

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № <u>4</u>

Название: Исследование мультиплексеров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7И - 46Б		Андрич К.	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель			А. Ю. Попов	
		(Подпись, дата)	(И.О. Фамилия)	

Цель работы

Изучение принципов построения, практического применения и экспериментального исследования мультиплексоров

Задания

Вариант 31

- **1.** Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8 1 цифровых сигналов:
 - а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 B и 0 B (общая);
 - б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.
 - в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

 $F = 1001 \ 1010$

- **2.** Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8 1 аналоговых сигналов:
 - а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
 - б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой $500 \text{ к}\Gamma\text{ц}$;
 - в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

В этом примере нет никаких помех из-за настроек. Мы можем увидеть помехи, если изменим напряжение (например, 3,5 В).

3. Исследование ИС ADG408 или ADG508 (рис.6) как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. ФАЛ задается преподавателем из табл. 2.

Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

F = 0 1 2 4 5 6 9 10 13

No	X ₄	X ₃	X ₂	X ₁	f	D _i
0	0	0	0	0	1	$D_0 = 1$
1	0	0	0	1	1	
2	0	0	1	0	1	$\mathbf{D}_1 = \neg \mathbf{x}_1$
3	0	0	1	1	0	
4	0	1	0	0	1	$D_2 = 1$
5	0	1	0	1	1	
6	0	1	1	0	1	$D_3 = \neg x_1$

7	0	1	1	1	0	
8	1	0	0	0	0	$D_4 = X_1$
9	1	0	0	1	1	
10	1	0	1	0	1	$D_5 = \neg x_1$
11	1	0	1	1	0	
12	1	1	0	0	0	$D_6 = x_1$
13	1	1	0	1	1	
14	1	1	1	0	0	$D_7 = 0$
15	1	1	1	1	0	

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4 (рис.2, второй вариант наращивания, см. выше). Исследовать мультиплексора MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 – из табл. 2. Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1. мультиплексора MUX 16-1.

1110 1110 0110 0100

