4章 微分方程式

BASIC

192 (
$$1$$
) $x=C_1e^{-2t}+C_2$ より
$$\frac{dx}{dt}=-2C_1e^{-2t}$$

$$\frac{d^2x}{dt^2}=4C_1e^{-2t}=-2\cdot\left(-2C_1e^{-2t}\right)=-2\frac{dx}{dt}$$
 また, 2 個の任意定数を含むから,一般解である.

(2)
$$x=C_1e^{-2t}+C_2$$
 に , $t=0,\;x=1$ を代入して

$$\frac{dx}{dt}=-2C_1e^{-2t}$$
 に , $t=0$, $\frac{dx}{dt}=2$ を代入して $2=-2C_1\cdots 2$

② より ,
$$C_1=-1$$

これを ① に代入して , $1=-1+C_2$

これより , $C_2=2$

よって, $x=-e^{-2t}+2$

(3)
$$x = C_1 e^{-2t} + C_2$$
 に, $t = 0$, $x = 0$ および, $t = 1$, $x = 1$

を代入すると

これより,
$$C_1(e^{-2}-1)=1$$
 であるから, $C_1=rac{1}{e^{-2}-1}$

これと ① より,
$$C_2=-C_1=-rac{1}{e^{-2}-1}$$

これと① より,
$$C_2=-C_1=-rac{1}{e^{-2}-1}$$
 よって, $x=rac{1}{e^{-2}-1}e^{-2t}-rac{1}{e^{-2}-1}$ であるから, $e^{-2t}-1$

193 (1)
$$x = \sin 2t$$
 とおく.

$$\frac{dx}{dt} = 2\cos 2t$$
$$\frac{d^2x}{dt^2} = -4\sin 2t$$

これらを方程式の左辺に代入すると

左辺 =
$$-4\sin 2t + 4\sin 2t = 0$$

よって, $x = \sin 2t$ は与えられた微分方程式の解である.

同様に, $x = \cos 2t$ とおく.

$$\frac{dx}{dt} = -2\sin 2t$$
$$\frac{d^2x}{dt^2} = -4\cos 2t$$

これらを方程式の左辺に代入すると

左辺 =
$$-4\cos 2t + 4\cos 2t = 0$$

よって, $x = \cos 2t$ は与えられた微分方程式の解である.

$$(2) x = C_1 \sin 2t + C_2 \cos 2t$$
 とおく.

$$\frac{dx}{dt} = 2C_1 \cos 2t - 2C_2 \sin 2t$$
$$\frac{d^2x}{dt^2} = -4C_1 \sin 2t - 4C_2 \cos 2t$$

これらを方程式の左辺に代入すると

左辺 =
$$-4C_1 \sin 2t - 4C_2 \cos 2t$$

+ $4(C_1 \sin 2t + C_2 \cos 2t)$

$$= -4C_1\sin 2t - 4C_2\cos 2t$$

$$+4C_1\sin 2t + 4C_2\cos 2t = 0$$

よって, $x = C_1 \sin 2t + C_2 \cos 2t$ は与えられた微分方程式

の解である.

194 (1)
$$(\log t)' = \frac{1}{t}$$

$$(t\log t)' = \log t + t \cdot \frac{1}{t} = \log t + 1$$

 \$\frac{1}{t} = \text{T}

$$W(\log t, t \log t) = \begin{vmatrix} \log t & t \log t \\ \frac{1}{t} & \log t + 1 \end{vmatrix}$$
$$= \log t (\log t + 1) - t \log t \cdot \frac{1}{t}$$
$$= (\log t)^2 + \log t - \log t$$
$$= (\log t)^2$$

 $(\log t)^2$ は ,恒等的に 0 にはならないので ,関数 $\log t$, $t\log t$ は線形独立である.

(2)
$$(e^{\alpha t})' = \alpha e^{\alpha t}$$

 $(e^{\beta t})' = \beta e^{\beta t}$

$$W(e^{\alpha t}, e^{\beta t}) = \begin{vmatrix} e^{\alpha t} & e^{\beta t} \\ \alpha e^{\alpha t} & \beta e^{\beta t} \end{vmatrix}$$
$$= e^{\alpha t} \cdot \beta e^{\beta t} - e^{\beta t} \cdot \alpha e^{\alpha t}$$
$$= \beta e^{(\alpha + \beta)t} - \alpha e^{(\alpha + b)t}$$
$$= (\beta - \alpha)e^{(\alpha + \beta)t}$$

 $e^{(\alpha+\beta)t}$ eq 0 であり , lpha eq であるから , $(eta-lpha)e^{(lpha+eta)t}$ が恒等的に0になることはない.

したがって,関数 $e^{lpha t},\ e^{eta t}$ は線形独立である.

195 (1)
$$x = e^{-t}$$
 とおく.

$$\frac{dx}{dt} = -e^{-t}$$
$$\frac{d^2x}{dt^2} = e^{-t}$$

左辺 =
$$e^{-t} + 2(-e^{-t}) + e^{-t}$$

= $e^{-t} - 2e^{-t} + e^{-t} = 0 = 右辺$

したがって, $x=e^{-t}$ は与えられた微分方程式の解である.

