DEFINICIÓN DE FUNCIONES

f[x_] := *expr*

Si la función viene definida a trozos utilizaremos las siguientes instrucciones

Piecewise[$\{\{val_1, cond_1\}, \{val_2, cond_2\}, ...\}$] representa una función a trozos que toma el valor val_i , en la región definida por $cond_i$

Piecewise[$\{\{val_1, cond_1\}, \{val_2, cond_2\}, ...\}$, val] representa una función a trozos que toma el valor val_i , en la región definida por $cond_i$ y val en el resto de los casos. Por defecto val = 0

REPRESENTACIÓN DE FUNCIONES

Se utilizan las siguientes instrucciones

Plot $[f, \{x, x_{min}, x_{max}\}]$ representa la función f como función de x desde x_{min} a x_{max} .

Plot [$\{f_1, f_2, ...\}$, $\{x, x_{min}, x_{max}\}$] representa varias funciones f_i .

OPCIONES UTILIZADAS EN LAS REPRESENTACIONES GRÁFICAS

Axes si se desea incluir los ejes de coordenadas

AxesLabel etiquetas para colocarles a los ejes de coordenadas:

{xlabel, None} especifica una etiqueta para el eje x;

{xlabel, ylabel} especifica una etiqueta para ambos ejes

AxesOrigin el punto en el que se interceptan los ejes

PlotStyle el estilo a usar para el gráfico

PlotLabel una expresión que se imprimirá como etiqueta para el gráfico

PlotRange el rango de las coordenadas a incluir en el gráfico;

All incluye todos los puntos

Ticks indica qué marcas dibujar en los ejes.

CÁLCULO DE LÍMITES

Para calcular el límite utilizaremos la instrucción:

```
Limit [expr_{\bullet} x \rightarrow x_0]
calcula el límite de expr cuando x se aproxima a x_0.
```

Para indicarle que es un límite lateral utilizaremos la instrucción Direction Si el límite es a la derecha (Direction \rightarrow -1) o a la izquierda(Direction \rightarrow 1)

CÁLCULO DE DERIVADAS

Para derivar una función F podemos utilizar su símbolo F' o bien se lo indicaremos con la instrucción D[F[x], x]

CÁLCULO DE INTEGRALES

Para integrar utilizaremos la instrucción

Integrate [f, x] calcula $\int f dx$. Integrate [f, {x, x_{min} , x_{max} }] calcula la integral definida $\int_{x}^{x_{max}} f dx$.

RESOLUCIÓN DE ECUACIONES

Para resolver la ecuación g(x) = 0 utilizaremos la instrucción Solve[expr, vars] que resuelve el sistema de ecuaciones o inecuaciones expr para las variables vars

EXPRESIÓN DE ALGUNAS FUNCIONES CON EL MATHEMATICA

Exp[x] función exponencial Sqrt[x] función raíz cuadrada IntegerPart[x] función parte entera Abs[x] función valor absoluto

EVOLUCIÓN DE UNA GRÁFICA SEGÚN LOS VALORES DE UN PARÁMETRO

 $\texttt{Manipulate} \ [\textit{expr,} \ \{\textit{u, u_{min, u_{max}}}\} \] \ \text{permite la manipulación interactiva de } \textit{expr} \ \text{según los}$ valores de u.

TABLA DE VALORES

Table [expr, {i, i_{min} , i_{max} }] genera una tabla evaluando en expr los valores de i desde i_{min} hasta i_{max}

EXPRESIÓN EN FORMA DECIMAL DE UN RESULTADO

Hay varias formas : poniendo al final : // N o bien ${\tt N}\left[\mathit{expr},\ \mathit{n}\right]$ da la forma decimal de expr con n dígitos de precisión