

RESEARCH DEPARTMENT

Satellite broadcasting service areas

No. 1970/3

* 1000.000	

RESEARCH DEPARTMENT

SATELLITE BROADCASTING SERVICE AREAS

Research Department Report No. 1970/3 UDC 621,396,946

This Report may not be reproduced in any form without the written permission of the British Broadcasting Corporation.

It uses SI units in accordance with B.S. document PD 5686.

Work covered by this report was undertaken by the BBC Research Department for the BBC and the ITA

Dhamie

Head of Research Department

J.W. Head, M.A., F.Inst.P., M.I.E.E., F.I.M.A.

(RA-53)

Research Department Report No. 1970/3

SATELLITE BROADCASTING SERVICE AREAS

Section	Title	Page
	SUMM ARY	1
1,	INTRODUCTION	1
2.	NOTATION AND THE GEOMETRICAL CONSIDERATIONS UNDERLYING IT	2
3.	AXIAL LENGTHS AND DIRECTIONS FOR THE NARROW-BEAM CASE	2
4.	DETERMINATION OF A TYPICAL POINT OF THE BOUNDARY OF THE SERVICE AREA IN THE GENERAL CASE	4
5.	MODIFICATION FOR A CONICAL BEAM OF ELLIPTICAL CROSS-SECTION	5
6.	CONCLUSIONS	5
7.	REFERENCE	5

(RA-53)

SATELLITE BROADCASTING SERVICE AREAS

SUMMARY

The coverage area provided by a transmitter on a geostationary satellite emitting a right-circular conical beam is mainly considered. For sufficiently small beamwidth, the service area is nearly an ellipse in the tangent plane to the Earth at the target point, and the axial lengths and directions are calculated. In general, the service-area boundary is best specified by plotting latitude against longitude, and formulae for specifying this boundary for arbitrary beamwidth are given and discussed. In particular, the 'tulip' shape of some of the diagrams of Fig. 2 (reproduced from reference 1) is explained.

1. INTRODUCTION

If a satellite is to be geostationary, it must be above a point on the Equator, and at a distance of about 42,200 km from the centre of the Earth. The beam emanating from the satellite will generally be assumed to be a right-circular cone (the case of a general conical beam is discussed in outline in Section 5). This cone will meet the Earth's surface in a curve, as illustrated in Fig. 1. For sufficiently small beamwidth, the curve is approximately an ellipse in the tangent plane to the Earth at the target point. For larger beamwidth, the curve will cease to lie in one plane, although it will remain a closed curve unless the beamwidth is so great that part of the cone of radiation from the satellite lies outside the tangent cone from the satellite to the surface of the Earth.

Fig. 1 - Illustration of a typical service area (for narrow beamwidth)

In general, it is more convenient to specify the boundary of the service area by plotting latitude against longitude. Fig. 2 (reproduced from reference 1) indicates the general nature of such curves.

Fig. 2 - Coverage of Europe with the satellite at 8°E, Paris as the target point and varying beamwidth

The object of this report is to provide formulae by means of which the boundary of the service area can be determined whatever the beamwidth. The notation, based mainly upon the geometry of Fig. 3, is explained in Section 2. The case when the beamwidth is small is considered in Section 3; axial ratios and directions are tabulated for ten-degree intervals of the latitude of the target point, and of the difference between the longitudes of the target point and the subsatellite point.

If latitude is plotted against longitude, it can be shown that the small-beamwidth service-area boundaries remain ellipses, but as the beamwidth increases, they become non-elliptical closed curves until the cone of radiation from the satellite meets the tangent cone from the satellite to the Earth. For still greater beamwidth, we have the 'tulip' shape of some of the curves in Fig. 2. To determine a typical point of such a curve, it is necessary to find first the coordinates of a geometrically-specified point Q_n on the boundary of the service area and in the plane through the target point P₁ normal to the line SP₁ joining P₁ to the sate!!ite S. Thereafter we have to determine whether the line SQ_n meets the Earth's surface, and, if so, the coordinates of P_n , the point of intersection. Formulae determining the coordinates of Q_n , and the coordinates of P_n in terms of those of Q_n , are given in Section 4. Section 6 gives conclusions.

