Backpropagation through Time

A Mathematical Overview

A Neural Network

Activation Functions

Sigmoid

Tanh

Notation

- Three Hidden Layer Neural Network
- x -> Input and y -> Output
- w-> Weight and b -> Bias

Notation

For a single data point

- Vectors -> x, a^1 , a^2 , a^3 , y
- Vectors -> b^1 , b^2 , b^3 , b^4
- Matrices -> w^1 , w^2 , w^3 , w^4

- $a_{1}^{1} = f(w_{11}^{1}a_{1}^{0} + w_{12}^{1}a_{2}^{0} + w_{13}^{1}a_{3}^{0})$
- f: Non Linear Activation Function

• $a_2^1 = f(w_{21}^1 a_1^0 + w_{22}^1 a_2^0 + w_{23}^1 a_3^0)$

Collecting the two

- $a_{1}^{1} = f(w_{11}^{1}a_{1}^{0} + w_{12}^{1}a_{2}^{0} + w_{13}^{1}a_{3}^{0})$
- $a_2^1 = f(w_{21}^1 a_1^0 + w_{22}^1 a_2^0 + w_{23}^1 a_3^0)$

Collecting the two

- $a_{1}^{1} = f(w_{11}^{1}a_{1}^{0} + w_{12}^{1}a_{2}^{0} + w_{13}^{1}a_{3}^{0})$
- $a_2^1 = f(w_{21}^1 a_1^0 + w_{22}^1 a_2^0 + w_{23}^1 a_3^0)$

is the same as

- $z_{1}^{1} = w_{11}^{1} a_{1}^{0} + w_{12}^{1} a_{2}^{0} + w_{13}^{1} a_{3}^{0}$
- $a_1^1 = f(z_1^1)$
- $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$
- $a_2^1 = f(z_2^1)$

- $z_{11}^1 = w_{11}^1 a_{11}^0 + w_{12}^1 a_{22}^0 + w_{13}^1 a_{33}^0$
- $a_1^1 = f(z_1^1)$
- $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$ $a_{2}^{1} = f(z_{2}^{1})$

- $z_{11}^1 = w_{11}^1 a_{11}^0 + w_{12}^1 a_{21}^0 + w_{13}^1 a_{31}^0$
- $a_1^1 = f(z_1^1)$
- $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$
- $a_2^1 = f(z_2^1)$

- $z_{1}^{1} = w_{11}^{1} a_{1}^{0} + w_{12}^{1} a_{2}^{0} + w_{13}^{1} a_{3}^{0}$
- $a_1^1 = f(z_1^1)$
- $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$
- $a_2^{1} = f(z_2^1)$

is the same as

- $z^1 = w^1 * a^0$
- $a^1 = f(z^1)$

Adding in the bias term as well

- $z_{11}^1 = w_{111}^1 a_{11}^0 + w_{121}^1 a_{21}^0 + w_{131}^1 a_{31}^0 + b_{11}^1$
- $a_1^1 = f(z_1^1)$
- $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0} + b_{2}^{1}$
- $a_2^1 = f(z_2^1)$

is the same as

- $z^1 = w^1 * a^0 + b^1$
- $a^1 = f(z^1)$

The complete forward pass

- $a^0 = x$
- $z^1 = w^1 * a^0 + b^1$
- $a^1 = f(z^1)$
- $z^2 = w^2 * a^1 + b^2$
- $a^2 = f(z^2)$
- $z^3 = w^3 * a^2 + b^3$
- $a^3 = f(z^3)$
- $z^4 = w^4 * a^3 + b^4$
- $a^4 = f(z^4)$
- $y = a^4$

The Input

• $a^0 = x$

For I = 1, ... , L layers

- $z^{l} = w^{l} * a^{l-1} + b^{l}$
- $a^I = f(z^I)$

Finally

• $y = a^L$

Notation

- t -> Ground Truth Output
- C -> Cost Function
- δ -> Gradient

The Cost Function

For a scalar output

- Mean Squared Error: $C = \frac{1}{2} * (y t)^2$
- Cross Entropy: C = t * ln(y) + (1-t) * ln(1-y)

Backpropagation

- Goal: Compute $\partial C / \partial w$ and $\partial C / \partial b$
- Why: Use them for Stochastic Gradient Descent
- Define: $\delta^{I} = \partial C / \partial z^{I}$

$$\delta^4 = \partial C/\partial z^4 = \partial C/\partial y * \partial y/\partial z^4$$

