WaveLynx Technologies Corporation

TEST REPORT FOR

Ethos Models: ET10-2, ET10-3, ET10-6, and ET10-7

Tested To The Following Standards:

FCC Part 15 Subpart C Sections:

15.207 & 15.225 (13.110-14.010 MHz)

Report No.: 97029-15

Date of issue: May 24, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 83 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	5
Conditions During Testing	
Equipment Under Test	6
General Product Information	
FCC Part 15 Subpart C	8
15.215(c) Occupied Bandwidth (20dB BW)	8
15.225(a)-(c) Field Strength of Fundamental	
15.225(e) Frequency Stability	
15.225(d) Radiated Emissions	
15.207 AC Conducted Emissions	49
Supplemental Information	82
Measurement Uncertainty	82
Emissions Tost Datails	82

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

WaveLynx Technologies Corporation Terri Rayle
12303 Airport Way, Suite 200 CKC Laboratories, Inc.
Broomfield, CO 80021 5046 Sierra Pines Drive
Mariposa, CA 95338

REPRESENTATIVE: Daniel Field Project Number: 97029

Customer Reference Number: CKPO030916

DATE OF EQUIPMENT RECEIPT: March 15, 2016

DATE(S) OF TESTING: March 15 – May 10, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve I Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 83 Report No.: 97029-15

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Software Versions

CKC Laboratories Proprietary Software	Version	
EMITest Emissions	5.03.02	

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Mariposa A	US0103	SL2-IN-E-1147R	3082A-2	90477	A-0136
Mariposa D	US0103	SL2-IN-E-1147R	3082A-1	784962	A-0136

Page 4 of 83 Report No.: 97029-15

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.225

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.225(a)-(c)	Field Strength of Fundamental	NA	Pass
15.225(e)	Frequency Stability	NA	Pass
15.225(d)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions		
No modifications were made during testing.		

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None

Page 5 of 83 Report No.: 97029-15

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 2

$\mathbf{E}_{\mathbf{C}}$	min	ment	Tosi	tod.
Ľų	$\mu \mu \nu$	mem	1 631	ıeu.

Device	Manufacturer	Model #	S/N	
Ethos	WaveLynx Technologies	ET10-2	NA	
	Corporation			

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-3	NA
	Corporation		

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 6

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-6	NA
	Corporation		

Support Equipment:

Device	Manufacturer	Model #	S/N	
DC Power Supply	HP	6205C	2228A01775	

Configuration 7

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies	ET10-7	NA
	Corporation		

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Page 6 of 83 Report No.: 97029-15

Configuration 10

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Ethos	WaveLynx Technologies Corporation	ET10-2	NA	
Ethos	WaveLynx Technologies Corporation	ET10-3	NA	

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

Configuration 11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Ethos	WaveLynx Technologies Corporation	ET10-6	NA
Ethos	WaveLynx Technologies Corporation	ET10-7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
DC Power Supply	HP	6205C	2228A01775

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type: (All 4 EUTs)	Stand-Alone Equipment
Modulation Type(s): (All 4 EUTs)	ASK with an 847kHz Subcarrier
Maximum Duty Cycle: (Measured)	Configuration 2 = 65.83% Configuration 3 = 65.12% Configuration 6 = 63.86% Configuration 7 = 65.12%
Antenna Type(s) and Gain: (All 4 EUTS)	PCB Trace Antenna 30mm x 95mm / 2dBi
Antenna Connection Type: (All 4 EUTs)	Integral
Nominal Input Voltage: (All 4 EUTs	12VDC
Firmware / Software used for Test: (All 4 EUTs)	Wallmount Reader FCC LF Version 1

Page 7 of 83 Report No.: 97029-15

FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

Test Location: Mariposa Lab D Test Engineer: Benny Lovan Test Method: ANSI C63.10 (2013) Test Date(s): March 15 – 18, 2016 Configuration: 2, 3, 6 and 7 Test Setup: Configuration 2 (13.56MHz Only) – Measured in Y-Axis		Test Setup	/ Conditions	
Configuration: 2, 3, 6 and 7 Test Setup: Configuration 2 (13.56MHz Only) – Measured in Y-Axis Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-Axis Antenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities. The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) of sideways (X-axis) orientation. The OBW was performed in the worst case orientation observed during the fundamentation power measurements.	Test Location:	Mariposa Lab D	Test Engineer:	Benny Lovan
Test Setup: Configuration 2 (13.56MHz Only) – Measured in Y-Axis Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-Axis Antenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities. The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) of sideways (X-axis) orientation. The OBW was performed in the worst case orientation observed during the fundamentation power measurements.	Test Method:	ANSI C63.10 (2013)	Test Date(s):	March 15 – 18, 2016
Configuration 3 (Set for 13.56MHz) – Measured in X-Axis Configuration 6 (13.56 MHz Only) – Measured in X-Axis Configuration 7 (Set for 13.56 MHz) – Measured in X-Axis Antenna Type: Integral Modulation: ASK Modulation with an 847kHz subcarrier The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities. The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) of sideways (X-axis) orientation. The OBW was performed in the worst case orientation observed during the fundamentation power measurements.	Configuration:	2, 3, 6 and 7		
The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz. Method: ANSI C63.10 2013	_	Configuration 2 (13.56MHz Only). Configuration 3 (Set for 13.56MHz Configuration 6 (13.56 MHz Only). Configuration 7 (Set for 13.56 MHz Antenna Type: Integral Modulation: ASK Modulation with The EUT is powered by a DC power Max power was measured in two. The manufacturer declares it wis sideways (X-axis) orientation. The OBW was performed in the value power measurements. The EUT is setup on an 80cm foam The EUT has been programmed to	z) – Measured in X-Axis – Measured in X-Axis z) – Measured in X-Axi an 847kHz subcarrier er supply at 12VDC. orthogonalities. Il only ever be wall r vorst case orientation	nounted in an upright (Y-axis) or observed during the fundamental

Environmental Conditions					
3/15/2016					
Temperature (ºC)	10	Relative Humidity (%):	85		
3/17/2016					
Temperature (ºC)	11	Relative Humidity (%):	83		
3/18/2016					
Temperature (ºC)	11	Relative Humidity (%):	85		

Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
ANSITED 3M	Cable	NA	NA	11/15/2014	11/15/2016		
ANP06884	Cable	TMS	LMR195-FR-4	10/27/2015	10/27/2017		
AN00226	Loop Antenna	EMCO	6502	3/28/2014	3/28/2016		

Page 8 of 83 Report No.: 97029-15

	Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
13.56MHz	Integral	ASK Modulation with an	0.007822	None	NA		
(Config. 2)	integrai	847kHz subcarrier	0.007822	None	IVA		
13.56MHz	Integral	ASK Modulation with an	0.007588	None	NA		
(Config. 3)	iiilegiai	847kHz subcarrier	0.007388	None	IVA		
13.56MHz	Intogral	ASK Modulation with an	0.007480	None	NA		
(Config. 6)	Integral	847kHz subcarrier	0.007460	None	IVA		
13.56MHz	Integral	ASK Modulation with an	0.007675	None	NA		
(Config. 7)	Integral	847kHz subcarrier	0.007675	None	IVA		

NA = Not Applicable

Plots

Configuration 2

Configuration 3

Configuration 6

Configuration 7

Test Setup Photos

X Axis

Y Axis

15.225(a)-(c) Field Strength of Fundamental

Test Data Summary - Voltage Variations – Configuration 2								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)			
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	32.7	32.8	32.7	0.1 dB			
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	30.4	30.0	30.5	0.5 dB			

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

	Test Data Summary - Voltage Variations – Configuration 3								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)				
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	33.7	33.8	33.8	0.1 dB				
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	30.2	30.3	30.2	0.1 dB				

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

	Test Data Summary - Voltage Variations – Configuration 6								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)				
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	32.7	32.6	32.7	0.1 dB				
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	29.0	29.0	28.8	0.2 dB				

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

	Test Data Summary - Voltage Variations – Configuration 7								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)				
13.56 Parallel	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	33.2	33.4	33.2	0.2 dB				
13.56 Perpendicular	ASK Modulation with an 847kHz subcarrier / Integral PCB Trace Antenna	31.2	31.4	31.2	0.2 dB				

Page 13 of 83 Report No.: 97029-15

Test performed using operational mode with the highest output power, representing worst case. Worst case orientation for this unit was the X-Axis.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	12.0 VAC
V _{Minimum} :	10.2 VAC
V _{Maximum} :	13.8 VAC

	Test Data Summ	arv – Radiated	Field Strength M	easurement	
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 30m)	Limit (dBuV/m @ 30m)	Results
		Configur	ation 2		
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	32.8	≤ 84	Pass
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	30.0	≤ 84	Pass
		Configur	ation 3		
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	33.8	≤ 84	Pass
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	30.3 ≤ 84		Pass
		Configur	ation 6		
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	32.6	≤ 84	Pass
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	29.0	≤ 84	Pass
		Configur	ation 7		
13.560 (Parallel)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	33.4	≤ 84	Pass
13.560 (Perpendicular)	ASK Modulation with an 847kHz subcarrier	Integral PCB Trace	31.4	≤ 84	Pass

Page 14 of 83 Report No.: 97029-15

Emissions Mask Data

Configuration 2

Configuration 3

Configuration 6

Configuration 7

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 97029
 Date: 3/15/2016

 Test Type:
 Radiated Scan
 Time: 15:16:50

Tested By: Benny Lovan Sequence#: 1

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 10°C Humidity: 85%

Atmospheric Pressure: 97 kPa

Method: ANSI C63.10 2013

13.56MHz Only, Measured in Y-Axis

Antenna Type: Integral

Modulation: ASK Modulation with an 847kHz subcarrier

The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation. The Fundamental measurements were performed in both the X and Y axis orientations.

The EUT is setup on an 80cm foam block.

The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 17 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/15/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	62.3	+0.7	+0.1	+9.7		-40.0	32.8	84.0	-51.2	Paral
									Y-Axis		
2	13.560M	62.3	+0.7	+0.1	+9.7		-40.0	32.8	84.0	-51.2	Paral
									X-axis		
3	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0	-51.3	Paral
									Y-Axis @		
									13.8VDC		
4	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0	-51.3	Paral
									Y-Axis @	10.2	
									VDC		
5	13.560M	60.0	+0.7	+0.1	+9.7		-40.0	30.5	84.0	-53.5	Perpe
									Y-Axis @		
									13.8VDC		
6	13.560M	59.9	+0.7	+0.1	+9.7		-40.0	30.4	84.0	-53.6	Perpe
									Y-Axis @	10.2	
									VDC		
7	13.559M	59.5	+0.7	+0.1	+9.7		-40.0	30.0	84.0	-54.0	Perpe
									Y-Axis		
8	13.560M	59.3	+0.7	+0.1	+9.7		-40.0	29.8	84.0	-54.2	Perpe
									X-Axis		

Page 19 of 83 Report No.: 97029-15

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 3/17/2016
Test Type: Radiated Scan Time: 14:24:19
Tested By: Benny Lovan Sequence#: 1

Tested By: Benny Lovan
Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 11°C Humidity: 83%

Atmospheric Pressure: 97.4 kPa

Method: ANSI C63.10 2013

Set to 13.56MHz, Measured in X-Axis

Antenna Type: Integral

Modulation: ASK Modulation with an 847kHz subcarrier

The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation. The Fundamental measurements were performed in both the X and Y axis orientations.

The EUT is setup on an 80cm foam block.

