Quantum Annealing for Music Arrangement

Lucas Kirby

4 March 2025

Department of Physics, Durham University

Overview

Theory

Adiabatic quantum computing

Quantum annealing

Motivations

Music arrangement

Method

Results

Conclusions

2025-03-03

Quantum Annealing for Music Arrangement

Overview

y
y
y
sisabatic quantum computing
sisabatic quantum annealing
sistons
sistons
remaining menen
d
d
sussicians

- AQC, more general umbrella term for the technique
- Quantum annealing as a subset of AQC and what that involves
- Music arrangement and why we're looking at this problem
- How the problem is solved, and the following results
- Conclusions and future work

Theory

Theo

Adiabatic quantum computing

Adiabatic principle

A system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough. 1

$$H(t) = \left(1 - \frac{t}{T}\right)H_0 + \frac{t}{T}H_p$$

- Universal and guaranteed
- A system that starts in a ground state, ends in a ground state
- Not possible in practice

Quantum Annealing for Music Arrangement

Theory
Adiabatic quantum computing
Adiabatic quantum computing

Adabatic quantum computing $H_{ij} = \frac{1}{2} \frac{1}{2}$

- Adiabatic principle system remains in the same eigenstate if perturbed slowly enough (without transferring heat)
- \bullet Equation shows evolution from initial Hamiltonian H_0 to final H_p over time T
- Importantly, if the system starts in the ground state, it will end in the ground state
- Impossible in practice as true adiabatic evolution would take infinite time, infinitely many steps

¹Born and Fock. 'Beweis des Adiabatensatzes'

Quantum annealing

- Relaxes the adiabaticity
- Rate of change determined heuristically
- Final state is probabilistic, not deterministic

Distribution of 2000 solution energies for a given problem

Quantum Annealing for Music Arrangement

Theory
Quantum annealing
Quantum annealing
Quantum annealing

- Subset of AQC, relaxes the adiabaticity condition
- Annealing slow heating of a material to change its properties
- Evolution time shortened (order of a few μs)
- End state no longer guaranteed, if started in ground state could end in excited state
- Able to run the evolution many times
- Probabilistic distribution of outcomes, sometimes will get lucky

Advantages

- Find the ground state of complicated Hamiltonians
- Quantum tunneling avoids local minima

 $By\ Brianlechthaler\ -\ Own\ work,\ CC\ BY-SA\ 4.0,\ https://commons.wikimedia.org/w/index.php?curid=112382195$

- Why is this technique useful?
- Allows us to find the ground state of complicated Hamiltonians by starting from an easy one
- Diagram energy against configuration space, simulated annealing (classical) traverses the "energy landscape" whereas quantum annealing tunnels through it
- As opposed to classical methods, does not get affected by local minima
- Technique very good for solving optimisation problems e.g. travelling salesman, with complicated energy landscapes

Ising model

Initial Hamiltonian

$$H_0 = h_0 \sum_{i=1}^N \sigma_i^x$$

Problem Hamiltonian

$$H_p(\sigma^z) = \sum_{i < i}^N J_{ij} \sigma_i^z \sigma_j^z + \sum_{i=1}^N h_i \sigma_i^z$$

Quantum Annealing for Music Arrangement

Theory
Quantum annealing
Ising model

- How can we model the Hamiltonians?
- Ising model, a lattice of variables with two discrete values (+1/-1), acted on by spin operators σ
- Start with initial Hamiltonian, superposition of all possible states, easy to prepare and find the ground state
- Problem Hamiltonian, coupling strengths J_{ij} and field strengths h_i , describe interactions (biases) of the spins
- Want to encode the problem solution into the ground state of this Hamiltonian so that the system will give the solution after evolution

QUBO

Quadratic Unconstrained Binary Optimisation

Vector x of qubits, matrix Q of weights

$$f(x) = \sum_{i < j}^{N} Q_{i,j} x_i x_j + \sum_{i}^{N} Q_{i,i} x_i$$

- Aim to minimise this function
- Difficult to solve analytically
- Mapped to H_p using simple change of variable
- Encodes problem solution into Hamiltonian's ground state

- How to encode a problem into a Hamiltonian?
- Similar form to the Ising model, but with binary variables (0/1)
- Minimisation of this function should be the problem solution
- Set of binary variables x, matrix Q of real weights that describes interactions between variables
- After evolution, can read out the values of x to give solution

Motivations

Motivations

What problems can we solve?

