wygładzanie GPS, przetwarzanie danych 1.0

Generated by Doxygen 1.9.6

1 Namespace Index	1
1.1 Namespace List	1
2 File Index	3
2.1 File List	3
3 Namespace Documentation	5
3.1 kolumnowe Namespace Reference	5
3.1.1 Function Documentation	6
3.1.1.1 autolabel()	6
3.1.2 Variable Documentation	6
3.1.2.1 ax1	6
3.1.2.2 ax2	7
3.1.2.3 figsize	7
3.1.2.4 med_1	7
3.1.2.5 med_2	7
3.1.2.6 med_3	7
3.1.2.7 med_4	7
3.1.2.8 mediana_1	
3.1.2.9 mediana_2	7
3.1.2.10 mediana_3	8
3.1.2.11 mediana_4	8
3.1.2.12 methods 1	8
3.1.2.13 methods_2	8
3.1.2.14 methods 3	
3.1.2.15 methods 4	
3.1.2.16 mse_1	
3.1.2.17 mse_2	
3.1.2.18 mse 3	
3.1.2.19 mse_4	
3.1.2.20 rects1_1	
3.1.2.21 rects1_2	
3.1.2.22 rects1 3	
3.1.2.23 rects1_4	
3.1.2.24 rects2_1	
3.1.2.25 rects2_2	
3.1.2.26 rects2_3	
3.1.2.27 rects2_4	
3.1.2.28 rects3_1	
3.1.2.29 rects3_2	
3.1.2.30 rects3_3	
3.1.2.31 rects3_4	
3.1.2.32 rects4_1	10

3.1.2.33 rects4_2	 10
3.1.2.34 rects4_3	 11
3.1.2.35 rects4_4	 11
3.1.2.36 rmse_1	 11
3.1.2.37 rmse_2	 11
3.1.2.38 rmse_3	 11
3.1.2.39 rmse_4	 11
3.1.2.40 width	 11
3.1.2.41 x	 11
3.2 main Namespace Reference	 12
3.2.1 Function Documentation	 13
3.2.1.1 calculate_groups_errors()	 13
3.2.1.2 calculate_mean_euclidean_error()	 14
3.2.1.3 calculate_mse()	 14
3.2.1.4 calculate_rmse()	 14
3.2.1.5 euclidean_distance()	 16
3.2.1.6 find_closest_point()	 16
3.2.1.7 group_data()	 17
3.2.1.8 group_data_by_original()	 17
3.2.1.9 haversine_distance()	 17
3.2.1.10 interpolate_reference()	 18
3.2.2 Variable Documentation	 18
3.2.2.1 ax	 18
3.2.2.2 axs	 18
3.2.2.3 bbox_to_anchor	 18
3.2.2.4 c	 19
3.2.2.5 color	 19
3.2.2.6 config	 19
3.2.2.7 config_path	 19
3.2.2.8 data_files	 19
3.2.2.9 errors	 19
3.2.2.10 errors2	 19
3.2.2.11 fig	 19
3.2.2.12 figsize	 20
3.2.2.13 full_path	 20
3.2.2.14 group	 20
3.2.2.15 group_colors	 20
3.2.2.16 grouped_original_data	 20
3.2.2.17 grouped_smoothed_data	 20
3.2.2.18 handles	 20
3.2.2.19 hb	 21
3.2.2.20 interpolated_ref_data	 21

3.2.2.21 interpolated_ref_data_np	21
3.2.2.22 label	21
3.2.2.23 lat	21
3.2.2.24 loc	21
3.2.2.25 lon	21
3.2.2.26 mae	21
3.2.2.27 mae2	22
3.2.2.28 match	22
3.2.2.29 max_distance	22
3.2.2.30 mean_error	22
3.2.2.31 mean_error3	22
3.2.2.32 mean_error_no_groups	22
3.2.2.33 mean_error_no_groups2	22
3.2.2.34 median	22
3.2.2.35 median2	23
3.2.2.36 mse	23
3.2.2.37 mse2	23
3.2.2.38 mse_no_groups	23
3.2.2.39 mse_no_groups2	23
3.2.2.40 original_data	23
3.2.2.41 original_path	23
3.2.2.42 point_index	23
3.2.2.43 points	24
3.2.2.44 ref_data	24
3.2.2.45 ref_path	24
3.2.2.46 rmsd	24
3.2.2.47 rmsd2	24
3.2.2.48 rmse	24
3.2.2.49 rmse_no_groups2	24
3.2.2.50 smoothed_coords	24
3.2.2.51 smoothed_data	25
3.2.2.52 smoothed_path	25
3.2.2.53 time	25
4 File Documentation	27
4.1 kolumnowe.py File Reference	27
4.1.1 Detailed Description	28
4.2 main.py File Reference	28
4.2.1 Detailed Description	30
Index	31

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

kolumnowe	 										 											5
main	 										 											12

2 Namespace Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

kolumno	we.py	
	Skrypt do wizualizacji danych błędów dla różnych metod wygładzania w formie wykresów kolum-	
	nowych	27
main.py		
	Główny skrypt obliczający błędy i generujący wykresy	28

File Index

Chapter 3

Namespace Documentation

3.1 kolumnowe Namespace Reference

Functions

• def autolabel (ax, rects)

Funkcja dodająca wartości błędów nad kolumnami na wykresach.

