1. Линейное пространство. Проверка на принадлежность

1.1. Определение

Множество L называют линейным (векторным) пространством, если на нём введены операции сложения и умножения на скаляр, удовлетворяющие условиям:

- 1. $x, y \in L \Rightarrow x + y \in L$, (замкнутость)
- 2. x + y = y + x (коммутативность)
- 3. (x + y) + y = x + (y + z) (ассоциативность)
- 4. x + 0 = 0 + 0 (существование нейтрального элемента)
- 5. -x + x = 0 (существование противоположного для каждого элемента)
- 6. $1 \cdot x = x \cdot 1, 1 \in F$ (умножение на нейтральный скаляр по умножению не изменяет элемент)
- 7. $x \in L \Rightarrow \lambda x \in L$ (замкнутость при умножении на скаляр)
- 8. $\lambda(\nu x) = (\lambda \nu) x$ (ассоциативность умножения на скаляр)
- 9. $\alpha(x+y)=\alpha x+\alpha y, \alpha\in F; x\in L, y\in L$;(дистрибутивность умножения на скаляр относительно сложения векторов)
- 10. $(\alpha + \beta)x = \alpha x + \beta x, x \in L; \alpha, \beta \in F$ (дистрибутивность умножения на вектор относительно сложения скаляров)

Примечание: L - непустое множество, элементы которого называются векторами.

F - скалярное поле. Например: $\mathbb R$ - множество вещественных числе, $\mathbb C$ - множество комплексных чисел, $\mathbb Q$ - множество рациональных чисел

1.2. Примеры векторных пространств:

- вектора в пространствах \mathbb{R}^n , \mathbb{C}^n
- матрицы m×n с элементами из какого-либо поля.
- многочлены степени не выше п.

1.3. Базис

1.3.1. Определение

Базис линейного простраства - линейно независимый, порождающий набор(система) векторов. Линейно зависимой системой(набор) $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_n}$ если существуют ненулевой набор $a_1, a_2, ..., a_n$, что: $a_1\overrightarrow{x_1}+a_2\overrightarrow{x_2}+...+a_n\overrightarrow{x_n}=\overrightarrow{0}$

Если таких коэффицентов не существует, то система линейно независимая.

1.3.2. Примеры базисов:

- вектора $(1,0,0)^T,(0,1,0)^T,(0,0,1)^T$ в \mathbb{R}^3 или $(2,3,0)^T,(0,2,1)^T,(0,4,3)^T$, главное чтобы они были ЛНЗ .
- x, x^2, x^3 в пространстве многочленов степени меньше 3.
- 4 матриц с одной 1 единицей и остальными нулями в линейном пространстве матриц 2×2 с вещественными элементами: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- $V=\{p(t)\sin 6t+q(t)\cos 6t|deg(q(t))\leq 1, deg(p(t))\leq 1\}$ Базис: $\sin 6t, cos 6t, t\sin 6t, t\cos 6t$.

1.3.3. Матрица перехода

Переход из одного базиса в другой возможен с помощью домножения на матрицу перехода A, вычисляется она по значениям на базисных векторах, ниже подробнее разобрано. Пример:

• Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1+u_2+u_3$; $L(u_2)=u_2$; $L(u_3)=u_2+u_3$.

Ответ:
$$L_u = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

1.4. Проверка является ли множество векторным пространством

Самым простым является прямое соотношение геометрическим векторам, например матрицы 2×2 векторам 1×4 , так как там тоже 4 упорядоченных элемента. Это делается для того, чтобы не проверять все аксиомы векторного простраства. Также доказать, что множество является векторным пространством можно, проверив все аксиомы.

1.4.1. Примеры проверки:

- L = {Множество многочленов степени 5}. Не является лин. пространство, так как нет нуль-вектора, многочлен с нулевыми коэффицентами не входит в данное множество. Также нет замкнутости: $\overrightarrow{a} \overrightarrow{a} = \overrightarrow{0} \notin L$
- Окружность радиуса 1 в $\mathbb C$ или $L=\{\mathbb C|Im(z)^2+Re(z)^2=1\}.$ Также нет замкнутости ни при умножение на скаляр, ни при сложении.
- Матрицы. Не являются, так как не всегда можно складывать.

2. Подпространство

2.1. Определение

Непустое множество $L^{'}\subset L$ векторного пространства L над полем F является векторным подпространством, если выполнены свойства для всех элементов поля F и подмножества $L^{'}$.(\subset - обозначение подмножества):

- $x + y \in L', x \in L', y \in L'$
- $\alpha x \in L', \alpha \in F, x \in L'$

2.2. Примеры:

- Тривиальные подпространства с одним нулевым элементов. Например матрица $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ в векторном пространстве матриц 2×2 над полем $\mathbb R$ или $\mathbb C$.
- тождественное подпространство L для множества L
- Плоскость или прямая в \mathbb{R}^3 или гиперплоскость в \mathbb{R}^n пространстве. Прямая и плоскость частные случаи гиперплоскости.
- матрицы вида $\begin{pmatrix} 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}$
- векторное пространство $\mathbb{R}^n[x]$ является подпространством всех многочленов $\mathbb{R}[x]$

2.3. Проверка является ли подпространством векторное пространство обычно сводится к проверке двух свойств, нам не нужно проверять все 10 аксиом векторного пространства:

- $x + y \in L', x \in L', y \in L'$
- $\alpha x \in L', \alpha \in F, x \in L'$

Можно заметить, что подпространство должно содержать нуль-вектор, из выше изложенных свойств.

3. Линейный оператор.

3.1. Определение

Линейным оператором называется такое отображение векторного пространства L над полем K в это же векторное пространство L над тем же полем $f:L\longrightarrow L$, которое удовлетворяет условиям:

- $f(a+b) = f(a) + f(b), \forall a \in L, \forall b \in L$
- $f(\alpha x) = \alpha f(x), \forall \alpha \in K, \forall x \in L$

Можно заметить, что первое условие - гомоморфизм групп. Также заметно важное свойство, что $\mathbf{f}(\overrightarrow{0}) = \overrightarrow{0}$.

3.2. Способы задания линейных операторов:

• Словесный, например: проекция пространства на плоскость, проходящую в нуле,прямую, гиперплоскость.

3

- Функциональный, например: производная)
- Матричный (Ax = y, матрица A умножается на вектор x .

3.3. Примеры проверки отображений:

- Проекция на плоскость x+2y+z=3 является линейным оператором, так как $f(\overrightarrow{0})=\overrightarrow{0}$ и f(x+y)=f(x)+f(y)(гомоморфизм). Аналогично с любой проекцие на плоскость и прямую
- $f(p(x),q(y),r(z))=(p(x)^{'},q(x)^{'},r(x)^{'})$ будет являться, а $f(p(x),q(y),r(z))=(p(x)^{'}+1,q(x)^{'}-2,r(x)^{'})$ по причине не выполнения обоих условий
- оператор поворота на угол α является линейным оператором
- симметрия относительно плоскости также

3.4. Матрица линейного оператора:

Дейсствие на вектор линейныго оператора можно представить в виде домножения на матрицу только в случае конечномерного пространства.

