(12) UK Patent Application (19) GB (11) 2 289 218 (13) A

(43) Date of A Publication 15.11.1995

(21) Application No 9508844.9

(22) Date of Filing 01.05.1995

(30) Priority Data (31) 08239473

(32) 06.05.1994

(33) US

(71) Applicant(s)

Merck & Co Inc

(Incorporated in USA - New Jersey)

P O Box 2000, 126 East Lincoln Avenue, Rahway, New Jersey 07065-0900, United States of America

(72) Inventor(s)

Mariene A Jacobson

(74) Agent and/or Address for Service
J Thompson
Merck & Co Inc, European Patent Department,
Terlings Park, Eastwick Road, HARLOW, Essex,
CM20 2QR, United Kingdom

(51) INT CL⁶

A61K 31/52 // C07K 14/705 , C12N 5/10 (A61K 31/52 31:34) (C12N 5/10 C12R 1:91)

(52) UK CL (Edition N)

A5B BHA B180 B42Y B422 B44Y B442 B45Y B450 B451
B48Y B482 B49Y B491 B50Y B502 B51Y B511 B54Y
B540 B55Y B552 B56Y B565 B57Y B574 B58Y B585
B586 B59Y B596 B65Y B652 B653 B656 B66Y B663
C6Y Y125 Y406 Y407 Y410 Y419 Y501 Y503
U1S S1068 S1334 S1357 S2416

(56) Documents Cited
GB 2264948 A WO 93/25677 A1
US Pat.Appl. NTIS US 7-577528 Life Sci.
1993,52,1917-1924 Biochem.Biophys.Res.Commun.
1192,187(1),86-93 Mol.Endocrinol. 1992,6,384-393

(58) Field of Search
UK CL (Edition N) A5B BHA
INT CL⁶ A61K 31/52
ONLINE: WPI,CLAIMS,DIALOG/BIOTECH

(54) Inhibition of TNFalpha production with agonists of the A2b subtype of the adenosine receptor

(57) TNFα production is inhibited by contacting the A2b subtype of the adenosine receptor with an adenosine receptor agonist, especially in monocytes in which cAMP accumulation is increased due to activation of adenylate cyclase. The agonist is preferably adenosine 5'-(N-cyclopropyl)carboxamidoadenosine, 5'-(N-ethyl)carboxamideadenosine, (R)-N⁶-phenyl-2-propyladenosine or cyclohexyladenosine. The agonists may be used in the therapy of autoimmune states. A process for the identification of A2b adenosine receptor agonist, or selective, compounds is described, involving treating monocytes with the compound to determine the degree of TNFα inhibitor, and selecting those compounds which either bind specifically to the A2b adenosine receptor or which include cAMP increase in a cell line expressing the receptor.

10	20
Met Pro Pro Ser Ile Ser Ala Phe Gln Ala Ala Tyr Ile Gly Ile Glu Val L	eu Ile Ala 40
Leu Val Ser Val Pro Gly Asn Val Leu Val Ile Trp Ala Val Lys Val Asr	n Gln Ala Leu 60
Arg Asp Ala Thr Phe Cys Phe Ile Val Ser Leu Ala Val Ala Asp Val Ala 70	a Val Gly Ala 80
Leu Val Ile Pro Leu Ala Ile Leu Ile Asn Ile Gly Pro Gln Thr Tyr Phe I	His Thr Cys 100
Leu Met Val Ala Cys Pro Val Leu Ile Leu Thr Gln Ser Ser Ile Leu Ala	
Ile Ala Val Asp Arg Tyr Leu Arg Val Lys Ile Pro Leu Arg Tyr Lys Me	et Val Val Thr 140
Pro Arg Arg Ala Ala Val Ala Ile Ala Gly Cys Trp Ile Leu Ser Phe Val	
Thr Pro Met Phe Gly Trp Asn Asn Leu Ser Ala Val Glu Arg Ala Trp A	
Ser Met Gly Glu Pro Val Ile Lys Cys Glu Phe Glu Lys Val Ile Ser Me	
Val Tyr Phe Asn Phe Phe Val Trp Val Leu Pro Pro Leu Leu Met	
Leu Glu Val Phe Tyr Leu Ile Arg Lys Gln Leu Asn Lys Lys Val Ser A	
Asp Pro Gln Lys Tyr Tyr Gly Lys Glu Leu Lys Ile Ala Lys Ser Leu A	
Phe Leu Phe Ala Leu Ser Trp Leu Pro Leu His Ile Leu Asn Cys Ile Tr	· · ·
Pro Ser Cys His Lys Pro Ser Ile Leu Thr Tyr Ile Ala Ile Phe Leu Thr 290	
Ser Ala Met Asn Pro Ile Val Tyr Ala Phe Arg Ile Gln Lys Phe Arg Va	
Lys lle Trp Asn Asp His Phe Arg Cys Gln Pro Ala Pro Pro Ile Asp C	
Glu Glu Arg Pro Asp Asp	

F I G. 1

gctcatcgcc	ccaggcgctg	cgtgggtgcc	ccacacctgc	cctgctggca	ggtggtgacc	ggtgggactg	agccaacggc	ggagtacatg	cctcatctac	ctcctccggc
gcatcgaggt 110	tgaaggtgaa 170	ctgatgtggc 230	agacctactt 290	ccatcctggc 350	ggtacaagat 410	tataattagt 470	gggcctgggc 530	tcatcagcat 590	tcctcatggt 650	aggtgtcggc
gcctacatcg	atctgggcgg	ctggcggtgg	attgggccac	acccagagct	atccctctcc	tgctggatcc	gcggtggagc	ttcgagaagg	cccccgcttc	ctcaacaaga
tttccaggcc 90	cgtgctggtg 150	catcgtgtcg 210	cctcatcaac 270	cctcatcctc 330	ccgggtcaag 390	catageegge 450	caatctgagt 510	caagtgcgag 570	gtgggtgctg 630	ccgcaagcag
ccatctcagc	tgcccgggaa	ccttctgctt	ccctcgccat	cctgtccggt	accg	cggcggtggc	ttggctggaa	agcccgtgat	acttctttgt	tctacctaat
atgeegeeet 70	ctggtctctg 130	cgggatgcca 190	ctggtcatcc 250	ctcatggttg 310	attgctgtgg	cccggaggg 430	accctatgt 490	agcatggggg 550	gtctacttca 610	ctggaggtct
	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 90 tgcccgggaa cgtgctggtg atctgggcgg tgaaggtgaa 170	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 90 110 110 tgcccgggaa cgtgctggtg atctgggcgg tgaaggtgaa 150 150 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 230 230	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 90 110 110 110 150 150 150 170 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc ccttctgcat cctcatcaac attgggccac agacctactt 230 270 270 290	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 90 110 110 150 150 150 170 170 170 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc ccttctgcat cctcatcaac attgggccac agacctactt 270 270 270 270 250 250 330 330	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 150 150 150 170 210 220 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 220 ccttctgccat cctcatcaac attgggccac agacctactt 270 cctgtccggt cctcatcctc acccagagct ccatctggc 330 accgctacct ccgggtcaag atccctctcc ggtacaagat 330 410	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 tgcccgggaa cgtgctggtg atctgggcgg tgaaggtgaa 150 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 210 ccttctgccat cctcatcaac attgggccac agacctactt 270 cctgtccggt cctcatcctc acccagagct ccatcctggc 350 accgctacct ccgggtcaag atccctctc ggtacaagat 390 cggcggtggc catagccggc tgctggatcc tctccttcgt 410 cggcggtggc catagccggc tgctggatcc tctccttcgt 470	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 tgcccgggaa cgtgctggtg atctgggcgg tgaaggtgaa 170 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 210 ccttctgccat cctcatcaac attgggccac agacctactt 270 cctgtccggt cctcatcctc acccagagct ccatcctggc 350 accgctacct ccgggtcaag atccctctc ggtacaagat 390 cggcggtggc catagccggc tgctggatcc tctccttcgt 410 cggcggtggaa caatctgagt gcggtggaagc gggcctgggc 530 ttggctggaa caatctgagt gcggtggaagc gggcctggggc 530	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 tgcccgggaa cgtgctggtg atctgggcgg tgaaggtgaa 150 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 210 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 230 ccctcgccat cctcatcaca attgggccac agacctactt 270 accgctacct cctcatcctc acccagagct ccatcctggc 330 accgctacct ccgggtcaag atccctcc ggtacaagat 330 cggcggtggc catagccggc tgctggatcc tctccttcgt 470 ttggctggaa caatctgagt gcggtggagc gggcctgggc 530 agcccgtgat caagtgcgag ttcgagaagg tcatcagcat 550	ccatctcagc tttccaggcc gcctacatcg gcatcgaggt 110 tgcccgggaa cgtgctggtg atctgggcgg tgaaggtgaa 170 ccttctgctt catcgtgtcg ctggcggtgg ctgatgtggc 230 ccctcgccat cctcatcaac attgggccac agacctactt 270 cctgtccggt cctcatcctc acccagagct ccatcctggc 330 accgctacct ccgggtcaag atccctctcc ggtaccaagat 330 ctggcggtggc catagccggc tgctggatcc tctccttcgt 470 ttggctggaa caatctgagt gcggtggagc gggcctgggc 530 agcccgtgat caagtgcgag ttcgagaagg tcatcagcat 570 acttctttgt gtgggtgctg ccccgcttc tcctcatggt 650 acttctttgt gtgggtgctg ccccgcttc tcctcatggt 650

F | G. 2A

710	aagatcgcca agtcgctggc 770	gctgcctttg cacatcctca actgcatcac cctcttctgc 810	catcottaco tacattgoca tottootoao goaqggaac 870	ctatgccttc cgcatccaga agttccgcgt caccttcctt 930	ccgctgccag cctgcacctc ccattgacga ggatctccca	
	gaaggagetg 750	gatga	atco	statg	acgat	
	agtactatgg <u>c</u>	ccctcagctg <u>c</u>	acaagcccag c	accccattgt c	atgaccattt c	ctdatgacta g
670	gacccgcaga 730	ttcctctttg 790	ccgtcctgcc 850	tcggccatga 910	aagatttgga 970	gaagagaggc

F16.2B

10	20
Met Pro Ile Met Gly Ser Ser Val Tyr Île Thr Val Glu Leu Ala Île Ala V	
The Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp Leu Asn Ser Asn L	· -
Thr Asn Tyr Phe Val Val Ser Leu Ala Ala Ala Asp Ile Ala Val Gly Val 70	Leu Ala Ile 80
Pro Phe Ala Ile Thr Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cy 90	s Leu Phe Ile 100
Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu Al	a Ile Ala Ile 120
Asp Arg Tyr Ile Ala Ile Arg Ile Pro Leu Arg Tyr Asn Gly Leu Val Thu	
Ala Lys Gly Ile Ile Ala Ile Cys Trp Val Leu Ser Phe Ala Ile Gly Leu T	hr Pro Met
Leu Gly Trp Asn Asn Cys Gly Gln Pro Lys Glu Gly Lys Asn His Se	r Gln Gly Cys Gl 180
Glu Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro Met Asn Tyr	Met Val Tyr Phe 200
Asn Phe Phe Ala Cys Val Leu Val Pro Leu Leu Met Leu Gly Val	
Phe Leu Ala Ala Arg Arg Gln Leu Lys Gln Met Glu Ser Gln Pro Leu 230	
Ala Arg Ser Thr Leu Gln Lys Glu Val His Ala Ala Lys Ser Leu Ala Ile 250	e Ile Val Gly 260
Leu Phe Ala Leu Cys Trp Leu Pro Leu His Ile Ile Asn Cys Phe Thr F	Phe Phe Cys Pro 280
Asp Cys Ser His Ala Pro Leu Trp Leu Met Tyr Leu Ala Ile Val Leu S 290	er His Thr Asn 300
Ser Val Val Asn Pro Phe Ile Tyr Ala Tyr Arg Ile Arg Glu Phe Arg Gl	
Lys Ile Ile Arg Ser His Val Leu Arg Gln Gln Glu Pro Phe Lys Ala Al	
Ala Arg Val Leu Ala Ala His Gly Ser Asp Gly Glu Gln Val Ser Leu A	•
His Pro Pro Gly Val Trp Ala Asn Gly Ser Ala Pro His Pro Glu Arg A	• • • • • • • • • • • • • • • • • • • •
Tyr Ala Leu Gly Leu Val Ser Gly Gly Ser Ala Gln Glu Ser Gln Gly A	Asn Thr Gly Leu
Pro Asp Val Glu Leu Leu Ser His Glu Leu Lys Gly Val Cys Pro Glu	Pro Pro Gly Leu
Asp Asp Pro Leu Ala Gln Asp Gly Ala Gly Val Ser	

	tgtgatggaa	gcagaacgtc	gctcgccatc	cctcttcatt	catcgccatt	cggcacgagg	gactcccatg	gggctgcggg	ggtgtacttc	tttgcggatc	ggggagcgg
20	tggccattgc 110	acagcaacct 170	cagtgggtgt 230	gccacggctg 290	gtctcctggc 350	gcttggtgac 410	ccatcggcct 470	accactccca 530	tgaactacat 590	tgggtgtcta 650	agcctctgcc
	acggtggagc	gtgtggctca	gccgacatcg	tgagatgaat	tccatcttca	cggtacaatg	ctgtcgtttg	gagggcaaga	gtggtcccca	ctgctcatgc	atggagagcc
30	ggtgtacatc 90	gtgctgggcc 150	actggcggcg 210	caccgggttc 270	cacgcagagc 330	catcccgctc 390	ctgctgggtg 450	tcagccaaag 510	ctttgaggat 570	ggtgcccctg 630	gctgaagcag
	tgggataata	atgtgctggt	ttgtggtgtc	tcaccatcag	tactggtact	ttgccatccg	tcattgccat	acaactgcgg	tggcctgtct	cctgtgtgct	cgcgacgaca
10	atgcccatca 70	atcctgggca 130	accaactact 190	ccctttgcca 250	gcctgcttcg 310	gaccgctaca 370	gctaagggca 430	ctaggttgga 490	gagggccaag 550	aacttctttg 610	ttcctggcgg

	cattgtgggg	cttctgcccc	ccacaccaat	gaccttccgc	tggcaccagt	tctcaacggc	gcccaatggc	cacgggcctc	ccctggccta	
710	cactggccat 770	gcttcacttt 830	tegtectete 890	agttccgcca 950	tcaaggcagc 1010	tcagcctccg 1070	ctgagcggag 1130	cccaggggaa 1190	gcccagagcc	
	gctgccaagt	atcatcaact	tacctggcca	cgtatccgcg	caagaacctt	ggagagcagg	gctccccacc	gcccaagagt	aagggagtgt	gtgtcctga
069	ggaggtccat 750	gcccctacac 810	ctggctcatg 870	ctacgcctac 930	cctgaggcag 990	tggcagtgac 1050	caacggcagt 1110	tggagggagt 1170	ccatgagete 1230	tggagcagga
				•	U	4	Ö	4	ບ	-
	cactgcagaa	tctgctggct	acgedetet	atcccttcat (gcagccacgt c	tggcagctca t	gagtgtgggc c	ggctggtgag t	ccagacgtgg agctccttag c 1210	tggcccagga 1

F | G. 4B

10	20
Met Leu Leu Glu Thr Gln Asp Ala Leu Tyr Val Ala Leu Glu Leu Val Ile Ala	
30	40
Ser Val Ala Gly Asn Val Leu Val Cys Ala Ala Val Gly Thr Ala Asn Thr Leu (Gln Thr
50	60
Pro Thr Asn Tyr Phe Leu Val Ser Leu Ala Ala Ala Asp Val Ala Val Gly Leu I	Phe Ala
70 Ile Pro Phe Ala Ile Thr Ile Ser Leu Gly Phe Cys Thr Asp Phe Tyr Gly Cys Le	80 eu Phe
90	100
Leu Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu Ala V	al Ala
110	120
Val Asp Arg Tyr Leu Ala Ile Cys Val Pro Leu Arg Tyr Lys Ser Leu Val Thr (Gly Thr
130	140
Arg Ala Arg Gly Val Ile Ala Val Leu Trp Val Leu Ala Phe Gly Ile Gly Leu Tl	hr Pro
150	16
Phe Leu Gly Trp Asn Ser Lys Asp Ser Ala Thr Asn Asn Cys Thr Glu Pro Tr	p Asp G
170	18
Thr Thr Asn Glu Ser Cys Cys Leu Val Lys Cys Leu Phe Glu Asn Val Val Pr	o Met Se
190 Tyr Met Val Tyr Phe Asn Phe Phe Gly Cys Val Leu Pro Pro Leu Leu Ile Met	200 Leu Val
210	220
Ile Tyr Ile Lys Ile Phe Leu Val Ala Cys Arg Gln Leu Gln Arg The Glu Leu M	let Asp
230	240
His Ser Arg Thr Thr Leu Gln Arg Glu Ile His Ala Ala Lys Ser Leu Ala Met I	le Val
250 Gly Ile Phe Ala Leu Cys Trp Leu Pro Val His Ala Val Asn Cys Val Thr Leu	260 Phe Gln
270 Pro Ala Gln Gly Lys Asn Lys Pro Lys Trp Ala Met Asn Met Ala Ile Leu Leu	280 Ser His
290 Ala Asn Ser Val Val Asn Pro Ile Val Tyr Ala Tyr Arg Asn Arg Asp Phe Arg	300
310 Phe His Lys Ile Ile Ser Arg Tyr Leu Leu Cys Gln Ala Asp Val Lys Ser Gly	320
330 Gla Ala Gly Val Gla Pro Ala Leu Gly Val Gly Leu	

	cgaagaatt	tctgcagacg	gatattagaa	ctgcctcttc	ggccgtggca	cacggggacc	attgactcca	ctgggátgga	cccatgagc	aatgctggtg	gctgatggac
20	agctggtcat 110	cggcgaacac 170	tggccgtggg 230	acttctacgg 290	tcagccttct 350	aaagtttggt 410	ttggcatcgg 470	gcacagaacc 530	agaatgtggt 590	cactgcttat 650	agcgcactga
	gtggcgctgg	gcggtgggca	gcggccgacg	ttctgcactg	agctccatct	ctcaggtata	gtacttgaat	accaacaact	tgtctctttg	gttatgaaaa	aggcagcttc
30	cgcgctgtac 90	ggtgtgcgcc 150	gtccctggct 210	cagcctgggc 270	gctcacgcag 330	ctgtgtcccg 390	tgtcctctgg 450	agacagtgcc 510	ccttgtgaag 570	ctttgggtgt 630	ggtggcctgc
	agacacagga	gcaacgtgct	acttcctggt	ccatcaccat	tcgtgctggt	acctggccat	gggtcattgc	ggaacagtaa	aaagctgctg	atttcaattt	agatcttcct
10	atgctgctgg 70	teggtggegg 130	cccaccaact 190	atcccctttg 250	ctcgcctgct 310	gtcgacagat 370	cgagcaagag 430	ttcctggggt 490	accacgaatg 550	tacatggtat 610	atctacatta

