Data Analytics CS301 Modeling: Formal Basics

Week 09
Spring 2023
Oliver BONHAM-CARTER

Interactive Plots: Covid-19 Cases

Models as Plots: Covid-19 Cases

https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/forecasting-us.html

Good Reads

• How canceled events and self-quarantines save lives, in one chart

https://www.vox.com/2020/3/10/21171481/coronavirus-us-cases-quarantine-cancellation

The "Stuff" of Knowledge

- How do we use data to explain or argue something?
- How can we make types of predictions?

Modeling Basics

- What are models?
 - Data does not provide much insight unless something can be learned from it.
 - The ability to use data to extract meaning and extra value (the learning)
- Let's talk about...
 - How to extract some meaning from your data
 - How to make predictions based on training by data

Types of Models (i)

Support Vector Machines

 Supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

Generalized Linear Models

 Flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution

Generalized additive models

 Generalized linear model in which the linear predictor depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions

Types of Models (ii)

Linear Regression

- Linear approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X
- (we have sort-of begun this study already: lines in scatter plots)

LOESS Regression

 Combining much of the simplicity of linear least squares regression, but building with the flexibility of nonlinear regression.

Types of Models (iii)

Logistic Regression

Models
 where the
 dependent
 variable is
 categorical
 (i.e., 0's or
 1's as
 factors)

How Do We Answer Complex Questions?

- Modeling: We employ a computational framework based-on historical data trends.
- Prediction: We play with the framework to see what happens when we apply changes a variable to see what happens ...

Ideally, functions are mathematical descriptions of relationships

• If one variable *completely* determines another, every (x, y) data point will fall on the function's line.

 This is what real data looks like on a good day!

Relationships Between Variables

- If the actual relationship is affected by other variables, data points may not fall directly on the function-line.
- Noise: The greater the effect of other variables, the weaker the relationship. This is normally the situation with real data.

So, A Model, Then?

- Noise is what we get in data when not every point does what it is supposed to do.
- Modeling attempts to more-correctly identify functional relationships in noisy data.

Let's Talk Linear Models

- Linear regression: How much do/does my independent variable(s) influence my dependent variables?
- As one variable climbs, does the other also climb (decline) at some predicable rate?
- Can I impose some value into my model to determine a what-if type of question which is firmly based on my data?

Variables?

- **Independent variable:** a variable (often denoted by x) whose variation does not depend on that of another (i.e., time).
- **Dependent variables:** a variables (often denoted by *y*) that depends, by some law or rule (e.g., by a mathematical function), on the values of other variables (i.e., grades).
- Example: https://chart-studio.plotly.com/~bchapman27/73.embed

ALLEGHENY COLLEGE

Let's Talk Linear Models

- Linear regression (formally) is a function that draws a line from data
- The function f(x) has the form:

$$f(x) = \alpha + \beta x + \epsilon$$

- alpha: intercept
- Beta: a weighted slope
- Epsilon: account for the error
- Note: This f(x) will be a straight line for x

Just a Formula for a Line!

Another Linear Model

Residuals

- A residual is the difference between the actual value and the value predicted by the model (y-ŷ) for any given point.
- A least-squares regression model minimizes the sum of the squared residuals

- The Residual Sum of Squares is a measure of the discrepancy between the data and an estimation model.
- A small RSS value indicates a tight fit of the model to the data.

Types of Questions to Address With Data

Q1: Is crime influenced by yearly temperature?

File: crime.csv

Q2: What influence is there on earning potential and personal height?

File: wages.csv

Crime Data Set

• Is there a relationship between crime and temperature? State statistics from 2009.

```
rm(list = ls()) # remove old vars in memory
library(tidyverse)
# open the crime dataset from the data.
c <- file.choose() # set the filename
crime <- read.csv(c) # load and read the data.</pre>
```


Crime Data Set

```
View(crime) #or
```

tibble::as_tibble(crime) # dataframe

	state	abbr	low	murder	tc2009
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	Alabama	AL	-27	7.1	4337.5
2	Alaska	AK	-80	3.2	3567.1
3	Arizona	AZ	-40	5.5	3725.2
4	Arkansas	AR	-29	6.3	4415.4
5	California	CA	- 45	5.4	3201.6
6	Colorado	CO	-61	3.2	3024.5
7	Connecticut	СТ	-32	3.0	2646.3
8	Delaware	DE	-17	4.6	3996.8
9	Florida	FL	-2	5.5	4453.7
10	Georgia	GA	-17	6.0	4180.6

. . .

