues  $\lambda_i(\mathbf{X})$  of  $\mathbf{X}$  with their indices in the set  $\mathcal{I} \subseteq \{1, \dots, p\}$ ,

$$F(\mathbf{X}) = -\frac{1}{2\pi i} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) dz.$$
 (57)

**Example**: access to the *i*-th eigenvector  $\mathbf{u}_i$  of  $\mathbf{X}$  through

$$\mathbf{u}_i \mathbf{u}_i^\mathsf{T} = -\frac{1}{2\pi \iota} \oint_{\Gamma_{X(X)}} \mathbf{Q}_{\mathbf{X}}(z) \, dz,\tag{58}$$

for  $\Gamma_{\lambda_i(\mathbf{X})}$  a contour circling around  $\lambda_i(\mathbf{X})$  only, so eigenvector projection  $(\mathbf{v}^\mathsf{T}\mathbf{u}_i)^2 = -\frac{1}{2\pi i}\oint_{\Gamma_{\lambda_i(\mathbf{X})}}\mathbf{v}^\mathsf{T}\mathbf{Q}_{\mathbf{X}}(z)\mathbf{v}\,dz$ .

Z. Liao (EIC. HUST) RMT4ML October 17 and 18, 2024 61 / 82

Note that

$$\begin{split} \boldsymbol{\beta}_{*}^{\mathsf{T}}\boldsymbol{\beta}(t) &= \boldsymbol{\beta}_{*}^{\mathsf{T}}e^{-t\hat{\mathbf{C}}}\boldsymbol{\beta}(0) + \boldsymbol{\beta}_{*}^{\mathsf{T}}\left(\mathbf{I}_{p} - e^{-t\hat{\mathbf{C}}}\right)\boldsymbol{\beta}_{RR} \\ &= \boldsymbol{\beta}_{*}^{\mathsf{T}}e^{-t\hat{\mathbf{C}}}\boldsymbol{\beta}(0) + \boldsymbol{\beta}_{*}^{\mathsf{T}}\left(\mathbf{I}_{p} - e^{-t\hat{\mathbf{C}}}\right)\hat{\mathbf{C}}^{-1}\frac{1}{n}\mathbf{X}y \\ &= -\frac{1}{2\pi\imath}\oint_{\Gamma}\left(\exp(-tz)\cdot\boldsymbol{\beta}_{*}^{\mathsf{T}}\mathbf{Q}(z)\boldsymbol{\beta}(0) + \frac{1 - \exp(-zt)}{z}\cdot\frac{1}{n}\boldsymbol{\beta}_{*}^{\mathsf{T}}\mathbf{Q}(z)\mathbf{X}y\right)dz, \end{split}$$

for  $\Gamma$  a positively oriented contour that circles around all eigenvalues of  $\hat{\mathbf{C}}$ , and resolvent

$$\mathbf{Q}(z) = (\hat{\mathbf{C}} - z\mathbf{I}_p)^{-1} = \left(\frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T} - z\mathbf{I}_p\right)^{-1}.$$
 (59)

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 62 / 82

### Take-away messages of this section

- "basic" probability: concentration of scalar observations of large random vectors: simple and involved, linear and nonlinear objects
- boils down to expectation computation/evaluation
- same holds for scalar observations of large random matrices
- ▶ linear algebra: matrix norm "equivalence" but up to dimensional factors
- resolvent (i.e., regularized inverse) naturally appears in eigenvalue/eigenvector assessment
- a unified resolvent-based to eigenspectral analysis of (not necessarily random) matrices: Cauchy's integral formula, Stieltjes transform (and its inverse), Linear Spectral Statistic, and generic matrix spectral functionals, etc.

