US Housing Market Analysis

By: Rena Han & Cole Yang

Overview

For our Data Bootcamp project, we decided to study how the domestic housing market has evolved over the course of the last 19 years. Specifically, we wanted to take a look at changes in the demographic and economic factors related to housing price, such as the change in population and income per capita. To best analyze these relationships, we decided to consolidate the data on a county-specific level, which we believe will offer sufficient detail.

Because this analysis was only conducted on the US housing market, its findings are not applicable to the housing markets in other international countries. Furthermore, because there are many other factors that influence housing price beyond just population and income per capita (quality of education, weather, etc.), this analysis is far from conclusive. Nonetheless, we hope that our project can bring to life some interesting insights.

Data

The key elements of this project are the use of the Bureau of Economic Analysis' API and Zillow's housing data (coming from Zillow Research). These two sources will provide access to the above mentioned demographic and economic factors at the correct geographic level between the years of 1998 and 2017.

From BEA

regional accounts data on a county level (population and income per capita)

From Zillow

housing price data for single-family homes (in excel format)

Setup

In the following steps, we import the necessary modules

```
In [105]: import pandas as pd
import requests
import numpy as np
import matplotlib.pyplot as plt
import weightedcalcs as wc
import datetime as dt
import seaborn as sns
%matplotlib inline
```

Grabbing the data

Here we use a BEA API key (from class) to grab income per capita and population for all years between 1998 and 2017

```
In [106]: BEA_ID = "6BF79D8C-8042-4196-88DC-0E0C55B0C3B6"
    my_key = "https://APPS.BEA.gov/api/data?&UserID=" + BEA_ID

    data_set = "&method=GetData&" + "datasetname=RegionalIncome&"

    table_and_line_income = "TableName=CA1&LineCode=3&"

    table_and_line_population = "TableName=CA1&LineCode=2&"

    year = "Year=" + "1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 20 10, 2011, 2012, 2013, 2014, 2015, 2016, 2017" + "&"

    location = "GeoFips=COUNTY&"
    form = "ResultFormat=JSON"
```

Creating the income dataframe

```
In [108]: df_income.drop(['CL_UNIT', 'Code',"NoteRef", "UNIT_MULT"], axis=1, inp
lace = True)

df_income.rename(columns={"DataValue":"IncomePerCapita"}, inplace=True
)
```

In [109]: df_income.head(10)

Out[109]:

	IncomePerCapita	GeoFips	GeoName	TimePeriod
0	19,621	00000	United States	1990
1	20,030	00000	United States	1991
2	21,090	00000	United States	1992
3	21,733	00000	United States	1993
4	22,575	00000	United States	1994
5	23,607	00000	United States	1995
6	24,771	00000	United States	1996
7	25,993	00000	United States	1997
8	27,557	00000	United States	1998
9	28,675	00000	United States	1999

Creating the population dataframe

```
In [111]: population.head(10)
```

Out[111]:

	Pop	GeoFips	TimePeriod
0	249,622,814	00000	1990
1	252,980,941	00000	1991
2	256,514,224	00000	1992
3	259,918,588	00000	1993
4	263,125,821	00000	1994
5	266,278,393	00000	1995
6	269,394,284	00000	1996
7	272,646,925	00000	1997
8	275,854,104	00000	1998
9	279,040,168	00000	1999

Merging the two dataframes

We set the index to GeoFips so that the data will be easier to work with later on

```
In [113]: pop_income.set_index("GeoFips", inplace = True)
```

Some basic information about the merged pop_income df

```
pop income.head(10)
In [116]:
Out[116]:
                               Pop TimePeriod IncomePerCapita
                                                                      GeoName
                                                                                 merge
              GeoFips
                        249,622,814
                                           1990
                                                           19,621
                                                                   United States
                                                                                    both
                 00000
                 00000
                                                                  United States
                        252,980,941
                                           1991
                                                           20,030
                                                                                    both
                 00000
                        256,514,224
                                           1992
                                                           21,090
                                                                   United States
                                                                                    both
                 00000
                        259,918,588
                                           1993
                                                           21,733
                                                                  United States
                                                                                    both
                                           1994
                                                                  United States
                 00000
                        263,125,821
                                                           22,575
                                                                                    both
                                                           23,607 United States
                 00000
                        266,278,393
                                           1995
                                                                                    both
                 00000
                        269,394,284
                                           1996
                                                           24,771
                                                                   United States
                                                                                    both
                 00000
                                           1997
                                                                   United States
                        272,646,925
                                                           25,993
                                                                                    both
                 00000
                        275,854,104
                                           1998
                                                           27,557
                                                                   United States
                                                                                    both
                 00000 279,040,168
                                           1999
                                                           28,675 United States
                                                                                    both
              pop_income.tail(10)
In [117]:
Out[117]:
```

	Pop	TimePeriod	IncomePerCapita	GeoName	_merge
GeoFips					
98000	51,608,614	2008	43,214	Far West	both
98000	52,167,532	2009	41,298	Far West	both
98000	52,686,778	2010	42,636	Far West	both
98000	53,176,406	2011	44,966	Far West	both
98000	53,679,832	2012	47,451	Far West	both
98000	54,161,802	2013	47,819	Far West	both
98000	54,695,081	2014	50,787	Far West	both
98000	55,249,155	2015	53,911	Far West	both
98000	55,772,858	2016	55,550	Far West	both
98000	56,250,544	2017	57,748	Far West	both

We exported the data frame to excel so we could cross reference with the original two data frames that it merged correctly.

```
In [118]: pop_income.to_excel("Population Income.xlsx")
```

Bringing in the Zillow dataset

```
In [119]: file = "https://github.com/rh2513/data_bootcamp_final_project/raw/mast
    er/Housing%20Data%20Zillow.xlsx" # from Zillow Home Value Index
    zillow = pd.read_excel(file)

In [120]: zillow.drop(['RegionID', "State", "NEW STATE CODE", "MunicipalCodeFIPS"
    , "NEW FIPS", "SizeRank"], axis=1, inplace = True)

In [121]: zillow.head(10)

Out[121]:
```

