

CORSO DI LAUREA IN FISICA

LABORATORIO DI FISICA 3

D02 FUNZIONI LOGICHE

Prof. F. Forti (materiale by C. Roda, G.Punzi)

Sommario

- Implementazione di funzioni logiche arbitrarie
 - Somma di prodotti
 - Prodotti di somme
- Semplificazione con algebra booleana
- Mappe di Karnaugh
- Applicazioni
 - XOR, parita'
 - Display a 7 segmenti
 - Sommatore
 - Comparatore

Forme standardi di funzioni logiche

- Esistono due modi standard per esprimere funzioni logiche: SOMMA DI PRODOTTI e PRODOTTI DI SOMME degli ingressi eventualmente opportunamente negati.
- Tutte le funzioni logiche posso essere espresse in queste forme (lo vediamo tra un attimo)
- L'importante conseguenza e' che tutte le funzioni logiche possono essere ottenute con porte logiche AND, OR e NOT!
- Abbiamo visto che AND, OR e NOT a piu' di due ingressi possono essere ottenuti banalmente da quelli a due ingressi
 -> tutte le funzioni logiche sono ottenibili da AND, OR e NOT a due ingressi

Somma di minterm

- Consideriamo la funzione logica di tre ingressi ed 1 uscita descritta dalla tabella qui a fianco
- Il valore dell'uscita L puo' essere scritta come OR di tutte le possibili combinazioni degli ingressi che danno 1 in uscita:

Ciascuno dei termini nella somma si indica con *minterm*Ciascuna volta che una variabile o il suo complemento
appaiono in una espressione si indica con *literal*L ha 5 minterm e 15 literals

Si vede quindi che qualsiasi funzione logica puo` essere espressa tramite porte AND, OR e NOT.

Ingressi X Y Z			Uscita L
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Fisica - Lab3 - Forti

Dalla funzione al circuito

Possiamo implementare direttamente la funzione

- Naturalmente non è l'unica implementazione
- □ E non è necessariamente la migliore
 - Semplificazione e riduzione

Prodotto di maxterm

- Per ottenere l'espressione del prodotto di somme dalla tabella della verita' devo fare l'operazione "complementare" a quella per ottenere la somma dei prodotti (OR di tutti miniterm che danno 1 in uscita, mnterm == AND delle variabili opportunamente negate se non 1):
- 1. Selezione tutte le righe che danno 0
- 2. costruisco l'OR delle variabili opportunamente negate se non danno 0 (maxterm)
- 3. costruisco l'AND di tutti maxterm

$$L = (X + Y + Z) \bullet (X + Y + \overline{Z}) \bullet (\overline{X} + Y + \overline{Z})$$

XYZ	L
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
1 0 0	1
1 0 1	0
1 1 0	1
1 1 1	1

Usando De Morgan....

- Es. La funzione L considerata prima
- Scriviamo NOT(L) e neghiamolo

$$L = XYZ + XYZ + XYZ$$
 Righe con zeri

$$L = \overline{\overline{L}} = \overline{\overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + X\overline{Y}Z}$$

usando De Morgan:

$$L = (\overline{\overline{XYZ}}) \cdot (\overline{\overline{XYZ}}) \cdot (\overline{\overline{XYZ}})$$

ancora De Morgan:

$$L = (X+Y+Z) \cdot (X+Y+Z) \cdot (X+Y+Z)$$

(ognuno dei fattori si chiama *maxterm*)

X	Υ	Z	L
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Esempio1 : circuito per gestire un display a sette segmenti

Х	Υ	Z	W	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

Proviamo a scrivere l'espressione di C come somma di minterm...

Esempio 1: circuito per gestire un display a sette segmenti

$$C = \overline{X} \bullet \overline{Y} \bullet \overline{Z} \bullet \overline{W} + \overline{X} \bullet \overline{Y} \bullet \overline{Z} \bullet W + \overline{X} \bullet \overline{Y} \bullet Z \bullet W + \overline{X} \bullet Y \bullet \overline{Z} \bullet \overline{W} + \overline{X} \bullet Y \bullet \overline{Z} \bullet W + \overline{X} \bullet Y \bullet Z \bullet W + \overline{X} \bullet Y \bullet \overline{Z} \bullet \overline{W} + X \bullet \overline{Y} \bullet \overline{Z} \bullet W$$

