Important Formulas

- ightharpoonup Newtons Second Law F = ma
- Formula of Weight w = mg
- **>** Relation Between Force and Momentum $F = \frac{\Delta P}{T}$
- ightharpoonup Centripetal Force $F_c = \frac{mv^2}{r}$
- Frictional Force $F_s = \mu mg$
- > Relation Between Force and Momentum

$$F = \frac{\triangle p}{\triangle t}$$

> Impulse

$$Impulse = F \times \triangle t$$

$$Impulse = \frac{\triangle p}{\triangle t} \times \triangle t$$

$$Impulse = \triangle p$$

$$Impulse = Change in momentum$$

- 3.1. A 10~kg block is placed on a smooth horizontal surface. A horizontal force of 5~N is applied to the block. Find:
 - (a) the acceleration produced in the block.
 - (b) the velocity of block after 5 seconds.

Given Data

Mass of block =
$$m = 10 \text{ kg}$$

Force = $F = 5 \text{ N}$
Initial velocity = $v_i \neq 0 \text{ ms}^{-1}$

To Find

Acceleration =
$$a = ?$$

Final velocity = $v_f = ?$

Solution

According to second law of motion

$$F = ma$$

 $5 = (10) (a)$
 $\frac{5}{10} = a$
 $0.5 = a$
 $a = 0.5 ms^{-2}$

Now by using first equation of motion

$$v_f = v_i + at$$

 $v_f = 0 + (0.5)(5)$
 $v_f = 0 + 2.5$
 $v_f = 2.5 \text{ ms}^{-1}$

3.2. The mass of a person is $80 \ kg$. What will be his weight on the Earth? What will be his weight on the Moon? The value of acceleration due to gravity of Moon is $1.6 \ ms^{-2}$.

Given Data

$$Mass\ of\ body = m = 80\ kg$$

$$Value\ of\ g\ on\ the\ surface\ of\ Earth = g_E = 10\ ms^{-2}$$

$$Value\ of\ g\ on\ the\ surface\ of\ Moon = g_M = 1.6\ ms^{-2}$$

To Find

Weight on the surface of Earth =
$$w_E = \mathbf{Y}$$
. Weight on the surface of Moon = \mathbf{W} ?

Solution

By using formula of weight w = mg

$$w_E = mg_E$$

$$w_E = (80)(10)$$

$$w_E = 800 N$$

Now again by using formula of weight w = mg

$$w_M = mg_M$$

$$w_M = (80)(1.6)$$

$$w_M = 128 N$$

3.3. What force is required to increase the velocity of $800 \, kg$ car from $10 \, ms^{-1}$ to $30 \, ms^{-1}$ in seconds?

Given Data

Mass of
$$car = m = 800 kg$$

Initial velocity = $v_i = 10 ms^{-1}$
Final velocity = $v_f = 30 ms^{-1}$
Time = $t = 10 s$

To Find

$$Force = F = ?$$

Solution

According to second law of motion

$$F = ma$$

$$F = (m) \left(\frac{v_f - v_i}{t}\right)$$

$$F = (800) \left(\frac{30 - 10}{10}\right)$$

$$F = (800) \left(\frac{20}{10}\right)$$

$$F = (800)(2)$$

$$F = 1600 N$$

3.4. A 5 g bullet is fired by a gun. The bullet moves with a velocity of $300\ ms^{-1}$. If the mass of the gun is $10\ kg$, find the recoil speed of the gun.

Given Data

Mass of bullet =
$$m = 5 g$$

$$m = \frac{5}{1000} kg$$

$$m = 0.005 kg$$

$$Velocity of bullet = v = 300 ms^{-1}$$

$$Mass of gun = M = 10 kg$$

To Find

Recoil speed of the gun = V = ?

Solution

According to law of conservation of momentum

Negative sign indicates the gun recoils. *i. e* move in backward direction opposite to the motion of bullet.

- 3.5. An astronaut weighs 70 kg. He throws a wrench of mass 300 g at a speed of 3.5 ms^{-1} . Determine:
 - (a) the speed of astronaut as he recoils away from the wrench.
 - (b) the distance covered by the astronaut in 30 minutes.