Now

- $\partial C/\partial y = (y t)$
- $\partial y/\partial z^4 = \partial a^4/\partial z^4 = f'(z^4)$

where f'(.) is derivative of f(.) w.r.t (.)

$$=> \delta^4 = (y - t) * f'(z^4)$$

$$\delta^3 = \partial C/\partial z^3$$

Now

- $z_{1}^{4} = ... + w_{1j}^{4} * f(z_{j}^{3}) + ...$ $z_{k}^{4} = ... + w_{kj}^{4} * f(z_{j}^{3}) + ...$

i.e. all elements of z^4 depend on z^3

Thus, by chain rule we can say that $\delta_{i}^{3} = \partial C/\partial z_{i}^{3} = \sum_{k} \partial C/\partial z_{k}^{4} * \partial z_{k}^{4}/\partial z_{i}^{3}$

$$\delta_{j}^{3} = \partial C/\partial z_{j}^{3} = \sum_{k} \partial C/\partial z_{k}^{4} * \partial z_{k}^{4}/\partial z_{j}^{3}$$

$$=> \delta_{j}^{3} = \sum_{k} \partial C/\partial z_{k}^{4} * \partial z_{k}^{4}/\partial a_{j}^{3} * \partial a_{j}^{3}/\partial z_{j}^{3}$$

Now

- $\partial C/\partial z_k^4 = \delta_k^4$ $\partial z_k^4/\partial a_j^3 = w_{kj}^4 [As z_k^4 = ... + w_{kj}^4 * a_j^3 +$
- $\partial a_i^3/\partial z_i^3 = f'(z_i^3)$

=>
$$\delta^{3}_{j}$$
 = ($\sum_{k} \delta^{4}_{k} * w^{4}_{kj}$) * f'(z^{3}_{j})

$$\delta_{j}^{3} = (\sum_{k} \delta_{k}^{4} * w_{kj}^{4}) * f'(z_{j}^{3})$$

=> $\delta^{3} = (w^{4})^{T} * \delta^{4} \odot f'(z^{3})$

where ○ = Element-wise product

Hence we have

- $\delta^4 = (y t) * f'(z^4)$
- $\delta^3 = (w^4)^T * \delta^4 \circ f'(z^3)$
- $\delta^2 = (w^3)^T * \delta^3 \odot f'(z^2)$
- $\delta^1 = (w^2)^T * \delta^2 \odot f'(z^1)$

Or in general

$$\delta^{l} = (w^{l+1})^{T} * \delta^{l+1} \circ f'(z^{l})$$
 for $l = 1, 2, ..., L-1$
 $\delta^{L} = \nabla_{y} C \circ f'(z^{L})$

where $\nabla_{v}C$ is derivative of cost wrt output

Now for our main objectives: $\partial C/\partial w_{ik}^l$ and ∂C/∂b^li

$$\partial C/\partial w_{jk}^l = \partial C/\partial z_j^l * \partial z_j^l / \partial w_{jk}^l$$

Since

•
$$\partial C/\partial z_{j}^{l} = \delta_{j}^{l}$$

• $\partial z_{j}^{l}/\partial w_{jk}^{l} = a_{k}^{l-1}$
[As $z_{j}^{l} = ... + w_{jk}^{l} * a_{k}^{l-1} + ...$]

$$=> \partial C/\partial w_{jk}^l = \delta_j^l a_k^{l-1}$$

$$\partial C/\partial w_{jk}^l = \delta_j^l a_k^{l-1}$$

Or in general

$$\partial C/\partial w^I = \delta^I * (a^{I-1})^T$$
 for $I = 1, ..., L$

Also $\partial C/\partial b_i^l = \partial C/\partial z_i^l * \partial z_i^l / \partial b_i^l$

Since

- $\partial C/\partial z_j^l = \delta_j^l$ $\partial z_j^l/\partial b_j^l = 1 [As z_j^l = ... + b_j^l]$

$$\Rightarrow \partial C/\partial b_j^l = \delta_j^l$$

Or in general $\partial C/\partial b^I = \delta^I$ for I = 1, ..., L

In general:

 $\delta^L = \nabla_y C \circ f'(z^L)$ where $\nabla_y C$ is derivative of cost wrt output

Then for I = 1, 2, ..., L-1 $\delta^I = (w^{I+1})^T * \delta^{I+1} \circ f'(z^I)$ where \circ stands for element wise product