同様に, $x = te^{-t}$ とおく.

$$\begin{split} \frac{dx}{dt} &= e^{-t} + t(-e^{-t}) = e^{-t} - te^{-t} \\ \frac{d^2x}{dt^2} &= -e^{-t} - \{e^{-t} + t(-e^{-t})\} = -2e^{-t} + te^{-t} \end{split}$$

よって

左辺 =
$$-2e^{-t} + te^{-t} + 2(e^{-t} - te^{-t}) + te^{-t}$$

= $-2e^{-t} + te^{-t} + 2e^{-t} - 2te^{-t} + te^{-t}$
= $0 =$ 右辺

したがって , $x=te^{-t}$ は与えられた微分方程式の解である .

$$W(e^{-t}, te^{-t}) = \begin{vmatrix} e^{-t} & te^{-t} \\ -e^{-t} & e^{-t} - te^{-t} \end{vmatrix}$$
$$= e^{-t}(e^{-t} - te^{-t}) - te^{-t} \cdot (-e^{-t})$$
$$= e^{-2t} - te^{-2t} + te^{-2t}$$
$$= e^{-2t} \neq 0$$

以上より, e^{-t} と te^{-t} は線形独立な解である.

(2) e^{-t} と te^{-t} は与えられた微分方程式の線形独立な解であるから,一般解は $x=C_1e^{-t}+C_2te^{-t}$ $(C_1,\ C_2$ は任意定数)または

$$x = (C_1 + C_2 t)e^{-t}$$
 $(C_1, C_2$ は任意定数)

196 (1) $x=t^2+t-1$ とすると , $\frac{dx}{dt}=2t+1, \ \frac{d^2x}{dt^2}=2$ であるから $\Xi 辺=2+2(2t+1)+(t^2+t-1)$ $=2+4t+2+t^2+t-1$

 $=t^2+5t+3=$ 右辺

よって,
$$t^2+t-1$$
は,与えられた微分方程式の解である.

(2) ${f 195}$ より,斉次の場合の解は, $x=(C_1+C_2t)e^{-t}$ また,非斉次の場合の 1 つの解が, $x=t^2+t-1$ であるから,一般解は

$$x = t^2 + t - 1 + (C_1 + C_2 t)e^{-t}$$
 $(C_1, C_2$ は任意定数)

 $(C_1,\ C_2$ は任意定義

197 (1) 特性方程式
$$\lambda^2+3\lambda+2=0$$
 を解くと
$$(\lambda+2)(\lambda+1)=0$$

$$\lambda=-2,\ -1$$
 よって , 一般解は
$$x=C_1e^{-2t}+C_2e^{-t} \quad (C_1,\ C_2$$
は任意定数)

(2) 特性方程式
$$\lambda^2-3\lambda=0$$
 を解くと $\lambda(\lambda-3)=0$ $\lambda=0,3$ よって,一般解は $x=C_1e^{0t}+C_2e^{3t}$ $=C_1+C_2e^{3t}$ $(C_1,C_2$ は任意定数)

(3) 特性方程式
$$\lambda^2+2\lambda+10=0$$
 を解くと $\lambda=-1\pm\sqrt{1^2-1\cdot 10}$ $=-1\pm\sqrt{-9}$ $=-1\pm 3i$ よって,一般解は $x=e^{-t}(C_1\cos 3t+C_2\sin 3t)$

 $(C_1,\ C_2$ は任意定数)

(4) 特性方程式
$$\lambda^2+4\lambda+4=0$$
 を解くと $(\lambda+2)^2=0$ $\lambda=-2$ よって,一般解は $x=(C_1+C_2t)e^{-2t}$ $(C_1,C_2$ は任意定数)

(5) 特性方程式 $\lambda^2 - 4\lambda + 7 = 0$ を解くと

$$\lambda=-(-2)\pm\sqrt{(-2)^2-1\cdot7}$$
 $=2\pm\sqrt{-3}$ $=2\pm\sqrt{3}\,i$ よって,一般解は $x=e^{2t}(C_1\cos\sqrt{3}\,t+C_2\sin\sqrt{3}\,t)$ $(C_1,\ C_2$ は任意定数)

$$\lambda = -(-3) \pm \sqrt{3^2 - 1 \cdot 7}$$
 $= 3 \pm \sqrt{2}$ よって,一般解は $x = C_1 e^{(3+\sqrt{2})t} + C_2 e^{(3-\sqrt{2})t}$ $(C_1, \ C_2$ は任意定数)

(6) 特性方程式 $\lambda^2 - 6\lambda + 7 = 0$ を解くと

198(1) 特性方程式
$$\lambda^2+9=0$$
 を解くと
$$\lambda^2=-9$$

$$\lambda=\pm 3\,i$$
 よって,一般解は
$$x=C_1\cos 3t+C_2\sin 3t\quad (C_1,\,C_2$$
は任意定数)・・・① また,これより
$$\frac{dx}{dt}=-3C_1\sin 3t+3C_2\cos 3t\cdot\cdot\cdot\cdot②$$
 ① に, $t=0,\,x=2$ を代入して, $2=C_1$ ② に, $t=0,\,\frac{dx}{dt}=1$ を代入して, $1=3C_2$ よって, $C_1=2,\,C_2=\frac{1}{3}$ したがって,求める解は
$$x=2\cos 3t+\frac{1}{2}\sin 3t$$

