Validated numerics for algebraic path tracking

Alexandre Guillemot & Pierre Lairez MATHEXP, Université Paris-Saclay, Inria, France

ISSAC 2024 July 19, 2024 | Raleigh, NC, USA

universite PARIS-SACLAY

Introduction

Setup

- Let $g: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map.
- Notation: $g_t : \mathbb{C}^n \to \mathbb{C}^n$ defined by $g_t(z) = g(t, z)$.
- Let $z \in \mathbb{C}^n$ such that $g_0(z) = 0$.

Introduction

Setup

- Let $g: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map.
- Notation: $g_t : \mathbb{C}^n \to \mathbb{C}^n$ defined by $g_t(z) = g(t, z)$.
- Let $z \in \mathbb{C}^n$ such that $g_0(z) = 0$.
- \leadsto Moving the parameter from 0 to 1 induces $\zeta: [0,1] \to \mathbb{C}^n$ s.t. $\zeta(0) = z$ and $g_t(\zeta(t)) = 0$.
- Goal: "Track" ζ , with some topological guarantees.

Motivation: braid computations

Setup

- Let $g \in \mathbb{C}[t,z]$,
- let $b \in \mathbb{C} \setminus \Sigma$ be a base point,

Motivation: braid computations

Setup

- Let $\mathbf{g} \in \mathbb{C}[t,z]$,
- let $b \in \mathbb{C} \setminus \Sigma$ be a base point,
- let $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$ be a loop starting at b.
- The displacement of all roots of g_t when t moves along γ defines a braid.

Algorithmic goal

Input: g, γ (p.w. linear)

Output: the associated braid

Tool: certified path tracking

Previous work

Noncertified path trackers

- PHCpack by Verschelde (1999)
- Bertini by Bates, Hauenstein, Sommese, and Wampler (2013)
- HomotopyContinuation.jl by Breiding and Timme (2018)

Certified path trackers using Smale's alpha-theory

• NAG for M2 by Beltrán and Leykin (2012, 2013)

Certified path trackers in one variable

- Marco-Buzunariz and Rodríguez (2016)
- Kranich (2015)
- Xu, Burr, and Yap (2018)

Certified path trackers using interval arithmetic

- Kearfott and Xing (1994)
- van der Hoeven (2015) Krawczyk operator + Taylor models
- Duff and Lee (2024) similar to us but independent work

Contributions

- ii Specify an algorithm implementing the Krawczyk + Taylor approach.
- **Prove** *termination*.
- 1 In which model?
 - Exact arithmetic is not realistic.
 - We can't prove anything with 64-bits floating point numbers.
 - We want an adaptive precision model (as implemented by MPFI or Arb).
 - → We have to recognize when the working precision may not be enough.

Interval arithmetic

Problem

Given $f \in \mathbb{R}[x]$, I and J intervals, check $f(I) \subseteq J$.

Sufficient solution

• Define interval binary operations \boxplus and \boxtimes that take two intervals, give an interval and is such that for all $x \in I$, $y \in J$,

$$x + y \in I \boxplus J, xy \in I \boxtimes J$$

- Write f as a composition of binary operations and replace each operation by its interval counterpart (**interval extension**, denoted by $\Box f$), then plug I and check if the result is contained in J.
- ! This is only a sufficient condition

Computational model

- Interval endpoints : \mathbb{Q} ,
- $[a, b] \boxplus [c, d] = [a + c, b + d],$
- $[a,b]\boxtimes[c,d] = [\min\{ac,ad,bc,bd\},\max\{ac,ad,bc,bd\}].$

Pros and cons

- ✓ good theoritical properties
- × coefficient swell

Computational model

- Interval endpoints : {IEEE-754 64-bits floating-point numbers},
- $[a,b] \boxplus [c,d] = [\underline{a+c},\overline{b+d}],$
- $[a, b] \boxtimes [c, d] = [\min\{\underline{ac}, \underline{ad}, \underline{bc}, \underline{bd}\}, \max\{\overline{ac}, \overline{ad}, \overline{bc}, \overline{bd}\}].$

Pros and cons

- **✓** fast
- × bad theoritical properties
- × not enough representable numbers

Computational model

- Interval endpoints : $\{m2^e \in \mathbb{R} : m, e \in \mathbb{Z}\}$,
- [a,b] $\boxplus_u[c,d] \subseteq [a+c-Mu,b+d+Mu]$,
- $[a,b]\boxtimes_u[c,d]\subseteq [\min\{ac,ad,bc,bd\}-M^2u,\max\{ac,ad,bc,bd\}+M^2u],$

for all $M \ge 1$, all $a, b, c, d \in [-M, M]$, and $u \in (0, 1)$ is the unit roundoff that should be specified at each operation.

