$L(ER) \supseteq L(AF)$

Demostración del teorema de análisis mediante grafos de transición generalizados

- Para *m*≥1 estados finales:
 - 1. Se crea un nuevo estado final *f*.
 - 2. Se añaden transiciones λ a f desde los antiguos estados finales
 - 3. Se quitan de F los antiguos estados finales

- Para $q_0 \in F$:
 - 1. Se crea un nuevo estado inicial q_{new} .
 - 2. Se añade una transición λ desde él a q_0 .
 - 3. Y q_0 deja de ser inicial.

L(ER) = L(AF)

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), demostración

- Se va a demostrar de forma constructiva proporcionando un algoritmo recursivo para la construcción de
 - Un autómata finito no determinista
 - Con sólo un estado final
 - Un estado inicial distinto del final
 - Que acepta el lenguaje de una expresión regular cualquiera r.
- El algoritmo sigue la definición recursiva de las expresiones regulares.
- Para describir el algoritmo se utilizará la siguiente notación.
 - $\forall r \in E_{\Sigma}$, A(r) es el autómata finito no determinista tal que L(A(r))=L(r) (construido, por ejemplo, con el algoritmo que se está especificando)
- Y la siguiente representación gráfica:
 - Ya que el autómata tiene sólo un estado final y un estado inicial distinto de él

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), demostración

- Según los posibles valores de la expresión regular α
 - **1**. Si *r*=Ф

2. Si $r = \lambda$

3. Si $r = a, a \in \Sigma$

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), demostración

4. Si $r = \alpha + \beta$,, α , $\beta \in E_{\Sigma}$ (se supone que q_0 y q_f son dos nombres nuevos de estados)

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), demostración

4. Si $r = \alpha.\beta$, α , $\beta \in E_{\Sigma}$ (se supone que q_0 y q_f son dos nombres nuevos de estados)

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), demostración

5. Si
$$r = \alpha^*, \alpha \in E_{\Sigma}$$

Problema de síntesis de Kleen: $L(ER) \subseteq L(AF)$, observaciones a la demostración

- Informalmente,
 - Resulta claro que en cada uno de los casos el nuevo autómata reconoce el lenguaje deseado.
 - Por otro lado, cualquier expresión regular tiene que construirse necesariamente mediante la aplicación un número finito de veces de alguno de los cinco casos anteriores (por el caso 6 de la definición de expresión regular)
- No se proporcionará una demostración formal detallada de la validez de este resultado.

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

Dada la siguiente expresión regular:

$$(ba^*)^*$$

Puede obtenerse un autómata finito no determinista mediante los siguientes pasos:

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

$$(ba^*)^*$$

- Puede obtenerse un autómata finito no determinista mediante los siguientes pasos:
 - Del autómata para la expresión regular a:

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

$$(ba^*)^*$$

- Puede obtenerse un autómata finito no determinista mediante los siguientes pasos:
 - Del autómata para la expresión regular a, puede obtenerse el de a*.

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

$$(ba^*)^*$$

- Puede obtenerse un autómata finito no determinista mediante los siguientes pasos:
 - Puede añadirse el autómata para la expresión regular b.

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

$$(ba^*)^*$$

- Puede obtenerse un autómata finito no determinista mediante los siguientes pasos:
 - Para obtener el de la expresión ba^* .

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

$$(ba^*)^*$$

- Puede obtenerse un autómata finito no determinista mediante los siguientes pasos:
 - Y finalmente obtener el de la expresión completa.

Problema de síntesis de Kleen: L(ER) ⊆ L(AF), ejemplo 1

Dada la siguiente expresión regular:

$$(ba^*)^*$$

 Ya se han proporcionado algoritmos para obtener el autómata finito determinista equivalente a uno no determinista y para su minimización. Se deja como ejercicio comprobar que el siguiente es el autómata finito determinista mínimo equivalente a la expresión de partida.

Problema de síntesis de Kleen: $L(ER) \subseteq L(AF)$, ejemplo 2

$$(a+bb)^*(ba^*+\lambda)$$

- Para obtener el autómata equivalente se pueden dar los siguientes pasos:
 - Se puede comenzar con el autómata de la expresión a+bb. Obsérvese que, para este, caso no es necesario aplicar todos los pasos del método.

Problema de síntesis de Kleen: $L(ER) \subseteq L(AF)$, ejemplo 2

$$(a+bb)^*(ba^*+\lambda)$$

- Para obtener el autómata equivalente se pueden dar los siguientes pasos:
 - Y con el de la expresión $ba^* + \lambda$.

Problema de síntesis de Kleen: $L(ER) \subseteq L(AF)$, ejemplo 2

$$(a+bb)^*(ba^*+\lambda)$$

- Para obtener el autómata equivalente se pueden dar los siguientes pasos:
 - Aplicar el método para obtener del primero el de la expresión $(a+bb)^*$.

Problema de síntesis de Kleen: $L(ER) \subseteq L(AF)$, ejemplo 2

$$(a+bb)^*(ba^*+\lambda)$$

- Para obtener el autómata equivalente se pueden dar los siguientes pasos:
 - Y terminar con su concatenación.

Problema de síntesis de Kleen: $L(ER) \subseteq L(AF)$, ejemplo 2

Dada la siguiente expresión regular:

$$(a+bb)^*(ba^*+\lambda)$$

 Se deja como ejercicio comprobar que el siguiente autómata finito determinista es el mínimo que reconoce la expresión.

