Dedication! Determination!! Distinction!!! ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST 9952340892 **Unit 13: Hydrocarbons** BOOK BACK **31. Give IUPAC names for the following compounds** I) CH₃-CH=CH-CH=CH-C\(\begin{array}{c} C-CH_3 \\ \end{array} Octa-4,6-diene-3-yne C₂H₅ CH₃ 2) $CH_3-C-C-C \equiv C-CH_3$ CH_3 4,5,5- trimethylhepta-2-yne 8) $(CH_3)_3 C - C \equiv C - CH (CH_3)_2$ 2,2,5 – trimethyl hex-3-yne CH_3 4) ethyl isopropyl acetylene $CH_3 CH_2 - C \equiv C - CH (CH_3)_2$ 2 – methyl hex-3-yne 1,3,5- Hexa triyne 5) $CH \equiv C - C \equiv C - C \equiv CH$ 32. Identify the compound A, B, C and D in the following series of reactions) CH₃ – CH₂–Br alc. KOH Cl₂ / CCl₄ i) O_3 ii) Zn/H₂O NaNH₂ $A - CH_2 = CH_2$ – Ethene $B - CH_2 - CH_2$ - 1, 2 – dichloro ethane C1 C – HCHO - Formaldehyde $D - CH \equiv CH$ - Acetylane E.MUTHUSAMY MSc.(Che), MSc.(Psy), MEd., MPhil., MA(T)., MA(En)., MA(Soc)., MA(P.Ad)., BLISc., DMLT, PGDCA LESSON 13 BOOK BACK ANSWER Whatsapp: 9940847892 email: e.muthusamy@gmail.com

 $\begin{array}{|c|c|c|c|c|c|} \hline A & Ethene & CH_2 = CH_2 \\ \hline & CH_2CH_2 \\ \hline & CH_2CH_2 \\ \hline & Cl & Cl \\ \hline & Cl & Cl \\ \hline & C & Formaldehyde & HCHO \\ \hline & D & Acetylene & CH \equiv CH \\ \hline \end{array}$

- 33. Write a short note on ortho-para directors in aromatic electrophilic substitution reactions?
- Ans. The group which increases the electron density at ortho and para positions of the ring are known as ortho-para directors.

Let us consider the directive influences of phenolic (-OH) group. Phenol is the resonance hybrid of following structure.

In these resonance structures the negative charge residue is present on *ortho* and *para* positions of the ring structure. Therefore the electron density at *ortho* and *para* positions increases as compared to the *meta* position, thus phenolic group activities the benzene ring for electrophilic attack at *ortho* and *para* positions and hence –OH group is an ortho-para director and an activator.

33. How is propyne prepared from an alkyenedihalide?

- Prop -1- yne 34. An alkylhalide with molecular formula $C_6H_{13}Br$ on dehydro halogenation gave two someric alkenes X and Y with molecular formula C_6H_{12} . On reductive ozonolysis, X and Y gave fourcompounds CH_3COCH_3 , CH_3CHO , CH_3CH_2CHO and $(CH_3)_2$ CHCHO. Find the alkylhalide.
- (i) The alkyl halide with molecular formula $C_6H_{13}Br$ is bromohexane (2 Bromo 2, 3-dimethyl butane)
- (ii) $C_6H_{13}Be$ on dehydro halogenation gives two isomeric alkenes 2,3 dimethyl 1butane (X) and 2,3 – dimethyl – 2 – butene (y)

(iii) X and Y on reductive ozonolysis gave four compounds CH₃COCH₃, CH₃CHO, CH₃CH₂CHO and (CH₃)₂ CHCHO

Dedication! Determination!! Distinction!!!

ACTC) advanced chemistry tuition centre, 41/1 pwd road, nagercoil, kanyakumari dist **9952340892** B5. Describe the mechanism of Nitration of benzene.

36. How does Huckel rule help to decide the aromatic character of a compound.

A compound may be aromatic, if it obeys Huckel rules

- (i) The molecule must be co-planner
- (ii) Complete delocalization of π electron in the ring.
- (iii) Presence of $(4n + 2) \pi$ electrons in the ring where n is an integer (n = 0, 1, 2, ...)

