Point Set Topology

Lecture 3

Haoming Wang

30 March 2020

This is the Lecture note for the Point Set Topology.

Basis

Definition 1 (Coarser Topology). Let X be a set, and \mathscr{T} and \mathscr{T}' be two topologies on X. We say that \mathscr{T} is coarser/weaker than \mathscr{T}' if $\mathscr{T} \subseteq \mathscr{T}'$ (or say \mathscr{T}' is finer/stronger than \mathscr{T}).

Let X be a set and $S \subseteq \mathcal{P}(X)$ be a family of subsets of X. Are there a smallest topology \mathscr{T}' on X s.t. all $S \subseteq \mathscr{T}'$? It is direct to check that if $\mathscr{T}_{\alpha}(\alpha \in A)$ is a family of topologies on X, then $\cap_{\alpha \in A} \mathscr{T}_{\alpha}$ is also a topology on X. For any $\alpha \in A$:

- 1. \emptyset , $X \in \mathscr{T}_{\alpha} \Rightarrow \emptyset$, $X \in \cap_{\alpha \in A} \mathscr{T}_{\alpha}$;
- 2. $U_{\beta} \in \mathscr{T}_{\alpha}(\beta \in B) \Rightarrow \bigcup_{\beta \in B} U_{\beta} \in \mathscr{T}_{\alpha} \Rightarrow \bigcup_{\beta \in B} U_{\beta} \in \bigcap_{\alpha \in A} \mathscr{T}_{\alpha}$.
- 3. $U_1, U_2 \in \mathscr{T}_{\alpha} \Rightarrow U_1 \cap U_2 \in \mathscr{T}_{\alpha} \Rightarrow U_1 \cap U_2 \in \cap_{\alpha \in A} \mathscr{T}_{\alpha}$.

Define \mathcal{T} be the family of all topologies on X containing the elements in \mathcal{S} , that is for $\forall \mathcal{T} \in \mathcal{T}$, $\mathcal{S} \subseteq \mathcal{T}$. We call

$$\mathscr{T}(\mathcal{S})\coloneqq\cap_{\mathscr{T}\in\mathcal{T}}\mathscr{T}$$

the topology induced by \mathcal{S} , which is clearly the coarsest topology containing \mathcal{S} .

Let Π be the family of any finite intersection of the element in \mathcal{S} , then for $\forall \mathcal{T} \in \mathcal{T}$, $\Pi \subseteq \mathcal{T}$ by def. Furthermore, for $\forall \mathcal{T} \in \mathcal{T}$, the arbitrary union of the elements in Π must in \mathcal{T} , that is $\{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\} \subseteq \mathcal{T}$. Thus $\{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\} \subseteq \mathcal{T}$ and $\{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\} \subseteq \mathcal{T}$.

Proposition 1. Let X be a set and $S \subseteq \mathcal{P}(X)$ be a family of subsets of X. Then

$$\mathscr{T}(\mathcal{S}) = \{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \},$$

where Π is the family of any finite intersection of elements in S, that is

$$\Pi := \{S_1 \cup \cdots \cup S_k | S_1, \cdots, S_k \in \mathcal{S}, k \in \mathbb{N}\} \cup \{X\}.$$

Proof. We have proved that $\{\cup_{V\in\mathcal{F}}V|\mathcal{F}\subseteq\Pi\}\subseteq\mathcal{T}(\mathcal{S})$. Note that $\mathcal{T}(\mathcal{S})$ is the coarsest topology containing \mathcal{S} , Thus if $\{\cup_{V\in\mathcal{F}}V|\mathcal{F}\subseteq\Pi\}$ is a topology containing \mathcal{S} , we are done.

1.
$$\{X\}, \emptyset \subseteq \Pi$$
, thus $X = \bigcup_{V \in \{X\}} V \in \{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\}, \emptyset = \bigcup_{V \in \{\emptyset\}} V \in \{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\}.$

CONTENT:

- 1. Basis
- 2. Countable, Separable and Lindelof Compact
- 3. Examples

Note 1. In other words, \mathscr{T} is weaker than \mathscr{T}' iff $X \xrightarrow{id_X} X$, where the former and later X are equipped with \mathscr{T}' and \mathscr{T} respectively, is continuous.

