2015年全国统一高考化学试卷 (新课标I)

- 一、选择题(共7小题,每小题6分,满分42分)
- 1. (6分)我国清代《本草纲目拾遗》中记叙无机药物 335种,其中"强水"条 目下写道:"性最烈,能蚀五金...其水甚强,五金八石皆能穿第,惟玻璃可 盛。"这里的"强水"是指(
 - A. 氨水
- B. 硝酸 C. 醋
- D. 卤水
- 2. (6分) N_A为阿伏伽德罗常数的值。下列说法正确的是()
 - A. 18gD₂O 和 18gH₂O 中含有的质子数均为 10N_A
 - B. 2L0.5mol/L 亚硫酸溶液中含有的 H+个数为 2N_A
 - C. 过氧化钠与水反应时, 生成 0.1mol 氧气转移的电子数为 0.2N。
 - D. 密闭容器中 2molNO 与 1molO₂ 充分反应,产物的分子数为 2N₄
- 3. (6分)乌洛托品在合成、医药、染料等工业中有广泛用途,其结构式如图 所示。将甲醛水溶液与氨水混合蒸发可制得乌洛托品。若原料完全反应生成 乌洛托品,则甲醛与氨的物质的量之比为()

- A. 1: 1
- B. 2: 3 C. 3: 2
- D. 2: 1
- 4. (6分)下列实验中,对应的现象以及结论都正确且两者具有因果关系的是 ()

	实验	现象	结论
Α	将硝酸加入过量铁粉中,充分反应	有气体生成,溶液	稀硝酸将 Fe 氧化为
	后滴加 KSCN 溶液	成血红色	Fe ³⁺
В	将铜粉加入 1.0mol•L ^{®1} 的 Fe ₂ (SO ₄)	溶液变蓝,有黑色	金属 Fe 比 Cu 活泼
	3溶液中	固体出现	
С	用坩埚钳夹住用砂纸仔细打磨过的	熔化后的液态铝滴	金属铝的熔点比较
	铝箔在酒精灯上加热	落下来	低
D	将 0.1 mol∙L ^{®1} MgSO₄溶液滴入 NaOH	先有白色沉淀生	Cu(OH) 2 的 溶 度
	溶液中至不在有沉淀产生,再滴	成,后变为浅	积比 Mg(OH)2

5. (6分) 微生物电池是指在微生物的作用下将化学能转化为电能的装置,其工作原理如图所示。下列有关微生物电池的说法错误的是()

- A. 正极反应中有 CO₂ 生成
- B. 微生物促进了反应中电子的转移
- C. 质子通过交换膜从负极区移向正极区
- D. 电池总反应为 C₆H₁₂O₆+6O₂—6CO₂+6H₂O
- 6. (6分) W、X、Y、Z 均为的短周期主族元素,原子序数依次增加,且原子核外 L 电子层的电子数分别为 0、5、8、8,它们的最外层电子数之和为
 - 18. 下列说法正确的是()
 - A. 单质的沸点: W>X
 - B. 阴离子的还原性: W>Z
 - C. 氧化物的水化物的酸性: Y<Z
 - D. X 与 Y 不能存在于同一离子化合物中
- 7. (6 分)浓度均为 0.10 mol/L、体积均为 V_0 的 MOH 和 ROH 溶液,分别加水稀释至体积 V,pH 随 $lg\frac{V}{V_0}$ 的变化如图所示,下列叙述错误的是()

A. MOH 的碱性强于 ROH 的碱性

- B. ROH 的电离程度: b 点大于 a 点
- C. 若两溶液无限稀释,则它们的c(OH□)相等
- D. 当 $\lg \frac{V}{V_0} = 2$ 时,若两溶液同时升高温度,则 $\frac{c(M^+)}{c(R^+)}$ 增大

二、解答题(共3小题,满分43分)