Music arrangement

- Adaptation of previously composed pieces for practical or artistic reasons
- Traditionally difficult and time-consuming
- Reduction can be shown to be computationally complex²

www.freepik.com

Quantum Annealing for Music Arrangement

Motivations

Music arrangement

-Music arrangement

- Adaptation of music in terms of instrumentation, medium, or style
- Traditionally a complex process that requires a deep understanding of musical theory and structure
- Reduction is the rewriting of music for a smaller number of instruments (for example string quartet)
- Very large configuration space, many different combinations of notes that could produce the final arrangement
- For those interested, NP-hard in computational complexity theory, cannot be solved in polynomial time
- NB: all scores shown are own reproductions from public domain files

²Moses and Demaine, 'Computational Complexity of Arranging Music'.

Motivations

- Already exist classical methods of automatic arrangement³
- Quantum annealing used to generate music⁴
- Field of quantum computer music is very new⁵
- Novel adaption of this method to a new problem
- This has never been done before!

Quantum Annealing for Music Arrangement

Motivations

Music arrangement

Motivations

Almady exist classical methods of automatic arrangement¹
Quantum annaling used to generate music¹
Field of quantum computer music is very new²
New Jackpool of this method to a new problem
This has never been done before!

Motivations

- Context of previous work
- Classical methods machine learning, statistical analysis, rule-based systems, iterative and slow
- Applying quantum computing to music in the last five years, still a very young technology with limitations
- Has been used to generate music, not arrange it
- Methods shown here have not been found in the literature

³Huang, Chiu and Shan, 'Towards an automatic music arrangement framework using score reduction'; Nakamura and Yoshii, 'Statistical piano reduction controlling performance difficulty'; Li et al., 'Automatic Piano Reduction of Orchestral Music Based on Musical Entropy'.

⁴Freedline, 'Algorhythms'; Arya et al., 'Music Composition Using Quantum Annealing'.

⁵Miranda, *Quantum Computer Music*.

Method

2025-03-03

Method

Aims

- Arrange a musical score for a smaller ensemble
- All notes are taken from the original score
- Each instrument can only play one note at a time

Joseph Haydn playing in a string quartet, painting from the StaatsMuseum, Vienna

Quantum Annealing for Music Arrangement $\begin{tabular}{l} \end{tabular}$ Method

Arrange a musical score for a smaller ensemble.

All notes are taken from the original score.

Each instrument can only play one mode at a time.

Any other area of the second or a s

└_Aims

03-03

- What are we trying to do? What are the constraints to our problem?
- Take a musical score and reduce it to a smaller ensemble
- All notes must be taken from the original score, no new notes can be added
- Each instrument can only take notes from one part at a time

Method

- 1. Split score into musical phrases
- 2. Arrange phrases into a graph
- 3. Formulate optimisation problem
- 4. Solve problem using QPU
- 5. Construct arrangement from solution

Quantum Annealing for Music Arrangement

Method

Method

Method

1. Split score into musical phrases
2. Arrange phrases into a graph
1. Formulate optimisation problem
4. Solve problem using GPU
5. Construct arrangement from solution

- Formulating arrangement as a problem to be solved via annealing, five-step process
- Split parts into musical phrases
- Arrange phrases into a graph (will explain later)
- Formulate the optimisation problem
- Solve corresponding graph problem using a quantum computer
- Construct final arrangement from the solution returned

1. Split score

- Musical phrases chosen as smallest unit of music
- Preserve melody and structure when rearranged

Local boundary detection model (LBDM)⁶

$$S_i = x_i \times (r_{i-1,i} + r_{i,i+1})$$

 $^{^6}$ Cambouropoulos, 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'.

