

Chap 3 Manipulator Kinematics

林沛群

國立台灣大學 機械工程學系

1

機器人簡介 ME5118 Chap 3 - 林沛群

Introduction

 Kinematics: The science of motion that treats the subjects without regard to the forces that cause it

(position/orientation, velocity, acceleration...)

Forward Kinematics: Chap 3 Chap 5 Chap 6

Inverse Kinematics: Chap 4

 Dynamics: The relationships between these motions and the forces/torques that cause them
 Chap 6

Manipulator

- Characteristics
 - Complex configuration and mechanism
 - Actuators are defined in local frames
 - · Revolute joint or prismatic joint
- What we want to know (Forward kinematics)
 - how θ_i affect P defined in the world frame

$$^{W}P = f(\theta_{1}, \theta_{2}, \dots, \theta_{n})$$

Approach: Affixing frames to the various parts of the manipulator and describes their relations

Link Description -1

- Joint
 - Each revolute or prismatic joint has 1 DOF
 - Rotate about or move along an "axis"
- Link
 - The rigid body which connects joints
 - Numbering:
 - 。 Link 0: immobile base
 - Link 1: first moving link, connecting to Link 0
 - 。 Link 2: second moving link
 - 。And so on...

Link Description -2

 For any two axes in 3-space, there exists a well-defined measure of distance between them--- mutually perpendicular to both axes

Link Connection Description

 Need two more parameters to define the relation between neighboring links

Affixing Frames to Links -1

- \Box \hat{Z}_i Coincident with joint axis
 - \hat{X}_i Along a_i (if $a_i \neq 0$)

Perpendicular to \hat{Z}_{i-1} and \hat{Z}_i (if $a_i = 0$)

Affixing Frames to Links -2

□ First link (0)

Frame $\{0\}$ coincides with frame $\{1\}$ $a_0 = 0$ $\alpha_0 = 0$

Revolute joint θ_1 arbitrary $d_1 = 0$

Prismatic joint d_1 arbitrary $\theta_1 = 0$

Affixing Frames to Links -2

□ Last link (n)

Extend \hat{X}_{n-1} vector $a_n = 0$ $\alpha_n = 0$

Revolute joint θ_n variable $d_n = 0$

Prismatic joint d_n variable $\theta_n = 0$

1

Summary of DH Notation (Craig)

Denavit-Hartenberg

 \Box a_i : the distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i ($a_i > 0$)

 α_i : the angle from \hat{Z}_i to \hat{Z}_{i+1} measured about \hat{X}_i

 d_i : the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i

 θ_i : the angle from \hat{X}_{i-1} to \hat{X}_i measured about \hat{Z}_i

Derivation of Link Transformations -1

$$\begin{array}{ll}
 & i^{-1}P = {}^{i-1}_{i}T^{i}P \\
 & i^{-1}P = {}^{i-1}_{R}T_{Q}^{R}T_{P}^{Q}T_{i}^{P}T^{i}P \\
 & {}^{i-1}P = {}^{i-1}_{R}T_{Q}^{R}T_{P}^{Q}T_{i}^{P}T^{i}P \\
 & {}^{i-1}T = {}^{i-1}_{R}T_{Q}^{R}T_{P}^{Q}T_{i}^{P}T \\
 & = T_{\hat{X}_{i-1}}(\alpha_{i-1})T_{\hat{X}_{R}}(a_{i-1})T_{\hat{Z}_{Q}}(\theta_{i})T_{\hat{Z}_{P}}(d_{i})
\end{array}$$

Derivation of Link Transformations -2

Thus

Concatenating link transformations

$$_{n}^{0}T = _{1}^{0}T_{2}^{1}T_{3}^{2}T \dots _{n-1}^{n-2}T_{n}^{n-1}T$$

Frame {n} 相對於 Frame {0} 的空間幾何關係具清楚且量化之定義在Frame {n} 下表達的向量可轉回 Frame {0} 下來表達

Example: A RRR Manipulator

- Joint axes
- □ Common perpendiculars $^{3}P = \{L_{3}, 0, 0\}$
- \hat{z}_i
- $\Box \hat{X}_i$
- \Box \hat{Y}_i
- □ Frames $\{0\}$ and $\{n\}$

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	$ heta_1$
2	0	L_1	0	θ_2
3	0	L_2	0	θ_3

機器人簡介 ME5118 Chap 3 - 林沛群

1

Example: A RPR Manipulator

- Joint axes
- Common perpendiculars
- \Box \hat{Z}_i
- $\Box \hat{X}_i$
- \Box \hat{Y}_i
- □ Frames $\{0\}$ and $\{n\}$

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	$ heta_1$
2	90°	0	d_2	0
3	0	0	L_2	θ_3