RegionName StateC

	RegionName	StateCodeFIPS	GEOFIPS	1998-01	1998-02	1998-03	1998-04	1998-05
0	Autauga County	1	1001	109900.0	110300.0	110600.0	110800.0	110900.0
1	Baldwin County	1	1003	101500.0	102400.0	102800.0	102900.0	102600.0
2	Blount County	1	1009	79200.0	80600.0	81600.0	82600.0	83500.0
3	Cherokee County	1	1019	62100.0	62900.0	63600.0	64300.0	64800.0
4	Chilton County	1	1021	82600.0	83000.0	83300.0	83600.0	83900.0
5	Coffee County	1	1031	79600.0	78900.0	78400.0	77900.0	77700.0
6	Colbert County	1	1033	40100.0	40000.0	40000.0	40000.0	39800.0
7	De Kalb County	1	1049	56600.0	56300.0	56300.0	56700.0	57300.0
8	Elmore County	1	1051	112100.0	112900.0	113500.0	114100.0	114500.0
9	Etowah County	1	1055	65200.0	65700.0	65900.0	65800.0	65600.0

10 rows × 263 columns

Cleaning the data

Because values in the GEOFIPS column are stored as integers instead of strings, many of them are missing 0s. For example, Autauga County should have a GEOFIPS of 01001, but because its an integer, the 0 dissapears and the GEOFIPS is incorrectly shown as 1001. Below, we wrote a for loop in order to fix that issue and update the GEOFIPS column with the correct values.

```
In [122]: values = zillow['GEOFIPS'].tolist()
In [123]:
           newval = []
           for val in values:
               if len(str(val)) != 5:
                    val = '0' + str(val)
                    newval.append(val)
               else:
                   val = val
                   newval.append(val)
           zillow['GEOFIPS'] = newval
In [124]:
In [125]: zillow['GEOFIPS']
Out[125]: 0
                   01001
           1
                   01003
           2
                   01009
           3
                   01019
           4
                   01021
           5
                   01031
           6
                   01033
           7
                   01049
           8
                   01051
           9
                   01055
           10
                   01063
           11
                   01069
                   01073
           12
           13
                   01077
           14
                   01081
           15
                   01083
           16
                   01089
           17
                   01097
           18
                   01101
           19
                   01109
           20
                   01113
           21
                   01115
           22
                   01117
           23
                   01121
           24
                   01123
           25
                   01125
           26
                   01133
           27
                   02020
           28
                   02090
           29
                   02110
                    . . .
           1881
                   55113
           1882
                   55115
           1883
                   55121
           1884
                   55123
```

```
1885
        55125
1886
        55127
1887
        55131
1888
        55133
1889
        55135
1890
        55137
1891
        55139
1892
        55141
1893
        56001
1894
        56005
        56009
1895
1896
        56013
1897
        56015
1898
        56017
1899
        56019
1900
        56021
1901
        56023
1902
        56025
1903
        56029
1904
        56031
1905
        56033
1906
        56037
1907
        56039
1908
        56041
        56043
1909
1910
        56045
Name: GEOFIPS, Length: 1911, dtype: object
```

Sorting values by StateCodeFIPS and RegionName allows us to first order the data alphabetically by state and then again alphabetically by county name within each state. For example, Alabama has StateCodeFips 1 so after sorting, all of the Alabama counties show up first, with counties like Autauga, Baldwin, Cherokee, etc. also ranked accordingly.

```
zillow.sort values(by=['StateCodeFIPS', 'RegionName'], inplace = True)
In [126]:
           #trial and error
          zillow.drop(['StateCodeFIPS'], axis = 1, inplace = True )
In [127]:
In [128]:
          zillow.columns
Out[128]: Index(['RegionName',
                                    'GEOFIPS',
                                                   '1998-01',
                                                                 '1998-02',
                                                                                ' 1
          998-03',
                                    '1998-05',
                                                   '1998-06',
                                                                  '1998-07',
                                                                                ' 1
                     '1998-04',
          998-08',
                     '2017-04',
                                    '2017-05',
                                                   '2017-06',
                                                                  '2017-07',
                                                                                ' 2
          017-08',
                                    '2017-10',
                     '2017-09',
                                                   '2017-11',
                                                                 '2017-12',
          2017],
                 dtype='object', length=262)
```

	RegionName	GEOFIPS	1998	1999	2000	2001	
0	Autauga County	01001	110558.333333	111250.000000	115125.000000	109325.000000	1189
1	Baldwin County	01003	102433.333333	112983.333333	128941.666667	116558.333333	1412:
2	Blount County	01009	84300.000000	92058.333333	94000.000000	91233.333333	10271
3	Cherokee County	01019	65075.000000	67283.333333	71141.666667	69208.333333	778:
4	Chilton County	01021	84183.333333	87950.000000	90741.666667	84783.333333	936!
5	Coffee County	01031	78391.666667	79166.666667	80216.666667	76516.666667	854
6	Colbert County	01033	38958.333333	39550.000000	45375.000000	48808.333333	607!
7	De Kalb County	01049	59508.333333	64316.666667	67250.000000	64291.666667	716:
8	Elmore County	01051	114058.333333	116125.000000	121291.666667	116050.000000	1489:
9	Etowah County	01055	64750.000000	61183.333333	65616.666667	67508.333333	754

10 rows × 22 columns

Preparing for the pop_income and Zillow merge

The Zillow data came in a format that was very wide, which was going to be an issue if we needed to merge it with the pop_income dataframe, which was long. Transposing didn't work, so instead we used the melt function. Our two identifier variables were Regionname and GEOFIPS, which we kept set (id_vars).

```
In [132]: zillowdf = zillow.melt(id_vars = ['RegionName', 'GEOFIPS'])
In [133]: zillowdf.columns = ['RegionName', 'GeoFips', 'TimePeriod', 'Median_Hous ing_Price']
```

```
In [134]: zillowdf.set_index('GeoFips', inplace = True)
In [135]: zillowdf = zillowdf.reset_index()
In [136]: zillowdf['Median_Housing_Price'] = np.round(zillowdf['Median_Housing_Price'], decimals=2)
In [137]: zillowdf.head(10)
```

Out[137]:

	GeoFips	RegionName	TimePeriod	Median_Housing_Price
0	01001	Autauga County	1998	110558.33
1	01003	Baldwin County	1998	102433.33
2	01009	Blount County	1998	84300.00
3	01019	Cherokee County	1998	65075.00
4	01021	Chilton County	1998	84183.33
5	01031	Coffee County	1998	78391.67
6	01033	Colbert County	1998	38958.33
7	01049	De Kalb County	1998	59508.33
8	01051	Elmore County	1998	114058.33
9	01055	Etowah County	1998	64750.00

