/ZUBOARD1CG

ZUBoard 1CG Hardware User's Guide

Version 1.0

Contents

1	Doc	um	ent Control	6
2	Ver	sior	n History	6
3	Intro	odu [,]	ction	7
	3.1		ssary	
	3.2		erence Documents	
4	ZUE	3oa	rd 1CG Architecture and Features	10
	4.1	List	of Features	10
	4.2	ZUE	Board 1CG Block Diagram	11
5	Fun	ctio	nal Description	12
	5.1		q UltraScale+ MPSoC	
	5.1.1	•	Processor System (PS)	
	5.1.2	2	PS MIOs (Banks 500, 501, 502)	
	5.1.3	3	Other PS IOs (Banks 503, 504, 505)	
	5.1.4	1	Programmable Logic	22
	5.2	LPC	DDR4 Memory	26
	5.3	mic	roSD Card	29
	5.3.1	1	MLC Advantage	29
	5.3.2	2	microSD Pin Table	30
	5.4	USE	3 2.0	31
	5.4.1	1	USB3321C-GL-TR Implementation Details	31
	5.4.2	2	USB Pin Tables	31
	5.5	Ethe	ernet	32
	5.5.1	1	Ethernet 10/100/1000	32
	5.6	UAF	RT	33
	5.7	SPI		34
	5.8	I2C		34
	5.9	LEC)s	35
	5.10	Pus	h Buttons	37
	5.11	Swi	tches	37
	5.12	Clo	cking	38
	5.13	On/	Off Controller	39
	5.14	Ехр	ansion Connectors	45
	5.14	.1	MikroE Click Site	45
	5.14	.2	High Speed Expansion Connector (J1, J2, and J6)	45
6	Cor	ıfigı	ıration and Debug	48
	6.1	Воо	t Mode	48

6.2	JTAG Configuration and Debug	49
7 P	ower	49
7.1	USB Type C power In	
7.2	USB Type C Controller	49
7.3	Power On/Off	49
7.4	Power Estimation Using XPE	50
7.5	Power Regulators	50
7.6	Power Control and Sequence	51
8 T	hermal	54
8.1	Mounting the ZUBoard 1CG heatsink	55
9 R	leset	55
10 G	Setting Help and Support	56

Figures

Figure 1 – ZUBoard 1CG Block Diagram	11
Figure 2 – SBVA484 Package Diagram	12
Figure 3 – Location of R213 and R212	40
Figure 4 – On/Off Controller Diagram 1	41
Figure 5 – On/Off Controller Diagram 2	41
Figure 6 – On/Off Controller Diagram 3	42
Figure 7 – On/Off Controller Diagram 4	42
Figure 8 – On/Off Controller Diagram 5	43
Figure 9 – On/Off Controller Diagram 6	43
Figure 10 – On/Off Controller Diagram 7	44
Figure 11 – On/Off Controller Diagram 8	44
Figure 12 – Boot Mode Switch	49
Figure 13 – ZUBoard 1CG DC-DC Power Regulation	50
Figure 14 – 7UBoard 1CG Power Sequencing	51

Tables

Table 1 – PS MIO Bank 500 (1.8V, MIOs 0 to 25)	14
Table 2 – PS MIO Bank 501 (1.8V, MIOs 26 to 51)	15
Table 3 – PS MIO Bank 502 (1.8V, MIOs 52 to 77)	16
Table 4 – PS MIO Bank 503 (1.8V)	17
Table 5 – PS DDR IO Bank 504 (1.1V)	18
Table 6 – PS Transceiver IO Bank 505	21
Table 7 – HD PL IO Bank 44 (1.8V)	23
Table 8 – HP PL IO Bank 65 (1.8 or 1.2V)	24
Table 9 – HP PL IO Bank 66 (1.8 or 1.2V)	25
Table 10 – LPDDR4 Pin Table	27
Table 11 – Comparison of TLC vs. MLC microSD Cards	29
Table 12 – microSD Pin Table	30
Table 13 – USB 2.0 Host	31
Table 14 – Gigabit Ethernet Pin Table	32
Table 15 – Pinout for UART to Translator and J4 Connector	33
Table 16 – SPI Pin Table	34
Table 17 – I2C Pin Table	34
Table 18 – LED Pin Table	36
Table 19 – Push Button Pin Table	37
Table 20 – Switch Pin Table	37
Table 21 – Clock Generator Pin Table	38
Table 22 – On/Off Controller Inputs and Outputs	39
Table 23 – On/Off Controller Pin Table	44
Table 24 – MikroE Click Site(J5 & J9)	45
Table 25 – HIGH SPEED EXPANION I/O w/ 2-GTR MIO (J2)	45
Table 26 – HIGH SPEED EXPANION I/O w/ 2-GTR MIO (J1)	47
Table 27 – HIGH SPEED EXPANION I/O Standard (J6)	48

AVNET®
Reach Further™

1 Document Control

Document Version: 1.0

Document Date: 15 Apr 2023

2 Version History

Version	Date	Comment
0.1	1/20/22	Draft
0.2	11/15/22	Changed title to ZUBoard 1CG
0.2	11/15/22	Removed barrel Jack power option and updated power sequence
1.0	4/15/2023	Renamed High Speed Expansion I/O
		Updated Reference Documents
		Added Power On/Off reference
		Updated Table 22 On/Off Controller

3 Introduction

The ZUBoard 1CG is a low-cost Development Kit targeted for broad use in many applications:

- Offer a low-cost, AMD based Development Kit in Commercial (0°C to 70°C) temperature grades for engineers to adopt in development, proof-of-concept, and production projects
- Combine ARM processing with programmable logic in a convenient and expandable board
- Showcase a wide range of potential peripherals and acceleration engines in the programmable logic
- Be a low-cost starter kit for Zyng UltraScale+ MPSoC developers
- Showcase hardware acceleration for software bottlenecks
- Allow expansion to a variety of sensors and peripherals through the Click Board and Samtec highspeed expansion connectors
- Target many applications for development, including:
 - Artificial Intelligence
 - Machine Learning
 - o IoT/Cloud connectivity for add-on sensors
 - Embedded Computing
 - Robotics
 - Wired Ethernet Designs

3.1 Glossary

Term	Definition	
ZU+	Zynq UltraScale+	
MPSoC	Multi-Processor System on Chip	
PS	Zynq UltraScale+ MPSoC Processing System	
PL	Zynq UltraScale+ MPSoC Programmable Logic	
MIO	PS Multiplexed Input Output Pins	
POR	Power On Reset	
APU	Application Processing Unit	
RPU Real-time Processing Unit		
GPU	Graphics Processing Unit	
SYSMON	System Monitor	
HD	High Density PL I/O Pins	
HP	High Performance PL I/O Pins	
PMBus	Power Management Bus	
Al	Artificial Intelligence	
ML	Machine Learning	
IoT	Internet of Things	
AR	Answer Record	

3.2 Reference Documents

- [1] Zynq UltraScale+ MPSoC Overview DS891
- [2] Zynq UltraScale+ MPSoC DC and AC Switching Characteristics DS925
- [3] Zynq UltraScale+ MPSoC Technical Reference Manual UG1085
- [4] Zynq UltraScale+ MPSoC Packaging and Pinout Product Specification UG1075
- [5] Zynq UltraScale+ MPSoC PCB Design Guide UG583
- [6] UltraScale Architecture SelectIO Resources UG571
- [7] SBVA484 Package File
- [8] Xilinx Vivado Design Suite
- [9] Xilinx Vitis Unified Software Platform
- [10] Microchip USB3320 Hi-Speed USB 2.0 ULPI Transceiver
- [11] Microchip USB5744 Smart Hub
- [12] ISSI LPDDR4 SDRAM Product Page
- [13] ISSI QSPI Flash Product Page
- [14] Delkin Devices Utility Industrial MLC microSD

4 ZUBoard 1CG Architecture and Features

This section summarizes the features of the single board computer, followed by functional descriptions of each circuit.

4.1 List of Features

The ZUBoard 1CG Single Board Computer supports the following features:

- AMD Zynq UltraScale+ MPSoC XCZU1CG-1SBVA484E
- Memory/storage
 - o ISSI 1 GB (512 x 32) LPDDR4 Memory
 - Part number IS43LQ32256EA-062B2LI
 - ISSI 32 MB (32 x 8) Nor Flash Memory
 - Part number IS25WP256E-JLLE
 - o MicroSD Socket
 - C-grade microSD card
 - Delkin Utility class device
 - Part number S416APG49-U3000-3
 - I-grade microSD card
 - Delkin Utility+ class device
 - Part number S316APG49-U3000-3
- Microchip 10/100/1000 Ethernet KSZ9131RNXC-TR
- TDK configurable Buck Converters
- 1x USB 2.0 Type A Host port
- 1x 16-pin MikroE Click Site
- 2x 40-pin Samtec high-speed expansion header with 2 GTR lanes
- 1x 40-pin Samtec high-speed expansion header with
- Thermally dissipative device
 - o Rev B: Aavid passive heatsink
 - EA-190-H095-T710

Note that there is no on-board, Wi-Fi interface, although this can be added through the expansion connectors. All communications without add-ons must be done via USB, Ethernet, JTAG, or expansion interface.

4.2 ZUBoard 1CG Block Diagram

Figure 1 – ZUBoard 1CG Block Diagram

5 Functional Description

The following sections provide brief descriptions of each feature provided on the ZUBoard 1CG SBC.

5.1 Zyng UltraScale+ MPSoC

ZUBoard 1CG features a Zynq UltraScale+ MPSoC ZU1CG device (in the SBVA484 package).

Figure 2 – SBVA484 Package Diagram

5.1.1 Processor System (PS)

• Application Processing Unit

Dual-core ARM Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1MB L2 Cache

• Real-Time Processing Unit

Dual-core ARM Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM

Embedded and External Memory

256KB On-Chip Memory w/ECC; External DDR memory controller (LPDDR4 on ZUBoard 1CG)

General Connectivity

214 PS I/O; UART; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; WatchDog Timers; Triple Timer Counters

High-Speed Connectivity

4 PS-GTR; DisplayPort 1.2a; USB 3.0

Graphic Processing Unit

N/A

5.1.2 PS MIOs (Banks 500, 501, 502)

The Zynq UltraScale+ MPSoC Processing System (PS) provides 78 flexible multiplexed I/O (MIO) (configured as three banks of 26 I/Os) for peripheral pin assignment. These MIO support a wide variety of peripheral interfaces, with bank voltage support ranging from 1.8V to 3.3V.

The ZUBoard 1CG connects all three MIO banks to 1.8V.

- VCCO PSIO0 500 = +VCC PSAUX = 1.8V
- VCCO_+PSIO0_501 = +VCC_PSAUX = 1.8V
- VCCO_PSIO0_502 = +VCC_PSAUX = 1.8V

The default peripheral configuration for the three MIO banks is shown in the Vivado Block Design. The descriptions and specific pinouts are shown in the three tables that follow.

