Final Project-

Guns in 51 US States Analysis

Khushboo Rathore-KXR190005

Shrestha Jha-SXJ180082

Naishal Kanubhai Thakkar-NXT180016

Yanyi Tang-YXT190011

Contents

1.	Objective3
2.	Variable definition3
3.	Summary statistic and distributions4
Su	mmary statistic4
Dis	tributions5
4.	Correlation matrix
Vic	olent crime rate across different years14
Vic	olent crime rate across different states14
5.	Explanatory Variable Expectation
6.	Approach
7.	Models
i.	Checking for Heteroskedasticity:
ii.	Model 1 - Pooled OLS model (without cluster robust errors)19
iii.	Model 2 - Pooled OLS model (with cluster robust errors)
iv.	Model 3 - Fixed Effects Model — Entity Fixed (adjusted for cluster robust errors)
V.	Model 4 - Fixed Effects Model – Entity and Time Fixed .22
vi.	Model 5-Random Effect Model24
vii.	Hausman test for Endogeneity24
8.	Conclusion25
9.	Limitations of analysis25

1. Objective

The main objective of our project is to analyze the data to gain insights about the understanding of how shall-issues laws affect crime rate across 51 states in U.S from 1977 to 1999.

2. Variable Definition

- The total number of observations in our dataset are 1173 which is spread across 51 states within 23 years.
- Violent is the dependent variable which is a quantitative variable and we have 12 independent variables which are- rob, mur, shall, incarc_rate, density, avginc, pop, pm1029, pw1064, pb1064, stateid, year
- There is no missing data and so we can conclude that this is a balanced panel data.

Variable	type	Definit ion
Vio	numerical	violent crime rate (incidents per 100,000 members of the population)
Rob	numerical	robbery rate (incidents per 100,000)
Mur	numerical	murder rate (incidents per 100,000)
Shall	Binary	= 1 if the state has a shall-carry law in effect in that year= 0 otherwise
incarc_rate	numerical	incarceration rate in the state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year)
Density	numerical	population per square mile of land area, divided by 1000
Avginc	numerical	real per capita personal income in the state, in thousands of dollars

Рор	numerical	state population, in millions of people
pm1029	numerical	percent of state population that is male, ages 10 to 29
pw1064	Numerical	percent of state population that is white, ages 10 to 64
pb1064	numerical	percent of state population that is black, ages 10 to 64
Stated	Character	ID number of states (Alabama = 1, Alaska = 2, etc.)
Year	Character	Year (1977-1999)

3. Summary Statistics and Distributions

Summary Statistic-

Variable	Mean	Median	Std	Min	Max
Vio	503.07	439.45	334.28	47.00	2,921.80
rob	161.82	107.45	170.51	6.40	1,635.10
mur	7.67	11.25	7.52	0.20	80.60
incarc_rate	226.58	166.00	178.89	19.00	1,913
density	0.35	0.08	1.36	0.00	11.10
avginc	13.72	9.83	2.56	8.55	23.65
рор	4.82	3.92	5.25	0.40	33.15
pm1029	16.08	17.59	1.73	12.21	22.35
pw1064	62.95	54.90	9.76	21.78	76.53
pb1064	5.34	8.50	4.89	0.25	26.98

Distributions-

Plot of stateid vs violence

(Note: No data for stateid 3, 7, 14, 43, 52)

On plotting sum of violence against each stateid, we find that stateid 11 has the maximum violence compared to all the other states. Also, state with id 38 has the least violence rate.

Plot of Year vs Violence

We can see from the figure above that year 1993 had the highest number of violence cases and year 1977 has the least violent cases.

Plot of Year Vs Murder

On plotting sum of murder against each year, we find that year 1991 had the highest number of murder cases and lowest was in 1999.

Plot for Year Vs Population

On plotting sum of population against year we see that population has increased with every passing year.

