What is Claimed is:

1	1. A connector for coupling microwave signals from a microwave module to a
2	signal line placed on a support structure comprising:
3	a signal conductor extending from said microwave module into said support
4	structure and coupled to said signal line to carry microwave signals from said microwave
5	module to said signal line;
6	an electrically conductive gasket placed about said signal conductor between said
7	microwave module and said support structure to reduce signal leakage and form a ground
8	path therebetween; and
9	an insulating sleeve placed about said signal conductor within said support
10	structure to control impedance of a microwave signal path within that structure.
1	2. The connector of claim 1, wherein said microwave module and said support
2	structure are arranged in a vertical fashion with said signal conductor extending in a
3	substantially vertical direction therebetween.
1	3. The connector of claim 1, wherein said signal conductor includes a pin.
1	4. The connector of claim 1, wherein said support structure includes a chassis
2	plate.
1	5. The connector of claim 1, wherein said gasket is constructed of a pliable
2	metal.
1	6. The connector of claim 1, wherein said signal conductor is placed within a
2	channel defined within said support structure and said dimensions of said signal conductor
3	and said insulating sleeve provide a clearance relative to said channel that maintains said
4	microwave signal path impedance substantially independent of the position of said
5	insulating sleeve and signal conductor within said channel.

The connector of claim 6, wherein said clearance is approximately 0.005

7.

1

- 1 8. The connector of claim 1, wherein said signal line includes a microstrip 2 transmission line.
- 1 9. The connector of claim 1, wherein said signal conductor is coupled to said 2 signal line via a conductive element and said signal line includes at least one capacitive 3 element to compensate for inductance of said conductive element coupling.
- 1 10. The connector of claim 1, wherein said microwave module includes a module signal line coupled to said signal conductor to provide microwave signals.
- 1 11. The connector of claim 10, wherein said module signal line is positioned 2 substantially perpendicular to said signal conductor.
- 1 12. The connector of claim 10, wherein said module signal line is positioned 2 substantially parallel to said signal conductor.
- 1 13. The connector of claim 10, wherein said module signal line includes a 2 microstrip transmission line.

1

2

3

1

2

3

4

5

- 14. The connector of claim 10, wherein said signal conductor is coupled to said module signal line via a conductive element and said module signal line includes at least one capacitive element to compensate for inductance of said conductive element coupling.
- 1 15. The connector of claim 1, wherein said microwave module includes a seal 2 placed about said signal conductor to maintain signals within said microwave module.
 - 16. A method of coupling microwave signals from a microwave module to a signal line placed on a support structure comprising:
 - (a) transporting microwave signals from said microwave module to said support structure via a signal conductor extending from said microwave module into said support structure and coupled to said signal line;

- 6 (b) forming a ground path and reducing signal leakage between said 7 microwave module and said support structure via an electrically conductive gasket placed 8 about said signal conductor; and
 - (c) controlling impedance of a microwave signal path within said support structure via an insulating sleeve placed about said signal conductor within that structure.
- 1 17. The method of claim 16, wherein step (a) further includes:

9

10

1

2

3

4

5

6

- 2 (a.1) transporting microwave signals from said microwave module to said support structure, wherein said microwave module and said support structure are arranged in a vertical fashion with said signal conductor extending in a substantially vertical direction therebetween.
- 1 18. The method of claim 16, wherein said signal conductor includes a pin.
- 1 19. The method of claim 16, wherein said support structure includes a chassis 2 plate.
- 1 20. The method of claim 16, wherein said gasket is constructed of a pliable 2 metal.
 - 21. The method of claim 16, wherein said signal conductor is placed within a channel defined within said support structure, and step (c) further includes:
 - (c.1) maintaining said microwave signal path impedance substantially independent of the position of said insulating sleeve and signal conductor within said channel via a clearance gap between said signal conductor with said insulating sleeve and said channel.
- 1 22. The method of claim 21, wherein said clearance gap is approximately 0.005 inches.
- 1 23. The method of claim 16, wherein said signal line includes a microstrip transmission line.

- 1 24. The method of claim 16, wherein step (a) further includes:
- 2 (a.1) coupling said signal conductor to said signal line via a conductive element,
- 3 wherein said signal line includes at least one capacitive element to compensate for
- 4 inductance of said conductive element coupling.
- 1 25. The method of claim 16, wherein step (a) further includes:
- 2 (a.1) transferring microwave signals to said signal conductor from a module 3 signal line within said microwave module and coupled to said signal conductor.
- 1 26. The method of claim 25, wherein step (a.1) further includes:
- (a.1.1) transferring microwave signals to said signal conductor from said module
 signal line placed substantially perpendicular to said signal conductor.
- 1 27. The method of claim 25, wherein step (a.1) further includes:
- 2 (a.1.1) transferring microwave signals to said signal conductor from said module 3 signal line placed substantially parallel to said signal conductor.
- 1 28. The method of claim 25, wherein said module signal line includes a 2 microstrip transmission line.
- 1 29. The method of claim 25, wherein step (a.1) further includes:
- 2 (a.1.1) coupling said signal conductor to said module signal line via a conductive 3 element, wherein said signal line includes at least one capacitive element to compensate
- 4 for inductance of said conductive element coupling.
- 1 30. The method of claim 16, wherein step (a) further includes:
- 2 (a.1) maintaining signals within said microwave module via a seal placed about
- 3 said signal conductor.