Semiconductors

Conductivity of materials

Conductivity is proportional to the concentration n of free electrons

A good conductor: $n \approx 10^{28}$ electrons / m^3

An insulator: $n \approx 10^7$ electrons / m^3

semiconductors are materials which have a conductivity between conductors and nonconductors or insulators

Semiconductors are made from pure elements, typically silicon or geranium, or compounds such as gallium arsenide.

Conductivity is caused by movement of free electrons

Electrons are moving around the nucleus in different shells

Shells are divided in subshells

The maximum no of electrons that in be present in a shell or subshell is fixed

Electron shell and subshells

shell	K		L	M			N			
n	1	2		3			4			
1	0	0	1	0	1	2	0	1	2	3
subshell	S	S	р	S	р	d	S	р	d	f
	2	2	6	2	6	10	2	6	10	14
No of Electrons	2	8		18			32			

Who are semiconductors?

* Lanthanide
Series

+	Actinide
	Series

_			The second second	61 Pm			And the second second							
	90 Th	91 Pa	92 U	[®] Np	94 Pu	95 Am	% Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Availability of free electrons is dependent on the element

Electronic configuration in Group IV A

Element	Atomic number	Configuration
С	6	1s ² 2s ² 2p ²
Si	14	$1s^2 2s^2 2p^6 3s^2 3p^2$
Ge	32	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$
Sn	50	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^2$

C, Si, Ge, Sn are in same Group IV A in periodic table

Each has completely filled subshells except for outermost p subshell having only two of six possible electrons

C in crystalline form: an insulator

Si, Ge: semiconductors

Sn: metal

Most metals and semiconductors are crystalline in structure

Diamond Lattice

- Tetrahedral structure
- 4 nearest neighbors

A crystal consists of a space array of atoms built up by regular repetition in three dimensions of some fundamental structural unit

The characteristics at any point is the result of contributions from every atom

The Crystal Structure

A crystal consists of a space array of atoms built up by regular repetition in three dimensions of some fundamental structural unit

The characteristics at any point is the result of contributions from every atom

Most metals and semiconductors are crystalline in structure

The energy levels of inner shell electrons are not affected appreciably by the presence of neighboring atoms

The levels of the outer shell electrons are changed considerably, since they are shared by more than one atom in the crystal

Energy Band Theory of Crystals

If atoms are far away, interaction between them is negligible, energy levels coincide with those of isolated atom

If interatomic spacing decreases,

- (i) An atom will exert an electric force on its neighbors.
- (ii) The crystal becomes an electronic system (follow Pauli exclusion principle)
- (iii) s and p states spread out in energy

As no of atoms per cm³ is very large (~10²³), the total spread between minimum and maximum energy may be several electron volts (energy band)

Energy Band Theory of Crystals

For small enough distance

- (i) the bands overlap
- (ii) each atom gives up 4 electrons;

These electrons can no longer be in s or p subshell, they belong to the crystal as a whole

The band these electrons occupy is called as valence band

Energy Band Theory of Crystals

If interatomic spacing decreases further, say below the distance at which the bands overlap, the interaction between atoms become very large

The energy band structure becomes dependent upon

(i) orientation of the atoms relative to another in space (crystal structure)

(ii) atomic number

Behavior follows Schrodinger's equation

At the crystal lattice spacing a_0 , valence band is filled with 4 electrons separated by a forbidden band (no allowed energy state) of extent E_g from an empty band

The upper vacant band is called conduction band

Energy Bands in Semiconductors

 Let there be N atoms in the crystal

 The space between the bands is the energy gap, or forbidden band

Energy Band Structure

The large forbidden band

For diamond (carbon) crystal, $E_g \approx 6ev$

The energy that can be supplied to an electron is too small to carry it to conduction band from the filled into valance band

The small forbidden band. Behaves like insulator at low temperature

 $E_g = 0.72$ (1.21) ev for Ge (Si) at room temperature

Energies of this magnitude cannot be supplied by an electric field

If the temperature increases, some electrons from valence band jump into the empty conduction band to become free electrons

The absence of an electron in valence band creats a hole

No forbidden band.

