Kernels, SVMs Ensembling (Bagging, Boosting)

M. Vazirgiannis & N. Tziortziotis
November 2018

Outline

- Introduction to Kernels
- SVMs
- Ensembling
 - Bagging Random forests
 - Boosting Adaboost

Mapping

- Map data points into an inner product space H with some function $\phi: \phi: x \to \phi(x) \subseteq H$
- The map ϕ aims to convert the nonlinear relations into linear ones.

Constructing Features

Problems

- Need to be an expert in the domain
- Features may not be adequate
- Extracting features can sometimes be computationally expensive
 - Example: second order features in 1000 dimensions.

Solutions

- Calculate a similarity measure in the feature space instead of the coordinates of the vectors there,
- apply algorithms that only need the value of this measure

Kernels

• A kernel is a function $k: X \times X \to R$ for which the following property holds

$$k(x, x') = \langle \phi(x), \phi(x') \rangle,$$

where ϕ is a mapping from X to a Hilbert (inner product) space H

$$\phi: x \to \phi(x) \subseteq H$$

Kernel Example

Quadratic Features in \mathbb{R}^2

$$\phi: x = (x_1, x_2) \to \phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

Inner product in the feature space

$$egin{aligned} \langle \phi(x),\phi(z)
angle &=\left\langle (x_1^2,x_2^2,\sqrt{2}x_1x_2),(z_1^2,z_2^2,\sqrt{2}z_1z_2)
ight
angle \ &=x_1^2z_1^2+x_2^2z_2^2+2x_1x_2z_1z_2=\langle x,z
angle^2 \ & ext{Kernels/SVMS/Ensembling} \end{aligned}$$

6

Kernel trick

- enable operation in a high-dimensional, implicit feature space
- without computing the coordinates of the data in that space $\phi(x)$
- simply computing inner products between the images of all pairs of data in the feature space
- need a function: $k(x, x') = \langle \phi(x), \phi(x') \rangle$
 - computationally cheaper than the explicit computation of the coordinates.
 - introduced for sequence data, graphs, text, images, as well as vectors.

Properties of Kernels

Distance in Feature Space

The distance between points in feature space is given by

$$\|\phi(x) - \phi(x')\|^2 = \langle \phi(x), \phi(x) \rangle - 2 \langle \phi(x), \phi(x') \rangle + \langle \phi(x'), \phi(x') \rangle$$
$$= k(x, x) - 2k(x, x') + k(x', x')$$

Symmetry

Kernel is symmetric due to the symmetry of the dot product:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle = \langle \phi(x'), \phi(x) \rangle = k(x', x)$$

Cauchy-Schwarz inequality

$$k(x, x')^{2} = \langle \phi(x), \phi(x') \rangle^{2}$$

$$\leq \|\phi(x)\|^{2} \|\phi(x')\|^{2} = k(x, x)k(x', x')$$

Properties of a Kernel Matrix

K is Positive Semidefinite

 $a^{\top}Ka \geq 0$ for all $a \in \mathbb{R}^n$ and all kernel matrices $K \in \mathbb{R}^{n \times n}$. Proof:

$$\sum_{i,j}^{n} a_i a_j K_{ij} = \sum_{i,j}^{n} a_i a_j \langle \phi(x_i), \phi(x_j) \rangle$$

$$= \left\langle \sum_{i}^{n} a_i \phi(x_i), \sum_{j}^{n} a_j \phi(x_j) \right\rangle = \left\| \sum_{i}^{n} a_i \phi(x_i) \right\|^2 \ge 0$$

Symmetry

K is symmetric due to the symmetry of the dot product:

$$K_{ij} = K_{ji}$$
 as $\langle \phi(x), \phi(x') \rangle = \langle \phi(x'), \phi(x) \rangle$.

Mercer's theorem

Theorem

For any symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable in $\mathcal{X} \times \mathcal{X}$ and satisfies

$$\int_{\mathcal{X}\times\mathcal{X}} k(x,x')f(x)f(x')dxdx' \ge 0 \text{ for all } f \in L_2(\mathcal{X})$$
 (0.1)

exist $\phi: \mathcal{X} \to \mathbb{R}$ and $\lambda \geq 0$ where

$$k(x, x') = \sum_{i} \lambda_{i} \phi(x) \phi(x') \forall x, x' \in \mathcal{X}$$
 (0.2)

Interpretation

Mercel's condition tells us whether or not a prospective kernel is actually a dot product in the *Hilbert* space, \mathcal{H} .