Note 2. Orally, $\mathcal{T}(\mathcal{S})$ consists of arbitrary unions of finite intersection of elements of \mathcal{S} .

Conventionally, when we talking about the subsets of X, we define $\cap \emptyset := X$.

3. If $\bigcup_{V \in \mathcal{F}_1} V, \bigcup_{W \in \mathcal{F}_2} W \in \{\bigcup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi\}$, then $(\bigcup_{V \in \mathcal{F}_1} V) \cap (\bigcup_{W \in \mathcal{F}_2} W) = \bigcup_{V \in \mathcal{F}_1, W \in \mathcal{F}_2} (V \cap W)$ where $V, W \in \Pi$. Since Π is the family of finite intersection, $V \cap W$ is the finite intersection of elements of \mathcal{S} or X, i.e. $V \cap W \in \Pi$. Let $\mathcal{F}_3 := \{V \cap W | V \in \mathcal{F}_1, W \in \mathcal{F}_2\}$, thus $\mathcal{F}_3 \subseteq \Pi$. Then $\bigcup_{V \in \mathcal{F}_1, W \in \mathcal{F}_2} (V \cap W) = \bigcup_{Z \in \mathcal{F}_3} Z \in \{\bigcup_{V \in \mathcal{F}_3} V | \mathcal{F}_3 \subseteq \Pi\}$.

Thus $\{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \}$ is a topology containing \mathcal{S} , and $\mathscr{T}(S) \subseteq \{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \} \Rightarrow \mathscr{T}(S) = \{ \cup_{V \in \mathcal{F}} V | \mathcal{F} \subseteq \Pi \}.$

Definition 2 (Sub-basis). Given a set X, $S \subseteq \mathcal{P}(X)$, S is called a sub-basis of a topology \mathcal{T} on X if $\mathcal{T} = \mathcal{T}(S)$.

To obtain $\mathcal{T}(\mathcal{S})$ from \mathcal{S} , we need two steps: first, perform the finite intersection of elements in \mathcal{S} ; then perform arbitrary union of the these intersection. But can we construct a topology that contains \mathcal{S} only by union?

Definition 3 (Basis). Given a set X, let $\mathcal{B} \subseteq \mathcal{P}(X)$ and \mathscr{T} is a topology on X. We say that \mathcal{B} is a basis of \mathscr{T} if $\mathcal{B} \subseteq \mathscr{T}$ and for any $U \in \mathscr{T}$, $\exists \mathcal{F} \subseteq \mathcal{B}$, s.t. $U = \cup \mathcal{F} (:= \cup_{B \in \mathcal{F}} B)$.

Note that if \mathcal{B} is a basis of \mathscr{T} , then $B \in \mathscr{T}$ for any $B \in \mathcal{B}$, thus any union of elements of \mathcal{B} is in \mathscr{T} . Thus we can define the \mathcal{B} is a basis of \mathscr{T} directly:

$$\mathscr{T} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \mathcal{B} \}.$$

In general, a topological space (X, \mathcal{T}) can have many bases. The whole topology \mathcal{T} is always a base for itself (that is, \mathcal{T} is a base for \mathcal{T}).

Definition 4 (Local Basis). For a given $x \in X$, we say that \mathcal{B}_x is a local basis of \mathscr{T} at x, if

- 1. for $\forall V \in \mathcal{B}_x$, $x \in V \in \mathcal{T}$ and
- 2. for $\forall U \in \mathcal{T}$ where $x \in U$, $\exists V \in \mathcal{B}_x$, s.t. $x \in V \subseteq U$.

Example 1. Let X be a metric space and \mathscr{T} is the topology defined by metric. Then $\mathcal{B} = \{B_r(x)|r > 0\}$ is a local basis of \mathscr{T} at x.

Exercise 1. Let (X, \mathcal{T}) be a topology space and $\mathcal{B} \subseteq \mathcal{P}(X)$. For $x \in X$, define $\mathcal{B}_x := \{U \in \mathcal{B} | x \in U\}$. Show that \mathcal{B} is a basis of \mathcal{T} on $X \Leftrightarrow \forall x \in X, \mathcal{B}_x$ is a local basis of \mathcal{T} on $X \to \mathcal{T}$ at $X \to \mathcal{T}$.

