# Step by Step Analysis of WIN data

June 29, 2018

# 1 Step by Step Statistical Analysis of Structural Topology Measures and the IGT in the WIN Data

- 1.0.1 1. Calculate the Data Distribution (Boxplot statistics, Grubb's outliers, skewness
- 1.0.2 2. Calculate Generalized Linear Model for both Binary and Weighted
- 1.0.3 3. Calculate Correlation Matrix for both Binary and Weighted
- 1.0.4 4. Run Principal Component Regression with Standardized Data
- 1.0.5 5. Run Principal Component Analysis with Standardized Data
- 1.0.6 6. Run Singular Value Decomposition with Standardized Data
- 1.1 Calculate the Data Distribution (Boxplot statistics, Grubb's outliers, skewness

```
Making mergedWINData Table
```

#### Data Distribution Calculation with summary()

```
In [11]: library(plyr)
         summary(mergedWINData$density_baseline)
         summary(mergedWINData$clustering coeff average.binary.)
         summary(mergedWINData$clustering_coeff_average.binary._baseline)
         summary(mergedWINData$transitivity.binary._baseline)
         summary(mergedWINData$network_characteristic_path_length.binary._baseline)
         summary(mergedWINData$small.worldness.binary._baseline)
         summary(mergedWINData$global_efficiency.binary._baseline)
         summary(mergedWINData$diameter_of_graph.binary._baseline)
         summary(mergedWINData$radius_of_graph.binary._baseline)
         summary(mergedWINData$local_efficiency.binary._baseline)
         summary (mergedWINData $assortativity_coefficient.binary._baseline)
         summary(mergedWINData$transitivity.weighted._baseline)
         summary(mergedWINData$network_characteristic_path_length.weighted._baseline)
         summary(mergedWINData$small.worldness.weighted._baseline)
         summary(mergedWINData$global_efficiency.weighted._baseline)
```

summary(mergedWINData\$diameter\_of\_graph.weighted.\_baseline)
summary(mergedWINData\$radius\_of\_graph.weighted.\_baseline)
summary(mergedWINData\$local\_efficiency.weighted.\_baseline)
summary(mergedWINData\$assortativity\_coefficient.weighted.\_baseline)
summary(mergedWINData\$baseline\_p)
summary(mergedWINData\$baseline\_q)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.04231 0.05235 0.05500 0.05530 0.05817 0.06980 2

Length Class Mode
0 NULL NULL

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.1280 0.2256 0.2534 0.2529 0.2773 0.3890 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.005455 0.023410 0.035647 0.039178 0.052757 0.127768 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 2.979 3.331 3.455 3.516 3.682 4.582 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.03603 0.06313 0.07209 0.07240 0.08142 0.10571 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.2957 0.3370 0.3490 0.3481 0.3599 0.3956 2

12 11 5 **12** 16 87 328 44 9 1 1 10 1 13 1 **14 20 NAN** 1 1 2 34 **3** 14 45 **5** 40 **6** 37 1 NAN 1

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 9.367 16.878 18.656 18.670 20.631 28.049 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's -0.308120 -0.161616 -0.084556 -0.079472 0.008365 0.191067 2

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.03301 0.08003 0.10211 0.10767 0.12607 0.23773 2

```
NA's
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                            Max.
  2.979
          3.331
                  3.455
                           3.516
                                   3.682
                                           4.582
                                                        2
          1st Qu.
                    Median
                                Mean
                                     3rd Qu.
                                                            NA's
    Min.
                                                   Max.
0.001285 0.004217 0.006244 0.006611 0.007946 0.016948
                                                               2
                 Median
   Min. 1st Qu.
                            Mean 3rd Qu.
                                                     NA's
                                            Max.
0.06073 0.07883 0.08671 0.08749 0.09609 0.11950
                                                        2
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                            Max.
                                                     NA's
  48.09
          90.37
                 141.67 159.97 195.03
                                                        2
                                          640.17
  Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                            Max.
                                                     NA's
  24.74
          50.81
                  74.02
                           99.23 134.89
                                          384.00
                                                        2
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                             Max.
                                                     NA's
  5.144
          6.967
                  7.682
                           7.782
                                   8.579
                                          13.208
                                                        2
                                      3rd Qu.
                                                            NA's
          1st Qu.
                    Median
                                Mean
                                                   Max.
-0.18338 -0.07512 -0.02054 -0.02201
                                     0.02934 0.23170
                                                               2
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                            Max.
                                                     NA's
 -54.00
           0.00
                  22.00
                           21.59
                                   46.00
                                           70.00
                                                        1
                                                     NA's
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                            Max.
 -60.00
          14.00
                  38.00
                           31.35
                                   52.00
                                                        1
                                           84.00
```

### **Grubb's outlier Calculation with grubbs.test()**

```
grubbs.test(mergedWINData$assortativity_coefficient.binary._baseline)
         grubbs.test(mergedWINData$transitivity.weighted._baseline)
         grubbs.test(mergedWINData$network_characteristic_path_length.weighted._baseline)
         grubbs.test(mergedWINData$small.worldness.weighted._baseline)
         grubbs.test(mergedWINData$global efficiency.weighted. baseline)
        grubbs.test(mergedWINData$diameter_of_graph.weighted._baseline)
         grubbs.test(mergedWINData$radius of graph.weighted. baseline)
         grubbs.test(mergedWINData$local_efficiency.weighted._baseline)
        grubbs.test(mergedWINData$assortativity_coefficient.weighted._baseline)
         grubbs.test(mergedWINData$baseline_p)
         grubbs.test(mergedWINData$baseline_q)
Grubbs test for one outlier
data: mergedWINData$density_baseline
```

```
G = 3.26710, U = 0.91251, p-value = 0.05283
alternative hypothesis: highest value 0.0698043 is an outlier
```

