Heat Exchangers

What is a heat exchanger?

Heat Exchangers (HX) are devices where <u>heat is</u> transferred between two fluids at different temperatures <u>without any mixing of fluids</u>

Classification of HX

- Hundreds of types of heat exchangers depending on designs, geometry, flow configurations, materials, etc.
- 3 broad classifications
 - Direct Transfer type
 - Storage type
 - Direct contact type

Focus of our course will be on Direct Transfer type

Direct Transfer Type HX

 It is that type of heat exchanger where the <u>hot</u> and cold fluids flow simultaneously through the device and <u>heat is transferred through a wall</u> separating the fluids.

Storage type HX

- It is a heat exchanger where <u>heat transfer</u> between the hot and cold fluids <u>occurs through a coupling medium</u> in the form of a porous solid matrix. The <u>hot and cold streams flow alternately through the matrix</u>, the hot fluid storing heat in it and the cold fluid extracting heat out of it.
 - Also called regenerative type HX

Heat Recovery Wheel

Direct Contact HX

 In Direct Contact type HX, the two fluids are NOT separated. If heat is to be transferred between a gas and a liquid (most common), the gas is either bubbled through the liquid of the liquid is sprayed into the form of droplets into the gas.

Direct Transfer HX - Classification

- Classification by Design Type
 - Tubular
 - Concentric Tube or Double pipe
 - Shell and Tube
 - Parallel Plate
 - Extended Surfaces

Note: many other designs are possible; above three are the most commonly encountered ones

Concentric tube

Shell and Tube

Shell and Tube types

One Shell Pass and One Tube Pass

One Shell Pass, Two Tube Passes

Two Shell Passes, Four Tube Passes

Parallel plate HX

Extended Surfaces

Cross Flow HX – mixed/unmixed

Cross flow $T \approx f(x)$ Tube flow

Finned-Both Fluids
Unmixed

Unfinned-One Fluid Mixed the Other Unmixed

Note: Finned tube HX is BOTH FLUIDS UNMIXED

Class Notes topics

- Parallel & Counter Flow
- Concept of Overall Heat Transfer Coefficient (U)
 - Fouling
- Mean temperature difference LMTD
 - Parallel Flow
 - Counter Flow
 - Cross Flow & Shell and Tube (F charts)
 - Refer to any text book on Heat Transfer

Effectiveness – NTU Method

Refer to Class Notes

- Definition of Effectiveness
- Calculation of Effectiveness for Parallel and Counter Flow HX
- NTU and Heat Capacity Ratio (C) definitions
- Charts for different types of HX
 - Refer to any text book on Heat Transfer
- Special case of C = 0
 - Expected to remember e NTU relationship

Thank You!