Name: Ayush Panchal

Roll No : P24DS013

```
In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [4]: df = pd.read_csv(r"dataset\mobile-dataset.csv")
    df.head()

Out[4]: battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores ... px_height px_width ram sc_he
```

Out[4]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	•••	px_height	px_width	ram	sc_h
	0	842	0	2.2	0	1	0	7	0.6	188	2		20	756	2549	9
	1	1021	1	0.5	1	0	1	53	0.7	136	3		905	1988	2631	17
	2	563	1	0.5	1	2	1	41	0.9	145	5		1263	1716	2603	11
	3	615	1	2.5	0	0	0	10	0.8	131	6		1216	1786	2769	16
	4	1821	1	1.2	0	13	1	44	0.6	141	2		1208	1212	1411	8

5 rows × 21 columns

```
→
```

```
In [5]: df.columns
```

Battery Power: Continuous data. This represents the battery capacity, usually in milliampere-hours (mAh).

Blue: Nominal data (binary). This represents whether the mobile has Bluetooth connectivity (0 = No, 1 = Yes).

Clock Speed: Continuous data. This represents the speed of the processor, likely in GHz.

Dual Sim: Nominal data (binary). This indicates whether the phone supports dual SIM cards (0 = No, 1 = Yes).

Front Camera (fc): Continuous data (discrete in the sense of integer values). Represents the resolution of the front camera in megapixels (MP).

4G (four_g): Nominal data (binary). Indicates whether the phone supports 4G connectivity (0 = No, 1 = Yes).

Internal Memory (int_memory): Continuous data (discrete). Represents the internal memory of the mobile in GB.

Mobile Depth (m_dep): Continuous data. Represents the thickness of the phone in cm or mm.

Mobile Weight (mobile_wt): Continuous data. Represents the weight of the phone in grams.

Number of Cores (n_cores): Ordinal data. Represents the number of processor cores (1 to n cores).

Primary Camera (pc): Continuous data (discrete). Represents the resolution of the primary camera in MP.

Pixel Height (px_height): Continuous data (discrete). Represents the height of the phone's display resolution in pixels.

Pixel Width (px_width): Continuous data (discrete). Represents the width of the phone's display resolution in pixels.

RAM: Continuous data. Represents the memory in MB.

Screen Height (sc_h): Continuous data (discrete). Represents the height of the screen in cm.

Screen Width (sc_w): Continuous data (discrete). Represents the width of the screen in cm.

Talk Time: Continuous data. Represents the battery talk time in hours.

3G (three_g): Nominal data (binary). Indicates whether the phone supports 3G connectivity (0 = No, 1 = Yes).

Touchscreen: Nominal data (binary). Indicates whether the phone has a touchscreen (0 = No, 1 = Yes).

WiFi: Nominal data (binary). Indicates whether the phone supports WiFi (0 = No, 1 = Yes).