Разложим вектор х по базису. Пусть $x = a_1e_1 + a_2e_2 + .. + a_ne_n$

Тогда $A(x) = A(a_1e_1 + a_2e_2 + ... + a_ne_n) = A(a_1e_1) + A(a_2e_2) + ... + A(a_ne_n) = a_1A(e_1) + a_2A(e_2) + ... + a_nA(e_n)$ Следовательно по значениям линейного оператора на базисе можно вычислить его значения на всём пространстве.

3.4.1. Примеры:

- Матрица оператора дифференцирования в пространстве многочленов степени не выше 2. Базис: $e_1=1, e_2=x, e_3=x^2; A(e_1)=0, A(e_2)=1, A(e_3)=2x.$ Отсюда получим матрицу оператора на базисе: $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$ Значения на базисных векторах столбцы слева направо.
- Матрица оператора проекции в \mathbb{R}^3 на плоскость XOY: Возьмём базис $e_1=(1,0,0)^T, e_2=(0,1,0)^T, e_3=(0,0,1)^T.$ $A(e_1)=(1,0,0)^T, A(e_2)=(0,1,0)^T, A(e_3)=(0,0,0)^T.$ Тогда матрица оператора A: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- Матрица поворота в \mathbb{R}^2 : Возьмём острый угол.

$$A\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} \cos \alpha\\ \sin \alpha \end{pmatrix}, A\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} -\sin \alpha\\ \cos \alpha \end{pmatrix} \Longrightarrow A = \begin{pmatrix} \cos \alpha & -\sin \alpha\\ \sin \alpha & \cos \alpha \end{pmatrix}$$

• В стандартном базисе пространства ${\bf R}^3$ найдите матрицу оператора L, если $L(v)=v-2\frac{(a,v)}{(a,a)}a$, где 1

$$a=(-3,2,5)^T$$
, а $(\ ,\)$ обозначает скалярное произведение Пусть $V_1=egin{pmatrix}1\\0\\0\end{pmatrix}; V_2=egin{pmatrix}0\\1\\0\end{pmatrix}; V_3=egin{pmatrix}0\\0\\1\end{pmatrix}.$

$$L(V_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 2\frac{-3}{38} \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 20 \\ 12 \\ 30 \end{pmatrix} = \frac{1}{38} (20V_1 + 12V_2 + 30V_3)$$

$$L(V_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2\frac{2}{38} \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 12 \\ 30 \\ -20 \end{pmatrix} = \frac{1}{38} (12V_1 + 30V_2 - 20V_3)$$

$$L(V_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - 2\frac{5}{38} \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 30 \\ -20 \\ -12 \end{pmatrix} = \frac{1}{38} (30V_1 - 20V_2 - 12V_3)$$

Ответ:
$$L_V = \frac{1}{38} \begin{pmatrix} 20 & 12 & 30 \\ 12 & 30 & -20 \\ 30 & -20 & -12 \end{pmatrix}$$

3.5. Матрица линейного оператора в новом базис

Чтобы найти матрицу линейного оператора в новом базисе необходимо найти матрицу перехода в новый базис и из нового базиса в старый - обратная к первой.

$$L_f = T_{f \longrightarrow e} \cdot L_e \cdot T_{e \longrightarrow f},$$

 $\overline{L_f}$ -матрица оператора в новом базисе

 $T_{f\longrightarrow e}$ -матрица перехода из f в e,

 $T_{e\longrightarrow f}$ -матрица перехода из е в f

4. Обратный оператор

4.1. Суть

Обратный оператор при воздействии после воздействия изначального оператора должен вернуть тот же вектор. Обозначается A^{-1} .

Линейные операторы могут быть как **обратимыми**(переход в другой базис, симметрия), так и **необратимыми**(дифференцирование, проекция на пространство меньшей размерности).

4.2. Способы нахождения:

- Алгебраический: нахождение обратной матрицы к матрице оператора(например методом присодинения единичной), возможно только в конечномерном пространстве.
- Геометрический: Например ,если симметрия относительно плоскости, то обратный оператор будет возвращать изначальный вектор, при действии на вектор, на который прежде действовали оператором. Также Если A оператор на евклидовом пространстве V, то можно использовать геометрические свойства оператора для нахождения его обратного. Например, если A ортогональный оператор, то $A^{-1} = A^T$, где A^T транспонированная матрица оператора A
- Смешанный вообще хз, Иванов даже в лс ничего не сказал

5. Ядро и образ линейного оператора, их размерности.

5.1. Определение

Пусть А - линейный оператор векторного пространства V.

Образ: множество $\forall y \in V : \exists \ x \in V : A(x) = y$. Обозначение: *Im A*.

Ядро: множество $\forall x \in V : A(x) = 0$. Обозначение: *Ker A*.

5.2. Размерности Образа и Ядра

А - линейный оператор в век. пространстве размерности п.

Размерность образа соответствует рангу матрицы оператора (Размерность Im(A) = rk(A))

Размерность ядра соответствует дополнению ранга матрицы до n (Размерность Ker(A) = n - rk(A))

5.3. Доказательство подпространства

5.3.1. Образ

Пусть $y_1,y_2\in \mathit{Im}\, A$, t - произвольное вещественное число $\Rightarrow\exists x_1,x_2\in A: \begin{cases} A(x_1)=y_1\\ A(x_2)=y_2 \end{cases} \Rightarrow y_1+y_2=A(x_1)+A(x_2)=A(x_1+x_2)$ и $ty_1=tA(x_1)=A(tx_1)\Rightarrow y_1+y_2$ и ty - элементы образа \Rightarrow образ - подпространство.

5.3.2. Ядро

Пусть
$$x_1, x_2 \in \mathit{Ker}\, A$$
, t - произвольное вещественное число $\Rightarrow \begin{cases} A(x_1) = 0 \\ A(x_2) = 0 \end{cases} \Rightarrow A(x_1 + x_2) = A(x_1) + A(x_2) = 0 + 0 = 0, A(tx_1) = tA(x_1) = 0 \Rightarrow x_1 + x_2$ и tx - элементы ядра \Rightarrow ядро - подпространство.

5.4. Примеры

Образ проекции пространства на плоскость XOY – плоскость XOY, ядро этого оператора – все векторы, параллельные оси OZ.

Образ оператора дифференцирования на пространстве всех многочленов – это же пространство многочленов. Ядро этого оператора – константы.

