Exercícios (souções) - Métobos Auno	A Gativos
1- fundamentos	
(Somewhe exercícios de Cousulta a Ma	Heeias)
2 1000 - 1000 - 1001 //0	
2-Nobelagem Natemática	
21 Practicas 21 Portal Mary	
2.1 Bostages 7/ Body Mikks	
-Xa+ Xz > A	
	d) xx+ xz >3
b) xa+2xz >3	
Xx + 2xz & 6	e)
	Xa+Xe
c) Xz > Xa	
X5-X7 50	
-X1+X2 >0 -> X1-X2 <0	
	a) 5.1+44 = 21 (X)
	b) 6.2 + 4.2 = 18
	b) 52+4.2 = 18 c) 53+4.45=21 offma d) 5.2+4.1 = 14
2.2 Saucies 71 Reison Milks	0) 5.2 +4.1 = 14
FUNÇÃO OBJECTIVO - MAXIMIZA Z = 5xo + 4	1e) 5:2+4·(-6)=6 (X)
Peste	Scoes
6x1+4x2 € 24 X1+2x2 € 6	-X1+X261 X262 X1/220
a) X=1, x=4 6:1+4.2=22624 1+24=566	-1+4=3>1 4>2 1,4 ≥0
b) xa=2,xz=2 6.2+42=20624 2+2.2=666	-Z+Z=041 242 2230
6 3 + 4 15 = 24224 3 + 2 15 = 646	-3+16=-15<1 16<2 3, 15>0
d) x=2, x=1 62+41=16624 2+21=466	-2+1=-1=1 1=2 2,1=0
e) X1=2, X2=-1 6:2+4·(-1)=8624 2+2·(-1)=066	-2+(-1)=-3<1 1<2 220,-10

23	Soboas 77 Reda	of Mikks						
	PARA M1: 6x1+4	1x2 - 62+	-Z= Z.D.					
				de solv	10			
		, , ,		, , , ,	00.8			
	PARLA MZ: XL+Z	2x = 2+ 2.2	= C					
	THUR FIC. MICE			Sem €	iologo I			
				- COM((Solice !			
24	Descento 31 8	Zana Miki						
0-1	2= 25x1+4x	CEDBY II WAS	y . 2					
	2 / 5/1+9/	z , se	$X_1 \in C$					
)45x1+4x	z, se	X1 > 2.					
	1.0							
	La Função Z	té não l	inear?					
25	Os Processos							
	Maximizan Z	= 2x1 +3x2						
	Sujeilo a 10	1X1 + 2X2 + CA	æ					
		5x1+06x2 66						
		8x1 + 10x2 60						
		X1, X2 3						
		11, 12						
26	Frefreber							
	Maléria-Perma	Luceo						
	A 2	do	-	1)ough	de A pel	o meunh	Rock do	Lotal
	B 4	60		_ ^	, loo unio			0-4-0
	Max 240	00		1 Justino	, poe omo		0.	
	10 PC 10							
	Maninizar Joh	+ 50R						
	Maximizar 20A Sujeito a 2A	112 6 240						
	offer a M	A & 100						
		1 300/	1,2\ _	> 024	- 0'88 > 0			
			י נפיי	UICK.	V(06) 7 U			
		A, 3 30						

27 O investige -5000 de investimento MArimizar Z = 0,05 A + 0,08 B - A Rende 5% (vierb a 4+3 < 5000 -B rande 8% A > 0,25 (A+B) - 075A-025B >0 B 405 (A+B) -> -05A+05B 60 - Maximo 25% na A A > 05B - A-05B > 0 - Máximo 50% no B - A minimo metade B A,B 30 2.8 Oznak Commonity Collect MAXIMZAL Z= 1500 x1 + 1000 x2 Sujeito a X1 + X2 = 30 X, 310 X2310 29 JACK NA CLERN e = estudar d= diversão Marinizar Z= e + 2d Eyjeilo a e+d = 10 e 2 d => e-d 20 d.64 e, d >0 2.60 Show & Sell X -> minutos anúncio Paso 1/2 - Minutos anúmero TV Maximiza X1+25xe 15x1 +300x2 < 10000 X1 3 2x2 => X1-ZX2 30 X1 = 400 XL , X2 30

