Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.
Timpul ofactiv de lucru este de 2 e.

• Timpul efectiv de lucru este de 3 ore.

D. OPTICĂ Varianta 3

Se consideră constanta Planck $h = 6.6 \cdot 10^{-34} \, \text{J} \cdot \text{s}$ și sarcina elelctrică elementară $e = 1.6 \cdot 10^{-19} \, \text{C}$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- **1.** Pe fața superioară a unei lame transparente, cu fețele plane şi paralele, este incident un fascicul paralel de raze monocromatice. Observată prin reflexie, figura de interferență se datorează:
- a. doar razelor reflectate pe fața superioară a lamei;
- **b.** doar razelor refractate prin baza lamei;
- c. razelor reflectate pe fața superioară a lamei și razelor reflectate pe baza lamei;
- d. razelor reflectate și razelor refractate pe fața superioară a lamei.

(3p)

- 2. Un obiect este plasat la 30 cm în fața unei oglinzi plane. Distanța dintre obiect și imaginea sa în oglindă este:
- **a.** 60 cm
- **b.** 45 cm
- **c.** 30 cm
- **d.** 15 cn

(3n)

- **3.** Simbolurile mărimilor fizice şi ale unităților de măsură fiind cele din manualele de fizică, unitatea de măsură în S.I a mărimii fizice $c \cdot \lambda^{-1}$ este:
- a.J
- **b**. Hz
- **c.** m⁻¹
- d s

(3p)

- **4.** O rază de lumină monocromatică, venind din aer ($n_{aer}=1$), este incidentă sub unghiul $i=60^\circ$ pe suprafața unui mediu transparent având indicele de refracție $n=1,73 \equiv \sqrt{3}$. Unghiul dintre direcția razei reflectate și directia razei refractate este:
- a 30°
- **b.** 45°
- **c.** 60°
- **d.** 90°

(3p)

5. În urma unui experiment pentru studiul efectului fotoelectric extern, s-a trasat graficul din figura alăturată. Considerând că pentru tensiuni mai mici de 10 V graficul poate fi aproximat cu o dreaptă, intensitatea curentului electric I_0 corespunzătoare unei tensiuni electrice nule are valoarea:

b. 0,1
$$\mu$$
A

c. 1 μA

d. 10 μ A

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Pe un banc optic se montează o lentilă biconvexă (L_1), considerată subțire, având distanța focală $f_1 = 30 \, \mathrm{cm}$, razele de curbură egale în modul și indicele de refracție n = 1,5. Un obiect liniar este plasat în fața lentilei, perpendicular pe axul optic principal. Pe un ecran, plasat la o distanță adecvată, se observă o imagine clară a obiectului, de două ori mai mare decât obiectul.

- a. Calculați modulul razelor de curbură ale lentilei.
- **b.** Calculați distanța la care se află obiectul față de lentilă.
- **c.** Menținând fixe obiectul și lentila (L_1) , se alipește de lentila biconvexă (L_1) o a doua lentilă (L_2) . Se observă că pe ecranul aflat la distanța de 90 cm de obiect se formează o nouă imagine clară a obiectului. Calculați distanța focală a celei de a doua lentile (L_2) .
- **d.** Se depărtează lentila (L_2) de lentila (L_1) şi se înlătură obiectul. Se constată că pentru o anumită distanță între lentile un fascicul de lumină paralel cu axul optic principal, provenit de la o sursă de lumină laser, incident pe lentila (L_1) părăseşte lentila (L_2) tot paralel cu axul optic principal. Realizați un desen în care să figureze mersul razelor de lumină prin sistemul de lentile în acest caz și determinați distanța D dintre lentile.

III. Rezolvati următoarea problemă:

(15 puncte)

În graficul din figura alăturată este reprezentată dependența energiei cinetice maxime a fotoelectronilor extrași dintr-un metal prin efect fotoelectric de frecvența radiației incidente.

a. Determinați, folosind datele din grafic, lucrul mecanic de extracție.

b. Iluminând suprafața catodului cu o radiație de frecvență $v = 8 \cdot 10^{14} \, \text{Hz}$, determinați energia cinetică maximă a fotoelectronilor emişi.

- **c.** Determinați valoarea absolută a tensiunii de stopare care trebuie aplicată electrozilor pentru a anula curentul de fotelectroni emis sub acțiunea radiației de frecvență $v = 8 \cdot 10^{14}$ Hz.
- **d.** Determinați semnificația fizică a pantei dreptei din grafic ($tg\alpha$).