Document Number: MIMXRT1050EVKEFEUG

Rev. 0, 11/2017

MIMXRT1050 EVK Extension Feature Enablement Guide

1. Introduction

This document is an MIMXRT1050 EVK Extension Feature Enablement Guide which is used for some examples with SDK. The document outlines the rework steps for all examples that need hardware rework. The examples which need to hardware rework are as following:

- FlexIO
- FlexSPI
- LPSPI
- PWM
- Wifi_QCA
- SPDIF
- CSI

The examples used on this document are based on i.MXRT1050 SDK. The hardware development environment is MIMXRT1050 EVK Board.

Contents

1.	Introduction	. 1
2.	FlexIO	. 2
2	2.1. I ² S edma_transfer	
2	2.2. I ² S interrupt_transfer	. 2
2	2.3. SPI edma_Ipspi_transfer	. 2
2	2.4. SPI int_Ipspi_transfer	. 3
3.	FlexSPI	
4.	LPSPI	. 3
4	1.1. cmsis_driver_examples edma_b2b_transfer	. 3
4	4.2. cmsis_driver_examples int_b2b_transfer	. 3
4	I.3. Ipspi interrupt	
4	I.4. Ipspi interrupt_b2b	
4	4.5. freertos freertos_lpspi	. 4
5.	PWM	. 5
6.	WiFi_QCA	. 5
7.	SPDIF	. 5
7	7.1. edma_transfer	. 5
7	7.2. interrupt_transfer	. 6
8.	CSI	. 6
9.	Revision History	. 6
App	endix A. Diagrams	. 7

2. FlexIO

There are several examples in FlexIO. Only the I²S and SPI need to rework.

2.1. I²S edma_transfer

J12 headphone connected. Remove R98, R99, R100, R101. Connect FLEXIO pins to the pad close to U13 as *Table 1*.

SW5 U13 Pin Name **Board Location** Pin Name **Board Location** RX_DATA SW5-1 U13-16 RX_DATA TX_DATA SW5-2 TX_DATA U13-14 SYNC SW5-3 SYNC U13-13 **BCLK** SW5-4 **BCLK** U13-12

Table 1. I2S edma transfer connection

2.2. I²S interrupt_transfer

J12 headphone connected. Remove R98, R99, R100, R101. Connect FLEXIO pins to the pad close to U13 as *Table 2*.

SW5		U13	
Pin Name	Board Location	Pin Name	Board Location
RX_DATA	SW5-1	RX_DATA	U13-16
TX_DATA	SW5-2	TX_DATA	U13-14
SYNC	SW5-3	SYNC	U13-13
BCLK	SW5-4	BCLK	U13-12

Table 2. I²S interrupt_transfer connetcion

2.3. SPI edma_lpspi_transfer

Both master and slave are needed to remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 3*.

MASTER		SLAVE	
Pin Name	Board Location	Pin Name	Board Location
SOUT	J24-4	SIN	SW5-3
SIN	J24-5	SOUT	SW5-2
SCK	J24-6	SCK	SW5-1
PCS0	J24-3	PCS0	SW5-4

Table 3. SPI edma_lpsi_transfer connection

2.4. SPI int_lpspi_transfer

Both master and slave are needed to remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 4*.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
MASTER		SLAVE	
Pin Name	Board Location	Pin Name	Board Location
SOUT	J24-4	SIN	SW5-3
SIN	J24-5	SOUT	SW5-2
SCK	J24-6	SCK	SW5-1
PCS0	J24-3	PCS0	SW5-4

Table 4. SPI int Ipsi transfer connection

3. FlexSPI

The board enables hyper flash (U19) by default. To enable QSPI flash (U33), some hardware rework is needed: Mount R153, R154, R155, R156, R157, R158 and DNP U19.

4. LPSPI

4.1. cmsis_driver_examples edma_b2b_transfer

In this example, we need two boards one board used as LPSPI master and another board used as LPSPI slave. Both master and slave are needed to remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 5*.