Mercer Kernels

- Let $X = \{x_1, \dots, x_n\}$ finite set of samples from X, The Gram matrix $K(X; \varkappa)$, such that for $(K)_{ij} = \langle x_i, x_j \rangle$
- The Gram matrix positive definite:
 - Thus eigenvector decomposition: $K=UAU^T$
- An element of K expressed as a dot product among 2 vectors: $K_{ij} = (\Lambda^{1/2} U_{:,i})^T (\Lambda^{1/2} U_{:,j})$
- Thus if we define $\phi(x_i) = (\Lambda^{1/2} U_{:,i})$
- Then $K_{ij} = \phi(x_i)^T \phi(x_j)$

Mercer Kernels

$$K_{ij} = \phi(x_i)^T \phi(x_j)$$

- each element of the kernel can be described as the inner product of a function φ applied to objects x .
- Therefore, if a kernel is a Mercer kernel, then there exists a function
- $\phi: X \to D$
- such that $\varkappa(x,x')=\phi(x)^T\phi(x')$, ϕ :basis function.

Constructing Kernels from Kernels

Assuming valid kernels $k_1(x,z)$ and $k_2(x,z)$, the following are also valid kernels:

- $k(x,z)=ck_1(x,z), \text{ where } c\in \mathcal{R}^+$
- $k(x,z) = k_1(x,z) + k_2(x,z)$
- $k(x,z) = k_1(x,z)k_2(x,z)$
- $k(x,z) = \exp(k_1(x,z))$
- $k(x, x') = k_a(x_a, x'_a) + k_b(x_b, x'_b)$, where $x = (x_a, x_b)$
- $k(x, x') = k_a(x_a, x'_a)k_b(x_b, x'_b)$, where $x = (x_a, x_b)$

Typical Kernels

Linear

$$k(x, x') = \langle x, x' \rangle$$

Laplacian RBF

$$k(x, x') = \exp(-\lambda ||x - x'||)$$

Gaussian RBF

$$k(x, x') = \exp(-\lambda ||x - x'||^2)$$

Polynomial

$$k(x, x') = (\langle x, x' \rangle + c)^d, c \ge 0, d \in \mathbb{N}$$

Sigmoid

$$k(x, x') = \tanh(\eta \langle x, x' \rangle + b)$$

B-Spline

$$B_{2n+1}(x-x')$$

Laplacian Kernel

Gaussian Kernel

Polynomial Kernel

Outline

- Introduction to Kernels
- SVMs
- Ensembling
 - Bias Variance -tradeoff
 - Bagging Random forests
 - Boosting Adaboost

SVMs

- Issues that motivated SVMS:
 - bias variance tradeoff
 - capacity control
 - Over fitting
- For a given learning task, a finite amount of training data, the best generalization performance is achieved by jointly optimizing
 - accuracy attained on a training set,
 - "capacity": ability to learn from any training set without error

SVMs

Goal: find a a hyperplane (i.e. decision boundary) linearly separating our classes.

Boundary equation: $\mathbf{w}^T\mathbf{x} + b = 0$

If
$$x_i: \mathbf{w}^T\mathbf{x} + b > 0$$
 then $y_i = 1$ equivalent: $y(\mathbf{w}^T\mathbf{x} + b) > = 1$ if $x_i: \mathbf{w}^T\mathbf{x} + b < 0$ Kether $y_i = 1$

SVMs – distance between the boundaries

$$\mathbf{w}^T \mathbf{x} + b = -1$$
$$\mathbf{w}^T \mathbf{x} + b = 1$$

- lines are parallel, with same parameters w,b
- Assume x_1 on $w^Tx+b=-1$, the closest point of x_2 on line $w^Tx+b=-1$. Thus $x_2=w^Tx+b=-1$ and λw the distance (x_1,x_2) .

