INTRODUCTION TO CATEGORY THEORY

CARSON JAMES

Contents

Preface		1
1. (Categories, Functors and Natural Transformations	2
1.1.	von Neumann–Bernays–Gödel Set Theory	2
1.2.	Categories	3
1.3.	Functors	6
1.4.	Natural Transformations	10
1.5.	Product Categories	13

Preface

cc-by-nc-sa

1. Categories, Functors and Natural Transformations

1.1. von Neumann-Bernays-Gödel Set Theory.

Definition 1.1.1. Let x be a class. Then x is said to be a set iff there exists a class A such that $x \in A$.

Note 1.1.2. We can define cartesion products, relations, and functions for classes just like for sets.

Axiom 1.1.3. Axiom of Replacement:

Let A, B be classes and $f: A \to B$. If A is a set, then f(A) is a set.

Axiom 1.1.4. Schema of Specification:

Let ϕ a propositional function on sets. Then there exists a class A such that for each set x, $x \in A$ iff $\phi(x)$.

Exercise 1.1.5. There exists a class A such that for each class $x, x \in A$ iff x is a set.

Proof. Define ϕ by

$$\phi(x): x = x$$

Axiom 1.1.4 implies that there exists a class A such that for each set $x, x \in A$ iff x = x. Let x be a class. If $x \in A$, then by definition, x is a set.

Conversely, if x is a set, then by construction, $x \in A$.

Exercise 1.1.6. There exists a class A such that for each class G and $*: G \times G \to G$, $(G,*) \in A$ iff (G,*) is a group.

Proof. Define ϕ_1 , ϕ_2 and ϕ_3 by

- $\phi_1(G,*):*:G\times G\to G$ is associative
- $\phi_2(G,*)$: there exists $e \in G$ such that for each $g \in G$, e*g = g*e = g
- $\phi_3(G,*)$: for each $g \in G$ there exists $h \in G$ such that g*h = h*g = e

Define ϕ by

$$\phi(G,*): \phi_1(G,*) \text{ and } \phi_2(G,*) \text{ and } \phi_3(G,*)$$

Then there exists a class A such that for each set G and $*: G \times G \to G$, $(G,*) \in A$ iff $\phi(G,*)$ (G,*) "is a group". Therefore, for each group (G,*), $(G,*) \in A$. **FINISH!!!**

1.2. Categories.

Definition 1.2.1. Let C_0 , C_1 be classes and dom, cod : $C_1 \to C_0$ class functions. Set $C = (C_0, C_1, \text{dom}, \text{cod})$. Then C is said to be a **category** if

- (1) (composition): for each $f, g \in C_1$, if cod(f) = dom(g), then there exists $g \circ f \in C_1$ such that $dom(g \circ f) = dom(f)$ and $cod(g \circ f) = cod(g)$
- (2) (associativity): for each $f, g, h \in C_1$, if cod(f) = dom(g) and cod(g) = dom(h), then

$$(h \circ g) \circ f = h \circ (g \circ f)$$

(3) (identity): for each $X \in \mathcal{C}_0$, there exists $1_X \in \mathcal{C}_1$ such that $dom(1_X) = cod(1_X) = X$ and for each $f, g \in \mathcal{C}_1$, if dom(f) = X and cod(g) = X, then

$$f \circ 1_X = f$$
 and $1_X \circ g = g$

We define the

- objects of \mathcal{C} , denoted $\mathrm{Obj}(\mathcal{C})$, by $\mathrm{Obj}(\mathcal{C}) = C_0$
- morphisms of \mathcal{C} , denoted $\operatorname{Hom}_{\mathcal{C}}$, by $\operatorname{Hom}_{\mathcal{C}} = C_1$

For $X, Y \in \text{Obj}(\mathcal{C})$, we define the **morphisms from** X **to** Y, denoted $\text{Hom}_{\mathcal{C}}(X, Y)$, by $\text{Hom}_{\mathcal{C}}(X, Y) = \{ f \in \text{Hom}(\mathcal{C}) : \text{dom}(f) = X \text{ and } \text{cod}(f) = Y \}.$

Note 1.2.2. We typically define a category \mathcal{C} by specifying

- Obj(C)
- for $X, Y \in \text{Obj}(\mathcal{C})$, the class $\text{Hom}_{\mathcal{C}}(X, Y)$
- for $X, Y, Z \in \text{Obj}(\mathcal{C})$, $f \in \text{Hom}_{\mathcal{C}}(X, Y)$ and $g \in \text{Hom}_{\mathcal{C}}(Y, Z)$, the composite morphism $g \circ f \in \text{Hom}_{\mathcal{C}}(X, Z)$.

