Entwicklungsprojekt WS 2022/2023

Audit 1

Jonas Niggemann Christian Tschitschke Malcolm Ipek

Inhaltsverzeichnis

- Domänenmodell
- Kernfragen
 - Nutzungsproblem und Entwicklungsziele
 - Anwendungsdomäne und Konzepte
 - Prototypen und Anwendungslogik
 - Entwicklungsumgebung
- Produkt Vision
 - Story Idee
 - Grober Ablauf des Spiels
 - Fähigkeiten und Tools
 - Weitere Ideen und Konzepte
 - Spielmodi und Motivation
 - Grafik und Zielgruppe
- Art Vision
- Deliverables Audit 2
- Quellen und Abbildungen

Domänenmodell

Was ist das Nutzungsproblem, welches mit dem Projekt adressiert werden soll?

- Naturwissenschaften gelten in Schulen oft als kompliziert
- Fächer wie Physik oder Chemie werden oft abgewählt
- Im Onlineunterricht oft schwer Inhalte anschaulich zu präsentieren
- Das Projekt befasst sich mit dem Fach Physik
 - Viele komplizierte Formeln und Gesetze

Welche Entwicklungsziele werden angestrebt?

- Physikalische Grundsätze und Formeln spielerisch vermitteln
- · Physik greifbar machen
- Physik anschaulich darstellen
- Themenbereiche miteinander kombinieren
- Das Spiel soll trotz des Themas im Hintergrund Spaß machen

Was charakterisiert die Anwendungsdomäne?

- Formeln werden selten gerne gelernt
- Bloßes auswendig lernen hat keinen großen Lernerfolg
 - Bei der Anwendung der Formeln und Gesetze kommt es zu Problemen
- Experimente können oft nur in der Schule gemacht werden
- Durch das Spiel kann man langweiligen Stoff veranschaulichen

Was sind zentrale Konzepte?

- Formeln und Gesetze in spielerischer Form präsentieren
- · Wissen hinter Rätseln verstecken
- Spiel bietet Hilfe an, wenn man nicht weiter kommt
- Spätere Level kombinieren Grundkonzepte aus vorherigen Leveln
- Sammelobjekte und eine Story sorgen für die Motivation das Spiel weiter zu spielen

Wie sollen die Prototypen aussehen?

- · Rapid Prototype:
 - Ein simples Level mit einfacher Physik (z.B. Schaltkreise)
 - Grafisches Grundkonzept (muss noch nicht final sein)
 - Keine Story oder andere Elemente, die nichts mit Physik zu tun haben
- Prototype:
 - Mindestens drei Level die verschiedene Gesetze implementieren
 - Hilfetexte (Tipps)
 - Fertiges Grafikkonzept
 - Sammelobjekte
 - Story (Zusatz)

Welche Anwendungslogik ist zu implementieren?

- Je nach Level muss die zugehörige Physik implementiert werden
- Charachtercontroller
- Menü
- · Sammelobjekte / Achivements

Welche Entwicklungsumgebung ist geeignet?

- Unity mit C# als Programmiersprache
 - Die Engine stellt viele Möglichkeiten zur Verfügung eine realistische Physik zu implementieren
 - Vorerfahrungen mit der Engine
 - C# sehr ähnlich zu Java
 - Sehr einsteigerfreundlich im Gegensatz zu UnrealEngine

Story Idee

- Experiment in der Vergangenheit
- Protagonist hat dabei sein Gedächtnis verloren
- Er befindet sich in einem verlassenen Labor
- Er muss sein Wissen wieder erlangen, um aus dem Labor zu entkommen
- Durch das Lösen von den Rätseln kann er sich den Weg zum Ausgang erarbeiten
- Möglicher Protagonist ist Albert Einstein (vlt. Mit anderem Namen)

Ablauf des Spiels

- · Spiel startet im Hauptmenü
 - Buttons: Spiel Starten, (Spiel Laden), Optionen, Credits
- Neues Spiel Ausgewählt
 - Einleitung in die Story
 - Spieler kommt in den ersten Raum und kann zwischen mehreren weiteren (3) wählen (Level aussuchen)
 - Themen: Einfache Stromkreise, Magnetismus, Teilchenmodell
 - In den ersten Leveln kann sich der Spieler Basisfähigkeiten aneignen und diese in komplizierteren Leveln kombinieren
 - Im Laufe des Spiels erhält der Spieler immer mehr Fähigkeiten
- Ende des Levels
 - Neu erlernte Fähigkeiten werden noch einmal erklärt
 - · Objekte oder Formeln werden einer Formelsammlung hinzugefügt

• Fähigkeiten / Tools

- Basieren auf physikalischen Gesetzen und Formeln
- Spieler kann sich z.B. einen Elektromagneten zusammenbauen und einsetzen
- Spieler bekommt einen Schaltplan und muss die Objekte den Symbolen zuordnen und richtig anordnen
- Spieler muss ein bestimmtes Element im Teilchenmodell erstellen und kann das Material dann verwenden
- Tools, die zusammengebaut werden können (z.B. Elektromagnet), müssen in jedem Level zusammengebaut werden (Dafür muss man die Teile finden)

Zusätzliche Ideen und Konzepte

- · Spielmodus Ideen
 - Story Modus (Normaler Spielmodus, Thema des Projekts)
 - Levelauswahl nach Themenbereich
 - Leveleditor (Community-Chambers ähnlich wie in Portal 2)
- Wie hält man die Spielmotivation hoch?
 - Belohnungssystem
 - Level darf nicht zu schwer sein aber auch nicht zu einfach
 - Zeit stoppen und am Ende vom Level Sterne vergeben (Score)
 - Story

Zusätzliche Ideen und Konzepte

- Grafikstil
 - 2D-Spiel in der Seitenansicht
 - Man sieht immer einen Querschnitt von einem Raum / einer Umgebung
 - Der Raum kann auch größer sein als der Bildausschnitt
 - Das Level scrollt dann mit dem Spieler mit
 - Comicstil (Inspiration vielleicht "Little Orpheus" (Spiel auf Steam))
- Für wen wird das Spiel entwickelt?
 - 5. bis 7. Klasse
 - Grafikstil und Spielstil bieten sich ideal für jüngere Kinder an
 - Jüngere Kinder kann man mit so einem Spiel eher erreichen als Schüler aus der Oberstufe
 - Das Spiel soll vor allem jüngere Schüler motivieren Physik weiter zu wählen
 - Die Angst vor dem Fach nehmen

Art Vision

Die Szene soll im Cartoon- / Comicstil realisiert werden

Quelle: www.freepik.com

Quelle: www.shutterstock.com

Der Grafikstil soll relativ minimalistisch sein, aber trotzdem genug Details haben.

Der Grafikstil muss für uns realisierbar sein und darf deshalb nicht zu aufwendig sein.

Quelle: www.freepik.com

Quelle: www.littleorpheus.com

Der Stil von "Little Orpheus" wäre denkbar für das Spiel, ist für uns aber wahrscheinlich zu aufwendig

Deliverables Audit 2

- · Art Proof of Concept
 - Test Design eines Levels
- Puzzle Proof of Concept
 - Entwicklung eines einfachen Rätsels
- · Physics Proof of Concept
 - Implementation des ersten Rätsels (Code)
- Gameplay Proof of Concept (Code)
- → Schaltkreise als Einstieg

Quellen

Bildlinks

- Albert Einstein Zeichentrick Figur
- Schaltkreise Beispiel
- Legende Schaltkreise
- Kurz Gesagt Weltraum Bild
- <u>Labor 1</u>
- Labor 2
- Little Orpheus Szene