4. Correlation Matrix

INFERENCE-

We have plotted a correlation matrix to find the correlation between response variable (Violent Crime Rate) and quantitative explanatory variables if they have a positive or negative or no association. In some case, the increase in some variables can lead to increase in the crime rate leading to a positive correlation, similarly if the crime rate decreases with the rise in some variables then they have a negative correlation. We can come to know which the variables that influence our dependent variable are and how strongly which can help us draw important conclusion. We have found

the following inferences about our variables after studying the correlation matrix.

- Areas that have higher density of population tend to have a higher crime rate.
- Higher the population of black people, higher the crime rate.
- Higher percentage of white populations are more likely to live in areas which tend to have lower population density.
- Higher the population of white people, lower the crime rate.
- When the percentage of number of males increase, crime rate decreases.

-Violent crime rate across different years

-Violent crime rate across different states

5. Explanatory Variables Expectation-

- a. **Rob**: It is natural for the crime rate to increase as the number of robberies increase as robbery is a crime which would be exponentially increasing and hence, we expect "Rob" is positive.
- b. **Mur:** As the number of murders increases, the crime rate would also increase as murder is a crime by itself and hence, we can expect "Mur" to be positive.
- c. **Shall:** This is the variable on which we have an argument claim that if the state allows citizens to carry concealed guns, the violent crime rate would decrease. As there is a negative association between "crime rates" and "shall" we expect "shall" to be negative.
- d. **incarc_rate**: As the new law will be enforced, people will be less likely to involve in criminal activity and so we can expect this variable to be negative.
- e. **Density**: If the population of an area is higher, they are more likely to have a higher criminal rate as there are more chances of criminals as compared to areas with less density of population and so we can expect "Density" to be positive.
- f. **Avginc:** People who have low income area more likely to involve themselves in crime to get some more money, hence "Avginc" can be expected to be a negative as when the income of people in an area is low the crime rate is expected to be higher.
- g. **Pop**: As the population increases, there can be a chance for the crime rate to increase or decrease deepening on the type of people, hence we cannot expect anything about "Pop" variable with much confidence.
- h. **Pm1029:** The "Males" are more likely to be involving in illegal/criminal activities and hence we can expect this variable to be positive.
- i. **Pw1064:** As the percentage of state population (white) goes up, we expect the violence rate to go up. However, the expected signs of variables are debatable.
- j. **Pb1064:** The Blacks are more likely to be involved in illegal/criminal activities and hence we expect this variable to be positive.
- k. **Year:** After observing the trend of crime rate over the span of years we can infer that though a greater number of states have enforced the shall-law with time but the overall crime rate has slightly increased over the

6. Approach

- 1. We conduct explanatory data analysis which is scatterplots, heatmaps, correlation matrix and other statistical and distributions analysis.
- 2. Check for the presence of Heteroskedasticity by plotting the "Residuals vs Fitted" plot.
- 3. Applied the Pooled ordinary least squares on our dataset without cluster robust error.
- 4. Run Pooled ordinary least squares with cluster robust error on our dataset.
- 5. Run the Entity Fixed Effect model with cluster robust error on the dataset.
- 6. Run the Entity and Time Fixed Effect model with cluster robust error on the dataset.
- 7. Run Random effect model on our dataset.
- 8. Use the **Hausman** test to check for the "Endogeneity Problem" in our dataset.
- 9. Compare the outcomes after running each of the models to come to the conclusion of which is the best model for our dataset.

7. Models

Checking for Heteroskedasticity using Residual Plot:

INFERENCE-

- 1. After plotting all the independent variables against the residual values, we found that the variable "population" has heteroskedasticity.
- 2. Therefore, the standard errors of the pooled OLS without robust standard errors are incorrect.
- 3. Since pooled OLS model ignores the panel nature of the data, we cannot trust the results of this model.

