Задание на третью неделю.

№1

Пуст дана $3-{\sf CNF}$ формула ф. Преобразуем ее следующим образом в Φ :

Сначала из всех дизъюнктов уберем повторяющиеся элементы, т. е. теперь в каждом дизъюнкте все переменные различны. Далее дизъюнкты, в которых 3 переменные оставим без изменения. В которых 2 переменные: $x_1 \lor x_2 \longrightarrow (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x_3})$. Дизъюнкты с одной переменной: $x_1 \longrightarrow (x_1 \lor x_4 \lor x_3) \land (x_1 \lor \bar{x_4} \lor \bar{x_3}) \land (x_1 \lor x_4 \lor \bar{x_3})$. Т. е. і-ый дизъюнкт $d_i(x_1, x_2)$ переходит в $D_i(x_1, x_2, x_3, X_4)$.

Из АЛКТГ очевидно, что если при некоторых переменых x_1, x_2 дизъюнкт $d_i(x_1, x_2) = 1$, то дизъюнкт $D_i(x_1, x_2, x_3, x_4) = 1x_3, x_4$. И наоборот, если при некоторых переменых x_1, x_2 дизъюнкт $d_i(x_1, x_2) = 0$, то дизъюнкт $D_i(x_1, x_2, x_3, x_4) = 0x_3, x_4$. Значит, формула ф выполнима (т. е. в ней истинный каждый дизъюнкт) $\iff \Phi$ выполнима. При этом Φ РОВНО-3CNF. Таким образом, при помощи данного полиномиального (длина формулы увеличивается не более чем в 6 раз) преобразования 3CNF сводится к РОВНО-3CNF.

В задачах 3-5 в начале применим описанный выше алгоритм, чтобы свести 3CNF κ POBHO-3CNF. И работать дальше уже с POBHO-3CNF. Для данной λ POBHO-3CNF: $\lambda(x_1,x_2,x_3)=(x_1\vee x_2\vee x_3)\wedge (x_1\vee \bar{x_2}\vee x_3)\wedge (x_1\vee x_2\vee \bar{x_3})\wedge (x_1\vee \bar{x_2}\vee \bar{x_3})\wedge (\bar{x_1}\vee x_4\vee x_3)\wedge (\bar{x_1}\vee \bar{x_4}\vee \bar{x_3})\wedge (\bar{x_1}\vee x_4\vee \bar{x_3}).$ $\varphi=(x_1\vee x_2\vee \bar{x_3}).$

№3

35(i) Если у формулы есть выполняющий набор, то в каждом дизъюнкте есть хотя бы одна истинная переменная. Из каждого из та 3-дизъюнкта выберем по одной вершине, соответствующий истинной переменной x_i . Среди выбранных вершин все из разных дизъюнктов, а так же среди них не может быть пары: переменная и ее отрицание, т. к. они не могут одновременно быть истинны (1). Далее для

каждой вершины, уже выбранной в мн-во и соответствующей переменной x_i , добавим в множество вершину, соотв. $\bar{x_i}$ из литеральной пары вершин для переменного x_i Если есть переменные y_i , которым не соответствует ни одна вершина из выбранного множества, то для каждой такой переменной добавим в мн-ве литеральную вершину, соотв. y_i из литеральной пары вершин для y_i . Итого получим m+nвершин, среди которых по одной вершине из каждого дизъюнкта и по одной (это следует из (1)) из каждой литеральной пары. Выберем из получившегося мн-ва две произвольные вершины. Они либо лежат в разнх дизъюнктах, либо в разных литеральных парах, либо одна лежит в паре, а другая в дизъюнкте И тогда они соответствуют двум противоположным переменным (вида x_i и $\bar{x_i}$). Тогда из построения конструкции выбранные вершины графа образуют множество из m+n вершин, никакие две из которого не связаны ребром. $T. \ e. \ множество этих вершин покрывает 0 ребер. <math>\Rightarrow$ Множество из оставшихся вершин покрывает все ребра. Мощность такого множества 3m + 2n - (n + m) = 2m + n. \Rightarrow Искомое вершинное покрытие найдено. Из этого следует, что если формула из т дизъюнктов и п переменных выполнима, то в соответствующем ей графе (который можно построить по формуле за полиномиальное время) существует вершинное покрытие мощностью n + 2m.

