SIGIR 5 Papers

09/19/2018

Xiaosong Jia

Sentiment Analysis of Peer Review Texts for Scholarly Papers

Ke Wang and Xiaojun Wan
Institute of Computer Science and Technology, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University
Beijing, China
wangke17@pku.edu.cn,wanxiaojun@pku.edu.cn

2018/9/19 SIGIR 5 Papers 2

Author

Xiaojun Wan

Peking University

Verified email at pku.edu.cn - <u>Homepage</u>

Natural Language Processing Text Mining Artificial Intelligence

Cited by		VIEW ALL	
	All	Since 2013	
Citations	3764	2702	
h-index	27	25	
i10-index	68	57	

TITLE	CITED BY	YEAR
Co-training for cross-lingual sentiment classification X Wan Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL	405	2009
Multi-document summarization using cluster-based link analysis X Wan, J Yang Proceedings of the 31st annual international ACM SIGIR conference on	275	2008
Manifold-Ranking Based Topic-Focused Multi-Document Summarization. X Wan, J Yang, J Xiao IJCAI 7, 2903-2908	223	2007
Single Document Keyphrase Extraction Using Neighborhood Knowledge. X Wan, J Xiao AAAI 8, 855-860	219	2008

Motivation

- Whether the review texts and the recommendation scores are consistent with each other or not
- Help the chair to write a comprehensive meta-review
- Be convenient for authors to further improve their paper
- There is very few researches
- Long
- Mixture of non-opinionated and opinionated texts.
- Mixture of pros and cons.

Memory

$$e_{t}^{'} = LSTM(\hat{h}_{t-1}, M_{t}), (\hat{h}_{0} = I_{i}, t = 1, ..., m)$$

$$e_{t}^{(i)} = \frac{exp(e_{t}^{'})}{\sum_{j} exp(e_{j}^{'})}$$

$$E^{(i)} = [e_{t}^{(i)}]_{t=1}^{m}$$

$$R^{(i)} = \sum_{t=1}^m e_t^{(i)} M_t$$

$$V_i = f_{mlp}(I_i||R^{(i)};\theta_{mlp})$$

Review classifier

$$P_{i} = softmax(W_{p} \cdot V_{i} + b_{p}),$$

$$P_{i} = [p_{i}^{1}, ..., p_{i}^{C}]$$

$$\overrightarrow{h_{i}} = \overrightarrow{LSTM}(V_{i})$$

$$\overleftarrow{h_{i}} = \overleftarrow{LSTM}(V_{i})$$

$$h_{i} = \overrightarrow{h_{i}}||\overleftarrow{h_{i}}$$

$$h'_{i} = tanh(W_{a} \cdot h_{i} + b_{a})$$

$$a_{i} = \frac{exp(h'_{i})}{\sum_{j} exp(h'_{j})}$$

$$P_{review}^{(c)} = \sum_{i} a_{i}P_{i}^{(c)}, c \in [1, C]$$

 Objective Function the categorical crossentropy loss

$$L(\theta) = \sum_{T_{review}} \sum_{c=1}^{C} -P_{review}^{(c)} \log(\bar{P}_{review}^{(c)})$$
 (17)

where T_{review} is the review text in the training data, $P_{review}^{(c)}$ and $\bar{P}_{review}^{(c)}$ are the true and predicted probabilities of belonging to the c-th class, respectively. We use Adam [21] with minibatch to learn the model parameter θ .

Input Representation Layer

Review

Layer

Senter

Laye

Experiment

- ICLR, NIPS workshops, ICML workshops on the OpenReview website(https://openreview.net/)
- Only ICLR 2017 and ICLR 2018 provided both peer reviews and the corresponding overall recommendation scores for each submission
- K-fold cross validation(k=10)
- Google's 300-dimensional word vectors

Result

Prediction: Accept

Summary:

[+0.19] I like the insights about low-rank bilinear pooling leads · · ·

[+0.12] The paper presents new insights into element-wise \cdots

[+0.06] The paper presents a new model for the task of VQA \cdots

[+···] ···

[- 0.12] it could not be experimentally verified that low-rank \cdots

[- 0.11] I would like the authors to provide experimental \cdots

[- 0.05] It is not very clear from reading the paper.

