1. 1. 1. 1.

BEST AVAILABLE COPY

- PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 9/00, D06M 16/00, C07K 19/00 //
C11D 3/386

(11) International Publication Number:

WO 97/28256

(43) International Publication Date:

7 August 1997 (07.08.97)

(21) International Application Number:

PCT/DK97/00041

(22) International Filing Date:

29 January 1997 (29.01.97)

(30) Priority Data:

0093/96

29 January 1996 (29.01.96)

DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(Dec).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VON DER OSTEN, Claus [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). BJØRNVAD, Mads, Eskelund [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). VIND, Jesper [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). RASMUSSEN, Michael, Dolberg [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK).

(74) Common Representative: NOVO NORDISK A/S; Corporate Patents, Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROCESS FOR DESIZING CELLULOSIC FABRIC

(57) Abstract

A process for desizing cellulose-containing fabric comprises treating the fabric with a modified enzyme (enzyme hybrid) which comprises a catalytically active amino acid sequence of an enzyme, particularly a non-cellulolytic enzyme, linked to an amino acid sequence comprising a cellulose-binding domain. A desizing composition suitable for use in the process comprises an enzyme hybrid of the type in question and a wetting agent.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	- Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	_Guinea = · · · =	- NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	Œ	Ireland	NZ	New Zealand
BG	Bułgaria	1T	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KB	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ.	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	ü	Liechtenstein	SK	Slovenia
CM	Cameroon	LK	Sri Lanka	SN	
CN	China	LR	Liberia	SZ.	Senegal
CS	Czechoslovakia	LT	Lithunnia	TD	Swaziland
CZ	Czech Republic	ັ້ນ	Luxemboure	TG	Chad
DE	Germany	LV	Latvia		Togo
DK	Denmark	MC	Monaco	<u>11</u>	Tajikistan
R.R.	Estonia	MD	Republic of Moldova	π	Trinidad and Tobago
ES	Seein	MG	Madagascar	UA UG	Ukraine
FI	Finland	ML	Mali	US	Uganda
FR	Prance	MN	Mongolia		United States of America
GA	Gabon	MER	Mauritania	UZ	Uzbekistan
	Gabon	IVER	Platitudita	VN	Vict Nam

WO 97/28256 PCT/DK97/00041

1

PROCESS FOR DESIZING CELLULOSIC FABRIC

5 FIELD OF THE INVENTION

7 1

10

30

The present invention relates to an improved enzymatic process for desizing [i.e. removing "size" (vide infra) from] fabric or textile, more particularly cellulose-containing fabric or textile, and to a composition for use in the process.

BACKGROUND OF THE INVENTION

During the weaving of textiles, the threads are exposed to considerable mechanical strain. In order to prevent breaking, they are usually reinforced by coating ("sizing") with a gelatinous substance ("size").

The most common sizing agent is starch in native or modified form. However, other polymeric substances, for example polyvinylalcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA) or derivatives of cellulose [e.g. carboxymethylcellulose (CMC), hydroxyethylcellulose, hydroxypropylcellulose or methylcellulose] may also be abundant in the size.

Small amounts of, e.g., fats or oils may also be added to the size as a lubricant.

As a consequence of the presence of the size, the threads of the fabric are not able to absorb water, finishing agents or other compositions (e.g. bleaching, dyeing or crease-proofing compositions) to a sufficient degree. Uniform and durable finishing of the fabric can thus be achieved only after removal of the size from the fabric; a process of removing size for this purpose is known as a "desizing" process.

10

15

In cases where the size comprises a starch, the desizing treatment may be carried out using a starch-degrading enzyme (e.g. an amylase). In cases where the size comprises fat and/or oil, the desizing treatment may comprise the use of a lipolytic enzyme (a lipase). In cases where the size comprises a significant amount of carboxymethylcellulose (CMC) or other cellulose-derivatives, the desizing treatment may be carried out with a cellulolytic enzyme, either alone or in combination with other substances, optionally in combination with other enzymes, such as amylases and/or lipases.

It is an object of the present invention to achieve improved enzyme performance under desizing conditions by modifying the enzyme so as to alter (increase) the affinity of the enzyme for cellulosic fabric, whereby the modified enzyme comes into closer contact with the sizing agent in question.

SUMMARY OF THE INVENTION

It has now surprisingly been found possible to achieve improved enzymatic removal of a sizing agent present on cellulose-containing fabric or textile by means of an enzymatic process wherein the fabric or textile is contacted with an enzyme which has been modified so as to have increased affinity (relative to the unmodified enzyme) for binding to a cellulosic fabric or textile.

WO 97/28256 PCT/DK97/00041

3

DETAILED DESCRIPTION OF THE INVENTION

The present invention thus relates, inter alia, to a process for desizing cellulosic fabric or textile, wherein the fabric or textile is treated (normally contacted in aqueous medium) with a modified enzyme (enzyme hybrid) which comprises a catalytically (enzymatically) active amino acid sequence of an enzyme, in particular of a non-cellulolytic enzyme, linked to an amino acid sequence comprising a cellulose-binding domain.

10

The term "desizing" is intended to be understood in a conventional manner, i.e. the removal of a sizing agent from the fabric.

The terms "cellulose-containing" and "cellulosic" when used herein in connection with fabric or textile are intended to indicate any type of fabric, in particular woven fabric, prepared from a cellulose-containing material, such as cotton, or from a cellulose-derived material (prepared, e.g., from wood pulp or from cotton).

In the present context, the term "fabric" is intended to include garments and other types of processed fabrics, and is used interchangeably with the term "textile".

25

Examples of cellulosic fabric manufactured from naturally occurring cellulosic fibre are cotton, ramie, jute and flax (linen) fabrics. Examples of cellulosic fabrics made from manmade cellulosic fibre are viscose (rayon) and lyocell (e.g. TencelTM) fabric; also of relevance in the context of the invention are all blends of cellulosic fibres (such as viscose, lyocell, cotton, ramie, jute or flax) with other fibres, such as wool, polyester, polyacrylic, polyamide or polyacetate fibres. Specific examples of blended cellulosic

10

15

20

25

30

4

fabric are viscose/cotton blends, lyocell/cotton blends (e.g. TencelTM/cotton blends), viscose/wool blends, lyocell/wool blends, cotton/wool blends, cotton/polyester blends, viscose/cotton/polyester blends, wool/cotton/polyester blends, and flax/cotton blends.

Cellulose-binding domains

Although a number of types of carbohydrate-binding domains have been described in the patent and scientific literature, the majority thereof - many of which derive from cellulolytic enzymes (cellulases) - are commonly referred to as "cellulose-binding domains"; a typical cellulose-binding domain (CBD) will thus be one which occurs in a cellulase and which binds preferentially to cellulose and/or to poly- or oligosaccharide fragments thereof.

Cellulose-binding (and other carbohydrate-binding) domains are polypeptide amino acid sequences which occur as integral parts of large polypeptides or proteins consisting of two or more polypeptide amino acid sequence regions, especially in hydrolytic enzymes (hydrolases) which typically comprise a catalytic domain containing the active site for substrate hydrolysis and a carbohydrate-binding domain for binding to the carbohydrate substrate in question. Such enzymes can comprise more than one catalytic domain and one, two or three carbohydrate-binding domains, and they may further comprise one or more polypeptide amino acid sequence regions linking the carbohydrate-binding domain(s) with the catalytic domain(s), a region of the latter type usually being denoted a "linker".

Examples of hydrolytic enzymes comprising a cellulose-binding domain are cellulases, xylanases, mannanases, arabinofuranosidases, acetylesterases and chitinases.

"Cellulose-binding domains" have also been found in algae, e.g. in the red alga Porphyra purpurea in the form of a non-hydrolytic polysaccharide-binding protein [see P. Tomme et al., Cellulose-Binding Domains - Classification and Properties, in: Enzymatic Degradation of Insoluble Carbohydrates, John N. Saddler and Michael H. Penner (Eds.), ACS Symposium Series, No. 618 (1996)]. However, most of the known CBDs [which are classified and referred to by P. Tomme et al. (op cit.) as "cellulose-binding domains"] derive from cellulases and xylanases.

In the present context, the term "cellulose-binding domain" is intended to be understood in the same manner as in the latter reference (P. Tomme et al., op. cit). The P. Tomme et al. reference classifies more than 120 "cellulose-binding domains" into 10 families (I-X) which may have different functions or roles in connection with the mechanism of substrate binding. However, it is to be anticipated that new family representatives and additional families will appear in the future, and in connection with the present invention a representative of one such new CBD family has in fact been identified (see Example 2 herein).

In proteins/polypeptides in which CBDs occur (e.g. enzymes, typically hydrolytic enzymes such as cellulases), a CBD may be located at the N or C terminus or at an internal position.

That part of a polypeptide or protein (e.g. hydrolytic enzyme) which constitutes a CBD per se typically consists of more than about 30 and less than about 250 amino acid residues. For example: those CBDs listed and classified in Family I in accordance with P. Tomme et al. (op. cit.) consist of 33-37 amino acid residues, those listed and classified in Family IIa consist of 95-108 amino acid

residues, those listed and classified in Family VI consist of 85-92 amino acid residues, whilst one CBD (derived from a cellulase from Clostridium thermocellum) listed and classified in Family VII consists of 240 amino acid residues. Accordingly, the molecular weight of an amino acid sequence constituting a CBD per se will typically be in the range of from about 4kD to about 40kD, and usually below about 35kD.

Enzyme hybrids

Enzyme classification numbers (EC numbers) referred to in the 10 present specification with claims are in accordance with the Recommendations (1992) of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, Academic Press Inc., 1992.

15

20

30

A modified enzyme (enzyme hybrid) for use in accordance with the invention comprises a catalytically active (enzymatically active) amino acid sequence (in general a polypeptide amino acid sequence) of an enzyme, more particularly of a noncellulolytic enzyme (i.e. a catalytically active amino acid sequence of an enzyme other than a cellulase), useful in relation to desizing, in particular of an enzyme selected from the group consisting of amylases (e.g. α -amylases, EC 3.2.1.1) and lipases (e.g. triacylglycerol lipases, EC 3.1.1.3), fused (linked) to an amino acid sequence comprising a cellulose-25 binding domain. The catalytically active amino acid sequence in question may comprise or consist of, for example, the whole of - or substantially the whole of - the full amino acid sequence of the mature enzyme in question, or it may consist of a portion of the full sequence which retains substantially catalytic (enzymatic) properties as the same the sequence.

Modified enzymes (enzyme hybrids) of the type in question, as

well as detailed descriptions of the preparation and purification thereof, are known in the art [see, e.g., WO 90/00609, WO 94/24158 and WO 95/16782, as well as Greenwood et al., Biotechnology and Bioengineering 44 (1994) pp. 1295-1305]. They may, e.g., be prepared by transforming into a host cell a DNA construct comprising at least a fragment of DNA encoding the cellulose-binding domain ligated, with or without a linker, to a DNA sequence encoding the enzyme of interest, and growing the transformed host cell to express the fused gene. One relevant, but non-limiting, type of recombinant product (enzyme hybrid) obtainable in this manner - often referred to in the art as a "fusion protein" - may be described by one of the following general formulae:

15 A-CBD-MR-X-B

25

A-X-MR-CBD-B

In the latter formulae, CBD is an amino acid sequence comprising at least the cellulose-binding domain (CBD) per se.

MR (the middle region; a linker) may be a bond, or a linking group comprising from 1 to about 100 amino acid residues, in particular of from 2 to 40 amino acid residues, e.g. from 2 to 15 amino acid residues. MR may, in principle, alternatively be a non-amino-acid linker.

X is an amino acid sequence comprising the above-mentioned, catalytically (enzymatically) active sequence of amino acid residues of a polypeptide encoded by a DNA sequence encoding the non-cellulolytic enzyme of interest.

The moieties A and B are independently optional. When present, a moiety A or B constitutes a terminal extension of a CBD or X moiety, and normally comprises one or more amino acid

residues.

It will thus, inter alia, be apparent from the above that a CBD in an enzyme hybrid of the type in question may be positioned C-terminally, N-terminally or internally in the enzyme hybrid. Correspondingly, an X moiety in an enzyme hybrid of the type in question may be positioned N-terminally, C-terminally or internally in the enzyme hybrid.

- Enzyme hybrids of interest in the context of the invention include enzyme hybrids which comprise more than one CBD, e.g. such that two or more CBDs are linked directly to each other, or are separated from one another by means of spacer or linker sequences (consisting typically of a sequence of amino acid residues of appropriate length). Two CBDs in an enzyme hybrid of the type in question may, for example, also be separated from one another by means of an -MR-X- moiety as defined above.
- A very important issue in the construction of enzyme hybrids of the type in question is the stability towards proteolytic degradation. Two- and multi-domain proteins are particularly susceptible towards proteolytic cleavage of linker regions connecting the domains. Proteases causing such cleavage may,
- 25- for example, be subtilisins, which are known to often exhibit broad substrate specificities [see, e.g.: Grøn et al., Biochemistry 31 (1992), pp. 6011-6018; Teplyakov et al., Protein Engineering 5 (1992), pp. 413-420].
- 30 Glycosylation of linker residues in eukaryotes is one of Nature's ways of preventing proteolytic degradation. Another is to employ amino acids which are less favoured by the surrounding proteases. The length of the linker also plays a role in relation to accessibility by proteases. Which "solution" is optimal depends on the environment in which the

enzyme hybrid is to function.

When constructing new enzyme hybrid molecules, linker stability

- thus becomes an issue of great importance. The various linkers described in examples presented herein (vide infra) in the context of the present invention are intended to take account of this issue.
- Cellulases (cellulase genes) useful for preparation of CBDs
 Techniques suitable for isolating a cellulas, gene are well
 known in the art. In the present context, the terms
 "cellulase" and "cellulolytic enzyme" refer to an enzyme which
 catalyses the degradation of cellulose to glucose, cellobiose,
 triose and/or other cello-oligosaccharides.

Preferred cellulases (i.e. cellulases comprising preferred CBDs) in the present context are microbial cellulases, particularly bacterial or fungal cellulases. Endoglucanases, notably endo-1,4- β -glucanases (EC 3.2.1.4), particularly monocomponent (recombinant) endo-1,4- β -glucanases, are a preferred class of cellulases,.

Useful examples of bacterial cellulases are cellulases derived

25 from or producible by bacteria from the group consisting of

Pseudomonas, Bacillus, Cellulomonas, Clostridium, Microspora,

Thermotoga, Caldocellum and Actinomycets such as Streptomyces,

Termomonospora and Acidothemus, in particular from the group

consisting of Pseudomonas cellulolyticus, Bacillus lautus,

30 Cellulomonas fimi, Clostridium thermocellum, Microspora

bispora, Termomonospora fusca, Termomonospora cellulolyticum

and Acidothemus cellulolyticus.

The cellulase may be an acid, a neutral or an alkaline cellulase, i.e. exhibiting maximum cellulolytic activity in the acid, neutral or alkaline range, respectively.

A useful cellulase is an acid cellulase, preferably a fungal acid cellulase, which is derived from or producible by fungi from the group of genera consisting of Trichoderma, Myrothecium, Aspergillus, Phanaerochaete, Neurospora, Neocallimastix and Botrytis.

10

15

20

A preferred useful acid cellulase is one derived from or producible by fungi from the group of species consisting of Trichoderma viride, Trichoderma reesei, Trichoderma longibrachiatum, Myrothecium verrucaria, Aspergillus niger, Aspergillus oryzae, Phanaerochaete chrysosporium, Neurospora crassa, Neocallimastix partriciarum and Botrytis cinerea.

Another useful cellulase is a neutral or alkaline cellulase, preferably a fungal neutral or alkaline cellulase, which is derived from or producible by fungi from the group of genera consisting of Aspergillus, Penicillium, Myceliophthora, Humicola, Irpex, Fusarium, Stachybotrys, Scopulariopsis, Chaetomium, Mycogone, Verticillium, Myrothecium, Papulospora, Gliocladium, Cephalosporium and Acremonium.

25

30

A preferred alkaline cellulase is one derived from or producible by fungi from the group of species consisting of Humicola insolens, Fusarium oxysporum, Myceliopthora thermophila, Penicillium janthinellum and Cephalosporium sp., preferably from the group of species consisting of Humicola insolens DSM 1800, Fusarium oxysporum DSM 2672, Myceliopthora thermophila CBS 117.65, and Cephalosporium sp. RYM-202.