Error in complete.cases(x): no input has determined the number of cases Traceback:

- 1. grubbs.test(mergedWINData\$clustering\_coeff\_average.binary.)
- 2. sort(x[complete.cases(x)])
- 3. complete.cases(x)

#### Calculate Skewness for continuous variables with skew()

```
In [13]: library(psych)
         skew(mergedWINData$density_baseline)
         skew(mergedWINData$clustering_coeff_average.binary._baseline)
         skew(mergedWINData$transitivity.binary._baseline)
         skew(mergedWINData$network_characteristic_path_length.binary._baseline)
         skew(mergedWINData$small.worldness.binary. baseline)
         skew(mergedWINData$global_efficiency.binary._baseline)
         skew(mergedWINData$local_efficiency.binary._baseline)
         skew(mergedWINData$assortativity_coefficient.binary._baseline)
         skew(mergedWINData$transitivity.weighted._baseline)
         skew(mergedWINData$network_characteristic_path_length.weighted._baseline)
         skew(mergedWINData$small.worldness.weighted._baseline)
         skew(mergedWINData$global_efficiency.weighted._baseline)
```

```
skew(mergedWINData$diameter_of_graph.weighted._baseline)
      skew(mergedWINData$radius_of_graph.weighted._baseline)
      skew(mergedWINData$local_efficiency.weighted._baseline)
      skew(mergedWINData$assortativity_coefficient.weighted._baseline)
      skew(mergedWINData$baseline p)
      skew(mergedWINData$baseline_q)
0.0268452834376448
0.112664834807907
1.07356177836757
1.23772661713605
0.0111348690235782
-0.359141232992264
0.0780135478797593
0.150226885923763
0.918417892511746
1.23772661713605
1.24774718146554
0.183816330924891
1.76066191356737
1.7163855691314
0.698468350927476
0.191784899548373
-0.211203145254837
-0.779505008723374
```

### 1.2 Calculate Generalized Linear Models

GLM for p and continuous binary variables (diameter and radius are not continuous)

```
In [14]: fit = glm(baseline_p~
                    density baseline+
                    clustering coeff average.binary. baseline+
                    transitivity.binary._baseline+
                    network_characteristic_path_length.binary._baseline+
                    small.worldness.binary._baseline+
                    global_efficiency.binary._baseline+
                    local_efficiency.binary._baseline+
                    assortativity_coefficient.binary._baseline,
                 family = gaussian(identity),
                 data = mergedWINData)
         summary(fit)
Call:
glm(formula = baseline_p ~ density_baseline + clustering_coeff_average.binary._baseline +
    transitivity.binary._baseline + network_characteristic_path_length.binary._baseline +
    small.worldness.binary._baseline + global_efficiency.binary._baseline +
    local_efficiency.binary._baseline + assortativity_coefficient.binary._baseline,
```

### family = gaussian(identity), data = mergedWINData)

#### Deviance Residuals:

Min 1Q Median 3Q Max -74.017 -21.220 0.836 19.488 47.147

### Coefficients:

|                                                              | Estimate         | Std. Error |
|--------------------------------------------------------------|------------------|------------|
| (Intercept)                                                  | 35.9763          | 299.4038   |
| density_baseline                                             | 673.9390         | 728.1496   |
| <pre>clustering_coeff_average.binarybaseline</pre>           | -394.6430        | 761.4294   |
| transitivity.binarybaseline                                  | 63.3034          | 130.0336   |
| <pre>network_characteristic_path_length.binarybaseline</pre> | 1.9502           | 45.3704    |
| small.worldness.binarybaseline                               | 1050.2033        | 2458.2894  |
| <pre>global_efficiency.binarybaseline</pre>                  | -163.9697        | 582.4556   |
| local_efficiency.binarybaseline                              | 0.9435           | 4.5832     |
| assortativity_coefficient.binarybaseline                     | -31.1309         | 26.9734    |
|                                                              | t value Pr(> t ) |            |
| (Intercept)                                                  | 0.120            | 0.905      |
| density_baseline                                             | 0.926            | 0.357      |
| <pre>clustering_coeff_average.binarybaseline</pre>           | -0.518           | 0.605      |
| transitivity.binarybaseline                                  | 0.487            | 0.627      |
| <pre>network_characteristic_path_length.binarybaseline</pre> | 0.043            | 0.966      |
| small.worldness.binarybaseline                               | 0.427            | 0.670      |
| <pre>global_efficiency.binarybaseline</pre>                  | -0.282           | 0.779      |
| local_efficiency.binarybaseline                              | 0.206            | 0.837      |
| assortativity_coefficient.binarybaseline                     | -1.154           | 0.251      |

(Dispersion parameter for gaussian family taken to be 785.4927)

Null deviance: 95493 on 123 degrees of freedom Residual deviance: 90332 on 115 degrees of freedom

(2 observations deleted due to missingness)

AIC: 1189.2

Number of Fisher Scoring iterations: 2

### GLM for q and continuous binary variables

```
#diameter_of_graph.binary._baseline+
    #radius_of_graph.binary._baseline+
    local_efficiency.binary._baseline+
    assortativity_coefficient.binary._baseline,
    family = gaussian(identity),
    data = mergedWINData)
summary(fit)
```

#### Call:

glm(formula = baseline\_q ~ density\_baseline + clustering\_coeff\_average.binary.\_baseline +
 transitivity.binary.\_baseline + network\_characteristic\_path\_length.binary.\_baseline +
 small.worldness.binary.\_baseline + global\_efficiency.binary.\_baseline +
 local\_efficiency.binary.\_baseline + assortativity\_coefficient.binary.\_baseline,
 family = gaussian(identity), data = mergedWINData)

