Chapter 2: Atomic Structure & Interatomic Bonding

ISSUES TO ADDRESS...

- · What promotes bonding?
- · What types of bonds are there?
- · What properties are inferred from bonding?

Chapter 2 - 1

Atomic Structure (Freshman Chem.)

```
    atom – electrons – 9.11 x 10<sup>-31</sup> kg protons neutrons
    1.67 x 10<sup>-27</sup> kg
```

- atomic number = # of protons in nucleus of atom
 = # of electrons of neutral species
- atomic mass unit = amu = 1/12 mass of ¹²C

Atomic wt = wt of 6.022×10^{23} molecules or atoms

1 amu/atom = 1g/mol ex) Fe: 55.85 amu/atom = 55.85 g/mol

C 12.011 H 1.008 etc. (1 proton, 0 neutron)

Quiz

• Chromium has four naturally-occurring isotopes: 4.34% of ⁵⁰Cr, with an atomic weight of 49.9460 amu, 83.79% of ⁵²Cr, with an atomic weight of 51.9405 amu, 9.50% of ⁵³Cr, with an atomic weight of 52.9407 amu, and 2.37% of ⁵⁴Cr, with an atomic weight of 53.9389 amu. On the basis of these data, confirm that the average atomic weight of Cr is amu.

Chapter 2 - 3

Atomic Structure

- Some of the following properties
 - 1) Chemical
 - 2) Electrical
 - 3) Thermal
 - 4) Optical

are determined by electronic structure

Electronic Structure

- Electrons have wavelike and particulate properties.
- · Two of the wavelike characteristics are
 - electrons are in orbitals defined by a probability.
 - each orbital at discrete energy level is determined by quantum numbers.

double slit experiment :

https://youtu.be/luv6hY6zsd0 http://youtu.be/_oWRI-LwyC4

- Quantum

n = principal (energy level-shell) $\ell = \text{subsidiary (orbitals)}$ $m_l = \text{magnetic}$

Designation

K, L, M, N, O (1, 2, 3, etc.) s, p, d, f (0, 1, 2, 3,..., n-1) 1, 3, 5, 7 (- ℓ to + ℓ) $\frac{1}{2}$, - $\frac{1}{2}$

 $m_s = \text{spin}$ $\frac{1}{2}$

- a phenomenon where irradiating a blue light on metal emits electrons from it.

Particle like characteristics: photoelectric effect

- But not with red light

Chapter 2 - 5

Orbitals

Electron Energy States

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	Atomic#	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	1s ² 2s ² 2p ¹	Adapted from Table 2.2,
Carbon	6	$1s^22s^22p^2$	Callister & Rethwisch 4e.
Neon	10	$1s^22s^22p^6$ (stable	9)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	$1s^22s^22p^63s^2$	
Aluminum	13	$1s^22s^22p^63s^23p^1$	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	(stable)
		•••	
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4	s ² 4p ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

Electron Configurations

- Valence electrons those in unfilled shells
- Filled shells more stable
- Valence electrons are most available for bonding and tend to control the chemical properties
 - example: C (atomic number = 6)

Chapter 2 - 9

Electronic Configurations

quiz

• Give the electron configurations for the following ions: Fe³⁺, Ga³⁺, Cr⁺, Ca²⁺, Na⁻, and S²⁻.

Chapter 2 - 11

Fe³⁺ ion is $1s^22s^22p^63s^23p^63d^5$ Ga³⁺ ion is $1s^22s^22p^63s^23p^63d^{10}$ Cr⁺ ion is $1s^22s^22p^63s^23p^63d^5$ Ca²⁺ ion is $1s^22s^22p^63s^23p^6$ Na⁻ ion is $1s^22s^22p^63s^2$ S²⁻ ion is $1s^22s^22p^63s^23p^6$

The Periodic Table

Chapter 2 - 13

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Adapted from Fig. 2.7, Callister & Rethwisch 4e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Ionic Bonding

- Occurs between + and ions.
- · Requires electron transfer.
- · Large difference in electronegativity required.
- · Example: NaCl

Chapter 2 - 15

Dissimilar electronegativities

ex: MgO Mg
$$1s^2 2s^2 2p^6 3s^2$$
 O $1s^2 2s^2 2p^4$ [Ne] $3s^2$ O $1s^2 2s^2 2p^4$ [Ne] O $1s^2 2s^2 2p^6$ [Ne] [Ne]

Ionic Bonding

- · Energy minimum energy most stable
 - Energy balance of attractive and repulsive terms

Examples: Ionic Bonding

Predominant bonding in Ceramics

Adapted from Fig. 2.7, Callister & Rethwisch 4e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Covalent Bonding

- similar electronegativity :: share electrons
- bonds determined by valence s & p orbitals dominate bonding
- Example: CH₄

C: has 4 valence e⁻, needs 4 more

H: has 1 valence e⁻, needs 1 more

Electronegativities are comparable.

Adapted from Fig. 2.10, Callister & Rethwisch 4e.

Chapter 2 - 19

Primary Bonding

• Ionic-Covalent Mixed Bonding

where X_A & X_B are Pauling electron negativities

Ex: MgO
$$X_{Mg} = 1.2$$

 $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5 - 1.2)^2}{4}}\right) x (100\%) = 73.4\%$$
 ionic

Metallic Bonding

- Metallic Bond -- delocalized as electron cloud
- Found in metals and their alloys
- described as the sharing of free electrons among a lattice of positively charged ions (cations)

Chapter 2 - 21

SECONDARY BONDING

Arises from interaction between dipoles (-259.14 C (14.01 K)

Permanent dipoles-molecule induced

11

Summary: Bonding

Type	Bond Energy	Comments
Ionic	Large!	Nondirectional (ceramics) (same attraction from all directions) - No sharing e or no overlaping orbitals # of nearest atoms decided by charges and sizes.
Covalent	Variable	Directional
	large-Diamond	(semiconductors, ceramics
	small-Bismuth	polymer chains)
Metallic	Variable large-Tungsten small-Mercury	Nondirectional (metals)
Secondary	smallest	Directional inter-chain (polymer) inter-molecular Chapter 2 - 23

Properties From Bonding: T_m

• Bond length, r

• Bond energy, E_0

Melting Temperature, T_m

 T_m is larger if E_0 is larger.

Properties From Bonding : α

Coefficient of thermal expansion, α

coeff. thermal expansion

$$\frac{\Delta L}{L_0} = \alpha \left(T_2 - T_1 \right)$$

• α ~ symmetric at r_0

 α Depends on curvature

Chapter 2 - 25

Summary: Primary Bonds

Ceramics

(Ionic & covalent bonding):

Large bond energy

large T_m large E small α

Metals

(Metallic bonding):

Variable bond energy

moderate T_m moderate Emoderate α

Polymers

(Covalent & Secondary):

Directional Properties

Secondary bonding dominates

small T_m small Elarge α

The net potential energy	γ between two adjacent ions, E_{N} , may b	е
represented by	$E_N = -\frac{A}{r} + \frac{B}{r^n}$	
	$L_N = -\frac{r}{r} + \frac{r}{r^n}$	

Calculate the bonding energy E_0 in terms of the parameters A, B, and n

Chapter 2 - 27

