Projet 4: Segmentation des clients d'un site e-commerce

Formation IML 2020

Plan de présentation:

- i. Le contexte du projet
- ii. Les données à disposition
- iii. La préparation des données
- iv. Les différentes méthodes de segmentation
- V. La stabilité des segments dans le temps
- Vi. Les axes d'améliorations

Le contexte du projet :

Olist:

- Une entreprise brésilienne
- Activité de Marketplace
- Nécessite une bonne connaissance des clients

Objectifs:

- Proposer une segmentation client exploitable
- Evaluer la fréquence de mise à jour
- Respecter PEP8 pour rendre réutilisable les codes

Les données:

Les données 10/2016 à 10/2018

9 tables qui contiennent :

Les informations acheteurs et vendeurs (adresse, ville, ...)

99 441 acheteurs, 3 095 vendeurs, 70% des acheteurs sont à SP et RJ

Les informations produits (catégorie, dimensions, nombre des photos, ...)

32 951 produits, 71 catégories

Les informations sur les commandes (dates, valeurs, frais de livraison, satisfactions, type de payement, ...)

La préparation des données :

Nettoyage des données

- Ne garder que le statut « delivered » dans les commandes (97%)
- Ne garder que la période d'achat à partir de 01/01/2017(début réel d'activité)
- Ne pas garder la géolocalisation mais juste les états et les villes
- Supprimer les caractéristiques physique des produits

Fusion des différentes tables

```
customers : (99441, 5)
geolocation : (1000163, 5)
order_items : (112650, 7)
order_payments : (103886, 5)
orders : (99441, 8)
order_reviews : (100000, 7)
products : (32951, 9)
sellers : (3095, 4)
category_name_translation : (71, 2)
AllData: (110 718, 26)
```

Constitution des nouvelles variables.

- Scores Récence-Fréquence-Montant
- Score de satisfaction moyenne, Nombre de type de paiement
- Ancienneté du client, Montant d'un panier moyen
- CA du client par groupe de catégorie de produit

Data: (94 862, 25)

Segmentation

Problème de segmentation pour un apprentissage non supervisé

Les méthodes:

- La méthode RFM classique :
- La méthode k-means :
 - K-means avec les variables RFM
 - k-means avec d'autres variables

Comparer la qualité de segmentation :

- Homogénéité des points dans un cluster
- Distance entre les clusters
- Exploitabilité selon les besoins métiers

Silhouette_score *

^{*} Silhouette_score : métrique avec une valeur comprise entre [-1,1], plus on se rapproche de 1, la prédiction est meilleure

Segmentation: RFM Classique

➤ Scoring à base de quartile*

Variables:

Récence : nbr de jour depuis la dernière commande

Fréquence : Nombre de commandes effectuées

Montant : valeur moyenne de commande en Dollars

Attribution de score de 1 à 4

6 clusters:

- Meilleurs clients
- Clients bon marchés perdus
- Clients fidèles
- Clients presque perdus
- Gros dépensiers
- Autres

Avantage: C'est une segmentation adaptable et facile à comprendre.

Inconvénient : Nombre de variables très limité, la plupart des clients n'ont acheté qu'une fois.

Quartile *: Q1,Q2,Q3,Q4 division des données en 4 parts égaux

Les variables R-F-M

Recherche de nombre de cluster :

Représentation graphique avec T-SNE * :

K-means:

- le centroide , distances euclidiennes entre les points

Recherche des meilleures valeurs de K [0,1,...,20] la somme des moyennes des erreurs quadratiques est stable à k = 5

Qualité: homogénéité, distance entre clusters

- > silhouette_score = 0,361

Les variables R-F-M

Répartition des variables dans chaque cluster :

5 clusters Silhouette_score = 0,361

Constat: Forte ressemblance aux clusters du premier modèle,

Non-adapté à car : 96 % des clients ont commandé une fois, insuffisance des variables d'études malgré le silhouette_score à 0.361

> Des variables supplémentaires :

Satisfaction, ancienneté, cout d'achat moyen, nb type de paiement, quantité des photos

Recherche de nombre de cluster :

- > 7 clusters
- > Silhouette_score = 0,254

Représentation graphique avec T-SNE*:

> Des variables supplémentaires :

Répartition des variables dans chaque cluster :

<u>Cluster 0</u>: très satisfaits de leur(s) achat(s) avec des produits qui ont beaucoup de photos sur le site et un cout d'achat moyen

<u>Cluster 1</u>: très satisfaits de leur(s) achat(s)

<u>Cluster 2</u>: ont fait leur première achat depuis +de 11 mois et n'ont pas commandé depuis très longtemps avec un montant pas cher mais sont satisfaits

<u>Cluster 3</u>: Satisfaits avec un montant moyen assez élevé et dernière commande depuis 3 mois

<u>Cluster 4</u>: acheteurs assez récents et pas content

<u>Cluster 5</u>: très bons clients, contents de leurs achats et achètent pour des montants élevé et fréquemment

<u>Cluster 6</u>: clients assez récents, content de leurs achats, ont acheté au - 2 fois et utilisent +sieurs type de paiements

La méthode la plus adaptée car elle nous permet d'analyser les comportements des clients sur plusieurs angles

Etudes de stabilité :

Stabilité d'un algorithme de segmentation :

- Consistance des résultats de prévision avec différentes données en entrée

1^{er} : Faire une prévision des clusters sur périodes glissantes avec les données de la période de référence en entrainement.

2e: Calculer les clusters des périodes glissantes avec leurs données.

Comparer les résultats grâce à l'ARI *

ARI *: Indice de Rand Ajusté, sa valeur comprise entre [0,1], Si proche de 0 c'est un clustering aléatoire et proche de 1 clustering parfait.

Etudes de stabilité :

Comparaison des résultats ARI:

Le score se dégrade dans le temps et s'accélère à partir de M+6

-> Proposition de MAJ des données tous les 6 mois avant les pics d'activité

Conclusion:

- BDD complètes avec beaucoup de possibilités d'analyse
- Choix des variables influe sur les clusters
- Segmentation à 7 clusters avec des « personnas marketing » identifiés
- Mise à jour des « clusters » tous les 6 mois
- Axes d'améliorations possibles :
 - identifier les poids des variables dans k-means
 - Interface pour rendre les utilisateurs autonomes

Merci pour votre attention

