Homework 5

Total: 20 points

Due: Wed 5 November 2014 at the beginning of class

Remember to show all steps in your working. If a question is taken from the textbook, the refence is given on the right of the page.

1. CHARACTERISTIC EQUATIONS WITH EQUAL ROOTS

(a) Find the general solution to the following differential equations:

i.
$$9y'' + 6y' + y = 0$$
 Boyce 3.4 Q2

ii.
$$y'' - 6y' + 9y = 0$$
 Boyce 3.4 Q6

(b) Find the solution to each of the following initial value problems. Sketch the graph of the solution and describe its behaviour for increasing t:

i.
$$9y'' - 12y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = -1$ Boyce 3.4 Q11

ii.
$$y'' + 4y' + 4y = 0$$
, $y(-1) = 2$, $y'(-1) = 1$ Boyce 3.4 Q14

(c) Boyce 3.4 Q16

Consider the initial value problem

$$y'' - y' + \frac{1}{4}y = 0,$$
 $y(0) = 2,$ $y'(0) = b,$

where b is a constant. Find the solution as a function of t for a given b, and determine the critical value of b that separates solutions that grow positively from those that eventually grow negatively.

(d) Boyce 3.4 Q24

Consider the Euler equation

$$t^2y'' + 2ty' - 2y = 0, \qquad t > 0.$$

We may use the method detailed in the previous homework (substituting $x = \ln(t)$) to find the general solution to this equation. However, if we already know a specific solution we may instead use the method of reduction in order to find the DE's general solution.

Given that $y_1(t) = t$ is a solution to this differential equation, use the method of reduction of order to find the general solution to this DE.

2. NONHOMOGENEOUS EQUATIONS

(a) Find the general solution to the following differential equations:

i.
$$y'' - 2y' - 3y = 3e^{2t}$$
 Boyce 3.5 Q1

ii.
$$y'' + 2y' + 5y = 3\sin(2t)$$
 Boyce 3.5 Q2

iii.
$$y'' + 2y' + y = 2e^{-t}$$
 Boyce 3.5 Q8

iv.
$$y'' + y' + 4y = 2\sinh t$$
 [Hint: $\sinh t = \frac{1}{2}(e^t - e^{-t})$] Boyce 3.5 Q13

(b) Boyce 3.5 Q20

Solve the initial value problem

$$y'' + 2y' + 5y = 4e^{-t}\cos(2t),$$
 $y(0) = 1,$ $y'(0) = 0.$

[Questions continued on the next page!]

(c) Consider the following initial value problem:

$$y'' + 4y' + 4y = \cos(t) + e^{-2t},$$
 $y(0) = 1,$ $y'(0) = 0.$

The function $g(t) = \cos(t) + e^{-2t}$ is often called the *forcing function* in this DE, and the corresponding solution y(t) to the IVP is called the *response*.

- i. Find the solution to the above IVP.
- ii. The limiting behaviour of the response, after exponential terms have decayed, can be written in the form $R\cos(t-\delta)$, where R and δ are called the *amplitude* and *phase shift* of the response respectively. Find R and δ .
- iii. Plot a graph of the response as a function of time. Also include on the graph a plot of $\cos(t)$, the oscillating part of the forcing function. Be sure to indicate on the graph the amplitude and phase shift of the response's limiting behaviour vs. that of $\cos(t)$.