

School of Computer Science and Statistics

# An Investigation into Deep Reinforcement Learning

Jack Cassidy 14320816

March 7, 2018

A Final Year Project submitted in partial fulfilment of the requirements for the degree of BAI (Computer Engineering)

# Declaration

| I hereby declare that this project is entirely my own work and that it has not been submitted as an exercise for a degree at this or any other university.              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I have read and I understand the plagiarism provisions in the General Regulations of the University Calendar for the current year, found at http://www.tcd.ie/calendar. |
| I have also completed the Online Tutorial on avoiding plagiarism 'Ready Steady Write', located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.            |
| Signed: Date:                                                                                                                                                           |

### **Abstract**

A short summary of the problem investigated, the approach taken and the key findings. This should be around 400 words, or less.

This should be on a separate page.

# Acknowledgements

#### Thanks Mum!

You should acknowledge any help that you have received (for example from technical staff), or input provided by, for example, a company.

# Contents

| 1 | Intro                | oductio        | on                                             | 1  |  |  |  |  |
|---|----------------------|----------------|------------------------------------------------|----|--|--|--|--|
|   | 1.1                  | Motiva         | ation                                          | 1  |  |  |  |  |
|   | 1.2                  | Objectives     |                                                |    |  |  |  |  |
|   | 1.3                  | Resear         | ch Methods                                     | 2  |  |  |  |  |
|   | 1.4                  | Report         | Overview                                       | 2  |  |  |  |  |
| 2 | Bac                  | Background 4   |                                                |    |  |  |  |  |
|   | 2.1 Machine Learning |                |                                                |    |  |  |  |  |
|   |                      | 2.1.1          | Introduction                                   | 4  |  |  |  |  |
|   |                      | 2.1.2          | Development of Machine Learning in Video Games | 5  |  |  |  |  |
|   | 2.2                  | Reinfo         | rcement Learning                               | 6  |  |  |  |  |
|   |                      | 2.2.1          | Introduction                                   | 6  |  |  |  |  |
|   |                      | 2.2.2          | Markov Decision Process                        | 7  |  |  |  |  |
|   |                      | 2.2.3          | Model-Free Learning                            | 7  |  |  |  |  |
|   |                      | 2.2.4          | Exploration vs. Exploitation                   | 9  |  |  |  |  |
|   | 2.3                  | Deep F         | Reinforcement Learning                         | 10 |  |  |  |  |
|   |                      | 2.3.1          | Introduction                                   | 10 |  |  |  |  |
|   |                      | 2.3.2          | Deep Q-Network                                 | 10 |  |  |  |  |
|   |                      | 2.3.3          | Improvements to Deep Q-Network                 | 12 |  |  |  |  |
|   |                      | 2.3.4          | Double Deep Q-Network                          | 13 |  |  |  |  |
|   |                      | 2.3.5          | Dueling Q-Network Architecture                 | 14 |  |  |  |  |
|   | 2.4                  | RL Re          | search Tools for the Video Game Test Bed       | 15 |  |  |  |  |
|   |                      | 2.4.1          | OpenAl Gym                                     | 15 |  |  |  |  |
|   |                      | 2.4.2          | The Arcade Learning Environment                | 16 |  |  |  |  |
|   |                      | 2.4.3          | Performance Metrics                            | 18 |  |  |  |  |
| 3 | Stat                 | ate of the Art |                                                |    |  |  |  |  |
| 4 | Eva                  | aluation       |                                                |    |  |  |  |  |
| 5 | Con                  | onclusion 2    |                                                |    |  |  |  |  |

| A1 Appendix             |    |  |  |  |  |  |
|-------------------------|----|--|--|--|--|--|
| A1.1 Appendix numbering | 24 |  |  |  |  |  |

# List of Figures

| 2.1 | The perception-action-learning loop                                        | 6  |
|-----|----------------------------------------------------------------------------|----|
| 2.2 | An example Q-Matrix. 0 indicates an unexplored state, action pair          | 8  |
| 2.3 | Examples of output filters from a convolution neural network               | 11 |
| 2.4 | The original Deep Q-network Architecture                                   | 12 |
| 2.5 | The original Deep Q-Network (above) vs. Dueling Q-Network (below) archi-   |    |
|     | tecture                                                                    | 15 |
| 2.6 | The CartPole environment, where an agent must move the cart left and right |    |
|     | to keep the pole balanced                                                  | 16 |
| 2.7 | Typical code snippet from OpenAl Gym Python API                            | 16 |