The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 20 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/17/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measure	ement Data:	Re	eading list	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m$	dB	Ant
1	13.560M	63.3	+0.7	+0.1	+9.7		-40.0	33.8	84.0	-50.2	Paral
									X-Axis @	13.8	
									VDC		
2	13.560M	63.3	+0.7	+0.1	+9.7		-40.0	33.8	84.0	-50.2	Paral
									X-Axis		
3	13.560M	63.2	+0.7	+0.1	+9.7		-40.0	33.7	84.0	-50.3	Paral
									X-Axis @	10.2	
									VDC		
4	13.560M	62.7	+0.7	+0.1	+9.7		-40.0	33.2	84.0	-50.8	Paral
									Y-Axis		
5	13.559M	60.0	+0.7	+0.1	+9.7		-40.0	30.5	84.0	-53.5	Perpe
									Y-Axis		
6	13.560M	59.8	+0.7	+0.1	+9.7		-40.0	30.3	84.0	-53.7	Perpe
									X-Axis		
7	13.560M	59.7	+0.7	+0.1	+9.7		-40.0	30.2	84.0	-53.8	Perpe
									X-Axis @		
									13.8VDC		
8	13.560M	59.7	+0.7	+0.1	+9.7		-40.0	30.2	84.0	-53.8	Perpe
									$X\text{-}Axis \ @$	10.2	
									VDC		

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 3/18/2016
Test Type: Radiated Scan Time: 09:19:55
Tested By: Benny Lovan Sequence#: 1

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature: 11°C Humidity: 85%

Atmospheric Pressure: 96.8 kPa

Method: ANSI C63.10 (2013)

13.56MHz with BLE, Measured in X-Axis

Antenna Type: Integral

Modulation: ASK Modulation with an 847kHz subcarrier

The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation. The Fundamental measurements were performed in both the X and Y axis orientations.

The EUT is setup on an 80cm foam block.

The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 23 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/18/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

	•				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measure	ement Data:	Re	eading list	ed by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0	-51.3	Paral
									X-Axis @ 10.2VDC		
2	13.560M	62.2	+0.7	+0.1	+9.7		-40.0	32.7	84.0	-51.3	Paral
									X-Axis @ 13.8VDC		
3	13.560M	62.1	+0.7	+0.1	+9.7		-40.0	32.6	84.0	-51.4	Paral
									X-Axis		
4	13.560M	61.8	+0.7	+0.1	+9.7		-40.0	32.3	84.0	-51.7	Paral
									Y-Axis		
5	13.560M	58.5	+0.7	+0.1	+9.7		-40.0	29.0	84.0	-55.0	Perpe
									X-Axis		
6	13.560M	58.5	+0.7	+0.1	+9.7		-40.0	29.0	84.0	-55.0	Perpe
									X-Axis @ VDC	10.2	
7	13.560M	58.4	+0.7	+0.1	+9.7		-40.0	28.9	84.0	-55.1	Perpe
									Y-Axis		-
8	13.559M	58.3	+0.7	+0.1	+9.7		-40.0	28.8	84.0	-55.2	Perpe
									X-Axis @		
									13.8VDC		

Page 25 of 83 Report No.: 97029-15

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 3/18/2016
Test Type: Radiated Scan Time: 10:57:47
Tested By: Benny Lovan Sequence#: 1

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Test Conditions / Notes:

Radiated Emissions Fundamental Measurements

Temperature:11°C Humidity: 85%

Atmospheric Pressure: 96.8 kPa

Method: ANSI C63.10 (2013)

Set to 13.56MHz with BLE, Measured in X-Axis

Antenna Type: Integral

Modulation: ASK Modulation with an 847kHz subcarrier

The EUT is powered by a DC power supply at 12VDC. Max power was measured in two orthogonalities.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation. The Fundamental measurements were performed in both the X and Y axis orientations.

The EUT is setup on an 80cm foam block.

The EUT has been programmed to continuously transmit the RFID signal at 13.56MHz.

Page 26 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 1 Date: 3/18/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measur	ement Data:	Re	eading list	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	62.9	+0.7	+0.1	+9.7		-40.0	33.4	84.0	-50.6	Paral
									X-Axis		
2	13.560M	62.8	+0.7	+0.1	+9.7		-40.0	33.3	84.0	-50.7	Paral
									Y-Axis		
3	13.560M	62.7	+0.7	+0.1	+9.7		-40.0	33.2	84.0	-50.8	Paral
									X-Axis @	13.8	
									VDC		
4	13.560M	62.7	+0.7	+0.1	+9.7		-40.0	33.2	84.0	-50.8	Paral
									X-Axis @		
									10.2VDC		
5	13.560M	61.5	+0.7	+0.1	+9.7		-40.0	32.0	84.0	-52.0	Perpe
									Y-Axis		
6	13.559M	60.9	+0.7	+0.1	+9.7		-40.0	31.4	84.0	-52.6	Perpe
									X-Axis		
7	13.560M	60.7	+0.7	+0.1	+9.7		-40.0	31.2	84.0	-52.8	Perpe
									X-Axis @		
									13.8VDC		
8	13.560M	60.7	+0.7	+0.1	+9.7		-40.0	31.2	84.0	-52.8	Perpe
									X-Axis @		
									10.2VDC		

Test Setup Photos

X Axis

Y Axis

15.225(e) Frequency Stability

	Test Setup / Conditions						
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan				
Test Method:	ANSI C63.10 (2013)	Test Date(s):	April 4-5, 2016				
Configuration:	6 and 7						
Test Setup:	Configurations 6 and 7 were teste The manufacturer declares that performed on these would satisfy	Configurations 6 an	d 7 are worse case and testing				

Environmental Conditions					
4/4/2016					
Temperature (°C) 19.5 Relative Humidity (%): 52					
	4	/5/2016			
Temperature (°C) 19.5 Relative Humidity (%): 52					

	Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
03197	Multimeter	Extech	MM570A	9/14/2014	9/14/2016				
02668	Spectrum Analyzer	Agilent	E4446A	8/14/2015	8/14/2016				
02242	Thermometer	Omega	HH-26K	5/2/2014	5/2/2016				
01879	Temperature Chamber	Thermotron	S-1.2 Min.	12/5/2014	12/5/2016				
00170	Loop Antenna	Solar	7334-1	NCR	NCR				

NCR = No Calibration Required

Page 30 of 83 Report No.: 97029-15

	Frequency Stability Test Data Summary - Configuration 6							
Temperatu re (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results			
-20	$V_{Nominal}$	13.5598	-0.00147	±0.01				
-10	$V_{Nominal}$	13.5598	-0.00147	±0.01				
0	$V_{Nominal}$	13.5597	-0.00221	±0.01				
10	$V_{Nominal}$	13.5597	-0.00221	±0.01				
20	$V_{Minimum}$	13.5597	-0.00221	±0.01	Pass			
20	$V_{Nominal}$	13.5596	-0.00295	±0.01	Pass			
20	$V_{Maximum}$	13.5596	-0.00295	±0.01				
30	V _{Nominal}	13.5596	-0.00295	±0.01				
40	$V_{Nominal}$	13.5596	-0.00295	±0.01				
50	$V_{Nominal}$	13.560	0.00000	±0.01				
Nominal	Frequency:	13.560000		_				

Frequency Stability Test Data Summary - Configuration 7								
Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results			
-20	$V_{Nominal}$	13.5597	-0.00221	±0.01				
-10	$V_{Nominal}$	13.5600	0.00000	±0.01				
0	$V_{Nominal}$	13.5597	-0.00221	±0.01				
10	$V_{Nominal}$	13.5597	-0.00221	±0.01				
20	$V_{Minimum}$	13.5595	-0.00369	±0.01	Pass			
20	$V_{Nominal}$	13.5595	-0.00369	±0.01	Pass			
20	$V_{Maximum}$	13.5594	-0.00442	±0.01				
30	$V_{Nominal}$	13.5595	-0.00369	±0.01				
40	$V_{Nominal}$	13.56	0.00000	±0.01				
50 V _{Nominal}		13.560	0.00000	±0.01				
Nominal I	requency:	13.560000		•	•			

 $\begin{tabular}{ll} \hline \textit{Parameter Definitions:} \\ \hline \textit{Measurements performed at input voltage Vnominal \pm 15\%.} \\ \hline \end{tabular}$

Parameter	Value
V _{Nominal} :	12 VDC
V _{Minimum} :	10.2 VDC
V _{Maximum} :	13.8 VDC

Page 31 of 83 Report No.: 97029-15

Test Setup Photos

Page 32 of 83 Report No.: 97029-15

15.225(d) Radiated Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 3/22/2016
Test Type: Radiated Scan Time: 10:52:30
Tested By: Benny Lovan Sequence#: 4

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 10

Support Equipment:

Device Manufacturer Model # S/N
Configuration 10

Test Conditions / Notes:

Radiated Emissions Spurious Measurements 9kHz - 30MHz

Temperature: 10°C Humidity: 68%

Atmospheric Pressure: 97.8 kPa

Method: ANSI C63.10 2013

Highest Generated Frequency: 27.12 MHz Both EUTs are running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC.

Spurious was measured on two EUTs at one time.

Configuration 10 is made up of Configuration 2 and Configuration 3 (Testing at the same time).

Configuration 2 is in Y-axis and Configuration 3 is in the X-axis.

Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.

The EUT is setup to continuously transmit at 13.56MHz

Page 34 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 4 Date: 3/22/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Perpendicular

- Readings
- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.02
 - 1 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measur	rement Data:		ading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dΒ	Table	dBμV/m	$dB\mu V/m$	dB	Ant
1	8.970M	43.1	+0.6	+0.1	+10.1		-40.0	13.9	29.5	-15.6	Perpe
2	7.243M	34.2	+0.5	+0.1	+10.1		-40.0	4.9	29.5	-24.6	Paral
3	17.654M	35.0	+0.8	+0.1	+8.8		-40.0	4.7	29.5	-24.8	Perpe
4	21.674M	28.7	+0.9	+0.1	+8.1		-40.0	-2.2	29.5	-31.7	Perpe
5	27.121M	28.7	+1.0	+0.1	+7.2		-40.0	-3.0	29.5	-32.5	Paral
6	27.124M	25.8	+1.0	+0.1	+7.2		-40.0	-5.9	29.5	-35.4	Perpe
7	29.916M	24.7	+1.0	+0.1	+6.5		-40.0	-7.7	29.5	-37.2	Paral
8	344.900k	45.5	+0.1	+0.0	+10.2		-80.0	-24.2	16.8	-41.0	Paral
9	24.825k	54.6	+0.0	+0.0	+13.0		-80.0	-12.4	39.7	-52.1	Perpe
10	18.615k	55.5	+0.0	+0.0	+14.2		-80.0	-10.3	42.2	-52.5	Perpe
11	23.965k	47.3	+0.0	+0.0	+13.1		-80.0	-19.6	40.0	-59.6	Paral
12	12.070k	49.3	+0.0	+0.0	+16.4		-80.0	-14.3	46.0	-60.3	Perpe
13	124.215k	33.0	+0.1	+0.0	+10.9		-80.0	-36.0	25.7	-61.7	Perpe
14	38.600k	42.2	+0.0	+0.0	+11.8		-80.0	-26.0	35.9	-61.9	Paral
15	135.340k	31.4	+0.1	+0.0	+10.7		-80.0	-37.8	25.0	-62.8	Perpe
16	15.960k	45.7	+0.0	+0.0	+15.0		-80.0	-19.3	43.5	-62.8	Paral
17	79.660k	35.0	+0.1	+0.0	+10.9		-80.0	-34.0	29.6	-63.6	Perpe
18	39.655k	40.1	+0.0	+0.0	+11.7		-80.0	-28.2	35.6	-63.8	Perpe
19	9.645k	44.6	+0.0	+0.0	+17.4		-80.0	-18.0	47.9	-65.9	Perpe

Page 36 of 83 Report No.: 97029-15

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 4/1/2016
Test Type: Radiated Scan
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 10				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 10			

Test Conditions / Notes:

Radiated Emissions Spurious Measurements 30MHz - 1GHz

Temperature: 12.2°C Humidity: 64%

Atmospheric Pressure: 98.5 kPa

Method: ANSI C63.10 2013

Highest Generated Frequency: 27.12 MHz Both EUTs are running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC.

