

Modelado de la Calidad del Aire Ecuación de transporte

FAUBA

11 de mayo de 2023

Introducción

Descripción del transporte

Dos formas equivalentes de pensar el problema:

- ▶ Descripción Lagrangiana ó enfoque material: Estudiar como se transporta un contaminante en el espacio.
- Descripción Euleriana ó enfoque de campos: Estudiar como cambia la concentración de un contaminante en el espacio.

En este curso vamos a adoptar la descripción **Euleriana**.

Representación del transporte

Objetivo del curso: Representar la concentración de un contaminante atmosférico (C) en el espacio y en el tiempo.

Podemos usar el concepto de función:

Ecuación de transporte

Es una ecuación diferencial¹ basada en el **principio de conservación de masa**.

Describe cómo cambia la concentración de una especie química (C) en el tiempo para un punto fijo en el espacio.

Se deduce de realizar un balance de masa para un punto arbitrario en el espacio.

¹Ecuación cuya incógnita es una función.

Balance de masa

Balance de masa sobre volumen infinitesimal

$$\frac{\partial m}{\partial t} =$$

$$\frac{\partial C}{\partial t}V = F_{\text{Emisió}}$$

$$J_1$$
 J_2A

$$\frac{\partial C}{\partial t}V = F_{\text{Emisión}} + F_{\text{Químíca}} + F_{\text{Advección}} + F_{\text{Difusión}}$$

Emisiones

Emisiones

Tasa de producción de C

el término de emisión es igual a una constante E que representa la producción de C dentro del volumen considerado.

 $\frac{\partial C}{\partial t} = E$

En la práctica E (ó $F_{\mathsf{Emis.}}$) puede ser medido ó estimado.

Reacciones químicas

Reacciones químicas

Química, fotoquímica, deposición, lavado, etc.

Consideramos acá todos los fenómenos, generalmente degradativos, cuya ocurrencia depende de la cantidad de $\it C$ presente:

$$\frac{\partial C}{\partial t} = -\lambda C$$

Advección

Advección

Arrastre por el viento

$$\hat{z} \qquad \hat{y} \qquad$$

En el límite $\Delta x \rightarrow 0$, $\Delta t \rightarrow 0$:

$$\frac{\partial C}{\partial t} = -\frac{\partial (uC)}{\partial x}$$

Difusión molecular

Difusión molecular

Primer Ley de Fick

El movimiento errático de las moléculas producen mezcla generando un flujo de materia desde donde hay más contaminante hacia donde hay menos:

El flujo difusivo (J) se comprobó experimentalmente por Fick ser:

$$J = -D \frac{\partial C}{\partial x}$$

Difusión molecular

Segunda Ley de Fick

$$\begin{split} \Delta m &= (J_1 A - J_2 A) \Delta t \\ \Delta C \Delta x \Delta y \Delta z &= (J_1 - J_2) \Delta y \Delta z \Delta t \\ \frac{\Delta C}{\Delta t} &= \frac{J_1 - J_2}{\Delta x} = -\frac{(-D_2 \frac{\partial C_2}{\partial x}) - (-D_1 \frac{\partial C_1}{\partial x})}{\Delta x} \end{split}$$
 En el límite $\Delta x \to 0$, $\Delta t \to 0$:
$$\frac{\partial C}{\partial t} = -\frac{\partial}{\partial x} \left(-D\frac{\partial C}{\partial x} \right) = D\frac{\partial^2 C}{\partial x^2}$$

Mezclado turbulento

Mezclado turbulento

Turbulencia

La turbulencia es parte del flujo no principal que experimenta variaciones abruptas, irregulares, y caóticas.

La turbulencia produce mezclado de las especies químicas en la atmósfera.

El mezclado debido a la turbulencia tiene naturaleza difusiva, por lo tanto aplica la Primer ley de Fick:

$$J = -K \frac{\partial C}{\partial x}$$

El flujo neto de C (J) debido a la difusión es negativamente proporcional al gradiente de concentraciones.

Mezclado turbulento

Difusión turbulenta

Usando el mismo procedimiento que hicimos para difusión molecular, obtenemos:

$$\frac{\partial C}{\partial t} = K \frac{\partial^2 C}{\partial x^2}$$

Ecuación de transporte

Ecuación de transporte

Finalmente, si sumamos todos los procesos, la ecuación de transporte nos queda:

$$\frac{\partial \textit{C}}{\partial \textit{t}} = \underbrace{\textit{E}}_{\text{Emisión}} - \underbrace{\lambda \textit{C}}_{\text{Química}} - \underbrace{u\frac{\partial \textit{C}}{\partial \textit{x}}}_{\text{Advección}} + \underbrace{\mathcal{K}\frac{\partial^2 \textit{C}}{\partial \textit{x}^2}}_{\text{Mezclado}} + \underbrace{D\frac{\partial^2 \textit{C}}{\partial \textit{x}^2}}_{\text{Difusión molecular}}$$

Para cada situación va a ser necesesario definir los parámetros: E, λ , u, K, y D. 2

 $^{^{2}}$ Dado a que D << K, generalmente no se tiene en cuenta la difusión molecular.

Emisión

Resolvemos:³

$$\frac{\partial C}{\partial t} = E \quad \Rightarrow \quad C_{(t)} = E t + C_0$$

Si sumamos todas las concentraciones distribuidas en el espacio, debe cumplirse: ⁴

$$\iiint_{-\infty}^{\infty} C_{(x,y,z,t)} dx dy dz = M = E t$$

³Notar que es lo mismo que f' = k

⁴Acá el mensaje es que la integral debajo de la curva de concentraciones tiene que coincidir con la masa total emitida

Química

Resolvemos:⁵

$$\frac{\partial C}{\partial t} = -\lambda C \quad \Rightarrow \quad C_{(t)} = C_0 \exp^{-\lambda t}$$

Lo que nos da función de decaimiento exponencial:

⁵Notar que es lo mismo que f' = -k f

Advección

$$- \qquad \underline{\boldsymbol{u}} \quad \frac{\partial C}{\partial x} \quad = \frac{\partial C}{\partial t}$$

$$\mathsf{p1} \quad (\Box) \quad (\Box) \quad (\Box) \quad = (\Box) \uparrow$$

p3
$$(\Box)$$
 (\Box) (\Box) $=$ (\Box) \downarrow

Difusión

