Suites et séries de fonctions

$$\alpha 9 - MP^*$$

1 Suites de fonctions

1.1 Convergence simple

 $(f_n)_{n\in\mathbb{N}}$ une famille de fonctions de E dans \mathbb{C} : on dit que (f_n) converge simplement vers $f\in\mathbb{C}^E$ si $\forall x\in E, \lim_{n\to+\infty}f_n(x)=f(x)$, c'est à dire $\forall x\in E, \forall \varepsilon>0, \exists n_0\in\mathbb{N}/\forall n\geqslant n_0, |f(x)-f_n(x)|\leqslant \varepsilon.$ n_0 dépend de ε et de x. (f_n) converge simplement ssi $(f_n(x))$ vérifie le critère de Cauchy pour tout $x: \forall x\in E, \forall \varepsilon>0, \exists n_0/\forall n\geqslant n_0, \forall p\geqslant 1, |f_{n+p}(x)-f_n(x)|\leqslant \varepsilon.$

1.2 Convergence uniforme

 $(f_n) \in (\mathbb{C}^E)^{\mathbb{N}}, \ f \in \mathbb{C}^E, \ (f_n) \ converge \ uniform \ emet \ vers \ f \ si \ \sup_{x \in E} |f(x) - f_n(x)| \longrightarrow 0.$ Soit $\varphi : E \longrightarrow \mathbb{C}$ bornée, on appelle norme-infini et on note $\|\varphi\|_{\infty}$ la quantité $\|\varphi\|_{\infty} = \sup_{x \in E} |\varphi(x)|$.

- Si (f_n) converge uniformément vers f et q alors f = q
- Si (f_n) converge uniformément vers f alors (f_n) converge simplement vers f
- (f_n) converge uniformément vers f ssi $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}/\forall x \in E, \forall n \geqslant n_0, |f_n(x) f(x)| \leqslant \varepsilon$

 (f_n) converge uniformément ssi f vérifie le critère de Cauchy de convergence uniforme : $\forall \varepsilon > 0$, $\exists n_0/\forall x \in E$, $\forall n \geqslant n_0$, $\forall p \geqslant 0$, $|f_{n+n}(x) - f_n(x)| \leqslant \varepsilon$.

 (f_n) converge uniformément vers f ssi $\exists (a_n) \in (\mathbb{R}^+)^{\mathbb{N}} / \forall x \in E, \forall n \in \mathbb{N}, |f(x) - f_n(x)| \leq a_n$ et $\lim_{n \to \infty} a_n = 0$.

1.3 Convergence uniforme et continuité

- 1. Soit $A \subset \mathbb{R}$, $f_n : A \longrightarrow \mathbb{C}$ telle que (f_n) converge uniformément vers $f : A \longrightarrow \mathbb{C}$
 - (a) Si toutes les f_n sont \mathcal{C}^0 (respectivement à gauche, à droite) en un point $x_0 \in A$, il en est de même pour f en ce point.
 - (b) Si toutes les f_n sont \mathcal{C}^0 sur A alors il en est de même pour f.
- 2. $A \subset E$ où E est un espace métrique, $f_n : A \longrightarrow \mathbb{C}$ telle que (f_n) converge uniformément vers $f : A \longrightarrow \mathbb{C}$. Si toutes les f_n sont continues en $x_0 \in A$, alors f l'est aussi. Si toutes les f_n sont continues sur A alors f l'est aussi.
- 3. $I = (a, b \mid \mathbb{C} \mathbb{R}, -\infty \leq a < b \leq +\infty$. Hypothèses : $f_n : I \longrightarrow \mathbb{C}$ telles que (f_n) converge uniformément vers $f ; \forall n \in \mathbb{N}, \exists l_n = \lim_{n \to \infty} f_n(x)$ finie. Alors :
 - (a) l_n admet une limite l finie
 - (b) $l = \lim_{x \stackrel{\leq}{\to} b} f(x)$
- 4. Version topologique : $A \subset E$ où E est un espace métrique, $f_n: A \longrightarrow \mathbb{C}$ telle que (f_n) converge uniformément vers $f: A \longrightarrow \mathbb{C}$. Soit $a \in \overline{A} \backslash A$, on suppose que $\forall n, \exists l_n = \lim_{\substack{x \to a \\ x \in A}} f_n(x)$. Alors (l_n) admet une limite l et $l = \lim_{\substack{x \to a \\ x \in A}} f(x)$.
- 5. I un intervalle de \mathbb{R} , $f_n: I \xrightarrow{\mathcal{C}^0} \mathbb{R}$, $f: I \longrightarrow \mathbb{R}$; si (f_n) converge uniformément vers f sur tout segment inclus dans I, alors f est encore continue sur I.

