南京大学数学系期末试卷(A)参考答案

2020/2021 学年第一学期 考试形式 闭卷 课程名称 高等代数 院系 班级 姓名 考试时间 任课教师 考试成绩 2021.1.14 题号 四 七 总分 五. 六 八 得分

- 一. (20分) 判断下列陈述是否正确,并说明理由(本题共5小题,每小题4分).
- 1. 设 A, B 都是 n 级方阵, 则 $A^2 B^2 = (A B)(A + B)$.

解. 错误. 例如, 设
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, 则 $A^2 = A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $B^2 = A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $A^2 - B^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix} = (A+B)(A-B)$.

2. 设 A, B, C 都是 n 级方阵, $A \neq 0$, 如果 AB = AC, 则 B = C.

解. 错误. 例如,设
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
易见, $AB = AC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, 但是 $B \neq C$.

- 3. 设 A, B 为数域 $F \perp n$ 级方阵, 若矩阵方程 AX = B 有解, 则 $\operatorname{rank}(A, B) = \operatorname{rank}(A)$. 解. 正确. 若矩阵方程 AX = B 有解, 则 B 的列向量组可由 A 的列向量组线性表 出, 从而 (A, B) 的列向量组与 A 的列向量组等价, 故 $\operatorname{rank}(A, B) = \operatorname{rank}(A)$.
- 4. 设 A 是 数域 F 上的 n 级方阵, $n \ge 2$, 则 A 可逆当且仅当 A 的伴随矩阵 A^* 可逆. **解.** 正确. $|A^*| = |A|^{n-1}$.
- 5. 如果向量组 $\alpha_i = (a_{i1}, a_{i2}, a_{i3}), i = 1, 2, 3,$ 线性无关,则向量组 $\beta_j = (a_{1j}, a_{2j}, a_{3j}), j = 1, 2, 3,$ 也线性无关.
 - **解.** 正确. 由于 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1', \beta_2', \beta_3'$ 分别是矩阵 $A = (\beta_1', \beta_2', \beta_3')$ 的行向量组和 列向量组, 它们具有相同的秩.

- 二. (30分) 填空题 (本题共 10个空格,每个空格 3分).
 - 1. 设 A 为 n 级实对称矩阵,如果 $A^2 = 0$,则 $A = _0$.

- 3. 设 A 为 n 级方阵并且 |A| = -5, A^* 为 A 的伴随矩阵, $A^3 3A^2 + \frac{1}{5}AA^* = 0$, 则 $A^{-1} = A^2 3A$.
- 5. 设 a 为实数, $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 3 & 0 \\ 2a 1 & 3 3a & a \end{pmatrix}$, $\beta = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 则线性方程组 $AX = \beta$ 的 通解为 $\begin{pmatrix} 1 \\ \frac{2}{3} \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ \frac{1}{3} \\ -1 \end{pmatrix}$ 或 $\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + k \begin{pmatrix} 1 \\ \frac{1}{3} \\ -1 \end{pmatrix}$, 其中 k 为任意实数.
- 6. 设 A 是 n 级方阵,I 为 n 级单位矩阵. 如果 $A^2 = I$, 并且 $A \neq I$, 则 $|A+I| = \underline{0}$.
- 7. 设 F 是数域, $A \in M_{n \times m}(F)$, $B \in M_{m \times n}(F)$, m < n, 则 $|AB| = _____$.

8.
$$\begin{vmatrix} 1 - a_1b_1 & -a_1b_2 & \cdots & -a_1b_n \\ -a_2b_1 & 1 - a_2b_2 & \cdots & -a_2b_n \\ \cdots & \cdots & \cdots & \cdots \\ -a_nb_1 & -a_nb_2 & \cdots & 1 - a_nb_n \end{vmatrix} = \underbrace{1 - \sum_{i=1}^n b_i a_i}_{i=1}.$$

9. 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix}$$
, 则 $A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ -1 & -2 & 1 & 0 \end{pmatrix}$.

三. (15 分) 求向量组 $\alpha_1 = (1,-1,1,5)$, $\alpha_2 = (2,-2,2,10)$, $\alpha_3 = (1,0,2,5)$, $\alpha_4 = (1,3,5,5)$, $\alpha_5 = (2,-3,2,13)$, $\alpha_6 = (0,-1,2,9)$ 的一个极大线性无关组,并将其余向量表为该极大线性无关组的线性组合.