A preferred cellulase is an alkaline endoglucanase which is

WO 97/28256 PCT/DK97/00041

11

immunologically reactive with an antibody raised against a highly purified ~43kD endoglucanase derived from *Humicola insolens* DSM 1800, or which is a derivative of the latter ~43kD endoglucanase and exhibits cellulase activity.

5

10

Other examples of useful cellulases are variants of parent cellulases of fungal or bacterial origin, e.g. variants of a parent cellulase derivable from a strain of a species within the fungal genera Humicola, Trichoderma, Fusarium or Myceliophthora.

Isolation of a cellulose-binding domain

In order to isolate a cellulose-binding domain of, e.g., a cellulase, several genetic engineering approaches may be used. One method uses restriction enzymes to remove a portion of the 15 gene and then to fuse the remaining gene-vector fragment in frame to obtain a mutated gene that encodes a protein truncated for a particular gene fragment. Another method the use of exonucleases such Ba131 systematically delete nucleotides either externally from the 20 5' and the 3' ends of the DNA or internally from a restricted gap within the gene. These gene-deletion methods result in a mutated gene encoding a shortened gene molecule whose expression product may then be evaluated for substrate-binding (e.g. cellulose-binding) ability. Appropriate substrates for 25 evaluating the binding ability include cellulosic materials such as $Avicel^{TM}$ and cotton fibres. Other methods include the use of a selective or specific protease capable of cleaving a e.g. a terminal CBD, from the remainder 30 polypeptide chain of the protein in question.

As already indicated (vide supra), once a nucleotide sequence encoding the substrate-binding (carbohydrate-binding) region has been identified, either as cDNA or chromosomal DNA, it may

30

then be manipulated in a variety of ways to fuse it to a DNA sequence encoding the enzyme or enzymatically active amino acid sequence of interest. The DNA fragment encoding the carbohydrate-binding amino acid sequence, and the DNA encoding the enzyme or enzymatically active amino acid sequence of interest are then ligated with or without a linker. The resulting ligated DNA may then be manipulated in a variety of ways to achieve expression. Preferred microbial expression hosts include certain Aspergillus species (e.g. A. niger or A. oryzae), Bacillus species, and organisms such as Escherichia coli or Saccharomyces cerevisiae.

Amylolytic enzymes

Amylases (e.g. α - or β -amylases) which are appropriate as the basis for enzyme hybrids of the types employed in the context 15 of the present invention include those of bacterial or fungal origin. Chemically or genetically modified mutants of such amylases are included in this connection. Relevant α -amylases include, for example, α-amylases obtainable from Bacillus 20 species, in particular a special strain of B. licheniformis, described in more detail in GB 1296839. Relevant commercially available amylases include Duramyl TM , Termamyl TM , Fungamyl TM and available from Novo Nordisk A/S, {all Denmark), and RapidaseTM and MaxamylTM P (available from Gist-Brocades, Holland). 25

Other useful amylolytic enzymes are CGTases (cyclodextrin glucanotransferases, EC 2.4.1.19), e.g. those obtainable from species of Bacillus, Thermoanaerobactor or Thermoanaerobacterium.

Lipolytic enzymes

Lipolytic enzymes (lipases) which are appropriate as the basis

for enzyme hybrids of the types employed in the context of the present invention include those of bacterial or fungal origin. Chemically or genetically modified mutants of such lipases are included in this connection.

5

Examples of useful lipases include a Humicola lanuginosa lipase, e.g. as described in EP 258 068 and EP 305 216; a Rhizomucor miehei lipase, e.g. as described in EP 238 023; a Candida lipase, such as a C. antarctica lipase, e.g. the C. antarctica lipase A or B described in EP 10 214 Pseudomonas lipase, such as one of those described in EP 721 981 (e.g. a lipase obtainable from a Pseudomonas sp. SD705 strain having deposit accession number FERM BP-4772), PCT/JP96/00426, in PCT/JP96/00454 (e.g. a P. solanacearum lipase), in EP 571 982 or in WO 95/14783 (e.g. a P. mendocina 15 lipase), a P. alcaligenes or P. pseudoalcaligenes lipase, e.g. as described in EP 218 272, a P. cepacia lipase, e.g. as described in EP 331 376, a P. stutzeri lipase, e.g. disclosed in GB 1,372,034, or a P. fluorescens lipase; a Bacillus lipase, e.g. a B. subtilis lipase [Dartois et al., 20 Biochemica et Biophysica Acta 1131 (1993) pp. 253-260], a B. stearothermophilus lipase (JP 64/744992) and a B. pumilus lipase (WO 91/16422).

Furthermore, a number of cloned lipases may be useful, includ-

25

30

ing the Penicillium camembertii lipase described by Yamaguchi et al. in Gene 103 (1991), pp. 61-67, the Geotricum candidum lipase [Y. Schimada et al., <u>J. Biochem.</u> 106 (1989), pp. 383-388), and various Rhizopus lipases such as an R. delemar lipase [M.J. Hass et al., Gene 109 (1991) pp. 117-113], an R.

niveus lipase [Kugimiya et al., Biosci. Biotech. Biochem. 56 (1992), pp. 716-719] and a R. oryzae lipase.

Other potentially useful types of lipolytic enzymes include cutinases, e.g. a cutinase derived from *Pseudomonas mendocina* as described in WO 88/09367, or a cutinase derived from *Fusarium solani* f. pisi (described, e.g., in WO 90/09446).

Suitable commercially available lipases include LipolaseTM and Lipolase UltraTM (available from Novo Nordisk A/S), M1 LipaseTM, LumafastTM and LipomaxTM (available from Gist-Brocades) and Lipase P "Amano" (available from Amano Pharmaceutical Co. Ltd.).

Plasmids

10

30

Preparation of plasmids capable of expressing fusion proteins

having the amino acid sequences derived from fragments of more
than one polypeptide is well known in the art (see, for
example, WO 90/00609 and WO 95/16782). The expression cassette
may be included within a replication system for episomal
maintenance in an appropriate cellular host or may be provided

without a replication system, where it may become integrated
into the host genome. The DNA may be introduced into the host
in accordance with known techniques such as transformation,
microinjection or the like.

Once the fused gene has been introduced into the appropriate host, the host may be grown to express the fused gene. Normally it is desirable additionally to add a signal sequence which provides for secretion of the fused gene. Typical examples of useful fused genes are:

Signal sequence -- (pro-peptide) -- carbohydrate-binding domain -- linker -- enzyme sequence of interest, or

Signal sequence -- (pro-peptide) -- enzyme sequence of

interest -- linker -- carbohydrate-binding domain,

in which the pro-peptide sequence normally contains 5-100, e.g. 5-25, amino acid residues.

5

30

The recombinant product may be glycosylated or non-glycosylated.

Determination of α-amylolytic activity (KNU)

- The α-amylolytic activity of an enzyme or enzyme hybrid may be determined using potato starch as substrate. This method is based on the break-down (hydrolysis) of modified potato starch, and the reaction is followed by mixing samples of the starch/enzyme or starch/enzyme hybrid solution with an iodine solution. Initially, a blackish-blue colour is formed, but during the break-down of the starch the blue colour becomes weaker and gradually turns to a reddish-brown. The resulting colour is compared with coloured glass calibration standards.
- One Kilo Novo α -Amylase Unit (KNU) is defined as the amount of enzyme (enzyme hybrid) which, under standard conditions (i.e. at 37 \pm 0.05°C, 0.0003 M Ca²*, pH 5.6) dextrinizes 5.26 g starch dry substance (Merck Amylum solubile) per hour.

25 <u>Determination of lipolytic activity (LU)</u>

The lipolytic (lipase) activity of an enzyme or enzyme hybrid may be determined using tributyrin (glyceryl tributyrate) as substrate. This method is based on the hydrolysis of tributyrin by the enzyme or enzyme hybrid, and the alkali consumption is registered as a function of time.

One Lipase Unit (LU) is defined as the amount of enzyme (enzyme hybrid) which, under standard conditions (i.e. at 30.0°C, pH 7.0; with Gum Arabic as emulsifier and tributyrin

as substrate) liberates 1 μ mol of titratable butyric acid per minute.

Process conditions

30

- It will be understood that the method of the invention may be performed in accordance with any suitable desizing procedure known in the art, e.g. as described by E.S. Olson in Textile Wet Processes, Vol. I, Noyes Publication, Park Ridge, Jersey, USA (1983), or by M. Peter and H.K. Rouette in Grundlagen der Textilveredlung, Deutsche Fachverlag GmbH, 10 Frankfurt am Main, Germany (1988). Thus, the process conditions to be used in performing the present invention may be selected so as to match particular equipment or a particular type of process which it is desirable to use. Preferred 15 examples of types of procedures suitable for use in connection with the present invention include Jigger/Winch, Pad-Roll and Pad-Steam types. These types are dealt with in further detail below.
- The process of the invention may be carried out as a batch, semi-continuous or continuous process. As an example, the process may comprise the following steps:
- (a) impregnating the fabric in a desizing bath containing (as 25 a minimum) an amylolytic enzyme hybrid and/or a lipolytic enzyme hybrid;
 - (b) subjecting the impregnated fabric to steaming, so as to bring the fabric to the desired reaction temperature, generally between 20° and 120°C; and
 - (c) holding by rolling-up or pleating the cloth in a J-Box, U-Box, carpet machine or the like for a sufficient period of time (normally between a few minutes and several hours) to

15

20

allow the desizing to occur.

Prior to carrying out the chosen treatment, the amylolytic enzyme hybrid and/or the lipolytic enzyme hybrid may 5 conveniently be mixed with other components which are conventionally used in the desizing process.

Further components required for performance of the process may be added separately. Thus, for example, a wetting agent and, optionally, a stabilizer may be added. The stabilizer in question may be an agent stabilizing the amylolytic enzyme hybrid and/or the lipolytic enzyme hybrid. Wetting agents serve to improve the wettability of the fibre, whereby rapid and even desizing may be achieved. The wetting agent is preferably of an oxidation-stable type.

In a preferred embodiment of the process of the invention, an amylolytic enzyme hybrid is used in an amount corresponding to an amylase activity in the range of between 1 and 5000 KNU per litre of desizing liquor, such as between 10 and 1000 KNU per litre of desizing liquor, preferably between 50 and 500 KNU per litre, more preferably between 20 and 500 KNU per litre of desizing liquor.

In a preferred embodiment of the process of the invention, a lipolytic enzyme hybrid is used in an amount corresponding to a lipase activity in the range of between 10 and 20000 LU per litre of desizing liquor, such as between 50 and 10000 LU per litre of desizing liquor, more preferably between 100 and 5000 LU per litre of desizing liquor.

Irrespective of the particular type of procedure to be used for the desizing, the process of the invention is normally performed at a temperature in the range of 30-100°C, such as

35-60°C, and at a pH in the range of 3-11, preferably 7-9. However, the actual process conditions may vary widely within these ranges.

It will be understood that the process may be performed in any equipment sufficiently tolerant towards the process conditions in question.

The process of the invention may be employed alone or in combination with one or more other enzymatic desizing processes. Suitable combinations include the following:

- a treatment with an amylolytic enzyme hybrid, and a treatment with a cellulase;
- 15 a treatment with a lipolytic enzyme hybrid, and a treatment with a cellulase;
 - a treatment with an amylolytic enzyme hybrid, and a treatment with a lipase or a lipolytic enzyme hybrid;
 - a treatment with a lipolytic enzyme hybrid, and a treatment with an amylase or an amylolytic enzyme hybrid;
 - a treatment with an amylolytic enzyme hybrid, and a treatment with a lipase or a lipolytic enzyme hybrid, and a treatment with a cellulase;
- a treatment with a lipolytic enzyme hybrid, and a treatment with an amylase or an amylolytic enzyme hybrid, and a treatment with a cellulase.

The various enzymes/enzyme hybrids will normally be added in one step, but the desizing process may also be performed in more than one step, taking one enzyme/enzyme hybrid at a time.

Composition of the invention

Although an enzyme hybrid, e.g. amylolytic enzyme hybrid and/or lipolytic enzyme hybrid, may be added as such, it is

preferred that it is formulated in the form of a suitable desizing composition.

The desizing composition of the invention may comprise a single type of enzyme hybrid, or more than one type of enzyme hybrid (e.g. an amylolytic enzyme hybrid together with a lipolytic enzyme hybrid). The composition may be in the form of, e.g., a granulate, preferably a non-dusting granulate, or a liquid, in particular a stabilized liquid, or a slurry, or in a protected form. Non-dusting granulates may be produced, for example, as disclosed in US 4,106,991 and US 4,661,452 (both to Novo Nordisk A/S) and may optionally be coated by methods known in the art. In the case of granular formulations ("granulates"), different enzyme hybrids may be formulated, 15 for example, either as a single granulate wherein the individual granules each contain all the enzyme hybrids in question, or as a mixture of discrete, different granulates wherein the individual granules each contain one type of enzyme hybrid of the kind in question.

20

30

10

Liquid enzyme preparations may, for instance, be stabilized by adding a polyol (such as propylene glycol or another glycol), a sugar, a sugar alcohol or acetic acid, according to established procedures. Other enzyme stabilizers are well known in the art. Protected enzymes may be prepared as disclosed in EP 238 216.

The composition of the invention may comprise a wetting agent and/or, optionally, one or more further components selected from the group consisting of dispersing agents, sequestering (and/or precipitants) and emulsifying agents. example of a suitable wetting agent is the commercial product Arbyl™ R, available from Grünau, Germany. An emulsifying agent serves to emulsify hydrophobic impurities which may be

present on the fabric. A dispersing agent serves to prevent the redeposition of extracted impurities on the fabric. A sequestering agent or precipitant serves to remove metal ions (such as Ca²⁺, Mg²⁺ and Fe²⁺) which may have a negative impact on the process; suitable examples include caustic soda (sodium hydroxide) and soda ash (sodium carbonate).

A further aspect of the invention relates to a DNA construct disclosed herein which encodes, or which comprises a sequence which encodes, an enzyme hybrid as disclosed in the present specification.

A still further aspect of the invention relates to a polypeptide (fusion protein or enzyme hybrid) which is encoded by such a DNA construct or sequence, and/or which is disclosed in the present specification.

The invention is further illustrated by means of the examples given below, which are in no way intended : limit the scope of the invention as claimed:

MATERIALS AND METHODS

Strains:

20

25 Bacillus agaradherens NCIMB No. 40482: comprises the endoglucanase enzyme encoding DNA sequence of Example 2, below.

Escherichia coli SJ2 [Diderichsen et al., <u>J. Bacteriol.</u> 172 30 (1990), pp. 4315-4321].

Electrocompetent cells prepared and transformed using a Bio-Rad GenePulser TM as recommended by the manufacturer.

Bacillus subtilis PL2306: this strain is the B.subtilis DN1885 with disrupted apr and npr genes [Diderichsen et al., J. Bacteriol. 172 (1990), pp. 4315-4321] disrupted in the transcriptional unit of the known Bacillus subtilis cellulase gene, resulting in cellulase-negative cells. The disruption was performed essentially as described in Sonenshein et al. (Eds.), Bacillus subtilis and other Gram-Positive Bacteria, American Society for Microbiology (1993), p.618.

10 Plasmids:

pDN1528 [Jørgensen et al., <u>J. Bacteriol.</u> 173 (1991), p.559-567].

pBluescriptKSII- (Stratagene, USA).

15

pDN1981 [Jørgensen et al., Gene 96 (1990), p37-41].

Solutions/Media

TY and LB agar [as described in Ausubel et al. (Eds.),

Current Protocols in Molecular Biology, John Wiley and Sons
(1995)].

SB: 32 g Tryptone, 20 g yeast extract, 5 g sodium chloride and 5 ml 1 N sodium hydroxide are mixed in sterile water to a final volume of 1 litre. The solution is sterilised by autoclaving for 20 minutes at 121°C.

10% Avicel™: 100 g of Avicel™ (FLUKA, Switzerland) is mixed with sterile water to a final volume of 1 litre, and the resulting 10% Avicel™ is sterilised by autoclaving for 20 minutes at 121°C.

Buffer: 0.05 M potassium phosphate, pH 7.5.

General molecular biology methods

DNA manipulations and transformations were performed using standard methods of molecular biology [Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor lab., Cold Spring Harbor, NY (1989); Ausubel et al. (Eds.), Current Protocols in Molecular Biology, John Wiley and Sons (1995); C.R. Harwood and S.M. Cutting (Eds.) Molecular Biological Methods for Bacillus, John Wiley and Sons (1990)].

