

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných
	kompetencí žáků středních škol (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC I
Popis sady vzdělávacích materiálů:	Mechanika I, 1. ročník
Sada číslo:	G-19
Pořadové číslo vzdělávacího materiálu:	19
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-19-02
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Určení bodu a síly v rovině
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Určení bodu v rovině

a) kartézský souřadný systém

b) polární souřadný systém

Určení síly v rovině

Potřebujeme znát působiště, směr, velikost a smysl.

Zápis: F [x_1 , y_1 , α_1 , N]

x₁, y₁ – poloha působiště;

 α_1 – směrový úhel;

N – velikost.

Úhel α měříme vždy od kladné poloosy x, pro zobrazení velikosti síly volíme vhodné měřítko, např. 1 mm = 10 N.

Př.: $F_1[0, 0, 200^\circ, 500 \text{ N}]$, $F_2[10, 20, 45^\circ, 300 \text{ N}]$, 1 cm = 100 N.

Důležitá zásada – sílu můžeme po její nositelce libovolně posouvat, aniž se změní její účinek na tělese. Síly F a F' mají stejný účinek, pokud jsou stejně velké.

Zákon akce a reakce

Při působení těles na sebe se síly objevují vždy v páru:

- 1. Síla akční (působící).
- 2. Síla reakční (proti působící síle).

Reakční síla (reakce) je obvykle účinek podpor na těleso. Reakce jsou tedy síly, kterými pevné okolí (rám, podpory ...) působí na těleso a udržují je v rovnováze.

Př.:

G – akční síla – tíha.

F_R – reakční síla – odpor podlahy.

 $F_R = \frac{G}{2}$

Podpory – jsou to úchyty (spoje), nebo opření těles.

Kloubová podpora – přenáší sílu všemi směry. Posuvná podpora – přenáší svislé síly.

Obecná podpora – něco jen leží na rovině.

Pomocí těchto značek lze zjednodušeně nakreslit spojení několika součástí.

Newtonův zákon akce a reakce

Každá akční síla dává vzniknout stejně velké, ale opačně orientované síle – reakci.

Tyto dvě síly jsou vždy v rovnováze, působí v jedné přímce, jsou stejně velké, ale opačného smyslu.

Podmínky rovnováhy

Síly působící na jedné přímce (akční i reakční) jsou v rovnováze , jestliže jejich algebraický součet je roven nule. Říkáme, že výslednice sil je nulová.

 $\sum F_i = 0$, opačný smysl = opačné znaménko (F – F_r = 0).

Poznámka: Pokud by soustava těles nebyla v rovnováze, začne se pohybovat, ale to už řeší dynamika.

Soustava sil na jedné nositelce

Nahrazení síly silou na téže nositelce

Působiště síly lze na její nositelce libovolně posunout, aniž se její účinek změní.

Výslednice sil na jedné nositelce (přímce)

Př.: Dva lidi tlačí vozík $F_1 = F_2 = 500 \text{ N}$.

Výslednice sil působících na jedné nositelce je rovna jejich algebraickému součtu. Bereme ohled na znaménko, které odpovídá směru síly.

$$F_{v} = \sum_{i=1}^{n} F_{i}$$

$$F_v = F_1 + F_2 + F_3 + ... + F_i + F_{i+1} + \cdots + F_n$$

Př.: Loď pluje proti větru stálou rychlostí. Lodní šroub vyvolává sílu F_1 = 11.000 N. Jaký odpor F_2 klade lodi vítr, jestliže odpor vody je F_3 = 3.500 N?

Graficky:

Početně: $F_2 = F_V = \sum F_i = F_1 - F_3 = 11.000 - 3.500 = 7.500 \text{ N}$

Vítr klade lodi odpor 7.500 N.

Seznam použité literatury

- SALABA S. MATĚNA A.: MECHANIKA I STATIKA pro SPŠ strojnické. Praha: SNTL, 1977.
- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.