МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №3

по дисциплине: Исследование операций тема: «Модификации симплекс метода. Методы искусственного базиса и больших штрафов»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: проф. Вирченко Юрий Петрович

Лабораторная работа №3

Модификации симплекс метода. Методы искусственного базиса и больших штрафов.

Цель работы: изучение методов искусственного базиса и больших штрафов решения задач ЛП в канонической форме, не подготовленных к работе симплекс-методом в чистом виде.

Вариант 10

$$z = 10x_1 - 4x_2 + x_3 + 7x_4 - 5x_5 \to max;$$

$$\begin{cases} 2x_1 - x_2 + x_3 + 3x_4 + x_5 = 15, \\ x_1 + 4x_2 + x_3 + x_4 - 2x_5 = 46, \\ -x_1 + 4x_2 + 6x_3 + 3x_4 - 8x_5 = 48, \end{cases}$$

$$x_i \ge 0 (i = \overline{1, 5}).$$

Задание 1

Изучить метод и алгоритм искусственного базиса и составить программу решения задачи ЛП этим методом.

Блок-схемы:

solveSystemOfLinearEquationsArtificialBasis(matrix, function) Получаем расширенную матрицу для решения вспомогательной задачи (вызов getDataForAuxTask) Решаем полученную вспомогательную задачу симплекс методом (вызов solveSimplexMethodMaxRaw) Ответ для вспомогательной функции = 0 Выбрасываем ошибку решения нет Копируем полученную матрицу в исходную, обрезая столбцы с искусственными коэффициентами Определяем, какие переменные можно внести вместо искусственных переменных. Переменные в filterIndices могут их заменить, в requiredIndices - должны остаться в базисе. Приводим матрицу к новому базису, учитывая filterIndices и requiredIndices (вызов getAllBasises) Возможно ли привести к такому базису? Выбрасываем ошибку решения нет Вызываем симплекс метод на преобразованной матрице (вызов solveSimplexMethodMaxRaw) Вернуть результат вызова симплекс метода

Исходный код:

```
#pragma once
#include <vector>
#include <algorithm>
#include <tuple>
template <std::size_t T, std::size_t MatrixLines, std::size_t NewMatrixLength = T + MatrixLines>
std::tuple<std::vector<std::array<<mark>double</mark>, NewMatrixLength>>, std::array<<mark>double</mark>, NewMatrixLength>, std::vector<<mark>int</mark>>>
getDataForAuxTask(std::vector<std::array<<mark>double</mark>, T>> matrix, std::array<<mark>double</mark>, T> initialFunc = {}, <mark>double</mark> M = 1) {
    // Инициализируем расширенную матрицу, функцию, массив индексов базовых переменных
    std::vector<std::array<double, NewMatrixLength>> newMatrix(MatrixLines);
    std::array<double, NewMatrixLength> newFunc = {};
    for (int i = 0; i < initialFunc.size() - 1; i++)</pre>
        newFunc[i] = initialFunc[i];
    newFunc[NewMatrixLength - 1] = initialFunc.back();
    std::vector<int> baseIndices;
   // Для каждой строчки исходной матрицы
    for (int i = 0; i < matrix.size(); i++) {</pre>
        // Если свободный коэффициент в матрице < 0, умножаем строку і на -1
        if (matrix[i][T - 1] < 0)</pre>
            for (int j = 0; j < T; j++)
                 matrix[i][j] *= -1;
        // Копируем из исходной матрицы строку
```

```
// в новую матрицу, формируем
        // новую функцию, складывая
       // коэффициенты, умноженные на М
       int j = 0;
       for (; j < matrix[0].size() - 1; j++) {</pre>
            newMatrix[i][j] = matrix[i][j];
           newFunc[j] += M * matrix[i][j];
       }
       // Добавляем искусственные переменные в новую матрицу
       for (int k = 0; k < matrix.size(); k++) {</pre>
            if (k == i) newMatrix[i][j + k] = 1.;
            else newMatrix[i][j + k] = 0;
       }
       // Добавляем в матрицу и функцию свободные переменные
       newMatrix[i][T + MatrixLines - 1] = matrix[i][T - 1];
       newFunc[T + MatrixLines - 1] += M * matrix[i][T - 1];
       // Добавляем в массив базовых индексов базовую переменную
       baseIndices.push_back(T + i - 1);
   }
   // Возвращаем матрицу, преобразованную функцию и базис
    return {newMatrix, newFunc, baseIndices};
}
template <std::size_t T, std::size_t MatrixLines>
double solveSystemOfLinearEquationsArtificialBasis(std::vector<std::array<double, T>>& matrix, std::array<double, T>&
\hookrightarrow function) {
   // Получаем расширенную матрицу для решения вспомогательной задачи
   auto expandedMatrix = getDataForAuxTask<T, MatrixLines>(matrix);
   auto newMatrix = std::get<0>(expandedMatrix);
   auto baseIndices = std::get<2>(expandedMatrix);
   // Решаем полученную вспомогательную задачу симплекс методом
   double ans = solveSimplexMethodMaxRaw(newMatrix, std::get<1>(expandedMatrix), &baseIndices);
   // Если ответ для всп. функции не равен нулю - выбрасываем ошибку, матрицу привести к нужному виду
   // не получится
   if (std::abs(ans) > 0.00000001)
       throw std::invalid_argument("No basis found");
   // Копируем полученную матрицу в исходную, обрезая столбцы с
   // искусственными коэффициентами
   for (int i = 0; i < matrix.size(); i++) {</pre>
       for (int j = 0; j < matrix[i].size() - 1; j++) {</pre>
           matrix[i][j] = newMatrix[i][j];
       }
       matrix[i][T - 1] = newMatrix[i].back();
   }
   // Определяем, какие переменные можно внести вместо искусственных переменных.
   // Переменные в filterIndices могут их заменить,
```

```
// в requiredIndices - должны остаться в базисе.
std::vector<int> filterIndices;
std::vector<int> requiredIndices;
int cIndex = 0;
std::sort(baseIndices.begin(), baseIndices.end());
for (int i = 0; i < T - 1 && cIndex < baseIndices.size(); i++) {</pre>
    if (baseIndices[cIndex] > i) {
        filterIndices.push_back(i);
    } else {
        requiredIndices.push_back(i);
        cIndex++;
    }
}
// Приводим матрицу \kappa новому базису, учитывая filterIndices u requiredIndices
auto b = getAllBasises(matrix, &filterIndices, &requiredIndices);
// Если к таковому привести невозможно, выбрасываем ошибку, матрицу привести к нужному виду
// не получится
if (b.empty())
    throw std::invalid_argument("No basis found");
// Вызовем симплекс метод на преобразованной матрице
return solveSimplexMethodMaxRaw(b[∅].matrix, function);
```