In [138]: zillowdf.tail(10)

Out[138]:

	GeoFips	RegionName	TimePeriod	Median_Housing_Price
38210	56023	Lincoln County	2017	210408.33
38211	56025	Natrona County	2017	199000.00
38212	56029	Park County	2017	233491.67
38213	56031	Platte County	2017	178666.67
38214	56033	Sheridan County	2017	227908.33
38215	56037	Sweetwater County	2017	221233.33
38216	56039	Teton County	2017	762708.33
38217	56041	Uinta County	2017	203333.33
38218	56043	Washakie County	2017	169325.00
38219	56045	Weston County	2017	138875.00

Preparing the pop_income dataframe for merging

```
In [139]: pop_income = pop_income.reset_index()
In [140]: pop_income = pop_income.drop(['_merge'], axis = 1)
In [141]: pop_income
```

Out[141]:

	GeoFips	Pop	TimePeriod	IncomePerCapita	GeoName
0	00000	249,622,814	1990	19,621	United States
1	00000	252,980,941	1991	20,030	United States
2	00000	256,514,224	1992	21,090	United States
3	00000	259,918,588	1993	21,733	United States
4	00000	263,125,821	1994	22,575	United States
5	00000	266,278,393	1995	23,607	United States
6	00000	269,394,284	1996	24,771	United States
7	00000	272,646,925	1997	25,993	United States
8	00000	275,854,104	1998	27,557	United States
9	00000	279,040,168	1999	28,675	United States
10	00000	282,162,411	2000	30,657	United States
11	00000	284,968,955	2001	31,589	United States
12	00000	287,625,193	2002	31,832	United States
13	00000	290,107,933	2003	32,681	United States
14	00000	292,805,298	2004	34,251	United States
15	00000	295,516,599	2005	35,849	United States
16	00000	298,379,912	2006	38,114	United States
17	00000	301,231,207	2007	39,844	United States
18	00000	304,093,966	2008	40,904	United States
19	00000	306,771,529	2009	39,284	United States
20	00000	309,338,421	2010	40,545	United States
21	00000	311,644,280	2011	42,727	United States
22	00000	313,993,272	2012	44,582	United States
23	00000	316,234,505	2013	44,826	United States
24	00000	318,622,525	2014	47,025	United States

25	00000	321,039,839	2015	48,940	United States
26	00000	323,405,935	2016	49,831	United States
27	00000	325,719,178	2017	51,640	United States
28	01000	4,050,055	1990	15,861	Alabama
29	01000	4,099,156	1991	16,572	Alabama
89514	97000	11,878,018	2016	47,505	Rocky Mountain
89515	97000	12,055,738	2017	49,265	Rocky Mountain
89516	98000	40,610,409	1990	21,119	Far West
89517	98000	41,427,985	1991	21,585	Far West
89518	98000	42,225,887	1992	22,471	Far West
89519	98000	42,797,622	1993	22,909	Far West
89520	98000	43,271,002	1994	23,537	Far West
89521	98000	43,744,822	1995	24,549	Far West
89522	98000	44,314,342	1996	25,804	Far West
89523	98000	45,053,779	1997	27,048	Far West
89524	98000	45,798,042	1998	28,921	Far West
89525	98000	46,505,506	1999	30,354	Far West
89526	98000	47,188,420	2000	32,799	Far West
89527	98000	47,891,178	2001	33,439	Far West
89528	98000	48,493,357	2002	33,607	Far West
89529	98000	49,053,068	2003	34,755	Far West
89530	98000	49,601,761	2004	36,653	Far West
89531	98000	50,090,268	2005	38,489	Far West
89532	98000	50,570,529	2006	41,153	Far West
89533	98000	51,031,362	2007	42,782	Far West
89534	98000	51,608,614	2008	43,214	Far West
89535	98000	52,167,532	2009	41,298	Far West
89536	98000	52,686,778	2010	42,636	Far West
89537	98000	53,176,406	2011	44,966	Far West
89538	98000	53,679,832	2012	47,451	Far West
89539	98000	54,161,802	2013	47,819	Far West
89540	98000	54,695,081	2014	50,787	Far West
89541	98000	55,249,155	2015	53,911	Far West

```
89542 98000 55,772,858 2016 55,550 Far West
89543 98000 56,250,544 2017 57,748 Far West
```

89544 rows × 5 columns

```
In [142]: US = pop income.set index('GeoFips').loc['00000']
In [143]: updateinc = []
          for val in US['IncomePerCapita']:
              if ',' in val:
                  val = val.replace(',', '')
                  val = int(val)
                  updateinc.append(val)
                  updateinc.append(0)
In [144]: newpop = []
          for val in US['Pop']:
              if ',' in val:
                  val = val.replace(',', '')
                  val = int(val)
                  newpop.append(val)
              else:
                  newpop.append(0)
In [145]: | US['Pop'] = newpop
          US['IncomePerCapita'] = updateinc
In [146]: US['Pop'] = US['Pop'].astype(int) / 1000000
In [147]: US['Pop'] = np.round(US['Pop'], decimals=2)
In [148]: US.set index('TimePeriod', inplace = True)
In [149]: US # this gives us the country's population and IncomePC over the last
          27 years
```

	Pop	IncomePerCapita	GeoName
TimePeriod			
1990	249.62	19621	United States
1991	252.98	20030	United States
1992	256.51	21090	United States
1993	259.92	21733	United States
1994	263.13	22575	United States
1995	266.28	23607	United States
1996	269.39	24771	United States
1997	272.65	25993	United States
1998	275.85	27557	United States
1999	279.04	28675	United States
2000	282.16	30657	United States
2001	284.97	31589	United States
2002	287.63	31832	United States
2003	290.11	32681	United States
2004	292.81	34251	United States
2005	295.52	35849	United States
2006	298.38	38114	United States
2007	301.23	39844	United States
2008	304.09	40904	United States
2009	306.77	39284	United States
2010	309.34	40545	United States
2011	311.64	42727	United States
2012	313.99	44582	United States
2013	316.23	44826	United States
2014	318.62	47025	United States
2015	321.04	48940	United States
2016	323.41	49831	United States
2017	325.72	51640	United States

