Теория и реализация языков программирования. Задание 9: преобразование контекстно-свободных языков

Сергей Володин, 272 гр.

задано 2013.10.30

Упражнение 1

Упражнение 2

Упражнение 3

Упражнение 4

Задача 1

$$L \stackrel{\text{\tiny def}}{=} \{xcy | x, y \in \{a,b\}^*, x \neq y^R\} \subset \Sigma \stackrel{\text{\tiny def}}{=} \{a,b,c\}.$$

1. Определим МП-автомат $\mathcal{A} \stackrel{\text{def}}{=} (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по принимающему состоянию:

1. $\Gamma \stackrel{\text{def}}{=} \{a, b, A, B, Z\}$

- 2. $Q \stackrel{\text{def}}{=} \{q_0, q_1, q_2, q_3, q_4\}$
- $3.~\delta$ изображена справа
- 4. $F \stackrel{\text{def}}{=} \{q_1, q_2, q_4\}$
- 2. \mathcal{A} детерминированный, так как из каждой конфигурации (q, w, γ) переход определен однозначно, и ε -переходов нет.

3. Определим
$$U\colon \{a,b\} \to \{A,B\}\colon U(a) = A,\, U(b) = B.$$
 Определим $U_r\colon \{a,b\}^* \to \{a,b,A,B\}^*\colon U_r(w) = \begin{cases} \varepsilon, & w = \varepsilon \\ w_1...w_{n-1}U(w_n), & w = w_1...w_n,\, \forall i \in \overline{1,n} \hookrightarrow w_i \in \{a,b\} \end{cases}$ — заменяет последний символ на заглавный.

- 4. Докажем, что $L \subseteq L(\mathcal{A})$:
 - (a) Пусть $w \in \{a, b\}^*$. Докажем, что $(q_0, w, Z) \vdash^* (q_0, \varepsilon, U_r(w^R)Z)$ индукцией по |w|:

$$P(n) \stackrel{\text{\tiny def}}{=} \left[\forall w \in \{a,b\}^* \colon |w| = n \hookrightarrow (q_0,w,Z) \vdash^* (q_0,\varepsilon,U_r(w^R)Z) \right]$$

- і. $n=0 \Rightarrow |w|=0 \Rightarrow w=\varepsilon$. Тогда $U_r(w^R) \equiv \varepsilon$, и $(q_0,w,Z) \equiv (q_0,\varepsilon,Z) \equiv (q_0,\varepsilon,U_r(w^R)Z) \Rightarrow P(0)$.
- іі. $n=1 \Rightarrow w=\sigma \in \Sigma$. Рассмотрим переходы из (q_0,σ,Z) . В стек будет добавлен $U_r(\sigma) \Rightarrow (q_0,w,Z) \equiv (q_0,\sigma,Z)$ \vdash $(q_0, \varepsilon, U_r(\sigma)Z) \equiv (q_0, \varepsilon, U_r(w^R)Z) \Rightarrow P(1).$
- ііі. Фиксируем $n \geqslant 1$, пусть P(n). Пусть $w \in \{a,b\}^*, |w| = n+1$. Тогда $w = w_0 \sigma, |w_0| = n > 0$. $P(n) \Rightarrow (q_0, w_0, Z) \vdash^* (q_0, \varepsilon, U_r(w_0^R)Z)$. Тогда $(q_0, w, Z) \equiv (q_0, w_0\sigma, Z) \vdash^* (q_0, \sigma, U_r(w_0^R)Z)$. \not переходы из $(q_0, \sigma, U(w_0^R)Z)$. На верхушке стека $\gamma \in \{a, b, A, B\}$ — первый символ $U_r(w_0^R)$, входной символ $\sigma \in \{a,b\}$. Во всех случаях он будет добавлен в стек (см. определение δ), значит, $(q_0,\sigma,U_r(w_0^R)Z)$ \vdash $(q_0, \varepsilon, \sigma U_r(w_0^R)Z) \stackrel{|w_0|>0}{=} (q_0, \varepsilon, U_r(w^R)Z) \Rightarrow P(n+1).$
- (b) Из определения δ имеем $(q_0, cw, \gamma) \vdash^* (q_1, w, \gamma), |\gamma| > 0, \gamma \neq Z$.
- (c) Докажем $(q_1, x, xZ) \vdash^* (q_1, \varepsilon, Z)$ индукцией по |x|: $P(n) \stackrel{\text{def}}{=} [\forall x \in \{a, b\}^* : |x| = n \hookrightarrow (q_1, x, xZ) \vdash^* (q_1, \varepsilon, Z)]$
 - і. $n=0 \Rightarrow |x|=0 \Rightarrow x=\varepsilon$. Тогда $(q_1,x,xZ)\equiv (q_1,\varepsilon,Z)\Rightarrow P(0)$