Finally for I = 1, ..., L $\partial C/\partial w^I = \delta^I * (a^{I-1})^T$ $\partial C/\partial b^I = \delta^I$

Summary

The Input

• $a^0 = x$

For I = 1, ... , L layers

- $z^{l} = w^{l} * a^{l-1} + b^{l}$
- $a^I = f(z^I)$

Finally

• $y = a^L$


```
\delta^{L} = \nabla_{y} C \circ f'(z^{L})
where \nabla_{y} C is derivative of cost wrt output
```

Then for I = 1, 2, ..., L-1 $\delta^I = (w^{I+1})^T * \delta^{I+1} \circ f'(z^I)$ where \circ stands for element wise product

Finally for I = 1, ..., L $\partial C/\partial w^I = \delta^I * (a^{I-1})^T$ $\partial C/\partial b^I = \delta^I$

A SISO Recurrent Neural Network

Notation

- In (a)^{(b),(c)}:
 - a refers to some quantity
 - o b refers to the layer of the network
 - o c refers to the time step
- We exclude bias for simplicity
- i -> input and o -> output
- Cost Function C -> C³

- $a^{i,1} = x$
- $z^{1,1} = U a^{i,1}$
- $a^{1,1} = f(z^{1,1})$
- $z^{1,2} = W a^{1,1}$
- $a^{1,2} = f(z^{1,2})$
- $z^{1,3} = W a^{1,2}$
- $a^{1,3} = f(z^{1,3})$
- $z^{0,3} = V a^{1,3}$
- $a^{0,3} = f(z^{0,3})$
- $y = a^{0,3}$

From earlier we have

•
$$\delta^4 = \nabla_y C * f'(z^4)$$

•
$$\delta^3 = (w^4)^T * \delta^4 \odot f'(z^3)$$

•
$$\delta^2 = (w^3)^T * \delta^3 \odot f'(z^2)$$

•
$$\delta^1 = (w^2)^T * \delta^2 \odot f'(z^1)$$

By analogy we arrive at

•
$$\delta^{0,3} = \nabla_{V}C^{3} * f'(z^{0,3})$$

•
$$\delta^{1,3} = V^T * \delta^{0,3} \odot f'(z^{1,3})$$

•
$$\delta^{1,2} = W^T * \delta^{1,3} \odot f'(z^{1,2})$$

•
$$\delta^{i,1} = W^T * \delta^{1,2} \odot f'(z^{1,1})$$

From earlier we have

- $\partial C/\partial w^4 = \delta^4 * (a^3)^T$
- $\partial C/\partial w^3 = \delta^3 * (a^2)^T = \partial C/\partial z^3 * \partial z^3/\partial w^3$
- $\partial C/\partial w^2 = \delta^2 * (a^1)^T = \partial C/\partial z^2 * \partial z^2/\partial w^2$
- $\partial C/\partial w^1 = \delta^1 * (a^0)^T$

By analogy we arrive at

- $\partial C/\partial V = \delta^{0,3} * (a^{1,3})^T$
- $\partial C/\partial U = \delta^{i,1} * (a^{i,1})^T$
- $\partial C/\partial W = ?$

As W influences both $z^{1,2}$ and $z^{1,3}$, $\partial C/\partial W = \partial C/\partial z^{1,3} * \partial z^{1,3}/\partial W + \partial C/\partial z^{1,2} * \partial z^{1,2}/\partial W$

Now using the trick that all terms in $\partial C/\partial W$ are of the form $\delta_{\text{current layer}} * (a_{\text{prev layer}})^T$

Hence we get $\partial C/\partial W = \delta^{1,3} * (a^{1,2})^T + \delta^{1,2} * (a^{1,1})^T$

Summary

Forward Pass

For T time steps:

- $a^{i,1} = x$
- $z^{1,1} = U * a^{i,1}$
- $a^{1,1} = f(z^{1,1})$

For t = 2, ..., T

- $z^{1,t} = W * a^{1,t-1}$
- $a^{1,t} = f(z^{1,t})$

For output

- $z^{0,T} = V * a^{1,T}$
- $a^{o,T} = f(z^{o,T})$
- $y = a^{0, T}$

From output

- $\delta^{o,T} = \nabla_y C^T \odot f'(z^{o,T})$ $\delta^{1,T} = V^T * \delta^{o,T} \odot f'(z^{1,T})$