Given Data

Mass of astronaut =
$$M = 70 \text{ kg}$$

Mass of wrench = $m \in 300 \text{ g}$
 $m = \frac{300}{1000} \text{ kg}$
 $m = 0.3 \text{ kg}$
Speed of wrench = $v = 3.5 \text{ ms}^{-1}$
Time = $t = 30 \text{ min}$.
 $t = 30 \times 60 \text{ s}$
 $t = 1800 \text{ s}$

IO FINO

Recoil speed of the astronaut = V = ?Distance covered in 30 minutes = S = ?

Solution

According to law of conservation of momentum

Total momentum before throwing
$$0 = MV + mv$$

$$0 = (70)V + (0.3)(3.5)$$

$$0 = 10V + 1.05$$

$$-1.05 = 70V$$

$$\frac{-1.05}{70} = V$$

$$-0.015 = V$$

$$V = -0.015 ms^{-1}$$

$$V = -1.5 \times 10^{-2} ms^{-1}$$

Negative sign indicates the astronaut recoils (moves in the opposite direction of the wrench).

Now by using formula of distance

$$S = Vt$$

 $S = (0.015)(1800)$
 $S = 27 m$

We don't take negative speed for distance because: Distance is always positive. The negative sign shows direction, not how far something moves.

3.6. A $6.5 \times 10^3~kg$ bogie of a goods train is moving with a velocity of $0.8~ms^{-1}$. Another bogie of mass $9.2 \times 10^3~kg$ coming from behind with a velocity of $1.2~ms^{-1}$ collides with the first one and couples to it. Find the common velocity of the two bogies after they become coupled.

Given Data

Mass of first bogie = $m_1 = 6.5 \times 10^3 \ kg$ Velocity of first bogie = $v_1 = 0.8 \ ms^{-1}$ Mass of second bogie = $m_2 = 9.2 \times 10^3 \ kg$ Velocity of second bogie = $v_2 = 1.2 \ ms^{-1}$

To Find

Common velocity after coupling = V = ?

Solution

According to law of conservation of momentum

$$\begin{array}{l} {\it Total\ momentum}\\ {\it before\ couple} \end{array} = \frac{{\it Total\ momentum}}{{\it after\ couple}}\\ {\it m_1v_1 + m_2v_2} = {\it m_1V + m_2V}\\ {\it m_1v_1 + m_2v_2} = {\it V(m_1 + m_2)}\\ {\it (6.5 \times 10^3)(0.8) + (9.2 \times 10^3)(1.2)} = {\it V[(6.5 \times 10^3) + (9.2 \times 10^3)]}\\ {\it 5200 + 11040} = {\it V(15700)}\\ \hline {\it \frac{16240}{15700}} = {\it V}\\ {\it 1.03} = {\it V}\\ {\it V} = {\it 1.03\ ms^{-1}} \end{array}$$

3.7. A cyclist weighing $55\ kg$ rides a bicycle of mass $5\ kg$. He starts from rest and applies a force of $90\ N$ for $8\ seconds$. Then he continues at a constant speed for another $8\ seconds$. Calculate the total distance travelled by the cyclist.

Given Data

Mass of cyclist =
$$m_1 = 55 kg$$

Mass of bicycle = $m_2 = 5 kg$
Total mass = $m = 55 kg + 5 kg$
 $m = 60 kg$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: https://hira-science-academy.github.io

Force applied = F = 90 NTime of acceleration = $t_1 = 8 s$ Time of constant speed = $t_2 = 8 s$ Initial speed = $v_i = 0 ms^{-1}$

To Find

Total distance travelled = S = ?