Valence band merges into empty band

Under influence of an electric field the electrons acquire additional energy and move into higher energy states to constitute a current

Electrons and holes in semiconductor

Crystal structure of semiconductor consists of a space array of atoms built up by regular repetition in three dimensions of a unit cell having the form of an tetrahedron

For ease of understanding, let the crystal structure of semiconductor is symbolically illustrated in two dimensions

The inert core of Si atom carries a positive charge of + 4

Each of the valence electron of a Si atom is shared by one of its nearest neighbours

This electron pair forms covalent bond

Valence becomes tightly bound to nucleus

At low temperature (say 0° K), the crystal becomes an insulator

Electrons and holes in semiconductor

At room temperature, some of the covalent bonds will be broken

Some electrons may be dislodged to become free to wander in random fashion throughout the crystal

Absence of electron in covalent bond is called a hole

When a hole exists, a valence electron in neighboring atom may leave its covalent bond to fill this hole – thus the hole moves

This hole in new position may now be filled by an electron from another covalent bond, causing further movement of hole

Conduction of electricity is possible without involving free electrons

Donor impurity in semiconductor

A small amount of impurity with 5 valence electrons is added

Four of five valence electrons occupy covalent bonds, the fifth is unbound and becomes free

The type of impurity is donor, as it donates electrons

It is called n-type semiconductor

Suitable pentavalent impurites: P, Sb, As

Allowable energy levels are introduced a very small distance [(0.01 {0.05} ev for Ge {Si}),] below conduction band

This new allowable level is discrete, as added impurity atoms are far apart in crystal structure, their interaction is small

Energy required to detach this fifth electron from atom to raise it in conduction band is only 0.01 {0.05} ev for Ge {Si},

The presence of large no of electrons increases rate of recombination of holes and electrons, thus decreases the no of holes below that is available in intrinsic semiconductor

Acceptor impurity in semiconductor

A small amount of impurity with 3 valence electrons is added

Three valence electrons fill three covalent bonds, a vacancy exists in 4th bond, creating a hole that can accept electron

The type of impurity is acceptor, as it accepts electrons

It is called p-type semiconductor

Suitable trivalent impurites: B, Ga, In

Allowable energy levels are introduced which is just above valence band

This new allowable level is discrete, as added impurity atoms are far apart in crystal structure, their interaction is small

Very small amount of energy is required for an electron to leave valence band and occupy acceptor energy level

The presence of large no of holes increases rate of recombination of holes and electrons, thus decreases the no of electrons below that is available in intrinsic semiconductor

Result of doping in semiconductor

Increases conductivity

Produces conductors in which electric carriers are either predominantly holes or predominantly electrons

In n-type semiconductor, majority carrier is electrons and minority carrier is holes

In p-type semiconductor, majority carrier is holes and minority carrier is electrons

By combining n-type and p-type semiconductors materials that conduct only under certain conditions can be created

Semiconductor Diode

Donor and acceptor impurities are introduced in two sides of a single crystal of semiconductor

By donating an electron a donor impurity atom becomes a positive ion

An acceptor impurity atom becomes a negative ion after accepting an electron

Holes diffuse to the right and electrons to the left across the junction

As holes and electrons combine across the junction, they disappear near the junction

An electric field appears across the junction

Equilibrium is established, when field is large enough to restrain the process of diffusion

For further movement of holes and electrons, they have to cross a potential barrier (i.e. we have to apply an external field)

Unneutralized ions in the neighborhood of the junction are uncovered charges

The region across is called space charge region or depletion region

Thickness of depletion region is very small (10⁻⁴ cm)

P-N Junction — Forward Bias

- positive voltage placed on p-type material
- holes in p-type move away from positive terminal, electrons in n-type move further from negative terminal
- depletion region becomes smaller resistance of device decreases
- voltage increased until critical voltage is reached, depletion region disappears, current can flow freely

P-N Junction — Reverse Bias

- positive voltage placed on n-type material
- electrons in n-type move closer to positive terminal, holes in p-type move closer to negative terminal
- width of depletion region increases
- allowed current is essentially zero (small "drift" current)

IV Characteristics of Diode

Semiconductor Transistor

Bipolar Junction Transistor (BJT)

Currents flow mainly due to majority carriers

Reference positive directions for both NPN and PNP transistors.

An *npn* transistor with variable biasing sources (common-emitter configuration).

Base characteristic with collector-to-emitter voltage constant.

Collector characteristics of an ideal representative BJT.

Three regions of operation for a BJT.

Amplification occurs in the active region. In saturation, $v_{CE} < 0.2 \text{ V}$.

Modes of Operation

Common-emitter output characteristics

Mode	Emitter Junction	Collector Junction
CUTOFF	reverse bias	reverse bias
Forward ACTIVE	forward bias	reverse bias*
Reverse ACTIVE	reverse bias*	forward bias
SATURATION	forward bias	forward bias

*or not strongly forward biased

Models to assist in visualizing BJT as two diodes.

Ideal model of BJT in cutoff region.

Ideal model of BJT in saturation region.

Transistor as an amplifier.

Transistor Amplifier Basics

Load-line analysis

Load-line analysis of the amplifier

Voltage waveforms for the amplifier

BJT switch using an NPN transistor.