#### Deviance Residuals:

Min 1Q Median 3Q Max -81.386 -19.030 7.608 18.196 56.797

#### Coefficients:

|                                                                 | Fstimate  | Std. Error |
|-----------------------------------------------------------------|-----------|------------|
| (Intercept)                                                     | -185.121  |            |
| density_baseline                                                | 1587.651  |            |
| • –                                                             |           |            |
| <pre>clustering_coeff_average.binarybaseline</pre>              | 1075.209  | 784.810    |
| transitivity.binarybaseline                                     | -326.595  | 134.026    |
| ${\tt network\_characteristic\_path\_length.binary.\_baseline}$ | -3.316    | 46.764     |
| small.worldness.binarybaseline                                  | -2131.562 | 2533.773   |
| <pre>global_efficiency.binarybaseline</pre>                     | 536.444   | 600.340    |
| local_efficiency.binarybaseline                                 | -8.188    | 4.724      |
| assortativity_coefficient.binarybaseline                        | -21.106   | 27.802     |
|                                                                 | t value P | r(> t )    |
| (Intercept)                                                     | -0.600    | 0.5498     |
| density_baseline                                                | 2.115     | 0.0366 *   |
| clustering_coeff_average.binarybaseline                         | 1.370     | 0.1733     |
| transitivity.binarybaseline                                     | -2.437    | 0.0164 *   |
| <pre>network_characteristic_path_length.binarybaseline</pre>    | -0.071    | 0.9436     |
| small.worldness.binarybaseline                                  | -0.841    | 0.4019     |
| <pre>global_efficiency.binarybaseline</pre>                     | 0.894     | 0.3734     |
| local_efficiency.binarybaseline                                 | -1.733    | 0.0857 .   |
| assortativity_coefficient.binarybaseline                        | -0.759    | 0.4493     |
|                                                                 |           |            |
| Cimpif codog, 0 *** 0 001 ** 0 05 0 1                           | 1         |            |

Signif. codes: 0 \*\*\* 0.001 \*\* 0.01 \* 0.05 . 0.1 1

(Dispersion parameter for gaussian family taken to be 834.4714)

Null deviance: 106737 on 123 degrees of freedom Residual deviance: 95964 on 115 degrees of freedom

```
(2 observations deleted due to missingness)
AIC: 1196.7
Number of Fisher Scoring iterations: 2
GLM for p and continuous weighted variables
In [16]: fit = glm(baseline_p~
                    density_baseline+
                    transitivity.weighted._baseline+
                    network_characteristic_path_length.weighted._baseline+
                    small.worldness.weighted._baseline+
                    global_efficiency.weighted._baseline+
                    diameter_of_graph.weighted._baseline+
                    radius_of_graph.weighted._baseline+
                    local_efficiency.weighted._baseline+
                    assortativity_coefficient.weighted._baseline,
                 family = gaussian(identity),
                 data = mergedWINData)
         summary(fit)
Call:
glm(formula = baseline_p ~ density_baseline + transitivity.weighted._baseline +
   network_characteristic_path_length.weighted._baseline + small.worldness.weighted._baseline
    global_efficiency.weighted._baseline + diameter_of_graph.weighted._baseline +
   radius_of_graph.weighted._baseline + local_efficiency.weighted._baseline +
    assortativity_coefficient.weighted._baseline, family = gaussian(identity),
    data = mergedWINData)
Deviance Residuals:
   Min
                   Median
                                3Q
                                        Max
              1Q
-80.257 -19.989
                  -0.427 19.116
                                     49.560
Coefficients:
                                                        Estimate Std. Error
                                                       3.629e+01 7.143e+01
(Intercept)
density_baseline
                                                       5.617e+02 7.311e+02
transitivity.weighted._baseline
                                                       1.622e+02 1.435e+02
network_characteristic_path_length.weighted._baseline -1.700e+01 1.025e+01
small.worldness.weighted._baseline
                                                      -1.547e+03 2.072e+03
global_efficiency.weighted._baseline
                                                       6.256e+01 2.984e+02
diameter_of_graph.weighted._baseline
                                                      -5.164e-02 9.478e-02
```

1.825e-03 1.255e-01

1.182e+00 2.496e+00

-1.874e+01 3.478e+01

radius\_of\_graph.weighted.\_baseline

local\_efficiency.weighted.\_baseline

assortativity\_coefficient.weighted.\_baseline

```
t value Pr(>|t|)
(Intercept)
                                                        0.508
                                                                 0.612
density_baseline
                                                        0.768
                                                                 0.444
transitivity.weighted._baseline
                                                                 0.261
                                                        1.130
network characteristic path length.weighted.baseline -1.658
                                                                 0.100
small.worldness.weighted._baseline
                                                       -0.746
                                                                 0.457
global efficiency.weighted. baseline
                                                        0.210
                                                                 0.834
diameter_of_graph.weighted._baseline
                                                       -0.545
                                                                 0.587
radius of graph.weighted. baseline
                                                                 0.988
                                                        0.015
local_efficiency.weighted._baseline
                                                        0.474
                                                                 0.637
assortativity_coefficient.weighted._baseline
                                                       -0.539
                                                                 0.591
```

(Dispersion parameter for gaussian family taken to be 778.8871)

```
Null deviance: 95493 on 123 degrees of freedom
Residual deviance: 88793 on 114 degrees of freedom
(2 observations deleted due to missingness)
```

