Linear Algebra 线性代数

Wen DENG (邓雯)

dengwen@bupt.edu.cn

School of Sciences, BUPT

课程要求

作业要求:每周日24:00前提交至教学云平台

每一页写清班级+学号+姓名,题号;逐页拍照上传

教材: 张文博、杨娟等, Linear Algebra.

参考(非必需)

- 1. S.J. Leon, L. de Pillis, Linear Algebra with applications, 机械工业出版社;
- 2. G. Strang, Introduction to Linear Algebra, 清华大学出版社.

答疑:课程QQ群,邮件

2023秋线性代数...

群号: 757121366

扫一扫二维码,加入群聊

Overview of the course

Linear algebra [线性代数] is a widely used tool to deal with many kinds of problems, such as business planning, engineering designing and so on.

Outline of the course:

- System of equations
- Matrices and determinants
- Vector spaces
- Linear transformations
- Orthogonality
- Eigenvalues

Lecture 1

Chapter 1. Equation Systems and Matrices

- 1.1 Systems of Linear Equations
- 1.2 Linear System in Matrix

Equations

Equations are like encrypted codes. You are given a certain amount of information about some unknow numbers, from which you have to deduce what the unknown numbers are.

Examples.

$$x + 3y = 6,$$

$$2x + y = 7.$$

$$x^2 = 2$$
, $\sin x = y$

A **linear equation** is an algebraic equation in which each term is either a constant (real or complex) or the product of a constant and (the first power of) a single variable.

Definition 1. A linear equation in n unknowns [线性方程] is an equation of the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b,$$

where a_i (i = 1, 2, ..., n) and b are real numbers and x_i (i = 1, 2, ..., n) are variables (or unknowns) [变量,未知元].

Definition 2. A linear system of m equations in n unknowns is a system of the form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

. . .

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,$$

where a_{ij} (i = 1, 2, ..., m, j = 1, 2, ..., n) and b_i (i = 1, 2, ..., m) are real numbers. We will call this system $m \times n$ linear system [线性代数方程组].

Example 1. Some linear systems

(a)
$$2x - y = 0$$
, $-x + 2y = 3$.

(b)
$$x_1 - x_2 + x_3 = 2$$
, $2x_1 + x_2 - x_3 = 4$.

Can you solve these systems?

(c)
$$x_1 + x_2 = 2$$
,
 $x_1 - x_2 = 1$,
 $x_1 = 4$.

Definition 3. The solution [解] of an $m \times n$ linear system is an ordered n-tuple of numbers

$$(x_1, x_2, \ldots, x_n),$$

which satisfies all equations of the $m \times n$ linear system.

If there is at least one solution of an $m \times n$ linear system, we say the linear system is **consistent** [相容]. Otherwise, we say the linear system is **inconsistent** [不相容].

If there is more than one solution, we call the set of solutions the solution set [解集].

It is clear that the ordered pair (1,2) is a solution to the system (a) in **Example 1**, since

$$2 \cdot (1) - 1 \cdot (2) = 0,$$

-1 \cdot (1) + 2 \cdot (2) = 3.

The ordered triple (2,0,0) is a solution to the system (\mathbf{b}) , since

$$1 \cdot (2) - 1 \cdot (0) + 1 \cdot (0) = 2,$$

$$2 \cdot (2) + 1 \cdot (0) - 1 \cdot (0) = 4.$$

Actually, let α be any real number, then the ordered triple $(2, \alpha, \alpha)$ is a solution.

However, the system (c) has no solution. No ordered pair will satisfy all the three equations in the system (c).

2×2 Systems

Let us consider the following systems

$$a_{11}x_1 + a_{12}x_2 = b_1,$$

 $a_{21}x_1 + a_{22}x_2 = b_2.$

Geometrically, a linear equation in 2 variables represents a line on the coordinate plane, and any line on the coordinate plane can be expressed as a linear equation in 2 variables.

The ordered pair (x_1, x_2) is a solution of the 2×2 system if and only if the point (x_1, x_2) lies on both two lines.

$$ax + by = c$$
 if and only if

2×2 Systems

Example 2. 2×2 systems

$$x_1 + x_2 = 2 x_1 - x_2 = 2$$

$$x_1 + x_2 = 2 x_1 + x_2 = 1$$

$$x_1 + x_2 = 2 -x_1 - x_2 = -2$$

2 × 2 Systems

There are only three possible relative positions for two lines on the xOy plane: intersecting, parallel or coincident.

The consistency of all 2×2 linear systems must be one of the following three cases:

- (1) Consistent, with unique solution;
- (2) Consistent, with infinite number of solutions;
- (3) Inconsistent.

