Instructor: Dr.Ing. Sergio A. Abreo C.

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Universidad Industrial de Santander

Sesión 3

Semana: 3

- Sesión 3
 - Simplificación de Funciones
- 2 Consulta
- Agradecimientos
- Referencias

Discusión

• ¿Por qué debemos simplificar las funciones lógicas?

Objetivo

Obtener expresiones en forma POS o SOP que tengan:

- La menor cantidad de términos.
- Cada uno de ellos con el menor número posible de variables.

Objetivo

Formar circuitos que tengan:

- La menor cantidad de compuertas.
- Cada una de ellas con el menor número posible de entradas.

Usando métodos basados en los axiomas

- A + A' = 1
- $A \cdot A = 0$.

Objetivo

Obtener expresiones en forma POS o SOP que tengan:

- La menor cantidad de términos.
- Cada uno de ellos con el menor número posible de variables.

Objetivo

Formar circuitos que tengan:

- La menor cantidad de compuertas.
- Cada una de ellas con el menor número posible de entradas.

Usando métodos basados en los axiomas:

- A + A' = 1
- \bullet A \cdot A = 0.

Definición

Representación gráfica de la tabla de verdad en la cual las celdas en el mapa (correspondientes a los min-términos o Max-términos) están dispuestas de forma tal que entre dos celdas adyacentes solo cambia una de las variables de la función.

Celdas

El número de celdas es igual al número de combinaciones que se pueden obtener con las variables de entrada. n variables = 2^n celdas.

Mapa de Karnaugh.

		A=1		
DE BC	00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26

Mapa de Karnaugh.

Simplificación

- Ubicar en el mapa los min-términos o los Max-términos.
- Identificar las celdas distinguidas.
- Agrupar las celdas adyacentes.
- Formar los implicantes^a:
 - Formar círculos de 2^i celdas siendo $i = 0, 1, 2, 3, \cdots$.
 - Cada círculo representa un implicante.
 - Los círculos más grandes se llaman "implicantes primos".
 - Los implicantes primos producen la mayor simplificación.
 - Implicante primo esencial: Implicante primo que contiene al menos una celda distinguida.
 - Celda distinguida: Celda que solo puede ser cubierta por un implicante primo.

^aProducto de uno o más literales

Escribir la expresión simplificada tomando solo las variables que no cambian en cada implicante primo (IP) o IPE.

Mapa de Karnaugh.

Solución por min-términos

 $F = \overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot B$

celdas distinguidas: 0, 3

$$F = \overline{A} + B$$

Solución por Máx-términos

celdas distinguidas: 2

$$F = (\overline{A} + B)$$

Ejemplo 2

Sesión 3

$$F = \sum_{W,X,Y,Z} (1,3,4,5,9,11,12,13,14,15) = \prod_{W,X,Y,Z} (0,2,6,7,8,10)$$

Solución por min-términos

celdas distinguidas: 3,4,14

$$F = X'Z + XY' + WX$$

Solución por Máx-términos

celdas distinguidas: 0,7,8,10

$$F = (X+Z) \cdot (W+X'+Z)$$

Solución por min-términos

celdas distinguidas: 1,6,11,12

$$F_1 = \overline{A} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C + A \cdot C \cdot D + A \cdot B \cdot \overline{C}$$

A seven-segment display decoder takes a 4-bit data input D3:0 and produces seven outputs to control light-emitting diodes to display a digit from 0 to 9. The seven outputs are often called segments. Write a truth table for the outputs, and use K-maps to find Boolean equations for outputs S_a and S_b . Assume that illegal input values (10 - 15) produce a blank readout.

Sesión 3

Condición don't care

- Pueden existir combinaciones de entradas que nunca se presentan en la práctica.
- Una condición no importa (X) puede tomar un valor de 1 o 0 para ayudar a reducir una expresión lógica.

Implementar un circuito lógico que indique si el resultado obtenido al lanzar dos dados es un número primo.

Sesión 3

Implementar un circuito lógico que indique si el resultado obtenido al lanzar dos dados es un número primo.

A seven-segment display decoder takes a 4-bit data input D3:0 and produces seven outputs to control light-emitting diodes to display a digit from 0 to 9. The seven outputs are often called segments. Write a truth table for the outputs, and use K-maps to find Boolean equations for outputs S_a and S_b . Assume that illegal input values (10 - 15) produce a blank readout. Use illegal input values as don't care for simplification process.

Textos de Referencia.

- [Tocci and Widmer, 2003].
- [Harris and Harris, 2010].

Grupo CPS: Línea Sistemas Digitales.

La información presentada en estas diapositivas intenta recopilar los elementos pedagógicos desarrollados por los profesores Carlos Fajardo y Carlos Angulo en sus cursos de Sistemas Digitales I durante los últimos años de trabajo en esta línea.

Referencias I

Sesión 3

Harris, D. and Harris, S. (2010).

Digital design and computer architecture.

Morgan Kaufmann.

Tocci, R. J. and Widmer, N. S. (2003). Sistemas digitales: principios y aplicaciones.

Pearson Educación.