Laboratório de Bases de Dados

Prof. José Fernando Rodrigues Júnior **Aula 1 – Revisão**

Material: Profa. Elaine Parros Machado de Sousa

Conteúdo

- SGBDs
- Modelo Relacional
- Mapeamento MER-Rel

Vantagens:

O esquema (a estrutura) carrega a semântica do problema. Para haver integridade, esta estrutura deve ser observada e mantida na instanciação dos dados.

 distribuição de informações: vários servidores acessados remotamente de maneira transparente

- Vantagens (cont...)
 - reduz complexidade das aplicações
 - segurança
 - controle de acesso ao SGBD
 - controle de acesso aos dados
 - recursos de backup
 - utilização de padrões
 - ...

Componentes de um SGBD

- Os componentes funcionais do SGBD podem ser divididos em:
 - componentes de processamento de consultas:
 - definir o esquema de dados (DDL), planejar (query-plan), executar consultas e alterar as instâncias de dados (DML)
 - componentes de gerenciamento de armazenamento

Conteúdo

- SGBDs
- Modelo Relacional
- Mapeamento MER-Rel

Modelo Relacional

- "O modelo relacional representa uma base de dados como uma coleção de relações " [Elmasri2000]
- Além das relações:
 - domínios de dados
 - restrições de integridade
 - ling. de definição/manipulação
 - estruturas de acesso/armazenamento
- Modelo Relacional base teórica em Teoria de Conjuntos

Modelo Relacional

Nome	NUSP	Curso				
				E	squema	
Paulo	9999	Info				
Izabella	8888	Info				
João	1111	Comp				
			Г			
				Ir	stância	
	Paulo Izabella	Paulo 9999 Izabella 8888	Paulo 9999 Info Izabella 8888 Info	Paulo 9999 Info Izabella 8888 Info	Paulo 9999 Info Izabella 8888 Info João 1111 Comp	

Modelo Relacional

Relações

- Na relação como em conjuntos
 - não existe a idéia de ordem para as tuplas
 - não existe repetição (idealmente)
- Na tupla
 - ordem determinada de acordo com a disposição dos atributos no esquema da relação
 - valores atômicos e monovalorados
 - valor nulo (null)

Restrições das Relações

Restrição de domínio

 o valor de cada atributo A deve ser um valor atômico pertencente a Dom(A)

Restrição de unicidade (CHAVE)

- deve ser possível <u>identificar univocamente</u> cada tupla da relação
 - chave primária

Restrição em null para atributo

 determina quando o valor especial null é ou não permitido para um atributo: depende da semântica

Restrições de Integridade

- Restrição de Integridade de Entidade
 - chave primária não pode ser nula
- Restrição de Integridade Referencial
 - chave estrangeira
 - compatibilidade de domínio
- Objetivo: garantir consistência

Restrições de Integridade

Objetivo: garantir consistência

INTEGRIDADE DE DADOS;

- consistência: de inserção, remoção, e atualização
- validade: dados corretos

Restrição de Integridade Referencial

- chave estrangeira
- compatibilidade de domínio

Exemplo

```
Aluno = {Nome, Nusp, Idade, DataNasc}
```

```
Professor = {<u>Nome</u>, <u>NFunc</u>, Idade, Titulação}
```

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}

Conteúdo

- SGBDs
- Modelo Relacional
- Mapeamento MER-Rel

Mapeamento entre Esquemas – Mapeamento MER → MRel

- MER modelo conceitual
 - usado para especificar conceitualmente a estrutura dos dados de uma aplicação
 - Projeto Conceitual descrição carregada de semântica
- Modelo Relacional modelo de implementação
 - usado para suportar a implementação de aplicações
 Projeto Lógico
 - SGBDR ⇒ SGBD que se apóia no modelo relacional

Entidades

Aula_Prática = {Código, Horário, Laboratório, Número, Sigla}

Cardinalidade 1:1

Comissão = {Cod, NroMembros, Conferência, DtaInst}

Cardinalidade 1:1

Conferência = {Nome, CodComissão, DtaInst}

Comissão = $\{\underline{Cod}, NroMembros\}$

Cardinalidade 1:1

⇒ Restrição de null: na relação Gerente o atributo Projeto deve ser definido como não nulo.

