SZTUCZNA INTELIGENCJA I SYSTEMY DORADCZE

UCZENIE MASZYNOWE - WPROWADZENIE I DRZEWA DECYZYJNE

System ALVINN

ALVINN prowadzi samochód po autostradzie z szybkością 70 mil na godzinę

www.wisewire.com, adaptuje sie do uzytkownika

Uczenie indukcyjne

Obiekty: dane reprezentujące rzeczywisty stan lub obiekt, tworzą przestrzeń obiektów X

Decyzja: Funkcja $dec: X \to V_{dec}$ przypisująca obiektom wartość decyzji z ustalonego zbioru V_{dec}

Zbiór przykładów: ustalony zbiór obiektów z X z przypisanymi wartościami decyzji: $(x_1, dec(x_1)), \ldots, (x_m, dec(x_m))$

Problem:

Z danego zbioru przykładów nauczyć się funkcję (hipotezę) $h: X \to V_{dec}$ aproksymującą decyzję dec tak, żeby możliwie najbardziej poprawnie przypisywała ją obiektom z przestrzeni X, dla których nieznana jest wartość decyzji dec

Uczenie indukcyjne: kolko i krzyzyk

Obiekty to pary: stan gry i ocena stanu
$$egin{array}{c|c} O & O & X \\ \hline X & \\ \hline X & \\ \hline \end{array}$$
 , $+1$

Problem polega na nauczeniu się właściwej oceny stanu gry

Uczenie indukcyjne: uprawianie sportu

Obiekty to wektory wartości opisujące bieżące warunki pogodowe

Przykład	Atrybuty						Decyzja
J		Temp	Wilgotn	Wiatr	Woda	Prognoza	Sport
Dzień 1	Słońce	Ciepło	Normalna	Silny	Ciepła	Bez zmian	Tak
Dzień 2	Słońce	Ciepło	Wysoka	Silny	Ciepła	Bez zmian	Tak
Dzień 3	Deszcz	Zimno	Normalna	Silny	Ciepła	Zmiana	Nie
Dzień 4	Słońce	Ciepło	Wysoka	Silny	Chłodna	Zmiana	Tak

Problem polega na nauczeniu się podejmowania właściwego wyboru na podstawie bieżących warunków pogodowych

Rodzaje decyzji

Decyzja może przyjmować wartości:

- rzeczywiste (decyzja ciągła)
- ♦ dyskretne
- ♦ binarne (TRUE lub FALSE)

Hipoteza spojna

Hipoteza H jest spójna na zbiorze treningowym $(x_1, dec(x_1)), \ldots, (x_m, dec(x_m))$, jeśli

$$h(x_i) = dec(x_i)$$
 dla każdego $1 \le i \le m$

Regresja to aproksymacja decyzji o wartości ciągłej

Regresja to aproksymacja decyzji o wartości ciągłej

Regresja liniowa

Regresja to aproksymacja decyzji o wartości ciągłej

Regresja kwadratowa

Regresja to aproksymacja decyzji o wartości ciągłej

Regresja wyższego stopnia (spójna)

Regresja to aproksymacja decyzji o wartości ciągłej

Regresja kawałkami liniowa (spójna)

Brzytwa Ockhama

Brzytwa Ockhama wybiera hipotezę, która maksymalizuje połączenie spójności i prostoty

Wybór aproksymacji zależy od funkcji oceny spójności i prostoty

Opis obiektow przez atrybuty

Atrybuty: zbiór atrybutów $A = \{a_1, a_2, \dots, a_n\}$

Obiekty: Wektory wartości atrybutów $x = \langle x_1, x_2, \dots, x_n \rangle$

Wartości atrybutów mogą być:

- ♦ ciągłe
- ♦ dyskretne
- ♦ binarne (TRUE lub FALSE)

Opis obiektow przez atrybuty: przyklad

Decyzja na grę w tenisa jest binarna: Yes lub No

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Przestrzen hipotez

lle jest różnych hipotez (funkcji) binarnych dla n atrybutów binarnych??