Spurious was measured on two EUTs at one time.

Configuration 10 is made up of Configuration 2 and Configuration 3 (Testing at the same time).

Configuration 2 is in Y-axis and Configuration 3 is in the X-axis.

Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.

The EUT is setup to continuously transmit at 13.56MHz

Page 37 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 6 Date: 4/1/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00282	Preamp	8447D	4/7/2014	4/7/2016
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
T3	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T4	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T5	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018

Measu	rement Data:		eading list	ted by ma	ırgin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	45	450	450		15 77/	450 TT/	15	
	MHz	dΒμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	40.685M	49.2	-28.1	+1.2	+0.1	+0.2	+0.0	36.7	40.0	-3.3	Vert
			+14.1								
2	650.859M	43.2	-28.4	+5.3	+0.5	+0.5	+0.0	41.8	46.0	-4.2	Vert
			+20.7								
3	61.018M	55.9	-28.0	+1.5	+0.1	+0.2	+0.0	35.6	40.0	-4.4	Vert
	QP		+5.9								
^	61.013M	56.7	-28.0	+1.5	+0.1	+0.2	+0.0	36.4	40.0	-3.6	Vert
			+5.9								
5	623.739M	43.3	-28.4	+5.2	+0.4	+0.5	+0.0	41.3	46.0	-4.7	Vert
			+20.3								
6		50.2	-27.2	+3.3	+0.3	+0.4	+0.0	39.8	46.0	-6.2	Vert
	QP		+12.8								
^	271.194M	50.7	-27.2	+3.3	+0.3	+0.4	+0.0	40.3	46.0	-5.7	Vert
			+12.8								
8	352.548M	47.4	-27.5	+3.8	+0.4	+0.4	+0.0	39.4	46.0	-6.6	Vert
	QP		+14.9								
^	352.548M	49.6	-27.5	+3.8	+0.4	+0.4	+0.0	41.6	46.0	-4.4	Vert
			+14.9								
10	40.681M	45.3	-28.1	+1.2	+0.1	+0.2	+0.0	32.8	40.0	-7.2	Vert
			+14.1								
11	189.838M	50.7	-27.5	+2.7	+0.3	+0.3	+0.0	35.5	43.5	-8.0	Vert
	QP		+9.0								
^	189.835M	51.5	-27.5	+2.7	+0.3	+0.3	+0.0	36.3	43.5	-7.2	Vert
			+9.0								
13	488.154M	42.3	-28.3	+4.5	+0.4	+0.5	+0.0	37.2	46.0	-8.8	Vert
	QP		+17.8								
^	488.152M	43.4	-28.3	+4.5	+0.4	+0.5	+0.0	38.3	46.0	-7.7	Vert
			+17.8								

Page 39 of 83 Report No.: 97029-15

QP	17 17 1000	10.5									
^ 176.274M	15 176.280M	49.5	-27.6	+2.6	+0.2	+0.3	+0.0	34.3	43.5	-9.2	Vert
17 515.272M	~										
17 515.272M	^ 176.274M	50.6		+2.6	+0.2	+0.3	+0.0	35.4	43.5	-8.1	Vert
QP											
^ 515.276M		41.1		+4.7	+0.4	+0.5	+0.0	36.6	46.0	-9.4	Vert
19 203.412M 48.8 -27.4 +2.8 +0.3 +0.3 +0.0 34.0 43.5 -9.5 Vert											
19 203.412M	^ 515.276M	42.0		+4.7	+0.4	+0.5	+0.0	37.5	46.0	-8.5	Vert
QP +9.2 ^ 203.407M 51.4 -27.4 +2.8 +0.3 +0.0 36.6 43.5 -6.9 Vert +9.2 1433.899M 41.5 -28.0 +4.2 +0.4 +0.5 +0.0 35.4 46.0 -10.6 Vert 22 196.619M 48.0 -27.4 +2.8 +0.3 +0.3 +0.0 32.9 43.5 -10.6 Vert 23 461.035M 40.8 -28.1 +4.4 +0.4 +0.5 +0.0 35.3 46.0 -10.7 Vert 24 298.317M 44.5 -27.2 +3.4 +0.4 +0.5 +0.0 34.9 46.0 -11.1 Vert +13.4 +13.4 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert +18.9 +16.7 +22.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 +0.4 +0.5 +0.0											
^ 203.407M 51.4 -27.4 +2.8 +0.3 +0.0 36.6 43.5 -6.9 Vert 21 433.899M 41.5 -28.0 +4.2 +0.4 +0.5 +0.0 35.4 46.0 -10.6 Vert 22 196.619M 48.0 -27.4 +2.8 +0.3 +0.0 32.9 43.5 -10.6 Vert 23 461.035M 40.8 -28.1 +4.4 +0.4 +0.5 +0.0 35.3 46.0 -10.7 Vert 24 298.317M 44.5 -27.2 +3.4 +0.4 +0.4 +0.0 34.9 46.0 -11.1 Vert 25 542.392M 38.5 -28.5 +4.8 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert 26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert 4 162.729M 47.0 -27.6	19 203.412M	48.8	-27.4	+2.8	+0.3	+0.3	+0.0	34.0	43.5	-9.5	Vert
+9.2			+9.2								
21 433.899M 41.5 -28.0 +4.2 +0.4 +0.5 +0.0 35.4 46.0 -10.6 Vert +16.8 22 196.619M 48.0 -27.4 +2.8 +0.3 +0.3 +0.0 32.9 43.5 -10.6 Vert +8.9 23 461.035M 40.8 -28.1 +4.4 +0.4 +0.5 +0.0 35.3 46.0 -10.7 Vert +17.3 24 298.317M 44.5 -27.2 +3.4 +0.4 +0.4 +0.0 34.9 46.0 -11.1 Vert +13.4 25 542.392M 38.5 -28.5 +4.8 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert +18.9 26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 ^ 162.729M 47.0 -27.6 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert +10.4 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert +9.2 29 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert +15.6 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 35.1 46.0 -10.9 Vert +15.6 31 54.238M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 32.3 46.0 -13.7 Vert +10.1 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 32.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	^ 203.407M	51.4	-27.4	+2.8	+0.3	+0.3	+0.0	36.6	43.5	-6.9	Vert
+16.8 22 196.619M			+9.2								
22 196.619M 48.0 -27.4 +2.8 +0.3 +0.3 +0.0 32.9 43.5 -10.6 Vert 23 461.035M 40.8 -28.1 +4.4 +0.4 +0.5 +0.0 35.3 46.0 -10.7 Vert 24 298.317M 44.5 -27.2 +3.4 +0.4 +0.4 +0.0 34.9 46.0 -11.1 Vert 25 542.392M 38.5 -28.5 +4.8 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert 26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert 29 379.675M 41.6 -27.7	21 433.899M	41.5	-28.0	+4.2	+0.4	+0.5	+0.0	35.4	46.0	-10.6	Vert
+8.9 23 461.035M			+16.8								
+8.9 23 461.035M	22 196.619M	48.0	-27.4	+2.8	+0.3	+0.3	+0.0	32.9	43.5	-10.6	Vert
23 461.035M 40.8 -28.1			+8.9								
+17.3 24 298.317M	23 461.035M	40.8		+4.4	+0.4	+0.5	+0.0	35.3	46.0	-10.7	Vert
24 298.317M 44.5 -27.2 +3.4 +0.4 +0.4 +0.0 34.9 46.0 -11.1 Vert 25 542.392M 38.5 -28.5 +4.8 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert 26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert 31 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
+13.4 25 542.392M 38.5 -28.5 +4.8 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert +18.9 26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 ^ 162.729M 47.0 -27.6 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert +10.4 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert +9.2 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert +15.6 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +2.9 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	24 298 317M	44 5		+3 4	+0.4	+0.4	+0.0	34 9	46.0	-111	Vert
25 542.392M 38.5 -28.5 +4.8 +0.4 +0.5 +0.0 34.6 46.0 -11.4 Vert +18.9 26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 ^ 162.729M 47.0 -27.6 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert +10.4 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert +9.2 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert +15.6 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 35.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	21 270.317111			. 5. 1	. 0. 1		. 0.0	5 1.5	10.0	11.1	, 611
+18.9 26 162.728M	25 542 392M	38.5		+4 8	+0.4	+0.5	+0.0	34 6	46.0	-114	Vert
26 162.728M 46.1 -27.6 +2.5 +0.2 +0.3 +0.0 31.9 43.5 -11.6 Vert QP +10.4 +10.4 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 31 54.238M 47.1 -28.0 +1.4 +0.4 +0.0 35.1 46.0 -10.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert +7.3 -3 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert 34 244.082M 41.9 -27.3 +3	23 312.372141	30.3		. 1.0	. 0. 1	. 0.5	. 0.0	31.0	10.0	11.1	٧٥١٠
QP +10.4 ^ 162.729M 47.0 -27.6 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 +7.3 +0.0 28.1 40.0 -8.4 Vert 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert 34 244.082M 41.9 -27.3 +3.1	26 162 728M	46.1		+2.5	+0.2	+0.3	+0.0	31.9	43.5	-11.6	Vert
^ 162.729M 47.0 -27.6 +2.5 +0.2 +0.3 +0.0 32.8 43.5 -10.7 Vert 28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0		10.1		. 2.3	. 0.2	. 0.5	. 0.0	31.7	13.3	11.0	, 611
+10.4 28 183.054M	<u> </u>	47.0		+2.5	+0.2	+0.3	+0.0	32.8	13.5	-10.7	Vert
28 183.054M 46.9 -27.5 +2.6 +0.2 +0.3 +0.0 31.7 43.5 -11.8 Vert +9.2 29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert +15.6 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	102.7291	77.0		12.3	10.2	10.5	10.0	32.0	73.3	-10.7	VCIT
+9.2 29 379.674M QP 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert +15.6 31 54.238M QP 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3	29 192 054M	46.0		±2.6	±0.2	⊥0.2	±0.0	21.7	12.5	11.0	Vont
29 379.674M 41.6 -27.7 +3.9 +0.4 +0.4 +0.0 34.2 46.0 -11.8 Vert A 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert 11.9 -11.9 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	26 165.054101	40.9		±2.0	±0.∠	+0.3	+0.0	31.7	43.3	-11.0	Vert
QP +15.6 ^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	20 270 67414	41.6		12.0	+0.4	10.4	100	24.2	46.0	11.0	Vont
^ 379.675M 42.5 -27.7 +3.9 +0.4 +0.4 +0.0 35.1 46.0 -10.9 Vert 15.6 31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 +10.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert		41.0		⊤3.9	±0.4	±0.4	+0.0	34.2	40.0	-11.0	vert
+15.6 31 54.238M		12.5		12.0	+0.4	10.4	100	25.1	46.0	10.0	T 7 4
31 54.238M 47.1 -28.0 +1.4 +0.1 +0.2 +0.0 28.1 40.0 -11.9 Vert QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert +7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	^ 3/9.6/3M	42.5		+3.9	+0.4	+0.4	+0.0	33.1	46.0	-10.9	vert
QP +7.3 ^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	21 54 2203 5	47.1		. 1 4	+0.1	.0.2		20.1	40.0	11.0	T 7 /
^ 54.234M 50.6 -28.0 +1.4 +0.1 +0.2 +0.0 31.6 40.0 -8.4 Vert 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert		47.1		+1.4	+0.1	+0.2	+0.0	28.1	40.0	-11.9	Vert
+7.3 33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert					0.4				40.0		
33 216.946M 45.9 -27.3 +2.9 +0.3 +0.4 +0.0 32.3 46.0 -13.7 Vert +10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	^ 54.234M	50.6		+1.4	+0.1	+0.2	+0.0	31.6	40.0	-8.4	Vert
+10.1 34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert											
34 244.082M 41.9 -27.3 +3.1 +0.3 +0.4 +0.0 30.3 46.0 -15.7 Vert +11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	33 216.946M	45.9		+2.9	+0.3	+0.4	+0.0	32.3	46.0	-13.7	Vert
+11.9 35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert											
35 128.804M 39.2 -27.8 +2.2 +0.2 +0.3 +0.0 25.8 43.5 -17.7 Vert	34 244.082M	41.9		+3.1	+0.3	+0.4	+0.0	30.3	46.0	-15.7	Vert
+11.7	35 128.804M	39.2		+2.2	+0.2	+0.3	+0.0	25.8	43.5	-17.7	Vert
			+11.7								

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 3/22/2016
Test Type: Radiated Scan Time: 09:03:33
Tested By: Benny Lovan Sequence#: 3

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 11				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 11				

Test Conditions / Notes:

Radiated Emissions Spurious Measurements 9kHz - 30MHz

Temperature: 10°C Humidity: 71%

Atmospheric Pressure: 98.0 kPa

Method: ANSI C63.10 2013

Highest Generated Frequency: 27.12 MHz Both EUTs are running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC.

