(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-195006 (P2001-195006A)

(43)公開日 平成13年7月19日(2001.7.19)

(51) Int.Cl. ⁷		識別記号	ΡI			テーマコード(参考)
G09F	9/00	350	G09F	9/00	3502	Z 2H088
G02F	1/13	505	G 0 2 F	1/13	505	2H089
	1/1333			1/1333		5 G 4 3 5
G 0 3 B	21/00		G 0 3 B	21/00 D		
			審査請	求 未請求	請求項の数18	OL (全 13 頁)
(21)出願番号	}	特顧2000-10055(P2000-1005	5) (71) 出顧	•	108 社日立製作所	
(22)出願日		平成12年1月13日(2000.1.13)	(71) 出顧	東京都千代田区神田駿河台四丁目 6番地		
			(72)発明	神奈川	県横浜市戸塚区古 日立製作所デジタ	7田町292番地 株 アルメディアシステ

(74)代理人 100068504

弁理士 小川 勝男

最終頁に続く

(外1名)

(54) 【発明の名称】 パネル、パネル組み込み構体、光学ユニット、表示装置及び固定方法

(57)【要約】

【課題】 液晶プロジェクタにおいて、ライトバルブ手段の修理可能な固定構造と固定後の位置移動を防止する。

【解決手段】 ライトバルブパネル2の支持板の一部に、金属ろう付け部分207を設け、プリズム部を保持するホルダーに半田付けして固定する構造とした。このようにすることにより、固定後のライトバルブパネル2のベース201に対する移動を防止でき、投影する画像の位置ずれを防止できる。また、半田付けを外すことにより、ライトバルブパネル2の取り外しを可能とし、メンテナンス性を向上させた。さらに、ライトバルブパネルを構成する材料とそれを支持しているベース部分の線膨張係数比を1~3の間とし、温度サイクルによって、投影される画像の位置ずれを防止する。

【特許請求の範囲】

【請求項1】ライトバルブ手段のライトバルブ素子を支 持する支持体に金属ろう付部を設けることを特徴とする

1

【請求項2】ライトバルブ手段の支持体に金属ろう付部 を一体に設けることを特徴とするパネル。

【請求項3】請求項1又は2記載のパネルにおいて、前 記金属ろう付部は、半田付け手段により固定されること を特徴とするパネル。

【請求項4】請求項1、2または3記載のパネルにおい 10 用いることを特徴とする表示装置。 て、前記ライトバルブ手段に設けられた液晶表示部材と 前記支持体の線膨張係数の内、最小の線膨張率を1とし た場合、他の線膨張率を1~3の範囲内とすることを特 徴とするパネル。

【請求項5】液晶表示部材と取り付け支持部材の線膨張 係数の内、最小の線膨張率を1とした場合、他の線膨張 率を1~3の範囲内とすることを特徴とするパネル。

【請求項6】支持構造部分に金属ろう付け溶接部分を一 体で設けたライトバルブ手段を、金属ろう付け手段によ り対象物に固定したことを特徴とするパネル組み込み構

【請求項7】ライトバルブ素子を支持する支持体に金属 ろう付部を設け、光学部材を保持する保持体に金属ろう 付部を設け、これら前記金属ろう付部を金属ろう付手段 により溶接することを特徴とするパネル組み込み構体。

【請求項8】請求項6又は7記載のパネル組み込み構体 において、前記金属ろう付手段はハンダにより溶接され ることを特徴とするパネル組み込み構体。

【請求項9】光源からの光を光学系を通してライトバル ブ手段に投射する光学ユニットにおいて、前記ライトバ 30 ルブ手段の支持体に金属ろう付部を一体に設け、前記金 属ろう付部を光学部材を保持する保持体に金属ろう付溶 接することを特徴とする光学ユニット。

【請求項10】照明手段と、前記照明手段の光束を複数 色に分離する分離手段と、分離された光束が入射される ライトバルブ手段と、ライトバルブ手段からの出射され た前記複数色の光を合成する合成手段と、投射手段とを 有し、前記ライトバルブ手段で変調した光を前記投射手 段により投射して映像として表示する光学ユニットであ って、前記ライトバルブ手段の支持体に金属ろう付部を 一体に設けることを特徴とする光学ユニット。

【請求項11】支持構造部分に金属ろう付け溶接部分を 一体に設けたライトバルブ手段を、金属ろう付け溶接手 段により対象物に固定することを特徴とする表示装置。

【請求項12】光源からの光を光学系を通してライトバ ルブ手段に投射し、ライトバルブ手段からの光を投射系 ユニットに入射する表示装置において、前記ライトバル プ手段の支持体に第1の金属ろう付部を設け、前記投射 系ユニットの光学部材を保持する保持体に第2の金属ろ う付部を設け、前記第1と前記題の金属ろう付部を金属 50

ろう付手段により溶接することを特徴とする表示装置。 【請求項13】請求項11又は12記載の表示装置にお いて、金属ろう付け溶接手段は、半田付け手段であるこ とを特徴とする表示装置。