6. Алгоритм Чуркина

6.1. Алгоритм

Имеется матрица оператора A размерности n. Составим матрицу B порядка n x 2n, где первые n столбцов занимает транспонированная матрица A, следующие n столбцов единичная матрица.

Элементарными преобразованиями приводим левую часть к ступенчатому виду.

Ненулевые строки левой части - базис образа оператора А.

Продолжение нулевых строк в правой части - базис ядра.

6.2. Обоснование

Строки A^T соответствуют значению оператора на базисе.

Записав значения и приведя к ступенчатому виду, получаем базис (базис Образа).

Левая часть матрицы В соответствует значению оператора на векторе, тогда как правая - координатной записи вектора. После преобразований закономерность сохраняется и в правой части: строки соответствующие нулевым строкам в левой являются базисом ядра. (Р.S. Вспомни определение ядра)

6.3. Пример

Пусть
$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 1 & 0 & 3 & -4 \\ -1 & 0 & 2 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix}$$
 По алгоритму:
$$\begin{pmatrix} 2 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3 & 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & -4 & -1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 перемещаем строку
$$\begin{pmatrix} 2 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & -4 & -1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$l_3 o l_3 + l_2 + l_1$$
 получаем
$$\begin{pmatrix} 2 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
 Тогда: $(2,-1,-1,1),(1,3,2,1)$ - базис образа, $(1,0,1,1),(0,1,0,0)$ -базис ядра.

7. Проверка линейного оператора на вырожденность и невырожденность ность

- 7.1. Невырожденная матрица оператора
- 7.2. Оператор вырожденный, если $\exists \ x_1, x_2 : A(x_1) = A(x_2) = y$. Тогда невозможно однозначно определить обратный оператор от у
- 7.3. Оператор невырожденный только тогда, когда ядро состоит только из нулевого элемента

Оператор невырожденный \Rightarrow ядро не может состоять больше чем из одного элемента (пункт 2) \Rightarrow ядро состоит только из 0.

Ядро состоит из
$$0 \Rightarrow A(x_1) = A(x_2)$$
 будет:

$$A(x_1) - A(x_2) = 0 \Rightarrow A(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

Совпадение значений оператора на двух элемента \Rightarrow совпадают элементы \Rightarrow возможно корректное определение обратного оператора.

7.4. Геометрические соображения

Пример:

Вырождена ли симметрия относительно плоскости? Легко заметить, что двойная симметрия вернёт точку в исходное положение. Таким образом обратный к симметрии - это сама симметрия, а значит она невырождена.

7.5. Примеры

1. A(x) = a * x, где $a \in R$.

Ядро состоит только из нулевого элемента тогда и только тогда, когда $a \neq 0$.

Если a=0, оператор вырожден, поскольку прообраз 0 неоднозначно определён.

2. A(x)=(x,e)e, при этом |e|=1

Оператор вырожден, поскольку ядро состоит не только из 0.

8. Собственные числа

8.1. Определение

Число λ называется собственным числом оператора L, если существует такой ненулевой вектор x, что $L(x)=\lambda x$. При этом вектор x называется собственным вектором оператора L, отвечающим собственному числу λ .

8.2. Вычисление

8.2.1. Геометрический

Пример: Найти с.ч. и с.в. проекции пространства на плоскость XOY.

Найдём все векторы \parallel своей проекции - это все вектора $\parallel XOY$ (проекция равна вектору) и все вектора перпендикулярные плоскости (проекция равна нулю). \Rightarrow

$$\lambda_1=1, X_{\lambda_1}=\left(egin{array}{c} x \ y \ 0 \end{array}
ight); \lambda_2=0, X_{\lambda_2}=\left(egin{array}{c} 0 \ 0 \ z \end{array}
ight)$$
, где $x,y,z\in R$.

8.2.2. Аналитический

Пример: Найти с.ч. и с.в. оператора дифференцирования на множестве всех многочленов.

Рассмотрим $p'(x) = \lambda p(x)$. Если $\lambda \neq 0$, то степени правой и левой частей не совпадут. Если $\lambda = 0$, то p(x) - константа.

Ответ: $\lambda = 0, X_{\lambda} = C = const.$

8.2.3. С помощью матрицы

Пусть оператор задан матрицей $\Rightarrow A(x) = Ax \Rightarrow$

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow Ax - \lambda Ex = 0 \Leftrightarrow (A - \lambda E)x = 0$$

 λ - с.ч. только тогда, когда система уравнений на координаты х $(A-\lambda E)x=0$ имеет ненулевое решение.

Выполняется только тогда, когда определитель $(A - \lambda E)$ равен 0.

Алгоритм:

- 1. Найти корни уравнения $det(A \lambda E) = 0$
- 2. Для каждого из корней решить СЛУ $(A \lambda E)x = 0$. Решения будут задавать координаты множества с.в., соответствующих с.ч. (может иметь размерность 1 и более)

8.3. Диагонализуемость

Если удаётся найти базис из с.в. для линейного оператора, то его матрица в этом базисе будет диагональна, а на диагонали будут с.ч.

Пусть матрица диагональна, значит элементы диагонали обозначим через λ_k из условия $A(e_k) = \lambda_k e_k$ получим, что по определению все элементы базиса - с.в. данного линейного оператора.

Итог: матрица линейного оператора диагонализуема тогда только тогда, когда для этого линейного оператора найдётся базис из собственных векторов.

9. Евклидовые и Унитарные пространства

Вещественное линейное пространство $\mathbb E$ называется евклидовым, если каждой паре элементов $\mathbf u, \mathbf v$ этого пространства поставлено в соответствие действительное число $\langle \mathbf u, \mathbf v \rangle$, называемое скалярным произведением, причем это соответствие удовлетворяет следующим условиям:

1.
$$(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u}) \ \forall \ \mathbf{u}, \mathbf{v} \in \mathbb{E}$$

2.
$$(\mathbf{u} + \mathbf{v}, \mathbf{w}) = (\mathbf{u}, \mathbf{w}) + (\mathbf{v}, \mathbf{w}) \ \forall \ \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{E}$$

3.
$$(k\mathbf{u}, \mathbf{v}) = k(\mathbf{u}, \mathbf{v}) \ \forall \ \mathbf{u}, \mathbf{v} \in \mathbb{E}, \forall k \in \mathbb{R}$$

4.
$$(\mathbf{u}, \mathbf{u}) \ge 0$$
 и $(\mathbf{u}, \mathbf{u}) = 0$ только если $\mathbf{u} = \mathbf{0}$

В скалярном произведении $\langle \mathbf{u}, \mathbf{v} \rangle$ вектор \mathbf{u} — первый, а вектор \mathbf{v} — второй сомножители. Скалярное произведение $\langle \mathbf{v}, \mathbf{v} \rangle$ вектора \mathbf{v} на себя называется скалярным квадратом. Условия 1–4 называются аксиомами скалярного произведения. Аксиома 1 определяет симметричность скалярного произведения, аксиомы 2 и 3 — аддитивность и однородность по первому сомножителю, аксиома 4 — неотрицательность скалярного квадрата $\langle \mathbf{v}, \mathbf{v} \rangle$.