- іі. Фиксируем $n \geqslant 0$. Пусть P(n). Пусть $x \in \{a,b\}^*$: $|x| = n + 1 \Rightarrow x = x_0 \sigma, |x_0| = n \stackrel{P(n)}{\Rightarrow} (q_1, x_0, x_0 Z) \vdash^* (q_1, \varepsilon, Z)$. Тогда $(q_1, x, xZ) \equiv (q_1, x_0 \overline{\sigma}, x_0 \overline{\sigma}Z) \vdash^* (q_1, \sigma, \sigma Z)$. Входной символ совпадает с символом на верхушке стека, из определения δ получаем, что символ будет удален из стека: $(q_1, \sigma, \sigma Z) \vdash (q_1, \varepsilon, Z) \Rightarrow P(n)$.
- (d) Пусть $\sigma_1, \sigma_2 \in \{a, b\}, \ \sigma_1 \neq \sigma_2$. Тогда $(q_1, \sigma_1, U_r(\sigma_2)\gamma) \vdash (q_2, \varepsilon, \sigma_2\gamma)$ и $(q_1, \sigma_1, \sigma_2\gamma) \vdash (q_2, \varepsilon, \sigma_2\gamma)$ из определения δ .
- (e) Пусть $x \in \{a,b\}^*$, $\gamma \in \{a,b\}$. Тогда $(q_2,x,\gamma\kappa) \vdash^* (q_2,\varepsilon,\gamma\kappa)$ доказывается очевидно по индукции (переходы из q_2 в q_2 определены для всех символов a,b на входе и в стеке и не изменяют стек).
- (f) Пусть $\sigma \in \{a,b\}$. Тогда $(q_1,\sigma,U_r(\sigma)\gamma) \vdash (q_3,\varepsilon,\gamma)$ из определения δ .
- (g) Пусть $\sigma \in \{a,b\}$. Тогда $(q_3,\sigma,Z) \vdash (q_4,\varepsilon,Z)$ из определения δ
- (h) Пусть $x \in \{a,b\}^*$. Тогда $(q_4,x,Z) \vdash^* (q_4,\varepsilon,Z)$ доказывается очевидно по индукции (из q_4 есть переходы в q_4 по a и b при Z на верхушке стека)
- (i) Из определения δ имеем $(q_0, c, Z) \vdash (q_3, \varepsilon, Z)$.
- (j) Пусть $\underline{w \in L} \Rightarrow w = xcy, x \neq y^R; x, y \in \{a, b\}^*. \ x \neq y^R \Leftrightarrow x^R \neq y$. Выделим максимальную по длине общую часть τ длины i у слов x^R и y: $x^R = \tau x_1, y = \tau y_1, \ x_1 \neq y_1$. Тогда $x = x_1^R \tau^R, w = xcy = x_1^R \tau^R c \tau y_1$.
 - і. Пусть $|x_1| > 0$. $(q_0, w, Z) \equiv (q_0, x_1^R \tau^R c \tau y_1, Z) \underset{|x_1| > 0}{\overset{4a}{\vdash}} (q_0, c \tau y_1, U_r(\tau x_1) Z) \overset{4b}{\vdash} (q_1, \tau y_1, U_r(\tau x_1) Z) \overset{|x_1| > 0}{\equiv}$ $\equiv (q_1, \tau y_1, \tau U_r(x_1) Z) \overset{4c}{\vdash} (q_1, y_1, U_r(x_1) Z)$.
 - А. Пусть $|y_1| > 0$, $x_1[1] \neq y_1[1]$. Обозначим $y_1 = y^1...y^l$, $\forall i \in \overline{1,l} \hookrightarrow y^i \in \{a,b\}^*$ Тогда $(q_1,y_1,U_r(x_1)Z) \equiv (q_1,y^1...y^l,U_r(x_1)Z) \stackrel{4d}{\vdash} (q_2,y^2...y^l,U_r(x_1)Z) \stackrel{4e}{\vdash} (q_2,\varepsilon,U_r(x_1)Z).$ $q_2 \in F \Rightarrow \underline{w} \in L(\mathcal{A})$.