Variables

```
• list methods 1 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med 1 = [2.426e-5, 2.405e-5, 2.422e-5, 1.79e-5, 2.252e-5, 2.5073e-5]
• list mse_1 = [7.712e-10, 7.627e-10, 7.569e-10, 4.457e-10, 6.931e-10, 8.63e-10]
• list rmse_1 = [2.777e-5, 2.762e-5, 2.751e-5, 2.111e-5, 2.632e-5, 2.9378e-5]
• list mediana 1 = [2.208e-5, 2.207e-5, 2.198e-5, 1.623e-6, 2.014e-5, 2.2815e-5]
• list methods_2 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med 2 = [0.0001206, 0.0001204, 0.000121, 0.000107, 0.000119, 0.0001075]
• list mse 2 = [2.149e-8, 2.146e-8, 2.2e-8, 1.585e-8, 2.113e-8, 1.591e-8]
• list rmse 2 = [0.0001466, 0.0001462, 0.0001481, 0.0001259, 0.0001453, 0.0001261]
• list mediana_2 = [9.843e-5, 9.83e-5, 0.00010004, 9.704e-5, 0.00010073, 0.0001008]
• np x = np.arange(len(methods 1))
• float width = 0.2

    ax1

     Tworzenie wykresów kolumnowych dla zestawów danych z Tabeli 1 i Tabeli 2.

    ax2

· figsize
ax1 rects1_1 = ax1.bar(x - 1.5*width, med_1, width, label='MED')

    ax1 rects1 2 = ax1.bar(x - 0.5*width, mse 1, width, label='MSE')

ax1 rects1_3 = ax1.bar(x + 0.5*width, rmse_1, width, label='RMSE')

    ax1 rects1_4 = ax1.bar(x + 1.5*width, mediana_1, width, label='Mediana')

ax2 rects2_1 = ax2.bar(x - 1.5*width, med_2, width, label='MED')
ax2 rects2_2 = ax2.bar(x - 0.5*width, mse_2, width, label='MSE')
ax2 rects2_3 = ax2.bar(x + 0.5*width, rmse_2, width, label='RMSE')

    ax2 rects2 4 = ax2.bar(x + 1.5*width, mediana 2, width, label='Mediana')

• list methods 3 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med 3 = [2.7245e-5, 2.5288e-5, 2.5782e-5, 1.3462e-5, 2.5942e-5, 3.0398e-5]

    list mse_3 = [8.8167e-10, 7.8341e-10, 7.7622e-10, 2.3869e-10, 8.1655e-10, 1.1928e-9]
```

```
list rmse_3 = [2.9692e-5, 2.7989e-5, 2.786e-5, 1.5449e-5, 2.8575e-5, 3.4536e-5]
list mediana_3 = [2.7446e-5, 2.661e-5, 2.7342e-5, 1.4534e-5, 2.3687e-5, 2.8072e-5]
list methods_4 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
list med_4 = [0.0001258, 0.0001174, 0.0001245, 6.505e-5, 0.0001299, 5.986e-5]
list mse_4 = [2.2271e-8, 1.9782e-8, 2.2558e-8, 6.7572e-9, 2.4743e-8, 4.3091e-9]
list rmse_4 = [0.0001492, 0.0001406, 0.0001501, 8.2202e-5, 0.0001573, 6.5647e-5]
list mediana_4 = [0.0001086, 0.000105, 0.0001074, 5.0468e-5, 0.0001117, 5.7155e-5]
ax1 rects3_1 = ax1.bar(x - 1.5*width, med_3, width, label='MED')
ax1 rects3_2 = ax1.bar(x - 0.5*width, rmse_3, width, label='RMSE')
ax1 rects3_4 = ax1.bar(x + 1.5*width, mediana_3, width, label='MED')
ax2 rects4_1 = ax2.bar(x - 1.5*width, med_4, width, label='MED')
ax2 rects4_2 = ax2.bar(x - 0.5*width, mse_4, width, label='MED')
ax2 rects4_3 = ax2.bar(x + 0.5*width, rmse_4, width, label='RMSE')
ax2 rects4_3 = ax2.bar(x + 0.5*width, rmse_4, width, label='RMSE')
ax2 rects4_4 = ax2.bar(x + 1.5*width, mse_4, width, label='RMSE')
ax2 rects4_4 = ax2.bar(x + 0.5*width, rmse_4, width, label='RMSE')
ax2 rects4_4 = ax2.bar(x + 1.5*width, mediana_4, width, label='RMSE')
```

3.1.1 Function Documentation

3.1.1.1 autolabel()

```
\begin{array}{c} \text{def autolabel (} \\ & ax, \\ & rects \text{ )} \end{array}
```

Funkcja dodająca wartości błędów nad kolumnami na wykresach.

Parameters

ax	Oś, na której umieszczony jest wykres.
rects	Lista kolumn, do których będą dodawane wartości błędów.

3.1.2 Variable Documentation

3.1.2.1 ax1

ax1

Tworzenie wykresów kolumnowych dla zestawów danych z Tabeli 1 i Tabeli 2.

Ustawienia osi X, Y oraz etykiet. Wykresy przedstawiają wartości błędów w skali logarytmicznej.