Example: RRR Manipulator

$$a_1 = 0$$

 \hat{Z}_1 and \hat{Z}_2 intersect

• Two choices for \hat{Z}_2

• Two choices for \hat{X}_1

機器人簡介 ME5118 Chap 3 - 林沛群

Actuator, Joint, and Cartesian Spaces -1

□ Joint space ⇔ Cartesian space

- □ Actuator space ⇔ joint space
 - Determined by mechanisms which transmits the motion from the actuator to the joint

Actuator, Joint, and Cartesian Spaces -2

□ Example: A leg-wheel transformable robot

Wheel

Fast, smooth, and power-efficient motion on flat ground

Leg

Rough terrain negotiability

17

機器人簡介 ME5118 Chap 3 - 林沛群

Actuator, Joint, and Cartesian Spaces -3

Wheeled mode

Legged mode

Actuator, Joint, and Cartesian Spaces -4

Leg-wheel motion

機器人簡介 ME5118 Chap 3 - 林沛群

Actuator, Joint, and Cartesian Spaces -5

Kinematic mapping

• Input: Motor speeds $\phi_1 \phi_2$

in polar coordinate

Actuator space

Translation

Summary of DH Notation (Craig) -1

Denavit-Hartenberg

 \Box a_i : the distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i ($a_i > 0$)

 α_i : the angle from \hat{Z}_i to \hat{Z}_{i+1} measured about \hat{X}_i

 d_i : the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i

 θ_i : the angle from \hat{X}_{i-1} to \hat{X}_i measured about \hat{Z}_i

Summary of DH Notation (Craig) -2

Summary of DH Notation (Standard) -1

Denavit-Hartenberg

 θ_i : the distance from \hat{X}_{i-1} to \hat{X}_i measured about \hat{Z}_{i-1}

 d_i : the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_{i-1}

 a_i : the distance from \hat{Z}_{i-1} to \hat{Z}_i measured along \hat{X}_i

 α_i : the distance from \hat{Z}_{i-1} to \hat{Z}_i measured about \hat{X}_i

Summary of DH Notation (Standard) -2

Revisit Example: A RRR Manipulator -1

Joint axes

□ Common perpendiculars $^{3}P = \{L_{3}, 0, 0\}$

$$\Box \hat{X}_i$$

$$\Box$$
 \hat{Y}_i

□ Frames $\{0\}$ and $\{n\}$

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	$ heta_1$
2	0	L_1	0	θ_2
3	0	L_2	0	θ_3

機器人簡介 ME5118 Chap 3 - 林沛群

Revisit Example: A RRR Manipulator -2

Transformation matrices

$${}^0_1T \quad \begin{pmatrix} \cos[\mathtt{t1}] & -\sin[\mathtt{t1}] & 0 & 0 \\ \sin[\mathtt{t1}] & \cos[\mathtt{t1}] & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{1}{2}T = \begin{pmatrix} \cos[t2] & -\sin[t2] & 0 & \text{L1} \\ \sin[t2] & \cos[t2] & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${2\atop3}T = \begin{pmatrix} \cos[t3] & -\sin[t3] & 0 & L2 \\ \sin[t3] & \cos[t3] & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Revisit Example: A RRR Manipulator -3

- Joint axes
- Common perpendiculars
- \Box \hat{Z}_i
- $\Box \hat{X}_i$
- \Box \hat{Y}_i
- \Box Frames $\{0\}$ and $\{n\}$

i	α_i	a_i	d_i	θ_i
1	0	L_1	0	$ heta_1$
2	0	L_2	0	θ_2
3	0	L_3	0	θ_3

機器人簡介 ME5118 Chap 3 - 林沛群

Revisit Example: A RRR Manipulator -4

Revisit Example: A RRR Manipulator -5

Craig

${}_{3}^{0}T.T_{\hat{X}_{3}}([L_{3},0,0])$

1	Cos[t1 + t2 + t3]	$-\sin[t1+t2+t3]$	0	$L1 \cos[t1] + L2 \cos[t1 + t2] + L3 \cos[t1 + t2 + t3]$	1
	Sin[t1+t2+t3]	Cos[t1 + t2 + t3]	0	L1 Sin[t1] + L2 Sin[t1 + t2] + L3 Sin[t1 + t2 + t3]	
	0	0	1	0	
1	0	0	0	1	J

Standard

```
Os[t1+t2+t3] -Sin[t1+t2+t3] 0
Sin[t1+t2+t3] Cos[t1+t2+t3] 0
L1 Cos[t1]+L2 Cos[t1+t2]+L3 Cos[t1+t2+t3] 0
L1 Sin[t1]+L2 Sin[t1+t2]+L3 Sin[t1+t2+t3] 0
0 0 1
```

機器人簡介 ME5118 Chap 3 - 林沛群

29

Example: PUMA 560 -1

□ Frames (Craig)