Quantum Annealing for Music Arrangement —Method

└─1. Split score

- First stage to separate each part of original score into phrases
- Phrases smallest unit of music that preserves melody and structure
- Boundaries between phrases found using LBDM
- Measures the degree of change of a certain parameter (x) between notes (i) (explain equation)
- Strength calculated for both pitch and IOI, weighted and summed to give the final strength
- Strengths above a threshold value are considered phrases

2. Create graph

- Vertices (nodes) connected by edges
- Models pairwise relations between objects

- Nodes phrases
- Edges overlap between phrases

Quantum Annealing for Music Arrangement —Method —2. Create graph

- What is a graph? Nodes connected by edges, useful to model pairwise relations between objects
- Each phrase becomes a node, edges between nodes if phrases overlap (play at the same time)

2. Create graph

Quantum Annealing for Music Arrangement 2025-03-03 -Method

2. Create graph

_2. Create graph

Score on top becomes graph on bottom

3. Create optimisation problem

Proper vertex colourin

Colour each vertex such that no edge connects two vertices of the same colour

$$x_{v,i} = egin{cases} 1 & ext{if vertex } v ext{ is colour } i \ 0 & ext{otherwise} \end{cases}$$

$$f(x) = +A \sum_{v \in V} \left(1 - \sum_{i=1}^{n} x_{v,i} \right)^{2} +B \sum_{(u,v) \in E} \sum_{i=1}^{n} x_{u,i} x_{v,i}$$
$$-C \sum_{v \in V} \sum_{i=1}^{n} W_{v} x_{v,i} -D \sum_{(u,v) \in E} W_{uv} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{u,i} x_{v,j}$$

Quantum Annealing for Music Arrangement —Method

____3. Create optimisation problem

- Use a graph theory problem to create the optimisation problem that matches our constraints
- Here each colour represents an instrument we are arranging for
- QUBO, set of n colours, $x_{v,i}$ is 1 if node v is colour i
- ullet A each node is only coloured once, sum over colours is one
- B penalise adjacent nodes with the same colour
- *C* weight of each node, preference for certain nodes
- D weight of each edge, preference for certain edges
- Weights here are musical entropy i.e. how interesting the phrase is musically

3. Create optimisation problem

Quantum Annealing for Music Arrangement
Corollary
Coroll

3. Create optimisation problem

Quantum Annealing for Music Arrangement
—Method

___3. Create optimisation problem

$$n=1$$

2025-03-03

One of many possible solutions

4. Solve problem

- Problem embedded onto
 D-Wave quantum hardware
- Quantum annealer optimises
 QUBO formulation
- Returns a sampleset of results
- Run many times to find lowest-energy solution

D-Wave Advantage QPU topology. Own work.

Quantum Annealing for Music Arrangement —Method

—4. Solve problem

- D-Wave Systems is a company that gives access to true quantum annealers, normally for business applications
- Interact via a Python SDK, submit problems to the QPU
- Returns a distribution of results, each with an associated energy
- Run the problem thousands of times to find the lowest-energy solutions

03-03

5. Construct arrangement

5. Construct arrangement

└─5. Construct arrangement

- Take chosen low-energy solution and construct the final arrangement
- Map each node back to its phrase, with colour corresponding to the instrument

Results

Quantum Annealing for Music Arrangement
—Results

Results

Score

- Smaller ensemble chosen for problem size
- Well-defined musical structure
- Reduction to three instruments

Quartet No. 1 in Bb major by Joseph Haydn

—Score

03-03

- Quartet No. 1 in Bb major by Joseph Haydn
- Smaller instrumentation and length (about 3 min), keeping the problem graph small and manageable
- Musical style has well-defined structure and phrases

Phrase detection

Quantum Annealing for Music Arrangement Results

- Phrase detection
- Example of the LBDM finding suitable boundaries for phrases
- Threshold value of 0.4 chosen manually
- FIX x-axis labels

QUBO parameter variation

Variation of the edge weight Lagrange parameter B, in multiples of the maximum node weight

—QUBO parameter variation

- Each QUBO problem submitted five times with different edge constraint Lagrange parameter
- Checking against fulfillment of the desired constraint
- Lagrange parameters taken as multipliers of the maximum node weight for normalisation
- ullet 12.0 chosen as the best parameter, with all others equal to one

2025-

Optimisation

Variation of the number of QPU reads, with the lowest-energy solution found

-Optimisation

- Once Lagrange parameters chosen, can check how well the annealer optmises the problem
- In general, more reads is more likely to find lower-energy solutions
- Sometimes the annealer gets lucky (see 2000 reads)
- Each number of reads repeated five times, exponential decay fitted

