S: 2014/2015 Durant et Prénom: ercice n: 1 (4 points) ur chacune des questions suivantes une se mandée. Cocher la bonne réponse. 1- $\sqrt{1+\sqrt{7+\sqrt{4}}}$ est égale à 2- $\frac{4}{\sqrt{2}}$ est égale à 3- L'opposé de $\overline{2}-\sqrt{3}$ est a)	r de con rée : 45 r rée : 45 r cule prop $\overline{12}$ $\sqrt{2}$ $\sqrt{2} + \sqrt{3}$ $1 - \overline{2}$	osition est	b) $2\sqrt{2}$ b) $3-$ b) $\overline{2}+$	une justifi	cation n'e c) 1 c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2}$	est
ercice n: 1 (4 points) ur chacune des questions suivantes une se mandée. Cocher la bonne réponse. 1- $\sqrt{1+\sqrt{7+\sqrt{4}}}$ est égale à a) 2- $\frac{4}{2}$ est égale à a) 3- L'opposé de $\overline{2} - \sqrt{3}$ est a) 4- L'inverse de $\overline{2} - 1$ est a) ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$) 1- Montre que a = 160 et b = 420	Fule properties $\overline{12}$ $\overline{2}$ $\overline{2} + \sqrt{3}$ $\overline{1} - \overline{2}$	osition est	b) 2 b) $2\sqrt{2}$ b) $\overline{3}$ b) $\overline{2}$ +	une justifi	cation n'e c) 1 c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2}$	est
ercice n: 1 (4 points) ur chacune des questions suivantes une se mandée. Cocher la bonne réponse. 1- $\sqrt{1 + \sqrt{7 + \sqrt{4}}}$ est égale à a) 2- $\frac{4}{\sqrt{2}}$ est égale à a) 3- L'opposé de $\overline{2} - \sqrt{3}$ est a) 4- L'inverse de $\overline{2} - 1$ est a) ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$) 1- Montre que a = 160 et b = 420	Fule properties	osition est	b) 2 b) $2\sqrt{2}$ b) $\overline{3}$ b) $\overline{2}$ +	une justifi	cation n'e c) 1 c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2}$	
ur chacune des questions suivantes une se mandée. Cocher la bonne réponse. 1- $\sqrt{1 + \sqrt{7 + \sqrt{4}}}$ est égale à a) 2- $\frac{4}{\sqrt{2}}$ est égale à a) 3- L'opposé de $\overline{2} - \sqrt{3}$ est a) 4- L'inverse de $\overline{2} - 1$ est a) ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$) 1- Montre que a = 160 et b = 420	$ \overline{12} $ $ \overline{2} $ $ \sqrt{2} + \sqrt{3} $ $ 1 - \overline{2} $		b) $2 \sqrt{2}$ b) $3 - \sqrt{2}$ b) $2 + \sqrt{2}$	□ √2 □ 1 □	c) 1 c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2+1}$	
mandée. Cocher la bonne réponse. 1- $\sqrt{1 + \sqrt{7 + \sqrt{4}}}$ est égale à 2- $\frac{4}{2}$ est égale à 3- L'opposé de $\overline{2} - \sqrt{3}$ est 4- L'inverse de $\overline{2} - 1$ est a) ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$) 1- Montre que a = 160 et b = 420	$ \overline{12} $ $ \overline{2} $ $ \sqrt{2} + \sqrt{3} $ $ 1 - \overline{2} $		b) $2 \sqrt{2}$ b) $3 - \sqrt{2}$ b) $2 + \sqrt{2}$	□ √2 □ 1 □	c) 1 c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2+1}$	
1- $\sqrt{1+\sqrt{7+\sqrt{4}}}$ est égale à a) 2- $\frac{4}{\sqrt{2}}$ est égale à a) 3- L'opposé de $\overline{2}-\sqrt{3}$ est a) 4- L'inverse de $\overline{2}-1$ est a) ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2}+160$)] - ($\sqrt{2}-1$) 1- Montre que a = 160 et b = 420	$\sqrt{2}$ $\sqrt{2} + \sqrt{3}$ $1 - \overline{2}$	□ □ □ = - (√3 -	b) $2\sqrt{2}$ b) $\overline{3}$ - b) $\overline{2}$ +	√2 □ 1 □	c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2+2}$	
2- $\frac{4}{\sqrt{2}}$ est égale à a) 3- L'opposé de $\overline{2} - \sqrt{3}$ est a) 4- L'inverse de $\overline{2} - 1$ est a) ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$) 1- Montre que a = 160 et b = 420	$\sqrt{2}$ $\sqrt{2} + \sqrt{3}$ $1 - \overline{2}$	= - (\sqrt{3} -	b) $2\sqrt{2}$ b) $\overline{3}$ - b) $\overline{2}$ +	√2 □ 1 □	c) $\frac{\sqrt{2}}{4}$ c) 1 c) $\frac{1}{2+2}$	
3- L'opposé de $\overline{2} - \sqrt{3}$ est a) 4- L'inverse de $\overline{2} - 1$ est a) 5 ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$ 1- Montre que a = 160 et b = 420	$\sqrt{2} + \sqrt{3}$ $1 - \overline{2}$	□ □ = - (√3 -	b) 3 - b) 2 +	√2 □ 1 □	c) 1 c) $\frac{1}{2+1}$	
4- L'inverse de $\overline{2} - 1$ est a) : ercice n: 2 (8 points) ient a = 1 - 2 - ($\overline{2} + 160$)] - ($\sqrt{2} - 1$) 1- Montre que a = 160 et b = 420	1 - 2	= - (√3 -	b) 2 +	1 🗆	c) 1/2+:	
ercice n: 2 (8 points) ient $a = 1 - 2 - (\overline{2} + 160)] - (\sqrt{2} - 1)$ 1- Montre que $a = 160$ et $b = 420$		= - (√3 -				
ient $a = 1 - 2 - (\overline{2} + 160)] - (\sqrt{2} - 1$ 1- Montre que $a = 160$ et $b = 420$) <u>et</u> b :	= - (√3 -	$\left(-\frac{1}{5}\right) + \left[-\left(-\sqrt{3}\right)\right]$		$\left(\frac{1}{5}\right) + 1$	+ 1
1- Montre que a = 160 et b = 420) <u>et</u> b	= - (√3 -	$\left(-\frac{1}{5}\right) + \left[-\left(-\sqrt{3}\right)\right]$		$\left(\frac{1}{5}\right) + 1$	+ 1
1- Montre que a = 160 et b = 420		(VS	5) '[(*	3 110	5) ' -]	
		<i></i>				
2- Déterminer pgcd(a ;b) par la méthod						
2- Déterminer pgcd(a ;b) par la méthod						••••
2- Déterminer pgcd(a ;b) par la méthod			•••••	• • • • • • • • • • • • • • • • • • • •		••••
2- Déterminer pgcd(a ;b) par la méthod			•••••	• • • • • • • • • • • • • • • • • • • •		••••
2- Déterminer pgcd(a ;b) par la méthod						••••
2- Déterminer pgcd(a ;b) par la méthod			•••••	• • • • • • • • • • • • • • • • • • • •		••••
2- Déterminer pgcd(a ;b) par la méthod						••••
	le d'algo	rithme d'H	Euclide.			
3- Déduire ppcm(a ;b).						

s)

essous (${\mathcal T}$ un cercle $\widehat{BAC} = 40^{\circ}$ $\widehat{BAF} = 25^{\circ}$

BCF.

BOC.

OCB

.

BOC coup EFC.

WWW.DEVOIR@T.NET © 2014