SPRAWOZDANIE

Zajęcia: Analiza Procesów Uczenia Prowadzący: prof. Dr hab. Vasyl Martsenyuk

Laboratorium 1

3.02.2021

Temat: "Podstawy języka R"
Wariant 8

Bartosz Jarosz Informatyka II stopień Stacjonarne (zaoczne) 1 semestr

1. Polecenie:

- a. Do zmiennej a podstaw warto's'c wyraz'enia 2/3². Do zmiennej b podstaw podw'ojna, warto's'c zmiennej a. Wywo@laj funkcje, sprawdzaja,ca,, która z wartości zmiennych jest większa
- b. Uruchom i poczytaj dokumentacje dla funkcji median().
- c. Stw'orz wektor a zawierają cy liczby od 80 do 175. Policz's rednią liczb zawartych w wektorze.
- d. Wy'swietlwszystkiefunkcjezawierają cefraze printwswojejnazwie.
- e. Ustaw dowolny katalog roboczy. Naste pnie stwo'rz zmienną a zawierają ca alan'cuch znak'ow "monitor LED". Zapisz zmienną a z obszaru roboczego do pliku w katalogu roboczym. Naste pnie usun' zmienną a. Sprawd'z warto's'c zmiennej a (powinno jej brakowa'c). Na kon'cu wczytaj plik ze zmienna, a i sprawd'z jej warto's'c.
- f. Zainstaluj i za@laduj pakiet gridExtra, kt'ory umoz'liwia m.in @ladna, wizualizacje danych tabelarycznych. Naste,pnie przy pomocy dokumentacji pakietu znajd'z funkcje, do wizualizacji danych tabelarycznych. Uz'yj jej na pierwszych 10 wierszach zbioru danych women.
- g. Stw'orz wektor zawierają cy cią g liczb 100, 92,84,... 20.
- h. Stw'orz wektora a z liczbami od 500 do 30 oraz wektor b z liczbami od 40 do 50. Utwo'rz nowy wektory d be da cy po la czeniem wektora b i a (w takiej kolejno'sci). Wy'swietl go.
- i. Stw´orzwektornazwazawierają cynazwy10monitor´owLED.Potem stwo´rz wektory matryca, jasno´s´c, czas_reakcji_matrycy, cena, liczba_opinii zawierają ce kolejno dane 10 monitor´ow. Naste pnie stwo´rz ramke danych monitory zoloz ona z wektoro´w matryca, jasno´s´c, czas_reakcji_matrycy, cena, liczba_opinii. Wylicz´srednia cene monitoro´w.
- j. Do stworzonej w poprzednim zadaniu ramki danych monitor'ow dodaj wpis zawierają cy dane nowego monitoru. Wylicz's rednią ceny ponownie.
- k. Korzystają czramkidanychmonitorydodajnową kolumne okre'slają c ocene, kliento'w. Wpisz do kolumny odpowiednio oceny w skali od 0 do 5 krok 0.5. Dodana kolumna powinna sie, automatycznie przekonwertowa'c do cech jako'sciowych (tzw. factors). Wylicz'srednia, ceny kaz dej oceny.
- 1. Do ramki danych monitory dodaj kolejne 4 monitory. Narysuj na wykresie s\(\text{2}\) lupkowym liczebno's'c reprezentant'ow kaz'dej z ocen kliento'w (pakiet plotrix).
- m. Wykorzystują c ramke danych monitory pokaz procentowy udzia lakaż dej oceny przy pomocy wykresu ko lowego oraz wachlarzowego (pakiet plotrix).
- n. Do ramki danych monitory dodaj nowa, kolumne, status_opinii z warto'sciami: "nie ma", "mniej 50 opinii", "50-100 opinii", "wie,cej 100 opinii" w zalez no'sci od liczby opinii. Zamien' dodana, kolumne, na cechy jako'sciowe. Naste,pnie przy pomocy wykresu ko@lowego wyrysuj procentowy udzia@l monitoro'w o konkretnym statusie opinii.
- o. Wykorzystują c ramke danych monitory stw'orz zdanie o kaz dym z monitoro'w postaci: nazwa + " ma ocene kliento'w " + ocena kliento'w + " bo ma liczbe opinii" + liczba opinii. Plus oznacza konkate- nacje lan'cuch'ow i warto'sci.

p. Zachowa'c ramke, danych w pliku .csv. Za ${\tt @ladowa}$ 'c ramke, danych z pliku .csv

Dane (15 monitoro'w LED) pobra'c ze strony http://www.euro.com.pl

2. Wprowadzane dane:

Plik Lab1.R w repozytorium https://github.com/ktoosiu/APU/tree/master/1

3. Wykorzystane komendy:—

Jak wyżej

4. Wynik działania:

Zawartość wygenerowanego pliku csv

monitors

	Matryca	wielkosc	jasnosc	czas	cena	opinie	ocenaKlientow
1	monitor 1	10	1	10	0	100	0
2	monitor 2	10	2	9	3	90	0.5
3	monitor 3	10	3	8	6	80	1
4	monitor 4	30	4	7	9	70	1.5
5	monitor 5	30	5	6	12	60	2
6	monitor 6	20	6	5	15	50	2.5
7	monitor 7	20	7	4	18	40	3
8	monitor 8	14	8	3	21	30	3.5
9	monitor 9	14	9	2	24	20	4
10	monitor 10	13	10	1	27	10	4.5
11	Monitor 11	10	11	0	30	0	5
12	Monitor 12	10	12	0	10	0	0
13	Monitor 13	10	13	0	30	0	2
14	Monitor 14	10	14	0	20	0	2
15	Monitor 15	10	15	0	30	0	3

5.Wnioski

Na podstawie otrzymanego wyniku można stwierdzić, że język R pozwala w prosty sposób operować na danych, a dodatkowe paczki pozwalają te dane zwizualizować w postaci wykresów.