Transductive learning for statistical machine translation

Nicola Ueffing¹ Gholamreza Haffari² Anoop Sarkar²

¹Interactive Language Technologies Group National Research Council Canada Gatineau, QC, Canada nicola.ueffing@nrc.gc.ca

> ²School of Computing Science Simon Fraser University Vancouver, Canada {ghaffar1,anoop}@cs.sfu.ca

ACL 2007: June 25

Outline

- 1 Motivation
- 2 Transductive Machine Translation

- 3 Experimental Results
 - SMT System
 - EuroParl French-English
 - NIST Chinese–English

Motivation

Motivation

Motivation

Here: we explore monolingual source-language data to improve translation quality

Where it would be useful?

- In some cases amount of bilingual data is limited and expensive to create
- Use monolingual source-language data to
 - adapt to new domain, topic or style
 - overcome training/testing data mismatch, e.g. text/speech

Where it would be useful?

- In some cases amount of bilingual data is limited and expensive to create
- Use monolingual source-language data to
 - adapt to new domain, topic or style
 - overcome training/testing data mismatch, e.g. text/speech

Examples:

training data	testing data	effect
newswire	web text	adapt to domain and style
written text	speech	adapt to speech
		characteristics
written text and speech	speech	identify parts of model
		relevant for speech

- 1 Motivation
- 2 Transductive Machine Translation

- 3 Experimental Results
 - SMT System
 - EuroParl French—English
 - NIST Chinese—English

Transductive SMT

Transductive SMT

Transductive SMT

Scoring Translations

Confidence estimation

- log-linear combination of different posterior probabilities and LM probability
- posterior probabilities for words and phrases, calculated over N-best list
- combination optimized w.r.t. sentence classification error rate

Scoring Translations

Confidence estimation

- log-linear combination of different posterior probabilities and LM probability
- posterior probabilities for words and phrases, calculated over N-best list
- combination optimized w.r.t. sentence classification error rate
- Normalized sentence score assigned by SMT system

Selection

Importance sampling: sample with replacement, probability distribution based on scores

Selection

- Importance sampling: sample with replacement, probability distribution based on scores
- 2 Threshold: select all translations with score above threshold, optimize threshold on dev set beforehand

Selection

- Importance sampling: sample with replacement, probability distribution based on scores
- 2 Threshold: select all translations with score above threshold, optimize threshold on dev set beforehand
- 3 Keep all translations: comparative experiment

We extract "good" translations and use these to augment our SMT system

- We extract "good" translations and use these to augment our SMT system
- Different choices are used to Estimate a new model

- We extract "good" translations and use these to augment our SMT system
- Different choices are used to Estimate a new model

1 Add new translations to training set and do full re-training (can be made efficient; details in the paper)

- We extract "good" translations and use these to augment our SMT system
- Different choices are used to Estimate a new model

- 1 Add new translations to training set and do full re-training (can be made efficient; details in the paper)
- 2 A mixture model of phrase pair probabilities from training set combined with phrase pairs from dev/test set

- We extract "good" translations and use these to augment our SMT system
- Different choices are used to Estimate a new model

- 1 Add new translations to training set and do full re-training (can be made efficient; details in the paper)
- 2 A mixture model of phrase pair probabilities from training set combined with phrase pairs from dev/test set
- 3 Use new phrase pairs to train an additional phrase table and use it as a new feature function in the SMT log-linear model (feature weights learned using dev corpus).

Estimate (additional phrase table)

Why does it work?

- Reinforces parts of the phrase translation model which are relevant for test corpus, obtain more focused probability distribution
- Composes new phrases, for example:

original paral-	additional	possible new phrases
lel corpus	source data	
'A B', 'C D E'	'ABCDE'	'A B C', 'B C D E', 'A B C D E',

Limitations of the approach

- No learning of translations of *unknown* source-language words occurring in the new data
- Only learning of compositional phrases; system will not learn translation of idioms:

```
"it is raining"+"cats and dogs" \rightarrow "it is raining cats and dogs" 

"es regnet" + "Katzen und Hunde" \not\rightarrow "es regnet in Strömen" 

"il pleut" + "des chats et des chiens" \not\rightarrow "il pleut des cordes"
```

- 1 Motivation
- 2 Transductive Machine Translation
- 3 Experimental Results
 - SMT System
 - EuroParl French-English
 - NIST Chinese–English

Experimental setting: Baseline & SMT system

PORTAGE: state-of-the-art phrase-based system (NRC, Canada)

Decoder models:

- several (smoothed) phrase table(s), translation direction $p(s_1^J \mid t_1^I)$
- several 4-gram language model(s), trained with SRILM toolkit
- distortion penalty based on number of skipped source words
- word penalty

Experimental setting: Baseline & SMT system

PORTAGE: state-of-the-art phrase-based system (NRC, Canada)

Decoder models:

- several (smoothed) phrase table(s), translation direction $p(s_1^J \mid t_1^I)$
- several 4-gram language model(s), trained with SRILM toolkit
- distortion penalty based on number of skipped source words
- word penalty

