- 1. (Questions on logic and proof methods) Recall that \wedge is 'and', \vee is 'or', and \neg is 'not'. Recall also that the symbol \Leftrightarrow and the written text, "if, and only if", "logically equivalent to", and "have the same truth table", all mean the same thing. For example, in HW, you verified that $\neg(p \wedge q)$ is "logically equivalent to" $(\neg p) \vee (\neg q)$ by proving "they have the same truth table". Circle True or False as appropriate for the following statements:
- **T F** (a) There are statements about the natural numbers that can be proved with *Strong Induction* but cannot be proved with *Ordinary Induction*.
- **T F** (b) Let n be a natural number. If n^2 is odd then so is n.
- **T F** (c) $p \implies q$ is logically equivalent to $(\neg p) \lor q$
- **T F** (d) The truth table given below is correct for $\neg q \implies p$

р	q	$\neg q \implies p$
1	1	1
1	0	1
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1	0
0	0	1

- 2. (Facts about matrices) For $n, m \ge 1$, let A and B be an $n \times m$ real matrices. For any real matrix M, denote its i-th column by M_i and its ij-element by $[M]_{ij}$. Circle True or False as appropriate for the following statements:
- **T F** (a) trace $(AA^{\top}) = \sum_{i=1}^{n} ([A]_{ii})^2$
- $\mathbf{T} \quad \mathbf{F} \quad \text{(b)} \ [A^{\top}B]_{ij} = (A_i)^{\top} B_j.$
- $\mathbf{T} \quad \mathbf{F} \quad \text{(c) } \mathrm{span}\{A_1,A_2,\cdots,A_m\} = \{y \in \mathbb{R}^n \mid \exists x \in \mathbb{R}^m, \text{ such that } y = Ax\}.$
- **T F** (d) Suppose n = m so that A is a square real matrix and let $x \in \mathbb{R}^n$, $x = [x_1, x_2, \dots, x_n]^\top$. Then

$$x_1 A_1 + x_2 A_2 + \dots + x_n A_n = x^{\top} A.$$

- 3. Let $(\mathcal{X}, \mathbb{R})$ be a finite-dimensional inner product space, let $S_1 \subset \mathcal{X}$ and $S_2 \subset \mathcal{X}$ be nonempty subsets (to be clear, they may or may not be subspaces). Circle True or False as appropriate for the following statements:
- $\mathbf{T}\quad \mathbf{F}\quad \text{(a) If span}\{S_1\}\subset \text{span}\{S_2\},\,\text{then }S_1\subset S_2.$
- $\mathbf{T} \quad \mathbf{F} \quad (b) \operatorname{span}\{S_1\} \oplus S_1^{\perp} = \mathcal{X}.$
- $\mathbf{T} \quad \mathbf{F} \quad \text{(c) } \operatorname{span}\{S_1 \cup S_2\} = \operatorname{span}\{S_1\} + \operatorname{span}\{S_2\}.$
- $\mathbf{T} \quad \mathbf{F} \quad (\mathrm{d}) \ S_1^{\perp} \cap S_2^{\perp} = \left[\mathrm{span}\{S_1\} \cap \mathrm{span}\{S_2\} \right]^{\perp}.$

Note: We have not covered normed spaces and inner products in lecture yet. However, you can still complete these problems

- 4. (Normed spaces, matrices, and inner products) Circle True or False as appropriate for the following statements:
- $\mathbf{T}\quad \mathbf{F}\quad \text{(c) The matrix } M=\begin{bmatrix} 6 & 2 & 4\\ 2 & 3 & 1\\ 4 & 1 & 1 \end{bmatrix} \text{ is positive definite}.$
 - 5. (Vector spaces, representations, and norms) Let $(\mathcal{X}, \mathbb{R}, ||\cdot||)$ be an n-dimensional normed space with $n \geq 4$ and let $L: \mathcal{X} \to \mathcal{X}$ be a linear operator. Let A be the matrix representation of $L: \mathcal{X} \to \mathcal{X}$ when the basis $\{u\} := \{u^1, \ldots, u^n\}$ is used on both copies of \mathcal{X} (i.e., on the domain of L and its range (also called co-domain)). We define a second basis on \mathcal{X} by scaling the first basis:

$$\{\bar{u}\}:=\{\bar{u}^1=u^1,\bar{u}^2=2u^2,\ldots,\bar{u}^k=ku^k,\ldots,\bar{u}^n=nu^n\}.$$

Circle True or False as appropriate for the following statements, where u^i and \bar{u}^j always refer to elements of the given bases and the matrix A is as defined in the problem statement.

- **T F** (a) The change of basis matrix from $\{u\}$ to $\{\bar{u}\}$ (i.e. $P \in \mathbb{R}^{n \times n}$ s.t. $[x]_{\bar{u}} = P[x]_u$) is $P = \text{diag}([1, 2, \dots, n])$.
- **T F** (b) $[L(u^3)]_{\{\bar{u}\}} = \frac{1}{3}A_3$, where A_3 is the third column of A.
- $\mathbf{T}\quad \mathbf{F}\quad (\mathrm{c})\ \ [L(\bar{u}^3+\bar{u}^4)]_{\{u\}}=3A_3+4A_4 \ \text{where}\ A_3 \ \text{and}\ A_4 \ \text{are the corresponding columns of}\ A.$

8. (15 points) (Proof Problem) Let $(\mathcal{X}, \mathcal{F})$ be a vector space and v^1 , v^2 , v^3 vectors in \mathcal{X} . Define the following two statements:

- P: each of the sets $\{v^1, v^2\}$, $\{v^2, v^3\}$, and $\{v^3, v^1\}$ is linearly independent.
- Q: the set $\{v^1, v^2, v^3\}$ is linearly independent.

For each of the following statements, decide if it is T or F and then support your conclusion with a proof or a counterexample:

(a)
$$P \implies Q$$

(b)
$$Q \implies P$$

Show your work below. You can use as true anything we have established in ROB 501 lecture or HW. I cannot answer any question of the form: "do I have to prove this?" or "can I assume this?" or "have I shown enough?".

Remark: If the problem seems completely trivial, that is OK; please write down the few lines it takes to do a (complete) proof or to establish a counterexample. If the problem seems challenging, then maybe you need more than a few lines to work the problem. Both are possible.

(a) $P \implies Q$ is [T F (circle one)] and here is my supporting reasoning.

(b) $Q \implies P$ is $[T \quad F \quad \text{(circle one)}]$ and here is my supporting reasoning.

9. (5 points) A^+ Problem: Points earned here will go toward deciding who goes from an A to an A^+ at the end of the term. Recall that for your GPA at Michigan, an A^+ counts the same as an A.

Def. Let $(\mathcal{X}, \mathbb{C})$ be a vector space over the complex numbers and $L : \mathcal{X} \to \mathcal{X}$ be a linear operator. $\lambda \in \mathbb{C}$ is an e-value of L if $\exists (v \in \mathcal{X}, v \neq 0)$ such that $L(v) = \lambda v$; v is called an e-vector of L.

Prove this: If λ_1 , λ_2 , and λ_3 are distinct e-values of L, then a set of corresponding e-vectors $\{v^1, v^2, v^3\}$ is linearly independent.

Note: If you need to use a result from lecture or HW, clearly state the result and note that it is from ROB 501; in that case, you do not need to prove it. Otherwise, any other statements used in your proof should be justified here. **If your proof assumes that** $(\mathcal{X}, \mathbb{C})$ is finite dimensional, you will earn at most three (3) points.