1.4 Convergence uniforme et intégration

- 1. Soit I = [a, b] un segment de \mathbb{R} , $f_n : I \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$, $f : I \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$. Si (f_n) converge uniformément vers f, alors
 - (a) $\int_I |f f_n| \longrightarrow 0$

- (b) $\int_I f_n \xrightarrow[n \to +\infty]{} \int_I f$
- 2. Si I est un intervalle borné non fermé de \mathbb{R} , ces résultats restent vrais à condition que les f_n et f soient intégrables
- 3. Théorème de primitivation : I intervalle de \mathbb{R} , $f_n:I \xrightarrow{\mathcal{C}^0} \mathbb{C}$, $f:I \longrightarrow \mathbb{C}$, $a \in I$ fixé. Si (f_n) converge uniformément sur tout segment inclus dans I, alors :
 - (a) $F_n: x \in I \longrightarrow \int_a^x f_n(t) dt$ converge simplement vers $F: x \in I \longrightarrow \int_a^x f(t) dt$
 - (b) (F_n) converge uniformément vers F sur tout segment inclus dans I.

1.5 Théorème de dérivation

I intervalle de \mathbb{R} , $f_n: I \xrightarrow{\mathcal{C}^1} \mathbb{C}$, $f: I \longrightarrow \mathbb{C}$. Hypothèses

- 1. (f_n) converge simplement vers f
- 2. (f'_n) converge uniformément sur tout segment inclus dans I vers une fonction g

Alors:

- 1. g est C^0
- 2. f est C^1 et f' = g
- 3. (f_n) converge uniformément vers f sur tout segment inclus dans I.

Classe $C^k: I$ intervalle de \mathbb{R} , $f_n: I \xrightarrow{C^{k\geqslant 1}} \mathbb{C}$, $f: I \longrightarrow \mathbb{C}$. Hypothèses:

- 1. $(f_n), (f'_n), \ldots, (f_n^{(k-1)})$ convergent simplement sur I et la limite simple de (f_n) est f.
- 2. $(f_n^{(k)})$ converge uniformément sur tout segment inclus dans I vers une fonction g.

Alors f est C^k , $f^{(k)} = g$ et $(f_n^{(l)})$ converge uniformément vers $f^{(l)}$ sur tout segment inclus dans I pour tout $0 \le l \le k$.

2 Séries de fonctions

2.1 Nature de la convergence

Soit E un ensemble, $A \subset E$, $\{u_n\}$ une série de fonctions $A \longrightarrow \mathbb{C}$. On dit qu'elle converge simplement sur A si pour tout $x \in A$, $\{u_n(x)\}$ est convergente. Dans ce cas, la fonction-somme $S: x \in A \longrightarrow \sum_{n=0}^{+\infty} u_n(x)$ est bien définie. Dans ce cas, la suite

de fonctions $S_n: x \in A \longrightarrow \sum_{k=0}^n u_k(x)$ converge simplement vers S et la suite de fonctions $R_n: x \in A \longrightarrow \sum_{k=n+1}^{+\infty} u_k(x)$ converge simplement vers S.

Critère de Cauchy de convergence simple : $\forall x \in A, \forall \varepsilon > 0, \exists n_0 / \forall n \ge n_0, \forall p \ge 1, |u_{n+1}(x) + \ldots + u_{n+p}(x)| \le \varepsilon.$

On dit que $\{u_n\}$ converge uniformément sur A si (S_n) converge uniformément vers S. Cela revient à dire que (R_n) converge uniformément vers S.

Critère de Cauchy de convergence uniforme : $\forall \varepsilon > 0$, $\exists n_0 / \forall x \in A, \forall n \geqslant n_0, \forall p \geqslant 1, |u_{n+1}(x) + \ldots + u_{n+p}(x)| \leqslant \varepsilon$.

