Analisi Matematica 2

Enrico Favretto

28/02/2022

Contents

1	Funzioni a più variabili			2
	1.1	Lez - 01		
		1.1.1	Grafico di una funzione scalare di più variabili	2
		1.1.2	Curve di livello di una funzione di più variabili	3
		1.1.3	Limiti e continuità per funzioni di più variabili	3
	1.2	Lez -	02	5
		1.2.1	Calcolo dei limiti	6
		1.2.2	Esempi calcolo limiti	7
	1.3	Lez - 03		9
		1.3.1	Definizioni limiti e continuità per \mathbb{R}^n	9
		1.3.2	Calcolo differenziale per funzioni a più variabili	10
		1.3.3	Piano tangente al grafico	11
2	Esercitazioni			13
	2.1	Lezion	ne 1 - $09/03/2022$	13

Chapter 1

Funzioni a più variabili

1.1 Lez - 01

Studieremo funzioni a più variabili reali a valori scalari e vettoriali, cioè $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^k$ con $n,k\in InsN$ e $n\geq 1,k\geq 1$.

Se $k = 1, n \ge 2, f$ si dice funzione di più variabili a valori scalari;

Se $k \ge 1, n \ge 1$, f si dice funzione di più variabili a valori vettoriali.

Incominciamo a trattare il caso in cui n = 2, 3 e k = 1.

<u>MOTIVAZIONE</u>: I fenomenti in Fisica/Ingegneria sono modelizzati da funzioni che dipendono da due/tre variabili.

Esempio 1 1. La funzione temperatura di una piastra piana $A \subseteq \mathbb{R}^2$. La funzione temperatura della piastra A può essere modelizzata da una funzione

$$T:A\subseteq\mathbb{R}^2\to[0,+\infty]\subseteq\mathbb{R}$$

$$\mathbb{R}^2:=\mathbb{R}\times\mathbb{R}=\{(x,y)\mid x\in\mathbb{R},y\in\mathbb{R}\}$$

2. La funzione distanza dall'origine in \mathbb{R}^3 ,

$$\begin{split} f:\mathbb{R}^3 &\to [0,+\infty] \\ f(p) &:= d(O,p) = \sqrt{x^2 + y^2 + z^2} \\ \mathbb{R}^3 &:= \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x,y,z) \mid x,y,z \in \mathbb{R}\} \end{split}$$

1.1.1 Grafico di una funzione scalare di più variabili

Ricordiamo che nel caso di una funzione scalare da una variabile $f:A\subseteq\mathbb{R}\to\mathbb{R}$ $(y=f(x),\,x\in A),\,A$ intervallo di $\mathbb{R}.$

$$G_f := \{(x, f(x)) \mid x \in A\} \subseteq \mathbb{R}^2$$

Se
$$f: A \subseteq \mathbb{R}^2 \to \mathbb{R} \ (z = f(x, y), (x, y) \in A)$$

$$G_f := \{(x, y, f(x, y)) \mid (x, y) \in A\} \subseteq \mathbb{R}^3$$

$$f:A\subseteq\mathbb{R}^3\to\mathbb{R}\ (t=f(x,y,z),\,(x,y,z)\in A)$$

$$G_f := \{(x, y, z, f(x, y, z)) \mid (x, y, z) \in A\} \subseteq \mathbb{R}^4$$

Disegnare G_f in \mathbb{R}^4 ? Non può essere facilmente studiato, il grafico è una ipersuperficie di \mathbb{R}^4

1.1.2 Curve di livello di una funzione di più variabili

Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, fissato $t \in \mathbb{R}$,

$$C_t := \{(x, y) \in A \mid f(x, y) = t\}$$

(è un insieme di tipo "curva" contenuto in A)

Esemplo 2 $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := x - y, (z = x - y) x - y - z = 0,$

$$((1,-1,-1),(x,y,z))=0$$

$$C_t := \{(x, y) \in \mathbb{R}^2 \mid x - y = t\}$$

fascio di rette parallele al variare di t

$$G_f := \{(x, y, x - y) \mid x, y \in \mathbb{R}\}$$

piano di \mathbb{R}^3 contenente la retta r e ortogonale al vettore (1,-1,-1)

$$r := \{(x, y) \in \mathbb{R}^2 \mid x - y = 0\}$$

Più in generale se $f: A \subseteq \mathbb{R}^3 \to \mathbb{R}$, $C_t := \{(x, y, z) \in A \mid f(x, y, z) = t\}$ è un insieme di tipo "superficie".

