

Inference

Variable Elimination

Complexity Analysis

Eliminating Z

$$\psi_k(m{X}_k) = \prod_{i=1}^{} \phi_i$$
 factor product $au_k(m{X}_k - \{Z\}) = \sum_{Z} \psi_k(m{X}_k)$ massing limiting

 m_k

Reminder: Factor Product

$$\psi_k(oldsymbol{X}_k) = \prod_{i=1}^{m_k} \phi_i$$
 each

 $N_k = |Val(X_k)|$

a¹	b¹	0.5		B	د	
a ¹	b ²	0.8	b ¹	c ¹	0.5	
a ²	b¹	0.1	b¹	c ²	0.7]
a ²	b ²	0	b ²	c ¹	0.1	
a ³	b¹	0.3	b ²	c ²	0.2	
a ³	b ²	0.9				

Cost: $(m_k-1)N_k$ multiplications

a^1 b^1 c^1 $0.5 \cdot 0.5 = 0.25$ a^1 b^1 c^2 $0.5 \cdot 0.7 = 0.35$ a^1 b^2 c^1 $0.8 \cdot 0.1 = 0.08$ a^1 b^2 c^2 $0.8 \cdot 0.2 = 0.16$	
a^1 b^2 c^1 $0.8.0.1 = 0.08$	
a) b2 a2 0.9.0.2 = 0.16	
d ² D ² C ² 0.0·0.2 = 0.10	
a^2 b^1 c^1 $0.1.0.5 = 0.05$	
a^2 b^1 c^2 $0.1.0.7 = 0.07$	
a^2 b^2 c^1 0.0.1 = 0	
a^2 b^2 c^2 0.0.2 = 0	
a^3 b^1 c^1 0.3·0.5 = 0.15	
a^3 b^1 c^2 0.3·0.7 = 0.21	
a^3 b^2 c^1 $0.9.0.1 = 0.09$	
a^3 b^2 c^2 $0.9.0.2 = 0.18$	

Daphne Koller

Reminder: Factor Marginalization

$$\tau_k(\mathbf{X}_k - \{Z\}) = \sum_{\mathbf{Z}} \psi_k(\mathbf{X}_k)$$

$$N_k = |Val(X_k)|$$

Cost: ~N_k additions

2	ach.	numb	e used e	*odle me			
a^1	b ¹	c ¹	0.25	rodly on a			
a^1	b¹	c ²	0.35	8			
a ¹	b ²	c ¹	0.08				
a ¹	b ²	c ²	0.16		a ¹	c ¹	0.33
a ²	b¹	c ¹	0.05		a ¹	c ²	0.51
a ²	b¹	c ²	0.07		a ²	c ¹	0.05
a ²	b ²	c ¹	0		a ²	c ²	0.07
a ²	b ²	c ²	0		a^3	c ¹	0.24
a^3	b¹	c¹	0.15		a ³	c ²	0.39
a^3	b¹	c ²	0.21				
a^3	b ²	c ¹	0.09				
a ³	b ²	c ²	0.18				Daphne Ko

Complexity of Variable Elimination

- Start with m factors
 - m ≤ n for Bayesian networks (one for every variable)
 - can be larger for Markov networks
- At each elimination step generate 1 factor
- At most n elimination steps

Complexity of Variable Elimination

- $N = max(N_k) = size of the largest factor$
- Product operations: $\sum_{k} (m_k-1)N_k \leq N \leq m_{k-1}$
- · Sum operations: ∑k Nk ≤ N. #elimination steps ≤ N.s.
- Total work is linear in N and m*

Complexity of Variable Elimination

- · Total work is linear in N and m exponential bland
- · N_k = | Val(X_k)| = O(d^r_k) where
 - -d = max(|Val(Xi)|) & values in their scope
 - $-r_k = |X_k| = cardinality of the scope of the kth factor$

Complexity Example

$$\tau_{1}(D) = \sum_{C} \phi_{C}(C)\phi_{D}(C,D)$$

$$\tau_{2}(G,I) = \sum_{D} \phi_{G}(G,I,D)\tau_{1}(D)$$

$$\tau_{3}(S,G) = \sum_{I} \phi_{S}(S,I)\phi_{I}(I)\tau_{2}(G,I)$$

$$\tau_{4}(G,J) = \sum_{H} \phi_{H}(H,G,J)$$

$$\tau_{5}(J,L,S) = \sum_{G} \phi_{L}(L,G)\tau_{3}(S,G)\tau_{4}(G,J)$$

$$\tau_{6}(J) = \sum_{I} \phi_{J}(J,L,S)\tau_{5}(J,L,S)$$
3

Complexity and Elimination Order

Eliminate: G $\sum_{L,\,G,\,1,\,0,\,H,\,J} \phi_L(L,G)\phi_G(G,I,D)\phi_H(H,G,J)$

Complexity and Elimination Order

TITTI(A,C)

Eliminate A first:

Eliminate Bi's first:

$$B_{i} S TIPST:$$

$$G_{i} \cdot (A, 0, 1) \cdot G_{i} \cdot (C, R) = T_{i}(A, c)$$

$$S_{i} \cdot pe A, R, c$$

$$T_{i}(A, c) \dots$$

Daphne Koller

Summary

- · Complexity of variable elimination linear in
 - size of the model (# factors, # variables)
 - size of the largest factor generated
- · Size of factor is exponential in its scope
- Complexity of algorithm depends heavily on elimination ordering