Exploratory Plots

```
#plot with general trend line
crime \%>% ggplot(aes(x = low, y = tc2009)) +
geom_point(alpha = I(1/4)) + geom_smooth()
#plot with linear model line
crime \%>\% ggplot(aes(x = low, y = tc2009)) +
geom point(alpha = I(1/4)) +
geom smooth(method = Im)
```


No Model: Just General Trends

crime %>% ggplot(aes(x = low, y = tc2009)) + geom_point(alpha = I(1/4)) + geom_smooth()

Linear Model: Predictions

crime %>% ggplot(aes(x = low, y = tc2009)) + $geom_point(alpha = I(1/4)) + geom_smooth(method = Im)$

The linear Model: used for predictions

The Linear Model

- How much does low (indep Var) influence tc2009 (dep Var)
- Linear model syntax

Im Model formula:
response ~ predictor(s) data

mod <- Im(tc2009 ~ low, data = crime)

Syntax

 Formulas only need to include the response and predictor variables

$$\bullet y = f(x) = \alpha + \beta x + \epsilon$$

#Syntax to Build the linear model:

Models Use Formulas

 $^{\bullet}$ R formulas are expressions built with " \sim " (tilda)

```
tc2009 ~ low
# Note: tc2009 is dependent variable and low is
independent variable
class(tc2009 ~ low)
# gives: [1] "formula" meaning that is a line equation
tc2009 = f(low) = \beta*low + \epsilon
```


response ~ explanatory

dependent ~ independent

outcome ~ predictors

Build Your Model!

```
mod <- lm(tc2009 \sim low, data = crime)
```

Dependent ~ independent

```
Call:
lm(formula = tc2009 ~ low, data = crime)

Coefficients:
(Intercept) low
4256.86 21.65
```


Intercept and Coefficient

mod

```
> mod
Call:
lm(formula = tc2009 ~ low, data = crime)
Coefficients:
(Intercept)
                      low
    4256.86
                    21.65
```


Coef

Shows the model's coefficients (I.e., intercept, slopes)

```
coef(mod)
coefficients(mod)
# (Intercept) low
# 4256.86158 21.64725
```

 α

Interpreting Models

Linear models are very easy to interpret

$$y = \alpha + \beta x + \epsilon$$

lpha is the expected value of y when x is 0.

 β is the expected increase in y associated with a one unit increase in x

Coefficients

```
coef(mod)
coefficients(mod)
# (Intercept) low
# 4256.86158 21.64725
```

The best estimate of tc2009 for a state with low = -10 is 4256.86 + 21.6 * (-10) = 4040.86

 $(x,y) \leftarrow (-10, 4040.86)$

This function is now my data!!

Based on our training using data, if x = -10, then y = 4040.86

The best estimate of tc2009 for a state with low = -10 is 4256.86 + 21.6 * (-10) = 4040.86

I can predict *y*, based on values of x!

Due to error, there may be a slight difference between expected and actual values

Coefficient Calculator Function for *mod*

```
# Function to compute estimated y value for an entered x
value
tellMeY <- function(x_int){</pre>
  cat(" intercept :", mod$coefficients[1] )
  cat("\n slope :", mod$coefficients[2] )
  y = mod\$coefficients[1] + x_int * mod\$coefficients[2]
  cat("\n Model predicts y = ", y, "from x = ", x_int)
# what if x = -10?
tellMeY(-10) # note: x = -10
```

```
y = intercept + slope * x
= alpha + beta*x
= b + mx
```


Forecasting **Trends** With a Simple Line

plot(crime\$low, crime\$low*mod\$coefficients[2] + mod\$coefficients[1])

Forecasting with predict()

```
?predict

crime %>% ggplot(aes(x = low, y = predict(mod))) +
geom_point(alpha = I(1/4))

crime %>% ggplot(aes(x = low, y = predict(mod))) +
geom_point(alpha = I(1/4)) + geom_smooth()
```


So, back to the Question...?

