L16: Deep Reinforcement Learning

Shan Wang Lingnan College, Sun Yat-sen University

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Last lecture

- Introduction to RL
- Model-based RL
 - MDP Bellman Equation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

Value iteration

$$V(s) = R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

Policy iteration

$$\pi(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$

• Estimate P_{sa} and R(s)

Course Outline

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

This lecture

- Model free reinforcement learning
- Approximation in reinforcement learning
- Introduction to deep reinforcement learning
- Value-based DRL
 - DQN

Reference: CS 420, Weinan Zhang (SJTU)

Model-free RL

Model-free Prediction

Model-free Reinforcement Learning

- In realistic problems, often the state transition and reward function are not explicitly given
- Model-free RL is to directly learn value & policy from experience without building an MDP
- Key steps: (1) estimate value function; (2) optimize policy

Value Function Estimation

 In model-based RL (MDP), the value function is calculated by dynamic programming

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

= $R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$

- Now in model-free RL
 - We cannot directly know P_{sq} and R
 - But we have a list of experiences to estimate the values

Monte-Carlo Methods

- Monte-Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- Example, to calculate the circle's surface

Circle Surface = Square Surface $\times \frac{\text{#points in circle}}{\text{#points in total}}$

Monte-Carlo Methods

• Go: to estimate the winning rate given the current state

Win Rate (s) = $\frac{\text{#win simulation cases started from } s}{\text{#simulation cases started from } s \text{ in total}}$

Monte-Carlo Value Estimation

- Goal: learn V^{π} from experience under policy π
- Recall that the return is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \gamma^{T-1} R_T$$

 Recall that the value function is the expected return

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

= \mathbb{E}[G_t | s_t = s, \pi]

$$\simeq \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$$

- $\simeq \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$ Sample N episodes from state s using policy π
 - Calculate the average of cumulative reward
 - $G_t^{(i)}$ is the G_t of ith sample
- Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Value Estimation

- Implementation
 - Sample episodes under policy π

$$s_0^{(i)} \xrightarrow[R_1^{(i)}]{a_0^{(i)}} s_1^{(i)} \xrightarrow[R_2^{(i)}]{a_1^{(i)}} s_2^{(i)} \xrightarrow[R_3^{(i)}]{a_2^{(i)}} s_3^{(i)} \cdots s_T^{(i)} \sim \pi$$

- Every time-step t that state s is visited in an episode
 - Increment counter N(s) = N(s) + 1
 - Increment total return $S(s) = S(s) + G_t$
 - Value is estimated by mean return V(s) = S(s)/N(s)
 - By law of large numbers

$$V(s) \rightarrow V^{\pi(S)} \text{ as } N(s) \rightarrow \infty$$

Incremental Monte-Carlo Updates

- Update *V*(*s*) incrementally after each episode
- For each state S_t with cumulative return G_t

$$N(s_t) = N(s_t) + 1$$

$$V(s_t) = V(s_t) + \frac{1}{N(s_t)} (G_t - V(s_t))$$

• For non-stationary problems (i.e. the environment could be varying over time), it can be useful to track a running mean, i.e. forget old episodes

$$V(s_t) = V(s_t) + \alpha(G_t - V(s_t))$$

Monte-Carlo Value Estimation

Idea:
$$V(s) = \frac{1}{N} \sum_{i=1}^{N} G_t^{(i)}$$

Implementation:
$$V(S_t) = V(S_t) + \alpha(G_t - V(S_t))$$

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Temporal-Difference Learning

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = R_{t+1} + \gamma V(S_{t+1})$$

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

$$\uparrow \qquad \qquad \uparrow$$
 Observed reward Guess of future

- TD is based on MC
- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes
- TD updates a guess towards a guess

State Value and Action Value

•
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

- State value
 - The state-value function $V^{\pi}(s)$ of an MDP is the expected return starting from state s and then following policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

- Action value
 - The action-value function $Q^{\pi}(s,a)$ of an MDP is the expected return starting from state s, taking action a, and then following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

Bellman Expectation Equation

• The state-value function $V^{\pi}(s)$ can be decomposed into immediate reward plus discounted value of successor state

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s]$$

• The action-value function $Q^{\pi}(s,a)$ can similarly be decomposed

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma Q^{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

State Value and Action Value

Action value of (s,a)

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s)Q^{\pi}(s,a)$$

Probability of taking action a at state s

Probability of next state s'

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P_{sa}(s') V^{\pi}(s')$$
 Current reward of action a at state s State of s'

Temporal-Difference (TD) Learning

For state value

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

For action value

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

- Learn it step by step
- Faster than MC
- Small variance
- But biased

Approximation in RL

Value and Policy Approximation

- In previous models, we have created a lookup table to maintain a variable V(s) for each state or Q(s,a) for each state-action
- What if we have a large MDP, i.e.
 - the state or state-action space is too large
 - or the state or action space is continuous

to maintain V(s) for each state or Q(s,a) for each state-action?

