Математика для Machine Learning

Линдеман Никита

Ноябрь 2018

Содержание

1	Эле	ементы математического анализа	2
	1.1	Производная функции одной переменной	2
	1.2	Частные производные и градиент	3
2	Осн	новы линейной алгебры	5
	2.1	Векторы и матрицы	5
	2.2	Сложение и вычитание матриц, умножение матриц на число	5
	2.3	Умножение матриц	6
	2.4	Транспонирование, скалярное произведение, длина вектора	7
	2.5	Ранг и определитель матрицы	8
3	Нев	которые понятия теории вероятностей и математической статистики	11

1 Элементы математического анализа

1.1 Производная функции одной переменной

Определение 1.1.1 *Производная* функции одной переменной y = f(x) – это предел:

$$\frac{d}{dx}f(x) = \frac{dy}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Пример

Найдем по определению производную функции $y = x^2$ в точке $x_0 = 3$:

$$y'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + \Delta x^2}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x$$
$$y'(x_0) = y'(3) = 2 \cdot 3 = 6$$

Конечно, на практике никто не считает производные по определению, для этого есть готовые таблицы производных элементарных функций (которую полезно помнить наизусть) и правила дифференцирования.

Правила дифференцирования:

- 1) Линейность производной: $(\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x)$
- 2) Дифференцирование произведения: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- 3) Дифференцирование частного:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

4) Производная сложной функции:

$$(f(u))' = f'(u) \cdot u'$$

Пример

Найдем производную функции $y(x) = \frac{\cos(x^2+1)}{\ln(1-2x)+3}$:

$$y'(x) = \frac{(\cos(x^2+1))' \cdot (\ln(1-2x)+3) - (\cos(x^2+1)) \cdot (\ln(1-2x)+3)'}{(\ln(1-2x)+3)^2}$$

Отдельно найдем производные:

$$(\cos(x^2+1))' = 2x \cdot (-\sin(x^2+1))$$
$$(\ln(1-2x)+3)' = -2 \cdot \frac{1}{1-2x}$$

Окончательно имеем:

$$y'(x) = \frac{-2x\sin(x^2+1)\cdot(\ln(1-2x)+3) + (\cos(x^2+1))\cdot\frac{2}{1-2x}}{(\ln(1-2x)+3)^2}$$

Здесь стоит упомянуть про физический и геометрический смысл производной: ее можно интерпретировать как скорость изменения какой-то величины (например, маржинализм в экономике или скорость материального объекта в механике) или как тангенс угла наклона касательной к графику функции.

Именно из интерпретации производной как тангенса угла наклона касательной следуют две важные прикладные теоремы, ради которых мы и ввели это понятие.

TEOPEMA Функция примнимает свое локально максимальное или минимальное (экстремальное) значение только в тех точках, где ее производная равна нулю (обратное не всегда верно):

$$y(x_0) \to min \Rightarrow y'(x_0) = 0,$$

 $y(x_0) \to max \Rightarrow y'(x_0) = 0.$

TEOPEMA Функция y = f(x) строго возраствает на промежутке (a, b), тогда и только тогда, когда в каждой точке этого промежутка производная f'(x) строго положительна, или на метематическом языке:

$$y = f(x) \nearrow$$
, $x \in (a, b) \Leftrightarrow \forall x \in (a, b) \hookrightarrow f'(x) > 0$.

Функция y = f(x) строго убывает на промежутке (a,b), тогда и только тогда, когда в каждой точке этого промежутка производная f'(x) строго отрицательна, или на метематическом языке:

$$y = f(x) \setminus, x \in (a, b) \Leftrightarrow \forall x \in (a, b) \hookrightarrow f'(x) < 0.$$

1.2 Частные производные и градиент

Определение 1.2.1 Рассмотрим функцию $f(x_1, x_2, \dots, x_n)$ от n переменных $f: \mathbb{R}^n \longrightarrow \mathbb{R}$. Частная производная $f(x_1, x_2, \dots, x_n)$ по переменной x_k – это предел:

$$f'_{x_k} = \frac{\partial}{\partial x_k} f(x_1, \dots, x_k, \dots, x_n) = \lim_{\Delta x \to 0} \frac{f(x_1, \dots, x_k + \Delta x, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{\Delta x}.$$

Нахождение частных производных почти ничем не отличается от нахождения производной функции одной переменной (а чаще даже бывает и проще) – просто надо найти производную функции $f(x_k)$ считая все остальные переменные $x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n$ константами.

