Sulfur reactions and photodissociations for Titan:

This chemical scheme for sulfur species has been used in the following paper:

K.M. Hickson, J.C. Loison, T. Cavalié, E. Hébrard, and M. Dobrijevic. The evolution of infalling sulfur species in Titan's atmosphere. Astronomy and Astrophysics. 2014.

See KIDA for the nomenclature of rate constants and uncertainties (See http://kida.obs.u-bordeaux1.fr/help).

Reaction		ΔH _r (298K) kJ/mol	α	β	γ	F ₀	g	references
H + SH	\rightarrow H ₂ + S	-79	3.0e-11	0	0	5	0	(Cupitt & Glass 1975, Peng et al. 1999)
$H + H_2S$	\rightarrow H ₂ + SH		3.66e-12	1.94	455	1.6	100	(Peng et al. 1999)
H + CS	→ HCS		k ₀ =7.5e-34	0.2	0	3	0	/ H + CO, barrier calculated at M06-2X/cc-
			k ₌ =1.0e-10	0	800	3	100	pVTZ
H + HCS	\rightarrow H ₂ + CS		1.0e-10	0	0	2	0	/ H + HCO and also (Galland et al. 2001)
$H + H_2CS$	\rightarrow HCS + H ₂		3.3e-11	0	1400	3	200	/ H + H ₂ CO with smaller barrier
$H + CH_3S$	\rightarrow H ₂ CS + H ₂	-210	1.0e-11	0	0	3	0	by comparison with CH ₃ O + H considering than
	\rightarrow CH ₃ + SH	-50	3.0e-11	0	0	3	0	the $H_2CS + H_2$ channel is much less exothermic
								than the corresponding $H_2CO + H_2$ (-210 compared to -344).
H + CH ₃ SH	\rightarrow CH ₃ S + H ₂		7.8e-11	0	1310	1.8	200	(Amano et al. 1983)
$^{2}\text{H} + ^{2}\text{HCCS}$	→ H ₂ CCS	-373	k ₀ =2.0e-27	-1.5	0	3	0	M06-2X/cc-pVTZ / Semi empirical model
			k ₌ =1.0e-10	0	0	3	0	
	\rightarrow H ₂ + CCS	-1.0	0					
	\rightarrow ³ CH ₂ + CS	+102	0					
$^{2}H + ^{2}CCS$	\rightarrow HCCS	-425	k ₀ =1.0e-27	-1.5	0	3	0	M06-2X/cc-pVTZ / Semi empirical model
			k _* =1.0e-10	0	0	3	0	
	\rightarrow C ₂ H + S	+52	0					
	\rightarrow CH + CS	+106	0					
$H + CH_3CS$	\rightarrow HCS + CH ₃		4.0e-11	0	0	3	0	/ H + CH ₃ CO
	\rightarrow H ₂ + H ₂ CCS		2.0e-11	0	0	3	0	
$H + CH_3CHS$	\rightarrow H ₂ + CH ₃ CS	-17	2.23e-11	0	1200	3	200	/ H + CH ₃ CHO with smaller E#
$H + C_3S$	\rightarrow HC ₃ S		k ₀ =3.0e-25	-2.93	176	10	0	Equal to $H + C_4H_2$