【請求項14】請求項1、2、3、4又は5記載のパネ ルを用いたことを特徴とする表示装置。

【請求項15】請求項6、7又は8記載のパネル組み込 み構体を用いることを特徴とする表示装置。

【請求項16】請求項9又は10記載の光学ユニットを

【請求項17】支持構造部分に金属ろう付部を一体で設 けたライトバルブ手段を、金属ろう付け手段により対象 物に固定することを特徴とするライトバルブパネルの固

【請求項18】請求項17記載の固定方法において、金 属ろう付け溶接手段は、半田付け手段であることを特徴 とするライトバルブパネルの固定方法。

【発明の詳細な説明】

【発明の属する技術分野】本発明はパネル、パネル組み 込み構体、光学ユニット、及び表示装置に係わり、特 に、液晶パネルなどのライトバルブ素子及びこれらの素 子を使用して、スクリーン上に映像を投影する、たとえ ば、液晶プロジェクタ装置や、液晶テレビジョン、投写 型ディスプレイ装置等の映像表示装置に応用して好適な 技術に関するものである。

[0002]

【従来の技術】従来より、電球などの光源からの光を、 液晶パネルなどのライトバルブ素子で画素毎の濃淡に変 えて調節し、スクリーンなどに画像を拡大投射する液晶 プロジェクタ等の投写型の表示装置が知られている。

【0003】また、投写型の表示装置のうちのある種の . 装置では、複数のライトバルブ素子を用いて異なる色調 の画像を合わせてカラーの表示を行うものが知られてい る。これら複数のライトバルブ素子を用いてカラーの表 示を行う表示装置においては一般的には次のようにして カラーの表示を行う。

【0004】まず、光源からの光を複数の波長帯域に分 光して分離する。そして、それぞれの色帯域を対応する ライトバルブ素子に入力して変調を行い、最終的に変調 後の各色成分を合成してカラーの映像として表示する。 複数の色調の画像を合成して映像として投射するために は、各色成分毎の画像の位置を正確に合わせないと、合 成してできた映像に色ずれが発生してしまう。このた め、各色成分を担当するライトバルブ素子の取り付け位 置の調整及び固定方法として、種々の方法が提案されて いる。

【0005】従来この種の調整方法としては、たとえ ば、特開平10-10994号公報や、国際公開公報W 098/27453号に記載されているものが知られて いる。この種の調整方式では、ライトバルブ素子である 液晶パネルを枠板と称する中間板に対して調整後接着す る。さらに、この枠板は、各色成分を合成するプリズム 手段が接着されている固定枠とネジ止めされる。また、 調整後の液晶パネルのメンテナンスや交換等の必要性が できた場合には、ネジ止めを外すことにより、容易に液 晶パネルやプリズムのメンテナンスや対象とする液晶パ ネル又はプリズムのみを交換することができ、高価な液 晶パネルやプリズムを無駄にすることがない。さらに、 この方式では各色成分毎の画像位置を正確に合わせるこ とができる。また、プリズム部材と固定枠、枠板のそれ ぞれの線膨張率を一定の範囲に制御することにより、そ れぞれの部材の温度変化に伴うずれを防止している。し かしながら、調整後に温度変化や振動などにより、ネジ 止めされている枠板と固定板との間の移動、さらには液 晶パネル内部でのガラス部分とモールド部分との間の移 動により、画像位置が変化して、最終的に投射した映像 の色ずれが発生することがある点について、十分に解決 されているとは言えない。

【0006】また、別の調整固定方法としては、たとえば、特願平11-84196号公報に開示されている。この調整方式では、調整後の液晶パネルの取り付け板であるホルダー板を介して合成手段であるプリズム手段に固定しているため、各色成分毎の画像位置を正確に合わせることができる。しかしながら、接着後に液晶パネルの故障などによりメンテナンスの必要性が生じた場合には、直接液晶パネルがプリズムに接着されているため、高価な液晶パネルとプリズムを破棄することになる点について、十分に解決されているとは言えない。また、調整後のホルダー板と液晶パネルとの間の移動により、画像位置が変化して、最終的に投射した映像に色ずれが発生することがある点についても、十分に対策されているとは言えない。

【0007】また、液晶パネル自体は、液晶部分を支える支持部分であるガラス、さらにはガラス部分全体を支持している合成樹脂材料の2種類の部材により構成されている。これらの2種類の材料は、従来、一般的な材料として用いられている物としては、たとえば通常のガラス材料とポリカーボネート材料の組み合わせが多い。この場合には、それぞれの材料の線膨張係数は、7.7対80と約1桁程異なり、温度変化により、相互の位置ずれが発生する事がある点、従来十分に認識されていなかった。

[8000]

【発明が解決しようとする課題】上記した2件の従来技術では、プリズムに取り付けた固定枠と液晶パネルを接着してある枠板との間の位置ずれについて、充分考慮されていなかった。また、上記した従来技術の後の1件に、記載の例では、液晶パネルのメンテナンス性について充分考慮されていなかった。また、上記した3件に記載の50

