

Mathématiques

Classe: BAC Mathématiques

Session Principale 2017

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(5) 40 min

5 pts

Le plan est orienté.

Dans la figure ci-dessous, *ABC* est un triangle équilatéral tel que $\left(\overrightarrow{BC}, \overrightarrow{BA}\right) = \frac{\pi}{3} \left[2\pi\right]$.

 Ω est un point intérieur au triangle *ABC* tel que $\left(\overrightarrow{AB}, \overrightarrow{A\Omega}\right) \equiv \frac{\pi}{4} \left[2\pi\right]$.

I et J sont les projetés orthogonaux de Ω respectivement sur les droites (AB) et (AC). D est le point de la droite (AC) tel que $DA = D\Omega$.

- **1°)** Montrer que $(\overrightarrow{\Omega J}, \overrightarrow{\Omega D}) \equiv \frac{\pi}{3} [2\pi]$.
- **2°)** Soit $R = S_{(\Omega D)} \circ S_{(\Omega J)}$.
 - a) Justifier que R est une rotation de centre Ω et d'angle $\frac{2\pi}{3}$.
 - **b)** Soit F = R(J).

Montrer que \emph{F} est un point de la demi-droite $\left[\Omega I\right)$. Construire le point \emph{F} .

- **3°)** Soit h l'homothétie de centre Ω et telle que h(F) = I . On pose $f = h \circ R$.
 - a) Vérifier que f(J)=I.
 - b) Montrer que f est une similitude directe dont on précisera le centre et l'angle.
 - c) Calculer $\frac{\Omega I}{\Omega A}$ et $\frac{\Omega A}{\Omega J}$ (On donne $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3} 1}{2\sqrt{2}}$).

En déduire que le rapport de f est égal à $1+\sqrt{3}$.

4°) Soit g la similitude indirecte de centre $\,\Omega\,$ telle que $\,g(J)\!=\!I\,.$

- **a)** Montrer que $g = f \circ S_{(\Omega I)}$.
- **b)** Déterminer le rapport de *g*.
- c) Montrer que l'axe de g est la droite (ΩD) .
- **d)** Montrer que $g = h \circ S_{(\Omega D)}$.
- e) La droite (ΩD) coupe la droite (BC) en un point K. On pose K'=g(K) . Vérifier que h(K)=K' . Construire alors le point K' .

Exercice 2:

3,5 pts

L'espace est orienté.

Dans la figure ci-contre ABCDEFGH est un cube d'arrête 1.

 $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ est un repère orthonormé direct de l'espace \vdash

- **1°) a)** Montrer que $\overrightarrow{EC} \wedge \overrightarrow{ED} = \overrightarrow{AH}$.
 - **b)** Montrer que l'aire du triangle *ECD* est égale à $\frac{\sqrt{2}}{2}$.
 - c) Calculer le volume du tétraèdre AECD.
- **2°)** Soit h l'homothétie de centre A et de rapport $\frac{3}{4}$. On pose M = h(D).

les segments [AC] et [AG] respectivement en N et P. Montrer que h(C) = N et h(G) = P .

- **b)** Le plan passant par M et parallèle au plan (ECD) coupe la droite (AE) en un point K. Calculer le volume du tétraèdre AKNM.
- **3°)** Soit (S) la sphère de centre le point $I\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ et de rayon $R = \frac{\sqrt{3}}{2}$.
- a) Montrer que la sphère coupe le plan (DCG) suivant un cercle dont on précisera le centre et le rayon.
- **b)** Soit (S') l'image de la sphère (S) par l'homothétie h.

 Montrer que (S') coupe le plan (MNP) suivant un cercle dont on précisera le centre et le rayon.

Exercice 3:

4 pts

- 1°) Soit x un entier non nul premier avec 53.
 - a) Déterminer le reste modulo 53 de x^{52} .
 - **b)** En déduire que pour tout entier naturel k, $x^{52k+1} \equiv x \pmod{53}$.
- **2°)** Soit l'équation (E_1) : $x^{29} \equiv 2 \pmod{53}$, où $x \in \mathbb{Z}$.

Montrer que 2^9 est une solution de (E_1) .

