16. EIGENVALUES AND EIGENVECTORS

1. If P is a real matrix such that $P = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, evaluate the product PP^{T} , where P^{T} is the transpose of P.

Hence or otherwise find the matrix P with positive diagonal elements such that

$$PP^{\mathsf{T}} = \begin{pmatrix} 9 & 12 \\ 12 & 41 \end{pmatrix}$$
 and verify that $P^{\mathsf{T}}P = \begin{pmatrix} 25 & 20 \\ 20 & 25 \end{pmatrix}$.

Find also the real matrix Q, where $Q = \begin{pmatrix} d & 0 \\ e & f \end{pmatrix}$ having positive diagonal elements and such that $QQ^{T} = P^{T}P$.

If $R = Q^{T}P^{T}$ verify that RR^{T} is a unit matrix.

(J72/II/5)

2. The column vector \mathbf{x} is an eigenvector of the matrix \mathbf{A} corresponding to eigenvalue λ .

(a) Show that x is an eigenvector of A^2 and find the corresponding eigenvalue.

- (b) Show that x is an eigenvector of A+3I, where I is the unit matrix, and find the corresponding eigenvalue.
- (c) Given that **A** possesses an inverse show that $\lambda \neq 0$. Show also that **x** is an eigenvector of \mathbf{A}^{-1} and find the corresponding eigenvalue. (J72/II/14)
- 3. The symmetric matrix A has real elements and V and U are eigenvectors corresponding to eigenvalues λ and μ respectively. By considering V^TAU or otherwise, show that if $\lambda \neq \mu$ then $V^TU = 0$.

 If X = aV + bU where a and b are real, show that $(A^2 + I)X = (\lambda^2 + 1)aV + (\mu^2 + 1)bU$, where I is the unit matrix.
- 4. (a) If $A = \begin{pmatrix} -1 & 2 \\ 4 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ x & y \end{pmatrix}$ where $x \neq y$, find x and y so that $B^1 AB$ is a
 - diagonal matrix.

 (b) If $C = \begin{pmatrix} 3 & 2 \\ -8 & -3 \end{pmatrix}$, evaluate C^n where n is a positive integer, distinguishing between the cases where n is odd and n is even.

 (N73/I/5)
- 5. Find the eigenvalues and corresponding eigenvectors of the matrix $A = \begin{pmatrix} 6 & 12 \\ 12 & -1 \end{pmatrix}$.

Hence or otherwise deduce that by a suitable rotation of axes, which should be specified, in which the coordinates (x, y) of P become (ξ, η) , the equation $6x^2 + 24xy - y^2 = 1$ becomes $15\xi^2 - 10\eta^2 = 1$. (N74/II/14)

6. Let A be a 2×2 matrix. If \mathbf{b}_1 and \mathbf{b}_2 are 2×1 matrices and B is the 2×2 matrix having columns \mathbf{b}_1 and \mathbf{b}_2 , show that AB has columns $A\mathbf{b}_1$ and $A\mathbf{b}_2$. Suppose that A has distinct eigenvalues λ_1 and λ_2 with associated eigenvectors \mathbf{x}_1 and \mathbf{x}_2 respectively. Show that

(a) the vectors \mathbf{x}_1 and \mathbf{x}_2 are linearly independent,

4

(b) the 2×2 matrix P, with columns \mathbf{x}_1 and \mathbf{x}_2 , is non-singular and

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \tag{J75/II/14}$$

7. Show that the matrix $A = \begin{pmatrix} 0 & 4 & 4 \\ 1 & -3 & -1 \\ 3 & 3 & 1 \end{pmatrix}$ has a characteristic root (eigenvalue) equal

to 4 and find the other two characteristic roots.

Find also eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 corresponding to the characteristic roots λ_1 , λ_2 , λ_3 respectively.

