L'impact du prix des commodités sur le PIB des Etats-Unis.

Nelson Heinzelmann
Elyès Ghali
Lisa Thevenet*

Résumé

Ce papier de recherche étudie l'impact des chocs sur le prix des commodités sur le PIB des Etats-Unis. Pour cela, nous utilisons les données récoltées sur la FRED de Saint Louis sur une période de 19 ans. Nous effectuons par la suite un modèle VAR et SVAR. En estimant leurs Impulse Response Function respectives nous trouvons qu'un choc d'un écart-type sur le taux de croissance du prix des commodités a un effet positif sur le taux de croissance du PIB dans les deux modèles.

^{*} Lisa.thevent@unil.ch , elyes.ghali@unil.ch , nelson.heinzelmann@unil.ch

Table des matières:

1.Introduction	3
2. Données	4
3. Analyse descriptive	5
4. Résultats	7
5. Conclusion	10

1. Introduction

Depuis février 2022, la guerre fait rage à l'Est de l'Europe, le conflit qui oppose l'Ukraine à la Russie impacte le monde entier. Les deux pays se livrent une bataille militaire, politique et économique. Ces récents événements ont fortement influencé le choix de notre question de recherche. En effet, ces deux dernières années, le prix de certaines matières premières comme le pétrole ou le gaz a explosé, le prix de ces commodités n'a jamais été aussi haut depuis les années septante¹.

Mais alors comment ce choc sur le prix des commodités impacte la santé économique d'un pays?

Dès lors, nous nous sommes focalisé sur un pays en particulier. Il faut savoir que même si ce sont les récents événements se déroulant en Ukraine qui ont inspirés notre question de recherche, nous avions besoin d'un pays avec une base de données fiable et suffisamment accessible. C'est ainsi que notre choix s'est porté sur les Etats-Unis, la plus grande puissance économique.

Par conséquent, nous sommes arrivés à la question de recherche suivante : "Quel est l'impact du prix des commodités sur le PIB des Etats-Unis ?". Cette question est importante car son analyse donnera lieu à une vision plus précise sur les conséquences d'un choc sur le prix des commodités. En effet, une corrélation positive entre le prix des commodités et le PIB des Etats-Unis permettra de prédire d'éventuelles périodes de récessions ou d'extension du PIB d'un pays.

Dans la littérature existante, une corrélation entre ces deux données a déjà été démontrée. En effet, de nombreux papiers s'intéressent à ce sujet; nous pouvons citer Jared.K qui comme nous étudie les impacts de l'augmentation du prix des commodités. Cet auteur s'est basé sur la situation actuelle entre l'Ukraine et la Russie. Beatriz. S a également discuté de l'impact de cette augmentation mais sur un sujet plus précis, l'inflation. D'autres encore ont étudié l'impact du prix des commodités sur les politiques monétaires et fiscales mises en place (Uwe. B). Nous trouvons bien souvent dans ces articles une corrélation, nous allons essayer d'aller un peu plus loin.

Au vu de la littérature existante et de nos connaissances actuelles en économie, nous avons émis une intuition de base avant de commencer toute recherche. Nous pensons que notre analyse nous permettra de prouver qu'un choc sur le prix des commodités a un impact positif sur le taux de croissance du PIB.

¹ "Commodity Markets Outlook April 2022 - World Bank Group." 26 avr. 2022, https://www.worldbank.org/en/news/press-release/2022/04/26/food-and-energy-price-shocks-from-ukraine-war.

Dans la suite de ce papier, nous commencerons par contextualiser nos données. Dans un deuxième temps, nous procéderons à l'analyse descriptive de nos variables, cette analyse décrira nos données utilisées. Nous parlerons ensuite de nos résultats et nous terminerons par une conclusion résumant les points clés de notre recherche.

2. Données

Le but de ce papier est de chercher à mesurer l'impact d'un choc du prix commodité sur un pays. Nous avons choisi la variable du PIB pour représenter au mieux la croissance économique d'un Etat. Pour mener notre étude, nous avons récolté des données secondaires de niveau macroéconomique, en ligne, sur la FRED de Saint-Louis. Les données du PIB des Etats-Unis, de l'indice de prix des commodités, de l'indice des prix à la consommation (CPI) et le taux de d'intérêt de la FED ont été extraites.

