Kernel PCA and De-Noising in Feature Spaces

Presented by

Jökull Jóhannsson Kristófer Hannesson Xinyi Lin

Sudhanshu Mittal Samuel Murray

Kernel PCA and De-Noising in Feature Spaces

- Linear/Kernel PCA
- The method
- Experiment results
- Discussion

Linear vs Kernel PCA

Applications

- compression
- reconstruction
- de-noising

What we explored

- Nonlinear de-noising
- Connection between feature space expansions and meaningful patterns in input space.

Linear vs Kernel PCA

Kernel PCA

- Map to feature space using function Φ
- Do PCA in the feature space calculate projection P
- Results may not have pre-images in the input space
 - Solution: Find approximate pre-image (z)

Methodology

$$N\lambda\alpha=K\alpha$$
, PCA
 $K=C, N=1$

$$k(x,y) = \exp(-||x-y||^2/c)$$

$$\beta_k := V^k \cdot \Phi(x)$$

$$P_n\Phi(x) = \sum_{k=1}^n \beta_k V^k$$

Input Space

k - Gaussian kernel function

z - pre-image of vector x in input space

φ - mapping

Feature Space

a - eigenvectors

V - normalized eigenvectors

β - projection on principal components

 γ - weight of each training point

n - number of top components

Pre-images for Gaussian Kernels

$$\gamma_i = \sum_{k=1}^n \beta_k \alpha_i^k.$$

Minimize :
$$\rho(z) = ||\Phi(z) - P_n\Phi(x)||^2$$

$$\nabla_z \rho(z) = 0$$

Using Fixed-point Iterative method, we calculate:

$$z_{t+1} = \frac{\sum_{i=1}^{N} \gamma_i \exp(-||z_t - x_i||^2/c) x_i}{\sum_{i=1}^{N} \gamma_i \exp(-||z_t - x_i||^2/c)}$$

Experiments

- Toy examples
- Reconstruction and denoising of digits

Toy example: Denoising in \mathbb{R}^2

Linear PCA

- 1 or 2 components
- 2 components reproduces all noise!

Toy example: Denoising in \mathbb{R}^2

Linear PCA

- 1 or 2 features
- 2 features reproduces all noise!

Kernel PCA

As many components as training points!

Toy example: Denoising in \mathbb{R}^2

Eigenvectors for components 2⁰,...,2⁸

Reconstruction

Denoising comparison

	Gaussian noise										'salt & pepper' noise									
orig.	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
noisy	0	1	2	3	4.3		2	7	8	3	Ü	2	2	3	4	5	6	7	8	3
n = 1	8	Ŷ	3	3	8	8	3	9	8	3	8	Ŷ	3	3	8	8	8	9	8	3
4	0	4	3	3	ø	8	4	7	0	7	0	4	\$	3	ø	8	4	7	0	7
16	0	•	2	3	es.	5	6	7	8	9	8	O	\boldsymbol{x}	3	68	5	6	3	9	8
64	0		2	3	64	\$	6	7	8	3	2	(2)	1	3	48	9	6	7	9	3
256	O	1	2	3	4.3	=	20	3	8	3	Ü	E	2	3	4	5	6	*	8	3
n = 1	¥.	¥	1	¥.		1		¥.		¥.	1		1	1		1	1	1	1	1
4	3	•	7	3	12	6	4	9	1	9	3	1	7	3	2	6	6	7	3	7
16	6	•	7	3	4	5	6	7	9	9	0	1	7	3	4	5	6	7	9	9
64	6	•	7	3	4	5	6	7	9	9	0	1	7	3	4	5	6	7	9	9
256	0	1	7	3	4	6	6	7	9	9	0	İ	7	3	4	5	6	7	9	9

Discussion

<u>Advantages</u>

- Captures complex nonlinear structure in the data
- Allows projection of data to high dimensional space
- Can be used for application of reconstruction, denoising and compression.

<u>Disadvantages</u>

- Suffers from numerical instability or local minima problem.
- Dependent on initial guess.
- For the fixpoint method, the kernel function needs to be smooth.
- Computationally intensive compared to PCA

Summary

- Performs PCA on data in feature space
- Iterative process to get pre-image
- Can de-noise and reconstruct non-linear data

THANK YOU