Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

deeplearning.ai

Unpaired Image-to-Image Translation

Outline

- Paired vs. unpaired image-to-image translation
- Unpaired image-to-image translation
 - Mapping between two piles of image styles
 - Finding commonalities and differences

Edges to photo

Paired images

Edges to photo

Paired images

Monet to photo

Unpaired images

Unpaired Image-to-Image Translation

Mapping Between Two Piles

(Center) Images available from: https://arxiv.org/abs/1703.10593 (Side) Images available from: https://github.com/togheppi/CycleGAN

Mapping Between Two Piles

(Center) Images available from: https://arxiv.org/abs/1703.10593 (Sides) Images available from: https://github.com/togheppi/CycleGAN

Mapping Between Two Piles

(Center) Images available from: https://arxiv.org/abs/1703.10593 (Sides) Images available from: https://github.com/togheppi/CycleGAN

Summary

- Unpaired image-to-image translation:
 - Learns a mapping between two piles of images
 - Examines common elements of the two piles (content) and unique elements of each pile (style)
- Unlike paired image-to-image translation, this method is unsupervised

deeplearning.ai

CycleGAN Overview

Outline

- Overview of CycleGAN
 - The "Cycle" in CycleGAN
 - o Two GANs!

Real

Fake

Real Fake Fake

Two GANs

Two GANs

Two GANs

CycleGAN

Generator ≈ U-Net

CycleGAN

Generator ≈ U-Net + DCGAN generator

CycleGAN

Additional skip connections

Generator ≈ U-Net + DCGAN generator

Summary

- CycleGAN uses two GANs for unpaired image-to-image translation
- The discriminators are PatchGAN's
- The generators are similar to a U-Net and DCGAN generator with additional skip connections

deeplearning.ai

CycleGAN: Two GANs

Outline

- Two GANs, four components
 - Two generators
 - Two discriminators

Generator $Z \rightarrow H$ Discriminator H $GANZ \rightarrow H$ $\mathsf{GAN}\,\mathsf{H}\to\mathsf{Z}$ Generator $H \rightarrow Z$

Images available from: https://github.com/togheppi/CycleGAN

Discriminator Z

Summary

- CycleGAN has four components:
 - Two generators
 - Two discriminators
- The inputs to the generators and discriminators are similar to Pix2Pix, except:
 - There are no real target outputs
 - Each discriminator is in charge of one pile of images

deeplearning.ai

CycleGAN: Cycle Cycle Consistency

Outline

- Encouraging cycle consistency
 - Cycle Consistency Loss term
- Loss with cycle consistency for each of two GANs
- How cycle consistency helps

Cycle Consistency Loss is the sum of both directions

Adversarial Loss +

Adversarial Loss + Cycle Consistency Loss

Adversarial Loss + λ * Cycle Consistency Loss

Without Adversarial GAN Loss, outputs are not realistic

Ground truth Input

Without Cycle Consistency Loss, outputs show signs of mode collapse

Input

Ground truth GANs + 1-way cycle

Without **full** Cycle Consistency Loss, outputs see mode collapse too

Ground truth Input

CycleGAN uses both
Adversarial Loss and
Cycle Consistency Loss

Summary

- Cycle consistency helps transfer uncommon style elements between the two GANs, while maintaining common content
- Add an extra loss term to each generator to softly encourage cycle consistency
- Cycle consistency is used in both directions

deeplearning.ai

CycleGAN: Least Squares Loss

Outline

- Least squares in statistics
- Least Squares Loss in GANs
 - Discriminator
 - Generator

Least Squares Loss: Another GAN Loss Function

- Came out when training stability was a big problem in GANS
 - Similar time to WGAN-GP

Least Squares Loss: Another GAN Loss Function

- Came out when training stability was a big problem in GANS
 - Similar time to WGAN-GP
- Helps with vanishing gradients and mode collapse

Least Squares Loss: Another GAN Loss Function

- Came out when training stability was a big problem in GANS
 - Similar time to WGAN-GP
- Helps with vanishing gradients and mode collapse

