Notational Convention

- $[n] = \{1, 2, \dots, n\}$
- $\mathbf{x}, \mathbf{y}, \mathbf{v}$: vectors
- A, B: matrices
- $\mathcal{X}, \mathcal{Y}, \mathcal{K}$: domains
- d, m, n: dimensions
- *I*: identity matrix
- $\bullet~X,Y$: random variables
- p, q: probability distributions

Calculus

Hessian

$$abla^2 f(\mathbf{x}) = \left[rac{\partial^2 f}{\partial x_i, x_j}(\mathbf{x})
ight]_{1 \leq i, j \leq d}$$

Reference: The Matrix Cookbook

> link <

Linear Algebra

Positive (Semi-)Definite Matrix

Positive Definite matrix => PD, $\forall \mathbf{x} \in \mathbb{R}^d, \mathbf{x}^T A \mathbf{x} > 0 \Leftrightarrow A \succ 0$

Positive Semi-Definite matrix => PSD, $orall \mathbf{x} \in \mathbb{R}^d, \mathbf{x}^T A \mathbf{x} \geq 0 \Leftrightarrow A \succeq 0$

Inner Product

· Vector Space:

$$\mathbf{x},\mathbf{y} \in \mathbb{R}^d \ \langle \mathbf{x},\mathbf{y}
angle = \mathbf{x}^T\mathbf{y} = \sum_{i=1}^d x_i y_i$$

• Matrix Space:

$$A,B \in \mathbb{R}^{m imes n} \ \langle A,B
angle = \operatorname{Tr}(A^TB) = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}$$

Norm

• Quadratic Norm:

$$\|\mathbf{x}\|_A = \sqrt{\mathbf{x}^T A \mathbf{x}}, A \text{ is positive semi-definite}$$

Dual Norm

$$\|\mathbf{y}\|_* = \sup\{\mathbf{y}^T\mathbf{x} \mid \|\mathbf{x}\| \le 1\}$$

Hölder's Inequality: $\langle \mathbf{x}, \mathbf{y}
angle \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|_*$

Norm Relationship

Lemma (Mathematical Equivalence of Norms). Suppose that $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms on \mathbb{R}^d , there exist positive "constants" (depend on dimension) α and β , such that

$$\alpha \|\mathbf{x}\|_a \le \|\mathbf{x}\|_b \le \beta \|\mathbf{x}\|_a$$

Cauchy-Schwarz Inequality

$$egin{aligned} \langle \mathbf{x}, \mathbf{y}
angle & \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|_* \ \left(\sum_{i=1}^n a_i b_i
ight)^2 & \leq \left(\sum_{i=1}^n a_i^2
ight) \cdot \left(\sum_{i=1}^n b_i^2
ight) \ \left(\int_a^b f(x) g(x) \mathrm{d}x
ight)^2 & \leq \left(\int_a^b f^2(x) \mathrm{d}x
ight) \cdot \left(\int_a^b g^2(x) \mathrm{d}x
ight) \end{aligned}$$

Matrix Operator Norm

Definition (Matrix Operator Norm). The operator norm (or called induced norm) of a matrix $A \in$ $\mathbb{R}^{m \times n}$ is defined by

$$\|A\|_{\mathrm{op},p} riangleq \max \left\{ rac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p} \mid \mathbf{x} \in \mathbb{R}^d, \mathbf{x}
eq \mathbf{0}
ight\}$$

• l_2 norm (Spectral Norm):

$$\|A\|_{\mathrm{op},2} = \max_{i \in [r]} |\sigma_i|$$

Where $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$, namely, σ_i is the i-th singular value.

