# The Application of Nonparametric Statistical Tests in Geography



## John Coshall The Business School The Polytechnic of North London

# **Listing of Catmogs in print**

CATMOGS (Concepts and Techniques in Modern Geography) are edited by the Quantitative Methods Study Group of the Institute of British Geographers. These guides are both for the teacher, yet cheap enough for students as the basis of classwork. Each CATMOG is written by an author currently working with the technique or concept he describes.

For details of membership of the Study Group, write to the Institute of British Geographers

| 1:       | Collins, Introduction to Markov chain analysis.                        | 2.00  |
|----------|------------------------------------------------------------------------|-------|
| 2:       | Taylor, Distance decay in spatial interactions.                        | 3.00  |
| 3:       | Clark, Understanding canonical correlation analysis.                   | 3.00  |
| 3.<br>4: | Openshaw, Some theoretical and applied aspects of spatial interaction  | 3.00  |
| т.       | shopping models. (fiche only)                                          | 3.00  |
| 5:       | Unwm, An introduction to trend surface analysis.                       |       |
| 5.<br>6: | Johnston, Classification in geography.                                 | 3.00  |
| 0.<br>7: |                                                                        | 3.00  |
| 7.<br>8: | Goddard & Kirby, An introduction to factor analysis.                   | 3.00  |
|          | Daultrey, Principal components analysis.                               | 3.50  |
| 9:       | Davidson, Causal inferences from dichotomous variables.                | 3.00  |
| 10:      | Wrigley, Introduction to the use of logit models in geography.         | 3.00  |
| 11:      | Hay, Linear programming: elementary geographical applications of       | 2.00  |
| 10.      | the transportation problem.                                            | 3.00  |
| 12:      | Thomas, An introduction to quadrat analysis (2nd ed.).                 | 3.00  |
| 13:      | Thrift, An introduction to time geography.                             | 3.00  |
| 14:      | Tinkler, An introduction to graph theoretical methods in geography.    | 3.50  |
| 15:      | Ferguson, Linear regression in geography.                              | 3.00  |
| 16:      | Wrigley, Probability surface mapping. An introduction with examples    | 2.00  |
|          | and FORTRAN programs. (fiche only)                                     | 3.00  |
| 17:      | Dixon & Leach, Sampling methods for geographical research.             | 3.00  |
| 18:      | Dixon & Leach, Questionnaires and interviews in geographical research. |       |
| 19:      | Gardiner & Gardiner, Analysis of frequency distribution .(fiche only)  | 3.00  |
| 20:      | Silk, Analysis of covarience and comparison of regression lines.       | 3.00  |
| 21:      | Todd, An introduction to the use of simultaneous-equation regression   | 2.00  |
|          | analysis in geography.                                                 | 3.00  |
| 22:      | Pong-wai Lai, Transfer function modelling: relationship between time   | 2.00  |
|          | series variables.                                                      | 3.00  |
| 23:      | Richards, Stochastic processes in one dimensional series:              | 2.50  |
|          | an introduction.                                                       | 3.50  |
| 24:      | Killen, Linear programming: the Simplex method with geographical       | 2.00  |
|          | applications.                                                          | 3.00  |
| 25:      | Gaile & Burt, Directional statistics.                                  | 3.00  |
| 26:      | Rich, Potential models in human geography                              | 3.00  |
| 27:      | 8 · , · · · · · · · · · · · · · · · · ·                                | 3.00  |
| 28:      | Bennett, Statistical forecasting.                                      | 3.50  |
| 29: ]    | Dewdney, The British census.                                           |       |
|          | (continued inside back c                                               | over) |

CONCEPTS AND TECHNIQUES IN MODERN GEOGRAPHY No. 50

### DIE APPLICATION QE NONPARAMETRIC STATISTICAL TESTS IM GEOGRAPHY

by

#### John Coshall

(Polytechnic of North London)

|     | CONTENTS                                | Page |
|-----|-----------------------------------------|------|
| I   | INTRODUCTION                            | 4    |
| -   | (i) Prerequisites and terminology       | 6    |
|     | (ii) Levels of measurement              | 7    |
|     | (iii) Statistical efficiency            | 8    |
| ΙΙ  | ONE-SAMPLE TESTS                        | 10   |
|     | (i) The binomial test                   | 10   |
|     | (ii) The chi-square test                | 14   |
|     | (iii) The Kolmogorov-Smirnov (K-S) test | 17   |
|     | (iv) Discussion                         | 21   |
| III | TESTS FOR TWO RELATED SAMPLES           | 22   |
|     | (i) The sign test                       | 23   |
|     | (ii) The Wilcoxon test                  | 25   |
|     | (iii) The Walsh test                    | 29   |
|     | (iv) Discussion                         | 31   |
| IV  | TESTS MA TWO INDEPENDENT SAMPLES        | 32   |
|     | (i) The chi-square test                 | 33   |
|     | (ii) Fisher's exact test                | 38   |
|     | (iii) The Mann-Whitney test             | 43   |
|     | (iv) Discussion                         | 48   |
| V   | A TEST FOR k RELATED SAMPLES            | 49   |
|     | (i) The Friedman test                   | 49   |
|     | (ii) The ordered alternative hypothesis | 52   |
|     | (iii) Multiple comparisons              | 55   |
|     | (iv) Discussion                         | 57   |

| VI A <u>TEST</u> FOR k <u>INDEPENDENT SAMPLES</u>     |
|-------------------------------------------------------|
| (i) The Kruskal-Wallis test                           |
| (ii) The ordered alternative hypothesis               |
| (iii) Multiple comparisons                            |
| (iv) Discussion                                       |
|                                                       |
| VII <u>DISCUSSION</u>                                 |
| BIBLIOGRAPHY                                          |
|                                                       |
| <u>APPENDICES</u>                                     |
| 1 A summary of the notation used                      |
| 2 Probabilities associated with the standard normal   |
| distribution                                          |
| 3 Probabilities associated with the chi-square dist-  |
| ribution                                              |
| 4 Quantiles of the K-S statistic                      |
| 5 Critical values of T in the Wilcoxon matched-pairs  |
| signed-ranks test                                     |
| 6 Critical values for the Walsh test                  |
| 7 Critical values for the Mann-Whitney statistic      |
| 8 Upper tail probabilities for Friedman's S statistic |
| 9 Critical values for Page's L statistic              |
| 10 Critical values for all treatments multiple comp-  |
| arisons based on Friedman rank sums                   |
| 11 Critical values for the range of k independent     |
| N(0,1) variables                                      |
| 12 Upper tail probabilities of the Kruskal-Wallis     |
| H statistic                                           |
| 13 Critical values for all treatments multiple comp-  |
| arisons based on Kruskal-Wallis rank sums             |

#### Acknowledsements

I am indebted to several sources for permission to reproduce published statistical tables and adaptions from them; John Wiley and Sons, Inc., for Appendices 3, 4 and 8 to 13 inclusive, McGraw-Hill for Appendices 5 and 6, the Biometrika Trustees for Appendices 10 and 13, RND Publications for Appendices 2 and 7, The American Statistical Association for Appendices 4 and 9, Oliver and Boyd for Appendix 3, The Institute of Mathematical Statisticians for Appendix 11 and Lederle Laboratories Division of the American Cynamid Company for Appendix 5.

Also, thanks are due to Dr. Robert Potter of the Department of Geography, Royal Holloway and Bedford New College, University of London, who kindly read and commented on the first draft of this manuscript. Two anonymous referees made invaluable suggestions in respect of the form and content of this monograph. Any remaining errors or omissions are, of course, the responsibility of the author alone.

#### Dedication

To Catherine

#### 

Relatively recent developments in the field of Statistics have involved many techniques of hypothesis testing that do not make implicit assumptions about the nature of the populations from which samples have been drawn. Such statistical tests are referred to as nonparametric Parametric tests, on the other hand, do make such assumptions typically that samples have been drawn from normal populations. In that nonparametric tests tend not to possess the power of their parametric counterparts (Labovitz, 1970), geographers generally prefer parametric methods of analysis, although their data may not meet the necessary assumptions underlying such procedures (Pringle, 1976). The geographical literature is dominated by parametric, as opposed to nonparametric methods of statistical inference (Vincent and Haworth, 1984). However, it is unlikely that behavioural, attitudinal and socio-economic data gathered in geographical surveys, or information collected from official sources, for example, conform to the normality assumption as required by parametric forms of analysis (Ilbery, 1977).

This is not to say that when a geographer's data fail to meet the assumptions of parametric tests, the alternative should be the immediate use of a particular nonparametric technique. Parametric tests are the more powerful form of analysis if the assumptions underlying them are met. However, there are several instances when the use of parametric techniques is questionable. Firstly, parametric t-tests for both one- and two-samples require sampling from normal population(s) and in the latter case, equality of population variances. When samples are small, as for example in geographical pilot studies, the researcher's assumption of normality is most debatable (Blalock, 1979) and this could lead to fallacious conclusions. Secondly, the parametric F statistic employed to test for equality of population variances and also used in analysis of variance, is highly sensitive to departures from normality (Siegel and Tukey, 1960; Coshall, 1986). Box (1953) cited examples wherein the significance level of the F statistic is specified as  $\alpha = 0.05$ , but in fact the actual level is as large as 0.166 or as small as 0.0056. Thirdly, there are situations when a researcher's data may not constitute numerical measurement. For example, the data might be categories like male/female, or consist of ordered items such as regions ranked according to their perceived benefits to potential migrants. Even if numerical measurement is achieved, non-normality makes it difficult to assess the true level of significance of parametric test statistics (Conover, 1980). In such situations, a nonparametric form of analysis may be preferable.

Major texts that describe statistical techniques specifically for geographers focus for the main part on parametric forms of analysis (see for example King, 1969; Cole and King, 1970; Yeates, 1974; Gregory, 1978; Silk, 1979; Shaw and Wheeler, 1985). Often the emphasis is on the computational procedures involved in parametric tests, rather than why and how they should be applied. The present monograph describes a series of nonparametric tests that are likely to have application in geographical analyses when the use of parametric techniques is questionable for the reasons just discussed, or indeed impossible due to the level of measurement achieved (see Section I ii). The tests are illustrated by a wide variety of geographical case studies and emphasis is placed on the sorts of data to which they are applicable and on conveying the rationale underlying them. The computational process is explained in depth.

Naturally, the choice of tests to include had to be selective. Besides having to possess utility in the context of geographical problem solving, the nonparametric tests described tend to be the most statistically efficient of those available (see Section I iii). Sections II to IV respectively describe nonparametric tests for one sample, two related samples and two independent samples. Sections V and VI respectively describe a test for each of k related and k independent samples. In these latter two sections, there are detailed discussions of the ordered alternative hypothesis and multiple comparisons procedure associated with these tests. These are not featured in standard geographical texts and are useful if the geographer wishes to pinpoint significant differences between groups of study objects

or to seek trends between them. Section VII presents an assessment of the tests described in this monograph in relation to nonparametric tests not so included. The vast majority of the tests described may be performed without recourse to a computer. Nonetheless, reference is made to the wide-ranging selection of nonparametric tests available in the SPSS \* (Nie et al., 1983) and MINITAB computer packages (Ryan et al., 1985). Also in this section, recent applications of nonparametric methods to multivariate analyses in geography are described. Appendix 1 presents a summary of the mathematical notation used throughout this text. Statistical tables for the nonparametric methods described are not housed in one collection. These are therefore collected together in Appendices 2 to 13.

#### (i) Prereauisites and terminology

The only assumptions made by the author are that the reader is acquainted with basic ideas of probability, a working knowledge of the normal distribution and Spearman's rank correlation coefficient. Simple and thorough explanations of these and other terminologies discussed in this sub-section are presented in Francis (1979).

The form of statistical inference that has received most attention from developers and users of nonparametric statistics is called hypothesis testing. A hypothesis is a proposition about a population(s), for example, concerning the numerical value of a population parameter (such as the mean or median) or the distributional form of that population. Hypothesis testing is the process of inferring from a sample whether or not the proposition about the population may be accepted. If evidence from the sample casts doubt on the hypothesis, then the hypothesis is rejected, otherwise it is NOt rejected. The hypothesis that is actually tested is called the null hypothesis (denoted by Ho). This is usually the hypothesis that the researcher sets out to disprove (or "nullify"). The inherent working logic of a statistical test assumes that H is true and on the basis of this assumption, a test statistic is computed. If the numerical value of this test statistic is improbable under the assumption that  ${\rm H}_{\,{\rm o}}$  is true, we conclude that the proposition involved in  $\ensuremath{\text{H}}_{\circ}$  is unlikely and it is thus rejected.

If  $H_o$  is rejected, an <u>alternative</u> (or <u>research</u>) hypothesis (denoted by  $H_i$ ) is accepted in its stead. The alternative hypothesis usually refers to an effect that the researcher wishes to demonstrate, for example, a difference in central tendency between two or more groups of study objects. Alternative hypotheses are of two types, one- or two-tailed. A two-tailed hypothesis considers any change in the value of a parameter, be it either an increase or decrease. A one-tailed hypothesis looks strictly for an increase, or alternatively, for a decrease. The setting up of a one-tailed alternative thus involves more a <u>priori</u> information than does a two-tailed alternative.

Before conducting a statistical test, the researcher selects a <u>level</u> at <u>significance</u> (denoted by a) for the test statistic. Statistical tables present the probabilities of various test statistics taking specific numerical values under the assumption that H is true. The level of significance of a test is the lowest value of this probability which will be tolerated before  $H_0$  becomes so improbable as to be rejected. The common value for a is 0.05. This means that if a test statistic takes a value whose probability of occurrence under  $H_0$  is less than one in twenty, then  $H_0$  is rejected in favour of  $H_1$ .

#### (ii) Levels at measurement

The process of selecting an appropriate statistical test involves consideration of the <u>level</u> at <u>measurement</u> of the researcher's data. The most basic level of measurement involves classification of items into two or more groups that are as homogeneous as possible. This level of measurement is referred to as a <u>nominal scale</u>. For example, people may be classified according to religion (Methodist, Catholic etc.). <u>Ordinal scales</u> involve ordering individuals according to the degree to which they possess a characteristic. This does not always imply that the researcher knows how much of that characteristic the items possess (Blalock, 1979). For example, a behavioural geographer may employ attitude measurement scales to group individuals into classes of people who

are favourably, neutrally or unfavourably disposed towards a scheme of urban renewal.

If it is possible to rank items according to the degree to which they possess a characteristic, then an <u>interval scale</u> of measurement is attained. This requires a physical unit of measurement that can be agreed upon as a common standard (Blalock, 1979), such as the Fahrenheit or Celsius scales. The unit of measurement and the zero point in measuring temperature are arbitary; they are different for the two scales. When we add a true zero point as the origin of an interval scale, we have a <u>ratio scale</u>. The ratio of any two scale points is independent of the unit of measurement. If two objects are measured in pounds and grams, the ratio of the two pound weights would equal that of the two gram weights.

Generally speaking, nonparametric tests do not require levels of measurement as strong as those required by parametric tests. The latter require measurement at least at an interval scale. Most nonparametric tests apply to the analysis of nominal and ordinal data, or to interval/ratio data that has been degraded to ordinal scale data (such as categories of disposable income) and for which there are no parametric equivalents.

#### (iii) Statistical efficiency

When there is a parametric equivalent to a nonparametric test, it is possible to compare the relative efficiency of the two tests under various conditions. This is achieved by considering the <u>asymptotic relative efficiency</u> (ARE). The word 'asymptotic' refers to infinitely large samples which obviously cannot arise in practice. Asymptotic theory does, however, permit the researcher to make approximate conclusions concerning the relative efficiency of two tests for finite sample sizes.

If we assume that two tests I and II have the same level of significance a, the ARE of test II with respect to test I is the limiting ratio of the sample sizes  $n_1/n_2$ , such that both tests achieve the same <u>power</u>. The power of a test is the probability of correctly rejecting  $H_{\text{o}}$ , that is rejecting  $H_{\text{o}}$  when indeed it should be rejected. If the ARE of test II with respect to test I is less

than 100%, we say that test II is less efficient than test I. Conversely, it is more efficient if the ARE exceeds 100%. A nonparametric test may be compared with a parametric equivalent for sampling from different populations. Throughout this text, the ARE of the nonparametric tests are discussed with respect to parametric alternatives when they are available.

#### ONE-SAMPLE TESTS

Geographers frequently encounter situations that involve drawing a sample and testing if it could have been drawn from a population with certain specified characteristics. Such tests commonly examine whether a set of observed frequencies are sufficiently close to frequencies that would be expected under some contention or null hypothesis. These are called <u>goodness</u> of fit tests.

Three goodness of fit tests are described. The binomial test is used for dichotomous nominal data (i.e. data may be grouped into two classes) to determine whether the proportion of cases in the classes is as would be expected under some criterion - often that of equality. The chi-square test is used when nominal data are in several discrete classes. A major use of this test is to examine if observed frequencies are close to those that would be specified by a particular statistical distribution, such as the normal, uniform or Poisson. Thirdly, there is the Kolmogorov-Smirnov test, which is applicable to ordinal data and treats the individual readings separately and does not lose information by grouping data.

#### (1) The binomial test

In this test, the population is conceived of as comprising two mutually exclusive classes, such as male/female, married/single or urban/rural. The null hypothesis is usually that the proportion in one class equals that in another. The appropriateness of Ho or otherwise is based on a sample of n independent observations of the dichotomous items.

For small samples, the binomial distribution:

$$P(X = r) = {}^{n}C p^{r}q^{n+r},$$

where  ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$  is used to assess the probability of observing the sample results if  $H_{0}$  is true. In this distribution, X represents the variable or event of interest, r is the number of occurrences of that event, n is the sample size, p is the probability of an item being in one of the classes (usually 0.5 under

Ho) and q = 1 - p; n and p are called the <u>parameters</u> of the distribution.

An example of the binomial test being applied to a small sample can be illustrated by employing data originally collected by Potter (1986), where 10 individuals' perceptions of spatial disparities between the 11 parishes of Barbados, West Indies were examined. Potter used a set of 8 adjectival pairs such as rich/poor, developed/underdeveloped etc., to measure the demographic, social and economic attributes of the parishes. Respondents were asked to consider whether the positive pole of each adjectival pair applied to each of the parishes in turn, giving in all cases a "yes" or "no" answer. By employing traditional repertory grid techniques, Potter validated the choice of scales. The results for the parish of St. Michael are presented in Table 1.

From this table, it can be seen that seven respondents felt that St. Michael is "rich" rather than "poor", but is it significantly more than the 5 respondents that would be expected if the number of people in the population who thought St. Michael was "rich" equalled the number who thought it was "poor"? We set up the null hypothesis that the probability of an individual regarding St. Michael as a "rich" parish is p = 0.5, against an alternative that  $p \neq 0.5$ . The appropriate binomial distribution is thus:

$$P(X = r) = {}^{10}C_r(0.5)^r(0.5)^{10-r}$$

and if we let X represent the event of a parish being perceived as "rich", we derive:

$$P(X \ge 7) = P(X = 10) + P(X = 9) + P(X = 8) + P(X = 7)$$

$$P(X \ge 7) = (.5)^{10} + 10(.5)^{9}(.5) + 45(.5)^{8}(.5)^{2} + 120(.5)^{7}(.5)^{3}$$
so,  $P(X \ge 7) = 176(0.5)^{10} = 0.1719$ .

Table 1 Frequency with which respondents in = 10) felt that the

list of adjectives applied to UM parish 2L at Michael.

Barbados

| Adjectives |              |             |         |  |
|------------|--------------|-------------|---------|--|
| Rich       | Agricultural | Populated   | Tourist |  |
| 7          | 2            | 10          | 9       |  |
| Developed  | Urban        | Traditional | Growing |  |
| 10         | 10           | 3           | 6       |  |

Source: Potter, 1986, p. 186

Thus, the probability of 7 or more people regarding St. Michael as "rich" is 0.1719 under H . If we adopt a conventional significance level of  $\alpha$  = 0.05 for this two-tailed test, we fail to reject H<sub>o</sub> and the observed frequency of 7 leads us to infer that the numbers of people in the population regarding the parish as "rich" and "poor" are equal, i.e. there is insufficient evidence to conclude that p  $\neq$  0.5. If this binomial distribution is investigated further, it is found that only P(X  $\geq$  9) and conversely P(X  $\leq$  1) are less than  $\alpha/2 = 0.025$ . Hence from Table 1, a significant proportion of people perceive St. Michael as populated, tourist, developed and urban.

For large n, computation via the above procedure can be tedious. It has been suggested that if either np > 5 when p  $\pm$  0.5 or nq > 5 when p > 0.5, then the binomial distribution is adequately approximated by the normal distribution with the same mean and variance (Noel, 1971). An appropriate continuity correction of  $\pm$ 0.5 has to be used as is explained in Figure 1, because a discrete distribution is being approximated by a continuous one.

The large sample approximation is illustrated with reference to data reported in Knoke and Burke (1980, p.23). The data, taken from the 1977 General Social Survey by the National Opinion Research Center in Chicago, report voting turnout in the 1976

Figure i use U a <u>continuity correction</u> in <u>the normal</u>
approximation s. figt <u>binomial distribution</u>



Whenever a discrete distribution is approximated by a continuous one, a continuity correction of  $\pm 0.5$  is required. Suppose in the above figure, we require  $P(X \ge 11)$ . Given the continuous scale of the horizontal axis, this is treated as  $P(X \ge 10.5)$ , as shown by the shading. Similarly, P(X > 11) is treated as  $P(X \ge 11.5)$ . For the left tail,  $P(X \le 6)$  is regarded as  $P(X \le 6.5)$  as also shown by the shading. Similarly, P(X < 6) is treated as  $P(X \le 5.5)$ .

Presidential election. The binomial test is used to examine the voting turnout of blacks. Suppose we wish to examine if, for example, more than half of the blacks voted, then the null hypothesis to be tested is that p, the probability of a black voting, is 0.5. A one-tailed alternative is adopted to the effect that more than one half of the blacks voted. Of 169 blacks in the survey, 105 voted and 64 did not. We use the fact that the mean or expected value of the binomial distribution is given by E(x) = np and the variance by var(x) = npq. The test statistic with a continuity correction is:

$$\frac{(x \pm 0.5) - E(x)}{\sqrt{\text{var}(x)}}$$

which is approximately standard normally distributed. Let X represent the event of a black voting, so under  $H_o$ , E(x) = 169(.5) = 84.5 and var(x) = 169(.51(.5) = 42.25, so our test statistic is:

$$\frac{(105 - 0.5) - 84.5}{\sqrt{42.25}} = 3.08 \in N(0, 1).$$

(The notation e means "belongs to"). From tables of standard normal deviates in Appendix 2, P(N(0,1) > 1.645] = 0.05, so we reject  $H_o$  and conclude that significantly more than 50% of the blacks voted.

The parameter p in the null hypothesis need not always be one half. Suppose we wish to test, for example, whether more than 60% of the whites voted in the 1976 Presidential election. Of 1304 whites interviewed, 882 voted and 422 did not. Under  $H_{\rm op}$  p = 0.6 and q = 0.4, so E(x) = 1304(0.6) = 782.4 and var(x) = 1304(.6)(.4) = 312.96 and the test statistic becomes:

$$\frac{(882 - 0.5) - 782.4}{\sqrt{312.96}} = 5.50 \in N(0, 1),$$

which is very highly significant (Appendix 2), so we conclude with a high degree of confidence that more than 60% of the whites voted in the election.

#### (ii) The chi-squaret

This is a test of goodness of fit. One of the major uses of the chi-square  $(\mathbf{x}^2)$  is to determine if there is a significant difference between an observed set of frequencies falling in particular categories and those frequencies that would be expected under a null hypothesis. It is common for the null hypothesis to be that the observed data belong to one of the classical distributions in Statistics, such as the normal, Poisson, binomial or uniform. The null hypothesis is assessed by how close the observed frequencies are to those that would be expected if H  $_{\odot}$  Was true.

The test statistic is:

$$\chi^2 = \sum_{i=1}^k \frac{(0_i - E_i)^2}{E_i} \dots (1),$$

where 0. and E. are the observed and expected frequencies respectively in category i, and k is the number of categories. If the observed frequencies are close to those expected under H  $_{\text{ol}}$  then the numerical value of  $X^2$  given by equation (1) will be close

to zero. If there is a divergence between the 0  $_{\rm l}$  and E $_{\rm l}$ , then X will be large, indicative that the observed frequencies are unlikely to have come from the population on which H  $_{\rm o}$  is based.

A common application of the test in geography has been the comparison of an observed frequency distribution of points in space, such as settlements, with some distribution postulated by theory. In particular, the Poisson distribution represents a useful benchmark against which empirical patterns may be compared (King, 1969), in that this statistical distribution provides a good description of random phenomena. Beyond the random (Poisson) distribution in one direction lie point distributions that are more and more clustered and in the other direction, point distributions that are more and more regular.

Haggett et al. (1977, p.416) considered a hypothetical map that had been exhaustively divided by a regular lattice of square cells into small quadrats. A frequency distribution of the number of quadrats with x = 0, 1, 2... points in them was constructed and is reproduced in the first two columns of Table 2. The chi-square test is used to examine if the points are located so as to form a random point pattern - i.e. if the frequencies of points in the cells are close to those that would be expected under a Poisson distribution. To conduct the chi-square test, we have to generate expected frequencies under Ho and compare them with those observed. From Table 2, it may be computed that the mean is  $\lambda$  = 0.52 observed points per quadrat. The null hypothesis is therefore that the observed frequencies in column 2 are Poisson distributed with parameter  $\lambda = 0.52$ . If x is the number of points per quadrat, then we may generate expected frequencies under Hoby using the Poisson distribution:

Table 2. Number of points per quadrat from a hypothetical Mg

| No.of<br>points/ | Obs. freq<br>of quad- | Prob.<br>under H <sub>o</sub> | Expected                |          | (0 <sub>1</sub> -E <sub>1</sub> ) <sup>2</sup> |
|------------------|-----------------------|-------------------------------|-------------------------|----------|------------------------------------------------|
| quadrat          | rats (O;)             | P(X = x)                      | freq. (E <sub>i</sub> ) | o,-E     | E                                              |
| 0                | 59                    | 0.5945                        | 59.45                   | -0.45    | 0.003                                          |
| 1                | 32                    | 0.3092                        | 30.92                   | 1.08     | 0.038                                          |
| 2                | ſ 7                   | 0.0804                        | 8.04                    |          |                                                |
| 3                | 9{2                   | 0.0139                        | 9.63{ 1.39              | -0.63    | 0.041                                          |
| ≥ 4              | Įο                    | 0.0020                        | { 0.20                  | _        |                                                |
|                  |                       |                               |                         | $\chi^2$ | = 0.082                                        |

Source: Haggett et al., 1977, p.415

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \text{ for } x = 0, 1, 2, \dots.$$

In this distribution,  $\lambda$  represents the mean (0.52 points per quadrat) and e is the exponential constant 2.71828 These probabilities, P(X = x) for  $x = 0,1,2 \ldots$ , are shown in column 3 of Table 2. The expected frequencies in column 4 are simply found by multiplying each of the P(X = x) by n = 100. When conducting the chi-square test, expected frequencies that are less than 5 should be combined with a neighbouring category or categories until a total of more than 5 is achieved (Cochran, 1954). This is necessary for the last three categories of column 4 in Table 2. Their partners in the column of observed frequencies are also combined, before one computes the  $(0_1 - E_1)$  as required by the test statistic represented by equation (1). The computation of the test statistic is completed in column 6.

There are many different sampling distributions of the chisquare statistic, and they depend on the <u>decrees</u> of <u>freedom</u> (df) in an experiment. The size of the **df** (the parameter of this distribution) depends upon the number of categories of observations that are free to vary after certain restrictions have been placed on the data. For example, in column 4 of Table 2, we know that the sum of the expected frequencies must be 100, so knowing the values in the first two categories, we automatically know that the third is 100 - 90.37 = 9.63. Often this is referred

to as the loss of a df due to the 'last cell' and this is always lost in chi-square tests of goodness of fit. One df is also lost for each parameter calculated from the data, and here we have computed  $\lambda$ , the mean. Generally, the df of a chi-square goodness of fit test is given by:

$$df = k - 1 - m.$$

where k **is** the number of categories of data after grouping (if necessary) and m is the number of parameters computed from the data. In the present example, k=3 and m=1, so df = 1. If we were fitting a normal distribution, m=2 as the mean and variance are often computed from the data to generate expected frequencies.

Selecting a conventional significance level of  $\alpha=0.05$ , we refer to Appendix 3 of chi-square variates to find that with df=1,  $P(\chi_1^2>3.841)=0.05$ . Our value of 0.082 in Table 2 is thus not significant, so we fail to reject H<sub>o</sub> and conclude that the observed frequencies of points in the quadrats are Poisson distributed with parameter value  $\lambda=0.52$ . We decide that the pattern of points in the quadrats follows a Poisson distribution with this parameter value. It should be noted that this provides us with a measure of the degree of order present in the spatial pattern, rather than offering an explanation of the underlying determinants of its form.

#### (iii) The Kolmogorov-Smirnov (K-S) test

This is also a test of goodness of fit, but unlike the chi-square test it uses the cumulative frequency (or probability) distribution, rather than the frequency distribution which is used in the chi-square. The Kolmogorov-Smirnov test makes more complete use of the available data than the  $X^2$  test in that it does not require the lumping of categories and because it considers the order of the categories or observations. Hays (1980) is of the opinion that the K-S test is superior to the chi-square test, in that the latter requires large samples, is always approximate and " the goodness of the approximation varies with a number of factors, not all of which can be taken into account in a simple rule of thumb" (Hays, 1980, p.752).

The null hypothesis of the K-S test is that a random sample

has been drawn from a specified population of measurements (Lewis, 1971), for example, the normal or Poisson distributions. Suppose a sample of n items has a cumulative probability distribution (cpd) represented by  $S_{i}(x)$  and assume that S(x) is a consistent estimator of F(x), the unknown  $\underline{cpd}$  of the population from which the sample was randomly drawn. Let G(x) be some hypothetical  $\underline{cod}$ , such as that of the normal or Poisson distributions. The null hypothesis is that F(x) and G(x) are equal and the K-S test statistic is the largest absolute difference between the empirical Old S(x), and the hypothetical cpd G(x).

The data in Table 3 are used to show how the K-S test is employed to examine if a sample may be considered to have been drawn from a normal population. The data are rainfall (inches) in Derby for the 50 years between 1917 and 1966 inclusive (Hammond and McCullagh, 1974). The mean and variance of these annual rainfall figures are 25.2 and 19.24 inches respectively. The null hypothesis is that the frequencies in the second column of Table 3 are normally distributed with these parameter values, against an alternative that the frequencies are non-normal.

The O2d,  $S_n(x)$ , of the n=50 sample values is shown in column 3 of Table 3. Further columns in Table 3 generate the expected cpd of the normal distribution with a mean and variance of 25.2 and 19.24 respectively. The first step in performing this task is to standardise the ranges of column 1. For example, in standardising the range 16-18 inches, we obtain:

$$z_1 = \frac{16 - 25.2}{\sqrt{19.24}} = -2.10$$
 and  $z_2 = \frac{18 - 25.2}{\sqrt{19.24}} = -1.64$ .

Appendix 2 is used to evaluate the probabilities that a standard normal variable would lie in each of these ranges.

These probabilities are shown in the second half of Table 3. In the

Table 3. Annual rainfall 41 Derby sewage Works. 1917-66

| Annual<br>rainfall (ins)                                                                                                                      | Number of<br>years (f)                                                                                                                      | Cumulative proportion of years Sn(x)                                                                                             | Standardised<br>ranges                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Below 16<br>16 - 18<br>18 - 20<br>20 - 22<br>22 - 24<br>24 - 26<br>26 - 28<br>28 - 30<br>30 - 32<br>32 - 34<br>34 - 36<br>36 - 38<br>Above 38 | 0<br>1<br>4<br>8<br>7<br>12<br>6<br>5<br>4<br>1<br>0<br>2                                                                                   | 0<br>0.02<br>0.10<br>0.26<br>0.40<br>0.64<br>0.76<br>0.86<br>0.94<br>0.96<br>0.96                                                | Below -2.10 -2.10 to -1.64 -1.64 to -1.18 -1.18 to -0.73 -0.73 to -0.27 -0.27 to 0.18 0.18 to 0.64 0.64 to 1.09 1.09 to 1.51 1.55 to 2.00 2.00 to 2.46 2.46 to 2.92 Above 2.92 |
| Annual<br>rainfall (ins)                                                                                                                      | Probability                                                                                                                                 | Cumulative prob. G(x)                                                                                                            | I <b>Sn(x)</b> - 6(1)I                                                                                                                                                         |
| Below 16 16 - 18 18 - 20 20 - 22 22 - 24 24 - 26 26 - 28 28 - 30 30 - 32 32 - 34 34 - 36 36 - 38 Above 38                                     | . 01786<br>. 03264<br>. 06850<br>. 11370<br>. 16088<br>. 17784<br>. 16749<br>. 12323<br>. 07729<br>. 03782<br>. 01580<br>. 00520<br>. 00175 | . 01786<br>. 05050<br>. 11900<br>. 23270<br>. 39358<br>. 57142<br>. 73891<br>. 86214<br>. 93943<br>. 97725<br>. 99305<br>. 99825 | .018<br>.031<br>.019<br>.027<br>.006.<br>.069<br>.021<br>.002<br>.001<br>.017<br>.033                                                                                          |

Source: Hammond and McCullagh, 1974, p.96

penultimate column of this table, these probabilities are cumulated to derive the  $\underline{\operatorname{cpd}}$ , G(x), under H. The test statistic of the K-S test is the maximum of the absolute differences between  $S_n(x)$  and G(x), starred in the final column of Table 3. The test statistic is denoted by K and in symbols:

$$K = \max |S_n(x) - G(x)| = 0.069$$
, in the present example.

The exact sampling distribution of K is known and tabulated for n  $\leq$  40. Statistical tables are presented in Appendix 4. As is

shown in Appendix 4, for n 40 an approximation is used, based on the asymptotic distribution of the test statistic. In the present example, and adopting a significance level of  $\alpha = 0.05$  for this two-tailed test, we compute that for n = 50, H<sub>0</sub> should be rejected for K >  $\frac{1.36}{\sqrt{50}}$  = 0.192.

Our result is not significant and we conclude that the rainfall data are normally distributed with the computed parameter values. It should be noted that IS  $_{\cdot}(x)$  -  $_{\rm G}(x)$ I could be obtained graphically, by determining the maximum vertical displacement on the cumulative frequency graphs of the two distributions,  $_{\rm S}(x)$  and  $_{\rm O}(x)$ . The goodness of fit tests presented here represent one of the few instances in which the researcher is seeking confirmation of H rather than nullification of it.

The above procedure may readily be applied to the case of two independent samples. The test statistic is again the maximum absolute difference, K, between cumulative frequency distributions, but this time of two observed variables X and Y (Bradley, 1968). In this instance, the K-S test examines if the populations from which the samples have been drawn differ in any respect at all, such as central tendency, dispersion or skewness. It has been used in this fashion to compare longitudinal stream profiles obtained from Ordnance Survey 1:25000 series, in order to assess the accuracy of contour maps and their usefulness to geomorphologists (Wheeler, 1979). It might be argued, however, that in this case the samples are not truly independent. Bennett (1977) used the K-S test to compare differences in component scores obtained from principal components analysis of sociodemographic data, where raw data and transformed data acted as input.

(iv)

The choice between the use of the binomial, chi-square and K-S tests for goodness of fit is determined by a) the number of categories in the data, b) the level of measurement, c) the sample

size and d) the power of the statistical test (Siegel, 1956). The binomial test may be used when there are just two categories involved in the classification of data. It is also useful when the sample size is too small to justify the application of the chi-square test. Both the binomial and chi-square tests may be used with nominal or ordinal data. When nominal measurement is attained, there is no parametric alternative to the use of  $X^2$ , so the concept of asymptotic relative efficiency is meaningless. The Kolmogorov-Smirnov test treats individual categories or observations separately and it does not lose information by grouping the data, which is sometimes necessary for the  $X^2$  test. In such instances,  $X^2$  is less powerful than the K-S test. Also, the K-S test is a conservative one, i.e. if  $H_0$  is rejected by the test, then we can have real confidence in that decision (Goodman, 1954).

#### III TESTS FOR TWO RELATED SAMPLES

The tests presented in this section are designed to establish whether two <u>treatments</u> are different, or whether one treatment has differential effects. A treatment is the variable of interest in an experiment and the researcher wishes to determine if it has had some significant effect on the items in the sample(s). For example, a treatment might be the application of a new type of fertiliser designed to effect an increase in crop yield. On the other hand, the researcher may also wish to compare two treatments, for example, two methods of measuring hillslopes in order to assess errors.

There is the problem, however, that an observed effect may be ascribed to a treatment, when in fact it is due to one or more variables that are extraneous to the experiment. One method of measuring hillslope profiles may be deemed superior to another method simply because of the skill, expertise or patience of the individual using that measuring device. One method to overcome this difficulty is to use two related or matched samples in the research. This is achieved either by using each item as its own control or by pairing items and then randomly assigning the members of each pair to two different treatments. When an item acts as its own control, it is exposed to both treatments at different times. When items are paired, they should be as alike as possible in respect of any extraneous variables likely to influence the outcome of the experiment (an example of this is psychologists using twins in learning experiments).

Three tests that examine treatment effects are described in this section. When ordinal measurement within the data items is possible, to the extent that one member of a pair can be ranked in relation to the size of the other member, the two-sample sign test is applicable. The test is analagous to the parametric paired t-test, which strictly speaking assumes normality. The Wilcoxon test uses the magnitude and direction of differences between pairs and is thus more powerful than the sign test. If measurement is at least at an interval scale, the more powerful Walsh test may be applicable to the data.

#### .1.) The Sign test

This, the oldest of all the nonparametric tests, is designed to examine a difference between two conditions. It is particularly useful in research in which quantitative measurement is impossible, but in which it is possible to rank one item in a matched pair with another. The only assumption is that the variable under consideration has a continuous distribution.

Consider the data in the first three columns of Table 4. Mean levels of pollution in the river Trent have been measured at 21 stations over two different time periods (Trent River Authority, 1969). The level of pollution can be measured in a number of ways, but one of the more reliable scales is the measurement of ammonical nitrogen (AN), which is the indicator reported in this table. The samples in the second and third columns of Table 4 are matched, in that the same n=21 stations appear in both samples and thus act as their own control. The sign test is used here to see if legislation has led to a lower level of AN in the period 1965-67 than in the period 1959-61.

The fourth column of Table 4 reports the signs of the differences between AN levels at these two time periods. If the values in columns two and three had been equal, it is conventional to omit that pair from further analysis and reduce n accordingly. We set up the null hypothesis of no difference, in which case the probabilities of observing a plus or minus are equal and we may state:

$$H_0: P(+) = P(-).$$

We adopt a one-tailed alternative hypothesis to test if the AN levels at 1959-61 are greater than those at 1965-67, namely:

$$H_1: P(+) > P(-),$$

Under  $H_0$ , P(+) = P(-) 0.5, and we evaluate the probability of observing 19 or more plusses in Table 4 out of a maximum possible

Table 4. Mean levels 2f <u>ammonical nitrogen</u> at <u>sample stations</u> an the River Trent

| Station         | 1959-61 | (A) | 1965-67 | (B) | Sign of (A) | difference<br>- (B) |
|-----------------|---------|-----|---------|-----|-------------|---------------------|
| Milton          | 1.1     |     | 0.6     |     |             | +                   |
| Hanley          | 0.7     |     | 0.8     |     |             | -                   |
| Stoke-on-Trent  | 5.6     |     | 3.1     |     |             | +                   |
| Hanford Bridge  | 11.1    |     | 5.6     |     |             | +                   |
| Stone           | 9.7     |     | 6.6     |     |             | +                   |
| Great Haywood   | 6.6     |     | 5.4     |     |             | +                   |
| Handsacre       | 2.9     |     | 2.2     |     |             | +                   |
| Yoxall          | 2.4     |     | 1.8     |     |             | +                   |
| Wychnor         | 1.6     |     | 1.4     |     |             | +                   |
| Walton-on-Trent | 7.7     |     | 6.7     |     |             | +                   |
| Burton-on-Trent | 7.3     |     | 4.6     |     |             | +                   |
| Willington      | 5.6     |     | 3.8     |     |             | +                   |
| Swarkestone     | 4.8     |     | 2.9     |     |             | +                   |
| Shardlow        | 3.6     |     | 3.0     |     |             | +                   |
| Sawley          | 2.7     |     | 2.4     |     |             | +                   |
| Nottingham      | 2.4     |     | 2.2     |     |             | +                   |
| Gunthorpe       | 2.9     |     | 2.4     |     |             | +                   |
| Kelham          | 2.5     |     | 2.2     |     |             | +                   |
| Dunham          | 2.3     |     | 1.7     |     |             | +                   |
| Gainsborough    | 1.8     |     | 1.5     |     |             | +                   |
| Keadby          | 1.4     |     | 1.5     |     |             | -                   |

Source: Trent River Authority, 1969

of 21, under the assumption of no difference. This is achieved by using the binomial distribution  ${}^{21}C_r p^r q^{21-r}$ , (see Section II i), where P(+) = p and P(-) = q and p = q = 0.5. Hence:

P(19 or more plusses) = 
$$P(21+) + P(20+) + P(19+)$$
  
=  $(.5)^{21} + 21(.5)^{20}(.5) + 210(.5)^{19}(.5)^{2}$   
=  $232(.5)^{21}$   
= 0.00011.

If we adopt the conventional significance level of  $\alpha$  = 0.05, we reject H $_{\circ}$  in favour of H $_{1}$  and conclude that the levels of AN at 1959-61 were significantly greater than the AN levels at 1965-67. Having matched samples, we may conclude that legislation has been effective, assuming that the effects of any extraneous factors are cancelled out.

As Hoel's (1971) criterion is met, namely if np > 5 when p 0.5, we could have approximated P(19 or more plusses) by using the

normal distribution with an appropriate continuity correction. If  $_{\scriptscriptstyle \rm I\!I}$ 

:1(.5) and var(x) = npq = 21(.5)(.5), thus:

$$\frac{(x \pm 0.5) - E(x)}{4 \text{var}(x)} = \frac{(19 - 0.5) - 10.5}{4 \cdot 5.25} = 3.49 \in N(0, 1).$$

Referring to Appendix 2, we find that P[N(0,1) > 3.49] = 0.00024 <).05, which approximates well with the binomial result.

#### 11 ] The Wilcoxon test

The sign test uses information about the direction of differences between pairs. The Wilcoxon matched-pairs

incorporates the magnitude as well as direction of the differences into the analysis.

Figure 2 illustrates the west and east slopes on opposing rides of a short stretch of the River Leadon near Castle Frome in ierefordshire. The Wilcoxon matched-pairs test is used to see if there is any significant difference between the gradients of the west and east slopes. The null hypothesis is that the slopes are equal against the two-tailed alternative that they are not. Measurements of contour spacing along cross-profiles have been nade at regular intervals. Two such pairs of measurements are shown in Figure 2. The first two columns of Table 5 record the number of millimetres on Figure 2 from the valley axis to the Fourth contour line above it for the west (A) and east (B) slopes. Eight such regularly spaced measurements were taken up the two slopes, of which those in Figure 2 are the first and last.

Each value of A is matched with a B value - opposing slopes on the same profile - and the differences,  $d_{ij}$  between the west and east distances to the fourth contour line are shown in the third column of Table 5. The fourth column gives the rank of the  $d_i$  from lowest to highest, regardless of their signs. Equal

Figure 2 <u>Contour spacing</u> on <u>the west</u> and <u>east slopes</u> of. <u>the</u>

valley of the River Leadon. Herefordshire



values of  $d_i$  are given the average value of those ranks that would have been ascribed to them. If the scores of any pair are equal, then  $d_i=0$ . It is conventional to omit such pairs from the analysis. The next step in the Wilcoxon test is to affix to each rank in column 4 of Table 5 the sign of the difference. This is shown in column 5 and indicates which ranks arose from positive and negative differences,  $d_i$ . If the west and east slopes are equal as posited under  $H_o$ , we would expect an equal spread of the larger ranks favouring treatments A and B. This implies that the sum of positive and negative ranks should be equal under  $H_o$ . The test statistic,  $T_i$  is the smaller sum of like-signed ranks, here the positive ones. Thus from column 5 of Table 5,  $T_i=0.5+4.4$  = 14.5.

A table for the significance of T for n up to 25 is presented

#### = 0.05, we find that P(T)

and conclude that the west and east slopes of this stretch of the river valley are equal in gradient.