Table 1 - PS MIO Bank 500 (1.8V, MIOs 0 to 25)

MPSoC MPSoC		ZUBoard 1CG	Function	Conn	ects to:
Pin Number	Site Name	Net name		REFDES	REFDES Pin Number
U4	PS_MIO0_500	MIO00_QSPI0_SCLK_OUT		U10	6
W1	PS_MIO1_500	MIO01_QSPI0_MISO_MO1			2
V2	PS_MIO2_500	MIO02_QSPI0_MO2	QSPI	U10	3
U5	PS_MIO3_500	MIO03_QSPI0_MO3	Q3PI	U10	7
U6	PS_MIO4_500	MIO04_QSPI0_MOSI_MI0		U10	5
AA1	PS_MIO5_500	MIO05_QSPI0_N_SS_OUT		U10	1
Y1	PS_MIO6_500	NetU6_Y1	No Connect	N/C	N/C
V4	PS_MIO7_500	MIO07_GPIO_LED1	User LED	Q12	2
V3	PS_MIO8_500	MIO08_I2C1_SCL	12.64	U7	6
V5	PS_MIO9_500	MIO09_I2C1_SDA	I2C1	U7	5
AA2	PS_MIO10_500	MIO10_UART0_RX_1V8	LIADTO	J4	4
W2	PS_MIO11_500	MIO11_UART0_TX_1V8	UART0	J4	3
AB2	PS_MIO12_500	MIO12_ETH_RST_N	GEM2	U15	1
W3	PS_MIO13_500	MIO13		J2	14
W5	PS_MIO14_500	MIO14		J2	16
Y4	PS_MIO15_500	MIO15		J2	17
Y3	PS_MIO16_500	MIO16		J2	19
AA3	PS_MIO17_500	MIO17	HIGH SPEED	J2	18
Y5	PS_MIO18_500	MIO18	EXPANSION I/O w/ 2	J2	20
AA4	PS_MIO19_500	MIO19	GTR MIO	J2	21
AB4	PS_MIO20_500	MIO20		J2	23
W6	PS_MIO21_500	MIO21		J2	22
AA6	PS_MIO22_500	MIO22			24
AB5	PS_MIO23_500	MIO23		J2	25
AB6	PS_MIO24_500	MIO24_GPIO_LED2	User LEDs	Q3	5
Y6	PS_MIO25_500	MIO25_GPIO_LED3		Q12	5

Table 2 - PS MIO Bank 501 (1.8V, MIOs 26 to 51)

MPSoC	MPSoC	ZUBoard 1CG	Function	Conn	ects to:
Pin Number	Site Name	Net name		REFDES	REFDES Pin Number
G9	PS_MIO26_501	MIO26_PWR_INT	On/Off Controller	U29	11
G11	PS_MIO27_501	MIO27		J2	29
G12	PS_MIO28_501	MIO28	HIGH SPEED	J2	31
F9	PS_MIO29_501	MIO29	EXPANION I/O TXR-2 MIO	J2	30
G10	PS_MIO30_501	MIO30	IVIIC	J2	32
F11	PS_MIO31_501	MIO31_GPIO_SW_4	User Switch	SW4	4
F12	PS_MIO32_501	MIO32_GPIO_PB1	User Push Button	SW1	1/2
E9	PS_MIO33_501	MIO33_GPIO_LED4	User LED	Q3	2
F13	PS_MIO34_501	MIO34_POWER_KILL_N	On/Off Controller	U29	10
E10	PS_MIO35_501	MIO35	HIGH SPEED	J2	27
D10	PS_MIO36_501	MIO36	EXPANION I/O TXR-2	J2	26
E11	PS_MIO37_501	MIO37	MIO	J2	28
С9	PS_MIO38_501	MIO38_SPI0_SCLK	SPI0	U2	2
C10	PS_MIO29_501	MIO39_GPIO_SW_3	Lloon Cooitala	SW4	3
D11	PS_MIO40_501	MIO40_GPIO_SW_2	User Switch	SW4	2
B10	PS_MIO41_501	MIO41_SPI0_SS0		U2	6
D12	PS_MIO42_501	MIO42_SPI0_MISO	SPI0	U2	5
E13	PS_MIO43_501	MIO43_SPI0_MOSI		U2	4
B11	PS_MIO44_501	MIO44_GPIO_SW_1	User Switch	SW4	1
A11	PS_MIO45_501	MIO45_SD1_DETECT		J12	9
C12	PS_MIO46_501	MIO46_SD1_DAT0		U20	D1
B12	PS_MIO47_501	MIO47_SD1_DAT1		U20	E1
A12	PS_MIO48_501	MIO48_SD1_DAT2	SD1	U20	A1
D13	PS_MIO49_501	MIO49_SD1_DAT3		U20	B1
A13	PS_MIO50_501	MIO50_SD1_CMD		U20	C1
C13	PS_MIO51_501	MIO51_SD1_CLK		U20	D2

Table 3 - PS MIO Bank 502 (1.8V, MIOs 52 to 77)

MPSoC	MPSoC	ZUBoard 1CG	Function	Connects to:	
Pin Number	Site Name	Net name		REFDES	REFDES Pin Number
G14	PS_MIO52_502	MIO52_RGMII_TX_CLK	GEM2	U32	24
F14	PS_MIO53_502	MIO53_RGMII_TXD0		U32	19
G15	PS_MIO54_502	MIO54_RGMII_TXD1		U32	20
C14	PS_MIO55_502	MIO55_RGMII_TXD2		U32	21
E14	PS_MIO56_502	MIO56_RGMII_TXD3		U32	22
B14	PS_MIO57_502	MIO57_RGMII_TX_CTL		U32	25
A14	PS_MIO58_502	MIO58_RGMII_RX_CLK		U32	35
E15	PS_MIO59_502	MIO59_RGMII_RXD0		U32	32
D15	PS_MIO60_502	MIO60_RGMII_RXD1		U32	31
G16	PS_MIO61_502	MIO61_RGMII_RXD2		U32	28
C15	PS_MIO62_502	MIO62_RGMII_RXD3		U32	27
F16	PS_MIO63_502	MIO63_RGMII_RX_CTL		U32	33
E16	PS_MIO64_502	MIO64_USB1_CLK	USB1	U22	A5
B15	PS_MIO65_502	MIO65_USB1_DIR		U22	A4
D16	PS_MIO66_502	MIO66_USB1_DATA2		U22	C4
G17	PS_MIO67_502	MIO67_USB1_NXT		U22	B5
B16	PS_MIO68_502	MIO68_USB1_DATA0		U22	B4
A16	PS_MIO69_502	MIO69_USB1_DATA1		U22	C5
A17	PS_MIO70_502	MIO70_USB1_STP		U22	A3
F17	PS_MIO71_502	MIO71_USB1_DATA3		U22	D5
C17	PS_MIO72_502	MIO72_USB1_DATA4		U22	D4
D17	PS_MIO73_502	MIO73_USB1_DATA5		U22	E5
D18	PS_MIO74_502	MIO74_USB1_DATA6		U22	E4
B17	PS_MIO75_502	MIO75_USB1_DATA7		U22	D3
F18	PS_MIO76_502	MIO76_GEM2_MDC	GEM2	U32	36
B18	PS_MIO77_502	MIO77_GEM2_MDIO_OUT		U32	37

5.1.3 Other PS IOs (Banks 503, 504, 505)

Additionally, the ZU+ PS provides three additional I/O banks for the DDR, Config, and transceiver I/Os.

- One Config I/O bank (Bank 503)
 - 11 I/Os connected
 - VCCO = +VCC_PSAUX = 1.8V
- o One DDR I/O bank (Bank 504)
 - 64 I/Os connected
 - VCCO = +VCCO_PSDDR = 1.1V

- o One Transceiver I/O bank (Bank 505)
 - 16 I/Os connected
 - +MGTRAVCC = 0.85V
 - +MGTRAVTT = 1.8V

Table 4 - PS MIO Bank 503 (1.8V)

MPSoC	MPSoC	ZUBoard 1CG	Function	Conn	ects to:
Pin Number	Site Name	Net name		REFDES	REFDES Pin Number
K12	PS_POR_B_503	POWER_GOOD	Power On Reset	SW6	1/2
J16	PS_MODE0_503	PS_MODE0	Boot Mode DIP Switch	SW2	1
H15	PS_MODE1_503	PS_MODE1	Boot Mode DIP Switch	SW2	2
J15	PS_MODE2_503	PS_MODE2	Boot Mode DIP Switch	SW2	3
H18	PS_MODE3_503	PS_MODE3	Boot Mode DIP Switch	SW2	4
K13	PS_SRST_B_503	PS_SRST_N_1V8	JTAG Translator	U24	6
H17	PS_PADI_503	PS_PAD_IN	MPSoC RTC Crystal	X1	2
J17	PS_PADO_503	PS_PAD_OUT		X1	1
K15	PS_INIT_B_503	PS_INIT_N	PS INIT LED	Q2	4
H14	PS_REF_CLK_503	PS_REF_CLK	System Reference Clock	U28	3
K16	PS_ERROR_OUT_503	PS_ERR_OUT	Testpoint	TP8	1
K18	PS_ERROR_STATUS_503	PS_ERR_STAT		TP7	1
L12	PS_DONE	PS_DONE	PS DONE LED	Q2	2

Table 5 – PS DDR IO Bank 504 (1.1V)

MPSoC	MPSoC	ZUBoard 1CG	Function	Conne	ects to:
Pin	Site Name	Net name		REFDES	REFDES
Number					Pin Number
T19	PS_DDR_ZQ_504	NetR224_2		R224	2
AA22	PS_DDR_A00_504	PS_DDR_CAA0		U16	H2
AB20	PS_DDR_A01_504	PS_DDR_CAA1		U16	J2
AB17	PS_DDR_A02_504	PS_DDR_CAA2		U16	Н9
AB19	PS_DDR_A03_504	PS_DDR_CAA3		U16	H10
AB21	PS_DDR_A04_504	PS_DDR_CAA4		U16	H11
AB16	PS_DDR_A05_504	PS_DDR_CAA5		U16	J11
Y21	PS_DDR_A10_504	PS_DDR_CAB0		U16	R2
AA21	PS_DDR_A11_504	PS_DDR_CAB1		U16	P2
AA18	PS_DDR_A12_504	PS_DDR_CAB2		U16	R9
AA19	PS_DDR_A13_504	PS_DDR_CAB3		U16	R10
AA17	PS_DDR_A14_504	PS_DDR_CAB4		U16	R11
AA16	PS_DDR_A15_504	PS_DDR_CAB5		U16	P11
W20	PS_DDR_CK_N0_504	PS_DDR_CKA_C		U16	J9
V20	PS_DDR_CK0_504	PS_DDR_CKA_T		U16	J8
V19	PS_DDR_CK_N1_504	PS_DDR_CKB_C		U16	P9
V18	PS_DDR_CK1_504	PS_DDR_CKB_T	LPDDR4	U16	P8
U22	PS_DDR_CKE0_504	PS_DDR_CKE0		U16	J4
V22	PS_DDR_CS_N0_504	PS_DDR_CS0_N		U16	H4
U20	PS_DDR_CS_N1_504	PS_DDR_CS1_N		U16	H3
AB9	PS_DDR_DM0_504	PS_DDR_DMA0		U16	C3
AB14	PS_DDR_DM1_504	PS_DDR_DMA1		U16	C10
U9	PS_DDR_DM2_504	PS_DDR_DMB0		U16	Y3
W13	PS_DDR_DM3_504	PS_DDR_DMB1		U16	Y10
AB11	PS_DDR_DQ0_504	PS_DDR_DQ0		U16	B2
Y10	PS_DDR_DQ1_504	PS_DDR_DQ1		U16	C2
AA12	PS_DDR_DQ10_504	PS_DDR_DQ10		U16	E11
AB12	PS_DDR_DQ11_504	PS_DDR_DQ11		U16	F11
Y14	PS_DDR_DQ12_504	PS_DDR_DQ12	1	U16	F9
AA14	PS_DDR_DQ13_504	PS_DDR_DQ13		U16	E9
Y15	PS_DDR_DQ14_504	PS_DDR_DQ14		U16	C9
AB15	PS_DDR_DQ15_504	PS_DDR_DQ15		U16	В9
W8	PS_DDR_DQ16_504	PS_DDR_DQ16		U16	AA2
W7	PS_DDR_DQ17_504	PS_DDR_DQ17		U16	Y2

