Processing Digital Images using Singular Value Decomposition

Yuvraj Lakhotia & Eden Pajaro

What is digital image processing?

- Using mathematical models to prepare digital image data for storage, transmission, or representation
 - Retrieve important features
 - Enhance or restore images
- Images can be transformed (rotation, addition, multiplication, filters)
- Images can be compressed
 - Reduces space occupied by an image

Images as Matrices

- A digital image can be represented by a matrix of pixels
- The color of every pixel corresponds to numerical values
 - The **RGB model** uses values from **0 to 255** for each color

Image Compression

Purpose

- Images take up space
- Factorization allows matrices to be represented with fewer values
 - Diagonalization is not applicable to all matrices

Using SVD

- Image compression can be performed using singular value decomposition (SVD), a form of factorization
 - Removes (truncates) some terms of the factorization
 - Retains the most important features of the matrix

Prerequisites for SVD

- rank = dim(Col A)
- orthogonal matrix: dot product of all pairs of vectors is 0
 - vectors of (mxn) orthogonal matrix P spans Rⁿ
 - $P^{T} = P^{-1}$
 - o orthonormal if the magnitude of each vector is 1

- symmetric matrix: square matrix such that $A^T = A$
 - eigenvectors from different eigenspaces are orthogonal
 - always orthogonally diagonalizable
 - exists an orthogonal matrix $P(P^{-1} = P^{T})$ and diagonal matrix $D: A = PDP^{-1} = PDP^{T}$
 - A^TA is a symmetric matrix for any matrix A

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 8 \end{bmatrix}^{T}$$
Symmetric matrix

Prerequisites for SVD

- Conjugate transpose (A[†]): the transpose of a matrix with the elements replaced with its complex conjugate
 - For real matrices, $A^T = A^{\dagger}$

Singular Value Decomposition

- SVD is a factorization
 - Always possible!
- Uses singular values of A
 - Square roots of the eigenvalues of A^TA , denoted by σ_n
 - Arranged in decreasing order $\sigma_1 > \sigma_2 > \sigma_3 > \dots > \sigma_r$

$$\sigma_1 = \sqrt{\lambda_1}$$

 $m \times n$ matrix rank A = r

mxm orthonormal matrix of "left singular vectors" nxn orthonormal matrix of "right singular vectors"

D is an rxr diagonal matrix with the singular values of A on the diagonal

Singular Value Decomposition

$$\mathbf{A} = \mathbf{U} \qquad \mathbf{\Sigma} \qquad \mathbf{V}^{\dagger} \\
\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \\ 2/3 & -2/3 & -1/3 \end{pmatrix}$$

The SVD of A can be expressed as a sum of matrices:

$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} = 5 \cdot \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \end{bmatrix}$$

$$A = \sigma_{1}(\mathbf{u}_{1})\mathbf{v}_{1}^{\dagger} + \sigma_{2}(\mathbf{u}_{2})\mathbf{v}_{2}^{\dagger} + \dots + \sigma_{n}(\mathbf{u}_{n})\mathbf{v}_{2}^{\dagger}$$

Note: Singular values are arranged in decreasing order. Each successive term creates smaller, more precise changes compared to its predecessor.

Finding the SVD

1. Compute the orthogonal diagonalization of A^TA

- A^TA is symmetric and is always orthogonally diagonalizable
- Find eigenvalues and orthonormal set of eigenvectors for A^TA

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 3 \end{bmatrix}$$

$$det(A - \lambda I) = 0$$

$$(14 - \lambda)^{2} - (11)^{2} = 0$$

$$\lambda^{2} - 28\lambda + 75 = 0$$

$$(\lambda - 25)(\lambda - 3) = 0$$

$$\lambda_{1} = 25:$$

$$\mathbf{v_{1}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \sim \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$A^T A = \begin{bmatrix} 14 & 11 \\ 11 & 14 \end{bmatrix}$$
 Order eigenvalues decreasing order. $\lambda_1 = 25$

Order eigenvalues in

$$\lambda_1 = 25$$

$$\lambda_2 = 3$$

$$\mathbf{v_2} = \mathbf{3}:$$

$$\mathbf{v_2} = \begin{bmatrix} -1\\1 \end{bmatrix} \sim \begin{bmatrix} -\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix}$$

```
>> [P D] = eig(A'*A)
            0.7071
   0.7071
            0.7071
Diagonal Matrix
```

Finding the SVD (cont.)

2. Construct V and Σ

- Eigenvectors are right singular vectors of A, the columns of V.
- Singular values are the square root of the eigenvalues \rightarrow diagonal entries of D.
- Σ is the same size as A, 3x2, with D in upper left corner and 0's to fill in the gaps.

$$V = [\mathbf{v_1} \mathbf{v_2}] = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad \lambda_1 = 25 \rightarrow \sigma_1 = \sqrt{25} = 5$$

$$\lambda_2 = 3 \rightarrow \sigma_1 = \sqrt{3}$$

$$V^{\dagger} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\lambda_1 = 25 \rightarrow \sigma_1 = \sqrt{25} = 5$$
$$\lambda_2 = 3 \rightarrow \sigma_1 = \sqrt{3}$$

$$D = \begin{bmatrix} 5 & 0 \\ 0 & \sqrt{3} \end{bmatrix}$$

$$2x2$$

$$\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix}$$

Finding the SVD (cont.)