AIC: 1189

Number of Fisher Scoring iterations: 2

### GLM for q and continuous weighted variables

#### Call:

```
glm(formula = baseline_q ~ density_baseline + transitivity.weighted._baseline +
    network_characteristic_path_length.weighted._baseline + small.worldness.weighted._baseline
    global_efficiency.weighted._baseline + diameter_of_graph.weighted._baseline +
    radius_of_graph.weighted._baseline + local_efficiency.weighted._baseline +
    assortativity_coefficient.weighted._baseline, family = gaussian(identity),
    data = mergedWINData)
```

```
Deviance Residuals:
```

```
1Q Median
                         3Q
                               Max
   Min
-82.266 -12.778 6.836 18.466
                            50.728
```

#### Coefficients:

|                                                                   | Estimate   | Std. Error |
|-------------------------------------------------------------------|------------|------------|
| (Intercept)                                                       | -30.29478  | 74.76561   |
| density_baseline                                                  | 830.25573  | 765.21007  |
| transitivity.weightedbaseline                                     | -231.99757 | 150.21374  |
| ${\tt network\_characteristic\_path\_length.weighted.\_baseline}$ | 6.95336    | 10.72909   |
| small.worldness.weightedbaseline                                  | 884.98725  | 2168.76135 |
| <pre>global_efficiency.weightedbaseline</pre>                     | 416.30126  | 312.36088  |
| diameter_of_graph.weightedbaseline                                | 0.03036    | 0.09921    |
| radius_of_graph.weightedbaseline                                  | -0.05260   | 0.13140    |
| local_efficiency.weightedbaseline                                 | -3.33025   | 2.61276    |
| assortativity_coefficient.weightedbaseline                        | -11.26503  | 36.40125   |
|                                                                   | t value Pr | (> t )     |
| (Intercept)                                                       | -0.405     | 0.686      |
| density_baseline                                                  | 1.085      | 0.280      |
| transitivity.weightedbaseline                                     | -1.544     | 0.125      |
| ${\tt network\_characteristic\_path\_length.weighted.\_baseline}$ | 0.648      | 0.518      |
| small.worldness.weightedbaseline                                  | 0.408      | 0.684      |
| <pre>global_efficiency.weightedbaseline</pre>                     | 1.333      | 0.185      |
| diameter_of_graph.weightedbaseline                                | 0.306      | 0.760      |
| radius_of_graph.weightedbaseline                                  | -0.400     | 0.690      |
| local_efficiency.weightedbaseline                                 | -1.275     | 0.205      |
| assortativity_coefficient.weightedbaseline                        | -0.309     | 0.758      |

(Dispersion parameter for gaussian family taken to be 853.2885)

```
Null deviance: 106737 on 123 degrees of freedom
Residual deviance: 97275 on 114 degrees of freedom
  (2 observations deleted due to missingness)
```

AIC: 1200.4

Number of Fisher Scoring iterations: 2

### 1.3 Calculate Correlation Matrices

### **Correlation Matrix for Continuous Binary Variables**

```
In [18]: myData <- mergedWINData[1:126, c(2,3,4,6,8,10,16,18)]</pre>
         head(myData)
         corrMatrix <- round(cor(myData, use="complete.obs"), 2)</pre>
         head(corrMatrix)
```

```
library(reshape2)
getLowerTri <- function(corrMatrix){</pre>
  corrMatrix[upper.tri(corrMatrix)] <- NA</pre>
  return(corrMatrix)
}
lowerTri <- getLowerTri(corrMatrix)</pre>
meltedCorrMatrix <- melt(lowerTri, na.rm = TRUE )</pre>
head(meltedCorrMatrix)
library(ggplot2)
ggplot(data = meltedCorrMatrix, p.mat = p.mat, aes(x=Var1, y=Var2, fill=value)) +
  geom_tile(color="white") +
  scale_x_discrete(labels = c("Density", "Clustering Coeff", "Transitivity", "Char Pa
                             "Small Worldness", "Global Efficiency", "Local Efficiency
                             "Assortativity")) +
  scale_y_discrete(labels = c("Density", "Clustering Coeff", "Transitivity", "Char Pa
                             "Small Worldness", "Global Efficiency", "Local Efficiency
                             "Assortativity")) +
  scale_fill_gradient(low = "gold", high = "red",
                      limit = c(-1,1), space = "Lab",
                      name = "WIN Binary Variables\nCorrelation Matrix\n\n") +
  theme_minimal() +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.grid.major = element_blank(),
    panel.border = element_blank(),
    panel.background = element_blank(),
    axis.ticks = element_blank(),
    axis.text.x = element_text(angle = 45, vjust = 1, size = 9, hjust = 1)) +
  coord_fixed() +
  geom_text(aes(Var1, Var2, label = value), color = "white", size = 4)
```

