Practice Exam 1, ST518/590

Directions: Answer questions as directed. Please show work. At least half credit will be given when *correct expressions* are given, but numerical answers are either incomplete or incorrect. For true/false questions, *circle* either true or false.

1. Summary statistics from the heights, x, and weights, y, of n = 101 football players are given below.

$$\overline{x} = 73.5 \text{ inches}$$
 $\overline{y} = 226.0 \text{ lbs}$
 $s_x^2 = 5.8 \text{ inches}^2 \implies \sum (x_i - \overline{x})^2 = ?$
 $s_y^2 = 1639.1 \text{ lbs}^2 \implies SS[Tot] = \sum (y_i - \overline{y})^2 = ?$
 $s_{xy} = 62.3 \text{ lb-inches}$

(a) Report r_{xy} , the sample correlation coefficient for weight and height among these n = 101 players.

(b) Suppose that these 101 players can be regarded as a random sample from a bivariate population of interest. Briefly specify a simple regression model for Y_1, \ldots, Y_n in which the mean weight of players in the population is linear in height, x_i .

(c) Fill in the spaces after the question marks above with the total sum of squares of the weights, SS[Tot] and the sum of squares for heights, S_{xx} . Use the summary statistics to obtain the least squares (LS) estimate of the slope. Specify the units.

(d) True or false: in SLR, the least squares (LS) estimate of slope satisfies

$$\hat{\beta}_1 = r_{xy} \frac{s_x}{s_y}.$$

- (e) True or false: $SS[Reg] = \hat{\beta}^2 \sum (x_i \overline{x})^2$
- (f) True or false: The *fitted* or *predicted* value of the i^{th} observation may be written as follows

$$y_i = \overline{y} + r_{xy} s_y \left(\frac{x_i - \overline{x}}{s_x} \right)$$

- (g) True or false: $SS[E] = \sum (\hat{y}_i \overline{y})^2$.
- (h) True or false: under repeated sampling in the SLR model, the estimated slope and intercept will be positively correlated in this context.
- (i) Complete the ANOVA table below:

- (j) The observed F-ratio is greater than the 99.99th percentile of the F distribution with 1 and 99 numerator and denominator degrees of freedom. With regard to the association of y and x, . . .
 - i. ... this provides strong evidence of a linear association. (True or false)
 - ii. ... this provides evidence of a strong linear association. (True or false)
- (k) Evaluating the least squares regression line at x = 73.5 yields

$$\hat{\mu}(73.5) = \hat{\beta}_0 + \hat{\beta}_1(73.5) = 225.5$$

i. Report an estimated standard error for the estimated mean weight among the population of players of height = 73.5 inches.

ii. Estimate the standard deviation among this population of players with x=73.5 inches.

2. The data below taken from Dickey's website correspond to temperatures taken in January, 1992.

	Mon		Tue	3	Wed	
	Н	L	Н	L	H	L
seattle	51	44	52	44	59	47
boston	29	12	32	29	44	28
richmond	47	23	55	40	51	28
louisville	53	30	37	29	46	24
lubbock	46	40	48	42	54	42
omaha	31	26	36	22	47	31
sanfran	56	47	65	49	65	47
philly	36	18	46	27	46	26
cincinnati	50	25	36	29	41	30
phoenix	74	49	75	48	75	48
miami	72	68	77	71	79	72
milwauke	31	23	33	26	35	26
dallas	50	47	53	47	56	44
burlingvt	20	-2	28	03	39	24
buffalo	34	18	34	28	32	26
charlotte	49	38	60	41	59	41
bismark	27	-5	43	15	47	17
elpaso	61	34	64	33	64	32
rapidcity	46	20	62	25	57	41

Consider predicting the high temperature thi for a given day using a linear function of as many as 4 independent variables: the low and high temp from two days ago (lo2, hi2) and yesterday's low and high temp (ylo, yhi). The correlations of thi with the four predictors, along with p- values for tests of 0 correlation are given below:

Pearson Correlation Coefficients, N = 19Prob > |r| under HO: Rho=0

	thi
hi2	0.84769 <.0001
102	0.77497 <.0001
yhi	0.94572 <.0001
ylo	0.77438 <.0001
tlo	0.83471 <.0001

Several multiple regression models were considered. Sums of squares appear below. Parameter estimates are given for the full model.

• Model 1 $\mu(ylo, yhi, lo2, hi2) = \beta_0 + \beta_1 lo2 + \beta_2 hi2$	$+\beta_3 y lo + \beta_4 y hi$
• Model 2 $\mu(ylo, yhi, lo2, hi2) = \beta_0 +$	$\beta_3 y lo + \beta_4 y hi$

• Model 3
$$\mu(ylo, yhi, lo2, hi2) = \beta_0 + \beta_2 hi2 + \beta_4 yhi$$
.

• Model 4
$$\mu(ylo, yhi, lo2, hi2) = \beta_0 + \beta_4 yhi$$

Model: MODEL1

			Sum of	Mea	n			
Source		DF	Squares	Squar		Value	Pr > F	
Model		4	2624.48822	656.1220	6	36.43	<.0001	
Error		14	252.14336	18.0102		00110		
Corrected Total		18	2876.63158					
		Parame	eter St	andard				
Variable	DF	Estir	nate	Error t Valu		Pr > t		
Intercept	1	15.67	7260 4	4.25081 3		0.	0024	
yhi	1	0.73	1275 0	5.3		0.0001		
ylo	1	-0.12		.20062	20062 -0.64		0.5305	
hi2	1	-0.00			-0.03			
102	1	0.23	1464 0	.17800	1.21	0.	2479	
			Model: MODE	ר זי				
			noder. nobe	1112				
			Sum of	Mea	n			
Source		DF	Squares	Squar		Value	Pr > F	
Model		2	2590.67200	1295.3360	0	72.48	<.0001	
Error		16	285.95958	17.8724	7			
Corrected To	tal	18	2876.63158					
			Model: MODE	L3				
			Sum of	Mea	n			
Source		DF	Squares	Squar	e F	Value	Pr > F	
Model		2	2593.51335	1296.7566		73.28	<.0001	
Error		16	283.11823	17.6948	9			
Corrected To	tal	18	2876.63158					
			Model: MODE	ין זי				
			Sum of	Mea	n			
Source		DF	Squares	Squar	e F	Value	Pr > F	
Model		1	2572.83737	2572.8373		143.97	<.0001	
Error		17	303.79421	17.8702	5			
Corrected To	tal	18	2876.63158					

- (a) True or false: the regression coefficient β_4 has the same interpretation in all four models.
- (b) Note that F(0.05, 2, 16) = 3.63 and F(0.05, 1, 18) = 4.41 and F(0.05, 2, 14) = 3.74.
 - \bullet By comparison of a reduced model with Model 1, use an F-ratio to test the hypothesis that today's expected high temperature does not depend on temperatures from two days ago, given the other predictors.

• By comparison of a reduced model with Model 1, use an F-ratio to test the hypothesis that today's expected high temperature does not depend on either of last two low temperatures, given the other predictors.

• Test $H_0: \beta_{2\cdot 4} = 0$ using level $\alpha = 0.05$. Briefly describe what's being tested here. Report and interpret the appropriate partial coefficient of determination.

