

Politechnika Śląska

Modelowanie cyfrowe - Laboratorium 1 Środowisko R – odpowiedzi i portrety fazowe układów dynamicznych

Prowadzący: dr inż. Ewa Starzewska-Karwan

Skład podsekcji: Krystian Krupa Michał Matysiak

Zestaw zadań F

Data realizacji laboratorium: 04.11.2021 Data oddania sprawozdania: 15.11.2021

1. Zadanie 6F

$$K(p)=\frac{1}{(1+5p)^{5}}$$
 czas całkowania $t_{max}=60$ wymuszenia: $u(t)=1,\,u(t)=0.025t,\,u(t)=\sin(0.5t)$

1.1. Równania Stanu - Metoda szeregowa

$$u \rightarrow \frac{1}{1+5p} \rightarrow x1 \rightarrow \frac{1}{1+5p} \rightarrow x2 \rightarrow \frac{1}{1+5p} \rightarrow x3 \rightarrow \frac{1}{1+5p} \rightarrow x4 \rightarrow \frac{1}{1+5p} \rightarrow y$$

```
x1/u=1/(1+5p)
5x1'+x1=u
x1'=1/5(u-x1)
x2/x1=1/(1+5p)
5x2'+x2=x1
x2'=1/5(x1-x2)
x3/x2=1/(1+5p)
5x3'+x3=x2
x3'=1/5(x2-x3)
x4/x3=1/(1+5p)
5x4' + x4 = x3
x4'=1/5(x3-x4)
y/x4=1/(1+5p)
5y'+y=x4
5y' = x4 - y
5y'=x5'
y=x5
x5'=1/5(x4-x5)
u=1
x1'=1/5(u-x1)
x2'=1/5(x1-x2)
x3'=1/5(x2-x3)
x4'=1/5(x3-x4)
x5'=1/5(x4-x5)
y=x5
```

Równania stanu

$$x1' = \frac{1}{5(u-x1)} x2' = \frac{1}{5(x1-x2)} x3' = \frac{1}{5(x2-x3)} x4' = \frac{1}{5(x3-x4)} x5' = \frac{1}{5(x4-x5)}$$

Równanie wyjścia

$$v = x5$$

1.2. Uzyskane przebiegi funkcji wyjścia na podstawie podanych wymuszeń

Wykres y(t)

1.3. Rozwiązanie analityczne

$$K(p) = \frac{Y(p)}{U(p)} \Rightarrow Y(p) = K(p) * U(p)$$

$$u(t) = \mathbf{1}(t) \Rightarrow U(p) = 1$$

$$K(p) = \frac{1}{(1+5p)^{5}} = \frac{\frac{1}{5^{5}}}{(\frac{1}{5}+p)^{5}} = \frac{\frac{1}{3125}}{(\frac{1}{5}+p)^{5}}$$

$$\frac{Y(p)}{p} = \frac{A_{0}}{p} + \frac{A_{11}}{\left(\frac{1}{5} + p\right)^{5}} + \frac{A_{12}}{\left(\frac{1}{5} + p\right)^{4}} + \frac{A_{13}}{\left(\frac{1}{5} + p\right)^{3}} + \frac{A_{14}}{\left(\frac{1}{5} + p\right)^{2}} + \frac{A_{15}}{\left(\frac{1}{5} + p\right)^{1}}$$

$$A_{0} = \lim_{p \to 0} \frac{Y(p)}{p} * p = \lim_{p \to 0} \frac{\frac{1}{5^{5}}}{(p + \frac{1}{5})^{5}} = \frac{\frac{1}{3125}}{\frac{1}{3125}} = 1$$

$$A_{11} = \lim_{p \to -\frac{1}{5}} \left(\frac{Y(p)}{p} * \left(\frac{1}{5} + p \right)^{-5} \right) = \lim_{p \to -\frac{1}{5}} \frac{\frac{1}{3125}}{p} = \frac{1}{3125} * \left(-\frac{5}{1} \right) = -\frac{1}{625}$$