| density_baseline                        | clustering_coeff_average.binaryb  | aseline transitivit | transitivity.binarybaseline |                |
|-----------------------------------------|-----------------------------------|---------------------|-----------------------------|----------------|
| 0.0502380                               | 0.237317                          | 0.0140703           |                             | 3.72258        |
| 0.0544685                               | 0.292529                          | 0.0132959           | 0.0132959                   |                |
| 0.0565838                               | 0.262644                          | 0.0473149           | 0.0473149                   |                |
| 0.0528821                               | 0.241766                          | 0.0570605           | 0.0570605                   |                |
| 0.0560550                               | 0.271800 0.0203477                |                     |                             | 3.42474        |
| 0.0608144                               | 0.257770 0.0223299                |                     | 3.60107                     |                |
|                                         | •                                 | density_baseline    | clustering_coeff_a          | average.binary |
|                                         | density_baseline                  | 1.00                | 0.27                        |                |
| cluster                                 | ing_coeff_average.binarybaseline  | 0.27                | 1.00                        |                |
|                                         | transitivity.binarybaseline       | 0.24                | 0.11                        |                |
| network_characte                        | ristic_path_length.binarybaseline | -0.39               | 0.00                        |                |
| small.worldness.binarybaseline          |                                   | 0.42                | 0.90                        |                |
| global_efficiency.binarybaseline        |                                   | 0.41                | 0.06                        |                |
| Var1                                    |                                   | Var2                | value                       |                |
|                                         | density_baseline                  | density_baseline    | 1.00                        |                |
| clustering_coeff_average.binarybaseline |                                   | density_baseline    | 0.27                        |                |
|                                         | transitivity.binarybaseline       | density_baseline    | 0.24                        |                |
| network_characte                        | ristic_path_length.binarybaseline | density_baseline    | -0.39                       |                |
|                                         | small.worldness.binarybaseline    | density_baseline    | 0.42                        |                |
|                                         | global_efficiency.binarybaseline  | density_baseline    | 0.41                        |                |
|                                         | - · ·                             | -                   |                             |                |

Attaching package: ggplot2

The following objects are masked from package:psych:

%+%, alpha



### **Correlation Matrix for Continuous Weighted Variables**

```
}
lowerTri <- getLowerTri(corrMatrix)</pre>
meltedCorrMatrix <- melt(lowerTri, na.rm = TRUE )</pre>
head(meltedCorrMatrix)
library(ggplot2)
ggplot(data = meltedCorrMatrix, p.mat = p.mat, aes(x=Var1, y=Var2, fill=value)) +
  geom_tile(color="white") +
  scale_x_discrete(labels = c("Density", "Transitivity", "Char Path Length",
                               "Small Worldness", "Global Efficiency", "Local Efficiency
                               "Assortativity")) +
  scale_y_discrete(labels = c("Density", "Transitivity", "Char Path Length",
                               "Small Worldness", "Global Efficiency", "Local Efficiency
                               "Assortativity")) +
  scale_fill_gradient(low = "yellow", high = "red",
                      limit = c(-1,1), space = "Lab",
                      name = "WIN Weighted Variables\nCorrelation Matrix") +
  theme_minimal() +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.grid.major = element_blank(),
    panel.border = element_blank(),
    panel.background = element_blank(),
    axis.ticks = element_blank(),
    axis.text.x = element_text(angle = 45, vjust = 1, size = 9, hjust = 1)) +
  coord_fixed() +
  geom_text(aes(Var1, Var2, label = value), color = "white", size = 4, check_overlap =
```

### 1.4 Run Principal Component Regression

Standardization of Variables with scale() and adding them to a new Table

small.worldness.binary.\_baseline\_scaled <- scale(mergedWINData\$small.worldness.binary
global\_efficiency.binary.\_baseline\_scaled <- scale(mergedWINData\$global\_efficiency.binary.baseline\_scaled <- scale(mergedWINData\$local\_efficiency.binary.binary.baseline\_scaled <- scale(mergedWINData\$local\_efficiency.binary.baseline\_scaled <- scale(mergedWINData\$local\_efficiency.binary.binary.baseline\_scaled <- scale(mergedWINData\$local\_efficiency.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.binary.bin

transitivity.weighted.\_baseline\_scaled <- scale(mergedWINData\$transitivity.weighted.\_network\_characteristic\_path\_length.weighted.\_baseline\_scaled <- scale(mergedWINData\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata\$ndata

standardizedVariables <- data.frame(density=density\_baseline\_scaled,

clust\_binary=clustering\_coeff\_average.binary.\_base trans\_binary=transitivity.binary.\_baseline\_scaled net\_binary=network\_characteristic\_path\_length.bin small\_binary=small.worldness.binary.\_baseline\_scaled global\_binary=global\_efficiency.binary.\_baseline\_scaled local\_binary=local\_efficiency.binary.\_baseline\_scaled assort\_binary=assortativity\_coefficient.binary.\_baseline\_scaled

trans\_weighted=transitivity.weighted.\_baseline\_sc.net\_weighted=network\_characteristic\_path\_length.weighted=small.worldness.weighted.\_baseline\_global\_weighted=global\_efficiency.weighted.\_baseline\_scal\_weighted=local\_efficiency.weighted.\_baseline\_assort\_weighted=assortativity\_coefficient.weighted=

Pscore=baseline\_p\_scaled,
Qscore=baseline\_q\_scaled)

### PCR Summary and Validation Curve of Continuous Binary Variables and P

In [21]: library(pls)

)

```
local_efficiency.binary._baseline_scaled+
  assortativity_coefficient.binary._baseline_scaled,
data = mergedWINData,
scale = TRUE,
validation = "CV"
```

```
summary(pcr.fit)
         validationplot(pcr.fit, val.type = "MSEP")
         validationplot(pcr.fit, val.type = "R2")
         predplot(pcr.fit)
         coefplot(pcr.fit) # plot of regression coefficients
Attaching package: pls
The following object is masked from package:outliers:
   scores
The following object is masked from package:stats:
    loadings
              X dimension: 124 8
        Y dimension: 124 1
Fit method: svdpc
Number of components considered: 8
VALIDATION: RMSEP
Cross-validated using 10 random segments.
       (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
                                                                6 comps
             1.004
                      1.005
                               1.004
                                        1.009
                                                 1.015
                                                           1.028
                                                                    1.037
             1.004
                               1.003
                                                           1.024
                      1.004
                                        1.007
                                                 1.013
                                                                    1.033
       7 comps 8 comps
         1.042
                  1.046
         1.038
                  1.042
TRAINING: % variance explained
                   1 comps 2 comps 3 comps 4 comps 5 comps
                                                                6 comps
                    42.166
                             67.161
                                      81.110
                                               92.324
                                                        99.103
                                                                  99.726
                     1.296
                              3.735
                                       3.876
                                                         5.189
                                                                  5.193
baseline_p_scaled
                                                4.527
                   7 comps 8 comps
                    99.961
                           100.000
```