 - В. Пусть $|y_1| = 0$. Тогда $w = x_1^R \tau^R c \tau y_1 \equiv x_1^R \tau^R c \tau \Rightarrow (q_0, w, Z) \equiv (q_0, x_1^R \tau^R c \tau, Z) \underset{|x_1| > 0}{\overset{4a}{\vdash}} (q_0, c \tau, \tau U_r(x_1) Z) \underset{|x_1| > 0}{\overset{4b}{\vdash}} (q_1, \varepsilon, U_r(x_1) Z).$ $q_1 \in F \Rightarrow \underline{w} \in L(A)$
 - іі. Пусть $|x_1|=0$. Тогда $w=\tau^R c \tau y_1,\ y_1\in\{a,b\}^*.\ x^R \neq y\Rightarrow \tau\neq \tau y_1\Rightarrow |y_1|>0\Rightarrow y_1=\varkappa \Psi,\ \varkappa\in\{a,b\}$
 - $\text{A. } |\tau| > 0 \Rightarrow \tau = \tau_0 \sigma, \ \sigma \in \{a,b\}. \ \text{Получаем} \ (q_0,w,Z) \equiv (q_0,\tau^R c \tau y_1,Z) \overset{4a}{\underset{|\tau|>0}{\vdash}} (q_0,c \tau y_1,U_r(\tau)Z) \overset{4b}{\underset{|\tau|>0}{\vdash}} (q_1,\tau y_1,U_r(\tau)Z) \equiv (q_1,\tau_0 \sigma y_1,\tau_0 U_r(\sigma)Z) \overset{4c}{\overset{4c}{\vdash}} (q_1,\sigma y_1,U_r(\sigma)Z) \overset{4f}{\overset{4f}{\vdash}} (q_3,y_1,Z) \equiv (q_3,\varkappa \Psi,Z) \overset{4g}{\overset{4g}{\vdash}} (q_4,\Psi,Z) \overset{4h}{\overset{4h}{\vdash}} (q_4,\varepsilon,Z). \ q_4 \in F \Rightarrow \underline{w} \in L(\mathcal{A})$
 - B. $|\tau| = 0 \Rightarrow w = x_1^R \tau^R c \tau y_1 \equiv c y_1 \Rightarrow (q_0, w, Z) \equiv (q_0, c y_1, Z) \stackrel{4i}{\vdash} (q_3, y_1, Z) \equiv (q_3, \varkappa \Psi, Z) \stackrel{4g}{\vdash} (q_4, \Psi, Z) \stackrel{4h}{\vdash} (q_4, \varepsilon, Z).$ $q_4 \in F \Rightarrow \underline{w} \in L(\mathcal{A})$
- 5. Докажем, что $L(\mathcal{A})\subseteq L$. Пусть $w\in L(\mathcal{A})\Rightarrow (q_0,w,Z)\vdash^* (q,\varepsilon,\gamma),\ q\in F$:
 - (а) $q=q_1$. В q_1 прочитываются a,b. Переходы в q_1 есть только из q_0 по c. В q_0 прочитываются символы a,b. Значит, $w=xcy,\,x,y\in\{a,b\}^*$. Если $x=\varepsilon$, то был совершен переход $q_0\overset{c,Z/Z}{\longrightarrow}q_3$ противоречие. Автомат детерминированный, поэтому цепочка конфигураций при выводе w имеет вид $(q_0,w,Z)\equiv (q_0,xcy,Z)\overset{4a}{\models}(q_0,cy,U_r(x^R)Z)\overset{4b}{\models}(x|>0)$ $(q_1,y,U_r(x^R)Z)$. Выделим максимальную общую часть от начала для слов x^R и y: $x^R=\tau x_1,\,y=\tau y_1,\,x_1\neq y_1$. і. $|\tau|=0,|x_1|=0\Rightarrow |x|=0$ противоречие
