(19) 日本国特許庁(JP)

# (12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-244575

J

(43)公開日 平成9年(1997)9月19日

(51) Int. C1. 6

G09G

3/28

識別記号

庁内整理番号 4237-5 H FΙ

G 0 9 G 3/28

技術表示箇所

|          | 審査請求 未請求 請求項の数2 | OL       | (全8頁)                                     |
|----------|-----------------|----------|-------------------------------------------|
| (21)出願番号 | 特願平8-49683      | (71)出願人  | 000005223<br>富士通株式会社                      |
| (22) 出願日 | 平成8年(1996)3月7日  |          | 神奈川県川崎市中原区上小田中4丁目1番1<br>号                 |
|          |                 | (72) 発明者 | 栗田 好正<br>神奈川県川崎市中原区上小田中1015番地<br>富士通株式会社内 |
|          |                 | (72) 発明者 | 富尾 重寿<br>神奈川県川崎市中原区上小田中1015番地<br>富士通株式会社内 |
|          |                 | (72) 発明者 | 坂本 哲也<br>神奈川県川崎市中原区上小田中1015番地<br>富士通株式会社内 |
|          |                 | (74)代理人  | 弁理士 有我 軍一郎                                |

## (54) 【発明の名称】プラズマ・ディスプレイ・パネルの駆動装置

## (57)【要約】

【課題】 ABL機能の動作範囲における輝度コントロールの操作フィーリングを改善する。

【解決手段】 サスティン周波数によって輝度を変更するPDPの表示率情報を検出する表示率検出手段、PDPの輝度を設定する輝度設定手段、輝度設定値に応じて変換テーブル内の多数の特性線の一つを選択する変換テーブル選択手段、選択特性線を表示率情報で参照してサスティン周波数を決定するサスティン周波数決定手段を備える。変換テーブル内のすべての特性線は、所定の最大サスティン周波数から所定の最小サスティン周波数があまでの間の周波数範囲内で、前記表示率情報に応じたサスティン周波数の決定特性を有すると共に、同一の表示率情報に対応する特性線ごとのサスティン周波数が異なる。

## 本発明の原理図



#### 【特許請求の範囲】

【請求項1】サスティン周波数によって輝度を変更する プラズマ・ディスプレイ・パネルの点灯画素数若しくは 該点灯画素数の割り合いを表す表示率情報を検出する表 示率検出手段と、

前記プラズマ・ディスプレイ・パネルの輝度を設定する 輝度設定手段と、

該輝度設定手段の設定値に応じて所定の変換テーブル内 の多数の特性線の一つを選択する変換テーブル選択手段 と、

選択された特性線を前記表示率情報で参照してサスティ ン周波数を決定するサスティン周波数決定手段とを備 え、

前記変換テーブル内のすべての特性線は、所定の最大サ スティン周波数から所定の最小サスティン周波数までの 間の周波数範囲内で、

前記表示率情報に応じたサスティン周波数の決定特性を 有すると共に、

同一の表示率情報に対応する特性線ごとのサスティン周 波数が異なることを特徴とするプラズマ・ディスプレイ 20 ・パネルの駆動装置。

【請求項2】前記表示率検出手段は、プラズマ・ディス プレイ・パネルの消費電力又は該消費電力に比例する物 理量を前記表示率情報と見做すことを特徴とする請求項 1記載のプラズマ・ディスプレイ・パネルの駆動装置。 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、プラズマ・ディス プレイ・パネル(以下「PDP」)の駆動装置に関し、 特に、点灯画素数が一定の限度を超えると自動的に電流 30 を制限する、いわゆる省電力化自動制限(ABL: auto brightness limiter) 機能を備えた駆動装置に関す

## [0002]

【背景説明】平面型表示装置の一種であるPDPは、パ ネルの構造がきわめて単純で電極をはじめパネルの構造 体のすべてを厚膜印刷技術で容易に形成できる特長か ら、特に高精細表示用の表示装置に用いて好適である が、反面、自己発光表示のために消費電力が基本的に大 きいという欠点があり、主要な用途であるノート型やラ 40 ップトップ型パソコンの電池駆動化の動きの中で、かか る欠点を解消できる有用な技術が求められている。

#### [0003]

### 【従来の技術】

## (1) PDPの基本構造

PDPの最も基本的な構造は、2枚の平板ガラスに規則 的に配列した一対の電極(陽極と陰極)を設け、その間 にNeを主体とするガスを封入するというものである。 陽極と陰極間に電圧を印加すると、電極周辺の微小な空 オレンジ色に発光する。この発光を利用して表示する。 任意の情報を表示するためには、規則的に並んだ放電セ ルを選択的に放電発光させればよい。

