

Introduction aux Probabilités 2022/2023

Plan

- 1. Rappels d'analyse combinatoire
- 2. Fondements de la Théorie des Probabilités
- 3. Variables aléatoires réelles
 - 3.1. discrètes
 - 3.2. continues
- 4. Moments d'une variable aléatoire
- 5. Couple de variables aléatoires réelles et Indépendance
- 6. Vecterus aléatoires
- 7. Théorèmes limites
- 8. Chaînes de Markov discrètes

Couple de variables aléatoires

Cas discret

Cas continue

Moments

Fonction caractéristique et fonction génératrice

600 personnes (clients d'un magasin des produits pour les animaux de compagnie) d'âge différent ont été interrogées sur leur préférence des chats ou des chiens :

	-		
<18 ans	80	125	
18-30 ans	110	90	
>30 ans	95	100	
			600

$$\begin{cases} 80 + 125 + 110 \\ +90 + 95 + 100 \\ = 600 \end{cases}$$

Qu'est-ce qu'on peut dire sur la probabilité de préférer les chats et avoir un certain âge ?

<18 ans	80	125	205	$\begin{cases} 80 + 125 = 205 \end{cases}$
18-30 ans	110	90	200	
>30 ans	95	100	195	
•	285	315	600	
80 -	+ 110 + 95 =	285	-	

600 personnes (clients d'un magasin des produits pour les animaux de compagnie) d'âge différent ont été interrogées sur leur préférence des chats ou des chiens :

Les valeurs du tableau ne sont pas des probabilités $0 \le \mathbb{P} \le 1$

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

Loi de probabilité à 2 v.a.r.

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

$$\begin{cases} 0.13 \ge 0 \\ 0.21 \ge 0 \\ 0.18 \ge 0 \\ 0.15 \ge 0 \\ 0.16 \ge 0 \\ 0.17 \ge 0 \end{cases}$$

$$0.13 + 0.21 + 0.18 + 0.15 + 0.16 + 0.17 = 1$$

Loi de probabilité à 2 v.a.r.

$$0.13 + 0.21 + 0.18 + 0.15 + 0.16 + 0.17 = 1$$

Fonction de masse du coupe de v.a.r.

La fonction de masse du couple de v.a.r. (X,Y) (joint probability mass function) est définie comme :

$$\mathbb{P}_{XY}(x,y) = \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x \text{ et } Y=y) = \mathbb{P}(X=x \ \cap \ Y=y)$$
 où :

•
$$\sum_{(x_i, y_j)} \mathbb{P}_{XY}(x_i, y_j) = 1$$

• $\forall (x_i, y_j) : \mathbb{P}_{XY}(x_i, y_j) \ge 0$

>30 ans	U.16	U.1/	0.33
	0.47	0.53	1

Fonction de masse du coupe de v.a.r.

0.20

0.18

0.16

0.14

Fonction de répartition du couple de v.a.r.

La fonction de répartition (joint cumulative distribution function) du couple de v.a.r. (X,Y) est une application $F_{XY}: \mathbb{R}^2 \to \mathbb{R}$ telle que :

$$F_{XY}(x,y) \ = \ \mathbb{P}(X \le x,Y \le y), \forall \ (x_i,y_j) \ \in \mathbb{R}_{XY}$$
 où $0 \le F_{XY}(x,y) \le 1$.
$$\bullet \quad \lim_{x \to X} F_{XY}(x,y) = 0$$

•
$$\lim_{\substack{x \to -\infty \\ y \to -\infty}} F_{XY}(x, y) = 0$$

•
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} F_{XY}(x, y) = 1$$

•
$$\lim_{x \to -\infty} F_{XY}(x, y) = \lim_{y \to -\infty} F_{XY}(x, y) = 0$$

Fonction de répartition du couple de v.a.r.

 $F_{XY}(x,y)$ correspond à la probabilité que (X,Y) appartienne à la region bornée par x et y:

Quelle est la probabilité qu'une personne appartienne à une tranche d'âge sans tenir compte de ses préférences de chats ou chiens ?

	-		
<18 ans	0.13	0.21	0.13 + 0.21 = 0.34
18-30 ans	0.18	0.15	0.18 + 0.15 = 0.33
>30 ans	0.16	0.17	0.16 + 0.17 = 0.33
	0.47	0.53	1

Quelle est la probabilité qu'une personne appartienne à une tranche d'âge sans tenir

compte de ses préférences de chats ou chiens ?

				oi marginale (marginal robability distribution)
	-			
<18 ans	0.13	0.21	0.34	
18-30 ans	0.18	0.15	0.33	
>30 ans	0.16	0.17	0.33	
,	0.47	0.53	1	_

Quelle est la probabilité qu'une personne aiment des chats ou chiens sans tenir compte de son âge ?

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

Loi marginale (marginal probability distribution)

On appele **la loi marginale** (margin probability ou simple probability) du couple (X, Y) de v.a.r. discrètes :

$$\forall x \in \mathbb{R}_X: \mathbb{P}_X(x) = \sum_{y_j \in \mathbb{R}_Y} \mathbb{P}_{XY}(x_i, y_j)$$

$$\forall y \in \mathbb{R}_Y$$
: $\mathbb{P}_Y(y) = \sum_{x_i \in \mathbb{R}_X} \mathbb{P}_{XY}(x_i, y_j)$

Soit (X,Y) un couple de v.a.r. de fonction de répartition $F_{XY}(x,y)$.

