STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2019

Dr. Shivon Sue-Chee

March 25-29, 2019

Three-way Contingency Tables

Week 11- Summary of Case Study VI

	Diff. in prop	LRT	Log-linear
Assume	Row totals fixed	Overall total fixed	Totals are random
Dist. of Y	Binomial	Multinomial	Poisson
H_0	$\pi_1=\pi_2$	$\pi_{ij} = \pi_{i\cdot}\pi_{\cdot j}$	Additive model
Test Stat.	Z	$\chi^{2}_{(I-1)(J-1)}$	$\chi^2_{(I-1)(J-1)}$

ナラフン

A Three-way Contingency Table

Case Study VII Data:

▶ 1992 survey of high-school seniors in Ohio

► Table of counts of seniors who used alcohol, cigarettes and marijuana.

		Mari,	juana use
Alcohol use	e Cigarette use	Yes	No
Yes	Yes (911	538
	No	44	456
No	Yes	3	43
	No	2	279

Q: Are alcohol (A), cigarettes (C) and marijuana (M) use associated?

Forms of independence in $I \times J \times K$ Tables

Independence	π_{ijk}	Short form	
Mutually indep.	$\pi_{ijk} = \pi_{i}\pi_{.j}.\pi_{k}$	(X,Y,Z)	Complete
Jointly indep.	$\pi_{ijk} = \pi_{ij}.\pi_{\cdot\cdot k}$	(XY,Z)	Block
Conditionally indep.	$\pi_{ijk} = \pi_{i\cdot k}\pi_{\cdot jk}/\pi_{\cdot \cdot k}$	(XZ,YZ)	Partial
Uniform assoc.	$\pi_{ijk} = \pi_{ij}.\pi_{i\cdot k}\pi_{\cdot jk}$	(XZ,YZ, XY)	Homo
Saturated	π_{ijk}	XYZ	

Three-way Tables

- ► Learning Objectives
 - Write out the models used and the assumptions for inference
 - Carry out the inference procedures completely
 - ► Interpret the respective R outputs

Model 1: Complete Independence

- ► P(ACM) = P(A)P(C)P(M); Alcohol, cigarette and marijuana use are mutually independent
- Hypotheses:

$$H_0: \pi_{ijk} = \pi_{i..}\pi_{.j.}\pi_{..k}$$
 for all i, j, k
 $H_a: \pi_{ijk} \neq \pi_{i..}\pi_{.j.}\pi_{..k}$

- ► Short form: (A,C,M) -all 3 main effects only
- ▶ I = J = K = 2

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M$$

todds fre

where
$$I : \{1 = Yes, 0 = No\}$$

Model 1: Complete Independence

In general, we have the constraint $n = \sum_i \sum_j \sum_k y_{ijk}$ or $\sum_i \sum_j \sum_k \hat{\pi}_{ijk} = 1$. Then by ML estimation,

$$\sum_{i} \sum_{j} \sum_{k} \hat{\mu}_{ijk} = n = \sum_{i} \sum_{j} \sum_{k} y_{ijk}$$

$$\implies \hat{\pi}_{ijk} = \frac{y_{ijk}}{n} \text{ or } \hat{\mu}_{ijk} = y_{ijk}$$

For complete independence model, using an additional (I-1)+(J-1)+(K-1) constraints

$$\hat{\mu}_{ijk} = n\hat{\pi}_{ijk} = n\hat{\pi}_{i..}\hat{\pi}_{.j.}\hat{\pi}_{..k}$$

$$= n\frac{y_{i..}}{n}\frac{y_{.j.}}{n}\frac{y_{.j.}}{n}$$

Model Class 2: Block Independence

- ▶ P(AC|M) = P(AC); Joint probability of alcohol and cigarette use is independent of marijuana use; Alcohol and cigarette use are associated
- Hypotheses:

$$H_0: \pi_{ijk} = \pi_{ij}.\pi_{\cdot \cdot k}$$

$$H_{\mathsf{a}}:\pi_{ijk}
eq \pi_{ij}.\pi_{\cdot\cdot k}$$

▶ Short form: (AC,M) - all 3 main effects and 1 interaction

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AC}$$

where $\mathbf{I}_{AC} = \mathbf{I}_A * \mathbf{I}_C$

Others in this class: (AM, C), (CM, A)

