Andrés Juárez, Aylin Lara, Erik Evaristo

01. INTRODUCCIÓN

02. RECOLECCIÓN DE DATOS

03. ARQUITECTURA DE LA RED

04. IMPLEMENTACIÓN

05. FLUJO DE CÓDIGO

06 RESULTADOS

07 CONCLUSIONES

INTRODUCCIÓN

NUESTRO OBJETIVO ES CREAR UNA CNN CAPAZ DE CLASIFICAR EMOCIONES USANDO IMÁGENES DE ROSTROS HUMANOS.

IMPLEMENTACIÓN

HERRAMIENTAS:

LIBRERÍAS: TENSORFLOW, NUMPY, PANDAS, MATPLOTLIB, OPENCV, CV2,

OS, iMAUG, GLOB, ETC.

ENTORNO: GOOGLE COLAB (PYTHON3)

2.1 RECOLECCIÓN Y PREPROCESAMIENTO DE DATOS

CONSIDERAMOS 7 CATEGORÍAS ENUMERADAS DEL O AL 6, LAS CUALES FUERON: ANGRY, NEUTRAL, DISGUST, FEAR, HAPPY, SAD Y SURPRISED.

REDIMENSIONAMIENTO DE IMAGENES CONVERSIÓN A ESCALA DE GRISES NORMALIZACIÓN DE LOS DATOS

GENERAR IMÁGENES PARA LAS CATEGORIAS QUE TENÍAN MENOR CANTIDAD USANDO COMO BASE LAS EXISTENTES (ROTACIONES, AUMENTO DE BRILLO, ETC)

ARQUITECTURA DE LA RED NEURONAL

MODELO SELECCIONADO: RED NEURONAL CONVOLUCIONAL

CAPAS PRINCIPALES:

CONVOLUCIONALES, POOLING, DENSAS Y DE APLANAMIENTO.

HIPERPARAMETROS: 10 ÉPOCAS, TAMAÑO DE LOTE DE 3011, TASA DE APRENDIZAJE

FLUJO DE CÓDIGO

RESULTADOS

Reporte de	clasific	cación a	ajustado:		
	pred	cision	recall	f1-score	support
	0	0.59	0.88	0.71	1982
	1	0.85	0.69	0.76	2502
	2	0.92	0.60	0.73	691
	3	0.75	0.89	0.81	3926
	4	0.94	0.85	0.89	3421
	5	0.81	0.64	0.72	2475
	6	0.94	0.82	0.88	1597
accurac	Cy			0.79	16594
macro av	/q	0.83	0.77	0.78	16594
weighted av	_	0.82	0.79	0.80	16594

....

Conclusiones

LOGROS: CONSEGUIMOS CREAR UNA CNN CON UNA PRECISIÓN DEL 0.89 Y UNA API QUE USA ESTE MODELO ENTRENADO PARA RECIBIR UNA IMAGEN Y CLASIFICARLA EN UNA DE NUESTRAS CATEGORÍAS.

LIMITACIONES: HARDWARE LIMITADO, DATASETS INCONSISTENTES, FALTA DE DATOS, TIEMPO DE ENTRENAMIENTO Y LIMITACIONES PROPIAS DEL PROBLEMA (AMBIGUEDAD EN LAS CATEGORÍAS).

MEJORAS FUTURAS: CONSEGUIR O CREAR DATASETS MÁS ADECUADOS, HACER USO DE HARDWARE MÁS POTENTE, PROBAR OTRO TIPO DE MODELO.