$m \times 3$ Systems

Thinking:

- 1. What is the graph of a linear equation in 3 variables?
- 2. How many kinds of solutions of a 2×3 system?
- 3. How many kinds of solutions of a 3×3 system?
- 4. How many kinds of solutions of a $m \times 3$ system?

Equivalent Systems

Definition 4. Two linear systems are said to be **equivalent** [等价] if they have the same solution set.

Theorem 1. (Properties of Equivalence) Let *A*, *B* and *C* be three linear systems, then

- (1) If A is equivalent to B and B is equivalent to C, then A is equivalent to C;
- (2) If A is equivalent to C and B is equivalent to C, then A is equivalent to B.

Equivalent Systems

Example 3. Consider the following two systems

$$3x_1 + 2x_2 - x_3 = -2$$

$$x_2 = 3$$

$$2x_3 = 4$$

and

$$3x_1 + 2x_2 - x_3 = -2$$

$$-3x_1 - x_2 + x_3 = 5$$

$$3x_1 + 2x_2 + x_3 = 2$$

These two systems have the same solution set $\{(-2,3,2)\}$. Thus they are equivalent systems.

Equivalent Systems

Theorem 2. (Operations to Obtain Equivalent Linear Systems) There are three basic operations that can be used to obtain an equivalent system from a given system:

- (I) interchanging two equations;
- (II) multiplying an equation by a nonzero real number;
- (III) adding a constant multiple of one equation to another.

Operations (I), (III), (III) are generally used to derive an equivalent linear system, which is easy to be solved, from a given system.

We now restrict ourselves to $n \times n$ linear systems.

Definition 5. (Strict Triangular System) An $n \times n$ linear system is said to be in strict triangular form [严格三角形式] if and only if in the k-th equation the coefficients of the previous k-1 variables are all zero and the coefficient of the k-th variable x_k is nonzero (k=1,2,...,n).

Example 4. The system

$$3x_1 + 2x_2 + x_3 = 1,$$

 $x_2 - x_3 = 2,$
 $2x_3 = 4,$

is in triangular form. It is easy to solve this system. Actually, from the last equation, we have $x_3 = 2$. Using this value in the second equation, we obtain

$$x_2 - 2 = 2$$

so $x_2 = 4$. Using $x_2 = 4$ and $x_3 = 2$ in the first equation, we end up with $3x_1 + 2 \cdot 4 + 2 = 1$,

Then $x_1 = -3$. Thus the solution to the system is (-3,4,2).

Remark: The last example shows that if a system is in a triangular form, it is easy to be solved. The progress of solving system of triangular form is called back substitution [回代法].

In general, if a system is not triangular, we are suggested to use operations (I)-(III) to try to change the system equivalently into strict triangular form, so that we can find the solution by back substitution.

Operations

- (I) Interchange two equations.
- (II) Multiply an equation by a nonzero scalar.
- (III) Add a constant multiple of one equation to another.

Example 5. Solve the system

$$x_1 + 2x_2 + x_3 = 3$$

 $3x_1 - x_2 - 3x_3 = -1$
 $2x_1 + 3x_2 + x_3 = 4$

Solution:

$$2x_{1}^{3}x_{1} + 46x_{2} + 23x_{3} = 6 \cdot \frac{3x_{1}}{x_{1}^{2}x_{1}^{2}} + 2x_{2}^{2}x_{2} + x_{3} = 33$$

$$\frac{1}{7} \cdot \frac{3x_{1}}{7} \cdot \frac{7 \cdot x_{1}^{7}x_{2} - 6x_{3}}{7 \cdot 22x_{1}^{2}} + 3x_{2} + \frac{1}{7} \cdot \frac{x_{3}}{7} = \frac{44}{7}$$

$$-x_{2} - \frac{6}{7}x_{3} = -\frac{10}{7}$$

Remark. The last example also shows that the coefficient of a system is very important while using back substitution. To make it simple, we associate the system

$$x_1 + 2x_2 + x_3 = 3$$

 $3x_1 - x_2 - 3x_3 = -1$
 $2x_1 + 3x_2 + x_3 = 4$

with a 3 \times 3 array of numbers whose entries are the coefficients of the x_i 's.

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{pmatrix}$$

This array is named as the **coefficient matrix** [系数矩阵] of the system and this matrix has 3 rows and 3 columns is said to be 3×3.

