SESA3029 Aerothermodynamics

Lecture 2.2
Oblique shock examples, engine intake and detached shocks

APG photo

Oblique shock relation

$$\tan \theta = 2 \cot \beta \left[\frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2} \right]$$

It is (just) possible to have a weak shock with $M_2<1$ (Larely/rarely)

Example

An M_1 =1.8 stream is deflected by 15 degrees.

Find

- (a) the shock angle (weak solution), and
- (b) M₂ (the flow Mach number after the shock)

Oblique-shock chart: $\gamma = 1.4$

Shock angle β =51 degrees

$$M_{n1} = M_1 \sin \beta$$

$$M_{n2} = M_2 \sin (\beta - \theta)$$

$$M_{n1} = M_1 \sin \beta = 1.8 \sin (51^\circ) = 1.399$$

$$M_2 = \frac{M_{n2}}{\sin(\beta - \theta)} = \frac{0.74}{\sin(51^\circ - 15^\circ)} = 1.259$$

On-line shock calculator gives 51.3° and M₂=1.245

link on Slackbour

Engine intake design in supersonic flow

We are interested particularly in the reduction ('loss') of stagnation pressure, since this affects the engine performance

i.e. a 67% loss of stagnation pressure

(b) Oblique + normal shock

For normal shock NST gives $M_3=0.593$ and $p_{03}/p_{02}=0.762$

Total stagnation pressure change

$$\frac{p_{03}}{p_{01}} = 0.754 \times 0.762 = 0.574$$

i.e. a 43% loss, compared to 67% for the normal shock intake

We can do better with more oblique shocks: The minimum loss occurs when the stagnation pressure drop across each shock is the same. Sur were oblique shocks creates new issues

A limiting case is isentropic compression using a curved surface.

Reminder: Oblique shock chart (γ =1.4, simplified)

• For every M_1 there is a maximum turning angle θ_{max} .

If your turning angle is greater than θ_{max} your shock will detatch θ_{max}

M=1.96 flow over a cone

$$\theta = 22.5^{\circ}$$

Attached oblique shock

$$\theta = 60^{\circ}$$

Detached curved shock

Flow past a cone or 2D wedge for $\theta > \theta_{\text{max}}$

 θ^* (local turning angle)

a: flow through a normal shock wave

b: maximum turning angle

c: limiting case M₂=1

d: weak solution

e: Mach wave (far from object)

detached ghorks work with many or solutions hence the curve.