Table A.1: Mechanical properties of 12 MPEAs from MS calculations. Lattice distortion coefficient: δ; Lattice parameter (Å): a₀; Elastic constants (GPa): C_{11} , C_{12} , C_{44} ; Zener ratio: A_c ; Cohesive energy (eV): E_{coh} ; Unstable stacking fault energy ((mJ/m²)): γ_{usf}^{110} , γ_{usf}^{123} , Ideal shear strength (GPa): $\tau_{\rm iss}^{110}$, $\tau_{\rm iss}^{112}$, $\tau_{\rm iss}^{123}$.

Val	ilues δ	a_0	C ₁₁	C ₁₂	C ₄₄	Ac	$E_{ m coh}$	$\gamma_{ m usf}^{110}$	$\gamma_{ m usf}^{112}$	$\gamma_{ m usf}^{123}$	$ au_{ m iss}^{110}$	$ au_{ m iss}^{112}$	$ au_{ m iss}^{123}$
NbTaTi	0.0126	3.295	196.24	124.39	66.37	1.85	-6.76	559.34	645.25	635.36	66.9	8.13	7.99
MoNbTi	0.0282	3.233	241.38	133.00	76.32	1.41	-6.43	742.35	857.21	845.89	7.44	8.38	8.32
HfNbTa	0.0371	3.383	201.27	132.08	68.54	1.98	-7.39	647.42	758.90	745.44	7.51	8.86	8.72
NbTiZr	0.0429	3.391	143.32	110.55	56.85	3.47	-6.31	459.61	537.78	529.89	5.17	6.03	5.95
HfNbTi	0.0400	3.386	146.02	115.97	65.41	4.35	-6.29	474.26	566.09	556.67	5.35	6.35	6.25
HfTaTi	0.0356	3.381	154.69	119.64	82.03	4.68	-6.45	511.04	610.78	599.62	5.81	7.03	6.93
TaTiZr	0.0387	3.385	153.52	116.17	71.84	3.85	-6.46	494.45	579.18	569.42	5.57	09.9	6.53
MoTaTi	0.0254	3.240	234.35	140.46	92.70	1.97	-6.59	786.30	910.26	897.48	8.45	9.87	9.76
MoNbTa	0.0260	3.243	308.55	158.28	76.84	1.02	-7.57	877.23	1016.40	1000.05	9.31	10.63	10.48
HfNbTaTi	0.0354	3.361	175.31	123.25	70.57	2.71	-6.73	553.96	653.34	641.87	6.46	7.62	7.53
HfMoNbTaTi	0.0374	3.310	205.97	141.21	82.20	2.54	-6.82	29.999	782.60	769.12	7.38	8.67	8.55
HfNbTaTiZr	0.0420	3.405	157.62	118.17	67.61	3.43	-6.69	522.79	615.94	605.31	5.82	88.9	6.80

Table A.2: The LSR values (MPa) of edge and screw dislocations on the {110}, {112}, and {123} planes for 12 MPEAs from MS calculations.

	$\frac{\sigma_{\rm s}^{110}}{\sigma_{\rm s}^{123}}$	0 1.00	1.14	1.35	3 1.51	9 1.51	5 1.37) 1.68	5 1.13	9 1.17	2 0.95) 1.45	1.39
	$\frac{\sigma_{\rm e}^{110}}{\sigma_{\rm e}^{123}}$	1.30	1.00	1.31	2.78	1.49	1.56	2.40	1.25	1.19	1.42	2.00	2.01
	$\frac{\sigma_s^{110}}{\sigma_s^{112}}$	1.07	1.23	1.26	1.40	1.03	1.00	1.29	1.17	1.41	1.09	1.14	1.06
	$\frac{\sigma_{\rm e}^{110}}{\sigma_{\rm e}^{112}}$	0.86	0.73	1.10	1.72	1.05	1.13	1.56	0.78	0.73	1.39	1.76	1.40
	$\frac{\sigma_{\rm s}^{123}}{\sigma_{\rm e}^{123}}$	5.10	2.23	1.74	2.36	1.63	1.35	1.78	2.37	2.48	1.95	1.81	1.70
	$\frac{\sigma_s^{112}}{\sigma_e^{112}}$	3.14	1.51	1.56	1.58	1.68	1.34	1.50	1.42	1.26	1.67	2.02	1.55
•	$\frac{\sigma_{\rm s}^{110}}{\sigma_{\rm e}^{110}}$	3.91	2.53	1.79	1.28	1.65	1.18	1.24	2.14	2.44	1.31	1.31	1.17
	$\sigma_{ m s}^{123}$	1737.92	1776.54	1032.13	811.20	674.14	740.18	842.95	1742.48	1977.64	1220.25	1395.88	782.21
	$\sigma_{ m e}^{123}$	340.94	795.84	592.07	344.02	413.33	549.66	474.18	736.58	798.93	624.89	772.36	458.90
	$\sigma_{ m s}^{112}$	1616.89	1634.26	1104.07	877.68	994.67	1012.44	1098.29	1686.38	1645.52	1062.53	1772.92	1021.67
	$\sigma_{ m e}^{112}$	514.18	1085.82	708.49	556.23	590.82	758.30	732.28	1185.92	1303.57	637.74	878.73	659.58
	$\sigma_{ m s}^{110}$	1731.11	2016.97	1394.83	1226.94	1021.31	1013.25	1414.79	1975.66	2320.54	1155.84	2017.60	1084.82
	$\sigma_{ m e}^{110}$	443.03	797.49	92.777	956.74	617.74	857.43	1138.82	922.53	949.41	884.90	1543.22	923.91
	Values											Ti	Ţ
	Composition	NbTaTi	MoNbTi	HfNbTa	NbTiZr	HfNbTi	HfTaTi	TaTiZr	MoTaTi	MoNbTa	HfNbTaTi	HfMoNbTaTi	HfNbTaTiZr