Space complexity and complexity classes

Let $s: \mathbb{N} \to \mathbb{N}$.

Definition

A language $L \subseteq \Sigma^*$ is said to be in class $\mathsf{NSPACE}(s(n))$ if there exists a non-deterministic Turing machine M such that $\forall x \in \Sigma^*$,

M halts on x using at most space O(s(|x|)) on any run of the machine,

where |x| indicates the length of x.

if $x \in L$ then there exists an accepting run of M on x.

if $x \notin L$ then M rejects x on all the runs.

$$NL = NSPACE(log n)$$

 $NPSPACE = \bigcup_{k} NSPACE(n^{k})$