Learning priors, likelihoods, or posteriors

lain Murray

School of Informatics, University of Edinburgh

"Within the field of approximate Bayesian inference, variational and Monte Carlo methods are currently the mainstay techniques."

— http://approximateinference.org/

The Statistician (1987) 36, pp. 247-249

Monte Carlo is fundamentally unsound

A. O'HAGAN

Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K.

Abstract. We present some fundamental objections to the Monte Carlo method of numerical integration.

Posteriors in Cosmology

Recognition networks

$$\theta^{(s)} \sim p(\theta)$$
 $\mathbf{x}^{(s)} \sim p(\mathbf{x} \mid \theta^{(s)})$

Training set:
$$\left\{\theta^{(s)}, \mathbf{x}^{(s)}\right\}_{s=1}^{S}$$

Some of the relevant work

```
Hinton et al. (1995, Science) — Wake Sleep, Helmholtz machine Morris (2001, UAI) — Recognition Networks

Blum & Francois (2010, S&C) — Conditional Gaussian, neural nets

Fan, Nott, Sisson (2012, Stat) — Mixture of experts

Mitrović, Dino Sejdinović, Teh (2016, ICML) — Kernel regression
```

Fast *ϵ*-free Inference of Simulation Models with Bayesian Conditional Density Estimation

Papamakarios and Murray (NIPS, 2016) Lueckmann et al. (NIPS, 2017)

— Fit $\hat{p}(\theta \mid \mathbf{x})$ maximize $\sum_{s} \log \hat{p}(\theta^{(s)} \mid \mathbf{x}^{(s)})$

Mixture Density Networks (Bishop, 1994)

conditional probability density

mixture model

neural network

input vector

Fast *∈*-free Inference of Simulation Models with Bayesian Conditional Density Estimation

Papamakarios and Murray (NIPS, 2016) Lueckmann et al. (NIPS, 2017)

— Fit $\hat{p}(\theta \mid \mathbf{x})$ maximize $\sum_{s} \log \hat{p}(\theta^{(s)} \mid \mathbf{x}^{(s)})$

- $\hat{p}(\theta \mid \mathbf{x}_{\mathsf{observed}}) \rightarrow \mathsf{approx} \; \mathsf{posterior}$

Fast *ϵ*-free Inference of Simulation Models with Bayesian Conditional Density Estimation

Papamakarios and Murray (NIPS, 2016) Lueckmann et al. (NIPS, 2017)

— Fit $\hat{p}(\theta \mid \mathbf{x})$ maximize $\sum_{s} \log \hat{p}(\theta^{(s)} \mid \mathbf{x}^{(s)})$

- $\hat{p}(\theta \mid \mathbf{x}_{\mathsf{observed}}) \rightarrow \mathsf{approx} \; \mathsf{posterior}$

— Refine fit: more simulations

Underfitting

True posterior samples

samples from Gaussian fit

— Modeling posteriors

— Modeling priors

— Modeling likelihoods

Weighing the Milky Way

Busha, Marshall, Wechsler, Klypin and Primack (2011)

APJ 743:40

Milky Way diagram, NASA

Magellanic Clouds, ESO/S. Brunier

http://en.wikipedia.org/wiki/File:236084main_MilkyWay-full-annotated.jpg http://www.eso.org/public/images/b01/

Bayesian Inference

$$p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})$$

 $\mathbf{x} = [r, v, m]$, vector of galaxy properties $\mathbf{y} = [\hat{r}, \hat{v}]$, noisily observe part of \mathbf{x}

The prior: simulation samples

Milky Way mass

 $p(\mathbf{x})$ theory: simulated galaxy properties $p(\mathbf{y} \mid \mathbf{x})$ observations of Milky Way

 $p(\mathbf{x} \mid \mathbf{y}) \to p(x_1 \mid \mathbf{y})$, posterior of mass

— Modeling posteriors

— Modeling priors

— Modeling likelihoods

Surrogate modeling / emulation

$$p(\theta \mid \mathcal{D}) \propto p(\theta) \prod_{n} p(\mathbf{x}^{(n)} \mid \theta)$$

Cf Cranmer, Pavez, Louppe (2016) arXiv:1506.02169

Thanks!

http://iainmurray.net

NADE variants, MADE, and MAF ϵ -free ABC, pseudo-marginal slice sampling