Arquitetura de Computadores

Espaço de endereçamento do P16 Mapeamento de memórias

João Pedro Patriarca (<u>ipatri@cc.isel.ipl.pt</u>), Gabinete F.0.23 do edifício F ISEL, ADEETC, LEIC

Interface física para acesso ao espaço de endereçamento

Memórias

- RAM (Random Access Memory) estática
 - Acessos de leitura e de escrita
 - Dimensão do barramento de dados de 8 bits ou 16 bits
 - Dimensão do barramento de endereços dependente do número de palavras da memória

- ROM (Read Only Memory)
 - Apenas acessos de leitura
 - Dimensão do barramento de dados de 8 bits ou 16 bits
 - Dimensão do barramento de endereços dependente do número de palavras da memória

Escrita de *bytes* e de *words* no P16

- A escrita de *bytes* exige duas RAMs com barramentos de dados de 8 bits mapeadas no mesmo espaço de endereçamento:
 - Memória com o barramento de dados ligado aos bits AD₀₋₇ do P16
 - Escrita com endereços pares
 - WE da memória ligado ao WR₁ do P16
 - Memória com o barramento de dados ligado aos bits AD₈₋₁₅ do P16
 - Escrita com endereços ímpares
 - WE da memória ligado ao WR_H do P16
 - Num acesso de escrita de byte, o P16 replica no barramento de dados os 8 bits de menor peso do registo fonte nos 8 bits de maior peso, ou seja, AD₈₋₁₅=AD₀₋₇ e ativa WR_L ou WR_H função do endereço ser par ou ímpar, respetivamente
- A escrita de words pode usar uma RAM com barramento de dados de 16 bits ou duas RAMs com barramento de dados de 8 bits
 - Numa RAM com barramento de dados de 16 bits, o WE pode ser ligado ao WR_L ou ao WR_H do P16 para escritas exclusivamente de words
 - Em RAMs com barramento de dados de 8 bits, as ligações são realizadas de acordo com a escrita de bytes (ponto anterior)
 - A escrita de words é sempre alinhada em endereços pares, ou seja, a escrita de uma word num endereço desalinhado (ímpar) produz o mesmo resultado que a escrita no endereço par imediatamente anterior

Leitura de *bytes* e de *words* no P16

- A leitura de words pode ser feita a partir de uma memória com barramento de dados de 16 bits ou a partir de duas memórias com barramento de dados de 8 bits mapeadas no mesmo espaço de endereçamento
- A leitura de bytes pode ser igualmente feita a partir de uma memória com barramento de dados de 16 bits ou a partir de duas memória com barramento de dados de 8 bits mapeadas no mesmo espaço de endereçamento
- O P16 lê sempre uma word mesmo num acesso de leitura de um byte
 - Internamente seleciona D_{0-7} se for um endereço par ou seleciona D_{8-15} se for um endereço ímpar estendendo com zeros a parte alta
 - Do ponto de vista de barramentos externos (endereços, dados e controlo) não existe qualquer diferença entre um acesso de leitura de byte ou de word
- O sinal RD do P16 é ligado aos OE das memórias
- A leitura de words é sempre alinhada em endereços pares, ou seja, a leitura de uma word num endereço desalinhado (ímpar) produz o mesmo resultado que a leitura no endereço par imediatamente anterior

Espaço de endereçamento do P16/Mapa de memória

- O P16 define um endereço com 16 bits logo o espaço de endereçamento é de 64 Kbytes
- Cada endereço de 16 bits identifica um byte
- O bit de endereço A₁₅ divide o espaço de endereçamento em dois blocos contíguos de 32 Kbytes
- Os bits A₁₅ e A₁₄ dividem em quatro blocos de 16 Kbytes
- Os bits A₁₅, A₁₄ e A₁₃ dividem em oito blocos de 8 Kbytes
- ...
- Uma região do espaço de endereçamento é caracterizada pelo endereço inicial, pelo endereço final e pela sua dimensão em bytes

Exemplo de três regiões de 1 Kbyte, 8 Kbytes e 16 Kbytes

Mapeamento de memória no espaço de endereçamento

 Para efeitos de simplificação da lógica de seleção de uma memória, o valor do endereço base onde a memória está mapeada deve ser múltiplo da sua dimensão

Dimensão da memória	Endereços adequados para mapeamento
32K	0 ($\overline{A_{15}}$) ou 0x8000 (A_{15})
16K	0 ($\overline{A_{15}}$. $\overline{A_{14}}$), 0x4000 ($\overline{A_{15}}$. A_{14}), 0x8000 (A_{15} . $\overline{A_{14}}$), 0xC000 (A_{15} . A_{14})
8K	$0 \ (\overline{A_{15}}.\overline{A_{14}}.\overline{A_{13}}), 0 \times 2000 \ (\overline{A_{15}}.\overline{A_{14}}.A_{13}), \\ 0 \times 4000 \ (\overline{A_{15}}.\underline{A_{14}}.\overline{A_{13}}), 0 \times 6000 \ (\overline{A_{15}}.\underline{A_{14}}.A_{13}), \\ 0 \times 8000 \ (A_{15}.\overline{A_{14}}.\overline{A_{13}}), 0 \times 8000 \ (A_{15}.\overline{A_{14}}.A_{13}), \\ 0 \times C000 \ (A_{15}.A_{14}.\overline{A_{13}}), 0 \times E000 \ (A_{15}.A_{14}.A_{13})$

• Exemplo de mapeamento inadequado: 32K mapeado a partir do endereço 0x4000 resulta na lógica de seleção A_{15} . $A_{14}+A_{15}$. A_{14}

Casos particulares do mapeamento de memória

- Memória de boot: tem de incluir o endereço de arranque do CPU (endereço 0).
 Tipicamente é implementada por uma ROM mapeada a partir do endereço 0 (ROM de boot)
- Fold-back: dois ou mais endereços do P16 acedem ao mesmo registo da memória
 - O objetivo de colocar uma memória em fold-back é simplificar a lógica de seleção
- Subaproveitamento de uma memória: são acedidos apenas um subconjunto de registos da memória
- Zona de conflito/interdita: duas ou mais memórias carregam o barramento de dados em simultâneo num acesso de leitura
 - Um cenário destes corresponde a um erro de projeto e, como tal, não deverá acontecer num sistema real; um cenário destes apenas é viável em ambiente de exercício

Exercício

- Pretende-se implementar um sistema de memória à volta do P16 com as seguintes características:
 - 16 Kbytes de memória de boot (ROM) com acesso apenas a word
 - 32 Kbytes de memória RAM com acesso a byte e word (RAM)
 - 8 Kbytes de memória RAM com acesso a byte e word (RAM)
 - As duas RAMs devem ocupar regiões contíguas no mapa de memória
- a) Desenhe o mapa de memória caracterizando as regiões ocupadas
- b) Dispondo de dispositivos ROM de 8Kx8, 16Kx8, 8Kx16 e 16Kx16 e RAM de 4Kx8, 8Kx8, 16Kx8, 32Kx8, 4Kx16, 8Kx16 e 16Kx16, desenhe o esquema de ligações ao P16 utilizando os dispositivos adequados às características enunciadas

Resolução do exercício Mapa de memória

Resolução do exercício Esquema elétrico