Matrix Entrywise Norm

Definition (Matrix Entrywise Norm). The entrywise norm of a matrix $A \in \mathbb{R}^{m imes n}$ is defined by

$$\|A\|_{\mathrm{en},p} riangleq \left(\sum_{i=1}^m \sum_{j=1}^n |A_{i,j}|^p
ight)^{1/p} \ \|A\|_{\mathrm{F}} = \|A\|_{\mathrm{en},2}$$

Eigen Value Decomposition

Let A be an $d \times d$ PSD matrix, then it can be factored as

$$A = Q\Lambda Q^T$$

where

- ullet $Q=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_d)\in\mathbb{R}^{d imes d}$ is orthogonal, and $\mathbf{v}_1,\ldots,\mathbf{v}_d$ are eigenvectors
- $\Lambda = \mathrm{diag}(\lambda_1, \ldots, \lambda_d)$, and $\lambda_1, \ldots, \lambda_d$ are eigenvalues

Some property:

$$ullet$$
 $A = \sum_{i=1}^d \lambda_i \mathbf{v}_i \mathbf{v}_i^T$

$$ullet \det(A) = \prod_{i=1}^d \lambda_i$$

•
$$\operatorname{Tr}(A) = \sum_{i=1}^d \lambda_i$$

$$egin{aligned} & \det(A) = \prod_{i=1}^d \lambda_i \ & \operatorname{Tr}(A) = \sum_{i=1}^d \lambda_i \ & \|A\|_{\operatorname{F}} = \sqrt{\sum_{i=1}^d \lambda_i^2} \end{aligned}$$

Singular Value Decomposition

Suppose $A \in \mathbb{R}^{m \times n}$ has a rank r, then it can be factored as

$$A = U\Sigma V^T$$

where

- ullet $U=(\mathbf{u}_1,\ldots,\mathbf{u}_r)\in\mathbb{R}^{m imes r}$ satisfies $U^TU=I$; $V=(\mathbf{v}_1,\ldots,\mathbf{v}_r)\in\mathbb{R}^{n imes r}$ satisfies
- ullet $\Sigma=(\sigma_1,\ldots,\sigma_r)$ and σ_1,\ldots,σ_r are singular valuess.

Some property:

- $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ $\|A\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{r} \sigma_i^2}$

Schatten Norm

Definition (Matrix Schatten Norm). The Schatten norm of a matrix $A \in \mathbb{R}^{m imes n}$ with rank r is defined by

$$\|A\|_{\mathrm{Sc},p} riangleq \left(\sum_{i=1}^r \sigma_i^p
ight)^{1/p}$$

Probability and Statistics

Cauchy-Schwarz Inequality in Probability

$$(\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]$$

Concentration Inequalities

Theorem (Markov's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X] < \infty$, then for all t > 0.

$$\Pr[X \geq t\mathbb{E}[X]] \leq rac{1}{t}$$

Theorem (Chebyshev's Inequality). Let X be a non-negative random variable with

 $\mathbb{E}[X], \mathrm{Var}[X] < \infty$, then for all $\epsilon > 0$,

$$\Pr[|X - \mathbb{E}[X]| \geq \epsilon] \leq rac{\mathrm{Var}[X]}{\epsilon^2}$$

Theorem (Hoeffding's Inequality). Let X_1,\ldots,X_m be independent random variables with X_i taking values in $[a_i,b_i]$ for all $i\in[m]$. Then, for any $\epsilon>0$, the following inequalities hold for $S_m=\sum_{i=1}^m X_i$,

$$egin{aligned} \Pr[S_m - \mathbb{E}[S_m] & \geq \epsilon] \leq \exp\left(rac{-2\epsilon^2}{\sum_{i=1}^m (b_i - a_i)^2}
ight) \ \Pr[S_m - \mathbb{E}[S_m] & \leq -\epsilon] \leq \exp\left(rac{-2\epsilon^2}{\sum_{i=1}^m (b_i - a_i)^2}
ight) \end{aligned}$$

Entropy

Definition (Entropy). The enotropy of a discrete random variable X with probability mass function $\mathbf{p}(x) = \Pr[X = x]$ is denoted by H(X):

$$H(X) = -\sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \mathbf{p}(x)$$

The entropy is a lower bound on lossless data compression.

