(1) Perform exploratory analysis on all variables.

See "Normal distribute plot for all variables".

(2) Perform simple regression analysis of percent over 64 (pct_over) on the "population" variable (or transformed form of Population).

See "Simple regression for pct_over vs. population" and "Simple regression for pct_over vs. log_population".

(3) Would you apply any transformation to the "population" variable? What kind of transformation if any?

Log transformation. We can transform the population into log(population).

(4) Is the regression line a good predictor? Why or why not?

For no transformation regression, the regression line is not a good predictor, because the "Pr>F" is 0.0778, which is not smaller than 0.05. And for log transformation regression, the regression line is a good predictor, because the "Pr>F" is <0.0001, and the "Pr>|t|" for intercept and log_population are also <0.0001. These are all highly significant.

(5) What are high leverage and influential observations?

Leverage(log transformation):

The highest five leverage points are shown in the following chart, which are 1, 2, 3, 4 and 5.

Extreme Observations							
Lowest		Highest					
Value	Obs	Value	Obs				
0.00117927	381	0.00973781	5				
0.00117931	382	0.01227717	4				
0.00117934	383	0.01268172	3				
0.00117943	384	0.01460307	2				
0.00117945	385	0.02190575	1				

Influential observation(log transformation):

Cookd and Dffits:

The highest five cookd and dffits points are shown in the following charts. Point 772, 736, 595, 844 and 320 are both in these two graphs, which means these points have the large influential effect on the line.

Extreme Observations		Extreme Observations					
Lowest		Highest		Lowest		Highest	
Value	Obs	Value	Obs	Value	Obs	Value	Obs
1.02508E-11	579	0.0244816	320	-1.147E-01	820	0.226321	320
8.39650E-11	812	0.0255629	844	-9.421E-02	796	0.227609	844
3.70796E-10	364	0.0392509	595	-8.494E-02	768	0.287788	595
4.32523E-10	333	0.0498560	736	-8.404E-02	767	0.322436	736
4.40982E-09	495	0.0734025	772	-8.374E-02	715	0.393696	772

(6) Are the residuals normally distributed? Why?

No. The residuals are not normally distributed.

Because of the second graph that these points are not distributed like a line, the residuals are not normally distributed.

