抽象代数笔记

副标题

Zhang Liang

2025年3月19日

前言标题

前言内容

2025年3月19日

目录

第一章	域	0
1.1	域的定义	0
	1.1.1 域	0
	1.1.2 域的性质	0
1.2	域的同态	2
1.3	域的特征	3
	1.3.1 域的特征的定义	3
	1.3.2 域的特征的性质	4
1.4	域的扩张	4
	1.4.1 代数闭包	4
第二章	Galois 理论	5
2.1	Galois 群	5
第三章	附录	6
3.1	一些典型的域	6
	3.1.1 F_p	6
	312 0	7

第一章 域

1.1 域的定义

1.1.1 域

定义 1.1.1: 域

设 F 是一个集合,如果存在两个运算 $+: F \times F \to F$ 和 $\cdot: F \times F \to F$,分别称为加 法和乘法,并且满足:

- ① (加法单位元存在) 存在一个元素 $0_F \in F$, 称为零元, $\forall x \in F, x + 0_F = 0_F + x = x$
- ② (加法逆存在) $\forall x \in F, \exists (-x) \in F, \text{s.t.} x + (-x) = (-x) + x = 0_F, \ (-x)$ 称为 x 的加法逆元
- ③ (加法交换律) $\forall x, y \in F, x + y = y + x$
- ④ (加法结合律) $\forall x, y, z \in F, (x + y) + z = x + (y + z)$
- ⑤(乘法单位元存在)存在一个元素 $1_F \in F, 1_F \neq 0_F$,称为一元, $\forall x \in F, x \cdot 1_F = 1_F \cdot x = x$
- ⑥(乘法逆存在) $\forall x \in F 0_F, \exists x^{-1} \in F, \text{s.t. } x \cdot x^{-1} = x^{-1} \cdot x = 1, \ x^{-1}$ 称为 x 的乘法 逆元
- ②(乘法交换律) $\forall x, y \in F, x \cdot y = y \cdot x$
- \otimes (乘法结合律) $\forall x, y, z \in F, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- ⑨ (乘法分配律) $\forall x, y, z \in F, x \cdot (y+z) = x \cdot y + x \cdot z$

1.1.2 域的性质

1.

命题 1.1.1. 加法和乘法的单位元是唯一的。

1.1 域的定义 第一章 域

证明: 先考虑加法的单位元。假设命题不成立,那么我们不妨假设 $0_1, 0_2$ 都是 F 的零元, $0_1 \neq 0_2$

那么 $0_1 = 0_1 + 0_2 = 0_2$,于是有 $0_1 = 0_2$,与假设矛盾。于是加法的单位元唯一。

同理可证, 乘法的单位元也是唯一的。

2.

命题 1.1.2. $\forall a$, 加法的逆 -a 是唯一的。

如果还有 $a \neq 0$,那么乘法的逆 a^{-1} 也是唯一的。

证明: 先考虑加法逆,不妨假设命题不成立,那么 $\exists b, c, a+b=0, a+c=0, b\neq c$ 于是,b=b+0=b+(a+c)=(a+b)+c=0+c=c,这与假设矛盾。于是加法逆唯一。

同理可证,乘法逆也是唯一的。

3. 证明: $a \cdot 0 = 0$

证明: $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$

$$\Rightarrow a \cdot 0 + (-a \cdot a) = a \cdot 0 + a \cdot 0 + (-a \cdot 0)$$

$$\Rightarrow 0 = a \cdot 0$$

立即有以下推论:

推论 1.1.1

$$ab = 0 \Rightarrow a = 0 \lor b = 0$$

证明: 假设 $a \neq 0$,那么 $b = a^{-1} \cdot 0 = 0$,命题得证

4.

