REIHEN

by CLARA

Definition

Eine Reihe ist eine Folge, deren Glieder die Partialsummen einer anderen Folge ist. Das bedeutet, dass das n-te Glied der Reihe, die Summe der ersten n Glieder einer anderen Folge ist. Man hat also:

- Mit Startglied a_0 : $s_n = \sum_{i=0}^{n-1} a_i$
- Mit Startglied a_1 : $s_n = \sum_{i=1}^n a_i$
- Mit Startglied a_x : $s_n = \sum_{i=x}^{x+n-1} a_i$

Bemerkung:

In manchen Fällen steht s_n für die Partialsumme einer anderen Folge bis zum n-ten Glied. Dann gilt für ein beliebiges Startglied a_x der Folge: $s_n=\sum\limits_{i=x}^n a_i$

1.1 Artithmetische Reihen

1.1.1 Gauß'sche Summenformel

Die Gauß'sche Summenformel bezeichnet die Summe der n ersten natürlichen Zahlen, also:

$$1 + 2 + 3 + \ldots + n = \sum_{k=1}^n k = \tfrac{n(n+1)}{2}$$

Begründung:

	1	2	3	4	 n
	n	n-1	n-2	n-3	 1
$\overline{\Sigma}$	n+1	n+1	n+1	n+1	 n+1

So sieht man also, dass wenn man die vorher bestimmte Reihe mit sich selbst addiert (ein Mal davon "falschrum"), man n Mal n+1 bekommt. Um dann den Wert einer einzelnen Reihe zu bekommen teilt man durch zwei.

Bemerkung:

Die Gauß'sche Summenformel ist ein Spezialfall der arithmetischen Reihe, ihre Glieder werden **Dreieckszahlen** genannt.

Kapitel 1. Reihen Mathematik - SMP

Um zu beweisen, dass für alle $n \in \mathbb{N}$

$$\sum_{k=1}^{n} f(k) = g(n)$$

gilt, reicht es aus,

$$g(n) - g(n-1) = f(n)$$

für alle positiven n und

$$g(0) = 0$$

zu zeigen. In der Tat trifft dies hier zu:

$$g(n) - g(n-1) = \frac{n(n+1)}{2} - \frac{(n-1)n}{2} = \frac{n(n+1-n+1)}{2} = \frac{n \cdot 2}{2} = n = f(n)$$
 für alle n und $g(0) = \frac{0 \cdot 1}{2} = 0$

Quelle: Wikipedia (Gaußsche Summenformel)

Bemerkung:

Auch ein Beweis durch vollständige Induktion ist möglich, dieser wäre sogar empfehlenswert, da er einfacher durchzuführen ist (Siehe Kapitel 8)

1.1.2 Allgemein

Definition

Wenn s_n die Summe der ersten n Folgeglieder einer arithmetische Folge ist, heißt sie arithmetische

Sei eine arithmetische Folge a mit Startglied a_x und s, die entsprechende Reihe, dann gilt

$$s_n = \frac{n \cdot (a_x + a_{x+n-1})}{2}$$

Bemerkung:

- 1. Am häufigsten wird verwendet:
 - Mit Startglied a_0 : $s_n = \frac{n \cdot (a_0 + a_{n-1})}{2}$
 - Mit Startglied a_1 : $s_n = \frac{n \cdot (a_1 + a_n)}{2}$
- 2. Alternativ kann auch folgende Darstellung verwendet werden:

$$s_n = \frac{n \cdot (2a_x + (n-1) \cdot d)}{2}$$

Kapitel 1. Reihen Mathematik - SMP

Beweis

Sei eine arithmetische Folge a, mit Startglied a_x und Differenz d, und s, die entsprechende Reihe, dann gilt

$$\begin{split} s_n &= a_x + a_{x+1} + a_{x+2} + \dots a_{x+n-1} \\ &= a_x + (a_x + d) + (a_x + 2d) + \dots + (a_x + (n-1) \cdot d) \\ &= n \cdot a_x + d + 2d + \dots + (n-1) \cdot d \\ &= n \cdot a_x + (1 + 2 + \dots + (n-1)) \cdot d \qquad \text{(Gauß)} \\ &= n \cdot a_x + \frac{(n-1) \cdot n}{2} \cdot d \\ &= n \cdot \frac{2a_x + (n-1) \cdot d}{2} \\ &= n \cdot \underbrace{a_x + a_{x+n-1}}_{2} \\ &= n \cdot \frac{a_x + a_{x+n-1}}{2} \end{split}$$

1.2 Geometrische Reihen

Definition

Wenn s_n die Summe der ersten n Folgeglieder einer geometrischen Folge ist, heißt sie geometrischen Reihe.

Sei eine geometrische Folge a mit Startglied a_x und s, die entsprechende Reihe, dann gilt

$$s_n = \sum_{i=x}^{n+x-1} a_i = a_x \cdot \frac{1-q^n}{1-q}$$

Bemerkung:

Am häufigsten wird verwendet:

- $\bullet \ \, \text{Mit Startglied} \,\, a_0 : s_n = a_0 \cdot \frac{1-q^n}{1-q}$
- Mit Startglied a_1 : $s_n = a_1 \cdot \frac{1 q^n}{1 q}$

Kapitel 1. Reihen Mathematik - SMP

Beweis

Allgemein:

$$(1-q)(1+q+q^2+q^3+\ldots+q^n) = (1-q)+(q-q^2)+(q^2-q^3)+(q^3-q^4)+\ldots+(q^n-q^{n+1})$$

$$= 1+(-q+q)+(-q^2+q^2)+(-q^3+q^3)+\ldots+(-q^n+q^n)-q^{n+1}$$

$$= 1-q^{n+1}$$

Man hat also
$$\sum\limits_{k=0}^{n}q^{k}=1+q+q^{2}+q^{3}+\ldots+q^{n}=\frac{1-q^{n+1}}{1-q}$$

Entsprechend ergibt sich
$$\sum_{k=0}^{n-1} q^k = \underbrace{1+q+q^2+q^3+\ldots+q^{n-1}}_{n \quad Summanden} = \frac{1-q^n}{1-q}$$

Somit gilt für eine Reihe s, die die Partialsumme einer geometrischen Folge a, mit Quotient q und Anfangsglied a_x , ist, folgendes:

$$s_n = \sum_{i=x}^{x+n-1} a_i$$

$$= a_x + a_{x+1} + a_{x+2} + \dots + a_{x+n-1}$$

$$= a_x + a_x \cdot q + a_x \cdot q^2 + \dots + a_x \cdot q^{n-1}$$

$$= a_x \cdot (1 + q + q^2 + \dots + q^{n-1})$$

$$= a_x \cdot \sum_{k=0}^{n-1} q^k$$

$$= a_x \cdot \frac{1 - q^n}{1 - q}$$