Model 2: Block Independence

▶ By ML estimation, for block independence model

$$\hat{\mu}_{ijk} = n\hat{\pi}_{ijk} = n\hat{\pi}_{ij}.\hat{\pi}_{..k}$$

$$= n\frac{y_{ij}.y_{..k}}{n}$$

Model Class 3: Partial Independence

- ▶ P(AC|M) = P(A|M)P(C|M); Alcohol and cigarette use are conditionally independent given marijuana use; Alcohol and marijuana use are associated, and cigarette and marijuana use are associated
- ► Hypotheses:

$$H_0: \pi_{ijk} = \pi_{i\cdot k}\pi_{\cdot jk}/\pi_{\cdot \cdot k}$$

$$H_a: \pi_{ijk} \neq \pi_{i\cdot k}\pi_{\cdot jk}/\pi_{\cdot \cdot k}$$

▶ Short form: (AM,CM) - all 3 main effects and 2 interactions

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{CM}$$

Others in this class: (AC, CM), (AC, AM)

Model 3: Partial Independence

▶ We have P(AC|M) = P(A|M)P(C|M).

$$\Rightarrow \frac{\pi_{ijk}}{\pi_{\cdot\cdot k}} = \frac{\pi_{\cdot jk}}{\pi_{\cdot\cdot k}} \frac{\pi_{i\cdot k}}{\pi_{\cdot\cdot k}}$$
or
$$\pi_{ijk} = \frac{\pi_{\cdot jk}\pi_{i\cdot k}}{\pi_{\cdot\cdot k}}$$

► Then by ML estimation

$$\widehat{\mu}_{ijk} = n\widehat{\pi}_{ijk} = n\frac{\widehat{\pi}_{\cdot jk}\widehat{\pi}_{i\cdot k}}{\pi_{\cdot \cdot k}}$$

$$= n\frac{(y_{\cdot jk}/n)(y_{i\cdot k}/n)}{(y_{\cdot \cdot k}/n)}$$

$$= \frac{y_{\cdot jk}y_{i\cdot k}}{y_{\cdot \cdot k}}$$

Model 4: Uniform association

- ► There is an association among all pairs
- For all levels of the 3rd variable, the association between the pair is the same
- ► Short form: (AM,AC,CM) all 3 main effects and 3 two-way interactions but no three-way interaction

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{AC} + \beta_6 \mathbf{I}_{CM}$$

- Solutions for π_{ijk} (μ_{ijk}) are found numerically with no simple expression in terms of y_{ijk} 's
- ▶ No simple interpretation ito. independence structure

Saturated Model

► Total number of parameters:

$$1 + \underbrace{3}_{1\text{-way}} + \underbrace{3}_{2\text{-way}} + \underbrace{1}_{3\text{-way}} = 8$$

► Total number of observed counts:

$$1 + (I - 1) + (J - 1) + (K - 1)$$

$$+ (I - 1)(J - 1) + (I - 1)(K - 1) + (J - 1)(K - 1)$$

$$+ (I - 1)(J - 1)(K - 1) = IJK = 2 * 2 * 2 = 8$$

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{AC} + \beta_6 \mathbf{I}_{CM} + \beta_7 \mathbf{I}_{ACM}$$

Saturated model always fits the data perfectly

On the Saturated Model

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{AC} + \beta_6 \mathbf{I}_{CM} + \beta_7 \mathbf{I}_{ACM}$$

- ► Total # of parameters=Total # of observed counts
- ► Has a separate parameter for each observation
- ► Always gives a perfect fit
- Explains all the variation by its systematic component
- Sounds good but not a helpful model
- Does not smooth the data or is not parsimonious
- Serves as a baseline for checking model fit

Results fro	om R output		6-0-	F Test	Hs: Fitted Ha: Saturated
					Ma. Joe Wiles
	Model	df	G^2 =Deviance	<i>p</i> -value	AIC BIC
Complete	$\overline{(A,C,M)}$	4	1286.02	< 0.0001	1343.06
	(AC,M)	3	843.83	< 0.0001	
Block	(AM, C)	3	939.56	< 0.0001	
	(A,CM)	3	534.21	< 0.0001	
~ A	(AC,AM)	2	497.37	< 0.0001	558-41
Parkal C	(AC,CM)	2	92.02	< 0.0001	
М	(AM,CM)	2	187.75	< 0.0001	(3.12
Uniform	(AC,AM,CM)	1	0.37	0.5408	-Adequate
Saturated	(ACM)	0	0.00	-	P(5x2 >0-32) 20.8408
200000000000000000000000000000000000000					

The simplest model that fits the data adequately is the "Uniform Association" model (AC,AM,CM).

