TPM-Fail: TPM meets Timing and Lattice Attacks

- Daniel Moghimi
- Berk Sunar
- Thomas Eisenbarth
- Nadia Heninger

29TH USENIX SECURITY SYMPOSIUM

AUGUST 12-14, 2020

Trusted Platform Module (TPM)

- Security Chip for Computers?
- Tamper Resistant
- Side-Channel Resistant
- Crypto Co-processor

Trusted Platform Module (TPM)

- Security Chip for Computers?
- Tamper Resistant
- Side-Channel Resistant
- Crypto Co-processor

Trusted Platform Module (TPM)

- Cryptographic Co-processor, specified by Trusted Computing Group
 - Secure Storage
 - Integrity Measurement
 - TRNG
 - Hash Functions
 - Encryption
 - Digital Signatures

TPM - Digital Signatures

- Applications
 - Trusted Execution of Signing Operations

Remote Attestation

- TPM 2.0 supports Elliptic-Curve Digital Signature
 - ECDSA
 - ECSchnorr
 - ECDAA (Anonymous Remote Attestation)

Trusted Computing Group - EAL 4+ Moderate

- <u>https://trustedcomputinggroup.org/members</u>

 ST33TPHF2ESPI Data Brief: hip/certification/
 - **■** TPM Security Evaluation

TCG members are required to demonstrate successful Common Criteria certification of their TPM product.

For the TPM 1.2 Family, the Common Criteria Security Assurance Level is at EAL4+ Moderate, in accordance to the PC Client TPM 1.2 Protection Profile by the TCG.

For the TPM 2.0 Family, the Common Criteria Security Assurance Level is at EAL4+ Moderate, in accordance to the PC Client TPM 2.0 Protection Profile by the TCG.

https://trustedcomputinggroup.org/members hip/certification/tpm-certified-products/

TPM Certified Products

https://www.st.com/resource/en/data_brief/st33

tphf2espi.pdf

ST33TPHF2ESPI CC Evaluation: https://www.ssi.gouv.fr/uploads/2018/10/an

ssi-cible-cc-2018_41en.pdf

Intrinsic countermeasures for cryptographic algorithm against side channel attacks like timing attacks (TA), SPA and DPA.

Detection of abnormal behavior of the following operational conditions:

- High voltage supply
- Glitches

Detection of abnormal TOE behavior:

- MPU error
- TRNG failure

Are TPMs really side-channel resistant?

High-resolution Timing Test

- TPM frequency ~= 32-120 MHz
- CPU Frequency is more than 2 GHz

High-resolution Timing Test - Intel PTT (fTPM)

- Intel Platform Trust Technology (PTT)
 - Integrated firmware-TPM inside the CPU package
 - Runs on top of Converged Security and Management Engine (CSME)

High-resolution Timing Test - Intel PTT (fTPM)

- Linux TPM Command Response Buffer (CRB) driver
- Kernel Driver to increase the Resolution

- Intel fTPM: 4-bit Window Nonce Length Leakage
 - ECDSA
 - ECSChnorr
 - BN-256 (ECDAA)

```
ECDSA Sign:

(x_1, y_1) = k_i \times G

r_i = x_1 \mod n

s_i = k_i^{-1}(z + r_i d) \mod n
```

0101000100111111...111

0000100100111111...111

1101000100111111...111

000000000111111...111

- Intel fTPM: 4-bit Window Nonce Length Leakage
 - ECDSA
 - ECSChnorr
 - BN-256 (ECDAA)

0101000100111111...111

0000100100111111...111

1101000100111111...111

000000000111111...111

- Intel fTPM: 4-bit Window Nonce Length Leakage
 - ECDSA
 - ECSChnorr
 - BN-256 (ECDAA)

0000100100111111...111

1101000100111111...111

000000000111111...111

- Intel fTPM: 4-bit Window Nonce Length Leakage
 - ECDSA
 - ECSChnorr
 - BN-256 (ECDAA)