Table 5. <u>Contour spacing</u> 211 the <u>west</u> dad <u>east slopes</u> of <u>the valley</u>

2f the River Leadon, Herefordshire

| Contour  | spacing on |                   |              |                   |
|----------|------------|-------------------|--------------|-------------------|
| slo      | ope: S i   | gn 8              | z ra         | nk                |
| West (A) | East (B)   | $d_1 = (A) - (B)$ | Rank of IdlI | of d <sub>1</sub> |
|          |            |                   |              |                   |
| 35       | 39         | -4                | 6.5          | -6.5              |
| 35       | 36         | -1                | 1.5          | -1.5              |
| 36       | 32         | 4                 | 6.5          | 6.5               |
| 34       | 32         | 2                 | 4            | 4                 |
| 37       | 35         | 2                 | 4            | 4                 |
| 37       | 38         | -1                | 1.5          | -1.5              |
| 35       | 37         | -2                | 4            | -4                |
| 32       | 40         | -8                | 8            | -8                |

Source: Figure 2

When n is larger than 25, it may be shown that the smaller sum of like-signed ranks, T, is closely normally distributed with parameters E(T) = n(n + 1)/4 and var(T) = n(n + 1)(2n + 1)/24, where n is the number of matched pairs after any deletion of pairs for which  $d_1 = 0$ . (In fact Siegel (1956) has shown the approximation to be excellent for smaller values of n than 25). The large sample application of the Wilcoxon test is illustrated by comparing one aspect of the building morphology of 25 town centres in southern Scotland over different time periods, 1919-45 and 1946-75. (Appendix 5 may be used in this instance, but the data are utilised here to illustrate the large scale approximation). In the post-war period, this region as a whole experienced appreciable economic growth (Whitehand, 1979) and this may be expected to have had a direct effect on urban rebuilding. Among other variables, Whitehand recorded the percentage of ground-floor façades (most of which were shopfronts) that had been altered in the 25 town centres during the two time periods. These percentages are reproduced in columns 2 and 3 of Table 6. The null hypothesis is of no difference in these percentage figures for the pre- and post-war years. one-tailed alternative is that the post-war percentages of facade conversions exceed the pre-war

Table 6 Percentages 2E facade conversions in 25 southern Scottish towns. 1919-45 And 1946-75

|                                                                                                                                                        |                                                                                        | facade<br>rsions: ====================================                                 | d1 =                                                                                | Ranks                                                                               | rank of                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| Town                                                                                                                                                   | 1945 (A)                                                                               | 1975 (B)                                                                               | (A) - (B)                                                                           | of $\mathrm{Id}_{\underline{i}}\mathrm{I}$                                          | d1                                                   |
| Biggar Carluke Cumnock Douglas Dumfries Galashields Hawick Innerleithen Jedburgh Kelso Kilmarnock Lanark Langholm Larkhall Lauder Lesmahagow Lochmaben | 6<br>11<br>12<br>0<br>6<br>14<br>7<br>0<br>6<br>6<br>6<br>13<br>10<br>8<br>6<br>0<br>3 | 3<br>8<br>3<br>2<br>10<br>7<br>11<br>6<br>13<br>4<br>12<br>11<br>4<br>6<br>0<br>3<br>2 | 3<br>9<br>-2<br>-4<br>7<br>-4<br>-6<br>-7<br>2<br>1<br>-1<br>4<br>0<br>0<br>0<br>-8 | 7.5<br>7.5<br>7.5<br>21<br>5<br>11<br>18.5<br>11<br>16<br>18.5<br>5<br>2<br>2<br>11 | 7.5 7.5 7.5 21 -5 -11 18.5 -11 -16 -18.5 5 2 -2 1120 |
| Lockerbie<br>Melrose<br>Moffat                                                                                                                         | 4<br>8<br>1                                                                            | 8<br>2<br>5                                                                            | - 4<br>6<br>- 4                                                                     | 11<br>16<br>11                                                                      | -11<br>16<br>-11                                     |
| Peebles<br>Penicuik<br>Sanquhar<br>Selkirk                                                                                                             | 10<br>7<br>8<br>12                                                                     | 11<br>17<br>3<br>10                                                                    | -1<br>-10<br>5<br>2                                                                 | 2<br>22<br>14<br>5                                                                  | -2<br>-22<br>14<br>5                                 |
| <u>Strathaven</u>                                                                                                                                      | 7                                                                                      | <u>13</u>                                                                              | <u>-6</u>                                                                           | <u>16</u>                                                                           | <u>-16</u>                                           |

Source: Whitehand, 1979, p.567

#### percentages.

T is computed as before, with omission of the towns of Larkhall, Lauder and Lesmahagow as the percentages of facade conversions are equal during both time periods and  $d_1=0$ . The value of n is thus reduced from 25 to 22. The fourth column of Table 6 gives the differences,  $d_4$ , between the 1919-45 and 1946-75 percentages. The fifth column of this table indicates the ranks of the  $d_1$  ignoring their sign. Column 6 reports the signs of these ranks, the sum of the positive ranks being less than the negative ones. From column 6, we compute that T=7.5+7.5+21+1.5=107.5, so the test statistic under H is:

$$\frac{T - E(T)}{\sqrt{var(T)}} = \frac{T - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \in N(0,1), \text{ hence}$$

$$\frac{107.5 - 22(23)/4}{\sqrt{22(23)(45)/24}} = \frac{-19}{\sqrt{948.75}} = -0.62 \in N(0,1).$$

From Appendix 2, P[N(0,1) < -1.645] = 0.05, so we fail to reject  $H_o$  and conclude that the pre- and post-war percentages of ground-floor facade alterations are not significantly different. (From Appendix 5, we would have required T s 66 for rejection of  $H_o$  at a 5% significance level in this instance). Being matched samples, it is assumed that extraneous factors such as fluctuations in the building industry or population growth tend to be cancelled out.

#### (iii) The Walsh test

This very powerful test examines central tendency based on two related samples. It requires measurement in at least an interval scale and is useful if the researcher can assume that the populations from which the samples are drawn are symmetrical. This does not mean that the populations are normally distributed, otherwise the parametric t-test should be used. Walsh,s test assumes that if the populations are symmetrical, then the mean and median are equal.

The test is illustrated by analysing errors in surveying hillslopes using an Abney level (Abrahams and Melville, 1975). It seems reasonable that the errors may come from symmetrical populations. The true slopes of 10 profiles were measured upslope and downslope, and average downslope readings (DR) and upslope readings (UR) were obtained. Errors in the slopes of the profiles were found by subtracting the true slopes from DR and UR. These results are presented in Table 7.

Consider firstly the values of ( $\overline{DR}$  - true slope). The null hypothesis is that the median difference is zero against the two-tailed alternative that it is non-zero. The first step is to

Table 7 Errors in average downslope readings (DR) and upslope readings (UR) by Abney level

| DR - true slope         | VR - true slope |
|-------------------------|-----------------|
| -0.20                   | -0.20           |
| +0.20                   | +0.10           |
| +0.10<br>+0.10<br>+0.10 | 0<br>0<br>-0,10 |
| 0<br>0                  | -0.10<br>-0.10  |
| -0.10<br>-0.10          | -0.20<br>-0.20  |
| 0                       | -0.20           |

Units are degrees and minutes of an arc

Source: Abrahams and Melville, 1975, p.300

order the differences from lowest to highest, in the form:

$$d_1 \le d_2 \le d_3 \le \dots \le d_n$$

where n is the number of differences, here 10. Thus for the downslope errors in Table 7:

$$d_1 = -.2$$
,  $d_2 = -.1$ ,  $d_3 = -.1$ ,  $d_4 = 0$ ,  $d_5 = 0$ ,  $d_6 = 0$ ,  $d_7 = .1$ ,  $d_8 = .1$ ,  $d_9 = .1$  and  $d_{10} = .2$  .....(2).

Tables of significance for this test are presented in Appendix 6. We find that for a two-tailed test and with n = 10,  $H_{\circ}$  is rejected at a significance level of m = 0.051 (the closest we may get to  $\alpha = 0.05$ ). If either:

$$\max[d_7, .5(d_5 + d_{10})] < 0 \text{ or } \min[d_4, .5(d_1 + d_8)] > 0 .....(3).$$

This means that  $H_0$  should be rejected at  $\alpha = 0.051$  if either a) the larger value of  $d_7$  or  $.5(d_8 + d_{10})$  is negative, or b) the smaller value of  $d_4$  or  $.5(d_1 + d_8)$  is positive. In the present example and using (2) and (3), we may reject  $H_0$  at this significance level if either:

$$\max[.1, .5(0 + .2)] < 0 \text{ or } \min[0, .5(-.2 + 0)] > 0$$

neither of which are here the case. We fail to reject  ${\rm H}_{\circ}$  and conclude that the median of the d $_{\scriptscriptstyle 1}$  for the downslope errors is not significantly different from zero.

In a similar vein, we may test whether the median of the d

for the upslope errors is zero. From Table 7 we derive:

$$d_1 = -.2$$
,  $d_2 = -.2$ ,  $d_3 = -.2$ ,  $d_4 = -.2$ ,  $d_5 = -.1$ ,  $d_6 = -.1$ ,  $d_7 = -.1$ ,  $d_8 = 0$ ,  $d_9 = 0$  and  $d_{10} = .1$ .

Using equation (3), we reject  $H_0$  if either

$$\max[-.1, .5(-.1 + .1)] < 0 \text{ or } \min[-.2, .5(-.2 -.1)] > 0$$

and now the first of these criteria is met. We thus reject H  $_{\circ}$  in favour of H  $_{l}$  and conclude that the median of the upslope errors is significantly different from zero.

#### (iv) Discussion

The sign test and Wilcoxon's signed-rank test are generally both useful in the same experimental situations for paired samples. Neither test is particularly restricted by a moderate number of ties. The Wilcoxon test, however, requires more information about relative magnitudes as well as directions of In that it uses more information, it is more differences. powerful than the sign test. If the populations are in fact normal, the ARE of the sign test is about 95% for n = 6 pairs of readings, but it drops to a lower bound of 63% as n increases (Hodges and Lehmann, 1956). In similar circumstances, the ARE of the Wilcoxon test is in the region of 95% for all n. The latter test has higher ARE than the sign test for sampling from nonnormal populations (it never falls below 86.4%) and is thus the preferable test if the data permit. This is not surprising in that the sign test is unaffected by the relative magnitudes of the d, and uses less of the information in the data.

The Walsh test may be used if measurement is at least at an interval scale. If the populations are normal, the Walsh test has ARE of 95% for most values of n and  $\alpha$  and it can reach 99% (for n = 9,  $\alpha$  = 0.01 and a one-tailed test). The lower bound of the ARE of this test is 87.5%. The major problem in using the Walsh test is that tables of significance are not available for n > 15.

#### IV TESTS FOR TWO INDEPENDENT SAMPLES

When the use of two related samples is impractical or inappropriate, the researcher may use two independent samples. For example, samples could be obtained randomly from two populations. A second method of obtaining two independent samples could be the random assignment of two treatments to the items of a sample whose origins are arbitrary. The tests presented here, like those of the previous section, examine whether differences in samples evidence differences in the processes applied to them.

Three procedures are described that test for the significance of a difference in the populations from which two independent samples have been drawn. A common problem in geography is to examine two independent samples drawn from two different populations to see if the populations have the same or different proportions of elements in the various categories of a study variable. For example, samples of north and south facing slopes may be taken to examine whether equal proportions of the two slopes are covered by various types of plant communities. A set of frequencies formed by classifying sample items into categories constitutes a contingency table, and the chi-square test may be applied to its analysis. The populations and categories of the study variable may be defined by measurement as weak as nominal in this test.

If the researcher is testing if two populations differ in central tendency, then an adaption of Fisher,s exact test (sometimes referred to as the median test) is applicable. This test is used when it is possible only to dichotomise items above or below the combined sample median. The Mann-Whitney test is used to examine if two independent samples have been drawn from the same population or populations with the same distribution. It is often used, therefore, to test for differences in central tendency. It is applicable when ordinal measurement is achieved and the data in both samples may be ranked. The latter test has been used in geography in such diverse areas as examination of spatial variations in water quality for different groups of rock-type and

land use (Prowse, 1984) and an analysis of the University Grants Committee,s cuts in student numbers and grants (Hoare, 1981).

#### (i) The chi-square test

This test as described in the present section is used to determine the significance of differences between two independent groups according to some criterion of relevance. For example, White and Watts (1977) employed the chi-square test to see if two groups of early phase (1953-60) and intermediate phase (1961-70) of broiler producing plants in the East Midlands differed according to the frequencies of their types of ownership (corporate organisation or individually owned). To conduct the test, sample items are cross-classified according to their group membership and levels of the criterion measured. The resultant frequencies constitute the contingency table.

In the present monograph, the test is illustrated by reference to Herbert,s (1976) socio-geographical study of delinquency areas in Cardiff. Areas of relatively high juvenile crime delinquency were identified from data collected from the police, social services and probation office. Delinquency areas were to be compared with areas of similar general characteristics but with low delinquency rates (called ,non-delinquent, areas). The research strategy required that sampled individuals in delinquent and non-delinquent areas should have equal amounts of awareness of their neighbourhoods. A social survey produced frequencies of varying levels of knowledge of 600 respondents for each of three delinquent and non-delinquent areas. These are reported in the 3X2 contingency table in Table 8A. (To conduct this test, it is not necessary for the sample sizes to be equal).

The null hypothesis is that the proportion of delinquency areas that are "very well known" equals the proportion of non-delinquency areas that are "very well known", that the proportion of delinquency areas that are "quite well known" equals the proportion of non-delinquent areas that are "quite well known" etc. In effect,  $\rm H_{0}$  is that individuals, levels of knowledge are independent of the type of neighbourhood.

Table 8 The chi-square test awned la levels a knowledge af neighbourhoods in Cardiff

#### (A) Original frequencies

| How well neigh-   | Neighbourhood: |                |       |
|-------------------|----------------|----------------|-------|
| bourhood is known | Delinquent     | Non-delinquent | Total |
| Very well         | 126            | 108            | 234   |
| Quite well        | 121            | 148            | 269   |
| Not well          | 53             | 44             | 97    |
| Total             | 300            | 300            | 600   |

Source: Herbert, 1976, p. 482

#### (B) Expected frequencies under H

| How well neigh-   | Neighbourhood: |                |       |
|-------------------|----------------|----------------|-------|
| bourhood is known | Delinquent     | Non-delinquent | Total |
| Very well         | 117            | 117            | 234   |
| Quite well        | 134.5          | 134.5          | 269   |
| Not well          | 48.5           | 48.5           | 97    |
| Total             | 300            | 300            | 600   |

#### (C) Computation of the chi-square statistic

| o <sub>ı</sub> | E     | (O <sub>1</sub> - E <sub>1</sub> ) | (O - E )2                      |
|----------------|-------|------------------------------------|--------------------------------|
| 126            | 117   | 9                                  | 0.692                          |
| 121            | 134.5 | -13.5                              | 1.355                          |
| 53             | 48.5  | 4.5                                | 0.418                          |
| 108            | 117   | -9                                 | 0.692                          |
| 148            | 134.5 | 13.5                               | 1,355                          |
| 44             | 48.5  | -4.5                               | $\chi^2 = \frac{0.418}{4.930}$ |

Under the, null hypothesis of independence and by the multiplication law of probabilities, consider one particular cell in the contingency table (Table 8A):

P(area is delinguent and very well known)

= P(area is delinquent).P(area is very well known) = 300 × 234 600 × 600

Thus, under H  $_{_{0}}$  the expected number of delinquent areas that are "very well known" is:

E(area is delinquent and very well known) =  $800 \times \frac{300}{600} \times \frac{234}{600} = 117$ .

Expected frequencies under  $H_{\rm o}$  for the remaining five cells are computed in a similar manner. Note, however, that to simplify the arithmetic, the expected frequencies may be computed as the product of the row and column totals associated with a cell (300 X 234) divided by the overall sample size (600). The expected frequencies under  $H_{\rm o}$  are shown in Table 8B.

The closeness of the observed  $(0_1)$  and expected frequencies  $(E_1)$  is tested by the chi-square statistic in the manner described in Section II ii. The computations are shown in Table 8C. the larger is  $X^2$ , the more likely it is that the levels of knowledge and the types of neighbourhood are not independent. Given a contingency table with r rows and c columns, the number of degrees of freedom associated with the chi-square statistic is always:

$$(r-1), (c-1)$$

Our result of 4.93 is thus distributed as chi-square with  $\underline{df}=2$ . From Appendix 3, we find that  $P(\chi_2^2>5.991)=0.05$ . Our result is thus not significant. We conclude that levels of knowledge and neighbourhood type are independent and that there is no significant difference between levels of knowledge of delinquency and non-delinquency areas.

When df > 1, the  $X^2$  test for contingency tables should only be used if no cell has an expected frequency of less than 1 and less than 20% of the cells have an expected frequency of less than 5. Should either of these requirements not be met, it is necessary to combine adjacent categories (Cochran, 1954).

In the case of a 2X2 contingency table (a = 1), there is a numerically simpler and equivalent method for computing the chi-square statistic. Given a 2X2 table in which A, B, C and D are observed frequencies of the form:

|       | - | Group 1 | Group 2 |
|-------|---|---------|---------|
| Class | 1 | A       | В       |
| Class | 2 | С       | D       |
|       |   |         |         |

it may be shown that:

$$\chi^2 = \frac{N(A.D - B.C)^2}{(A+B)(C+D)(A+C)(B+D)}$$
....(4),

where N=A+B+C+D and IA.D - B.CI is the modulus notation (see Appendix 1). Equation (4) avoids computing expected frequencies and in the 212 case yields an identical result to the formula for  $X^2$  already discussed. Some authors advocate the incorporation of Yates, continuity correction (N/2) in equation (4). However, this is overly conservative and equation (4) is preferable (Pearson, 1947; Conover, 1974). In the 2X2 case, equation (4) may be used if  $N \ge 20$  and all the expected frequencies are 5 or more. If these criteria are not met, the 2X2 contingency table should be analysed by Fisher, s exact probability test, as is discussed at the beginning of the next subsection.

Both approaches to the computation of  $X^2$  for a 2X2 contingency table are illustrated using a small part of the data collected by Dean and James (1981) in their study of schizophrenia in Plymouth. They argued that an examination of case notes was a necessary extension to the study of areal differences in the degree to which hospital admission occurs in the management of schizophrenia. Table 9A presents a breakdown of male and female admissions in relation to whether psychiatrists perceived that domestic circumstances were relevant to the decision to admit a patient. The null hypothesis is that perceived importance of domestic circumstances and the sex of the admitted patient are independent. Tables 9B and 9C compute the chi-square statistic in the manner described at the start of this section. From Appendix 3,  $P(\chi_i^2 > 3.841) = 0.05$ . We thus reject H<sub>0</sub> and conclude that perceptions of the importance of domestic circumstances depends on the patient, s sex. The largest values in column 4 of Table 9C indicate that domestic circumstances are perceived as being important in the decision to admit significantly less men and more women than would be expected by chance. Applying equation (4), we

Table 9 The perceived importance of domestic circumstances and
!
12.Y Ira

#### (A) Original frequencies

| Importance of domestic   |                  |                  |           |  |  |  |  |
|--------------------------|------------------|------------------|-----------|--|--|--|--|
| circumstances            | Males            | Females          | Total     |  |  |  |  |
| Unimportant<br>Important | 69 (A)<br>21 (C) | 95 (B)<br>57 (D) | 164<br>78 |  |  |  |  |
| Total                    | 90               | 152              | 242       |  |  |  |  |

Source: Dean and James, 1981, p.48

#### (B) Expected frequencies under R

| Importance of domestic   |                |                 |           |  |  |  |
|--------------------------|----------------|-----------------|-----------|--|--|--|
| circumstances            | Males          | Females         | Total     |  |  |  |
| Unimportant<br>Important | 60.99<br>29.01 | 103.01<br>48.99 | 164<br>78 |  |  |  |
| Total                    | 90             | 152             | 242       |  |  |  |

#### (C) Computation of the chi-square statistic

| 0, | E,     | (O <sub>1</sub> - E <sub>1</sub> ) | $\frac{\left(0_{i}-E_{i}\right)^{2}}{E_{i}}$ |
|----|--------|------------------------------------|----------------------------------------------|
| 69 | 60.99  | 8.01                               | 1.052                                        |
| 21 | 29.01  | -8.01                              | 2.212                                        |
| 95 | 103.01 | -8.01                              | 0.623                                        |
| 57 | 48.99  | 8.01                               | $\chi^2 = \frac{1.310}{5.197}$               |

derive the same value of the test statistic, allowing for decimal rounding error:

$$\chi^2 = \frac{242.([(69)(57) - (95)(21)])^2}{164 \times 78 \times 90 \times 152} = \frac{242(1938)^2}{12792 \times 13880} = 5.194$$

A final point is that the contingency procedure may be

readily extended to k independent samples. Thus, for example, a 3X3 contingency table could be constructed by considering the attitudes (favourable, indifferent, unfavourable) towards an urban renewal scheme of three groups of residents (young, middle aged, elderly), in an attempt to determine whether attitudes depend on age. The degrees of freedom are still computed by df. = (r - 1).(c - 1).

#### (ii) Fisher,s exact test

Fisher,s test is used to determine if two groups differ in the proportion with which they fall into two categories. It is a particularly useful nonparametric technique for examining discrete ordinal or nominal data when two independent samples are small in size. This section describes the application of Fisher, s test to an examination of whether two independent samples evidence a difference in central tendency, in this case the median. Some authors refer to this application under another name - the median test (Siegel, 1956; Conover, 1980). The data in Table 10 are used to illustrate the test. Field measurements of soil pH were carried out near the rims and at the bottoms of hollows in the Dorset heathlands (Sperling et al., 1977). If chemical solution leads to progressive deepening of the hollows, pH values at the bottoms would be expected to be less than those on the rims. The null hypothesis of no difference in the median pH soil contents at the rims and bottoms of the hollows is set up. The one-tailed alternative is that the median pH value at the rims exceeds that at the bottom. The median score for all pH values in both samples may be derived from their ordered values, shown in Table 10B. The median of 16 readings is the mean of the 8th and 9th readings, namely 3.7. All 16 readings may now be grouped with respect to the overall median, as shown in Table 10c.

Under H $_{\mathbf{o}}$  of no difference, we would expect the frequencies lying above and below the overall median to be equal for both samples. The probability, p, of observing a particular set of frequencies in a 2X2 table (regarding the marginal totals as

Table 10 <u>Fisher,s test applied</u> to pH <u>soil determination</u> al <u>the rims and bottoms</u> of <u>hollows</u> in <u>Dorset heathlands</u>

(A) pH soil determinations at the rim and bottom of hollows

| Rim | pH value | Bottom |
|-----|----------|--------|
| 3.8 |          | 4.0    |
| 3.6 |          | -      |
| 4.7 |          | 3.7    |
| 3.8 |          | 3.1    |
| 3.8 |          | 3.7    |
| 3.2 |          | 3.2    |
| 3.8 |          | 4.0    |
| 3.4 |          | 3.0    |
| 3.3 |          |        |

Source: Sperling et al., 1977, p.215

(B) Ordered pH determinations

3.0 3.1 3.2 3.2 3.3 3.4 3.6 3.7 3.7 3.8 3.8 3.8 4.0 4.0 4.7

(C) Fisher's test: form for the data

|                                                                                         | Pos'n 1:<br>Rim | n hollow<br>Bottom | Total            |
|-----------------------------------------------------------------------------------------|-----------------|--------------------|------------------|
| No. of values exceeding overall median<br>No. of values not exceeding overall<br>median | 5(A)<br>4(C)    | 2(B)<br>5(D)       | 7(A+B)<br>9(C+D) |
| Total                                                                                   | 9(A+C)          | 7(B+D)             | 16(N)            |

fixed) is given by the hypergeometric distribution. Using the notation of Table 10C, p is given by:

$$\mathbf{p} = \frac{\mathbf{A}^{+C}\mathbf{C_A}}{^{N}\mathbf{C_{A+B}}}, \text{ where } ^{X}\mathbf{C_Y} = \frac{\mathbf{X}!}{\overline{\mathbf{Y}!}\left(\mathbf{X} - \mathbf{Y}\right)!}.$$

Here.

$$p = \frac{{}^{9}C_{8}^{7}C_{2}}{{}^{16}C_{7}} = \frac{(126)(21)}{11440} = 0.231.$$

Table 10 (continued)

(D) More extreme frequency occurrences than those obtained in Table  $10\mathrm{C}$ 

| • | 2 | ٦ |
|---|---|---|
| ι | 1 | J |

|                                            | Pos'n in hollow |        |       |
|--------------------------------------------|-----------------|--------|-------|
| <u></u>                                    | Rim             | Bottom | Total |
| No. of values exceeding overall median     | 6               | 1      | 7     |
| No. of values not exceeding overall median | 3               | 6      | 9     |
| Total                                      | 9               | 7      | 16    |

$$p = \frac{{}^{9}C_{8}^{.7}C_{1}}{{}^{16}C_{7}} = \frac{(84)(7)}{11440} = 0.051$$

(ii)

|                                            | Pos'n in hollow |        |       |
|--------------------------------------------|-----------------|--------|-------|
|                                            | Rim             | Bottom | Total |
| No. of values exceeding overall median     | 7               | 0      | 7     |
| No. of values not exceeding overall median | 2               | 7      | 9     |
| Total                                      | 9               | 7      | 16    |

$$p = \frac{{}^{9}C_{7}.^{7}C_{0}}{{}^{16}C_{7}} = \frac{(38)(1)}{11440} = 0.003$$

We have thus computed that the probability of such a distribution of frequencies in Table 10C is 0.231. However, more extreme deviations from the distribution under H could occur with the same marginal totals. This should be considered because a statistical test of H asks "what is the probability under H of such an occurrence or one even more extreme?" (Siegel, 1956, p. 98). More extreme occurrences would be those shown in Table 10D. The probability of these two frequency distributions occurring under Ho may be computed as before to be 0.051 and 0.003 as shown in this table. Hence the probability of occurrence of the frequency distribution in Table 10C or more extreme occurrences is

0.231 + 0.051 + 0.003 = 0.285, under  $\rm H_{0}$ . This value is greater than the conventional significance level of  $\alpha$  = 0.05, so we fail to reject  $\rm H_{o}$  and conclude that the median pH soil determination at the rims and bottoms of these hollows are equal. This does not support the notion that higher rates of chemical solution lead to progressive deepening of the hollows.

Consideration of the more extreme occurrences above was obviously unnecessary in the present example, as the probability of occurrence of the frequency distribution in Table 10C under  $_{\rm H}$  already exceeded cc 0.05. However, when such computations are required, they can become tedious. For larger samples, (N = n : + n =  $_{\rm H}$ 

be analysed by the contingency chi-square statistic, represented by equation (4) and discussed in the last section. If, however, any cell has an expected frequency less than 5, the procedure just outlined involving the hypergeometric distribution should be used. The large scale application of Fisher,s test is illustrated by comparing urban population densities in a zone immediately surrounding the central business district with those densities found in more peripheral zones. Everson and Fitzgerald (1973, p.120-1) compiled data pertaining to population densities (excluding agricultural land) per acre in the urban wards in the city of Norwich. Random samples of  $n_1$  = 11 wards between 0.5 and 1.5 Kms. from the city centre and  $n_2$  = 13 wards between 3 and 5 Kms. from the centre were drawn. The densities in these N = 24 wards are reported in Table 11A.

The null hypothesis is that there is no difference between the median population densities of these two zones. Well known geographical theory would postulate that the densities would be higher in the zone nearer the CBD. We proceed as before and find that the median score for the combined samples is 11.93 persons per acre. This enables construction of Table 11B, which is similar in construction to Table 10C. From equation (4), the appropriate test statistic is:

$$\frac{N(|A.D-B.C|)^{2}}{(A+B)(C+D)(A+C)(B+D)}$$

Table 11 <u>Fisher's test applied</u> <u>population densities</u> and <u>varying</u> distances <u>from</u> the city <u>centre</u> of Norwich

#### (A) Population densities per acre

| Population densities:       |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|
| 3 to 5 Kms from city centre |  |  |  |  |  |
| 0.22                        |  |  |  |  |  |
| 0.71                        |  |  |  |  |  |
| 2.31                        |  |  |  |  |  |
| 3.65                        |  |  |  |  |  |
| 4. 15                       |  |  |  |  |  |
| 4.23                        |  |  |  |  |  |
| 5.80                        |  |  |  |  |  |
| 7.29                        |  |  |  |  |  |
| 11.07                       |  |  |  |  |  |
| 12.76                       |  |  |  |  |  |
| 18.56                       |  |  |  |  |  |
| 23.26                       |  |  |  |  |  |
| 25.93                       |  |  |  |  |  |
|                             |  |  |  |  |  |

Source: Everson and Fitzgerald, 1973, p. 120-1

#### (B) Fisher's test: form for the data

|                                               | Distance from city centre |         |            |       |
|-----------------------------------------------|---------------------------|---------|------------|-------|
|                                               | ,5 to                     | 1.5 Kms | 3 to 5 Kms | Total |
| No. of densities<br>exceeding overall median  | 8                         | (A)     | 4 (B)      | 12    |
| No. of densities not exceeding overall median | 3                         | (C)     | 9 (D)      | 12    |
| Total                                         | 11                        | -       | 13         | 24    |

where N is the total number of readings in both samples. This is the test statistic described in the previous section for a 2X2 contingency table. This test statistic is distributed as  $X^2$ , with one degree of freedom. Therefore,

$$\frac{24(172-12)^2}{12\cdot12\cdot11\cdot13}=4.196\in\chi_1^2$$

From Appendix 3,  $P(\chi_1^2 > 3.841) = 0.05$ , so we reject  $H_0$  and conclude that the median population density/acre is higher in the

zone nearer the CBD. This procedure may be extended to k independent samples and then the test statistic would be gathered from the conventional chi-square analysis of the 2Xk contingency table formed by dichotomising the data with respect to the overall median.

#### (iii) The Mann-Whitney test

The Mann-Whitney test examines if two independent samples have been drawn from the same population or populations with the same distribution. When the latter is the null hypothesis, failure to reject  $H_0$  would infer that populations are not significantly different in respect of central tendency. For this reason, many authors feel that the Mann-Whitney test is a useful alternative to the parametric t-test when the assumptions underlying the latter are not met. However, care should be taken when one fails to reject  $H_0$ , for although it can be asserted that the two samples are from different populations, it may not be straightforward to say in what specific way(s) the populations differ.

Table 12 <u>Segregation indices (SI)</u> in 10 <u>selected American SMSA.</u>
1970

| Southern U.S.A. |        |                     | Northern U.S.A. |        |                    |  |
|-----------------|--------|---------------------|-----------------|--------|--------------------|--|
| SMSA            | SI (X) | Rank                | SMSA            | SI (Y) | Rank               |  |
| Atlanta         | 0.51   | <b>a</b> 6          | New York        | 0.29   | 1                  |  |
| Birmingham      | 0.30   | <b>₹</b> 2          | Detroit         | 0.58   | 8                  |  |
| Greensboro-     | 0.40   | 3                   | Chicago         | 0.45   | 5                  |  |
| Winston-Salem   |        |                     | Philadelphia    | 0.44   | 4                  |  |
| St. Louis       | 0.57   | 7                   | Pittsburgh      | 0.59   | 9                  |  |
|                 |        |                     | Boston          | 0.66   | 10                 |  |
| Sum of ranks    |        | R <sub>x</sub> = 18 | <u> </u>        |        | R <sub>y</sub> = 3 |  |

Source: Clantz and Delaney, 1973, p.6

The test is illustrated with reference to residential segregation of blacks in selected American Standard Metropolitan Statistical Areas (SMSA) in 1970. Glantz and Delaney (1973)

computed segregation indices (SI) for the SMSA; the higher the value of the index, the greater is the degree of residential concentration. Indices for 10 SMSA in northern and southern U.S.A. are reported in Table 12. The null hypothesis is that the SI values in both regions have the same distribution, against a two-tailed alternative that they have not. Failure to reject  $\rm H_{0}$  would suggest that the northern and southern SI values do not significantly differ.

The inherent logic of the Mann-Whitney test is that if the sample evidence favours the alternative hypothesis, then a majority of one of the populations of SI values will exceed a majority of the SI values in the other population. As shown in Table 12, the first step is to rank all the combined sample items from highest to lowest. We next arbitrarily select one of the samples. Taking each value in the selected sample in turn, we count the number of items in the other sample that have higher ranks. The total of this count is usually denoted by U. Ties between items contribute 0.5 to the value of U. Selecting the southern SMSA sample in Table 12, we find that three Y scores have higher ranks than the X score of 0.51, five Y scores have higher ranks than has X = 0.30, five Y scores have higher ranks than has X = 0.40 and three Y scores have higher ranks than has X = 0.57. We thus compute that U = 3 + 5 + 5 + 3 = 16. A quicker method of computing U is given by:

$$U = n_{x,y} + (0.5)n_{x}(n_{y} + 1) - R_{x}, \dots, (5),$$

where  $n_x$  is the number of readings in the arbitrarily selected sample,  $R_x$  is the sum of the ranks given to the items in that sample and  $n_y$  is the size of the other sample. From Table 12,  $n_x = 4$ ,  $n_y = 6$  and  $R_x = 18$ , so U = (4)(6) + (0.5)(4)(5) - 18 = 16.

Suppose that we had carried out the same procedure, but had initially arbitrarily selected the northern sample. In this instance, it would be found that U=4+0+2+2+0=8. Either U or U' could be used as the test statistic. Now under Ho that the samples were drawn from populations with the same distributions, one would expect by chance that for each of the nation in the arbitrarily selected sample, n/2 items in the other

sample would have higher ranks. Thus under Ho, the expected value of U, namely E(U), would have value  $(n_{xy})/2$ . In the present example, E(U) = (4)(6)/2 = 12. For the two-tailed alternative hypothesis, we could thus examine the computed U = 16 in relation to the upper critical value or U'= 8 in relation to the lower critical region of the distribution of U with mean (or expected value) of 12. Appendix 7 presents critical values of the U statistic, but only for the upper critical region. It is not necessary, however, to compute both U and U' to see which is numerically larger, for they are related by:

$$U = n_{x,y} - U' \text{ or } U' = n_{x,y} - U,$$

as may be readily verified in the present example. In Appendix 7, the values given should be included within the critical region, so in the present example, and selecting a=0.05, we reject H  $_{\odot}$  if U  $_{22}$ . Hence the value of U = 16 is not significant and we conclude that the segregation indices in the northern and southern SMSA are equal.

$$U = (19)(24) + (0.5)(24)(25) - 386 = 370.$$

Therefore, standardising and employing a continuity correction because  $\tt U$  is discrete, the test statistic under  $\tt H_o$  is:

$$\frac{(U\pm 0.5)-E(U)}{\sqrt{\text{var}(U)}}\in N(0,1), \text{ so}$$

Table 13 percentage 2f harvested cropland given to wheat cultivation j west and east ohio. 1949

| Western counties                                                                                                  |                                                                                                                                | Eastern counties                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Wheat %(X)                                                                                                        | Rank                                                                                                                           | County                                                                                                                                                                                    | Wheat %(Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| 21.76 22.05 20.04 18.55 20.48 21.09 26.77 24.76 13.86 20.97 20.09 24.16 23.76 22.02 22.33 26.59 25.88 24.97 16.58 | 29 32 22 17 25 28 42 37 10 27 23 36 35 31 33 41 39 38 -5005                                                                    | Ashtabula Trumbull Mahoning Columbiana Jefferson Belmont Monroe Washington Lake Geauga Portage Stark Carroll Harrison Guernsey Noble Morgan Muskinghum Shacton Holmes Wayne Summit Medina | 13.52<br>16.53<br>20.13<br>19.22<br>15.61<br>10.87<br>9.75<br>13.43<br>9.77<br>12.68<br>19.13<br>22.53<br>17.73<br>13.00<br>14.14<br>9.24<br>14.94<br>19.58<br>21.96<br>26.38<br>27.10<br>19.08<br>20.86                                                                                                                                                                                                                                                         | 9<br>14<br>24<br>20<br>13<br>4<br>2<br>8<br>3<br>6<br>19<br>34<br>16<br>7<br>11<br>1<br>12<br>21<br>30<br>40<br>43<br>18<br>26                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |
|                                                                                                                   |                                                                                                                                | Cuyahoga                                                                                                                                                                                  | 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
|                                                                                                                   | Wheat % (X)  21.76 22.05 20.04 18.55 20.48 21.09 26.77 24.76 13.86 20.97 20.09 24.16 23.76 22.02 22.33 26.59 25.88 24.97 16.58 | Wheat %(X) Rank  21.76 29 22.05 32 20.04 22 18.55 17 20.48 25 21.09 28 26.77 42 24.76 37 13.86 10 20.97 27 20.09 23 24.16 36 23.76 35 22.02 31 22.33 33 26.59 41 25.88 39 24.97 38        | Wheat %(X) Rank County  21.76 29 Ashtabula 22.05 32 Trumbull 20.04 22 Mahoning 18.55 17 Columbiana 20.48 25 Jefferson 21.09 28 Belmont 26.77 42 Monroe 24.76 37 Washington 13.86 10 Lake 20.97 27 Geauga 20.09 23 Portage 24.16 36 Stark 23.76 35 Carroll 22.02 31 Harrison 22.33 33 Guernsey 24.16 36 Stark 23.76 35 Carroll 22.02 31 Harrison 22.33 33 Guernsey 24.97 38 Morgan 24.97 38 Muskinghum 16.58 15Coshacton R <sub>X</sub> = 560 Holmes Wayne Summit | Wheat %(X) Rank County Wheat %(Y)  21.76 29 Ashtabula 13.52 22.05 32 Trumbull 16.53 20.04 22 Mahoning 20.13 18.55 17 Columbiana 19.22 20.48 25 Jefferson 15.61 21.09 28 Belmont 10.87 24.76 37 Washington 13.43 13.86 10 Lake 9.77 20.97 27 Geauga 12.68 20.09 23 Portage 19.13 24.16 36 Stark 22.53 23.76 35 Carroll 17.73 22.02 31 Harrison 13.00 22.33 33 Guernsey 14.14 26.59 41 Noble 9.24 25.88 39 Morgan 14.94 24.97 38 Muskinghum 19.58 16.58 LSCOSHACTON R <sub>X</sub> = 560 Holmes 26.38 Wayne 27.10 Summit 19.08 Medina 20.86 | Wheat %(X) Rank County Wheat %(Y) Rank  21.76 |

Source: King, 1969, p.175-6

$$\frac{(370 - 0.5) - (19)(24)/2}{\sqrt{(19)(24)(44)/12}} = \frac{141.5}{\sqrt{1672}} \approx 3.46 \in N(0,1).$$

R = 386

Unless ties are very extensive, no adjustment to this test statistic is necessary (Siegel, 1956). It should be noted that we could compute U'as before, by  $U' = n n_{xy} - U = (19)(24) - 370 = 86$  and E(U') and Var(U') are equal to E(U) and Var(U) respectively. The test statistic under H will be found to have value -3.46 e N(0,1) - the same in magnitude but different in sign to the result found previously. This illustrates that the arbitrary selection of the X or Y readings as a basis for the computation of U or U' in

no way affects the level of significance of the derived test statistic. In this problem given a two-tailed test, we find from Appendix 1 that P[N(0,1) > 1.961 = 0.025 so our result is significant. We conclude that the percentages of cropland given over to wheat in the western and eastern counties of Ohio have been drawn from different populations.

Under the null hypothesis, the probability, p, of the percentage cropland devoted to wheat in a western county exceeding that in an eastern county is one half. In symbols, P((>Y) = p = 0.5. Having rejected  $H_0$ , it may be shown that an unbiassed and consistent estimator of p, written as  $\hat{p}$ , is given by  $\hat{p} = U/n_n n_x y$  (Gibbons, 1971). In the present example,  $\hat{p} = 370/(19)(24) = 0.811$ . Thus we estimate that 81.1% of the western counties exceed eastern counties in terms of the percentage of harvested cropland given over to wheat.

#### (iv) Discussion

In that the adaption of Fisher's test to the analysis of population medians does not require the populations to be identical when  $H_{\mathbf{0}}$  is true, the test may be applied in situations where the Mann-Whitney test is invalid. The ARE of the median test relative to the t-test when the populations are in fact normal is 63.7%, which is a relatively poor level (Gibbons, 1971), but thereagain, nonparametric tests are specifically designed to analyse samples from non-normal populations. The ARE of the Mann-Whitney test when compared with the t-test is computed under the assumption that the distributions of X and Y are identical except for their means. If the populations are normal, the ARE is 95.5%, if they are uniform it is 100% and if the populations have a symmetric non-normal distribution the ARE is 150%. The lowest value of the ARE if the populations only differ in location is never lower than 86.4% and it can be infinite. In the cases of normal and uniform populations, the ARE's of the Mann-Whitney test relative to the median test are above 100%, but below 100% for symmetric non-normal populations and large samples.

The chi-square test as described in this section is used if the objective is to see if the populations differ in any respect location, dispersion, skewness etc. When N < 20 and the data in a 2X2 contingency table, Fisher,s test should be used. The X test has been criticised in that it does not make efficient use of all the properties of the data and it is recommended that if the populations are continuously distributed then the Kolmogorov-Smirnov test for two independent samples (discussed at the end of Section II iii) should be employed.

#### V A TEST FOR k RELATED SAMPLES

This section presents the Friedman test which examines differences among three or more related samples. It is useful when measurement is at least an ordinal scale and does have the advantage over other applicable tests of having tables of exact probabilities for significance available for very small samples. The application of such a procedure for an overall difference is often a precursor to trying to identify the populations between which the greatest differences occur. This is called a multiple comparisons procedure. If the researcher is able to set up an alternative hypothesis in which ordering between the populations is possible (e.g. a temporal increase or decrease), then Page,s (1963) adaption of the Friedman test is applicable. Both procedures are described for the Friedman test in this section. They have also been illustrated in an analysis of crude birth rates over time of several less developed countries (Coshall, 1988).

Friedman,s test parallels conventional parametric analysis of variance, wherein the test statistic is F. However, as noted in the introduction to this monograph, the F-test is particularly sensitive to departures from normality (Box, 1953; Siegel and Tukey, 1960; Conover, 1980). If the normality assumption is untenable, the Friedman test is a safer way of seeking significant differences between populations among k related samples.

#### (i) I Friedman test

If the data from k related samples are at least ordinal, this test examines if the k samples could have been drawn from the same population. The test is illustrated by means of data in Table 14A, which shows male employment change (000,s) in service industries in Great Britain, 1961-80 (Daniels, 1983).

In Table 14A, there are k=3 samples being analysed over n=6 <u>blocks</u>. The null hypothesis is that the employment levels in service industries in each of the three years tabulated are equal, against the alternative that they are not. If one hypothesised that the employment levels decreased from 1961 to 1980, this would

Table 14 The im service industries in Great Britain. 1961-80

#### (A) Employment

|                                  |      | Employment | (000's)      |
|----------------------------------|------|------------|--------------|
| Sector                           | 1961 | 1971       | 1981         |
| Transport/communications         | 1438 | 1307       | *21          |
| Distributive trades              | 1340 | 1180       | 121:<br>1248 |
| Insurance/banking/finance        | 377  | 479        | 584          |
| Professional/scientific services | 737  | 1002       | 1172         |
| Miscellaneous services           | 819  | 893        | 1060         |
| Public administration/defence    | 916  | 996        | 971          |

Source: Daniels, 1983, p. 303

## (B) General form of the data for the Friedman test

|        |                 | Tre            | eatments |                 |             |
|--------|-----------------|----------------|----------|-----------------|-------------|
| Blocks | 1               | 2              |          | k               | Row totals  |
| 1      | r <sub>11</sub> | r<br>12        |          | r <sub>1k</sub> | k(k + 1)/2  |
| 2      | r <sub>21</sub> | r<br>22        |          | r <sub>2k</sub> | k(k + 1)/2  |
| :      | -               | •              |          | •               |             |
| n<br>— | r <sub>n1</sub> | r<br>n2        |          | r<br>nk         | k(k+1)/2    |
| Totals | R               | Ř <sub>2</sub> |          | R <sub>k</sub>  | nk(k + 1)/2 |

## (C) The Friedman test: form for the data from Table 14A

|                                     | Ranks | of employment | levels      |
|-------------------------------------|-------|---------------|-------------|
| Sector                              | 1961  | 1971          | 1980        |
| Transport/communications            |       |               | <del></del> |
| Distributive trades                 | 3     | -             | 1           |
| Insurance/banking/finance           | 3     | 1             | 2           |
| Professional/scientific services    | 1     | 2             | 3           |
| Misseller Scientific Services       | 1     | 2             | 3           |
| Miscellaneous services              | 1     | 2             | 3           |
| Public administration/defence       | 1     | 3             | 2           |
| Totals R <sub>j</sub> , J = 1, 2, 3 | 10    | 12            | 14          |

be an ordered alternative hypothesis, to be discussed later in this section.

Within each block, the k observations are ranked from least to greatest. If the employment figure in the ith. block under the jth. condition is  $X_{i,j}$ , then let  $r_{i,j}$  be the rank of  $X_{i,j}$  in the joint ranking of  $X_{i,j}$ .  $X_{i,k}$  Further, we define  $R_i = \sum_{i=1}^{n} r_{i,j}$ . The general form of the data for analysis by the Friedman test is shown in Table 14B and the numerical values of  $R_j$  in the present example are shown in Table 14C. If the null hypothesis of no differences is true, then the ranks  $r_{i,j} = 1$ , 2, 3 would be expected to appear in all the columns with about the same frequency. Thus the column totals would be the same and equal to the mean column total, n(k+1)/2, from Table 14B. The sum of the deviations of the observed column totals about this mean is zero, but the sum of squares of these deviations would be indicative of differences between the k samples (Gibbons, 1971). Therefore, we could employ:

$$T = \sum_{j=1}^{k} (R_j - n(k+1)/2)^2$$

as a test statistic under  $H_{\text{ol}}$  as it would be sensitive to differences in locations. From Table 14C, it is found that n(k + 1)/2 = 12. so:

$$T = (10 - 12)^2 + (12 - 12)^2 + (14 - 12)^2 = 8.$$

Unfortunately, statistical tables for the significance of T, such as those of Owen (1962), are restricted in the values of n and k for which values are reported.

