中国科学技术大学2021年春 《复分析》期末考试试卷

2021年7月17日

姓名:				系别:				学号:			
题号	1	2	3	4	5	6	7	8	9	10	总分
得分						1.1					

- -(5f) 写出亚纯函数 $\frac{\sin z}{z^2}$ 在z=0附近的洛朗展开式.
- 二(5分)写出将单位圆盘共形等价映射到单位圆盘的所有分式线性变换.
- 三 (5分) 已知整函数f(z)满足对任意 $z \in \mathbb{C}$, |f(z) 2| > 1, 证明f(z)为常值 函数.

四 (20分) 用留数定理计算如下积分:

(1)
$$\int_{|z|=\frac{3}{2}} \frac{dz}{\sin(\pi z)};$$
 (2)
$$\int_0^\infty \frac{\cos(t)}{t^2 + 2021^2} dt.$$

五(10分)计算方程 $z^8 - 4z^5 + z^2 - 1 = 0$ 在圆环1 < |z| < 2中的根的个数 并说明理由.

六 (10分) 构造上半圆盘{z ∈ C : |z| < 1, Im z > 0}到上半平面的共形等价 映射.

七 (10分) 设f(z)在单位圆盘D上全纯,在 \overline{D} 上连续,且在 ∂D 上|f(z)| = 1. 求证f(z)为一有理函数.

八(10分)设D为上半平面,<math>F是满足如下性质的函数族.

$$\mathcal{F} = \{f: D \to \mathbb{C} \mid f$$
全纯, $|f(z)| < 2021$, $f(i) = 0\}$.

求 $\sup\{|f(2i)|: f \in \mathcal{F}\}.$

九 (10分) 记 $E_p(z)=(1-z)\exp(\sum_{k=1}^p\frac{z^k}{k}), p\geq 1$. 考虑如下问题: 1. (2分) 证明: $\forall p\geq 1, E_p(z)$ 为整函数;

- 2.(3分) 给出 $E_p(z)$ 在复平面上的全部零点并说明理由;

3. (5分) 证明:
$$\forall p \geq 1$$
, 若 $|z| \leq 1$, 则 $|1 - E_p(z)| \leq |z|^{p+1}$. 十 (15分) 记 $D = \{s \in \mathbb{C} \mid \text{Re } s > 1\}$. 考虑函数项级数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$.

- 1. (2分)证明对任意 $s \in D$,上述级数收敛.
- 2. (5分) 定义 $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$ $s\in D.$ 证明 $\zeta(s)$ 为D上的全纯函数.
- 3. (5分) 我们知道,复平面上的亚纯函数cot(πz)的部分分式展开为

$$\cot(\pi z) = \frac{1}{\pi z} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{z+n} \right).$$

试用此部分分式展开证明,亚纯函数 $\cot(\pi z)$ 在z=0附近的洛朗展开式为

$$\cot(\pi z) = \frac{1}{\pi z} - \frac{2}{\pi} \sum_{k=1}^{\infty} \zeta(2k) z^{2k-1}.$$

4. (3分) 用上述洛朗展开式计算ζ(2)的值.