8. (14 分)草酸(乙二酸)存在于自然界的植物中,其 K_1 =5.4×10 $^{-2}$, K_2 =5.4×10 $^{-5}$. 草酸的钠盐和钾盐易溶于水,而其钙盐难溶于水。草酸晶体($H_2C_2O_4$ •2 H_2O)无色,熔点为 101°C,易溶于水,受热脱水,升华,170°C以上分解。

回答下列问题。

(1) 甲组同学按照如图所示的装置,通过实验检验草酸晶体的分解产物。装置 C 中可观察到的现象是_____,由此可知草酸晶体分解的产物中有。装置 B 的主要作用是。

- (2) 乙组同学认为草酸晶体分解产物中还有 CO,为进行验证,选用甲组实验中的装置 A、B 和图 2 所示的部分装置(可以重复选用)进行实验。
- ①乙组同学的实验装置中,依次连接的合理顺序为 A、B、____、I,装置 H 反应管中盛有的物质是____。
- ②能证明草酸晶体分解产物中有 CO 的现象是____。
- (3)设计实验证明:草酸的酸性比碳酸的强____。
- 9. (14分) 硼及其化合物在工业上有许多用途。以铁硼矿(主要成分为

 $Mg_2B_2O_5$ • H_2O 和 Fe_3O_4 ,还有少量 Fe_2O_3 、FeO、CaO、 Al_2O_3 和 SiO_2 等)为 原料制备硼酸(H_3BO_3)的工艺流程如图所示:

回答下列问题:

- (1) 写出 $Mg_2B_2O_5$ • H_2O 与硫酸反应的化学方程式_____。为提高浸出速率,除适当增加硫酸浓度外,还可采取的措施有 (写出两条)。
- (2)利用_____的磁性,可将其从"浸渣"中分离。"浸渣"中还剩余的物质是__(化学式)。
- (3)"净化除杂"需先加 H_2O_2 溶液,作用是____。然后在调节溶液的 pH 约为 5,目的是。
- (4)"粗硼酸"中的主要杂质是____(填名称)。
- (5) 以硼酸为原料可制得硼氢化钠(NaBH₄),它是有机合成中的重要还原剂,其电子式为。
- (6)单质硼可用于生成具有优良抗冲击性能硼钢。以硼酸和金属镁为原料可制备单质硼,用化学方程式表示制备过程。
- 10. (15分) 碘及其化合物在合成杀菌剂、药物等方面具有广泛用途。回答下列问题:
- (1) 大量的碘富集在海藻中,用水浸取后浓缩,再向浓缩液中加 MnO_2 和 H_2SO_4 ,即可得到 I_2 ,该反应的还原产物为______;
- (2) 上述浓缩液中含有 I^{\square} 、 CI^{\square} 等离子,取一定量的浓缩液,向其中滴加 $AgNO_3$ 溶液,当 AgCl 开始沉淀时,溶液中 $\frac{c(I^{-})}{c(C1^{-})}$ 为:______,已知 K_{sp} $(AgCl)=1.8\times10^{\square10}$, K_{sp} $(AgI)=8.5\times10^{\square17}$ 。
- (3) 已知反应 2HI(g) ⇒ H₂(g) +I₂(g) 的△H=+11kJ•mol□¹, 1molH₂
 (g)、1molI₂(g)分子中化学键断裂时分别需要吸收 436kJ、151kJ 的能量,则 1molHI(g)分子中化学键断裂时需吸收的能量为 kJ。
- (4) Bodensteins 研究了下列反应: $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$, 在 716K 时, 气体混合物中碘化氢的物质的量分数 x (HI) 与反应时间 t 的关系如表:

t/min	0	20	40	60	80	120
X (HI)	1	0.91	0.85	0.815	0.795	0.784
X (HI)	0	0.60	0.73	0.773	0.780	0.784