However, tables are presented in Appendix 8 for the statistic:

$$S = \frac{12T}{nk(k+1)} \dots (6).$$

In the present example, S = (12)(8)/(18)(4) = 1.333. From Appendix 8,  $P(S \ge 1.333) = 0.57$ , so we fail to reject  $H_0$  and conclude that male employment levels in each of the three years are equal. It might be noted that for female employment levels in the same service industries (Daniels, 1983), it is found that  $S = \frac{1.333}{1.333}$ .

12 and from Appendix 8, P(S

significant differences in the three years (in fact, a generally decreasing trend over time).

It has been shown that the computation of S as presented in equation (6) may be derived from the more often quoted and equivalent formula (Gibbons, 1971):

$$S = \frac{12}{nk(k+1)} \sum_{j=1}^{k} R_{j}^{2} - 3n(k+1) \dots (7).$$

Equation (7) is more convenient for large data matrices than equation (6). Thus from Table 14C:

$$S = [12(100 + 144 + 196)/18(4)] - 3(6)(4) = 1.333.$$

The tables in Appendix 8 are somewhat restricted in the situations to which they are applicable. For larger samples than those recorded in this table, S is approximately distributed as chisquare with (k-1) degrees of freedom.

The data in Table 15 are used to illustrate the large scale approximation. This table presents employment (000,s) by industry in Great Britain 1977-81 (Daniels, 1983). The ranked values across each treatment are shown in brackets, along with their totals R for j = 1, 2,  $\underline{5}$  From equation (7) it is computed that:

 $S = \{12(13^2 + 30^2 + ... + 24^2)/9(5)(6)\} - 3(9)(6) = 16.1,$  which is approximately distributed as  $\chi^2$  with 4 degrees of freedom. From Appendix 3,  $P(\chi_4^2 > 9.488) = 0.05$ , so our result is highly significant and we conclude that employment levels differ over the five years.

#### (ii) The ordered alternative hypothesis

Often there is sufficient a <u>priori</u> evidence to adopt an ordered alternative hypothesis, for example, that the employment levels for the industries in Table 15 have been decreasing annually between 1977 and 1981. In this situation, Friedman,s test may be adapted by a method suggested by Page (1963). The null hypothesis of no difference remains the same. Let the unknown treatment effects be denoted by t , j = 1, 2  $\frac{5}{2}$  then

the ordered alternative above may be written as:

We use the sum of the ranks  $R_j$ ,  $j=1,\ 2,\ldots,5$  from Table 15 to compute Page's L statistic, given by:

$$L = \sum_{j=1}^{k} \mathfrak{J}(R_{j}).$$

Hence, from Table 15 with k = 5 treatments, L = R:  $+2R_2+3R_3+4R_1+5R_2=13+2(30)+3(39)+4(29)+5(24)=426$ . Tables for the significance of L are presented in Appendix 9, whence it may be found that with n = 9 and k = 5, P(L=431)=0.05. Our observed value of L = 426 is not significant and we cannot accept the ordered alternative hypothesis. For values of n and k outside the table in Appendix 9, we may use the fact that the statistic:

$$L' = \frac{L - E(L)}{\sqrt{\operatorname{var}(L)}} \dots (8)$$

is approximately standard normally distributed with parameters:

$$E(L) = \frac{nk}{4} (k + 1)^2$$
 and  $var(L) = \frac{n(k^3 - k)^2}{144(k - 1)}$ .

In the present example, E(L) = 9(5)(36)/4 = 405 and  $var(L) = 9(120)^2/4(144) = 225$ , so in equation (8), L = (426 - 405)/15 = 1.4, which again is not significant at the a = 0.05 level (Appendix 2).

 $_{\rm It}$  is possible to compute Spearman,s rank correlation coefficient,  $\rm r_{\rm s}$ , between the rank ordering expected under  $\rm H_A$  and the ordering observed for each industry in Table 15. This would be indicative of the strength of agreement between each observed ordering and that ordering expected by the ordered alternative hypothesis. Spearman,s  $\rm r_s$  is given by:

$$r_s = 1 - \frac{6\Sigma d_1^2}{k(k^2 - 1)} \dots (9),$$

where k is the number of pairs of readings and d<sub>11</sub> i = 1, 2 5 are the differences in the ranks of the pairs. For example, to compute  $r_s$  between the ranking expected under  $H_A$  and

Table 15 Employment by industry in Great Britain, 1977-81

|                      | 1981    | 1980    | 1979    | 1978    | 1977    |
|----------------------|---------|---------|---------|---------|---------|
| Manufacturing        | 5917(1) | 6633(2) | 7067(3) | 7144(4) | 7185(5) |
| Construction         | 1077(1) | 1219(2) | 1262(5) | 1234(4) | 1223(3) |
| Gas/elect/water      | 330(1)  | 340(5)  | 338(4)  | 335(2)  | 337(3)  |
| Transport/comm'ns    | 1417(1) | 1475(4) | 1485(5) | 1472(3) | 1455(2) |
| Distributive trades  | 2576(1) | 2685(2) | 2780(5) | 2738(4) | 2706(3) |
| Insurance/bank/fin   | 1220(3) | 1254(5) | 1236(4) | 1201(2) | 1159(1) |
| Prof'nal/scientific  | 3532(2) | 3556(4) | 3573(5) | 3551(3) | 3506(1) |
| Miscellaneous serv's | 2350(2) | 2440(4) | 2441(5) | 2372(3) | 2317(1) |
| Public admin/defence | 1523(1) | 1543(2) | 1560(3) | 1561(4) | 1564(5) |
| $R_{j} j = 1, 2,, 5$ | 13      | 30      | 39      | 29      | 24      |

Source: Daniels, 1983, p. 302

the ranking observed in the construction industry, examine Table 16. It is thus derived:

Rank under 
$$H_A$$
 1 2 3 4 5 Rank for construction ind. 1 2 5 4 3 4  $d_1$  0 0 -2 0 2  $d_1^2$  0 0 4  $\Sigma d_1^2 = 8$ .

Thus in equation (9),  $r_s=1-6(8)/5(24)=0.6$ , as shown in the right hand column of Table 16. The average of all these nine rank coefficients is  $\overline{r}_s=2.1/9=0.2333$ . This figure is indicative of the overall weakness or agreement between the expected ordering under  $H_A$  and that which is observed for all nine industries. Hollander and Wolfe (1973) have shown that:

$$\overline{r}_{s} = \frac{12L}{nk^{2}(k-1)} - \frac{3(k+1)}{k-1},$$

where L is Page,s statistic. Thus in the present example, using the value of L = 426 derived previously:

$$\bar{r}_{s} = 12(426)/45(24) - 3(6)/4 = 0.2333$$
, as above.

Having computed  $\overline{r}_s$ , it is thereby possible to derive Page's L and vice versa. As was concluded by examination of Page's L,  $\overline{r}_s = 0.2333$  evidences only slight agreement in the observed ordering for the nine industries and that expected under  $H_s$ .

Table 16 Bank <u>correlation between</u> the <u>hypothetical ordered</u> alternative and <u>the observed orderings</u>

|                            | Employment year |      |      |      |      |
|----------------------------|-----------------|------|------|------|------|
|                            | 1981            | 1980 | 1979 | 1978 | 1977 |
| Ordering expected under HA | 1               | 2    | 3    | 4    | 5    |

#### Observed ordering

| Industry               | 1981 | 1980 | 1979 | 1978 | 1977            | rs    |
|------------------------|------|------|------|------|-----------------|-------|
| Manufacturing          |      | 2    | 3    | 4    | 5               | 1.0   |
| Construction           | 1    | 2    | 5    | 4    | 3               | 0.6   |
| Gas/elect/water        | 1    | 5    | 4    | 2    | 3               | 0.1   |
| Transport/comm'ns      | 1    | 4    | 5    | 3    | 2               | 0.1   |
| Distributive trades    | 1    | 2    | 5    | 4    | 3               | 0.6   |
| Insurance/bank/fin     | 3    | 5    | 4    | 2    | 1               | -0.7  |
| Prof'nal/scientific    | 2    | 4    | 5    | 3    | 1               | -0.3  |
| Miscellaneous serv's   | ž    | 4    | 5    | 3    | 1               | -0.3  |
| Public admin/defence   | 1    | 2    | 3    | 4    | 5               | 1.0   |
| ( abite admits determe | -    | _    | _    | •    | Σr <sub>s</sub> | = 2.1 |

Source: Table 15

#### (iii) Multiple comparisons

Originally, the null hypothesis of no differences in employment levels for the five years in question was rejected in favour of the alternative that one or more of these employment levels are not equal. It is possible to use the procedure of multiple comparisons to identify between which years the greatest differences lie.

The first step is to compute the k(k-1)/2 absolute differences  $|R_u-R_v|$ , u < v, where the  $R_j$ ,  $j=1,2,\ldots,k$  are found from Table 15. For example,  $|R_j-R_j|=|13-30|=17$ ,  $|R_j-R_j|=|13-39|=26$  etc. These absolute differences are shown in Table 17. The significance of these differences depends on the experimentwise error rate (EER),  $\alpha$ , involved in the multiple comparisons. Suppose we have to make  $N_d$  individual decisions during the multiple comparisons. Let  $N_f$  be the number of incorrect decisions made. The error rate for the multiple

comparisons procedure is the random variable  $N_f/N_d$ . The EER is the probability that under  $H_0$ ,  $N_f/N_d$  is greater than zero; in symbols  $P(N_f/N_d > 0) = \alpha$ . If the unknown effects of treatments U and V are denoted by  $t_u$  and  $t_v$ , then it is decided that  $t_u \neq t_v$  if:

$$|R_u - R_v| \ge r(\alpha, k, n),$$

where  $\alpha$  is the EER and n and k are as before. Statistical tables for  $r(\alpha, k, n)$  are presented in Appendix 10. Selecting  $\alpha = 0.05$  and with n = 9 and k = 5 from Table 15, the closest we may get to this EER from Appendix 10 is  $P[r(\alpha, 5, 9) > 19] = 0.037$ . At an EER of 0.01, the closest we may get is  $P[r(\alpha, 5, 9) > 22] = 0.008$ . From Table 17, only  $|R_1 - R_3| > 22$ . Therefore, the principal reason we rejected the null hypothesis of no difference in employment levels over the five years is due to the significant difference in employment levels of 1979 and 1981, as indicated in Tables 15 and 17.

For large samples beyond the scope of Appendix 10, we decide that  $\mathbf{t}_{\perp} \neq \mathbf{t}_{\parallel}$  if:

Table 17 The differences  $\left|R_{_{\mathbf{Q}}}-R_{_{\mathbf{V}}}\right|$  in the Friedman test

|        | <u> </u>                    |   |    |   |   |
|--------|-----------------------------|---|----|---|---|
| ٧      | 1                           | 2 | 3  | 4 | 5 |
| 1      |                             |   |    |   |   |
| 2<br>3 | 17.                         | - |    |   |   |
| 3      | 26                          | 9 | ~  |   |   |
| 4      | 17 <sub>*</sub><br>26<br>16 | 1 | 10 | - |   |
| 5      | 11                          | 6 | 15 | 5 | - |

Source: Table 15

Significant at p < 0.01

$$|R_u - R_v| \ge q(\alpha, k) \sqrt{\frac{nk(k+1)}{12}} \dots (10),$$

where a is again the EER, and q(a, k) is the upper a percentile of the range of k independent N(0,1) variables and which is presented in Appendix 11. From Appendix 11, it is found that q(0.05, 5) = 3.858. Hence the right side of the inequality (10) becomes:

#### $3.858\sqrt{(45)(6)/12} = 18.3.$

As before, only  $|R_1 - R_3|$  exceeds this value. Adopting  $\alpha = 0.01$ , we find from Appendix 11 that q(0.01, 5) = 4.603, so the right side of equation (10) is  $4.603\sqrt{(45)(6)/12} = 21.8$ , therefore the difference in employment levels between 1979 and 1981 is significant at the same level as before.

#### (iv) Discussion

The ARE of the Friedman test with respect to the parametric F-test in the cases of normal, uniform and double exponential populations for various values of k - the number of treatments - are given in Table 18. The third row of Table 18 is also applicable to the ARE of Page,s L statistic, relative to the parametric F test when the populations are normal (Hollander, 1967). The lower bound of the ARE of the Friedman test is 57.6% and the ARE can be infinite (Hollander and Wolfe, 1973). An alternative to Friedman,s test when measurement is nominal or at a dichotomised ordinal scale is Cochran,s Q statistic. However, if

Table 18 The <u>asymptotic relative efficiency (7.)</u> 2f the

|                         |       | No. of | treatments,     | , k   |
|-------------------------|-------|--------|-----------------|-------|
| Population distribution | 3     | 4      | 5               | 10    |
| Double exponential      | 112.5 | 120    | 125             | 136.4 |
| Uniform                 | 75    | 80     | 83.3            | 90.9  |
| Normai                  | 71.6  | 76     | <b>3.4</b> 79.6 | 86.9  |

Source: Hollander and Wolfe, 1973, p. 183

Friedman test

the data are at least ordinal, Friedman's test is preferable, as it has greater ARE and tables of exact significance are available for small samples.

#### la A TEST FOR k INDEPENDENT SAMPLES

The Kruskal-Wallis test is described in this section. It is designed to determine if k independent samples could have been drawn from the same population or from k identical populations. It again parallels conventional parametric analysis of variance and is an alternative to the F-test when the normality assumption is untenable. It is a test based on ranks, requiring at least ordinal measurement. As in the previous section, the methods for ordered alternatives and multiple comparisons are described. The test has been used to examine differences in the chemical concentrations present in water for major rock types (Prowse, 1984). Lewis (1971) used the test to compare the organic content of soil at six inches depth in three location classes; high forests of mixed woodland, oak and pine. The ordered alternatives and multiple comparisons procedures have been illustrated in an analysis of the numbers of retail outlets in a sample of southern English towns of varying population sizes (Coshall, 1988).

#### (i) Bat <u>Kruskal-Wallis test</u>

This test is based on ranks, as was the Friedman test and it has the null hypothesis that there is no overall difference between the k independent populations. To illustrate the test, data are used from a study of microspatial consumer cognition (Coshall, 1984). Shops that are regularly part of the consumer's comparison shopping have been referred to as the evoked set (Gronhaug, 1973; Coshall, 1985). It has been hypothesised that the size of the buyer,s evoked set may be constrained by psychological and personality-related variables, among others (Potter and Coshall, 1985). In particular, risk perception is such a constraining influence and refers to uncertainty about product requirements and uncertainty as to possible purchase consequences in terms of levels of satisfaction. In the above mentioned study, levels of perceived risk were measured in a questionnaire by 3 five-point scales, which factor analysis showed to be internally consistent. Consumers were grouped into three approximately equal sized classes, reflecting perceptions of low,

moderate and high risk. Also in the questionnaire, the numbers of shops in consumers, evoked sets were gathered. The null hypothesis to be examined by the Kruskal-Wallis test is that the sizes of consumers, evoked sets are equal over the three levels of perceived risk. The alternative is simply that the evoked set sizes differ. The ordered alternative hypothesis is discussed later in this section.

Table 19 presents the evoked set sizes of 22 randomly selected consumers in terms of these individuals, perceptions of risk. Also the evoked set sizes have been ranked from lowest to highest, independently of which sample the item is a member. As in the Friedman test, k is the number of treatments and R , j = 1, 2, ,k represents the sum of the ranks attributed to each of the k treatments. Additionally, define  $n_1,\ n_2,\ldots$  nk to represent the number of blocks in which each of the k treatments is

measured. Let the total number of observations be 
$$N = \sum_{j=1}^{n} n_{j}$$
.

Under the null hypothesis of no differences, one would expect the ranks to be distributed randomly and evenly throughout the data matrix. In this case, the total sum of the ranks allocated from 1 to N inclusive, namely N(N+1)/2, would be divided proportionally according to the sample size among the k samples. For the jth. sample, the expected sum of ranks would be:

$$\frac{n}{N}(0.5)N(N+1) = n_{j}(0.5)(N+1).$$

The R , j = 1, 2 k are the actual sums of ranks assigned to the k treatments. Following a similar line of argument as discussed in the Friedman test, a reasonable test statistic could be based on:

$$K = \sum_{j=1}^{k} \left[ R_j - n_j(0.5)(N+1) \right]^2.$$

 ${\rm H}_{\rm o}$  would be rejected for large K.

Table 19 The evoked set sizes of Consumers perceiving various

|          | Evoked | set sizes of cor | sumers per | rceiving: |       |
|----------|--------|------------------|------------|-----------|-------|
| Low risk | Rank   | Medium risk      | Rank       | High risk | Rank  |
| 0        | 3.5    | 0                | 3.5        | 4         | 20    |
| 0        | 3.5    | 2                | 13         | 4         | 20    |
| 1        | 9      | 1                | 9          | 0         | 3.5   |
| 3        | 16.5   | 3                | 16.5       | 3         | 16.5  |
| 1        | 9      | 2                | 13         | 1         | 9     |
| 2        | 13     |                  |            | 6         | 22    |
| 0        | 3.5    |                  |            | 4         | 20    |
| 0        | 3.5    |                  |            | 3         | 16.5  |
| 1        | 9      |                  |            |           |       |
| Sum      | 70.5   |                  | 55         |           | 127.5 |
|          |        |                  |            |           |       |

Source: Coshall, 1984

levels of risk

The calculations involved in deriving the significance of K are cumbersome and tedious. Statistical tables for testing K are available for k=3, 4 and 5, but only with the n equal and very small (Rijkoort, 1952). More practical as a test statistic is a weighted sum of squares of the deviations defined in its simplest form by Kruskal and Wallis (1952) as:

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_{j}^{2}}{n_{j}^{2}} - 3(N+1) \dots (11).$$

When ties are involved in the ranking procedure, H is divided by:

$$1 - \frac{\Sigma T}{N^3 - N} \dots (12),$$

where  $T = t^3 - t$  and t is the number of tied observations in a

tied group of scores. As before,  $N = \sum_{j=1}^{k} n_j$ . From Table 19, 6

readings are tied on evoked set sizes of 0 shops, 5 readings on sizes of 1 shop, 3 readings on 2 shops, 4 readings on 3 shops and 3 readings on 4 shops. Therefore:

$$\Sigma T = (6^3 - 6) + (5^3 - 6) + (3^3 - 3) + (4^3 - 4) + (3^3 - 3) = 438.$$
  
Thus from equations (11) and (12):

$$H = \left\{ 1 - \frac{438}{22^3 - 22} \right\}^{-1} \left[ \frac{12}{(22)(23)} \left( \frac{70.5^2}{9} + \frac{55^2}{5} + \frac{127.5^2}{8} \right) - 3(23) \right]$$

 $H = (0.9588)^{-1}[75.635 - 69] = 6.92.$ 

Tables for the significance of H for k=3 and n up to 5 for j=1, 2, 3 are presented in Appendix 12. In other cases, we use the fact that for larger n, H is approximately distributed as chisquared with (k-1) degrees of freedom. Therefore, in the present example and from Appendix 3 with 2 degrees of freedom, we find that  $P(\chi_2^2 > 5.991) = 0.05$ , so the value of H = 6.92 is significant. We reject  $H_0$  and conclude that the evoked set sizes of consumers shopping under perceptions of low, moderate and high risk are different.

#### (ii) The ordered alternative hypothesis

It is possible to test  $H_o$  against an ordered alternative using Jonckheere,s (1954) J statistic. Suppose we adopt an ordered alternative hypothesis that consumers, evoked set sizes become larger as they perceive greater levels of risk. This would be in an attempt to alleviate the effects of the constraint upon spatial behaviour. Let the unknown treatment effects be denoted by t , j = 1, 2,  $\underline{k}$  then in the present example, this ordered alternative may be written as:

$$H_A: t_1 \leq t_2 \leq t_3.$$

To conduct the test with an ordered alternative hypothesis, k(k-1)/2 Mann-Whitney counts are computed between the samples in the manner described in Section IV iii. Let U be the number of items in sample X that precede items in sample Y, letting  $U_{xy}$  0.5 if items are equal. From Table 19, it may be computed that  $U_{12} = 31$ ,  $U_{13} = 60.5$  and  $U_{23} = 31$ . When an ordered alternative hypothesis is being examined, the test statistic is the total of these  $U_{xy}$  values, namely:

$$J = \sum_{u=1}^{k-1} \sum_{v=u+1}^{k} U_{uv}.$$

Here, J = 122.5 and critical values for J are tabulated for small  $n_j$ , j = 1, 2, ..., k in Hollander and Wolfe (1973, p.311-27). For

larger n, it can be shown that:

$$1' = \frac{\sqrt{\operatorname{Asr}(1)}}{1 - \operatorname{E}(1)} .$$

where 
$$E(J) = (N^2 - \sum_{i=1}^{k} n_i^2)/4$$
, and

$$var(J) = [N^2(2N + 3) - \sum_{j=1}^{K} n_j^2(2n_j + 3)]/72$$
 is approximately

standard normally distributed (Hollander and Wolfe, 1973). In the present example, N = 22,  $n_1 = 9$ ,  $n_2 = 5$ ,  $n_3 = 8$ , so:

$$E(J) = [22^2 - (81 + 25 + 64)]/4 = 78.5$$
, and  $var(J) = [484(47) - {81(21) + 25(13) + 64(19)}]/72 = 270.92$ .

The test statistic under  $H_0$  is therefore:

$$\frac{122.5 - 78.5}{\sqrt{270.92}} = 2.67 \in N(0, 1).$$

From Appendix 2, we find that our result is significant, so we reject  ${\rm H}_{\rm o}$  and conclude that consumers, evoked sets increase in size as does the perceived level of risk that they attach to the purchase.

#### (Iii) Multiple comparisons

This result is also apparent if we conduct a multiple comparisons procedure based on an experimentwise error rate of a = 0.05. As in the Friedman test, we compute the k(k-1)/2 absolute differences  $\begin{bmatrix} R_u - R_v \end{bmatrix}$  u < v, where the  $R_j$ ,  $j=1,2,\ldots,k$  are found from Table 19. These differences are compared with certain critical values. In the case of unequal sample sizes, Dunn (1964) offered a method of conducting multiple comparisons associated with the Kruskal-Wallis test. By this method, it is concluded that the effects of treatments U and V, denoted by t and t are unequal if:

$$|R_u - R_v| \ge z_{\beta} \frac{N(N+1)}{12} \frac{1}{n} + \frac{1}{n}$$

where  $\beta = \frac{\alpha}{k(k-1)}$ ,  $z_{\beta}$  is a standard normal variable,  $N = \sum_{j=1}^{k} n_{j}$  and  $n_{j}$  and  $n_{j}$  are the sample sizes. In the present problem,  $\beta = \frac{1}{k}$ 

0.05/3(2) = 0.00833, so from Appendix 2, we find  $z_{0.00833} = 2.394$ . The pertinent computations for the data in Table 19 are illustrated in Table 20. All these three absolute differences exceed their critical values. Therefore, we reject  $H_0$  in favour of the ordered alternative. The evoked sets show a significant increase in size as consumers perceive more risk.

If the k sample sizes are equal  $n_1 = n_2 = \dots = n_k = n$  say, then for small n it is decided that the treatment effects  $t_u$  and  $t_u$  are unequal if:

$$|R_n - R_n| \ge y(\alpha, k, n),$$

where tables of y(a, k, n) are provided in Appendix 13. For larger, but equal sample sizes, Miller (1966) suggested that  $t_u \neq t$  if:

$$\left| \mathbf{R}_{\mathbf{u}} - \mathbf{R}_{\mathbf{v}} \right| \ge \mathbf{q}(\alpha, \mathbf{k}) \sqrt{\frac{\mathbf{k}(\mathbf{n}\mathbf{k} + 1)}{12}}$$

where  $q(\alpha, k)$  is the upper  $\alpha$  percentile of the range of k independent normal variables, tabulated in Appendix 11.

#### (iv) Discussion

The Kruskal-Wallis test is the most efficient of all non-parametric tests for k independent samples. If the normality assumptions of parametric analysis of variance are met, then the ARE of the Kruskal-Wallis test with respect to the F-test is 95.5%. Jonckheere,s J statistic also has an ARE of 95.5% compared to the F statistic if the populations are normal. With uniform and double exponential populations, the ARE of the Kruskal-Wallis test relative to the F-test are 100% and 150% respectively (Andrews, 1954). It is thus more powerful in these circumstances than its parametric counterpart.

It should be noted that the adaption of Fisher,s test referred to as the median test and discussed in Section IV (ii) may be extended to test if k independent samples have been drawn from the same population or from populations with equal medians. Both this procedure and the Kruskal-Wallis test require at least ordinal measurement. However, in that the latter test uses more information from the sampled data, it is the more powerful method.

Table 20 Multiple comparisons in the Kruskal-Wallis test

| 2.394 $\sqrt{N(N+1)/12}$ $\sqrt{1/n_u + 1/n_v}$  |
|--------------------------------------------------|
| 2.394 (22)(23)/12 (1/9 + 1/5 = 8.67              |
| $2.394\sqrt{(22)(23)/12}\sqrt{1/9 + 1/8} = 7.58$ |
| $2.394\sqrt{(22)(23)/12}\sqrt{1/5 + 1/8} = 8.86$ |
|                                                  |

#### VII <u>DISCUSSION</u>

The preceding sections have described some nonparametric statistical tests that may be used in geographical situations where either only nominal or ordinal levels of measurement have been achieved or there is doubt as to whether interval or ratio data meet the normality assumption which, strictly speaking, is required by parametric methods of analysis. Generally, the inherent logic of the nonparametric tests described in the previous sections has the pedagogic virtue of being easy to comprehend, as well as being straightforward to perform without recourse to a computer.

The choice of presented tests here had to be selective and was based on their relative power and readiness of application to geographical problems. In the one-sample case, the runs test is omitted in the present monograph. This test examines if events of interest occur in random order. Geographical applications are likely to be in the context of randomness of temporal occurrences or in testing whether a gathered sample is random. However, it is only applicable to dichotomous events in that "+" or "-" are allocated to items (such as male or female respondents to a survey) and sequences of plusses and minuses are examined. This restriction (together with the fact that it is less powerful than the tests herein included) led to its omission. A general omission has been methods based on 'randomisation, (see Bradley, 1968, p.88-141), which examine if treatments may be regarded as equivalent. Often, such tests have an ARE of 100% with respect to their parametric equivalents when sampling is from normal populations. However, nonparametric tests are designed to examine non-normal situations and for large sample sizes, randomisation procedures are not computationally feasible without recourse to a computer. Alternatives to the Friedman and Kruskal-Wallis tests were cited in the appropriate sections, but the former two tests are the most powerful for examining central tendency in the cases of k related and independent samples respectively.

A majority of the tests described in this monograph are part of the widely available  ${\sf SPSS}^{\times}$  and  ${\sf MINITAB}$  computer packages. Not

available in either of these packages are Walsh,s test and the ordered alternative and multiple comparisons procedures for k samples. In the SPSSx package, the procedure NPAR TESTS performs the tests (Nie et al., 1983, p.671-695) except that the CROSSTABS procedure analyses 2 to k sample contingency tables. In both MINITAB and SPSSx, the particular nonparametric tests are accessed by subcommand names. These names are shown in capital letters in Table 21, together with notes concerning the output or computations involved. All the subcommands produce the numerical value of the test statistic and its level of significance. Table 21 illustrates that SPSSx is the more extensive, but both packages are user friendly and easy to learn with readily comprehensible manuals.

A final point concerns recent research which has suggested that a nonparametric approach may be adopted to the analysis of multivariate phenomena in geography. In particular, a nonparametric alternative to conventional factor analysis of repertory grids gathered in behavioural studies has been put forward (Potter and Coshall, 1984), and later suggested as a general method of factor analysis in urban geography (Potter and Coshall, 1986; Coshall and Potter, 1986). Possibly the greatest advantage of the nonparametric approach is that it may be performed by hand, enabling the researcher to retain a feel for the data. As with conventional parametric factor analysis, a series of variables that are to be collapsed into a smaller set of factors or dimensions are measured across a number of cases or study objects. Briefly, the nonparametric method of factor analysis involves dichotomising the values obtained for each variable according to whether they are above or below the overall mean value of that variable. This dichotomisation is usually represented by 0,s and 1,s. Similar patterns of 0,s and 1,s suggest that the variables in question are correlated. The statistical significance of the number of common 0,s and 1,s is established by the binomial distribution discussed in Section II

Variables showing statistically significantly similar patterns of dichotomisation are grouped together to form the factors. A lengthy discussion of this method is provided by

Table 21 Nonoarametric tests available in the MINITAB and SPSS computer packages

| Test        | MINITAB                                               | SPSSx                                  |
|-------------|-------------------------------------------------------|----------------------------------------|
| One-sample  |                                                       |                                        |
| Binomial    | The BINOMIAL subcommand                               | BINOMIAL.                              |
|             | with user-specified n &                               | It has a default setting               |
|             | p computes the cumulative                             | of $p = 0.5$ , but the user            |
|             | density function of the                               | may specify other values               |
|             | binomial distribution.                                | of p according to $\mathrm{H}_{\circ}$ |
|             | The test per se is not                                | Output includes the nos.               |
|             | available.                                            | of cases in the two                    |
|             |                                                       | categories.                            |
| Chi-square  | There is no specific                                  | CHISQUARE.                             |
|             | subcommand to perform                                 | Expected values are input              |
|             | this test. However,                                   | by the user, unless use                |
|             | the ${\tt E_{\scriptscriptstyle i}}$ may be found for | is made of the K-S sub-                |
|             | the uniform, normal,                                  | command (see next test).               |
|             | exponential and Poisson                               | Output includes O <sub>i</sub>         |
|             | dist'ns, if the user                                  | and $O_i - E_i$ .                      |
|             | specifies the parameter                               |                                        |
|             | values (Ryan et al., 1985,                            |                                        |
|             | p.152-4). Then the $x^2$                              |                                        |
|             | statistic has to be prog-                             |                                        |
|             | rammed by the user.                                   |                                        |
| Kolmogorov- | n.a.                                                  | K-S.                                   |
| Smirnov     |                                                       | Tests if a sample could                |
|             |                                                       | have been drawn from                   |
|             |                                                       | uniform, normal, Poisson               |
|             |                                                       | populations. The user                  |
|             |                                                       | specifies the parameters               |
|             |                                                       | of these dist'ns. The                  |

most extreme +/- and the

absolute differences are

reported.

Table 21 (continued)

Test. MINITAR SPSSx

Two related

<u>sampl</u>es

Sign test STGN.

> If the median of the pop'n The no. of +/- and tied of all changes is M, SINT finds an ca. confidence

interval for M.

Wilcoxon WTEST

> Only available for the one-sample version of the test that examines

 $H : M = M_{o}$ 

Walsh n.a.

Two Independent

Samples

Chi-square CHISOUARE

> Expected frequencies reported if desired.

Use the CROSSTABS

procedure. Fisher's exact test is used if n < 20 in 2X2 tables.

differences are reported.

The binomial dist'n tests

for significance if n s

25, otherwise the normal

The no. of  $\pm/-$  and tied

Binomial or normal

dist'ns are used for

significance as

appropriate.

differences are reported.

n.a.

is used.

WILCOXON

Numerous contingency coefficients are available (Nie et al.,

1983, p.294).

Table 21 (continued)

MINITAB SPSSv Test.

Fisher's n.a.

exact test for the median

MEDIAN

Displays the 2X2 table of readings above & below the median. Fisher's test is used if n s 30, otherwise the x test.

MANN-WHITNEY Mann-

Output includes the no. Whitney

> of cases & the sample median values of the

two groups.

A confidence interval & point estimator for the difference between the pop'n medians is computed.

Output includes the no. of cases & the mean rank of the two groups. U is corrected for tied

readings.

k related

samples

FRIEDMAN Friedman n.a.

> Output includes the no. of cases and mean rank of

the k groups.

k independent

samples

Kruskal-KRUSKAL-WALLIS

Wallis

Output includes the no. of cases and mean rank of

k groups.

x is corrected for ties.

Potter and Coshall (1986). Very often, simple dichotomisation of data, or indeed ranking methods as described in the present monograph, give an immediate indication of the structure inherent in data matrices. Above all, the nonparametric approach to factor analysis produces essentially the same answer as conventional computer dependent procedures, whilst having the pedagogic virtue of demonstrating to students how factor analysis works.

The nonparametric method of multivariate data analysis based on the dichotomisation of data has also been extended to offer an alternative to conventional canonical correlation analysis (Coshall and Potter, 1987). Canonical correlation examines interrelationships between two sets of data and is one of the most complex multivariate techniques to use and understand. However, the nonparametric method of canonical correlation possesses the advantages mentioned in the previous paragraph. The simple expedient of data dichotomisation often reveals the major interrelationships between two data sets and the approach readily illustrates the underlying mechanics of canonical correlation.

#### BIBLIOGRAPHY

### A. Introductory references

- Gregory, S. (1978), Statistical methods and the geographer.
  Fourth Edition (Longman, London).
- Hammond, R. & P.S. McCullagh (1974), Quantitative techniques in geography: an introduction. (Clarendon Press, Oxford).
- Nie, N.H., C.H. Hull, J.G. Jenkins, K. Steinbrenner & D.H. Dent (1983), Statistical package for the social sciences: user's quide. (Mcgraw-Hill, New York).
- Pringle, D. (1976), Normality, transformations and grid square data. Area, 8, 42-45.
- Ryan, B.F., B.L. Joiner & T.A. Ryan (1985), Minitab handbook.

  Second Edition (Prindle, Weber and Schmidt, Boston).
- Shaw, G. & D. Wheeler (1985), Statistical techniques in geographical analysis. (Wiley, London).
- Silk, J. (1979), Statistical concepts in geography. (Allen and Unwin, London).
- Vincent, P. & J. Haworth (1984), Statistical inference: the use of the likelihood function. Area, 16, 131-146.
- Yeates, M.H. (1974), An introduction to quantitative analysis in human geography. (McGraw-Hill, New York).

#### B. Statistical theory

- Andrews, F.C. (1954), Asymptotic behavior of some rank tests for analysis of variance. *Annals of Mathematical Statistics* 25, 724-736.
- Blalock, H.M. (1979), Social statistics. (McGraw-Hill, New York).
- Box, G.E.P. (1953), Non-normality and tests on variances.

  Biometrika, 40, 318-335.
- Bradley, J.V. (1968), Distribution-free statistical tests. (Prentice-Hall, New Jersey).
- Cochran, N.G. (1954), Some methods for strengthening the common tests. Biometrics, 10, 417-451.

- Conover, W.J. (1974), Some reasons for not using Yates' continuity correction on 2X2 contingency tables. *Journal of the American Statistical Association*, 69, 374-376.
- Conover, W.J. (1980). Practical nonparametric statistics. (Wiley, New York).
- Coshall, J.T. (1986), Miller's test as a method for examining two sample variability in geography. Area, 18, 229-237.
- Dunn, O.J. (1964), Multiple comparisons using rank sums.
  Technometrics, 6, 241-252.
- Francis, A. (1979), Advanced level statistics. (Stanley Thorns, Cheltenham).
- Gibbons, J.D. (1971), Nonparametric statistical inference. (McGraw-Hill, New York).
- Goodman, L.A. (1954), Kolmogorov-Smirnov tests for psychological research. Psychological Bulletin, 51, 160-168.
- Hays, W.L. (1980), Statistics for the social sciences. (Holt, Rinehart and Winston, New York).
- Hodges, J.L., Jr. & E.L. Lehmann (1956), The efficiency of some nonparametric competitors to the t-test. *Annals of Mathematical Statistics*, 27, 324-335.
- Hoel, P.G. (1971), Introduction to mathematical statistics. (Wiley, New York).
- Hollander, M. (1967), Rank tests for randomised blocks when the alternatives have a priori ordering. *Annals of Mathematical Statistics*, 38, 867-877.
- Hollander, M. & D.A. Wolfe (1973), Nonparametric statistical methods. (Wiley, New York).
- Jonckheere, A.R. (1954), A test of significance for the relation between m rankings and k ranked categories. *British Journal of Statistical Psychology*, 7, 93-100.
- Kruskal, N.H. & W.A. Wallis (1952), Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583-621.
- Labovitz, S. (1970), The assignment of numbers to rank order categories. Annals of Mathematical Statistics, 35, 515-524.

- Miller, R.G., Jr. (1966), On the asymptotic efficiency of certain nonparametric two-sample tests. *Annals of Mathematical* Statistics, 37, 514-522.
- Owen, D.B. (1962), Handbook of statistical tables. (Addison-Wesley, Massachusetts).
- Page, E.B. (1963), Ordered hypotheses for multiple treatments: a significance test for linear ranks. Journal of the American Statistical Association, 58, 216-230.
- Pearson, E.S. (1947), The choice of statistical test illustrated on the interpretation of data classed in a 2X2 table.

  Biometrika, 34, 139-167.
- Rijkoort, P.J. (1952), A generalisation of Wilcoxon's test.

  Proceedings of Koninklijke Nederlandse Akademie van
  Wetenschappen, Series A, 55, 394-404.
- Siegel, S. (1956), Nonparametric statistics for the behavioral sciences. (McGraw-Hill, New York).
- Siegel, S. & J.W. Tukey (1960), A nonparametric sum of ranks procedure for relative spread in unpaired samples. *Journal of the American Statistical Association*, 55, 429-444. (Corrections appear in vol. 56, 1005).
- Walsh, J.E. (1949), Applications of some significance tests for the median which are valid under very general conditions.

  \*\*Journal of the American Statistical Association, 44, 343.\*\*

#### C. DATA SOURCES

- Abrahams, A.D. & M.D. Melville (1975), A source of error in surveying hillslopes by Abney level. Area, 7, 299-302.
- Coshall, J.T. (1984), An analysis of microspatial consumer cognition: a case study of Maidstone, Kent. *Unpublished Ph.D thesis*, *University of London*.
- Coshall, J.T. (1985), The form of microspatial consumer cognition and its congruence with search behaviour. *Tijdschrift voor Economische en Sociale Geografie*, 76, 345-355.
- Daniels, P.W. (1983), Service industries: supporting role or centre stage? Area, 15, 301-309.

- Dean, K.G. and H.D. Jones (1981), Social factors and admission to psychiatric hospital: schizophrenia in Plymouth. *Transactions of the Institute of British Geographers*, New Series, 6, 39-52.
- Everson, J.A. & B.P. Fitzgerald (1973), *Inside the city*. Concepts in geography, 3. (Longman, London).
- Glantz, F.B. & N.J. Delaney (1973), Changes in non-white residential patterns in large metropolitan areas, 1960 and 1970. New England Economic Review, March/April, 6.
- Gronhaug, K. (1973), Some factors influencing the size of the buyer's evoked set. *European Journal of Marketing*, 7, 232-241.
- Haggett, P., A.D. Cliff & A. Frey (1977), Locational analysis in human geography 2: Locational methods. (Arnold, London).
- Herbert, D.T. (1976), The study of delinquency areas: a social geographical approach. *Transactions of the Institute of British Geographers*, New Series, 1, 472-492.
- King, L.J. (1969): Statistical analysis in geography. (Prentice-Hall, New Jersey).
- Knoke, D. & P.J. Burke (1980), Log-linear models. (Sage Publications, California).
- Potter, R.B. (1986), Spatial inequalities in Barbados, West Indies. Transactions of the Institute of British Geographers, New Series, 11, 183-198.
- Sperling, C.H.B., A. S. Goudie, D.R. Stoddard & G.G. Poole (1977),

  Dolines of Dorset chalklines and other areas in southern

  Britain. Transactions of the Institute of British

  Geographers, New Series, 2, 205-223.
- Trent River Authority (1969), Fourth Annual Report.
- Whitehand, J.W.R. (1979), The study of variations in the building fabric of town centres: procedural problems and preliminary findings in southern Scotland. *Transactions of the Institute of British Geographers*, New Series, 4, 559-575.

#### D. APPLICATIONS

- Bennett, D. (1977), The effects of data transformations on the principal components solution. Area, 9, 146-152.
- Coshall, J.T. & R.B. Potter (1986), A computer program for Kelly's nonparametric factor analysis: use, application and listing. Papers in Geography, Department of Geography, Royal Holloway and Bedford New College, New Series, 1.
- Coshall, J.T. and R.B. Potter (1987), A nonparametric approach to canonical correlation in geography. *Geografiska Annaler*, 69, 127-132.
- Coshall, J.T. (1988), The nonparametric analysis of variance and multiple comparison procedures in geography. *Professional Geographer*, 40, 85-95.
- Hoare, A.G. (1981), U.G.C. unequal geographical cuts. *Area*, 13, 257-262.
- Ilbery, B.W. (1977), The application of nonparametric measures of association in geography: a comparison of three techniques. Area, 9, 99-103.
- Lewis, P.W. (1971), Maps and statistics. (Methuen, London).
- Potter, R.B. & J.T. Coshall (1984), The hand analysis of repertory grids: an appropriate method for Third World environmental studies. Area, 16, 315-322.
- Potter, R.B. & J.T. Coshall (1985), The influence of personalityrelated variables on microspatial consumer search. *Journal* of Social Psychology, 125, 695-701.
- Potter, R.B. & J.T. Coshall (1986), Nonparametric factor analysis in urban geography. *Urban Geography*, 7, 515-529.
- Prowse, C.W. (1984), Spatial variations in water quality in an urbanizing catchment. *Transactions of the Institute of British Geographers*, New Series, 9, 494-506.
- Wheeler, D.A. (1979), Studies of river longitudinal profiles from contoured maps. *Area*, 11, 321-326.
- White, R.L. & H.D. Watts (1977), The spatial evolution of an industry: the example of broiler production. Transactions of the Institute of British Geographers, New Series, 2, 175-191.

# A SUMMARY OF THE NOTATION USED

- ARE asymptotic relative efficiency (see Section I (iii)).
- $\alpha$  The significance level of a test. A one-tailed test (involving an inequality in  $H_1$ ) has one critical region of size  $\alpha$ . A two-tailed test (involving  $\neq$  in  $H_1$ ) has two critical regions each of size  $\alpha/2$ .
- df degrees of freedom (see Section II (ii)).
- <sup>n</sup>C<sub>r</sub> this notation represents  $\frac{n!}{r!(n-r)!}$  (see Section II i).
- E(x) the expected value or mean of a random variable X.
- N(0,1) the normal distribution with zero mean and unit variance. This is called the standard normal distribution.
- p an estimator of a population proportion p (see Section IV (iii)).
- P(X = x) the probabilty of x occurrences of the random variable X.
- t the effect of the ith. treatment (see Section V (ii)).
- var(x) the variance of the random variable X.
- |a b| the modulus notation, indicating that only the magnitude of the difference a b is required, rather than its sign, e.g. |7 10| = 3. This is also called the absolute difference.
- ! the factorial notation. Generally, n! = n(n 1)(n 2)...2.1, e.g. 5! = 120.
- is distributed as a specified statistic, so X ∈ N(0,1)
  means that the random variable X follows a standard
  normal distribution.
- $\chi_n^2$  a chi-square variable with  $\nu$  degrees of freedom.

