### Statistical Inference - Coursera Part 1

Loc Nguyen

9/24/2021

#### Overview

In this project I will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. I will investigate the distribution of averages of 40 exponentials. Note that I will need to do a thousand simulations.

### Loading libraries

Loading necessary libraries for the report

```
library(tidyverse)
library(ggplot2)
```

### **Simulations**

Firstly, Set seed and other parameters for reproducability later

```
set.seed(11)
lambda <- 0.2
n <- 40
```

Then, I generation a list of 40 vectors consisting of 1000 exponential random variables

```
sim_exp <- replicate(1000, rexp(n, lambda))</pre>
```

### Sample Mean versus Theoretical Mean (Question 1)

Show the sample mean and compare it to the theoretical mean of the distribution. Calculate mean of each exponentials

```
each_mean <- apply(sim_exp, 2, mean)
```

Calculate sample mean

```
sam_mean <- mean(each_mean)
sam_mean</pre>
```

## [1] 4.987157

Calculate theoretical mean

```
theory_mean <- 1/lambda
theory_mean</pre>
```

## [1] 5

Compare and show in figure. The sample mean is shown in blue line and theoretical mean is shown in red line

### **Exponential Function Simulations**



The analytics mean is 4.9871567 and the theoretical mean is 5. So, The center of distribution of averages of 40 exponentials is near to the theoretical center of the distribution.

### Sample Variance versus Theoretical Variance (Question 2)

Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution. Variance of distribution

```
stan_sd_dist <- sd(each_mean)
var_dist <- stan_sd_dist^2
var_dist</pre>
```

```
## [1] 0.6009383
```

Theoretical variance of the distribution

```
var_theory <- ((1/lambda)*(1/sqrt(n)))^2
var_theory</pre>
```

```
## [1] 0.625
```

The Variance of distribution is 0.6009383 and Theoretical variance of the distribution is 0.625

### Distribution. (Question 3)

Show that the distribution is approximately normal Let's plot the distribution of a thousands means in ggplot2

## Density of Mean



Also qqplot are used to compare sample distributions with a normal distribution. If the qqplot draws a straight line it can be said that the distribution of the sample is normal.

```
# compare the distribution of averages of 40 exponentials to a normal distribution
qqnorm(each_mean)
qqline(each_mean, col = 3)
```

# Normal Q-Q Plot



The normal Q-Q Plot also shows that the distribution of the samples means has a normal distribution.

Due to the central limit theorem (CLT), the distribution of averages of 40 exponentials is approximately equal to a normal distribution.