Model 1- Pooled OLS model Without Cluster Robust Standard Errors

. reg lvio mu	r rob incarc_	rate pop a	vginc dens	ity pb1	064 pw1064	pm1029	i.shall
Source	SS	df	MS	Num	ber of obs	=	1,173
				- F(1	0, 1162)	=	300.35
Model	352.32434	10	35.232434	4 Pro	b > F	=	0.0000
Residual	136.307219	1,162	.11730397	5 R-s	quared	=	0.7210
				- Adj	R-squared	=	0.7186
Total	488.631558	1,172	.41692112	5 Roo	t MSE	=	.3425
	•						
lvio	Coef.	Std. Err.	t	P> t	[95% Cd	onf. Ir	nterval]
mur	.0034401	.0032353	1.06	0.288	002907	76 .	0097878
rob	.0031608	.0001437	22.00	0.000	.002878	39 .	0034427
incarc_rate	.0012571	.0001126	11.16	0.000	.001036	51	.001478
pop	.0074291	.0024851	2.99	0.003	.002553	34 .	0123049
avginc	0084354	.0063823	-1.32	0.187	020957	74 .	0040867
density	2481097	.015181	-16.34	0.000	277894	49	2183245
pb1064	.0578545	.0133718	4.33	0.000	.031618	39	.08409
pw1064	.0265646	.0067147	3.96	0.000	.013390	. 20	0397389
pm1029	0056762	.0091565	-0.62	0.535	023641	12 .	0122889
1.shall	2779262	.0263605	-10.54	0.000	329645	58	2262066
_cons	3.549915	.4360367	8.14	0.000	2.69440	08 4	1.405422

INFERENCE:

- 1. The coefficient of Shall equals -0.277, which suggests that shall-issue laws reduce the violent crime rate by 28%, for every percent increase in Shall.
- 2. This is a huge decline in the crime rate and the result is highly significant result as well and we can infer this by the P value.
- 3. As expected, all the other variables are positively contributing to crime except pm1029, density, avginc etc. All the variables are statistically significant at 5% significance level except pm1029, avginc and mur
- 4. We will now run a regression with the Robust Cluster Standard error to remove the problem of heteroskedasticity to get accurate standard errors, inefficient, unbiased and consistent but our estimates will still be inefficient

Model 2- Pooled OLS model with Robust Cluster Standard Errors

. reg lvio mu	ır rob i	ncarc_	rate pop	avginc	dens	ity pb1064	pw106	4 pm102	29 i.shall,	vce(cluster	stateid)
Linear regress	sion					Number of	obs	=	1,173		
						F(10, 50)		=	95.32		
						Prob > F		=	0.0000		
						R-squared	l	=	0.7210		
						Root MSE		=	.3425		
			(Std.	Err.	adiusi	ted for 51	clust	ers in	stateid)		
			(204)				- OIUDO				
			Robust								
lvio	C	Coef.	Std. Err	·.	t	P> t	[95%	Conf. 1	[nterval]		
mur	.003	34401	.0120341	L 0	. 29	0.776	0207	312	.0276114		
rob	.003	31608	.0005113	6	.18	0.000	.0021	338	.0041878		
incarc_rate	.001	L2571	.0003247	7 3	. 87	0.000	.0006	048	.0019093		
pop	.007	74291	.0084814	1 0	. 88	0.385	0096	063	.0244646		
avginc	008	34354	.0213671	L -0	.39	0.695	0513	525	.0344818		
density	248	31097	.0746818	3 -3	.32	0.002	3981	125 -	0981069		
pb1064	. 057	78545	.0541324	1 1	. 07	0.290	0508	737	.1665826		
pw1064	.026	55646	.0251827	7 1	. 05	0.297	0240	164	.0771456		
pm1029	005	6762	.0291031	L -0	.20	0.846	0641	314	.0527791		
1.shall	277	79262	.0941361	-2	. 95	0.005	4670	041 -	0888482		
_cons	3.54	19915	1.539068	3 2	.31	0.025	.4586	061	6.641224		

INFERENCE:

- 1. As we can observe there is a significant increase in the standard errors of the Shall variable which have increased to 0.094 from 0. 0264. This is a strong indication for the presence of heteroskedasticity in the data.
- 2. Other variables also show a significant increase in standard errors.
- 3. There can be a problem of endogeneity in our model as there could be some unobserved heterogeneity i.e. omitted variables bias or simultaneous causality bias which got added in the error term and will lead to biased and inconsistent estimators. One such omitted variable could be attitude of people towards gun.
- 4. There is large difference in standard errors of the pooled models with and without using robust standard error. This implies that there may be heteroskedasticity and/or auto-correlation. This can be tested using White-test.
- 5. We will proceed with fixed effects model as that will confirm the existence of endogeneity, however, we show endogeneity using Hausman test as