US Income

The plot below shows the nationwide trend in income per capita growth over the period 1990-2017. Besides a few hiccups, income per capita has been gradually increasing YoY, reaching approximately \$55,000 by 2017.

```
In [150]: fig, ax = plt.subplots()
    plt.style.use('bmh')

ax.plot(US.index.astype(int), US.IncomePerCapita, color = 'b', linewid
    th = '1')
    ax.set_title("US Income per Capita", fontsize = 11, fontweight = "bold
    ")
    ax.set_ylabel("Income per Capita ($)")
    ax.set_xlabel("Year")

ax.set_xlabel("Year")

ax.set_xticks(np.arange(1990,2017,5))

ax.spines["right"].set_visible(False)
    ax.spines["top"].set_visible(False)

plt.show()
```


US Population

The time series line plot belows simply shows the United States population and its steady growth over the period 1990-2017. The US Population is now approximately 325 million people as of 2017/18.

```
In [151]: fig, ax = plt.subplots()

ax.plot(US.index.astype(int), US.Pop, color = 'b', linewidth = '1')
ax.set_title("US Population", fontsize = 11, fontweight = "bold")
ax.set_ylabel("Population (in millions)")
ax.set_xlabel("Year")

ax.set_xticks(np.arange(1990,2017,5))

ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
plt.show()
```


Below, we drop all the observations not directly related to a US county. This includes rows with data about the US as a whole, or regions like the Far West.

```
pop_income = pop_income.set_index(['GeoName'])
In [152]:
           pop_income = pop_income.drop(['United States',
In [153]:
           'New England',
           'Mideast',
           'Great Lakes',
           'Plains',
           'Southeast',
           'Southwest',
           'Rocky Mountain',
           'Far West',
           'Alabama',
           'Alaska',
           'Arizona',
           'Arkansas',
```

```
'California',
'Colorado',
'Connecticut',
'Delaware',
'Florida',
'Georgia',
'Hawaii',
'Idaho',
'Illinois',
'Indiana',
'Iowa',
'Kansas',
'Kentucky',
'Louisiana',
'Maine',
'Maryland',
'Massachusetts',
'Michigan',
'Minnesota',
'Mississippi',
'Missouri',
'Montana',
'Nebraska',
'Nevada',
'New Hampshire',
'New Jersey',
'New Mexico',
'New York',
'North Carolina',
'North Dakota',
'Ohio',
'Oklahoma',
'Oregon',
'Pennsylvania',
'Rhode Island',
'South Carolina',
'South Dakota',
'Tennessee',
'Texas',
'Utah',
'Vermont',
'Virginia',
'Washington',
'West Virginia',
'Wisconsin',
'Wyoming'])
```

```
In [154]: pop_income.reset_index()
```

Out[154]:

	GeoName	GeoFips	Pop	TimePeriod	IncomePerCapita
0	Autauga, AL	01001	34,353	1990	15,482

1	Autauga, AL	01001	35,010	1991	16,417
2	Autauga, AL	01001	35,985	1992	17,063
3	Autauga, AL	01001	36,953	1993	17,700
4	Autauga, AL	01001	38,186	1994	18,683
5	Autauga, AL	01001	39,112	1995	19,350
6	Autauga, AL	01001	40,207	1996	20,155
7	Autauga, AL	01001	41,238	1997	21,076
8	Autauga, AL	01001	42,106	1998	22,073
9	Autauga, AL	01001	42,963	1999	22,948
10	Autauga, AL	01001	44,021	2000	23,699
11	Autauga, AL	01001	44,889	2001	24,682
12	Autauga, AL	01001	45,909	2002	24,991
13	Autauga, AL	01001	46,800	2003	26,319
14	Autauga, AL	01001	48,366	2004	27,535
15	Autauga, AL	01001	49,676	2005	28,766
16	Autauga, AL	01001	51,328	2006	29,758
17	Autauga, AL	01001	52,405	2007	31,459
18	Autauga, AL	01001	53,277	2008	32,876
19	Autauga, AL	01001	54,135	2009	32,603
20	Autauga, AL	01001	54,750	2010	33,415
21	Autauga, AL	01001	55,199	2011	34,325
22	Autauga, AL	01001	54,927	2012	35,040
23	Autauga, AL	01001	54,695	2013	35,464
24	Autauga, AL	01001	54,864	2014	36,677
25	Autauga, AL	01001	54,838	2015	38,591
26	Autauga, AL	01001	55,278	2016	39,509
27	Autauga, AL	01001	55,504	2017	40,484
28	Baldwin, AL	01003	98,955	1990	15,831
29	Baldwin, AL	01003	102,420	1991	16,954
				•••	
87862	Washakie, WY	56043	8,188	2016	44,204
87863	Washakie, WY	56043	8,064	2017	45,933
87864	Weston, WY	56045	6,506	1990	17,867
87865	Weston, WY	56045	6,515	1991	18,420

87866	Weston, WY	56045	6,638	1992	18,574
87867	Weston, WY	56045	6,587	1993	19,658
87868	Weston, WY	56045	6,696	1994	19,804
87869	Weston, WY	56045	6,721	1995	20,561
87870	Weston, WY	56045	6,768	1996	20,945
87871	Weston, WY	56045	6,725	1997	22,772
87872	Weston, WY	56045	6,739	1998	22,851
87873	Weston, WY	56045	6,667	1999	24,962
87874	Weston, WY	56045	6,627	2000	27,305
87875	Weston, WY	56045	6,487	2001	28,091
87876	Weston, WY	56045	6,578	2002	26,586
87877	Weston, WY	56045	6,610	2003	27,167
87878	Weston, WY	56045	6,646	2004	27,387
87879	Weston, WY	56045	6,594	2005	30,606
87880	Weston, WY	56045	6,717	2006	35,169
87881	Weston, WY	56045	7,033	2007	35,845
87882	Weston, WY	56045	7,133	2008	38,942
87883	Weston, WY	56045	7,266	2009	37,202
87884	Weston, WY	56045	7,198	2010	38,045
87885	Weston, WY	56045	7,141	2011	40,359
87886	Weston, WY	56045	7,074	2012	42,337
87887	Weston, WY	56045	7,136	2013	43,760
87888	Weston, WY	56045	7,142	2014	46,850
87889	Weston, WY	56045	7,181	2015	47,600
87890	Weston, WY	56045	7,198	2016	42,727
87891	Weston, WY	56045	6,927	2017	43,340