## (2) 直流型PDPと交流型PDP

PDPには、電極が放電セルに露出している直流型(D C型とも言う)と、絶縁層で覆われている交流型(AC 型とも言う) の二つのタイプがあり、主流は後者の交流 型である。直流型PDPは、電圧印加時間、すなわちパ ルス幅を変えることによって容易に明るさを変化させる 10 ことができ、中間調表示を得やすいという利点がある が、画面の輝度の点で交流型PDPに劣る。交流型PD Pは、陽極と陰極を誘電体層で覆っているところに構造 上の特徴がある。陽極と陰極間に数十~100KHz程 度の交流電圧を印加し、電極の交点で放電発光させる。 放電空間に発生した電子とイオンは電界に沿って移動 し、正電極側及び負電極側の誘電体層表面に蓄積されて 印加電圧と逆極性の電界を形成する。その結果、放電空 間の実効電圧が低下し、放電は短時間で終了する。誘電 体層表面の電荷(壁電荷)は、印加電圧をなくした後も 残留 (いわゆるメモリ効果) するため、次回に逆極性の 外部電圧を印加したときは、この壁電荷分が重畳された 電圧となり、その分だけ低い電圧で放電が開始する。し たがって、交流型PDPでは、走査のための書き込み期 間外でも、比較的に低い電圧のサスティンパルスを与え るだけで放電を維持できるため、駆動系のデューティ時 間を長くとることができ、画面の輝度を高めることがで きる。

#### (3) 2電極型と3電極型

交流型 PDPには、2枚の基板のそれぞれに陽極と陰極 を設けた2電極型(図3)と、一方の基板に陽極と陰極 を設けるとともに、他方の基板に第三の電極(いわゆる アドレス電極:「A電極」と略すこともある)を設けた <sub>―</sub> 3電極型 (図4) がある。なお、電極の"陽/陰"は印 加電圧の極性で決まり、駆動方法によっては極性反転も あるから、一般的にパネルの座標軸(X、Y)を付けて 呼び表される。

【0004】図3 (2電極型) において、1、2はガラ ス基板、3はX電極、4はY電極、5、6は誘電体層、 7は放電空間であり、また、図4 (3電極型) におい て、11、12はガラス基板、13はA電極、14はX 電極 (バス電極14aと透明電極14bを積層したも の)、15はY電極 (バス電極15aと透明電極15b を積層したもの)、16は紫外線励起蛍光体(以下、単 に蛍光体)、17はMgO膜、18は誘電体層、19は 放電空間である。

【0005】2電極型は、X電極3とY電極4が放電空 間7に対して対向する形になっており、構造が簡単で作 りやすいというメリットがある反面、カラーPDPに適 用すると、蛍光体の劣化を招きやすいという欠点があ 間(放電空間または放電セル)でグロー放電が起こって 50 る。カラーPDPでは、2枚の基板1、2のどちらかに

3

蛍光体を塗布しなければならず、放電の際に発生する荷 電粒子がこの蛍光体に直接飛び込むからである。

【0006】これに対して、3電極型PDPでは、X電極14とY電極15が片側の基板12にまとめられており、X電極14とY電極15の間の放電は、この片側の基板12の面方向にしか発生しない(いわゆる「面放電型」の構造)。したがって、対向側の基板11に蛍光体16を塗布しておけば、この蛍光体16と放電空間19とを空間的に分離することができ、荷電粒子の蛍光体への直接的な飛び込みを回避して、蛍光体16の劣化を防10止できる。

【0007】図5は3電極型カラーPDPの概略断面構造図(A電極を横切る方向の断面構造図)であり、2 1、22はガラス基板、23はA電極、24はY電極 (またはX電極)、25は誘電体層、26は隔壁、27 は放電空間、28は蛍光体である。なお、MgO膜や X、Y電極の積層構造などは図示を略してある。

#### (4) サプフレーム方式

このような3電極型カラーPDPの駆動方法として、1 フレームをたとえば8個のサブフレームに分割し、各サ 20 ブフレームの維持放電期間を1:2:4:8:16:3 2:64:128の比率に設定するとともに、これらの サブフレームを組み合わせて多階調表示を実現する、い わゆる「サブフレーム方式」が知られている。

