

Theoretische Grundlagen der Informatik

Tutorium 6

Institut für Theoretische Informatik

 \mathcal{NP} ist (analog zu \mathcal{P}) die Klasse aller Sprachen, die von einer nichtdeterministischen Turingmaschine in Polyzeit erkannt werden.

Anmerkung: Die Frage, ob $\mathcal{P} = \mathcal{NP}$ gilt oder nicht, ist ein großes, offenes Problem.

Grundidee: \mathcal{NP} -Entscheider

Ublicherweise geht eine NTM, die ein Problem aus \mathcal{NP} entscheidet, folgendermaßen vor:

- 1. Rate sogenannten "Zeugen" dafür, dass $x \in L$ (nichtdeterministisch)
- 2. Überprüfe, ob Zeuge korrekt (in Polyzeit).
- 3. Falls ja akzeptiere; falls nein, lehne ab.

Man spricht daher auch von den effizient verifizierbaren Entscheidungsproblemen.

Definition aus dem Skript (S. 56)

"Lasch" ausgedrückt: Π gehört zu \mathcal{NP} , falls Π folgende Eigenschaft hat: Ist die Antwort bei Eingabe eines Beispiels / von Π "Ja", so kann die Korrektheit der Antwort in polynomieller Zeit überprüft werden.

Ist diese Formulierung so korrekt?

Zeigen, dass ein Problem in $\mathcal{N}\mathcal{P}$ liegt

Gegeben: Entscheidungsproblem Π **Aufgabe:** Zeige, dass $\Pi \in \mathcal{NP}$ gilt.

Lösung

- 1. Gib an, was das NTM-Orakel als **Zeugen** für die Lösung auf das Band schreiben könnte.
- Zeige, dass solch ein Zeuge in polynomieller Zeit von einer DTM verifiziert werden kann.

Beispiel

Zeige: $SAT \in \mathcal{NP}$.

" $SAT \in \mathcal{NP}$ gilt, da für eine gegebene Variablenbelegung in polynomieller Zeit von einer DTM überprüft werden kann, ob sie erfüllend ist."

Zeitkomplexität

Definition aus der Übung

Berechnungszeit für NTM \mathcal{M} mit Eingabe $x \in \Sigma^*$:

$$t(x) := \begin{cases} \text{\# Schritte der } \textit{schnellsten} \text{ akzeptierenden} \\ \text{Berechnung, falls } x \in L(\mathcal{M}) \\ \text{1, sonst} \end{cases}$$

Zeitkomplexitätsfunktion $\mathcal{T}_{\mathcal{M}}: \mathbb{N}_0 \to \mathbb{N}$

$$T_{\mathcal{M}}(n) := \max \{ t(x) \mid |x| = n \}$$

Aufgabe

Sei ${\mathcal M}$ eine NTM (RV-Modell) mit Zeitkomplexitätsfunktion

 $T_{\mathcal{M}}: \mathbb{N}_0 \to \mathbb{N}.$

Die Funktion $T_{\mathcal{M}}$ sei durch $f: \mathbb{N}_0 \to \mathbb{N}$ beschränkt und f sei berechenbar.

Zeige: Die von $\mathcal M$ akzeptierte Sprache $L(\mathcal M)$ ist entscheidbar.

Aufgabe

Sei $\mathcal M$ eine NTM (RV-Modell) mit Zeitkomplexitätsfunktion

 $T_{\mathcal{M}}: \mathbb{N}_0 \to \mathbb{N}.$

Die Funktion $T_{\mathcal{M}}$ sei durch $f: \mathbb{N}_0 \to \mathbb{N}$ beschränkt und f sei berechenbar.

Zeige: Die von $\mathcal M$ akzeptierte Sprache $L(\mathcal M)$ ist entscheidbar.

Lösungsskizze

Baue TM, die $L(\mathcal{M})$ entscheidet, wie folgt: Sei x die Eingabe und n := |x|.

