BLM111 Programlama Dilleri I

Hafta 12 Fonksiyonlar

Mehmet Zahid YILDIRIM

Fonksiyonlar

- ► Fonksiyonlar
 - C 'de modüller
 - Programlar kullanıcı tanımlı fonksiyonları ve kütüphane fonksiyonlarını birlikte kullanırlar.
 - C standart kütüphanesi zengin bir fonksiyon çeşitliliğine sahiptir.

Fonksiyonların Faydaları

- Fonksiyonları faydaları
 - Böl ve yönet
 - Küçük parçalar veya bileşenlerden program oluştur.
 - Bu küçük parçalara modül denir.
 - Fonksiyonlar bir programı modüler hale getirir.
 - Her bir modül programın kendisinden daha yönetilebilirdir.
 - Yazılımın tekrar kullanılabilirliği
 - Mevcut fonksiyonlarınızı yeni bir program yapımında kullanabilirsiniz
 - Soyutlama iç detaylar gizlenir(kütüphane fonksiyonları)
 - Kod tekrarı önlenir.

Fonksiyonlar

- Fonksiyonlar içinde tanımlanan tüm değişkenler yerel değişkenlerdir
 - Sadece tanımlandıkları fonksiyon içinde geçerlidirler
- Parametreler
 - Fonksiyonlar ile haberleşmede kullanılan bilgi
 - Yerel değişkendirler
- Fonksiyon çağırılması
 - Fonksiyon ismini ve argümanlarını (veri) belirt.
 - Fonksiyonlar birtakım işlemler gerçekleştirir.
 - Fonksiyonlar sonuç döndürürler

Fonksiyonlar

- Fonksiyon çağırma analojisi
 - Patron işçiden bir işi yapmasını ister
 - İşçi bilgi toplar, işi yapar ve sonucu patrona bildirir.
 - Bilgi gizleme:
 patron işin
 detaylarını
 bilmez.

Fonksiyon tanımlama formatı:

```
geri_dönüş_değer_tipi fonksiyon _adı ( parameter_listesi )
{
  tanımlamalar_ve_ifadeler
}
```

- fonksiyon_adı herhangi bir geçerli tanımlayıcı olabilir.
- geri_dönüş_değer_tipi fonksiyonu çağırana döndürülen sonucun veri tipidir.
- geri_dönüş_değer_tipi void ise fonksiyon herhangi bir değer döndürmez.
- geri_dönüş_değer_tipi, fonksiyon_adı ve parametre_listesi üçlüsü fonksiyon başlığı (header) olarak adlandırılır.

- parametre_listesi fonksiyonun çağırılırken aldığı parametreleri tanımlayan, virgülle birbirinden ayrılmış bir listedir.
- Eğer fonksiyon herhangi bir parametre almıyorsa, parametre listesi void olur.
- Her bir parametrenin tipi belirtilmelidir.

- Kırlangıç parantezler arasındaki tanımlamalar_ve_ifadeler fonksiyon gövdesini oluşturur.
- Fonksiyon gövdesinin diğer bir adı blok'tur.
- Değişkenler herhangi bir blok içerisinde tanımlanabilir ve bloklar iç içe olabilir.
- Bir fonksiyon diğer bir fonksiyonun içerisinde tanımlanamaz.

- Çağırılan bir fonksiyondan, fonksiyonun çağırıldığı noktaya kontrolün iade edilmesinin üç yöntemi vardır.
- Eğer fonksiyon herhangi bir sonuç döndürmüyorsa,
 - Sağ kırlangıç parantez ile kontrol iade edilmiş olunur.
 - Ya da basitçe return; ifadesi çalıştırılır.
- Eğer fonksiyon bir sonuç döndürüyorsa, return ifade;
 - İfadenin değerini fonksiyonu çağırana döndürür.

Fonksiyon Prototipi

- Bir fonksiyonun künyesidir.
- Eğer fonksiyon tanımlaması çağırımdan sonra ise prototip tanımlanmalıdır.
- Aşağıdaki prototipe sahip fonksiyon
 - int maximum(int x, int y, int z);
 - 3 tamsayı parametre alır.
 - Geriye tamsayı döndürür.

Fonksiyon Prototipi

- Bir fonksiyon çağırımı prototipi ile uyuşmuyorsa derleme hatası oluşur.
- Eğer fonksiyon prototipi ile fonksiyon tanımlaması uyuşmuyorsa da hata oluşur.
- Fonksiyon prototiplerinin diğer bir önemli özelliği ise argümanların uygun bir veri tipine zorlanmasıdır.
- Örneğin, matematik fonksiyonu sqrt <math.h> içerisinde yer alan prototipinde double belirtilmiş olsa da integer argümanla da çağırılabilir. Fonksiyon yine de doğru çalışacaktır
 - printf("%.3f\n", sqrt(4));
 - İfadesindeki sqrt(4) doğru bir şekilde değerlendirilir ve 2.000 değeri yazdırılır.

```
/* finding maximum of three integers */
#include <stdio.h>
int max(int x, int y, int z); //function prototyp
int main()
   int a, b, c;
    printf("plesase enter three numbers");
   scanf("%d%d%d",&a,&b,&c);
    printf("the maximum number is %d", max(a,b,c));
    return 0;
int max(int x, int y, int z)
    int maximum;
    if(x>y)
        if(x>z)
            maximum=x:
        else
            maximum=z;
    else if(y>z)
        maximum=y;
    else
        maximum=z;
    return maximum;
```

Başlık Header Dosyaları

- Kütüphane fonksiyonlarının prototiplerini barındırırlar.
- <stdlib.h> , <math.h> , vs
- #include <dosya_ad1> ile yüklenir.
 - -#include <math.h>
- Özel başlık dosyaları
 - Fonksiyonlar içeren bir dosya oluştur.
 - dosya_adı.h şeklinde isim ile kaydet.
 - Başka dosyalar içerisinde #include "dosya_adı.h" olarak yükle.
 - Fonksiyonları tekrar kullan.