V7	PS_DDR_DQ18_504	PS_DDR_DQ18		U16	V2
V10	PS_DDR_DQ19_504	PS_DDR_DQ19		U16	U2
AB10	PS_DDR_DQ2_504	PS_DDR_DQ2		U16	E2
U7	PS_DDR_DQ20_504	PS_DDR_DQ20		U16	U4
Т9	PS_DDR_DQ21_504	PS_DDR_DQ21	LPDDR4	U16	V4
U10	PS_DDR_DQ22_504	PS_DDR_DQ22		U16	Y4
T10	PS_DDR_DQ23_504	PS_DDR_DQ23		U16	AA4
U11	PS_DDR_DQ24_504	PS_DDR_DQ24		U16	AA11
U12	PS_DDR_DQ25_504	PS_DDR_DQ25		U16	Y11
W12	PS_DDR_DQ26_504	PS_DDR_DQ26		U16	V11
W11	PS_DDR_DQ27_504	PS_DDR_DQ27		U16	U11
V14	PS_DDR_DQ28_504	PS_DDR_DQ28		U16	U9
U14	PS_DDR_DQ29_504	PS_DDR_DQ29		U16	V9
W10	PS_DDR_DQ3_504	PS_DDR_DQ3		U16	F2
W15	PS_DDR_DQ30_504	PS_DDR_DQ30		U16	Y9
V15	PS_DDR_DQ31_504	PS_DDR_DQ31		U16	AA9
AA8	PS_DDR_DQ4_504	PS_DDR_DQ4		U16	F4
Y8	PS_DDR_DQ5_504	PS_DDR_DQ5		U16	E4
AB7	PS_DDR_DQ6_504	PS_DDR_DQ6		U16	C4
AA7	PS_DDR_DQ7_504	PS_DDR_DQ7		U16	В4
AA11	PS_DDR_DQ8_504	PS_DDR_DQ8		U16	B11
Y11	PS_DDR_DQ9_504	PS_DDR_DQ9		U16	C11
AA9	PS_DDR_DQS_N0_504	PS_DDR_DQSA0_C		U16	E3
Y9	PS_DDR_DQS_P0_504	PS_DDR_DQSA0_T		U16	D3
AA13	PS_DDR_DQS_N1_504	PS_DDR_DQSA1_C		U16	E10
Y13	PS_DDR_DQS_P1_504	PS_DDR_DQSA1_T		U16	D10
V8	PS_DDR_DQS_N2_504	PS_DDR_DQSB0_C		U16	V3
V9	PS_DDR_DQS_P2_504	PS_DDR_DQSB0_T		U16	W3
V13	PS_DDR_DQS_N3_504	PS_DDR_DQSB1_C		U16	V10
V12	PS_DDR_DQS_P3_504	PS_DDR_DQSB1_T		U16	W10
T18	PS_DDR_RAM_RST_N_504	PS_DDR_RST_N		U16	T11
U21	PS_DDR_CKE1_504	PS_DDR_CKE1		U16	P5/J5
N18	PS_DDR_DQ70_504	NetU6_N18		none	None
N19	PS_DDR_DQ71_504	NetU6_N19		none	None
P18	PS_DDR_DQ69_504	NetU6_P18		none	None
P20	PS_DDR_DQS_P8_504	NetU6_P20	No	none	None
P21	PS_DDR_DQ67_504	NetU6_P21	Connect	none	None
P22	PS_DDR_DQ65_504	NetU6_P22		none	None
R18	PS_DDR_DQ68_504	NetU6_R18		none	None
R19	PS_DDR_DM8_504	NetU6_R19		none	None

R20	PS_DDR_DQS_N8_504	NetU6_R20		none	None
R21	PS_DDR_DQ66_504	NetU6_R21		none	None
T21	PS_DDR_ALERT_N_504	NetU6_T21		none	None
T22	PS_DDR_DQ64_504	NetU6_T22		none	None
U15	PS_DDR_ACT_N_504	NetU6_U15		none	None
U16	PS_DDR_BG0_504	NetU6_U16		none	None
U17	PS_DDR_BA0_504	NetU6_U17		none	None
U19	PS_DDR_PARITY_504	NetU6_U19		none	None
V17	PS_DDR_BA1_504	NetU6_V17	No	none	None
W16	PS_DDR_A17_504	NetU6_W16	Connect	none	None
W17	PS_DDR_A08_504	NetU6_W17		none	None
W18	PS_DDR_BG1_504	NetU6_W18		none	None
W21	PS_DDR_ODT1_504	NetU6_W21		none	None
W22	PS_DDR_ODT0_504	NetU6_W22		none	None
Y16	PS_DDR_A16_504	NetU6_Y16		none	None
Y18	PS_DDR_A09_504	NetU6_Y18		none	None
Y19	PS_DDR_A07_504	NetU6_Y19		none	None
Y20	PS_DDR_A06_504	NetU6_Y20		none	None

Table 6 - PS Transceiver IO Bank 505

(+MGTRAVCC = 0.85V, +MGTRAVTT = 1.8V)

MPSoC	MPSoC	ZUBoard 1CG	Function	Conne	cts to:
Pin Number	Site Name	Net name		REFDES	REFDES Pin
					Number
L20	PS_MGTREFCLKON_505	GTR_CLKO_N	HIGH SPEED	J2	15
L19	PS_MGTREFCLK0P_505	GTR_CLKO_P	EXPANION GTR	J2	13
M22	PS_MGTRRXN0_505	GTR_LANEO_RX_N	MIO	J2	7
M21	PS_MGTRRXP0_505	GTR_LANEO_RX_P		J2	5
K22	PS_MGTRTXN0_505	GTR_LANE0_TX_N		J2	8
K21	PS_MGTRTXP0_505	GTR_LANEO_TX_P		J2	6
H22	PS_MGTRRXN1_505	GTR_LANE1_RX_N		J2	11
H21	PS_MGTRRXP1_505	GTR_LANE1_RX_P		J2	9
F22	PS_MGTRTXN1_505	GTR_LANE1_TX_N		J2	12
F21	PS_MGTRTXP1_505	GTR_LANE1_TX_P		J2	10
J20	PS_MGTREFCLK1N_505	GTR_CLK1_N	HIGH SPEED	J1	15
J19	PS_MGTREFCLK1P_505	GTR_CLK1_P	EXPANION GTR	J1	13
D22	PS_MGTRRXN2_505	GTR_LANE2_RX_N	MIO	J1	7
D21	PS_MGTRRXP2_505	GTR_LANE2_RX_P		J1	5
C20	PS_MGTRTXN2_505	GTR_LANE2_TX_N		J1	8
C19	PS_MGTRTXP2_505	GTR_LANE2_TX_P		J1	6
B22	PS_MGTRRXN3_505	GTR_LANE3_RX_N		J1	11
B21	PS_MGTRRXP3_505	GTR_LANE3_RX_P		J1	9
A20	PS_MGTRTXN3_505	GTR_LANE3_TX_N		J1	12
A19	PS_MGTRTXP3_505	GTR_LANE3_TX_P		J1	10
G20	PS_MGTREFCLK2N_505	NetU1_G20		none	None
G19	PS_MGTREFCLK2P_505	NetU1_G19		none	None
E20	PS_MGTREFCLK3N_505	NetU1_E20		none	None
E19	PS_MGTREFCLK3P_505	NetU1_E19		none	None
M20	PS_MGTRREF_505	NetR223_2		none	None

5.1.4 Programmable Logic

•	System Logic Cells	81,000
•	CLB Flip-Flops	74,000
•	CLB LUTs	37,000
•	Distributed RAM (Mb)	1.0
•	Block RAM Blocks	108
•	Block RAM (Mb)	3.8
•	UltraRAM Blocks	0
•	UltraRAM (Mb)	0
•	DSP Slices	216
•	CMTs	3
•	System Monitor	1

The Zynq UltraScale+ MPSoC Programable Logic (PL) provides two types of I/O banks: High-density (HD) banks and high-performance (HP) banks. The ZU1CG device on the ZUBoard 1CG provides:

- One HD bank
 - o Bank 26
 - 22 I/Os connected
 - VCCO_44 = +VCCAUX = 1.8V
- Two HP banks
 - o Bank 65
 - 29 I/Os connected
 - VCCO_65 = +VCCO_HP = 1.2V & 1.8V
 - o Bank 66
 - 2 I/Os connected
 - VCCO_66 → Bank 66 is powered off the Bank 65 VCCO rail
 - VCCO_65 = VCCO_66 = +VCCO_HP = 1.2V & 1.8V
 - See Xilinx AR# 67755

The PL I/Os on ZUBoard 1CG are tied to the MikroE Click Site, the three HIGH SPEED EXPANION I/O sites, and user LEDs/Push Buttons.

