Matroids And their Graphs

o.mcdonnell4@nuigalway.ie

19 January 2018

1 Graphic Matroids

Question: 1 Why is G not a matroid(graphical hint?)?

Question: 1 Is P(E) a graphic matroid(Where P(E) is the power set of he ground set E)?

Let G be a graph and I be the set of all cyclefree subgraphs of G Let $A, B \in I$ with |A| = |B| + 1

To prove I3 of the definition of a *matroid*, We show that for some $a \in A, B \cup \{a\} \in I$ we should consider $B \cup \{a\}$ for each $a \in A$.

Proof:

Now suppose |A|>|B| and that |A|=|B|+1 Let $|A\cap B|=s$, $|A\setminus B|=r$, |A|=s+r and |B|=s+r-1 , So $|B\setminus A|=r-1$

Suppose $A \setminus B = \{a_1, a_2,, a_r\}$ Suppose $B \cup \{a_i\} \notin I$ for each $i \in \{1, 2, ...\}$

Consider a_i for i = 1, 2, ... must be a path $b_{i1}, b_{12}, ..., b_{ir}$ of edges in B such that a_i make a circuit

Insert demonstration graph here!

Notation: $P(b_j, b_k)$ denotes a path in B from edges b_j to b_k

But $P(b_j, b_k) \cap A$ is not necessarily disjoint if $P(b_j, b_k) \subset A$ then $P(b_j, b_k) \cup \{a_i\}$ would be a circuit and then $A \notin I$, so at least one of the $(b_i \in P(b_j, b_k)) \in B \setminus A$

So we have a_1 joined to $b_1 \dots a_r$ to b_r

Case 1: The b_i 's are distinct

The b_i 's are distinct and as shown previously each of the b_i 's must be in $|B \setminus A|$ in order to avoid a circuit in A.

Therefore, $|B| \geqslant s + r$ as |A| = s + rContradicting |A| > |B|

Hence, I3 holds

Case 2: When the b_i 's are not all distinct

Let $b_1 = b_2$. Now |A| = |B| + 2

Again demo graph to be added depicting the two separate graphs and then the joined version highligting b1=b2

We use the same argument as in Case 1 only in this case we need two distinct $b_i \in P(b_j, b_k)$ where $b_i \in B \setminus A$ such that $P(b_j, b_k)\{a_i\}$ is a cycle.

Otherwise, $P(b_j,b_k)\subset A$ then $P(b_j,b_k)\cup\{a_i\}$ would be a circuit and then $A\notin I$

This as before violates the maximality of A. As now, |B| > |A|, and we have a contradiction.

Hence I3 holds.