Solution

According to second law of motion

$$F = ma$$

$$90 = (60) (a)$$

$$\frac{90}{60} = a$$

$$1.5 = a$$

$$a = 1.5 \text{ ms}^{-2}$$

Now by using first equation of motion

$$v_f = v_i + at_1$$

 $v_f = 0 + (1.5)(8)$
 $v_f = 0 + 12$
 $v_f = 12 \text{ ms}^{-1}$

Distance covered **during acceleration** by using second equation of motion

$$S_1 = v_i t_1 + \frac{1}{2} a t_1^2$$

$$S_1 = (0)(8) + \frac{1}{2} (1.5)(8)^2$$

$$S_1 = 0 + \frac{1}{2} (1.5)(64)$$

$$S_1 = 0 + 48$$

$$S_1 = 48 m$$

Distance covered at **constant speed** by formula S = vt

$$S_2 = v_f t_2$$

 $S_2 = (12)(8)$
 $S_2 = 96 m$

Total distance travelled $= S = S_1 + S_2$ S = 48 m + 96 m

3.8. A ball of mass $0.4\ kg$ is dropped on the floor from a height of $1.8\ m$. The ball rebounds straight upward to a height of $0.8\ m$. What is the magnitude and direction of the impulse applied to the ball by the floor?

Given Data

Mass of ball = m = 0.4 kgDrop height = $h_1 = 1.8 m$ Rebound height = $h_2 = 0.8 m$ Acceleration due to gravity = $g = 10 ms^{-2}$

To Find

Impulse (magnitude and direction = ?

Solution

Since the ball is dropped so, $v_i = 0.05^{-1}$

$$2gh_{f} = v_{f}^{2} - v_{i}^{2}$$

$$2(10)(1.8) = v_{f}^{2} - (0)^{2}$$

$$36 = v_{f}^{2}$$

$$v_{f}^{2} = 36$$

$$\sqrt{v_{f}^{2}} = \sqrt{36}$$

$$v_{f} = \pm 6 \text{ ms}^{-1}$$

But since the ball is moving downward, we select the negative root. i.e

$$v_f = v_{before} = -6 \, ms^{-1}$$

At maximum rebound height, $v_f = 0 \; ms^{-1}$

$$2gh_2 = v_f^2 - v_i^2$$

$$2(-10)(0.8) = (0)^2 - v_i^2 \quad (\because ball moving upward)$$

$$-16 = -v_i^2$$

$$v_i^2 = 16$$

$$\sqrt{v_i^2} = \sqrt{16}$$

$$v_i = \pm 4 \ ms^{-1}$$

But since the ball is moving upward, we select the positive root. $i.\,e$

$$v_i = v_{after} = 4 \, ms^{-1}$$

Now by using formula of impulse

$$Impulse = Change in momentum$$

$$= \triangle p$$

$$= p_f - p_i$$

$$= mv_f - mv_i$$

$$= m(v_f - v_i)$$

$$= m(v_{after} - v_{befor})$$

$$= (0.4)[4 - (-6)]$$

$$= (0.4)[10]$$

$$Impulse = 4 Ns$$

The **positive result** means the impulse is **upward** (floor pushes the ball up).

Note: In physics, we always choose a reference direction to be positive.

For vertical motion:

- We choose upward as positive (by convention).
- So, any velocity in the upward direction is positive.
- And any velocity in the downward direction is negative.
- 3.9. Two balls of masses 0.2~kg and 0.4~kg are moving towards each other with velocities $20~ms^{-1}$ and $5~ms^{-1}$ respectively. After collision, the velocity of 0.2~kg ball becomes $6~ms^{-1}$. What will be the velocity of 0.4~kg ball?

Given Data

Mass of ball $A=m_1=0.2~kg$ Mass of ball $B=m_2=0.4~kg$ Initial velocity of ball $A=v_1=20~ms^{-1}$ Initial velocity of ball $B=v_2=-5~ms^{-1}$ (opposite direction) Final velocity of ball $A=v_1'=6~ms^{-1}$

To Find

Final velocity of ball $B = v_2' = ?$

Solution

According to law of conservation of momentum

total momentum of the system before collision =
$${}^{total} momentum of the system before collision} = {}^{total} momentum of the system after collision}$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$(0.2)(20) + (0.4)(-5) = (0.2)(6) + (0.4)(v_2')$$

$$4 - 2 = 1.2 + (0.4)(v_2')$$

$$2 - 1.2 = 0.4v_2'$$

$$0.8 = 0.4v_2'$$

$$0.8 = v_2'$$

$$2 = v_2'$$

$$v_2' = 2 \ ms^{-1}$$

ction is

are

1 ms⁻¹
relocity of
e velocity

tirection)

Mobile: 03338114798

Page ${f 4}$ of ${f 4}$