Self-Organizing Maps and Tandem Repeats

And also a benchmark counting alternative

Adam English
Baylor College of Medicine
1/24/2023

Self-Organizing Map

SOM is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher dimensional data set while preserving the topological structure of the data. - Wikipedia

Resulting SOM

SOM with Tandem Repeats

- Built a SOM with Kmer Featurization of sequence spanned by TRregions
 - k=3
 - o n features = 64
 - Frequency normalized
- Hyperparameters:
 - 25x25
 - o sigma=1.5
 - learning_rate=1,
 - topology='hexagonal',
 - neighborhood_function='gaussian',
 - activation_distance='euclidean'
- Map Patho, Codis, and 100 randomly sampled 'interspersed' TRregions

Patho Clustering

Cluster A

Num TRs Motif
6 CTG
1 CNG
1 CTA,CTG

1 ACCTCGCTGTGCCGCTGCCG

Cluster B

Num TRs Motif

11 CGG

9 CNG

9 CCG

1 CCCCGG

1 AGCGGCGCGG

1 CGCGGGGCGGGG

Cluster C

Num TRs Motif 4 TGAAA

Cluster D

Num TRs Motif
4 TTTTA

- 54 of 65 Pathogenic TRs clustered
- Interspersed TRs are concentrated

Mapping the 1,784,803* v1.0 TRregions to their neurons.

Making a 'straw man' benchmark

- Subset to regions with filtered variants from pVCF:
 - Set genotypes of sites without single coverage per-haplotype to missing
 - Remove variants with MISSINGNESS >= 10%
 - Variant must be contained entirely within TRregion boundaries.
 - Variant must be at least 5bp long
- 1,784,804 Regions reduce to 301,262 (16.9%) with filtered variants
- Additional region filters

```
\Rightarrow >= 90% annotated \Rightarrow 225,825 (12.7%)
```

- \circ Up and Dn buff >= 10bp \rightarrow 172,771 (9.7%)
- \circ Subregions <= 2 \rightarrow 166,588 (9.3%)
- No interspersed repeat 'contamination' → 161,794 (9.1%)

Identifying Outliers

Of the regions with variants, are their neurons less represented in the straw man benchmark? (bottom 5%)

Bench Result

	TRGT	HipSTR	GangSTR
TP-base	55,454	41,230	27,845
TP-comp	55,595	41,732	27,834
FP	23,627	4,857	2,561
FN	24,990	39,214	52,599
precision	0.702	0.896	0.916
recall	0.689	0.513	0.346
f1	0.696	0.652	0.502
base cnt	80,444	80,444	80,444
comp cnt	79,222	46,589	30,395

Refine Result

	TRGT	HipSTR	GangSTR	
TP-base	81,325	43,542	28,146	
TP-comp	81,785	44,057	28,137	
FP	5,992	2,256	2,282	
FN	3,600	18,434	7,313	
precision	0.932	0.951	0.925	
recall	0.958	0.703	0.794	
f1	0.944	0.808	0.854	
base cnt	84,925	61,976	35,459	
comp cnt	87,777	46,313	30,419	

Refine - Bench Difference	

Refine - Bench Difference				
	TRGT	HipSTR	GangSTR	
Precision	0.23	0.06	0.01	
Recall	0.27	0.19	0.45	
F1	0.25	0.16	0.35	

Alternative Benchmark Counting

- 'truvari phab' can (does) alter the base/comp variant counts.
- `truvari refine` (optionally) subsets `--includebed` to tool's `--regions`
- This makes comparing performance between tools a little iffy.
- Instead, let's measure performance on a per-region basis (refine.regions.txt)

```
false_pos = (data['out_fp'] != 0)
false_neg = (data['out_fn'] != 0)
any_false = false_pos | false_neg

true_positives = (data['out_tp'] != 0) & (data['out_tpbase'] != 0) & ~any_false

true_negatives = (data[['out_tpbase', 'out_tp', 'out_fn', 'out_fp']] == 0).all(axis=1)

condP = (data['out_tpbase'] != 0) | (data['out_fn'] != 0)
testP = (data['out_tp'] != 0) | (data['out_fp'] != 0)
```

Performance - Variants vs Regions

Variant Sumr	mary					
	precision	recall		-	-	f1
TRGT	0.932	0.958		-	-	0.944
HipSTR	0.951	0.703		-	-	0.808
GangSTR	0.925	0.794		_		0.854
Region Sumi	mary					
	PPV	TPR	TNR	NPV	ACC	F1
TRGT	0.905	0.934	0.965	0.984	0.953	0.919
HipSTR	0.931	0.746	0.980	0.872	0.890	0.828
GangSTR	0.891	0.811	0.980	0.925	0.913	0.849

Disjointed Regions

TR callers typically define their own sets of reference regions to evaluate. These regions may not intersect with our benchmark regions.

Upset Plot of Beds' Intersection

Regions investigated by a tool but not in the benchmark are ignored by `--includebed`

Regions included in benchmark but not investigated by a tool create False Negatives (Lower Recall)

Performance of regions analyzed by all tools

Summary of 59,577 Shared Regions

	<u> </u>		- 3
	TRGT	HipSTR	GangSTR
TP	22,636	20,742	20,452
TN	35,067	35,335	35,135
FP	1,165	699	1,385
FN	796	2,878	3,134
base P	23,766	23,792	23,796
base N	35,811	35,785	35,781
comp P	24,002	21,607	22,231
comp N	35,575	37,970	37,346
PPV	0.943	0.960	0.920
TPR	0.952	0.872	0.859
TNR	0.979	0.987	0.982
NPV	0.986	0.931	0.941
ACC	0.969	0.941	0.933
ВА	0.966	0.930	0.921
F1	0.948	0.914	0.889

- 36.8% of Strawman analyzed by all tools
- Still have counting issues (e.g. P/N)
 - Phab is sometimes resizing variants to < sizemin
 - `refine --use-original`
 - Phab is moving some variants out of their regions?
 - A few msa2vcf are failing
- But these edge cases becoming less frequent
 - 30 regions with baseP difference between TRGT and HipSTR
- Note: These tools are trying to discover different variant types. By comparing their union, we are somewhat biasing to the most 'focused' tool's area.

Next Steps

- Can we build a SOM out of TRregions features?
 - Could help creating/visualizing stratifications
- Strawman works, but we can do better
 - Checking that regions are covered by HPRC HG002 assembly
 - >=5bp != TR expansion/contraction. Work on `truvari anno trf`.
- Closer to cutting a Truvari v4.0 release

Region Summary Definitions

	, , , , , , , , , , , , , , , , , , ,	
Key	Definition	Formula
TP	True Positive region count	
TN	True Negative region count	
FP	False Positive region count	
FN	False Negative region count	
base P	Regions with base variant(s)	
base N	Regions without base variant(s)	
comp P	Regions with comparison variant(s)	
comp N	Regions without comparison variant(s)	
PPV	Positive Predictive Value (a.k.a. precision)	TP / test P
TPR	True Positive Rate (a.k.a. recall)	TP / condition P
TNR	True Negative Rate (a.k.a. specificity)	TN / condition N
NPV	Negative Predictive Value	TN / test N
ACC	Accuracy	(TP + TN) / (condition P + condition N)
ВА	Balanced Accuracy	(TPR + TNR) / 2
F1	f1 score	2 * ((PPV * TPR) / (PPV + TPR))
UND	Regions without an undetermined state	