			k _* =1.0e-10	0	800	3	100	Equal to H + CS
$H + HC_3S$	\rightarrow H ₂ + C ₃ S	-118	2.0e-11	0	0	3	0	Energy calculated at M06-2X/cc-pVTZ, the
	\rightarrow C ₂ H ₂ + CS	-177	2.0e-11	0	0	3	0	main exit channel may be H ₂ C ₃ S formation.
$H + C_2H_2S$	\rightarrow C ₂ H ₂ + SH		2.87e-11	0	946	3	100	/ by comparison with C ₂ H ₄ S + H
$H + C_2H_4S$	\rightarrow C ₂ H ₄ + SH		2.87e-11	0	946	1.8	100	(Lee et al. 1977a)
H + OCS	→ SH + CO		9.06e-12	0	1940	2	200	(Lee et al. 1977b, Rice et al. 1993a, Tsunashima et al. 1975, Adriaens et al. 2010)
$H + N_2S$	\rightarrow N ₂ + SH	-270	2.1e-10	0	2600	1.6	100	M06-MP2/cc-pVTZ calculations
H + NCS	\rightarrow HCN + S	-93	0					
	→ HNC + S	-40	1.0e-10	0	0	2	0	submerged exit barrier on the triplet surface, need ISC as there is likely a barrier on the triplet entrance barrier but not on the entrance singlet surface by comparison with H + NCO (Klippenstein & Harding 2009))
$C + H_2S$	→ H + HCS	-178	2.1e-10	0	0	1.6	0	(Deeyamulla & Husain 2006, Galland et al. 2001)
C + OCS	→ CO + CS	-386	5.6e-11	0	0	2	0	(Loison <i>et al.</i> 2012b, Deeyamulla & Husain 2006, Deeyamulla & Husain 2007)
$C + CS_2$	\rightarrow CS + CS	-242	1.6e-10	0	0	3	0	(Deeyamulla & Husain 2006)
2 CH + 1 CS	$\rightarrow {}^{2}H + {}^{3}C_{2}S$	-106	1.5e-10	0	0	2	0	Very likely no barrier
	$\rightarrow {}^{3}\mathrm{S} + {}^{2}\mathrm{C}_{2}\mathrm{H}$	-54	5.0e-11	0	0	2	0	
$^{2}\text{CH} + ^{1}\text{H}_{2}\text{S}$	$\rightarrow {}^{2}H + {}^{1}H_{2}CS$	-239	2.0e-10	0	0	2	0	By comparison with CH + H ₂ O (Bergeat <i>et al.</i> 2009, Hickson <i>et al.</i> 2013)
2 CH + 1 OCS	$\Rightarrow {}^{2}HCS + {}^{1}CO$ $\Rightarrow {}^{2}H + {}^{1}CS + {}^{1}CO$	-268 -57	4.0e-10 0	0	0	2	0	(Loison et al. 2012b)
2 CH + 1 CS ₂	$\rightarrow {}^{2}HCS + {}^{1}CS$	-124	4.0e-10	0	0	2	0	Considering the high CH reactivity and the stability of HCS
$CH + N_2S$	\rightarrow N ₂ + HCS	-497	1.5e-11	0	-257	2	0	/CH + N ₂ O (Becker <i>et al.</i> 1993)
	\rightarrow HCN + NS	-364	1.5e-11	0	-257	2	0	
$^{1}\text{CH}_{2} + \text{CS}$	→ HCCS + H	-158	2.0e-10	0	0	2	0	Very likely no barrier
$^{3}\text{CH}_{2} + \text{CS}$	→ HCCS + H	-102	6.0e-11	0	0	2	0	no barrier at M06-2X/cc-pVTZ and also at MP2/cc-pVTZ level
$CH_2 + CCS$	\rightarrow HC ₃ S + H		1.0e-10	0	0	3	0	/ CH ₂ + CH ₃