Example solution

Quantum Annealing for Music Arrangement Results

—Example solution

- Example of a returned solution with low energy
- Nodes grouped by instrument
- Constraints fulfilled, no horizontal lines, each node one colour

03-03

2025-03-03

Conclusions

Quantum Annealing for Music Arrangement
Conclusions

Conclusions

Conclusions

- Successful novel application of quantum annealing
- QPU returns low-energy samples
- Necessary constraints for a valid arrangement fulfilled
- Still very new technology, does not show quantum advantage (yet)

Quantum Annealing for Music Arrangement Conclusions

Conclusions

- Successful application of this method on a new problem
- QPU returns samples that fulfill the constraints of the problem, creating a valid arrangement
- New technology, limited in power
- What would it take for quantum to show advantage?

Future work

- Variation in problem size
- Comparison to classical methods
- Lagrange parameter tuning
- Qualitative judgement of computer arrangements⁷

Quantum Annealing for Music Arrangement —Conclusions

Future work

Variation in problem rise

Compareson to descript methods

Lapsegue parameter using

Qualitative judgement of computer arrangements²

└─Future work

- How well does the method scale with larger scores? How well can it find low energies with smaller problems?
- Compare to classical optimisation methods, time to solution, energy of solutions
- Only tuned one parameter by hand, could use a more systematic approach to find lower-energy solutions
- Quality judgement Turing-like test, present subjects with human-/computer-generated scores

-03 - 03

2025-

⁷Pearce and Wiggins, 'Towards A Framework for the Evaluation of Machine Compositions'.

Quantum Annealing for Music Arrangement —Conclusions

Thank you!

Quantum Annealing for Music Arrangement

Quantum Annealing for Music Arrangement

Lucas Kirby

4 March 2025

Department of Physics, Durham University

LBDM

Boundary strength

$$S_i = x_i \times (r_{i-1,i} + r_{i,i+1})$$
$$r_{i,i+1} = \frac{|x_i - x_{i+1}|}{x_i + x_{i+1}}$$

Normalisation

$$S_i' = \frac{S_i - \min(S_i)}{\max(S_i) - \min(S_i)}$$

Weighting

Timing'.

$$S = rac{1}{3} \left(S'_{
m pitch} + 2 S'_{
m IOI}
ight)$$

Quantum Annealing for Music Arrangement 2025-03-03 ∟LBDM

- Boundaries always taken at beginning/end of piece
- Weightings derived by trial and error

⁸ ⁸Cambouropoulos, 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive

Phrase entropy

 x_i — parameter x of note i

Shannon entropy

$$H(X) \coloneqq -\sum_{i} P(x_i) \log_2 P(x_i)$$

Probability distribution

$$P(x_i) = \frac{n_i}{N}$$

⁹Li et al., 'Automatic Piano Reduction of Orchestral Music Based on Musical Entropy'.

Quantum Annealing for Music Arrangement 2025-03-03

-Phrase entropy

- Shannon entropy units in bits due to log₂
- Distribution calculated for pitch and duration

References i

- Arya, Ashish et al. 'Music Composition Using Quantum Annealing'. In: arXiv (Jan. 2022). DOI: 10.48550/arXiv.2201.10557. (Visited on 26/10/2024).
- Born, M. and V. Fock. 'Beweis des Adiabatensatzes'. de. In:

Zeitschrift für Physik 51.3 (Mar. 1928), pp. 165–180. ISSN: 0044-3328. DOI: 10.1007/BF01343193. URL:

https://doi.org/10.1007/BF01343193 (visited on 01/03/2025).

Cambouropoulos, Emilios. 'The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'. In: International Computer Music Association (2011). ISSN: 2223-3881.

Quantum Annealing for Music Arrangement

References

References i

- R Arya, Ashish et al. "Music Composition Using Quantum Annealing". In: arXiv (Jan. 2022). Dot:
- A8350/arXiv.2203.10557. (Visted on 2b) 10/2024.
 Born, M. and V. Fock. "Beweis des Adiabatensatzes". de. l. Zeitschrift für Physik 51.3 (Mar. 1928), pp. 165–180. ISSN: 0044-3328. DOI: 10.1007/BF023543193. URL:
- https://doi.org/10.1007/8901343193 (wasted on UJ/US/2015) Cambouropoulos, Emilios. The Local Boundary Detection Model (LBDM) and its Application in the Study of Expressive Timing'. In: International Computer Music Associatio (2011). 190N: 2223-3881.

