Regresi Linear

Ali Akbar Septiandri

September 28, 2018

Universitas Al Azhar Indonesia

Daftar isi

- 1. Ordinary Least Squares
- 2. Error Minimisation
- 3. Non-linear Functions

"The only stupid question is the one you were afraid to ask but never did."

- Richard Sutton

Office hours dimulai pekan ini. Setiap hari Rabu, pukul 08.00-09.00.

Model-based reflex agents

Figure 1: Model yang mengandalkan riwayat persepsi dan dampaknya

Ordinary Least Squares

Prediksi hubungan antara dua variabel

Figure 2: Data hubungan antara 'share' dengan 'like' pada Facebook

Prediksi hubungan antara dua variabel

Figure 2: Data hubungan antara 'share' dengan 'like' pada Facebook

Simple linear regression

Fungsi linear

Kasus paling sederhana adalah mencocokkan garis lurus ke sekumpulan data

$$y = ax + b$$

dengan a adalah *slope*, gradien, atau kemiringan; sedangkan b dikenal dengan nama *intercept* atau bias.

Notasi lain

$$y = w_0 + w_1 x_1$$

dengan w adalah bobot atau koefisien.

Linear regresi dari fungsi yang diketahui

Example

```
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);
```


Figure 3: Data yang dimunculkan secara acak [VanderPlas, 2016]

Ordinary least squares (OLS) regression

Figure 4: Hasil pencocokan garis [VanderPlas, 2016]

Model slope: 2.02720881036

Model intercept: -4.99857708555

Bagaimana kalau ada lebih dari dua variabel yang ingin kita lihat hubungannya?

Multidimensional linear regression

Model

$$y = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_D x_D = \sum_{j=0}^{D} w_j x_j$$

dengan $x_0 = 1$

Notasi matriks-vektor

$$y = \mathbf{w} \cdot \phi(x)$$

dengan $\phi(x)$ adalah vektor fitur (feature vector)

9

Regresi linear untuk dua variabel

Figure 5: Hubungan antara 'share', 'comment', dan 'like' pada foto di Facebook

Prediktor linear (contoh)

Vektor bobot $\mathbf{w} \in \mathbb{R}^D$

bias: -20.24

share: 6.65

comment: 3.53

Vektor fitur $\phi(x) \in \mathbb{R}^D$

bias: 1

share: 147

comment: 58

$$\hat{y} = \mathbf{w} \cdot \phi(x)$$

$$= \sum_{j=1}^{D} w_j \phi_j(x)$$

$$= -20.24(1) + 6.65(147) + 3.53(58) = 1162.05$$

Jadi, diprediksi bahwa untuk foto dengan share = 147 dan comment = 58, foto tersebut akan mendapatkan ≈ 1162.05 likes.

Bagaimana cara mendapatkan nilai w?

Error Minimisation

(Supervised) Learning

• Kita ingin mencari $f: \mathcal{X} \to \mathcal{Y}$

X: data masukan

Y: data keluaran

dari data latih yang i.i.d.¹

$$\mathcal{D} = (x_1, y_1), ..., (y_N, y_N)$$

 Objektif: Meminimalkan generalisation error dengan menggunakan loss function ℓ, contohnya:

$$\ell(y, f(x)) = (y - f(x))^2$$

yang juga dikenal dengan nama squared loss

¹independent and identically distributed

Meminimalkan error pada data latih

• Untuk meminimalkan generalisation error

$$w^* = \arg\min_{w} \mathbb{E}_{X,Y}[(Y - w^T X)^2]$$

- Kita tidak punya data untuk seluruh kemungkinan pasangan nilai X dan Y!
- Ide: Minimalkan error pada data latih

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{|\mathcal{D}_{train}|} \sum_{(x,y) \in \mathcal{D}_{train}} \ell(y, x, \mathbf{w})$$

• Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

• Nilainya dapat dioptimasi dengan mencari turunan pertama, lalu atur nilainya menjadi 0, i.e. $\frac{\partial E}{\partial w}=0$ atau $\nabla_{\mathbf{w}}E(\mathbf{w})=0$

Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

- Nilainya dapat dioptimasi dengan mencari turunan pertama, lalu atur nilainya menjadi 0, i.e. $\frac{\partial E}{\partial w} = 0$ atau $\nabla_{\mathbf{w}} E(\mathbf{w}) = 0$
- Solusi tertutupnya:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

Didefinisikan fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

- Nilainya dapat dioptimasi dengan mencari turunan pertama, lalu atur nilainya menjadi 0, i.e. $\frac{\partial E}{\partial w} = 0$ atau $\nabla_{\mathbf{w}} E(\mathbf{w}) = 0$
- Solusi tertutupnya:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

• Bagian $(\phi^T \phi)^{-1} \phi^T$ dikenal sebagai *pseudo-inverse*

Non-linear Functions

Perhatikan kembali

Apa kekurangan dari regresi linear sederhana seperti ini?