F I G. 6A

670		069		710	
cactcgagga 730	ccacctcca gcgggagatc 750		catgcagcca agtcactggc		catgattgtg
gggatttttg 790	ccctgtgctg gttacctgtg 810	gttacctgtg 810	catgctgtta actgtgtcac 830	actgtgtcac 830	tctttccag
ccagctcagg 850	gtaaaaataa	laataa gcccaagtgg 870	gcaatgaata tggccattct 890	tggccattct 890	tctgtcacat
gccaattcag 910	ttgtcaatcc	cattgtctat 930	gcttaccgga	accgagactt 950	ccgctacact
tttcacaaaa 970	ttatctccag	ttatctccag gtatcttctc 990	tgccaagcag	atgtcaagag	tgggaatggt
caggctgggg	tacagcctgc	tacagcctgc tctcggtgtg ggcctatga	ggcctatga		

F 1 G. 6B

10 20
Met Pro Asn Asn Ser Thr Ala Leu Ser Leu Ala Asn Val Thr Tyr Ile Thr Met Glu Ile 30 40
Phe Ile Gly Leu Cys Ala Ile Val Gly Asn Val Leu Val Ile Cys Val Val Lys Leu Asn 50 60
Pro Ser Leu Gln Thr Thr Thr Phe Tyr Phe Ile Val Ser Leu Ala Leu Ala Asp Ile Ala 70 80
Val Gly Val Leu Val Met Pro Leu Ala Ile Val Val Ser Leu Gly Ile Thr Ile His Phe 90 100
Tyr Ser Cys Leu Phe Met Thr Cys Leu Leu Leu Ile Phe Thr His Ala Ser Ile Met Ser 110 120
Leu Leu Ala Ile Ala Val Asp Arg Tyr Leu Arg Val Lys Leu Thr Val Arg Tyr Lys Arg 130 140
Val Thr Thr His Arg Arg Ile Trp Leu Ala Leu Gly Leu Cys Trp Leu Val Ser Phe Leu 150 160
Val Gly Leu Thr Pro Met Phe Gly Trp Asn Met Lys Leu Thr Ser Glu Tyr His Arg Asn 170
Val Thr Phe Leu Ser Cys Gln Phe Val Ser Val Met Arg Met Asp Tyr Met Val Tyr Phe 190 200
Ser Phe Leu Thr Trp Ile Phe Ile Pro Leu Val Val Met Cys Ala Ile Tyr Leu Asp Ile 210 220
Phe Tyr Ile Ile Arg Asn Lys Leu Ser Leu Asn Leu Ser Asn Ser Lys Glu Thr Gly Ala 230 24
Phe Tyr Gly Arg Glu Phe Lys Thr Ala Lys Ser Leu Phe Leu Val Leu Phe Leu Phe Ala 250 260
Leu Ser Trp Leu Pro Leu Ser Ile Ile Asn Cys Ile Ile Tyr Phe Asn Gly Glu Val Pro 270 280
Gln Leu Val Leu Tyr Met Gly Ile Leu Leu Ser His Ala Asn Ser Met Met Asn Pro Ile
Val Tyr Ala Tyr Lys Ile Lys Lys Phe Lys Glu Thr Tyr Leu Leu Ile Leu Lys Ala Cys
Val Val Cys His Pro Ser Asp Ser Leu Asp Thr Ser Ile Glu Lys Asn Ser Glu

	catggaaatt	caagctgaac	tgacattgct	aatccacttc	catcatgtcc	atacaagagg	gtcattcctg	ccacagaaat	ggtatacttc	tcttgacatc	gacaggtgca
20	cctacatcac 110	tctgcgtggt 170	tagccctggc 230	tgggcatcac 290	cccacgcctc 350	ttaccgtcag 410	gctggctggt 470	cctcagagta 530	tggactacat 590	gcgccatcta 650	actccaaaga
	gccaatgtta	gtgctggtca	attgtctctc	gttgtcagcc	cttatcttta	cgggtcaagc	ctgggccttt	atgaaactga	gtcatgagaa	gttgtcatgt	aacttatcta
30	tctgtcattg 90	agtgggcaac 150	cttctatttc 210	tttggccatt 270	ttgcctactg 330	ccgatacttg 390	atggctggcc 450	tggctggaac 510	atttgtttcc 570	catccccctg 630	actcagtctg
	acagcactgc	tctgcgccat	agaccaccac	tggtcatgcc	tttttatgac	tcgctgtgga	acagaagaat	ccccatgtt	tttcatgcca	cctggattt	ttcggaacaa
10	atgcccaaca 70	ttcattggac 130	cccagcctgc 190	gttggggtgc 250	tacagctgcc 310	ttgctggcca 370	gtcaccactc 430	gtgggattga 490	gtcaccttcc 550	agcttcctca 610	ttttacatca

- 1 G. 10A

	cttgtttgct	tgaggtacca	gaaccctatc	caaagcctgt	tgagtag
OT/	tggttctttt 770	actttaatgg 830	actccatgat 890	ttttgatcct 950	agaagaattc
	taattgttta	tgcatcatct	tcccatgcca	gaaacctacc	acaagcattg
000	gacggctaag 750	tatcatcaac 810	catcctgctg 870	gaagttcaag 930	ttctttggac
	gggagttcaa	tgcctttatc	tgtacatggg	ataaaataaa	atccctctga
0/.9	ttttatggac 730	ctgtcatggc 790	cagcttgtgc 850	gtctatgcct 910	gtggtctgcc

F | G. 10B

FIG.16

TITLE OF THE INVENTION INHIBITION OF TNFα PRODUCTION BY A2b ADENOSINE RECEPTOR AGONISTS AND ENHANCERS

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION:

5

10

30

The present invention concerns the use of compounds identified as specific modulators of adenosine's physiological actions. The pharmacology of these compounds is characterized through the use of cloned human adenosine A1, A2a, A2b and A3 receptor subtypes. This invention discloses that compounds identified as agonists of the A2b adenosine receptor subtype are useful in inhibiting the production of tumor necrosis factor (TNFa) by monocytes and/or macrophages. Therefore this invention comprises a method of treatment or prevention of disease states induced by production of TNFa. These conditions include, but are not limited to autoimmune diseases including rheumatoid arthritis, rheumatoid spondylitis, inflammatory bowl disease (ulcerative colitis and Crohns disease), intestinal pathology associated with graft vs. host disease, organ transplant reactions, septic shock, fever and myalgia due to infection and cachexia associated with chronic infections, malignancy and aquired immune deficiency syndrome, pulmonary diseases such as pulmonary sarcoidosis, silicosis, chronic pulmonary inflammatory disease, adult respiratory distress syndrome.

25 2. BAĆKGROUND:

Adenosine is a naturally occurring nucleoside which exhibits diverse and potent physiological actions in the cardiovascular, nervous, pulmonary, renal and immune systems. Adenosine has been demonstrated to terminate superventricular tachycardia through blockage of atrioventricular nodal conduction (J.P. DiMarco, et al., (1985) J. Am. Col. Cardiol. 6:417-425, A. Munoz, et al., (1984) Eur. Heart J. 5:735-738). Adenosine is a potent vasodilator except in the kidney and placenta (R.A. Olsson, (1981) Ann. Rev. Physiol. 43:385-

395). Adenosine produces bronchoconstriction in asthmatics but not in nonasthmatics (Cushly et al., 1984, Am. Rev. Respir. Dis. 129:380-384). Adenosine has been implicated as a preventative agent and in treatment of ventricular dysfunction following episodes of regional or global ischemia (M.B. Forman and C.E. Velasco (1991) Cardiovasc. Drugs and Therapy 5:901-908) and in cerebral ischemia(M.C. Evans, et al., (1987) Neurosci. Lett. 83:287, D.K.J.E., Von Lubitz, et al., (1988) Stroke 19:1133).

5

10

Dog A1 and A2a adenosine receptors were the first adenosine receptors to be cloned. See F. Libert, et al., (1989) Science 244:569-572, C. Maennant, et al., Biochem. Biophys. Res. Comm., (1990) 173:1169-1178, and F. Libert, et al. (1991) EMBO J. 10:1677-1682. The rat A1 adenosine receptor was cloned by L.C. Mahan, et al., (1991) Mol. Pharm. 40:1-7 and S.M. Reppert, et al., (1991) Mol. Endocrin. 5:1037-1048, the rat A2a by Fink et. al., (1992) Mol. Brain Res. 14:186-195, and the rat A2b by Stehle et al. (1992) Mol. Endocrinol. 6:384-393. Cloning of the rat A3 adenosine receptor was reported by Meyerhof et al., (1991) FEBS Lett. 284:155-160 and Zhou et al., (1992) PNAS USA 89:7432-7436. Cloning of the sheep A3 adenosine receptor has been reported by Linden et al., (1993) Mol. Pharm. 44:524-532. Cloning of the human A1, A2a, A2b and A3 receptors were reported in GB 2264948-A (9/15/93). The human A1 adenosine receptor differs by 18 amino acids from the dog A1 sequence and 16 amino acids from the rat A1 sequence. The human A2a adenosine receptor differs by 28 and 71 amino acids, respectively from the dog and rat A2a sequences. The amino acid sequence for the human A3 receptor is 72% identical with the rat A3 receptor and 85% identical with the sheep A3 receptor sequences.

The actions of adenosine are mediated through G-protein coupled receptors, the A1, A2a, A2b and A3 adenosine receptors. The adenosine receptors were initially classified into A1 and A2 subtypes on the basis of pharmacological criteria and coupling to adenylate cyclase (Van Caulker, D., Muller, M. and Hamprecht, B. (1979) J. Neurochem. 33, 999-1003.). Further pharmacological classification of adenosine

5

10

15

20

25

30

receptors prompted subdivision of the A2 class into A2a and A2b subtypes on the basis of high and low affinity, respectively, for adenosine and the agonists NECA and CGS-21680 (Bruns, R.F., Lu, G.H. and Pugsley, T.A. (1986) Mol. Pharmacol. 29, 331-346; Wan, W., Sutherland, G.R. and Geiger, J.D. (1990) J. Neurochem. 55, 1763-1771). The existence of A1, A2a and A2b subtypes has been confirmed by cloning and functional characterization of expressed bovine, canine, rat and human receptors. A fourth subtype, A3, had remained pharmacologically undetected until its recent identification by molecular cloning. The rat A3 sequence, tgpcr1, was first cloned from rat testis by Meyerhoff et al. (see above). Subsequently, a cDNA encoding the identical receptor was cloned from striatum and functionally expressed by Zhou et al. (see above). When compared to the other members of the G-protein coupled receptor family, the rat sequence had the highest homology with the adenosine receptors (> 40% overall identity, 58% within the transmembrane regions). When stably expressed in CHO cells, the receptor was found to bind the radioligand 125I-APNEA (N6-2-(4-amino-3-iodophenyl)ethyladenosine) and when transfected cells were treated with adenosine agonists, cyclic AMP accumulation was inhibited with a potency order of NECA = R-PIA > CGS21680. The rat A3 receptor exhibited a unique pharmacology relative to the A1 and A2 adenosine receptor subtypes and was reported not to bind the xanthine antagonists 1,3-dipropyl-8-phenylxanthine (DPCPX) and xanthine amine congener (XAC). Messenger RNA for the rat A3 adenosine receptor is primarily expressed in the testis.

The sheep homolog of the A3 receptor was cloned from hypophysial pars tuberalis (see Linden et al. above). The sheep receptor is 72% identical to the rat receptor, binds the radioligand $^{125}\text{I-ABA}$ and is also coupled to inhibition of cyclic AMP. The agonist affinity order of the sheep receptor is I-ABA > APNEA> NECA \geq R-PIA >> CPA. The pharmacology of xanthine antagonists was extensively studied and the sheep receptor was found to exhibit high affinity for 8-phenylxanthines with para-acidic substitutions. In contrast to the rat transcript, the expression of the sheep A3 adenosine receptor transcript

is widespread throughout the brain and is most abundant in the lung and spleen. Moderate amounts of transcript are also observed in pineal and testis. The cloning and pharmacological profile of the human A3 adenosine receptor was disclosed by Salvatore et al., [P.N.A.S. 90:10365-10369, 1993] and is quite similar to that of the sheep A3 receptor pharmacology.

5

10

15

20

25

30

Based on the use of these cloned receptors, an assay has been described to identify adenosine receptor agonists and antagonists and determine their binding affinity (see GB 2 264 948 A, published 9/15/93; see also R.F. Bruns, et al., (1983) Proc. Natl. Acad. Sci. USA 80:2077-2080; R.F. Bruns, et al., (1986) Mol. Pharmacol. 29:331-346; M.F. Jarvis, et al. (1989) J. Pharma. Exp. Therap. 251:888-893; K.A. Jacobson et al., (1989) J. Med. Chem. 32:1043-1051).

Adenosine receptor agonists, antagonists and binding enhancers have been identified and implicated for usage in the treatment of physiological complications resulting from cardiovascular, pulmonary, renal and neurological disorders. Adenosine receptor agonists have been identified for use as vasodilators ((1989) FASEB. J. 3(4) Abs 4770 and 4773, (19910 J. Med. Chem. (1988) 34:2570), antihypertensive agents (D.G. Taylor et al., FASEB J. (1988) 2:1799), and anti-psychotic agents (T.G. Heffner et al., (1989) Psychopharmacology 98:31-38). Adenosine receptor agonists have been identified for use in improving renal function (R.D. Murray and P.C. Churchill, (1985) J. Pharmacol. Exp. Therap. 232:189-193). Adenosine receptor allosteric or binding enhancers have shown utility in the treatment of ischemia, seizures or hypoxia of the brain (R.F. Bruns, et al. (1990) Mol. Pharmacol. 38:939-949; C.A. Janusz, et al., (1991) Brain Research 567:181-187). The cardioprotective agent, 5-amino-4imidazole carboxamide (AICA) ribose has utility in the treatment of ischemic heart conditions, including unstable angina and acute myocardial infarction (H.E. Gruber, et al. (1989) Circulation 80: 1400-1414).

Through the use of homogeonous, recombinant adenosine receptors, the identification and evaluation of compounds which have

selectivity for a single receptor subtype is now possible. Because of the variable effects of adenosine documented in other species, the utilization of human adenosine receptor subtypes is advantageous for the development of human therapeutic adenosine receptor agonists, antagonists or enhancers.

The anti-inflammatory properties of adenosine have been documented. Adenosine receptor agonists inhibit TNF α production by LPS-stimulated human monocytes (Vraux, et al. 1993 Life Sci. 52:1917-1924) with an affinity profile which does not correspond to A1 or A2a subtype pharmacology. The identification of the specific adenosine receptor subtype mediating the inhibition of TNF α has not been elucidated. With the use of affinity order profiles generated with adenosine receptor agonists, subtype selective adenosine receptor antagonists and information derived from the pharmacological characterization of the human A2b receptor cDNA stably expressed in CHO cells, I have identified the A2b adenosine receptor subtype in mediating the inhibition of TNF α in stimulated human monocytes.

The use of an A2b adenosine receptor specific agonist is advantageous over existing therapeutic agents in that a decrease or elimination of side effects experienced when non-selective agonists or the natural agonist, adenosine, are used for therapy. Allosteric effectors or enhancers of the A2b adenosine receptor would eliminate or decrease systemic side effects. Enhancers increase the binding of the native agonists and have been described for A1 adenosine receptors. A2b receptor enhancers remain pharmacologically silent in the absence of adenosine and act locally at sites of inflammation where increases in adenosine concentrations are realized, thereby reducing side effects. The use of such enhancers to inhibit TNFα production naturally forms part of the instant invention.

30 BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

Figure 1 Full length amino acid sequence of human A1 adenosine receptor.

	Figure 2	Full length nucleotide sequence of the cloned human A1 adenosine receptor complementary DNA depicted from the 5' to 3' terminus.
5	Figure 3	Full length amino acid sequence of human A2a adenosine receptor.
10	Figure 4	Full length nucleotide sequence of cloned human A2a adenosine receptor complementary DNA depicted from the 5' to 3' terminus.
	Figure 5	Full length amino acid sequence of human A2b receptor.
15	Figure 6	Full length nucleotide sequence of cloned human A2b adenosine receptor complementary DNA depicted from the 5' to 3' terminus.
	Figure 7	Saturation binding of [³ H]-cyclohexyladenosine (CHA) to human A1 adenosine receptor in COS7 assay.
20	Figure 8	Saturation binding of [³ H]-CGS21680 to human A2a adenosine receptor in COS7 assay.
25	Figure 9	Full length amino acid sequence of human A3 adenosine receptor.
	Figure 10	Full length nucleotide sequence of the cloned human A3 adenosine receptor complementary DNA depicted from the 5' to 3' terminus.
30	Figure 11	Adenosine agonists inhibit LPS induced TNF α production in human blood monocytes with a rank order potency of CPCA \geq NECA $>>$ R-PLA $>$ CHA \geq adenosine $>$

CGS21680. Human peripheral blood mononuclear cells

were cultured on plastic plates coated with fibronectin. The cells were treated with 100 ng/mL of LPS and the indicated concentrations of adenosine agonist. The TNF α levels were measured in cell-culture supernatant by specific ELISA after 18 hours of culture.

5

10

- Figure 12 The adenosine agonist CPCA inhibits TNFα, but not IL1β or IL-6 release from LPS stimulated human monocytes. Human peripheral blood monocytes were adhered to fibronectin coated plates and stimulated with LPS in the presence of the indicated concentrations of CPCA. Cell culture supernatant was removed after overnight incubation and tested by specific ELISA for IL-6, IL1β, and TNFα. CPCA did not inhibit IL-6 or IL1β production.
- Figure 13 The A1 adenosine receptor antagonist DPCPX does not affect the CPCA induced inhibition of TNFα production in LPS stimulated monocytes. Human peripheral blood monocytes were adhered to fibronectin coated plates. The cells were treated with 100 ng/mL of LPS, and the indicated concentrations of CPCA and DPCPX. TNFα production levels were measured by specific ELISA in cell-culture supernatant after 18 hours of culture.
- Figure 14

30

ひとく イドシンコップロ

CG21A partially antagonizes CPCA induced inhibition of TNFα production in LPS stimulated monocytes. Human peripheral blood monocytes were adhered to fibronectin coated plates. The cells were treated with 100 ng/mL of LPS, and the indicated concentrations of CPCA and CG21A, an adenosine A2a receptor antagonist. TNFa production levels were measured by specific ELISA in cell-culture supernatant after 18 hours of culture. CGS21A inhibited TNFα production in a dose dependent manner in the absence of CPCA, consistent with the hypothesis that

19222

- 8 -

endogenous adenosine partially represses TNF α production in the assay.

