Análise RDM Piloto - Modelo de Bass

Pedro Lima

18 de outubro de 2017

Análise Piloto RDM - Modelo de Bass

Esta é uma análise piloto utilizando o RDM. Estou usando este documento nesta formatação para integrar os resultados do R dentro do documento sem precisar copiar e colar. No final da análise este texto vai todo para o word. Este documento e análise servirão como um template para a análise "real" do RDM a ser integrada na dissertação, porém deve conter todos os elementos de uma análise RDM.

O modelo de Bass (1969) é um modelo amplamente reconhecido na literatura (frequentemente citado entre os 10 trabalhos mais influentes nos periódicos da INFORMS, e utilizado por Sterman (2000) e Morecroft (2001) em seus livros a respeito de dinâmica de sistemas).

A análise do modelo de Bass é propícia para este propósito por dois motivos. Primeiro, o modelo representa um dos fatores mais incertos para as empresas privadas: Como será a evolução da demanda de um novo produto. Este modelo foi aplicado em diversas situações, e é capaz de representar processos de crescimento da demanda em novos produtos. Segundo, a execução do modelo depende de parâmetros altamente incertos (ex.: A probabilidade de que um consumidor atual do produto divulgue o produto a outro consumidor).

O Modelo de Bass representa o processo de adoção de novos produtos, e propõe-se a identificar / predizer variáveis importantes para a empresa (ex.: qual será e quando será o pico de vendas de um novo produto?).

Este documento apresenta uma análise RDM piloto deste modelo. O objetivo desta análise foi exercitar a aplicação do RDM com um exemplo conhecido pela literatura atual. Além disso, foi necessário desenvolver algoritmos para a execução e análise dos experimentos computacionais.

Estruturação da Decisão - XLRM

A análise RDM sugere a utilização do framework XLRM para a estruturação do problema.

X - Incertezas

NomeAmigavel	Min	Max	Unidade
Efetividade da Propaganda	0e+00	0e+00	{1/year}
Taxa de Contatos	2e + 01	1e+02	{people per person/year, which simplifies dimensionally to 1/year}
Fração de Adoção	0e + 00	3e-02	{dimensionless}
População Total	1e + 06	1e + 06	{people}
TicketMedio	1e-02	1e+01	{Reais / pessoa / ano}
Custo da Propaganda	1e+00	1e+05	{Reais / Nível de Intensidade}

L - Levers (Estratégias)

A única decisão a avaliar neste exemplo é realizar ou não propaganda para aumentar o número de

Lever	LeverCode	aAdvertisingON	${\bf aAdvertising Intensity}$
1	ADV-1	1	1.0
2	ADV-1,5	1	1.5

Lever	LeverCode	${\bf aAdvertising ON}$	a A dvertising Intensity
3	ADV-2	1	2.0
4	ADV-2,5	1	2.5
5	ADV-3	1	3.0
6	ADV-3,5	1	3.5
7	ADV-4	1	4.0
8	ADV-4,5	1	4.5
9	ADV-5	1	5.0
10	ADV-5,5	1	5.5
11	ADV-6	1	6.0
12	ADV-6,5	1	6.5
13	ADV-7	1	7.0
14	ADV-7,5	1	7.5
15	ADV-8	1	8.0
16	ADV-8,5	1	8.5
17	ADV-9	1	9.0
18	ADV-9,5	1	9.5
19	ADV-10	1	10.0
20	ADV-0	0	0.0

R - Relações (Modelo)

 $d_sPotentialAdopters_dt = - fAdoption_Rate$

 $d_sAdopters_dt = fAdoption_Rate$

d sCash dt = fRevenue - fCosts

 $a Adoption_from_Advertising = a Advertising Effectiveness * sPotential Adopters * a Advertising ON * a Advertising Intensity$

 $aAdoption_from_Word_of_Mouth = aContactRate * sAdopters * ((sPotentialAdopters)/(aTotalPopulation)) * aAdoptionFraction \# \{people/year\}$

 $fAdoption_Rate = min(aAdoption_from_Advertising + aAdoption_from_Word_of_Mouth, sPotential-Adopters) \# \{people/year\}$

fRevenue = sAdopters * aAverageTicket

fCosts = aAdvertisingIntensity * aAdvertisingCost

 $d_sPotentialAdopters_dt = -fAdoption_Rate$

 $d_sAdopters_dt = fAdoption_Rate$

 $d_sCash_dt = fRevenue - fCosts$

O Modelo, implementado no R, e contendo todas as suas definições necessárias para a sua replicação pode ser observado abaixo.