87892 rows × 5 columns

Here we change the type of TimePeriod and GeoFips in both pop_income and zillowdf into integer and string, respectively.

```
In [155]: pop_income['TimePeriod'] = pop_income['TimePeriod'].astype(int)
pop_income['GeoFips'] = pop_income['GeoFips'].astype(str)
```

```
In [156]: zillowdf['TimePeriod'] = zillowdf['TimePeriod'].astype(int)
zillowdf['GeoFips'] = zillowdf['GeoFips'].astype(str)
```

Merging the BEA pop income and Zillow zillow df dataframes

Now, we have to update the income and population data to remove commas. This will make it easier to manipulate.

```
income = combo['IncomePerCapita'].tolist()
In [162]:
          pop = combo['Pop'].tolist()
In [163]: updateinc = []
          for val in income:
               if ',' in val:
                   val = val.replace(',', '')
                   val = int(val)
                   updateinc.append(val)
              else:
                   updateinc.append(0)
In [164]: newpop = []
          for val in pop:
               if ',' in val:
                  val = val.replace(',', '')
                  val = int(val)
                  newpop.append(val)
              else:
                   newpop.append(0)
```

```
In [165]: combo['IncomePerCapita'] = updateinc
combo['Pop'] = newpop
```

Housing Affordability Index

We then calculated our Housing Affordability Index, which was based off of a similar formula from the Federal Reserve Bank of San Francisco (https://www.frbsf.org/education/publications/doctor-econ/2003/december/housing-affordability-index/). It's calculated as income per capita / median housing price - the higher the index value, the more 'affordable' the typical home is in that specific county.

```
In [166]: #combo['IncomePerCapita'] = pop_income['IncomePerCapita'].astype(int)
    #combo['Avg Housing Price'] = pop_income['Avg Housing Pric'].astype(fl
    oat)

    combo['Housing_Affordability_Index'] = ((combo['IncomePerCapita'].asty
    pe(int) / combo['Median_Housing_Price'].astype(float)) * 100)
In [167]: combo['Housing_Affordability_Index'] = np.round(combo['Housing_Affordability_Index'], decimals=2)
In [168]: combo = combo[['RegionName','TimePeriod', 'Pop', 'IncomePerCapita', 'Median_Housing_Price', 'Housing_Affordability_Index']]
```

Combined (combo) dataframe

Combo presents a big picture overview for all counties in the US (for all years 1998-2017) and the corresponding statistics

```
combo.head()
In [169]:
Out[169]:
                     RegionName TimePeriod
                                             Pop IncomePerCapita Median Housing Price Housing /
            GeoFips
                         Autauga
              01001
                                      1998 42106
                                                           22073
                                                                            110558.33
                         County
                         Autauga
                                      1999 42963
                                                           22948
              01001
                                                                            111250.00
                         County
                         Autauga
                                      2000 44021
                                                           23699
                                                                            115125.00
              01001
                         County
                         Autauga
                                      2001 44889
                                                           24682
              01001
                                                                            109325.00
                         County
                         Autauga
              01001
                                      2002 45909
                                                           24991
                                                                            118983.33
                          County
In [170]:
            combo['Pop Change'] = combo['Pop'].pct change()
            combo['Change in Housing Price'] = combo['Median Housing Price'].pct c
            hange()
            combo['Change in IncomePerCapita'] = combo['IncomePerCapita'].pct chan
            ge()
            combo = combo[['RegionName','TimePeriod','Pop', 'Pop Change', 'IncomeP
In [171]:
            erCapita', 'Change in IncomePerCapita', 'Median Housing Price', 'Chang
            e in Housing Price', 'Housing Affordability Index']]
In [172]:
            combo.head()
Out[172]:
                     RegionName TimePeriod
                                             Pop Pop_Change IncomePerCapita Change_in_IncomeF
            GeoFips
                         Autauga
              01001
                                      1998 42106
                                                         NaN
                                                                       22073
                          County
                         Autauga
              01001
                                      1999
                                           42963
                                                     0.020353
                                                                       22948
                          County
                         Autauga
              01001
                                      2000 44021
                                                     0.024626
                                                                       23699
                          County
                         Autauga
                                      2001 44889
                                                     0.019718
                                                                       24682
              01001
                          County
                         Autauga
                                      2002 45909
                                                                       24991
              01001
                                                     0.022723
                          County
```

Converting to excel so that we can doublecheck our changes.

```
In [173]: combo.to_excel("Combo.xlsx") # converting to excel so we can doubleche
    ck our changes
```

Case Studies

From combo, we can now pull in specific counties to further analyze and visualize. Instead of randomly selecting counties to work with, we decided to focus on three counties - the District of Columbia, El Paso County in Colorado, and Philadelphia County in Pennsylvania. We decided on these three cases by looking at the Housing Affordability Index in the combo dataframe and finding the counties behind the median (50th percentile), 10th percentile, and 90th percentile values (by cross referencing the HAI value with the corresponding GeoFips value and Population Income data).

```
In [174]: combo['Housing_Affordability_Index'].quantile(0.5) # District of Colum bia
Out[174]: 28.2
In [175]: combo['Housing_Affordability_Index'].quantile(0.10) # El Paso County ( Colorado)
Out[175]: 16.79
In [176]: combo['Housing_Affordability_Index'].quantile(0.90) # Philadelphia County (Pennsylvania)
Out[176]: 45.28
```

But before we get into the county cases, let's start with some simple big-picture visualization of US housing.

Data Visualization

US Final Combination

USfincombo consolidates US-related data on Income per Capita, Median Housing Price, and the Housing Affordability Inde for the years 1998-2017. We grouped by Time Period and used the .mean() function to reach an average annual value for the above metrics for each year.

```
In [177]: fincombo = combo.groupby(['TimePeriod']).mean()
```

```
In [178]:
```

fincombo

Out[178]:

	Рор	Pop_Change	IncomePerCapita	Change_in_IncomePerCapita	Media
TimePeriod					
1998	151721.177207	3.132678	23460.142142	-0.438066	
1999	153613.639950	0.011814	24299.634314	0.034764	
2000	155487.721979	0.012766	25701.674389	0.055321	
2001	157204.631183	0.008102	26794.034440	0.043924	
2002	158807.139011	inf	27143.541014	inf	
2003	159586.186567	0.010597	27937.487562	0.027547	
2004	160928.310174	0.013712	29301.782258	0.047645	
2005	161391.179487	0.031554	30506.477411	0.034679	
2006	161618.512063	0.019438	32167.052473	0.047141	
2007	162929.939230	0.009870	33713.093863	0.048032	
2008	164030.576139	0.007668	35086.889089	0.041805	
2009	165543.913721	0.006403	34137.313361	-0.022557	
2010	152976.039804	-0.006648	35208.995638	0.016088	
2011	153294.287493	0.004280	37273.743909	0.056052	
2012	154177.101457	0.003992	38728.202914	0.036781	
2013	154952.056897	0.007127	39341.314010	0.017303	
2014	155612.855235	0.014618	40766.502137	0.035118	
2015	156549.704848	0.007016	41910.648908	0.030336	
2016	157818.174747	0.003889	42364.574853	0.011769	
2017	159049.982419	0.004765	43647.781034	0.030230	