命题 **1.1.3.** $-a = (-1) \cdot a$

证明: $a + (-a) = 0 = (1 + (-1)) \cdot a = 1 \cdot a + (-1) \cdot a = a + (-1) \cdot a$

$$\Rightarrow (-a) + a + (-a) = (-a) + a + (-1) \cdot a$$

$$\Rightarrow -a = (-1) \cdot a$$

随后我们即可得出以下推论

推论 1.1.2

$$(-1) \cdot (-x) = x$$

1.2 域的同态 第一章 域

证明: 我们只需证明: (-1)(-1) = 1

因为
$$(-1)(-1) + (-1) \cdot 1 = 0$$

$$\Rightarrow (-1)(-1) + (-1) = 0 \Rightarrow (-1)(-1) = 1$$

那么,
$$(-1)(-x) = (-1)(-1) \cdot x = 1 \cdot x = x$$

推论 1.1.3

$$(-x)(-x) = x \cdot x$$

证明: 运用前面的推论中的结果, $(-x)(-x) = x \cdot (-1)(-1) \cdot x = x \cdot 1 \cdot x = x \cdot x$

1.2 域的同态

定义 1.2.1: 域的同态

 F_1, F_2 是两个域,如果存在一个映射 $\varphi: F_1 \to F_2$,满足:

②
$$\varphi(1_{F_1}) = 1_{F_2}$$

$$\Im \varphi(x+y) = \varphi(x) + \varphi(y)$$

$$\ \, \mathfrak{P}(x\cdot y)=\varphi(x)\cdot\varphi(y)$$

值得注意的是,与我们之前了解到的线性空间同构不同,域的同态完全没有对映射的满 射性、单射性作任何限制。但是,

以下定理证明,两个域如果同态,那么同态映射是一个单射

定理 1.2.1: 域同态的单射性

若 $\varphi: F_1 \to F_2$ 是 F_1 到 F_2 的同态,那么 φ 是单射

证明: 不妨假设命题不成立。于是, $\exists x_1 \neq x_2$ s.t. $\varphi(x_1) = \varphi(x_2)$

那么有:
$$\varphi(x_1-x_2)=\varphi(x_1)-\varphi(x_2)=0_{F_2}$$

因为我们已经假设了 $x_1 \neq x_2$,于是 $(x_1 - x_2)^{-1}$ 存在。将上式乘以 $\varphi((x_1 - x_2)^{-1})$ 得:

$$1_{F_2} = \varphi(1_{F_1})\varphi\left((x_1 - x_2)^{-1}(x_1 - x_2)\right) = \varphi\left((x_1 - x_2)^{-1}\right)\varphi\left((x_1 - x_2)\right) = 0_{F_1}$$

与
$$0_{F_2} \neq 1_{F_2}$$
 矛盾,于是命题得证。

在证明这一点后,我们可以类似地引入域的同构:

1.3 域的特征 第一章 域

定义 1.2.2: 域的同构

设 $\varphi: F_1 \to F_2$ 是 F_1 到 F_2 的同态

如果 φ 还是个满射,那么我们称 φ 是一个同构;

特别地,如果有 $F_1 = F_2$,我们称 φ 是一个自同构。

并且引入自同构的不动域的概念:

定义 1.2.3: 自同构域的不动域

设 $\sigma: F \to F$ 是 F 的自同构,那么我们称集合

 $\{x \in F | \sigma(x) = x\}$ 为 F 的不动域

"不动域"这一名称是合理的,因为利用域同构的定义容易证明不动域是一个域,而且是F的一个子域。

1.3 域的特征

1.3.1 域的特征的定义

定义 1.3.1: 域的特征

设 F 是一个域, 定义以下映射 $N: \mathbb{N} \ni n \mapsto n_F \in F$, 满足:

 $N(0) = 0_F, N(n+1) = n_F + 1_F$

那么,如果 N 是一个单射,我们称 F 的特征为 0,记作 Char F = 0;

否则,我们将满足 $N(p) = 0_F, p > 0$ 的最小正整数称为 F 的特征,记作 $\operatorname{Char} F = p$ 。

我们首先需要证明的是,任何一个域都是具有特征的,因为对于定义中的第二种情形,我们并不知道这样的 p 是否一定存在。

定理 1.3.1: 域特征的存在性

任何域 F 的特征 Char F 均存在

证明: 我们只需要证明第二种情形。

容易证明,N(m+n)=N(m)+N(n)。(仿照 Peano 公理下证明加法性质的方式即可)于是,因为 N 不是单射,于是一定有 $a,b\in\mathbb{N},a>b,N(a)=N(b)$