Le PIB des Etats-Unis représente la valeur marchande des biens et services produits par la main-d'œuvre et les biens situés sur ce territoire.

L'indice des prix à la consommation est un indice des prix des paniers de biens et de services payés par les consommateurs urbains. Les variations en pourcentage de cet indice mesurent le taux d'inflation entre deux périodes.

Nos deux premières variables sont corrigées des variations saisonnières, cela élimine les effets des conditions météorologiques, de l'année scolaire, des jours fériés et des cycles de production.

L'indice des prix mondiaux de toutes les matières premières représente les prix de référence qui sont représentatifs du marché mondial².

Le taux de la FED est le taux auquel les institutions de dépôt échangent, entre elles, des fonds fédéraux. Il est essentiellement déterminé par le marché.

Ces quatres variables sont les variables endogènes utilisées par la suite dans nos modèles VAR et SVAR.

Il est important de noter que ces données ne sont pas stationnaires³. Nous avons dû effectuer des transformations sur ces dernières (*Figure 1*). Pour cela, nous avons considéré la différence en logarithme naturel du PIB (en pourcentage), le taux de variation du prix des commodités (en pourcentage) mais aussi le taux du CPI (cette transformation retourne le taux d'inflation en pourcentage). Nous avons également effectué une simple différence pour le taux d'intérêt de la FED.

² Indice calculé par l'IMF (International Monetary Fund)

³ Note : Cela a été déterminé via les test de Dickey-Fuller et Phillips-Perron

Figure 1: Données transformées

Nos données se concentrent sur la population entière des Etats-Unis et ont été prises du mois de janvier de 2003 à 2022 et ce, de manière trimestrielles.

3. Analyse descriptive

Notre étude s'appuie sur un modèle de vecteur autorégressif (VAR), il s'avère que ce dernier soit le plus approprié lors de l'analyse de séries temporelles multivariées. En vérifiant à l'aide des tests de stationnarité de Dickey-Fuller et Phillips-Perron, nous trouvons que l'ensemble de nos variables endogènes sont bel et bien stationnaires. On peut écrire le modèle de la façon suivante:

$$Y_t = \alpha + A_1 Y_{t-1} + \dots + A_k Y_{t-k} + \varepsilon_t \tag{1}$$

Où Y_t est un vecteur colonne (4x1) des variables endogènes, α un vecteur colonne (4x1) des constantes, A_i (i = 1,...,k) les matrices (4x4) des coefficients, ε_t un vecteur-colonne (4 x 1) des erreurs.

Afin de déterminer le nombre de lags optimals, nous nous sommes basés sur le Akaike Information Criterion (AIC) et le Bayesian information criterion (BIC). Nous avons pu en conclure qu'un lag était l'optimum.

$$Y_t = \alpha + A_1 Y_{t-1} + \varepsilon_t \tag{2}$$

Nous avons ensuite vérifié la stabilité du modèle (2) en confirmant que la condition de stabilité des valeurs propres était respectée. Puisque l'ensemble des valeurs propres est inférieur à un, le modèle (2) est bien un processus stationnaire. Ensuite, nous avons vérifié si les valeurs passées du modèle avaient réellement un pouvoir prédictif sur les quatre variables endogènes. Pour cela, nous avons effectué le test de causalité de Granger. Grâce à cela, nous avons pu admettre qu'au seuil de 5%, le modèle est capable de prédire les valeurs de chaque variable endogène une à une.

Dans la seconde partie de cette recherche, nous avons utilisé un modèle VAR structurel (SVAR). En effet, rappelons que le but de notre recherche est d'observer quel est l'impact des chocs du prix des commodités sur l'évolution du PIB. Pour ce faire, il était nécessaire de pouvoir établir des restrictions sur notre modèle.