Enzymes for DNA manipulations were used according to the specifications of the suppliers.

EXAMPLE 1

WO 97/28256

- 15 Subcloning of a partial Termanyl sequence.
 - The alfa-amylase gene encoded on pDN1528 was PCR amplified for introduction of a BamHI site in the 3'-end of the coding region. The PCR and the cloning were carried out as follows:
- Approximately 10-20 ng of plasmid pDN1528 was PCR amplified in HiFidelityTM PCR buffer (Boehringer Mannheim, Germany) supplemented with 200 μM of each dNTP, 2.6 units of HiFidelityTM Expand enzyme mix, and 300 pmol of each primer:
- 25 #5289
 - 5'-GCT TTA CGC CCG ATT GCT GAC GCT G -3'
- 30 #26748
 - 5'-GCG ATG AGA CGC GCC GCC TAT CTT TGA ACA TAA ATT GAA ACG GAT .CCG -3'

(BamHI restriction site underlined].

The PCR reactions were performed using a DNA thermal cycler (Landgraf, Germany). One incubation at 94°C for 2 min, 60°C for 30 sec and 72°C for 45 sec was followed by ten cycles of PCR performed using a cycle profile of denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, and extension at 72°C for 45 sec and twenty cycles of denaturation at 94°C for 30 sec, 60°C for 30 sec and 72°C for 45 sec (at this elongation step, 20 sec are added every cycle). 10 µl aliquots of amplification product were analyzed by electrophoresis in 1.0 % agarose gels (NuSieveTM, FMC) with ReadyLoadTM 100bp DNA ladder (GibcoBRL, Denmark) as a size marker.

40 μl aliquots of PCR product generated as described above were purified using QIAquick™ PCR purification kit (Qiagen, USA) according to the manufacturer's instructions. The purified DNA was eluted in 50 μl of 10mM Tris-HCl, pH 8.5. 25 μl of the purified PCR fragment was digested with BamHI and PstI, subjected to electrophoresis in 1.0% low gelling temperature agarose (SeaPlaque™ GTG, FMC) gels, and the relevant fragment was excised from the gel and purified using QIAquick™ Gel extraction Kit (Qiagen, USA) according to the manufacturer's instructions. The isolated DNA fragment was then ligated to BamHI-PstI digested pBluescriptII KS-, and the ligation mixture was used to transform E. coli SJ2.

Cells were plated on LB agar plates containing Ampicillin (200 μg/ml) and supplemented with X-gal (5-bromo-4-chloro-3-indolyl-α-D-galactopyranoside, 50 μg/ml), and incubated at 37°C overnight. The next day, white colonies were restreaked onto fresh LB-Ampicillin agar plates and incubated at 37°C

overnight. The following day, single colonies were transferred to liquid LB medium containing Ampicillin (200 μ g/ml) and incubated overnight at 37°C with shaking at 250 rpm.

5

Plasmids were extracted from the liquid cultures using QIAgen Plasmid Purification mini kit (Qiagen, USA) according to the manufacturer's instructions. 5 μ l samples of the plasmids were digested with PstI and BamHI. The digestions were checked by gel electrophoresis on a 1.0% agarose gel (NuSieveTM, FMC). One positive clone, containing the PstI-BamHI fragment containing part of the α -amylase gene, was designated pMB335. This plasmid was then used in the construction of α -amylase-CBD hybrid.

15

20

10

Isolation of genomic DNA

Clostridium stercorarium NCIMB 11754 was grown anaerobically at 60°C in specified media as recommended by The National Collections of Industrial and Marine Bacteria Ltd. (NCIMB), Scotland. Cells were harvested by centrifugation.

Genomic DNA was isolated as described by Pitcher et al, Lett.

25 In vitro amplification of the CBD-dimer of Clostridium stercorarium (NCIMB 11754) XynA

Appl. Microbiol. 8 (1989), pp. 151-156.

Approximately 100-200 ng of genomic DNA was PCR amplified in HiFidelity TM PCR buffer (Boehringer Mannheim, Germany) supplemented with 200 μM of each dNTP, 2.6 units of

30 HiFidelity TM Expand enzyme mix, and 300 pmol of each primer:

#27183

5'-GCT GCA GGA TCC GTT TCA ATT TAT GTT CAA AGA TCT GGC GGA

CCT GGA ACG CCA AAT AAT GGA AGA GG -3'

#27182

5'-GCA CTA GCT AGA <u>CGG CCG</u> CTA CCA GTC AAC ATT AAC AGG ACC
5 TGA G -3'

(BamHI and EagI restriction sites underlined).

The primers were designed to amplify the DNA encoding the cellulose-binding domain of the XynA-encoding gene of Clostridium stercorarium NCIMB 11754; the DNA sequence was extracted from the database GenBank under the accession number D13325.

- The PCR reactions were performed using a DNA thermal cycler (Landgraf, Germany). One incubation at 94°C for 2 min, 60°C for 30 sec and 72°C for 45 sec was followed by ten cycles of PCR performed using a cycle profile of denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, and extension at
- 72°C for 45 sec and twenty cycles of denaturation at 94°C for 30 sec, 60°C for 30 sec and 72°C for 45 sec (at this elongation step, 20 sec are added every cycle). 10 μl aliquots of amplification product were analyzed by electrophoresis in 1.0 % agarose gels (NuSieveTM, FMC) with
- 25 ReadyLoad™ 100bp DNA ladder (GibcoBRL, Denmark) as a size marker.

Cloning by polymerase chain reaction (PCR): Subcloning of PCR fragments.

40 μl aliquots of PCR product generated as described above were purified using QIAquick™ PCR purification kit (Qiagen, USA) according to the manufacturer's instructions. The purified DNA was eluted in 50 μl of 10mM Tris-HCl, pH 8.5. 25

µl of the purified PCR fragment was digested with BamHI and EagI, subjected to electrophoresis in 1.0% low gelling temperature agarose (SeaPlaqueTM GTG, FMC) gels, and the relevant fragment was excised from the gels and purified using QIAquickTM Gel extraction Kit (Qiagen, USA) according to the manufacturer's instructions. The isolated DNA fragment was then ligated to BamHI-NotI digested pMB335 and the ligation mixture was used to transform E.coli SJ2.

Identification and characterization of positive clones
Cells were plated on LB agar plates containing Ampicillin
(200 μg/ml) and incubated at 37°C overnight. The next day,
colonies were restreaked onto fresh LB-Ampicillin agar plates
and incubated at 37°C overnight. The following day, single
colonies were transferred to liquid LB medium containing
Ampicillin (200 μg/ml) and incubated overnight at 37°C with
shaking at 250 rpm.

Plasmids were extracted from the liquid cultures using QIAgen
20 Plasmid Purification mini kit (Qiagen, USA) according to the
manufacturer's instructions. 5 µl samples of the plasmids
were digested with BamHI and NotII. The digestions were
checked by gel electrophoresis on a 1.0% agarose gel (NuSieveTM, FMC). The appearance of a DNA fragment of the same
25 size as seen from the PCR amplification indicated a positive
clone.

One positive clone, containing the fusion construct of the α -amylase gene and the CBD-dimer of Clostridium stercorarium (NCIMB 11754) XynA, was designated MBamyX.

Cloning of the fusion construct into a Bacillus-based expression vector

30

The pDN1528 vector contains the amyL gene of B.licheniformis; this gene is actively expressed in B. subtilis, resulting in the production of active α -amylase appearing in the supernatant. For expression purposes, the DNA encoding the fusion protein as constructed above was introduced to pDN1528.

This was done by digesting pMBamyX and pDN1528 with SalI-NotI, purifying the fragments and ligating the 4.7 kb pDN1528 SalI-NotI fragment with the 1.0 kb pMBamyX SalI-NotI

fragment. This created an inframe fusion of the hybrid construction with the TermamylTM (B. licheniformis α-amylase) gene. The DNA sequence of the fusion construction of pMB206, and the corresponding amino acid sequence, are shown in SEQ ID No. 1 and SEQ ID No. 2, respectively.

15

20

30

The ligation mixture was used to transform competent cells of B. subtilis PL2306. Cells were plated on LB agar plates containing chloramphenicol (6 μ g/ml), 0.4% glucose and 10mM potassium hydrogen phosphate, and incubated at 37°C overnight. The next day, colonies were restreaked onto fresh

overnight. The next day, colonies were restreaked onto fresh LBPG (LB plates with 0.4% glucose and 10mM potassium phosphate, pH 10) chloramphenicol agar plates and incubated at 37°C overnight. The following day, single colonies of each clone were transferred to liquid LB medium containing

chloramphenicol (6 μ g/ml) and incubated overnight at 37°C with shaking at 250 rpm.

Plasmids were extracted from the liquid cultures using QIAgen Plasmid Purification mini kit (Qiagen, USA) according to the manufacturer's instructions. However, the resuspension buffer was supplemented with 1 mg/ml of chicken egg white lysozyme (SIGMA; USA) prior to lysing the cells at 37°C for 15 minutes. 5 μ l samples of the plasmids were digested with

BamHI and NotI. The digestions were checked by gel electrophoresis on a 1.5% agarose gel (NuSieveTM, FMC). The appearance of a DNA fragment of the same size as seen from the PCR amplification indicated a positive clone. One positive clone was designated MB-BSamyx.

Expression, secretion and functional analysis of the fusion protein

The clone MB-BSamyx (expressing Termamyl™ fused to C.stercorarium XynA dimer CBD) was incubated for 20 hours in 10 SB medium at 37°C with shaking at 250 rpm. 1 ml of cell-free supernatant was mixed with 200 µl of 10% Avicel™. The mixture was incubated for 1 hour at 0°C and then centrifuged for 5 minutes at 5000 \times g. The pellet was resuspended in 100 μl of SDS-PAGE buffer, and the suspension was boiled at 95°C 15 for 5 minutes, centrifuged at 5000 x g for 5 minutes, and 25 μl was loaded onto a 4-20% Laemmli Tris-Glycine, SDS-PAGE $NOVEX^{TM}$ gel (Novex, USA). The samples were subjected to electrophoresis in an Xcell™ Mini-Cell (NOVEX, USA) as recommended by the manufacturer. All subsequent handling of 20 gels, including staining (Coomassie), destaining and drying, were performed as described by the manufacturer.

The appearance of a protein band of molecular weight approx.

85 kDa indicated expression in B. subtilis of the Termamyl-CBD fusion amyx.

EXAMPLE 2

Identification of a novel CBD representing a new CBD family
The alkaline cellulase cloned in *Bacillus subtilis* as
described below was expressed by incubating the clone for 20
hours in SB medium at 37°C with shaking at 250 rpm. The

expressed cellulase was shown to contain a CBD by its ability to specifically bind to $Avicel^{TM}$.

When left to incubate for a further 20 hours, the cellulase was proteolytically cleaved and two specific protein bands appeared in SDS-PAGE, one corresponding to the catalytic part of the cellulase, approximate molecular weight (MW) 35 kD, and the other corresponding to a proposed linker and CBD of approximate MW 8 kD.

10

The CBD was found to be the C-terminal part of the cellulase, and did not match any of the CBD families described previously [Tomme et al., <u>Cellulose-Binding Domains:</u> Classification and Properties, In: J.N. Saddler and M.H.

- Penner (Eds.), <u>Enzymatic Degradation of Insoluble</u>

 <u>Carbohydrates</u>, ACS Symposium Series No. 618 (1996)].

 Accordingly, this CBD appears to be the first member of a new family.
- 20 Cloning of the alkaline cellulase (endoglucanase) from Bacillus agaradherens and expression of the alkaline cellulase in Bacillus subtilis

The nucleotide sequence encoding the alkaline cellulase from Bacillus agaradherens (deposited under accession No. NCIMB

- 25 40482) was cloned by PCR for introduction in an expression plasmid pDN1981. PCR was performed essentially as described above on 500 ng of genomic DNA, using the following two primers containing NdeI and KpnI restriction sites for introducing the endoglucanase-encoding DNA sequence to
- 30 pDN1981 for expression:

#20887

5'-GTA GGC TCA GT<u>C ATA TG</u>T TAC ACA TTG AAA GGG GAG GAG AAT CAT GAA AAA GAT AAC TAC TAT TTT TGT CG-3'

#21318

5'-GTA CCT CGC GGG TAC CAA GCG GCC GCT TAA TTG AGT GGT TCC CAC GGA CCG-3'

5

10

25

After PCR cycling, the PCR fragment was purified using QIA-quickTM PCR column kit (Qiagen, USA) according to the manufacturer's instructions. The purified DNA was eluted in 50 μ l of 10mM Tris-HCl, pH 8.5, digested with NdeI and KpnI, purified and ligated to digested pDN1981. The ligation mixture was used to transform B. subtilis PL2306. Competent cells were prepared and transformed as described by Yasbin et al., J. Bacteriol. 121 (1975), pp. 296-304.

15 Isolation and testing of B. subtilis transformants

The transformed cells were plated on LB agar plates containing Kanamycin (10 mg/ml), 0.4% glucose, 10 mM potassium phosphate and 0.1% AZCL HE-cellulose (Megazyme, Australia), and incubated at

20 37 °C for 18 hours. Endoglucanase-positive colonies were identified as colonies surrounded by a blue halo.

Each of the positive transformants was inoculated in 10 ml TY medium containing Kanamycin (10 mg/ml). After 1 day of incubation at 37°C with shaking at 250rpm, 50 ml of supernatant was removed. The endoglucanase activity was identified by adding 50 ml of supernatant to holes punctured in the agar of LB agar plates containing 0.1% AZCL HE-cellulose.

After 16 hours incubation at 37°C, blue halos surrounding holes indicated expression of the endoglucanase in B. subtilis. One such clone was designated MB208. The encoding DNA sequence and amino acid sequence of the endoglucanase are shown in SEQ ID No. 3 and SEQ ID No. 4, respectively.

The DNA sequence was determined as follows: Qiagen purified plasmid DNA was sequenced with the Taq deoxy terminal cycle sequencing kit (Perkin Elmer, USA) using the primers #21318 and #20887 (vide supra) and employing an Applied Biosystems 373A automated sequencer operated according to the manufacturer's instructions. Analysis of the sequence data is performed according to Devereux et al., Carcinogenesis 14 (1993), pp. 795-801.

10

5

In vitro amplification of the CBD of Bacillus agaradherens NCIMB 40482 endoglucanase

Approximately 10-20 ng of plasmid pMB208 was PCR amplified in $HiFidelity^{TM}$ PCR buffer (Boehringer Mannheim, Germany)

supplemented with 200 μM of each dNTP, 2.6 units of HiFidelityTM Expand enzyme mix and 300 pmol of each primer:

#27184

5'-GCT GCA <u>GGA TCC</u> GTT TCA ATT TAT GTT CAA AGA TCT CCT GGA 20 GAG TAT CCA GCA TGG GAC CCA A-3'

#28495

5'-GC ACA AGC TTG CGG CCG CTA ATT GAG TGG TTC CCA CGG ACC G -

(BamHI and NotI restriction sites underlined).

The primers were designed to amplify the CBD-encoding DNA of the cellulase-encoding gene of *Bacillus agaradherens* NCIMB 40482.

The PCR reaction was performed using a DNA thermal cycler (Landgraf, Germany). One incubation at 94°C for 2 min, 60°C

for 30 sec and 72°C for 45 sec was followed by ten cycles of PCR performed using a cycle profile of denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, and extension at 72°C for 45 sec and twenty cycles of denaturation at 94°C for 30 sec, 60°C for 30 sec and 72°C for 45 sec (at this elongation step, 20 sec are added every cycle). 10 μl aliquots of amplification product were analyzed by electrophoresis in 1.5 % agarose gels (NuSieveTM, FMC) with ReadyLoadTM 100bp DNA ladder (GibcoBRL, Denmark) as a size marker.

Cloning by polymerase chain reaction (PCR): Subcloning of PCR fragments

40 μl aliquots of PCR products generated as described above

were purified using QIAquick™ PCR purification kit (Qiagen,
USA) according to the manufacturer's instructions. The

purified DNA was eluted in 50 μl of 10mM Tris-HCl, pH 8.5. 25

μl of the purified PCR fragment was digested with BamHI and

NotI, subjected to electrophoresis in 1.5% low gelling

temperature agarose (SeaPlaque™ GTG, FMC) gels, and the

relevant fragment was excised from the gels and purified

using QIAquick™ Gel extraction kit (Qiagen, USA) according

to the manufacturer's instructions. The isolated DNA fragment

was then ligated to BamHI-NotI digested pMB335, and the

ligation mixture was used to transform E. coli SJ2.