1.4 域的扩张 第一章 域

于是有 $N(a-b) = N(a) - N(b) = 0_F$ 。

那么 $\{m|N(m)=0_F\} \neq \emptyset$,因此这样的最小整数 $\mathrm{Char} F$ 存在

接下来考虑几个性质

1.3.2 域的特征的性质

命题 1.3.1. 设 F 是一个域, 那么或者 Char F = 0, 或者 Char F = p 是素数

证明: 我们只需要证明当 Char F = p > 0 时, p 是素数

不妨假设命题不成立,那么一定有1 < q < p, 1 < r < p, p = qr

容易证明,N(qr) = N(q)N(r)。(仿照 Peano 公理下证明乘法性质的方式即可)

但是,因为 N(qr)=0,于是 N(q)=0 \vee N(r)=0,这与定义中 p 是使 N(x)=0 成立的最小正整数矛盾。

于是命题得证。

1.4 域的扩张

定义 1.4.1: 子域

设 E, F 是两个域, $E \subseteq F$

如果 $0_F, 1_F \in E$, 并且 F 中的加法和乘法对 E 形成一个域,

那么我们称 $E \in F$ 的一个子域, 并称 $F \in E$ 的一个域扩张,

记作 $F \setminus E$

从以上定义容易看出,F 也可以视为 E 上的一个线性空间。

定义 1.4.2: 域的 n 次扩张

如果 $F \setminus E$, 那么我们记 $[F : E] := dim_E F$, 并称 $F \in E$ 由 [F : E] 次扩张得到的。

1.4.1 代数闭包

定义 1.4.3: E 上的代数闭包

设 $E \setminus F$ 是一个域扩张,那么我们称

{}

第二章 Galois 理论

2.1 Galois 群

定义 2.1.1: Galois 群

设 E, F 是两个域, $E \setminus F$ 是一个扩张,那么称

 $Gal(E \backslash F) = \{ \sigma \in Aut(E) | \sigma|_F = id_F \}$

是 $E \setminus F$ 的 Galois 群

定理 2.1.1: 有限扩张的 Galois 群有限

如果 $E \setminus F$ 是有限扩张,那么 $Gal(E \setminus F)$ 是有限群

第三章 附录

这一部分中,对于正文中因为逻辑结构无法提及的部分,进行补充。

3.1 一些典型的域

3.1.1 F_p

首先约定,这一部分的讨论中,都认为 p 是一个素数。 我们首先讨论的是一个典型的有限域——模 p 剩余类域。

定义 3.1.1: F_n

设 F 是一个域, $CharF \ge p$ 且 p 是一个素数,

我们定义 $F_p = N(\mathbb{Z}_p)$

并定义其中的加法和乘法为:

 $+_F = N^- 1 \circ + \circ N, \cdot_F = N^- 1 \circ \cdot \circ N$

定理 3.1.1: F_p 没有真子域

设 p 是一个素数, 那么域 F_p 不存在真子域, 即 $F_p \setminus E \to E = F_p$

证明: 不妨假设命题不成立,那么一定有真子域 $E \subseteq F_p$

不妨假设 $[F_p:E]=d$,因为 F_p 是有限域,那么 $|E|,|F_p|$ 都是有限的。

但是, $|F_p| = |E|^d$

 $\Rightarrow p = |E|^d$, 但是 p 是素数, 因此只可能 d = 1

于是 $|F_p| = |E|$, 那么只可能 $F_p = E$, 与假设矛盾,于是命题得证。

3.1 一些典型的域 第三章 附录

3.1.2 Q

定理 3.1.2: Q 没有真子域

\mathbb{Q} 不存在真子域, 即 $\mathbb{Q}\backslash E \to E = \mathbb{Q}$

证明: 不妨假设命题不成立, $E \subset \mathbb{Q}$ 是 \mathbb{Q} 真子域。

那么,因为 $0,1 \in E$,由域对加法封闭,那么一定有 $\mathbb{N} \subseteq E$

进一步,因为任意元素的加法逆存在,于是有 $\mathbb{Z} \subseteq E$

于是,由任意非零元素的逆存在,一定有 $\mathbb{Q} \subseteq E$ 。

但是,我们假设 $E \subset \mathbb{Q}$,矛盾。于是命题成立