Additional rescoring models:

- two different IBM-1 features in both translation directions
- posterior probabilities for words, phrases, n-grams, and sentence length: calculated over the N-best list, using the sentence probabilities assigned by the baseline system

Our approach also works with other phrase-based MT system, e.g. Moses

EuroParl French-English

Setup and evaluation:

- French → English translation
- training and testing conditions: WMT2006 shared task 688k sentence pairs for training 2,000/3,064 sentences in dev/test set
- evaluate with BLEU-4, mWER, mPER, using 1 references
- 95%-confidence intervals, using bootstrap resampling

Results EuroParl French-English

Translation quality for importance sampling based on normalized sentence scores, full re-training of phrase table

Transductive learning provides improvement in accuracy equivalent to adding 50k training examples

EuroParl translation examples

baseline	but it will be agreed on what we are putting into this constitution .
adapted	but it must be agreed upon what we are putting into the
'	
	constitution .
reference	but we must reach agreement on what to put in this con-
reference	but we must reach agreement on what to put in this con-
	stitution .
baseline	stitution . this does not want to say first of all , as a result .
baseline adapted	00.000.000
adapted	this does not want to say first of all , as a result . it does not mean that everything is going on .
	this does not want to say first of all , as a result .
adapted	this does not want to say first of all , as a result . it does not mean that everything is going on .

NIST Chinese-English

Setup and evaluation:

- Chinese → English translation
- training conditions: NIST 2006 eval, large data track
- testing: 2006 eval corpus with 3,940 sentences
 4 different genres, partially not covered by training data (broadcast conversations, . . .)
- evaluate with BLEU-4, mWER, mPER, using 4 / 1 references
- 95%-confidence intervals, using bootstrap resampling

Results: NIST Chinese-English

selection	scoring	BLEU[%]	mWER[%]	mPER[%]
baseline		27.9 ± 0.7	67.2 ± 0.6	44.0 ± 0.5

Results: NIST Chinese-English

selection	scoring	BLEU[%]	mWER[%]	mPER[%]
baseline		27.9±0.7	67.2±0.6	44.0±0.5
keep all		28.1	66.5	44.2

Results: NIST Chinese–English

selection	scoring	BLEU[%]	mWER[%]	mPER[%]
baseline		27.9±0.7	67.2±0.6	44.0±0.5
keep all		28.1	66.5	44.2
import. sampl.	norm.score	28.7	66.1	43.6
	confidence	28.4	65.8	43.2

Results: NIST Chinese-English

selection	scoring	BLEU[%]	mWER[%]	mPER[%]
baseline		27.9 ± 0.7	67.2 ± 0.6	44.0±0.5
keep all		28.1	66.5	44.2
import. sampl.	norm.score	28.7	66.1	43.6
	confidence	28.4	65.8	43.2
threshold	norm.score	28.3	66.1	43.5
	confidence	29.3	65.6	43.2

NIST translation examples

baseline	[the report said] [that the] [united states] [is] [a poten-
	tial] [problem] [, the] [practice of] [china 's] [foreign
	policy] [is] [likely to] [weaken us] [influence] [.]
transductive	[the report] [said that] [this is] [a potential] [problem]
	[in] [the united states] [,] [china] [is] [likely to] [weaken]
	[the impact of] [american foreign policy] [.]
reference	the report said that this is a potential problem for
	america . china 's course of action could possibly
	weaken the influence of american foreign policy .

NIST translation examples

baseline	[the report said] [that the] [united states] [is] [a poten-
	tial] [problem] [, the] [practice of] [china 's] [foreign
	policy] [is] [likely to] [weaken us] [influence] [.]
transductive	[the report] [said that] [this is] [a potential] [problem]
	[in] [the united states] [,] [china] [is] [likely to] [weaken]
	[the impact of] [american foreign policy] [.]
reference	the report said that this is a potential problem for
	america . china 's course of action could possibly
	weaken the influence of american foreign policy .
baseline	[what we advocate] [his] [name]
transductive	[we] [advocate] [him] [.]
reference	we advocate him .

NIST translation examples

baseline	[the report said] [that the] [united states] [is] [a poten-
	tial] [problem] [, the] [practice of] [china 's] [foreign
	policy] [is] [likely to] [weaken us] [influence] [.]
transductive	[the report] [said that] [this is] [a potential] [problem]
	[in] [the united states] [,] [china] [is] [likely to] [weaken]
	[the impact of] [american foreign policy] [.]
reference	the report said that this is a potential problem for
	america . china 's course of action could possibly
	weaken the influence of american foreign policy .
baseline	[what we advocate] [his] [name]
transductive	[we] [advocate] [him] [.]
reference	we advocate him .
baseline	["] [we should] [really be] [male] [nominees] [] []
transductive	[he] [should] [be] [nominated] [male] [,] [really] [.]
reference	he should be nominated as the best actor , really .

