HW Set 1 Solution.

1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded (See Definition 7.19).

Solution. Let $\{f_n: E \to \mathbb{R}\}$ be a sequence of bounded functions, with bounds $|f_n(x)| \leq M_n$ for every $x \in E$. Because $(f_n)_{n=1}^{\infty}$ is uniformly Cauchy, for some $\varepsilon > 0$, say $\varepsilon = 1$, there exists $N \in \mathbb{N}$ s.t.

$$n, m \ge N \Rightarrow |f_n(x) - f_m(x)| \le 1 \text{ for all } x \in E.$$

From this, we get $|f_n(x)| \leq |f_n(x) - f_N(x)| + |f_N(x)| \leq M_N + 1$ and $M_n \leq M_N + 1$ for every $n \geq N$. Now Let $M := \max\{M_1, \cdots, M_{N-1}, M_N + 1\}$, then clearly $|f_n(x)| \leq M$ for any $x \in E$, $n \in \mathbb{N}$.

Remark. Slightly modifying above argument, we can show that $(M_n)_{n=1}^{\infty}$ is a Cauchy sequence, so it is convergent sequence of non-negative reals and should be bounded.

2. If complex-valued (f_n) and (g_n) converge uniformly on a metric space E, prove that (f_n+g_n) converges uniformly on E. If, in addition, (f_n) and (g_n) are sequences of bounded complex-valued functions, prove that (f_ng_n) converges uniformly on E.

Solution. Let f,g denote uniform limits of f_n and g_n respectively. Let $\varepsilon>0$ be given, and choose $N_1,\,N_2\in\mathbb{N}$ such that for all $x\in E,\,n\geq N_1$ implies $|f_n(x)-f(x)|\leq \frac{\varepsilon}{2}$ and $n\geq N_2$ implies $|g_n(x)-g(x)|\leq \frac{\varepsilon}{2}$. Then $n\geq \max\{N_1,\,N_2\}$ implies

$$|(f_n + g_n)(x) - (f + g)(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad \forall x \in E,$$

showing that $f_n + g_n \to f + g$ uniformly.

Now if we assume in addition that f_n , g_n are bounded, from Problem 1 we see that they are both uniformly bounded and thus there exises M>0 for which $|f_n(x)|, |g_n(x)| \leq M$, for all $n \in \mathbb{N}$ and $x \in E$. Then with $N \in \mathbb{N}$

chosen so that $n \geq N$ implies $|f_n(x) - f(x)|, |g_n(x) - g(x)| < \frac{\varepsilon}{2M}$ for all $x \in E$, we have

$$|(f_n g_n)(x) - (fg)(x)| \le |f_n(x)\{g_n(x) - g(x)\} + g(x)\{f_n(x) - f(x)\}|$$

$$\le |f_n(x)| \cdot |g_n(x) - g(x)| + |g(x)| \cdot |f_n(x) - f(x)|$$

$$\le M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon$$

for all $x \in E$ if $n \geq N$. Note that here we have used $|g(x)| = \lim_{n \to \infty} |g_n(x)| \leq M$. This proves that $f_n g_n \to fg$ uniformly

3. Let
$$f_n(x) = \begin{cases} 0 & \text{if } x < \frac{1}{n+1}, \\ \sin^2 \frac{\pi}{x} & \text{if } \frac{1}{n+1} \le x \le \frac{1}{n}, \\ 0 & \text{if } \frac{1}{n} < x. \end{cases}$$

Show that (f_n) converges to a continuous function, but not uniformly. Use the series $\sum f_n$ to show that absolute convergence, even for all x, does not imply uniform convergence.

Solution. It is clear that for any $x \leq 0$ or $x \geq 1$, $f(x) := \lim_{n \to \infty} f_n(x) = 0$. If 0 < x < 1, then there exists $n_x \in N$ s.t. $\frac{1}{n_x} < x$, so $f_n(x) = 0$ if $n \geq n_x$ and this shows that f(x) = 0 for 0 < x < 1 too. However, $f_n(\frac{1}{n+\frac{1}{2}}) = \sin^2(n+\frac{1}{2})\pi = 1$ holds for all $n \in N$ and this means $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \geq 1$ for all $n \in N$. In other words, f_n doesn't converges to f uniformly.