【0008】図6はサブフレーム方式のフレーム構造概念図であり、1フレームは8個のサブフレームSF $_1$  ~ SF $_8$  で構成されている。各サブフレームは三つの期間、すなわち「リセット期間」「アドレス期間」及び「維持放電期間」からなり、最初の二つの期間の長さは同一であるが、維持放電期間  $t_1$  ~  $t_8$  は上記比率のとおり異なっている。なお、 $t_1$ 、 $t_2$ 、……、 $t_8$  は水平走査線であり、各サブフレームのアドレス期間内の太斜線は、 $t_1$ 、 $t_2$ 、……、 $t_8$  を線順次で選択している様子を表している。

【0009】図7は1サブフレームにおける波形タイミング図である。なお、以下の説明で使用する電圧値は一例であり、これに限定するものではない。リセット期間では、まず、すべてのY電極に0Vを与えながら、放電に必要な充分な電位差を与えるために、アドレス電極に+110V程度の正パルス30を与えた状態で、X電極40に+330V程度の正パルス31(全面書き込みパルスとも言う)を与える。これにより、すべてのセルで放電が生じる。次に、アドレス電極とX電極に0Vを与えて再びすべてのセルで放電を生じさせると、この放電は、電極間の電位差がゼロのため、壁電荷が形成されずに自己中和して終息し、いわゆる自己消去放電が行われる。【0010】アドレス期間では、X電極に+50V程度の正電圧32を与えながら、Y電極に線順次で-150~-160V程度の負パルス33(以下「スキャンパル

ス」)を印加し、且つ、アドレス電極に選択的に+60 50

V程度の正パルス34(以下「アドレスパルス」)を印加する。なお、スキャンパルスを印加しないY電極には -50~-60 V程度の負電圧35を印加しておく。アドレスパルス34を印加したアドレス電極と、スキャンパルス33を印加したY電極との間には、放電に必要な充分な電位差(210~220 V程度)があるため、両電極間に放電(以下「主アドレス放電」)が生じる。一方、X電極とY電極の間のスキャンパルス部分の電位差は200~210 V程度で、アドレス電極との間よりも10 V程度低く、この電位差だけでは自主放電が生じないが、上記の主アドレス放電を引き金(トリガ)にして X電極とY電極の間でも放電(以下「従アドレス放電」)が生じるため、その交点に位置する誘電体層に壁電荷が形成される。

【0011】維持放電期間(サスティン期間とも言う)では、X電極とY電極に+180V程度の正パルス36 (サスティンパルス)を交互に印加し、壁電荷を利用した維持放電を発生する。サスティンパルス36の周期はすべてのサブフレームにおいて同じである。したがって、各サプフレームにおけるサスティンパルス36の数は、1n:2n:4n:8n:16n:32n:64n:128nの比関係となり、表示階調に応じてサプフレームを選択し又は組み合わせて使用することにより、0から256階調(上記比率の場合)までを実現できる。但し、nはサスティンパルス39の周波数(以下「サスティン周波数」)で決まる整数である。

(5) プラズマ・ディスプレイ・パネル及びその駆動装 置の概略構成

「維持放電期間」からなり、最初の二つの期間の長さは 図 8 は、交流型 P D P 及びその駆動装置の構成図であ同一であるが、維持放電期間  $t_1 \sim t_0$  は上記比率のと 30 る。この図において、40 は交流型 P D P (以下「パネおり異なっている。なお、 $L_1$ 、 $L_2$ 、……、 $L_n$  は水 ル」と略す)、41 はアドレスドライバ、42 は Y スキ平走査線であり、各サプフレームのアドレス期間内の太 マンドライバ、43 は Y 共通ドライバ、44 は X 共通ド タ線は、 $L_1$ 、 $L_2$ 、……、 $L_n$  を線順次で選択してい ライバ、45 は制御回路である。

【0012】制御回路45は、表示データ制御部45aとパネル駆動制御部45bとを含み、表示データ制御部45aは、外部から与えられる表示データ(DATA)をフレームメモリ45cに一時的に記憶するとともに、このフレームメモリ45c内のデータに対して所定の信号操作とタイミング処理を施してアドレスドライバ41に出力する。パネル駆動制御部45bは、スキャンドライバ制御部45dや共通ドライバ制御部45eを含み、外部から与えられる垂直同期信号(Vsync)及び水平同期信号(Hsync)に基づいて各種タイミング信号を発生し、表示データ制御部45a、Yスキャンドライバ42、Y共通ドライバ43及びX共通ドライバ44などに供給する。