In [180]: fincombo

Out[180]:

	IncomePerCapita	Median_Housing_Price	Housing_Affordability_Index
TimePeriod			
1998	23460.142142	92587.095711	28.775385
1999	24299.634314	98366.864903	27.961127
2000	25701.674389	105051.450683	27.955554
2001	26794.034440	102757.112254	30.122686
2002	27143.541014	118211.104214	26.807032
2003	27937.487562	125811.251082	26.394652
2004	29301.782258	137475.434349	25.888852
2005	30506.477411	152346.138645	25.071758
2006	32167.052473	165417.239644	25.026647
2007	33713.093863	167388.031450	25.465836
2008	35086.889089	159800.409646	27.486613
2009	34137.313361	150465.508209	27.909023
2010	35208.995638	139538.545120	31.833081
2011	37273.743909	134466.675734	34.438652
2012	38728.202914	134108.976395	35.673162
2013	39341.314010	138984.402292	35.667649
2014	40766.502137	144871.425321	35.662137
2015	41910.648908	151658.404379	35.075370
2016	42364.574853	159363.350192	33.760016
2017	43647.781034	168907.907214	32.968295

US IncomePC vs. Median Housing Price

In the scatter plot below, you can see that across the entire US, there does seem to be a linear relationship between income per capita and the median housing price. When US income per capita rises, whether due to strong economic growth or other factors, the associated median housing price typically also rises. Since 1998, the median home price has also increased from under 100,000 dollars to almost 170,000 dollars as of 2017. This increase has been accompanied by an 86% jump in the US income per capita over the same time frame, representative of the proportional relationship between these two variables. This association makes sense, as when times are good and people are doing well, income per capita will increase. With higher incomes, they may look to invest or put that money towards real estate, contributing to rising housing prices.

```
In [181]: fig, ax = plt.subplots()
    sns.regplot(fincombo.IncomePerCapita, fincombo.Median_Housing_Price)
    ax.scatter(fincombo.IncomePerCapita, fincombo.Median_Housing_Price, co
    lor = 'b', linewidth = '1')
    ax.set_title("US IncomePC vs. Median Housing Price", fontsize = 11, fo
    ntweight = "bold")
    ax.set_ylabel("Housing Price ($)")
    ax.set_xlabel("Income Per Capita ($)")

ax.spines["right"].set_visible(False)
    ax.spines["top"].set_visible(False)

ax.set_xlim(23000,45000)
#ax.set_ylim(-0.8,0.8)

plt.show()
```

/Users/crepelover/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidi mensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a diff erent result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumva
1

Housing Affordability Index Time-Series

Below, we graphed the Housing Affordability Index for the entire US over the period 1998-2017. From the line plot, we can tell that the US HAI has been relatively positive, peaking around 2012-2014 at a value of about 35. In the years leading up to the subprime mortgage bubble and the financial crisis of 2008 (which is demarcated with a dotted black line), it's clear that the Affordability Index took a hit, with consecutive years of decreases. As the US economy has recovered since 08 however, the Affordability Index has moved higher, up until the last couple of years where once again, housing affordability has declined.

```
In [182]: fig, ax = plt.subplots()
    ax.plot(fincombo.index, fincombo.Housing_Affordability_Index, color =
    'b', linewidth = '1')
    ax.set_title("Housing Affordability Index", fontsize = 11, fontweight
    = "bold")
    ax.set_ylabel("HAI")
    ax.set_xlabel("Year")

ax.spines["right"].set_visible(False)
    ax.spines["top"].set_visible(False)

plt.xticks(np.arange(1998,2019,2))

#plt.axvline(x=2008, linestyle = '--', color = 'black', linewidth = '0
    .5')

ax.set_xlim(1998,2018)
    ax.set_ylim(24.1,36)

plt.show()
```


Now we'll begin looking at the same metrics for specific US counties:

50th percentile (median) of Housing Affordability Index

First, we tested the District of Columbia, which was the US county with the median Housing Affordability Index value (seen in cells above). Below, we plotted its Population Growth Rate against its Change in Median Housing Price, as well a 19-year time series of its Housing Affordability Index.

	RegionName	Pop	Pop_Change	IncomePerCapita	Change_in_IncomePerCapita
TimePeriod					
1998	District of Columbia	565230	1.508543	38083	-0.195271
1999	District of Columbia	570213	0.008816	39480	0.036683
2000	District of Columbia	572046	0.003215	43329	0.097492
2001	District of Columbia	574504	0.004297	44684	0.031272
2002	District of Columbia	573158	-0.002343	45080	0.008862

Population Growth vs. Housing Price Change

In the scatter plot below, we visualized the relationship between population change and housing price change for a specific county, the District of Columbia. This county had the median (50th percentile) tracked Housing Affordability Index value (from before). There is a very slight inverse relationship between the two variables, demonstrated by the line of best fit - as population decreases, housing prices inch upwards and vice versa. Although this is a trend that we didn't expect, there are many hidden variables that may be at play, including the incomes of those people that move into the DC area as well as those of people that leave. With more data points, the relationship might be easier to establish.

/Users/crepelover/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidi mensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumva
1

Housing Affordability Time-Series

The line plot below displays the Housing Affordability Index over our project's 19 year period. In the couple of years preceding the mortgage bubble and crash, affordability is steadily declining in the District of Columbia. The index peaked around 2000, and has been in a slump recently, with HAI hitting its lowest level.

```
In [187]: fig, ax = plt.subplots()
    ax.plot(dc.index, dc.Housing_Affordability_Index, color = 'b', linewid
    th = '1')
    ax.set_title("Housing Affordability Index", fontsize = 11, fontweight
    = "bold")
    ax.set_ylabel("HAI")
    ax.set_xlabel("Year")

ax.spines["right"].set_visible(False)
    ax.spines["top"].set_visible(False)

plt.xticks(np.arange(1998,2019,2))
    ax.set_xlim(1998,2018)

plt.show()
```


District of Columbia HAI Breakdown

Below, is a side-by-side breakdown of the HAI visual. It is split into the two components of the Housing Affordability Index, being income per capita and the median housing price. Incomes in the county have continued their steady rise, even through the chaos of the recession, but housing prices have had dips, especially around 2010-12 when the housing market bottomed out. This breakdown provides some more detailed insight into the HAI line plot above.

