STAT3001/STATM012/STATG012 Statistical Inference

Week 7: Problem Sheet 1

1. Consider a population consisting of measurements 0,2 and 4 and described by the following probability distribution

x	0	2	4
p(x)	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

- (a) List all the possible samples of size n = 2 measurements that can be selected from this population, specifying the probability of selecting each sample.
- (b) Determine the sampling distribution of the sample mean \bar{X} .
- 2. In each of the following cases, X_1, \ldots, X_n are independent and identically distributed with the same distribution as X.
 - (a) $X \sim N(\theta, \theta)$ where $\theta > 0$. Find a *single* sufficient statistic for the unknown parameter θ , based on observation of X_1, \ldots, X_n . Show that when n = 1 both x and x^2 are single sufficient statistics for θ . Hence deduce that, in general, when there is a single unknown parameter a
 - single sufficient statistic is not necessarily minimal sufficient.
 - (b) X has density $p(x;\theta)$ given by

$$p(x;\theta) = k\theta^k x^{k-1} \exp\{-(\theta x)^k\}$$
 for $x > 0$

and $p(x; \theta) = 0$ otherwise, where k is known. Find a single sufficient statistic, based on observation of X_1, \ldots, X_n , for the unknown parameter θ .

- (c) $X \sim \text{Uniform}[\theta, \theta + 1]$ where $\theta > 0$. Find a pair of statistics, based on observation of X_1, \ldots, X_n , that are jointly sufficient for the unknown parameter θ .
- 3. Suppose that X_1, \ldots, X_n are independent random variables, where X_i has a gamma distribution with known index a_i and unknown parameter θ . Find a single sufficient statistic for θ .
- 4. Let θ be the proportion of defective items in a large manufactured lot. Assume that the prior distribution of θ is given by:

$$\pi(0.1) = 0.7, \qquad \pi(0.2) = 0.3$$

2

Suppose we select 8 items at random from the lot and observe 2 defective items. Determine the posterior distribution of θ .