Homework #6

Problem 1:

a) Find the distance of the shortest path from G to C in the graph below.

The shortest distance of the path from G to C: 16

max	dd					TD	орттини	FOIIND	AT STEP	6	
ST	щЧ	dg	= 0			TL				_	
٠.		• -	– ďe	: <=	7		OBJ1	ECTIVE	FUNCTION	VALUE	
		$\bar{ ext{d}} ilde{ ext{h}}$	– dg	· <=	3		1)	1	6.00000		
		da	- df - da - da - df - df - de	<pre></pre>	4 5 10 8 9 10 9 25	VA	RIABLE DC DG DE DH DA DF DB		VALUE 16.00000 0.00000 3.00000 4.00000 5.00000 12.00000	0 0 0 0 0 0	REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000
end		фd	- dc - dc - df - dg - dc - df	<pre></pre>	3 4 7 2	NO	ROW 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 16) 17) 18)		K OR SURP 0.00000 7.00000 3.00000 6.00000 9.00000 22.00000 25.00000 9.00000 19.00000 0.00000 0.00000 19.00000 19.00000 19.00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DUAL PRICES 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000
						NO.	ITERAT:	IONS=	6		

b) Find the distances of the shortest paths from G to all other vertices.

$$G -> D = 2$$

G -> H = 3

G -> A = 7

G -> B = 12

G -> C = 16

G -> F = 17

G -> E = 19

```
dg - de <= 7
                                                              LP OPTIMUM FOUND AT STEP
                  dh - dg <= 3
da - dh <= 4
da - df <= 5
                                                                        OBJECTIVE FUNCTION VALUE
                                                                        1)
                                                                                     76.00000
                  df - da <= 10
                                                                                                              REDUCED COST
0.000000
0.000000
                  db - da <= 8
db - dh <= 9
de - db <= 10
                                                                VARIABLE
                                                                                        VALUE
                                                                                       7.000000
12.000000
16.000000
2.000000
                                                                        DA
DB
                                                                        DC
DD
                                                                                                                    0.000000
                  dd - de <= 9
                                                                                       19.000000
17.000000
3.000000
                                                                        DE
                                                                                                                    0.000000
                 de - dd <= 25
dd - dc <= 3
dc - db <= 4
db - df <= 7
dd - dg <= 2
                                                                        DF
                                                                                                                    0.000000
                                                                                                                    0.000000
                                                                                         0.000000
                                                                        DG
                                                                                                                    0.000000
                                                                               SLACK OR SURPLUS
0.000000
26.000000
0.000000
                                                                                                               DUAL PRICES
7.000000
0.000000
                                                                       ROW
                                                                        2)
3)
4)
5)
6)
7)
8)
                  df - dd <= 18
de - df <= 2
                                                                                                                    6.000000
3.000000
0.000000
                                                                                                                       000000
                                                                                       0.000000
15.000000
0.000000
3.000000
 end
                                                                                                                    2.000000
                                                                                                                    2.000000
0.000000
0.000000
                                                                                         0.000000
                                                                                       3.000000
26.000000
                                                                       10)
11)
                                                                       12)
13)
                                                                                       8.000000
17.000000
                                                                                                                    0.000000
                                                                                       0.000000
12.000000
                                                                                                                       000000
                                                                       15)
                                                                                                                    0.000000
                                                                                         0.000000
                                                                                                                    1.000000
                                                                                         3.000000
                                                                       17)
18)
                                                                                                                    0.000000
                                                                                                                    1.000000
                                                              NO. ITERATIONS=
                                                                                               5
Problem 2:
max 3.45s + 2.32p + 2.81b + 3.25c
ST
                 0.125s < = 1000
                 0.08p + 0.05b + 0.03c <= 2000
                 0.05b + 0.07c <= 1250
                s >= 6000
                                                            LP OPTIMUM FOUND AT STEP
                s <= 7000
                                                                       OBJECTIVE FUNCTION VALUE
                p >= 10000
                p <= 14000
                                                                       1)
                                                                                   120196.0
                ь
                    >= 13000
                                                              VARIABLE
                                                                                       VALUE
                                                                                                             REDUCED COST
                Ъ <= 16000
                                                                                  7000.000000
13625.000000
13100.000000
8500.000000
                                                                                                                   0.000000
0.000000
0.000000
                                                                         SP
                c >= 6000
                                                                         BC
                c <= 8500
                                                                                                                   0.000000
END
                                                                              SLACK OR SURPLUS
125.000000
0.000000
1000.000000
1000.000000
12625.000000
375.000000
100.0000000
2900.000000
2500.000000
0.0000000
                                                                                                               DUAL PRICES
                                                                      ROW
                                                                                                                  0.000000
29.000000
27.200001
0.000000
                                                                       2)
3)
                                                                       4)
5)
                                                                                                                   3.450000
                                                                       6)
7)
8)
                                                                                                                   0.000000
                                                                      10)
                                                                      11)
                                                                                                                   0.000000
                                                                                                                   0.476000
                                                                      12)
                                                            NO. ITERATIONS=
```