Spurious was measured on two EUTs at one time.

Configuration 11 is made up of Configuration 6 and Configuration 7 (Testing at the same time).

Configuration 6 is in X-axis and Configuration 7 is in the X-axis.

Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.

The EUT is setup to continuously transmit at 13.56MHz

Page 41 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 3 Date: 3/22/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Parallel

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANSITED 3M	Cable		11/15/2014	11/15/2016
T2	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T3	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Measur	ement Data:	Re	ading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
1	15.440M	40.6	+0.7	+0.1	+9.5		-40.0	10.9	29.5	-18.6	Perpe
2	9.901M	38.2	+0.6	+0.1	+10.1		-40.0	9.0	29.5	-20.5	Paral
3	11.229M	35.6	+0.6	+0.1	+10.0		-40.0	6.3	29.5	-23.2	Perpe
4	25.813M	28.0	+0.9	+0.1	+7.6		-40.0	-3.4	29.5	-32.9	Perpe
5	28.379M	26.2	+1.0	+0.1	+6.9		-40.0	-5.8	29.5	-35.3	Paral
6	304.958k	34.5	+0.1	+0.0	+10.2		-80.0	-35.2	17.9	-53.1	Perpe
7	21.857k	47.9	+0.0	+0.0	+13.5		-80.0	-18.6	40.8	-59.4	Paral
8	120.320k	32.5	+0.1	+0.0	+10.9		-80.0	-36.5	26.0	-62.5	Paral

Page 43 of 83 Report No.: 97029-15

Test Location: CKC Laboratories Inc. • 5046 Sierra Pines Dr. • Mariposa, CA 95338 • 209-966-5240

Customer: WaveLynx Technologies Corporation

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 97029 Date: 3/31/2016
Test Type: Radiated Scan Time: 14:56:54
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer		Model #	S/N	
Configuration 11				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 11				

Test Conditions / Notes:

Radiated Emissions Spurious Measurements 30MHz - 1GHz

Temperature: 12.2°C Humidity: 64%

Atmospheric Pressure: 98.5 kPa

Method: ANSI C63.10 2013

Highest Generated Frequency: 27.12 MHz Both EUTs are running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC.

Spurious was measured on two EUTs at one time.

Configuration 11 is made up of Configuration 6 and Configuration 7 (Testing at the same time).

Configuration 6 is in X-axis and Configuration 7 is in the X axis.

Preliminary measurements of the fundamental were taken in two orientations. The orientation that displayed the highest emissions was the orientation used for radiated spurious emissions.

The manufacturer declares it will only ever be wall mounted in an upright (Y-axis) or sideways (X-axis) orientation.

The EUT is setup on an 0.80 meter foam block.

The EUT is setup to continuously transmit at 13.56MHz

Page 44 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation WO#: 97029 Sequence#: 6 Date: 3/31/2016 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert

- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00282	Preamp	8447D	4/7/2014	4/7/2016
T2	ANSITED 3M	Cable		11/15/2014	11/15/2016
Т3	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T4	ANP06885	Cable	P06885	10/27/2015	10/27/2017
T5	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	•	$dB\mu V/m$	dB	Ant
1		50.9	-27.4	+3.6	+0.3	+0.4	+0.0	42.0	46.0	-4.0	Vert
	QP		+14.2								
^	325.431M	51.2	-27.4	+3.6	+0.3	+0.4	+0.0	42.3	46.0	-3.7	Vert
			+14.2								
3		48.3	-28.1	+1.2	+0.1	+0.2	+0.0	35.8	40.0	-4.2	Vert
	QP		+14.1								
4	61.020M	56.0	-28.0	+1.5	+0.1	+0.2	+0.0	35.7	40.0	-4.3	Vert
	QP		+5.9								
^	61.014M	56.6	-28.0	+1.5	+0.1	+0.2	+0.0	36.3	40.0	-3.7	Vert
			+5.9								
6	352.553M	49.6	-27.5	+3.8	+0.4	+0.4	+0.0	41.6	46.0	-4.4	Vert
	QP		+14.9								
^	352.550M	50.2	-27.5	+3.8	+0.4	+0.4	+0.0	42.2	46.0	-3.8	Vert
			+14.9								
8	488.148M	45.7	-28.3	+4.5	+0.4	+0.5	+0.0	40.6	46.0	-5.4	Vert
	QP		+17.8								
^	488.136M	46.5	-28.3	+4.5	+0.4	+0.5	+0.0	41.4	46.0	-4.6	Vert
			+17.8								
10	325.433M	49.0	-27.4	+3.6	+0.3	+0.4	+0.0	40.1	46.0	-5.9	Horiz
	QP		+14.2								
^	325.433M	49.4	-27.4	+3.6	+0.3	+0.4	+0.0	40.5	46.0	-5.5	Horiz
			+14.2								
12		48.0	-27.5	+3.8	+0.4	+0.4	+0.0	40.0	46.0	-6.0	Horiz
	QP		+14.9								
^	352.549M	48.4	-27.5	+3.8	+0.4	+0.4	+0.0	40.4	46.0	-5.6	Horiz
			+14.9								

Page 46 of 83 Report No.: 97029-15

14	40.665M	44.7	-28.1	+1.2	+0.1	+0.2	+0.0	32.2	40.0	-7.8	Vert
	QP		+14.1								
^	40.665M	51.0	-28.1	+1.2	+0.1	+0.2	+0.0	38.5	40.0	-1.5	Vert
			+14.1								
^	40.674M	50.5	-28.1	+1.2	+0.1	+0.2	+0.0	38.0	40.0	-2.0	Vert
			+14.1								
17	216.956M	50.5	-27.3	+2.9	+0.3	+0.4	+0.0	36.9	46.0	-9.1	Horiz
	QP		+10.1								
^	216.954M	50.7	-27.3	+2.9	+0.3	+0.4	+0.0	37.1	46.0	-8.9	Horiz
			+10.1								
19	379.673M	44.2	-27.7	+3.9	+0.4	+0.4	+0.0	36.8	46.0	-9.2	Vert
	QP		+15.6								
^	379.667M	45.1	-27.7	+3.9	+0.4	+0.4	+0.0	37.7	46.0	-8.3	Vert
			+15.6								
21	54.229M	48.7	-28.0	+1.4	+0.1	+0.2	+0.0	29.7	40.0	-10.3	Vert
			+7.3								
22	461.070M	39.0	-28.1	+4.4	+0.4	+0.5	+0.0	33.5	46.0	-12.5	Vert
			+17.3								
23	210.174M	42.5	-27.4	+2.9	+0.3	+0.3	+0.0	28.3	43.5	-15.2	Horiz
			+9.7	-							

Test Setup Photos

Configuration 10

Configuration 11

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

 Work Order #:
 97029
 Date:
 5/10/2016

 Test Type:
 Conducted Emissions
 Time:
 09:49:44

Tested By: Skip Doyle / Benny Lovan Sequence#: 4

Software: EMITest 5.03.02 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 49 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 4 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	62.2	+10.1	+0.3	+0.2	+0.1	+0.0	73.2	50.0	+23.2	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen	ıtal	
2	13.707M	40.4	+10.1	+0.3	+0.2	+0.1	+0.0	51.4	50.0	+1.4	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen	ıtal	
3	13.482M	38.9	+10.1	+0.3	+0.2	+0.1	+0.0	49.9	50.0	-0.1	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen	ıtal	
4	14.212M	34.3	+10.1	+0.3	+0.2	+0.1	+0.0	45.3	50.0	-4.7	LINE
			+0.2	+0.0	+0.1						
5	13.635M	33.8	+10.1	+0.3	+0.2	+0.1	+0.0	44.8	50.0	-5.2	LINE
			+0.2	+0.0	+0.1						
6	13.779M	33.5	+10.1	+0.3	+0.2	+0.1	+0.0	44.5	50.0	-5.5	LINE
			+0.2	+0.0	+0.1						
7	14.140M	30.9	+10.1	+0.3	+0.2	+0.1	+0.0	41.9	50.0	-8.1	LINE
			+0.2	+0.0	+0.1						
8	13.852M	29.7	+10.1	+0.3	+0.2	+0.1	+0.0	40.7	50.0	-9.3	LINE
			+0.2	+0.0	+0.1						
9	14.501M	29.6	+10.1	+0.3	+0.2	+0.1	+0.0	40.6	50.0	-9.4	LINE
			+0.2	+0.0	+0.1						
10	14.429M	27.3	+10.1	+0.3	+0.2	+0.1	+0.0	38.3	50.0	-11.7	LINE
			+0.2	+0.0	+0.1						
11	13.409M	26.6	+10.1	+0.3	+0.2	+0.1	+0.0	37.6	50.0	-12.4	LINE
			+0.2	+0.0	+0.1						
12	14.068M	26.6	+10.1	+0.3	+0.2	+0.1	+0.0	37.6	50.0	-12.4	LINE
			+0.2	+0.0	+0.1						
13	13.924M	25.8	+10.1	+0.3	+0.2	+0.1	+0.0	36.8	50.0	-13.2	LINE
			+0.2	+0.0	+0.1						
14	13.265M	25.5	+10.1	+0.3	+0.2	+0.1	+0.0	36.5	50.0	-13.5	LINE
			+0.2	+0.0	+0.1						
15	14.573M	25.4	+10.1	+0.3	+0.2	+0.1	+0.0	36.4	50.0	-13.6	LINE
			+0.2	+0.0	+0.1						
16	14.934M	23.5	+10.1	+0.3	+0.2	+0.1	+0.0	34.5	50.0	-15.5	LINE
			+0.2	+0.0	+0.1						