Table 7 – HD PL IO Bank 44 (1.8V)

				Conne	cts to:
MPSoC Pin Number	MPSoC Site Name	ZUBoard 1CG Net name	Function	REFDES	REFDES Pin Number
G7	IO_L2P_AD10P_44	HD_CLICK_CS0_1V8	MikroE Click Site	J5	3
G5	IO_L1N_AD11N_44	HD_CLICK_CS1_AN_1V8		U11	5
E8	IO_L6P_HDGC_AD6P_44	HD_CLICK_INT_1V8		J9	2
E6	IO_L3P_AD9P_44	HD_CLICK_MISO_1V8		U11/J5	6/5
E5	IO_L3N_AD9N_44	HD_CLICK_MOSI_1V8		J5	6
G6	IO_L1P_AD11P_44	HD_CLICK_PWM_1V8		J9	1
D8	IO_L6N_HDGC_AD6N_44	HD_CLICK_RST_1V8		J5	2
D7	IO_L5P_HDGC_AD7P_44	HD_CLICK_RX_1V8		J9	3
F6	IO_L2N_AD10N_44	HD_CLICK_SCK_1V8		U11/J5	7/4
F8	IO_L4P_AD8P_44	HD_CLICK_SCL_1V8		J9	5
F7	IO_L4N_AD8N_44	HD_CLICK_SDA_1V8		J9	6
D6	IO_L5N_HDGC_AD7N_44	HD_CLICK_TX_1V8		J9	4
C5	IO_L7N_HDGC_AD5N_44	HD_DP_07_GC_N	HIGH SPEED	J2	
D5	IO_L7P_HDGC_AD5P_44	HD_DP_07_GC_P	EXPANION HD I/O	J2	
C7	IO_L8N_HDGC_AD4N_44	HD_DP_08_GC_N	MIO	J2	34
C8	IO_L8P_HDGC_AD4P_44	HD_DP_08_GC_P		J2	36
A8	IO_L10P_AD2P_44	HD_GPIO_PB1	User Push Button	SW3	1/2
B5	IO_L11N_AD1N_44	HD_GPIO_RGB1_B	User RGB LED	Q10	2
В6	IO_L11P_AD1P_44	HD_GPIO_RGB1_G		Q11	5
A7	IO_L10N_AD2N_44	HD_GPIO_RGB1_R		Q11	2
A6	IO_L12N_AD0N_44	HD_SENSOR_I2C_SCL	Temperature Sensor	U1	1
В7	IO_L12P_AD0P_44	HD_SENSOR_I2C_SDA		U1	6
B9	IO_L9P_AD3P_44	HD_HSIO_SCL_1V8	High Speed Expansion	J2/J1/J6	1/1/1
A9	IO_L9N_AD3N_44	HD_HSIO_SDA_1V8	I2C Addressing	J2/J1/J6	3/3/3

Table 8 - HP PL IO Bank 65 (1.8 or 1.2V)

MPSoC	MPSoC	ZUBoard 1CG	Function	Conne	ects to:
Pin Number	Site Name	Net name		REFDES	REFDES Pin Number
T2	IO_L1N_TOL_N1_DBC_65	HP_DP_01_DBC_N	HIGH SPEED EXPANION	J1	14
Т3	IO_L1P_TOL_NO_DBC_65	HP_DP_01_DBC_P	HD I/O PL	J1	16
R3	IO_L2N_T0L_N3_65	HP_DP_02_N		J1	19
Р3	IO_L2P_T0L_N2_65	HP_DP_02_P		J1	17
U1	IO_L3N_T0L_N5_AD15N_65	HP_DP_03_N		J1	20
U2	IO_L3P_T0L_N4_AD15P_65	HP_DP_03_P		J1	18
T4	IO_L4N_T0U_N7_DBC_AD7N_65	HP_DP_04_N		J1	23
R4	IO_L4P_TOU_N6_DBC_AD7P_SMBALERT_65	HP_DP_04_P		J1	21
T1	IO_L5N_T0U_N9_AD14N_65	HP_DP_05_N		J1	24
R1	IO_L5P_T0U_N8_AD14P_65	HP_DP_05_P		J1	22
R5	IO_L6N_T0U_N11_AD6N_65	HP_DP_06_N		J1	27
P5	IO_L6P_T0U_N10_AD6P_65	HP_DP_06_P		J1	25
P1	IO_L7N_T1L_N1_QBC_AD13N_65	HP_DP_07_QBC_N		J6	8
N2	IO_L7P_T1L_N0_QBC_AD13P_65	HP_DP_07_QBC_P		J6	6
N4	IO_L8N_T1L_N3_AD5N_65	HP_DP_08_N		J6	12
N5	IO_L8P_T1L_N2_AD5P_65	HP_DP_08_P		J6	10
M1	IO_L9N_T1L_N5_AD12N_65	HP_DP_09_N		J6	16
M2	IO_L9P_T1L_N4_AD12P_65	HP_DP_09_P		J6	14
M4	IO_L10N_T1U_N7_QBC_AD4N_65	HP_DP_10_QBC_N	HIGH SPEED EXPANION	J6	20
M5	IO_L10P_T1U_N6_QBC_AD4P_65	HP_DP_10_QBC_P	HD I/O	J6	18
L1	IO_L11N_T1U_N9_GC_65	HP_DP_11_GC_N		J6	24
L2	IO_L11P_T1U_N8_GC_65	HP_DP_11_GC_P		J6	22
L3	IO_L12N_T1U_N11_GC_65	HP_DP_12_GC_N		J6	35
L4	IO_L12P_T1U_N10_GC_65	HP_DP_12_GC_P		J6	33
J2	IO_L13N_T2L_N1_GC_QBC_65	HP_DP_13_GC_N		J6	36
J3	IO_L13P_T2L_N0_GC_QBC_65	HP_DP_13_GC_P		J6	34
К3	IO_L14N_T2L_N3_GC_65	HP_DP_14_GC_N	HIGH SPEED EXPANION	J1	28
K4	IO_L14P_T2L_N2_GC_65	HP_DP_14_GC_P	HD I/O PL	J1	26
J1	IO_L15N_T2L_N5_AD11N_65	HP_DP_15_N		J1	31
K1	IO_L15P_T2L_N4_AD11P_65	HP_DP_15_P		J1	29
H5	IO_L16N_T2U_N7_QBC_AD3N_65	HP_DP_16_QBC_N	HIGH SPEED EXPANION	J6	16
J5	IO_L16P_T2U_N6_QBC_AD3P_65	HP_DP_16_QBC_P	HD I/O	J6	13
G2	IO_L17N_T2U_N9_AD10N_65	HP_DP_17_N		J6	7
H2	IO_L17P_T2U_N8_AD10P_65	HP_DP_17_P		J6	5

G4	IO_L18N_T2U_N11_AD2N_65	HP_DP_18_N	HIGH SPEED EXPANION	J6	11
H4	IO_L18P_T2U_N10_AD2P_65	HP_DP_18_P	HD I/O	J6	9
F1	IO_L19N_T3L_N1_DBC_AD9N_65	HP_DP_19_DBC_N		J6	19
G1	IO_L19P_T3L_N0_DBC_AD9P_65	HP_DP_19_DBC_P		J6	17
E3	IO_L20N_T3L_N3_AD1N_65	HP_DP_20_N		J6	23
E4	IO_L20P_T3L_N2_AD1P_65	HP_DP_20_P		J6	21
D1	IO_L21N_T3L_N5_AD8N_65	HP_DP_21_N		J6	27
E1	IO_L21P_T3L_N4_AD8P_65	HP_DP_21_P		J6	25
C3	IO_L22N_T3U_N7_DBC_AD0N_65	HP_DP_22_N		J6	31
D3	IO_L22P_T3U_N6_DBC_AD0P_65	HP_DP_22_P		J6	29
F2	IO_L23N_T3U_N9_65	HP_DP_23_N		J6	26
F3	IO_L23P_T3U_N8_I2C_SCLK_65	HP_DP_23_P		J6	28
C2	IO_L24N_T3U_N11_PERSTN0_65	HP_DP_24_N	HIGH SPEED EXPANION	J1	32
D2	IO_L24P_T3U_N10_PERSTN1_I2C_SDA_65	HP_DP_24_P	HD I/O PL	J1	30
F4	IO_T3U_N12_65	HP_GPIO_RGB2_B	USER RGB LED	Q13	2
N3	IO_T1U_N12_65	HP_SE_01	HIGH SPEED EXPANION	J6	30
Н3	IO_T2U_N12_65	HP_SE_02	HD I/O	J6	32
K5	VREF_65	NetU6_K5		None	None
P2	IO_T0U_N12_VRP_65	NetR62_2		R62	2

Table 9 - HP PL IO Bank 66 (1.8 or 1.2V)

MPSoC	MPSoC	ZUBoard 1CG	Function	Conne	cts to:
Pin Number	Site Name	Net name		REFDES	REFDES Pin Number
A2	IO_T3U_N12_66	HP_GPIO_RGB2_G	USER RGB LED	Q13	5
B4	IO_TOU_N12_VRP_66	HP_GPIO_RGB2_R		Q10	5
A4	IO_L12P_T1U_N10_GC_66	HP_DP_12_GC_66_P		J1	34
B1	IO_L11N_T1U_N9_GC_66	HP_DP_11_GC_66_N	HIGH SPEED EXPANION HD I/O PL	J1	33
B2	IO_L11P_T1U_N8_GC_66	HP_DP_11_GC_66_P		J1	35
А3	IO_L12N_T1U_N11_GC_66	HP_DP_12_GC_66_N		J1	36
C4	VREF_66	NetU6_C4		None	None

5.2 LPDDR4 Memory

ZUBoard 1CG provides 1GB (256Mbit x 16 x 2 channels) of 533MHz (1066Mbps) LPDDR4 memory using a single-die ISSI IS43LQ32256EA-062B2LI.

The memory device is a -062 (1600 MHz) speed grade. However, that is irrelevant as the interface clocking is set by the MPSoC package as 533 MHz maximum. This can be found in AMD document DS925 (as seen in Table 30 of DS925 v1.17 March 13, 2020).

Table 30: PS DDR Performance

				Speed Grade			
Memory Standard	Package	DRAM Type		-3E -2E/-2LE		-2I/-2LI -1I/-1M/-1Q	
			-1	-1E -1LI			
			Min	Max	Min	Max	<u> </u>
DDR4 ⁴	All FFV and FFR packages, FBVB900, SFVC784, and SFRC784	Single rank component	664	2400	1000	2400	Mb/s
		1 rank DIMM ^{1, 2}	664	2133	1000	2133	Mb/s
		Trank DIMM	004	1000	1000	1000	MD/s
		2 rank DIMM ^{1, 3}	664	1066	1000	1066	Mb/s
LPDDR45	All FFV and FFR packages, FBVB900, SFVC784,	Single die package ^{6, 7}	664	2400	1000	2400	Mb/s
	and SFRC784	Dual die package ^{6, 7}	664	2133	1000	2133	Mb/s
	SFVA625	Single die package ^{6, 7}	664	2133	1000	2133	Mb/s
		Dual die package ^{6, 7}	664	1866	1000	1866	Mb/s
	SBVA484	Single die package ^{6, 7}	664	1066	1000	1066	Mb/s
		Dual die package ^{6, 7}	664	1066	1000	1066	Mb/s

Additionally, the temperature grade for the LPDDR4 on the ZUBoard 1CG.