# List of Tables

### Nomenclature

```
m^2
Α
       Area of the wing
В
C
       Roman letters first, with capitals...
       then lower case.
a
b
С
Γ
       Followed by Greek capitals...
       then lower case greek symbols.
\alpha
β
       Finally, three letter acronyms and other abbreviations
TLA
       arranged alphabetically
```

If a parameter has a typical unit that is used throughout your report, then it should be included here on the right hand side.

If you have a very mathematical report, then you may wish to divide the nomenclature list into functions and variables, and then sub- and super-scripts.

Note that Roman mathematical symbols are typically in a serif font in italics.

### 1 Introduction

#### 1.1 Motivation

Machine Learning (ML) and Artificial Intelligence (AI) in 2018 are subjects that are almost unique in their ability to permeate into nearly every sphere, community and space in today's society. From the research community to the business world and the public eye through extensive media coverage, ML is certainly becoming more and more of a de facto part of our everyday lives. Businesses employ recommender systems to suggest new products to their customers and predict the rise and fall of stock prices using function approximators like Deep Learning. Traditional home appliances are now outdated in favour of smarter, IoT systems that learn our habits and provide a more tailored experience.

ML is a broad umbrella term, encapsulating a variety of different approaches. Most ML tasks can be classified as either supervised or unsupervised learning. Deep Learning is fast becoming a popular and powerful technique in supervised learning, involving teaching artificial neural networks to approximate any function, given enough training data. Reinforcement Learning (RL), another subset of supervised learning, is a branch of ML that perhaps receives less public attention but is nonetheless believed to be set to revolutionize the field of Al Arulkumaran et al. (2017). Recent breakthroughs in the application of Deep Learning to RL algorithms has spawned the exciting research field of Deep Reinforcement Learning (DRL) which has produced to date unparalleled results in various Al domains, such as defeating the world champion Go player Silver et al. (2016).

There are a growing number of RL methods and algorithms, such as Monte-Carlo, Q-Learning, SARSA and Policy Search Sutton and Barto (1998). More recently, the advent of DRL has brought about adaptations to existing algorithms to expand their use to multi-dimensional observations spaces such as pixel information, a notable example being Deep Q-Learning Mnih et al. (2013). It is easy to become overwhelmed with all of these offerings when exploring the RL space. The motivation behind this project is to demystify the state of the art of RL.

### 1.2 Objectives

The objectives of this project are threefold.

- 1. Research the development and state of the art of RL.
- 2. Build a system to evaluate the performance of three state of the art DRL algorithms by collecting a series of metrics while applying each algorithm to a selection of Atari 2600 video games.
- 3. Carry out the experiments, obtaining values for game score, survival time and model loss. Compare and contrast the different algorithms using the metrics recorded.

The system is given no prior knowledge of how each game works and there is no change in the underlying architecture of the solution when applied to different games, all while maintaining a high level of performance. The aim for the system is to be a general solution, that it can be expanded to work for any number of games and algorithms in the future with ease of implementation. The algorithms used are Deep Q-Learning, Double Q-Learning and Dueling Q-Learning.

#### 1.3 Research Methods

This project takes a *case study* based approach to the experimentation. The first phase of the project involves building the system to the specification outlined previously. The second phase treats each game entered into the system as an individual case study. The game ROM is given as input to the system. The game is simulated by a third party emulator of our choosing (discussed in chapter 3), from which the system extracts greyscale frames to learn from. The output of the system is an action that it has chosen to be optimal, selected from the discrete vector of possible actions as defined by the game's control scheme. This control scheme is not provided to the system, it determines it dynamically with each game. The action is fed back into the emulator and the cycle continues up to a terminating signal.

### 1.4 Report Overview

Chapter 2 gives some necessary background information. It will discuss the current state of the art of RL with particular interest in how it is being applied to video games, as well as the

technologies and tools being used in research today and for this project.