0000100100111111...111

1101000100111111...111

000000000111111...111

- Intel fTPM: 4-bit Window Nonce Length Leakage
 - ECDSA
 - ECSChnorr
 - BN-256 (ECDAA)

0000100100111111...111

1101000100111111...111

000000000111111...111

- Intel fTPM: 4-bit Window Nonce Length Leakage
 - ECDSA
 - ECSChnorr
 - BN-256 (ECDAA)

0000100100111111...111

1101000100111111...111

000000000111111...111

High-resolution Timing Test - Analysis Of Devices

- RSA and ECDSA timing test on 3 dedicated TPM and Intel fTPM
- Various non-constant behaviour for both RSA and ECDSA

Machine	CPU	Vendor	TPM	Firmware/Bios
NUC 8i7HNK	Core i7-8705G	Intel	PTT (fTPM)	NUC BIOS 0053
NUC 7i3BNK	Core i3-7100U	Intel	PTT (fTPM)	NUC BIOS 0076
Asus GL502VM	Core i7-6700HQ	Intel	PTT (fTPM)	Latest OEM
Asus K501UW	Core i7 6500U	Intel	PTT (fTPM)	Latest OEM
Dell XPS 8920	Core i7-7700	Intel	PTT (fTPM)	Dell BIOS 1.0.4
Dell Precision 5510	Core i5-6440HQ	Nuvoton	rls NPCT	NTC 1.3.2.8
Lenovo T580	Core i7-8650U	STMicro	ST33TPHF2ESPI	STMicro 73.04
NUC 7i7DNKE	Core i7-8650U	Infineon	SLB 9670	NUC BIOS 0062

STMicroelectronics - ECDSA

• STMicroelectronics' TPM: Bit-by-Bit Nonce Length Leakage

TPM-Fail - Recovering Private ECDSA Key

- TPM is programmed with an unknown key
- We already have a template for t_i .
- 1. Collect list of signatures (r_i, s_i) and timing samples t_i .
- 2. Filter signatures based on t_i and keeps (r_i, s_i) with a known bias.
- 3. Lattice-based attack to recover private key d, from signatures with biased nonce k_i .

Lattice and Hidden Number Problem

•
$$s = k^{-1}(z + dr) \mod n \to k_i^{-1} - s_i^{-1}r_id - s_i^{-1}z \equiv 0 \mod n$$

•
$$s = k^{-1}(z + dr) \mod n \to k_i^{-1} - s_i^{-1}r_id - s_i^{-1}z \equiv 0 \mod n$$

•
$$A_i = -s_i^{-1}r_i$$
, $B_i = -s_i^{-1}z \rightarrow k_i + A_id + B_i = 0$

Lattice and Hidden Number Problem

- $s = k^{-1}(z + dr) \mod n \to k_i^{-1} s_i^{-1}r_id s_i^{-1}z \equiv 0 \mod n$
- $A_i = -s_i^{-1}r_i$, $B_i = -s_i^{-1}z \rightarrow k_i + A_id + B_i = 0$
- Let X be the upper bound on k_i and $(d, k_0, k_1, ..., k_n)$ is unknown

Boneh and Venkatesan[1]

- $s = k^{-1}(z + dr) \mod n \to k_i^{-1} s_i^{-1}r_id s_i^{-1}z \equiv 0 \mod n$
- $A_i = -s_i^{-1}r_i$, $B_i = -s_i^{-1}z \rightarrow k_i + A_i d + B_i = 0$
- Let X be the upper bound on k_i and $(d, k_0, k_1, ..., k_n)$ is unknown
- Lattice Construction:

TPM-Fail - Key Recovery Results

- Intel fTPM
 - ECDSA, ECSchnorr and BN-256 (ECDAA)
 - Three different threat model System, User, Network
- STMicroelectronics TPM
 - CC EAL4+ Certified
 - Give you the key in 80 minutes