Solving for λ : $\mathbf{w}^T \mathbf{x_2} + b = 1$ where $\mathbf{x_2} = \mathbf{x_1} + \lambda \mathbf{w} = \lambda = \frac{2}{\mathbf{w}^T \mathbf{w}} = \frac{2}{\|\mathbf{w}\|^2}$

SVMs – optimization formulation

- maximize the distance between the two boundaries defining the classes – to avoid mis-classifications: maximal margin
- Objective: $max \frac{2}{\sqrt{\mathbf{w}^T \mathbf{w}}} \approx min \frac{\sqrt{\mathbf{w}^T \mathbf{w}}}{2} \approx min \frac{\mathbf{w}^T \mathbf{w}}{2}$
- Quadratic formulation problem:

Soft Margin extension

- We allow some miss-classification: some data points on the other side of the boundary (slack variables: $\varepsilon_i > 0$ for each point x_i).
- The problems becomes:

$$min_{\mathbf{w},b,C} \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{I} \epsilon_i$$

Subject to:
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) >= 1 - \epsilon_i, \epsilon_i >= 0 (\forall \mathbf{x}_i)$$

SVMs – Non Linear Decision Boundary

• If data are not linearly separable we consider a mapping to a higher dimensional space via a function $\phi(\chi)$. Then the optimization becomes:

$$min_{\mathbf{w},b,C} \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{I} \epsilon_i$$

Subject to: $y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b) >= 1 - \epsilon_i, \epsilon_i >= 0 (\forall \mathbf{x}_i)$

SVMs – reformulation as a Lagrancian

- Introduce Langrancian multipliers to represent the condition
- $y_i(\mathbf{w}^T\phi(\mathbf{x_i})+b)$ should be as close to 1 as possible :
- This condition is captured by: $\max_{\alpha_i \geq 0} \alpha_i [1 y_i(\mathbf{w}^T \phi(\mathbf{x_i}) + b)]$
 - When $y_i(\mathbf{w}^T\phi(\mathbf{x_i})+b) \geq 1$ the expressions is maximal when $a_i=0$ *
 - Otherwise $y_i(\mathbf{w}^T\phi(\mathbf{x_i})+b) < 1$, so $[1-y_i(\mathbf{w}^T\phi(\mathbf{x_i})+b)]$ is a positive value and the expression is maximal when $\alpha_i \to \infty$
- This results in penalizing (large α_{ι}) misclassified data points, while 0 penalty to properly classified ones
- Thus we have the following formulation:

$$min_{\mathbf{w},b}\left[\frac{\mathbf{w}^T\mathbf{w}}{2} + \sum_{i} max_{a_i \geq 0} a_i [1 - y_i(\mathbf{w}^T\phi(\mathbf{x}_i) + b)]\right]$$

SVMs – reformulation as a Lagrancian

$$min_{\mathbf{w},b}\left[\frac{\mathbf{w}^T\mathbf{w}}{2} + \sum_{i} max_{a_i \geq 0} a_i [1 - y_i(\mathbf{w}^T\phi(\mathbf{x}_i) + b)]\right]$$

- To preventing lpha variables to ∞
- we impose constraints on Lagrange multipliers $0 <= a_i <= C$
- We define the dual problem interchanging the max, min:

$$max_{\alpha \geq 0}[min_{\mathbf{w},b}J(\mathbf{w},b;\alpha)]$$
 where $J(\mathbf{w},b;\alpha) = \frac{\mathbf{w}^T\mathbf{w}}{2} + \sum_i \alpha_i[1 - y_i(\mathbf{w}^T\phi(\mathbf{x_i}) + b)]$

- To solve the optimization problem:
- $\frac{\partial J}{\partial \mathbf{w}} = 0$ hence \mathbf{w} : $\sum_i \alpha_i y_i \phi(x_i)$

$$\frac{\partial J}{\partial b} \equiv 0$$
 hence $\sum_i \alpha_i y_i = 0$.

Substitute and simplify:
$$min_{\mathbf{w},b}J(\mathbf{w},b;\alpha) = \sum_i \alpha_i - \frac{1}{2}\sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(\mathbf{x_i})^T \phi(\mathbf{x_j})$$

The the dual problem is: $\max_{\alpha \geq 0} \left[\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(\mathbf{x_i})^T \phi(\mathbf{x_j}) \right]$

Subjectivities
$$\sum_{i \in \mathcal{N}} y_i = 0 \, ext{ and } \, 0 \leq lpha_i \leq C$$

SVM- Kernel trick

• As dimensionality may be infinite computation of $\phi(\mathbf{x}_i)^T, \phi(\mathbf{x}_j)$ may be intractable

Kernel Trick:
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T, \mathbf{x}_j)^2 = \phi(\mathbf{x}_i)^T, \phi(\mathbf{x}_j)^T$$