解. 首先, 将 α_1 , α_2 , α_3 , α_4 , α_5 , α_6 转置得矩阵

$$(\alpha_1', \alpha_2', \alpha_3', \alpha_4', \alpha_5', \alpha_6') = \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 0 \\ -1 & -2 & 0 & 3 & -3 & -1 \\ 1 & 2 & 2 & 5 & 2 & 2 \\ 5 & 10 & 5 & 5 & 13 & 9 \end{pmatrix}.$$

其次,对上述矩阵作初等行变换:

$$\left(\begin{array}{cccccccc}
1 & 2 & 1 & 1 & 2 & 0 \\
-1 & -2 & 0 & 3 & -3 & -1 \\
1 & 2 & 2 & 5 & 2 & 2 \\
5 & 10 & 5 & 5 & 13 & 9
\end{array}\right)$$

$$\frac{1 \times r_1 + r_2}{\stackrel{(-1) \times r_1 + r_3}{(-5) \times r_1 + r_4}} \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 4 & -1 & -1 \\ 0 & 0 & 1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 3 & 9 \end{pmatrix} \xrightarrow{(-1) \times r_2 + r_3} \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 4 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 3 & 9 \end{pmatrix}$$

$$\xrightarrow{(-1)\times r_2+r_1} \begin{pmatrix} 1 & 2 & 0 & -3 & 0 & -8 \\ 0 & 0 & 1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} = (\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6).$$

显然 β_1 , β_3 , β_5 线性无关, 并且

$$\beta_2 = 2\beta_1$$
, $\beta_4 = -3\beta_1 + 4\beta_3$, $\beta_6 = -8\beta_1 + 2\beta_3 + 3\beta_5$.

因此 $\alpha_1, \alpha_3, \alpha_5$ 线性无关, 并且

$$\alpha_2 = 2\alpha_1, \ \alpha_4 = -3\alpha_1 + 4\alpha_3, \ \alpha_6 = -8\alpha_1 + 2\alpha_3 + 3\alpha_5.$$

四. $(15 \, \mathbf{h})$ 讨论 a, b 为何值时实数域上的线性方程组

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 3x_4 = 1 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-1)x_3 - 2x_4 = 2b \\ 3x_1 + 2x_2 + x_3 + (a+2)x_4 = -1 \end{cases}$$

- 1. 无解并说明理由;
- 2. 有唯一解并求其解:
- 3. 有无穷多解并求其通解.

$$\mathbf{\widetilde{A}} = \begin{pmatrix} 1 & 2 & 3 & 3 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 1 & -2 & 2b \\ 3 & 2 & 1 & a + 2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 3 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 1 & -2 & 2b \\ 0 & -4 & -8 & a - 7 & -4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 3 & 3 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a + 1 & 0 & 2b + 1 \\ 0 & 0 & 0 & a + 1 & 0 \end{pmatrix}$$

1. a = -1 且 $b \neq -\frac{1}{2}$ 时, 方程组的系数矩阵和增广矩阵的秩不同, 所以方程组无解.

2.
$$a \neq -1$$
 时, 方程组有唯一解: $x_1 = \frac{2b-a}{a+1}, x_2 = \frac{a-4b-1}{a+1}, x_3 = \frac{2b+1}{a+1}, x_4 = 0.$

其一般解为:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + k_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, 其中 k_1, k_2 是任意$$
 实数.

第三页(共六页)

五. $(10 \, \mathbf{f})$ 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 是数域 F 上一组线性无关的 n 维向量, 令

$$\beta_i = \alpha_i + \alpha_{i+1}, \quad 1 \leqslant i \leqslant m,$$

其中 $\alpha_{m+1} = \alpha_1$. 如果 m 是奇数, 证明向量组 $\beta_1, \beta_2, \dots, \beta_m$ 线性无关.

证. 设 $k_1, \dots, k_m \in F$ 使得

$$k_1\beta_1 + \dots + k_m\beta_m = 0,$$

则有

$$(k_m + k_1)\alpha_1 + (k_1 + k_2)\alpha_2 + \dots + (k_{m-1} + k_m)\alpha_m = 0.$$

由于 $\alpha_1, \dots, \alpha_m$ 线性无关, 故

$$\begin{cases} k_m + k_1 = 0 \\ k_1 + k_2 = 0 \\ \dots \\ k_{m-1} + k_m = 0, \end{cases}$$

其系数矩阵的行列式为

$$\begin{vmatrix} 1 & 0 & \cdots & 1 \\ 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & 1 \end{vmatrix} = 1 + (-1)^{1+m}.$$

因为 m 为奇数, 所以上述行列式不等于零, 从而 $k_1 = k_2 = \cdots = k_m = 0$. 故 $\beta_1, \beta_2, \cdots, \beta_m$ 线性无关.

六. $(10 \ \textbf{分})$ 设 F 是数域, $A \in M_{n \times m}(F)$ 且 $\mathrm{rank}(A) = r \geqslant 1$, 则 A 的任意 r 个线性无关的行向量与 r 个线性无关的列向量交叉处元素构成的 r 级子式非零.

