1

Random Numbers

Anshul Sangrame CS21BTECH11004

CONTENTS

1	Uniform Random Numbers	1
2	Central Limit Theorem	2

- **3** From Uniform to Other 4
- 4 Triangular Distribution 4

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution/1/ coeffs.h

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /1/1_1.c

Execute the above files using code,

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution:

Download the following files

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /1/1 2.py

Execute the code using command

python3 1_2.py

Plot 1.1 is obtained,

Fig. 1.1

1.3 Find a theoretical expression for $F_U(x)$.

Solution:

Pdf of Uniform distribution between [0,1] is given by,

$$f_U(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & \text{otherwise} \end{cases}$$
 (1.2)

$$F_U(x) = \int_{-\infty}^x f_U(x)dx \tag{1.3}$$

Case-1: x < 0,

$$F_U(x) = \int_{-\infty}^{x} 0 dx$$
 (1.4)
= 0 (1.5)

Case-2: $x \in [0,1]$,

$$F_U(x) = \int_{-\infty}^0 0 dx + \int_0^x 1 dx \qquad (1.6)$$

$$= x \tag{1.7}$$

Case-3: x > 1,

$$F_U(x) = \int_{-\infty}^0 0dx + \int_0^1 1dx + \int_1^x 0dx \quad (1.8)$$

= 1 (1.9)

Hence,

$$F_U(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1] \\ 1, & x > 1 \end{cases}$$
 (1.10)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.11)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.12)

Write a C program to find the mean and variance of U.

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution/1/ coeffs.h

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /1/1 4.c

Execute the above files using code,

The following result is obtained

$$E[U] = 0.500007$$

var $[U] = 0.083301$

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) dx \qquad (1.13)$$

Solution:

 $F_U(x)$ for uniform distribution,

$$F_U(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1] \\ 1, & x > 1 \end{cases}$$
 (1.14)

$$E[U] = \int_{-\infty}^{\infty} x dF_U(x)$$
 (1.15)

$$= \int_{-\infty}^{0} 0dx + \int_{0}^{1} xdx + \int_{1}^{\infty} 0dx \qquad (1.16)$$

$$=\frac{1}{2}\tag{1.17}$$

$$E[U^2] = \int_{-\infty}^{\infty} x^2 dF_U(x)$$
 (1.18)

$$= \int_{-\infty}^{0} 0 dx + \int_{0}^{1} x^{2} dx + \int_{1}^{\infty} 0 dx \quad (1.19)$$

$$=\frac{1}{3}$$
 (1.20)

$$E[U - E[U]]^{2} = E[U^{2}] - [E[U]]^{2}$$
 (1.21)

From Equation (1.17) and (1.20),

$$E[U - E[U]]^2 = \frac{1}{3} - \left(\frac{1}{2}\right)^2 \tag{1.22}$$

$$=\frac{1}{2} - \frac{1}{4} \tag{1.23}$$

$$= \frac{1}{12} \approx 0.083 \tag{1.24}$$

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution/1/ coeffs.h

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /2/2_1.c

Execute the above files using code,

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /2/2_2.py

Execute the above file using code,

Plot 2.1 obtained is symmetric about (0,0.5)

Fig. 2.1

2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

What properties does the PDF have?

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /2/2 3.py

Execute the above file using code,

Plot 2.2 obtained is symmetric about y-axis

2.4 Find the mean and variance of *X* by writing a C program.

Solution:

Download the following files,

Fig. 2.2

| wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/soltion/1/ coeffs.h

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /2/2_4.c

Execute the above files using code,

The result is,

$$E[U] = 0.000294$$
 (2.3)

$$var[U] = 0.999561$$
 (2.4)

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \quad (2.5)$$

repeat the above exercise theoretically.

Solution:

$$E[U] = \int_{-\infty}^{\infty} u p_X(u) du \qquad (2.6)$$

(2.7)

 $up_X(u)$ is a odd function.

$$E[U] = 0 \tag{2.8}$$

$$E\left[U^{2}\right] = \int_{-\infty}^{\infty} \frac{u^{2}}{\sqrt{2\pi}} \exp\left(-\frac{u^{2}}{2}\right) du \qquad (2.10)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u \left(u \exp\left(-\frac{u^{2}}{2}\right)\right) du \quad (2.11)$$

Using integration by parts,

$$E\left[U^{2}\right] = -u\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{u^{2}}{2}\right)\Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{u^{2}}{2}\right)$$
(2.12)

$$= 0 + \frac{1}{\sqrt{2\pi}} \sqrt{2\pi}$$
 (2.13)

$$= 1 \tag{2.14}$$

Hence,

$$\operatorname{var}[U] = E[U^2] - [E[U]]^2$$
 (2.15)
= 1 (2.16)

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution/ coeffs.h

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /3/3_1.c

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /3/3_1.py

Execute the above files using code,

Plot 3.1 is obtained

3.2 Find a theoretical expression for $F_V(x)$.

Solution:

Fig. 3.1

$$F_V(x) = Pr(V \le x) \tag{3.2}$$

$$= Pr(-2\ln(1-U) \le x) \tag{3.3}$$

$$= Pr\left(U \le 1 - e^{-\frac{x}{2}}\right) \tag{3.4}$$

$$F_V(x) = F_U \left(1 - e^{-\frac{x}{2}} \right) \tag{3.5}$$

$$= \begin{cases} 0, & 1 - e^{-\frac{x}{2}} < 0\\ 1 - e^{-\frac{x}{2}}, & 1 - e^{-\frac{x}{2}} \in [0, 1]\\ 1, & 1 - e^{-\frac{x}{2}} > 1 \end{cases}$$
 (3.6)

Now,

$$1 - e^{-\frac{x}{2}} < 0 \tag{3.7}$$

$$\implies x < 0$$
 (3.8)

$$0 \le 1 - e^{-\frac{x}{2}} \le 1 \tag{3.9}$$

$$\implies x \ge 0 \tag{3.10}$$

$$1 < 1 - e^{-\frac{x}{2}} \tag{3.11}$$

$$\implies x \in \phi$$
 (3.12)

Hence,

$$F_V(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\frac{x}{2}}, & x \ge 0 \end{cases}$$
 (3.13)

4 Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 \tag{4.1}$$

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution/ coeffs.h

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /4/4 1.c

Execute the above files using code,

4.2 Find the CDF of *T*.

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /4/4_2.py

Execute the above files using code,

Plot 4.1 is obtained

Fig. 4.1

4.3 Find the PDF of T.

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /4/4 3.py

Execute the above files using code,

Fig. 4.2

Plot 4.2 is obtained

4.4 Find the theoretical PDF and CDF of T.

Solution:

The CDF of T is given by

$$F_T(t) = \Pr(T \le t) = \Pr(U_1 + U_2 \le t)$$
 (4.2)

Since $U_1, U_2 \in [0, 1] \implies U_1 + U_2 \in [0, 2]$ Therefore, if $t \ge 2$, then $U_1 + U_2 \le t$ is always true and if t < 0, then $U_1 + U_2 \le t$ is always false.

Now, fix the value of U_1 to be some x

$$x + U_2 \le t \implies U_2 \le t - x$$
 (4.3)

If $0 \le t \le 1$, then x can take all values in [0, t]

$$F_T(t) = \int_0^t \Pr(U_2 \le t - x) \, p_{U_1}(x) \mathrm{d}x \qquad (4.4)$$

$$= \int_0^t F_{U_2}(t-x)p_{U_1}(x)\mathrm{d}x \tag{4.5}$$

$$0 \le x \le t \implies 0 \le t - x \le t \le 1$$
 (4.6)

$$\implies F_{U_2}(t-x) = t-x$$
 (4.7)

$$F_T(t) = \int_0^t (t - x) \cdot 1 \cdot \mathrm{d}x \tag{4.8}$$

$$= tx - \frac{x^2}{2} \bigg|_0^t \tag{4.9}$$

$$=\frac{t^2}{2}$$
 (4.10)

If 1 < t < 2, x can only take values in [0, 1] as

 $U_1 \leq 1$

$$F_T(t) = \int_0^1 F_{U_2}(t - x) \cdot 1 \cdot dx \tag{4.11}$$

$$0 \le x \le t - 1 \implies 1 \le t - x \le t$$

$$t - 1 \le x \le 1 \implies 0 < t - 1 \le t - x \le 1$$

$$(4.12)$$

$$(4.13)$$

$$F_T(t) = \int_0^{t-1} 1 dx + \int_{t-1}^1 (t - x) dx \qquad (4.14)$$

$$= t - 1 + t(1 - (t - 1)) - \frac{1}{2} + \frac{(t - 1)^2}{2}$$

$$= t - 1 + 2t - t^2 - \frac{1}{2} + \frac{t^2}{2} + \frac{1}{2} - t \qquad (4.16)$$

$$= -\frac{t^2}{2} + 2t - 1 \qquad (4.17)$$

Therefore,

$$F_T(t) = \begin{cases} 0 & t < 0 \\ \frac{t^2}{2} & 0 \le t \le 1 \\ 2t - \frac{t^2}{2} - 1 & 1 < t < 2 \\ 1 & t \ge 2 \end{cases}$$
 (4.18)

The PDF of T is given by

$$p_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_T(t) \tag{4.19}$$

$$\therefore p_T(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t \le 1 \\ 2 - t & 1 < t < 2 \\ 0 & t \ge 2 \end{cases}$$
 (4.20)

4.5 Verify your results through a plot.

Solution:

Download the following files,

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /4/4_5_1.py

wget https://github.com/Anshul-Sangrame/ AI1110/blob/main/Assignment/solution /4/4_5_2.py

Execute the above files using code,

Plot 4.3 is obtained is pdf Plot 4.4 is obtained

Fig. 4.3

is cdf

Fig. 4.4

5 Maximum Likelihood

5.1 Generate equiprobable $X \in \{1, -1\}$.