Introduction of Machine Learning

Chul Min Yeum

Assistant Professor

Civil and Environmental Engineering
University of Waterloo, Canada

CIVE 497 – CIVE 700: Smart Structure Technology

Last updated: 2020-03-28

What is Machine Learning?

Learning is any process by which a system **improves performance** from

experience (Herbert Simon)

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithm that

- improve their performance P
- at task T
- with experience *E*

A well-defined learning task is given by <**P**, **T**, **E**>

Example: Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

T: Recognizing voices

P: Percentage of word sounds correctly detected and classified

E: Database of human-labeled sounds of words

T: Detecting crack damage on images

P: Percentage of damage correctly identified and localized

E: Database of human-labeled images of crack damage

T: Driving on four-lane highways using vision sensors

P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while observing a human driver.

T: Classification of vehicle crossing and types using acceleration

P: Percentage of vehicle crossing, and types correctly estimated

E: Database of acceleration measurements collected under various vehicle crossing

Why is Machine Learning Different from Traditional Programming?

Traditional Programming

Machine Learning

Example: Edge Detection

Traditional Programming

Edge detection, Hough transform

Machine Learning

Why is Everyone So Interested in Machine Learning Now?

Bigger Data

Flood of digital information that doubles every three years

Better Hardware

Optimized chips improving faster than Moore's law

Cheap storage and bandwidth

Smarter Algorithms

Ability to handle realworld complexity

Training time down ~80% since 2010

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Robotics
- Information extraction
- Social network
- Debugging Software
- Inspection

What are your applications?

How Does Machine Learning Work?

Learning (Training) Phase

Inference (Testing) Phase

Machine Learning Applications

Supervised Learning

Supervised Learning: Regression and Classification

Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n),$ lean a function f(x) to predict y given x, where y is real-valued data

September Arctic Sea Ice Extent

(1,000,000 od km)

1970

1980

1990

2010

2020

Year

Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n),$ lean a function f(x) to predict y given x, where y is categorical data

Supervised Learning: Classification (Multi Dimension)

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

• • •

Example: Supervised Learning (Civil and Mechanical Engineering)

Collapse classification

Pipeline inspection

Delamination detection

Wirless health monitoring

Unsupervised Learning

Example: Unsupervised Learning

Social Network

Autoencoder

Visualization (t-SNE)

Example: Unsupervised Learning (Civil and Mechanical Engineering)

Leak detection (Cody et al, 2018) - Dr. Narasimhan's lab

Super-resolution application

AIT Deep Learning in industrial inspection