$\begin{array}{c} {\rm MATH} \ 152 \ {\rm SI} \\ 2/17/2021 \end{array}$

Key concepts: matrix multiplication and matrix inverses.

1 Definitions

- 1. What are the properties of matrix multiplication?
- 2. What are the properties of inverse matrices?

2 Practice Problems

1. Let $A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ 1 & 2 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 1 & 4 \end{bmatrix}$, and $E = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{bmatrix}$.

Compute the following, if the matrices exist. If they do not, explain why.

a)
$$EC$$

b)
$$B(C-E)$$

c)
$$(AB)C$$

d)
$$D((BC)A + A)$$

e)
$$E(BD)$$

f)
$$DE$$

- 2. Is the product of two skew-symmetric matrices also skew-symmetric? Explain why, or why not.
- 3. Using the matrix inversion algorithm, find the inverses of the following matrices, if possible.

a)
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 2 & -1 \\ 3 & 5 & -2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 2 & 1 \\ 6 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix}$$

4. Solve the following linear system using the inverse-matrix method (find A^{-1} and solve for \mathbf{x}).

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 2 & -1 \\ 3 & 5 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

5. Let A, B, and C be matrices, and suppose that A is invertible. Complete the following statements, and prove why they are true.

1) If
$$AB = AC$$
, then

2) If
$$BA = CA$$
, then

6. Find square matrices A, B, and C for which AB = AC but $B \neq C$.