D

Last time I defined the Kantovich metric P, Q are probability distributions $K(P,Q) = \sup_{f \in Lip} \left| \int f dP - \int f dQ \right|$ where $f: (X,d) \longrightarrow R$ satisfies $\forall x,x' \in X \mid f(x) - f(x') \mid \leq d(x,x')$. We say f is 1-lipschitz or nonexpansive. It is very easy to verify that this is a metric.

Here is an apparently different metric also due to Kantorovich

 $W, (P,Q) = \inf_{\pi \in \mathcal{C}(P,Q)} \int_{X \in X} d(x,y) d\pi$

Let us deconstruct this to see what it means.

Recall that $\mathcal{C}(P,Q)$ is the set of couplings of P,Q: measures on $X \times X$ s.t. the marginals are P and Q. We think of each distribution P,Q as representing a pile of sand on X. We want to move sand around so that the pile P is transformed into the pile Q. There is are many possible "transfortation plans". A compling is exactly such a transport plan. Thinking discretely for a moment T(X,Y) tells you how much to move from X to Y. The cost of moving something depends on how for they are so if we use the plan T the total cost is $\int d(X,Y) dX$. Hence W_i is the minimum cost of any plan

The Kantorovich-Revbinstein devality theorem: $K = W_1$

I will not prove this best discuss some examples based on finite spaces.

If X is a finite set equipped with a metric of then we can write K as a linear program: We assume $X = \{x_i, -x_i, -x_i, -x_n\}$. We introduce variables a_i i=1... n and we seek to maximize $\max \sum_{i=1}^{n} a_i \left(P(x_i) - Q(x_i)\right)$

subject to the constraints $\forall i, j$ $0 \le a_i \le 1$ $|a_i - a_j| \le d(x_i, x_j)$

Dual form new variables $lij \notin \mathbf{z}_i, \tilde{\boldsymbol{\beta}}_j : i,j = 1 \cdots n$ min $\sum_{i \neq 1}^{n} lij d(x_i, x_j) + \sum_{i \neq 1}^{n} d_i + \sum_{j \neq 1}^{n} \beta_j$ subject to $\forall i \quad \begin{cases} \lambda_i \\ \lambda_j \end{cases} + \lambda_i = P(x_i) \end{cases}$ $\forall i \quad \begin{cases} \lambda_i \\ \lambda_j \end{cases} + \beta_j = Q(x_j) \end{cases}$ $\forall i,j \quad \begin{cases} \lambda_i \\ \lambda_j \end{cases} + \beta_j = Q(x_j) \end{cases}$

(Example I) $W_1(P,P)=0$ Set $lij = \delta_{ij} P(x_i)$ $x_i = y_j = 0$ then the sum we are minimizing in 0 & clearly we cannot go below 0 so this must be the minimal value so $W_1(P,P)=0$. EXAMPLE 2. Let x, y be two powers in X, let δ_x be the probability measure concentrated at x & similarly for δ_y and suppose d(x,y) = x.

From the dual form we get an upper bound choose $l_{xy} = 1$ & all other $l_{ij} = 0$ and $x_i = 0.8$ y. =0 $\sum_{i} l_{ij} d(x_i, x_j) = d(x_i, y) = r$.

From the point we get a lower bound Choose $a_x = 0$, $a_y = r$ and all others to match the constraints then we have $\sum (S_{\mathbf{e}}(\mathbf{x}_i) - S_{\mathbf{g}}(\mathbf{x}_i)) a_i$

= 7

There W, (8x, 8y)=r=d(x,y)

Thus (X,d) is isometrically embedded in the space of probability distributions.

The xiz y; are used in case we are dealing with sub probability distributions.

The version of duality can be greatly generalized. The cost closs not have to be a metric and the supcan involve 2 different functions. The theorems can be stated for complete separable metric spaces. See "Optimal Transport", Old & New "by Cedric Villani.

Related distances $W_{p}(P,Q) = \inf_{\pi \in \mathcal{L}(P,Q)} \int d(x,y)^{p} d\pi$

W1, W2 are both commonly used.