Identification and characterization of positive clones
Cells were plated on LB agar plates containing Ampicillin
(200 μg/ml) and incubated at 37°C overnight. The next day,
colonies were restreaked onto fresh LB-Ampicillin agar plates
and incubated at 37°C overnight. The following day, single
colonies were transferred to liquid LB medium containing

15

Ampicillin (200 μ g/ml) and incubated overnight at 37°C with shaking at 250 rpm.

Plasmids were extracted from the liquid cultures using QIAgen Plasmid Purification mini kit (Qiagen, USA) according to the manufacturer's instructions. 5 µl samples of the plasmids were digested with BamHI and NotI. The digestions were checked by gel electrophoresis on a 1.5% agarose gel (NuSieveTM, FMC). The appearance of a DNA fragment of the same size as seen from the PCR amplification indicated a positive clone.

One positive clone, containing the fusion construct of the Termamyl TM α -amylase gene and the CBD of Bacillus agaradherens NCIMB 40482 alkaline cellulase Cel5A, was designated MBamyC5A.

Cloning of the fusion construct into a Bacillus-based expression vector

As mentioned previously, the amyL gene of B. licheniformis

(contained in the pDN1528 vector) is actively expressed in B.

subtilis, resulting in the production of active α-amylase
appearing in the supernatant. For expression purposes, the
DNA encoding the fusion protein as constructed above was
introduced to pDN1528. This was done by digesting pMBamyC5A
and pDN1528 with Sall-NotI, purifying the fragments and
ligating the 4.7 kb pDN1528 Sall-NotI fragment with the 0.5
kb pMBamyC5A Sall-NotI fragment. This created an inframe
fusion of the hybrid construction with the TermamylTM gene.

The DNA sequence of the fusion construction of pMB378, and
the corresponding amino acid sequence, are shown in SEQ ID

No. 5 and SEQ ID No. 6, respectively.

15

20

25

The ligation mixture was used to transform competent cells of B. subtilis PL2306. Cells were plated on LB agar plates containing chloramphenicol (6 μ g/ml), 0.4% glucose and 10mM potassium hydrogen phosphate, and incubated at 37°C overnight. The next day, colonies were restreaked onto fresh LBPG chloramphenicol agar plates and incubated at 37°C overnight. The following day, single colonies of each clone were transferred to liquid LB medium containing chloramphenicol (6 μ g/ml) and incubated overnight at 37°C with shaking at 250 rpm.

Plasmids were extracted from the liquid cultures using QIAgen Plasmid Purification mini kit (Qiagen, USA) according to the manufacturer's instructions. However, the resuspension buffer was supplemented with 1 mg/ml of chicken egg white lysozyme (SIGMA, USA) prior to lysing the cells at 37°C for 15 minutes. 5 µl samples of the plasmids were digested with BamHI and NotI. The digestions were checked by gel electrophoresis on a 1.5% agarose gel (NuSieveTM, FMC). The appearance of a DNA fragment of the same size as seen from the PCR amplification indicated a positive clone. One positive clone was designated MB378.

Expression, secretion and functional analysis of the fusion protein

The clone MB378 (expressing TermamylTM fused to Bacillus agaradherens Cel5A CBD) was incubated for 20 hours in SB medium at 37°C with shaking at 250 rpm. 1 ml of cell-free supernatant was mixed with 200 µl of 10% AvicelTM. The

30 mixture was incubated for 1 hour at 0°C and then centrifuged for 5 minutes at 5000 x g. The pellet was resuspended in 100 µl of SDS-PAGE buffer, and the suspension was boiled at 95°C for 5 minutes, centrifuged at 5000 x g for 5 minutes, and 25

µl was loaded onto a 4-20% Laemmli Tris-Glycine, SDS-PAGE NOVEXTM gel (Novex, USA). The samples were subjected to electrophoresis in an XcellTM Mini-Cell (NOVEX, USA) as recommended by the manufacturer. All subsequent handling of gels, including staining (Coomassie), destaining and drying, were performed as described by the manufacturer.

The appearance of a protein band of molecular weight approx. 60 kDa indicated expression in *B. subtilis* of the TermamylTM-CBD fusion encoded on the plasmid pMB378.

EXAMPLE 3

10

This example describes fusion of Termamyl™ and the CBD from Cellulomonas fimi (ATCC484) cenA gene using the sequence overlap extension (SOE) procedure [see, e.g., Sambrook et al., Ausubel et al., or C.R. Harwood and S.M. Cutting (loc. cit.)]. The final construction is as follows: Termamyl™

20 promoter - Termamyl™ signal peptide - cenA CBD - linker - mature Termamyl™.

Amplification of the TermamylTM fragment for SOE Approximately 10-20 ng of plasmid pDN1528 was PCR amplified in HiFidelityTM PCR buffer (Boehringer Mannheim, Germany) supplemented with 200 μM of each dNTP, 2.6 units of HiFidelityTM Expand enzyme mix, and 100 pmol of each primer:

#4576

30 5'-CTC GTC CCA ATC GGT TCC GTC -3'

#28403

5'-TGC ACT GGT ACA GTT CCT ACA ACT AGT CCT ACA CGT GCA AAT
CTT AAT GGG ACG CTG -3'

The part of the primer #28403 constituting a fragment of the TermamylTM sequence is underlined. The sequence on the 5⁻ side of this underlined sequence is that coding for the linker region to the CBD.

The PCR reaction was performed using a DNA thermal cycler

(Landgraf, Germany). One incubation at 94°C for 2 min, 55°C for 30 sec and 72°C for 45 sec was followed by twenty cycles of PCR performed using a cycle profile of denaturation at 96°C for 10 sec, annealing at 55°C for 30 sec, and extension at 72°C for 45 sec. 10 µl aliquots of the amplification product were analyzed by electrophoresis in 1.0 % agarose gels (NuSieveTM, FMC) with ReadyLoadTM 100bp DNA ladder (GibcoBRL, Denmark) as a size marker.

40 μl aliquots of the PCR product generated as described
20 above were purified using QIAquickTM PCR purification kit
(Qiagen, USA) according to the manufacturer's instructions.
The purified DNA was eluted in 50 μl of 10mM Tris-HCl, pH
-8.5.

25 Isolation of genomic DNA

Cellulomonas fimi ATCC484 was grown in TY medium at 30°C with shaking at 250 rpm for 24 hours. Cells were harvested by centrifugation.

Genomic DNA was isolated as described by Pitcher et al., Lett. Appl. Microbiol. 8 (1989), pp. 151-156.

In vitro amplification of the CBD of Cellulomonas fimi

(ATCC484) cenA gene for SOE procedure

Approximately 100-200 ng of genomic DNA was PCR amplified in HiFidelityTM PCR buffer (Boehringer Mannheim, Germany) supplemented with 200 μ M of each dNTP, 2.6 units of HiFidelityTM Expand enzyme mix, and 100 pmol of each primer:

#8828

5'-CTG CCT CAT TCT GCA GCG GCG GCG GCA AAT CTT AAT GCT CCC GGC TGC CGC GTC GAC TAC -3'

10

5

#28404

5'-TGT AGG AAC TGT ACC AGT GCA CGT GGT GCC GTT GAG C -3'

(PstI restriction site underlined).

15

The primers were designed to amplify the DNA encoding the cellulose-binding domain of the CenA-encoding gene of Cellulomonas fimi (ATCC484). The DNA sequence was extracted from the database GenBank under the accession number M15823.

20

25

PCR cycling was performed as follows: One incubation at 94°C for 2 min, 55°C for 30 sec and 72°C for 45 sec was followed by thirty cycles of PCR performed using a cycle profile of denaturation at 96°C for 10 sec, annealing at 55°C for 30 sec, and extension at 72°C for 45 sec. 10 μl aliquots of the amplification product were analyzed by electrophoresis in 1.0% agarose gels (NuSieveTM, FMC) with ReadyLoadTM 100bp DNA ladder (GibcoBRL, Denmark) as a size marker.

30 40 μl aliquots of the PCR product generated as described above were purified using QIAquick™ PCR purification kit (Qiagen, USA) according to the manufacturer's instructions. The purified DNA was eluted in 50 μl of 10mM Tris-HCl, pH 8.5.

SOE of the CBD from Cellulomonas fimi (ATCC484) cenA gene and the Termamy 1^{TM} gene

Approximately 100-200 ng of the PCR amplified Termamyl™ fragment and the PCR amplified cenA CBD fragment were used in a second round of PCR. SOE of the two fragments was performed in

in HiFidelity™ PCR buffer (Boehringer Mannheim, Germany)

10 supplemented with 200 μM of each dNTP, 2.6 units of HiFidelityTM Expand enzyme mix.

A touch-down PCR cycling was performed as follows: One incubation at 96°C for 2 min, 60°C for 2 min and 72°C for 45 sec. This cycle was repeated ten times with a 1°C decrease of the annealing temperature at each cycle.

A third PCR reaction was started by adding 100 pmol of the two flanking primers #8828 and #4576 (vide supra) to amplify the hybrid DNA. PCR was performed by incubating the SOE reaction mixture at 96°C for 2 min, 55°C for 30 sec and 72°C for 45 sec. This was followed by twenty cycles of PCR performed using a cycle profile of denaturation at 96°C for 10 sec, annealing at 55°C for 30 sec, and extension at 72°C for 45 sec. 10 µl aliquots of the amplification product were

for 45 sec. 10 μl aliquots of the amplification product were analyzed by electrophoresis in 1.0 % agarose gels (NuSieveTM, FMC) with ReadyLoadTM 100bp DNA ladder (GibcoBRL, Denmark) as a size marker. The SOE fragment had the expected size of 879 bp.

30

Subcloning of the SOE fragment coding for the CBD-Termamyl hybrid

WO 97/28256 PCT/DK97/00041

39

40 µl of the SOE-PCR product generated as described above was purified using QIAquick™ PCR purification kit (Qiagen, USA) according to the manufacturer's instructions. The purified D-NA was eluted in 50 μ l of 10mM Tris-HCl, pH 8.5. 25 μ l of the purified PCR fragment was digested with PstI and KpnI, subjected to electrophoresis in 1.0% low gelling temperature agarose (SeaPlaque™ GTG, FMC) gels, and a fragment of 837 bp was excised from the gel and purified using QIAquick™ Gel extraction Kit (Qiagen, USA) according to the manufacturer's instructions. The isolated DNA fragment was then ligated to 10 PstI- and KpnI-digested pDN1981, and the ligation mixture was used to transform competent cells of B. subtilis PL2306. Cells were plated on LB agar plates containing Kanamycin (10 $\mu g/ml)$, 0.4% glucose and 10mM potassium hydrogen phosphate, and incubated at 37°C overnight. The next day, colonies were 15 restreaked onto fresh LBPG Kanamycin agar plates and incubated at 37°C overnight. The following day, single colonies of each clone were transferred to liquid LB medium containing Kanamycin (10 $\mu g/ml$) and incubated overnight at 37°C with shaking at 250 rpm.

Plasmids were extracted from the liquid cultures using QIAgen Plasmid Purification mini kit (Qiagen, USA) according to the manufacturer's instructions. However, the resuspension buffer was supplemented with 1 mg/ml of chicken egg white lysozyme 25 (SIGMA, USA) prior to lysing the cells at 37°C for 15 minutes. $5~\mu l$ samples of the plasmids were digested with PstI and KpnI. The digestions were checked by gel electrophoresis on a 1.5% agarose gel (NuSieve $^{\text{TM}}$, FMC). The appearance of a 30 DNA fragment of 837 bp, the same size as seen from the PCR amplification, indicated a positive clone. One positive clone was designated MOL1297.

Expression, secretion and functional analysis of the fusion protein

The clone MOL1297 (expressing C. fimi cenA CBD fused to the N-terminal of Termamyl™) was incubated for 20 hours in SB medium at 37°C with shaking at 250 rpm. 1 ml of cell-free supernatant was mixed with 200 µl of 10% Avicel™. The mixture was incubated for 1 hour at 0°C and then centrifuged for 5 min at 5000 x g. The pellet was resuspended in 100 μ l 10 of SDS-PAGE buffer, boiled at 95°C for 5 minutes, centrifuged at 5000 x g for 5 minutes, and 25 μ l was loaded on a 4-20% Laemmli Tris-Glycine, SDS-PAGE NOVEX gel (Novex, USA). The samples were subjected to electrophoresis in an Xcell™ Mini-Cell (NOVEX, USA) as recommended by the manufacturer. All 15 subsequent handling of gels including staining (Coomassie), destaining and drying, was performed as described by the manufacturer.

The appearance of a protein band of MW approx. 85 kDa

indicated expression in B. subtilis of the CBD-TermamylTM
fusion.

The encoding sequence for the *C. fimi cenA* CBD-Termamyl hybrid is shown in SEQ_ID No. 7 (in which lower case letters indicate the CBD-encoding part of the sequence). The corresponding amino acid sequence of the hybrid is shown in SEQ_ID No. 8 (in which lower case letters indicate the CBD amino acid sequence).

30 EXAMPLE 4

25

This example describes the construction of fusion proteins (enzyme hybrid) from a lipase (LipolaseTM; Humicola

WO 97/28256 PCT/DK97/00041

41

lanuginosa lipase) and a CBD. A construction with an N-terminal CBD was chosen, since the N-terminal of the enzyme is far from the active site, whereas the C-terminal is in relatively close proximity to the active site.

5

pIVI450 construction (CBD-linker-lipase)

This construct was made in order to express a protein having the Myceliophthora thermophila cellulase CBD and linker at the N-terminal of LipolaseTM.

10

A PCR fragment was created using the clone pA2C161 (DSM 9967) containing the M. thermophila cellulase gene as template, and the following oligomers as primers:

15 #8202

5' ACGTAGTGGCCACGCTAGGCGAGGTGGTGG 3'

#19672

5' CCACACTTCTCTTCCTTC 3'

20

The PCR fragment was cut with BamHI and BalI, and cloned into pAHL which was also cut with BamHI and BalI just upstream of the presumed signal peptide processing site. The cloning was verified by sequencing (see SEQ ID No. 9).

25

Removing linker between CBD and lipase

This construct is made so that any linker of interest can be inserted between the CBD and the lipase in order to find an optimal linker.

30

An NheI site is introduced by the USE technique (Stratagene catalogue No. 200509) between the CBD and linker region in pIVI450, creating pIVI450+NheI site. pIVI450+NheI site is cut with XhoI and NheI, isolating the vector containing the

WO 97/28256 PCT/DK97/00041 ·

42

CBD part.

The plasmid pIVI392 is cut with XhoI and NheI, and the fragment containing the Lipolase™ gene (minus signal peptide encoding sequence) is isolated.

The DNA fragments are ligated, generating pIVI450 CBD-NheI site-LipolaseTM containing an NheI site between the CBD and the lipase gene. In this NheI site different linkers can be introduced.

Introduction of non-glycosylated linker

The protein expressed from the construct described here contains a construction of the type:

15 CBD-nonglycosylated linker-lipase.

The amino acid sequence of the linker is as follows:

NNNPQQGNPNQGGNNGGGNQGGGNGG

20

10

PCR is performed with the following primers:

#29315

5 GATCTAGCTAGCAACAATAACCCCCAGCAGGGCAACCCCAACCAGGGC

25 GGGAACAACGGC 3'

#29316

30

The PCR fragment is cut with NheI, the vector pIVI450 CBD-NheI-Lipolase™ is likewise cut with NheI, and the two fragments are ligated, creating: pIVI450 CBD-Nonglycosylated linker-Lipolase™ (SEQ ID No.

10).

Introduction of *H. insolens* family 45 cellulase linker

The protein expressed from the construct described here

contains a construction of the type:

CBD-glycosylated linker-lipase.

The amino acid sequence of the linker is as follows:

10 VQIPSSSTSSPVNQPTSTSTTSTSTTSSPPVQPTTPS

PCR is performed with the following primers:

#29313

15 5' GATACTGCTAGCGTCCAGATCCCCTCCAGC 3'

#29314

- 5' GATACTGCTAGCGCTGGGAGTCGTAGGCTG 3'
- The PCR fragment is cut with NheI, the vector pIVI450 CBD-NheI-Lipolase™ is likewise cut with NheI, and the two fragments are ligated, creating:

 pIVI450 CBD-H. insolens family 45 cellulase linker-Lipolase™
 (SEQ ID No. 11).