Ces dernières permettent d'une part, d'observer les relations contemporaines entre les variables endogènes et d'autre part, de pouvoir décomposer les termes d'erreur en choc non-corrélés. En assumant que A est inversible, la forme structurelle du modèle de SVAR peut s'écrire ainsi:

$$AY_{t} = A^{*}_{t}Y_{t+1} + \dots + A^{*}_{k}Y_{t+k} + Bu_{t}$$
(3)

Avec:

$$A^{-1}A^*_{i} = A_i \tag{4}$$

Où A_i^* (i = 1,..,k) sont les matrices (4x4) de coefficients structurels, un vecteur colonne (4x1) des erreurs structurelles, B une matrice (4x4) diagonale.

Par la suite, nous avons fait le choix d'utiliser la méthode d'identification de Cholesky. Nous avons ordonné nos variables endogène dans notre vecteur-colonne Y_t de la façon suivante :

- 1. PIB,
- 2. Inflation,
- 3. Taux de la Fed,
- 4. Prix des Commodités

Nous avons donc défini la matrice des coefficients A comme une matrice des coefficients triangulaire inférieure et dont la diagonale vaut un. La matrice A impose donc (p(p-1)/2)

restrictions, avec p le nombre de variables endogènes. L'hypothèse sur laquelle se base cet ordre est que les prix s'ajustent plus rapidement que les quantités. De plus, sur la base de la littérature existante, nous avons décidé de placer l'inflation avant le taux de la Fed. Chaque variable impactera alors toutes les variables classées après elle de manière contemporaine, mais assignera les variable classées avant elle avec un décalage.

Finalement, afin que les termes d'erreurs ne soient pas corrélés nous allons les considérer comme une équation linéaire de chocs structurel u_t . En multipliant l'équation (3) par A^{-1} et en se limitant à 1 lag :

$$\varepsilon_t = A^{-1}Bu_t \tag{5}$$

$$Y_t = A_1 Y_{t-1} + \varepsilon_t \tag{6}$$

Où $Y_t = (PIB_t, Inflation_t, TxFed_t, PrixCommodités_t)'$, B une matrice (4x4) diagonale dont on estime les coefficients et qui impose $p^2(=16)$ restrictions.

Le modèle (6) considère donc un total de p^2 + (p(p-1)/2) = 22 restrictions.

4. Résultats

En estimant le modèle VAR (2) on obtient des résultats qui vont dans le sens de notre intuition initiale. En effet, on observe sur la *Figure 2* qu'un choc d'un écart type sur le taux de croissance du prix des commodités a un effet positif sur le taux de croissance du PIB. Plus précisément, nous observons une augmentation du taux de croissance du PIB de 0.15 points au maximum dans l'intervalle de confiance à 95%. Il s'avère que cet intervalle comprend également des valeurs positives proches de zéro. Dès lors, nous ne pouvons pas précisément estimer cet effet, nous pouvons seulement en déduire sa direction. Tout compte fait, l'effet d'un choc sur taux de croissance du prix des commodités a de manière générale un effet positif sur toutes les autres variables du modèle.

Il est intéressant de noter que sur la base des résultats sur la *Figure 2* nous ne pouvons pas nous permettre la moindre déduction du comportement des chocs sur le Taux d'intérêt de la FED. En effet, ces derniers comprennent, dans un intervalle à 95%, des valeurs négatives et positives.

Finalement, nous pouvons noter que les chocs sur le taux de croissance du PIB et sur l'inflation ont tendance à avoir des effets négatifs sur les autres variables.

De manière générale, les conséquences des chocs du le prix des commodités sur nos variables durent au maximum quatre périodes (soit un an) à l'exception de ceux sur le taux de la FED qui

semblent avoir des effets à plus long terme. Toutefois, cela peut aussi être une cause de la faible précision du modèle lors de l'estimation des chocs sur le taux de la FED.

Dans un second temps, nous avons estimé le modèle SVAR (6). Les résultats obtenus sont similaires à ceux du modèle VAR. On remarque sur la *Figure 3* que la direction des chocs sur les prix commodités est identique à ceux observés sur la *Figure 2*. En revanche, un choc d'un écart-type sur le taux de croissance du prix des commodités cause à présent une augmentation plus conséquente du taux de croissance du PIB. En effet, cette augmentation avoisine un maximum de presque 0.8 points dans l'intervalle de confiance à 95%. Ce résultat est cinq fois plus élevé que celui constaté sur la *Figure 2*. Puisque la valeur absolue du taux de croissance du PIB vaut en moyenne 1.4%, une augmentation de 0.8 est plus que conséquente. Il s'agirait d'une augmentation relative de 56,94% par rapport à la moyenne. Le résultat obtenu sur la *Figure 2* estimait cette augmentation relative à 10.67%.

