Brownovo gibanje

Matej Rojec

Brownovo gibanje (več v [1]) je intuitivno slučajen proces, ki predstavlja naključno gibanje delcev v mediju.

Slika 1: Reprodukcija slike iz Jean Baptiste Perrin, Mouvement brownien et réalité moléculaire, Ann. de Chimie et de Physique (VIII) 18, 5-114, 1909

Definicija 1. Standardno Brownovo gibanje $\{B_t\}_{t\geq 0}$ je slučajen proces z naslednjimi lastnostmi:

- 1. $B_0 = 0$.
- 2. Prirastki $B_{t_n}-B_{t_{n-1}},B_{t_{n-1}}-B_{t_{n-2}},\ldots,B_2-B_1,B_1-B_0$ so neodvisne slučajne spremenljivke, za vsak $t_0\leq t_1\leq\cdots\leq t_{n-1}\leq t_n$.
- 3. Za vsak $t \geq 0$ in h > 0 velja $B_{t+h} B_t \sim \mathcal{N}(0,h)$.
- 4. Funkcija $t \mapsto B_t$ je zvezna skoraj gotovo.

Preden zapišemo izrek, definirajmo še pojem časa ustavljanja.

Definicija 2. Slučajna spremenljivka τ na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathsf{P})$ z vrednostmi v \mathbb{R}^+ je *čas ustavljanja* glede na filtracijo $(\mathcal{F}_t)_t \in T$, če velja: $\forall t \in T : \{\tau \leq t\} \in \mathcal{F}_t$.

Zdaj lahko zapišemo izrek 1.

Izrek 1. Naj bo $\{B_t\}_{t\geq 0}$ (standardno) Brownovo gibanje, τ čas ustavljanja glede na $(\mathcal{F}_t)_{t\geq 0}$ in naj bo $\mathsf{P}[\tau<\infty]=1$. Potem je tudi proces:

$$\hat{B} := \{ B_{T+t} - B_T \mid t \ge 0 \}$$

(standardno) Brownovo gibanje in neodvisen od \mathcal{F}_T .

Literatura

[1] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1991.