ADVANCED PARALLEL COMPUTING 2017 LECTURE 11 - CONSTRAINTS, TRENDS & DEEP LEARNING

Holger Fröning
holger.froening@ziti.uni-heidelberg.de
Institute of Computer Engineering
Ruprecht-Karls University of Heidelberg

APPLICATIONS & ARCHITECTURES

CFD

Cosmology

Molecules Weather&Climate

ΑI

Tera-FLOP/s
September 1997

10 Tera-FLOP/s

November 2016

Exa-FLOP/s

2018-2012

•

TRAINING OF DEEP NEURAL NETWORKS

sequential dependence

GRAPH COMPUTATIONS

Graph computation = algorithm + input data

Program = algorithm + data structure, Niklaus Wirth

Shortest-path

Strongly-connected components

Page rank

Problems

Data-driven computation

Unstructured problem

Poor locality

Low computational intensity (F/B)

Internet network, <u>www.math.cmu.edu</u>

CONSTRAINTS & TRENDS

CMOS POWER MODEL

$$P = afCV^2 + VI_{leakage}$$

$$C = E_r * E_0 * \overrightarrow{d}; A = W * L \Rightarrow C \rightarrow \frac{C}{\alpha}$$

$$P_{new} = (a * \alpha^2)(f)(\frac{C}{\alpha})(\frac{V^2}{\alpha^2}) = \frac{P_{old}}{\alpha}$$

Or, for $P_{new} = P_{old}$: $f \rightarrow f * \alpha$

$$f \rightarrow f * \alpha$$

End of Dennard scaling

$$P_{new} = P_{old} * \alpha$$

Voltage, V / α

Classic Dennard

GATE

Scaled Device

t_{ox}/α

WIRING

Oxide: t_{ox} /a

Wire width: W/a

Gate width: L/α

Diffusion: x_d/α

Substrate: α * NA

Voltage: V/a

Current: I/a

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of Ion-implanted MOSFET's with Very Small Physical Dimensions," in Proceedings of the IEEE Journal of Solid-State Circuits, vol. 9, no.5, Oct. 1974.

POST-DENNARD PERFORMANCE SCALING

POST-DENNARD II: ANOTHER FUNDAMENTAL TRANSIT

Validated by us: CML serializer @ 10Gbps: ~30pJ/bit = 1920pJ/DP

Communication-centric systems

Data movements matter, computations are for "free"

Energy optimization = Locality optimization

Implications will percolate up through the complete compute stack

Need to understand massively-parallel communication

US DOE, Scientific Grand Challenges: Architectures and Technology for Extreme Scale Computing, San Diego, CA, 2009.

FUTURE ARCHITECTURE TEMPLATE

Technical constraints: power, space, thermal, (area)

FPGA, PIM, ...

REMINDER: BULK-SYNCHRONOUS PARALLEL

In 1990, Valiant already described GPU computing pretty well

Superstep

Compute, communicate, synchronize

Parallel slackness: # of virtual processors v, physical processors p

v = 1: not viable

v = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation and communication efficiently

Extremely scalable, bad for unstructured parallelism

Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990

REMINDER: VECTOR ISAS

Compact: single instruction defines N operations

Amortizes the cost of instruction fetch/decode/issue

Also reduces the frequency of branches

Parallel: N operations are (data) parallel

No dependencies

No need for complex hardware to detect parallelism (similar to VLIW)

Can execute in parallel assuming N parallel datapaths

Expressive: memory operations describe patterns

Continuous or regular memory access pattern

Can prefetch or accelerate using wide/multi-banked memory

Can amortize high latency for 1st element over large sequential pattern

OUR VIEW OF A GPU

Software view: a programmable many-core scalar architecture

SIMT: single instruction, multiple threads

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step

IT'S A PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

Illusion of scalar threads: hardware packs them into compound units

IT'S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

TRANSITIONING TO MULTI-GPU IS FUNDAMENTAL

Transition from SMP to NUMA

Reasons: multi-GPU systems, multi-chip modules, heterogeneous memory, tiled layout

Beauty of BSP is lost

Kernel launch orchestration

Data movement operations

Naming a physical resource is disgusting

Consistency models lack NUMA support

Concentric memory scopes are broken Memory fences, too

REVIEW OF OTHER MANY-CORE PROCESSORS

In principle: no difference between GPUs & FPGAs

	GPU	FPGA
High concurrency at reduced frequency	У	У
Flat memory hierarchy	У	У
Scratch-pad memory	У	У
Programming using data-parallel kernels	У	partly
Latency hiding techniques (BSP-like)	y	n
Reprogrammable	n	y

Architecturally similar, execution model fundamentally different

GPUs: absolute performance

FPGAs: absolute power consumption

FLOPS/Joule depending on various aspects

FPGA = the only true general-purpose processor?

