

Impact of MTD on pileup rejection in the VBF HH→4b channel

Federico Siviero, Roberto Covarelli INFN / University of Torino

Outline

- > Introduction
- > The use of timing to discriminate between signal & PU candidates
- ATLAS analysis (timing not used)

Outline

- > Introduction
- > The use of timing to discriminate between signal & PU candidates
- ATLAS analysis (timing not used)

Introduction

- Aim of this work is to study the impact of the MTD timing information in removing pile-up (PU) candidates from signal jets, considering a 200 PU scenario
- We chose VBF HH→4b as benchmark channel
- Do PU and signal candidates in a jet have different time distributions? Can we use timing to reject PU candidates?

Sample & Setup

/VBF_HHTo4B_CV_1_C2V_1_C3_1_TuneCP5_PSWeights_14TeV-madgraph-pythia8/
Phase2HLTTDRWinter20RECOMiniAOD-PU200_110X_mcRun4_realistic_v3-v2/MINIAODSIM

→ ~ 500k events

- CMSSW_11_1_5
- 4D-PV collection: 'offlineSlimmedPrimaryVertices4D'
- We used 2 different PAT collections:
 - 'slimmedJetsPuppi' → following plots produced with this collection if not indicated otherwise
 - 'slimmedJets' → used only for comparison (PUPPI not used here)
- GenJet: 'slimmedGenJets' → used for ΔR matching to distinguish signal and PU jets

- On all events, primary vertex (PV) time error required to be > 0 (= valid timing info)
- time error > 0 && < 0.025 ns required for all jet candidates

-

- On all events, primary vertex (PV) time error required to be > 0 (= valid timing info)
- time error > 0 && < 0.025 ns required for all jet candidates
 - time error < 0.025 ns required to exclude single hit clusters (see <u>F.Cossutti presentation</u>)

0.01

0.015

0.02

0.025 time error [ns] -

- On all events, primary vertex (PV) time error required to be > 0 (= valid timing info)
- time error > 0 && < 0.025 ns required for all jet candidates
 - time error < 0.025 ns required to exclude single hit clusters (see <u>F.Cossutti presentation</u>)
- Distinction between signal and PU jets based on a ΔR matching between Pat and Gen :
 - Pat jet can be signal if ΔR(Pat, Gen) < 0.1 for at least one Gen jet → not sufficient to be considered signal (see next slide)

*Entries = all possible combinations of Pat and Gen in all events

- On all events, primary vertex (PV) time error required to be > 0 (= valid timing info)
- time error > 0 && < 0.025 ns required for all jet candidates
 - time error < 0.025 ns required to exclude single hit clusters (see <u>F.Cossutti presentation</u>)
- Distinction between signal and PU jets based on a ΔR matching between Pat and Gen :
 - Pat jet can be signal if ΔR(Pat, Gen) < 0.1 for at least one Gen jet → not sufficient to be considered signal (see next slide)
 - PU if ALL Gen jets ΔR(Pat, Gen) > 0.6 → if this condition is satisfied the jet is considered PU

*Entries = all possible combinations of Pat and Gen in all events

- On all events, primary vertex (PV) time error required to be > 0 (= valid timing info)
- time error > 0 && < 0.025 ns required for all jet candidates
 - time error < 0.025 ns required to exclude single hit clusters (see <u>F.Cossutti presentation</u>)
- Distinction between signal and PU jets based on a ΔR matching between Pat and Gen :
 - Pat jet can be signal if ΔR(Pat, Gen) < 0.1 for at least one Gen jet → not sufficient to be considered signal (see next slide)
 - PU if ALL Gen jets ΔR(Pat, Gen) > 0.6 → if this condition is satisfied the jet is considered PU
 - If none of the above conditions are met the jet is excluded

*Entries = all possible combinations of Pat and Gen in all events

- Additional requirements for signal jets:
 - Pat && Gen p_⊤ > 30 GeV
 - Pat && Gen $|\eta|$ < 5 → large rapidity gap to include VBF jets

Same cuts used in ATLAS analysis

Jets per event

Jets per event - no PUPPI

• the number of matched jets per event is unchanged, but the PU jets increases drastically

Pat - Gen p_T distributions

- Distributions of matched Pat/Gen Jets: Pat jets have on average a smaller p_T
- Smaller difference in 'slimmedJets' collection: hint that **PUPPI** is too aggressive in removing candidates from signal jets (it ends up removing also signal candidates)

Outline

- > Introduction
- > The use of timing to discriminate between signal & PU candidates
- ATLAS analysis (timing not used)