and then show

- well-definedness of composition
- associativity of composition
- existence of identities

Definition 1.2.3. Let \mathcal{C} be a category. Then \mathcal{C} is said to be

- small if $Obj(\mathcal{C})$ and $Hom_{\mathcal{C}}$ are sets
- locally small if for each $A, B \in \mathrm{Obj}(\mathcal{C})$, $\mathrm{Hom}_{\mathcal{C}}(A, B)$ is a set

Exercise 1.2.4. Let \mathcal{C} be a category. If \mathcal{C} is small, then \mathcal{C} is a set.

Proof. Suppose that \mathcal{C} is small. Then $\mathrm{Obj}(\mathcal{C})$ and $\mathrm{Hom}_{\mathcal{C}}$ are sets. Then $\mathcal{P}(\mathrm{Obj}(\mathcal{C}))$, $\mathcal{P}(\mathrm{Hom}_{\mathcal{C}})$ and $\mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}}$ are sets. Hence $\mathrm{Obj}(\mathcal{C}) \times \mathrm{Hom}_{\mathcal{C}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}}$ is a set. By definition, $\mathcal{C} = (\mathrm{Obj}(\mathcal{C}), \mathrm{Hom}_{\mathcal{C}}, \mathrm{dom}, \mathrm{cod}) \in \mathrm{Obj}(\mathcal{C}) \times \mathrm{Hom}_{\mathcal{C}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}}$. By definition, \mathcal{C} is a set.

Exercise 1.2.5. There exists a class A such that $C \in A$ iff C is a small category.

Proof. Exercise 1.2.4 implies that for each category C, C is small implies that C is a set. Define ϕ by

$$\phi(\mathcal{C}):\mathcal{C}$$
 is a small category

Then Axiom 1.1.4 implies that there exists a class A such that $C \in A$ iff C is a small category.

Definition 1.2.6. Let \mathcal{C} be a category, we define the dual of \mathcal{C} or the **opposite of** \mathcal{C} , denoted \mathcal{C}^{op} , by

- $Obj(\mathcal{C}^{op}) = Obj(\mathcal{C})$
- for $X, Y \in \text{Obj}(\mathcal{C}^{\text{op}})$, $\text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y) = \text{Hom}_{\mathcal{C}}(Y, X)$
- for $f \in \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(X,Y), g \in \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(Y,Z), g \circ_{\mathcal{C}^{\operatorname{op}}} f = f \circ_{\mathcal{C}} g$

Exercise 1.2.7. Let \mathcal{C} be a category. Then \mathcal{C}^{op} is a category.

Proof.

• for $W, X, Y, Z \in \text{Obj}(\mathcal{C})$, $f \in \text{Hom}_{\mathcal{C}^{\text{op}}}(W, X)$ and $g \in \text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y)$ and $h \in \text{Hom}_{\mathcal{C}^{\text{op}}}(Y, Z)$. Then

$$(h \circ_{\mathcal{C}^{\mathrm{op}}} g) \circ_{\mathcal{C}^{\mathrm{op}}} f = f \circ_{\mathcal{C}} (h \circ_{\mathcal{C}^{\mathrm{op}}} g)$$

$$= f \circ_{\mathcal{C}} (g \circ_{\mathcal{C}} h)$$

$$= (f \circ_{\mathcal{C}} g) \circ_{\mathcal{C}} h$$

$$= h \circ_{\mathcal{C}^{\mathrm{op}}} (f \circ_{\mathcal{C}} g)$$

$$= h \circ_{\mathcal{C}^{\mathrm{op}}} (q \circ_{\mathcal{C}^{\mathrm{op}}} f)$$

So composition is associative.

• Let $X \in \text{Obj}(\mathcal{C})$ and $f, g \in \text{Hom}_{\mathcal{C}^{\text{op}}}$. Suppose that dom(f) = X and cod(g) = XThen

$$f \circ_{\mathcal{C}^{\mathrm{op}}} 1_X = 1_X \circ_{\mathcal{C}} f$$
$$= f$$

and

$$1_X \circ_{\mathcal{C}^{\mathrm{op}}} g = g \circ_{\mathcal{C}} 1_X$$
$$= g$$

So
$$(1_X)_{\mathcal{C}^{op}} = (1_X)_{\mathcal{C}}$$
.

