70 Meroudi

Polynômes orthogonaux

18 mars 2017

1 Généralités

1.1

Soient I un intervalle de $\mathbb R$ d'intérieur non vide, w une application continue de I dans $]0, +\infty[$ telle que, pour tout $n \in \mathbb N, t \mapsto t^n w(t)$ soit intégrable. On munit alors $E = \mathbb R[X]$ du produit scalaire défini par $< P|Q> = \int_I P(t)Q(t)w(t)dt$. a) Montrer qu'il existe une suite (P_n) de polynômes de $\mathbb R[X]$ telle que :

 $\forall n \in \mathbb{N}, \deg(P_n) = n \text{ et } \forall (m, n) \in \mathbb{N}^2, n \neq m \Rightarrow \int_{\mathbb{T}} P_n(t) P_m(t) w(t) dt = 0.$

- b) Montrer que, si Q_n est une autre suite de polynômes vérifiant la propriété ci-dessus, il existe une suite $(\lambda_n) \in \mathbf{R}^{\mathbf{N}}$ telle que $P_n = \lambda_n Q n$.
- c) Prouver que chaque polynôme ${\cal P}_n$ possède n racines distinctes dans l'intérieur de I.
- d) Prouver qu'il existe des suites réelles a_n , b_n , c_n telles que, pour tout entier $n \ge 1$,

$$P_{n+1} = (a_n x + b_n) P_n - c_n P_{n-1}.$$

e) Exemple de polynôme de Legendre 1.2 Formule de Gauss, application

On suppose désormais que I est un segment [a, b], et que $\langle P_n, P_n \rangle = 1$ pour tout n.

a) Montrer que, pour toute fonction $f \in C([a, b], \mathbb{R})$,

$$\int_{a}^{b} f^{2}(t)w(t)dt = \sum_{n=0}^{+\infty} \langle f, P_{n} \rangle^{2}.$$

- b) On fixe $n \in \mathbb{N}^*$ et l'on note x_1, \ldots, x_n les zéros de P_n .
- i) Montrer qu'il existe des scalaires $\lambda_1, \ldots, \lambda_n$ tels que, pour tout polynôme $Q \in R_{2n-1}[X]$, on ait

$$\int_{a}^{b} Q(t)w(t)dt = \sum_{i=1}^{n} \lambda_{i}Q(x_{i}).$$

- ii) Montrer que les λ_i sont strictement positifs.
- c)) Soit A la réunion des zéros de tous les polynômes P_m . Montrer que A est dense dans I.

2 Polynômes d'Hermite

On se place dans le cas où $I = \mathbf{R}$ et $f(t) = e^{-t^2/2}$, a) Montrer que la suite $P_n(t) = (-1)^n e^{t^2/2} (e^{-t^2/2})^{(n)}$ vérifie les conditions de 1-a) et calculer les normes des P_n .

- b) Soit $x \in \mathbb{R}$. Montrer que la fonction $u \to e^{ux-u^2/2}$ possède sur \mathbb{R} un développement en série entière de la forme $\sum H_n(x) \frac{u^n}{n!}$ où H_n est un polynôme de degré n dont on précisera les coefficients.
- c) Comparer H_n et P_n . Préciser la relation de récurrence déteminée en 1)-d). Comparer H'_{n+1} et H_n .
- d) Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un unique polynôme $S \in \mathbb{R}_n[X]$ tel que, pour tout $P \in \mathbb{R}_n[X]$, $\int_{-\infty}^{+\infty} P(x)S(x)e^{-x^2/2}dx = P(0)$.
- e) (**) Déterminer, parmi les polynômes de degé $\leq n$ vérifiant $\int_{-\infty}^{+\infty} P^2(x)e^{-x^2/2}dx = 1$, ceux qui maximisent |P(0)|. On en donnera un expression à l'aide des H_n puis de H_{n+1} .
- f) Montrer à partir des résultats de la question c) que $H_n'' xH_n' + nH_n = 0$.
- g) On définit la suite de fonctions ϕ_n par $\phi_n(x) = \exp(-x^2/4)H_n(x)$. Montrer que $\phi_n'' \frac{x^2}{4}\phi_n + (n + \frac{1}{2})\phi_n = 0$.
- h) Montrer que les états stationnaires de l'oscillateur harmonique quantique (potentiel $\frac{1}{2}m\omega_0^2x^2$) ont pour énergie $(n+\frac{1}{2})\hbar\omega_0$ avec $n\in \mathbb{N}$. On posera $\varphi_n(x)=\varphi_n(\alpha x)$ avec α bien choisi et la question 1.1.c) n'est pas inutile ici.