Model 3- Fixed Effects Model – Entity Fixed (adjusted for cluster robust errors)

ixed-effects	(within) reg	ression		Number o	f obs =	1,173
roup variable	e: stateid			Number o	f groups =	51
l-sq:				Obs per	group:	
within :	= 0.4392				min =	23
between :	= 0.6465				avg =	23.0
overall :	= 0.6240				max =	23
				F(10,50)	=	65.55
corr(u i, Xb)	= 0.3810			Prob > F	=	0.0000
		(Std. E	rr. adju	sted for 5	l clusters	in stateid)
lnvio	Coef.	Robust Std. Err.	t	D> I+1	IDES Conf	. Intervall
111/10	Coel.	Std. Eff.		PS[C]	[95% CONI	. Interval
mur	.0050171	.0016618	3.02	0.004	.0016793	.008355
rob	.0016168	.0005563	2.91	0.005	.0004993	.0027342
incarc_rate	.000118	.0002174	0.54	0.590	0003186	.0005546
pop	.0089291	.0093866	0.95	0.346	0099244	.0277826
avginc	0000537	.0117846	-0.00	0.996	0237238	.0236163
density	0372724	.0988035	-0.38	0.708	235725	.1611803
pb1064	.0752598	.024667	3.05	0.004	.0257147	.1248049
pw1064	.0321464	.0127295	2.53	0.015	.0065784	.0577143
pm1029	0403235	.0195701	-2.06	0.045	0796311	0010159
1.shall	0556272	.0353181	-1.58	0.122	1265657	.0153112
_cons	3.908221	.6842916	5.71	0.000	2.533781	5.282661
	.40730413					
sigma_u						
sigma_u sigma e	.13620755					

INFERENCE-

- The results change when we run the fixed effects model with fixed states.
- The absolute effect of Shall decreases to 5.6% from 27.79% which is a significant drop. The effect of shall issue laws on the violent crime rate is no longer statistically significantly different from zero due to insignificant p values and this makes our estimate not very reliable.

- This can be due to unobserved heterogeneity i.e. omitted variable bias which could have caused to overstate the effect of state in the previous model
- The regression model with fixed effects is more credible because this controls for unobserved heterogeneity that vary between states but that are constant over time.

Model 4- Fixed Effects Model – Entity and Time Fixed

Fixed-effects (within) regression	Number of obs	=	1,173
Group variable: stateid	Number of gro	ups =	51
R-sq:	Obs per group	:	
within = 0.5318		min =	23
between = 0.6406		avg =	23.0
overall = 0.5673		max =	23
	F(32,50)	-	68.28
corr(u i, Xb) = 0.5248	Prob > F	=	0.0000