Ссылка на репозиторий

Ссылка на репозиторий

Результаты выполнения программы:

Задание 2

Изучить метод и алгоритм больших штрафов и составить программу решения задачи ЛП этим методом.

Блок-схемы:

Исходный код:

```
#pragma once
#include <vector>
#include <tuple>
template <std::size_t T, std::size_t MatrixLines>
double solveSystemOfLinearEquationsBigPenalties(std::vector<std::array<double, T>>& matrix, std::array<double, T>&
  function) {
   // Сформируем М, где М = сумма коэффециентов ф-ции по модулю
   double M = 0;
   for (auto& v : function) {
       M += std::abs(v);
   }
   // Получаем расширенную матрицу для решения вспомогательной задачи с заданным М и исходной функцией function
   auto expandedMatrix = getDataForAuxTask<T, MatrixLines>(matrix, function, M);
   // Вызовем симплекс метод на преобразованной матрице
   return solveSimplexMethodMaxRaw(std::get<0>(expandedMatrix), std::get<1>(expandedMatrix));
}
```

Ссылка на репозиторий

Ссылка на репозиторий

Результаты выполнения программы:

```
66.3636
```

Задание 3

Запрограммировать изученные алгоритмы и отладить соответствующие программы. В рамках подготовки тестовых данных решить вручную выбранную задачу.

Метод больших штрафов:

Введём дополнительную задачу

$$z' = -y_1 - y_2 - y_3 \to max;$$

$$\begin{cases} 2x_1 - x_2 + x_3 + 3x_4 + x_5 + y_1 = 15, \\ x_1 + 4x_2 + x_3 + x_4 - 2x_5 + y_2 = 46, \\ -x_1 + 4x_2 + 6x_3 + 3x_4 - 8x_5 + y_3 = 48, \\ x_i \ge 0 (i = \overline{1, 5}), y_j \ge 0 (j = \overline{1, 3}). \end{cases}$$

Составим симплекс таблицу:

Баз. пер.	Св. чл.	x_1	x_2	$x_3 \downarrow$	x_4	x_5	y_1	y_2	y_3
y_1	15	2	-1	1	3	1	1	0	0
y_2	46	1	4	1	1	-2	0	1	0
$\leftarrow y_3$	48	-1	4	6	3	-8	0	0	1
z'	-109	-2	-7	-8	-7	9	0	0	0