NOTATION AND THE GEOMETRICAL CONSIDER-ATIONS UNDERLYING IT

Most of the points which are relevant to the determination of the service area are in the plane SCP_1 (the plane of the paper in Fig. 3), where S is the satellite, P_1 the target point and C the centre of the Earth. The coordinate axes (not shown in Fig. 3) are such that Cz is the axis of the Earth's rotation, and Cx is the intersection of the Equator and the Greenwich meridian; for a right-handed system of axes, latitude North, and longitude East of Greenwich, must be taken as positive. We shall use the following symbols:—

C The centre of the Earth (and origin of coordinates)

D The distance CS (taken as 26,300 miles (42,200 km) in numerical work)

K₁ The point on the Equator due South of P₁

 L_1,M_1 Arbitrary points in the plane SCP₁ such that $L_1P_1M_1$ is the tangent to the Earth at P₁ in that plane.

P₁ The target point

 P_n ($n \neq 1$)A point where the line SQ_n meets the Earth's surface

 Q_2 , Q_3 Points in the plane SCP₁, in the plane through P_1 normal to SP₁ and on the boundary of the service area

 $Q_n \ (n \neq 1, 2, 3)$

Any other point on the boundary of the service area and in the plane through P_{1} normal to SP_{1}

The distance $Q_n P_1 (= SP_1 tan \frac{1}{2}\alpha)$ RThe radius of the Earth (taken as 3960 miles (6375 km) in numerical work) s The subsatellite point S The position of the satellite (co-ordinates $(D\cos\phi_s, D\sin\phi_s, 0))$ $(=R\cos\theta_n\cos\phi_n)$ x — coordinate of P_n x_n (= $R cos \theta_n sin \phi_n$) y — coordinate of P_n y_n z - coordinate of P_n z_n $\begin{array}{c}
x_1 + X_n \\
y_1 + Y_n \\
z_1 + Z_n
\end{array}$ Coordinates of Q_n The beamwidth The angle between CP_1 produced and P_1Q_n y_n θ_n ξ_n ϕ_n ϕ_s ψ_1 The latitude of Pn The angle $Q_n P_1 \ddot{Q}_2$ The longitude of P_n The longitude of s The angle SCP1 The elevation of S as seen from P₁ $\chi_{\mathbf{1}}$ The bearing (West or East of South) of s from

Fig. 3 - Relevant points associated with the plane formed by the satellite, the target point and the centre of the Earth

AXIAL LENGTHS AND DIRECTIONS FOR THE NARROW-BEAM CASE

From the geometry of Fig. 3 the following relations can be established:—

$$\sin\chi_1 = \frac{\mathsf{Dcos}\psi_1 - \mathsf{R}}{\mathsf{SP}_1} \; ; \; \cos\chi_1' = \mathsf{Dsin}\psi_1/\mathsf{SP}_1 \quad \ (1)$$

$$\cos \gamma_n = \cos \chi_1 \cos \xi_n = D \sin \psi_1 \cos \xi_n / SP_1 \quad (2)$$

$$SP_1^2 = D^2 + R^2 - 2DR\cos\psi_1 \tag{3}$$

$$\cos\psi_1 = \cos\theta_1 \cos(\phi_1 - \phi_s) \tag{4}$$

and from the spherical triangle $P_1 s K_1$, right-angled at K_1

$$\sin\omega_1 = \sin(\phi_s - \phi_1) / \sin\psi_1 \tag{5}$$

For the narrow-beam case, we can regard the beam from S as a right-circular cylinder of radius r, cut by the tangent plane to the Earth (in which the elliptical service-area boundary lies) at an angle $(\pi/2-\chi_1)$ with the plane through P_1 normal to SP_1 . Hence the major axis of the ellipse is in the direction $L_1P_1M_1$ and has length $rcosec\chi_1$, and the minor axis

(in the direction through P_1 perpendicular to the plane SCP_1) has length r. The ratio $cosec_{\chi_1}$ of the axial lengths can be deduced directly from the first of (1), and is tabulated in Table 1, while the direction of the major axls is determined by ω_1 in Equation (5) and is tabulated in Table 2.