Les effets des chocs durent également au maximum 4 périodes et les résultats au niveau des chocs sur le taux de la Fed sont toujours aussi imprécis. De plus, la *Figure 3* nous donne moins d'informations quant au comportement des chocs sur le taux de croissance du PIB, ici aussi l'intervalle de confiance à 95% comprend des valeurs positives et négatives. Toutefois, les chocs sur l'inflation ont des effets négatifs sur les autres variables.

En d'autres termes, nous remarquons qu'imposer des restrictions sur les matrices A et B de l'équation (6) permet de corriger les résultats obtenus en utilisant un simple modèle VAR (2). Le modèle SVAR nous donne plus d'information quant à l'ordre de grandeur de cet effet.

Étant donné qu'une augmentation relative de 56.94 % par rapport à la moyenne est un effet fort, le modèle VAR sous-estime cet effet de manière significative. Si l'on considère par exemple le PIB du premier trimestre de 2022 (soit 24382 milliards de Dollars) et que l'on pose l'hypothèse que son taux de croissance est égal à sa moyenne. Alors, une augmentation du taux de croissance de 0.8 points créerait un différentiel de 159 milliards de Dollars par rapport à une augmentation de 0.15 points.

Nous considérons ci-dessus le cas de figure le plus favorable. En effet, on remarque que sur les Figures 2 et 3 les chocs sur les commodités ont des effets sur le PIB qui peuvent aussi être quasiment nuls dans l'intervalle de confiance à 95%. Dans ce cas on parlerait d'effet faible. On note donc que les modèles (2) et (6) ne sont pas très précis lorsqu'il s'agit de mesurer l'effet exact qu'un choc sur le taux de croissance des commodités a sur le taux de croissance du PIB.

Dans le cadre de cette étude, le modèle VAR aurait sans doute été suffisant puisque l'objectif principal était de déterminer l'effet du prix des commodités sur le PIB. Bien que beaucoup de

résultats diffèrent avec le modèle SVAR, nous trouvons dans les deux cas une relation positive. Ce résultat est satisfaisant dans le cadre de ce papier et il n'est donc par conséquent pas nécessaire d'imposer plus de restrictions sur notre modèle.

Figure 2: Impulse Response Function du modèle (2)

Figure 3: Impulse Response Function Structurelle du modèle (6)

5. Conclusion

Pour conclure, nous avons obtenu un résultat correspondant à notre intuition initiale. La variation du prix des commodités a un impact positif sur le taux de croissance du PIB.

Ainsi, nous apprenons comment les variables comme l'inflation, le PIB, le prix des commodités et le taux de la FED interagissent entre elles en cas de choc. Cependant, ces résultats ne reflètent sans doute pas les vraies valeurs que l'on observerait dans la réalité. Notre second modèle (6) suppose, de par la méthode d'identification de Cholesky, des relations entre les variables simplifiées par rapport à la réalité. C'est pourquoi nous considérons que ce modèle ne serait pas adapté pour effectuer des prédictions. Pour cela, il faudrait définir une méthode d'identification plus poussée avec un processus bien plus complexe que celui que nous avons proposé.

Enfin, il est important de rappeler que nous avons concentré notre étude sur les Etats-Unis. Par conséquent, la corrélation positive entre la variation du prix des commodités et le taux de croissance du PIB n'est pas universelle. En effet, les Etats-Unis est un pays producteur, ce qui expliquerait qu'une hausse du prix des commodités impacte positivement son PIB. Par ailleurs,

si nous appliquons notre modèle à la Suisse, qui n'est pas un pays producteur de matières premières, nous n'aurions sans doute pas les mêmes résultats.