# Two different scaling regimes

### Example (Nonlinear objects in two scaling regimes)

Let  $\mathbf{x} \in \mathbb{R}^n$  be a random vector so that  $\sqrt{n}\mathbf{x}$  has i.i.d. standard Gaussian entries with zero mean and unit variance, and  $\mathbf{y} \in \mathbb{R}^n$  be a deterministic vector of unit norm  $\|\mathbf{y}\| = 1$ ; and consider the following two families of nonlinear objects of interest with a nonlinear function f acting on different regimes:

- (i) **LLN regime**: here we are interested in  $f(\|\mathbf{x}\|^2)$  and  $f(\mathbf{x}^T\mathbf{y})$ ; and
- (ii) **CLT regime**: here we are interested in  $f(\sqrt{n}(\|\mathbf{x}\|^2 1))$  and  $f(\sqrt{n} \cdot \mathbf{x}^\mathsf{T} \mathbf{y})$ .
  - the (strong) law of large numbers (LLN) implies that

$$\|\mathbf{x}\|^2 \to \mathbb{E}[\mathbf{x}^\mathsf{T}\mathbf{x}] = 1 \text{ and } \mathbf{x}^\mathsf{T}\mathbf{y} \to \mathbb{E}[\mathbf{x}^\mathsf{T}\mathbf{y}] = 0$$

almost surely as  $n \to \infty$ ; and

▶ the **central limit theorem (CLT)** implies that

$$\sqrt{n}(\|\mathbf{x}\|^2 - 1) \to \mathcal{N}(0, 2)$$
 and  $\sqrt{n} \cdot \mathbf{x}^\mathsf{T} \mathbf{y} \to \mathcal{N}(0, 1)$ 

in law as  $n \to \infty$ 

leads to the more compact form, for n large,

$$\|\mathbf{x}\|^2 \simeq 1 + \mathcal{N}(0,2) / \sqrt{n} \text{ and } \mathbf{x}^\mathsf{T} \mathbf{y} \simeq 0 + \mathcal{N}(0,1) / \sqrt{n}.$$
 (60)



Figure: Illustrations of random variables in LLN (**left**) and CLT (**right**) regime, with n = 500.

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 66 / 82

# Two different scaling regimes and their corresponding linearization

Table: Comparison between two different high-dimensional linearization approaches.

| Scaling regime          | LLN type                                                | CLT type                                                      |
|-------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Object of interest      | $f(\xi)$ for (almost) deterministic $\xi = \tau + o(1)$ | $f(\xi)$ for random $\xi$ , e.g., $\xi \sim \mathcal{N}(0,1)$ |
| Linearization technique | Taylor expansion                                        | Orthogonal polynomial                                         |
| Smoothness of $f$       | Locally smooth $f$                                      | Possibly non-smooth f                                         |

67 / 82

### Theorem (Taylor's theorem for deterministic single-variable functions)

Let  $f: \mathbb{R} \to \mathbb{R}$  be a function that is at least k times continuously differentiable in a neighborhood of a given point  $\tau \in \mathbb{R}$ . Then, there exists a function  $h_k: \mathbb{R} \to \mathbb{R}$  such that

$$f(x) = f(\tau) + f'(x - \tau) + \frac{f''(\tau)}{2}(x - \tau)^2 + \dots + \frac{f^{(k)}(\tau)}{k!}(x - \tau)^k + h_k(x)(x - \tau)^k, \tag{61}$$

with  $\lim_{x\to\tau} h_k(x) = 0$  so that  $h_k(x)(x-\tau)^k = o(|x-\tau|^k)$  as  $x\to\tau$ .

What makes the Taylor expansion approach work for random nonlinear functions f(x)?

