(Translation)

Japanese Patent Office Japanese Patent Laid-Open Publication (A)

Publication No.: Sho. 49-7117

Date of Publication: January 22, 1974

Title: WEAR-RESISTANT STEEL

Patent Application No.:

Sho. 47-46424

Date of Application:

May 12, 1972

Inventor:

Yoshihiko ABE

Applicant:

Mitsubishi Steel Mfg. Co., Ltd.

特許庁長於

1. 発明の名称

ショグサ 住 所 (場所)

3. 特許出願人

郵便番号。

100-00

ツリガナ 住 - 所 (居所)

東京都千凡丘区交季前

アリガナ(の人にあっていれば)氏 名(および代がわってお

4. 添付審類の目録

(1)明細幣 (2)

通 1 通

随客副本 (3)

1 通 /通)

(19) 日本国特許庁

公開特許公報

①特開昭

49 - 7117

43公開日

昭49.(1974) 1.22

20特願昭

47 -46474

22出願日

.昭47.(1972)5.12

審查請求

有

(全7頁)

庁内整理番号

52日本分類

6659 4Z 6378 4Z 10 5172 10 SZ

4 発明の名類

耐磨無傷 2.特許請求の範囲

(J) / 0 % (重量 % ,以下同じ)以下の炭素, Q / 0~ユョクラのけい書台上びQョク~//4 0 %のマンガンを含む鋼中に、 Q 3 ~ 3 0 %の チタン ,ジルコニウム 。ニオピウム 。タンタル パナジウムの/種又は2種以上の炭竃化物を均 一級細に分散させたミクロ組織を有することを 物数とする耐度鈍緩。

(4)第1項記載の耐磨耗鋼において、 4 2 0 気 以下の鱗またはポロン。ago~ga0gのゥ ロム , alo~s08のモリプデン , ako~ 2 ± 0 %のニッケルの1種または 2 種以上を併 せ合むととを特徴とする耐壓耗鋼。

3 発明の静細た説明

本発明は炭窯化物を均一微細に分散させるこ とによつてすぐれた耐磨耗性を付与した値に関 するものである.

般に承耗の著しい箇所に用いられる各種根 標設用鋼や種々の成形に用いられる型用鋼 いて、網の耐磨転性応吸も重要な特性であ 従来から各種の耐摩耗鋼が研究開発されて 。また,とれちの領はしばしば高温あるい は腐食性環境にさらされて使用されることがあ り、この場合は銅の耐熱性あるいは耐食性をも 加味した耐磨耗鋼が要求されるが、実用上とれ らの要因は相乗効果として見かけ上の摩託量を 増加することになるのが普通である。

本発明側は、チタン、ジルコニウム、ニオビ ウム・タンタルおよびパナジウムの1種または 2種以上の炭塩化物を均一機細に分散させた鋼 はすぐれた耐度耗性を有する点に着目したもの 既存の耐摩耗網に比べて低合金の網をマト クスとし,その鋼中に前記炎窒化物を分数 させたものは格段にすぐれた耐臓純性を有する と共に,耐熱性,耐食性をも兼備することを特 長とするものである。

以下本発明の耐磨耗鋼について第/

特開 昭49— 71 17 (2)

基づいて静頼に説明する。

本発明鋼は、あらかじめ酸素、窒素およびイ オウ量に比べて炭素量を過剰にした溶偏に炭疽 化物を形成する元素を縁加して、これらの元素 と炭素との優先反応を起させ、得られた固相炭 化物を窒化物と共に均一に分散折出させて製造 するが,との得られた分散炭疽化物が鍋にすぐ れた硬さを附与すると共に、高温あるいは腐食 性環境などの使用条件においても安定であると とが必要である。とれらの条件を満足する胎盤 化物を形成する元素としては,チョン,ジルコ ニウム,ニオピウム,タンタルおよびパナジゥ ムの/種または「2種以上の単独または複合した 各炭窒化物があげられる。なお,とのような炭 館化物分散型材料においては,分散粒の大きさ, 均一度および分数量がその特性を左右する重要 た囚于となるが、とれらの改善にはaょぇ以下 の類を認知すると効果があり、またaょも以下 のポロンを添加して窒化ポロンを溶鋼中に優先 して形成させるととが窒ましいととも利用した。

