9Q

48C512/48C1024 512K/1024K FLASH™ EEPROM

ADVANCE DATA SHEET

July 1987

Features

- 64K/128K Byte Writable Non-Volatile Memory
- E Low Power CMOS Process
- Electrical Chip and Block Erase
 - 7.5 Second Maximum Erase Time
- Electrical Byte Write
 - e 1 ms. Maximum, 500 μs typical
- Input Latches for Writing and Erasing
- # Fast Read Access Time
- Single High Voltage for Writing and Erasing
- # Flash" EEPROM Cell Technology
- Ideal for Low-Cost Program and Data Storage
 - Minimum 100 Cycle Endurance
 - Optional 1000 Cycle Endurance Screening
 - Minimum 10 Year Data Retention
- 5V ± 10% Vcc,

0°C to +70°C Temperature Range

- Silicon Signature" and DiTrace"
- Jedec Standard Byte Wide Pinout
 - 32 Pin D.I.P.
 - 32 Pin J-Bend Plastic Leaded Chip Carrier

Block Diagram

NOTE 2: PIN 2 IS N.C. ON THE 48C512

SILICON SIGNATURE", FLASH" and DITRACE" are registered trademarks of SEEO Technology.

SEEQ Technology, Incorporated

Pin Configuration

TOP VIEW PLASTIC LEADED CHIP CARRIER DUAL-IN-LINE **TOP VIEW**

Pin Names

Ao-Ae	COLUMN ADDRESS INPUT (48C512)
A ₀ .A ₉	COLUMN ADDRESS INPUT (48C1024)
Ag.A15	ROW ADDRESS INPUT (48C512)
A10-A16	ROW ADDRESS INPUT (48C1024)
CE	CHIP ENABLE
Œ	OUTPUT ENABLE
WE	WRITE ENABLE
1/00-7	DATA INPUT (WRITE)/OUTPUT (READ)
N.C.	NO INTERNAL CONNECTION
Vpp	WRITE/ERASE INPUT VOLTAGE

Description

The 48C512 and 48C1024 are 512 Kbit and 1024 Kbit CMOS Flash EEPROMS organized as 64K x 8 and 128K x 8 bits. Built using Seeq's proprietary Flash EEPROM single transistor memory cell, they feature input latches on address and data inputs for both erasing and writing, chip erase and block erase capability and a fast byte write. Endurance, the number of times a byte can be written, is specified as 100 with an optional screen to 1000 cycles

Read

Reading is accomplished by presenting a valid address with chip enable and output enable at V_{IL} write enable at VIH, and VPP at any level. See timing waveforms for A.C. parameters.

Erase and Write

Latches on address, data and control inputs permit erasing and writing using normal microprocessor bus timing. Address inputs are latched on the falling edge of write enable or chip enable, whichever is later, while data inputs are latched on the rising edge of write enable or chip enable, whichever is earlier. The write enable input is noise protected: a pulse of less than 20 ns. will not initiate a write or erase. In addition, chip enable, output enable and write enable must be in the proper state to initiate a write or erase. Timing diagrams depict write enable controlled writes; the timing also applies to chip enable controlled writes.

Block Erase

Block erase erases all bits in a block of the array to a logical one. It requires that the Vpp pin be brought to a high voltage and a write cycle performed. The block to be erased is defined by address inputs Ag through A15 for the 48 C5 12 and A_{10} through A_{18} for the 48C1024. The data inputs must be all ones to begin the erase. Following a write of 'FF, the part will wait for time Tabort to allow aborting the erase by writing again. This permits recovering from an unintentional block erase if, for example, in loading a block of data a byte of 'FF' was written. After the Tabort delay the block erase will begin. The erase is accomplished by following the erase algorithm in figure 2. Vpp can be brought to any TTL level or left at high voltage after the erase.

Chip Erase

Chip erase changes all bits in the memory to a logical one. Refer to figure 3 for the chip erase algorithm. V_{pp} can be brought to any TTL level or left at high voltage after the erase.

Block and Chip Erase Algorithm

To reduce the block and chip erase times, a software erase algorithm is used. Refecto figures 2 and 3 for the block erase and chip erase flow charts

Byte Write

A bytewrite is used to change any 1 in a byte to a 0. To change a bit in a byte from a 0 to a 1, the byte must be erased first via either block erase or chip erase.

