

Inteligência Artificial

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@gmail.com.br

Grupo da turma 2024.2

https://chat.whatsapp.com/JFB6CgOI7IMCoYmoIKEK62

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Na aula anterior...

Realizamos uma dinâmica para conhecer um ao outro

Discutimos sonhos e desejos

A importância de ter um objetivo definido

Discutimos boas práticas de estudo

Importância de um cronograma
Importância do foco
Importância de revisões periódicas
Alimentação e exercício

Na aula anterior...

Avaliações

🗽 Sala: Atividades(10%) presença (10%)

2 provas (40%) + 1 Trabalho(30%) + ?

Objetivos de hoje

Apresentar a disciplina;

Ao final da aula, os alunos serão capazes de ter uma visão geral dos principais tópicos e conteúdo programático da disciplina (ementa).

Roteiro: Aula de Introdução

"The techniques of artificial intelligence are to the mind what bureaucracy is to human social interaction."

(Terry Winograd)

TERRY WINOGRAD

Professor Emeritus of Computer Science, Stanford University.

Link:

http://hci.stanford.edu/winograd/

http://dschool.stanford.edu/bio/terry-winograd/

Publicações:

http://hci.stanford.edu/winograd/publications.html

"The techniques of artificial intelligence are to the mind what bureaucracy is to human social interaction."

(Terry Winograd)

- Essa analogia pode ser uma crítica ou uma observação sobre como esses sistemas
- Tanto a burocracia quanto a inteligência artificial, podem influenciar e controlar os processos e fluxos de trabalho
 - às vezes tornando-os mais eficientes
 - mas também potencialmente mais restritivos e menos flexíveis à variação humana natural.

"Uma linha ativa em uma caminhada, movendo-se livremente sem um objetivo. Um caminho pela caminhada. O agente é um ponto que muda de posição." (Paul Klee)

PAUL KLEE

Swiss-German artist (Expressionism, Cubism, and Surrealism). *Link*:

c: ://academic.eh.com/FRchecked/tonic/3100/

http://academic.eb.com/EBchecked/topic/319932/Paul-Klee/ Publicações:

http://www.helveticat.ch/search/query?term_1=Paul+Klee&locale=en&theme=Helveticat

"Uma linha ativa em uma caminhada, movendo-se livremente sem um objetivo. Um caminho pela caminhada. O agente é um ponto que muda de posição."

(Paul Klee)

- O "agente", ou o artista, é como um ponto que se desloca ao longo de uma linha ativa, movendo-se livremente e explorando novos caminhos sem uma direção predeterminada.
- Isso ressalta a ideia de liberdade na criação artística, onde o processo de mover-se, descobrir e criar é o verdadeiro foco da atividade artística.
 - Agente para Paul é o artista, livre, explorador, criador.

- **Definição:** tudo o que pode ser considerado capaz de perceber por meio de sensores e de agir sobre esse ambiente por meio de atuadores.
- Agentes de software (exemplo):
 - ✓ **Sensores:** sequências de teclas digitadas, conteúdo de arquivos, pacotes de redes e entre outros.
 - ✓ **Atuadores:** imprimindo informações em tela, escrevendo em arquivos, enviando pacotes e entre outros.

Exemplos

Agente humano

- Sensores: Olhos, ouvidos e outros órgãos
- Atuadores: Mãos, pernas, boca e outras partes do corpo

Agente robótico

- Sensores: câmeras e detectores de infravermelho
- Atuadores: vários motores

Agente de software

- Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.
- Atuadores: tela, disco, envio de pacotes pela rede

- Percepção: referência às entradas obtidas do agente em um dado instante.
- A sequência de percepções: a história completa de tudo que o agente já percebeu.
- O comportamento de um agente é descrito pela função do agente que mapeia qualquer sequência de percepções específicas para uma ação.

Nota: Em geral, a escolha de ação em qualquer instante dado pode depender da sequência inteira de percepções recebidas até o momento, mas não de percepções não recebidas.

- Um agente é definido por um programa de agente.
- Função de agente: é uma descrição matemática abstrata.
- Programa de agente: é uma implementação executada em um sistema concreto.

O comportamento de um agente é dado abstratamente pela função do agente

$$\checkmark [F: P^* \to A]$$

✓ P^* é uma sequência de percepções e A é uma ação.