Pros and cons

- \checkmark good theoritical properties as $u \to 0$
- ✓ fast when we can maintain low precision
 - implemented by MPFI and Arb
- compatible with IEEE-754 floating point arithmetic, when $u > 2^{-53}$
- when implemented with double precision only, a computation is guaranteed to terminate or fail with a precision error, it cannot hang


```
"Algorithm"
    def track(g, Z):
        t \leftarrow 0
        L \leftarrow []
        while t < 1:
            Z \leftarrow refine(g_t, Z)
5
            pred ← a predictor
6
            \delta \leftarrow validate(g, t, Z, pred)
           t \leftarrow t + \delta
8
            append (t, Z) to L
9
        return L
10
```



```
"Algorithm"
    def track(g, Z):
        t \leftarrow 0
       L \leftarrow []
        while t < 1:
           Z \leftarrow refine(g_t, Z)
5
            pred ← a predictor
6
            \delta \leftarrow validate(g, t, Z, pred)
           t \leftarrow t + \delta
8
            append (t, Z) to L
9
        return L
10
```



```
"Algorithm"
    def track(g, Z):
        t \leftarrow 0
        L \leftarrow []
        while t < 1:
            Z \leftarrow refine(g_t, Z)
5
            pred ← a predictor
6
            \delta \leftarrow validate(g, t, Z, pred)
           t \leftarrow t + \delta
8
            append (t, Z) to L
9
        return L
10
```



```
"Algorithm"
    def track(g, Z):
        t \leftarrow 0
        L \leftarrow []
        while t < 1:
           Z \leftarrow refine(g_t, Z)
5
            pred ← a predictor
6
            \delta \leftarrow validate(g, t, Z, pred)
            t \leftarrow t + \delta
8
            append (t, Z) to L
9
        return L
10
```



```
"Algorithm"
    def track(g, Z):
        t \leftarrow 0
        L \leftarrow []
        while t < 1:
            Z \leftarrow refine(g_t, Z)
5
            pred ← a predictor
 6
            \delta \leftarrow validate(g, t, Z, pred)
            t \leftarrow t + \delta
8
            append (t, Z) to L
9
        return L
10
```


"Algorithm" **def** track(g, Z): $t \leftarrow 0$ $L \leftarrow []$ while t < 1: $Z \leftarrow refine(g_t, Z)$ 5 pred ← a predictor 6 $\delta \leftarrow validate(g, t, Z, pred)$ $t \leftarrow t + \delta$ 8 append (t, Z) to L9 return L 10

Moore boxes, the datastructure for isolating boxes

Root isolation criterion (Krawczyk (1969), Moore (1977), Rump (1983))

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial, $\rho \in (0,1)$,
- $z \in \mathbb{C}^n$, $A \in \mathbb{C}^{n \times n}$, $B \subseteq \mathbb{C}^n$ a ball of center 0,

such that for all $u, v \in B$,

$$-Af(z) + [I_n - A \cdot Jf(z + u)]v \in \rho B.$$

Then f has a unique zero in $z + \rho B$.

Moore boxes, the datastructure for isolating boxes

Root isolation criterion (Krawczyk (1969), Moore (1977), Rump (1983))

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial, $\rho \in (0,1)$,
- $z \in \mathbb{C}^n$, $A \in \mathbb{C}^{n \times n}$, $B \subseteq \mathbb{C}^n$ a ball of center 0,

$$-Af(z)+[I_n-A\cdot Jf(z+B)]B\subseteq \rho B.$$

Then f has a unique zero in $z + \rho B$.

Moore boxes, the datastructure for isolating boxes

Root isolation criterion (Krawczyk (1969), Moore (1977), Rump (1983))

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial, $\rho \in (0,1)$,
- $z \in \mathbb{C}^n$, $A \in \mathbb{C}^{n \times n}$, $B \subseteq \mathbb{C}^n$ a ball of center 0,

$$-Af(z) + [I_n - A \cdot Jf(z + B)]B \subseteq \rho B.$$

Then f has a unique zero in $z + \rho B$.