$$x=2\cos 3t+\frac{1}{3}\sin 3t$$
(2) 特性方程式 $\lambda^2+\lambda+\frac{1}{4}=0$ を解くと $\left(\lambda+\frac{1}{2}\right)^2=0$ $\lambda=-\frac{1}{2}$ よって,一般解は $x=(C_1+C_2t)e^{-\frac{t}{2}}$ $(C_1,C_2$ は任意定数)・・・① また,これより $\frac{dx}{dt}=C_2\cdot e^{-\frac{t}{2}}+(C_1+C_2t)\cdot \left(-\frac{1}{2}e^{-\frac{t}{2}}\right)$ $=\frac{1}{2}(2C_2-C_1-C_2t)e^{-\frac{t}{2}}\cdots ②$ ① に, $t=0,\ x=2$ を代入して, $2=C_1$ ② に, $t=0,\ \frac{dx}{dt}=1$ を代入して, $1=\frac{1}{2}(2C_2-C_1)$ $C_1=2$ を, $1=\frac{1}{2}(2C_2-C_1)$ に代入して $1=\frac{1}{2}(2C_2-2)$ 1 $=C_2-1$ よって, $C_1=2,C_2=2$ したがって,求める解は $x=(2+2t)e^{-\frac{t}{2}}$ すなわち, $x=2(t+1)e^{-\frac{t}{2}}$

199 右辺は
$$2$$
 次式で , x の係数は 0 ではないから , $x=At^2+Bt+C$ と予想すると

$$\dfrac{dx}{dt}=2At+B, \quad \dfrac{d^2x}{dt^2}=2A$$
 これらを,与えられた微分方程式に代入すると $2A-(2At+B)+2(At^2+Bt+C)=4t^2$ $2At^2+(-2A+2B)t+(2A-B+2C)=4t^2$ よって
$$\begin{cases} 2A=4 \\ -2A+2B=0 \\ 2A-B+2C=0 \end{cases}$$
 これを解いて, $A=2,\ B=2,\ C=-1$ したがって, 1 つの解は $x=2t^2+2t-1$

[別解] (微分演算子による解法)

与えられた微分方程式は

$$(D^2 - D + 2)x = 4t^2$$

$$x = \frac{1}{D^2 - D + 2} 4t^2$$

山辺の方法を用いると

$$\begin{array}{r}
2t^{2} + 2t - 1 \\
2 - D + D^{2} \overline{\smash{\big)}\,4t^{2}} \\
\underline{4t^{2} - 4t + 4} \\
4t - 4 \\
\underline{4t - 2} \\
-2 \\
\underline{-2} \\
0
\end{array}$$

よって , $x=2t^2+2t-1$

〔または〕

$$x = \frac{1}{D^2 - D + 2} 4t^2$$

$$= \frac{1}{2 \left(1 - \frac{1}{2}D + \frac{1}{2}D^2\right)} 4t^2$$

$$= \frac{1}{2} \cdot \frac{4}{\left\{1 - \left(\frac{1}{2}D - \frac{1}{2}D^2\right)\right\}} t^2$$

$$= 2 \left\{1 + \left(\frac{1}{2}D - \frac{1}{2}D^2\right) + \left(\frac{1}{2}D - \frac{1}{2}D^2\right)^2 + \cdots\right\} t^2$$

$$= 2 \left(1 + \frac{1}{2}D - \frac{1}{2}D^2 + \frac{1}{4}D^2 - \frac{1}{2}D^3 + \cdots\right) t^2$$

$$= 2 \left(1 + \frac{1}{2}D - \frac{1}{4}D^2 + \cdots\right) t^2$$

$$= 2 \left(t^2 + \frac{1}{2} \cdot 2t - \frac{1}{4} \cdot 2\right)$$

$$= 2 \left(t^2 + t - \frac{1}{2}\right) = 2t^2 + 2t - 1$$

斉次の場合の特性方程式を解くと、

 $\lambda^2+4\lambda-5=0$ より , $\lambda=-5$, 1 であるから , e^{-t} は一般解

には含まれない。

$$x=Ae^{-t}$$
 と予想すると
$$\frac{dx}{dt}=-Ae^{-t},\quad \frac{d^2x}{dt^2}=Ae^{-t}$$

これらを、与えられた微分方程式に代入すると

$$Ae^{-t} + 4 \cdot (-Ae^{-t}) - 5Ae^{-t} = 2e^{-t}$$

$$-8Ae^{-t} = 2e^{-t}$$

よって,-8A=2であるから, $A=-rac{1}{4}$ したがって,1 つの解は $x=-rac{1}{4}e^{-t}$

〔別解〕 (微分演算子による解法)

与えられた微分方程式は

$$(D^2 + 4D - 5)x = 2e^{-t}$$

と表せるので

$$x = \frac{1}{D^2 + 4D - 5} \cdot 2e^{-t}$$

$$= 2 \cdot \frac{1}{(-1)^2 + 4 \cdot (-1) - 5} \cdot e^{-t}$$

$$= 2 \cdot \frac{1}{-8} \cdot e^{-t}$$

$$= -\frac{1}{4}e^{-t}$$

201 斉次の場合の特性方程式を解くと,

 $\lambda^2 + 2\lambda + 1 = 0$ より, $\lambda = -1$ (重解) であるから, $\cos 2t$ は 一般解には含まれない.