$$A_{12} = \frac{1}{(2-1)!} \lim_{p \to -\frac{1}{5}} \left(\frac{Y(p)}{p} * \left(\frac{1}{5} + p \right)^{-5} \right)' = \lim_{p \to -\frac{1}{5}} \frac{-\frac{1}{3125}}{p^{2}} = \left(-\frac{1}{3125} \right) * \frac{25}{1} = -\frac{1}{125}$$

$$A_{13} = \frac{1}{(3-1)!} \lim_{p \to -\frac{1}{5}} \left(\frac{Y(p)}{p} * \left(\frac{1}{5} + p \right)^{-5} \right)'' = \frac{1}{2} * \lim_{p \to -\frac{1}{5}} \frac{\frac{2}{3125}}{p^{3}} = \frac{1}{2} * \frac{1}{2125} * \left(-\frac{125}{1} \right) = -\frac{1}{25}$$

$$A_{14} = \frac{1}{(4-1)!} \lim_{p \to -\frac{1}{5}} \left(\frac{Y(p)}{p} * \left(\frac{1}{5} + p \right)^{-5} \right)''' = \frac{1}{6} * \lim_{p \to -\frac{1}{5}} \frac{\frac{2}{3125}}{p^{3}} = \frac{1}{2} * \frac{1}{24} * \lim_{p \to -\frac{1}{5}} \frac{\frac{2}{3125}}{p^{3}} = \frac{1}{2} * \frac{1}{24} * \frac{1}{24} * \lim_{p \to -\frac{1}{5}} \frac{\frac{2}{3125}}{p^{3}} = \frac{1}{2} * \frac{1}{24} * \frac{24}{3125} * \left(-\frac{3125}{1} \right) = -1$$

$$\frac{Y(p)}{p} = A_{0} + \frac{p * A_{11}}{(\frac{1}{5} + p)^{-5}} + \frac{p * A_{12}}{(\frac{1}{5} + p)^{-4}} + \frac{p * A_{13}}{(\frac{1}{5} + p)^{-3}} + \frac{p * A_{14}}{(\frac{1}{5} + p)^{-2}} + \frac{p * A_{15}}{(\frac{1}{5} + p)^{-1}} + \frac{p * A_{15}}{(\frac{1}{5} + p)^{-1}} + \frac{p * A_{15}}{(\frac{1}{5} + p)^{-5}} = \frac{1}{125} * \frac{p}{(\frac{1}{5} + p)^{-5}} - \frac{1}{125} * \frac{p}{(\frac{1}{5} + p)^{-5}} - \frac{1}{25} * \frac{p * A_{15}}{(\frac{1}{5} + p)^{-5}} - \frac{1}{25} *$$

1.4. Kod eksperymentu w RStudio

Kod

```
rstanu1=function(t,x,a)
{
    u=1
    dx1=1/5*(u-x[1])
    dx2=1/5*(x[1]-x[2])
    dx3=1/5*(x[2]-x[3])
    dx4=1/5*(x[3]-x[4])
    dx5=1/5*(x[4]-x[5])
    list(c(dx1, dx2, dx3, dx4, dx5))
```

```
rstanu2=function(t,x,a)
 u=0.025*t
 dx1=1/5*(u-x[1])
 dx2=1/5*(x[1]-x[2])
 dx3=1/5*(x[2]-x[3])
 dx4=1/5*(x[3]-x[4])
 dx5=1/5*(x[4]-x[5])
 list(c(dx1, dx2, dx3, dx4, dx5))
rstanu3=function(t,x,a)
 u=sin(0.5*t)
 dx1=1/5*(u-x[1])
 dx2=1/5*(x[1]-x[2])
 dx3=1/5*(x[2]-x[3])
 dx4=1/5*(x[3]-x[4])
 dx5=1/5*(x[4]-x[5])
 list(c(dx1, dx2, dx3, dx4, dx5))
}
eksperyment1=function(x0){
 t=seq(0,60,0.1)
 #dla wymuszenia u=1
 out1=ode(x0,t,rstanu1,NULL)
 #dla wymuszenia u=0.025t
 out2=ode(x0,t,rstanu2,NULL)
 #dla wymuszenia u=sin(0.5t)
 out3=ode(x0,t,rstanu3,NULL)
 #y=x5
 y1=out1[,6]
 y2=out2[,6]
 y3=out3[,6]
 #ut1
 plot(t,y1,type='l',col='red',xlab='t',ylab='y',main='Wykres y(t)')
 #ut0025
 lines(t,y2,col="blue")
 #utsin
 lines(t,y3,col="green")
 legend(x=0,y=0.9,c("U(t) = 1","U(t) = 0.025t","U(t) =
sin(0.5t)"),col=c("red","blue","green"),lty = 1, cex=0.8)
eksperyment1(c(0,0,0,0,0))
```