 - ії. $|\tau| > 0, |x_1| = 0 \Rightarrow \tau = \tau_0 \sigma, \ \sigma \in \{a,b\}$. $\boxed{=} (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \overset{4c}{\vdash}^* (q_1, \sigma y_1, U_r(\sigma) Z) \overset{4f}{\vdash} (q_3, \ldots) \underline{\text{противоречие}}, \ \text{из } q_3$ нет переходов в q_1 .
 - ііі. $|\tau| \geqslant 0, |x_1| > 0$. Тогда $\equiv (q_1, \tau y_1, \tau U_r(x_1)Z) \stackrel{4c}{\vdash^*} (q_1, y_1, U_r(x_1)Z) \boxed{=_1}$. а. $|y_1| = 0 \Rightarrow \boxed{=_1} (q_1, \varepsilon, U_r(x_1))$. Тогда $w = \underbrace{x_1^R \tau^R}_x c \underbrace{\tau y_1^R}_y, x^R = \tau x_1 \neq \tau = y \Rightarrow \underline{w \in L}$.
 - b. $|y_1| > 0$. Тогда $x_1[1] \neq y_1[1]$, и =1 $(q_1, y_1, U_r(x_1)Z) \mapsto 0$ $(q_3, ...)$ 1 $(q_3, ...)$ 2 $(q_3, ...) -$
 - (b) $q=q_2$. В q_2 есть переходы только из q_1 , в q_2 прочитываются a,b. $5a\Rightarrow w=xcy, |x|\neq 0, x,y\in \{a,b\}^*$. При переходе в q_2 прочитывается символ, поэтому |y|>0. Аналогично 5a выделим общую часть $x^R=\tau x_1,y=\tau y_1$. Аналогично 5a (|x|>0) получаем $(q_0,w,Z)\vdash^* (q_1,\tau y_1,U_r(\tau x_1)Z)$. Рассмотрим случаи:
 - і. $|\tau| = 0, |x_1| = 0 \Rightarrow |x| = 0$ противоречие
 - іі. $|\tau| > 0, |x_1| = 0 \Rightarrow \tau = \tau_0 \sigma, \ \sigma \in \{a,b\}.$ $\boxed{=} (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \overset{4c}{\vdash^*} (q_1, \sigma y_1, U_r(\sigma) Z) \overset{4f}{\vdash} (q_3, \ldots) \underline{\text{противоречие}}, \ \text{из} \ q_3$ нет переходов в q_2 .
 - ії. $|\tau| \geqslant 0, |x_1| > 0$. Тогда $= (q_1, \tau y_1, \tau U_r(x_1)Z) \stackrel{4c}{\vdash^*} (q_1, y_1, U_r(x_1)Z) = 1$.
 - а. $|y_1|=0\Rightarrow \boxed{=_1}(q_1,\varepsilon,U_r(x_1))$. В 5a было показано, что автомат остановится в q_1 противоречие.
 - b. $|y_1| > 0$. Тогда $x_1[1] \neq y_1[1]$. Обозначим $x_1 = \sigma_1 x_1^0, \ y_1 = \sigma_2 y_1^0, \ \mathbf{u} = 1 \ (q_1, \sigma_1 y_1^0, U_r(\sigma_2 x_1^0) Z) \overset{4d}{\vdash} (q_3, y_1^0, U_r(x_1^0) Z) \overset{4e}{\vdash} (q_3, \varepsilon, U_r(x_1^0) Z) \ (nocnedhue\ nepexodu \ возможны \ moлько\ npu\ x_1^0 \neq \varepsilon).$ Получаем $x_1 \neq y_1 \Rightarrow x^R \neq y \Rightarrow \underline{w} \in \underline{L}$.