Przestrzen hipotez

lle jest różnych hipotez (funkcji) binarnych dla n atrybutów binarnych??

= liczba funkcji binarnych dla dziedziny z 2^n obiektami = 2^{2^n}

Przestrzen hipotez

lle jest różnych hipotez (funkcji) binarnych dla n atrybutów binarnych??

= liczba funkcji binarnych dla dziedziny z 2^n obiektami = 2^{2^n}

np. dla 6 atrybutów binarnych jest 18,446,744,073,709,551,616 hipotez

Ograniczanie przestrzeni hipotez

Przestrzeń hipotez można ograniczyć do ustalonej klasy hipotez

Ograniczanie przestrzeni hipotez: przyklad

Przestrzeń hipotez można ograniczyć do ustalonej klasy hipotez

lle jest czysto koniunkcyjnych funkcji (np. $Hungry \wedge \neg Rain$)??

Ograniczanie przestrzeni hipotez: przyklad

Przestrzeń hipotez można ograniczyć do ustalonej klasy hipotez

lle jest czysto koniunkcyjnych funkcji (np. $Hungry \wedge \neg Rain$)??

Każdy atrybut może wystąpić jako literał pozytywny, jako literał negatywny lub wcale

Ograniczanie przestrzeni hipotez: przyklad

Przestrzeń hipotez można ograniczyć do ustalonej klasy hipotez

lle jest czysto koniunkcyjnych funkcji (np. $Hungry \wedge \neg Rain$)??

Każdy atrybut może wystąpić jako literał pozytywny, jako literał negatywny lub wcale

 \Rightarrow 3^n różnych funkcji koniunkcyjnych

Co powoduje zwiększenie klasy dopuszczalnych hipotez??

Co powoduje zwiększenie klasy dopuszczalnych hipotez??

– zwiększa szansę, że funkcja docelowa może być wyrażona

Co powoduje zwiększenie klasy dopuszczalnych hipotez??

- zwiększa szansę, że funkcja docelowa może być wyrażona
- zwiększa liczbę hipotez zgodnych ze zbiorem treningowym

Co powoduje zwiększenie klasy dopuszczalnych hipotez??

- zwiększa szansę, że funkcja docelowa może być wyrażona
- zwiększa liczbę hipotez zgodnych ze zbiorem treningowym
 - ⇒ może spowodować gorszą skuteczność predykcji

Empiryczna miara jakosci hipotezy

Dane dzielone są na zbiór treningowy U_{trn} i zbiór testowy U_{tst}

Hipoteza $h: X \to V_{dec}$ jest indukowana na podstawie zbioru treningowego U_{trn}

Skuteczność hipotezy Accuracy(h) jest mierzona proporcją poprawnie sklasyfikowanych obiektów ze zbioru testowego

$$Accuracy(h) = \frac{|\{x \in U_{tst} : h(x) = dec(x)\}|}{|U_{tst}|}$$

Metody wnioskowania

Metody wnioskowania dla danych opisanych przez zbiór atrybutów z decyzją dyskretną:

- ♦ Drzewa decyzyjne
- ♦ Systemy regułowe
- ♦ Sieci neuronowe
- Wnioskowanie oparte na podobieństwie
- ♦ Sieci bayessowskie

Drzewa decyzyjne: reprezentacja

Węzły wewnętrzne

Każdy związany z jednym atrybutem, reprezentuje test wartości tego atrybutu

Gałęzie

Każda związana z jedną wartością lub z podzbiorem wartości atrybutu węzła, z którego wychodzi gałąź, odpowiada obiektom danych z pasującymi wartościami atrybutu

Liście

Każdy związany z decyzją lub rozkładem decyzji, odpowiada obiektom danych pasującym do ścieżki prowadzącej do danego liścia

