

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

تشكيل تصوير

Image Formation

یک مدل ساده از تشکیل تصویر

- صحنه با یک منبع نوری روشن میشود
- صحنه اشعه را به سمت دوربین منعکس می کند
 - دوربین اشعه را ثبت می کند

Scene

حسگر تصویر

- یک حسگر نوری، قطعهای است که موج الکترومغناطیسی را به سیگنال الکتریکی تبدیل می کند
 - معروفترین حسگرهای نوری CCD و CMOS هستند
 - برای تشکیل یک تصویر، نیاز است تا حسگر در راستای x و y جابجا شود و مقادیر را ثبت کند
- استفاده از تنها یک حسگر دارای مزیت ارزان بودن است زیرا حرکت مکانیکی با دقت بالا قابل کنترل است
 - البته این روش کند است و به راحتی قابل حمل نیست

حسگر تصویر

• می توان از چندین حسگر نوری استفاده نمود

- حسگر خطی

- حسگر آرایهای

نمونهبرداری و کوانتیزاسیون

- خروجی اغلب حسگرها یک ولتاژ پیوسته است
- باید شکل موج پیوسته را به دیجیتال تبدیل کنیم
 - نمونهبرداری: گسستهسازی حوزه مکان
 - کوانتیزاسیون: گسستهسازی مقادیر دامنه

A B

نمونهبرداری و کوانتیزاسیون

نمونهبرداری و کوانتیزاسیون

ثبت تصوير ديجيتال

Filter — Sensing material Housing — Voltage waveform out

ثبت تصویر دیجیتال

- با دو جزء مشخص می شود: f(x,y) •
- میزان روشنایی منبع نوری که به صحنه تابیده شده است
- میزان روشنایی که توسط اشیاء موجود در صحنه منعکس میشود

$$f(x,y) = i(x,y)r(x,y)$$

$$0 \le i(x, y) < \infty$$

$$0 \le r(x, y) \le 1$$

$$0 \le f(x, y) < \infty$$

r	شىء
0.01	مخمل سیاه
0.65	فولاد
0.80	ديوار سفيد
0.90	نقره
0.93	برف

$$L_{min} \le f(x, y) \le L_{max}$$

$i(lm/m^2)$	محيط
> 90,000	روز آفتابی
< 10,000	روز ابری
≈ 0.1	شب مهتابی
≈ 1,000	دفتر اداری

$$10 \le f(x, y) \le 1000$$

Shutter سرعت

• سرعت دریچه مدت زمانی است که دریچه دوربین باز است و نور را بر روی حسگر دوربین قرار میدهد

Quicker Shutter Speed

Longer Shutter Speed

Filter — Sensing material Housing — Voltage waveform out

Shutter سرعت

Shutter سرعت

Shutter سرعت

فریم بر ثانیه (FPS)

• تعداد تصاویری که در یک ثانیه توسط دوربین ثبت میشود

رزولوشن مكاني

• اندازه هر پیکسل یا تعداد پیکسلها

رزولوشن سطح خاكسترى

- كوانتيزاسيون تصوير: گسستهسازى مقادير پيوسته پيكسلها
 - رزولوشن رنگ / عمق رنگ / سطوح رنگ:
 - تعداد رنگها یا سطوح خاکستری متمایز
 - تعداد بیتهای که رنگ هر پیکسل را مشخص می کند

$$N_c = 2^b$$

اثر رزولوشن سطح خاكسترى

256 levels

128 levels

16 levels

8 levels

64 levels

32 levels

4 levels

2 levels

طراحی دوربین

- فرض کنید یک فیلم را مقابل یک شیئ قرار دهیم
 - آیا تصویر درستی ثبت میشود؟
 - تصویر تاری ثبت خواهد شد

طراحی دوربین

- فرض کنید یک فیلم را مقابل یک شیئ قرار دهیم
- باید مانعی (دریچهای) در مقابل حسگرها قرار دهیم تا هر کدام نسبت به بخشی از فضا حساس باشند

