Rahul Singh

https://rahulsinghchandraul.github.io/

EDUCATION

Georgia Institute of Technology

PhD in Machine Learning; GPA: 4.0

Atlanta, GA

August 2018-present

Email: rasingh@gatech.edu

Mobile: +1-470-263-7772

Iowa State University

Master of Engineering in Electrical Engineering; GPA: 3.85

Ames, IA

December 2018

Indian Institute of Space Science and Technology

Master of Technology in Digital Signal Processing; GPA: 3.58 (8.94/10.0)

Trivandrum, India July 2015

KIIT University

Bhubaneswar, India

Bachelor of Technology in Electronics and Telecomm. Engineering; GPA: 3.43 (8.58/10.0)

July 2013

Relevant Courses

 Natural Language Processing, Statistical Machine Learning, Convex Optimization, Digital Signal Processing, Machine Learning and Pattern Recognition, Image Processing, Computer Vision, Statistical Inference, Deep Learning, Data Science.

Research Experience

Georgia Institute of Technology

Atlanta, GA

Graduate Research Assistant

August 2018 - Present

- Research and publications on (i) generative modeling including probabilistic graphical models (PGMs) and generative adversarial networks (GANs), (ii) learning for graph structured data.
- Multi-marginal optimal transport (MOMT) approach for development of fast and convergent algorithms for inference from aggregate populaion-level data generated by a PGM.
- o Algorithms for learning hidden Markov models (HMMs) from aggregate populaion-level data.
- Utilized GANs for learning actor-critic algorithms in distributional reinforcement learning (DRL) framework resulting in robust and sample efficient policies.

Iowa State University

Ames. IA

Graduate Research Assistant

August 2016 - July 2018

- Research and publications on machine vision assisted electrohydrodynamic printing (E-jet) and manifold learning.
- Real-time information extraction (diameter and tilt-angle) from the images of the filament in the air.
- Utilized vector-valued optimal mass transport (V-OMT) for manifold learning of images. Represented images using SIFT keypoints and descriptors and then computed the inter-image distances using V-OMT.

Indian Institute of Space Science And Technology

Trivandrum, India

Senior Project Fellow

August 2015 - July 2016

- Research and publications on signal processing over complex networks.
- Redefined Graph Fourier Transform (GFT) by utilizing the eigendecomposition of the directed Laplacian of a graph.
- Proposed a new centrality measure (GFT-C) for complex networks using frequency analysis of signals defined on graphs.

Awards & Recognition

- Teaching excellence award, Iowa State University, Ames, IA. (May 2018)
- Best paper award, International Conference on Signal Processing and Communications. (2016)
- Graduate study scholarship by Dept. of Space, Govt. of India. (August 2013 June 2016)

SKILLS

Python, MATLAB, C, TensorFlow, PyTorch

SELECTED PUBLICATIONS

- <u>Book</u>: B. S. Manoj, A. Chakraborty, and **Rahul Singh**, "Complex Networks: A Networking and Signal Processing Perspective," <u>Prentice Hall PTR</u>, New Jersey, USA, 2018. (https://complexnetworksbook.github.io/)
- <u>Conference</u>: Rahul Singh, Yongxin Chen, "Sample-based Distributional Policy Gradient," *American Control Conference (ACC)*, 2021 (submitted).
- <u>Conference</u>: Rahul Singh, Qinsheng Zhang, Yongxin Chen, "Improving Robustness via Risk Averse Distributional Reinforcement Learning," 2nd Conference on Learning for Dynamics and Control (L4DC), 2020.
- <u>Conference</u>: Songtao Lu, Rahul Singh, Xiangyi Chen, Yongxin Chen, Mingyi Hong, "Alternating Gradient Descent Ascent for Nonconvex Min-Max Problems in Robust Learning and GANs," 53rd Asilomar Conference on Signals, Systems, and Computers, 2019.
- <u>Conference</u>: Rahul Singh, A. Chakraborty, and B. S. Manoj, "Graph Fourier Transform based on Directed Laplacian," 11th

 International Conference on Signal Processing and Communications (SPCOM), 2016. [BEST paper award]
- <u>Journal</u>: Rahul Singh, Isabel Haasler, Qinsheng Zhang, Johan Karlsson, Yongxin Chen, "Incremental Inference of Collective Graphical Models," *IEEE Control Systems Letters, Vol. 5, pp. 421-426, April 2021.*
- <u>Journal</u>: Rahul Singh, Isabel Hassler, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen, "Multi-marginal Optimal Transport and Probabilistic Graphical Models," *IEEE Transaction on Information Theory*, 2020.
- <u>Journal</u>: Rahul Singh, Isabel Hassler, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen, "Multi-marginal Optimal Transport and Probabilistic Graphical Models," *IEEE Transaction on Information Theory*, 2020.
- <u>Journal</u>: Rahul Singh, Isabel Hassler, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen, "Inference with Aggregate Data: An Optimal Transport Approach," *IEEE Transaction on Automatic Control*, 2020.
- <u>Journal</u>: Rahul Singh, Qinsheng Zhang, and Yongxin Chen, "Filtering for Aggregate Hidden Markov Models with Continuous Observations," *IEEE Transaction on Automatic Control*, 2020.
- <u>Journal</u>: Rahul Singh, A. Chakraborty, and B. S. Manoj, "GFT Centrality: A New Node Importance Measure for Complex Networks," *Physica A: Statistical Mechanics and its Applications*, Volume 487, pp. 185-195, June 2017.