WO 97/28256 PCT/DK97/00041 -

44

SEQUENCE LISTING

(1) GENERAL INFORMATION: 5 (i) APPLICANT: (A) NAME: NOVO NORDISK A/S (B) STREET: Novo Alle (C) CITY: Bagsvaerd 10 (E) COUNTRY: Denmark (F) POSTAL CODE (ZIP): DK-2880 (G) TELEPHONE: +45 44 44 88 88 (H) TELEFAX: +45 44 49 32 56 15 (ii) TITLE OF INVENTION: PROCESS FOR REMOVAL OR BLEACHING OF SOILING OR STAINS FROM CELLULOSIC FABRIC (iii) NUMBER OF SEQUENCES: 6 20 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO) 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: 30 _____(A) LENGTH: 2253_base_pairs _____ (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: DNA (genomic)

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	ATGAAACAAC	AAAAACGGCT	TTACGCCCGA	TTGCTGACGC	TGTTATTTGC	GCTCATCTTC	60
	TTGCTGCCTC	ATTCTGCAGC	AGCGGCGGCA	AATCTTAATG	GGACGCTGAT	GCAGTATTTT	120
5	GAATGGTACA	TGCCCAATGA	CGGCCAACAT	TGGAAGCGTT	TGCAAAACGA	CTCGGCATAT	180
	TTGGCTGAAC	ACGGTATTAC	TGCCGTCTGG	ATTCCCCCGG	CATATAAGGG	AACGAGCCAA	240
10	GCGGATGTGG	GCTACGGTGC	TTACGACCTT	TATGATTTAG	GGGAGTTTCA	TCAAAAAGGG	300
	ACGGTTCGGA	CAAAGTACGG	CACAAAAGGA	GAGCTGCAAT	CTGCGATCAA	AAGTCTTCAT	360
	TCCCGCGACA	TTAACGTTTA	CGGGGATGTG	GTCATCAACC	ACAAAGGCGG	CGCTGATGCG	420
15	ACCGAAGATG	TAACCGCGGT	TGAAGTCGAT	CCCGCTGACC	GCAACCGCGT	AATCTCAGGA	480
	GAACACCTAA	TTAAAGCCTG	GACACATTTT	CATTTTCCGG	GGGCCGGCAG	CACATACAGC	540
20	GATTTTAAAT	GGCATTGGTA	CCATTTTGAC	GGAACCGATT	GGGACGAGTC	CCGAAAGCTG	600
	AACCGCATCT	ATAAGTTTCA	AGGAAAGGCT	TGGGATTGGG	AAGTTTCCAA	TGAAAACGGC	660
	AACTATGATT	ATTTGATGTA	TGCCGACATC	GATTATGACC	ATCCTGATGT	CGCAGCAGAA	720
25	ATTAAGAGAT	GGGGCACTTG	GTATGCCAAT	GAACTGCAAT	TGGACGGAAA	CCGTCTTGAT	780
	GCTGTCAAAC	ACATTAAATT	TTCTTTTTTG	CGGGATTGGG	TTAATCATGT	CAGGGAAAAA	840
30	ACGGGGAAGG	AAATGTTTAC	GGTAGCTGAA	TATTGGCAGA	ATGACTTGGG	CGCGCTGGAA	900
	AACTATTTGA	ACAAAACAAA	TITTAATCAT	TCAGTGTTTG	ACGTGCCGCT	TCATTATCAG	960
	TTCCATGCTG	CATCGACACA	GGGAGGCGGC	TATGATATGA	GGAAATTGCT	GAACGGTACG	1020
15	GTCGTTTCCA	AGCATCCGTT	GAAATCGGTT	ACATTTGTCG	ATAACCATGA	TACACAGCCG	1080
	GGGCAATCGC	TTGAGTCGAC	TGTCCAAACA	TGGTTTAAGC	CGCTTGCTTA	CGCTTTTATT	1140
0	CTCACAAGGG	AATCTGGATA	CCCTCAGGTT	TTCTACGGGG	ATATGTACGG	GACGAAAGGA	1200
	GACTCCCAGC	GCGAAATTCC	TGCCTTGAAA	CACAAAATTG	AACCGATCTT	AAAAGCGAGA	1260

	AAACAGTATG	CGTACGGAGC	ACAGCATGAT	TATTTCGACC	ACCATGACAT	TGTCGGCTGG	1320
5	ACAAGGGAAG	GCGACAGCTC	GGTTGCAAAT	TCAGGTTTGG	CGGCATTAAT	AACAGACGGA	1380
J	CCCGGTGGGG	CAAAGCGAAT	GTATGTCGGC	CGGCAAAACG	CCGGTGAGAC	ATGGCATGAC	1440
	ATTACCGGAA	ACCGTTCGGA	GCCGGTTGTC	ATCAATTCGG	AAGGCTGGGG	AGAGTTTCAC	1500
10	GTAAACGGCG	GATCCGTTTC	AATTTATGTT	CAAAGATCTG	GCGGACCTGG	AACGCCAAAT	1560
	AATGGCAGAG	GAATTGGTTA	TATTGAAAAT	GGTAATACCG	TAACTTACAG	CAATATAGAT	1620
15	TTTGGTAGTG	GTGCAACAGG	GTTCTCTGCA	ACTGTTGCAA	CGGAGGTTAA	TACCTCAATT	1680
	CAAATCCGTT	CTGACAGTCC	TACCGGAACT	CTACTTGGTA	CCTTATATGT	AAGTTCTACC	1740
	GGCAGCTGGA	ATACATATCA	ACCGTATCTA	CAAACATCAG	CAAAATTACC	GGCGTTCATG	1800
20	ATATTGTATT	GGTATTCTCA	GGTCCAGTCA	ATGTGGACAA	CTTCATATTT	AGCAGAAGTT	1860
	CACCAGTGCC	TGCACCTGGT	GATAACACAA	GAGACGCATA	TTCTATCATT	CAGGCCGAGG	1920
25	ATTATGACAG	CAGTTATGGT	CCCAACCTTC	AAATCTTTAG	CTTACCAGGT	GGTGGCAGCG	1980
	CTTGGCTATA	TTGAAAATGG	TTATTCCACT	ACCTATAAAA	ATATTGATTT	TGGTGACGGC	2040
	GCAACGTCCG	TAACAGCAAG	AGTAGCTACC	CAGAATGCTA	CTACCATTCA	GGTAAGATTG	2100
30	GGAAGTCCAT	CGGGTACATT	ACTTGGAACA	ATTTACGTGG	GGTCCACAGG	AAGCTTTGAT	2160
	ACTTATAGGG	ATGTATCCGC	TACCATTAGT	AATACTGCGG	GTGTAAAAGA	TATIGTICTT	2220
35	GTATTCTCAG	GTCCTGTTAA	TGTTGACTGG	TAG			2253

(2) INFORMATION FOR SEQ ID NO: 2:

40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 750 amino acids
- (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

WO 97/28256 PCT/DK97/00041

47

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 2:						
10	Met 1	Lys	Gln	Gln	Lys 5	Arg	Leu	туг	Ala	Arg	Leu	Leu	Thr	Leu	Leu 15	Phe
15	Ala	Leu	Ile	Phe 20	Leu	Leu	Pro	His	Ser 25	Ala	Ala	Ala	Ala	Ala 30	Asn	Leu
	Asn	Gly	Thr 35	Leu	Met	Gln	Tyr	Phe	Glu	Trp	Tyr	Met	Pro	Asn	Asp	Gly
20	Gln	His 50	Trp	Lys	Arg	Leu	Gln 55	Asn	Asp	Ser	Ala	Tyr 60	Leu	Ala	Glu	His
	Gly 65	Ile	Thr	Ala	Val	Trp 70	Ile	Pro	Pro	Ala	Туг 75	Lys	Gly	Thr	Ser	Gln 80
25	Ala	Asp	Val	Gly	Tyr 85	Gly	Ala	Tyr	Asp	Leu 90	Tyr	Asp	Leu	Gly	Glu 95	Phe
30	His	Gln	Lys	Gly 100	Thr	Val	Arg	Thr	Lys 105	Тут	Gly	Thr	Lys	Gly 110	Glu	Leu
	Gln	Ser	Ala 115	Ile	Lys	Ser	Leu	His 120	Ser	Arg	.Asp	Ile	Asn 125	-Val-	Tyr	Gly
35	Asp	Val 130	Val	Ile	Asn	His	Lys 135	Gly	Gly	Ala	Asp	Ala 140	Thr	Glu	Asp	Val
	Thr 145	Ala	Val	Glu	Val	Asp 150	Pro	Ala	Asp	Arg	Asn 155	Arg	Val	Ile	Ser	Gly 160
40	Glu	His	Leu	Ile	Lys 165	Ala	Trp	Thr	His	Phe 170	His	Phe	Pro	Gly	Ala 175	Gly

	Ser	Thr	Tyr	Ser 180	Asp	Phe	Lys	Trp	His 185	Trp	Tyr	His	Phe	Asp 190	Gly	Thr
5	Asp	Trp	Asp 195	Glu	Ser	Arg	Lys	Leu 200	Asn	Arg	Ile	Tyr	Lys 205	Phe	Gln	Gly
10	Lys	Ala 210	Trp	qaA	Trp	Glu	Val 215	Ser	Asn	Glu	Asn	Gly 220	Asn	Tyr	Asp	Tyr
	Leu 225	Met	Tyr	Ala	Asp	Ile 230	Asp	Tyr	Asp	His	Pro 235	Asp	Val	Ala	Ala	Glu 240
15	Ile	Lys	Arg	Trp	Gly 245	Thr	Trp	Tyr	Ala	Asn 250	Glu	Leu	Gln	Leu	Asp 255	Gly
	Asn	Arg	Leu	Asp 260	Ala	Val	Lys		11e 265	Lys	Phe	Ser	Phe	Leu 270	Arg	Asp
20	Trp	Val	Asn 275	His	Val	Arg	Glu	Lys 280	Thr	Gly	Lys	Glu	Met 285	Phe	Thr	Val
25	Ala	Glu 290	Tyr	Trp	Gln	Asn	As p 295	Leu	Gly	Ala	Leu	Glu 300	Asn	туг	Leu	Asn
	Lys 305	Thr	Asn	Phe	Asn	His 310	Ser	Val	Phe	Asp	Val 315	Pro	Leu	His	Tyr	Gln 320
30	Phe -	His 	Ala		Ser 325-		Gln	Gly	Gly	Gly	Tyr	Asp	Met	Arg	Lys 335	Leu
	Leu	Asn	Gly	Thr 340	Val	Val	Ser	Lys	His 345	Pro	Leu	Lys	Ser	Val 350	Thr	Phe
35	Val	Asp	Asn 355	His	Asp	Thr	Gln	Pro 360	Gly	Gln	Ser	Leu	Glu 365	Ser	Thr	Val
10		Thr 370	Trp	Phe	Lys	Pro	Leu 375	Ala	Tyr	Ala	Phe	Ile 380	Leu	Thr	Arg	Glu
	Ser	Gly	Tyr	Pro	Gln	Val	Phe	Tyr	Gly	Asp	Met	Tyr	Gly	Thr	Lys	Gly

	385					390					395	;				400
5	Asp	Ser	Gln	Arg	Glu 405	Ile	Pro	Ala	Leu	Lys 410		Lys	: Ile	: Glu	Pro 415	
	Leu	Lys	Ala	Arg 420	Lys	Gln	Tyr	Ala	Tyr 425		Ala	Gln	His	Asp 430		Phe
10	Asp	His	His 435		Ile	Val	Gly	Trp		Arg	Glu	Gly	Asp		Ser	Val
	Ala	Asn 450		Gly	Leu	Ala	Ala 455	Leu	Ile	Thr	Asp	G1y 430		Gly	Gly	Ala
15	Lys 465	Arg	Met	Tyr	Val	Gly 470	Arg	Gln	Asn	Ala	Gly 475	Glu	Thr	Trp	His	Asp
20	Ile	Thr	Gly	Asn	Arg 485	Ser	Glu	Pro	Val	Val 490	Ile	Asn	Ser	Glu	Gly 495	
	Gly	Glu	Phe	His 500	Val	Asn	Gly	Gly	Ser 505	Val	Ser	Ile	Tyr	Val 510	Gln	Arg
25	Ser	Gly	Gly 515	Pro	Gly	Thr	Pro	Asn 520	Asn	Gly	Arg	Gly	Ile 525	Gly	Tyr	Ile
	Glu	A sn 530	Gly	Asn	Thr	Val	Thr 535	Tyr	Ser	Asn	Ile	Asp 540	Phe	Gly	Ser	Gly
30 	Ala 545	Thr	Gly	Phe	Ser	Ala 550		Val	Ala	Thr	Glu 555	Val	Asn	Thr	Ser	Ile
35	Gln	Ile	Arg	Ser	Asp 565	Ser	Pro	Thr		Thr 570	Leu	Leu	Gly	Thr	Leu 575	
	Val	Ser	Ser	Thr 580	Gly	Ser	Trp	Asn	Thr 585	Tyr	Gln	Pro	Tyr	Leu 590	Gln	Thr
10	Ser	Ala	Lys 595	Leu	Pro	Ala	Phe	Met 600	Ile	Leu	Tyr	Trp	Tyr 605	Ser	Gln	Val

PCT/DK97/00041 -

50

•																
	Gln	Ser 610	Met	Trp	Thr	Thr	Ser 615	Tyr	Leu	Ala	Glu	Val 620	His	Gln	Cys	Leu
5	His 625	Leu	Val	Ile	.Thr	Gln 630	Glu	Thr	His	Ile	Leu 635	Ser	Phe	Arg	Pro	Arg 640
	Ile	Met	Thr	Ala	Val 645	Met	Val	Pro	Thr	Phe 650	Lys	Ser	Leu	Ala	Tyr 655	Gln
10	^j val	Val	Ala	Ala 660	Leu	Gly	Tyr	Ile	Glu 665	Asn	Gly	Tyr	Ser	Thr 670	Thr	Tyr
15	Lys	Asn	Ile 675	Asp	Phe	Gly	Asp	Gly 680	Ala	Thr	Ser	Val	Thr 685	Ala	Arg	Val
13	Ala	Thr 690	Gln	Asn	Ala	Thr	Thr 695	Ile	Gln	Val	Arg	Leu 700	Gly	ser	Pro	Ser
20	Gly 705	Thr	Leu	Leu	Gly	Thr 710	Ile	Tyr	Val	Gly	Ser 715	Thr	Gly	Ser	Phe	Asp 720
	Thr	Tyr	Arg	Asp	Val 725	Ser	Ala	Thr	Ile	Ser 730	Asn	Thr	Ala	Gly	Val 735	Lys
25	qeA	Ile	Val	Leu 740	Val	Phe	Ser	Gly	Pro 745	Val	Asn	Val	Asp	Trp 750		
(2)	INFO	RMAT	ION :	FOR a	SEQ :	ID N	0: 3	:								
30	- (I)	(A) (B) (C)	UENC:) LE	NGTH PE: 1 RAND	: 120 nuclo EDNE:	03 b eic d SS: :	ase pacid	pair	S							
35																
	(ii)	MOL	ECUL	E TY	PE: 1	DNA	(gen	omic)							