Thus our computation is simplified with rewriting the dual in terms of the kernel:

$$max_{\alpha \geq 0} \left[\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \right]$$

SVM – Decision function

• To classify a novel instance x, having learned the optimal α_i parameters:

$$f(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x} + b) = \sum_{i} \alpha_i y_i K(\mathbf{x_i}, \mathbf{x}) + b$$

- Setting $\mathbf{w} = \sum_i \alpha_i y_i \phi(\mathbf{x_i})$ and using the kernel trick
- α_i are non zero for $\phi(x_i)$ on or close to the boundary support vectors

Outline

- Introduction to Kernels
- SVMs
- Ensembling
 - Bagging Random forests
 - Boosting Adaboost

Ensembling in supervised learning

- Supervised learning algorithms may suffer by
 - bias/variance tradeoff
 - overfitting
- Ensembles: methods that generate multiple hypotheses (predictors) using the same base learner.
- ensemble typically requires more computation
- Can be considered as a way to compensate for poor learning algorithms by performing a lot of extra computation.
- i.e. <u>Random Forest</u> capitalize on decision trees

Ensemble types:

- Bagging
- Boosting

Generalization

• Empirical error $E = \frac{1}{n} \sum_{i=1}^{n} \delta(f(x), y)$

• Expected error
$$E_x = \int_{X,Y} \delta(f(x),y) p(x,y) dx dy$$

Generalization

- Generalization error: $G = E(f) E_x(f)$
 - difference between the training set and the underlying joint probability distribution error
 - An algorithm generalizes well if

$$\lim_{n\to\infty} E(f) - E_x(f) = 0$$

p(x,y) unknown probability distribution => impossible to compute

Error as Bias, Variance

- Let $y=f(x)+\varepsilon$ learning function, ε : noise, mean = 0, variance σ^2
- Let $\hat{f}(x)$ approximation of f(x)
- Expected Error

$$ext{E}\left[\left(y-\hat{f}\left(x
ight)
ight)^{2}
ight]=\left(ext{Bias}\left[\hat{f}\left(x
ight)
ight]
ight)^{2}+ ext{Var}\left[\hat{f}\left(x
ight)
ight]+\sigma^{2}$$

- where: $\operatorname{Bias}\left[\hat{f}\left(x
 ight)\right]=\operatorname{E}\left[\hat{f}\left(x
 ight)-f(x)\right]$
- var: $\operatorname{Var}\left[\hat{f}\left(x
 ight)
 ight]=\operatorname{E}[\hat{f}\left(x
 ight)^{2}]-\left(\operatorname{E}[\hat{f}\left(x
 ight)]
 ight)^{2}$

Bootstrap Aggregating - Bagging

- Assume training set $D = \{(x_i, y_i)\}$
- Objective: predict label for an unknown x
 - Sample B data sets each size n, randomly with replacement from D: $\{D_1, \ldots D_B\}$
 - For each D_b train a tree f_b and make a prediction => obtain a set of B predictions fb on $D_b(X_b, Y_b)$
 - Assume unseen samples \boldsymbol{x}' the final prediction obtained either by
 - averaging (regression) $\hat{f} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x')$
 - majority voting (classification)

Bootstrap Aggregating - Bagging

- Decreases variance in the predictions without increasing bias
- predictions of a single tree may sensitive to noise in the training set
- average of many trees is not, as long as the trees are not correlated.
 - training many trees on a single training set would give strongly correlated trees
 - bootstrap sampling de-correlates the trees
- *B*: free parameter:
- - few hundred to several thousand trees are used, depending on the size and nature of the training set.
- An optimal number of trees B using
 - cross-validation
 - by observing the out-of-bag error
 - mean prediction error on each training sample x_i , using only trees not having x_i in their bootstrap sample.
 - The training and test error tend to stabilize after some number of trees have been fit.