3. Construct U (mxm matrix of left singular vectors)

- a. The first r columns of U are normalized vectors found from Av₁...Av_r
- b. Remaining columns are an extension of the set to an orthonormal basis for Rm, R3

$$\mathbf{u_1} = (1/\sigma_1) \mathbf{A} \mathbf{v_1} = \begin{bmatrix} \frac{3}{5\sqrt{2}} \\ \frac{4}{5\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad \text{Ir}$$

To find the 3rd vector in U, find a unit vector that is orthogonal to both $\mathbf{u_1}$ and $\mathbf{u_2}$.

In this case, the cross product of $\mathbf{u_1}$ and $\mathbf{u_2}$ was calculated.

$$\mathbf{u_2} = (1/\sigma_2) \mathbf{A} \mathbf{v_2} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$\mathbf{u_3} = \mathbf{u_1} \times \mathbf{u_2} = \begin{bmatrix} \frac{7}{5\sqrt{3}} \\ \frac{1}{5\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix}, \ \ \mathbf{U} = [\mathbf{u_1} \ \mathbf{u_2} \ \mathbf{u_3}] = \begin{bmatrix} \frac{3}{5\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{7}{5\sqrt{3}} \\ \frac{4}{5\sqrt{2}} & -\frac{2}{\sqrt{6}} & \frac{1}{5\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

Finding the SVD (cont.)

$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{3}{5\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{7}{5\sqrt{3}} \\ \frac{4}{5\sqrt{2}} & -\frac{2}{\sqrt{6}} & \frac{1}{5\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

```
>> [U S V] = svd(A)
  -0.4243
            0.4082
                     -0.8083
  -0.5657
           -0.8165
                     -0.1155
  -0.7071
            0.4082
                      0.5774
Diagonal Matrix
   5.0000
            1.7321
           -0.7071
  -0.7071
            0.7071
```

Using SVD to approximate

$$\begin{bmatrix}
1 & 2 \\
3 & 1 \\
2 & 3
\end{bmatrix} = \begin{bmatrix}
\frac{3}{5\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{7}{5\sqrt{3}} \\
\frac{4}{5\sqrt{2}} & -\frac{2}{\sqrt{6}} & \frac{1}{5\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}}
\end{bmatrix} \begin{bmatrix}
5 & 0 \\
0 & \sqrt{3} \\
0 & 0
\end{bmatrix} \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix} A = \sigma_{1}(\mathbf{u}_{1})\mathbf{v}_{1}^{\dagger} + \sigma_{2}(\mathbf{u}_{2})\mathbf{v}_{2}^{\dagger} + \dots + \sigma_{n}(\mathbf{u}_{n})\mathbf{v}_{n}^{\dagger}$$

Recall that singular values are arranged in decreasing order. A can be approximated by dropping or truncating the "least important" terms, starting with the last term. A has a rank of 2 and has 2 singular values; include only one term for the rank-1 approximation:

$$A \approx \sigma_{1}(\mathbf{u_{1}})\mathbf{v_{1}}^{\dagger} = 5 \begin{bmatrix} \frac{3}{5\sqrt{2}} \\ \frac{4}{5\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1.5 & 1.5 \\ 2 & 2 \\ 2.5 & 2.5 \end{bmatrix}$$

SVD and Image Compression

Recall:

- Digital images can be represented by a matrix
- SVD can be performed on any matrix

Thus, digital images can be factored using SVD and can therefore be represented as a sum of matrices.

From this, an approximation for an image can be found by truncating less influential terms. This approximation, known as a compression, allows images to be stored using less space, while retaining the important features of the image.

Image Compression Examples

Image Compression Examples

A has rank 4 and can thus be represented as the sum of 4 matrices. The following images illustrate approximations where each successive image is the result of truncating the last term of the previous approximation.

	Original <i>A</i> , rank-4				rank-3				rank-2				rank-1			
	100	0	0	255	100	0	0	255	178	0	0	178	178	0	0	178
>	0	100	255	O	0	178	178	0	0	178	178	0	0	0	0	O
	0	255	100	0	0	178	178	0	0	178	178	o	0	0	0	О .
	255	0	0	100	255	0	0	100	178	0	0	178	178	0	0	178

Being able to apply SVD on any matrix thus any image allows us to visualize SVD and rank-k approximation on a more familiar example.

Enter, Mr. E. Paterno. Better said, a 551 x pixel image of him, with rank 551.

"Smile, tomorrow will be worse."

~ Mr. Paterno, and copied by some Murphy guy.

We can **split the image** into the **three color channels** that compose the original image. Note that all three matrices are able to be decomposed using SVD and can therefore be approximated.

- Original image has rank of 551
 - Each matrix rewritten as the sum of 551 matrices
- Rank-k approximation includes only the first k terms.
 - Combine approximations \rightarrow rank-k approximation of original image

Observe how the rank-k approximations approach the likeness of the original image as k approaches r.

The rank-151 approximation looks pretty accurate to the human eye. This approximation requires the sum of only 151 matrices instead of 551. Hooray, we've saved space!

Thanks!

Do you have any questions?

