Register 19-5: UxBRG: UARTx Baud Rate Register

Upper Byte) :						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BRG<15:8>							
bit 15							bit 8

Lower Byte) :						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BRG<7:0>							
bit 7							bit 0

bit 15-0 BRG<15:0>: Baud Rate Divisor bits

Legend:			
R = Readable bit	Readable bit W = Writable bit		read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

dsPIC30F Family Reference Manual

19.3 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit baud rate generator. The UxBRG register controls the period of a free running 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate.

Equation 19-1: UART Baud Rate

$$Baud\ Rate = \frac{FCY}{16 \cdot (UxBRG + 1)}$$

$$UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$$

Note: Fcy denotes the instruction cycle clock frequency.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

Example 19-1: Baud Rate Error Calculation

Desired Baud Rate FCY/(16 (UxBRG + 1))Solving for UxBRG value: UxBRG ((FCY/Desired Baud Rate)/16) - 1 UxBRG ((4000000/9600)/16) - 1UxBRG [25.042] = 25Calculated Baud Rate 4000000/(16 (25 + 1)) 9615 Error (Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate (9615 - 9600)/96000.16%

The maximum baud rate possible is FCY / 16 (for UxBRG = 0), and the minimum baud rate possible is FCY / (16 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.