Применение метода анализа сингулярного спектра

Охотников Григорий Иванович

Санкт-Петербургский государственный университет Математико-механический факультет Статистическое моделирование

Научный руководитель — к.ф.-м.н. Н. Э. Голяндина Рецензент — к.ф.-м.н. А. Н. Пепелышев

Санкт-Петербург 2017

Постановка задачи прогнозирования временных рядов

Параметры вращения Земли (ПВЗ) — одномерные временные ряды, описывающие положение Земли в пространстве:

- координаты полюса x, y (движение полюса);
- долгота дня LOD (угловая скорость вращения);
- поправки координат небесного полюса dX, dY (движение оси вращения в пространстве прецессия и нутация).

Прогнозы рядов ПВЗ используются для расчёта орбит спутников, в том числе спутников GPS.

Формализация задачи:

- Задан вещественный временной ряд $\mathbb{X}_N = (x_1, \dots, x_N)$;
- ullet требуется построить прогноз ряда \mathbb{X}_N на P шагов.

Задачи

- Организовать сбор данных на ежедневной основе;
- применить метод анализа сингулярного спектра (Singular Spectrum Analysis, SSA) для анализа временных рядов параметров вращения Земли;
- разработать алгоритм подбора параметров метода SSA для более точного прогнозирования;
- провести сравнение с другими методами прогнозирования по точности на прошедших моментах времени;
- обеспечить регулярное обновление прогнозов рядов ПВЗ по методу SSA для текущего дня на странице в Интернете.

Сбор данных

 Бюллетень IERS C04 содержит значения каждого из рядов ПВЗ (публикуется ежедневно, имеет запаздывание приблизительно в 30 дней);

(http://hpiers.obspm.fr/iers/eop/eopc04/eopc04_IAU2000.62-now)

- x, y, LOD с 1 января 1962 года;
- dX, dY с 1 января 1984 года;
- данные finals2000A.daily содержат оценки значений рядов x,y,LOD,dX,dY на прошедшие 90 дней, прогноз рядов x,y на следующие 90 дней и прогноз рядов dX,dY на 60 дней (публикуется ежедневно).

(https://datacenter.iers.org/eop/-/somos/5Rgv/latest/13)

Сбор данных

• Бюллетень A Международной службы вращения Земли (International Earth Rotation and Reference Systems Service, IERS) содержит прогнозы рядов x,y,LOD на 365 дней (публикуется еженедельно);

```
(https://datacenter.iers.org/eop/-/somos/5Rgv/latest/6)
```

• прогнозы рядов x, y, LOD, dX, dY Пулковской обсерватории на 365 дней (публикуются ежедневно).

```
(http://www.gao.spb.ru/english/as/persac/eopcppp/)
```

Координата полюса x

Рис. 1: График ряда x по ежедневным наблюдениям

Долгота дня LOD

Рис. 2: График ряда LOD по ежедневным наблюдениям

Поправки координаты небесного полюса dX

Рис. 3: График ряда dX по ежедневным наблюдениям

Алгоритм метода SSA выделения сигнала в ряде

N. Golyandina, V. Nekrutkin, A. Zhigljavsky — Analysis of Time Series Structure. SSA and Related Techniques (2001)

Входные данные: $\mathbb{X}_N = (x_1, \dots, x_N)$ — временной ряд, параметры: 1 < L < N — длина окна, 1 < r < L.

- ullet Вектора вложения $\{X_i\}_{i=1}^K,\ K=N-L+1,\ X_i=(x_{i-1},\dots,x_{i+L-1})^{\mathrm{T}};$
- ullet построение траекторной матрицы $\mathbf{X} = [X_1:\dots:X_K];$
- ullet SVD матрицы $\mathbf{X} = \sum_{i=1}^L \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$;
- ullet аппроксимация сигнала $\mathbb X$ получается в результате диагонального усреднения матрицы $\hat{\mathbf X} = \sum_{i=1}^r \sqrt{\lambda_i} U_i V_i^{\mathrm T}.$

Преимущества:

- не требует задания модели ряда;
- способен выделять тренды произвольной формы;
- хорошо восстанавливает периодические составляющие.

