

Data Science & Statistical Learning | II Level Master

Advanced Machine Learning

Pose Analysis of Humanoid Robot Imitation Process Based on Improved MLP Network

Prof. Giorgio Gnecco

Gianmarco Santoro

27/12/2023

- Aim make NAO humanoid robot imitate and learn human behaviours
- How stability identification method based on improved Multi-Layer Perception (MLP):
 - 1. Human joints positions are collected by a Kinect
 - 2. Info is transformed into robot angles by **inverse kinematics** equations
 - **3.** Angles are used in a deep neural network to **identify robot stability**
- Test to identify accuracy on imitation result

- The **fall** of the robot directly leads to the **failure** of the imitation task
- To **ensure the stability** during the imitation, a deep neural network which consider both arms and legs of robot is used

System

- **Kinect** is a low cost **RGBD** sensor with 3 lenses:
 - RGB color camera
 - 3D optical depth sensor with infrared transmitter
 - Infrared CMOS camera for acquiring depth data

- Cameras, speakers, microphones
- Prehensile hands
- Overall **25** degrees of freedom **(DOFs)**

Kinect - NAO's coordinate system transformation

$$\begin{bmatrix} x_{\text{NAO}} \\ y_{\text{NAO}} \\ z_{\text{NAO}} \end{bmatrix} = \begin{bmatrix} -z_{\text{Kinect}} \\ -x_{\text{Kinect}} \\ y_{\text{Kinect}} \end{bmatrix}$$

Three-axis vector torso coordinate system:

$$\begin{bmatrix} x_{torso} \\ y_{torso} \\ z_{torso} \end{bmatrix} = \begin{bmatrix} \cos x_{x}, \cos y_{x}, \cos z_{x} \\ \cos x_{y}, \cos y_{y}, \cos z_{y} \\ \cos x_{z}, \cos y_{z}, \cos z_{z} \end{bmatrix}$$

- Example, right arm:
 - Coordinate origin in the shoulder:

$$P'_{
m RS} = O$$

$$P'_{
m RE} = R_{
m torso} \left(P_{
m RE} - P_{
m RS} \right)$$

$$P'_{
m RW} = R_{
m torso} \left(P_{
m RW} - P_{
m RS} \right)$$

• 4 joint angles in right arm:

$$\theta_{\text{RSP}} = \arctan \frac{z_{\text{RE}}' - z_{\text{RS}}}{x_{\text{RE}}' - x_{\text{RS}}'}$$

$$\theta_{\text{RSR}} = \arctan \frac{y_{\text{RE}}' - y_{\text{RS}}'}{\sqrt{(x_{\text{RE}}' - x_{\text{RS}}')^2 + (z_{\text{RE}}' - z_{\text{RS}}')^2}}$$

- Moving origin to the right elbow joint and rotate coordinate system around y-axis and z-axis
- Then: $P''_{RE} = O$ $P''_{RW} = R_z (\theta_{RSR}) R_v (\theta_{RSP}) (P'_{RW} P'_{RE})$

$$\theta_{\text{REY}} = \arctan \frac{z_{\text{RW}}'' - z_{\text{RE}}''}{y_{\text{RW}}'' - y_{\text{RE}}''}$$

$$\theta_{\text{RSR}} = \arctan \frac{\sqrt{(y_{\text{RW}}'' - y_{\text{RE}}'')^2 + (z_{\text{RW}}'' - z_{\text{RE}}'')^2}}{x_{\text{RW}}'' - x_{\text{RE}}''}$$

	Upp	per limb						
Left		Right						
joints	DOFs	joints	DOFs					
Shoulder	LSP	Chaulden (D)	RSP					
(PLS)	LSR	Shoulder (P _{RS})	RSR					
Elbow (P _{LE})	LEY	E11 (D)	REY					
	LER	Elbow (P _{RE})	RER					
Wrist (P _{LW})	not used	Wrist (P _{RW})	not used					
Lower Limb								
Left		Right						
joints	DOFs	joints	DOFs					
Hip (P _{LH})	LHP	Him (D.)	RHP					
	LHR	Hip (P _{RH})	RHR					
Knee (P _{LK})	LKP	Knee (P _{RK})	RKP					
Ankle (P _{LA})	LAP	Amiria (D-)	RAP					
	LAR	Ankle (P _{RA})	RAR					

Human-Robot Imitation | MLP

- MLP is a fully connected neural network, a deep learning structure. Made by:
 - Input layer robot joint angles
 - Hidden layers
 - Output layer robot **stability**
 - Pre-trained supervised machine learning algorithm:
 - $\hat{Y}^{k} = (y_1^{k}, y_2^{k}, \dots, y_n^{k})$ $Y^{k} = (y_1, y_2, \dots, y_n)$ Expected outputs
 - Real

$$L(W,B) = -\frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i} \log Y_{i}$$