察した。また,鋼整および面圧にかかわらず炭盤化物の分数量がある野近で耐磨耗比がほとんど飽和することを観察した。従つて,本発明鏡においては炭壁化物の分数量をaょ彡~s彡と 定めた。

次ぎに、炭密化物を分散させるマトリックス の化学成分について説明する。

以上の説明から,本発明領が工業的な量産方式 によつて製造できるととは明白である。

次ぎに、本発明側において、側中に均一に分散させる炭塩化物の種類とその必要量、ならびに炭塩化物を分散させる側のマトリックスの成分とその必要量について説明する。

目的に応じて適宜追加する必要がある。

なお、本発明鋼の耐廉純性はマトリックスを オーステナイト組織にすることによつて更に向 上できるが、この場合は最高よりまでのクロ ム量との共存下においては最高よりまでのニ ッケル量の添加によつて、また、オーステナイ

ト組織にするのに必要なマンガン量と炭素量と の関係を示す常は図から分かるように,炭素と の共存下においては少なくとも!まだまでのマ ンガン量の添加によつでそれぞれ違成できる。 また。けい紫の豊は流常健会な祭を溶製し、 その軟化抵抗を高めるだけの目的であれば、a 10~ a 8 0 5 0 けい果を a 3 0 ~ 1 0 5 0 マ ンガン量と共存させれば充分であるが,その耐 微化性を改善するには、耐酸化性とけい素量と の関係を示す第8図から分かるように最高ユコ ぉまでのけい素量を低加することが必要となるo このほか本発明網の耐鬱単性はマトリックス をオーステナイト組織にすること以外に、役量 のニツケルを鉄加することによつても改善でき すなわち本発明器を各種の耐磨耗材に使用 するとも,良好な耐鬱糖性を要求されることが あるが,ニッケル量とシャルピー衝撃値との関 係を調査した第1表から分かるように。低合金 ではaょゟ,高合金鋼でも30%程度のニッ

ルを議加することによつて労働単性は改善で

第 1 製

*	料		化	学	成 ź	9	(96)		硬さ	シャルビー衝撃値
紀	용	σ	81	Mn	. Or	Мо	N1	分散粒	(H^ A)	(2 Vノツチ) (kgm√cnl)
A -	- /	0.35	060	080	1.0	020	† - - ·	2/	#52	
A -	- 2	03/	052	0.78	1.05	0.21	040	19	445	30
A -	- 3	.036	0.55	081	1.02	0.19	1.50	23	455	47
В-	. /	005>	275	0.50	129	2.2	-	#3	240	0.4
В-	- 2	005>	080	0.44	127	2/	3.4	45	245	/.2
В-	. 3	0.05>	077	048	181	20	66	41	247	3.5
в –	#	0.05>	077	0.51	127	2.2	8.0	40	.240	7.7
o –	. /	0.15	052	0.66	257	3.2	-	47	348	0.25
0 -	. 2	0.16	053	068	249	3.0	8.5	3:0	352	2.2

4時開 昭49-- 7117 (4)

き,さらにニッケルの最を増せば比例的に耐奮 輩性は向上し,オーステナイト組織になるとき わめて良好となる。

以下本発明鋼のすぐれた耐磨耗性と附続する性質を実施例によつて補足する。

夹施例 /

	第	2	
	SOM3	本系	明鋼
(Hv)	520	420	502
聲(E(ZV) /cm²)	2.5	23 ~ 23	09 ~ 14
/	32/	1.23	1.04
.2	3/3	1.72	291
3	3/9	181	083
4	330	1.88	1.01
3	234	1.76	0.93
	3/8	1.90	1.09
7	326	.77	087
8	3.20	1.80	097
平均	323	1.81	096
	受信(2V) /cm*) / 2 3 4 5 4	(Bv) \$20 \$\frac{4}{2}(2v) 25 2 32/ 2 3/3 3 3/7 4 330 3 3/8 4 3/8 7 226 8 320	SOM3 本別 (BV) 520 #20 #20

第	3	丧

芪 験	一 秋 *	F A	試料 B		
	武料の種類	康耗量	飲料の種類	摩託量	
書号	(硬さ)	(g)	(硬さ)	(g)	
	SKD4/		SKD4/	0010	
	(362HV)	00/5	(362H+)		
2		0.020	分數靈鋼-I	0006	
			(350HV)		
3	.	2011	分散型網1	000/3	
		20,,	(390H▼)	00073	
#	分數遊網-]	0.008	分散型鋼-I	0.006	
•	(350Hy)	0.008	(350By)		