Алгоритм рекуррентного прогнозирования

N. Golyandina, V. Nekrutkin, A. Zhigljavsky — Analysis of Time Series Structure. SSA and Related Techniques (2001)

Параметры: L — длина окна, r — кол-во собственных троек, $U_i \in \mathsf{R}^L$, $i=1,\ldots,r$ — собственные векторы, $\underline{U_i}$ — первые L-1 координат и π_i — последняя координата. Определим $(a_{L-1},\ldots,a_1)^{\mathrm{T}} = \sum_i \pi_i \underline{U_i} \ / \ (1-\sum_i \pi_i^2)$.

Алгоритм рекуррентного прогнозирования:

 $lackbox{0}$ ряд $\mathbb{Y}_{N+P} = (y_1, \dots, y_{N+P})$ определяется как

$$y_i = \begin{cases} \widetilde{x}_i & \text{for } i = 1, \dots, N, \\ \sum_{j=1}^{L-1} a_j y_{i-j} & \text{for } i = N+1, \dots, N+P, \end{cases}$$
 (1)

 $oldsymbol{2}$ числа y_{N+1},\ldots,y_{N+P} являются результатом прогнозирования ряда на P точек вперёд.

Прогнозирование временных рядов

 Метод выполняет точное прогнозирование временных рядов, управляемых линейно-рекуррентной формулой вида

$$x_n = \sum_j a_j x_{n-j};$$

т. е. подходит для аппроксимации широкого класса моделей рядов вида

$$x_n = \sum_{i} P_i(n)e^{\alpha_i n} \cos(2\pi\omega_i n + \phi_i);$$

- при наличии шума в данных сигнал может быть восстановлен приближённо;
- метод может использоваться для аппроксимации сигнала, содержащегося в ряде, локально управляемым линейно-рекуррентной формулой.

Кросс-валидация для временных рядов

Рис. 4: Иллюстрация кросс-валидации для временных рядов (Hyndman, R. J., Athanasopoulos, G. (2013) «Forecasting: Principles & Practice»)

Длина прогноза рядов ПВЗ — 365 дней.

Параметры:

- ullet длина окна L;
- количество собственных троек r;
- длина базового отрезка;
- длина отрезка прогноза P (фиксирована, 365 дней);
- длина отрезка кросс-валидации.

Порядок подбора параметров

j — момент начала прогноза;

J — множество моментов начала прогноза, состоящее из наборов по 50 дней в каждом году из выбранных (2006, 2007, 2008, 2009, 2010) с шагом в 7 дней, начиная с 1 января;

b — длина базового отрезка;

v — длина отрезка кросс-валидации;

P — длина прогноза (365 дней);

T — множество перебираемых пар значений параметров L и r..

$$MSE_j^P(b,v) = \min_{(L,r) \in T} MSE(j,P,L,r,b,v),$$

$$MSE_{mean}^{P}(b,v) = \frac{\sum_{j \in J} MSE_{j}^{P}(b,v)}{|J|}.$$

- **1** $b_0 = 5475$ (15 лет);
- $b^* = \operatorname*{argmin}_b MSE_{mean}^P(b, v_0);$
- $v^* = \operatorname*{argmin}_{v} MSE_{mean}^{P}(b^*, v).$

Рис. 5: Значение параметра L_j^{opt} для ряда y на 250 днях с шагом в 7 дней при b=5475 (15 лет), v=1825 (5 лет).

Рис. 6: Значение параметра r_j^{opt} для ряда y на 250 днях с шагом в 7 дней при b=5475 (15 лет), v=1825 (5 лет).

Таблица 1: Выбранные значения параметров для прогнозирования рядов ПВЗ на 365 дней.

Параметр	x	y	LOD	dX	dY
<i>b</i> * (лет)	15	15	15	15	15
<i>v</i> * (лет)	7	7	10	7	7

Полученные результаты: прогноз координаты полюса x

Рис. 7: Результат прогнозирования ряда x с помощью автоматического выбора параметров для 01.01.2015 ($L_{opt}=700, r_{opt}=10$)

Pul AM — прогноз Пулковской обсерватории (LS + ARIMA); (http://www.gao.spb.ru/english/as/persac/eopcppp/)
Bull A — прогноз Международной службы вращения Земли. (https://datacenter.iers.org/eop/-/somos/5Rgv/latest/6)

Полученные результаты: прогноз долготы дня LOD

Рис. 8: Результат прогнозирования ряда LOD с помощью автоматического выбора параметров для 01.01.2015 $(L_{opt} = 900, r_{opt} = 19)$

