Basic Electrical Engineering (TEE 101)

Lecture 50: Classification of DC Machines and EMF Equation

Content

Classification of DC Machines

Classification of DC Machines

Shunt across supply

By: Dr. Parvesh Saini

Shunt across armature

Field Windings

- Shunt Winding Connected in parallel with the armature.
- **Shunt winding** has large number of turns (high voltage winding, because it is connected in parallel with the armature)
- The current through the **shunt windings** is about 5% of the rated armature current. (thin wires)
- Series Windings Connected in series with the armature.
- Series windings has small number of turns (carries high current, thick wires)
- In **short shunt** connection the shunt field is connected directly across the armature terminals.
- In this instance the load current flows through the series field winding so that the load current and series field current are one and same.
- Long shunt, where the shunt is in parallel with both armature and series field. Since the shunt winding is done in such a way as to assist both armature and series field producing cumulative effect. this machine is known as cumulative compound motor.

EMF Equation of DC Generator

The basic essential parts of an electrical generator are:

- (i) A magnetic field. and
- (ii) A conductor/conductors which can so move to cut the flux.

Let

p = number of poles,

 $\varphi = \text{flux/pole}$, webers (Wb),

Z = total number of armature conductors, =number of slots × number of conductors/slot,

N = rotational speed of armature, r.p.m.,

a = number of parallel paths in armature

a = p for lap winding

 $a = 2 \dots$ for wave winding.

 E_g = generated e.m.f. per parallel path in armature.

Average e.m.f. generated per conductor = $\frac{d\phi}{dt}$ volt.

Now, flux cut per conductor in one revolution, $d\phi = p\phi$ Wb.

Number of revolutions/second = $\frac{N}{60}$

 \therefore Time for one revolution, $dt = \frac{60}{N}$ seconds

Hence, according to Faraday's laws of electromagnetic induction,

E.m.f. generated per conductor = $\frac{p\phi N}{60}$ volts.

The number of conductors connected in series in each parallel path = \mathbb{Z}/a .

Therefore, the average induced e.m.f across each parallel path or the armature terminals is given by the equation shown below:

In general, generated e.m.f.

$$E_g = \frac{\phi ZN}{60} \times \left(\frac{p}{a}\right) \text{ volt} = \frac{p\phi ZN}{60a}$$

For a lap wound generator:

Number of parallel paths, a = p

Number of conductor (in series) in one path = $\frac{Z}{p}$

∴ E.m.f. generated
$$per\ path = \frac{\phi pN}{60} \times \frac{Z}{p} = \frac{\phi ZN}{60}$$
 volt.

For a wave wound generator:

Number of Parallel paths, a = 2

Number of conductor (in series) in one path = $\frac{Z}{2}$

∴ E.m.f. generator per path =
$$\frac{p\phi N}{60} \times \frac{Z}{2} = \frac{p\phi ZN}{120}$$
 volt.

Back EMF Equation in DC Motor

As the armature rotates, a voltage is generated in its coils.

In the case of a generator, the emf of rotation is called the Generated emf or Armature emf and is denoted as Er = Eg.

In the case of a motor, the emf of rotation is known as Back emf or Counter emf and represented as Er = Eb.

If the DC Machine is working as a Motor, the induced emf is given by the equation shown below:

$$E_b = \frac{p\phi ZN}{60a} \quad Volts$$

Thank You