Threat Model	TPM	Scheme	#Sign.	Time
Local System	ST TPM	ECDSA	39,980	80 mins
Local System	fTPM	ECDSA	1,248	4 mins
Local System	fTPM	ECSchnorr	1,040	3 mins
Local User	fTPM	ECDSA	15,042	18 mins

Remote Timing Attacks are Practical

David Brumley

Stanford University

dbrumley@cs.stanford.edu

Dan Boneh
Stanford University
dabo@cs.stanford.edu

Abstract

Timing attacks are usually used to attack weak computing devices such as smartcards. We show that timing attacks apply to general software systems. Specifically, we devise a timing attack against OpenSSL. Our experiments show that we can extract private keys from an OpenSSL-based web server running on a machine in the local network. Our results demonstrate that timing attacks against network servers are practical and therefore security systems should defend against them. The attacking machine and the server were in different buildings with three routers and multiple switches between them. With this setup we were able to extract the SSL private key from common SSL applications such as a web server (Apache+mod_SSL) and a SSL-tunnel.

Interprocess. We successfully mounted the attack between two processes running on the same machine. A hosting center that hosts two domains on the same machine might give management access to the admins of each domain. Since both domain are hosted on the same machine, one admin could use

TPMs are extremely slow

Timing difference for each window (4.76e8 - 4.72e8)/3600e6 * 1000 = 1.11 ms ping 192.168.1.x average rtt 0.713 ms ping 1.1.1.1 (Cloudflare DNS) average rtt 19.312 ms

Remote Timing Attacks are Practical!!

• Remote Key Recovery after about 44,000 handshake ~= 5 hours

Remote StrongSwan VPN

Remote Sample UDP App

User Adversary

System Adversary

- STMicroelectronics (CVE-2019-16863)
 - 05/15/2019: Reported to ST
 - 05/17/2019: Acknowledged
 - Lots of calls/emails to clarify the disclosure process
 - 09/12/2019: Verified new version of STM TPM firmware
 - After 11/12/2019:
 - HP and Lenovo have issued firmware updates.
 - ST released a list of affected devices.
- Intel (CVE-2019-11090)
 - 02/01/2019: Reported to IPSIRT
 - 02/12/2019: Acknowledged (Outdated Intel IPP Crypto library)
 - 11/12/2019: Firmware Update for Intel Management Engine

Questions?!

- STMicroelectronics (CVE-2019-16863)
 - 05/15/2019: Reported to ST
 - 05/17/2019: Acknowledged
 - Lots of calls/emails to clarify the disclosure process
 - 09/12/2019: Verified new version of STM TPM firmware
 - After 11/12/2019:
 - HP and Lenovo have issued firmware updates.
 - ST released a list of affected devices.

05/15/2019: Report TPM Vuln to STM

09/12/2019: We verified new version of STM TPM

05/17/2019: STM Acknowledged Post 11/12/2019: HP, Lenovo and Dell issued firmware update

- Intel (CVE-2019-11090)
 - 02/01/2019: Reported to IPSIRT
 - 02/12/2019: Acknowledged (Outdated Intel IPP Crypto library)
 - 11/12/2019: Firmware Update for Intel Management Engine

- Intel (CVE-2019-11090)
 - 02/01/2019: Reported to IPSIRT
 - 02/12/2019: Acknowledged (Outdated Intel IPP Crypto library)
 - 11/12/2019: Firmware Update for Intel Management Engine
- Intel IPP CVEs (MicroWalk)
 - CVE-2018-12155
 - CVE-2018-12156

06/22/2018:12/05/2018:Report IPPCVE-2018-Vulns to IPSIRT12155

02/12/2019: Acknowledged Outdated IPP Library

06/25/2018: Acknowledged the Receipt 02/01/2019: Report fTPM Vulns to IPSIRT

11/12/2019: (CVE-2019-11090) Firmware Update for CSME