CH ₂ + HCCS	\rightarrow H ₂ C ₃ S + H	-179	1.0e-10	0	0	3	0	/ CH ₂ + CH ₃
$^{3}\text{CH}_{2} + \text{C}_{3}\text{S}$	\rightarrow 1-C ₃ H ₂ + CS	-108	6.0e-11	0	0	2	0	Assuming no barrier $/ {}^{3}CH_{2} + CS$.
	\rightarrow HC ₄ S + H	-186	0					HC ₄ S very likely the main product but should
								react with H (and also to CH ₃) to give C ₃ H ₂ +
								CS. We avoid introducing new minor species.
$CH_2 + NS$	\rightarrow H + HCNS(=HNCS)	-193	1.0e-10	0	0	3	0	/ CH ₂ + NO at 150K
$CH_3 + CS$	\rightarrow H ₂ CCS + H	-30	2.0e-12	0	2400	3	400	Average between M06-2X and MP2 /cc-pVTZ
$CH_3 + SH$	\rightarrow CH ₃ SH	-308	$k_0=1.0e-28$	-3.5	0	3	0	M06-2X/cc-pVTZ/semi empirical model
			k _* =1.2e-10	0	0	3	0	
	\rightarrow H ₂ CS + H ₂	-160	0					$TS(\rightarrow H_2CS + H_2)$ very likely > 0
	\rightarrow HCSH + H ₂	+27	0					$TS(\rightarrow HCSH + H_2) : +81 \text{ kJ/mol}$
	\rightarrow CH ₂ SH + H	+86	0					
	\rightarrow CH ₃ S + H	+50	0					
	\rightarrow ¹ CH ₂ + H ₂ S	+122	0					
	\rightarrow CH ₄ + S	-82	0					
CH ₃ + HCS	\rightarrow CH ₄ + CS		9.3e-11	0	0	2	0	/ CH ₃ + HCO. We neglect the association
	•							reaction as CH ₃ CHS absorbs strongly in the
								190-230 nm (Rosengren 1962) and dissociate
								leading very likely to HCS, CS and CH ₃ CS all
								leading to CS formation.
$CH_3 + C_2S$	\rightarrow H + H ₂ C ₃ S	-159	2.0e-11	0	0	3	0	the TS from ² CH ₃ CCS toward ² CH ₂ CHCS is
	\rightarrow C ₂ H ₃ + CS	-126	2.0e-11	0	0	3	0	found -218 kJ/mol below the entrance level
								followed by a small barrier equal to 6.7 kJ/mol
								above the exit channel for H elimination, and
								there is no exit TS at M06 and MP2 level for
		1.71	20.11	0	0	2	0	the ${}^{2}C_{2}H_{3} + {}^{1}CS$ production
$CH_3 + HCCS$		-151	2.0e-11	0	0	3	0	See text
$CH_3 + NS$	\rightarrow H + H ₂ CNS	+21	0					l (av No
	\rightarrow H ₃ CNS (SOOT)		$k_0=1.1e-29$	-3.5	0	2	0	/ CH ₃ + NO
		226	k _x =1.1e-11	0.60	0	1.6	0	(** : 1,000,000
$C_2 + H_2S$	\rightarrow C ₂ H + HS	-226	2.0e-10	0	0	2	0	(Kaiser et al. 2002, Wang et al. 2003)
$C_2 + CS_2$	\rightarrow C ₂ S + CS	-198	2.0e-10	0	0	2	0	By comparison with $C_2(a^3\Pi_u)$ (Hu <i>et al.</i> 2014,
								Huang et al. 2004) reaction, the ground C ₂
								$(X^1\Sigma_g^+)$ being more reactive (Canosa <i>et al.</i>)