例に共通した課題としては、液晶パネル自体の構成でも、線膨張係数の異なる部材でできているにも係わらず、使用状況では、温度サイクルがあり、膨張・収縮による、取り付け部分の移動が発生する事がある点、十分 考慮されていなかった。

【0009】そこで、本発明の目的は上記従来技術の欠点を解決し、ライトバルブ素子の取り付け後の取り付け 位置のずれを防止する技術を提供することにある。

【0010】本発明の他の目的はライトバルブ素子自体 10 の内部移動を防止する技術を提供することにある。

[0011]

【課題を解決するための手段】本発明の目的を達成するために、本発明が提供するライトバルブ素子の取り付け構造としては、ライトバルブ素子構造自体にろう付け部分を設け、ライトバルブの筐体と一体の取り付け部とした。ライトバルブ素子自体に一体でろう付け部分を設けたため、ライトバルブ素子と取り付け部との間の位置ずれを発生することがない。また、ライトバルブ素子の筐体部分とライトバルブ素子の構成素材との線膨張係数をあつとライトバルブ素子の構成素材との線膨張係数をいによる位置ずれを防止する手段とした。線膨張係数をあわせたことにより、ライトバルブ素子内での温度サイクルによる画素の位置ずれを防止する手段とした。

【0012】以下、更に詳細に説明する。第1の発明では、パネルは、ライトバルブ手段のライトバルブ素子を支持する支持体に金属ろう付部が設けられる。第2の発明では、パネルは、ライトバルブ手段の支持体に金属ろう付部が一体に設けられる。第1、第2の発明において、前記金属ろう付部は、半田付け手段により固定される。また、前記ライトバルブ手段に設けられた液晶表示部材と前記支持体の線膨張係数の内、最小の線膨張率を1とした場合、他の線膨張率を1~3の範囲内となるように構成される。

【0013】第3の発明では、パネルは、液晶表示部材と取り付け支持部材の線膨張係数の内、最小の線膨張率を1とした場合、他の線膨張率を1~3の範囲内とするように構成される。

【0014】第4の発明では、パネル組み込み構体は、 支持構造部分に金属ろう付け溶接部分を一体で設けたライトバルブ手段を、金属ろう付け手段により対象物に固定する。第5の発明では、パネル組み込み構体は、ライトバルブ素子を支持する支持体に金属ろう付部を設け、 光学部材を保持する保持体に金属ろう付部を設け、これら前記金属ろう付部を金属ろう付手段により溶接する。 第4及び第5の発明において、パネル組み込み構体は、 前記金属ろう付手段がハンダにより溶接される。

【0015】第6の発明では、光源からの光を光学系を 通してライトバルブ手段に投射する光学ユニットにおい て、前記ライトバルブ手段の支持体に金属ろう付部を一 体に設け、前記金属ろう付部を光学部材を保持する保持 体に金属ろう付溶接する。

【0016】第7の発明では、照明手段と、前記照明手 段の光束を複数色に分離する分離手段と、分離された光 束が入射されるライトバルブ手段と、ライトバルブ手段 からの出射された前記複数色の光を合成する合成手段 と、投射手段とを有し、前記ライトバルブ手段で変調し た光を前記投射手段により投射して映像として表示する 光学ユニットであって、前記ライトバルブ手段の支持体 に金属ろう付部を一体に設ける。

【0017】第8発明では、表示装置は、支持構造部分 に金属ろう付け溶接部分を一体に設けたライトバルブ手 段を、金属ろう付け溶接手段により対象物に固定する。 第9の発明では、光源からの光を光学系を通してライト バルブ手段に投射し、ライトバルブ手段からの光を投射 系ユニットに入射する表示装置において、前記ライトバ ルブ手段の支持体に第1の金属ろう付部を設け、前記投 射系ユニットの光学部材を保持する保持体に第2の金属 ろう付部を設け、前記第1と前記題の金属ろう付部を金 属ろう付手段により溶接する。第8及び9の発明におい て、金属ろう付け溶接手段は、半田付け手段である。 【0018】更に、第10の発明として、表示装置は、

上述した発明のパネル、パネル組み込み構体、または、 光学ユニットを備えている。

【0019】第11の発明では、固定方法は、支持構造 部分に金属ろう付部を一体で設けたライトバルブ手段 を、金属ろう付け手段により対象物に固定する。また、 この固定方法において、金属ろう付け溶接手段は、半田 付け手段である。

[0020]

