

Serverless Update Overview & Demo

Julien Strebler,
App Innovation | Cloud Solution Architect

Why cloud native?

What is cloud native?

Package application code and dependencies in containers, deploy as microservices and manage them using DevOps processes and tools

What is Developer Velocity?

Driving business performance through software development by empowering developers, creating the right environment for them to innovate, and removing points of friction.

azure.com/developervelocity

Why Serverless?

Manage apps not servers

Scale based on demand

Micro-Billing

Reduced Dev & Ops

Event Driven

Faster time to Market

Why Serverless?

Generic Use Case

Azure Serverless

The platform for next-gen apps, today

Azure Functions

Event-driven Serverless Compute

Integrated Programming Model

End to end development experience

Hosting Options flexibility

Fully managed and cost-effective

Azure Container Apps

Serverless containers for microservices

Build modern apps on open source

Focus on apps, not infrastructure

Scale dynamically based on events

Azure Event Grid

Event Sources

Blob Storage

Resource Groups

Azure Subscriptions

Event Hubs

Azure Media Service

IoT Hub

Service Bus

Azure Maps

CloudEvents Sources

Custom Events (anything)

Event Handlers Serverless Code **Functions** Serverless Workflow and Integration **Logic Apps** Buffering and Competing Consumers Storage **Event Hubs** Queues Other Services and Applications Hybrid Connections WebHooks Azure Automation

Azure API Management

Azure Logic Apps

Automate workflows and orchestrate business processes easily

- Out-of-the-box connectors reduce integration challenges to integrate data from the cloud to on-premises using a smart visual designer
- Connect to Azure, Microsoft, and/or 3rd party services with 400+ connectors out-of-box.
- Custom connectors to connect to any REST/SOAP endpoint as it is Deeply integrated with Azure Functions, API Management, Event Grid, etc.
- High resiliency, designed for mission critical workloads

A globally distributed, massively scalable, multi-model database service

Azure Functions

Event-driven serverless compute

Azure Functions

An event-based, serverless compute experience that accelerates app development

Integrated programming model

Use built-in triggers and bindings to define when a function is invoked and to what data it connects

End-to-end development experience

Take advantage of a complete, end-to-end development experience with Functions—from building and debugging locally on major platforms like Windows, macOS, and Linux to deploying and monitoring in the cloud

Hosting options flexibility

Choose the deployment model that better fits your business needs without compromising development experience

Fully managed and cost-effective

Automated and flexible scaling based on your workload volume, keeping the focus on adding value instead of managing infrastructure

Integrated programming model

Azure Functions features input/output bindings which provide a means of pulling data or pushing data to other services. These bindings work for both Microsoft and third-party services without the need to hard-coding integrations.

End-to-end development experience

Azure functions offers the best-in-class end-toend development experience, from developing and debugging to monitoring and deploying with built-in DevOps capabilities and integrated tools. Azure Functions integrates with VS and VS Code which let you locally develop, debug, and deploy functions to Azure.

Azure Functions Core Tools lets you develop and test your functions on your local computer from the command prompt or terminal, and the local functions can connect to live Azure services.

Hosting options flexibility

Pick the Functions plan that matches your business needs and deploy the same code to multiple targets—from pay-per-execution in the cloud to your Kubernetes cluster or IoT devices for edge computing.

Fully managed and cost-effective

- Automatically handles all maintenance and updates
- Serverless and auto scale options keep costs low by matching resources to demand and eliminating capacity management and resource over-provisioning during busy or slow times
- Cost-effective serverless model responds to app patterns and is ideally suited for small, spiky workloads with moderate performance requirements

Common Functions Scenarios

Web/Mobile application backends

Real-time stream processing

IoT-connected backends

Workflows and orchestration with Durable Functions

PATTERNS/USE CASES

Durable Functions is an extension of Azure Functions that lets you write stateful functions in a serverless compute environment

Manageable sequencing + error handling/compensation

Fanning out and fanning in

External events correlation

Flexible automated long-running process monitoring

Http-based async longrunning APIs

Human interaction

Azure Static Web Apps

Streamlined full-stack development from source code to global high availability

Global Hosting

Bring your content closer to your customers with automated content geo-distribution

End-to-end development experience

Complete, end-to-end development experience —from building and debugging locally to deploying and monitoring in the cloud

Streamlined build and deployment

Azure Static Web Apps takes care of the deployment and infrastructure while you focus on your app

Fully managed and cost-effective

Automated and flexible scaling based on your workload volume, keeping the focus on adding value instead of managing infrastructure or security

Demonstration

Serverless Architecture with Azure Functions

Azure Container Apps

Serverless containers for microservices

Build modern apps on open source

Focus on apps, not infrastructure

Scale dynamically based on events

Azure Containers Options

^{*} When used with containers

Build modern apps on open-source

- App portability powered by open standards and APIs
- → App patterns and best practices encapsulated by products like Dapr
- Service capabilities influenced by OSS contributions
- → Benefit from streamlined application lifecycle for upgrades and versioning, traffic shifting, service discovery, and monitoring.

Focus on apps, not infrastructure

- Apps with any development stack, any Linux container image
- → No opinionated programming model
- → High productivity development experience
- → Set up a code-to-cloud pipeline using GitHub Actions.

Scale dynamically based on events

- → Serverless autoscale based on HTTP requests, KEDA event scale triggers, or CPU and Memory
- → Declarative scaling rules eliminate the need to manage complex infrastructure
- → Scale to 0 and pay per use by second

Application autoscaling made simple

Open-source, extensible, and vendor agnostic

Kubernetes-based Event Driven Autoscaler

Drive the scaling of any container based on a growing list of 35+ event sources, known as: scalers

Microservices using any language or framework

Any cloud or edge infrastructure

Distributed Application Runtime

Portable, event-driven, runtime for building distributed applications across cloud and edge

What can you build with Azure Container Apps?

Microservices

Public API endpoints

Web Apps Event-driven processing

Background processing

Microservices architecture with the option to integrate with Dapr

HTTP TRAFFIC

80%

20%

REVISION 1

REVISION 2

E.g., API app with HTTP requests split between two revisions of the app

E.g., Web app with custom domain, TLS certificates, and integrated authentication

E.g., Queue reader app that processes messages as they arrive in a queue

E.g., Continuously running background process transforms data in a database

AUTO-SCALE CRITERIA

Individual microservices can scale independently using any KEDA scale triggers Scaling is determined by the number of concurrent HTTP requests Scaling is determined by the number of concurrent HTTP requests

Scaling is determined by the number of messages in the queue

Scaling is determined by the level of CPU or memory load

Demonstration

Serverless Containers with Azure Container Apps

Azure Serverless - Quickstarts

Learn More about Azure Container Apps

aka.ms/containerapps

Hands-on Lab: Azure Container Apps

Serverless Functions Architectures

Reference Architectures
Serverless September

Hands-on Lab: Azure Serverless Architecture

Thank you