17	14.285M	23.4	+10.1	+0.3	+0.2	+0.1	+0.0	34.4	50.0	-15.6	LINE
			+0.2	+0.0	+0.1						
18	13.996M	22.9	+10.1	+0.3	+0.2	+0.1	+0.0	33.9	50.0	-16.1	LINE
			+0.2	+0.0	+0.1						
19	13.337M	22.7	+10.1	+0.3	+0.2	+0.1	+0.0	33.7	50.0	-16.3	LINE
			+0.2	+0.0	+0.1						
20	14.646M	21.7	+10.1	+0.3	+0.2	+0.1	+0.0	32.7	50.0	-17.3	LINE
			+0.2	+0.0	+0.1						
21	13.049M	20.1	+10.1	+0.3	+0.2	+0.1	+0.0	31.1	50.0	-18.9	LINE
			+0.2	+0.0	+0.1						
22	153.637k	21.6	+10.1	+0.1	+1.5	+0.0	+0.0	33.3	55.8	-22.5	LINE
			+0.0	+0.0	+0.0						
23	27.124M	15.6	+10.1	+0.1	+0.3	+0.1	+0.0	26.6	50.0	-23.4	LINE
			+0.2	+0.0	+0.2						
24	15.376M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	LINE
			+0.2	+0.0	+0.1						
25	12.976M	15.0	+10.1	+0.3	+0.2	+0.1	+0.0	26.0	50.0	-24.0	LINE
			+0.2	+0.0	+0.1						
26	14.718M	15.0	+10.1	+0.3	+0.2	+0.1	+0.0	26.0	50.0	-24.0	LINE
			+0.2	+0.0	+0.1						
27	14.862M	15.0	+10.1	+0.3	+0.2	+0.1	+0.0	26.0	50.0	-24.0	LINE
			+0.2	+0.0	+0.1						
28	11.046M	14.4	+10.1	+0.2	+0.2	+0.1	+0.0	25.3	50.0	-24.7	LINE
			+0.2	+0.0	+0.1						
29	15.593M	12.3	+10.1	+0.4	+0.2	+0.1	+0.0	23.4	50.0	-26.6	LINE
			+0.2	+0.0	+0.1						
30	10.315M	12.4	+10.1	+0.2	+0.2	+0.1	+0.0	23.2	50.0	-26.8	LINE
			+0.1	+0.0	+0.1						
31	13.572M	3.4	+10.1	+0.3	+0.2	+0.1	+0.0	14.4	50.0	-35.6	LINE
			+0.2	+0.0	+0.1				Antenna		
									Disconnect	ed and	
									replaced wi		
32	13.707M	2.8	+10.1	+0.3	+0.2	+0.1	+0.0	13.8	50.0	-36.2	LINE
			+0.2	+0.0	+0.1				Antenna		
									Disconnect	ed and	
									replaced wi	ith load	
33	13.482M	2.6	+10.1	+0.3	+0.2	+0.1	+0.0	13.6	50.0	-36.4	LINE
			+0.2	+0.0	+0.1				Antenna		
									Disconnect		
									replaced wi	ith load	

Page 52 of 83 Report No.: 97029-15

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

EMITest 5.03.02

Specification: 15.207 AC Mains - Average

 Work Order #:
 97029
 Date: 5/10/2016

 Test Type:
 Conducted Emissions
 Time: 09:41:38

Tested By: Skip Doyle / Benny Lovan Sequence#: 3

Equipment Tested:

Software:

Device Manufacturer Model # S/N
Configuration 2

120V 60Hz

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 53 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 3 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	d: RETUR		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	62.0	+10.1	+0.4	+0.2	+0.1	+0.0	73.1	50.0	+23.1	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.707M	40.7	+10.1	+0.4	+0.2	+0.1	+0.0	51.8	50.0	+1.8	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen	tal	
3	13.491M	39.4	+10.1	+0.4	+0.2	+0.1	+0.0	50.5	50.0	+0.5	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
4	13.779M	35.4	+10.1	+0.4	+0.2	+0.1	+0.0	46.5	50.0	-3.5	RETUR
			+0.2	+0.0	+0.1						
5	13.635M	35.3	+10.1	+0.4	+0.2	+0.1	+0.0	46.4	50.0	-3.6	RETUR
			+0.2	+0.0	+0.1						
6	14.212M	33.6	+10.1	+0.4	+0.2	+0.1	+0.0	44.7	50.0	-5.3	RETUR
			+0.2	+0.0	+0.1						
7	13.852M	29.8	+10.1	+0.4	+0.2	+0.1	+0.0	40.9	50.0	-9.1	RETUR
			+0.2	+0.0	+0.1						
8	14.140M	29.1	+10.1	+0.4	+0.2	+0.1	+0.0	40.2	50.0	-9.8	RETUR
			+0.2	+0.0	+0.1						
9	14.501M	29.1	+10.1	+0.4	+0.2	+0.1	+0.0	40.2	50.0	-9.8	RETUR
			+0.2	+0.0	+0.1						
10	13.418M	28.6	+10.1	+0.4	+0.2	+0.1	+0.0	39.7	50.0	-10.3	RETUR
			+0.2	+0.0	+0.1						
11	13.274M	26.6	+10.1	+0.4	+0.2	+0.1	+0.0	37.7	50.0	-12.3	RETUR
			+0.2	+0.0	+0.1						
12	14.068M	26.5	+10.1	+0.4	+0.2	+0.1	+0.0	37.6	50.0	-12.4	RETUR
			+0.2	+0.0	+0.1						
13	13.996M	24.7	+10.1	+0.4	+0.2	+0.1	+0.0	35.8	50.0	-14.2	RETUR
			+0.2	+0.0	+0.1						
14	14.429M	24.6	+10.1	+0.4	+0.2	+0.1	+0.0	35.7	50.0	-14.3	RETUR
			+0.2	+0.0	+0.1						
15	13.924M	24.5	+10.1	+0.4	+0.2	+0.1	+0.0	35.6	50.0	-14.4	RETUR
			+0.2	+0.0	+0.1						
16	13.346M	23.9	+10.1	+0.4	+0.2	+0.1	+0.0	35.0	50.0	-15.0	RETUR
			+0.2	+0.0	+0.1						

Page 55 of 83 Report No.: 97029-15

17	14.285M	23.5	+10.1 +0.2	+0.4 +0.0	+0.2 +0.1	+0.1	+0.0	34.6	50.0	-15.4	RETUR
18	14.573M	23.2	+10.1	+0.4	+0.1	+0.1	+0.0	34.3	50.0	-15.7	RETUR
10	14.5/5101	23.2	+0.2	+0.4	+0.2	10.1	10.0	34.3	30.0	-13.7	KETUK
19	13.049M	21.7	+10.1	+0.3	+0.1	+0.1	+0.0	32.7	50.0	-17.3	RETUR
19	13.049101	21.7	+0.2	+0.0	+0.2	10.1	10.0	32.1	30.0	-17.3	KETOK
20	14.934M	21.1	+10.1	+0.4	+0.1	+0.1	+0.0	32.2	50.0	-17.8	RETUR
20	14./J4IVI	21.1	+0.2	+0.0	+0.2	10.1	10.0	32.2	30.0	-17.0	KLIOK
21	14.646M	18.7	+10.1	+0.4	+0.2	+0.1	+0.0	29.8	50.0	-20.2	RETUR
	1 110 10111	10.7	+0.2	+0.0	+0.1		. 0.0	27.0	20.0	20.2	TLE T CIT
22	15.331M	17.5	+10.1	+0.4	+0.2	+0.1	+0.0	28.6	50.0	-21.4	RETUR
		-,	+0.2	+0.0	+0.1	***	***				
23	27.124M	16.9	+10.1	+0.7	+0.3	+0.1	+0.0	28.5	50.0	-21.5	RETUR
			+0.2	+0.0	+0.2					_	
24	150.001k	22.0	+10.1	+0.1	+2.0	+0.0	+0.0	34.2	56.0	-21.8	RETUR
			+0.0	+0.0	+0.0						
25	12.976M	14.5	+10.1	+0.3	+0.2	+0.1	+0.0	25.5	50.0	-24.5	RETUR
			+0.2	+0.0	+0.1						
26	14.718M	13.0	+10.1	+0.4	+0.2	+0.1	+0.0	24.1	50.0	-25.9	RETUR
			+0.2	+0.0	+0.1						
27	9.963M	12.8	+10.1	+0.3	+0.2	+0.1	+0.0	23.7	50.0	-26.3	RETUR
			+0.1	+0.0	+0.1						
28	10.694M	12.6	+10.1	+0.3	+0.2	+0.1	+0.0	23.5	50.0	-26.5	RETUR
			+0.1	+0.0	+0.1						
29	12.543M	12.3	+10.1	+0.3	+0.2	+0.1	+0.0	23.3	50.0	-26.7	RETUR
			+0.2	+0.0	+0.1						
30	14.862M	12.2	+10.1	+0.4	+0.2	+0.1	+0.0	23.3	50.0	-26.7	RETUR
			+0.2	+0.0	+0.1						
31	13.491M	3.2	+10.1	+0.4	+0.2	+0.1	+0.0	14.3	50.0	-35.7	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
	12 5523 5	2.0	+10.1	10.4	10.2	10.1	10.0	12.0	port Loaded		DEMIE
32	13.572M	2.8	+10.1	+0.4	+0.2	+0.1	+0.0	13.9	50.0	-36.1	RETUR
			+0.2	+0.0	+0.1				Antenna	1 1	
									disconnecte		
33	13.707M	2.7	+10.1	+0.4	+0.2	+0.1	+0.0	13.8	port Loaded	-36.2	RETUR
33	13./U/IVI	2.1	+10.1	+0.4 +0.0	+0.2 +0.1	±0.1	±0.0	13.8	Su.u Antenna	-30.2	KEIUK
1			10.∠	10.0	10.1				disconnecte	d and	
1									port Loaded		
									Por Loadet		

Page 56 of 83 Report No.: 97029-15

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

EMITest 5.03.02

Specification: 15.207 AC Mains - Average

Work Order #: 97029 Date: 5/10/2016
Test Type: Conducted Emissions Time: 09:55:30

Tested By: Skip Doyle / Benny Lovan Sequence#: 5

Equipment Tested:

Software:

Device Manufacturer Model # S/N
Configuration 3

120V 60Hz

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 57 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 5 Date: 5/10/2016 15:207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measi	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	62.0	+10.1	+0.3	+0.2	+0.1	+0.0	73.0	50.0	+23.0	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.698M	38.7	+10.1	+0.3	+0.2	+0.1	+0.0	49.7	50.0	-0.3	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen		
3	13.482M	34.8	+10.1	+0.3	+0.2	+0.1	+0.0	45.8	50.0	-4.2	LINE
			+0.2	+0.0	+0.1						
4	14.212M	34.5	+10.1	+0.3	+0.2	+0.1	+0.0	45.5	50.0	-4.5	LINE
			+0.2	+0.0	+0.1						
5	14.140M	32.5	+10.1	+0.3	+0.2	+0.1	+0.0	43.5	50.0	-6.5	LINE
			+0.2	+0.0	+0.1						
6	14.501M	30.4	+10.1	+0.3	+0.2	+0.1	+0.0	41.4	50.0	-8.6	LINE
			+0.2	+0.0	+0.1						
7	13.626M	28.9	+10.1	+0.3	+0.2	+0.1	+0.0	39.9	50.0	-10.1	LINE
			+0.2	+0.0	+0.1						
8	13.770M	28.6	+10.1	+0.3	+0.2	+0.1	+0.0	39.6	50.0	-10.4	LINE
			+0.2	+0.0	+0.1						
9	13.843M	27.5	+10.1	+0.3	+0.2	+0.1	+0.0	38.5	50.0	-11.5	LINE
			+0.2	+0.0	+0.1						
10	13.400M	27.1	+10.1	+0.3	+0.2	+0.1	+0.0	38.1	50.0	-11.9	LINE
			+0.2	+0.0	+0.1						
11	14.059M	26.8	+10.1	+0.3	+0.2	+0.1	+0.0	37.8	50.0	-12.2	LINE
			+0.2	+0.0	+0.1						
12	13.915M	26.4	+10.1	+0.3	+0.2	+0.1	+0.0	37.4	50.0	-12.6	LINE
			+0.2	+0.0	+0.1						
13	14.429M	26.3	+10.1	+0.3	+0.2	+0.1	+0.0	37.3	50.0	-12.7	LINE
			+0.2	+0.0	+0.1						
14	14.285M	23.7	+10.1	+0.3	+0.2	+0.1	+0.0	34.7	50.0	-15.3	LINE
			+0.2	+0.0	+0.1						
15	14.573M	23.6	+10.1	+0.3	+0.2	+0.1	+0.0	34.6	50.0	-15.4	LINE
			+0.2	+0.0	+0.1						
16	13.328M	21.2	+10.1	+0.3	+0.2	+0.1	+0.0	32.2	50.0	-17.8	LINE
			+0.2	+0.0	+0.1						
		•			•	•	•				•