【発明の実施の形態】以下、本発明の実施の形態につい て、幾つかの実施例を用い、図を参照して説明する。以 下、図1から図8を用いて、本発明によるパネル、パネ ル組み込み構体、光学ユニット、表示装置及び固定方法 の第1の実施例について説明する。図1は本発明による 液晶パネルの一実施例を示す構成図であり、図1(a) は図1(b)のA-A断面図、図1(b)は正面図であ る。図1において、液晶パネル2は反射型ライトバルブ **素子として動作する形態のものである。すなわち、ライ** トバルブパネル、例えば液晶パネル2の光入出射面20 0 側に入射した光は、液晶パネル内部で変調された後反 射され、同じ光入出射面200から出射してパネル外部 へと進む。図1˙(a)に示すように、液晶パネル2は、 ベース201上に形成されており、液晶動作を行う液晶 層202は、駆動回路が設けられているシリコン基板2 05とカバーガラス203との間に形成されており、所 定の厚さたとえば5マイクロメータなどの間隔をもった 空間に液晶材料が封じ込められている。シリコン基板 2 05は、全体としては半導体を形成して回路動作を行う 材料であるシリコン結晶でできていて、回路動作を行う 半導体が形成されている液晶面側(駆動回路面側)、す 50 数を $1\sim1$. 2の間にある例について説明したが、実験

なわち液晶層202と隣接している面は鏡面に磨いてあ る。液晶パネル2の外部からの電気信号の受け渡しに は、フレキシブルケーブル209を用いる。フレキシブ ルケーブル209の端部はシリコン基板205の回路部 分に接続されており、図示しない回路側からの信号によ り液晶パネル2としての画像の表示動作をおこなう。液 晶面の画像表示動作は、シリコン基板205側の駆動回 路とこれに対向する透明電極を設けてあるカバーガラス 203との間に電圧をかけて液晶材料の偏光方向を変 え、反射する光の偏光方向を変えることにより行ってい る。シリコン基板205は、画面に対応した2次元の画 素配列に対応して電極が設けてあり、2次元の画素を選 択的に駆動することにより、2次元の画像として表示す。 ることができる。

【0021】また、ベース201の端部には同図(b) に示すように、金属ろう付け部207a、207b、2 07c、207dが設けられている。なお、図におい て、210は後述する放熱フィンを取り付けるためのネ ジ穴であり、201aはベース201の立上部である。 【0022】次に、図1(a)示す断面図を用いて液晶 パネルの内部構造について説明する。ベース201に対 してシリコン基板205は、たとえば熱伝導用ゴムで構 成されている熱伝導部材208を介して支持されてい る。また、液晶層202を挟んでカバーガラス203 は、合成樹脂等で形成されたパネル枠206により押さ えられており、このパネル枠206は、ベース201に 接着あるいはアウトサート一体成形によりベース201 に対して固定されている。また、カバーガラス203の 上には防塵ガラス204が設けられていて、外側が光入 出射面200となっている。さらに、パネル枠206と シリコン基板205とカバーガラス203との間、すな わち、図1(a)のパネル枠206の空所には、接着剤 が充填されており、ベース201に対して、液晶表示部 であるシリコン基板205は接着され固定されている。 【0023】この図1に示した実施例において、駆動Ⅰ Cを構成するシリコン基板205が、たとえばシリコン 単結晶基板よりなる場合、線膨張係数はたとえば4.1 5 x 1 0 ⁻⁶ c m/℃である。これに対して、カバーガラ ス203及び防塵ガラスを1737型ガラスとすると、 線膨張係数はたとえば3. 78×10⁻⁶cm/℃であ る。また、ベース201をたとえば42アロイ材で構成 した場合、線膨張係数はたとえば4.6x10 $^{-6}$ cm/ ℃である。この実施例において、カバーガラス203及 び防塵ガラスの線膨張係数を1とすると、他の部材、す なわちシリコン基板205及びベース201の線膨張係 数は、1~1.2の間にある。このように、主要部材の 線膨張係数をそろえることにより、温度変化によるそれ ぞれの部材の位置関係の移動を防止できる。

【0024】本実施例では、接着する部材間の線膨張係

によると、主要部材の内、一番線膨張係数が少ない部材の線膨張係数を1とした場合、他の主要部材の線膨張係数が1~3程度の範囲内であれば、同様の効果を得ることができることが分かった。

【0025】図1(a)に示すように、光入出射面200から入った光は、液晶層202で変調され、シリコン基板205表面で反射されて、再び光入出射面200から液晶パネル2外部へと出射される。この場合、液晶層202及び反射面であるシリコン基板205では、光エネルギが吸収されて熱エネルギになる。液晶材料は、一般的には高分子材料でできており、動作する温度範囲が限られており、たとえば最高で70℃などとなっている。このため、液晶面の温度がある程度以上上昇すると、液晶パネルとして正常に動作しなくなるため、冷却が必要となる。

【0026】発熱した大部分のエネルギは熱伝導率の高いシリコン基板205から熱伝導エラストマ材でできている熱伝導部材208を介してベース201へと伝えられる。ベース201の外側には、後述の放熱手段、たとえば、放熱フィンが設けてあり、冷却が行なわれる。このようにすることにより、液晶面で発生する熱を液晶パネル外に取り出して、冷却することが可能となる。