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, sharex = True, figsize =
In [188]:
          (12,4))
          plt.xticks(np.arange(1998,2019,2))
          ax[0].plot(dc.index, dc.Median Housing Price, color = "b", linewidth =
          1,
                  alpha = 0.5)
          ax[1].plot(dc.index, dc.IncomePerCapita, color = "red", linewidth = 1,
                  alpha = 0.5)
          ax[0].set title("Median Housing Price ")
          ax[1].set title("IncomePC")
          ax[0].set_ylabel("Price, Income ($)")
          fig.suptitle("DC HAI Breakdown")
          for var in ax:
              var.set xlim(1998,2017)
              var.spines["right"].set_visible(False)
              var.spines["top"].set visible(False)
              var.set_xlabel("Year")
              #var.legend(frameon = False)
          plt.show()
```


10th and 90th percentile Housing Affordability Index

El Paso County in Colorado is the 10th percentile in our Housing Affordability Index distribution.

```
In [189]: elpaso = combo.loc['08041']
    elpaso.set_index('TimePeriod',inplace = True)

In [190]: elpaso.head()
Out[190]:
```

RegionName Pop Pop_Change IncomePerCapita Change_in_IncomePerCapita **TimePeriod** El Paso 1998 498062 18.423680 -0.507674 27170 County El Paso 509044 1999 0.022049 28697 0.056202 County El Paso 519938 2000 0.021401 30783 0.072691 County El Paso 535864 2001 0.030631 31177 0.012799 County El Paso 544145 2002 0.015454 31376 0.006383 County

Philadelphia County in Pennsylvania is in the 90th percentile of our Housing Affordability Index distribution.

```
In [191]: philly = combo.loc['42101']
    philly.set_index('TimePeriod', inplace = True)
In [192]: philly.head()
```

Out[192]:

	RegionName	Pop	Pop_Change	IncomePerCapita	Change_in_IncomePerCapita
TimePeriod					
1998	Philadelphia County	1525955	32.081601	22957	-0.45735
1999	Philadelphia County	1520064	-0.003861	23719	0.03319:
2000	Philadelphia County	1514563	-0.003619	25424	0.07188
2001	Philadelphia County	1505455	-0.006014	25785	0.01419!
2002	Philadelphia County	1498493	-0.004625	26513	0.02823

HAI Comparison between El Paso County and Philadelphia County

Below, we compared the housing affordability index values of both counties against each other in order to see the differences between a county that is in the 90th percentile of affordability, and one that is in the bottom 10th percentile. Both counties were negatively impacted by the recession, but Philly County's market (90th percentile) recovered much quicker afterwards. Philly County's affordability index value has been consistently above that of El Paso County, with a peak of over 50 that it most recently hit in 2012. After that year, when the housing market turned a corner, both counties saw declines in their Housing Affordability Index, but El Paso was more vulnerable, seeing its HAI drop in more dramatic spurts. It's interesting to see the differences in the volatility between the two counties simply based off of their history of housing affordability.

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, sharex = True, figsize =
In [193]:
          (12,4))
          plt.xticks(np.arange(1998,2019,2))
          ax[0].plot(elpaso.index, elpaso.Housing Affordability Index, color = "
          b", linewidth = 2,
                  alpha = 0.5)
          ax[1].plot(philly.index, philly.Housing Affordability Index, color = "
          red", linewidth = 2,
                  alpha = 0.5)
          ax[0].set title("El Paso County (10th)")
          ax[1].set_title("Philadelphia County (90th)")
          ax[0].set ylabel("HAI")
          fig.suptitle("HAI Comparison")
          for var in ax:
              var.set xlim(1998,2017)
              #var.set ylim(16,55)
              var.spines["right"].set visible(False)
              var.spines["top"].set_visible(False)
              var.set xlabel("Year")
              #var.legend(frameon = False)
          plt.show()
```


Another perspective on the data presented above:

```
In [194]: fig, ax = plt.subplots()
          plt.xticks(np.arange(1998,2018,2))
          ax.plot(elpaso.index, elpaso.Housing_Affordability_Index, color = "b",
          linewidth = 1,
                  alpha = 0.25, label = "El Paso")
          ax.plot(philly.index, philly.Housing_Affordability Index, color = "r",
          linewidth = 1,
                  linestyle = '--', label = "Philadelphia County")
          ax.set title("HAI Comparison", fontsize = 14, fontweight = "bold")
          #plt.axvline(x=2008, linestyle = '--', color = 'black', linewidth = '0
          .5')
          ax.legend(frameon = False)
          ax.set ylabel("HAI")
          ax.set xlabel("Year")
          ax.set xlim(1998,2017)
          ax.spines["right"].set visible(False)
          ax.spines["top"].set_visible(False)
          plt.show()
```


Income PC Comparison

The comparison graphs below look at any differences between IncomePC across the two counties. Although both counties start off with similar income per capita in 1998, the gap grows more apparent over time. Philadelphia County, which was in the 90th percentile for the Housing Affordability Index, sees income per capita growth that is much quicker than that experienced by El Paso County. After almost 20 years, income per capita is almost 10,000 dollars higher in Philly County compared to El Paso County, which is a sizable difference when looking at housing prices.