Для данного ф это можно сделать так:

Выделенные синим верши-

ны составляют мн-во A. Оставшиеся вершины образуют искомое мн-во вершинного покрытия B из n+2m=3+2=5 вершин.

Предположим, что для рассматриваемого графа нашлось вершинное покрытие, множество B, мощностью не более 2m+n. Рассмотрим дополнение этого мн-ва (в нем не меньше m+n вершин) - мн-во A. Если какие-то две вершины из множества A соединены ребром, то вершины из множества B не покрывают это ребро, а это невозможно, B. B вершинное покрытие. Значит, B мн-ве A никакие две вершины

не соединены с друг другом. Из построения из этого следует, что во множестве A все вершины из попарно разных 3-дизъюнктов и литеральных пар, и нету вершины из дизъюнкта и вершины из пары, соответствующих одной переменной. \Rightarrow Мощность мн-ва не больше m+n.

Если мощность мн-ва равна m+n, из принципа Дирихле во множестве A найдутся вершины из всех 3-дизъюнктов и по одной из каждой пары. Т. к. во множестве при этом не может быть двух вершин из одной литеральной пары, то среди m вершин из A, лежащих в дизъюнктах, нет вершин, соответствующих противоположным переменным. Тогда рассмотрим набор переменных, в котором истинны те и только те литералы, которые соответствуют вершинам множества A, лежащим в дизъюнктах (т. е. те, которые не соединены c вершиной, соотв. противоположной переменной). Это можно сделать из вышесказанного. Полученный набор будет выполнимым, c0 к в каждом из дизъюнктов хотя бы одна переменная истинна. То есть, если в графе c0 есть вершинное покрытие мощностью не более c1 н, то c1 выполнима. В случае c3 к невыполнима, c3 значит в графе c3 все вершинные покрытия мощностью больше c2 н n.

Значит, с учетом 35(i) полиномиальная (построение графа по форле занимает пол. время) сводимость 3-ВЫПОЛНИМОСТЬ к языку ВЕРШИННОЕ ПОКРЫТИЕ доказана.

№4

36(i) Если у формулы есть выполняющий набор, то в каждом дизъюнкте есть хотя бы одна истинная переменная. Из каждого из т 3-дизъюнкта выберем по одной вершине, соответствующей такой переменной. Среди литералов, соотв. выбранным вершинам, которые все истинны и из разных дизъюнктов, не может быть пары из переменного и его отрицания, т. к. они не могут быть одновременно истинны. Тогда из построения конструкции следует, что все т вершины из этого множества попарно соединены ребрами. Таким образом, клика размером т найдена. Из этого следует, что если формула из т дизъюнктов выполнима, то в соответствующем ей графе (который можно построить по формуле за полиномиальное время) есть клика размером т. Проиллюстрируем на примере данного ф:

 $\varphi = (x_1 \lor x_2 \lor \bar{x_3}), m = 1.$ Построенный по описанной конструкции граф:

Выбирая любую вершину из единственного дизъюнкта получаем искомую единичную клику.

 \Rightarrow C учетом 36(i) полиномиальная сводимость языка 3-ВЫПОЛНИМОСТ к языку КЛИКА доказана.