- Figure 15 The A3 adenosine receptor antagonist I-ABOPX does not affect the CPCA induced inhibition of TNFα production in LPS stimulated monocytes. Human peripheral blood monocytes were adhered to fibronectin coated plates. The cells were treated with 100 ng/mL of LPS, and the indicated concentrations of CPCA and I-ABOPX. TNFα production levels were measured by specific ELISA in cell-culture supernatant after 18 hours of culture.
- Figure 16 Northern blot analysis of the TNFα mRNA production in LPS stimulated monocytes treated with the adenosine agonist CPCA. Total RNA was extracted from 1 x 10⁷ adhered human monocytes one hour following stimulation with LPS in the presence of the indicated concentrations of CPCA. Total RNA (10 μg) was blotted using a ³²P labeled cDNA probe. No significant reductions in TNFα mRNA production were observed using CPCA at levels sufficient to suppress protein production by greater than ten fold.
- Figure 17 CPCA dose response of cAMP accumulation in CHO cells stably expressing the human A2b receptor.

SUMMARY OF THE INVENTION

Adenosine receptor agonists have been shown to inhibit tumor necrosis factor alpha (TNF α) production in lipopolysaccharide (LPS) stimulated monocytes with an affinity order profile of CPCA \geq NECA >> R-PIA > CHA \geq adenosine > CGS21680. This agonist profile does not correlate with either the A1 or A2a adenosine receptor subtype pharmacology. In order to define the receptor subtype mediating the inhibitory effect, adenosine receptor antagonists were

30

evaluated for their ability to block the inhibition of TNFa production caused by CPCA in LPS-stimulated human monocytes. involvement of the A1 and A2a adenosine receptor subtypes was ruled out on the basis of the inability of DPCPX and 3-succinylaminostrylcaffine, CG21A, respectively, to appreciably antagonize the inhibition produced by CPCA. The A3 adenosine receptor specific antagonist IABOPX was also ineffective in blocking agonist induced inhibition of TNFa production. The agonist affinity order profile established for the monocyte adenosine receptor was similar to the A2b receptor in VA13 human fibroblasts and human erythroleukemic cells (HEL) defined by EC50 values for intracellular cyclic adenosine monophosphate (cAMP) accumulation. However, the potency of the agonists to inhibit TNF α production in monocytes was greater than values determined by increases in cAMP accumulation in fibroblasts or HEL cells. I have found that in stable CHO cells expresing the cloned human A2b cDNA, the potency (EC50) of CPCA to induce cAMP accumulation was similar to the value obtained for inhibition of TNFa production in LPS-stimulated human monocytes. To define which adenosine receptor subtypes are present on monocytes, A1, A2a, A2b, and A3 adenosine receptor transcripts were detected by reverse transcriptase PCR (RT-PCR) of mRNA prepared from both LPSstimulated and non-stimulated monocytes. The regulation of TNFa expression resulting from mediation at the A2b receptors is demonstrated to be consistent with a mechanism involving increased intracellular cAMP levels.

30

25

5

15

20

ABBREVIATIONS

[3H]-CHA, [3H]-cyclohexyladenosine; [3H]-NECA, [3H]-5'-N-ethylcarboxamido-adenosine; 125_{I-ABA}, N6-(4-amino-3-125iodobenzyl)adenosine; 125I-APNEA, N6-2-(4-amino-3-125iodophenyl)ethyladenosine; NECA, 5'-N-5 ethylcarboxamidoadenosine; CGS21680, 2-[4-(2carboxyethyl)phenyl]ethylamino-5'-N-ethylcarboxamidoadenosine; (R,S)-PIA, (R,S)-N6-phenyl-2-propyladenosine; CPA, N6cyclopentyladenosine; CPCA, 5'-(N-cyclopropyl)carboxamidoadenosine; CG21A, 3-succinylaminostrylcaffine; I-10 ABOPX, (3-(3-iodo-4-aminobenzyl)-8-(4-oxyacetate)phenyl-1prpopylxanthine; BW-A1433, 1,3-dipropyl-8-(4acrylate) phenylxanthine; XAC, xanthine amine cogener; DPCPX, 1,3dipropyl-8-cyclopentylxanthine; GTPYS, guanosine 5'-O-3thiotriphosphate; Gpp(NH)p, 5'-guanylimidodiphosphate; G protein, 15 guanine nucleotide-binding proteins.

DETAILED DESCRIPTION OF THE INVENTION

20

25

30

This invention provides a method for achieving specific inhibition of TNFa production through agonist stimulation of the A2b adenosine receptor. TNFa is a pro-inflammatory cytokine which, among other effects, induces fever and stimulates phospholipase A2 production. Lipopolysaccharide (LPS) is a biological mediator which gives rise to a number of adverse responses. A principal mediator to these effects is TNFa. A variety of adenosine receptor agonists have been tested for their ability to block LPS-mediated TNFa production in human monocytes [Le Vraux et al., Life Sciences 52:1917-1924, 1993]. Figure 11 summarizes the pharmacological profile of this effect [CPCA \geq NECA >> R-PIA > CHA \geq adenosine > CGS21680]. The conclusion reported in Le Vraux et al., based on this pharmacology, was that the inhibition of of TNFa production was probably mediated through the A3 adenosine receptor, or through an uncharacterized receptor, but not through the A1 or A2 adenosine receptors. As can be seen from this data, CPCA and NECA are the most potent inhibitors of TNFa

production. Both compounds have been characterized as binding both the A1 and the A2 adenosine receptor subtypes with high affinity, see the table below:

AFFINITY OF ADENOSINE ANALOGS FOR HUMAN ADENOSINE RECEPTOR SUBTYPES, Ki or Kd, µM *

	Agonists	A1	A2a	A2b	A3
5	NECA	0.025	0.029	0.9 (a)	0.026
	CPCA	0.006 (rat)	0.0134 (rat)	0.050 (a)	1.0
	CGS21680	56	0.017	1600 (b)	5.6
	R-PIA	0.003	0.127	160 (b)	0.034
	CHA	0.002	0.6	280 (b)	n.d.
10					
	Antagonists				
	DPCPX	0.0007	0.10	0.55 (b)	0.75
	CGS21A	35 (rat)	0.143 (rat)	n.d.	>50

*Values determined in rat are indicated, otherwise all other data is from human, (a) EC50 values for cAMP accumulation in stable CHO cells expressing the human A2b cDNA; (b) EC50 values for cAMP accumulation in human erythroleukemic cells, HEL cells.

20 The A1 adenosine receptor selective agonists R-PIA and CHA are significantly less potent than CPCA or NECA. The A2a specific agonist CGS21680 was found to be the least potent of all. The rank order of potency of the compounds to inhibit TNFa production is not like that of either A1 or A2 [Le Vraux et al., Life Sciences 52:1917-1924, 1993]. The affinity order profile reported by Le Vraux et al. is similar to the agonist profile reported by Castanon and Spevak [BBRC 198:626-631, 1994] for the induction of cyclic adenosine monophosphate (cAMP) accumulation in stable CHO cell lines expressing the cloned A2b adenosine receptor. However, Castanon and 30 Spevak did not study the role of the A2b receptor in inhibition of TNFa production. In addition, the agonist affinity order profile data reported by Le Vraux et al. for TNFa inhibition is not dissimilar from the agonist order profile reported by Salvatore et al., [P.N.A.S. 90:10365-10369, 1993] for the cloned A3 adenosine receptor and suggested that the A3 receptor may be responsible for TNF α inhibition in LPS-stimulated monocytes. However, the potency of CPCA for the A3 receptor was not reported by Salvatore et al. and therefore, prior to this invention, the role of A3 adenosine receptor in the inhibition of TNF α production could not be ruled out and the specific adenosine receptor subtype which is responsible for inhibition of TNF α production could not be positively identified. This patent disclosure demonstrates that CPCA has a much lower affinity for the A3 receptor than it does for the A2b receptor and by using A3 adenosine receptor specific antagonists, the involvement of A3 receptor activation in the inhibition of TNF α production is definitively ruled out. This patent disclosure demonstrates that A1 and A2a adenosine receptors are not involved in the inhibition of TNF α production. This invention reveals that activation only at the A2b adenosine receptor is responsible for the inhibition of TNF α production.

15

10

5

The role of cAMP elevations has been correlated with the inhibition of LPS induced TNF α production defined through the use of the phosphodiesterase inhibitor pentoxifyllin [Strieter, et al., (1988) Biochem. Biophys. Res. Commun. 155: 1230-1236]. The inhibition of TNF α production through activation at A2b adenosine receptors on stimulated monocytes is therefore consistent with a mechanism resulting from increases in intracellular cAMP. Therefore, this invention comprises a method for inhibiting TNF α production specifically through A2b receptor activation.

25

30

20

Since Le Vraux et al., suggested that the receptor responsible for inhibition of TNF α production was possibly the A3 adenosine receptor and not the A1 or A2 receptors, I initiated the following studies in order to elucidate which receptor is, in fact, responsible for inhibition of TNF α production.

I confirmed that the A1 and A2a receptor subtypes are not responsible for the inhibition of $TNF\alpha$ production by using the A1 and

A2a adenosine receptor selective antagonists DPCPX and CG21A respectively. These compounds do not appreciably alter the IC50 of CPCA in antagonist competition experiments except at very high concentrations (see Figures 13 and 14). This data confirms that the A1 and A2a adenosine receptor subtypes are not involved in the inhibition of TNF α production. I confirmed that the A3 receptor subtype was not responsible for the inhibition of TNF α production by using the A3 specific antagonist, I-ABOPX (Figure 15). I-ABOPX did not alter the IC50 of CPCA inhibition of TNF α production.

I further determined that the affinity of CPCA for the A3 adenosine receptor subtype is 1 μM and therefore, the A3 receptor cannot be responsible for the inhibition of TNFα production induced by CPCA which exhibits a much higher (20,000-fold) affinity for the A2b than the A3 adenosine receptor. I obtained the EC50 value for CPCA induced cAMP accumulation in stable CHO cell lines expressing the human A2b receptor and found that the EC50 value is the same as that obtained from the stimulated monocytes (Figure 17). I further confirmed that the effect is specific for TNFα because IL1β and IL-6 production are unaffected by treatment with CPCA, (Figure 12).

Northern blot data of total RNA from LPS stimulated monocytes indicates that titration of CPCA reduces the levels of secreted TNF α protein in a dose dependent manner, Figure 16. This data indicates that adenosine agonists inhibit TNF α production primarily through post-transcriptional mechanisms. This observation is consistent with reports that TNF α mRNA contains 3'-untranslated sequences that mediate translational activation in response to specific inducing signals (e.g. LPS). Removal of these sequences has been shown to result in the inability of the mRNA to be translated. Therefore, it appears that adenosine blocks components of the LPS signal transduction pathway that are related to these 3'-untranslated elements of the TNF α gene.

To define which adenosine receptor subtypes are present on monocytes, A1, A2a, A2b, and A3 adenosine receptor transcripts were detected by reverse transcriptase PCR (RT-PCR) of mRNA prepared from both LPS-stimulated and non-stimulated monocytes. All four

10

5

15

20

30

25

חבוכחריכות: -רם

adenosine receptor subtypes were detected in mRNA prepared from both normal and LPS-stimulated monocytes. Even though all of the identified adenosine receptor subtypes are present on monocytes, this invention reveals that only the A2b receptor affects $TNF\alpha$ production.

Therefore, one embodiment of this invention is a method for identifying A2b adenosine receptor selective compounds which comprises the steps of:

5

20

25

30

- (a) contacting monocytes with a test compound and measuring the effect of the test compound on TNF α production;
- (b) contacting a test compound, identified according to step (a) as inhibiting TNFα production by the monocytes, with membranes derived from a stable cell line individually expressing each of the A1, A2a, A2b, or A3 adenosine receptor or with the whole cell individually expressing each of the A1, A2a, A2b, or A3 adenosine receptor and measuring the binding affinity of the test compound for the receptor or the effect of the test compound on cAMP production in the stable cell line:
 - (c) selecting compounds which bind to the A2b adenosine receptor or which induces elevation in cAMP in the cell line expressing the A2b adenosine receptor and which do not bind to membranes or affect the cAMP level in the stable cell lines expressing the A1, A2a, or A3 adenosine receptor subtypes.

This invention likewise comprises the use of compounds identified according to this method which have A2b adenosine receptor enhancer or agonist activities for the inhibition of TNF α production. This invention further comprises a method for inhibiting TNF α production by contacting monocytes with inhibitorily effective amounts of compounds that act as A2b adenosine receptor agonists. An inhibitorily effective amount of an A2b adenosine receptor agonist is, for example, 0.1 ng to 10 mg/kg per day of CPCA, NECA or a compound exhibiting similarly potent or more potent A2b adenosine receptor agonist properties.

The following examples are provided to further define but not to limit the invention defined by the foregoing description and the claims which follow:

EXAMPLE 1

STEP A:

5

10

15

20

25

30

In the first step of obtaining the partial cDNAs encoding the human A1 and A2a adenosine receptors, total RNA was extracted by homogenizing 2.3g human ventricle in 20 ml 5M guanidine isothiocyanate, 0.1M sodium citrate, pH 6.3, 1mM EDTA, pH 7.0, 5% beta-mercaptoethanol, and 0.5% sodium lauryl sarcosinate. The homogenate was centrifuged for 10 min. at 10,000 rpm and the resulting supernatant was layered onto a cushion of 5.7M CsCl/0.1M EDTA, pH 7.0. After 20 hrs. of centrifugation at 24,000 rpm, the resulting pellet was precipitated one time and then passed over an oligo(dT)-cellulose (PHARMACIA, Piscataway, NJ) column to isolate poly(A)+ RNA.

An oligo(dT) primed library was synthesized from 5 μg of the poly(A)⁺ human ventricle RNA using the YOU-PRIME cDNA SYNTHESIS KIT (PHARMACIA, Piscataway, NJ). See Gubler and Hoffman Gene 25:263 (1983). The resulting double-stranded cDNA was ligated into λgt10 EcoRI arms (PROMEGA, Madison, WI) and packaged according to the GIGAPACK II GOLD PACKAGING EXTRACT protocol (STRATAGENE, La Jolla, CA). See Huynh et al. (1985) DNA Cloning Techniques: A Practical Approach, IRL Press, Oxford, p.49 and Kretz et al. Res. 17:5409.

The E. coli strain C600Hfl (PROMEGA, Madison, WI) was infected with library phage, plated on agar plates, and incubated at 37°C. The phage DNA was transferred to HYBOND-N nylon membranes (AMERSHAM, Arlington Heights, IL) according to the manufacturer's specifications.

Synthetic probes were constructed from overlapping oligonucleotides (A1 probe: 62+63, A2 probe: 52+53; see Table I for their sequences) based on the published dog A1 (RDC7) and

A2a(RDC8) sequences (F Libert, et al,(1989) Science 244:569-572). The oligonucleotides were annealed and filled-in with a³²P-dCTP (NEN, Wilmington, DE) and Klenow enzyme. The filters were hybridized with the appropriate probe in 5XSSC, 30% formamide, 5XDenhardt's solution, 0.1% SDS, and 0.1mg/ml sonicated salmon sperm DNA at 42°C, overnight. Following hybridization the filters were washed to a final stringency of 6XSSC at 50°C and exposed to X-OMAT AR film (KODAK, Rochester, NY) at -70°C. The resulting positives were plaque purified by two additional rounds of plating and hybridization. Insert DNA was excised with NotI and ligated into NotI digested pBLUESCRIPT II KS+ (STRATAGENE, La Jolla, CA). DNA sequences were determined by the (Genebank # 52327) SEQUENASE protocol (USBC, Cleveland, OH). See Tabor and Richardsaon, J. Biol. Chem. 264 pp 6447-6458. Two clones were isolated in these screens. The human ventricle A1 cDNA (hva1-3a) and human ventricle A2a cDNA (hva2-13) contain portions of coding sequences for proteins homologous to the reported dog A1 and A2a The coding region of the human A1 clone cDNAs, respectively. corresponds to nucleotides 482 through 981 (Figure 2) and is 92% identical to the dog A1 sequence at the nucleotide level. The coding region of the human A2a clone corresponds to nucleotides 497 through 1239 (Figure 4), and is 90% identical to the dog A2a sequence at the nucleotide level.

5

10

15

STEP B:

5

10

15

20

25

30

The human ventricle A1 adenosine receptor partial cDNA (hvA1-3a) is a 543 bp NotI fragment containing 23 bp 3' untranslated sequence and is 460 bp short of the initiation methionine based on sequence homology to the dog A1 cDNA. A modification of the 5' RACE (rapid amplification of cDNA ends) method (MA Frohman et al,(1988), Proc. Natl. Acad. Sci. USA, 85:8998-9002) was used to generate the 5' coding region of the cDNA. First strand cDNA was synthesized from 1µg of the human ventricle poly(A)+ RNA in a total volume of 40ml containing 50mM Tris, pH 8.0, 140mM KCl, 10mM MgCl₂, 10mM DTT, 15mM each dNTP, 20 units RNasin (PROMEGA, Madison, WI), 20pmol human primer 79 (see Table I), and 9.2 units AMV reverse transcriptase at 37°C for 2 hrs. The reaction was then diluted to 120 µl with 0.5 mM Tris, pH 7.6/0.05 mM EDTA and passed through a SEPHACRYL S-300 SPUN COLUMN (PHARMACIA, The product in the column effluent was Piscataway, NJ). polyadenylated in 100mM potassium cacodylate, pH 7.2, 2mM CoCl₂, 0.2mM DTT, 0.15mM dATP, and 14 units terminal deoxynucleotidyl transferase in a total volume of 31µl for 10 min. at 37°C. The reaction was terminated by heating at 65°C for 15 min. and then diluted to 500 ml with 10 mM Tris, pH 8.0/1 mM EDTA (TE).