- Berechne f(n)
- Für alle Orakelwörter bis Länge f(n):
 - Simuliere M mit aktuellem Orakelwort
 - lacktriangle Falls $\mathcal M$ akzeptiert, akzeptiere
 - lacktriangle Falls $\mathcal M$ ablehnt oder mehr als f(n) Schritte braucht, probiere nächstes Orakelwort
- Falls $\mathcal M$ für kein Orakelwort akzeptiert, lehne ab.

Wiederholung: Polynomielle Transformation

Definition (Vorlesung)

Eine polynomielle Transformation einer Sprache L₁ in eine Sprache L₂ ist eine Funktion $f: \Sigma_1^* \to \Sigma_2^*$ mit den Eigenschaften:

- 1. *f* ist in polynomieller Zeit von einer deterministischen TM berechenbar.
- 2. Für alle x gilt: $x \in L_1 \iff f(x) \in L_2$

Wir schreiben dann: $L_1 \propto L_2$ (L_1 ist polynomiell transformierbar in (reduzierbar auf) L_2).

- L₂ ist das "schwerere" Problem.
- Kann man L_2 entscheiden, so kann man mit polynomiellem Aufwand auch L₁ entscheiden.

\mathcal{NP} -Schwere

 \mathcal{NP} -Schwere Eine Sprache L_1 ist \mathcal{NP} -schwer gdw.

$$\forall L_2 \in \mathcal{NP} : L_2 \propto L_1$$

Anmerkung: In diesem Sinne sind die \mathcal{NP} -schweren Probleme mindestens so schwer zu lösen wie alle Probleme in \mathcal{NP} .

Transitivität von Polyreduktionen und \mathcal{NP}

Polynomielle Transformationen sind transitiv, d.h. wenn $L_1 \propto L_2$ und $L_2 \propto L_3$, dann gilt auch $L_1 \propto L_3$.

Ist $L_3 \in \mathcal{NP}$, so wissen wir, dass auch L_1 sowie $L_2 \in \mathcal{NP}$. Man spricht auch davon, L_1 und L_2 auf L_3 polynomiell reduziert zu haben.

Gegeben eine Sprache L_N , von der wir wissen, dass sie \mathcal{NP} -schwer ist, was wäre ein möglicher Ansatz, um für eine weitere Sprache L_X die \mathcal{NP} -Schwere zu beweisen?

Transitivität von Polyreduktionen und \mathcal{NP}

Polynomielle Transformationen sind transitiv, d.h. wenn $L_1 \propto L_2$ und $L_2 \propto L_3$, dann gilt auch $L_1 \propto L_3$.

Ist $L_3 \in \mathcal{NP}$, so wissen wir, dass auch L_1 sowie $L_2 \in \mathcal{NP}$. Man spricht auch davon, L_1 und L_2 auf L_3 polynomiell reduziert zu haben.

Gegeben eine Sprache L_N , von der wir wissen, dass sie \mathcal{NP} -schwer ist, was wäre ein möglicher Ansatz, um für eine weitere Sprache L_X die \mathcal{NP} -Schwere zu beweisen?

Man zeigt $L_N \propto L_X$.

\mathcal{NP} -Vollständigkeit

Eine Sprache L ist \mathcal{NP} -vollständig genau dann, wenn

 $L \in \mathcal{NP}$

sowie

L ist \mathcal{NP} -schwer

- \Rightarrow \mathcal{NP} -vollständige Probleme sind die "schwersten" Probleme aus \mathcal{NP} .
- Interessant vor allem, da man aus Aussagen über \mathcal{NP} -vollständige Probleme viel über alle Probleme aus \mathcal{NP} schließen kann.
- Wäre etwa $SAT \in \mathcal{P}$, so wäre $\mathcal{P} = \mathcal{NP}$. (Warum?)

CLIQUE

Problem

Gegeben: Graph G = (V, E) und ein Parameter $K \le |V|$ **Frage:** Gibt es in G eine Clique der Größe mindestens K?

Erinnerung

Eine Clique ist ein vollständig verbundener Teilgraph, also eine Menge $V' \subseteq V$, so dass für alle $i, j \in V'$ mit $i \neq j$ gilt: $(i, j) \in E$.

Dieses Problem ist \mathcal{NP} -vollständig.