- ▶ **Smoothness.** nonlinear f should be smooth, at least in the neighborhood of the point  $\tau$  of interest, so that the derivatives  $f'(\tau), f''(\tau), \ldots$  make sense.
- **Concentration.** variable of interest x is sufficiently close to (or, concentrates around, when being random) the point  $\tau$  so that the higher orders terms are neglectable

### Proposition (Taylor expansion of high-dimensional random functions in the LLN regime)

For random variable  $\xi = \|\mathbf{x}\|^2$  with  $\sqrt{n}\mathbf{x} \in \mathbb{R}^n$  having i.i.d. standard Gaussian entries, in the LLN regime, it follows from LLN and CLT that  $\|\mathbf{x}\|^2 - 1 = O(n^{-1/2})$  with high probability for n large, so that one can apply Taylor theorem to write

$$f(\|\mathbf{x}\|^2) = f(1) + f'(1) \underbrace{(\|\mathbf{x}\|^2 - 1)}_{O(n^{-1/2})} + \underbrace{\frac{1}{2}} f''(1) \underbrace{(\|\mathbf{x}\|^2 - 1)^2}_{O(n^{-1})} + O(n^{-3/2}), \tag{62}$$

with high probability. Similarly,

$$f(\mathbf{x}^{\mathsf{T}}\mathbf{y}) = f(0) + f'(0) \underbrace{\mathbf{x}^{\mathsf{T}}\mathbf{y}}_{O(n^{-1/2})} + \frac{1}{2}f''(0) \underbrace{(\mathbf{x}^{\mathsf{T}}\mathbf{y})^{2}}_{O(n^{-1})} + O(n^{-3/2}), \tag{63}$$

again as a consequence of  $\sqrt{n} \cdot \mathbf{x}^\mathsf{T} \mathbf{y} \xrightarrow{d} \mathcal{N}(0,1)$  in distribution as  $n \to \infty$ , where the orders  $O(n^{-\ell})$  hold with high probability for n large.

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 69 / 82

### A functional analysis perspective of expectation of nonlinear random function

- $\triangleright$  Consider the following functional analysis perspective of the expectation  $\mathbb{E}[f(\xi)]$
- ▶ For a random variable  $\xi$  following some law  $\mu$ , the expectation  $\mathbb{E}[f(\xi)]$  of the nonlinear transformation  $f(\xi)$  can be expresses as

$$\mathbb{E}_{\xi \sim \mu}[f(\xi)] = \int f(t)\mu(dt). \tag{64}$$

▶ In the case of Euclidean space, the canonical vectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$  form an orthonormal basis of  $\mathbb{R}^n$ ; and thus any vector  $\mathbf{x}$  living in the Euclidean space  $\mathbb{R}^n$  can be decomposed as

$$\mathbf{x} = \sum_{i=1}^{n} (\mathbf{x}^{\mathsf{T}} \mathbf{e}_i) \mathbf{e}_i = \sum_{i=1}^{n} x_i \mathbf{e}_i, \tag{65}$$

with the inner product  $\mathbf{x}^\mathsf{T}\mathbf{e}_i = x_i$  the *i*th coordinate of  $\mathbf{x}$ .

▶ A similar result holds more generally, e.g., or a function *f* living in some (infinite dimensional) function space, can be decomposed into the sum of "orthonormal" basis functions, weighted by the projection (i.e., inner product) of *f* onto these basis functions

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 70 / 82

### Orthogonal Polynomials

Z. Liao (EIC, HUST)

### Definition (Orthogonal polynomials and orthogonal polynomial expansion)

For a probability measure  $\mu$ , define the inner product

$$\langle f, g \rangle \equiv \int f(\xi)g(\xi)\mu(d\xi) = \mathbb{E}[f(\xi)g(\xi)],$$
 (66)

for  $\xi \sim \mu$ . We say that  $\{P_{\ell}(\xi), \ell \geq 0\}$  is a family of orthogonal polynomials with respect to this inner product, obtained by the Gram-Schmidt procedure on the monomials  $\{1, \xi, \xi^2, \ldots\}$ , with  $P_0(\xi) = 1$ , where  $P_{\ell}$  is a polynomial function of degree  $\ell$  that satisfies

$$\langle P_{\ell_1}, P_{\ell_2} \rangle = \mathbb{E}[P_{\ell_1}(\xi)P_{\ell_2}(\xi)] = \delta_{\ell_1 = \ell_2}. \tag{67}$$