Proof sketch

We show that $\varphi: z + \rho B \to \mathbb{C}^n$ defined by $\varphi(w) = w - Af(w)$ is a ρ -contraction map with values in $z + \rho B$.

Definition

A ρ -Moore box for f is a triple (z, B, A) which satisfies Moore's criterion.

Algorithm

```
1 def refine(f, z, B, A):

2 U \leftarrow A; B \leftarrow 2B

3 while not -A \cdot \Box f(z) + [I - A \cdot \Box Jf(z + B)]B \subseteq \frac{1}{8}B

4 if -U \cdot \Box f(z) \subseteq \frac{1}{512}B: # left term is small

5 B \leftarrow \frac{1}{2}B

6 else: # left term is big

7 z \leftarrow z - Uf(z)

8 A \leftarrow Jf(z)^{-1} # unchecked arithmetic

9 return z, B, A
```

Input

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- z, B, A a $\frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

Algorithm

```
def refine(f, z, B, A):
    II \leftarrow A: B \leftarrow 2B: shrink_cnt \leftarrow 0
    while not -A \cdot \Box f(z) + [I - A \cdot \Box J f(z+B)] B \subset \frac{1}{9}B
        if -U \cdot \Box f(z) \subseteq \frac{1}{512}B: # left term is small
            B \leftarrow \frac{1}{2}B; shrink_cnt \leftarrow shrink_cnt + 1
            if shrink_cnt > 8:
                double working precision
        else: # left term is big
            z \leftarrow z - Uf(z)
        A \leftarrow Jf(z)^{-1} # unchecked arithmetic
    return z, B, A
```

Input

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A = \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

Algorithm

```
def refine(f, z, B, A):
         U \leftarrow A: B \leftarrow 2B: shrink_cnt \leftarrow 0
         while not -A \cdot \Box f(z) + [I - A \cdot \Box J f(z+B)] B \subset \frac{1}{9}B
             if -U \cdot \Box f(z) \subseteq \frac{1}{512}B: # left term is small
                  B \leftarrow \frac{1}{2}B; shrink_cnt \leftarrow shrink_cnt + 1
                  if shrink_cnt > 8:
 6
                      double working precision
             else: # left term is big
                  \delta \leftarrow U \cdot \Box f(z)
                  if width(z-\delta) > \frac{1}{40} ||\delta||_{\square}:
                      double working precision
                  else:
                      z \leftarrow mid(z - \delta)
13
             A \leftarrow Jf(z)^{-1} # unchecked arithmetic
14
         return z, B, A
15
```

Input

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A = \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

Algorithm

```
def refine(f, z, B, A):
          II \leftarrow A \cdot B \leftarrow 2B \cdot \text{shrink cnt} \leftarrow 0
         while not -A \cdot \Box f(z) + [I - A \cdot \Box J f(z+B)] B \subset \frac{1}{9}B
              if -U \cdot \Box f(z) \subseteq \frac{1}{512}B: # left term is small
                   B \leftarrow \frac{1}{2}B; shrink_cnt \leftarrow shrink_cnt + 1
                   if shrink_cnt > 8:
                       double working precision
              else: # left term is big
                  \delta \leftarrow U \cdot \Box f(z)
                  if width(z-\delta) > \frac{1}{40} ||\delta||_{\square}:
                       double working precision
                  else:
                       z \leftarrow mid(z - \delta)
              A \leftarrow Jf(z)^{-1} # unchecked arithmetic
14
          return z, B, A
15
```

Input

- $f: \mathbb{C}^n \to \mathbb{C}^n$ polynomial,
- $z, B, A = \frac{7}{8}$ -Moore box for f.

Output

A $\frac{1}{8}$ -Moore box for f with same associated zero as z, B, A.

Proposition

refine terminates and is correct.

Step validation

Input

- $g: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$,
- $t \in [0, 1]$,
- (z, B, A) a $\frac{1}{8}$ -Moore box for g_t , returned by refine.

Output

 $\delta>0$ s.t. for all $s\in T=[t,t+\delta],\,(z,B,A)$ is a $\frac{7}{8}$ -Moore box for g_s .

Proposition

validate terminates and is correct.

