Problem 1 =

1) 1000000000n^2<=1000000001n^2| O(g(n))=O(n^2) n^3<= 2n^3 | O(g(n))=O(n^3)

 $O(n^3)$ is asymptotically greater since when we are solving for big O seeing that n^3 is greater than 10000000000^2

Another way is because the exponent is bigger

2) $n^2\log(n) vs n^*((\log(n))^10)$

 $n^2\log(n)$ is greater because of log law, since when multiply by log instead of n^2 we get $\log(n^2)+\log(\log(n))$ vs $\log(n)+\log(\log(n)^10)$. 2 log (n)vs $\log(n)$ means that the left is greater than the right.

3) $n^{\log(n)} vs 2^{(sqrt(2))} \log(n)(\log(n)) vs sqrt(n) \log(2) \log((\log(n))^2) vs \log(sqrt(n) \log(2)) 2 (\log(\log(n))) vs \log(sqrt(n)) + \log(\log(2)) hence we state that 2^{(sqrt(2) is greater.)}$

4) These are equal since when we simplify both into big O We see that both functions are under the same O(2ⁿ) hence when compared their constants which shows 2²n is greater than 2ⁿ

Problem 2 =

Best case = n is O(1)since if the case is even or multiple of 2 it only runs once and then it will exit the method

Worst case = O(sqrt(n)) because

- i*i=n
- i^2=n
- i=sqrt(n)

Average Case= O(sqrt(n)) because for defining theta we need for g(n) to be the same hence why theta takes the worst case which is the same.