Hauptseminar: Natural Language Processing Tools

NLTK

Daniel Nagel

23. November 2017

POS-Tagging

Part-of-Speech Tagging

In corpus linguistics part-of-speech tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context—i.e., its relationship with adjacent and related words in a phrase, sentence, or paragraph

Tags

What parsed text corpus is used in NLTK to annotate the tokens?

Tags

What parsed text corpus is used in NLTK to annotate the tokens?

 \rightarrow The Penn Treebank

The Penn Treebank Tags

Number	Tag	Description	18.	PRP	Personal pronoun
1.	CC	Coordinating conjunction	19.	PRP\$	Possessive pronoun
2.	CD	Cardinal number	20.	RB	Adverb
3.	DT	Determiner	21.	RBR	Adverb, comparative
4.	EX	Existential there	22.	RBS	Adverb, superlative
5.	FW	Foreign word	23.	RP	Particle
6.	IN	Preposition or subordinating conjunction	24.	SYM	Symbol
7.	JJ	Adjective	25.	TO	to
8.	JJR	Adjective, comparative	26.	UH	Interjection
9.	JJS	Adjective, superlative	27.	VB	Verb, base form
10.	LS	List item marker	28.	VBD	Verb, past tense
11.	MD	Modal	29.		Verb, gerund or present participle
12.	NN	Noun, singular or mass	30.		Verb, past participle
13.	NNS	Noun, plural	31.	VBP	Verb, non-3rd person singular present
14.		Proper noun, singular	32.		Verb, 3rd person singular present
15.		Proper noun, plural	33.	WDT	Wh-determiner
16.	PDT	Predeterminer	34.	WP	Wh-pronoun
			35.	WP\$	Possessive wh-pronoun
17.	POS	Possessive ending	36.	WRB	Wh-adverb

The Penn Treebank Tags

Number	r Tag	Description	18.	PRP	Personal pronoun
1.	CC	Coordinating conjunction	19.	PRP\$	Possessive pronoun
2.	CD	Cardinal number	20.	RB	Adverb
3.	DT	Determiner Adjectives	21.	RBR	Adverb, comparative
4.	EX	Existential there (all start	22.	RBS	Adverb, superlative
5.	FW	Foreign word with J)	23.	RP	Particle
6.	IN	Preposition or subordinating conjunction	24.	SYM	Symbol Verbs (all
7.	JJ	Adjective	25.	TO	start with V)
8.	JJR	Adjective, comparative	26.	UH	Interjection
9.	JJS	Adjective, superlative	27.	VB	Verb, base form
10.	LS	List item marker	28.	VBD	Verb, past tense
11.	MD	Modal	29.	VBG	Verb, gerund or present participle
12.	NN	Noun, singular or mass	30.	VBN	Verb, past participle
13.	NNS	Noun, plural	31.	VBP	Verb, non-3rd person singular present
14.	NNP	Proper noun, singular Nouns	32.	VBZ	Verb, 3rd person singular present
15.		Proper noun, plural (all sta	33.	WDT	Wh-determiner
16.	PDT			WP	Wh-pronoun
17.		with /v		WP\$	Possessive wh-pronoun
17.	POS	Possessive ending	36.	WRB	Wh-adverb

Does this work?

Overall one can get over 90% correct tokens but only around 60% correctness on a sentences-level.

import nltk

from nltk import word_tokenize

 $variable = word_tokenize("a sentence")$

 $\mathsf{nltk}.\mathsf{pos_tag}(\mathsf{text})$

Let's try it out!

Chunking (shallow parsing) is an analysis of a sentence which first identifies constituent parts of sentences (nouns, verbs, adjectives, etc.) and then links them to higher order units that have discrete grammatical meanings (noun groups or phrases, verb groups, etc.)

We will start with a common task in NLP: NP-Chunking

import nltk

alice = nltk.corpus.gutenberg.words('carroll-alice.txt')

 $posTagged = nltk.pos_tag(alice)$

 $posTagged = nltk.pos_tag(alice)$

grammar = "NP: $\{\langle DT \rangle? \langle JJ \rangle^* \langle NN \rangle\}$ "

cp = nltk.RegexpParser(grammar)

 $\mathsf{result} = \mathsf{cp.parse}(\mathsf{posTagged})$

Let's try it out!