Assignment 13 MAT 257

Q4a: For $I \in \underline{n}_a^k$ define $I^c \in \underline{n}_a^{n-k}$ to be the ascending list of n-k elements such that $I^c \cap I = \emptyset$. It is sufficient to define \star on ω_I and define it to be linear. Let $\omega_I \in \Lambda^k(\mathbb{R}^n)$; we define $\star \omega_I = (-1)^{\sigma(I \cup I^c)} \omega_{I^c}$, with $\star (\alpha \lambda + \eta) = \alpha \star \lambda + \star \eta$, for all $\alpha \in \mathbb{R}$. We can verify that indeed, for some $\omega_I, \omega_J \in \underline{n}_a^k$;

$$\omega_I \wedge \star \omega_J = \omega_I \wedge (-1)^{\sigma(J \cup J^c)} \omega_{J^c} = \delta_{IJ} \omega_n = \langle \omega_I, \omega_J \rangle \omega_n$$

Where the second equality holding because when I = J, $I \cup J^c = \{1, 2 \dots n\}$. The $(-1)^{\sigma(J \cup J^c)}$ term takes care of sign swaps occurring when we rearrange each $\varphi_{i_k}, \varphi_{j_k}$ used to construct ω_I and ω_J . Additionally, take note that if $I \neq J$, then $I \cap J^c \neq \emptyset$ and the following happens. Assume that $I = \{i_1, \dots i_k\}$ and $J^c = \{j_1, \dots j_{n-k}\}$. At some indices, $i_\alpha = j_\beta$ and so

$$\omega_{I} \wedge (-1)^{\sigma(J \cup J^{c})} \omega_{J^{c}} = (-1)^{\sigma(J \cup J^{c})} \varphi_{i_{1}} \wedge \cdots \varphi_{i_{\alpha}} \cdots \wedge \varphi_{i_{k}} \wedge \varphi_{j_{i}} \wedge \cdots \varphi_{j_{\beta}} \cdots \wedge \varphi_{j_{n-k}}$$

$$= (-1)^{\sigma(J \cup J^{c})+1} \varphi_{i_{1}} \wedge \cdots \varphi_{j_{\beta}} \cdots \wedge \varphi_{i_{k}} \wedge \varphi_{j_{i}} \wedge \cdots \varphi_{i_{\alpha}} \cdots \wedge \varphi_{j_{n-k}}$$
(swapping the equal φ)
$$= 0$$
 (since sign changes but the value does not)

We now claim uniqueness of \star . Suppose there is \star_1 , \star_2 which both satisfy $\lambda \wedge \star \eta = \langle \lambda \eta \rangle \omega_n$. Then we have that for any $\lambda \in \Lambda^k(\mathbb{R}^n)$

$$\lambda \wedge \star_1 \eta - \star_2 \eta = \lambda \wedge \star_1 \eta - \lambda \wedge \star_2 \eta = \langle \lambda, \eta \rangle \omega_n - \langle \lambda, \eta \rangle \omega_n = 0$$

Taking $\lambda = \star_1(\star_1 \eta - \star_2 \eta)$

$$0 = \star_1(\star_1 \eta - \star_2 \eta) \wedge (\star_1 \eta - \star_2 \eta) = (-1)^{(n-k)^2} (\star_1 \eta - \star_2 \eta) \wedge \star_1(\star_1 \eta - \star_2 \eta) = \langle (\star_1 \eta - \star_2 \eta), (\star_1 \eta - \star_2 \eta) \rangle \omega_n$$

By the properties of the inner product, $(\star_1 \eta - \star_2 \eta) = 0$ or equivalently $\star_1 \eta = \star_2 \eta$. Hence the \star operation is unique.

Q4b: using the formula for $\star \omega_I$ in Q4a, for $\omega_I \in \Lambda^1(\mathbb{R}^3)$, we compute the following.

$$\star\omega_1=\omega_2\wedge\omega_3,\star\omega_2=-\omega_1\wedge\omega_3,\star\omega_3=\omega_1\wedge\omega_2$$

Similarly, when n = 4 and k = 2, using our definition of \star ,

$$\star\omega_{12}=\omega_3\wedge\omega_4, \star\omega_{13}=-\omega_2\wedge\omega_4, \star\omega_{14}=\omega_2\wedge\omega_3, \star\omega_{23}=\omega_1\wedge\omega_4, \star\omega_{24}=-\omega_1\wedge\omega_3, \star\omega_{34}=\omega_1\wedge\omega_2$$

Q4c: It is sufficient to show that $\star \circ \star$ applied to some basis element of $\Lambda^k(V)$ is scaled by the desired constant. Let $I \in \underline{n}_a^k$, $I = \{i_1, \dots, i_k\}$. Then we see that

$$\star \circ \star (\omega_I) = \star (-1)^{\sigma(I \cup I^c)} \omega_{I^c} = (-1)^{\sigma(I^c \cup I)} \cdot (-1)^{\sigma(I \cup I^c)} \omega_I = (-1)^{(k)(n-k)} \omega_I$$

Where the last equality holds since by applying the \star operation twice, we make k(n-k) swaps of the constituent ω_i .