Table 10 - LPDDR4 Pin Table

				Conne	ects to:
MPSoC Pin Number	Bank	MPSoC Site Name	ZUBoard 1CG Net name	REFDES	REFDES Pin Number
T19	504	PS_DDR_ZQ_504	NetR224_2	R224	2
AA22	504	PS_DDR_A00_504	PS_DDR_CAA0	U16	H2
AB20	504	PS_DDR_A01_504	PS_DDR_CAA1	U16	J2
AB17	504	PS_DDR_A02_504	PS_DDR_CAA2	U16	H9
AB19	504	PS_DDR_A03_504	PS_DDR_CAA3	U16	H10
AB21	504	PS_DDR_A04_504	PS_DDR_CAA4	U16	H11
AB16	504	PS_DDR_A05_504	PS_DDR_CAA5	U16	J11
Y21	504	PS_DDR_A10_504	PS_DDR_CAB0	U16	R2
AA21	504	PS_DDR_A11_504	PS_DDR_CAB1	U16	P2
AA18	504	PS_DDR_A12_504	PS_DDR_CAB2	U16	R9
AA19	504	PS_DDR_A13_504	PS_DDR_CAB3	U16	R10
AA17	504	PS_DDR_A14_504	PS_DDR_CAB4	U16	R11
AA16	504	PS_DDR_A15_504	PS_DDR_CAB5	U16	P11
W20	504	PS_DDR_CK_N0_504	PS_DDR_CKA_C	U16	J9
V20	504	PS_DDR_CK0_504	PS_DDR_CKA_T	U16	J8
V19	504	PS_DDR_CK_N1_504	PS_DDR_CKB_C	U16	P9
V18	504	PS_DDR_CK1_504	PS_DDR_CKB_T	U16	P8
U22	504	PS_DDR_CKE0_504	PS_DDR_CKE0	U16	J4
V22	504	PS_DDR_CS_N0_504	PS_DDR_CS0_N	U16	H4
U20	504	PS_DDR_CS_N1_504	PS_DDR_CS1_N	U16	Н3
AB9	504	PS_DDR_DM0_504	PS_DDR_DMA0	U16	C3
AB14	504	PS_DDR_DM1_504	PS_DDR_DMA1	U16	C10
U9	504	PS_DDR_DM2_504	PS_DDR_DMB0	U16	Y3
W13	504	PS_DDR_DM3_504	PS_DDR_DMB1	U16	Y10
AB11	504	PS_DDR_DQ0_504	PS_DDR_DQ0	U16	B2
Y10	504	PS_DDR_DQ1_504	PS_DDR_DQ1	U16	C2
AB10	504	PS_DDR_DQ2_504	PS_DDR_DQ2	U16	E2
W10	504	PS_DDR_DQ3_504	PS_DDR_DQ3	U16	F2
AA8	504	PS_DDR_DQ4_504	PS_DDR_DQ4	U16	F4
Y8	504	PS_DDR_DQ5_504	PS_DDR_DQ5	U16	E4
AB7	504	PS_DDR_DQ6_504	PS_DDR_DQ6	U16	C4
AA7	504	PS_DDR_DQ7_504	PS_DDR_DQ7	U16	B4
AA11	504	PS_DDR_DQ8_504	PS_DDR_DQ8	U16	B11
Y11	504	PS_DDR_DQ9_504	PS_DDR_DQ9	U16	C11

AA12	504	PS_DDR_DQ10_504	PS_DDR_DQ10	U16	E11
AB12	504	PS_DDR_DQ11_504	PS_DDR_DQ11	U16	F11
Y14	504	PS_DDR_DQ12_504	PS_DDR_DQ12	U16	F9
AA14	504	PS_DDR_DQ13_504	PS_DDR_DQ13	U16	E9
Y15	504	PS_DDR_DQ14_504	PS_DDR_DQ14	U16	C9
AB15	504	PS_DDR_DQ15_504	PS_DDR_DQ15	U16	В9
W8	504	PS_DDR_DQ16_504	PS_DDR_DQ16	U16	AA2
W7	504	PS_DDR_DQ17_504	PS_DDR_DQ17	U16	Y2
V7	504	PS_DDR_DQ18_504	PS_DDR_DQ18	U16	V2
V10	504	PS_DDR_DQ19_504	PS_DDR_DQ19	U16	U2
U7	504	PS_DDR_DQ20_504	PS_DDR_DQ20	U16	U4
Т9	504	PS_DDR_DQ21_504	PS_DDR_DQ21	U16	V4
U10	504	PS_DDR_DQ22_504	PS_DDR_DQ22	U16	Y4
T10	504	PS_DDR_DQ23_504	PS_DDR_DQ23	U16	AA4
U11	504	PS_DDR_DQ24_504	PS_DDR_DQ24	U16	AA11
U12	504	PS_DDR_DQ25_504	PS_DDR_DQ25	U16	Y11
W12	504	PS_DDR_DQ26_504	PS_DDR_DQ26	U16	V11
W11	504	PS_DDR_DQ27_504	PS_DDR_DQ27	U16	U11
V14	504	PS_DDR_DQ28_504	PS_DDR_DQ28	U16	U9
U14	504	PS_DDR_DQ29_504	PS_DDR_DQ29	U16	V9
W15	504	PS_DDR_DQ30_504	PS_DDR_DQ30	U16	Y9
V15	504	PS_DDR_DQ31_504	PS_DDR_DQ31	U16	AA9
AA9	504	PS_DDR_DQS_N0_504	PS_DDR_DQSA0_C	U16	E3
Y9	504	PS_DDR_DQS_P0_504	PS_DDR_DQSA0_T	U16	D3
AA13	504	PS_DDR_DQS_N1_504	PS_DDR_DQSA1_C	U16	E10
Y13	504	PS_DDR_DQS_P1_504	PS_DDR_DQSA1_T	U16	D10
V8	504	PS_DDR_DQS_N2_504	PS_DDR_DQSB0_C	U16	V3
V9	504	PS_DDR_DQS_P2_504	PS_DDR_DQSB0_T	U16	W3
V13	504	PS_DDR_DQS_N3_504	PS_DDR_DQSB1_C	U16	V10
V12	504	PS_DDR_DQS_P3_504	PS_DDR_DQSB1_T	U16	W10
T18	504	PS_DDR_RAM_RST_N_504	PS_DDR_RST_N	U16	T11
U21	504	PS_DDR_CKE1_504	PS_DDR_CKE1	U16	P5/J5
		-			

5.3 microSD Card

ZUBoard 1CG provides a microSD card socket as the primary boot device. VCCO for the SDIO lines going into the Zynq MPSoC is 1.80V, thus a level shifter (U20, PI4ULS3V4857) is required to go from the 3.3V native SD card slot to 1.80V

The microSD card socket J12 is a TE Connectivity 2201778-1. This is a push-push style socket. This socket is rated -30C to +85C. This socket has a spring-type mechanism inside that can become brittle at very cold temperatures. If the mechanism is exercised at extremely cold temperatures, the mechanism could break.

The ZUBoard 1CG recommends the use of a Delkin Devices 16 GB MLC microSD card.

- C-grade microSD card
 - Delkin Utility class device
 - o Part number S416APG49-U3000-3
- I-grade microSD card
 - o Delkin Utility+ class device
 - o Part number S316APG49-U3000-3

The Delkin Utility/Utility+ cards are rated at Read Performance = 95MB/s and Write Performance = 55MB/s (measured using CrystalDiskMark).

5.3.1 MLC Advantage

There are several advantages to using MLC over the typical retail TLC that is readily available. These advantages are significant, and this explains why an MLC card was specifically chosen for these kits. For more information, refer to this article on the Element14 community: https://www.element14.com/community/groups/embedded/blog/2018/03/26/why-not-all-sd-cards-are-created-equal-storage-insights-1

Table 11 – Comparison of TLC vs. MLC microSD Cards

	Retail TLC	Delkin Utility MLC
CrystalDiskMark Read Performance	80MB/s	95 MB/s
CrystalDiskMark Write Performance	20MB/s	55 MB/s
Lifecycle	<12 months	18-24 months
Endurance (Program/Erase cycles)	300-600	3000
SMART data enabled (card life stats)	No	Yes
Embedded mode – aligned to efficiently work with Linux based OS as opposed to FAT only	No	Yes

5.3.2 microSD Pin Table

The table below shows the pin connections for the microSD circuit on ZUBoard 1CG.

Table 12 - microSD Pin Table

MPSoC	Bank	MPSoC	ZUBoard 1CG	Conne	ects to:
Pin Number		Site Name	Net name	REFDES	REFDES Pin Number
A11	501	PS_MIO45_501	MIO45_SD1_DETECT	J12	9
C12	501	PS_MIO46_501	MIO46_SD1_DAT0	U20	D1
B12	501	PS_MIO47_501	MIO47_SD1_DAT1	U20	E1
A12	501	PS_MIO48_501	MIO48_SD1_DAT2	U20	A1
D13	501	PS_MIO49_501	MIO49_SD1_DAT3	U20	B1
A13	501	PS_MIO50_501	MIO50_SD1_CMD	U20	C1
C13	501	PS_MIO51_501	MIO51_SD1_CLK	U20	D2

5.4 USB 2.0

ZUBoard 1CG provides one USB 2.0 Host type A connections. This is accomplished by the use of a Microchip USB3321C-GL-TR (U22) device.

5.4.1 USB3321C-GL-TR Implementation Details

Refer to the USB3321C-GL-TR datasheet

5.4.2 USB Pin Tables

Table 13 - USB 2.0 Host

MPSoC	Bank	MPSoC	ZUBoard 1CG	Function	Connects to:	
Pin Number		Site Name	Net name		REFDES	REFDES Pin Number
E16	502	PS_MIO64_502	MIO64_USB1_CLK	USB1	U22	A5
B15	502	PS_MIO65_502	MIO65_USB1_DIR		U22	A4
D16	502	PS_MIO66_502	MIO66_USB1_DATA2		U22	C4
G17	502	PS_MIO67_502	MIO67_USB1_NXT		U22	B5
B16	502	PS_MIO68_502	MIO68_USB1_DATA0		U22	B4
A16	502	PS_MIO69_502	MIO69_USB1_DATA1		U22	C5
A17	502	PS_MIO70_502	MIO70_USB1_STP		U22	A3
F17	502	PS_MIO71_502	MIO71_USB1_DATA3		U22	D5
C17	502	PS_MIO72_502	MIO72_USB1_DATA4		U22	D4
D17	502	PS_MIO73_502	MIO73_USB1_DATA5		U22	E5
D18	502	PS_MIO74_502	MIO74_USB1_DATA6		U22	E4
B17	502	PS_MIO75_502	MIO75_USB1_DATA7		U22	D3

5.5 Ethernet

The ZUBoard 1CG supports 10/100/1000 Mbps Single-Chip Ethernet Transceiver interface suitable for IEEE 802.3 applications. A Microchip KSZ9131RNXC-TR device is utilized for these interfaces.

5.5.1 Ethernet 10/100/1000

The KSZ9131RNXC-TR LAN interface connects to the MPSoC through the gigabit Ethernet controller GEM2 interface. The LAN MDIO and MDC interfaces are connected to PS MIO77 and PS MIO76.