And for t = T-1, ..., 1

• $\delta^{1,t} = W^T * \delta^{1,t+1} \odot f'(z^{1,t})$

Finally the gradients are

- $\partial C/\partial V = \delta^{o,T} * (a^{1,T})^T$
- $\partial C/\partial U = \delta^{i,1} * (a^{i,1})^T$
- $\partial C/\partial W = \sum_{t=2}^{T} \delta^{1,t} * (a^{1,t-1})^{T}$

A SIMO Recurrent Neural Network

Forward Pass

Input

- $a^{i,1} = x$
- $z^{1,1} = U * a^{i,1}$
- $a^{1,1} = f(z^{1,1})$

Hidden (for t = 2, ..., T)

- $z^{1,t} = W * a^{1,t-1}$
- $a^{1,t} = f(z^{1,t})$

Output (for t = 1, ..., T)

- $z^{o,t} = V * a^{o,t}$
- $a^{o,t} = f(z^{0,t})$
- $y^t = a^{o, t}$

The Cost Function

- $c^1 = \frac{1}{2} * (y^1 t^1)^2$
- $c^2 = \frac{1}{2} * (y^2 t^2)^2$
- $c^3 = \frac{1}{2} * (y^3 t^3)^2$

$$c = c^1 + c^2 + c^3$$

This can be extended for any other cost function and for T timesteps

$$\delta^{0,3} = \partial c/\partial z^{0,3} = \partial c^3/\partial z^{0,3}$$

[As c¹ and c² don't depend on z^{0,3}]

$$=>\delta^{0,3}=\partial c^3/\partial z^{0,3}=\partial c^3/\partial a^{0,3}*\partial a^{0,3}/\partial z^{0,3}$$

$$=> \delta^{o,3} = \nabla_{y3} c^3 \circ f'(z^{o,3})$$

We thus arrive at

- $\delta^{o,1} = \nabla_{y1}c^1 \circ f'(z^{o,1})$ $\delta^{o,2} = \nabla_{y2}c^2 \circ f'(z^{o,2})$ $\delta^{o,3} = \nabla_{y3}c^3 \circ f'(z^{o,3})$

$$\delta^{1,3} = \partial c/\partial z^{1,3} = \partial c^3/\partial z^{1,3}$$

[As c¹ and c² don't depend on z^{1,3}]

$$=>\delta^{1,3}=\partial c^3/\partial z^{0,3}*\partial z^{0,3}/\partial z^{1,3}$$

$$=> \delta^{1,3} = V^T \delta^{0,3} \odot f'(z^{1,3})$$

[As all δ are of the form (Outgoing Weight)^T (Outgoing δ) \circ f'(Weighted Inputs)]

$$\delta^{1,2} = \partial c/\partial z^{1,2} = \partial c^2/\partial z^{1,2} + \partial c^3/\partial z^{1,2}$$

[As c¹ does not depend on z^{1,2}]

$$=>\delta^{1,2}=\partial c^2/\partial z^{0,2}*\partial z^{0,2}/\partial z^{1,2}+\partial c^3/\partial z^{1,3}*\partial z^{1,3}/\partial z^{1,2}$$

=>
$$\delta^{1,2}$$
 = V^T $\delta^{0,2} \circ$ f'($z^{1,2}$) + W^T $\delta^{1,3} \circ$ f'($z^{1,2}$) [As all δ are of the form (Outgoing Weight)^T (Outgoing δ) \circ f'(Weighted Inputs)]

$$=> \delta^{1,2} = (V^T \delta^{0,2} + W^T \delta^{1,3}) \odot f'(z^{1,2})$$

We thus arrive at

- $\delta^{1,3} = V^T \delta^{0,3} \odot f'(z^{1,3})$
- $\delta^{1,2} = (V^T \delta^{0,2} + W^T \delta^{1,3}) \odot f'(z^{1,2})$
- $\delta^{i,1} = (V^T \delta^{o,1} + W^T \delta^{1,2}) \odot f'(z^{1,1})$

Now we can compute derivatives with respect to weights

$$\partial c/\partial V = \partial c^{1}/\partial V + \partial c^{2}/\partial V + \partial c^{3}/\partial V$$

=>
$$\partial c/\partial V = \delta^{0,3} * (a^{1,3})^T + \delta^{0,2} * (a^{1,2})^T + \delta^{0,1}*(a^{1,1})^T$$

[As each of these derivative terms is equal to $\delta_{out} * a_{in}^{T}$]

