ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 4

1. Sia $H=\ell^2$ con l'usuale prodotto scalare. Poniamo

 $X = \{\underline{x} \in \ell^2 : x_k = 0 \text{ per ogni } k \in \mathbb{N} \text{ pari}\},$

 $Y = \{x \in \ell^2 : x_k = 0 \text{ per ogni } k \in \mathbb{N} \text{ dispari}\}.$

- (a) Dimostrare che X e Y sono sottospazi vettoriali chiusi di H.
- (b) Dimostrare che $X^{\perp} = Y$ e $Y^{\perp} = X$.
- (c) Sia $\underline{z} = (1, 1/2, 1/3, ...)$. Determinare $d(\underline{z}, X)$.
- 2. Siano $H = L^2(-1,1)$ e $Y = \text{span}\{\phi_1,\phi_2\}$, dove $\phi_1(t) = e^{\pi i t}$ e $\phi_2(t) = e^{-\pi i t}$ per $t \in [-1,1]$. Siano inoltre $f,g,h \in H$ definite da $f(t) = 3\sin(\pi t)$, $g(t) = e^{2\pi i t}$, h(t) = t. Calcolare $P_Y f$, $P_Y g$ e $P_Y h$.
- 3. Siano $H = L^2(0,1)$ e $Y = \text{span}\{\psi_1, \psi_2\}$, dove $\psi_1(t) = t$ e $\psi_2(t) = t^2$ per $t \in [0,1]$. Siano inoltre $g, h \in H$ definite da $g(t) = t^3$ e $h(t) = t^2 + t^3$. Calcolare $P_Y g$ e $P_Y h$.
- 4. Siano $H=L^2(0,1)$ e $\phi_n(t)=t^{4n}$ per ogni $n\in\mathbb{N}$ e $t\in[0,1]$.
 - (a) L'insieme $\{\phi_n\}_{n\in\mathbb{N}}$ è linearmente indipendente?
 - (b) span $\{\phi_n\}_{n\in\mathbb{N}}$ è denso in H?
 - (c) L'insieme $\{\phi_n\}_{n\in\mathbb{N}}$ è ortonormale in H?
 - (d) Siano $E = \text{span}\{\phi_0, \phi_1\}$ e $f \in H$ definita da f(t) = t. Calcolare $P_E f$.
- 5. Siano $H = L^2(1,2)$ e

$$E = \left\{ f \in H : \int_{1}^{2} \frac{f(t)}{t} dt = 1 \right\}.$$

L'insieme E ha un elemento di norma minima? Se sì, è unico?

- 6. Per ogni $n \in \mathbb{N}$, sia $\underline{e^{(n)}} = (\delta_{n,k})_{k \in \mathbb{N}}$.
 - (a) Sia $E = \{(1 + 1/n) e^{(n)} : n \ge 1\}$. L'insieme E ammette un elemento di norma minima in ℓ^2 ? Se sì, è unico?
 - (b) Sia $F = E \cup \{\underline{e^{(0)}}\}$. L'insieme F ammette un elemento di norma minima in ℓ^2 ? Se sì, è unico?
- 7. Consideriamo c_{00} come spazio pre-hilbertiano con il prodotto scalare $\langle \cdot, \cdot \rangle$ indotto da ℓ^2 . Osserviamo che la successione $\underline{e^{(n)}} = (\delta_{n,k})_{k \in \mathbb{N}}$ è un elemento di c_{00} per ogni $n \in \mathbb{N}$. Sia

$$Y = \left\{ \underline{x} \in c_{00} : \sum_{k=0}^{\infty} \frac{x_k}{1+k} = 0 \right\}.$$

- (a) Dimostrare che Y è un sottospazio vettoriale chiuso di c_{00} .
- (b) Dimostrare che $(n+1)\underline{e^{(n)}} (n+2)\underline{e^{(n+1)}} \in Y$ per ogni $n \in \mathbb{N}$.
- (c) Sia $Y^{\perp} = \{\underline{x} \in c_{00} : \underline{x} \perp \underline{y} \ \forall \underline{y} \in Y\}$ il complemento ortogonale di Y in c_{00} . Dimostrare che $Y^{\perp} = \{0\}$.
- (d) Dimostrare che $Y^{\perp \perp} \neq Y$.

