EAGLE Style Guide

v1.0

Part Creation

Symbol

- o Grid
 - 0.1 inches Size
 - 0.01 inches Alt
- Style
 - Location
 - Center origin of grid on the center of the part
 - Font
 - Vector rendered
 - Ratio 8%, unless made bold for end user benefit
 - Size of 0.07 in
 - Value aligned bottom-left, name on top left of symbol
- Functionality
 - Pins should be labeled in a way that allows the symbol to be applied to any parts in a similar family
 - For passive elements, pin labels can be disabled for simplicity
 - "Visible pin" for just the pin label
 - "Visible pad" for just the pad label
 - Use passive for the pin type; at a minimum, don't set any to power even if they are power pins
 - For functional layout: Inputs on left, outputs on right, power top-left, ground bottom-right.
 - Pin placement
 - Inputs on left
 - Outputs on right
 - Power on top (optional)
 - Ground on bottom (optional)
 - Decimal value labeling
 - For labeling fractional values, include the decimal point. Eg. 3.3V
 - $4.51k \rightarrow 4,510 \text{ kOhm}$
 - NOT 3V3, etc.

Footprint

- Grid
 - 1 mm Size
 - 0.1 mm Alt
- Font
 - Font Vector
 - Ratio 8%
 - unless made bold for end user benefit
 - Size 1 mm
- Functionality
 - Silkscreen
 - Line for alignment on tPlace/bPlace
 - All ICs should have pin one marked with a dot
 - All diodes should have direction or cathode marks
 - Clearly indicate polarity as necessary
 - Try not to overlap pads with silkscreen; although tedious, cut a section out
 - Slots
 - Use the milling layer (46) to draw the outline of the slot
 - Create the pad using the elongated pad
 - Set the hole diameter to the width of the slot
 - Export the milling layer to its own gerber file and attach it with the rest of your gerbers
 - Every manufacturer has its own preferred method, but seems to be accepted widely enough
- Labeling
 - >NAME label on top
 - >VALUE label on below
 - Outline of package on tDocu/bDocu

Device

- Attributes
 - Name should be manufacturer part number
 - Attribute DKPN should be filled with the Digi-Key part number
- Descriptions
 - One sentence describes the function of the part
 - Datasheet link if available
- Prefix
 - Chart for Designators

Letter	Part Type

С	Capacitor
D	Diode, LED
F	Fuse
J	Jack or Connector (least moveable connection part)
JP	Jumper
К	Relay or Contactor
L	Inductor
LS/BZ	Loudspeaker or buzzer
М	Motor
Р	Plug (most moveable connection part)
PS	Power Supply
Q	Transistor (all)
R	Resistor
S/SW	Switch
Т	Transformer
TP	Test Point
U	Integrated Circuit
X	Crystal

Schematics

Overall

- o Organize subsystems as follows:
- o Related subsystems should be grouped into a sheet
- o Each subsystem in a sheet should be boxed clearly, and that box labeled
 - Use line tool, width 0.006, shortdash, layer 97 info

- Label font
 - Font vector
 - Ratio 12%
 - Size 0.25 in
 - Layer Info
- Every sheet should have the following:
 - A frame no bigger than 11 x 17" ($8\frac{1}{2}$ x 11" preferred), which should have the following info:
 - A name
 - Last edit date
 - Last edit engineer(s)
 - Schematic version
 - Page #
 - Frames within a schematic should all be the same size

Nets

- Every net should have a name if possible
 - Use xref tags at 0.05 size
- Every bus should have a name and description
- Every power net should be labeled with the acceptable voltage range and max current at the net driver
- Differentially routed nets should be commented as such as the driver and sink
- o Impedance controlled nets should be commented as such as the driver and sink
- Power and Ground nets
 - Use symbol with appropriate name

Configs

- Any value computed (e.g. varies by application) from a datasheet should be noted
- Any optional parts should be noted
- o Oohm isolation resistor and Oohm jumper resistors should be noted

Boards

Fab House / Validation

- Load fab house DRC before place and route
- RoboJackets has slightly conservative <u>DRCs for 2 and 4 layer boards</u>

Placement

- Keep analog electronics far from high power electronics
- Locate power net status LEDs near power sources
- o Provide adequate spacing for stitching/shielding if needed
- Verify any mechanical considerations

- Board mounting holes
- Component mounting holes/cutouts
- Use tDoc/bDoc and/or tKeepout/bKeepout for bolt head size to prevent traces near mounting
- Place decoupling capacitors as close to the power pin of the IC as possible
 - Smallest values should be closest to pin to minimize parasitic inductance

Routing

- Avoid minimum trace width where possible
 - Suggestions: 0.2 to 0.3mm for signals, 0.4 to 0.5mm for power (increase as needed for current rating)
- Avoid minimum trace spacing where possible
- Avoid minimum drill/via size where possible
 - Suggestions: 0.35mm drill, 0.65mm diameter for vias
- Do not split differentially routed pairs unless impedance and arrival time can be matched
- Avoid vias on signals above 1GHz
- Use the same number of vias on differentially routed traces
- For two layer boards, try to keep component, signal, and power on the top layer and ground return on the bottom layer
- High frequency signals should have continuous low impedance return path directly beneath trace.
- Keep high frequency signals isolated from other signals to minimize crosstalk
- o route signals orthogonally to avoid cross-talk

Silkscreen

- This is far more important than most people realize and can take a significant amount of time to get right. A good silkscreen makes a board easier to use, easier to debug, and harder to break.
- Meta
 - Have at least a "vMAJOR.minor" version label on the board
 - Have your team name and year (optionally month, Ubuntu style) on the board
 - Have your team logo on the board
 - Have a filled white square to write in an instance ID
 - Recommended if more than three boards will be fabricated
 - e.g. can say "board #2 is broken", there is a "2" written on the white square
 - Cover ink with Kapton tape
 - Don't place them on vias (even tented vias) unless absolutely unavoidable
- Components & Connectors
 - Set default line width to 0.2mm

- Label all power inputs with name and voltage (current optional)
- Label all connectors with name
- Label all switches with position values
- Label all debug LEDs
- Label all fuses with current rating (type optional)

Font

- All font should be vector rendered
- All font should be ratio 8%, unless made bold for end user benefit
- Component font size should be "1"
 - e.g. R45, Q1, etc.
- Layer t/bPlace