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

	ATGAAAAAGA	TAACTACTAT	TTTTGTCGTA	TTGCTTATGA	CAGTGGCGTT	GTTCAGTATA	6
5	GGAAACACGA	CTGCTGCTGA	TAATGATTCA	GTTGTAGAAG	AACATGGGCA	ATTAAGTATT	12
	AGTAACGGTG	AATTAGTCAA	TGAACGAGGC	GAACAAGTTC	AGTTAAAAGG	GATGAGTTCC	18
	CATGGTTTGC	AATGGTACGG	TCAATTTGTA	AACTATGAAA	GTATGAAATG	GCTAAGAGAT	24
10	GATTGGGGAA	TAAATGTATT	CCGAGCAGCA	ATGTATACCT	CTTCAGGAGG	ATATATTGAT	300
	GATCCATCAG	TAAAGGAAAA	AGTAAAAGAG	GCTGTTGAAG	CTGCGATAGA	CCTTGATATA	36
15	TATGTGATCA	TTGATTGGCA	TATCCTTTCA	GACAATGACC	CAAATATATA	TAAAGAAGAA	420
	GCGAAGGATT	TCTTTGATGA	AATGTCAGAG	TTGTATGGAG	ACTATCCGAA	TGTGATATAC	48
	GAAATTGCAA	ATGAACCGAA	TGGTAGTGAT	GTTACGTGGG	GCAATCAAAT	AAAACCGTAT	54
20	GCAGAGGAAG	TCATTCCGAT	TATTCGTAAC	AATGACCCTA	ATAACATTAT	TATTGTAGGT	600
	ACAGGTACAT	GGAGTCAGGA	TGTCCATCAT	GCAGCTGATA	ATCAGCTTGC	AGATCCTAAC	660
25	GTCATGTATG	CATTTCATTT	TTATGCAGGG	ACACATGGTC	AAAATTTACG	AGACCAAGTA	720
	GATTATGCAT	TAGATCAAGG	AGCAGCGATA	TTTGTTAGTG	AATGGGGAAC	AAGTGCAGCT	780
	ACAGGTGATG	GTGGCGTGTT	TTTAGATGAA	GCACAAGTGT	GGATTGACTT	TATGGATGAA	840
30	AGAAATTTAA	GCTGGGCCAA	CTGGTCTCTA	ACGCATAAAG	ATGAGTCATC	TGCAGCGTTA	900
	ATGCCAGGTG	CAAATCCAAC	TGGTGGTTGG	ACAGAGGCTG	AACTATCTCC	ATCTGGTACA	960
35	TTTGTGAGGG	AAAAAATAAG	AGAATCAGCA	TCTATTCCGC	CAAGCGATCC	AACACCGCCA	1020
	TCTGATCCAG	GAGAACCGGA	TCCAACGCCC	CCAAGTGATC	CAGGAGAGTA	TCCAGCATGG	1080
	GATCCAAATC	AAATTTACAC	AAATGAAATT	GTGȚACCATA	ACGGCCAGCT	ATGGCAAGCA	1140
0	AAATGGTGGA	CACAAAATCA	AGAGCCAGGT	GACCCGTACG	GTCCGTGGGA	ACCACTCA AT	1200

	IAA																	1203
	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	TO : 4	1:									
5		(i)	(A	L) LE	E CH INGTH IPE:	: 40 amin	o an	nino cid	ació	ìs								
10			(E) TO	POLO	GY:	line	ar										
		(ii)	MOL	ECUL	E TY	PE:	prot	ein										
				•														
15		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 4:							
20		Met 1	Lys	Lys	Ile	Thr 5	Thr	Ile	Phe	Val	Val	Leu	Leu	Met	Thr	Val 15	Ala	
	-	Leu	Phe	Ser	Ile 20	Gly	Asn	Thr	Thr	Ala 25	Ala	Asp	Asn	Asp	Ser 30	Val	Val	
25		Glu	Glu	His 35	Gly	Gln	Leu	Ser	Ile 40	Ser	Asn	Gly	Glu	Leu 45	Val	Asn	Glu	
		Arg	Gly 50	Glu	Gln	Val	Gln	Leu 55	Lys	Gly	Met	Ser	Ser 60	His	Gly	Leu	Gln	
30		Trp	Tyr	Gly	Gln	Phe	Val	Asn	Tyr	Glu	Ser	Met	Lys	Trp	Leu	Arg	Asp	
		03					. 7:0			_		75					80	
35		Asp	Trp	Gly	Ile	Asn 85	Val	Phe	Arg	Ala	Ala 90	Met	Tyr	Thr	Ser	Ser 95	Gly	
		Gly	Tyr	Ile	Asp 100	Asp	Pro	Ser	Val	Lys 105	Glu	Lys	Val	Lys	Glu 110	Ala	Val	
40		Glu	Aļa	Ala 115	Ile	Asp	Leu	Asp	Ile	Tyr	Val	Ile		Asp	Trp	His	Ile	

. 120

	Leu	Ser 130		Asn	Asp	Pro	Asn 135		e Tyr	Lys	Glu	Glu 140		Lys	as,	Phe
5	Phe 145		Glu	Met	Ser	Glu 150		Туз	Gly	/ Asp	155		Asn	Val	Ile	160
	Glu	Ile	Ala	Asn	Glu 165	Pro	Asn	Gly	/ Ser	170		Thr	Trp	Gly	Asn 175	
10	Ile	Lys	Pro	Tyr 180		Glu	Glu	Val	. Ile 185		Ile	Ile	Arg	Asn 190		Asp
15	Pro	Asn	Asn 195	Ile	Ile	Ile	Val	Gly 200		Gly	Thr	Trp	Ser 205		Asp	Val
	His	His 210	Ala	Ala	Asp	Asn	Gln 215	Leu	Ala	Asp	Pro	Asn 220	Val	Met	Tyr	Ala
20	Phe 225	His	Phe	Tyr	Ala	Gly 230	Thr	His	Gly	Gln	Asn 235	Leu	Arg	Asp	Gln	Val 240
	Asp	Tyr	Ala	Leu	Asp 245	Gln	Gly	Ala	Ala	Ile 250	Phe	Val	Ser	Glu	Trp 255	Gly
25	Thr	Ser	Ala	Ala 260	Thr	Gly	Asp	Gly	Gly 265	Val	Phe	Leu	Asp	Glu 270	Ala	Gln
30	Val	Trp	Ile 275	Asp	Phe	Met	Asp	Glu 2 8 0	Arg	Asn	Leu	Ser	Trp 285	Ala	Asn	Trp
- ,	Ser	Leu 290	Thr	His	Lys	Asp	Glu 295	Ser	Ser	Ala	Ala	Leu 300	Met	Pro	Gly	Ala
35	Asn 305	Pro	Thr	Gly	Gly	Trp 310	Thr	Glu	Ala	Glu	Leu 315	Ser	Pro	Ser	Gly	Thr 320
	Phe	Val	Arg	Glu	Lys 325	Ile	Arg	Glu	Ser	Ala 330	Ser	Ile	Pro	Pro	Ser 335	Asp
10	Pro-	Thr	Pro	Pro 340	Ser	Asp	Pro	Gly	Glu 345	Pro	Asp	Pro	Thr	Pro 350	Pro	Ser

	Asp	Pro	Gly 355	Glu	туr	Pro	Ala	Trp. 360	Asp	Pro	Asn	Gln	Ile 365	Tyr	Thr	Asn	
5	Glu	Ile 370	Val	Tyr	His	Asn	Gly 375	Gln	Leu	Trp	Gln	Ala 380	Lys	Trp	Trp	Thr	
10	Gln 385	Asn	Gln	Glu	Pro	Gly 390	Asp	Pro	туг	Gly	Pro 395	Trp	Glu	Pro	Leu	Asn 400	
	(2) INFO	RMAT:	ION 1	FOR S	SEQ :	ID NO): 5	:									
15	(i)	(A (B (C) LEI) TYI) STI	E CHI NGTH PE: 1 RANDI POLOG	: 160 nuclo EDNE:	83 ba eic a SS: :	ase pacid	pair	S								
20	(ii)	MOL	ECUL	E TY	PE: 1	ONA	(gen	omic)								
25	(xi)	SEQ	UENC:	E DE:	SCRI	PTIO	N: S	EQ II	D NO	: 5:							
	ATGAAACA	AC A	AAAA	CGGC'	T TT	ACGC	CCGA	TTG	CTGA	cgc '	TGTT	ATTT(GC G	CTCA'	CTT	С	60
30	TTGCTGCC	TC A	TTCT	GCAG	C AG	CGGC	GGCA	AAT	CTTAI	ATG (GGAC	GCTG	AT G	CAGT	ATTT	T	120
	GAATGGTA	CA T	GCCC.	aatg:	A-CG	GCCA	ACAT	-TGG	AAGC	3TT-	TGCA	AAAC	GA -C	rcgg(CATA	T	180
	TTGGCTGA	AC A	CGGT.	ATTA	C TG	CCGT	CTGG	ATT	cccc	CGG (CATA'	TAAG	GG A	ACGA	GCCA	A	240
35	GCGGATGT	GG G	CTAC	GGTG	C TT	ACGA	CCTT	TAT	GATT	rag (GGGA	GT TT (CA T	CAAA	AAGG	G	300
	ACGGTTCG	GA C	aaag	TACG	G CA	CAAA	AGGA	GAG	CTGC	AAT (CTGC	GATC	AA A	AGTC:	ITCA'	T	360
40	TCCCGCGA	CA T	TAAC	GTTT	A CG	GGGA'	igtg	GTC	ATCAI	ACC 2	ACAA	AGGC	GG C	GCTG	ATGC	G	420
40	ACCGAAGA	ጥር ጥ	אאררי	ברכבי	יביאים יו	ስ አርመሳ	יים אניטי	ccc	د ملاحد د	\CC	י א אייב		~m + ·	h mare	33.00	_	400

	GAACACCTAA	TTAAAGCCTG	GACACATTTT	CATTTTCCGG	GGGCCGGCAG	CACATACAGC	540
5	GATTTTAAAT	GGCATTGGTA	CCATTTTGAC	GGAACCGATT	GGGACGAGTC	CCGAAAGCTG	600
,	AACCGCATCT	ATAAGTTTCA	AGGAAAGGCT	TGGGATTGGG	AAGTTTCCAA	TGAAAACGGC	660
	AACTATGATT	ATTTGATGTA	TGCCGACATC	GATTATGACC	ATCCTGATGT	CGCAGCAGAA	720
10	ATTAAGAGAT	GGGGCACTTG	GTATGCCAAT	GAACTGCAAT	TGGACGGAAA	CCGTCTTGAT	780
	GCTGTCAAAC	ACATTAAATT	TTCTTTTTTG	CGGGATTGGG	TTAATCATGT	CAGGGAAAAA	840
15	ACGGGGAAGG	AAATGTTTAC	GGTAGCTGAA	TATTGGCAGA	ATGACTTGGG	CGCGCTGGAA	900
	AACTATTTGA	ACAAAACAAA	TTTTAATCAT	TCAGTGTTTG	ACGTGCCGCT	TCATTATCAG	960
	TTCCATGCTG	CATCGACACA	GGGAGGCGGC	TATGATATGA	GGAAATTGCT	GAACGGTACG	1020
20	GTCGTTTCCA	AGCATCCGTT	GAAATCGGTT	ACATTTGTCG	ATAACCATGA	TACACAGCCG	1080
	GGGCAATCGC	TTGAGTCGAC	TGTCCAAACA	TGGTTTAAGC	CGCTTGCTTA	CGCTTTTATT	1140
25	CTCACAAGGG	AATCTGGATA	CCCTCAGGTT	TTCTACGGGG	ATATGTACGG	GACCHAAGGA	1200
	GACTCCCAGC	GCGAAATTCC	TGCCTTGAAA	CACAAAATTG	AACCGATCTT	AAAGCGAGA	1260
	AAACAGTATG	CGTACGGAGC	ACAGCATGAT	TATTTCGACC	ACCATGACAT	TGTCGGCTGG	1320
30	ACAAGGGAAG	GCGACAGCTC	GGTTGCAAAT	TCAGGTTTGG	CGGCATTAAT	AACAGACGGA	1380
-	CCCGGTGGGG	-CAAAGCGAAT	GTATGTCGGC	CGGCAAAACG	CCGGTGAGAC	ATGGCATGAC	1440
35	ATTACCGGAA	ACCGTTCGGA	GCCGGTTGTC	ATCAATTCGG	AAGGCTGGGG	AGAGTTTCAC	1500
	GTAAACGGCG	GATCCGTTTC	AATTTATGTT	CAAAGATCTC	CTGGAGAGTA	TCCAGCATGG	1560
	GATCCAAATC	AAATTTACAC	AAATGAAATT	GTGTACCATA	ACGGCCAGCT	ATGGCAAGCA	1620
40	aaatggtgga	CACAAAATCA	AGAGCCAGGT	GACCCGTACG	GTCCGTGGGA	ACCACTCAAT	1680

	TAA																
	(2)	INFO	RMAT	MOI	FOR	SEQ	ID N	10 : <i>6</i>	5 :								
10			(A (E (C (D	QUENC (1) LE (3) TY (3) ST (3) TO (4) LECUL	ngth PE: RAND POLO	: 56 amin EDNE	iO am io ac ISS: line	ino id sing	acid	ls							
15		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 6:						
20		Met 1	Lys	Gln	Gln	Lys 5	Arg	Leu	Tyr	Ala	Arg 10	Leu	Leu	Thr	Leu	Leu 15	Phe
		Ala	Leu	Ile	Phe 20	Leu	Leu	Pro	His	Ser 25	Ala	Ala	Ala	Ala	Ala 30	Asn	Leu
25		Asn	Gly	Thr 35	Leu	Met	Gln	Tyr	Phe 40	Glu	Trp	Tyr	Met	Pro 45	Asn	Asp	Gly
		Gln	His 50	Trp	Lys	Arg	Leu	Gln 55	Asn	Asp	Ser	Ala	Tyr 60	Leu	Ala	Glu	His
30		Gly 65	Ile -	Thr	Ala		Trp 70	Ile	Pro	Pro	Ala	Ту <u>г</u> 75	Lys	Gly	Thr	Ser	Gln 80
35		Ala	Asp	Val	Gly	Tyr 85	Gly	Ala	Tyr	Asp	Leu 90	Tyr	Asp	Leu	Gly	Glu 95	Phe
		His	Gln	Lys	Gly 100	Thr	Val	Arg	Thr	Lys 105	Tyr	Gly	Thr	Lys	Gly 110	Glu	Leu
40		Gln	Ser	Ala 115	Ile	Lys	Ser	Leu	His 120	Ser	Arg	Asp	Ile	Asn 125	Val	Tyr	Gly

	Asp	Val 130	Val	Ile	Asn	His	Lys 135	Gly	Gly	Ala	Asp	Ala 140	Thr	Glu	Asp	Val
5	Thr 145	Ala	Val	Glu	Val	Asp 150	Pro	Ala	Asp	Arg	Asn 155	Arg	Val	Ile	Ser	Gly 160
	Glu	His	Leu	Ile	Lys 165	Ala	Trp	Thr	His	Phe 170	His	Phe	Pro	Gly	Ala 175	Gly
10	Ser	Thr	Tyr	Ser 180	Asp	Phe	Lys	Trp	His 185	Trp	Tyr	His	Phe	Asp 190	Gly	Thr
15	Ąsp	Trp	Asp 195	Glu	Ser	Arg	Lys	Leu 200	Asn	Arg	Ile	Tyr	Lys 205	Phe	Gln	Gly
	Lys	Ala 210	Trp	qeA	Trp	Glu	Val 215	Ser	Asn	Glu	Asn	Gly 220	Asn	Tyr	Asp	Tyr
20	Leu 225	Met	Tyr	Ala	Asp	Ile 230	Asp	Tyr	Asp	His	Pro 235	Asp	Val	Ala	Ala	Glu 240
	Ile	ГЛЗ	Arg	Trp	Gly 245	Thr	Trp	Tyr	Ala	Asn 250	Glu	Leu	Gln	Leu	Asp 255	Gly
25	Asn	Arg	Leu	Asp 260	Ala	Val	Lys	His	Ile 265	Lys	Phe	Ser	Phe	Leu 270	Arg	Asp
30	Trp	Val	Asn 275	His	Val	Arg	Glu	Lys 280	Thr	Gly	Lys	Glu	Met 285	Phe	Thr	Val
	Ala	Glu 290	Tyr	Trp	Gln	Asn	Asp 295	Leu	-Gly-	Ala	Leu	Glu 300	-Asn	Tyr	-Leu	-Asn-
35	Lys 305	Thr	Asn	Phe	Asn	His 310	Ser	Val	Phe	Asp	Val 315	Pro	Leu	His	Tyr	Gln 320
	Phe	His	Ala	Ala	Ser 325	Thr	Gln	Gly	Gly	Gly 330	Tyr	Asp	Met	Arg	Lys 335	Leu
40	Leu	Asn	Gly	Thr 340	Val	Val	Ser _,	Lys	His	Pro	Leu	Lys	Ser	Val 350	Thr	Phe