**Chapter 3** outlines the architecture of the system and the rationale behind certain design decisions.

**Chapter 4** will discuss the components of the experiment evaluation. It will give a greater elaboration of the project's objectives, a description of the experimental setup, and a discussion of the results.

**Chapter 5** closes the project with a conclusion of all that has been discussed, an outline of what has been achieved from both an objective and personal point of view and finally a suggestion for future work.

# 2 Background

This chapter will give an introduction to the fields of ML, RL and DRL. We will mainly focus on the knowledge that is pertinent to this project. The DRL section will outline the algorithms that are used in the comparisons later in the project. We will close with a discussion on the different tools used in RL research, specifically within the video game test bed.

### 2.1 Machine Learning

#### 2.1.1 Introduction

ML is a broad umbrella term for various methods of giving computer systems the ability to 'learn' to complete some task efficiently using training and validation data, without being explicitly programmed to do so. Instead of following a programmed set of instructions to make a prediction, the ML system constructs a model that is a function approximated to some real world problem. ML tasks can be divided into two categories; supervised and unsupervised learning. In supervised learning, the dataset provides the correct output prediction, 'labelled' data, the system should make. The system can use the input/output pairs to iteratively learn the best prediction, using a combination of some generic error function, such as the *Mean Squared Error*, and the *Back Propagation* algorithm (Chauvin and Rumelhart (1995)) to update the model. In unsupervised learning, the dataset does not contain any output data points, 'unlabelled' data, hence it is more difficult to gauge the performance of an unsupervised ML algorithm. Unsupervised learning is generally used in the clustering of data into classes.

#### 2.1.2 Development of Machine Learning in Video Games

In order to claim that an AI agent achieves general competency, it should be tested in a set of environments that provide a suitable amount of variation, are reflective of real world problems the agent might encounter, and that were created by an independent party to remove experimenter's bias (Bellemare et al. (2013)). In this way, video games provide an effective test-bed for efficiently studying general AI agents as they can provide all of these requirements. Although the application of ML generated AI to video games may seem novel, the end goal is not to produce agents for defeating world champion chess players, but to take these general agents and extend them to more pressing problems to humanity, of which there are endless possibilities.

The first application of notoriety to use computing to play a game arose in the research paper (Shannon (1950)), where mathematician Claude Shannon developed an autonomous chess-playing system. In that paper, author Shannon also highlighted the point that although the application of such a solution may seem unimportant;

"It is hoped that a satisfactory solution of this problem will act as a wedge in attacking other problems of a similar nature and of greater significance"

Claude designed a strategy that, even at the time, was infeasible as it would take more than 16 minutes to make a move.

Fast forward to 1997, IBM developed "Deep Blue," a network of computers purpose built to play chess at an above-human level. It is renowned as the first Al system to defeat a world champion chess player, Garry Kasparov under normal game regulations. There is an air of controversy surrounding the feat, as IBM denied any chance of a replay after Kasparov claimed that IBM cheated by actively programming moves into Deep Blue as the game was in play.

In more recent times, British AI research company DeepMind published the paper (Mnih et al. (2013)) in which they achieved far and above human-level performance on a selection of 52 Atari2600 games with their Deep Q-Network algorithm. DeepMind have since applied their techniques to modern, real time, strategy game StarCraft2 (Vinyals et al. (2017)). This application was most impressive, as StarCraft2 is a game of imperfect information. This means that not all aspects of the game are given to the player. In the context of StarCraft2, the game map is not completely observable, the two players of the game cannot see what the other is doing. All other exploits into the application of ML in video games up to then had been on games of perfect information.

### 2.2 Reinforcement Learning

#### 2.2.1 Introduction

RL is another case of ML tasks, which can come under the supervised and unsupervised learning categories. It is a general way of approaching optimisation problems by trial and error. An agent carries out actions in an environment, moving from one state to a new state and is given some positive or negative numerical reward. This is known as the perception-action-learning loop.



Figure 2.1: The perception-action-learning loop

RL is an interesting method of accomplishing ML tasks, as the agent can be given no prior information about it's environment or the task, and it can learn based solely on trial and error, reward and punishment. There are 3 main parts to a RL problem setup.