Data:

CV

CV

Х

X

baseline\_p\_scaled

5.224

5.405

adjCV

adjCV

# baseline\_p\_scaled



# baseline\_p\_scaled



# baseline\_p\_scaled, 8 comps, validation



### baseline\_p\_scaled



### PCR Summary and Validation Curve of Continuous Binary Variables and Q

```
data = mergedWINData,
                   scale = TRUE,
                   validation = "CV"
                    )
         summary(pcr.fit)
         validationplot(pcr.fit, val.type = "MSEP")
         validationplot(pcr.fit, val.type = "R2")
         predplot(pcr.fit)
         coefplot(pcr.fit)
              X dimension: 124 8
Data:
        Y dimension: 124 1
Fit method: svdpc
Number of components considered: 8
VALIDATION: RMSEP
Cross-validated using 10 random segments.
       (Intercept)
                   1 comps 2 comps 3 comps 4 comps
                                                         5 comps
                                                                  6 comps
CV
             1.008
                      1.013
                               1.015
                                         1.014
                                                  1.009
                                                           1.009
                                                                    1.021
adjCV
             1.008
                      1.013
                               1.014
                                         1.013
                                                  1.008
                                                           1.007
                                                                    1.018
       7 comps 8 comps
CV
         1.023
                  1.020
         1.019
                  1.016
adjCV
TRAINING: % variance explained
                   1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
X
                   42.1659
                             67.161
                                      81.110
                                                92.324
                                                         99.103
                                                                  99.726
                    0.2339
                              1.409
                                       2.983
                                                 3.864
                                                          7.483
                                                                   7.688
baseline_q_scaled
                   7 comps 8 comps
Х
                    99.961
                             100.00
                              10.09
baseline_q_scaled
                     9.091
```

# baseline\_q\_scaled



# baseline\_q\_scaled



# baseline\_q\_scaled, 8 comps, validation



### baseline\_q\_scaled



### PCR Summary and Validation Curve of Continuous Weighted Variables and P

```
validation = "CV"
)
summary(pcr.fit)

validationplot(pcr.fit, val.type = "MSEP")
validationplot(pcr.fit, val.type = "R2")
predplot(pcr.fit)
coefplot(pcr.fit)
```

Data: X dimension: 124 6

Y dimension: 124 1

Fit method: svdpc

Number of components considered: 6

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 1.018 CV1.004 1.012 1.015 1.025 1.031 1.041 adjCV 1.004 1.011 1.014 1.016 1.022 1.028 1.038

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps X 33.3602 59.7049 79.512 91.004 97.856 100.000 baseline\_p\_scaled 0.0992 0.9743 2.895 4.289 4.697 4.698

# baseline\_p\_scaled



# baseline\_p\_scaled



# baseline\_p\_scaled, 6 comps, validation



### baseline\_p\_scaled



### PCR Summary and Validation Curve of Continuous Weighted Variables and Q

```
validation = "CV"
)
summary(pcr.fit)

validationplot(pcr.fit, val.type = "MSEP")
validationplot(pcr.fit, val.type = "R2")
predplot(pcr.fit)
coefplot(pcr.fit)
```

Data: X dimension: 124 6

Y dimension: 124 1

Fit method: svdpc

Number of components considered: 6

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 1.018 CV1.008 1.017 1.014 1.038 1.029 1.022 adjCV 1.008 1.016 1.012 1.016 1.035 1.025 1.019

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps X 33.3602 59.705 79.512 91.004 97.856 100.000 baseline\_q\_scaled 0.7147 2.833 3.767 3.774 6.292 7.864



# baseline\_q\_scaled



# baseline\_q\_scaled, 6 comps, validation







# 1.5 Run Principal Component Analysis

# Principal Component Analysis Summary, Screeplot, and Biplot of Binary Variables

### plot(myPCA)

```
library("factoextra")
fviz_screeplot(myPCA, ncp=10)
fviz_pca_biplot(myPCA) + theme_minimal()
```

### Importance of components:

|                        | Comp.1    | Comp.2      | Comp.3      | Comp.4    | Comp.5     |
|------------------------|-----------|-------------|-------------|-----------|------------|
| Standard deviation     | 1.836647  | 1.4140841   | 1.0563707   | 0.9471558 | 0.73641242 |
| Proportion of Variance | 0.421659  | 0.2499542   | 0.1394899   | 0.1121380 | 0.06778791 |
| Cumulative Proportion  | 0.421659  | 0.6716133   | 0.8111032   | 0.9232412 | 0.99102908 |
|                        | Comp      | o.6 Con     | np.7        | Comp.8    |            |
| Standard deviation     | 0.2233522 | 263 0.13709 | 9880 0.055  | 5430344   |            |
| Proportion of Variance | 0.0062357 | 779 0.00234 | 1951 0.0003 | 3856286   |            |
| Cumulative Proportion  | 0.9972648 | 361 0.99961 | 1.0000      | 000000    |            |

#### Loadings:

```
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
             -0.324 0.129 -0.473 -0.167 0.789
density
clust_binary -0.435 -0.405 0.148
                                             -0.212 -0.336 0.680
trans_binary -0.111
                          -0.702 0.618 -0.327
net_binary
             0.302 - 0.565
                                 0.111 0.209 0.527 -0.469 -0.187
small_binary -0.525 -0.114 0.146
                                       -0.135 -0.285 -0.322 -0.696
global_binary -0.330 0.529
                                -0.122 -0.269 0.633 -0.333 0.115
local_binary -0.447 -0.389
                                              0.436 0.670
assort_binary 0.132 -0.229 -0.487 -0.748 -0.361
              Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
SS loadings
               1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Cumulative Var 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa







## Principal Component Analysis Summary, Screeplot, and Biplot of Weighted Variables

