PARALLEL PROCESSING

- Parallel computers are those that emphasize the parallel processing between the operations in some way.
- Various Varieties
 - Shared Memory
 - Distributed Memory
 - Hybrid Memory

Shared Memory

Distributed Memory

Flynn's Taxonomy

- This classification was first studied and proposed by Michael Flynn in 1972.
- Flynn did not consider the machine architecture for classification of parallel computers
- He introduced the concept of instruction and data streams for categorizing of computers.
- Instruction stream a flow of instructions from main memory to the CPU
- Data stream a flow of operands between processor and memory
- All the computers classified by Flynn are not parallel computers
- Let I_s and D_s are minimum number of streams flowing at any point in the execution

Instruction Cycle

- Start
- Calculate the address of the instruction to be executed
- Fetch the instruction
- Decode the instruction
- Calculate the operand address
- Fetch the operands
- Execute the instructions
- Store the results
- If more instructions to be executed, go to step 2 else stop.

Flynn's Classification

- SISD: Single Instruction Single Data
 - Classical Von-Neumann architecture
- SIMD: Single Instruction Multiple data
- MISD: Multiple Instructions Single Data
- MIMD: Multiple Instructions Multiple Data
 - Most common and general parallel machine

Single Instruction Single Data stream

- A serial computer
- SISD machines are conventional serial computers that process only one stream of instructions and one stream of data.
- $| | |_{S} = D_{S} = 1$
- Examples
 - CDC 6600 which is unpipelined but has multiple functional units.
 - CDC 7600 which has a pipelined arithmetic unit.
 - Amdhal 470/6 which has pipelined instruction processing.
 - Cray-1 which supports vector processing.

Single Instruction Multiple Data stream

- Multiple processing elements work under the control of a single control unit.
- It has one instruction and multiple data stream
- Main memory can also be divided into modules for generating multiple data streams acting as a distributed memory
- Examples of SIMD organisation are ILLIAC-IV, PEPE, BSP, STARAN, MPP, DAP and the Connection Machine (CM-1).
- A type of parallel computer
- Single instruction: All processing units execute the same instruction at any given clock cycle
- Multiple data: Each processing unit can operate on a different data element

SIMD

Multiple Instruction Single Data stream

- Multiple processing elements are organised under the control of multiple control units.
- Each control unit is handling one instruction stream and processed through its corresponding processing element.
- A single data stream is fed into multiple processing units.
- Each processing unit operates on the data independently via independent instruction streams.
- But each processing element is processing only a single data stream at a time
- All processing elements are interacting with the common shared memory.

MISD

Real time computers need to be fault tolerant where several processors execute the same data for producing the redundant data. This is also known as N- version programming. All these redundant data are compared as results which should be same; otherwise faulty unit is replaced. Thus MISD machines can be applied to fault tolerant real time computers.

Multiple Instruction Multiple Data stream

- Multiple instruction streams operate on multiple data streams
- The processors work on their own data with their own instructions.
- Tasks executed by different processors can start or finish at different times.
- This classification actually recognizes the parallel computer.
- Examples include; C.mmp, Burroughs D825, Cray-2, S1, Cray X-MP, HEP, Pluribus, IBM 370/168 MP, Univac 1100/80, Tandem/16, IBM 3081/3084, C.m*, BBN Butterfly, Meiko Computing Surface (CS-1), FPS T/40000, iPSC.
- MIMD organization is the most popular for a parallel computer.
- In the real sense, parallel computers execute the instructions in MIMD mode.
- $l_s > 1$, $D_s > 1$

MIMD