On appelle **fonctions de répartition marginales** (marginal CDFs) de X et Y les fonctions définis comme suit :

$$\forall x \in \mathbb{R}_X: F_X(x) = F_{XY}(x, \infty) = \lim_{y \to \infty} F_{XY}(x, y)$$

$$\forall y \in \mathbb{R}_Y : F_Y(y) = F_{XY}(\infty, y) = \lim_{x \to \infty} F_{XY}(x, y)$$

Soit (X,Y) un couple de v.a.r. Soit $x_1 \leq x_2, y_1 \leq y_2$, où $x_1, x_2, y_1, y_2 \in \mathbb{R}$.

Alors:

$$\mathbb{P}(x_1 < X \le x_2, y_1 < Y \le y_2)
= F_{XY}(x_2, y_2) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1)$$

Quelle est la probabilité qu'une personne interrogée préfère les chiens ?

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

$$\mathbb{P}(\mathbf{\heartsuit} chien) = 0.53$$

Quelle est la probabilité qu'une personne interrogée préfère les chats ET soit de la tranche d'âge 18-30 ?

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

$$\mathbb{P}(\mbox{ψ chat} \cap 18-30 \ ans) = 0.18$$

Quelle est la probabilité qu'une personne interrogée préfère les chats OU soit de la tranche d'âge 18-30 ?

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

Quelle est la probabilité qu'une personne interrogée préfère les chats OU soit de la tranche d'âge 18-30 ?

 $\mathbb{P}(\heartsuit chat \cup 18-30 \ ans) = \mathbb{P}(\heartsuit chat) + \mathbb{P}(18-30 \ ans) - \mathbb{P}(\heartsuit chat \cap 18-30 \ ans)$

Quelle est la probabilité qu'une personne interrogée préfère les chats OU soit de la tranche d'âge 18-30 ?

			$\mathbb{P}(A \cup B) = 1$	$\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$
<18 ans	0.13	0.21	0.34	
18-30 ans	0.18	0.15	0.33	
>30 ans	0.16	0.17	0.33	
	0.47	0.53	1	

$$\mathbb{P}(\propto chat \cup 18-30 \ ans) = \mathbb{P}(\propto chat) + \mathbb{P}(18-30 \ ans) - \mathbb{P}(\propto chat \cap 18-30 \ ans) = 0.47 + 0.33 - 0.18 = 0.8 - 0.18 = 0.62$$

Albert de 21 ans va adopter un animal de compagnie. Quelle est la probabilité qu'il préfère les chiens ?

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

$$\mathbb{P}(\mathbf{\heartsuit} chien | 18-30 \ ans) = ?$$

Albert de 21 ans va adopter un animal de compagnie. Quelle est la probabilité qu'il préfère les chiens ?

			$\mathbb{P}(A)$
<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

$$\mathbb{P}(\mathbf{\heartsuit} chien | 18-30 \ ans) = ?$$

Albert de 21 ans va adopter un animal de compagnie. Quelle est la probabilité qu'il

préfère les chiens?

			P(,	$A(B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
<18 ans	0.13	0.21	0.34	
18-30 ans	0.18	0.15	0.33	
>30 ans	0.16	0.17	0.33	
	0.47	0.53	1	_

$$\mathbb{P}(\mathbf{\heartsuit}chien|18-30\ ans) = \frac{0.15}{0.33} \approx 0.45$$

préférence des chats / chiens sachant la tranche d'âge :

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
$\mathbb{P}(animal \mid 18-30 \ ans)$	0.55	0.45	1
TOTAL:	0.47	0.53	1

Loi conditionnelle (conditional probability distribution)

Quelle est la probabilité qu'une personne ait un certain âge sachant qu'elle préfère les chats ?

<18 ans	0.13	0.21	0.34
18-30 ans	0.18	0.15	0.33
>30 ans	0.16	0.17	0.33
	0.47	0.53	1

$$\mathbb{P}(age|chat) = ?$$

Quelle est la probabilité qu'une personne ait un certain âge sachant qu'elle préfère les chats ?

$$\mathbb{P}(age|chat) = ?$$

Quelle est la probabilité qu'une personne ait un certain âge sa chats ?

Loi conditionnelle (conditional probability distribution)

				aistribution)
	-15	III	$\mathbb{P}(age chat)$	
<18 ans	0.13	0.21	$\frac{0.13}{0.47} = 0.28$	0.34
18-30 ans	0.18	0.15	$\frac{0.18}{0.47} = 0.38$	0.33
>30 ans	0.16	0.17	$\frac{0.16}{0.47} = 0.34$	0.33
	0.47	0.53	1	1

$$\mathbb{P}(age|chat) = ?$$

Soit (X, Y) un couple de v.a.r. discrètes.

On appelle fonction de masse conditionnelle (conditional PMF of X given $Y = y_j$) de X sachant $Y = y_j$, l'application p telle que :

$$\forall x_i \in \mathbb{R}_X, \qquad p: x_i \to \mathbb{P}_{X|Y}(x_i, y_j) = \mathbb{P}(X = x_i \mid Y = y_j)$$
$$= \frac{\mathbb{P}(X = x_i, Y = y_j)}{\mathbb{P}(Y = y_j)} = \frac{\mathbb{P}_{XY}(x_i, y_j)}{\mathbb{P}_Y(y_j)}$$

La loi conditionnelle de X sachant Y=A est donc la loi définie par cette fonction de masse.

Loi conditionnelle

Soit (X, Y) un couple de v.a.r. discrètes.