2.1,	<u>1</u> 0/8	Owpre	gos de	1 John						
	Ϋ́	-> hor	zas bje	1	Minimiza	Z= 8:	X1+6X2			
			ras loja		bujeth a					
			4		4	X2 <				
						X2 ≥1	6			
						12 E				
					X	_+Xz 3	20			
						X ₁ , X ₂ ≥				
2.10	L Oil	Co								
			dia do	800x (x 1000)			Dei	MeNSA	8cã	Dugai
				Subai (x 1000)	Me	SEC.		000	0,2	0,1
						DUTIGO		0000	0,25	0,6
	Minim	ja XI+	X ₇			secificant		0000	0'T	0,15
		ĭ	+0,1x2 3 1	4		anstice		8000	0,15	O,L
	00		+06x2 >3			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			+0,15×2 >			→ M(Nimo 40	ملا ماه	9 ex	
			L+ Q1 X2 =				showles bo 2			
				z) (=> 0,6x2-0,4xe.	0					
			Xz 30	عرب عرب عرب						
		, and								
213	Now	Trader								
		13000								
	χ, 🗻	PNIGENTA	meulo.	Primera linh	104					
	X2 -> 1	V n 190 Mi	mendo	alta levol	octor.					
		2,000-(Maria					
	Minin	niza	X1 + X2							
		U		००० व ६ ५४%						
	Cont		X2 6 0	(C) (X,+Xz) ⇔	-0,6x1+ 0.	4x2 60	5			
				2 20		-				
			,,,,,							

1.14 Scontag		
X1 - Esg	to k na mikhna	
Xz + Rg	ρ̄ο 3 na mi)Hura	
Miminut	a Z = 100x1 + 80x2	
Shows	$2 0.06 \times 1 + 0.03 \times 2 > 0.03$ $0.06 \times 1 + 0.03 \times 2 \le 0.06$	
	$0.03 \times_2 + 0.06 \times_2 > 0.03$	
	0,03 x2 + 0,06 x2 \le 0,05	
	0,04 x1 +0,03 x2 > 0,03	
	0,04×1 + 0,03 ×2 4 0,07	
	$x_1 + x_2 = 1$	
	X4, X2 30	
.15 Pnodução	de Radies	
X1 -> (vodução de HiA-1	
X1 -> (
X2 -> (1	vodução de HiR-1 hodução de HiR-Z	
X2 -> ()	nodução de HiPi-Z a Z= 16xs+16xz	
X2 -> ()	nochique de $HiR-1$ nochique de $HiR-2$ a $Z = 16x_0 + 16x_2$ b $6x_0 + 4x_2 \le 480.09$	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \le 480 \cdot 0.96 5x2 + 5x2 \le 480 \cdot 0.86	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \le 480 \cdot 0.96 5x2 + 5x2 \le 480 \cdot 0.86	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	
X2 -> ()	nodução de HiPi-Z nodução de HiPi-Z a Z= 16x2 + 16x2 L 6x2 + 4x2 \(\) 480 \(\) 09 5x2 + 5x2 \(\) 480 \(\) 0,86 4x2 + 6x2 \(\) 480 \(\) 0,88	

3- Nélos Gentico

3.1 Aplicação do método gráfico

Os processos de produção

Fac Factory

Observations of the constraint of the constrain

4-Mélois Simplex

Unciavois Não

BASICAS

(d

4.1 Bases do Simplex

a) Maximiza
$$dx_1 + 3x_2$$

Sujetto a $x_1 + 3x_2 + 5x_3 = 6$
 $dx_1 + 2x_2 + 6x_3 = 6$
 $dx_1 + 2x_2 + 6x_3 = 6$

Uhelmueis

BÁSICAS

	(X_L, X_2)	(S1, S2)	(6,6)	Sim	0
	(X2, SL)	(X2, Sz)	(z, z)	Sim	6
	(Xa, 8z)	(X218r)	(3, -3)	NATO	_
	(X2, Sa)	(Xs, Sz)	(6,-1Z)	NÃO	-
	(X2, 62)	(x_2, s_2)	(2,4)	SIM	4
	(Sy, S2)	(XL, Xz)	(6/7, R/2)	SIM	6,86 (ókwa!)
d,e)					
	\ ConstraX₂ 2				
	3.5				
	3 E Z = 2X1+3X2=48/7				
	2.5				
	Constraint 1 B =	(0.2)			
	2 7	$A = \left(\frac{6}{7}\right)$	12		
	1:5	4 = 7	, 7)		
	1				
	0.5				
		: (0,0)	C = (2,0)		
	X ₁ 0	1 1	3	4 5	6

PUNÇÃO

OBJETUO

Brito D B

Viávez?