[----] ---

↲	MILAM	78.24% (+/- 4.92%)	80.32% (+/- 5.43%)
	MIL	75.02% (+/- 2.85%)	76.57% (+/- 2.31%)
	CNN+Bi-LSTM+Att	75.64% (+/- 3.42%)	77.85% (+/- 3.72%)
	CNN+Bi-LSTM	74.35% (+/- 3.51%)	76.21% (+/- 4.08%)
	LSTM	65.24% (+/- 4.21%)	69.25% (+/- 3.82%)
	CNN	68.93% (+/- 5.24%)	73.31% (+/- 2.70%)
	SVM(Uni&Bi&Senti)	74.23% (+/- 3.21%)	75.24% (+/- 2.36%)
	SVM(Uni&Bi)	71.56% (+/- 2.52%)	73.23%(+/- 5.29%)
	SVM(Uni)	70.14% (+/- 4.37%)	71.02% (+/- 3.81%)
٦	Methods	ICLR-2017	ICLR-2018
_	3.6.4. 1	TOT D. CO.L.	TOT D. CO. LO.

A Co-Memory Network for Multimodal Sentiment Analysis

Nan Xu
Institute of Automation, Chinese
Academy of Sciences
University of Chinese Academy of
Sciences, Beijing, China
xunan2015@ia.ac.cn

Wenji Mao
Institute of Automation, Chinese
Academy of Sciences
University of Chinese Academy of
Sciences, Beijing, China
wenji.mao@ia.ac.cn

Guandan Chen
Institute of Automation, Chinese
Academy of Sciences
University of Chinese Academy of
Sciences, Beijing, China
chenguandan2014@ia.ac.cn

Motivation

 As visual and textual information in multimodal data can mutually reinforce and complement each other in analyzing the sentiment of people, previous research all ignores this mutual influence between image and text.

Image Feature:

$$h_{\cdot}^{1} = tanh(w_{\cdot}^{1} \quad m_{\cdot} + h_{\cdot}^{1})$$

$$\alpha_i^1 = \frac{exp(h_i^{1T}q_{img})}{\sum_{j=1}^{L} exp(h_j^{1T}q_{img})}$$

$$v_{img}^1 = \sum_{i=1}^L \alpha_i^1 m_i$$

• Text Feature:

$$X = \{x_1, x_2, ..., x_T\}, x_t \in \mathbb{R}^{D_{text}}$$

$$g_t^1 = tanh(w_{text}^1 x_t + b_{text}^1)$$

$$\beta_t^1 = \frac{exp(g_t^{1T}q_{text})}{\sum_{r=1}^{T} exp(g_r^{1T}q_{tex\underline{t}})}$$

$$v_{text}^1 = \sum_{t=1}^T \beta_t^1 x_t$$

- Co-Memory Network:
- 1. Text-guided Visual Memory Network (TgVMN):

$$\begin{aligned} h_i^2 &= tanh(w_{img}^2[m_i, \upsilon_{text}^1] + b_{img}^2) \\ \alpha_i^2 &= \frac{exp(h_i^2)}{\sum_{j=1}^L exp(h_j^2)} \\ \upsilon_{img}^2 &= \sum_{i=1}^L \alpha_i^2 m_i \end{aligned}$$