Price Range: Ordinal data. Represents the price range of the phone (likely encoded, such as 0 = low, 1 = medium, 2 = high, etc.).

```
In [6]: df.dtypes
Out[6]: battery power
                            int64
         blue
                            int64
         clock speed
                          float64
         dual sim
                            int64
         fc
                            int64
         four g
                            int64
         int memory
                            int64
         m dep
                          float64
         mobile wt
                            int64
                            int64
         n cores
                            int64
         рс
         px height
                            int64
         px width
                            int64
                            int64
         ram
         sc h
                            int64
                            int64
         SC W
         talk time
                            int64
         three_g
                            int64
                            int64
         touch screen
         wifi
                            int64
         price range
                            int64
         dtype: object
In [16]: # Univariate Analysis
         # Price Range Distribution
         price range counts = df['price range'].value counts()
         print("Price Range Distribution:")
         print(price range counts)
         # RAM Distribution (Basic Statistics)
         ram stats = df['ram'].describe()
         print("\nRAM Statistics:")
         print(ram_stats)
         # Battery Power Distribution (Basic Statistics)
```

```
battery power stats = df['battery power'].describe()
         print("\nBattery Power Statistics:")
         print(battery power stats)
        Price Range Distribution:
        price range
             500
        2
             500
             500
        3
             500
        Name: count, dtype: int64
        RAM Statistics:
                 2000.000000
        count
        mean
                 2124.213000
        std
                 1084.732044
        min
                 256.000000
        25%
                 1207.500000
        50%
                 2146.500000
        75%
                 3064.500000
                 3998.000000
        max
        Name: ram, dtype: float64
        Battery Power Statistics:
        count
                 2000.000000
                 1238.518500
        mean
                 439.418206
        std
        min
                  501.000000
        25%
                  851.750000
        50%
                 1226.000000
                 1615.250000
        75%
                 1998.000000
        max
        Name: battery_power, dtype: float64
In [17]: # Multivariate Analysis
         # RAM vs. Price Range
         ram_price_range = df.groupby('price_range')['ram'].describe()
         print("\nRAM Statistics by Price Range:")
         print(ram_price_range)
```

```
# Battery Power vs. Talk Time (Correlation)
         battery talk correlation = df[['battery power', 'talk time']].corr().iloc[0, 1]
         print("\nCorrelation between Battery Power and Talk Time:")
         print(f"Correlation Coefficient: {battery talk correlation:.2f}")
         # Screen Dimensions vs. Price Range (Mean values)
         screen stats by price = df.groupby('price range')[['sc w', 'sc h']].mean()
         print("\nAverage Screen Width and Height by Price Range:")
         print(screen stats by price)
        RAM Statistics by Price Range:
                                            std
                                                             25%
                                                                     50%
                                                                              75% \
                     count
                               mean
                                                    min
        price range
        0
                     500.0 785.314 362.755397
                                                          488.75
                                                                   719.5 1037.00
                                                  256.0
        1
                    500.0 1679.490 465.850159
                                                  387.0 1354.00 1686.5 2033.75
        2
                     500.0 2582.816 496.211735 1185.0 2292.75 2577.0 2927.00
        3
                     500.0 3449.232 393.019923 2259.0 3207.50 3509.5 3764.75
                       max
        price range
                    1974.0
        1
                     2811.0
        2
                     3916.0
        3
                     3998.0
        Correlation between Battery Power and Talk Time:
        Correlation Coefficient: 0.05
        Average Screen Width and Height by Price Range:
                     SC_W
                             sc h
        price range
        0
                     5.682 12.324
        1
                    5.544 12.212
        2
                    5.714 12.010
        3
                    6.128 12.680
In [21]: # Statistical Analysis
         # Variance, Standard Deviation, Range, etc.
         stats = df.describe().T[['mean', 'std', 'min', 'max']]
         stats['range'] = stats['max'] - stats['min']
```

```
stats['variance'] = stats['std'] ** 2
print("\nStatistical Summary:")
print(stats)

# Correlation Matrix
correlation_matrix = df.corr()
print("\nCorrelation Matrix:")
correlation_matrix
```

Statistical Summary:

5 44 4 5 4 5 4						
	mean	std	min	max	range	variance
battery_power	1238.51850	439.418206	501.0	1998.0	1497.0	1.930884e+05
blue	0.49500	0.500100	0.0	1.0	1.0	2.501001e-01
clock_speed	1.52225	0.816004	0.5	3.0	2.5	6.658629e-01
dual_sim	0.50950	0.500035	0.0	1.0	1.0	2.500348e-01
fc	4.30950	4.341444	0.0	19.0	19.0	1.884813e+01
four_g	0.52150	0.499662	0.0	1.0	1.0	2.496626e-01
int_memory	32.04650	18.145715	2.0	64.0	62.0	3.292670e+02
m_dep	0.50175	0.288416	0.1	1.0	0.9	8.318353e-02
mobile_wt	140.24900	35.399655	80.0	200.0	120.0	1.253136e+03
n_cores	4.52050	2.287837	1.0	8.0	7.0	5.234197e+00
рс	9.91650	6.064315	0.0	20.0	20.0	3.677592e+01
px_height	645.10800	443.780811	0.0	1960.0	1960.0	1.969414e+05
px_width	1251.51550	432.199447	500.0	1998.0	1498.0	1.867964e+05
ram	2124.21300	1084.732044	256.0	3998.0	3742.0	1.176644e+06
sc_h	12.30650	4.213245	5.0	19.0	14.0	1.775143e+01
SC_W	5.76700	4.356398	0.0	18.0	18.0	1.897820e+01
talk_time	11.01100	5.463955	2.0	20.0	18.0	2.985481e+01
three_g	0.76150	0.426273	0.0	1.0	1.0	1.817086e-01
touch_screen	0.50300	0.500116	0.0	1.0	1.0	2.501161e-01
wifi	0.50700	0.500076	0.0	1.0	1.0	2.500760e-01
price_range	1.50000	1.118314	0.0	3.0	3.0	1.250625e+00