On dit que $\{u_n\}$ converge normalement sur A lorsque la série numérique $\{\|u_n\|_{\infty}\}$ converge. Avec ces notations,

- 1. Si $\{u_n\}$ converge normalement sur $A, \forall x \in A, \{u_n(x)\}$ est absolument convergente
- 2. Si $\{u_n\}$ converge normalement sur A, alors $\{u_n\}$ converge uniformément sur A

Caractérisation de la convergence normale : $\{u_n\}$ converge normalement ssi il existe une série numérique $\{\alpha_n\}$ convergente telle que $\forall x \in A, \forall n \in \mathbb{N}, |u_n(x)| \leqslant \alpha_n$.

2.2 Continuité de la fonction-somme

- 1. Soit $A \subset \mathbb{R}$, $u_n : A \longrightarrow \mathbb{C}$ telle que $\{u_n\}$ converge uniformément sur A, S sa fonction-somme
 - (a) Si toutes les u_n sont \mathcal{C}^0 (respectivement à gauche, à droite) en un point $x_0 \in A$, il en est de même pour S en ce point.
 - (b) Si toutes le u_n sont C^0 sur A alors il en est de même pour S.
- 2. $A \subset E$ où E est un espace métrique, $u_n : A \longrightarrow \mathbb{C}$ telle que $\{u_n\}$ converge uniformément. Si toutes les u_n sont continues en $x_0 \in A$, alors S l'est aussi. Si toutes les u_n sont continues sur A alors S l'est aussi.
- 3. $I=(a,b[\subset \mathbb{R}, -\infty\leqslant a < b\leqslant +\infty.$ Hypothèses : $u_n:I\longrightarrow \mathbb{C}$ telles que $\{u_n\}$ converge uniformément, et $\forall n\in \mathbb{N}, \exists l_n=\lim_{\leftarrow}u_n(x)$ finie. Alors :

(a)
$$\exists l = \lim_{x \leq b} S(x)$$

(b)
$$\{l_n\}$$
 converge, et $l = \sum_{n=0}^{+\infty} l_n$.

2.3 Intégration des sommes de séries

 $I = [a,b], \{u_n\}$ série de fonctions $I \xrightarrow{\mathcal{C}_m^{\cup}} \mathbb{C}$. Hypothèses : $\{u_n\}$ converge uniformément sur I et $S: x \in I \xrightarrow{\mathcal{C}_m^{\cup}} \sum u_n(x)$. Alors :

- 1. La série numérique de terme général $v_n = \int_a^b u_n(t) dt$ converge
- 2. $\int_a^b S(t) dt = \sum_{n=0}^{+\infty} v_n$, c'est à dire $\int_a^b \sum_{n=0}^{+\infty} u_n(t) dt = \sum_{n=0}^{+\infty} \int_a^b u_n(t) dt$.

Ces résultats restent valables si I est un intervalle borné non fermé de \mathbb{R} , a condition que les u_n et u soient intégrables sur I.

2.4 Primitivation

I un intervalle de \mathbb{R} , $u_n: I \xrightarrow{\mathcal{C}^0} \mathbb{C}$, telle que $\{u_n\}$ converge uniformément sur tout segment inclus dans I. Soit S la fonction-somme associée à $\{u_n\}$. Alors:

- 1. S est C^0
- 2. Si $a \in I$, $\int_a^x S(t) dt = \sum_{n=0}^{+\infty} \int_a^x u_n(t) dt$ pour tout $x \in I$
- 3. Il y a convergence uniforme sur tout segment de la série $\{\int_a^x u_n(t)dt\}$

2.5 Dérivation

I un intervalle de \mathbb{R} , $u_n:I\stackrel{\mathcal{C}^1}{\longrightarrow}\mathbb{C}$ une série de fonctions. Si $\{u_n\}$ converge simplement sur I et $\{u'_n\}$ converge uniformément sur tout segment inclus dans I, alors S est \mathcal{C}^1 et $\forall x\in I$, $S'(x)=\sum_{n=0}^{+\infty}u'_n(x)$. En outre, $\{u_n\}$ converge uniformément sur tout segment inclus dans I.