Definition 1.2.8. Let \mathcal{C} be a category and $X \in \text{Obj}(\mathcal{C})$. We define the slice category of \mathcal{C} over X, denoted \mathcal{C}/X , by

- $\operatorname{Obj}(\mathcal{C}/X) = \{ f \in \operatorname{Hom}_{\mathcal{C}} : \operatorname{cod}(f) = X \}$
- for $f, g \in \text{Obj}(\mathcal{C}/X)$,

 $\operatorname{Hom}_{\mathcal{C}/X}(f,g) = \{ \alpha \in \operatorname{Hom}_{\mathcal{C}} : \operatorname{dom}(\alpha) = \operatorname{dom}(f), \operatorname{cod}(\alpha) = \operatorname{dom}(g) \text{ and } f = g \circ \alpha \}$

i.e. for $f \in \text{Hom}_{\mathcal{C}}(A, X)$ and $g \in \text{Hom}_{\mathcal{C}}(B, X)$, $\alpha \in \text{Hom}_{\mathcal{C}/X}(f, g)$ iff the following diagram commutes:

• for $f, g, h \in \text{Obj}(\mathcal{C}/X)$, $\alpha \in \text{Hom}_{\mathcal{C}/X}(f, g)$ and $\beta \in \text{Hom}_{\mathcal{C}/X}(g, h)$,

$$\beta \circ_{\mathcal{C}/X} \alpha = \beta \circ_{\mathcal{C}} \alpha$$

Exercise 1.2.9. Let \mathcal{C} be a category and $X \in \mathrm{Obj}(\mathcal{C})$. Then \mathcal{C}/X is a category.

Proof.

• $f, g, h \in \text{Obj}(\mathcal{C}/X)$, $\alpha \in \text{Hom}_{\mathcal{C}/X}(f, g)$ and $\beta \in \text{Hom}_{\mathcal{C}/X}(g, h)$. Then $f = g \circ_{\mathcal{C}} \alpha$ and $g = h \circ_{\mathcal{C}} \beta$, i.e. the following diagrams commute:

Therefore, we have that

$$f = g \circ_{\mathcal{C}} \alpha$$
$$= (h \circ_{\mathcal{C}} \beta) \circ_{\mathcal{C}} \alpha$$
$$= h \circ_{\mathcal{C}} (\beta \circ_{\mathcal{C}} \alpha)$$

i.e. the following diagram commutes:

$$\operatorname{dom}(f) \xrightarrow{\beta \circ_{\mathcal{C}} \alpha} \operatorname{dom}(h)$$

$$f \xrightarrow{X} X$$

which implies that

$$\beta \circ_{\mathcal{C}/X} \alpha = \beta \circ_{\mathcal{C}} \alpha$$
$$\in \operatorname{Hom}_{\mathcal{C}/X}(f, h)$$

and composition is well defined.

- Associativity of $\circ_{\mathcal{C}/X}$ follows from associativity of $\circ_{\mathcal{C}}$.
- Let $f \in \mathrm{Obj}(\mathcal{C}/X)$ and $\alpha, \beta \in \mathrm{Hom}_{\mathcal{C}/X}$. Since $f \circ 1_{\mathrm{dom}_{\mathcal{C}}(f)} = f$, i.e. the following diagram commutes:

$$\operatorname{dom}(f) \xrightarrow{1_{\operatorname{dom}(f)}} \operatorname{dom}(f)$$

we have that $1_{\text{dom}(f)} \in \text{Hom}_{\mathcal{C}/X}(f, f)$. Suppose that $\text{dom}_{\mathcal{C}/X}(\alpha) = f$ and $\text{cod}_{\mathcal{C}/X}(\beta) = f$. Then

$$\alpha \circ_{\mathcal{C}/X} 1_{\text{dom}(f)} = \alpha \circ_{\mathcal{C}} 1_{\text{dom}(f)}$$
$$= \alpha$$

and

$$1_{\text{dom}(f)} \circ_{\mathcal{C}/X} \beta = 1_{\text{dom}(f)} \circ_{\mathcal{C}} \beta$$
$$= \beta$$

So
$$(1_f)_{\mathcal{C}/X} = (1_{\text{dom}(f)})_{\mathcal{C}}$$
.