Correlation Matrix:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	
battery_power	1.000000	0.011252	0.011482	-0.041847	0.033334	0.015665	-0.004004	0.034085	0.001844	-0.029727	
blue	0.011252	1.000000	0.021419	0.035198	0.003593	0.013443	0.041177	0.004049	-0.008605	0.036161	
clock_speed	0.011482	0.021419	1.000000	-0.001315	-0.000434	-0.043073	0.006545	-0.014364	0.012350	-0.005724	
dual_sim	-0.041847	0.035198	-0.001315	1.000000	-0.029123	0.003187	-0.015679	-0.022142	-0.008979	-0.024658	
fc	0.033334	0.003593	-0.000434	-0.029123	1.000000	-0.016560	-0.029133	-0.001791	0.023618	-0.013356	
four_g	0.015665	0.013443	-0.043073	0.003187	-0.016560	1.000000	0.008690	-0.001823	-0.016537	-0.029706	
int_memory	-0.004004	0.041177	0.006545	-0.015679	-0.029133	0.008690	1.000000	0.006886	-0.034214	-0.028310	
m_dep	0.034085	0.004049	-0.014364	-0.022142	-0.001791	-0.001823	0.006886	1.000000	0.021756	-0.003504	
mobile_wt	0.001844	-0.008605	0.012350	-0.008979	0.023618	-0.016537	-0.034214	0.021756	1.000000	-0.018989	
n_cores	-0.029727	0.036161	-0.005724	-0.024658	-0.013356	-0.029706	-0.028310	-0.003504	-0.018989	1.000000	
рс	0.031441	-0.009952	-0.005245	-0.017143	0.644595	-0.005598	-0.033273	0.026282	0.018844	-0.001193	
px_height	0.014901	-0.006872	-0.014523	-0.020875	-0.009990	-0.019236	0.010441	0.025263	0.000939	-0.006872	
px_width	-0.008402	-0.041533	-0.009476	0.014291	-0.005176	0.007448	-0.008335	0.023566	0.000090	0.024480	
ram	-0.000653	0.026351	0.003443	0.041072	0.015099	0.007313	0.032813	-0.009434	-0.002581	0.004868	
sc_h	-0.029959	-0.002952	-0.029078	-0.011949	-0.011014	0.027166	0.037771	-0.025348	-0.033855	-0.000315	
sc_w	-0.021421	0.000613	-0.007378	-0.016666	-0.012373	0.037005	0.011731	-0.018388	-0.020761	0.025826	
talk_time	0.052510	0.013934	-0.011432	-0.039404	-0.006829	-0.046628	-0.002790	0.017003	0.006209	0.013148	
three_g	0.011522	-0.030236	-0.046433	-0.014008	0.001793	0.584246	-0.009366	-0.012065	0.001551	-0.014733	
touch_screen	-0.010516	0.010061	0.019756	-0.017117	-0.014828	0.016758	-0.026999	-0.002638	-0.014368	0.023774	
wifi	-0.008343	-0.021863	-0.024471	0.022740	0.020085	-0.017620	0.006993	-0.028353	-0.000409	-0.009964	
price_range	0.200723	0.020573	-0.006606	0.017444	0.021998	0.014772	0.044435	0.000853	-0.030302	0.004399	

Out[21]:

In [7]: # Histogram for price_range
plt.figure(figsize=(10, 5))
sns.countplot(x='price_range', data=df)
plt.title('Price Range Distribution')
plt.xlabel('Price Range')
plt.ylabel('Count')
plt.show()

Price Range Distribution


```
In [8]: plt.figure(figsize=(10, 5))
    sns.histplot(df['ram'], bins=30, kde=True)
    plt.title('RAM Distribution')
    plt.xlabel('RAM (MB)')
    plt.ylabel('Frequency')
    plt.show()
```

RAM Distribution


```
In [9]: plt.figure(figsize=(10, 5))
    sns.histplot(df['battery_power'], bins=30, kde=True)
    plt.title('Battery Power Distribution')
    plt.xlabel('Battery Power (mAh)')
```

```
plt.ylabel('Frequency')
plt.show()
```