Then, for any function  $f \in L^2(\mu)$ , the orthogonal polynomial expansion of f is

$$f(\xi) \sim \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(\xi), \quad a_{\ell} = \int f(\xi) P_{\ell}(\xi) \mu(d\xi)$$
 (68)

▶ denote " $f \sim \sum_{l=0}^{\infty} a_{\ell} P_{\ell}$ " to denote that  $||f - \sum_{\ell=0}^{L} a_{\ell} P_{\ell}||_{\mu} \to 0$  as  $L \to \infty$  with  $||f||_{\mu}^{2} = \langle f, f \rangle$ , or equivalently  $\int \left( f(\xi) - \sum_{\ell=0}^{L} a_{\ell} P_{\ell}(\xi) \right)^{2} \mu(d\xi) = \mathbb{E}\left[ \left( f(\xi) - \sum_{\ell=0}^{L} a_{\ell} P_{\ell}(\xi) \right)^{2} \right] \to 0.$ 

RMT4MI.

# Hermite polynomial decomposition

### Theorem (Hermite polynomial decomposition)

For  $\xi \in \mathbb{R}$ , the  $\ell^{th}$  order normalized Hermite polynomial, denoted  $P_{\ell}(\xi)$ , is given by

$$P_0(\xi) = 1$$
, and  $P_{\ell}(\xi) = \frac{(-1)^{\ell}}{\sqrt{\ell!}} e^{\frac{\xi^2}{2}} \frac{d^n}{d\xi^n} \left( e^{-\frac{\xi^2}{2}} \right)$ , for  $\ell \ge 1$ . (69)

and the family of (normalized) Hermite polynomials

- (i) being orthogonal polynomials and (as the name implies) are orthonormal with respect the standard Gaussian measure:  $\int P_m(\xi)P_n(\xi)\mu(d\xi) = \delta_{nm}$ , for  $\mu(dt) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt$  the standard Gaussian measure; and
- (ii) form an orthonormal basis of  $L^2(\mu)$ , the Hilbert space consist of all square-integrable functions with respect to the inner product  $\langle f,g\rangle \equiv \int f(\xi)g(\xi)\mu(d\xi)$ , and that one can formally expand any  $f\in L^2(\mu)$  as

$$f(\xi) \sim \sum_{\ell=0}^{\infty} a_{\ell,f} P_{\ell}(\xi), \quad a_{\ell,f} = \int f(\xi) P_{\ell}(\xi) \mu(d\xi) = \mathbb{E}[f(\xi) P_{\ell}(\xi)], \tag{70}$$

where we use ' $f \sim \sum_{\ell=0}^{\infty} a_{\ell,f} P_{\ell}$ ' for standard Gaussian  $\xi \sim \mathcal{N}(0,1)$ . The coefficients  $a_{\ell,f}$ s are generalized moments of the standard Gaussian measure  $\mu$  involving f, and we have

$$a_{0f} = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)], \quad a_{1f} = \mathbb{E}[\xi f(\xi)], \quad \sqrt{2}a_{2f} = \mathbb{E}[\xi^2 f(\xi)] - a_{0f}, \quad \nu_f = \mathbb{E}[f^2(\xi)] = \sum_{\ell=0}^{\infty} a_{\ell f}^2.$$
 (71)

RMT4ML



Figure: Illustration of the first four Hermite polynomials (**left**) and of the first- and second-order Hermite polynomial ( $P_1$  and  $P_2$ ) weighted by the Gaussian mixture  $\mu(dx) = \exp(-x^2/2)/\sqrt{2\pi}$  (**right**).

