Systemy Operacyjne, Laboratorium

Zadanie 2 – Szeregowanie

1. Treść zadania

Zrealizować algorytm szeregowania dzielący procesy użytkownika na grupy: A, B, C. Wykonać niezbędne modyfikacje funkcji systemowych umożliwiającą przenoszenie procesów pomiędzy powyższymi grupami. Rodzaj algorytmu szeregowania jest dowolny. Opracować również łatwą metodę weryfikacji poprawności rozwiązania.

2. Wstępne rozwiązanie

Aby rozdzielić procesy USER na zadane grupy dodam do struktury procesu proc zmienna int p_group, która będzie przyjmowała wartości GROUP_A, GROUP_B, GROUP_C (odpowiednio 0, 1,2), zdefiniowane poprzez #define w pliku proc.h.

Aby przyznać procesom o zadanych grupach odpowiedni kwant czasu, stworzyłem stałe globalne a_time, b_time oraz c_time, a także tablicę sched_table[3] = { a_time, b_time, c_time } zapisaną w pliku proc.h. Będzie ona odpowiedzialna za ustalenie podziału czasu w zadanych proporcjach.

Zmienić ją będzie można za pomocą usługi systemowej SETSHEDULER() z odwołaniem do mikrojądra. Tablica sched_table będzie potrzebna do zmiany warunku w funkcji do_clocktick() w usr/src/kernel/clock.c, aby zmienić czas dany dla procesu w zależności od wartości jego pola p_group. Domyślny czas dla procesu jest zachowany w stałej SHED_RATE, dla naszych celów zostanie ona przemnożona przez odpowiedni czynnik dla każdej z grup (gdzie czynnikiem jest dana komórka w tablicy sched_table. W funkcji sched() z pliku kernel/proc.c następuje podział procesów na grupy, zaś przypisanie wartości czasowych następuje w funkcji

3. Dodatkowe stałe i zmienne globalne

- GROUP A = 0
- GROUP B = 1
- GROUP C = 2
- · a time, b time, c time
- sched_table[3] = { a_time, b_time, c_time }

4. Zmienione pliki:

- usr/src/kernel:
 - clock.c
 - main.c
 - proc.c
 - proc.h
 - system.c

- usr/src/mm:
 - main.c
 - proto.h
 - table.c
- usr/src/fs:
 - table.c
- usr/include:
 - groups.h
- usr/inlude/minix:
 - callnr.h
 - com.h

5. Sposób testowania

Pierwszym pomysłem na przetestowanie programu jest uruchomienie procesów w pętli za z trzch grup i poczekanie, aż procesy z którejś z grup zakończą swoje działanie. W tym momencie należy zliczyć łączny czas spędzony na wykonywaniu procesów z danych. Stosunek czasów powinien być w przybliżeniu równy stosunkowi długości kwantów czasów przydzielanych grupie.