Inhaltsverzeichnis

ini	naitsverzeichnis	3
1	Primzerlegung1.1Einführung und Motivation1.2Elementare Teilbarkeitslehre in integren Ringen1.3Primzerlegung in Euklidischen Ringen, Faktorielle Ringe	
2		20
3	3.1 Zyklische Gruppen 3.2 Primitivwurzeln . 3.3 Zifferndarstellung nach Cantor 3.4 Simultane Kongruenzen 3.4.1 Prinzip des Parallelen Rechnens 3.4.2 Der Chinesische Restsatz 3.5 Ausgewählte Anwendungen von Kongruenzen 3.5.1 Diophantische Gleichungen 3.5.2 Interpolation	36 39 40 41 44 44 45 45
4	Endliche Körper und der Satz von Chevalley 4.1 Untersuchung eines endl. Körpers L mit $\#L=q$ 4.2 Die Sätze von Chevalley und Warming	
5	Quadratische Kongruenzen5.1 Einführende Diskussion5.2 Grundaussagen über Potenzreste5.3 Quadratische Reste und das quadratische Reziprozitätsgesetz5.3.1 Jacobi-Symbol	58 59
6		67 71
7		

In halts verzeichn is

8	Gan	Ganzzahlige quadratische Formen					
	8.1	Grundbegriffe und Bezeichnungen	81				
	8.2	Die Diskriminante	82				
	8.3	Darstellung von Zahlen durch QFen	83				
	8.4	Reduktion der definiten Formen	85				
	8.5	Reduktion indefiniter Formen	87				
	8.6	Automorphismengruppen	90				

Bezeichnungen und Vorraussetzungen

- \bullet Logische Zeichen: \Longrightarrow , \iff , $\forall,$ $\exists,$ \exists^1 (es gibt genau ein), \land (und), \lor (oder)
- Zeichen der Mengenlehre: z.B. $\cup,\,\cap,\,\mathbb{N}:=\{x\in\mathbb{Z}|x\geq0\}$
- Induktion als Beweistechnik
- $\bullet \ \# M$ Kardinalität der Menge M,z.B. $\# \mathbb{N} = \infty$
- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}, \mathbb{N}_+ = \{1, 2, 3, 4, \ldots\}$ (natürliche Zahlen)
- $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$ (Ring der ganzen Zahlen)
- $\mathbb{Q} = \{\frac{z}{n} | z \in \mathbb{Z}, n \in \mathbb{N}_+\}$ (Körper der rationalen Zahlen)
- $\bullet~\mathbb{R}$ Körper der reelen Zahlen
- \mathbb{F}_q Körper mit $q<\infty$ Elementen (= GF(q) in der Informatik)
- $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$ Menge aller Primzahlen