- O programa do agente roda em uma arquitetura física para produzir F
 - ✓ Agente = arquitetura + programa

Nota: a função agente para um agente artificial será implementado pelo programa do agente.

Exemplo: o mundo do aspirador de pó

- Percepção: local e conteúdo
 - Exemplo: [A, sujo]
- Ações: Esquerda, Direita, Aspirar e NoOp

Tabulação parcial de uma função agente

Sequência de Percepções	Ação
[A, Limpo]	Direita
[A, Sujo]	Aspirar
[B, Limpo]	Esquerda
[B, Sujo]	Aspirar
[A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Sujo]	Aspirar
[A, Limpo], [A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Limpo], [A, Sujo]	Aspirar

Programa: Se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado.

Agentes racionais

- Como preencher corretamente a tabela de ações do agente para cada situação?
- O agente deve tomar a ação "correta" baseado no que ele percebe para ter sucesso.
 - O conceito de sucesso do agente depende de uma medida de desempenho objetiva.
 - Exemplos: quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado, etc.
- A medida de desempenho deve refletir o resultado realmente desejado

Agentes racionais

■ Definição:

✓ Para cada sequência de percepções possíveis devese selecionar uma ação que espera-se que venha maximizar sua medida desempenho, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente.

Agentes racionais

- Onisciência, aprendizado e autonomia:
 - ✓ Os agentes podem executar ações para coleta de informações
 - Um tipo importante de coleta de informação é a exploração de um ambiente desconhecido
 - ✓ Os agentes também podem aprender (aprendizado), ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo (autonomia).
- Racionalidade é diferente de perfeição
 - ✓ A racionalidade maximiza o desempenho esperado, enquanto a perfeição maximiza o desempenho real
 - ✓ A escolha racional só depende das percepções até o momento

Agentes – Medida de desempenho

O agente deve tomar a ação "correta" baseado no que ele percebe para ter sucesso, a noção de desejável.

■ **Definição:** avalia qualquer sequência dada dos estados do ambiente.

Importante:

✓ Em geral, é melhor projetar medidas de desempenho de acordo com o resultado realmente desejado no ambiente, em vez de criá-las de acordo com o comportamento esperado do agente.

Agentes - Ambientes de tarefa

- Definição: os problemas para os quais os agentes racionais são as soluções.
- Para projetar um agente deve-se especificar o ambiente de tarefa.
- As especificações são denominadas de **PEAS**:
 - ✓ P: performance; E: environment; A: actuators; S: sensors.

- Definição: os problemas para os quais os agentes racionais são as soluções.
- Para projetar um agente deve-se especificar o ambiente de tarefa.
- As especificações são denominadas de **PEAS**:
 - ✓ P: performance; E: environment; A: actuators; S: sensors.

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa.
 - Performance = A medida de desempenho que define o critério de sucesso
 - Environment = O conhecimento prévio que o agente tem do ambiente
 - Actuators = As ações que o agente pode executar
 - Sensors= A sequência de percepções do agente até o momento

- Exemplo motorista de Uber automatizado
- <u>Medida de desempenho</u>: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.
- Ambiente: ruas, estradas, outros veículos, pedestres, clientes.
- **Atuadores**: direção, acelerador, freio, embreagem, marcha, seta, buzina.
- <u>Sensores</u>: câmera, sonar, velocímetro, GPS, hodômetro, acelerômetro, sensores do motor, teclado ou microfone

- Exemplo Sistema de Diagnóstico Médico
- <u>Medida de desempenho</u>: paciente saudável, minimizar custos, processos judiciais.
- Ambiente: paciente, hospital, equipe.
- <u>Atuadores</u>: exibir na tela perguntas, testes, diagnósticos, tratamentos.
- <u>Sensores</u>: entrada pelo teclado para sintomas, descobertas, respostas do paciente

- Exemplo Robô de seleção de peças
- <u>Medida de desempenho</u>: porcentagem de peças em bandejas corretas
- Ambiente: correia transportadora com peças; bandejas
- **Atuadores**: braço e mão articulados
- <u>Sensores</u>: câmera, sensores angulares articulados

- Exemplo Instrutor de Inglês Interativo
- <u>Medida de desempenho</u>: maximizar nota de aluno em teste
- Ambiente: conjunto de alunos
- Atuadores: exibir exercícios, sugestões, correções
- **Sensores**: entrada pelo teclado

- Os ambientes de tarefas podem ser divididos em categorias:
 - ✓ Completamente observável x parcialmente observável;
 - ✓ Determinístico x estocástico;
 - ✓ Estático x dinâmico x episódico;
 - ✓ Discreto x contínuo;
 - ✓ Agente único x multiagente.