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024

73 / 82

### Proposition (Hermite polynomial "expansion" in the CLT regime)

For random variable  $\xi_{\text{CLT}} = \sqrt{n} \cdot (\|\mathbf{x}\|^2 - 1)$  with  $\sqrt{n}\mathbf{x} \in \mathbb{R}^n$  having i.i.d. standard Gaussian entries, in the CLT regime, it follows from the CLT that  $\xi_{\text{CLT}} \sim \mathcal{N}(0,1)$  in the  $n \to \infty$  limit, so that one can write

$$\mathbb{E}[f(\sqrt{n} \cdot (\|\mathbf{x}\|^2 - 1))] = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)] + o(1) = a_{0,f} + o(1), \tag{72}$$

as  $n \to \infty$ ; and similarly

$$\mathbb{E}[f(\sqrt{n} \cdot \mathbf{x}^\mathsf{T} \mathbf{y})] = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)] + o(1) = a_{0,f} + o(1). \tag{73}$$

- looks not extremely insightful
- makes a lot more sense for scalar nonlinear observations of random vectors and random matrices, e.g.,  $\mathbf{K} = f(\mathbf{X}^\mathsf{T}\mathbf{X}/\sqrt{p})/\sqrt{p} - \mathrm{diag}(\cdot)$ , for random matrix  $\mathbf{X} \in \mathbb{R}^{p \times n}$

RMT4MI. Z. Liao (EIC, HUST) October 17 and 18, 2024 74 / 82

### Example (Nonlinear behaviors of tanh in two scaling regimes)

Consider the hyperbolic tangent function  $f(t) = \tanh(t)$ . This nonlinear function is "close" to different quadratic functions in *different* regimes of interest. More precisely, we have the following.

(i) In the LLN regime, we have

$$tanh(\xi_{LLN}) \simeq g(\xi_{LLN}),$$

with  $g(t) = t^2/4$ . This is as a consequence of  $\tanh(x) = g(x) = 0$ . In particular,  $\mathbb{E}[\tanh(\xi_{\text{LLN}})] \simeq \mathbb{E}[g(\xi_{\text{LLN}})]$ .

(ii) In the CLT regime, we have

$$\mathbb{E}[\tanh(\xi_{LLN})] = \mathbb{E}[g(\xi_{LLN})]$$

in expectation, with now  $g(t) = t^2 - 1$ , i.e., with a different function. This is a consequence of the fact that their zeroth-order Hermite coefficient  $a_0 = 0$ .

# Numerical illustration of two high-dimensional linearization technique



Figure: Different behavior of nonlinear  $f(\xi_{LLN})$  and  $f(\xi_{CLT})$  for  $f(t) = \tanh(t)$  in the LLN and CLT regime, with n = 500. We have in particular  $\tanh(\xi_{LLN}) \simeq g(\xi_{LLN})$  in the LLN regime and  $\mathbb{E}[\tanh(\xi_{CLT})] = \mathbb{E}[g(\xi_{CLT})]$  in the CLT regime with different g.

# High-dimensional Linear Equivalent

### Definition (High-dimensional Linear Equivalent)

For a random vector  $\mathbf{x} \in \mathbb{R}^n$ , its nonlinear transformation  $f(\mathbf{x}) \in \mathbb{R}^n$  is obtained by applying  $f \colon \mathbb{R} \to \mathbb{R}$  entry-wise on  $\mathbf{x}$ . Consider  $g(f(\mathbf{x}))$  a scalar observation of  $f(\mathbf{x})$  via observation function  $g \colon \mathbb{R}^n \to \mathbb{R}$ , we say that the random vector  $\tilde{\mathbf{x}}_f$  (defined on an extended probability space if necessary) is an  $(\varepsilon, \delta)$ -Linear Equivalent to  $f(\mathbf{x})$  if, with probability at least  $1 - \delta(n)$  that

$$\left| g(f(\mathbf{x})) - g(\tilde{\mathbf{x}}_f) \right| \le \varepsilon(n),$$
 (74)

for some non-negative functions  $\varepsilon(n)$  and  $\delta(n)$  that decrease to zero as  $n \to \infty$ . This, in the limit of  $n \to \infty$ , leads to

$$g(f(\mathbf{x})) - g(\tilde{\mathbf{x}}_f) \to 0, \tag{75}$$

in probability or almost surely for the observation function  $g(\cdot)$ , and we denote

$$f(\mathbf{x}) \stackrel{g}{\leftrightarrow} \tilde{\mathbf{x}}_f.$$
 (76)

And similarly for a random matrix  $\mathbf{X} \in \mathbb{R}^{p \times n}$ .

