Lecture 3: convex functions

Dabeen Lee

Industrial and Systems Engineering, KAIST

IE 539: Convex Optimization

September 8, 2024

Outline

- (Review) Convex sets
- Convex functions
- Convex function examples
- Epigraph
- First-order and second-order characterizations of convex functions
- (If time allows) Operations preserving convexity

Convex set

• A set $X \subseteq \mathbb{R}^d$ is convex if for any $u,v \in X$ and any $\lambda \in [0,1]$,

$$\lambda u + (1 - \lambda)v \in X$$
.

 In words, the line segment joining any two points is entirely contained the set.

Comparison

- $X = \{u, v\}$ consists of two points.
- RED: conv(X).
- BLUE: cone(X).
- Green: aff(X).
- ORANGE: lin(X).

Convex set examples

- The convex hull and conic hull of a set are convex.
- The linear subspace and affine subspace spanned by a set are convex.
- Empty set ∅
- Norm ball.
- Ellipsoid.
- Half-space.
- Polyhedron and polytopes.
- Simplex
- Nonnegative and positive orthants
- Norm cone
- Positive semidefinite cone

Convex function

• A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the domain dom(f) is convex and

In words,

Concave, strictly convex, strongly convex functions

• We say that $f: \mathbb{R}^d \to \mathbb{R}$ is concave if

• A function $f: \mathbb{R}^d \to \mathbb{R}$ is strictly convex if dom(f) is convex and

• A function $f: \mathbb{R}^d \to \mathbb{R}$ is strongly convex if dom(f) is convex and

Exercise: Show that Strongly convexity implies strict convexity.

Convex function examples

Univariate functions

Exponential function

Power function

Logarithm

Negative entropy

Convex function examples

Linear function

• Quadratic function

• Least squares loss

Norm

Convex function examples

• Maximum eigenvalue of a symmetric matrix

Indicator function

Support function

Conjugate function

Epigraph

The epigraph of a function $f: \mathbb{R}^d \to \mathbb{R}$ is defined as

Exercise: prove that f is convex if and only if its epigraph is convex

Example: $norm\ cone = epigraph\ of\ the\ norm$

Level set, convex level sets of a nonconvex function

A level set of a function $f:\mathbb{R}^d o \mathbb{R}$ is defined as

$$\{x \in \mathsf{dom}(f): f(x) \le \alpha\}$$

Level sets of a nonconvex set can be convex:

First-order characterization I

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if dom(f) is convex and

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

for all $x, y \in dom(f)$.

First-order characterization I

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if dom(f) is convex and

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

for all $x, y \in dom(f)$.

Proof

First-order characterization I

First-order characterization II

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if dom(f) is convex and

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0$$

for all $x, y \in dom(f)$.

Proof

First-order characterization II

Second-order characterization

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function¹. Then f is convex if and only if dom(f) is convex and $\nabla^2 f(x) \succeq 0$.

for all $x \in dom(f)$.

Proof

 $^{{}^{1}\}nabla^{2}f$ exists at any point in dom(f), and dom(f) is open.

Second-order characterization

Set operations preserving convexity

Intersection

Scaling

Minkowski sum

Product

Set operations preserving convexity

• Affine image

Inverse affine image

Function operations preserving convexity

• Nonnegative weighted sum

• Maximum of arbitrary collection of convex functions

Affine composition

Function operations preserving convexity

• Minimizing out variables

Perspective function

Examples

Let C be an arbitrary set of locations. Note that

$$f_1(x) = \max_{y \in C} ||x - y||$$

measures the longest distance from x to a location in C, and

$$f_2(x) = \min_{y \in C} \|x - y\|$$

measures the shortest distance from x to a location in C.

Remark

 f_1 is convex regardless of whether C is convex or not, and f_2 is convex if the set C is convex.