MATH20510 (S25): Analysis in Rn III (accelerated)

Lecturer: Zhimeng Ouyang Notes by: Aden Chen

Friday 28th March, 2025

Contents

1	Integration of Differential Forms			3
	1.1	Integration on a Cell		3
2	Differential Forms		7	

1 Integration of Differential Forms

1.1 Integration on a Cell

Definition 1.1. A *k*-cell in \mathbb{R}^k is a set of the form $I^k := \{x \in \mathbb{R}^k : a_i \le x_i \le b_i, i = 1, \dots, k\}.$

Definition 1.2. Let $f \in C(I^k)$ be real valued and write $f_k := f$. Define for each i = k, ..., 1

$$f_{i-1}(x_1,\ldots,x_{k-1}) \coloneqq \int_{a_i}^{b_i} f_i(x_1,\ldots,x_i) \, \mathrm{d}x_i.$$

We define

$$\int_{I_k}^{f(x)} dx := \int_{a_1}^{b_1} \cdots \int_{a_k}^{b_k} f_k(x_1, \dots, x_k) dx_k \dots dx_1 = f_0.$$

Remark 1.3.

- Since f is continuous on a compact set, it is uniformly continuous. Thus all iterated integrals are well-defined and uniformly continuous on I^i ($1 \le i \le k$).
- The integral over a *k*-cell is independent of the order of integration, by the following result:

Theorem 1.4. If $f \in C(I^k)$, then L(f) = L'(f), where L(f) is the integral of f over I^k as defined above, and L'(f) is the integral of f over the same domain with a different order of integration.

Proof. If $h(x) = f_1(x_1) \dots h_k(x_k)$, where $h_i \in C([a_i, b_i])$, then

$$L(h) = \prod_{i=1}^{k} \int_{a_i}^{b_i} h_i(x_i) dx_i = L'(h).$$

If \mathcal{A} is the set of all finite sums of such functions h, it follows that L(g) = L'(g) for all $g \in \mathcal{A}$. The Stone-Weierstrass theorem shows that \mathcal{A} is dense in $C(I^k)$. Put $V = \prod_{i=1}^k (b_i - a_i)$. If $f \in C(I^k)$ and $\epsilon > 0$, there exists $g \in \mathcal{A}$ such that $\|f - g\| < \epsilon/V$, where $\|f\|$ is defined as $\max_{x \in I^k} |f(x)|$. Then $|L(f - g)| < \epsilon$, $L'(f - g) < \epsilon$, and since

$$L(f) - L'(f) = L(f - g) + L'(g - f),$$

we conclude that $|L(f) - L'(f)| < 2\epsilon$.

Definition 1.5. The support of function f on \mathbb{R}^k is the closure of the set of all points $x \in \mathbb{R}^k$ at which $f(x) \neq 0$. We write $f \in C_c(\mathbb{R}^k)$ if f is a continuous function with compact support, that is, if $K := \text{supp } f \subset I^k$ for some k-cell I^k . In this case we define

 $\int_{\mathbb{R}^k} f(x) \, \mathrm{d}x \coloneqq \int_{I^k} f(x) \, \mathrm{d}x.$

Definition 1.6. Let $G: \mathbb{R}^n \supset E \to \mathbb{R}^n$, where E is open. If there is an integer m and a real function g with domain E such that for all $x \in E$ we have

$$G(x) = \sum x_i e_i + g(x) e_m,$$

then we call G primitive.

Remark 1.7.

- In other words, G changes only one coordinate.
- If g is differentiable at $x \in E$, then so if G. The matrix DG(x) has

$$(\partial_1 g)(x), \ldots, (\partial_m g)(x), \ldots, (\partial_n g)(x)$$

as its mth row. On the jth row, where $j \neq m$, we have the jth unit vector. Thus the Jacobian of G at a is

$$J_G(a) = \det \mathrm{D}G(a) = (\partial_m g)(a)$$

and so G'(a) is invertible if and only if $(\partial_m g)(a) \neq 0$.

Definition 1.8. A linear operator B on $\mathbb{R}^n n$ that interchanges some pair of members of the standard basis and leaves the others fixed will be called a **flip**.

Theorem 1.9. Suppose $F : \mathbb{R}^n \supset E \to \mathbb{R}^n$ is C^1 , $0 \in E$, F(0) = 0, and F'(0) is invertible. Then there is a neighborhood of 0 in \mathbb{R}^n in which a representation

$$F(x) = B_1 \dots B_{n-1} G_n \circ \dots \circ G_1(x)$$

is valid. Each G_i is a primitive C^1 mapping in some neighborhood of 0; $G_i(0) = 0$, $G'_i(0)$ is invertible, and each B_i is either a flip or the identity.

