IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

29.10.2025

Hoy...

Enumerabilidad: conjuntos enumerables, teorema de Cantor.

Conjuntos enumerables

Definición Un conjunto A es enumerable $si \mathbb{N} \approx A$

Conjuntos enumerables

Definición

Un conjunto A es **enumerable** $si \mathbb{N} \approx A$

Hemos visto que $\mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q}$ son enumerables.

Conjuntos enumerables

Definición

Un conjunto A es **enumerable** $si \mathbb{N} \approx A$

Hemos visto que $\mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q}$ son enumerables.

Proposición

- a) Todo conjunto infinito tiene un subconjunto enumerable.
- b) Sea A un conjunto enumerable y $B \subseteq A$. Entonces, B es finito o enumerable.

Propiedades

Teorema

- a) Sean A, B dos conjuntos enumerables. Entonces, $A \times B$ es enumerable.
- b) Suponemos que para cada $n \in \mathbb{N}$ tenemos un conjunto A_n enumerable. Entonces,

$$\bigcup_{n\in\mathbb{N}}A_n$$

es enumerable.

Propiedades

Teorema

- a) Sean A, B dos conjuntos enumerables. Entonces, $A \times B$ es enumerable.
- b) Suponemos que para cada $n \in \mathbb{N}$ tenemos un conjunto A_n enumerable. Entonces,

$$\bigcup_{n\in\mathbb{N}}A_n$$

es enumerable.

Demostración.

Parte a): recuerde el lema:

Lemma

Sean $A \approx B, X \approx Y$. Entonces, $A \times X \approx B \times Y$.

Propiedades

Teorema

- a) Sean A, B dos conjuntos enumerables. Entonces, $A \times B$ es enumerable.
- b) Suponemos que para cada $n \in \mathbb{N}$ tenemos un conjunto A_n enumerable. Entonces,

$$\bigcup_{n\in\mathbb{N}}A_n$$

es enumerable.

Demostración.

Parte a): recuerde el lema:

Lemma

Sean $A \approx B, X \approx Y$. Entonces, $A \times X \approx B \times Y$.

Tenemos $A \approx \mathbb{N}, B \approx \mathbb{N}$, por lo tanto $A \times B \approx \mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.

Parte b):

Parte b):

 $\mathbb{N} \preceq A_0 \preceq \bigcup_{n \in \mathbb{N}} A_n$.

Parte b):

 $\mathbb{N} \leq A_0 \leq \bigcup_{n \in \mathbb{N}} A_n$.

Por teorema Schröder-Bernstein, basta mostrar $\bigcup_{n\in\mathbb{N}} A_n \leq \mathbb{N}$.

Parte b):

$$\mathbb{N} \leq A_0 \leq \bigcup_{n \in \mathbb{N}} A_n$$
.

Por teorema Schröder-Bernstein, basta mostrar $\bigcup_{n\in\mathbb{N}} A_n \leq \mathbb{N}$.

Definición

Sea
$$\Sigma$$
 un conjunto. Definimos $\Sigma^0 = \{\epsilon\}, \Sigma^1 = \Sigma$, y $\Sigma^{n+1} = \Sigma^n \times \Sigma$ para todo $n \ge 1$ natural, y

$$\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n.$$

Definición

Sea Σ un conjunto. Definimos $\Sigma^0 = \{\epsilon\}, \Sigma^1 = \Sigma$, y $\Sigma^{n+1} = \Sigma^n \times \Sigma$ para todo $n \ge 1$ natural, y

$$\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n.$$

Elementos de Σ^* son *palabras* o *secuencias* finitas sobre Σ .

Definición

Sea Σ un conjunto. Definimos $\Sigma^0 = \{\epsilon\}, \Sigma^1 = \Sigma$, y $\Sigma^{n+1} = \Sigma^n \times \Sigma$ para todo $n \ge 1$ natural, y

$$\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$$
.

Elementos de Σ^* son *palabras* o *secuencias* finitas sobre Σ .

Teorema

Sea Σ un conjunto enumerable. Entonces, Σ^* es enumerable.

Definición

Sea Σ un conjunto. Definimos $\Sigma^0 = \{\epsilon\}, \Sigma^1 = \Sigma$, y $\Sigma^{n+1} = \Sigma^n \times \Sigma$ para todo $n \ge 1$ natural, y

$$\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$$
.

Elementos de Σ^* son *palabras* o *secuencias* finitas sobre Σ .

Teorema

Sea Σ un conjunto enumerable. Entonces, Σ^* es enumerable.

Nota: si $\Sigma \neq \emptyset$ es finito, Σ^* también es enumerable.

Corolarios

Corolario

- a) el conjunto de las programas en Python es enumerable
- b) el conjunto de los polinomios con coeficientes enteros es enumerable
- c) el conjunto de los números algebraicos es enumerable.

Teorema de Cantor

¿Todos los conjuntos infinitos son enumerables?

Teorema de Cantor

¿Todos los conjuntos infinitos son enumerables? Notación: $A \prec B$ si $A \leq B$ y $A \not\approx B$.

Teorema de Cantor

¿Todos los conjuntos infinitos son enumerables?

Notación: $A \prec B$ si $A \leq B$ y $A \not\approx B$.

Teorema (Cantor)

Para todo conjunto A, tenemos $A \prec \mathcal{P}(A)$

▶ En particular, $\mathcal{P}(\mathbb{N})$ no es enumerable.

- ▶ En particular, $\mathcal{P}(\mathbb{N})$ no es enumerable.
- ▶ La próxima vez, vamos a ver que $\mathbb{R} \approx \mathcal{P}(\mathbb{N})$;

- ▶ En particular, $\mathcal{P}(\mathbb{N})$ no es enumerable.
- ▶ La próxima vez, vamos a ver que $\mathbb{R} \approx \mathcal{P}(\mathbb{N})$;

Corolario

Existe un número real que no es algebraico.

- ▶ En particular, $\mathcal{P}(\mathbb{N})$ no es enumerable.
- La próxima vez, vamos a ver que $\mathbb{R} \approx \mathcal{P}(\mathbb{N})$;

Corolario

Existe un número real que no es algebraico.

No existe "infinitud más grande".

- ▶ En particular, $\mathcal{P}(\mathbb{N})$ no es enumerable.
- La próxima vez, vamos a ver que $\mathbb{R} \approx \mathcal{P}(\mathbb{N})$;

Corolario

Existe un número real que no es algebraico.

▶ No existe "infinitud más grande".

Hipótesis (de continuo)

Si $A \leq \mathcal{P}(\mathbb{N})$, entonces A es enumerable o $A \approx \mathcal{P}(\mathbb{N})$.

- ▶ En particular, $\mathcal{P}(\mathbb{N})$ no es enumerable.
- La próxima vez, vamos a ver que $\mathbb{R} \approx \mathcal{P}(\mathbb{N})$;

Corolario

Existe un número real que no es algebraico.

No existe "infinitud más grande".

Hipótesis (de continuo)

Si $A \leq \mathcal{P}(\mathbb{N})$, entonces A es enumerable o $A \approx \mathcal{P}(\mathbb{N})$.

▶ (Gödel, 1940) no se puede refutar, (Cohen, 1963) no se puede probar...

iGracias!