Gibbs sampler in Python With R and OpenBUGS comparisons

Tyler Olson Alex Zajichek Fall 2016

December 5, 2016

Table of contents

Introduction Gibbs sampling

Models

Multi-parameter Normal model with conjugate prior Full - conditional derivations
Results

Gamma-poisson hierarchical model Full - conditional derivations Metropolis-Hastings algorithm Results

Goal: Sample from joint posterior distribution

 Reduce a single multi-dimensional problem into multiple univariate problems

- ► Reduce a single multi-dimensional problem into multiple univariate problems
- ► Full conditional distributions for model parameters

- ► Reduce a single multi-dimensional problem into multiple univariate problems
- ► Full conditional distributions for model parameters
 - 1. Unnormalized joint-posterior distribution

- ► Reduce a single multi-dimensional problem into multiple univariate problems
- ► Full conditional distributions for model parameters
 - 1. Unnormalized joint-posterior distribution
 - 2. Factor out terms containing parameter of interest

- ► Reduce a single multi-dimensional problem into multiple univariate problems
- ► Full conditional distributions for model parameters
 - 1. Unnormalized joint-posterior distribution
 - 2. Factor out terms containing parameter of interest
 - 3. Product of terms is proportional to full conditional distribution

- ► Reduce a single multi-dimensional problem into multiple univariate problems
- ► Full conditional distributions for model parameters
 - 1. Unnormalized joint-posterior distribution
 - 2. Factor out terms containing parameter of interest
 - 3. Product of terms is proportional to full conditional distribution
 - 4. If possible, identify parametric family
- [1] Cowles, 2013

Multi-parameter Normal model with conjugate prior

Multi-parameter Normal model with conjugate prior

$$(\mu, \sigma^2) \sim IG(\alpha, \beta) \times N(\mu_0, \frac{\sigma^2}{\kappa})$$

Multi-parameter Normal model with conjugate prior

$$(\mu, \sigma^2) \sim IG(\alpha, \beta) \times N(\mu_0, \frac{\sigma^2}{\kappa})$$

 $\bar{y}|\mu, \sigma^2 \sim N(\mu, \frac{\sigma^2}{n})$

$$p(\mu, \sigma^2 | \mathbf{y}) \propto p(\mu, \sigma^2, \mathbf{y})$$

$$p(\mu, \sigma^2 | \mathbf{y}) \propto p(\mu, \sigma^2, \mathbf{y})$$

$$= p(\bar{y} | \mu, \sigma^2) p(\mu | \sigma^2) p(\sigma^2)$$

$$p(\mu, \sigma^{2}|\mathbf{y}) \propto p(\mu, \sigma^{2}, \mathbf{y})$$

$$= p(\bar{y}|\mu, \sigma^{2})p(\mu|\sigma^{2})p(\sigma^{2})$$

$$= \frac{\sqrt{n}}{\sqrt{2\pi}\sigma}e^{\frac{-n}{2\sigma^{2}}(\bar{y}-\mu)^{2}}\frac{\sqrt{\kappa}}{\sqrt{2\pi}\sigma}e^{\frac{-\kappa}{2\sigma^{2}}(\mu-\mu_{0})^{2}}\frac{\beta^{\alpha}}{\Gamma(\alpha)}\frac{1}{(\sigma^{2})^{\alpha+1}}e^{\frac{-\beta}{\sigma^{2}}}$$

$$p(\mu|\sigma^2, \mathbf{y}) \propto e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2}$$

$$\begin{array}{lcl}
\rho(\mu|\sigma^2, \mathbf{y}) & \propto & e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2} \\
& = & e^{\frac{-1}{2\sigma^2}(n(\bar{y}-\mu)^2 + \kappa(\mu-\mu_0)^2)}
\end{array}$$

$$\begin{split} \rho(\mu|\sigma^2, \mathbf{y}) &\propto e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2} \\ &= e^{\frac{-1}{2\sigma^2}(n(\bar{y}-\mu)^2 + \kappa(\mu-\mu_0)^2)} \\ &= e^{\frac{-1}{2\sigma^2}(n(\bar{y}^2 - 2\bar{y}\mu + \mu^2) + \kappa(\mu^2 - 2\mu\mu_0 + \mu_0^2))} \end{split}$$

