

Jimeng Sun

Outline

- Autoencoder
- Variants of autoencoders
 - Sparse autoencoder
 - Denoising autoencoder
 - Stacked autoencoder
- Healthcare applications of autoencoders

Compression & decompression

256 X 256 dimensions

128 dimensions

decoder

256 X 256 dimensions

Learning the latent representation of a given sample **x**

Decoding $r = g_{\theta'}(h) = \sigma_2(W'h + b')$

Minimize reconstruction error

$$L(oldsymbol{x},oldsymbol{r})=||oldsymbol{x}-oldsymbol{r}||^2$$
 for Gaussian input

$$L(\boldsymbol{x}, \boldsymbol{r}) = -\sum_{i} [\boldsymbol{x}_{i} \log \boldsymbol{r}_{i} + (1 - \boldsymbol{x}_{i}) \log (1 - \boldsymbol{r}_{i})]$$

for binary input

Properties of Autoencoder

- Unsupervised: no labels are required
- Data specific: compress similar data to the training data
- Lossy: reconstruction will not be identical to the input

Quiz: Autoencoder

Encoding

Decoding

- Compress and decompress by finding patterns
- What is the latent pattern h?

$$\mathbf{h} = [17, 10, 5]$$

Quiz: Autoencoder

$$\mathbf{z} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Encoding

$$\mathbf{z} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$
 $\mathbf{x}' = \sigma'(\mathbf{W}'\mathbf{z} + \mathbf{b}')$ Encoding Decoding

- Assume linear activation σ and σ'
 - What is the encoding matrix W?
 - What is the encoding matrix W'?

$$V = \begin{bmatrix} 100000 \\ 001000 \\ 000010 \end{bmatrix} \qquad W' = \begin{bmatrix} 010 \\ 020 \\ 001 \\ 002 \end{bmatrix}$$

100

200

Variants of autoencoder

- Sparse autoencoder
- Denoising autoencoder
- Stacked autoencoder

Sparse Autoencoder

Sparse Autoencoder: Ideas

Sparsity in h

Sigmoid activation in the hidden layer ~ between 0 and 1

$$\hat{
ho}_j = rac{1}{n} \sum_{i=1}^n h_j[i]$$
 Sparsity level = Average activation

Target sparsity level ρ =0.05

$$\arg\min_{\theta,\theta'} \frac{1}{n} \sum_{i=1}^n L(\boldsymbol{x}_i, \boldsymbol{r}_i) + \gamma \sum_{j=1}^k \mathcal{D}_{KL}(\rho||\hat{\rho}_j)$$

Regularization term

Denoising Autoencoders

Corrupt the input sample x

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders, ICML' 08

Denoising Autoencoders

Try to reconstruct the original uncorrupted input x

Stacked Autoencoder

Stacked multiple autoencoders together

Stacked Autoencoder: layer-wise pretraining

Layer-wise training

Stacked Autoencoder: layer-wise pretraining

Layer-wise training

Stacked Autoencoder: layer-wise pretraining

Layer-wise training

Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data

Thomas A. Lasko, Joshua C. Denny, Mia A. Levy

Lasko, Thomas A., Joshua C. Denny, and Mia A. Levy. 2013. "Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data." *PloS One* 8 (6):e66341.

Computational Phenotype Discovery

Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
Lasko, Thomas A., Joshua C. Denny, and Mia A. Levy, PloS one 2013

- Learn phenotypic patterns from EHRs without expert knowledge
 - Learn temporal serum uric acid patterns to classify gout VS acute leukemia

Impute missing data

 Gaussian process regression is used to convert discrete observation into continuous estimate

Phenotype Discovery

Modeling pipeline

m, sSequence of means & standard deviations

Gaussian Process Regression

Hidden layer h₁

Input x (30-day window)

Two-layer Sparse autoencoder

Loss function
$$L_N(\mathbf{m},\hat{\mathbf{m}},\mathbf{s}) = \sum_{i=1}^M \left[\frac{\hat{m}_i - m_i}{s_i}\right]^2$$

Experiment setup

Data: 4368 serum uric acid time-series from Vanderbilt

Table 1. Statistical characteristics of uric acid sequences in gout vs. leukemia.

Attribute	Gout	Leukemia
Number of Sequences	2194	2174
Minimum	0.9	0.0
1st Quartile	6.2	3.0
Median	7.7	4.2
3rd Quartile	9.5	5.6
Maximum	34.0	75.0

Phenotype Patterns

Computational Phenotype Discovery

Patterns at the 2nd layer of the sAE

Classification performance

Accurate classification can be achieved using hidden layers from autoencoder

Table 3. Unsupervised features were as powerful as expertengineered features in distinguishing uric acid sequences from gout vs. leukemia.

Classifier	AUC (training)	AUC [CI] (test)
First-Layer Learned Features	0.969	0.972 [0.968, 0.979]
Second-Layer Learned Features	0.965	0.972 [0.968, 0.979]
Expert Engineered Features	0.968	0.974 [0.966, 0.981]
Baseline (sequence mean only)	0.922	0.932 [0.922, 0.944]

Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

Riccardo Miotto, Li Li, Brian A. Kidd & Joel T. Dudley

Miotto, Riccardo, Li Li, Brian A. Kidd, and Joel T. Dudley. 2016. "Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records." *Scientific Reports* 6 (May):26094.

Deep Patient

 Learn unsupervised representations of patients for general predictive healthcare

 Multiple denoising autoencoders (dAE) are stacked together to form the deep learning model

Deep Patient: Experiment

- Data
 - From 700K patients from Mount Sinai hospital
 - Use multiple data modalities
 - Diagnosis/medication/procedure codes, lab tests, clinical notes, demographic info
 - Output labels
 - 78 diagnosis codes
- use sAE features to train a random forest to classify 78 diagnosis codes

Deep Patient: Results in AUC

Time Interval = 1 year (76,214 patients)					
	Area under the ROC curve				
Disease	RawFeat	PCA	DeepPatient		
Diabetes mellitus with complications	0.794	0.861	0.907		
Cancer of rectum and anus	0.863	0.821	0.887		
Cancer of liver and intrahepatic bile duct	0.830	0.867	0.886		
Regional enteritis and ulcerative colitis	0.814	0.843	0.870		
Congestive heart failure (non-hypertensive)	0.808	0.808	0.865		
Attention-deficit and disruptive behavior disorders	0.730	0.797	0.863		
Cancer of prostate	0.692	0.820	0.859		
Schizophrenia	0.791	0.788	0.853		
Multiple myeloma	0.783	0.739	0.849		
Acute myocardial infarction	0.771	0.775	0.847		

Outro

- Autoencoder
- Variants of autoencoders
 - Sparse autoencoder
 - Denoising autoencoder
 - Stacked autoencoder
- Healthcare applications of autoencoders

