Introdução a Aprendizagem de Máquina Utilizando a Linguagem Python

Prof^o Gustavo Miranda gustavo.oliveira@penedo.ufal.br

Tópicos da Aula

- Introdução a Inteligência Artificial
- Definições e Conceitos da Inteligência Artificial
- Introdução a Aprendizagem de Máquina
- Exemplo de Classificação de Dados
- Aplicação de Árvore de Decisão na Classificação de Dados

Quem sou eu?

Professor Gustavo Miranda:

- Doutor em Inteligência Computacional UFPE
- Mestre em Inteligência Computacional UFPE
- Graduado em Licenciatura em Computação UPE
- Experiência nos seguintes campos:
 - Machine Learning
 - Ciência de Dados

Informações Adicionais

• https://github.com/GustavoHFMO

Introdução a Inteligência Artificial

Crescimento de Dados Digitais

- Nos últimos anos, aplicações do mundo real têm lidado com um grande crescimento na quantidade de dados digitais.
 - o Uso de celulares, sensores, redes sociais, aplicações entre outros.

Crescimento Contínuo de Dados

NOTICIAS-CORPORATIVAS

Compras Online: após pandemia, setor registra 40% de crescimento e vendas pela internet tornam-se a modalidade favorita dos consumidores

29 de junho de 2020 💿 243 Visualizações 🗐 4 minutos para ler

TECNOLOGIA

Tráfego de internet no Brasil cresce 6 vezes nas redes da Angola Cables na pandemia

Dado foi apresentado pelo CEO da Angola Cables durante o Futurecom Digital Summit

2 4 de julho de 2020 🛮 4 minutos de leitura

Claro estreia serviço de internet 5G no Brasil a partir da semana que vem

Operadora implementará a novidade em São Paulo e no Rio de Janeiro inicialmente, regiões com maior demanda de trafego de dados no País

Início > Análises > Brasil registra 33,2 milhões de contratos de Internet fixa em maio

Análise

Brasil registra 33,2 milhões de contratos de Internet fixa em maio

Por Henrique Julião - 09/07/20, 18:26 Atualizado em 13/07/20, 13:30

Entendimento dos Dados

O que fazer com os dados armazenados?

- Os analistas de dados perceberam que conhecimento pode ser extraído desses dados.
 - Conhecimento vale dinheiro.

Surgimento de Áreas de Pesquisa

Quase 60% das empresas admitem que pandemia ampliou demanda por soluções que aplicam inteligência artificial, aponta estudo global

IA na Mídia Convencional

Why artificial intelligence is enjoying a renaissance - Economist¹

How Cognitive Systems Could Redefine The Way Governments Work - Forbes²

Artificial-Intelligence Experts Are in High Demand

- The Wall Street Journal³

Artificial Intelligence Swarms Silicon Valley on Wings and Wheels

- The New York Times4

March of the machines

What history tells us about the future of artificial intelligence—and how society should

respond - Economist⁵

We have to upgrade our skills to match intelligent machines - Business Insider⁶

4º Revolução Industrial

- A IA é uma das maiores facetas dessa revolução.
- Ela afetará quase todos os setores, assim como nas Revoluções Industriais anteriores.

Aplicações da Inteligência Artificial

Automação com IA

- Detecção de anomalias em máquinas usando uma rede neural.
 - Leituras anômalas de sensores preveem possíveis falhas em máquinas.
- Robôs soldadores:
 - Detecção preventiva de falhas e avaliação de manutenção.

O Carro Autônomo

- Veículos automáticos têm se tornado cada vez mais acessíveis.
- Carros vão se **comunicar, socializar e colaborar com outras coisas**, incluindo outros veículos, semáforos, estacionamentos e revendedores.

Carro Conectado Hoje

 Produz mais de 25 gb de dados toda hora.

Conectado com:

- 0 fabricante para compartilhar alertas e registros de performance.
- Proporciona uma experiência única ao passageiro.

Audi usa Aprendizado de Máquina

- Dados são coletados de sensores para determinar a posição e as dimensões dos carros.
- O Aprendizado de máquina otimiza o movimento dos carros e melhora o uso do espaço.