$$\begin{split} \rho(\mu|\sigma^2, \mathbf{y}) & \propto & e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2} \\ & = & e^{\frac{-1}{2\sigma^2}(n(\bar{y}-\mu)^2 + \kappa(\mu-\mu_0)^2)} \\ & = & e^{\frac{-1}{2\sigma^2}(n(\bar{y}^2 - 2\bar{y}\mu + \mu^2) + \kappa(\mu^2 - 2\mu\mu_0 + \mu_0^2))} \\ & \propto & e^{\frac{-(n+\kappa)}{2\sigma^2}(\mu^2 - 2\mu\frac{n\bar{y} + \kappa\mu_0}{n+\kappa})} \end{split}$$

$$\begin{array}{lcl} \rho(\mu|\sigma^{2},\boldsymbol{y}) & \propto & e^{\frac{-n}{2\sigma^{2}}(\bar{y}-\mu)^{2}+\frac{-\kappa}{2\sigma^{2}}(\mu-\mu_{0})^{2}} \\ & = & e^{\frac{-1}{2\sigma^{2}}(n(\bar{y}-\mu)^{2}+\kappa(\mu-\mu_{0})^{2})} \\ & = & e^{\frac{-1}{2\sigma^{2}}(n(\bar{y}^{2}-2\bar{y}\mu+\mu^{2})+\kappa(\mu^{2}-2\mu\mu_{0}+\mu_{0}^{2}))} \\ & \propto & e^{\frac{-(n+\kappa)}{2\sigma^{2}}(\mu^{2}-2\mu\frac{n\bar{y}+\kappa\mu_{0}}{n+\kappa})} \\ & \propto & e^{\frac{-(n+\kappa)}{2\sigma^{2}}(\mu^{2}-2\mu\frac{n\bar{y}+\kappa\mu_{0}}{n+\kappa}+(\frac{n\bar{y}+\kappa\mu_{0}}{n+\kappa})^{2})} \\ \mu|\sigma^{2},\boldsymbol{y} & \sim & N\left(\frac{n\bar{y}+\kappa\mu_{0}}{n+\kappa},\frac{\sigma^{2}}{n+\kappa}\right) \end{array}$$

$$p(\sigma^2|\mu, \mathbf{y}) \propto \frac{\sqrt{n}}{\sqrt{2\pi}\sigma} \frac{\sqrt{\kappa}}{\sqrt{2\pi}\sigma} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\sigma^2)^{\alpha+1}} e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2 + \frac{-\beta}{\sigma^2}}$$

$$\begin{split} \rho(\sigma^2|\mu, \mathbf{y}) &\propto & \frac{\sqrt{n}}{\sqrt{2\pi}\sigma} \frac{\sqrt{\kappa}}{\sqrt{2\pi}\sigma} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\sigma^2)^{\alpha+1}} e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2 + \frac{-\beta}{\sigma^2}} \\ &\propto & \frac{1}{(\sigma^2)^{\alpha+2}} e^{\frac{-1}{\sigma^2}(\frac{n}{2}(\bar{y}-\mu)^2 + \frac{\kappa}{2}(\mu-\mu_0)^2 + \beta)} \end{split}$$

$$\begin{split} \rho(\sigma^2|\mu, \mathbf{y}) & \propto & \frac{\sqrt{n}}{\sqrt{2\pi}\sigma} \frac{\sqrt{\kappa}}{\sqrt{2\pi}\sigma} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\sigma^2)^{\alpha+1}} e^{\frac{-n}{2\sigma^2}(\bar{y}-\mu)^2 + \frac{-\kappa}{2\sigma^2}(\mu-\mu_0)^2 + \frac{-\beta}{\sigma^2}} \\ & \propto & \frac{1}{(\sigma^2)^{\alpha+2}} e^{\frac{-1}{\sigma^2}(\frac{n}{2}(\bar{y}-\mu)^2 + \frac{\kappa}{2}(\mu-\mu_0)^2 + \beta)} \\ & \sigma^2|\mu, \mathbf{y} & \sim & IG\left(\alpha+1, \frac{n}{2}(\bar{y}-\mu)^2 + \frac{\kappa}{2}(\mu-\mu_0)^2 + \beta\right) \end{split}$$