1.5. Wnioski

Układ inercyjny piątego rzędu $K(p)=rac{1}{(1+5p)^5}$ w zależności od zastosowanego

wymuszenia układ ma rożne odpowiedzi. Dla wymuszenia skokowego U(t) = 1 układ dąży do y(t) = 1. Dla tego wymuszenia charakterystyka skokowa układu jest z wyrównaniem. Natomiast dla wymuszenia U(t) =0.25*t charakterystyka skokowa przypomina odpowiedź dla obiektu bez wyrównania gdzie y(t) dąży do plus nieskończoności. Wymuszenie U(t) = sin(0.5*t) odpowiedź układu przypomina rzeczywistą przebieg energii stężenia rentgena. Oscylacyjacje dążą do punktu równowagi y(t)=0.

Zastosowanie metody szeregowej dla tego konkretnego układu inercyjnego zmniejszyło stopień skomplikowania obliczeń matematycznych.

2. Zadanie 7F

Dla podanego liniowego układu dynamicznego opracować funkcję wyznaczania pochodnych wektora stanu oraz funkcje wykreślania portretu fazowego.

$$x_1' = x_2$$

 $x_2' = -x_1 + 0.1x_2$

czas całkowania $t_{max} = 10$.

Portret fazowy to funkcja x2(x1).

Przyjąć warunki początkowe x1(0)=-10, -6, -2, 2, 6, 10 x2(0)=0.

Skalowanie: osi y zakres (-15, 15).

Wszystkie krzywe zamieścić na jednym wykresie

2.1. Funkcja wyznaczania pochodnych wektora stanu

```
rstanu=function(t,x,a){
  dx1=x[2]
  dx2=-x[1] + 0.1*x[2]
  list(c(dx1,dx2))
}
```

2.2. Funkcja wykreślania portretu fazowego

```
eksp7F=function(x0){
    t=seq(0,10,0.01)

plot(0,type='l',xlab='x1',ylab='x2',xlim=c(-15,15),ylim=c(-15,15),
main="Portret fazowy x2(x1)")
    for (i in seq(-10, 10, 2)){
        out=ode(c(i,0),t,rstanu,NULL)
        lines(out[,2],out[,3],col='blue')
        points(i,0, col = "red")
    }
}
```

2.3. Wykres wynikowy

Portret fazowy x2(x1)

2.4. Analityczne wyznaczanie punktu równowagi

Odszukano punkt pracy układu dla którego wektor pochodnych zmiennych stanu jest zerowy. Punktem równowagi w tym przypadku jest początek układu współrzędnych.

$$\dot{\mathbf{x}} = \mathbf{0} \Longleftrightarrow \begin{cases} \dot{\mathbf{x}}_1 = \mathbf{x}_2 = \mathbf{0} \\ \dot{\mathbf{x}}_2 = -\mathbf{x}_1 + \mathbf{0}.\mathbf{1}\mathbf{x}_2 = \mathbf{0} \end{cases} \Rightarrow \begin{cases} \mathbf{x}_1 = \mathbf{0} \\ \mathbf{x}_2 = \mathbf{0} \end{cases}$$