 $E \to A$

- (c) $q=q_4$. В q_4 прочитываются a,b; в q_4 есть переходы только из $q_3 \stackrel{b,Z/Z}{\longrightarrow} q_4$, в q_3 есть переходы только из $p \in \{q_0,q_1\}$. Рассмотрим случаи:
 - і. $p=q_0$. Если в q_0 были прочитаны символы из $\{a,b\}$, то на верхушке стека не $Z\Rightarrow$ переход в q_3 не мог быть совершен. Получаем, что $w=cy, y\in\{a,b\}^*$. Но при переходе в q_4 из q_3 прочитывается хотя бы один символ, поэтому $|y| > 0 \Rightarrow \underline{w \in L}$
 - іі. $p=q_1.\ 5b\Rightarrow w=xcy,\ |x|>0,\ x,y\in\{a,b\}^*.$ Аналогично 5b разобьем $x^R=\tau x_1,\ y=\tau y_1,$ рассмотрим случаи: А. $|\tau| = 0, |x_1| = 0 \Rightarrow |x| = 0$ — противоречие
 - В. $|\tau| > 0, |x_1| = 0 \Rightarrow \tau = \tau_0 \sigma, \sigma \in \{a,b\}$. Аналогочино 5b получим $(q_0, w, Z) \vdash^* (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \vdash^{4c}$ $(q_1, \sigma y_1, U_r(\sigma)Z) \overset{4f}{\vdash} (q_3, y_1, Z)$. При переходе из q_3 в q_4 был прочитан символ, поэтому $|y_1| > 0$. Имеем $x^R \equiv \tau x_1 \equiv \tau \underset{|y_1|>0}{\neq} \tau y_1 \equiv y \Rightarrow \underline{w \in L}$.
 - C. $|\tau| \ge 0, |x_1| > 0$.
 - а. $|y_1| = 0$. В 5a было показано, что автомат остановится в q_1 противоречие.
 - b. $|y_1| > 0$. В 5b было показано, что автомат остановится в q_2 противоречие.

Задача 2

Задача 3

 $\Sigma \stackrel{\text{def}}{=} \{a, b\}, \ \Gamma \stackrel{\text{def}}{=} (N, \Sigma, P, S). \ N \stackrel{\text{def}}{=} \{A, B, C, D, E, F, G\} \ P:$ $S \to A|B|C|E|AG$ $C \to BaAbC|aGD|\varepsilon$ $A \to C|aABC|\varepsilon$ $F \rightarrow aBaaCbA|aGE$

1. Удалим бесплодные символы (для упрощения):

 $B \to bABa|aCbDaGb|\varepsilon$

- (a) $V_0 \stackrel{\text{def}}{=} \{a, b\}$
- (b) $V_1 = V_0 \cup \{A, B, C\} = \{a, b, A, B, C\}$
- (c) $V_2 = V_1 \cup \{S, F, E\} = \{a, b, S, A, B, C, F, E\}$
- (d) $V_3 = V_2 \cup \emptyset$

Тогда $V_3 \setminus \Sigma = \{S, A, B, C, F, E\}$. Удалим нетерминалы $N \setminus V_3 = \{D, G\}$ и правила, их содержащие: $N' \stackrel{\text{def}}{=} N \setminus V_3 = \{D, G\}$ $\{S, A, B, C, F, E\}, P'$:

> $S \to A|B|C|E|\mathcal{A}G$ $C \to BaAbC|aGD|\varepsilon$ $A \to C|aABC|\varepsilon$ $F \rightarrow aBaaCbA|aGE$ $B \to bABa|aCbDaGb|\varepsilon$ $E \to A$

- 2. Удалим недостижимые символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 = V_0 \cup \{A, B, C, E\}$
 - (c) $V_2 = V_1 \cup \varnothing$

 $N'' \stackrel{\text{def}}{=} \{A, B, C, E, S\}, P''$:

 $S \to A|B|C|E|\mathcal{A}G$ $C \to BaAbC|aGD|\varepsilon$ $A \to C|aABC|\varepsilon$ $F \rightarrow aBaaCbAaGE$ $B \to bABa|aCbDaGb|\varepsilon$ $E \to A$

1.2. Имеем P'':

 $S \to A|B|C|E$ $A \to C|aABC|\varepsilon$ $C \to BaAbC|\varepsilon$ $B \to bABa|\varepsilon$ $E \to A$

- 3. Удалим ε -правила:
 - (a) $A, B, C \varepsilon$ -порождающие.
 - (b) $S, E \varepsilon$ -порождающие $(S \to A, E \to A)$

Перепишем правила, содержащие ε -порождающие нетерминалы справа (2^k правил для каждого правила, содержащего $k \varepsilon$ -порождающих нетерминалов). P''':

 $S \to A|B|C|E$

 $A \to C|a|aC|aB|aBC|aA|aAC|aAB|aABC$

 $B \rightarrow ba|bBa|bAa|bABa$

 $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$ $E \rightarrow A$

Грамматика с такими правилами порождает язык $L(\Gamma) \setminus \{\varepsilon\}$.