Completamente observável:

- ✓ Os sensores do agente dão acesso ao estado completo do ambiente em cada instante
- ✓ Todos os aspectos relevantes do ambiente são acessíveis

Parcialmente observável:

✓ Os sensores do agente permitem que o agente tenha acesso a somente parte do ambiente

Determinístico:

- ✓ O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente, caso contrário, ele é estocástico
- ✓ Se o ambiente é determinístico exceto pelas ações de outros agentes, dizemos que o ambiente é estratégico

Não-determinístico:

- **Estocástico:** implica que a incerteza sobre os resultados é quantificada em termos de probabilidades.
- ✓ Um ambiente não determinístico é aquele que as ações são caracterizadas por seus resultados possíveis, sem probabilidade associada a ele.

Estático:

✓ O ambiente não muda enquanto o agente pensa

Dinâmico:

✓ O ambiente pode mudar enquanto o agente pensa ou está executando uma ação

Episódico:

- ✓ A experiência do agente pode ser dividida em episódios (percepção e execução de uma única ação)
- ✓ A escolha da ação em cada episódio só depende do próprio episódio

Agente único:

✓ Um único agente operando sozinho no ambiente.

• Multiagente:

- √ Vários agentes interagindo no ambiente.
- ✓ Multiagente cooperativos.
- ✓ Multiagente competitivos.

Exemplo

	Xadrez com relógio	Xadrez sem relógio	Direção de Uber
Completamente observável			
Determinístico			
Episódico			
Estático			
Discreto			
Agente único			

Propriedades de ambientes de tarefa

Exemplo

	Xadrez com relógio	Xadrez sem relógio	Direção de Uber
Completamente observável	Sim	Sim	Não
Determinístico	Sim	Sim	Não
Episódico	Não	Não	Não
Estático	Semi	Sim	Não
Discreto	Sim	Sim	Não
Agente único	Não	Não	Não

O agente deve tomar a ação "correta" baseado no que ele percebe para ter sucesso, a noção de desejável.

Propriedades de ambientes de tarefa

O mundo real é parcialmente observável, estocástico, sequencial, dinâmico, contínuo, multi-agente.

Programas e funções de agentes

• Desvantagens:

- Tabela gigante (xadrez = 10150 entradas)
- Tempo longo para construir a tabela
- Não tem autonomia
- Mesmo com aprendizado demoraria muito para aprender a tabela.

Tipos básicos de agentes

- Agentes reativos simples
- Agentes reativos baseados em modelos
- Agentes baseados em objetivos
- Agentes baseados na utilidade
- Agentes com aprendizagem

Agentes reativos simples

- Agentes reativos selecionam ações com base somente na percepção atual.
 - Exemplo: agente aspirador de pó.

```
Função AGENTE-ASPIRADOR-REATIVO
retorna ação
Inicio
se estado = sujo então
retorna aspirar
senão se posição = A então
retorna direita
senão se posição = B então
retorna esquerda
Fim
```

Agentes reativos simples

Agentes reativos simples

```
function Reflex-Vacuum-Agent([location,status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

- Regras condição-ação (regras se-então) fazem uma ligação direta entre a percepção atual e a ação
- Simples, porém limitado
 - O agente funciona apenas se o ambiente for completamente observável
 - Funcionará se a decisão correta puder ser tomada com base apenas na percepção atual

- Um agente reativo baseado em modelo pode lidar com ambientes parcialmente observáveis.
 - O agente deve controlar as partes do mundo que ele não pode ver.
- O agente deve manter um estado interno que dependa do histórico de percepções e reflita os aspectos não observados no estado atual.

■ Conhecer um modelo do mundo nem sempre é suficiente para tomar uma boa decisão.

Função AGENTE-REATIVO-COM-ESTADOS(percepção) **retorna** uma ação

Variáveis estáticas:

```
estado, uma descrição do estado atual do mundo regras, um conjunto de regras condição-ação ação, a ação mais recente, incialmente nenhuma estado ← ATUALIZA-ESTADO(estado, ação, percepção) regra ← REGRA-CORRESPONDENTE(estado, regras) ação ← AÇÃO-DA-REGRA[regra] retornar ação
```

- Agentes baseados em objetivos expandem as capacidades dos agentes baseados em modelos através de um **objetivo**.
- O objetivo descreve situações desejáveis (exemplo: estar no destino).
- A seleção de ação baseada em objetivo pode ser:
 - Direta: quando o resultado de uma única ação atinge o objetivo.
 - Mais complexa: quando será necessário longas sequências de ações para atingir o objetivo.

- Para encontrar sequências de ações que alcançam os objetivos são utilizados algoritmos de **busca** e **planejamento**.
- A tomada de decisão envolve a consideração do futuro, o que não acontece com o uso de regras de condição-ação.

- O agente que funciona orientado a objetivos é mais flexível do que um agente reativo.
- Entretanto, o objetivo não garante o melhor comportamento para o agente, apenas a distinção entre estados objetivos e não objetivos.

Agentes baseados na utilidade

- Agentes baseados na utilidade buscam definir um grau de satisfação com os estados. O quanto o agente está feliz com aquele estado.
- Se um estado do mundo é mais desejável que o outro, então ele terá maior utilidade para o agente.
- Utilidade é uma função que mapeia um estado para um número real que representa o grau de satisfação com este estado.

Agentes baseados na utilidade

Agentes com aprendizagem

- Agentes com aprendizado podem atuar em ambientes totalmente desconhecidos e se tornar mais eficientes do que seu conhecimento inicial poderia permitir.
- Importante: em agentes sem aprendizagem, tudo o que o agente sabe foi colocado nele pelo projetista.

Agentes com aprendizagem

Dúvidas?

Atividade – Colônia de Formigas

- O código do NetLogo simula agentes reativos baseados em modelos (formigas)
- Formigas agentes se movem em um ambiente, interagindo com alimentos e deixando rastros de feromônio.

- Definição de Agentes
 - Na aula, agentes são definidos como sistemas que percebem o ambiente (sensores) e agem sobre ele (atuadores)

- No código, as formigas (turtles) têm
 - Sensores implícitos para detectar feromônios, alimentos e o ninho
 - E atuadores, para se mover e manipular comida

- Agentes Reativos Baseados em Modelos
 - Este tipo de agente utiliza percepções do ambiente e mantém um estado interno para decidir ações

- No código, as formigas (turtles) têm
 - As formigas usam o gradiente de feromônio (chemical) para encontrar alimentos e retornar ao ninho
 - O estado interno está representado pela variável color, indicando se a formiga está carregando comida (laranja) ou não (vermelha)

Ambiente e Interações

- O ambiente da simulação é parcialmente observável e dinâmico, conforme discutido na aula
- O ambiente muda com a evaporação e difusão do feromônio e com a movimentação das formigas, refletindo características estocásticas e dinâmicas

- Medida de Desempenho
 - O sucesso do sistema pode ser avaliado pela
 - uantidade de alimentos transportados ao ninho
 - pela eficiência dos rastros de feromônio
 - Isso reflete a ideia de uma medida de desempenho abordada na aula

Até a próxima...

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com

Referências

- Artigos referenciados nos respectivos slides.
- T.B. Borchartt . *Introdução à Inteligência Artificial*. 2024. 37 slides. Universidade Federal do Maranhão.
- A.O. B. Filho. Inteligência Artificial Introdução. 2024. 31 slides.
 Universidade Federal do Maranhão.
- S. Lago. *INTRODUÇÃO À LINGUAGEM PROLOG*. Universidade de São Paulo. Disponível em <u>Microsoft Word slago-prolog.doc</u>.
- C. A. M. Lima. Aula 04 Redes Neurais Artificiais. 2015. 39 slides.
 Universidade Federal do Maranhão. Disponível em <u>Aula 04 Redes Neurais Artificiais</u>