Lenguaje de programación Quartz

Diego Delgado Barcaiztegui

26 de Enero del 2021

Contents

1	Autómatas y lenguajes formales		2
	1.1	Definiciones básicas	3
	1.2	Lenguajes formales	3

Chapter 1 Autómatas y lenguajes formales

En esta sección vamos a repasar algunos conceptos de teoría de autómatas y lenguajes formales que serán necesarios al momento de definir la especificación del lenguaje de programación Quartz.

1.1 Definiciones básicas

- Lenguaje formal: es un conjunto de palabras definidas sobre un alfabeto.
- Alfabeto: (\sum) es un conjunto finito no vacío de símbolos. Por ejemplo $\sum = \{a,b\}$ o $\sum = \{>,<,?\}$.
- **Símbolo:** Componente mínimo e indivisible que puede formar parte de una palabra.
- Palabra: Secuencia finita de símbolos de un alfabeto.
- Longitud de una palabra: (|x|) Cantidad de símbolos que tiene una palabra.
- Palabra vacía: Se puede representar con ϵ o λ . Cumple que $|\lambda| = 0$.
- \sum^* : Conjunto infinito de todas las palabras que se pueden formar con el alfabeto \sum , incluyendo λ . Por ejemplo, teniendo el alfabeto $\sum = \{a, b\}$ entonces $\sum^* = \{\lambda, a, b, aa, bb, abab, abba, ba, ...\}.$
- Σ^+ : Se define como $\Sigma^+ = \Sigma^* \{\lambda\}$.

1.2 Lenguajes formales

Un lenguaje formal L definido sobre el alfabeto Σ se define como $L(\Sigma) \subset \Sigma^*$ o más detalladamente $L(\Sigma) = \{x \in \Sigma^* \mid x \text{ cumple con la definición formal del lenguaje}\}$

Algunos ejemplos pueden ser:

- $L = \{\} = \emptyset$.
- $L = \{ \in \}$. En este caso es un lenguaje con un elemento: la palabra vacia
- $\sum^* = \text{lenguaje universal a } \sum$.