Algorithm

- 1 **def** validate(g, t, δ_{hint} , z, B, A):
- $\delta \leftarrow \delta_{\text{hint}}; \quad T \leftarrow [t, t + \delta]$
- while $-A \cdot \Box g_T(z) + [I A \cdot \Box Jg_T(z+B)] B \nsubseteq \frac{7}{8}B$:
- 4 $\delta \leftarrow \frac{\delta}{2}$; $T \leftarrow [t, t + \delta]$
- if $\delta < u$:
- double working precision
- 7 return δ

Step validation

Input

- $g: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$,
- $t \in [0, 1]$,
- (z, B, A) a $\frac{1}{8}$ -Moore box for g_t , returned by refine.

Output

- $\delta > {\rm 0~s.t.}$ for all
- $s \in T = [t, t + \delta], (z, B, A)$ is
- a $\frac{7}{8}$ -Moore box for g_s .

Proposition

validate terminates and is correct.

Algorithm

- 1 **def** validate(g, t, δ_{hint} , z, B, A):
- 2 $\delta \leftarrow \delta_{\text{hint}}; \quad T \leftarrow [t, t + \delta]$
- while $-A \cdot \Box g_T(z) + [I A \cdot \Box Jg_T(z+B)] B \nsubseteq \frac{7}{8}B$:
- $\delta \leftarrow \frac{\delta}{2}; \quad T \leftarrow [t, t + \delta]$
- if $\delta < u$:
- 6 double working precision
- 7 return δ

Remark

It is possible to modify this algorithm to validate along a predictor. It requires the use of Taylor models.

Implementation

- Rust implementation.
- ✓ Available at https://gitlab.inria.fr/numag/algpath.
- × Double precision only, abort instead of raising precision.
- ✓ SIMD interval arithmetic, following Lambov (2008).
- ✓ Hermite's cubic predictor.
- Benchmarked against HomotopyContinuation.jl and NAG for Macaulay2.

We have benchmarks, but caveat

- They may not be relevant for your application.
- Timings are difficult to get consistent, especially with Julia.
- Large variability of the metrics.

So, is it fast?

Total time

- 1-30× slower than HC.jl, lot of variability
- orders of magnitude faster than M2

Iterations/sec. (measure the efficiency refine and validate)

- 2× slower than M2 (I have been surprised by the efficiency of M2!)
- 5-10× slower than HC.jl

Total number of iterations (measure the theoretical merit)

- \blacksquare 1-5× more iterations than HC.jl + large deviations
- orders of magnitude less than M2
- ! 1-8× the theoretical minimum of the method (this has a precise meaning)
- Maybe we can gain a factor 2 by imitating Duff and Lee (2024).

				circuit size		HomotopyContinuation.jl				algpath				Macaulay2						
name	dim.	deg	# paths	f	$\mathrm{d}f$	fail.	med.	max.	ksteps/s	time	fail.	med.	max.	ksteps/s	time	fail.	med.	max.	ksteps/s	time
dense	1	30	30	248	314		10	25	41	2.0		23	372	25	< 0.1		830 k	3478 k	30	18 min
dense	1	40	40	328	416		14	30	45	2.0		34	197	24	< 0.1			> 1	h	
dense	1	50	50	408	520		12	61	37	1.9		30	5567	13	0.7			> 1	h	
dense	1	100	100	808	1054		13	51	23	1.9		38	5289	7.4	1.4			> 1	h	
dense	1	500	500	4008	5466		14	59	3.8	3.9	2	60	1121	2.3	17	500				4.0
dense	1	1000	1000	8008	10952		15	100	1.7	12	35	74	976	1.1	82	1000				29
dense	2	10	100	1016	1280		22	74	33	2.6		53	307	9.2	0.7		33 k	301 k	28	158
dense	2	20	400	3616	4612		25	63	13	3.1		74	401	2.9	12			> 1	h	
dense	2	30	900	7816	9952		24	127	5.8	6.4		85	690	1.4	72			> 1	h	
dense	2	40	1600	13616	17284		25	95	3.4	14		100	998	0.81	268			> 1	h	
dense	2	50	2500	21016	26624		27	84	2.3	33		117	1675	0.53	12 min			> 1	h	
katsura	9	2	256	448	228		82	132	54	4.2		148	286	9.5	4.2		12 k	59 k	18	186
katsura	11	2	1024	606	308		100	179	41	6.7		177	359	6.3	30		21 k	88 k	13	30 min
katsura	16	2	32768	1090	548		153	303	22	235		304	1847	2.7	1 h			> 50) h	
katsura	21	2	1048576	1696	844		209	469	13	4 h	483	427	8798	1.4	101 h		n	ot bench	marked	
katsura *	26	2	100	2430	1202		305	466	6.9	8.8	1	800	2930	0.73	125			> 1	h	
katsura *	31	2	100	3286	1614		382	538	4.9	12	1	852	5021	0.47	219			> 1	h	
katsura *	41	2	100	5376	2618		554	787	2.7	24	9	1371	5182	0.19	13 min			> 1	h	
dense *	4	3	100	1080	1318		39	67	41	2.4		66	127	8.3	0.9		3384	9936	35	10
dense *	6	3	100	4092	5384		54	96	9.0	3.3		112	224	2.3	5.1		11 k	24 k	18	62
dense *	8	3	100	11120	15242		73	124	2.1	6.3		157	354	0.86	19		21 k	74 k	9.5	243
structured *	4	3	100	244	418		40	78	92	4.0		75	199	24	0.4		4531	8925	41	11
structured *	6	3	100	426	778		66	101	59	3.9		130	254	13	1.1		18 k	61 k	23	85
structured *	8	3	100	670	1252		81	121	40	3.9		182	283	7.9	2.3		36 k	97 k	13	305
structured N	5	5	1	302	545		42	42	4.9	3.1		99	99	18	< 0.1		252 k	252 k	12	22
structured N	10	10	1	1034	2024		53	53	0.18	3.1		123	123	4.9	< 0.1			> 1	h	
structured N	15	15	1	2366	5079			> 8 (GB			628	628	2.0	0.4			> 8 (GB	
structured N	20	20	1	3554	6721			> 8 (GB			1591	1591	1.2	1.5			> 8 (
structured N	25	25	1	5466	10541			> 8 (ЗB			1734	1734	0.69	2.9			> 8 (GB	
structured N	30	30	1	7788	15239			> 8 (GB			1989	1989	0.43	5.2			> 8 (GB	

