MA 201 Complex Analysis Mid Semester Examination IIT Dharwad (Autumn 2021)

Total Marks: 30 **Date & Time:** 04 September 2021, 03:00 pm to 04:25 p.m.

Part 1

- (1) **[3M]** (a) Show that the function $u(x, y) = \sinh x \sin y$ is harmonic. Find its harmonic conjugate.
 - (b) Show that the function $u(x, y) = \cosh x \cos y$ is harmonic. Find its harmonic conjugate.
- (2) **[3M]** Discuss at which points on the complex plane the function given by $f(z) = z^2 + z\bar{z} + c(\bar{z})^2$ is analytic where c is the last two digits of your roll number (for example, if your roll number is 190010023, then c=23).
- (3) **[3M]** (a) Using the definition of contour integration compute $\int_C \overline{z} dz$ where C is the positively oriented boundary of the half disc $0 \le r \le 1$, $0 \le \theta \le \pi$.
 - (b) Using the definition of contour integration compute $\int_C \overline{z} dz$ where C is the positively oriented boundary of the half disc $0 \le r \le 1$, $\pi \le \theta \le 2\pi$.
- (4) **[2M]** (a) Find all the complex numbers z such that $\overline{e^{iz}} = -e^{i\overline{z}}$. (b) Find all the complex numbers z such that $\overline{e^{iz}} = e^{i\overline{z}}$.
- (5) **[2M]** Let *C* be the circle of radius 1/2 centered at *a* where *a* is the last two digits of your roll number (for example, if your roll number is 190010023, then a=23). Use Cauchy's theorem to show that $\int_C \frac{1}{z} dz = 0$. What is $\int_C \frac{1}{z-a} dz$? Justify your answer.
- (6) [2M] (a) Determine whether the function f(z) = Re(z) / (1+|z|) is continuous at 0. Justify your answer (in case f is continuous, prove using ε δ definition).
 (b) Determine whether the function f(z) = Im(z) / (1+|z|) is continuous at 0. Justify your answer (in case f is continuous, prove using ε δ definition).
- (7) **[1M]** Let Log(z) denotes the principal branch of the logarithm multifunction defined using the principal argument that lies in $[0,2\pi)$. Show that Log($(-1)^2$) $\neq 2$ Log(-1).

Part 2

- (1) **[3M]** Consider the complex valued function f defined from \mathbb{C} to \mathbb{C} by $f(z) = \sqrt{|x||y|}$. Show that the real and imaginary parts of f satisfies the CR equations at 0 but f is not differentiable at 0.
- (2) **[2M]** Let c be the last two digits of your roll number (for example, if your roll number is 190010023, then c=23). For $z \neq c$ consider the function f(z) = Log(z) where Log is the principal branch of the logarithm multifunction defined using the principal argument that lies in $[0,2\pi)$.

1

- (1) Describe the set of points where the function f is not continuous.
- (2) Find the largest open subset of \mathbb{C} where the function f is continuous.
- (3) **[2M]** (a) Let C denote the line segment from z=i to z=1. By using ML-inequality prove that $\left|\int_C \frac{1}{z^4} dz\right| \le 4\sqrt{2}$. (Hint: observe that of all the points on that line segment, the midpoint is the closest to the origin).

Bonus quetsion [1M] Compute $\int_C \frac{1}{z^4} dz$.

(b) Let C denote the line segment from z = i to z = 1. By using ML-inequality prove that $\left| \int_C \frac{1}{z^2} dz \right| \le 2\sqrt{2}$. (Hint: observe that of all the points on that line segment, the midpoint is the closest to the origin).

Bonus quetsion [1M] Compute $\int_C \frac{1}{z^2} dz$.

- (4) **[3M]** By finding the antiderivative, evaluate the integral $\int_{\gamma} e^{\pi z} dz$ where γ is any contour joining 0 and ic. Here c is the last two digits of your roll number (for example, if your roll number is 190010023, then c=23).
- (5) **[3M]** Suppose that u and v are real valued functions defined in a domain D such that u is a harmonic conjugate of v, and v is a harmonic conjugate of u. Then show that u and v are both constants.
- (6) **[2M]** (a) (1) Determine and sketch the image of the horizontal strip $0 \le y \le \pi/4$ under the exponential map.
 - (2) Find all the complex numbers z such that $z = (-1)^i$.
 - (b) (1) Determine and sketch the image of the vertical strip $0 \le x \le \pi/4$ under the exponential map.
 - (2) Find all the complex numbers z such that $z = (-1)^{-i}$.