Mais maintenant que nous savons à peu près comment ces chocs interagissent entre eux, nous pourrions sur la base des résultats obtenus, considérer la situation politique en Ukraine comme un choc exogène sur le prix des commodités. Nous pouvons présager que le taux de croissance du PIB aux Etats-Unis va s'accélérer durant les prochains trimestres, qu'il y aura certainement une hausse du taux d'inflation, (ce qu'on observe déjà dans la réalité⁴) et que la FED annoncera des taux à la hausse.

Selon notre analyse, la Russie, grand pays producteur d'énergie également, devrait s'attendre à une augmentation de son PIB. Toutefois, au vu de l'embargo sur le pétrole imposé par l'Union européenne, le PIB de la Russie devrait finalement diminuer d'environ 8% en 2022⁵ alors même que le pays connaît une inflation d'environ 22%⁶. Nous trouvons intéressant de le souligner car bien souvent des facteurs exogènes font que la réalité diverge de la théorie.

⁴ "No inflation relief in sight for US as impact of Ukraine war intensifies." 7 mars. 2022,

https://www.reuters.com/markets/europe/us-inflation-set-heat-up-further-impact-ukraine-war-intensifies-2022-03-07/.

⁵ "No inflation relief in sight for US as impact of Ukraine war intensifies." 7 mars. 2022,

https://www.reuters.com/markets/europe/us-inflation-set-heat-up-further-impact-ukraine-war-intensifies-2022-03-07/.

⁶ "Une inflation de 22% attendue en Russie en 2022 - Le Journal de" 21 avr.. 2022,

https://www.journaldemontreal.com/2022/04/21/une-inflation-de-22-attendue-en-russie-en-2022-1.

Bibliographie

Littérature:

Jared Kadziolka, "Rising commodity prices and their impacts", 18 mars 2022.

Beatriz Villafranca Serrano, "The rise in commodity prices and its impact on inflation", 10 Septembre 2021

Uwe Böwer, André Geis et Adalbert Winkler, "Commodity price fluctuations and their impact on monetary and fiscal policies in Western and Central Africa", avril 2007

Données:

https://fred.stlouisfed.org

Annexe

Note: Dans tout les tableaux qui suivent: "g_GDP" désigne le taux de croissance du log du PIB (en %). "g_CPI": le Taux d'inflation (en %); "g_Commodities": Le taux de croissance du prix des Commodités (en %); "d_FedRate": la différence du taux d'intérêt de la FED (en %).

Annexe 1: Test de Dickey-Fuller pour le Taux de Croissance du PIB

Dickey-Fuller test for unit root Variable: g_GDP Number of obs = 75Number of lags = 0

H0: Random walk without drift, d = 0

		Dickey-Fuller			
	Test		critical value		
	statistic	1%	5%	10%	
Z(t)	-9.601	-3.545	-2.910	-2.590	

MacKinnon approximate p-value for Z(t) = 0.0000.

Annexe 2: Test de Dickey-Fuller pour le Taux d'inflation

Dickey-Fuller test for unit root

Number of obs = 75

Variable: g_CPI

Number of lags = 0

H0: Random walk without drift, d = 0

		Dickey-Fuller			
	Test		critical value		
	statistic	1%	5%	10%	
Z(t)	-5.776	-3.545	-2.910	-2.590	

MacKinnon approximate p-value for Z(t) = 0.0000.

Annexe 3: Test de Dickey-Fuller pour le Taux de croissane du Prix des Commodités

Dickey-Fuller test for unit root Variable: g_Commodities Number of obs = 75Number of lags = 0

H0: Random walk without drift, d = 0

MacKinnon approximate p-value for Z(t) = 0.0000.

Annexe 4: Test de Dickey-Fuller pour la Différence du taux de la FED

Dickey-Fuller test for unit root Number of obs = 75
Variable: d_FedRate Number of lags = 0

H0: Random walk without drift, d = 0

		Dickey-Fuller			
	Test		critical value	·	
	statistic	1%	5%	10%	
Z(t)	-4.163	-3.545	-2.910	-2.590	

MacKinnon approximate p-value for Z(t) = 0.0008.

Annexe 5: Test de Phillips-Perron pour le Taux de croissance du PIB

Phillips-Perron test for unit root Variable: g_GDP

Number of obs = 75 Newey-West lags = 3

H0: Random walk without drift, d = 0

			Dickey-Fuller	
	Test		critical value	
	statistic	1%	5%	10%
Z(rho)	-86.245	-19.350	-13.500	-10.850
Z(t)	-9.573	-3.545	-2.910	-2.590

MacKinnon approximate p-value for Z(t) = 0.0000.