1.3. Functors.

Definition 1.3.1. Let \mathcal{C} and \mathcal{D} be categories and $F_0: \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$, $F_1: \mathrm{Hom}_{\mathcal{C}} \to \mathrm{Hom}_{\mathcal{D}}$ class functions. Set $F = (F_0, F_1)$. Then F is said to be a functor from \mathcal{C} to \mathcal{D} , denoted $F: \mathcal{C} \to \mathcal{D}$, if

- (1) for each $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B), F_1(f) \in \text{Hom}_{\mathcal{D}}(F_0(A), F_0(B))$
- (2) for each $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C), F_1(g \circ f) = F_1(g) \circ F_1(f)$
- (3) for each $A \in \mathrm{Obj}(\mathcal{C})$, $F_1(\mathrm{id}_A) = \mathrm{id}_{F_0(A)}$

Note 1.3.2. For $A \in \text{Obj}(C)$ and $f \in \text{Hom}_{\mathcal{C}}$, we typically write F(A) and F(f) instead of $F_0(A)$ and $F_1(f)$ respectively.

Definition 1.3.3. Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories and $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$ functors. We define the **composition of** G **with** F, denoted $G \circ F: \mathcal{C} \to \mathcal{E}$, by

- $G \circ F(A) = G(F(A))$
- $G \circ F(f) = G(F(f))$

Exercise 1.3.4. Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories and $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$ functors. Then $G \circ F: \mathcal{C} \to \mathcal{E}$ is a functor.

Proof.

(1) Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Since $F(f) \in \text{Hom}_{\mathcal{D}}(F(A), F(B))$, we have that $G(F(f)) \in \text{Hom}_{\mathcal{E}}(G(F(A)), G(F(B)))$. Then

$$G \circ F(f) = G(F(f))$$

$$\in \operatorname{Hom}_{\mathcal{E}}(G(F(A)), G(F(B)))$$

$$= \operatorname{Hom}_{\mathcal{E}}(G \circ F(A), G \circ F(B))$$

(2) Let $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C)$. Then

$$G \circ F(g \circ f) = G(F(g \circ f))$$

$$= G(F(g) \circ F(f))$$

$$= G(F(g)) \circ G(F(f))$$

$$= G \circ F(g) \circ G \circ F(f)$$

(3) Let $A \in \text{Obj}(\mathcal{C})$. Then

$$G \circ F(\mathrm{id}_A) = G(F(\mathrm{id}_A))$$

$$= G(\mathrm{id}_{F(A)})$$

$$= \mathrm{id}_{G(F(A))}$$

$$= \mathrm{id}_{G \circ F(A)}$$

So $G \circ F : \mathcal{C} \to \mathcal{E}$ is a functor.

Exercise 1.3.5. Let \mathcal{C} , \mathcal{D} , \mathcal{E} , \mathcal{F} be categories and $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$, $H: \mathcal{E} \to \mathcal{F}$ functors. Then $(H \circ G) \circ F = H \circ (G \circ F)$.

Proof. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

•

$$(H \circ G) \circ F(A) = H \circ G(F(A))$$
$$= H(G(F(A)))$$
$$= H(G \circ F(A))$$
$$= H \circ (G \circ F)(A)$$

•

$$(H \circ G) \circ F(f) = H \circ G(F(f))$$

$$= H(G(F(f)))$$

$$= H(G \circ F(f))$$

$$= H \circ (G \circ F)(f)$$

Hence $(H \circ G) \circ F = H \circ (G \circ F)$.

Definition 1.3.6. Let \mathcal{C} be a category. We define the **identity functor from** \mathcal{C} **to** \mathcal{C} , denoted $\mathrm{id}_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$, by

- $id_{\mathcal{C}}(A) = A, (A \in Obj(\mathcal{C}))$
- $id_{\mathcal{C}}(f) = f, (f \in Hom_{\mathcal{C}})$

Exercise 1.3.7. Let \mathcal{C} be a category. Then $id_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ is a functor.

Proof.

(1) Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$\operatorname{id}_{\mathcal{C}}(f) = f$$

 $\in \operatorname{Hom}_{\mathcal{C}}(A, B)$
 $= \operatorname{Hom}_{\mathcal{C}}(\operatorname{id}_{\mathcal{C}}(A), \operatorname{id}_{\mathcal{C}}(B))$

(2) Let $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C)$. Then

$$id_{\mathcal{C}}(g \circ f) = g \circ f$$

= $id_{\mathcal{C}}(g) \circ id_{\mathcal{C}}(f)$

(3) Let $A \in \text{Obj}(\mathcal{C})$. Then

$$id_{\mathcal{C}}(id_A) = id_A$$

= $id_{id_{\mathcal{C}}(A)}$

Exercise 1.3.8. Let \mathcal{C} and \mathcal{D} be categories and $F:\mathcal{C}\to\mathcal{D}$. Then

- $(1) \operatorname{id}_{\mathcal{D}} \circ F = F$
- (2) $F \circ \mathrm{id}_{\mathcal{C}} = F$

Proof.

