

In the Claims

1 1. (currently amended) A method for scheduling packets in a router of a
2 packet-switched network having a plurality of service classes, the router
3 including one queue for each service class, each queue storing packets to be
4 transmitted according to the associated service class, comprising:

5 measuring an average queue length for a particular one of the queues
6 every time one packet is stored in the particular queue, wherein the
7 particular queue includes a minimum threshold and a maximum threshold,
8 the maximum threshold representing a desired transmission delay, and the
9 maximum threshold representing an acceptable transmission delay; and

10 allocating bandwidth to each of the plurality of service classes
11 according to the average queue length.

1 2. (original) The method of claim 1 wherein the plurality of services classes
2 include a premium service, an assured service, and a best-effort service, and
3 wherein the particular queue is associated with the premium service class.

1 3. (original) The method of claim 1 wherein the average is an exponential
2 weighted moving average.

1 4. (previously presented) The method of claim 3 further comprising:
2 applying a low-pass filter to the exponential weighted moving
3 average.

1 5. (cancelled)

1 6. (original) The method of claim 1 wherein avg is the average queue length,
2 and l is an instantaneous queue length, and f_l is a low-pass filter, and wherein
3 the average queue length is determined by $avg \leftarrow (1 - f_l) \cdot avg + f_l \cdot l$.

1 7. (original) The method of claim 6 wherein f_l is 0.01.

1 8. (cancelled)

1 9. (currently amended) The method of ~~claim 8~~ claim 1 wherein bandwidth
2 for the service class associated with the particular queue is increased when
3 the average exceeds the minimum threshold.

1 10. (original) The method of claim 9 wherein the bandwidth allocated to the
2 service class remains below a predetermined upper limit when the average
3 exceeds the maximum threshold.

1 11. (original) The method of claim 1 wherein the plurality of services classes
2 include a premium service EF , and wherein the particular queue is
3 associated with the premium service class, and wherein the particular queue
4 includes a minimum threshold T_{min} and a maximum threshold T_{max} , the
5 maximum threshold representing a desired transmission delay, and the
6 maximum threshold representing an acceptable transmission delay, and
7 wherein avg is the average queue length, and l is an instantaneous queue
8 length, and f_l is a low-pass filter, and wherein an initial weight of bandwidth
9 for the premium service is w_p , and an allocated bandwidth weight EF_w of the

10 premium service, as a function of *avg* is

11
$$EF_w = \begin{cases} w_p, & avg \in [0,0.5) \\ \frac{(upper - w_p) \cdot (avg - T_{min})}{T_{max} - T_{min}}, & avg \in [0.5,2) \\ upper, & avg \in [2,s) \end{cases}$$

12 where *upper* represents a predetermined upper limit when the average
13 exceeds the maximum threshold, and *s* is a size of the particular queue

14 measured in packets.

1 12. (original) The method of claim 11 where *upper* is 0.7.

1 13. (currently amended) A method for scheduling packets in a router of a
2 packet-switched network having a plurality of service classes, the router
3 including one queue for each service class, each queue storing packets to be
4 transmitted according to the associated service class, comprising:

5 measuring an exponential weighted moving average queue length for
6 a particular one of the queues every time one packet is stored in the
7 particular queue; and

8 allocating more bandwidth to the service class associated with the
9 particular queue if the average exceeds a predetermined minimum threshold,
10 wherein the particular queue includes a minimum threshold and a maximum
11 threshold, the maximum threshold representing a desired transmission delay,
12 and the maximum threshold representing an acceptable transmission delay.