#### APPENDIX 2

#### PROBABILITIES ASSOCIATED WITH THE STANDARD NORMAL DISTRIBUTION

Source: Dunstan et al., 1983, 7

The table gives the probability p that a normally distributed random variable Z with zero mean and unit variance is less than or equal to z.



| 2              | АО                     | ΑΊ      | 22      | .03     | .84     | 211      | А8      | 27      | 20      | <b>A</b> * |
|----------------|------------------------|---------|---------|---------|---------|----------|---------|---------|---------|------------|
| 0.0            | . 50000                | .50399  | . 50798 | . 51197 | .s1595  | .51994   | . 52392 | . 52790 | .53188  | .53586     |
| 0.1            | .53983                 | .54380  | . 54776 | .55172  | .55567  | . \$5962 | .56356  | .56749  | . 57142 | . 57535    |
| 02             | .57926                 | .58317  | . 58706 | . 59095 | .59843  | .59871   | .60257  | .60642  | .61026  | .61409     |
| 0.3            | .61791                 | .62172  | .62552  | .62930  | .63307  | .63683   | .64058  | .64431  | . 64803 | . 65173    |
| OA             | .65542                 | .65910  | .66276  | .66640  | .67003  | . 67364  | . 67724 | . 68082 | . 68439 | .68793     |
| OA             | .69146                 | .69497  | .69847  | .70194  | .70540  | .70884   | . 71226 | .71566  | .71904  | .72240     |
| 0.0            | .72575                 | .72907  | .73237  | .73565  | .73891  | . 74215  | . 74537 | . 74857 | . 75175 | .75490     |
| 0.7            | .75804                 | . 76115 | . 76424 | .76730  | . 77035 | .77337   | .77637  | . 77935 | .78230  | .78524     |
| 8.8            | .78814                 | .79103  | .79389  | .79673  | .79955  | .00234   | .00511  | .80785  | .81057  | .81327     |
| OA             | .81594                 | .01859  | .02121  | .82381  | .82639  | .02894   | .03147  | .83398  | .83646  | .83891     |
| 10             | .84134                 | .94375  | .84614  | .841149 | .05083  | .05314   | .85543  | .05769  | .85993  | .86214     |
| 1.1            | .06433                 | .86650  | . 86864 | .87076  | .87286  | .07493   | .87698  | .87900  | .08100  | . 08298    |
| 12             | .88493                 | .08686  | .88877  | .89065  | .89251  | .89435   | 89617   | . 09796 | . 89973 | .90147     |
| 1.2            | .90320                 | .90490  | .90658  | .90824  | .90988  | .91149   | .91309  | .91466  | .91621  | .91774     |
| IA             | .91924                 | .92073  | .92220  | .92364  | .92507  | .92647   | .92785  | .92922  | .93056  | .93189     |
| 10             | .93319                 | .93448  | .93574  | .93699  | .93822  | .93943   | .94062  | .94179  | .94295  | .94408     |
| 14             | .94520                 | .94630  | .94738  | .94845  | .94950  | .95053   | .95154  | .95254  | .95352  | .95449     |
| 1.7            | .95543                 | .95637  | .95728  | .95818  | .95907  | .95994   | .96080  | .96164  | .96246  | . 96327    |
| 1A             | .96407                 | .96485  | .96562  | .96638  | .96712  | . 96784  | .96056  | . 96926 | .96995  | .97062     |
| 1.8            | .97128                 | .97193  | .97257  | .97320  | .973e1  | .97441   | .97500  | .97558  | .97615  | .97670     |
| 2.0            | .97725                 | .97778  | .97831  | .97882  | .97932  | .97982   | .98030  | .98077  | .98124  | .98169     |
| 21             | .98214                 | .99257  | . 98300 | .98341  | .98382  | .98422   | .98461  | .98500  | .98537  | .98574     |
| 22             | .98610                 | .98645  | .98679  | .98713  | .98745  | .90778   | .98809  | .98840  | .98870  | .98899     |
| 2.3            | . 98928                | .98956  | . 98983 | .99010  | .99036  | .99061   | .99086  | . 99111 | .99134  | .99158     |
| 2A             | .99180                 | .99202  | .99224  | .99245  | .99266  | .99286   | .99305  | .99324  | .99343  | .99361     |
| 2.6            | .99379                 | .99396  | .99413  | .99430  | .99446  | .99461   | .99477  | .99492  | .99506  | .99520     |
| 2.0            | .99534                 | .99547  | .99560  | .99573  | .99505  | .99598   | .99609  | .99621  | .99632  | .99643     |
| 27             | .99653                 | .99664  | .99674  | . 99683 | .99693  | .99702   | .99711  | 99720   | .99728  | .99736     |
| LS             | .99744                 | .99752  | . 99760 | . 99767 | .99774  | .99701   | .99780  | .99795  | .99801  | . 99807    |
| 22             | .99813                 | . 99919 | . 99825 | .99031  | .99836  | .99841   | .99846  | . 99951 | .99856  | .99961     |
|                | 99865                  | .99869  | .99874  | . 99878 | .99082  | .99686   | .99889  | .99093  | . 99896 | .99900     |
|                | 99903                  | .99906  | .09910  | .99913  | .99916  | .99918   | .99921  | .99924  | .99926  | .99929     |
| 32             | .99931                 | :99934  | .99936  | .99930  | . 99940 | .99942   | . 99944 | . 99946 | .99948  | . 99950    |
| 22<br>3.4      | .99952                 | .99953  | .99955  | .99957  | .99958  | .99960   | '.99961 | .99962  | .99964  | .99965     |
|                | .99966                 | .99968  | .99969  | .99970  | .99971  | .99972   | . 99973 | .99974  | .99975  | . 99976    |
| 22<br>3.s      | .99977                 | . 99978 | .99978  | . 99979 | .99980  | .99981   | . 99981 | .99982  | .99903  | . 99983    |
|                | .99984<br><b>99989</b> | .99985  | .99985  | .99986  | .99986  | .99987   | .99987  | . 99988 | .99988  | .99989•    |
|                | 99989                  | . 99990 | .99990  | .99990  | .99991  | .99991'  | .99992  | .99992  | .99992  | .99992     |
| <sub>2</sub> 2 | 99993                  | .99993  | . 99993 | . 99994 | .99994  | .99994   | . 99994 | .99995  | .99995  | . 99995    |
| ٠.             | <i>ээ</i> ээ5          | .99995• | .99996  | .99996  | .99996  | .99996   | .99996  | .99996  | .99997  | .99997     |

# APPENDIX 3

#### PROBABILITIES ASSOCIATED WITH THE CHI-SQUARE DISTRIBUTION

For more than 30 degrees of freedom, the expression  $\sqrt{2\chi^2} - \sqrt{4\nu - 1}$ , where 1/ Is the no. of degrees of freedom, Is approximately standard normally distributed.

Source: noel, 1971, 392

| <u> </u> | - |
|----------|---|
|          |   |
|          | 5 |

| 0.000157 0.000428 0.00375 0.0154 0.0442 0.146 0.455 1.024 0.000157 0.000428 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comparison   Com                                                                                                                                                                                                                                                                        |   |          |          | <b>2</b> | ABLE III. X | x - Distribution | monn   | 5      | *      |        |          |         |              |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|----------|----------|-------------|------------------|--------|--------|--------|--------|----------|---------|--------------|--------|
| 0.000428         0.00199         0.0154         0.0442         0.148         0.448         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024         1.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000216         0.000791         0.01540         0.0442         0.0455         1.074         1.144         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779         2.779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | P = 0.99 | • 6 0    | 6.95     | 0.00        | 0.00             | D.70   | 0.30   | 0.30   | 0.0    | 0.10     | 0.03    | 0.02         | 10.0   |
| 0.000         0.211         0.444         0.713         1.346         2.409           0.155         0.314         1.649         2.145         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.146         2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0100         0.0101         0.0211         0.0244         0.0212         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214         0.0214<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 0.000157 | 0.000628 | 0.00393  | 0.0154      | 0.0442           | 0.14   | 0.435  | 1.074  | 1.642  | 2.706    | 3.44    | 5.412        | 6.635  |
| 0.185         0.384         1.609         1.444         2.346         3.464           0.727         1.163         1.510         2.349         2.195         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.357         4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.185         0.132         0.544         1.003         1.424         2.304         1.465         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467         2.467 <th< td=""><td>_</td><td>0.0301</td><td>0.0404</td><td>0.00</td><td>0 21 }</td><td>0.446</td><td>6713</td><td>1,386</td><td>2.400</td><td>3,219</td><td>4,605</td><td>-</td><td>7,824</td><td>9.210</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | 0.0301   | 0.0404   | 0.00     | 0 21 }      | 0.446            | 6713   | 1,386  | 2.400  | 3,219  | 4,605    | -       | 7,824        | 9.210  |
| 0.429         0.711         1.064         1.449         2.145         4.084           0.722         1.613         2.704         2.020         3.020         6.249         9.244           1.544         2.167         2.624         3.027         4.624         9.224           2.527         2.167         2.433         4.544         6.244         9.244         9.224           2.527         2.167         2.464         5.300         4.577         9.244         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224         9.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.479         0.771         1.004         1.449         2.195         4.357         4.677         7.77         9.489         1.777         9.489         1.004         1.144         2.195         4.579         9.234         1.277         1.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11.287         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ | 0.15     | 0.185    | 0.332    | 0.50        | 8                | 7.7    | 7      | 3,665  | Ī      | 6.25     | 2       | 101          | 7      |
| 1,145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,134   1,145   1,610   1,234   1,200   1,234   1,237   1,237   1,237   1,531   1,531   1,534   1,534   1,200   1,234   1,237   1,531   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,534   1,53                                                                                                                                                                                                                                                                        |   | 0.797    | 6270     | 0.71     | 2           | 444              | 2.145  | 3.357  | 1.17   | 200    | 7.77     |         | 9            | 13.277 |
| 1,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,134   1,633   2,304   1,020   1,034   1,030   1,001   1,034   1,030   1,001   1,030   1,001   1,030   1,001   1,030   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,001   1,00                                                                                                                                                                                                                                                                        | _ | 0.554    | 0.752    | -        | 9           | 2.343            | 000    | 1,33   | 000    | 4.5    | 2        |         |              | 200    |
| 1,544   2,187   2,481   1,544   5,524   5,527   5,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,544   6,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,344   2,167   2,431   3,322   4,471   6,344   6,345   1,340   1,345   1,540   1,345   1,540   1,345   1,540   1,345   1,540   1,345   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,540   1,54                                                                                                                                                                                                                                                                        |   | 0.877    |          | 1.633    | Ž           | 200              | 7      | 2.74   | 7.233  | 200    | 200      | 2.377   | 15.03        | 9      |
| 2 032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.032         3.733         4.149         4.384         5.34         7.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344         1.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | 1.239    | 1,364    | 2.167    | 2.633       | 3.822            | 4.671  | +74    |        | 200    | 12.017   | 200     | 16.672       | 1      |
| 2,532         3,125         4,164         5,380         6,179         7,267         10,459         11,761           3,059         3,78         4,164         5,380         6,179         7,267         10,451         12,469           4,765         5,275         6,064         7,807         9,014         10,347         12,469           4,765         5,372         6,047         7,807         9,014         10,317         10,011           5,466         5,372         6,047         7,807         9,044         10,317         10,011           5,466         7,261         6,347         10,037         11,721         14,339         17,317           6,414         7,261         6,347         10,037         11,721         14,339         17,317           7,261         6,347         10,037         11,721         14,339         17,317         14,317           7,252         6,347         10,048         12,007         11,324         14,440         17,313         20,409           7,252         10,048         11,240         13,744         14,574         14,574         16,304         12,377           11,260         11,264         11,244         11,344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00                                                                                                                                                                                                                                                                        |   | 1.646    | 2032     | 2,733    | 2           | 7.24             | 5.337  | 7.34   | . 32.  | 0.0    | 707      | 2       | 90           | 20.07  |
| 3,039         3,940         4,465         6,179         7,367         9,342         11,781           3,609         4,375         5,378         6,897         6,179         7,347         11,340         13,119           4,178         5,276         7,004         7,007         10,347         11,340         14,011           4,178         5,376         6,004         7,004         11,340         14,011         14,001           4,126         6,577         10,004         11,320         14,327         14,327         14,327           6,614         7,255         10,004         11,321         14,321         14,327         15,339         17,137           6,617         7,904         10,004         11,337         12,334         16,339         17,137           7,906         10,177         10,207         13,342         14,410         17,137           8,507         10,181         12,343         16,342         10,342         10,342         10,341           11,299         11,2443         11,2443         14,374         10,342         10,342         10,342         10,342           11,291         11,2443         11,2443         14,374         10,342         10,342 <td>3.059         3.940         4.465         4.179         7.267         1.267         1.247         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         <th< td=""><td></td><td>2.010</td><td>2.532</td><td>3,323</td><td>3</td><td>5.380</td><td>6.343</td><td>343</td><td>0.636</td><td>12.242</td><td>14.614</td><td></td><td>4/4</td><td>2</td></th<></td> | 3.059         3.940         4.465         4.179         7.267         1.267         1.247         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547         1.547 <th< td=""><td></td><td>2.010</td><td>2.532</td><td>3,323</td><td>3</td><td>5.380</td><td>6.343</td><td>343</td><td>0.636</td><td>12.242</td><td>14.614</td><td></td><td>4/4</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 2.010    | 2.532    | 3,323    | 3           | 5.380            | 6.343  | 343    | 0.636  | 12.242 | 14.614   |         | 4/4          | 2      |
| 3.609         4.375         5.578         4.989         0.144         10.341         12.889           4.729         5.226         4.004         7.607         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         10.011         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.60P         4.375         5.57A         4.80P         0.144         10.347         12.80P         11.340         11.340         14.401         17.273         10.346         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345         22.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 2.538    | 3.039    | 3.940    | 4.865       | • 179            | 7.367  | 4,342  | = 7    | 13.443 | 15.987   | )<br>() | •            | 23.20  |
| 4.776 5.226 5.304 7.807 9.514 11.340 14.011 4.474 4.745 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.375 5.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.77         5.25         4.30         7.807         9014         11.30         14.601         15.601         15.601         15.601         15.601         15.601         15.601         15.601         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602         22.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ |          |          |          | 4 678       |                  | 771.0  | 10 24  | 13 888 | 14.431 | 17,275   | 19.675  | 22.618       | 24 725 |
| 4.763         5.572         7.643         6.544         9.754         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346         11.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.763         5.872         7.644         8.644         13.364         15.119         16.815         11.615         22.362         22.362         23.473         23.473         23.473         16.319         16.319         16.217         16.319         16.319         16.319         17.216         22.362         22.362         22.362         23.473         23.473         16.319         17.217         16.319         17.217         17.217         17.218         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.218         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217         17.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |          |          | 220      | 2           |                  | 7.0    | 11.140 | 1071   | 13.012 | 14.349   | 21.026  | 24 034       | 26.217 |
| 5.308         6.571         7.790         7.447         10.821         13.39         14.222           5.983         7.261         6.347         10.307         11.531         11.539         17.534           6.614         7.265         6.347         10.307         11.531         17.539         17.534           6.617         10.685         12.032         13.331         16.339         18.311           7.806         10.17         11.645         12.837         14.440         17.331         16.339         21.409           8.547         10.151         11.645         13.746         19.352         18.319         21.409           9.237         10.451         13.443         14.574         16.246         19.337         22.775           9.237         10.451         13.443         14.574         16.246         19.337         22.775           9.237         10.561         13.443         14.574         16.246         19.337         22.337           11.292         13.544         16.244         17.187         19.337         24.337         27.346           11.292         13.544         16.244         17.187         19.337         27.337         27.346      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.30         6.571         7.790         6.447         10.531         13.378         16.232         18.151         21.064         23.464         30.847           6.54         7.261         6.347         10.007         11.527         10.337         11.337         10.337         10.337         10.337         10.337         10.337         10.337         10.337         10.337         10.337         10.337         10.337         10.338         10.407         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         27.607         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | 7 102    |          |          | 7043        |                  |        | 13.20  | 12 114 |        | 19.412   | 22.362  | 25 473       | 27.488 |
| 5.614         7.261         6.547         10.307         81.721         10.339         17.323           7.263         7.863         9.762         10.132         17.2624         19.339         17.331           7.264         8.77         10.065         12.002         13.341         16.331         18.311           8.347         10.065         12.002         13.342         17.332         20.001           8.347         10.0651         12.443         13.762         19.342         19.337         22.775           9.237         10.651         12.443         14.574         16.264         19.337         22.775           9.247         10.651         13.240         13.445         10.264         19.337         22.775           11.260         13.344         14.574         16.264         19.337         22.775           11.260         13.344         16.264         17.167         18.307         22.937           11.261         13.344         16.264         17.167         18.307         27.334           11.262         13.262         10.262         10.337         27.334         27.344           11.262         13.262         10.262         10.262         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.961         7.261         6.347         10.307         81.721         14.336         12.307         24.784         24.7874         27.207         27.207         24.7874         27.207         27.207         24.7874         27.207         27.207         24.7874         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207         27.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ | 9        | 3.364    | <b>*</b> | 24.7        | (99.4            | 10.671 | 13.334 | 14.222 | 15131  | 7.001    | 23.683  | 76 873       | 29.141 |
| 6.614         7.962         9.312         11.132         12.854         19.334         18.418           7.335         8.972         10.083         12.002         13.331         16.339         19.311           7.906         10.17         10.681         12.77         14.40         17.332         19.331         19.331           9.337         10.431         12.443         14.574         19.246         19.337         21.689           9.237         10.431         12.443         14.574         16.246         19.337         21.689           9.237         10.431         13.445         14.574         16.246         17.187         16.337         22.775           11.290         13.346         14.346         17.187         16.031         21.337         24.038           11.290         13.091         14.044         17.187         19.021         22.337         27.036           11.292         13.094         14.643         17.187         19.021         22.337         27.006           11.292         13.094         16.473         18.002         20.847         23.334         27.246           11.292         13.094         14.644         17.187         19.021         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,862         9,312         11,332         12,634         16,338         19,417         20,465         23,427         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279         28,279 <td>_</td> <td>5.229</td> <td>2 9 8 5</td> <td>7.24</td> <td>547</td> <td>10.307</td> <td>11.721</td> <td>14,339</td> <td>17.322</td> <td>12.1</td> <td>72,307</td> <td>24.796</td> <td>21,259</td> <td>30.57B</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ | 5.229    | 2 9 8 5  | 7.24     | 547         | 10.307           | 11.721 | 14,339 | 17.322 | 12.1   | 72,307   | 24.796  | 21,259       | 30.57B |
| 7.255         0.672         10.085         12.002         (3.531)         16.330         19.311           7.706         10.045         12.002         12.331         16.330         20.735           8.547         10.451         13.452         14.440         17.338         20.409           9.237         10.451         13.443         14.574         16.244         19.337         22.775           9.237         10.451         13.240         13.445         17.167         10.337         22.775           10.600         12.334         14.644         18.314         18.101         20.337         24.599           11.200         12.344         14.444         17.107         19.041         22.775           11.602         13.647         18.304         18.307         24.337         24.039           11.603         13.647         18.647         18.647         18.647         19.643         24.337         27.346           13.409         14.424         17.727         19.600         20.647         24.337         29.346           13.409         14.427         18.739         27.346         27.346         27.346           14.124         16.706         17.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.235         0.672         10.048         12.002         13.431         16.338         10.451         21.451         21.451         21.451         21.451         21.451         21.451         21.452         22.752         23.459         27.587         30.995         27.587         30.995         27.587         30.995         27.587         30.995         27.587         30.995         27.587         30.946         32.306         27.594         30.146         32.306         27.594         30.146         32.306         32.755         32.775         22.775         22.775         22.706         27.204         30.146         33.306         32.307         32.775         22.775         23.036         27.504         30.146         33.306         32.775         32.775         22.775         23.036         27.504         27.507         30.146         33.007         33.007         33.106         33.007         33.106         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007         33.107         33.007 <td>_</td> <td>5.012</td> <td>• 614</td> <td>7.962</td> <td>4.312</td> <td>11,152</td> <td>12.634</td> <td>19.33</td> <td></td> <td>200</td> <td>23.342</td> <td>24.276</td> <td>4.633</td> <td>32 000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ | 5.012    | • 614    | 7.962    | 4.312       | 11,152           | 12.634 | 19.33  |        | 200    | 23.342   | 24.276  | 4.633        | 32 000 |
| P. FOG.         0.379         10.845         12.837         14.440         17.338         20.601           B. M. F. 10.451         11.756         13.342         14.339         21.649           P. 23.7         10.451         13.443         14.454         19.342         12.775           P. 23.7         11.241         13.340         14.453         17.187         20.337         23.245           11.241         13.041         14.444         17.187         18.301         21.337         24.249           11.242         13.044         14.444         17.187         18.301         22.337         24.337         26.018           11.247         14.444         17.187         18.502         19.504         24.337         27.306           11.247         14.349         18.502         19.504         24.337         27.306           11.247         14.349         18.502         19.502         20.347         24.337         27.306           14.127         14.444         17.272         19.800         21.792         24.336         29.346           14.447         14.444         17.244         17.244         17.244         17.244           14.448         18.547         24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.500         0.350         10.345         12.345         14.440         17.318         20.601         27.760         27.504         30.404         30.346           0.347         10.457         13.452         14.459         13.452         14.459         13.457         14.459         27.764         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467         30.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ | 2,       | 7.255    | 0.672    | 10.085      | 12.002           | 13.331 | 16.33  | 1.5    | 21,613 | 24.769   | 27.587  | \$ <b>\$</b> | 33 406 |
| B.547         10.117         11.651         13.716         15.352         18.339         21.699           9.237         10.451         12.443         14.574         16.246         19.337         22.775           9.237         10.451         13.445         14.574         16.246         19.337         23.775           10.400         12.334         14.041         14.041         16.031         21.337         24.337           11.297         13.099         17.187         19.043         27.337         27.337         27.337           11.297         14.041         16.473         18.002         19.043         27.337         27.337           13.409         16.473         18.002         20.047         25.334         27.242           14.124         16.573         18.002         22.719         26.136         27.242           14.124         16.473         18.002         22.719         26.136         30.317           14.125         16.137         17.702         27.722         27.722         27.323         31.244           14.125         16.704         27.342         27.342         27.342         31.244           14.127         16.704         27.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B.347         10.117         11.451         13.756         13.322         18.339         23.489         23.704         30.144         33.407           \$2.377         10.831         12.443         14.578         16.246         19.307         22.775         23.038         28.417         30.144         33.007           \$6.00         12.341         14.578         16.246         19.307         22.775         25.038         28.417         30.413         31.847         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843         31.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ | 7,013    | 200      | 2.       | 10.865      | 12.057           | 14.440 | 17,334 | 20.60  | 22.760 | . 25.989 | 28.869  | 32.346       | 34.803 |
| \$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$                                                                                                                                                                                                                                                                                              | \$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$ |   | 7.433    | 1.547    | 10.117   | 1.65        | 13,716           | 13.352 | 900    | 21.689 | 2,400  | 207      | 2       | 33.05        | -      |
| 9-915         11.391         13.340         13.445         17.162         20.337         23.889           11.292         13.034         14.344         18.314         18.301         24.337         24.939           11.292         13.034         14.849         17.187         19.031         22.337         25.036           11.297         13.249         18.045         18.045         23.337         27.096           13.297         13.279         18.279         26.334         27.246           14.126         18.279         18.279         26.336         29.346           14.127         18.279         21.872         27.346         27.346           14.127         18.279         21.886         23.447         27.336         31.244           14.126         18.279         21.886         23.447         27.336         31.244           15.524         17.269         27.478         28.334         22.833         31.244           15.524         17.760         17.764         27.478         28.334         31.244           15.524         17.760         27.348         27.478         28.334         31.244           15.554         27.348         28.347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P.P.15         11.591         13.340         13.445         17.187         20.337         23.843         28.171         29.613         31.871         30.343           11.292         13.204         14.644         17.187         18.101         22.337         26.018         27.301         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942         33.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ | 0.360    | \$.237   | 10.451   | 12.443      | 14.571           | 14.244 | 19.337 | 22.775 | 25.038 | 20.412   | 01710   | 33.020       | 74.74  |
| 10,600   12,314   14,041   16,314   18,101   21,337   24,259   11,293   13,091   14,444   17,187   19,031   21,337   26,038   11,293   13,691   14,413   18,437   18,602   19,643   23,334   27,206   13,409   15,377   18,114   20,733   22,739   24,334   31,391   14,424   18,517   18,114   27,334   31,391   18,527   18,534   27,334   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   31,391   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.600   11.1314   14.044   16.314   10.101   21.337   24.879   27.301   30.813   31.924   37.889   37.889   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929   31.929                                                                                                                                                                                                                                                                           | _ | 1 107    | ¥10+     | 1 50     | 13.240      | 13.445           | 17,163 | 20,337 | 23.850 | 26.171 | 29.613   | 32.471  | 36 343       | 34.932 |
| 11.292   13.091   14.848   17.187   19.021   22.337   26.018   11.892   13.843   13.847   18.002   19.943   21.337   27.006   12.847   18.002   18.842   18.002   18.842   18.842   18.842   18.842   18.842   18.114   20.703   22.719   26.336   31.391   14.825   18.212   18.312   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   27.342   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1292   13.091   14.848   17.187   19.021   22.337   26.018   28.429   32.007   35.172   39.948   12.892   13.844   15.859   18.042   19.943   23.337   27.096   27.333   33.196   34.431   26.423   23.137   28.132   27.096   27.333   27.096   27.333   27.096   27.332   27.096   27.332   27.096   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.342   27.332   27.342   27.332   27.342   27.332   27.342   27.332   27.332   27.342   27.332   27.332   27.342   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.332   27.                                                                                                                                                                                                                                                                        | - | 673      | OCA OL   | 10.00    | 17.04       | 14.314           | 10.01  | 21.337 | 24.939 | 27.30  | 30.813   | 33.924  | 37.659       | 40.289 |
| 11 992   11 844   14 473   18 952   19 943   21 337   27 3096   12 497   14 411   18 473   18 940   21 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347   24 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1797   1784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 701 01   | 190      | 200      | 77.         | 17.187           | 14 021 | 72.337 | 26.018 | 28.429 | 32.007   | 35.172  | 30.96        | 41.638 |
| 13.697   14.617   16.473   18.940   20.867   24.337   28.137   28.137   28.137   28.136   29.246   18.472   18.114   20.703   22.739   26.336   39.146   14.82   16.978   17.982   27.336   31.391   16.874   17.984   17.884   27.473   28.336   31.391   18.574   18.487   27.336   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31.391   31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.697   14.617   16.473   18.940   20.867   24.337   28.172   30.653   34.332   37.652   41.366   13.409   15.379   17.792   18.800   21.792   25.334   27.846   31.795   31.946   42.357   44.137   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   44.140   4                                                                                                                                                                                                                                                                        |   | 2        |          | 13 844   | 19.459      | 18 062           | 6.943  | 23 337 | 27.096 | 79,553 | 33.196   | 26.415  | 52.03        | 42 980 |
| 13.409 15.379 17.292 19.830 21.792 25.334 29.246 14.122 16.139 19.249 21.392 25.334 20.335 19.199 14.122 16.335 19.299 21.388 23.447 27.335 31.391 17.552 17.708 19.708 27.348 23.477 27.335 31.391 17.552 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17.545 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.409   15.379   17.297   19.00   21.792   25.334   29.246   31.795   31.8485   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   42.446   4                                                                                                                                                                                                                                                                        |   | 765      | 12.407   | 1441     | 14.673      | 074              | 70 847 | 24,337 | 28 172 | 30.673 | 34,382   | 17 652  | 61.506       | 44.314 |
| 14.125 16.131 18.114 20.703 22.719 26.136 30.319 14.647 17.036 18.709 27.836 27.647 27.336 31.391 15.574 17.700 19.704 27.745 22.475 24.577 29.334 31.340 14.744 27.434 29.334 31.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.125 16.151 18.114 20.702 22.719 26.336 30.319 32.912 36.741 40.113 44.140 14.822 16.702 18.729 21.364 27.336 31.391 34.027 37.916 41.337 44.693 15.374 17.708 19.768 22.475 24.577 28.336 31.461 35.139 39.087 42.337 44.693 16.306 18.493 20.599 23.344 25.508 29.336 13.300 36.250 40.236 43.773 47.702 47.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 12.19    | 1.40     | 15.379   | 17.292      | 9.00             | 21.772 | 25,334 | 29.246 | 31.785 | 35.363   | 38.465  | 42.856       | 45.642 |
| 14,647 12,036 18,939 21,586 23,447 27,336 31,391 15,574 17,006 19,544 22,475 24,477 28,534 32,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13,474 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.047   16.970   18.79   27.346   27.336   31.391   34.037   37.916   41.337   43.419   15.574   17.708   19.764   22.475   24.577   28.336   13.30   38.230   40.236   41.273   47.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ | 2.079    | 17.03    | 16.157   | 7           | 50.00            | 22.719 | 26.336 | 90.01  | 32.912 | 26.74    | 40.13   | 97.140       | 40 963 |
| 15.574 17.706 19.764 22.475 24.577 28.336 32.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.374 17.706 19.794 22.475 24.577 28.336 13.441 35.139 39.047 42.537 44.693 16.306 18.493 20.597 73.344 25.508 28.336 13.530 36.236 40.236 43.773 47.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ | 13.565   | 14.847   | 16.928   | 18.939      | 21.386           | 23.47  | 27.336 | 190.10 | 34.027 | 37.916   | 41.337  | 45,419       | 48.278 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.306 18.493 20.599 22.344 25.508 29.336 13.530 36.250 40.256 43.773 47.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 14.256   | 15.574   | 17.70    | 3.7         | 22.475           | 24.577 | 28.336 | 32.461 | 35.139 | 39.047   | 42.537  | 44.693       | 19.588 |
| and the same of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ | 14.933   | 906      | 18.493   | 20.59       | 23.164           | 25,500 | 29.336 | 11.530 | 36.250 | 40.236   | 43,773  | 47.942       | 50.892 |

# QUANTILES OF THE K-S STATISTIC

Source; Conover, 1980, 462

| One-Sid | ed Test | .95  | .975  | .99  | .995    |        | p = .90    | .95        | .975       | .69        | .995       |
|---------|---------|------|-------|------|---------|--------|------------|------------|------------|------------|------------|
| Two-Sid | ed Toes |      |       |      |         |        | •          |            |            |            |            |
|         | p = .80 | .90  | .95   | .98  | .99     |        | p = .80    | .90        | .95        | .98        | .99        |
| n == 1  | .900    | .950 | .975  | .990 | .995    | л = 21 | .226       | .259       | .287       | .321       | .344       |
| 2       | .684    | .776 | .842  | .900 | .929    | 22     | .221       | .253       | .281       | .314       | .337       |
| 3       | .565    | .636 | .708  | .755 | .829    | 23     | .216       | .247       | .275       | .307       | .330       |
| 4       | .493    | .565 | .624  | .659 | .734    | 24     | .212       | .242       | .269       | .301       | .323       |
| 5       | .447    | .509 | .563  | .627 | .669    | 25     | .208       | .238       | .264       | .295       | .317       |
| 6       | .410    | .468 | .519  | .577 | .617    | 26     | .204       | .233       | .259       | .290       | .311       |
| 7       | .381    | .436 | .483  | .538 | .576    | 27     | .200       | .229       | .254       | .254       | .305       |
| 8       | .358    | .410 | .454  | .507 | .542    | 26     | .197       | .225       | .250       | .279       | .300       |
| . 9     | .339    | .387 | .430  | .480 | .513    | 29     | .193       | .221       | .246       | .275       | .295       |
| 10      | .323    | .369 | .409  | .457 | .489    | 30     | .190       | .218       | .242       | .270       | .290       |
| 11      | .308    | .352 | .391  | .437 | .468    | 31     | .187       | .214       | .238       | .266       | .285       |
| 12      | .296    | .338 | .375  | .419 | .449    | 32     | .184       | .211       | 214        | .262       | .281       |
| 13      | .285    | .325 | .361  | .404 | .432    | 33     | .182       | .208       | .231       | .258       | .277       |
| 14      | .275    | .314 | .349  | .390 | .418    | 34     |            | .205       | .227       | .254       | .273       |
| 15      | .266    | .304 | .338  | .377 | .404    | 35     | .177       | .202       | .224       | .251       | .269       |
| 16      | .258    | .295 | .327  | .366 | . 192   | 36     | .174       | ,199       | .221       | .247       | .265       |
| 1.7     | .250    | .286 | .318  | .355 | .381    | 37     |            | .196       | .218       | .244       | .262       |
| 18      | .244    | .279 | .309  | .346 | .371    | 38     |            | .194       | .215       | .241       | .258       |
| 19      | .237    | .271 | .301  | .337 | .361    | 39     |            | .191       | .213       | 238        | .255       |
| 20      | .232    | .265 | . 294 | .329 | .352    | 40     |            | .189       | ,210       | .235       | .252       |
|         |         |      |       |      | pproxim |        | 1.07       | 1.22       | 1.36       | 1.52       | 1.63       |
|         |         |      |       | fo   | 1 n > 4 | 0      | $\sqrt{g}$ | $\sqrt{n}$ | $\sqrt{n}$ | $\sqrt{n}$ | $\sqrt{n}$ |

CRITICAL VALUES OF T IN THE WILCOXON HATCHED-PAIRS SIGNED RANKS TEST

Source: Siegel, 1956, 254

|            | Level of sign | ificance for o | ne-tailed test |
|------------|---------------|----------------|----------------|
| N          | .025          | .01            | .005           |
| *          | Level of sign | ificance for t | ro-tailed test |
|            | .05           | .02            | .01            |
| 6          | 0             | -              | <del></del>    |
| 7          | 2             | 0              |                |
| 8          | 4             | 2              | 0              |
| 9          | 6             | 3              | 2              |
| 10         | 8             | 5              | 3              |
| 11         | 11            | 7              | 5              |
| 12         | 14            | 10             | 7              |
| 13         | 17            | 13             | 10             |
| 14         | 21            | . 16           | 13             |
| 15         | 25            | 20             | 16             |
| 16         | 30            | 24             | <b>2</b> 0     |
| 17         | 35            | 28             | 23             |
| 18         | 40            | <b>3</b> 3     | 28             |
| 19         | 46            | 38             | 32             |
| <b>2</b> 0 | 52            | 43             | 38             |
| 21         | 59            | 49             | 43             |
| 22         | 66            | <b>5</b> 6     | 49             |
| <b>2</b> 3 | 73            | 62             | <b>5</b> 5     |
| 24         | 81            | 69             | 61             |
| <b>2</b> 5 | <b>8</b> 9    | 77             | <b>6</b> 8     |

# CRITICAL VALUES FOR THE WALSH TEST

Source: Siegel, 1956, 255, (adapted from Walsh, 1949)

|    | :                                    |                                      | <del></del>                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                              |
|----|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                      |                                      | ļ r                                                                                                                                                                                                                                                                                                                                                 | cata                                                                                                                                                                                                                                                                                                                                                         |
|    |                                      | icance<br>if test <b>s</b>           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                              |
| N  | ]                                    |                                      | Two-tailed: accep                                                                                                                                                                                                                                                                                                                                   | yt µ, ≠ 0 if either                                                                                                                                                                                                                                                                                                                                          |
|    | One-<br>tailed                       | Two-                                 | One-tailed: accept $\mu_1 < 0$ if                                                                                                                                                                                                                                                                                                                   | One-tailed: accept $\mu_1 > 0$ if                                                                                                                                                                                                                                                                                                                            |
| 4  | .062                                 | . 125                                | d4 < 0                                                                                                                                                                                                                                                                                                                                              | <b>d</b> <sub>1</sub> > 0                                                                                                                                                                                                                                                                                                                                    |
| 5  | .062                                 | .125<br>.062                         | $\frac{1}{2}(d_4+d_4)<0$ $d_4<0$                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |
| 6  | .047<br>.031<br>.016                 | .094<br>.062<br>.031                 | $\max_{\frac{1}{2}(d_1 + d_2)} \{d_1 + d_2\} < 0$ $\frac{1}{2}(d_1 + d_2) < 0$ $d_2 < 0$                                                                                                                                                                                                                                                            | $ \begin{array}{c c} \min \left[ d_1, \frac{1}{2} (d_1 + d_2) \right] > 0 \\ \frac{1}{2} (d_1 + d_2) > 0 \\ d_1 > 0 \end{array} $                                                                                                                                                                                                                            |
| 7  | .055<br>.023<br>.016<br>.008         | .109<br>.047<br>.031<br>.016         | $\max_{\mathbf{d}} [d_{1}, \frac{1}{2}(d_{1} + d_{2})] < 0$ $\max_{\mathbf{d}} [d_{3}, \frac{1}{2}(d_{3} + d_{2})] < 0$ $\frac{1}{2}(d_{3} + d_{2}) < 0$ $d_{7} < 0$                                                                                                                                                                                | $ \begin{array}{ll} \min \left[ d_1, \frac{1}{2} (d_1 + d_2) \right] > 0 \\ \min \left[ d_2, \frac{1}{2} (d_1 + d_2) \right] > 0 \\ \frac{1}{2} (d_1 + d_2) > 0 \\ d_1 > 0 \end{array} $                                                                                                                                                                     |
| 8  | .043<br>.027<br>.012<br>.008<br>.004 | .086<br>,055<br>,023<br>,016<br>,008 | $\max \{ds, \frac{1}{2}(ds + ds)\} > 0$ $\max \{ds, \frac{1}{2}(ds + ds)\} < 0$ $\max \{ds, \frac{1}{2}(ds + ds)\} < 0$ $ds < 0$                                                                                                                                                                                                                    | min $[d_i, \frac{1}{2}(d_1 + d_4)] > 0$<br>min $[d_i, \frac{1}{2}(d_1 + d_2)] > 0$<br>min $[d_i, \frac{1}{2}(d_1 + d_2)] > 0$<br>$\frac{1}{2}(d_1 + d_2) > 0$<br>$\frac{1}{2}(d_1 + d_2) > 0$                                                                                                                                                                |
| 8  | .051<br>.022<br>.010<br>.006<br>.004 | .102<br>.043<br>.020<br>.012<br>.008 | $\begin{aligned} \max_{i} \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] &< 0 \\ \max_{i} \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] &< 0 \\ \max_{i} \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] &< 0 \\ \max_{i} \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] &< 0 \\ \frac{1}{2} (d_{i} + d_{i}) &< 0 \end{aligned}$        | $\begin{array}{c} \min \left\{ d_1, \frac{1}{2}(d_1 + d_2) \right\} > 0 \\ \min \left\{ d_2, \frac{1}{2}(d_1 + d_2) \right\} > 0 \\ \min \left[ d_3, \frac{1}{2}(d_1 + d_2) \right] > 0 \\ \min \left[ d_3, \frac{1}{2}(d_1 + d_2) \right] > 0 \\ \frac{1}{2}(d_1 + d_2) > 0 \end{array}$                                                                    |
| 10 | .056<br>.025<br>.011<br>.005         | .111<br>.051<br>.021<br>.010         | $\max_{i} [d_{i}, \frac{1}{2}(d_{i} + d_{10})] < 0$                                                                                                                                     | $\begin{array}{l} \min \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] > 0 \\ \min \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] > 0 \\ \min \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] > 0 \\ \min \left[ d_{i}, \frac{1}{2} (d_{i} + d_{i}) \right] > 0 \end{array}$                                                                          |
| 11 | .048<br>.028<br>.011<br>.005         | .097<br>.056<br>.021<br>.011         | $\max_{\substack{d_1, \frac{1}{2}(d_1 + d_{11}) \} < 0 \\ \max_{\substack{d_2, \frac{1}{2}(d_2 + d_{11}) \} < 0 \\ \max_{\substack{d_3, \frac{1}{2}(d_3 + d_{11}), \frac{1}{2}(d_1 + d_2) \} < 0 }}$                                                                                                                                                | $\begin{array}{l} \min \left\{ d_{1}, \frac{1}{2} (d_{1} + d_{1}) \right\} > 0 \\ \min \left\{ d_{2}, \frac{1}{2} (d_{1} + d_{1}) \right\} > 0 \\ \min \left[ \frac{1}{2} (d_{1} + d_{2}), \frac{1}{2} (d_{1} + d_{2}) \right] > 0 \\ \min \left[ d_{1}, \frac{1}{2} (d_{1} + d_{2}) \right] > 0 \end{array}$                                                |
| 12 | .047<br>.024<br>.010<br>.005         | .094<br>.048<br>.020<br>.011         | $\max_{\substack{\{\frac{1}{2}(d_1+d_{12}),\frac{1}{2}(d_1+d_{11})\}\\\text{that }[d_2,\frac{1}{2}(d_1+d_{12})]<0\\\text{that }[d_2,\frac{1}{2}(d_1+d_{12})]<0\\\text{that }[\frac{1}{2}(d_1+d_{12}),\frac{1}{2}(d_1+d_{12})]<0}$                                                                                                                   | $\begin{array}{l} \min \left[ \frac{1}{2} (d_1 + d_2), \frac{1}{2} (d_1 + d_2) \right] > 0 \\ \min \left[ \frac{1}{2} d_2, \frac{1}{2} (d_1 + d_2) \right] > 0 \\ \min \left[ \frac{1}{2} d_2, \frac{1}{2} (d_1 + d_2) \right] > 0 \\ \min \left[ \frac{1}{2} (d_1 + d_2), \frac{1}{2} (d_2 + d_2) \right] > 0 \end{array}$                                  |
| 13 | .047<br>.023<br>.010<br>.005         | .094<br>.047<br>.020<br>.010         | $\max_{i} \left[ \frac{1}{2} (d_i + d_{12}), \frac{1}{2} (d_i + d_{12}) \right] < 0$ $\max_{i} \left[ \frac{1}{2} (d_i + d_{12}), \frac{1}{2} (d_i + d_{12}) \right] < 0$ $\max_{i} \left[ \frac{1}{2} (d_i + d_{12}), \frac{1}{2} (d_i + d_{12}) \right] < 0$ $\max_{i} \left[ \frac{1}{2} (d_i, \frac{1}{2} (d_i + d_{12})) \right] < 0$          | $\begin{array}{l} \min \left[ \frac{1}{2} (d_1 + d_{10}), \frac{1}{2} (d_1 + d_{2}) \right] > 0 \\ \min \left[ \frac{1}{2} (d_1 + d_{2}), \frac{1}{2} (d_1 + d_{3}) \right] > 0 \\ \min \left[ \frac{1}{2} (d_1 + d_{1}), \frac{1}{2} (d_2 + d_{2}) \right] > 0 \\ \min \left[ \frac{1}{2} (d_1 + d_{1}), \frac{1}{2} (d_1 + d_{2}) \right] > 0 \end{array}$ |
| 14 | .047<br>.023<br>.010<br>.005         | .094<br>.047<br>.020<br>.010         | $\max_{\substack{i \in (d_1 + d_{1i}), \ \frac{1}{2}(d_2 + d_{1i}) < 0 \\ \max_{\substack{i \in (d_3 + d_{1i}), \ \frac{1}{2}(d_3 + d_{1i}) < 0 \\ \max_{\substack{i \in (d_1, \ \frac{1}{2}(d_1 + d_{1i}) \} < 0 \\ }} (d_1, \frac{1}{2}(d_1 + d_{1i})) < 0}$                                                                                      | $\min \left[ \frac{1}{2} (d_1 + d_{12}), \frac{1}{2} (d_2 + d_{12}) \right] > 0$ $\min \left[ \frac{1}{2} (d_1 + d_{12}), \frac{1}{2} (d_2 + d_2) \right] > 0$ $\min \left[ \frac{1}{2} (d_1 + d_2), \frac{1}{2} (d_1 + d_2) \right] > 0$ $\min \left[ \frac{1}{2} (d_1 + d_2), \frac{1}{2} (d_1 + d_2) \right] > 0$                                         |
| 15 | .047<br>.023<br>.010<br>.005         | .094<br>.047<br>.020<br>.010         | $\max_{i} \left[ \frac{1}{2} (d_i + d_{12}), \frac{1}{2} (d_i + d_{12}) \right] < 0$ $\max_{i} \left[ \frac{1}{2} (d_i + d_{12}), \frac{1}{2} (d_i + d_{12}) \right] < 0$ $\max_{i} \left[ \frac{1}{2} (d_i + d_{12}), \frac{1}{2} (d_{12} + d_{12}) \right] < 0$ $\max_{i} \left[ \frac{1}{2} (d_{11}, \frac{1}{2} (d_{11} + d_{12})) \right] < 0$ | $\begin{array}{ll} \min \left[ \frac{1}{2} (d_1 + d_{12}), \frac{1}{2} (d_2 + d_{11}) \right] > 0 \\ \min \left[ \frac{1}{2} (d_1 + d_{12}), \frac{1}{2} (d_2 + d_{10}) \right] > 0 \\ \min \left[ \frac{1}{2} (d_1 + d_{12}), \frac{1}{2} (d_3 + d_4) \right] > 0 \\ \min \left[ d_4, \frac{1}{2} (d_1 + d_3) \right] > 0 \end{array}$                      |

Appendix

7

CRITICAL

THE MANN-WHITNEY STATISTIC

Source: Dunstan et al., 1983, 17-8

The table gives the upper tail critical values u, of the statistic

where  $Z_{i_j} = 1$  if  $X_i < Y_j$  and  $Z_{i_j} = 0$  if  $X_i > Y_j$  given the independent samples  $X_1, X_2, ..., X_n$  and  $Y_1, Y_2, ..., Y_n$ . The lower tail critical values are given by mn –  $u_i$ .

