BD Aspects Systèmes

Licence 3 ISTV – UPHF

Marie Thilliez

marie.thilliez@uphf.fr

Clé Moodle: BDSYS2019

Organisation du module

Clé moodle : BDSYS2019

- Volume horaire :
 - 9h de cours
 - 12h de TD
 - 9h de TP

Sommaire

- 1. Introduction et rappels
- 2. Gestion interne d'une base de données
- 3. Optimisation de requêtes
- 4. Fiabilité des données
- 5. BD Actives

Introduction et rappels

Au sommaire

- Rappel des principes de base
- Les modèles de SGBD
- Le modèle relationnel et l'algèbre
- Conception

Plan

- Définitions
- Nécessité des SGBDs
- Objectifs des SGBDs
- Notions de Base

Qu'est ce qu'une Base de Données (BD) ?

- collection d'informations stockée de manière plus ou moins permanente dans un système informatique.
- Exemple :
 - les données décrivant l'activité d'une compagnie aérienne:
 - voyageurs, vols, avions, personnel, ...
 - réservations (un voyageur réserve pour un vol)

Qu'est ce qu'un SGBD?

- SGBD = Système de Gestion de Bases de Données
- un logiciel qui permet à une ou à plusieurs personnes :
 - de manipuler
 - de modifier les données d'une BD.
 - D' interroger d'une BD
 - De mettre à jour une BD

Pourquoi un SGBD est il nécessaire ?

- Evolution du mode de développement des applications!
 - Jadis applications developpées indépendamment...
 - multiplication des taches (saisie,développment,) des supports
 - Incohérence possibles des données
 - Non portabilité des traitements
 - Dépendance à l'environnement
 - tout changement matériel ou logiciel a un impact sur les applications
 - Dépendance aux données
 - tout changement de la structure des données nécessite de modifier les programmes

Pourquoi un SGBD est il nécessaire (2)?

- ...vers un mode de développement des applications fédérant les données (données similaires et échangées)
- Pourquoi?
 - Les applications ne sont pas disjointes
 - Exemple :
 - comptabilité clients
 - comptabilité fournisseurs
 - gestion de stocks,...
 - Informations partagées
 - Clients, Articles, Fournisseurs et Personnels

Pourquoi un SGBD est il nécessaire (3)?

- Solution : l'approche globale d'un Système d'Information
 - Description des données indépendante des traitements
 - Maintenance de la cohérence de données
 - Langage non procédural, interactif et structurel

Objectifs initiaux des SGBDs

- Objectifs Initiaux
 - Administration cohérente des données
 - Indépendance physique des données
 - Indépendance logique des données
 - Contrôle de la redondance de données
 - Manipulation des données par des non-informaticiens

Objectif 1 : Administration cohérente des données

- Etablissement d'une vue canonique des informations manipulées par l'entreprise
- Développement incrémental d'un modèle cohérent du système considéré
- Possibilité de modélisations particulières incluant des données privées
- Possibilité de concevoir des traitements nouveaux ou plus complexes (statistiques, aide à la décision, ...)

Objectif 2 : Indépendance physique des données

- Objectif : la structure canonique des données doit être indépendant des structures de stockage en informatique.
 - Description logique / conceptuelle
 - Objets (données élémentaires) et classification d'objets
 - entité et association
 - règles de contrôle de données
 - Description internes de données
 - fichiers séquentiels, fichiers indexés (ex : B-Tree), fichiers hachés
- Résultats
 - Portabilité des applications
 - Indépendance au matériel

Objectif 3: Indépendance logique des données

- Chaque application ou groupe d'applications désire utiliser ses propres descriptions conceptuelles de données en fonction de ses propres besoins.
- Chaque application établit une description des données quelle utilise :
 - les données écrites restent virtuelles
 - le SGBD se charge de leur faire correspondre des données réelles
- Exemple : Description conceptuelle intégrée
 - Véhicule(<u>Immat</u>, marque, type, couleur)
 - Personne(<u>NumP</u>, nom, prénom)
 - Propriété(<u>#Immat, #NumP, date-achat</u>)
 - Application 1: Personne(NumP, nom, Immat)
 - Application 2: Voiture(Immat, marque, date-vente)