0 0-83

Three-way Contingency Tables

Exercise: Fitted values and Interpretations

Refer to RM.

Q: Complete the fitted equation and prove the fitted values above

Fitted equation:

 $\log(\hat{\mu}_{ijk}) = 6.81 - 5.53 I_{A_2} - 3.02 1_{C_2} - 0.52 1_{M_2} + 2.98 1_{A_2} + 1_{M_2} + 2.05$ Some fitted values $\hat{\mu}_{ijk}$

Some fitted values, $\hat{\mu}_{ijk}$:

Log-linear models

(ACM)

911

538

44

	A use	C use	M use	(AC, AM, CM,)
1- Jes	→ Yes	Yes	Yes	910.4
2-No	Yes	Yes	No	538.6
7-100	Yes	No	Yes	44.6
	Yes	No	No	

es	No	No	
1	Alcohol	was HOT used was used	
-') ()	ι(was used	

Three-way Contingency Tables

 $M_{111} = e^{6.81} \left(\frac{1}{4z^{-1}} \right)^{-1}$ $C_{2} = e^{6.81 - 0.52}$ $M_{111} = e^{6.81 - 0.52}$ $M_{112} = e^{6.81} \left(\frac{1}{4z^{-1}} \right)^{-1}$ $M_{112} = e^{6.81} \left(\frac{1}{4z^{-1}} \right)^{-1}$

Fitted values and Interpretations

- ▶ Use estimates of β 's to calculate odds.
 - ▶ Eg, the odds of marijuana use for alcohol and cigarette use at (i,j) are:

$$\frac{\hat{\pi}_{ij1}}{\hat{\pi}_{ij2}} = \frac{\hat{\mu}_{ij1}}{\hat{\mu}_{ij2}}$$

Example 1: For students who use alcohol and cigarettes, the estimated odds of using marijuana are:

$$(A = 1 = C = M) \longrightarrow \mathcal{M}_{|||} = 910.38$$

$$(A = 1 = C, M = 2) \longrightarrow \mathcal{M}_{|||} = 538-61$$

$$\mathcal{M}_{|||} = 910.38$$

$$\mathcal{M}_{|||} = 910.38$$

$$\mathcal{M}_{|||} = 910.38$$

Example 2: For students who use neither alcohol nor cigarettes, the estimated odds of using marijuana are:

$$(A = 2 = C, M = 1) \rightarrow M_{221} = 1.38$$

 $(A = 2 = C = M) \rightarrow M_{221} = 2.39.62$
 $M_{222} = 1.38 = 0.0054$

Inference for Log-linear models

- Q: What procedures do we use to:
 - ► Estimate parameters in log-linear models?
 - ► A: Maximum likelihood estimation
 - ► Carry out inference (significance tests and C.I.s)?
 - ► A: Wald tests and C.I.s, and LRT

What are the conditions for inference to be valid?

- 1. Independent quantities being counted
- 2. Large enough sample sizes for MLE asymptotic tests to hold.
 - ▶ RULE-OF-THUMB: (Most) $\widehat{\mu}_{ijk} \geq 5$ for all i, j, k.
- 3. Cross-classified counts follow a Poisson distribution, i.e.,

 $Var(y_{ijk}) = \mu_{ijk}$.

- If not, then the deviance is very large ("extra-Poisson" variation).
- ▶ Deviance/df should be about 1.
- (4.) Correct form of the model / Model fits the data.
 - ▶ log(E(Y)) is linear in the β 's
 - All relevant variables included.
 - No outliers
 - Agreement of predicted and observed counts
 - Check deviance goodness-of-fit test

What is the frame of a Likelihood Ratio Test?

