CSCI 544: Applied Natural Language Processing

# Recurrent Neural Networks for Sequence Labeling

Xuezhe Ma (Max)



# Models

### Course Organization

### **NLP Tasks**



# Recap: What is Sequence Labeling?

### A type of structured prediction tasks

$$Y = \langle y_i, y_2, ..., y_n \rangle \qquad \text{NNP} \qquad \text{VBZ} \qquad \text{IN} \qquad \text{NNP} \qquad \\ X = \langle x_i, x_2, ..., x_n \rangle \qquad \text{USC} \qquad \text{is} \qquad \text{in} \qquad \text{California}$$

Assigning each token of X, e.g.  $x_i$  a corresponding label  $y_i$ 

# Recap: Classical Models for Sequence Labeling

### Structured Models

- HMMs
- MEMMs
- CRFs
- Decoding Algorithms
  - Greedy decoding
  - Viterbi decoding

Motivation: modeling dependencies between multiple labels/tags

### An Essential Question

 Do we need structured models if the feature representations of the input sentence is perfect



### Our Goal: Sentence Representations

One feature vector for each word



$$P(y_1, ..., y_n | x_1, ..., x_n) = \prod_{j=1}^n P(y_j | x_1, ..., x_n)$$

# Recap: One Vector to Represent a Document

### Classification

- We need a single feature vector to feed into ML classifiers



# Our Goal: Sentence Representations



$$P(y_1, ..., y_n | x_1, ..., x_n) = \prod_{j=1}^n P(y_j | x_1, ..., x_n)$$

# Convolutional Neural Networks (CNNs)

• Basic Idea: only model a segment of input with fixed window-size



k is the window size



$$Y = [y_1, y_2, ..., y_n] \in \mathbb{R}^{n \times d'}$$

#### Pros:

- Simple architecture
- Parallel computation

#### Cons:

- Small context window
- Not good at modeling long dependencies

$$X \in \mathbb{R}^{n \times d}$$

# Recurrent Neural Networks





# Neural Networks for Sentence Representations

- Recurrent Neural Networks (RNNs)
  - Re-using one feed forward network in a recurrent way



# Neural Networks for Sentence Representations

- Recurrent Neural Networks (RNNs)
  - Re-using one feed forward network in a recurrent way

### **Inherent Markov Property**



# Problems of Simple RNN

- No future contexts
- Hard to train
  - Gradient varnishing/exploding

- Inefficient
  - Sequential computation
- Limited size of hidden states
  - Memory cost



• RNN cannot model future information



Future information is important for sequence labeling tasks!



$$P(y_1, ..., y_n | x_1, ..., x_n) = \prod_{j=1}^n P(y_j | x_1, ..., x_n)$$





$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^h$$

$$\overrightarrow{\mathbf{h}}_t = f_1(\overrightarrow{\mathbf{h}}_{t-1}, \mathbf{x}_t), t = 1, 2, \dots n$$

$$\overleftarrow{\mathbf{h}}_t = f_2(\overleftarrow{\mathbf{h}}_{t+1}, \mathbf{x}_t), t = n, n-1, \dots 1$$

$$\mathbf{h}_t = [\overleftarrow{\mathbf{h}}_t, \overrightarrow{\mathbf{h}}_t] \in \mathbb{R}^{2h}$$

- Bidirectional RNNs are only applicable if we have access to the entire input sequence
- If we do have entire input sequence, bidirectionality is powerful (and should be the default choice)
- A very common choice for sentence/document encoding: multi-layer bidirectional RNNs

# Problems of Simple RNN

- No future contexts
- Hard to train
  - Gradient varnishing/exploding

- Inefficient
  - Sequential computation
- Limited size of hidden states
  - Memory cost



# Simple RNN is hard to train

• Hard to capture long-distance information: vanishing/exploding gradients

$$h_t = \tanh(W_x \cdot x_t + W_h \cdot h_{t-1} + b)$$

$$\|\frac{\partial h_t}{\partial h_{t-1}}\| \sim \|W_h\|$$

$$\|\frac{\partial h_t}{\partial h_{t-m}}\| \sim \|W_h\|^m$$



Why is this not a serious problem for multi-layer FFN/CNN?