- **3°)** Soit x une solution de l'équation (E_1) .
 - a) Montrer que x est premier avec 53.
 - **b)** Montrer que $x^{261} \equiv x \pmod{53}$.
 - c) En déduire que $x \equiv 2^9 \pmod{53}$.
- **4°) a)** Montrer que $2^9 \equiv 35 \pmod{53}$.
 - **b)** Donner alors l'ensemble des solutions dans \mathbb{Z} de l'équation (E_1) .
- **5°)** On considère dans $\mathbb{Z} \times \mathbb{Z}$, l'équation (E_2) : 71u 53v = 1 .
 - a) Vérifier (3,4) est une solution de l'équation (E_2) .
 - **b)** Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E_2) .
- **6°)** Résoudre dans \mathbb{Z} le système $\begin{cases} x \equiv 34 \pmod{71} \\ x^{29} \equiv 2 \pmod{53} \end{cases}$.

7,5 pts

Soit f la fonction définie sur $[0,+\infty[$ par $f(x)=\sqrt{e^x-1}$.

On note $C_{\!f}$ sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- **1°)** Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
- 2°) a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.
 - **b)** Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = \frac{e^x}{2\sqrt{e^x-1}}$.
 - c) Dresser le tableau de variation de f.
 - **d)** En déduire que $e^x 1 \le \sqrt{e^x 1}$, si et seulement si, $0 \le x \le \ln 2$.
- **3°)** Montrer que le point $B(\ln 2,1)$ est un point d'inflexion de $\mathbf{C}_{\!f}$.
- **4°)** Dans la figure ci-dessous, on a tracé dans le repère $(0,\vec{i},\vec{j})$ la courbe Γ de la fonction $x \mapsto e^x - 1$.

- a) Etudier la position relative de $\, {\displaystyle C_{\!\!f}}\,$ par rapport à $\, \Gamma \, .$
- **b)** Tracer la courbe $\, C_{\!f} \, .$
- **5°)** Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $g(x) = \tan x$.
 - a) Montrer que g réalise une bijection de $\left[0,\frac{\pi}{2}\right[$ sur $\left[0,+\infty\right[$. On note g^{-1} sa fonction réciproque.
 - **b)** calculer $(g^{-1})(0)$ et $(g^{-1})(1)$.
 - c) Montrer que g^{-1} est dérivable sur $\left[0,+\infty\right[$ et que $\left(g^{-1}\right)'(x)=\frac{1}{1+x^2}$.
 - **d)** Montrer que $\lim_{x\to 0^+} \frac{g^{-1}(x)}{x} = 1$.
- **6°)** On pose pour tout $x \in [0,+\infty[$, $F(x) = \int_0^x f(t) dt$ et $G(x) = 2(f(x) (g^{-1} \circ f)(x))$.
 - a) Montrer que pour tout $x \in]0,+\infty[$, F'(x) = G'(x).

- **b)** En déduire que pour tout $x \in]0,+\infty[$ F(x)=G(x).
- c) Soit ${\cal A}$ l'aire de la partie du plan limitée par la courbe C_f , La courbe Γ et les droites d'équations x=0 et $x=\ln 2$. Montrer que ${\cal A}=1+\ln 2-\frac{\pi}{2}$.
- **7°)** Soit n un entier tel que $n \ge 2$.

On désigne par f_n la fonction définie sur $\left[\ln(n), +\infty\right[$ par $f(x) = \sqrt{e^x - n}$.

On note C_n sa courbe représentative dans le repère $(0,\vec{i},\vec{j})$.

- a) Soit G_n la fonction définie sur $\left[\ln(n), +\infty\right[$ par $G_n(x) = 2\left(f_n(x) \sqrt{n}\,g^{-1}\left(\frac{f_n(x)}{\sqrt{n}}\right)\right)$. Montrer que pour tout $x \in \left[\ln(n), +\infty\right[$, $G_n(x) = \int_{\ln(n)}^x f_n(t)\,dt$.
- **b)** Vérifier que pour tout $x \ge \ln(n)$, $\sqrt{e^x n} < \sqrt{e^x 1}$. En déduire que pour tout $x \ge \ln(n)$, $f_n(x) \le e^x 1$.
- c) Soit \mathcal{A}_n l'aire de la partie du plan limitée par la courbe \mathbf{C}_n , la courbe Γ et les droites d'équations $x = \ln(n)$ et $x = \ln(n+1)$. Montrer que $\mathcal{A}_n = 2\sqrt{n} \, g^{-1} \left(\frac{1}{\sqrt{n}}\right) + \ln\left(\frac{n}{n+1}\right) 1$.
- **d)** Déterminer $\lim_{n\to+\infty} \mathcal{A}_n$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000