It is also clear that $F_n(x):=\sum\limits_{k=1}^n f_n(x)$ converges to $F(x):=\sum\limits_{k=1}^\infty f_n(x)=0$ if $x\leq 0$ or $x\geq 1$. For 0< x<1, choose (unique) $m_x\in \mathbb{N}$ s.t. $\frac{1}{m_x+1}\leq x<\frac{1}{m_x}$. Because $f_n(x)$ is zero at $(-\infty,\frac{1}{n+1})\cup[\frac{1}{n},\infty)$, we have $F(x)=\sum\limits_{k=1}^\infty f_n(x)=f_{m_x}(x)=\sin^2\frac{\pi}{x}$. Now we have

$$F(x) = \begin{cases} 0 & (x \le 0 \text{ or } x \ge 1) \\ \sin^2 \frac{\pi}{x} & (0 < x < 1) \end{cases}$$

and since each $f_n(x)$ is non-negative, $\sum\limits_{k=1}^\infty f_n(x)$ absolutely converges. But this series doesn't converge uniformly, since $\sup_{x\in R} |F_{n+1}(x)-F_n(x)|=$

 $\operatorname{Sup}_{x\in\mathbb{R}}|f_{n+1}(x)|\geq 1$ for all $n\in\mathbb{N}$ and $(F_n)_{n=1}^\infty$ is not uniformly Cauchy.

(Alternative proof) After computing F(x), Observe that F(x) isn't continuous at x=0,1. If F_n converges uniformly to F(x), since each F_n is continuous everywhere, F(x) should be continuous everywhere but this is contradiction.

4. Prove that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of \boldsymbol{x} .

Solution. Let M>0 s.t. $I\subseteq [-M,\,M]$. Define $A_n:=\sum_{k=1}^n\frac{(-1)^n}{n^2},\,B_n:=\sum_{k=1}^n\frac{(-1)^n}{n}$. We already know each $A_n,\,B_n$ converges. Given $\varepsilon>0$, take $N\in\mathbb{N}$ s.t. $m\geq n\geq N$ implies $|A_n-A_m|<\frac{\varepsilon}{2M^2},\,|B_n-B_m|<\frac{\varepsilon}{2}$. Then we have

$$\left| \sum_{k=1}^{m} (-1)^k \frac{x^2 + k}{k^2} - \sum_{k=1}^{n} (-1)^k \frac{x^2 + k}{k^2} \right| = \left| \sum_{k=n+1}^{m} (-1)^k \frac{x^2 + k}{k^2} \right|$$

$$= \left| x^2 \sum_{k=n+1}^{m} \frac{(-1)^k}{k^2} + \sum_{k=n+1}^{m} \frac{(-1)^k}{k} \right| \le M^2 |A_m - A_n| + |B_m - B_n|$$

$$\le M^2 \cdot \frac{\varepsilon}{2M^2} + \frac{\varepsilon}{2} = \varepsilon.$$

However, $\sum\limits_{k=1}^{\infty}|(-1)^n\frac{x^2+k}{k^2}|\geq\sum\limits_{k=1}^{\infty}\frac{1}{k}=\infty$ and it does not converges absolutely at any points.

Alternative proof. since I is bounded interval, each x^2 , $\sum_{k=1}^n (-1)^n \frac{1}{n^2}$, $\sum_{k=1}^n (-1)^n \frac{1}{n}$ are uniformly converging sequence of bounded functions. Now apply the

result of Problem 2.

Supplement. Above series cannot be converge uniformly on any unbounded subset $A\subseteq\mathbb{R}.$ If not, for some ε there exists $N\in\mathbb{N}$ s.t. $n\geq m\geq N$ implies $|\sum_{k=n+1}^m (-1)^k \frac{x^2+k}{k^2}| < \varepsilon$. Specifically, choose m=n+1=N+1 then $\big|\tfrac{x^2+(N+1)}{(N+1)^2}\big|<\varepsilon \text{ must holds for all } x\in A. \text{ But we know } \lim_{t\to\infty}\tfrac{t+(N+1)}{(N+1)^2}=\infty$ and A is unbounded by assumption, this is contradiction.

5. For $n=1,2,3,\cdots$, and any $x\in\mathbb{R}$, define

$$f_n(x) = \frac{x}{1 + nx^2}.$$

Show that (f_n) converges uniformly to a function f, and that the equation

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

is correct if $x \neq 0$, but false if x = 0.

Solution. From AM-GM inequality, $1 + nx^2 \ge 2\sqrt{1 \cdot nx^2} = 2\sqrt{n}|x|$ and $|f_n(x)| \leq \frac{1}{2\sqrt{n}}$. This means that $f_n \to 0$ uniformly.

