Friday, 4/24/2020, Lecture 12	(60)
88.2 Convolutions	
Def f,g: R">C, measurable, the convolu	tian is
(f*9)(x)= \int f(x-y) g(y) dy x (-1/2", if i	
() f * g is a.e. defined if. e.g., f is bounded compactly supported, and g = L10c(R")	fand
compactly supported, and g = Lioc(R").	
Given f: IR"> C, Lef. K: IR"× IR" Cby K(x-y))= f(x -3)
fix Knel meas on R => K is Barel meas	mlKxR,
fis Lebesque mess an R => le is Lebesque mes	os. on RXR
opics on Rasic merational properties	
(P-property, e.g., fxg p= f , g p () (P-property, e.g., fxg p= f , g p () (f*g)=()^{\alpha}(f*g)=()^{\alpha}f)*g, f. () Approximations (molifiers)	·
(i) Differentiability 2 (f*9)=(0°f)*9, 1	,g∈U ⇒f*9€∫
(1) Approximations (molitiers)	, •

(Prop. 8.6 Assume all integrals exist. [61] $(a) f \times g = g \times f$ (f * g)(x) = J * f $(f * g)(x) = \int f(x-y)g(y)dy = \int f(z)g(x-z)dz = (g * f)(x)$ $\begin{array}{l} (b) \ (f \times \emptyset) \times h = f \times (g \times h) \\ (f \times g) \times h(X) = \int (f \times g)(x - y) h(y) dy = \int \int f(z) g(x - y - z) h(y) dz dy \\ = \int \int f(z) (g \times h)(x - z) dz \stackrel{(a)}{=} f \times (g \times h)(x) \\ = \int \int f(z) (g \times h)(x - z) dz \stackrel{(a)}{=} f \times (g \times h)(x) \\ \end{array}$ (C) Yzell, G(f*g)=(Zf)*g=f* Zf $(\tau_{t}(f*g)(x) = (f*g)(x-t) = \int f(x-t-y)g(y)dy$ $=\int (zf(x-y)g(y)dy=(zf)*g(x)$ (d) $\text{Supp}(f \times g) \in \text{Supp}(f) + \text{Supp}(g)$ $= \{x+y: x \in Supp(f), y \in Supp(g)\} = A.$ $z \notin A \implies \forall y \in Surp(g), z-y \notin Surp(f) \implies f(z-y)g(y)$ =0 $\forall y$. So. $(f*g)(z)=\int f(z-y)g(y)dy=0$. QED

Young's ineq. fel', gelt (15pcos) => f* g(x) exists [62] a.e.x, fxg = [t, and (1/xg/lp = (1/f), 11/9/1p. Pf By Thm 6.18 with K(x,y)=f(x-y). QED Prop. 8.8 Let p. Ec[1,00] be conjugate, felt, and gel2. Then fxg(x) exists at any x <R, fxg is bounded and unif. cont., and lif* gllu \illight \lifty \light] \light\graphe \tag{\formall \text{fin plg.}} \equiv \text{Tf in addition p. \text{2} \in (1,00), then f* \text{9} \in \text{Co} of Existence and Ilf*91/4 < IlfIlp/19/1/2 by Hölder It 15pcas

If f(x) = f(x)

Prop. 8.9 Suppose 15 p. E, r = as and $\frac{1}{p} + \frac{1}{2} = \frac{1}{r} + 1$. [63] (Young's neg, general form) fel gel2 => fxg Gl and lif*gllr = 11 fllp 11 9llq. (b) p>1, 2>1, $r<\infty$, $f\in L^p$, $g\in Weat L^2 \Longrightarrow f*g\in L^r$ and ((f*g||_Y ≤ Cpg ((f||_p [g)_g (the const. Cpg is inclep. of f.g). (c) $\gamma=1$, $\gamma=\xi>1$, $f\in L'$, $g\in \text{weak}\ L^{\epsilon} \implies f*g\in \text{weak}\ L^{\epsilon}$ and [fxg] = Cq ||f||, (the const. Cq is indep. of f, g). Pf (a) N=1, v=2; Youngs meg. P=2/(2-1), r=0. Prop. 8.8. Fix q. Use the generalized Hölder's ineq. to get [f*g(x)| = ||f||p ||g||z [|f(g)||p |g(xg)|2dg [lence ||f*g||r \in ||f||r - p || g||q - 2 ||f||p || g||q = ||f||p || g||q = ||f||p || g||q = ||f||p ||g||q = ||f||q ||g ||q |