One tall 0.5% Two tall 1%

| /          | 1  | 2        | 3  | 4        |          | •    | ,     | •   | •    | W   | 11  | ij   | 13  | 14   | 75  | 10  | 17  | 14  | 10   | 28   | 21  | 22  | 22  | 24  | 25  | 25  | n    | 21  | ×   | _          |
|------------|----|----------|----|----------|----------|------|-------|-----|------|-----|-----|------|-----|------|-----|-----|-----|-----|------|------|-----|-----|-----|-----|-----|-----|------|-----|-----|------------|
| 1          |    |          |    |          |          |      |       |     |      |     |     |      |     |      |     |     |     |     |      |      |     |     |     |     | _   |     |      |     |     |            |
| 2          |    |          |    |          |          |      |       |     |      |     |     |      | 26  | 20   | 10  | 32  | 34  | 36  | 38   | 40   | 42  | 44  | 45  | 47  | 49  | 51  | 5.3  | 55  | 57  | 59         |
| ٠,         |    |          |    |          |          |      | 31    | 24  | 27   | 30  | 12  | 35   | 36  | 40   | 43  | 46  | 48  | 51  | 54   | 57   | 19  | 62  | 65  | 67  | 70  | 73  | 75   | 76  | Ti. |            |
| 4          |    |          |    |          | 30       | 24   | 27    |     | 34   | 36  | 41  | 45   | 48  | 5.   | 35  | 58  | 64  | 65  | 69   | 72   | 75  | 79  | 42  | 86  | 49  | 93  | 96   | 59  | 101 | 106        |
| !!!        |    |          |    | 20       | 25       | 29   | 37    |     |      | 46  | 50  | 54   | 58  | 62   | 66  | 70  | 74  | 79  | 83   | 87   | 91  | 95  | 99  | 103 | 107 | 112 | 116  | 120 | 124 | 328        |
|            |    |          |    | 24       | 29       | 34   | 33    |     |      |     |     | 63   | 68  | 73   | 77  | 42  | 87  | 92  | 97   | 101  | 106 | 311 |     |     |     |     |      |     |     | 149        |
| 1 2        |    |          | 21 | 27       | 33       | 39   | 44    |     |      |     | 66  | 72   | 77  | 60   | 88  | 94  | 29  | 105 | 110  | 114  | 121 | 127 | 132 | 137 | 143 | 148 | 154  | 159 | 165 | 170        |
| ! ፣ !      |    |          | 24 | 31       | 37       | 44   | 5û    |     | 62   | 69  |     | €:   | 6.7 |      | 99  | 105 | 111 | 118 | 124  | 130  | 134 | 142 | 148 | 154 | 160 | 164 | 177  | 178 | 185 | 191        |
| 16         |    |          | 27 | 34       | 41       | 46   | 55    |     |      |     | • 3 | 90   | 97  | 10)  | 119 | 117 | 124 | 130 | 137  | 144  | 151 | 157 | 164 | 171 | 177 | 184 | 191  | 196 | 204 | 211        |
| ;;         |    |          | 30 | 38       | 46       | 51   | 61    |     | 76   |     | ₽ŀ  | 99   | 106 | 113  | 121 | 120 | 136 | 143 | 150  | 156  | 165 | 172 | 190 | 187 | 195 | 202 | 209  | 217 | 224 | 231        |
| 12         |    |          | 32 | 43       | 50       | 56   | 60    | 75  | ₩3   | 91  | 79  | 107  | 115 | 123  | 131 | 140 | 148 | 156 | lo4  | 172  | 100 | 185 | 196 | 204 | 212 | 220 | 227  | 235 | 243 | 251        |
| 15         |    |          | 35 | 45       | 54       | 63   | 72    |     |      | 79  | 107 | 116  | 125 | 133  | 143 | 151 | 159 | 144 | 177  | 185  | 194 | 201 | 211 | 220 | 226 | 237 | 246  | 254 | 263 | 271        |
| انتا       |    | 26<br>28 | 18 | 48       | 58       | 61   | 77    | 87  |      | 106 | 115 | 125  | 134 | 143  | 153 | 162 | 171 | 161 | 1 90 | 199  | 205 | 218 | 227 | 236 | 245 | 254 | 264  | 27) | 282 | 291        |
| ii         |    |          | 10 | 31       | 6.2      | 23   | • • • | *3  | 103  | 113 | 123 | 133  | 143 | 153  | 163 | 173 | 10) | 193 | 203  | 21)  | 22) | 213 | 242 | 252 | 262 | 272 | 282  | 292 | 301 | 311        |
| <u>   </u> |    | 3C<br>32 | 43 | 55<br>58 | 66<br>70 | 77   |       | 99  | 110  | 121 | 131 | 142  | 153 | 163  | 174 | 184 | 195 | 206 | 216  | 2.26 | 237 | 247 | 250 | 244 | 279 | 289 | 300  | 310 | 320 | 331        |
| 17         |    | 34       | 48 | 62       | 70       | - 22 | 34    | 105 | 117  | 125 | 140 | 151  | 162 | 173  | 184 | 196 | 207 | 218 | 229  | 340  | 251 | 242 | 273 | 284 | 295 | 367 | 318  | 329 | 340 | 35 L       |
| lié l      |    | 36       | 51 | 64       | 79       | • /  |       | 111 | 124  | 114 | 148 | 159  | 171 | 183  | 195 | 207 | 219 | 230 | 242  | 254  | 265 | 277 | 584 | 300 | 312 | 324 | 325  | 347 | 359 | 370        |
| 176        |    | 38       | 54 | 69       | 17       | 92   | 102   | 114 | 3.90 | 143 | 154 | 160  | 101 | 193  | 206 | 210 | 230 | 243 | 255  | 267  | 200 | 292 | 304 | 316 | 329 | 341 | 35.) | ж,  | 378 | 390        |
| , i        |    | 40       | 57 | 72       |          | 97   | 110   | 124 | 137  | 120 | 164 | 177  | 130 | 503  | ZII | 229 | 242 | 255 | 260  | 211  | 294 | 107 | 120 | 333 | 345 | 354 | 37,  | 184 | 397 | 409        |
| n          |    | 42       | 59 | 75       | - 1      | I DA | 170   | 130 | 144  | 134 | 1/2 | 103  | 177 | 213  | 27  | 240 | 234 | 267 | 261  | 794  | 304 | 321 | 335 | 348 | 362 | 375 | 189  | 402 | 416 | 129        |
| 2          |    | 14       | 62 | 70       | -        | 111  | 121   | 142 | 131  | 100 | 100 | 184  | ZUB | 223  | 237 | 251 | 265 | 280 | 294  | 100  | 122 | 334 | 350 | 364 | 374 | 392 | 406  | 420 | 435 | 449        |
| 5          |    | 45       | 65 | 62       | 99       | 114  | 111   | 140 | 164  | 111 | 104 | 203  | 210 | 231  | 247 |     | 211 | 797 | 101  | 153  | 336 | 331 | 364 | 340 | 395 | 410 | 424  | 439 | 453 | 468        |
| 1 5a       |    | 47       | 67 |          |          | 120  | 117   | 154 | 171  | 187 | 304 | 511  | *** | 34.2 | 23  | 4/3 | 207 | 104 | 320  | 313  | 150 | 344 | 381 | 396 | 411 | 427 | 442  | 457 | 472 | 487<br>507 |
| 35         | ļ. | 49       | 70 | 89       | 107      | 125  | 141   | 150 | 177  | 104 | 217 | 220  | 246 | 267  | -   | 100 | 300 | 316 | 332  | 148  |     | 300 | 196 | 412 | 434 | 444 | 457  | 475 | 491 | 507<br>526 |
| 29         | 1  | 51       | 73 | 93       | 111      | 110  | SAR   | 166 | 184  | 203 | 220 | 233  | 254 | 777  | 180 | 107 | 214 | 747 | 743  | 342  | 3/0 | 732 | 412 | 424 | 444 | 46) | 477  | 494 | 210 | 526        |
| 77         | į  | 53       | 75 | 96       | 116      | 135  | 154   | 172 | 191  | 209 | 227 | 246  | 264 | 282  | 100 | 114 | 115 | 353 | 111  | 180  | 404 | 410 | 443 | 444 | 433 | 10  | ***  | 212 | >29 | 546<br>565 |
|            |    | 55       | 78 | 99       | 120      | 160  | 110   | 176 | 190  | 217 | 235 | 254  | 273 | 393  | 110 | 120 | 347 | 323 | 2/1  | 407  | 430 | 424 | 442 | *** | 177 | *** | 212  | 330 | 548 | 565        |
| <b>3</b>   |    | 57       |    | 103      | 224      | 144  | 165   | 185 | 204  | 224 | 241 | 76.1 | 787 | 301  | 120 | 140 | 1   | 174 | 367  | 414  | 414 | 455 | 437 | -/3 | 510 | 217 | 210  | 344 | 766 | 384        |
| i <b>≥</b> | ı  | 39       | 63 | 106      | 126      | 149  | 170   | 191 | 211  | 231 | 25: | 271  | 291 | 311  | 131 | 151 | 170 | 300 | 100  | 430  | 440 | 444 | 422 | 491 | 210 | 249 | 244  | 300 | 363 | 623        |

One tall 1% Two tall 2%

| \m  |          | ,        | _        | _          |          | _        | _    | _   |      |     |      |      |             |            |      |     |      |      |          |     |          |          |      |       |     |          |          |      |      |     |
|-----|----------|----------|----------|------------|----------|----------|------|-----|------|-----|------|------|-------------|------------|------|-----|------|------|----------|-----|----------|----------|------|-------|-----|----------|----------|------|------|-----|
| ~   | <u> </u> |          |          | _:         |          | _:       |      | •   |      | 10  | 11   | 12   | _13         | 14         | *    | 14  | 17   | . ** | 19       | *   | 21       | Z        | 25   | 34    | =   | ×        | 27       | =    | *    | -   |
| 1   |          |          |          |            |          |          |      |     |      |     |      |      |             |            |      |     |      |      |          |     |          |          |      |       |     |          |          |      |      |     |
| 2   |          |          |          |            |          |          |      |     | LØ   | 20  | 22   | 24   | 26          | 28         | 30   | 31  | 33   | 35   |          |     |          |          |      |       |     |          |          |      |      |     |
| 3   |          |          |          |            | 15       | 10       | 21   | 23  | 26   | 29  | 31   | 34   | 34          | 39         | ~    | 44  | .,   | 50   | 37<br>52 | 39  | 41<br>57 | 43<br>60 | 63   | 65    | 48  | 50<br>70 | 52<br>73 | 34   | 34   | 58  |
| 4   | i        |          |          | 16         |          | 23       | 26   | 30  | 33   | 34  | 40   | 43   | ~           | 10         | 33   | 36  | 60   |      |          | 70  | 73       |          | 79   | 83    | -   | 70       | 73       | 76   | 74   |     |
|     |          |          | 15       | 20         | 24       | 28       | 32   | 34  | 40   |     | 44   | 52   |             | -          | -    |     | 72   |      | 80       | 84  | 14       | 92       | 94   |       | 104 | 196      |          | 116  |      | 103 |
| •   |          |          | 10       | 23         | 28       | 33       | 37   | 42  | 47   | 51  | 14   | 61   | 45          |            | 75   | 79  | 84   |      |          | ×   |          |          |      | 116   |     |          |          |      |      |     |
| 7   | ı        |          | 21       | 26         | 12       | 37       | 43   | 48  | 51   | 5#  | 64   | 69   | 75          | 50         | 13   | 91  |      |      |          |     |          |          |      | 133   |     |          |          |      |      |     |
| •   |          |          | 23       | 30         |          | 42       | 44   | 54  | 60   | 66  | 72   | 74   | 84          | 90         | 94   | 103 | 106  | 114  | 120      | 123 | 131      | 137      | 143  | 149   | 155 | 161      | 167      | 171  | 1 20 | 184 |
| •   |          | 19       | 24       | 33         |          | 47       | 53   | 60  | 47   |     | 80   | 27   | •3          | 100        | 106  | 113 | 119  | 124  | 133      | 139 | 146      | 152      | 159  | 165   | 172 | 179      | 185      | 191  | 136  | 204 |
| M   |          | 20       | 29       | 36         |          | 51       |      | 66  | 73   | B.1 | 64   | 75   | 103         | 110        | 117  | 124 | 131  | 134  | 145      | 153 | 160      | 16?      | 174  | 1 B 1 | 163 | 195      | 203      | 210  | 217  | 224 |
| 11  | •        | 22       | 31       | 40         |          | 54       | 44   | 72  | 10   |     |      | 104  | 115         | 119        | 127  | 135 | 143  | 151  | 158      | 166 | 174      | 182      | 185  | 197   | 205 | 213      | 220      | 228  | 336  | 244 |
| 12  |          | 24<br>26 | 34<br>34 | 43         |          | - 61     | 69   | ?0  | 87   |     | 104  | 115  | 121         | 129        | : 30 | 146 | 154  | 163  | 171      | 180 | 160      | 196      | 205  | 213   | 221 | 230      | 238      | 244  | 755  | 263 |
| H   | i i      | 26<br>28 | 39       | 46<br>50   | 36       | 65       | 75   | 64  |      | 102 | 112  | 121  | 130         | 139        | 140  | 157 | 166  | 175  | 184      | 133 | 302      | 211      | 220  | 221   | 236 | 247      | 254      | 265  | 274  | 283 |
| ÷.  |          | 30       | 42       | 53         | 60<br>64 | 70<br>75 |      |     | 100  | 110 | 1119 | 129  | 139         | 148        | 150  | 168 | 1777 | 187  | 197      | 206 | 316      | 225      | 235  | 745   | 254 | 244      | 273      | 24.3 | 292  | 302 |
|     | i        | 31       | 44       | 34         | ä        | 79       |      |     | 100  | 137 | 127  | 130  | 140         | 156        | 168  | 179 | 147  | 179  | 209      | 330 | 230      | 240      | 250  | 260   | 270 | 241      | 391      | 30:  | 311  | 321 |
| 17  |          | 11       | 47       |            | 72       | ü        |      | 102 | 110  | 120 | 133  | 144  | 15/         | 168        | 1/9  | 190 | 200  | 211  | 222      | 333 | 344      | 254      | 24.5 | 276   | 387 | 397      | 300      | 319  | 330  | 34D |
| 18  |          | 35       | 50       | 63         | 76       |          | 101  | 114 | 126  | 111 | 151  | 161  | 175         | 177<br>187 | 140  | 200 | 212  | 223  | 243      | 400 | 357      | 24.      | 280  | 292   | 303 | 314      | 326      | 337  | )44  | 360 |
| 13  |          | 37       | 52       | 66         | 60       | 93       | 104  | 120 | 131  | 145 | 150  | 171  | 184         | 197        | 204  | 122 | 734  | 247  | 240      | 437 | 2/1      | -        | 193  | 347   | 317 | 131      | 34,1     | J33. | 367  | 377 |
|     |          | 19       | 55       | 70         | 14       | 94       | 112  | 125 | 139  | 153 | 144  | 100  | 191         | 205        | 325  | 733 | 344  | 260  | 173      | 706 | 203      | 111      | 111  | 727   | 333 | 748      | 300      | 4/3  | 383  | 370 |
| 21  |          | 41       | 57       | 73         | 84       | 102      | 117  | 131 | 144  | 160 | 174  | 1.88 | 202         | 216        | 230  | 244 | 257  | 371  | 285      | 200 | 313      | 126      | 140  | 384   | 344 | 101      | 145      | 400  | 411  | 414 |
| 2   |          | 43       | 60       | 76         | 72       | 107      | 122  | 137 | 152  | 167 | 142  | 186  | 211         | 225        | 240  | 254 | 260  | 263  | 220      | 312 | 124      | 141      | 155  | 340   | 384 | 144      | 411      | 427  | 441  | 455 |
| 20  |          | 44       | 63       | 79         | **       | 112      | 120  | 143 | 159  | 174 | LET  | 205  | 220         | 235        | 250  | 265 | 200  | 295  | 310      | 325 | 340      | 355      | 170  | 384   | 400 | 415      | 430      | 444  | 419  | 474 |
| *   |          | 46       | 65       | <b>U</b> 3 | 100      | 110      | 131  | 149 | 145  | 291 | 197  | 313  | 229         | 245        | 360  | 276 | 292  | 107  | 121      | 334 | 354      | 169      | 385  | 400   | 414 | 411      | 447      | 467  | 478  | 463 |
| *   |          | 48       | 68       | 86         | 104      | 121      | 1.34 | 133 | 172  | 144 | 205  | 221  | 234         | 254        | 270  | 287 | 301  | 329  | 125      | 151 | No.      | 184      | 400  | 416   | 413 | 448      | 464      | 480  | 496  | 512 |
| = 1 |          | 50       | 70       |            | 104      | 126      | 143  | 161 | 1.74 | 195 | 213  | 230  | <b>24</b> 7 | 264        | 283  | 297 | 314  | 33 L | 148      | 145 | 3001     | 390      | 415  | 411   | 448 | 465      | 481      | 444  | 515  | 531 |
| 2   |          | 52<br>54 | 73<br>76 | *)         | 115      | 110      | 149  | 167 | 105  | 203 | 220  | 230  | 254         | 273        | 291  | 100 | 324  | 343  | 360      | 374 | 395      | 412      | 430  | 447   | 464 | 401      | 477      | 516  | 533  | 550 |
| 5   |          | 34       | 78       | -          | 130      | 1,13     | 134  | 173 | 191  | 210 | 22   | 346  | 765         | 283        | 301  | 319 | 237  | 355  | 373      | 391 | 409      | 427      | 444  | 462   | 480 | 496      | 516      | 514  | 35 L | 549 |
| ¥   | l        | 51       |          | 101        | 134      | 144      | 141  | 170 | 304  | 417 | 3.50 | 295  | 274         | 292        | 311  | 130 | 34   | 367  | 385      | 404 | 422      | 441      | 459  | 475   | 496 | 515      | 533      | 551  | 570  | 546 |
| ₹ . |          | -        |          | ,,,        |          | 144      |      |     | 204  | 424 | 444  |      | 203         | 302        | J21  | 140 | 360  | 379  | 396      | 417 | 4.14     | 455      | 474  | 491   | 517 | 531      | 550      | 444  | 584  | 607 |

Since U is discrete, exact significance levels cannot in general be achieved. The critical values given are those whose significance levels are nearest to those stated.

One tell 2.5% Two tell 5%

| $\sim$       | 1  | 2    | *  | •  | •   |     | 7   | ŧ   | ٠   | 16  | 11  | 12  | 13  | 14  | 15  | 18  | 17  | 10  | 19  | 20  | 21  | 22  | 23         | 24  | 25  | 24  | 27  | 22  | 29  | 75  |
|--------------|----|------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-----|
| · ·          |    |      |    |    |     |     |     |     |     |     |     | _   |     |     |     |     |     |     | _   | 20  | 21  | 22  | 2)         | 24  | 25  | ;6  | 27  | 28  | 29  | :0  |
| 2            |    |      |    |    | 10  | 12  | 14  | 16  | 18  | 19  | 21  | 23  | 25  | 26  | 28  | 30  | 32  | 24  | 35  | 37  | 39  | 41  | 42         | 44  | 46  | 48  | 50  | 51  | 53  | 55  |
| 1 1          |    |      |    | 12 | 15  | 17  | 19  | 22  | 24  | 27  | 29  | 32  | 34  | 37  | 39  | 42  | 44  | 47  | 49  | 52  | 54  | 57  | 59         | 62  | 64  | 67  | 69  | 72  | 74  | :6  |
| ا ءَ ا       |    |      | 12 | 15 | 18  | 22  | 25  | 19  | 31  | 34  | 37  | 40  | 44  | 47  | 50  | 53  | 56  | 54  | 62  | 66  | 69  | 72  | 75         | 78  | 8:  | 64  | 87  | 91  | 94  | 97  |
|              |    | 10   | 15 | )B | 22  | 26  | 30  | 3.4 | 36  | 41  | 45  | 49  | 53  | 34  | 60  | 64  | 68  | 72  | 75  | 79  | 83  | #7  | 90         | 94  | 96  | 102 | 105 | 109 | 113 | 117 |
|              |    | 12   | 17 | 22 | 26  | 31  | 35  | 40  | 44  | 48  | 33  | 57  | 62  | 66  | 70  | 75  | 79  | 64  | 68  | 92  | 97  | 101 | 106        | 110 | 114 | 113 | 123 | 128 | 132 | 124 |
| 7            |    | 14   | 15 | 25 | 30  | 35  | 40  | -5  | 50  | 55  | 60  | 66  | 71  | 74  | ٠ı  | 86  | 91  | 96  | LOI | 106 | 111 | 116 | 121        | 126 | 131 | 136 | 141 | 146 | 151 | :36 |
| 0.3          | !  | 16   | 22 | 28 | 34  | 40  | 45  | 51  | 57  | 42  | 14  | 74  | 79  | 85  | 91  | 76  | 102 | 106 | 113 | 119 | 124 | 130 | 136        | 141 | 147 | 152 | 158 | 164 | 169 | 3 5 |
| 9            |    | 19   | 24 | 31 | 38  | 44  | 50  | . 7 | 63  | 69  | 76  | 2   |     | 94  |     |     |     |     |     |     |     |     |            |     |     |     |     | 182 |     |     |
| 10           |    | 19   | 27 | 34 | 41  | 46  | 55  | € 2 | 69  | 76  | 0.3 | 90  |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     | 199 |     |     |
| 11           |    | 21   | 29 | 37 | 45  | 53  | 60  | ÷8  | 76  | 93  | 71  | 98  |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     | 217 |     |     |
| 12           |    | 23   | 32 | 40 | 49  | 57  | €6  | *4  | 82  | 90  | 9.8 | 106 | 334 | 122 | 130 | 139 | 147 | 155 | 163 | 171 | 179 | 167 | 195        | 503 | 211 | 219 | 227 | 235 | 243 | 141 |
| 13           |    | 25   | 34 | 44 | 53  | 62  | 71  | ^9  | 88  |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     | 252 |     |     |
| 14           |    | 26   | 37 | 47 | 5£  | 66  | 76  | 35  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     | 270 |     |     |
| 15           |    | 28   | 19 | 50 | 60  | 70  | 81  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     | 207 |     |     |
| 18           |    | 30   | 42 | 53 | 64  | 75  | 66  |     | 107 |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| 17           |    | 32   | 44 | 56 | 68  | 79  |     |     | 113 |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| 14           |    | 34   | 4. | 59 | 72  | 84  |     |     | 119 |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| 19           |    | 35   | 49 | 62 | 75  | 86  |     |     | 176 |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| <b>*</b>     | 20 | 37   | 52 | 66 | 79  |     | 106 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| 21           | 71 | 39   | 54 | 69 |     |     | 111 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| .≖.          | 22 | 43   | 57 | ?2 |     |     | 116 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| <b>D</b>     | 23 | 42   | 59 | 75 |     |     | 121 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
|              | 24 | 44   | 62 | 70 |     |     | 126 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
|              | 25 | 46   | 64 | •1 |     |     | 131 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| ) <u>¥</u> ; | 26 | 48   | 67 | 84 |     |     | 136 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
|              | 27 | 50   | 44 |    |     |     | 141 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
| E 1          | 26 | 31   | 72 |    |     |     | 146 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
|              | 29 | 53 - |    |    |     |     | 151 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |            |     |     |     |     |     |     |     |
|              | 30 | 55   | 76 | 77 | 117 | 136 | 156 | 175 | 194 | 233 | 232 | 751 | 269 | 268 | 307 | 125 | 344 | 367 | 361 | 799 | 410 | 436 | <u> 4×</u> | 473 | 491 | 510 | 320 | 346 | 364 | 263 |

One tall \$% Two tall 10%

| $\sim$  | 1   | 7        | 3        | •        |     |          | 7        | •    |          | 10   | .11  | 12  | 13   | 14  | 16  | 14  | 17   | 10   | -    | 24  | ž   | 2   | zp  | *          | *   | =   | 27  | *    | 29         | 20  |
|---------|-----|----------|----------|----------|-----|----------|----------|------|----------|------|------|-----|------|-----|-----|-----|------|------|------|-----|-----|-----|-----|------------|-----|-----|-----|------|------------|-----|
|         | Γ   |          |          |          |     |          |          |      |          | 10   | 11   | 12  | 13   | 14  | 15  | 16  | 17   | 18   | 19   | 20  | 21  | 32  | 23  | 24         | 25  | 24  | 27  | 28   | 28         |     |
| z       |     |          |          |          | 10  | 12       | 13       | 15   | 17       | 10   | 20   | 22  | 23   | 25  | 27  | 20  | 30   | 32   | 23   | 35  | 37  | 39  | 40  | 42         | 44  | 45  | 47  | 49   | 50         | 52  |
| _ [ a ] | 1   | 6        | 9        | 11       | 14  | 16       | 16       | 21   | 23       | 25   | 26   | 30  | 32   | 25  | 37  | 39  | 42   | 44   | 46   | 49  | 51  | 51  | 56  | 58         | 60  | 63  | 65  | • 7  | 70         | 72  |
| ] • [   | 1   |          | 11       | 14       | 17  | 20       | 23       | 26   | 79       | 32   | 35   | 34  | 41   | 44  | 47  | 50  | 53   | 54   | 59   | 62  | 64  | 60  | 71  | 74         | 77  | 80  | •)  | 85   | 40         | 91  |
| b       | l   | LO       | 14       | 17       | 23  | 25       | 20       | 32   | 35       | 39   | - 43 | 46  | 50   | 51  | 57  | 61  | н    | ы    | 71   | 75  | 76  | #2  | 1   | <b>\$9</b> | 93  | 96  | 100 |      | 107        |     |
| 1 !     | l   | 12       | 16       | 20       | 25  | 29       | 33       | 17   | 42       | **   | 50   | 54  | - 59 | 63  | 47  | 71  | 75   | 79   | 43   |     | 92  | *   | 100 |            | 109 | 173 | 137 |      | 125        |     |
| 1 3 1   | l   | 13       | 18       | 23       | 28  | 33       | 30       | 43   | 48       | \$2  | 57   | 62  | 67   | 72  | 76  | *1  | *    | . 91 | . ** |     |     |     |     |            |     |     |     |      | 143        |     |
| •       | l   | 15       | 21       | 26       | 32  | 37       | 43       | 49   | 54       | 59   | - 64 | 70  | 75   | 11  |     |     | . 97 |      |      |     |     |     |     |            |     |     |     |      | 161        |     |
| 1       | 10  | 17       | 33       | 29       | 35  | 42       | 48       | 34   | 60       | 72   | 72   | 75  | -    | -   | 105 | 112 |      |      |      |     |     |     |     |            |     |     |     |      | 179<br>197 |     |
| 117     | lii | 18<br>20 | 25<br>28 | 32<br>35 | 43  | 46<br>50 | 52<br>57 | 37   | 66<br>72 | 72   | 79   | -   | 100  |     |     |     |      |      |      |     |     |     |     | 179        |     |     |     |      |            |     |
| l ü     | 1:3 | 22       | 30       | 75       |     | 24       | 62       | 70   | 72       | - 2  |      | 101 |      |     |     |     |      |      |      | 163 |     |     |     |            |     |     |     |      | 232        |     |
| 13      | 13  | 23       | 32       | ~        | 50  | -        | -        | 75   | - 22     | - 5  |      | 104 |      |     |     |     |      |      |      |     |     |     |     | 200        |     |     |     |      | 250        |     |
| 14      | 14  | 25       | 33       | 44       | 53  | 6        | 72       | - 41 | 10       | - 22 | 105  | 117 |      |     |     |     |      |      |      |     |     |     |     |            |     |     |     |      | 247        |     |
| 11      | 15  | 22       | 32       | 47       | 52  | 62       | 76       | -    | 46       |      |      |     |      |     |     |     |      |      |      |     |     |     |     |            |     |     |     |      | 285        |     |
| 14      | 16  | 26       | 35       | 50       | 61  | 71       | B1       | 91   | 102      | 112  | 122  | 132 | 147  | 152 | 162 | 172 | LBZ  | 197  | 202  | 212 | 222 | 232 | 242 | 252        | 262 | 272 | 282 | 292  | 302        | 312 |
| 17      | 17  | 30       | 42       | 51       | 64  | 75       | 86       | 97   | LOG      | 114  | 129  | 140 | 150  | 161 | 172 | 182 | 193  | 20)  | 214  | 225 | 235 | 246 | 254 | 267        | 277 | 340 | 298 | 309  | 319        | 330 |
| 148     | 18  | 32       | 44       | 56       | 44  | 79       | 91       |      |          |      |      |     |      |     |     |     |      |      |      |     |     |     |     |            | 292 | 14) | 313 | 126  | 337        | 248 |
| 79      | 19  | "        | 44       | 59       | 71  | 83       | *        |      |          |      |      |     |      |     |     |     |      |      |      | 249 |     |     |     |            | 107 | 319 | 331 | 142  | 354        | 366 |
| 20      | 50  | 25       | 49       | 62       | 75  | 84       |          |      |          |      |      |     |      |     |     |     |      |      |      | 261 |     |     |     |            | 321 |     |     |      | 371        |     |
| 21      | 21  | 37       | 51       | 65       | ?#  | 92       |          |      |          |      |      |     |      |     |     |     |      |      |      | 274 |     |     |     |            |     |     |     |      | 389        |     |
| 22      | 22  | 19       | 53       | 66       | 8.2 |          |          |      |          |      |      |     |      |     |     |     |      |      |      | 204 |     |     |     |            |     |     |     |      | 406        |     |
| 2       | 23  | 40       | 56       | 71       | *   |          |          |      |          |      |      |     |      |     |     |     |      |      |      |     |     |     |     | 354        |     |     | 150 | 409  | 423        |     |
| 12      | 24  | 42       | 58       | 74       |     |          |          |      |          |      |      |     |      |     |     |     |      |      |      | 323 |     |     |     |            | 103 | 377 | 412 | - 44 | 458        |     |
| 5       | 26  | 45       | 60       | 77       | 31  |          |          |      |          |      |      |     |      |     |     |     |      |      |      | 335 |     |     | 102 | 303        | 377 | *** | 424 | 450  | 475        |     |
| 177     | 27  | 47       | **       | 43       |     |          |          |      |          |      |      |     |      |     |     |     |      |      |      | 347 |     |     |     |            | 420 | 444 | 460 | 434  | 492        |     |
| 15      | 25  | 40       | 67       | 25       | 101 |          |          |      |          |      |      |     |      |     |     |     |      |      |      | 359 |     |     |     | 426        | 443 | 440 |     |      | 510        |     |
| 20      | 36  | 50       | 70       | 44       | 107 |          |          |      |          |      |      |     |      |     |     |     |      |      |      |     |     |     |     |            |     |     |     |      | 527        |     |
|         | 25  | 52       | 72       |          |     |          |          |      |          |      |      |     |      |     |     |     |      |      |      |     |     |     |     |            |     |     |     |      |            | 562 |

UPPER TAIL PROBABILITIES FOR FRIEDMAN'S S STATISTIC

Source: Hollander and Wolfe, 1973, 366-71

90

$$k=3, n=2(1)13; k=4, n=2(1)8; k=5, n=3,4,5$$

For given k and n, the tabled entry for the point x is  $P_O(S > x)$ . Under these conditions, if x is such that  $P_O(S > x) = a$ , then s(a, k, n) = x. For given k and n, the entries are terminated at  $x_k$ , n, where  $x_k$ , n is the smallest value of x such that  $P_O(S > x)$  is zero to three decimal places.

| k =   | 3, n = 2                              | k =    | 3, n = 5         | k =    | 3, n = 7                | k=    | 3, n = 8       |
|-------|---------------------------------------|--------|------------------|--------|-------------------------|-------|----------------|
| ×     | $P_{o}\{S > x\}$                      | *      | $P_{o}\{S>x\}$   | ×      | $P_{o}(S > x)$          | x     | $P_{o}\{s>x\}$ |
| 0     | 1,000                                 | .0     | 1.000            | .000   | 1,000                   | 5.25  | .079           |
| 1     | .833                                  | .4     | .954             | .286   | .964                    | 6.25  | .047           |
| 3     | <b>.500</b>                           | 1.2    | .691             | .857   | .768                    | 6.75  | .038           |
| 4     | .167                                  | 1.6    | .522             | 1.143  | .620                    | 7.00  | .030           |
|       |                                       | 2.8    | .367             | 2.000  | .486                    | 7.75  | .018           |
|       |                                       | 3.6    | .182             | 2.571  | .305                    | 9.00  | .010           |
| k:    | : 3, n = 3                            | 4.8    | .124             | 3.429  | .237                    | 9.25  | .008           |
|       |                                       | 5.2    | .093             | 3.714  | .192                    | 9.75  | .005           |
| ×     | $P_{o}\{S > x\}$                      | 6.4    | .039             | 4.571  | .112                    | 10.75 | .002           |
|       |                                       | 7.6    | .024             | 5.429  | .085                    | 12.00 | .001           |
| .000  | 1,000                                 | 8.4    | .008             | 6.000  | .051                    | 12.25 | .001           |
| .667  | .944                                  | 10.0   | .001             | 7.143  | .027                    | 13.00 | .900           |
| 2.000 | .528                                  |        |                  | 7.714  | .021                    |       |                |
| 2.667 | .361                                  |        |                  | 8.000  | .016                    |       |                |
| 4.667 | .194                                  | k =    | 3, n = 6         | 8.857  | .008                    | k =   | 3, π ≈ 9       |
| 6.000 | .028                                  |        | <del></del>      | 10.286 | .004                    |       |                |
|       | · · · · · · · · · · · · · · · · · · · | x      | $P_{o}\{S > x\}$ | 10.571 | .003                    | x     | $P_{o}\{S>x$   |
|       |                                       |        |                  | 11.143 | .001                    |       |                |
| k:    | = 3, n = 4                            | .000   | 1.000            | 12.286 | .000                    | .000  | 1.000          |
|       |                                       | ,333   | .956             |        |                         | .222  | .971           |
| ×     | $P_{o}\{S \ge x\}$                    | 1.000  | .740             | k:     | - 3, n = 8              | .667  | .814           |
|       | <del></del>                           | 1.333  | .570             |        | <del></del>             | .889  | .685           |
| .0    | 1.000                                 | 2.333  | .430             | ×      | $P_{o}\left(S>x\right)$ | 1.556 | <b>.569</b>    |
| .5    | .931                                  | 3.000  | ,252             |        |                         | 2.000 | .398           |
| 1.5   | ,653                                  | 4.000  | .184             | .00    | 1.000                   | 2.667 | .328           |
| 2.0   | .431                                  | 4.333  | .142             | .25    | .967                    | 2.889 | .271           |
| 3.5   | .273                                  | 5.333  | .072             | .75    | .794                    | 3.556 | .18'           |
| 4.5   | .1 25                                 | 6.333  | .052             | 1.00   | .654                    | 4.222 | .154           |
| 6.0   | .069                                  | 7,000  | .029             | 1.75   | .531                    | 4.667 | .10'           |
| 6.5   | .042                                  | 8.333  | .012             | 2,25   | .355                    | 5.556 | .06!           |
| 8.0   | .005                                  | 9.000  | .008             | 3.00   | .285                    | 6.000 | .05°           |
|       |                                       | 9.333  | ,006             | 3.25   | .236                    | 6.222 | .04(           |
|       |                                       | 10.333 | .002             | 4.00   | .149                    | 6.889 | .031           |
|       |                                       | 12.000 | .000             | 4.75   | .120                    | 8,000 | .015           |

| _ k =        | 3, n = 9                  | k =          | 3, n = 11      | k =    | 3, n = 12      | k =          | 3, n = 13      |
|--------------|---------------------------|--------------|----------------|--------|----------------|--------------|----------------|
| ×            | $P_{o}\left\{S>x\right\}$ |              | $P_{o}(s > x)$ | х      | $P_{O}(S > x)$ | *            | $P_{o}(S > x)$ |
| 8.222        | .016                      | .000         | 1.000          | 1.167  | .654           | 1.385        | 527            |
| 8.667        | .010                      | .182         | .976           | 1.500  | .500           | 1.846        | .463           |
| 9.556        | .006                      | .545         | .844           | 2,000  | .434           | 2.000        | .412           |
| 10.667       | .004                      | .727         | .732           | 2.167  | .383           | 2.462        | .316           |
| 10.889       | .003                      | 1.273        | .629           | 2.667  | .287           | 2.923        | .278           |
| 11.556       | .001                      | 1.636        | .470           | 3.167  | .249           | 3.231        | ,217           |
| 12.667       | .001                      | 2.182        | .403           | 3.500  | .191           | 3.846        | .165           |
| 13.556       | .000                      | 2.364        | .351           | 4.167  | .141           | 4,154        | .145           |
|              |                           | 2.909        | .256           | 4,500  | .123           | 4.308        | .129           |
| k = .        | 3, n = 10                 | 3.455        | .219           | 4.667  | .108           | 4.769        | .098           |
|              | <del></del>               | 3,818        | .163           | 5.167  | .080.          | 5.538        | .073           |
| x            | $P_{o}\{S > x\}$          | 4,545        | .116           | 6.000  | .058           | 5.692        | .065           |
|              | <del></del>               | 4.909        | .100           | 6.167  | .051           | 6.000        | .050           |
| .0           | 1.000                     | 5.091        | .087           | 6.500  | .038           | 6.615        | .037           |
| .2           | .974                      | 5.636        | .062           | 7.167  | .027           | 7.385        | .028           |
| .6           | .830                      | 6.545        | .043           | 8.000  | .020           | 7.538        | ,025           |
| .8           | .710                      | 6.727        | .038           | 8.167  | .017           | 8.000        | .016           |
| 1.4          | .601                      | 7.091        | .027           | 8.667  | .011           | 8.769        | .012           |
| 1.8          | .436                      | 7.818        | .019           | 9.500  | .007           | 9.385        | .009           |
| 2,4          | .368                      | 8.727        | .013           | 10.167 | .005           | 9.692        | .007           |
| 2.6          | .316                      | 8.909        | .011           | 10,500 | .004           | 9.846        | .005           |
| 3.2          | .222                      | 9.455        | .006           | 10.667 | ,003           | 10.308       | .004           |
| 3.8          | .187                      | 10.364       | .004           | 11.167 | .002           | 11.231       | .003           |
| 4.2          | .135                      | 11.091       | .003           | 12.167 | .002           | 11.538       | .002           |
| 5.0          | .092                      | 11.455       | .002           | 12.500 | .001           | 11.692       | .002           |
| 5.4          | .078                      | 11.636       | <b>.0</b> 01   | 12.667 | .001           | 12.154       | .001           |
| 5.6          | .066                      | 12.182       | .001           | 13.167 | .001           | 12.462       | .001           |
| 6.2          | .046                      | 13.273       | , <b>00</b> 1  | 13.500 | .000           | 12.923       | .001           |
| 7.2          | .030                      | 13.636       | .000           |        |                | 14.000       | .001           |
| 7.4          | .026                      |              |                |        |                | 14.308       | .000           |
| 7.8          | .018                      |              |                | k =    | 3, n = 13      |              |                |
| 8.6          | .012                      | k =          | 3, n = 12      |        | <del></del>    |              |                |
| 9.6          | .007                      |              | - (- )         | x      | $P_{o}\{S>x\}$ | k =          | 4,n = 2        |
| 9.8          | .006                      | ×            | $P_{o}(S > x)$ |        |                |              |                |
| 10.4         | .003                      |              |                | .000   | 1.000          | x            | $P_{o}\{S>x\}$ |
| 11.4<br>12.2 | .002                      | ,000         | 1.000          | .154   | .980           | <del> </del> |                |
| 12.6         | .001<br>.001              | .167<br>.500 | .978           | .462   | .866           | .0           | 1.000          |
| 12.8         | .001                      | .500<br>.667 | .856           | .615   | .767           | .6           | .958           |
| 13.4         | .000                      | .007         | .751           | 1.077  | .675           | 1.2          | .833           |
|              | .000                      |              |                |        |                |              |                |

| k =         | 4,n = 2                    | k =  | 4, n = 4                           | k =   | 4, n = 5                  | k =        | 4, n = 6                |
|-------------|----------------------------|------|------------------------------------|-------|---------------------------|------------|-------------------------|
| ×           | $P_{o}\left\{ S>x\right\}$ | ×    | $P_{\alpha}\left\{S\geq x\right\}$ | x     | $P_{o}(S \ge x)$          | ×          | $P_{o}\left(S>x\right)$ |
| 1.8         | .792                       | 2.1  | .649                               | 3.00  | .445                      | 1.4        | .772                    |
| 2.4         | .625                       | 2.4  | .524                               | 3.24  | <b>.</b> 408              | 1.6        | .679                    |
| 3.0         | .542                       | 2.7  | .508                               | 3.48  | .372                      | 1.8        | .668                    |
| 3.6         | .458                       | 3.0  | .432                               | 3.96  | .298                      | 2.0        | .609                    |
| 4.2         | .375                       | 3.3  | .389                               | 4.20  | .260                      | 2.2        | .574                    |
| 4.8         | .208                       | 3.6  | ,355                               | 4.44  | .226                      | 2.4        | .541                    |
| 5.4         | .167                       | 3.9  | .324                               | 4.92  | .210                      | 2.6        | .512                    |
| 6.0         | .042                       | 4.5  | .242                               | 5.16  | .162                      | 3.0        | .431                    |
|             | ,,,,,,                     | 4.8  | ,200                               | 5.40  | .151                      | 3.2        | .386                    |
|             |                            | 5.1  | .190                               | 5.88  | .123                      | 3.4        | .375                    |
| k:          | = 4, n = 3                 | 5,4  | .158                               | 6.12  | .107                      | 3.6        | .338                    |
|             | 4,21                       | 5.7  | .141                               | 6.36  | .093                      | 3.8        | .317                    |
| ×           | $P_{o}\left\{S>x\right\}$  | 6.0  | .105                               | 6.84  | .075                      | 4.0        | .270                    |
|             | 0 (5 7 7                   | 6.3  | .094                               | 7.08  | .067                      | 4.2        | .256                    |
| .2          | 1.000                      | 6.6  | .077                               | 7.32  | .055                      | 4.4        | .230                    |
| .6          | .958                       | 6.9  | .068                               | 7.80  | .044                      | 4.6        | .218                    |
| 1.0         | .910                       | 7.2  | .054                               | 8.04  | .034                      | 4.8        | .197                    |
| 1.8         | .727                       | 7.5  | .052                               | 8.28  | .031                      | 5.0        | .194                    |
| 2.2         | ,608                       | 7.8  | .036                               | 8.76  | .023                      | 5.2        | .163                    |
| 2.6         | .524                       | 8.1  | .033                               | 9.00  | .020                      | 5.4        | .155                    |
| 3.4         | .446                       | 8.4  | .019                               | 9.24  | .017                      | 5.6        | .127                    |
| 3.8         | 342                        | 8.7  | .014                               | 9.72  | .012                      | 5.8        | .114                    |
| 4.2         | .300                       | 9.3  | .012                               | 9.96  | .009                      | 6.2        | .108                    |
| 5.0         | .207                       | 9.6  | .007                               | 10.20 | .007                      | 6.4        | .089                    |
| 5.4         | .175                       | 9.9  | .006                               | 10.68 | .005                      | 6.6        | .088                    |
| 5.8         | .148                       | 10.2 | .003                               | 10.92 | .003                      | 6.8        | .073                    |
| 6.6         | .075                       | 10.8 | ,002                               | 11.16 | ,002                      | 7.0        | .066                    |
| 7.0         | .054                       | 11.3 | .001                               | 11.64 | .002                      | 7.2        | .060                    |
| 7.4         | .033                       | 12.0 | .000                               | 11.88 | .002                      | 7.4        | .056                    |
| 8.2         | .017                       |      |                                    | 12.12 | .901                      | 7.6        | .043                    |
| 9.0         | .002                       |      |                                    | 12.60 | .001                      | 7.8        | .041                    |
| <del></del> |                            | k:   | ±4, n ≠ 5                          | 12.84 | .000                      | 8.0        | .037                    |
|             |                            |      | .,                                 |       | <del></del>               | 8.2        | .035                    |
| k           | = 4, n = 4                 | ×    | $P_{o}(S > x)$                     | k ·   | * 4, n = 6                | 8.4        | .032<br>.029            |
| x           | $P_{o}\left(S>x\right)$    | .12  | 1,000                              | x     | $P_{o}\left\{S>x\right\}$ | 8.6<br>8.8 | .023                    |
|             |                            | .36  | .975                               |       |                           | 9.0        | .022                    |
| .0          | 1,000                      | .60  | .944                               | .0    | 1.000                     | 9.4        | .017                    |
| .3          | .992                       | 1.08 | .857                               | .2    | .996                      | 9.6        | .014                    |
| .6          | .928                       | 1.32 | . <b>77</b> 1                      | .4    | .957                      | 9.8        | .013                    |
| .9          | .900                       | 1.56 | .709                               | .6    | .940                      | 10.0       | .010                    |
| 1.2         | .800                       | 2.04 | .652                               | .8.   | .874                      | 10.2       | .010                    |
| 1.5         | .754                       | 2.28 | .561                               | 1.0   | .844                      | 10.4       | .009                    |
| 1.8         | .677                       | 2.52 | .521                               | 1.2   | .789                      | 10.6       | .007                    |