Пример

Найдем дифференциал функции $f(x, y, z) = x \cos(2y - z) + xy$ по формуле

$$df(x, y, z) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz.$$

Для этого найдем частные производные:

$$\frac{\partial f}{\partial x} = f'_x = \cos(2y - z) + y$$
$$\frac{\partial f}{\partial y} = f'_y = 2x \cdot (-\sin(2y - z)) + x$$
$$\frac{\partial f}{\partial z} = f'_z = -x \cdot (-\sin(2y - z))$$

Окончательно имеем:

$$df(x, y, z) = (\cos(2y - z) + y)dx + (-2x \cdot \sin(2y - z) + x)dy + (x \cdot \sin(2y - z))dz.$$

Определение 1.2.2 Градиентом функции $f(x_1, x_2, ..., x_n)$ от n переменных называется n-мерный вектор, составленный из частных прозводных функции f:

$$\operatorname{\mathbf{grad}} f(x_1, x_2, \dots, x_n) = \begin{pmatrix} f'_{x_1} \\ f'_{x_2} \\ \vdots \\ f'_{x_n} \end{pmatrix}.$$

Смысл градиента таков: это вектор, своим направлением указывающий направление наибольшего возрастания функции $f(x_1, x_2, \ldots, x_n)$, значение которой меняется от одной точки пространства к другой, а по величине (модулю) равный скорости роста этой величины в этом направлении.

Пример

Найдем градиент функции $f(x_1, x_2, x_3, x_4) = x_2 \sin(x_1 x_3) + 2x_4$ в точке $(\frac{3\pi}{2}, 0, 1, -2)$. Частые производные:

$$f'_{x_1} = x_2 x_3 \cos(x_1 x_3)$$

$$f'_{x_2} = \sin(x_1 x_3)$$

$$f'_{x_3} = x_2 x_1 \cos(x_1 x_3)$$

$$f'_{x_4} = 2$$

Подставляя в частные производные соответствующие значения переменных, находим:

$$\mathbf{grad}\,f = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 2 \end{pmatrix}.$$

2 Основы линейной алгебры

2.1 Векторы и матрицы

Определение 2.1.1 Вектор – это упорядоченный одномерный массив чисел.

Мы будем обозначать векторы строчными латинскими буквами полужирным шрифтом и записывать их в виде вектор-столбца:

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}$$

Определение 2.1.2 Матрица — это упорядоченный двумерный массив чисел.

Множество матриц с m строками и n столбцами, то есть матрицы размеров $m \times n$ будем обозначать $\mathbf{M}_{m \times n}$. Произвольную матрицу $\mathbf{A} \in \mathbf{M}_{m \times n}$ будем обозначать заглавными латинскими буквами и записывать в следующем виде:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где на пересечении i-той строки с j-тым стобцом будет находится элемент матрицы a_{ij} . То есть первый индекс элемента матрицы — номер строки, второй — номер столбца, в котором находится элемент.

Заметим, что вектор – частный случай матрицы: действительно, матрица размерами $m \times 1$ – в точности и есть вектор-столбец. Значит, если мы научимся работать с матрицами, то срзу же получим и правила работы с векторами. Поэтому далее пока что не будем отдельно рассматривать векторы, а будем работать с матрицами произвольных размеров $m \times n$, считая, что возможны случаи n=1.