Questa espressione ha 36 literals, 9 4-input AND ed 1 9-input OR ... vediamo come puo' essere semplificata

Х	Υ	Z	W	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

Esempio 1: circuito per gestire un display a sette segmenti

$$C = \overline{X} \bullet \overline{Y} \bullet \overline{Z} \bullet \overline{W} + \overline{X} \bullet \overline{Y} \bullet \overline{Z} \bullet W + \overline{X} \bullet \overline{Y} \bullet Z \bullet W + \overline{X} \bullet Y \bullet \overline{Z} \bullet \overline{W} +$$

$$\overline{X} \bullet Y \bullet \overline{Z} \bullet W + \overline{X} \bullet Y \bullet Z \bullet \overline{W} + \overline{X} \bullet Y \bullet Z \bullet W + X \bullet \overline{Y} \bullet \overline{Z} \bullet \overline{W} + X \bullet \overline{Y} \bullet \overline{Z} \bullet W =$$

$$= \overline{X} \bullet Y \bullet (\overline{Z} \bullet \overline{W} + \overline{Z} \bullet W + Z \bullet \overline{W} + Z \bullet W) +$$

$$\overline{Y} \bullet \overline{Z} \bullet (\overline{X} \bullet \overline{W} + \overline{A} \bullet W + A \bullet \overline{W} + A \bullet W) +$$

$$+\overline{X} \bullet W \bullet (\overline{Y} \bullet \overline{Z} + \overline{Y} \bullet Z + Y \bullet \overline{Z} + Y \bullet Z) =$$

$$\overline{X} \bullet Y + \overline{Y} \bullet \overline{Z} + \overline{X} \bullet W$$

Raggruppando, riordinando e aggiungendo termini ridondanti

X	Υ	Z	W	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

Esempio 1: circuito per gestire un display a sette segmenti

Oppure: notando che C e` sempre acceso meno che per il 2.

- 1. Selezione tutte le righe che danno 0
- costruisco l'OR delle variabili opportunamente negate se non danno 0 (maxterm)
- 3. costruisco l'AND di tutti maxterm

$$C = X + Y + \overline{Z} + W$$

Х	Υ	Z	W	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

Commento: la semplificazione e' un'arte, anche se ci sono delle tecniche

Esempio 2: implementazione XOR

1

XOR come somma di minterm dala tabela della veria'

$$A \oplus B = \overline{A} \bullet B + A \bullet \overline{B}$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

2

Oppure: XOR e' vero se e' vero l'OR e l'AND e' falso

$$A \oplus B = (A + B) \bullet (\overline{A \bullet B})$$

XOR con solo 4 porte NAND

Trasformazione in NAND

$$A \oplus B = (A+B) \cdot (\overline{A \cdot B}) = \overline{(\overline{A \cdot (\overline{A \cdot B})}) + (B \cdot (\overline{A \cdot B}))} = \overline{(\overline{A \cdot (\overline{A \cdot B})}) \cdot (\overline{B \cdot (\overline{A \cdot B})})}$$

Esempio 3: Somma di nri binari

Consideriamo inizialmente la somma di due nri da 1 bit. Indico con Sum il bit somma e con R il bit riporto

a _i	b _i	Σ	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Questo circuito si chiama HALF ADDER

$$\Sigma = a_i \oplus b_i$$
$$R = a_i \bullet b_i$$

Per poter generalizzare questo circuito alla somma di un numero ad N bit devo considerare il riporto: quando somma i due bit nella posizione "i" devo considerare il riporto dai bit "i-1"

Somma di numeri binari

Per ottenere la somma dei due bit in posizione "i" di un nro ad N bit devo sommare alla somma dei due bit implementata con l'HALF ADDER il riporto della somma dei bit nella posizione "i-1"

a _i	b _i	R _{i-1}	Σ	R
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Potete verificare con la tabella della verita' che il circuito implementa la funzione voluta

Somma di numeri binari

Per ottenere la somma dei due bit in posizione "i" di un nro ad N bit devo sommare alla somma dei due bit implementata con l'HALF ADDER il riporto della somma dei bit nella posizione "i-1"

a _i	b _i	R _{i-1}	Σ	R
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Potete verificare con la tabella della verita' che il circuito implementa la funzione voluta

Semplificazione dei circuiti

Semplificazione e ottimizzazione rispetto a cosa?