9.1. Геометрические примеры для трёхмерного евклидова пространства

Является ли скалярным произведением:

1. Смешанное произведение (n, x, y), где n – фиксированный вектор.

Ответ: Нет, поскольку если n=0, то (n,x,x)=0 при каждом x, а если $n\neq 0$, то (n,x,x)=0 при x=n.

2. Скалярное произведение (x + n, y + n).

Ответ: Если n=0, то является, поскольку совпадает с обычным скалярным произведением. Если $n\neq 0$, то нет, поскольку (x+n,x+n)=0 при x=-n.

3. Произведение двух скалярных произведений (n, x)(n, y).

Ответ: Нет, поскольку (n, x)(n, x) = 0 при x, перпендикулярном n.

4. Произведение модуля |n| и скалярного произведения |(n,x)|.

Ответ: Если n=0, то не является, поскольку |n|(x,x)=0 при каждом x. Если $n\neq 0$, то является, поскольку совпадает с обычным скалярным произведением, умноженным на ненулевую константу.

5. Произведение модулей $|x| \cdot |y|$.

Ответ: Нет, поскольку (x,y-y)=0 не всегда равно (x,y)+(x,-y)=2(x,y). Например, это неверно для двух равных между собой ненулевых векторов.

9.2. Пример вычисления скалярного произведения, модулей и углов для многочленов

Рассмотрим многочлены t и t^3 и скалярное произведение $(f(t),g(t))=\int_{-1}^1 f(t)g(t)\,dt.$ Найдем модуль вектора t:

$$(t,t) = \int_{-1}^{1} t^2 dt = \frac{2}{3}$$

$$|t| = \sqrt{(t,t)} = \sqrt{\frac{2}{3}}$$

Затем найдем модуль вектора t^3 :

$$(t^3, t^3) = \int_{-1}^{1} t^6 dt = \frac{2}{7}$$

$$|t^3| = \sqrt{(t^3, t^3)} = \sqrt{\frac{2}{7}}$$

И с помощью скалярного произведения найдем угол между ними:

$$(t,t^3) = \int_{-1}^1 t^4 dt = \frac{2}{5}$$

$$\angle(t,t^3) = \arccos\frac{(t,t^3)}{|t||t^3|} = \arccos\frac{0.4}{\sqrt{\frac{4}{21}}} = \arccos\frac{\sqrt{21}}{5}$$

10. Неравенство Коши-Буняковского-Шварца. Неравенство треугольника

10.1. Неравенство Коши-Буняковского-Шварца

В евклидовом пространстве модуль скалярного произведения двух векторов не превосходит произведения их модулей, то есть $|(x,y)| \leq |x| \cdot |y|$. Это неравенство обеспечивает условие $\left|\frac{(x,y)}{|x||y|}\right| \leq 1$.

10.2. Доказательство неравенства Коши-Буняковского-Шварца

Пусть x,y - векторы в линейном пространстве, λ - произвольное вещественное число. Рассмотрим фукнцию от λ : $f(\lambda) = (\lambda x + y, \lambda x + y)$

$$0 \le (\lambda x + y, \lambda x + y) = \lambda^2(x, x) + 2\lambda(x, y) + (y, y)$$

Этот квадратный трехчлен всюду неотрицательный, следовательно, его дискриминант неположительный, то есть

$$D = 4(x, y)^{2} - 4(x, x)(y, y) \le 0;$$

Следовательно, $(x,y)^2 \leq (x,x)(y,y)$. Поэтому $|(x,y)| \leq |x||y|$.

Примечание

Если определитель скалярного произведения в виде $(f(t), g(t)) = \int_{-1}^{1} f(t)g(t) dt$, неравенство Коши-Неравенство Коши-Буняковского-Шварца принимает вид:

$$|(f(t), g(t))| = |\int_{-1}^{1} f(t)g(t) dt| \le \sqrt{\int_{-1}^{1} f^{2}(t) dt} \sqrt{\int_{-1}^{1} g^{2}(t) dt}$$

для любых двух функций f и g. непрерывных функций

Неравенство треугольника

В евклидовом пространстве выполнено неравенство треугольника: модуль суммы двух векторов не превосходит суммы их модулей. Пусть l_1 и l_2 – векторы. Докажем, что $|l_1+l_2| \leq |l_1|+|l_2|$.

$$(l_1 + l_2)^2 = l_1^2 + 2(l_1, l_2) + l_2^2 \le l_1^2 + 2|l_1||l_2| + l_2^2 = (|l_1| + |l_2|)^2$$

Извлекая из неравенства квадратный корень, получим $|l_1+l_2| \leq |l_1|+|l_2|$.

11. Матрица Грама. Свойства матрицы Грама

Рассмотрим скалярное произведение в трёхмерном евклидовом пространстве (базис не обязательно ортогональный).

$$x = x_1 e_1 + x_2 e_3 + x_3 e_3$$

$$y = y_1 e_1 + y_2 e_2 + y_3 e_3$$

Тогда
$$(x,y) = ((x_1e_1 + x_2e_3 + x_3e_3), (y_1e_1 + y_2e_2 + y_3e_3)) =$$

$$x_1y_1e_1^2 + x_1y_2(e_1, e_2) + x_1y_3(e_1, e_3) + x_2y_1(e_2, e_1) + x_2y_2e_2^2 + x_2y_3(e_2, e_3) + x_3y_1(e_3, e_1) + x_3y_2(e_3, e_2) + x_3y_3e_3^2 + x_2y_3(e_2, e_3) + x_3y_3(e_3, e_3) + x_3y_3($$

Записывать выражение в такой форме не очень удобно, поэтому используется знак суммирования:

$$(x,y) = \sum_{i,j=1}^{3} x_i y_j(e_i, e_j).$$

Множество коэффициентов можно записать в виде матрицы Грама:

$$\Gamma_{ij} = (e_i, e_j)$$
 $(i, j \text{ от 1 до 3}).$

То есть

$$\Gamma = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & (e_1, e_3) \\ (e_2, e_1) & (e_2, e_2) & (e_2, e_3) \\ (e_3, e_1) & (e_3, e_2) & (e_3, e_3) \end{pmatrix}$$

или

$$\Gamma = \begin{pmatrix} e_1^2 & (e_1, e_2) & (e_1, e_3) \\ (e_2, e_1) & e_2^2 & (e_2, e_3) \\ (e_3, e_1) & (e_3, e_2) & e_3^2 \end{pmatrix}.$$

Поэтому для случая n-мерного евклидова пространства мы можем записать скалярное произведение векторов в виде $(x,y)=\sum\limits_{i,j=1}^n x_iy_j\Gamma_{ij}.$

Для ортогонального базиса матрица Грама будет диагональной, для ортонормированного базиса будет единичной.