Esercizio 1 Studiare le curve di livello della funzione $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + y^2$.

$$C_t := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = t\}$$

- C_t è la circonferenza di centro (0,0) e raggio \sqrt{t} , se $t \ge 0$
- C_t è vuoto (\varnothing), se t < 0

1.1.3 Limiti e continuità per funzioni di più variabili

<u>Problema</u>: Data $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, fissato $(x_0, y_0) \in \mathbb{R}^2$ introdurre la definizione

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

Ricordiamo la definizione di limite per funzioni reali di una variabile, $f:(a,b)\to \mathbb{R},\ x_0\in [a,b]\ lim_{x\to x_0}f(x)=L\in \mathbb{R}\iff (def.),$

$$\forall \varepsilon > 0, \exists \delta = d(x_0, \varepsilon) > 0 \mid |f(x) - L| < \varepsilon$$

$$\forall x \in (a,b) \cap (x_0 - \delta, x_0 + \delta), x \neq x_0, \lim_{x \to a^+} f(x) = L, \lim_{x \to b^-} f(x) = L$$

$$B(x_0, \delta) := (x_0 - \delta, x_0 + \delta) = \{x \in \mathbb{R} \mid |x - x_0| < \delta\}$$

intorno sferico di centro x_0 e reaggio $\delta > 0$

Idea per l'introduzione di limite per funzioni di n=2 varaibili

$\underline{Generalizzazione} :$

- 1. La definizione di intorno di centro x_0 e raggio r>0 a \mathbb{R}^2
- 2. La nozione di intervallo apero e chiuso a \mathbb{R}^2 , come pure la nozione di punto estremo di un intervallo.

1.2 Lez - 02

Definizione 1.2.1 (Distanza Euclidea in \mathbb{R}^2) Si chiama <u>distanza euclidea</u> di \mathbb{R}^2 (o nel piano) la funzione, $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, +\infty)$:

$$d(p,q) := \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

 $p = (x_1, y_1), q = (x_2, y_2)$

Definizione 1.2.2 Si chiama <u>intorno</u> (sferico) di centro $p_0 = (x_0, y_0) \in \mathbb{R}^2$ e raggio r > 0 (o anche palla aperta di centro p_0 e raggio r > 0), l'insieme:

$$B_r(p_0) = B(p_0, r) := \{ p \in \mathbb{R}^2 \mid d(p, p_0) < r \} =$$
$$= \{ (x, y) \in \mathbb{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 < r^2 \}$$

Definizione 1.2.3 Sia $A \subseteq \mathbb{R}^2$

1. Un punto $p_0 \in \mathbb{R}^2$ si dice punto di frontiera di A se

$$B(p_0,r) \cap A \neq \emptyset$$
 $e B(p_0,r) \cap (\mathbb{R}^2 \setminus A) \neq \emptyset, \forall r > 0$

L'insieme di tutti i punti di frontiera di A è detto frontiera di A e di denota ∂A

- 2. L'insieme A è detto <u>chiuso</u> se ogni punto di frontiera di A appartiene ad $^{\rm A}$
- 3. L'insieme A è detto aperto se non contiene alcun punto della sua frontiera
- 4. L'insieme di tutti i punti di A che non sono di frontiera si chiama parte interna di A e si denota con \mathring{A}
- 5. L'insieme A è detto <u>limitato</u> se $\exists R_0 > 0$ t.c. $A \subseteq B(O, R_0)$

Esempio 3 1. $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}, \ allora$

- $\partial A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$
- $\mathring{A} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$
- \mathcal{Q} . $A = \mathbb{R}^2$, $\partial A = \emptyset$, $\mathring{A} = A = \mathbb{R}^2$

