Probability - Lecture notes - Unit 01

Events and outcomes

01 Theory

B Events and outcomes – informally

- An **event** is a *description* of something that can happen.
- An **outcome** is a *complete description* of something that can happen.

All outcomes are events. An event is usually a *partial* description. Outcomes are events given with a *complete* description.

Here 'complete' and 'partial' are within the context of the probability model.

- A It can be misleading to say that an 'outcome' is an 'observation'.
 - 'Observations' occur in the *real world*, while 'outcomes' occur in the *model*.
 - To the extent the model is a good one, and the observation conveys *complete* information, we can say 'outcome' for the observation.

Notice:

• Problem Because outcomes are *complete*, no two distinct outcomes could *actually happen* in a run of the experiment being modeled.

When an event happens, the *fact* that it has happened constitutes **information**.

⊞ Events and outcomes – mathematically

- The **sample space** is the *set of possible outcomes*, so it is the set of the complete descriptions of everything that can happen.
- An event is a *subset* of the sample space, so it is a *collection of outcomes*.
- ⑤ For mathematicians: some "wild" subsets are not *valid* events. Problems with infinity and the continuum...

Notation

- Write S for the set of possible outcomes, $s \in S$ for a single outcome in S.
- Write $A, B, C, \dots \subset S$ or $A_1, A_2, A_3, \dots \subset S$ for some events, subsets of S
- Write \mathcal{F} for the collection of all events. This is frequently a *huge* set!

• Write |A| for the **cardinality** or *size* of a set A, i.e. the *number* of elements it contains.

Using this notation, we can consider an *outcome itself as an event* by considering the "singleton" subset $\{\omega\} \subset S$ which contains that outcome alone.

02 Illustration

≡ Example - Coin flipping

Flip a fair coin two times and record both results.

- *Outcomes:* sequences, like *HH* or *TH*.
- Sample space: all possible sequences, i.e. the set $S = \{HH, HT, TH, TT\}.$
- *Events:* for example:
 - $A = \{HH, HT\} =$ "first was heads"
 - $B = \{HT, TH\} =$ "exactly one heads"
 - $C = \{HT, TH, HH\} =$ "at least one heads"

With this setup, we may combine events in various ways to generate other events:

- *Complex events:* for example:
 - $A \cap B = \{HT\}$, or in words:

"first was heads" AND "exactly one heads" = "heads-then-tails"

Notice that the last one is a *complete description*, namely the *outcome HT*.

- $A \cup B = \{HH, HT, TH\}$, or in words:
 - "first was heads" OR "exactly one heads"
 - = "starts with heads, else it's tails-then-heads"

Exercise - Coin flipping: counting subsets

Flip a fair coin five times and record the results.

How many elements are in the sample space? (How big is S?) How many events are there? (How big is F?)

Solution

03 Theory

New events from old

Given two events *A* and *B*, we can form new events using set operations:

$$A \cup B \quad \longleftrightarrow \quad \text{``event A OR event B''}$$

$$A \cap B \iff$$
 "event A AND event B"

$$A^c \longleftrightarrow \mathbf{not} \text{ event } A$$

We also use these terms for events *A* and *B*:

- They are **mutually exclusive** when $A \cap B = \emptyset$, that is, they have *no* elements in common.
- They are **collectively exhaustive** $A \cup B = S$, that is, when they jointly *cover all possible outcomes*.
- In probability texts, sometimes $A \cap B$ is written " $A \cdot B$ " or even (frequently!) "AB".

Rules for sets

Algebraic rules

- Associativity: $(A \cup B) \cup C = A \cup (B \cup C)$. Analogous to (A + B) + C = A + (B + C).
- Distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Analogous to A(B+C) = AB + AC.

De Morgan's Laws

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

In other words: you can distribute " c " but must simultaneously do a switch $\cap \leftrightarrow \cup.$

Probability models

04 Theory

Axioms of probability

A **probability measure** is a function $P : \mathcal{F} \to \mathbb{R}$ satisfying:

Kolmogorov Axioms:

- Axiom 1: $P[A] \ge 0$ for every event A (probabilities are not negative!)
- Axiom 2: P[S] = 1
 (probability of "anything" happening is 1)
- **Axiom 3:** additivity for any *countable collection* of *mutually exclusive* events:

$$P[A_1 \cup A_2 \cup A_3 \cup \cdots] = P[A_1] + P[A_2] + P[A_3] + \cdots$$
 when: $A_i \cap A_j = \emptyset$ for all $i \neq j$

• Notation: we write P[A] instead of P(A), even though P is a function, to emphasize the fact that A is a set.

B Probability model

A probability model or probability space consists of a triple (S, \mathcal{F}, P) :

- *S* the sample space
- \mathcal{F} the set of valid events, where every $A \in \mathcal{F}$ satisfies $A \subset S$
- $P: \mathcal{F} \to \mathbb{R}$ a probability measure satisfying the Kolmogorov Axioms

Solution Strain Strai

It is a consequence of the Kolmogorov Axioms that additivity also works for finite collections of events:

$$P[A \cup B] = P[A] + P[B]$$

$$P[A_1 \cup \dots \cup A_n] = P[A_1] + \dots + P[A_n]$$

☐ Inferences from Kolmogorov

A probability measure satisfies these rules.

They can be deduced from the Kolmogorov Axioms.

