สรุป Chapter 8

C\$ 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Supervised vs. Unsupervised Learning (1)

- Supervised learning (classification)
- Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
- □ New data is classified based on the models built from the training set

- · เรียนแบบมีจุดมุ่งหมาย
- มีผู้สอน

Supervised vs. Unsupervised Learning (2)

- Unsupervised learning (clustering)
- ☐ The class labels of training data are unknown
- ☐ Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

- ไม่มีจุดมุ่งหมายในการสอน
- มีแต่ X อย่างเดียว ไม่มีคำตอบ

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Decision Tree Induction: An Example

<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes

age income student credit rating buys computer

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

no excellent

=30 medium yes excellent

ใบไม้ในคอมพิวเตอร์ รากจะอยู่ด้านบนใบอยู่ด้านล่าง

Y = f(x)

Information Gain: An Attribute Selection Measure

- Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- □ Let p_i be the probability that an arbitrary tuple in D belongs to class C_{ij} estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

☐ Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_4(D)$$

- สูตรคำนวณ คำนวณแค่ครั้งเดียว

Example: Attribute Selection with Information Gain

- ☐ Class P: buys_computer = "yes"
- ☐ Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

_				
	age	pi	ni	I(p _i , n _i)
<	<=30	2	3	0.971
3	3140	4	0	0
	40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

 $Gain(age) = Info(D) - Info_{age}(D) = 0.246$

Similarly, we can get

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit_rating) = 0.048$