GAN loss functions are chosen empirically

Minimize sum of squares

Least Squares Loss: Discriminator

$$(D(\boldsymbol{x})-1)^2$$

Discriminator classification of real image **x**

Least Squares Loss: Discriminator

$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]$$

Least Squares Loss: Discriminator

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+ (D(G(oldsymbol{z}))-0)^2$$

Discriminator classification of fake image G(z)

Least Squares Loss: Discriminator

$$\mathbb{E}_{oldsymbol{x}}igl[(D(oldsymbol{x})-1)^2igr]+\mathbb{E}_{oldsymbol{z}}igl[(D(G(oldsymbol{z}))-oldsymbol{0})^2igr]$$

Least Squares Loss: Discriminator

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z})))^2ig]$$

Least Squares Loss: Generator

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Discriminator Loss
$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]+\mathbb{E}_{m{z}}ig[(D(G(m{z})))^2ig]$$

Discriminator Loss
$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]+\mathbb{E}_{m{z}}ig[(D(G(m{z})))^2ig]$$

Generator

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Discriminator Loss

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z})))^2ig]$$

Generator Loss

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Reduces vanishing gradient problem

Discriminator Loss
$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]+\mathbb{E}_{m{z}}ig[(D(G(m{z})))^2ig]$$

Generator

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Also known as Mean Squared Error!

Context of Least Squares Loss

Adversarial Loss + λ * Cycle Consistency Loss

Least Squares Loss

Summary

- Least squares fits a line from several points
- Least Squares Loss is used as the Adversarial Loss function in CycleGAN
- More stable than BCELoss, since the gradient is only flat when prediction is exactly correct

CycleGAN: Identity Loss

Outline

- Identity Loss
 - How it works
 - Impact on outputs

Adversarial Loss + λ * Cycle Consistency Loss

Adversarial Loss + λ * Cycle Consistency Loss

Adversarial Loss + λ * Cycle Consistency Loss

+ Identity Loss

Adversarial Loss + λ_1^* Cycle Consistency Loss

+ λ_2^* Identity Loss

Identity Loss Example: Photo → Monet

Input No Identity Loss With Identity Loss

Identity Loss helps preserve original photo color

Available from: https://arxiv.org/abs/1703.10593

Summary

- Identity Loss takes a real image in domain B and inputs it into Generator:
 A → B, expecting an identity mapping
 - An identity mapping means the output is the same as the input
- Pixel distance is used
 - Ideally, no difference between input and output!
- Identity Loss is optionally added to help with color preservation

deeplearning.ai

CycleGAN: Putting It All Together

Outline

- Putting CycleGAN together!
 - Two GANs
 - Cycle Consistency Loss
 - Least Squares Adversarial Loss
 - Identity Loss (optional)

CycleGAN Loss

Summary

- CycleGAN is composed of two GANs
- Generators have 6 loss terms in total, 3 each:
 - Least Squares Adversarial Loss
 - Cycle Consistency Loss
 - Identity Loss
- Discriminator is simpler, with BCELoss using PatchGAN

deeplearning.ai

CycleGAN Applications & Variants

Outline

- Overview of some CycleGAN applications
- Some variants of unpaired image-to-image translation

Applications

Applications

Flair Real T1 Transformed T1 Real

(a) A translation removing tumors

(b) A translation adding tumors

Available from: https://arxiv.org/abs/1805.08841

Applications

Available from: https://www.nature.com/articles/s41598-019-52737-x.pdf

Variant: UNIT

Available from: https://github.com/mingyuliutw/UNIT

Variant: Multimodal UNIT (MUNIT)

Available from: https://github.com/NVlabs/MUNIT

Variant: Multimodal UNIT (MUNIT)

Available from: https://github.com/NVlabs/MUNIT

Summary

- Various applications of CycleGAN including:
 - Democratized art and style transfer
 - Medical data augmentation
 - Creating paired data
- UNIT and MUNIT are other models for unpaired (unsupervised) image-to-image translation