Q1: Is crime influenced by yearly temperature?

File: crime.csv

A: The data and its trained model suggest that there is a positive correlation between crime and temperature in the US

Aside: intercept terms

R includes an intercept term in each model by default

$$y = (\alpha) + \beta x + \epsilon$$

Study at x = 0? (Does x = 0 make sense here?)

Every linear model has a y intercept. Including a lets this term vary. Not including a forces the intercept to (0, 0).

- The *y*-intercept is the place where the regression line crosses the y-axis (where x = 0), and is denoted by *b* from y = mx + b
- **Meaningful interpretation**: Sometimes the *y*-intercept is relevant (and sometimes it is not)
- No meaning for the y-intercept when data is not present near the point where x = 0 (and the model suggests that data is present at this point)

Ex: A model where rain (x) is used to predict tree growth (y)

If rain = 0, then does tree_growth = 0? Always?

Intercept not relevant:
The regression line may cross *y*-axis at some other point (other than zero)

An Intercept Term: To Use or Not?

FYI: You can explicitly ask for an intercept by including the number one, 1, as a formula term. You can remove the intercept by including a zero or negative 1.

```
# equivalent - includes intercept

Im(tc2009 ~ 1 + low, data = crime)

Im(tc2009 ~ low, data = crime)

# equivalent - removes intercept

Im(tc2009 ~ low - 1, data = crime)

Im(tc2009 ~ 0 + low, data = crime)
```

Let's Test An Intercept

ALLEGHENY COLLEGE

Add the intercept

equivalent - includes intercept

 $mod_withIntercept <- Im(tc2009 ~ 1 + Iow, data = crime)$

crime %>% ggplot(aes(x = low, y =

predict(mod_withIntercept))) + geom_point(alpha = I(1/4))

+ geom_smooth()

Does this represent your data?

Let's Test An Intercept

Remove the intercept

equivalent - removes intercept

mod_noIntercept <- Im(tc2009 ~ low - 1, data = crime)

crime %>% ggplot(aes(x = low, y =

predict(mod_noIntercept))) + geom_point(alpha = I(1/4)) +

geom_smooth()

Does this represent your data?

Results: summary (mod)

```
> summary(mod)
Call:
lm(formula = tc2009 \sim low, data = crime)
Residuals:
    Min 1Q Median 3Q Max
-1134.36 -647.13 98.03 533.62 1344.30
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4256.86 233.44 18.236 < 2e-16 ***
      21.65 5.33 4.061 0.000188 ***
low
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 649.9 on 46 degrees of freedom
Multiple R-squared: 0.2639, Adjusted R-squared: 0.2479
F-statistic: 16.49 on 1 and 46 DF, p-value: 0.000188
```


R-squared Value

- Goodness of fit of a model: The R2 coefficient of determination describes how well the regression predictions approximate the real data points.
- How well do the indep vars explain the dep var?

R2 = 1, indep variable(s) predict dep variables

R2 = 0, no prediction

Residual standard error: 649.9 on 46 degrees of freedom Multiple R-squared: 0.2639, Adjusted R-squared: 0.2479 F-statistic: 16.49 on 1 and 46 DF, p-value: 0.000188

- How do I know if this model is any good?
- If,
 - p-value is between 0 and 0.01 (or)
 - p-value is between 0 and 0.05
- Then the model is significant
- The closer to zero, the better the model.

Residual standard error: 649.9 on 46 degrees of freedom Multiple R-squared: 0.2639, Adjusted R-squared: 0.2479 F-statistic: 16.49 on 1 and 46 DF, p-value: 0.000188

Study the p-Value

```
#Create a simple model
myX < -0:100
myY <- myX + 1
mod <- Im(myY ~ myX)
summary(mod)
```


#Create a simple model

myX < -0:100

Study the p-Value

```
myY <- myX + 1
Call:
                                                    mod <- lm(myY ~ myX)
lm(formula = myY \sim myX)
                                                    summary(mod)
Residuals:
             10 Median 30
      Min
                                              Max
-1.000e-13 -3.420e-16 1.157e-15 2.304e-15 1.242e-14
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.000e+00 2.057e-15 4.862e+14 <2e-16 ***
          1.000e+00 3.553e-17 2.814e+16 <2e-16 ***
myX
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.041e-14 on 99 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
F-statistic: 7.921e+32 on 1 and 99 DF, p-value: < 2.2e-16
Warning message:
In summary.lm(mod): essentially perfect fit: summary may be unreliable
```

Types of Questions to Address With Data

Q1: Is crime influenced by yearly temperature?