CLIQUE-Beispiel

Hat dieser Graph eine 3-CLIQUE?

CLIQUE-Beispiel

- Hat dieser Graph eine 3-CLIQUE?
- Hat dieser Graph eine 4-CLIQUE?

- $CLIQUE \in \mathcal{NP}$: trivial
- CLIQUE \mathcal{NP} -schwer: Wir zeigen 3SAT \propto CLIQUE. (Warum?)

- CLIQUE $\in \mathcal{NP}$: trivial
- CLIQUE \mathcal{NP} -schwer: Wir zeigen 3 $SAT \propto CLIQUE$. (Warum?) Wir müssen eine polynomielle Transformation von 3SAT-Instanzen in CLIQUE-Instanzen angeben. (Warum?)

Beispiel

Reduktion folgender 3*SAT*-Instanz auf eine *CLIQUE*-Instanz:

$$C = \{(x_1 \lor x_2 \lor x_3), (x_1 \lor \overline{x_2} \lor \overline{x_3}), (\overline{x_1} \lor x_2 \lor x_3)\}$$

CLIQUE-Beispiel

Hat dieser Graph eine 3-CLIQUE?

CLIQUE-Beispiel

- Hat dieser Graph eine 3-CLIQUE?
- Hat dieser Graph eine 4-CLIQUE?

Sei $C = \{c_1, \dots, c_n\}$ eine 3*SAT*-Instanz mit

$$c_i = x_{i,1} \lor x_{i,2} \lor x_{i,3} \text{ mit } x_{i,j} \in \{u_1, \dots, u_m, \overline{u_1}, \dots, \overline{u_m}\}$$

Konstruiere eine CLIQUE-Instanz (G = (V, E), K) folgendermaßen:

$$V := (v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, \dots, v_{n,1}, v_{n,2}, v_{n,3})$$

Jeder Knoten steht also für ein Literal in der 3SAT-Instanz.

$$E := \left\{ \left(v_{i,j}, v_{k,m} \right) \middle| x_{i,j} \neq \overline{x_{k,m}} \land i \neq k \right\}$$

Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen.

$$K := n$$

Sei $C = \{c_1, \dots, c_n\}$ eine 3*SAT*-Instanz mit

$$c_i = x_{i,1} \lor x_{i,2} \lor x_{i,3} \text{ mit } x_{i,j} \in \{u_1, \dots, u_m, \overline{u_1}, \dots, \overline{u_m}\}$$

Konstruiere eine CLIQUE-Instanz (G = (V, E), K) folgendermaßen:

$$V := (v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, \dots, v_{n,1}, v_{n,2}, v_{n,3})$$

Jeder Knoten steht also für ein Literal in der 3 SAT-Instanz.

$$E := \left\{ \left(v_{i,j}, v_{k,m} \right) \middle| x_{i,j} \neq \overline{x_{k,m}} \land i \neq k \right\}$$

Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen.

$$K := n$$

Sei $C = \{c_1, \dots, c_n\}$ eine 3*SAT*-Instanz mit

$$c_i = x_{i,1} \lor x_{i,2} \lor x_{i,3} \text{ mit } x_{i,j} \in \{u_1, \ldots, u_m, \overline{u_1}, \ldots, \overline{u_m}\}$$

Konstruiere eine CLIQUE-Instanz (G = (V, E), K) folgendermaßen:

$$V := (v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, \ldots, v_{n,1}, v_{n,2}, v_{n,3})$$

Jeder Knoten steht also für ein Literal in der 3*SAT*-Instanz.

$$E := \left\{ (v_{i,j}, v_{k,m}) \,\middle|\, x_{i,j} \neq \overline{x_{k,m}} \land i \neq k \right\}$$

Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen.

$$K := n$$

Sei $C = \{c_1, \dots, c_n\}$ eine 3*SAT*-Instanz mit

$$c_i = x_{i,1} \lor x_{i,2} \lor x_{i,3} \text{ mit } x_{i,j} \in \{u_1, \dots, u_m, \overline{u_1}, \dots, \overline{u_m}\}$$