2.2 Сложение и вычитание матриц, умножение матриц на число

Определение 2.2.1 Пусть даны две матрицы $A, B \in \mathbf{M}_{m \times n}$: $A = (a_{ij}), B = (b_{ij})$. Матрица $C = (c_{ij})$ называется *суммой матриц*, $A \ u \ B$, если $c_{ij} = a_{ij} + b_{ij}$ для любых $i = \overline{1, m}$ и $j = \overline{1, n}$. Будем обозначать A + B = C.

Определение 2.2.2 Пусть даны две матрицы $A, B \in \mathbf{M}_{m \times n}$: $A = (a_{ij}), B = (b_{ij})$. Матрица $C = (c_{ij})$ называется разностью матриц A и B, если $c_{ij} = a_{ij} - b_{ij}$ для любых $i = \overline{1, m}$ и $j = \overline{1, n}$. Будем обозначать A - B = C.

Очевидо, что при таком определении мы можем складывать только матрицы одного размера, и это достаточно важное замечание!

Пример

$$\begin{pmatrix} 1 & -4 & 0 \\ 5 & 3 & -1 \end{pmatrix} + \begin{pmatrix} 4 & 5 & -7 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 & -7 \\ 5 & 5 & 0 \end{pmatrix}.$$

5

Определение 2.2.3 Пусть дана матрица $A \in \mathbf{M}_{m \times n}$: $A = (a_{ij})$ и число λ . Матрица $C = (c_{ij})$ называется произведением матрицы A на число λ , если $c_{ij} = \lambda a_{ij}$ для любых $i = \overline{1, m}$ и $j = \overline{1, n}$. Будем обозначать $\lambda A = C$.

Пример:

$$8 \cdot \begin{pmatrix} 1 & 7 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 8 & 56 \\ 16 & -24 \end{pmatrix}.$$

Так как мы ввели сложение и вычитание матриц и умножение матриц на число покомпонентно, то все свойства чисел, связанные с этими операциями остаются верными и для матриц.

2.3 Умножение матриц

Пусть даны две матрицы $A \in \mathbf{M}_{m \times n}$ и $B \in \mathbf{M}_{n \times p}$: $A = (a_{ij}), B = (b_{ij})$. Матрица $C = (c_{ij}) \in \mathbf{M}_{m \times p}$ называется произведением матриц A и B, если

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

для любых $i=\overline{1,m}$ и $j=\overline{1,n}$. Будем обозначать $A\cdot B=C$.

Из определения следует, что мы можем перемножать матрицы только если количество столбцов у первой равно количеству строк у второй. Это важное замечание!

Пример

$$A = \begin{pmatrix} 0 & -1 \\ 4 & 5 \\ -8 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}$$

Найдем $C = A \cdot B$:

- 1. Найдем размер результирующей матрицы. Для этого запишем размеры перемножаемых матриц, в данном случае это 3×2 и 2×2 . Убеждаемся, что количество столбцов у первой матрицы равно количеству строк у второй, значит, мы можем перемножить матрицы. Размер результирующей матрицы будет 3×2 .
- 2. Последовательно найдем элементы результирующей матрицы $C = c_{ij}$. Для этого обозначим матрицы $A = (a_{ij}), B = (b_{ij})$:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Тогда по определению:

$$c_{11} = \sum_{k=1}^{2} a_{1k} b_{k1} = a_{11} b_{11} + a_{12} b_{21} = 0 \cdot 3 + (-1) \cdot (-2) = 2$$

$$c_{21} = \sum_{k=1}^{2} a_{2k} b_{k1} = a_{21} b_{11} + a_{22} b_{21} = 0 \cdot 1 + (-1) \cdot 0 = 0$$

$$c_{21} = \sum_{k=1}^{2} a_{2k} b_{k1} = a_{21} b_{11} + a_{22} b_{21} = 4 \cdot 3 + 5 \cdot (-2) = 2$$

$$c_{22} = \sum_{k=1}^{2} a_{2k} b_{k2} = a_{21} b_{12} + a_{22} b_{22} = 4 \cdot 1 + 5 \cdot 0 = 4$$

$$c_{31} = \sum_{k=1}^{2} a_{3k} b_{k1} = a_{31} b_{11} + a_{32} b_{21} = (-8) \cdot 3 + 6 \cdot (-2) = -36$$

$$c_{32} = \sum_{k=1}^{2} a_{3k} b_{k2} = a_{31} b_{12} + a_{32} b_{22} = (-8) \cdot 1 + 6 \cdot 0 = -8$$