3.1.2.2 ax2

ax2

3.1.2.3 figsize

figsize

3.1.2.4 med_1

```
list med_1 = [2.426e-5, 2.405e-5, 2.422e-5, 1.79e-5, 2.252e-5, 2.5073e-5]
```

3.1.2.5 med_2

list $med_2 = [0.0001206, 0.0001204, 0.000121, 0.000107, 0.000119, 0.0001075]$

3.1.2.6 med_3

list $med_3 = [2.7245e-5, 2.5288e-5, 2.5782e-5, 1.3462e-5, 2.5942e-5, 3.0398e-5]$

3.1.2.7 med 4

list $med_4 = [0.0001258, 0.0001174, 0.0001245, 6.505e-5, 0.0001299, 5.986e-5]$

3.1.2.8 mediana_1

list mediana_1 = [2.208e-5, 2.207e-5, 2.198e-5, 1.623e-6, 2.014e-5, 2.2815e-5]

3.1.2.9 mediana_2

list mediana_2 = [9.843e-5, 9.83e-5, 0.00010004, 9.704e-5, 0.00010073, 0.0001008]

3.1.2.10 mediana_3

```
list mediana_3 = [2.7446e-5, 2.661e-5, 2.7342e-5, 1.4534e-5, 2.3687e-5, 2.8072e-5]
```

3.1.2.11 mediana_4

```
list mediana_4 = [0.0001086, 0.000105, 0.0001074, 5.0468e-5, 0.0001117, 5.7155e-5]
```

3.1.2.12 methods_1

```
list methods_1 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
```

3.1.2.13 methods_2

```
list methods_2 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
```

3.1.2.14 methods_3

```
list methods_3 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
```

3.1.2.15 methods_4

```
list methods_4 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
```

3.1.2.16 mse_1

```
list mse_1 = [7.712e-10, 7.627e-10, 7.569e-10, 4.457e-10, 6.931e-10, 8.63e-10]
```

3.1.2.17 mse_2

```
list mse_2 = [2.149e-8, 2.146e-8, 2.2e-8, 1.585e-8, 2.113e-8, 1.591e-8]
```

3.1.2.18 mse_3

```
{\tt list mse\_3 = [8.8167e-10, 7.8341e-10, 7.7622e-10, 2.3869e-10, 8.1655e-10, 1.1928e-9]}
```

3.1.2.19 mse_4

```
list mse_4 = [2.2271e-8, 1.9782e-8, 2.2558e-8, 6.7572e-9, 2.4743e-8, 4.3091e-9]
```

3.1.2.20 rects1_1

```
ax1 rects1_1 = ax1.bar(x - 1.5*width, med_1, width, label='MED')
```

3.1.2.21 rects1_2

```
ax1 rects1_2 = ax1.bar(x - 0.5*width, mse_1, width, label='MSE')
```

3.1.2.22 rects1_3

```
ax1 rects1_3 = ax1.bar(x + 0.5*width, rmse_1, width, label='RMSE')
```

3.1.2.23 rects1 4

```
ax1 rects1_4 = ax1.bar(x + 1.5*width, mediana_1, width, label='Mediana')
```

3.1.2.24 rects2_1

```
ax2 rects2_1 = ax2.bar(x - 1.5*width, med_2, width, label='MED')
```

3.1.2.25 rects2_2

```
ax2 rects2_2 = ax2.bar(x - 0.5*width, mse_2, width, label='MSE')
```

```
3.1.2.26 rects2_3
```

```
ax2 rects2_3 = ax2.bar(x + 0.5*width, rmse_2, width, label='RMSE')
```

3.1.2.27 rects2_4

```
ax2 rects2_4 = ax2.bar(x + 1.5*width, mediana_2, width, label='Mediana')
```

3.1.2.28 rects3_1

```
ax1 rects3_1 = ax1.bar(x - 1.5*width, med_3, width, label='MED')
```

3.1.2.29 rects3_2

```
ax1 rects3_2 = ax1.bar(x - 0.5*width, mse_3, width, label='MSE')
```

3.1.2.30 rects3_3

```
ax1 rects3_3 = ax1.bar(x + 0.5*width, rmse_3, width, label='RMSE')
```

3.1.2.31 rects3 4

```
ax1 rects3_4 = ax1.bar(x + 1.5*width, mediana_3, width, label='Mediana')
```

3.1.2.32 rects4_1

```
ax2 rects4_1 = ax2.bar(x - 1.5*width, med_4, width, label='MED')
```

3.1.2.33 rects4_2

```
ax2 rects4_2 = ax2.bar(x - 0.5*width, mse_4, width, label='MSE')
```

3.1.2.34 rects4_3

```
ax2 rects4_3 = ax2.bar(x + 0.5*width, rmse_4, width, label='RMSE')
```

3.1.2.35 rects4_4

```
ax2 rects4_4 = ax2.bar(x + 1.5*width, mediana_4, width, label='Mediana')
```

3.1.2.36 rmse_1

```
list rmse_1 = [2.777e-5, 2.762e-5, 2.751e-5, 2.111e-5, 2.632e-5, 2.9378e-5]
```

3.1.2.37 rmse_2

```
list rmse_2 = [0.0001466, 0.0001462, 0.0001481, 0.0001259, 0.0001453, 0.0001261]
```