№5

По описанной конструкции построим $2-{\rm CNF}$. Рассмотрим мн-во дизъюнктов ${\rm L_i}$, полученное из ${\rm i}$ -го дизъюнкта (${\rm a_i}{\lor}b_i{\lor}c_i$) в форме POBHO-3CNF. Тогда среди ${\rm L_i}$ не меньше 3 ложных дизъюнктов: $\bar{a_i}{\lor}\bar{c_i}, \bar{b_i}{\lor}\bar{c_i}, \bar{a_i}{\lor}\bar{d_i}$. При ${\rm d_i}=1$ оставшиеся 7 дизъюнктов истинны. Если среди ${\rm a_i}, {\rm b_i}, {\rm c_i}$ только один равен 0, для определенности ${\rm c_i}$, то ложны не меньше 3 дизъюнктов: ${\rm c_i}, \bar{a_i}{\lor}\bar{d_i}$ и один из ${\rm d_i}, {\rm c_i}{\lor}\bar{d_i}$. При ${\rm d_i}=1$ оставшиеся 7 дизъюнктов истинны. Если среди ${\rm a_i}, {\rm b_i}, {\rm c_i}$, только один равен 1, для определенности ${\rm a_i}$, то ложны не меньше трех: ${\rm b_i}, {\rm c_i}$ и один из ${\rm d_i}, \bar{\rm a_i}{\lor}\bar{d_i}$. При ${\rm d_i}=1$, оставшиеся 7 дизъюнктов истинны.

Если $a_i = b_i = c_i = 0$, то ложных дизъюнктов не менее четырех: a_i, b_i, c_i и один из $d_i, c_i \lor \bar{d}_i$. \Rightarrow Значение d_i можно подобрать так, чтобы среди L_i было 7 дизъюнктов \Longleftrightarrow Среди a_i, b_i, c_i есть переменная равная 1 \Longleftrightarrow і-ый дизъюнкт в исходном POBHO-3CNF истинный. Таким образом, если все k дизъюнкты в POBHO-3CNF выполнимы (т. е формула выполнима), то в получившейся 2CNF 7k выполненых дизъюнктов. Если хотя бы один из дизъюнктов в POBHO-3CNF не выполняется (т. е формула невыполнима), то в получившейся $2CNF \le 7(k-1) + 6 = 7k - 1$ выполненых дизъюнктов. Таким образом, при q = 7 описанная конструкция полиномиально сводит POBHO-3CNF k 2CNF.

Проиллюстрируем на примере 37(ii): Построенная 2CNF:

$$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge (x_1 \vee \bar{x_2}) \wedge (\bar{x_1} \vee \bar{x_3}) \wedge (\bar{x_2} \vee \bar{x_3}) \wedge (\bar{x_1} \vee \bar{x_4}) \wedge (x_2 \vee \bar{x_4}) \wedge (x_3 \vee \bar{x_4}).$$

Пороговое значение kq = 7.

37(ii) Такие наборы переменных были рассмотренны выше. Т. е. например при $x_1 = x_2 = x_3 = x_4 = 1$.

№2

34(i) Построим A_{ϕ} : $\{x_1, \bar{x_1}\}, \{x_2, \bar{x_2}\}, \{\bar{x_3}, x_3\}$. Протыкающем множеством из n=3 элементов будет, например: $\{x_1, x_2, \bar{x_3}\}$.

Покажем, что если формула выполнима, то A_{φ} имеет протыкающее мн-во мощностью п. Если у формулы есть выполняющий набор, то в каждом дизъюнкте есть хотя бы один истинный элемент (здесь $\bar{x_i}$ тоже считается за элемент). Из каждого из п дизъюнкта выберем по одному такому элементу. Уберем из выбранного мн-ва все дубли, т. е. оставим только попарно разные элементы. Получим мн-во В. Среди выбранных элементов не может быть пары из переменного и его отрицания, т. к. они не могут быть одновременно истинны. Значит никакие два элемента из В не лежат в одном подмн-ве вида $A_i = \{x_i, x_i\}$. Пусть мощность В равна k. Тогда мн-во В пересекает все подмн-ва вида A_c и k из п подмн-в вида A_i . Добавив в мн-во В по одному элементу из n-k еще не перечисленных подмн-в вида A_i получим мн-во B_1 , мощностью n, и пересекающее все подмн-ва. Таким образом, если формула выполнима, то A_{φ} имеет протыкающее

мн-во мощностью п.