(1) Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$\operatorname{id}_{\mathcal{D}} \circ F(A) = \operatorname{id}_{\mathcal{D}}(F(A))$$

= $F(A)$

and

$$\operatorname{id}_{\mathcal{D}} \circ F(f) = \operatorname{id}_{\mathcal{D}}(F(f))$$

= $F(f)$

Since $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$ are arbitrary, $\text{id}_{\mathcal{D}} \circ F = F$.

(2) Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$F \circ \mathrm{id}_{\mathcal{C}}(A) = F(\mathrm{id}_{\mathcal{C}}(A))$$
$$= F(A)$$

and

$$F \circ \mathrm{id}_{\mathcal{C}}(f) = F(\mathrm{id}_{\mathcal{C}}(f))$$

= $F(f)$

Since $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$ are arbitrary, $F \circ \text{id}_{\mathcal{C}} = F$.

Exercise 1.3.9. Let \mathcal{C} and \mathcal{D} be categories and $F: \mathcal{C} \to \mathcal{D}$. If \mathcal{C} is small, then F is a set.

Proof. Suppose that \mathcal{C} is small. Then $\mathrm{Obj}(\mathcal{C})$ and $\mathrm{Hom}_{\mathcal{C}}$ are sets. By definition, there exist $F_0: \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$ and $F_1: \mathrm{Hom}_{\mathcal{C}} \to \mathrm{Hom}_{\mathcal{D}}$ such that $F = (F_0, F_1)$. Axiom 1.1.3 implies that $F_0(\mathrm{Obj}(\mathcal{C}))$ and $F_1(\mathrm{Hom}_{\mathcal{C}})$ are sets. Therefore, $\mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C}))$ and $\mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}})$ are sets. Hence $\mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C})))$ and $\mathcal{P}(\mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}}))$ are sets. Since $F_0 \subset \mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C}))$ and $F_1 \subset \mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}})$, we have that $F_0 \in \mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C})))$ and $F_1 \in \mathcal{P}(\mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}}))$. Hence F_0 and F_1 are sets. Thus $F = (F_0, F_1)$ is a set.

Exercise 1.3.10. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Then there exists a class A such that for each class F, $F \in A$ iff $F : \mathcal{C} \to \mathcal{D}$.

Proof. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Define ϕ by

$$\phi(F):F:\mathcal{C}\to\mathcal{D}$$

Then there exists a class A such that for each set F, $F \in A$ iff $\phi(F)$. Let F be a class. Suppose that $F \in A$. By Definition 1.1.1, F is a set. Since F is a set and $F \in A$, we have that $\phi(F)$. Hence $F : \mathcal{C} \to \mathcal{D}$.

Conversely, suppose that $F: \mathcal{C} \to \mathcal{D}$. Exercise 1.3.9 implies that F is a set. Since F is a set and $\phi(F)$ is true, we have that $F \in A$.

Definition 1.3.11. We define **Cat** by

- $Obj(Cat) = \{C : C \text{ is a small category}\}.$
- for $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathbf{Cat})$,

$$\operatorname{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D}) = \{F : F : \mathcal{C} \to \mathcal{D}\}\$$

• for $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathbf{Cat}), F \in \text{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D}) \text{ and } G \in \text{Hom}_{\mathbf{Cat}}(\mathcal{D}, \mathcal{E}),$

$$G \circ_{\mathbf{Cat}} F = G \circ F$$

Exercise 1.3.12. We have that Cat is

- (1) a category
- (2) locally small

Proof.

- (1) The previous exercises imply the associativity of composition and the existence of identities.
- (2) Let $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathbf{Cat})$ and $F \in \mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$. Definition 1.2.3 implies that $\mathrm{Obj}(\mathcal{C})$, $\mathrm{Obj}(\mathcal{D})$, $\mathrm{Hom}_{\mathcal{C}}$ and $\mathrm{Hom}_{\mathcal{D}}$ are sets. Then $\mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})}$ and $\mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$ are sets. Hence $\mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})} \times \mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$ is a set. Let $F \in \mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$. Then there exist $F_0 \in \mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})}$ and $F_1 \in \mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$ such that $F = (F_0, F_1)$. Therefore $F \in \mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})} \times \mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$. Since $F \in \mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$ is arbitrary,

$$\operatorname{Hom}_{\mathbf{Cat}}(\mathcal{C},\mathcal{D}) \subset \operatorname{Obj}(\mathcal{D})^{\operatorname{Obj}(\mathcal{C})} \times \operatorname{Hom}_{\mathcal{D}}^{\operatorname{Hom}_{\mathcal{C}}}$$

which implies that $\mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C},\mathcal{D})$ is a set. Therefore, \mathbf{Cat} is locally small.