Example: PUMA 560 -2

DH parameters (Craig)

i	α_{i-1}	a_{i-1}	d_i	θ_i
-				υl
1	0°	0	0	$ heta_1$
2	-90°	0	0	$ heta_2$
3	0°	a_2	d_3	$ heta_3$
4	-90°	a_3	d_4	$ heta_4$
5	90°	0	0	$ heta_5$
6	-90°	0	0	$ heta_6$

Example: PUMA 560 -3

Transformation matrices

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{4}^{3}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{6}^{5}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: PUMA 560 -4

Combining transformation matrices -1

$${}_{6}^{4}T = {}_{5}^{4}T{}_{6}^{5}T = \begin{bmatrix} c_{5}c_{6} & -c_{5}s_{6} & -s_{5} & 0 \\ s_{6} & c_{6} & 0 & 0 \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{3}T = {}_{4}^{3}T{}_{6}^{4}T = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & -c_{4}s_{5} & a_{3} \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & d_{4} \\ -s_{4}c_{5}c_{6} - c_{4}s_{6} & s_{4}c_{5}s_{6} - c_{4}c_{6} & s_{4}s_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{1}T = {}_{2}^{1}T{}_{3}^{2}T = \begin{bmatrix} c_{23} & -s_{23} & 0 & a_{2}c_{2} \\ 0 & 0 & 1 & d_{3} \\ -s_{23} & -c_{23} & 0 & -a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

機器人簡介 ME5118 Chap 3 - 林沛群

Combining transformation matrices -2

$${}_{6}^{1}T = {}_{3}^{1}T{}_{6}^{3}T = \begin{bmatrix} {}^{1}r_{11} & {}^{1}r_{12} & {}^{1}r_{13} & {}^{1}p_{x} \\ {}^{1}r_{21} & {}^{1}r_{22} & {}^{1}r_{23} & {}^{1}p_{y} \\ {}^{1}r_{31} & {}^{1}r_{32} & {}^{1}r_{33} & {}^{1}p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}r_{11} = c_{23}[c_{4}c_{5}c_{6} - s_{4}s_{6}] - s_{23}s_{5}s_{6}$$

$${}^{1}r_{21} = -s_{4}c_{5}c_{6} - c_{4}s_{6}$$

$${}^{1}r_{31} = -s_{23}[c_{4}c_{5}c_{6} - s_{4}s_{6}] - c_{23}s_{5}c_{6}$$

$${}^{1}r_{12} = -c_{23}[c_{4}c_{5}s_{6} + s_{4}c_{6}] + s_{23}s_{5}s_{6}$$

$${}^{1}r_{22} = s_{4}c_{5}s_{6} - c_{4}c_{6}$$

$${}^{1}r_{32} = s_{23}[c_{4}c_{5}s_{6} + s_{4}c_{6}] + c_{23}s_{5}s_{6}$$

$${}^{1}r_{13} = -c_{23}c_{4}s_{5} - s_{23}c_{5}$$

$$^{1}r_{23} = s_{4}s_{5}$$

$${}^{1}r_{33} = s_{23}c_{4}s_{5} - c_{23}c_{5}$$

$${}^{1}p_{x} = a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}$$

$$^{1}p_{y}=d_{3}$$

$${}^{1}p_{z} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}$$

Combining transformation matrices -3

$${}_{6}^{0}T = {}_{1}^{0}T{}_{6}^{1}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 1 \end{bmatrix}$$

$${}_{11} = c_{1}[c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{5}) - s_{23}s_{5}c_{5}] + s_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6})}$$

$${}_{21} = s_{1}[c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{23}s_{5}c_{6}] - c_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6})}$$

$${}_{31} = -s_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - c_{23}s_{5}c_{6}}$$

$${}_{12} = c_{1}[c_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + s_{23}s_{5}s_{6}] + s_{1}(c_{4}c_{6} - s_{4}c_{5}s_{6})}$$

$${}_{22} = s_{1}[s_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + s_{23}s_{5}s_{6}] - c_{1}(c_{4}c_{6} - s_{4}c_{5}s_{6})}$$

$${}_{32} = -s_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + c_{23}s_{5}s_{6}}$$

$${}_{13} = -c_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) - s_{1}s_{4}s_{5}}$$

$${}_{23} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}}$$

$${}_{23} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}}$$

$${}_{23} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}}$$

$${}_{23} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}$$

$${}_{23} = -s_{1}[a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}] - d_{3}s_{1}$$

$${}_{23} = -s_{1}[a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}] + d_{3}c_{1}$$

 $p_z = -a_3 s_{23} - a_2 s_2 - d_4 c_{23}$

機器人簡介 ME5118 Chap 3 - 林沛群

終

Questions?