▶ Idea: Compare likelihood of data under FULL (F) model, \mathcal{L}_F to likelihood under REDUCED (R) model, \mathcal{L}_R of same data.

Likelihood ratio :
$$\frac{\mathcal{L}_R}{\mathcal{L}_F}$$
, where $\mathcal{L}_R \leq \mathcal{L}_F$

▶ Hypotheses: $H_0: \beta_1 = \cdots = \beta_k = 0$

(Reduced model is appropriate; fits data as well as Full model)

 H_a : at least one $\beta_1, \dots, \beta_k \neq 0$

(Full model is better)

- ▶ Test Statistic: $G^2 = -2 \log \mathcal{L}_R (-2 \log \mathcal{L}_F) = -2 \log \left(\frac{\mathcal{L}_R}{\mathcal{L}_F}\right)$
- For large n, under H_0 , G^2 is an observation from a Chi-square distribution with k df.

LRT (Futled vs Null

Denance G-OF

(Tutted us Saturated)

Comparing models

- LRTs for models with and without set of indicator variables for effect of interest
- ► Particularly useful if > 2 levels in categorical explanatory variables
- Example: Suppose we have a $2 \times 2 \times 3$ table and we fit the Uniform association model (XY, XZ, YZ)

$$\log \mu_{ijk} = \beta_0 + \beta_1 \mathbf{I}_{X=1} + \beta_2 \mathbf{I}_{Y=1} + \beta_3 \mathbf{I}_{Z=1} + \beta_4 \mathbf{I}_{Z=2}$$

$$+ \beta_5 \mathbf{I}_{X=1} * \mathbf{I}_{Y=1} + \beta_6 \mathbf{I}_{X=1} * \mathbf{I}_{Z=1} + \beta_7 \mathbf{I}_{X=1} * \mathbf{I}_{Z=2}$$

$$+ \beta_8 \mathbf{I}_{Y=1} * \mathbf{I}_{Z=1} + \beta_9 \mathbf{I}_{Y=1} * \mathbf{I}_{Z=2}$$

Is the YZ interaction needed?

$$H_0: \beta_8 = \beta_9 = 0$$
 vs H_a : at least 1 of β_8, β_9 is not 0

I=U=2, L=3

Comparing models

2-way Int: Effect of Factor In ordanne varies unth

Exercise: For the Uniform association model (AC,AM,CM), is the CM interaction needed in the Uniform association model?/ Does the (AC, AM) model fit just as well?

► A: Hs: f2=0 (Reduced, (AC,AM)) Ha: f2 +0 (Full, (AC,AM,CM)) (k=1) on the outeme varies with Factor 3.

 $\frac{\text{Wald}}{Z^2 = (17.382)^2 = 302.13}$ $Z^2 \sim \chi_1^2$ $P-\text{value} = P(\chi_1^2 > 362.13) \gtrsim 0$

Tada

Tenance = 497.3-0.374 2 497 ~ X,

302 p-value = P(X, >497) 20

Three-way Contingency Tables

tridence that there is an association between C we d M use, along with AC and AM.

What is the Deviance G-O-F test?

▶ Uses LRT: Compares

- Model of Interest (REDUCED, R) model to
 - Saturated Model (FULL, F) model.
 - ► Sometimes called "Drop-in-Deviance" test.
 - ► Hypotheses:

 H_0 : (Fitted model fits data as well as Saturated model)

 H_a : (Saturated model is better)

► Test Statistic:

$$Deviance = -2\log\left(rac{\mathcal{L}_R}{\mathcal{L}_F}
ight) = -2\log\left(rac{\mathcal{L}_M}{\mathcal{L}_S}
ight)$$

 \triangleright Under H_0 , Deviance is an observation from a chi-square distribution with df = #parameters(S) - #parameters(M).