 $x = A\cos 2t + B\sin 2t$ と予想すると $\frac{dx}{dt} = -2A\sin 2t + 2B\cos 2t, \quad \frac{d^2x}{dt^2} = -4A\cos 2t - 4B\sin 2t$ これらを、与えられた微分方程式に代入すると

 $-4A\cos 2t - 4B\sin 2t + 2(-2A\sin 2t + 2B\cos 2t)$

$$+(A\cos 2t + B\sin 2t) = 5\cos 2t$$

$$(-4A + 4B + A)\cos 2t + (-4B - 4A + B)\sin 2t = 5\cos 2t$$

$$(-3A + 4B)\cos 2t + (-4A - 3B)\sin 2t = 5\cos 2t$$

$$\begin{cases}
-3A + 4B = 5 & \cdots \text{ } \\
-4A - 3B = 0 & \cdots \text{ }
\end{cases}$$

① $\times 3 + ② \times 4$ より , -25A = 15 であるから , $A = -\frac{3}{5}$

これを ② に代入して ,
$$\frac{12}{5} - 3B = 0$$

これより,
$$B=rac{4}{5}$$

したがって,
$$1$$
 つの解は $x=-rac{3}{5}\cos 2t+rac{4}{5}\sin 2t$

[別解] (微分演算子による解法)

与えられた微分方程式は

$$(D^2 + 2D + 1)x = 5\cos 2t$$

$$x = \frac{1}{D^2 + 2D + 1} \cdot 5\cos 2t$$

$$= 5 \cdot \frac{1}{(D^2 + 1) + 2D}\cos 2t$$

$$= 5 \cdot \frac{(D^2 + 1) - 2D}{(D^2 + 1)^2 - 4D^2}\cos 2t$$

$$= 5 \cdot \frac{(-4 + 1) - 2D}{(-4 + 1)^2 - 4 \cdot (-4)}\cos 2t$$

$$= 5 \cdot \frac{-3 - 2D}{25}\cos 2t$$

$$= -\frac{1}{5}(3 + 2D)\cos 2t$$

$$= -\frac{1}{5}\{3\cos 2t + 2 \cdot (-2\sin 2t)\}$$

$$= -\frac{3}{5}\cos 2t + \frac{4}{5}\sin 2t$$

202(1) 特性方程式 $\lambda^2 + \lambda - 6 = 0$ を解くと, $\lambda = -3$, 2 であるか ら, e^{-3t} は斉次の場合の一般解に含まれる.

よって ,
$$x=Ate^{-3t}$$
 と予想する .

$$\frac{dx}{dt} = A(e^{-3t} - 3te^{-3t}) = A(1 - 3t)e^{-3t}$$
$$\frac{d^2x}{dt^2} = A\{-3e^{-3t} + (1 - 3t) \cdot (-3e^{-3t})\}$$

$$= -3A(2-3t)e^{-3t}$$

これらを、与えられた微分方程式に代入すると

$$-3A(2-3t)e^{-3t} + A(1-3t)e^{-3t} - 6Ate^{-3t} = e^{-3t}$$

$$-5Ae^{-3t} = e^{-3t}$$

よって,
$$A=-rac{1}{5}$$

したがって, 1 つの解は $x=-rac{1}{5}te^{-3t}$

〔別解〕 (微分演算子による解法)

与えられた微分方程式は

$$(D^2 + D - 6)x = e^{-3t}$$

と表せるので

$$x = \frac{1}{D^2 + D - 6} e^{-3t}$$

$$= \frac{1}{(D+3)(D-2)} e^{-3t}$$

$$= \frac{1}{D+3} \left(\frac{1}{D-2} e^{-3t} \right)$$

$$= \frac{1}{D+3} \left(\frac{1}{-3-2} e^{-3t} \right)$$

$$= -\frac{1}{5} \cdot \frac{1}{D+3} e^{-3t}$$

$$= -\frac{1}{5} e^{-3t} \frac{1}{(D-3)+3} e^{3t} e^{-3t}$$

$$= -\frac{1}{5} e^{-3t} \frac{1}{D} 1 = -\frac{1}{5} t e^{-3t}$$

(2) 特性方程式 $\lambda^2+1=0$ を解くと , $\lambda=\pm i$ であるから , $\sin t$ は斉次の場合の一般解に含まれる.

