An introduction to computable analysis

Jordan Mitchell Barrett

Supervisors: Rod Downey, Noam Greenberg

Victoria University of Wellington

math@jmbarrett.nz
https://jmbarrett.nz/

23rd April 2020

Classical (Type I) computability

Definition

An *algorithm* is a procedure which:

- 1. Consists of finitely many *rules*, where each rule is an exact specification of the form **"if** x, **do** y".
- 2. Always gives an answer in finitely many steps.

Algorithms may take in an input, and use as much time/resources as needed.

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is *computable* if there exists an algorithm which, given input $n \in \mathbb{N}$, computes f(n).

Theorem

There exist noncomputable functions.

Computable reals

- Can't "know" real numbers the same way we "know" integers
- What is a real number? A Cauchy sequence of rationals
- ▶ Want to be able to compute a real to arbitrary precision

Definition

A real number $r \in \mathbb{R}$ is *computable* if there exists a computable sequence $(q_n)_{n \in \mathbb{N}}$ of rationals, and a computable function $K : \mathbb{Q}^+ \to \mathbb{N}$, such that, for every rational $\varepsilon > 0$:

$$n \geq K(\varepsilon) \implies |q_n - r| < \varepsilon$$

Proposition

A real number $r \in \mathbb{R}$ is computable iff it has a computable *Cauchy name*, i.e. a computable sequence $(q_n)_{n \in \mathbb{N}}$ of rationals, such that for every $n \in \mathbb{N}$: $|q_n - r| < 2^{-n}$

Type II computability

Definition

A function $f: \mathbb{R}^k \to \mathbb{R}$ is *Type II computable* if there exists an algorithm which, given Cauchy names for each of the inputs x_i , computes a Cauchy name of $f(x_1, \ldots, x_k)$.

Proposition (Pour-El-Richards¹)

The following are Type II computable: x + y, x - y, $x \cdot y$, x/y when $y \neq 0$, x^y and $\log_x(y)$ when $x \geq 0$, $\max\{x, y\}$, $\min\{x, y\}$, $\sin(x)$, $\cos(x)$, $\sin^{-1}(x)$, $\cos^{-1}(x)$, $\tan^{-1}(x)$, any polynomial, ...

Theorem

Every Type II computable function $f : \mathbb{R} \to \mathbb{R}$ is continuous.

Corollary

There exist functions $f : \mathbb{R} \to \mathbb{R}$ which are not Type II computable.

¹Marian B. Pour-El, J. Ian Richards. *Computability in Analysis and Physics*. Available online at https://projecteuclid.org/euclid.pl/1235422916

Some results (Pour-El–Richards²)

Antidifferentiation

For any Type II computable $f : \mathbb{R} \to \mathbb{R}$, and $c \in \mathbb{R}_c$, its antiderivative $F(x) = \int_c^x f(t) dt$ is Type II computable.

Effective extreme value theorem

If $f:[a,b]\to\mathbb{R}$ is computable, then $\max(f)$ is computable.

Effective Weierstrass approximation theorem

 $f:[a,b]\to\mathbb{R}$ is Type II computable iff there exists a computable sequence of rational polynomials $p_n:[a,b]\to\mathbb{R}$, such that for every $n\in\mathbb{N}$, we have $\|p_n-f\|_\infty\leq 2^{-n}$.

Effective failure of Bolzano-Weierstrass

There exists a computable, bounded sequence $(r_n)_{n\in\mathbb{N}}$ with no computable, convergent subsequence.

²Marian B. Pour-El, J. Ian Richards. *Computability in Analysis and Physics*. Available online at https://projecteuclid.org/euclid.pl/1235422916