Annexe 6: Test de Phillips-Perron pour le Taux d'inflation

Phillips-Perron test for unit root Variable: g_CPI

Number of obs = 75 Newey-West lags = 3

H0: Random walk without drift, d = 0

			Dickey-Fuller	
	Test	c	ritical value	
	statistic	1%	5%	10%
Z(rho)	-50.884	-19.350	-13.500	-10.850
Z(t)	-5.820	-3.545	-2.910	-2.590

MacKinnon approximate p-value for Z(t) = 0.0000.

Annexe 7: Test de Phillips-Perron pour le Taux de croissance du prix des Commodités

Phillips-Perron test for unit root Number of obs = 75
Variable: g_Commodities Newey-West lags = 3

H0: Random walk without drift, d = 0

	Test		Dickey-Fuller	
	statistic	1%	5%	10%
Z(rho)	-41.815	-19.350	-13.500	-10.850
Z(t)	-5.352	-3.545	-2.910	-2.590

MacKinnon approximate p-value for Z(t) = 0.0000.

Annexe 8: Test de Phillips-Perron pour la différence du taux de la FED

Phillips-Perron test for unit root Number of obs = 75
Variable: d_FedRate Newey-West lags = 3

H0: Random walk without drift, d = 0

			Dickey-Fuller	
	Test	c	ritical value	
	statistic	1%	5%	10%
Z(rho)	-29.190	-19.350	-13.500	-10.850
Z(t)	-4.186	-3.545	-2.910	-2.590

MacKinnon approximate p-value for Z(t) = 0.0007.

Annexe 9: Test de sélection du lag-optimal

Lag-order selection criteria

Sample: 2004q2 thru 2022q1 Number of obs = 72

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-438.689				2.57387	12.2969	12.3473	12.4234
1	-381.745	113.89	16	0.000	.826108*	11.1596*	11.4113*	11.792*
2	-371.988	19.514	16	0.243	.986834	11.333	11.7862	12.4713
3	-353.352	37.272*	16	0.002	.927077	11.2598	11.9144	12.904
4	-340.564	25.576	16	0.060	1.03439	11.349	12.205	13.4992

* optimal lag

Endogenous: g_GDP g_Commodities d_FedRate g_CPI

Exogenous: _cons

Annexe 10: Estimation du modèle VAR (2)

Vector autoregression

Sample: 2003q3 Log likelihood FPE Det(Sigma_ml)		7 6		Number of AIC HQIC SBIC	f obs	= = =	75 11.17597 11.42272 11.79396
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
g_GDP	5	1.64084	0.1324	11.44131	0.0220		
<pre>g_Commodities</pre>	5	7.49132	0.3052	32.94787	0.0000		
d_FedRate	5	.270951	0.4856	70.81494	0.0000		
g_CPI	5	.563645	0.2882	30.36214	0.0000		

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
g_GDP						
g_GDP L1.	3471755	.1401175	-2.48	0.013	6218008	0725502
g_Commodities L1.	.0993919	.0385722	2.58	0.010	.0237918	.174992
d_FedRate L1.	1.014538	.5758352	1.76	0.078	1140784	2.143154
g_CPI L1.	7068816	.5378007	-1.31	0.189	-1.760952	.3471883
_cons	1.612809	.3231637	4.99	0.000	.9794201	2.246198
g_Commodities g_GDP L1.	7478415	.639712	-1.17	0.242	-2.001654	.5059709
g_Commodities L1.	.9662315	.1761029	5.49	0.000	.6210762	1.311387
d_FedRate L1.	.53419	2.628998	0.20	0.839	-4.618551	5.686931
g_CPI L1.	-7.933177	2.45535	-3.23	0.001	-12.74557	-3.12078
_cons	5.527235	1.475416	3.75	0.000	2.635472	8.418997
d_FedRate g_GDP L1.	0249635	.0231375	-1.08	0.281	0703122	.0203852
g_Commodities L1.	.0171292	.0063694	2.69	0.007	.0046454	.0296131
d_FedRate L1.	.734187	.0950874	7.72	0.000	.5478191	.9205548
g_CPI L1.	3127143	.0888068	-3.52	0.000	4867724	1386562
_cons	.1665598	.0533639	3.12	0.002	.0619686	.2711511
g_CPI g_GDP L1.	033993	.0481318	-0.71	0.480	1283296	.0603435
g_Commodities L1.	.0570129	.0132499	4.30	0.000	.0310435	.0829823
d_FedRate L1.	0794304	.1978051	-0.40	0.688	4671213	.3082604
g_CPI L1.	2557696	.1847399	-1.38	0.166	6178531	.1063139
_cons	.6673942	.1110099	6.01	0.000	.4498187	.8849697

