Gate-2022-EE-58

EE22BTECH11008 - Annapureddy Siva Meenakshi*

Q: Consider an ideal full-bridge single-phase DC-AC inverter with a DC bus voltage magnitude of 1000V. The inverter output voltage v(t) shown below is obtained when diagonal switches of the inverter are switched with 50% duty cycle. The inverter feeds a load with a sinusoidal current given by i(t) = $10\sin(\omega t - \frac{\pi}{3})$ A, where $\omega = \frac{2\pi}{T}$. The active power, in watts, delivered to the load is __.[Gate2022-EE-58]

Solution:

Variable	Description	Value
$V_{ m s}$	input DC voltage	1000V
i(t)	output current	$\sin(\omega t - \frac{\pi}{3})$
v(t)	Output voltage	given
ω	Frequency	$\frac{2\pi}{T}$
$v_0^{\rm rms}$	RMS output voltage at the fundamental frequency	none
$i_{ m rms}$	RMS output current at the fundamental frequency	none
$v_0(t)$	output voltage at the fundamental frequency	none
φ	phase difference between $v_0(t)$ and $i(t)$	none
i_0	amplitude of output current	1
P	active power delivered	none

TABLE 0: Input parameters

The Fourier series expansion of the given voltage v(t) is,

$$v(t) = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_{dc}}{n\pi} \sin(n\omega t)$$
 (1)

$$v_0(t) = \frac{4V_{\rm dc}}{\pi}\sin(\omega t) \tag{2}$$

$$\therefore \quad \phi = \frac{\pi}{3} \tag{3}$$

$$\therefore \quad \phi = \frac{\pi}{3}$$

$$v_0^{\text{rms}} = \frac{4V_{\text{dc}}}{\pi \sqrt{2}}$$

$$= \frac{4000}{\pi \sqrt{2}}$$

$$(5)$$

$$=\frac{4000}{\pi\sqrt{2}}\tag{5}$$

$$i_{\rm rms} = \frac{i_0}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$
 (6)

Active power delivered to load in Watts is given by,

$$P = v_0^{\rm rms} \times i_{\rm rms} \times \cos \phi \tag{7}$$

$$= \frac{4000}{\pi\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \cos\frac{\pi}{3} \tag{8}$$

$$\approx 3183$$
 (9)

Fig. 0: circuit diagram of the system

Fig. 0: circuit diagram of the system