| k = 4 | 4, n = 6                              | k =    | 4, n = 7                  |      | 4, n = 8                | k =   | 4, n = 8     |
|-------|---------------------------------------|--------|---------------------------|------|-------------------------|-------|--------------|
| x     | $P_{\mathcal{O}}\left\{S > x\right\}$ | *      | $P_{O}\left\{S>x\right\}$ | *    | $P_{O}\left(S>x\right)$ | x     | $P_0(S > x)$ |
| 0.8   | .006                                  | 5.229  | .161                      | .00  | 1.000                   | 6.60  | .081         |
| 1.0   | .006                                  | 5.571  | .143                      | .15  | .998                    | 6.75  | .079         |
| 1.4   | .004                                  | 5.743  | .122                      | .30  | .971                    | 7.05  | .068         |
| 1.6   | .003                                  | 5.914  | .118                      | .45  | .959                    | 7.20  | .060         |
| 1.8   | .003                                  | 6.257  | .100                      | .60  | .912                    | 7.35  | .058         |
| 2.0   | .002                                  | 6.429  | .093                      | .75  | .890                    | 7.50  | .051         |
| 2,2   | .002                                  | 6.600  | .085                      | .90  | .849                    | 7.65  | .049         |
| 2.6   | .001                                  | 6.943  | .073                      | 1.05 | .837                    | 7.80  | .046         |
| 2.8   | .001                                  | 7.114  | .063                      | 1.20 | .765                    | 7.95  | .042         |
| 3.0   | .001                                  | 7.286  | .056                      | 1.35 | .757                    | 8.10  | .038         |
| 3.2   | .001                                  | 7.629  | .052                      | 1.50 | .710                    | 8.25  | .037         |
| 3.4   | .001                                  | 7.800  | .041                      | 1.65 | .681                    | 8.55  | .031         |
| 3.6   | .000                                  | 7.971  | .038                      | 1.80 | .654                    | 8.70  | .028         |
|       |                                       | 8.314  | .035                      | 1.95 | .629                    | 8.85  | .025         |
|       |                                       | 8.486  | .033                      | 2.25 | -558                    | 9.00  | .023         |
| k = . | 4, n = 7                              | 8.657  | .030                      | 2.40 | .517                    | 9.15  | .022         |
|       |                                       | 9.000  | .023                      | 2.55 | .507                    | 9.45  | .019         |
| x     | $P_{o}(S > x)$                        | 9.171  | .020                      | 2.70 | .471                    | 9.60  | .016         |
| _     |                                       | 9.343  | .017                      | 2.85 | .450                    | 9.75  | .015         |
| .086  | 1.000                                 | 9.686  | .015                      | 3.00 | .404                    | 9.90  | .014         |
| ,257  | .984                                  | 9.857  | .013                      | 3.15 | .389                    | 10.05 | .014         |
| .429  | .963                                  | 10.029 | .012                      | 3.30 | .362                    | 10.20 | .011         |
| .771  | .906                                  | 10.371 | .010                      | 3.45 | .350                    | 10.35 | .011         |
| .943  | .845                                  | 10.543 | .009                      | 3.60 | .326                    | 10.50 | .009         |
| 1.114 | .800                                  | 10.714 | .008                      | 3.75 | .323                    | 10.65 | .009         |
| 1.457 | .757                                  | 11.057 | .007                      | 3.90 | .287                    | 10.80 | .008         |
| 1.629 | .685                                  | 11.229 | .005                      | 4.05 | .278                    | 10.95 | .008         |
| 1.800 | .652                                  | 11.400 | .004                      | 4.20 | .242                    | 11.10 | .006         |
| 2.143 | .590                                  | 11.743 | .004                      | 4.35 | .226                    | 11.25 | .006         |
| 2.314 | .557                                  | 11.914 | .003                      | 4.65 | .219                    | 11.40 | .005         |
| 2.486 | .524                                  | 12.086 | .003                      | 4.80 | .193                    | 11.55 | .005         |
| 2.829 | .456                                  | 12.429 | .002                      | 4.95 | .191                    | 11.85 | .004         |
| 3.000 | .418                                  | 12.600 | .002                      | 5.10 | .168                    | 12.00 | .004         |
| 3.171 | .382                                  | 12.771 | .002                      | 5.25 | .158                    | 12.15 | .004         |
| 3.514 | .366                                  | 13.114 | .001                      | 5.40 | .148                    | 12.30 | .003         |
| 3.686 | .310                                  | 13.286 | .001                      | 5.55 | .141                    | 12.45 | .003         |
| 3.857 | .297                                  | 13.457 | .001                      | 5.70 | .121                    | 12.60 | .002         |
| 4.200 | .262                                  | 13.800 | .001                      | 5.85 | .117                    | 12.75 | .002         |
| 4.371 | .239                                  | 13.971 | .001                      | 6.00 | .110                    | 12.90 | .002         |
| 4.543 | .220                                  | 14.143 | <b>.0</b> 01              | 6.15 | .106                    | 13.05 | .002         |
| 4.886 |                                       | 14,486 | .000                      | 6.30 | .100                    | 13.20 | .002         |
| 5.057 | .180                                  |        |                           | 6.45 | .094                    | 13.35 | 001          |
|       |                                       |        |                           |      |                         | 13.50 | .001         |

| k = 4 | , n = 8                   | k =    | 5, n = 3                                | k =  | 5, n = 4                | k =  | S, n = 4                   |
|-------|---------------------------|--------|-----------------------------------------|------|-------------------------|------|----------------------------|
| x     | $P_{O}\left\{S>x\right\}$ |        | $P_{o}\left\{S>x\right\}$               | ×    | $P_{o}\left(S>x\right)$ | x    | $P_{\alpha}(S \ge x)$      |
| 13.65 | .001                      | 8.000  | ,063                                    | 4.8  | .329                    | 13.6 | .001                       |
| 3.80  | .001                      | 8.267  | .056                                    | 5.0  | .317                    | 13.8 | .000,                      |
| 13,95 | .001                      | 8.533  | .045                                    | 5.2  | .286                    |      | ·                          |
| 14.25 | .001                      | 8.800  | .038                                    | 5.4  | .275                    |      |                            |
| 14.40 | .001                      | 9.067  | .028                                    | 5.6  | .249                    | k =  | 5, n = 5                   |
| 14.55 | .001                      | 9.333  | .026                                    | 5.8  | .227                    |      |                            |
| 14.70 | .001                      | 9.600  | .017                                    | 6.0  | .205                    | ×    | $P_{o}\left\{ S>x\right\}$ |
| 14.85 | .000                      | 9.867  | .015                                    | 6.2  | .197                    |      |                            |
|       |                           | 10.133 | .008                                    | 6.4  | .178                    | .00  | 1.000                      |
|       |                           | 10.400 | .005                                    | 6.6  | .161                    | .16  | 1.000                      |
| k = 5 | i, n = 3                  | 10.667 | .004                                    | 6.8  | .143                    | .32  | .994                       |
|       | <del></del>               | 10.933 | .003                                    | 7.0  | .13 <del>6</del>        | .48  | .986                       |
| x     | $P_{o}\left(S>x\right)$   | 11.467 | .001                                    | 7.2  | .121                    | .64  | .972                       |
|       |                           | 12.000 | .000                                    | 7.4  | .113                    | .80  | <b>.9</b> 58               |
| .000  | 1.000                     |        |                                         | 7.6  | .095                    | .96  | .932                       |
| .267  | 1.000                     |        |                                         | 7.8  | .086                    | 1.12 | .925                       |
| .533  | .988                      | k =    | 5, n = 4                                | 8.0  | .080                    | 1.28 | .891                       |
| .800  | .972                      |        |                                         | 8.2  | .072                    | 1.44 | .865                       |
| 1.067 | .941                      | x      | $P_{\mathcal{O}}\left\{S\geq x\right\}$ | 8.4  | .063                    | 1.60 | .8-12                      |
| 1.333 | .914                      |        |                                         | 8.6  | .060                    | 1.76 | .823                       |
| 1.600 | .845                      | .0     | 1.000                                   | 8.8  | .049                    | 1.92 | .789                       |
| 1.867 | .831                      | .2     | .999                                    | 9.0  | .043                    | 2.08 | .765                       |
| 2.133 | .768                      | .4     | <b>.99</b> 1                            | 9.2  | .038                    | 2.24 | .721                       |
| 2.400 | .720                      | .6     | .980                                    | 9.4  | .035                    | 2.40 | ,707                       |
| 2.667 | .682                      | .8     | .959                                    | 9.6  | .028                    | 2.56 | .679                       |
| 2.933 | ,649                      | 1.0    | .940                                    | 9.8  | .025                    | 2.72 | ,657                       |
| 3.200 | .595                      | 1.2    | .906                                    | 10.0 | .021                    | 2.88 | .613                       |
| 3.467 | .559                      | 1.4    | .895                                    | 10.2 | .019                    | 3.04 | .594                       |
| 3.733 | .493                      | 1.6    | .850                                    | 10.4 | .017                    | 3.20 | .562                       |
| 4.000 | .475                      | 1.8    | .815                                    | 10.6 | .014                    | 3.36 | .535                       |
| 4.267 | .432                      | 2.0    | .785                                    | 10.8 | .011                    | 3.52 | .518                       |
| 4.533 | .406                      | 2.2    | .759                                    | 11.0 | .010                    | 3.68 | ,494                       |
| 4.800 | .347                      | 2.4    | .715                                    | 11.2 | .008                    | 3.84 | .454                       |
| 5.067 | .326                      | 2.6    | .685                                    | 11.4 | .007                    | 4.00 | ,443                       |
| 5.333 | .291                      | 2.8    | .630                                    | 11.6 | .006                    | 4.16 | .410                       |
| 5.600 | .253                      | 3.0    | .612                                    | 11.8 | .005                    | 4.32 | .398                       |
| 5.867 | .236                      | 3.2    | .579                                    | 12.0 | .004                    | 4.48 | .371                       |
| 6.133 | .213                      | 3.4    | .552                                    | 12.2 | .004                    | 4.64 | .349                       |
| 6.400 | .172                      | 3.6    | .500                                    | 12.4 | .003                    | 4.80 | .325                       |
| 6.667 | .163                      | 3.8    | .479                                    | 12.6 | .002                    | 4.96 | .316                       |
| 6.933 | .127                      | 4.0    | .442                                    | 12.8 | .002                    | 5.12 | .295                       |
| 7.200 | .117                      | 4.2    | .413                                    | 13.0 | .001                    | 5.28 | 275                        |
| 7.467 | .096                      | 4.4    | .395                                    | 13.2 | .001                    | 5.44 | .255                       |
|       |                           |        | .370                                    |      | .001                    | 5.60 | .246                       |

| k =  | 5, n = 5       | k =   | 5, n = 5                      | k =   | 5, n = 5                | k =   | 5, n = 5       |
|------|----------------|-------|-------------------------------|-------|-------------------------|-------|----------------|
| x    | $P_{o}(S > x)$ | ×     | $P_{o}\left\{S\geq x\right\}$ | x     | $P_{o}\left(S>x\right)$ | ×     | $P_{o}(S > x)$ |
| 5.76 | .227           | 8.16  | .077                          | 10.56 | .019                    | 12.96 | .003           |
| 5.92 | .218           | 8.32  | .073                          | 10.72 | .018                    | 13.12 | .003           |
| 6.08 | .195           | 8.48  | .066                          | 10.88 | .015                    | 13.28 | .003           |
| 6.24 | .183           | 8.64  | .058                          | 11.04 | .013                    | 13.44 | .002           |
| 6.40 | .174           | 8.80  | .056                          | 11.20 | .012                    | 13.60 | .002           |
| 6.56 | .164           | 8.96  | .049                          | 11.36 | .012                    | 13.76 | .002           |
| 6.72 | .151           | 9.12  | .046                          | 11.52 | .010                    | 13.92 | .002           |
| 6.88 | .146           | 9.28  | .042                          | 11.68 | .009                    | 14.08 | .001           |
| 7.04 | .130           | 9.44  | .038                          | 11.84 | .008                    | 14.24 | .001           |
| 7.20 | .121           | 9.60  | .035                          | 12.00 | .007                    | 14.40 | .001           |
| 7.36 | .112           | 9.76  | .032                          | 12.16 | .006                    | 14.56 | .001           |
| 7.52 | .107           | 9.92  | .029                          | 12.32 | .006                    | 14.72 | .001           |
| 7.68 | .094           | 10.08 | .026                          | 12.48 | .005                    | 14.88 | .001           |
| 7.84 | .089           | 10.24 | .024                          | 12.64 | .004                    | 15.04 | .000           |
| 8.00 | .082           | 10.40 | .022                          | 12.80 | .004                    |       |                |

CRITICAL VALUES FUR PAGE'S L STATISTIC

Source: Rollander and Wolfe, 1973, 372

 $k=3, \qquad n=2(1)20;$   $k=4(1)8, \quad n=2(1)12$  For given k, n, and  $\alpha$ , the tabled entry is  $\ell(\alpha,k,n)$  satisfying  $P_0\left\{L > \ell(\alpha,k,n)\right\} = \alpha$ .

|                            |      | 3   |     |      | 4        |     |      | 5   |     |
|----------------------------|------|-----|-----|------|----------|-----|------|-----|-----|
| п                          | .001 | .01 | .05 | .001 | α<br>.01 | .05 | .001 | .01 | .05 |
| -,                         |      |     | 28  |      | 60       | 58  | 109  | 106 | 103 |
| 2                          |      | 42  | 41  | 89   | 87       | 84  | 160  | 155 | 150 |
| ă                          | 56   | 55  | 54  | 117  | 114      | 111 | 210  | 204 | 197 |
| 3                          | 70   | 68  | 66  | 145  | 141      | 137 | 259  | 251 | 244 |
| š                          | 83   | 81  | 79  | 172  | 167      | 163 | 307  | 299 | 291 |
| 7                          | 96   | 93  | 91  | 198  | 193      | 189 | 355  | 346 | 338 |
| Ŕ                          | 109  | 106 | 104 | 225  | 220      | 214 | 403  | 393 | 384 |
| 4<br>5<br>6<br>7<br>8<br>9 | 121  | 119 | 116 | 252  | 246      | 240 | 451  | 441 | 431 |
| 10                         | 134  | 131 | 128 | 278  | 272      | 266 | 499  | 487 | 477 |
| ii                         | 147  | 144 | 141 | 305  | 298      | 292 | 546  | 534 | 523 |
| 12                         | 160  | 156 | 153 | 331  | 324      | 317 | 593  | 581 | 570 |
| 13                         | 172  | 169 | 165 |      |          | •   |      |     |     |
| 14                         | 185  | 181 | 178 |      |          |     |      |     |     |
| 15                         | 197  | 194 | 190 |      |          |     |      |     |     |
| 16                         | 210  | 206 | 202 |      |          |     |      |     |     |
| 17                         | 223  | 218 | 215 |      |          |     |      |     |     |
| 18                         | 235  | 231 | 227 |      |          |     |      |     |     |
| 19                         | 248  | 243 | 239 |      |          |     |      |     |     |
| 20                         | 260  | 256 | 251 |      |          |     |      |     |     |

|    |      | 6        |     |       | 7     |       | 8     |       |       |
|----|------|----------|-----|-------|-------|-------|-------|-------|-------|
| n  | .001 | α<br>.01 | .05 | .001  | .01   | .05   | .001  | .01   | .05   |
| 2  | 178  | 173      | 166 | 269   | 261   | 252   | 388   | 376   | 362   |
| 3  | 260  | 252      | 244 | 394   | 382   | 370   | 567   | 549   | 532   |
| 4  | 341  | 331      | 321 | 516   | 501   | 487   | 743   | 722   | 701   |
| 5  | 420  | 409      | 397 | 637   | 620   | 603   | 917   | 893   | 869   |
| 6  | 499  | 486      | 474 | 757   | 737   | 719   | 1.090 | 1,063 | 1,037 |
| 7  | 577  | 563      | 550 | 876   | 855   | 835   | 1,262 | 1,232 | 1,204 |
| 8  | 655  | 640      | 625 | 994   | 972   | 950   | 1,433 | 1,401 | 1,371 |
| 9  | 733  | 717      | 701 | 1.113 | 1.088 | 1.065 | 1.603 | 1,569 | 1.537 |
| 10 | 811  | 793      | 777 | 1,230 | 1,205 | 1.180 | 1.773 | 1,736 | 1,703 |
| 11 | 888  | 869      | 852 | 1.348 | 1.321 | 1.295 | 1.943 | 1.905 | 1,868 |
| 12 | 965  | 946      | 928 | 1,465 | 1,437 | 1,410 | 2,112 | 2.072 | 2,035 |

# APPENDIX 10

CRITICAL VALUES FOR ALL TREATMENTS MULTIPLE COMPARISONS BASED ON FRIEDMAN RANK SUMS

Source: Hollander and Wolfe, 1973, 373-78

k = 3, n = 3(1)15; k = 4(1)15, n = 2(1)15

For a given k and n, the entries in the table correspond to  $P_{0}\left\{|R_{ii}-R_{ij}| < r(\alpha,k,n), u=1,\ldots,k-1, v=u+1,\ldots,k\right\} = 1-\alpha.$ 

|    | k = 3             |      |    | k = 3             |      |    | k = 4             |      |
|----|-------------------|------|----|-------------------|------|----|-------------------|------|
| п  | $r(\alpha, 3, n)$ | α    | n  | r(a, 3, n)        | œ    | n  | $r(\alpha, 4, n)$ | •    |
| 3  | 6*                | .028 | 14 | 13*               | .038 | 10 | 15*               | .046 |
|    |                   |      |    | 14                | .023 |    | 16                | .029 |
| 4  | 7*                | .042 |    | 16*               | .007 |    | 18*               | .010 |
|    | 8*                | .005 |    |                   |      |    |                   |      |
|    |                   |      | 15 | 13*               | .047 | 11 | 16                | .041 |
| 5  | 8*                | .039 |    | 14                | .028 |    | 17                | .026 |
|    | 9*                | .008 |    | 16*               | .010 |    | 19                | .009 |
| 6  | · 9*.             | .029 |    |                   | · —– | 12 | 17                | .038 |
|    | 10*               | .009 |    | k = 4             |      |    | 18                | .023 |
|    |                   |      |    |                   |      |    | 20                | .008 |
| 7  | 9*                | .051 | n  | $r(\alpha, 4, n)$ | a    |    |                   |      |
|    | 10                | .023 |    |                   |      | 13 | 18                | .032 |
|    | 11*               | .008 | 2  | 6*                | .083 |    | 19                | .021 |
|    |                   |      | •  | •                 | .003 |    | 21                | .008 |
| 8  | 10*               | .039 | 3  | 8*                | .049 |    |                   |      |
|    | 11                | .018 | -  | 9*                | .007 | 14 | 18                | .042 |
|    | 12*               | .007 |    | •                 | 1001 | -  | 19                | .028 |
|    |                   |      | 4  | 10*               | .026 |    | 21                | .011 |
| 9  | 10*               | .048 | •  | 11*               | .005 |    | -•                | **   |
|    | 11                | .026 |    | ••                |      | 15 | 19                | .037 |
|    | 12*               | .013 | 5  | 11*               | .037 |    | 20                | .024 |
|    |                   |      | J  | 12*               | .013 |    | 22                | .010 |
| 10 | 11*               | .037 |    | 12                | .015 |    |                   | .0.0 |
|    | 12                | .019 | 6  | 12*               | .037 |    |                   |      |
|    | 13*               | .010 | •  | 13                | .018 |    | k = 5             |      |
|    |                   |      |    | 14*               | .006 |    |                   |      |
| 11 | 11*               | .049 |    | 14                | .000 | ,  | r(a, 5, n)        | œ    |
|    | , 12              | .028 | 7  | 13*               | .037 |    |                   |      |
|    | 14*               | .008 |    | 14                | .020 | 2  | 8                 | .050 |
|    |                   |      |    | 15*               | .008 |    |                   |      |
| 12 | 12*               | .038 |    |                   |      | 3  | 10                | .067 |
|    | 13                | .022 | 8  | 14*               | .034 |    | . 11              | .018 |
|    | 14*               | .012 |    | 15                | .019 |    | 12                | .002 |
|    |                   |      |    | 16*               | .009 |    |                   |      |
| 13 | 12*               | .049 |    |                   |      | 4  | 12                | .054 |
|    | 13                | .030 | 9  | 15                | .032 |    | 13                | .020 |
|    | 15*               | .009 |    | 17*               | .010 |    | 14                | .006 |

|          | k = 5      |      |    | k = 6            |      |    | k = 6             |      |
|----------|------------|------|----|------------------|------|----|-------------------|------|
| <i>n</i> | r(a, 5, n) | •    | -  | r(a, 6, n)       | •    | -  | r(a, 6, n)        | è    |
| 5        | 14         | .040 | 2  | 10               | .033 | 13 | 28                | .039 |
|          | 16         | .006 |    |                  |      |    | 29                | .028 |
|          |            |      | 3  | 13               | .030 |    | 32                | .010 |
| 6        | 15         | .049 | -  | 14               | ,008 |    |                   |      |
|          | 16         | .02K |    |                  |      | 14 | 2 <del>9</del>    | .040 |
|          | 17         | .013 | 4  | 15               | .047 |    | 30                | .030 |
|          |            |      | •  | 16               | .018 |    | 33                | .011 |
| 7        | 16         | .052 |    | 17               | ,006 |    |                   |      |
|          | 17         | .033 |    | ••               | 1000 | 15 | 30                | .040 |
|          | 19         | .009 |    | 17               | .047 | •- | 32                | .023 |
|          |            |      | 5  | 1 <i>1</i><br> 8 | .022 |    | 34                | .012 |
| 8        | 18         | .036 |    | 19               | .010 |    |                   |      |
|          | 19         | .022 |    | 17               | טוט. |    |                   |      |
|          | 20         | .012 | _  |                  |      |    |                   |      |
|          |            |      | 6  | 19               | .040 |    | k = 7             |      |
| 9        | 19         | .037 |    | 20               | .021 |    |                   |      |
|          | 20         | .024 |    | 21               | .010 | #1 | $r(\alpha, 7, n)$ | •    |
|          | <b>2</b> 2 | 800, |    |                  |      |    |                   |      |
|          |            |      | 7  | 20               | .049 | 2  | 12                | .024 |
| 10       | 20         | .038 |    | 21               | .032 |    |                   |      |
|          | 21         | .025 |    | 23               | .010 | 3  | 15                | .048 |
|          | 23         | .009 |    |                  |      |    | 16                | .016 |
|          |            |      | 8  | 22               | .039 |    |                   |      |
| 11       | 2 t        | .038 |    | 23               | .026 | 4  | 18                | .040 |
|          | 22         | .025 |    | 25               | ,008 |    | 20                | .007 |
|          | 24         | .010 |    |                  |      |    |                   |      |
|          |            |      | 9  | 23               | .043 | 5  | 20                | .052 |
| 12       | 22         | .038 | -  | 24               | .030 | •  | 21                | .028 |
|          | 23         | .025 |    | 26               | .012 |    | 22                | .014 |
|          | 25         | .011 |    | •-               |      |    |                   |      |
|          | •          |      | 10 | 24               | .047 | 6  | 22                | .050 |
| 13       | 23         | .035 | 10 | 26               | .023 | ·  | 23                | ,032 |
|          | 24         | .024 |    | 28               | .009 |    | 25                | .009 |
|          | 26         | .011 |    | 20               | ,007 |    |                   |      |
| 14       | 24         | .034 | 11 | 26               | .036 | 7  | 24                | .047 |
|          | 25         | .024 |    | 27               | .026 |    | 25                | .032 |
|          | 27         | .011 |    | 29               | .012 |    | 27                | .011 |
| 15       | 24         | .045 | 12 | 27               | .039 | 8  | 26                | .041 |
|          | 26         | .022 |    | 28               | .028 | _  | 27                | .030 |
|          | 28         | .010 |    | 31               | .009 |    | 29                | .011 |

|    | k = 7       |             |    | k = 8      |          |     | k = 9      |      |
|----|-------------|-------------|----|------------|----------|-----|------------|------|
| 'n | F(a, 7, n)  | a           | Я  | r(a, 8, n) | <u> </u> | - п | r(a, 9, n) |      |
| 9  | 27          | .050        | 5  | 23         | .057     | 2   | 15         | .069 |
|    | 29          | .026        |    | 24         | .034     | _   | 16         | .014 |
|    | 31          | .011        |    | 26         | .009     |     | 10         | .014 |
| 10 | 29          | 043         | 6  | 26         | 0.45     | 3   | 20         | .041 |
| 10 | <b>3</b> 0  | .042        | 0  | 27         | .045     |     | 22         | .005 |
|    | 30<br>33    | .031        |    | 29         | .027     |     |            |      |
|    | 33          | .010        |    | 29         | .009     | 4   | 23         | .064 |
| 11 | 30          | 0.40        | 7  | 28         | .048     |     | 24         | .034 |
| 11 | 32          | .049        | •  | 29         | .032     |     | 26         | .008 |
|    | 32<br>35    | .027        |    | 31         | .012     |     |            |      |
|    | 33          | .009        |    | <b>J.</b>  | .012     | 5   | 27         | .040 |
|    |             |             | 8  | 30         | .046     |     | 28         | .023 |
| 12 | 32          | .040        | •  | 31         | .033     |     | 29         | .013 |
|    | 33          | .030        |    | 34         | .009     |     |            |      |
|    | 36          | .011        |    | *.         | .007     | 6   | 29         | .058 |
|    | _           |             | 9  | 32         | .043     | •   | 30         | .038 |
| 13 | 33          | .043        |    | 33         | .032     |     | 33         | .008 |
|    | 35          | .025        |    | 36         | .010     |     |            | .000 |
|    | 38          | .009        |    |            |          | 7   | 32         | .046 |
|    |             |             | 10 | 34         | .040     | •   | 33         | .032 |
| 14 | 34          | .047        |    | 35         | .031     |     | 36         | .008 |
|    | 36          | .028        |    | 38         | .010     |     | 50         | .006 |
|    | 39          | .011        |    |            |          | 8   | 34         | 0.40 |
|    |             |             | 11 | 35         | .048     | •   |            | .049 |
| 15 | 36          | .038        |    | 37         | .028     |     | 36<br>38   | .026 |
|    | 37          | .030        |    | 40         | .010     |     | 36         | .012 |
|    | 41          | .009        |    |            |          |     |            |      |
|    | <del></del> |             | 12 | 37         | .042     | 9   | 36         | .050 |
|    |             |             |    | 39         | .026     |     | 38         | .030 |
|    | k = 8       |             |    | 42         | .010     |     | 41         | .010 |
| _  |             | <del></del> | 13 | 39         | .039     | 10  | 38         | .050 |
| п  | r(a, 8, n)  | α           |    | 40         | .039     |     | 40         | .031 |
| 2  | 14          | .018        |    | 44         | .009     |     | 43         | .011 |
| _  | • •         | .010        |    |            |          | _   |            |      |
| 3  | 17          | .067        | 14 | 40         | ,042     | 11  | 40         | .048 |
| •  | 18          | .027        |    | 42         | .027     |     | 42         | .030 |
|    | 19          | .009        |    | 45         | .012     |     | 46         | .009 |
|    |             |             | 15 | 42         | .037     | 12  | 42         | .046 |
| 4  | 21<br>23    | .036        |    | 43         | .030     |     | 44         | 029  |
|    |             | .007        |    |            |          |     |            |      |

|    | k = 9                |             |    | k = 10               |              |    | k = 11      |          |
|----|----------------------|-------------|----|----------------------|--------------|----|-------------|----------|
| PI | $r(\alpha, 9, n)$    | a           | 7  | $r(\alpha, 10, n)$   | a            | n  | r(α, 11,π)  | <u>a</u> |
| 13 | 44                   | .042        | 9  | 41                   | ,046         | 5  | 33          | .055     |
|    | 46                   | .027        |    | 43                   | .027         |    | 34          | .035     |
|    | 50                   | .009        |    | 46                   | .009         |    | 37          | .008     |
| 14 | 46                   | .041        | 10 | 43                   | .047         | 6  | 37          | .045     |
|    | 48                   | .026        |    | 45                   | .030         |    | 38          | .030     |
|    | 52                   | .009        |    | 49                   | .009         |    | 41          | .008     |
| 15 | 47                   | .046        | 11 | 45                   | .049         | 7  | 40          | .049     |
|    | 50                   | .025        | •• | 47                   | .032         |    | 41          | .035     |
| _  | 54                   | .009        |    | 51                   | .010         |    | 44          | .011     |
|    | <u> </u>             |             | 12 | 48                   | .040         | 8  | 43          | .046     |
|    | k = 10               |             | 12 | 50                   | .027         |    | 44          | .035     |
|    | <del></del>          | <del></del> |    | 54                   | .009         |    | 48          | .009     |
| n  | $r(\alpha, 10, \pi)$ | α           |    |                      |              | _  |             |          |
| _  |                      |             | 13 | 50                   | .039         | 9  | 46          | .043     |
| 2  | 17                   | .056        | •- | 52                   | .026         |    | 47          | .034     |
| •  | 18                   | .011        |    | 56                   | .009         |    | 51          | .009     |
| 3  | 22                   | .057        |    |                      |              | 10 | 48          | .047     |
|    | 23                   | .026        | 14 | 52                   | .039         |    | 50          | .031     |
|    | 24                   | .010        |    | 54<br>58             | .026<br>.010 |    | 54          | .009     |
|    | 25                   | 0.00        |    | 20                   | .010         | 11 | 51          | .040     |
| 4  | 26                   | .060        | 15 | 53                   | .045         | 11 | 53          | .027     |
|    | 27                   | .033        |    | 56                   | .026         |    | 57          | .009     |
|    | 29                   | .009        |    | 60                   | .010         |    | 31          | .009     |
| 5  | 30                   | .047        |    |                      |              | 12 | 53          | .043     |
|    | 31                   | .029        |    |                      |              |    | <b>\$</b> 5 | .029     |
|    | 33                   | .010        |    | k = 11               |              |    | 59          | .011     |
| 6  | 33                   | .051        | н  | $r(\alpha, 11, \pi)$ | a            | 13 | 55          | .046     |
|    | 34                   | .033        |    | .=                   |              |    | 57          | .031     |
|    | 37                   | .008        | 2  | 19<br>20             | .045<br>.009 |    | 62          | .010     |
| 7  | 36                   | .047        |    |                      |              | 14 | 57          | .045     |
|    | 37                   | .033        | 3  | 25                   | .038         |    | 60          | .026     |
|    | 40                   | .010        |    | 27                   | .007         |    | 64          | .011     |
| 8  | 38                   | .052        | 4  | 29                   | .057         | 15 | 59          | .046     |
|    | 40                   | .031        |    | 30                   | .033         |    | 62          | .027     |
|    | 43                   | .010        |    | 32                   | .010         |    | 67          | .009     |

|         | k = 12      |          | _  | k = 12      |      |    | k = 13             |      |
|---------|-------------|----------|----|-------------|------|----|--------------------|------|
| <u></u> | r(a, 12, n) | <u>a</u> | Я  | r(a, 12, n) | •    | n  | r(a, 13, n)        | à    |
| 2       | 21          | .038     | 13 | 61          | .043 | 9  | 55                 | .048 |
|         | 22          | .008     |    | 63          | .030 |    | 57                 | .030 |
|         |             |          |    | 68          | .010 |    | 61                 | .010 |
| 3       | 27          | .053     |    |             |      |    |                    |      |
|         | 28          | .027     | 14 | 63          | .046 | 10 | 58                 | .047 |
|         | 29          | .012     |    | 66          | .027 |    | 60                 | .032 |
|         |             |          |    | 71          | .009 |    | 65                 | .009 |
| 4       | 32          | .055     |    |             |      |    |                    |      |
|         | 33          | .033     | 15 | 66          | .040 | 11 | 61                 | .046 |
|         | 35          | .011     |    | 68          | .028 |    | 63                 | .032 |
| _       |             |          |    | 73          | 110. |    | 68                 | .010 |
| 5       | 37          | .042     |    |             |      |    |                    |      |
|         | 38          | .027     |    |             |      | 12 | 64                 | .045 |
|         | 40          | .011     |    | k = 13      |      |    | 66                 | .032 |
|         |             |          |    |             |      |    | 71                 | .010 |
| 6       | 40          | .059     | n  | r(a, 13, n) | •    |    |                    |      |
|         | 42          | .028     |    | <del></del> |      | 13 | 67                 | .041 |
|         | 45          | .008     | 2  | 23          | .032 |    | 69                 | .030 |
| _       |             |          |    | 24          | .006 |    | 74                 | .011 |
| 7       | 44          | .050     | _  |             |      | 14 | 60                 |      |
|         | 46          | .026     | 3  | 30          | .038 | 14 | 69<br>72           | .046 |
|         | 49          | .009     |    | 32          | .009 |    | 77                 | .028 |
|         |             |          |    |             |      |    | "                  | .010 |
| 8       | 47          | .050     | 4  | 35          | .054 | 15 | 72                 | .040 |
|         | 49          | .030     |    | 36          | .033 |    | 74                 | .030 |
|         | 52          | .011     |    | 38          | .012 |    | 80                 | .010 |
| 9       | 50          | .048     |    | 40          |      | _  |                    | .010 |
| ,       | 52          | .032     | 5  | 40          | .049 |    |                    |      |
|         | 56          | .010     |    | 41          | .033 |    | k = 14             |      |
|         | 30          | .010     |    | 44          | ,009 |    | <del></del>        |      |
| 10      | 53          | .047     | 6  | 44          | .054 | n  | $r(\alpha, 14, n)$ | æ    |
|         | 55          | .032     | •  | 46          | .027 |    |                    |      |
|         | 59          | .010     |    | 49          | .009 | 2  | 25                 | .027 |
|         |             |          |    | 42          | .009 |    | 26                 | .005 |
| 11      | 56          | .043     | 7  | 48          | .051 | _  |                    |      |
|         | 58          | .029     | •  | 50          | .028 | 3  | 32                 | .052 |
|         | 62          | .011     |    | 53          | .010 |    | 33                 | .028 |
|         |             |          |    |             |      |    | 35                 | .006 |
| 12      | 58          | .048     | 8  | 52          | .046 | 4  | 38                 | .053 |
|         | 61          | .027     |    | 53          | .035 | •  | 39                 | .033 |
|         | 65          | .011     |    | 57          | .010 |    | 41                 | .013 |
|         |             |          |    |             |      |    | ₹4                 | .013 |

|    | k = 14      |              |                                                   | k = 34      |          | k = 15 |             |      |  |  |  |
|----|-------------|--------------|---------------------------------------------------|-------------|----------|--------|-------------|------|--|--|--|
| n  | r(a, 14, n) | α            |                                                   | r(a, 14, n) | α        | п      | r(α, 15, π) | à    |  |  |  |
| 5  | 43          | .057         | 14                                                | 75          | .045     | 8      | 60          | .056 |  |  |  |
|    | 45          | .027         |                                                   | 78          | .028     |        | 63          | .027 |  |  |  |
|    | 47          | .012         |                                                   | 84          | .009     |        | 67          | .009 |  |  |  |
| 6  | 48          | .050         | 15                                                | 78          | .043     | 9      | 64          | .052 |  |  |  |
|    | 50          | .026         |                                                   | 81          | .028     |        | 67          | .028 |  |  |  |
|    | 53          | .009         |                                                   | 87          | .010     |        | 71          | .011 |  |  |  |
| 7  | 52          | .053         |                                                   |             |          | 10     | 68          | .049 |  |  |  |
|    | 54          | .030         |                                                   | k = 15      |          |        | 71          | .028 |  |  |  |
|    | 57          | .012         |                                                   | -(- 15 ->   |          |        | 75          | .011 |  |  |  |
| 8  | 56          | .051         | <del>, , , , , , , , , , , , , , , , , , , </del> | r(a, 15, n) | <u> </u> |        |             |      |  |  |  |
| -  | 58          | .031         | 2                                                 | 26          | .071     | 11     | 72          | .043 |  |  |  |
|    | 62          | ,010         | _                                                 | 27          | .024     |        | 74          | .032 |  |  |  |
|    |             |              |                                                   | 28          | .005     |        | 79          | .011 |  |  |  |
| 9  | 60          | .047         |                                                   |             |          |        |             |      |  |  |  |
| -  | 62          | .029         | 3                                                 | 35          | .039     | 12     | 75          | .045 |  |  |  |
|    | 66          | .010         |                                                   | 37          | .010     |        | 78          | .028 |  |  |  |
| •• | <b>C</b> 2  | 0.40         |                                                   | 4.          | 040      |        | 83          | .010 |  |  |  |
| 10 | 63          | ,048         | 4                                                 | 41          | .053     |        |             | 0.46 |  |  |  |
|    | 65<br>70    | .033<br>.010 |                                                   | 42<br>45    | .035     | 13     | 78          | .046 |  |  |  |
|    | 70          | .010         |                                                   | 73          | .008     |        | 81<br>87    | .009 |  |  |  |
| 11 | 66          | .049         | 5                                                 | 47          | .046     |        | • /         | .003 |  |  |  |
| •• | 69          | ,029         | د                                                 | 48          | .033     | 14     | 81          | .046 |  |  |  |
|    | 74          | ,009         |                                                   | 51          | .010     |        | 84          | .030 |  |  |  |
|    |             | ,207         |                                                   | <b>5.</b>   | .010     |        | 90          | ,010 |  |  |  |
| 12 | 69          | .048         | 6                                                 | 52          | .047     |        |             |      |  |  |  |
|    | 72          | .030         |                                                   | 53          | .035     | 15     | 84          | .043 |  |  |  |
|    | <b>7</b> 7  | .010         |                                                   | 57          | .009     |        | 87          | ,029 |  |  |  |
|    |             |              |                                                   |             |          |        | 94          | ,009 |  |  |  |
| 13 | 72          | .047         | 7                                                 | 56          | .055     |        |             |      |  |  |  |
|    | 75          | .030         |                                                   | 58          | .032     |        |             |      |  |  |  |
|    | 80          | .011         |                                                   | 62          | .010     |        |             |      |  |  |  |

CRITICAL VALUES FOR THE RANGE OF k INDEPENDENT N(0,1) VARIABLES

Source: Hollander and Wolfe, 1973, 330

For a given k and  $\alpha$ , the tabled entry is  $q(\alpha, k, \infty)$ .

α

| k   | .0001 | .0005 | .001   | .005  | .01   | .025  | .05   | .10   | .20   |
|-----|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| 2   | 5.502 | 4.923 | 4.6\$4 | 3.970 | 3.643 | 3.170 | 2.772 | 2.326 | 1.812 |
| 3   | 5.864 | 5.316 | 5.063  | 4.424 | 4.120 | 3.682 | 3.314 | 2.902 | 2.424 |
| 4   | 6.083 | 5.553 | 5.309  | 4.694 | 4.403 | 3.984 | 3.633 | 3.240 | 2.784 |
| 5   | 6.240 | 5.722 | 5.484  | 4.886 | 4.603 | 4.197 | 3.858 | 3.478 | 3.037 |
| 6   | 6.362 | 5.853 | 5.619  | 5.033 | 4.757 | 4.361 | 4.030 | 3.661 | 3.232 |
| 7   | 6.461 | 5.960 | 5.730  | 5.154 | 4.882 | 4.494 | 4.170 | 3.808 | 3.389 |
| 8   | 6.546 | 6.050 | 5.823  | 5.255 | 4.987 | 4.605 | 4.286 | 3.931 | 3.520 |
| 9   | 6.618 | 6.127 | 5.903  | 5.341 | 5.078 | 4.700 | 4.387 | 4.037 | 3.632 |
| 10  | 6.682 | 6.196 | 5.973  | 5.418 | 5.157 | 4.784 | 4.474 | 4.129 | 3.730 |
| 11  | 6.739 | 6.257 | 6.036  | 5.485 | 5.227 | 4.858 | 4.552 | 4.211 | 3.817 |
| 12  | 6.791 | 6.311 | 6.092  | 5.546 | 5.290 | 4.925 | 4.622 | 4.285 | 3.895 |
| 13  | 6.837 | 6.361 | 6.144  | 5.602 | 5.348 | 4.985 | 4.685 | 4.351 | 3.966 |
| 14  | 6.880 | 6.407 | 6.191  | 5.652 | 5.400 | 5.041 | 4.743 | 4.412 | 4.030 |
| 15  | 6.920 | 6.449 | 6.234  | 5.699 | 5.448 | 5.092 | 4.796 | 4.468 | 4.089 |
| 16  | 6.957 | 6.488 | 6.274  | 5.742 | 5.493 | 5.139 | 4.845 | 4.519 | 4.144 |
| 17  | 6.991 | 6.525 | 6.312  | 5.783 | 5.535 | 5.183 | 4.891 | 4.568 | 4.195 |
| 18  | 7.023 | 6.559 | 6.347  | 5.820 | 5.574 | 5.224 | 4.934 | 4.612 | 4.242 |
| 19  | 7.054 | 6.591 | 6.380  | 5.856 | 5.611 | 5.262 | 4.974 | 4.654 | 4.287 |
| 20  | 7.082 | 6.621 | 6.411  | 5.889 | 5.645 | 5.299 | 5.012 | 4.694 | 4.329 |
| 22  | 7.135 | 6.677 | 6.469  | 5.951 | 5.709 | 5.365 | 5.081 | 4.767 | 4.405 |
| 24  | 7.183 | 6.727 | 6.520  | 6.006 | 5.766 | 5.425 | 5.144 | 4.832 | 4.475 |
| 26  | 7.226 | 6;773 | 6.568  | 6.057 | 5.818 | 5.480 | 5.201 | 4.892 | 4.537 |
| 28  | 7.266 | 6.816 | 6.611  | 6.103 | 5.866 | 5.530 | 5.253 | 4.947 | 4.595 |
| 30  | 7.303 | 6.855 | 6.651  | 6.146 | 5.911 | 5.577 | 5.301 | 4.997 | 4.648 |
| 32  | 7.337 | 6.891 | 6.689  | 6.186 | 5.952 | 5.620 | 5.346 | 5.044 | 4.697 |
| 34  | 7.370 | 6.925 | 6.723  | 6.223 | 5.990 | 5.660 | 5.388 | 5.087 | 4.743 |
| 36  | 7.400 | 6.957 | 6.756  | 6.258 | 6.026 | 5.698 | S.427 | 5.128 | 4.786 |
| 38  | 7.428 | 6.987 | 6.787  | 6.291 | 6.060 | 5.733 | 5.463 | 5.166 | 4.826 |
| 40  | 7.455 | 7.015 | 6.816  | 6.322 | 6.092 | 5.766 | 5.498 | 5.202 | 4.864 |
| 50  | 7.571 | 7.137 | 6.941  | 6.454 | 6.228 | 5.909 | 5.646 | 5.357 | 5.026 |
| 60  | 7.664 | 7.235 | 7.041  | 6.561 | 6.338 | 6.023 | 5.764 | 5.480 | 5.155 |
| 70  | 7.741 | 7.317 | 7.124  | 6.649 | 6.429 | 6.118 | 5.863 | 5.582 | 5.262 |
| 80  | 7.808 | 7.387 | 7.1%   | 6.725 | 6.507 | 6.199 | 5.947 | S.669 | 5.353 |
| 90  | 7.866 | 7.448 | 7.259  | 6.792 | 6.575 | 6.270 | 6.020 | 5.745 | 5.433 |
| 100 | 7.918 | 7.502 | 7.314  | 6.850 | 6.636 | 6.333 | 6.085 | 5.812 | 5.503 |
|     |       |       |        |       |       |       |       |       |       |



For k=3 and sample sizes  $n_1$ ,  $n_2$ ,  $n_3$ , the tabled entry for the point x is  $P_0\{H \ge x\}$ . Thus if x is such that  $P_0\{H \ge x\} = \alpha$ , then  $h(\alpha, 3, (n_1, n_2, n_3)) = x$ .

