ARMA-Garch Part

Shiheng Shen, Ci Rui, Lingkun Yue

May 30, 2017

Overview

- Data
- 2 Adjustment
- ARMA Model
- Standard Garch Model
- Diagnostics
- 6 Forecast

Data Source

HadCRUT4 is a gridded dataset of global historical surface temperature anomalies relative to a 1961-1990 reference period. Data are available for each month since January 1850, on a 5 degree grid.

Read Data

```
tmpf <- tempfile()
curl_download("http://www.metoffice.gov.uk/
hadobs/hadcrut4/data/current/time_series/
HadCRUT.4.5.0.0.monthly_ns_avg.txt", tmpf)
gtemp <- read.table(tmpf)[, 1:2]
temp = gtemp$V2[1:2004]
plot.ts(temp)</pre>
```


Seasonal Adjusting

```
library(TSA)
myTS = ts(as.numeric(temp), start = c(1850, 1),
frequency = 12)
myTS.additive = decompose(myTS)
myTS.adjusted = myTS.additive$x - myTS.additive$seasonal
```

Seasonal Adjusting

Figure: additive model: seasonal component, adjusted series

Stationarity

```
> dtemp = diff(temp)
> adf.test(dtemp)

^^IAugmented Dickey-Fuller Test

data: dtemp
Dickey-Fuller = -16.175, Lag order = 12, p-value = 0.01
alternative hypothesis: stationary
```

ARMA

Finding the correct arma order of dtemp:

```
auto.arima(dtemp)
arma21.dtemp = arima(dtemp, c(2, 0, 1))
arma24.dtemp = arima(dtemp, c(2, 0, 4))
auto.arima(arma21.dtemp$residuals)
auto.arima(arma24.dtemp$residuals)
my.arma = arma24.dtemp
my.arma
```

my.arma result

> my.arma

Test ARMA

```
> Box.test(res, type = 'Ljung-Box')
^^IBox-Ljung test
data: res
X-squared = 0.0058853, df = 1, p-value = 0.9388
> arch.test(my.arma)
ARCH heteroscedasticity test for residuals
alternative: heteroscedastic
Lagrange-Multiplier test:
    order LM p.value
[1.]
        4 1418
[2,] 8 697
[3,] 12 418
[4,] 16 212
[5,] 20 168
[6,] 24 137
```

Figure: arma residual

Building sGarch

A standard GARCH model has the following equations:

$$y_t = \mu + \sum_{j=1}^{m} \phi_i y_{t-j} + \sum_{j=1}^{q} \theta_i \epsilon_{t-j} + \epsilon_t$$
$$\sigma_t^2 = \left(w + \sum_{j=1}^{m} \zeta_j v_{jt}\right) + \sum_{j=1}^{q} \alpha_j \varepsilon_{t-j}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2$$
$$\epsilon_t = u_t \cdot \sigma_t, u_t \sim N(0, 1)$$

Using rugarch package

```
library(rugarch)
my_sGARCH_test <- function(p, q, m, n, ts.data)</pre>
^^I# I use include.mean = FALSE after trying TRUE
^^I# to find out insignificance
    myspec=ugarchspec(variance.model = list(model = "sGARCH",
    ^{\text{lgarchOrder}} = c(p, q)),
    ^^Imean.model = list(armaOrder = c(m, n),
    ^^Iinclude.mean = FALSE).
    ^^Idistribution.model = "norm")
    myfit=ugarchfit(myspec,data=ts.data, solver="solnp")
    return(myfit)
```

brief result

After trying a few times from (1,0), (0,0,0) to (5,5), (4,0,4), GARCH(1,1), ARIMA(2,0,3) is the most satisfying model. Here we realize that using GARCH model, the order of ARIMA might changes.

```
fit1 = my_sGARCH_test(1, 1, 2, 3, dtemp)
> fit1
...
```

Optimal Parameters

	Estimate	Std. Error	t value	Pr(> t)
ar1	-0.090935	0.015226	-5.9724	0.000000
ar2	0.754333	0.015069	50.0583	0.000000
ma1	-0.391906	0.007313	-53.5917	0.000000
ma2	-0.863257	0.000130	-6647.5909	0.000000
ma3	0.295634	0.007800	37.9010	0.000000
omega	0.000082	0.000034	2.3956	0.016595
alpha1	0.023026	0.003614	6.3706	0.000000
beta1	0.970594	0.004705	206.2925	0.000000

4 D > 4 A > 4 B > 4 B > B = 990

Substract the standardized(w.r.t. the variance model) residuals z, which is residuals(fit)

Figure: z


```
> mean(z)
[1] 0.03181525
> var(z)
[1] 1.013866
> length(z)
[1] 2003
> plot.ts(rnorm(2003, 0.03181525, 1.013866))
```

And then, just for fun, plot a normal sample series with the same parameters:

Figure: simulation of using rnorm

Weighted ARCH LM Tests

Statistic Shape Scale P-Value
ARCH Lag[3] 0.004507 0.500 2.000 9.465e-01
ARCH Lag[5] 11.085543 1.440 1.667 3.565e-03
ARCH Lag[7] 20.592184 2.315 1.543 4.509e-05

Figure: acf(dtemp)

The acf of standardized residuals:

Figure: acf(z)

This is a prove that we should have used a long memory model.

The Empirical Density of Standardized Residuals compared to normal distribution:

Figure: Empirical Density of Standardized Residuals

qqplot:

Theoretical Quantiles

Series with 2 Conditional SD Superimposed:

Series with 2 Conditional SD Superimposed

Figure: forecast

Conclusion

sGARCH model can explain the heteroscedastic partially. I've also tried eGARCH model only to find similar results. Next I'll explore long memory model or exclude some extreme values.

The End