Покажем, что если A_{λ} имеет протыкающее мн-во мощностью n, то формула λ выполнима. Т. к. в подмн-ах вида A_i различные элементы, а их всего n, то в протыкающем множестве B мощностью n, должно быть ровно по одному элементу из каждого такого подмножества. Т. е. в B не может быть двух противоположных элементов (x_i и $\bar{x_i}$). Тогда можно взять такой набор из переменных, где истинны те и только те элементы, которые входят B мн-во B. При этом формула будет выполнима, B ж. мн-во B имеет хотя бы один общий элемент B0 каждым дизъюнктом, а значит B1 каждом дизъюнкте точно есть инстинный элемент. B2 Если B3 имеет протыкающее мн-во мощностью B4, то формула B5 выполнима.

34(i) Данное λ невыполнимо, n=2, значит мощность протыкающего мн-ва больше двух.

Т. к. A_{λ} имеет протыкающее мн-во мощностью $\mathfrak{n} \iff$ формула λ выполнима, а построение сводящей конструкции занимает полиномиальное время, то ВЫПОЛНИМОСТЬ сводится к языку ПРОТЫ-КАЮЩЕЕ МНОЖЕСТВО.

№6

Аналогично задачи $10(\Delta \text{оп})$ из прошлого задания, где мы использовали сводимость к SAT. Только теперь оракул выдает ответ за полиномиальное время, а это влияет в решении только на степень полиномиальной сложности поиска раскраски.

<u>№</u>8

По теореме о простоте выполнение следующих условий

- $g^{p-1} \equiv 1 \pmod{p}$
- ullet простого делителя q числа $\mathfrak{p}-1 o g^{(\mathfrak{p}-1)/\mathfrak{q}} <> 1 \pmod{\mathfrak{p}}.$

 \iff р простое число.

Тогда в качестве сертификата $s(\mathfrak{p})$ возьмем число g и разложение

p-1 на простые множители p_1, p_2, \ldots, p_m (которых $\leq \log_2 p$) и соответствующие им сертификаты (для делителей > 5) $s(p_1), \ldots s(p_n)$. Таким образом, сертификат определен рекурсивно, множество необходиое для сертификата будет пополняться пока не дойдет до известных нам простх чисел. Такой сертификат имеет полиномиальную сложность (можно показть по индукции по кол-во уровней рекурсии). Тогда, алгоритм верификации должен будет проверить, что:

- 1. $p_1 \dots p_m = p-1$, проверяется прямым умножением за полиномиальное время.
- 2. Возвести число g в степени $g^{p-1}, g^{(p-1)/p_n}, \dots g^{(p-1)/p_n}$ (т. е. n+1 раз возвести в степень $\leq p-1$) и проверить у полученных чисел остатки от деления на p. Это все можно сделать за полиномиальное время.
- 3. Проверить на простоту числа p_1, p_2, \ldots, p_n . С помощью их сертификатов это можно сделать за полиномиальное время.

Приведем сертификат для p = 3911, g = 13:

•
$$3911 : g = 13,3910 = 2 \cdot 5 \cdot 17 \cdot 23$$

- 2: известное простое

- 5: известное простое

-17: $q = 2, 16 = 2^4$

* 2: известное простое

-23: $g = 2,22 = 2 \cdot 11$

* 2: известное простое

* 11: $q = 2, 10 = 2 \cdot 5$

• 2: известное простое

• 5: известное простое

№7

Покажем равновыполнимость:

Если существует набор переменных $x_1,...,x_n$, то подставив их и зна-

чения $y_1,...,y_m$, посчитанные по ним (т. е. $y_1=x_1\vee x_2,...$), получим истинную формулу (т. к. первые m дизъюнктов это просто равенства для $y_1,...,y_m$ (очевидно выполняемые), преобразованные в КНФ, а последний дизъюнкт $y_m=1$, т. к. y_m равно значению CircuitSat при этих переменных $x_1,...,x_n$, а оно истинно). Значит формула выполнима.

И наоборот, если формула, построенная по схеме, истинна при некоторых переменных, то равенства $y_1 = ..., ..., y_n = ...$ выполняются и y_m истинно. При этом y_m равно значению CircuitSat при этих же переменных $x_1, ... x_n$. Значит CircuitSat выполнима.

Таким образом, равновыполнимость формулы доказана.