K-Nearest Neighbor (KNN)

Recommendation Systems

Examples - Amazon

Examples - In e-commerce

returns

Examples - In Social Media

Examples - Mobile Apps

Definition - Problem domain

 Recommendation systems (RS) help to match users with items

Definition - Problem domain

 RS are one of the most successful and widespread applications of machine learning technologies in business.

Two types of systems

COLLABORATIVE FILTERING

Read by both users Similar users Read by her,

recommended to him!

CONTENT-BASED FILTERING

Two types of systems

- Content- Based Filtering: Recommeding to user A based on his/her existing profiles.
- Collaborative Filtering: Recommeding to user A based on his/her community's profiles.

Content- Based Filtering

Content- Based Filtering

- Assume there are four categories of news A)
 Politics B) Sports C) Entertainment D) Technology
- User A who has read 10 articles related to Technology
- Recommend a new article in Technology for him to read.

Collaborative Filtering

Collaborative Filtering

- Assume there are four categories of news A)
 Politics B) Sports C) Entertainment D) Technology
- User A who has read 10 articles related to Technology
- User B who has read the same 10 articles related to Technology and an X article in Sports.
- Recommend the article X to user A.

Collaborative Filtering: Two approaches

User-based filtering

Item-based filtering

Utility Matrix

Utility Matrix contains ratings of users on items

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	???
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	4	4
User 4	1	5	5	2	1

- A recommendation problem tunns into a prediction problem.
- Predict the rating of the new user on his/her new item.
- If the predicted rating of Alice on Item 5 are high (4 or 5), we will recommend Item 5 to her.

Nearest-neighbors (kNN)

- A "pure" CF approach and traditional baseline
- Using the utility as inputs
- Returns a ranked list of items based on rating predictions

Nearest-neighbors (kNN)

Assumptions

- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time

User-based KNN

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	???
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	4	4
User 4	1	5	5	2	1

- Find find k nearst neighbors of Alice.
- User the average rating of the nearest neighbors
 on Item 5 as a prediction of Alice on Item 5.

User-based KNN

Let A1 is the distance from Alice to User 1 and so on. We have:

$$A1 = 3.60$$

$$A2 = 1.41$$

$$A3 = 3.60$$

$$A4 = 5$$

- For 3NN, the predicted rating of Alice for item 5 is the average of ratings on item 5 of her 3 neast neighbors, User 1, 2 and 3.
- Predicted rating of Alicie on item 5 is: (3+5+4)/3 =

Item-based KNN

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	5	3	4	4	???
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	4	4
User 4	1	5	5	2	1

- Find the k nearest neighbors of Item 5.
- The predicted rating of Alice on item 5 is the average rating of Alice on the nearest neighbors.

Item-based KNN

Let d54 be the distance of item 5 to item 4 and so on. We have

$$d54 = 2.23$$

$$d53 = 5.19$$

$$d52 = 5$$

$$d51 = 1.41$$

- For 3NN, the two nearest neighbors of Item 5 are Item 1,4 and Item 2.
- Predicted rating of Alice on Item 5 is the average of her ratings on Item 1, 4 and 2, which is

Similarity Measure

- Neighborhood can be decided by similarity measures
- Similarity can be measured as the inverse of the Distance
- The possible similarity values are between 0 and 1, where values near to 1 indicate a strong similarity.
- There are many distance measure
- There are many similarity measure

Similarity Measure

Manhattan Distance

Manhattan Distance

@dataaspirant.com

Manhattan Distance

- Manhattan Distance between Alice and User 1 (A1).

	Item 1	Item 2	Item 3	Item 4
Alice	5	3	4	4
User 1	3	1	2	3

$$A1 = |5 - 3| + |3 - 1| + |4 - 2| + |4 - 3| = 7$$

Manhattan vs. Euclidean

Cosine Similarity

Cosine Similarity

 Cosine similarity is established as the standard in Recommendation System.

Cosine Similarity Measure

— Cosine similarity between Alice and User 1 (S1).

	Item 1	Item 2	Item 3	Item 4
Alice	5	3	4	4
User 1	3	1	2	3

$$= \frac{5 \cdot 3 + 3 \cdot 1 + 4 \cdot 2 + 4 \cdot 3}{\sqrt{5^2 + 3^2 + 4^2 + 4^2} \cdot \sqrt{3^2 + 1^2 + 2^2 + 3^2}}$$

$$= 0.975$$

The Netflix Challenge

Link