Оценивание способов борьбы с несбалансированостью тем в тематическом моделировании

Рогозина Анна

Московский Физико-технический институт

Факультет управления и прикладной математики

Кафедра интеллектуальных систем

Научный руководитель: д. ф.-м. н. Воронцов Константин Вячеславович

2019

План

- 1 Постановка задачи
 - Тематическое моделирование
 - Проблема несбалансированности
 - Оценивание качества моделей
 - Предложенные способы решения
- Описание эксперимента
 - Общая постановка
 - Генерация коллекций
 - Квантильная регрессия
- В Результаты
 - Проверка качества предобученной модели

Постановка задачи

Задача тематического моделирования

Дано:

- Множество токенов W, коллекция текстовых документов D, множество тем T
- ullet n_{wd} частоты токенов в документах
- $D \times W \times T$ дискретное вероятностное пространство

Предположение:

• Гипотеза условной независимости: $p(w \mid d, t) = p(w \mid t)$

Найти:
$$p(w \mid d) = \sum_{t \in T} \varphi_{wt} \theta_{td}$$

- $\varphi_{wt} = p(w \mid t)$ вероятность токенов w в теме t
- $\theta_{td} = p(t \,|\, d)$ вероятность тем t в документе d

Принцип максимума правдоподобия

Оптимизируемый функционал:

$$\mathcal{L}(\Phi,\Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \left(\sum_{t \in T} \varphi_{wt} \theta_{td} \right) \to \max_{\Phi,\Theta}$$

- Мощность темы $\hat{p}(t) = \frac{n_t}{n}$
- Гипотеза:

Отношение максимальной к минимальной мощности $\frac{\hat{p}_{max}(t)}{\hat{p}_{min}(t)} \leq 3-4$ раза

Задача

Научиться выявлять «несбалансированность» тем в построенной модели. Сравнить способы борьбы с появлением «несбалансированности» тем.

Кластерная структура распределений слов

Рис.: Иллюстрация работы Е-М алгоритма для несбалансированных тем

- Точки на графике распределения слов в документах $p(w \mid t, d)$
- ullet Центры кластеров распределение слов в теме $p(w \mid t)$

Формирование кластеров

Для каждой темы t и документа d проверяем гипотезу:

$$H_0: p(w | d, t) = p(w | t)$$

$$H_1: p(w \mid d, t) \neq p(w \mid t)$$

Дивергенция Кресси-Рида между двумя распределениями:

$$\operatorname{CR}_{\lambda}(\hat{p}(w \mid d, t) : \hat{p}(w \mid t)) =$$

$$= \frac{2n_{td}}{\lambda(\lambda+1)} \sum_{w \in W} \hat{p}(w \mid d, t) \left(\left(\frac{\hat{p}(w \mid d, t)}{\hat{p}(w \mid t)} \right)^{\lambda} - 1 \right) =$$

$$= \frac{2}{\lambda(\lambda+1)} \sum_{w \in W} \frac{n_{dw} \varphi_{wt} \theta_{td}}{\sum_{s \in T} \varphi_{ws} \theta_{sd}} \left(\left(\frac{n_{wd}}{n_d \sum_{s \in T} \varphi_{ws} \theta_{sd}} \right)^{\lambda} - 1 \right)$$

Обозначения

- S_{dt} значение дивергениции $\operatorname{CR}_{\lambda}$ для документа d и темы t
- Радиус семантической однородности $R_t^{\alpha}(n_{td})$ темы t с уровнем значимости α

Степень семантической неоднородости

SemHeterogeneity(t) =
$$\frac{\sum_{d \in D} p(t|d) \left[S_{dt} > R_t^{\alpha}(n_{td}) \right]}{\sum_{d \in D} p(t|d)}$$

Степень семантической загрязненности

SemImpurity(t) =
$$\frac{\sum_{d \in D} p(t|d) \left[S_{dt} < R_t^{\alpha}(n_{td}) \right] \left[S_{dt'} < R_{t'}^{\alpha}(n_{td}) \right]}{\sum_{d \in D} p(t|d)}$$

Итеративная балансировка тем

Локальный экстремум задачи тематического моделирования:

$$p_{tdw} = \underset{t \in T}{\text{norm}} (\varphi_{wt} \theta_{td}); \tag{1}$$

$$\varphi_{wt} = \underset{w \in W}{\text{norm}} \left(n_{wt} + \varphi_{wt} \frac{\partial R}{\partial \varphi_{wt}} \right); \quad n_{wt} = \sum_{d \in D} n_{dw} p_{tdw}; \quad (2)$$

$$\theta_{td} = \underset{t \in T}{\text{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right); \qquad n_{td} = \sum_{w \in d} n_{dw} p_{tdw}.$$
 (3)

 $n_{tdw} = n_{dw} p_{tdw}$ - оценка числа употреблений слова w в документе d по теме t.