MASTER		SLAVE	
Pin Name	Board Location	Pin Name	Board Location
SOUT	J24-9	SIN	J24-2
SIN	J24-2	SOUT	J24-9
SCK	J24-10	SCK	J24-10
PCS0	J24-1	PCS0	J24-1
GND	J24-7	GND	J24-7

Table 5. cmsis driver examples edma b2b transfer connection

4.2. cmsis_driver_examples int_b2b_transfer

In this example, we need two boards, one board used as LPSPI master and another board used as LPSPI slave. Both master and slave are needed to remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 6*.

MASTER SLAVE Pin Name **Board Location Board Location Pin Name** SOUT J24-9 SIN J24-2 SIN J24-2 SOUT J24-9 SCK J24-10 SCK J24-10

Table 6. cmsis_driver_examples int_b2b_transfer connection

MIMXRT1050 EVK Extension Feature Enablement Guide, User's Guide, Rev. 0, 11/2017

Table 6. cmsis_driver_examples int_b2b_transfer connection

MASTER		SL	AVE
PCS0	J24-1	PCS0	J24-1
GND	J24-7	GND	J24-7

4.3. Ipspi interrupt

Remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 7*.

Table 7. Ipspi interrupt connection

MASTER		SLAVE	
Pin Name	Board Location	Pin Name	Board Location
SOUT	J24-4	SIN	J24-2
SIN	J24-5	SOUT	J24-9
SCK	J24-6	SCK	J24-10
PCS0	J24-3	PCS0	J24-1

4.4. lpspi interrupt_b2b

In this example, we need two boards, one board used as LPSPI master and another board used as LPSPI slave. Both master and slave are needed to remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 8*.

MASTER		SLAVE	
Pin Name	Board Location	Pin Name	Board Location
SOUT	J24-9	SIN	J24-2
SIN	J24-2	SOUT	J24-9
SCK	J24-10	SCK	J24-10
PCS0	J24-1	PCS0	J24-1
GND	J24-7	GND	J24-7

4.5. freertos freertos_lpspi

Remove the resistor R334 and weld 0 Ω resistor to R278, R279, R280, R281. To make the example work, connections needed to be as *Table 9*.

Table 9. freertos freertos_lpspi connection

MASTER		SLAVE	
Pin Name	Board Location	Pin Name	Board Location
SOUT	J24-4	SIN	J24-2
SIN	J24-5	SOUT	J24-9
SCK	J24-6	SCK	J24-10
PCS0	J24-3	PCS0	J24-1

5. PWM

Weld resister 0 Ω at R279, R280, R281. The PWM signal can be probed with an oscilloscope:

- AT J24-3
- AT J24-4
- AT J24-6
- AT TP27

6. WiFi_QCA

Plug GT202 Adaptor board to FRDM stackable headers (J1, J2, J3, J4).

Remove the resistor R334, dis-connect J15, and weld 0 Ω resistor to R278, R279, R280, R281.

7. SPDIF

7.1. edma_transfer

The SPDIF_IN signal should be connected to J15-1 and the SPDIF_OUT signal should be connected to R214 as *Figure 1*:

Figure 1. SPDIF_OUT signal conncetion diagram

NXP Semiconductors

7.2. interrupt_transfer

The SPDIF_IN signal should be connected to J15-1 and the SPDIF_OUT signal should be connected to R214 as *Figure 2*:

Figure 2. SPDIF_OUT signal conncetion diagram

8. CSI

For CSI feature, only EVK A, A1, A2, A3 and A4 need to rework.

Weld 0Ω resistor to R217, R218 and R220 – R229.

9. Revision History

Table 10. Revision history

Revision number	Date	Substantive changes
0	11/2017	Initial release

Appendix A.Diagrams

Figure 3 ART FILM - SSS

NXP Semiconductors 7

Figure 4. ART FILM - PSS

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo are the trademarks of NXP B.V. All other product or service names are the property of their respective owners.

Arm, the Arm logo, and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.. All rights reserved.

© 2017 NXP B.V.

Document Number: MIMXRT1050EVKEFEUG Rev. 0 11/2017