证. 不妨设 A 的前 r 行和 r 列线性无关, $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,其中 A_1 是 r 级方阵. 由 A

的秩等于 A 的列秩知, A 的后 n-r 列可由 A 的前 r 列线性表出, 从而 A_2 的列可由 A_1 的列线性表出, 所以分块矩阵 (A_1,A_2) 的列秩等于 A_1 的列秩. 因此

$$rank(A_1) = A_1$$
 的列秩 = (A_1, A_2) 的列秩 = (A_1, A_2) 的行秩 = r .

故 $|A_1| \neq 0$.

七. $(10 \ \mathcal{G})$ 设 $A \in M_{n \times (n+1)}(\mathbb{R})$, 证明: 矩阵方程 $AX = I_n$ 有解当且仅当 $\operatorname{rank}(A) = n$. 证. 方法一. 必要性. 由 $n = \operatorname{rank}I_n = \operatorname{rank}(AX) \leqslant \operatorname{rank}A \leqslant n$ 知, $\operatorname{rank}A = n$.

充分性. 由 rankA = n 知存在 $P \in GL_{n+1}(\mathbb{R})$ 使得 $A = (I_n, 0)P$. 令 $B = P^{-1}\begin{pmatrix} I_n \\ 0 \end{pmatrix}$, 则 $AB = I_n$, 从而矩阵方程 $AX = I_n$ 有解.

方法二. 更一般地, 矩阵方程 AX = B 有解当且仅当 $\operatorname{rank} A = \operatorname{rank}(A, B)$. 事实上, 矩阵 方程 AX = B 有解 $\iff B$ 的列向量组可由 A 的列向量组线性表出 $\iff (A, B)$ 的列向量组与 A 的列向量组等价 $\iff \operatorname{rank}(A, B) = \operatorname{rank}(A)$.

因此 $AX = I_n$ 有解当且仅当 $rank A = rank(A, I_n) = n$.

方法三. 由矩阵乘法的定义知矩阵 $X \in (n+1) \times n$ 矩阵, 令

$$X = (x_{ij})_{(n+1)\times n} = (X_1, X_2, \dots, X_n), A = (\alpha_1, \alpha_2, \dots, \alpha_{n+1}), I_n = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n), \mathbb{N}$$

$$AX = I_n$$
 有解 $\Leftrightarrow AX_j = \varepsilon_j$ 有解, $j = 1, 2, ..., n$,
 $\Leftrightarrow x_{1j}\alpha_1 + x_{2j}\alpha_2 + \cdots + x_{n+1,j}\alpha_{n+1} = \varepsilon_j$, $j = 1, 2, ..., n$,
 $\Leftrightarrow \varepsilon_j$ 可由向量组 $\alpha_1, \alpha_2, ..., \alpha_{n+1}$ 线性表示, $j = 1, 2, ..., n$,
 \Leftrightarrow 向量组 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 可由向量组 $\alpha_1, \alpha_2, ..., \alpha_{n+1}$ 线性表示
 \Leftrightarrow 向量组 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 与 $\alpha_1, \alpha_2, ..., \alpha_{n+1}$ 等价
 \Leftrightarrow rank $(A) = \text{rank}\{\alpha_1, \alpha_2, ..., \alpha_{n+1}\} = \text{rank}\{\varepsilon_1, \varepsilon_2, ..., \varepsilon_n\} = n$.

八. $(10 \ \textbf{分})$ 设 n 级方阵 A 满足 $\operatorname{rank}(A^2) = \operatorname{rank}(A) = r \geqslant 1$, 证明: 存在 n 级可逆矩阵 T 使得 $T^{-1}AT = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$, 其中 $B \not \in r$ 级可逆矩阵.

证. 由于 $\operatorname{rank}(A) = r$, 故存在 P, Q 可逆使得 $A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q$. 由条件可得

$$\operatorname{rank}\left(P\left(\begin{array}{cc}I_r & 0\\0 & 0\end{array}\right)QP\left(\begin{array}{cc}I_r & 0\\0 & 0\end{array}\right)Q\right)=r.$$

则有
$$\operatorname{rank}(B) = r$$
, 即 B 是可逆的. 从而有 $A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q = P \begin{pmatrix} B & C \\ 0 & 0 \end{pmatrix} P^{-1}$. 注

意到
$$\begin{pmatrix} B & C \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_r & -B^{-1}C \\ 0 & I_{n-r} \end{pmatrix} \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_r & B^{-1}C \\ 0 & I_{n-r} \end{pmatrix}$$
 \Rightarrow $S = \begin{pmatrix} I_r & -B^{-1}C \\ 0 & I_{n-r} \end{pmatrix}$

得
$$A = PS \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} S^{-1}P^{-1}$$
. 取 $T = PS$ 即可.