1.4. Natural Transformations.

Definition 1.4.1. Let \mathcal{C} and \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Hom}_{\mathcal{D}}$. Then α is said to be a **natural transformation from** F **to** G, denoted $\alpha : F \Rightarrow G$, if

- (1) for each $A \in \text{Obj}(\mathcal{C}), \alpha_A \in \text{Hom}_{\mathcal{D}}(F(A), G(A))$
- (2) for each $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$, $G(f) \circ \alpha_A = \alpha_B \circ F(f)$, i.e. the following diagram commutes:

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow^{G(f)}$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

Definition 1.4.2. Let \mathcal{C} , \mathcal{D} be categories, $F, G, H : \mathcal{C} \to \mathcal{D}$ functors and $\alpha : F \Rightarrow G$, $\beta : G \Rightarrow H$ natural transformations. We define the **composition of** β **with** α , denoted $\beta \circ \alpha : F \Rightarrow H$, by

$$(\beta \circ \alpha)_A = \beta_A \circ \alpha_A$$

Exercise 1.4.3. Let \mathcal{C} , \mathcal{D} be categories, $F, G, H : \mathcal{C} \to \mathcal{D}$ functors and $\alpha : F \Rightarrow G$, $\beta : G \Rightarrow H$ natural transformations. Then $\beta \circ \alpha : F \Rightarrow H$ is a natural transformation.

Proof.

(1) Let $A \in \text{Obj}(\mathcal{C})$. Since $\alpha_A \in \text{Hom}_{\mathcal{D}}(F(A), G(A))$ and $\beta_A \in \text{Hom}_{\mathcal{D}}(G(A), H(A))$, we have that

$$(\beta \circ \alpha)_A = \beta_A \circ \alpha_A$$

 $\in \operatorname{Hom}_{\mathcal{D}}(F(A), H(A))$

(2) Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Since $\alpha : F \Rightarrow G$ and $\beta : G \Rightarrow H$, $G(f) \circ \alpha_A = \alpha_B \circ F(f)$ and $H(f) \circ \beta_A = \beta_B \circ G(f)$. Therefore

$$H(f) \circ (\beta \circ \alpha)_A = H(f) \circ (\beta_A \circ \alpha_A)$$

$$= (H(f) \circ \beta_A) \circ \alpha_A$$

$$= (\beta_B \circ G(f)) \circ \alpha_A$$

$$= \beta_B \circ (G(f) \circ \alpha_A)$$

$$= \beta_B \circ (\alpha_B \circ F(f))$$

$$= (\beta_B \circ \alpha_B) \circ F(f)$$

$$= (\beta \circ \alpha)_B \circ F(f)$$

So $\beta \circ \alpha : F \Rightarrow H$ is a natural transformation.

Exercise 1.4.4. Let \mathcal{C} , \mathcal{D} be categories, $F, G, H, I : \mathcal{C} \to \mathcal{D}$ functors and $\alpha : F \Rightarrow G$, $\beta : G \Rightarrow H$ and $\gamma : H \Rightarrow I$ natural transformations. Then

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha)$$

Proof. Let $A \in \text{Obj}(\mathcal{C})$. By definition,

$$[(\gamma \circ \beta) \circ \alpha]_A = (\gamma \circ \beta)_A \circ \alpha_A$$

$$= (\gamma_A \circ \beta_A) \circ \alpha_A$$

$$= \gamma_A \circ (\beta_A \circ \alpha_A)$$

$$= \gamma_A \circ (\beta \circ \alpha)_A$$

$$= [\gamma \circ (\beta \circ \alpha)]_A$$

Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary,

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha)$$

Definition 1.4.5. Let \mathcal{C} , \mathcal{D} be categories and $F: \mathcal{C} \to \mathcal{D}$. We define the **identity natural transformation from** F **to** F, denoted $\mathrm{id}_F: F \Rightarrow F$, by

$$(\mathrm{id}_F)_A = \mathrm{id}_{F(A)}$$

Exercise 1.4.6. Let \mathcal{C} , \mathcal{D} be categories and $F: \mathcal{C} \to \mathcal{D}$. Then $\mathrm{id}_F: F \Rightarrow F$ is a natural transformation from F to F.

Proof.