On appelle **fonction de répartition conditionnelle** (conditional CDF of X given $Y=y_j$) de X sachant $Y=y_j$ l'application $F_X^{\left[Y=y_j\right]}$ de $\mathbb R$ dans [0,1] définie pour tout $x\in\mathbb R$ par :

$$F_X^{[Y=y_j]}(x) = F_{X|Y=y_j}(x) = \mathbb{P}(X \le x|Y=y_j) = \frac{\mathbb{P}(X \le x, Y=y_j)}{\mathbb{P}(Y=y_j)}$$

Remarque : il est possible de définir d'une manière plus générale la loi conditionnelle de X sachant n'importe quel évènement A:

$$\forall x_i \in \mathbb{R}_X, \qquad \mathbb{P}_{X|A}(x_i) = \mathbb{P}(X = x_i|A) = \frac{\mathbb{P}(X = x_i|A)}{\mathbb{P}(A)}$$

La fonction de répartition de X sachant A est donc donnée par :

$$F_{X|A}(x) = \mathbb{P}(X \le x|A)$$

Est-ce que la préférence des chats ou des chiens et l'âge d'une personne sont

indépendants?

			$\mathbb{P}(age chat)$	
<18 ans	0.13	0.21	0.28	0.34
18-30 ans	0.18	0.15	0.38	0.33
>30 ans	0.16	0.17	0.34	0.33
	0.47	0.53	1	1

Est-ce que la préférence des chats ou des

chiens et l'âge d'une personne sont

indépendants?

 $\mathbb{P}(A|B) = \mathbb{P}(A) \Leftarrow A \text{ et } B \text{ ind\'ependants}$

	-6		$\mathbb{P}(age \mathit{chat})$	
<18 ans	0.13	0.21	0.28	0.34
18-30 ans	0.18	0.15	0.38	0.33
>30 ans	0.16	0.17	0.34	0.33
	0.47	0.53	1	1

Est-ce que la préférence des chats ou des chiens et l'âge d'une personne sont

and a sur doubte 2

indépendants?

	15	••••	P(age cnat)	
<18 ans	0.13	0.21	0.28	0.34
18-30 ans	0.18	0.15	0.38	0.33
>30 ans	0.16	0.17	0.34	0.33
	0.47	0.53	1	1

$$\mathbb{P}(18-30 \ ans \mid chat) = 0.38$$

 $\mathbb{P}(18-30 \ ans) = 0.33$
 $0.38 \neq 0.33$

Est-ce que la préférence des chats ou des chiens et l'âge d'une personne sont

indépendants?

 $\mathbb{P}(A|B) = \mathbb{P}(A) \Leftarrow A \text{ et } B \text{ indépendants}$

	-	TT.	$\mathbb{P}(age chat)$	
<18 ans	0.13	0.21	0.28	0.34
18-30 ans	0.18	0.15	0.38	0.33
>30 ans	0.16	0.17	0.34	0.33
	0.47	0.53	1	1

$$\mathbb{P}(18-30 \ ans \mid chat) = 0.38$$

 $\mathbb{P}(18-30 \ ans) = 0.33$
 $0.38 \neq 0.33$

PAS indépendants

Est-ce que la préférence des chats ou des chiens et l'âge d'une personne sont

.

indépendants?

	-		$\mathbb{P}(age chat)$	$\mathbb{P}(age \ chien)$	
<18 ans	0.13	0.21	0.28	0.4	0.34
18-30 ans	0.18	0.15	0.38	0.28	0.33
>30 ans	0.16	0.17	0.34	0.32	0.33
	0.47	0.53	1	1	1

Est-ce que la préférence des chats ou des chiens et l'âge d'une personne sont

indépendants?

 $\mathbb{P}(A|B) = \mathbb{P}(A) \iff A \text{ et } B \text{ ind\'ependants}$

	-		$\mathbb{P}(age chat)$	$\mathbb{P}(age \ chien)$	
<18 ans	0.13	0.21	0.28	0.4	0.34
18-30 ans	0.18	0.15	0.38	0.28	0.33
>30 ans	0.16	0.17	0.34	0.32	0.33
	0.47	0.53	1	1	1

Les valeurs des probabilités conditionnelles et les probabilités marginales ne sont pas les mêmes

PAS indépendants

Est-ce que la préférence des chats ou des

chiens et l'âge d'une personne sont

indépendants?

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B) \Leftrightarrow A \text{ et } B \text{ ind\'ependants}$

			$\mathbb{P}(age \mathit{chat})$	$\mathbb{P}(age \ chien)$	
<18 ans	0.13	0.21	0.28	0.4	0.34
18-30 ans	0.18	0.15	0.38	0.28	0.33
>30 ans	0.16	0.17	0.34	0.32	0.33
·	0.47	0.53	1	1	1

Est-ce que la préférence des chats ou des

chiens et l'âge d'une personne sont

indépendants?

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B) \Leftrightarrow A \text{ et } B \text{ ind\'ependants}$

	-		$\mathbb{P}(age \mathit{chat})$	$\mathbb{P}(age \ chien)$	
<18 ans	0.13	0.21	0.28	0.4	0.34
18-30 ans	0.18	0.15	0.38	0.28	0.33
>30 ans	0.16	0.17	0.34	0.32	0.33
	0.47	0.53	1	1	1

$$\mathbb{P}(18-30 \ ans \cap chat) = 0.18$$

 $\mathbb{P}(18-30 \ ans) \times \mathbb{P}(chat) = 0.33 \times 0.47 = 0.16$
 $0.18 \neq 0.16$

PAS indépendants

X et Y sont indépendantes (independent) si :

$$\forall x \in \mathbb{R}_X, \forall y \in \mathbb{R}_Y, \mathbb{P}(X \leq x, Y \leq y) = \mathbb{P}(X \leq x) \times \mathbb{P}(Y \leq y)$$