			Home	otopyCont	inuation.jl		algpath	1	Macaulay2			
name	dim.	max deg	med.	ksteps/s	time (s)	med.	ksteps/s	time (s)	med.	ksteps/s	time (s)	
dense	1	10	6	30	1.8	11	55	< 0.1	629	55	0.2	
dense	1	50	12	37	1.9	30	13	0.7		> 1 h		
dense	2	10	22	33	2.6	53	9.2	0.7	33 k	28	158	
dense	2	30	24	5.8	6.4	85	1.4	72		> 1 h		
dense	2	50	27	2.3	33	117	0.53	12 min		> 1 h		
katsura	9	2	82	54	4.2	148	9.5	4.2	12 k	18	186	
katsura	11	2	100	41	6.7	177	6.3	30	21 k	13	30 min	
katsura	16	2	153	22	235	304	2.7	1 h		1		
katsura	21	2	209	13	4 h	427	1.4	101 h	not benchmarked			
dense *	8	3	73	2.1	6.3	157	0.86	19	21 k	9.5	243	
structured *	8	3	81	40	3.9	182	7.9	2.3	36 k	13	305	
structured ^N	10	10	53	0.18	3.1	123	4.9	< 0.1		> 1 h		
structured ^N	20	20		> 8 GI	В	1591	1.2	1.5		> 8 GE	3	
structured ^N	30	30		> 8 Gl	3	1989	0.43	5.2		> 8 GE	3	

References i

Bates, D. J., Hauenstein, J. D., Sommese, A. J., & Wampler, C. W. (2013). *Numerically solving polynomial systems with Bertini* (Vol. 25). SIAM, Philadelphia, PA.

Beltrán, C., & Leykin, A. (2012). Certified numerical homotopy tracking. Exp. Math., 21(1), 69–83. https://doi.org/10/ggck73

Beltrán, C., & Leykin, A. (2013). Robust certified numerical homotopy tracking. Found. Comput. Math., 13(2), 253–295. https://doi.org/10/ggck74

Breiding, P., & Timme, S. (2018). HomotopyContinuation.jl: A package for homotopy continuation in julia. *Int. Congr. Math. Softw.*, 458–465. https://doi.org/10/ggck7q

Duff, T., & Lee, K. (2024). Certified homotopy tracking using the Krawczyk method.

Kearfott, R. B., & Xing, Z. (1994). An interval step control for continuation methods. SIAM J. Numer. Anal., 31(3), 892–914.

Kranich, S. (2015). An epsilon-delta bound for plane algebraic curves and its use for certified homotopy continuation of systems of plane algebraic curves.