Avec les mêmes notations, si les u_n sont $\mathcal{C}^{k\geqslant 1}$ sur I, si $\{u_n\}$, $\{u_n'\}$, ..., $\{u_n^{(k-1)}\}$ convergent simplement sur I et $\{u_n^{(k)}\}$ converge uniformément sur tout segment inclus dans I, alors S est \mathcal{C}^k et $\forall 0\leqslant\underline{l}\leqslant k$, $S^{(l)}=\sum_{n=0}^{+\infty}u_n^{(l)}$. En outre, il y a convergence uniforme sur tout segment des séries $\{u_n^{(l)}\}$.

3 Étude des séries entières

 $\{a_nx^n\}$ une série entière de rayon de convergence $R \in]0, +\infty]$. On s'intéresse à la nature de la convergence.

- 1. Dans le cas réel, il y a convergence uniforme de la série $\{a_nx^n\}$ sur tout segment inclus dans]-R,R[.
- 2. Dans le cas complexe, il y a convergence uniforme sur tout disque fermé $\mathcal{D}'(0,r)$ où r < R.

Dans les deux cas, il y a même convergence normale sur les ensembles condidérés.

4 Théorèmes de densité

4.1 Généralités

Normes : voir $\alpha 13$ espaces métriques

Comparaison entre normes : I un segment de \mathbb{R} , E l'ensemble des fonctions $I \xrightarrow{\mathcal{C}^0} \mathbb{C}$, E_m l'ensemble des fonctions $I \xrightarrow{\mathcal{C}^0_m} \mathbb{C}$. On définit pour tout $f \in E_m$.

$$||f||_1 = \int_a^b |f| \le (b-a)||f||_{\infty}$$
$$||f||_2 = \sqrt{\int_a^b |f|^2} \le \sqrt{b-a}||f||_{\infty}$$

On a de plus : $||f||_1 \le \sqrt{b-a}||f||_2$

Soit $\| \bullet \|$ une norme, F sev de E_m , \mathcal{P} une partie de F. On dit que \mathcal{P} est dense dans F au sens de $\| \|$ si $\forall f \in F$, $\forall \varepsilon > 0$, $\exists g \in \mathcal{P}/\|f-g\| \leqslant \varepsilon$ (c'est à dire $F \subset \overline{\mathcal{P}}$).

4.2 Fonctions en escalier

 \mathcal{E}_I l'ensemble des fonctions en escalier $I \longrightarrow \mathbb{C}$. \mathcal{E}_I est dense dans E_m au sens de $\|\cdot\|_{\infty}$ (a fortiori de $\|\cdot\|_{1}$ et $\|\cdot\|_{2}$) Lemme de Lebesgue (hors programme): $f: [a,b] \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$, pour $x \in \mathbb{R}$, $\mathcal{I} = \int_a^b f(t)e^{ixt}dt$; alors $\mathcal{I} \longrightarrow 0$ quand $x \longrightarrow +\infty$.

4.3 Densité des fonctions affines par morceau

I = [a,b] un segment de \mathbb{R} , une fonction $\varphi: I \longrightarrow \mathbb{C}$ est affine par morceaux si elle est \mathcal{C}^0 et s'il existe une subdivision $a = x_0 < x_1 < \ldots < x_n = b$ de I telle que $\varphi|_{[x_i,x_{i+1}]}$ soit affine pour tout i. Le sous-espace vectoriel des applications $I \longrightarrow \mathbb{C}$ affines par morceaux est dense dans le sev $\mathcal{C}^0(I,\mathbb{C})$ au sens de $\|\cdot\|_{\infty}$.

4.4 Théorème polynomial de Weierstrass

I un segment de \mathbb{R} , le sev des fonctions polynômiales de I dans \mathbb{C} est dense dans $\mathcal{C}^0(I,\mathbb{C})$ au sens de $\|\cdot\|_{\infty}$.

4.5 Densité des fonctions polynômiales trigonométriques

(théorème de Weierstrass trigonométrique)

 $f: \mathbb{R} \longrightarrow \mathbb{C}$ est un polynôme trigonométrique si elle est de la forme $f(x) = \sum_{k=-N}^{N} C_k e^{ikx}$.

Soit E l'ensemble des fonctions $\mathbb{R} \xrightarrow{\mathcal{C}^0} \mathbb{C}$ 2π – périodiques. Le sev des fonctions polynômiales trigonométriques est dense dans E.