File: crime.csv

Q2: What influence is there on earning potential and personal height?

File: wages.csv

Consider This!

 Try making a model with the other data set to determine what influence height has on earning potential.

Load the Wages Data

Fit a linear model to the wages data set that predicts *earn* with *height*.

```
rm(list = ls()) # remove old vars
# open the wages.csv dataset from
the data.

w <- file.choose() # set the
filename

wages <- read.csv(w) # load and
read the data.</pre>
```


Do *Tall* People *Earn* More?

wages %>% ggplot(aes(x = height, y = earn)) + geom_point(alpha = I(1/4)) + geom_smooth() # add a line

wages %>% ggplot(aes(x = height, y = earn)) + geom_point(alpha = I(1/4)) + geom_smooth(method = Im) # linear model line

Try switching the x's and y's for another view.

Correlations: Earn and Height

```
# Find correlations using the "pearson"
method

cor(wages$earn, wages$height, method =
  "pearson")
```

```
> # Find correlations using the "pearson" method
> cor(wages$earn, wages$height, method = "pearson")
[1] 0.2916002
```


Make a Model

Where dependent var is *earn*And independent var is *height*

$$y = \alpha + \beta x + \epsilon$$

Summary of Model

summary(hmod)

Build your model's line equation from these coefficients!

```
> summary(hmod)
Call:
lm(formula = wages$earn ~ wages$height)
Residuals:
  Min
          10 Median 30
                             Max
-47903 -19744 -5184 11642 276796
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
             -126523
                         14076 -8.989 <2e-16 ***
Intercept)
                2387
                           211 11.312 <2e-16 ***
wages$height
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 29910 on 1377 degrees of freedom
Multiple R-squared: 0.08503, Adjusted R-squared: 0.08437
F-statistic: 128 on 1 and 1377 DF, p-value: < 2.2e-16
```


Earn Regressed Over height

```
hmod <- lm(earn ~ height, data = wages)
coef(hmod)
## (Intercept) height
## -126523.359 2387.196</pre>
```

$$earn = \alpha + \beta \times height + \epsilon$$

 $earn = -126523.36 + 2387.20 \times height + \epsilon$

An Estimation

The best estimate of earn for someone 68 inches tall is

$$earn = -126523.36 + 2387.20 \times$$
 $earn = 35806.24$

Conclusions Earn Regressed Over height

cor(wages\$earn, wages\$height, method = "pearson")

- Slight, but positive

hmod <- Im(earn ~ height, data = wages)

- Significant

Build a Model

- Fit a linear model to the wages data set
- How do we interpret the results?

Q: What happens when we regress *earn* over *race*?

Or, How does *race* influence *earn*?

Summary

rmod <- Im(earn ~ race, data = wages)
coef(rmod) # get the model's y-intercepts and slopes</pre>

```
coef(rmod)
```

```
# (Intercept) racehispanic raceother racewhite
# 28372.09 -2886.79 3905.32 4993.33
```

summary(rmod)


```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              28372
                              10.204
                         2781
                                      <2e-16 ***
racehispanic
              -2887
                        4515
                              -0.639 0.5227
raceother
            3905
                         6428 0.608 0.5436
racewhite
               4993
                         2929 1.705
                                      0.0885 .
                     0.001 "** 0.01 "* 0.05 ". 0.1
Signif. codes:
```


Estimates From Coefficients

The estimate for a black person is 28372.09 = 28372.09

What Do Plots Also Indicate??


```
ggplot(data = wages) +
  geom_point(mapping = aes(y = earn, x = height, color = race )) +
  geom_smooth(mapping = aes(y = earn, x = height )) + facet_wrap(~race)
```


Activity 06 Check Mark

- Use the Iris dataset to complete correlation tests and then run linear model(s). Amazing, right?!
- https://classroom.github.com/a/XK0TSfqG
- Due at end of class today.