Proof. ⇒: pick a $x \in X$ and $U \in \mathcal{T}$ where $x \in U$, then $\exists \mathcal{F} \subseteq \mathcal{B}$, s.t. $x \in U = \cup \mathcal{F}$, since \mathcal{B} is a basis of \mathcal{T} . Then $\exists \mathcal{B} \in \mathcal{F}$ such that

Note 3. Thus given a sub-basis S, we can induce the basis Π , and then perform the union on basis to obtain the topology $\mathscr{T}(S)$.

Figure 1: Local Basis

 $x \in B \subseteq \cup \mathcal{F} = U$, it is clear to see $B \in \mathcal{B}_x$. Since \mathcal{B} is a basis of \mathscr{T} , $B \in \mathscr{T}$ for $\forall B \in \mathcal{B}$, Thus \mathcal{B}_x is a local basis of \mathscr{T} at x for any $x \in X$.

 \Leftarrow : On the one hand, given a $x \in X$, $\mathcal{B}_x \subseteq \mathcal{B} \Rightarrow \bigcup_{x \in X} \mathcal{B}_x \subseteq \mathcal{B}$. For any $B \in \mathcal{B}$, if $B \neq \emptyset$, there exists $x' \in B$, thus $B \in \mathcal{B}_{x'} \subseteq \bigcup_{x \in X} \mathcal{B}_c$. Thus $\mathcal{B} = \bigcup_{x \in X} \mathcal{B}_x$. \mathcal{B}_x is a local basis of \mathscr{T} at any $x \in X \Rightarrow \mathcal{B}_x \subseteq \mathscr{T}$ for any $x \in X$. Thus $\mathcal{B} \subseteq \mathcal{T}$.

On the other hand, given a non-empty $U \in \mathcal{T}$, for any $x \in U$, $\exists B_x \in \mathcal{B}_x$, such that $x \in B_x \subseteq U$. Thus $\bigcup_{x \in U} B_x \subseteq U$. For any $x' \in U$, $\exists B_{x'} \in \mathcal{B}_{x'}$, s.t. $x' \in B_{x'} \subseteq U \Rightarrow x' \in \bigcup_{x \in U} B_x \Rightarrow \bigcup_{x \in U} B_x = U$, where $B_x \in \mathcal{B}$. Thus \mathcal{B} is a basis of \mathscr{T} .

Note 4. Very useful routine. We use it to prove the open set, in metric space, is the union of open balls as well.

Exercise 2. Let X be a set and $\mathcal{B} \subseteq \mathcal{P}(X)$. Show that there exists a topology $\mathcal T$ such that $\mathcal B$ is a basis of $\mathcal T \Leftrightarrow$

- 1. $\cup \mathcal{B} = X$ and
- 2. $\forall U, V \in \mathcal{B}$ and $x \in U \cap V, \exists W \in \mathcal{B}$, s.t. $x \in W \subseteq U \cap V$. (Hint: if such \mathscr{T} exists, it must be $\{\cup \mathcal{F} | \mathcal{F} \subseteq \mathcal{B}\}$.)

Proof. \Rightarrow : 1) $X \in \mathcal{T} \Rightarrow \exists \mathcal{F} \subseteq \mathcal{B}$, s.t. $X = \cup \mathcal{F} \subseteq \cup \mathcal{B} \subseteq X \Rightarrow X = \cup \mathcal{B}$; 2) \mathcal{B} is a basis of $\mathscr{T} \Rightarrow \forall U, V \in \mathcal{B}, U, V \in \mathscr{T}$, thus $U \cap V \in \mathscr{T}$. Pick $x \in U \cap V$, \mathcal{B}_x is a local basis of \mathscr{T} at x. Thus $\exists B \in \mathcal{B}_x \subseteq \mathcal{B}$, s.t. $x \in \mathcal{B}$ $B \subset U \cap V$.

