אינפי 3 - גליון בית 1 - אביב תשע"ז

- \mathbb{R}^n של \mathbb{R}^n , כלומר: ∞ ונורמת קבועי השקילות בין נורמת בין נורמת.
- $\|x\|_\infty \le \|x\|_3 \le C \|x\|_\infty$ מתקיים $x \in \mathbb{R}^n$ כך שלכל c, C > 0 כך מצאו מצאו (א)
- (כלומר, $C\|x_2\|_\infty=\|x_2\|_3$ י ו- $\|x_1\|_\infty=\|x_1\|_3$ כך ער $\|x_1\|_\infty=\|x_1\|_3$ כל מר, בי מצאו וקטורים שונים מ- $x_1,x_2\in\mathbb{R}^n$ ס- מונים מ- $x_1,x_2\in\mathbb{R}^n$ (כלומר, הראו שהקבועים הדוקים).
 - בי: פתי על $\left\|\cdot\right\|_a, \left\|\cdot\right\|_b$ הראו כי: תהיינה $\left\|\cdot\right\|_a, \left\|\cdot\right\|_b$
- מכיל $B_r\left(p\right)=\{x\in\mathbb{R}^n:\|x-p\|_a< r\}$ מהצורה מהצורה, קבוצה (כלומר, פתוח בנורמה שלוות (א) כל כדור פתוח בנורמה ומוכל בכדור פתוח בנורמה וומוכל בכדור פתוח בנורמה וומוכל בכדור פתוח בנורמה מ
- p-ט מתכנסת היא מתכנסת לנורמה $\|\cdot\|_a$ ביחס לנורמה $p\in\mathbb{R}^n$ מתכנסת לנקודה מתכנסת $\{p_k\}_{k=1}^\infty\subset\mathbb{R}^n$ ביחס ביחס לנורמה . $\|\cdot\|_b$
 - $\left\|\cdot\right\|_{b}$ ל- ביחס היא פתוחה היא מ"מ היא ל- $U\subset\mathbb{R}^{n}$ היא קבוצה ל- עותה ביחס ל- $U\subset\mathbb{R}^{n}$
 - $\|\cdot\|_b$ אמ"מ היא סגורה ביחס ל- ביחס ל- היא סגורה ביחס ל- ערכוצה $U\subset\mathbb{R}^n$ קבוצה (ד
- הוכיחו (ב- \mathbb{R}^n). הוכיחו f^{-1} (ב) פתוחה, גם f^{-1} (ב) פתוחה (ב- $f:D\to\mathbb{R}^m$). הוכיחו ש-f רציפה.
 - A, עבור קבוצה \mathbb{R}^n , נסמן ב $\operatorname{int}(A)$ את קבוצת כל הנקודות הפנימיות של $A\subset\mathbb{R}^n$
 - (A) הוכיתו כי int(A) פתוחה.
 - $U\subset int\left(A
 ight)$ פתוחה אז $U\subset A$ פתוחה (ב)
- 5. התבוננו בטענה הבאה: "אם $f:A\to\mathbb{R}^m,g:B\to\mathbb{R}^m$ ו- $A,B\subset\mathbb{R}^n$ פונקציות רציפות, כך ש- $h:A\cup B\to\mathbb{R}^m$ המוגדרת לפי $h:A\cup B\to\mathbb{R}^m$ כלומר, הן מזדהות בחיתוך), אז גם הפונקציה $h:A\cup B\to\mathbb{R}^m$ המוגדרת לפי $h:A\cup B\to\mathbb{R}^m$ רציפה". $h(x)=\begin{cases} f(x) & x\in A\\ g(x) & x\in B \end{cases}$
 - (א) הוכיחו את הטענה במקרה שבו A,B פתוחות.
 - (ב) הוכיחו את הטענה במקרה שבו A,B סגורות.
 - (ג) האם הטענה נכונה באופן כללי?
 - $.\|A\|=\sup_{\|x\|_2=1}\|Ax\|_2$ נגדיר גדיר $A\in\mathbb{R}^{m\times n}$ מטריצה לכל.6
 - (א) הראו כי ||⋅|| נורמה (על מרחב המטריצות).
- (ב) הראו כי אם $\|A\|$, וכי $\|Ax\|_2 \leq M \, \|x\|_2$ מתקיים $x \in \mathbb{R}^n$, אז לכל אז לכל הראו כי הראו כי אם אז לכל הכונה זו.
 - $\|AB\| \leq \|A\| \cdot \|B\|$ מתקיים $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k}$ מון מטריצות (ג)