Module 9

Implementing failover clustering with Windows Server 2016 Hyper-V

Module Overview

- Overview of the integration of Hyper-V Server 2016 with failover clustering
- Implementing Hyper-V VMs on failover clusters
- Key features for VMs in a clustered environment

Lesson 1: Overview of the integration of Hyper-V Server 2016 with failover clustering

- Options for making application and services highly available
- How does a failover cluster work with Hyper-V nodes?
- Failover clustering with Windows Server 2016
 Hyper-V features
- Best practices for implementing high availability in a virtual environment

Options for making application and services highly available

High availability options	Description
Host clustering	 VMs are highly available
	 Does not require VM operating system or application to be cluster- aware
Guest clustering	 VM are failover cluster nodes
	 VM applications must be cluster- aware
	 Requires iSCSI or virtual Fibre Channel interface for shared storage connections
NLB	 VM are NLB cluster nodes
	 Use for web-based applications

How does a failover cluster work with Hyper-V nodes?

Failover clustering with Windows Server 2016 Hyper-V features

Failover clustering with Windows 2016 Hyper-V features:

- Maximum nodes and VM support
 - Up to 64 nodes and 8,000 VMs per cluster
 - 1024 VMs per node
- File share storage:
 - Windows Server 2012 introduced the possibility of storing VMs on <u>SMB file shares in a file server cluster.</u>
 - To enable this feature, <u>deploy a file server cluster role</u> and <u>select</u> <u>Scale-Out File Server for application data.</u>
 - .vhdx (Windows 2012 R2 and Windows 2016 only)
 - .vhds (Windows Server 2016 only)

Failover clustering with Windows Server 2016 Hyper-V features

Failover clustering with Windows 2016 Hyper-V features:

- Shared virtual disk
 - Windows Server 2012 R2 introduced the ability to use a <u>.vhdx as a shared virtual disk for guest clusters</u>.
 - Windows Server 2016 introduced improved features to the shared disks and introduced a new disk format, whoses/whose
- Rolling Hyper-V cluster upgrades
 - In Windows Server 2016, you can upgrade the nodes <u>one at a time</u> when upgrading from Windows Server 2012 R2. After upgrading all nodes in a Hyper-V cluster, you can upgrade the functional level of the entire cluster.
- VM configuration version
 - You can now manually update the VM configuration version.

Best practices for implementing high availability in a virtual environment

Best practices for implementing high availability in a virtual environment:

- Plan for failover scenarios
- Plan the network design for failover clustering
- Plan the shared storage for failover clustering
- Use the default failover cluster quorum mode
- Deploy standardized Hyper-V hosts
- Develop standard management practices

Lesson 2: Implementing Hyper-V VMs on failover clusters

- Components of Hyper-V clusters
- Prerequisites for implementing Hyper-V failover clusters
- Implementing Hyper-V VMs on a failover cluster
- Configuring CSVs
- Configuring a shared virtual hard disk
- Implementing Scale-Out File Servers for VMs
- Considerations for implementing Hyper-V clusters
- Maintaining and monitoring VMs in clusters
- Demonstration: Implementing failover clustering with Hyper-V

Components of Hyper-V clusters

Hyper-V cluster components include:

- Cluster nodes
- Cluster networks
- Virtual networks
- Storage for VMs
- VMs

Prerequisites for implementing Hyper-V failover clusters

- Hardware requirements for cluster nodes and storage include:
 - Server hardware
 - Network adapters
 - Storage adapters
 - Storage
- Software recommendations for cluster nodes include:
 - Running Windows Server 2016 Standard, Datacenter, or Hyper-V Server 2016 editions
 - Require the same software updates and service packs
 - Must be either a full installation or a Server Core installation
- Network infrastructure requirements include:
 - Network settings and IP addresses
 - Private networks
 - DNS
 - Domain role
 - Account for administering the cluster

Implementing Hyper-V VMs on a failover cluster

To implement a Hyper-V VM on a failover cluster:

- 1. Install and configure Windows Server 2016
- 2. Configure shared storage
- Install the Hyper-V and Failover Clustering features
- 4. Validate the cluster configuration
- 5. Create the cluster
- 6. Create a VM on one of the cluster nodes
- 7. Make the VM highly available (for an existing VM)
- 8. Test the VM failover

Configuring CSVs

- CSVs in a Windows 2016 failover cluster <u>allow multiple nodes in the</u> <u>cluster to have read-write access simultaneously to the same disk</u> that you provision as an NTFS volume, and Windows 2016 failover cluster adds them as storage to the cluster.
- When you use CSVs, clustered roles can fail over from one node to another more quickly, and without requiring a change in drive ownership or dismounting and remounting a volume.
- Windows Server 2016 does not restrict CSVs to specific clustered workloads, but it only supports them for <u>Hyper-V clusters and Scale-Out File Server clusters</u>.
- When you implement a CSV, all added storage displays in the \ClusterStorage folder.
 - The \ClusterStorage folder is created on the cluster node's system folder, and you cannot move it.
 - This means that all Hyper-V hosts that are members of the cluster must use the same drive letter as their system drive, or VM failovers fail.