3. Запишем ответ:

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 4 \\ -36 & -8 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ -18 & -4 \end{pmatrix}$$

Таким образом, можно вывести мнемоническое правило для произведения матриц: чтобы получить элемент c_{ij} результирующей матрицы, умножаем i-ую строку первой матрицы на j-ый столбец второй матрицы «почленно».

Свойства умножения матриц:

- 1) Ассоциотивность: A(BC) = (AB)C
- 2) Некоммутативность в общем случае: $AB \neq BA$
- 3) Дистрибутивность: A(B+C) = AB + AC, (A+B)C = AC + BC
- 4) Ассоциативность и коммутативность относительно умножения на число: $(\lambda A)B =$ $\lambda(AB) = A(\lambda B)$

2.4 Транспонирование, скалярное произведение, длина вектора

Определение 2.4.1 Пусть дана матрица $A \in \mathbf{M}_{m \times n}$: $A = (a_{ij})$. Матрица $C = (c_{ij}) \in \mathbf{M}_{n \times m}$ называется m ранспонированной κ A, если $c_{ij}=a_{ji}$ для любых $i=\overline{1,m}$ и $j=\overline{1,n}$. Будем обозначать транспонированную к A матрицу как A^{T} .

Пример

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

То есть при транспонировании матрицы i-ая строка становится i-ым столбцом, а j-ый столбец стоновится *j*-ой строкой.

Свойства транспонирования:

- 1) $(A + B)^T = A^T + B^T$ 2) $(A B)^T = A^T B^T$
- $3) (\lambda A)^T = \lambda A^T$
- 4) $(AB)^T = B^T A^T$

Определение 2.4.2 Скалярное произведение векторов

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

это

$$\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \cdot \mathbf{b} = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \sum_{k=1}^m a_k b_k$$

Пример

Найдем скалярное произведение вкекторов $\mathbf{a}^T = (-2 \ 6 \ 0 \ 5)$ и $\mathbf{b}^T = (4 \ 3 \ 8 \ -2)$: По определению имеем:

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{k=1}^{4} a_k b_k = (-2) \cdot 4 + 6 \cdot 3 + 0 \cdot 8 + 5 \cdot (-2) = 0$$

Мы получили, что векторы **a** и **b** ортогональны.

Определение 2.4.3 Два ненулевых вектора называются *ортогональными*, если их скалярное произведение равно нулю.

Определение 2.4.4 Длина (модуль) вектора $\mathbf{a}^T = (a_1 \ a_2 \ \dots \ a_m)$ – квадратный корень из скалярного произведения этого вектора на себя, то есть:

$$a = |\mathbf{a}| = \sqrt{\sum_{k=1}^{m} (a_k)^2}$$

Пример

Найдем длину вектора $\mathbf{a}^T = (-2 \ 6 \ 0 \ 5)$:

По определению:

$$a = |\mathbf{a}| = \sqrt{\sum_{k=1}^{4} (a_k)^2} = \sqrt{(-2)^2 + 6^2 + 0^2 + 5^2} = \sqrt{65}$$

Определение 2.4.5 *Скалярное произведение векторов* **а** и **b** – это произведение модулей (длин) этих векторов на косинус угла α между ними:

$$\langle \mathbf{a}, \mathbf{b} \rangle = ab \cdot \cos(\alpha)$$

Мы привели два определения скалярного произведения векторов, что может вызывать некоторую путаницу — ведь определения очень разные. На сомом деле эти определения эквивалентны (результат не будет зависить от способа вычисления), просто определение (2.4.5) более общее, а (2.4.2) более удобно при практическом вычислении.