Results

Results

	Python (≈ .763 sec)			R (≈ .496 sec)			OpenBUGS		
Parameter	Mean	SD	Median	Mean	SD	Median	Mean	SD	Median
μ	50.335	0.629	50.336	50.349	0.630	50.355	50.330	0.634	50.330
σ^2	11.939	1.976	11.736	11.920	1.948	11.720	11.93	1.98	11.730

$$x_i | \theta_i, t_i, \alpha, \beta \sim Poisson(\theta_i t_i)$$

$$x_i | \theta_i, t_i, \alpha, \beta \sim Poisson(\theta_i t_i)$$

 $\theta_i | \alpha, \beta \sim Gamma(\alpha, \beta)$

$$x_i | \theta_i, t_i, \alpha, \beta \sim Poisson(\theta_i t_i)$$

 $\theta_i | \alpha, \beta \sim Gamma(\alpha, \beta)$
 $\alpha \sim Exponential(\lambda_1)$

```
x_i | \theta_i, t_i, \alpha, \beta \sim Poisson(\theta_i t_i)

\theta_i | \alpha, \beta \sim Gamma(\alpha, \beta)

\alpha \sim Exponential(\lambda_1)

\beta \sim Exponential(\lambda_2)
```

If
$$\boldsymbol{\theta}=(\theta_1,\theta_2,...,\theta_n)$$
 and $\boldsymbol{x}=(x_1,x_2,...,x_n)$, then

If
$$\theta = (\theta_1, \theta_2, ..., \theta_n)$$
 and $\mathbf{x} = (x_1, x_2, ..., x_n)$, then $p(\alpha, \beta, \theta | \mathbf{x}) \propto p(\alpha, \beta, \theta, \mathbf{x})$

If
$$\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n)$$
 and $\boldsymbol{x} = (x_1, x_2, ..., x_n)$, then $p(\alpha, \beta, \boldsymbol{\theta} | \boldsymbol{x}) \propto p(\alpha, \beta, \boldsymbol{\theta}, \boldsymbol{x})$
= $p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\alpha, \beta, \boldsymbol{\theta})$

If
$$\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n)$$
 and $\boldsymbol{x} = (x_1, x_2, ..., x_n)$, then $p(\alpha, \beta, \boldsymbol{\theta} | \boldsymbol{x}) \propto p(\alpha, \beta, \boldsymbol{\theta}, \boldsymbol{x})$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\alpha, \beta, \boldsymbol{\theta})$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha, \beta)$$

If
$$\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n)$$
 and $\boldsymbol{x} = (x_1, x_2, ..., x_n)$, then $p(\alpha, \beta, \boldsymbol{\theta} | \boldsymbol{x}) \propto p(\alpha, \beta, \boldsymbol{\theta}, \boldsymbol{x})$
 $= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\alpha, \beta, \boldsymbol{\theta})$
 $= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha, \beta)$
 $= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha) p(\beta)$

If
$$\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n)$$
 and $\boldsymbol{x} = (x_1, x_2, ..., x_n)$, then
$$p(\alpha, \beta, \boldsymbol{\theta} | \boldsymbol{x}) \propto p(\alpha, \beta, \boldsymbol{\theta}, \boldsymbol{x})$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\alpha, \beta, \boldsymbol{\theta})$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha, \beta)$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha) p(\beta)$$

$$= \prod_{i=1}^{n} \frac{e^{-\theta_i t_i} (\theta_i t_i)^{x_i}}{x_i} \times \prod_{i=1}^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta_i^{\alpha-1} e^{-\beta \theta_i} \times \lambda_1 e^{-\lambda_1 \alpha} \lambda_2 e^{-\lambda_2 \beta}$$

If
$$\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n)$$
 and $\boldsymbol{x} = (x_1, x_2, ..., x_n)$, then
$$p(\alpha, \beta, \boldsymbol{\theta} | \boldsymbol{x}) \propto p(\alpha, \beta, \boldsymbol{\theta}, \boldsymbol{x})$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\alpha, \beta, \boldsymbol{\theta})$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha, \beta)$$

$$= p(\boldsymbol{x} | \alpha, \beta, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \alpha, \beta) p(\alpha) p(\beta)$$

