Homework 8

due Wed Nov 9 at start of class
Homework8.pdf
nashville.jpg

download from Brightspace

Signals.zip (Jupyter notebook)
Psychopy.zip (Python files)

More on Images and Signals

Convolution

$$I_{out}(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) I_{in}(i-u,j-v)$$

discrete version

$$I_{out}(x,y) = \iint F(u,v) \ I_{in}(x-u,y-v) \ du \ dv$$

continuous version

convolutions in Python

separate by 10secs

separate by 6secs

separate by 4secs

image processing example

Gaussian Filter

```
[[1, 2, 1]
[2, 4, 2] (normalized)
[1, 2, 1]]
```

0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	1 2 1
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	16 2 4 2
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	F[u,v]
0	0	0	0	0	0	0	0	0	0	2.0
0	0	90_	0	0	0	0	0	0	0	-2.0 0.0
0	0	0	0	0	0	0	0	0	0	0.8
	I[i,j]									-2.0 0.0 2.0
							f ($(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$		
Blur eliminates noise										$2\pi\sigma^2$

image processing example

Gaussian Filter

[[1, 2, 1]
[2, 4, 2]
[1, 2, 1]]

original

gaussian filtered

image processing example

Sharpen Mask

$$LoG(x, y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right)$$

original

LoG filtered

$$L(x,y) * [G(x,y) * I(x,y)]$$

Laplacian gives

2nd derivative

(indicates edges)

$$L(x,y) * [G(x,y) * I(x,y)]$$

apply a Gaussian blur to image *I*

the second derivative is highly sensitive to noise ... Gaussian blur reduced noise in the image

$$L(x,y) * [G(x,y) * I(x,y)]$$

$$[L(x,y) * G(x,y)] * I(x,y)$$

convolution is associative

$$L(x,y) * [G(x,y) * I(x,y)]$$

$$[L(x,y) * G(x,y)] * I(x,y)$$

$$LoG(x, y) * I(x, y)$$

Laplacian of Gaussians filter

approximates filtering by retinal ganglion cells
on-center RGC
off-center RGC

Homework 8 (due Nov 9th)

- give you Laplacian and Gaussian 2D filters
- confirm convolution is commutative
- compare an implementation of convolution with the built-in convolution function
- create a Laplacian of Gaussian (LoG) filter
- apply the Laplacian, Gaussian, and LoG to an image

convolution

$$I_{out}(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) I_{in}(i-u,j-v)$$

cross-correlation (also called a sliding dot product)

$$I_{out}(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) I_{in}(i+u,j+v)$$

unlike convolution, cross-correlation is not commutative ("convolutional neural networks" often implement cross-correlation

convolution

$$I_{out}(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \ I_{in}(i-u,j-v)$$
 Cross-correlation
$$\int_{g}^{f*g} \int_{f*g}^{f*g} \int_{f*g}^{f*g}$$

unlike convolution, cross-correlation is not commutative ("convolutional neural networks" often implement cross-correlation

u=-k v=-k

auto-correlation

auto-correlation is a cross-correlation of a signal with itself.

if a signal is completely random, it should only autocorrelate at lag = 0 (i.e., when the two signals overlap perfectly)

https://www.youtube.com/watch?v=spUNpyF58BY

any function (1D signal, 2D image, etc.) can be expressed as linear combination of sinusoids having some amplitude and phase

any function (1D signal, 2D image, etc.) can be expressed as linear combination of sinusoids having some amplitude and phase

Fourier Analysis takes some function (1D signal, 2D image, etc.) and decomposes it into a linear combination of sinusoids having some amplitude and phase

time domain
$$F(\omega) = \int_{-\infty}^{+\infty} f(t) \ e^{-2\pi i \omega t} \ dt \longrightarrow frequency domain$$

$$F(\omega) = \int_{-\infty}^{+\infty} F(\omega) \ e^{2\pi i \omega t} \ d\omega \longleftarrow frequency domain$$

Euler's Formula
$$e^{it} = \cos(t) + i\sin(t)$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(x) \ e^{-2\pi i \omega x} \ dx \longrightarrow$$

$$\text{frequency domain}$$

$$\longleftarrow f(x) = \int_{-\infty}^{+\infty} F(\omega) \ e^{2\pi i \omega x} \ d\omega \longleftarrow$$

Euler's Formula
$$e^{ix} = \cos(x) + i\sin(x)$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-2\pi i \omega x} dx$$

$$f(x) \text{ is our function}$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-2\pi i \omega x} dx$$

$$\text{Euler's Formula}$$

$$e^{ix} = \cos(x) + i \sin(x)$$

f(x) will be expressed as a combination of sines and cosines

http://en.wikipedia.org/wiki/Euler's_formula

$$F(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-2\pi i \omega x} dx$$

 $F(\omega)$ is complex

$$F(\omega) = R(\omega) + iI(\omega)$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-2\pi i \omega x} dx$$

$$F(\omega) \text{ is complex}$$

$$F(\omega) = R(\omega) + iI(\omega)$$

$$/$$
Amplitude Phase

$$F(\omega) = \int_{-\infty}^{+\infty} f(x) e^{-2\pi i \omega x} dx$$

$$(\omega) \text{ is complex}$$

 $F(\omega)$ is complex

$$F(\omega) = R(\omega) + iI(\omega)$$

Amplitude

$$|F(\omega)| = \sqrt{R^2(\omega) + I^2(\omega)}$$
 $\phi(\omega) = \tan^{-1}\left(\frac{I(\omega)}{R(\omega)}\right)$

Amplitude

$$A(\omega) = \sqrt{R^2(\omega) + I^2(\omega)}$$

Phase

$$A(\omega) = \sqrt{R^2(\omega) + I^2(\omega)}$$
 $P(\omega) = \tan^{-1}\left(\frac{I(\omega)}{R(\omega)}\right)$

Amplitude

Phase

$$A(\omega) = \sqrt{R^2(\omega) + I^2(\omega)}$$

$$A(\omega) = \sqrt{R^2(\omega) + I^2(\omega)}$$
 $P(\omega) = \tan^{-1}\left(\frac{I(\omega)}{R(\omega)}\right)$

How do you get back to the $F(\omega)$ given $A(\omega)$ and $P(\omega)$?

$$F(\omega) = A(\omega) \left(\cos(P(\omega)) + i \sin(P(\omega)) \right)$$

$$F(\omega) = A(\omega)\exp(iP(\omega))$$

$$F(\omega) = pol2cart(P(\omega), A(\omega))$$

A few properties of Fourier Transforms

$$\frac{df(x)}{dx} \iff i\omega F(\omega)$$

$$\int f(x) \ dx \Longleftrightarrow \frac{F(\omega)}{i\omega}$$

$$f(x) * g(x) \iff F(\omega)G(\omega)$$