Definizione 1.2.4 Dato $A \subseteq \mathbb{R}^2$

1. $p_0 \in \mathbb{R}^2$ si dice punto di accomulazione per A se

$$B(p_0,r) \cap (A \setminus \{p_0\}) \neq \emptyset, \forall r > 0$$

2. $p_0 \in A$ si dice <u>punto isolato</u> di A se p_0 non è un punto di accomulazione, cioè se:

$$\exists r_0 > 0 \mid B(p_0, r_0) \cap A = \{p_0\}$$

Definizione 1.2.5 (Limite di funzioni di due variabili) $Sia\ f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ $e\ sia\ p_0 \in \mathbb{R}^2$ punto di accomulazione per A. $Si\ dice\ che$:

$$\exists lim_{(x,y)\to(x_0,y_0)} f(x,y) = L \in \mathbb{R}$$

oppure $\exists \lim_{p \to p_0} f(p) = L$ se

$$\forall \varepsilon > 0, \exists \delta = d(p_0, \varepsilon) > 0 \mid |f(x, y) - L| < \varepsilon, \forall (x, y) \in B(p, \delta) \cap (A \setminus \{p_0\})$$

Osservazione 1.2.1 Tenendo presente il caso di funzioni di una variabile, si può enunciare anche la definizione nel caso in cui $L = \pm \infty$

1.2.1 Calcolo dei limiti

Proposizione 1.2.1 (Unicità del limite) Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ e sia $p_0 \in \mathbb{R}^2$ punto di accomulazione per A. Supponiamo che $\exists lim_{p \to p_0} f(p) = L \in \mathbb{R}$. Allora L è unico.

Teorema 1.2.2 (Tecniche per il calcolo dei limiti) Siano $g, f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, $p_0 \in \mathbb{R}^2$ punto di accomulazione per A. Supponiamo che $\exists \lim_{p \to p_0} f(p) = L \in \mathbb{R}$ e $\exists \lim_{p \to p_0} g(p) = M \in \mathbb{R}$, allora:

- 1. $\exists \lim_{p \to p_0} f(p) + g(p) = L + M$
- 2. $\exists \lim_{p \to p_0} f(p) \cdot g(p) = L \cdot M$
- 3. Se $g(p) \neq 0, \forall p \in A \setminus \{p_0\}$ e $M \neq 0$, allora $\exists \lim_{p \to p_0} \frac{f(p)}{g(p)} = \frac{L}{M}$
- 4. Sia $F : \mathbb{R}to\mathbb{R}$ continua e sia h(p) = F(f(p)), allora $\exists \lim_{p \to p_0} h(p) = F(L)$
- 5. **Teorema del confronto**: Sia $h, g, f : A \subseteq \mathbb{R}^2 \to \mathbb{R}$, supponiamo che:

5.1
$$f(p) \le g(p) \le h(p), \forall p \in A \setminus \{p_0\}$$

$$5.2 \exists \lim_{p \to p_0} f(p) = \lim_{p \to p \to p_0} h(p) = L \in \mathbb{R} \cup \{\pm \infty\}$$

allora
$$\exists \lim_{p \to p_0} g(p) = L$$

Dim. 1.2.1 Le dimostrazioni di 1-4 sono lasciate al lettore :)

- 5 Supponiamo che $L \in \mathbb{R}$, dobbiamo provare che $\exists \lim_{p \to p_0} g(p) = L$, cioè per definizione:
 - $1^* \forall \varepsilon > 0, \ \exists \delta (= \delta(p_0, \varepsilon)) > 0 \ t.c. \ |g(p) L| < \varepsilon \ \forall p \in B(p_0, \delta) \cap (A \setminus \{p_0\}).$ Per ipotesi sappiamo che

$$\lim_{p \to p_0} f(p) = L, \lim_{p \to p_0} h(p) = L$$

cioè:

 $2^* \ \forall \varepsilon > 0, \ \exists \delta_1 (= \delta_1(p_0, \varepsilon)) > 0 \ t.c. \ |f(p) - L| < \varepsilon \ o \ equivalentemente$ $L - \varepsilon < f(p) < L + \varepsilon \ \forall p \in B(p_0, \delta_1) \cap (A \setminus \{p_0\}), \ e$: $3* \forall \varepsilon > 0, \exists \delta_2 (= \delta_2(p_0, \varepsilon)) > 0 \ t.c. \ |h(p) - L| < \varepsilon \ o \ equivalentemente$ $L - \varepsilon < h(p) < L + \varepsilon \ \forall p \in B(p_0, \delta_2) \cap (A \setminus \{p_0\})$

Da $(5.1),(2^*),(3^*)$ seque che $\forall \varepsilon > 0$, scegliendo $\delta = \min\{\delta_1,\delta_2\}$ vale che

$$L - \varepsilon < f(p) \le g(p) \le h(p) < L + \varepsilon$$

 $\forall p \in B(p_0, \delta) \cap (A \setminus \{p_0\}) \ e \ dunque \ vale \ la \ (1^*).$

Introduciamo un altro strumento importante per il calcolo dei limiti per funzioni di due variabili.

Ricordiamo che data $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ e $B\subseteq A$ si chiama funzione restrizione $f|_B: B \to \mathbb{R}, f|_B(x) := f(x) \text{ se } x \in B.$

Teorema 1.2.3 (Limite lungo direzioni) Siano $f: A \subseteq \mathbb{R}^2 \to \mathbb{R} \ e \ p_0 \in \mathbb{R}^2$ punto di accomulazione, allora sono equivalenti

- 1. $\exists \lim_{p \to p_0} f(p) = L$
- 2. Per ogni sottoinsieme $B \subseteq A$, per cui p_0 è un punto di accomulazione per $B, \exists \lim_{p \to p_0} f|_B(p) = L$

Un insieme $B \subseteq A$ può essere visto come una direzione lungo cui $p \to p_0$.

Osservazione 1.2.4 Il teorema precedente risulta efficace solo per provare che il limite non esiste.

1.2.2 Esempi calcolo limiti

1. Calcola, se esiste, $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1$ Esercizio 2

Dim. 1.2.2 Nel calcolo del limite bisogna valutare:

- Esistenza (il limite può non esistere)
- Tecninche appropriate per il calcolo

Utilizziamo il punto (4) del primo teorema. Ricordiamo anche il limite notevole $\lim_{t\to 0} \frac{\sin t}{t} = 1$

- $h(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$ se $(x,y) \in A = (\mathbb{R}^2 \setminus \{(0,0)\})$ $t = x^2 + y^2$
- Sia $p_0 = (0,0)$ punto di accomulazione per A.

Osserviamo che $h(x,y) = F(f(x,y)), dove F : \mathbb{R} \to \mathbb{R}$

$$F := \left\{ \begin{array}{cc} \frac{\sin t}{t} & t \neq 0 \\ 1 & t = 0 \end{array} \right.$$

è continua, e $f(x,y) = x^2 + y^2$ $(x,y) \in \mathbb{R}^2$. Poichè $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, dal punto (4)

$$\exists \lim_{p \to p_0} h(p) = \lim_{p \to p_0} F(f(p)) = F(0) = 1$$

2. Calcola se esite $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$

Dim. 1.2.3 Sia

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

 $\forall (x,y) \in A = \mathbb{R}^2 \setminus \{(0,0)\} \ e \ p_0 = (0,0).$

Utilizziamo il teorema per provare che il limite non esiste. $Infatti\ se$

$$\exists \lim_{(x,y)\to(0,0)} f(x,y) = L$$

allora

 $(1^*) \exists \lim_{x \to 0} f(x, mx) = L, \forall m \in R$

dove y = mx, $B = \{y = mx\}$ (directionale) $e \ m \ e \ finito$. Osserviamo che $f(x, mx) = \frac{mx^2}{(m^2+1)x^2} = \frac{m}{m^2+1}$ se $x \neq 0$, quindi

$$\lim_{x \to 0} f(x, mx) = \frac{m}{m^2 + 1}$$

ma se m=0,1 il limite prende valore $0,\frac{1}{2}$ $(0\neq\frac{1}{2})$, dunque non può valere (1*), quindi il limite <u>non esiste</u>

Dalla definizione di limite per funzioni di due variabili segue subito la nozione di continuità.

