

Theorem. Let's assume that we're in a category where monic and epi implies iso, like a topos. There is an isomorphism $A \cong B$, where $A := (T' +_Y S') \times_{T+_Y S} (T'' +_Y S'')$ and $B := (T' \times_T T'') +_Y (S' \times_S S'')$.

Proof. Write

$$A := (T' \times_T T'') + (S' \times_S S'')$$

$$A_y := (T' \times_T T'') +_Y (S' \times_S S'')$$

$$B := (T' + S') \times_{T+S} (T'' + S'')$$

$$B_y := (T' +_Y S') \times_{T+YS} (T'' +_Y S'')$$

(I) Use lemma to get maps. The above lemma gives us monics c, c_y via the diagram

We get maps c', c'_y, c'', c''_y the same way.

(II) Find the desired map and show it's monic.

Consider the following diagram:

The map $d: A \to B$ is from the top square pull back and monic since c, c', c'' are. The map $b: B \to B_Y$ is from the bottom square pullback. The star of the show, $\theta: A_Y \to B_Y$ is from the bottom square pullback and is monic since c_y, c'_y, c''_y are.

Regardless of us assuming anything about the regularity of our category, the vertical maps $T+S \to T+_Y S$, $T'+S' \to T'+_Y S'$, $T''+S'' \to T''+_Y S''$ are regular. Recall that Y is a cone over the diagram in two different ways, via the T side and via the S side. This gives two different maps for each of $Y \to T+S, Y \to T'+S', Y \to T''+S''$. It is easy to check that the vertical epis are co-equalizers of these maps.

The remainder of the proof is to show that θ is epic.

(III) Get the pushout of the left square. Let P be the pushout

$$\begin{array}{ccc}
A & \xrightarrow{d} & B \\
\downarrow a & & \downarrow p \\
A_Y & \xrightarrow{p'} & P
\end{array}$$

where p is epic and p' monic since pushouts preserve these properties.

(IV) The projection p is a co-equalizer. We have maps $t_a, s_a \colon Y \to A$ and $t_b, s_b \colon Y \to B$. Check that a is the co-equalizer of t_a, s_a . We will show that $p \colon B \to P$ is the co-equalizer of t_b, s_b .

Let's discuss the diagram

We start with the squares and consider an $x ext{: } B \to Q$ so that $t_b x = s_b x$. Then the upper square commutes so $t_a dx = s_a dx$. Since a co-equalizes t_a, s_a , this gives us $y \to A_Y \to Q$ so that ay = dx which is universal. Then, since the bottom square is a pushout, we get a universal map z so the right triangle commutes. Hence, p is the co-equalizer of t_b, s_b .

- (V) Show $A \to P$ is epic. This is the hole in the proof. We want to show that the composite $ap' = dp \colon A \to P$ is epic. Somehow use the regularity of a and p and the pushout square.
- (VI) Make an isomorphism out of d, p'. From the composite $A \to P$ being epic, it follows that p' is epic. We want p' to be regular, which implies it's an isomorphism. By assumptions that pushouts of monics are pullbacks, the square

$$\begin{array}{ccc}
A & \xrightarrow{d} & B \\
\downarrow^a & & \downarrow^p \\
A_Y & \xrightarrow{p'} & P
\end{array}$$

is a pullback, which respects regular epis (in a regular category) and so d is regular epic, hence an isomorphism.

(VII) Find a map $P \to B_Y$. We get the map $\psi \colon P \to B_Y$ from the pushout square

(VIII) Show ψ is monic. (I'm not certain this is needed. Maybe only ψ to be regular epic.) Get a map $\eta: P \to T +_Y S$ from the pushout square

Now we have the diagram

$$\begin{array}{ccc}
A & \xrightarrow{d} & B & \longrightarrow & T + S \\
\downarrow^{a} & & \downarrow^{p} & & \downarrow \\
A_{Y} & \xrightarrow{p'} & P & \xrightarrow{\eta} & T +_{Y} S
\end{array}$$

whose outer and left squares are pushouts. So the right square is a pushout. But pushouts respects monics, so η is monic. We have that

$$A_{Y} \xrightarrow{p'} P \xrightarrow{\eta} T + S$$

$$\downarrow^{\psi}$$

$$B_{Y}$$

which gives us that ψ is monic.

(IX) Show ψ is epic. Recall a map is epic if and only if its co-kernel pair coincides. That is we want to show that $\pi = \pi'$ in the pushout diagram

This also gives us $\rho: B_Y +_P B_Y \to T +_Y S$ and that π, π' are monic. Note that we also have the pushout diagram

where x, y are maps making the outer square commute and $f: B_Y \to T +_Y S$ is us finally naming this map. To show this really is a pushout, we need to show $\rho x = y$. This follows from $\psi \pi \rho x = \psi f x = \psi \pi y$ and the fact that $\psi \pi$ is monic. Because this is a pushout square, which respects monics, we know that ρ is a monic. Thus $\pi \rho = f = \pi' \rho$ so $\pi = \pi'$. Therefore ψ is epic.

(X) Wrap up. Because ψ is epic (regular?) it is an isomorphism. And so is p' and so because

we have that θ is an isomorphism.

So we have a diagram

where the vertical dashed arrows to A are from the universal property of B as a pushout. This induces θ . The map $B \to T' +_Y S'$ is the same as the dashed arrow in

By the above lemma, we know that the dashed arrow is monic. Thus we

have

which implies that θ is monic.