A explanation of entropy: $\log_2(1/\mathbf{p}(x))$ is the code length needed to encode the information, and H(X) measures the expected code length to encode a distribution \mathbf{p} .

Definition (Condition Entropy).

$$egin{aligned} H(Y|X) &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \left[rac{\mathbf{p}(x,y)}{\mathbf{p}(x)}
ight] \ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \mathbf{p}(x,y) + \sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \mathbf{p}(x) \ &= H(X,Y) - H(X) \end{aligned}$$

Definition (Mutual Information).

$$\begin{split} I(X,Y) &= KL(\mathbf{p}(x,y) \| \mathbf{p}(x) \mathbf{p}(y)) \\ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \left[\frac{\mathbf{p}(x,y)}{\mathbf{p}(x) \mathbf{p}(y)} \right] \\ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \mathbf{p}(x,y) - \sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \mathbf{p}(x) - \sum_{y \in \mathcal{Y}} \mathbf{p}(y) \log \mathbf{p}(y) \\ &= H(X) + H(Y) - H(X,Y) \end{split}$$

with the conventions: $0\log 0=0, 0\log \frac{0}{0}=0, \ \mathrm{and} \ a\log \frac{a}{0}=+\infty \ \mathrm{for} \ a>0$

KL Divergence (Relative Entropy)

Definition (KL Divergence). The KL divergence of two distributions p and q is defined by $KL(\mathbf{p}||\mathbf{q})$:

$$KL(\mathbf{p}\|\mathbf{q}) = \sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \left[rac{\mathbf{p}(x)}{\mathbf{q}(x)}
ight]$$

with the conventions: $0\log 0=0, 0\log \frac{0}{0}=0, \text{ and } a\log \frac{a}{0}=+\infty \text{ for } a>0$

Some property:

- KL divergence is always non-negative
- ullet Pinsker's Inequality: $KL(\mathbf{p}\|\mathbf{q}) \geq rac{1}{2}\|\mathbf{p} \mathbf{q}\|_1^2$
- $KL(\mathbf{p}\|\mathbf{q})$ doesn't always equal to $KL(\mathbf{q}\|\mathbf{p})$

Bregman Divergence

Definition (Bregman Divergence). Let ψ be a convex and differentiable function over a convex set \mathcal{K} , and then for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, the bregman divergence \mathcal{D}_{ψ} associated to ψ is defined as

$$\mathcal{D}_{\psi}(\mathbf{x} \| \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle
abla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y}
angle$$

Bregman divergence measures the difference of a function and its linear approximation.

KL divergence is a special case when $\mathbf{p}(x)$ is defined as negative entropy: $\mathbf{p}(x) = \sum_i x_i \log x_i$

Asymptotic Notations

Definition

- $\Theta(g(n)) = \{f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.
- $\mathcal{O}(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$
- $\Omega(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$
- $o(g(n)) = \{f(n) \mid \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$
- $\omega(g(n)) = \{f(n) \mid \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.$

Optimization in Machine Learning

Learning by Optimization

The fundamental goal of (supervised) learning: Risk Minimization.

$$\min_{h \in \mathcal{H}} \mathbb{E}_{\mathbf{x}, y \in \mathcal{D}}[f(h(\mathbf{x}), y)]$$

where:

- ullet h denotes the hypothesis (model) from the hypothesis space ${\cal H}$
- ullet (\mathbf{x},y) is an instance chosen from a unknown distribution $\mathcal D$
- $f(h(\mathbf{x}),y)$ denotes the loss of using hypothesis h on the instance (\mathbf{x},y)

Empirical Risk Minimization

The distribution of the data is unavailable, and the risk can't be computed.

In practice, the learner instead tries to optmize empirical risk.

$$\min_{h \in \mathcal{H}} rac{1}{m} \sum_{i=1}^m f(h(\mathbf{x}_i), y_i)$$

- IID assumption: independent and identically distributed random variables.
- ERM approximates RM: All instance are i.i.d. sampled from the same distribution.