	Val	Asp	Asn 355	His	Asp	Thr	Gln	Pro 360	Gly	Gln	Ser	Leu	Glu 365	Ser	Thr	Val
5	Gln	Thr 370	Trp	Phe	Lys	Pro	Leu 375	Ala	туг	Ala	Phe	Ile 380	Leu	Thr	Arg	Glu
10	Ser 385	Gly	Tyr	Pro	Gln	Val 390	Phe	туг	Gly	Asp	Met 395	Tyr	Gly	Thr	Lys	Gly 400
	Asp	Ser	Gln	Arg	Glu 405	Ile	Pro	Ala	Leu	Lys 410	His	Lys	Ile	Glu	Pro 415	Ile
15	Leu	Lys	Ala	Arg 420	Lys	Gln	Tyr	Ala	Tyr 425	Gly	Ala	Gln	His	Asp 430	Туr	Phe
	Asp	His	His 435	Asp	Ile	Val	Gly	Trp 440	Thr	Arg	Glu	Gly	Asp 445	Ser	Ser	Val
20	Ala	Asn 450	Ser	Gly	Leu	Ala	Ala 455	Leu	Ile	Thr	Asp	Gly 4 60	Pro	Gly	Gly	Ala
25	Lys 465	Arg	Met	Tyr	Val	Gly 470	Arg	Gln	Asn	Ala	Gly 475	Glu	Thr	Trp	His	Asp
	Ile	Thr	Gl y	Asn	Arg 485	Ser	Glu	Pro	Val	Val 490	Ile	Asn	Ser	Glu	Gly 495	Trp
3.0	Gly	51u	Phe	His 500	Val 	Asn 	Gly	Gly	Ser 505	Val 	Ser 	Ile	Tyr	Val 510	Gln	Arg
	Ser	Pro	Gly 515	Glu	Tyr	Pro	Ala	Trp 520	Asp	Pro	Asn	Gln	Ile 525	Tyr	Thr	Asn
35	Glu	Ile 530	Val	Tyr	His	Asn	Gly 535	Gln	Leu	Trp	Gln	Ala 540	Lys	Trp	Trp	Thr
40	Gln 545	Asn	Gln	Glu	Pro	Gly 550	Asp	Pro	Tyr	Gly	Pro 555	Trp	Glu	Pro		Asn 560

SEQ ID No. 7:

•
ATGAAACAACAAAAACGGCTTTACGCCCGATTGCTGACGCTGTTATTTGCGCTCATCTTCT
TGCTGCCTCATTCTGCAGC
AGCGGCGGCAAATCTTAATgctcccggctgccgcgtcgactacgccgtcaccaaccagtgg
cccggcggcttcggcgcca
acgtcacgatcaccaacctcggcgaccccgtctcgtcgtggaagctcgactggacctacac
cgcaggccagcggatccag
cagctgtggaacggcaccgcgtcgaccaacggcggccaggtctccgtcaccagcctgccct
ggaacggcagcatcccgac
cggcggcacggcgtcgttcgggttcaacggctcgtgggccgggtccaacccgacgccggcg
tcgttctcgctcaacggca
ccacgtgcactggtacagttcctacaactagtcctacacgtGCAAATCTTAATGGGACGCT
GATGCAGTATTTTGAATGG
TACATGCCCAATGACGGCCAACATTGGAGGCGTTTGCAAAACGACTCGGCATATTTGGCTC
AACACGGTATTACTGCCGT
CTGGATTCCCCCGGCATATAAGGGAACGAGCCAAGCGGATGTGGGCTACGGTGCTTACGAC
CTTTATGATTTAGGGGAGT
TTCATCAAAAAGGGACGGTTCGGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGAT
CAAAAGTCTTCATTCCCGC
GACATTAACGTTTACGGGGATGTGGTCATCAACCACAAAGGCGGCGCTGATGCGACCGAAC
ATGTAACCGCGGTTGAAGT
CGATCCCGCTGACCGCGTAATTTCAGGAGAACACCTAATTAAAGCCTGGACACAT
TTTCATTTTCCGGGGCGCG
GCAGCACATACAGCGATTTTAAATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGA
GTCCCGAAAGCTGAACCGC
ATCTATAAGTTTCAAGGAAAGGCTTGGGATTGGGAAGTTTCCAATGAAAACGGCAACTATC
ATTATTTGATGTATGCCGA
CATCGATTATGACCATCCTGATGTCGCAGCAGAAATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACG
GTTTCCGTCTTGATGCTGTCAAACACATTAAATTTTCTTTTTTTGCGGGATTGGGTTAATCI TGTCAGGGAAAAAACGGGG
AAGGAAATGTTTACGGTAGCTGAATATTGGCAGAATGACTTGGGCGCGCTGGAAAACTATT TGAACAAAACAA
TCATTCAGTGTTTGACGTGCCGCTTCATTATCAGTTCCATGCTGCATCGACACAGGGAGG
GGCTATGATATGAGGAAAT
TGCTGAACGGTACGGTCGTTTCCAAGCATCCGTTGAAATCGGTTACATTTGTCGATAACCA
TGATACAGCCGGGGCAA
TEGETTGAGTCGACTGTCCAAACATGGTTTAAGCCGCTTGCTTACGCTTTTATTCTCACAA
GGGAATCTGGATACCTCA
GGTTTTCTACGGGGATATGTACGGGACGAAAGGAGACTCCCAGCGCGAAATTCCTGCCTTC
AAACACAAAATTGAACCGA
TCTTAAAAGCGAGAAAACAGTATGCGTACGGAGCACAGCATGATTATTTCGACCACCATGA
CATTGTCGGCTGGACAAGG
GAAGGCGACAGCTCGGTTGCAAATTCAGGTTTGGCGGCATTAATAACAGACGGACCCGGTC
GGGCAAAGCGAATGTATGT
CCCCCCA A A CCCCCCCCA CA CA TCCCA TCA CA TTA CCCCA A A CCCTTTA CCCCA

GGGGAGAGTTTCACGTAAACGGCGGGTCGGTTTCAATTTATGTTCAAAGATAG

GTCATCAATTCGGAAGGCT

- 5 SEQ ID No. 8:
 - MKQQKRLYARLLTLLFALIFLLPHSAAAAanlnapgcrvdyavtnqwpggfganvtitnlg dpvsswkldwtytagqriq qlwngtastnggqvsvtslpwngsiptggtasfgfngswagsnptpasfslngttctgtvp
- 10 ttsptranlngtlmqyfew
 YMPNDGQHWRRLQNDSAYLAEHGITAVWIPPAYKGTSQADVGYGAYDLYDLGEFHQKGTVR
 TKYGTKGELQSAIKSLHSR
 DINVYGDVVINHKGGADATEDVTAVEVDPADRNRVISGEHLIKAWTHFHFPGRGSTYSDFK
 WHWYHFDGTDWDESRKLNR
- 15 IYKFQGKAWDWEVSNENGNYDYLMYADIDYDHPDVAAEIKRWGTWYANELQLDGFRLDAVK HIKFSFLRDWVNHVREKTG KEMFTVAEYWQNDLGALENYLNKTNFNHSVFDVPLHYQFHAASTQGGGYDMRKLLNGTVVS KHPLKSVTFVDNHDTQPGQ SLESTVQTWFKPLAYAFILTRESGYPQVFYGDMYGTKGDSQREIPALKHKIEPILKARKQY
- 20 AYGAQHDYFDHHDIVGWTR EGDSSVANSGLAALITDGPGGAKRMYVGRQNAGETWHDITGNRSEPVVINSEGWGEFHVNG GSVSIYVQRZ

SEQ ID No. 9:

GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCA CTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGT GAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTGCATGC CTGCAGGTCGACGCATTCCGAATACGAGGCCTGATTAATGATTACATACGCCTCCGGGTAG TAGACCGAGCAGCCGAGCCAGTTCAGCGCCTAAAACGCCTTATACAATTAAGCAGTTAAAG AAGTTAGAATCTACGCTTAAAAAGCTACTTAAAAATCGATCTCGCAGTCCCGATTCGCCTA TCAAAACCAGTTTAAATCAACTGATTAAAGGTGCCGAACGAGCTATAAATGATATAACAAT 10 ATTAAAGCATTAATTAGAGCAATATCAGGCCGCGCACGAAAGGCAACTTAAAAAGCGAAAG CGCTCTACTAAACAGATTACTTTTGAAAAAGGCACATCAGTATTTAAAGCCCGAATCCTTA TTAAGCGCCGAAATCAGGCAGATAAAGCCATACAGGCAGATAGACCTCTACCTATTAAATC GGCTTCTAGGCGCGCTCCATCTAAATGTTCTGGCTGTGGTGTACAGGGGCATAAAATTACG CACTACCCGAATCGATAGAACTACTCATTTTTATATAGAAGTCAGAATTCATAGTGTTTTG 15 ATCATTTTAAATTTTTATATGGCGGGTGGTGGGCAACTCGCTTGCGCGGGCAACTCGCTTA CCGATTACGTTAGGGCTGATATTTACGTGAAAATCGTCAAGGGATGCAAGACCAAAGTAGT AAAACCCCGGAAGTCAACAGCATCCAAGCCCAAGTCCTTCACGGAGAAACCCCAGCGTCCA CATCACGAGCGAAGGACCACCTCTAGGCATCGGACGCACCATCCAATTAGAAGCAGCAAAG 20 CGAAACAGCCCAAGAAAAAGGTCGGCCCGTCGGCCTTTTCTGCAACGCTGATCACGGGCAG CGATCCAACCAACACCCTCCAGAGTGACTAGGGGCGGAAATTTAAAGGGATTAATTTCCAC TCAACCACAAATCACAGTCGTCCCCGGTATTGTCCTGCAGAATGCAATTTAAACTCTTCTG CGAATCGCTTGGATTCCCCGCCCCTAGTCGTAGAGCTTAAAGTATGTCCCTTGTCGATGCG ATGATACACAACATATAAATACTAGCAAGGGATGCCATGCTTGGAGGATAGCAACCGACAA 25 CATCACATCAAGCTCTCCCTTCTCTGAACAATAAACCCCACAGGGGGGATCCACTAGTAAC GGCCGCCAGTGTGCTGGAAAGCGACTTGAAACGCCCCAAATGAAGTCCTCCATCCTCGCCA GCGTCTTCGCCACGGGCGCCGTGGCTCAAAGTGGTCCGTGGCAGCAATGTGGTGGCATCGG ATGGCAAGGATCGACCGACTGTGTGTCGGGCTACCACTGCGTCTACCAGAACGATTGGTAC AGCCAGTGCGTGCCTGGCGCGTCGACAACGCTGCAGACATCGACCACGTCCAGGCCCA 30 CCGCCACCAGCACCGCCCTCCGTCGTCCACCACCTCGCCTAGCGTGGCCAGTCCTATTCG TCGAGAGGTCTCGCAGGATCTGTTTAACCAGTTCAATCTCTTTGCACAGTATTCTGCAGCC GCATACTGCGGAAAAACAATGATGCCCCAGCTGGTACAAACATTACGTGCACGGGAAATG CCTGCCCCGAGGTAGAAAGGCGGATGCAACGTTTCTCTACTCGTTTGAAGACTCTGGAGT GGGCGATGTCACCGGCTTCCTTGCTCTCGACAACACGAACAAATTGATCGTCCTCTCTTTC CGTGGCTCTCGTTCCATAGAGAACTGGATCGGGAATCTTAAGTTCCTCTTGAAAAAAATAA 35 ATGACATTTGCTCCGGCTGCAGGGGACATGACGGCTTCACTTCGTCCTGGAGGTCTGTAGC CGATACGTTAAGGCAGAAGGTGGAGGATGCTGTGAGGGAGCATCCCGACTATCGCGTGGTG TTTACCGGACATAGCTTGGGTGGTGCATTGGCAACTGTTGCCGGAGCAGACCTGCGTGGAA ATGGGTATGATATCGACGTGTTTTCATATGGCGCCCCCCGAGTCGGAAACAGGGCTTTTGC 40 AGAATTCCTGACCGTACAGACCGGGGAACACTCTACCGCATTACCCACACCAATGATATT GTCCCTAGACTCCCGCCGCGCGAATTCGGTTACAGCCATTCTAGCCCAGAATACTGGATCA AATCTGGAACCCTTGTCCCCGTCACCCGAAACGATATCGTGAAGATAGAAGGCATCGATGC CACCGGCGCAATAACCGGCCGAACATTCCGGATATCCCTGCGCACCTATGGTACTTCGGG TTAATTGGGACATGTCTTTAGTGGCCGGCGGCGGGTCGACTCTAGCGAGCTCGAGATC 45 TAGAGGGTGACTGACACCTGGCGGTAGACAATCAATCCATTTCGCTATAGTTAAAGGATGG GGATGAGGGCAATTGGTTATATGATCATGTATGTAGTGGGTGTGCATAATAGTAGTGAAAT GGAAGCCAAGTCATGTGATTGTAATCGACCGACGGAATTGAGGATATCCGGAAATACAGAC TGTCATTCAATGCATAGCCATGAGCTCATCTTAGATCCAAGCACGTAATTCCATAGCCGAG 50 GTCCACAGTGGAGCAGCAACATTCCCCATCATTGCTTTCCCCAGGGGCCTCCCAACGACTA

AATCAAGAGTATATCTCTACCGTCCAATAGATCGTCTTCGCTTCAAAATCTTTGACAATTC CAAGAGGGTCCCCATCCATCAAACCCAGTTCAATAATAGCCGAGATGCATGGTGGAGTCAA TTAGGCAGTATTGCTGGAATGTCGGGCCAGTTGGCCCGGGTGGTCATTGGCCGCCTGTGAT GCCATCTGCCACTAAATCCGATCATTGATCCACCGCCCACGAGGCGCGTCTTTGCTTTTTG CGCGGCGTCCAGGTTCAACTCTCTCGCTCTAGATATCGATGAATTCACTGGCCGTCGTTTT ACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCC CCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGC GCAGCCTGAATGGCGAATGGCGCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTAT TTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAG CCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGCATCCG 10 CTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATC ACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATG ATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTA TTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATA **AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTT** 15 ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAG TAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAG CGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAA GTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCC GCATACACTATTCTCAGAATGACTTGGTTGACGCGTCACCAGTCACAGAAAAGCATCTTAC 20 GGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCG GCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACA CGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACT 25 AGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCC CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATA 30 TTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACC GCAAACAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACT CTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGT AGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCT 35 AATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCA AGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGC CCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAG CGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACA 40 GGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTCGCCCAC 45 AGAGAG

SEQ ID No. 10:

50 GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC

GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCA CTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGT GAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTGCATGC CTGCAGGTCGACGCATTCCGAATACGAGGCCTGATTAATGATTACATACGCCTCCGGGTAG TAGACCGAGCGAGCCAGTTCAGCGCCTAAAACGCCTTATACAATTAAGCAGTTAAAG 5 AAGTTAGAATCTACGCTTAAAAAGCTACTTAAAAATCGATCTCGCAGTCCCGATTCGCCTA TCAAAACCAGTTTAAATCAACTGATTAAAGGTGCCGAACGAGCTATAAATGATATAACAAT ATTAAAGCATTAATTAGAGCAATATCAGGCCGCGCACGAAAGGCAACTTAAAAAGCGAAAG CGCTCTACTAAACAGATTACTTTTGAAAAAGGCACATCAGTATTTAAAGCCCGAATCCTTA TTAAGCGCCGAAATCAGGCAGATAAAGCCATACAGGCAGATAGACCTCTACCTATTAAATC 10 GGCTTCTAGGCGCGCTCCATCTAAATGTTCTGGCTGTGGTGTACAGGGGCATAAAATTACG CACTACCCGAATCGATAGAACTACTCATTTTTATATAGAAGTCAGAATTCATAGTGTTTTG ATCATTTTAAATTTTTATATGGCGGGTGGTGGGCAACTCGCTTGCGCGGGCAACTCGCTTA CCGATTACGTTAGGGCTGATATTTACGTGAAAATCGTCAAGGGATGCAAGACCAAAGTAGT 15 AAAACCCCGGAAGTCAACAGCATCCAAGCCCAAGTCCTTCACGGAGAAACCCCAGCGTCCA CATCACGAGCGAAGGACCACCTCTAGGCATCGGACGCACCATCCAATTAGAAGCAGCAAAG CGAAACAGCCCAAGAAAAAGGTCGGCCCGTCGGCCTTTTCTGCAACGCTGATCACGGGCAG CGATCCAACCACCCTCCAGAGTGACTAGGGGCGGAAATTTAAAGGGATTAATTTCCAC TCAACCACAAATCACAGTCGTCCCCGGTATTGTCCTGCAGAATGCAATTTAAACTCTTCTG 20 CGAATCGCTTGGATTCCCCGCCCCTAGTCGTAGAGCTTAAAGTATGTCCCTTGTCGATGCG ATGATACACAACATATAAATACTAGCAAGGGATGCCATGCTTGGAGGATAGCAACCGACAA CATCACATCAAGCTCTCCCTTCTCTGAACAATAAACCCCACAGGGGGGATCCACTAGTAAC GGCCGCCAGTGTGCTGGAAAGCGACTTGAAACGCCCCAAATGAAGTCCTCCATCCTCGCCA GCGTCTTCGCCACGGGCGCCGTGGCTCAAAGTGGTCCGTGGCAGCAATGTGGTGGCATCGG 25 ATGGCAAGGATCGACCGACTGTGTGTCGGGCTACCACTGCGTCTACCAGAACGATTGGTAC AGCCAGTGCGctagcCCTccTCGTCGAcctGTCTCGCAGGATCTGTTTAACCAGTTCAATC TCTTTGCACAGTATTCTGCAGCCGCATACTGCGGAAAAAACAATGATGCCCCAGCTGGTAC AAACATTACGTGCACGGGAAATGCCTGCCCCGAGGTAGAGAGGCGGATGCAACGTTTCTC TACTCGTTTGAAGACTCTGGAGTGGGCGATGTCACCGGCTTCCTTGCTCTCGACAACACGA ACAAATTGATCGTCCTCTCTTTCCGTGGCTCTCGTTCCATAGAGAACTGGATCGGGAATCT 30 TAAGTTCCTCTTGAAAAAAATAAATGACATTTGCTCCGGCTGCAGGGGACATGACGGCTTC ACTTCGTCCTGGAGGTCTGTAGCCGATACGTTAAGGCAGAAGGTGGAGGATGCTGTGAGGG AGCATCCCGACTATCGCGTGTTTTACCGGACATAGCTTGGGTGGTGCATTGGCAACTGT TGCCGGAGCAGACCTGCGTGGAAATGGGTATGATATCGACGTGTTTTCATATGGCGCCCCC 35 CGAGTCGGAAACAGGGCTTTTGCAGAATTCCTGACCGTACAGACCGGCGGAACACTCTACC GCATTACCCACACCAATGATATTGTCCCTAGACTCCCGCCGCGCGAATTCGGTTACAGCCA TTCTAGCCCAGAATACTGGATCAAATCTGGAACCCTTGTCCCCGTCACCCGAAACGATATC GTGAAGATAGAAGGCATCGATGCCACCGGCGGCAATAACCGGCCGAACATTCCGGATATCC CTGCGCACCTATGGTACTTCGGGTTAATTGGGACATGTCTTTAGTGGCCGGCGCGGCTGGG 40 TGAGGATATCCGGAAATACAGACACCGTGAAAGCCATGGTCTTTCCTTCGTGTAGAAGACC AGACAGACAGTCCCTGATTTACCCTTGCACAAAGCACTAGAAAATTAGCATTCCATCCTTC TCTGCTTGCTCTGATATCACTGTCATTCAATGCATAGCCATGAGCTCATCTTAGATCC 45 AAGCACGTAATTCCATAGCCGAGGTCCACAGTGGAGCAGCAACATTCCCCATCATTGCTTT CCCCAGGGCCTCCCAACGACTAAATCAAGAGTATATCTCTACCGTCCAATAGATCGTCTT GCCGAGATGCATGGTGGAGTCAATTAGGCAGTATTGCTGGAATGTCGGGCCAGTTGGCCCG 50 GGTGGTCATTGGCCGCCTGTGATGCCATCTGCCACTAAATCCGATCATTGATCCACCGCCC ACGAGGCGCGTCTTTGCCTCGCGCGCGCCTCCAGGTTCAACTCTCTCGCTCTAGATATCG ATGAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAAC

TTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCAC CGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGCAATGGCGCTATTTT CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCT CTGATGCCGCATAGTTAAGCCAGCCCCGACACCCCGCCAACACCCGCTGACGCCCTGACG GGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATG 5 TGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCC TATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCG GGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCG CTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTA TTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGC 10 TCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGT TACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTT TTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGC CGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGACGCGTCA CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCA 15 TAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGA GCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCG GAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAA CAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAAT 20 AGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGC TGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCAC TGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA AAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT 25 TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAGATCAAAGGATCTTCTTGAGATCCTTTT TTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGCGGTGGTTTGTT TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGAT ACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCA CCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCCAGTGGCGATAAGT 30 CGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG AACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATAC CTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATC CGGTAAGCGGCAGGGTCGGAACAGGAGGGGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTG GTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGC 35 TCGTCAGGGGGGGGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGG CCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGC GAGTCAGTGAGCGAGGAAGCGGAAGAGAG

SEQ ID No. 11:

40

GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCAC
GACAGGTTTCCCGACTGGAAAGCGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCA
CTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGAATTGT
GAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTGCATGC
CTGCAGGTCGACGCATTCCGAATACGAGCCTGATTAATGATTACAATTAAGCAGTTAAAG
TAGACCGAGCAGCCGAGCCAGTTCAGCGCCTAAAACGCCTTATACAATTAAGCAGTTAAAG
AAGTTAGAATCTACGCTTAAAAAGCTACTTAAAAATCGATCTCGCAGTCCCGATTCGCCTA
TCAAAACCAGTTTAAATCAACTGATTAAAGGTGCCGAACGAGCTATAAATGATATAACAAT
ATTAAAGCATTAATTAGAGCAATATCAGGCCGCCCCCACGAAAGGCAACTTAAAAAGCGAAAG

CGCTCTACTAAACAGATTACTTTTGAAAAAGGCACATCAGTATTTAAAGCCCGAATCCTTA TTAAGCGCCGAAATCAGGCAGATAAAGCCATACAGGCAGATAGACCTCTACCTATTAAATC GGCTTCTAGGCGCGCTCCATCTAAATGTTCTGGCTGTGGTGTACAGGGGCATAAAATTACG CACTACCCGAATCGATAGAACTACTCATTTTTATATAGAAGTCAGAATTCATAGTGTTTTG ATCATTTTAAATTTTTATATGGCGGGTGGTGGGCAACTCGCTTGCGCGGGCAACTCGCTTA CCGATTACGTTAGGGCTGATATTTACGTGAAAATCGTCAAGGGATGCAAGACCAAAGTAGT AAAACCCCGGAAGTCAACAGCATCCAAGCCCAAGTCCTTCACGGAGAAACCCCAGCGTCCA CATCACGAGCGAAGGACCACCTCTAGGCATCGGACGCACCATCCAATTAGAAGCAGCAAAG CGAAACAGCCCAAGAAAAAGGTCGGCCCGTCGGCCTTTTCTGCAACGCTGATCACGGGCAG CGATCCAACCAACACCCTCCAGAGTGACTAGGGGCGGAAATTTAAAGGGATTAATTTCCAC 10 TCAACCACAAATCACAGTCGTCCCCGGTATTGTCCTGCAGAATGCAATTTAAACTCTTCTG CGAATCGCTTGGATTCCCCGCCCCTAGTCGTAGAGCTTAAAGTATGTCCCTTGTCGATGCG ATGATACACAACATATAAATACTAGCAAGGGATGCCATGCTTGGAGGATAGCAACCGACAA CATCACATCAAGCTCTCCCTTCTCTGAACAATAAACCCCCACAGGGGGGATCCACTAGTAAC GGCCGCCAGTGTGCTGGAAAGCGACTTGAAACGCCCCAAATGAAGTCCTCCATCCTCGCCA GCGTCTTCGCCACGGGCGCCGTGGCTCAAAGTGGTCCGTGGCAGCAATGTGGTGGCATCGG ATGGCAAGGATCGACCGACTGTGTGTCGGGCTACCACTGCGTCTACCAGAACGATTGGTAC AGCCAGTGCGCTAGCGTCCAGATCCCCTCCAGCAGCACCAGCTCTCCGGTCAACCAGCCTA CCAGCACCAGCACCACCTCCACCACCTCGAGCCCGCCAGTCCAGCCTACGACTCC CAGCGCTAGCCCTCCTCGTCGACCTGTCTCGCAGGATCTGTTTAACCAGTTCAATCTCTTT 20 GCACAGTATTCTGCAGCCGCATACTGCGGAAAAAACAATGATGCCCCAGCTGGTACAAACA TTACGTGCACGGGAAATGCCTGCCCCGAGGTAGAGAGGCGGATGCAACGTTTCTCTACTC GTTTGAAGACTCTGGAGTGGGCGATGTCACCGGCTTCCTTGCTCTCGACAACACGAACAAA TTGATCGTCCTCTTTCCGTGGCTCTCGTTCCATAGAGAACTGGATCGGGAATCTTAAGT TCCTCTTGAAAAAATAAATGACATTTGCTCCGGCTGCAGGGGACATGACGGCTTCACTTC 25 GTCCTGGAGGTCTGTAGCCGATACGTTAAGGCAGAAGGTGGAGGATGCTGTGAGGGAGCAT CCCGACTATCGCGTGTTTTACCGGACATAGCTTGGGTGGTGCATTGGCAACTGTTGCCG GAGCAGACCTGCGTGGAAATGGGTATGATATCGACGTGTTTTCATATGGCGCCCCCCGAGT CGGAAACAGGGCTTTTGCAGAATTCCTGACCGTACAGACCGGCGGAACACTCTACCGCATT ACCCACACCAATGATATTGTCCCTAGACTCCCGCCGCGCGAATTCGGTTACAGCCATTCTA 30 GCCCAGAATACTGGATCAAATCTGGAACCCTTGTCCCCGTCACCCGAAACGATATCGTGAA GATAGAAGGCATCGATGCCACCGGCGGCAATAACCGGCCGAACATTCCGGATATCCCTGCG CACCTATGGTACTTCGGGTTAATTGGGACATGTCTTTAGTGGCCGGCGCGGCTGGGTCGAC 35 ATATCCGGAAATACAGACACCGTGAAAGCCATGGTCTTTCCTTCGTGTAGAAGACCAGACA GACAGTCCCTGATTTACCCTTGCACAAAGCACTAGAAAATTAGCATTCCATCCTTCTCTGC TTGCTCTGCTGATATCACTGTCATTCAATGCATAGCCATGAGCTCATCTTAGATCCAAGCA CGTAATTCCATAGCCGAGGTCCACAGTGGAGCAGCAACATTCCCCATCATTGCTTTCCCCA 40 GGGGCCTCCCAACGACTAAATCAAGAGTATATCTCTACCGTCCAATAGATCGTCTTCGCTT CAAAATCTTTGACAATTCCAAGAGGGTCCCCATCCATCAAACCCAGTTCAATAATAGCCGA GATGCATGGTGGAGTCAATTAGGCAGTATTGCTGGAATGTCGGGCCAGTTGGCCCGGGTGG TCATTGGCCGCCTGTGATGCCATCTGCCACTAAATCCGATCATTGATCCACCGCCCACGAG 45 GCGCGTCTTTGCTTTTTGCGCGGCGTCCAGGTTCAACTCTCTCGCTCTAGATATCGATGAA TTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAAT CGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATC GCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCCTGATGCGGTATTTTCTCCT TACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGAT 50 GCCGCATAGTTAAGCCAGCCCCGACACCCCGCCAACACCCCGCTGACGCCCCTGACGGGCTT GTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCA GAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTT

TTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAA ATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCAT GAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAA CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTCTGTTTTTGCTCACC CAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACAT CGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCA ATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGC AAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGACGCGTCACCAGT CACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACC ATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAA 10 CCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACG TTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACT TATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGG 15 CCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTC AGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGG ATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGT TCCACTGAGCGTCAGACCCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCT 20 GATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAA ATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCC TACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGT CTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGG 25 GGGGTTCGTGCACACCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA GCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATC TTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTC AGGGGGGGGGGCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTT TGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTA TTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTC AGTGAGCGAGGAAGCGGAAGAGAG

CLAIMS

- 1. A process for desizing cellulose-containing fabric or textile, wherein said fabric or textile is treated with a modified enzyme (enzyme hybrid) which comprises a catalytically active amino acid sequence of a non-cellulolytic enzyme linked to an amino acid sequence comprising a cellulose-binding domain.
- 2. A process according to claim 1, wherein said catalytically active amino acid sequence derives from an enzyme selected from the group consisting of amylases and lipases.
- 3. A process according to claim 2, wherein said amylase is an α -amylase obtainable from a species of Bacillus.
 - 4. A process according to claim 2 or 3, wherein said α -amylase is obtainable from Bacillus licheniformis.
- 5. A process according to any one of claims 2-4, wherein an amylolytic enzyme hybrid is employed in an amount corresponding to an amylase activity in the range of between 1 and 5000 KNU per litre of desizing liquor.
- 25 6. A process according to claim 2, wherein said lipase is obtainable from a species of Humicola, Candida, Pseudomonas or Bacillus.
- 7. A process according to claim 2 or 6, wherein a lipolytic 30 enzyme hybrid is employed in an amount corresponding to a lipase activity in the range of between 10 and 20000 LU per litre of desizing liquor.
 - 8. A process according to claim 1, wherein said cellulose-

binding domain is obtainable from a cellulase, a xylanase, a mannanase, an arabinofuranosidase, an acetylesterase or a chitinase.

- 9. A process according to claim 1, wherein said enzyme hybrid is obtained by a method comprising growing a transformed host cell containing an expression cassette which comprises a DNA sequence encoding said enzyme hybrid, whereby said enzyme hybrid is expressed.
 - 10. A desizing composition comprising:

an enzyme hybrid which comprises a catalytically active amino acid sequence of a non-cellulolytic enzyme linked to an amino acid sequence comprising a cellulose-binding domain; and

a wetting agent.

INTERNATIONAL SEARCH REPORT

International application No. PCT/DK 97/00041

A. CLASSIFICATION OF SUBJECT MATTER								
IPC6: C12N 9/00, D06M 16/00, C07K 19/00 According to International Patent Classification (IPC) or to both no	// C11D003386 ational classification and IPC							
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by	y classification symbols)							
IPC6: C12N								
Documentation searched other than minimum documentation to the	e extent that such documents are included i	n the fields searched						
SE,DK,FI,NO classes as above								
Electronic data base consulted during the international search (name	e of data base and, where practicable, searc	h terms used)						
WPI, EDOC, BIOSIS, DBA, CA, MEDLINE								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.						
A WO 9311249 A1 (NOVO NORDISK A/S (10.06.93)	in a decide the (there there is, by) the define about							
A WO 9305226 A1 (UNIVERSITY OF BR 18 March 1993 (18.03.93)	WO 9305226 A1 (UNIVERSITY OF BRITISH COLUMBIA), 18 March 1993 (18.03.93)							
		,						
		·						
	•							
Further documents are listed in the continuation of Bo	x C. X See patent family anne	X.						
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance.	"T" later document published after the in date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand						
"E" erlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	"X" document of particular relevance: the considered novel or cannot be considered.	claimed invention cannot be ered to involve an inventive						
cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance: the claimed invention cannot be								
"O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is means combined with one or more other such documents, such combination being obvious to a person skilled in the art								
the priority date claimed	"&" document member of the same paten							
Date of the actual completion of the international search	Date of mailing of the international	search report						
6 May 1997	2 2 -05- 1997							
Name and mailing address of the ISA/	Authorized officer							
Swedish Patent Office Roy 5055 S-102 42 STOCKHOLM	Dadustalis Academic							
Facsimile No. +46 8 666 02 86	Box 5055, S-102 42 STOCKHOLM Patrick Andersson Facsimile No. + 46 8 666 02 86 Telephone No. + 46 8 782 25 00							
Form PCT/ISA/210 (second sheet) (July 1992)	1							

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/DK 97/00041

Patent document cited in search report			Publication date	Patent family member(s)			Publication date		
WO	9311249	A1	10/06/93	BR EP FI JP	9206866 0618974 942644 8504560	A ·	21/11/95 12/10/94 03/06/94 21/05/96		
WO	9305226	A1	18/03/93	NONE					

Form PCT/ISA/210 (patent family annex) (July 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the	items checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	•
☑ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGEŚ	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	•
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR	QUALITY
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.