Ce qui est équivalent à :

$$\forall x \in \mathbb{R}_X, \forall y \in \mathbb{R}_Y, F_{XY}(x, y) = F_X(x) \times F_Y(y)$$

Doit X et Y deux v.a.r. discrètes. X et Y sont **indépendantes** ssi :

$$\forall x \in \mathbb{R}_X, \forall y \in \mathbb{R}_Y, \mathbb{P}_{XY}(x,y) = \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$$

Si X et Y sont indépendantes, alors :

$$\mathbb{P}_{X|Y}(x_i, y_j) = \mathbb{P}(X = x_i \mid Y = y_j) = \frac{\mathbb{P}_{XY}(x_i, y_j)}{\mathbb{P}_{Y}(y_j)} = \frac{\mathbb{P}_{X}(x_i) \times \mathbb{P}_{Y}(y_j)}{\mathbb{P}_{Y}(y_j)} = \mathbb{P}_{X}(x_i)$$

Cas discret

Cas continue

Moments

Fonction caractéristique et fonction génératrice

Soit X et Y deux v.a.r. continues. Les variables aléatoires X et Y sont appelées **absolument continues** (jointly continuous r.v.) s'il existe une fonction $f_{XY}: \mathbb{R}^2 \to \mathbb{R}^2$ \mathbb{R} non-négative telle que pour tout ensemble $A \in \mathbb{R}^2$ on a :

$$\forall A \in \mathbb{R}^2, \mathbb{P}((X,Y) \in A) = \iint_{(x,y)\in A} f_{XY}(x,y) dxdy$$

La fonction $f_{XY}(x,y)$ est appelée la fonction de densité de probabilité jointe ou loi jointe (joint probability density function ou joint PDF) de v.a.r. \$X\$ et \$Y\$.

Les propriétés de $f_{XY}(x,y)$:

- 1. $f_{XY}(x, y) \ge 0$ (non-négativité) 2. $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x, y) dx dy = 1$

Lien entre la fonction de densité et la fonction de répartition du couple de v.a.r. absolument continues X et Y:

$$f_{XY}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

Remarque : comme dans le cas univarié, la fonction de densité jointe $f_{XY}(x,y)$ peut avoir des valeurs supérieures à 1, car il s'agit de la densité et **pas** de la probabilité.

Cas univarié : probabilité est reflétée par l'aire sous la courbe

Cas univarié : probabilité est reflétée par l'aire sous la courbe

$$\forall A \in \mathbb{R}^2, \mathbb{P}((X,Y) \in A) = \iint_{(x,y)\in A} f_{XY}(x,y) dxdy$$

Cas bivarié: probabilité est reflétée par le **volume** sous la courbe

Cas univarié : pour un petit $\Delta > 0$:

$$f_X(x) = \lim_{\Delta \to 0} \frac{\mathbb{P}(x < X \le x + \Delta)}{\Delta}$$

Cas bivarié: pour un petit rectangle de hauteur $\delta y > 0$ et largeur $\delta x > 0$ autour de (x, y):

$$\mathbb{P}(x < X \le x + \delta x, y < Y \le y + \delta y) \approx f_{XY}(x, y) \delta x \delta y$$

Soit (X, Y) un couple de v.a.r. absolument continue de densité $f_{XY}(x, y)$. Les **lois marginales** de v.a.r. X et Y sont données par les **densités marginales** (*marginal density*) suivantes :

$$\forall x \in \mathbb{R}_{X}, \qquad f_{X}(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$$

$$\forall y \in \mathbb{R}_{Y}, \qquad f_{Y}(y) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx$$

La **fonction de répartition jointe** (*joint cumulative distribution function* ou *joint CDF*) du couple des v.a.r. absolument continues :

$$F_{XY}(x, y) = \mathbb{P}(X \le x, Y \le y)$$

Dans le cas continue, il est possible d'utiliser la représentation intégrale :

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(t_1,t_2) dt_2 dt_1$$

D'où les fonctions de répartition marginales de X et Y:

$$F_X(x) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f_{XY}(t_1, t_2) dt_2 dt_1 \,\forall \, x \in \mathbb{R}_X$$

$$F_Y(y) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f_{XY}(t_1, t_2) dt_1 dt_2 \,\forall \, y \in \mathbb{R}_Y$$

Soit (X,Y) un couple de v.a.r. absolument continues à la fonction de densité jointe $f_{XY}(x,y)$:

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelles sont les fonctions de densité marginales de X et Y?

$$f_{XY}(x,y) = \begin{cases} 10xy \\ 0, \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

En dehors de la région colorée \mathbb{R}_{XY} , $f_{XY}(x,y)=0$

$$f_{XY}(x,y) = \begin{cases} 10xy, \\ 0, \end{cases}$$

Pour 0 < x < 1:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_{0}^{\sqrt{x}} 10xy dy$$
$$= 10x \frac{y^2}{2} \Big|_{0}^{\sqrt{x}} = 5x \left((\sqrt{x})^2 - 0 \right) = 5x^2$$

