Übung 4

Evaluation von Wortalignierungen

Die Alignierungsfehlerrate (AER) wird nach folgender Formel berechnet:

$$AER(A, S, P) = 1 - \frac{|A \cap S| + |A \cap P|}{|A| + |S|}$$
 (1)

mit $P(A, S) = \frac{|A \cap S|}{|A|}$ und $R(A, S) = \frac{|A \cap S|}{|S|}$, wobei S sichere Alignierungen, P mögliche Alignierungen und A automatisch erzeugte ALignierungen sind.

Berechnen Sie die Alignierungsfehlerrate für die folgenden Satzpaare:

In einer Shared Task für Wortalignierung sollen zwei Systeme verglichen werden. Berechnen Sie AER, Precision, Recall, und den F_{α} -Score für die beiden Systeme auf Basis folgender Daten:

	System 1	System 2
$\overline{ S }$	100	100
A	100	100
$ A \cap S $	25	50
$ A \cap P $	75	50

Definition des F_{α} -Scores:

$$F_{\alpha} - SCORE(A, S, \alpha) = \frac{1}{\frac{\alpha}{P} + \frac{1-\alpha}{R}}$$

Was beobachten Sie?

Symmetrisierung von Wortalignierungen

Gegeben die Sätze e und f mit $l_e = 4$ und $l_f = 5$ und die beiden IBM Modell Alignments e2f (rechts) and f2e (links):

add (e_{new}, f_{new}) to A

Berechnen Sie die symmetrisierten Wortalignierungen gemäß dem folgenden Pseudocode von den Vorlesungsfolien:

```
grow_diag_final(e2f, f2e)

neighbouring = \{(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)\}

alignment A = \text{intersect}(e2f,f2e)

grow_diag(); final(e2f); final(f2e)

grow_diag()

while new points added do

for all English words e \in [1...e_n], foreign words f \in [1...f_n], (e, f) \in A do

for all neighbouring alignment points (e_{new}, f_{new}) do

if (e_{new} \text{ unaligned or } f_{new} \text{ unaligned}) and (e_{new}, f_{new}) \in union(e2f, f2e) then add (e_{new}, f_{new}) to A

final(a)

for all English words e_{new} \in [1...e_n], foreign words f_{new} \in [1...f_n] do
```

Schritte:

if $(e_{new} \text{ unaligned or } f_{new} \text{ unaligned})$ and $(e_{new}, f_{new}) \in a$ then

- Berechnen Sie die Schnittmenge der Alignierungen.
- Wenden Sie die grow-diag()-Methode an und fügen Sie Nachbarpunkte hinzu, die in der Vereinigungsmenge aber nicht in der Schnittmenge enthalten sind.
- Wenden Sie die final()-Methode and, um weitere noch nicht alignierte Wörter zu alignieren.

Nun seien die beiden Sätze e und f der Länge 3 gegeben, und die Alignments $A_{ef}: 1 \to 1, 2 \to 3$ und $A_{fe}: 1 \to 1, 2 \to 1, 2 \to 2, 2 \to 3, 3 \to 2$:

- Folgen Sie exakt dem Pseudocode oben, um die Symmetrisierung der Alignierungen zu berechnen.
- Ist die grow-diag()-Methode deterministisch?