Remark.

$$x_1 + 2x_2 + x_3 = 3$$

 $3x_1 - x_2 - 3x_3 = -1$
 $2x_1 + 3x_2 + x_3 = 4$

If we attach to the coefficient matrix an additional column whose entries are the numbers on the right-hand side of the system, we obtain the new matrix

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 3 & -1 & -3 & -1 \\ 2 & 3 & 1 & 4 \end{pmatrix}$$

We will refer to this new matrix as the augmented matrix [增广矩阵].

More generally, for an $m \times n$ linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,$$

we associate it with the **coefficient matrix** [系数矩阵] A and the **augmented matrix** [增广矩阵] A'

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, A' = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

A has m rows and n columns, which is an $m \times n$ matrix. A' has m rows and (n + 1) columns, which is an $m \times (n + 1)$ matrix.

If
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 and $B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1r} \\ b_{21} & b_{22} & \cdots & b_{2r} \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mr} \end{pmatrix}$, then we can obtain a

new $m \times (n + r)$ matrix which is denoted by

$$(A \mid B) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1r} \\ b_{21} & b_{22} & \cdots & b_{2r} \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mr} \end{pmatrix}.$$

This matrix is also called augmented matrix.

Operations (I), (III) of a linear system used to obtain equivalent systems can be corresponding to three row operations applied to the augmented matrix.

Operations used to obtain equivalent systems

- (I) Interchange two equations.
- (II) Multiply an equation by a nonzero scalar.
- (III) Add a constant multiple of one equation to another.

Definition 1. (Elementary Row Operations) For a given matrix, there are three types of elementary row operations [初等行变换]:

- (I) Interchange two rows $(r_i \leftrightarrow r_i)$
- (II) Multiply a row by a nonzero scalar $(a \times r_i)$
- (III) Add a constant multiple of one row to another $(r_i + a \times r_j)$

Remark: In general, the solving process of an equation systems can be expressed as three steps:

$$\begin{cases} 2x_1 + 3x_2 - 3x_3 = 9 \\ x_1 + 2x_2 + x_3 = 4 \end{cases} \Rightarrow \begin{pmatrix} 2 & 3 & -3 & 9 \\ 1 & 2 & 1 & 4 \\ 3 & 7 & 4 & 19 \end{pmatrix}$$

Equivalent Systems
$$\begin{cases}
x_1 + 2x_2 + x_3 = 4 \\
- x_2 - 5x_3 = 1 \\
- 4x_3 = 8
\end{cases}$$
Elementary Row Operations
$$\begin{cases}
1 & 2 & 1 & | 4 \\
0 & -1 & -5 & | 1 \\
0 & 0 & -4 & | 8
\end{cases}$$

Example 1. Solve the system

$$x_1 + 2x_2 + x_3 = 3,$$

 $3x_1 - x_2 - 3x_3 = -1,$
 $2x_1 + 3x_2 + x_3 = 4.$

Solution. The augmented matrix of this system is

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 3 & -1 & -3 & -1 \\ 2 & 3 & 1 & 4 \end{pmatrix}.$$

We can use the elementary row operations to solve this system. We refer to the first line as the **pivotal row** [主行]. The first nonzero entry of the pivotal row is called the **pivot** [主元].

Example 1. Solve the system

$$x_1 + 2x_2 + x_3 = 3,$$

 $3x_1 - x_2 - 3x_3 = -1,$
 $2x_1 + 3x_2 + x_3 = 4.$

Solution. (continue)

By using row operation III, 3 times the first row is subtracted from the second row and two times the first row is subtracted from the third row. Then we have

Example 1. Solve the system

$$x_1 + 2x_2 + x_3 = 3,$$

 $3x_1 - x_2 - 3x_3 = -1,$
 $2x_1 + 3x_2 + x_3 = 4.$

Solution. (continue)

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & -7 & -6 & -10 \\ 0 & -1 & -1 & -2 \end{pmatrix} \leftarrow \text{pivotal row}$$

Again, by row operation III, $\frac{1}{7}$ times the second row is subtracted from the third row, Then we have

Example 1. Solve the system

$$x_1 + 2x_2 + x_3 = 3,$$

 $3x_1 - x_2 - 3x_3 = -1,$
 $2x_1 + 3x_2 + x_3 = 4.$

Solution. (continue)

$$\begin{pmatrix}
1 & 2 & 1 & 3 \\
0 & -7 & -6 & -10 \\
0 & 0 & -\frac{1}{7} & -\frac{4}{7}
\end{pmatrix}$$

It is clear that the solution is $x_3 = 4$, $x_2 = -2$ and $x_1 = 3$. This is the end.

