- Sets and set membership give us a way of classifying and organising information in classes (or types).
- Yet, we are often more interest in looking at objects in terms of how they relate to other objects, i.e., in their social lives.

- In a project of CS4234 (Large-scale Data Storage and Processing), students last year:
 - Analysed the Enron Corpus a database of over 600,000 emails generated by 158 employees of Enron Corporation.
 - Used MapReduce and Hadoop for: (1) cleaning the dataset, (2) extracting a social network graph induced by the individual emails, and (3) analysing its structural properties.
 - Used Gephi a social network visualisation software to glean insight into social relationships between the individual employees within the organisation.

- The mathematical notion that captures relationships between objects is that of a *relation*. For example,
 - José teaches CS1860
 - Adrian teaches CS1801
 - Dave teaches CS1820
 - Carlos teaches CS1890
 - Carlos teaches CS1840
 - Elizabeth teaches CS1870

Relations

- Binary relations such as teaches can be described through the pairs of objects that are in relation to each other
 - (José, CS1860)
 - (Adrian, CS1801)
 - (Dave, CS1820)
 - (Carlos, CS1890)
 - (Carlos, CS1840)
 - (Elizabeth, CS1870)

•

- A binary relation R is thus a subset of the cartesian product S × T of two sets, each set representing a class of objects.
 - teaches ⊆ Lecturer × Course
 - (José, CS1860) ∈ teaches
 - (Adrian, CS1801) ∈ teaches
 - (Dave, CS1820) ∈ teaches
 - (Carlos, CS1850) ∈ teaches
 - •

Graphical representation

Some relations can be represented graphically:

Graphical representation

Graphical representation

Graphical representation

Fiadeiro — 2014/15

Matrix representation

• Alternatively, we can use a matrix:

CS1860		CS1801	CS1820	CS1890	CS1840	CS1870	CS2800	CS2810
José	(1	0	0	0	0	0	0	0
Adrian	0	I	0	0	0	0	0	0
Dave	0	0	I	0	0	0	I	0
Carlos	0	0	0	I	I	0	0	1
Nuno	0	I	0	0	0	0	0	0
Elizabeth	0	0	0	0	0	I	0	0
Johannes	0	0	0	0	0	0	0	ıJ

Inverse relation

• For every relation $R \subseteq S \times T$, its inverse $R^{-1} \subseteq T \times S$ is defined by $a R^{-1} b$ iff b R a.

 For example, the inverse of teaches ⊆ Lecturer × Course is is_taught_by ⊆ Course × Lecturer:

- CS1860 is_taught_by José
- CS1801 is_taught_by Adrian
- CS1820 is_taught_by Dave
- CS180 is_taught_by Carlos
- CS1840 is_taught_by Carlos

• ...

Complement relation

- For every relation $R \subseteq S \times T$, its complement $\overline{R} \subseteq S \times T$ is defined by $(a,b) \in \overline{R}$ iff $(a,b) \notin R$.
 - For example, the complement of teaches ⊆ Lecturer ×
 Course is does_not_teach ⊆ Lecturer × Course:
 - José does_not_teach CS1801
 - Adrian does_not_teach CS1860
 - Dave does_not_teach CS1860
 - Carlos does_not_teach CS1820
 - •

Relation on a set

• If $R \subseteq A \times A$, we say that R is a relation on A.

Properties of relations

Properties of relations

- The relation defined by the graph is
 - is_one_stop_from ⊆ Station × Station
- The state of the s

- Another interesting relation is
 - is_connected_to ⊆ Station × Station defined by:
 - a is_connected_to b iff there exist $a_0, ..., a_n$ such that $a_0 = a$, $a_n = b$ and, for every $0 \le i < n$, a_i is_one_stop_from a_{i+1}
 - What interesting properties does this relation have?

Transitive

- The relation is_connected_to satisfies:
 - if a is_connected_to b and b is_connected_to c
 then a is_connected_to c
- A relation $R \subseteq A \times A$ is transitive iff, for all $a, b, c \in A$, a R b and b R c implies a R c.
- The transitive closure of $R \subseteq A \times A$ is $R^+ \subseteq A \times A$ defined by:
 - a R^+ b iff there exist $a_0, ..., a_{n+1}$ such that $a_0 = a, a_{n+1} = b$ and, for every $0 \le i \le n$, $a_i R a_{i+1}$

Is it transitive?

Reflexive

- The relation is_connected_to satisfies:
 - for all a, a is_connected_to a
- A relation $R \subseteq A \times A$ is reflexive iff, for all $a \in A$, a R a.
- It is normally easy to detect that a relation is reflexive:

R^*

- The transitive and reflexive closure of $R \subseteq A \times A$ is $R^* \subseteq A \times A$ defined by:
 - a R^* b iff there exist $a_0, ..., a_n$ such that $a_i \neq a_i$, $a_n = b$ and, for every $0 \leq i < n$, $a_i R a_{i+1}$
- is_connected_to = is_one_stop_from*

Is it transitive?

Is it reflexive?

Question

Question

• Why are there no arrows on the map?

Symmetric

- The relation is_connected_to satisfies:
 - if a is_connected_to b then b is_connected_to a
- A relation $R \subseteq A \times A$ is symmetric iff, for all $a, b \in A$, a R b implies b R a.
- It is normally easy to detect that a relation is symmetric:

Equivalence relations

- A relation $R \subseteq A \times A$ that is reflexive, symmetric and transitive is said to be an equivalence relation on A.
- For example:
 - is_connected_to
 - $id_A = \{(a,a) \mid a \in A\}$ the identity relation on AThis is the smallest equivalence relation on A in the sense that, for every $R \subseteq A \times A$, if R is an equivalence relation then $id_A \subseteq R$
 - neighbour \subseteq Person \times Person $= \{(a,b) \mid a \text{ and } b \text{ have the same postcode } \}$

Friday, 11 October 13

Abstraction

- Equivalence relations are an abstraction of identity —
 for some reason, we want to identify objects that are equivalent.
- For example,
 - same_value ⊆ BankNote × BankNote any two ten pound notes are "the same" (unless you are Paddington Bear).
 - neighbour ⊆ Person × Person sometimes we want to reason about properties of people who live in the same postcode independently of who they are.
 - car_I_want_to_buy ⊆ Car × Car we normally abstract
 using certain attributes (make, colour, ...) and do not insist
 on a particular vehicle identification number.

Abstraction

Equivalence classes

- Given an equivalence relation $R \subseteq A \times A$, we group all equivalent objects in the same equivalence class:
 - For every $a \in A$, $[a]_R = \{b \in A \mid (a,b) \in R\}$
 - $A/R = \{ [a]_R \mid b \in A \}$ is called the quotient set of A by R.
- For example,
 - BankNote/_{same_value} has four elements corresponding to five_pounds, ten_pounds, twenty_pounds, fifty_pounds
 - What is A/_{id}?