Time distribution of jet constituents

candidates time & time error available from PackedCandidate collection

All jet constituents are computed wrt the same reference point (t_0 = time of hard-scatter interaction)

- Candidates times are smeared according to the beamspot spread (180 ps in the Phase 2 setup)
- Distributions are centered in 0 with σ given by vertex smearing + detector resolution + any mismeasurement → no difference between PU and signal observed, as expected

Primary vertex time distribution

Time distribution of jet constituents reflect the PV distribution

Primary vertex time distribution

- Time distribution of jet constituents reflect the PV distribution
- In this study, the 0th element of the PV collection is always assumed to be the hard interaction vertex (not 100% true at 200 PU, see next slide)

PV = 0th element of collection?

Hard-scatter vertex position in the PV collection

Real hard-scatter vertex determined by comparing the vertices positions with the MC truth of the 'genParticles:xyz0' collection

 ~ 16% of the PVs do not correspond to the 0th element of the PV collection

PV = 0th element of collection?

Hard-scatter vertex position in the PV collection

Real hard-scatter vertex determined by comparing the vertices positions with the MC truth of the 'genParticles:xyz0' collection

- ~ 16% of the PVs do not correspond to the 0th element of the PV collection
- BUT we always assume that the 0th element is the hard interaction

 → in the 16% of the event a PU

 vertex is wrongly considered the
 hard-scatter vertex

 Constituents time alone is not effective in distinguishing signal from PU candidates

normalized to integral

- Constituents time alone is not effective in distinguishing signal from PU candidates
- More useful is the time difference between candidates and PV:

normalized to integral

- Constituents time alone is not effective in distinguishing signal from PU candidates
- More useful is the time difference between candidates and PV:
 - PU events should result in a gaussian centered in 0 with σ = sqrt(2)*180 ps = 250 ps → squared sum of candidates and PV resolution
 - Signal should be centered in 0 with σ = 40 ps (detector resolution) → in this case, candidates and PV times are correlated

- Constituents time alone is not effective in distinguishing signal from PU candidates
- More useful is the time difference between candidates and PV:
 - PU events should result in a gaussian centered in 0 with σ = sqrt(2)*180 ps = 250 ps → squared sum of candidates and PV resolution
 - Signal should be centered in 0 with σ = 40 ps (detector resolution) → in this case, candidates and PV times are correlated

Since PUPPI is not 100% efficient, the real distributions are the sum of signal and PU (=2 gaussian summed)

normalized to integral

Since PUPPI is not 100% efficient, the real distributions are the sum of signal and PU (=2 gaussian summed)

 Despite that, we would expect the distributions to be different, dominated by signal or PU candidates respectively → very similar instead, both dominated by signal-like candidates

normalized to integral

Since PUPPI is not 100% efficient, the real distributions are the sum of signal and PU (=2 gaussian summed)

- Despite that, we would expect the distributions to be different, dominated by signal or PU candidates respectively → very similar instead, both dominated by signal-like candidates
- MTD timing information used after PUPPI not really useful in distinguishing signal and PU → Issue already pointed out by D.Roy in December using a different sample

Why many signal-like candidates in PU jets?

Since PUPPI is not 100% efficient, the real distributions are the sum of signal and PU (=2 gaussian summed)

- Despite that, we would expect the distributions to be different, dominated by signal or PU candidates respectively → very similar instead, both dominated by signal-like candidates
- MTD timing information used after PUPPI not really useful in distinguishing signal and PU → Issue already pointed out by D.Roy in December using a different sample

PUPPI is good at rejecting PU: difference in the number of PU candidates in the two collections is evident

- **PUPPI is good at rejecting PU**: difference in the number of PU candidates in the two collections is evident
- It is even TOO good → at 200 PU, it ends up removing also signal candidates

- **PUPPI is good at rejecting PU**: difference in the number of PU candidates in the two collections is evident
- It is even TOO good → at 200 PU, it ends up removing also signal candidates
- Hence, MTD timing to remove PU candidates not useful: PUPPI already did the job

- **PUPPI is good at rejecting PU**: difference in the number of PU candidates in the two collections is evident
- It is even TOO good → at 200 PU, it ends up removing also signal candidates
- Hence, MTD timing to remove PU candidates not useful: PUPPI already did the job
- Better solution: implement timing in PUPPI to keep the signal candidates which are currently removed

Outline

- > Introduction
- > The use of timing to discriminate between signal & PU candidates
- ATLAS analysis (timing not used)

ATLAS analysis (no timing)

- ATLAS analysis performed with Run 2 data
- PV with highest p_T is chosen as hard-scatter PV