Drzewa decyzyjne: przyklad

Reprezentacja danych

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Drzewa decyzyjne: przyklad

Drzewa decyzyjne: moc wyrazania

Fakt 1: Dla każdego zbioru treningowego istnieje spójne drzewo decyzyjne

Dowód: zaczynamy od pustego drzewa i dla każdego obiektu danych dokładamy

ścieżkę prowadzącą przez wszystkie atrybuty z wartościami krawędzi odpowiadającymi wartościom atrybutów w obiekcie

Fakt 2: Dla każdej funkcji istnieje spójne drzewo decyzyjne

Dowód: można utworzyć zbiór treningowy zawierający obiekty odpowiadające wszystkim kombinacjom wartości atrybutów o decyzji zgodnej z daną funkcją

Drzewa decyzyjne: trenowanie

Cel: znalezienie drzewa spójnego ze zbiorem treningowym

Pomysł: rekurencyjne wybieranie najbardziej znaczącego atrybutu jako korzeń poddrzewa

```
function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else best \leftarrow \texttt{CHoose-Attribute}(attributes, examples) \\ tree \leftarrow \texttt{a} \text{ new decision tree with root test } best \\ \textbf{for each value } v_i \text{ of } best \textbf{ do} \\ examples_i \leftarrow \{\texttt{elements of } examples \text{ with } best = v_i\} \\ subtree \leftarrow \texttt{DTL}(examples_i, attributes - best, \texttt{Mode}(examples)) \\ \texttt{add a } \texttt{branch to } tree \text{ with } \texttt{label } v_i \text{ and subtree } subtree \\ \textbf{return } tree
```

Drzewa decyzyjne: wybor atrybutu

Rożne atrybuty dają różne rozkłady decyzji w gałęziach

Funkcja CHOOSE-ATTRIBUTE wybiera najlepszy z nich

Entropia

Dany jest rozkład prawdopodobieństwa $\langle p_1, \dots, p_n \rangle$

Miara entropii wyznacza, ile informacji niesie z sobą ten rozkład

$$Entropy(\langle p_1, \dots, p_n \rangle) = \sum_{i=1}^n - p_i \log_2 p_i$$

Entropia

Dany jest rozkład prawdopodobieństwa $\langle p_1, \ldots, p_n \rangle$

Miara entropii wyznacza, ile informacji niesie z sobą ten rozkład

$$Entropy(\langle p_1, \dots, p_n \rangle) = \sum_{i=1}^n - p_i \log_2 p_i$$

S — zbiór obiektów danych S_d — zbiór obiektów w S z decyzją d

$$Entropy(S) = \sum_{d \in V_{dec}} -\frac{|S_d|}{|S|} \log_2 \frac{|S_d|}{|S|}$$

Entropia = średnia liczba bitów potrzebna do zakodowania decyzji d dla losowo wybranego obiektu ze zbioru S (przy optymalnym kodowaniu decyzji)

Dlaczego??

Entropia

Dany jest rozkład prawdopodobieństwa $\langle p_1, \ldots, p_n \rangle$

Miara entropii wyznacza, ile informacji niesie z sobą ten rozkład

$$Entropy(\langle p_1, \dots, p_n \rangle) = \sum_{i=1}^n - p_i \log_2 p_i$$

S — zbiór obiektów danych S_d — zbiór obiektów w S z decyzją d

$$Entropy(S) = \sum_{d \in V_{dec}} -\frac{|S_d|}{|S|} \log_2 \frac{|S_d|}{|S|}$$

Entropia = średnia liczba bitów potrzebna do zakodowania decyzji d dla losowo wybranego obiektu ze zbioru S (przy optymalnym kodowaniu decyzji)

Dlaczego??