Objectif 3: Indépendance logique des données(suite)

Résultats :

- Possibilité pour chaque application d'ignorer les besoins des autres applications tout en partageant la même BD
- Possibilité d'intégrer des applications déjà écrites
- Possibilité d'évolution de la BD sans réécriture des applications non concernées
- Possibilité de limiter les conséquences du partage : données confidentielles

Objectif 4 : Contrôle de la redondance de données

- La redondance est contrôlée par le système pour ses propres besoins
 - fiabilité
 - répartition géographique
 - performances en consultation

Résultats

- Diminution de tâches de saisie
- Maintien de la cohérence des données partagées par plusieurs applications

Objectif 5 : Manipulation des données par des non-informaticiens

- Les non-informaticiens doivent pouvoir manipuler les données à partir de la seule connaissance du monde réel et de la modélisation qui en est faite.
- Langage descriptif proche du langage naturel.
- cependant, intégration possible de ce langage dans des langages de programmation plus généraux

Autres objectifs des SGBDs

- Conséquences : Nouvelles fonctions
 - optimisation de l'accès aux données
 - contrôle de l'intégrité sémantique des données
 - partage simultanée des données
 - sécurité des données
 - sûreté des données

Nouvelles fonctionnalités

- Fonction 1 : Optimisation de l'accès aux données
 - gestion unique centralisée des chemins d'accès aux données par le SGBD
 - optimisation automatique des demandes d'accès des utilisateurs
 - économie de l'astuce des programmeurs et des spécialistes des fichiers, en sachant que l'astuce se chiffre en milliers heures d'écriture de logiciel.

Nouvelles fonctionnalités(2)

- Fonction 2 : Contrôle de l'intégrité sémantique des données
 - Contrôle sur les données élémentaire
 - contrôle de type
 - NOM = alphabétique
 - SALAIRE X tel que 1200 < X < 12000
 - Contrôle sur les relations entre les données
 - un électeur doit être inscrit sur une seule liste électoral
 - un vin bu par un buveur doit exister
 - prix de vente > prix d'achat

Nouvelles Fonctionnalités (3)

- Fonction 3 : Partage simultané des données (contrôle de la concurrence des accès)
 - les différentes applications qui partagent les mêmes données, veulent pouvoir s'ignorer et travailler simultanément

Nouvelles Fonctionnalités (4)

- Fonction 4 : Sécurité des données (confidentialité des données)
 - règles de partage des données
 - garantir la confidentialité de certaines informations
 - protection contre le vol et la corruption des données
 - Exemple
 - Compte Bancaire, Dossier médical, Procédé de fabrication

Nouvelles Fonctionnalités (5)

- Fonction 5 : Sûreté des données (résistance aux pannes)
 - intégrité des données en cas de panne
 - plan de sauvegarde
 - gestion de la redondance physique
 - Après une panne ou après l'abandon d'un traitement en cours, le SGBD doit rétablir les données dans un état cohérent et défini.

Quelques Notions de Base

- Type d' Objets
 - ensemble des objets qui possèdent des caractéristiques similaires et manipulables par des opérations identiques.
 - entier = { 0, 1, 2, ..., 1000 }, vehicule = (immat, marque, type, couleur)
- Occurrence d'objets
 - Elément d'un ensemble d'objets
 - l'entier 486, le vehicule (AL 450 AB, Renault, Clio, Gris)
- Schéma d'une BD
 - Structure d'une BD
 - ensemble des types des objets de la base
 - Etudiant (<u>NumEtud</u>, nom, ville), Module(<u>NumMod</u>, titre), Inscription(<u>#NumEtud</u>, <u>#NumMod</u>, <u>dateInscription</u>)
- Instance de BD
 - occurrences d'objets appartenant aux types du schéma
 - 172 BDSYS 2019, 175 BDOR 2019

Pour l'administration

- Groupe de personnes responsables
 - de la définition des schémas des règles de correspondance
- Administrateur Entreprise
 - schéma conceptuel et règles de contrôle des données
- Administrateur Bases de Données
 - schéma interne et règles de correspondance conceptuel à interne
- Administrateur Application
 - schéma externe et règles de correspondance externe à conceptuel