Non-linearity

Figure 6: Data yang dihasilkan dari fungsi sin dengan noise

Bagaimana kalau datanya seperti ini?

Underfitting

Figure 7: Hasil fitting regresi linear sederhana

Jika model yang dihasilkan lebih sederhana dibandingkan data yang seharusnya

mengalami underfitting.

dicocokkan, maka model tersebut disebut

Polynomial Basis Functions

Regresi linear dengan fungsi basis polinomial

Jika kita mengubah $x_p = f_p(x)$, dengan $f_p()$ adalah fungsi transformasi, maka untuk $f_p() = x^p$ dan x adalah input berdimensi satu, modelnya menjadi

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots$$

Polynomial Basis Functions

ln

```
from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])
```

Out

```
array([[ 2., 4., 8.],
        [ 3., 9., 27.],
        [ 4., 16., 64.]])
```


Figure 8: Hasil *fitting* fungsi basis polinomial p = 2

Apa yang terjadi jika p dibuat lebih besar?

Overfitting

Figure 9: Hasil *fitting* fungsi basis polinomial p = 15

Jika model yang dihasilkan lebih kompleks (∼ parameternya banyak) dibandingkan data yang seharusnya dicocokkan, maka model tersebut disebut mengalami overfitting.

Kita dapat mengatasi masalah *overfitting* pada regresi linear dengan melakukan regularisasi. (non-examinable)

Bagaimana kalau atributnya bersifat kategori?

Contoh kasus

Buatlah model untuk memprediksi jumlah *likes* yang akan didapatkan sebuah foto jika diketahui usia pembuat pos, jenis kelaminnya, dan kategori gambarnya (pemandangan, orang, benda).

• usia = $\{x_1 \in \mathbb{N}\}$

- usia = $\{x_1 \in \mathbb{N}\}$
- $\bullet \ \ \mathsf{jenis} \ \mathsf{kelamin} = \{\mathsf{laki-laki}, \ \mathsf{perempuan}\} = \{0,1\}$

- usia = $\{x_1 \in \mathbb{N}\}$
- ullet jenis kelamin = {laki-laki, perempuan} = $\{0,1\}$
- kategori = {pemandangan, orang, benda} = $\{0, 1, 2\}$?

- usia = $\{x_1 \in \mathbb{N}\}$
- jenis kelamin = {laki-laki, perempuan} = $\{0, 1\}$
- kategori = {pemandangan, orang, benda} = $\{0, 1, 2\}$?
- Apakah benda > pemandangan?

- usia = $\{x_1 \in \mathbb{N}\}$
- ullet jenis kelamin = {laki-laki, perempuan} = {0,1}
- kategori = {pemandangan, orang, benda} = $\{0, 1, 2\}$?
- Apakah benda > pemandangan?
- Apakah perempuan > laki-laki?

One-of-k encoding

• Dikenal juga dengan nama "one-hot encoding"

One-of-k encoding

- Dikenal juga dengan nama "one-hot encoding"
- Mengubah masing-masing nilai dari suatu atribut menjadi atribut tersendiri

One-of-k encoding

- Dikenal juga dengan nama "one-hot encoding"
- Mengubah masing-masing nilai dari suatu atribut menjadi atribut tersendiri
- e.g. kategori = {pemandangan, orang, benda} menjadi
 - $\bullet \ \ \mathsf{kategori_pemandangan} = \{0,1\}$
 - kategori_orang = $\{0, 1\}$
 - kategori_benda = $\{0,1\}$
- sehingga...

Formula

$$y = w_0 x_0 + w_1 x_1 + ... + w_6 x_6 = \sum_{j=0}^{6} w_j x_j$$

dengan $x_0=1$, $x_1=$ usia, $x_2=$ jk_laki, $x_3=$ jk_perempuan, $x_4=$ kategori_pemandangan, $x_5=$ kategori_orang, dan $x_6=$ kategori_benda.

Figure 10: Sumber: https://xkcd.com/2048/

Ikhtisar

- Regresi linear dapat digunakan untuk memprediksi nilai riil
- Regresi linear mempunyai solusi tertutup untuk mencari nilai bobot
- Kasus non-linear dapat ditangani oleh regresi linear dengan melakukan transformasi terhadap fitur, e.g. dengan fungsi basis polinomial
- Konfigurasi parameter yang tepat dibutuhkan untuk menghindari underfitting dan overfitting
- Gunakan one-hot encoder untuk mengubah atribut bertipe kategori

Pertemuan berikutnya

- Klasifikasi: regresi logistik
- Optimasi numerik

Referensi

Jake VanderPlas (2016)

In Depth: Linear Regression

Python Data Science Handbook

Terima kasih