Page 59 of 83 Report No.: 97029-15

17	13.987M	19.8	+10.1	+0.3	+0.2	+0.1	+0.0	30.8	50.0	-19.2	LINE
			+0.2	+0.0	+0.1						
18	14.943M	19.2	+10.1	+0.3	+0.2	+0.1	+0.0	30.2	50.0	-19.8	LINE
			+0.2	+0.0	+0.1						
19	14.646M	17.7	+10.1	+0.3	+0.2	+0.1	+0.0	28.7	50.0	-21.3	LINE
			+0.2	+0.0	+0.1						
20	13.256M	16.8	+10.1	+0.3	+0.2	+0.1	+0.0	27.8	50.0	-22.2	LINE
			+0.2	+0.0	+0.1						
21	151.819k	20.4	+10.1	+0.1	+1.8	+0.0	+0.0	32.4	55.9	-23.5	LINE
			+0.0	+0.0	+0.0						
22	12.597M	13.7	+10.1	+0.3	+0.2	+0.1	+0.0	24.7	50.0	-25.3	LINE
			+0.2	+0.0	+0.1						
23	14.727M	13.3	+10.1	+0.3	+0.2	+0.1	+0.0	24.3	50.0	-25.7	LINE
			+0.2	+0.0	+0.1						
24	27.124M	13.0	+10.1	+0.1	+0.3	+0.1	+0.0	24.0	50.0	-26.0	LINE
			+0.2	+0.0	+0.2						
25	12.155M	12.9	+10.1	+0.3	+0.1	+0.1	+0.0	23.8	50.0	-26.2	LINE
			+0.2	+0.0	+0.1						
26	11.867M	12.8	+10.1	+0.3	+0.1	+0.1	+0.0	23.7	50.0	-26.3	LINE
			+0.2	+0.0	+0.1						
27	13.040M	12.5	+10.1	+0.3	+0.2	+0.1	+0.0	23.5	50.0	-26.5	LINE
			+0.2	+0.0	+0.1						
28	15.015M	12.4	+10.1	+0.3	+0.2	+0.1	+0.0	23.4	50.0	-26.6	LINE
			+0.2	+0.0	+0.1						
29	12.967M	12.3	+10.1	+0.3	+0.2	+0.1	+0.0	23.3	50.0	-26.7	LINE
			+0.2	+0.0	+0.1						
30	12.895M	11.6	+10.1	+0.3	+0.2	+0.1	+0.0	22.6	50.0	-27.4	LINE
			+0.2	+0.0	+0.1						
31	13.696M	4.7	+10.1	+0.3	+0.2	+0.1	+0.0	15.7	50.0	-34.3	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced w		
32	13.563M	4.2	+10.1	+0.3	+0.2	+0.1	+0.0	15.2	50.0	-34.8	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi	ith load	

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

EMITest 5.03.02

Specification: 15.207 AC Mains - Average

 Work Order #:
 97029
 Date:
 5/10/2016

 Test Type:
 Conducted Emissions
 Time:
 10:00:58

Tested By: Skip Doyle / Benny Lovan Sequence#: 6

Equipment Tested:

Software:

Device Manufacturer Model # S/N
Configuration 3

120V 60Hz

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 61 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 6 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	d: RETUR		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	62.0	+10.1	+0.4	+0.2	+0.1	+0.0	73.1	50.0	+23.1	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.608M	31.8	+10.1	+0.4	+0.2	+0.1	+0.0	42.9	50.0	-7.1	RETUR
			+0.2	+0.0	+0.1						
3	13.536M	30.9	+10.1	+0.4	+0.2	+0.1	+0.0	42.0	50.0	-8.0	RETUR
			+0.2	+0.0	+0.1						
4	13.680M	30.2	+10.1	+0.4	+0.2	+0.1	+0.0	41.3	50.0	-8.7	RETUR
			+0.2	+0.0	+0.1						
5	14.122M	29.8	+10.1	+0.4	+0.2	+0.1	+0.0	40.9	50.0	-9.1	RETUR
			+0.2	+0.0	+0.1						
6	14.637M	29.0	+10.1	+0.4	+0.2	+0.1	+0.0	40.1	50.0	-9.9	RETUR
			+0.2	+0.0	+0.1						
7	14.564M	28.5	+10.1	+0.4	+0.2	+0.1	+0.0	39.6	50.0	-10.4	RETUR
			+0.2	+0.0	+0.1						
8	13.464M	27.7	+10.1	+0.4	+0.2	+0.1	+0.0	38.8	50.0	-11.2	RETUR
			+0.2	+0.0	+0.1						
9	13.761M	26.7	+10.1	+0.4	+0.2	+0.1	+0.0	37.8	50.0	-12.2	RETUR
			+0.2	+0.0	+0.1						
10	13.391M	26.0	+10.1	+0.4	+0.2	+0.1	+0.0	37.1	50.0	-12.9	RETUR
			+0.2	+0.0	+0.1						
11	13.834M	25.9	+10.1	+0.4	+0.2	+0.1	+0.0	37.0	50.0	-13.0	RETUR
			+0.2	+0.0	+0.1						
12	14.492M	24.1	+10.1	+0.4	+0.2	+0.1	+0.0	35.2	50.0	-14.8	RETUR
			+0.2	+0.0	+0.1						
13	14.925M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
14	13.319M	23.7	+10.1	+0.4	+0.2	+0.1	+0.0	34.8	50.0	-15.2	RETUR
			+0.2	+0.0	+0.1						
15	13.906M	23.4	+10.1	+0.4	+0.2	+0.1	+0.0	34.5	50.0	-15.5	RETUR
			+0.2	+0.0	+0.1						
16	14.853M	22.5	+10.1	+0.4	+0.2	+0.1	+0.0	33.6	50.0	-16.4	RETUR
			+0.2	+0.0	+0.1						

17	13.021M	21.4	+10.1	+0.3	+0.2	+0.1	+0.0	32.4	50.0	-17.6	RETUR
			+0.2	+0.0	+0.1						
18	14.411M	21.0	+10.1	+0.4	+0.2	+0.1	+0.0	32.1	50.0	-17.9	RETUR
			+0.2	+0.0	+0.1						
19	14.194M	20.7	+10.1	+0.4	+0.2	+0.1	+0.0	31.8	50.0	-18.2	RETUR
			+0.2	+0.0	+0.1						
20	14.267M	18.8	+10.1	+0.4	+0.2	+0.1	+0.0	29.9	50.0	-20.1	RETUR
			+0.2	+0.0	+0.1						
21	12.588M	18.8	+10.1	+0.3	+0.2	+0.1	+0.0	29.8	50.0	-20.2	RETUR
			+0.2	+0.0	+0.1						
22	14.050M	17.2	+10.1	+0.4	+0.2	+0.1	+0.0	28.3	50.0	-21.7	RETUR
			+0.2	+0.0	+0.1						
23	13.247M	16.9	+10.1	+0.4	+0.2	+0.1	+0.0	28.0	50.0	-22.0	RETUR
			+0.2	+0.0	+0.1						
24	15.683M	16.4	+10.1	+0.4	+0.2	+0.1	+0.0	27.5	50.0	-22.5	RETUR
			+0.2	+0.0	+0.1						
25	12.291M	16.1	+10.1	+0.3	+0.1	+0.1	+0.0	27.0	50.0	-23.0	RETUR
			+0.2	+0.0	+0.1						
26	14.997M	15.5	+10.1	+0.4	+0.2	+0.1	+0.0	26.6	50.0	-23.4	RETUR
			+0.2	+0.0	+0.1						
27	151.819k	20.4	+10.1	+0.1	+1.8	+0.0	+0.0	32.4	55.9	-23.5	RETUR
			+0.0	+0.0	+0.0						
28	15.385M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
29	27.124M	14.6	+10.1	+0.7	+0.3	+0.1	+0.0	26.2	50.0	-23.8	RETUR
			+0.2	+0.0	+0.2						
30	14.709M	14.7	+10.1	+0.4	+0.2	+0.1	+0.0	25.8	50.0	-24.2	RETUR
			+0.2	+0.0	+0.1						
31	13.572M	2.8	+10.1	+0.4	+0.2	+0.1	+0.0	13.9	50.0	-36.1	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wit	h load	

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97029 Date: 5/10/2016
Test Type: Conducted Emissions Time: 10:31:54
Tested By: Skip Doyle / Benny Lovan Sequence#: 12

Software: EMITest 5.03.02 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 6

Support Equipment:

Device Manufacturer Model # S/N
Configuration 6

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 65 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 12 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	62.0	+10.1	+0.3	+0.2	+0.1	+0.0	73.0	50.0	+23.0	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen		
2	13.698M	39.1	+10.1	+0.3	+0.2	+0.1	+0.0	50.1	50.0	+0.1	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen		
3	13.482M	36.5	+10.1	+0.3	+0.2	+0.1	+0.0	47.5	50.0	-2.5	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamen		
4	14.212M	33.3	+10.1	+0.3	+0.2	+0.1	+0.0	44.3	50.0	-5.7	LINE
			+0.2	+0.0	+0.1						
5	14.140M	31.4	+10.1	+0.3	+0.2	+0.1	+0.0	42.4	50.0	-7.6	LINE
			+0.2	+0.0	+0.1						
6	13.770M	29.9	+10.1	+0.3	+0.2	+0.1	+0.0	40.9	50.0	-9.1	LINE
			+0.2	+0.0	+0.1						
7	13.626M	29.5	+10.1	+0.3	+0.2	+0.1	+0.0	40.5	50.0	-9.5	LINE
			+0.2	+0.0	+0.1						
8	14.501M	29.5	+10.1	+0.3	+0.2	+0.1	+0.0	40.5	50.0	-9.5	LINE
			+0.2	+0.0	+0.1						
9	13.843M	27.7	+10.1	+0.3	+0.2	+0.1	+0.0	38.7	50.0	-11.3	LINE
			+0.2	+0.0	+0.1						
10	14.429M	27.0	+10.1	+0.3	+0.2	+0.1	+0.0	38.0	50.0	-12.0	LINE
			+0.2	+0.0	+0.1						
11	13.409M	26.1	+10.1	+0.3	+0.2	+0.1	+0.0	37.1	50.0	-12.9	LINE
			+0.2	+0.0	+0.1						
12	14.068M	25.9	+10.1	+0.3	+0.2	+0.1	+0.0	36.9	50.0	-13.1	LINE
			+0.2	+0.0	+0.1						
13	13.915M	25.3	+10.1	+0.3	+0.2	+0.1	+0.0	36.3	50.0	-13.7	LINE
			+0.2	+0.0	+0.1						
14	14.573M	24.1	+10.1	+0.3	+0.2	+0.1	+0.0	35.1	50.0	-14.9	LINE
			+0.2	+0.0	+0.1						
15	14.934M	22.2	+10.1	+0.3	+0.2	+0.1	+0.0	33.2	50.0	-16.8	LINE
			+0.2	+0.0	+0.1						
16	14.285M	22.1	+10.1	+0.3	+0.2	+0.1	+0.0	33.1	50.0	-16.9	LINE
			+0.2	+0.0	+0.1						