Баз. пер.	Св. чл.	$x_1 \downarrow$	x_2	x_3	x_4	x_5	y_1	y_2	y_3
$\leftarrow y_1$	7	$2\frac{1}{6}$	$-1\frac{2}{3}$	0	$2\frac{1}{2}$	$2\frac{1}{3}$	1	0	$-\frac{1}{6}$
y_2	38	$1\frac{1}{6}$	$3\frac{1}{3}$	0	$\frac{1}{2}$	$-\frac{2}{3}$	0	1	$-\frac{1}{6}$
x_3	8	$-\frac{1}{6}$	$\frac{2}{3}$	1	$\frac{1}{2}$	$-1\frac{1}{3}$	0	0	$\frac{1}{6}$
z'	-45	$-3\frac{1}{3}$	$-1\frac{2}{3}$	0	-3	$-1\frac{2}{3}$	0	0	$1\frac{1}{3}$

Баз. пер.	Св. чл.	x_1	$x_2 \downarrow$	x_3	x_4	x_5	y_1	y_2	y_3
x_1	$3\frac{3}{13}$	1	$-\frac{10}{13}$	0	$1\frac{2}{13}$	$1\frac{1}{13}$	$\frac{6}{13}$	0	$-\frac{1}{13}$
$\leftarrow y_2$	$34\frac{3}{13}$	0	$4\frac{3}{13}$	0	$-\frac{11}{13}$	$-1\frac{12}{13}$	$-\frac{7}{13}$	1	$-\frac{1}{13}$
x_3	$8\frac{7}{13}$	0	$\frac{7}{13}$	1	$\frac{9}{13}$	$-1\frac{2}{13}$	$\frac{1}{13}$	0	$\frac{2}{13}$
z'	$-34\frac{3}{13}$	0	$-4\frac{3}{13}$	0	$\frac{11}{13}$	$1\frac{12}{13}$	$1\frac{7}{13}$	0	$1\frac{1}{13}$

Баз. пер.	Св. чл.	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
x_1	$9\frac{5}{11}$	1	0	0	1	$\frac{8}{11}$	$\frac{4}{11}$	$\frac{2}{11}$	$-\frac{1}{11}$
x_2	$8\frac{1}{11}$	0	1	0	$-\frac{1}{5}$	$-\frac{5}{11}$	$-\frac{7}{55}$	$\frac{13}{55}$	$-\frac{1}{55}$
x_3	$4\frac{2}{11}$	0	0	1	$\frac{4}{5}$	$-\frac{10}{11}$	$\frac{8}{55}$	$-\frac{7}{55}$	$\frac{9}{55}$
z'	0	0	0	0	0	1	1	1	0

Привели матрицу к необходимому виду, в базисе искусственных переменных не осталось, поэтому доволнительных преобразований не нужно. Получим решение задачи при помощи симплекс метода:

Баз. пер.	Св. чл.	x_1	x_2	x_3	$x_4 \downarrow$	x_5
x_1	$9\frac{5}{11}$	1	0	0	1	$\frac{8}{11}$
x_2	$8\frac{1}{11}$	0	1	0	$-\frac{1}{5}$	$-\frac{5}{11}$
$\leftarrow x_3$	$4\frac{2}{11}$	0	0	1	$\frac{4}{5}$	$-\frac{10}{11}$
z	0	-10	4	-1	-7	5

Баз. пер.	Св. чл.	x_1	x_2	x_3	x_4	$x_5 \downarrow$
$\leftarrow x_1$	$4\frac{5}{22}$	1	0	$-1\frac{1}{4}$	0	$1\frac{19}{22}$
x_2	$9\frac{3}{22}$	0	1	$\frac{1}{4}$	0	$-\frac{15}{22}$
x_4	$5\frac{5}{22}$	0	0	$1\frac{1}{4}$	1	$-1\frac{3}{22}$
z	$36\frac{\bar{13}}{22}$	-10	4	$7\frac{3}{4}$	0	$-2\frac{21}{22}$

Баз. пер.	Св. чл.	$x_1 \downarrow$	x_2	x_3	x_4	x_5
$\leftarrow x_5$	$2\frac{11}{41}$	$\frac{22}{41}$	0	$-\frac{55}{82}$	0	1
x_2	$10\frac{28}{41}$	$\frac{15}{41}$	1	$-\frac{17}{82}$	0	0
x_4	$7\frac{33}{41}$	$\frac{25}{41}$	0	$\frac{20}{41}$	1	0
z	$43\frac{12}{41}$	$-8\frac{17}{41}$	4	$5\frac{63}{82}$	0	0

