Digital Image Fundamentals

Image Quality

- Objective/ subjective
 - Machine/human beings
 - Mathematical and Probabilistic/ human intuition and perception

Structure of the Human Eye

photoreceptor cells

6~7 million

http://en.wikipedia.org/wiki/Blind spot (vision)

Human Visual Perception

 Perceived brightness is NOT a simple function of intensity

Human Visual Perception

Optical Illusion

Image Sensing and Acquisition

- Illumination Source
 - EM energy, ultrasound, synthesized, ...
- Scene Element
 - Objects, human organs, buried mineral,...
- Sensing Material
 - Single sensor: photodiode
 - Sensor strips: require extensive processing
 - Sensor arrays: CCD & CMOS

Image Sensing and Acquisition

Single sensor

Sensor Strip

12

Image Sensing and Acquisition

Image Sampling & Quantization

Image Sampling & Quantization

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix} \quad F(j,k) = \begin{bmatrix} F(0,0) & F(0,1) & \cdots & F(0,N-1) \\ F(1,0) & F(1,1) & \cdots & F(1,N-1) \\ \vdots & \vdots & \ddots & \vdots \\ F(M-1,0) & F(M-1,1) & \cdots & F(M-1,N^6-1) \end{bmatrix}$$

Downsampling

- $1024 \times 1024 \rightarrow 32 \times 32$
 - Downsampled by a factor of 2

Re-Sampling

- Zero-Order-Hold Method (ZOH)
 - Row and column duplication

L=256,128,64,32,16,8,4,2

Digital Image Representation

- 8-bit image is commonly used
 - Storage
 - Human perception

32 steps (5 bits) in gray level

64 steps (6 bits) in gray level

Image Enhancement

Goal of Image Enhancement

- make images more appealing
- no theory, ad-hoc rules, derived with insights

Two Approaches

- Contrast Manipulation
- Histogram Modification

Transfer Function

- Linear
- Nonlinear
- Piecewise

Linear scaling and clipping

$$G(j,k) = T[F(j,k)]$$
 $0 \le F(j,k) \le 1$

(b) Original histogram

(a) Original

(b) Original histogram

(c) Transfer function

(d) Contrast stretched

Power-Law

$$G(j,k) = [F(j,k)]^p$$

$$0 \le F(j,k) \le 1$$

(a) Square function

(b) Square output

(c) Cube function

(d) Cube output 26

Power-Law

$$G(j,k) = [F(j,k)]^p \quad 0 \le F(j,k) \le 1$$

square root function

(a) Square root function

(b) Square root output

(c) Cube root function

(d) Cube root output

- Rubber Band Transfer Function
 - Piecewise linear transformation
 - Inflection point (control point)

Logarithmic Point Transformation

$$G(j,k) = \frac{\log_e \{1 + aF(j,k)\}}{\log_e \{2.0\}} \qquad 0 \le F(j,k) \le 1$$

Fourier Spectrum

Useful for scaling image arrays with a very wide dynamic range

Reverse Function

$$G(j,k) = 1 - F(j,k)$$
 $0 \le F(j,k) \le 1$

TEVERS FUNCTION

(b) Reverse function output

Able to see more details in dark areas of an image

Inverse Function

$$G(j,k) = \begin{cases} 1 & 0 \le F(j,k) \le 0.1 \\ \frac{0.1}{F(j,k)} & 0.1 \le F(j,k) \le 1 \end{cases}$$

(c) Inverse function

(d) Inverse function output

Amplitude-Level Slicing (Gray-Level Slicing)

Histogram Modification

Goal

 Rescale the original image so that the histogram of the enhanced image follows some desired form

Histogram Modification

- Histogram Equalization
 - make the output histogram to be uniformly distributed
 - Transfer function
 - Bucket filling

Histogram Equalization

Transfer Function

Probability Mass Function

Histogram Equalization

- Transfer Function
 - Output histogram not really uniformly distributed
 - Still keep the shape
 - More flat than the original histogram

Histogram Equalization

Bucket Filling

arbitrary

F(j,k)	# of pixels	
0	1	
1	2	
2	5	
:	:	
255	3	

uniform

G(j,k)	# of pixels	
0	N/256	
1	N/256	
2	N/256	
	:	
255	N/256	

N: # of total pixels

- Not 1-1 mapping
- Accumulated probability may not end exactly at the boundary of a bin → split it out

Noise Cleaning

Noise

- electrical sensor noise
- photographic grain noise
- channel error
- o etc.

