

Module 5B Explosion and Fire Protection – Flammable Gas & Vapor Explosions

Last Revised – June 2024

PS Bootcamp Modules

- ✓ Module 1: Introduction
- ✓ Module 2: Hazard Identification
- ✓ Module 3: Risk Matrix
- ✓ Module 4: Safeguard Concepts
- ✓ Module 5: Explosion/Fire Protection
- Module 6: Management of Change
- Module 7: Incident Investigation
- Module 8: Facility Siting

Module 5: Explosion and Fire Protection Agenda

- **✓ 5A Fire, Combustion and Electrical Area Classification**
- √ 5B Flammable Gas and Vapor Explosions
- **□** 5C Combustible Dust Explosions

Our vision: To be a world-class sustainable chemical company making great products for society.

Module 5B: Training Objectives

Gain an understanding of:

- Flammable gas and vapor explosions and their characteristics
- Conditions necessary for flammable gas or vapor explosions
- Upper and Lower Explosion Limits (UEL, LEL)
- Limiting Oxygen Concentration (LOC)
- Minimum Ignition Energy (MIE)

Be able to interpret the safety data (UEL, LEL, LOC, MIE, ...) associated with flammable gases & vapors, and adjust for actual processing conditions

Be able to apply preventive measures to avoid the occurrence of flammable gas or vapor explosions, or prevent their propagation

Flammable Gas and Vapor Explosions

Explosions can be the result of Physical or Chemical events. The focus here is on explosions resulting from a Chemical event

• The violent & sudden <u>Combustion</u> of a flammable Gas or Vapor (Explosion)

What materials are capable of forming explosive atmospheres?

Flammable Gases (CH4, C2H4, NH3,...)
Flammable Vapors (Methanol, Acetone, Toluene, ...)
Fine droplets or mists of flammable liquids
Dispersed Dusts

Flammable gases or vapors that may be present in the air in quantities sufficient to ignite in the detonation range.

Combustion

The burning of gas, liquid, or solid in which flammable material is oxidized and releases heat.

Combustion of flammable material can occur in the gas phase only and in two different modes.

- Fire
- Explosion

Fire

 Flammable material and oxygen are mixed during the combustion process.

Explosion

 Flammable material and oxygen are mixed before the combustion process.

Explosion

Combustion leading to a rapid increase of pressure. Explosions are either Detonations or Deflagrations. Two consequences are heat release and a pressure shock wave

- Deflagration The flame front moves at a speed less than the speed of sound. A deflagration can accelerate to a detonation.
- Detonation The flame front moves faster than the speed of sound in the unreacted medium

Detonations

Criteria	Type of Explosion				
	Deflagration	Detonation			
Propagation speed v _f of flame	v _f < v _{sound} (Typical: 0.5 m/s ≤ v _f ≤ 10 m/s)	$v_f > v_{sound}$ (Typical: 2000 m/s $\leq v_f \leq$ 3000 m/s)			
Propagation speed v _p of pressure	$v_p = v_{sound}$	V _p > V _{sound}			
Appearance of a shock wave	No	Shock wave is coupled with the flame front			
Ignition mechanism for the unburned gas	Heat transfer from the flame front to the unburned gas	Adiabatic compression by shock wave heats the unburned gas to a temperature above the ignition temperature			
Explosion pressure ratio r (Pm/Pi)	7 ≤ r ≤ 20	20 ≤ r ≤ 2000			
Dependence on vessel and pipe geometry	No	Yes, substantial influence of geometry			
Normalized rate of pressure rise	KG ≤ 3000 bar*m/s	KG ≥ 10 ⁶ bar*m/s			

Difference between Deflagration and Detonation

Simplified Vapor Cloud Explosion Mechanism⁽¹⁾

Sketch of Flame Propagation⁽¹⁾

Video of a Chemical Explosion

China chemical explosion 2019: Jiangsu Tianjiayi Chemical plant kills 47 people - Bing video

Video of a Chemical Explosion

Caught On Camera: Large Explosion In Chemical Plant Fire In Hood County - Bing video

Video of a Chemical Explosion

Port Neches: Chemical plant explosion rattles homes miles

away - Bing video

Factors Affecting Flame Acceleration(1)

Interactions of the flame with obstacles results in a strong increase of the flame area and acceleration of the gas flow ahead of the flame.