【0013】アドレスドライバ41は、パネル40のアドレス電極(A<sub>1</sub>、A<sub>2</sub>、…、A<sub>n</sub>)に対してアドレスパルスを選択的に印加するもの、また、Yスキャンドライバ42は、パネル40のY電極(Y<sub>1</sub>、Y<sub>2</sub>、

Ya、……、Ya) に対してスキャンパルスを線順次で 印加するものであり、これらのアドレスパルス及びスキ ャンパルスは、1サプフレーム中の「アドレス期間」に おいて発生する。

【0014】 Y共通ドライバ43は、1サブフレーム中 の「維持放電期間」において、(Yスキャンドライバ4 2を通して) パネル40のすべてのY電極にサスティン パルスを同時に印加し、X共通ドライバ44は、1サブ フレーム中の「リセット期間」において、パネル40の すべてのX電極に所定の全面書き込みパルスを同時に印 10 加するとともに、1サブフレーム中の「維持放電期間」 において、同X館極にサスティンパルスを同時に印加す。 るものである。

【0015】ここで、46は輝度コントロール用の可変 抵抗(以下「輝度コントロール」と言う)である。この 輝度コントロール46を操作することによって「表示率 ーサスティン周波数特性」(後述)を切り換え、パネル 40の輝度 (brightness) を加減するようになってい る。

#### (6) ABL機能

一般に、PDPの消費電力は点灯画素数(表示率)に左 右される。すなわち、最大の電力はすべての画素が点灯 しているとき (表示率100%) であり、最小の電力は すべての画素が消灯しているとき(表示率0%)であ る。上限の消費電力Pmaxは、主に、仕様要求で決ま る。例えば、640×480画素の10インチ・バック ライト付液晶パネルと同等の仕様要求であれば、Pma x=6W程度になるであろう。上記のとおり、PDPの 消費電力は表示率100%で最大になるため、この表示 率100%のときの電力をPmaxに設定すれば簡単で 30 あるが、パソコンの通常動作範囲における表示率は高々 30%程度であるから、通常動作範囲における電力とPmaxとの間に余裕がありすぎ、オーバースペックを否 めない。

【0016】そこで、表示率があらかじめ定められた基 準の表示率(例えば通常動作範囲における表示率を若干 上回る程度の表示率)を超えた場合に、サスティン周波 数を下げて(雪い換えれば上述の比率の"n"を小さく して)、PDPの電力消費をPmaxに抑えることが行 われている。図9は、ABL機能の模式図である。この 40 図において、縦軸の上半分は電力、下半分はサスティン 周波数、横軸は表示率を表している。表示率の上昇に伴 って増加する電力がPmaxでリミットされるようにな っている。周波数軸と表示率軸の交差領域に記載された 複数の線T1~T。は、それぞれ「表示率-サスティン周 波数特性」を示す線である。これらの特性線T1~T=の 一つが、図8の輝度コントロール46の操作位置(輝度 設定値)応じて選択される。

【0017】輝度設定値を最大輝度にしたときは、一番

率の上昇に伴って増大する電力がPmaxに一致するま での間はサスティン周波数を一定に保ち、Pmaxを超 えた後(折れ点C。以降)はサスティン周波数を下げる ように働く。輝度を一段下げると、その上の特性線下 ----が選択される。この特性線 T--- も同様に、 Pmax を超えた後(折れ点C-1以降)はサスティン周波数を 下げるように働く。他の特性線Ti(iはm-2、… …、3、2、1) も同様に、Pmaxを超えた後(折れ) 点Cx以降)はサスティン周波数を下げるように働く。 [0.018]

【発明が解決しようとする課題】しかしながら、かかる

従来のPDPの駆動装置にあっては、以下の理由から、 ABL機能の動作範囲における輝度コントロールの操作 フィーリングが悪いという問題点があった。上述したよ うに、輝度コントロールを最大輝度に設定すると、図9 の一番下の特性線T.が選択され、あるいは、最小輝度 に設定すると一番上の特性線T<sub>1</sub>が選択される。すなわ ち、輝度コントロールの操作に伴って各特性線Ti、 T<sub>2</sub>、T<sub>3</sub>、……、T<sub>2-2</sub>、T<sub>2-1</sub>、T<sub>2</sub>が順次に選択さ 20 れ、その結果、サスティン周波数が切り替わってPDP の輝度が変化するが、表示率がABL機能の動作範囲 (図9の符号イ参照) にあるときは、例えば、輝度コン トロールを最大輝度から最小輝度まで操作しても"ある 点"まではまったくサスティン周波数が切り替わらず (したがって輝度が変化せず)、その点を通過すると急 激に輝度が変化し始めるという好ましくない操作フィー リングとなる。