Random forests

- use a modified decision tree learning algorithm
- selects, at each candidate split in the learning process, a random subset of the features "feature bagging".
- Reason correlation of the trees:
 - if some features are very correlated to the class label will be selected in many of the trees,
 - Resulting trees correlated.
- # of features selected:
 - classification problem with p features, \sqrt{p} features are used in each split .
 - Regression problems have different defaults

Random forest convergence

- Assume an ensemble of classifiers $h_1(\mathbf{x}), h_2 1(\mathbf{x}), ..., h_K(\mathbf{x})$ with training set drawn from the distribution of Y, X
- Margin function:

$$mg(\mathbf{X},Y) = av_k I(h_k(\mathbf{X}) = Y) - max_{j \neq Y} av_k I(h_K(\mathbf{X}) = j)$$

- Measures average # votes for the correct class is larger than the average vote for any other class
- Larger margin: larger confidence to the classifier
- As # of trees increases for all sequences Θi (random vectors)

$$P_{\mathbf{X},Y}(P_{\Theta}(h(\mathbf{X},\Theta)=Y) - max_{j\neq Y}(P_{\Theta}(h(\mathbf{X},\theta)=j) < 0)$$

Random forests

Random forests

Randomization cases

- Bootstrap samples
- Random selection of K <= p split variables
- Random selection of the threshold (extra trees)

Expected generalization error

Theorem. For the squared error loss, the bias-variance decomposition of the expected generalization error $\mathbb{E}_{\mathcal{L}}\{Err(\psi_{\mathcal{L},\theta_1,\ldots,\theta_M}(\mathbf{x}))\}$ at $X=\mathbf{x}$ of an ensemble of M randomized models $\phi_{\mathcal{L},\theta_m}$ is

$$\mathbb{E}_{\mathcal{L}}\{Err(\psi_{\mathcal{L},\theta_1,\dots,\theta_M}(\mathbf{x}))\} = \mathsf{noise}(\mathbf{x}) + \mathsf{bias}^2(\mathbf{x}) + \mathsf{var}(\mathbf{x}),$$

where

$$\begin{split} &\mathsf{noise}(\mathbf{x}) = \textit{Err}(\phi_B(\mathbf{x})), \\ &\mathsf{bias}^2(\mathbf{x}) = (\phi_B(\mathbf{x}) - \mathbb{E}_{\mathcal{L},\theta}\{\phi_{\mathcal{L},\theta}(\mathbf{x})\})^2, \\ &\mathsf{var}(\mathbf{x}) = \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x}). \end{split}$$

and where $\rho(\mathbf{x})$ is the Pearson correlation coefficient between the predictions of two randomized trees built on the same learning set.

Generalization error of random forests

- Bias: Identical to the bias of a single randomized tree.
- Variance : $var(\mathbf{x}) = \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$ As $M \to \infty$, $var(\mathbf{x}) \to \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$
 - The stronger the randomization, $\rho(\mathbf{x}) \to 0$, $var(\mathbf{x}) \to 0$.
 - The weaker the randomization, $\rho(\mathbf{x}) \to 1$, $var(\mathbf{x}) \to \sigma^2_{\mathcal{L},\theta}(\mathbf{x})$

Bias-variance trade-off. Randomization increases bias but makes it possible to reduce the variance of the corresponding ensemble model. The crux of the problem is to find the right trade-off.

Extremely randomized trees

- Adding one further step of randomization
- random subspace method @ training
 - Instead of computing the locally optimal feature/split combination
 - randomized top-down splitting in the tree learner
- for each feature considered, a random value selected for the split.
 - value is selected from the feature's empirical range (in the tree's training set, i.e., the bootstrap sample)

Extra trees - splitting procedure for numerical attributes

Table 1 Extra-Trees splitting algorithm (for numerical attributes)

Split_a_node(S)

Input: the local learning subset S corresponding to the node we want to split

Output: a split $[a < a_c]$ or nothing

- If Stop_split(S) is TRUE then return nothing.
- Otherwise select K attributes {a1, ..., aK} among all non constant (in S) candidate attributes;
- Draw K splits $\{s_1, \ldots, s_K\}$, where $s_i = \text{Pick_a_random_split}(S, a_i), \forall i = 1, \ldots, K$;
- Return a split s** such that Score(s**, S) = max_{i=1,...,K} Score(si, S).

$Pick_a_random_split(S,a)$

Inputs: a subset S and an attribute a

Output: a split

- Let a^S_{max} and a^S_{min} denote the maximal and minimal value of a in S;
- Draw a random cut-point a_c uniformly in [a^S_{min}, a^S_{max}];
- Return the split [a < a_c].

$Stop_split(S)$

Input: a subset S

Output: a boolean

- If |S| < n_{min}, then return TRUE;
- If all attributes are constant in S, then return TRUE;
- If the output is constant in S, then return TRUE;
- Otherwise, return FALSE.

