

WEBENCH® Design Report

VinMin = 9.0V VinMax = 30.0V Vout = 24.0V Iout = 1.0A Device = LM3488MMX/NOPB Topology = SEPIC Created = 1/26/17 5:19:07 AM BOM Cost = \$3.41 BOM Count = 19 Total Pd = 2.55W

Design: 3445715/3 LM3488MMX/NOPB LM3488MMX/NOPB 9.0V-30.0V to 24.00V @ 1.0A

Electrical BOM

#_	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
	Cbp	Kemet	C0603C104K5RACTU Series= X7R	Cap= 100.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
	Ccomp	MuRata	GRM155R60J184KE01D Series= X5R	Cap= 180.0 nF VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
	Ccomp2	Samsung Electro- Mechanics	CL21C751JBCNNNC Series= C0G/NP0	Cap= 750.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
	Cin	Vishay-Sprague	593D475X9050D2TE3 Series= 593D	Cap= 4.7 uF ESR= 600.0 mOhm VDC= 50.0 V IRMS= 500.0 mA	1	\$0.56	7343-31 59 mm ²
	Cout	TDK	C2012X5R1V226M125AC Series= X5R	Cap= 22.0 uF ESR= 2.05 mOhm VDC= 35.0 V IRMS= 4.5559 A	2	\$0.30	0805 7 mm ²
	Cramp	Yageo America	CC0805KRX7R9BB681 Series= X7R	Cap= 680.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
	Csep	MuRata	GRM31CR71H225KA88L Series= X7R	Cap= 2.2 uF ESR= 4.448 mOhm VDC= 50.0 V IRMS= 2.2252 A	1	\$0.05	1206_190 11 mm ²
	D1	Diodes Inc.	B3100-13-F	VF@Io= 790.0 mV VRRM= 100.0 V	1	\$0.22	SMC 83 mm ²
	Lin	Bourns	SRR1210-220M	L= 22.0 μH DCR= 38.0 mOhm	1	\$0.44	

SRR1210 196 mm²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
10. Lout	NIC Components	NPI52W151MTRF	L= 150.0 μH DCR= 250.0 mOhm	1	\$0.26	
						IND_NPI52W 358 mm ²
11. M1	Infineon Technologies	BSC340N08NS3 G	VdsMax= 80.0 V IdsMax= 23.0 Amps	1	\$0.19	
						PG-TDSON-8 55 mm ²
12. Rcomp	Vishay-Dale	CRCW04021K78FKED Series= CRCWe3	Res= 1.78 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
13. Rfadj	Vishay-Dale	CRCW040233K2FKED Series= CRCWe3	Res= 33.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
14. Rfb1	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
15. Rfb2	Yageo America	RC0603FR-07180KL Series= ?	Res= 180.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
16. Rramp	Vishay-Dale	CRCW0402100RFKED Series= CRCWe3	Res= 100.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
17. Rsense	Susumu Co Ltd	PRL1632-R018-F-T1 Series= PRL1632	Res= 18.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.19	0612 11 mm ²
18. U1	Texas Instruments	LM3488MMX/NOPB	Switcher	1	\$0.80	MUA08A 24 mm ²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	3.002 mA	Current	Input capacitor RMS ripple current
2.		1.66 A	Current	Output capacitor RMS ripple current
3.	Csep IRMS	1.661 A	Current	SEPIC capacitor RMS ripple current
4.	D1 Irms	1.922 A	Current	D1 Irms
	IC lpk	3.647 mA	Current	Peak switch current in IC
6.	lin Avg	2.95 A	Current	Average input current
	Lin lpk	3.127 A	Current	Lin peak current
8.	Lin lpp	639.259 mA	Current	Peak-to-peak input inductor ripple current
-	Lin Irms	2.829 A	Current	Lin ripple current
	Lout lpk	1.023 A	Current	Lout peak current
	Lout Ipp	93.662 mA	Current	Peak-to-peak output inductor ripple current
	Lout Irms	981.212 mA	Current	Lout ripple current
	M1 Irms	3.289 A	Current	M1 MOSFET Irms
	BOM Count	19	General	Total Design BOM count
	FootPrint	848.0 mm²	General	Total Foot Print Area of BOM components
16.		455.0 kHz	General	Switching frequency
	IC Tolerance	15.3 mV	General	IC Feedback Tolerance
	Mode	CCM	General	Conduction Mode
	Total BOM	\$3.41	General	Total BOM Cost
	D1 Tj	64.278 degC	Op_Point	D1 junction temperature
	SEPIC Resonance	9.035 kHz	Op_Point	SEPIC Resonance Frequency
۷۱.	Freq	3.033 KHZ	OP_I OIII	OLI 10 Resonance i requency
22	V SEPIC damping	102.22 m	Op_Point	V SEPIC damping factor
~~.	factor	102.22 111	OP_I OIII	V OET TO damping factor
23.	Vin p-p	6.29 mV	Op Point	Peak-to-peak input voltage
	Vsep p-p	763.982 mV	Op_Point	Peak-to-peak sepic voltage
	Cross Freq	4.606 kHz	Op_point	Bode plot crossover frequency
	Duty Cycle	74.5 %	Op_point	Duty cycle
	Efficiency	90.393 %	Op_point	Steady state efficiency
	Gain Marg	10.735 db	Op_point	Bode Plot Gain Margin
	IC Tj	47.503 degC	Op_point	IC junction temperature
	IOUT OP	1.0 A	Op_point	lout operating point
	M1 TjOP	73.143 degC	Op_point	M1 MOSFET junction temperature
	Phase Marg	63.852 deg	Op_point	Bode Plot Phase Margin
	Phase Shift	65.279 deg	Op_point	Bode Plot Phase Shift
	VIN_OP	9.0 V	Op_point	Vin operating point
	Vout p-p	49.487 mV	Op_point	Peak-to-peak output ripple voltage
	Cin Pd	5.408 µW	Power	Input capacitor power dissipation
	Cout Pd	2.825 mW	Power	Output capacitor power dissipation
38.	Csep Pd	12.265 mW	Power	SEPIC capacitor power dissipation
	D1 Pd	816.145 mW	Power	Diode power dissipation
40.	D1 PdCond	790.0 mW	Power	Diode conduction losses
41.	D1 PdSw	26.145 mW	Power	Diode switching losses
42.	IC Pd	109.395 mW	Power	IC power dissipation
	Lin Pd	308.368 mW	Power	Lin power dissipation
	Lout Pd	240.77 mW	Power	Lout power dissipation
	M1 Pd	862.849 mW	Power	M1 MOSFET total power dissipation
46.		408.382 mW	Power	M1 MOSFET conduction losses
47.		454.468 mW	Power	M1 MOSFET switching losses
48.	Rsense Pd	194.731 mW	Power	LED Current Rsns Power Dissipation
49.	Total Pd	2.551 W	Power	Total Power Dissipation
				•

Design Inputs

#	Name	Value	Description
1.	lout	1.0	Maximum Output Current
2.	VinMax	30.0	Maximum input voltage
3.	VinMin	9.0	Minimum input voltage
4.	Vout	24.0	Output Voltage
5.	base_pn	LM3488	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. LM3488 Product Folder: http://www.ti.com/product/LM3488: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.