```
fviz_screeplot(myPCA, ncp=10)
fviz_pca_biplot(myPCA) + theme_minimal()
```

#### Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Standard deviation 1.4147835 1.2572524 1.0901543 0.8303591 0.64117730 Proportion of Variance 0.3336021 0.2634473 0.1980727 0.1149160 0.06851806 Cumulative Proportion 0.3336021 0.5970494 0.7951221 0.9100381 0.97855618 Comp.6

Standard deviation 0.35869613 Proportion of Variance 0.02144382 Cumulative Proportion 1.00000000

#### Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 trans\_weighted 0.471 -0.548 0.111 0.123 0.669 net\_weighted 0.335 0.199 0.531 -0.724 -0.192 small\_weighted 0.584 -0.368 -0.136 0.160 -0.687 global\_weighted 0.396 0.489 -0.284 0.249 -0.626 0.265 local\_weighted 0.409 0.515 -0.128 0.741 assort\_weighted 0.143 0.768 0.620

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167 Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000







# 1.6 Run Singular Value Decomposition

Singular Value Decomposition of Binary Variables

$$X = U S V$$

$$(1 \times 8) = (124 \times 5) () (5 \times 5)$$

## 8: Number of variables

# 124: Number of participants

# 5: Number of Principle components

**\$d** 1. 20.3694008103758 2. 15.6829516301538 3. 11.7157182715922 4. 10.5044657457933 5. 8.1672088565498 6. 2.47709642513924 7. 1.52049920622528 8. 0.616002050789884

| 196<br>437<br>273<br>947<br>444<br>848 |
|----------------------------------------|
| 273<br>947<br>444<br>848<br>50         |
| 947<br>444<br>848<br>50                |
| 444<br>848<br>450                      |
| 848<br>150                             |
| 150                                    |
|                                        |
| 015                                    |
| 015                                    |
| 579                                    |
| 384                                    |
| 704                                    |
| 528                                    |
| 321                                    |
| 987                                    |
| 29                                     |
| 680                                    |
| 359                                    |
| 211                                    |
| .87                                    |
| 503                                    |
| 518                                    |
| 369                                    |
| 846                                    |
| 704                                    |
| 893                                    |
| 654                                    |
| )19                                    |
| 669                                    |
| 631                                    |
| .50                                    |
|                                        |
| 719                                    |
| 538                                    |
| 207                                    |
| 885                                    |
| 31                                     |
| 097                                    |
| 273                                    |
| 3 <b>7</b> 1                           |
| 444                                    |
| 643                                    |
| 482                                    |
| 662                                    |
| 739                                    |
| 91                                     |
| 24                                     |
| 379                                    |
| 53                                     |
| 017                                    |
| <b>'</b> 38                            |
| 66                                     |
| <b>'</b> 39                            |
|                                        |

 $-0.0473601065 \quad -0.12404083 \quad -0.0963380695 \quad 0.007931355 \quad -0.047594588$ 

\$u