VALORES

4.2 Osmização poe enmelação de soluções básicas

Movime to $z = 2x_1 - 4x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 - 4x_1 + 5x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 - 4x_1 + 5x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 - 4x_1 + 5x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 - 4x_1 + 5x_1 + 5x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 + 4x_1 + 5x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 + 4x_1 + 5x_2 + 5x_3 - 6x_4$ Movime to $z = 2x_1 + 4x_1 + 5x_2 + 5x_3 + 6x_4 + 5x_1 + $	7.2 Ulmizag	as por burnela	gas de	soluções	s basicas					
Logisto a $x_{L}+4x_{L}-2x_{S}+8x_{L}+2$ Logisto a $x_{L}+4x_{L}-2x_{S}+8x_{L}+5x_{L}+2$ Logisto a $x_{L}+2x_{L}-3x_{S}+x_{L}+2$ Logisto a $x_{L}+2x_{L}-3x_{S}+2$ Logisto a $x_{L}+2x_{L}-3x_{S}+2$ Logisto a $x_{L}+2x_{L}-3x_{S}+2$ Logisto a $x_{L}+2x_{L}+2x_{L}+2$ Logisto a $x_{L}+2x_{L}+2x_{L}+2$ Logisto a $x_{L}+2x_{L}+2x_{L}+2$ Logisto a $x_{L}+2x_{L}+2$ Logisto a $x_{L}+2x_{L$										
Josephson X. $+4x - 2x_5 + 8x_4 \pm 2$ $-x_1 + 2x_1 \cdot 3x_5 + 4x_4 \pm 1$ $-x_1 + 2x_1 \cdot 3x_5 + 4x_4 \pm 1$ $-x_1 + 2x_1 \cdot 3x_5 + 4x_4 \pm 1$ $-x_1 + 2x_1 \cdot 3x_5 + 4x_4 + 5z = 1$ $-x_1 + x_1 + x_2 + x_3 + x_4 + 4x_5 + x_5 + 2x_5 + 2x_5$	Moximija	Z= 2x2-4x2+	5x3-6x4		h	Toximija	ŧ= ά	Dx2-4x2 +5x3-6	5×4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T T			(=>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VAR BÁSIDAS	Soução				VAR BÁ	SIOAS	Coução	<u> Z</u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(XL, XZ)	(0,1/2)	-2			(Xz,	Sz)	(1/2 10)	-Z	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(X^{r} X^{s})$	(8,3)	31	(okma!		(Xs)	Хц)	(0,1/4)	3/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(x, X4)	(0, 1/4)	-3/2			(X3,	(۲۶	(1/3,8/3)	5/3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(x, S,	(-4,3)	_			(Ks,	(s)	(-1, 4)	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Xa, Sz)	(2,3)	4			(X4)	SL)	(1/4,0)	3/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Xz, Xz)	(4,0)	-2				-	(1/4,0)	-3/2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(χ_{2},χ_{4})	(1/2, o)	-Z						0	
Minimize $2 = x_a + 2x_z - 3x_3 - 2x_4$ Sujeito a $x_{a+} + 2x_z - 3x_3 + x_4 = 4$ $x_{a+} + 2x_z + x_3 + 2x_4 = 4$ $x_{a+} + 2x_2 + x_3 + 2x_4 = 4$ $x_{a+} + 2x_3 + 2x_4 + 2x_4 = 4$ $x_{a+} + 2x_3 + 2x_4 + 2x_4 + 2x_4 + 2x_4 + 2x_4 + 2x_$			-2							
Sijeito a $x_{1} + 2x_{2} - 3x_{3} + x_{4} = 4$ $x_{1} + 2x_{2} + x_{3} + 2x_{4} = 4$ $x_{2}, x_{2}, x_{3}, x_{4} \ge 0$ [ARC BÁSIONS COLUÇÃTO Z (x_{1}, x_{2}) [In finition boluções! \longrightarrow] $(x_{1}, x_{2}) / x_{2} + 2x_{2} = 4$ [(x_{1}, x_{2}) $(4, 0)$ $(4, $										
Sujectes a $x_{1} + 2x_{2} - 3x_{3} + x_{4} = 4$ $x_{1} + 2x_{2} + x_{3} + 2x_{4} = 4$ $x_{2} + 2x_{3} + x_{4} \ge 0$ $x_{3} + x_{4} \ge 0$ $x_{4} + 2x_{2} + x_{3} + 2x_{4} = 4$ $x_{4} + 2x_{4} + x_{3} + 2x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} + x_{4} + x_{4} + x_{4} = 4$ $x_{4} + x_{4} +$										
Sujeito a $x_{1}+2x_{2}-3x_{3}+x_{4}=4$ $x_{1}+2x_{2}+x_{3}+2x_{4}=4$ $x_{2},x_{3},x_{4}\geq0$ ARL BASIONS COLUÇÃTO Z (x_{1},x_{2}) $(x_{1},x_{2})/x_{1}+2x_{2}=4$ { (x_{1},x_{2}) $(4,0)$ $(4$	Minima	2 - V. +2v-	34 - 7	,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Лц						
$ A C B A S C A S X_{4} > 0 $ $ A C B A S C A S X_{4} > 0 $ $ A C B A S C A S X_{4} > 0 $ $ A C B A S C A S X_{4} > 0 $ $ A C B A S C A S X_{4} > 0 $ $ A C B A S C A S X_{4} > 0 $ $ A C B A S C $										
MAC BÁSICAS COLUÇÃO Z (X_{L}, X_{E}) $lnfinitas$ $loluções!$ $(X_{L}, X_{E}) / x_{A+2} x_{E} = 4$ (x_{L}, x_{A}) $(4, 0)$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16, 12, 13, 14	4 20							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/40 2055005	Cours	7							
(x_{1}, x_{2}) $(4, 0)$ 4 (x_{2}, x_{3}) $(4, 0)$ 4 (x_{2}, x_{3}) $(2, 0)$ 4					11/v. v.	1/x 2.	1.6			
(x_{1}, x_{4}) $(4, 0)$ 4 (x_{2}, x_{3}) $(2, 0)$ 4					المديمى	I NETCX	274(
(x_2, x_3) $(2, 0)$ 4										
(Λ_2, X_4) $(Z, 0)$ $(Z, 0)$										
			4							
(x_{\circ}, x_{\circ}) $(4/2, 16/2)$ —	(X2, X4)	(417, 44)	_							