Extra trees

Splitting procedure parameters:

- K, the number of attributes randomly selected at each node
- n_{min} , the minimum sample size for splitting a node.
- *M* number of trees

Bias-variance point of view, rationale behind the Extra-Trees

- explicit randomization of the cut-point and attribute combined with ensemble averaging reduces variance strongly
- usage of full original learning sample instead of bootstrap replicas minimizes bias.

Computational cost

- tree growing procedure complexity assuming balanced trees O(N Log N) with respect to learning sample size N.
- The parameters K, n_{min} , M have different effects:
 - K determines the strength of the attribute selection process,
 - n_{min} the strength of averaging output noise, and
 - M the strength of the variance reduction of the ensemble model aggregation.
- The final prediction is by majority vote in classification problems and arithmetic average in regression problems.

Outline

- Introduction to Kernels
- Ensembling
 - Bagging Random forests
 - Boosting Adaboost

Boosting

- Boosting: creating a highly accurate prediction combining many relatively weak learners
- Weak Learning Algorithm (Weak Learner)
 - a classifier only slightly correlated with the true classification
 - it can label examples better than random guessing
 i.e. precision slightly >50%.
- boosting to generate a single weighted classifier with very high precision

Boosting

- iteratively learning weak classifiers with respect to a training set distribution and adding them to a final strong classifier.
- typically weighted in some way related to the weak learners' accuracy.
 - After a weak learner is added, data are reweighted
 - classified examples gain weight
 - examples that are classified correctly lose weight
- Thus, future weak learners focus more on the examples that previous weak learners misclassified.

Adaboost

- Data points weighting:
 - Focus on problematic data points: those misclassified most by the previous weak classifier.
- weak learners composition
 - Use an optimally weighted majority vote of weak classifier.

Adaboost

- Assume a training set (x_i, y_i) , y_i in $\{-1, +1\}$
- Let probability of each data point to be in training set: $D_I(i)=1/m$
- For each round t=1..T
 - Train weak learner using distribution D_t
 - Weak learner $h_t: X \rightarrow \{-1, +1\}$ with error ε_t
 - $\alpha = \frac{1}{2} ln(\frac{1-\epsilon}{\epsilon})$
 - Update $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$ $= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
- Final Hypothesis: $H(x) = sign(\sum_{t=1}^{T} a_t h_t(x))$

Adaboost – weights intuition

- Error => 0: classifier weight grows exponentially
 - Better classifiers are given exponentially more weight.
- error rate ~ 0.5.
 - A classifier with 50% accuracy is random guessing: ignore it.
- error => 1: classifier weight grows exponentially negative
 - negative weight to classifiers with worse than 50% accuracy.

$$\alpha_t = \frac{1}{2} ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Adaboost – Training set selection

- Each weak classifier trained on a random subset of total training set.
- AdaBoost assigns a
 "weight" to each training
 example that determines
 the probability to appear in
 the training set.
- Examples with higher weights are more likely to be included in the training set

$$\alpha_t = \frac{1}{2} ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Adaboost - Classifier Output Weights

After training a classifier

- Increase weight of misclassified examples.
- Those will have larger probability to be in next classifiers training set
- next classifier trained will perform better on them.

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$
$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Graphical representation

 $H(\mathbf{x})$

Choice of classifiers

- Easy to train
- Low bias high variance
 - Decision trees

error empirical results

- Data Set: OCR data set
- Weak learner: C.4.5 decision tree
- Test error does not increase even after 1000 rounds.
- Test error continues to drope after training error reaches zero

Adaboost

- Advantages
 - Simple to program
 - No parameters (except T)
 - No prior knowledge needed for weak learner
 - versatile
- Disadvantages
 - Complex Weak classifiers lead to over fitting
 - Weak classifiers too weak can lead to low margins, and can also lead to over fitting
 - empirical evidence: AdaBoost particularly vulnerable to uniform noise.

References

- Learning with Kernels: Support Vector Machines, Regularization,
 Optimization, and Beyond. Bernhard Scholkopf and Alexander J. Smola.
 2001.
- Kernels, Course notes, Synthia Rudin, <u>link</u>
- Pattern Recognition and Machine Learning. Christopher M. Bishop. 2006
- Explaining AdaBoost, Robert E. Schapire,
 http://rob.schapire.net/papers/explaining-adaboost.pdf
- https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf