

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD1

Exercice 1.

1. Soient $x, y \in \mathbb{R}$. Montrer que x < y si et seulement si il existe $\varepsilon > 0$, $x + \varepsilon < y$.

Solution : Si x < y, on pose alors (par exemple) $\varepsilon = \frac{y-x}{2} > 0$. Mais alors $x + \varepsilon = \frac{x+y}{2} < y$. Réciproquement, s'il existe $\varepsilon > 0$ tel que $x + \varepsilon < y$, alors $x < x + \varepsilon < y$.

2. Soient $x, y \in \mathbb{R}$. Montrer que $x \leq y$ si et seulement si pour tout $\varepsilon > 0$, $x < y + \varepsilon$.

Solution : Si $x \leq y$ alors comme $\varepsilon > 0$ alors $x \leq y < y + \varepsilon$. Réciproquement, prouvons que si pour tout $\varepsilon > 0$, $x < y + \varepsilon$ alors $x \leq y$. On prouve cette implication par contraposée : (rappel la contraposée de $A \Rightarrow B$ est $non(B) \Rightarrow non(A)$). On suppose que x > y. Posons alors $\varepsilon = \frac{x-y}{2} > 0$. Mais alors $y + \varepsilon = \frac{x+y}{2} \leq x$. D'où le résultat. Remarque 1 : on voit parfois une preuve alternative comme suit : si $x < y + \varepsilon$ pour tout $\varepsilon > 0$, alors c'est en particulier vrai pour $\varepsilon = \frac{1}{n}$, et ce, pour tout entier $n \geq 1$. Donc $x < y + \frac{1}{n}$. Par passage à la limite dans une inégalité (toutes quantités convergentes), il vient $x \leq y$, d'où le résultat.

Or, à ce stade du cours, cette preuve pose problème : le théorème de passage à la limite dans une inégalité (voir la preuve de la Proposition 2.37 du polycopié) utilise précisément l'énoncé de cette question. Il y a donc un cercle vicieux dans cette démonstration. Mais cette démonstration serait correcte une fois démontrée proprement la Proposition 2.37. Remarque 2 : l'équivalence avec une inégalité large est aussi vraie (exercice) : Montrer que $x \leq y$ si et seulement si pour tout $\varepsilon > 0$, $x \leq y + \varepsilon$.

3. Donner un énoncé semblable pour l'assertion $x \geq y$.

Solution : $x \ge y$ si et seulement si pour tout $\varepsilon > 0$, $x > y - \varepsilon$. Pour le voir, échanger les rôles de x et y dans la question précédente.

4. Soit $x \in \mathbb{R}$. Montrer l'assertion :

$$(\forall \varepsilon > 0, |x| < \varepsilon) \Leftrightarrow x = 0$$

Solution simple: Une implication est évidente. Pour l'autre :

Démonstration 1 : on peut reprendre l'argument de contraposition de la question 2. Démonstration 2 : remarquons que $|x| < \varepsilon$ est équivalent à $-\varepsilon < x$ et $x < \varepsilon$. Une application des deux questions précédentes pour y = 0 donne alors $x \le 0$ et $x \ge 0$ donc x = 0.

Exercice 2. Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera $\min(x, y)$ le plus petit des deux nombres x, y. Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Trouver une formule pour $\max(x, y, z)$.

Solution simple : On procède pour max(x, y) par distinction des cas.

On procède pour $\min(x, y)$ de la même façon, ou en remarquant que $\max(x, y) + \min(x, y) = x + y$, ou en remarquant que $\min(x, y) = -\max(-x, -y)$.

Enfin, $\max(x, y, z) = \max(x, \max(y, z))$. Pour avoir une formule symétrique, on peut permuter x, y et z et faire la moyenne.

Exercice 3. Soient a et b deux réels strictement positifs. Déterminer, s'ils existent, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

1.
$$A_1 =]-1,1] \cup \{2\}$$

Solution : A_1 est une partie non vide bornée, donc ses bornes inférieure et supérieure existent. Montrons que $\sup(A) = \max(A) = 2$: en effet, $2 \in A$ et pour tout $x \in A$, $x \leq 2$ donc 2 est le maximum de A (et donc sa borne supérieure). Montrons de plus que $\inf(A) = -1$: on a pour tout $x \in A$, $x \geq -1$, donc -1 est un minorant de A. De plus, pour tout $\varepsilon > 0$, on peut toujours trouver $x \in A$ tel que $x < -1 + \varepsilon$ (en effet, si $\varepsilon \leq 2$, on peut prendre $x = -1 + \frac{\varepsilon}{2}$ et si $\varepsilon > 2$, alors on peut prendre x = 1).

Démonstration alternative pour la borne inférieure : utiliser la caractérisation séquentielle de la borne inférieure : -1 est un minorant et la suite $u_n = -1 + \frac{1}{n}$ est une suite de A qui converge vers -1.

2.
$$A_2 = \{a + nb, n \in \mathbb{N}\}$$

Solution : Il faut faire un dessin ici : comme b>0, l'ensemble A_2 est minoré de minimum a (et donc $\inf(A)$ existe et vaut a). Par contre A_2 n'est pas majoré : la suite a+nb tend vers $+\infty$ pour $n\to\infty$.

3.
$$A_3 = \{a + (-1)^n b, n \in \mathbb{N}\}$$

Solution : Il faut décomposer ici selon les n positifs et négatifs. A_3 est composé de deux éléments, a-b (le minimum) et a+b (le maximum).

4.
$$A_4 = \{a + \frac{b}{n}; n \in \mathbb{N}^*\}$$

Solution : L'ensemble A_4 est minoré par a et majoré par a+b. Notons que ce dernier appartient à A_4 (faire n=1) et donc $\sup(A)$ existe avec $\sup(A) = \max(A) = a+b$. De plus $\inf(A)$ existe et $\inf(A) = a$. En effet, a est un minorant et il existe une suite de A (la suite $a + \frac{b}{n}!!$) qui converge vers a. Preuve alternative : pour tout $\varepsilon > 0$, il existe n suffisamment grand (prendre par exemple $n = 1 + \lfloor \frac{b}{\varepsilon} \rfloor$) tel que $a + \frac{b}{n} < a + \varepsilon$.

5.
$$A_5 = \{(-1)^n a + \frac{b}{n}; n \in \mathbb{N}^*\}$$

Solution : Faire un dessin en distinguant les pairs et les impairs : A_5 est constitué de la suite $a + \frac{b}{2\eta}$, majorée par $a + \frac{b}{2}$, minorée par a qui tend en décroissant vers a et de la suite $-a + \frac{b}{2n+1}$, minorée par -a et majorée par -a + b. Donc A_5 admet un maximum égal à $\max(a + \frac{b}{2}, -a + b)$. De plus, $\inf(A_5)$ existe et vaut -a (c'est un minorant et il existe une suite de A_5 qui tend vers -a).

6.
$$A_6 = \{a + (-1)^n \frac{b}{n}; n \in \mathbb{N}^*\}$$

Solution : En distinguant selon les n pairs et impairs, A_6 est constitué de la suite $a+\frac{b}{2n}$, suite majorée par $a+\frac{b}{2}$ qui tend en décroissant vers a et de la suite $a-\frac{b}{2n+1}$ suite minorée par a-b qui tend en croissant vers a. Donc A_6 admet un minimum a-b et un maximum $a+\frac{b}{2}$.

Exercice 4. Déterminer, s'ils existent, un majorant, un minorant, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément de l'ensemble :

$$A = \left\{ \frac{2x - 1}{x + 2}, \ x \in \mathbb{R}_+ \right\}$$

 $(x+2)^{n}$

Solution : Une simple étude de fonction montre que la fonction $f: x \mapsto \frac{2x-1}{x+2}$ est une fonction strictement croissante de $[0, +\infty)$ sur [-1/2, 2) (par théorème de la bijection). Ainsi, simplement, A = [-1/2, 2) de borne inférieure (qui est un minimum)-1/2 et de borne supérieure 2.

Exercice 5. Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n | n \in \mathbb{N}\}$ en posant $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Solution : L'ensemble A n'est pas majoré (il contient la suite 2^n qui tend vers $+\infty$) et admet une borne inférieure qui est 0 (c'est un minorant et la suite 2^{-n} , suite d'éléments de A) tend vers 0.

Exercice 6. Soient A et B deux parties non vides de \mathbb{R} telles que :

$$\forall (x,y) \in A \times B, x \leqslant y$$

Montrer que:

1. $\forall y \in B, \sup A \leqslant y$

Solution : Pour tout $y \in B$, y est un majorant de A donc plus grand que le plus petit des majorants de A.

2. $\sup A \leqslant \inf B$

Solution simple : D'après la question précédente, sup A est un minorant de B, donc plus petit que le plus grand des minorants de B.

3. On regarde le cas d'égalité dans l'inégalité précédente. Montrer l'équivalence :

$$\sup(A) = \inf(B) \iff (\forall \varepsilon > 0)(\exists x \in A)(\exists y \in B)(|x - y| < \varepsilon)$$

Solution : La formulation de la question incite fortement à utiliser la caractérisation par les ε des bornes inférieure et supérieure. On prouve les deux implications : si $\sup(A) = \inf(B)$, alors pour un même $\varepsilon > 0$ fixé, nous avons les deux faits suivants : il existe $x \in A$ tel que $\sup(A) - \frac{\varepsilon}{2} < x \le \sup(A)$ (caractérisation de la borne supérieure) il existe $y \in B$ tel que $\inf(B) \le y < \inf(B) + \frac{\varepsilon}{2}$ (caractérisation de la borne inférieure) Mais alors comme $\inf(B) = \sup(A)$, nous venons d'exhiber un $x \in A$ et un $y \in B$ tel que $|x - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Prouvons maintenant la réciproque : on raisonne par contraposée en supposant que $\sup(A) \neq \inf(B)$ et donc comme $\sup(A) \leq \inf(B)$ en toute généralité, que $\sup(A) < \inf(B)$. Posons $\varepsilon = \frac{\inf(B) - \sup(A)}{2} > 0$. Mais alors, pour tout $x \in A, y \in B, |x - y| \geq \inf(B) - \sup(A) > \varepsilon$.

Exercice 7. Soient A et B deux parties non vides et majorées de \mathbb{R} . Montrer que :

1. Si $A \subset B$ alors $\sup A \leq \sup B$

Solution simple : $\sup B$ est un majorant de A.

2. $A \cup B$ est majorée puis que $\sup A \cup B = \sup (\sup A, \sup B)$

Solution simple : $\sup (\sup A, \sup B)$ est un majorant de $A \cup B$, donc $\sup A \cup B \le \sup (\sup A, \sup B)$. Comme $A, B \subset A \cup B$, on a aussi $\sup A \cup B \ge \sup (\sup A, \sup B)$ d'après la question précédente.

3. Supposons $A \cap B \neq \emptyset$, alors $A \cap B$ est majorée puis que sup $A \cap B \leq \inf$ (sup A, sup B). Donner un exemple pour lequel l'inégalité est stricte.

Solution simple : Conséquence de la première question. Exemple $\{1, 2\}$ et $\{1, 3\}$.

4. Soit $A + B = \{x \in \mathbb{R}/\exists a \in A, \exists b \in B, x = a + b\}$. Montrer que $\sup (A + B) = \sup A + \sup B$

Solution simple : $\sup A + \sup B$ est un majorant de A + B. Soit $a_n \in A$ qui tend vers $\sup A$, $b_n \in B$ qui tend vers $\sup B$; alors $a_n + b_n \in A + B$ tend vers $\sup A + \sup B$.

5. Soit $A \cdot B = \{x \in \mathbb{R}/\exists a \in A, \exists b \in B, x = a \times b\}$. A t-on : $\sup (A \cdot B) = \sup A \times \sup B$? **Solution simple :** Oui si $A, B \in \mathbb{R}_+$. Contre-exemple : $\{-1\}$ et $\{0, 1\}$.

Exercice 8. Soit A une partie de \mathbb{R} non vide et minorée.

1. On note -A l'ensemble :

$$-A = \{ y \in \mathbb{R} / \exists a \in A, y = -a \}$$

Montrer que -A est non vide, -A est majorée et que : $\sup (-A) = -\inf A$

Solution : -A est non vide car A est non vide, et majorée car A est minorée. L'égalité demandée se prouve par double inégalité : $\sup(-A)$ est un majorant de -A, donc pour tout $-a \in -A$, on a $\sup(-A) \geq -a$ et donc $-\sup(-A) \leq a$. Donc $-\sup(-A)$ est un minorant de A, il est donc plus petit que le plus grand des minorants de A : $-\sup(-A) \leq \inf(A)$ et donc $\sup(-A) \geq -\inf(A)$. Ensuite, $\inf(A)$ est un minorant de A donc $-\inf(A)$ est un majorant de -A. Donc $-\inf(A) \geq \sup(-A)$. D'où l'égalité.

2. Soit B l'ensemble des minorants de A. Montrer que $B \neq \emptyset$, B est majorée et que sup $B = \inf A$

Solution: B est non vide puisque A est minoré. B est majoré (par n'importe que élément de A). Donc $\sup(B)$ existe. De plus pour tout $a \in A$, $b \in B$, on a $b \leq a$. Donc a est un majorant de B. Donc $\sup(B) \leq a$. Donc $\sup(B)$ est un minorant de A. Donc $\sup(B) \leq \inf(A)$. Supposons maintenant (par l'absurde) qu'il n'y a pas égalité : $\sup(B) < \inf(A)$. Mais alors on peut trouver $u \in]\sup(B)$, $\inf(A)[:u]$ est alors un minorant de A (et donc dans B) alors que $u > \sup(B)$. Absurde.

Exercice 9. Soit $(a_{ij})_{(i,j)\in I\times J}$ une famille non vide et bornée de réels; comparer :

$$\inf_{i} (\sup_{j} a_{ij}) \quad \text{avec} \quad \sup_{j} (\inf_{i} a_{ij}).$$

Solution détaillée : Pour tout $i \in I$ et tout $k \in J$, on a $\sup_j a_{i,j} \ge a_{i,k} \ge \inf_i a_{i,k}$. Donc $\sup_j a_{i,j}$ est un majorant de $\{\inf_i a_{i,k}, k \in J\}$. Donc $\sup_j a_{i,j} \ge \sup_{k \in J} \inf_{i \in I} a_{i,k}$. Ceci étant vrai pour tout $i \in I$, il vient $\inf_{i \in I} \sup_j a_{i,j} \ge \sup_{k \in J} \inf_{i \in I} a_{i,k}$. Cette inégalité est stricte en général : prendre $a_{i,j} = \frac{j}{i}$ pour $i, j \ge 1$, $j \le i$.

Exercice 10. Soit A une partie majorée de \mathbb{R} d'au moins deux éléments et x un élément de A.

1. Montrer que si $x < \sup A$, alors $\sup(A \setminus \{x\}) = \sup A$.

Solution détaillée : Notons que l'inégalité $\sup(A \setminus \{x\}) \leq \sup A$ est vraie en toute généralité. Prouvons l'inégalité inverse : par caractérisation séquentielle de la borne supérieure, il existe une suite (a_n) d'éléments de A qui converge vers $\sup A$. Or, $x < \sup A$, donc, à partir d'un certain rang n_0 , on a $x < a_n$ pour $n \geq n_0$. Mais alors $(a_n)_{n \geq n_0}$ est une suite de $A \setminus \{x\}$ qui converge vers $\sup A$. Or $a_n \leq \sup(A \setminus \{x\}) \leq \sup A$. Par théorème des gendarmes, on a l'égalité.