The upstream gas flow interacts with obstacles, generating turbulence due to shear instabilities.

Turbulence increases the burning velocity of the flame.

Any confinement that prevents the combustion products' expansion in directions other than that of the flame propagation promotes further flame acceleration.

The higher rate of fuel consumption increases the gas flow ahead of the flame, strengthening obstacle-induced turbulence as well as increasing the surface area of the flame.

This creates a positive feedback loop and results in flame acceleration and pressure rise.

Components Required for an Explosion

Explosion Risk

In theory, if only one of the three components is removed the Explosion can be avoided

Theory is splendid but until put into practice, it is valueless.

- James Cash Penney

Explosion Risk

Fortunately, the appropriate mixture of flammable material and oxidant have easily measurable limits It is often feasible to move the mixture out of the "Explosive Range" to minimize the Explosion Risk

Explosive Limits

Explosivity Diagram

Explosivity diagram for the three-component system propylene/O2/N2 at P = 1 bar and T = 180°C, represented as explosion triangle.

- Lower Explosion Limit (LEL), relatively independent of O2-conc.*
- Upper Explosion Limit (UEL) for Propylene in Air ($O_2 : N_2 = 21 : 79$)
- Upper Explosion Limit for Propylene in Oxygen
- **Limiting Oxygen Concentration** (LOC)
- Line of Stoichiometric Compositions, Propylene: $O_2 = 1:4.5$
- (F) Propylene/Air Line, i.e. O_2 : $N_2 = 21:79$

^{*:} if c_n-values of O₂ and inert gas are close to each other

Explosive Limits

<u>Explosive Limits</u> (LEL, UEL) limiting oxygen concentrations and explosion characteristics of a selected set of explosive systems.

	Fuel	H _{combustic} [kJ/m -50.03			UEL [vol. %]		LOC [vol. %]		Max. explosion pressure ratio		K _G	Ref.
		[kJ/m	SK		Air	O_2	N ₂	CO ₂	Air	O ₂	[bar•m/s]	
	H ₂		10		3	94	4.8	4.8	8.4	9.2	550	3,8,B
	CO	- C:/\					5.0	5.0	8.3	9.5		3
	CS ₂	N_{O}	2		60		6 (60°C) 4 (180°C)		8.8		105	4,8,B
	7 . XO		(5)	1.5	100	100	0	0		14.4	1400	2,8
		· CO	ال ا	7.0	73		5 (150°C)					3,B
	α											
	CA. OL		-50.03	4.4	16.5	66	11.6	14.1	8.2	15.4	55	3,8,B
	, MO,	428	-47.51	2.7	14.7	55	11.0	13.3		15.3	106	2,8
	· C1112	-1323	-50.88	2.3	32.4	81			8.0		171	2, 16,B
		-1235	-26.8	3.5	15				7.0		78	2,16
00 0	.11 e	-2043	-46.33	2.1	9.5	56	11.8	14.2	9.6		100	2,8,B
	opylene	-1925	-45.74	2.0	11.7	59	11.5	14.1	9.6			2
	n-Butane	-2657	-45.71	1.4	9.3	56	12.1	14.5	9.6			2,B
	1,3-Butadiene	-2409	-44.6	1.4	16.3		10.8	13.0	8			3
	n-Pentane	-3244	-44.97	1.4	7.8		11.7	14.4	9.7		104	3,8
	n-Hexane	-3886	-45.10	1.0	8.1		12.1	14.5	9.7			2
	Toluene	-3733	-40.56	1.2	7		9 (80°C)		7.8			4,B
	o-Xylene	-4332	-40.8	1.0	7.6		8.5 (200°C)	14.5	8.8			4,B
	Dimethyl ether	-1328	-28.8	2.7	32				7.9	18.8	108	3,4,16
	Diethyl ether	-2503	-33.8	1.7	36				10.2	15.4	115	3,4,8

Minimum Ignition Energy (MIE)

In practice, it is difficult to reliably eliminate all ignition sources. In order to minimize the Explosion Risk, we should:

- **Measure the MIE of the system**
- Identify and eliminate/control possible Ignition sources and energy
- Avoid simultaneous appearance of the three components. 3.

Minimum Ignition Energy (MIE)

Minimum Ignition Energy (MIE)

Ignition Energies as a function of oxygen content.

