Kirchoff's Laws

Circuit Definitions

- Node any point where 2 or more circuit elements are connected together
- Wires usually have negligible resistance
- Each node has one voltage (w.r.t. ground)
- Branch a circuit element between two nodes
- Loop a collection of branches that form a without going through any other nodes or closed path returning to the same node branches twice

How many nodes, branches & loops?

Three nodes

5 Branches

Three Loops, if starting at node A

Kirchoff's Voltage Law (KVL)

- The algebraic sum of voltages around each loop is zero
- Beginning with one node, add voltages across each branch in the loop (if you encounter a + sign first) and subtract voltages (if you encounter a - sign first)
- Σ voltage drops Σ voltage rises = 0
- Or Σ voltage drops = Σ voltage rises

Kirchoff's Voltage Law around 1st Loop

Assign current variables and directions

Use Ohm's law to assign voltages and polarities consistent with passive devices (current enters at the + side)

Kirchoff's Voltage Law around 1st Loop

Starting at node A, add the 1st voltage drop: + 1,R,

Kirchoff's Voltage Law around 1st Loop

Add the voltage drop from B to C through R_2 : + I_1R_1 + I_2R_2

Kirchoff's Voltage Law around 1st Loop

Notice that the sign of each term matches the polarity encountered 1st Subtract the voltage rise from C to A through Vs: $+ \frac{1}{1}R_1 + \frac{1}{2}R_2 - Vs = 0$

determine all branch voltages and currents resistors having fixed values, you can use When given a circuit with sources and Kirchoff's two laws and Ohm's law to

• By Ohm's law: $V_{AB} = I \cdot 7\Omega$ and $V_{BC} = I \cdot 3\Omega$

By KVL: $V_{AB} + V_{BC} - 12 v = 0$

Substituting: $I \cdot 7\Omega + I \cdot 3\Omega - 12 v = 0$

• Solving: I = 1.2 A

- Since $V_{AB} = I \cdot 7\Omega$ and $V_{BC} = I \cdot 3\Omega$
- And I = 1.2 A
- So $V_{AB} = 8.4 \text{ v}$ and $V_{BC} = 3.6 \text{ v}$

Series Resistors

- KVL: $+I \cdot 10\Omega 12 v = 0$, So I = 1.2 A
- From the viewpoint of the source, the 7 and 3 ohm resistors in series are equivalent to the 10 ohms

Series Resistors

resistance equal to the sum of all resistors To the rest of the circuit, series resistors can be replaced by an equivalent

Kirchoff's Current Law (KCL)

- The algebraic sum of currents entering a node is zero
- and subtract each branch current leaving the Add each branch current entering the node node
- Σ currents in Σ currents out = 0
- Or Σ currents in = Σ currents out

Kirchoff's Current Law at B

Add currents in, subtract currents out: $l_1 - l_2 - l_3 + ls = 0$ Assign current variables and directions

By KVL:
$$-I_1 \cdot 8\Omega + I_2 \cdot 4\Omega = 0$$

Solving: $I_2 = 2 \cdot I_1$
By KCL: $10A = I_1 + I_2$
Substituting: $10A = I_1 + 2 \cdot I_1 = 3 \cdot I_1$

So
$$I_1 = 3.33 \text{ A}$$
 and $I_2 = 6.67 \text{ A}$
And $V_{AB} = 26.33 \text{ volts}$

Circuit Analysis 2.667Ω m 10 A

By Ohm's Law: $V_{AB} = 10 \text{ A} \cdot 2.667 \Omega$ So $V_{AB} = 26.67 \text{ volts}$ Replacing two parallel resistors (8 and 4 \Omega) result from the viewpoint of the rest of the by one equivalent one produces the same circuit.

Parallel Resistors

The equivalent resistance for any number of resistors in parallel (i.e. they have the same voltage across each resistor):

Req =
$$\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

 $Req = R_1 \cdot R_2 / (R_1 + R_2)$ For two parallel resistors:

Solve for the currents through each resistor And the voltages across each resistor

Using Ohm's law, add polarities and expressions for each resistor voltage

Write 1st Kirchoff's voltage law equation $-50 \text{ v} + \text{I}_1 \cdot 10\Omega + \text{I}_2 \cdot 8\Omega = 0$

Write 2nd Kirchoff's voltage law equation or $I_2 = I_3 \cdot (6+4)/8 = 1.25 \cdot I_3$ $-I_2 \cdot 8\Omega + I_3 \cdot 6\Omega + I_3 \cdot 4\Omega = 0$

Write Kirchoff's current law equation at A

$$+I_1 - I_2 - I_3 = 0$$

- We now have 3 equations in 3 unknowns, so we can solve for the currents through each resistor, that are used to find the voltage across each resistor
- Since $|_1 |_2 |_3 = 0$, $|_1 = |_2 + |_3$
- Substituting into the 1st KVL equation

$$-50 \text{ v} + (l_2 + l_3) \cdot 10\Omega + l_2 \cdot 8\Omega = 0$$

or $l_2 \cdot 18 \Omega + l_3 \cdot 10 \Omega = 50 \text{ volts}$

- But from the 2^{nd} KVL equation, $I_2 = 1.25 \cdot I_3$
- Substituting into 1st KVL equation:

$$(1.25 \cdot I_3) \cdot 18 \Omega + I_3 \cdot 10 \Omega = 50 \text{ volts}$$

Or:
$$I_3 \cdot 22.5 \Omega + I_3 \cdot 10 \Omega = 50 \text{ volts}$$

Or:
$$I_3$$
. 32.5 $\Omega = 50$ volts

Or:
$$I_3 = 50 \text{ volts}/32.5 \Omega$$

Or:
$$l_3 = 1.538$$
 amps

• Since $I_3 = 1.538$ amps

$$I_2 = 1.25 \cdot I_3 = 1.923 \text{ amps}$$

Since $I_1 = I_2 + I_3$, $I_1 = 3.461$ amps

The voltages across the resistors:

$$I_1 - 10\Omega = 34.61 \text{ volts}$$

$$I_2$$
-8 Ω = 15.38 volts

$$I_3-6\Omega = 9.23$$
 volts

$$I_3.4\Omega = 6.15 \text{ volts}$$

Solve for the currents through each resistor And the voltages across each resistor using Series and parallel simplification.

The 6 and 4 ohm resistors are in series, so are combined into $6+4=10\Omega$

The 8 and 10 ohm resistors are in parallel, so are combined into $8.10/(8+10) = 14.4 \Omega$

The 10 and 4.4 ohm resistors are in series, so are combined into $10+4=14.4\Omega$

Writing KVL, I_1 ·14.4 Ω – 50 v = 0 Or $I_1 = 50 \text{ v} / 14.4\Omega = 3.46 \text{ A}$

So the voltage across the $8 \Omega = 15.4 v$ If $I_1 = 3.46 \text{ A}$, then $I_1 \cdot 10 \Omega = 34.6 \text{ v}$

If I_2 -8 $\Omega = 15.4$ v, then $I_2 = 15.4/8 = 1.93$ A By KCL, $I_1-I_2-I_3=0$, so $I_3=I_1-I_2=1.53$ A