Aplicações da Inteligência Artificial

Reconhecimento Facial

Recomendação de Produtos

Recomendação de Vídeos

Níveis de Dificuldade em Jogos

Aplicações da Inteligência Artificial

Reconhecimento de voz: entendimento da linguagem natural.

Reconhecimento de caligrafias: reconhecer assinaturas.

Tradução de texto: por exemplo, do inglês para o português.

Filtros de correios eletrônicos: separando mensagens potencialmente perigosas das mensagens permitidas.

Definições e Conceitos da Inteligência Artificial

Inteligência Artificial (IA)

"Podemos definir inteligência artificial, no grosso modo, como a capacidade das máquinas de pensarem como seres humanos: aprender, perceber e decidir quais caminhos seguir, de forma racional, diante de determinadas situações."

IA Fraca

Focada em realizar tarefas específicas.

• Exemplo:

 Comprar um livro através de um dispositivo de voz.

IA Abrangente

 Utilizam conhecimento e dados de uma indústria para treinar seus sistemas.

• Exemplos:

- Carros autônomos.
- ∘ Coleção de IA Fracas.
- Tomam decisões.

IA Forte

 Máquinas que podem desempenhar trabalho intelectual como um humano.

• Exemplo:

 Atualmente a IA não consegue elaborar ideias criativas.

Aprendizagem de Máquina

 "Machine learning é uma área da ciência da computação que significa Aprendizado de Máquina. Faz parte do conceito de Inteligência Artificial, que busca meios de ensinar a máquina a realizar tarefas que seriam executadas por pessoas."

Introdução a Aprendizagem de Máquina

Tipos de Aprendizado de Máquina

Aprendizado Supervisionado

- São apresentados ao computador exemplos de entradas e saídas desejadas, fornecidas por um "professor".
- O objetivo é aprender uma regra geral que mapeia as entradas e saídas.
- Exemplos de entrada e saída:
 - Entrada: foto; Saída: nome da pessoa.

Aprendizado Não-supervisionado

- Nenhum tipo de saída é dada ao algoritmo de aprendizado. O algoritmo por conta própria forma grupos com os dados mais semelhantes.
- Descobrir padrões nos dados:
 - Identificar grupos:
- Exemplos de entradas:
 - Entrada: várias fotos de três pessoas diferentes.

Aprendizado Por Reforço

- O programa desempenha uma atividade em um ambiente dinâmico.
- O ambiente dinâmico fornece ao programa **premiações** e **punições**, na medida que ele explora as opções.
- **Exemplo:** Melhorar a estratégia de jogo apenas jogando contra um oponente.

Subáreas de Aprendizagem de Máquina

Aplicações do Aprendizado Supervisionado

Classificação:

- Classificar novos exemplos em grupos existentes.
- Ex: reconhecimento facial.

• Regressão:

- Estimar um valor flutuante baseando em informações passadas.
- Ex: previsão do mercado de ações.

Aplicações do Aprendizado Não-Supervisionado

Agrupamento de dados:

- Verifica os dados mais semelhantes e os agrupa.
- Ex: agrupar fotos da mesma pessoa.

• Sistemas de Recomendação:

- Baseado nas características do usuário, recomenda opções semelhantes.
- Ex: recomendação de produtos ou filmes.

Aplicações do Aprendizado Por Reforço

• IA em Games:

- Verifica quais golpes geram mais efeitos e quais são mais punidos.
- Ex: níveis de dificuldade em jogos de luta.

Navegação de Robôs:

- Aprende a navegar pelo terreno a partir da experiência.
- Ex: robôs enviados para navegar em marte.

Exemplo de Classificação de Dados

Exemplo de Classificação de Dados

 Uma empresa de botânica precisa de um sistema capaz de classificar plantas do tipo íris nas suas três subespécies de maneira automática.

Classificação de Espécies

• As **três espécies da flor íris** são **muito semelhantes** e levam a confusão de não especialistas durante a classificação.

Papel do Especialista

- Um dos critérios a serem considerados é a existência de profissionais especialistas que tenham um bom domínio do conhecimento relacionado ao problema.
- Os dados na base de conhecimento são essencialmente adicionados por seres humanos especialistas em um domínio específico.