Theorem 1.10 (Partition of Unity). Let K be a compact subset of \mathbb{R}^n . Let $\{V_\alpha\}$ be an open cover of K. Then there exists function $\psi_1, \ldots, \psi_k \in C(\mathbb{R}^n)$ such that

- $0 \le \psi_i \le 1$ for $1 \le i \le s$,
- supp $\psi_i \subset V_\alpha$ for some α^1 , and
- $\sum_i \psi_i = 1$ for each $x \in K$.

Corollary 1.11. If $f \in C(\mathbb{R}^n)$ and the support of f lies in K, then

$$f=\sum \psi_i f.$$

Each $\psi_i f$ has support in some V_{α} .

Remark 1.12. This is a representation of f using functions with "small" supports. We represent global information using local information.

Theorem 1.13 (Change of Variables). Let T be a one-to-one C^1 mapping from an open set $E \in \mathbb{R}^k$ into \mathbb{R}^k such that $J_T(x) \neq 0$ for all $x \in T$. If $f \in C_c(\mathbb{R}^n)$ and supp $f \in T(E)$, then

$$\int_{\mathbb{R}^k} f(y) \, \mathrm{d}y = \int_{\mathbb{R}^k} f(T(x)) |J_T(x)| \, \mathrm{d}x.$$

Proof. If *T* is a primitive mapping, then the theorem is true by the one dimensional change of variable theorem. If *T* is a flip, the theorem reduces to the case in the first theorem of this section.

If the theorem is true for transformations P, Q, and if $S = P \circ Q$, then

$$\int f(z) dz = \int f(P(y))|J_P(y)| dy$$

$$= \int f(P(Q(x)))|J_P(Q(x))| |J_Q(x)| dx = \int f(S(x))|J_S(x)| dx,$$

where we used the fact that

$$J_P(Q(x)) = \det DP(Q(x)) \det DQ(x)$$

= \det DP(Q(x))DQ(x) = \det DS(x) = J_S(x).

This follows from the chain rule and the fact that the determinant of a product of matrices is the product of the determinants.

¹This is sometimes expressed by saying that $\{\psi_i\}$ is subordinate to the cover $\{V_\alpha\}$.

Now, for each $a \in E$ there exists a neighborhood $U \subset E$ of a in which

$$T(x) = T(a) + B_1 \dots B_{k-1}G_k \circ \dots \circ G_1(x-a).$$

It follows that the theorem holds if the support of f lies in T(U).

That is, each point $y \in T(E)$ lies in an open set $V_y \subset T(E)$ such that the theorem holds for all continuous functions whose support lies in V_y .

For an arbitrary function f, we need only write it as a sum of functions with compact support using the partition of unity.

2 Differential Forms

Definition 2.1 (*k*-surface). Suppose *E* in an open set in \mathbb{R}^n . A *k*-surface in *E* in a C^1 mapping Φ from a compact set $D \subset \mathbb{R}^k$ into *E*.

Definition 2.2 (k-form). Let $E \subset \mathbb{R}^n$ be open. A **differential form of order** $k \geq 1$ in E is a function ω , symbolically represented by

$$\omega = \sum a_{i_1...i_k} \, \mathrm{d}x_{i_1} \wedge \cdots \wedge \, \mathrm{d}x_{i_k},$$

(where the indices i_1, \ldots, i_k range independently from 1 to n), which assigns to each k-surfaces Φ in E a number $\omega(\Phi) = \int_{\Phi} \omega$ according to the rule

$$\int_{\Phi} \omega = \int_{D} \sum a_{i_{1}...i_{k}}(\Phi(u)) \frac{\partial(x_{i_{1}},...,x_{i_{k}})}{\partial(u_{1},...,u_{k})} du_{1}... du_{k},$$

where D is the parameter domain of Φ .

Definition 2.3.

- We write $\omega_1 = \omega_2$ if and only if $\omega_1(\Phi) = \omega_2(\Phi)$ for every k-surface Φ in E. In particular, $\omega = 0$ means that $\omega(\Phi) = 0$ for every k-surface Φ in E.
- A k-form is said to be of class C^n if the functions $a_{i_1...i_k}$ are all of class C^n .
- A 0-form in E is defined to be a continuous function in E.
- We write $\Lambda^k(D)$ for the set of all k-forms in D.

Proposition 2.4.

• $dx_i \wedge dx_j = -dx_j \wedge dx_i$.

Definition 2.5. If i_1, \ldots, i_k be integers such that $1 \le i_1 < i_2 < \cdots < i_k \le n$ and if I, and if I is the k-tuple $\{i_1, \ldots, i_k\}$, then we call I and **increasing k-index**, and we use the brief notation

$$dx_I := dx_{i_1} \wedge \cdots \wedge dx_{i_k}$$
.

These are the **basic** k**-forms** in \mathbb{R}^n .