- 1. An agent follows a *policy*  $\pi$ , a rule that maps a state to an action.
- 2. A reward function R(s, a), that gives an immediate value to an action a taken by the agent to transition from state s to s'
- 3. A state value function V(s) that measures 'how good it is' to be in a given state. It assigns a value to the cumulate reward an agent can expect to gain by being in a state and following a policy through all subsequent states. We can define this as the discounted cumulative reward:

$$V(s) = E(\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) | s_0 = s) \qquad \forall s \in S$$
 (1)

Where  $\gamma$  is a discount factor [0, 1] and we choose  $a_t = \pi(s_t)$ . The objective of a RL problem is learning the optimal policy  $\pi^*$ , that for any given state will point the agent to the most

favourable action so as to maximize it's cumulative reward,  $V^*(s) = \max_{\pi} V(s)$ . RL algorithms such as Q-Learning are used to find this optimal policy.

#### 2.2.2 Markov Decision Process

In a more formal setting, it is a soft assumption that RL problems qualify as a Markov Decision Process (MDP) and can be modelled as such (Arulkumaran et al. (2017)). MDP's display the Markov Property; that the conditional probability distribution of future states is dependent only on the current state and totally independent of all past states. A MDP consists of:

- A finite set of states S
- A finite set of actions A
- A transition function  $P(s, a, s') = P(s_{t+1}|s_t, a_t)$ , a model mapping current state, action pairs to a probability distribution of potential future states.
- An immediate reward function R(s, a)

Again, an MDP seeks to find the optimal policy  $\pi^*$ . We define  $\pi^*$  as

$$\pi^* = \operatorname{argmax}_a \{ \sum_{s'} P(s, a, s') (R(s, a) + \gamma V(s')) \}$$
 (2)

#### 2.2.3 Model-Free Learning

Not all RL problems are provided with a transition function P(s, a, s'). In fact, it is more often than not that we cannot express the agent's environment with a model. Such a scenario is called *model-free learning*, where the agent must learn the optimal policy without the use of a transition function to guide it on which action to take. Instead it must devise some other way of modelling it's environment, such as building a 'memory' of actions and rewards based on experiences and deriving an optimal policy from these experiences. The downside to this is the potentially large amounts of auxiliary space needed to store the experiences. This is where algorithms such as Q-Learning are used.

Q-Learning is a model free RL algorithm. At each state, the agent calculates an immediate reward, based solely on the current state and action taken, and the *quality* of

taking an action a in state s and following a policy  $\pi$  thereafter, called the Q-Value, which is defined as:

$$Q(s,a) = E(\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) | s_0 = s, a_0 = a) \qquad \forall s \in S$$
(3)

Where we have chosen  $a_0$  arbitrarily and choose all subsequent  $a_t = \pi(s_t)$  thereafter. As the agent explores all states multiple times and experiments with different actions, the corresponding Q-values are saved and updated in a data structure, hence an optimum policy can be derived by finding the optimum Q-values  $Q^*(s,a)$  for all states after a predetermined number of iterations or until the policy is 'good enough'. The update step for a Q-Value is defined as:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a))$$
(4)

Where  $\alpha$  is a hyperparameter called the *learning rate* chosen in the range (0,1). As  $t\to\infty$ ,  $Q_t\to Q_t^*$ , we converge on an optimum solution. The data structure used to store the agent's experiences can be referred to as the Q-Matrix. It is a |S|x|A| sized matrix, that is the total number of states x total number of available actions.

Figure 2.2: An example Q-Matrix. 0 indicates an unexplored state, action pair

The agent follows algorithm 1, detailed below. After a suitable number of iterations and exploration, the Q-Matrix becomes a 'map' for the agent, whereby it can look up the action with the highest Q-Value for any state (Watkins and Dayan (1992)). Q-Learning is a straight-forward, elegant solution to a RL task. However, for an environment space of high dimensionality, such as an array of RGB pixels from an image, the Q-Matrix becomes infeasibly large in the S dimension and increasingly sparse, as only a small percentage of the total available state, action pairs will be visited. As a worked example, imagine a robot that

is using Q-Learning to find a path from it's current position to some exit room. If the robot takes  $210 \times 160$ , 8-bit colour space, RGB photos of it's surroundings to represent a state, the S dimension becomes  $256^{210 \times 160 \times 3}$  in size. A solution to the dimensionality problem was proposed by DeepMind, in the paper (Mnih et al. (2013)) which will be discussed later in this chapter.