We can also easily compute $(f_n(x))' = \frac{1-nx^2}{(1+nx^2)^2}$.

For x = 0, $\lim_{n \to \infty} f'_n(x) = \lim_{n \to \infty} 1 = 1$.

For $x \neq 0$, $\lim_{n \to \infty} f_n'(x) = \lim_{n \to \infty} \frac{1}{n} \frac{\frac{1}{n} - x^2}{(\frac{1}{n} + x^2)^2} = 0 \times (-\frac{1}{x^2}) = 0$. Surely f' = (0)' = 0.

6. Define $I(x) = \begin{cases} 0 & \text{if } x \leq 0, \\ 1 & \text{if } x > 0. \end{cases}$ Suppose that (x_n) is a sequence of distinct points of (a,b) and that $\sum |c_n|$ converges. Prove that the series

$$f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n) \ (a \le x \le b)$$

converges uniformly, and that f is continuous for every $x \neq x_n$.

Solution. Note that $|I(x-a)| \leq 1$, so that $|c_n I(x-x_n)| \leq |c_n|$ and f(x) converges uniformly from Weierstrass M-test.

For continuity, define $A:=\mathbb{R}\setminus\{x_n\,|\,n\in\mathbb{N}\}$. Since I(x) is continuous on $\mathbb{R}\setminus\{0\}$, $I(x-x_n)$ is continuous on $\mathbb{R}\setminus\{x_n\}$ and surely on A. Then $\sum_{k=1}^n c_k I(x-x_k)$ is continuous on A and its uniform limit $\sum_{n=1}^\infty c_k I(x-x_k)$ is also continuous on A.

Bonus. Let's show that $\sum\limits_{n=1}^{\infty}c_kI(x-x_k)$ is discontinuous at $x=x_m$ if $c_m\neq 0$. Let $f_n(x):=\sum\limits_{k=1}^{n}c_kI(x-x_k), \ f(x):=\sum\limits_{n=1}^{\infty}c_kI(x-x_k).$ Since f_n converges uniformly to f, $f_n(x_m+x)-f_n(x_m-x)$ also uniformly converges to $f(x_m+x)-f(x_m-x)$. For $n\geq m$, consider

$$\lim_{x \to 0+} \{ f_n(x_m + x) - f_n(x_m - x) \}$$

$$= \sum_{k=1}^n \lim_{x \to 0+} \{ I(x_m - x_k + x) - I(x_m - x_k - x) \} = c_m.$$

From limit interchanging theorem, we have

$$\lim_{x \to 0+} \{ f(x_m + x) - f(x_m - x) \} = \lim_{n \to \infty} \begin{cases} c_m & (n \ge m) \\ 0 & (n < m) \end{cases} = c_m \ne 0.$$

7. Let (f_n) be a sequence of continuous functions which converges uniformly to a function f on a metric space E. Prove that

$$\lim_{n \to \infty} f_n(x_n) = f(x) \tag{1}$$

for every sequence of points $x_n \in E$ such that $x_n \to x$, and $x \in E$. Is the converse of this true?(i.e. if a sequence of continuous functions (f_n) on a metric space E satisfies (1) for every sequence of points $x_n \in E$ such that $x_n \to x$, and $x \in E$, then does (f_n) necessarily converge uniformly to f?)

Solution. f is also continuous since it is a uniform limit of continuous

functions, so $f(x_n)$ converges to f(x). For given $\varepsilon > 0$, Let $N_1, N_2 \in \mathbb{N}$ s.t. $n \ge N_1$ implies

 $|f(x_n)-f(x)|<rac{arepsilon}{2}$, and $n\geq N_2$ implies $|f_n(x)-f(x)|<rac{arepsilon}{2}$. Then we get

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall n \ge \max\{N_1, N_2\}.$$

For counterexample, Let $f_n(x) = \begin{cases} |1 - |x - n|| & (n - 1 \le x \le n + 1) \\ 0 & \text{otherwise} \end{cases}$.

We can easily check that $f_n(x)=0$ if $n\geq x+1$, so its pointwise limit is 0 everywhere. Because $|f_n(n)-0|=1$, it does not converge uniformly. Let $(x_n)_{n=1}^\infty$ be a sequence which converges to $x\in\mathbb{R}$. There exists $N\in\mathbb{N}$ s.t. $n\geq N$ implies $|x-x_n|<1$. Then if $n\geq \max\{|x|+2,N\}$, $x_n+1\leq x+2\leq |x|+2\leq n$ so $f_n(x_n)=0$ and this means that $f_n(x_n)$ converges to 0=f(x).

