## Reference: Inner products

For this course we will use a standard inner product definition from matrix-vector multiplication:

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_v$$
, for any  $\vec{x}, \vec{y} \in \mathbb{R}^n$ .

In general, any inner product  $\langle \cdot, \cdot \rangle$  on a real vector space  $\mathbb V$  is a bilinear function that satisfies the following three properties:

- (a) Symmetry:  $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$ .
- (b) **Linearity:**  $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$  and  $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$ , where  $c \in \mathbb{R}$  is a real number.
- (c) **Non-negativity:**  $\langle \vec{x}, \vec{x} \rangle \ge 0$ , with equality if and only if  $\vec{x} = \vec{0}$ .

Here  $\vec{x}$ ,  $\vec{y}$ , and  $\vec{z}$  can be any vectors in the vector space  $\mathbb{V}$ .

The norm (or length) of a vector  $\vec{x} = [x_1, x_2, ..., x_n]^T$  is defined using the inner product as

$$\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} \equiv \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

## 1. Inner Product Properties

For this question we will verify our coordinate definition of the inner product

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_v$$
, for any  $\vec{x}, \vec{y} \in \mathbb{R}^n$ 

indeed satisfies the key properties required for all inner products, but presently for the 2-dimensional case. Suppose  $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$  for the following parts:

(a) Show symmetry 
$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$$
:

$$\dot{\vec{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \dot{\vec{y}} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$\langle \vec{x}, \vec{y} \rangle = x, y, + x_2 y_2 = y, x, + y_2 x_2 = \langle \vec{y}, \vec{x} \rangle$$

x= x dim strass x# cols

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y} = [x, \dots, x_2] \begin{bmatrix} y_1 \\ y_1 \end{bmatrix}$$
Euclidean
into product  $= [x, \dots, x_2] \begin{bmatrix} y_1 \\ y_1 \end{bmatrix}$ 

(東京)= ママラ = ダ・ガ \* also known as

(b) Show linearity 
$$\langle \vec{x}, c\vec{y} + d\vec{z} \rangle = c \langle \vec{x}, \vec{y} \rangle + d \langle \vec{x}, \vec{z} \rangle$$
, where  $c \in \mathbb{R}$  is a real number.

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \quad \vec{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$\langle \vec{x}, c\vec{y} + d\vec{z} \rangle = \langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} cy_1 + dz_1 \end{bmatrix} = x_1 (cy_1 + dz_1) + x_2 (cy_2 + dz_2)$$

$$= c(x_1y_1 + x_2y_2) + d(x_1z_1 + x_2z_2)$$

$$= c\langle \vec{x}, \vec{y} \rangle + d\langle \vec{x}, \vec{z} \rangle$$

(c) Show non-negativity  $\langle \vec{x}, \vec{x} \rangle \ge 0$ , with equality if and only if  $\vec{x} = \vec{0}$ :

$$\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \qquad \langle \hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle = \mathbf{x}_1^2 + \mathbf{x}_2^2 \qquad \angle O$$

of XI, XZ to make this negative

## 2. Geometric Interpretation of the Inner Product

In this problem we explore the geometric interpretation of the Euclidean inner product, restricting ourselves to vectors in R2

(a) Derive a formula for the inner product of two vectors in terms of their magnitudes and the angle between them. The figure below may be helpful:



$$\vec{X} = \begin{bmatrix} 1 & \vec{x} & 1 \end{bmatrix} \cos \alpha \\ \|\vec{x}\| & \cos \alpha \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 1 & \vec{y} & 1 \end{bmatrix} \cos \beta \\ \|\vec{y}\| & \sin \beta \end{bmatrix}$$



11 vil leight of the vector

## Sum and Difference Identities

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$  $\sin(a-b) = \sin a \cos b - \cos a \sin b$  $\cos(a+b) = \cos a \cos b - \sin a \sin b$  $\cos(a-b) = \cos a \cos b + \sin a \sin b$ 

 $\tan(a+b) = \frac{\tan a + \tan b}{1}$  $1 - \tan a \tan b$ 

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

$$\langle \vec{x}, \vec{y} \rangle = (\|\vec{x}\| (\cos \alpha) \|\vec{y}\| (\cos \beta) + (\|\vec{x}\| \sin \alpha) \|\vec{y}\| \sin \beta)$$

$$= \|\vec{x}\| \|\vec{y}\| (\cos \alpha \cos \beta + \sin \alpha \sin \beta)$$

$$= \|\vec{x}\| \|\vec{y}\| \cos(\alpha - \beta) = \|\vec{x}\| \|\vec{y}\| \cos(\beta - \alpha)$$

$$\langle \vec{x}, \vec{y} \rangle = \|\vec{x}\| \|\vec{y}\| \cos(\theta)$$

- (b) For each sub-part, identify any two (nonzero) vectors  $\vec{x}, \vec{y} \in \mathbb{R}^2$  that satisfy the stated condition and
  - i. Identify a pair of parallel vectors

