¹Maestría en Ingeniería de Sistemas Pontificia Universidad Javeriana

16 de noviembre de 2012

Outline

- Motivación
 - Problema Estudiado

- 2 Simulación
- 3 Controlador de Grupo de Elevadores

Outline

- Motivación
 - Problema Estudiado
- 2 Simulación
- 3 Controlador de Grupo de Elevadores

Introducción

- Factores que impulsan el uso de edificaciones de gran tamaño en los grandes centros urbanos:
 - Escacez de terrenos disponibles.
 - Alto precio de los terrenos.
 - Densidad poblacional.
 - Nuevas tendencias.
- Esto genera la necesidad de transportar eficientemente las personas que los habitan.

Transporte Vertical

- Objetivos en el transporte vertical
 - Reducir el tiempo de espera de los pasajeros.
 - Reducir el tiempo de viaje.
 - Reducir el consumo de energía.
- Factores
 - Gran demanda en horas pico.
 - Las distancias a recorrer son grandes.
 - Los patrones de tráfico cambian dependiendo del tipo de edificio.
 - Comportamiento estacional.

Objetivos

Diseñar un método distribuido de control para asignar de manera eficiente el tráfico de personas presente en una edificación, haciendo uso de técnicas de inteligencia artificial (I.A.).

- Modelar matemáticamente el problema de tráfico presentado en las edificaciones de gran altura.
- Diseño del método distribuido de control para la asignación de ascensores, haciendo uso de técnicas de control inteligente.
- Evaluar la técnica de control desarrollada y comparar su eficiencia respecto a una técnica tradicional en un ambiente simulado.

Outline

- Motivación
 - Problema Estudiado
- 2 Simulación
- 3 Controlador de Grupo de Elevadores

Introducción

"Ninguna parte sustancial del universo es tan simple como para comprenderse y controlarse sin abstracción. Esta consiste en reemplazar la parte del universo bajo consideración, por un modelo de estructura similar, pero más simple". Rosenblueth y Wiener

Objetivos

- Medir el desempeño de diferentes estrategias de control para grupo de elevadores y compararlas entre si.
- Planear el transporte de pasajeros en edificaciones de gran altura, encontrar el tipo de controlador para grupo de ascensores apropiado y el número de elevadores.
- Medir el tiempo que toma una evacuación por medio de los elevadores. Esto depende de la naturaleza de la emergencia [1].
- Determinar si la configuación del sistema de ascensores es suficiente para servir la población del edificio.
- Simular situaciónes de emergencia, como por ejemplo que un elevador quede fuera de servicio.

Proceso de Modelado

Figure: Modelo de simulación de BANKS

Clasificación de la Simulación

- Modelo por Eventos Continuos
- Modelo por Eventos Discretos
 - Avance por eventos: la simulación salta de evento en evento.
 - Basada en actividades: se debe conocer cuando una actividad empieza y otra termina.
 - Avance por unidad de tiempo
- Simulación Determinística: no existen componente aleatorios en la simulación.
- Simulación Estocástica

Procedimiento de Diseño

Figura: Procedimiento de Diseño

Flujo de Simulación Averril

Principios de Diseño

- El simulador debe ser parametrizable en los aspectos que tienen mayor relevancia en la simulación.
- La aplicación debe correr en cualquier sistema operativo, debe desarrollarse bajo un lenguaje portable.
- No se desarrollarán rutinas matemáticas o utilitarias si existe una libreía de código libre que se pueda usar.
- El simulador debe ser de código libre y abierto para la comunidad científica.
- Es de gran valor presentar la dinámica del sistema gráficamente.
- Al final de cada simulación debe mostrarse un informe estadístico del desempeño del sistema.

Simuladores de Edificación

Item	Elevate	ALTS	Plan	BSim
License	Comercial [Peters R.]	N/A [KONE]	N/A [OTIS] GL	
Operating system	Windows	Windows	Windows	Cross Plataform
Language programming	Visual C++	Standard C++	Borland C++ Builder 6	Java 1.6
Number of floors	100	No limit	30 No li	
Interfloor distance	Yes	Yes	Yes Yes	
Special traffic flows	Yes	Yes	Yes	Yes
Floor populations	Yes	Yes	Yes Ye	
Passengers transfer times	Yes	Yes	Yes Yes	

Cuadro: Comparación simuladores

Simuladores de Edificación (2)

Item	Elevate	ALTS	Plan	BSim
Elevator Configuration	No	No	No	Yes
Number of lifts	8	No limit	No limit	No limit
Lifts of different capacities	Yes	No	No	Yes
Floor entrance forbidden option	No	No	No	Yes
Traffic control algorithms	Coll., Nearest, Dyn,	KONE proprietary	Collective,Dyn., ETA	Collective, ABCS
Visual simulation	2 <i>d</i>	2d/3d	2 <i>d</i>	2d
Graphical report	Yes	Yes	Yes	Yes (export pdf)
Command line	No	No	No	Yes
Cost	Single User £1,823.52	n/a	n/a	Free

Cuadro: Comparación simuladores

Tráfico Veritical

Se entiende por tráfico en una edificación; el movimiento o tránsito de personas dentro del edificio, este tráfico tiene dos componentes tasa de arribo y probabilidad de destino, en donde:

- Tasa de Arribo: Es el número de usuarios que llegan al sistema en determinado espacio de tiempo. La tasa de arribo en una edificación cambia de acuerdo a dos factores, uno es el tiempo en el que se mide y otro es el piso.
- Probabilidad Destino: Es la probabilidad que tiene un pasajero de dirigirse del piso po, al piso pd, en determinado instante de tiempo.