TABLE 1

Axial Ratio

θ_1 $\phi_s - \phi_1$	0°	10°	20°	30°	40°	50°	60°	70°	80°
0°	1	1.021	1.090	1.220	1.446	1.850	2.673	5.009	42.68
10°	1.021	1.043	1.113	1.246	1.477	1.891	2.736	5.153	48.21
20°	1.090	1.113	1.188	1.330	1.577	2.022	2.940	5.633	78.25
30°	1.220	1.246	1.330	1.489	1.769	2.277	3.344	6.634	. –
40°	1.446	1.477	1.577	1.769	2.108	2.736	4.098	8.718	_
50°	1.850	1.891	2.022	2.277	2.736	3.609	5.633	14.12	_
60°	2.673	2.736	2.940	3.344	4.098	5-633	9.789	48.21	_
70°	5-009	5.153	5.633	6.634	8.718	14.12	48.21	_	_
80°	42.68	48-21	78.25		-		_	_	_

TABLE 2

Direction of Major Axis

Angle (ω₁) from a North-South Line is Tabulated

θ_1 $\phi_s - \phi_1$	0°	10°	20°	30°	40°	50°	60°	70°	80°
0°	-	0°	0°	0°	0°	0°	0°	0°	0°
10°	90°	45°27 ¹	27°16½ [†]	19°25½ ¹	15°20 ¹	12°58 ¹	11°30½ ¹	1038 ¹	10°9 '
20°	90°	64°30 ¹	46°47 ¹	36°3 [†]	29°31 '	25°25 ¹	22°48 ¹	21°10 '	20°17 [†]
30°	90°	73°16 [†]	59°22 '	49°6 ¹	41°56 '	37°0 ¹	33°41½ ¹	31°34 ¹	_
40°	90°	78°18½ ¹	67°49 '	59°13 [†]	52°33 ¹	47°36 ¹	44°6 [†]	41°46 '	
50°	9 0 °	81°42½ ¹	73°59 ¹	67°14½ ¹	61°39½ [†]	57° 16 ¹	54°0 [†]	51°45 '	-
60°	· 90°	84°16 [†]	78°50 [†]	73°54 [†]	69°38½ ¹	66°91	63°26 ¹	61°31 '	_
70°	90°	86°22½ [†]	82°54 '	79°41¹	76°50 [†]	74°25 ¹	72°30 '	_	_
80°	90°	88°14 ¹	86°33 ¹	_	_	_		_	

4. DETERMINATION OF A TYPICAL POINT OF THE BOUNDARY OF THE SERVICE AREA IN THE GENERAL CASE

When the beamwidth is not necessarily small, we seek to determine the latitude θ_n and longitude ϕ_n of a typical point P_n of the boundary of the service area, and for this purpose it is convenient first to find the coordinates of the point Q_n in which SP_n meets the plane through P_1 normal to SP_1 . We assume that Q_n is specified in terms of r (which is determined by the beamwidth and the position of the target point P_1 , and is thus a known constant) and the angle ξ_n or $Q_nP_1Q_2$. Then since $P_1Q_n = r$

$$X_n^2 + Y_n^2 + Z_n^2 = r^2$$
 (6)

Since P_1Q_n is perpendicular to SP_1 ,

$$(D\cos\phi_s - R\cos\theta_1\cos\phi_1)X_n +$$

+
$$(D\sin\phi_s - R\cos\theta_1\sin\phi_1)Y_n - R\sin\theta_1Z_n = 0$$
 (7)

and since the angle between $\mathsf{CP_1}$ produced and $\mathsf{P_1Q}_n$ is γ_n specified by equation (2), it can also be shown that

$$\cos\theta_1\cos\phi_1X_n + \cos\theta_1\sin\phi_1Y_n + \sin\theta_1Z_n$$

$$= rD\sin\psi_1\cos\xi_n/\mathrm{SP}_1 \tag{8}$$

In general, (that is, if $\phi_1 \neq \phi_s$) (6), (7) and (8) can be reduced to

$$\begin{split} Z_{n}^{2} \sin^{2} \psi_{1} - 2r Z_{n} \cos \xi_{n} \sin \theta_{1} \sin \psi_{1} \left[D - R \cos \psi_{1} \right] / \, \mathrm{SP}_{1} \\ + r^{2} \left\{ \sin^{2} \theta_{1} - \sin^{2} \psi_{1} \sin^{2} \xi_{n} \right. \\ \left. - \left(R^{2} \sin^{2} \theta_{1} \sin^{2} \psi_{1} \cos^{2} \xi_{n} / \, \mathrm{SP}_{1}^{2} \right) \right\} &= 0 \end{split} \tag{9}$$

and X_n , Y_n are then obtained from

$$X_n \sin(\phi_1 - \phi_s) = B \sin\phi_1 - A \sin\phi_s$$

$$Y_n \sin(\phi_1 - \phi_s) = A \cos\phi_s - B \cos\phi_1$$
(10)

where

$$A = \left\{ (rD\sin\psi_1\cos\xi_n)/\mathrm{SP}_1 - Z_n\sin\theta_1 \right\}/\cos\theta_1$$

$$B = \left. (rR\sin\psi_1\cos\xi_n)/\mathrm{SP}_1 \right.$$
 (11)