Minimum Ignition Energies

Selected gases and vapors in mixture with air

Fuel	MIE [mJ]						
carbon disulfide	CS ₂	0.009					
hydrogen	H2	0.016					
acetylene	C2H2	0.010					
		in					
ethylene oxide	C2H4O	*O //					
ethylene	C2H ⁴	* 10.0					
propine	J.S.M.						
propylene oxide							
carbon mone							
N	~ ~ (J					
meth O		0.28					
		0.25					
	√ ∠18	0.26					
Сус	C3H6	0.17					
n-bu	C4H10	0.25					
n-peni	C5H12	0.28					
cyclohexane	C6H12	0.22					
n-heptane	C7H16	0.24					

		MIE [mJ]	
Fuel	Fuel		
10.	C8H18	1.35	
100	C4H10O	0.19	
	СНЗОН	0.14	
0	СЗН7ОН	0.65	
Si	C3H6O	0.55	
yl acetate	C4H8O2	1.42	
ammonia	NH3	14	
trichloroethylene	CCI2CCIH	510	
	I .	l	

at P = 1 bar abs and T = 20 C - except for those substances that need to be heated to reach sufficient vapor pressure).

1. Type of Inert Material

Explosion triangle for the system Propylene/O2/N2 and Propylene/O2/CO2 at P = 1 bar and T = 180C.

2. Pressure - LEL and UEL are pressure dependent

LEL and UEL for Methane/Air, Ethane/Air and Ethene/Air systems in the range of 1 to 50 bar.

2. Pressure - UEL of Propane in O2 at T = 200 C

Initial Pressure [bar abs]	Initial Temperature [°C]	UEL [vol%]	Source of measurement
1	200	55	J. Stickling, University of Paderborn, 1998
2	180	64	ZAT-report no. 195.0810.3N
2	223	65.5	ZAT-report no. 196.0303.3N
6	200	79	ZAT-report no. 197.0635.3N
10	200	88	ZAT-report no. 197.0635.3N
20	200	90	ZAT-report no. 198.0534.3N
30	200	90	ZAT-report no. 198.0534.3N

^{*}Measurements conducted by J. Stickling at University of Paderborn were performed in an open glass tube according to DIN 51649. The measurements cited in the ZAT-reports were conducted in a 5 I sphere by the safety engineering group of BASF.

2. Pressure - LOC Pressure dependence

LOCs of the three-component Propane/O2/N2, **Natural** Gas/O2/N2 and Ethane/O2/N2 systems at 26 C.

3. Temperature - LEL, UEL and LOC Dependence

Explosion avoidance

Two Methods for Explosion Prevention

- Control of flammable / oxidizer ratio.
- Isolation and control of ignition sources.

Explosion Avoidance

Control of Flammable / Oxidizer Ratio

Normally achieved by

- Addition of an Inert Gas
- Evacuation of the Oxidizer

Final	Initial	N2 available	Initial Pressure	Number of
Oxygen %	Oxygen %	pressure	(system)	Cycles
6	21	1	0.2	8.0
			Number of	Final
			Cycles	Oxygen %
			2	0.8

Explosion Avoidance

Isolation and control of ignition sources.

Normally achieved by

- Detection and Elimination of Ignition Sources
- Prevention of a Propagating Flame Front

Explosion Avoidance

Isolation and control of ignition sources.

Prevention of a propagating flame front

Flame arrestor

Flame Arresters & The Deflagration To Detonation Transition (DDT) Explained - Bing video

Summary - Takeaways

Flammable Gas & Vapor Explosions require the simultaneous occurrence of:

- An explosive mixture of gas or vapor (between the LEL and UEL)
- Enough oxygen to support sustained combustion (>MOC)
- An ignition source with energy equal to or exceeding the MIE

Eliminating one of these three conditions will prevent an explosion

Summary (continued)

LEL, UEL, MOC, and MIE are all functions of pressure & temperature.

When using published data, be sure to know the test conditions and adjust for specific case.

It is difficult to eliminate all possible ignition sources.

Mitigation efforts should also include preventing the occurrence of an explosive mixture (i.e. inerting to eliminate oxygen such as EO vapor concentration in alkoxylation batch reactor
headspace)

In situations where reliable explosion prevention cannot be guaranteed, preventing flame front propagation is necessary.

 Flame arrestors, detonation arrestors, or other equivalent devices will need to be incorporated into the system design.

Questions/Comments