Example 1. The above process of elimination can be written in terms of augmented matrix

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 3 & -1 & -3 & -1 \\ 2 & 3 & 1 & 4 \end{pmatrix} \xrightarrow{r_2 + (-3)r_1} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & -7 & -6 & -10 \\ 0 & -1 & -1 & -2 \end{pmatrix}$$

$$\xrightarrow{r_3 + (-\frac{1}{7})r_2} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & -7 & -6 & 10 \\ 0 & 0 & -\frac{1}{7} & -\frac{4}{7} \end{pmatrix}.$$

Strict Triangular Form

Example 2. Solve the system

$$- x_2 - x_3 + x_4 = 0,$$

$$x_1 + x_2 + x_3 + x_4 = 6,$$

$$2x_1 + 4x_2 + x_3 - 2x_4 = -1,$$

$$3x_1 + x_2 - 2x_3 + 2x_4 = 3.$$

Solution. The augmented matrix for this system is

interchange the first two rows and the pivot element will be 1

O can not eliminate any entry.

$$\begin{vmatrix}
0 & -1 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 & 6 \\
2 & 4 & 1 & -2 & -1 \\
3 & 1 & -2 & 2 & 3
\end{vmatrix}$$
So we will use operation I to interchange the first two rows

Example 2. Solve the system

$$- x_2 - x_3 + x_4 = 0,$$

$$x_1 + x_2 + x_3 + x_4 = 6,$$

$$2x_1 + 4x_2 + x_3 - 2x_4 = -1,$$

$$3x_1 + x_2 - 2x_3 + 2x_4 = 3.$$

Solution. (continue) Then the new augmented matrix for this system is

(pivot
$$a_{11} = 1$$
)
$$\begin{vmatrix}
1 & 1 & 1 & 6 \\
0 & -1 & -1 & 1 & 0 \\
2 & 4 & 1 & -2 & -1 & 3
\end{vmatrix}$$
(pivot $a_{11} = 1$)
$$\begin{vmatrix}
1 & 1 & 1 & 6 \\
0 & -1 & -1 & 1 & 0 \\
3 & 1 & -2 & 2 & 3
\end{vmatrix}$$
(pivot row

By elementary row operations III three times, we have

Example 2. Solve the system

$$- x_2 - x_3 + x_4 = 0,$$

$$x_1 + x_2 + x_3 + x_4 = 6,$$

$$2x_1 + 4x_2 + x_3 - 2x_4 = -1,$$

$$3x_1 + x_2 - 2x_3 + 2x_4 = 3.$$

Solution. (continue)

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 6 \\
0 & -1 & -1 & 1 & 0 \\
0 & 0 & -3 & -2 & -13 \\
0 & 0 & 0 & -1 & -2
\end{pmatrix}.$$

Then by back substitution, the solution is (2, -1, 3, 2).

Remarks. In general, if an $n \times n$ linear system can be reduced to triangular form, then it will have a unique solution that can be obtained by performing back substitution on the triangular system. The reduction process can be thought as an algorithm with n-1 steps.

Remarks. However, this procedure will break down if, at any step, all possible choices for a pivot element are equal to 0. When this happens, we can reduce the system to certain special echelon or staircase-shaped forms.

This form will also be used for $m \times n$ systems, where $m \neq n$.

Matrix

Definition 2. (Row and Column Vector) An $m \times n$ matrix is a rectangular arrangement of numbers with m rows [行] and n columns [列] and is denoted by

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad or \quad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

where m and n are positive integers, a_{ij} (i=1,2,...,m, j=1,2,...,n) is called the ith row and jth column entry. A matrix with one row (a $1 \times n$ matrix) is called a **row vector** [行向量], and a matrix with one column (an $m \times 1$ matrix) is called a **column vector** [列向量]. An $n \times n$ matrix is called a **square matrix** [方阵].

Matrix

Example.
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \end{pmatrix}$$
 is a 2 × 3 matrix, $\begin{pmatrix} 1 & -1 \\ 3 & 2 \\ 2 & 4 \end{pmatrix}$ is a 3 × 2 matrix,

- (1 2) is a 1×2 matrix or a row vector,
- $\binom{2}{3}$ is a 2 × 1 matrix or a column vector,

and (-1) is a 1×1 square matrix.

Elimination Process

The elimination process can be illustrated as follows

where "*" represents any possible entries.

- Elementary row operations
- Back substitution

Review

- **Definitions:** Linear systems, Solution, Equivalent system, Triangular form
- Terms: elementary row operations, back substitution, coefficient matrix, augmented matrix, consistent, inconsistent

Preview

- Reduced Row Echelon Form
- Consistency of Linear Systems

Exercises

P9: 2(e), 4, 6;

P14: 3(e)(f), 4(a)(c), 5.