SPRAWOZDANIE Z DRUGIEGO PROJEKTU Z PRZEDMIOTU "SZTUCZNA INTELIGENCJA W AUTOMATYCE"

Numer zadania: 10 Wykonawcy: Daniel Giełdowski Piort Chachuła

Spis treści

1.	Sym	ulacja procesu
	1.1.	Charakterystyka statyczna
	1.2.	Zbiory danych
2.	Mod	elowanie procesu
	2.1.	Opóźnienie
	2.2.	Dobór liczby neuronów
	2.3.	Model z algorytmu BFGS
	2.4.	Symulacja modelu z algorytmu BFGS
	2.5.	Model z algorytmu najszybszego spadku
	2.6.	Model z algorytmu BFGS z uczeniem bez rekurencji
	2.7.	Symulacja modelu z algorytmu BFGS z uczeniem bez rekurencji
	2.8.	Model metodą najmniejszych kwadratów
3.	Regu	ılacja procesu
	3.1.	Implementacja NPL
	3.2.	Strojenie NPL
	3.3.	GPC
4.	Zada	ania dodatkowe
	4.1.	PID
	4.2.	NO 21

1. Symulacja procesu

1.1. Charakterystyka statyczna

Zadany układ opisany jest równaniami:

$$\begin{cases} x_1(k) = -\alpha_1 x_1(k-1) + x_2(k-1) + \beta_1 g_1(u(k-3)) \\ x_2(k) = -\alpha_2 x_1(k-1) + \beta_2 g_1(u(k-3)) \\ y(k) = g_2(x_1(k)) \end{cases}$$
(1.1)

gdzie u-sygnał wejściowy, y-sygnał wyjściowy, x_1, x_2 - zmienne stanu, $\alpha_1=-1,422574, \alpha_2=0,466776, <math>\beta_1=0,017421, \beta_2=0,013521$ oraz

$$g_1(u(k-3)) = \frac{exp(5u(k-3)) - 1}{exp(5u(k-3)) + 1}, \quad g_2(x_1(k)) = 1 - exp(-1.5x_1(k))$$
 (1.2)

Podany punkt pracy układu to $u = y = x_1 = x_2 = 0$, więc w wersji statycznej:

$$\begin{cases} x_1 = -\alpha_1 x_1 + x_2 + \beta_1 g_1(u) \\ x_2 = -\alpha_2 x_1 + \beta_2 g_1(u) \\ y = g_2(x_1) \end{cases}$$
 (1.3)

Po przekształceniach:

$$x_1 = \frac{(\beta_1 + \beta_2)g_1(u)}{1 + \alpha_1 + \alpha_2} \tag{1.4}$$

Po podstawieniu równania (1.4) do y otrzymujemy

$$y(u) = g_2(\frac{(\beta_1 + \beta_2)g_1(u)}{1 + \alpha_1 + \alpha_2})$$
(1.5)

Wykres wyznaczonej charakterystyki statycznej dla zadanego zakresu wartości sterowania $(u^{min}=-1,u^{max}=1)$ przedstawiony został na wykresie 1.1. Wykres został wygenerowany za pomocą skryptu $charakterystyka_statyczna.m.$

Rys. 1.1. Charakterystyka statyczna procesu

1.2. Zbiory danych

W celu przygotowania do uczenia sieci neuronowych wygenerowaliśmy dwa zbiory danych. Dane zostały wygenerowane poprzez zasymulowanie zadanego procesu dla sygnału sterowania złożonego o wartości zmieniającej się skokowo co 50 próbek. Obydwa zbiory danych mają po 2000 próbek. Zostały one przedstawione na wykresach 1.2 i 1.3. Użyte zostały skrypty: generowanie_danych.m (do wygenerowania danych) oraz wykres_dancyh.m (do narysowania wykresów).

Rys. 1.2. Dane uczące

Rys. 1.3. Dane weryfikujące

2. Modelowanie procesu

2.1. Opóźnienie

W celu zdefiniowania opóźnienia τ procesu zasymulowaliśmy go dla pojedynczego skoku sterowania. Wyniki symulacji przedstawione są na wykresie 2.1. Skok sterowania nastąpił w 5 kroku działania programu, natomiast wyjście procesu zmieniło się dopiero w kroku 8. Oznacza to, że poszukiwane przez nas opóźnienie wynosi $\tau=3$. Użyty przez nas skrypt to tauwiz.m.

