

	mercol	edì 4 o	ttohro 1	0017	16:1	7																			
														•											
)					4 /L E																	
				0	l	<u> </u>	اہا		A	RN	۵٦		SIF	<i>ا</i> لار	>	۵	۱۷	EKS	î	T	ľΔ	Ć	6M (5	
								G.	(8			1.	/	7	2	\				\ /	/		
								Ο,		ď	-0	17		٩		<u>`</u> _	_)				V			
								1		Т		1						<u> </u>							
								b			7		8	4		8 1	7					\times			
															·										
								0	<u> </u>	C. ~		_				_					•				
																ر ، ر									
									E	LE	Μ,	EN	70		(-טר		T		U.	5	دُر	A	CTI	ci

```
mercoledì 4 ottobre 2017 16:22
  FURMALIZZIAMO IL PROSLEMA
     \forall i \in [0, \delta im). \forall j \in (0, \delta im). (a[i]!=a[j])
        FISSIAMO i E RISOLVIAMO QUETTO SOTTOPROBLEMA
             ] Je [o, dim). (a[i) == a[s] n i!= 5)
VADO A
VEDERE DE CI SOND
DUE ELEMENT CON
 INDICI DIVERSI MA
   CUI VALORI NECL'ARRAY SONO UCUALI
          int diversoi (int al), int dim, inti) {
              imT 5=0;
              int ok=1;
              while (jedim Le ok) {
                  if (a[i) == a[]) (( i!= ])
                j++;
                               0K=0;
              neturn ox;
```

ADESSO CHE LO DEFINITO divesoi a FORMULA ∀ie[o,δim). ∀Je[o,δim). (a[i)!=a[j] v i==j) DI VENTA EQUIVACENTE tie Co, Sim). diversoi (a, dim, i) CiDE DEVO VERIFICARE Fie [o, sim). (! diversoi (a, sim, i)) E FOLSO int Tuttidiveri (int a[], dim) { imT i=0; int ok= 1; while (ix dim 66 60e) { if (!divesoi (a, dim, i)) 3 i ++; 0x=0; PEN OGNI neturn ok; ECEMENTO DECCORDY JROD A VERIFICAL Che SiA DIUELSO DA Tom GC. ACTAI

tie[o, δim-n). + 5 ∈ [i+1, δim). a[i]!= α[j) ∃ J € [i+1, dim). a(i)==a(J) Facso NOTA: SE CLIAMO a[i]=X QUESTO E QUASI ULUALE ALLA MEMBER SOLO CLE PARTO DALLA POSITIONE 1+1 int member i (int at), int dim, int i) { Int 5= 1+1; INT OK=1; while (Jedim 44 ove) } if (a(i)==a(s)) 1 2++; OK=0, neturn ox; 3 ORA 03UO RISULVERE ₩i∈[o, dim).!memberi(a, dim, i)

n	nercoled	dì 4 ottob	re 2017	17:02	2																					
					QU	, ,		~																		
					QC	/\ \\	119(
							, _	+	_	T (17	۲ ً ا	.	\circ	. •		, -	<u> </u>	^	1	٦	,		د	. \	2
							1~	1		1 0	-	(0	ιO) I	-	11	- 1			J	, 10	~,	-017	~)	1
									,	<u>~</u> [! =	0	`,												
													<u>'.</u> _													
									V	ιh	, C	_		ic	9	[~	•	46	6	K)) 4	<u> </u>				
													-										•		1	1
											it	-		- (^	en	ωĹ)e/	. ((<i>ہ</i> ,	<i>み</i>	· ~~	` /	i))
													(らん	~ /	٠ ·										
															· _ \	_/										
									7) 1	< +	,														
)																
									\cap	et	∪^	\sim		oK	j											
						ζ									Ť											
						J																				

mercoledì 4 ottobre 2017 17:33 -0 PROBLEMI CON 2 ARRAY dati due array a e b di dimensioni dima e dimb venificane se Titi gli elementi del primo 6022040 AVERESSIONIS Somo anche element del secondo: DINEVIE + i∈[0, dima). ∃ σ ∈ [0, dimb). a[i)== b[s] TROVATE LA SEXUZIONE NEQUI APPORTI OSL CONSO A (BARBUTI) DEC 2/10 dati due amay a e b di dimensione dina e dimb verficare sa esiste un elemento in a che conisponde alla somme desti e Cement di b Ji∈ [o, sima). a[i] = \[\] \[\] JETO, Simb)

ESERCIZi:

-O SCRIVERE UND FUNCIONE CHE, DATO UN ARMY A
DI DIMENSIONE DIM , VERIFICA LA SEQUENTE
PROPRIETA:

₩i ∈ [o, δim-1). a[i] < a[i+1]

SCRIVERE UNA FUNZIONE CHE, DATO UN ARMI Q DI DIMENSIONE DIM, NERIFICA LA SECUENTE ROPRIETA:

] i ∈ [o, dim). a[i] = [a[s]

Je[o,i)

SCRIVERE UNA FUNZIONE CHE, DATO UN ARMY OL.

DI DIMENSIONE DIM, VERIFICA LA SEQUENTE

ROPRIETA:

ANCORA ESERCITI

- DATO UN ARMY a Di DIMENSIONE dim

CALCOLARE

#{i | i \in [1, dim-1) \nati] = \geq a[3) \nati] = \geq a[3] \}

\[
\frac{1}{5\in [0, i)} \]
\[
\frac{1}{5\in [i+1, \dim]} \]

-s DATI DUE ARRAY a E b si simensioni

dima E dimb VERIFICARE LA SEQUENTE

PROPRIETA-:

 $\forall i \in [0, \delta i m a)$. $\exists J \in [0, \delta i m b)$. $\exists k \in [0, \delta i m b)$. $(a[i] == b[J] \land a[i] == b[k])$