Projeto

Cod

Alternativas para o Mapeamento Relacionamentos Binários 1:1

- Mapeamento usual:
 - Conferência = {Nome, CodComissão, DataInstalação}
 - Comissão = {Cod, NroMembros}
- Alternativa uma só relação:

ConfCom = {Nome, CodComissão, NroMembros, DataInstalação}

Alternativas para o Mapeamento Relacionamentos Binários 1:1

Alternativas para o Mapeamento Relacionamentos Binários 1:1

Mapeamento alternativo
 Mulher = {Nome, Idade}
 Homem = {Nome, Idade}
 Namoro = {NomeH, NomeM, tempo}

Desvantagem????

Cardinalidade 1:N

Professor = {Nome}

Disciplina = {Sigla, Nome, Créditos, Professor, Horário}

Alternativas para o Mapeamento Relacionamentos Binários 1:N

Alternativas para o Mapeamento Relacionamentos Binários 1:N

Mapeamento alternativo:

```
Disciplina = {Sigla, NCréditos}

Aluno = {NUSP, Nome}

Monitora = {NUSP, Sigla, Horário}
```

Obs: definir restrição de null para o atributo Sigla (em Monitora), para que ele <u>não possa ter valor nulo</u>

Relacionamentos Binários -

Cardinalidade M:N

Aluno = {NUSP, Nome}

Disciplina = {Sigla, Nome, Créditos}

Matriculado = {NUSP, Sigla, Nota}

Relacionamentos Ternários

Relacionamentos Ternários

Papéis dos Relacionamentos

Diretor = {Nome, NomeAntecessor}

Atributo Composto

Pessoa = {Nome, <u>NUSP</u>, **Rua**, Número, CEP, Cidade}

Atributos Multivalorados

1ª Opção de Mapeamento

```
Aluno ----→ Aluno = {Nome, NSerMed}

N.Ser.Med.

Alergias = {Nome, Alergia}
```

Atributos Multivalorados

2ª Opção de Mapeamento

Aluno = {NUSP, Nome, Pai, Mae}

Mapeamento de Abstrações de Dados

- O MER-X suporta duas abstrações de dados:
 - Agregação
 - Generalização
- Extensão do Mapeamento MER-MREL para suporte às abstrações

- <u>Caso 1</u>: CE Agregação é identificado por atributo próprio + chaves dos CEs que participam do CR gerador
 - uma mesma instância do CR gerador resulta em mais de uma entidade agregada

No mapeamento tradicional, M-N, um emesmo paciente não poderá consultar o mesmo novamente – nem mesmo para o retorno.

 $Médico = \{CRM, Nome\}$

Paciente = $\{RG, Nome\}$

Consulta = { Paciente, Medico, Data, Sala }

- <u>Caso 2</u>: CE Agregação é identificado por um de seus atributos
 - as chaves dos CE que participam do CR gerador não são necessárias para identificar a agregação

Caso 2a: cada instância do CR gera apenas uma entidade agregada...

Aluno = $\{NUSP, Nome\}$

Professor = {Nfunc, Nome}

Projeto = {<u>Título</u>, <u>Orientador</u>, <u>Aluno</u>}

Caso 2b: cada instância do CR gera mais de uma entidade agregada...