3.1.2.38 rmse 3

```
list rmse_3 = [2.9692e-5, 2.7989e-5, 2.786e-5, 1.5449e-5, 2.8575e-5, 3.4536e-5]
```

3.1.2.39 rmse_4

```
list rmse_4 = [0.0001492, 0.0001406, 0.0001501, 8.2202e-5, 0.0001573, 6.5647e-5]
```

3.1.2.40 width

```
float width = 0.2
```

3.1.2.41 x

```
np x = np.arange(len(methods_1))
```

3.2 main Namespace Reference

Functions

• def euclidean distance (p1, p2)

Oblicza odległość euklidesową pomiędzy dwoma punktami.

def haversine_distance (coord1, coord2)

Oblicza odległość Haversine pomiędzy dwoma współrzędnymi geograficznymi.

def interpolate_reference (data, num_points)

Interpoluje dane referencyjne, aby uzyskać określoną liczbę punktów.

• def group_data (data)

Grupuje dane wygładzone według grup.

def group_data_by_original (original_data, smoothed_data)

Grupuje dane oryginalne na podstawie grup z danych wygładzonych.

• def calculate_groups_errors (grouped_smoothed_data, grouped_original_data, ref_data)

Oblicza błędy dla grup danych wygładzonych i oryginalnych w odniesieniu do danych referencyjnych.

def find_closest_point (target_point, reference_points)

Znajduje najbliższy punkt do zadanego punktu docelowego wśród punktów referencyjnych.

def calculate_mean_euclidean_error (smoothed_data, ref_data)

Oblicza średni błąd euklidesowy między danymi wygładzonymi a referencyjnymi.

def calculate_mse (smoothed_data, ref_data)

Oblicza średni błąd kwadratowy (MSE).

· def calculate rmse (smoothed data, ref data)

Oblicza pierwiastek z średniego błędu kwadratowego (RMSE).

Variables

- str config path = 'config.yaml'
- yaml config = yaml.safe_load(config_file)
- yaml data_files = config['data_files']
- list original data = []
- list smoothed_data = []
- list ref_data = []
- os full_path = os.path.join(os.getcwd(), file_path)
- re $match = re.search(r'Point (\d+):Latitude:([\d.]+)\sLongitude:([\d.]+)', line)$
- int point_index = int(match.group(1))
- float lat = float(match.group(2))
- float lon = float(match.group(3))
- float mae = float(match.group(4))
- int group = int(match.group(5))
- int time = int(match.group(6))
- np interpolated ref data = np.array(interpolate reference(ref data, len(smoothed data)))
- list smoothed coords = smoothed data[:, 1:3]
- def grouped_smoothed_data = group_data(smoothed_data)
- def grouped_original_data = group_data_by_original(original_data, smoothed_data)
- · mean_error
- mean_error3
- mse
- mse2
- mae2
- rmsd

- rmsd2
- · median
- median2
- · errors
- mean_error_no_groups
- errors2
- def mse_no_groups = calculate_mse(smoothed_data, interpolated_ref_data)
- def rmse = calculate_rmse(smoothed_data, interpolated_ref_data)
- def mean_error_no_groups2 = calculate_mean_euclidean_error(original_data, interpolated_ref_data)
- def mse no groups2 = calculate mse(original data, interpolated ref data)
- def rmse no groups2 = calculate rmse(original data, interpolated ref data)
- np interpolated_ref_data_np = np.array(interpolated_ref_data)
- list group_colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'orange', 'purple', 'brown']
- fig
- ax
- · figsize
- np points = np.array(points)
- label
- · color
- bbox_to_anchor
- loc
- axs
- float max_distance = 0.00018
- list original_path = original_data[:, 1:3]
- list smoothed_path = smoothed_data[:, 1:3]
- np ref path = interpolated ref data
- C
- · handles
- axs hb = axs[1].hexbin(smoothed_data[:, 1], smoothed_data[:, 2], gridsize=50, cmap='inferno')

3.2.1 Function Documentation

3.2.1.1 calculate_groups_errors()

Oblicza błędy dla grup danych wygładzonych i oryginalnych w odniesieniu do danych referencyjnych.

Parameters

grouped_smoothed_data	Zgrupowane dane wygładzone.
grouped_original_data	Zgrupowane dane oryginalne.
ref_data	Dane referencyjne.

Returns

Krotka zawierająca średnie błędy, MSE, MAE, RMSE i mediany błędów dla danych wygładzonych i oryginalnych.

3.2.1.2 calculate_mean_euclidean_error()

Oblicza średni błąd euklidesowy między danymi wygładzonymi a referencyjnymi.

Parameters

smoothed_data	Dane wygładzone.
ref_data	Dane referencyjne.

Returns

Średni błąd euklidesowy i lista błędów dla każdego punktu.

3.2.1.3 calculate_mse()

Oblicza średni błąd kwadratowy (MSE).

Parameters

smoothed_data	Dane wygładzone.
ref_data	Dane referencyjne.

Returns

Wartość MSE.

3.2.1.4 calculate_rmse()

Oblicza pierwiastek z średniego błędu kwadratowego (RMSE).

Parameters

smoothed_data	Dane wygładzone.
ref_data	Dane referencyjne.

