

PHYSICS

F.Sc / ICS – 1st Year

Practice Sheet Chapter 7

MCQs

	_	n specifies the displace	ement as well as direc	tion of motion of the point execu
	HM is known as:			
(a) phase	(b) critical angle	(c) plane angle	(d) solid angle
. Tł	ne time period of sim	ple pendulum:		
(a	$T = \frac{1}{2\pi} \sqrt{\frac{l}{g}}$	(b) $T = 2\pi \sqrt{\frac{g}{l}}$	(c) $T = 2\pi \sqrt{\frac{l}{g}}$	(d) $T = 2\pi \sqrt{\frac{g}{l}}$
. Tł	ne total energy of a pa	article executing SHM	at any displacement x	is given by:
(a) kx	(b) $\frac{k}{x}$	(c) $\frac{1}{2}kx^2$	(d) $\frac{1}{2}kx_0^2$
	ne frequency of a seco	ond pendulum is:		
(a) 1 Hz	(b) 0.5 Hz	(c) 1.5 Hz	(d) 2Hz
Τι	uning of a radio is the	best example of:		
(a) mechanical resonar	nce	(b) electrical resor	nance
(c) damping		(d) phase modulat	tion
Τŀ	ne oscillation in which	amplitude decreases	steadily with the time	e is called:
(a) natural oscillation		(b) damped oscilla	ation
(c) free oscillation		(d) forced oscillati	on
Di	stance covered durin	g one vibration of an o	oscillating body in terr	ns of amplitude A is:
(a) A	(b) 4A	(c) $\frac{A}{2}$	(d) 2A
Τŀ	ne SI units of spring co	onstant are:		
) m ⁻¹	(b) Nm ⁻¹	(c) Nm ⁻²	(d) Nm ²

(b) linear motion

(a) circular motion

(c) vibratory motion (d) elliptical motion

). At	mean position duri	ng SHM:				
(a)	PE is maximum an	ıd KE is minimu	m	(b)	PE is minimu	ım and KE is maximum
(c)	both are maximun	n		(d)	both KE and	PE are minimum
Th	e wave form of a bo	ody executing S	HM is:			
(a)	square wave	(b) sine wa	ave	(c)	circular wave	pulse (d) pulse
2. In	LSHM the velocity of	f the particle is	maximur	n at:		
(a)	mean position			(b)	extreme pos	ition
(c)	in between mean	and extreme p	osition	(d)	none	
. Th	e frequency of wav	es produced in	microwa	ve ov	en is:	
(a)	1435 MHZ	(b) 2450 N	ЛHZ	(c)	1860 MHZ	(d) 2850 MHZ
. Ur	L nits of spring consta	nt are similar to	o the unit	ts of:		
(a)	force	(b) mome	ntum	(c)	pressure	(d) surface tension
	mass of the suspend double	ded bob of pen (b) half	dulum be		s double, the four time	n its time period will be: (d) remains same
5. Th	e product of angula	 ir frequency (a	and tim	ie per	iod will be:	
(a)	1	(b) 2π	(c) π	τ/ 2	(0	d) π
	Lsimple pendulum is en the time period v	_	lift. If the	lift st	arts moving (upwards with a uniform a
(a)	Remain unaffecte	d (b) Be long	ger	(c)	Be shorter	(d) Maybe "B" or "C"
		HM has an acce	eleration	of 65	cm s ⁻² when i	ts displacement is 4cm, its
	cond is:					
(a) π/2	(b) π		(c)	$\pi/4$	(d) 4π
	t = 0 a body perfor	_	mean po		-	
•	At extreme position					ean and extreme position
(c)	Beyond extreme p	osition		(d)	Again at mea	an position