Deviance G-O-F statistic for 3-way tables

▶ The joint distribution of cell counts is

► Log-likelihood function:

$$\log \mathcal{L} = \sum_{k} \sum_{j} \sum_{i} (y_{ijk} \log \mu_{ijk} - \mu_{ijk} - \log y_{ijk}!)$$

► Likelihood ratio statistic: (Practice Question)

$$Deviance = 2\sum_{k} \sum_{j} \sum_{i} y_{ijk} \log \left(\frac{y_{ijk}}{\hat{\mu}_{ijk}} \right)$$

► Hints: Under the saturated model, $\hat{\mu}_{ijk} = y_{ijk}$; $\sum_k \sum_j \sum_i y_{ijk} = \underline{n}$

Jijk~P(Mijk)

Three-way Contingency Tables

How to interpret Deviance?

- Is the form of the fitted model adequate or do I need something more complicated?
- Compares fitted model to saturated model
 - ► Small deviance / Large *p*-values implies:
 - Fitted model is adequate, OR
 - Test is not powerful enough to detect inadequacies
 - ► Large deviance / Small *p*-values implies:
 - Fitted model is not adequate; consider a more complex model OR
 - Underlying distribution is not adequately modelled by the Poisson distribution / Poisson model not correct / $Var(y_{ijk}) > \mu_{ijk}$ OR
 - There are severe outliers in the data

Are there outliers?

Check residuals

1. Raw residual:

2. Pearson residual: sum of squares gives Pearson chi-square test statistic

3. Deviance residual: sum of the squares is the Deviance

residual:
$$y_{ijk} - \hat{\mu}_{ijk}$$
 on residual: sum of squares gives Pearson chi-square test tic
$$\frac{y_{ijk} - \hat{\mu}_{ijk}}{\sqrt{\hat{\mu}_{ijk}}} \sim \mathcal{N}\left(\mathbf{o}_{1}\right)$$
 when the squares is the Deviance
$$\sum_{i=1}^{N} \mathbf{v}_{ijk} + \hat{\mu}_{ijk}$$
 sign $(y_{ijk} - \hat{\mu}_{ijk})\sqrt{2\left\{y_{ijk}\log\left(\frac{y_{ijk}}{\hat{\mu}_{ijk}}\right) - y_{ijk} + \hat{\mu}_{ijk}\right\}}$

Pearson and Deviance residuals

- ► Easier to interpret: Pears
- More reliable: Denance
- ► Usually similar? Yes
- ▶ Differences are more prominent when used to compare models
- If Poisson means are large, the sampling distributions are ... Appear Normal
- ► Rule-of-thumb: Outlier if Pearson or Deviance residual > 3 (if sample size is small, consider those > 2)

Presence of "Extra-Poisson Variation"

- Check if $\frac{Deviance}{df} > 1$
- ▶ Q: How much > 1 is important?
- ► A: If Deviance GOF test is statistically significant.
- ▶ If other problems are ruled out, then include a dispersion parameter in the model, i.e.,

$$Var(Y_{ijk}) = \psi \mu_{ijk}$$

OR use Negative Binomial regression

$$Var(Y_{ijk}) = \mu_{ijk}(1 + \psi \mu_{ijk})$$

(Agresti, Chp. 14)

J= Pearson df guasi-Prisson

ummary of mode	13 y= 7 ()	71	-em U= -1+em
	OLS	Logistic	Log-linear
Link	Identity	Logit	Log
Regression	Linear	(Non-linear	Non-linear)
$\mu\{Y \mathbf{X}\}$ is	linear in β 's	not linear in β 's	not linear in \dot{eta} 's
Models	Mean of Y	Log odds	Log of means
Natural response	Yes	Yes	No
Response is	Normal	Binomial	Poisson
Indep. Obs.	Yes	Yes	Yes
$Var(Y_i \mathbf{X}) =$	σ^2	$\pi_i(1-\pi_i)$	μ_i
	(vanance is constan	Variance	changes)

Week's Summary

- Three-way contingency tables:
 - Log-linear model approach
 - Types of independence or association/ interactions
 - (i) Complete
 - (ii) Block
 - (iii) Partial
 - (iv) Uniform association
 - (v) 3-way interaction
 - Deviance goodness-of-fit test
 - Using fitted equation to find odds
 - Model diagnostics
- ► Things to do:
 - ► Assignment #3 → Mav- 2 ♥

 - ▶ Participation 8 → Agv. 3
 ▶ Practice Problems on Poisson Regression (Log-linear models)