よって,
$$x=t(A\cos t+B\sin t)$$
 と予想する.
$$\frac{dx}{dt}=(A\cos t+B\sin t)\\ +t(-A\sin t+B\cos t)\\ =(A+Bt)\cos t+(-At+B)\sin t$$

$$\frac{d^2x}{dt^2}=B\cos t-(A+Bt)\sin t\\ -A\sin t+(-At+B)\cos t\\ =(-At+2B)\cos t-(2A+Bt)\sin t$$
 これらを,与えられた微分方程式に代入すると

$$(-At + 2B)\cos t - (2A + Bt)\sin t$$

$$+ t(A\cos t + B\sin t) = 3\sin t$$

 $2B\cos t - 2A\sin t = 3\sin t$

よって ,
$$-2A=3,\ 2B=0$$
 であるから , $A=-\frac{3}{2},\ B=0$ したがって , 1 つの解は $x=-\frac{3}{2}t\cos t$

〔別解〕 (微分演算子による解法)

与えられた微分方程式は

$$(D^2 + 1)x = 3\sin t$$

と表せるので

$$x = \frac{1}{D^2 + 1} \cdot 3\sin t$$

$$= 3 \cdot \frac{1}{D^2 + 1^2} \sin t$$

$$= 3 \cdot \left(-\frac{1}{2 \cdot 1}\right) t \cos t$$

$$= -\frac{3}{2} t \cos t$$

203(1) 特性方程式 $\lambda^2-4\lambda+4=0$ を解くと, $\lambda=2$ (重解)であ るから,斉次の場合の一般解は

$$x = (C_1 + C_2 t)e^{2t}$$
 (C_1 , C_2 は任意定数)

与えられた微分方程式の1 つの解を $x=Ae^{-3t}$ と予想す

$$\frac{dx}{dt} = -3Ae^{-3t}$$
$$\frac{d^2x}{dt^2} = 9Ae^{-3t}$$

これらを,与えられた微分方程式に代入すると

$$9Ae^{-3t} - 4 \cdot (-3Ae^{-3t}) + 4Ae^{-3t} = 5e^{-3t}$$

$$25Ae^{-3t} = 5e^{-3t}$$

よって , 25A=5 より , $A=\frac{1}{5}$ したがって,1つの解は $x = \frac{1}{5}e^{-3t}$

以上より,求める一般解は
$$x=rac{1}{5}e^{-3t}+(C_1+C_2t)e^{2t} \ (C_1,\ C_2$$
は任意定数)

〔非斉次の特殊解の求め方の別解〕(微分演算子)

与えられた微分方程式は

$$(D^2 - 4D + 4)x = 5e^{-3t}$$

と表せるので

$$x = \frac{1}{D^2 - 4D + 4} 5e^{-3t}$$

$$= \frac{5}{(-3)^2 - 4 \cdot (-3) + 4} e^{-3t}$$

$$= \frac{5}{25} e^{-3t} = \frac{1}{5} e^{-3t}$$

(2) 特性方程式 $\lambda^2-2\lambda-3=0$ を解くと , $\lambda=-1,\ 3$ である から,斉次の場合の一般解は

$$x = C_1 e^{-t} + C_2 e^{3t}$$
 (C_1 , C_2 は任意定数)

与えられた微分方程式の1 つの解をx = At + B と予想す

る.

$$\dfrac{dx}{dt}=A,\;\dfrac{d^2x}{dt^2}=0$$

これらを , 与えられた微分方程式に代入すると

$$0 - 2A - 3(At + B) = 3t - 1$$
$$-3At + (-2A - 3B) = 3t - 1$$

よって
$$\begin{cases} -3A = 3 \\ -2A - 3B = -1 \end{cases}$$

これを解いて,A = -1,B = 1

したがって,1つの解は

$$x = -t + 1$$

以上より,求める一般解は

$$x = -t + 1 + C_1 e^{-t} + C_2 e^{3t}$$

(C1, C2は任意定数)

〔非斉次の特殊解の求め方の別解〕(微分演算子)

与えられた微分方程式は

$$(D^2 - 2D - 3)x = 3t - 1$$

と表せるので
$$x = \frac{1}{D^2-2D-3}(3t-1)$$

山辺の方法を用いると

$$\begin{array}{r}
-t + 1 \\
-3 - 2D + D^2) 3t - 1 \\
\underline{3t + 2} \\
-3 \\
\underline{-3} \\
0
\end{array}$$

よって,
$$x=-t+1$$

[または]

$$x = \frac{1}{D^2 - 2D - 3}(3t - 1)$$

$$= \frac{1}{-3\left(1 + \frac{2}{3}D - \frac{1}{3}D^2\right)}(3t - 1)$$

$$= -\frac{1}{3} \cdot \frac{1}{\left\{1 - \left(-\frac{2}{3}D + \frac{1}{3}D^2\right)\right\}}(3t - 1)$$

$$= -\frac{1}{3}\left\{1 + \left(-\frac{2}{3}D + \frac{1}{3}D^2\right)\right\}$$

$$+ \left(-\frac{2}{3}D + \frac{1}{3}D^2\right)^2 + \cdots\right\}(3t - 1)$$

$$= -\frac{1}{3}\left(1 - \frac{2}{3}D + \frac{1}{3}D^2 + \frac{4}{9}D^2 + \cdots\right)(3t - 1)$$

$$= -\frac{1}{3}\left(1 - \frac{2}{3}D + \cdots\right)(3t - 1)$$

$$= -\frac{1}{3}\left\{(3t - 1) - \frac{2}{3} \cdot 3\right\}$$

$$= -\frac{1}{3}(3t - 1 - 2)$$

$$= -\frac{1}{3}(3t - 3) = -t + 1$$

(3) 特性方程式 $\lambda^2-2\lambda+5=0$ を解くと , $\lambda=1\pm 2i$ である から, 斉次の場合の一般解は

$$x = e^t(C_1 \cos 2t + C_2 \sin 2t)$$
 (C_1 , C_2 は任意定数)

