国家精品课程/国家精品资源共享课程/国家级精品教材 国家级十一(二)五规划教材/教育部自动化专业教学指导委员会牵头规划系列教材

控制系统仿真与CAD 第四章 线性系统的数学模型

系统辨识简介

Introduction to System Identification

主讲: 薛定宇教授

系统辨识

- > 系统模型建立的方法
 - ▶由数学、物理规则推导
 - ▶由已知实测数据获得系统模型的方法
- > 实测数据
 - ▶时域响应数据、频率响应数据
- > 本节主要内容
 - ▶离散系统辨识方法
 - ▶辨识模型阶次的选择、辨识信号生成
 - ▶连续系统辨识、多变量系统辨识
 - ▶离散系统在线辨识简介

离散系统的模型辨识

> 离散传递函数模型

$$G(z^{-1}) = \frac{b_1 + b_2 z^{-1} + \dots + b_m z^{-m+1}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}} z^{-d}$$

- > 对应的差分方程模型

$$y(t) + a_1 y(t-1) + a_2 y(t-2) + \dots + a_n y(t-n)$$

= $b_1 u(t-d) + b_2 u(t-d-1) + \dots + b_m u(t-d-m+1) + \varepsilon(t)$

> ε(t) 是辨识模型的残差信号

系统辨识的算法基础

> 已知实测信号

- **>**输入 $u = [u(1), u(2), \cdots, u(M)]^{T}$
- ightharpoonup 输出 $ightharpoonup = [y(1), y(2), \cdots, y(M)]^{\mathrm{T}}$

> 由数据可以得出

$$y(1) = -a_1 y(0) - \dots - a_n y(1-n) + b_1 u(1-d) + \dots + b_m u(2-m-d) + \varepsilon(1)$$

$$y(2) = -a_1 y(1) - \dots - a_n y(2-n) + b_1 u(2-d) + \dots + b_m u(3-m-d) + \varepsilon(2)$$

$$\vdots$$

$$y(M) = -a_1 y(M-1) - \dots - a_n y(M-n) + b_1 u(M-d) + \dots + b_m u(M-m-d+1) + \varepsilon(M)$$

> 线性代数方程 $y = \Phi\theta + \varepsilon$

最小二乘系统辨识

ightharpoonup 矩阵形式 $y=\Phi heta+arepsilon$

$$\mathbf{\Phi} = \begin{bmatrix} y(0) & \cdots & y(1-n) & u(1-d) & \cdots & u(m-d) \\ y(1) & \cdots & y(2-n) & u(2-d) & \cdots & u(1+m-d) \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ y(M-1) & \cdots & y(M-n) & u(M-d) & \cdots & u(M+1-m-d) \end{bmatrix}$$

$$\boldsymbol{\theta}^{\mathrm{T}} = [-a_1, -a_2, \cdots, -a_n, b_1, \cdots, b_m], \boldsymbol{\varepsilon}^{\mathrm{T}} = [\varepsilon(1), \cdots, \varepsilon(M)]$$

- ightharpoonup 定义残差最小指标 $\min_{\theta} \sum_{i=1}^{\infty} \varepsilon^2(i)$
- ightarrow 最小二乘解 $oldsymbol{ heta} = [oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi}]^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$

辨识问题的MATLAB直接求解

- > 系统辨识工具箱直接求解
 - ▶已知时域数据

$$T=arx([y,u], [m,n,d])$$

▶已知时域数据对象

```
T=arx(dat, [m,n,d])
```

- ➤ T 为结构体变量 , T.a, T.b, tf(T)
- > 当然由前面的公式也能直接求解

例4-37 系统辨识计算

实测数据 文件 c4dat1.mat

t	u(t)	y(t)	t	u(t)	y(t)	$\mid t \mid$	u(t)	y(t)
0	1.4601	0	1.6	1.4483	16.411	3.2	1.056	11.871
0.1	0.8849	0	1.7	1.4335	14.336	3.3	1.4454	13.857
0.2	1.1854	8.7606	1.8	1.0282	15.746	3.4	1.0727	14.694
0.3	1.0887	13.194	1.9	1.4149	18.118	3.5	1.0349	17.866
0.4	1.413	17.41	2	0.7463	17.784	3.6	1.3769	17.654
0.5	1.3096	17.636	2.1	0.9822	18.81	3.7	1.1201	16.639
0.6	1.0651	18.763	2.2	1.3505	15.309	3.8	0.8621	17.107
0.7	0.7148	18.53	2.3	0.7078	13.7	3.9	1.2377	16.537
0.8	1.3571	17.041	2.4	0.8111	14.818	4	1.3704	14.643
0.9	1.0557	13.415	2.5	0.8622	13.235	4.1	0.7157	15.086
1	1.1923	14.454	2.6	0.8589	12.299	4.2	1.245	16.806
1.1	1.3335	14.59	2.7	1.183	11.6	4.3	1.0035	14.764
1.2	1.4374	16.11	2.8	0.9177	11.607	4.4	1.3654	15.498
1.3	1.2905	17.685	2.9	0.859	13.766	4.5	1.1022	14.679
1.4	0.841	19.498	3	0.7122	14.195	4.6	1.2675	16.655
1.5	1.0245	19.593	3.1	1.2974	13.763	4.7	1.0431	16.63

如何辨识系统模型?

➤ 基于MATLAB的求解(选择阶次组合4,4,1)

> 离散传递函数模型提取

> 数学形式

$$H(z) = \frac{4.83 \times 10^{-8} z^3 + 6z^2 - 0.5999z - 0.1196}{z^4 - z^3 + 0.25z^2 + 0.25z - 0.125}$$

辨识效果评价

> 样本点的输入方法

```
V=iddata(y,u,0.1);
T=arx(U,[4,4,1]); H=tf(T)
```

- > 如何评价?
 - ➤用已知输入信号去激励辨识模型
 - ▶比较输出与实际输出信号
- ➤ MATLAB求解 >> t=0:0.1:4.7; lsim(G,u,t); hold on; plot(t,y,'o')

由解方程的方法直接辨识

ightharpoonup 给出辨识语句 $y = \Phi\theta + \varepsilon$

> 数学模型

$$G(z) = \frac{-5.824 \times 10^{-7} z^3 + 6z^2 - 0.5999z - 0.1196}{z^4 - z^3 + 0.25z^2 + 0.25z - 0.125}$$

系统辨识的图形用户界面

- > 启动界面 systemIdentification
 - ▶输入样本点
 - ▶选择阶次
 - ▶直接辨识
- > 无需给出命令、函数调用

系统辨识小结

- > 为什么要系统辨识?
- > 由实验数据如何辨识系统的数学模型
 - ▶最小二乘求解,矩阵左除
 - ▶直接辨识函数 arx, tf
- > 系统辨识界面 idnt