Esercizio 3 Calcolare se esiste

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$$

Sugg: Provare che ∄

1.3 Lez - 03

1.3.1 Definizioni limiti e continuità per \mathbb{R}^n

Definizione 1.3.1 Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$

- 1. f si dice continua in $p_0 \in A$ se
 - (a) p_0 è un punto <u>isolato</u> di A, oppure
 - (b) $p_0 \ \dot{e} \ un \ punto \ di \ accomulazione \ ed \ \exists \lim_{p \to p_0} f(p) = f(p_0)$
- 2. f si dice <u>continua</u> su A se f è continua in ogni punto $p_0 \in A$

Le nozioni di limite e continuità , introdotte per funzioni $f:A\subseteq\mathbb{R}^2\to\mathbb{R}$, si possono estendere al caso di funzioni $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ con $n\geq 3$. Più precisamente su \mathbb{R}^n possiamo definire la distanza Euclidea:

$$d(p,q) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

se
$$p = (x_1, ..., x_n)$$
 e $q = (y_1, ..., y_n)$.

<u>Intorno</u> di centro $p_0 = (x_1^0, ..., x_n^0)$ e r > 0 è l'insieme:

$$B(p_0, r) = \{ p \in \mathbb{R}^n \mid d(p, p_0) < r \}$$

$$= \{(x_1, ..., x_n) \in \mathbb{R}^n \mid (x_1 - x_1^0)^2 + ... + (x_n - x_n^0)^2 < r^2\}$$

Tramite la nozione di intorni, si possono estendere a \mathbb{R}^n la nozione di:

- frontiera di un insieme $A \subseteq \mathbb{R}^n$
- insieme aperto/chiuso $A \subseteq \mathbb{R}^n$
- insieme limitato $A \subseteq \mathbb{R}^n$
- punto di accomulazione/isolato di $A \subseteq \mathbb{R}^n$

Pertanto:

Definizione 1.3.2 Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ e sia $p_0 \in \mathbb{R}^n$ punto di accomulazione di A. Allora si dice che:

$$\exists \lim_{p \to p_0} f(p) = L \in \mathbb{R}$$

se

$$\forall \varepsilon > 0, \exists \delta = \delta(p, \varepsilon) > 0 \ t.c. \ |f(p) - L| < \varepsilon, \forall p \in B(p_0, \delta) \cap (A \setminus \{p_0\})$$

In modo simile si può introdurre la nozione di continuità per funzioni $f:A\subseteq\mathbb{R}^n\to\mathbb{R}.$

1.3.2 Calcolo differenziale per funzioni a più variabili

Derivate parziali

Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, A aperto, $p_0 = (x_0, y_0) \in A$, essendo A aperto, $\exists \delta_0 > 0$ t.c.

$$[x_0 - \delta, x_0 + \delta] \times [y_0 - \delta, y_0 + \delta] \subset A$$

In particolare i segmenti:

- $(x, y_0) \in A \ \forall x \in [x_0 \delta, x_0 + \delta]$
- $(x_0, y) \in A \ \forall y \in [y_0 \delta, y_0 + \delta]$

Pertanto son ben definiti i rapporti incrementali

- $((x_0 \delta_0, x_0 + \delta_0) \setminus \{x_0\}) \ni x \to \frac{f(x, y_0) f(x_0, y_0)}{x x_0}$
- $((y_d 0 \delta_0, y_0 + \delta_0) \setminus \{y_0\}) \ni y \to \frac{f(x_0, y) f(x_0, y_0)}{y y_0}$

Definizione 1.3.3 1. Si dice che f è <u>derivabile</u>(parzialmente) rispetto alla variabile x nel punto $p_0 = (x_0, y_0)$ se

$$\exists \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} := \frac{\partial f}{\partial x}(x_0, y_0) = D_1 f(x_0, y_0) \in \mathbb{R}$$