Data are organized in these Flash EEPROMs in a group of bytes called a block. There are 128 blocks in both the 48C512 and the 48C1024. A block, which is 512 bytes in the 48C512 and 1024 bytes inthe 48C1024, is conceptually like a sector on a disk drive. Individual bytes must be written as part of a block write algorithm which is detailed in figure 1. This algorithm is designed to minimize the total time to write a block of data

Blocks are written by applying a high voltage to the V_{PP} pin and writing individual non-FF bytes in sequential order. Each byte write is automatically latched on-chip, so that the user can do a normal microprocessor write cycle and then wait a minimum of two ns. for the self-timed write to complete. Each byte write incrementally programs bits that are to become a zero. A write loop has been completed when all non-FF data for all desired blocks have been written. Following each loop, a read-verification is done. If any bytes do not verify, another write loop is performed. When all bytes read correctly, additional loops are performed to insure adequate bit cell margin. The total number of loops will vary by device and depends on temperature; low temperature reduces

465512/48C1024

ADVANCE DATA SHEET

the number of loops required. For example, a typical (room temperature) loop count is 4. Blocks need not be written separately; the entire device or any combination of blocks can be written using the write algorithm.

Because bytes can only be written as part of a block write, if data is to be added to a partially written block or one or more bytes in a block must be changed, the contents of the block must first be read into system RAM; the bytes can then be added to the block of data in RAM and the block written using the block write algorithm.

Power Up/Down Protection

These two devices contain a Vcc sense circuit which disables internal erase and write operations when V_{CC} is below 3.5 volts. In addition, erases and writes are prevented when any control input (CE OE WE) is in the wrong state for writing or erasing (see mode table).

High Voltage Input Protection

The Vpp pin is at a high voltage for writing and erasing. There is an absolute maximum specification which must not be exceeded, even briefly, or permanent device damage may result. To minimize switching transients on this pin we recommend using a minimum 0.1 ut decoupling capacitor with good high frequency response connected from Vpp to ground at each device. In addition, sufficient bulk capacitance should be provided to minimize Vpp voltage sag when a device goes from standby to a write or erase cycle.

Silicon Signature`

A row of fixed ROM is present in the 48C512 and 48C1024 which contains the device's Silicon Signature". Silicon Signature" contains data which identifies Seed as the manufacturer and gives the product code. This allows device programmers to match the programming specification against the product which is to be programmed.

Silicon Signature is read by raising address A₉ to 12 ± 0.5 V. and bringing all other address inputs plus chip enable and output enable to VIL with Vcc at 5 V. The two Silicon Signature" bytes are selected by address input Ap Silicon Signature" is functional at room temperature only (25 C.)

Silicon Signature Bytes

	Ao	Data (Hex)
Seea Coae	٧١٤	94
Product code (48C512)	Vim	1A
Product code (48C1024)	V _{H4}	10

Mode Selection Table

MODE	CE	OE	WE	Vpp	Ap-18 A10-16	A0-0 A0-0	D ₀₋₇
Read	VıL	VnL	Vm	X	Address	Address	Dout
Standby	Vm	X	×	×	×	×	HFZ
Byte write	VIL	Vn4	VIL	Ve	Address	Address	Dies
Chip erase select	V _{fL}	VIM	Vr.	TIL	×	×	×
Chip erase	V _n ,	VIM	VrL	Ve	×	×	'FF'
Block erase	Vil	Vm	Vn	Ve	Address	X	'FF'

DC Operating Characteristics

Over the VCC and temperature range

			Limits		
Symbol	Parameter	Min.	Mex.	Unit	Test Condition
IH.	Input leakage high		1	Αц	VIN = VCC
	Input leskage low		-1	μA	V _{IM} = 0.1 v
or .	Output leakage		10	μΑ	VIN = VCC
/•	Program/erase voltage	11.5	12.5	V	
Veg	Ver voltage during read	0	Vp.	V	
lpp	Ve current Standby mode Read mode Byte write Erase		200 200 40 60	A A MA MA	CE = V ₁₁₄ , V _{PP} = V _P CE = V ₁₄ , V _{PP} = V _P V _{PP} = V _P V _{PP} = V _P
lcci	Standby Vcc current		100	μA	CE = Vcc3
iccı	Standby Vcc current		5	mA	CE = V _{IM} min.
icca	Active Vcc current		60	mA	CE = VIL
ViL	Input low voltage	-0.3	0.8	٧	
V _{IM}	Input high voltage	2.0	Vcc+.3	V	
Vol	Output low voltage		0.45	V	ioL = 2.1 ma
Von	Output level (TTL)	2.4		٧	I _{OH} = -400µA
Vonz	Output level (CMOS)	V∞4		V	l _{OH} = -100 μA

AC Test Conditions

Output load: 1 TTL gate and C(load) = 100 pt.

Input rise and fall times: < 20 ns. Input pulse levels: 0.45 V to 2.4 V Timing measurement reference level:

inputs 1 V and 2 V Outputs 0.8 V and 2 V

In A.C. characteristics, all inputs to the device, e.g., setup time, hold time and cycle time, are tabulated as a minimum time; the user must provide a valid state on that input or wait for the stated minimum time to assure proper operation. All outputs from the device, e.g., access time, erase time, recovery time, are tabulated as a meximum time, the device will perform the operation within the stated time.