2.5 Ранг и определитель матрицы

Определение 2.5.1 Система столбцов A_1, A_2, \ldots, A_n из $\mathbf{M}_{m \times 1}$ называется линейно зависимой, если некоторая их нетривиальная линейная комбинация равна нулевому столбцу, то есть если существуют числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ такие, что хотя бы одно из этих чисел не нулевое (нетривиальность) и выполнено:

$$\sum_{k=1}^{n} A_k \lambda_k = O = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Пример

Докажем, что следующие столбцы линейно зависимы:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 7 \\ 9 \end{pmatrix}.$$

Действительно, существует нетривиальная линейная комбинация этих столбцов, равная нулевому вектору (напомним, что мы отожествляем понятие матрицы размера $m \times 1$ с вектором):

$$3 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 7 \\ 9 \end{pmatrix} = O.$$

Определение 2.5.2 Целое неотрицительное число r называется pангом матрици A и обозначается $r=\operatorname{rg} A$, если из столбцов этой матрицы можно выбрать r линейно независимых столбцов, но нельзя выбрать r+1 линейно независимых стлбцов.

Свойства ранга:

- 1) $\operatorname{rg} A^T = \operatorname{rg} A$.
- 2) Если A квадратная матрица и |A|=0, то строки и столбцы матрицы линейно зависимы.
- 3) Линейная (не)зависимость столбцов матрицы эквивалентна линейной (не)зависимости строк.
- 4) Если все элементы строки или столбца матрицы умножить на отличное от нуля число, то ранг матрицы не изменится.
- 5) Ранг не изменится, если к элементам любой строки или столбца матрицы прибавить соответствующие элементы другой строки или столбца, умноженные на одно и то же число.
 - 6) Ранг не изменится, если переставить два любых столбца или две строки матрицы.

Определение 2.5.3 Определитель (или детерминант) матрицы размера 2×2 – это

$$|A| = \det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Детерминант матрицы размера 3×3 – это

$$|A| = \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Заметим, что детерминант определен только для квадратных матриц, то есть только для матриц размеров $n \times n!$

Пример

Найдем определитель:

$$|A| = \det A = \begin{vmatrix} 0 & 1 & 3 \\ 2 & 3 & 5 \\ 3 & 5 & 7 \end{vmatrix} = 0 \cdot \begin{vmatrix} 3 & 5 \\ 5 & 7 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 5 \\ 3 & 7 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} = 0 - (14 - 15) + 3 \cdot (10 - 9) = 4$$

Мы получили, что наша матрица не вырождена.

Определение 2.5.4 Матрица называется *вырожденой*, если ее определитель равен нулю.

Свойства детерминанта:

- 1) $|A^T| = |A|$.
- 2) $|AB| = |A| \cdot |B|$.
- 3) Умножение всех элементов строки или столбца определителя на некоторое число равносильно умножению определителя на это число.
- 4) Если матрица содержит нулевую строку или столбец, то определитель этой матрицы равен нулю.
- 5) Если две строки или два столбца матрицы линейно зависимы, то определитель этой матрицы равен нулю.
- 6) При перестановке двух любых строк или столбцов определитель матрицы меняет знак.
- 7) Определитель не изменится, если к элементам любой строки или столбца матрицы прибавить соответствующие элементы другой строки или столбца, умноженные на одно и то же число.
- 8) Определитель матрицы треугольного вида равен произведению элементов, стоящих на главной диагонали:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \prod_{k=1}^{n} a_{kk} = a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn}$$

.

Заметим, что последнее свойство позволяет легко находить определитель матриц большого порядка, если перед этим привести матрицу к диоганальному виду (что всегда можно сделать, опираясь на предпоследнее свойство и используя алгоритм Гаусса).

3	Некоторые понятия теории вероятностей и математической статистики