【0027】ベース201の外側四隅には、金属ろう付 け部207a~207bが設けてあり、この部分に金属 ろう、たとえば半田などを用いて、対象物に溶接するこ とができる。金属ろう付け部207a~207bは溶接 時に、半田の熱が液晶面に伝わらないように、金属ろう 付け部207a~207bの形状をベース201より伸・ びた枝部分として、熱抵抗を大きくしている。さらに は、半田付け時に枝部分の根元を別部材でクランプする などして熱ブロックをかけることにより、半田の熱が液 晶面に伝わらないようにすると好適である。また、4つ ある取り付け部分の取り付け方法としては、1個所づつ 順番に取りつけて行くことにより、ベース201の熱変 形を防止することがでる。また、メンテナンス時の取り 外しも、1個所づつ順番に半田を除去することにより、 熱変形を防止してベース 201を取り外すことができ る。

【0028】図2は図1に示す液晶パネルの外観を示す 斜視図である。液晶パネル2は、ベース201上に形成 されており、ベース201の四隅には金属ろう付け部2 07a~207dが設けている。液晶パネル2全体の位 置及び姿勢の調整を行った後に、これらのろう付け部2 07と後述の支持部との間を金属ろうで溶接して固定す る。

【0029】図3は本発明による表示装置の一実施例を 示す斜視図であり、この表示装置はたとえば、液晶パネ ルを使用した映像表示装置である。映像表示装置1の内 部には、光学ユニットが収容されており、この光学ユニ ットに液晶パネルが取り付けられている。図示する映像 50

表示装置1において、投射系ユニット500の一部である投射レンズ手段は映像表示装置1の外装匡体の外部に露出されており、この投射レンズ手段より、外部のスクリーンなどに映像が投射される。また前方には吸気口110が、側面後方には排気口111が設けられており、吸気口110から外気を取り入れて装置内部を冷却後、暖まった空気を排気口111から装置外部へ排出する。装置の操作は、操作ボタン113で行うか、もしくは、外部からの操作信号を遠隔操作受信部117で受信することにより行う。また、装置の移動時には、ハンドル1

22が使用される。

【0030】図4は図3に示した表示装置の底面側の斜視図である。映像表示装置1の底面側には、光源の交換蓋114が設けてあり、この蓋114を開けて光源を交換する。また、装置全体の設置角度を調整して投射する映像の角度を調整する調整脚112及び調整脚115が設けている。これら2つの脚112,115の高さを調整して、投射する映像の位置や傾きの微調整を行う。外部からの映像信号は入力端子118や入力端子120より装置1に入力される。また、電源は電源コネクタ119から入力される。装置後方側にも他の遠隔操作受信部116が設けており、図2に示した受信部と同様に動作する。

【0031】図3に示したハンドル122の反対側に は、脚121a、121bが上記入力端子より高い位置 に設けられており、ハンドル122を持って、床面など に置く場合に、入力端子118、120などが損傷を受 けないように構成されている図5は図3に示した表示装 置の光学系の内部構成の一実施例を示す斜視図である。 図において、光源151から出射された適当な光量の光 束は、まずインテグレータレンズ152、他のインテグ レータレンズと偏光変換素子から成る光学部品153を 経て、偏光方向が揃えられる。そして、コリメータレン ズ154を透過した後、反射ミラー155で反射され る。さらに、他の反射ミラー156で反射された後、コ ンデンサレンズ157を通して偏光プリズム158に入 射される。偏光プリズム158では、予め揃えられてい る偏光に対して反射する。この内部の反射面の特性は、 特定の偏光方向に対しては反射し、別の偏光方向に対し ては透過するようになっている。

【0032】そして、光は第1のプリズム159に進み、出射面にあるダイクロイックミラー面に特定の範囲の波長の光、よりたとえば、400nmから500nmの範囲の光、いわゆるブルー成分の光が反射して、最終的にブルー担当の液晶パネル2Bに入る。レッド成分(たとば、600から700nmの波長の範囲)の光は、第2のプリズム160の出射面側で反射されて、レッド担当の液晶パネル2Rに入る。そして、残りのグリーン成分(たとえば500から600nmの波長の範

囲)の光は、第3のプリズム161を経てグリーン担当

10

の液晶パネル2Gに入射される。

【0033】それぞれの液晶パネル2尺、2G、2Bで は、入射した光に対して、液晶面に2次元に配列された 画素に対応して、変調がかけられ、偏光方向を変える か、変えないの2種類の反射光が出射される。そして、 たとえばグリーン成分は、プリズム161、160、1 59を経て、偏光プリズム158に入射される。偏光プ リズム158では、偏光方向により、反射膜での反射、 または透過が選択され、先ほどの液晶パネル2R、2 G、または2Bで偏光方向が元の偏光方向に対して、た とえば変えられたものが、透過されて投射レンズ501 に入射される。偏光方向が変えられないものは、反射し てもとの光源側に戻される。

【0034】その他の2つの色成分の光も、プリズム1 60及び159で合成されて、偏光プリズム158に入 射され、更に、先ほどのグリーン成分の光と同様に投射 レンズ501に入射される。この場合、投射レンズ50 1の焦点位置は、プリズム部分を介して、液晶パネル面 に設定してあり、液晶パネル2R、2G、2Bで変調さ れた画像が、装置外部に映像として投射される。なお、 図に示す光学系の構成において、光学系は投写レンズを 含む場合と、投写レンズを除いた場合の両方をいう。