Loss function:

- NN is updated by Gradient Descent method:
 - \circ W, $w_{ji}^l = w_{ji}^l \eta \left(\frac{\partial L}{\partial w_{ii}^l} \right)$ weight of i-th node of layer l-1 to j-th node of layer l
 - o B, $b_j^l = b_j^l \eta \left(\frac{\partial L}{\partial b_j^l} \right)$ bias of j-th η neural network **learning rate** bias of j-th node of layer l

- NN has been improved with **dense connection**, in order **to characterize more features**:
 - Node inputs include not only upper layer outputs, but also previous ones
 - o Accuracy: Trad 95.5% → Optimized 96.2%
- During training model often overfit training data, showing poor generalization performance
 To prevent it:
 - Oropout: temporarily discard some NN units from network according to a certain probability. For N-nodes NN, apply dropout can collect 2N models, with a constant number of parameters to be trained, improving over-fitting problem and not increasing computational burden

• Regularization: add a term to the original loss function, like L2 term (Ridge):

$$L = L_0 + \frac{\lambda}{2n} \sum_{w} w^2$$

- λ regular coefficient, weighing the proportion of regularization and L0
- The **weight update** formula:

$$w = \left(1 - \frac{\eta \lambda}{n}\right) + \eta \frac{\partial L_0}{\partial w_0}$$

- \circ η , λ and \boldsymbol{n} are positive makin' \boldsymbol{w} less than 1, which is called weight decay
- The smaller the weight **w**, the **less complex the network**, thus the **less likely it is to over-fitting**

- 1500 sets of randomly selected stable and unstable data to train the MLP neural network
- 500 sets of data are collected to test the accuracy of the classification of neural network
- Output data observing if the robot is stable or not
- Flow chart shows the imitation process, including stability classification

- NN parameters adjusted to make test accuracy high :
 - Number of hidden nodes
 - Number of iterations
 - Learning rate
- Best **performance over test** accuracy with:
 - 16 and 8 nodes, in hidden layers 1 and 2
 - Optimal model accuracy at iteration times 75

Layer1	Layer2	Training data	Testing data	
4	4	90.5	86.8	
8	4	92.6	89.6	
8	8	94.2	93.8	
16	8	96.8	95.6	
16	16	97.2	95.2	
32	16	97.7	94.4	
32	32	98.3	90.6	

 Accuracy rate of traditional MLP and improved MLP on testing data

• Adding dense connection, regularization and dropout, the highest performance with an accuracy up to 96.2%

- Robot vs human body difference and Kinect's own noise may cause angle mutation, affecting the stability and accuracy of imitation experiment
- For example, when the person moves his arms from bottom to top, a simple arms-shoulders action, the robot shoulder motor is required to rotate 180°
- In addition, each **articulated motor** of NAO robot has its own **rotation limit**. If angle obtained by data conversion exceeds this limit, the robot structure will be impacted. So, robot joint motor angle is set by the robot's maximum rotation angle

- 1. If current angle value exceeds maximum, this maximum angle value is used as output to drive joint motor
- 2. If current angle value is less than minimum, this minimum angle value is used as output to drive joint motor
- 3. Otherwise, output according to the actual calculation of the angle

- Sliding average filtering method: to overcome accuracy problem caused by structural differences and noise
 - 1. Take some consecutive samples values as aqueue
 - 2. Each time put a new data into the queue and discard the first entered | First In, First Out
 - 3. Calculate queue data **arithmetic average** in the queue
- Adding the **limit** and moving **average filter**, motions become **smooth** and prevent the speed pulse
- When speed is slow, filters do not have influence on original data

Algorithm	MLP	RBF	SVM	ELM
Accuracy (%)	96.2	93.2	92.6	81.5

- More machine learning algorithms, such as RBF neural network, SVM and ELM have been used
- These are compared with MLP neural network, which can obtain the best identification accuracy

Outcomes

- Some problems existing in robot imitation: **smoothness, space-time consistency and safety** are achieved
- The proposed **approach** utilizes features of neural network that is **easy to model**
- With MLP neural network, the stability identification rate is high
- Implemented **filters** can **overcome accidental large angle variation** to some extent

Improvements

- There are still some shortcomings need to be solved and improved:
 - e.g. the **stability under high-speed** operation is still hard to identify.

The problem of robot stability under the influence of inertia may be considered

Thank you

Image source:

https://www.mdpi.com/2076-3417/8/10/2005

Images and text have been gathered from the paper* "Pose Analysis of Humanoid Robot Imitation Process Based on Improved MLP Network"; Shuhuan Wen, Yang Liu, Leibo Zheng, Fuchun Sun and Bin Fang; Proceedings of the 2nd WRC Symposium on Advanced Robotics and Automation 2019; Beijing,