$$= \prod_{i=1}^{n} \frac{e^{-\theta_i t_i} (\theta_i t_i)^{x_i}}{x_i} \times \prod_{i=1}^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta_i^{\alpha-1} e^{-\beta \theta_i} \times \lambda_1 e^{-\lambda_1 \alpha} \lambda_2 e^{-\lambda_2 \beta}$$

$$= \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} \lambda_1 e^{-\lambda_1 \alpha} \lambda_2 e^{-\lambda_2 \beta} \times \prod_{i=1}^{n} \frac{e^{-\theta_i (t_i + \beta)} \theta^{x_i + \alpha - 1} t_i^{x_i}}{x_i}$$

$$p(\theta_i|\theta_{-i},\alpha,\beta,\textbf{x}) \propto e^{-\theta_i(t_i+\beta)}\theta_i^{x_i+\alpha-1}$$

$$p(\theta_i|\boldsymbol{\theta}_{-i}, \alpha, \beta, \boldsymbol{x}) \propto e^{-\theta_i(t_i+\beta)}\theta_i^{x_i+\alpha-1}$$

 $\theta_i|\boldsymbol{\theta}_{-i}, \alpha, \beta, \boldsymbol{x} \sim Gamma(x_i+\alpha, t_i+\beta)$

$$p(\beta|\alpha, \boldsymbol{\theta}, \boldsymbol{x}) \propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i t_i - \theta_i \beta}$$

$$p(\beta|\alpha, \boldsymbol{\theta}, \boldsymbol{x}) \propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i t_i - \theta_i \beta}$$
$$\propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i \beta}$$

$$p(\beta|\alpha, \boldsymbol{\theta}, \boldsymbol{x}) \propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i t_i - \theta_i \beta}$$
$$\propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i \beta}$$
$$= \beta^{n\alpha} e^{-\lambda_2 \beta} e^{-\sum_{i=1}^n \theta_i \beta}$$

$$\rho(\beta|\alpha, \boldsymbol{\theta}, \boldsymbol{x}) \propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i t_i - \theta_i \beta} \\
\propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i \beta} \\
= \beta^{n\alpha} e^{-\lambda_2 \beta} e^{-\sum_{i=1}^n \theta_i \beta} \\
= \beta^{n\alpha} e^{-\beta(\lambda_2 + \sum_{i=1}^n \theta_i)}$$

$$p(\beta|\alpha, \boldsymbol{\theta}, \boldsymbol{x}) \propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i t_i - \theta_i \beta}$$

$$\propto \beta^{n\alpha} e^{-\lambda_2 \beta} \prod_{i=1}^n e^{-\theta_i \beta}$$

$$= \beta^{n\alpha} e^{-\lambda_2 \beta} e^{-\sum_{i=1}^n \theta_i \beta}$$

$$= \beta^{n\alpha} e^{-\beta(\lambda_2 + \sum_{i=1}^n \theta_i)}$$

$$\beta|\alpha, \boldsymbol{\theta}, \boldsymbol{x} \sim Gamma(n\alpha + 1, \lambda_2 + \sum_{i=1}^n \theta_i)$$

$$p(\alpha|\beta, \boldsymbol{\theta}, \boldsymbol{x}) \propto \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} e^{-\lambda_1 \alpha} \prod_{i=1}^n \theta_i^{x_i + \alpha - 1}$$

$$p(\alpha|\beta, \boldsymbol{\theta}, \boldsymbol{x}) \propto \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} e^{-\lambda_1 \alpha} \prod_{i=1}^n \theta_i^{x_i + \alpha - 1}$$
$$\propto \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} e^{-\lambda_1 \alpha} \prod_{i=1}^n \theta_i^{\alpha}$$

If f(x) is the unnormalized density of interest, x_i is the value at the i^{th} iteration, and $q(x|x_{i-1})$ is the chosen proposal function, then

If f(x) is the unnormalized density of interest, x_i is the value at the i^{th} iteration, and $q(x|x_{i-1})$ is the chosen proposal function, then

1. Sample $x^* \sim q(x|x_{i-1})$

If f(x) is the unnormalized density of interest, x_i is the value at the i^{th} iteration, and $q(x|x_{i-1})$ is the chosen proposal function, then

- 1. Sample $x^* \sim q(x|x_{i-1})$
- 2. Calculate the acceptance probability

$$p = P(\text{accept } x^*) = min\left(1, \frac{f(x^*)q(x_{i-1}|x^*)}{f(x_{i-1})q(x^*|x_{i-1})}\right)$$