•

Annexe 11: Test de stabilité des Valeurs propres

Eigenvalue stability condition

Eigenvalue	Modulus
.7405291	.740529
.3147573 + .2739545i	.417281
.31475732739545i	.417281
2725705	.27257

All the eigenvalues lie inside the unit circle. VAR satisfies stability condition.

Annexe 12: Test de causalité de Granger sur l'équation (2)

Granger causality Wald tests

Equation	Excluded	chi2	df P	rob > chi2
g_GDP	g_Commodities	6.6398	1	0.010
g_GDP	<pre>d_FedRate</pre>	3.1041	1	0.078
g_GDP	g_CPI	1.7276	1	0.189
g_GDP	ALL	10.266	3	0.016
g_Commodities	g_GDP	1.3666	1	0.242
<pre>g_Commodities</pre>	<pre>d_FedRate</pre>	.04129	1	0.839
<pre>g_Commodities</pre>	g_CPI	10.439	1	0.001
g_Commodities	ALL	13.861	3	0.003
d_FedRate	g_GDP	1.1641	1	0.281
d_FedRate	<pre>g_Commodities</pre>	7.2323	1	0.007
d_FedRate	g_CPI	12.399	1	0.000
d_FedRate	ALL	15.473	3	0.001
g_CPI	g_GDP	.49879	1	0.480
g_CPI	<pre>g_Commodities</pre>	18.515	1	0.000
g_CPI	<pre>d_FedRate</pre>	.16125	1	0.688
g_CPI	ALL	19.205	3	0.000

Annexe 13: Décomposition de la Variance pour modèle (2) avec le taux de croissance comme "Response Variable"

(4)	(3)	(2)	(1)	
fevd	fevd	fevd	fevd	Step
0	0	0	0	0
0	0	0	1	1
.017425	.007731	.056443	.918401	2
.032886	.008055	.055489	.90357	3
.036191	.009859	.055524	.898425	4
.036726	.011231	.056555	.895488	5
.036785	.012214	.057097	.893904	6
.036802	.012758	.057342	.893098	7
.036817	.013049	.057442	.892692	8

- (1) irfname = IRF1, impulse = g_GDP, and response = g_GDP.
- (2) irfname = IRF1, impulse = g_Commodities, and response = g_GDP.
- (3) irfname = IRF1, impulse = d_FedRate, and response = g_GDP.
- (4) irfname = IRF1, impulse = g_CPI, and response = g_GDP.

Annexe 14: Estimation du modèle de SVAR (6)

Sample: 2003q3 thru 2022q1 Number of obs = 75 Exactly identified model Log likelihood = -399.0987