Ten μl of the poly(A)-tailed first strand cDNA was used as template in a primary PCR amplification reaction according to the GENEAMP protocol (PERKIN ELMER CETUS, Norwalk, CT; see Saiki et al. (1988) Science 239:487-491) containing 10pmol primer 70, 25pmol primer 71, and 25pmol human primer 80 (see table I) in a total volume of 50 ml. Primer 70 is 5'-gactcgagtcgacatcga(t)₁₇, primer 71 is 5'-gactcgagtcgacatcga, and both are based on MA Frohman, et al (1988), Proc. Natl. Acad. Sci. USA, 85:8998-9002. One cycle of PCR was performed of 1 min at 95°C, 2 min at 50°C, 40 min at 72°C, followed by 40 cycles of 40 sec at 94°C, 2 min at 56°C, 3 min at 72°C. The primary PCR amplification reaction product was electrophoresed through a 1.4% agarose gel and an area corresponding to approximately 600 bp was excised. The gel slice was melted and 1 μl was used as

template in a secondary PCR amplification reaction containing 100pmol primer 71 and human primer 81 (see Table I) for 30 cycles of 1 min at 94°C, 2 min at 56°C, 3 min at 72°C. The secondary PCR amplification product was digested with EcoRI and SalI and electrophoresed on a 1.4% agarose gel. An area corresponding to 500-600bp was excised and ligated into EcoRI/SalI digested pBLUESCRIPT II KS+ (STRATAGENE, La Jolla, CA). The sequence of the 515 bp PCR product (5'HVA1-9) was determined by the SEQUENASE protocol (USBC, Cleveland, OH). The partial human ventricle A1 cDNA and the PCR product contain overlapping sequence and represent the complete coding region for the human A1 receptor, including 14 and 23 bp of 5' and 3' untranslated sequences, respectively. The sequence of the human A1 adenosine receptor cDNA so identified, is shown in Figure 2.

STEP C:

5

10

15

20

25

30

A probe was generated by Klenow enzyme extension, including a³²P-dCTP, of annealed oligonucleotides 62 and 63, and used to screen a human kidney cDNA library (CLONTECH, Palo Alto, CA). E. coli strain C600hfl (PROMEGA, Madison, WI) was infected with library phage and grown overnight on agar plates at 37°C. Phage DNA was transferred to HYBOND-N nylon filters according to the manufacturer's protocol (AMERSHAM, Arlington Heights, IL). The probe was incubated with the filters in 750mM NaCl, 75mM sodium citrate, 30% formamide, 0.1% sodium dodecyl sulfate, 0.5mg/mL polyvinylpyrrolidone, 0.5mg/mL bovine serum albumin, 0.5mg/mL Ficoll 400, and 0.1mg/mL salmon sperm DNA, at 42°C overnight. The filters were washed in 0.9M NaCl and 90mM sodium citrate at 50°C. A positively hybridizing phage (hkA1-14), was identified and purified by replating and screening with the probe twice more. The final phage plaque was transferred to 0.5 mL 50mM Tris, pH 7.5, 8mM MgSO₄, 85 mM NaCl, 1mg/mL gelatin, and 1 µL of a 1:50 dilution in water of the phage stock was used as template for PCR amplification. 50 pmol each of lamL and lamR (Table I) oligonucleotide primers were included, and subjected to 30 cycles of 40 sec at 94°C, 1 min at 55°, 3 min at 72°, then a final 15 min at 72°, according to the GENEAMP protocol (PERKIN ELMER CETUS, Norwalk, CT). A 2.0 kb product was identified by agarose gel electrophoresis, and this was subcloned into the EcoRI site of pBLUESCRIPT II KS+ (STRATAGENE, La Jolla, CA). Sequence analysis by the SEQUENASE protocol (USBC, Cleveland, OH) demonstrated that this cDNA was homologous to the reported dog A1 clone. SmaI and EcoRI digestion released a DNA fragment containing coding sequence from base pair 76 through the translation STOP codon (Figure 2) that is identical to the human ventricle A1 cDNA sequence (clones hva1-3a and 5'hva1-9). This fragment was used in construction of the full length coding sequence (see below). The human kidney cDNA also includes about 900 bp of 3' untranslated sequence.

STEP D:

5

10

15 The human ventricle A2a adenosine receptor partial cDNA (hvA2-13) is a 1.6 kb Notl fragment containing approximately 900 bp 3' untranslated sequence and is 496 bp short of the initiation methionine based on sequence homology to the dog A2a cDNA clone. Two consecutive rounds of 5' RACE were utilized to generate the 5' coding 20 region of the cDNA. First strand cDNA was synthesized from 1 µg of the human ventricle poly(A)+ RNA in a total volume of 40 ml containing 50mM Tris, pH 8.0, 140mM KCl, 10mM MgCl₂, 10mM DTT, 15mM each dNTP, 20 units RNasin, 20pmol human primer 68 or 74 (for 1st or 2nd round RACE respectively), and 9.2 units AMV 25 reverse transcriptase at 37°C for 2 hrs. The reaction was then diluted to 120ml with 0.5 mM Tris, pH 7.6/0.05 mM EDTA and passed through a SEPHACRYL S-300 SPUN COLUMN. The products in the column effluents were polyadenylated in 100mM potassium cacodylate, pH 7.2, 2 mM CoCl₂, 0.2 mM DTT, 0.15 mM dATP, and 14 units terminal 30 deoxynucleotidyl transferase in a total volume of 31 µl for 10 min. at 37°C. The poly(A) tailing reaction was terminated by heating at 65°C for 15 min, and then diluted to 500 µl with TE.

Five or 10 µl (for 1st or 2nd round RACE respectively) of the poly(A) tailed first strand cDNA was used as template in the PCR amplification reaction according to the GENEAMP protocol containing 10pmol primer 70, 25 pmol primer 71 (primer 70 and 71 sequences are given above), and 25 pmol human primer 69 or 75 (1st or 2nd round RACE respectively; see Table I) in a total volume of 50 µl. One cycle of PCR was performed of 1 min at 95°C, 2 min at 50°C, 40 min at 72°C, followed by 40 cycles of 40 sec at 94°C, 2 min at 56°C, 3 min at 72°C. The PCR amplification products were digested with EcoRI and Sall and electrophoresed on a 1.4% agarose gel. Areas corresponding to 200-400 bp were excised and ligated into EcoRI/SalI digested pBLUESCRIPT II KS+ (STRATAGENE, La Jolla, CA). The sequences of the two A2a PCR products, the 332 bp 1st round RACE product (5'hvA2-14) and the 275 bp 2nd round RACE product (5'hvA2-29) were determined by the SEQUENASE (USBC, Cleveland, OH) By sequence homology comparisons with the dog A2a adenosine receptor cDNA sequence, the 1st round RACE product (5'hvA2-14) was 258 bp short of the initiation methionine and the second round RACE product (5'HVA2-29) was determined to extend 1bp upstream of the initiation methionine. The human ventricle A2a partial cDNA clone (hvA2-13) and the human A2a PCR products (5'hvA2-14 and 5'hva2-29) contain overlapping sequence and together represent the complete coding sequence for the human adenosine A2a receptor, and include 1 bp and 0.8 kb of 5' and 3' untranslated sequence, respectively. The sequence of the human A2a adenosine receptor is shown in Figure 4.

30

25

20

STEP E:

5

10

15

25

30

A double-stranded DNA probe was generated by Klenow enzyme extension, including a³²P-dCTP, of annealed oligonucleotides 66 and 67, and used to screen a human striata cDNA library (STRATAGENE, La Jolla, CA). The oligonucleotide sequence was based on a region of the human ventricle A2a cDNA sequence. E. coli strain XL1-blue (STRATAGENE, La Jolla, CA) cells were infected with library phage and grown overnight on agar plates at 37°C. Phage DNA was transferred to HYBOND-N nylon filters according to the manufacturer's protocol (AMERSHAM, Arlington Heights, IL). The probe was incubated with the filters in 750 mM NaCl, 75 mM sodium citrate, 10% formamide, 0.5% sodium dodecyl sulfate, 0.5 mg/mL polyvinylpyrrolidone, 0.5 mg/mL bovine serum albumin, 0.5 mg/mL Ficoll 400, and 0.02 mg/mL salmon sperm DNA, at 42°C overnight. The filters were washed in 0.9 M NaCl and 90 mM sodium citrate at 50°C. A positively hybridizing phage (hbA2-22A) was identified and purified by replating and screening with the probe twice more, and subcloned into the plasmid pBLUESCRIPT SK- by the manufacturer's protocol (STRATAGENE, La Jolla, CA). See Short et al. (1988) Nucl. Acids Res. 16:7583-7600; Sorge (1988) Stratagies 1:3-7. The human brain A2a adenosine receptor cDNA (hbA2-22A) spans bp 43 of the A2 coding sequence (Figure 4) through the translation STOP codon, and includes about 900 bp of 3' untranslated sequence. The sequence of this human brain A2a cDNA is identical to the human ventricle A2a adenosine receptor cDNA (hvA2-13, 5hvA2-14 and 5hvA2-29).

STEP F:

A double-stranded DNA probe was generated by Klenow enzyme extension of annealed oligonucleotides 129 and 130, including a³²P-dCTP, and used to screen a human frontal cortex cDNA library (STRATAGENE, La Jolla, CA). The oligonucleotide sequence was based on a region of the human A2a and A1 cDNA sequence. E. coli strain XL-1 blue (STRATAGENE, La Jolla, CA) cells were infected with library phage and grown overnight at 37°C. Phage DNA was

transferred to HYBOND-N nylon filters according to the manufacturer's protocol (AMERSHAM, Arlington Heights, IL). The probe was incubated with the filters in 750 mM NaCl, 75 mM sodium citrate, 10% formamide, 0.5% sodium dodecyl sulfate, 0.5 mg/mL polyvinyl-pyrrolidone, 0.5 mg/mL bovine serum albumin, 0.5 mg/mL Ficoll 400, and 0.02 mg/mL salmon sperm DNA, at 42°C overnight. The filters were washed in 0.9 M NaCl and 90 mM sodium citrate at 50°C. A positively hybridizing phage (hb-32c), was identified and purified by replating and screening with the probe twice more. The insert was subcloned to the plasmid pBLUESCRIPT SK- according to the manufacturer's protocol (STRATAGENE, La Jolla, CA). Sequence analysis by the SEQUENASE protocol (USBC, Cleveland, OH) demonstrated a complete open reading frame coding for amino acid sequence homologous to both of the previously isolated human A1 and A2a clones. This homologous adenosine receptor subtype cDNA is the A2b subtype having the sequences in Figures 5 and 6. A 1.3 kb Smal-XmnI fragment was ligated into the SmaI site of pSVL (PHARMACIA, Piscataway, NJ), giving the full length coding sequence of the A2b adenosine receptor in a plasmid suitable for its expression in COS and CHO cells. See Sprague et al. (1983) J. Virology 45:773; Templeton and Eckhart (1984) Mol. Cell Biol. 4:817.

Table I:

5

10

15

20

Sequences and directions of the primers used in the isolation of cDNA's and construction of expression plasmids, along with the positions in the clones upon which the sequences are based. Dog A1 and A2a cDNA clones are from F. Libert, et al, (1989) Science 244:569-572. Primers LamL and LamR are based on the sequence of \(\lambda gt10\) (T.V. Hyunh, et al. (1985) DNA Cloning: A Practical Approach, Vol 1, D. Glover, ed, IRL Press, Oxford). The A2b adenosine receptor subtype encoded by the clone hb32C was determined to be the A2b adenosine receptor subtype on the basis of the binding profile of the adenosine receptor agonist NECA and affinities for adenosine receptor

antagonists measured on membranes prepared from pSVLhb32C transfected COS7, CHO or HEK 293 cells.

1	name	sequence	position	clone	direction
5	52	ATTCGCAGCCACGTCCT GGCGGCGGGAGCCCTTC AGCAGGTGGCACCAGTC	CAA-	dog A2a	sense
		CGC (SEQ ID NO. 1)	JCC-		
10	53	GCGGAGGCTGATCTGCCCTCCATCACTGCCATGA		dog A2a	antisense
		CTGCCATCACTGCCATGA CTGCCAAGGCGCGGGCA TGGTGCC (SEQ. ID NO.	AC-		
	62	TCCAGAAGTTCCGGGT		dog A1	sense
15		CCTTCCTTAAGATCTGG	AA-	·	
		CCA (SEQ. ID NO. 3)			
20	6 3	AGTCGTGGGGGCGCCTCCCTGGGGGGGGTCCTCGTCC		dog A1	antisense
		GGGGGGCGTGGCTGG CGGA (SEQ ID NO. 4)			
	66	GCCTCTTTGAGGATGT	G- 500-542	5'hv A 2-1	4 sense
25	00	TCCCCATGAACTACATO GTACTTCA (SEQ ID NO.	GGT-		
	67	GCAGGGGCACCAGCAC		5'hva?-1	4 antisense
	U/	GGCAAAGAAGTTGAAG		J 11 4 a 2 - 1	
30		ACCATGT (SEQ ID NO.			

1	name	sequence	position		direction
5	68	TCGCGCCGCCAGGAAGAT (SEQ ID NO 7)	616-599	hva2-13	antisense
(69	TATATTGAATTCTAGACAC- CCAGCATGAGC (SEQ ID NO		hva2-13	antisense
10 .	74	TCAATGGCGATGGCCAGG (SEQ ID NO. 9)	303-286	5'hva2-14	antisense
, 15	75	TATATTGAATTCATGGA- GCTCTGCGTGAGG- (SEQ ID NO. 10)	276-259	5'hva2-14	antisense
•	79	GTAGACCATGTACTCCAT (SEQ ID NO. 11)	560-543	hva1-3a	antisense
20	80	TATATTGAATTCTGACCT- TCTCGAACTCGC- (SEQ ID NO. 12)	537-521	hva1-3a	antisense
25	81	ATTGAATTCGATCACGGG- CTCCCCCATGC- (SEQ ID NO. 13)	515-496	hva1-3a a	ntisense
30	129	ATGGAGTACATGGTCTAC- TTCAACTTCTTTGTGTGGG- TGCTGCCCCCGCT- (SEQ ID NO. 14)			sense

I	name	sequence	positio	n clone	direction
	130	GAAGATCCGCAAATAGACA CCCAGCATGAGCAGAAGCC GGGGCAGCACCC (SEQ ID NO. 15)			antisense
10	131	CCCTCTAGAGCCCAGCCTG GCCCGCCATGCCCATCATG GCTCC (SEQ ID NO. 16)			
] 15	lamL	CCCACCTTTTGAGCAAGTT (SEQ ID NO. 17)	C -	λt10	
. 1	lamR	GGCTTATGAGTATTTCTTC (SEQ ID NO. 18)	C -	λt10	
20	207	CCCAAGCTTATGAAAGCCA CAATACC (SEQ ID NO. 27)	A		
:	208	TGCTCTAGACTCTGGTATC TCACATT (SEQ ID NO. 28)	T		

25

EXAMPLE 2

Human A1 adenosine receptor expression construct:

To express the human adenosine receptor cDNA in COS,

CHO and HEK 293 cells, the 118bp Sall-Smal fragment of the human ventricle A1 PCR product (5'HVA1-9) was ligated together with the 1.8 Smal-EcoRI fragment of the human kidney A1 adenosine receptor cDNA (hkA1-14) and the 3.0 kb Sall-EcoRI fragment of

pBLUESCRIPT II KS+, resulting in a plasmid containing the contiguous full length coding sequence for the human A1 adenosine receptor cDNA and some 5' and 3' untranslated sequence. This plasmid was digested first with EcoRI, the resulting ends were filled in by Klenow enzyme extension and then the plasmid was digested with XhoI to release a fragment of 1.9 kb containing the full length human A1 adenosine receptor cDNA. The fragment was subcloned into the expression vector pSVL (PHARMACIA) which had been digested with XhoI-SmaI.

Human A2a adenosine receptor expression construct:

To express the human A2a adenosine receptor cDNA in COS, CHO or HEK 293 cells, a contiguous A2a cDNA sequence was constructed before subcloning into the expression vector, pSVL. Primer 131, containing an XbaI recognition site, 14 bp of 5' untranslated sequence of human A1 adenosine receptor cDNA, and the first 18 bp of human A2a adenosine receptor cDNA coding sequence was used with primer 75 in PCR with 1 ng of the plasmid containing the human ventricle A2a 2nd round RACE product (5'hvA2-29) as template. Twenty-five cycles of 40 sec at 94°C, 1 min at 55°C, and 3 min at 72°C, then a final incubation of 15 min at 72°C, with 1 ng of plasmid template and 50 pmol of each primer in a volume of 50 µL according to the GENEAMP protocol (PERKIN ELMER CETUS, Norwalk, CT), resulted in the expected 302 bp product determined by agarose gel electrophoresis. The 172 bp Xbal-Eagl digestion product of this DNA fragment was ligated together with 1125 bp EagI-BglII digestion product of the human striata A2a adenosine receptor cDNA (hbA2-22A) and XbaI-SmaI digested pSVL (PHARMACIA), generating the full length human A2a adenosine receptor cDNA coding sequence in a plasmid suitable for its expression in COS, CHO or HEK 293 cells.

Mammalian cell expression:

COS7 cells (ATCC #1651-CRL) were grown in complete medium, Dulbecco's modified Eagles's medium, DMEM (GIBCO, Grand Island, NY) containing 10% fetal bovine serum, 100U/mL

5

10

15

penicillin-streptomycin and 2 mM glutamine, in 5% CO₂ at 37°C. Transient transfection of COS7 cells was performed by the CaPO₄ method (Graham,F.L. and Van Der Erb, A.J. (1973) Virology 52:456-567) using the Mammalian Transfection Kit (STRATAGENE). See Chen and Okayama Mol. Cell Biol. 7:2745-2752. Plasmid DNA (15 mg) was precipitated with 125 mM CaCl₂ in BBS (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid buffered saline) at room temperature for 30 minutes. The DNA precipitate was added to the COS7 cells and incubated for 18h in 5% CO₂ at 37°C. The precipitate was removed and the cells were washed twice with serum free DMEM. Cells were incubated in complete medium in 5% CO₂ at 37°C for 48 h prior to the binding assay.

Stable expression in CHO or HEK 293 cells:

To establish stable cell lines, CHO or HEK 293 cells were 15 co-transfected with 20 μg of pSVL containing the adenosine receptor cDNA and 1mg of pWLneo (STRATAGENE) containing the neomycin See Southern and Berg (1982) J. Mol. App. Gen. 1:327-341. Transfection was performed by the CaPO₄ method. DNA was precipitated at room temperature for 30 minutes, added to the CHO 20 cells and incubated 18h in 5% CO₂ at 37°C. The precipitate was removed and the cells were washed twice with serum free DMEM. Cells were incubated for 24h in 5% CO₂ at 37°C, replated in 24-well dishes at a dilution of 1:10, and incubated an additional 24h before adding selection medium, DMEM containing 10% fetal bovine serum, 25 100U/mL penicllin-streptomycin, 2 mM glutamine and 0.5 mg/mL G418 (GIBCO). Transfected cells were incubated at 5% CO2, 37°C until viable colonies were visible, approximately 14-21 days. Colonies were selected and propagated. The cell clone with the highest number of human adenosine receptors was selected for subsequent application in 30 the binding assay.