Reconhecer Padrões nos Dados

- ____
 - Dados de Entrada (X):
 - Sépala:
 - Comprimento.
 - Largura.
 - Pétala:
 - Comprimento.
 - Largura.
 - Dados de Saída (Y):
 - Tipo de flor.

Conjunto de Dados

• Agrupamento de variáveis do mesmo interesse em um **arquivo organizado.**

Coletas	Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento	Classe
1	5.1	3.5	1.4	0.2	Setosa
2	4.9	3.0	1.4	0.2	Setosa
3	6.4	3.5	4.5	1.2	Versicolor
4	5.9	3.0	5.0	1.8	Versicolor
• • •	• • •	• • •	• • •	• • •	• • • •
150	5.8	5.1	4.1	3	Virginica

Coletas	Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento	Classe
1	5.1	3.5	1.4	0.2	Setosa
2	4.9	3.0	1.4	0.2	Setosa
3	6.4	3.5	4.5	1.2	Versicolor
4	5.9	3.0	5.0	1.8	Versicolor
• • •		• • •	• • •	• • •	• • •
150	5.8	5.1	4.1	3	Virginica

Quantidade de exemplos para treinamento = N

Coletas	Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento	Classe
1	5.1	3.5	1.4	0.2	Setosa
2	4.9	3.0	1.4	0.2	Setosa
3	6.4	3.5	4.5	1.2	Versicolor
4	5.9	3.0	5.0	1.8	Versicolor
• • •		• • •	• • •	• • •	
150	5.8	5.1	4.1	3	Virginica

Coletas	Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento	Classe
1	5.1	3.5	1.4	0.2	Setosa
2	4.9	3.0	1.4	0.2	Setosa
3	6.4	3.5	4.5	1.2	Versicolor
4	5.9	3.0	5.0	1.8	Versicolor
• • •	• • •	• • •	• • •	• • •	
150	5.8	5.1	4.1	3	Virginica

Dados de Saída = Y -

Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento	Classe
5.1	3.5	1.4	0.2	Setosa
4.9	3.0	1.4	0.2	Setosa
6.4	3.5	4.5	1.2	Versicolor
5.9	3.0	5.0	1.8	Versicolor
• • •	• • •	• • •	• • •	• • • •
5.8	5.1	4.1	3	Virginica
	Largura 5.1 4.9 6.4 5.9	Largura Cumprimento 5.1 3.5 4.9 3.0 6.4 3.5 5.9 3.0	Largura Cumprimento Largura 5.1 3.5 1.4 4.9 3.0 1.4 6.4 3.5 4.5 5.9 3.0 5.0	Largura Cumprimento Largura Cumprimento 5.1 3.5 1.4 0.2 4.9 3.0 1.4 0.2 6.4 3.5 4.5 1.2 5.9 3.0 5.0 1.8

Coletas	Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento	Classe
1	5.1	3.5	1.4	0.2	Setosa
2	4.9	3.0	1.4	0.2	Setosa
3	6.4	3.5	4.5	1.2	Versicolor
4	5.9	3.0	5.0	1.8	Versicolor
• • •	• • •	• • •	• • •	• • •	• • • •
150	5.8	5.1	4.1	3	Virginica

Classe y_t da respectiva observação x_t

Extração de Características dos Dados

• Os dados devem ser separados por classe para a extração de características.

Sépala Largura	Sépala Cumprimento	Pétala Largura	Pétala Cumprimento
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2

Classe	
Setosa	
Setosa	

Classe Setosa

6.4	3.5	4.5	1.2
5.9	3.0	5.0	1.8

Versicolor
Versicolor

Classe Versicolor

• • •	• • •	• • •	• • •
5.8	5.1	4.1	3

Classe Virginica

Aprendizado Sobre os Dados

Aprendizado Sobre os Dados

Para entender como funciona o processo de classificação, algumas etapas são necessárias:

1) Visualização dos dados.

3) Ajuste das fronteiras de decisão.

2) Criação das fronteiras de decisão.

4) Classificação de novos exemplos.

Visualização dos Dados

■ A visualização **do espaço de características** ajuda a **entender a distribuição dos dados** e escolher **o algoritmo adequado.**

Versicolour Setosa Seto

Dados com três atributos.

Dados com dois atributos.

