Common Mistakes in Mathematical Induction

Zhang Yichi

October 4, 2012

1 No Basis Step

2 Wrong Inductive Step

Examples 1 Prove that for all integers $n \ge 1$, $2^{2n} - 1$ is divisible by 3.

Proof. Basis Step: Want to show: $2^{2\cdot 1} - 1$ is divisible by 3.

Note that $2^{2\cdot 1} - 1 = 2^2 - 1 = 3 = 3\cdot 1$, therefore $2^{2\cdot 1} - 1$ is divisible by 3. Therefore P(1) is true.

Inductive Step: Suppose for $k \ge 1$, P(k) is true, i.e., $2^{2k} - 1$ is divisible by 3, i.e.,

$$2^{2k} - 1 = 3 \cdot m$$

for some $m \in \mathbb{Z}$.

We want to show: P(k+1) is true, i.e., $2^{2(k+1)} - 1$ is divisible by 3.

We know that $a^n - 1 = (a-1)(a^{n-1} + a^{n-2} + \dots + a^2 + a + 1)$, so we have $2^{2(k+1)} - 1 = (2^2)^{k+1} - 1 = 4^{k+1} - 1 = (4-1)(4^k + 4^{k-1} + \dots + 4^2 + 4 + 1) = 3(4^k + 4^{k-1} + \dots + 4^2 + 4 + 1)$.

Since $k \in \mathbb{Z}$, the number in the last bracket is an integer, so $2^{2(k+1)} - 1$ is divisible by 3.

Therefore P(k+1) is true. Therefore the statement is true by mathematical induction.

Remark In the inductive step, we assume that P(k) is true, so when deriving P(k+1), we must use the result of P(k).

Correct Proof

Proof. Basis Step: Want to show: $2^{2\cdot 1} - 1$ is divisible by 3.

Note that $2^{2\cdot 1} - 1 = 2^2 - 1 = 3 = 3\cdot 1$, therefore $2^{2\cdot 1} - 1$ is divisible by 3. Therefore P(1) is true.

Inductive Step: Suppose for $k \ge 1$, P(k) is true, i.e., $2^{2k} - 1$ is divisible by 3, i.e.,

$$2^{2k} - 1 = 3 \cdot m$$

for some $m \in \mathbb{Z}$.

We want to show: P(k+1) is true, i.e., $2^{2(k+1)} - 1$ is divisible by 3. Note that

$$2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4 \cdot 2^{2k} - 1 = 4(2^{2k} - 1) + 3 = 4 \cdot 3m + 3 = 3(4m+1)$$

is divisible by 3.

Therefore P(k+1) is true. Therefore the statement is true by mathematical induction.

Examples 2 Determine whether for all odd integers n, 7^n+1 is divisible by 8.

Proof. Basis Step: When $n=1, 7^1+1=8$ is divisible by 8, therefore P(1) is true.

Inductive Step: Suppose for $k \ge 1$, P(k) is true, i.e., $7^k + 1$ is divisible by 8, i.e.,

$$7^k + 1 = 8m$$

for some $m \in \mathbb{Z}$.

Consider P(k+1).

Note that

$$7^{k+1} + 1 = 7 \cdot 7^k + 1 = 77^k + 1 - 6 = 7 \cdot 8m - 6$$

which is not divisible by 8. Therefore the statement is false.

Therefore the statement is not true by mathematical induction.

Remark Notice that in the question, n must be an odd number, so we cannot use P(k+1) directly, but P(k+2) instead.

Correct Proof

Proof. Basis Step: When $n = 1, 7^1 + 1 = 8$ is divisible by 8, therefore P(1) is true.

Inductive Step: Suppose for odd integer $k \ge 1$, P(k) is true, i.e., $7^k + 1$ is divisible by 8, i.e.,

$$7^k + 1 = 8m$$

for some $m \in \mathbb{Z}$.

Consider P(k+2).

Note that

$$7^{k+2} + 1 = 49 \cdot 7^k + 1 = 49(7^k + 1) - 48 = 49 \cdot 8m - 48 = 8(49m - 6)$$

is divisible by 8.

Therefore P(k+1) is true. Therefore the statement is true by mathematical induction.

Examples 3 Prove that $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+1} > 1$.

Proof. Basis Step: When n=1, $LHS=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1$, therefore P(1) is true.

Inductive Step: Suppose for odd integer $k \ge 1, P(k)$ is true, i.e.,

$$\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{3k+1} > 1.$$

Consider P(k+2).

We want to show: P(k+1) is true.

Note that

$$\frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{3k} + \frac{1}{3(k+1)+1} > 1 + \frac{1}{3(k+1)+1}$$

Therefore P(k+1) is true. Therefore the statement is true by mathematical induction.

Remark We must pay attention to the difference between P(k) and P(k+1), namely the denominators are consecutive integers.

Correct Proof

Proof. Basis Step: When n=1, $LHS=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1$, therefore P(1) is true.

Inductive Step: Suppose for odd integer $k \ge 1$, P(k) is true, i.e.,

$$\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{3k+1} > 1.$$

Consider P(k+2).

We want to show: P(k+1) is true.

Note that

$$\frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{3k} + \frac{1}{3k+1} + \frac{1}{3k+2} + \frac{1}{3k+3} + \frac{1}{3(k+1)+1}$$

$$= \left(\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{3k} + \frac{1}{3k+1}\right) + \frac{1}{3k+2} + \frac{1}{3k+3} + \frac{1}{3(k+1)+1} - \frac{1}{k+1}$$

$$> 1 + \frac{1}{3k+2} + \frac{1}{3(k+1)+1} - \frac{2}{3(k+1)} = 1 + \frac{6k+6}{(3k+2)(3k+4)} - \frac{6k+6}{(3(k+1))^2} > 1$$

Therefore P(k+1) is true. Therefore the statement is true by mathematical induction.