

Pairs Trading Strategy Using Machine Learning

Contents

- Problem Statement
- Research Methodology
- Pairs Selection
- Trading Models
 - 1. OLS
 - 2. R-OLS
 - 3. Kalman Filter with Bollinger Bands
- 4. Support Vector Machine with Markov Regime Switching

Asking the right questions!

Problem Statement

Problem Statement

<u>Implement machine learning in the entire process of the pairs trading framework</u>

- Pairs Selection
 - Does it outperform the rational/fundamental selection process?
- Trading Model
 - Does the more complex algorithms produce better results?

Research Methodology

Research Methodology (Futures Products)

Pairs Selection (Clustering)

Rationale

The simplest procedure commonly applied is to generate all possible candidate pairs by considering the combination from every security to every other security in the dataset.

Two different problems arise immediately:

- 1. First, the computational cost of testing mean-reversion for all the possible combinations increases drastically as more securities are considered.
- 2. The second emerging problem is frequent when performing multiple hypothesis tests at once and is referred to as the multiple comparisons problem. If 100 hypothesis tests are performed (with a confidence level of 5%) the results should contain a false positive rate of 5%.

Clustering Methodology

Pairs Selection Period

01/01/2009

31/12/2017

- Unsupervised learning clustering techniques can solve the task at hand:
 - K-Means
 - Hierarchal
 - Affinity Propagation

K-Means Clustering

Hierarchical Clustering

Affinity Propagation Clustering

Clustering Evaluation

Silhouette Score:

- o K-Means Clustering
 0.29743
- Hierarchical Clustering0.30728
- Affinity Propagation Clustering0.94311

Number of Clusters: 5

Number of Pairs: 662

Step 1 - the selection process starts with the testing of pairs, generated from the clustering step, for cointegration using the Engle-Granger test. This cointegration testing method was chosen based on its simplicity.

Number of Pairs: 52

Step 2 - a validation step is implemented to provide more confidence in the mean-reversion character of the pairs' spread. The condition imposed is that the Hurst exponent associated with the spread of a given pair is enforced to be smaller than 0.5, assuring the process leans towards mean-reversion. The Hurst exponent is a measure that quantifies the amount of memory in a specific time series, which in this case means, how mean-reverting is the process under analysis.

```
def get_hurst_exponent(time_series, max_lag=20):
    """Returns the Hurst Exponent of the time series"""

lags = range(2, max_lag)

# variances of the lagged differences
    tau = [np.std(np.subtract(time_series[lag:], time_series[:-lag])) for lag in lags]

# calculate the slope of the log plot -> the Hurst Exponent
    reg = np.polyfit(np.log(lags), np.log(tau), 1)

return reg[0]
```


Step 3 - the pair's spread movement is constrained using the half-life of the mean-reverting process. The half-life is the time that the spread will take to mean-revert half of its distance after having diverged from the mean of the spread, given a historical window of data. For medium-term price movements, the spreads that have very short (< 7 day) or very long mean-reversion (> 365 days) periods are not suitable.

```
def apply_half_life(time_series):
    lag = np.roll(time_series, 1)
    lag[0] = 0
    ret = time_series - lag
    ret[0] = 0

# adds intercept terms to X variable for regression
    lag2 = sm.add_constant(lag)

model = sm.OLS(ret, lag2)
    res = model.fit()

half_life = -np.log(2) / res.params[1]

return half_life
```


т	emplate Example				
	Leg1	Leg2	Hedge Ratio	Hurst Exponent	Half Life
0	EIAEBRT	OILBREN	0.99142	0.10075692	2.774739157
1	EIAEBRT	EIAUSGJ	0.02592675	0.25199634	19.14888229
2	EIAEBRT	BF01MEU	0.94940347	0.27979398	8.413260033

Number of Pairs: 27

Final Pairs

CRUDOIL-EIANYGR	EIAEBRT-OILBREN
CRUDOIL-EIAGCGR	EIAEBRT-EIAUSGJ
CRUDOIL-OILWTXI	EIAEBRT-BFO1MEU
GOLDBLN-GOLDHAR	EIAEBRT-GOEUARA
LCPCASH-JETCNWE	EIAEBRT-EIALALS
LCPCASH-LTICASH	EIAEBRT-EIANYHO
PALLADM-LZZCASH	EIAEBRT-EIANYLS
LNICASH-RHODNWE	EIAEBRT-EIAGCLS
LCPCASH-GOEUARA	EIAEBRT-DIESELA
WHEATSF-NAFCNWE	EIAEBRT-FUELOIL
WHEATSF-EIANYGR	CRUDOIL-OILWTIN
WHEATSF-EIAGCGR	CRUDOIL-NAFCNWE
WHEATSF-NATBGAS	CRUDOIL-CRUDWTC
	CRUDOIL-ETHANYH

Trading Models

Trading Model 1 Ordinary Least Squares (OLS)

Trading parameters:

- Training period from 2017-01-01 to 2017-12-31 (1 year)
- Test period from 2018 onwards till Apr 2022 (~4.33 years)
- Static Hedging (using the same hedge ratio throughout the testing period)
 - Long/Short the spread if the spread is smaller/greater than the average spread volatility derived in training period
 - If the spread is greater/smaller than 2.5x spread vol, we will liquidate our position (part of our risk management measure)

Trading Model 1 Ordinary Least Squares Result

Out of <u>27</u> pairs identified, <u>only 2</u> pairs gave positive PnL result.