		Robust				
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mur	0001777	.0020285	-0.09	0.931	004252	.0038965
rob	.0013728	.0004597	2.99	0.004	.0004495	.0022961
incarc_rate	.0002365	.000194	1.22	0.228	0001531	.0006261
pop	0048344	.0106941	-0.45	0.653	0263141	.0166453
avginc	.0042625	.0159587	0.27	0.790	0277916	.0363165
density	0454542	.1043341	-0.44	0.665	2550153	.1641069
pb1064	.0220232	.0444321	0.50	0.622	0672213	.1112677
pw1064	.0116374	.0214253	0.54	0.589	0313966	.0546714
pm1029	.0572108	.0463707	1.23	0.223	0359274	.150349
1.shall	0478819	.0357701	-1.34	0.187	1197282	.0239643
year						
78	.0480007	.0147777	3.25	0.002	.0183188	.0776825
79	.1283473	.0236324	5.43	0.000	.0808802	.1758144
80	.1496631	.0333752	4.48	0.000	.082627	.2166992
81	.1354229	.0378097	3.58	0.001	.05948	.2113658
82	.130421	.0424324	3.07	0.003	.045193	.215649
83	.1136524	.0510845	2.22	0.031	.0110461	.2162587
84	.1565921	.0660406	2.37	0.022	.0239456	.2892386
85	.2016936	.0794325	2.54	0.014	.0421487	.3612385
86	.2641283	.094051	2.81	0.007	.0752212	. 4530353
87	.2699695	.1071642	2.52	0.015	.054724	.4852151
88	.3155064	.1200197	2.63	0.011	.0744396	.5565731
89	.3518629	.1314078	2.68	0.010	.0879226	.6158032
90	. 4233356	.1686763	2.51	0.015	.0845393	.7621318
91	. 4550355	.1757298	2.59	0.013	.1020718	.8079993
92	. 4865985	.1858883	2.62	0.012	.1132309	.859966
93	.506119	.1925554	2.63	0.011	.1193601	.8928779
94	.4962866	.1993631	2.49	0.016	.095854	.8967192
95	.4880726	.2067133	2.36	0.022	.0728768	.9032684
96	. 4456522	.2160079	2.06	0.044	.0117876	.8795167
97	.4412763	.2229722	1.98	0.053	0065766	.8891292
98	.4017626	.2344254	1.71	0.093	0690946	.8726198
99	.3511401	.2445952	1.44	0.157	1401439	.8424241
_cons	3.681353	1.017483	3.62	0.001	1.637679	5.725027
sigma u	.4827741					
sigma_u	.12570543					
rho	.93650627	(fraction	of varia	nce due	to 11 1)	
Ino	. 93030027	(IIaccion	or varian	ice due	υυ u_1,	

INFERENCE-

- The results change slightly when we run the fixed effects model with both states and time fixed as compared to our previous model.
- There is a slight change in the effect of shall-carry law on violence rate further reduced from 5.5% to 4.8% in the entity and time fixed effect model.
- The coefficient is still not significantly different from zero as we can infer this from the P values.

 After running the test to check if the time variables are statistically significant, we can infer that the time variables are significant. Hence we can infer that the time and state fixed model is a better fit than the only state fixed model.

F-Test for significance of time variables

```
. do "C:\Users\AAJ170~1\AppData\Local\Temp\20\STD4f78 000000.tmp"
 . testparm i.year
(1) 78.year = 0
(2) 79.year = 0
(3) 80.year = 0
(4) 81.year = 0
(5) 82.year = 0
(6) 83.year = 0
(7) 84.year = 0
(8) 85.year = 0
(9) 86.year = 0
(10) 87.year = 0
(11) 88.year = 0
(12) 89.year = 0
(13) 90.year = 0
(14) 91.year = 0
(15) 92.year = 0
(16) 93.year = 0
(17) 94.year = 0
(18) 95.year = 0
(19) 96.year = 0
(20) 97.year = 0
(21) 98.year = 0
(22) 99.year = 0
      F(22, 50) = 8.30
          Prob > F = 0.0000
```

INFERENCE-

As we can see that the F stat-value is very high, hence we can infer that time variables are statistically significant and should be kept in our model for better results.

Model 5- Random Effect Model

The dataset used includes data from all the states therefore it is not random data. However, we can prove that random effect model is not appropriate for this data using Hausman Test.

Acres 1vio	mur rob mean	c_race pop a	avgine de	ensity po	1064 pw1064 ;	pm1029 1.8na
Random-effect:	s GLS regressi	ion		Number	of obs =	1,173
Group variable	e: stateid			Number	of groups =	51
l-sq:				Obs per	group:	
within :	= 0.4378				min =	23
between :	= 0.6572				avg =	23.0
overall :	= 0.6373				max =	23
				Wald ch	i2(10) =	973.74
corr(u_i, X)	= 0 (assumed	i)		Prob >	chi2 =	0.0000
lvio	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
mur	.0057858	.0016522	3.50	0.000	.0025475	.0090241
rob	.0016633	.0000968	17.19	0.000	.0014737	.001853
incarc_rate	.0001352	.0000656	2.06	0.039	6.76e-06	.0002637
pop	.0168583	.0055339	3.05	0.002	.006012	.0277046
avginc	001379	.0050625	-0.27	0.785	0113013	.0085434
density	0541179	.0326346	-1.66	0.097	1180806	.0098449
pb1064	.0862816	.011607	7.43	0.000	.0635322	.1090309
pw1064	.0326171	.0043166	7.56	0.000	.0241566	.0410776
pm1029	0378299	.0054399	-6.95	0.000	0484919	0271679
1.shall	0644369	.0160769	-4.01	0.000	0959471	0329268
_cons	3.750413	.3245209	11.56	0.000	3.114364	4.386463
sigma_u	.29737993					
sigma_e	.13620755					
rho	.82659164	(fraction o	of varian	nce due t	o u_i)	