Returns

Wartość RMSE.

3.2.1.5 euclidean_distance()

```
def euclidean_distance ( p1, p2 )
```

Oblicza odległość euklidesową pomiędzy dwoma punktami.

Parameters

p1	Pierwszy punkt w formacie (x, y).	
p2	Drugi punkt w formacie (x, y).	

Returns

Odległość euklidesowa pomiędzy p1 a p2.

3.2.1.6 find_closest_point()

Znajduje najbliższy punkt do zadanego punktu docelowego wśród punktów referencyjnych.

Parameters

44	Description of the control of the co
target_point	Punkt docelowy (x, y).
reference_points	Lista punktów referencyjnych (x, y).

Returns

Najbliższy punkt referencyjny do target_point.

3.2.1.7 group_data()

Grupuje dane wygładzone według grup.

Parameters

data	Dane wygładzone w formacie (indeks, szerokość, długość, MAE, grupa, czas).
------	--

Returns

Słownik, gdzie kluczem jest numer grupy, a wartością lista punktów należących do tej grupy.

3.2.1.8 group_data_by_original()

Grupuje dane oryginalne na podstawie grup z danych wygładzonych.

Parameters

original_data	Dane oryginalne w formacie (indeks, szerokość, długość).
smoothed_data	Dane wygładzone w formacie (indeks, szerokość, długość, MAE, grupa, czas).

Returns

Słownik, gdzie kluczem jest numer grupy, a wartością lista punktów oryginalnych należących do tej grupy.

3.2.1.9 haversine_distance()

Oblicza odległość Haversine pomiędzy dwoma współrzędnymi geograficznymi.

Parameters

	coord1	Pierwsza współrzędna w formacie (szerokość, długość).
Ī	coord2	Druga współrzędna w formacie (szerokość, długość).

Returns

Odległość w kilometrach pomiędzy coord1 a coord2.

3.2.1.10 interpolate_reference()

Interpoluje dane referencyjne, aby uzyskać określoną liczbę punktów.

Parameters

data	Lista punktów referencyjnych w formacie (szerokość, długość).
num_points	Liczba punktów do uzyskania po interpolacji.

Returns

Lista interpolowanych punktów w formacie (szerokość, długość).

3.2.2 Variable Documentation

3.2.2.1 ax

ax

3.2.2.2 axs

axs

3.2.2.3 bbox_to_anchor

bbox_to_anchor

3.2.2.4 c

С

3.2.2.5 color

color

3.2.2.6 config

```
yaml config = yaml.safe_load(config_file)
```

3.2.2.7 config_path

```
str config_path = 'config.yaml'
```

3.2.2.8 data_files

```
yaml data_files = config['data_files']
```

3.2.2.9 errors

errors

3.2.2.10 errors2

errors2

3.2.2.11 fig

fig

3.2.2.12 figsize

figsize

3.2.2.13 full_path

```
os full_path = os.path.join(os.getcwd(), file_path)
```

3.2.2.14 group

```
int group = int(match.group(5))
```

3.2.2.15 group_colors

```
list group_colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'orange',
    'purple', 'brown']
```

3.2.2.16 grouped_original_data

```
def grouped_original_data = group_data_by_original(original_data, smoothed_data)
```

3.2.2.17 grouped_smoothed_data

```
def grouped_smoothed_data = group_data(smoothed_data)
```

3.2.2.18 handles

handles

3.2.2.19 hb

```
axs hb = axs[1].hexbin(smoothed_data[:, 1], smoothed_data[:, 2], gridsize=50, cmap='inferno')
```

3.2.2.20 interpolated_ref_data

```
np interpolated_ref_data = np.array(interpolate_reference(ref_data, len(smoothed_data)))
```

3.2.2.21 interpolated_ref_data_np

```
np interpolated_ref_data_np = np.array(interpolated_ref_data)
```

3.2.2.22 label

label

3.2.2.23 lat

```
float lat = float(match.group(2))
```

3.2.2.24 loc

loc

3.2.2.25 lon

```
float lon = float(match.group(3))
```

3.2.2.26 mae

```
mae = float(match.group(4))
```

3.2.2.27 mae2

mae2

3.2.2.28 match

 $\label{eq:condition} \texttt{re match = re.search(r'Point (\d+) : Latitude: ([\d.]+) \slongitude: ([\d.]+)', line)} \\$

3.2.2.29 max_distance

float max_distance = 0.00018

3.2.2.30 mean_error

mean_error

3.2.2.31 mean_error3

mean_error3

3.2.2.32 mean_error_no_groups

mean_error_no_groups

3.2.2.33 mean_error_no_groups2

def mean_error_no_groups2 = calculate_mean_euclidean_error(original_data, interpolated_ref_data)

3.2.2.34 median

median

3.2.2.35 median2

median2

3.2.2.36 mse

mse

3.2.2.37 mse2

mse2

3.2.2.38 mse_no_groups

```
def mse_no_groups = calculate_mse(smoothed_data, interpolated_ref_data)
```

3.2.2.39 mse_no_groups2

```
def mse_no_groups2 = calculate_mse(original_data, interpolated_ref_data)
```