17	13.265M	21.4	+10.1 +0.2	+0.3 +0.0	+0.2 +0.1	+0.1	+0.0	32.4	50.0	-17.6	LINE
18	14.646M	20.4	+10.1	+0.0	+0.1	+0.1	+0.0	31.4	50.0	-18.6	LINE
10	14.040WI	20.4	+0.1	+0.3	+0.2	+0.1	+0.0	31.4	30.0	-18.0	LINE
19	13.987M	19.6	+10.1	+0.3	+0.1	+0.1	+0.0	30.6	50.0	-19.4	LINE
19	13.90/101	19.0	+0.2	+0.0	+0.2	10.1	10.0	30.0	30.0	-17.4	LINE
20	13.337M	19.3	+10.1	+0.3	+0.1	+0.1	+0.0	30.3	50.0	-19.7	LINE
20	13.33/101	19.5	+0.2	+0.0	+0.2	10.1	10.0	30.3	30.0	-19.7	LINE
21	27.124M	18.8	+10.1	+0.1	+0.3	+0.1	+0.0	29.8	50.0	-20.2	LINE
21	27.12-111	10.0	+0.2	+0.0	+0.2	. 0.1	10.0	27.0	30.0	20.2	LIIVL
22	12.967M	15.8	+10.1	+0.3	+0.2	+0.1	+0.0	26.8	50.0	-23.2	LINE
	12.507111	12.0	+0.2	+0.0	+0.1	. 0.1	. 0.0	20.0	20.0	23.2	ZII \Z
23	153.637k	20.6	+10.1	+0.1	+1.5	+0.0	+0.0	32.3	55.8	-23.5	LINE
			+0.0	+0.0	+0.0						
24	13.040M	14.9	+10.1	+0.3	+0.2	+0.1	+0.0	25.9	50.0	-24.1	LINE
			+0.2	+0.0	+0.1						
25	14.718M	14.7	+10.1	+0.3	+0.2	+0.1	+0.0	25.7	50.0	-24.3	LINE
			+0.2	+0.0	+0.1						
26	12.164M	14.4	+10.1	+0.3	+0.1	+0.1	+0.0	25.3	50.0	-24.7	LINE
			+0.2	+0.0	+0.1						
27	14.862M	12.7	+10.1	+0.3	+0.2	+0.1	+0.0	23.7	50.0	-26.3	LINE
			+0.2	+0.0	+0.1						
28	12.895M	12.1	+10.1	+0.3	+0.2	+0.1	+0.0	23.1	50.0	-26.9	LINE
			+0.2	+0.0	+0.1						
29	15.015M	12.0	+10.1	+0.3	+0.2	+0.1	+0.0	23.0	50.0	-27.0	LINE
			+0.2	+0.0	+0.1						
30	12.606M	11.7	+10.1	+0.3	+0.2	+0.1	+0.0	22.7	50.0	-27.3	LINE
			+0.2	+0.0	+0.1			1.50			
31	13.572M	5.9	+10.1	+0.3	+0.2	+0.1	+0.0	16.9	50.0	-33.1	LINE
			+0.2	+0.0	+0.1				Antenna	1 1	
									disconnecte		
32	12 (00)4	3.2	+10.1	+0.3	+0.2	+0.1	+0.0	14.2	replaced wi		LINE
32	13.698M	3.2	+10.1	+0.3 +0.0	+0.2 +0.1	±0.1	±0.0	14.2	50.0 Antenna	-35.8	LINE
			⊤0.2	+0.0	±0.1				disconnecte	ed and	
									replaced wi		
33	13.482M	3.0	+10.1	+0.3	+0.2	+0.1	+0.0	14.0	50.0	-36.0	LINE
	13.402111	3.0	+0.2	+0.0	+0.2	. 0.1	. 0.0	17.0	Antenna	50.0	LIME
			. 0.2	. 0.0					disconnecte	ed and	
									replaced wi		
L									-r		

Page 68 of 83 Report No.: 97029-15

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

 Work Order #:
 97029
 Date: 5/10/2016

 Test Type:
 Conducted Emissions
 Time: 10:20:05

Tested By: Skip Doyle / Benny Lovan Sequence#: 11
Software: EMITest 5.03.02 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 6

Support Equipment:

Device Manufacturer Model # S/N
Configuration 6

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 69 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 11 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

	rement Data:	Re	eading lis		ırgin.			Test Lea	ıd: RETUR		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	61.5	+10.1	+0.4	+0.2	+0.1	+0.0	72.6	50.0	+22.6	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2	13.689M	34.2	+10.1	+0.4	+0.2	+0.1	+0.0	45.3	50.0	-4.7	RETUR
			+0.2	+0.0	+0.1						
3	13.617M	30.3	+10.1	+0.4	+0.2	+0.1	+0.0	41.4	50.0	-8.6	RETUR
			+0.2	+0.0	+0.1						
4	14.131M	30.0	+10.1	+0.4	+0.2	+0.1	+0.0	41.1	50.0	-8.9	RETUR
			+0.2	+0.0	+0.1						
5	13.473M	29.4	+10.1	+0.4	+0.2	+0.1	+0.0	40.5	50.0	-9.5	RETUR
			+0.2	+0.0	+0.1						
6	14.637M	28.8	+10.1	+0.4	+0.2	+0.1	+0.0	39.9	50.0	-10.1	RETUR
			+0.2	+0.0	+0.1						
7	13.400M	27.3	+10.1	+0.4	+0.2	+0.1	+0.0	38.4	50.0	-11.6	RETUR
			+0.2	+0.0	+0.1						
8	14.564M	26.3	+10.1	+0.4	+0.2	+0.1	+0.0	37.4	50.0	-12.6	RETUR
			+0.2	+0.0	+0.1						
9	14.420M	24.6	+10.1	+0.4	+0.2	+0.1	+0.0	35.7	50.0	-14.3	RETUR
			+0.2	+0.0	+0.1						
10	13.761M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
11	14.203M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
			+0.2	+0.0	+0.1						
12	14.934M	24.0	+10.1	+0.4	+0.2	+0.1	+0.0	35.1	50.0	-14.9	RETUR
	4.4.000.5	• • • •	+0.2	+0.0	+0.1					4.7.0	
13	14.492M	23.9	+10.1	+0.4	+0.2	+0.1	+0.0	35.0	50.0	-15.0	RETUR
- 1	10.000.5	22.0	+0.2	+0.0	+0.1	. 0. 1	. 0. 0	2.1.0	7 0.0	160	DETTID
14	13.328M	22.9	+10.1	+0.4	+0.2	+0.1	+0.0	34.0	50.0	-16.0	RETUR
	12.000.5	22.6	+0.2	+0.0	+0.1	. 0 1	. 0 . 0	2.1.0	50. 0	160	D.E.E.
15	13.906M	22.9	+10.1	+0.4	+0.2	+0.1	+0.0	34.0	50.0	-16.0	RETUR
1.0	12.62.0.5	21.0	+0.2	+0.0	+0.1			22.0	50.0	1.7.1	DECLE
16	13.834M	21.8	+10.1	+0.4	+0.2	+0.1	+0.0	32.9	50.0	-17.1	RETUR
			+0.2	+0.0	+0.1						

Page 71 of 83 Report No.: 97029-15

17	14.853M	20.3	+10.1	+0.4	+0.2	+0.1	+0.0	31.4	50.0	-18.6	RETUR
			+0.2	+0.0	+0.1						
18	14.276M	20.2	+10.1	+0.4	+0.2	+0.1	+0.0	31.3	50.0	-18.7	RETUR
			+0.2	+0.0	+0.1						
19	14.059M	18.9	+10.1	+0.4	+0.2	+0.1	+0.0	30.0	50.0	-20.0	RETUR
			+0.2	+0.0	+0.1						
20	27.124M	17.8	+10.1	+0.7	+0.3	+0.1	+0.0	29.4	50.0	-20.6	RETUR
			+0.2	+0.0	+0.2						
21	12.597M	17.1	+10.1	+0.3	+0.2	+0.1	+0.0	28.1	50.0	-21.9	RETUR
			+0.2	+0.0	+0.1						
22	11.867M	17.0	+10.1	+0.3	+0.1	+0.1	+0.0	27.9	50.0	-22.1	RETUR
			+0.2	+0.0	+0.1						
23	15.006M	15.8	+10.1	+0.4	+0.2	+0.1	+0.0	26.9	50.0	-23.1	RETUR
			+0.2	+0.0	+0.1						
24	12.155M	15.8	+10.1	+0.3	+0.1	+0.1	+0.0	26.7	50.0	-23.3	RETUR
			+0.2	+0.0	+0.1						
25	151.819k	20.5	+10.1	+0.1	+1.8	+0.0	+0.0	32.5	55.9	-23.4	RETUR
			+0.0	+0.0	+0.0						
26	15.322M	15.5	+10.1	+0.4	+0.2	+0.1	+0.0	26.6	50.0	-23.4	RETUR
			+0.2	+0.0	+0.1						
27	13.031M	15.4	+10.1	+0.3	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
28	14.709M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
29	13.256M	13.5	+10.1	+0.4	+0.2	+0.1	+0.0	24.6	50.0	-25.4	RETUR
			+0.2	+0.0	+0.1						
30	14.781M	13.2	+10.1	+0.4	+0.2	+0.1	+0.0	24.3	50.0	-25.7	RETUR
			+0.2	+0.0	+0.1						
31	13.572M	5.2	+10.1	+0.4	+0.2	+0.1	+0.0	16.3	50.0	-33.7	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wit	th load	

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97029 Date: 5/10/2016
Test Type: Conducted Emissions Time: 10:38:50
Tested By: Skip Doyle / Benny Lovan Sequence#: 13

Software: EMITest 5.03.02 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 7

Support Equipment:

Device Manufacturer Model # S/N
Configuration 7

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 73 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 13 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz LINE

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
T2	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	ad: LINE		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dΒ	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	56.5	+10.1	+0.3	+0.2	+0.1	+0.0	67.5	50.0	+17.5	LINE
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2	13.455M	30.5	+10.1	+0.3	+0.2	+0.1	+0.0	41.5	50.0	-8.5	LINE
			+0.2	+0.0	+0.1						
3	13.671M	28.7	+10.1	+0.3	+0.2	+0.1	+0.0	39.7	50.0	-10.3	LINE
			+0.2	+0.0	+0.1						
4	13.527M	23.5	+10.1	+0.3	+0.2	+0.1	+0.0	34.5	50.0	-15.5	LINE
			+0.2	+0.0	+0.1						
5	13.743M	23.4	+10.1	+0.3	+0.2	+0.1	+0.0	34.4	50.0	-15.6	LINE
			+0.2	+0.0	+0.1						
6	13.012M	21.8	+10.1	+0.3	+0.2	+0.1	+0.0	32.8	50.0	-17.2	LINE
			+0.2	+0.0	+0.1						
7	13.382M	18.0	+10.1	+0.3	+0.2	+0.1	+0.0	29.0	50.0	-21.0	LINE
			+0.2	+0.0	+0.1						
8	13.815M	17.8	+10.1	+0.3	+0.2	+0.1	+0.0	28.8	50.0	-21.2	LINE
			+0.2	+0.0	+0.1						
9	14.546M	17.8	+10.1	+0.3	+0.2	+0.1	+0.0	28.8	50.0	-21.2	LINE
			+0.2	+0.0	+0.1						
10	13.229M	17.1	+10.1	+0.3	+0.2	+0.1	+0.0	28.1	50.0	-21.9	LINE
			+0.2	+0.0	+0.1						
11	12.507M	16.1	+10.1	+0.3	+0.2	+0.1	+0.0	27.1	50.0	-22.9	LINE
			+0.2	+0.0	+0.1						
12	12.209M	16.1	+10.1	+0.3	+0.1	+0.1	+0.0	27.0	50.0	-23.0	LINE
			+0.2	+0.0	+0.1						
13	12.940M	15.7	+10.1	+0.3	+0.2	+0.1	+0.0	26.7	50.0	-23.3	LINE
			+0.2	+0.0	+0.1						
14	13.888M	15.6	+10.1	+0.3	+0.2	+0.1	+0.0	26.6	50.0	-23.4	LINE
			+0.2	+0.0	+0.1						
15	155.455k	20.8	+10.1	+0.1	+1.2	+0.0	+0.0	32.2	55.7	-23.5	LINE
			+0.0	+0.0	+0.0						
16	14.176M	15.4	+10.1	+0.3	+0.2	+0.1	+0.0	26.4	50.0	-23.6	LINE
			+0.2	+0.0	+0.1						