【0035】図6は図5に示した光学系のプリズム部周 辺の拡大斜視図である。プリズムの色成分毎の出射面側 には、ホルダー556R、556G、556Bがそれぞ れ設けている。そして、それぞれのホルダー556R、 556G、556Bには各色を担当する液晶パネル2 R、2G、2Bがそれぞれ取り付けてある。液晶パネル 2とホルダー556とは、金属ろう、たとえば半田を用 いて溶接して固定いされる。

【0036】図7は図6の液晶パネルとプリズムの固定 部分の一実施例を示す分解斜視図である。図において、 液晶パネル2Gのベース201のろう付け部207a、 207b、207c、207dとホルダー556のろう 付け部557a、557b (図示せず) 、557c、5 57dとを対向させてろう付けする。この場合、液晶パ ネル2Gの位置と姿勢を調整して所定の位置を割り出し た後に、ろう付け部を半田付けする。溶融した半田は表 面張力により液晶パネル2Gのベース201のろう付け 部207a~207dとホルダーのろう付け部557a ~557dとの隙間を埋める。半田が常温に戻ると固体 となり、溶接が完了する。

【0037】液晶パネル2Gのベース201の裏側の放 熱面側には、ベース201に設けられたネジ穴210を 用いて放熱フィン558が取り付けられる。また、ホル ダー556Gに設けられた接着部559a、559b、 559c、559dの間に第3のプリズム161を挿入 し、接着部559a、559b、559c、559dと 第3のプリズム161の間を接着剤で接着固定する。

て固定した場合の一実施例を示す斜視図である。液晶パ ネル2Gのベース201のろう付け部207a~207 dとホルダー556のろう付け部557a~557dと の間を半田付けして、半田部560が形成された状態を 示している。この状態で、液晶パネル2Gとホルダー5 56とが溶接されて、固定されている。この状態におい て、液晶パネル2Gはホルダー556を介して第3のプ リズム161と固定される。すなわち、液晶パネル2G の画像表示部分と第3のプリズム部分との間はすべて接 着または溶接によって固定されることになるため、姿勢 位置調整後のずれが起きる要素がなく、位置ずれの起き ない装置を提供することができる。

【0039】以下、図9から図13を用いて本発明によ る第2の実施例について説明する。図9は本発明による ライトバルブパネルの他の実施例を示す構成図であり、 図9 (a) は図9 (b) のB-B断面図、図9 (b) は 正面図である。図9において、液晶パネル3は透過型ラ イトバルブ素子として動作する形態のものである。すな わち、液晶パネル3の光入射面300側に入射した光 20 は、液晶パネル内部で変調された後、透過して、光出射 面301から出射されてパネル外部へと進む。図9

(a) に示すように、液晶パネル3は、ベース201上 に形成されており、液晶動作を行う液晶層303は、駆 動回路の設けられているTFTガラス基板305とカバ ーガラス304との間に形成されており、所定の厚さた とえば5マイクロメータなどの間隔をもった空間に液晶 材料が封じ込められている。 TFTガラス基板305表 面には半導体が形成されている。TFTガラス基板30 5 側の駆動回路とこれに対向する透明電極を設けてある カバーガラス304との間に電圧をかけることによっ て、液晶材料の偏光方向が変わり、透過する光の偏光方 向を変えることができる。TFTガラス基板305は、 画面に対応した2次元の画素配列に対応して電極が設け てあり、2次元の画素を選択的に駆動することにより、 2次元の画像として表示することができる。また、ベー ス201の端部には同図(b)に示すように、金属ろう 付け部207a、207b、207c、207dが設け られている。

【0040】次に、図9(a)を用いて液晶パネルの内 部構造について説明する。パネル枠306はベース20 1に接着されるか、あるいはアウトサート一体成形によ りベース201に固定されている。TFTガラス基板3 05はカバーガラス304と防塵ガラス307の間に挟 み込まれ、これらはパネル枠306によって挟持され る。また、TFTガラス基板305の出射面側に設けら れた防塵ガラス307の表面が出射面301となってい る。さらに、パネル枠306とTFTガラス基板305 とカバーガラス304との間には、接着剤が充填されて おり、ベース201に対して、液晶表示部であるTFT 【0038】図8は図7の液晶パネルとプリズムを組立 50 ガラス基板305は接着固定されている。