【0019】"ある点"は、表示率の軸から下ろした垂 線と選択された特性線との交点で与えられる。この交点 が特性線の斜線部分(CaからCaの間の部分)に位置し ていると、上記の好ましくない操作フィーリングにな --る。例えば、"ある点"がC3とC2との間のX位置にあ れば、特性線T\_からToまでの間では、サスティン周波 数がまったく変化しないから、あたかも、輝度コントロ ールが効かなくなったような感覚を受ける。

【0020】そこで、本発明は、ABL機能の動作範囲 における輝度コントロールの操作フィーリングを改善す ることを目的とする。

#### [0021]

【課題を解決するための手段】図1において、本発明の プラズマ・ディスプレイ・パネルの駆動装置は、サステ ィン周波数によって輝度を変更するプラズマ・ディスプ レイ・パネル (PDP) 1の点灯画素数若しくは該点灯 画素数の割り合いを表す表示率情報を検出する表示率検 出手段2と、前記プラズマ・ディスプレイ・パネル1の 輝度を設定する輝度設定手段3と、該輝度設定手段3の 設定値に応じて所定の変換テープル内の多数の特性線の 一つを選択する変換テーブル選択手段4と、選択された 特性線を前記表示率情報で参照してサスティン周波数を 下側の特性線T\_が選択される。この特性線T\_は、表示 50 決定するサスティン周波数決定手段 5 とを備え、前記変

換テーブル内のすべての特性線は、所定の最大サスティン周波数から所定の最小サスティン周波数までの間の周波数範囲内で、前記表示率情報に応じたサスティン周波数の決定特性を有すると共に、同一の表示率情報に対応する特性線ごとのサスティン周波数が異なることを特徴とする。

【0022】若しくは、前記表示率検出手段2は、プラズマ・ディスプレイ・パネル1の消費電力又は販消費電力に比例する物理量を前記表示率情報と見做すことを特徴とする。

#### [0023]

【発明の実施の形態】以下、本発明の実施例を図面に基づいて説明する。本実施例のポイントは、サブフレーム方式・ABL機能付交流型PDPの輝度コントロールの操作フィーリングを改善するために、当該PDPの「表示率ーサスティン周波数変換テーブル」を改良した点にある。なお、サブフレーム方式、ABL機能及び交流型PDPの原理並びにその構成については、適宜に従来技術の説明を参照することにする。

【0024】図2は本実施例における「表示率ーサステ 20 ィン周波数変換テーブル」を示す概念図であり、従来技術の図9に対応するものである。図2において、縦軸の上半分は電力、下半分はサスティン周波数、横軸は表示率を表している。表示率の上昇に伴って増加する電力がPmaxでリミットされる点で従来技術と共通するが、周波数軸と表示率軸の交差領域に記載された複数の特性線T<sub>1</sub>′~T<sub>=</sub>′の形状の点で一致しない。

【0025】すなわち、すべての特性線 $T_1$ '~ $T_2$ 'は、所定の最大サスティン周波数  $f_1$ から所定の最小サスティン周波数  $f_2$ なの間の周波数範囲  $f_3$ な内で、①表示率に応じたリニアなサスティン周波数の決定特性を有すると共に、さらに、②同一の表示率(例えば表示率 a)に対応する特性線ごとのサスティン周波数( $f_1$ 、 $f_2$ 、 $f_3$ 、……、 $f_{1-2}$ 、 $f_{1-1}$ 、 $f_{1-2}$ )が異なるような、適宜な形状を持っている。

【0026】具体的には、輝度コントロール(図8の符号46参照)を最大輝度に設定したときに選択される特性線 $T_n$ 」は、高周波数側の折れ点 $A_{1n}$ を $f_{1n}$ に一致させると共に、低周波数側の折れ点 $A_{1n}$ を $f_{1n}$ に一致させ、かつ、 $f_{1n}$  公範囲で、表示率に応じたリニアなサスティ 40 ン周波数の決定特性が得られるように、 $A_{1n}$  と $A_{1n}$  との間を斜めの線で結んでいる。また、輝度コントロールを最小輝度に設定したときに選択される特性線 $T_n$  は、高周波数側の折れ点 $A_{1n}$  を $f_{1n}$  に一致させると共に、低周波数側の折れ点 $A_{1n}$  を $f_{1n}$  に一致させ、かつ、 $f_{1n}$  の範囲で、表示率に応じたリニアなサスティン周波数の決定特性が得られるように、 $f_{1n}$  と $f_{1n}$  と $f_{1n}$  と $f_{1n}$  の間を斜めの線で結んでいる。さらに、輝度コントロールを最大輝度と最小輝度の間の任意の輝度に設定したときに選択される特性線 $T_n$  ( $f_{1n}$  は $f_{1n}$  、 $f_{1n}$ 