Given r, ξ_n [as well as θ_1 , $(\phi_1-\phi_s)$ and hence ψ_1] (9) gives two values of Z_n as a multiple of r, and then (10) and (11) give the corresponding values of X_n and Y_n as multiples of r. Equations (9), (10) and (11) are unaltered if ξ_n is replaced by $-\xi_n$: this explains why a quadratic equation for Z_n is to be expected. If $\phi_1=\phi_s$, the corresponding solution is explicit, namely

$$X_n = r \Big[\pm \sin\phi_1 \sin\xi_n + (R/\mathrm{SP_1}) \sin\theta_1 \cos\phi_1 \cos\xi_n \Big]$$

$$Y_n = r \Big[\pm \cos\phi_1 \sin\xi_n + (R/\mathrm{SP_1}) \sin\theta_1 \sin\phi_1 \cos\xi_n \Big]$$

$$Z_n = r\cos\xi_n (D - R\cos\theta_1)/\mathrm{SP_1}$$

At this stage we are in a position to determine explicitly the coordinates of Q_n , which are

$$(x_1 + X_n, y_1 + Y_n, z_1 + Z_n),$$

when r and ξ_n are given; it remains to determine the latitude and longitude of the point P_n in which SQ_n meets the Earth's surface. It is sufficient to determine the coordinates (x_n, y_n, z_n) of P_n ; it can be shown that these satisfy the equations

$$\frac{x_n - x_1 - X_n}{D\cos\phi_s - x_1 - X_n} = \frac{y_n - y_1 - Y_n}{D\sin\phi_s - y_1 - Y_n}$$

$$= \frac{z_1 + Z_n - z_n}{z_1 + Z_n} = \eta, \text{ say}$$
(13)

where

$$\eta^{2} \left[SP_{1}^{2} + r^{2} - (2rRD\sin\psi_{1}\cos\xi_{n}/SP_{1}) \right] -2\eta \left[DR\cos\psi_{1} + (rRD\sin\psi_{1}\cos\xi_{n}/SP_{1}) - R^{2} - r^{2} \right] + r^{2} = 0 \tag{14}$$

Equation (14) (of which only the smaller root is relevant) only involves ξ_n , r and known quantities, so η can be determined without knowing the position of \mathbf{Q}_n explicitly. Once η is known, the last of equations (13) gives \mathbf{z}_n and hence θ_n directly. Either of the remaining equations (13) then gives \mathbf{x}_n or \mathbf{y}_n and hence ϕ_n .

We are therefore now able to plot the latitude θ_n against the longitude ϕ_n in the general case, using a linear scale for both quantities. The geographical significance of the results is best appreciated by appropriately distorting the map of the world in the relevant region, since it is only major geographical features with which we are concerned.

If the beamwidth α (and therefore r) is sufficiently small, the line SO_2 in Fig. 3 will meet the Earth's surface at a point P_2 (not shown in Fig. 3) on the great circle sP_1 produced, but if the beamwidth is too large, the line SO_2 will fail to meet the Earth. The critical situation occurs when the line $\mathrm{SO}_2\mathrm{P}_2$ touches the Earth at P_2 , so that the angle $\mathrm{P}_2\mathrm{SC}$ is $\mathrm{sin}^-(R/D)$ or $8^{\mathrm{o}}40^{\mathrm{o}}$. If angle $\mathrm{P}_2\mathrm{SC}$ exceeds this value, there must be a value of ξ_n such that angle $\mathrm{P}_n\mathrm{SC}$ is

$$\sin^{-1}(R/D)$$

instead, and the point P_n represents the theoretical extremity of the 'tulip' in such a case. At this point P_n , the elevation of the satellite is zero, so that service, though theoretically possible, will be poor. In practice, the service area should be regarded as terminated when the elevation of the satellite has a minimum value of at least a few degrees: the 'tulip'-shaped curves of Fig. 2 are for this reason terminated before the theoretical extremity is reached.