与えられた微分方程式の1 つの解を $x = A\cos 3t + B\sin 3t$ と予想する.

$$\frac{dx}{dt} = -3A\sin 3t + 3B\cos 3t$$
$$\frac{d^2x}{dt^2} = -9A\cos 3t - 9B\sin 3t$$

これらを, 与えられた微分方程式に代入すると

$$-9A\cos 3t - 9B\sin 3t - 2(-3A\sin 3t + 3B\cos 3t) + 5(A\cos 3t + B\sin 3t) = 2\sin 3t$$

$$(-4A - 6B)\cos 3t + (6A - 4B)\sin 3t = 2\sin 3t$$

よって

これより,
$$A=rac{3}{13}$$

これを ① に代入して , $\frac{6}{13} + 3B = 0$

よって,
$$B=-rac{2}{13}$$

$$x = \frac{3}{13}\cos 3t - \frac{2}{13}\sin 3t$$

よって,
$$B=-\frac{2}{13}$$

したがって, 1 つの解は
$$x=\frac{3}{13}\cos 3t-\frac{2}{13}\sin 3t$$
以上より,求める一般解は
$$x=\frac{3}{13}\cos 3t-\frac{2}{13}\sin 3t$$

 $+e^t(C_1\cos 2t+C_2\sin 2t)$

(C1, C2は任意定数)

〔非斉次の特殊解の求め方の別解〕(微分演算子)

与えられた微分方程式は

$$(D^2 - 2D + 5)x = 2\sin 3t$$

と表せるので

$$x = \frac{1}{D^2 - 2D + 5} (2\sin 3t)$$

$$= 2 \cdot \frac{1}{(D^2 + 5) - 2D} \sin 3t$$

$$= 2 \cdot \frac{(D^2 + 5) + 2D}{(D^2 + 5)^2 - 4D^2} \sin 3t$$

$$= 2 \cdot \frac{(-9 + 5) + 2D}{(-9 + 5)^2 - 4 \cdot (-9)} \sin 3t$$

$$= 2 \cdot \frac{-4 + 2D}{52} \sin 3t$$

$$= \frac{1}{13} (-2 + D) \sin 3t$$

$$= \frac{1}{13} (-2\sin 3t + 3\cos 3t)$$

$$= \frac{3}{13} \cos 3t - \frac{2}{13} \sin 3t$$

(4) 特性方程式 $\lambda^2-4\lambda+3=0$ を解くと, $\lambda=1,\ 3$ であるか

ら, 斉次の場合の一般解は

$$x = C_1 e^t + C_2 e^{3t}$$
 (C_1 , C_2 は任意定数)

与えられた微分方程式の1 つの解を $x=Ate^{3t}$ と予想す

$$\frac{dx}{dt} = A(e^{3t} + 3te^{3t}) = A(1+3t)e^{3t}$$
$$\frac{d^2x}{dt^2} = A\{3e^{3t} + (1+3t) \cdot 3e^{3t}\} = 3A(2+3t)e^{3t}$$

これらを、与えられた微分方程式に代入すると

$$3A(2+3t)e^{3t} - 4 \cdot A(1+3t)e^{3t} + 3 \cdot Ate^{3t} = e^{3t}$$

$$2Ae^{3t} = e^{3t}$$

よって,
$$2A=1$$
 より, $A=\frac{1}{2}$

したがって
$$,1$$
 つの解は

$$x = \frac{1}{2}te^3$$

以上より,求める一般解は
$$x=rac{1}{2}te^{3t}+C_1e^t+C_2e^{3t}$$
 $(C_1,\ C_2$ は任意定数)

〔非斉次の特殊解の求め方の別解〕(微分演算子)

与えられた微分方程式は

$$(D^2 - 4D + 3)x = e^{3t}$$

と表せるので

$$x = \frac{1}{D^2 - 4D + 3} e^{3t}$$

$$= \frac{1}{(D - 3)(D - 1)} e^{3t}$$

$$= \frac{1}{D - 3} \left(\frac{1}{D - 1} e^{3t}\right)$$

$$= \frac{1}{D - 3} \left(\frac{1}{3 - 1} e^{3t}\right)$$

$$= \frac{1}{2} \cdot \frac{1}{D - 3} e^{3t}$$

$$= \frac{1}{2} e^{3t} \frac{1}{(D + 3) - 3} e^{-3t} e^{3t}$$

$$= \frac{1}{2} e^{3t} \frac{1}{D} 1 = \frac{1}{2} t e^{3t}$$

2 式を , 上から ① ② とする . 204

① より,
$$y = \frac{dx}{dt} + 2x + e^{2t} \cdots ①'$$

①' を
$$t$$
 で微分すると, $\dfrac{dy}{dt}=\dfrac{d^2x}{dt^2}+2\dfrac{dx}{dt}+2e^{2t}$

これらを 、② に代入すると
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2e^{2t} = x - 2\left(\frac{dx}{dt} + 2x + e^{2t}\right) + e^{2t}$$

