Dumerical Differentiation

For some particular value of a from the siren data when the actual form of the function is unknown, is called numerical differentiation.

Newtono - froward interpolation formula:

$$\Rightarrow \frac{dy}{du} = 4y_0 + \frac{2u-1}{2!} 4^2y_0 + \frac{3u^2-6u+2}{3!} 4^3y_0 + \cdots$$

$$\frac{dq}{dx} = \frac{1 - 1}{h} - \frac{x - x}{1} - y$$

$$\frac{dx}{1 + \frac{dy}{dx}} = \frac{1}{h} \left[\frac{\Delta y}{y_0} + \frac{2u-1}{2!} \Delta^2 y_0 + \frac{3u^2 + 6u + 2}{3!} \Delta^3 y_0 + \dots \right]$$

$$\frac{d^2y}{dx^2} = \frac{1}{h^2} \left[\frac{1}{h^2} y_0 + (u-1) \frac{1}{h^2} y_0 + \frac{12u^2 - 36u + 22}{4!} \frac{1}{h^2} \frac{1$$

								*		
	$\frac{\text{Ex-1}}{\text{find}} \frac{dy}{dx} = \frac{d^2y}{dx^2}$ $(\alpha = 1)$									
rol	P alab	S.C.	y moi)	2) 4.	A24000	Δ ³ γ ₀ .	D476	asy.		
	called	ei 1 mu	au Jose	si moiler	- Nue - Jus	-(com e)	aclaal	pul-		
		2	8	9	nostoit	destinan	in so rate	ur Chac		
		3	27	a-4	18 0	i brown	13 - O Srs	o o	3	
13y	1)(u-2)	34 +	640	1-20)10 +	24	KA CA:	(x)	170	to	
		5	125	91	30	i i				
+18	1 2+3	المريخ الم	216	0 1-1	Ay + 2	= 46	É			
53	h ₂ 1		$\frac{\chi}{\chi}$	-Xo	1-1	- O			,	
				n (1 (Iv	<u>du</u> = -				
	. sti	dy:	-h	Δy. + -	2u=1 A	y + 34	2-6u+2	- 03y,-	F . J.	
-tel	13	18	+ 1 1/3	1-12-1	of by	0	27		.]	
					1 x1/2 +					
otea	1 h	1202 - 3	13/31	(1-N)+	TA230	t t	27 1			
	_	d= 9	1/2	Euros [A	2yo + Cu	1) A34	6			
			2 1	12+	(0-1)6] = 6				
11										

$$\alpha = \frac{\lambda - x^{2}}{4} - \frac{\pi(n)}{2!} \Delta_{x}^{2} + \frac{\pi(n+1)(n+5)}{3!} \Delta_{y}^{2}$$

$$\alpha = \frac{x - x^{2}}{4} - \frac{\pi(n)}{2!} \Delta_{y}^{2} + \frac{\pi(n+1)(n+5)}{3!} \Delta_{y}^{2}$$

$$\frac{dy}{du} \Rightarrow \forall y + \frac{2u+1}{2!} \forall 2y + \frac{3u^2+6u+2}{3!} \forall 3y - \frac{3u^2}{3!}$$

$$\frac{du}{du} = 1 \cdot \frac{8}{3!} \cdot \frac{(w)}{(w)}$$

$$\frac{\sqrt{4x}}{4n} = \frac{1}{\sqrt{8x}} =$$

$$\int \frac{d^2y}{dx^2} = \frac{1}{h^2} \left[\nabla^2 y + (u+1) \nabla^3 y_n + \dots \right]$$

$$\frac{d\theta}{dt}, \frac{d^{20}}{dt^{4}}, \quad (t=0.7)$$

$$\frac{d\theta}{dt^{4}}, \frac{d^{20}}{dt^{4}}, \frac{d^{20}}{dt^{4}}, \frac{d^{20}}{dt^{4}}, \quad (t=0.7)$$

$$\frac{d\theta}{dt^{4}}, \frac{d^{20}}{dt^{4}}, \frac{d^$$

Max - Min Paloulated trenetion. - From the table find x correct to 2 decimal places, ny 2 mo									
-	X	У	4	1/2	Δ3	14	ol of		
	1.2	0.9320				21			
0.2	1.3 (2.0)f(19	0.00 7.0	0.0318	-0.0093	-0:0002	hor			
0.00	1.9	0.9855	1.0	-0.0099		0.0002			
	1.5	0.9975	0.0120	-0.0099	0				
	ا ا	0.9996	ns act s	1	Wes V	all P			
(28	6606.0)	0.1= 6.6	ed volue	दश्र भ					
le	t 70 = 1.0								

For maximum value of y, we have $\frac{dy}{dx} = 20$ Differentiating newton's forward interpolation formula with tempert to and reporting terms second differences we get,

The value 1.58 is closer to 2=16, hence ne use Newtons backnown delforence formula.

WOODS - ar mores

Mass - Hilm ! (aboutabled ! honeling. ramet 1 000 21 4 - 200 4 (-0,000 9) yow, y (1.58) = 0.9906 -0.2x (0.0021)+(0.2)(-0.2+1) 0.000 (co 30.4.0.0510.0 5666.0 The max value occurs of x = 1.58 and max value of y = 1.0 (0.999372) for maximum value of y, we have dy =0 Del circuliation entry tours teament interpolation formula raise tresport a and nylicting sterms second differences we get ? (6600.0) FN3 + 9160.0 . 3 8.8.04: 5.2 = 2° top = 1.5 + 8.840.1 -1.88 The value 158 is closer to x=16, hence we use Meurtonopa de Rocence - personala. やいるしたる。あつまりというみ

SP-24 123

Explain how numerical differentialism can be used to find the onex to min

He know, Newton's forward interpolation formula as:

dy = 1 [Ayo + 2u-1 Ago + 3u2-bu+3 Ago]

We know, man and min values of a function of y=f(x) Can be found by di = 0 and solidion for x

Now keeping up only up to 2nd defferance we have,

Ayot (24-1) 0240 = 0 368 8

Solving this-for u, we get is an xo tub ad which y is a max or min. If the walve of x is in the soward then we will use Newtons forward difference formula and if x

is in the backward then we will use thistoms' Backward différence formula to find maxion

= 0.285 mls (unit (see) -) velocely 112 TE (127) + (1.01) 113/2) (312.0 (1-6.)+ hal.0-) 2(10) 032.8 und /su2 - Annalise 1.

It distance x ceners along the rod is given below for (1) the relocity (11) its accelaration t=035 t 2 1220 13x0 At 20 15x1 162 190 + 30 0.08 3.013 0189 2180 (05000) des -0.238 0002 3.324 to to 1 hoson well to to = 0.1 [0.149 + 2×3-1 × (-0.104) + 3(3)-6×3+2 × 0.216 = 0.285 m/s (unit (sec) =) velocity dr dt2 = (42% + (u=1) 43%) $= \frac{1}{(0.1)^2} \left(-0.104 + (3-1)0.216 \right)$

232.8 unit /sec2 => Accelarcation