The columns of the matrix P are the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 in that order. Verify that the matrix product AP is expressible in the form PD, where D is a diagonal matrix, and deduce that $P^{-1}AP$ is a diagonal matrix. (N75/II/13)

- The square $r \times r$ matrices A, B and P are related by $B = P^{-1}AP$, where P is non-singular. Show that $B^n = P^{-1}A^nP$ for any positive integer n. Show also that, if A is non-singular and A^0 and B^0 are defined to be the unit matrix of order r, then $B^n = P^{-1}A^nP$ for any integer n.
- 9. Find the eigenvalues λ_1 and λ_2 and corresponding eigenvectors of the matrix

$$A = \begin{pmatrix} -10 & 12 \\ -9 & 11 \end{pmatrix}$$

Using your result, or otherwise, find a 2×2 matrix P such that $P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

Hence, or otherwise, find A^{10} .

(J77/H/13)

10. The matrices **B** and **P** are given by $\mathbf{B} = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{P} = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Find \mathbf{P}^{-1} and show that $\mathbf{P}^{-1}\mathbf{BP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Given that n is a positive integer, show that $(\mathbf{P}^{-1}\mathbf{BP})^n = \mathbf{P}^{-1}\mathbf{B}^n\mathbf{P}$, and hence find Bⁿ. (J83/I/15)

11. (a) Given that $\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ and that the matrix \mathbf{X} satisfies the equation $XAX^T = B$, prove that X has one or other of the forms

$$\begin{pmatrix} a & -a \\ -\frac{1}{a} & -\frac{1}{a} \end{pmatrix}, \quad \begin{pmatrix} a & a \\ -\frac{1}{a} & \frac{1}{a} \end{pmatrix}$$

(b) Given that $\mathbf{Y} = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ and that $\mathbf{Y}\mathbf{Y}^{\mathsf{T}} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, show that, if p, q, r, s are real, they all lie in the interval $[-\sqrt{2}, \sqrt{2}]$. (N84/II/4)

Find the eigenvalues and corresponding eigenvectors of the matrix A, where

$$\mathbf{A} = \begin{pmatrix} -3 & 5 & 5 \\ -4 & 6 & 5 \\ \hline 4 & -4 & -3 \end{pmatrix}$$

Hence find a matrix **P** and a diagonal matrix **D** such that $A = P^{-1}DP$. Find also a diagonal matrix **E** such that $A^3 = P^{-1}EP$.

(J86/I/10)

13. Find the eigenvalues and corresponding eigenvectors of the matrix A, where

$$\mathbf{A} = \begin{pmatrix} 4 & -4 & 6 \\ 2 & -1 & 2 \\ 3 & 4 & -5 \end{pmatrix}.$$

Hence find a matrix **P** and a diagonal matrix **D** such that $A = P^{-1}DP$. Find also a diagonal matric **E** such that $A^4 = P^{-1}EP$. (N86/I/10)

14. Find the eigenvalues and corresponding eigenvectors of the matrix A, where

$$\mathbf{A} = \begin{pmatrix} 2 & -3 & 0 \\ 1 & -1 & 1 \\ -1 & 3 & 1 \end{pmatrix}.$$

Hence, or otherwise,

- (i) find the eigenvalues and corresponding eigenvectors of the matrix $\mathbf{A} + 10\mathbf{I}$, where \mathbf{I} is the unit matrix of order three,
- (ii) find a matrix **P** such that **PAP**⁻¹ is a diagonal matrix. (J87/I/10)

The vector \mathbf{x} is an eigenvector of each of the matrices \mathbf{A} and \mathbf{B} , with corresponding eigenvalues λ and μ , respectively. Show that \mathbf{x} is an eigenvector of \mathbf{AB} with eigenvalue $\lambda\mu$.

