Example.

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

Definition

Let A be an $n \times n$ matrix. If $\mathbf{v} \in \mathbb{R}^n$ is a non-zero vector and λ is a scalar such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

then we say that

- ullet λ is an eigenvalue of A
- ullet v is an *eigenvector* of A corresponding to λ .

Example.

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right]$$

Example.

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

Computation of eigenvalues

Recall: $I_n = n \times n$ identity matrix:

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Propostiton

If A be an $n \times n$ matrix then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if the matrix equation

$$(A - \lambda I_n)\mathbf{x} = \mathbf{0}$$

has a non-trivial solution.

Propostiton

If B is an $n \times n$ matrix then equation

$$B\mathbf{x} = \mathbf{0}$$

has a non-trivial solution if and only of the matrix \boldsymbol{B} is not invertible.

Propostiton

If A be an $n \times n$ matrix then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if

$$\det(A - \lambda I_n) = 0$$

Example. Find all eigenvalues of the following matrix:

$$A = \left[\begin{array}{rrr} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Definition

If A is an $n \times n$ matrix then

$$P(\lambda) = \det(A - \lambda I_n)$$

is a polynomial of degree n. $P(\lambda)$ is called the *characteristic polynomial* of the matrix A.

Upshot

If A is a square matrix then

eigenvalues of
$$A = \text{roots of } P(\lambda)$$

Example.

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Corollary

An $n \times n$ matrix can have at most n distinct eigenvalues.

Computation of eigenvectors

Proposition

If λ is an eigenvalue of an $n \times n$ matrix A then

$$\left\{ \begin{array}{l} \text{eigenvectors of } A \\ \text{corresponding to } \lambda \end{array} \right\} = \left\{ \begin{array}{l} \text{vectors in} \\ \text{Nul}(A - \lambda I_n) \end{array} \right\}$$

Corollary/Definition

If A is an $n \times n$ matrix and λ is an eigenvalue of A then the set of all eigenvectors corresponding to λ is a subspace of \mathbb{R}^n .

This subspace is called the *eigenspace* of A corresponding to λ .

Proposition

If λ is an eigenvalue of an $n \times n$ matrix A then

$$\begin{cases} \text{eigenspace of } A \\ \text{corresponding to } \lambda \end{cases} = \text{Nul}(A - \lambda I_n)$$

Example. Consider the following matrix:

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Recall that eigenvalues of A are $\lambda_1=1$ and $\lambda_2=5$. Compute bases of eigenspaces of A corresponding to these eigenvalues.

Solution.

$$\underline{\lambda_1 = 1}$$

 $\underline{\lambda_2 = 5}$

Recall:

1) Let A be an $n \times n$ matrix. If $\mathbf{v} \in \mathbb{R}^n$ is a non-zero vector and λ is a scalar such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

then

- \bullet λ is an eigenvalue of A
- ullet v is an eigenvector of A corresponding to λ .
- 2) The characteristic polynomial of an $n \times n$ matrix A is the polynomial given by the formula

$$P(\lambda) = \det(A - \lambda I_n)$$

where I_n is the $n \times n$ identity matrix.

3) If A is a square matrix then

eigenvalues of
$$A = \text{roots of } P(\lambda)$$

4) If λ is an eigenvalue of an $n \times n$ matrix A then

$$\left\{ \begin{array}{l} \text{eigenvectors of } A \\ \text{corresponding to } \lambda \end{array} \right\} = \left\{ \begin{array}{l} \text{vectors in} \\ \text{Nul}(A - \lambda I_n) \end{array} \right\}$$