5

EXAMPLE 3

Binding studies:

5

10

15

20

25

Membranes were prepared from transiently transfected COS7 cells 48 h after transfection or from G418-selected stably transfected CHO or HEK 293 cells. Cells were harvested in 1 mM EDTA in phosphate buffered saline and centrifuged at 2000 x g for 10 minutes. The cell pellet was washed once with phosphate buffered saline. The cell pellet was resuspended in 2 mL of 5 mM Tris, pH 7.6/ 5mM MgCl₂. Membranes were prepared from the cells by freeze-thaw lysis in which the suspension was frozen in a dry ice/ethanol bath and thawed at 25°C twice. The suspension was homogenized after adding an additional 2 mL of 5 mM Tris, pH 7.6/5 mM MgCl₂, in a glass dounce homogenizer with 20 strokes. The membranes were pelleted at 40,000 x g at 4°C for 20 minutes. The membrane pellet was resuspended at a protein concentration of 1-2 mg/mL in binding assay buffer, 50 mM Tris, pH 7.6/10 mM MgCl₂. Protein concentration was determined by the method of Bradford ((1976) Anal. Biochem. 72: 248-250). Before the binding assay was performed, the membranes were incubated with adenosine deaminase (BOEHRINGER MANNHEIM), 2 U/mL for 30 minutes at 37°C. Saturation binding of [3H]-cyclohexyladenosine (CHA) was performed on membranes prepared from pSVLA1 transfected COS7 or CHO cells.

Membranes (100μg) were incubated in the presence of 0.2 U/mL adenosine deaminase with increasing concentrations of CHA (NEN, 32 Ci/mmol) in the range of 0.62 - 30 nM for 120 minutes at 25°C in a total volume of 500 μL. The binding assay was terminated by rapid filtration and three washes with ice-cold 50 mM Tris,pH 7.6/10 mM MgCl₂ on a SKATRON CELL HARVESTER equipped with a receptor binding filtermat (SKATRON INSTRUMENTS, INC). Non-specific binding was determined in the presence of 100 μM N⁶-cyclopentyladenosine (CPA). Bound radioactivity was measured by scintillation counting in READY SAFE SCINTILLATION COCKTAIL (BECKMAN). For competition binding experiments, membranes were

incubated with 5 nM [3H]-CHA and various concentrations of A1 adenosine receptor agonists. Saturation binding of [3H] CGS-21680 was performed on membranes prepared from pSVLA2a transfected COS7 cells. Membranes (100µg) were incubated in the presence of 0.2 U/mL adenosine deaminase with increasing concentrations of CGS21680 (NEN, 48.6 Ci/mmol) in the range of 0.62 -80 nM for 90 minutes at 25°C in a total volume of 500 μL. The binding assay was terminated by rapid filtration with three washes with ice-cold 50 mM Tris, pH 7.6/10 mM MgCl₂ on a Skatron cell harvester equipped with a receptor binding filtermat (SKATRON INSTRUMENTS, INC). Non-specific binding was determined in the presence of 100µM CPA. Bound radioactivity was measured by scintillation counting in READY SAFE LIQUID SCINTILLATION COCKTAIL (BECKMAN). competition binding experiments, membranes were incubated with 5nM [3H]-CGS21680 and various concentrations of A2 adenosine receptor agonists.

Saturation binding of [3H]5'-N-ethylcarboxamidoadenosine (NECA) was performed on membranes (100 µg) prepared from pSVLhb32C (A2b) transfected COS7 cells in the presence of adenosine deaminase with increasing concentrations of NECA (NEN, 15.1Ci/mmol) in the range of 1.3-106 nM for 90 minutes at 25°C in a total volume of 500 μ L. The assay was terminated by rapid filtration and three washes with ice-cold binding buffer on a cell harvester equipped with a receptor binding filtermat (SKATRON Bound radioactivity was measured by INSTRUMENTS, INC). Non-specific binding was measured on scintillation counting. membranes prepared from non-transfected COS7 cells. competition binding experiments, membranes from transfected cells were incubated with 10 nM [3H]NECA and varying concentrations of adenosine receptor antagonists.

5

10

15

20

25

EXAMPLE 4

The human A3 adenosine receptor was cloned from a human striata cDNA library. Oligonucleotide probes were designed based on the rat A3 sequence of Zhou et al., Proc. Natl. Acad. Sci. 89, 7432 (1992). The complete sequence of the human A3 adenosine receptor was determined and the protein sequence deduced. The cloned human A3 adenosine receptor is expressed in a heterologous expression system in COS, CHO and HEK 293 cells. Radiolabeled adenosine receptor agonists and antagonists are used to measure the binding properties of the expressed receptor. Stable cell lines can be used to evaluate and identify adenosine receptor agonists, antagonists and enhancers.

STEP A:

10

15

20

A synthetic probe homologous to the rat A3 adenosine receptor was generated using the polymerase chain reaction (PCR). Three μl of rat brain cDNA was used as template in a PCR amplification reaction according to the GENEAMP protocol (PERKIN ELMER CETUS, Norwalk, CT) containing 50 pmol of primers 207 (5'-cccaagcttatgaaagccaacaatacc) (SEQ. ID NO: 27) and 208 (5'-tgctctagactctggtatcttcacatt) (SEQ. ID NO: 28) in a total volume of 50 ml. Primers 207 and 208 are based on the published rat A3 adenosine receptor sequence (Zhou, et al, (1992), Proc. Natl. Acad. Sci. USA, 89:7432-7406). Forty cycles of 40 sec at 94°C, 1 min at 55°C, 3 min at 72°C were performed and the resulting 788 bp fragment was subcloned into HindIII-XbaI digested pBLUESCRIPT II KS+ (STRATAGENE, La Jolla, CA). The sequence was verified by the SEQUENASE protocol (USBC, Cleveland, OH).

30 STEP B:

The 788 bp PCR fragment was labeled with a³²P-dCTP using the MULTIPRIME DNA LABELLING SYSTEM (AMERSHAM, Arlington Heights, IL) and used to screen a human striata cDNA library

(STRATAGENE, La Jolla, CA). E. coli strain XL-1 Blue (STRATAGENE, La Jolla, CA) cells were infected with library phage Phage DNA was transferred to and grown overnight at 37°C. HYBOND-N nylon filters according to the manufacturer's protocol (AMERSHAM, Arlington Heights, IL). The probe was incubated with the filters in 5 X SSC, 30% formamide, 5 X Denhardt's solution, 0.5% sodium dodecyl sulfate, and 50 mg/ml sonicated salmon testis DNA. The filters were washed in 2 X SSC at 55°C. A positively hybridizing phage (HS-21a) was identified and plaque purified by two additional rounds of plating and hybridization. The insert was subcloned to the 10 plasmid pBLUESCRIPT II SK- according to the manufacturer's protocol (STRATAGENE, La Jolla, CA). Upon sequence analysis using the SEOUENASE protocol (USBC, Cleveland, OH) it was determined that clone HS-21a contained the complete open reading frame corresponding to the human homolog of the rat A3 adenosine receptor. 15 The coding region of the human A3 adenosine receptor cDNA is 78% identical to the rat sequence at the nucleotide level and contains 265 bp and 517 bp of 5' and 3' untranslated sequence, respectively. The 1.7 kb fragment was excised using sites present in the multiple cloning site of pBLUESCRIPT II SK- (STRATAGENE, La Jolla, CA) and subcloned 20 into Xhol/SacI digested pSVL (PHARMACIA, Piscataway, NJ) for its expression in COS and CHO cells.

EXAMPLE 5

25 Mammalian cell expression:

> COS7 cells (ATCC #1651-CRL) were grown in complete medium, Dulbecco's modified Eagles's medium, DMEM (GIBCO, Grand Island, NY) containing 10% fetal bovine serum, 100U/mL penicillin-streptomycin and 2mM glutamine, in 5% CO2 at 37°C. Transient transfection of COS7 cells was performed by the CaPO4 method (Graham, F.L. and Van Der Erb, A.J. (1973) Virology 52:456-567) using the Mammalian Transfection Kit (STRATAGENE). Plasmid DNA (15 mg) was precipitated with 125 mM CaCl2 in BBS (N,N-bis(2-

30

hydroxyethyl)-2-aminoethanesulfonic acid buffered saline) at room temperature for 30 minutes. The DNA precipitate was added to the COS7 cells and incubated for 18 h in 5% CO2 at 37°C. The precipitate was removed and the cells were washed twice with serum free DMEM. Cells were incubated in complete medium in 5% CO2 at 37°C for 48 h prior to the binding assay.

Stable expression in CHO cells:

To establish stable cell lines, CHO cells were cotransfected with 20 µg of pSVL containing the adenosine receptor cDNA and 1 µg of pWLneo (STRATAGENE) containing the neomycin gene. Transfection was performed by the CaPO4 method. DNA was precipitated at room temperature for 30 minutes, added to the COS7 cells and incubated 18 h in 5% CO₂ at 37°C. The precipitate was removed and the cells were washed twice with serum free DMEM. Cells were incubated for 24 h in 5% CO₂ at 37°C, replated in 24-well dishes at a dilution of 1:10, and incubated an additional 24 h before adding selection medium, DMEM containing 10% fetal bovine serum, 100U/mL penicillin-streptomycin, 2 mM glutamine and 1.0 mg/mL G418 (GIBCO). Transfected cells were incubated at 5% CO2, 37°C until viable colonies were visible, approximately 14-21 days. Colonies were selected and propagated. The cell clone with the highest number of human adenosine receptors was selected for subsequent application in the binding assay.

25

30

5

10

15

20

EXAMPLE 6

Binding assay:

Membranes were prepared from transiently transfected COS7 cells 48 h after transfection or from G418-selected stably transfected CHO or HEK 293 cells. Cells were harvested in 1 mM EDTA in phosphate buffered saline and centrifuged at 2000 x g for 10 minutes. The cell pellet was washed once with phosphate buffered saline. The cell pellet was resuspended in 2 mL of 5 mM Tris, pH 7.6/

5mM MgCl2. Membranes were prepared from the cells by freeze-thaw lysis in which the suspension was frozen in a dry ice/ethanol bath and thawed at 25°C twice. The suspension was homogenized after adding an additional 2 mL of 5 mM Tris, pH 7.6/5mM MgCl2, in a glass dounce homogenizer with 20 strokes. The membranes were pelleted at 40,000 x g at 4°C for 20 minutes. The membrane pellet was resuspended at a protein concentration of 1-2 mg/mL in binding assay buffer, 50 mM Tris, pH 7.6/10 mM MgCl2. Protein concentration was determined by the method of Bradford ((1976) Anal. Biochem. 72: 248-250). Before the binding assay was performed, the membranes were incubated with adenosine deaminase (BOEHRINGER MANNHEIM), 2U/mL for 30 minutes at 37°C. Saturation binding of [1251]-N6-aminobenzyladenosine (125I-ABA) or [125I]-N6-2-(4-amino-3-iodophenyl)ethyladenosine (APNEA) was performed on membranes prepared from pSVLA3 transfected COS7 cells. Membranes (100 µg) were incubated in the presence of 0.2U/mL adenosine deaminase with increasing concentrations of 125I-ABA in the range of 0.1-30 nM for 120 minutes at 25°C in a total volume of 500 µL. The binding assay was terminated by rapid filtration and three washes with ice-cold 50 mM Tris, pH 7.6/10 mM MgCl2 on a Skatron cell harvester equipped with a receptor binding filtermat (SKATRON INSTRUMENTS, INC). Non-specific binding was determined on non-transfected cells. Bound radioactivity was measured by scintillation counting in Ready Safe Scintillation Cocktail (BECKMAN).

25

30

20

5

10

. 15

EXAMPLE 7

In vitro transcription and oocyte expression:

The 1.3 kb XhoI-BamHI fragment of the pSVL expression construct (described in Example 2) containing the full length human A2a adenosine receptor coding sequence was ligated into SaII-SpeI digested pGEMA (Swanson, et al, (1990) Neuron 4:929-939). The resulting plasmid, pGEMA2, was linearized with NotI, forming a template for in vitro transcription with T7 RNA polymerase. The

homologous adenosine receptor subtype cDNA in pBluescript SK- was used as a template for in vitro transcription by T3 polymerase after removal of most of the 5' untranslated region, with the exception of 20 bp, as a 0.3 kb SmaI fragment. The K+ channel cDNA, Kv3.2b was employed as a negative control in the cAMP accumulation assay. The generation of Kv3.2b RNA was described by Luneau, et al, ((1991) FEBS Letters 1:163-167). Linearized plasmid templates were used with the STRATAGENE mCAP kit according to the manufacturer's protocol, except that the SP6 RNA polymerase reaction was performed at 40°C. Oocytes were harvested from mature female Xenopus laevis, treated with collagenase, and maintained at 18°C in ND96 medium (GIBCO) supplemented with 1 mM sodium pyruvate and 100 mg/mL gentamycin. Fifty nanoliters (10 ng) of RNA diluted in H2O was injected and oocytes were incubated at 18°C for 48 hours.

15

20

30

10

EXAMPLE 8

cAMP accumulation assay in oocytes:

Oocytes injected with either human adenosine receptor transcript or the Kv3.2b transcript were transferred to fresh medium supplemented with 1 mM of the phosphodiesterase inhibitor, Ro 20-1724 (RBI, Natick, MA) and 1 mg/mL bovine serum albumin incubated for 30 minutes and transferred to an identical medium with or without the agonist adenosine (10 mM) for an additional 30 minutes at room Groups of 5-10 oocytes were lysed by transfer to temperature. ND96/100 mM HCl/1 mM Ro 20-1724 in microfuge tubes, shaken, incubated at 95°C for 3 min, and centrifuged at 12000 g for 5 min. Supernatants were stored at -70°C before cAMP measurements. Cyclic AMP levels were determined by radioimmunoassay (RIANEN kit, DuPont/NEN) using the acetylation protocol. The adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (100 µM) was utilized to inhibit the cAMP response induced by adenosine in oocytes expressing the adenosine receptors.

EXAMPLE 9

cAMP accumulation in stable CHO cell lines:

The changes in cAMP accumulation can alternatively be measured in stably transfected CHO cells expressing the human adenosine receptor subtypes. CHO cells are washed twice in phosphate buffered saline (PBS) and detached in 0.2% EDTA in PBS. The cells are pelleted at 800 rpm for 10 min and resuspended in KRH buffer (140 mM NaCl/5 mM KCl/2 mM CaCl2/1.2 mM MgSO4/1.2 mM KH2PO4/6 mM glucose/25 mM Hepes buffer, pH 7.4). The cells are washed once in KRH buffer and resuspended at 107 cells/mL. The cell suspension (100 µL) is mixed with 100 µL of KRH buffer containing 200 mM Ro 20-1724 and incubated at 37°C for 10 minutes. Adenosine (10 mM), NECA or CPCA was added in 200 µL KRH buffer containing 200 µM Ro 20-1724 and incubated at 37°C for 20 minutes. After the incubation, 400 mL of 0.5 mM NaOAc (pH 6.2) was added and the sample was boiled for 20 minutes. The supernatant was recovered by centrifugation for 15 minutes and stored at -70°C. cAMP levels were determined by radioimmunoassay (RIANEN kit, DuPont/NEN) using the acetylation The effect of antagonists on cAMP accumulation are measured by preincubation for 20 minutes before adding adenosine.

EXAMPLE 10

Expression Construct and Transfection

The 1.7 kb HS-21a cDNA (A3) was subcloned as a Sall-BamHI fragment into the expression vector pCMV5 (Mumby, S.M., Heukeroth, R.O., Gordon, J.I.and Gilman, A.G. (1990) Proc. Natl. Acad. Sci. USA 87, 728-732.) creating the vector pCMV5-A3. CHO or HEK 293 cells stably expressing the human HS-21a cDNA were prepared by co-transfection of 15 μg pCMV5-A3 and 1 μg pWLneo (Stratagene) using the calcium phosphate method. Stable cell lines were also generated using EBV based mammalian expression vectors, pREP (INVITROGEN). Neomycin resistant colonies were selected in 1

5

10

15

mg/mL G418 (GIBCO). Stable colonies were screened for expression of HS-21a by ¹²⁵I-ABA binding.

EXAMPLE 11

Binding Studies

5

10

15

20

25

30

Membranes were prepared from stable CHO cell lines in 10 mM Hepes, pH 7.4 containing 0.1 mM benzamidine and 0.1 mM PMSF as described (Mahan, L.C., et al., (1991) Mol. Pharmacol. 40, 1-7). Pellets were resuspended in 5 mM Hepes, pH 7.4/5 mM MgCl₂/0.1 mM benzamidine/0.1 mM PMSF at a protein concentration of 1-2 mg/mL and were incubated with adenosine deaminase (Boehringer Mannheim), 2U/mL at 37 °C for 20 minutes. Saturation binding of ¹²⁵I-ABA was carried out on 50 mg of membranes for 120 minutes at 25 °C in a total volume of 100 µL. The assay was terminated by rapid filtration and three washes with ice-cold binding buffer on a Skatron harvester equipped with a receptor binding filtermat (Skatron Instruments, INC). The specific activity of ¹²⁵I-ABA, initially 2,200 Ci/mmol, was reduced to 100 Ci/mmol with nonradioactive I-ABA for saturation analysis. Nonspecific binding was measured in the presence of 1 mM I-ABA. The KD and B_{max} values were calculated by the EBDA program (McPherson, G.A. (1983) Computer Programs for Biomedicine 17, 107-114). Competition binding of agonists and antagonists was determined with ¹²⁵I-ABA (0.17-2.0 nM, 2000 Ci/mmol). Nonspecific binding was measured in the presence of 400 mM NECA. Binding data were analyzed and competition curves were constructed by use of the nonlinear regression curve fitting program Graph PAD InPlot, Version 3.0 (Graph Pad Software, San Diego). Ki values were calculated using the Cheng-Prusoff derivation (Cheng, Y.C. and Prusoff, H.R. (1973) Biochem. Pharmacol. 22, 3099-3108.).

The binding properties of the receptor encoded by HS-21a were evaluated on membranes prepared from CHO cells stably expressing the HS-21a cDNA. The radioligand, ¹²⁵I-APNEA, was previously used to characterize rat A3 adenosine receptors. In preliminary experiments, high non-specific ¹²⁵I-APNEA binding to

CHO cell membranes was observed which interfered with the measurement of specific binding to expressed receptors. Specific and saturable binding of the adenosine receptor agonist, 125I-ABA was measured on membranes prepared from the stably transfected cells (Figure 11A). The specific binding of 125I-ABA could be prevented by either 1 mM nonradioactive I-ABA or 400 µM NECA. No specific binding of 125I-ABA was measured on membranes prepared from nontransfected CHO cells. The specific binding of 125I-ABA measured in either the presence of 10 μ M GTP γ S or 100 μ M Gpp(NH)p was reduced by 56 and 44% respectively, relative to the specific binding measured in the absence of the uncoupling reagents. These results suggest that 1251-ABA exhibits some agonist activity on the receptor encoded by the HS-21a cDNA expressed in the stable CHO cell line. 125I-ABA binds to membranes prepared from the HS-21a stable CHO cells with a dissociation constant of 10 nM (B_{max}= 258 fmol/mg protein) with a Hill coefficient of 0.99 indicating binding to a single class of high affinity sites (Figure 11B).

The competition of adenosine receptor agonists and antagonists for binding to HS-21a receptors was determined (Figure 12). The K_i values for agonists (top panel) were calculated to be 26 nM for NECA, 34 nM for R-PIA, 89 nM for CPA and 320 nM for S-PIA, resulting in a potency order profile of NECA >R-PIA > CPA > S-PIA. In contrast to the insensitivity of adenosine receptor antagonists reported for the rat A3 adenosine receptor subtype, a number of xanthine antagonists exhibited competition with 125I-ABA for binding to the HS-21a receptor (Figure 12, lower panel). Studies of the sheep A3 adenosine receptor indicated that 8-phenylxanthines substituted in the para-position with acidic substituents are high affinity antagonists. By evaluating additional xanthines in this class I-ABOPX was determined to be the highest affinity antagonist yet reported for A3 adenosine receptors. The Ki values for antagonists were calculated to be 18 nM for I-ABOPX, 55 nM for BW-A1433, 70 nM for XAC and 750 nM for DPCPX, resulting in a potency order profile of I-ABOPX >BW-A1433 > XAC >DPCPX.

5

10

15

20

25

EXAMPLE 12

cAMP Studies

5

10

Determinations were made on stably transfected CHO cells in suspension as described (Linden et al., (1993) Mol. Pharm. 44:524-532). Supernatants (500 µL) were acetylated and acetylcyclic AMP was measured by automated radioimmunoassay (Hamilton, B.R. and Smith, D.O. (1991) J. Physiol. (Lond.) 432, 327-341). Antagonist dissociation constants were estimated from pA2 values as described by Schild (1957) Pharm. Rev. 9, 242-246).

EXAMPLE 13

Northern Blot Analysis

Human poly(A)+ RNA from different tissue sources 15 (Clontech) is fractionated on a 1% agarose-formaldehyde gel (Sambrook, J., Fritsch, E. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, (Cold Spring Harbor Press, Cold Spring Harbor, NY), transferred to Hybond-N membranes and hybridized in 5XSSPE, 5XDenhardt's, 0.5% SDS, 50 mg/mL sonicated 20 salmon testis DNA, with 30% formamide (for A1, A2a, and A2b) or 50% formamide (for HS-21a) at 42°C. DNA probes corresponding to nucleotides 512-1614, 936-2168, and 321-1540 of accession numbers X68485(A1), X68486(A2a), and X68487(A2b) respectively, and a 1.7 kb Sall-BamHI fragment of HS-21a were labeled with a³²P-dCTP by 25 the random priming method. Filters were washed under high stringency conditions in 0.1XSSC at 65°C.

EXAMPLE 14

INHIBITION OF TNFa PRODUCTION

STEP A:

Isolation of human peripheral blood mononuclear cells.

Human blood is obtained by venipuncture from healthy donors and collected into tubes containing 20U/mL of heparin sodium salt. The blood is diluted 1:1 with Hanks balanced salts solution containing 20 U/mL Heparin. Peripheral blood mononulear cells (PBMC) are isolated by Ficoll-Hypaque density centrifugation. The PBMC are resuspended in a small volume (2-5 mL) of RPMI + 10% autologous human serum, counted then diluted further with RPMI + 10% autologous human serum to 5 x 105 cells/mL. Subsequently the cells are plated in a six well Costar plastic plate precoated with 1 mg / mL fibronectin. Lipopolysaccharide, as well as the appropriate adenosine agonists and antagonists, are added simultaneously. Following incubation at 37°C for 18 hours, the cell culture supernatants are harvested, clarified and tested for TNF levels by a specific trapping ELISA.

STEP B: ELISA for human TNFα.

A mouse anti-human TNF α monoclonal antibody is diluted to 0.5 mg/mL in PBS - MgCl2 - CaCl2 and added to plastic 96 - well plates. Following a 24 hr incubation at 4°C the plates are washed with PBS-20 Tween then treated with a solution of PBS and 1% BSA. Following additional washing with PBS Tween, aliquots of monocytes thought to contain TNFa are added to the dish, diluted to 100 mL with PBS tween and incubated for 2 hours at 37°C. The plates are further washed with PBS-Tween, then treated with a 1 to 2000 dilution of rabbit anti-human TNF polyclonal antiserum (Genzyme). The plates are incubated for 1 hour, washed then treated again with a goat anti-rabbit IgG Fabhorseradish peroxidase conjugate. The plates are incubated for one hour, washed, and the bound peroxidase is detected by the additon of a TMB peroxide mixture. TNFa levels are determined by comparison 30 with a standard curve generated uisng pure recombinant TNFα.

EXAMPLE 15

5

10

DETECTION OF ADENOSINE RECEPTOR TRANSCRIPTS BY REVERSE-TRANSCRIPTASE POLYMERASE CHAIN REACTION AMPLIFICATION

STEP A:

5

10

Total RNA was extracted by the guanidinium isothiocyanate method (Chirgwin, J.M., et al, (1979) Biochemistry 18:5294-5299) from normal and LPS-stimulated human monocytes. First strand cDNA was reverse transcribed from 600 ng total RNA in a volume of 20 ml containing 20mM Tris-HCL (pH 8.4), 50mM KCl, 2.5mM MgCl₂, 0.1mg/ml bovine serum albumin (BSA), 0.5mM dNTP's, 10 mM DTT, 10 units SUPERSCRIPT II reverse transcriptase (LIFE TECHNOLOGIES, INC., Gathersburg, MD), and 50ng random hexamers.

STEP B:

15 Human adenosine receptor subtype transcript expression was determined using the polymerase chain reaction (PCR). Three µl of the randomly primed first strand cDNA, prepared from monocytes (+) or (-) LPS stimulation, was used as template in a PCR amplification. reaction according to the GENEAMP protocol (PERKIN ELMER 20 CETUS, Norwalk, CT) containing 50pmol subtype selective primers in a total volume of 100 µl. Primer pairs were designed to span four (A1 primers) and five (A2a, A2b, A3 primers) transmembrane domains and gave no or incorrect sized PCR products when tested on human genomic DNA. Primer pairs for amplification (see Table 1) were 266+267 (A1), 253+254 (A2a), 261+262 (A2b), 230+236 (A3), and 141+142 for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 141+142 are based on the published human GAPDH sequence (Tokunaga, K., et al, (1987) Cancer Research 47:5616-5619). Cycling parameters were 1 min at 94°C, 1 min at 55°C, 3 min at 72°C for 35 30 cycles (A1), 25 cycles (A2a), 35 cycles (A3), and 20 cycles (GAPDH). Cycling parameters for A2b were 1 min at 94°C, 1 min at 59°C, 3 min at 72°C for 30 cycles.

STEP C:

Ten µl of each PCR amplification reaction was elecrophoresed on a 1.4% agarose gel and alkaline blotted to Zeta-Probe GT membranes according to the manufacturer's protocol (BIO-RAD, Hercules, CA). Membranes were hybridized in 0.25 M sodium phosphate (pH 7.2), 0.5M NaCl, 7.0% sodium dodecyl sulphate (SDS), 1 mM EDTA, 1% BSA, and 1x106 cpm/ml 32P labeled probe at 50°C. Double-stranded DNA probes were generated by Klenow enzyme extension of annealed oligonucleotide pairs including a³²P-dCTP. Oligonucleotide pairs for probe synthesis (see Table1) were 268+269 (A1), 66+67 (A2a), 263+264 (A2b), 259+260 (A3), and 143+144 (GAPDH). Oligonucleotides 259+260 are based on the published sheep A3 adenosine receptor (Linden, J., et al, (1993) Molecular Pharmacology 44:524-532) and 143+144 on the human GAPDH sequence (Tokunaga et al). Following hybridization membranes were washed to a final stringency of 75mM NaCl, 7.5mM sodium citrate, 0.1% SDS and exposed to autoradiography film. All four adenosine receptor subtypes were found to be present on monocytes through this analysis.

20

5

10

15

25

TABLE 1:

	NAME	SEOUENCE
5	66	5' GCCTCTTTGAGGATGTGGTCCCCATGAACTACATGGTGTACTTCA
	67	5' GCAGGGGCACCACACAGGCAAAGAAGTTGAAGTACACCATGT
	141	5' TCACCATCTTCCAGGAGC
	142	5' ACTCCTTGGAGGCCATGT
	143	5' TCCTGCACCACCACTGCTTAGCCCCCCTGGCCAAGGTCATCCAT
10	144	5' CATGAGCCCTTCCACGATGCCAAAGTTGTCATGGATGACCTTGGC
	230	5' GTTACCTACATCACCATG
	236	5' GTTAGATAAGTTCAGACT
	253	5' TCCTCGGTGTACATCACG
15	254	5' TCCATCTGCTTCAGCTGT
	259	5' CTGGGCCTTTGCTGGCTGTCATTCCTGGTGGGATTGACCCCC
	260	5' TGAGGTCAGTTTCATGTTCCAGCCAAACATGGGGGTCAATCCCAC
	261	5' ATGCTGCTGGAGACACAGGA
20	262	5' TGGTCCATCAGCTCAGTGC
20	263 GGTG	5' IGAACAGTAAAGACAGTGCCACCAACAACTGCACAGAACCCTGGGATGGAACCACGA
	264	5' GGACCACATTCTCAAAGAGACACTTCACAAGGCAGCAGCTTTCATTCGTGGTTCCATCCC
	266	5' CTACATCGGCATCGAGGT
25	267	5' GAACTCGCACTTGATCAC
	268	5' TGGTGGGACTGACCCCTATGTTTGGCTGGAACAATCTGAGTGCGG
	269	5' TGCTGCCGTTGGCTGCCCAGGCCCGCTCCACCGCACTCAGATTGT

While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations, modifications, as come within the scope of the following claims and its equivalents.

SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:
	(i)	APPLICANT: Jacobson, Marlene A
5	(ii)	TITLE OF INVENTION: INHIBITION OF TNFalpha PRODUCTION BY A2b ADENOSINE RECEPTOR AGONISTS AND ENHANCERS
	(iii)	NUMBER OF SEQUENCES: 56
10	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Merck & Co., Inc. (B) STREET: P.O.Box 2000 (C) CITY: Rahway (D) STATE: New Jersey
		(E) COUNTRY: United States (F) ZIP: 07065
	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
15		(D) SOFTWARE: PatentIn Release #1.0, Version #1.25
	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: 6-MAY-1994 (C) CLASSIFICATION:
20	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Bencen, Gerard H (B) REGISTRATION NUMBER: 35,746 (C) REFERENCE/DOCKET NUMBER: 19222
	. (ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (908) 594-3901 (B) TELEFAX: (908) 594-4720
25	(2) INFO	RMATION FOR SEQ ID NO:1:
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
30	(ii)	MOLECULE TYPE: cDNA
	(iii)	HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	ATTCGCAGCC ACGTCCTGAG GCGCCGGGAG CCCTTCAAAG CAGGTGGCAC CAGTGCCCGC	60
	(2) INFORMATION FOR SEQ ID NO:2:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
15	GCGGAGGCTG ATCTGCTCTC CATCACTGCC ATGAGCTGCC AAGGCGCGGG CACTGGTGCC	60
	(2) INFORMATION FOR SEQ ID NO:3:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	TCCAGAAGTT CCGGGTCACC TTCCTTAAGA TCTGGAATGA CCACTTCCGC TGCCAGCCCA	60
30	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(ii) MOLECULE TYPE: cDNA

	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
5	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	AGTCGTGG	G CGCCTCCTCT GGGGGGTCCT CGTCGACGGG GGGCGTGGGC TGGCAGCGGA	60
	(2) INFO	RMATION FOR SEQ ID NO:5:	
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
15	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
		SEQUENCE DESCRIPTION: SEQ ID NO:5:	
20	GCCTCTTT	GA GGATGTGGTC CCCATGAACT ACATGGTGTA CTTCA	45
		RMATION FOR SEQ ID NO:6:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
30		SEQUENCE DESCRIPTION: SEQ ID NO:6:	
		AC CAGCACAG GCAAAGAAGT TGAAGTACAC CATGT	45
	, -	RMATION FOR SEQ ID NO:7:	
	(i)	SEQUENCE CHARACTERISTICS:	

18

		(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
5	(iii)	HYPOTHETICAL: NO		
3	(iv)	ANTI-SENSE: NO		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:		
2.0	TCGCGCCG	CC AGGAAGAT		18
10	(2) INFO	RMATION FOR SEQ ID NO:8:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
15	(ii)	MOLECULE TYPE: cDNA		
	(iii)	HYPOTHETICAL: NO	•	
	(iv)	ANTI-SENSE: NO		
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:8:		•
	TATATTGA	AT TCTAGACACC CAGCATGAGC		30
	(2) INFO	RMATION FOR SEQ ID NO:9:		
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(iii)	HYPOTHETICAL: NO		
30	(iv)	ANTI-SENSE: NO		

TCAATGGCGA TGGCCAGG

(2) INFORMATION FOR SEQ ID NO:10:

5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
_	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
10	(wi)	SEQUENCE DESCRIPTION: SEQ ID NO:10:	
		AT TCATGGAGCT CTGCGTGAGG	3 (
			٠. د
		RMATION FOR SEQ ID NO:11:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
20	(iv)	ANTI-SENSE: NO	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	GTAGACCA'	IG TACTCCAT	1
25	(2) INFO	RMATION FOR SEQ ID NO:12:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	ATATTGAAT TCTGACCTTC TCGAACTCGC	30
	2) INFORMATION FOR SEQ ID NO:13:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(iii) HYPOTHETICAL: NO	
10	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
15	ATTGAATTCG ATCACGGGCT CCCCCATGC	29
15	(2) INFORMATION FOR SEQ ID NO:14:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	ATGGAGTACA TGGTCTACTT CAACTTCTTT GTGTGGGTGC TGCCCCCGCT	50
	(2) INFORMATION FOR SEQ ID NO:15:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	

	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
5	GAAGATCCGC AAATAGACAC CCAGCATGAG CAGAAGCGGG GGCAGCACCC	50
	(2) INFORMATION FOR SEQ ID NO:16:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
•	• •	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	CCCTCTAGAG CCCAGCCTGT GCCCGCCATG CCCATCATGG GCTCC	45
	(2) INFORMATION FOR SEQ ID NO:17:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	CCCACCTTTT GAGCAAGTTC	20
30	(2) INFORMATION FOR SEQ ID NO:18:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: cDNA

	(iii)	HYPO	THET	ICAL	: NO											
	(iv)	ITNA	-sen	SE:	NO	-										
5																
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	18:						
	GGCTTATGA	G TA	TTTC	TTCC			•						٠			
	(2) INFOR	ITAM	ON F	OR S	EQ I	D NO	:19:									
10	(i)	(B)	LEN TYP	GTH: E: a		ami aci	no a .d									
	(ii)	MOLE	CULE	TYP	E: p	rote	in					,				•
	(iii)	HYPO	THET	CAL	: NO	,										
15	(iv)	anti	-SEN	ISE:	NO		•									
	(v)	FRAG	MENI	TYF	E: N	-ter	mina	1								
			•				•							•		
	(xi)	SEQU	JENCE	DES	CRIE	OIT	i: SE	EQ II	NO:	19:						•
20	Met 1	Pro	Pro	Ser	Ile 5	Ser	Ala	Phe	Gln	Ala 10	Ala	Tyr	Ile	Gly	Ile 15	Glu
	Val	Leu	Ile	Ala 20	Leu	Val	Ser	Val	Pro 25	Gly	Asn	Val	Leu	Val 30	Ile	Trp
	Ala	Val	Lys 35	Val	Asn	Gln	Ala	Leu 40	Arg	Asp	Ala	Thr	Phe 45	Cys	Phe	Ile
25	Val	Ser 50	Leu	Ala	Val	Ala	Asp 55	Val	Ala	Val	Gly	Ala 60	Leu	Val	Ile	Pro
•	Leu 65	Ala	Ile	Leu	Ile	Asn 70	Ile	Gly	Pro	Gln	Thr 75	Tyr	Phe	His	Thr	Cys 80
30	Leu	Met	Val	Ala	Суs 85	Pro	Val	Leu	Ile	Leu 90	Thr	Gln	Ser	Ser	Ile 95	Leu
	Ala	Leu	Leu	Ala 100	Ile	Ala	Val	Asp	Arg 105	Tyr	Leu	Arg	Val	Lys 110	Ile	Pro
	Leu	Arg	Tyr 115	Lys	Met	Val	Val	Thr 120	Pro	Arg	Arg	Ala	Ala 125		Ala	Ile

														•		
	Ala	Gly 130	Cys	Trp	Ile	Leu	Ser 135	Phe	Val	Va1	Gly	Leu 140	Thr	Pro	Met	Phe
	Gly 145	Trp	Asn	Asn	Leu	Ser 150	Ala	Val	Glu	Arg	Ala 155	Trp	Ala	Ala		Gly 160
5	Ser	Met	Gly	Glu	Pro 165	Val	Ile	Lys	Cys	Glu 170	Phe	Glu	Lys	Val	Ile 175	Ser
	Met	Glu	Tyr	Met 180	Val	Tyr	Phe	Asn	Phe 185	Phe	Val	Trp	Va1	Leu 190	Pro	Pro
	Leu	Leu	Leu 195	Met	Val	Leu	Ile	Tyr 200	Leu	Glu	Val	Phe	Tyr 205	Leu	Ile	Arg
10	Lys	Gln 210	Leu	Asņ	Lys	Lys	Val 215	Ser	Ala	Ser	Ser	Gly 220	Asp	Pro	Gln	Lys
	Tyr 225	Tyr	Gly	Lys	Glu	Leu 230	Lys	Ile	Ala	Lys	Ser 235	Leu	Ala	Leu	Ile	Leu 240
	Phe	Leu	Phe	Ala	Leu 245	Ser	Trp	Leu	Pro	Leu 250	His	Ile	Leu	Asn	Cys 255	Ile
15	Thr	Leu	Phe	Cys 260	Pro	Ser	Cys	His	Lys 265	Pro	Ser	Ile	Leu	Thr 270	Tyr	Ile
	Ala	Ile	Phe 275	Leu	Thr	His	Gly	Asn 280	Ser	Ala	Met	Asn	Pro 285	Ile	Val	Tyr
	Ala	Phe 290	Arg	Ile	Gln	Lys	Phe 295	Arg	Val	Thr	Phe	Leu 300	Lys	Ile	Trp	Asn
20	Asp 305	His	Phe	Arg	Суз	Gln 310	Pro	Ala	Pro	Pro	Ile 315	Asp	Glu	Asp	Leu	Pro 320
	Glu	Glu	Arg	Pro	Asp 325	Asp					•					