(1) Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\mathrm{id}_F)_A = \mathrm{id}_{F(A)}$$

 $\in \mathrm{Hom}_{\mathcal{D}}(F(A), F(A))$
 $= \mathrm{Hom}_{\mathcal{C}}(\mathrm{id}_{\mathcal{C}}(A), \mathrm{id}_{\mathcal{C}}(B))$

(2) Let $A, B \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$F(f) \circ (\mathrm{id}_F)_A = F(f) \circ \mathrm{id}_{F(A)}$$

$$= F(f)$$

$$= \mathrm{id}_{F(B)} \circ F(f)$$

$$= (\mathrm{id}_F)_B \circ F(f)$$

Exercise 1.4.7. Let \mathcal{C} , \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \Rightarrow G$. Then

- (1) $id_G \circ \alpha = \alpha$
- (2) $\alpha \circ \mathrm{id}_F = \alpha$

Proof.

(1) Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\mathrm{id}_G \circ \alpha)_A = (\mathrm{id}_G)_A \circ \alpha_A$$
$$= \mathrm{id}_{G(A)} \circ \alpha_A$$
$$= \alpha_A$$

Since $A \in \mathrm{Obj}(C)$ is arbitrary, $\mathrm{id}_G \circ \alpha = \alpha$

(2) Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\alpha \circ \mathrm{id}_F)_A = \alpha_A \circ (\mathrm{id}_F)_A$$
$$= \alpha_A \circ \mathrm{id}_{F(A)}$$
$$= \alpha_A$$

Since $A \in \text{Obj}(C)$ is arbitrary, $\alpha \circ \text{id}_F = \alpha$.

Exercise 1.4.8. Let \mathcal{C} and \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \Rightarrow G$. If \mathcal{C} is small, then α is a set.

Proof. Suppose that \mathcal{C} is small. Then $\mathrm{Obj}(\mathcal{C})$ is a set. Since $\alpha : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Hom}_{\mathcal{D}}$, Axiom 1.1.3 implies that $\alpha(\mathrm{Obj}(\mathcal{C}))$ is a set. Then $\mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C}))$ is a set. Therefore $\mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C})))$ is a set. Since $\alpha \subset \mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C}))$, we have that $\alpha \in \mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C})))$ which implies that α is a set.

Exercise 1.4.9. Let \mathcal{C} and \mathcal{D} be categories and $F, G : \mathcal{C} \to \mathcal{D}$. If \mathcal{C} is small, then there exists a class A such that for each class α , $\alpha \in A$ iff $\alpha : F \Rightarrow G$.

Proof. Suppose that \mathcal{C} is small. Define ϕ by

$$\phi(\alpha):\alpha:F\Rightarrow G$$

Axiom 1.1.4 implies that there exists a class A such that for each set α , $\alpha \in A$ iff $\phi(\alpha)$. Let α be a class. Suppose that $\alpha \in A$. By Definition 1.1.1, α is a set. Since α is a set and $\alpha \in A$, we have that $\phi(\alpha)$. Hence $\alpha : F \Rightarrow G$.

Conversely, suppose that $\alpha : F \Rightarrow G$. Since \mathcal{C} is small, Exercise 1.4.8 implies that α is a set. Since $\phi(\alpha)$, we have that $\alpha \in A$.

Definition 1.4.10. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. We define the functor category from \mathcal{C} to \mathcal{D} , denoted $\mathcal{D}^{\mathcal{C}}$, by

- $\mathrm{Obj}(\mathcal{D}^{\mathcal{C}}) = \{F : F : \mathcal{C} \to \mathcal{D}\}$
- For $F, G \in \text{Obj}(\mathcal{D}^{\mathcal{C}})$, $\text{Hom}_{\mathcal{D}^{\mathcal{C}}}(F, G) = \{\alpha : \alpha : F \Rightarrow G\}$
- For $F, G, H \in \text{Obj}(\mathcal{D}^{\mathcal{C}})$, $\alpha \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(F, G)$ and $\beta \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(G, H)$, $\beta \circ_{\mathcal{D}^{\mathcal{C}}} \alpha = \beta \circ \alpha$

Exercise 1.4.11. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Then $\mathcal{D}^{\mathcal{C}}$ is a category.