sdmodel

```
## $Start
## [1] 2015
## 
## $Finish
## [1] 2020
## 
## $Step
```

```
## [1] 0.125
##
## $SimTime
   [1] 2015.000 2015.125 2015.250 2015.375 2015.500 2015.625 2015.750
    [8] 2015.875 2016.000 2016.125 2016.250 2016.375 2016.500 2016.625
## [15] 2016.750 2016.875 2017.000 2017.125 2017.250 2017.375 2017.500
## [22] 2017.625 2017.750 2017.875 2018.000 2018.125 2018.250 2018.375
## [29] 2018.500 2018.625 2018.750 2018.875 2019.000 2019.125 2019.250
## [36] 2019.375 2019.500 2019.625 2019.750 2019.875 2020.000
##
## $Auxs
##
  aAdvertisingEffectiveness
                                           aContactRate
##
                                                  1e+02
                       1e-02
                                       aTotalPopulation
##
           aAdoptionFraction
##
                       2e-02
                                                  1e+06
##
                                  aAdvertisingIntensity
              aAdvertisingON
##
                       1e+00
                                                  1e+00
##
              aAverageTicket
                                       aAdvertisingCost
##
                       1e+00
                                                  1e+00
##
## $Stocks
## sPotentialAdopters
                                sAdopters
                                                        sCash
##
               999990
                                       10
                                                            0
##
## $Modelo
## function (time, stocks, auxs)
## {
##
       with(as.list(c(stocks, auxs)), {
##
           aAdoption_from_Advertising = aAdvertisingEffectiveness *
##
               sPotentialAdopters * aAdvertisingON * aAdvertisingIntensity
##
           aAdoption_from_Word_of_Mouth = aContactRate * sAdopters *
##
               ((sPotentialAdopters)/(aTotalPopulation)) * aAdoptionFraction
##
           fAdoption_Rate = min(aAdoption_from_Advertising + aAdoption_from_Word_of_Mouth,
##
               sPotentialAdopters)
           fRevenue = sAdopters * aAverageTicket
##
##
           fCosts = aAdvertisingIntensity * aAdvertisingCost
##
           d_sPotentialAdopters_dt = -fAdoption_Rate
##
           d_sAdopters_dt = fAdoption_Rate
           d_sCash_dt = fRevenue - fCosts
##
##
           return(list(c(d_sPotentialAdopters_dt, d_sAdopters_dt,
               d_sCash_dt), Revenue = fRevenue, Costs = fCosts,
##
               AverageTicket = aAverageTicket, AdvertisingCost = aAdvertisingCost,
##
##
               AdvertisingEffectiveness = aAdvertisingEffectiveness,
               ContactRate = aContactRate, AdoptionFraction = aAdoptionFraction,
##
##
               TotalPopulation = aTotalPopulation, Adoption_from_Advertising = aAdoption_from_Advertising
               Adoption_from_Word_of_Mouth = aAdoption_from_Word_of_Mouth,
##
##
               Adoption_Rate = fAdoption_Rate, AdvertisingON = aAdvertisingON,
##
               AdvertisingIntensity = aAdvertisingIntensity, Lever = Lever))
##
       })
## }
##
   <bytecode: 0x000000017ad5770>
##
## $Variaveis
```

"Potential Adopters"

[1] "Tempo"

```
[3] "Adopters"
                                       "Cash"
   [5] "Revenue"
                                       "Costs"
##
  [7] "AverageTicket"
                                      "AdvertisingCost"
##
## [9] "AdvEffectiveness"
                                      "ContactRate"
## [11] "AdoptionFraction"
                                      "TotalPopulation"
## [13] "Adoption_From_Advertising"
                                      "Adoption_From_Word_of_Mouth"
## [15] "Adoption_Rate"
                                      "AdvON"
## [17] "AdvIntensity"
                                      "Lever"
## [19] "Scenario"
```

M - Métricas

Regret.

Geração de Casos

Projeto de Experimentos Computacionais

Resultados da Simulação

Uma Simulação de exemplo.

Escolha da Estratégia Candidata

Descoberta de Cenários - Análise de Vulnerabilidades

Em que condições a Estratégia Candidata Falha

Descoberta de Cenários - Análise de Vulnerabilidades

Análise de Tradeoff