Идея:

Домножим n_{tdw} на величину, обратно пропорциональную n_t .

Изменение вероятностей:

$$p'_{tdw} = \frac{n'_{tdw}}{\sum_{s} n'_{sdw}} = \frac{\frac{1}{n_t} n_{tdw}}{\sum_{s} \frac{1}{n_s} n_{sdw}} = \frac{1}{n_t} p_{tdw} \frac{\sum_{s} n_{sdw}}{\sum_{s} \frac{1}{n_s} n_{sdw}} = \operatorname{norm}_{t \in T} \left(\frac{1}{n_t} p_{tdw}\right).$$

Изменение формул Е-М алгоритма:

$$p_{tdw} = \underset{t \in T}{\text{norm}} \left(\varphi_{wt} \theta_{td} \right); \qquad n_t = \sum_{d \in D} \sum_{w \in d} n_{dw} p_{tdw}.$$

$$Z_{dw} = \sum_{t \in T} \frac{p_{tdw}}{n_t}.$$

$$\varphi_{wt} = \underset{w \in W}{\text{norm}} \left(n_{wt} + \varphi_{wt} \frac{\partial R}{\partial \varphi_{wt}} \right); \quad n_{wt} = \sum_{d \in D} \frac{n_{dw}}{n_t Z_{dw}} p_{tdw};$$

$$\theta_{td} = \underset{t \in T}{\text{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right); \quad n_{td} = \sum_{w \in d} \frac{n_{dw}}{n_t Z_{dw}} p_{tdw}.$$

Проверка качества борьбы с несбалансированностью

Алгоритм

- Генерируем список коллекций с разной степенью сбалансированности тем $\{D_i\}_{i=1}^n$
- ullet Для каждой коллекции D_i обучаем модель ARTM $\{(\Phi_i,\Theta_i)\}_{i=1}^n$
- Для каждой модели оцениваем качество всех тем с помощью SemHeterogeneity(t) и SemImpurity(t)

Генерация коллекций

Дано:

- Коллекция документов из «ПостНауки» (3404 документа)
- Предобученная на этой коллекции матрица Φ на 20 тем

Алгоритм генерации коллекции длины N:

- ullet Из предобученной модели берем распределение $p(w \mid t)$
- Задаем дискретное распределение тем в коллекции p(t)
- Для каждого документа $\{d_i\}_{i=1}^N$:
 - Из списка длин реальных документов «Пост Науки» равновероятно выбираем длину генерируемого документа n_i
 - Генерируем распределение $p(t \mid d) \in Dir(p(t))$
 - Генерируем слова $\{w_j^i\}_{j=1}^{n_i}$:
 - Выбираем тему $t_j \in p(t \mid d)$
 - Добавляем в документ слово $w_j \in p(w \mid t_j)$

Рис.: Пример градации p(t) для 5 тем

Вычисление $R_t^{\alpha}(n_{td})$

Проблема:

Распределение статистики Кресси-Рида $\mathrm{CR}_\lambda \in \chi^2(|W|),$ но только если $\forall w,d:n_{wd}\geq 5$

На самом деле

Распределение статистики зависит от t и n_{td}

Предложение

Для каждой модели (Φ_i,Θ_i) , для каждой темы t^i_j

- Генерируем коллекцию $D_{t_j^i}$, состоящую из документов d_{t_i} разной длины, содержащих только тему t_j^i
- Вычисляем значение статистики $S_{t^i_j d}$
- По полученной эмпирической зависимости $S_{t_j^id}(n_{td})$ считаем непарметрическую квантильную регрессию $R_t^{\alpha}(n_{td})$.

а) Квантильная регрессия для темы 0

б) Распределение S_{td} для разных тем

Проверка качества предобученной модели

Подсчитаны степени семантической однородности и загрязненности

Выводы

- Видим, что степень загрязненности ~ 1 для каждой темы
- Значит, либо каждый документ содержит больше двух тем
- Либо критерий в данном виде слишком маломощный и вообще ничего не отвергает(Сейчас статистика считается для всех слов $w: p(w \mid t) > \frac{1}{|W|}$)

Возможные модификации

- Из всех 20 тем отобрать те, что не пересекаются в смысле степеней загрязненности(если это возможно)
- Начать считать статистику S_{td} только для слов, входящих в документ d

Заключение

Что сделано:

- Поставлена задача
- Предложен способ оценивания качества моделей
- Разработан дизайн эксперимента
- Проведена оценка качества предобученной модели

Нужно:

- ullet Увеличить мощность используемого критерия CR_{λ}
- Провести эксперимент для итеративной балансировки тем
- Реализовать оптимизацию гиперпараметров сглаживания
- Провести эксперимент и оптимизации гиперпараметров