### **Advanced RNN Variants**

- Long-short Term Memory (LSTMs)
- Gated Recurrent Units (GRUs)

LSTMs 
$$\mathbf{i}_{t} = \sigma(\mathbf{W}^{i}\mathbf{h}_{t-1} + \mathbf{U}^{i}\mathbf{x}_{t} + \mathbf{b}^{i})$$

$$\mathbf{f}_{t} = \sigma(\mathbf{W}^{f}\mathbf{h}_{t-1} + \mathbf{U}^{f}\mathbf{x}_{t} + \mathbf{b}^{f})$$

$$\mathbf{o}_{t} = \sigma(\mathbf{W}^{o}\mathbf{h}_{t-1} + \mathbf{U}^{o}\mathbf{x}_{t} + \mathbf{b}^{o})$$

$$\mathbf{g}_{t} = \tanh(\mathbf{W}^{g}\mathbf{h}_{t-1} + \mathbf{U}^{g}\mathbf{x}_{t} + \mathbf{b}^{g})$$

$$\mathbf{c}_{t} = \mathbf{c}_{t-1} \odot \mathbf{f}_{t} + \mathbf{g}_{t} \odot \mathbf{i}_{t}$$

$$\mathbf{h}_{t} = \tanh(\mathbf{c}_{t}) \odot \mathbf{o}_{t}$$

GRUs 
$$\mathbf{r}_t = \sigma(\mathbf{W}^r \mathbf{h}_{t-1} + \mathbf{U}^r \mathbf{x}_t + \mathbf{b}^r)$$

$$\mathbf{z}_t = \sigma(\mathbf{W}^z \mathbf{h}_{t-1} + \mathbf{U}^z \mathbf{x}_t + \mathbf{b}^z)$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}(\mathbf{r}_t \odot \mathbf{h}_{t-1}) + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

LSTM is more an art than a science

## LSTM: Long Short-Term Memory

$$\begin{split} &\mathbf{i}_t = \sigma(\mathbf{W}^i \mathbf{h}_{t-1} + \mathbf{U}^i \mathbf{x}_t + \mathbf{b}^i) & \text{Input gate: } i_t \in (0,1) \\ &\mathbf{f}_t = \sigma(\mathbf{W}^f \mathbf{h}_{t-1} + \mathbf{U}^f \mathbf{x}_t + \mathbf{b}^f) & \text{Forget gate: } f_t \in (0,1) \\ &\mathbf{o}_t = \sigma(\mathbf{W}^o \mathbf{h}_{t-1} + \mathbf{U}^o \mathbf{x}_t + \mathbf{b}^o) & \text{Output gate: } o_t \in (0,1) \\ &\mathbf{g}_t = \tanh(\mathbf{W}^g \mathbf{h}_{t-1} + \mathbf{U}^g \mathbf{x}_t + \mathbf{b}^g) & \text{Simple RNN} \\ &\mathbf{c}_t = \mathbf{c}_{t-1} \odot \mathbf{f}_t + \mathbf{g}_t \odot \mathbf{i}_t & \text{Cell state vector (internal memory)} \\ &\mathbf{h}_t = \tanh(\mathbf{c}_t) \odot \mathbf{o}_t & \text{Final hidden vector} \end{split}$$

All the components are directly learned during training

# LSTMs for Sequence Labeling





# LSTM for Sequence Labeling

### • A simple bidirectional LSTM model



No structured models to consider dependencies between Y

# Sequence Labeling

### How to initialize parameters?



LSTM: Unif $(-\sqrt{1/d}, \sqrt{1/d})$ 

Embedding: Word2Vec or GloVe

# Sequence Labeling

### • A simple bidirectional LSTM model

|                        | POS Tagging | NER   |
|------------------------|-------------|-------|
| HMM                    | 96.4%       | 75.3% |
| CRF                    | 97.0%       | 88.7% |
| CRF+external resources | 97.3%       | 91.2% |
| BLSTM-Random           | 96.1%       | 80.7% |
| BLSTM-GloVe            | 96.9%       | 87.0% |

BLSTM is not good enough!

### Bidirectional LSTMs + CNNs

- Bidirectional LSTM only encodes word-level information
- Spelling features are important
  - Using CNN to model character-level information



# Sequence Labeling

### BLSTM-CNN

|                        | POS Tagging | NER   |
|------------------------|-------------|-------|
| CRF                    | 97.0%       | 88.7% |
| CRF+external resources | 97.3%       | 91.2% |
| BLSTM                  | 96.9%       | 87.0% |
| BLSTM-CNN              | 97.3%       | 89.4% |

BLSTM-CNN is better than CRF!

### An Essential Question

 Do we need structured models if the feature representations of the input sentence is perfect



$$P(y_1, ..., y_n | x_1, ..., x_n) = \prod_{j=1}^n P(y_j | x_1, ..., x_n)$$

BiLSTM + Char-level CNN is not strong enough...

Structured models are still useful? Combining structured models with LSTM?