Table 14 - Gigabit Ethernet Pin Table

MPSoC	Bank	MPSoC	ZUBoard 1CG MPSoC		Conne	cts to:
Pin Number		Site Name	Net name	vcco	REFDES	REFDES Pin Number
G14	502	PS_MIO52_502	MIO52_RGMII_TX_CLK	+VCC_PSAUX = 1.8V	U32	24
F14	502	PS_MIO53_502	MIO53_RGMII_TXD0	+VCC_PSAUX = 1.8V	U32	19
G15	502	PS_MIO54_502	MIO54_RGMII_TXD1	+VCC_PSAUX = 1.8V	U32	20
C14	502	PS_MIO55_502	MIO55_RGMII_TXD2	+VCC_PSAUX = 1.8V	U32	21
E14	502	PS_MIO56_502	MIO56_RGMII_TXD3	+VCC_PSAUX = 1.8V	U32	22
B14	502	PS_MIO57_502	MIO57_RGMII_TX_CTL	+VCC_PSAUX = 1.8V	U32	25
A14	502	PS_MIO58_502	MIO58_RGMII_RX_CLK	+VCC_PSAUX = 1.8V	U32	35
E15	502	PS_MIO59_502	MIO59_RGMII_RXD0	+VCC_PSAUX = 1.8V	U32	32
D15	502	PS_MIO60_502	MIO60_RGMII_RXD1	+VCC_PSAUX = 1.8V	U32	31
G16	502	PS_MIO61_502	MIO61_RGMII_RXD2	+VCC_PSAUX = 1.8V	U32	28
C15	502	PS_MIO62_502	MIO62_RGMII_RXD3	+VCC_PSAUX = 1.8V	U32	27
F16	502	PS_MIO63_502	MIO63_RGMII_RX_CTL	+VCC_PSAUX = 1.8V	U32	33
F18	502	PS_MIO76_502	MIO76_GEM2_MDC	+VCC_PSAUX = 1.8V	U32	36
B18	502	PS_MIO77_502	MIO77_GEM2_MDIO_OUT	+VCC_PSAUX = 1.8V	U32	37

5.6 UART

ZUBoard 1CG provides access to one UART on the baseboard. PS UART0 (MIO10, MIO11 on Bank 500) is connected though a FTDI JTAG/UART device which outputs these signals to a microUSB header (J16). The IO Voltage on the MPSoC is 1.8V, and the signals are routed through a level translator (U24) to allow for compatibility with 3.3V. In addition, a UART is supported on the MikroE Click mezzanine though the HD PL I/O

Table 15 – Pinout for UART to Translator and J4 Connector

MPSoC	MPSoC	ZUBoard 1CG	MPSoC	Connects to:		Connects to:	
Pin Number	Site Name	Net name	vcco	REFDES	REFDES Pin Number	REFDES	REFDES Pin Number
W2	PS_MIO11_500	MIO11_UART1_TX	+VCC_PSAUX = 1.8V	U24	A7	J4	3
AA2	PS_MIO10_500	MIO10_UART1_RX	+VCC_PSAUX = 1.8V	U24	A8	J4	4
N/A	N/A	GND	N/A	N/A	N/A	4	2
D7	IO_L5N_HDGC_AD7N_44	HD_CLICK_RX_1V8	+VCCO_HD = 1.8V	U12	9	N/A	N/A
D6	IO_L5N_HDGC_AD7N_44	HD_CLICK_TX_1V8	+VCCO_HD = 1.8V	U12	10	N/A	N/A

5.7 SPI

ZUBoard 1CG supports two SPI bus interfaces by default. One is supported over the PS MIO the other over HD PL I/O. The PS MIO SPI bus supports a Pressure sensor from ST Micro LPS22HHTR. Over the HD PL SPI Bus we support the MikroE Click site expansion.

Table 16 - SPI Pin Table

MPSoC		MPSoC	ZUBoard 1CG	Connects to:			
Pin Number	Bank	Site Name	Net name	REFDES	REFDES Pin Number		
C9	501	PS_MIO38_501	MIO38_SPI0_SCLK	U2	2		
B10	501	PS_MIO41_501	MIO41_SPI0_SS0	U2	6		
D12	501	PS_MIO42_501	MIO42_SPI0_MISO	U2	5		
E13	501	PS_MIO43_501	MIO41_SPI0_MOSI	U2	4		
G7	44	IO_L2P_AD10P_44	HD_CLICK_CS0_3V3	J5	3		
G5	44	IO_L1N_AD11N_44	HD_CLICK_CS1_AN_3V3	U11	5		
F6	44	IO_L2N_AD10N_44	HD_CLICK_SCK_3V3	J5/U11	4/7		
E6	44	IO_L3P_AD9P_44	HD_CLICK_MISO_3V3	J5	5		
E5	44	IO_L3N_AD9N_44	HD_CLICK_MOSI_3V3	J5/U11	6/6		

5.8 I2C

ZUBoard 1CG supports one I2C1 bus on the PS and three I2C buses over High Density PL I/O. This I2C bus supports address and communication between the MPSoC and the AT24MAC602 EEPROM which provides the Ethernet with a MAC Address. Over PL I/O we support I2C communication with a temperature sensor from St Micro STTS22HTR in addition to supporting High-speed and Click expansion connectors with the additional I2C bus.

Table 17 - I2C Pin Table

MPSoC	Bank	MPSoC	ZUBoard 1CG	Connects to:		
Pin Number	Pin Number Site Name Net name		REFDES	REFDES Pin Number		
V3	500	PS_MIO8_500	MIO08_I2C1_SCL	U7	6	
V5	500	PS_MIO9_500	MIO09_I2C1_SDA	U7	5	
В7	44	IO_L12P_AD0O_44	HD_SENSOR_I2C_SCL	U1	1	
A6	44	IO_L12N_AD0N_44	HD_SENSOR_I2C_SDA	U1	6	
В9	44	IO_L9P_AD3P_44	HD_HSIO_SCL_1V8	J2/J1/J6	1/1/1	
A9	44	IO_L9N_AD3N_44	HD_HSIO_SDA_1V8	J2/J1/J6	3/3/3	
F8	44	IO_L4P_AD8P_44	HD_CLICK_SCL_3V3	J9	5	
F7	44	IO_L4N_AD8N_44	HD_CLICK_SDA_3V3	J9	6	

5.9 LEDs

ZUBoard 1CG utilizes various LEDs for the following functions:

- 2x Green LED EAST0603GA0
 - +3.3V Power Good
 - o VIN Power Good
- 1x Blue LED EAST0603BA0
 - o MPSoC DONE
- 6x Red LED EAST0603RA0
 - PS MIO
 - o Sensor Interrupts
- 7x Orange LED EAST0603OA0
 - PS_INIT Status
 - JTAG/UART Status
 - Volt Meter
 - USB C Controller Status
- 2x RGB LED LRTBGVSR-U4V2-JW+A6BB-D8+S2U2-7Z-20-S
 - o HD I/O
 - o HP I/O

Table 18 - LED Pin Table

MPSoC	Bank	MPSoC	ZUBoard 1CG	MPSoC	Function	Connects to:		Connects to:	
Pin Number		Site Name	Net name	VCCO		REFDES	REFDES Pin Number	LED REFDES	Color
N/A	N/A	N/A	N/A N/A		Power Good	R143	2	D23	Green
N/A	N/A	N/A	N/A	N/A	VIN	R142	2	D22	Green
L12	503	PS_MIO20_500	PS_DONE	+VCC_PSAUX = 1.8V	PS_Done	Q2	2	D3	Blue
K15	503	PS_MIO19_500	PS_INIT_N	+VCC_PSAUX = 1.8V	PS_INIT	Q2	4	D2	Orange
N/A	N/A	N/A	N/A	N/A	JTAG/UART	D24	2	D24	Orange
N/A	N/A	N/A	N/A	N/A	5V Present	U33	1	D16	Orange
N/A	N/A	N/A	N/A	N/A	9V Present	U33	2	D15	Orange
N/A	N/A	N/A	N/A	N/A	15V Present	U33	14	D14	Orange
N/A	N/A	N/A	N/A	N/A	EN SINK	R103	2	D17	Orange
N/A	N/A	N/A	N/A	N/A	CAP Mismatch	R107	2	D18	Orange
V4	500	PS_MIO07_500	MIO07_GPIO_LED1	+VCC_PSAUX = 1.8V	User LED	Q12	2	D9	Red
AB6	500	PS_MIO24_500	MIO24_GPIO_LED2	+VCC_PSAUX = 1.8V	User LED	Q3	5	D7	Red
Y6	501	PS_MIO25_500	MIO25_GPIO_LED3	+VCC_PSAUX = 1.8V	User LED	Q12	5	D6	Red
F11	501	PS_MIO33_501	MIO33_GPIO_LED4	+VCC_PSAUX = 1.8V	User LED	Q3	2	D8	Red
B5	44	IO_L11N_AD1N_44	HD_GPIO_RGB1_B	+VCCO_44 = 1.8V	User RGB	Q10	2	D4,A3	Blue
В6	44	IO_L11P_AD1P_44	HD_GPIO_RGB1_G	+VCCO_44 = 1.8V	User RGB	Q11	5	D4,A1	Green
A7	44	IO_L10N_AD2N_44	HD_GPIO_RGB1_R	+VCCO_44 = 1.8V	User RGB	Q11	2	D4,A2	Red
F4	65	IO_T3U_N12_65	HD_GPIO_RGB2_B	+VCC0_HP = 1.8 & 1.2V	User RGB	Q13	2	D5,A3	Blue
A2	66	IO_T3U_N12_66	HD_GPIO_RGB2_G	+VCC0_HP = 1.8 & 1.2V	User RGB	Q13	5	D5,A1	Green
B4	66	IO_TOU_N12_VRP_66	HD_GPIO_RGB2_R	+VCC0_HP = 1.8 & 1.2V	User RGB	Q10	5	D5,A2	Red

5.10 Push Buttons

The ZUBoard 1CG utilizes various push buttons for the following functions

Table 19 - Push Button Pin Table

NADC-C	Connects							
MPSoC Pin Numbe r	Ban k	MPSoC Site Name	ZUBoard 1CG Net name	MPSoC VCCO	Functio n	REFDE S	REFDES Pin Numbe r	Push Button REFDE S
F12	501	PS_MIO32_501	MIO32_GPIO_PB 1	+VCC_PSAUX = 1.8V	User Defined Push Button	R19	2	SW1
A8	44	IO_L10P_AD2P_4 4	HD_GPIO_PB1	+VCCO_44 = 1.8V	User Defined Push Button	R33	2	SW3
L12	503	PS_MIO20_500	PS_DONE	+VCC_PSAUX = 1.8V	PS_SRST	R114	2	SW5
K12	503	PS_POR_B	POWER_GOOD	+VCC_PSAUX = 1.8V	PS_POR	R119	2	SW6
N/A	N/A	N/A	N/A	N/A	On/Off Ctrl	U29	3	SW7

5.11 Switches

The ZUBoard 1CG supports two sets of four-bit switches. One set is used for Boot Mode selection. The other switch is used for user development over the PS MIO GPIO interface.