Battery Power Distribution


```
In [10]: plt.figure(figsize=(10, 5))
    sns.boxplot(x='price_range', y='ram', data=df)
    plt.title('RAM vs. Price Range')
    plt.xlabel('Price Range')
    plt.ylabel('RAM (MB)')
    plt.show()
```

RAM vs. Price Range


```
In [11]: plt.figure(figsize=(10, 5))
    sns.scatterplot(x='battery_power', y='talk_time', data=df)
    plt.title('Battery Power vs. Talk Time')
    plt.xlabel('Battery Power (mAh)')
    plt.ylabel('Talk Time (hours)')
    plt.show()
```

Battery Power vs. Talk Time


```
In [12]: plt.figure(figsize=(10, 5))
    sns.scatterplot(x='sc_w', y='sc_h', hue='price_range', data=df)
    plt.title('Screen Width vs. Screen Height Colored by Price Range')
    plt.xlabel('Screen Width (cm)')
    plt.ylabel('Screen Height (cm)')
    plt.legend(title='Price Range')
    plt.show()
```

Screen Width vs. Screen Height Colored by Price Range


```
In [14]: # Calculate variance, standard deviation, and range for continuous variables
    stats = df.describe().T[['mean', 'std', 'min', 'max']]
    stats['range'] = stats['max'] - stats['min']
    stats['variance'] = stats['std'] ** 2
    print(stats)
```

```
range
                                   std
                                          min
                                                                   variance
                     mean
                                                  max
battery power 1238.51850
                            439.418206
                                        501.0
                                               1998.0
                                                       1497.0 1.930884e+05
blue
                  0.49500
                              0.500100
                                          0.0
                                                  1.0
                                                          1.0 2.501001e-01
clock speed
                  1.52225
                              0.816004
                                          0.5
                                                  3.0
                                                          2.5 6.658629e-01
dual sim
                  0.50950
                              0.500035
                                          0.0
                                                  1.0
                                                          1.0 2.500348e-01
fc
                  4.30950
                              4.341444
                                          0.0
                                                 19.0
                                                         19.0 1.884813e+01
four g
                  0.52150
                              0.499662
                                          0.0
                                                  1.0
                                                          1.0 2.496626e-01
int memory
                 32.04650
                             18.145715
                                          2.0
                                                 64.0
                                                         62.0 3.292670e+02
m dep
                  0.50175
                              0.288416
                                          0.1
                                                  1.0
                                                          0.9 8.318353e-02
                                         80.0
                                                200.0
mobile wt
                140.24900
                             35.399655
                                                        120.0 1.253136e+03
                  4.52050
                              2.287837
                                          1.0
                                                  8.0
                                                          7.0 5.234197e+00
n cores
                              6.064315
рс
                  9.91650
                                          0.0
                                                 20.0
                                                         20.0 3.677592e+01
                                               1960.0
                645.10800
                            443.780811
                                          0.0
                                                       1960.0 1.969414e+05
px height
                                               1998.0
px width
                            432.199447
                                        500.0
                                                       1498.0 1.867964e+05
               1251.51550
               2124.21300
                           1084.732044
                                        256.0
                                               3998.0
                                                       3742.0 1.176644e+06
ram
sc h
                                                         14.0 1.775143e+01
                 12.30650
                              4.213245
                                          5.0
                                                 19.0
SC W
                  5.76700
                              4.356398
                                          0.0
                                                 18.0
                                                         18.0 1.897820e+01
talk time
                 11.01100
                              5.463955
                                          2.0
                                                 20.0
                                                         18.0 2.985481e+01
three g
                  0.76150
                              0.426273
                                          0.0
                                                  1.0
                                                          1.0 1.817086e-01
                              0.500116
                                          0.0
                                                          1.0 2.501161e-01
touch screen
                  0.50300
                                                  1.0
wifi
                  0.50700
                              0.500076
                                          0.0
                                                  1.0
                                                          1.0 2.500760e-01
                                                          3.0 1.250625e+00
price range
                  1.50000
                              1.118314
                                          0.0
                                                  3.0
```

```
In [15]: # Correlation matrix
    correlation = df.corr()
    plt.figure(figsize=(12, 8))
    sns.heatmap(correlation, annot=True, fmt='.2f', cmap='coolwarm')
    plt.title('Correlation Matrix')
    plt.show()
```

Correlation Matrix