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = -3e^{2t} \cdots 3$$

③ の特性方程式 $\lambda^2+4\lambda+3=0$ を解くと , $\lambda=-3,\ -1$ であ

るから, 斉次の場合の一般解は

$$x = C_1 e^{-t} + C_2 e^{-3t}$$

また , 3 の 1 つの解を , $x=Ae^{2t}$ と予想すると $\frac{dx}{dt} = 2Ae^{2t}$

$$\frac{d^2x}{dt^2} = 4Ae^{2t}$$

これを③に代入すると

$$4Ae^{2t} + 4 \cdot 2Ae^{2t} + 3Ae^{2t} = -3e^{2t}$$

$$15Ae^{2t} = -3e^{2t}$$

よって,
$$15A=-3$$
 より, $A=-rac{1}{5}$

以上より,xの一般解は

$$x = -\frac{1}{5}e^{2t} + C_1e^{-t} + C_2e^{-3t}$$

また, $\frac{dx}{dt}=-rac{2}{5}e^{2t}-C_1e^{-t}-3C_2e^{-3t}$ であるから,これを ①

に代入して
$$y = -\frac{2}{5}e^{2t} - C_1e^{-t} - 3C_2e^{-3t}$$
$$+ 2\left(-\frac{1}{5}e^{2t} + C_1e^{-t} + C_2e^{-3t}\right) + e^{2t}$$
$$= \frac{1}{5}e^{2t} + C_1e^{-t} - C_2e^{-3t}$$

$$\left\{egin{aligned} x = -rac{1}{5}e^{2t} + C_1e^{-t} + C_2e^{-3t} \ y = rac{1}{5}e^{2t} + C_1e^{-t} - C_2e^{-3t} \end{aligned}
ight.$$
 $(C_1,\ C_2$ は任意定数)

〔③の特殊解の求め方の別解〕 (微分演算子)

与えられた微分方程式は

$$(D^2 + 4D + 3)y = -3e^{2t}$$

と表せるので

$$y = \frac{1}{D^2 + 4D + 3} (-3e^{2t})$$

$$= -\frac{3}{D^2 + 4D + 3} e^{2t}$$

$$= -\frac{3}{2^2 + 4 \cdot 2 + 3} e^{2t}$$

$$= -\frac{3}{15} e^{2t} = -\frac{1}{5} e^{2t}$$

205(1) 両辺を t² で割る d

$$rac{d^2x}{dt^2}-rac{4}{t}rac{dx}{dt}+rac{6}{t^2}x=0$$
 $x=t^lpha$ の形の解があると予想する.

$$\frac{dx}{dt} = \alpha t^{\alpha - 1}, \quad \frac{d^2x}{dt^2} = \alpha(\alpha - 1)t^{\alpha - 2}$$

これらを、与えられた微分方程式に代入すると

$$\alpha(\alpha - 1)t^{\alpha} - 4\alpha t^{\alpha} + 6t^{\alpha} = 0$$

$$\{\alpha(\alpha - 1) - 4\alpha + 6\}t^{\alpha} = 0$$

$$(\alpha^2 - 5\alpha + 6)t^\alpha = 0$$

$$(\alpha - 2)(\alpha - 3)t^{\alpha} = 0$$

よって, $\alpha=2,\ 3$

したがって , t^2 と t^3 は与えられた微分方程式の解であり

かつ線形独立である . (線形独立であることの証明は略)

よって,求める一般解は

$$x = C_1 t^2 + C_2 t^3$$
 (C_1 , C_2 は任意定数)

(2) 両辺を t^2 で割ると

$$\frac{d^2x}{dt^2} - \frac{5}{t}\frac{dx}{dt} + \frac{9}{t^2}x = 0$$

周辺を
$$t$$
 で割ると
$$\frac{d^2x}{dt^2} - \frac{5}{t}\frac{dx}{dt} + \frac{9}{t^2}x = 0$$
 $x = t^{\alpha}$ の形の解があると予想する .
$$\frac{dx}{dt} = \alpha t^{\alpha - 1}, \quad \frac{d^2x}{dt^2} = \alpha(\alpha - 1)t^{\alpha - 2}$$
 これらち、ドラミれた微公立程式に供入す

これらを、与えられた微分方程式に代入すると

$$\alpha(\alpha - 1)t^{\alpha} - 5\alpha t^{\alpha} + 9t^{\alpha} = 0$$
$$\{\alpha(\alpha - 1) - 5\alpha + 9\}t^{\alpha} = 0$$
$$(\alpha^{2} - 6\alpha + 9)t^{\alpha} = 0$$
$$(\alpha - 3)^{2}t^{\alpha} = 0$$

よって, $\alpha = 3$

したがって, t^3 は与えられた微分方程式の解であるから, $x = Ct^3$ も解である .(C は任意定数)