Konstruiere eine *CLIQUE*-Instanz (G = (V, E), K) folgendermaßen:

$$V := (v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, \dots, v_{n,1}, v_{n,2}, v_{n,3})$$

Jeder Knoten steht also für ein Literal in der 3*SAT*-Instanz.

$$E := \left\{ (v_{i,j}, v_{k,m}) \mid x_{i,j} \neq \overline{x_{k,m}} \land i \neq k \right\}$$

Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen.

$$K := n$$

Sei $C = \{c_1, \dots, c_n\}$ eine 3*SAT*-Instanz mit

$$c_i = x_{i,1} \lor x_{i,2} \lor x_{i,3} \text{ mit } x_{i,j} \in \{u_1, \dots, u_m, \overline{u_1}, \dots, \overline{u_m}\}$$

Konstruiere eine *CLIQUE*-Instanz (G = (V, E), K) folgendermaßen:

$$V := (v_{1,1}, v_{1,2}, v_{1,3}, v_{2,1}, \dots, v_{n,1}, v_{n,2}, v_{n,3})$$

Jeder Knoten steht also für ein Literal in der 3*SAT*-Instanz.

$$E := \left\{ (v_{i,j}, v_{k,m}) \mid x_{i,j} \neq \overline{x_{k,m}} \land i \neq k \right\}$$

Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen.

$$K := n$$

- Wenn eine *n*-Clique existiert:
 - n erfüllbare Literale
 - Alle in jeweils unterschiedlichen Klauseln (da Literalknoten in derselben Klausel nicht verbunden sind)
 - orfüllende Wahrheitsbelegung
- Wenn eine erfüllende Wahrheitsbelegung existiert:
 - In jeder Klausel mindestens ein Literal erfüllt
 - Nimm aus jeder Klausel ein erfülltes Literal
 - Diese bilden zusammen eine Clique nach Definition des Graphen: "Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und

Also: C ist Ja-Instanz von $3SAT \Leftrightarrow (G, K)$ ist Ja-Instanz von CLIQUE.

Transformation ist außerdem in Polyzeit machbar \Rightarrow 3SAT \propto CLIQUE \Rightarrow CLIQUE ist \mathcal{NP} -schwer.

Da *CLIQUE* \mathcal{NP} -schwer ist und in \mathcal{NP} liegt \Rightarrow *CLIQUE* \mathcal{NP} -vollstand

- Wenn eine *n*-Clique existiert:
 - n erfüllbare Literale
 - Alle in jeweils unterschiedlichen Klauseln (da Literalknoten in derselben Klausel nicht verbunden sind)
 - v erfüllende Wahrheitsbelegung
- Wenn eine erfüllende Wahrheitsbelegung existiert:
 - In jeder Klausel mindestens ein Literal erfüllt
 - Nimm aus jeder Klausel ein erfülltes Literal
 - Diese bilden zusammen eine Clique nach Definition des Graphen: "Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen."

Also: C ist Ja-Instanz von $3SAT \Leftrightarrow (G, K)$ ist Ja-Instanz von CLIQUE.

Transformation ist außerdem in Polyzeit machbar \Rightarrow 3SAT \propto CLIQUE \Rightarrow CLIQUE ist \mathcal{NP} -schwer.

Da $CLIQUE \mathcal{NP}$ -schwer ist und in \mathcal{NP} liegt $\Rightarrow CLIQUE \mathcal{NP}$ -volls

- Wenn eine n-Clique existiert:
 - n erfüllbare Literale
 - Alle in jeweils unterschiedlichen Klauseln (da Literalknoten in derselben Klausel nicht verbunden sind)
 - vy erfüllende Wahrheitsbelegung
- Wenn eine erfüllende Wahrheitsbelegung existiert:
 - In jeder Klausel mindestens ein Literal erfüllt
 - Nimm aus jeder Klausel ein erfülltes Literal
 - Diese bilden zusammen eine Clique nach Definition des Graphen: "Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen."

Also: C ist Ja-Instanz von $3SAT \Leftrightarrow (G, K)$ ist Ja-Instanz von CLIQUE.

Transformation ist außerdem in Polyzeit machbar \Rightarrow 3SAT \propto CLIQUE \Rightarrow CLIQUE ist \mathcal{NP} -schwer.