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
/A							
	1_1	1	(constraine	d)			
	2_1	1714088	.034374	-4.99	0.000	2387807	104037
	3_1	0685923	.0181014	-3.79	0.000	1040704	0331142
	4_1	8500122	.399568	-2.13	0.033	-1.633151	0668733
	1_2	0	(constraine	d)			
	2_2	1	(constraine	d)			
	3_2	111867	.0526955	-2.12	0.034	2151482	0085858
	4_2	-10.16097	1.097195	-9.26	0.000	-12.31144	-8.010509
	1_3	0	(constraine	d)			
	2_3	0	(constraine	d)			
	3_3	1	(constraine	d)			
	4_3	4.920884	2.335119	2.11	0.035	.344135	9.497632
	1_4	0	(constraine	d)			
	2_4	0	(constraine	d)			
	3_4	0	(constraine	d)			
	4_4	1	(constraine	d)			
/B							
	1_1	1.585202	.1294312	12.25	0.000	1.331522	1.838883
	2_1	0	(constraine	d)			
	3_1	0	(constraine	d)			
	4_1	0	(constraine	d)			
	1_2	0	(constraine	d)			
	2_2	.4718955	.0385301	12.25	0.000	.3963779	.5474132
	3_2	0	(constraine	d)			
	4_2	0	(constraine	d)			
	1_3	0	(constraine	d)			
	2_3	0	(constraine	d)			
	3_3	.2153524	.0175834	12.25	0.000	.1808895	.2498153
	4_3	0	(constraine	d)			
	1_4	0	(constraine	d)			
	2_4	0	(constraine	d)			
	3_4	0	(constraine	•			
	4_4	4.355011	.3555852	12.25	0.000	3.658077	5.051945

Annexe 15: Matrice A₁ du modèle SVAR (6)

	g_GDP	g_CPI	d_FedRate	g_Commo~s
g_GDP	1	0	0	0
g_CPI	1714088	1	0	0
<pre>d_FedRate</pre>	0685923	111867	1	0
g_Commodit~s	8500122	-10.16097	4.920884	1

Annexe 16: Matrice B du modèle SVAR (6)

	g_GDP	g_CPI	d_FedRate	g_Commo~s
g_GDP	1.585202			
g_CPI	0	.4718955		
d_FedRate	0	0	.2153524	
g_Commodit~s	0	0	0	4.355011

Annexe 17: Décomposition de la Variance du modèle SVAR (6) avec le taux de croissance du PIB comme "Response Variable"

(1)	(2)	(3)	(4)
fevd	fevd	fevd	fevd
0	0	0	0
1	0	0	0
.918401	.06667	.004556	.010373
.90357	.075261	.006044	.015125
.898425	.075689	.009001	.016884
.895488	.075468	.011124	.01792
.893904	.075421	.012461	.018214
.893098	.075397	.013175	.01833
.892692	.075375	.013551	.018382
	fevd 0 1 .918401 .90357 .898425 .895488 .893904 .893098	fevd fevd 0 0 1 0 .918401 .06667 .90357 .075261 .898425 .075689 .895488 .075468 .893904 .075421 .893098 .075397	fevd fevd fevd 0 0 0 1 0 0 .918401 .06667 .004556 .90357 .075261 .006044 .898425 .075689 .009001 .895488 .075468 .011124 .893904 .075421 .012461 .893098 .075397 .013175

⁽¹⁾ irfname = order1, impulse = g_GDP, and response = g_GDP.

Annexe 18: Test de Causalité de Granger pour le modèle SVAR (6)

Granger causality Wald tests

Equation	Excluded	chi2	df P	rob > chi2
g_GDP	g_CPI	1.7276	1	0.189
g_GDP	<pre>d_FedRate</pre>	3.1041	1	0.078
g_GDP	<pre>g_Commodities</pre>	6.6398	1	0.010
g_GDP	ALL	10.266	3	0.016
g_CPI	g_GDP	.49879	1	0.480
g_CPI	d_FedRate	.16125	1	0.688
g_CPI	<pre>g_Commodities</pre>	18.515	1	0.000
g_CPI	ALL	19.205	3	0.000
d_FedRate	g_GDP	1.1641	1	0.281
<pre>d_FedRate</pre>	g_CPI	12.399	1	0.000
<pre>d_FedRate</pre>	<pre>g_Commodities</pre>	7.2323	1	0.007
d_FedRate	ALL	15.473	3	0.001
g_Commodities	g_GDP	1.3666	1	0.242
g_Commodities	g_CPI	10.439	1	0.001
<pre>g_Commodities</pre>	d_FedRate	.04129	1	0.839
g_Commodities	ALL	13.861	3	0.003

⁽²⁾ irfname = order1, impulse = g_Commodities, and response = g_GDP.

⁽³⁾ irfname = order1, impulse = d_FedRate, and response = g_GDP.

⁽⁴⁾ irfname = order1, impulse = g_CPI, and response = g_GDP.