UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO

Escuela Profesional de Estadística e Informática

RESUMEN DE MÉTODOS NUMÉRICOS ITERATIVOS

Estudiante: Wily Calib Caira Huancollo **Docente:** Ing. Fred Torres Cruz

Fecha: Octubre de 2025

1. Introducción

Los métodos numéricos iterativos permiten encontrar raíces de ecuaciones no lineales cuando no es posible obtener soluciones analíticas exactas. En la programación y la informática, estos métodos son fundamentales en optimización, aprendizaje automático, análisis de datos y simulaciones.

2. Resumen general de los métodos

2grav!10white

gray!30 Méto- do	Descripción breve	Orden de convergencia	Requisitos principales
Bisección	Divide el intervalo [a,b] en mitades sucesivas hasta hallar la raíz.	Lineal $(\rho = 1/2)$	f continua, cambio de signo.
Newton- Raphson	Usa derivadas y una aproximación de Taylor para converger rápidamente a la raíz.	Cuadrático $(p = 2)$	$f'(x)$ conocida, $f'(r) \neq 0$.
Secante	Aproxima la derivada mediante diferencias finitas.	Superlineal $(p \approx 1,618)$	Dos valores iniciales.
Punto Fijo	Transforma $f(x) = 0$ en $x = g(x)$ y repite la iteración.	Lineal	g'(x) < 1, g continua.
Regula Falsi	Usa interpolación lineal con cambio de signo garantizado.	Variable	f continua con cambio de signo.

3. Ventajas y desventajas

2gray!10white

gray!30 Méto- do	Ventajas	Desventajas
Bisección	Siempre converge; fácil de implementar; robusto.	Lento; requiere conocer un intervalo con cambio de signo.
Newton- Raphson	Muy rápido y preciso; pocas iteraciones.	Puede diverger si x_0 no es adecuado; requiere derivada.
Secante	No necesita derivada; buen equilibrio entre velocidad y simplicidad.	Puede diverger; algo menos preciso que Newton.
Punto Fijo	Sencillo y fácil de programar.	Lento; requiere $ g'(x) < 1$.
Regula Falsi	Más rápido que bisección y mantiene convergencia.	Puede estancarse si un extremo no cambia.

4. Ranking de eficiencia y rapidez

2grav!10white

gray!30 Posición	Método	Velocidad / Precisión	Tipo de con-	
			vergencia	
1	Newton-Raphson	Muy rápido y preciso.	Cuadrática	
2	Secante	Rápido y sin derivadas.	Superlineal	
3	Regula Falsi	Equilibrado y seguro.	Variable	
4	Punto Fijo	Simple pero lento.	Lineal	
5	Bisección	Muy seguro pero lento.	Lineal	

5. Ranking de dificultad (de más difícil a más fácil)

2grav!10white

		xy:10 winte
gray!30 Nivel	Método	Motivo
1	Newton-Raphson	Requiere derivada, sensible a los valores iniciales.
2	Secante	Menos difícil, pero puede diverger sin buen intervalo.
3	Regula Falsi	Interpolación sencilla, mantiene cambio de signo.
4	Punto Fijo	Simple iteración; sólo necesita $g(x)$.
5	Bisección	Más fácil de entender y programar; siempre con-
		verge.

6. Aplicaciones en informática y programación

2gray!10white

gray!30 Área	Método útil	Aplicación práctica
Machine Learning / IA	Newton-Raphson, Secante	Ajuste de hiperparámetros y optimización de funciones de costo.
Computación Gráfica	Bisección, Regula Falsi	Intersección de curvas o superficies.
Simulación Numérica	Punto Fijo, Secante	Resolución iterativa de sistemas no lineales.
Análisis de Datos / Big Data	Regula Falsi, Newton	Calibración de modelos y funciones de pérdida.
Algoritmos y Programación Científica	Todos	Resolución de ecuaciones en Python, MATLAB o C++.
Redes y Grafos (Page- Rank)	Punto Fijo	Iteración de matrices de transición.
Ingeniería Computacional	Newton-Raphson	Modelos físicos y cálculos estructurales de precisión.

— Fin del resumen —

Wily Calib Caira Huancollo

Estudiante de la Escuela Profesional de Estadística e Informática Docente: Ing. Fred Torres Cruz