Optymalne kodowanie przydziela $-\log_2 p$ bitów do decyzji występującej z prawdopodobieństwem p

Entropia: dwie decyzje

Dane są dwie decyzje: pozytywna (\oplus) i negatywna (\ominus)

 $p_{\oplus} = \frac{|S_{\oplus}|}{|S|}$ — proporcja obiektów z decyzją pozytywną w zbiorze S

 $p_{\ominus} = \frac{|S_{\ominus}|}{|S|}$ — proporcja obiektów z decyzją negatywną w zbiorze S

Entropia: dwie decyzje

Dane są dwie decyzje: pozytywna (\oplus) i negatywna (\ominus)

 $p_{\oplus} = rac{|S_{\oplus}|}{|S|}$ — proporcja obiektów z decyzją pozytywną w zbiorze S

 $p_{\ominus} = rac{|S_{\ominus}|}{|S|}$ — proporcja obiektów z decyzją negatywną w zbiorze S

 $Entropy(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$

Zysk informacji dla atrybutu symbolicznego

Zysk informacji Gain(S, a)

= redukcja entropii przy podziale zbioru względem atrybutu a

 S_v — zbiór obiektów w S z wartością atrybutu a=v

$$Gain(S, a) = Entropy(S) - \sum_{v \in Values(a)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Zysk informacji dla atrybutu symbolicznego

Zysk informacji Gain(S, a)

= redukcja entropii przy podziale zbioru względem atrybutu a

 S_v — zbiór obiektów w S z wartością atrybutu a=v

$$Gain(S, a) = Entropy(S) - \sum_{v \in Values(a)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Which attribute is the best classifier?

Wybor atrybutu

Drzewo decyzyjne w każdym węźle wybiera atrybut a z największym zyskiem informacji, tzn. z największą wartością Gain(S,a)

Wybor atrybutu: przyklad

Zbiór danych

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Wybor atrybutu: przyklad

Which attribute should be tested here?

$$S_{sunny} = \{D1, D2, D8, D9, D11\}$$

$$Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

$$Gain(S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$$

$$Gain(S_{Sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$$

Wybor atrybutu: przyklad

Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

 $Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$
 $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$
 $Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Najlepszym atrybutem jest Humidity

Zysk informacji dla atrybutu numerycznego

Zysk informacji Gain(S, a, c)

= redukcja entropii względem cięcia binarnego c na atrybucie a

c — wartość cięcia

 $s_{a < c}$ — zbiór obiektów z wartościami atrybutu a poniżej cięcia

 $s_{a>c}$ — zbiór obiektów z wartościami atrybutu a powyżej cięcia

$$Gain(S, a, c) = Entropy(S) - \frac{|S_{a < c}|}{|S|} Entropy(S_{a < c}) - \frac{|S_{a \ge c}|}{|S|} Entropy(S_{a \ge c})$$

Wybor ciecia

Drzewo decyzyjne wybiera atrybut rozpatrując najlepsze cięcia dla atrybutów numerycznych

Wybor ciecia

Drzewo decyzyjne wybiera atrybut rozpatrując najlepsze cięcia dla atrybutów numerycznych

Przykład

Dany jest atrybut numeryczny Temperature z następującymi wartościami w zbiorze treningowym:

Temperature	4	8	16	22	26	32
PlayTennis	No	No	Yes	Yes	Yes	No

Najlepsze cięcie??

Wybor ciecia

Drzewo decyzyjne wybiera atrybut rozpatrując najlepsze cięcia dla atrybutów numerycznych

Przykład

Dany jest atrybut numeryczny Temperature z następującymi wartościami w zbiorze treningowym:

Temperature	4	8	16	22	26	<i>32</i>
PlayTennis	No	No	Yes	Yes	Yes	No

Najlepsze cięcie??

$$Gain(S, a, 0) = 1.0 - (0/6)0.0 - (6/6)1.0 = 0.0$$

 $Gain(S, a, 12) = 1.0 - (2/6)0.0 - (4/6)0.811 = 0.439$
 $Gain(S, a, 29) = 1.0 - (5/6)0.971 - (1/6)0.0 = 0.191$

Najlepsze cięcie: c=12

Wielokrotny wybor atrybutu

Ten sam atrybut numeryczny może być wybrany kilkakrotnie na jednej ścieżce od korzenia do liścia:

Przykład: najpierw cięcie $c_1=12$, potem $c_2=29$

Temperature	4	8	16	22	26	32
PlayTennis	No	No	Yes	Yes	Yes	No

Ale każdy atrybut symboliczny może byc wybrany conajwyżej raz!

