

Exploring the Link Between Education and Illegal Pet Ownership in NYC

- Yuxuan Geng, PPHA 30538 4, GitHub: emmaa1123
- Kohan Chen, PPHA 30538 4, GitHub: kohaningithub
- George Wang, PPHA 30538 4, GitHub: gwang613uchi

Our Research Focus

1 Data Exploration

Analyzing NYC Open Data and US Census Bureau data on illegal pets and education attainment. **Statistical Analysis**

Utilizing regression models to quantify relationships between education levels and incident rates.

Policy Insights

Identifying potential policy responses based on key findings and areas for further research.

Data Sources

Illegal Pets Data

NYC Open Data: complaint records on illegal pets

Education Attainment Data

US Census Bureau: education levels for NYC boroughs

Data Sources

Education Attainment Data

We chose 5-years estimates from 2010 to 2022 because they are the **most reliable** indicators, though not the most current ones.

Distinguishing features of ACS 1-year, 1-year supplemental, 3-year, and 5-year estimates

1-year estimates	1-year supplemental estimates	3-year estimates*	5-year estimates
12 months of collected data Example: 2023 ACS 1-year estimates Date collected between: January 1, 2023 and December 31, 2023	12 months of collected data Example: 2023 ACS 1-year supplemental estimates Date collected between: January 1, 2023 and December 31, 2023	36 months of collected data Example: 2011-2013 ACS 3- year estimates Date collected between: January 1, 2011 and December 31, 2013	60 months of collected data Example: 2019-2023 ACS 5- year estimates Date collected between: January 1, 2019 and December 31, 2023
Data for areas with populations of 65,000+	Data for areas with populations of 20,000+	Data for areas with populations of 20,000+	Data for all areas
Smallest sample size	Smallest sample size	Larger sample size than 1- year	Largest sample size
Less reliable than 3- year or 5-year	Less reliable than 5-year	More reliable than 1-year; less reliable than 5-year	Most reliable
Most current data	Most current data	Less current than 1-year estimates; more current than 5-year	Least current

Data Cleaning and Standardization

Data Merging

Joining annual education datasets from 2010 to 2022 to annual illegal pet incidents in NYC with time variable (in year format as the key)

Variable Selection

Selecting the education attainment of the population aged 25 and older

Selecting variables related to incident locations and illegal pet types to connect the two datasets.

Incident Normalization

Normalizing incident counts per 10,000 people for fair comparisons because some borough might have higher population and higher incident count.

Visualizations

Types of Illegal Pets

A bar chart reveals roosters as the most common illegal pet type.

Distribution of Illegal Pet Incidents

Pie chart highlights the geographic distribution of incidents, with Brooklyn and Queens leading in complaint counts, reflecting their population density.

Spatial Patterns of Incidents

Choropleth map shows ZIP-level variability in illegal pet complaints, highlighting dense clusters.

Visualizations

Education Attainment Trend

Line plot illustrates trends in educational attainment (e.g., high school graduates, bachelor's degrees) over the study period

Education Levels by Borough

Bar chart highlights uneven distribution of bachelor degree holders among boroughs, with Manhattan leading the total share and amount

Regression Analysis Results

-0.0466

Less than 9th Grade

Negative correlation between education level and incident rate.

-0.0336

High School Graduates

Slight negative correlation between education level and incident rate.

-0.0400

Bachelor's Degree

Negative correlation between education level and incident rate.

		OLS Regre	ssion Resu	lts 				
Dep. Variable: Incident_Perce		ercentage(ercentage(%) R-squared:			0.999		
Model:		0	LS Adj. I	R-squared:		0.997		
		Least Squares , 03 Dec 2024 17:00:05	es F–sta	4 Prob (F-statistic):		474.2 0.0337 27.108		
			24 Prob					
			05 Log-L:					
			5 AIC:		-46.22			
			1 BIC:			-47.78		
Df Model:			3					
Covariance Type:		nonrobu	st					
		coef	std err	t	P> t	[0.025	0.975	
const		1.9435	0.160	12.153	0.052	-0.088	3.97	
pop_25_less_9th_percentage		-0.0466	0.003	-14.102	0.045	-0.089	-0.00	
pop_25_hs_grad_percentage		-0.0336	0.003	-10.392	0.061	-0.075	0.00	
pop_25_bach_plus_percentage		-0.0400	0.003	-12.152	0.052	-0.082	0.00	
Omnibus:		nan	 Durbin-Wa	urbin-Watson:		1.873		
<pre>Prob(Omnibus):</pre>		nan	Jarque-Bera (JB):		0	0.799		
Skew:		-0.967	Prob(JB):	rob(JB):		0.671		
Kurtosis:		2.698	Cond. No.	Cond. No.		4.58e+03		

Regression Analysis Results

Less than 9th Grade

-0.0336

High School Graduates

Bachelor's Degree

NLP Sentiment and Resolution Analysis

"Warning Issued"

Most common resolution

"Access Denied"

Most negative tone

Slightly Negative to Neutral

Overall tone

reflecting a professional yet firm communication style

Shiny App with Interactions

With interactive toggles and checkboxes, dropdown menu, and range sliders, users can filter data by specific years, year ranges, or education levels. These features allow them to explore the spatial and socioeconomic factors affecting illegal pet incidents.

Key Findings and Limitations

Policy Implications and Next Steps

Community Outreach
Educational campaigns in high-incident areas.

Enhanced Enforcement
Strengthening enforcement in areas with dense clusters to avoid "access denied" problem.

Interactive Tools
Developing tools to engage the public and policymakers.

Future Directions for Research

Neighborhood-Level Data Examining localized trends and variations of education. Examining the popularity of certain illegal pets type (rooster, snake, etc.) Socioeconomic Factors

Exploring income, housing, and cultural influences.