【0041】図9に示した実施例において、TFTガラ ス基板305をたとえばBK-7型ガラスで構成する と、線膨張係数はたとえば7.2 x 10⁻⁶ c m/℃であ る。これに対して、カバーガラス304及び防塵ガラス 307もBK-7型ガラスで構成すると、線膨張係数が たとえば7.2x10⁻⁶cm/℃である。また、ベース 201は、たとえばパーマロイ材で構成すると、線膨張 係数はたとえば7. 7×10⁻⁶cm/℃である。この実 施例では、主要部材の線膨張係数は、線膨張率が最も小 さい部材の線膨張率を1とすると、他の主要部材の線膨 張率は1~1.1の範囲に入る。このように、主要部材 の線膨張係数をそろえることにより、温度変化によるそ れぞれの部材の位置関係の移動を防止できる。本実施例 では、線膨張係数を1~1.1の範囲内にある例につい て説明したが、実際には1~3程度の範囲であれば十分 であり、同様の効果を得ることができる。

【0042】図9(a)に示すように、光入射面300から入った光は、液晶層303で変調されて、光出射面301から液晶パネル3外部へと出射される。光が溶晶パネルを透過することにより、液晶層303及び駆動トランジスタが形成されていいるTFTガラス基板305では光エネルギが吸収されて熱エネルギになる。すなり、TFTガラス基板305が膨張し、停止時には、温度が上昇することにより、が元に戻り収縮する。液晶パネル3の動作、動作停止に連動して膨張や収縮がおき、いわゆる熱サイクルが掛かることになる。しかしながら、TFTガラス基板305とその周囲のカバーガラス304、防塵ガラス307、およびこれらを支持しているベース201は所定の範囲の線膨張係数の材料で揃えられているため、熱サイクルに対する画像位置の移動を防止することが可能となる。

【0043】ベース201の外側四隅には、金属ろう付け部207a~207dが設けているので、この部分に金属ろう、たとえば半田などを用いて、対象物に溶接することが可能となる。溶接時に、半田の熱が液晶面に伝わらないように、金属ろう付け部207a~207dの形状をベース201より伸びた枝部分として、熱抵抗を大きく取っている。さらには、半田付け時に枝部分の根元を別部材でクランプするなどして熱ブロックをかけることにより、半田の熱が液晶面に伝わらないようにすると更に好適である。また、4つある取り付け部207a~207dの取り付け方法としては、1個所づつ順番に取りつけて行くことにより、ベース201の熱変形を防止することがでる。また、メンテナンス時の取外しに際しても、1個所づつ順番に半田を除去することにより、熱変形を防止してベース201を取り外すことができる

【0044】図10は図9に示す液晶パネルの外観を示す斜視図である。液晶パネル3はベース201上に形成されており、ベース201の四隅には金属ろう付け部2 50

07a~207dが設けている。液晶パネル2全体の位 置及び姿勢の調整を行った後に、これらのろう付け部2 07a~207dと後述のプリズムを保持するのホルダ ーとの間を金属ろうで溶接して固定することができる。 【0045】図11は本発明による表示装置の光学系内 部構造の他の実施例を示す斜視図である。図において、 光源151から出射された適当な光量の光束は、まずイ ンテグレータレンズ152、インテグレータレンズ15 3及びコリメータレンズ401を透過した後、反射ミラ -407で反射され、コリメータレンズ450を透過し てダイクロイックミラー408へと導かれる。ダイクロ イックミラー408では、2色成分、たとえば赤色及び シアン色成分に分離し、赤色成分を透過して反射ミラー 412へ、シアン色成分を反射してダイクロイックミラ -409へとそれぞれ導く。ダイクロイックミラー40 9では、入射したシアン色成分をさらに2色成分、たと えば緑色成分と青色成分に分離し、緑色成分を反射して コンデンサレンズ405へ、青色成分を透過してリレー レンズ402へとそれぞれ導く。このようにして、カラ 一の映像表現に必要な複数色成分に分離する。

12

【0046】分離された色成分毎の光束は、それぞれの 色成分を担当するライトバルブ手段である液晶パネル3 R、3G、3Bに入射される。すなわち、反射ミラー4 12から反射された赤色の光束はコンデンサレンズ40 4を経由して液晶パネル3Rに入射される。コンデンサ レンズ405に入射された緑色の光束は液晶パネル3G に入射される。また、リレーレンズ402に入射された。 臂色成分の光束は、フィルタ419、反射ミラー41 0、リレーレンズ403、反射ミラー411、コンデン サレンズ406を通して、液晶パネル3Bに入射され る。各色成分の液晶パネル3R、3G、3Bには、図示 しない駆動回路手段により、画像が表示されており、上 記のように各色成分の入射光はライトバルブ手段により 変調されて投射系ユニット500に入射される。投射系 ユニット500には、複数の色成分の光束を合成する合 成手段としてのプリズム手段451が設けられており、 最終的に変調された光束は投射レンズ501により装置 外部に出射される。これにより、スクリーン(図示せ ず)上には、各色表示用の液晶パネル、3R,3G,3 Bに表示された画像が映像として拡大投射される。

【0047】図12は図11に示したプリズム周辺部の構成を示す斜視図である。プリズム451入射面側には、ホルダー556R、556G、556Bがそれぞれ設けられている。そして、それぞれのホルダー556R、556G、556Bには各色を担当する液晶パネル3R、3G、3Bがそれぞれ取り付けられている。液晶パネル3とホルダー556との固定ろう付け部560は金属ろう、たとえば半田を用いて溶接してある。