11.1. Свойства матрицы Грама:

- 1. Симметричность: $(e_i, e_j) = (e_j, e_i)$.
- 2. Все элементы на диагонали положительны. В самом деле, это скалярные квадраты базисных векторов, а векторы базиса ненулевые.
- 3. Наибольший элемент (или один из наибольших) находится на диагонали. Возьмём элемент базиса с наибольшим модулем. Тогда его скалярный квадрат будет больше произведения модулей каждых двух векторов и больше их скалярного произведения.

11.2. Примеры вычисления углов

1. Найти угол между векторами $x=\begin{pmatrix} 3\\1 \end{pmatrix}$ и $y=\begin{pmatrix} 1\\1 \end{pmatrix}$, если матрица Грама $\begin{pmatrix} 1&-2\\-2&5 \end{pmatrix}$. $(x,y)=(x,y)=\sum_{i,j=1}^2 x_i y_j \Gamma_{ij}=3\cdot 1-3\cdot 2-1\cdot 2+5=0,$ следовательно векторы ортогональные и угол равен $\frac{\pi}{2}$. Ответ: $\frac{\pi}{2}$.

2. Найти угол между векторами $x=\begin{pmatrix}1\\1\end{pmatrix}$ и $y=\begin{pmatrix}2\\1\end{pmatrix}$, если матрица Грама $\begin{pmatrix}1&-2\\-2&5\end{pmatrix}$.

$$(x,y) = (x,y) = \sum_{i,j=1}^{2} x_i y_j \Gamma_{ij} = 2 \cdot 1 + 1 \cdot (-2) + 2 \cdot (-2) + 5 = 1$$

$$\begin{split} |x| &= \sqrt{(x,x)} = \sqrt{1-2-2+5} = \sqrt{2} \\ |y| &= \sqrt{(y,y)} = \sqrt{4-2\cdot 2 - 2\cdot 2 + 5} = 1 \\ & \angle(x,y) = \arccos\frac{(x,y)}{|x||y|} = \arccos\frac{1}{\sqrt{2}} = \frac{\pi}{4} \end{split}$$

Ответ: $\frac{\pi}{4}$

12. Ортогонолизация

- получение ортогонального базиса из произвольного

Преимущества:

- удобная матрица Грама;
- удобство разложения по базису;
- каждый вектор можно выразить как нормаль к предыдущему.

Получение:

 $\Box f_1,\dots,f_n$ — исходный базис, g_1,\dots,g_n — искомый (ортогональный) базис; Возьмём $g_1=f_1$, тогда для получения g_2 нужно построить нормаль к $f_1(=g_1)$. Для этого разложим вектор f_2 на две составляющие: apanлenbhy f_2^{\parallel} и nepnehduky лярную f_2^{\perp} к g_1 .

По образовавшемуся из векторов треугольнику $|f_2^{\parallel}| = |f_2| \cdot \cos(f_2, g_1)$ и из скалярного произведения $(f_2, g_1) = |f_2| \cdot |g_1| \cdot \cos(f_2, g_1)$ получаем:

$$|f_2^{\parallel}| = \frac{(f_2, g_1)}{|g_1|}$$

Вдоль базисного g_1 направим $e \partial u h u u h b \ddot{u}$ вектор $e = \frac{g_1}{|g_1|}$, который, взятием $|f_2^{\parallel}|$ раз, даст вектор f_2^{\parallel} :

$$|f_2^{\parallel}| = |f_2^{\parallel}| \cdot e = \frac{(f_2, g_1)}{|g_1|} \cdot \frac{g_1}{|g_1|} \Rightarrow f_2^{\parallel} = \frac{(f_2, g_1)}{(g_1, g_1)} \cdot g_1$$

Тогда f_2^{\perp} получается из разности векторов $f_2-f_2^{\parallel}$, он и будет вторым вектором ортогонального базиса:

12

$$g_2 = f_2^{\perp} = f_2 - \frac{(f_2, g_1)}{(g_1, g_1)} \cdot g_1$$

Аналогично следующий вектор g_3 получаем как нормаль к двум предыдущим:

$$g_3 = f_3 - \frac{(f_3, g_1)}{(g_1, g_1)} \cdot g_1 - \frac{(f_3, g_2)}{(g_2, g_2)} \cdot g_2$$

Таким образом, формула получения ортогонального базиса имеет вид:

$$g_k = f_k - \sum_{i=1}^{k-1} \frac{(f_k, g_i)}{(g_i, g_i)} \cdot g_i$$

Пример

$$f_1=(1,3,-2)^T, f_2=(3,7,-2)^T-\text{исходный базис.}$$

$$\exists g_1=f_1=(1,3,-2)^T; \qquad g_2=f_2-\frac{(f_2,g_1)}{(g_1,g_1)}\cdot g_1$$

$$g_2=(3,7,-2)^T-\frac{3+21+4}{1+9+4}\cdot (1,3,-2)^T=(3,7,-2)^T-2\cdot (1,3,-2)^T=(3-2,7-6,-2+4)^T=(1,1,2)^T$$

$$\underline{\text{Проверка:}}\ (g_1,g_2)?\equiv 0: \qquad (g_1,g_2)=1+3-4=4-4=0-\text{верно.}$$

$$\underline{\text{Ответ:}}\ g_1=(1,3,-2)^T, g_2=(1,1,2)^T-\text{ортогональный базис.}$$

13. Ортогональные матрицы

Опр. Квадратная матрица A — ортогональная, если она невырождена и $A^T = A^{-1} \Leftrightarrow A \cdot A^T = A^T \cdot A = E$:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Строки ортогональной матрицы образуют ортонормированный базис (ОНБ):

$$orall \delta_i$$
 (строк) верно $\delta_i \perp \delta_{i+1} \Leftrightarrow (\delta_i, \delta_{i+1}) = 0$, при $i = \{1, \ldots, n-1\} \Rightarrow \delta_1 \cdot \delta_1 = a_{11}^2 + a_{12}^2 + \ldots + a_{1n}^2 = 1$, т.к. вектор, соответствующий δ_1 не \perp самому себе; $\delta_1 \cdot \delta_2 = a_{11}a_{21} + a_{12}a_{22} + \ldots + a_{1n}a_{2n} = 0$, как у \perp векторов

Аналогично получая подобные выражения для произведения других сочетаний строк, получаем

$$\delta_i \cdot \delta_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Пример

Матрица поворота в
$$\mathbb{R}^2$$
: $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$, $A^T = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$ $A \cdot A^T = \begin{pmatrix} \cos \alpha^2 + \sin \alpha^2 & \cos \alpha \sin \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha - \cos \alpha \sin \alpha & \sin \alpha^2 + \cos \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$

14. Ортогональные операторы. Связь ортогональности оператора и матрицы оператора

Ортогональные операторы

Опр. Линейный оператор L(x) называется ортогнальным (преобразованием), если он сохраняет скалярное произведение в евклидовом пространстве $\Leftrightarrow (A(x),A(y))=(x,y)$.