[Questo esempio mostra che, in uno spazio pre-hilbertiano non completo, il biortogonale $Y^{\perp\perp}$ di un sottospazio chiuso può essere diverso da Y.]

- 8. Sia H uno spazio di Hilbert.
 - (a) Dimostrare che, se V e W sono sottospazi vettoriali di H, allora $(V+W)^{\perp} = V^{\perp} \cap W^{\perp}$.
 - (b) Dimostrare che, se V e W sono sottospazi vettoriali chiusi di H, allora $(V \cap W)^{\perp} = \overline{V^{\perp} + W^{\perp}}$.
- 9. Siano $r \in (0, \infty]$ e $H = L^2(-r, r)$. Sia $T : H \to H$ definita da

$$Tf(t) = f(-t)$$
 per q.o. $t \in (-r, r)$

per ogni $f \in H$.

- (a) Dimostrare che $T: H \to H$ è lineare e biiettiva, e trovarne l'inversa.
- (b) Dimostrare che T è un'isometria, cioè che $||Tf||_2 = ||f||_2$ per ogni $f \in H$.
- (c) Dimostrare che $T: H \to H$ è bi-lipschitziana.

Definiamo ora gli insiemi

$$H_p = \{ f \in H : Tf = f \}, \qquad H_d = \{ f \in H : Tf = -f \}$$

delle funzioni pari e delle funzioni dispari in H.

- (d) Dimostrare che H_p e H_d sono sottospazi vettoriali chiusi di H. [Suggerimento: T è lineare e continua.]
- (e) Dimostrare che $H_p \perp H_d$.
- (f) Dimostrare che $H = H_p \oplus H_d$. [Suggerimento: f = (f + Tf)/2 + (f - Tf)/2.] (g) Dimostrare che $H_p^{\perp} = H_d \in H_d^{\perp} = H_p$.
- (g) Dimostrare che $H_p^{\perp} = H_d$ e $H_d^{\perp} = H_p$. [Suggerimento: teorema di decomposizione ortogonale.]
- (h) Trovare formule per le proiezioni ortogonali $P_{H_p}f$ e $P_{H_d}f$ di una arbitraria funzione $f \in H$ su H_p e H_d .
- (i) Supponiamo r = 1. Sia $f \in H$ definita da $f(t) = t^2 + t^3$ per ogni $t \in (-1, 1)$. Determinare $d(f, H_p)$ e $d(f, H_d)$.
- 10. Sia H uno spazio di Hilbert. Sia $C \subseteq H$ un sottoinsieme convesso, chiuso e non vuoto di H.
 - (a) Dimostrare che, per ogni $w \in H,$ l'insieme traslato

$$C + w = \{x + w : x \in C\}$$

è a sua volta convesso, chiuso e non vuoto.

Sia $P_C: H \to C$ la mappa che associa ad ogni $x \in H$ la sua proiezione $P_C(x) \in C$, cioè l'unico elemento di C tale che $||x - P_C(x)|| = d(x, C)$.

- (b) Dimostrare che $P_C(H) = C$ e che $P_C \circ P_C = P_C$.
- (c) La mappa P_C è necessariamente lineare?
- (d) Dimostrare che $P_{C+w}(x) = P_C(x-w) + w$ per ogni $x, w \in H$.
- (e) Sia $x \in H$ tale che $P_C(x) = 0$. Dimostrare che $\Re \mathfrak{e}\langle x, z \rangle \leq 0$ per ogni $z \in C$. [Suggerimento: imitare la dimostrazione della caratterizzazione del complemento ortogonale Y^{\perp} di un sottospazio Y in termini della distanza, sfruttando la disuguaglianza $||x|| \leq ||x \theta z||$ per ogni $z \in C$ e $\theta \in [0, 1]$.]
- (f) Dimostrare che $\Re \langle x P_C(x), z P_C(x) \rangle \le 0$ per ogni $x \in H$ e $z \in C$. [Suggerimento: con traslazioni si può ridursi al caso $P_C(x) = 0$.]
- (g) Dimostrare che la mappa $P_C: H \to C$ è 1-lipschitziana. [Suggerimento: espandere il quadrato di $||x-y|| = ||(P_C(x) P_C(y)) + (x P_C(x) + P_C(y) y)||$ e usare (f).]