*のチタンとジルコニウムとの複合した炭窒化物を分散させたもの(分散型鋼I)と、ょの**のクロムとよ!*のモリブデンとを主要合金成分とする鋼中による**のチタンとタンタルとの複合した炭窒化物を分散させたもの(分散型鋼I)とを組合せて % 4 kg/kglの面圧で接触摩耗量を比較した結果である。第3表から分かるように、本発明鋼は8mD 4 / に比べて接触摩耗量

およびa7s%マンガンを主要合金成分とする 鋼中収,ジルコニウムの炭酸化物を116分散 させた本発明値とゴエ目の80mょとを耐御撃 性と財産郵性とについてよマノッチシャルビー 試験と土砂摩耗試験とによつて比較したもので ある。ととに本発明銅の410は80m3の硬 さに比べて100岁だけ硬さを低くした状態の 飲料であり、501は80mょと略同等の使さ にした試料である。第1表から分かるように、 80mgに対して#20ではk8倍。502で は約4倍の耐磨耗性が得られる。それ故,耐衝 単性が従来の領と関等のものが要求される場合 は硬さを低くし、また耐度軽性のすぐれたもの が要求される場合は従来の鋼と同等の硬さにし て使用すれば,本発明鋼は従来の鋼よりも著し く経済性に富む耐度耗材料となる。

実施例2

無3 数は超用側として最も広く用いられている J I B の B I D 4 / と、ユ 5 チ ク ロ A と a 5 チ の モ リ プアン を 主要合金 成分 と す る 網 中 に 20

が著しく少なく、特に本発明調問志を組合わせた場合は B x D 6 / 同志を組合わせた場合に比べて摩託量がいずれも半分以下である。

疾施例す

/ 5 系のクロム、2 系のけい業、2 7 多のマンガン、2 多のモリプデンおよび 3 多のニッケルを主要合金成分とする鋼中によ 7 系のチョンの設定化物を分散させた本発明鋼の鉤鋼品としての路特性を調査して次ぎの結果が得られた。(/) 熱処理確さ

. 焼灰温度にかかわらず 250 ± 10 BV

(4)耐磨耗性

J I 8 の 5 0 日 . / / との接触摩託試験において摩託量は 8 0 日 . / / の 5 分の / であった。

(3)耐熱性

高温酸化酶食度は 1000 でにて a 0 34 med/br, 1200 でにて a 18 me/d/ar であり、少なくとも 1200 でまでの高温にさらされる部品に使用できる。

(4) 附食性

P B 2 5 の 塩化物水溶液に対して A5 8/m² /deyの耐食性を具備しており、酸性液にさら されるような耐磨耗材としても使用できる。 (3) 機械的性質

引張り強さっ

743 kg/kd

0.2 多 耐力

#±3 kg/mi

伸び

218 %

シャルピー衝撃値(2V/ツチ) パs kgm/tdl

《図面の簡単な説明

図であり、また、第7図は本発明側の耐摩耗性を改善するため、組織をオースデナイトにするのに必要なマンガン最と従来最との関係を、第4図は本発明値が高温にさらされるどきの耐機化性を向上させるのに有効なけい業の量と腐食皮との関係を示す範図である。

特許出顧人 三菱製鋼株式会社

手統補正書「自発」

. 昭和《9年9月27日

热肿中唇管 三 宅 等 夫 震

(事件の表示

田和47年特許職第46434号

2 発明の名称

耐摩耗

3補正をする者

事件の関係

出意人

在 所 東京都平代田区共享前二丁目4番2号

名 称 兰菱菱窗株式会社

4== 多公子号

※補正の対象

明細書の発明の詳細な説明の概

4 神正の内容

本顧明報告の記載の一部を次のように訂正す

る。

、 煮 毎 東 貫 第 ! 3 行 「チッピング」を「ピッチン グ ー と 町 正 する。

ュ第 4 頁第 / ヶ行「チッピング」を「ピッチング」と訂正する。

3.第4頁第19行「チッピング」を「ピッチング」と訂正する。

4 第 4 頁第 1 8 行「チッピング」を「ピツチン グ」と訂正する。

s 第 4 頁第 2 行「チャピング」を「ピッチング」と訂正する。