Configuring CSVs

- CSV benefits:
 - Fewer LUNs required
 - Better use of disk space
 - Virtual machine files are in a single logical location
 - No special hardware required
 - Increased resiliency
- To implement CSV:
 - 1. Create and format volumes on shared storage
 - 2. Add the disks to failover cluster storage
 - 3. Add the storage to the CSV

Configuring a shared virtual hard disk

- Failover cluster runs inside VMs: Guest Clustering
 - It is possible to share a virtual hard disk (in .vhdx or .vhds format only)
 between two or more VMs, and then use that virtual hard disk <u>as a shared</u>
 storage when building guest clusters. You can use the shared virtual hard
 disk <u>as a witness disk</u> or <u>as a data disk</u> in a cluster
- Shared virtual disk used as a shared storage:
 - VMs do not need access to iSCSI or failover clustering SAN
 - Presented as a virtual serial-attached SCSI disk
 - Can be used only for data
- Requirements for shared virtual hard disk:
 - Must be in .vhdx or .vhds format
 - Connected by using virtual SCSI adapter
 - Stored on a Scale-Out File Server or CSV
- Windows Server 2012 or later is the supported operating system in

Implementing Scale-Out File Servers for VMs

- In Windows Server 2016, you can store VM files on a SMB 3.0 file share
- File servers need to run Windows 2012 or later
- A file server cluster needs to be configured as a <u>Scale-Out</u>
 File Server for application data
 - An ordinary file server cluster serves the clients only by using one node at a time.
 - However, a Scale-Out File Server can engage <u>all nodes simultaneously</u>.
 - A Scale-Out File Server provides continuously available storage <u>for file-based server applications.</u>
 - It is now possible to store resources such as <u>databases or VM hard</u> <u>disks</u> on the folder shares hosted on the Scale-Out File Server.
- Use Hyper-V Manager to create or move VM files to a SMB file share

Implementing Scale-Out File Servers for VMs

- The key benefits of using a Scale-Out File Server are:
 - Active-active clustering
 - When all other failover clusters work in an active-passive mode, a Scale-Out File Server cluster works in a way that all nodes can accept and serve SMB client requests.
 - Increased bandwidth
 - Because of the active-active mode in the Scale-Out File Server cluster, you can have much higher bandwidth, which you can additionally increase by adding cluster nodes.

Implementing Scale-Out File Servers for VMs

- The key benefits of using a Scale-Out File Server are:
 - CSV Cache
 - Because the Scale-Out File Server clusters <u>use CSVs</u>, they also benefit from the use of the CSV Cache.
 - The CSV Cache is a feature that you can use to allocate system memory (RAM) as a writethrough cache.
 - The CSV Cache provides caching of read-only unbuffered I/O. This can improve performance for applications such as Hyper-V, which conducts unbuffered I/O when accessing a .vhd file.
 - With Windows Server 2012, you can allocate <u>up to 20 percent of the total</u> <u>physical RAM for CSV write-through cache</u>, and <u>80 percent with Windows</u> Server 2012 R2 and Windows Server 2016.
 - The total physical RAM that a CSV write-through cache consumes is from nonpaged pool memory.

Considerations for implementing Hyper-V clusters

- Identify the following recommended failover clustering requirements:
 - Applications that require high availability
 - Application components that must be highly available
 - Application characteristics
 - Total capacity requirements
- Windows Server 2016 Hyper-V Live Migration considerations:
 - Verify basic requirements
 - Configure a dedicated network adapter or virtual network adapter
 - Use similar host hardware
 - Verify network configuration

Maintaining and monitoring VMs in clusters

In Windows Server 2016 failover clustering, you can implement the following technologies for VM maintenance and monitoring:

- Service and VM health monitoring
- Network health detection (Windows Server 2012 R2 and later only)
- Virtual machine drain on shutdown (Windows Server 2012 R2 and later only)

Demonstration: Implementing failover clustering with Hyper-V

In this demonstration, you will see how to:

- Move VM storage to the iSCSI target
- Configure the VM as highly available

Lesson 3: Key features for VMs in a clustered environment

- Overview of Network Health Protection
- Overview of actions taken on VMs when a host shuts down
- Overview of drain on shutdown
- Demonstration: Configure drain on shutdown

Overview of Network Health Protection

- Introduced in Windows Server 2012 R2 and available in Windows Server 2016
- Cluster resource checks availability of VM resources
- Network Health Protection controlled individually on each virtual network adapter

Overview of actions taken on VMs when a host shuts down

Automatic Stop Action options:

- Save the virtual machine state
- Turn off the virtual machine
- Shutdown the guest operating system

Overview of drain on shutdown

- A failover cluster node placed in a paused state uses live migration on VMs, removing downtime
- At shutdown a failover cluster node prior to Windows Server 2012 R2 uses quick migration, creating some downtime
- At shutdown a failover cluster node after Windows Server 2012 R2 uses live migration, removing downtime

Demonstration: Configure drain on shutdown

In this demonstration you will see how to:

- Live migrate a VM
- Configure drain on shutdown