专业: 光电信息科学与工程

姓名: 毛永奇

学号: 3220103385

洲沙大学实验报告

实验名称: 集成触发器的应用 指导老师: 周箭 实验类型: 探究型

一、实验目的

- 1、掌握集成触发器的功能测试方法;
- 2、熟悉触发器的两种触发方式(电平、边沿触发)及其触发特点;
- 3、了解集成触发器的应用;

二、实验内容、实验电路和实验原理

(实验芯片引脚图)

- 1、测试集成触发器 (D 触发器 74xx74 和 JK 触发器 74xx107) 的逻辑功能;
- 2、触发器的功能转换;
- 3、利用集成触发器产生功能电路(单脉冲发生器);

三、主要仪器设备与实验元器件

74xx74 芯片一个,74xx107 芯片一个,数字电路实验箱,其他逻辑门电路芯片若干。

四、实验步骤与操作方法

- 1、将芯片插入实验箱,并给其上电;
- 2、分别测试芯片的复位端和置位端功能是否正常;
- 3、测试芯片逻辑功能是否正常,并确定芯片的触发方式(上升沿、下降沿、高电平);
- 4、设计并实现功能转换电路,完成触发器类型的转换。先取 JK 触发器,将其 J 看成 \underline{D} ,使用两个与非门取非后,输入 K 端,即可得到 D 触发器的表达式。再将时钟信号先用两个与非门取非,然后再输入 CP 端,即可实现由下降沿触发变成上升沿触发。

- 5、接下来再将转换好的 D 触发器变成 T 触发器。只需要将输出 Q 取非后再输入 D (J) 端即可,再撤去 CP 端的非门,变回下降沿触发。
 - 6、使用 D 触发器实现单脉冲发生器, 电路图如下:

- 7、系列脉冲接 2Hz 低频信号,将 Q1 和 Q2 接到 LED 灯,手动脉冲接逻辑开关,不断开关逻辑开关,观察 LED 闪烁情况;
- 8、系列脉冲接 1024Hz 高频信号,将 Q1 和 Q2 信号输入示波器,手动脉冲接逻辑开关,不断开关逻辑开关,在示波器上观察 Q1 和 Q2 信号的波形;
 - 9、系列脉冲和手动脉冲都接高频信号, Q1 和 Q2 信号输入示波器, 观察波形;

五、实验数据记录和处理

- 1、芯片功能测试正常, D芯片为上升沿触发, JK 芯片为下降沿触发;
- 2、下图为 JK->D 触发器的特征方程转换分析过程

下图为示波器的观察波形,蓝色为时钟脉冲,频率为1kHz

可见此时触发器虽然实现了 D 触发器的逻辑功能, 但仍然保持了下降沿触发的特征,可以将时钟脉冲取 非来实现上升沿触发。 D转 T'触发器只需要将 O 非输入到 D 即可,实验中功能验证正常。

3、单脉冲发生器。

使用低频和 LED 观察时,能明显发现,开关一次逻辑开关,Q1 灯闪烁完之后 Q2 灯开始闪烁,且 Q2 灯闪烁时间明显长。

下图是高频系列脉冲和低频手动脉冲的信号图,上方信号为 Q2,下方为 Q1。可见此时 Q2 的脉冲宽度约 Q1 的两倍。符合实验预期。

下图为高频系列脉冲和高频手动脉冲的信号图,

左图两列脉冲都为 1kHz, 右图两者频率不同, 通过可变频率调节器改变手动脉冲或者系列脉冲, 可以得到一系列不同的信号图。

六、实验结果分析

触发器功能检测以及功能转换实验都符合实验预期,下面简单分析一下单脉冲发生器。

当手动触发脉冲为低频时,其开始触发时,系列脉冲很快也进行了触发,Q1 持续时间将小于一个脉冲,而后触发 Q2,强制置零 Q1,Q2 将刚好持续一个脉冲周期。如下图所示。

当手动脉冲和系列脉冲周期一样,且相位一致时,就可以得到两列只有相位差的脉冲信号。如下图所示。

简单分析可以发现, Q1 和 Q2 的周期为 CP 脉冲的 3 倍。

而实验中,由于 CP1 和 CP2 接的是同样的脉冲信号,所以完美地复现了理论分析结果(相位一致),且测量频率 341.3Hz 也约为 1kHz 的三分之一。

若两个高频信号的周期不一致,且非简单整数比,我们能够观察到 Q1 会输出不同的脉宽信号,这是因为两个时钟脉冲周期比较复杂,要很多次不同的脉冲才能组成一个周期。

下面为仿真的补充,因为实际实验没有四踪示波器。

(上方为 Q2 和其时钟信号,下方为 Q1 和其时钟信号)

可以看到使用的 D 触发器皆为上升沿触发,且在 Q1 高电位时,在上升沿 Q2 触发高电位,强制置 Q1 为 0。并且在随意改变时钟信号频率比例时,Q1 的波形脉宽会发生变化,这是由于其被强制置 0 的时机不稳定(因为时钟频率不是简单整数比)

(时钟频率 1:1)

七、讨论、心得

本次实验中,我们趁热打铁,将刚学会的触发器知识应用于实际,制作了简单的单脉冲发生器,并探究了其中的一些原理,巩固了知识,又探索了新知。

但这次实验中我也发现一些问题,在设计触发器转换电路时,我的设计中只需要用到简单的非门就可以了,但由于我对各个芯片对应的门电路并不熟悉,所以只能使用上一节课使用过的与非门,而这意味着将门电路复杂化了。所以后续做实验前,我们得先了解一下各个芯片对应的门电路,以便在后续实验中,更加简洁、迅速地实现所需电路功能。

此外,学习使用 multisim 进行仿真,熟悉了一些数电器材的使用。