 \Leftarrow : Define $\mathscr{T} = \{ \cup \mathcal{F} | \mathcal{F} \subseteq \mathcal{B} \}$, all we need to de is show \mathscr{T} is a topology:

- 1. $\emptyset \subseteq \mathcal{B} \Rightarrow \emptyset = \bigcup \emptyset \in \mathcal{T}$; $\mathcal{B} \subseteq \mathcal{B} \Rightarrow X = \bigcup \mathcal{B} \in \mathcal{T}$.
- 2. for any $\mathcal{F}_{\alpha} \subseteq \mathcal{B}(\alpha \in A)$,

$$\bigcup_{\alpha \in A} (\cup \mathcal{F}_{\alpha}) = \bigcup_{\alpha \in A} (\bigcup_{B \in \mathcal{F}_{\alpha}} B)
= \bigcup_{B \in \bigcup_{\alpha \in A} \mathcal{F}_{\alpha}} B
= \bigcup (\bigcup_{\alpha \in A} \mathcal{F}_{\alpha})
\in \mathscr{T},$$

since $\bigcup_{\alpha \in A} \mathcal{F}_{\alpha} \subseteq \mathcal{B}$.

3. for any $U = \cup \mathcal{F}_1$, $V = \cup \mathcal{F}_2 \in \mathcal{T}$,

$$U \cap V = (\cup \mathcal{F}_1) \cap (\cup \mathcal{F}_2)$$
$$= \cup_{B \in \mathcal{F}_1, C \in \mathcal{F}_2} (B \cap C)$$

where $B, C \in \mathcal{B}$, thus for any $x \in B \cap C$, $\exists D_x \in \mathcal{B}$ such that $x \in D_x \subseteq B \cap C$. Thus it is direct to see that $B \cap C = \bigcup_{x \in B \cap C} D_x$. Thus

$$D_{x} \in \mathcal{B} \Rightarrow D_{x} \in \mathcal{T}$$

$$\Rightarrow \bigcup_{x \in B \cap C} D_{x} \in \mathcal{T}$$

$$\Rightarrow U \cap V = \bigcup_{B \in \mathcal{F}_{1}, C \in \mathcal{F}_{2}} (B \cap C)$$

$$= \bigcup_{B \in \mathcal{F}_{1}, C \in \mathcal{F}_{2}} (\bigcup_{x \in B \cap C} D_{x}) \in \mathcal{T}.$$

Thus \mathcal{T} is such topology as desired.

Recall that when we check whether a map $X \xrightarrow{f} Y$ is conti., we need show that for $\forall V \subseteq_{open} Y$, $f^{-1}(V) \subseteq_{open} X$. But if Y is equipped with a topology induced by some sub-basis, we can only check some subset of Y, instead of any subset of Y.

Exercise 3. Let Z be a topology space and $Z \xrightarrow{f} X$ is a map. Show that *f* is continuous when *X* is topologized by $\mathcal{T}(S) \Leftrightarrow \forall S \in$ $S, f^{-1}(S) \subseteq_{open} Z.$

Proof. \Rightarrow : $\forall S \in \mathcal{S} \Rightarrow S \in \mathscr{T}(\mathcal{S})$, that is $S \subseteq_{open} X \Rightarrow f^{-1}(S) \subseteq_{open} Z$. \Leftarrow : for any $U \in \mathcal{T}(\mathcal{S})$, it can be represented by the union of some finite intersections of elements of S, that is $U = \bigcup_{F \in \mathcal{F}} F$, where $\mathcal{F} \subseteq \Pi$, and $F = \bigcap_{i=1}^{k_F} S_i, S_i \in \mathcal{S}$. Thus

$$f^{-1}(U) = f^{-1}(\bigcup_{F \in \mathcal{F}} F)$$

$$= \bigcup_{F \in \mathcal{F}} f^{-1}(\bigcap_{i=1}^{k_F} S_i)$$

$$= \bigcup_{F \in \mathcal{F}} \left(\bigcap_{i=1}^{k_F} f^{-1}(S_i)\right)$$

$$\subseteq_{open} Z.$$

Thus $Z \xrightarrow{f} X$ is continuous.

Countable, Separable and Lindelof Compact

Definition 5. A topology space (X, \mathcal{T}) is

- 1. 1st-countable if $\forall x \in X, \exists$ countable local basis of \mathscr{T} at x;
- 2. 2nd-countable if \exists countable basis of \mathscr{T} . (That is \exists countable open set in X such that any element in \mathcal{T} is the union of these open set.)