 $f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$

$$f_{XY}(x,y) = \begin{cases} 10xy \\ 0, \end{cases}$$

 $f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$

Pour 0 < x < 1:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy = \int_{0}^{\sqrt{x}} 10xy dy$$

$$= 10x \frac{y^2}{2} \Big|_{0}^{\sqrt{x}} = 5x \left((\sqrt{x})^2 - 0 \right) = 5x^2$$

$$f_X(x) = \begin{cases} 5x^2, & \text{si } 0 \le x \le 1\\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$y = \sqrt{x} \Rightarrow x = y^2$$

$$y^2 \le x \le 1$$

$$f_{XY}(x,y) = \begin{cases} 10xy, \\ 0, \end{cases}$$

Pour $0 \le y \le \sqrt{x}$:

$$f_Y(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx = \int_{y^2}^{1} 10xy dx$$

$$= 10y \frac{x^2}{2} \Big|_{y^2}^{1} = 5y(1^2 - (y^2)^2)$$

$$= 5y(1 - y^4)$$

 $f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$

$$f_{XY}(x,y) = \begin{cases} 10xy, \\ 0, \end{cases}$$

 $f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$

Pour $0 \le y \le \sqrt{x}$:

$$f_Y(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dx = \int_{y^2}^{1} 10xy dx$$

$$= 10y \frac{x^2}{2} \bigg|_{y^2}^1 = 5y(1^2 - (y^2)^2)$$

$$=5y(1-y^4)$$

Soit (X,Y) un couple de v.a.r. absolument continues à la fonction de densité jointe $f_{XY}(x,y)$:

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la fonction de répartition jointe ?

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = ?$$

- Si x < 0 ou $y < 0 \Rightarrow F_{XY}(x, y) = 0$
- Si $x \ge 1$ et $y \ge \sqrt{x} \implies F_{XY}(x, y) = 1$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = ?$$

- Si x < 0 ou $y < 0 \Rightarrow F_{XY}(x, y) = 0$
- Si $x \ge 1$ et $y \ge \sqrt{x} \implies F_{XY}(x, y) = 1$

Pour x > 0, y > 0:

$$F_{XY}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(u,v) du dv = ?$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = ?$$

Pour x > 0, y > 0:

$$F_{XY}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(u,v) du dv = \int_{0}^{y} \int_{0}^{x} f_{XY}(u,v) du dv = \int_{0}^{\min(y,\sqrt{x})} \int_{0}^{\min(x,1)} 10uv du dv$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = ?$$

Pour $0 \le x \le 1$, $0 \le y \le \sqrt{x}$:

$$F_{XY}(x,y) = \int_{0}^{y} \int_{0}^{x} 10uv du dv = \int_{0}^{y} 10v \frac{u^{2}}{2} \Big|_{0}^{x} dv = \int_{0}^{y} 5vx^{2} dv = 5x^{2} \frac{v^{2}}{2} \Big|_{0}^{y} = \frac{5}{2} (xy)^{2}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = ?$$

Pour $0 \le x \le 1$, $y \ge \sqrt{x}$:

$$F_{XY}(x,y) = F_{XY}(x,\sqrt{x}) = \frac{5}{2}(x\sqrt{x})^2 = \frac{5}{2}x^3$$

Fonction de densité marginale

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = ?$$

Pour $x \ge 1, 0 \le y \le \sqrt{x}$:

$$F_{XY}(x,y) = F_{XY}(1,y) = \frac{5}{2}(1y)^2 = \frac{5}{2}y^2$$

Fonction de densité marginale

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$F_{XY}(x,y) = \begin{cases} 0 & \text{si } x < 0 \text{ ou } y < 0 \\ 5/2 (xy)^2 & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 5/2 x^3 & \text{si } 0 \le x \le 1, y \ge \sqrt{x} \\ 5/2 y^2 & \text{si } x \ge 1, 0 \le y \le \sqrt{x} \\ 1 & \text{si } x \ge 1, y \ge \sqrt{x} \end{cases}$$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \mathbb{P}(B) > 0$$

Soit (X,Y) un couple de v.a.r. de densité $f_{XY}(x,y)$ et $f_Y(y)$ la densité de Y.

La **fonction de densité conditionnelle** (conditional PDF) de X sachant Y = y où $f_Y(Y = y) \neq 0$:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

La probabilité conditionnelle de $X \in A$ sachant Y = y:

$$\mathbb{P}(X \in A|Y = y) = \int_{A} f_{X|Y}(x, y) dx$$

La **fonction de répartition conditionnelle** (conditional CDF) de X sachant Y = y:

$$F_{X|Y}(x|y) = \mathbb{P}(X \le x|Y = y) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx$$

Soit A un évènement défini comme a < X < b, alors :

$$F_{X|A}(x) = \begin{cases} 1, & \text{si } x > b \\ \frac{F_X(x) - F_X(a)}{F_X(b) - F_X(a)}, & \text{si } a \le x < b \\ 0, & \text{si } x < a \end{cases}$$

et

$$f_{X|A}(x) = \begin{cases} \frac{f_X(x)}{\mathbb{P}(A)}, & \text{si } a \leq x < b \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

Selon la définition :

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

Selon la définition :

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est l'intervalle de valeurs sur lequel $f_{X|Y}(x|y) \neq 0$?

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

Selon la définition :

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

$$y \le \sqrt{x} \Rightarrow y^2 \le x$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

Selon la définition :

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

$$y \le \sqrt{x} \Rightarrow y^2 \le x$$

 $f_{XY}(x, y) \ne 0 \text{ si } 0 \le x \le 1$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

Selon la définition:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$\begin{cases} y \le \sqrt{x} \Rightarrow y^2 \le x \\ f_{XY}(x, y) \ne 0 \text{ si } 0 \le x \le 1 \end{cases} \quad \Rightarrow \quad y^2 \le x \le 1$$

$$y^2 \le x \le 1$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est la densité conditionnelle $f_{X|Y}(x,y)$?