Aluno = $\{NUSP, Nome\}$

Professor = {Nfunc, Nome}

Projeto = {<u>Título</u>, Orientador, Aluno}

Caso 2b: cada instância do CR gera mais de uma

Esse mapeamento apresenta um ganho semântico, com o título do projeto como chave.


```
Aluno = \{NUSP, Nome\}
```


- <u>Caso 3</u>: mistura dos casos 1 e 2b. Duas formas de identificar CE Agregação:
 - 1. chaves dos CE que participam do CR gerador + atributo da agregação
 - 2. atributo próprio da agregação


```
Médico = {CRM, Nome}

Paciente = {RG, Nome}

Consulta = {Paciente, Medico, Data,

NroRegistroConsulta, Sala}
```

Exemplo: um relacionamento R1 entre o Professor P1 e a Disciplina D1 pode gerar várias entidades Aula, mas o Livro Texto não muda para cada uma

Mapeamento da Generalização

- Três alternativas principais:
 - Mapear o CEG e os CEE em relações diferentes
 - Mapear o CEG e todos os CEE em uma única relação
 - Mapear cada CEE (e apenas) em sua própria relação, junto com seus respectivos atributos genéricos

Mapeamento da Generalização - Alternativa 1

Procedimento Padrão 1

CEG = {
$$\underline{Ch}$$
, \underline{AtC} , \underline{AG} }
CEE₁ = { \underline{Ch} , $\underline{Ae_1}$...
CEE_k = { \underline{Ch} , $\underline{Ae_k}$ }

Mapeamento da Generalização - Alternativa 1

Procedimento Padrão 2

CEG = {
$$\underline{Ch}$$
, \underline{AC} , \underline{AG} }
CEE₁ = { \underline{Ch} , $\underline{Ae_1}$...
CEE_k = { \underline{Ch} , $\underline{Ae_k}$ }

Mapeamento da Generalização - Alternativa 1 Procedimento Padrão 3

CEG = {
$$\underline{Ch}$$
, AG }
CEE₁ = { \underline{Ch} , Ae₁}
...
CEE_k = { \underline{Ch} , Ae_k}
CEC={ \underline{Ch} , AtC}

Mapeamento da Generalização - Alternativa 2 Procedimento Padrão 4

CEG = { \underline{Ch} , \underline{AtC} , \underline{AG} , $\underline{Ae_{1,...}}$ $\underline{Ae_{k}}$ }

Mapeamento da Generalização - Alternativa 2 **Procedimento Padrão 5**

CEG = { \underline{Ch} , \underline{AtC} , \underline{AG} , $\underline{Ae_{1,...}}$ $\underline{Ae_{k}}$ }

Mapeamento da Generalização - Alternativa 2 Procedimento Padrão 6

CEG = { \underline{Ch} , AG, $\underline{Ae_1}$, $\underline{Ae_k}$, $\underline{BCEE_1}$, $\underline{BCEE_k}$ }

Mapeamento da Generalização - Alternativa 3

Procedimento Padrão 7

$$CEE_{1} = \{ \underline{Ch}, AG, AE_{1} \}$$
...
$$CEE_{k} = \{ \underline{Ch}, AG, AE_{k} \}$$

Mapeamento da Generalização - Alternativa 3 **Procedimento Padrão 8**

 $CEE_k = \{ \underline{Ch}, AG, AE_k \}$ $CEC = \{ \underline{Ch}, AtC \}$

Mapeamento da Generalização - Alternativa 3 Procedimento Padrão 9

 $CEE_k = \{ Ch, AG, AE_k \}$

CEC={ **<u>Ch</u>, <u>AtC</u>**}

Os 9 Procedimentos Padrão

```
1 CEG = \{Ch, AtC, AG\} CEEi = \{Ch, Ae_i\}
2 CEG = \{Ch, AG\} CEEi = \{Ch, Ae_i\}
4 CEG = \{Ch, AG, AtC, Ae_1, Ae_2, .... Ae_m\}
5 CEG = {\underline{Ch}, AG, Ae<sub>1</sub>, Ae<sub>2</sub>, .... Ae<sub>m</sub>}
6 CEG = \{Ch, AG, Ae_1, Ae_2, .... Ae_m, BCEE_1, BCEE_2, ...BCEE_m\}\}
                      CEEi = \{Ch, AG, Ae_i\}
                      CEEi = \{Ch, AG, Ae_i\} CEC = \{Ch, AtC\}
```

CEEi = $\{Ch, AG, Ae_i\}$ CEC = $\{Ch, AtC\}$

PRÁTICA 1