4.4	DIMP	olex co	our roá	lias ;	funções	obje	don l			
						7				
a)	Tablea	au 1:	x2	x3 x4	s1	s2	s3	z	1	Maximize z = 2x1 + x2 - 3x
		1		2 4		0	Θ	Θ	40	x1 + 2x2 + 2x3 + 4x4 <=
	s2	2		1 2		1	Θ	Θ	8	$2x1 - x2 + x3 + 2x4 \le 8$
	s3	4		1 -:		0	1	Θ	10	$4x1 - 2x2 + x3 - x4 \le 10$
	z	-2		3 -!		0	0	1	0	
			x2 = 0, x3			-	-	_	1 -	
	Tablea								1 -	
	-	x1		x3 x4		52	s3	Z	 	
	s1	-3		0 0		-2	0	Θ	24	
	х4	1		1/2 1		1/2	0	0	4	
	s3	5		3/2 0		1/2	1	0	14	
	z z = 20	3 9; x1 = 0,	$-7/2$ 1 $x^2 = 0$, $x^2 = 0$	1/2 0 $3 = 0, x4$		5/2	Θ	1	20	
	Table			-, 54						
		x1	x2 :	x3 x4	4 s1	s2	s3	z		
	x2	-3/4	1	0 0	1/4	-1/2	0	0	6	
	х4	5/8	0 1	1/2 1	1/8	1/4	0	Θ	7	
	s3	25/8	0 3	3/2 0	5/8	-3/4	1	Θ	29	
	z	3/8		1/2 0		3/4	0	1	41	
	z = 41	l; x1 = 0,	, x2 = 6, x	(3 = 0, x4	= 7					
b)										
Tab	leau 1:									Maximize $z = 8x1 + 6x2 + 3$
	x1	x2	х3	x4	s1	s2	s3	z		$x1 + 2x2 + 2x3 + 4x4 \le 4$
s1	1	2	2	4	1	Θ	Θ	Θ	40	$2x1 - x2 + x3 + 2x4 \le 8$
s2	2	-1	1	2	Θ	1	Θ	Θ	8	$4x1 - 2x2 + x3 - x4 \le 10$
s3	4	-2	1	-1	Θ	Θ	1	Θ	10	
	-8	-6	-3	2	Θ	0	Θ	1	Θ	
z =	0; x1 =	θ, x2 =	θ , $x3 = \theta$	x4 = 0					ı	
Tab	leau 2:								ı	
	x1	х2	х3	х4	s1	s2	s3	Z		
s1	Θ	5/2	7/4	17/4	1	Θ	-1/4	Θ	75/2	
s2	9	0	1/2	5/2	Θ	1	-1/2	Θ	3	
x1	1	-1/2	1/4	-1/4	0	Θ	1/4	Θ	5/2	
		-10	-1	Θ	Θ	Θ	2	1	20	
		= 5/2, x2	2 = 0, x3	= 0, x4 =	0				'	
Tab	leau 3:	x2	x3	x4	c1	s2	s3			
					s1			z	<u> </u>	
x2		1	7/10	17/10	2/5	Θ	-1/10	Θ	15	
52	9	0	1/2	5/2	Θ	1	-1/2	Θ	3	
x1	1	0	3/5	3/5	1/5	Θ	1/5	Θ	10	
2		0	6	17	4	Θ	1	1	170	
Z =	170; x1	= 10, x2	2 = 15, x3	= 0, x4	= 0					