Pul AM — прогноз Пулковской обсерватории (LS + AR); (http://www.gao.spb.ru/english/as/persac/eopcppp/) Bull A — прогноз Международной службы вращения Земли. (https://datacenter.iers.org/eop/-/somos/5Rgv/latest/6)

Полученные результаты: прогноз поправки полюса dX

Рис. 9: Результат прогнозирования ряда dX с помощью автоматического выбора параметров для 01.01.2015, MJD=57023 ($L_{opt}=350, r_{opt}=4$)

Pul AM — прогноз Пулковской обсерватории. (http://www.gao.spb.ru/english/as/persac/eopcppp/)

Сравнение с другими источниками

Таблица 2: Сравнение средних ошибок прогнозов ряда x на 365 дней с другими источниками (50 дней в каждом году с шагом в 7 дней)

	SSA	Pulkovo AM	Bulletin A
2011	6.7×10^{-4}	8.4×10^{-4}	1.2×10^{-3}
2012	8.7×10^{-4}	7.4×10^{-4}	4.9×10^{-4}
2013	9.4×10^{-4}	1.4×10^{-3}	7.9×10^{-4}
2014	4.4×10^{-4}	8.8×10^{-4}	7.2×10^{-4}
2015	6.7×10^{-4}	4.5×10^{-4}	4.8×10^{-4}
Среднее	7.2×10^{-4}	8.6×10^{-4}	7.5×10^{-4}
Медиана	5.9×10^{-4}	7.2×10^{-4}	7.0×10^{-4}

Сравнение с другими источниками

Таблица 3: Сравнение средних ошибок прогнозов рядов ПВЗ

	SSA	Pulkovo AM	Bulletin A
x	7.2×10^{-4}	8.6×10^{-4}	7.5×10^{-4}
y	6.1×10^{-4}	7.6×10^{-4}	8.5×10^{-4}
LOD	9.1×10^{-8}	1.0×10^{-7}	
dX	1.3×10^{-8}	1.1×10^{-8}	
dY	1.6×10^{-8}	2.2×10^{-8}	

Таблица 4: Сравнение медиан ошибок прогнозов рядов ПВЗ

	SSA	Pulkovo AM	Bulletin A
x	5.9×10^{-4}	7.2×10^{-4}	7.0×10^{-4}
y	4.9×10^{-4}	6.3×10^{-4}	7.7×10^{-4}
LOD	7.8×10^{-8}	8.2×10^{-8}	
dX	1.1×10^{-8}	1.0×10^{-8}	
dY	1.5×10^{-8}	1.9×10^{-8}	

Веб-приложение

Для ежедневной публикации результатов прогнозирования рядов ПВЗ было создано веб-приложение с использованием пакета RShiny.

http://eoppredict.ru

Возможности:

- скачивание прогнозов ПВЗ на 365 дней для текущего или произвольного дня в прошлом, начиная с 1 января 2010 года;
- генерация прогнозов при заданных параметрах;
- сравнение прогнозов с другими источниками.

SSA EOP Forecast Forecast for 365 Days Generate Forecast Compare Forecasts About

MSE

	$\boldsymbol{x} \triangleq$	y	LOD \Leftrightarrow	$dX \diamondsuit$	dY ∜
SSA	0.000331596675	0.000295618073	0.000000122859	0.000000006213	0.000000011058
Pul AM	0.000439326995	0.000809755335	0.000000104876	0.000000006143	0.000000018532
Pul E1	0.000441758041	0.000835092190	0.000000104657	0.000000006143	0.000000018532
Bull A	0.000601392920	0.000953560285	0.000000125508		
showing 1	to 4 of 4 entries				

Pole x

Итоги

- Разработана методика подбора оптимальных параметров алгоритма рекуррентного прогнозирования метода SSA для прогнозирования рядов ПВЗ;
- реализован на языке R алгоритм автоматического подбора параметров для ежедневного прогнозирования пяти рядов ПВЗ с использованием пакета Rssa;
- выполнено сравнение прогнозов, полученных с использованием автоматически подобранных параметров, с прогнозами, предоставляемыми еженедельно МСВЗ и ежедневно Пулковской обсерваторией;
- создано веб-приложение, с помощью которого результаты работы программы прогнозирования публикуются ежедневно, а также выполняется сравнение прогнозов из различных источников с точными значениями на указанный день в прошлом, начиная с 1 января 2010 года.