Başlık Header Dosyaları

- math.h

 Matematik kütüphanesi
- ctype.h → Karakter özellikleri, küçük büyük harfe çevirme vs.
- stdio.h

 Standart giriş / çıkış fonksiyonları
- stdlib.h

 Sayıyı metnei metni sayıya
 dönüştürme, hafıza yönetimi, rasgele sayılar ve
 bazı diğer faydalı fonksiyonlar.
- **string.h** → String işlemleri
- time.h

 Zaman ve tarih fonksiyonları

Matematik Fonksiyonları

- Matematik kütüphane fonksiyonları
 - Temel matematik hesaplamaları yapar.
 - #include <math.h>
- Fonksiyonları çağırmak için kullanılacak format
 - FonksiyonAdı(argümanı);
- Eğer birden fazla argüman varsa, aralarında virgül kullan
- Tüm matematik fonksiyonlar double veri tipi döndürür
- Argümanlar sabit, değişken veya ifade olabilir

Matematik Fonksiyonları

Function	Description	Example
sqrt(x)	square root of x	sqrt(900.0) 1S 30.0 sqrt(9.0) 1S 3.0
exp(x)	exponential function e^x	exp(1.0) 1S 2.718282 exp(2.0) 1S 7.389056
log(x)	natural logarithm of x (base e)	log(2.718282) is 1.0 log(7.389056) is 2.0
log10(x)	logarithm of x (base 10)	log10(1.0) iS 0.0 log10(10.0) iS 1.0 log10(100.0) iS 2.0
fabs(x)	absolute value of x	fabs(13.5) 1S 13.5 fabs(0.0) 1S 0.0 fabs(-13.5) 1S 13.5
ceil(x)	rounds x to the smallest integer not less than x	ceil(9.2) 15 10.0 ceil(-9.8) 15 -9.0
floor(x)	rounds x to the largest integer not greater than x	floor(9.2) i \$ 9.0 floor(-9.8) i \$ -10.0

Matematik Fonksiyonları

Function	Description	Example
pow(x,y)	x raised to power $y(x^y)$	pow(2, 7) is 128.0 pow(9, .5) is 3.0
<pre>fmod(x, y)</pre>	remainder of <i>xly</i> as a floating-point number	fmod(13.657, 2.333) iS 1.992
sin(x)	trigonometric sine of x (x in radians)	sin(<mark>0.0</mark>) i S 0.0
cos(x)	trigonometric cosine of x (x in radians)	cos(0.0) is 1.0
tan(x)	trigonometric tangent of x (x in radians)	tan(0.0) is 0.0

Örnek: Kare alan fonksiyon

```
#include <stdio.h>
float kareAl(float);
void main()
    int sayac;
    for(sayac = 1; sayac<=10; sayac++)</pre>
        printf("Sayi:%d Karesi:%d\n", sayac, kareAl(sayac));
    printf("\n^{2}, kareAl(4.5));
float kareAl(float a)
    return a*a;
```

Örnek: Dört İşlem

```
|#include <stdio.h>
int toplam(int, int);
int cikar(int, int);
int carp(int, int);
float bol(int, int);
void main()
    int secim,s1,s2;
    while(1)
        printf("1-Topla\n2-Cikar\n3-Carp\n4-Bol\n5-Cikis\n");
        scanf("%d", &secim);
        printf("Sayilari gir:");
        scanf("%d %d", &s1, &s2);
        if(secim == 1)
            printf("Sonuc = %d", topla(s1,s2));
        else if(secim == 2)
            printf("Sonuc = %d", cikar(s1,s2));
        else if(secim == 3)
            printf("Sonuc = %d", carp(s1,s2));
        else if(secim == 4)
            printf("Sonuc = %.2f", bol(s1,s2));
        else if(secim == 5)
            exit(0);
        else printf("Yanlis giris");
```

```
int topla(int a, int b)
    return a+b;
int cikar(int a, int b)
    return a-b;
int carp(int a, int b)
    return a*b;
float bol(int a, int b)
    return (float)a/b;
```

Örnek: Üs alma

```
#include <stdio.h>
double usAl(double, double);
void main()
    double a,b;
    printf("Taban ve us degeri gir:");
    scanf("%lf %lf", &a, &b);
    printf("%.2f", usAl(a,b));
double usAl(double x, double y)
    int sayac;
    double sonuc=1.0;
    for(sayac=0;sayac<y;sayac++)</pre>
        sonuc *= x;
    return sonuc;
```

Kaynaklar

- ▶ Doç. Dr. Fahri Vatansever, "Algoritma Geliştirme ve Programlamaya Giriş", Seçkin Yayıncılık, 12. Baskı, 2015.
- ▶ J. G. Brookshear, "Computer Science: An Overview 10th Ed.", Addison Wisley, 2009.
- ► Kaan Aslan, "A'dan Z'ye C Klavuzu 8. Basım", Pusula Yayıncılık, 2002.
- ▶ Paul J. Deitel, "C How to Program", Harvey Deitel.
- ► Bayram AKGÜL, C Programlama Ders notları