ECUACIONES DIFERENCIALES PARCIALES ELÍPTICAS

Ecuación de Poisson. Ana María Correa Castrillón Edwin Dair Zapata Duque

CARACTERISTICAS.

Es una ecuación diferencial parcial de segundo orden de tipo elíptico, donde los coeficientes de las derivadas de grado máximo son positivas.

$$abla^2 u = 0$$
 Laplace

$$\nabla^2 u = f$$
 Poisson

POISSON

Usada para describir campos de energía potencial causados por distribuciones de carga o masa.

$$\left(rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2}+rac{\partial^2}{\partial z^2}
ight)arphi(x,y,z)=f(x,y,z).$$

Condiciones de frontera de Dirichlet:

$$\left\{ egin{aligned} \Delta arphi(\mathbf{x}) = 0 & \mathbf{x} \in \Omega \ arphi(ar{\mathbf{x}}) = f(ar{\mathbf{x}}) & ar{\mathbf{x}} \in \partial \Omega \end{aligned}
ight.$$

MÉTODO DE DIFERENCIAS FINITAS...

$$\nabla^2 u(x, y) \equiv \frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y)$$

$$R = \{(x,y) \mid a < x < b, c < y < d\}, \text{ with } u(x,y) = g(x,y) \text{ for } (x,y) \in S$$

Donde S es la frontera de R

Se define el tamaño de pasos h y k. h=(b-a)/n y k=(d-c)/m. Partiendo los intervalos [a,b] y [c,d] en n y m partes iguales respectivamente.

 $x_i = a + ih$ para cada i = 0, 1, ..., n, $y_j = c + jk$ para cada j = 0, 1, ..., m.

Para cada punto de red en la malla (x_i,y_j) , i=0,1,...,n-1 y j=0,1,...,m-1

Se usa la serie de taylor para generar una diferencia centrada

$$\frac{\partial^2 u}{\partial x^2}(x_i, y_j) = \frac{u(x_{i+1}, y_j) - 2u(x_i, y_j) + u(x_{i-1}, y_j)}{h^2} - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i, y_j)$$

$$\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = \frac{u(x_i, y_{j+1}) - 2u(x_i, y_j) + u(x_i, y_{j-1})}{k^2} - \frac{k^2}{12} \frac{\partial^4 u}{\partial y^4}(x_i, \eta_j)$$

$$\xi \in (x_{i-1}, x_{i+1})$$
 $\eta_j \in (y_{i-1}, y_{i+1})$

$$\frac{\partial^2 u}{\partial x^2}(x_i, y_j) = \frac{u(x_{i+1}, y_j) - 2u(x_i, y_j) + u(x_{i-1}, y_j)}{h^2} - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i, y_j)$$

$$\nabla^2 u(x,y) \equiv \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y)$$

Con esto obtenemos...

. . . La ecuación de Poisson en los puntos (x_i,y_j)

$$\begin{split} \frac{u(x_{i+1},y_j) - 2u(x_i,y_j) + u(x_{i-1},y_j)}{h^2} + \frac{u(x_i,y_{j+1}) - 2u(x_i,y_j) + u(x_i,y_{j-1})}{k^2} = \\ & = f(x_i,y_j) + \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i,y_j) + \frac{k^2}{12} \frac{\partial^4 u}{\partial y^4} (x_i,\eta_j) \end{split}$$

Para los puntos i = 0, 1, ..., (n-1) y j = 0, 1, ..., (m-1)

Las condiciones de frontera quedan definidas como:

$$u(x_0, y_j) = g(x_0, y_j)$$
 para cada $j = 0, 1, ..., m,$
 $u(x_n, y_j) = g(x_n, y_j)$ para cada $j = 0, 1, ..., m,$
 $u(x_i, y_0) = g(x_i, y_0)$ para cada $i = 0, 1, ..., n - 1,$
 $u(x_i, y_m) = g(x_i, y_m)$ para cada $i = 0, 1, ..., n - 1,$

realizan las aproximaciones... $w_{ij} pprox u(x_i,y_j)$

$$w_{0j} = g(x_0, y_j)$$
 and $w_{nj} = g(x_n, y_j)$, for each $j = 0, 1, ..., m$;
 $w_{i0} = g(x_i, y_0)$ and $w_{im} = g(x_i, y_m)$, for each $i = 1, 2, ..., n - 1$;

Ecuación de diferencia con error de truncamiento de orden $\mathcal{O}\left(h^2+k^2\right)$.

$$2\left[\left(\frac{h}{k}\right)^{2}+1\right]w_{i,j}-\left(w_{i+1,j}+w_{i-1,j}\right)-\left(\frac{h}{k}\right)^{2}\left(w_{i,j}+w_{i,j-1}\right)=-h^{2}f(x_{i},y_{j})$$

Esta expresión u(x,y) en los puntos

$$(x_{i-1}, y_j), (x_i, y_j), (x_{i+1}, y_j), (x_i, y_{j-1}), \text{ and } (x_i, y_{j+1}).$$

Cada ecuación contiene aproximaciones en una región alrededor de (x_i, y_j)

Usando las condiciones de frontera mostras

$$w_{0,j} = g(x_0, y_j)$$

$$w_{n,j} = g(x_n, y_j)$$

$$w_{i,0} = g(x_i, y_0)$$

$$w_{i,m} = g(x_i, y_m)$$

Hay (n-1)x(m-1) ecuaciones lineales Con (n-1)x(m-1) incognitas, donde las incónitas son las aproximaciones $w_{i,j} de \ u(x_i,y_j)$ Para los puntos Interiores de la red.