References ii

- Freedline, Alex. 'Algorhythms: Generating Music with **D-Wave's Quantum Annealer'.** en. In: *MIT 6.s089—Intro to* Quantum Computing (Feb. 2021).
- Huang, Jiun-Long, Shih-Chuan Chiu and Man-Kwan Shan. 'Towards an automatic music arrangement framework using score reduction'. In: ACM Trans. Multimedia Comput. Commun. Appl. 8.1 (Feb. 2012), 8:1–8:23. ISSN: 1551-6857. DOI: 10.1145/2071396.2071404. (Visited on 05/12/2024).

Quantum Annealing for Music Arrangement

-References

P Freedline, Alex, 'Algorhythms: Generating Music with D-Wave's Quantum Annealer', en. In: MIT 6::089-Intro

Huang, Jiun-Long, Shih-Chuan Chiu and Man-Kwan Shan.

References II

References iii

- Li, You et al. 'Automatic Piano Reduction of Orchestral Music Based on Musical Entropy'. In: 2019 53rd Annual Conference on Information Sciences and Systems (CISS). Mar. 2019, pp. 1–5. DOI: 10.1109/CISS.2019.8693036. URL: https://ieeexplore.ieee.org/document/8693036 (visited on 27/12/2024).
- Miranda, Eduardo Reck, ed. *Quantum Computer Music: Foundations, Methods and Advanced Concepts.* en.

 Springer International Publishing, 2022. ISBN: 978-3-031-13908-6
 978-3-031-13909-3. DOI: 10.1007/978-3-031-13909-3. (Visited on 28/12/2024).

Quantum Annealing for Music Arrangement

References

References iii

- Li, You et al. 'Automatic Piano Reduction of Orchestral Music Based on Musical Entropy. In: 2019 53rd Annual Confenses on Information Sciences and Systems (CISS). Mar. 201 pp. 1–5. Idol: 10.1109/CISS. 2019.06020056. URL: https://iseexplore.isee.org/document/8602005 (visited on 2019/2019).
- Miranda, Eduardo Reck, ed. Quantum Computer Music: Foundations, Methods and Advanced Concepts. en. Springer International Publishing, 2022. Sunc. 978-3-031-13008-6 978-3-031-13009-3. DOI: 10.1007/978-3-031-13009-3. (Valided o 28/12/2019).

References iv

- Moses, William S. and Erik D. Demaine. 'Computational Complexity of Arranging Music'. In: arXiv (July 2016). arXiv:1607.04220. DOI: 10.48550/arXiv.1607.04220. (Visited on 09/11/2024).
- Nakamura, Eita and Kazuyoshi Yoshii. 'Statistical piano reduction controlling performance difficulty'. en. In: APSIPA Transactions on Signal and Information Processing 7 (Jan. 2018), e13. ISSN: 2048-7703. DOI: 10.1017/ATSIP.2018.18. (Visited on 17/12/2024).
- Pearce, M. and Geraint A. Wiggins. 'Towards A Framework for the Evaluation of Machine Compositions'. In:

 Proceedings of the AISB'01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences. 2001.

Quantum Annealing for Music Arrangement

-References

References iv

- Moses, William S. and Erik D. Demaine. "Computational Complexity of Arranging Music". In: arXiv (July 2016). arXiv:1607.04220. Doi: 10.46350/arXiv.1607.04220. (Vained on
- Nakamura, Eta and Kazuyoshi Yoshii. 'Statistical piano reduction controlling performance difficulty'. en. ln. Al Transactions on Signal and Information Processing 7 (Jan. 2011)
- reduction controlling performance difficulty: en. hr. AFSIPI
 Transactions on Signal and Information Processing 7 (Ian. 2018).
 e13. 1899: 2046-703. 100: 10.1017/ATSIP.2016.18. (Visited on 17/12/2016).
 Parco, M. and Geraint A. Wiggins. "Towards A Framework
 - P. Peace, M. and Geraint A. Wiggins. "Towards A Framework for the Evaluation of Machine Compositions". In: Proceedings of the AISS'01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences. 2001.