 2. Image-guided Textual Memory Network (IgTMN):

$$g_{t}^{2} = tanh(w_{text}^{2}[x_{t}, v_{img}^{1}] + b_{text}^{2})$$

$$\beta_{t}^{2} = \frac{exp(g_{t}^{2})}{\sum_{r=1}^{T} exp(g_{r}^{2})}$$

$$v_{text}^{2} = \sum_{t=1}^{T} \beta_{t}^{2}x_{t}$$

Stacked Co-Memory Network:

$$v_{text}^{k} = IgTMN([x_t, v_{img}^{k-1}])$$

$$v_{img}^{k} = TgVMN([m_i, v_{text}^{k-1}])$$

• Sentiment Classification:

$$y = \left[Softmax(w_s[v_{text}^K, v_{img}^K] + b_s) \right]$$

Experiment

	MVSA-Single		MVSA-Multi	
Method	Acc	F1	Acc	F1
SentiBank+SentiStrength	52.05	50.08	65.62	55.36
CBOW+DA+LR	63.86	63.52	64.22	63.73
CNN-Multi	61.20	58.37	66.39	64.19
DNN-LR	61.42	61.03	67.86	66.33
HSAN	66.83	66.9	68.16	67.76
MultiSentiNet	69.84	69.63	68.86	68.11
MN-Hop1	64.31	63.12	67.16	66.48
MN-Hop2	64.84	63.96	67.32	66.57
MN-Hop2+text2img	65.19	64.37	67.80	67.01
MN-Hop2+img2text	68.07	65.19	67.92	67.16
CoMN-Hop2	70.07	68.03	68.68	68.06
CoMN-Hop3	69.62	65.95	69.39	68.57
CoMN-Hop4	69.18	68.29	69.92	69.83
CoMN-Hop5	69.40	69.71	69.68	69.31
CoMN-Hop6	70.51	70.01	68.92	68.83

RT @IraqiSecurity: Car bomb in Aden Sq, Kadhimiyah, N. #Baghdad. Initial reports suggest at least 5 martyrs & 22 wounded. #ShiaGenocide httбн

Convolution-based Memory Network for Aspect-based Sentiment Analysis

Chuang Fan *
Shenzhen Graduate School,
Harbin Institute of Technology

Lin Gui Aston University Qinghong Gao Shenzhen Graduate School, Harbin Institute of Technology

Ruifeng Xu[†]
Shenzhen Graduate School,
Harbin Institute of Technology
xuruifeng@hit.edu.cn

Jiachen Du Shenzhen Graduate School, Harbin Institute of Technology

Kam-Fai Wong The Chinese University of Hong Kong

Author

kam-Fai Wong

<u>chinese university of hong kong</u>
Verified email at se.cuhk.edu.hk - <u>Homepage</u>
natuural language processing database

Cited by		VIEW ALL
	All	Since 2013
Citations	4250	2252
h-index	32	23
i10-index	95	56

TITLE	CITED BY	YEAR
Interpreting tf-idf term weights as making relevance decisions HC Wu, RWP Luk, KF Wong, KL Kwok ACM Transactions on Information Systems (TOIS) 26 (3), 13	478	2008
Component-based software engineering: technologies, development frameworks, and quality assurance schemes X Cai, MR Lyu, KF Wong, R Ko Software Engineering Conference, 2000. APSEC 2000. Proceedings. Seventh Asia	215	2000
Extractive summarization using supervised and semi-supervised learning KF Wong, M Wu, W Li Proceedings of the 22nd International Conference on Computational	148	2008
A genetic algorithm-based clustering approach for database partitioning CH Cheng, WK Lee, KF Wong IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and	130	2002

Motivation

 Ordinary memory networks only capture word-level information and lack the capacity for modeling complicated expressions which consist of multiple words

• Pre-processing:

$$M = \{m_1, m_2, ..., m_n\}.$$

• Attention:

$$g_i = w^T \left(\sum_{j=i-t}^{i+t} (m_j \oplus T) \right)$$
$$\alpha_i = \frac{\exp(g_i)}{\sum_{i'} \exp(g_{i'})}$$

$$o_j = T + \sum_{i=1}^{n} \alpha_i \cdot m_{i+j}$$
 $(j = -t, \dots, 0, \dots, t)$

