a. Effective Plate Width (se)
The effective plate width for a continuous stiffener subjected to longitudinal and transverse stress and shear is calculated as follows:

b. Equivalent axial (N_{Sd}) and lateral (q_{Sd}) loads

Note:

Known values from previous page Known values Calculated values Final results

Hint:

See Section 7.2 DNV-RP-C201

Figure 7-3 Cross-sectional parameters for stiffeners and girders

Known values from previous page

95.22	mm	
622003068	mm^4	moment of inertia of stiffener with effective plate width
300.00	MPa	characteristic yield strength
1.15	[]	resulting material factor
4000	mm	plate length or stiffener length
1000	mm	plate width, stiffener spacing.
15128	mm^2	COG of stiffener + plate, use s.
0.15	MPa	design lateral pressure
	622003068 300.00 1.15 4000 1000 15128	1.15 [] 4000 mm 1000 mm 15128 mm^2

Calculated values

Z p	85.22	mm	see Figure 7-3
\mathbf{z}_{t}	354.78	mm	see Figure 7-3
W_{ep}	7299016	mm^3	effective elastic section modulus on plate side
Wes	1753195	mm^3	effective elastic section modulus on stiffener side
W	1753195	mm^3	elastic section modulus
$\mathbf{p_f}$	0.34	MPa	lateral pressure giving yield in outer-fibre at support.
l_k	3120.57	mm	buckling length
ie	202.77	mm	effective radius of gyration
fE	8334.28	MPa	Euler buckling strength

The characteristic buckling strength for check at plate side

f,	300	M Pa	characteristic strength
$\bar{\lambda}$	0.190	[]	
щ	-0.005	[]	
f_k	300	M Pa	characteristic buckling strength

The characteristic buckling strength for check at stiffener side

f,	208	M Pa	characteristic strength
$\overline{\lambda}$	0.158	[]	
Д	-0.016	П	
f_k	208	M Pa	characteristic buckling strength

c.3. Shear Stress Resistance

The resistance towards shear stresses τ_{Rd} is found as the minimum of τ_{Rdy} , τ_{Rdl} and τ_{Rds} according to the following:

Known values from previous page

where:

$\mathbf{f_y}$	300.00	MPa	characteristic yield strength
γ_{M}	1.15	0	resulting material factor
s	1 000	mm	plate width, stiffener spacing.
t	20	mm	plate thickness
Is	665128696	mm^4	moment of inertia of stiffener with full plate width.
E	200.00 4000		Young modulus of elasticity span length
τ _{crl}	404.27	MPa	critical shear stress

Calculated values

τ_{crs}	2727.58	MPa	critical	shear	stress
Ι _p	733945	mm^4			

Therefore:

τ _{Rdy}	150.61	MPa
τ _{Rdl}	0 1	MPa
τ _{Rds}	2371.81	MPa

Thus:

τ_{Rd}	150.61	MPa design	resistance shear stress

Hint:

See Section 7.6 DNV-RP-C201

c.4. The following resistance parameters are used in the interaction equations:

 $\mathbf{q}_{\mathbf{Sd}}$ is the equivalent lateral line load.

Where:

e. Interaction formulasFor continuous stiffeners the following four interaction equations need to be fulfilled

Lateral pressure on plate side:

$$\frac{N_{Sd}}{N_{RS,Rd}} + \frac{M_{1,Sd} - N_{Sd} \cdot z^*}{M_{61,Rd} \left(1 - \frac{N_{Sd}}{N_E}\right)} + u \le 1$$

$$\frac{N_{Sd}}{N_{lp,Rd}} - 2 \cdot \frac{N_{Sd}}{N_{Rd}} + \frac{M_{1,Sd} - N_{Sd} \cdot z^*}{M_{p,Rd} \left(1 - \frac{N_{Sd}}{N_E}\right)} + u \le 1$$

$$\frac{N_{Sd}}{N_{is,Rd}} - 2 \cdot \frac{N_{Sd}}{N_{Rd}} + \frac{M_{2,Sd} + N_{Sd} \cdot z}{M_{ut,Rd} \left(1 - \frac{N_{Sd}}{N_E}\right)} + u \le 1$$

$$\frac{N_{Sd}}{N_{kp,Rd}} + \frac{M_{2,Sd} + N_{Sd} \cdot z^*}{M_{p,Rd} \left(1 - \frac{N_{Sd}}{N_E}\right)} + u \le 1$$

Known values from previous page

4.968 MN the equivalent axial force

0 mm Assume:

the distance from the neutral axis of the effective section to the working point

of the axial force

Finally:

		-		<u>Inus:</u>
EQ.1	1.874	>	1	NOK
EQ.2	-0.170	<=	1	OK
EQ.3	-0.504	<=	1	OK
EQ.4	0.918	<=	1	OK

Conclusion

The plate panel cannot resist buckling.

The reason: We can see that the equivalen axial force is larger than the stiffener buckling load capacity.

Hint:

See Section 7.7.1 DNV-RP-C201