- Numero di input (literals)
 - Riduce il numero di connessioni e di transistors
- Numero di porte logiche
 - Impatto diretto sull'area del circuito
- Numero di livelli
 - Riduzione del ritardo di propagazione
- Possibilità di usare logica programmabile
 - Uso di strutture standardadizzate programmabili che semplificano l'implementazione del circuito

Metodi di semplificazione di funzioni

- Partendo dai minterm o maxterm
 - Scegliere il più conveniente. Sfruttare i "don't care"
- Semplificazione algebrica
 - Non algoritmica; difficile dire quando ho trovato la soluzione migliore
- Computer-aided
 - Tempi di calcolo molto grandi per funzioni complesse
 - Necessaria una guida euristica
- □ L'intervento manuale è rilevante
 - Comprensione dei sistemi automatici
 - Controllo dei risultati su esempi ridotti

La madre delle semplificazioni

- ${f \square}$ Teorema di unificazione $A\cdot(B+\overline{B})=A$
- □ Trovare dei subset dei minterm dove solo una variabile cambia valore → si può eliminare quella variabile.

Esempio:
$$Y = \overline{A} \cdot \overline{B} + A \cdot \overline{B}$$

$$(richiede 2 AND, 2 NOT, 1 OR)$$

$$0 0 1$$

$$0 1 0$$

$$1 0 1$$

$$0 1 0$$

$$0 1 0$$

$$1 0 1$$

$$0 1 0$$

$$1 0 1$$

$$1 1 0$$

Metodo dei cubi booleani

- \square N input = cubo N-dimensionale
- □ Identificare gruppi contigui di nodi "1" o neri

Fisica - Lab3 - Forti

Mappatura delle tabelle di verità

 Si possono unire più "facce" del'ipercubo in elementi più semplici.

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

Half-adder

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin+AB+ACin

Mappe di Karnaugh

- Proiezioni bi-dimensionali dei cubi booleani
 - Aiutano a trovare le adiacenze
 - In ogni caso utilizzabili solo per poche variabili
- Sui due assi si mettono i possibili valori di A e B
- Nelle caselle is mette il valore di Y
- □ Si identificano gli "1" adiacenti e si accorpano
- I termini isolati devono essere espressi come funzioni di entrambe le variabili

Α	В	Υ
0	0	1
0	1	0
1	0	1
1	1	0

B
$$A$$
 0 1 $\overline{A} \cdot \overline{B} + A \cdot \overline{B} = (\overline{A} + A) \cdot \overline{B} = \overline{B}$ 0 0 Fisica - Lab3 - Forti

Altro esempio due ingressi

$$Y = \overline{A} \cdot \overline{B} + A \cdot \overline{B} + A \cdot B$$

$$Y = (\overline{A} \cdot \overline{B} + A \cdot \overline{B}) + (A \cdot \overline{B} + A \cdot B)$$

$$Y = A + \overline{B}$$

$$B = 0$$

□ Per i maxterm → adiacenze di "0"

$$A \cdot B + A \cdot \overline{B} = A \cdot (B + \overline{B}) = A$$

 $(A + B) \cdot (A + \overline{B}) = A + B \cdot \overline{B} = A$

Tre ingressi

- Raggruppare due ingressi su un asse ed ordinarli per codice Gray, in modo che solo un bit cambia
- □ Si gira intorno: wrap around

$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

Su un asse 1 variabile e sull'altra le altre 2 scritte in modo che solo 1 bit cambi di valore tra due celle adiacenti

. A		A=B=	1 ; A=	=1, B=	=0	I						
C B	0 0	0 1	11	10								
0	1	1	1)									
1	1	1/3					 		 		 	

- Si deve immaginare la mappa che si estenda a dx e sx
- 4 celle adiacenti linea o quadrato si combinando in modo da fornire una funzione di 1 sola variabile
- 2 celle adiacenti si combinano in modo da fornire una funzione di 2 variabili
- 1 cella isolata: termine a 3 variabili

$$Y = \overline{A} + B \bullet \overline{C}$$

Quattro ingressi

La mappa va immaginata "periodica" su tutto il piano

$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} + B \cdot \overline{D} + A \cdot B$$