Patrones de Tráfico

Figura: Patrón de tráfico [?]

Dinámica del Tráfico

La probabilidad de tener n pasajeros en el intervalo de tiempo T para una tasa de arribo obtenida de la experiencia de λ (en llamadas por segundo) es:

$$p_r(n) = \frac{(\lambda T)^n}{n!} e^{-\lambda T}$$
, en donde

- Densidad de arribo $(\lambda(t))$: Número de personas esperadas por unidad de tiempo, sigue un proceso de Poisson [5].
- Tasa de servicio $(\mu(t))$: Número de personas que pueden ser servidas por unidad de tiempo, sigue un proceso de Poisson [5].
- Tasa de utilización $(\rho(t) = \frac{\lambda(t)}{\mu(t)})$: Tasa que muestra el estado de utilización del sistema, se desea que este vamos sea $\rho < 1$ [5].

Diagrama de Componentes

Diagrama de Clases

Outline

- Motivación
 - Problema Estudiado
- 2 Simulación
- 3 Controlador de Grupo de Elevadores

Familias de Técnicas

- Técnicas tradiocionales [4]
 - Maniobra Universal Por Pulsadores.
 - Maniobra Duplex.
 - Maniobra Colectiva selectiva en los dos sentidos.
- Técnicas no tradicionales
 - Lógica difusa.
 - Aprendizaje reforzado.
 - Algoritmos genéticos.

Técnica Tradicional

Figura: Técnica de control tradicional

- Desventajas
 - Las reglas de control no están orientadas a prestar un servicio eficiente.
 - Las reglas son fijas.

Criterios de Desempeño

 Tiempo De Espera: Promedio del tiempo de espera de los pasajeros para ser atendidos.

Service level	Average waiting time	% of passengers served within		
	(s)	30 s	60 s	90 s
Excellent	< 20	75%	95%	99%
Good	20 – 30	65%	85%	95%
Satisfactory	30 – 40	50%	75%	90%
Acceptable	40 – 60	40%	60%	75%

Figura: Criterio de desempeño < Tiempo de Espera>

Criterios de Desempeño (2)

• Tiempo de viaje: Tiempo que el pasajero dura dentro del ascensor hasta que llegue al piso objetivo.

Service level	Average time to destination	% of passengers served within		
	(s)	90 s	120 s	150 s
Excellent	< 80	70%	85%	95%
Good	80 – 100	40%	75%	90%
Satisfactory	100 – 120	15%	50%	80%
Acceptable	120 - 150	5%	20%	55%

Figura: Criterio de desempeño < Tiempo de Viaje>

Criterios de Desempeño (3)

- Tiempos de espera muy largos: Minimizar el porcentaje de largas esperas por la llegada de un ascensor, es conocido que sicológicamente las personas pierden la paciencia pasados 3 minutos sin ser atendidas [3].
- Consumo energético del sistema: El cual se debe minimizar haciendo que el ascensor pare lo menos posible y evite los desplazamientos innecesarios.
- Capacidad del grupo de ascensores (volumen de viajeros transportados): También se le conoce como carga, entre más persona se logre llevar en la misma cabina mucho mejor.

Controlador Propuesto

Objetivo General

Transportar eficientemente el tráfico generado en una edificación de gran altura.

- Reduciendo el tiempo de espera de los pasajeros.
- Reduciendo el tiempo de viaje.
- Ahorrando la energía consumida por el sistema.

Objetivos Específicos

 Diseño de la estrategía de solución al problema de asignación del tráfico usado SMA y resolviendo los conflictos con técnicas de inteligencia artificial.

Arquitectura MAS

Nombre del sistema	Controlador de grupo de ascensores basado en Sistemas Multiagente		
Número de agentes	1 Coordinador N Ascensores		
Toma de decisiones	Centralizada: Cada agente apuesta por la llamada y el árbitro decide a quien la otorga.		
Características al grupo	Heterogenea: Cada agente (elevador) posee características propias que pueden ser diferentes entre si.		
Topología de comunicación	Punto a Punto:Todo mensaje tiene un destinatario único.		
Redundacia	Un agente puede suplir las obligaciones de otro agente.		

Cuadro: Tabla MADSmart

Conversacion Asignar Llamada

Controlador Propuesto

Objetivo General

Transportar eficientemente el tráfico generado en una edificación de gran altura.

- Reduciendo el tiempo de espera de los pasajeros.
- Reduciendo el tiempo de viaje.
- Ahorrando la energía consumida por el sistema.

Objetivos Específicos

 Diseño de la estrategía de solución al problema de asignación del tráfico usado SMA y resolviendo los conflictos con técnicas de inteligencia artificial.

Outline

4 Appendix

Bibliografía I

- NATIONAL SAFETY COUNCIL. Evacuation systems for high-rise buildings. NATIONAL SAFETY COUNCIL, 2011.
- Averill M. Law David Kelton.

 Simulation Modeling And Analysis.

 McGraw Hill, 2000.
- A. Miravete, E. Larrodé, and Universidad de Zaragoza. Centro Politécnico Superior. Servicio de Publicaciones. *El libro del transporte vertical*. Universidad de Zaragoza, 1996.
- Parker E. R.

 ARQUITECTURA DEL ASCENSOR.
 1971.

Bibliografía II

Hiroshi Kise Sandor Markon, Hajime Kita and Thomas Bartz-Beielstein.

Control of Traffic Systems in Buildings.

Springer-Verlag London Limited, 2006.