5. MODIFICATION FOR A CONICAL BEAM OF EL-LIPTICAL CROSS-SECTION

If the beam emitted from the satellite is an arbitrary cone, meeting the plane through P_1 normal to SP_1 in an ellipse with centre P_1 , the only difference will be that the distance r to a point on the service-area boundary in the plane through P_1 normal to SP_1 will no longer be constant and equal to $SP_1 \tan \frac{1}{2}\alpha$, but will instead be given by a formula of the form

$$\frac{1}{r_2} = \frac{1}{r_1^2} \cos^2(\xi_n - \xi_0) + \frac{1}{r_2^2} \sin^2(\xi_n - \xi_0)$$
 (15)

where $r_1=\mathrm{SP}_1 \tan 1/2\alpha_1$ is the distance to a point of the service-area boundary in the direction of maximum beamwidth $1/2\alpha_1$, ξ_0 is the value of ξ_n in this direction, and $r_2=\mathrm{SP}_1 \tan 1/2\alpha_2$ is the distance to a point of the service-area boundary in the perpendicular direction of minimum beamwidth $1/2\alpha_2$. In equation (15) there are three distinct essential parameters, r_1 , r_2 and ξ_0 , whereas when $r_1=r_2$ the value of ξ_0 is immaterial and we only have one parameter.

Qualitively, we can expect the same general features as before: nearly elliptical service areas for sufficiently small beamwidth, and 'tulip'-shaped service areas for larger beamwidth. But as the orientation of the beam now has to be considered, there is no longer necessarily symmetry of the service area boundaries with respect to the plane SP₁C of Fig. 1, and, as already noted, there are three significant parameters to consider instead of only one. No detailed quantitative investigation will therefore be undertaken here, although all the mathematical machinery for such an investigation is available in the formulae already derived if a practical requirement should arise.

6. CONCLUSIONS

For a right-circular beam of sufficiently small beamwidth, the service-area boundary is approximately an ellipse in the tangent plane to the Earth, centred at the point towards which the beam is directed. The axial lengths and directions of this ellipse are determined by simple formulae based on the geometry of Fig. 3. For larger beamwidths the service area boundaries have the 'tulip' shape so noticeable in Fig. 2 (taken from Reference 1); formulae are given for determining the position of an arbitrary point of such a service area, and in particular, for determining the theoretical extremity of the 'tulip'. The case of a conical beam which is not right-circular is qualitatively similar and could be fully investigated by means of the formulae given here, but has not been attempted because it is qualitatively much more complicated, since three significant parameters are involved instead of one.

7. REFERENCE

1. BENOÎT, A., GODFROID, H. and KNYPERS, P., 1968. Distribution of television by satellite, with special reference to the size of the Earth-station aerials. *E.B.U. Rev.*, 1968, Part A, No. 110, pp. 162-172.

CORRIGENDA

RESEARCH DEPARTMENT - BRITISH BROADCASTING CORPORATION

Research Department Report No. 1970/3 and BBC Engineering, April 1970, No. 82, p. 28

SATELLITE BROADCASTING SERVICE AREAS

The author regrets that he has recently found out that Equation (14) of the original text is wrong, and should read

$$\eta^2 \, (\mathrm{SP}_1^2 + r^2\,) + \eta [(D^2 - \mathrm{SP}_1^2) - (r^2 + \mathrm{CQ}_n^{\ 2})] \, + \, \mathrm{CQ}_n^{\ 2} - R^2 = 0$$

where

$$\mathrm{CQ}_n^{-2} = R^2 + r^2 + (2rRD\sin\psi_1\,\cos\,\xi_n)/\mathrm{SP}_1$$

It may be useful to note that Equation (9) also has an explicit solution

$$Z_n = r \sin \theta_1 \, \cos \xi_n [D-R \, \cos \psi_1] \, / (\mathrm{SP_1} \, \sin \psi_1) \pm r \cos \theta_1 \, \sin \xi_n \, \sin (\phi_1-\phi_\mathrm{S}) / \sin \psi_1$$

and this can be used to simplify the formulae (10) for X_n and Y_n in a form that covers all cases.

JWH/SMW 16. 10. 70.