Assignment#1(Artificial Neural Network)

15 Points

Due Date: 27 Sep 2023, 11.59 PM

Instructions:

You are given a medical cost dataset named insurance.csv. You are a ML engineer working in an insurance company. The dataset contains the following variables:

Independent Variables:

age: age of primary beneficiary

sex: insurance contractor gender, female, male

bmi: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height,

objective index of body weight (kg/m^2) using the ratio of height to weight, ideally 18.5 to 24.9

children: Number of children covered by health insurance / Number of dependents

smoker: Smoking

region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.

Dependent Variable:

charges: Individual medical costs billed by health insurance

The Ask:

Analyse the given dataset and build a NN/DNN to predict the medical cost incurred by individuals.

1. Perform an extensive exploratory data analysis (EDA) and provide the preliminary investigation of the dataset by discovering atleast five patterns in the data.

- 2. Perform all the steps that are crucial for ensuring that the data fed into your models is of high quality and suitable for your needs.
- 3. Build a neural network following the 5 steps in the NN model life-cycle as shown in figure 1 below.
- 4. Use TensorBoard for visualization of model performance.
- 5. Write a conclusion and recommendation.

Figure 1: Life Cycle of NN

Rubric

Criteria	Excellent (5)	Good (4)	Satisfactory (3)	Needs Improvement
				(1-2)
Exploratory	Comprehensive	Good analysis	Basic analysis with 3-	Less than 3
Data Analysis	analysis with over 5	with 5 patterns,	4 patterns, limited	patterns, poor or
(EDA)	insightful patterns,	good visualization,	visualization, and	no visualization,
	excellent	and some	basic interpretation.	and lacking
	visualization, and	interpretation.		interpretation.
	interpretation.			
Data Quality and	Comprehensive data	Good data	Basic data handling	Poor or no data
Preprocessing	cleaning, scaling,	handling and	and feature selection	handling and
	encoding, and	feature selection	without justification.	feature selection.
	feature selection	with some		
	with justification.	justification.		
Neural Network	Excellent	Good architecture	Basic architecture and	Poor architecture
Model Life-cycle	architecture,	and training with	training without	and training, or
and TensorBoard	compilation,	some justification	justification. Used	unjustified
Visualization	training, evaluation,	and used	TensorBoard.	choices. Did not
	and fine-tuning with	TensorBoard.		use TensorBoard.
	justification and used			
	TensorBoard.			
Conclusion and	Clear,	Good summary	Basic summary with	Poor or unclear
Recommendation	comprehensive	with some	general	summary, lacking
	conclusion with	recommendations	recommendations.	recommendations
	actionable	and ethical points.		and ethical
	recommendations			considerations.

and ethical		
considerations.		

Submission Format:

In the DC Connect, post a ran jupyter notebook file. Use the markdown cell in jupyter notebook to explain your findings, writing sections, subsections etc. Use the Code cell in jupyter notebook to write the python code.

[Any submission other than the format of a notebook file(.ipynb) will be graded to zero.]

Academic Integrity and Late submission:

https://durhamcollege.ca/mydc/learning-resources/academic-integrity

Assignments are due by the due date announced in class and posted on DC Connect. At his or her own discretion, and depending on the nature of the assignment, each professor will provide a facility for the submission of late assignments up to a maximum of 72 hours after the assignment due date. All allowed late submissions will be assessed a penalty of 25% of the total possible grade for the assignment. Assignments should be submitted on time, on a regular basis, to enable you to stay on track within the class.

Any violation of academic integrity will not be accepted and will be given a grade of zero (0) and reported. Find more information on academic integrity here