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, sharex = True, figsize =
In [195]:
          (12,4))
          plt.xticks(np.arange(1998,2019,2))
          ax[0].plot(elpaso.index, elpaso.IncomePerCapita, color = "b", linewidt
          h = 1,
                  alpha = 0.5)
          ax[1].plot(philly.index, philly.IncomePerCapita, color = "red", linewi
          dth = 1,
                  alpha = 0.5)
          ax[0].set title("El Paso County (10th)")
          ax[1].set title("Philadelphia County (90th)")
          ax[0].set ylabel("Income Per Capita ($)")
          fig.suptitle("IncomePC Comparison")
          for var in ax:
              var.set xlim(1998,2017)
              var.set ylim(15500,60000)
              var.spines["right"].set visible(False)
              var.spines["top"].set_visible(False)
              var.set xlabel("Year")
              #var.legend(frameon = False)
          plt.show()
```


Median Housing Price Comparison

The line plots below breakdown the HAI visual from above to focus solely on changes in median housing prices in both counties. From the graphs, we can see that the prices that homes started at are very different between El Paso and Philadelphia Counties. In El Paso, housing prices were already over 130,000 dollars in 1998, and have nearly doubled by 2017. While Philly County has seen three times that increase, its median housing prices in 2017 are still substantially lower than similar home prices in El Paso. This may speak to the desirability of both counties for people, which would cause prices to rise. Both counties saw median housing prices peak before crashing in '08, following roughly the same general trend. Philadelphia County's rapid housing price growth in recent years is worth further exploration.

```
fig, ax = plt.subplots(nrows = 1, ncols = 2, sharex = True, figsize =
In [196]:
          (12,4))
          plt.xticks(np.arange(1998,2019,2))
          ax[0].plot(elpaso.index, elpaso.Median Housing Price, color = "b", lin
          ewidth = 1,
                  alpha = 0.5)
          ax[1].plot(philly.index, philly.Median Housing Price, color = "red", 1
          inewidth = 1,
                  alpha = 0.5)
          ax[0].set title("El Paso County (10th)")
          ax[1].set title("Philadelphia County (90th)")
          ax[0].set ylabel("Median Housing Price ($)")
          fig.suptitle("Median Housing Price Comparison")
          for var in ax:
              var.set xlim(1998,2017)
              var.spines["right"].set visible(False)
              var.spines["top"].set visible(False)
              var.set xlabel("Year")
              #var.legend(frameon = False)
          plt.show()
```


We also wrote a function by which any user can, by entering a valid GeoFips code, receive a time-series of the Population change, Median Housing Price change, Income Per Capita change, or Housing Affordability Index change. It is called geo_lookup().

Lookup by GeoFips

```
In [197]: | def geo_lookup():
              #user input = input("Please enter a valid GeoFips code: ")
                  user input = input("Please enter a valid GeoFips code: ")
              except KeyError:
                  user input = input("Please enter a valid GeoFips code: ")
              new combo = combo.loc[user input]
              new combo.set index('TimePeriod', inplace = True)
              new input = input("Please enter one of the following options: Pop,
          IncomePerCapita, Median_Housing_Price, Housing Affordability Index: ")
              if new input == 'Pop':
                  fig, ax = plt.subplots()
                  ax.plot(new combo.index.astype(int), new combo.Pop, color = 'b
          ', linewidth = '1')
                  ax.set title("Population", fontsize = 11, fontweight = "bold")
                  ax.set ylabel("Population")
                  ax.set xlabel("Year")
                  ax.spines["right"].set visible(False)
                  ax.spines["top"].set visible(False)
                  plt.xticks(np.arange(1998,2019,2))
                  ax.set xlim(1998,2018)
              elif new_input == 'IncomePerCapita':
                  fig, ax = plt.subplots()
                  ax.plot(new combo.index.astype(int), new combo.IncomePerCapita
          , color = 'b', linewidth = '1')
                  ax.set_title("IncomePC", fontsize = 11, fontweight = "bold")
                  ax.set ylabel("Income Per Capita ($)")
                  ax.set xlabel("Year")
                  ax.spines["right"].set visible(False)
                  ax.spines["top"].set visible(False)
                  plt.xticks(np.arange(1998,2019,2))
                  ax.set xlim(1998,2018)
              elif new input == 'Median Housing Price':
```

```
fig, ax = plt.subplots()
        ax.plot(new combo.index.astype(int), new combo.Median Housing
Price, color = 'b', linewidth = '1')
        ax.set title("Median Housing Price", fontsize = 11, fontweight
= "bold")
        ax.set_ylabel("Median Housing Price ($)")
        ax.set xlabel("Year")
        ax.spines["right"].set visible(False)
        ax.spines["top"].set visible(False)
        plt.xticks(np.arange(1998,2019,2))
        ax.set xlim(1998,2018)
   elif new input == 'Housing Affordability Index':
        fig, ax = plt.subplots()
        ax.plot(new combo.index.astype(int), new combo.Housing Afforda
bility_Index, color = 'b', linewidth = '1')
        ax.set title("Housing Affordability Index", fontsize = 11, fon
tweight = "bold")
        ax.set ylabel("Housing Affordability Index")
        ax.set xlabel("Year")
        ax.spines["right"].set visible(False)
        ax.spines["top"].set visible(False)
        plt.xticks(np.arange(1998,2019,2))
        ax.set xlim(1998,2018)
    else:
         new input = input("Please enter one of the following options:
Pop, IncomePerCapita, Median Housing Price, Housing Affordability Inde
x: ")
```

Please enter a valid GeoFips code: 04003
Please enter one of the following options: Pop, IncomePerCapita, Med ian_Housing_Price, Housing_Affordability_Index: Median_Housing_Price

Conclusion

Final Thoughts

From this experiment, nothing particularly ground-breaking was found. It's not surprising that there is some level of relationship between the three variables we outlined in the beginning of our project, income per capita, population growth, and median housing prices. It was interesting to see in the US-wide analysis between income per capita and housing prices how a direct linear relationship seemed to exist. Given how the US has entered a rough few years where the Housing Affordability Index has dropped, but income per capita has continued to gradually improve, it's worth thinking about how housing prices (over 180,000 dollars now) have outpaced income per capita growth. This ties into many political and economic questions surrounding stagnating wage growth around the US and areas that are suffereing from lack of adequate economic opportunity. The case-by-case comparison of the 10th and 90th percentile (by HAI) of El Paso County and Philadelphia County was also very interesting to see visualized, although the insights were not extraordinary. The differences in home price volatility were especially telling as well as how the two counties absorbed the effects of the 2008 recession and rebounded afterwards.

For more meaningful insights, data can be drawn from a wider time horizon and across a larger range of variables, beyond just the three that we tested. Many other factors contribute to a given county/area's housing prices, and many of those variables are also quantifiable in some way. Expanding the time horizon of this project to maybe 50 years may also provide more data points and make clearer any relationships between variables. A rigorous statistical analysis could also be applied to any future data exploration so that assumed relationships can be verified as statistically significant or not. It's always important to keep in mind that correlation doesn't mean causation.

Thank you for spending the time to read this!