Page 75 of 83 Report No.: 97029-15

17	12.579M	15.3	+10.1	+0.3	+0.2	+0.1	+0.0	26.3	50.0	-23.7	LINE
			+0.2	+0.0	+0.1						
18	15.268M	15.2	+10.1	+0.3	+0.2	+0.1	+0.0	26.2	50.0	-23.8	LINE
			+0.2	+0.0	+0.1						
19	12.724M	14.8	+10.1	+0.3	+0.2	+0.1	+0.0	25.8	50.0	-24.2	LINE
			+0.2	+0.0	+0.1						
20	13.310M	14.5	+10.1	+0.3	+0.2	+0.1	+0.0	25.5	50.0	-24.5	LINE
			+0.2	+0.0	+0.1						
21	27.124M	14.4	+10.1	+0.1	+0.3	+0.1	+0.0	25.4	50.0	-24.6	LINE
			+0.2	+0.0	+0.2						
22	14.979M	14.3	+10.1	+0.3	+0.2	+0.1	+0.0	25.3	50.0	-24.7	LINE
			+0.2	+0.0	+0.1						
23	12.291M	14.3	+10.1	+0.3	+0.1	+0.1	+0.0	25.2	50.0	-24.8	LINE
			+0.2	+0.0	+0.1						
24	9.837M	14.2	+10.1	+0.2	+0.2	+0.1	+0.0	25.0	50.0	-25.0	LINE
			+0.1	+0.0	+0.1						
25	14.249M	13.9	+10.1	+0.3	+0.2	+0.1	+0.0	24.9	50.0	-25.1	LINE
			+0.2	+0.0	+0.1						
26	10.279M	13.8	+10.1	+0.2	+0.2	+0.1	+0.0	24.6	50.0	-25.4	LINE
			+0.1	+0.0	+0.1						
27	14.104M	13.5	+10.1	+0.3	+0.2	+0.1	+0.0	24.5	50.0	-25.5	LINE
			+0.2	+0.0	+0.1						
28	11.776M	13.0	+10.1	+0.3	+0.1	+0.1	+0.0	23.9	50.0	-26.1	LINE
			+0.2	+0.0	+0.1						
29	9.548M	12.8	+10.1	+0.2	+0.2	+0.1	+0.0	23.6	50.0	-26.4	LINE
			+0.1	+0.0	+0.1						
30	13.085M	12.5	+10.1	+0.3	+0.2	+0.1	+0.0	23.5	50.0	-26.5	LINE
			+0.2	+0.0	+0.1						
31	13.572M	3.2	+10.1	+0.3	+0.2	+0.1	+0.0	14.2	50.0	-35.8	LINE
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wi	th a load	

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: WaveLynx Technologies Corporation.

Specification: 15.207 AC Mains - Average

Work Order #: 97029 Date: 5/10/2016
Test Type: Conducted Emissions Time: 10:42:12
Tested By: Skip Doyle / Benny Lovan Sequence#: 14

Software: EMITest 5.03.02 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 7

Support Equipment:

Device Manufacturer Model # S/N
Configuration 7

Test Conditions / Notes:

Test Method: ANSI C 63.10 2013

Frequency Range of Interest:

0.150-30MHz

RBW = 9kHz; VBW > 9kHz

Environmental Conditions: Temperature: 21°C Relative Humidity: 67% Atmospheric Pressure: 97.5kPa

Highest Generated Frequency: 27.12 MHz

The EUT is running at 13.56MHz.

The EUT is powered by a DC power supply at 12VDC. The EUT is setup to continuously transmit at 13.56MHz.

AC Conducted Emissions is being performed on the AC portion of the AC/DC supply.

Page 77 of 83 Report No.: 97029-15

WaveLynx Technologies Corporation. WO#: 97029 Sequence#: 14 Date: 5/10/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz RETURN

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06770	Attenuator	PE7010-10	1/15/2015	1/15/2017
T2	AN01248	50uH LISN-Line 1	8028-50-TS-24-	1/4/2016	1/4/2017
		(Return) (dB)	BNC		
	AN01248	50uH LISN-Line 2	8028-50-TS-24-	1/4/2016	1/4/2017
		(Line) (dB)	BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06884	Cable	LMR195-FR-4	10/27/2015	10/27/2017
T5	ANMD INT	Cable	Underground	3/17/2016	3/17/2018
			cables only		
T6	AN02111	Spectrum Analyzer	8593EM	6/4/2015	6/4/2016
T7	ANP01153	Cable	NA	3/3/2016	3/3/2018

Measurement Data: Reading listed by margin.			Test Lead: RETURN								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.572M	56.0	+10.1	+0.4	+0.2	+0.1	+0.0	67.1	50.0	+17.1	RETUR
	Ambient		+0.2	+0.0	+0.1				Fundamer		
2	13.617M	25.7	+10.1	+0.4	+0.2	+0.1	+0.0	36.8	50.0	-13.2	RETUR
			+0.2	+0.0	+0.1						
3	13.689M	25.2	+10.1	+0.4	+0.2	+0.1	+0.0	36.3	50.0	-13.7	RETUR
			+0.2	+0.0	+0.1						
4	13.536M	24.6	+10.1	+0.4	+0.2	+0.1	+0.0	35.7	50.0	-14.3	RETUR
			+0.2	+0.0	+0.1						
5	14.122M	23.0	+10.1	+0.4	+0.2	+0.1	+0.0	34.1	50.0	-15.9	RETUR
			+0.2	+0.0	+0.1						
6	13.464M	22.0	+10.1	+0.4	+0.2	+0.1	+0.0	33.1	50.0	-16.9	RETUR
			+0.2	+0.0	+0.1						
7	13.391M	21.5	+10.1	+0.4	+0.2	+0.1	+0.0	32.6	50.0	-17.4	RETUR
			+0.2	+0.0	+0.1						
8	14.555M	21.5	+10.1	+0.4	+0.2	+0.1	+0.0	32.6	50.0	-17.4	RETUR
			+0.2	+0.0	+0.1						
9	13.761M	19.7	+10.1	+0.4	+0.2	+0.1	+0.0	30.8	50.0	-19.2	RETUR
10		10.1	+0.2	+0.0	+0.1			• • •	- 0.0	40.7	
10	14.637M	19.4	+10.1	+0.4	+0.2	+0.1	+0.0	30.5	50.0	-19.5	RETUR
1.1	12.02414	10.2	+0.2	+0.0	+0.1	+0.1		20.4	50.0	10.6	DETLID
11	13.834M	19.3	+10.1	+0.4	+0.2	+0.1	+0.0	30.4	50.0	-19.6	RETUR
10	12 21014	10.0	+0.2	+0.0	+0.1	. 0. 1		20.1	50.0	20.0	DETID
12	13.319M	18.0	+10.1 +0.2	$+0.4 \\ +0.0$	+0.2 +0.1	+0.1	+0.0	29.1	50.0	-20.9	RETUR
13	13.906M	17.9	+10.1	+0.0	+0.1	+0.1	+0.0	29.0	50.0	-21.0	RETUR
13	13.900M	17.9	+10.1	+0.4 $+0.0$	+0.2	+0.1	+0.0	29.0	30.0	-21.0	KETUK
14	14.853M	17.1	+10.1	+0.0	+0.1	+0.1	+0.0	28.2	50.0	-21.8	RETUR
14	14.833101	1/.1	+0.1	+0.4 +0.0	+0.2	+0.1	+0.0	28.2	30.0	-21.8	KETUK
15	11.867M	17.1	+10.1	+0.0	+0.1	+0.1	+0.0	28.0	50.0	-22.0	RETUR
13	11.00/IVI	1/.1	+10.1 $+0.2$	+0.3 $+0.0$	+0.1	±0.1	+0.0	28.0	30.0	-22.0	KEIUK
16	12.597M	16.2	+10.1	+0.0	+0.1	+0.1	+0.0	27.2	50.0	-22.8	RETUR
10	12.39/IVI	10.2	+10.1 $+0.2$	+0.3 $+0.0$	+0.2	±0.1	+0.0	21.2	30.0	-22.8	KEIUK
			±0.∠	±0.0	+0.1						

Page 79 of 83 Report No.: 97029-15

17	14.483M	15.7	+10.1	+0.4	+0.2	+0.1	+0.0	26.8	50.0	-23.2	RETUR
			+0.2	+0.0	+0.1						
18	14.925M	15.3	+10.1	+0.4	+0.2	+0.1	+0.0	26.4	50.0	-23.6	RETUR
			+0.2	+0.0	+0.1						
19	27.124M	14.0	+10.1	+0.7	+0.3	+0.1	+0.0	25.6	50.0	-24.4	RETUR
			+0.2	+0.0	+0.2						
20	169.999k	19.9	+10.1	+0.1	+0.4	+0.0	+0.0	30.5	55.0	-24.5	RETUR
			+0.0	+0.0	+0.0						
21	12.155M	14.6	+10.1	+0.3	+0.1	+0.1	+0.0	25.5	50.0	-24.5	RETUR
			+0.2	+0.0	+0.1						
22	14.194M	13.7	+10.1	+0.4	+0.2	+0.1	+0.0	24.8	50.0	-25.2	RETUR
			+0.2	+0.0	+0.1						
23	13.031M	13.1	+10.1	+0.3	+0.2	+0.1	+0.0	24.1	50.0	-25.9	RETUR
			+0.2	+0.0	+0.1						
24	11.379M	12.0	+10.1	+0.3	+0.2	+0.1	+0.0	23.0	50.0	-27.0	RETUR
			+0.2	+0.0	+0.1						
25	1.491M	8.4	+10.1	+0.1	+0.2	+0.0	+0.0	18.9	46.0	-27.1	RETUR
			+0.1	+0.0	+0.0						
26	14.267M	11.5	+10.1	+0.4	+0.2	+0.1	+0.0	22.6	50.0	-27.4	RETUR
			+0.2	+0.0	+0.1						
27	13.247M	10.7	+10.1	+0.4	+0.2	+0.1	+0.0	21.8	50.0	-28.2	RETUR
			+0.2	+0.0	+0.1						
28	11.794M	10.7	+10.1	+0.3	+0.1	+0.1	+0.0	21.6	50.0	-28.4	RETUR
			+0.2	+0.0	+0.1						
29	3.692M	7.0	+10.1	+0.1	+0.1	+0.0	+0.0	17.5	46.0	-28.5	RETUR
			+0.1	+0.0	+0.1						
30	4.964M	7.0	+10.1	+0.1	+0.1	+0.0	+0.0	17.5	46.0	-28.5	RETUR
			+0.1	+0.0	+0.1						
31	13.572M	1.9	+10.1	+0.4	+0.2	+0.1	+0.0	13.0	50.0	-37.0	RETUR
			+0.2	+0.0	+0.1				Antenna		
									disconnecte		
									replaced wit	th a load	

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement less than the limit while a positive margin represents a measurement exceeding the limit.

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

Page 82 of 83 Report No.: 97029-15

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 83 of 83 Report No.: 97029-15