Inleiding klassieke veldentheorie

tuyaux.winak.be/i	ndex.php/Inleiding_klassieke_velder	neorie
Inleiding kla	ssieke veldentheorie	
Richting	<u>Fysica</u>	
Jaar	2BFYS	
Bespreking		
Scheunders. Eer veranderlijken, e een mengeling v toepassen op ee	n belangrijke leidraad doorh n deze methode moet zeer an theorie/oefeningen. Men	tentiaal. Dit vak wordt gegeven door Paul een de cursus is de methode van scheiden van joed beheerst worden. Het examen bestaat uit moet de methoden beheersen, en zelf kunnen vaak gelijkaardig aan vorige jaren, maar in die
Puntenverde	eling	
20 punten schrift	elijk.	
Examenvrag	en	
Academiejaar	2021-2022 2e zit	
Prof. Paul Scheu	inders	
Theorie		

1.	a) Took aan dat de Rarmonische operator Permitisch in		
	b) Wat zijn de gevolgen		
	C) Beschrijf de flassiele Fourier roels		
	d) Stel de functie D(b) vor als son Fourier rocks:		
	$D(\phi) = -7$ $0 \le \phi < TC$		
	$=$ 7 $\pi \leqslant \phi \leqslant 2\pi$		
	e) Beschrif Fourier integraler		
2.	a) Bereken de Greense Junctie von de potential vergelijling		
•	Cr) Berelon hier uit de potentiaal ten gevolge van een wille kourige		
	statische ladingsverdeling in de vije ruinte.		
	C) Leid con multipoolontwikeling af voor die potentiaal tot op		
	eers te orde.		
	d) Berelen Riernit Ret elektrostatische veld		
	e) Berehen de potentiaal en het elektrische veld ten gevolge		
	van 2 tegengesteld geladen puntladingen die op een afstand		
	l van ellaar stan.		
	Example indicate Planishe weldent Coming		
	Examen inleiding Blassiche veldentheorie		
	2021-2022 2º 2it		

Academiejaar 2021-2022 1ste zit

Prof. Paul Scheunders

- 1. Vraag 1 was dezelfde vraag als die van 2015-2016 Vraag 1 (Snaar met uitwijking op [a,b][a,b]).
- 2. Vraag 2 ging over Fouriertransformaties:
 - 1. van afgeleide: F[f'(x)]F[f'(x)]
 - 2. van product: F[f1(x)f2(x)]F[f1(x)f2(x)]

- 3. Vraag 3 ging over de Greense functie methode:
 - 1. Wat is een greense functie en waarvoor wordt ze gebruikt
 - 2. Leid de greense functie methode af
 - 3. Bereken de greense functie voor de potentiaal
 - 4. Multipoolontwikkeling van de potentiaal en elektrisch veld tot 1e orde
 - 5. Bereken de potentiaal en het elektrisch veld ten gevolge van een dipool (p(r)p(r) gegeven en gelijk aan die van 2019-2020 laatste vraag)

Academiejaar 2019-2020 1ste zit

Prof. Paul Scheunders

- Een dunne snaar van lengte LL met vaste uiteinden heeft op tijdstip t=0t=0 een uitwijking van:
 - $\Psi(x,t=0)=\sin 2\pi x L \cos \pi x L \Psi(x,t=0)=\sin 2\pi x L \cos \pi x L$
 - 1. Bereken de uitwijking van de snaar in functie van de tijd. Geef hierbij de uitwerking stap per stap weer.
- 2. Greense functie
 - 1. Beschrijf de Greense functie methode, en gebruik die om de uitdrukking voor de potentiaal ten gevolge van een willekeurige ladingsverdeling af te leiden.
 - 2. Leid vanuit deze uitdrukking een multipoolontwikkeling af voor deze potentiaal.
 - 3. Bepaal via de multipoolontwikkeling de potentiaal ten gevolge van twee tegengesteld geladen puntladingen die op een afstand II van elkaar staan.
 - 4. Tip: de ladingsverdeling kan geschreven worden als: $\rho(\vec{r}) = e[\delta(x-l2) \delta(x+l2)]\delta(y)\delta(z)\rho(r \rightarrow) = e[\delta(x-l2) \delta(x+l2)]\delta(y)\delta(z)$

Academiejaar 2018-2019 1ste zit

Prof. Paul Scheunders

- 1. Een snaar van lengte LL met vaste uiteinden heeft op tijdstip t=0t=0 een constante uitwijking in het interval [a,b][a,b] (0<a<b<l) en geen uitwijking buiten dit interval.
 - 1. Bereken de uitwijking van de snaar ∀t∀t.
 - 2. Wat is de uitwijking wanneer het interval [a,b][a,b] gecentreerd is rond het midden van de snaar?
 - 3. En wat gebeurt er wanneer [a,b]=[0,L][a,b]=[0,L]?
 - 4. Bespreek wat er gebeurt in het speciale geval dat het interval oneindig smal wordt.