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 77 / 82

Example: Nonlinear random vectors in two scaling regimes

### Example (Nonlinear random vectors in two scaling regimes)

Let  $\mathbf{X} \in \mathbb{R}^{p \times n}$  be a *random* matrix so that  $\sqrt{n}\mathbf{X}$  has i.i.d. standard Gaussian entries with zero mean and unit variance, and  $\mathbf{y} \in \mathbb{R}^n$ ,  $\alpha \in \mathbb{R}^p$  be *deterministic* vectors of unit norm such that  $\|\mathbf{y}\| = 1$  and  $\|\alpha\| = 1$ ; consider the following two families of *scalar* observations of *nonlinear* random vectors with observation function  $g \colon \mathbb{R}^p \to \mathbb{R}$  and a nonlinear function f acting on different regimes:

- (i) **LLN regime**:  $g(f(\mathbf{X}\mathbf{y})) = \frac{1}{\sqrt{n}} \alpha^{\mathsf{T}} f(\mathbf{X}\mathbf{y})$ ; and
- (ii) CLT regime:  $g(f(\sqrt{n} \cdot \mathbf{X}\mathbf{y})) = \frac{1}{\sqrt{n}} \mathbf{\alpha}^\mathsf{T} f(\sqrt{n} \cdot \mathbf{X}\mathbf{y}).$

78 / 82

### Proposition (Taylor expansion of nonlinear random vector in the LLN regime)

Let  $\mathbf{X} \in \mathbb{R}^{p \times n}$  be a random matrix so that  $\sqrt{n}\mathbf{X}$  has i.i.d. standard Gaussian entries with zero mean and unit variance, and  $\mathbf{y} \in \mathbb{R}^n$ ,  $\mathbf{\alpha} \in \mathbb{R}^p$  be deterministic vectors of unit norm such that  $\|\mathbf{y}\| = 1$  and  $\|\mathbf{\alpha}\| = 1$ , in the LLN regime, the following Linear Equivalent holds

$$f(\mathbf{X}\mathbf{y}) \stackrel{g}{\leftrightarrow} \underbrace{f(0) \cdot \mathbf{1}_{p}}_{O_{\|\cdot\|_{\infty}}(1)} + \underbrace{f'(0) \cdot \mathbf{X}\mathbf{y}}_{O_{\|\cdot\|_{\infty}}(n^{-1/2})}, \tag{77}$$

for the scalar observation function  $g(\cdot) = \alpha^{\mathsf{T}}(\cdot)/\sqrt{n}$ , up to some approximation error  $\varepsilon = O(n^{-1})$ .

### Proposition (Hermite polynomial expansion in the CLT regime.)

Let  $\mathbf{X} \in \mathbb{R}^{p \times n}$  be a random matrix so that  $\sqrt{n}\mathbf{X}$  has i.i.d. standard Gaussian entries with zero mean and unit variance, and  $\mathbf{y} \in \mathbb{R}^n$ ,  $\mathbf{\alpha} \in \mathbb{R}^p$  be deterministic vectors of unit norm such that  $\|\mathbf{y}\| = 1$  and  $\|\mathbf{\alpha}\| = 1$ , in the CLT regime, if the nonlinear  $f : \mathbb{R} \to \mathbb{R}$  and  $g(\cdot) = \mathbf{\alpha}^\mathsf{T}(\cdot)/\sqrt{n}$  are such that  $g(f(\sqrt{n}\mathbf{X}\mathbf{y}))$  strongly concentrates, i.e.,