max da + db + dc + dd + de + df + dh

dg = 0

ST

Optimal number of ties of each type:

- 1) Silk = 7000
- 2) Blend 1 = 13100

- 3) Blend 2 = 8500
- 4) Polyester = 13625

Maximum profit = 120196.00

Problem 3:

Part A)

Let X_{ij} = quantity shipped from plant p_i to warehouse w_j

Let X_{jk} = quantity shipped from warehouse w_j to retailer r_k

$\Sigma\Sigma x_{ij}*cp(ij)+\Sigma\Sigma x_{jk}*cw(jk)$

Objective Function:

$\Sigma x1j = 150 (p1)$	$\Sigma xj1 = 100 (r1)$
$\Sigma x2j = 450 (p2)$	$\Sigma xj2 = 150 (r2)$
Σ x3j = 250 (p3)	$\Sigma xj3 = 100 (r3)$
$\Sigma x4j = 150 (p4)$	$\Sigma xj4 = 200 (r4)$
	Σ xj5 = 200 (r5)
$\Sigma xi1 - \Sigma x1k = 0$ (w)	Σ xj6 = 150 (r6)
$\Sigma xi2 - \Sigma x2k = 0 (w2)$	$\Sigma xj7 = 100 (r7)$
$\Sigma xi3 - \Sigma x3k = 0 (w3)$	

xij, xjk >= 0

2	Vertices	Supply Desert				
		Supply Demand	150			
3	P1	150				
4	P2	450	450			
5	P3	250	250			
6	P4	150	150			
7	W1	0	0			
8	W2	0	0			
9	W3	0	0			
10	R1	-100	-100			
11	R2	-150	-150			
12	R3	-100	-100			
13	R4	-200	-200			
14	R5	-100	-100			
15	R6	-150	-150			
16	R7	-100	-100			
17						
18						
19	Starting Point	Destination	Cost	Destination S	upply	
20	P1	W1	10	150		
21	P1	W2	15	0		
22	P2	W1	11	200		
23	P2	W2	8	250		
24	P3	W1	13	0		
25	P3	W2	8	150		
26	P3	W3	9	100		
27	P4	W2	14	0		
28	P4	W3	8	150		
29	W1	R1	5	100		
30	W1	R2	6	150		
31	W1	R3	7	100		
32	W1	R4	10	0		
33	W2	R3	12	0		
34	W2	R4	8	200		
35	W2	R5	10	200		
36	W2	R6	14	0		
37	W3	R4	14	0		
38	W3	R5	12	0		
39	W3	R6	12	150		
40	W3	R7	6	100		
41						
12						
43	Optimal Cost	17100				

Results (Plant to warehouse):

P1 -> W1 = 150

P2 -> W1 = 200

P2 -> W2 = 250

P3 -> W2 = 150

P3 -> W3 = 100

P4 -> W3 = 150

Warehouse to retailers:

W1 -> R1 = 100

W1 -> R2 = 150

W1 -> R3 = 100

W2 -> R4 = 200

W2 -> R5 = 200

W3 -> R6 = 150

W3 -> R7 = 100

Total Optimum Cost = \$17100

Part B)