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\langle \vec{x}, \vec{y} \rangle = (1)(2) + (1)(2) = 4$$

$$\langle \vec{x}, \vec{y} \rangle = (1)(2) + (1)(2) - 1$$
  
 $\langle \vec{x}, \vec{y} \rangle = 1 |\vec{x}| ||\vec{y}|| \cos(\Theta) = (\sqrt{1^2 + 1^2})(\sqrt{2^2 + 2^2})\cos(O) = (\sqrt{2})(\sqrt{18}) = \sqrt{16} = 4$ 

ii. Identify a pair of anti-parallel vectors

$$\langle \vec{x}, \vec{y} \rangle = (1\chi - 1) + (0\chi / 0) = -1$$

$$\langle \vec{x}, \vec{y} \rangle = ||\vec{x}|| ||\vec{y}|| \cos \theta = (\sqrt{12})(\sqrt{512})(-1) = -1$$

iii. Identify a pair of perpendicular vectors

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\langle \vec{x}, \vec{g} \rangle = (1 \times 0) + (0 \times 1) = 0$$

$$\langle \vec{x}, \vec{y} \rangle = \|\vec{x}\| \|\vec{y}\| \cos \theta = (\sqrt{r^2})(\sqrt{r^2})(\delta) = 0$$

 $\langle \bar{x}, \bar{y} \rangle = ||\bar{x}|| ||\bar{y}|| \cos \theta = (\sqrt{12})(\sqrt{12})(0) = 0$ All perpendicular rectors will have a inner product of zero orthogonal





|   | $\vec{s}_1$                                 | 0 |   | 0 |   | 1 |   | 2 | 3    |   | 0 |   | 0 |   | K=1 |
|---|---------------------------------------------|---|---|---|---|---|---|---|------|---|---|---|---|---|-----|
| , | $\vec{s}_2[n-1]$                            | 0 |   | 0 |   | 0 |   | 2 | 4    |   | 3 |   | 0 |   |     |
|   | $\langle \vec{s}_1, \vec{s}_2[n-1] \rangle$ | 0 | + | 0 | + | 0 | + | 4 | + 12 | + | 0 | + | 0 | = | (6  |

| N =                                                         | -2 | _1  | D     | ſ   | 2   | 3 | 4   |     |
|-------------------------------------------------------------|----|-----|-------|-----|-----|---|-----|-----|
| $\vec{s}_1$                                                 | 0  | 0   | 1     | 2   | 3   | 0 | 0   |     |
| $\vec{s}_2[n-2]$                                            | 0  | 0   | 0     | 0   | 2   | 4 | 3   |     |
| $\vec{s}_2[n-2]  \langle \vec{s}_1, \vec{s}_2[n-2] \rangle$ | 0  | + 0 | + 0 + | 0 + | 6 + | 6 | + 6 | = 6 |

$$\langle \vec{s}_i[n], \vec{s}_i[n-2] \rangle$$
 correst  $\langle \vec{s}_i[n], \vec{s}_i[n-2] \rangle$  correst  $\langle \vec{s}_i[n], \vec{s}_i[n-2] \rangle$  soly den't we check  $k=3$ 



O



|                                                            |       | shift si |                                     |                  |   |     |     |  |  |  |  |
|------------------------------------------------------------|-------|----------|-------------------------------------|------------------|---|-----|-----|--|--|--|--|
| $\vec{s}_2$                                                | 0     | 0        | $\frac{\text{corr}_{\vec{s_2}}}{2}$ | $(\vec{s_1})[k]$ | 3 | 0   | 0   |  |  |  |  |
| $\frac{\vec{s}_1[n+2]}{\langle \vec{s}_2, \vec{s}_1[n+2]}$ | .]> - | +        | +                                   | +                | + | + + | + = |  |  |  |  |
| $ec{s}_2$                                                  | 0     | 0        | 2                                   | 4                | 3 | 0   | 0   |  |  |  |  |

| $\vec{s}_2$                                 | 0 | 0 |   | 2 | 4 |   | 3 | 0 | 0 |   |
|---------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\vec{s}_1[n+1]$                            |   |   |   |   |   |   |   |   |   |   |
| $\langle \vec{s}_2, \vec{s}_1[n+1] \rangle$ |   | + | + |   | + | + | + | + |   | = |

| $\vec{s}_2$                               | 0 | 0 | 2 | 4 | 3 | 0 | 0 |   |
|-------------------------------------------|---|---|---|---|---|---|---|---|
| $\vec{s}_1[n]$                            |   |   |   |   |   |   |   |   |
| $\langle \vec{s}_2, \vec{s}_1[n] \rangle$ | + | - | + | + | + | + | + | = |

| $\vec{s}_2$                                 | 0 | 0 | 2 |   | 4 | 3 | 0 | 0 |   |
|---------------------------------------------|---|---|---|---|---|---|---|---|---|
| $\vec{s}_1[n-1]$                            |   |   |   |   |   |   |   |   |   |
| $\langle \vec{s}_2, \vec{s}_1[n-1] \rangle$ | + |   | + | + | + | + |   | + | = |

| $\vec{s}_2$                                 | 0 | 0 |   | 2 |   | 4 | 3 | 0 |   | 0 |   |
|---------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|
| $\vec{s}_1[n-2]$                            |   |   |   |   |   |   |   |   |   |   |   |
| $\langle \vec{s}_2, \vec{s}_1[n-2] \rangle$ |   | + | + |   | + | + |   | + | + |   | = |