Proof. The previous exercises imply the associativity of composition and existence of identities. \Box

1.5. Product Categories.

Definition 1.5.1. Let \mathcal{C} and \mathcal{D} be categories. We define the **product category of** \mathcal{C} and \mathcal{D} , denoted $\mathcal{C} \times \mathcal{D}$ by

- $Obj(\mathcal{C} \times \mathcal{D}) = \{(A, B) : A \in Obj(\mathcal{C}) \text{ and } B \in Obj(\mathcal{D})\}$
- for each $(A, A'), (B, B') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B')) = \{(f, g) : f \in \text{Hom}_{\mathcal{C}}(A, B) \text{ and } g \in \text{Hom}_{\mathcal{C}}(A', B')\}$
- for each $(A, A'), (B, B'), (C, C') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), (f, f') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B'))$ and $(g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((B, B'), (C, C')),$

$$(q, q') \circ_{\mathcal{C} \times \mathcal{D}} (f, f') = (q \circ_{\mathcal{C}} f, q' \circ_{\mathcal{D}} f')$$

Exercise 1.5.2. Let \mathcal{C} and \mathcal{D} be categories. Then $\mathcal{C} \times \mathcal{D}$ is a category.

Proof.

• Let $(A, A'), (B, B'), (C, C') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), (f, f') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B'))$ and $(g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((B, B'), (C, C'))$. Then $f \in \text{Hom}_{\mathcal{C}}(A, B), g \in \text{Hom}_{\mathcal{C}}(B, C), f' \in \text{Hom}_{\mathcal{D}}(A', B')$, and $g' \in \text{Hom}_{\mathcal{D}}(B', C')$. Hence $g \circ_{\mathcal{C}} f \in \text{Hom}_{\mathcal{C}}(A, C)$ and $g' \circ_{\mathcal{D}} f' \in \text{Hom}_{\mathcal{D}}(A', C')$. Thus

$$(g, g') \circ_{\mathcal{C} \times \mathcal{D}} (f, f') = (g \circ_{\mathcal{C}} f, g' \circ_{\mathcal{D}} f')$$

$$\in \operatorname{Hom}_{\mathcal{C} \times \mathcal{D}} ((A, A'), (C, C'))$$

Thus, composition is well defined.

• Let $(A, A'), (B, B'), (C, C'), (D, D') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), (f, f') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B')), (g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((B, B'), (C, C')) \text{ and } (h, h') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((C, C'), (D, D')).$ Then

$$\begin{aligned} \left[(h,h') \circ_{\mathcal{C} \times \mathcal{D}} (g,g') \right] \circ_{\mathcal{C} \times \mathcal{D}} (f,f') &= (h \circ_{\mathcal{C}} g,h' \circ_{\mathcal{D}} g') \circ_{\mathcal{C} \times \mathcal{D}} (f,f') \\ &= ((h \circ_{\mathcal{C}} g) \circ_{\mathcal{C}} f, (h' \circ_{\mathcal{D}} g') \circ_{\mathcal{D}} f') \\ &= (h \circ_{\mathcal{C}} (g \circ_{\mathcal{C}} f), h' \circ_{\mathcal{D}} (g' \circ_{\mathcal{D}} f')) \\ &= (h,h') \circ_{\mathcal{C} \times \mathcal{D}} (g \circ_{\mathcal{C}} f,g' \circ_{\mathcal{D}} f') \\ &= (h,h') \circ_{\mathcal{C} \times \mathcal{D}} \left[(g,g') \circ_{\mathcal{C} \times \mathcal{D}} (f,f') \right] \end{aligned}$$

Thus composition is associative.

• Let $(A, B) \in \text{Obj}(\mathcal{C} \times \mathcal{D})$, $(f, f'), (g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}$. Suppose that $\text{dom}_{\mathcal{C} \times \mathcal{D}}(f, f') = (A, B)$ and $\text{cod}_{\mathcal{C} \times \mathcal{D}}(g, g') = (A, B)$. Then $\text{dom}_{\mathcal{C}}(f) = A$, $\text{dom}_{\mathcal{D}}(f') = B$, $\text{cod}_{\mathcal{C}}(g) = A$ and $\text{cod}_{\mathcal{D}}(g') = B$. Hence

$$(f, f') \circ_{\mathcal{C} \times \mathcal{D}} (1_A, 1_B) = (f \circ_{\mathcal{C}} 1_A, f' \circ_{\mathcal{D}} 1_B)$$
$$= (f, f)$$

and

$$(1_A, 1_B) \circ_{\mathcal{C} \times \mathcal{D}} (g, g') = (1_A \circ_{\mathcal{C}} g, 1_B \circ g')$$
$$= (g, g')$$

Therefore $(1_{(A,B)})_{\mathcal{C}\times\mathcal{D}} = (1_A, 1_B)$.