2. Elektrostatica

- 1. Leid een multipoolontwikkeling af voor de potentiaal ten gevolge van een willekeurige ladingsverdeling in de vrije ruimte.
- 2. Bereken via de multipoolontwikkeling de potentiaal ten gevolge van de volgende ladingsverdeling:

```
\rho(\vec{r}) = e[\delta(x-a2) - \delta(x+a2)]\delta(y)\delta(z)\rho(r\rightarrow) = e[\delta(x-a2) - \delta(x+a2)]\delta(y)\delta(z)
```

3. Bereken het elektrische veld ten gevolge van deze ladingsverdeling.

Academiejaar 2017-2018 2^{de} zit

Prof. Paul Scheunders

1. Een dunne snaar van lengte LL met vaste uiteinden heeft op tijdstip t=0t=0 een uitwijking van:

 $\Psi(x,t=0)=\sin 2\pi x L \cos \pi x L \Psi(x,t=0)=\sin 2\pi x L \cos \pi x L$

- 1. Bereken de uitwijking van de snaar in functie van de tijd. Geef hierbij de uitwerking stap per stap weer.
- 2. Greense functie
 - 1. Beschrijf de Greense functie om de potentiaal te bepalen ten gevolge van een willekeurige ladingsverdeling. Geef een intuïtieve beschrijving en leid een uitdrukking af voor de potentiaal.
 - 2. Leid vanuit deze uitdrukking een multipoolontwikkeling af voor deze potentiaal.
 - 3. Bepaal via de multipoolontwikkeling de potentiaal ten gevolge van twee tegengesteld geladen puntladingen die op een afstand II van elkaar staan.

Academiejaar 2015-2016 1ste zit

Prof. Paul Scheunders

- 1. Gegeven een dunne snaar van lengte I met vaste uiteinden. Op tijdstip t=0 heeft de snaar een constante uitwijking in het interval [a,b] (a < b < I) en geen uitwijking buiten dit interval.
 - 1. Bereken de uitwijking van de snaar voor alle x, t.
 - 2. Wat is de uitwijking wanneer het intervalk [a,b] gecentreerd is rond het midden van de snaar?
 - 3. Bespreek wat er gebeurt indien het interval oneindig smal wordt?
- 2. Bereken de potentiaal ten gevolge van een puntbron in de vrije ruimte.

3.

- 1. Bereken de multipoolontwikkeling tot op eerste orde van de elektrostatische potentiaal $\phi(\text{r})$ ten gevolge van een ladingsverdeling $\phi(\text{textbf}\{r\})$.
- 2. Leid hieruit een uitdrukking af voor het elektrostatische veld \$\textbf{E} (\textbf{r})\$.

Academiejaar 2014-2015 1ste zit

Prof. Paul Scheunders

- 1. Gegeven een dunne snaar van lengte I met vaste uiteinden. Op tijdstip t=0 heeft de snaar een constante uitwijking in het interval [a,b] (a < b < I) en geen uitwijking buiten dit interval.
 - 1. Bereken de uitwijking van de snaar voor alle x, t.
 - 2. Welke symmetrie is er wanneer het interval [a,b] gecentreerd is rond het midden van de snaar?
 - 3. Wat indien het interval oneindig smal wordt?
- 2. Leid het convolutietheorema van de Fouriertransformatie af.

3.

- 1. Bereken de elektrostatische interactie-energie tussen twee ladingsverdelingen.
- 2. Illustreer dit aan de hand van twee elektrostatische dipolen.

Academiejaar 2013-2014 1ste zit

Prof. Paul Scheunders

Gegeven een dunne staaf van lengte I die thermisch geïsoleerd is van de omgeving.
Op t=0 heeft de staaf de temperatuur:

- 1. Hoe diffundeert de temperatuur doorheen de staaf in functie van de tijd?
- 2. Hoe ziet dit eruit in het speciale geval $\delta \rightarrow 0\delta \rightarrow 0$
- 2. Leid af: de afgeleide van de Fouriertransformatie.
- 3. Afleiding elektromagnetische golven + bewijs dat ze loodrecht staan.

Academiejaar 2013-2014 2^{de} zit

Prof. Paul Scheunders

- 1. Gegeven een dunne snaar van lengte I met vaste uiteinden. Op tijdstip t=0 heeft de snaar een constante uitwijking in het interval [a,b] (a < b < I) en geen uitwijking buiten dit interval.
 - 1. Bereken de uitwijking van de snaar voor alle x, t.
 - 2. Welke symmetrie is er wanneer het interval [a,b] gecentreerd is rond het midden van de snaar?
- 2. Bereken de potentiaal van een puntbron

3.