Da $CLIQUE \mathcal{NP}$ -schwer ist und in \mathcal{NP} liegt $\Rightarrow CLIQUE \mathcal{NP}$ -vollst

- Wenn eine *n*-Clique existiert:
 - n erfüllbare Literale
 - Alle in jeweils unterschiedlichen Klauseln (da Literalknoten in derselben Klausel nicht verbunden sind)
 - vy erfüllende Wahrheitsbelegung
- Wenn eine erfüllende Wahrheitsbelegung existiert:
 - In jeder Klausel mindestens ein Literal erfüllt
 - Nimm aus jeder Klausel ein erfülltes Literal
 - Diese bilden zusammen eine Clique nach Definition des Graphen: "Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen."

Also: C ist Ja-Instanz von $3SAT \Leftrightarrow (G, K)$ ist Ja-Instanz von CLIQUE.

Transformation ist außerdem in Polyzeit machbar \Rightarrow 3SAT \propto CLIQUE \Rightarrow CLIQUE ist \mathcal{NP} -schwer.

Da $CLIQUE \mathcal{NP}$ -schwer ist und in \mathcal{NP} liegt $\Rightarrow CLIQUE \mathcal{NP}$ -vollstä

- Wenn eine n-Clique existiert:
 - n erfüllbare Literale
 - Alle in jeweils unterschiedlichen Klauseln (da Literalknoten in derselben Klausel nicht verbunden sind)
 - vy erfüllende Wahrheitsbelegung
- Wenn eine erfüllende Wahrheitsbelegung existiert:
 - In jeder Klausel mindestens ein Literal erfüllt
 - Nimm aus jeder Klausel ein erfülltes Literal
 - Diese bilden zusammen eine Clique nach Definition des Graphen: "Zwei Knoten sind verbunden, wenn sie gleichzeitig erfüllbar sind und nicht in der gleichen Klausel stehen."

Also: C ist Ja-Instanz von $3SAT \Leftrightarrow (G, K)$ ist Ja-Instanz von CLIQUE.

Transformation ist außerdem in Polyzeit machbar \Rightarrow 3SAT \propto CLIQUE \Rightarrow CLIQUE ist \mathcal{NP} -schwer.

Da *CLIQUE* \mathcal{NP} -schwer ist und in \mathcal{NP} liegt \Rightarrow *CLIQUE* \mathcal{NP} -vollständig.

\mathcal{NP} -Vollständigkeit eines Problems zeigen

Gegeben: Entscheidungsproblem Π

Aufgabe: Zeige, dass Π \mathcal{NP} -vollständig ist. [evtl: Benutze hierzu die \mathcal{NP} -Vollständigkeit von X.]

Lösung

- 1. Zeige: $\Pi \in \mathcal{NP}$ (!)
- 2. Finde ein passendes \mathcal{NP} -vollständiges Problem X bzw. wähle das X aus der Aufgabenstellung.
- 3. "Sei eine Instanz I von X gegeben. Konstruiere daraus eine Instanz I' von Π wie folgt: . . . " \to Konstruktion beschreiben
- 4. Zeige, dass Ja-Instanzen genau auf Ja-Instanzen abgebildet werden.
- 5. Erwähne, dass die Konstruktion in **polynomieller Zeit** geht.

Allgemeines zu \mathcal{NP} -Vollständigkeitsbeweisen

In der Regel ist es schwer zu zeigen, dass ein Problem \mathcal{NP} -schwer ist, aber leicht zu zeigen, dass ein Problem in \mathcal{NP} liegt.

Da man üblicherweise ein \mathcal{NP} -vollständiges Problem als Vorausetzung für die Reduktion benötigt (Ausnahme: Satz von Cook), lohnt es sich einige kennen zu lernen.

Bis zum nächsten Mal!

DID YOU INTEND THE PRESENTATION TO BE INCOMPREHENSIBLE, OR DO YOU HAVE SOME SORT OF RARE "POWER-POINT" DISABILITY?

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme, Hierfür gelten die Bestimmungen der jeweiligen Urheber,