3.4.2 Динамичко рутирање – протоколи со вектор на растојанија

- **RIP** (Routing Information Protocol) класичен пример за протокол од овој тип
 - Секој рутер е конфигуриран со листа од подмрежи кои се непосредно поврзани на него
 - Рутерот периодично емитува нови информации кон сите соседни рутери, соопштувајќи им за тоа кои подмрежи се достапни преку него
 - Кога еден рутер ќе добие нови информации од некој сосед, ќе ги внесе истите во својата табела
 - Подоцна, истиот рутер емитува информации за мрежите кои тукушто ги научил
 - Овој процес се повторува се' додека сите јазли во мрежата не ги научиле рутите до сите подмрежи
- Недостатоци
 - Загуба на пропусна моќ на мрежата, поради постојаното периодично испраќање на нови информации
 - Потребна е поголема пресметувачка моќ кај рутерите, заради примање и испраќање на новите информации и одржување на рутирачките табели

3.4.2 Динамичко рутирање – протоколи со вектор на растојанија

Update	Subnets known	Hop count
Initial condition	Locally attached subnetworks only	
	10.0.0.x	0
	10.0.1.x	0
	10.0.3.x	0
After update 1	Locally attached plus subnets learned	
from routers 2 and 3	from update	
	10.0.0.x	0
	10.0.1.x	0
	10.0.3.x	0
	10.0.2.x	1 (via 10.0.1.x)
	10.0.4.x	1 (via 10.0.3.x)
After update 2	Locally attached plus subnets learned	
from routers 2 and 3	from update	
	10.0.0.x	0
	10.0.1.x	0
	10.0.3.x	0
	10.0.2.x	1 (via 10.0.1.x)
	10.0.4.x	1 (via 10.0.3.x)
	10.0.2.x	2 (via 10.0.3.x)

 Важно ограничување на RIP протоколот е максималното можно растојание од 15 скокови – секоја подмрежа која е оддалечена 16 или повеќе скокови, се смета за недостапна (unreachable)

3.4.2.1 Пософистицирани протоколи со вектор на растојанија

- RIP е премногу едноставен рутирачки протокол го зема предвид само бројот на скокови (hop count) при определувањето на најповолната патека низ мрежата
- Novell RIP, Cisco IGRP го заменуваат бројот на скокови со "трошок" на секој мрежен линк – трошокот се пресметува во зависност од повеќе фактори: пропусна моќ, време на патување, надежност, итн.

22

3.4.3 Динамичко рутирање – протоколи со следење на состојбата на линковите

- Нова генерација рутирачки протоколи Link State Routing Protocols
- OSPF (Open Shortest Path First) комплексен протокол
 - Во текот на работењето, рутерите разменуваат само HELLO пакети со своите соседи, со цел да ја проверат исправноста на линковите
 - Ваквите пакети се кратки и незначително ја намалуваат пропусната моќ на мрежата
 - Само доколку нема одзив на некој од HELLO повиците, рутерите започнуваат процес на рекалкулација, поради промената во топологијата на мрежата
 - Процесот на рекалкулација е комплексен, за што се потребни моќни процесори и големо количество меморија кај рутерите
 - Реконвергенцијата при појава на пад во мрежата е побрза во споредба со протоколите со вектор на растојанија

3.4.3.1 Скалабилност на протоколите со следење на состојбата на линковите

Времето неопходно за рекалкулација расте во функција од бројот на рутери – проблем за скалабилноста на мрежата

• Решение:

- Мрежата се дели на области (areas) множество рутери (најмногу до 50) кои заедно влегуваат во процес на рекалкулација
- Областите се поврзани со посредство на гранични рутери (boundary routers) кои служат за раздвојување во процесот на рекалкулација
- Граничните рутери ги сумаризираат информациите
 - Ако, на пример, шемата на адресирање е 10.х.у.z, каде што х=број на област, у=подмрежа и z=host, граничниот рутер им соопштува на останатите рутери од `рбетната област дека ја гледа областа 10.х, наместо да им достави листа од сите помрежи 10.х.у

- За една OSPF-базирана мрежа се препорачува бројот на рутери да не надминува 500 (иако лимитот може да се доближи и до 2000 кај добро структуриран хиерархиски дизајн!)
- Но, што ако се потребни многу поголеми мрежи (Internet)?
 - Секоја OSPF-базирана мрежа ('рбет и периферни области) претставува автономен систем
 - OSPF протоколот претставува IGRP (Interior Gateway Routing Protocol)
 - Автономните системи се поврзуваат со примена на EGRP (Exterior Gateway Routing Protocol) кој се извршува барем на еден рутер (Gateway) во секоја OSPF `рбетна област
 - Најшироко применуван EGRP е BGP4 (Border Gateway Protocol), дизајниран за размена само на високо сумаризирани информации за мрежите кои се поврзани на gateway рутерите
 - Се претпоставува дека најголем дел од сообраќајот се одвива внатре, во рамките на автономните системи

3.4.3.2 Автономни системи