We thus arrive at

- $\partial c/\partial V = \delta^{0,3} * (a^{1,3})^T + \delta^{0,2} * (a^{1,2})^T + \delta^{0,1}*(a^{1,1})^T$
- $\partial c/\partial W = \delta^{1,3} * (a^{1,2})^T + \delta^{1,2} * (a^{1,1})^T$
- $\partial c/\partial U = \delta^{i,1} * (a^{i,1})^T$

[As each of these derivative terms is equal to $\delta_{out} * a_{in}^{T}$]

Summary

Forward Pass

Input

- $a^{i,1} = x$
- $z^{1,1} = U * a^{i,1}$
- $a^{1,1} = f(z^{1,1})$

Hidden (for t = 2, ..., T)

- $z^{1,t} = W * a^{1,t-1}$
- $a^{1,t} = f(z^{1,t})$

Output (for t = 1, ..., T)

- $z^{o,t} = V * a^{o,t}$
- $a^{o,t} = f(z^{0,t})$
- $y^t = a^{o, t}$

Output [For all t = 1, ..., T]

• $\delta^{o,t} = \nabla_{yt} c^t \odot f'(z^{o,t})$

Hidden [For all t = 1, ..., T-1]

- $\delta^{1,T} = V^T \delta^{o,T} \odot f'(z^{1,T})$
- $\delta^{1,t} = (V^T \delta^{0,t} + W^T \delta^{1,t}) \odot f'(z^{1,t})$

Input

• $\delta^{i,1} = (V^T \delta^{o,1} + W^T \delta^{1,2}) \odot f'(z^{1,1})$

Weights

- $\partial c/\partial V = \sum_{t=1}^{T} \delta^{o,t} * (a^{1,t})^{T}$
- $\partial c/\partial W = \sum_{t=2}^{T} \delta^{1,t} * (a^{1,t-1})^{T}$
- $\partial c/\partial U = \delta^{i,1} * (a^{i,1})^T$

A MIMO Recurrent Neural Network

Forward Pass

First Input

- $a^{i,1} = x^1$
- $z^{1,1} = U * a^{i,1}$
- $a^{1,1} = f(z^{1,1})$

Remaining Inputs (for t = 2, ..., T)

- $a^{i,t} = x^t$
- $z^{1,t} = U * a^{i,t} + W * a^{1,t-1}$
- $a^{1,t} = f(z^{1,t})$

Output (for t = 1, ..., T)

- $z^{0,t} = V * a^{1,t}$
- $a^{o,t} = f(z^{0,t})$
- $y^t = a^{o, t}$
- $c^t = \frac{1}{2}(y^t t^t)^2$

If we extrapolate the derivatives from the SIMO Recurrent Neural Network, we would notice that the only changes lie in the introduction of $\delta^{i,2}$, $\delta^{i,3}$, ...

These would, however be equal to $\delta^{1,2}$, $\delta^{1,3}$, ... as the same derivative flows through all paths connected to a single layer [i.e. $\delta^{1,t} = \delta^{i,t}$]

These new terms would only change the derivative with respect to U, adding extra terms in a similar manner the SIMO model did for V

Output [For all t = 1, ..., T]

• $\delta^{o,t} = \nabla_{yt} c^t \odot f'(z^{o,t})$

Hidden [For all t = 1, ..., T-1]

- $\delta^{1,T} = V^T \delta^{o,T} \odot f'(z^{1,T})$
- $\delta^{1,t} = (V^T \delta^{0,t} + W^T \delta^{1,t}) \odot f'(z^{1,t})$

Input [For all t = 1, ..., T]

• $\delta^{i,t} = \delta^{1,t}$

Weights

- $\partial c/\partial V = \sum_{t=1}^{T} \delta^{o,t} * (a^{1,t})^{T}$
- $\partial c/\partial W = \sum_{t=2}^{T} \delta^{1,t} * (a^{1,t-1})^{T}$
- $\partial c/\partial U = \sum_{t=1}^{T} \delta^{i,t} * (a^{i,t})^T$

LSTM Models

The Issue with RNNs

- Problem: RNNs Cannot Handle Long Term Dependencies
- Solution: Long Short Term Memory Networks (LSTMs) are a special kind of RNN, capable of learning long-term dependencies

RNN vs LSTM

Notation

The Cell State

- The cell state is kind of like a conveyor belt. It runs straight down the entire chain, with only some minor linear interactions
- It's very easy for information to just flow along it unchanged

LSTM: A Search Space Odyssey

Colah Blog

Karpathy Char RNN

LSTM Variants

Seq2Seq Models

Seq2Seq with Attention Models