• Multi-hop:

$$g_i = w^T \left(\sum_{j=i-t}^{i+t} (m_j \oplus o_{j-i}^{h-1}) \right)$$

• Prediction:

$$o = o_{-t} \oplus o_{-t+1} \dots o_t$$

$$\hat{o} = softmax(W_m \cdot o)$$

Objective function:

$$L = \sum_{(x,y) \in D} \sum_{c \in C} y^c log f^c(x;\theta)$$

Experiment

Table 1: Experimental performance

Method	Laptop		Restaurant		Tweet	
memou	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1
SVM	0.7049	NA	0.8016	NA	0.6340	0.6330
TD-LSTM	0.7183	0.6843	0.7800	0.6673	0.6662	0.6401
MemNet	0.7033	0.6409	0.7816	0.6583	0.6850	0.6691
RAM	0.7449	0.7135	0.8023	0.7080	0.6936	0.6730
Conv-Memnet	0.7637	0.7210	0.7826	0.6838	0.7211	0.7080

No. of Hops	Laptop	Restaurant	Tweet
Hop 1	0.6775	0.6689	0.6735
Hop 2	0.7000	0.6752	0.6767
Hop 3	0.7210	0.6838	0.7080
Hop 4	0.6869	0.6741	0.6948
Hop 5	0.6694	0.6406	0.6795
Hop 6	0.6655	0.6226	0.6631

Figure 2: The changes in each hop of attention

SAAN: A Sentiment-Aware Attention Network for Sentiment Analysis

Zeyang Lei Graduate School at Shenzhen, Tsinghua University leizy16@mails.tsinghua.edu.cn Yujiu Yang Graduate School at Shenzhen, Tsinghua University yang.yujiu@sz.tsinghua.edu.cn Min Yang
Shenzhen Institutes of Advanced
Technology,
Chinese Academy of Sciences
min.yang1129@gmail.com

Motivation

• make full use of the prior sentiment knowledge (e.g., sentiment lexicon, negation words, intensity words)

Word-level correlation modeling

Pre-processing:

$$x^c = [x_1^c, x_2^c, ... | x_i^c, ..., x_n^c]$$

$$x^{s} = [x_{1}^{s}, x_{2}^{s}, ..., x_{j}^{s}, ..., x_{m}^{s}]$$

$$R = (x^c)^T \cdot x^s \in \mathbb{R}^{n \times m} \tag{1}$$

where each element $R_{i,j}$ refers to the correlation between the *i*-th word x_i^c in the context and *j*-th word x_i^s in the sentiment resource words.

• Attention:
$$\phi = softmax(\frac{\sum_{h=1}^{m} R[:,h]}{m})$$

$$\mathbf{v}^{\phi} = \sum_{i=1}^{n} \phi_i \mathbf{x}_i^c.$$
SIGIR 5 Paners

$$\mathbf{\varphi} = softmax(\frac{\sum_{k=1}^{n} R[k,:]}{n})$$

$$\mathbf{v}^{\mathbf{\varphi}} = \sum_{i=1}^{m} \varphi_{i} \mathbf{x}_{i}^{s}$$

26

Word-level correlation modeling

Enhanced representation:

$$E^{c} = \tilde{f}_{semantics}(x^{c} + \mathbf{e_n} \otimes \mathbf{v}^{\phi})$$
 (2)
$$E^{s} = \tilde{f}_{semantics}(x^{s} + \mathbf{e_m} \otimes \mathbf{v}^{\phi})$$
 (4)

$$\tilde{f}_{semantics}(x) = \begin{cases} x & x > 0\\ \xi(exp(x) - 1) & x \le 0, \xi > 0 \end{cases}$$
(3)