Vues

Vue canonique des données

 le schéma global fournit une modélisation globale des données (schéma conceptuel)

Vue externe des données

 une application particulière n'a qu'une vue partielle de la réalité correspondante (schémas externes)

Vue interne des données

le schéma de stockage physique des données

Règles de correspondance

 règles de transformation des données correspondant à un niveau de schéma, en données conformes à un autre niveau.

la MétaBase = Dictionnaire des Données

- la base contient
 - les données
 - occurrences de types
 - les méta-données
 - schémas
 - règles de correspondance & règles de contrôle

Langages d'un SGBD

- LDD : Langage de Description de Données
 - description du schéma et des règles

```
create table etudiant(
NumEtud number,
Nom varchar2(20),
Ville varchar2(15),
Primary key (NumEtud)
);
create table inscription (
NumEtud
           number,
Filiere varchar2(15),
Annee number,
Primary key (NumEtud, Filiere, Annee),
Foreign key (NumEtud) references Etudiant
```


Langages d'un SGBD

- LMD : Langage de Manipulation de Données
 - interrogation et mise à jour de la BD

```
select nom
from etudiant,inscription
where
Etudiant.NumEtud = inscription.NumEtud
and annee = 2017;
```

- LCD : Langage de Contrôle de Données
 - Autorisation d'accès
 - Grant, revoke

Les différents types de bases de données

- Les bases de données objet
- Les bases de données XML (DB XML)
- Les bases de données NoSQL (Cassandra, MongoDB etc.)
- Le modèle relationnel (ou objet-relationnel)

Théorême CAP

- Aucun système distribué ne peut fournir les 3 propriétés suivantes :
 - Consistency (ou cohérence)
 - Availibility (ou disponibilité)
 - Partition tolerance (résistance au partitionnement)

CAP (brewer): quel choix?

- Système distribué :
 - A+P
 - C+P

- SGBD relationnel :
 - C+P
 - Propriété ACID au détriment des performances
- BD noSQL : souvent A+P

Le modèle relationnel

Notions de base

- Domaine
- Relation
- Attribut
- Clé
- Schéma d'une relation (intention vs Table : extension)
- Clé étrangère (intégrité référentielle)

- Algèbre relationnelle
- Normalisation relationnelle

Algèbre relationnelle

- Opérateurs Relationnels
 - Opérateurs de Base
 - Union
 - Différence
 - Projection ∏
 - Restriction σ
 - Produit Cartésien ×
 - Opérateurs Additionnels
 - Intersection
 - Jointure
 - Produit ÷
- Toute requête est exprimée grâce à la composition d'opérateurs relationnels

Exemple 1 de requête

Exemple de Base :

Buveurs(<u>NB</u>, Nom, Prénom, Ville) Abus(#<u>NV</u>, #<u>NB</u>, Quantité, <u>Date</u>) Vins(<u>NV</u>, Cru, Millésime, Région, Couleur)

Exemple 1:

"Donner le cru des vins rouges de millésime 2007"

- 1. Temp = $\sigma(\text{Vins / Couleur="Rouge"} \land \text{Mill=2007})$
- 2. $R = \Pi(\text{Temp/Vins.Cru})$

OU

R = Π (σ (Vins / Couleur="Rouge" \wedge Mill=2007) /Vins.Cru)

Exemple 2 de requête

 "Donner les noms et prénoms des buveurs parisiens buvant du Mâcon 2007 en quantité supérieure à 10"

```
    R = Π(
    σ( Buveurs / Ville='Paris'),
σ( Abus / Qte>10) /
Buveurs.NB = Abus.NB),
σ( Vins / Cru="Mâcon" ∧ Mill=2007),
Abus.NV = Vins.NV) /
Buveurs.Nom, Buveurs.Prénom)
```

Autres exemples

• "Supprimer les vins blancs"

Vins = Vins - σ (Vins / Vins.Couleur=BLANC)

"Insérer un vin rouge de Jurançon 2009 avec le numéro 105"

Vins = Vins \cup { (105,"Jurançon",2009,ROUGE) }

- Introduction et rappels
- Disques et organisation
- Optimisation de requêtes