								2007, Daugey et al. 2008).
$C_2 + OCS$	\rightarrow C ₂ S + CO	-342	2.0e-10	0	0	2	0	By comparison with $C_2 + CS_2$
${}^{2}C_{2}H + {}^{1}CS$	\rightarrow $^{1}C_{3}S + ^{2}H$	-62	1.0e-10	0	0	2	0	/ C ₂ H + CO (Lander <i>et al.</i> 1990, Petrie 1996)
$^{2}C_{2}H + ^{1}H_{2}S$		-172	1.0e-10	0	0	3	0	No barrier for preliminary DFT calculations
${}^{2}C_{2}H + {}^{1}CS_{2}$	→ HCCS + CS	-25	6.0e-11	0	0	6	0	No barrier in the entrance valley at M06-2X/cc-
								pVTZ level but may be a small one in the exit valley.
$^{2}C_{2}H + ^{1}OCS$	→ HCCS + CO	-169	4.0e-11	0	0	5	0	Likely no barrier
${}^{2}C_{2}H + {}^{1}C_{3}S$	→ products		1.0e-10	0	0	3	0	/ C ₂ H + CO (Lander <i>et al.</i> 1990, Petrie 1996)
$C_2H_3 + HS$	\rightarrow C ₂ H ₂ + H ₂ S	-222	5.0e-11	0	0	2	0	C ₂ H ₃ + OH (Tsang & Hampson 1986)
	\rightarrow H ₂ C ₂ + H ₂ S	-30	0					HSCCH likely a minor product by comparison
	\rightarrow H ₂ CCSH + H	+83	0					with C ₂ H ₃ CN photodissociation (<<50%)
	\rightarrow HSCCH + H ₂	-177	0					neglected here.
$C_2H_3 + CS$	\rightarrow H ₂ C ₃ S + H	-33	3.0e-11	0	0	3	0	no barrier at M06-2X and MP2 level /cc-pVTZ
$C_2H_3 + C_3S$	\rightarrow H ₂ C ₅ S + H	-97	3.0e-11	0	0	3	0	Equal to $C_2H_3 + CS$
$CN + H_2S$	→ HCN + HS	-165	2.0e-10	0	0	2	0	Very likely no barrier as H ₂ S is much more
								reactive than H ₂ O
$CN + CS_2$	\rightarrow NCS + CS	+8	0					
CN + OCS	\rightarrow NCS + CO	-136	1.0e-10	0	0	3	0	(Loison et al. 2012b)
O + CS	\rightarrow S + CO		2.61e-10	0	758	2	100	(Lilenfeld & Richardson 1977)
OH + CS	\rightarrow H + OCS		1.7e-10	0	0	3	0	(Rice & Chabalowski 1994, Loison et al.
	\rightarrow CO + HS		3.0e-11	0	0	3	0	2012a)
$S + CH_3$	\rightarrow H ₂ CS + H	-87	1.4e-10	0	0	3	0	by comparison with O + CH ₃
	\rightarrow H ₂ + CS + H	+93	0					
$S + C_2H_2$	$\rightarrow C_2H_2S$		$k_{x} = 1.4e-11$	0	1010	1.8	200	(Strausz et al. 1971, Little & Donovan 1973)
			$k_0 = 5.5e-30$	0	0	10	0	$= k_0(OH + C_2H_2)$
$S + C_2H_3$	\rightarrow SH + C ₂ H ₂	-199	1.0e-11	0	0	2	0	By comparison with $O + C_2H_3$ (Heinemann <i>et</i>
	\rightarrow H + H ₂ C ₂ S	-161	6.0e-11	0	0	2	0	al. 1988, Harding et al. 2005)
$S + C_2H_4$	$\rightarrow C_2H_4S$		$k_{*} = 7.14e-12$	0	795	1.8	200	(Davis <i>et al.</i> 1972)
			$k_0 = 1.0e-28$	0	0	10	0	$/ OH + C_2H_4$
S + CO	→ OCS		0					(Loison et al. 2012b)

S + NH	\rightarrow NS + H	-116	6.6e-11	0	0	2	0	/ O + NH
$S(^{1}D) + N_{2}$	\rightarrow S(³ P) + N ₂	-111	8.5e-11	0	0	1.6	0	(Black & Jusinski 1985)
$S(^{1}D) + H_{2}$	\rightarrow SH + H	-27	2.1e-10	0	0	1.6	0	(Black & Jusinski 1985)
$S(^{1}D) + CH_{4}$	\rightarrow SH + CH ₃	-27	1.7e-10	0	0	2.0	0	(Black & Jusinski 1985)
	\rightarrow H ₃ CS + H	+20	0					
	\rightarrow H ₂ CS + H ₂	-200	0					
SH + CO	→ HSCO		0					We neglect this reaction as there is a barrier in the entrance and the well is small (Rice <i>et al.</i> 1993b, Rice & Chabalowski 1994)
SH + CS	\rightarrow H + CS ₂	-103	2.0e-10	0	0	3	0	/ OH + CS
$^{2}N + ^{1}C_{3}S$	$\rightarrow {}^{2}\text{CN} + {}^{3}\text{C}_{2}\text{S}$	-309	2.0e-11	0	0	3	0	$/^{2}N + {}^{1}CO$ (Herron 1999)
N + C ₃ S	$\Rightarrow C_1N + C_2S$ $\Rightarrow {}^2C_2N + {}^1CS$	-355	2.0e-11 2.0e-11	0	0	$\frac{3}{3}$	0	/ IV + CO (Helloll 1999)
$^{2}N + N_{2}S$			2.0e-11	0	0	3	0	$^{2}N + N_{2}O / (Herron 1999)$ with no barrier
$^{2}N + ^{1}CS$	$\rightarrow N_2 + NS$ $\rightarrow {}^2CN + {}^3S$	-257	4.0e-11	0	0	3	0	$/^{2}N + ^{1}CO$ (Herron 1999)
$^{4}N + ^{2}HCCS$	\rightarrow ¹ HCN + ³ CS	-65	8.0e-11	0	0	3	0	/ N + CH ₃
$\frac{10 + HCCS}{2.4}N + {}^{1}SH$	$\rightarrow \text{RCN} + \text{CS}$ $\rightarrow \text{^2NS} + \text{^2H}$	-94	4.5e-11	0	0	2	0	/ N + OH but NS is easily photodissociated
		-94	4.0e-11	0	0	2	0	/ N + NO
$^{2,4}N + NS$	\rightarrow N ₂ + S	-114	2.0e-11	0	0	3	0	/ N + NO
$^{2,4}N + HCS$	\rightarrow NH + CS	-114	2.0e-11 1.0e-11	0		3	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
	\rightarrow H + NCS	-354	4.0e-11	0		$\frac{3}{3}$	0	
	\rightarrow HCN + S	-334	4.00-11	0	0	3	0	
$NH_2 + CS$	→ H + HNCS	-147	6.0e-11	0	0	3	0	No barrier at M06-2X/cc-pVTZ level and very likely also at MP2/cc-pVTZ level
NH + NS	\rightarrow N ₂ S + H		2.9e-11	-0.30	-77	1.6	0	/ NH + NO
	\rightarrow N ₂ + SH		1.2e-11	-0.30	-77	1.6	0	/ NH + NO
NH + CS	\rightarrow H + NCS	-147	2.0e-11	0	0	3	0	No barrier at M06-2X/cc-pVTZ level and at
	\rightarrow HNC + S	-187	4.0e-11	0	0	3	0	MP2/cc-pVTZ level
NS + NS	\rightarrow N ₂ S + S	-123	4.0e-11	0	0	3	0	No barrier