#### Algorithm 1 Q-Learning Algorithm

```
1: procedure Building Q-Matrix
        Set \alpha and \gamma parameters.
        Initialize Q-Matrix to zero.
 3:
 4:
        repeat
5:
            while Goal/terminal state not reached do
6:
                Select a randomly from all possible actions in current state
 7:
                Consider going to state s_{t+1} from state s using action a
                Get maximum Q-Value from s_{t+1} considering all possible actions
8:
                Q(s, a) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a))
9:
            end while
10:
        until Policy good enough
11:
12: end procedure
13: procedure USING Q-MATRIX
14:
        s \leftarrow \text{initial state}
        while Goal/terminal state not reached do
15:
            a \leftarrow max_aQ(s, a)
16:
            s \leftarrow s_{t+1} taking action a
17:
        end while
18:
19: end procedure
```

#### 2.2.4 Exploration vs. Exploitation

There is a fundamental issue in any RL task, where the agent must choose between taking an instantaneous reward by exploiting the policy, or taking a random action to explore the environment in search of a potentially higher long term reward. This problem is illustrated by a well-known RL problem known as the k-armed bandit problem.

"The agent is in a room with a collection of k gambling machines (each called a 'one armed bandit' in colloquial English). The agent is permitted a fixed number of pulls, h. Any arm may be pulled on each turn. The machines do not require a deposit to play; the only cost is in wasting a pull playing a suboptimal machine. When arm i is pulled, machine i pays off 1 or 0, according to some underlying probability parameter  $p_i$ , where payoffs are independent events and the  $p_i$ 's are unknown. What should the agent's strategy be?" (Kaelbling et al. (1996))

The amount of time the agent spends in the environment is one factor that can be taken into consideration when making this decision. In general, the longer the agent spends in the environment, the less impact taking an exploratory approach, sometimes towards a sub-optimal policy, will have on the end policy.

One solution to this dilemma is to take an *epsilon greedy policy*. At each state, the agent takes a random action with a probability of  $\epsilon$  and an action from the policy with a probability of  $(1 - \epsilon)$ .  $\epsilon$  is linearly reduced at each iteration to some predetermined floor value. This way, the agent will spend more time exploring at the start of it's interaction with the environment, and will then (hopefully) converge to an optimal policy as it progresses.

### 2.3 Deep Reinforcement Learning

#### 2.3.1 Introduction

DRL refers to the use of deep learning algorithms within the field of RL. As mentioned previously, RL struggles with environments of high dimensionality. DRL overcomes this issue thanks to the universal function approximation property of deep neural networks and their abilities to isolate and recognize features of interest within high dimensional data and to compactly represent that high dimensional input data (Arulkumaran et al. (2017)). DRL can utilize a convolutional neural network to learn a representation of the environment on behalf of the agent through high dimensional sensory input such as video data. A set of fully connected layers are then generally used to approximate the target of the underlying RL algorithm, such as V(s,a), Q(s,a), an action etc. The deep neural network can then be trained using an appropriate variant of the backpropagation algorithm, such as stochastic or batch gradient descent.

#### 2.3.2 Deep Q-Network

The event that brought DRL to the attention of the research community was from the paper (Mnih et al. (2013)). DeepMind created a variant of Q-Learning called Deep Q-Network, that achieved above-human level performance on a large selection of 52 Atari 2600 video games. They combined a convolutional neural network for feature detection, and a fully connected network to learn the Q-Values for all available actions, with ReLU activations

within each layer. The network uses a standard Least Square Error loss function in training with gradient descent, defined as:

$$L = (y_t - Q(s, a))^2 \tag{5}$$

$$y_t = r + \gamma \max_a Q(s_{t+1}, a) \tag{6}$$

This architecture was named the Deep Q-network. This breakthrough successfully removes the dimensionality problem, as there is no need to keep a data structure storing all previous experiences. The deep neural network takes an array of RGB pixel information, taken as a stack of 3/4 (depending on the game) greyscale frames, as input to the convolutional network. The fully connected network outputs a vector of Q-Values for each available action in the game.