- 4. Найдем цепные пары (множества пар соответствуют добавлениям на шагах алгоритма):
 - (a) (S,S), (A,A), (B,B), (C,C), (E,E)
 - (b) (S, A), (S, B), (S, C), (S, E); (A, C); (E, A)
 - (c) (S,C);(S,A);(E,C)
- 5. Выпишем новое множество правил P'''':

Цепная пара	Правила			
(S,S)			Ø	
(A,A)	A	\rightarrow	a aC aB aBC aA aAC aAB aABC	
(B,B)	B	\rightarrow	ba bBa bAa bABa	
(C,C)	C	\rightarrow	ab abC aAb aAbC Bab BabC BaAbC	
(E,E)			Ø	
(S,A)	S	\rightarrow	a aC aB aBC aA aAC aAB aABC	
(S,B)	S	\rightarrow	ba bBa bAa bABa	
(S,C)	S	\rightarrow	ab abC aAb aAbC Bab BabC BaAbC	
(S,E)			Ø	
(A,C)	A	\rightarrow	ab abC aAb aAbC Bab BabC BaAbC	
(E,A)	E	\rightarrow	a aC aB aBC aA aAC aAB aABC	
(S,C)	S	\rightarrow	ab abC aAb aAbC Bab BabC BaAbC	
(E,C)	E	\rightarrow	ab abC aAb aAbC Bab BabC BaAbC	

- 6. Нетерминалы A,B,C,E,S не являются бесплодными: $A \to a, B \to ba, C \to ab, E \to a, S \to ab.$
- 7. Удалим недостижимые:
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 \stackrel{\text{def}}{=} \{S, A, B, C\}$
 - (c) $V_2 = V_1$

Удаляем $E. P^{(5)}$:

 $B \rightarrow ba|bBa|bAa|bABa$

 $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$

8. Приведем к нормальной форме Хомского. Добавим нетерминалы $A', B', A' \to a, B' \to b$. Заменим в правилах a на A', b на B'. Подчеркнем слова из нетерминалов длины 2 в правых частях правил, которые заменим на новые нетерминалы:

 $B \rightarrow B'A'|\underline{B'B}A'|\underline{B'A}A'|\underline{B'A}\underline{BA'}$

 $C \rightarrow A'B'|A'B'C|A'AB'|A'AB'C|BA'B'|BA'B'C|BA'AB'C$

 $S \rightarrow a|A'C|A'B|\underline{A'B}C|A'A|\underline{A'A}C|\underline{A'A}B|\underline{A'A}\underline{BC}|B'A'|\underline{B'B}A'$

 $S \to \underline{B'A}A'|\underline{B'A}\,\underline{BA'}|A'B'|\underline{A'B'}\,C|\underline{A'A}B'|\underline{A'A}\,\underline{B'C}|\underline{BA'}\,\underline{B'}|\underline{BA'}\,\underline{B'C}|\underline{BA'}\,\underline{AB'}C$

 $A' \to a$

 $B' \to b$

Заменим подчеркнутые слова на новые нетерминалы:

 $A \to a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

 $B \to B'A'|X_7A'|X_8A'|X_8X_5$

 $C \to A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

 $S \rightarrow a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|B'A'|X_7A'|X_8A'|X_8X_5|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C|X_1B'|X_1X_2|X_1B'|X_1X_1A'|X_1B'|X_1X_2|X_1B'|X_1X_1A'|X_1A'$

$A' \to a$	$X_2 o BC$	$X_6 \to AB'$
$B' \to b$	$X_3 o A'B'$	$X_7 o B'B$
$X_0 \to A'B$	$X_4 o B'C$	$X_8 o B'A$
$X_1 \to A'A$	$X_5 o BA'$	$X_9 ightarrow X_5 X_6$

Задача 4

Задача 5

 $\Sigma_2 \stackrel{\text{def}}{=} \{[1,[2], \overline{\Sigma}_2 \stackrel{\text{def}}{=} \{]_1,]_2\}.$ $D_2 \stackrel{\text{def}}{=}$ язык ПСП над $\Sigma \stackrel{\text{def}}{=} \Sigma_2 \cup \overline{\Sigma}_2.$ $\Delta \stackrel{\text{def}}{=} \{a,b\}.$ $\varphi \colon \Sigma^* \longrightarrow \Delta^*, \ \varphi([1] \stackrel{\text{def}}{=} a, \ \varphi([2] \stackrel{\text{def}}{=} b, \ \varphi([1] \stackrel{\text{def}}{=} b, \ \varphi([1] \stackrel{\text{def}}{=} b, \ \varphi([2] \stackrel{\text{def}}{=} a).$ Доопределим φ до морфизма (см. решение упр. 2 из задания 3). $L \stackrel{\text{def}}{=} \varphi(D_2 \cap \Sigma^*) \equiv \varphi(D_2).$