При таком преобразовании сохраняются:

1. длины (нормы) векторов

$$|(A(x), A(x))| = |(x, x)| \Rightarrow |A(x)| = |x|$$

2. углы между ними

$$\cos \angle \left(A(x), A(y)\right) = \frac{(A(x), A(y))}{|A(x)||A(y)|} = \frac{(x, y)}{|x||y|} = \cos \angle \left(x, y\right)$$

(!) 1 \Rightarrow 2:

$$(x+y,x+y) = |x+y|^2 = |x|^2 + |y|^2 + 2xy = (x,x) + (y,y) + 2(x,y) \Rightarrow$$
$$\Rightarrow 2(x,y) = (x+y,x+y) - (x,x) - (y,y)$$

– векторы правой части сохраняют норму (из 1) \Rightarrow в правой части сохраняется скалярное произведение: (A(x), A(y)) = (x, y).

Применив формулу скалярного произведения получим 2:

$$(A(x), A(y)) = |A(x)| \cdot |A(y)| \cdot \cos\left(A(x), A(y)\right) \Rightarrow$$

$$\Rightarrow \cos\angle\left(A(x), A(y)\right) = \frac{(A(x), A(y))}{|A(x)||A(y)|} = \frac{(x, y)}{|x||y|} = \cos\angle\left(x, y\right)$$

Ч.т.д.

Перечисленные свойства ортогонального оператора характеризуют его как обобщение понятия движения для п-мерного пространства.

Связь ортогональности оператора и матрицы оператора

Если в ОНБ матрица линейного оператора ортогональна, то сам оператор также ортогонален. Для ОНБ верно $(x,y)=x^Ty$, а для ортогональной матрицы $AA^T=E\ (A^T=A^{-1}).$

Тогда $(A(x),A(y))=x^TA^TAy=x^TEy=x^Ty=(x,y)$ — выполняется сохранение скалярного произведения \Rightarrow оператор ортогональный.

Обратное тоже верно: $\forall x,y: x^Ty = x^TA^TAy \Rightarrow \exists \ x = (0,\dots,0,\ 1,\ 0,\dots,0)^T$ с 1 на месте $i,\exists \ y = (0,\dots,0,\ 1,\ 0,\dots,0)^T$ с 1 на месте $j; (AA^T)_{ij} = \delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i\neq j \end{cases}$ – условие ортогональности матрицы выполняется.

15. Инвариантные подпространства

15.1. Определение:

Подпространство U линейного пространства L называется инвариантным относительно действия линейного оператора A, если $A(U) \subset L$.

Иными словами, действие оператора на инвариантном подпространстве не выводит за пределы этого подпространства.

15.2. Примеры:

- $\ker A$
- Im A
- $X(A,\lambda)$ Множество всех собственных векторов оператора A для собственного числа λ

Рассмотрим проекцию трёхмерного пространства на плоскость YOZ.

Тогда инвариантными подпространствами являются:

- плоскость YOZ
- каждая прямая в плоскости YOZ

- прямая ОХ
- нулевой вектор
- всё пространство

Конечно, нулевой вектор и всё пространство являются тривиальными примерами инвариантных подпространств.

16. Сопряжённый оператор. Самосопряжённый оператор.

16.1. Сопряжённый оператор. Определение:

Пусть A(x) - линейный оператор на евклидовом пространстве L.

Тогда оператор A^* называют сопряжённым к A, если для каждой пары векторов выполнено равенство $(A(x), y) = (x, A^*(y))$

Если A - матрица оператора A в ортонормированном базисе, то матрица оператора A^* равна матрице A^T , транспонированной к A.

В самом деле, $(A(x)^T, y) = x^T A^T y = x A^* y$ для всех столбцов координат x, y. Следовательно, $A* = A^T$

16.2. Самосопряжённый оператор. Определение:

Линейный оператор A на евклидовом пространстве называется самосопряжённым, если < A(x), y)>=< x, A(y)>

16.3. Примеры:

• Тождественный оператор

Справа и слева - скалярное произведение векторов

• Гомотетия с коэффициентом t(вещественное число)

Справа и слева - скалярное произведение векторов, умноженное на t

• Проекция на плоскость в трёхмерном евклидовом пространстве с обычным скалярным произведением.

Пусть $x = x_1 + x_2, x_1$ - проекция на нормаль, x_2 - проекция на плоскость.

у = y_1 + y_2 , y_1 - проекция на нормаль, y_2 - проекция на плоскость.

Тогда
$$\langle A(x), y \rangle = \langle A(x_1 + x_2), y \rangle = \langle x_2, y_1 + y_2 \rangle = \langle x_2, y_2 \rangle$$

Тогда
$$\langle x, A(y) \rangle = \langle (x_1 + x_2), A(y_1 + y_2) \rangle = \langle x_1 + x_2, y_2 \rangle = \langle x_2, y_2 \rangle$$

Следовательно, < A(x), y > = < x, A(y) >

16.4. Свойство собственных векторов самосопряжённого оператора:

Собственные векторы самосопряжённого оператора, соответствующие разным собственным числам, ортогональны.

16.4.1. Доказательство:

Пусть λ, μ - собственные числа самосопряжённого оператора A.

Тогда
$$A(x) = \lambda x, A(y) = \mu y.$$

$$\lambda \not\equiv \mu$$
.

$$\langle A(x), y \rangle = \langle x, A(y) \rangle$$

$$\lambda < x, y > = \mu < x, y >$$

$$<\lambda - \mu> < x, y> = 0$$

Поскольку ($\lambda - \mu \not\equiv 0$), получим <x, y> = 0

Следовательно, х ортогонально у.