FPGA

DEEP LEARNING

MULTI-LAYER PERCEPTRON

$$\Psi = f(W \cdot x + b)$$

$$\psi_i = f(\sum_j (w_{j,i} \cdot x_j) + b_i)$$

f: non-linear function (sigmoid, reLU, ...)

Ψ: neuron vector

W: weight matrix

x: input vector

b: bias vector

Foundation: "Fully-connected layer" => matrix-vector operations For parallel training: matrix-matrix operations (x becomes matrix)

CONVOLUTIONAL NETWORKS

Convolutional layer

Receptive field: spatially local correlation (patches)

Shared weights: as each filter is applied to all patches of the input

3D layers: "depth" of one layer is the number of filters (kernels) learned

=> Even higher computational intensity

TRAINING

sequential dependence

BACKWARD PATH

Error function E

ith training example

t⁽ⁱ⁾: true answer

y⁽ⁱ⁾: result from NN

Gradient descent

Multiply steepness with learning rate

Stochastic gradient descent: use randomization and noise to find global minimum

Backpropagation

Propagate error backwards through the network: partial derivatives & chain rule

Usually an operation based on a Jacobian (J) matrix multiplication

$$E = \frac{1}{2} * \sum_{i} (t^{(i)} - y^{(1)})^{2}$$

$$J_{i,j} = \frac{\delta f_i}{\delta x_j}$$

COMMON NEURAL NETWORKS TODAY

Net	Parameters	Neurons	Layers	FLOPs
AlexNet	60M	0.7M	8	0.72G
VGG-16	138M	14M	16	15.3G
GoogLeNet	6.8M	4.5M	22	1.5G
ResNet-152	26M	20M	152	11.3G

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS'12)

HANDS-ON: TRAINING PERFORMANCE

Workload: AlexNet Training

Forward+Backward Pfad

Processors

Titan-X (Pascal-class)

K80 (Kepler-class)

Xeon-E5 (Haswell-class)

Different batch sizes

- (+) Increase of computational intensity
- (+) Reduce variance of stochastic gradient updates
- (-) Increase memory requirement
- (-) Convergence problem if too large

PARALLEL TRAINING: COMMUNICATION

Here: synchronous data parallelism

AlexNet training

NVIDIA Kepler K80 GPUs

Asynchronous data parallelism

Overlap communicate with next compute

- (+) random noise helps convergence
- (-) stale gradient problem

	2 GPU	4 GPU	8 GPU
Effective batch size	64	32	16
Communication/batch [ms]	61	183	427
Computation/batch [ms]	760	488	355
Computation/communication	12.48	2.66	0.83
Speedup	1.6	1.97	1.69

Pitfall: plain DNN training is not scalable

PARALLEL TRAINING: COMMUNICATION

Data parallelism		Model parallelism		
Net	4-16 GPUs	4	16	64
AlexNet	240MB	179MB (22MB)	45MB (6MB)	11MB (1MB)
VGG-16	552MB	3,584MB (224MB)	896MB (56MB)	224MB (14MB)
GoogLeNet	27MB	1,152MB (52MB)	288MB (13MB)	72MB (3MB)
ResNet-152	104MB	5,120MB (34MB)	1,280MB (8MB)	320MB (2MB)

Communication volume per GPU

Number in brackets: average volume per layer and GPU

Batch size of 256

Model parallelism can reduce data volume

REMINDER: SYSTOLIC ARRAYS

Basic principle: replace single PE with PE array

High throughput without increasing memory bandwidth requirement

Differences to pipelined architecture

Array structure can be non-linear (e.g., hexagonal)

Connections between PEs can be bidirectional

PEs may have local instruction and data memory

PEs often more complex than a pipeline stage

Commercial: iWarp (linear array), produced by Intel

REMINDER: SYSTOLIC ARRAYS

b2,2 b1,2 b0,2

a0,0*b0,2

•••

Matrix multiplication

C = A * B

Each processor accumulates one element of C

a0,2

a0,1

a0,0 a0,1*b1,0 a0,1*b1,1 a0,1*b1,2 a0,2*b2,1 a0,2*b2,0 a0,2*b2,2

b2,0

b1,0

b0,0

a0,0*b0,0

a1,0*b0,0

a1,1*b1,0

a1,2 a1,0 a1,1

a2,1

a1,2*b2,0

b2,1

b1,1

b0,1

a0,0*b0,1

DNN ACCELERATORS FOR INFERENCE (GOOGLE TPU)

Norman P. Jouppi et al., In-Datacenter Performance Analysis of a Tensor Processing Unit, 44th Annual International Symposium on Computer Architecture, ISCA'17

SUMMARY

THIS COURSE

Communication architectures

Synchronization: locks & barriers

Snooping coherence

Scalable coherence - directories, token

Transactional memory

Sequential and relaxed consistency models

Trends & constraints

LEARN TO LOVE THE PICOTOULE