Post-Training Optimization Tool

Post-Training Optimization Tool

- Using the Python API, the Post-training Optimization Tool integrates with the Model Optimizer, DL Workbench and accuracy checker tools to streamline the development process
- Enables a conversion technique of deep learning model that reduces model size into low precision data types, such as INT8, without re-training
- Reduces model size while also improving latency, with little degradation in model accuracy and without model re-training.
- Different optimization approaches are supported: quantization algorithms, sparsity, etc.

Performance Benchmarks ▶

https://docs.openvinotoolkit.org/latest/_docs_performance_int8_vs_fp32.html

intel

IR transformation

Post-Training Optimization Tool – features

- Supports quantization of OpenVINO™ toolkit's IR models for various types of Intel® hardware
- Learn more: https://docs.openvinotoolkit.org/latest/ compression algorithms quantization README.html
 - Two main algorithms supported and exposed through Deep Learning Workbench:
 - o <u>Default algorithm</u>: essentially a pipeline running three base algorithms:
 - i. Activation Channel Alignment (applied to align activation ranges)
 - ii. MinMax
 - iii. Bias Correction (runs atop naive algorithm; based on minimization of per-channel quantization error)
 - Accuracy-Aware algorithm: preserves accuracy of the resulting model, keeping accuracy drop below threshold
 - Provides hardware-specific configurations
 - Features per-channel/per-tensor quantization granularity
 - Supports symmetric/asymmetric quantization through presets mechanism

intel

Usage scenarios

1 Used as-is. Command line/Workbench scenarios.

2 Integration in user pipeline.