3.2.2.40 original_data

```
np original_data = []
```

3.2.2.41 original_path

```
list original_path = original_data[:, 1:3]
```

3.2.2.42 point_index

```
int point_index = int(match.group(1))
```

3.2.2.43 points

```
np points = np.array(points)
```

3.2.2.44 ref_data

```
np ref_data = []
```

3.2.2.45 ref_path

```
np ref_path = interpolated_ref_data
```

3.2.2.46 rmsd

rmsd

3.2.2.47 rmsd2

rmsd2

3.2.2.48 rmse

```
def rmse = calculate_rmse(smoothed_data, interpolated_ref_data)
```

3.2.2.49 rmse_no_groups2

```
def rmse_no_groups2 = calculate_rmse(original_data, interpolated_ref_data)
```

3.2.2.50 smoothed_coords

```
list smoothed_coords = smoothed_data[:, 1:3]
```

3.2.2.51 smoothed_data

```
list smoothed_data = []
```

3.2.2.52 smoothed_path

```
list smoothed_path = smoothed_data[:, 1:3]
```

3.2.2.53 time

```
int time = int(match.group(6))
```

Chapter 4

File Documentation

4.1 kolumnowe.py File Reference

Skrypt do wizualizacji danych błędów dla różnych metod wygładzania w formie wykresów kolumnowych.

Namespaces

· namespace kolumnowe

Functions

def autolabel (ax, rects)

Funkcja dodająca wartości błędów nad kolumnami na wykresach.

Variables

```
• list methods 1 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med_1 = [2.426e-5, 2.405e-5, 2.422e-5, 1.79e-5, 2.252e-5, 2.5073e-5]
• list mse_1 = [7.712e-10, 7.627e-10, 7.569e-10, 4.457e-10, 6.931e-10, 8.63e-10]
• list rmse_1 = [2.777e-5, 2.762e-5, 2.751e-5, 2.111e-5, 2.632e-5, 2.9378e-5]
• list mediana 1 = [2.208e-5, 2.207e-5, 2.198e-5, 1.623e-6, 2.014e-5, 2.2815e-5]
• list methods_2 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med_2 = [0.0001206, 0.0001204, 0.000121, 0.000107, 0.000119, 0.0001075]
• list mse_2 = [2.149e-8, 2.146e-8, 2.2e-8, 1.585e-8, 2.113e-8, 1.591e-8]
• list rmse_2 = [0.0001466, 0.0001462, 0.0001481, 0.0001259, 0.0001453, 0.0001261]
• list mediana_2 = [9.843e-5, 9.83e-5, 0.00010004, 9.704e-5, 0.00010073, 0.0001008]
• np x = np.arange(len(methods 1))
• float width = 0.2

    ax1

     Tworzenie wykresów kolumnowych dla zestawów danych z Tabeli 1 i Tabeli 2.

    ax2

    figsize

 ax1 rects1 1 = ax1.bar(x - 1.5*width, med 1, width, label='MED')

• ax1 rects1 2 = ax1.bar(x - 0.5*width, mse 1, width, label='MSE')
```

ax1 rects1_3 = ax1.bar(x + 0.5*width, rmse_1, width, label='RMSE')

28 File Documentation

```
    ax1 rects1_4 = ax1.bar(x + 1.5*width, mediana_1, width, label='Mediana')

ax2 rects2_1 = ax2.bar(x - 1.5*width, med_2, width, label='MED')
• ax2 rects2 2 = ax2.bar(x - 0.5*width, mse 2, width, label='MSE')
• ax2 rects2 3 = ax2.bar(x + 0.5*width, rmse 2, width, label='RMSE')

    ax2 rects2 4 = ax2.bar(x + 1.5*width, mediana 2, width, label='Mediana')

• list methods_3 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med 3 = [2.7245e-5, 2.5288e-5, 2.5782e-5, 1.3462e-5, 2.5942e-5, 3.0398e-5]
• list mse 3 = [8.8167e-10, 7.8341e-10, 7.7622e-10, 2.3869e-10, 8.1655e-10, 1.1928e-9]
• list rmse 3 = [2.9692e-5, 2.7989e-5, 2.786e-5, 1.5449e-5, 2.8575e-5, 3.4536e-5]
• list mediana 3 = [2.7446e-5, 2.661e-5, 2.7342e-5, 1.4534e-5, 2.3687e-5, 2.8072e-5]
• list methods 4 = ['SMA', 'LOWESS', 'FMA', 'Filtr Kalmana', 'WMA', 'Dane oryginalne']
• list med_4 = [0.0001258, 0.0001174, 0.0001245, 6.505e-5, 0.0001299, 5.986e-5]
• list mse 4 = [2.2271e-8, 1.9782e-8, 2.2558e-8, 6.7572e-9, 2.4743e-8, 4.3091e-9]
• list rmse 4 = [0.0001492, 0.0001406, 0.0001501, 8.2202e-5, 0.0001573, 6.5647e-5]
• list mediana 4 = [0.0001086, 0.000105, 0.0001074, 5.0468e-5, 0.0001117, 5.7155e-5]

    ax1 rects3 1 = ax1.bar(x - 1.5*width, med 3, width, label='MED')

ax1 rects3_2 = ax1.bar(x - 0.5*width, mse_3, width, label='MSE')

    ax1 rects3 3 = ax1.bar(x + 0.5*width, rmse 3, width, label='RMSE')

    ax1 rects3_4 = ax1.bar(x + 1.5*width, mediana_3, width, label='Mediana')

    ax2 rects4 1 = ax2.bar(x - 1.5*width, med 4, width, label='MED')

    ax2 rects4 2 = ax2.bar(x - 0.5*width, mse 4, width, label='MSE')

    ax2 rects4 3 = ax2.bar(x + 0.5*width, rmse 4, width, label='RMSE')

    ax2 rects4_4 = ax2.bar(x + 1.5*width, mediana_4, width, label='Mediana')
```

4.1.1 Detailed Description

Skrypt do wizualizacji danych błędów dla różnych metod wygładzania w formie wykresów kolumnowych.