2.5. Badanie stabilności

Wprowadzono oznaczenia:

$$x'_{1} = f_{1}(x_{1}, x_{2})$$

 $x'_{2} = f_{2}(x_{1}, x_{2})$

Wyznaczono macierz Jacobiego obliczając pochodne cząstkowe:

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0.1 \end{bmatrix}$$

Wyznaczono macierz pI-A:

$$pI - A = \begin{bmatrix} p & 0 \\ 0 & p \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & 0.1 \end{bmatrix} = \begin{bmatrix} p & -1 \\ 1 & p - 0.1 \end{bmatrix}$$

A następnie obliczono jej wyznacznik:

$$det[pI - A] = \begin{vmatrix} p & -1 \\ 1 & p - 0.1 \end{vmatrix} = p \cdot (p - 0.1) - 1 \cdot (-1) = p^2 - 0.1p + 1$$

oraz jego pierwiastki:

$$\Delta = 0.1^{2} - 4 \cdot 1 \cdot 1 = -3.99$$

$$\sqrt{\Delta} = i \cdot \sqrt{3.99}$$

$$p_{1} = \frac{1 - i \cdot \sqrt{3.99}}{2}$$

$$p_{2} = \frac{1 + i \cdot \sqrt{3.99}}{2}$$

Części rzeczywiste tych obu pierwiastków są większe od zera:

$$Re(p_1) > 0$$

 $Re(p_2) > 0$

Z czego wynika, że układ jest niestabilny.

2.6. Uwagi i wnioski do zadania 7F

Zarówno wynik eksperymentu w programie RStudio jak i wynik badania stabilności za pomocą obliczenia pierwiastków wyznacznika macierzy pl-A wskazuje na to, że układ jest **niestabilny**. Dobrze widać to na portrecie fazowym z podpunktu 2.3. Dla każdego warunku początkowego układ kończy swoje działanie z innym wektorem wyjść.

3. Zadanie 8F

3.1. Analityczne wyznaczanie punktu równowagi

$$\begin{cases} x_1' = x_2 \\ x_2' = x_1 - 0.04x_1^3 - 3x_2 \end{cases}$$

Czas całkowania t_{max} = 10

$$\dot{x} = 0 \Leftrightarrow \begin{cases} \dot{x_1} = x_2 = 0 \\ \dot{x_2} = x_1 - 0.04x_1^3 - 3x_2 = 0 \end{cases}$$

$$x_1 - 0.04x_1^3 - 3 * 0 = 0$$

$$x_1(1 - 0.04x_1^2) = 0$$

$$x_1 = 0 v 1 - 0.04x_1^2 = 0$$

$$(1 - 0.02x_1) * (1 - 0.02x_1) = 0$$

$$x_1 = 5 v x_1 = -5$$
Punkty równowagi:

 $x_1 = 5 x_2 = 0 \mid x_1 = -5 x_2 = 0 \mid x_1 = 0 x_2 = 0$

$$x'_{1} = f_{1}(x_{1}, x_{2})$$

 $x'_{2} = f_{2}(x_{1}, x_{2})$

Pochodne:

$$\frac{\partial f1}{\partial x1} = 0 \mid \frac{\partial f1}{\partial x2} = 1 \mid \frac{\partial f2}{\partial x1} = 1 - 0, 12x_1^2 \mid \frac{\partial f2}{\partial x2} = -3$$

Równania stanu

$$x_1 = x_2$$

$$x_2 = ax_1 - 3x_2$$

Gdzie a równe

$$1 - 0.12 * 0 = 1 dla punktu (x1, x2) = (0, 0)$$

$$1 - 0.12 * 5^{2} = 1 - 0.12 * 25 = 1 - 3 = -2 dla punktu (x1, x2) = (5, 0)$$

$$1 - 0.12 * (-5)^{2} = 1 - 3 = -2 dla punktu (x1, x2) = (-5, 0)$$

Wyznaczono równanie charakterystyczne dla badanych punktów: Punkt (0, 0)

$$x_{1}^{'} = x_{2}$$

$$x_{2}^{'} = x_{1} - 3x_{2}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix}$$

$$pI - A = \begin{bmatrix} p & 0 \\ 0 & p \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} p & -1 \\ -1 & p+3 \end{bmatrix}$$

