

Raspberry Pi を用いた小規模環境に向けた メッシュネットワークの構築と運用

◎<u>小松聖矢(1)(4)</u>,宮川慎也⁽²⁾,竹原一駿⁽³⁾,白石啓一⁽⁴⁾,横山輝明⁽⁵⁾,猪俣敦夫⁽⁶⁾

(1)奈良先端科学技術大学院大学, (2)名古屋大学大学院, (3)香川大学, (4)香川高等専門学校, (5)情報通信研究機構, (6)大阪大学

研究背景 (1/2)

- Wi-Fi メッシュネットワークへの期待
 - 構築の手軽さや帯域の向上などの理由 [1]
 - ・ 災害時の状況把握にも活用 [2]
 - IEEE802.11s で規格がまとまった
- 仮設ネットワークの需要
 - イベント会場や工事現場, **学生寮** など

研究背景(2/2)

- 高専や大学の**学生寮**のネットワーク環境に着目
 - 研究・教育施設に比べ学生寮のネットワーク環境は整備が遅れている
- 発表者らが居住していた学生寮の例
 - 1つの階に30名ほどが居住
 - 寮全体では約150名ほどのトラフィックを4台のAPで処理
 - 夜やテスト期間は、通信が不安定・不通となる
- 有線でインターネット接続性を得ることが一般的
 - 配線には50万円程度の工事費
 - 予算面から工事を行うことは難しい
 - 配線の自由度が少ない

学生寮全体写真とAPの設置場所

研究方針

- 実用的なWi-Fiメッシュネットワークを安価なハードウェアで実現する
 - 小規模環境に向けた将来のネットワークを目指す
 - 環境情報の取得、可視化もできるIoT・サービスの基盤
 - 学生寮にも導入できる程度に費用を抑える (先ほどの例では50万円以下)

Messiah-Netの開発

複数台のRaspberry Piでネットワークを構築した評価実験

- 先行研究
 - 家庭内ネットワークにおける管理運用情報の取得や可視化を行う研究 [3]
 - RPiでのメッシュネットワーク構築のためのテストベッドの開発 [4]

RPiのメッシュネットワーク構築時の課題

- RPiの無線インタフェース
 - Model 3B+は100 [Mbit/s] のリンク速度
 - RPi-RPiのトラフィックとRPi-端末のトラフィックは同じインタフェースを利用

中継ノードを介した通信時のネットワーク

1-hop以上の経路で帯域幅の著しい低下を確認

提案手法

- パケット転送時に異なるインタフェース利用による帯域向上
 - 1台以上の中継ノードを経由する際の帯域幅を向上させたい
 - 異なるチャネルを利用することも可能
- USB端子で接続する無線インタフェースを利用
 - Buffalo WL-U2-433DHP

異なるインタフェースを用いたネットワーク

検証実験

○ 提案手法で課題が解決されるか調査を行う

実験機器

実験機器	対応規格	利用目的
Raspberry Pi 3B+	IEEE802.11a/b/n/ac (2.4/5GHz)	帯域測定、パケット転送
ThinkPad X250	IEEE802.11a/g/n (2.4/5GHz)	帯域測定
WL-U2-433DHP	IEEE802.11a/b/n/ac (2.4/5GHz)	RPiで複数チャネルを利用

- iperf3
 - ・ 帯域測定に利用

無線インタフェースの帯域調査(直接リンク)

- RPi-ThinkPadでの帯域幅を測定
 - オンボードのインタフェースと、USBで追加したインタフェースで帯域幅が大きく 異ならないことを確認する
 - Iperf3を用いてTCPの帯域幅を測定
 - 測定機器はそれぞれ1.5 [m]離す

① オンボードの無線インタフェース

② WL-U2-433DHP (USB 2.0 接続)

実験結果

インタフェースの種類	iperf3で測定した帯域	計測値の詳細
① オンボードの無線インタフェース	39.2 Mbit/s	1.0s間の転送量を10s間計測した平均値
② WL-U2-433DHP (USB 2.0 接続)	36.0 Mbit/s	1.0s間の転送量を10s間計測した平均値

無線インタフェースの帯域調査(1-hop)

- 1-hop時の帯域幅を測定
- 利用機材は直接リンク時と同じ、端末間の距離は1.5 [m]

③ 既存のインターフェースのみ

④ USBの追加インターフェース利用

実験結果

インタフェースの種類	iperf3で測定した帯域	計測値の詳細
③ 既存のインターフェースのみ	7.70 Mbit/s	1.0s間の転送量を10s間計測した平均値
④ USBの追加インターフェース利用	16.3 Mbit/s	1.0s間の転送量を10s間計測した平均値

考察

- ○帯域が向上した理由
 - インタフェース、チャネルの利用率が下がったため
 - Up link利用時にDown linkを利用できない状況を回避
 - 端末間の距離によっては**隠れ端末問題**が発生し、送信効率の低下が考えられる

○課題

- 測定機器の距離を変更して**再実験**する必要がある
- USBの追加インタフェースを使って、同じチャネルで追加実験を行う
- 効率的なチャネル割り当てについて調査
- 自治体や小規模イベントにおいての有用性検証も進める
- 状況に合わせたパッケージ化の検討

おわりに

- ○まとめ
 - 仮設ネットワークの需要にWi-Fi メッシュネットワークの利用を提案
 - ・ 学生寮のネットワーク環境の向上に着目
 - Messiah-Netを開発している
 - 複数台のRPiにてネットワークを構築し、評価実験を行った
 - インタフェースの分離にて、1-hop時のスループット向上を確認した
 - 活用先の模索・検討と環境に応じた柔軟なシステムの実用化を目指す
- 拡張機能の導入
 - ネットワークの安定的運用
 - 各RPiのモニタリング機構
 - ・ログ情報の収集
 - 使用状況に合わせた既存製品とは異なる拡張

参考文献

- [1] Google Nest Wi-fi, https://store.google.com/jp/product/nest wifi, 2020/06/08
- [2] 大塚孝信, 他 "災害被害把握を目的とした自立分散WSNの課題と実装,", 人工知能学会論文誌, 31巻, 6号,pp.Al30-F1-9, 2016.
- [3] 木村竜之介, "家庭内ネットワークにおける管理運用情報統合に関する研究,",北陸先端 科学技術大学院大学先端科学技術研究科修士論文,2018.
- [4] T. Oda, M. Yamada, R. Obukata, L. Barolli, I. Woungang and M. Takizawa, "Experimental Results of a Raspberry Pi Based Wireless Mesh Network Testbed Considering TCP and LoS Scenario," in 10th International Conference on Complex, Intelligent, and Software Intensive Systems, 2016
- [5] T. Clausen, P. Jacquet, "Optimized Link State Routing (OLSR) Protocol," Internet Engineering Task Force, RFC 3626, October 2003.