### Recap: Log-Linear Models

### MEMMs

$$p(y_j | y_{j-1}, x_1, ..., x_m) = \frac{\exp(v \cdot f(x_1, ..., x_m, j, y_{j-1}, y_j))}{\sum_{y_j' \in \mathbb{Y}} \exp(v \cdot f(x_1, ..., x_m, j, y_{j-1}, y_j'))}$$

$$p(y_1, ..., y_m | x_1, ..., x_m) = \frac{\prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, j, y_{j-1}, y_j))}{\sum_{\substack{y_1', ..., y_m' \in \mathbb{Y}}} \prod_{j=1}^m \exp(v \cdot f(x_1, ..., x_m, j, y_{j-1}', y_j'))}$$

# Sequence Labeling: BLSTM-CNNs-CRF

$$v \cdot f(x_1, \dots, x_m, j, y_{j-1}, y_j) = \mathbf{W}_{y_{j-1}, y_j}^T \mathbf{h}_j$$
 Parameters w.r.t  $y_{j-1}, y_j$  LSTM hidden state at j

$$p(\mathbf{y} \mid \mathbf{x}; \mathbf{W}) = \frac{\prod_{j=1}^{n} \exp\left(\mathbf{W}_{y_{j-1}, y_{j}} \mathbf{h}_{j}\right)}{\sum_{y' \in \mathcal{Y}} \prod_{j=1}^{n} \exp\left(\mathbf{W}_{y'_{j-1}, y_{j}} \mathbf{h}_{j}\right)}$$



Bi-LSTM-CNNs

# Sequence Labeling

### • BLSTM-CNN-CRF

|                        | POS Tagging | NER   |
|------------------------|-------------|-------|
| CRF                    | 97.0%       | 88.7% |
| CRF+external resources | 97.3%       | 91.2% |
| BLSTM                  | 96.9%       | 87.0% |
| BLSTM-CNN              | 97.3%       | 89.4% |
| BLSTM-CNN-CRF          | 97.6%       | 91.2% |

Structured models are still useful!

# Problems of Simple RNN

- No future contexts
- Hard to train
  - Gradient varnishing/exploding

- Inefficient
  - Sequential computation
- Limited size of hidden states
  - Memory cost



# Improving RNN efficiency

### • Simple Recurrent Unit



### **Sequential**

$$h_t = \tanh(W_x \cdot x_t + W_h \cdot h_{t-1} + b) \qquad \longrightarrow \qquad V_h \odot h_{t-1}$$

# Problems of Simple RNN

- No future contexts
- Hard to train
  - Gradient varnishing/exploding

- Inefficient
  - Sequential computation
- Limited size of hidden states
  - Memory cost



# Enlarging Hidden Size

- Linear Recurrent Neural Networks
  - Directly computing output  $y_t$  by skipping the explicit computation of  $h_t$



### Linear RNN

• Taking one dimension of x as an example, e.g.  $x_t \in \mathbb{R}$ 

• Expanding  $x_t$  to n dimensions

$$\mathbf{u}_t = \boldsymbol{\beta} x_t \in \mathbb{R}^n$$

Applying linear operation on hidden state

$$\mathbf{h}_t = A\mathbf{h}_{t-1} + \mathbf{u}_t = A\mathbf{h}_{t-1} + \beta x_t \in \mathbb{R}^n$$

ullet Mapping the h-dimensional vector back to 1 dimension

$$\mathbf{y}_t = \boldsymbol{\eta}^T \mathbf{h}_t \in \mathbb{R}$$



### Linear RNN

ullet Unrolling the computation of  $y_t$ 

$$\mathbf{h}_t = A\mathbf{h}_{t-1} + \mathbf{u}_t = A\mathbf{h}_{t-1} + \beta x_t \in \mathbb{R}^n$$

$$\mathbf{h}_1 = A\mathbf{h}_0 + \beta x_1$$

$$\mathbf{h}_2 = A\mathbf{h}_1 + \beta x_2 = A^2\mathbf{h}_0 + A\beta x_1 + \beta x_2$$

•

•

$$\mathbf{y}_t = \boldsymbol{\eta}^T \mathbf{h}_t \in \mathbb{R}$$

$$\mathbf{y}_1 = \boldsymbol{\eta}^T \mathbf{h}_1 = (\boldsymbol{\eta}^T \boldsymbol{A}) \mathbf{h}_0 + (\boldsymbol{\eta}^T \boldsymbol{\beta}) x_1$$

$$\mathbf{y}_2 = \boldsymbol{\eta}^T \mathbf{h}_2$$

$$= (\boldsymbol{\eta}^T \boldsymbol{A}^2) \mathbf{h}_0 + (\boldsymbol{\eta}^T \boldsymbol{A} \boldsymbol{\beta}) x_1 + (\boldsymbol{\eta}^T \boldsymbol{\beta}) x_2$$

# Reading Materials

- Relavant Papers
  - BLSTM-CNNs-CRF