Figure 2.3: Examples of output filters from a convolution neural network



Figure 2.4: The original Deep Q-network Architecture

#### 2.3.3 Improvements to Deep Q-Network

At the time, this breakthrough was the state of the art. Since then, many improvements and adaptations have been made on this model, by DeepMind and other research groups. Such examples include the Double Q-Network adaptation (Van Hasselt et al. (2016)) and the Dueling Q-network architecture (Wang et al. (2015)). Experience replay and target networks were two techniques added to the original architecture by DeepMind to add more stability to the learning process.

Instead of learning from the immediately previous experience when training the network, a large memory of past experiences are stored as tuples of  $(s_t, a_t, r_t, s_{t+1}, term)$ , where term is a boolean indicating if this state transition was terminal (a gameover). The network is then trained from a random sampling of past experiences from this replay memory. It was found to greatly reduce the number of interactions the agent needed to have with the environment. However, this technique is somewhat limited as there is no way to differentiate important experiences from unimportant ones. In the State of the Art chapter we will discuss an optimization to experience replay that mitigates this drawback (Mnih et al. (2015)).

The target network is a secondary network  $\hat{Q}$  cloned from the online Q-network Q, that is used to predict the targets  $y_i$  when training Q. The weights of  $\hat{Q}$  are cloned from Q every  $\tau$  training steps. This modification makes the algorithm more stable, as an increase to

 $Q(s_t, a_t)$  was often found to also increase  $Q(s_{t+1}, a)$  for all a, thus also increasing the targets  $y_i$ . This can create a diverging solution in some cases. Freezing the weights makes the updates to Q and the targets y further apart, decreasing the likelihood of divergence (Mnih et al. (2015)).

#### Algorithm 2 Deep Q-Network Algorithm with Experience Replay

```
1: Initialize replay memory D to capacity N
 2: Initialize Q with random weights \theta
 3: for episode = 1, M do
        Initialize arbitrary first sequence of frames for initial state
        for t = 1, T do
 5:
 6:
            With probability \epsilon select a random action a_t, otherwise select a_t = \max_a Q(s_t, a)
            Execute action a_t and observe reward r_t and state s_{t+1}
 7:
            Store state transition (s_t, a_t, r_t, s_{t+1}, term) in D
 8:
            Sample random mini batch (s_i, a_i, r_i, s_{i+1}, term) from D
 9:
            if term = true then
10:
                Set y_i = r_i
11:
12:
                Set y_i = r_i + \gamma \max_a Q(s_{i+1}, a)
13:
            end if
14:
        end for
15:
        Perform a gradient descent step on (y_i - Q(s_i, a_i))^2
16.
17: end for
```

#### 2.3.4 Double Deep Q-Network

In the standard Deep Q-Network algorithm 2.13, when training we use the same Q-Value to select and evaluate an action for the target y. This can result in overoptimistic Q-value estimates over time, leading to sub-optimal policies as certain actions are erroneously favoured over others due to early over estimations. Double Deep Q-Network (Van Hasselt et al. (2016)) separates action selection from action evaluation in the target y. The online network Q still estimates the best action to take based on a max operator on it's predicted vector of Q-values. We reuse the target network to then evaluate the effectiveness of this action. The updated target equation is given as:

$$y_i = r + \gamma \hat{Q}(s_{i+1}, \operatorname{argmax}_a Q(s_{i+1}, a))$$
(7)

As with the original target network optimisation, the weights from Q are copied to  $\hat{Q}$  every