18. Метод Лагранжа (выделение полных квадратов)

Этот метод удобен для приведения к диагональному виду квадратичной формы, если собственные числа иррациональные. В общем случае:

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j = a_{11} x_1^2 + a_{12} x_1 x_2 + \dots$$

Тогда алгоритм диагонализации:

- 1. Разделить на a_{11} (или вынести за скобку)
- 2. Рассмотреть все слагаемые, содержащие x_1
- 3. Вместе с выражением x_1^2 выделить полный квадрат (возможно, прибавляя и вычитая квадраты остальных x_i), воспользовавшись формулой:

$$(\sum_{i=1}^{n} a_i)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{i,j=1,i< j}^{n} a_i a_j$$

- 4. Сделать замену переменной $y_1 = x_1 + \sum_{i=2}^n t_i x_i$
- 5. В итоге квадратичная форма примет вид:

$$y_1^2 + \sum_{i,j=2}^n a_{ij} x_i x_j$$

где $\sum_{i,j=2}^n a_{ij} x_i x_j$ — квадратичная форма с меньшим количеством слагаемых. После этого остаётся

лишь повторять алгоритм до того момента, пока квадратичная форма не примет вид:

$$\sum_{i=1}^{n} b_i y_i^2$$

Если в квадратичной форме все коэффициенты на главной диагонали равны 0 ($a_{ii}=0$, остались только слагаемые вида $a_{ij}x_ix_j, i \neq j$) можно воспользоваться следующей заменой:

$$\begin{cases} x_i = x_i' - x_j' \\ x_j = x_i' + x_j' \end{cases}$$

Простейший пример подобного:

$$x_1x_2 = (x_1' - x_2')(x_1' + x_2') = x_1'^2 - x_2^2$$

В итоге форма также придёт к диагональному виду

18.1. Пример

$$4x_1^2+x_2^2+3x_3^2-4x_1x_2+2x_1x_3+2x_2x_3$$
 Поделим на $a_1=4$
$$x_1^2+\frac{1}{4}x_2^2+\frac{3}{4}x_3^2-x_1x_2+\frac{1}{2}x_1x_3+\frac{1}{2}x_2x_3$$
 Выделим полный квадрат
$$(x_1-\frac{1}{2}x_2+\frac{1}{4}x_3)^2=x_1^2+\frac{1}{4}x_2^2+\frac{1}{16}x_3^2-x_1x_2+\frac{1}{2}x_1x_3-\frac{1}{4}x_2x_3$$
 Сделаем замену $y_1=x_1-\frac{1}{2}x_2+\frac{1}{4}x_3$
$$y_1^2+\frac{11}{16}x_3^2+\frac{3}{4}x_2x_3$$
 Поделим на
$$\frac{16}{11}y_1^2+x_3^2+\frac{11}{11}x_2x_3$$
 Выделим полный квадрат
$$(x_3+\frac{6}{11}x_2)^2=x_3^2+\frac{36}{121}x_2^2+\frac{12}{11}x_2x_3$$
 Сделаем замену $y_2=x_3+\frac{6}{11}x_2$ Сделаем замену $y_3=x_2$ Сделаем замену $y_3=x_2$ Сделаем замену $y_3=x_2$ Сделаем замену $y_3=x_2$ Сделаем замену $y_4=x_2$ — $\frac{36}{121}y_1^2+y_2^2-\frac{36}{121}y_3^2$ — диагональный вид Сделав ещё одну замену $z_1=\frac{4y_1}{\sqrt{11}}, z_2=y_2, z_3=\frac{6y_3}{11}$ можно прийти к каноническому виду $z_1^2+z_2^2-z_3^2$ — канонический вид

19. Закон инерции квадратичной формы

Закон инерции квадратичных форм гласит: число положительных, отрицательных и нулевых диагональных коэффициентов квадратичной формы не зависит от невырожденного преобразования, с помощью которого квадатичная форма приводится к диагональному виду.

Число положительных диагональных коэффициентов квадратичной формы называется положительным индексом инерции квадратичной формы. Число отрицательных диагональных коэффициентов квадратичной формы называется отрицательным индексом инерции квадратичной формы. Разность между положительным и отрицательным индексами квадратичной формы называется сигнатурой квадратичной формы. Число ненулевых диагональных коэффициентов называется рангом квадратичной формы.

19.1. Доказательство

Пусть закон инерции не работает. Тогда разными преобразованиями одной квадратичной формы можно получить две формы с различным числом положительных, отрицательных и нулевых диагональных коэффициентов.

$$F(x) = \sum_{i,i=1}^{n} a_{ij} x_i x_j$$

Приведём к двум диагональным видам ($\forall \alpha, b > 0$):

$$F(x) = \sum_{i=1}^{k} \alpha_i y_i^2 - \sum_{i=k+1}^{n} \alpha_i y_i^2$$

$$F(x) = \sum_{i=1}^{k} b_i z_i^2 - \sum_{i=k+1}^{n} b_i z_i^2$$

Так как это одна и та же форма, то справедливо равенство:

$$\sum_{i=1}^{k} \alpha_i y_i^2 - \sum_{i=k+1}^{n} \alpha_i y_i^2 = \sum_{i=1}^{l} b_i z_i^2 - \sum_{i=l+1}^{n} b_i z_i^2$$

Пусть k>l, т. е. количества не совпали. Тогда найдётся такой ненулевой набор $x_1,...,x_n$, что:

$$\begin{cases} y_{k+1} = \sum_{i=1}^n c_{k+1,i} x_i = 0 \\ y_{k+2} = \sum_{i=1}^n c_{k+2,i} x_i = 0 \\ \vdots \\ y_n = \sum_{i=1}^n c_{n,i} x_i = 0 \\ z_1 = \sum_{i=1}^n d_{1,i} x_i = 0 \\ z_2 = \sum_{i=1}^n d_{2,i} x_i = 0 \\ \vdots \\ z_l = \sum_{i=1}^l d_{l,i} x_i = 0 \end{cases}$$
 — СЛУ с n неизвестных $(x_1, ..., x_n)$

Количество уравнений: (n-k)+l=n-(k-l)< n, где n-k- количество уравнений для y,l- количество уравнений для z,k-l>0 по условию.

СЛУ однородное, содержит n неизвестных и n-k+l < n уравнений, следовательно найдётся ненулевое решение. Обозначим его за $x_1^*,...,x_n^*$

Подставим набор в равенство квадратичных форм и оно сократится до:

$$\sum_{i=1}^{k} \alpha_i y_i^2 = -\sum_{i=l+1}^{n} b_i z_i^2$$

Для того, чтобы $y_1,...,y_k=0$ и $z_{l+1},...,z_n=0$ необходимо, чтобы все $x_i^*=0$, но набор был взят ненулевой, следовательно условие k>l приводит к противоречию. Аналогично и для k< l.