Bonus. If E is compact metric space, then its converse holds. Assume otherwise. For constant sequence $x_n=x$ equation (1) must holds. this means that pointwise limit of $(f_n)_{n=1}^\infty$ is f. Let $\varepsilon>0$ s.t. for any $N\in\mathbb{N}$ there exists a positive integer n,m>N and $x\in E$ which satisfies $|f_m(x)-f_n(x)|\geq \varepsilon$. Then we can construct a strictly increasing sequence of positive integers $(a_n)_{n=1}^\infty$, $(b_n)_{n=1}^\infty$ and $(x_n)_{n=1}^\infty$ s.t. $|f_{a_n}(x_n)-f_{b_n}(x_n)|\geq \varepsilon$. Since E is compact, there exists a strictly increasing sequence of natural numbers $(c_n)_{n=1}^\infty$ s.t. x_{c_n} converges to some $x\in E$. Now we have $|f_{a_{c_n}}(x_{c_n})-f_{b_{c_n}}(x_{c_n})|\geq \varepsilon$. Consider a sequence

$$y_n = \begin{cases} x_{c_1} & (n < a_{c_1}) \\ x_{c_m} & (a_{c_m} \le n < a_{c_m}) \end{cases}, \ z_n = \begin{cases} x_{c_1} & (n < b_{c_1}) \\ x_{c_m} & (b_{c_m} \le n < b_{c_m}) \end{cases}.$$

Then we can check that $\lim_{n\to\infty}y_n=\lim_{n\to\infty}z_n=x$, $f_{a_{c_n}}(x_{c_n})=f_{a_{c_n}}(y_{a_{c_n}})$, $f_{b_{c_n}}(x_{c_n})=f_{b_{c_n}}(z_{b_{c_n}})$. Since $f_n(y_n)$, $f_n(z_n)$ converges to f(x), their subsequences $f_{a_{c_n}}(x_{c_n})=f_{a_{c_n}}(y_{a_{c_n}})$, $f_{b_{c_n}}(x_{c_n})=f_{b_{c_n}}(z_{b_{c_n}})$ also converges to f(x) but is contradiction to $|f_{a_{c_n}}(x_{c_n})-f_{b_{c_n}}(x_{c_n})|\geq \varepsilon$.

8. Suppose (f_n) and (g_n) are real-valued functions defined on a metric space E, and

- ullet $\sum f_n$ has uniformly bounded partial sums;
- $g_n \to 0$ uniformly on E;
- $g_1(x) \ge g_2(x) \ge g_3(x) \ge \cdots$ for every $x \in E$.

Prove that $\sum f_n g_n$ converges uniformly on E. (*Hint*: Compare with Theorem 3.42.)

Solution. Define $F_n(x):=\sum\limits_{k=1}^n f_k(x)$ then $(F_n)_{n=1}^\infty$ is uniformly bounded, say by M>0. For given $\varepsilon>0$, there exists $N\in N$ s.t. $n\geq N$ implies $|g_n(x)|\leq \frac{\varepsilon}{5M}$. Then

$$m \ge n \ge N \Longrightarrow \left| \sum_{k=n+1}^{m} f_k(x) g_k(x) \right| = \left| \sum_{k=n+1}^{m} \left\{ F_k(x) - F_{k-1}(x) \right\} (x) g_k(x) \right|$$
$$\left| \sum_{k=n+1}^{m-1} F_k(x) \left\{ g_k(x) - g_{k+1}(x) \right\} + F_m(x) g_m(x) - F_n(x) g_{n+1}(x) \right|$$
$$\le \left| \sum_{k=n+1}^{m-1} |F_k(x)| \cdot |g_k(x) - g_{k+1}(x)| + |F_m(x)| \cdot |g_m(x)| + |F_n(x)| \cdot |g_{n+1}(x)| \right|$$

$$\leq M \sum_{k=n+1}^{m-1} |g_k(x) - g_{k+1}(x)| + M|g_m(x)| + M|g_{n+1}(x)|$$

$$= M\{g_{n+1}(x) - g_m(x) + |g_m(x)| + |g_{n+1}(x)|\}$$

$$\leq M \cdot \frac{\varepsilon}{5M} < \varepsilon$$

and
$$\sum_{n=1}^{\infty} f_n(x)g_n(x)$$
 converges uniformly on E .