Univérsité Ibn Zohr Faculté des Sciences - Agadir Département de Mathématiques Année Univérsitaire 19-20

Filière: SMA & SMI (S2)



## Examen blanc 3 d'Algèbre 3

## Exercice 1

Soit E le sous-espace vectoril de  $\mathbb{R}^3$  défini par:  $E=\{(x,y,z)\in\mathbb{R}^3, x+2y-z=0\}$  et soient les vecteurs

$$a_1 = (1, 2, 0), \ a_2 = (0, 3, 1) \ et \ a_3 = (1, -1, -1).$$

- 1. Montrer que  $e_1 = (-2, 1, 0)$  et  $e_2 = (1, 0, 1)$  forment une base de E et déduire dimE.
- 2. On pose  $F = \{a_1, a_2, a_3\}$ .
  - a) La famille F est-elle libre? liée? justifier.
  - b) Former l'équation cartésienne de G = vect(F).
- 3. Déterminer le sous-espace vectoriel  $E \cap G$  et en donner une base.

## Exercice 2

Soit  $\mathbb{R}_2[X]$  l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. Soit f l'application définie sur  $\mathbb{R}_2[X]$  par:

$$f: \mathbb{R}_2[X] \longrightarrow E$$
  
 $P \longmapsto (2X+1)P + (1-X^2)P'.$ 

- 1. Montrer que f est un endomorphisme de  $\mathbb{R}_2[X]$ .
- 2. Déterminer  $\ker(f)$  et  $\operatorname{Im}(f)$ .
- 3. Montrer que f est un automorphisme.
- 4. Soit  $\mathcal{B} = (P_0 = 1, P_1 = X 1, P_2 = (x 1)^2)$ . Montrer que  $\mathcal{B}$  est une base de  $\mathbb{R}_2[X]$ .
- 5. Déterminer les coordonnées de  $f(P_0), f(P_1)$ , et  $f(P_2)$  dans la base  $\mathcal{B}$ .

## Exercice 3

Soit E un  $\mathbb{K}$ -espace vectoriel de dimension 3 et  $\mathcal{B} = (e_1, e_2, e_3)$  une base de E. On pose

$$u = e_1 + 2e_2 + 2e_2$$
 et  $v = e_2 + e_3$ .

Montrer que la famille  $\{u, v\}$  est libre et completer celle-ci en une base de E.