МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

ГЛОБАЛЬНАЯ АТМОСФЕРНАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И КОЛЕБАНИЕ МАДДЕНА-ДЖУЛИАНА

Выпускная квалификационная работа студента 4 курса по направлению подготовки 03.03.02 Физика, профиль – фундаментальная физика, Козлова Александра Владимировича

Научный руководитель:
научный сотрудник ИПФ РАН,
кандидат физико-математических наук
Н.Н. Слюняев
_
Рецензент:
научный сотрудник ИПФ РАН,
доктор физико-математических наук
М.Д. Токман
Декан ВШОПФ: кандидат физико-математических наук
Е.Д. Господчиков

Нижний Новгород 2022 г.

СОДЕРЖАНИЕ

введение		3	
1.	СТОЛБЦОВАЯ МОДЕЛЬ ГЛОБАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ	5	
2.	влияние колебания маддена-джулиана на глобальную элек-		
	ТРИЧЕСКУЮ ЦЕПЬ	6	
	2.1. ХАРАКТЕРИСТИКА КОЛЕБАНИЯ МАДДЕНА-ДЖУЛИАНА	6	
CI	СПИСОК ЛИТЕРАТУРЫ		

ВВЕДЕНИЕ

В земной атмосфере протекают процессы, формирующие климат Земли, что делает изучение атмосферы критически важным для человека. Атмосферное электричество относится к числу наиболее актуальных направлений в науке, изучающей физику атмосферы Земли. Главной задачей атмосферного электричества является разработка не противоречащей эксперименту модели распределения крупномасштабного электрического поля в атмосфере планеты. Возможно, решение такой задачи позволит создать более точные климатические модели, учитывающие взаимодействие атмосферной динамики с электрическим окружением Земли.

Ключевым понятием атмосферного электричества является глобальная электрическая цепь (ГЭЦ) [1]. ГЭЦ представляет собой распределённый токовый контур, образованный слоем воздуха между землёй и ионосферой. Выделяют два типа ГЭЦ: переменного тока и постоянного. В ГЭЦ первого типа источниками выступают молниевые разряды облако-земля, в ГЭЦ постоянного тока источниками являются токи разделения зарядов в облаках с развитой электрической структурой [1]. Всюду ниже будет рассматриваться ГЭЦ постоянного тока. Интенсивность ГЭЦ характеризуется ионосферным потенциалом (ИП), который определяется как разность потенциалов на ионосфере и на земле. Замечательной особенностью ИП является то, что он в первом приближении не зависит от географического места измерения. Однако, ИП в последние десятилетия не измеряется (из-за дороговизны таких измерений) и служит скорее для теоретического моделирования ГЭЦ. Экспериментально измеряется градиент потенциала (ГП) электрического поля Земли, который в дни хорошей погоды пропорционален ИП. ГП в отличие от ИП подвержен множеству локальных эффектов, модулирующих ГП и осложняющих интерпретацию результатов измерений.

ГЭЦ объединяет в себе области плохой погоды, где в среднем электрические токи поднимаются вверх от поверхности земли к ионосфере, и области хорошей погоды, где токи растекаются сверху вниз, поэтому ГЭЦ зависит от климатического состояния Земли. Кроме того, ГЭЦ подвержена влиянию таких факторов космического окружения, как галактические космические лучи и солнечная активность. Так же на ГЭЦ оказывают значительное влияние аэорозоли. Механизмы воздействия данных факторов на ГЭЦ до конца не ясны.

Аналитическое нахождение распределения крупномасштабных электрических полей в атмосфере в общем случае не возможно, поэтому для исследования ГЭЦ используется численное моделирование. При моделировании ГЭЦ значительные трудности возникают с заданием распределения источников и проводимости воздуха в атмосфере. Отчасти это связано с недостатком наблюдательных данных. Модели ГЭЦ разнятся по используемой геометрии, например, некоторые модели рассматривают атмосферу как сферический слой, а в некоторых атмосфера разбивается на невзаимодействующие столбцы воздуха (так называемая столбцовая модель ГЭЦ).

В первой части дипломной работы реализована столбцовая модель ГЭЦ с учётом параметризации проводимости, предложенной в [?]. Результаты такой модели сравнивались с результатами уже зарекомендовавшей себя модели, разработанной в [2], где используется более простое задание проводимости. На основе сопоставления моделей с двумя параметризациями

проводимости оценена надобность использования более сложной параметризации проводимости при моделировании ГЭЦ.

Во второй части дипломной работы исследовалась связь колебания Маддена–Джулиана (КМД) с ГЭЦ. КМД является доминирующей компонентой климатической изменчивости в тропиках на временных масштабах в десятки дней. КМД происходит нерегулярно и обычно длится 30–90 дней. Важным аспектом КМД является связанность процессов крупномасштабной атмосферной циркуляции и процессов глубокой конвекции; в течение каждого цикла КМД крупномасштабная связанная структура переносится на восток со скоростью 5 м с⁻¹. Данный эффект затрагивает все долготы, но наибольшее проявление имеет над Восточным полушарием. За последние 50 лет КМД было широко изучено с климатологической точки зрения [3, 4, 5]; было установлено, что КМД воздействует на глобальное распределение дождей, на развитие тропических циклонов и даже на Эль-Ниньо/Южное колебание (ЭНЮК).

Однако, лишь несколько исследований было посвящено влиянию КМД на атмосферное электричество. В работе [6] показано на основе анализа спутниковых данных и измерений резонансов Шумана в Антарктике, что внутри-сезонная вариация глубокой конвекции отражается в вариации интенсивности шумановских резонансов. Резонансы Шумана возбуждаются молниевыми разрядами облако-земля, поэтому не удивительно, что изменение в глубокой конвекции (которая часто связана с молниевой активностью) отражается на их интенсивности. Ещё одно исследование по данной тематике [7] показывает, что интенсивность и частота резонансов Шумана коррелирует с индексами, описывающими КМД, но только в течение холодной фазы ЭНЮК.

Молниевая активность (а следовательно и шумановские резонансы) связаны с глубокой конвекцией лишь косвенно. Гораздо более натуральный подход заключается в рассмотрении ГЭЦ, источниками для которой служат квазистационарные токи разделения зарядов как в грозовых облаках, так и в ESC (electrified shower clouds), в которых нет молний; такие токи непосредственно связаны с глубокой конвекцией.

В недавних работах [8, 9] на основе моделирования ГЭЦ было показано, что изменения в глубокой конвекции в течение ЭНЮК модулирует ИП и его суточную вариацию. Результаты данных исследований нашли подтверждение в экспериментальных измерениях ГП [10, 11]. Похожий метод был применён в настоящей работе при исследовании связи ГЭЦ с КМД с использованием как результатов численного моделирования ГЭЦ, так и результатов измерений электрического поля в Антарктиде.

1. СТОЛБЦОВАЯ МОДЕЛЬ ГЛОБАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

2. ВЛИЯНИЕ КОЛЕБАНИЯ МАДДЕНА-ДЖУЛИАНА НА ГЛОБАЛЬНУЮ ЭЛЕКТРИЧЕСКУЮ ЦЕПЬ

2.1. ХАРАКТЕРИСТИКА КОЛЕБАНИЯ МАДДЕНА-ДЖУЛИАНА

Принято описывать климатические моды с помощью специальных индексов, которые упрощают рассмотрение данных явлений. Существует множество индексов, описывающих КМД, но наиболее распространённым является Real-time Multivariate MJO index (RMM), представленный в [12]. Индекс RMM рассчитывается на основе потока уходящей длинноволновой радиации (outgoing longwave radiation, OLR) и скорости зонального ветра на 200 и 850 гПа. Набор трёх таких переменных, взятых на широтно-долготной сетке $2.5^{\circ} \times 2.5^{\circ}$, позволяет выделить паттерны, характерные для КМД, как в атмосферной циркуляции (которая характеризуется зональными ветрами), так и в глубокой конвекции (которая описывается OLR).

КМД всегда происходит совместно с климатической изменчивостью, происходящей на прочих временных и пространственных масштабах. Поэтому все три параметра, на основе которых рассчитывается КМД, сперва обрабатываются с целью удаления большей части изменчивости, не связанной с КМД. После этого производится осреднение всех трёх параметров в полосе 15° с. ш. – 15° ю. ш., что приводит к тому, что для каждого дня имеется три набора данных, каждый из которых обладает длиной 144. Такие три набора данных объединяются вместе и формируют 432-размерный вектор, для которого выделяются эмпирические ортогональные функции (ЭОФ). ЭОФ для физического процесса — такие взаимно ортогональные пространственные паттерны, рассчитываемые из данных, что с их помощью можно устроить разложение сложного процесса на относительно простые части. Первая ЭОФ выбирается таким образом, что объясняет большую возможную часть дисперсии данных, вторая ЭОФ выбирается таким образом, что объясняет большую возможную часть дисперсии оставшихся данных и так далее [5, Гл. 6]. Временные коэффициенты для различных ЭОФ называются главными компонентами (ГК). Первые две ГК для вышеописанного набора данных составляют индекс RMM (эти ГК обозначаются как RMM1 и RMM2).

С географической точки зрения RMM1 описывает колебание конвекции над Морским Континентом (Maritime Continent), под которым подразумевается обширный район между Индийским и Тихим океаном, включающим Индонезийский архипелаг, острова Борнео, Новая Гвинея, Филиппинские острова и окружающие моря; RMM2 отвечает за колебание конвекции над Индийским океаном (см. рис. 1). Принято иллюстрировать состояние КМД как точку на плоскости (RMM1, RMM2), которая называется фазовой и изображена на рис. 2.

В настоящем исследовании использовались данные индекса RMM за период 1980–2020 годов, которые были взяты с веб-сайта Австралийского бюро метеорологии (http://www.bom.gov.au/climate/mjo/).

Рис. 1: Долготная структура первых двух ЭОФ, получаемых при вычислении индекса RMM. Непрерывные кривые обозначают OLR и описывают паттерны глубокой конвекции, характерные для КМД. Взято из [12, рис. 1].

Рис. 2: Фазовая плоскость индекса RMM. Точками отмечены все положения на фазовой плоскости в зимние месяцы с 1974 по 2003 год. Взято из [12, рис. 7].

СПИСОК ЛИТЕРАТУРЫ

- [1] E. Williams and E. Mareev. Recent progress on the global electrical circuit. *Atmos. Res.*, 135–136:208–227, 2014.
- [2] N. V. Ilin, N. N. Slyunyaev, and E. A. Mareev. Toward a realistic representation of global electric circuit generators in models of atmospheric dynamics. *J. Geophys. Res. Atmos.*, 125(6):e2019JD032130, 2020.
- [3] R. A. Madden and P. R. Julian. Observations of the 40–50-day tropical oscillation—A review. *Mon. Wea. Rev.*, 122(5):814–837, 1994.
- [4] C. Zhang. Madden-Julian Oscillation. Rev. Geophys., 43(2):RG2003, 2005.

- [5] C. Zhang, Á. F. Adames, B. Khouider, B. Wang, and D. Yang. Four theories of the Madden-Julian Oscillation. *Rev. Geophys.*, 58(3):e2019RG000685, 2020.
- [6] E. Anyamba, E. Williams, J. Susskind, A. Fraser-Smith, and M. Fullekrug. The manifestation of the Madden–Julian oscillation in global deep convection and in the Schumann resonance intensity. *J. Atmos. Sci.*, 57(8):1029–1044, 2000.
- [7] C. D. Beggan and M. A. Musur. Is the Madden–Julian Oscillation reliably detectable in Schumann Resonances? *J. Atmos. Sol. Terr. Phys.*, 190:108–116, 2019.
- [8] N. N. Slyunyaev, A. V. Frank-Kamenetsky, N. V. Ilin, F. G. Sarafanov, M. V. Shatalina, E. A. Mareev, and C. G. Price. Electric field measurements in the Antarctic reveal patterns related to the El Niño—Southern Oscillation. *Geophys. Res. Lett.*, 48(21):e2021GL095389, 2021.
- [9] N. N. Slyunyaev, N. V. Ilin, E. A. Mareev, and C. G. Price. The global electric circuit land–ocean response to the El Niño—Southern Oscillation. *Atmos. Res.*, 260:105626, 2021.
- [10] R. G. Harrison, M. Joshi, and K. Pascoe. Inferring convective responses to El Niño with atmospheric electricity measurements at Shetland. *Environ. Res. Lett.*, 6(4):044028, 2011.
- [11] N. N. Slyunyaev, N. V. Ilin, E. A. Mareev, and C. G. Price. A new link between El Niño—Southern Oscillation and atmospheric electricity. *Environ. Res. Lett.*, 16(4):044025, 2021.
- [12] M. C. Wheeler and H. H. Hendon. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. *Mon. Wea. Rev.*, 132(8):1917–1932, 2004.