 $n_1 = 1, n_2 = 1, n_3 = 2$   $n_1 = 1, n_2 = 1, n_3 = 5$   $n_1 = 1, n_2 = 2, n_3 = 4$   $n_1 = 1, n_2 = 2, n_3 = 5$ 

| x       | $P_{o}\left\{ H>x\right\}$ | x              | $P_{0}\left\{ H>x\right\}$ | x                  | $P_{\mathcal{O}}\Big\{H>x\Big\}$         | ×         | $P_{\mathcal{O}}\Big\{H>x\Big\}$ |
|---------|----------------------------|----------------|----------------------------|--------------------|------------------------------------------|-----------|----------------------------------|
| .300    | 1,000                      | 2.314          | .524                       | .000               | 1.000                                    | .583      | .821                             |
| 1.800   | .833                       | 2.829          | .333                       | .161               | .971                                     | .667      | .798                             |
| 2.700   | .500                       | 3.857          | .143                       | .268               | .933                                     | .717      | .774                             |
|         | ····                       |                |                            | .321               | .895                                     | 1.000     | .750                             |
|         |                            |                |                            | .536               | .857                                     | 1.117     | .738                             |
| 1, = 1, | $n_2 = 1, n_3 = 3$         | $n_1 = 1$ ,    | $n_1=2,n_2=2$              | .643               | .819                                     | 1.200     | .714                             |
|         |                            |                |                            | .696               | .800                                     | 1,250     | .655                             |
| ×       | $P_{O}\{H>x\}$             | ×              | $P_{O}\{H>x\}$             | 1.018              | .781                                     | 1.383     | .619                             |
|         |                            |                |                            | 1.071              | .743                                     | 1.533     | .583                             |
| .533    | 1.000                      | .000           | 1.000                      | 1.125              | .705                                     | 1.783     | .560                             |
| .800    | .800                       | .400           | .933                       | 1,286              | .667                                     | 1.800     | .536                             |
| .133    | .700                       | .600           | .867                       | 1,393              | .629                                     | 1.917     | .488                             |
| ,200    | .300                       | 1.400          | .733                       | 1.446              | .590                                     | 2.050     | .464                             |
|         |                            | 2.000          | .600                       | 1.875              | <b>.533</b>                              | 2.333     | .429                             |
|         |                            | 2,400          | .467                       | 2.036              | .495                                     | 2.450     | .393                             |
| , = 1,  | л, =.1, л, = 4             | 3,000          | .333                       | 2,143              | .476                                     | 2.717     | .298                             |
|         |                            | 3.600          | .200                       | 2,250              | .457                                     | 2.800     | .286                             |
| x       | $P_{O}\{H>x\}$             |                |                            | 2,411              | .400                                     | 2.867     | .214                             |
|         |                            |                |                            | 2,571              | .305                                     | 3.133     | .202                             |
| .143    | 1,000                      | n, = 1,        | $n_1 = 2, n_2 = 3$         | 2.786              | .286                                     | 3.333     | .190                             |
| .786    | <b>.93</b> 3               |                | <del></del>                | 2.893              | .267                                     | 3.383     | .179                             |
| .000    | .800                       | ×              | $P_{o}\{H>x\}$             | 3.161              | .190                                     | 3.783     | .131                             |
| .286    | .667                       |                |                            | 3.696              | .171                                     | 4.050     | .119                             |
| 2.143   | <b>.600</b>                | .095           | 1.000                      | 3.750              | .133                                     | 4.200     | .095                             |
| 2,500   | .467                       | .238           | .933                       | 4.018              | .114                                     | 4,450     | .071                             |
| 3.571   | .200                       | .429           | .900                       | 4.500              | .076                                     | 5.000     | .048                             |
|         |                            | .810           | .833                       | 4.821              | .057                                     | 5.250     | .036                             |
|         |                            | .857           | .800                       |                    |                                          |           | <del></del>                      |
| n, = 1, | $n_1 = 1, n_2 = 5$         | 1.238          | .700                       |                    |                                          |           |                                  |
|         | <del></del>                | 1.381          | .600                       | $n_1 = 1$          | , n <sub>2</sub> = 2, n <sub>3</sub> = 5 | $n_1 = 1$ | $n_1 = 3, n_2 = 3$               |
| x       | $P_{\mathcal{O}}\{H > x\}$ | 1.952          | .567                       |                    | <del></del>                              |           | 1                                |
| 253     |                            | 2.143          | .533                       | ×                  | $P_{o}\{H>x\}$                           | ×         | $P_{O}\left\{ H>x\right\}$       |
| .257    | 1.000<br>.905              | 2.381<br>3.095 | .433<br>.267               | .050               | 1.000                                    | .000      | 1.000                            |
| 1.029   | .903<br>.857               | 3.524          | .200                       | .133               | .964                                     | .143      | .986                             |
| 1.114   | .762                       | 3.857          | .133                       | .200               | .940                                     | .286      | .957                             |
| 1.457   | .667                       | 4.286          | .100                       | .450               | .905                                     | .200      | .871                             |
| 4.70    | ,901                       | 7.400          | .100                       | , <del>-</del> 270 | .,00                                     | wil       | .0,1                             |

# APPENDIX 12

#### UPPER TAIL PROBABILITIES OF THE KRUSKAL -WALLIS H STATISTIC

Source: Hollander and Wolfe, 1973, 294-310

| n, = 1,     | $n_3 = 3, n_3 = 3$ | n, = 1,   | $n_2 = 3, n_3 = 4$         | $\pi_1 = 1,$ | n <sub>2</sub> = 3, n <sub>3</sub> = 5 | n, = 1,   | $n_2=4, n_3=4$                           |
|-------------|--------------------|-----------|----------------------------|--------------|----------------------------------------|-----------|------------------------------------------|
| x           | $P_{o}\{H>x\}$     | _x        | $P_{o}\{H>x\}$             | ×            | $P_0\left\{H\geq x\right\}$            | x         | $P_{O}\{H>x\}$                           |
| 1.143       | .743               | 3,764     | .136                       | 2.844        | .258                                   | 2.267     | .410                                     |
| 1.286       | .600               | 3.889     | ,129                       | 2.951        | .218                                   | 2.400     | .384                                     |
| 1.571       | .571               | 4,056     | .093                       | 3.040        | .210                                   | 2.467     | .349                                     |
| 2.000       | .514               | 4.097     | .086                       | 3.218        | ,190                                   | 2.667     | .305                                     |
| 2.286       | .486               | 4.208     | .079                       | 3.271        | .183                                   | 2.700     | .260                                     |
| 2.571       | .329               | 4.764     | .071                       | 3.378        | .143                                   | 2.967     | .235                                     |
| 3.143       | .243               | 5.000     | .057                       | 3,484        | .135                                   | 3.000     | .222                                     |
| 3.286       | .157               | 5,208     | .050                       | 3.804        | .131                                   | 3.267     | .178                                     |
| 4.000       | .129               | 5.389     | .036                       | 3.840        | .123                                   | 3.367     | .171                                     |
| 4.571       | .100               | 5.833     | .021                       | 4.018        | .095                                   | 3.467     | .152                                     |
| 5.143       | .043               |           | <del></del>                | 4.284        | .083                                   | 3.867     | .121                                     |
|             |                    | $n_1 = 1$ | $n_2 = 3, n_3 = 5$         | 4.338        | .079                                   | 3.900     | .108                                     |
|             |                    |           |                            | 4.551        | .075                                   | 4.067     | ,102                                     |
| $n_1 = 1$ . | $n_2 = 3, n_3 = 4$ | x         | $P_{o}\left\{ H>x\right\}$ | 4.711        | .056                                   | 4.167     | .083                                     |
| <u> </u>    |                    |           | 0( )                       | 4.871        | .052                                   | 4.267     | .070                                     |
| x           | $P_{O}\{H>x\}$     |           |                            | 4.960        | .048                                   | 4.800     | .067                                     |
|             | 0( )               | .00Q      | 1.000                      | 5.404        | .044                                   | 4.867     | .054                                     |
| .056        | 1.000              | .071      | .992                       | 5,440        | .036                                   | 4.967     | .048                                     |
| :097        | .971               | .160      | .972                       | 5.760        | .028                                   | 5.100     | .041                                     |
| .208        | .950               | .178      | .952                       | 6.044        | .020                                   | 5.667     | .035                                     |
| .333        | .921               | .284      | .929                       | 6.400        | .012                                   | 6.000     | .029                                     |
| .431        | .900               | .338      | .889                       |              |                                        | 6.167     | .022                                     |
| .500        | .871               | .551      | .869                       |              |                                        | 6.667     | .010                                     |
| .556        | .843               | .604      | .853                       | n, = 1,      | n, = 4, n, = 4                         |           |                                          |
| .764        | .786               | .640      | .833                       |              |                                        |           |                                          |
| .875        | .743               | .711      | .770                       | ×            | $P_{o}\{H>x\}$                         | $n_1 = 1$ | , n <sub>2</sub> = 4, n <sub>8</sub> = 5 |
| 1.097       | .721               | .818      | .750                       |              |                                        |           | - ( )                                    |
| 1,208       | .707               | .960      | .730                       | .000         | 1.000                                  | ×         | $P_{\mathcal{O}}\{H > x\}$               |
| 1.222       | .679               | 1.084     | .694                       | .067         | .987                                   |           |                                          |
| 1.389       | .629               | 1.138     | .683                       | .167         | .968                                   | .033      | 1.000                                    |
| 1.431       | .557               | 1.351     | .651                       | .267         | .930                                   | .060      | .983                                     |
| 1.764       | .536               | 1.404     | .611                       | .300         | .911                                   | .104      | .968                                     |
| 1.833       | .514               | 1,440     | .591                       | .567         | .873                                   | .186      | .952                                     |
| 1.875       | .471               | 1.511     | .571                       | .600         | .835                                   | .273      | .938                                     |
| 2.097       | .457               | 1.600     | .560                       | .667         | .803                                   | .278      | .922                                     |
| 2.208       | ,443               | 1.671     | .520                       | .867         | .759                                   | .295      | .906                                     |
| 2.333       | .429               | 1.778     | .488                       | .967         | .721                                   | .360      | . <b>89</b> 0                            |
| 2.431       | .371               | 1.884     | .480                       | 1.067        | .689                                   | .409      | .875                                     |
| 2,722       | .300               | 1.938     | .468                       | 1,200        | ,676                                   | .540      | .848                                     |
| 2.764       | .229               | 2.044     | .452                       | 1.367        | .644                                   | .622      | .821                                     |
| 3.000       | .221               | 2.204     | .437                       | 1.500        | .600                                   | .731      | .806                                     |
| 3.097       | .214               | 2.400     | .413                       | 1.667        | .5 37                                  | .758      | .794                                     |
| 3.208       | .200               | 2.418     | ,405                       | 1.767        | .498                                   | .796      | .778                                     |
| 3,222       | .157               | 2.560     | .341                       | 2,167        | .460                                   | .8,18     | .762                                     |

| ×             | $P_{\mathcal{O}}\left\{H > x\right\}$ | *                 | $P_{O}\{H>x\}$ | *                 | $P_0\{H>x\}$ | <u> </u>            | $P_{\mathbf{G}}\{H>x\}$ |
|---------------|---------------------------------------|-------------------|----------------|-------------------|--------------|---------------------|-------------------------|
| .906          | .730                                  | 4,287             | .071           | 1.309             | .630         | 7.309               | .009                    |
| .933          | .719                                  | 4.549             | .067           | 1.346             | .605         | 7.527               | .008                    |
| .976          | . <b>69</b> 0                         | 4.636             | .063           | 1,600             | .584         | 7.746               | .005                    |
| 1.151         | .676                                  | 4.724             | .060           | 1.636             | .571         | 8.182               | .002                    |
| 1.167         | .665                                  | 4.833             | .059           | 1.709             | .509         |                     |                         |
| 1.195         | .651                                  | 4.860             | ,056           | 1.746             | .493         |                     | л, = 2, л, = 2          |
| 1.233         | ,640                                  | 4.986             | .044           | 1.782             | .468         | , - 2,              | 112 - 25 113 - 2        |
| 1.342         | .625                                  | 5.078             | .041           | 1.927             | .462         |                     | $P_0 \mid H > x$        |
| 1.369         | ,614                                  | 5.160             | .038           | 2.000             | .438         |                     | .01 2 1                 |
| 1.495         | .606                                  | 5.515             | .037           | 2.146             | .422         | .000                | 1.000                   |
| 1.500         | .589                                  | 5.558             | .035           | 2.182             | .411         | .286                | .933                    |
| 1.587         | .562                                  | 5.596             | .033           | 2.327             | .379         | .857                | .800                    |
| 1.604         | .535                                  | 5.733             | .027           | 2.436             | .374         | 1.143               | .667                    |
| 1.669         | .517                                  | 5.776             | .025           | 2.509             | .361         | 2.000               | .533                    |
| 1.778         | .498                                  | 5.858             | .024           | 2.582             | .314         | 2.571               | ,400                    |
| 1.806         | .483                                  | 5.864             | .022           | 2.727             | .286         | 3.429               | .333                    |
| 1.849         | .468                                  | 5.967             | .021           | 2.909             | .242         |                     |                         |
| 1.931         | .460                                  | 6.431             | .019           | 2.946             | .227         | 3.714               | .200                    |
| 2,040         | .441                                  | 6.578             | .016           | 3.236             | .188         | 4.571               | ,067                    |
| 2,067         | .432                                  | 6.818             | .013           | 3.346             | .168         |                     |                         |
| 2.106         | .419                                  | 6.840             | .011           | 3.382             | .161         | π <sub>1</sub> = 2, | $H_s = 2, H_s = 3$      |
| 2,242         | .406                                  | 6.954             | .008           | 3.527             | .141         |                     |                         |
| 2.286         | .400                                  | 7,364             | .005           | 3.600             | .132         | ×                   | $P_{O}\{H>x\}$          |
| 2.455         | .394                                  |                   |                | 3.636             | .116         |                     |                         |
| 2.460         | .354                                  | e. = 1            | n,= 5, n, = 5  | 3.927             | .113         | .000                | 1.000                   |
| 2,504         | .346                                  |                   |                | 4.036             | .105         | .179                | .971                    |
| 2.591         | .300                                  | x                 | $P_{O}\{H>x\}$ | 4.10 <del>9</del> | .086         | .214                | .895                    |
| 2.651         | .286                                  |                   | <del></del>    | 4.182             | .082         | .500                | .857                    |
| 2.896         | .251                                  | .000              | 1.000          | 4.400             | .076         | .607                | .800                    |
| 2.913         | _222                                  | .036              | .994           | 4.546             | .074         | .714                | .743                    |
| 2.940         | <b>_2</b> 16                          | .109              | . <b>9</b> 82  | 4.800             | .056         | .857                | . <b>68</b> 6           |
| 3.000         | .208                                  | .146              | .956           | 4.909             | .053         | 1.179               | .657                    |
| 3.087         | ,194                                  | .182              | .944           | 5.127             | .046         | 1.357               | .619                    |
| 3.158         | .187                                  | .327              | .920           | 5.236             | .039         | 1.464               | .562                    |
| 3.240         | .183                                  | .400              | .885           | 5.636             | .033         | 1.607               | .524                    |
| 3.349         | .151                                  | .436              | .872           | 5.709             | .030         | 1.929               | ,467                    |
| 3.524         | .146                                  | .546              | .847           | 5.782             | .027         | 2.000               | .438                    |
| 3.595         | .138                                  | .582              | .802           | 6.000             | .022         | 2.214               | .419                    |
| 3.682         | .132                                  | .727              | .792           | 6.146             | .019         | 2.429               | .381                    |
| 3.813         | .110                                  | .836              | .771           | 6.509             | .018         | 2.464               | .362                    |
| <b>3.96</b> 0 | .102                                  | . <del>9</del> 09 | .752           | 6.546             | .015         | 2.750               | .324                    |
| 3.987         | .098                                  | .982              | .716           | 6.582             | .014         | 2.857               | .286                    |
| 4.206         | .095                                  | 1.127             | . <b>6</b> 69  | 6.727             | .012         | 3.179               | .267                    |
| 4.222         | .087                                  | 1.200             | .646           | 6.836             | .011         | 3.429               | .248                    |

 $n_1 = 2, n_2 = 2, n_3 = 3, n_4 = 2, n_3 = 2, n_4 = 2, n_4 = 2, n_5 = 3, n_5 = 3$   $n_1 = 2, n_2 = 3, n_3 = 4, n_4 = 2, n_3 = 3, n_3 = 4, n_4 = 2, n_5 = 3, n_5 = 4, n_4 = 2, n_5 = 3, n_5 = 5, n_5 = 3, n_5 = 3,$ 

|                   |                                  | _         |                                         |         |                  |        |                     |
|-------------------|----------------------------------|-----------|-----------------------------------------|---------|------------------|--------|---------------------|
| ×                 | $P_{\mathcal{O}}\big\{H>x\big\}$ | x         | $P_{O}\left\{ H > x \right\}$           | *       | $P_{O}\{H > x\}$ | ×      | $P_{o}\{H \geq x\}$ |
| 3.607             | .238                             | 5.333     | .033                                    | 3.773   | .175             | 3.222  | .221                |
| 3.750             | .219                             | \$.500    | .024                                    | 3.840   | .164             | 3.361  | .207                |
| 3.92 <del>9</del> | .181                             | 6.000     | .014                                    | 3.973   | .159             | 3.778  | .200                |
| 4.464             | .105                             |           | - · · · · · · · · · · · · · · · · · · · | 4.093   | .148             | 3.806  | .179                |
| 4.500             | .067                             |           |                                         | 4.200   | .138             | 4.028  | .164                |
| 4.714             | .048                             | $n_1 = 2$ | $n_1 = 2, n_1 = 5$                      | 4.293   | .122             | 4.111  | .129                |
| 5,357             | .029                             |           |                                         | 4.373   | .090             | 4.250  | .121                |
|                   |                                  | x         | $P_0 \mid H > x$                        | 4.573   | .085             | 4.556  | .100                |
|                   |                                  |           | <u> </u>                                | 4.800   | .063             | 4.694  | .093                |
| и, = 2,           | $n_2 = 2, n_0 = 4$               | .000      | 1.000                                   | 4.893   | .061             | 5,000  | .075                |
|                   | <del></del>                      | 093       | .984                                    | 5.040   | .056             | 5.139  | .061                |
| x                 | $P_{o}\{H > x\}$                 | .133      | .937                                    | 5.160   | .034             | 5.361  | .032                |
|                   | <del>''</del>                    | .240      | .913                                    | 5.693   | .029             | 5.556  | .025                |
| .000              | 1.000                            | .360      | .881                                    | 6.000   | .019             | 6.250  | .011                |
| .125              | .971                             | .373      | .844                                    | 6.133   | .013             |        |                     |
| .167              | .914                             | .533      | .807                                    | 6.533   | .008             |        |                     |
| .333              | .890                             | .573      | .791                                    |         |                  | n. = 3 |                     |
| .458              | .862                             | .773      | .759                                    |         |                  |        | 5, 4                |
| .500              | .814                             | .840      | .722                                    | п. = 2. | и. = 3 и. ≈ 3    |        | $P_{o}\{H>x\}$      |
| .667              | .757                             | .893      | .685                                    |         |                  |        | 101"1               |
| .792              | .733                             | .960      | .653                                    | x       | $P_0\{H>x\}$     | .000   | 1,000               |
| 1.000             | .695                             | 1.093     | .638                                    |         | -013             | .078   | .987                |
| 1.125             | .657                             | 1.200     | .606                                    | .028    | 1.000            | .100   | .965                |
| 1.333             | .581                             | 1.373     | .590                                    | .111    | .968             | .111   | .944                |
| 1.500             | .552                             | 1,440     | .563                                    | .222    | .946             | .244   | . <del>9</del> 22   |
| 1.792             | .514                             | 1.493     | .542                                    | .250    | .896             | .278   | .902                |
| 1.833             | .486                             | 1.533     | .516                                    | .472    | .864             | .311   | .881                |
| 2.000             | .448                             | 1.693     | .495                                    | .556    | .807             | .344   | .862                |
| 2,125             | .410                             | 1.800     | .474                                    | .694    | .757             | .400   | .844                |
| 2.458             | .362                             | 2.133     | .452                                    | 1.000   | .686             | .444   | .829                |
| 2.667             | .333                             | 2.160     | .444                                    | 1.111   | .671             | .544   | .629<br>.811        |
| 2.792             | .314                             | 2.173     | .402                                    | 1.139   | .600             | .600   | .794                |
| 2.833             | .295                             | 2.293     | .381                                    | 1.361   | .564             | .611   | .779<br>.770        |
| 3.000             | .276                             | 2.333     | .365                                    | 1.444   | .539             | .700   | .776                |
| 3.125             | .248                             | 2.373     | .344                                    | 1.806   | .51I             | .778   |                     |
| 3.167             | .229                             | 2.693     | .317                                    | 1.889   | .446             | .811   | .722                |
| 3.458             | .210                             | 2.760     | .296                                    | 2.000   | .425             | .900   | .703                |
| 3.667             | .190                             | 2.973     | .275                                    | 2.028   | .396             |        | .689                |
| 4.000             | .181                             | 3.093     | .265                                    | 2.250   | .368             | .978   | .673                |
| 4.125             | .152                             | 3.133     | .254                                    | 2.472   | .366<br>,357     | 1.000  | .660                |
| 4.167             | .105                             | 3.240     | .238                                    | 2.694   | .33 /<br>.329    | 1.078  | .627                |
| 4.458             | .100                             | 3.333     | .206                                    | 2.778   | .329             | 1.111  | ,614                |
| 4.500             | .090                             | 3.360     | .196                                    | 2.889   |                  | 1.178  | .602                |
| 5.125             | .052                             | 3.573     | .185                                    | 3.139   | .286<br>.243     | 1.244  | .586                |
|                   |                                  | J.J. 7    | .100                                    | 4.137   | .293             | 1.344  | .571                |
|                   |                                  |           |                                         |         |                  |        |                     |

|                |                |              |                            | •              | • • •                      | • -•               |                  |
|----------------|----------------|--------------|----------------------------|----------------|----------------------------|--------------------|------------------|
| ×              | $P_{o}\{H>x\}$ | - x          | $P_{o}\left\{ H>x\right\}$ | *              | $P_{\mathcal{O}}\{H > x\}$ | ×                  | $P_{O}\{H > x\}$ |
| 1.378          | ,559           | 4.378        | .105                       | .713           | .743                       | 3.069              | .243             |
| 1.411          | .548           | 4.444        | .102                       | .724           | .714                       | 3.167              | .237             |
| 1,500          | .537           | 4.511        | .098                       | .767           | .703                       | 3.186              | .233             |
| 1.600          | 511            | 4.544        | .086                       | .887           | .692                       | 3.273              | .222             |
| 1.611          | .502           | 4.611        | .083                       | .942           | .680                       | 3.331              | .211             |
| 1.678          | .478           | 4.711        | .079                       | 1.014          | .659                       | 3.342              | .206             |
| 1.711          | .468           | 4.811        | .076                       | 1.058          | .648                       | 3.386              | .201             |
| 1.778          | .457           | 4.878        | .073                       | 1.091          | .638                       | 3.414              | .193             |
| 1.844          | .448           | 4,900        | .071                       | 1.149          | .616                       | 3.506              | .189             |
| 1.944          | .437           | 4.978        | .059                       | 1.178          | .593                       | 3.546              | .183             |
| 2.144          | .417           | 5.078        | .057                       | 1.276          | .579                       | 3.604              | .175             |
| 2.178          | .406           | 5.144        | .054                       | 1.324          | .569                       | 3.676              | .171             |
| 2.200          | .398           | 5.378        | .052                       | 1.378          | .5 37                      | 3.767              | .167             |
| 2.211          | .376           | 5.400        | .051                       | 1.451          | .529                       | 3,778              | .159             |
| 2.244          | .368           | 5.444        | ,046                       | 1.586          | <i>-</i> 519               | 3.822              | .156             |
| 2.378          | .357           | 5.500        | .040                       | 1.596          | <b>.510</b>                | 3. <del>9</del> 09 | .152             |
| 2.400          | .346           | 5.611        | .032                       | 1.614          | <i>-</i> 502               | 3.942              | .146             |
| 2.411          | .338           | 5.800        | .030                       | 1.713          | .483                       | 3.996              | .139             |
| 2.444          | .329           | 6.000        | .024                       | 1.727          | .474                       | 4.058              | .137             |
| 2.500          | .321           | 6.111        | .021                       | 1.760          | .459                       | 4.069              | .132             |
| 2.778          | .294           | 6.144        | .014                       | 1.814          | .451                       | 4.204              | .129             |
| 2.800          | .284           | 6.300        | .011                       | 1.858          | .444                       | 4.214              | .125             |
| 2.911          | .271           | 6.444        | .008                       | 1.876          | .429                       | 4.233              | .122             |
| 2.944          | .262           | 7.000        | .005                       | 2.022          | .420                       | 4.258              | .120             |
| 3.011          | .256           |              | 16                         | 2.033          | .403                       | 4.331              | .117             |
| 3.100          | .251           | n, + 2,      | n, = 3, n, = 3             | 2.076          | .396<br>.389               | 4.378<br>4.494     | .113<br>.101     |
| 3.111          | .238           |              | n (u > -)                  | 2.106<br>2.196 | .382                       | 4.651              | .091             |
| 3.244          | .232           | ×            | $P_0\{H>x\}$               | 2.251          | .362<br>.375               | 4.694              | .089             |
| 3.278          | .225           | .014         | 1.000                      | 2.294          | .368                       | 4,724              | .087             |
| 3.300<br>3.311 | .216<br>.203   | .069         | .981                       | 2,367          | .362                       | 4.727              | .085             |
| 3.444          | .197           | .113         | .966                       | 2,454          | .356                       | 4.814              | .071             |
| 3.478          | .190           | .111         | .951                       | 2.458          | .350                       | 4.869              | .067             |
| 3.544          | .184           | .142         | .932                       | 2.469          | .336                       | 4.913              | .063             |
| 3.600          | .175           | .273         | .917                       | 2.487          | .330                       | 4.942              | .062             |
| 3.811          | .168           | .276         | . <b>9</b> 01              | 2.546          | .321                       | 5.076              | .060             |
| 3.844          | .163           | .306         | .886                       | 2.653          | .294                       | 5.087              | .053             |
| 3.911          | .159           | .331         | .869                       | 2,749          | .287                       | 5.106              | .052             |
| 3.978          | .156           | .364         | .855                       | 2.818          | .279                       | 5.251              | .049             |
| 4.000          | .149           | .451         | .823                       | 2.894          | .269                       | 5.349              | .046             |
| 4.078          | .140           | .549         | .807                       | 2.924          | .263                       | 5.513              | .044             |
| 4.200          | .137           | .567         | .794                       | 2.949          | .257                       | 5.524              | .043             |
| 4.278          | .124           | .622         | .781                       | 2.978          | .252                       | 5.542              | .041             |
| 4.311          | .108           | .636         | .769                       | 3.022          | .248                       | 5.727              | .037             |
|                | <del>-</del>   | <del>-</del> |                            |                |                            |                    |                  |

 $n_1 = 2, n_2 = 3, n_3 = 5$   $n_1 = 2, n_2 = 4, n_3 = 4$   $n_1 = 2, n_2 = 4, n_3 = 4$   $n_1 = 2, n_2 = 4, n_3 = 4$  $P_0\{H \ge x\}$  $P_{O}\{H>x\}$ x  $P_0\{H>x\}$ ×  $P_0\{H>x\}$ × 5,742 .034 1.636 .510 6.546 .020 1.050 .623 5.786 .033 1.718 .488 6.600 .017 1.091 5.804 .614 .033 1.827 .441 6.627 .016 1.200 5.949 .607 .026 1.964 .426 6.873 .011 1.204 .599 6.004 .025 2.046 .400 7.036 .006 1.268 6.033 .592 .024 2.236 .386 7.282 .004 1.291 .576 6.091 .021 2.264 .375 7.854 .002 1.314 .569 6.124 .020 2.373 .363 1.318 .562 6.294 .017 2.454 .338  $n_x = 2, n_x = 4, n_y = 5 - 1.391$ .554 6.386 .016 2.509 .317 1.414  $P_0 \mid H > x$ .537 6.414 .015 x 2.673 .301 1.450 6.818 .529 .012 2.809 .281 .000 1.000 1.473 6.822 .521 .010 2.918 .272 .041 .992 1.518 .507 6.909 .009 2.946 .263 .064 .979 1.591 6.949 .499 .006 3.054 .239 .068 .965 1.618 7.182 .491 .004 3.136 .228 .141 .952 1.641 7.636 .485 .002 3.327 .220 .154 .939 1.664 .479 3.354 .210 .164 .926 1.704 .472 3,464 .192 .223 .913 1.750  $n_1 = 2, n_2 = 4, n_3 = 4 \quad 3.491$ .465 .185 .254 .902 1.754 .459 3.682 .180 .273 .89 I  $P_0\{H>x\}$ 1.814 .452 3.764 .166 .300 .880 1.823 .432 3.818 .152 .323 .866 1.973 .000 .427 1.000 4.009 .142 .368 .855 2.004 .054 .420 .988 4.364 .125 .404 .832 2.018 .082 .403 .970 4.418 .120 .504 .823 2.073 .191 .398 .940 4.446 .103 .518 .812 2.114 .218 .392 .910 4.554 .098 .541 .801 2.118 .273 .387 .893 4.582 .094 364 .791 2.141 .327 .381 .879 4.691 .080 573 .781 2.164 .409 .375 .848 4.773 .075 .614 .759 2.223 .371 .491 .820 4.854 .071 .618 .749 2.254 .627 .366 .779 4.991 .065 .654 .740 2.291 .736 .361 .757 5.127 .057 .723 .730 2.318 .764 .351 .712 5.236 .052 .791

| $n_1 = 2, n_2 = 4, n_3 = 5$ |                               | M <sub>1</sub> = 2, | n <sub>2</sub> = 4, n <sub>3</sub> = 5 | n, = 2,     | л, = 4, л, = 5             | $n_1 = 2, n_2 = 5, n_3 = 5$ |                        |  |
|-----------------------------|-------------------------------|---------------------|----------------------------------------|-------------|----------------------------|-----------------------------|------------------------|--|
| r                           | $P_{o}\left\{ H > x \right\}$ | <u> </u>            | $P_{O}\{H>x\}$                         | ×           | $P_{o}\left\{ H>x\right\}$ | ×                           | $P_{O}\Big\{H>x\Big\}$ |  |
| 2.768                       | .285                          | 4.404               | .110                                   | 6.564       | .016                       | .908                        | .674                   |  |
| 2.773                       | .273                          | 4.500               | .104                                   | 6.654       | .016                       | .931                        | .661                   |  |
| 2.868                       | .267                          | 4,518               | .101                                   | 6.723       | .015                       | 1.115                       | .638                   |  |
| 2.891                       | .262                          | 4.541               | .098                                   | 6.904       | .014                       | 1.154                       | .611                   |  |
| 2.904                       | .258                          | 4.614               | .090                                   | 6.914       | .013                       | 1.185                       | .593                   |  |
| 2.914                       | .249                          | 4.664               | .088                                   | 7.000       | .013                       | 1.277                       | .569                   |  |
| 2.973                       | .246                          | 4.768               | .079                                   | 7.018       | .012                       | 1,300                       | .558                   |  |
| 3.023                       | .237                          | 4.791               | .078                                   | 7.064       | .012                       | 1.362                       | ,552                   |  |
| 3.050                       | .234                          | 4.800               | .076                                   | 7.118       | .010                       | 1.431                       | .539                   |  |
| 3,064                       | .231                          | 4.818               | .074                                   | 7.204       | .009                       | 1.485                       | .528                   |  |
| 3.118                       | .226                          | 4.841               | .072                                   | 7.254       | .009                       | 1.523                       | .516                   |  |
| 3.164                       | .221                          | 4.868               | .071                                   | 7.291       | .008                       | 1.554                       | .506                   |  |
| 3.268                       | .217                          | 4.950               | .063                                   | 7.450       | .007                       | 1.646                       | .496                   |  |
| 3.314                       | .214                          | 5.073               | .061                                   | 7.500       | .007                       | 1.669                       | .486                   |  |
| 3.341                       | .208                          | 5.154               | .059                                   | 7.568       | .006                       | 1.731                       | .463                   |  |
| 3.364                       | ,200                          | 5.164               | .053                                   | 7.573       | .005                       | 1.854                       | ,445                   |  |
| 3.414                       | .197                          | 5.254               | .052                                   | 7.773       | .004                       | 1.915                       | .434                   |  |
| 3.454                       | .193                          | 5.268               | .051                                   | 7.814       | .003                       | 1.923                       | .424                   |  |
| 3.523                       | .190                          | 5.273               | .049                                   | 8.018       | .002                       | 2.015                       | .407                   |  |
| 3,564                       | .187                          | 5.300               | .048                                   | 8.114       | .001                       | 2.038                       | .398                   |  |
| 3.568                       | .184                          | 5.314               | .046                                   | 8.591       | .001                       | 2.223                       | .379                   |  |
| 3,573                       | .181                          | 5.414               | .045                                   |             | <del></del>                | 2.262                       | .374                   |  |
| 3.618                       | .178                          | 5.518               | .043                                   | я, = 2,     | n, =5, n, = 5              | 2.285                       | .363                   |  |
| 3.641                       | .175                          | 5.523               | .042                                   |             |                            | 2.292                       | .353                   |  |
| 3.654                       | .170                          | 5.564               | .038                                   | ×           | $P_{\alpha}\{H>x\}$        | 2.385                       | .345                   |  |
| 3.700                       | .164                          | 5.641               | .037                                   |             |                            | 2,408                       | .330                   |  |
| 3,704                       | .160                          | 5.664               | .036                                   | .008        | 1,000                      | 2.469                       | .323                   |  |
| 3,791                       | .157                          | 5.754               | .035                                   | .046        | .988                       | 2_538                       | .315                   |  |
| 3.800                       | .151                          | 5.823               | .034                                   | .069        | .978                       | 2.592                       | .300                   |  |
| 3.818                       | .148                          | 5.891               | .032                                   | .077        | .966                       | 2.662                       | .292                   |  |
| 3.823                       | .145                          | 5.954               | .030                                   | .169        | .947                       | 2.754                       | .286                   |  |
| 3.864                       | .143                          | 5.973               | .029                                   | .192        | .928                       | 2.777                       | .279                   |  |
| 4.041                       | .139                          | 6.004               | .026                                   | .254        | .896                       | 2.908                       | .276                   |  |
| 4.064                       | .135                          | 6.041               | .025                                   | .323        | .877                       | 2.962                       | ,270                   |  |
| 4.073                       | .133                          | 6.068               | .025                                   | .377        | .859                       | 3.023                       | .243                   |  |
| 4,091                       | .130                          | 6.118               | .024                                   | .415        | .830                       | 3.031                       | .234                   |  |
| 4,141                       | .128                          | 6.141               | .023                                   | .446        | .822                       | 3.123                       | .228                   |  |
| 4.154                       | .126                          | 6.223               | .022                                   | <i>5</i> 38 | .807                       | 3.146                       | .218                   |  |
| 4,200                       |                               | 6.368               | .021                                   | .562        | .775                       | 3.331                       | .210                   |  |
| 4.223                       | .121                          | 6.391               | 021                                    | .623        | .759                       | 3.369                       | ,203                   |  |
| 4,250                       | .119                          | 6.473               | .020                                   | .692        | .749                       | 3.392                       | ,198                   |  |
| 4.323                       | _                             | 6.504               | .020                                   | .746        | .735                       | 3.492                       | .190                   |  |
| 4,364                       | .114                          | 6.541               | .017                                   | .808        | .719                       | 3.515                       | .186                   |  |
| 4.368                       |                               | 6.550               | .017                                   | .815        | .688                       | 3.577                       | .181                   |  |

.046

.044

.042

.039

.034

.028

.025

.024

.022

.841

.864

.891

.904

.914

.950

.954

1.018

1.023

.873

.954

1.091

1.146

1.173

1.282

1.309

1.364

1.582

.685

.671

.651

.638

.596

577

559

.537

.526

5.454

5.509

5.536

5.646

5.727

5.946

6.082

6.327

6.409

.720

.710

.701

.691

.683

.674

.657

.649

.640

.632

2.323

2.391

2.454

2.473

2.504

2,550

2.618

2.700

2.723

2.754

.346

.335

.329

.324

.320

.315

.311

.306

.301

.296

 $n_1 = 2, n_2 = 5, n_3 = 5$   $n_1 = 2, n_3 = 5, n_3 = 5$   $n_1 = 3, n_2 = 3, n_3 = 3, n_3 = 3, n_3 = 3, n_3 = 4$ 

|       |                |         | · · ·            |         |                             | . •   |                                     |
|-------|----------------|---------|------------------|---------|-----------------------------|-------|-------------------------------------|
| ×     | $P_{o}\{H>x\}$ | *       | $P_{o}\{H > x\}$ | ×       | $P_0\left\{H \ge x\right\}$ | ×     | $P_{\mathcal{O}}\left\{H>x\right\}$ |
| 3.646 | .169           | 6.969   | .013             | 3.467   | .196                        | 1.864 | .415                                |
| 3.738 | .165           | 7.023   | .013             | 3.822   | .168                        | 2.091 | .402                                |
| 3.769 | .163           | 7.185   | .012             | 4.267   | .139                        | 2.200 | .389                                |
| 3.862 | .150           | 7.208   | .011             | 4.356   | .132                        | 2.227 | .368                                |
| 3.885 | .146           | 7,269   | .010             | 4.622   | .100                        | 2,300 | .351                                |
| 4.015 | .136           | 7,338   | .010             | 5.067   | .086                        | 2.382 | .326                                |
| 4.069 | .132           | 7.392   | .009             | 5.422   | .071                        | 2,518 | .314                                |
| 4.131 | .1 30          | 7.462   | .008             | 5.600   | .050                        | 2.527 | ,303                                |
| 1.138 | .127           | 7.577   | .007             | 5.689   | .029                        | 2.664 | .291                                |
| 1.231 | .124           | 7,762   | .007             | 5.956   | .025                        | 2.882 | .281                                |
| 1.254 | .114           | 7.923   | .006             | 6.489   | .011                        | 2.927 | .273                                |
| 4.438 | .106           | 8.008   | .006             | 7.200   | .004                        | 2.954 | .253                                |
| 1.477 | .103           | 8.077   | .006             |         |                             | 3.027 | .244                                |
| 4.508 | .100           | 8.131   | .005             |         |                             | 3.073 | .234                                |
| 1.623 | .097           | 8.169   | .003             | n, = 3, | n,=3,n,=4                   | 3.109 | .220                                |
| 4.685 | .092           | 8.292   | .003             |         |                             | 3.254 | .212                                |
| 4.754 | .084           | 8.377   | .002             | x       | $P_0\{H>x\}$                | 3.364 | .203                                |
| 4.808 | .081           | 8.562   | .002             |         | • • • •                     | 3.391 | .196                                |
| 1.846 | .073           | 8,685   | ,001             | .018    | 1.000                       | 3.609 | .188                                |
| 1.877 | .068           | 8.938   | .001             | .046    | .984                        | 3.682 | .180                                |
| 4.992 | .066           | 9.423   | .000             | .118    | .970                        | 3.754 | .178                                |
| .054  | .060           |         |                  | .164    | .941                        | 3.800 | .165                                |
| 5.177 | .057           |         |                  | .200    | .925                        | 3.836 | .150                                |
| 3.238 | .054           | n, = 3, | n, = 3, n, = 3   | .336    | .895                        | 3.973 | .143                                |
| 5.246 | .051           |         |                  | .346    | .869                        | 4.046 | .132                                |
| 5.338 | .047           | x       | $P_{o}\{H > x\}$ | .409    | .842                        | 4.091 | .126                                |
| 5.546 | .045           |         | <del>"" "</del>  | .454    | .830                        | 4.273 | .123                                |
| 5.585 | .041           | .000    | 1.000            | .482    | .817                        | 4.336 | .117                                |
| 806.  | .040           | .089    | . <b>99</b> 3    | .636    | .791                        | 4.382 | .111                                |
| 5.615 | .039           | .267    | .929             | .700    | .764                        | 4.564 | .106                                |
| 5.708 | .037           | .356    | .879             | .746    | .717                        | 4.700 | .101                                |
| 5.731 | .036           | .622    | .829             | 198.    | .690                        | 4,709 | .092                                |
| 5.792 | .032           | .800    | .721             | 1.064   | .656                        | 4.818 | .085                                |
| .915  | .030           | 1.067   | .664             | 1,073   | .633                        | 4.846 | .081                                |
| 5.985 | .028           | 1.156   | .629             | 1.136   | .611                        | 5.000 | ,074                                |
| 5.077 | .027           | 1.422   | .543             | 1.182   | .602                        | 5.064 | .070                                |
| 5.231 | .026           | 1.689   | .511             | 1.209   | .582                        | 5.109 | .068                                |
| 6.346 | .025           | 1.867   | .439             | 1.427   | .541                        | 5.254 | .064                                |
| 6.354 | .021           | 2,222   | .382             | 1.473   | .523                        | 5.436 | .062                                |
| 6.446 | .020           | 2.400   | .361             | 1.573   | .513                        | 5.500 | .056                                |
| 5.469 | .019           | 2.489   | .339             | 1.618   | .497                        | 5.573 | .053                                |
| 6.654 | .017           | 2.756   | .296             | 1.654   | .481                        | 5.727 | .050                                |
| 6.692 | .016           | 3.200   | .254             | 1.791   | .447                        | 5.791 | .046                                |
| 5.815 | .015           | 3.289   | .232             | 1.800   | .433                        | 5.936 | .036                                |
| 5.838 | .014           | V-207   |                  | 2.000   | .455                        | 7,700 | 70.30                               |

 $n_1 = 3, n_2 = 3, n_3 = 4$   $n_1 = 3, n_2 = 3, n_3 = 5$   $n_1 = 3, n_3 = 3, n_3 = 5$   $n_1 = 3, n_2 = 4, n_3 = 4$ 

| n, - J,  | ng = 2, ng = 4           | n, - 5, |                |                |                                 |                |                |
|----------|--------------------------|---------|----------------|----------------|---------------------------------|----------------|----------------|
| <u> </u> | $P_{\mathcal{O}}\{H>x\}$ | ×       | $P_{o}\{H>x\}$ | *              | $P_{\mathbf{G}}\Big\{H>x\Big\}$ | <u>*</u>       | $P_{O}\{H>x\}$ |
| 5.982    | ,034                     | 1.515   | .512           | 4.533          | .097                            | .000           | 1.000          |
| 6.018    | .027                     | 1.527   | .505           | 4.679          | .094                            | .046           | .993           |
| 6.154    | .025                     | 1.576   | .491           | 4.776          | .090                            | .053           | .981           |
| 6.300    | .023                     | 1.648   | .478           | 4.800          | .087                            | .144           | .959           |
| 6.564    | .017                     | 1.746   | .450           | 4.848          | .085                            | .167           | .937           |
| 6.664    | .014                     | 1.770   | .437           | 4.861          | .082                            | .182           | .925           |
| 6.709    | ,013                     | 1.867   | ,425           | 4.909          | .079                            | .212           | .913           |
| 6.746    | .010                     | 2.012   | ,414           | 5.042          | .077                            | .326           | .890           |
| 7,000    | .006                     | 2.048   | .403           | 5.079          | .069                            | .348           | .870           |
| 7.318    | .004                     | 2.061   | .393           | 5.103          | .067                            | ,386           | .850           |
| 7.436    | .002                     | 2.133   | .382           | 5.212          | .065                            | .409           | .829           |
| 8.018    | .001                     | 2.170   | .367           | 5.261          | .062                            | .477           | .819           |
|          |                          | 2.182   | .358           | 5.346          | .058                            | .576           | .7 <b>9</b> 9  |
|          |                          | 2.194   | .352           | 5.442          | .055                            | .598           | .779           |
| и, = 3,  | n, = 3, n, = 5           | 2.315   | .342           | 5.503          | .053                            | .659           | .761           |
|          |                          | 2.376   | .334           | 5.515          | .051                            | .667           | .742           |
| x        | $P_{\alpha}\{H>x\}$      | 2.594   | .315           | 5.648          | .049                            | .712           | .731           |
|          | 01 )                     | 2.667   | .306           | 5.770          | .047                            | .727           | .713           |
| .000     | 1.000                    | 2.679   | .298           | 5.867          | .042                            | .848           | .704           |
| .048     | .994                     | 2.715   | .291           | 6.012          | .040                            | .894           | .685           |
| .061     | .970                     | 2.836   | .267           | 6.061          | .033                            | ,932           | .668           |
| .133     | .958                     | 2.861   | .258           | 6.109          | .032                            | .962           | .651           |
| .170     | .948                     | 2.970   | .242           | 6.194          | .027                            | 1.053          | .635           |
| .194     | .926                     | 3.079   | .239           | 6.303          | .026                            | 1.076          | .620           |
| .242     | .902                     | 3.103   | .232           | 6.315          | .021                            | 1.136          | .604           |
| .315     | .890                     | 3.333   | .218           | 6.376          | .020                            | 1.144          | .597           |
| .376     | .868                     | 3.382   | .215           | 6.533          | .019                            | 1.296          | .582<br>.582   |
| .412     | .847                     | 3.394   | .209           | 6.594          | .019                            | 1.303          | .568           |
| .436     | .826                     | 3.442   | .196           | 6.715          | .014                            | 1.326          | .553           |
| .533     | .804                     | 3.467   | .184           | 6.776          |                                 | 1.394          | .539           |
| .546     | .794                     | 3.503   | .179           | 6.861          | .012                            | 1.417          | .524           |
| .594     | .783                     | 3.576   | .173           | 6.982          |                                 | 1.500          | .510<br>.503   |
| .679     | .765                     | 3.648   | .167           | 7,079          |                                 | 1.546          |                |
| .776     |                          | 3.709   | .162           | 7.333          |                                 | 1.598          | .490<br>.477   |
| .848     | .686                     | 3.879   | .156           | 7.467          |                                 | 1,636          | .470           |
| .970     | .668                     | 3.927   | .149           | 7.503          |                                 | 1.682          | ,457           |
| 1.042    |                          | 4.012   |                | 7.515          |                                 | 1.750          | ,444           |
| 1.079    |                          | 4,048   |                | 7.636          |                                 | 1.803<br>1.909 | .421           |
| 1.103    |                          | 4.170   |                | 7.879          |                                 |                | .409           |
| 1.200    |                          | 4.194   |                | 8.048          |                                 | 1.962          |                |
| 1.212    |                          | 4.242   | .122           | 8.242          |                                 | 2.053          |                |
| 1.261    |                          | 4.303   |                | 8.727          | .001                            | 2,144          |                |
| 1.447    |                          | 4.315   |                | - <del>-</del> |                                 | 2,227          |                |
| 1.50     | 3 .526                   | 4.412   | .109           |                |                                 | 2.296          | . <del></del>  |