Skrypt wykorzystuje dane z tabeli, tworzy wykresy kolumnowe dla różnych parametrów błędów (MED, MSE, RMSE, Mediana) oraz wizualizuje je na wykresach w skali logarytmicznej. Wykresy przedstawiają porównanie metod dla różnych zestawów danych.

4.2 main.py File Reference

Główny skrypt obliczający błędy i generujący wykresy.

Namespaces

· namespace main

Functions

• def euclidean_distance (p1, p2)

Oblicza odległość euklidesową pomiędzy dwoma punktami.

def haversine_distance (coord1, coord2)

Oblicza odległość Haversine pomiędzy dwoma współrzędnymi geograficznymi.

• def interpolate_reference (data, num_points)

Interpoluje dane referencyjne, aby uzyskać określoną liczbę punktów.

def group data (data)

Grupuje dane wygładzone według grup.

• def group_data_by_original (original_data, smoothed_data)

Grupuje dane oryginalne na podstawie grup z danych wygładzonych.

def calculate_groups_errors (grouped_smoothed_data, grouped_original_data, ref_data)

Oblicza błędy dla grup danych wygładzonych i oryginalnych w odniesieniu do danych referencyjnych.

def find closest point (target point, reference points)

Znajduje najbliższy punkt do zadanego punktu docelowego wśród punktów referencyjnych.

def calculate_mean_euclidean_error (smoothed_data, ref_data)

Oblicza średni błąd euklidesowy między danymi wygładzonymi a referencyjnymi.

def calculate mse (smoothed data, ref data)

Oblicza średni błąd kwadratowy (MSE).

def calculate_rmse (smoothed_data, ref_data)

Oblicza pierwiastek z średniego błędu kwadratowego (RMSE).

Variables

- str config_path = 'config.yaml'
- yaml config = yaml.safe load(config file)
- yaml data_files = config['data_files']
- list original_data = []
- list smoothed_data = []
- list ref_data = []
- os full path = os.path.join(os.getcwd(), file path)
- re match = re.search(r'Point (\d+):Latitude:([\d.]+)\sLongitude:([\d.]+)', line)
- int point_index = int(match.group(1))
- float lat = float(match.group(2))
- float lon = float(match.group(3))
- float mae = float(match.group(4))
- int group = int(match.group(5))
- int time = int(match.group(6))
- np interpolated_ref_data = np.array(interpolate_reference(ref_data, len(smoothed_data)))
- list smoothed_coords = smoothed_data[:, 1:3]
- def grouped_smoothed_data = group_data(smoothed_data)
- def grouped original data = group data by original(original data, smoothed data)
- · mean error
- · mean_error3
- mse
- mse2
- mae2
- rmsd
- rmsd2
- median
- median2

30 File Documentation

- · errors
- mean_error_no_groups
- errors2
- def mse no groups = calculate mse(smoothed data, interpolated ref data)
- def rmse = calculate_rmse(smoothed_data, interpolated_ref_data)
- def mean_error_no_groups2 = calculate_mean_euclidean_error(original_data, interpolated_ref_data)
- def mse_no_groups2 = calculate_mse(original_data, interpolated_ref_data)
- def rmse_no_groups2 = calculate_rmse(original_data, interpolated_ref_data)
- np interpolated_ref_data_np = np.array(interpolated_ref_data)
- list group_colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'orange', 'purple', 'brown']
- · fig
- ax
- figsize
- np points = np.array(points)
- label
- · color
- bbox_to_anchor
- loc
- axs
- float max_distance = 0.00018
- list original path = original data[:, 1:3]
- list smoothed_path = smoothed_data[:, 1:3]
- np ref_path = interpolated_ref_data
- C
- handles
- axs hb = axs[1].hexbin(smoothed data[:, 1], smoothed data[:, 2], gridsize=50, cmap='inferno')

4.2.1 Detailed Description

Główny skrypt obliczający błędy i generujący wykresy.

Główny skrypt odpowiedzialny za wczytanie danych, przetworzenie ich i wygenerowanie wszystkich wykresów, a także obli czenie wartości błędów.

