

Universidade Federal da Fronteira Sul

Campus Chapecó Bacharelado em Ciência da Computação

Exercícios indicados nas aulas 03 e 04

Aluno: Jean Carlo Hilger Professor: Andrei Braga

> Chapecó, março 2021

Sumário

1	$\mathbf{E}\mathbf{x}\mathbf{e}$	ercício 1		1
	1.1	Autômato M1	 	1
	1.2	Autômato M2	 	2
	1.3	Autômato M1	 	3
	1.4	Autômato M2		3

1 Exercício 1

A Figura 1 representa os diagramas de estado de dois autômatos finitos M_1 e M_2 . Responda às questões sobre cada um desses autômatos.

Figura 1: Diagramas dos autômatos finitos M_1 e M_2 .

1.1 Autômato M1

- 1. Qual é o estado inicial?
 - \bullet q_1 .
- 2. Qual é o conjunto de estados de aceitação?
 - q₂.
- 3. Por qual sequência de estados o autômato passa na entrada aabb?
 - $\bullet \ q_1 \to q_2 \to q_3 \to q_1 \to q_1.$
- 4. O autômato aceita a string aabb?
 - Não, pois o estado ao final da string não é um estado de aceitação.
- 5. O autômato aceita a string ϵ ?
 - Não. O estado inicial não é um estado de aceitação.

1.2 Autômato M2

- 1. Qual é o estado inicial?
 - \bullet q_1 .
- 2. Qual é o conjunto de estados de aceitação?
 - q_1, q_4 .
- 3. Por qual sequência de estados o autômato passa na entrada aabb?
 - $\bullet \ q_1 \to q_1 \to q_1 \to q_2 \to q_4.$
- 4. O autômato aceita a string aabb?
 - Sim, pois o estado final da string é um estado de aceitação.
- 5. O autômato aceita a string ϵ ?
 - Sim. Se o estado inicial for estado de aceitação, o autômato aceitará δ .

Exercício 2

Dê a definição formal (através de uma 5-upla) dos autômatos considerados no exercício anterior.

1.3 Autômato M1

Definido como $(Q, \Sigma, \delta, q_s, F)$, temos:

$$Q = \{q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$\delta = Tabela1$$

$$q_s = q_1$$

$$F = \{q_2\}$$

onde δ é dada pela tabela:

$$\begin{array}{c|cccc} & a & b \\ \hline q_1 & q_2 & q_1 \\ q_2 & q_3 & q_3 \\ q_3 & q_2 & q_1 \\ \end{array}$$

Tabela 1: Representação da função de transição para o autômato M_1 .

1.4 Autômato M2

Definido como $(Q, \Sigma, \delta, q_s, F),$ temos:

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{a, b\}$$

$$\delta = Tabela2$$

$$q_s = q_1$$

$$F = \{q_1, q_4\}$$

onde δ é dada pela tabela:

$$\begin{array}{c|cccc} & a & b \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_4 \\ q_3 & q_2 & q_1 \\ q_4 & q_3 & q_4 \\ \end{array}$$

Tabela 2: Representação da função de transição para o autômato M_2 .

Exercício 3

A definição formal de um autômato finito M é

$$(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$$

Onde α é dado pela Tabela 2 Dê o diagrama de estados desse autômato.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Figura 2: Tabela da função de transição δ .