Eg:

Benzene

- (i) The benzene is a planner molecule
- (ii) It has six deloclaised π electrons
- (iii) 4n + 2 = 6; 4n = 6 2; 4n = 4; n = 1

It obeys Huckel's $(4n + 2) \pi$ electron rule with n = 1 hence, benzene is aromatic

 NO_2

37. Suggest the route for the preparation of the following from benzene.

1) 3 – chloro nitrobenzene 2) 4 – chlorotoluene 3) Bromobenzene 4) m - dinitro benzene

0

Benzene nitrobenzene

3- Chloronitro benzene

2) 4 – chlorotoluene

 CH_3

Benzene

CH₃

Toluene CH₃

+HCl

Toluene

C

Dedication!

Determination!!

Distinction!!!

ACTC) advanced chemistry tuition centre, 41/1 pwd road, nagercoil, kanyakumari dist ${f 9952340892}$

3) Bromo benzene

Benzene

Bromo benzene

4) m - dinitro benzene

88. Suggest a simple chemical test to distinguish propane and propene.

Test to distinguish propane and propene

- (i) Alkenes (propene) decolorize Br₂/H₂O where as alkanes (propane) does not unergo this reaction.
- (ii) De colorization of acidified KMnO₄, propene de-colorises acidified KMnO₄ whereas propane does not.

Both test for unsalunation.

39. What happens when isobutylene is treated with acidified potassium permanganate?

i) Ethyl chloride to ethane

$$CH_3CH_2Cl \longrightarrow CH_3 - CH_3 + HCl$$

Ethyl chloride Zn/HCl

Alkyl halides when reduced gives the corresponding alkanes.

(ii)
$$CH_3CH_2CI$$
 + CH_3CH_2CI + CH_3CI + CH_3

Ethyl chloride

Dry ether

Butane

This reaction is called wurtz reaction. Haloalkanes react with sodium metal in dry ether to give higher alkenes.

(iii)
$$CH_2 - CH_2 \xrightarrow{Zn/C_2H_5OH} CH_2 = CH_2 + ZnBr_2$$

| Ethene
Br Br

1,2 – di bromo ethane

(iv)
$$CaC_2 + \xrightarrow{H_2O} CH \equiv CH + Ca (OH)_2$$

Calcium carbide Ethyne

$$\begin{array}{c|c} CH_3 & CH_3 \\ & | & | \\ CH_3 - C = CH_2 & \xrightarrow{KMnO_4} & CH_3 - C - CH_2 \\ & | & | \\ 2\text{-Methyl -1-propene} & OH OH \end{array}$$

40. How will you convert ethyl chloride in to i) ethane ii) n – butane

(i) Ethyl Chloride \rightarrow Ethane:

$$CH_3 - CH_2 - Cl \xrightarrow{[H]} CH_3 - CH_3 + HCl$$

Ethyl Chloride Zn/ HCl Ethane

ii) Ethyl Chloride \rightarrow n – Butane (Wurtz reaction):

$$CH_3 - CH_2 - Cl + 2Na + Cl - CH_2 - CH_3 \xrightarrow{Dry Ether} CH_3 - CH_2 - CH_2 - CH_3 + 2NaBr$$

Ethyl chloride $n - Butane$

41. Describe the conformers of n - butane.

Conformations Of n – Butane: n – butane may be considered as a derivative of ethane, as one hydrogen on each carbon is replaced by a methyl group

Eclipsed Conformation: In this conformation, the distance between the two methyl group is minimum. So there is maximum repulsion between them and it is the least stable conformer.

Anti or Staggered form: In this conformation, the distance between the two methyl groups is maximum. So there is minimum repulsion between them and it is the most stable conformer

42. Write the chemical equations for combustion of propane.

Propane burns in excess of oxygen to form water and carbon di oxide.

$$CH_3CH_2CH_3 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

Propane

43. Explain Markownikoff's rule with suitable example.

Markovikoff's rule: "When an unsymmetrical alkene reacts with hydrogen halide, the hydrogen adds to the carbon that has more number of hydrogen and halogen add to the carbon having fewer hydrogen".

Eg: Addition HBr to unsymmetrical alkene: In the addition of hydrogen halide to an unsymmetrical alkene, two products are obtained.

$$CH_3 = CH - CH_2 + HBr$$
 Propane
$$CH_3 - CH - CH_3 \qquad CH_3 - CH_2 - CH - Br$$

$$1 - Bromo Propane$$

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDCA LESSON 13 BOOK BACK ANSWER Whatsapp: 9940847892 email: e.muthusamy@gmail.com Dedication! Determination!! Distinction!!!

ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST 9952340892 Br (minor product)

2 – Bromo propane (major product)

44. What happens when ethylene is passed through cold dilute alkaline potassium permanganate.

Ethene reacts with cold alk KMnO4 (Balyer's regent to give ethane 1,2 – diol

CH₂ = CH₂ + H₂O
[O] Cold dil. KMnO₄
273K
CH₂ - CH₂

$$\mid$$
 + MnO₂ \downarrow
OH OH dark brown
Ethane – 1, 2 - diol

45. Write the structures of folowing alkanes.

1) 2, 3 - Dimethyl - 6 - (2 - methyl propyl) decane

2) 5 - (2 - Ethyl butyl) - 3, 3 - dimethyldecane

$$CH_{2}-CH_{3}\\ |\\ CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}\\ |\\ CH_{2}\\ |\\ H_{3}C-C-CH_{3}\\ |\\ C_{2}H_{5}$$

3)
$$5 - (1, 2 - Dimethyl propyl) - 2 - methylnonane$$

46. How will you prepare propane from a sodium salt of fatty acid?

$$CH_3CH_2COONa + NaOH \xrightarrow{CaO} CH_3CH_2 CH_3 + Na_2CO_3$$

Sodium salt of butanaic acid Δ Propane

Heating sodium salt of butanoic acid (Sodium butanoate) with soda lime gives propane.

(A) major product
$$\xrightarrow{HBr}$$
 (B) major product Identify A and B

$$CH_{3}-CH-CH-CH_{3} \xrightarrow{H^{+}} C = C + C = C$$

$$CH_{3}-CH-CH-CH_{3} \xrightarrow{H^{+}} C = C + C = C$$

$$CH_{3}-CH-CH_{3} \xrightarrow{H} CH_{3} CH + CH_{2} - CH_{3}$$

$$CH_{3}-CH-CH-CH_{3} \xrightarrow{H} CH_{3} - CH-CH-CH_{3}$$

$$CH_{3}-CH-CH-CH_{3} \xrightarrow{H} CH_{3} - CH-CH_{3}$$

$$CH_{3}-CH-CH-CH_{3} \xrightarrow{H} CH_{3} - CH_{3} -$$

CH₃
Major Product (B)

48. Complete the following : Lindlar Catalyst

) 2 – butvne

$$CH_3 - C \equiv C - CH_3 + H_2 \xrightarrow{Lindlar} CH_3 - CH = CH - CH_3$$

2 - Butyne Catalyst 2 - Butene

Lindlar catalyst consist of pd deposited on CaCO₃ and then poisoned by lead on sulphur.

i)
$$CH_2 = CH_2$$

Zn/C₂H₅OH

$$CH2 = CH2 \xrightarrow{I_2} [CH_2 - CH_2] \xrightarrow{I_2} CH_2 = CH_2$$

$$| | | ethene$$

$$I \qquad I$$

ii)
$$CH_2 - CH_2 \longrightarrow$$

$$\begin{vmatrix} & & & & \\ & & & \\ & Br & Br \end{vmatrix}$$

Dedication! Determination!! Distinction!!!

ACTC) ADVANCED CHEMISTRY TUITION CENTRE, 41/1 PWD ROAD, NAGERCOIL, KANYAKUMARI DIST 9952340892

$$\begin{array}{c|c} CH_2-CH_2 \xrightarrow{Zn/C_2H_5OH} & CH_2-CH-ZnBr\\ & | & | & |\\ Br & Br & Br & Br \\ 1,2-Dibromoethane & CH_2=CH_2+ZnBr_2\\ & & ethene \end{array}$$

iv)
$$CaC_2 \xrightarrow{H_2O} CH \equiv CH + Ca(OH)_2$$

$$CaC_2 \xrightarrow{H_2O} CH \equiv CH + Ca(OH)_2$$
Calcium Carbride ethyne

49. How will you distinguish 1 – butyne and 2 – butyne?

An alkyne shows acidic nature only if it contains terminal hydrogen.

$$CH_3 - CH_2 - C \equiv CH + 2AgNO_3 + 2NH_4OH \rightarrow CH_3 - CH_2 - C \equiv C - Ag + 2NH_4NO_3 + 2H_2O$$

1 - butyne Silver butynide

 $CH_3 - C \equiv C - CH_3 + 2AgNO_3 + 2NH_4OH \rightarrow No$ Reaction due to absence of acidic hydrogen

E.MUTHUSAMY MSc._(Che), MSc._(Psy), MEd., MPhil., MA(T).,MA(En)., MA(Soc)., MA(P.Ad).,BLISc.,DMLT, PGDCA LESSON 13 BOOK BACK ANSWER Whatsapp: 9940847892 email: e.muthusamy@gmail.com