Presentation Template

Sri Sathwik Desaboina Al24BTECH11007

November 5, 2024

Problem

- Solution
 - Usage of variables
 - Parametric form
 - Row Reduction
 - Balanced Equation

Problem Statement

Show that the point $\begin{pmatrix} x \\ y \end{pmatrix}$ given by $x = \frac{2at}{1+t^2}$ and $y = \frac{a(1-t^2)}{1+t^2}$ lies on a circle for all real values of t such that $-1 \le t \le 1$, where a is any given real number.

Usage of variables

S.No	variables used	description
1	t	a variable which takes the real values in the range $\left(-1,1\right)$
2	а	it is a fixed real number
3	A(t)	it is a transformation matrix of parameter t
4	v(t)	it represent the parameter t and allows to define x and y
5	p(t)	a point with coordinates x and y.

Parametric form

Given x and y in the parametric form,

$$x = \frac{2at}{1+t^2},\tag{3.1}$$

$$y = \frac{a(1-t^2)}{1+t^2} \tag{3.2}$$

Let p(t) be equal to,

$$\mathbf{p}(t) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{2at}{1+t^2} \\ \frac{a(1-t^2)}{1+t^2} \end{pmatrix}.$$
 (3.3)

Verification

The transformation matrix A(t) with parameter t is,

$$\mathbf{A}(t) = \begin{pmatrix} \frac{2a}{1+t^2} & 0\\ 0 & \frac{a(1-t^2)}{1+t^2} \end{pmatrix}, \tag{3.4}$$

Then, we $get \mathbf{p}(\mathbf{t})$, (3.5)

$$\mathbf{p}(t) = \begin{pmatrix} \frac{2s}{1+t^2} & 0\\ 0 & \frac{s(1-t^2)}{1+t^2} \end{pmatrix} \begin{pmatrix} t\\ 1 \end{pmatrix}, \quad (3.6)$$

That implies, we get
$$(3.7)$$

$$\mathbf{p}(t)^{T} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{p}(t) = a^{2}$$
 (3.8)

$$x^2 + y^2 = a^2. (3.10)$$

Balanced Equation

Thus,

$$x_1 = \frac{3}{4}x_4, x_2 = x_4, x_3 = \frac{1}{4}x_4$$
 (3.11)

$$\implies \mathbf{x} = x_4 \begin{pmatrix} \frac{3}{4} \\ 1 \\ \frac{1}{4} \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 1 \\ 4 \end{pmatrix} \tag{3.12}$$

upon substituting $x_4 = 4$. (??) then becomes

$$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$$
 (3.13)

The codes in

https://github.com/DESABOINASRISATHWIK/EE1030/blob/main/presentation/codes/plot.py

https://github.com/DESABOINASRISATHWIK/EE1030/blob/main/presentation/codes/code.c

verifies (??).