- 8 celle (rettangolo) : termine a 1 variabile
- 4 celle : termine a 2 variabili
- 2 celle : termine a 3 variabili

Esempio 1: comparatore di nri binari

• Confronto di due nri binari a 2 bit: A e B

	Υ
A>B	1
A<=B	0

A1	Α0	B1	В0	Y
0	1	0	0	1
1	0	0	0	1
1	1	0	0	1
1	0	0	1	1
1	1	0	1	1
1	1	1	0	1

Per tutti gli altri casi: Y = 0

Anche EQ e LT

<u>A</u>	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
		0	1	1	0	0
		1	0	1	0	0
		1	1	1	0	0
0	1	C 0 0 1 1 0 0 1 1 0 0 1 1	DO 1 0 1 0 1 0 1 0 1 0 1	0 1 1 0 0 1 1 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0	GT 0 0 0 0 1 0 0 1 1 0 0
		0	1	0	1	0
		1	0	1	0	0
		1	1	1	0	0
1	0	0	0	0	0	1
		0	1	0	0	1
		1	0	0	1	0
		1	1	1	0	0
1	1	0	0	0	0	1
		0	1	0	0	1
		1	0	0	0	1
		1	1	0	1	0

Anche LT, EQ, GT

SCRIVERE LE FUNZIONI PER I TRE OUTPUT

Sommatore a due bit

• Ingressi: N1(A,B) N2(C,D) a due bit

• Uscita: N3(X,Y,Z) 3 bit

Esempio 2: sommatore di nri a 2 bit

$$X = AC + BCD + ABD$$

$$Z = B\overline{D} + \overline{B}D = B \oplus D$$

Per Y, dalla mappa di Karnaugh posso esprimere come:

- 2 termini a 3 variabili + 4 termini a 4 variabili
- oppure
- 4 termini di 3 variabiali + 2 termini di 4 variabili

Esempio 2: sommatore di nri a 2 bit

Per Y, dalla mappa di Karnaugh posso esprimere come:

• 2 termini a 3 variabili + 4 termini a 4 variabili

oppure

4 termini di 3 variabiali + 2 termini di 4 variabili

Considero due dei termini a 4 variabili:

$$\overline{A}B\overline{C}D + \overline{A}BC\overline{D} = \overline{A}B(\overline{C}D + C\overline{D}) = \overline{A}B(C \oplus D)$$

Facendo anologhe elaborazioni per gli altri termini:

$$Y_1 = \overline{B}(A \oplus C) + B(A \oplus C \oplus D)$$

Nel secondo caso:

$$Y_2 = \overline{ABC} + A\overline{BC} + A\overline{CD} + \overline{ACD} + \overline{ABCD} + \overline{ABCD}$$

Esempio 2: sommatore di nri a 2 bit

Y2 richiede 2 AND a 4 ingressi e 4 AND a 3 ingressi ed 1 OR a 6 ingressi per un totale di 7 gate e 20 literals

Y2 richiede solo 5 gate a 2 ingressi tuttavia due gate sono XOR.

$$Y_1 = \overline{B}(A \oplus C) + B(A \oplus C \oplus D)$$

$$Y_2 = \overline{ABC} + A\overline{BC} + A\overline{CD} + \overline{ACD} + \overline{ABCD} + ABCD$$

Don't cares

- In molti casi le funzioni non sono specificate per tutti gli ingressi possibili
 - Si indica con X il don't care = riga per cui non importa quale valore assume la funzione
- Di solito sono casi che non si presentano mai
- □ Si può scegliere 0 oppure 1 a seconda della convenienza → semplificazione ulteriore

Mappa di Karnaugh e "don't cares"

X	Υ	Z	W	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X

Visto la volta scorsa

Parte della funzione non definita

Esempio1 : circuito per gestire un display a sette segmenti

X	Υ	Z	W	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	Χ

La parte della funzione non definita puo` essere sfruttata per semplificare il circuito.

	t _k	Mappa di Karnaugh						
> N		00	01	11	10			
	00	1	1	X	1			
	01	1	1	X	1			
	11	1	1	X	X			
	10	0	1	X	Х			

Parte della funzione
$$C = X + Y + \overline{Z} + W =$$
 non
$$= Y + \overline{Z} + W$$
 definita