Wybor atrybutu: normalizacja

Problem

Miara Gain faworyzuje atrybuty z wieloma wartościami, w szczególności atrybut z wartościami jednoznacznymi, np. PESEL, ma maksymalną wartość Gain, ale jego użyteczność dla nowych przykładów jest żadna

Wybor atrybutu: normalizacja

Problem

Miara Gain faworyzuje atrybuty z wieloma wartościami, w szczególności atrybut z wartościami jednoznacznymi, np. PESEL, ma maksymalną wartość Gain, ale jego użyteczność dla nowych przykładów jest żadna

Rozwiązanie: można zastosować normalizację miary Gain

$$SplitInformation(S, a) = -\sum_{v \in Values(a)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}$$

i użyć miary GainRatio zamiast Gain:

$$GainRatio(S,a) = \frac{Gain(S,a)}{SplitInformation(S,a)}$$

Drzewa decyzyjne: klasyfikacja obiektu

Day	Outlook	Temperature	Humidity	Wind	<i>PlayTennis</i>
Today	Sunny	Hot	Normal	Weak	??

Odpowiedź??

Drzewa decyzyjne: klasyfikacja obiektu

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
Today	Sunny	Hot	Normal	Weak	??

Odpowiedź??

 $Outlook = Sunny \rightarrow Humidity = Normal \rightarrow PlayTennis = Yes$

Drzewa decyzyjne: wartosci brakujace

Problem:

Co robić, kiedy informacja o klasyfikowanym obiekcie jest niepełna, np.:

Day	Outlook	Temperature	Humidity	Wind	<i>PlayTennis</i>
Today	?	Hot	High	Weak	??

Drzewa decyzyjne: wartosci brakujace

Problem:

Co robić, kiedy informacja o klasyfikowanym obiekcie jest niepełna, np.:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
Today	?	Hot	High	Weak	??

Pomysł: zejście wszystkimi ścieżkami przy atrybutach z nieustaloną wartością

Odpowiedź:??

Drzewa decyzyjne: wartosci brakujace

Problem:

Co robić, kiedy informacja o klasyfikowanym obiekcie jest niepełna, np.:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
Today	?	Hot	High	Weak	??

Pomysł: zejście wszystkimi ścieżkami przy atrybutach z nieustaloną wartością

Odpowiedź:??

Maksym. z sumy rozkładów decyzji obiektów uczących w uzyskanych liściach:

$$5 \times No \wedge (4+3) \times Yes \rightarrow PlayTennis = Yes$$

Drzewo decyzyjne: przycinanie

Problem:

Bardzo rzadkie wyjątki lub błędy w przykładach uczących mogą spowodować niepotrzebne rozwinięcie gałęzi drzewa

Pomysł:

Dodanie fazy walidacji drzewa decyzyjnego do procesu uczenia.

Węzły rozdzielające, które nie potwierdzą swojej przydatności w fazie walidacji, są zamieniane na liście.

Drzewo decyzyjne: algorytm z przycinaniem

```
function DTL-PRUNED(examples, attributes, default) returns a decision tree
   building, validating \leftarrow split examples into building and validating sets
   tree \leftarrow \text{DTL}(building, attributes, default)
   tree \leftarrow PRUNE-TREE(validating, tree)
   return tree
function PRUNE-TREE(validationset, tree) returns a pruned decision tree
   leafparents \leftarrow inner nodes in tree such that all their successors are leaf nodes
   while leafparents \neq \{ \}
       cand \leftarrow a \text{ node from } leafparents
      d_{cand} \leftarrow the most frequent decision among the building objects assigned to cand
      if assigning d_{cand} to the objects going through the node cand
                         does not worsen classification accuracy in validationset then
         replace the subtree rooted at cand by the leaf node with the decision d_{cand}
          if all brother nodes of cand are leafs then
             add the parent of cand to leafparents
   return the modified tree.
```