If f(x) is the unnormalized density of interest, x_i is the value at the i^{th} iteration, and $q(x|x_{i-1})$ is the chosen proposal function, then

- 1. Sample $x^* \sim q(x|x_{i-1})$
- 2. Calculate the acceptance probability

$$p = P(\text{accept } x^*) = min\left(1, \frac{f(x^*)q(x_{i-1}|x^*)}{f(x_{i-1})q(x^*|x_{i-1})}\right)$$

3. If $Y \sim Bernoulli(p)$, then

$$x_i = \begin{cases} x^* & \text{if Y}=1\\ x_{i-1} & \text{if Y}=0 \end{cases}$$

[2] Niemi, 2013

Our Implementation:

Our Implementation:

For each iteration of the Gibbs sampler:

► For *i* in 1:1000

Our Implementation:

For each iteration of the Gibbs sampler:

- ► For *i* in 1:1000
 - Proposal function:

$$x|x_{i-1} \sim Gamma(\alpha = x_{i-1}, \beta = 1)$$

Results

Results

	Python ($pprox 1$ hr)			R (18.24 min)			OpenBUGS		
Parameter	Mean	SD	Median	Mean	SD	Median	Mean	SD	Median
α	0.780	0.307	0.739	0.789	0.319	0.749	0.795	0.295	0.754
β	1.193	0.635	1.092	1.208	0.661	1.093	1.218	0.634	1.116
θ_1	0.060	0.025	0.057	0.061	0.025	0.057	0.060	0.025	0.057
θ_2	0.106	0.081	0.086	0.106	0.080	0.087	0.106	0.081	0.087
θ_3	0.091	0.038	0.086	0.090	0.038	0.085	0.090	0.038	0.085
θ_4	0.116	0.030	0.113	0.116	0.030	0.114	0.116	0.030	0.113
θ_{5}	0.593	0.310	0.544	0.590	0.307	0.534	0.590	0.306	0.539
θ_6	0.606	0.137	0.594	0.606	0.137	0.596	0.608	0.136	0.598
θ_7	0.808	0.640	0.651	0.825	0.660	0.659	0.822	0.658	0.655
θ_8	0.837	0.680	0.650	0.829	0.658	0.662	0.829	0.665	0.655
θ_9	1.512	0.739	1.392	1.487	0.718	1.362	1.477	0.715	1.356
θ_{10}	1.955	0.414	1.922	1.950	0.417	1.920	1.949	0.419	1.918

Results

	Python ($pprox 1$ hr)			R (18.24 min)			OpenBUGS		
Parameter	Mean	SD	Median	Mean	SD	Median	Mean	SD	Median
α	0.780	0.307	0.739	0.789	0.319	0.749	0.795	0.295	0.754
β	1.193	0.635	1.092	1.208	0.661	1.093	1.218	0.634	1.116
θ_1	0.060	0.025	0.057	0.061	0.025	0.057	0.060	0.025	0.057
θ_2	0.106	0.081	0.086	0.106	0.080	0.087	0.106	0.081	0.087
θ_3	0.091	0.038	0.086	0.090	0.038	0.085	0.090	0.038	0.085
θ_4	0.116	0.030	0.113	0.116	0.030	0.114	0.116	0.030	0.113
θ_{5}	0.593	0.310	0.544	0.590	0.307	0.534	0.590	0.306	0.539
θ_6	0.606	0.137	0.594	0.606	0.137	0.596	0.608	0.136	0.598
θ_7	0.808	0.640	0.651	0.825	0.660	0.659	0.822	0.658	0.655
θ_8	0.837	0.680	0.650	0.829	0.658	0.662	0.829	0.665	0.655
θ_9	1.512	0.739	1.392	1.487	0.718	1.362	1.477	0.715	1.356
θ_{10}	1.955	0.414	1.922	1.950	0.417	1.920	1.949	0.419	1.918

Runtime: find optimal proposal function

References

[1] Cowles, M. K. (2013). Applied bayesian statistics: With R and OpenBUGS examples. New York: Springer.

[2] Niemi, J. (2013, March 3). Video. Retrieved from https://www.youtube.com/watch?v=VGRVRjr0vyw