【0048】図13は図12の液晶パネルとプリズムの 固定部分の一実施例を示す分解斜視図である。図に示す ように、液晶パネル3のろう付け部207とホルダー556のろう付け部557とを対向させてろう付けしている。この場合、液晶パネル3の位置と姿勢を調整して所定の位置を割り出した後に、ろう付け部557を半田付けする。溶融した半田は表面張力により液晶パネル3のろう付け部207とホルダーのろう付け部557との隙間を埋める。半田が常温に戻ると固体となり、溶接が完了する。また、ホルダー556には接着部559a~559dが設けられており、この接着部559a~559

13

59 dにプリズム 4 5 1 を接着固定する。 【0049】以上述べたように、本発明の実施例においては、ライトバルブパネルとして液晶パネルを用いた例について説明したが、パネル以外の他のライトバルブ手段、たとえば微少鏡駆動方式、レーザーアドレス液晶方式など、入射光を変調して映像として投影できるものであれば、透過式や反射式ともに同様に適用でき、実現可能である。また、ライトバルブ手段を3枚使用するいわゆる3板方式で説明を行ったが、2枚、あるいは1枚などのライトバルブ手段を用いる方式であっても同様の効果を有することは言うまでもない。本実施例における投射型装置の説明で、正面からスクリーンに投射するいわゆる背面投射型の装置に応用した場合でも、同様の効果を得ることができる。

【0050】装置の外形の説明としては、可搬型の小型装置を例に説明したが、固定型たとえば劇場などに固定して使用する形態のもの、あるいは屋外に設置する構築物や建物などと一体となった形態のものに適用した場合にも同様の効果を得ることができることは言うまでもない。また、金属ろう付けの例として、半田付けを例にとって説明したが、多の金属ろうたとえばアルミニュームろうや、真鍮ろう等の金属ろうであっても同様に実施できることはいうまでもない。さらに、液晶パネルと一体にしたベース部分の材料としては42アロイやパーマロイ材料を例として挙げたが、その他多の材料からも必要な線膨張係数のものを容易に選択できることは言うまでもない。

[0051]

【発明の効果】以上のように、本発明によれば、ライト バルブパネルと取り付け部分の金属ろう付け部分を一体 化したため、固定後のパネルの位置ずれを防止でき、か つメンテナンス時には、金属ろう付け部分を外してライ トパルブパネルを取り外すことができる。また、ライト パルブパネル内の線膨張率を所定の範囲内にしたことに より、温度サイクルによるライトバルブパネル内の位置 ずれを防止できる。

【図面の簡単な説明】

【図1】本発明によるライトバルブパネルの一実施例を 示す構成図である。

d の間にプリズム 4 5 1 を挿入し、接着部 5 5 9 a ~ 5 10 【図 2】図 1 に示す液晶パネルの外観を示す斜視図であ

【図3】本発明による表示装置の一実施例を示す斜視図である。

【図4】図3に示した表示装置の底面側の斜視図である。

【図5】図3に示した表示装置の光学系の内部構成の一 実施例を示す斜視図である。

【図6】図5に示した光学系のプリズム部周辺の拡大斜 視図である。

「図7】図6の液晶パネルとプリズムの固定部分の一実施例を示す分解斜視図である。

【図8】図7の液晶パネルとプリズムを組立て固定した 場合の一実施例を示す斜視図である。

【図9】本発明によるライトバルブパネルの他の実施例 を示す構成図である。

【図10】図9に示す液晶パネルの外観を示す斜視図である。

【図11】本発明による表示装置の光学系内部構造の他 の実施例を示す斜視図である。

【図12】図11に示したプリズム周辺部の構成を示す 斜視図である。

【図13】図12の液晶パネルとプリズムの固定部分の 一実施例を示す分解斜視図である。

【符号の説明】

1…表示装置、2…液晶パネル、200…光入射面、201…ベース、202…液晶層、203…カバーガラス、205…シリコン基板、207…ろう付け部、208…熱伝導部材、556…ホルダー、557…ホルダーろう付け部、3…透過型液晶パネル、300…入射面、

301…出射面、303…液晶層、304…カバーガラス、305…TFTガラス基板。

【図11】

【図13】

フロントページの続き

(72) 発明者 竹本 一八男

千葉県茂原市早野3300番地 株式会社日立 製作所ディスプレイグループ内

(72) 発明者 井口 集

千葉県茂原市早野3681番地 日立デバイス エンジニアリング株式会社内

(72)発明者 長谷部 辰己

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所デジタルメディアシステ ム事業部内 (72)発明者 竹内 与志政

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所デジタルメディアシステ ム事業部内

Fターム(参考) 2H088 EA12 HA13 HA21 HA23 HA24 HA28 MA20

2H089 HA40 QA02 QA06 QA09 TA16

TA18 UA05

5G435 BB02 BB12 DD06 EE05 GG43

KK02 LL04 LL15