- Explore monolingual source-language data to improve an existing MT system:
 - translate data using MT system
 - automatically identify reliable translations
 - learn new models on these

- Explore monolingual source-language data to improve an existing MT system:
 - translate data using MT system
 - automatically identify reliable translations
 - learn new models on these
- Introduced transductive learning approach for statistical MT
 - filtering training data for re-training
 - using additional phrase table from test data as feature in MT log-linear model
 - confidence estimation for accurate detection of good translations
 - importance sampling with thresholding to obtain multiple good translations even for a single sentence

- Explore monolingual source-language data to improve an existing MT system:
 - translate data using MT system
 - automatically identify reliable translations
 - learn new models on these
- Introduced transductive learning approach for statistical MT
 - filtering training data for re-training
 - using additional phrase table from test data as feature in MT log-linear model
 - confidence estimation for accurate detection of good translations
 - importance sampling with thresholding to obtain multiple good translations even for a single sentence
- Translation quality improves through transductive learning

- Explore monolingual source-language data to improve an existing MT system:
 - translate data using MT system
 - automatically identify reliable translations
 - learn new models on these
- Introduced transductive learning approach for statistical MT
 - filtering training data for re-training
 - using additional phrase table from test data as feature in MT log-linear model
 - confidence estimation for accurate detection of good translations
 - importance sampling with thresholding to obtain multiple good translations even for a single sentence
- Translation quality improves through transductive learning
- Discarding bad translations is important

- Explore monolingual source-language data to improve an existing MT system:
 - translate data using MT system
 - automatically identify reliable translations
 - learn new models on these
- Introduced transductive learning approach for statistical MT
 - filtering training data for re-training
 - using additional phrase table from test data as feature in MT log-linear model
 - confidence estimation for accurate detection of good translations
 - importance sampling with thresholding to obtain multiple good translations even for a single sentence
- Translation quality improves through transductive learning
- Discarding bad translations is important
- Approach applicable to other types of statistical MT system

Literature

- Transductive learning/unsupervised training: D. Yarowsky [ACL, 1995], Abney [CompLing 30-03, 2004], Vapnik "Statistical learning theory" [Wiley, 1998]
- Self-training for SMT: Ueffing [IWSLT, 2006]
- PORTAGE: Ueffing et. al. [ACL WMT Workshop, 2007]
- Confidence measures: Blatz et al. [CoLing 2004], Ueffing and Ney [CompLing 33-01, 2007]

Acknowledgment

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-06-C-0023. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).

This research was partially supported by NSERC, Canada (RGPIN: 264905).

END

46 / 51

Filtering the training corpus

- If the size of the training corpus is huge, the training time is going to be very long;
- filter training corpus based on n-gram-coverage with the dev/test corpus to find relevant parts

Results NIST Chinese–English

Statistics of the phrase tables trained on the genres of the NIST test corpora.

Chinese–English eval-04	editorials	newswire	speeches	
sentences	449	901	438	
selected translations	101	187	113	
size of adapted phrase table	1,981	3,591	2,321	
new phrases in phrase table	679	1,359	657	
adapted phrases used	707	1,314	815	
new phrases used	23	47	25	
Chinese–English eval-06	broadcast	broadcast	newsgroup	newswire
	conversations	news		
sentences	979	1,083	898	980
selected translations	477	274	226	172
size of adapted phrase table	2,155	4,027	2,905	2,804
new phrases in phrase table	1,058	1,645	1,259	1,058
adapted phrases used	759	1,479	1,077	1,115
new phrases used	90	86	88	41

Results: NIST Chinese-English

Translation quality on the NIST 2006 Chinese–English task. Different versions of selection and scoring method.

corpus	selection	scoring	BLEU[%]	mWER[%]	mPER[%]
GALE	baseline		12.7 ± 0.5	75.8 ± 0.6	54.6±0.6
(1 ref.)	keep all		12.9	75.7	55.0
	import.sampl.	norm.score	13.2	74.7	54.1
		confidence	12.9	74.4	53.5
	threshold	norm.score	12.7	75.2	54.2
		confidence	13.6	73.4	53.2
NIST	baseline		27.9±0.7	67.2±0.6	44.0±0.5
(4 refs.)	keep all		28.1	66.5	44.2
	import.sampl.	norm.score	28.7	66.1	43.6
		confidence	28.4	65.8	43.2
	threshold	norm.score	28.3	66.1	43.5
		confidence	29.3	65.6	43.2

More NIST translation examples (1)

baseline	[the capitalist] [system] [, because] [it] [is] [immoral]
	[to] [criticize] [china] [for years] [, capitalism] [, so] [it]
	[didn't] [have] [a set of] [moral values] [.]
transductive	[capitalism] [has] [a set] [of] [moral values] [,] [because]
	[china] [has] [denounced] [capitalism] [,] [so it] [does
	not] [have] [a set] [of moral] [.]
reference	capitalism , its set of morals , because china has crit-
	icized capitalism for many years , this set of morals is
	no longer there .
baseline	[the fact] [that this] [is] [.]
transductive	[this] [is] [the point] [.]
reference	that is actually the point .

Results EuroParl French-English

Translation quality for importance sampling with full re-training, normalized sentence scores, filtered 100k training sentence pairs