Krawczyk, R. (1969). Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing, 4(3), 187-201. https://doi.org/10/css7z9

References ii

Lambov, B. (2008). Interval Arithmetic Using SSE-2. In P. Hertling, C. M. Hoffmann, W. Luther, & N. Revol (Eds.), *Reliab. Implement. Real Number Algorithms* (pp. 102–113). Springer. https://doi.org/10.1007/978-3-540-85521-7_6

Marco-Buzunariz, M. Á., & Rodríguez, M. (2016). SIROCCO: A library for certified polynomial root continuation. Proc. ICMS 2016, 191–197. https://doi.org/10/grqk32

Moore, R. E. (1977). A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal., 14(4), 611–615. https://doi.org/10/c66n76

Rump, S. M. (1983). Solving algebraic problems with high accuracy. In U. W. Kulisch & W. L. Miranker (Eds.), A New Approach to Scientific Computation (pp. 51–120). Academic Press. https://doi.org/10/kh8k

van der Hoeven, J. (2015). Reliable homotopy continuation. https://hal.science/hal-00589948v4

Verschelde, J. (1999). Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. TOMS, 25(2), 251–276. https://doi.org/10/fncfxi

Xu, J., Burr, M., & Yap, C. (2018). An approach for certifying homotopy continuation paths: Univariate case. *Proc. ISSAC 2018*, 399–406. https://doi.org/10/ggck7k

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Target systems

- Dense: f_i^{\odot} 's of given degree with random coefficients
- Structured: f_i^{\odot} 's of the form $\pm 1 + \sum_{i=1}^5 \left(\sum_{j=1}^n a_{i,j} z_j\right)^d$, $a_{i,j} \in_R \{-1,0,1\}$
- Katsura family (sparse high dimension low degree)

Test data

We tested systems of the form $g_t(z) = tf^{\odot}(z) + (1-t)f^{\triangleright}(z)$ (f^{\triangleright} is the start system, f^{\odot} is the target system).

Target systems

- Dense: f_i^{\odot} 's of given degree with random coefficients
- Structured: f_i^{\odot} 's of the form $\pm 1 + \sum_{i=1}^5 \left(\sum_{j=1}^n a_{i,j} z_j\right)^d$, $a_{i,j} \in_R \{-1,0,1\}$
- Katsura family (sparse high dimension low degree)

Start systems

- Total degree homotopies: f_i^{\triangleright} 's of the form $\gamma_i(z_i^{d_i}-1)$, $\gamma_i \in_R \mathbb{C}$, $d_i=\deg f_i^{\odot}$
- Newton homotopies: $f^{\triangleright}(z) = f^{\odot}(z) f^{\odot}(z_0)$

Reminder

In a ρ -Moore box (z, r, A), the quasi Newton iteration $\varphi(w) = w - Af(w)$ is a ρ -contraction map, and the limit of iterated compositions of φ gives the associated zero \tilde{z} .

Reminder

In a ρ -Moore box (z, r, A), the quasi Newton iteration $\varphi(w) = w - Af(w)$ is a ρ -contraction map, and the limit of iterated compositions of φ gives the associated zero \tilde{z} .

Heuristic

$$-Af(z) + [I_n - A \cdot Jf(z + B_r)]B_r \subseteq \frac{1}{8}B_r$$

Reminder

In a ρ -Moore box (z, r, A), the quasi Newton iteration $\varphi(w) = w - Af(w)$ is a ρ -contraction map, and the limit of iterated compositions of φ gives the associated zero \tilde{z} .

Heuristic

$$-Af(z) + [I_n - A \cdot Jf(z + B_r)]B_r \subseteq \frac{1}{8}B_r$$

• We set A to always be $Jf(z)^{-1}$.

Reminder

In a ρ -Moore box (z, r, A), the quasi Newton iteration $\varphi(w) = w - Af(w)$ is a ρ -contraction map, and the limit of iterated compositions of φ gives the associated zero \tilde{z} .

Heuristic

$$\underbrace{-Af(z)}_{0} + [I_n - A \cdot Jf(z + B_r)]B_r \subseteq \frac{1}{8}B_r$$

- We set A to always be $Jf(z)^{-1}$.
- By performing quasi Newton iterations, we are able to make the term -Af(z) go to zero.

Reminder

In a ρ -Moore box (z, r, A), the quasi Newton iteration $\varphi(w) = w - Af(w)$ is a ρ -contraction map, and the limit of iterated compositions of φ gives the associated zero \tilde{z} .