Hausman Test for endogeneity

	(b)	(B)	(b-B)	sqrt(diag(V b-V B))
		random	Difference	S.E.
mur	.0050171	.0057858	0007687	.0005205
rob	.0016168	.0016633	0000466	9.45e-06
ncarc_rate	.000118	.0001352	0000172	.0000506
pop	.0089291	.0168583	0079292	.0050227
avginc	0000537	001379	.0013252	.0013101
density	0372724	0541179	.0168455	.0650716
pb1064	.0752598	.0862816	0110218	.01065
pw1064	.0321464	.0326171	0004707	.0004893
pm1029	0403235	0378299	0024936	.0015072
1.shall	0556272	0644369	.0088097	
				; obtained from xtre
	k = inconsistent	c = consistent	under Ho and Ha	; obtained from xtree
	= inconsistent : difference i	= consistent under Ha, ef n coefficient	under Ho and Ha ficient under Ho s not systematic _B)^(-1)](b-B)	
	= inconsistent : difference i	consistent under Ha, ef n coefficient (b-B)'[(V_b-V_31.14 co	under Ho and Ha ficient under Ho s not systematic _B)^(-1)](b-B) hi2<0 ==> model	; obtained from xtree;
	= inconsistent : difference i	c) = consistent c) under Ha, eff in coefficient (b-B)'[(V_b-V_a)] -31.14 c	under Ho and Ha ficient under Ho s not systematic _B)^(-1)](b-B) h12<0 ==> model ata fails to mee	; obtained from xtree ; fitted on these t the asymptotic
	= inconsistent : difference i) = consistent : under Ha, ef .n coefficient (b-B)'[(V_b-V31.14 cd	under Ho and Ha ficient under Ho s not systematic _B)^(-1)](b-B) hi2<0 ==> model	; obtained from xtree; ; fitted on these at the asymptotic de Hausman test;

We can see from the above table that there are significant differences in coefficient between the fixed effect and random effect models. Therefore, we can conclude that random effect model is not appropriate for this data.

CONCLUSION-

Based on the above analysis, we can conclude that entity and time fixed effect model is the best.

LIMITATION- However, there are some limitations which are:

- Simultaneously causality bias: the variable incarc_rate (incarceration rate) and violence rate effect each other causing bias in the estimate of incarc_rate.
- Inefficient: estimates are computed only using variations within entities.
- Time variant factors: Unobserved heterogeneity which is time variant is not controlled in the fixed effect model. This causes biased results.

8. Conclusion

- There is a large estimated effect of concealed weapons laws in pooled OLS models.
- This effect is however due to omitted variable bias and unobserved characteristics because the effect disappears when state and time effects are added.
- So, the model with both time and state fixed effects is the best model as it is robust to endogeneity.
- We can conclude that there is no significant effect of concealed weapon laws on the violent crime rate. The shall law, when enforced reduces the crime rate nearly by 5%.

9. Limitations of analysis

- Even the FE estimate could have following bias:
 - > It captures only within variation
 - > It captures only variables which are constant
- FE estimator is still biased if the unobserved heterogeneity changing over time, and correlated with the regressors.
- This means that if some variable such as attitude of people towards gun changes over time then it will not be captured here.
- We will need more data to check for that effect but it is really difficult to get such data

THANK YOU