Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 05 de Septiembre de 2024

Auxiliar 3

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. Para $n, m \in \mathbb{N}$ consideremos $f_n = \mathbb{1}_{[-n,n]}$ y $g_{n,m} = \frac{1}{m} f_n * f_m$.

- a) Calcular \widehat{f}_n .
- b) Calcular $\widehat{g_{n,m}}$.
- c) Calcular:

$$\int_{\mathbb{R}} \frac{\sin^2(x)}{x^2} dx$$

d) Calcular:

$$\int_{\mathbb{D}} \frac{\sin(x)}{x} dx$$

P2. a) Sean $(\varphi_j)_j \subset \mathcal{S}(\mathbb{R}^N, \mathbb{C})$, demuestre que $\varphi_j \xrightarrow[j \to \infty]{\mathcal{S}} \varphi$ si y sólo si:

$$\sup_{x \in \mathbb{R}^N, |\alpha| \le m} [(1+|x|)^m |\partial^{\alpha}(\varphi_j(x) - \varphi(x))|] \xrightarrow{j \to \infty} 0 \quad \forall m \in \mathbb{N}$$

- b) Demuestre que si $p \in [1, \infty]$ y $(\varphi_j)_j \subset \mathcal{S}(\mathbb{R}^N, \mathbb{C})$ converge en $\mathcal{S}(\mathbb{R}^N, \mathbb{C})$ a algún $\varphi \in \mathcal{S}(\mathbb{R}^N, \mathbb{C})$, entonces $(\varphi_j)_j$ converge a φ en $L^p(\mathbb{R}^N)$.
- c) Sea $\psi \in \mathcal{S}(\mathbb{R}^N, \mathbb{C})$ y para cada $j \in \mathbb{N}$ defina $\psi_j(x) := \psi(x/j)$, para todo $x \in \mathbb{R}^N$. Demuestre que:

$$\psi_j f \xrightarrow[j \to \infty]{\mathcal{S}} \psi(0) f \quad \forall f \in \mathcal{S}(\mathbb{R}^N, \mathbb{C})$$

P3. Sea $T \in \mathcal{S}'(\mathbb{R}^N, \mathbb{C})$

- a) Demuestre que $\hat{T} \in \mathcal{S}'(\mathbb{R}^N, \mathbb{C})$.
- b) Sea $\{T_n\}_{n\in\mathbb{N}}\subset \mathcal{S}'(\mathbb{R}^N,\mathbb{C})$ sucesión tal que $T_n \rightharpoonup^* T$ en $\mathcal{S}'(\mathbb{R}^N,\mathbb{C})$, demuestre que $\hat{T}_n \rightharpoonup^* \hat{T}$.
- c) Demostrar que el Teorema de inversión de Fourier sigue valiendo en $\mathcal{S}'(\mathbb{R}^N,\mathbb{C})$.
- d) Demostrar que $\mathcal{F}: \mathcal{S}'(\mathbb{R}^N, \mathbb{C}) \longrightarrow \mathcal{S}'(\mathbb{R}^N, \mathbb{C})$ es isomorfismo con inversa \mathcal{F}^{-1} dada por $\mathcal{F}^{-1}(T) = T^{\vee}$, para todo $T \in \mathcal{S}'(\mathbb{R}^N, \mathbb{C})$.
- e) Comprobar que esta noción de transformada de Fourier sobre distribuciones temperadas extiende a la clásica sobre funciones de decaimiento rápido.