Table 20 - Switch Pin Table

NADC - C						Conne	ects to:
MPSoC Pin Number	Bank	MPSoC Site Name	ZUBoard 1CG Net name	MPSoC VCCO	Function	Switch REFDES	REFDES Pin Number
B11	501	PS_MIO44_501	MIO44_GPIO_SW1	+VCC_PSAUX = 1.8V	User Switch	SW4	1
D11	501	PS_MIO40_501	MIO40_GPIO_SW2	+VCC_PSAUX = 1.8V	User Switch	SW4	2
C10	501	PS_MIO39_501	MIO39_GPIO_SW3	+VCC_PSAUX = 1.8V	User Switch	SW4	3
F11	501	PS_MIO31_501	MIO431_GPIO_SW4	+VCC_PSAUX = 1.8V	User Switch	SW4	4
J16	503	PS_MODE0	PS_MODE0	+VCC_PSAUX = 1.8V	Boot Mode	SW2	1
H15	503	PS_MODE1	PS_MODE1	+VCC_PSAUX = 1.8V	Boot Mode	SW2	2
J15	503	PS_MODE2	PS_MODE2	+VCC_PSAUX = 1.8V	Boot Mode	SW2	3
H18	503	PS_MODE3	PS_MODE3	+VCC_PSAUX = 1.8V	Boot Mode	SW2	4

5.12 Clocking

ZUBoard 1CG provides the following system clocks to the MPSoC:

- PS_CLK: PS (33.3MHz), 1.8V LVCMOS DSC1525MI2A-33M33333
- RTC CLK: RTC 32KHz LVDS ECS-.327-12.5-34B-TR
- USB 2.0 CLK: 26MHz DSC6101ME1B-026.0000
- Ethernet CLK: 25MHz, LVDS DSC1121DE2-025.0000T
- UART/JTAG CLK: 12MHz ECS-120-10-33B-CKM-TR

Table 21 - Clock Generator Pin Table

MADC - C						Conn	ects to:	Conn	ects to:
MPSoC Pin Number	Bank	MPSoC Site Name	ZUBoard 1CG Net name	MPSoC VCCO	Function	REFDES	REFDES Pin Number	REFDES	REFDES Pin Number
H14	503	PS_REF_CLK_503	PS_REF_CLK	+VCC_PSAUX = 1.8V	System Reference Clock	U28	3	N/A	N/A
H17	503	PS_PADI_503	PS_PAD_IN	+VCC_PSBATT	Real Time Clock	X1	1	N/A	N/A
J17	503	PS_PADO_503	PS_PAD_OUT	+VCC_PSBATT	Real Time Clock	X1	2	N/A	N/A
N/A	N/A	N/A	N/A	N/A	USB 2.0 Clock Reference	U26	3	U22	A2
N/A	N/A	N/A	N/A	N/A	Gigabit Ethernet Reference Clock	U34	4	U34	46
N/A	N/A	N/A	N/A	N/A	JTAG/UART Reference CLK	X2	1	U17	2
N/A	N/A	N/A	N/A	N/A	JTAG/UART Reference CLK	X2	2	U17	3

5.13 On/Off Controller

The AMD Zynq UltraScale+ MPSoC device has an integrated Platform Management Unit or PMU. This PMU's functionality is described in Chapter 6 of AMD UG1085, *Zynq UltraScale+ Device Technical Reference Manual.* The PMU controls many things on the ZU+ device, including powering up and down the ZU+. The ZUBoard 1CG incorporates an On/Off controller to interface between the on-board power regulators and the ZU+. This allows the ZU+, Power Button, and regulators to seamlessly work together to power the system on and off without corrupting your Linux (or other OS) file system.

The key inputs/outputs of the system are detailed below:

Table 22 - On/Off Controller Inputs and Outputs

Signal Name	Source	Destination	Polarity	Description
PWR_PB_N	Push Button (SW7)	On/Off Controller (U29)	Low- enabled	Push button input for powering on and off. Responds to both short and long pushes. When the system is powered off, a short or long push initiates a power-on sequence. When the system is powered on, a short push will trigger an interrupt, telling the AMD PMU to perform a shutdown. A long push (~10 seconds held down) will also issue an interrupt but will power off the system regardless of whether the PMU issues KILL_N or not.
MIO34_POW ER_KILL_N	ZU+ (U6)	On/Off Controller (U29)	Low- enabled	Disable the power regulators immediately. The ZU+ PMU enables this when it has properly processed an internal shutdown command successfully and is ready for the on/off controller to turn off the regulators.
EN_SEQ_PL	On/Off Controll er (U29)	DC-DC converters (U3, U25, U26)	High- enabled	Enables the three primary TDK μPOL™ power converter devices. Asserted by the On/Off Controller during a power-up sequence, and de-asserted by the On/Off Controller during a power-down sequence (either a response to KILL_N or a long push).
MIO26_PWR_ INT	On/Off Controll er (U29)	ZU+ (U6)	High- enabled	Interrupt input to the ZU+ when a power-down push button event has been received.
INIT	Pull up/down resistor (R212, R213)	On/Off Controller (U29)	Default = Low	When low, the On/Off Controller powers up with the push button control. When high, the On/Off Controller powers up the system as soon as the input voltage is valid.

A Dialog Semiconductor <u>GreenPAK</u> programmable device was developed to accomplish this function on ZUBoard 1CG. This device accomplishes everything needed in a very small 2mm x 2.2mm STQFN package. Specifically, the design is based on the Dialog GreenPAK SLG46170 device, with the programmed part number being SLG7AV45289. If you want to duplicate the exact functionality of the On/Off Controller on the ZUBoard 1CG, the <u>SLG7AV45289 may be ordered from Avnet</u>. If you are working on a project with Avnet as your distributor, work with your Avnet FAE to request samples of the device to avoid the 3K MOQ, or you can get Avnet's code for the On/Off Controller to customize it for yourself by submitting a request to your local FAE.

For those that want to modify the power-up initialization from push-button control to power-up with power connected, you will need to move a single resistor on the ZUBoard 1CG. This is the R212 and R213 10-Kohm configuration, which selects either pull-down (default, use Push Button) or pull-up (power up with power). To implement the *Power Up with Power Connected* function, DNP R213 and populate R212. R212 and R213 are located on the back side of the board directly next to U29.

Figure 3 - Location of R213 and R212

To help explain the functionality of this device, a datasheet is available at <u>Dialog SLG7AV45289</u> <u>On-Off Controller Datasheet</u>. Also, here are the functional diagrams showing the logic within this device.

Power Up, INIT Low, PB_B assert EN, Ignore Kill

Figure 4 - On/Off Controller Diagram 1

Power Up, INIT High, Assert EN, Ignore Kill

Figure 5 – On/Off Controller Diagram 2

Power Down via Short Push, INIT Low,

Figure 6 – On/Off Controller Diagram 3

Power Down via Short Push, INIT High,

Figure 7 – On/Off Controller Diagram 4

Power Down via Long Push, INIT low, No Kill

Figure 8 – On/Off Controller Diagram 5

Power Down via Long Push, INIT high, No Kill

Figure 9 – On/Off Controller Diagram 6

Power Down via Long Push, INIT low, Kill deasserts EN

Figure 10 – On/Off Controller Diagram 7

Power Down via Long Push, INIT high, Kill deasserts EN

Figure 11 – On/Off Controller Diagram 8

Table 23 - On/Off Controller Pin Table

MPSoC	Bank	MPSoC	ZUBoard 1CG	MPSoC	Function		Connects to:
Pin Number		Site Name	Net name	vcco		REFDES	REFDES Pin Number
G9	501	PS_MIO26_501	MIO26_PWR_INT	+VCC_PSAUX = 1.8V	On/Off Controller	U29	11
F13	501	PS_MIO34_501	MIO34_POWER_KILL_N	+VCC_PSAUX = 1.8V	On/Off Controller	U29	10

5.14 Expansion Connectors

5.14.1 MikroE Click Site

ZUBoard 1CG provides a single MikroE compatible Click site. This click site allows inexpensive Click Board expansion through the MikroE Click ecosystem. Visit https://avnet.me/click .This click site is supported through Samtec SSW-108-01-F-S connectors.

Table 24 shows the pinout of the MikroE Click Expansion Header (ZUBoard 1CG column) and the differences from the MikroE Click specification (MikroE column).

ZUBoard 1CG	MikroE Click	J5 Pin #	J9 Pin #	MikroE Click	ZUBoard 1CG
CLICK_AN	AN	1	1	PWM	HD_CLICK_PWM_3V3
HD_CLICK_RST_3V3	RST	2	2	INT	HD_CLICK_INT_3V3
HD_CLICK_CS0_3V3	CS	3	3	RX	HD_CLICK_RX_3V3
HD_CLICK_SCK_3V3	SCK	4	4	TX	HD_CLICK_TX_3V3
HD_CLICK_MISO_3V3	MISO	5	5	SCL	HD_CLICK_SCL_3V3
HD_CLICK_MOSI_3V3	MOSI	6	6	SDA	HD_CLICK_SDA_3V3
+3V3	+3.3V	7	7	+5V	+5V0
GND	GND	8	8	GND	GND

5.14.2 High Speed Expansion Connector (J1, J2, and J6)

ZUBoard 1CG offers three Samtec connectors for high-speed interfaces. These three interfaces are split up into two GTR connectivity sites and one HP I/O site. A Samtec QSH-020-01-F-D-DP-A-K-TR connector support the two High-Speed sites with GTR transceivers, and a Samtec QSE-020-01-F-D-A-K-TR supports the HP I/O site.

Table 25 and 26 show the pinout of the two High-speed GTR connectivity sites and Table 27 shows the pinout for the High-Speed HP I/O site.

Table 25 - High-speed GTR MIO (J2)

ZUBoard 1CG	High-speed GTR	J2 Pin #	J2 Pin #	High-speed GTR	ZUBoard 1CG
HD_HSIO_SCL_3V3	SCL	1	2	+5V	+5V0
HD_HSIO_SDA_3V3	SDA	3	4	R_GA	R8 = 49.9k

GTR_LANEO_RX_P	RX0P	5	6	TX0P	GTR_LANE0_TX_P
GTR_LANEO_RX_N	RXON	7	8	TXON	GTR_LANEO_TX_N
GTR_LANE1_RX_P	RX1P	9	10	TX1P	GTR_LANE1_TX_P
GTR_LANE1_RX_N	RX1N	11	12	TX1N	GTR_LANE1_TX_N
GTR_CLKO_P	REFCLKP	13	14	S0	MIO13
GTR_CLKO_N	REFCLKN	15	16	S1	MIO14
MIO15	S2	17	18	S3	MIO17
MIO16	S4	19	20	S5	MIO18
MIO19	S6	21	22	S7	MIO21
MIO20	S8	23	24	S9	MIO22
MIO23	S10	25	26	S11	MIO36
MIO35	S12	27	28	S13	MIO37
MIO27	S14	29	30	S15	MIO29
MIO28	S16	31	32	S17	MIO30
HD_DP_07_GC_P	P2C_CLKP	33	34	C2P_CLKP	HD_DP_08_GC_P
HD_DP_07_GC_N	P2C_CLKN	35	36	C2P_CLKN	HD_DP_08_GC_N
N/C	RSVD	37	38	RSVD	N/C
+1V8	VIO1	39	40	+3V3	+3V3
GND	GND	GND	GND	GND	GND

Table 26 – High-speed GTR PL IO (J1)