- 1. Bereken de elektrostatische interactie-energie tussen twee ladingsverdelingen.
- 2. Illustreer dit aan de hand van twee elektrostatische dipolen.

Academiejaar 2012-2013 1^{ste} zit

Prof. Paul Scheunders

- 1. Gegeven een dunne snaar van lengte I met vaste uiteinden. Op tijdstip t=0 heeft de snaar een constante uitwijking in het interval [a,b] (a < b < I) en geen uitwijking buiten dit interval.
 - 1. Bereken de uitwijking van de snaar voor alle x, t.
 - 2. Welke symmetrie is er wanneer het interval [a,b] gecentreerd is rond het midden van de snaar?
 - 3. Hoe ziet dit eruit in het speciale geval dat het interval oneindig smal wordt?
- 2. Leid het convolutietheorema van de Fouriertransformatie af.

3.

- 1. Bereken de elektrostatische interactie-energie tussen twee ladingsverdelingen.
- 2. Illustreer dit aan de hand van twee elektrostatische dipolen.

Academiejaar 2011-2012 2^{de} zit

Prof Paul Scheunders

Gegeven een dunne staaf van lengte I die thermisch geïsoleerd is van de omgeving.
Op t=0 heeft de staaf de temperatuur:

 $\{\psi(x,t=0)=\psi 0 \psi(x,t=0)=0 \ | /2-\delta \le x \le | /2+\delta \ \text{elders} \{\psi(x,t=0)=\psi 0 | /2-\delta \le x \le | /2+\delta \psi(x,t=0)=0 \text{elders} \}$

- 1. Hoe diffundeert de temperatuur doorheen de staaf in functie van de tijd?
- 2. Hoe ziet dit eruit in het speciale geval $\delta \rightarrow 0\delta \rightarrow 0$
- 2. Leid af: de afgeleide van de Fouriertransformatie.

3.

- 1. Bereken de electrostatische interactie-energie tussen twee ladingsverdelingen.
- 2. Illustreer dit aan de hand van twee electrostatische dipolen.

Academiejaar 2011-2012 1ste zit

Prof. Paul Scheunders

- 1. Bereken de elektrostatische potentiaal binnen een cirkel met straal a, met op de rand 2 halve cirkelvormige geleiders, één met potentiaal V, de andere met potentiaal 0.
- 2. Leid het convolutietheorema af van de Fouriertransformatie.

3.

- 1. Gebruik de methode van het scheiden van veranderlijken om de Elektromagnetische golven te berekenen.
- 2. Bepaal aan welke voorwaarden deze Elektromagnetische golven voldoen opdat ze aan de Maxwell vergelijking voldoen.

Academiejaar 2010-2011 2e zit

Prof. Paul Scheunders

1. Bereken de elektrostatische potentiaal binnen een cirkel met straal a, met op de rand 2 halve cirkelvormige geleiders, één met potentiaal V, de andere met potentiaal 0.

- 2. Bewijs:
 - 1. $F(f(x)*g(x))=2\pi-\sqrt{f'(\omega)g'(\omega)}F(f(x)*g(x))=2\pi f'(\omega)g'(\omega)$
 - 2. $\partial f \partial x * g = f * \partial g \partial x = \partial \partial x (f * g) \partial f \partial x * g = f * \partial g \partial x = \partial \partial x (f * g)$
- 3. Bereken de elektrostatische interactie-energie tussen twee ladingsverdelingen, illustreer dit aan de hand van twee elektrostatische dipolen.

Academiejaar 2010-2011 1ste zit

Prof. Paul Scheunders

1. Gegeven een dunne staaf van lengte I die thermisch geïsoleerd is van de omgeving. Op t=0 heeft de staaf de temperatuur:

 $\{\psi(x,t=0)=\psi 0\psi(x,t=0)=0\ | 1/2-\delta \le x \le | 1/2+\delta \ \text{elders} \} \psi(x,t=0)=\psi 0 | 1/2-\delta \le x \le | 1/2+\delta \psi(x,t=0)=0 | 1/2-\delta \le x \le x \le | 1/2+\delta \psi(x,t=0)=0 | 1/2-\delta \xi(x,t=0)=0 | 1/2+\delta \psi(x,t=0)=0 | 1/2-\delta \xi(x,t=0)=0 |$

- 1. Hoe diffundeert de temperatuur doorheen de staaf in functie van de tijd?
- 2. Hoe ziet dit eruit in het speciale geval $\delta \rightarrow 0\delta \rightarrow 0$
- 2. Leid het convolutietheorema af van de Fouriertransformatie.

3.

- 1. Bereken de elektrostatische energie tussen twee ladingsverdelingen.
- 2. Illustreer dit aan de hand van twee electrostatische dipolen.

Categorieën:

- Fysica
- 2BFYS