

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА на тему:

«Исследование характеристик эшелонированного крейсерского полета транспортного самолета»

Автор квалификационной работы: студент гр.М1О-403Б-18 Москвитин Андрей Семенович Руководитель: к.т.н., доцент кафедры 106 Мальцев Юрий Иванович

Постановка задачи

Задачи

- Расчет основных летно-технических характеристик, взлетно-посадочных характеристик, транспортные возможности, характеристики маневренности, характеристик продольной устойчивости и управляемости
- Синтезировать систему автоматической стабилизации высоты
- Исследовать характеристики самолета при выполнении эшелонированного полета

Объект исследования

Прототип транспортного самолета Ил-76

Параметры	Величина
m	140000 кг
S	300 м ²
b _a	6.436м

Диапазон высот и скоростей полета

Значения статического и практического потолка

Значения километрового и часового расхода для массы 140 т.

Расчет траектории полета

Параметры в наборе высоты:

m _{T_{Haб}}	$L_{\rm Ha6}$	$t_{ m Ha6}$
КГ	км	мин
3669.9	175.7	18.3

Параметры крейсерского полета:

$T_{\rm \kappa p}$	$L_{\mathrm{\kappa p}}$	$\rho_{H\mathrm{kp}}$	<i>H</i> _{0 кр}	$H_{\text{\tiny K}\ \text{\tiny KP}}$
мин	KM	$\frac{K\Gamma}{M^3}$	км	км
331.28	3215.0	0.3158	11	11.9

Параметры при снижении высоты:

m _{Tch}	$L_{ m cH}$	$t_{ m cH}$
ΚΓ	КМ	МИН
430.1	197.4	19.7

Расчет траектории полета

Профиль полета:

Транспортные возможности

Диаграмма транспортных возможностей

Взлетно-посадочные характеристики

Основные параметры взлета и посадки:

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}}$	$V_{\rm kac}$	$L_{\rm npo6}$	$L_{\pi_{\mathcal{I}}}$
<u>M</u> C	M	M	<u>M</u> C	M	M
90.0	1830.0	2289.0	64.0	790.0	1384.0

Расчет правильного виража

Зависимость различных параметров виража

Характеристики продольной статической устойчивости и управляемости

Определение $ar{S}_{ ext{ro}}^*$

Характеристики продольной статической устойчивости и управляемости

Балансировочная диаграмма в полетной конфигурации

Характеристики продольной статической устойчивости и управляемости

$$\delta_{\scriptscriptstyle
m B}^{\it n_y}$$
 при $ar x=0.25$

Структурная схема стабилизации высоты в тангажном варианте:

Выбранные коэффициенты обратных связей для контура стабилизации тангажа:

Для регулятора K_{ϑ}

Выбранные коэффициенты обратных связей для контура стабилизации высоты:

Частотный анализ ЛАФЧХ для разомкнутого контура стабилизации высоты при: $q_{min} \Rightarrow M = 0.3071, \; q_{max} \Rightarrow M = 0.6119, \; q_{KD} \Rightarrow M = 0.61.$

Сравнение переходных процессов линейной и нелинейной модели.

Сравнение переходных процессов линейной и нелинейной модели.

Сравнение переходных процессов при различных скоростях отклонения привода.

Сравнение переходных процессов при различных скоростях отклонения привода.

Рассмотрим такие варианты полета:

- 1 При постоянной высоте и оптимальной скорости полета
- 2 При оптимальном изменении высоты и скорости полета
- 3 Эшелонированный полет с изменением высоты с шагом 300 м.

Таблица параметров крейсерского полета:

			•						
m, то									
		8000	8500	9000	9500	10000	10500	11000	11500
100.0	М	0.489	0.5	0.506	0.522	0.5 38	0.552	0.559	0.585
	q_{km}	8.38	8.114	7.881	7.666	7.46	7.225	6.619	6.578
	V	150.663	152.992	153.747	157.486	161.148	164.137	164.991	172.616
110.0	М	0.5	0.516	0.532	0.549	0.5 62	0.583	0.581	0.6
	q_{km}	8.862	8.61	8.371	8.143	7.929	7.674	7.182	7.161
	V	154.053	157.888	161.647	165.632	168.337	173.355	171.484	177.042
120.0	М	0.5 24	0.54	0.554	0.573	0.5 71	0.591	0.6	0.6
	q_{km}	9.348	9.084	8.834	8.598	8.4 01	8.236	7.784	7.812
	V	161.447	165.231	168.332	172.873	171.033	175.734	177.092	177.042
130.0	М	0.547	0.563	0.56	0.578	0.5 96	0.6	0.6	0.6
	q_{km}	9.807	9.533	9.293	9.127	8.983	8.825	8.452	8.549
	V	168.534	172.269	170.155	174.381	178.521	178.41	177.092	177.042
140.0	М	0.552	0.565	0.582	0.6	0.6	0.6	0.6	0.605
	q_{km}	10.259	10.049	9.863	9.7	9.5 76	9.472	9.36	9.534
	V	170.074	172.881	176.84	181.018	179.719	178.41	177.092	178.517
150.0	М	0.5 69	0.586	0.6	0.6	0.6	0.6	0.606	-
	q_{km}	10.818	10.61	10.427	10.292	10.226	10.276	10.379	-
	V	175.312	179.307	182.309	181.018	179.719	178.41	178.863	-
160.0	М	0.5 88	0.6	0.6	0.6	0.6	0.619	-	-
	q_{km}	11.369	11.165	11.016	10.949	11.026	11.138	-	-
	V	181.166	183.59	182.309	181.018	179.719	184.06	-	-
170.0	М	0.6	0.6	0.6	0.6	0.619	-	-	-
	q_{km}	11.917	11.75	11.678	11.741	11.881	-	-	-
	V	184.863	183.59	182.309	181.018	185.41	-	-	-
180.0	М	0.6	0.6	0.6	0.615	-	-	-	-
	q_{km}	12.495	12.413	12.459	12.587	-	-	-	-
	V	184.863	183.59	182.309	185.544	-	-	-	-
190.0	М	0.6	0.6	0.61	-	-	-	-	-
	q_{km}	13.159	13.181	13.294	-	-	-	-	-
	V	184.863	183.59	185.347	-	-	-	-	-

Изменения характеристик при постоянной высоте и оптимальной скорости полета:

Изменения характеристик при оптимальном изменении высоты и оптимальной скорости полета:

Изменения характеристик при эшелонированном полете:

Сравнение израсходованного топлива и времени полета по сравнению с оптимальной траекторией

Режим	<i>т</i> _{изр} , %	T,%
Полет по оптимальной траек-	100	100
тории		
Полет на $H=8500{ m M}$	101.87	99.69
Полет эшелонированный по-	100.12	99.75
лет $\Delta H=300\mathrm{M}$		

Зависимость расхода топлива от количества полетов

Заключение

- В данной работе мы определили основные летно-технические характеристики, область располагаемых высот и скоростей полета, практический и статические потолок, взлетно-посадочные характеристики, параметры правильного виража, характеристики продольной устойчивости и управляемости.
- Синтезировали систему стабилизации высоты в тангажном варианте.
- Также провели исследование характеристик эшелонированного полета из которого следует, экономически целесообразно проводить эшелонированный полет. Выигрыш в топливе по сравнению с полетом на постоянной высоте в нашем случае составляет порядка 1.8 %.