MATH 666: Finite Element Methods Homework 2

Caleb Logemann

October 23, 2018

#1 Consider the 2D Poisson equation:

PDE:
$$-\nabla \cdot \nabla u = f(x, y)$$
 in $\Omega = [-1, 1] \times [-1, 1]$
BC: $u + \nabla u \cdot \hat{\mathbf{n}} = q$ on $\partial \Omega$

(a) Recast this problem as a variational problem. Clearly state the test and trial function spaces. In order to recast this as a variational problem, I will multiply by a test function and integrate over Ω .

$$\iint_{\Omega} -(\nabla \cdot \nabla u)v \, d\mathbf{x} = \iint_{\Omega} fv \, d\mathbf{x}$$

Integrating by parts gives

$$\iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} - \int_{\partial \Omega} (\nabla u \cdot \hat{\mathbf{n}}) v \, ds = \iint_{\Omega} f v \, d\mathbf{x}$$

Using the boundary condition we see that $\nabla u \cdot \hat{\mathbf{n}} = g - u$ on $\partial \Omega$

$$\iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} - \int_{\partial \Omega} (g - u)v \, ds = \iint_{\Omega} f v \, d\mathbf{x}$$
$$\iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} + \int_{\partial \Omega} u v \, ds = \iint_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} g v \, ds$$

In order for this equation to be well defined u and v must be in the space $H^1(\Omega)$, that is they are square integrable on Ω and the norm of their gradients are square integrable on Ω . Note that being in $H^1(\Omega)$ implies $L^2(\partial\Omega)$, so the boundary integrals are also well defined.

So the bilinear form of this variational problem is to find $u \in H^1(\Omega)$ such that

$$B(u, v) = L(v)$$

for all $v \in H^1(\Omega)$, where

$$B(u, v) = \iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} + \int_{\partial \Omega} uv \, ds$$

and

$$L(v) = \iint_{\Omega} fv \, d\mathbf{x} + \int_{\partial \Omega} gv \, ds.$$

(b) Show that the variational problem has a unique solution by showing that it meets all of the criteria of the Lax-Milgram Theorem.

The four conditions of the Lax-Milgram Theorem are symmetry, continuity of B, V-ellipticity, and continuity of L, and are shown below.

$$\begin{split} B(u,v) &= B(v,u) \\ |B(u,v)| &\leq \gamma \|u\|_V \|v\|_V \\ B(v,v) &\geq \alpha \|v\|_V^2 \\ |L(v)| &\leq \Gamma \|v\|_V \end{split}$$

I will show these four conditions in order. First, symmetry

$$B(u, v) = \iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} + \int_{\partial \Omega} uv \, ds$$
$$= \iint_{\Omega} \nabla v \cdot \nabla u \, d\mathbf{x} + \int_{\partial \Omega} vu \, ds$$
$$= B(v, u)$$

Second, boundedness of B

$$|B(u, v)| = \left| \iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} + \int_{\partial \Omega} uv \, ds \right|$$

$$\leq \left| \iint_{\Omega} \nabla u \cdot \nabla v \, d\mathbf{x} \right| + \left| \int_{\partial \Omega} uv \, ds \right|$$

Using Cauchy-Schwarz on both integrals gives

$$\leq \|\|\nabla u\|\|_{L^2(\Omega)} \|\|\nabla v\|\|_{L^2(\Omega)} + \|u\|_{L^2(\partial\Omega)} \|v\|_{L^2(\partial\Omega)}$$

Since $\partial\Omega\subset\Omega$, this implies that $\|u\|_{L^2(\partial\Omega)}\leq \|u\|_{L^2(\Omega)}$, so

$$\leq \|\|\nabla u\|\|_{L^2(\Omega)} \|\|\nabla v\|\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)}$$

Now since $||u||_{H^1(\Omega)}$ is greater than both $||||\nabla u|||_{L^2(\Omega)}$ and $||u||_{L^2(\Omega)}$

$$|B(u,v)| \le 2||u||_{H^1(\Omega)}||v||_{H^1(\Omega)}$$

Third I will show V-ellipticity of B. There are two possible cases v=0 on $\partial\Omega$ or $v\neq 0$ on $\partial\Omega$. If v=0 on $\partial\Omega$, then

$$B(v,v) = \iint_{\Omega} \|\nabla v\|^2 d\mathbf{x} + \int_{\partial \Omega} v^2 ds$$

$$= \iint_{\Omega} \|\nabla v\|^2 d\mathbf{x}$$

$$= \frac{1}{2} \left(\iint_{\Omega} \|\nabla v\|^2 d\mathbf{x} + \iint_{\Omega} \|\nabla v\|^2 d\mathbf{x} \right)$$

$$= \frac{1}{2} \left(\|\|\nabla v\|\|_{L^2(\Omega)}^2 + \|\|\nabla v\|\|_{L^2(\Omega)}^2 \right)$$

Poincare's Inequality states that there exists a constant C > 0 such that $C \|v\|_{L^2(\Omega)}^2 \le \|\|\nabla v\|\|_{L^2(\Omega)}^2$, therefore

$$\begin{split} B(v,v) &\geq \frac{1}{2} \Big(\| \| \nabla v \| \|_{L^2(\Omega)}^2 + C \| v \|_{L^2(\Omega)}^2 \Big) \\ &\geq \frac{1}{2} \min\{1,C\} \Big(\| \| \nabla v \| \|_{L^2(\Omega)}^2 + \| v \|_{L^2(\Omega)}^2 \Big) \\ &= \frac{1}{2} \min\{1,C\} \| v \|_{H^1(\Omega)} \end{split}$$

Lastly I will show that L is bounded,

$$|L(v)| = \left| \iint_{\Omega} fv \, d\mathbf{x} + \int_{\partial \Omega} gv \, ds \right|$$

$$\leq \left| \iint_{\Omega} fv \, d\mathbf{x} \right| + \left| \int_{\partial \Omega} gv \, ds \right|$$

Using Cauchy-Schwarz on both integrals gives

$$\leq \|f\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} + \|g\|_{L^2(\partial\Omega)} \|v\|_{L^2(\partial\Omega)}$$

Now since $\|v\|_{H^1(\Omega)}$ is greater than both $\|v\|_{L^2(\Omega)}$ and $\|v\|_{L^2(\partial\Omega)}$

$$\leq \|f\|_{L^{2}(\Omega)} \|v\|_{H^{1}(\Omega)} + \|g\|_{L^{2}(\partial\Omega)} \|v\|_{H^{1}(\Omega)}$$

$$\leq 2 \max \{ \|f\|_{L^{2}(\Omega)}, \|g\|_{L^{2}(\partial\Omega)} \} \|v\|_{H^{1}(\Omega)}$$

This shows that the variational problem satisfies all of the criteria for the Lax-Milgram theorem, therefore it has a unique solution.

(c)

(d)

#2