Examenul de bacalaureat național 2020 Proba E. c)

$\label{eq:material} \mbox{Matematică M_tehnologic} \\ \mbox{BAREM DE EVALUARE \Bar{S}I DE NOTARE}$

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(10 + \frac{1}{2}\right)\left(10 - \frac{1}{2}\right) = 100 - \frac{1}{4} =$	3p
	$=\frac{400-1}{4}=\frac{399}{4}$	2 p
2.	$f(x) = g(x) \Leftrightarrow 2x + 1 = 10 - x$	3 p
	$3x = 9 \Rightarrow x = 3$	2 p
3.	$x^2 + 13 = 7^2 \Rightarrow x^2 - 36 = 0$	3 p
	x = -6 sau $x = 6$, care convin	2p
4.	$p - \frac{20}{100} \cdot p = 800$, unde p este prețul tabletei înainte de ieftinire	3 p
	p = 1000 de lei	2 p
5.	AB = 6	2p
	$AM = \frac{AB}{2} = 3$	3 p
6.	$\sin 30^\circ = \frac{1}{2}, \ \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$2\sin^2 30^\circ - \sin^2 45^\circ = 2 \cdot \left(\frac{1}{2}\right)^2 - \left(\frac{\sqrt{2}}{2}\right)^2 = 2 \cdot \frac{1}{4} - \frac{2}{4} = 0$	3р

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 1 \cdot (-1) - 1 \cdot 1 =$	3 p
	=-1-1=-2	2p
b)	$A(a) \cdot A(-a) = \begin{pmatrix} a+1 & 1 \\ 1 & a-1 \end{pmatrix} \cdot \begin{pmatrix} -a+1 & 1 \\ 1 & -a-1 \end{pmatrix} = \begin{pmatrix} 2-a^2 & 0 \\ 0 & 2-a^2 \end{pmatrix} =$	3 p
	$=$ $\begin{pmatrix} 2-a^2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2-a^2 \end{pmatrix} I_2$, pentru orice număr real a	2 p
c)	$A(1) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(1)) = -1 \neq 0, \det(A(1))^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}$	3 p
	$X = A^{-1}(1) \cdot A(2) \Rightarrow X = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	2 p
2.a)	$3*2=3^2+3\cdot 2-3-2+1=$	3p
	=9+6-3-2+1=11	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 3

b)	$x*(-x) = x^2 + x \cdot (-x) - x - (-x) + 1 =$	3p
	$=x^2-x^2-x+x+1=1$, pentru orice număr real x	2p
c)	$2^{2x} + 4 \cdot 2^x - 2^x - 4 + 1 = 1 \Leftrightarrow 2^{2x} + 3 \cdot 2^x - 4 = 0 \Leftrightarrow (2^x + 4)(2^x - 1) = 0$	3 p
	$2^x = 1$, de unde obținem $x = 0$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$(2x+2)(x^2+2x+2)-(x^2+2x+3)(2x+2)$	
	$f'(x) = \frac{(2x+2)(x^2+2x+2)-(x^2+2x+3)(2x+2)}{(x^2+2x+2)^2} =$	3 p
	\	
	$=\frac{(2x+2)(x^2+2x+2-x^2-2x-3)}{2}=\frac{-2(x+1)}{2}, x \in \mathbb{R}$	2p
	$=\frac{(2x+2)(x^2+2x+2-x^2-2x-3)}{(x^2+2x+2)^2} = \frac{-2(x+1)}{(x^2+2x+2)^2}, \ x \in \mathbb{R}$	2p
b)	$x^{2}\left(1+\frac{2}{3}+\frac{3}{3}\right)$	
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 2x + 3}{x^2 + 2x + 2} = \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{2}{x} + \frac{3}{x^2}\right)}{x^2 \left(1 + \frac{2}{x} + \frac{2}{x^2}\right)} = 1$	3р
	Dreapta de ecuație $y=1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1$; pentru $x \in (-\infty, -1]$, $f'(x) \ge 0$, deci f este crescătoare pe $(-\infty, -1]$ și pentru $x \in [-1, +\infty)$, $f'(x) \le 0$, deci f este descrescătoare pe $[-1, +\infty)$	3p
	$\lim_{x \to -\infty} f(x) = 1, \ f(-1) = 2, \ \lim_{x \to +\infty} f(x) = 1, \ f \text{ este continuă și } f(x) \neq 1, \text{ pentru orice număr}$	2p
	real x , deci Im $f = (1,2]$	
2.a)	$\int_{0}^{1} f(x)\sqrt{x^{2}+4}dx = \int_{0}^{1} (x+2)dx =$	2p
	$= \left(\frac{x^2}{2} + 2x\right) \Big _0^1 = \frac{5}{2}$	3 p
b)	$\int_{0}^{1} \left(f^{2}(x) - 1 \right) dx = \int_{0}^{1} \left(\frac{x^{2} + 4x + 4}{x^{2} + 4} - 1 \right) dx = \int_{0}^{1} \frac{4x}{x^{2} + 4} dx =$	2p
	$= 2\ln\left(x^2 + 4\right) \Big _{0}^{1} = 2\ln 5 - 2\ln 4 = 2\ln\frac{5}{4}$	3р
c)	$F(x) = \int_{0}^{x} f(t)dt = \int_{0}^{x} \frac{t}{\sqrt{t^2 + 4}} dt + \int_{0}^{x} \frac{2}{\sqrt{t^2 + 4}} dt = \left(\sqrt{t^2 + 4} + 2\ln\left(t + \sqrt{t^2 + 4}\right)\right)\Big _{0}^{x} =$	3 p
	$= \sqrt{x^2 + 4} + 2\ln\left(x + \sqrt{x^2 + 4}\right) - 2 - 2\ln 2, \ x \in \mathbb{R}$	2 p