Théo Guyard ML MTP - December 9th, 2024

Optimization methods for ℓ_0 -problems

Optimization methods for ℓ_0 -problems

Théo Guyard ML MTP – December 9th, 2024

Cédric Herzet Inria/Ensai Rennes

Clément Elvira
CentraleSupélec Rennes

Ayşe-Nur Arslan Inria Bordeaux

Sparse optimization

Minimize a cost with a sparse solution

Sparse optimization

Minimize a cost with a sparse solution

Sparse optimization

Minimize a cost with a sparse solution

thing to minimize

Constrained version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Constrained version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Minimized version $\min_{\mathbf{x} \in \mathbf{R}^n} \quad \|\mathbf{x}\|_0$ subject to $f(\mathbf{x}) \le \epsilon$

Constrained version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Minimized version

 $\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$ subject to $f(\mathbf{x}) \le \epsilon$

Regularized version

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0$$

Constrained version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 \le s$

Minimized version $\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x}\|_0$ subject to $f(\mathbf{x}) \le \epsilon$

Regularized version
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \text{ separable}$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

1995

1d graph

1) MIP-based methods Convenient for practitioners Poor numerical performances

- 1) MIP-based methods Convenient for practitioners Poor numerical performances
- 2) Specialized Branch-and-Bound More sophisticated mechanism Better numerical performances

MIP-based methods Convenient for practitioners Poor numerical performances

Specialized Branch-and-Bound More sophisticated mechanism Better numerical performances

High-level concepts and practical tools

Question time!

Sparse signal

 $x \in R^n$

n pixels

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$			$a_{1,n}$	
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	< n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	× n	a _{3,n}	$\mathbf{y} \in \mathbf{R}^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{A} \in \mathbf{R}^{m}$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	<i>a</i> _{3,1}	$A \in R^{m}$	× n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Model accuracy Loss $\mathcal{L}_{\phi}(\mathbf{A}\mathbf{x},\mathbf{y})$

Model explainability
Use few features

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$			$a_{1,n}$	
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	< n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n \Longrightarrow \mathbf{Target} \ \mathbf{y} = \phi(\mathbf{A}\mathbf{x})$$

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

such that $\mathcal{Q}(\mathbf{x}) = 0$

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64 -5.43
#71	6.85	8.27	7.98	8.04	 6.65	 -7.58

4,088 genes

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64
						-6.64 -5.43
					 	 -7.58
#/1	0.85	8.27	7.98	8.04	 0.05	-7.58

4,088 genes

