Given:

Clock time (hr:min:sec)	00:00:00	0:59:12	2:01:46	2:58:55	3:47:01	4:13:00	5:36:17
Odometer reading (mi)	102.0	157.8	217.6	264.1	315.2	341.7	420.3
Time interval (hr)							
Distance (mi)							
Average speed (mph)							

Find:

- Fill out the table using finite difference equations.
- Only show work for one time interval, distance, and average speed.
- Find the overall average speed of the car.

Diagram:

Theory:

 $Time\ interval = \Delta t$, where t is the clock time.

Distance $(mi) = \Delta x$, where x is the odometer reading.

Average speed $(mph) = \Delta x/\Delta t$.

$$Average = \frac{x_1 + \dots + x_n}{n}$$

Assumption:

- The experiment was run during the day. If not, the car had energy stored.
- ΔT is changing.

Solution:

For first time interval:

$$\Delta t = t_2 - t_1 = 0.59:12 - 00:00:00 = 59 \text{ minutes and } 12 \text{ seconds} \cdot \frac{1 \text{ minute}}{60 \text{ seconds}}$$
 = 59.20 minutes $\cdot \frac{1 \text{ hour}}{60 \text{ minutes}} = 0.9867 \text{ hr}$

For first distance:

$$\Delta x = x_2 - x_1 = 157.8 \text{ mi} - 102.0 \text{ mi} = 55.80 \text{ mi}$$

For first average speed:

$$v = \Delta x/\Delta t = 55.80 \text{ mi} / 0.9867 \text{ hr} = 56.55 \text{ mph}$$

For overall average speed:

$$\overline{x} = \frac{56.55 + 57.33 + 48.82 + 63.74 + 61.19 + 56.63}{6} = 57.38 \text{ mph}$$

Clock time (hr:min:sec)	00:00:00	0:59:12	2:01:46	2:58:55	3:47:01	4:13:00	5:36:17
Odometer reading (mi)	102.0	157.8	217.6	264.1	315.2	341.7	420.3
Time interval (hr)	0.9867	1.043	0.9525	0.8017	0.4331	1.388	
Distance (mi)	55.80	59.80	46.50	51.10	26.50	78.60	
Average speed (mph)	56.55	57.33	48.82	63.74	61.19	56.63	

Rest of answer highlighted in above table

Given:

Time t, seconds	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Position x, meters	0.00	4.10	7.53	10.92	12.31	12.35	11.83	10.49	7.95

Find:

- Velocity and acceleration of the ball at t = 2, 3, 4, 5, 6 using
 - a) Forward finite difference
 - b) Backward finite difference
 - c) Centered finite difference
- Only show work for one velocity and one acceleration.

Diagram:

Theory:

For v₅ (velocity at position 5 given position):

Forward:
$$v_5 = \frac{x_6 - x_5}{t_6 - t_5}$$

Backward:
$$v_{5} = \frac{x_{5} - x_{4}}{t_{5} - t_{4}}$$

Centered:
$$v_5 = \frac{x_6 - x_4}{t_6 - t_4}$$

For a₅ use velocity instead of position:

Forward:
$$a_5 = \frac{v_6 - v_5}{t_6 - t_5}$$

Backward:
$$v_5 = \frac{v_5 - v_4}{t_5 - t_4}$$

Centered:
$$v_5 = \frac{v_6 - v_4}{t_6 - t_4}$$

Assumption:

- Δt is constant.
- Ball is rolling in a straight line.

Solution:

a) For forward finite difference at t = 3:

$$v_3 = \frac{x_4 - x_3}{t_4 - t_3} = \frac{12.31 - 10.92}{4.0 - 3.0} = 1.4 \, m/s$$

$$a_3 = \frac{v_4 - v_3}{t_4 - t_3} = \frac{0.040 - 1.39}{4.0 - 3.0} = -1.4 \, m/s^2$$

b) For backward finite difference at t = 3:

$$v_3 = \frac{x_3 - x_2}{t_3 - t_2} = \frac{10.92 - 7.53}{3.0 - 2.0} = 3.4 \text{ m/s}$$

$$a_3 = \frac{v_3 - v_2}{t_3 - t_2} = \frac{3.39 - 3.43}{3.0 - 2.0} = -0.040 \text{ m/s}^2$$

c) For centered finite difference at t = 3:

$$v_3 = \frac{x_4 - x_2}{t_4 - t_2} = \frac{12.31 - 7.53}{4.0 - 2.0} = 2.4 \text{ m/s}$$

$$a_3 = \frac{v_4 - v_2}{t_4 - t_2} = \frac{0.715 - 3.41}{4.0 - 2.0} = -1.3 \text{ m/s}^2$$

Time (seconds)	2.0	3.0	4.0	5.0	6.0
Position (meters)	7.53	10.92	12.31	12.35	11.83
Velocity (m/s) (forward)	3.4	1.4	0.040	-0.52	-1.3
Velocity (m/s) (backward)	3.4	3.4	1.4	0.040	-0.52
Velocity (m/s) (centered)	3.4	2.4	0.72	-0.24	-0.93
Acceleration (m/s^2) (forward)	-2.0	-1.4	-0.56	-0.82	-1.2
Acceleration (m/s^2) (backward)	-0.67	-0.040	-2.0	-1.4	-0.56
Acceleration (m/s^2) (centered)	-0.69	-1.3	-1.3	-0.82	-0.85

Given:

$$\tau = \mu \frac{du}{dy}$$
$$\mu = 1.8 \times 10^{-5} Ns/m^2$$

y (m)	0.000	0.00200	0.00600	0.0120	0.0180	0.0240
u (m/s)	0.000	0.067	0.572	2.291	5.047	9.041

Find:

- Use second order centered first finite difference method to find shear stress, τ (N/m^2), at y = 0.006, 0.012, and 0.018 m
- Answer: How do you think your answers would change if you use higher order finite differences?