Heuristic

$$\underbrace{-Af(z)}_{\text{an iters}} + \underbrace{\left[I_n - A \cdot Jf(z + B_r)\right]}_{r \to 0} B_r \subseteq \frac{1}{8} B_r$$

- We set A to always be $Jf(z)^{-1}$.
- By performing quasi Newton iterations, we are able to make the term -Af(z) go to zero.
- By reducing r, we are able to make the term $[I_n A \cdot Jf(z + B_r)]B_r$ fit into any εB_r .

Reminder

In a ρ -Moore box (z, r, A), the quasi Newton iteration $\varphi(w) = w - Af(w)$ is a ρ -contraction map, and the limit of iterated compositions of φ gives the associated zero \tilde{z} .

Heuristic

$$\underbrace{-Af(z)}_{\text{an iters}} + \underbrace{\left[I_n - A \cdot Jf(z + B_r)\right]}_{r \to 0} B_r \subseteq \frac{1}{8} B_r$$

- We set A to always be $Jf(z)^{-1}$.
- By performing quasi Newton iterations, we are able to make the term -Af(z) go to zero.
- By reducing r, we are able to make the term $[I_n A \cdot Jf(z + B_r)]B_r$ fit into any εB_r .

Idea: a balance between reductions of r and quasi Newton iterations.

Predictor

A map $\mathcal{X}: \mathbb{R} \to \mathbb{C}^n$ such that $\mathcal{X}(0) = z$.

In practice, one should have $\mathcal{X}(s) \approx \zeta(t+s)$ around 0.

Predictor

A map $\mathcal{X}: \mathbb{R} \to \mathbb{C}^n$ such that $\mathcal{X}(0) = \mathbf{z}$.

In practice, one should have $\mathcal{X}(s) \approx \zeta(t+s)$ around 0.

Certifying the prediction

Pb: check that for all $s \in [0, \delta]$, (z, r, A) is a ρ -Moore box for g_{t+s} .

Soln: try $M(\Box g_{\mathsf{T}}, \Box Jg_{\mathsf{T}}, z, r, A, \rho)$, where

$$T = [t, t + \delta].$$

Predictor

A map $\mathcal{X}: \mathbb{R} \to \mathbb{C}^n$ such that $\mathcal{X}(0) = \mathbf{z}$.

In practice, one should have $\mathcal{X}(s) \approx \zeta(t+s)$ around 0.

Certifying the prediction

Pb: check that for all $s \in [0, \delta]$, $(\mathcal{X}(s), r, A)$

is a ρ -Moore box for g_{t+s} .

Soln: try $M(\Box g_T, \Box J g_T, \Box \mathcal{X}([0, \delta]), r, A, \rho)$, where $T = [t, t + \delta]$.

Predictor

A map $\mathcal{X}: \mathbb{R} \to \mathbb{C}^n$ such that $\mathcal{X}(0) = z$.

In practice, one should have $\mathcal{X}(s) \approx \zeta(t+s)$ around 0.

Certifying the prediction

Pb: check that for all $s \in [0, \delta]$, $(\mathcal{X}(s), r, A)$

is a ρ -Moore box for g_{t+s} .

Soln: try $M(\Box g_T, \Box Jg_T, \Box \mathcal{X}([0, \delta]), r, A, \rho)$, where $T = [t, t + \delta]$.

This is too strong!

Predictor

A map $\mathcal{X}: \mathbb{R} \to \mathbb{C}^n$ such that $\mathcal{X}(0) = z$.

In practice, one should have $\mathcal{X}(s) \approx \zeta(t+s)$ around 0.

Certifying the prediction

Pb: check that for all $s \in [0, \delta]$, $(\mathcal{X}(s), r, A)$ is a ρ -Moore box for g_{t+s} .

Soln: try $M(\Box g_T, \Box Jg_T, \Box \mathcal{X}([0, \delta]), r, A, \rho)$, where $T = [t, t + \delta]$.

This is too strong!

Way around the dependency problem: Taylor models !

Taylor models with relative remainder

Definition

- An interval $S \in \square \mathbb{R}$ containing zero,
- a polynomial $P(\eta) = A_0 + A_1 \eta + \cdots + A_{d+1} \eta^{d+1}$ where $A_i \in \square \mathbb{C}$.

 \emph{d} is the order of the Taylor model.

