

characterization of free submonoids

 ${\bf Canonical\ name} \quad {\bf Characterization Of Free Submonoids}$

Date of creation 2013-03-22 18:21:32 Last modified on 2013-03-22 18:21:32 Owner Ziosilvio (18733) Last modified by Ziosilvio (18733)

Numerical id 7

Author Ziosilvio (18733)

Entry type Theorem Classification msc 20M05 Classification msc 20M10

Defines intersection of free submonoids is free

Let A be an arbitrary set, let A^* be the free monoid on A, and let e be the identity element (empty word) of A^* . Let M be a submonoid of A^* and let mgs(M) be its minimal generating set.

We recall the universal property of free monoids: for every mapping $f: A \to M$ with M a monoid, there exists a unique morphism $\phi: A^* \to M$ such that $\phi(a) = f(a)$ for every $a \in A$.

Theorem 1 The following are equivalent.

- 1. M is a free submonoid of A^* .
- 2. Any equation

$$x_1 \cdots x_n = y_1 \cdots y_m , x_1, \dots, x_n, y_1, \dots, y_m \in \operatorname{mgs}(M)$$
 (1)

has only the trivial solutions $n = m, x_1 = y_1, \dots, x_n = y_n$.

3. For every $w \in A^*$, if $p, q \in M$ exist such that $pw, wq \in M$, then $w \in M$.

From point ?? of Theorem ?? follows

Corollary 1 An intersection of free submonoids of A^* is a free submonoid of A^* .

As a consequence of Theorem ??, there is no Nielsen-Schreier theorem for monoids. In fact, consider $A = \{a, b\}$ and $Y = \{a, ab, ba\} \subseteq A^*$: then $mgs(Y^*) = Y$, but $x_1x_2 = y_1y_2$ has a nontrivial solution over Y, namely, (ab)a = a(ba).

We now prove Theorem ??.

Point ?? implies point ??. Let $f: mgs(M) \to B$ be a bijection. By the universal property of free monoids, there exists a unique morphism $\phi: B^* \to M$ that extends f^{-1} ; such a morphism is clearly surjective. Moreover, any equation $\phi(b_1 \cdots b_n) = \phi(b'_1 \cdots b'_m)$ translates into an equation of the form (??), which by hypothesis has only trivial solutions: therefore n = m, $b_i = b'_i$ for all i, and ϕ is injective.

Point ?? implies point ??. Suppose the existence of $p, q \in M$ such that $pw, wq \in M$ implies $w \in A^*$ is actually in M. Consider an equation of the form (??) which is a counterexample to the thesis, and such that the length of the compared words is minimal: we may suppose x_1 is a prefix of y_1 , so that $y_1 = x_1w$ for some $w \in A^*$. Put $p = x_1, q = y_2 \cdots y_m$: then

 $pw = y_1$ and $wq = x_2 \cdots x_n$ belong to M by construction. By hypothesis, this implies $w \in M$: then $y_1 \in \text{mgs}(M)$ equals a product x_1w with $x_1, w \in M$ —which, by definition of mgs(M), is only possible if w = e. Then $x_1 = y_1$ and $x_2 \cdots x_n = y_2 \cdots y_m$: since we had chosen a counterexample of minimal length, $n = m, x_2 = y_2, \ldots, x_n = y_n$. Then the original equation has only trivial solutions, and is not a counterexample after all.

Point ?? implies point ??. Let $\phi: B^* \to M$ be an isomorphism of monoids. Then clearly $\operatorname{mgs}(M) \subseteq \phi(B)$; since removing $m = \phi(b)$ from $\operatorname{mgs}(M)$ removes $\phi(b^*)$ from M, the equality holds. Let $w \in A^*$ and let $p, q \in M$ satisfy $pw, wq \in M$: put $x = \phi^{-1}(p), \ y = \phi^{-1}(q), \ r = \phi^{-1}(pw), \ s = \phi^{-1}(wq)$. Then $\phi(xs) = \phi(ry) = pwq \in M$, so xs = ry: this is an equality over B^* , and is satisfied only by r = xu, s = uy for some u. Then $w = \phi(u) \in M$.

References

[1] M. Lothaire. Combinatorics on words. Cambridge University Press 1997.