2. Montrer que si $\sup(A \setminus \{x\}) < \sup A$, alors $x = \sup A$.

Solution détaillée: L'inégalité $x \leq \sup A$ est triviale. Il faut montrer l'inégalité inverse. Par caractérisation de la borne supérieure, il existe une suite (a_n) d'éléments de A qui converge vers $\sup A$. A partir d'un certain rang, on a $\sup(A \setminus \{x\}) < a_n \leq \sup A$. En particulier, nécessairement, $a_n = x$, donc la suite (a_n) est stationnaire qui converge vers $\sup A$ donc $x = \sup A$.

Exercice 11.

1. Dans cet exercice, A est une partie non vide et bornée de \mathbb{R} (i.e. il existe M > 0 tel que pour tout $x \in A$, $|x| \leq M$). On pose

$$B = \{|x - y|, x, y \in A\}$$
.

Ainsi, B est l'ensemble de toutes les distances entre deux points quelconques de A.

2. Montrer que $\sup(B)$ existe. On appelle ce réel diamètre de A et on notera $\operatorname{Diam}(A) = \sup(B)$.

Solution : $\sup(B)$ existe car B est non vide (en effet, A est non vide : il existe $x \in A$ et donc $0 = |x - x| \in B$) et majorée (en effet, on a $|x - y| \le |x| + |y| \le 2M$ pour tout $x, y \in A$ et donc 2M est un majorant de B).

3. Montrer que $\operatorname{Diam}(A) = 0$ si et seulement si A est un singleton $(A = \{x\}, \text{ pour } x \in \mathbb{R}).$

Solution : Si $A = \{x\}$ pour un certain x, alors B est uniquement constitué de 0. Mais alors $\sup(B) = 0$. Réciproquement, soit A de diamètre nul. Comme A est non vide, il existe $x \in A$. Montrons que pour tout $y \in A$, x = y (on aura alors que $A = \{x\}$). On a par définition que $|x - y| \in B$. Or $\sup(B) = 0$ par hypothèse et donc $0 \le |x - y| \le 0$ et donc x = y.

4. Justifier que $\inf(A)$ et $\sup(A)$ existent puis montrer que $\operatorname{Diam}(A) \leq \sup(A) - \inf(A)$.

Solution : $\inf(A)$ et $\sup(A)$ existent car A est non vide et bornée. De plus pour tout $x \in A$, $x \leq \sup A$ et pour tout $y \in A$, $y \geq \inf A$ et donc $x - y \leq \sup A - \inf A$. En échangeant les roles de x et de y, il vient $y - x \leq \sup A - \inf A$ et donc $|x - y| \leq \sup A - \inf A$. Comme ceci est vrai pour tout $x, y \in A$ on a $\operatorname{Diam}(A) \leq \sup(A) - \inf(A)$.

5. Montrer que pour tout $\varepsilon > 0$, il existe $x, y \in A$ tels que $\sup(A) - \inf(A) - \varepsilon < x - y$.

Solution : On utilise la caractérisation par les ε de la borne supérieure et de la borne inférieure : pour tout $\varepsilon > 0$, il existe $x \in A$ tel que $\sup A - \frac{\varepsilon}{2} < x$. De même, il existe $y \in A$ tel que $y < \inf A + \frac{\varepsilon}{2}$. Ainsi, $x - y > \sup A - \inf A - \frac{\varepsilon}{2} - \frac{\varepsilon}{2}$ et donc $\sup(A) - \inf(A) - \varepsilon < x - y$.

6. En déduire que $Diam(A) = \sup(A) - \inf(A)$.

Solution : Mais alors $\sup(A) - \inf(A) - \varepsilon < x - y \le |x - y| \le \operatorname{Diam}(A)$. Par conséquent, comme $\sup(A) - \inf(A) - \varepsilon \le \operatorname{Diam}(A)$ et comme ceci est vrai pour tout $\varepsilon > 0$ on a $\sup(A) - \inf(A) \le \operatorname{Diam}(A)$. D'où l'égalité $\operatorname{Diam}(A) = \sup(A) - \inf(A)$.