Abstract Algebra Homework 2

Zachary Meyner

41. Prove that

$$G = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } a \text{ and } b \text{ are not both zero}\}$$

is a subgroup if \mathbb{R}^* under the group operation of multiplication.

Proof. Let
$$n, m \in G$$
 s.t. $n = a + b\sqrt{2}$ and $m = c + d\sqrt{2}$. (WTS: $n \cdot m \in G$ and $n^{-1} \in G$)
Multiplying $m \cdot n$ we have

$$(a+b\sqrt{2})\cdot(c+d\sqrt{2})=ac+ad\sqrt{2}+bc\sqrt{2}+bd\sqrt{2}^2$$
 (Distributive Property)
$$=ac+ad\sqrt{2}+bc\sqrt{2}+2bd$$

$$=ac+\sqrt{2}(ad+bc)+2bd$$
 (Distributive Property)
$$=(ac+2bd)+(ad+bc)\sqrt{2}$$
 (Commutative and Associative Property)

and $(ac+2bd)+(ad+bc)\sqrt{2}$ is clearly an in G, so $n\cdot m$ must be in G. Now if we take n^{-1} we get

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \cdot \frac{(a-b\sqrt{2})}{(a-b\sqrt{2})} \qquad \text{(Multiplying by 1)}$$

$$= \frac{a-b\sqrt{2}}{(a+b\sqrt{2}) \cdot (a-b\sqrt{2})}$$

$$= \frac{a-b\sqrt{2}}{a^2-b\sqrt{2}^2} \qquad \text{(Distributive Property)}$$

$$= \frac{a+(-b)\sqrt{2}}{a^2-2b} \qquad \text{(Simplifying)}$$

$$= \frac{a}{a^2-2b} + \frac{-b}{a^2-2b}\sqrt{2} \qquad \text{(Commutative and Associative Propety)}$$

Because a and b are in \mathbb{Q} we know $\frac{a}{a^2-2b}$ and $\frac{-b}{a^2-2b}$ must also be in \mathbb{Q} , so n^{-1} must be in G.

 \therefore By the 2 step test G is a subgroup of \mathbb{R}^* under the operation of multiplication.

45. Prove that the intersection of two subgroups of a group G is also a subgroup of G.

Proof. Let $P \leq G$ and $H \leq G$. We know that at least the identity element $e \in P \cap H$ Let $a, b \in P \cap H$ (WTS: $ab^{-1} \in P \cap H$). Because $a, b \in P \cap H$ we know

$$a \in P \cap H$$

$$\implies a \in P \text{ and } a \in H$$

$$b \in P \cap H$$

$$\implies b \in P \text{ and } b \in H$$

Since P and H are subgroups of G we have

$$ab^{-1} \in P \text{ and } ab^{-1} \in H$$

 $\implies ab^{-1} \in P \cap H$

Thus $P \cap H$ is also a subgroup of G.

5. Find the order of every element in \mathbb{Z}_{18} .

$$|1| = 18$$

$$|2| = 9$$

$$|3| = 6$$

$$|4| = 9$$

$$|5| = 18$$

$$|6| = 3$$

$$|7| = 18$$

$$|8| = 9$$

$$|9| = 2$$

$$|10| = 9$$

$$|11| = 18$$

$$|12| = 3$$

$$|13| = 18$$

$$|14| = 9$$

$$|15| = 6$$

$$|16| = 9$$

$$|17| = 18$$

- **23**. Let $a, b \in G$. Prove the following statements.
 - (a) The order of a is the same as the order of a^{-1} .

Proof. Let $a^n = e$, then

$$e = (aa^{-1})^{n}$$

$$= a^{n}(a^{-1})^{n}$$

$$= e(a^{-1})^{n}$$

$$= (a^{-1})^{n}$$

So $|a^{-1}| \le n$. Now we let $(a^{-1})^m = e$, similarly we have

$$e = (aa^{-1})^m$$
$$= a^m (a^{-1})^m$$
$$= a^m e$$
$$= a^m$$

So $|a| \le m$. Thus we have both $|a^{-1}| \le n \implies m \le n$, and $|a| \le m \implies n \le m$. Therefore m = n and $|a| = |a^{-1}|$

(b) For all $g \in G, |a| = |g^{-1}ag|$

Proof. Let |a| = n, then $a^n = e$. Furthermore

$$(g^{-1}ag)^n = g^{-1}agg^{-1}ag \dots g^{-1}ag$$

$$= g^{-1}ag$$

$$= g^{-1}eg$$

$$= g^{-1}g$$

$$= e$$
(Cancelling $g^{-1}g$)

So $|g^{-1}ag| \le n$. Now let c = g. The same steps can be used to show that $|cg^{-1}agc^{-1}| \le |g^{-1}ag|$. But $cg^{-1}agc^{-1} = gg^{-1}agg^{-1} = a$. Thus $|a| \le |g^{-1}ag|$ or $n \le |g^{-1}ag| \le n$. Therefore $|g^{-1}ag| = n = |a|$.

(c) The order of ab is the same as the order of ba.

Proof. Let |ab| = n, then $(ab)^n = e$. We show

$$(ba)^{n} = (ba)^{n} e$$

$$= (ba)^{n} bb^{-1}$$

$$= bababa \dots babb^{-1}$$

$$= b(ab)^{n} b^{-1}$$

$$= beb^{-1}$$

$$= bb^{-1}$$

$$= e$$
(Associative Property)

So $|ba| \leq n$. Next we let |ba| = m, then $(ba)^m = e$. We can show again that

$$(ab)^{m} = (ab)^{m}e$$

$$= (ab)^{m}aa^{-1}$$

$$= ababab \dots abaa^{-1}$$

$$= a(ba)^{m}a^{-1}$$

$$= aea^{-1}$$

$$= aa^{-1}$$

$$= e$$
(Associative Property)

So $|ab| \le m$. From here we know $m \le n$ and $n \le m$. Thus n = m and |ab| = |ba|.