Index

autolabel	group
kolumnowe, 6	main, 20
ax main 19	group_colors main, 20
main, 18 ax1	group_data
kolumnowe, 6	main, 16
ax2	group_data_by_original
kolumnowe, 6	main, 17
axs	grouped_original_data
main, 18	main, 20
bbox_to_anchor	grouped_smoothed_data
main, 18	main, 20
	handles
C	main, 20
main, 18	haversine_distance
calculate_groups_errors	main, 17
main, 13	hb
calculate_mean_euclidean_error	main, 20
main, 14	internalate reference
calculate_mse main, 14	interpolate_reference main, 18
calculate rmse	interpolated_ref_data
main, 14	main, 21
color	interpolated_ref_data_np
main, 19	main, 21
config	
main, 19	kolumnowe, 5
config_path	autolabel, 6
main, 19	ax1, 6
deta filos	ax2, 6
data_files	figsize, 7
main, 19	med_1, 7 med_2, 7
errors	med_2, 7 med_3, 7
main, 19	med_5, 7
errors2	mediana_1, 7
main, 19	mediana 2, 7
euclidean_distance	mediana 3, 7
main, 16	mediana 4, 8
	methods_1, 8
fig	methods_2, 8
main, 19	methods_3, 8
figsize kolumnowe, 7	methods_4, 8
•	mse_1, 8
main, 19 find_closest_point	mse_2, 8
main, 16	mse_3, 8
full path	mse_4, 9
main, 20	rects1_1, 9
·-····,·	rects1_2, 9

32 INDEX

rects1_3, 9	grouped_original_data, 20
rects1_4, 9	grouped_smoothed_data, 20
rects2_1, 9	handles, 20
rects2_2, 9	haversine_distance, 17
rects2_3, 9	hb, 20
rects2_4, 10	interpolate_reference, 18
rects3_1, 10	interpolated_ref_data, 21
rects3 2, 10	interpolated_ref_data_np, 21
rects3 3, 10	label, 21
rects3 4, 10	lat, 21
rects4 1, 10	loc, 21
rects4_1, 10	lon, 21
rects4_3, 10	mae, 21
rects4_4, 11	mae2, 21
rmse_1, 11	match, 22
rmse_2, 11	max_distance, 22
rmse_3, 11	mean_error, 22
rmse_4, 11	mean_error3, 22
width, 11	mean_error_no_groups, 22
x, 11	mean_error_no_groups2, 22
kolumnowe.py, 27	median, 22
	median2, 22
label	mse, 23
main, 21	mse2, 23
lat	mse_no_groups, 23
main, 21	mse_no_groups2, 23
loc	original_data, 23
main, 21	original_path, 23
lon	point_index, 23
main, 21	points, 23
	ref_data, 24
mae	ref_path, 24
main, 21	rmsd, 24
mae2	rmsd2, 24
main, 21	rmse, 24
main, 12	
ax, 18	rmse_no_groups2, 24
axs, 18	smoothed_coords, 24
bbox_to_anchor, 18	smoothed_data, 24
c, 18	smoothed_path, 25
calculate_groups_errors, 13	time, 25
calculate_mean_euclidean_error, 14	main.py, 28
calculate mse, 14	match
calculate_rmse, 14	main, 22
color, 19	max_distance
config. 19	main, <mark>22</mark>
3,	mean_error
config_path, 19	main, 22
data_files, 19	mean_error3
errors, 19	main, 22
errors2, 19	mean_error_no_groups
euclidean_distance, 16	main, 22
fig, 19	mean_error_no_groups2
figsize, 19	main, 22
find_closest_point, 16	med 1
full_path, 20	kolumnowe, 7
group, 20	med_2
group_colors, 20	kolumnowe, 7
group_data, 16	med 3
group_data_by_original, 17	
 .	

INDEX 33

kolumnowe, 7	kolumnowe, 9
med_4	rects2_2
kolumnowe, 7	kolumnowe, 9
median	rects2_3
main, 22	kolumnowe, 9
median2	rects2_4
main, 22	kolumnowe, 10
mediana_1	rects3_1
kolumnowe, 7	kolumnowe, 10
mediana_2	rects3_2
kolumnowe, 7	kolumnowe, 10
mediana_3	rects3_3
kolumnowe, 7	kolumnowe, 10
mediana_4	rects3_4
kolumnowe, 8	kolumnowe, 10
methods_1	rects4_1
kolumnowe, 8	kolumnowe, 10
methods_2	rects4_2
kolumnowe, 8	kolumnowe, 10
methods_3	rects4_3
kolumnowe, 8	kolumnowe, 10
methods_4	rects4_4
kolumnowe, 8	kolumnowe, 11
mse	ref_data
main, 23	main, 24
mse2	ref_path
main, 23	main, 24
mse_1	rmsd
kolumnowe, 8	main, 24
mse_2	rmsd2
kolumnowe, 8	main, 24
mse_3	rmse
kolumnowe, 8	main, 24
mse_4	rmse_1
kolumnowe, 9	kolumnowe, 11
mse_no_groups	rmse_2
main, 23	kolumnowe, 11
mse_no_groups2	rmse_3
main, 23	kolumnowe, 11
original_data	rmse_4
main, 23	kolumnowe, 11
original_path	rmse_no_groups2
main, 23	main, 24
man, 20	smoothed_coords
point index	main, 24
main, 23	smoothed_data
points	main, 24
main, 23	smoothed_path
,	main, 25
rects1_1	
kolumnowe, 9	time
rects1_2	main, 25
kolumnowe, 9	,
rects1_3	width
kolumnowe, 9	kolumnowe, 11
rects1_4	
kolumnowe, 9	X
rects2_1	kolumnowe, 11