Selon la définition :

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = \begin{cases} \frac{10xy}{5y(1-y^{4})} & \text{si } y^{2} \le x \le 1\\ 0 & \text{sinon} \end{cases}$$
$$= \begin{cases} \frac{2x}{1-y^{4}} & \text{si } y^{2} \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

Indépendence

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x) \times \mathbb{P}(Y \le y) \Rightarrow X \text{ et } Y \text{ indépendants}$$
$$F_{XY}(x, y) = F_X(x) \times F_Y(y) \Rightarrow X \text{ et } Y \text{ indépendants}$$

Soit (X,Y) un couple de v.a.r. absolument continu à la densité $f_{XY}(x,y)$. Soit $f_X(x)$ et $f_Y(y)$ les fonctions de denstié marginale de X et Y respectivement.

X et Y sont indépendantes si et seulement si :

$$\forall s \in \mathbb{R}_X, \forall t \in \mathbb{R}_Y, \qquad f_{XY}(s,t) = f_X(s) \times f_Y(t)$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_X(x) = \begin{cases} 5x^2, & \text{si } 0 \le x \le 1 \\ 0, & \text{sinon} \end{cases}$$
$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Pour
$$0 \le x \le 1, 0 \le y \le \sqrt{x}$$
:

$$f_X(x) \times f_Y(y) = 5x^2 \times 5y(1 - y^4)$$

= $25x^2y(1 - y^4)$

$$f_X(x) = \begin{cases} 5x^2, & \text{si } 0 \le x \le 1\\ 0, & \text{sinon} \end{cases}$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Pour
$$0 \le x \le 1, 0 \le y \le \sqrt{x}$$
:

$$f_X(x) \times f_Y(y) = 5x^2 \times 5y(1 - y^4)$$

= $25x^2y(1 - y^4) \neq f_{XY}(x, y)$

$$f_X(x) = \begin{cases} 5x^2, & \text{si } 0 \le x \le 1\\ 0, & \text{sinon} \end{cases}$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Est-ce que X et Y sont indépendantes ?

Pour
$$0 \le x \le 1, 0 \le y \le \sqrt{x}$$
:

$$f_X(x) \times f_Y(y) = 5x^2 \times 5y(1 - y^4)$$

= $25x^2y(1 - y^4) \neq f_{XY}(x, y)$

$$f_X(x) = \begin{cases} 5x^2, & \text{si } 0 \le x \le 1\\ 0, & \text{sinon} \end{cases}$$

$$f_Y(y) = \begin{cases} 5y(1-y^4), & \text{si } 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

X et Y NE sont PAS indépendantes

Cas discret

Cas continue

Moments

Fonction caractéristique et fonction génératrice

Espérance

On appelle **espérance** (*expectation*) du couple de v.a.r. (X,Y), notée $\mathbb{E}(X,Y)$, l'élément de \mathbb{R}^2 défini comme suit :

$$\mathbb{E}(X,Y) = (\mathbb{E}X,\mathbb{E}Y)$$

(cas discret) Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une fonction bornée et continu par morceaux. L'espérance de la v.a.r. Z = h(X,Y) est donnée par :

$$\mathbb{E}[Z] = \sum_{(i,j)\in\mathbb{R}_{XY}} h(i,j) \times \mathbb{P}(X=i,Y=j)$$

(cas continu) Soit (X,Y) a pour densité la fonction $f_{XY}(x,y)$. Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une fonction bornée et continu par morceaux. L'espérance de la v.a.r. Z = h(X,Y) est donnée par :

$$\mathbb{E}[Z] = \int_{\mathbb{R}^2} h(u, v) \times f_{XY}(u, v) du dv$$

lorsque cette intégrale existe.

Soit (X, Y) un couple de v.a.r. discrètes. Soit A un évènement.

L'espérance conditionnelle (conditional expectation) de X:

1. Sachant *A* est définie par :

$$\mathbb{E}[X|A] = \sum_{x_i \in \mathbb{R}_X} x_i \mathbb{P}_{X|A}(x_i)$$

2. Sachant $Y = y_i$ est définie par :

$$\mathbb{E}[X|Y=y_j] = \sum_{x_i \in \mathbb{R}_X} x_i \mathbb{P}_{X|Y}(x_i|y_j)$$

Dans le cas continu:

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{+\infty} x f_{X|Y=y}(x|y) dx$$

Loi de l'espérance totale

La loi de l'espérance totale (*Law of Total Expectation* ou *Law of Iterated Expectation*) :

(cas discret)

Soit (X, Y) un couple de v.a.r. discrètes. L'espérance totale de X:

$$\mathbb{E}X = \sum_{y_j \in \mathbb{R}_Y} \mathbb{E}[X|Y = y_j] \mathbb{P}_Y(y_j)$$

(cas continu)

Soit (X,Y) un couple de v.a.r. absolument continu. L'espérance totale de X:

$$\mathbb{E}X = \int_{-\infty}^{\infty} \mathbb{E}[X|Y = y] f_Y(y) dy = \mathbb{E}[\mathbb{E}[X|Y]]$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est l'espérance $\mathbb{E}[X|Y=y]$ pour $0 \le y \le \sqrt{x}$?

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est l'espérance $\mathbb{E}[X|Y=y]$ pour $0 \le y \le \sqrt{x}$?

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{+\infty} x f_{X|Y=y}(x|y) dx$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est l'espérance $\mathbb{E}[X|Y=y]$ pour $0 \le y \le \sqrt{x}$?