Diagram:

Theory:

$$\frac{du}{dy} = \frac{u_2 - u_1}{y_2 - y_1}$$
$$\tau = \mu \frac{du}{dy}$$

Assumption:

- Constant dynamic viscosity
- Non-constant Δx

Ilan Sela 232007587 ENGR/PHYS 216-505

Solution:

For y = 0.0120 m:
$$du/dy = \frac{5.047 - 0.572}{0.0180 - 0.00600} \ 1/s = 373 \ 1/s$$

$$\tau = \mu \frac{du}{dy} = (1.8 \times 10^{-5} \ Ns/m^2) \cdot (373 \ 1/s) = 0.00671 \ N/m^2$$

y (m)	0.000	0.00200	0.00600	0.0120	0.0180	0.0240
u (m/s)	0.000	0.067	0.572	2.291	5.047	9.041
$\tau (N/m^2)$		0.00172	0.0040	0.00671	0.0101	

First order assumes that $\Delta x < 1$. A higher order means $(\Delta x)^n$, which approaches zero as n gets larger. Thus, as the order increases, τ will become more accurate.

Given:

$$f(x) = \frac{\ln(x) \cdot \sinh(x)}{e^{x}}$$

$$f'(1.5) = 0.336925$$

$$\varepsilon = \left| \frac{true \ value - estimated \ value}{true \ value} \right| \times 100\%$$

Find:

- Estimate the derivative numerically for the step size $\Delta x = 0.25$ using forward, backward, and centered first finite differences.
- Determine percent error between true and estimated values.
- Answer: what value of Δx would have to be used for the backward and forward finite differences to get the same percent error as the centered finite difference using $\Delta x = 0.25$?

Diagram:

Theory:

Forward first finite difference:

$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Backward first finite difference:

$$f'(x) = \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Centered first finite difference:

$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

Assumption:

- A smaller Δx will give a more accurate result.
- Sinh(x) is hyperbolic sine in f(x)

Solution:

At x = 1.5 and Δx = 0.25 for forward first finite difference:

$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(1.5) = \frac{f(1.5 + 0.25) - f(1.5)}{0.25} = \frac{f(1.75) - f(1.5)}{0.25} = \frac{0.27135 - 0.19263}{0.25} = \boxed{0.31488}$$

$$\varepsilon = \left| \frac{true \ value - estimated \ value}{true \ value} \right| \times 100\% = \left| \frac{0.336925 - 0.31488}{0.336925} \right| \times 100\% = \boxed{6.54299\%}$$

At x = 1.5 and Δx = 0.25 for backward first finite difference:

$$f'(x) = \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

$$f'(1.5) = \frac{f(1.5) - f(1.5 - 0.25)}{0.25} = \frac{f(1.5) - f(1.25)}{0.25} = \frac{0.19263 - 0.10241}{0.25} = \boxed{0.36088}$$

$$\varepsilon = \left| \frac{true \ value - estimated \ value}{true \ value} \right| \times 100\% = \left| \frac{0.336925 - 0.36088}{0.336925} \right| \times 100\% = \boxed{7.10989\%}$$

At x = 1.5 and Δx = 0.25 for forward first finite difference:

$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

$$f'(1.5) = \frac{f(1.5 + 0.25) - f(1.5 - 0.25)}{2(0.25)} = \frac{f(1.75) - f(1.25)}{0.5} = \frac{0.27135 - 0.10241}{0.5} = 0.33788$$

$$\varepsilon = \left| \frac{true \ value - estimated \ value}{true \ value} \right| \times 100\% = \left| \frac{0.336925 - 0.33788}{0.336925} \right| \times 100\% = 0.28344\%$$

What value of Δx would have to be used for the backward and forward finite differences to get the same (or smaller) percent error as the centered finite difference using $\Delta x = 0.25$?

Answer: $\Delta x = 0.0078125$ gives a smaller percent error for forward and backward finite differences.

Process: I kept diving Δx by 2 until both the forward and backward percent errors were the same or smaller than the centered finite difference at $\Delta x = 0.25$.

Forward:

$$f'(1.5) = \frac{f(1.5 + 0.0078125) - f(1.5)}{0.0078125} = \frac{f(1.5078125) - f(1.5)}{0.0078125} = \frac{0.19526 - 0.19263}{0.0078125} = 0.33664$$

$$\varepsilon = \left| \frac{true \ value - estimated \ value}{true \ value} \right| \times 100\% = \left| \frac{0.336925 - 0.33664}{0.336925} \right| \times 100\% = 0.08458\%$$

HW 2: Finite Differences 5 February 2022 Page 9 of 9 Ilan Sela 232007587 ENGR/PHYS 216-505

Backward:

$$f'(1.5) = \frac{f(1.5) - f(1.5 - 0.0078125)}{0.0078125} = \frac{f(1.5) - f(1.4921875)}{0.0078125} = \frac{0.19263 - 0.19000}{0.0078125} = 0.33664$$

$$\varepsilon = \left| \frac{true\ value\ -\ estimated\ value\ }{true\ value} \right| \times 100\% = \left| \frac{0.336925 - 0.33664}{0.336925} \right| \times 100\% = 0.08458\%$$

Do note: $\Delta x = 0.015625$ was the first value that gave only the forward finite difference a percent error below the centered finite difference.