Example 2. 1. Let X be a metric space and \mathcal{T} is the topology defined by metric. Then $\mathcal{B} = \{B_r(x)|r > 0, r \in \mathbb{Q}\}$ is a countable local basis of \mathcal{T} at x, Thus metric space is 1st-countable.

2. Note that the open set in \mathbb{R} is the union of disjoined open intervals in \mathbb{R} . Any open interval can be represented by the union of countable open intervals that start and end at rational number. Thus any open set in \mathbb{R} is the union of countable open intervals. Thus \mathbb{R} is 2nd-countable.

Definition 6 (Dense). Given a topology space *X*, we say a subset $A \subseteq X$ is dense if A = X.

Exercise 4. X is a topology space, $A \subseteq X$, show that A is dense $\Leftrightarrow \forall U \subseteq_{open} X, U \neq \emptyset$, then $U \cap A \neq \emptyset$.

Note 5. \mathcal{B} is a basis of $\mathscr{T} \Rightarrow \mathcal{B}_x$ is a local basis of \mathcal{T} at x. Thus (X, \mathcal{T}) is 2nd-countable \Rightarrow (X, \mathscr{T}) is 1stcountable.

Proof. \Rightarrow : $\overline{A} = A^o \cup \partial A = X$, thus $X \setminus A^o = \partial A$ as A^o and ∂A are disjoined. For any $U \subseteq_{open} X$, if $U \neq \emptyset$, pick $x \in U$, then either $x \in A^o$ or $x \in X \backslash A^o = \partial A$.

If $x \in A^0 \Rightarrow x \in U \cap A \neq \emptyset$; If $x \in \partial A$, U is a nbd. of $x \Rightarrow U \cap A \neq \emptyset$ Ø.

 \Leftarrow : If $\overline{A} \neq X \Rightarrow W := X \setminus \overline{A} \neq \emptyset$, and $W \subseteq_{open} X, W \cap \overline{A} =$ $(X \setminus \overline{A}) \cap \overline{A} = \emptyset$, which leads to a contradiction.

Definition 7 (Separable). A topology space (X, \mathcal{T}) is separable if X has a countable dense subset.

Exercise 5. If \mathcal{B} is a basis of a topology space X and pick a point $x_{\mathcal{B}}$ in *B* for any non-empty set $B \in \mathcal{B}$. Show that $\{x_B \in B | B \in \mathcal{B}, B \neq A\}$ \emptyset } $\subseteq_{dense} X$.

Proof. If $U \subseteq_{open} X$ and $U \neq \emptyset$, then $\exists \mathcal{F} \subseteq \mathcal{S}$, s.t. $U = \cup \mathcal{F}$. Then $x_F \in F \in \mathcal{F} \subseteq \cup \mathcal{F} = U \Rightarrow x_F \in U \cap \{x_B \in B | B \in \mathcal{B}\} \neq \emptyset \Rightarrow \{x_B \in \mathcal{B}\} \neq \emptyset \Rightarrow \{$ $B|B \in \mathcal{B}\} \subseteq_{dense} X$.

Definition 8 (Lindelof Compact). A topology space (X, \mathcal{T}) is Lindelof compact if $\forall U_{\alpha} \subseteq_{open} X(\alpha \in A), \cup_{\alpha \in A} U_{\alpha} = X \Rightarrow \exists$ countable set $A_0 \subseteq A$, s.t. $\bigcup_{\alpha \in A_0} U_\alpha = X$.

It is direct to see that 2nd-countable ⇒ Lindelof Compact, since if \mathcal{B} is a basis of \mathscr{T} on X, then $X = \cup \mathcal{B}$. Collectively, we have

Exercise 6. If *X* is topologized by a metric (a.k.a. *X* is a metrizable topology space) then 2nd-Countable ⇔ Separable ⇔ Lindelof Compact.

Proof. 1. Separable \Rightarrow 2nd-Countable: To prove this statement, we need to track back to the \Leftarrow case: If *D* is the countable dense subset of X, we claim that $\mathcal{B} := \{B_{\underline{1}}(s) | s \in D, n \in \mathbb{N}\}$ is the basis of metric topology on X.