)		nize z :				4x4				
		2x2 + 2								
		x2 + x 2x2 + :								
	481 -	ZXZ T .	X2 - X2	1	U					
Table	au 1:									
Tubec	x1	x2	х3	x4	s1	s2	s3	z		
s1	1	2	2	4	1	0	Θ	Θ	40	
s2	2	-1	1	2	Θ	1	Θ	Θ	8	
s3	4	-2	1	-1	Θ	Θ	1	Θ	10	
z	-3	1	-3	-4	Θ	0	Θ	1	Θ	
	; x1 = 0				-	-	-	_	1	
Table	au 2:									
	x1	x2	х3	х4	s1	s2	s3	Z		
s1	-3	4	Θ	0	1	-2	Θ	Θ	24	
x4	1	-1/2	1/2	1	Θ	1/2	Θ	Θ	4	
s3	5	-5/2	3/2	Θ	0	1/2	1	0	14	
z	1	-1	-1	Θ	Θ	2	Θ	1	16	
z = 1	6; x1 = (9, x2 = 6), x3 = 0	x4 = 4					1	
Table	au 3:								I	
	x1	х2	х3	х4	s1	s2	s3	Z		
x2	-3/4	1	Θ	0	1/4	-1/2	Θ	Θ	6	
x4	5/8	Θ	1/2	1	1/8	1/4	Θ	Θ	7	
s3	25/8	Θ	3/2	Θ	5/8	-3/4	1	Θ	29	
z	1/4	Θ	-1	Θ	1/4	3/2	Θ	1	22	
	2; x1 = (0, x2 = 6	i, x3 = 0), x4 = 7					-	
Table	au 4: x1	x2	х3	x4	s1	s2	s3	z		
х2	-3/4	1	Θ	0	1/4	-1/2	Θ	Θ	6	
х3	5/4	Θ	1	2	1/4	1/2	Θ	Θ	14	
s3	5/4	Θ	Θ	-3	1/4	-3/2	1	Θ	8	
Z	3/2	Θ	Θ	2	1/2	2	Θ	1	36	
z = 3	6; x1 = (0, x2 = 6	, x3 = 1	4, x4 =	θ					