 $n_1 = 3, n_2 = 4, n_3 = 4$   $n_2 = 3, n_3 = 4, n_3 = 4$   $n_1 = 3, n_2 = 4, n_3 = 4$   $n_3 = 3, n_2 = 4, n_3 = 5$ 

| ×     | $P_{o}\{H \ge x\}$ | ×     | $P_{o}\left\{ H>x\right\}$ | x      | $P_{\circ}\left\{ H>x\right\}$ | x     | $P_{o}\left(H>x\right)$ |
|-------|--------------------|-------|----------------------------|--------|--------------------------------|-------|-------------------------|
| 2.303 | .344               | 5.053 | .078                       | 8.909  | .001                           | 1.062 | .621                    |
| 2.326 | ,334               | 5.144 | .073                       |        |                                | 1.103 | .615                    |
| 2.394 | ,325               | 5.182 | .068                       |        |                                | 1.106 | .609                    |
| 2,417 | .315               | 5,212 | .066                       | H. = 3 | $n_1 = 4, n_3 = 5$             | 1.118 | .602                    |
| 2.598 | .306               | 5.296 | .063                       | , .    | 4,03                           | 1.137 | .590                    |
| 2,636 | .290               | 5.303 | .061                       | *      | $P_{o}\{H > x\}$               | 1.164 | .584                    |
| 2.667 | .281               | 5.326 | .058                       |        | 0 (                            | 1.188 | .578                    |
| 2,712 | .276               | 5.386 | .054                       | .010   | 1.000                          | 1.241 | .572                    |
| 2.848 | .269               | 5.500 | .052                       | .030   | .990                           | 1.246 |                         |
| 2.894 | .261               | 5.576 | .05 1                      | .060   | .981                           | 1.260 |                         |
| 2.909 | .254               | 5.598 | .049                       | .081   | .972                           | 1.349 | .548                    |
| 2.932 | .250               | 5.667 | .047                       | .092   | .963                           | 1.414 |                         |
| 2.962 | .243               | 5.803 | .045                       | .118   | .953                           | 1.445 |                         |
| 3.076 | .230               | 5.932 | .043                       | .138   | .944                           | 1.465 | .522                    |
| 3.136 | .218               | 5.962 | .041                       | .173   |                                | 1.472 | .516                    |
| 3.326 | .212               | 6.000 | . <b>94</b> 0              | .180   | .926                           | 1.487 | .506                    |
| 3.386 | .207               | 6.046 | .039                       | .214   | .917                           | 1.506 | .495                    |
| 3.394 | .201               | 6.053 | .035                       | .241   | .908                           | 1.558 | .490                    |
| 3.417 | .195               | 6.144 | .032                       | .256   | .900                           | 1.568 | .479                    |
| 3.477 | .190               | 6.167 | .031                       | .265   | .891                           | 1.599 | .475                    |
| 3.576 | .184               | 6.182 | .030                       | .276   |                                | 1,615 | .465                    |
| 3.598 | .178               | 6.348 | .027                       | .323   | .874                           | 1.718 | .460                    |
| 3.659 | .173               | 6.386 | .026                       | .337   | .865                           | 1.733 | .455                    |
| 3.682 | .162               | 6.394 | .025                       | .368   |                                | 1,753 |                         |
| 3,727 | .160               | 6.409 | .023                       | .426   | .841                           | 1.780 | .446                    |
| 3.803 | .154               | 6.417 | .022                       | .430   | .833                           | 1.814 | .441                    |
| 3.848 | .150               | 6,546 | .021                       | .462   | 825                            | 1.856 |                         |
| 3.932 | .145               | 6.659 | <b>.02</b> 0               | .491   | .817                           | 1.906 | .427                    |
| 3.962 | .140               | 6.712 | .019                       | .503   | .809                           | 1.927 | .423                    |
| 4.144 | .135               | 6.727 | .018                       | 542    | .784                           | 1.938 | .418                    |
| 4.167 | .131               | 6.962 | .017                       | .549   | .777                           | 1.964 | .400                    |
| 4.212 | .129               | 7.000 | .016                       | .626   | .769                           | 1.968 | .396                    |
| 4.296 | .125               | 7.053 | .014                       | .645   | .754                           | 1.985 | .391                    |
| 4.303 | .121               | 7,076 | .011                       | ,692   | .746                           | 2,019 | .387                    |
| 4.326 | .116               | 7.136 | .011                       | .72    |                                | 2.030 | .383                    |
| 4.348 | .113               | 7.144 | .010                       | .731   | .716                           | 2.060 | .379                    |
| 4,409 | .106               | 7.212 | .009                       | .799   | .709                           | 2,103 | 3 .375                  |
| 4.477 | .102               | 7.477 | .006                       | .830   | .696                           | 2.113 | .366                    |
| 4.546 |                    | 7.598 |                            | .83    |                                | 2.169 | 9 .358                  |
| 4.576 | .097               | 7,636 |                            | .85    |                                | 2.27  |                         |
| 4.598 | .093               | 7.682 | .003                       | .95    | .660                           | 2.308 | 350                     |
| 4.712 | .090               | 7.848 | .003                       | 1.00   | 4 .654                         | 2.331 | 7 .346                  |
| 4.750 |                    | 8.227 |                            | 1.04   | .641                           | 2,349 |                         |
| 4.894 | ,084               | 8,326 | .001                       | 1.04   | .628                           | 2.36  | 8 ,335                  |
|       |                    |       |                            |        |                                |       |                         |

 $n_1 = 3, n_2 = 4, n_3 = 5$   $n_1 = 3, n_2 = 4, n_3 = 5$   $n_1 = 3, n_2 = 4, n_3 = 5$   $n_1 = 3, n_2 = 4, n_3 = 5$ 

|       |                                  | , -,  |                            | ,     |                                     |       | 119 119119                 |
|-------|----------------------------------|-------|----------------------------|-------|-------------------------------------|-------|----------------------------|
| x     | $P_{\mathcal{O}}\Big\{H>x\Big\}$ | ×     | $P_{O}\left\{ H>x\right\}$ | ×     | $P_{\mathbf{O}}\left\{ H>x\right\}$ | x     | $P_{O}\left\{ H>x\right\}$ |
| 2,388 | .332                             | 3.753 | .161                       | 5.137 | .068                                | 6.580 | .021                       |
| 2.395 | .321                             | 3,773 | .159                       | 5.158 | .067                                | 6.635 | .020                       |
| 2,472 | .318                             | 3,785 | .156                       | 5,180 | .065                                | 6.676 | .020                       |
| 2.481 | .311                             | 3,810 | .152                       | 5.291 | .063                                | 6.703 | .019                       |
| 2.491 | .307                             | 3,831 | .150                       | 5.308 | .062                                | 6.780 | .019                       |
| 2.522 | .301                             | 3.865 | .148                       | 5.342 | .061                                | 6.785 | .018                       |
| 2,573 | .294                             | 3.876 | .146                       | 5,349 | .061                                | 6.799 | .016                       |
| 2,580 | .291                             | 3.958 | .144                       | 5.353 | .059                                | 6.830 | .016                       |
| 2.641 | .288                             | 4.015 | .140                       | 5.414 | .058                                | 6.891 | .015                       |
| 2,645 | .284                             | 4,030 | .137                       | 5.426 | .057                                | 7,004 | .015                       |
| 2,676 | .281                             | 4,060 | .134                       | 5,549 | .054                                | 7,010 | ,015                       |
| 2,677 | .278                             | 4.122 | .132                       | 5.568 | .052                                | 7.096 | .014                       |
| 2.737 | .271                             | 4.154 | .131                       | 5.619 | .051                                | 7.106 | .014                       |
| 2.830 | .266                             | 4.180 | .125                       | 5.631 | .050                                | 7.188 | .013                       |
| 2.887 | .263                             | 4.195 | .124                       | 5.656 | .049                                | 7.195 | .012                       |
| 2.908 | .260                             | 4.235 | .121                       | 5.660 | .048                                | 7.256 | .012                       |
| 2.949 | .251                             | 4,241 | .119                       | 5.677 | .047                                | 7.260 | .012                       |
| 2,953 | ,248                             | 4,276 | .117                       | 5.718 | ,046                                | 7,272 | .012                       |
| 2,964 | .240                             | 4.318 | .115                       | 5.722 | .045                                | 7,291 | .011                       |
| 3.010 | .238                             | 4.327 | .112                       | 5.753 | .044                                | 7.318 | .011                       |
| 3.035 | .235                             | 4.368 | .110                       | 5.780 | .043                                | 7.395 | .011                       |
| 3,087 | .232                             | 4.419 | .109                       | 5.804 | .041                                | 7.445 | .010                       |
| 3,092 | .222                             | 4.426 | .107                       | 5.814 | .040                                | 7.465 | .010                       |
| 3.106 | .219                             | 4.487 | .106                       | 5.862 | .040                                | 7,477 | .009                       |
| 3.137 | .216                             | 4,522 | .105                       | 5.876 | .039                                | 7.523 | .007                       |
| 3.195 | .214                             | 4.523 | .103                       | 5.964 | .038                                | 7.568 | .007                       |
| 3.256 | .209                             | 4,549 | ,0 <del>99</del>           | 6.026 | .038                                | 7.641 | .007                       |
| 3.260 | .206                             | 4.564 | .097                       | 6.030 | .037                                | 7.708 | .006                       |
| 3.312 | .204                             | 4.645 | .095                       | 6.060 | .037                                | 7.753 | .006                       |
| 3.318 | .199                             | 4.676 | .093                       | 6.087 | .035                                | 7.810 | .006                       |
| 3.353 | .197                             | 4.754 | .091                       | 6.164 | .035                                | 7.876 | .006                       |
| 3.414 | .194                             | 4.789 | .089                       | 6.173 | .034                                | 7.887 | .006                       |
| 3.445 | .192                             | 4,810 | .088                       | 6.231 | .033                                | 7.906 | .005                       |
| 3.462 | .190                             | 4,830 | .083                       | 6.265 | .032                                | 7.927 | .005                       |
| 3.496 | .188                             | 4.856 | .082                       | 6.272 | .030                                | 8,030 | .005                       |
| 3,503 | .183                             | 4.881 | 180,                       | 6.337 | .030                                | B.060 | .004                       |
| 3.506 | .181                             | 4,891 | .078                       | 6.368 | .029                                | 8.077 | .004                       |
| 3,568 | .179                             | 4,939 | .075                       | 6.369 | .029                                | 8.118 | .004                       |
| 3.580 | 177                              | 4.953 | .074                       | 6.395 | .026                                | 8.122 | .004                       |
| 3.599 | .173                             | 4.983 | .073                       | 6.410 | .025                                | 8,215 | .003                       |
| 3.626 | .169                             | 5.041 | .072                       | 6.491 | .025                                | 8,256 | .003                       |
| 3,703 | .165                             | 5.045 | .071                       | 6.522 | .024                                | 8.430 | .002                       |
| 3.722 | .163                             | 5.106 | .070                       | 6.542 | .023                                | 8.446 | .002                       |
|       |                                  |       |                            |       |                                     |       |                            |

 $n_1 = 3, n_2 = 4, n_3 = 5, n_1 = 3, n_2 = 5, n_3 = 5, n$ 

|                | 7 (1                |       |                  |       | - /            |              | . (        |
|----------------|---------------------|-------|------------------|-------|----------------|--------------|------------|
| x              | $P_{O}\{H>x\}$      |       | $P_{O}\{H > x\}$ | x     | $P_{O}(H > x)$ | <u> </u>     | $P_0\{H>x$ |
| 8.481          | .002                | 1.037 | .643             | 2.857 | .257           | 4.914        | .079       |
| 8.503          | ,001                | 1.055 | .632             | 2.884 | .255           | 4,941        | .077       |
| 8. <b>5</b> 73 | .001                | 1.064 | .611             | 2.936 | .246           | 4,993        | .075       |
| 8.626          | .001                | 1.116 | .602             | 2.963 | .241           | 5.020        | .072       |
| 8.795          | .001                | 1.134 | .592             | 3,094 | .237           | 5.064        | .070       |
| 9.035          | .001                | 1.143 | .583             | 3.112 | .224           | 5.152        | .067       |
| 9.118          | .001                | 1,248 | 573              | 3.121 | ,220           | 5,169        | .065       |
| 9.199          | ,000                | 1.266 | <b>.563</b>      | 3.165 | .216           | 5,222        | .065       |
| 9.692          | ,000                | 1.292 | <b>-554</b>      | 3.191 | .208           | 5.284        |            |
|                |                     | 1.371 | <b>.550</b>      | 3.279 | .206           |              | .063       |
|                |                     | 1.407 | .541             | 3.306 | .202           | 5.363        | .062       |
| n. = 3         | n, = 5, n, = 5      |       | <i>5</i> 14      |       |                | 5.407        | .059       |
| -, -,          | ,, ,,.,, -3         | 1.459 | <b>506</b>       | 3.429 | .195           | 5.486        | .057       |
| x              | $P_{\Omega}\{H>x\}$ | 1.512 | .497             | 3.464 | .191           | 5.494        | .0\$6      |
|                | 70/17 - 4/          | 1.565 | .480             | 3.516 | .187           | 5.521        | .055       |
| .000           | 1,000               |       |                  | 3.622 | .173           | 5.574        | .053       |
| .026           | .996                | 1.688 | .472             | 3.648 | .167           | <b>5.600</b> | .051       |
|                |                     | 1.723 | .460             | 3.666 | .164           | 5.626        | .051       |
| .035           | .989                | 1.741 | .453             | 3.745 | .161           | 5.706        | .046       |
| .088           | .974                | 1.750 | .445             | 3.780 | .158           | 5.802        | .045       |
| .106           | .959                | 1.802 | ,438             | 3.798 | .152           | 5.837        | .042       |
| .114           | .951                | 1.829 | .431             | 3.807 | .147           | 5.934        | .040       |
| .141           | .944                | 1.855 | .420             | 3.912 | .144           | 5.943        | .039       |
| .193           | .930                | 1.934 | .413             | 3.965 | .142           | 6.022        | .038       |
| .220           | .916                | 1.978 | .393             | 3.991 | .139           | 6.048        | .037       |
| .237           | .902                | 2.066 | .386             | 4.114 | .136           | 6.198        | .035       |
| .264           | <b>.89</b> 5        | 2,136 | .380             | 4.141 | .135           | 6.207        | ,034       |
| .316           | .880                | 2.145 | .377             | 4.150 | .132           | 6.250        | .034       |
| .352           | .866                | 2.163 | .370             | 4,202 | .127           | 6.259        | .033       |
| .422           | .840                | 2,198 | .364             | 4,220 | .125           | 6.286        | .031       |
| .457           | .819                | 2,250 | .351             | 4,255 | .117           | 6.312        |            |
| .484           | .813                | 2.321 | .339             | 4,308 | .112           | 6.365        | .030       |
| .536           | .800                | 2.374 | .327             | 4,352 | .112           | 6.391        | .030       |
| .563           | .788                | 2.409 | .321             | 4.378 |                |              | .028       |
| 580            | .763                | 2.479 | .315             |       | .107           | 6.435        | .027       |
| .659           | .751                | 2.488 | .310             | 4.457 | .105           | 6.488        | .025       |
| .695           | .745                | 2.514 | .305             | 4.466 | .104           | 6.550        | .024       |
| .721           | .733                | 2.593 | .299             | 4.536 | .102           | 6.593        | .024       |
| .774           | .733<br>.721        | 2.620 | .299<br>,294     | 4,545 | .100           | 6.655        | .022       |
|                |                     |       |                  | 4.571 | .098           | 6.734        | .022       |
| .791           | .698                | 2.637 | .289             | 4.694 | .094           | 6.752        | .021       |
| .826           | .686                | 2.716 | .276             | 4,774 | .092           | 6.866        | .019       |
| .879           | .675                | 2,752 | .271             | 4.826 | .089           | 6.892        | .018       |
| .950           | .653                | 2,778 | .267             | 4.835 | .088           | 6.945        | .018       |
| 1.029          | .648                | 2.848 | .262             | 4,888 | .082           | 6.963        | .017       |

 $n_1 = 3, n_2 = 5, n_3 = 5, n_3 = 4, n_2 = 4, n_3 = 4, n_3 = 4, n_3 = 4, n_3 = 4, n_4 = 4, n_5 = 5$ 

| ·      |                           |       |                             |           |                                        |              |                                     |  |
|--------|---------------------------|-------|-----------------------------|-----------|----------------------------------------|--------------|-------------------------------------|--|
| ×      | $P_{O}\left\{H>x\right\}$ | *     | $P_0\left\{H\geq x\right\}$ | ×         | $P_0 \{ H > x \}$                      | ×            | $P_{\mathcal{O}}\left\{H>x\right\}$ |  |
| 6.998  | .015                      | .000  | 1.000                       | 4.654     | .097                                   | .119         | .952                                |  |
| 7.050  | .015                      | .038  | .994                        | 4,769     | ,094                                   | .132         | .937                                |  |
| 7.121  | .014                      | .115  | .968                        | 4.885     | .086                                   | ,201         | .930                                |  |
| 7.209  | .014                      | .154  | .941                        | 4.962     | .080                                   | .218         | .916                                |  |
| 7,226  | .012                      | .269  | .913                        | 5.115     | .074                                   | ,228         | .903                                |  |
| 7.288  | .012                      | .346  | .864                        | 5,346     | .063                                   | .267         | .889                                |  |
| 7.306  | .012                      | .462  | ,840                        | 5.538     | .057                                   | .297         | .875                                |  |
| 7.314  | .011                      | .500  | .815                        | 6.654     | .055                                   | .343         | .869                                |  |
| 7.437  | .011                      | .615  | .770                        | 5.692     | .049                                   | .376         | .862                                |  |
| 7.543  | .010                      | .731  | .746                        | 5.808     | ,044                                   | .382         | .849                                |  |
| 7.578  | .010                      | .808  | .706                        | 6.000     | .040                                   | .399         | .836                                |  |
| 7.622  | .009                      | .962  | .667                        | 6.038     | .037                                   | .425         | .823                                |  |
| 7.736  | ,009                      | 1,038 | .648                        | 6.269     | .033                                   | .475         | .811                                |  |
| 7.763  | 800,                      | 1,077 | .630                        | 6,500     | .030                                   | .528         | .798                                |  |
| 7.780  | .008                      | 1.192 | .592                        | 6,577     | .026                                   | 544          | .792                                |  |
| 7.859  | .007                      | 1.385 | .557                        | 6.615     | ,024                                   | <b>.597</b>  | .780                                |  |
| 7.894  | .007                      | 1.423 | _540                        | 6.731     | ,021                                   | .610         | .768                                |  |
| 7.912  | .007                      | 1.500 | <b>5</b> 10                 | 6.962     | ,019                                   | .613         | .757                                |  |
| 8.026  | ,006                      | 1.654 | .480                        | 7.038     | .018                                   | .640         | .745                                |  |
| 8.079  | .006                      | 1,846 | .452                        | 7.269     | .016                                   | .689         | .734                                |  |
| 8.106  | .006                      | 1.885 | .436                        | 7.385     | ,015                                   | .742         | .723                                |  |
| 8.237  | ,005                      | 2.000 | .397                        | 7.423     | ,013                                   | .771         | .711                                |  |
| 8.264  | .005                      | 2.192 | .370                        | 7.538     | .011                                   | .804         | .706                                |  |
| 8.316  | .005                      | 2,346 | .348                        | 7.654     | .008                                   | .824         | .695                                |  |
| 8,334  | .005                      | 2.423 | .327                        | 7.731     | .007                                   | .860         | .690                                |  |
| 8.545  | .004                      | 2,462 | .307                        | 8,000     | .005                                   | .870         | .679                                |  |
| 8.571  | .004                      | 2577  | .296                        | 8.115     | ,003                                   | .903         | .668                                |  |
| 8.580  | .004                      | 2,808 | .277                        | 8,346     | .002                                   | <b>.9</b> 10 | .658                                |  |
| 8,650  | .003                      | 2,885 | .260                        | 8.654     | .001                                   | .940         | .647                                |  |
| 8.659  | .003                      | 2.923 | ,252                        | 8.769     | .001                                   | 1.019        | .637                                |  |
| 8.791  | .002                      | 3.038 | ,234                        | 9.269     | .001                                   | 1.058        | .627                                |  |
| 8.809  | ,002                      | 3.115 | ,219                        | 9.846     | 000                                    | 1.068        | .617                                |  |
| 8.950  | .002                      | 3.231 | <i>,</i> 212                |           |                                        | 1.124        | ,607                                |  |
| 9.002  | ,002                      | 3.500 | .197                        |           |                                        | 1.167        | <i>.</i> 598                        |  |
| 9.055  | .001                      | 3,577 | .173                        | $n_1 = 4$ | n <sub>2</sub> = 4, n <sub>3</sub> = 5 | 1.187        | .589                                |  |
| 9.284  | ,001                      | 3,731 | .162                        |           | ····                                   | 1,190        | .584                                |  |
| 9.336  | ,001                      | 3.846 | .151                        | ×         | $P_{O}\{H > x\}$                       | 1.203        | .574                                |  |
| 9,398  | .001                      | 3.962 | .145                        |           |                                        | 1,256        | <b>.5</b> 65                        |  |
| 9.521  | .000                      | 4.154 | .136                        | .000      | 1.000                                  | 1.272        | .556                                |  |
| 9.635  | ,000                      | 4.192 | .131                        | .030      | . <del>9</del> 96                      | 1.299        | .5 48                               |  |
| 9.916  | .000                      | 4.269 | .122                        | .033      | ,981                                   | 1.371        | <b>.539</b>                         |  |
| 10,057 | .000.                     | 4,308 | .114                        | .086      | .974                                   | 1.404        | .534                                |  |
| 10.550 | ,000                      | 4.500 | .104                        | .096      | <b>.9</b> 67                           | 1.414        | .526                                |  |

 $n_1 = 4, n_2 = 4, n_3 = 5, n_1 = 4, n_2 = 4, n_3 = 5, n_1 = 4, n_3 = 5, n_1 = 4, n_3 = 6, n_1 = 4, n_2 = 6, n_3 = 6, n$ 

|                |                                     | "] ",          |                         |                |                                     | **1            |                                  |
|----------------|-------------------------------------|----------------|-------------------------|----------------|-------------------------------------|----------------|----------------------------------|
| x              | $P_{\mathcal{O}}\left\{H>x\right\}$ | ×              | $P_0\left\{H>x\right\}$ | ×              | $P_{\mathcal{O}}\left\{H>x\right\}$ | _ <b>x</b>     | $P_{\mathcal{O}}\Big\{H>x\Big\}$ |
| 1.454          | .518                                | 3.013          | .228                    | 4.701          | .094                                | 6.214          | .034                             |
| 1.503          | .509                                | 3.086          | .224                    | 4.711          | .092                                | 6.228          | .033                             |
| 1.530          | .50 <b>1</b>                        | 3.119          | ,221                    | 4,728          | .091                                | 6.267          | .032                             |
| 1.533          | .493                                | 3.129          | .217                    | 4,747          | .089                                | 6.310          | .031                             |
| 1.586          | .485                                | 3.168          | .214                    | 4.760          | .088                                | 6.343          | .030                             |
| 1,596          | .477                                | 3.218          | ,210                    | 4.813          | .086                                | 6.382          | .029                             |
| 1.615          | .469                                | 3.260          | ,206                    | 4.830          | .084                                | 6.399          | .028                             |
| 1.668          | .465                                | 3.297          | .202                    | 4.833          | .082                                | 6.462          | .027                             |
| 1.701          | .458                                | 3,330          | .200                    | 4.896          | .081                                | 6.544          | .027                             |
| 1.718          | .450                                | 3,382          | .197                    | 4.975          | .077                                | 6,547          | .026                             |
| 1.744          | .443                                | 3.432          | .190                    | 5.014          | .076                                | 6.597          | .026                             |
| 1.810          | .436                                | 3.442          | .187                    | 5.024          | .074                                | 6.672          | .024                             |
| 1.876          | .429                                | 3.481          | .183                    | 5.028          | .073                                | 6,676          | .024                             |
| 1.899          | .422                                | 3.511          | .180                    | 5.090          | .071                                | 6.804          | .023                             |
| 1.929          | .414                                | 3,590          | .176                    | 5.172          | .069                                | <b>6.86</b> 0  | .022                             |
| 1.942          | .408                                | 3.613          | .170                    | 5.196          | .068                                | 6.870          | .022                             |
| 1.958          | .401                                | 3.630          | .167                    | 5.225          | .066                                | 6.887          | .021                             |
| 2.047          | .388                                | 3.640          | .164                    | 5.344          | .065                                | 6.890          | .021                             |
| 2.110          | .375                                | 3.656          | .160                    | 5.360          | .063                                | 6.943          | .020                             |
| 2.140          | .371                                | 3.696          | .157                    | 5.370          | .062                                | 6.953          | .020                             |
| 2.143<br>2.176 | .365                                | 3.758          | .154                    | 5.387          | .061                                | 6.976          | .019                             |
| 2.176          | .362<br>.356                        | 3.828          | .151                    | 5.410          | .060                                | 7.058          | .018                             |
| 2.275          | .344                                | 3.910<br>3.986 | .146                    | 5.440          | .059                                | 7.075          | .017                             |
| 2.387          | .338                                | 3.989          | .143<br>.141            | 5.476<br>5.486 | .057                                | 7.101          | .017                             |
| 2.390          | .332                                | 4.025          | .139                    | 5.489          | .056<br>.056                        | 7.124          | ,016                             |
| 2.403          | .327                                | 4.042          | .134                    | 5.519          | .054                                | 7.190<br>7,203 | .016                             |
| 2.440          | .316                                | 4.068          | .132                    | 5.568          | .052                                | 7.233          | .015                             |
| 2.443          | .310                                | 4.075          | .130                    | 5.571          | .051                                | 7.240          | .015<br>.014                     |
| 2.453          | .305                                | 4.118          | .127                    | 5.618          | .050                                | 7.256          | .014                             |
| 2.558          | .299                                | 4.170          | .125                    | 5.657          | .049                                | 7.418          | .014                             |
| 2,575          | ,293                                | 4.200          | .122                    | 5.687          | .048                                | 7.467          | .013                             |
| 2.601          | .288                                | 4.233          | .121                    | 5.756          | .047                                | 7.470          | .013                             |
| 2.667          | .283                                | 4.253          | ,119                    | 5.782          | .046                                | 7.497          | .013                             |
| 2.670          | .279                                | 4.272          | .117                    | 5.815          | .045                                | 7.503          | .012                             |
| 2.733          | .271                                | 4.289          | .114                    | 5.819          | .043                                | 7.586          | .012                             |
| 2.756          | .267                                | 4,332          | .112                    | 5.914          | .042                                | 7.596          | .012                             |
| 2,799          | .262                                | 4.381          | .108                    | 6.003          | .042                                | 7.714          | .011                             |
| 2.881          | .257                                | 4,447          | .106                    | 6.013          | .041                                | 7.744          | .011                             |
| 2.904          | .253                                | 4.497          | .104                    | 6.030          | .040                                | 7.760          | ,009                             |
| 2.918          | .249                                | 4,553          | .102                    | 6.096          | .039                                | 7.767          | .009                             |
| 2.967          | ,245                                | 4.619          | .100                    | 6.119          | .038                                | 7.797          | .009                             |
| 2.987          | ,240                                | 4,668          | .098                    | 6.132          | .037                                | 7,810          | .009                             |
| 2.997          | .236                                | 4.685          | .096                    | 6.201          | .036                                | 7.833          | .008                             |
|                |                                     |                |                         |                |                                     |                |                                  |

 $n_1=4, n_2=4, n_3=5$   $n_1=4, n_2=5, n_3=5$   $n_1=4, n_2=5, n_3=5$   $n_1=4, n_2=5, n_3=5$ 

|              |                                | 11             |               | -              | ·                         |                |                            |
|--------------|--------------------------------|----------------|---------------|----------------|---------------------------|----------------|----------------------------|
| *            | $P_0\{H>x\}$                   | *              | $P_0\{H>x\}$  | ×              | $P_{O}\left\{H>x\right\}$ | *              | $P_{O}\left\{ H>x\right\}$ |
| 7,942        | .007                           | .111           | .958          | 1.366          | <b>.525</b>               | 2.783          | .272                       |
| 7.981        | .007                           | .131           | 946           | 1,411          | .518                      | 2.786          | .268                       |
| 8.047        | .006                           | .143           | .935          | 1.423          | .512                      | 2.831          | .257                       |
| 8,113        | .006                           | .180           | .929          | 1.483          | <i>-5</i> 05              | 2.840          | .254                       |
| 8.130        | .006                           | .203           | .923          | 1.551          | .498                      | 2,886          | .250                       |
| 8.140        | ,005                           | ,223           | .912          | 1.560          | .492                      | 2.931          | .246                       |
| 8.156        | .005                           | ,226           | . <b>9</b> 01 | 1.606          | .485                      | 2.946          | .239                       |
| 8.189        | .005                           | .271           | .890          | 1.620          | .479                      | 2.966          | .236                       |
| 8,403        | .004                           | .280           | .879          | 1,643          | .470                      | 2.991          | .232                       |
| 8,440        | .004                           | .326           | .874          | 1.651          | .458                      | 3.023          | .229                       |
| 8.456        | .004                           | .360           | .863          | 1.686          | .455                      | 3.083          | .224                       |
| 8.525        | .003                           | .371           | .852          | 1.711          | .449                      | 3.103          | .221                       |
| 8.558        | .003                           | .386           | ,841          | 1.731          | ,443                      | 3,160          | .218                       |
| 8.571        | ,003                           | .463           | .821          | 1.743          | .437                      | 3,240          | .215                       |
| 8.575        | ,003                           | .500           | .805          | 1.803          | ,431                      | 3.243          | .211                       |
| 8.604        | .003                           | <b>.523</b>    | .800          | 1.826          | .425                      | 3.266          | .209                       |
| 8.703        | .003                           | .543           | .790          | 1.871          | .420                      | 3.286          | .203                       |
| 8.733        | .002                           | .546           | .781          | 1.963          | .414                      | 3.311          | .200                       |
| 8,782        | .002                           | .591           | .771          | <b>L971</b>    | .409                      | 3,343          | .197                       |
| 8.868        | .002                           | .600           | .752          | 1.986          | .398                      | 3,380          | .188                       |
| 8.997        | .001                           | .691           | .742          | 2,006          | 393                       | 3.403          | .187                       |
| 9,053        | .001                           | .706           | .738          | 2.031          | .382                      | 3,471          | .184                       |
| 9.099        | 100.                           | .726           | .729          | 2,051          | .377                      | 3,540          | .176                       |
| 9.129        | .001                           | .751           | .720          | 2.063          | .372                      | 3.571          | .174                       |
| 9.168        | .001                           | .771           | .711          | 2,100          | .369                      | 3.586          | .170                       |
| 9.396        |                                | .783           | .693          | 2,143          | .364                      | 3.651          | .167                       |
| 9.528        | .001                           | .843           | .684          | 2.191          | .354                      | 3,743          | .162                       |
| 9,590        |                                | .863           | .675          | 2.246          | ,349                      | 3.746          | .160                       |
| 9,613        |                                | .866           | .667          | 2,280          | .344                      | 3.791          | .155                       |
| 9.758        |                                | <b>.9</b> 66   | .658          | 2.306          | .339                      | 3.800          | .153                       |
| 10.118       |                                | .980           | .654          | 2.351          | .335                      | 3,846          | .151                       |
| 10.187       |                                | 1.000          | .650          | 2.371          | .330                      | 3.883          | .148                       |
| 10.681       | .000                           | 1.003          | .642          | 2,383          | .326                      | 3,891          | .144                       |
|              |                                | 1.011          | .626          | 2.420          | .322<br>.319              | 3,906          | .142                       |
|              |                                | 1.046          | .617          | 2.443          | .307                      | 3.926          | .140<br>.137               |
| л, ≠4,       | n, =5,n, =5                    | 1.071          | ,610          | 2.463          | .307                      | 3.951          | .135                       |
|              | 5 1 ··· s 1                    | 1.140          | .594<br>.587  | 2,466<br>2,511 | ,298                      | 3,971<br>4,043 | .133                       |
| x            | $P_{O}\left\{ H\geq x\right\}$ | 1.183          | .579          | 2.520          | .294                      | 4,063          | .131                       |
|              |                                | 1.186<br>1.286 | .572          | 2.566          | .292                      | 4.166          | .127                       |
| .006         |                                | 1.300          | .512<br>.553  | 2.600          | .288                      | 4,200          | .124                       |
| .020         |                                | 1.323          | .333<br>.547  | 2.626          | .284                      | 4,203          | .122                       |
| .043         |                                | 1.331          | .540          | 2.691          | .280                      | 4,246          | .120                       |
| .051<br>.086 |                                | 1.346          | .532          | 2.740          | .276                      | 4.271          | .118                       |
| .v60         | 7 / V                          | 1.,,70         | ~~            | 70             |                           | 740 1 1        |                            |

 $n_1 = 4, n_2 = 5, n_3 = 5, n_1 = 4, n_1 = 5, n_2 = 5, n_3 = 5, n_3 = 5, n_4 = 5, n_5 = 5, n$ 

|       |                           | . <u> </u> |                                    |              |                         | - n,           | ,,,, - 3,,, =                |
|-------|---------------------------|------------|------------------------------------|--------------|-------------------------|----------------|------------------------------|
|       | $P_{O}\left\{H>x\right\}$ | <u> </u>   | $P_{\mathbf{O}}\left\{H>x\right\}$ | *            | $P_{\mathbf{o}}\{H>x\}$ |                | $P_0 \left\{ H > x \right\}$ |
| 4.291 | -115                      | 5.711      | .048                               | 7.183        | .017                    | 8.683          | .004                         |
| 4.303 | .113                      | 5.780      | .048                               | 7.220        | .017                    | 8.691          | .004                         |
| 4.363 | .111                      | 5.803      | .047                               | 7.243        | .017                    | 8.726          | .004                         |
| 4.383 | .110                      | 5.811      | .046                               | 7.266        | .016                    | 8.751          | .004                         |
| 4.386 | -108                      | 5.871      | .045                               | 7.311        | .015                    | 8.771          | -004                         |
| 4.486 | .106                      | 5.903      | .043                               | 7.320        | .015                    | 8.969          | .003                         |
| 4.500 | .105                      | 5.963      | .042                               | 7.426        | .015                    | 8.980          | .003                         |
| 4.520 | .103                      | 5.983      | .042                               | 7.446        | .014                    | 9.000          | .003                         |
| 4.523 | .099                      | 5.986      | .041                               | 7.471        | .014                    | 9.011          | .003                         |
| 4.531 | .098                      | 6.031      | .040                               | 7.491        | .014                    | 9.026          | .003                         |
| 4.591 | .096                      | 6.086      | .040                               | 7.503        | .013                    | 9.071          | .003                         |
| 4.611 | .095                      | 6.100      | .038                               | 7.563        | .013                    | 9.103          | .002                         |
| 4.660 | .093                      | 6.123      | .037                               | 7.586        | .012                    | 9.163          |                              |
| 4.706 | .092                      | 6.146      | .037                               | 7.631        | .012                    | 9.163<br>9.231 | .002                         |
| 4.806 | .089                      | 6.166      | .035                               | 7.640        | .011                    | 9.286          | .002                         |
| 4.843 | .088                      | 6.211      | .035                               | 7.686        | -011                    | 9.323          | .002                         |
| 4.851 | .086                      | 6.223      | .034                               | 7.720        | .011                    |                | .001                         |
| 4.866 | .084                      | 6.283      | .034                               | 7.766        | .010                    | 9.411          | .001                         |
| 4.886 | .083                      | 6.303      | .033                               | 7.791        | .010                    | 9.503          | .001                         |
| 4.911 | .079                      | 6.351      | .032                               | 7.823        | .010                    | 9.506          | .001                         |
| 4.943 | .078                      | 6.406      | .031                               | 7.860        | .010                    | 9.606          | .001                         |
| 4.980 | .076                      | 6.440      | .030                               | 7.903        | .009                    | 9.643          | 100.                         |
| 5.023 | .075                      | 6.451      | .029                               | 7.906        | .009                    | 9.651          | .001                         |
| 5.071 | .074                      | 6.486      | .029                               | 8.006        | .009                    | 9.686          | .001                         |
| 5.126 | .073                      | 6.531      | .028                               | 8.043        | .009                    | 9.926          | .001                         |
| 5.163 | .070                      | 6.543      | .028                               | 8.051        |                         | 9.986          | .000                         |
| 5.171 | -069                      | 6.603      | .027                               | 8.066        |                         | 10.051         | .000                         |
| 5.186 | .068                      | 6.623      | .026                               | <b>2.086</b> |                         | 10.063         | .000                         |
| 5.206 | .067                      | 6.626      | .026                               | 8.131        | .008 1                  | 10.100         | .000                         |
| 5.231 | .066                      | 6.671      | .025                               | 8.143        |                         | 0.260          | .000                         |
| 5.263 | .064                      | 6.760      | .025                               | 8.223        |                         | 0.511          | .000                         |
| 5.323 | .063                      | 6.763      | .024                               | 8.226        |                         | 0.520          | .000                         |
| 5.400 | .061                      | 6.771      | .024                               | 8.271        |                         | 0.566          | .000                         |
| 5.446 | .059                      | 6.786      | .023                               | 8.280        |                         | 0.646          | .000                         |
| 5.460 | .058                      | 6.806      | .022                               | 8.340        | _                       | 1.023          | .000                         |
| 5.483 | .057                      | 6.831      | .022                               | 8.363        |                         | 1.083          | .000                         |
| 5.491 | .056                      | 6.900      | .021                               | 8.371        |                         | 1.571          | .000                         |
| 5.526 | .056                      | 6.943      |                                    | 8.386        | .005 °                  |                |                              |
| 5.571 | .055                      | 7.000      | .019                               | 8.431        |                         | n, = 5, n      | . =5. n. = 5                 |
| 5.583 |                           | 7.046      |                                    | 8.463        |                         |                |                              |
| 5.620 | .051                      | 7.080      |                                    | 8.523        | -005                    | ×              | $P_{o}\{H>x\}$               |
| 5.643 | _                         | 7.106      |                                    | 8.543        | -005 _                  |                |                              |
| 5.666 |                           | 7.171      |                                    | 8.546        | .005                    | .000           | 1.000                        |
|       |                           | • •        |                                    | G. 7 0       | .004                    | .020           | . <del>9</del> 98            |
|       |                           |            |                                    |              |                         |                |                              |

 $n_1 \neq 5, n_2 = 5, n_3 = 5$   $n_1 = 5, n_2 = 5, n_3 = 5$   $n_1 = 5, n_2 = 5, n_3 = 5$   $n_1 \neq 5, n_2 = 5, n_3 = 5$  $P_{0}\left\{ H>x\right\}$  $P_{o}\{H>x\}$  $P_{0}\left\{ H>x\right\}$  $P_0 \{ H > x \}$ x .009 .072 8.000 5.120 .330 .983 2.340 £60 .009 .070 8.060 5.180 .319 968 2.420 .080 .008 .065 8.180 5.360 .314 .954 2.480 .140 8,240 .008 .063 5.420 .304 .925 2.540 .180 8,340 .007 .060 5,460 .294 .911 2,580 .240 .007 .055 8.420 5.540 .284 .898 2.660 260 .006 ,053 8.540 5.580 .265 .320 871 2.780 .006 .051 8.640 5,660 .256 .858 2.880 .380 .006 .049 8.660 5.780 .252 .832 2.940 .420 .005 8.720 5,820 .048 .239 .500 .807 2,960 8,780 .005 .046 5.840 .231 .794 3.020 540 .005 .044 8.820 6,000 .223 .783 3,120 .560 .004 .043 8,880 6.020 .216 .620 .759 3.140 .004 .040 8.960 6.080 .208 .736 3.260 .720 .004 .038 9,060 6,140 .725 3.380 .201 .740 ,003 9.140 6.180 .036 ,190 .780 .703 3,420 .003 9.260 .035 6.260 .184 .681 3,440 .860 .003 .033 9.360 6,320 .660 3.500 .177 .960 .003 .032 9.380 6,480 .171 ,980 .650 3.620 ,002 9.420 .031 6.500 .165 .620 3.660 1,040 .002 9.500 .030 6.540 .159 .601 3.780 1.140 .002 9,620 .028 6,620 .153 1,220 .582 3.840 .001 9,680 .027 6.660 .150 1.260 564 3.860 9,740 .001 .026 6.720 .145 1.280 547 3.920 .001 .025 9.780 6.740 ,538 3.980 .137 1.340 .001 9.920 -024 6.860 .132 4.020 1.460 .521 100. 9.980 .021 6.980 .127 **\_505** 4.160 1,500 .001 10.140 .020 7.020 .497 4,220 .123 1.520 ,001 10.220 7.220 .019 .118 .481 4,340 1.580 .000 10.260 .018 7,260 .110 4.380 .466 1.620 .000 10.500 .018 7.280 .105 .459 4,460 1,680 .000 .016 10,580 7.340 .102 .444 4,500 1.820 .000 .015 10.640 7.440 4.560 .100 1.860 .416 .000 .015 10.820 7,460 .096 1.940 .403 4.580

.092

.089

280

.084

.081

.075

,390

.383

.371

.365

.353

.342

2,000

2.060

2,160

2.180

2,220

2,240

4.740

4.820

4.860

4.880

4.940

5.040

7.580

7.620

7.740

7.760

7,940

7.980

.000

.000

.000

.000

.000

.000

.014

.013

.012

.012

.011

.011

11,060

11,180

11.520

11,580

12.020

12,500

CRITICAL VALUES FOR ALL TREATMENTS MULTIPLE COMPARISONS RASED ON KRUSKAL -WALLIS RANK SUMS

Source: Hollander and Wolfe, 1973, 328-29

k=3, n=2(1)6; k=6,7,8, n=2,3; k=4,5, n=2,3,4; k=9(1)15, n=2

For a given k and n, the entries in the table correspond to  $P_0\{|R_{ii}-R_{y}| < y(a,k,n), u=1,...,k-1, v=u+1,...,k\} \approx 1-a$ .

|    | 2          |      | 3          |      | . 4        | 4    |            |      | 6          |      |  |
|----|------------|------|------------|------|------------|------|------------|------|------------|------|--|
| k  | γ(α, k, 2) | α_   | y(a, k, 3) | æ    | y(a, k, 4) | •    | y(α, ξ, 5) | a    | y(α, k, 6) | α    |  |
| 3  | 8          | .067 | 15*        | .064 | 24*        | .045 | 33*        | .048 | 43*        | .049 |  |
|    |            |      | 16         | .029 | 25         | .031 | 35         | .031 | 51*        | .011 |  |
|    |            |      | 17*        | .011 | 27*        | .011 | 39*        | .009 |            |      |  |
| 4  | 12         | .029 | 22         | .043 | 34         | .049 |            |      |            |      |  |
|    |            |      | 23         | .023 | 36         | .026 |            |      |            |      |  |
|    |            |      | 24         | .012 | 38         | .012 |            |      |            |      |  |
| 5  | 15         | .048 | 28         | .060 | 44         | .056 |            |      |            |      |  |
|    | 16         | .016 | 30         | .023 | 46         | .033 |            |      |            |      |  |
|    |            |      | 32         | .007 | 50         | .010 |            |      |            |      |  |
| 6  | 19         | .030 | 3.5        | .055 |            |      |            |      |            |      |  |
|    | 20         | .010 | 37         | .024 |            |      |            |      |            |      |  |
|    |            |      | 39         | .009 |            |      |            |      |            |      |  |
| 7  | 22         | .056 | 42         | .054 |            |      |            |      |            |      |  |
|    | 23         | .021 | 44         | .026 |            |      |            |      |            |      |  |
|    | 24         | .007 | 46         | .012 |            |      |            |      |            |      |  |
|    | 26         | .041 | 49         | .055 |            |      |            |      |            |      |  |
|    | 28         | .005 | 51         | .029 |            |      |            |      |            |      |  |
|    |            |      | 54         | .010 |            |      |            |      |            |      |  |
| 9  | 29         | .063 |            |      |            |      |            |      |            |      |  |
|    | 30         | .031 |            |      |            |      |            |      |            |      |  |
|    | 31         | .012 |            |      |            |      |            |      |            |      |  |
| 10 | 33         | .050 |            |      |            |      |            |      |            |      |  |
|    | 34         | .025 |            |      |            |      |            |      |            |      |  |
|    | 35         | .009 |            |      |            |      |            |      |            |      |  |
| 11 | 37         | .040 |            |      |            |      |            |      |            |      |  |
|    | 38         | .020 |            |      |            |      |            |      |            |      |  |
|    | 39         | .008 |            |      |            |      |            |      |            |      |  |
|    |            |      |            |      |            |      |            |      |            |      |  |

#### n=2 $k y(\alpha, k, 2) \alpha$ 40 .062 .033 41 43 .006 .052 13 44 45 .028 46 .014 14 48 .044 49 .024 .012 50 52 .038 15 .010 54

# Listing of Catmogs in print

| 30:<br>31: | Silk, The analysis of variance.<br>Thomas, Information statistics in geography. | 3.50<br>3.00 |
|------------|---------------------------------------------------------------------------------|--------------|
| 32:        | Kellerman, Centrographic measures in geography.                                 | 3.00         |
| 33:        | Haynes, An introduction to dimensional analysis for geographers.                | 3.00         |
| 34:        | Beaumont & Gatrell, An introduction to Q-analysis.                              | 3.50         |
| 35:        | The agricultural census - United Kingdom and United States.                     | 3.00         |
| 36:        | Aplin, Order-neighbour analysis.                                                | 3.00         |
| 37:        | Johnston & Semple, Classification using information statistics.                 | 3.00         |
| 38:        | Openshaw, The modifiable areal unit problem.                                    | 3.00         |
| 39:        | Dixon & Leach, Survey research in underdeveloped countries.                     | 5.00         |
| 40:        | Clark, Innovation diffusion: contemporary geographical approaches.              | 3.00         |
| 41:        | Kirby, Choice in field surveying.                                               | 3.00         |
| 42:        | Pickles, An introduction to likelihood analysis.                                | 4.00         |
| 43:        | Dewdney, the UK census of population 1981.                                      | 5.00         |
| 44:        | Pickles, Geography and humanism.                                                | 3.00         |
| 45:        | Boots, Voronoi (Thiessen) polygons.                                             | 3.50         |
| 46:        | Fotheringham & Knudsen, Goodness-of-fit statistics.                             | 3.50         |
| 47:        | Goodchild, Spatial autocorrelation.                                             | 3.50         |
| 48:        | Tinkler, Introductory matrix algebra.                                           | 4.00         |
| 49:        | Sibley, Spatial applications of exploratory data analysis.                      | 3.00         |
| 50:        | Coshall, The application of nonparametric statistical tests in geography        | 7.50         |
| 51:        | O'Brien, The statistical analysis of contigency table designs                   | 3.50         |
| 52: 1      | Bracken, Higgs, Martin and Webster, A classification of geographical            | 3.30         |
|            | informatdon systems literature and applications                                 | 5.00         |
|            |                                                                                 | 2.00         |

Further titles in preparation

Order (including standing orders) from:

Environmental Publications, University of East Anglia,

Norwich NR4 7TJ.

**Prices include postage**