• **Negation:** Can you find $P[A^c]$ but not P[A]? Use negation:

$$P[A] = 1 - P[A^c]$$

• Monotonicity: Probabilities grow when outcomes are added:

$$A \subset B \gg P[A] \leq P[B]$$

• Inclusion-Exclusion: A trick for resolving unions:

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

(even when A and B are not exclusive!)

■ Inclusion-Exclusion

The principle of inclusion-exclusion generalizes to three events:

$$P[A \cup B \cup C] =$$

$$P[A] + P[B] + P[C] - P[A \cap B] - P[A \cap C] - P[B \cap C] + P[A \cap B \cap C]$$

The same pattern works for any number of events!

The pattern goes: "include singles" then "exclude doubles" then "include triples" then ...

Include, exclude, include, exclude, include, ...

05 Illustration

≡ Example - Lucia is Host or Player

The professor chooses three students at random for a game in a class of 40, one to be Host, one to be Player, one to be Judge. What is the probability that Lucia is either Host or Player?

Solution ✓

1. \ Set up the probability model.

- Label the students 1 to 40. Write *L* for Lucia's number.
- *Outcomes:* assignments such as (H, P, J) = (2, 5, 8)These are ordered triples with *distinct* entries in 1, 2, ..., 40.
- Sample space: S is the collection of all such distinct triples
- *Events*: any subset of *S*
- *Probability measure*: assume all outcomes are equally likely, so P[(i, j, k)] = P[(r, l, p)] for all i, j, k, r, l, p
- In total there are $40 \cdot 39 \cdot 38$ triples of distinct numbers.
- Therefore $P[(i,j,k)] = \frac{1}{40\cdot 39\cdot 38}$ for any specific outcome (i,j,k) .
- Therefore $P[A] = \frac{|A|}{40 \cdot 39 \cdot 38}$ for any event A. (Recall |A| is the *number* of outcomes in A.)

$2. \Rightarrow$ Define the desired event.

- Want to find *P*["Lucia is Host or Player"]
- Define A = "Lucia is Host" and B = "Lucia is Player". Thus:

$$A = \big\{(L,j,k) \mid \text{any } j,k \big\}, \qquad B = \big\{(i,L,k) \mid \text{any } i,k \big\}$$

• So we seek $P[A \cup B]$.

3. **□** Compute the desired probability.

- Importantly, $A\cap B=\emptyset$ (mutually exclusive). There are no outcomes in S in which Lucia is both Host and Player.
- By *additivity*, we infer $P[A \cup B] = P[A] + P[B]$.
- Now compute P[A].
 - There are $39 \cdot 38$ ways to choose j and k from the students besides Lucia.
 - Therefore $|A| = 39 \cdot 38$.
 - Therefore:

$$P[A]$$
 $\gg \gg$ $\frac{|A|}{40 \cdot 39 \cdot 38}$ $\gg \gg$ $\frac{39 \cdot 38}{40 \cdot 39 \cdot 38}$ $\gg \gg$ $\frac{1}{40}$

- Now compute P[B]. It is similar: $P[B] = \frac{1}{40}$.
- Finally compute that $P[A] + P[B] = \frac{1}{20}$, so the answer is:

$$P[A \cup B]$$
 $\gg \gg$ $P[A] + P[B]$ $\gg \gg \frac{1}{20}$

Example - iPhones and iPads

At Mr. Jefferson's University, 25% of students have an iPhone, 30% have an iPad, and 60% have neither.

What is the probability that a randomly chosen student has *some* iProduct? (Q1)

What about both? (Q2)

≅ Solution ∨

- 1. **□** Set up the probability model.
 - A student is chosen at random: an *outcome* is the chosen student.
 - *Sample space S* is the set of all students.
 - Write O = "has iPhone" and A = "has iPad" concerning the chosen student.
 - All students are equally likely to be chosen: therefore $P[E] = \frac{|E|}{|S|}$ for any event E.
 - Therefore P[O] = 0.25 and P[A] = 0.30.
 - Furthermore, $P[O^cA^c]=0.60$. This means 60% have "not iPhone AND not iPad".
- $2. \equiv$ Define the desired event.
 - Q1: desired event = $O \cup A$
 - Q2: desired event = OA
- 3. **□** Compute the probabilities.
 - We do not believe *O* and *A* are exclusive.
 - Try: apply inclusion-exclusion:

$$P[O \cup A] = P[O] + P[A] - P[OA]$$

- We know P[O] = 0.25 and P[A] = 0.30. So this formula, with given data, RELATES Q1 and Q2.
- Notice the complements in O^cA^c and try *Negation*.
- Negation:

$$P[(OA)^c] = 1 - P[OA]$$

DOESN'T HELP.

• Try again: Negation:*

$$P[(O^c A^c)^c] = 1 - P[O^c A^c]$$

• And De Morgan (or a Venn diagram!):

$$(O^cA^c)^c \gg \gg O \cup A$$

• Therefore:

$$P[O \cup A] \gg \gg P[(O^c A^c)^c]$$

$$\gg \gg 1 - P[O^c A^c] \gg \gg 1 - 0.6 = 0.4$$

- We have found Q1: $P[O \cup A] = 0.40$.
- Applying the RELATION from inclusion-exclusion, we get Q2:

$$P[O \cup A] = P[O] + P[A] - P[OA]$$

$$\gg \gg 0.40 = 0.25 + 0.30 - P[OA]$$

$$\gg \gg P[OA] = 0.15$$