4.6 Magrama com zesteição imea Soluções háncas possuem uma úmea variável + 0. hosos

Solução ótima: X = 90 , 7= 5.90 = 450 + X2=90/3=30 , 7=-6:30=-180 X1=90, X2=0, X3=0, X4=0, X5=0 X3=90/5=18, E= 3-18=54 6 7-450

X4 = 90/6 = 15 , Z= -5.15 = -75

Xs=90/3=30 , 7=12.30= 360

4.7 Testando variavers entrantes

Maximiza 2= 16x1 + 15x2 Sujeto a 40x1+31x2+51 = 124 $-X_{L} + X_{2} + S_{2} = 1$ $-X_1 + \delta_3 = 3$

X1, X2, S1, S2, S3 20

Constraint 3

La	2:4-	1	w E-				Maximize $z = 16x1 + 1$
	U UTER	ngoes					40x1 + 31x2 <= 124
							-x1 + x2 <= 1 x1 <= 3
							X1 < - 3
Tablas							
Table	x1	x2	s1	s2	s3	Z	
s1	40	31	1	Θ	0	0	124
s2	-1	1	Θ	1	Θ	Θ	1
s3	1	0	Θ	Θ	1	Θ	3
z	-16	-15	Θ	0	0	1	0
z = 0	x1 = 0	, x2 = 6)				
Table						_	
_	x1	х2			s3	Z	
s1	Θ	31	1	Θ	-40	Θ	4
s2	0	1	0	1	1	Θ	4
x1	1	0	Θ	0	1	Θ	3
z	0	-15		0	16	1	48
z = 48 Tablea		3, x2 =	U				
Table	x1	x2	s1	s2	s3	z	
x2	Θ	1	1/31	Θ	-40/31	Θ	4/31
s2	Θ	Θ	-1/31	1	71/31	Θ	120/31
x1	1	Θ	Θ	Θ	1	0	3
z	Θ	0	15/31	0	-104/31	1	1548/31
z = 1	548/31;	x1 = 3,	x2 = 4/31	L			
Table		3	c1	-3	c3	_	
	x1	x2	s1	s2	s3	z	
x2	Θ	1	1/71	40/71	0	Θ	164/71
s3	Θ	0	-1/71	31/71	1	Θ	120/71
x1	1	Θ	1/71	-31/71	0	θ	93/71
z	0	0	31/71	104/71	Θ	1	3948/71
z = 39	948/71;	x1 = 93/	71, x2 =	164/71			

b) Leccoree or paulos E→C→A. 6 2 iterações c) O cartério de escolha da parajável entrante (maior impacto na função objettuo é uma nevaletica. A experiência mostra que, em média, esse cartério é mais eficiente. No entanto, ele Não garante o menor número de ibero-Goes para chegan na bolicão ótima!

31

d) Mesmas iterações, modando o sinal da limba & (função objetivo)!

124

1 -15 z = 0; x1 = 0, x2 = 0Tableau 2:

Tableau 1:

	x1	x2	s1	s2	s3	-z	
s1	0	31	1	0	-40	Θ	4
s2	Θ	1	0	1	1	Θ	4
x1	1	Θ	Θ	0	1	Θ	3
		15		_	16		40

z = -48; x1 = 3, x2 = 0

Table	au 3:						
	x1	x2	s1	s2	s3	-z	
x2	Θ	1	1/31	0	-40/31	0	4/31
s2	Θ	Θ	-1/31	1	71/31	Θ	120/3
x1	1	0	0	0	1	Θ	3
-z	Θ	Θ	15/31	0	-104/31	1	1548/
z = -	1548/31;	x1 = 3,	x2 = 4/3	1			'
Table	au 4:						ı
	x1	x2	s1	s2	s3	-z	
x2	Θ	1	1/71	40/71	Θ	0	164/71

104/71

-3948/71; x1 = 93/71, x2 = 164/71

-1/71

31/71 120/71 -31/71

3948/71

Minimize z = -16x1 - 15x240x1 + 31x2 <= 124

-x1 + x2 <= 1

x1 <= 3