```
0.3236739
           -0.12929184
                       -0.47334415
                                   -0.1674207696
                                                 -0.78939630
0.4354089
           0.40521415
                       0.14751415
                                   0.0008057525
                                                 0.06200694
0.1114003
           0.06271387
                       -0.70167400
                                   0.6182138680
                                                 0.32669692
-0.3022081
           0.56505427
                       -0.02059100
                                   0.1114816469
                                                 -0.20932066
0.5253020
           0.11354907
                       0.14582385
                                   -0.0495238833
                                                 0.13548535
0.3295781
           -0.52856061
                       -0.01461109
                                   -0.1224494378
                                                 0.26868448
0.4471957
           0.38887766
                       0.05592362
                                   -0.0301801108
                                                 0.03743627
-0.1317823 0.22884540
                       -0.48663021
```

## Singular Value Decomposition of Weighted Variables

X = U S(d) V

 $(124 \times 6) = (124 \times 5) (1 \times 6) (5 \times 5)$ 

6: Number of variables

124: Number of participants

## 5: Number of Principle components

**\$d** 1. 15.6907082364576 2. 13.9436041468325 3. 12.0903960417362 4. 9.20912801583384 5. 7.11100029627979 6. 3.97813247178339

| -0.0417460930                | 0.119886907                 | 0.039320892               | 0.047454504  | -0.0002104621               |
|------------------------------|-----------------------------|---------------------------|--------------|-----------------------------|
| -0.0062245552                | 0.147585549                 | -0.019208461              | -0.048045314 | 0.1071645136                |
| 0.0394211644                 | -0.029927606                | -0.063222983              | 0.014865482  | 0.0466634419                |
| 0.1059804923                 | -0.031140464                | 0.018640954               | 0.153808781  | -0.0436786286               |
| 0.0374625824                 | 0.053780561                 | -0.039296840              | -0.042469125 | 0.0620552383                |
| 0.0317516980                 | 0.019120168                 | -0.008188557              | -0.005797065 | -0.1024990122               |
| -0.0755334809                | -0.129562684                | 0.001740033               | 0.070735129  | 0.1026766190                |
| -0.1092951463                | 0.040391558                 | 0.019873935               | -0.056318947 | 0.0156528552                |
| 0.2377735841                 | -0.086299108                | -0.036296261              | 0.004656842  | -0.0632306111               |
| 0.0007849976                 | 0.006363226                 | -0.155119925              | 0.004326619  | -0.0039701520               |
| 0.1023429652                 | 0.011200446                 | 0.055068100               | 0.014705024  | 0.0318153290                |
| 0.1008315324                 | -0.189582729                | 0.117529916               | -0.110515220 | 0.0153711173                |
| -0.0228204837                | -0.008774435                | -0.090941064              | 0.033214843  | 0.1412227975                |
| -0.0904290256                | -0.014428915                | 0.028905005               | 0.020718706  | -0.2391660309               |
| -0.0300747837                | -0.047321506                | 0.039622021               | -0.073603004 | 0.0085025140                |
| -0.0233689615                | 0.047677159                 | 0.057139530               | 0.003882968  | -0.1088838010               |
| -0.1397160421                | 0.089664877                 | 0.069367563               | -0.102803541 | -0.0411873215               |
| 0.0840637227                 | 0.056855435                 | 0.035177083               | 0.008742479  | 0.0711587937                |
| 0.0203671914                 | -0.151400715                | 0.205088856               | -0.085395986 | -0.0933777846               |
| -0.0592782419                | 0.050478789                 | 0.080242240               | -0.063172647 | 0.0237924485                |
| -0.0389311149                | 0.003760294                 | 0.170597523               | 0.256427336  | 0.0063567338                |
| -0.0808069478                | -0.056156135                | -0.051140450              | 0.133228250  | -0.0233942823               |
| 0.1565505079                 | -0.190561345                | -0.117735727              | -0.033179095 | 0.0186974156                |
| 0.0136229409                 | -0.026707003                | 0.002842817               | -0.009677177 | 0.1615123484                |
| -0.0016654668                | -0.104416339                | 0.060898161               | -0.087654163 | 0.0294625217                |
| 0.1606414211                 | -0.175252861                | 0.029300696               | -0.045786471 | -0.0718043615               |
| 0.0011127673                 | 0.029054594                 | -0.067287921              | 0.001883633  | -0.1294648006               |
| 0.0428406846                 | 0.119018578                 | 0.052936060               | 0.002057859  | 0.2079415018                |
| -0.0587628577                | 0.059036223                 | -0.175009028              | -0.035254016 | -0.0423808958               |
| -0.0831072019                | 0.061827438                 | 0.008543069               | -0.197255782 | 0.1902785050                |
| 0.002047107                  | 0.10/070075                 | 0.12170157                | 0.072297530  | 0.002005024                 |
| -0.023947196<br>-0.072483107 | -0.186078075<br>0.065061691 | -0.13179157<br>0.16736307 | 0.062629596  | 0.003995924<br>-0.075930141 |
| -0.072463107                 | -0.086048923                | -0.01010201               | 0.002629396  | 0.099536566                 |
| -0.089072229                 | -0.020400462                | 0.17404937                | 0.052267845  | 0.069181752                 |
| -0.089072229                 | 0.042848259                 | -0.01930230               | -0.021984890 | 0.016543135                 |
| 0.065286608                  | 0.104760218                 | -0.07164561               | 0.116352932  | -0.018314804                |
| 0.066856576                  | -0.026249048                | -0.20459125               | -0.079481823 | 0.070529393                 |
| -0.117982824                 | -0.039984777                | 0.08249572                | 0.070017221  | 0.050500557                 |
| -0.049670667                 | -0.078359561                | -0.04758677               | -0.024400310 | -0.092170285                |
| -0.021491936                 | -0.061913622                | 0.12109558                | -0.155652169 | 0.031185785                 |
| -0.090282151                 | 0.036360041                 | -0.09612682               | 0.054799248  | -0.071669242                |
| 0.017494625                  | 0.021155672                 | 0.08531031                | -0.094092836 | 0.045238470                 |
| 0.025831257                  | 0.021153072                 | -0.06883408               | 0.006741146  | -0.005601193                |
| -0.050294695                 | 0.019294809                 | -0.06265033               | -0.030674363 | 0.038414200                 |
| -0.084732363                 | -0.018005290                | 0.03569743                | -0.003482548 | 0.074132449                 |
| -0.121037230                 | 0.003197264                 | -0.15506281               | 0.094758136  | 0.073466779                 |
| 0.002034083                  | 0.110581173                 | 0.09950431                | 0.009533698  | 0.134490179                 |
| 0.034331352                  | -0.030244752                | -0.05646496               | -0.021251191 | -0.154491300                |
| -0.023515513                 | 0.022819558                 | -0.17417535 <sub>47</sub> | 0.024802342  | 0.112143278                 |
| 0.020643508                  | 0.010628624                 | 0.22637780                | -0.200919778 | 0.084624627                 |
| 0.090702039                  | 0.041211642                 | -0.06637714               | -0.053045301 | -0.146729660                |
| 0.020074547                  | 0.041211042                 | 0.00037714                | 0.035043301  | 0.140723000                 |

-0.022653621

-0.04467145

-0.035250723 -0.060711524

-0.030974547

\$u

```
0.47120963
                -0.5483704
                            0.1113436
                                         -0.05021965
                                                      0.123099599
    0.33547851
                0.1988936
                             0.5310660
                                         0.72383302
                                                      -0.191663591
    0.58392817
                -0.3680808
                             -0.1360914
                                         -0.16019449
                                                      -0.083485569
v
    0.39624207
                                                      -0.625652873
                0.4886480
                             -0.2835016
                                         -0.24917913
    0.40880556
                0.5147895
                             -0.1282597
                                         -0.03891426
                                                      0.741382296
    0.01771372
                0.1430482
                             0.7682623
                                         -0.61990073
                                                      -0.007245079
```

#### In []: