CS-208:Artificial Intelligence
Topic-16: Resolution in Propositional Logic

Resolution in Propositional Logic

- **Input:** Procedure for producing proof by resolution of proposition *S* with respect to given set of axioms *F*
- **Step1:** Convert all the propositions of F in to Clause Form
- **Step2:** Negate S and convert the result in to clause form. Add it to the set of clauses obtained in step1.
- **Step3:** Repeat Until either a contradiction is found or no progress can be made
 - a) Select two clauses. call them as the parent clause.
 - b) Resolve the parent clauses. The resulting clause is called resolvent will be the disjunction of all the literals from both the parent clauses with following exception: If there are any pairs of literals L and ¬L such that one of the parent clauses contains L and the other contains ¬L then eliminate both L and ¬L from the resolvent.
 - c) if the resolvent is an empty clause then a contradiction has been found . If it is not, then add the resolvent to the set clauses available to the procedure.

An Illustrative Example for Resolution in Propositional Logic

Given set of Axioms

- 1. p
- 2. $(p \land q) \rightarrow r$
- 3. $(s \lor t) \rightarrow q$
- 4. t

Prove: r

Resolution Step1: convert given set of axioms in to clause form

	Conversion steps	Description	Clauses
1	p	Already in the clause form	Clause-1
2	$(p \land q) \rightarrow r$		
	$\neg (p \land q) \lor r$	By conversion step-1	
	$(\neg p \lor \neg q) \lor r$	By conversion step-2	Clause-2
3	$(s \lor t) \to q$		
	\neg (s \lor t) \lor q	By conversion step-1	
	$(\neg s \land \neg t) \lor q$	By conversion step-2	
	$(\neg s \lor q) \land (\neg t \lor q)$	By conversion step-7	
	$\neg s \lor q$	By conversion step-8	Clause-3
	$\neg t \lor q$	By conversion step-8	Clause-4
4	t	Already in the clause form	Clause-5

Resolution Step2: Negate r and convert — r into clause form

	Conversion steps	Description	Clauses
1	$\neg r$	Already in the clause form	Clause-6

Resolution Step3:

An empty clause indicates $\neg r$ can not be true as it was concluded with full of contradictions. So r must be true.