Erasmus School of Economics

MOOC Econometrics

Lecture 4.5 on Endogeneity: Application

Dennis Fok

Erasmus University Rotterdam

Ezafus,

Correlation of GPA with participation

Application

Setting:

- Online learning platform
- Grade Point Average (GPA) in MOOC on engineering
- \bullet Impact of preparatory mathematics course
 - \rightarrow participation is voluntary!

Data statistics:

- 1000 learners
- 48.8% male
- 33.7% participated in prep course
- Average GPA 5.94 (on 10 point scale)

Erofus,

Lecture 4.5, Slide 2 of 15, Erasmus School of Economics

Correlation vs. regression

Seems positive impact

- How large?
- Significant?
- Correction for male vs. female?
- \rightarrow Need econometric model!

Ezafus

OLS estimation

Regress GPA on

Constant

Gender: dummy variable (male=1, female=0)

3 Participation: dummy variable (yes=1, no=0)

Dependent variable: GPA

Sample size: 1000

	Coefficient	Standard error	t-statistic
Constant	5.77	0.034	169.87
Gender	-0.21	0.044	-4.82
Participation	0.82	0.047	17.59
R^2	0.24		

Ezafus,

Lecture 4.5, Slide 5 of 15, Erasmus School of Economics

Over- or underestimation by OLS?

If prep course participation is endogenous

- OLS is inconsistent
- OLS does not estimate causal effect of prep course

Test

What omitted factor would lead OLS to <u>over</u>estimate the impact of the preparatory course?

Ezafus,

Discussion of OLS

Should we trust the OLS estimates?

- → No, participation likely endogenous!
- Learners self-select for prep course
- Omitted factors (characteristics of learners) relate to this selection
- Same characteristics may relate to GPA

Ezafus

Lecture 4.5, Slide 6 of 15, Erasmus School of Economics

Over- or underestimation by OLS?

Overestimation

• Omitted factor: Motivation High motivation \rightarrow Get high GPA & Take course

Underestimation

Omitted factor: Mathematics level
High level → Get high GPA & Do not take course

Net effect:

- Difficult to judge
- Depends on importance of effects
- Also depends on other variables (age?)

(Zafus

Consistent estimation

- Use two-stage least squares (2SLS)
- Need instruments!

Test

What variable can you think of that qualifies as instrument for participation?

Leafus

Lecture 4.5, Slide 9 of 15, Erasmus School of Economics

Instruments

Finding instruments

• be creative! ... and lucky

Here

- Learners get email invitation for prep course
- Platform email problem: some did not get email
- Variable

$$\mathsf{Email} = \begin{cases} 0 & \text{if email not received} \\ 1 & \text{if email received} \end{cases}$$

is perfect instrument if

- ▶ Email problem is random
- ► Invitation affects participation

Instruments

Instruments should...

- relate to prep course participation
- not affect GPA

Many learner specific variables, such as

- Intelligence (IQ-score)
- Number of MOOCs followed before
- Age of learner

are likely not valid!

 $\rightarrow \mathsf{All} \; \mathsf{will} \; \mathsf{impact} \; \mathsf{performance} \; \mathsf{directly!}$

Ezafus

Lecture 4.5, Slide 10 of 15, Erasmus School of Economics

First-stage regression

Explain participation using all instruments (constant, gender, email)

Dependent variable: Participation

Sample size: 1000

	Coefficient	Standard error	t-statistic
Constant	0.10	0.023	4.41
Gender	0.05	0.027	1.80
Email	0.41	0.027	<u>15.35</u>
R^2	0.20		

ightarrow Email affects participation significantly

Ezafus,

2SLS estimation

Dependent variable: GPA

Sample size: 1000

Instruments used: Constant, Gender, Email

	Coefficient	Standard error	t-statistic
Constant	5.95	0.048	123.54
Gender	-0.17	0.048	-3.59
Participation	0.24	0.115	2.09
R^2	0.13		

- Prep course still has significant positive impact
- Effect size decreased (from 0.82 (OLS) to 0.24 (2SLS))
- 2SLS increases variance
 - ▶ Only acceptable when Participation is endogenous
 - ▶ Perform Hausman test

Erafus

Lecture 4.5, Slide 13 of 15, Erasmus School of Economics

TRAINING EXERCISE 4.5

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus,

Lecture 4.5, Slide 15 of 15, Erasmus School of Economics

Hausman test (H_0 : Participation is exogenous)

Dependent variable: Residuals from OLS

Sample size: 1000

	Coefficient	Standard error	t-statistic
Constant	0.18	0.044	4.02
Gender	0.04	0.044	0.93
Participation	-0.58	0.105	-5.55
First-stage residuals (v)	0.72	0.117	6.17
R^2	0.0368		

- Test-statistic: $nR^2 = 1000 \times 0.0368 = 36.8$
- Reject H_0 (critical value from $\chi^2(1)$: 3.8)
- Participation is endogenous
- 2SLS is needed

Ezafus

Lecture 4.5, Slide 14 of 15, Erasmus School of Economics