• <u>VBF selection:</u>

- \circ 2 or more jets with p_T > 30 GeV && | η | > 2
- take the 2 selected jets with highest p_T and opposite η
- Additional requirement on the 2 VBF candidates: $|\Delta \eta|$ < 5 && m_{ii} > 1000 GeV

• <u>b-jet selection:</u>

- b-tag threshold = 0.4184
- b-tagger = "pfDeepCSVJetTags:probb"
- exactly 4 b-tagged jets with $p_T > 40 \text{ GeV } \&\& |\eta| < 2$
- → 110667 events with 6 jets out of: 499517
- → 1042 events passes cuts out of: 499517

ATLAS analysis (no timing) - 2

 ΔR_{bb} requirements on both leading and sub-leading bb pairs to account for the correlation of m_{4b} with the Lorentz boost of the Higgs candidates and the angle between their decay products

- → 829 events pass this cut
- Among all the possible pairs fulfilling the former requirements,
 the one with the smallest D_{HH} is chosen
 - D_{HH}: distance of lead and sub-lead H candidates masses in the (m_{2h} lead, m_{2h} sublead) plane
- Explicit definition of the signal topology in the backup
- ΔR_{bb} = distance in the Φ - η plane between the two b-jets coming from the H decay
- m_{4b} = invariant mass of the 4 b-jets

b-jet candidates

b-jet candidates: b tagging score

Mass distributions of leading and sub-leading Higgs candidates

projections on x/y axis of the

previous 2d-plot

Mass distributions of leading and sub-leading Higgs candidates

Summary

- We studied the impact of the MTD timing in removing PU candidates from signal jet
 - We used the VBF HH→ 4b channel as benchmark
- The time difference between PV e jet candidates is the most useful information:
 - \circ Signal candidates should have a time distribution with σ = 40 ps (detector resolution)
 - \circ PU candidates: σ = sqrt(2)*180 ps (squared sum of vertex + candidate resolution)
- However, MTD timing not very useful: PUPPI is already good at removing PU candidates
- The MTD timing might be implemented in PUPPI to avoid rejecting signal candidates
 - any help with this would be much welcome!
- We used the same dataset to perform a simplified version of the ATLAS analysis of this process
 - Good mass resolutions of both Higgs candidates
 - Mass values shifted down by PUPPI, due to the subtraction of constituents from signal jets

Thank You!

BACKUP

ΔR_{bb} & D_{HH} cuts as described in the ATLAS paper

	Exactly 4 <i>b</i> -tagged jets with $p_T > 40$, $ \eta < 2.0$	
Signal topology	If $m_{4b} < 1250$	$\frac{360}{m_{4b}} - 0.5 < \Delta R_{bb}^{\text{lead}} < \frac{653}{m_{4b}} + 0.475$ $\frac{235}{m_{4b}} < \Delta R_{bb}^{\text{subl}} < \frac{875}{m_{4b}} + 0.35$
	If $m_{4b} \ge 1250$	$\Delta R_{bb}^{\mathrm{lead}} < 1$ $\Delta R_{bb}^{\mathrm{subl}} < 1$
	Pairs with minimum $D_{HH} = \sqrt{(m_{2b}^{\text{lead}})^2 + (m_{2b}^{\text{subl}})^2} \left \sin \left(\tan^{-1} \left(\frac{m_{2b}^{\text{subl}}}{m_{2b}^{\text{lead}}} \right) - \tan^{-1} \left(\frac{116.5}{123.7} \right) \right) \right $	

VBF candidates

Pat - Gen p_T distributions - 2

We also splitted signal jets in "b" and "other" jets

Time difference distribution: b vs other jets

PV time - candidate time |

Time difference distribution

- PUPPI is good in rejecting PU candidates → PU represents a minor fraction of total candidates
 - PU candidates in the signal distribution might come from the wrong assignment of the PV, as pointed out in slide 15
- Sometimes it is TOO good and signal candidates are rejected from signal jets

normalized to integral

Time difference distribution - no PUPPI

| PV time - candidate time |

- Collection 'slimmedJets':
 - Cuts to separate signal from PU are the same used for the PUPPI collection (slide 7-8)
- Much larger number of PU jets per event → larger tails

normalized to integral

Time difference distribution - no PUPPI

| PV time - candidate time |

normalized to integral

- Collection 'slimmedJets':
 - Cuts to separate signal from PU are the same used for the PUPPI collection (slide 7-8)
- Much larger number of PU jets per event → larger tails
- Signal candidates are less evident in the PU distribution because the number of PU candidates is much higher (distributions are normalized to integral)