線形独立である2つの解を見つけるために $, x = ut^3$ とお

く . (*u* は *t* の関数)

$$\frac{dx}{dt} = \frac{du}{dt}t^3 + u \cdot (t^3)'$$

$$= \frac{du}{dt}t^3 + 3ut^2$$

$$\frac{d^2x}{dt^2} = \frac{d^2u}{dt^2}t^3 + 2\frac{du}{dt} \cdot (t^3)' + u \cdot (t^3)''$$

$$= \frac{d^2u}{dt^2}t^3 + 2\frac{du}{dt} \cdot 3t^2 + u \cdot 6t$$

$$= \frac{d^2u}{dt^2}t^3 + 6\frac{du}{dt}t^2 + 6ut$$

与えられた微分方程式に代入すると

与えられた微分方程式に代入すると
$$\frac{d^2u}{dt^2}t^4 + 4\frac{du}{dt}t^3 + 2ut^2 - 3\left(\frac{du}{dt}t^3 + 2ut^2\right) + 4ut^2 = 0$$

$$\frac{d^2u}{dt^2}t + \frac{du}{dt} = 0$$

$$\frac{d}{dt}\left(\frac{du}{dt}t\right) = 0$$
 よって, $\frac{du}{dt}t = C_1$
$$\frac{du}{dt} = \frac{C_1}{t}$$
 両辺を t について積分すると

よって,
$$\frac{du}{dt}t = C$$

$$\frac{du}{dt} = \frac{C_1}{t}$$

両辺をtについて積分すると

$$\int du = \int \frac{C_1}{t} dt$$
$$u = C_1 \log|t| + C_2$$

したがって, $x=t^3(C_1\log|t|+C_2)$ は解であり,かつ $t^3 \log |t|$ と t^3 は線形独立である.

よって,求める一般解は

$$x = t^3(C_1 \log |t| + C_2)$$
 (C_1, C_2 は任意定数)

206 (1)
$$\frac{dy}{dx} = p$$
 とおくと , $\frac{d^2y}{dx^2} = \frac{dp}{dx}$ であるから
$$\frac{dp}{dx} - (p+1)^2 = 0$$
 1 $dp = 1$

$$\dfrac{1}{(p+1)^2}\dfrac{dp}{dx}=1$$
両辺を x について積分すると
$$\int\dfrac{1}{(p+1)^2}\,dp=\int dx$$

$$-\dfrac{1}{p+1}=x+C_1\quad (C_1$$
は任意定数)
$$p+1=-\dfrac{1}{x+C_1}$$

$$p=-\dfrac{1}{x+C_1}-1$$

$$\dfrac{dy}{dx}=-\dfrac{1}{x+C_1}-1$$

$$\int dy = \int \left(-\frac{1}{x+C_1} - 1\right) dx$$
$$y = -\log|x+C_1| - x + C_2 \quad (C_1, C_2$$
は任意定数)

(2)
$$\frac{dy}{dx}=p$$
 とおくと, $\frac{d^2y}{dx^2}=\frac{dp}{dx}$ であるから $\frac{dp}{dx}=2\sqrt{p}$ $\frac{1}{\sqrt{p}}\frac{dp}{dx}=2$

両辺をxについて積分すると

$$\int \frac{1}{\sqrt{p}} \, dp = \int 2 \, dx$$

$$2\sqrt{p} = 2x + c \quad (c \text{ は任意定数})$$

$$\sqrt{p} = x + \frac{c}{2} = x + C_1 \quad \left(\frac{c}{2} = C_1\right)$$

$$p = (x + C_1)^2$$

$$\frac{dy}{dx} = (x + C_1)^2$$
 両辺を x について積分すると
$$\int dy = \int (x + C_1)^2 \, dx$$

$$y = \frac{1}{3}(x + C_1)^3 + C_2 \qquad (C_1, C_2 \text{ は任意定数})$$

$$207 \quad \frac{dy}{dx} = p \text{ とおくと}, \frac{d^2y}{dx^2} = \frac{dp}{dx} \text{ であるから}$$

$$\frac{dp}{dx} + \frac{1}{2}p^3 = 0$$

$$\frac{1}{p^3} \frac{dp}{dx} = -\frac{1}{2}$$
 両辺を x で積分すると
$$\int \frac{1}{p^3} dp = -\frac{1}{2} \int dx$$

$$-\frac{1}{2} \cdot \frac{1}{p^2} = x - 2c = x + C_1 \quad (-2c = C_1)$$

$$p^2 = \frac{1}{x + C_1}$$
 $x = 0$ のとき $p = 1$ であるから
$$1 = \frac{1}{C_1}, \text{ すなわち}, C_1 = 1$$
 これより $p = \pm \frac{1}{\sqrt{x+1}}$ であるが $p = -\frac{1}{\sqrt{x+1}}$ は $p = -\frac{1}{\sqrt{x+1}}$ 両辺を $p = -\frac{1}{\sqrt{x+1}}$ であるが $p = -\frac{1}{\sqrt{x+1}}$ は $p = -\frac{1}{\sqrt{x+1}}$ であるから
$$\frac{1}{\sqrt{x+1}} = \frac{1}{\sqrt{x+1}}$$
 両辺を $\frac{1}{\sqrt{x+1}}$ 本 $\frac{1}{\sqrt{x+1}}$ であるから
$$\frac{1}{\sqrt{x+1}} = \frac{1}{\sqrt{x+1}}$$
 であるから
$$\frac{1}{\sqrt{x+1}} = \frac{1}{\sqrt{x+1}}$$
 であるから
$$1 = 2\sqrt{x+1} + C_2$$

$$1 = 2 + C_2, \text{ すなわち}, C_2 = -1$$
 以上より $p = 2\sqrt{x+1} - 1$