MÉTODO GAUSS-SIEDEL

Método iterativo para resolver un sistema de la forma $A\mathbf{x}=\mathbf{b}$

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i \right]$$

Las componentes de $\mathbf{x}^{(k-1)}$ son usadas para computar $\mathbf{x}^{(k)}$

PSEUDO CÓDIGO

Para aproximar la solución de la ecuación de Poisson

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = f(x,y), \ a \le x \le b, \ c \le y \le d,$$

sujeta a las condiciones de frontera

$$u(x,y) = g(x,y) \quad \text{si } x = a \text{ o } x = b \text{ y } c \le y \le d$$

$$y \quad u(x,y) = g(x,y) \quad \text{si } y = c \text{ o } y = d \text{ y } a \le x \le b,$$

CÓDIGO

- (Los pasos del 7 al 20 realizan iteraciones de Gauss-Seidel) mientras l < LBOUND hacer
- 7. Calcular $z=(-h^2f(x_1,y_{m-1})+g(a,y_{m-1})+\lambda g(x_1,d)+\lambda w_{1,m-2}+w_{2,m-1})/\mu;$ $NORM=|z-w_{1,m-1}|;$ $w_{1,m-1}=z.$
- 8. para i = 2, ..., n 2 hacer calcular $z = (-h^2 f(x_i, y_{m-1}) + \lambda g(x_i, d) + w_{i-1,m-1} + w_{i+1,m-1} + \lambda w_{i,m-2})/\mu$; si $|w_{i,m-1} z| > NORM$ entonces Calcular $NORM = |w_{i,m-1} z|$; Calcular $w_{i,m-1} = z$.
- 9. Calcular $z = (-h^2 f(x_{n-1}, y_{m-1}) + g(b, y_{m-1}) + \lambda g(x_{n-1}, d) + w_{n-2,m-1} + \lambda w_{n-1,m-2})/\mu$; si $|w_{n-1,m-1} z| > NORM$ entonces Calcular $w_{n-1,m-1} = z$.
- 10. para j = m 2, ..., 2 hacer (Seguir los pasos 11, 12 y 13)
- 11. Calcular $z = (-h^2 f(x_1, y_j) + g(a, y_j) + \lambda w_{1,j+1} + \lambda w_{1,j-1} + w_{2,j})/\mu$; si $|w_{1,j} - z| > NORM$ entonces Calcular $NORM = |w_{1,j} - z|$; Calcular $w_{1,j} = z$.

EJEMPLO 1

$$\frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = xe^y, \quad 0 < x < 2, \quad 0 < y < 1,$$

$$u(0, y) = 0,$$
 $u(2, y) = 2e^{y},$ $0 \le y \le 1,$
 $u(x, 0) = x,$ $u(x, 1) = ex,$ $0 \le x \le 2,$

Xi	Wij	U(x,y)	Wij-U(x,y)
0,33333	0.392046	0.407134	0.0150882
0,66667	0.772646	0.814269	0.0416227
1,00000	1.15048	1.2214	0.0709264
1,33333	1.53127	1.62854	0.0972706
1,66667	1.9049	2.03567	0.130774

$$u(x,y) = xexp(y)$$

GRÁFICAS EJEMPLO 1

EJEMPLO 2

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad 0 < x < 1, \quad 0 < y < 1;$$

$$u(x, 0) = 0, \quad u(x, 1) = x, \qquad 0 \le x \le 1;$$

$$u(0, y) = 0, \quad u(1, y) = y, \qquad 0 \le y \le 1.$$

Xi	Wij	U(x,y)	Wij-U(x,y)
0,2	0.04	0.04	4.06E-11
0,4	0.08	0.08	5.31E-11
0,6	0.12	0.12	4.29E-11
0,8	0.16	0.16	2.15E-11

$$u(x,y)=xy$$

Para j=1, fijo. y[j]=0.2 Para n=m=5

GRÁFICAS EJEMPLO 2

EJEMPLO 3

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = (x^2 + y^2)e^{xy}, \qquad 0 < x < 2, \ 0 < y < 1;$$

$$u(0,y) = 1$$
, $u(2,y) = e^{2y}$, $0 \le y \le 1$;
 $u(x,0) = 1$, $u(x,1) = e^x$, $0 \le x \le 2$.

Xi	Wij	U(x,y)	Wij-U(x,y)
0,33333	1.03293	1.0339	0.000968195
0,66667	1.06736	1.06894	0.00157673
1,00000	1.10349	1.10517	0.00167768
1,33333	1.14137	1.14263	0.00126446
1,66667	1.18083	1.18136	0.000530511

$$u(x,y) = exp(xy)$$

Para j=6 y[j]=0.6 Para n=6, m=10.

GRÁFICAS EJEMPLO 3