Given a $U \subseteq_{open} X$ and $U \neq \emptyset$, we have $U \cap D \neq \emptyset$. For any $u \in U \cap D$, exists $n_u \in \mathbb{N}$, s.t. $B_{\frac{1}{n_u}}(u) \subseteq U$. Obviously,

$$W := \bigcup_{u \in U \cap D} B_{\frac{1}{n_u}}(u) \subseteq U.$$

For any $v \in U$, if $v \in U \cap D \Rightarrow v \in W$; if $v \notin D \Rightarrow v \in L_D$, since $X = D \cup L_D$. Thus $\exists n_v \in \mathbb{N}$, s.t. $\exists u \in B_{\frac{1}{u}}(v) \cap D \setminus \{v\}$,

Note 6. Thus if \mathcal{B} is a countable basis of \mathscr{T} on X, then $\{x_B \in B | B \in \mathcal{B}\}$ is a countable dense subset of *X*, and (X, \mathcal{T}) is a separable topology space. where $B_{\frac{1}{n_v}}(v) \subseteq U$ and $u \in U \cap D$ whose $1/n_u > 1/n_v$. Thus $v \in B_{\frac{1}{n_u}}(u) \subseteq W \Rightarrow U = W = \bigcup_{u \in U \cap D} B_{\frac{1}{n_u}}(u)$, where $\{B_{\frac{1}{n_u}}(u) | u \in U \cap D, B_{\frac{1}{n_u}}(u) \subseteq U\} \subseteq \mathcal{B}$. Thus \mathcal{B} is a basis of metric topology on X.

2. Lindelof Compact \Rightarrow Separable: For any $x \in X$, $\exists r_x > 0$, s.t. $B_{r_x}(x) \subseteq X$, it is direct to see that $X = \bigcup_{x \in X} B_{r_x}(x)$. X is Lindelof Compact, thus exist countable subset D of X such that $X = \bigcup_{x \in D} B_{r_x}(x)$. For any non-empty $U \subseteq_{open} X$, any $u \in U \subseteq X = \bigcup_{x \in D} B_{r_x}(x)$, thus $U \cap D \neq \emptyset \Rightarrow D$ is dense $\Rightarrow X$ is separable.

Examples

There are some examples of topologies:

Example 3. X is a set, $\mathcal{P}(X)$ is called discrete topology; (\emptyset, X) is called trivial topology. Note that discrete topology is defined by discrete metric:

$$d(x, x') = \begin{cases} 1, & x = x' \\ 0, & x \neq x' \end{cases}$$

Thus $\{x\} \subseteq B_{1/2}(x)$ for any $x \in X$, and any $S \in \mathcal{P}(X)$ is the union of these balls, i.e. $S = \bigcup_{x \in S} B_{1/2}(x)$, and holds an open set in discrete topology.

But trivial topology can not be defined by metric. If it can, then $\forall x \in X, \exists r_x > 0$, s.t. $B_{r_x}(x) \subseteq X$, which implies $B_{r_x}(x) \in (\emptyset, X)$ and leads to a contradiction.

Example 4. X is an uncountable set. $\mathscr{T}_c := \{U \subseteq X | U = \emptyset \lor X \setminus U \text{ is countable}\}\$ is called **co-countable** topology. Thus any countable set in X is the close set on topology space (X, \mathscr{T}_c) .

Similarly, $\mathcal{T}_f := \{U \subseteq X | U = \emptyset \lor X \backslash U \text{ is finite}\}$ is called **co-finite** topology. Thus any finite set in X is the close set on topology space (X, \mathcal{T}_f) .

It is direct to see \mathcal{T}_c and \mathcal{T}_f are topology:

- 1. $\emptyset \in \mathscr{T}_c$, $X \in \mathscr{T}_c$ for $X \setminus X = \emptyset$ is countable;
- 2. Any $U_{\alpha} \in \mathscr{T}_{c}(\alpha \in A) \Rightarrow X \setminus U_{\alpha}$ is countable $\Rightarrow X \setminus \bigcup_{\alpha \in A} U_{\alpha} = \bigcap_{\alpha \in A} (X \setminus U_{\alpha})$ is the intersection of countable sets, thus be countable $\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathscr{T}_{c}$.
- 3. $U, V \in \mathscr{T}_c \Rightarrow X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$ is countable, thus $U \cap V \in \mathscr{T}_c$.