1. When aqueous A and aqueous B ($C_{Ao} = C_{Bo}$) are brought together they react in two possible ways:

$$R+T, \qquad r_{R}=50C_{A} \; mol/m3.hr$$

$$S+U, \qquad r_{S}=100C_{B} \; mol/m3.hr$$

to give a mixture whose concentration of active components (A, B, R, S, T, U) is $C_{TOTAL} = C_A + C_B$, = 60 mol/m³. Find the size of reactor needed and the R/S ratio produced for 90% conversion of an equimolar feed of $F_{Ao} = F_{Bo} = 300$ mol/hr:

- 1.1. in a mixed flow reactor;
- 1.2. in a plug flow reactor;
- 1.3. which reactor gives more C_R.

sol.

1.1.
$$F_{Ao} = 300 \text{ mol/hr}$$

$$C_{Ao} = 30 \text{ mol/m}^3$$

$$F_{Bo} = 300 \text{ mol/hr}$$

$$C_{Bo} = 30 \text{ mol/m}^3$$

$$C_{Bo} = 30 \text{ mol/m}^3$$

$$\phi(R/A) = \frac{50 \, CA}{50 \, CA + 100 \, CB} = 1/3$$

$$\phi (S/A) = \frac{100 \, CB}{50 \, CA + 100 \, CB} = 2/3$$

$$C_R = \phi (R/A) * (-\Delta C_A) = (30-3)/3 = 9 \text{ mol/m}^3$$

$$R/S = \frac{1}{2}$$

$$V = \frac{FAo}{CAo} \cdot \frac{CAo - CA}{50 \ CA + 100 \ CB} = (300/30) * [(30-3)/(150 + 300)] = 0.6 \ m^3 = 600 \ Lt.$$

1.2. $F_{Ao} = 300 \text{ mol/hr}$

$$\phi(R/A) = \frac{50 CA}{50 CA + 100 CB}$$
$$\phi(S/A) = \frac{100 CB}{50 CA + 100 CB}$$

$$\begin{split} C_{Rf} &= \int_{CAf}^{CAo} \varphi\left(\frac{R}{A}\right) dCA = \int_{3}^{30} \frac{CA}{CA + 2CB} dCA = 18.68 \\ C_{Sf} &= \int_{CAf}^{CAo} \varphi\left(\frac{S}{A}\right) dCA = \int_{3}^{30} \frac{2CB}{CA + 2CB} dCA = 8.32 \\ C_{Rf}/C_{sf} &= 18.68/8.32 = 2.25 \text{ (approx.)} \\ V &= \frac{FAo}{CAo} \int_{CAf}^{CAo} \frac{dCA}{-rA} = \frac{300}{30} \int_{30}^{300} \frac{dCA}{50CA + 100(3)} = 277.3 \text{ Lt.} \end{split}$$

1.3. PFR gives more R than CSTR.

2. The elementary liquid-phase-series reaction

$$A \xrightarrow{K_1} B \xrightarrow{K_2} C$$

is carried out in a 500-dm³ batch reactor. The initial concentration of A is 1.6 mol/dm³. The desired product is B. and separation of the undesired

product C is very difficult and costly. Because the reaction is carried out at a relatively high temperature, the reaction is easily quenched.

$$K_1 = 0.4 \text{ h}^{-1}$$
 $K_2 = 0.01 \text{ h}^{-1}$ at 100°C

- a) Assuming that each reaction is irreversible, plot the concentrations of A, B and C as a function of time.
- (b) For a CSTR space time of 0.5 h, what temperature would you recommend to maximize B? ($E_1 = 10,000 \text{ cal/mol}$, $E_2 = 20,000 \text{ cal/mol}$)
- (c) Assume that the first reaction is reversible with $K_{-1} = 0.3 \text{ h}^{-1}$. Plot the concentrations of A, B and C as a function of time.
- (d) Plot the concentrations of A, B and C as a function of time for the case where both reactions are reversible with $K_{-2} = 0.005 \text{ h}^{-1}$.
- (e) Vary K_1 , K_2 , K_{-1} and K_{-2} . Explain the consequence of $K_1 > 100$ and $K_2 < 0.1$ with $K_{-1} = K_{-2} = 0$ and with $K_{-2} = 1$, $K_{-1} = 0$. And $K_{-2} = 0.25$.

Sol. a) Species A:
$$\frac{dCA}{dt} = rA \quad ; \quad -r_A = K_1C_A$$

Species B:
$$\frac{dCA}{dt} = rB$$
; $r_B = K_1C_A - K_2C_B$

Species C:
$$\frac{dCc}{dt} = rc$$
; $-r_c = K_2C_B$

b) For CSTR, $\tau = 0.5 \text{ h}$

First calculate k_1 and k_2 :

$$K = Ko \left[exp \left(\left(\frac{E}{R} \right) \left(\frac{1}{To} - \frac{1}{T} \right) \right) \right]$$

$$K_1 = 0.4 \left[exp \left(\left(\frac{10,000}{R} \right) \left(\frac{1}{373} - \frac{1}{T} \right) \right) \right]$$

$$K_2 = 0.01 \left[exp \left(\left(\frac{20,000}{R} \right) \left(\frac{1}{373} - \frac{1}{T} \right) \right) \right]$$

$$C_A = C_{Ao} e^{\text{-}K1} t$$

$$r_B = K_1 C_{Ao} e^{\text{-}K1t} - K_2 C_B = dC_B/dt$$

solving this equation for C_B gives

$$C_B = \frac{K1CAo}{K2-K1} (e^{-K1t} - e^{-K2t})$$

On soving $dC_B/dt=0$ gives that C_B is maximum at $T=760\ K.$

e) When $K_1>100$ and $K_2<0.1$ the concentration of B immediately shoots up to 1.6 and then slowly comes back down, while C_A drops off immediately and falls to zero. This is because the first reaction is so fast and the second reaction is slower with no reverse reactions.

When $k_2 = 1$ then the concentration of B spikes again and remains high, while very little of C is formed. This is because after R is formed it will not go to C because the reverse reaction is faster.

when $k_{-2} = 0.25$, B shoots up, but does not stay as high because the second reverse reaction is a slightly slower than seen before, but still faster than the forward reaction.

3. The elementary liquid phase series parallel reaction scheme

$$A \longrightarrow B \longrightarrow C$$

$$A \longrightarrow R$$

is to be carried out in an isothermal CSTR. The rate laws are given by

$$r_R = k'C_A$$

 $r_B = kC_A - kC_B$

Feed is pure A. Find the space time of the CSTR which results in the maximum exit concentration of B.

Sol. based on the given reactions, we can write

$$-r_A = kC_A + k'C_A$$

Material balance on A gives:

$$U_{o}C_{Ao} = U_{o}C_{A} + (-r_{A})V$$

$$C_{Ao} = C_{A} + (-r_{A})\tau_{m} \qquad (tm = \tau_{m} = V/U_{o})$$

$$\frac{CA}{CAo} = \frac{1}{1 + (k+k')tm}......(1)$$

Material balance on B gives:

$$\begin{split} &U_o C_{Bo} = U_o C_B + (-r_B)V & \text{(since C_{Bo}=0)} \\ &U_o C_B = -(-r_B)V & \text{(tm = τ_m= V/U_o)} \\ &C_B = \tau_m \left(k C_A - k C_B\right) & \\ &C_B = \frac{ktmCA}{1+ktm} & \dots & (2) \end{split}$$

Using equation (1) and (2), we get

$$\frac{CB}{CAo} = \frac{ktm}{(1+ktm)(1+ktm+k'tm)}$$

Differentiating CB w.r.t. τ_{m} and equating it to zero gives the optimum τ_{m} value.

$$d/d \tau_m (C_B/C_{Ao}) = 0$$

$$\tau_{m} = \frac{1}{\sqrt{k(k+k')}}$$
.

4. For a given feed stream having C_{Ao} should we use a PFR or a MFR and should we use a high or low or some intermediate conversion level for the exit stream if we wish to maximize $\phi(S/A)$? The reaction system is

$$A \xrightarrow{\frac{1}{2}} R$$

$$A \xrightarrow{\frac{3}{3}} S, \text{ desired}$$

where n_1 , n_2 , and n_3 , are the reaction orders of reactions 1, 2, and 3.

(a)
$$n_1 = 1$$
, $n_2 = 2$, $n_3 = 3$

(b)
$$n_1 = 2$$
, $n_2 = 3$, $n_3 = 1$

(c)
$$n_1 = 3$$
, $n_2 = 1$, $n_3 = 2$

Sol. a) Use a MFR, with a particular concentration of A

- b) Use a PFR, with low x_A
- c) Use a MFR, with high x_A