Characteristics of the noise

- discrete
- not spatially correlated
- higher spatial frequency

Noise Cleaning

- Two types of noise
 - Uniform Noise
 - Additive uniform noise, Gaussian noise
 - Impulse Noise
 - Salt and pepper noise

- Solutions
 - Uniform Noise low-pass filtering
 - Impulse Noise → non-linear filtering

Basics of Spatial Filtering

Mask

- filter, kernel, template
- \circ m x n
 - m=2a+1, n=2b+1,where a and b are nonnegative integers
 - e.g. 3x3 mask

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	W(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

Spatial Filtering/Convolution

$$G(j,k) = w(-1,-1)F(j-1,k-1) + w(-1,0)F(j-1,k) + \cdots + w(0,0)F(j,k) + \cdots + w(1,0)F(j+1,k) + w(1,1)F(j+1,k+1)$$

Basics of Spatial Filtering

Image origin

Q: Boundary pixels?

Basics of Spatial Filtering

Boundary Extension (3x3 mask)

43

Q: 5x5 mask?

Noise Cleaning

Uniform noise

Perform low-pass filtering

$$H = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

General form

$$H = \frac{1}{(b+2)^2} \begin{vmatrix} 1 & b & 1 \\ b & b^2 & b \\ 1 & b & 1 \end{vmatrix}$$

$$H = \frac{1}{(b+2)^2} \begin{bmatrix} 1 & b & 1 \\ b & b^2 & b \\ 1 & b & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \end{bmatrix}$$

High Frequency Noise Removal

Low-pass filtering

- Normalized to unit weighting
- Averaging
- Smaller/Larger filter size ?

3x3

7x7

Noise Cleaning

- Impulse noise
 - black: pixel value =0 \rightarrow dead sensor
 - o white: pixel value=255 → saturated sensor

- Solutions
 - Outlier detection
 - Median filtering
 - Pseudo-median filtering (PMED)

Outlier detection

if
$$\left| x - \frac{1}{8} \sum_{i=1}^{8} O_i \right| > \varepsilon$$
 then $x = \frac{1}{8} \sum_{i=1}^{8} O_i$

How to choose \mathcal{E} ? Larger window?

Median filtering

$$a_1, ..., a_N$$
 where N is odd

- sort those values in order
- pick the middle one in the sorted list
- e.g. 3x3 mask:

$$I = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 8 & 7 \\ 1 & 5 & 6 \end{bmatrix}$$

→ Median is 3

- Median filtering
 - Preserve sharp edges
 - Effective in removing impulse noise
 - 1D/2D (directional)
 - e.g. 2D

e.g. 1D (window size = 5)

- Median filtering
 - Fast computation
 - Approximation of median

```
e.g. 5-element filter
a, b, c, d, e
→ MED(a, b, c, d, e)
=max( min(a,b,c) , min(a,b,d), ... )
=min( max(a,b,c) , max(a,b,d), ... )
→ there are 10 possible choices
→ could be narrowed down
```

Pseudomedian filtering (PMED)

```
e.g. 5-element filter

a, b, c, d, e → spatially ordered

MAXMIN = A (under estimated)

= max( min(a,b,c) , min(b,c,d) , min(c,d,e) )

MINMAX = B (over estimated)

= min( max(a,b,c) , max(b,c,d) , max(c,d,e) )

→ PMED(a, b, c, d, e)

= 0.5 * (A + B) = 0.5 * (MAXMIN + MINMAX)

~ MED(a, b, c, d, e)
```

Pseudomedian filtering (PMED)

2D case

2D case
$$PMED = \frac{1}{2} \left(PMED_x + PMED_y \right)$$

$$PMED = \frac{1}{2} \max(MAXMIN(x_c), MAXMIN(y_R))$$
$$+ \frac{1}{2} \min(MINMAX(x_c), MINMAX(y_R))$$

- Pseudomedian filtering (PMED)
 - MAXMIN
 - Remove salt noise
 - O MINMAX
 - Remove pepper noise
 - May cascade two operations
 - Remove salt and pepper noise

Original noisy image

MAXMIN

MINMAX of MAXMIN

MINMAX

MAXMIN of MINMAX

Q: same results?

Quality Measurement

- Peak signal-to-noise ratio (PSNR)
 - Mean squared error (MSE)

$$MSE = \frac{1}{w * h} \sum_{j} \sum_{k} [F(j,k) - F'(j,k)]^{2}$$

The PSNR is defined as

$$PSNR = 10 \times \log_{10} \left(\frac{255^2}{MSE} \right)$$

Example

Original image

Gaussian noise (σ =10) **PSNR: 28.18dB**

Gaussian noise (σ =30) **PSNR: 18.81dB**

Q: Represent perceived visual quality?