Advance Data Sheets conthin target product specifications which are subject to change upon device characterization over the full specified temperature range. These specifications may be changed at any time, without notice.

46C512/48C1024

Absolute Maximum Stress Ratings

Temperature:

Storage..... -65°C to +150°C Under bias..... -10°C to +85°C

All inputs except Von and

outputs with Respect to Vss... +6 V to -0.3 V

V_{PP} pin with respect to V_{SS}... 14 V

E.S.D. Characteristics

Symbol	Parameter	Value	Test Conditions
VZAP	ESD. Tolerance	>2000 V	MIL-STD 883 Method 3015

Note: Characterization data - not tested.

Recommended Operating Conditions

	48C512/ 48C1024
VCC supply voltage	5V± 10%
Temperature range	0°C to 70°C (ambient temp.)

Capacitance (1) TA=25°C. F=1 MHz

Symbol	Perameter	Value	Test Conditions
Cw	Input capacitance	6 pt.	VIN = 0 V
Cour	Output capacitance	12 pt.	V _{1/0} = 0 V

Note 1: This parameter is only sampled and not 100% tested.

AC Characteristics

(over the VCC and temperature range)

READ

Symbol		48CXXXX -200		48CXXXX -250		48CXXXX -300		
	Parameter	Min.	Mex	Min.	Max	Min.	Max	Unit
lac	Read cycle time	200		250		300		ns
TAA.	Address to data		200		250	[·	300	N8
tce	CE to data		200		250		300	ns
loe.	OE to data		75		100		150	ns
tor	OE/CE to data float		50		60		100	ns.
lo _H	Output hold time	0		0		0		ns

Read Timing

-3C512/48C1024 ADVANCE DATA SHEET

AC Characteristics (Over the VCC and temperature range)

BYTE WRITE

		48CXXXX -200		48CXXXX -250 ·		45CXXX -300		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Maz	Unit
tves	Vee setup time	2		2		2		μ8
typu	Vee noid time	250		250		250		μs
tcs	CE setup time	0		0		0		ns
tсн	CE hold time	0		. 0		0		ns
toes	OE setup time	10		10		10		กล
toen.	OE hold time	10		10		10		N8
1AS	Address setup time	20		20		20		ns.
tam	Address hold time	100		100		100		na
tos	Data setup time	50		50		50		ns
ТОН	Data hold time	0		0		0		ns
lwp	WE pulse width	100		100		100		ns.
lwc	Write cycle time	100	150	100	150	100	150	μ8
twa	Write recovery time		1.5		1.5		1.5	ma

Byte Write Timing

SEEQ Technology, Incorporated

4JC512/48C1024 ADVANCE DATA SHEET

AC Characteristics (Over the VCC and temperature range)

BLOCK ERASE

		48CXXX -250		48CXXXX -300		48XXXX -350		
Symbol	Parameter	Min.	Mex	Min.	Maz	Min.	Max	Unit
lyps	Vee setup time	2		2		2		μ3
lyph	Vee hold time	500		500		500		ms
tcs	CE setup time	0		0		0		ns
toes	OE setup time	0		0		0		ns
IAS	Address setup time	20		20		20		ns
TAH	Address hold time	100		100		100		ns
los	Data setup time	50		50		50		ÚS
Тон	Data hold time	0		0		0		ns
lwe	WE pulse width	100		100		100		ns
1 _{CH}	CE hold time	0		0		0		ns
TOEH	OE hold time	0		0		0		ns
TERASE	Block erase time		500		500		500	ma
TROBAT	Block erase delay		250		250		250	рця

Block Erase Timing

SEEQ Technology, Incorporated

MD400032/-

1-97

48C512/48C1024 ADVANCE DATA SHEET

AC Characteristics

(Over the VCC and temperature range)

CHIP ERASE

Symbol		48CXXXX -200		48CXXXX -250		48CXXXX -300		
	Parameter	Min.	Max	Min.	Mex.	Min.	Max	Unit
lyps	V _{PP} setup time	2		2	İ	2	i	μ\$
typu	Vpp hold time	500		500		500		ms
tcs	CE setup time	0		0		0		ns
toes	OE setup time	0		0	i	0		ns
tos	Data setup time	50		50		50		ns
Гон	Data hold time	0		0		0		ns
lwe	WE pulse width	100		100		100		· ns
tсн	CE hold time	0	i i	0	·	0		ns
TOEH	OE hold time	0		0		0		ns
LEBASE	Chip erase time		500		500		500	ms

Chip Erase Timing

FIGURE 1 48C512/1024 WRITE ALGORITHM

48C512/48C1024

ADVANCE DATA SHEET

MD400032/-

48C512/48C1024

ADVANCE DATA SHEET

FIGURE 3 48C512/1024

CHIP ERASE ALGORITHM

SEEQ Technology, Incorporated

i