Find the eigenvalues and corresponding eigenvectors of each of the matrics ${\bf C}$ and ${\bf D}$, where

$$\mathbf{C} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix} \text{ and } \mathbf{D} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & -1 & 4 \\ 0 & 0 & -3 \end{pmatrix}.$$

Hence, or otherwise, find *one* eigenvector of the matrix CD and its corresponding eigenvalue (N87/I/10)

16. Find the eigenvalues and corresponding eigenvectors of the matrix M, where $\mathbf{M} = \begin{pmatrix} 2 & 1 & -1 \\ -4 & -3 & 4 \\ 0 & -1 & 3 \end{pmatrix}$.

Hence write down a matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{M} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$.

Obtain the exact value of the element in the first row and the first column of \mathbf{M}^7 . (J88/I/10)

17. The set of all 3×3 non-singular matrices with elements in **R** is denoted by S. The relation ρ on S is defined as follows.

Given that A and B are any two elements of S, then A is said to be ρ related to B (written A ρ B) if there exists an element P of S such that $A = PBP^{-1}$.

- (i) Show that ρ is an equivalence relation on S.
- (ii) Given that $A = \begin{pmatrix} 4 & -1 & 1 \\ 10 & -5 & -1 \\ -2 & 2 & 1 \end{pmatrix}$, find a diagonal matrix D such that

[Note that in (ii) explicit expressions for P or P^{-1} are not required.]
(N88/I/10)

18. Show that if e is an eigenvector of the square matrix A, with corresponding eigenvalue λ , then e is an eigenvector of A^2 with corresponding eigenvalue λ^2 .

Find the eigenvalues and corresponding eigenvectors of the matrix $\begin{pmatrix} 2 & -5 & 6 \\ \end{pmatrix}$

$$\mathbf{B} = \begin{pmatrix} 2 & -5 & 6 \\ 2 & 3 & 2 \\ -1 & 5 & -5 \end{pmatrix}.$$

Find a matrix Q and a diagonal matrix D such that $B^2 = QDQ^{-1}$.

(J89/I/10)

19. Given two square matrices A and B of the same order, show that if there exists a non-singular matrix P such that $A = PBP^{-1}$, then A and B have the same eigenvalues.

Hence, by considering the product $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 1 & 5 & 0 \\ 2 & 3 & 7 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, or otherwise,

find the eigenvalues and corresponding eigenvectors of the matrix \mathbf{M} , where $\mathbf{M} = \begin{pmatrix} 2 & -3 & -5 \\ 1 & 5 & 1 \\ 2 & 3 & 9 \end{pmatrix}$.

Find a matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{M} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$, and deduce that if n is a positive integer, then $\mathbf{M}\mathbf{n} = \mathbf{Q}\begin{pmatrix} 4^n & 0 & 0 \\ 0 & 5^n & 0 \\ 0 & 0 & 7^n \end{pmatrix}\mathbf{Q}^{-1}$. (N89/I/10)

- 20. The vector \mathbf{x} is an eigenvector of the 3 \times 3 matrix \mathbf{A} , with corresponding eigenvalue λ . Show that if \mathbf{A} is non-singular then
 - (i) $\lambda \neq 0$,
 - (ii) the vector \mathbf{x} is an eigenvector of the matrix \mathbf{A}^{-1} , with corresponding eigenvalue λ^{-1} .

Find the eigenvalues and corresponding eigenvectors of the matrices

A and B, where
$$A = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 8 \\ 0 & 0 & -3 \end{pmatrix}$$
 and $B = (A + 5I)^{-1}$. (J90/I/10)

21. Show that the eigenvalues of the matrix **M**, where $\mathbf{M} = \begin{pmatrix} -\frac{3}{2} & 4 & \frac{11}{3} \\ 1 & -\frac{1}{2} & -2 \\ -1 & 2 & \frac{7}{3} \end{pmatrix}$, are the roots of the equation $12\lambda^3 - 4\lambda^2 - 3\lambda + 1 = 0$.

400

Hence find a matrix Q and a diagonal matrix D such that $M = QDQ^{-1}$.

Deduce that, as the positive integer n tends to infinity, all the elements of \mathbf{M}^{n} tend to zero. (N90/I/10)