Taylor models with relative remainder

Definition

- An interval $S \in \square \mathbb{R}$ containing zero,
- a polynomial $P(\eta) = A_0 + A_1 \eta + \cdots + A_{d+1} \eta^{d+1}$ where $A_i \in \square \mathbb{C}$.

d is the order of the Taylor model.

Definition

A Taylor model (S, P) encloses a function $f : \mathbb{R} \to \mathbb{C}$ if for all $s \in S$, there exists $a_i \in A_i$, for all $0 \le i \le d+1$ s.t. $f(s) = a_0 + a_1 s + \cdots + a_{d+1} s^{d+1}$

Taylor models with relative remainder

Definition

- An interval $S \in \square \mathbb{R}$ containing zero,
- a polynomial $P(\eta) = A_0 + A_1 \eta + \cdots + A_{d+1} \eta^{d+1}$ where $A_i \in \square \mathbb{C}$.

d is the order of the Taylor model.

Definition

A Taylor model (S, P) encloses a function $f : \mathbb{R} \to \mathbb{C}$ if for all $s \in S$, there exists $a_i \in A_i$, for all $0 \le i \le d+1$ s.t. $f(s) = a_0 + a_1 s + \cdots + a_{d+1} s^{d+1}$

Remark

If $J \subseteq S$, then $f(J) \subseteq P(J)$.

Arithmetic

Reduction

Let (S, P) be a Taylor model of order d.

Goal: reduce it order to d-1, s.t. if (S, P) encloses a function, so does its reduction.

Solution: replace $A_d \eta^d + A_{d+1} \eta^{d+1}$ by $(A_d \boxplus (A_{d+1} \boxtimes I)) \eta^d$.

Arithmetic

Reduction

Let (S, P) be a Taylor model of order d.

Goal: reduce it order to d-1, s.t. if (S, P) encloses a function, so does its reduction.

Solution: replace $A_d \eta^d + A_{d+1} \eta^{d+1}$ by $(A_d \boxplus (A_{d+1} \boxtimes I)) \eta^d$.

Operations

Let (S, P) and (S, Q) be Taylor models of order d.

Sum: Component-wise sum using \boxplus . Compatible with sums of enclosed functions.

Product: Usual product formula, gives a Taylor model of order 2d + 1, then reduce it to make it of order d. Compatible with products of enclosed functions.

Back to our problem

Recall what we want

(z,r,A) is a $\frac{1}{8}$ -Moore box for g_t , $\mathcal{X}:\mathbb{R}\to\mathbb{C}^n$ polynomial s.t. $\mathcal{X}(0)=z$, $\delta>0$. We want to check that for all $s\in[0,\delta]$,

$$-Ag_{t+s}(\mathcal{X}(s)) + [I_n - A \cdot Jg_{t+s}(\mathcal{X}(s) + B_r)]B_r \subseteq \frac{7}{8}B_r.$$

Back to our problem

Recall what we want

(z,r,A) is a $\frac{1}{8}$ -Moore box for g_t , $\mathcal{X}:\mathbb{R}\to\mathbb{C}^n$ polynomial s.t. $\mathcal{X}(0)=z$, $\delta>0$. We want to check that for all $s\in[0,\delta]$,

$$-Ag_{t+s}(\mathcal{X}(s)) + [I_n - A \cdot Jg_{t+s}(\mathcal{X}(s) + B_r)]B_r \subseteq \frac{7}{8}B_r.$$

Solution using Taylor models

ullet Compute an order d taylor model ${\mathcal K}$ on $[0,\delta]$ of

$$-Ag_{t+\eta}(\mathcal{X}(\eta)) + [I_n - A \cdot Jg_{t+\eta}(\mathcal{X}(\eta) + B_r)]B_r.$$

This is just Taylor model arithmetic!

• Check that $\mathcal{K}([0,\delta]) \subseteq \frac{7}{8}B_r$ (interval arithmetic).

Choosing the right predictor

Tangent predictor

Idea: $-A \cdot \frac{\partial}{\partial t} g(t, z)$ is a good approximation of $\zeta'(t)$. Use it to do a order 1 correction.

Choosing the right predictor

Tangent predictor

Idea: $-A \cdot \frac{\partial}{\partial t} g(t, z)$ is a good approximation of $\zeta'(t)$. Use it to do a order 1 correction.

Hermite predictor

Idea: use previous point $z_{\rm prev}$ and previous tangent vector $v_{\rm prev}$, z and v to do a Hermite cubic spline approximation.