Devoir à la maison n° 3 à rendre pour le 12 mars

Problème

On considère la fonction f de la variable réelle définie par :

$$\forall x \in \mathbb{R} \qquad f(x) = \begin{cases} \frac{1}{x^2} \exp\left(-\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

On note $\mathscr C$ la courbe représentative de f.

Partie 1 Étude de f

1 **a** – Justifier que f est dérivable sur \mathbb{R}^* .

 $\boxed{\mathbf{1}}$ \mathbf{b} - Précisez l'expression de f'(x) pour $x \neq 0$.

 $\boxed{\mathbf{2}}$ \mathbf{a} – Étudier la continuité à gauche et à droite de f en 0.

 $\boxed{\mathbf{2}}$ \mathbf{b} – Étudier la dérivabilité à gauche et à droite de f en 0.

 $\mathbf{3} \quad \mathbf{a} - \text{ Étudier les variations de } f.$

 $\mathbf{3}$ \mathbf{b} — Dresser le tableau de variations de f en précisant les limites.

 $\boxed{\mathbf{3}}$ \mathbf{c} – Étudier les asymptotes éventuelles à \mathscr{C} .

Partie 2 | Calculs d'aires

1 Soit $a \in]0,1[$.

Déterminer l'aire de la partie du plan délimitée par l'axe des abscisses, la courbe $\mathscr C$ et les droites d'équations x=a et x=1.

En déduire l'aire de la partie du plan délimitée par l'axe des abscisses, la courbe \mathscr{C} , la droite d'équation x=1 et l'axe des ordonnées.

Partie 3 Résolution d'une équation différentielle

On considère l'équation différentielle : $x^2y' + (2x-1)y = 0$ (\mathcal{E})

- **1** Résoudre l'équation différentielle (\mathcal{E}) sur chacun des intervalles $]0, +\infty[$ et $]-\infty, 0[$.
- 2 Donner une solution évidente de (\mathcal{E}) sur \mathbb{R} .
- **3** Soit h une solution de (\mathcal{E}) sur \mathbb{R} .

h est donc une fonction dérivable sur $\mathbb R$ telle que :

$$\forall x \in \mathbb{R} \qquad x^2 h'(x) + (2x - 1) h(x) = 0$$

 $\boxed{\mathbf{3}}$ \mathbf{a} – Justifier qu'il existe deux réels λ_+ et λ_- tels que :

$$\forall x \in \mathbb{R}^* \qquad h(x) = \begin{cases} \lambda_+ \cdot f(x) & \text{si} \quad x > 0 \\ \lambda_- \cdot f(x) & \text{si} \quad x < 0 \end{cases}$$

- 3 b Déterminer la valeur de λ_{-} .
- $\mathbf{3} \mid \mathbf{c} \text{Déterminer la valeur de } h(0).$
- Soit λ un réel et h la fonction définie par : $h(x) = \begin{cases} \lambda \cdot f(x) & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$

Étudier la dérivabilité de h en 0.

 $\boxed{\mathbf{5}}$ Donner toutes les solutions de (\mathcal{E}) sur \mathbb{R} .

Vérifier que (\mathcal{E}) admet une infinité de solutions sur \mathbb{R} .

6 Soient $(a,b) \in \mathbb{R}^2$.

Déterminer selon les valeurs de a et b le nombre de fonctions h telles que :

$$h$$
 est solution de (\mathcal{E}) sur \mathbb{R}

$$h(a) = b$$

Partie 4 Dérivées successives et polynômes associés

- 1 Justifier que f est de classe \mathscr{C}^{∞} sur \mathbb{R}^* .
- **2** Pour tout $n \in \mathbb{N}$, montrer qu'il existe un polynôme P_n tel que :

$$\forall x \in]0, +\infty[\qquad f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}} \times \exp\left(-\frac{1}{x}\right)$$

et donner une relation entre P_{n+1} , P_n et P_n' .

- **3** Calculer P_0 , P_1 , P_2 , P_3 et P_4 .
- Pour tout $n \in \mathbb{N}$, déterminer le degré, le coefficient dominant et le coefficient constant de P_n .

On considère la fonction g définie par : $g(x) = x^2 f(x)$

- **5** Démontrer que : $\forall n \in \mathbb{N}$ $g^{(n+1)} = f^{(n)}$
- **6** Soit $n \in \mathbb{N}$.
- $oxed{6}$ a En utilisant la formule de Leibniz pour calculer la dérivée k-ième de g, montrer que :

$$P_{n+1}(X) = (1 - 2(n+1)X)P_n(X) - n(n+1)X^2P_{n-1}(X)$$
 (1)

- **6 b** En déduire que : $P'_n(X) = -n(n+1)P_{n-1}(X)$ (2)
- 7 Pour tout $n \in \mathbb{N}$, montrer que :

$$X^{2} P_{n}''(X) + (1 - 2nX) P_{n}'(X) + n(n+1) P_{n}(X) = 0$$

Partie 5 Une fonction indéfiniment dérivable

Soit u la fonction de la variable réelle définie par :

$$\forall x \in \mathbb{R}$$

$$u(x) = \begin{cases} \exp\left(-\frac{1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$$

 $\boxed{1} \quad \text{Montrer que } u \text{ est de classe } \mathscr{C}^{\infty} \text{ sur } \mathbb{R}.$

Pour tout entier naturel n, donner la valeur de $u^{(n)}(0)$.

- **2** Dresser le tableau de variations de u en précisant sa limite en $+\infty$.
- $\boxed{\mathbf{3}}$ Tracer l'allure de la courbe représentative de u.

Exercice

Soient $n \in \mathbb{N}^*$ et $\theta \in]0, \pi[$.

On considère les polynômes T et P de $\mathbb{R}[X]$ définis par :

$$T = X^{2} - 2\cos(\theta)X + 1$$
 et $P = X^{2n} - 2\cos(\theta)X^{n} + 1$

- 1 a Donner la décomposition de T en produit d'irréductibles dans $\mathbb{C}[X]$.
- $\boxed{\mathbf{1}}$ \mathbf{b} Vérifier que T ne possède pas de racine réelle.
- $2 \quad a Montrer que P$ ne possède pas de racine réelle.
- 2 b Montrer que toutes les racines complexes de P sont simples.
- **3** a Déterminer la décomposition de P en facteurs irréductibles dans $\mathbb{C}[X]$.
- $oxed{3}$ b Déterminer la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$.