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 981 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- 30 (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

	ATGCCGCCCT	CCATCTCAGC	TTTCCAGGCC	GCCTACATCG	GCATCGAGGT	GCTCATCGCC	60
	CTGGTCTCTG	TGCCCGGGAA	CGTGCTGGTG	ATCTGGGCGG	TGAAGGTGAA	CCAGGCGCTG	120
	CGGGATGCCA	CCTTCTGCTT	CATCGTGTCG	CTGGCGGTGG	CTGATGTGGC	CGTGGGTGCC	180
5	CTGGTCATCC	CCCTCGCCAT	CCTCATCAAC	ATTGGGCCAC	AGACCTACTT	CCACACCTGC	240
	CTCATGGTTG	CCTGTCCGGT	CCTCATCCTC	ACCCAGAGCT	CCATCCTGGC	CCTGCTGGCA	300
	ATTGCTGTGG	ACCGCTACCT	CCGGGTCAAG	ATCCCTCTCC	GGTACAAGAT	GGTGGTGACC	360
	CCCCGGAGGG	CGGCGGTGGC	CATAGCCGGC	TGCTGGATCC	TCTCCTTCGT	GGTGGGACTG	420
10	ACCCCTATGT	TTGGCTGGAA	CAATCTGAGT	GCGGTGGAGC	GGGCCTGGGC	AGCCAACGGC	480
	AGCATGGGGG	AGCCCGTGAT	CAAGTGCGAG	TTCGAGAAGG	TCATCAGCAT	GGAGTACATG	540
	GTCTACTTCA	ACTTCTTTGT	GTGGGTGCTG	CCCCCCCTTC	TCCTCATGGT	CCTCATCTAC	600
	CTGGAGGTCT	TCTACCTAAT	CCGCAAGCAG	CTCAACAAGA	AGGTGTCGGC	CTCCTCCGGC	660
15	GACCCGCAGA	AGTACTATGG	GAAGGAGCTG	ÄAGATCGCCA	AGTCGCTGGC	CCTCATCCTC	720
13	TTCCTCTTTG	CCCTCAGCTG	GCTGCCTTTG	CACATCCTCA	ACTGCATCAC	CCTCTTCTGC	780
	CCGTCCTGCC	ACAAGCCCAG	CATCCTTACC	TACATTGCCA	TCTTCCTCAC	GCACGGCAAC	840
	TCGGCCATGA	ACCCCATTGT	CTATGCCTTC	CGCATCCAGA	AGTTCCGCGT	CACCTTCCTT	.900
	AAGATTTGGA	ATGACCATTT	CCGCTGCCAG	CCTGCACCTC	CCATTGACGA	GGATCTCCCA	960
20	GAAGAGAGGC	CTGATGACTA	G				983

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (v) FRAGMENT TYPE: N-terminal 30
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile

	Ala	Val	Leu	Ala 20	Ile	Leu	Gly	Asn	Val 25	Leu	Val	Cys	Trp	Ala 30	Val	Trp
	Leu	Asn	Ser 35	Asn	Leu	Gln	Asn	Val 40	Thr	Asn	Tyr	Phe	Val 45	Val	Ser	Leu
5	Ala	Ala 50	Ala	Asp	Ile	Ala	Val 55	Gly	Val	Leu	Ala	Ile 60	Pro	Phe	Ala	Ile
. •	Thr 65	Ile	Ser	Thr	Gly	Phe 70	Cys	Ala	Ala	Cys	His 75	Gly	Cys	Leu	Phe	Ile 80
	Ala	Cys	Phe	Val	Leu 85	Val	Leu	Thr	Gln	Ser 90	Ser	Ile	Phe	Ser	Leu 95	Leu
10	Ala	Ile	Ala	Ile 100	Asp	Arg	Tyr	Ile	Ala 105	Ile	Arg	Ile	Pro	Leu 110	Arg	Tyr
	Asn	Gly	Leu 115	Val	Thr	Gly	Thr	Arg 120	Ala	Lys	Gly	Ile	Ile 125	Ala	Ile	Cys
·	Trp	Val 130	Leu	Ser	Phe	Ala	Ile 135		Leu	Thr	Pro	Met 140	Leu	Gly	Trp	Asn
15	Asn 145	Cys	Gly	Gln	Pro	Lys 150	Glu	Gly	Lys	Asn	His 155	Ser	Gln	Gly	Cys	Gly 160
	Glu	Gly	Gln	Val	Ala 165	Cys	Leu	Phe	Glu	Asp 170	Val	Val	Pro	Met	Asn 175	Tyr
20	Met	Val	Tyr.	Phe 180	Asn	Phe	Phe	Ala	Cys 185	Val	Leu	Val	Pro	Leu 190	Leu	Leu
	Met	Ļeu	Gly 195	Val	Туг	Leu	Arg	Ile 200	Phe	Leu	Ala	Ala	Arg 205	Arg	Gln	Leu
	Lys	Gln 210		Glu	Ser	Gln	Pro 215	Leu	Pro	Gly	Glu	Arg 220	Ala	Arg	Ser	Thr
25	Leu 225		Lys	Glu	Val	His 230	Ala	Ala	Lys	Ser	Leu 235		Ile	Ile	Val	Gly 240
	Leu	Phe	Ala	Leu	Cys 245	Trp	Leu	Pro	Leu	His 250		Ile	Asn	Cys	Phe 255	Thr
	Phe	Phe	Cys	Pro 260		Cys	Ser	His	Ala 265		Leu	Trp	Leu	Met 270	Tyr	Leu
30	Ala	Ile	Val 275		Ser	His	Thr	Asn 280		Va1	Val	Asn	Pro 285		Ile	Tyr
	Ala	Tyr 290		Ile	Arg	Glu	Phe 295		Gln	Thr	Phe	Arg 300		Ile	Ile	Arg
	Ser	His	Val	Leu	Arg	Gln	Gln	Glu	Pro	Phe	Lys	Ala	Ala	Gly	Thr	Ser

480 540

- 56 -

	305					310					315					320	•
	Ala	Arg	Val	Leu	Ala 325	Ala	His	Gly	Ser	Asp 330	Gly	Glu	Gln	Val	Ser 335	Leu	
	Arg	Leu	Asn	Gly 340	His	Pro	Pro	Gly	Val 345	Trp	Ala	Asn	Gly	Ser 350	Ala	Pro	
5	His	Pro	Glu 355	Arg	Arg	Pro	Asn	Gly 360	Tyr	Ala	Leu	Gly	Leu 365	Val	Ser	Gly	
	Gly	Ser 370	Ala	G1n	Glu	Ser	Gln 375	Gly	Asn	Thr	Gly	Leu 380	Pro	Asp	Val	Glu	
10	L eu 385	Leu	Ser	His	Glu	Leu 390	Lys	Gly	Val	Cys	Pro 395	Glu	Pro	Pro	Gly	Leu 400	
10	Asp	Asp	Pro	Leu	Ala 405	Gln	Asp	Gly	Ala	Gly 410	Val	Ser					
	(2) INFO	RMAT:	ION 1	FOR S	SEQ :	ID N	0:22	:									
15	(i)	(A) (B) (C)) LEI) TY!) ST!	E CHANGTH: PE: 1 RANDI POLOG	: 12 nucle EDNE	39 b eic SS:	ase p acid doub	pair	S								
	(ii)	MOL	ECUL	E TY	PE:	cDNA											
	(iii)	нүр	OTHE	TICA	L: N	0	ร กร										
20	(iv)	ANT	I-SE	NSE:	NO												
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:22:							•
	ATGCCCAT	CA T	GGGC	TCCT	c GG	TGTA	CATC	ACG	GTGG	AGC	TGGC	CATT	GC T	GTGC	TGGC	C .	60
25	ATCCTGGG	CA A	TGTG	CTGG'	T GT	GCTG	GGCC	GTG	TGGC	TCA	ACAG	CAAC	CT G	CAGA	ACGT	C	120
	ACCAACTA	CT T	TGTG	GTGT	C AC	TGGC	GGCG	GCC	GACA	TCG	CAGI	'GGGI	GT G	CTCG	CCAT	C	180
•	CCCTTTGC	CA T	CACC	ATCA	G CA	.CCGG	GTTC	TGC	GCTG	CCT	GCCA	rceec	TG C	CTCT	TCAT	T	240
	GCCTGCTT	CG T	CCTG	GTCC	T CA	.CGCA	.GAGC	TCC	ATCI	TCA	GTCI	CCTG	igc c	ATCG	CCAT	T	300
30	GACCGCTA	CA T	TGCC	ATCC	G CA	TCCC	GCTC	CGG	TACA	ATG	GCTI	GGTC	ac c	CGCA	CGAG	G	360
	GCTAAGGG	CA T	CATT	GCCA	T CI	GCTG	GGTG	CTG	TCGI	TTG	CCAT	CGGC	CT G	ACTO	CCAT	rG	420

CTAGGTTGGA ACAACTGCGG TCAGCCAAAG GAGGGCAAGA ACCACTCCCA GGGCTGCGGG

GAGGGCCAAG TGGCCTGTCT CTTTGAGGAT GTGGTCCCCA TGAACTACAT GGTGTACTTC

	AACTTCTTTG	CCTGTGTGCT	GGTGCCCCTG	CTGCTCATGC	TGGGTGTCTA	TTTGCGGATC	600
	TTCCTGGCGG	CGCGACGACA	GCTGAAGCAG	ATGGAGAGÇC	AGCCTCTGCC	GGGGGAGCGG	660
	GCACGGTCCA	CACTGCAGAA	GGAGGTCCAT	GCTGCCAAGT	CACTGGCCAT	CATTGTGGGG	720
	CTCTTTGCCC	TCTGCTGGCT	GCCCCTACAC	ATCATCAACT	GCTTCACTTT	CTTCTGCCCC	780
5	GACTGCAGCC	ACGCCCCTCT	CTGGCTCATG	TACCTGGCCA	TCGTCCTCTC	CCACACCAAT	840
	TCGGTTGTGA	ATCCCTTCAT	CTACGCCTAC	CGTATCCGCG	AGTTCCGCCA	GACCTTCCGC	900
	AAGATCATTC	GCAGCCACGT	CCTGAGGCAG	CAAGAACCTT	TCAAGGCAGC	TGGCACCAGT	960
	GCCCGGGTCT	TGGCAGCTCA	TGGCAGTGAC	GGAGAGCAGG	TCAGCCTCCG	TCTCAACGGC	1020
10	CACCCGCCAG	GAGTGTGGGC	CAACGGCAGT	GCTCCCCACC	CTGAGCGGAG	GCCCAATGGC	1080
	TATGCCCTGG	GGCTGGTGAG	TGGAGGGAGT	GCCCAAGAGT	CCCAGGGGAA	CACGGGCCTC	1140
•	CCAGACGTGG	AGCTCCTTAG	CCATGAGCTC	AAGGGAGTGT	GCCCAGAGCC	CCCTGGCCTA	1200
	GATGACCCCC	TGGCCCAGGA	TGGAGCAGGA	GTGTCCTGA			1239

- 15 (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- 20
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (v) FRAGMENT TYPE: N-terminal
- 25 (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 216
 - (D) OTHER INFORMATION: /label= threonine
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
- Met Leu Glu Thr Gln Asp Ala Leu Tyr Val Ala Leu Glu Leu Val 1 5 10 15
 - Ile Ala Ala Leu Ser Val Ala Gly Asn Val Leu Val Cys Ala Ala Val 20 25 30
 - Gly Thr Ala Asn Thr Leu Gln Thr Pro Thr Asn Tyr Phe Leu Val Ser 35 40 45

	Leu	Ala 50	Ala	Ala	Asp	Val	Ala 55	Val	Gly	Leu	Phe	Ala 60	Ile	Pro	Phe	Ala
	Ile 65	Thr	Ile	Ser	Leu	Gly 70 _.	Phe	Cys	Thr	Asp	Phe 75	Tyr	Gly	Cys	Leu	Phe 80
5	Leu	Ala	Cys		Val 85	Leu	Val	Leu	Thr	Gln 90	Ser	Ser	Ile	Phe	Ser 95	Leu
	Leu	Ala	Val	Ala 100	Val	Asp	Arg	Tyr	Leu 105	Ala	Ile	Cys	Val	Pro 110	Leu	Arg
	Tyr	Lys	Ser 115	Leu	Val	Thr	Gly	Thr 120	Arg	Ala	Arg	Gly	Val 125	Ile	Ala	Val
10	Leu	Trp 130	Val	Leu	Ala	Phe	Gly 135	Ile	Gİy	Leu	Thr	Pro 140	Phe	Leu	Gly	Trp
	Asn 145	Ser	Lys	Asp	Ser	Ala 150	Thr	Asn	Asn	Cys	Thr 155	Glu	Pro	Trp	Asp	Gly 160
15	Thr	Thr	Asn	Glu	Ser 165	Cys	Cys	Leu	Val	Lys 170	Cys	Leu	Phe	Glu	Asn 175	Val
	Val	Pro	Met	Ser 180	Tyr	Met	Val	Tyr	Phe 185	Asn	Phe	Phe	Gly	Cys 190	Val	Leu
	Pro	Pro	Leu 195	Leu	Ile	Met	Leu	Val 200	Ile	Tyr	Ile	Lys	Ile 205	Phe	Leu	Val
20	Ala	Cys 210	_	Gln	Leu	Gln	Arg 215	Xaa	Glu	Leu	Met	Asp 220	His	Ser	Arg	Thr
	Thr 225	Leu	Gln	Arg	Glu	11e 230	His	Ala	Ala	Lys	Ser 235	Leu	Ala	Met	Ile	Val 240
	Gly	Ile	Phe	Ala	Leu 245	_	Trp	Leu	Pro	Val 250	His	Ala	Val	Asn	Cys 255	Val
25	Thr	Leu	Phe	Gln 260		Ala	Gln	Gly	L ys 265		Lys	Pro	Lys	Trp 270	Ala	Met
e.	Asn	Met	Ala 275		Leu	Leu	Ser	His 280		Asn	Ser	Val	Val 285		Pro	Ile
	Val	Туг 290		Tyr	Arg	Asn	Arg 295		Phe	Arg	Tyr	Thr 300		His	Lys	Ile
30	Ile 305		Arg	Tyr	Leu	Leu 310		Gln	Ala	Asp	Val 315	Lys	Ser	Gly	Asn	Gly 320
	Gln	Ala	Gly	Val	Gln 325		Ala	Leu	Gly	Val 330	_	Leu	l			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- •

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: 10 60 ATGCTGCTGG AGACACAGGA CGCGCTGTAC GTGGCGCTGG AGCTGGTCAT CGCCGCGCTT TCGGTGGCGG GCAACGTGCT GGTGTGCGCC GCGGTGGGCA CGGCGAACAC TCTGCAGACG 120 CCCACCAACT ACTTCCTGGT GTCCCTGGCT GCGGCCGACG TGGCCGTGGG GCTCTTCGCC 180 ATCCCCTTTG CCATCACCAT CAGCCTGGGC TTCTGCACTG ACTTCTACGG CTGCCTCTTC 240 15 CTCGCCTGCT TCGTGCTGGT GCTCACGCAG AGCTCCATCT TCAGCCTTCT GGCCGTGGCA 300 GTCGACAGAT ACCTGGCCAT CTGTGTCCCG CTCAGGTATA AAAGTTTGGT CACGGGGACC 360 CGAGCAAGAG GGGTCATTGC TGTCCTCTGG GTCCTTGCCT TTGGCATCGG ATTGACTCCA 420 TTCCTGGGGT GGAACAGTAA AGACAGTGCC ACCAACAACT GCACAGAACC CTGGGATGGA 480 20 540 ACCACGAATG AAAGCTGCTG CCTTGTGAAG TGTCTCTTTG AGAATGTGGT CCCCATGAGC 600 TACATGGTAT ATTTCAATTT CTTTGGGTGT GTTCTGCCCC CACTGCTTAT AATGCTGGTG ATCTACATTA AGATCTTCCT GGTGGCCTGC AGGCAGCTTC AGCGCACTGA GCTGATGGAC 660 CACTCGAGGA CCACCCTCCA GCGGGAGATC CATGCAGCCA AGTCACTGGC CATGATTGTG 720 25 GGGATTTTTG CCCTGTGCTG GTTACCTGTG CATGCTGTTA ACTGTGTCAC TCTTTTCCAG 780 CCAGCTCAGG GTAAAAATAA GCCCAAGTGG GCAATGAATA TGGCCATTCT TCTGTCACAT 840 GCCAATTCAG TTGTCAATCC CATTGTCTAT GCTTACCGGA ACCGAGACTT CCGCTACACT 900 960 TTTCACAAAA TTATCTCCAG GTATCTTCTC TGCCAAGCAG ATGTCAAGAG TGGGAATGGT 999 30 CAGGCTGGGG TACAGCCTGC TCTCGGTGTG GGCCTATGA