19.2. Пример

Приведём квадратичную форму $x_1x_2 + 2x_1x_3 + 4x_2x_3$ к диагональному виду:

$$\begin{cases} y_1 = \frac{1}{2}x_1 + \frac{1}{2}x_2 + 3x_3 \\ y_2 = -x_1 + x_2 - 2x_3 \\ y_3 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 = y_1 - \frac{1}{2}y_2 - 4y_3 \\ x_2 = y_1 + \frac{1}{2}y_2 - 2y_3 \\ x_3 = y_3 \end{cases}$$

$$\begin{cases} z_1 = \frac{1}{2}x_1 + \frac{1}{2}x_2 + 3x_3 \\ z_2 = -\frac{1}{2}x_1 + \frac{1}{2}x_2 - x_3 \\ z_3 = 2x_3 \end{cases} \Rightarrow \begin{cases} x_1 = z_1 - z_2 - 2z_3 \\ x_2 = z_1 + z_2 - z_3 \\ x_3 = \frac{1}{2}z_3 \end{cases}$$

Получим два диагональных вида:

$$y_1^2 - \frac{1}{4}y_2^2 - 8y_3^2 \qquad \qquad z_1^2 - z_2^2 - 2z_3^2$$

При этом можно заметить, что оба вида имеют одинаковое количество положительных и отрицательных коэффициентов.

20. Примеры приведения уравнения кривой второго порядка и поверхности второго порядка к канонической форме

Выбор метода зависит от поставленной задачи. Вычисление с помощью собственных векторов и ортонормированного базиса позволяет применить движение плоскости или пространства и решить вычислительные задачи.

Преобразование методом Лагранжа удобнее применить, если собственные числа иррациональны. При этом некоторые величины (например, координаты центра при его наличии) найти удастся, но некоторые другие (например, координаты фокусов) не удастся. С применением закона инерции квадратичной формы можно определить тип кривой или поверхности, но вычислительные возможности ниже. Однако вычислений может потребоваться меньше.

20.1. Приведение уравнения кривой второго порядка $11x^2 + 19y^2 + 6xy - 28x - 44y = 14$ к каноническому виду

$$\begin{split} &A = \begin{pmatrix} 11 & 3 \\ 3 & 19 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 11 - \lambda & 3 \\ 3 & 19 - \lambda \end{pmatrix} \\ &|B| = \lambda^2 - 30\lambda + 200 = 0 \qquad \qquad \lambda_{1,2} = 10; 20 \\ &\lambda = 20: \begin{pmatrix} -9 & 3 \\ 3 & -1 \end{pmatrix} \Rightarrow 3x_1 = x_2 \Rightarrow e_1 = t \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\ &\lambda = 10: \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix} \Rightarrow x_1 = -3x_2 \Rightarrow e_2 = t \begin{pmatrix} 3 \\ -1 \end{pmatrix} \\ &C = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix} - \text{optothadabas} \Rightarrow C^{-1} = C^T \\ &C^{-1} = C^T, C^T = C \Rightarrow C^{-1} = C \\ &\begin{cases} x = \frac{x' + 3y'}{\sqrt{10}} \\ y = \frac{3x' - y'}{\sqrt{10}} \end{cases} &\begin{cases} x' = \frac{x + 3y}{\sqrt{10}} \\ y' = \frac{3x - y}{\sqrt{10}} \end{cases} \\ &\frac{11(x' + 3y')^2 + 19(3x' - y')^2 + 6(x' + 3y')(3x' - y')}{10} - \frac{28(x' + 3y') + 44(3x' - y')}{\sqrt{10}} = 14 \\ &20x'^2 + 10y'^2 - 16\sqrt{10}x' - 4\sqrt{10}y' = 14 \\ &20(x' - \frac{4}{\sqrt{10}})^2 - 32 + 10(y' - \frac{2}{\sqrt{10}})^2 - 4 = 14 \\ &20(x' - \frac{4}{\sqrt{10}})^2 + 10(y' - \frac{2}{\sqrt{10}})^2 = 50 \end{cases} &|:50$$

$$x' - \frac{4}{\sqrt{10}} \begin{pmatrix} 2 \\ \sqrt{10} \end{pmatrix} + \frac{2}{\sqrt{10}} \begin{pmatrix} 2 \\ \sqrt{10} \end{pmatrix} = 1 \end{split}$$

$$\begin{cases} x'' = y' - \frac{2}{\sqrt{10}} \\ y'' = x' - \frac{4}{\sqrt{10}} \end{cases}$$

$$\begin{cases} x' = y'' + \frac{4}{\sqrt{10}} \\ y' = x'' + \frac{2}{\sqrt{10}} \end{cases}$$

$$\frac{x''}{\sqrt{5}}^2 + \frac{y''}{\sqrt{\frac{5}{2}}}^2 = 1$$

20.2. Приведение поверхности второго порядка $4x^2 + y^2 + 3z^2 - 4xy + 2xz + 2yz - 2x + 4y + 2z = 0$ к канонической форме

$$(2x - y - z)^{2} = 4x^{2} + y^{2} + z^{2} - 4xy - 4xz + 2yz$$

$$(2x - y + z)^{2} + 2(z^{2} + 3xz) - 2x + 4y + 2z = 0$$

$$2(z + \frac{3}{2}x)^{2} = 2z^{2} + 6xz + \frac{9}{2}x^{2}$$

$$(2x - y - z)^{2} + 2(z + \frac{3}{2}x)^{2} - \frac{9}{2}x^{2} - 2x + 4y + 2z = 0$$

$$\begin{cases} x' = 2x - y - z \\ y' = z + \frac{3}{2}x \\ z' = x \end{cases}$$

$$\begin{cases} x = z' \\ y = -x' - y' + \frac{7}{2}z' \\ z = y' - \frac{3}{2}z' \end{cases}$$

$$x'^{2} + 2y'^{2} - \frac{9}{2}z'^{2} - 2z' - 4x' - 4y' + 14z' + 2y' - 3z' = 0$$

$$x'^{2} + 2y'^{2} - \frac{9}{2}z'^{2} - 4x' - 2y' + 9z' = 0$$

$$(x' - 2)^{2} - 4 + 2\left(y' - \frac{1}{2}\right)^{2} - \frac{1}{2} - \frac{9}{2}(z' - 1)^{2} + \frac{9}{2} = 0$$

$$(x' - 2)^{2} + 2\left(y' - \frac{1}{2}\right)^{2} - \frac{9}{2}(z' - 1)^{2} = 0$$

$$\begin{cases} x'' = x'' - 2 \\ y'' = y' - \frac{1}{2} \\ z'' = z'' - 1 \end{cases}$$

$$\begin{cases} x'' = x'' + 2 \\ y' = y'' + \frac{1}{2} \\ z' = z''' + 1 \end{cases}$$

$$x''^2 + \left(\frac{y''}{\frac{1}{\sqrt{2}}}\right)^2 - \left(\frac{z''}{\frac{\sqrt{2}}{3}}\right)^2 = 0$$