ZUBoard 1CG	High-speed GTR	J1 Pin#	J1 Pin#	High-speed GTR	ZUBoard 1CG
HD_HSIO_SCL_3V3	SCL	1	2	+5V	+5V0
HD_HSIO_SDA_3V3	SDA	3	4	R_GA	R7 = 4.02k
GTR_LANE2_RX_P	RX0P	5	6	TXOP	GTR_LANE2_TX_P
GTR_LANE2_RX_N	RXON	7	8	TXON	GTR_LANE2_TX_N
GTR_LANE3_RX_P	RX1P	9	10	TX1P	GTR_LANE3_TX_P
GTR_LANE3_RX_N	RX1N	11	12	TX1N	GTR_LANE3_TX_N
GTR_CLK1_P	REFCLKP	13	14	SO	HP_DP_01_DBC_P
GTR_CLK1_N	REFCLKN	15	16	S1	HP_DP_01_DBC_N
HP_DP_02_P	S2	17	18	S3	HP_DP_03_P
HP_DP_02_N	S4	19	20	S5	HP_DP_03_N
HP_DP_04_P	S6	21	22	S7	HP_DP_05_P
HP_DP_04_N	S8	23	24	S9	HP_DP_05_N
HP_DP_06_P	S10	25	26	S11	HP_DP_14_GC_P
HP_DP_06_N	S12	27	28	S13	HP_DP_14_GC_N
HP_DP_15_P	S14	29	30	S15	HP_DP_24_P
HP_DP_15_N	S16	31	32	S17	HP_DP_24_N
HP_DP_11_GC_66_P	P2C_CLKP	33	34	C2P_CLKP	HP_DP_12_GC_66_P
HP_DP_11_GC_66_N	P2C_CLKN	35	36	C2P_CLKN	HP_DP_12_GC_66_N
N/C	RSVD	37	38	RSVD	N/C
+VCCO_HP = 1.8/1.2V	VIO1	39	40	+3V3	+3V3
GND	GND	GND	GND	GND	GND

Table 27 - High-Speed HP Expansion PL IO (J6)

ZUBoard 1CG	High-Speed HP IO	J6 Pin #	J6 Pin #	High-Speed HP IO	ZUBoard 1CG
HD_HSIO_SCL_3V3	SCL	1	2	+5V	+5V0
HD_HSIO_SDA_3V3	SDA	3	4	R_GA	R50 = 2k
HP_DP_17_P	SO_DOP	5	6	S1_D1P	HP_DP_07_QBC_P
HP_DP_17_N	S2_D0N	7	8	S3_D1N	HP_DP_07_QBC_N
HP_DP_18_P	S4_D2P	9	10	S5_D3P	HP_DP_08_P
HP_DP_18_N	S6_D2N	11	12	S7_D3N	HP_DP_08_N
HP_DP_16_QBC_P	S8_D4P	13	14	S9_D5P	HP_DP_09_P
HP_DP_16_QBC_N	S10_D4N	15	16	S11_D5N	HP_DP_09_N
HP_DP_19_DBC_P	S12_D6P	17	18	S13_D7P	HP_DP_10_QBC_P
HP_DP_19_DBC_N	S14_D6N	19	20	S15_D7N	HP_DP_10_QBC_N
HP_DP_20_P	S16	21	22	S17	HP_DP_11_GC_P
HP_DP_20_N	S18	23	24	S19	HP_DP_11_GC_N
HP_DP_21_P	S20	25	26	S21	HP_DP_23_P
HP_DP_21_N	S22	27	28	S23	HP_DP_23_N
HP_DP_22_P	S24	29	30	S25	HP_SE_01
HP_DP_22_N	S26	31	32	S27	HP_SE_02
HP_DP_12_GC_P	P2C_CLKP	33	34	C2P_CLKP	HP_DP_13_GC_P
HP_DP_12_GC_N	P2C_CLKN	35	36	C2P_CLKN	HP_DP_13_GC_N
N/C	RSVD	37	38	RSVD	N/C
+VCCO_HP = 1.8/1.2V	VIO1	39	40	+3V3	+3V3
GND	GND	GND	GND	GND	GND

6 Configuration and Debug

6.1 Boot Mode

ZUBoard 1CG supports booting from JTAG, QSPI, and microSD Card. A DIP switch (SW2) is installed to allow selecting the desired boot mode.

BOOT MODE	MODE PIN [3:0]	SW2 (1-4)
JTAG	0x0	ON-ON-ON
QSPI32	0x2	ON-OFF-ON-ON
SD1 (2.0)	0x5	OFF-ON-OFF-ON
eMMC (1.8V) /w Module	0x6	ON-OFF-OFF-ON

Figure 12 – Boot Mode Switch

6.2 JTAG Configuration and Debug

JTAG access to the MPSoC is available through a FTDI chip on board which outputs the signals to a microUSB header (J16). This allows Vivado hardware manager to interface with ZUBoard and is what AMD utilizes for the Vitis System Debugger, based on the Target Communications Framework (TCF).

For more information regarding the FTDI chip, reference AMD knowledge article <u>68889 - Boards</u> and Kits - Can the on-board USB-to-JTAG configuration solution on Xilinx Evaluation Kits be leveraged for custom board design?

7 Power

7.1 USB Type C power In

The input power method for the ZUBoard 1CG is over the USB type C connector on board. This requires a USB Type C Power compliant supply that can negotiate up to 45W (15V/3A). Avnet recommends the following USB Type C Compliant Power supply, however any 45W USB C compliant supply will work.

- PSA-A45WM-U USB-C capable input power supply
- C06026-00013 USB C-to-C Plug for power supply

7.2 USB Type C Controller

The ZÜBoard 1CG features the UPD301C/KYX USB C Controller. This device enables the user to negotiate their USB C compliant power supply up to 15V/3A. No other voltage ranges are supported by default. This USB C Controller is programmable to support various applications. To purchase a programmed controller contact your local Avnet branch and request a quote for AVT~UPD301C/KYX~471416~PM from the Avnet programming center.

7.3 Power On/Off

Ensure a proper 45W supply is plugged into the AES-ZUB-1CG-DK-G (See 7.1). The power good LEDs will illuminate.

• LED D23 (Green) Power Good

- LED D14 (Orange) 15V Present
- LED D15 (Orange) 9V Present
- LED D16 (Orange) 5V Present

7.4 Power Estimation Using XPE

AMD Power Estimator (XPE) should be used to generate worst case power estimations. The AMD Power Estimator (XPE) spreadsheet is available on AMD' website that can help you get started with your own power estimation. Avnet has also provided an example of this spreadsheet filled out for the ZUBoard 1CG under Documentation on the ZUBoard 1CG website.

http://avnet.me/zuboard-1cg → Technical Documents → Power Analysis

This blog also gives some good information about using XPE.

https://www.element14.com/community/groups/power-management/blog/2018/01/11/estimating-xilinx-power-requirements

7.5 Power Regulators

Configurable TDK Buck converters supply the power architecture for the ZUBoard 1CG. These buck regulators are offered in both fixed and configurable outputs. These also have internal bulk capacitance and inductors all in one single package.

TDK Buck Regulators:

- FS1406-1800-AS
- FS1406-0600-AS
- FS1404-3300-AS
- FS1403-5000-AS
- FS1406-1100-AS

The power rail configuration is shown below:

Figure 13 – ZUBoard 1CG DC-DC Power Regulation

7.6 Power Control and Sequence

A custom on/off controller using a Renesas/Dialog GreenPak device is used for power up control. The device part number is SLG7AV45289 and is available for purchase. Talk with your FAE or account manager for more information.

In addition to power on control, sequencing is controlled by another Renesas/Dialog GreenPak device, part number SLG7TD43741VTR. This device is also available for purchase.

The diagram below shows the power sequence. Power down sequencing is the reverse order of start-up:

Figure 14 - ZUBoard 1CG Power Sequencing

The captures below show the power up sequencing measurements taken on the ZUBoard 1CG:

Pink – 5V Yellow – VCCPSINT_LP Light Blue – VCCPSAUX Dark Blue – VCCO PSDDR 1.1V

Yellow – VCCPSINT_LP Blue – VCCPSINT_FP Pink – VCCINT

Yellow – VCCPSINT_LP Dark Blue – VCCINT Light Blue – VCCPSAUX Pink – VCCAUX

Yellow – VCCPSINT_LP Pink – PSPLL Light Blue – VCCPSAUX Dark Blue – VCCO PSDDR 1.1V

Yellow – VCCPSINT_LP Light Blue – VCCPSAUX Dark Blue – VCCO PSDDR 1.1V Pink – VCCO 1.2V

Light Blue – VCCAUX
Dark Blue – VCCO PSDDR 1.1V
Pink – VCCO 1.2V
Yellow – 3.3V

Light Blue – VCCAUX Yellow – 3.3V Pink – POR

68ms from VCCAUX to POR (65ms required)

8 Thermal

The ZUBoard 1CG is designed with a keep out around the MPSoC device to allow an attached clip on heatsink to dissipate heat. External Airflow

The Aavid Heatsink does not have an attached fan. It is passive. The heatsink spans on the MPSoC device. When we initially experimented with this board on a benchtop with a few moderately intensive designs, the heatsink did not get hot to the touch even without airflow.

Given the flexibility of the AMD ZU+ PL, every design is different and must be analysed once the final application is developed. If ZUBoard 1CG is mounted in an enclosure or used in a system design, it is expected that the system designer account for an appropriate amount of system-level airflow that keeps the MPSoC T_i within the bounds of the device.

While you should typically not have any issues running ZUBoard 1CG on a bench with the heatsink without airflow, this may not always be the case. If you run a PL- and Clock-intensive design, you may see the heatsink temperature rise 20 or 30 degrees above ambient. You will not want to touch the heatsink at this temperature. You should use caution and perhaps apply a small desktop fan which will bring the heatsink back within 5 to 10 degrees of ambient.

8.1 Mounting the ZUBoard 1CG heatsink

The heatsink is clipped directly over top of the ZUBoard 1CG MPSoC device.

9 Reset

The ZUBoard 1CG System Reset is managed by signal POWER_GOOD, which is an open-drain signal, which is pulled-up to +VCC_PSAUX (+1.8V) through 49.9K Ω R187. This signal is tied to the MPSoC Power-on-Reset signal PS_POR_B. There are multiple entities that can assert this signal by driving low:

- TDK Buck Regulators (U26, U25, U5, U13, U18, U3)
- Pushbutton Reset (SW6)

At power-up, the ZU1CG is held in reset by the TDK Regulators until all power rails have ramped up and are stable. A pushbutton (SW6) allows manually resetting the ZU1CG.

10 Getting Help and Support

If additional support is required, Avnet has many avenues to search depending on your needs. For general question regarding ZUBoard 1CG, please visit our website at http://avnet.me/zuboard-1cg. Here you can find documentation, technical specifications, videos and tutorials, reference designs and other support.

Detailed questions regarding ZUBoard 1CG hardware design, software application development, using AMD tools, training and other topics can be posted on the ZUBoard 1CG Support Forum at http://avnet.me/zuboard-1cg-forum. Avnet's technical support team monitors the forum during normal business hours in North America.

Those interested in customer-specific options on ZUBoard 1CG can send inquiries to customize@avnet.com.