Rys. 2.1. Wizualizacja opóźnienia procesu

2.2. Dobór liczby neuronów

W celu dobrania odpowiedniej liczby neuronów dla sieci zastosowaliśmy wielokrotne uczenie z użyciem programu sieci.exe. Dla każdej ilości neuronów ukrytych od 1 do 10 dokonaliśmy 5 procesów uczenia za pomocą algorytmu BFGS z wykorzystaniem rekurencji. W tym celu wykorzystaliśmy skrypt modelowanie.m. Najmniejszy uzyskany błąd uczenia wraz ze skojarzonym z nim błędem weryfikacji przedstawiony został w tabeli poniżej. Najmniejszy błąd dla obydwu zbiorów występuje dla 9 neuronów. Ostatecznie jednak zdecydowaliśmy się na używanie sieci z pięcioma neuronami ukrytymi. Powodem tego jest mała poprawa w stosunku do większych ilości neuronów oraz chęć zmniejszenia nakładu obliczeń. Dodatkowo sieci o zbyt dużej ilości neuronów ukrytych mają tendencję do przetrenowywania się, w wyniku którego sieć przystosowuje się nie tyle do procesu co do samych danych uczących.

Liczba neuronów	Błąd uczenia	Błąd weryfikacji
1	3.070626e+01	5.548815e+01
2	4.977413e-01	1.060318e+00
3	3.206039e-01	5.111444e-01
4	1.479096e-01	2.625729e-01
5	8.734595e-02	1.534512e-01
6	7.765994e-02	2.087909e-01
7	2.614618e-02	1.727668e-01
8	1.509561e-02	1.095385e-01
9	1.355132e-02	6.725641e-02
10	2.105601e-02	1.136051e-01

Tab. 2.1. Błędy modelu dla różnej ilości neuronów

2.3. Model z algorytmu BFGS

Na wykresie 2.2 przedstawione zostały błędy predykatorów ARX i OE dla kolejnych iteracji uczenia modelu. Zgodnie z ustaleniami z poprzednich punktów zastosowane zostały następujące parametry: tau=3, $neurony\ ukryte=5$. Końcowe błędy dla obydwu predykatorów wynosiły odpowiednio: Eoe=0.0787 i Earx=0.0212. Jak widać błędy te są dosyć małe jak na 2000 próbek co oznacza, że sieć dobrze nauczyła się modelu.

Rys. 2.2. Zmiany błędów predykatora ARX i OE dla kolejnych iteracji uczenia modelu algorytmem BFGS z użyciem rekurencji

2.4. Symulacja modelu z algorytmu BFGS

Model z poprzedniego punktu został zasymulowany w trybie rekurencyjnym dla uczącego oraz weryfikującego zboru danych. Eucz $=0.0787~{\rm Ewer}=0.2172$

Rys. 2.3. Symulacja modelu uczonego algorytmem BFGS z rekurencją na danych uczących i weryfikujących

2.5. Model z algorytmu najszybszego spadku

Eoe = 25.1864 Earx = 1.7730

Rys. 2.4. Zmiany błędów predykatora ARX i OE dla kolejnych iteracji uczenia modelu algorytmem najszybszego spadku z użyciem rekurencji

2.6. Model z algorytmu BFGS z uczeniem bez rekurencji

Eoe = 0.0925 Earx = 0.0237

Rys. 2.5. Zmiany błędów predykatora ARX i OE dla kolejnych iteracji uczenia modelu algorytmem BFGS bez użycia rekurencji

2.7. Symulacja modelu z algorytmu BFGS z uczeniem bez rekurencji

Eucz = 0.0925 Ewer = 0.3542

Rys. 2.6. Symulacja modelu uczonego algorytmem BFGS bez rekurencji na danych uczących i weryfikujących

2.8. Model metodą najmniejszych kwadratów

Ewer = 294.6949 Eucz = 299.7408

Rys. 2.7. Symulacja modelu wykonanego za pomocą metody najmniejszych kwadratów

3. Regulacja procesu

3.1. Implementacja NPL

3.2. Strojenie NPL

Rys. 3.1. Działanie regulatora NPL z nastawami N=10, Nu=2, $\lambda{=}1$

Rys. 3.2. Działanie regulatora NPL z nastawami N=20, Nu=2, $\lambda{=}1$

Rys. 3.3. Działanie regulatora NPL z nastawami N=20, Nu=1, $\lambda{=}1$

Rys. 3.4. Działanie regulatora NPL z nastawami N=20, Nu=3, $\lambda{=}1$

Rys. 3.5. Działanie regulatora NPL z nastawami N=20, Nu=2, $\lambda{=}2$

Rys. 3.6. Działanie regulatora GPC z nastawami N=20, Nu=2, $\lambda{=}2$

Rys. 3.7. Działanie regulatora GPC z nastawami N=20, Nu=2, $\lambda{=}100$

4. Zadania dodatkowe

4.1. PID

Rys. 4.1. Działanie regulatora PID z nastawami Kp = 4, Ti = Inf, Td = 0

Rys. 4.2. Działanie regulatora PID z nastawami Kp = 2.4, Ti = 6.5, Td = 1.625

4.2. NO

Rys. 4.3. Działanie regulatora NO z nastawami N=20, Nu=2, $\lambda{=}2$