A GELE

MAT01B1_2022

Assignment HW9 due 10/08/2022 at 01:00pm SAST

Problem 1. (1 point)

Eliminate the parameter in $x = -t^2 + 4t$ and y = t - 3 and then identify the parametric curve and sketch its image in the xy-plane on a piece of paper.

Equation: _____

Image in the *xy*-plane:

- Choose
- Circle
- Semicircle opening up
- Semicircle opening down
- Semicircle opening right
- Semicircle opening left
- Ellipse
- Ellipse opening up
- Ellipse opening down
- Ellipse opening right
- Ellipse opening left
- Hyperbola opening up
- Hyperbola opening down
- Hyperbola opening right
- Hyperbola opening left
- Parabola opening up
- Parabola opening down
- Parabola opening right
- Parabola opening left

Problem 2. (1 point)

Find the length of the curve defined by the parametric equations

$$x = \frac{5}{3}t$$
, $y = 5\ln((t/3)^2 - 1)$

from t = 6 to t = 8.

Problem 3. (1 point)

Find a Cartesian equation relating x and y corresponding to the parametric equations

$$x = 5\sin(5t) \quad y = 9\cos(5t)$$

Write your answer in the form

$$P(x,y) = 0$$

where P(x,y) is a polynomial in x and y such that the coefficient of y^2 is 25.

Answer: _____ = 0

Find the equation of the tangent line to the curve at the point corresponding to $t = \pi/15$.

Answer: y =

Problem 4. (1 point)

Consider the curve given by the parametric equations

$$x = t(t^2 - 48), \quad y = 2(t^2 - 48)$$

a.) Determine the point on the curve where the tangent is horizontal.

 $t = \underline{\hspace{1cm}}$

b.) Determine the points t_1 , t_2 where the tangent is vertical and $t_1 < t_2$.

 $t_1 = \underline{\hspace{1cm}}$ $t_2 = \underline{\hspace{1cm}}$

Problem 5. (1 point)

Consider the following parametric equation.

$$x = 15(\cos\theta + \theta\sin\theta)$$
$$y = 15(\sin\theta - \theta\cos\theta)$$

What is the length of the curve for $\theta = 0$ to $\theta = \frac{9}{8}\pi$? Answer: _____

1

Problem 6. (1 point)

Match the graphs of the parametric equations x = f(t) and y = g(t) in A-D with the parametric curves in 1-4.

Problem 7. (1 point)

Below you are given four parametric equations and their plots. Match each plot to the correct set of parametric equations. (Note: Values along the axes are given in Cartesian coordinates.)

A.
$$x = 1 + \sqrt{t}$$
, $y = t^2 - 4t$, $0 \le t \le 5$
B. $x = 2\cos(t)$, $y = t - \cos(t)$, $0 \le t \le 2\pi$
C. $x = 5\sin(t)$, $y = t^2$, $-\pi \le t \le \pi$
D. $x = e^{-t} + t$, $y = e^t - t$, $-2 \le t \le 2$

Problem 8. (1 point)

Use the parametric equations of an ellipse

$$x = a\cos(\theta), y = b\sin(\theta), 0 \le \theta \le 2\pi,$$

to find the area that it encloses.

Area = _____

Problem 9. (1 point)

Consider the parametric curve given by

$$x = t - e^t, \qquad y = 4t + 4e^{-t}$$

(a) Find dy/dx and d^2y/dx^2 in terms of t.

$$dy/dx =$$

$$d^2y/dx^2 =$$

(b) Using "less than" and "greater than" notation, list the *t*-interval where the curve is concave upward.

Use upper-case "INF" for positive infinity and upper-case "NINF" for negative infinity. If the curve is never concave upward, type an upper-case "N" in the answer field.

t-interval: ____ < *t* < ____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Problem 10. (1 point)

Which of the following integrals represents the area of the surface obtained by rotating the parametric curve $x = t - t^2$, $y = \frac{4}{3}t^{3/2}$, $1 \le t \le 2$, about the *x*-axis?

• A.
$$\int_{1}^{2} 2\pi (t-t^2) \sqrt{1-4t+4t^2} dt$$

• B.
$$\int_{1}^{2} \frac{8\pi}{3} t^{3/2} \sqrt{1 - 2t + 2t^{1/2}} dt$$

• C.
$$\int_{1}^{2} 2\pi (t-t^2) \sqrt{1+4t^2} dt$$

• D.
$$\int_{1}^{2} \frac{8\pi}{3} t^{3/2} \sqrt{1+4t^2} dt$$

• E.
$$\int_{1}^{12} \frac{8\pi}{3} t^{3/2} \sqrt{1 - 4t + 4t^2} dt$$

• F.
$$\int_{1}^{2} 2\pi (t-t^2) \sqrt{1-2t+2t^{1/2}} dt$$

Problem 11. (1 point)

Find the area of the surface obtained by rotating the curve of parametric equations

$$x = 10\cos^3\theta$$
, $y = 10\sin^3\theta$, $0 \le \theta \le \pi/2$

about the y axis.

Surface area = _____