1	Α	В	С	D	Е	F
1						
2	Vertices	Supply Demand				
3	P1	150	150			
4	P2	450	450			
5	P3	250	250			
6	P4	150	150			
7	W1	0	0			
8	W3	0	0			
9	R1	-100	-100			
10	R2	-150	-150			
11	R3	-100	-100			
12	R4	-200	-200			
13	R5	-100	-100			
14	R6	-150	-150			
15	R7	-100	-100			
16						
17						
18	Starting Point	Destination	Cost	Destination S	upply	
19	P1	W1	10	150		
20	P2	W1	11	200		
21	P3	W1	13	0		
22	P3	W3	9	100		
23	P4	W3	8	150		
24	W1	R1	5	100		
25	W1	R2	6	150		
26	W1	R3	7	100		
27	W3	R4	14	0		
28	W3	R5	12	0		
29	W3	R6	12	150		
30	W3	R7	6	100		
31						
-						
32						
32	Optimal Cost	17950				
	Optimal Cost	17950				

(Model without warehouse 2)

Optimal solution for plant to warehouse:

P1 -> W1 = 150

P2 -> W1 = 400

P3 -> W3 = 250

P4 -> W3 = 150

Warehouse(W1 and W3) to retailers:

W1 -> R1 = 100

W1 -> R2 = 150

W1 -> R3 = 100

W1 -> R4 = 200

W3 -> R5 = 200

W3 -> R6 = 150

W3 -> R7 = 50

Optimal total cost = \$17950, not feasible because it cost an extra \$850 to ship the refrigerators to the remaining warehouses.

PART C:

Vertices	Supply Demand			
P1	150	150		
P2	450	450		
P3	250	250		
P4	150	150		
W1	0	0		
W2	0	0		
W3	0	0		
R1	-100	-100		
R2	-150	-150		
R3	-100	-100		
R4	-200	-200		
R5	-100	-100		
R6	-150	-150		
R7	-100	-100		
Starting Point	Destination	Cost	Destination S	upply
P1	W1	10	150	
P1	W2	15	0	
P2	W1	11	350	
P2	W2	8	100	
P3	W1	13	0	
P3	W2	8	0	
P3	W3	9	150	
P4	W2	14	0	
P4	W3	8	150	
W1	R1	5	100	
W1	R2	6	150	
W1	R3	7	100	
W1	R4	10	0	
W2	R3	12	0	
W2	R4	8	200	
W2	R5	10	0	
W2	R6	14	0	
W3	R4	14	0	
W3	R5	12	100	
W3	R6	12	150	
W3	R7	6	100	
Optimal Cost	16000			

Results for Part C are feasible that has an optimal total cost: \$16000 from the limited shipments.

Problem 4:

a) V = [1, 5, 10, 25] and A = 202

Minimum number of coins = 10 1 coin = 2, 5 coin = 0, 10 coin = 0, 25 coin = 8

b) V = [1, 3, 7, 12, 27] and A = 293

```
Lingo Model - Lingo1.lng*
1 \min = a + b + c + d + e;
2 a + 3 * b + 7 * c + 12 * d + 27 * e = 293;
3 a >= 0;
4 b >= 0;
5 c >= 0;
6 d >= 0;
7 e >= 0;
                                      Solution Report - Lingo1.lng
Global optimal solution found.
                                                10.85185
Objective value:
Infeasibilities:
                                                0.000000
Total solver iterations:
                                                       0
                                                    0.02
Elapsed runtime seconds:
Model Class:
                                                      LP
Total variables:
                                        5
Nonlinear variables:
Integer variables:
                                        0
                                        7
Total constraints:
Nonlinear constraints:
Total nonzeros:
                                       15
Nonlinear nonzeros:
                                        0
                                Variable
                                                   Value
                                                                 Reduced Cost
                                                0.000000
                                                                    0.9629630
                                       Α
                                       В
                                                0.000000
                                                                    0.888889
                                      C
                                                0.000000
                                                                    0.7407407
                                      D
                                                0.000000
                                                                    0.5555556
                                                10.85185
                                       Ε
                                                                     0.000000
                                     Row
                                            Slack or Surplus
                                                                   Dual Price
                                                10.85185
                                                                   -1.000000
                                      1
                                      2
                                                0.000000
                                                                   -0.3703704E-01
                                                0.000000
                                                                     0.000000
                                      3
                                       4
                                                0.000000
                                                                     0.000000
                                      5
                                                0.000000
                                                                     0.000000
                                       6
                                                0.000000
                                                                     0.000000
                                                10.85185
                                                                     0.000000
```

Minimum coins used = 14

1 coin = 1, 3 coin = 1, 7 coin = 1, 12 coin = 1, 27 coin = 10