2. Si dice che f è <u>derivabile</u>(parzialmente) rispetto alla variabile y nel punto $p_0=(x_0,y_0)$ se

$$\exists \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0} := \frac{\partial f}{\partial y}(x_0, y_0) = D_2 f(x_0, y_0) \in \mathbb{R}$$

3. Se f è derivabile (parzialmente) sia rispetto ad x ed y nel punto $p_0 = (x_0, y_0)$, si chiama (vettore)gradiente di f in p_0 il vettore:

$$\nabla f(p_0) = \left(\frac{\partial f}{\partial x}(p_0), \frac{\partial f}{\partial y}(p_0)\right) \in \mathbb{R}^2$$

Sia $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, A insieme aperto. Supponiamo che:

$$\exists \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} : A \to \mathbb{R}$$

allora è ben definito il campo dei vettori gradiente:

$$\nabla f: \mathbb{R}^2 \supseteq A \ni p \to \nabla f(p) = \left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p)\right) \in \mathbb{R}^2$$

Applicazione: Sia $V:A\to\mathbb{R}$ il potenziale di una carica elettrica in un insieme $\overline{\text{A del piano.}}$ Allora vale la realzione $\nabla V = \underline{E}$, dove $\underline{E} := (E_1(x,y), E_2(x,y)) \rightarrow$ vettore campo elettrico.

<u>Problema</u>: $\exists \nabla f(p_0)$ è la nozione corretta di derivabilità per funzioni di due variabili? Per esempio se $\exists \nabla f(p_0) \Rightarrow f$ è continua in p_0 ?

Esemplo 4 Sia $f: \mathbb{R}^2 \to \mathbb{R}$, $p_0 = (0,0)$ e

$$f(x,y) := \left\{ \begin{array}{ll} 0 & se \; (x,y) = (0,0) \\ \frac{xy}{x^2 + y^2} & se \; (x,y) \neq (0,0) \end{array} \right.$$

Abbiamo visto che: $\not\exists \lim_{p\to p_0} f(p) \Rightarrow f \text{ non } \grave{e} \text{ continua in } p_0.$ D'altra parte:

$$\frac{f(x,0) - f(0,0)}{x} = 0$$

se $x \neq 0 \Rightarrow \exists \frac{\partial f}{\partial x}(0,0) = 0$

$$\frac{f(0,y) - f(0,0)}{y} = 0$$

se $y \neq 0 \Rightarrow \exists \frac{\partial f}{\partial y}(0,0) = 0$. Pertanto $\exists \nabla f(0,0) = (0,0)$ ma f non \grave{e} continua nel punto (0,0).

1.3.3 Piano tangente al grafico

Approssimazione lineare e nozione di differenziabilità per funzioni di più variabili.

Sia
$$f: \mathbb{R}^2 \to \mathbb{R}, p_0 = (x_0, y_0) \in \mathbb{R}^2, z = f(x, y).$$

<u>Problema</u>: Definire il "piano tangente" alla "superficie" G_f nel punto $(x_0, y_0, f(x_0, y_0))$

Ricordiamo che l'equazione di un piano π di \mathbb{R}^3 , non parallelo all'asse z, passante per il punto $(x_0, y_0, f(x_0, y_0))$ è del tipo

$$\pi: z = a(x - x_0) + b(y - y_0) + f(x_0, y_0)$$

dove $a, b \in \mathbb{R}$.

Ricordiamo inoltre che per funzioni di n=1 variabile, se $f:(a,b)\to\mathbb{R}$, $x_0 \in (a,b)$, la retta tangente r a G_f nel punto $(x_0,f(x_0))$ ha equazione:

$$r: y = f'(x_0)(x - x_0) + f(x_0)$$

ed è caratterizzata dalla proprietà di essere l'unica retta del fascio di rette y = $m(x-x_0)+f(x_0), m \in \mathbb{R}$ t.c.