20. The relation of rest	coring force in a simple	pendulum if it makes a	an angle " $ heta$ " with horizonta	l is:
(a) $mg\;sin heta$	(b) ${\sf mg}\;{\sf cos} heta$	(c) $\operatorname{mg} \operatorname{tan} \theta$	(d) $mg\;cot heta$	
21. If the displacemen	t in SHM is written by e	quation $x = x_a \cos \omega t th$	e value of initial phase in this	case is:
(a) 0°	(b) 90°	(c) 45°	(d) 180°	
	(1)	(-)		
22. Spring constant of	a spring and its length a	re related as:		
(a) $k\alpha$ 1	(b) $k\alpha\sqrt{1}$	(c) $k\alpha 1^{-1}$	(d) $klpha 1^{-1/2}$	
23. When of the follow	ving can be true for " ω "	'?		
(a) $\sqrt{\frac{k}{m}}$	(b) $\sqrt{\frac{g}{l}}$	(c) $\frac{2\pi}{T}$	(d) All of these	
(a) $\sqrt{\frac{m}{m}}$	\sqrt{l}	$\frac{C}{T}$	(d) All of these	
In SHM when displ	acement is equal to $\frac{X_o}{2}$	then the ratio of P.F.	to K E is:	
(a) 2:3	(b) 3:3	(c) 1:3	(d) 3:1	
(a) 2.5	(6) 3.3	(0) 1.3	(u) 3.1	
5. When K.E and P.E i	n SHM become equal to	the displacement is?		
(a) $\frac{X_o}{2}$	(b) $\sqrt{2x_o}$	(c) $\frac{\mathbf{x}_o}{\sqrt{2}}$	(d) $\frac{\sqrt{3x_o}}{\sqrt{3x_o}}$	
2	. , ,	$\sqrt{2}$	2	
6. What is the phase	difference between velo	ocity and displacemen	t in SHM:	
(a) 0	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	(d) π	
(4) 0	2	4	(3) //	
 77. The time period of	a simple pendulum me	asured inside a statio	 nary lift is T. If the lift stand	s moving
time period?	a simple pendulan me	asarea msiae a statio	mary me is 1. If the me stand	3 1110 11116
T	41.2	$\sqrt{3}$	3_	
(a) $\frac{T}{3}$	(b) 3T	(c) $\frac{\sqrt{3}}{2}T$	(d) $\sqrt{\frac{3}{2}}T$	
L about made a	simple pendulum of ti	me neriod 1 s. The st	ring used is length of 1 m,	in order
	dulum of time period 2	· ·	= =	iii Uiuel
(a) 2 m	(b) 3 m	(c) 4 cm	(d) 4 m	
` ,	V /	.,		

			swing in the sitting pos	ition. How will the ti	me period of swing be af	fected if she
		inds up?		// / // // //	1 20 1 1	
		the time period w		•	d will now be longer	
	(C) 	the time period w	ill now be unchanged	(d) None of these		
30.	ı If a	simple pendulum	is shifted from Lahore to	mount Everest, the	n its time period:	
	(a)	does not change	(b) decreases	(c) increases	(d) none of these	
24	,		التروي والمراجع	lle e eleviseti		
		poles	of simple pendulum will	(b) equator		
		on the surface of	earth	(d) at the center of	of earth	
	(-,			(4) 40 000		
	-		HM with frequency f. The			
	(a) 	Т	(b) 2f	(c) 3f	(d) 4f	
33.	ا A s	simple harmonic os	cillator has time period	T. The time taken by	it to travel from extrem	e position to
	ha	lf of the amplitude	is:			
	(a)	T/6	(b) T/4	(c) T/8	(d) T/2	
34.	Tw	o springs have force	e constants in the ratio o	of 4:9. Their time pe	riods are in the ratio of:	
		3:2	(b) 2:3	(c) 1:3	(d) 3:1	
					. ,	
			SHORT	QUESTIONS		
1.	S	show that waveforr	n of SHM (experimentall	v) is sine wave.		
			(0., p 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2.		Define phase.				
_	_					
3.	Г	Define second pend	lulum			
٥.		zemie secona pena	MIMITI.			

 4.	Calculate length of second pendulum.
 5.	At what displacement K.E = P.E of a vibrating mass spring system.
<i></i>	At what displacement K.E = F.E of a vibrating mass spring system.
6.	Define damped oscillations.
7.	Does frequency depend on amplitude for harmonic oscillators?
_	
8.	Can we realize an ideal simple pendulum?
9.	What happens to the period of simple pendulum if its length is doubled? What happens if the suspended mass is doubled?
 10.	Does the acceleration of a simple harmonic oscillator remain constant during its motion? Is the acceleration ever zero? Explain.

11.	Describe some common phenomena in which resonance plays an important role.
12.	If a mass system is hung vertically and set into oscillations, why does the motion eventually stop?
Q.1	LONG QUESTIONS
	alculate instantaneous velocity of projection N of a point P moving in circle.

(b) A block of mass 4.0 kg is dropped from a height of 0.80 m on to a spring of spring constant K = 1960 Nm ⁻¹ . Find the maximum distance through which the spring will be compressed.
Q.2
(a) Define simple pendulum. Derive formula for its time period.

(b) A 100.0 g body is hung on a spring, which elongates the spring by 4.0 cm. when a certain object is hung on the spring and set vibrating, its period is 0.568 s. What is the mass of the object pulling the spring?

(b) A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place where $g = 9.8 \text{ ms}^{-2}$