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{+\infty} x f_{X|Y=y}(x|y) dx \qquad f_{X|Y}(x|y) = \begin{cases} \frac{2x}{1-y^4} & \text{si } y^2 \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

$$f_{XY}(x,y) = \begin{cases} 10xy, & \text{si } 0 \le x \le 1, 0 \le y \le \sqrt{x} \\ 0, & \text{sinon} \end{cases}$$

Quelle est l'espérance $\mathbb{E}[X|Y=y]$ pour $0 \le y \le \sqrt{x}$?

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{+\infty} x f_{X|Y=y}(x|y) dx =$$

$$= \int_{y^2}^{1} x \frac{2x}{1-y^4} dx = \int_{y^2}^{1} \frac{2x^2}{1-y^4} dx$$

$$= \frac{2}{1-y^4} \cdot \frac{x^3}{3} \Big|_{y^2}^{1} = \frac{2}{3(1-y^4)} (1-y^6)$$

$$f_{X|Y}(x|y) = \begin{cases} \frac{2x}{1 - y^4} & \text{si } y^2 \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

Variance conditionnelle

Soit (X,Y) un couple de v.a.r. discrètes. Soit $\mu_{X|Y}(y) = \mathbb{E}[X|Y=y]$.

La variance conditionnelle (conditional variance) de X sachant Y=y, notée Var(X|Y=y), est définie par :

$$Var(X|Y = y) = \mathbb{E}\left[\left(X - \mu_{X|Y}(y)\right)^2 | Y = y\right] = \mathbb{E}[X^2|Y = y] - \mu_{X|Y}(y)^2$$

Dans le cas discret:

$$Var(X|Y = y) = \sum_{x_i \in \mathbb{R}_X} \left(x_i - \mu_{X|Y}(y) \right)^2 \mathbb{P}_{X|Y}(x_i)$$

Loi de la variance totale

La loi de la variance totale (Law of Total Variance) :

Soit (X,Y) un couple de v.a.r. discrètes. La variance totale de X peut être calculée comme suit :

$$Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}[X|Y])$$

Quelle est la relation des variations des valeurs de deux variables aléatoires X et Y?

Soit (X,Y) un couple de v.a.r. Si $\mathbb{E}X$ et $\mathbb{E}Y$ existent, la **covariance** (*covariance*) entre X et Y, notée Cov(X,Y) ou σ_{XY} , est définie par :

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

Propriétés:

- $Cov(X,X) = \mathbb{E}[(X \mathbb{E}X)(X \mathbb{E}X)] = \mathbb{E}[XX] \mathbb{E}X \times \mathbb{E}X = \mathbb{E}[X^2] (\mathbb{E}X)^2 = Var(X)$
- Cov(X,Y) = Cov(Y,X)
- $Cov(aX_1 + bY_1, X_2) = a Cov(X_1, X_2) + b Cov(Y_1, X_2), \forall a, b \in \mathbb{R}$
- $Cov(X_1, aX_2 + bY_2) = a Cov(X_1, X_2) + b Cov(X_1, Y_2), \forall a, b \in \mathbb{R}$
- Cov(X,a) = 0
- Cov(aX, bY) = ab Cov(X, Y)
- Cov(X + c, Y) = Cov(X, Y)

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON

correspondent aux plus grandes

valeurs de X

correspondent aux plus

petites valeurs de *X*

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

	Plage des valeurs	Densité	Espérance	Variance
Uniforme, $\mathcal{U}([a,b])$	[a,b]	$f(x) = \frac{1}{b-a} \mathbb{I}_{[a,b]}(x)$ $\mathbb{I}_A(x) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{sinon} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponentielle, $\mathcal{E}(\lambda)$	\mathbb{R}^+	$f(x) = \lambda e^{-\lambda x} \mathbb{I}_{\mathbb{R}^+}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$X \sim \mathcal{U}([1,2]) \Rightarrow \mathbb{E}X = \frac{a+b}{2} = \frac{1+2}{2} = \frac{3}{2}$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x)$$

Comment trouver $\mathbb{E}Y$ si c'est que la distribution conditionnelle qui est donnée ?

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x)$$

Comment trouver $\mathbb{E}Y$ si c'est que la distribution conditionnelle qui est donnée?

$$\mathbb{E}Y = \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x] f_X(x) dx = \mathbb{E}\big[\mathbb{E}[Y|X]\big]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x) \Rightarrow \mathbb{E}[Y|X] = \frac{1}{\lambda} = \frac{1}{X}$$

$$\mathbb{E}Y = \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x] f_X(x) dx = \mathbb{E}\big[\mathbb{E}[Y|X]\big]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X=x suit la loi exponentielle avec le paramètre $\lambda=x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x) \Rightarrow \mathbb{E}[Y|X] = \frac{1}{\lambda} = \frac{1}{X}$$

 $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}\left[\frac{1}{X}\right] = ?$

$$\mathbb{E}Y = \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x] f_X(x) dx = \mathbb{E}\big[\mathbb{E}[Y|X]\big]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X=x suit la loi exponentielle avec le paramètre $\lambda=x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x) \Rightarrow \mathbb{E}[Y|X] = \frac{1}{\lambda} = \frac{1}{X}$$

 $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}\left[\frac{1}{X}\right] = ?$ Fonction de X

$$\mathbb{E}Y = \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x] f_X(x) dx = \mathbb{E}\big[\mathbb{E}[Y|X]\big]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X=x suit la loi exponentielle avec le paramètre $\lambda=x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x) \Rightarrow \mathbb{E}[Y|X] = \frac{1}{\lambda} = \frac{1}{X}$$

$$\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}\left[\frac{1}{X}\right] = ?$$
Fonction de X

$$\mathbb{E}Y = \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x] f_X(x) dx = \mathbb{E}\big[\mathbb{E}[Y|X]\big]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$Y|X = x \sim \mathcal{E}(\lambda = x) \Rightarrow \mathbb{E}[Y|X] = \frac{1}{\lambda} = \frac{1}{X}$$

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}} h(x)f_X(x)dx$$

$$\mathbb{E}[E[Y|X]] = \mathbb{E}\left[\frac{1}{X}\right] = \int_{1}^{2} \frac{1}{x} \cdot \frac{1}{2-1} dx = \int_{1}^{2} \frac{1}{x} dx = \ln x \Big|_{1}^{2} = \ln 2 - \ln 1 = \ln 2$$

$$\mathbb{E}Y = \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f_X(x)dx = \mathbb{E}[E[Y|X]]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

Comment trouver $\mathbb{E}[XY]$?

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

Comment trouver $\mathbb{E}[XY]$?

$$\mathbb{E}[XY] = \mathbb{E}\big[\mathbb{E}[XY|X]\big]$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X, Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$\mathbb{E}[XY] = \mathbb{E}\big[\mathbb{E}[XY|X]\big] = \big[\mathbb{E}[X|X = x] = x\big] = \mathbb{E}\big[X\mathbb{E}[Y|X]\big] = \left[\mathbb{E}[Y|X] = \frac{1}{X}\right] = \mathbb{E}\left[X\frac{1}{X}\right]$$
$$= \mathbb{E}[1] = 1$$

Soit X une v.a.r. continue de la loi uniforme sur [1,2], c.à.d. $X \sim \mathcal{U}([1,2])$. Soit Y une v.a.r. qui sous condition X = x suit la loi exponentielle avec le paramètre $\lambda = x$, c.à.d. $\mathcal{E}(\lambda = x)$. Trouvez la covariance Cov(X,Y).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y$$

$$\mathbb{E}[XY] = 1$$

$$\mathbb{E}[X] = \frac{3}{2}$$

$$\mathbb{E}[Y] = \ln 2$$

$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}X \times \mathbb{E}Y = 1 - \frac{3}{2}\ln 2$$

Covariance et Indépendance

Soit X et Y deux v.a.r. indépendantes. Alors, on a :

1.
$$\mathbb{E}[XY] = \mathbb{E}X \times \mathbb{E}Y$$
 et $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)] \times \mathbb{E}[h(Y)]$

- 2. $\mathbb{E}[X|Y] = \mathbb{E}[X]$ et $\mathbb{E}[g(X)|Y] = \mathbb{E}[g(X)]$
- 3. Var(X + Y) = Var(X) + Var(Y)
- 4. Cov(X,Y) = 0 car $\mathbb{E}[XY] = \mathbb{E}X \times \mathbb{E}Y$

Soit X et Y deux v.a.r. , et h et g deux fonctions de $\mathbb R$ dans $\mathbb R$.

Si X et Y sont indépendantes, alors les v.a.r. g(X) et h(Y) sont indépendantes et :

$$\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X)) \times \mathbb{E}(h(Y))$$

Relation linéaire

Relation linéaire

Pas de relation évidente

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Reflète une relation linéaire entre les variables (une forme normalisée de la covariance)

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Reflète une relation linéaire entre les variables

$$-1 \le r \le 1$$

$$-1.0 \qquad 0 \qquad 1.0$$
forte corrélation pas de forte corrélation négative corrélation positive (pas de relation linéaire)

Si X et Y sont indépendantes, alors :

$$\rho(X,Y)=0$$

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Reflète une relation linéaire entre les variables

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Reflète une relation linéaire entre les variables

corrélation

(pas de relation linéaire)

Relation linéaire:

$$\exists (a,b) \in \mathbb{R}^2 : Y = aX + b \Rightarrow |\rho_{XY}| = 1$$

positive

négative

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Reflète une relation linéaire entre les variables

linéaire)

Si
$$\rho(X,Y) = 0$$
, alors :
 $Var(X + Y) = Var(X) + Var(Y)$

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Reflète une relation linéaire entre les variables

! Corrélation ≠ causalité

Cas discret

Cas continue

Moments

Fonction caractéristique et fonction génératrice

Fonction caractéristique

On appelle **fonction caractéristique** (*characteristic function* ou *CF*) du couple de v.a.r. (X,Y) la fonction ϕ_{XY} définie de \mathbb{R}^2 dans \mathbb{C} par :

$$\phi_{XY}(t_1, t_2) = \mathbb{E}[e^{i(t_1 X + t_2 Y)}]$$

Fonction génératrice

On appelle **fonction génératrice** (*generating function*) du couple de v.a.r. (X, Y) la fonction $G_{XY}: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$G_{XY}(s_1, s_2) = \mathbb{E}[s_1^X s_2^Y]$$

Lien entre Fonction génératrice / Fonction caractéristique et Indépendance

1. Soit (X, Y) un couple de v.a.r. de fonction caractéristique ϕ_{XY} . Soit ϕ_X et ϕ_Y les fonctions caractéristiques de X et Y respectivement.

Les v.a.r. X et Y sont indépendantes si et seulement si :

$$\forall s, t \in \mathbb{R}, \qquad \phi_{XY}(s, t) = \phi_X(s) \times \phi_Y(t)$$

2. Soit (X,Y) un couple de v.a.r. discrètes de fonction génératrice G_{XY} . Soit G_X et G_Y les fonctions génératrices de X et Y respectivement.

Les v.a.r. X et Y sont indépendantes si et seulement si :

$$\forall s,t \in [-1,1], \qquad G_{XY}(s,t) = G_X(s) \times G_Y(t)$$

