Exercise 1: SOLUTIONS

Response by: **SOLUTIONS**

HONOR CODE NOTICE: SOLUTION SET, for use by CS3102 at UVA students in Spring 2020 only. Anyone reading this outside of that course for that semester is in violation of the honor code.

Exercise 1-1: Induction Practice

To show:

$$n! < n^n$$

We will show this using a proof by induction.

Base case: n=2

$$2! < 2^2$$

 $2 < 4$

So the base holds

Inductive Hypothesis:

Assume $k! < k^k$ for arbitrary $k \ge 2$

Inductive Step: Show $k! < k^k \to (k+1)! < (k+1)^{k+1}$

To begin, consider (k+1)!:

$$(k+1)! = (k+1) \cdot k!$$
$$(k+1) \cdot k! < (k+1)k^k$$
$$(k+1)k^k < (k+1)(k+1)^k$$
$$(k+1)(k+1)^k = (k+1)^{k+1}$$

and so $(k+1)! < (k+1)^{k+1}$