- 1. Докажем, что $L\subseteq L'$. Пусть $\underline{y\in L}\equiv \varphi(D_2)$. Тогда $\exists x\in D_2\colon y=\varphi(x)$. $x-\Pi C\Pi\Rightarrow \forall i\in\overline{1,2}\hookrightarrow |x|_{[i}=|x|_{]i}$. Сложим равенства, получим: $|x|_{[1}+|x|_{]2}=|x|_{]1}+|x|_{[2}$. Пусть $x=x_1...x_m, \, \forall i\in\overline{1,m}\hookrightarrow x_i\in\Sigma$. Тогда $y=\varphi(x)=\varphi(x_1)...\varphi(x_m)=y_1...y_m, \, \forall i\in\overline{1,m}\hookrightarrow y_i=\varphi(x_i)\in\Delta$. Но из определения φ имеем $[1,]_2\xrightarrow{\varphi}a;]_1, [2\xrightarrow{\varphi}b$. Тогда $|y|_a=|x|_{[1}+|x|_{]2}\equiv |x|_{]1}+|x|_{[2}=|y|_b\Rightarrow \underline{y\in L'}$
- 2. Докажем, что $L'\subseteq L$ индукцией по длине $y\in L'$: $P(n)\stackrel{\text{def}}{=} \left[\forall y\in L'\colon |y|\leqslant n\hookrightarrow y\in L\right]$. Заметим, что $y\in L\Leftrightarrow y\in \varphi(D_2)\Leftrightarrow \varphi^{-1}(y)\cap D_2\neq\varnothing$. Поэтому будем искать прообраз слова y, принадлежащий D_2 .
 - (a) $n=0 \Rightarrow |y|=0 \Rightarrow y=\varepsilon \in L'$. Пусть $x\stackrel{\text{def}}{=} \varepsilon \in D_2$ (так как пустое слово ПСП). Тогда $y=\varepsilon \equiv \varphi(x) \Rightarrow y \in \varphi(D_2) \equiv L \Rightarrow P(0)$
 - (b) Фиксируем n > 0. Пусть P(n-1). Пусть $y \in L'$: |y| = n. Поскольку |y| = n > 0, и |y| четно (см. решение задачи 3 из задания 6), то $|y| \geqslant 2$. Рассмотрим первый и последний символы σ_l и σ_r слова $y \equiv \sigma_l y_1 \sigma_r$:
 - і. $\sigma_l = a, \, \sigma_r = b$. Тогда $y = ay_1b$. $|y_1| = n 2 \leqslant n 1 \overset{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_1x_1]_1$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 1 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_1x_1]_1) = \varphi([{}_1)\varphi(x_1)\varphi(]_1) = ay_1b \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - іі. $\sigma_l = b, \, \sigma_r = b$. Тогда $y = by_1a$. $|y_1| = n 2 \leqslant n 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_2x_1]_2$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 2 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_2x_1]_2) = \varphi([{}_2)\varphi(x_1)\varphi([{}_2) = by_1a \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - ііі. $\sigma_l = \sigma_r$. Тогда $y = \sigma y_1 \sigma \in L'$. Воспользуемся утверждением в рамочке из решения задачи 3 задания 6:

$$y = \sigma y_1 \sigma \in L' \Rightarrow \exists y_l, y_r \colon y = y_l y_r, |y_l|, |y_r| \in \overline{1, |y| - 2}, y_l, y_r \in L'$$

Ho $|y_l|, |y_r| \leqslant |y| - 2 = n - 2 \leqslant n - 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_l, x_r \in D_2 \colon y_l = \varphi(x_l), y_r = \varphi(x_r).$ Определим $x \stackrel{\text{def}}{=} x_l x_r$. Тогда $x \in D_2$ (конкатенация $\Pi \subset \Pi - \Pi \subset \Pi$), и $\varphi(x) = \varphi(x_l x_r) = \varphi(x_l) \varphi(x_r) = y_l y_r = y \Rightarrow \varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$

Задача 6