			>223 nm			<223 n	ım	l	http://satellite.mpic.de/spectral atlas
$CS_2 + hv$	\rightarrow $^{1}CS + {}^{3}S$		0%			40%			(Yang et al. 1980, Moltzen et al. 1988)
	\rightarrow $^{1}CS + ^{1}S$		0%			60%			
			>291 nm			<291 n	ım		http://phidrates.space.swri.edu/
OCS + hv	\rightarrow $^{1}CO + S(^{1}D)$		0%			100%			
			>316 nm		316	-200	<200	nm	http://phidrates.space.swri.edu/
$H_2S + h\nu$	\rightarrow HS + H		0%		nm		95%		(Feng et al. 1999, Watanabe & Jursa 1964, Hsu
	\rightarrow ³ S + H ₂		0%		100		3%		et al. 1992)
	\rightarrow S(1 D) + H ₂		0%		0%		2%		
			1.50		0%				
	3~ 3~		>168 nm			<168 n	ım		
CS + hv	\rightarrow ³ S + ³ C		0%			100%			FOLL GOOD O
***************************************	XX - QQ		>604 nm			<604 n	ım		EOM-CCSD. Some excited state may be not
HCS + hv	\rightarrow H + CS		0%						dissociative.
II CC + h	→ H + HCS		>312 nm 0%			<312 n	ım		(Judge et al. 1978) + EOM-CCSD
$H_2CS + hv$			0%			0%			
	\rightarrow H ₂ + CS		> 334nm	334-222 nm	222	-190 nm		< 190 nm	EOM-CCSD +
$CH_3SH + hv$	\rightarrow CH ₃ + SH	306	0%	100%		-190 mi -(222-λ			(Steer & Knight 1968, Vaghjiani 1993)
CH ₃ SH + IIV	\rightarrow CH ₃ S + H	356	0%	0%		2-λ)/0.6	/	50%	Absorption: http://phidrates.space.swri.edu/
	\rightarrow CH ₃ S + H	330	070	070	(222	2-λ)/U.δ	4	3070	but branching ratio from
									http://phidrates.space.swri.edu/ above 250 nm
									likely wrong. The selective S-H bond fission at
									248 nm in CH ₃ SH photolysis is explained by
									assuming the Franck-Condon overlap between
									the ground vibrational wave function (at
									extended S-H geometries) and the dissociative
									surface to be on the CH ₃ S+H exit channel side
									only (Vaghjiani 1993).
		2.50	>318 nm			<318 n	nm		
$CH_3CHS + hv$	\rightarrow CH ₃ + HCS	359	0%			100%			We neglect the CH ₃ CS formation considering
	\rightarrow CH ₃ CS + H	376	0%			0%			than H + CH ₃ CS give CH ₃ + HCS.
			>274 nm			<274 n	ım		EOM-CCSD