- For example
 - Game of Go (10170 states)
 - Helicopter, autonomous car (continuous state space)

Parametric Value Function Approximation

 Create parametric (thus learnable) functions to approximate the value function

$$V_{\theta}(s) \simeq V^{\pi}(s)$$

 $Q_{\theta}(s, a) \simeq Q^{\pi}(s, a)$

- θ is the parameters of the approximation function, which can be updated by reinforcement learning
- Generalize from seen states to unseen states

Linear Value Function Approximation

 Represent value function by a linear combination of features

$$V_{\theta}(s) = \theta' x(s)$$

• Objective function is quadratic in parameters θ

$$J(\theta) = \mathbb{E}_{\pi} \left[\frac{1}{2} (V^{\pi}(s) - \theta' x(s))^2 \right]$$

• Update θ

$$\theta \leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta}$$
$$= \theta + \alpha (V^{\pi}(s) - V_{\theta}(s)) x(s)$$

TD Learning with Value Function Approx.

$$\theta \leftarrow \theta + \alpha(V^{\pi}(s) - V_{\theta}(s))x(s)$$

- TD target is a biased sample $R_{t+1} + \gamma V_{\theta}(S_{t+1})$ of true target value $V^{\pi}(s)$
- Supervised learning from "training data" $\langle S_1, R_2 + \gamma V_{\theta}(S_2) \rangle, \langle S_2, R_3 + \gamma V_{\theta}(S_3) \rangle, \dots$
- For each data instance $\langle S_t, R_{t+1} + \gamma V_{\theta}(S_{t+1}) \rangle$ $\theta \leftarrow \theta + \alpha (R_{t+1} + \gamma V_{\theta}(S_{t+1}) - V_{\theta}(S_t)) x(S_t)$
- Linear TD converges (close) to global optimum

Linear Action-Value Function Approx.

• Parametric Q function, e.g., the linear case

$$Q_{\theta}(s,a) = \theta' x(s,a)$$

Stochastic gradient descent update

$$\theta \leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta}$$
$$= \theta + \alpha (Q^{\pi}(s, a) - Q_{\theta}(s, a)) x(s, a)$$

- TD Learning with Value Function Approx.
 - The target is $R_{t+1} + \gamma Q_{\theta}(S_{t+1}, A_{t+1})$

$$\theta \leftarrow \theta + \alpha(R_{t+1} + \gamma Q_{\theta}(S_{t+1}, A_{t+1}) - Q_{\theta}(S_t, A_t))x(S_t, A_t)$$

Introduction to Deep RL

Value and Policy Approximation

What if we directly build these approximate function with deep neural networks?

End-to-End Reinforcement Learning

Deep Reinforcement Learning

- Deep Reinforcement Learning
 - leverages deep neural networks for value functions and policies approximation
 - so as to allow RL algorithms to solve complex problems in an end-to-end manner

Deep Reinforcement Learning Trends

- What will happen when combining DL and RL?
 - Value functions and policies are now deep neural nets
 - Very high-dimensional parameter space
 - Hard to train stably
 - Easy to overfit
 - Need a large amount of data
 - Need high performance computing
 - Balance between CPUs (for collecting experience data) and GPUs (for training neural networks)
 - ...
- These new problems motivates novel algorithms for DRL

Deep Reinforcement Learning Categories

- Value-based methods
 - Deep Q-network
- Stochastic policy-based methods
 - Policy gradients with NNs, natural policy gradient, trustregion policy optimization, proximal policy optimization, A3C
- Deterministic policy-based methods
 - Deterministic policy gradient, DDPG

DQN

Deep Q-network

Q-Learning and Policy Control

• Recall TD learning for action value Q(s,a) $Q(S_t,A_t) \leftarrow Q(S_t,A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1},A_{t+1}) - Q(S_t,A_t))$

- The next action is chosen using policy $a_{t+1} \sim \pi(\cdot | S_{t+1})$
- What if we consider another good action a'?
- And update $Q(s_t, a_t)$ towards value of a' $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a' \in A} Q(S_{t+1}, a') Q(S_t, A_t))$ Policy Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{\alpha' \in A} Q(S_{t+1}, \alpha') - Q(S_t, A_t))$$

At state s, take action a

Observe reward R

Transit to the next state s'

At state s', take action argmax Q(s',a')

Deep Q-Network (DQN)

- Implement Q function with deep neural network
 - Input a state, output Q values for all actions

Deep Q-Network (DQN)

The loss function at iteration i

$$L_{i}(\theta_{i}) = \mathbb{E}_{(s,a,R,s') \sim U(D)} \left[\left(R + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) - Q(s,a;\theta_{i}) \right)^{2} \right]$$
Target Q-value (Target output)
(Estimated output)

- θ_i are the network parameters to be updated at iteration i
 - Updated with standard back-propagation algorithms
- θ_i^- are the target network parameters
 - Only updated with ϑi for every C steps
- $(s, a, R, s') \sim U(D)$: the samples are uniformly drawn from the experience pool D
 - Thus to avoid the overfitting to the recent experiences

Deep Q-Network (DQN)

DQN (NIPS 2013) is the beginning of the entire deep reinforcement learning subarea.

Lecture 16 Wrap-up

- ✓ Model free reinforcement learning
- ✓ Approximation in reinforcement learning
- ✓ Introduction to deep reinforcement learning
- √ Value-based DRL
 - **✓** DQN

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Questions?

Shan Wang (王杉)

https://wangshan731.github.io/