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 318 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- 5 (v) FRAGMENT TYPE: N-terminal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
- Met Pro Asn Asn Ser Thr Ala Leu Ser Leu Ala Asn Val Thr Tyr Ile 1 5 10 15
- Thr Met Glu Ile Phe Ile Gly Leu Cys Ala Ile Val Gly Asn Val Leu 20 25 30
 - Val Ile Cys Val Val Lys Leu Asn Pro Ser Leu Gln Thr Thr Thr Phe 35 40 45
- Tyr Phe Ile Val Ser Leu Ala Leu Ala Asp Ile Ala Val Gly Val Leu 15 50 55 60
 - Val Met Pro Leu Ala Ile Val Val Ser Leu Gly Ile Thr Ile His Phe 65 70 75 80
 - Tyr Ser Cys Leu Phe Met Thr Cys Leu Leu Leu Ile Phe Thr His Ala 85 90 95
- 20 Ser Ile Met Ser Leu Leu Ala Ile Ala Val Asp Arg Tyr Leu Arg Val 100 105 110
 - Lys Leu Thr Val Arg Tyr Lys Arg Val Thr Thr His Arg Arg Ile Trp
 115 120 125
 - Leu Ala Leu Gly Leu Cys Trp Leu Val Ser Phe Leu Val Gly Leu Thr 130 135 140
- Pro Met Phe Gly Trp Asn Met Lys Leu Thr Ser Glu Tyr His Arg Asn 145 150 155 160
 - Val Thr Phe Leu Ser Cys Gln Phe Val Ser Val Met Arg Met Asp Tyr 165 170 175
- Met Val Tyr Phe Ser Phe Leu Thr Trp Ile Phe Ile Pro Leu Val Val
 180 185 190
 - Met Cys Ala Ile Tyr Leu Asp Ile Phe Tyr Ile Ile Arg Asn Lys Leu 195 200 205
 - Ser Leu Asn Leu Ser Asn Ser Lys Glu Thr Gly Ala Phe Tyr Gly—Arg 210 220

•		192	22
Phe	Leu	Phé I	Ala

	_	1	
_	О	1	_

	Glu 225	Phe	Lys	Thr	Ala	Lys 230	Ser	Leu	Phe	Leu	Va1 235	Leu	Phe	Leu	Phé	Ala 240
	Leu	Ser	Trp	Leu	Pro 245	Leu	Ser	Ile	Ile	Asn 250	Cys	Ile	Ile	Tyr	Phe 255	Asn
5	Gly	Glu	Va1	Pro 260	Gln	Leu	Val	Leu	Tyr 265	Met	Gly	Ile	Leu	Leu 270	Ser	His
	Ala	Asn	Ser 275	Met	Met	Asn	Pro	Ile 280	Val	Tyr	Ala	Tyr	Lys 285	Ile	Lys	Lys
	Phe	Lys 290	Glu	Thr	Tyr	Leu	Leu 295	Ile	Leu	Lys	Ala	Cys 300	Val	Val	Cys	His
10	Pro 305	Ser	Asp	Ser	Leu	Asp 310	Thr	Ser	Ile	Glu	Lys 315	Asn	Ser	Glu		

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 957 base pairs

 - (B) TYPE: nucleic acid.
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

25

30

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

	ATGCCCAACA	ACAGCACTGC	TCTGTCATTG	GCCAATGTTA	CCTACATCAC	CATGGAAATT	60
	TTCATTGGAC	TCTGCGCCAT	AGTGGGCAAC	GTGCTGGTCA	TCTGCGTGGT	CAAGCTGAAC	120
5	CCCAGCCTGC	AGACCACCAC	CTTCTATTTC	ATTGTCTCTC	TAGCCCTGGC	TGACATTGCT	180
	CTTGGGGTGC	TGGTCATGCC	TTTGGCCATT	GTTGTCAGCC	TGGGCATCAC	AATCCACTTC	240
	TACAGCTGCC	TTTTTATGAC	TTGCCTACTG	CTTATCTTTA	CCCACGCCTC	CATCATGTCC	300
	TTGCTGGCCA	TCGCTGTGGA	CCGATACTTG	CGGGTCAAGC	TTACCGTCAG	ATACAAGAGG	360
)	GTCACCACTC	ACAGAAGAAT	ATGGCTGGCC	CTGGGCCTTT	GCTGGCTGGT	GTCATTCCTG	420
	GTGGGATTGA	CCCCCATGTT	TGGCTGGAAC	ATGAAACTGA	CCTCAGAGTA	CCACAGAAAT	480
	GTCACCTTCC	TTTCATGCCA	ATTTGTTTCC	GTCATGAGAA	TGGACTACAT	GGTATACTTC	540
	AGCTTCCTCA	CCTGGATTTT	CATCCCCCTG	GTTGTCATGT	GCGCCATCTA	TCTTGACATC	600

1	\mathbf{c}	7	$\boldsymbol{\gamma}$	7
1	フ	_	L	_

- 62 -

	TTTTACATC	A TTCGGAACAA A	CTCAGTCTG	AACTTATCTA	ACTCCAAAGA	GACAGGTGCA	660
	TTTTATGGA	C GGGAGTTCAA G	ACGGCTAAG	TCCTTGTTTC	TGGTTCTTTT	CTTGTTTGCT	720
	CTGTCATGG	TGCCTTTATC T	ATCATCAAC	TGCATCATCT	ACTTTAATGG	TGAGGTACCA	780
	CAGCTTGTG	C TGTACATGGG C	ATCCTGCTG	TCCCATGCCA	ACTCCATGAT	GAACCCTATC	840
5	GTCTATGCC	r ataaaataaa g	AAGTTCAAG	GAAACCTACC	TTTTGATCCT	CAAAGCCTGT	900
	GTGGTCTGC	C ATCCCTCTGA T	TCTTTGGAC	ACAAGCATTG	AGAAGAATTC	TGAGTAG	957
	(2) INFOR	MATION FOR SEQ	ID NO:27	:			
LO	(i)	SEQUENCE CHARA (A) LENGTH: 2 (B) TYPE: nuc (C) STRANDEDN (D) TOPOLOGY:	7 base pa: leic acid ESS: sing	irs			
	(ii)	MOLECULE TYPE:	cDNA			•	
	(iii)	HYPOTHETICAL:	ио				
15	(iv)	ANTI-SENSE: NO)				
			•				
	(xi)	SEQUENCE DESCR	RIPTION: S	EQ ID NO:27	:		
,	CCCAAGCTT	A TGAAAGCCAA C	CAATACC				27
20	(2) INFO	MATION FOR SEC	Q ID NO:28	:			•
	(i)	SEQUENCE CHARA (A) LENGTH: 2 (B) TYPE: nuc (C) STRANDEDI (D) TOPOLOGY	27 base pa cleic acid NESS: sing	irs			
25	(ii)	MOLECULE TYPE	: cDNA				
	(iii)	HYPOTHETICAL:	NO				
	(iv)	ANTI-SENSE: No	0				
30	(xi)	SEQUENCE DESC	RIPTION: S	SEQ ID NO:28	3:		

(2) INFORMATION FOR SEQ ID NO:29:

TGCTCTAGAC TCTGGTATCT TCACATT

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs

		(B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear			
	(ii)	MOLECULE TYPE: cDNA			
	(iii)	HYPOTHETICAL: NO			
5	(iv)	ANTI-SENSE: YES			
,					
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:29:			
	GCCTCTTTC	BA GGATGTGGTC CCCATGAACT ACATGGTGTA CTTCA			45
10	(2) INFO	RMATION FOR SEQ ID NO:30:			
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear			
15	(ii)	MOLECULE TYPE: cDNA			
	(iii)	HYPOTHETICAL: NO			
	(iv)	ANTI-SENSE: YES			
20		SEQUENCE DESCRIPTION: SEQ ID NO:30:			4!
		AC CAGCACACAG GCAAAGAAGT TGAAGTACAC CATGT			
		RMATION FOR SEQ ID NO:31:			
25	(i) ,	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	·		
	(ii)	MOLECULE TYPE: cDNA		•	
	(iii)	HYPOTHETICAL: NO			
30	(iv)	ANTI-SENSE: YES			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:31:			

BNSDOCID: <GB___2289218A__I_>

TCACCATCTT CCAGGAGC

(2) INFORMATION FOR SEQ ID NO:32:

(iv) ANTI-SENSE: YES

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
5	(ii)	MOLECULE TYPE: cDNA	•
	(iii)	HYPOTHETICAL: NO	
,	(iv)	ANTI-SENSE: YES	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:32:	,
	ACTCCTTG	GA GGCCATGT	18
	(2) INFO	RMATION FOR SEQ ID NO:33:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
20	(iv)	ANTI-SENSE: YES	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	TCCTGCAC	CA CCAACTGCTT AGCCCCCTG GCCAAGGTCA TCCAT	45
25	(2) INFO	RMATION FOR SEQ ID NO:34:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
30	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	

1	n	7	つ	7
1	フ	2	_	2

- 65 -

	(X1)	SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	CATGAGCCC	CT TCCACGATGC CAAAGTTGTC ATGGATGACC TTGGC	45
	(2) INFOR	RMATION FOR SEQ ID NO:35:	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
10	(iv)	ANTI-SENSE: YES	
	•		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	GTTACCTA	CA TCACCATG	18
15	(2) INFO	RMATION FOR SEQ ID NO:36:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
20	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
25	(xiʻ)	SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	GTTAGATA	AG TTCAGACT	18
	(2) INFO	RMATION FOR SEQ ID NO:37:	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	

(iv) ANTI-SENSE: YES

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
	CTGACCTCAG AGTACCACAG AAATGTCACC TTCCTTTCAT GCCAA	45
5	(2) INFORMATION FOR SEQ ID NO:38:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
	TTGGCATGAA AGGAAGGTGA CATTTCTGTG GTACTCTGAG GTCAG	45
	(2) INFORMATION FOR SEQ ID NO:39:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
	CTCAGTCTGA ACTTATCTAA CTCCAAAGAG ACAGGTGCAT TTTATG	46
30	(2) INFORMATION FOR SEQ ID NO:40:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	

1	\mathbf{a}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7
L	\mathcal{I}	4	_	_

- 67 -

(ii) MOLECULE TYPE: cDNA

	(iii)	HYPOTHETICAL: NO	•		
	(iv)	ANTI-SENSE: YES			
5	(xi)	SEQUENCE DESCRIPTION: SEQ I	D NO:40:		
•	CATAAAAT	GC ACCTGTCTCT TTGGAGTTAG ATA	AGTTCAG ACTGAG		46
	(2) INFO	RMATION FOR SEQ ID NO:41:			
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear		A.	
	(ii)	MOLECULE TYPE: cDNA			
	(iii)	HYPOTHETICAL: NO		•	
15	(iv)	ANTI-SENSE: YES			
		•			·
	(xi)	SEQUENCE DESCRIPTION: SEQ I	D NO:41:		
	TCCTCGGT	GT ACATCACG			18
20	(2) INFO	RMATION FOR SEQ ID NO:42:			
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear			
25	(ii)	MOLECULE TYPE: cDNA			
	(iii)	HYPOTHETICAL: NO			
	(iv)	ANTI-SENSE: YES			
30	(xi)	SEQUENCE DESCRIPTION: SEQ I	D NO:42:		
	TCCATCTG	CT TCAGCTGT			18
	(2) INFO	RMATION FOR SEQ ID NO:43:			
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs			

		(B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
5	(iv)	ANTI-SENSE: YES	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:43:	
	CTGGGCCT	TT GCTGGCTGGT GTCATTCCTG GTGGGATTGA CCCCC	45
10	(2) INFO	RMATION FOR SEQ ID NO:44:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
15	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:44:	
	TGAGGTCA	GT TTCATGTTCC AGCCAAACAT GGGGGTCAAT CCCAC	45
	(2) INFO	RMATION FOR SEQ ID NO:45:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
30	(iv)	ANTI-SENSE: YES	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:45:	

ATGCTGCTGG AGACACAGGA -

(2) INFORMATION FOR SEQ ID NO:46:

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
5	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	TGGTCCAT	CA GCTCAGTGC	19
	(2) INFO	RMATION FOR SEQ ID NO:47:	•
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: CDNA	
	(iii)	HYPOTHETICAL: NO	
20	(iv)	ANTI-SENSE: YES	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	GGTGGAAC	AG TAAAGACAGT GCCACCAACA ACTGCACAGA ACCCTGGGAT GGAACCACGA	6
25	(2) INFO	RMATION FOR SEQ ID NO:48:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
30	, (ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	*

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
	GGACCACATT CTCAAAGAGA CACTTCACAA GGCAGCAGCT TTCATTCGTG GTTCCATCCC	60
	(2) INFORMATION FOR SEQ ID NO:49:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
15	CTACATCGGC ATCGAGGT	18
	(2) INFORMATION FOR SEQ ID NO:50:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
	GAACTCGCAC TTGATCAC	18
	(2) INFORMATION FOR SEQ ID NO:51:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	

(ii) MOLECULE TYPE: cDNA

1	Ω	7	7	7
ı	フ	_	4	_

- 71 -

(iii) HYPOTHETICAL: NO

	•				
	(iv) ANTI-SENSE: YES				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:				
5	TGGTGGGACT GACCCCTATG TTTGGCTGGA ACAATCTGAG TGCGG	•	45		
	(2) INFORMATION FOR SEQ ID NO:52:				
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear 				
	(ii) MOLECULE TYPE: cDNA	The second secon			
	(iii) HYPOTHETICAL: NO				
	(iv) ANTI-SENSE: YES	•			
15					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	•			
	TGCTGCCGTT GGCTGCCCAG GCCCGCTCCA CCGCACTCAG ATTGT		45		
	(2) INFORMATION FOR SEQ ID NO:53:				
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear 				
	(ii) MOLECULE TYPE: cDNA	•	•		
25	(iii) HYPOTHETICAL: NO				
	(iv) ANTI-SENSE: YES				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:				
30	CTGAGCTCAG CAGACGAAAA CCTCACCTTC CTACCCTGCC GA	·	42		
30	(2) INFORMATION FOR SEQ ID NO:54:				
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 42 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both				

*	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
	TCGGCAGGGT AGGAAGGTGA GGTTTTCGTC TGCTGAGCTC AG	42
	(2) INFORMATION FOR SEQ ID NO:55:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	÷
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
20	CTCAGCCAGA GCTTTTCTGG CTCCAGAGAG ACAGGCGCAT TCTATG	46
	(2) INFORMATION FOR SEQ ID NO:56:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear	
	(ii') MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	-
	CATAGAATGC GCCTGTCTCT CTGGAGCCAG AAAAGCTCTG GCTGAG	4

WHAT IS CLAIMED IS:

- 1. A method for inhibiting TNF α production which comprises contacting the A2b subtype of the adenosine receptor with an adenosine receptor agonist.
- A method for treating or preventing autoimmune diseases including rheumatoid arthritis, rheumatoid spondylitis, inflammatory bowl disease (ulcerative colitis and Crohns disease), intestinal pathology associated with graft vs. host disease, organ transplant reactions, septic shock, fever and myalgia due to infection and cachexia associated with chronic infections, malignancy and aquired immune deficiency syndrome, pulmonary diseases such as pulmonary sarcoidosis, silicosis, chronic pulmonary inflammatory disease, adult respiratory distress syndrome which comprises providing a sufficient quantity of an A2b adenosine receptor agonist to inhibit TNFα production.
- 3. A method for increasing cAMP accumulation in monocytes, and thereby inhibiting production of TNFα, which comprises contacting the monocyte A2b adenosine receptor subtype with an adenosine receptor agonist at a sufficient concentration to activate adenylate cyclase.
- 4. The method of any one of claims 1, 2, 3, or 4, wherein the adenosine receptor agonist is adenosine, CPCA, NECA, R-PIA, or CHA.
- 5. A method for inhibiting TNFα production which comprises contacting the A2b subtype of the adenosine receptor with an A2b adenosine receptor enhancer.

- 6. A method for identifying A2b adenosine receptor agonist enhancer or A2b receptor selective compounds which comprises the steps of:
- (a) contacting monocytes with a test compound and measuring the effect of the test compound on TNFα production;
- (b) contacting a test compound, identified according to step (a) as inhibiting TNFα production by the monocytes, with membranes derived from a stable cell line individually expressing each of the A1, A2a, A2b, or A3 adenosine receptor or with the whole cell expressing each of the A1, A2a, A2b, or A3 adenosine receptor and measuring the binding affinity of the test compound for the receptor or the effect of the test compound on cAMP production in the stable cell line;
- (c) selecting compounds which bind to the A2b adenosine receptor or which induces elevation in cAMP in the cell line expressing the A2b adenosine receptor and which do not bind to membranes or affect the cAMP level in the stable cell lines expressing the A1, A2a, or A3 adenosine receptor subtypes.
- 7. A method for inhibiting production of TNF α by activated monocytes which comprises contacting monocytes with an inhibitorily effective amount of a compound identified according to Claim 6.

20

5

10

15

Claims:-

1, 3 to 7

Categories of documents

(ii) ONLINE: WPI, CLAIMS, DIALOG/BIOTECH

specifications.

X:	Document indicating lack of novelty or of inventive step.	P:	Document published on or after the declared priority date
			but before the filing date of the present application

- Y: Document indicating lack of inventive step if combined with one or more other documents of the same category.

 E: Patent document published on or after, but with priority date carlier than, the filing date of the present application.
- A: Document indicating technological background and/or state of the art.

 &: Member of the same patent family; corresponding document.

Identity of document and relevant passages		Relevant to claim(s)	
GB 2264948 A (MERCK & CO INC) whole document, especially Table L, page 8, line 25; page 11, line 7 to page 13, line 13			
WO 93/25677 A1 (GARVAN INSTITUTE OF MEDICAL RESEARCH) whole document, especially page 3, lines 17 to 31, Claim 7; Figure 4B		1, 3 to 7	
US Pat. Appl. NTIS US 7-577528 especially pages 40 to 64; Figure 1		1, 3 to 5	
Life Sci. 1993, 52, 1917-1924 Inhibition of human monocyte TNF production by adenosime receptor agonists		1, 4, 5	
Biochem. Biophys. Molecular Cloning Human Brain	1, 3 to 7		
Mol. Endocrinol. 1992, 6, 384-393 Molecular Cloning and Expression of the cDNA for a Novel A2-Adenosine Receptor Subtype		1	
	WO 93/25677 A1 US Pat. Appl. NTIS Life Sci. 1993, 52, Inhibition of human agonists Biochem. Biophys. Molecular Cloning a Human Brain Mol. Endocrinol. 19 Molecular Cloning a	Table L, page 8, line 25; page 11, line 7 to page 13, line 13 WO 93/25677 A1 (GARVAN INSTITUTE OF MEDICAL RESEARCH) whole document, especially page 3, lines 17 to 31, Claim 7; Figure 4B US Pat. Appl. NTIS US 7-577528 especially pages 40 to 64; Figure 1 Life Sci. 1993, 52, 1917-1924 Inhibition of human monocyte TNF production by adenosime receptor agonists Biochem. Biophys. Res. Commun. 1992, 187(1), 86-93 Molecular Cloning and Expression of an Adenosine A2b Receptor from Human Brain Mol. Endocrinol. 1992, 6, 384-393 Molecular Cloning and Expression of the cDNA for a Novel A2-Adenosine	

Databases: The UK Patent Office database comprises classified collections of GB, EP, WO and US patent specifications as outlined periodically in the Official Journal (Patents). The on-line databases considered for search are also listed periodically in the Official Journal (Patents).