(D)
$$\exists \lim_{x \to x_0} \frac{f(x) - [m(x - x_0) + f(x_0)]}{|x - x_0|} = 0$$

(miglior approssimazione lineare al primo ordine) Infatti: n=1, L(x)=ax, $a\in\mathbb{R}$ sono le applicazioni lineari di \mathbb{R} in \mathbb{R}

Esercizio 4

Chapter 2

Esercitazioni

Lezione 1 - 09/03/20222.1

Esercizio 2.1.1 Determinare e disegnare nel piano xy il dominio delle seguenti funzioni, $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, dove A: dominio che dobbiamo determinare.

$$f(x,y) = \log(4(x^2 + y^2) - 1)$$

Soluzione:

$$4(x^2 + y^2) - 1 > 0 \iff x^2 + y^2 > \frac{1}{4}$$

Studiamo quindi: $x^2+y^2=\frac{1}{4}$ la circonferenza di centro c=(0,0) e raggio

$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > \frac{1}{4}\} = \mathbb{R}^2 \setminus \overline{B((0, 0), \frac{1}{2})}$$

dove:

- $\overline{B((0,0),\frac{1}{2})} = \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} \le \frac{1}{2}\}$
- $B((0,0),\frac{1}{2}) = \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} < \frac{1}{2}\}$

Insiemi aperti e chiusi

 $A = \{(x,y) \in \mathbb{R}^2 \mid xy \ge 0\}, \ A \ \dot{e} \ chiuso \iff A^c \ \dot{e} \ aperto.$ Definiamo $\bar{A} = A, \ xy \ge 0 \iff \begin{cases} x \ge 0 \\ y \ge 0 \end{cases} \lor \begin{cases} x \le 0 \\ y \le 0 \end{cases}$ Disegnando gli assi:

 $A^c = \mathbb{R}^2 \backslash A \ \grave{e} \ aperto. \ \textit{Fisso ora} \ (x_0, y_0) \in A^c, \ r = d(\partial A, (x_0, y_0)) = \min |x_0|, |y_0|.$ La palla $B((x_0, y_0), \frac{r}{2}) \subset A^c \Rightarrow A^c \ \dot{e} \ aperto \Rightarrow A \ \dot{e} \ chiuso.$

Esercizio 2.1.2 $f(x,y) = \sqrt{y^2 - x^4}, y^2 \ge x^4$.

$$A = \{(x, y) \in \mathbb{R}^2 \mid y^2 \ge x^4\}$$

Proviamo a scrivere $y^2 - x^4$ come

$$y^{2} - x^{4} = (y - x^{2})(y + x^{2}) > 0$$

Due casi:

- $y \ge x^2$
- $y \ge -x^2$

(Dal grafico otteniamo)

$$A = \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2 \lor y \le -x^2\} = \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2\} \cup \{(x, y) \in \mathbb{R}^2 \mid y \le -x^2\}$$

Esercizio 2.1.3 Disegnare l'insieme di livello delle seguenti funzioni

$$C_t = \{(x, y \in \mathbb{R}^2 \mid f(x, y) = t)\}$$

 $con \ t \in \mathbb{R}$.

 $f(x,y) = x^2y$, fissiamo $t \in \mathbb{R}$, $t = x^2y$

1.
$$t = 0, x^2y = 0 \Rightarrow y = 0 \lor x = 0$$

2.
$$t > 0, t = x^2y \iff y = \frac{t}{x^2}$$

- $t=1, y=\frac{1}{r^2}$
- $t = 2, y = \frac{2}{x^2}$

3.
$$t < 0, t = x^2y \iff y = \frac{t}{x^2}$$

- t = -1, $y = -\frac{1}{x^2}$
- t = -2, $y = -\frac{2}{x^2}$

Esercizio 2.1.4 $f(x,y) = ye^{-x}, t \in \mathbb{R}, t = ye^{-x} \iff e^x t = y$

- $t = 0 \Rightarrow y = 0$
- $t = 1 \Rightarrow y = e^{-x}$
- $t=2 \Rightarrow y=2e^{-x}$
- $t = -1 \Rightarrow y = -e^{-x}$
- $t = -2 \Rightarrow y = -2e^{-x}$