Construção das Fronteiras de Decisão

- Fronteiras de decisão:
 - Modelagens computacionais que separam os dados de entrada (X) de acordo com suas respectivas classes (Y).
- As fronteiras de decisão são criadas durante **treinamento supervisionado** e representam o **conhecimento/aprendizado** sobre os dados.
- Cada algoritmo de aprendizado supervisionado cria suas fronteiras de decisão de maneira diferente.

Árvore de Decisão

Árvore de Decisão

- Árvores são **estruturas de dados** formadas por um conjunto de elementos:
 - Raiz: característica com mais ligação para outros elementos.
 - Nós: informações que ligam a outros elementos.
 - Folhas: informações terminais que não possuem ligações.
- Uma árvore de decisão é um algoritmo que armazena um conjunto de regras, em que suas folhas representam a decisão a ser tomada.

Exemplo de Entrada de uma Árvore

- Decisão:
 - o devo esperar por uma mesa em um restaurante?
- Entradas:
 - 1. Alternativa: há um restaurante alternativo na redondeza?
 - 2. Bar: existe um bar confortável onde se esperar?
 - 3. Sexta/Sábado: hoje é sexta ou sábado?
 - 4. Faminto: estou com fome?
 - 5. Público: número de pessoas no restaurante (Nenhuma (N), Algumas (A),
 - Lotado (L)).
 - 7. **Preço:** faixa de preços (R\$, R\$\$, R\$\$\$).
 - 8. Chovendo: está a chover?
 - 9. Reserva: temos reserva?
 - 10. Tipo: tipo do restaurante (francês, italiano, tailandês).
 - 11. Tempo de espera: tempo de espera estimado (0-10, 10-30, 30-60, >60).

Exemplo de Entrada de uma Árvore

Algoritmo ID3

- 0 algoritmo ID3 (inductive decision tree) é dos mais utilizados para a construção de árvores de decisão. Este algoritmo segue os seguintes passos:
 - 1. Recebe os dados de treinamento.
 - 2. Escolhe o atributo que melhor divide os exemplos.
 - Cria nos filhos para cada valor possível ao atributo.
 - 4. Transporta os exemplos para cada nó filho.
 - 5. Repete o procedimento até que todos os exemplos sejam comportados.
- Como saber qual o melhor atributo a escolher?
 - Entropia: mede a aleatoriedade de uma variável.
 - Ganho: mede a redução da entropia.

Fronteiras de Decisão de uma Árvore

Aprendizado Sobre os Dados

Treinamento

- O treinamento consiste em realizar o ajuste de pesos das camadas intermediarias baseado nos tipos de entradas e saídas recebidas.
- Durante a etapa de treinamento,
 é realizado o cálculo de erro.
 0 erro verifica o quão próximo
 a rede está do resultado
 esperado. Logo, o objetivo do
 treinamento é minimizar o erro.

Cuidados no Treinamento

- **Generalização:** consegue replicar bem o conhecimento aprendido.
- Overfitting: decora o treinamento e erra o teste.
- Underfitting: não aprende devidamente os padrões.

Generalização

Overfitting

Underfitting

Divisão dos Dados para Treinamento

- Treinamento: utiliza-se os dados para ensinar a rede os padrões existentes.
- Validação: utilizado APENAS para avaliar o desempenho da rede DURANTE o treinamento em dados não treinados (Generalização).
- Teste: simula uma situação real, em que a rede seria utilizada como uma ferramenta de tomada de decisão.

 Critério de parada: aumento do erro no conjunto de validação.

Classificação de Novos Exemplos

• Após ser treinado, o sistema computacional **recebe uma observação sem classe** e estima a classificação para esse exemplo.

As classificações são utilizadas para as **tomadas de decisões** de acordo com os requisitos da empresa/usuário.

Classificação de Novos Exemplos

1) Dados de treinamento. 2) Aprendizado sobre os dados. 3) Recebimento de novos dados. 4) Classificação de novos dados.

Avaliação do Resultado

$$Accuracy = \frac{Number of correct predictions}{Total number of predictions}$$

Introdução a Aprendizagem de Máquina Utilizando a Linguagem Python

Prof^o Gustavo Miranda gustavo.oliveira@penedo.ufal.br