Баз. пер.	Св. чл.	x_1	x_2	$x_3 \downarrow$	x_4	x_5
x_1	$4\frac{5}{22}$	1	0	$-1\frac{1}{4}$	0	$1\frac{19}{22}$
x_2	$9\frac{3}{22}$	0	1	$\frac{1}{4}$	0	$-\frac{15}{22}$
$\leftarrow x_4$	$5\frac{5}{22}$	0	0	$1\frac{1}{4}$	1	$-1\frac{3}{22}$
z	$78\frac{19}{22}$	0	4	$-4\frac{3}{4}$	0	$15\frac{15}{22}$

Баз. пер.	Св. чл.	x_1	x_2	x_3	x_4	x_5
x_1	$9\frac{5}{11}$	1	0	0	1	$\frac{8}{11}$
x_2	$8\frac{1}{11}$	0	1	0	$-\frac{1}{5}$	$-\frac{5}{11}$
x_3	$4\frac{2}{11}$	0	0	1	$\frac{4}{5}$	$-\frac{10}{11}$
z	$98\frac{8}{11}$	0	4	0	$3\frac{4}{5}$	$11\frac{4}{11}$

Ответ: $98\frac{8}{11}$

Метод большого штрафа: Аналогично прошлой задаче введём искусственные переменные. Для составления z_M положим, что M=27. Составим симплекс таблицу:

Баз. пер.	Св. чл.	x_1	x_2	$x_3 \downarrow$	x_4	x_5	y_1	y_2	y_3
y_1	15	2	-1	1	3	1	1	0	0
y_2	46	1	4	1	1	-2	0	1	0
$\leftarrow y_3$	48	-1	4	6	3	-8	0	0	1
z_M	-2943	-64	-185	-217	-196	248	0	0	0

Баз. пер.	Св. чл.	$x_1 \downarrow$	x_2	x_3	x_4	x_5	y_1	y_2	y_3
$\leftarrow y_1$	7	$2\frac{1}{6}$	$-1\frac{2}{3}$	0	$2\frac{1}{2}$	$2\frac{1}{3}$	1	0	$-\frac{1}{6}$
y_2	38	$1\frac{1}{6}$	$3\frac{1}{3}$	0	$\frac{1}{2}$	$-\frac{2}{3}$	0	1	$-\frac{1}{6}$
x_3	8	$-\frac{1}{6}$	$\frac{2}{3}$	1	$\frac{1}{2}$	$-1\frac{1}{3}$	0	0	$\frac{1}{6}$
z_M	-1207	$-100\frac{1}{6}$	$-40\frac{1}{3}$	0	$-87\frac{1}{2}$	$-41\frac{1}{3}$	0	0	$36\frac{1}{6}$

Баз. пер.	Св. чл.	x_1	$x_2 \downarrow$	x_3	x_4	x_5	y_1	y_2	y_3
x_1	$3\frac{3}{13}$	1	$-\frac{10}{13}$	0	$1\frac{2}{13}$	$1\frac{1}{13}$	$\frac{6}{13}$	0	$-\frac{1}{13}$
$\leftarrow y_2$	$34\frac{3}{13}$	0	$4\frac{3}{13}$	0	$-\frac{11}{13}$	$-1\frac{12}{13}$	$-\frac{7}{13}$	1	$-\frac{1}{13}$
x_3	$8\frac{7}{13}$	0	$\frac{7}{13}$	1	$\frac{9}{13}$	$-1\frac{2}{13}$	$\frac{1}{13}$	0	$\frac{2}{13}$
z_M	$-883\frac{5}{13}$	0	$-117\frac{5}{13}$	0	$28\frac{1}{13}$	$66\frac{7}{13}$	$46\frac{3}{13}$	0	$28\frac{6}{13}$

Баз. пер.	Св. чл.	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
x_1	$9\frac{5}{11}$	1	0	0	1	$\frac{8}{11}$	$\frac{4}{11}$	$\frac{2}{11}$	$-\frac{1}{11}$
x_2	$8\frac{1}{11}$	0	1	0	$-\frac{1}{5}$	$-\frac{5}{11}$	$-\frac{7}{55}$	$\frac{13}{55}$	$-\frac{1}{55}$
x_3	$4\frac{2}{11}$	0	0	1	$\frac{4}{5}$	$-\frac{10}{11}$	$\frac{8}{55}$	$-\frac{7}{55}$	$\frac{9}{55}$
z_M	$66\frac{4}{11}$	0	0	0	$4\frac{3}{5}$	$13\frac{2}{11}$	$31\frac{16}{55}$	$27\frac{41}{55}$	$26\frac{18}{55}$

Ответ: $66\frac{4}{11}$ **Вывод:** в ходе лабораторной работы разработали и отладили программу, находящую оптимальное решение в системе линейных уравнений для целевой функции, и использующей модификации симплекс метода: искусственный базис и большой штраф.