$$g(f(\sqrt{n}\mathbf{X}\mathbf{y})) = \frac{1}{\sqrt{n}}\boldsymbol{\alpha}^{\mathsf{T}}f(\sqrt{n}\mathbf{X}\mathbf{y}) = \frac{1}{\sqrt{n}}\mathbb{E}[\boldsymbol{\alpha}^{\mathsf{T}}f(\sqrt{n}\mathbf{X}\mathbf{y})] + \varepsilon(n,p),\tag{78}$$

with high probability for n, p large, so  $f(\sqrt{n}\mathbf{X}\mathbf{y}) \overset{g}{\leftrightarrow} a_{0,f} \cdot \mathbf{1}_p$ , for the observation function  $g(\cdot) = \mathbf{\alpha}^{\mathsf{T}}(\cdot)/\sqrt{n}$ .

**Z. Liao** (EIC, HUST) RMT4ML October 17 and 18, 2024 79/82

# An additional example in the CLT regime

### Example (Hermite polynomial expansion in the CLT regime)

Under the same notations and settings as above but for random observation function

$$g(\cdot) = \frac{1}{\sqrt{n}} \mathbf{y}^\mathsf{T} \mathbf{X}^\mathsf{T}(\cdot),\tag{79}$$

that is assumed to strongly concentrate around its expectation up to some  $\varepsilon(n,p)$  for n,p large, then, the following Linear Equivalent holds

$$f(\sqrt{n}\mathbf{X}\mathbf{y}) \stackrel{g}{\leftrightarrow} a_{1f} \cdot \sqrt{n}\mathbf{X}\mathbf{y},\tag{80}$$

up to some approximation error  $\varepsilon(n,p)$ .

- we also have  $f(\sqrt{n}\mathbf{X}\mathbf{y}) \overset{g}{\leftrightarrow} a_{1,f} \cdot \sqrt{n}\mathbf{X}\mathbf{y} + \mathbf{z}$ , and Linear Equivalents are not unique
- in some cases we care joint behavior of multiple observation functions, etc.

# An additional example of joint behavior in the CLT regime

### Example (Hermite polynomial expansion in the CLT regime: joint behavior)

Consider random vector  $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$  having i.i.d. standard Gaussian entries, and nonlinear random vector  $f(\mathbf{x})$  with nonlinear  $f \colon \mathbb{R} \to \mathbb{R}$  applied entry-wise on  $\mathbf{x}$ , in the CLT regime. Then, for the *joint* behavior of the two *scalar* observation of  $f(\mathbf{x})$ ,

$$(g_1(f(\mathbf{x})), g_2(f(\mathbf{x}))) = \left(\frac{1}{p}\mathbf{x}^\mathsf{T}f(\mathbf{x}), \frac{1}{p}f(\mathbf{x})^\mathsf{T}f(\mathbf{x})\right), \tag{81}$$

the following asymptotic equivalent linear model holds

$$f(\mathbf{x}) \stackrel{(g_1,g_2)}{\leftrightarrow} a_{0,f} \cdot \mathbf{1}_p + a_{1,f} \cdot \mathbf{x} + \sqrt{\nu_f - a_{0,f}^2 - a_{1,f}^2} \cdot \mathbf{z}, \tag{82}$$

81 / 82

with  $a_{0,f}$ ,  $a_{1,f}$ ,  $v_f$  the Hermite coefficients of f, and standard Gaussian random vector  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$  that is independent of  $\mathbf{x}$ .

### Take-away messages of this section

- two different scaling regimes: LLN versus CLT
- high-dimensional linearizations of nonlinear random functions via Taylor Expansion and Orthogonal Polynomial
- ► Taylor Expansion can be performed in a close-to-deterministic fashion
- Orthogonal Polynomial is more tricky and depends on the form of the observation map



# Thank you! Q & A?