は、高周波数側の折れ点AHJをfHに一致させると共に、低周波数側の折れ点ALJをfLに一致させ、かつ、f Δの範囲で、表示率に応じたリニアなサスティン周波数の決定特性が得られるように、AHJとALJとの間を斜めの線で結んでいる。

【0027】そして、すべての特性線T1′、T2′、T

s'、……、 $T_{=-2}'$ 、 $T_{=-1}'$ 、 $T_{=}'$  の高周波側の折れ 点 $A_{H1}$ 、 $A_{H2}$ 、 $A_{H3}$ 、……、 $A_{H4}$ —2、 $A_{H4}$ —1、 $A_{H4}$ 及び 低周波側の折れ点 $A_{L1}$ 、 $A_{L2}$ 、 $A_{L3}$ 、……、 $A_{L4}$ —2、 $A_{L4}$ 10  $L_{2}$  、 $A_{L4}$  、表示軸方向にずらされている。このよう な「表示率ーサスティン周波数変換テーブル」によれ ば、 $A_{L4}$  と機能の動作範囲内に表示率(便宜的にa)が 入っているときに輝度コントロールを操作した場合、各 特性線 $T_1'$ 、 $T_2'$ 、 $T_3'$ 、……、 $T_{4-2}'$ 、  $T_{4-1}'$ 、 $T_{4}$  によって決定されるサスティン周波数 が、 $f_1$ 、 $f_2$ 、 $f_3$ 、……、 $f_{4-2}$ 、 $f_{4-1}$ 、 $f_{4-2}$  を等間隔 に変化するから、輝度コントロールの操作量と実際の輝 度変化とが一対一に対応して、操作フィーリングを悪化 させることはない。

【0028】なお、かかる変換テーブルを参照するための「表示率」としては、PDPの点灯画素数を直接用いてもよいし、点灯画素と非点灯画素の比(すなわち点灯画素の割り合い)を用いてもよい。又は、点灯画素数とPDPの消費電力との間には相関関係があるから、この消費電力若しくは消費電力に比例する物理量(一般には消費電力の電流変換値)を用いてもよい。

【0029】また、本実施例の「表示率ーサスティン周 波数変換テーブル」は、いわゆるテーブルマップの形で 構成できる他、例えば、関数演算器を用いたり、ハード 30 ロジックで構成したりすることができる。

#### [0030]

【発明の効果】本発明によれば、「ABL機能付PDPにおいて、そのABL機能の動作範囲における輝度コントロールの操作フィーリングを改善できるという従来技術にない有利な効果が得られる。

#### 【図面の簡単な説明】

【図1】本発明の原理図である。

【図2】一実施例の表示率ーサスティン周波数変換テー ブルの概念図である。

【図3】2電極型PDPの断面構造図である。

【図4】3電極型PDPの断面構造図である。

【図5】3電極型PDPの断面構造図である。

【図6】サブフレーム方式のフレーム構成図である。

【図7】1サプフレームの波形タイミング図である。

【図8】交流型PDP及びその駆動装置の概略構成図である。

【図9】従来の表示率-サスティン周波数変換テーブル の概念図である。

#### 【符号の説明】

50 1:プラズマ・ディスプレイ・パネル

2:表示率検出手段

3:輝度設定手段

4:変換テーブル選択手段

5:サスティン周波教決定手段

 $T_1'$  ,  $T_2'$  ,  $T_5'$  , .....,  $T_{n-2}'$  ,  $T_{n-1}'$  ,

【図1】

## 本発明の原理図



[図3]

## 2電極型PDPの断面構造図



【図4】



T\_':特性線

f R: 最大サスティン周波数 f<sub>L</sub>:最小サスティン周波数

f Δ:周波数範囲

【図2】

10

## 一実施例の表示率ーサスティン周波数変換

テーブルの概念図



[図5]

【図6】

## 3電極型PDPの断面構造図

C

サブフレーム方式のフレーム構成図



[図7]



[図8]



[図9]

## 従来の表示率ーサスティン周波数変換

テーブルの概念図