Esercizio 2.1.5

$$\lim_{(x,y)\to(0,0)} \frac{x-y}{\sqrt[3]{x} - \sqrt[3]{y}} = ?$$

eleviamo x e y al numeratore per $\frac{3}{3}$, otteniamo:

$$\lim_{(x,y)\to(0,0)} \frac{(\sqrt[3]{x})^3 - (\sqrt[3]{y})^3}{\sqrt[3]{x} - \sqrt[3]{y}}$$

Ricordiamo ora la differenza tra cubi $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$, otteniamo:

$$\lim_{(x,y)\to(0,0)} \frac{(\sqrt[3]{x} - \sqrt[3]{y}) \left((\sqrt[3]{x})^2 + \sqrt[3]{x} \sqrt[3]{y} + (\sqrt[3]{y})^2\right)}{\sqrt[3]{x} - \sqrt[3]{y}} =$$

$$= \lim_{(x,y)\to(0,0)} (\sqrt[3]{x})^2 + \sqrt[3]{x} \sqrt[3]{y} + (\sqrt[3]{y})^2 = 0$$

Esercizio 2.1.6

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2} = ?$$

 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \iff per \ ogni \ restrizione \ a \ un \ sottoinsieme \ B,$ $\lim_{(x,y)\to(x_0,y_0)} f|_B(x,y) = l$

•
$$B = \{(x,y) \in \mathbb{R}^2 \mid y = mx\}, \lim \frac{x^2 y}{x^4 + y^2}|_{B} = \lim \frac{x^2 mx}{x^4 + m^2 x^2} =$$

$$= \frac{x^3 m}{x^2 (x^2 + m^2)} = x \left(\frac{m}{x^2 + m^2}\right) = \lim_{x \to 0} x \left(\frac{m}{x^2 + m^2}\right) = 0$$

•
$$B = \{(x, y) \in \mathbb{R}^2 \mid y = mx^2\}, \lim \frac{x^2y}{x^4 + y^2}|_B =$$

$$\lim_{x \to 0} \frac{mx^4}{x^4 + m^2x^4} = \lim_{x \to 0} \frac{m}{1 + m^2}$$

Proviamo due valori di m:

$$-m = 1, \frac{1}{2}$$

 $-m = 2, \frac{2}{5}$

Ho trovato due restrizioni $\{y = x^2\}$ e $\{y = 2x^2\}$ dove il limite assume due valori distinti. Allora per l'unicità del limite, il limite non esiste.

Esercizio 2.1.7

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

Cordinate polari

$$\rho = \sqrt{x^2 + y^2}, \ \vartheta = \arctan\left(\frac{y}{x}\right)$$

- $x = \rho \cos \vartheta$
- $y = \rho \sin \vartheta$

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = \lim_{(x,y)\to(0,0)} \frac{\rho^2\cos^2\vartheta \cdot \rho\sin\vartheta}{\rho^2\cos^2\vartheta + \rho^2\sin^2\vartheta} =$$

$$= \lim_{(x,y)\to(0,0)} \frac{\rho^3\cos^2\vartheta \cdot \sin\vartheta}{\rho^2\left(\cos^2\vartheta + \sin^2\vartheta\right)}$$

Sappiamo che $\cos^2 \vartheta + \sin^2 \vartheta = 1$, quindi il limite rimane:

$$\lim \rho \cos^2 \vartheta \cdot \sin \vartheta$$

$$0 \le |\rho \cos^2 \vartheta \cdot \sin \vartheta| < \rho$$

Da cui se $(x,y) \to (0,0)$ allora anche $\rho \to 0$ e siccome $\left\{ \begin{array}{l} \cos^2 \vartheta < 1 \\ \sin \vartheta < 1 \end{array} \right., \ \textit{grazie al teorema del confronto il limite vale 0}.$

Esercizio 2.1.8 Dire quali insiemi sono aperti/chiusi e quali limitati, inoltre determinare la frontiera.

$$H = \{(x, y) \in \mathbb{R}^2 \mid (xy)(y - 1) \ge 0\}$$

- $x \ge 0$
- $y \ge 0$
- $y 1 \ge 0, y \ge 1$

Frontiera: $\partial H = \{y = 1\} \cup \{x = 0\} \cup \{y = 0\}$