0000-Project_Glen

Project Number: 0000

Project Name: Project Glen

This project is on the request of a buddy.

What he wants

Software needs to be able to read and write VISA inquires to a signal generator to output at various frequencies along a spectrum. At each of these frequencies the software should read and record the peak to peak voltage of both the input and output signals (Channel 1 and Channel 2 of the oscilloscope). Once the sweep is completed, a bode plot should be generated showing the gain of the circuit across a frequency sweep.

Two devices are connected to the software over the VISA protocol.

Device 1 is a UNI-T UTG962 Signal Generator and Device 2 is a Rigol DS1054Z Oscilloscope.

Configurable Arguments:

- Frequency Start and Stop
- Frequency Incrementation Value
- Signal to generate (sine, square, ramp, etc)
- Output location
- Plot Output Type

What he has given me: (Example)###

- Sig Gen:
 - Channel 1:
 - Type: Sine Wave
 - Frequency: Sweep from 1 kHz to 100 kHz
 - Amplitude: 200 mVpp
 - DC Offset: 2.5V
 - Channel 2:
 - Type: Square
 - Amplitude: 2.5V
 - DC Offset: 1.25V

- Oscilloscope:
 - Channel 1:
 - Volts: 2 V
 - Horizontal Time Divisions: ????
 - Measure: Vpp, Phase
 - Channel 2:
 - Volts: 200 mV
 - Horizontal Time Divisions: ????
 - Measure: Vpp, Phase
 - Horizontal Divisions: 5 ms
 - Channel 1 Volts: 2V
 - Channel 2 Volts: 200 mV

Flowchart

- 0. Detect Test Equipment
- 1. Connect to Test Equipment
- 2. Configure Channels on Signal Generator
- 3. Define Channel 2 as Output Value on Signal Generator
- 4. Collect user input:
 - 1. Ask for Starting Frequency
 - 2. Ask for Starting Frequency Unit of Measure
 - 3. Ask for Ending Frequency
 - 4. Ask for Ending Frequency Unit of Measure
 - 5. Ask for Frequency Incrementation Value
 - 6. Ask for Vpp Value
 - 7. Ask for Offset Value
 - 8. Ask for Phase Value
 - 9. Ask for Oscilloscope Channel 1 V/div
 - 10. Ask for Oscilloscope Channel 2 V/div
- 5. Run src.app.calculate_frequency_list() function
 - 1. f_list = empty list
 - 2. determine how many zeros to add to f_max, f_min, f_incr_val
 - 3. f_num_of_runs = (f_max f_min) / f_incr_val
 - 4. for i in range(0, f_num_of_runs):
 - 1. f_list.append(f_min + f_incr_val)
 - 5. return f_list

- 6. Send SPCI Commands to machines
 - 1. Call for s_usb.dev_command.frequency_set() function
 - 2. Call for s_usb.dev_command.Vpp_set() function
 - 3. Call for s_usb.dev_command.DcOffset_set() function
 - 4. Call for s_usb.dev_command.phase_set() function
 - 5. Call for s_usb.dev_command.V_div_set() function
- 7. Call for src.app.run_data_gather() function
 - 1. data_list = empty list
 - 2. for i in range(0, f_num_of_runs):
 - 1. data_point = [0, 0]
 - 2. write signal generator to send f_list[i]
 - 3. data_point[0] = read oscilloscope channel 1 to recv data
 - 4. data_point[1] = read oscilloscope channel 2 to recv data
 - 5. data_list.append(data_point)
 - 3. return data_list ###
- 8. Call for src.app.calc_data_points() function
 - 1. take in data_list
 - 2. plot_data = empty list
 - 3. for i in range(len(data_list)):
 - 1. plot_data.append(data_list[i][0]/data_list[i][1])
 - 4. return plot_data
- 9. Call for src.app.cvt_log_scale() function
 - 1.
- 10. Call for src.app.plot_data_points() function
 - 1.
- 11. Call export plot_graph() function
 - 1.