2018/9/19

Phrase-Level Correlation Modeling

• CNN

$$P^c = P_{\ell_1}^c \oplus P_{\ell_2}^c \cdots \oplus P_{\ell_q}^c \tag{5}$$

$$P^s = P_{\ell_1}^s \oplus P_{\ell_2}^s \cdots \oplus P_{\ell_q}^s \tag{6}$$

5 Papers

$$P_{\ell_i}^c = \gamma(E^c * W^{\ell_i} + b) \in \mathbb{R}^{(n-\ell_i+1)\times k} \tag{7}$$

$$P_{\ell_i}^s = \gamma(E^s * W^{\ell_i} + b) \in \mathbb{R}^{(m-\ell_i+1)\times k}, i = 1, 2, ..., q$$
 (8)

Attention

$$S = P^{s} \odot \{(P^{c})^{T} softmax(P^{c}(P^{s})^{T})\}$$
$$\bar{s} = \frac{\sum_{j=1}^{m} S[:,j]}{m}$$

Final Model

Sentence-level Semantic Modeling

$$\rho = Q^{T} tanh(\tilde{U}(P^{c} + e_{n} \otimes \bar{s}))$$

$$B = \frac{exp(\rho)}{\sum_{i=1}^{n} exp(\rho)}$$

$$\tilde{\mathbf{o}} = flatten(BP^{s})$$

Sentence Classifer

$$\hat{y} = \frac{exp(U_o^T \tilde{\mathbf{o}} + b_o)}{\sum_{k=1}^C exp(U_o^T \tilde{\mathbf{o}} + b_o)}$$

Loss function

$$L(\hat{y}, y) = -\sum_{i=1}^{N} \sum_{j=1}^{C} y_i^j log(\hat{y}_i^j) + \lambda(\sum_{\theta \in \Theta} \theta^2)$$

SIGIR 5 Papers

Experiment

MR	${\rm SST}({\rm sent.\text{-}level})$
75.9%	45.7%
77.4%	45.6%
79.3%	46.5%
80.7%	48.1%
81.5%	48.0%
82.9%	47.1%
81.5%	48.3%
82.1%	48.6%
82.5%*	48.7%*
84.3 %	49.7 %
	75.9% 77.4% 79.3% 80.7% 81.5% 82.9% 81.5% 82.1% 82.5%*

Measuring Influence on Instagram: a Network-oblivious Approach

Noam Segev, Noam Avigdor, Eytan Avigdor

Motivation

 Graphs information are not always available, and building them for Instagram users require a great deal of resources, e.g., crawling time and computing costs.

Infer the underlying network structure using the user activity logs

Instagram content, however, is "pulled"

Method

- Collected feature
 - $likes_c$ Number of likes awarded to post c.
 - comments_c Number of comments given to post c.
 - v_c Number of Instagrammers who watched part of the video.

Instagram statistics

Method

Features controlled

likes - The average number of user post likes. comments - The average number of comments per user post.

followers - The users audience size.

 $\sqrt{likes \cdot followers}$ - Geometric mean of likes and followers, taken as neither statistic is an exact representation of influence.

 $\frac{followers}{post}$ - Used to suggest odd behavior as same level influencers should have similar ratios.

comments - Another odd behavior indicator as bought engagements tend to effect likes more than comments.

focus - The difference and ratio between most and least engaged post, these features were designed to test the variance and stability of a user engagement level.

- Regression model
 Ridge Regression(RR)
 Random Forests(RF)
- Tricks

K-means

$$f\left(x\right) = \frac{x}{\ln x}$$

Experiment

	Regression		Multi-Regression	
	R^2	r_s	R^2	r_s
full Ridge Regression	0.725	0.848	0.727	0.821
full Random Forest	0.626	0.869	0.621	0.861
minimal Ridge Regression	0.723	0.818	0.727	0.818
minimal Random Forest	0.616	0.864	0.611	0.859
Followers Baseline	0.211	0.757	0.204	0.725
Likes Baseline	0.666	0.859	0.654	0.853

Thanks!