#### Algorithm 3 Double Deep Q-Network Algorithm

```
1: Initialize replay memory D to capacity N
 2: Initialize Q with random weights \theta
 3: Initialize Q with weights \theta^- cloned from \theta
 4: for episode = 1, M do
 5:
        Initialize arbitrary first sequence of frames for initial state
 6:
        for t = 1, T do
            With probability \epsilon select a random action a_t, otherwise select a_t = \max_a Q(s_t, a)
 7:
             Execute action a_t and observe reward r_t and state s_{t+1}
 8:
            Store state transition (s_t, a_t, r_t, s_{t+1}, term) in D
 9:
10:
            Sample random mini batch (s_i, a_i, r_i, s_{i+1}, term) from D
            if term = true then
11:
12:
                 Set y_i = r_i
13:
            else
                Set y_i = r_i + \gamma \hat{Q}(s_{i+1}, argmax_a Q(s_{i+1}, a))
14:
15:
        end for
16:
        Perform a gradient descent step on (y_i - Q(s_i, a_i))^2
17:
        if t is a multiple of \tau then \theta^- \leftarrow \theta
18:
19:
        end if
20: end for
```

#### 2.3.5 Dueling Q-Network Architecture

The Dueling Q-Network Architecture is an improvement on the original Deep Q-Network's single stream, convolutional network into a single fully connected layer network architecture. It does not provide any change to the underlying algorithms at work. For this reason, it can be applied to other RL algorithms that use Q-Values. The single stream fully connected layer is separated into two streams. One stream estimates the state value functions V(s) and the other estimates a new function, the action advantage function A(s,a).

$$A(s,a) = Q(s,a) - V(s)$$
(8)

The two streams are aggregated at the final layer to output the Q(s,a). The convolutional network in the upper half remains unchanged. V(s) and Q(s,a) we have explained the intuition for previously. The action advantage function A(s,a) gives a relative importance of each action in a given state. Hence, the dueling architecture can learn which states are valuable separately from the effect of each action in each state.



Figure 2.5: The original Deep Q-Network (above) vs. Dueling Q-Network (below) architecture

The aggregating layer is not a simple sum of A(s, a) and V(s). It was found that equation 8 "is unidentifiable in the sense that given Q we cannot recover V and A uniquely" Wang et al. (2015). Instead we use a slightly augmented version:

$$Q(s, a) = V(s, a) + (A(s, a) - \max_{a'} A(s, a'))$$
(9)

The Dueling Q-Network architecture represents the current state of the art model architecture for DRL in the video game test bed today.

#### 2.4 RL Research Tools for the Video Game Test Bed

### 2.4.1 OpenAl Gym

OpenAl Gym is a high-level Python API that provides a suite of environments on which to perform RL research (Brockman et al. (2016)). These environments range from physics problems such as balancing a pole, to a small selection of Atari 2600 video games, to robotics tasks like teaching a robot to walk or landing a space ship on a planet safely.



```
state = env.reset() # create starting state
action = agent.act(state) # agent chooses first action

nxt_state, reward, done, info = env.step(action)

if done:
break
...
```

Figure 2.7: Typical code snippet from OpenAl Gym Python API

The user must write their own agents to interact with the provided environments. In the above code snippet, the env object is one of the environments provided by the API, and the agent object would be written by the user, including the act(state) method. The (nxt\_state, reward, done, info) tuple is about the extent of the information about the environment that can be gathered using the API. For this reason, as will be discussed in the Design chapter, OpenAI Gym was not used in the implementation of this project. However, it remains an excellent tool for a beginner to become acquainted with RL problems.

### 2.4.2 The Arcade Learning Environment

The Arcade Learning Environment (ALE) (Bellemare et al. (2013)) is a framework for assisting RL researchers in testing Al agents on Atari 2600 video games. It is similar to OpenAl Gym, in fact OpenAl Gym uses ALE under the hood for it's Atari 2600 environments, however it is much more low level. It's main supported language is C++, it will provide full functionality to any agents written in C++. There is however an excellent Python interface with almost complete functionality; more than enough for the purposes of this project. For languages other than C++ or Python there is an intelligent text based

mechanism using pipes called the FIFO Interface that allows *any* programming language to use ALE with a restricted set of services.