$C_2S + hv$	\rightarrow C + CS	436	0%			100%			
2.2	\rightarrow C ₂ + S	647	0%			0%	0%		
			>281 nm		282-251	nm	<25	1 nm	EOM-CCSD
HCCS + hν	\rightarrow H + CCS	425	0%		100%		80%		
	\rightarrow C ₂ H + S	477	0%		0%		20%	, D	
	\rightarrow CH + CS	531	0%		0%		0%		
			>319 nm		I.	<319	nm		EOM-CCSD
$H_2CCS + hv$	\rightarrow H + HCCS	375	0%			100%			
_	\rightarrow H ₂ + HCCS	372	0%			0%			
	\rightarrow ³ CH ₂ + CS	475	0%			0%			
	\rightarrow ¹ CH ₂ + CS	513	0%			0%			
			>182 nm	182-	179nm	179-171r	ım	<171nm	EOM-CCSD
$C_3S + hv$	\rightarrow C ₂ + CS	655	0%	100%	ó	50%		40%	
	\rightarrow C ₃ + 3 S	519	0%	0%		0%		0%	
	\rightarrow C ₃ + 1 S	669	0%	0%		50%		40%	
	\rightarrow C + C ₂ S	699	0%	0%		0%		20%	
			>290 nm			<290	nm		EOM-CCSD
$H_2C_3S + h\nu$	\rightarrow C ₂ H ₂ + CS	181	0%			30%			
	\rightarrow H + HC ₃ S	355	0%			40%			
	\rightarrow H ₂ + C ₃ S	237	0%			30%			
			>290 nm			<290	nm		Same absorption than H_2C_3S .
$H_2C_5S + hv$	\rightarrow C ₄ H ₂ + CS		0%			50%			$H + HC_5S$ and $H_2 + C_5S$ very likely important
	\rightarrow H + HC ₅ S		0%			0%			channels but should give CS and C ₃ S through
	\rightarrow C ₂ H ₂ + C ₃ S		0%			50%			photodissociation and reactions with H atoms.
	\rightarrow H ₂ + C ₅ S		0%			0%			
			>258 nm			<258			
NS + hv	\rightarrow N + S	464	0%			100%			
	1		>640 nm				<640 nm		EOM-CCSD
$N_2S + h\nu$	\rightarrow N ₂ + S(1 D)	187	0%			100%			
			>320 nm			<320	nm		EOM-CCSD + (Boxall & Simons 1973)
HNCS + hv	\rightarrow H + NCS	375	0%			30%			
	\rightarrow HNC + S	335	0%			70%			

Adriaens D.A., Goumans T.P.M., Catlow C.R.A., et al., 2010, J. Phys. Chem. C, 114, 1892

Amano A., Yamada M., Hashimoto K., et al., 1983, Nippon Kagaku Kaishi, 385

Becker K.H., Engelhardt B., Geiger H., et al., 1993, Chemical Physics Letters, 210, 135

Bergeat A., Moisan S., Méreau R., et al., 2009, Chem. Phys. Lett., 480, 21

Black G., Jusinski L.E., 1985, The Journal of Chemical Physics, 82, 789

Boxall C.R., Simons J.P., 1973, Journal of Photochemistry, 1, 363

Bradley J.N., Trueman S.P., Whytock D.A., et al., 1973, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 416

Canosa A., Páramo A., Le Picard S.D., et al., 2007, Icarus, 187, 558

Cupitt L.T., Glass G.P., 1975, Proc. Symp. Chem. Kinet. Data Upper Lower Atmos., 39

Daugey N., Caubet P., Bergeat A., et al., 2008, Phys. Chem. Chem. Phys., 10, 729

Davis D.D., Klemm R.B., Braun W., et al., 1972, Int. J. Chem. Kinet., 4, 383

Deeyamulla M.P., Husain D., 2006, J. Photochem. Photobiol. A Chem., 184, 347

Deeyamulla M.P., Husain D., 2007, Journal of Photochemistry and Photobiology A: Chemistry, 185, 161

Feng R., Cooper G., Brion C.E., 1999, Chemical Physics, 244, 127

Galland N., Caralp F., Rayez M.T., et al., 2001, Journal of Physical Chemistry A, 105, 9893

Harding L.B., Klippenstein S.J., Georgievskii Y., 2005, Proc. Combust. Inst., 30, 985

Heinemann P., Hofmann-Sievert R., Hoyermann K., 1988, Symp. Int. Combust. Proc., 21, 865

Herron J.T., 1999, J. Phys. Chem. Ref. Data, 28, 1453

Hickson K.M., Caubet P., Loison J.-C., 2013, The Journal of Physical Chemistry Letters, 2843

Hsu C.W., Liao C.L., Ma Z.X., et al., 1992, Chemical Physics Letters, 199, 78

Hu R.-Z., Xie P.-H., Zhang Q., et al., 2014, Acta Physico - Chimica Sinica, 30, 797

Huang C., Zhao D., Pei L., et al., 2004, Chem. Phys. Lett., 389, 230

Judge R.H., Drury-Lessard C.R., Moule D.C., 1978, Chemical Physics Letters, 53, 82

Kaiser R.I., Yamada M., Osamura Y., 2002, Journal of Physical Chemistry A, 106, 4825

Klippenstein S.J., Harding L.B., 2009, Proceedings of the Combustion Institute, 32, 149

Lander D.R., Unfried K.G., Glass G.P., et al., 1990, J. Phys. Chem., 94, 7759

Lee J.H., Stief L.J., Timmons R.B., 1977a, J. Chem. Phys., 67, 1705

Lee J.H., Stief L.J., Timmons R.B., 1977b, J. Chem. Phys., 67, 1705

Lilenfeld H.V., Richardson R.J., 1977, J. Chem. Phys., 67, 3991

Little D.J., Donovan R.J., 1973, J. Photochem. Photobiol, 1, 371

Loison J.-C., Halvick P., Bergeat A., et al., 2012a, MNRAS, 421, 1476

Loison J.C., Halvick P., Bergeat A., et al., 2012b, Monthly Notices of the Royal Astronomical Society, 421, 1476

Maiti B., Schatz G.C., Lendvay G.r., 2004, The Journal of Physical Chemistry A, 108, 8772

Moltzen E.K., Klabunde K.J., Senning A., 1988, Chem. Rev., 88, 391

Nicholas J.E., Amodio C.A., Baker M.J., 1979, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75, 1868

Peng J., Hu X., Marshall P., 1999, The Journal of Physical Chemistry A, 103, 5307

Petrie S., 1996, MNRAS, 281, 666

Rice B.M., Cartland H.E., Chabalowski C.F., 1993a, Chemical Physics Letters, 211, 283

Rice B.M., Cartland H.E., Chabalowski C.F., 1993b, Chem. Phys. Lett., 211, 283

Rice B.M., Chabalowski C.F., 1994, J. Phys. Chem., 98, 9488

Rosengren K., 1962, Acta Chem. Scand., 16, 2284

Steer R.P., Knight A.R., 1968, The Journal of Physical Chemistry, 72, 2145

Strausz O.P., O'Callaghan W.B., Lown E.M., et al., 1971, J. Am. Chem. Soc., 93, 559

Tiee J.J., Wampler F.B., Oldenborg R.C., et al., 1981, Chem. Phys. Lett., 82, 80

Tsang W., Hampson R.F., 1986, J. Phys. Chem. Ref. Data, 16, 471

Tsunashima S., Yokota T., Safarik I., et al., 1975, J. Phys. Chem., 79, 775

Vaghjiani G.L., 1993, The Journal of Chemical Physics, 99, 5936

Wang J.H., Han K.L., He G.Z., et al., 2003, Chemical Physics Letters, 368, 139

Watanabe K., Jursa A.S., 1964, The Journal of Chemical Physics, 41, 1650

Yang S.C., Freedman A., Kawasaki M., et al., 1980, The Journal of Chemical Physics, 72, 4058