- ①根据上述实验结果,该反应的平衡常数 K 的计算式为: ;
- ②上述反应中,正反应速率为 $v_{\mathbb{I}}=k_{\mathbb{I}}x^2$ (HI),逆反应速率为 $v_{\dot{\varpi}}=k_{\dot{\varpi}}x$ (H₂)x(I₂),其中 $k_{\mathbb{I}}$ 、 $k_{\dot{\varpi}}$ 为速率常数,则 $k_{\dot{\varpi}}$ 为_____(以K和 $k_{\mathbb{I}}$ 表示)。若 $k_{\mathbb{I}}=0.0027$ min l, $e_{\mathbb{I}}$,在 $e_{\mathbb{I}}=40$ min 时, $e_{\mathbb{I}}=0.0027$ min l, $e_{\mathbb{I}}=0.0027$ min l $e_{\mathbb{I}=0.0027}$ min l $e_{\mathbb{I}=0.0027}$ min l $e_{\mathbb{I}=0.0027}$ min l

[化学--选修 2: 化学与技术]

11. (15分)氯化亚铜(CuCl)广泛应用于化工、印染、电镀等行业。CuCl 难溶于醇和水,可溶于氯离子浓度较大的体系,在潮湿空气中易水解氧化。以海绵铜(主要成分是 Cu 和少量 CuO)为原料,采用硝酸铵氧化分解技术生产 CuCl 的工艺过程如下:

回答下列问题:

(1)步骤①中得到的氧化产物是,溶解温度应控制在60□70℃,原因
是。
(2) 写出步骤③中主要反应的离子方程式。
(3) 步骤⑤包括用 pH=2 的酸洗、水洗两步操作,酸洗采用的酸是
(写名称)。
(4)上述工艺中,步骤⑥不能省略,理由是。
(5) 步骤②、④、⑤、⑧都要进行固液分离。工业上常用的固液分离设备有
(填字母)
A、分馏塔 B、离心机 C、反应釜 D、框式压滤机
(6) 准确称取所制备的氯化亚铜样品 mg,将其置于过量的 FeCl ₃ 溶液中,待
样品完全溶解后,加入适量稀硫酸,用 $amol/L^{\square 1}$ 的 $K_2Cr_2O_7$ 溶液滴定到终
点,消耗 K ₂ Cr ₂ O ₇ 溶液 bmL,反应中 Cr ₂ O ₇ ^{2□} 被还原为 Cr ³⁺ ,样品中 CuCl 的
质量分数为。
[化学选修 3: 物质结构与性质]
12. 碳及其化合物广泛存在于自然界中,回答下列问题:
(1) 处于一定空间运动状态的电子在原子核外出现的概率密度分布可用
形象化描述。在基态 ¹⁴ C 原子中,核外存在对自旋相反的电子。
(2) 碳在形成化合物时,其键型以共价键为主,原因是。
(3) CS ₂ 分子中, 共价键的类型有, C原子的杂化轨道类型
是, 写出两个与 CS ₂ 具有相同空间构型和键合形式的分子或离
子。
(4) CO 能与金属 Fe 形成 Fe (CO) 5, 该化合物熔点为 253K, 沸点为 376K,
其固体属于晶体。
(5) 碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示:
①在石墨烯晶体中,每个 C 原子连接个六元环,每个六元环占有
个 C 原子。
②在金刚石晶体中, C 原子所连接的最小环也为六元环, 每个 C 原子连接
个六元环, 六元环中最多有 个 C 原子在同一平面。

[化学--选修 5: 有机化学基础]

13. $A(C_2H_2)$ 是基本有机化工原料。由 A 制备聚乙烯醇缩丁醛和顺式聚异戊二烯的合成路线(部分反应条件略去)如图所示:

回答下列问题:

- (1) A 的名称是_____, B 含有的官能团是_____。
- (2) ①的反应类型是_____, ⑦的反应类型是____。
- (3) C和D的结构简式分别为____、___、
- (4) 异戊二烯分子中最多有______个原子共平面,顺式聚异戊二烯的结构简 式为 。
- (5) 写出与 A 具有相同官能团的异戊二烯的所有同分异构体(写结构简式)____。
- (6)参照异戊二烯的上述合成路线,设计一条由A和乙醛为起始原料制备1, 3□丁二烯的合成路线。