ALE provides much more functionality than OpenAl Gym without being much more complex to program with. We can load a selection of 52 supported Atari 2600 ROMs to experiment with, all having different graphics, control schemes, scoring mechanisms etc. hence ALE provides a nicely varied selection of environments against which to test Al agents. Just some of the features we can extract while an agent is running are:

- The current game screen as an RGB or greyscale array of pixels.
- The number of frames the agent has played in total and since the last game reset.
- A list of all available actions on the Atari 2600 and a tailored list of actions used in the specific game being played.
- The number of lives (if provided) the agent has remaining.
- Query at any time if the game has terminated (game over), not just after a state transition as in OpenAl Gym
- Change difficulty mode, if the specified game supported it on the original Atari 2600.
- Video and sound recording
- The internal state of the 128-byte RAM of the game.
- Load and save states.

As well as all of the expected features such as processing an action in the environment and returning a reward. By default, the returned reward is the difference in game score during the state transition caused by an action.

ALE provides many more practical features than OpenAl Gym, however there are some drawbacks to using ALE. The researcher is restricted to using just Atari 2600 environments, which means an inherently high-dimensional problem as the agent will more than likely represent a state as an array of pixels. OpenAl Gym provides a lot more lower-dimensional environments, such as the physics based CartPole where the state is represented as a much shorter tuple of (cart position, cart velocity, pole angle, pole velocity).

#### 2.4.3 Performance Metrics

The most popular, general performance metrics used in (Mnih et al. (2013)), (Van Hasselt et al. (2016)), (Wang et al. (2015)) and (Mnih et al. (2015)) are listed below. These metrics are gathered by running a predetermined number of evaluation games, whereby the agent selects it's action from the trained policy. The evaluation runs are held after a regular number of training updates. These intervals vary between different papers. Most are in the magnitude of  $10^6$ .

- Average reward/score
- Average Q-Value
- Average frames survived for
- Percentage improvement in score over greater of human/baseline
- Model loss in the case of a Deep-Learning model

Average reward and average frames survived for are an interesting duo of performance metrics. Together, they can give a better understanding of *what* the agent is learning to do. In some games, the score might be dependent on surviving for a long time, for others it might be to shoot as many 'things' as possible and rack up points. For this project, we use average reward, average frames survived and model loss to base our comparisons on.

### 3 State of the Art

The current state of the field of RL is vast. More and more it is being utilized as the next step towards more efficient and intelligent ML systems Arulkumaran et al. (2017). This section will be divided into two discussions. The first will give a broad, relatively brief overview of the types of applications of RL today. The second section will discuss the state of the art for RL research within the video game test bed. This will primarily focus on the work of DeepMind, as their work is most pertinent to this project.

# 4 Evaluation

# 5 Conclusion

### **Bibliography**

- Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief survey of deep reinforcement learning. *CoRR*, abs/1708.05866, 2017. URL http://arxiv.org/abs/1708.05866.
- David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*, 529:484–503, 2016. URL
  - http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html.
- Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*, volume 1. MIT press Cambridge, 1998.
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. *CoRR*, abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.
- Yves Chauvin and David E Rumelhart. *Backpropagation: theory, architectures, and applications*. Psychology Press, 1995.
- M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47: 253–279, jun 2013.
- Claude E. Shannon. Xxii. programming a computer for playing chess. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 41(314):256–275, 1950. URL https://doi.org/10.1080/14786445008521796.
- Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van

- Hasselt, David Silver, Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement learning. *CoRR*, abs/1708.04782, 2017. URL http://arxiv.org/abs/1708.04782.
- Christopher J. C. H. Watkins and Peter Dayan. Q-learning. *Machine Learning*, 8(3): 279–292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/BF00992698.
- Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. *Journal of artificial intelligence research*, 4:237–285, 1996.
- Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In AAAI, volume 16, pages 2094–2100, 2016.
- Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas. Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529, 2015.
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

## A1 Appendix

You may use appendices to include relevant background information, such as calibration certificates, derivations of key equations or presentation of a particular data reduction method. You should not use the appendices to dump large amounts of additional results or data which are not properly discussed. If these results are really relevant, then they should appear in the main body of the report.

### A1.1 Appendix numbering

Appendices are numbered sequentially, A1, A2, A3... The sections, figures and tables within appendices are numbered in the same way as in the main text. For example, the first figure in Appendix A1 would be Figure A1.1. Equations continue the numbering from the main text.