Równanie charakterystyczne

$$p(p+3) - 1 = p^{2} + 3p - 1$$

$$\Delta = 3^{2} - 4 * 1 * 1 = 9 + 4 = 13$$

$$\sqrt{\Delta} = \sqrt{13}$$

$$p_{1} = \frac{-3 - \sqrt{13}}{2} p_{2} = \frac{-3 + \sqrt{13}}{2}$$

$$p_1 < 0 i p_2 > 0$$

Równanie charakterystyczne posiada dwa pierwiastki z czego jeden z nich jest większy od zera. Jest to punkt w którym układ jest niestabilny.

Punkt (5, 0)

$$x_{1} = x_{2}$$

$$x_{2} = -2x_{1} - 3x_{2}$$

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

$$pI - A = \begin{bmatrix} p & 0 \\ 0 & p \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} p & -1 \\ 2 & p+3 \end{bmatrix}$$

Równanie charakterystyczne

$$p(p+3) + 2 = p^{2} + 3p + 2$$

$$\Delta = 3^{2} - 4 * 1 * 2 = 9 - 8 = 1$$

$$\sqrt{\Delta} = \sqrt{1}$$

$$p_{1} = \frac{-3-1}{2} = -2$$

$$p_{2} = \frac{-3+1}{2} = -1$$

$$p_1 < 0 i p_2 < 0$$

Pierwiastki równania charakterystycznego posiadają ujemne części rzeczywiste. Układ w tym punkcie jest stabilny.

Punkt (-5, 0)

$$x_{1}^{'} = x_{2}$$

$$x_{2}^{'} = -2x_{1} - 3x_{2}$$

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

$$pI - A = \begin{bmatrix} p & 0 \\ 0 & p \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} p & -1 \\ 2 & p+3 \end{bmatrix}$$

Równanie charakterystyczne

$$p(p+3) + 2 = p^{2} + 3p + 2$$

$$\Delta = 3^{2} - 4 * 1 * 2 = 9 - 8 = 1$$

$$\sqrt{\Delta} = \sqrt{1}$$

$$p_{1} = \frac{-3 - 1}{2} = -2$$

$$p_{2} = \frac{-3 + 1}{2} = -1$$

$$p_{_{1}} < 0 i p_{_{2}} < 0$$

Pierwiastki równania charakterystycznego posiadają ujemne części rzeczywiste. Układ w tym punkcie jest stabilny.

Portret fazowy x2(x1)

Analizując portret fazowy można zauważyć z łatwością dwa punkty równowagi układu. Są nimi (-5, 0) oraz (5, 0) dla których układ jest stabilny. Występuje też trzeci punkt (0, 0) w którym to układ jest niestabilny ze względu na znajdujący się tam punkt siodłowy.

Kod

```
rstanu=function(t,x,a){
 dx1=x[2]
 dx2=x[1] - 0.04*(x[1]^3)-3*x[2]
 list(c(dx1,dx2))
eksp2=function(){
 t=seq(0,10,0.01)
plot(0,type='n',xlab='x1',ylab='x2',xlim=c(-12,12),ylim=c(-11,11),main='
Portret fazowy x2(x1)')
 for(i in seq(-10,10,2)){
   out=ode(c(i,-10),t,rstanu,NULL)
   lines(out[,2],out[,3],col='red')
   points(i,-10,col='green')
   out=ode(c(i,10),t,rstanu,NULL)
   lines(out[,2],out[,3],col='blue')
   points(i,10,col='green')
 }
eksp2()
```