Pair Name	Cum. Return	Sharpe ratio	Sortino ratio	Max drawdown
EIAEBRT- OILBREN	0.209887	0.46816	0.04090	-0.14966
EIAEBRT- BFO1MEU	0.378797	0.75566	0.06808	-0.12654

Name	Type	Sub-Tvne	Ticker
Europe Brent Spot FOB U\$/BBL Daily	Energy	Crude Oil	<u>EIAEBRT</u>
Crude Oil BFO M1 Europe FOB \$/BBI	Energy	Crude Oil	<u>OILBREN</u>
Crude Oil BFO M1 Europe FOB \$/Bbl	Energy	Crude Oil	BF01MEU

Fundamentally, both pairs are in the same industry (Energy- Crude Oil)

Trading Model 2 Rolling OLS (R-OLS)

Trading parameters:

- OLS regression run based on rolling 252 trading days
 - Dynamic hedge ratio
- Long/Short the spread if the spread is smaller/greater than the rolling spread volatility (based on past 252 days)
- If the spread is greater/smaller than 2.5x spread vol, we will liquidate our position (part of our risk management measure)

Compare OLS vs Rolling OLS (R-OLS)

OLS :Out of <u>27</u> pairs identified, <u>only 2</u> pairs produced positive PnL Rolling OLS: Out of <u>27</u> pairs identified, <u>20</u> pairs produced positive PnL

Pair Name	Cum. Return	Sharpe ratio	Sortino ratio	Max drawdown
EIAEBRT-OILBREN (OLS)	0.209	0.468	0.041	-0.149
EIAEBRT-OILBREN (R-OLS)	0.548	0.716	0.0560	-0.313
EIAEBRT-BFO1MEU OLS	0.378797	0.75566	0.06808	-0.12654
EIAEBRT-BFO1MEU (R-OLS)	0.537	0.674	0.0532	-0.333

Name	Tvne	Sub-Type	Ticker
Europe Brent Spot FOB U\$/BBL Daily	Energy	Crude Oil	<u>EIAEBRT</u>
Crude Oil BFO M1 Europe FOB \$/BBI	Energy	Crude Oil	<u>OILBREN</u>
Crude Oil BFO M1 Europe FOB \$/Bbl	Energy	Crude Oil	BF01MEU

Fundamentally, both pairs are in the same industry (Energy- Crude Oil)

EIAEBRT-OILBREN Cumulative Return

EIAEBRT-BFO1MEU Cumulative Return

Trading Model 3 Kalman Filter with Bollinger Bands

Why Kalman Filters are important?

It removes arbitrariness of other methods.

Trading Parameters:

- Trading Period of 1st January of 2018 to 29th April 2022
- Equal allocation of capital for each pairs
- Daily stop loss of 5%
- We will use Bollinger Band to make decision to enter or exit the trade.
 - Using the data of 125 days before the trade
 - Short the spread when it exceeds the mean +1.5 Standard Deviation

Trading Model 3 Kalman Filter with Bollinger Bands

Profitable Pairs
EIAEBRT-OILBREN
EIAEBRT-EIAUSGJ
EIAEBRT-BFO1MEU
EIAEBRT-EIALALS
EIAEBRT-EIANYHO
EIAEBRT-EIANYLS
EIAEBRT-EIAGCLS
EIAEBRT-DIESELA
EIAEBRT-FUELOIL
CRUDOIL-NAFCNWE
CRUDOIL-ETHANYH
CRUDOIL-EIANYGR
CRUDOIL-EIAGCGR
CRUDOIL-OILWTXI
LCPCASH-JETCNWE
LCPCASH-GOEUARA
WHEATSF-NAFCNWE
WHEATSF-EIANYGR
WHEATSF-EIAGCGR

 19 pairs provide a positive PnL using Kalman Filter.

Cum.Return	958.8%
Sharpe Ratio	0.445
Sortino Ratio	7.51
Max. Drawdown	2.78%

Trading Model 4 Support Vector Machine with Markov Regime Switching

Identify change in regime using Markov switching regime model

Final Pairs

EIAEBRT-OILBREN

EIAEBRT-BFO1MEU

EIAEBRT-GOEUARA

EIAEBRT-EIALALS

EIAEBRT-DIESELA

CRUDOIL-NAFCNWE

LCPCASH-JETCNWE

LCPCASH-LTICASH

PALLADM-LZZCASH

LNICASH-RHODNWE

LCPCASH-GOEUARA

WHEATSF-NAFCNWE

WHEATSF-EIANYGR

WHEATSF-EIAGCGR

WHEATSF-NATBGAS

Generate dynamic hedge ratio using Support Vector Regression, 2-step Engle-Granger method

Trading Model 4 Support Vector Machine with Markov Regime Switching

Trade Position	Trade Position (numerical)	PnL
BUY	1	(100*price_S2) - (100*hedge_ratio*price_S1)
SELL	-1	(100*hedge_ratio*price_S1)-(100*price_S2)
Hold	0	NA = O

Conclusion

Component	Complexity	Machine Learning Method	Success Factor	Proof of Concepts
Pairs Selection	Medium	Clustering	Reduced unique pairs from 2145 to 27	✓
Trading Model 1	Low	Ordinary Least Square	2 positive PnL with very low cumulative return	X
Trading Model 2	Low	Rolling Ordinary Least Square	20 positive PnL with very low cumulative return	Х
Trading Model 3	High	Kalman Filter with Bollinger Band	19 positive PnL with high cumulative return	✓
Trading Model 4	High	Support Vector Machine with Markov Regime Switching	11 positive PnL with high cumulative return	✓

Conclusion

- Pairs Selection
 - Does it outperform the rational/fundamental selection process?
 - ANS: Yes
- Trading Model
 - Does the more complex algorithms produce better results?
 - ANS: Yes

FAQ